

NASA Upper Atmosphere Research Satellite (UARS) Re-entry Prediction and Analysis

Gene Stansbery

Nick Johnson

Orbital Debris Program Office

NASA/Johnson Space Center

**INTERNATIONAL SYMPOSIUM ON
SUSTAINABLE SPACE DEVELOPMENT AND UTILIZATION FOR HUMANKIND
ORBITAL SPACE DEBRIS – CHALLENGES & OPPORTUNITIES**

Upper Atmosphere Research Satellite

- **Launched:** 12 September 1991 inside STS-48
- **Deployed:** 15 September 1991
- **International Designator:** 1991-063B
- **U.S. Satellite Number:** 21701
- **Dry mass:** 5668 kg
- **Initial Operational Orbit:** 575 km by 580 km, 57 deg inclination
- **Decommissioned:** 15 December 2005 after maneuvering into a shorter-lived disposal orbit
 - Residual orbital lifetime reduced by ~ 20 years

Orbital History of UARS

Time of Reentry Inherent Prediction Limitations

- **The two principal and not completely independent influences on reentry prediction accuracy are atmospheric density and vehicle stability.**
- **Atmospheric density varies over the planet and can be significantly affected by solar activity within a short period.**
 - Solar activity can also adversely affect the operation of ground-based radars, leading to less accurate tracking information.
- **Changes in vehicle stability are not uncommon during the final days prior to reentry due to increased average atmospheric density.**
 - The initiation or change of tumbling modes can result in a change in the vehicle's drag profile, which, in turn, can affect the time and location of reentry.

U.S. Reentry Predictions

- The official source of reentry predictions for uncontrolled space objects is USSTRATCOM's Joint Space Operations Center (JSpOC).
- Normal procedure is for TIP (Tracking and Impact Prediction) messages to be prepared and released to the public (via the Space-Track.org website) at the following intervals:
 - $T - 4$ days, $T - 3$ days, $T - 2$ days, $T - 1$ day, $T - 12$ hours, $T - 6$ hours, and $T - 2$ hours
- TIP messages provide the best estimates of reentry time and location but have large uncertainties. Even at $T - 2$ hours, the uncertainty of reentry time is on average ± 25 minutes for nearly circular orbits. This equates to $\pm 12,000$ km on the Earth.
- A final, post-reentry assessment message is normally issued within a few hours of reentry.

Average of 47 Objects Reentering from Near Circular Orbits

UARS Reentry Predictions

UARS Reentry Predictions

Post-Flight Assessment of UARS Reentry

- High confidence post-flight assessment is that UARS reentered the Earth's atmosphere at 14.1° S and 170.1° W at 04:00 GMT on 24 September 2012.

UARS Groundtrack, 03:30 – 04:00 GMT, 24 September 2011

Probability of Reentering Over the Ocean

Probability of Reentering Over the Ocean

Probability of Satellite Reentry Over Land
as a Function of Orbital Inclination

NASA Reentry Risk Capability

- **NASA's highest fidelity software program for reentering satellites is called ORSAT: Object Reentry Survival Analysis Tool. The program:**
 - Assesses spacecraft, launch vehicle stage, and other man-made space object component survivability during atmospheric entry from sub-orbital, orbital, and deep space trajectories.
 - Assesses human casualty risk associated with uncontrolled reentries.
 - Characterizes surviving debris footprints associated with controlled reentries for the purpose of avoiding inhabited regions and the Antarctic permanent ice pack.
- **ORSAT has supported many NASA, DoD, and other domestic and foreign programs during the past two decades.**

Basic Components of UARS

Starboard View

Port View

UARS Casualty Risk Assessment

- **NASA conducted a detailed reentry risk assessment for UARS in 2002.**
 - Number of potentially hazardous objects expected to survive: 26
 - Total mass of objects expected to survive: 532 kg
 - Estimated human casualty risk (updated to 2011): ~ 1 in 3200

Object Description	Material	Qty.	Type	Initial mass (kg)	Impacting mass (kg)	Impacting vel. (m/s)	Impacting K. E. (kJ)	Downrange (km)	Debris casualty area (m ²)	Impacting cross section area (m ²)	Mass/CS area (kg/m ²)	Impacting ballistic coeff. (kg/m ²)
HGA gimbal & reten.	Titanium	1	Cyl.	98.81	27.03	43.91	26.07	1197.56	1.32	0.301	89.80	119.58
Fwd bulkhead fitting	Titanium	4	Box	24.91	24.91	79.07	77.88	1274.16	0.66	0.0463	538.60	379.30
SSPP gimbal	Titanium	1	Cyl.	60.65	60.65	58.10	102.36	1138.72	1.36	0.322	188.47	207.80
SSPP structure	Al 2024-T8	1	Box	158.30	158.30	44.02	153.38	1019.70	2.44	0.928	170.59	120.13
MMS fuel tanks	Titanium	4	Sphere	5.17	5.17	25.55	1.69	838.55	0.94	0.138	37.48	40.74
MMS MPS batteries	SSteel 304L	3	Box	45.78	45.78	64.57	95.43	1149.34	0.91	0.126	362.97	255.61
Reaction wheel rims	SSteel 304L	4	Cyl.	2.04	2.01	107.26	11.54	1134.95	0.43	0.0028	710.02	678.79
FSS housing	Beryllium	1	Box	3.13	3.13	78.02	9.53	1201.73	0.46	0.0060	524.74	369.54
FHST bracket	Beryllium	2	Box	1.09	1.09	18.26	0.18	713.20	0.63	0.0368	29.60	20.85
G. F. abutment plate	Titanium	2	Flat pl.	2.30	2.30	14.28	0.23	486.58	1.22	0.255	9.02	12.76
G. F. base plate	Titanium	2	Flat pl.	5.51	5.51	35.80	3.53	883.43	0.83	0.098	56.35	79.70
G. F. extension	Titanium	1	Cyl.	3.39	0.64	21.40	0.15	934.93	0.56	0.0215	29.95	28.59
TOTALS		26		607.92	532.38			22.38	3.49			

Note: Totals account for quantity while the value listed in the table accounts for only one object.

Downrange Spread of Surviving Debris

Surviving Components

Summary

- **No NASA or USG human casualty reentry risk limits existed when UARS was designed, built, and launched.**
- **Time of reentry estimates were within normal limits**
- **NASA, the USG, and some foreign space agencies now seek to limit human casualty risks from reentering space objects to less than 1 in 10,000.**
- **UARS was a moderate-sized space object. Uncontrolled reentries of objects more massive than UARS are not frequent, but neither are they unusual.**
- **Since the beginning of the space age, there has been no confirmed report of an injury resulting from reentering space objects.**