```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn import preprocessing,svm
```

```
In [3]: df=pd.read_csv(r"C:\Users\venka\Downloads\bottle.csv\bottle.csv")
print(df)
```

C:\Users\venka\AppData\Local\Temp\ipykernel_10296\1869258293.py:1: DtypeWarn ing: Columns (47,73) have mixed types. Specify dtype option on import or set low_memory=False.

df=pd.read_csv(r"C:\Users\venka\Downloads\bottle.csv\bottle.csv")

	Cst_Cnt	Btl_Cnt	9	Sta_ID					Depth_I
D 0	1	1	054.0	056.0	19-490	3CR-H	Y-060-09	30-05	
3 \									
1 3	1	2	054.0	056.0	19-496	3CK-H	Y-060-05	30-05	400560-0008A-
2 7	1	3	054.0	056.0	19-490	3CR-H	Y-060-09	30-05	400560-0010A-
3	1	4	054.0	056.0	19-490	3CR-H	Y-060-09	30-05	400560-0019A-
3 4 7	1	5	054.0	056.0	19-490	3CR-H	Y-060-09	30-05	400560-0020A-
				• • •					
 864858	34404	864859	093.4	026.4	20-161	.1SR-M	X-310-22	239-09	340264-0000A-
7 864859	34404	864860	093.4	026.4	20-161	.1SR-M	X-310-22	239-09	340264-0002A-
3 864860	34404	864861	093.4	026.4	20-161	1SR-M	X-310-22	39-09	340264-0005A-
3									
864861 3	34404	864862	093.4	026.4	20-161	.1SR-M	X-310-22	239-09	340264-0010A-
864862 3	34404	864863	093.4	026.4	20-161	.1SR-M	X-310-22	239-09	340264-0015A-
	Depthm	T_degC	Salnty	O2m1_I	_ ST	heta	02Sat		R_PHAEO
0	. 0		33.4400	Nal		4900	NaN		_ NaN \
1	8	10.460	33.4400	Nal	N 25.6	5600	NaN		NaN
2	10	10.460	33.4370	Nal	N 25.6	5400	NaN		NaN
3	19	10.450	33.4200	Nal	N 25.6	4300	NaN		NaN
4	20	10.450	33.4210	Nal	N 25.6	4300	NaN		NaN
• • •	• • •			• •	•				• • •
864858	0		33.4083	5.80	23.8	7055	108.74	• • •	0.18
864859	2		33.4083	5.80		7072	108.74	• • •	0.18
864860	5		33.4150	5.796		8911	108.46	• • •	0.18
864861	10		33.4062	5.816		1426	107.74	• • •	0.31
864862	15	17.533	33.3880	5.774	1 24.1	.5297	105.66	• • •	0.61
	R_PRES	R_SAMP I	DIC1 D	IC2 TA:	L TA2	pH2	pH1 DI	C Oua	lity Comment
0	0	NaN		NaN Nai		NaN	NaN	.c euu	NaN
1	8	NaN		NaN Nal		NaN	NaN		NaN
2	10	NaN		NaN Nal		NaN	NaN		NaN
3	19	NaN		NaN Nal		NaN	NaN		NaN
4	20	NaN		NaN Nal		NaN	NaN		NaN
• • •							• • •		• • •
864858	0	NaN	NaN 1	NaN Nal	N NaN	NaN	NaN		NaN
864859	2	4.0		NaN Nal		NaN	NaN		NaN
864860	5	3.0		NaN Nai		NaN	NaN		NaN
864861	10	2.0		NaN Nai		NaN	NaN		NaN
864862	15	1.0	NaN 1	NaN NaN	N NaN	NaN	NaN		NaN

[864863 rows x 74 columns]

```
In [4]: df=df[['Salnty','T_degC']]
         df.columns=['Sal','Temp']
In [5]: df.head(10)
Out[5]:
               Sal Temp
            33.440
                   10.50
          1 33.440 10.46
          2 33.437 10.46
          3 33.420 10.45
          4 33.421 10.45
          5 33.431 10.45
          6 33.440 10.45
          7 33.424 10.24
          8 33.420 10.06
          9 33.494
                    9.86
In [6]: df.tail()
Out[6]:
                     Sal
                          Temp
          864858 33.4083 18.744
          864859 33.4083 18.744
          864860 33.4150 18.692
```

864861 33.4062 18.161 **864862** 33.3880 17.533

In [7]: sns.lmplot(x="Sal",y="Temp",data=df,order=2,ci=None)

Out[7]: <seaborn.axisgrid.FacetGrid at 0x1fef4502cd0>

In [8]: df.describe()

Out[8]:

	Sal	Temp
count	817509.000000	853900.000000
mean	33.840350	10.799677
std	0.461843	4.243825
min	28.431000	1.440000
25%	33.488000	7.680000
50%	33.863000	10.060000
75%	34.196900	13.880000
max	37.034000	31.140000

```
In [9]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 864863 entries, 0 to 864862
         Data columns (total 2 columns):
              Column Non-Null Count
                                        Dtype
          0
              Sal
                      817509 non-null float64
                      853900 non-null float64
          1
              Temp
         dtypes: float64(2)
         memory usage: 13.2 MB
In [13]: | df.fillna(method='ffill',inplace=True)
In [11]: | df.fillna(method='ffill',inplace=True)
         x=np.array(df['Sal']).reshape(-1,1)
         y=np.array(df['Temp']).reshape(-1,1)
         df.dropna(inplace=True)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
         regr=LinearRegression()
         regr.fit(x_train,y_train)
         print("Regression: ",regr.score(x_test,y_test))
         y_pred=regr.predict(x_test)
         plt.scatter(x_test,y_test,color='b')
         plt.plot(x test,y pred,color='k')
         plt.show()
```

Regression: 0.20332169758048613


```
In [16]: df.dropna(inplace=True)
```

```
In [17]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_test,y_test))
```

0.20276461340567697

```
In [18]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [19]: df=df[:][:500]
```

In [20]: sns.lmplot(x="Sal",y="Temp",data=df,order=1,ci=None)

Out[20]: <seaborn.axisgrid.FacetGrid at 0x1fef8096090>


```
In [21]: df.fillna(method='ffill',inplace=True)
    x=np.array(df['Sal']).reshape(-1,1)
    y=np.array(df['Temp']).reshape(-1,1)
    df.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression: ",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```

Regression: 0.8276840473714211


```
In [22]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model=LinearRegression()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print("r2 score:",r2)
```

r2 score: 0.8276840473714211

```
In [ ]:
```