STATS 100 A 11W6

1)		
	D() - 5 o/o)	$\frac{x}{1} \frac{P_{x}(x)}{\rho(1,0) + \rho(1,2) + \rho(1,3)}$ $\frac{1}{2} \frac{\rho(2,1) + \rho(2,2)}{\rho(2,2) + \rho(2,3)}$
1 0.1 0.1 2 0.1 2 0.1 0.2	$P_{\mathbf{x}}(\mathbf{x}) = \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y})$	Y Py(4)
3 0.1 0.1	$P_{\gamma}(\gamma) = \sum_{\alpha} \rho(\alpha, \gamma)$	$ \begin{array}{c c} 1 & \rho(1,1) + \rho(2,1) = 0.7 \\ 2 & \rho(1,2) + \rho(2,2) = 0.3 \\ 3 & \rho(1,3) + \rho(2,3) = 0. \end{array} $

2)
$$p(x|y) = \frac{p(x,y)}{p(y)}$$

 $p(y|x) = \frac{p(x,y)}{p(x)}$

(x/Y): No	1	2
1	P(1,1) =0.5	$\frac{\rho(2,1)}{\rho(y=1)} = \frac{1}{2}$
p(x, 1)	P(Y=1) P(1,2)	e(2,1) = 2
p (a, 2)	P(4=2) 3	P(+=2) = 3
9(2,3)	$\frac{p(1,3)}{p(y=3)} = \frac{2}{5}$	p(2,3) = 3

p(y x):	1	p(y,1)	p(4,2)
	1	$\frac{\rho(1,1)}{\rho(x=0)} = \frac{1}{4}$	P(2,1) = 1
	2	P(1.2) = 1	$\frac{\rho(2,2)}{\rho(x=2)} = \frac{1}{3}$
	3	$\frac{p(0,3)}{p(x:1)} = \frac{1}{2}$	$\frac{p(2,3)}{p(x=1)} = \frac{1}{2}$

$$E(XY) = \sum_{k=1}^{3} \sum_{y=1}^{3} (\kappa Y) p(\kappa Y) = [-0.1 + 2 \cdot 0.1 + 2 \cdot 0.1 + 4 \cdot 0.2 + 3 \cdot 0.2 + 6 \cdot 0.3 = 3.7]$$

(ov(X,Y)= E[(X-E(X))(Y-E(Y))] = E[XY-YE(X)-XE(X)+E(X)E(Y)] = E(XY)-E(X)E(Y)-E(X)E(Y)+E(X)E(Y)

Roblem 1

- 1) perfect t correlation, high t currelation, but t correlation, low correlation, high correlation, partest correlation
- $\frac{2}{\hat{y}} = \beta \tilde{x}$ $\frac{\hat{y}}{\hat{y}} = \beta \tilde{x}$ $\frac{\hat{y}}{\hat{y}} = \beta \tilde{x}$ $\frac{\hat{y}}{\hat{y}} = \beta \tilde{x}$ $\frac{\hat{y}}{\hat{y}} = \beta \tilde{x}$

Problem 3)

- 8(x) = Sf(x) x) dy f(x1x)= f(x,x) f(xy)=f(x) 86x12)
- 2) E(Y(X=x)=E(px+ E)=px) Var(Y | X = 20) = Var(px+6) = Var(6) = 1-p2
- 3) Beans E-NCO, 1-p2) ensures that the Ahl without of T ships consist of our siven rates.
- Bound out who an very by an enter when I continue of p.

Problem 4)

- D If X Y are independent, the E(XY) = E(X)E(Y)
- 50 COV (X, Y) = E[(X-E(X))(Y-E(Y))]
 - = E(X)E(Y) E(X)E(Y)=0.

name my be folse it X & Y are uncorrelated but SMII have some other other other of decases

1)
$$V_{m}(X+Y)=E[(X+Y-E(X+Y))^{2}]$$
 $E[X+Y]=E[X]+E[Y]$

$$=E[(X+Y-E(X)-E[Y])^{2}]$$

$$=V_{m}(X)+2C_{m}(X^{2},Y)+V_{m}(Y)$$

$$=V_{m}(X)+V_{m}(Y)$$

$$V_{n}(X) = V_{n}(\frac{1}{2}X_{i})$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}V_{n}(X_{i})$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma^{2}\left[-\frac{\sigma^{2}}{n}\right]$$