```
import scipy.stats as stats
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

题1

安徽省国民收入与城乡居民存款余额的相关性分析data10-01

```
data1 = pd.read_excel('data.xlsx', sheetname='data10-01', index_col=0)

data1.head()
```

	incom	deposit
year		
1962	34.61	0.59
1963	35.67	0.71
1964	39.52	0.85
1965	47.32	1.00
1966	54.14	1.22

data1.corr(method='pearson')

	incom	deposit
incom	1.000000	0.976209
deposit	0.976209	1.000000

题2

用相关矩阵观察起始工资(salbegin)和现工资(salary)与雇员本人个方面条件的关系。Data07-03

```
data2 = pd.read_excel('data.xlsx', sheetname='data07-03', index_col=0)
```

将性别数值化, 男为1, 女为0

```
data2['gender'] = data2['gender'].astype('category')
data2['gender'].cat.categories = [0, 1]
```

计算年龄

```
from datetime import datetime
now = pd.Timestamp(datetime.now())
data2['bdate'] = pd.to_datetime(data2['bdate'])
data2['age'] = (now - data2['bdate']).astype('<m8[Y]')</pre>
```

data2.head()

	gender	bdate	educ	jobcat	salary	salbegin	jobtime	prev
id								
1	1	1952- 02-03	15	3	57000	27000	98	144
2	1	1958- 05-23	16	1	40200	18750	98	36
3	0	1929- 07-26	12	1	21450	12000	98	381
4	0	1947- 04-15	8	1	21900	13200	98	190
5	4	1955-	4 6	4	45000	24000	0.0	120

02-09

计算相关性矩阵

data2.corr()

	educ	jobcat	salary	salbegin	jobtime	p
educ	1.000000	0.513854	0.660559	0.633196	0.047379	-0.
jobcat	0.513854	1.000000	0.780115	0.754662	0.005329	0.0
salary	0.660559	0.780115	1.000000	0.880117	0.084092	-0.
salbegin	0.633196	0.754662	0.880117	1.000000	-0.019753	0.0
jobtime	0.047379	0.005329	0.084092	-0.019753	1.000000	0.0
prevexp	-0.252353	0.062645	-0.097467	0.045136	0.002978	1.0
minority	-0.132889	-0.143781	-0.177337	-0.157598	0.049501	0.1
age	-0.280766	0.010596	-0.143529	-0.008930	0.054419	3.0

```
g = sns.PairGrid(data2, palette="GnBu_d")
g.map(plt.scatter, s=50, edgecolor="white")
g.add_legend();
```


从相关矩阵可以看出:

- 起始工资(salbegin)和现有工资(salary)有很强的相关性(0.88),说明现有工资 很大程度上与起始工资有关
- 起始工资和现有工资都与工作类型(jobcat)和教育程度(educ)有较强的相关性 (~0.7),说明教育程度和工作类型对起始工资和现有工资有较大的影响
- 起始工资和现有工资与工作年限(jobtime)、工作经验(prevexp)和年龄(age)的相关性非常弱(<0.1),说明工作年限和工作经验对工资几乎没有影响

题3

使用四川绵阳地区三年生中山柏的数据,分析月生长量与月平均气温、月降雨量、月平均日照时数、月平均湿度这四个气候因素哪个有关。Data10-03

data3 = pd.read_excel('data.xlsx', sheetname='data10-03', index_col=0)

data3.head()

	hgrow	temp	rain	hsun	humi
month					
1	0.01	4.2	17.0	54.5	81
2	0.50	7.4	10.8	73.8	79
3	1.50	10.0	17.4	84.7	75
4	10.80	16.1	19.7	137.0	75
5	13.00	21.1	248.7	149.6	77

data3.corr()

	hgrow	temp	rain	hsun	humi
hgrow	1.000000	0.983387	0.709370	0.704429	0.373573
temp	0.983387	1.000000	0.714821	0.690490	0.291983

rain	0.709370	0.714821	1.000000	0.701842	0.384326
hsun	0.704429	0.690490	0.701842	1.000000	-0.050938
humi	0.373573	0.291983	0.384326	-0.050938	1.000000

使用spss的偏相关分析得出的结果

```
partial = pd.Series(data = [.977,-.491,.632,.731],index = [ 'temp', 'ra
partial

temp     0.977
rain     -0.491
hsun     0.632
humi     0.731
dtype: float64
```

分析

从spss的偏相关分析结果可以看出:

- 该地区山柏生长于温度有强相关性(0.977), 说明温度对其生长有很大的影响
- 对比生长与降雨的相关性和偏相关性可以看出,降雨对生长不但没有正的影响,反 而有负面的影响,即降雨越多,生长的越慢
- 日照时间和空气湿度对山柏生长有较强的相关性,说明日照时间和空气湿度是影响 该地区山柏生长的重要因素