Question:
$Y = \{w \mid w = t_1 \# t_2 \# \cdots \# t_k \text{ for } k \ge 0, \text{ each } t_i \in 1^*, \text{ and } t_i \ne t_j \text{ whenever } i \ne j\}.$
Here $\Sigma = \{1, \#\}$. Prove that Y is not context free.
Answer:
SETP1
CFG:
• A fixed set of grammar rules is known as CFG (context free grammar) . It consisting of that is augment (N, T, P, S).
• Where, N is set of non-terminal symbol.
• T is set of terminal $N \cap T = NULL$.

- **P** is set of rule, $P: N \to (N \cup T)^*$.
- S is start symbol.

----SETP2----

Consider the following details:

The language is $Y = \{w \mid w = t_1 \# t_2 \# \dots \# t_k \text{ where } k \ge 0, t_i \in 1 \text{ and } t_i \ne t_j \text{ when } i \ne j\}$ with the terminals being $\sum e^{\sum t_i} = \{1, \#\}$.

----SETP3----

Proof:

Theorem 2.34: Any string s in A, the pumping lemma p is the minimum length such that It could make part under five ends s = uvxyz. The string s also satisfies the following conditions for a context-free language A:

1. The string what's to come for $u^{v'}xy'z$ only those context-free dialect A, the point when every $i \ge 0$.

 $uv^i x y^i z \in A$

2. Those strings that need aid pumped, v furthermore y, can't both make the void string ε .

|vy| > 0

3. The joined together period of the strings lying inside what's to come for u Also z must not a chance to be more stupendous that those pumping length P.

 $|vxy| \le p$

----SETP4----

This problem is solved by the proof of contradiction.

- The language Y is supposed to be a context-free language.
- Theorem 2.34 is shown not to hold for the language.
- ullet This makes the assumption, which is that Y is a CFL, invalid.
- \bullet Assume language Y is a context-free language.
- Now it can be seen that either x or y cannot have any #'s.
- This is as when user pump the string then user will get strings of the form $s = t_1 \# t_2 \# \# t_k$ where $t_i = t_j$ when $i \neq j$.

• Such strings do not lie in A. Consequently, to get $v, y = 1^*$.

----SETP5----

Construction:

Consider the string $s = uv^i xy^i z$ with $v = 1^*$, $y = 1^*$. The two cases possible for the substring vxy are:

- The substring contains #: as the # symbol cannot lie in either v or y, it must lie in x.
- When the string $s = uv^i xy^i z$ is pumped with $x = 1^* # 1^*$, the case $t_i = t_j$ when $t_i \neq t_j$ can occur.
- ullet Thus, pumping this string does not necessarily produce strings that lie in Y.
- It does not contain#: the substring xyz will be just be a sequence of ls. As was argued for the previous case, on applying the condition 1 of theorem 2.34 to pump the string will result in strings wherein $^{t_i} = t_j$ in cases when $^{i \neq j}$. As has been seen these strings are not part of language y .

----SETP6----

Conclusion:

The language Y does not satisfy the pumping lemma. Consequently, it is not a CFL.