Chapter 6: Prune and Search

Chin Lung Lu

Department of Computer Science

National Tsing Hua University

Running time of prune & search strategy

- Assume that the time needed to execute the purne and search in each iteration is $\mathcal{O}(n^k)$ for some positive constant k.
- Let T(n) be the worst-case running time of prune and search algorithm.

Recursive formula of T(n):

$$T(n) = T((1-f)n) + \mathcal{O}(n^k)$$
, where $1 - f < 1$.

▶ It can be proved that $T(n) = \mathcal{O}(n^k)$.

General method of prune and search strategy

- The prune and search strategy always consists of several iterations.
- At each iteratin, it prunes away a fraction f of the input data, where f < 1, and uses the same algorithm recursively to solve the problem for the remaining data.
- After $p \in Z^+$ iterations, the size of the remaining data will be q, which is so small that the problem can be solved directly in constant time, say c'.

Running time of prune & search strategy (cont'd)

For sufficiently large n, we have:

$$T(n) \leq T((1-f)n) + cn^{k}$$

$$\leq T((1-f)^{2}n) + cn^{k} + c(1-f)^{k}n^{k}$$

$$\vdots$$

$$\leq c' + cn^{k} + c(1-f)^{k}n^{k} + c(1-f)^{2k}n^{k} + \dots + c(1-f)^{(p-1)k}n^{k}$$

$$= c' + cn^{k}\left(1 + (1-f)^{k} + (1-f)^{2k} + \dots + (1-f)^{(p-1)k}\right)$$

$$\leq c' + cn^{k}\left(1 + (1-f)^{k} + (1-f)^{2k} + \dots + (1-f)^{(p-1)k}\right)$$

$$= c' + cn^{k}\frac{1}{1-(1-f)^{k}} \quad \text{(where } c', c, f \text{ are positive constants)}$$

$$= \mathcal{O}(n^{k})$$

Property of prune and search strategy

Lemma:

The time complexity of the whole prune and search process is of the same order as the time complexity of the prune and search in each iteration, that is, $\mathcal{O}(n^k)$.

ightharpoonup Note that this lemma holds only when k is a positive constant.

Binary search algorithm

Input: A sorted sequence $a_1 \leq a_2 \leq \ldots \leq a_n$ and X.

Output: j if $a_j = X$; otherwise, 0.

```
1. l = 1; /* leftmost index */
2. r = n; /* rightmost index */
3. while l \le r do
4. m = \lfloor \frac{l+r}{2} \rfloor; /* middle index */
5. if X = a_m, then output m and stop; /* success */
6. if X < a_m, then r = m - 1;
7. else l = m + 1;
8. end while
9. j = 0; /* failure */
10. Output j;
```

Search problem

Definition:

Given a sorted sequence $a_1 \le a_2 \le ... \le a_n$ and an element X, the search problem is to determine whether X is present in this list.

Example:

- Let $(a_1, a_2, a_3, a_4, a_5, a_6, a_7) = (1, 2, 3, 4, 5, 6, 7)$ and X = 1.
- \triangleright Clearly X appears in the given list $(a_1, a_2, a_3, a_4, a_5, a_6, a_7)$.

Binary search algorithm (cont'd)

Example 1: $(a_1, a_2, a_3, a_4, a_5, a_6, a_7) = (1, 2, 3, 4, 5, 6, 7)$ and X = 1

<i>i</i> -th step	a_1	a_2	a_3	a_4	a_5	a_6	a_7	
	1	2	3	4	5	6	7	
i = 1	↑ <i>l</i>			† m			↑ <i>r</i>	$a_4 \neq X$
i=2	↑ <i>l</i>	† m	↑ <i>r</i>					$a_2 \neq X$
i = 3	↑ <i>l</i> , <i>m</i> , <i>r</i>							$a_1 = X$
								(success)

Binary search algorithm (cont'd)

Example 2: $(a_1, a_2, a_3, a_4, a_5, a_6, a_7) = (1, 2, 3, 4, 5, 6, 7)$ and X = 8

<i>i</i> -th step	a_1	a_2	a_3	a_4	a_5	a_6	a_7	
	1	2	3	4	5	6	7	
i=1	↑ <i>l</i>			† m			↑ <i>r</i>	$a_4 \neq X$
i=2					↑ <i>l</i>	† m	↑ <i>r</i>	$a_6 \neq X$
i=3							↑ <i>l</i> , <i>m</i> , <i>r</i>	$a_7 \neq X$
								$a_7 \neq X$ (failure)

Time complexity of binary search algorithm

- \blacktriangleright Let T(n) be the time complexity of the binary search algorithm.
- ▶ Clearly, we have $T(n) = T(\frac{n}{2}) + \mathcal{O}(1)$.
- ▶ As a result, $T(n) = \mathcal{O}(\log n)$ by the master theorem.

Selection problem

Definition:

Given a set S of n elements and an integer $1 \le k \le n$, the selection problem is to determine the kth smallest element.

Example:

- ► Let $S = \{5, 3, 7, 1, 9\}$ and k = 3.
- ightharpoonup The third smallest element in S is 5.

Selection problem (cont'd)

Method 1: Using sorting algorithm

- ightharpoonup Sort these n elements in ascending order.
- Locate the *k*th element.
- ▶ The time complexity of this approach is $O(n \log n)$ time.

Method 2: Using prune and search approach

▶ The time complexity of this approach is $\mathcal{O}(n)$ time.

Selection problem (cont'd)

Prune and search algorithm

- ▶ Let *S* be the input set of *n* elements.
- ▶ Let $p \in S$.
- ▶ Partition S into 3 subsets S_1, S_2 and S_3 such that:
 - 1. S_1 contains all elements < p.
 - 2. S_2 contains all elements = p.
 - 3. S_3 contains all elements > p.

13

Selection problem (cont'd)

Prune and search algorithm

Question:

How to select p such that we can always discard a fraction of S?

- 1. Divide S into $\lceil \frac{n}{5} \rceil$ subsets, with each subset having 5 elements, and add some dummy ∞ elements to the last subset if $n \neq 0 \pmod{5}$.
- 2. Sort each of $\lceil \frac{n}{5} \rceil$ 5-element subsets.
- 3. Select the median of each subset to form $M=\{m_1,\ldots,m_{\left\lceil\frac{n}{5}\right\rceil}\}$ and let p be the median of M.

Selection problem (cont'd)

Prune and search algorithm

Case 1:

If $|S_1| \ge k$, the kth smallest element of S is in S_1 and hence we can prune away S_2 and S_3 at the next iteration.

Case 2:

Otherwise, if $|S_1| + |S_2| \ge k$, p is the kth smallest element of S.

Case 3:

If none of above two conditions is satisfied, the kth smallest element of S must be in S_3 and therefore we can discard S_1 and S_2 and start next iteration by selecting the $(k-|S_1|-|S_2|)$ th smallest element from S_3 .

Selection problem (cont'd)

Prune and search algorithm

Lemma (also refer to the figure on next slide):

At least 1/4 of the elements in S are $\leq p$ and at least 1/4 of the elements in S are $\geq p$.

▶ Hence, if we choose p in this way, we can always prune away at least $\frac{1}{4} \times |S|$ elements from S during each iteration.

Selection problem (cont'd)

Prune and search algorithm

Selection problem (cont'd)

Prune and search algorithm

Input: A set S of n elements.

Output: The *k*th smallest element of *S*.

- 1. If |S| < 5, solve the problem by any brute force method.
- 2. Divide S into $\lceil \frac{n}{5} \rceil$ subsets, with each subset containing five elements, and add some dummy ∞ elements to the last subset when $n \neq 0 \pmod{5}$.
- 3. Sort each of $\lceil \frac{n}{5} \rceil$ 5-element subsets.
- 4. Find p which is the median of the medians of the $\lceil \frac{n}{5} \rceil$ subsets.
- 5. Partition S into three subsets S_1 , S_2 and S_3 , which contains the elements less than, equal to, and greater than p, respectively.

17

19

Selection problem (cont'd)

Prune and search algorithm

```
6. if |S_1| \ge k then

Discard S_2 and S_3 and solve the problem recursively.

else if |S_1| + |S_2| \ge k then

p is the kth smallest element of S.

else

Discard S_1 and S_2 and solve the problem by selecting (k - |S_1| - |S_2|)th element at the next iteration.

end if
```

Selection problem (cont'd)

Time complexity of prune and search algorithm

- \blacktriangleright Let T(n) be the time of the above prune and search algorithm.
- ▶ Steps 1, 2, 3 and 5 cost $\mathcal{O}(n)$ time.
- Step 4 costs $T(\lceil \frac{n}{5} \rceil)$ if we use the same algorithm recursively to find the median of the $\lceil \frac{n}{5} \rceil$ elements.
- ▶ Because we always prune away at least $\frac{1}{4}$ elements during each iteration, the problem remaining in step 6 contains at most $\frac{3}{4}$ elements and hence can be accomplished in $T(\frac{3n}{4})$ time.
- As a result, we have:

$$T(n) = T\left(\frac{3n}{4}\right) + T\left(\frac{n}{5}\right) + \mathcal{O}(n).$$

Selection problem (cont'd)

Time complexity of prune and search algorithm

- ► Let $T(n) = a_0 + a_1 n + a_2 n^2 + \cdots$
- ► Then we have:

$$T\left(\frac{3n}{4}\right) = a_0 + \frac{3}{4}a_1n + \frac{9}{16}a_2n^2 + \cdots$$

$$T\left(\frac{n}{5}\right) = a_0 + \frac{1}{5}a_1n + \frac{1}{25}a_2n^2 + \cdots$$

$$T\left(\frac{3n}{4} + \frac{n}{5}\right) = T\left(\frac{19n}{20}\right) = a_0 + \frac{19}{20}a_1n + \frac{361}{400}a_2n^2 + \cdots$$

▶ Therefore, we have $T\left(\frac{3n}{4}\right) + T\left(\frac{n}{5}\right) \leq a_0 + T\left(\frac{19n}{20}\right)$.

Selection problem (cont'd)

Time complexity of prune and search algorithm

► Hence, the time complexity of the prune and search algorithm for the selection problem is:

$$T(n) = T\left(\frac{3n}{4}\right) + T\left(\frac{n}{5}\right) + \mathcal{O}(n)$$

$$\leq T\left(\frac{19n}{20}\right) + cn$$

$$= \mathcal{O}(n)$$

As a result, the selection problem can be solved by the prune and search algorithm in linear time.

Linear programming problem

Definition:

Minimize
$$c_1x_1 + c_2x_2 + \ldots + c_nx_n$$

Subject to $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \ge b_1$
 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \ge b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \ge b_m$

➤ The problem is to optimize a linear function of several variables satisfying some constraints in the form of linear equalities and inequalities.

Linear programming problem (cont'd)

Example:

Minimize
$$2x + 3y$$

Subject to $x \le 10$
 $y \le 6$
 $x - y \ge 1$
 $3x + 8y > 30$

▶ The optimum solution is located at $(x,y) = (\frac{38}{11}, \frac{27}{11})$.

22

Linear programming problem (cont'd)

Linear programming problem (cont'd)

25

Linear programming problem (cont'd)

Megiddo (1984) and Dyer (1984) independently designed a prune and search strategy to solve the linear programming problem with a fixed number of variables in $\mathcal{O}(n)$ time, where n is the number of constraints.

▶ Below, we will introduce the prune and search technique to solve the linear programming problem with two variables.

Two-variable linear programming problem

Definition:

27

Minimize ax + by

Subject to $a_i x + b_i y \ge c_i$ for i = 1, 2, ..., n

Two-variable linear programming problem

Basic idea of prune and search method

- ► There are always some constraints that have nothing to do with the solution and hence can be pruned away.
- ▶ In the prune and search method, a fraction of constraints are pruned away after every iteration.
- After several iterations, the number of the constraints will be so small that the linear programming problem can be solved in some constant time.

Simplified two-variable LP problem

➤ To simplify the discussion, we consider the simplified version of the two-variable linear programming problem.

Simplified two-variable linear programming problem:

Minimize y

29

31

Subject to $y \ge a_i x + b_i$ for i = 1, 2, ..., n

Simplified two-variable LP problem (cont'd)

 (x_0, y_0) is the optimum solution.

Simplified two-variable LP problem (cont'd)

- ▶ Because $y \ge a_i x + b_i$ for all i, the optimal solution must be on the boundary surrounding the feasible region.
- Let $F(x) = \max_{1 \le i \le n} \{a_i x + b_i\}$ (the boundary of feasible region).
- Note that for each x, F(x) must have the highest value among all n constraints.

Observation:

The optimum solution x_0 satisfies $F(x_0) = \min_{-\infty \le x \le \infty} F(x)$.

Assumptions:

- 1. We have picked a point x_m on the x-axis as shown in the figure on the next slide.
- 2. By some reasoning, we know that $x_0 \le x_m$ (or $x_0 \ge x_m$).

Simplified two-variable LP problem (cont'd)

33

Simplified two-variable LP problem (cont'd)

Case 1:

If $x_0 < x_m$ and the intersection of two constraints is to the right of x_m , one of these two constraints is always smaller than the other for $x < x_m$ and hence this constraint may be deleted.

Simplified two-variable LP problem (cont'd)

Case 2:

If $x_0 > x_m$ and the intersection of two constraints is to the left of x_m , one of these two constraints is always smaller than the other for $x > x_m$ and hence this constraint may be deleted.

Simplified two-variable LP problem (cont'd)

How do we know whether $x_0 < x_m$ or $x_0 > x_m$?

Question:

Suppose that x_m is known. How do we know whether $x_0 < x_m$ or $x_0 > x_m$?

- Let $y_m = F(x_m) = \max_{1 \le i \le n} \{a_i x_m + b_i\}.$
- ightharpoonup Obviously, (x_m, y_m) is a point on the boundary of the feasible region.

Case 1: y_m is on only one constraint

- Let g be the slope of this constraint.
- ▶ If g > 0 then $x_0 < x_m$.
- ▶ If g < 0, then $x_0 > x_m$.

37

38

Simplified two-variable LP problem (cont'd)

How do we know whether $x_0 < x_m$ or $x_0 > x_m$?

Simplified two-variable LP problem (cont'd)

How do we know whether $x_0 < x_m$ or $x_0 > x_m$?

Case 2: y_m is the intersection of several constraints

Let g_{max} and g_{min} denote the maximum and minimum slopes of these constraints respectively.

$$g_{\max} = \max_{1 \le i \le n} \{a_i | a_i x_m + b_i = F(x_m)\}$$

$$g_{\min} = \min_{1 \le i \le n} \{a_i | a_i x_m + b_i = F(x_m)\}$$

Case 2a: If $g_{\text{max}} > 0$ and $g_{\text{min}} > 0$, then $x_0 < x_m$.

Case 2b: If $g_{\text{max}} < 0$ and $g_{\text{min}} < 0$, then $x_0 > x_m$.

Case 2c: If $g_{\text{max}} > 0$ and $g_{\text{min}} < 0$, then (x_m, y_m) is the optimum solution.

How do we know whether $x_0 < x_m$ or $x_0 > x_m$?

Simplified two-variable LP problem (cont'd)

Question:

How are we going to choose x_m ?

- For n constraints, group $\frac{n}{2}$ pairs of constraints and find their intersections.
- The x_m should be chosen so that half of the intersections lie to the right of x_m and half of the intersections lie to the left of x_m .
- ▶ In other words, x_m is the median of the x-coordinates of $\frac{n}{2}$ intersections.

41

Simplified two-variable LP problem (cont'd)

Prune and search algorithm

Input: A set S of n constraints $a_ix + b_i$, where i = 1, 2, ..., n. **Output:** The value x_0 such that y is minimized at x_0 subject to $y \ge a_ix + b_i$, where i = 1, 2, ..., n.

- 1. If S contains no more than 2 constraints, then solve this problem by a brute force method.
- 2. Divide S into $\frac{n}{2}$ pairs of constraints. For each pair of $a_ix + b_i$ and $a_jx + b_j$, find the intersection p_{ij} of them and denote its x-value as x_{ii} .
- 3. Find the median x_m among the x_{ij} 's (at most $\frac{n}{2}$ of them).
- 4. Determine $y_m = F(x_m) = \max_{1 \le i \le n} \{a_i x_m + b_i\}$. Let $g_{\max} = \max_{1 \le i \le n} \{a_i | a_i x_m + b_i = F(x_m)\}$. Let $g_{\min} = \min_{1 \le i \le n} \{a_i | a_i x_m + b_i = F(x_m)\}$.

Simplified two-variable LP problem (cont'd)

Prune and search algorithm

5. **if** g_{max} and g_{min} are not of the same sign **then** x_m is the solution and exit.

else
$$x_0 < x_m$$
 if $g_{\min} > 0$, and $x_0 > x_m$ if $g_{\min} < 0$.

6. if $x_0 < x_m$ then

for each pair of $a_i x + b_i$ and $a_j x + b_j$ whose $x_{ij} > x_m$ **do** Prune away the constraint which is smaller than the other for $x < x_m$.

if $x_0 > x_m$ then

for each pair of $a_i x + b_i$ and $a_j x + b_j$ whose $x_{ij} < x_m$ **do**Prune away the constraint which is smaller than the other for $x > x_m$.

Let S denote the set of remaining constraints and go to step 1.

Time complexity of prune and search algorithm

- ▶ Step 2 costs $\mathcal{O}(n)$ time since the intersection of two lines can be found in constant time.
- ▶ Step 3 takes $\mathcal{O}(n)$ time because the median can be found in $\mathcal{O}(n)$ time.
- ▶ Step 4 costs $\mathcal{O}(n)$ time by scanning all of the constraints.
- ▶ Step 5 takes constant time.
- ▶ Steps 6 costs $\mathcal{O}(n)$ time by scanning all intersecting pairs.

Simplified two-variable LP problem (cont'd)

Time complexity of prune and search algorithm

- ▶ There are $\left\lfloor \frac{n}{4} \right\rfloor$ constraints that can be pruned away, since there are $\left\lfloor \frac{n}{2} \right\rfloor$ intersections and $\frac{1}{2} \times \left\lfloor \frac{n}{2} \right\rfloor$ constraints are pruned away for each iteration.
- ightharpoonup The time complexity T(n) of the prune and search algorithm is:

$$T(n) = T\left(\frac{3n}{4}\right) + \mathcal{O}(n) = \mathcal{O}(n)$$

45

Two-variable linear programming problem

▶ We return to original 2-variable linear programming problem.

Definition:

Minimize ax + by

Subject to $a_i x + b_i y \ge c_i$ (i = 1, 2, ..., n)

Example:

Minimize 2x + 3ySubject to x < 10

 $y \leq 6$

 $x - y \ge 1$

3x + 8y > 30

▶ The optimum solution is located at $(x,y) = (\frac{38}{11}, \frac{27}{11})$.

Two-variable linear programming (cont'd)

Two-variable linear programming (cont'd)

Original two-variable linear programming problem:

Minimize ax + bySubject to $a_ix + b_iy \ge c_i$ (i = 1, 2, ..., n)

We can transform the two-variable linear programming problem into a problem of minimizing the *y*-value only.

Transformed two-variable linear programming problem:

Minimize y

Subject to
$$a_i'x' + b_i'y' \ge c_i'$$
 $(i=1,2,\ldots,n)$ where $a_i' = a_i - \frac{b_i a}{b}$, $b_i' = \frac{b_i}{b}$ and $c_i' = c_i$

Two-variable linear programming (cont'd)

- $\blacktriangleright \text{ Let } x' = x \text{ and } y' = ax + by.$
- ▶ We have x = x' and $y = \frac{y' ax'}{h}$.
- ▶ Furthermore, the constraint $a_i x + b_i y \ge c_i$ can be rewritten as $a'_i x' + b'_i y' \ge c'_i$, where $a'_i = a_i \frac{b_i a}{b}$, $b'_i = \frac{b_i}{b}$ and $c'_i = c_i$.

$$a_{i}x + b_{i}y \ge c_{i}$$

$$\Rightarrow a_{i}x' + b_{i}\frac{y' - ax'}{b} \ge c_{i}$$

$$\Rightarrow (a_{i} - \frac{b_{i}a}{b})x' + \frac{b_{i}}{b}y' \ge c_{i}$$

Two-variable linear programming (cont'd)

 $\begin{array}{ll} \text{Minimize} & x+y \\ \text{Subject to} & y \geq 1 \\ & y \leq 3 \\ & 1 \leq x \leq 5 \end{array}$

51

Two-variable linear programming (cont'd)

Minimize y'Subject to $x' - y' \le -1$ $x' - y' \ge -3$ $1 \le x' \le 5$

Two-variable linear programming (cont'd)

▶ Therefore, a general two-variable linear programming problem

Minimize
$$ax + by$$

Subject to $a_ix + b_iy \ge c_i$ $(i = 1, 2, ..., n)$

can be transformed to the following problem:

Minimize
$$y$$

Subject to $a_i x + b_i y \ge c_i$ $(i = 1, 2, ..., n)$

► Recall that simplified 2-variable linear programming problem is defined as:

Minimize
$$y$$

Subject to $y \ge a_i x + b_i$ $(i = 1, 2, ..., n)$

Two-variable linear programming (cont'd)

▶ In general, there are three kinds of constraints when we rewrite $a_ix + b_iy \ge c_i$:

Case 1:
$$y \ge a_i x + b_i$$

Case 2: $y \le a_i x + b_i$
Case 3: $a < x < b$

Thus, we can group the constraints with positive (respectively, negative) coefficients for y in set I_1 (respectively, I_2).

The two-variable linear programming problem becomes:

Minimize
$$y$$

Subject to $y \ge a_i x + b_i$ $(i \in I_1)$
 $y \le a_i x + b_i$ $(i \in I_2)$
 $a \le x \le b$

Two-variable linear programming (cont'd)

Example:

Consider the following four constraints:

$$x \le 10$$

$$y \le 6$$

$$x - y \ge 1$$

$$3x + 8y \ge 30$$

▶ We can rewrite the above four constraints as follows:

```
\begin{array}{ll} x \leq 10 \\ y \leq 6 \\ y \leq x-1 \\ y \geq \frac{-3x}{8} + \frac{30}{8} \end{array} \quad \text{(this constraint belongs to $I_1$)}
```

Two-variable linear programming (cont'd)

Let us define two functions:

53

$$F_1(x) = \max\{a_i x + b_i : i \in I_1\}$$

 $F_2(x) = \min\{a_i x + b_i : i \in I_2\}$

▶ Then $F_1(x)$, $F_2(x)$ and $a \le x \le b$ define the feasible region of the linear programming problem.

The two-variable LP problem can be further transformed to:

Minimize
$$F_1(x)$$

Subject to $F_1(x) \le F_2(x)$
 $a < x < b$

Two-variable linear programming (cont'd)

Prune and search algorithm

Two-variable linear programming problem

- Actually, some constraints may be pruned away if we know the searching direction.
- ► The reason is the same as that used in the special two-variable linear programming problem.
- ► Example Consider the figure on the next slide.
- ▶ If the optimal solution x_0 lies to the left of x_m , $a_1x + b_1$ can be eliminated without affecting the solution.
- ▶ The reason is that $a_1x + b_1 < a_2x + b_2$ for $x < x_m$.
- ightharpoonup Similarly, $a_4x + b_4$ can be eliminated.
- ▶ The reason is that $a_4x + b_4 > a_5x + b_5$ for $x < x_m$.

Prune and search algorithm (cont'd)

Two-variable linear programming problem

Prune and search algorithm (cont'd)

Some questions to be addressed

Given a point x_m , where $a \le x_m \le b$, we must decide the following problems:

- 1. Is x_m feasible?
- 2. If x_m is feasible, we must decide if the optimum solution x_0 lies to the left or right of x_m .
 - It may also happen that that x_m itself may be the optimum solution.
- 3. If x_m is not feasible, we must decide if there exists any feasible solution or not.
 - If a feasible solution exists, we have to decide which side of x_m this optimum solution exists.

Is x_m feasible?

▶ Let $F(x) = F_1(x) - F_2(x)$.

▶ Obviously, x_m is feasible if and only if $F(x_m) \leq 0$.

▶ Let $g_{\min} = \min\{a_i : i \in I_1, a_i x_m + b_i = F_1(x_m)\}.$

▶ Let $g_{max} = max\{a_i : i \in I_1, a_i x_m + b_i = F_1(x_m)\}.$

► Let $h_{\min} = \min\{a_i : i \in I_2, a_i x_m + b_i = F_2(x_m)\}.$

► Let $h_{max} = max\{a_i : i \in I_2, a_i x_m + b_i = F_2(x_m)\}.$

Case 1: $F(x_m) \leq 0$ (cont'd)

 x_m is feasible

Case 1.2: If $g_{min} < 0$ and $g_{max} < 0$, then $x_0 > x_m$.

Case 1: $F(x_m) \leq 0$

 x_m is feasible

Case 1.1: If $g_{min} > 0$ and $g_{max} > 0$, then $x_0 < x_m$.

61

Case 1: $F(x_m) \leq 0$ (cont'd)

 x_m is feasible

Case 1.3: If $g_{min} < 0$ and $g_{max} > 0$, then $x_m = x_0$.

Case 2: $F(x_m) > 0$

 x_m is infeasible

Case 2.1: If $g_{min} > h_{max}$, then $x_0 < x_m$.

Case 2: $F(x_m) > 0$ (cont'd)

 x_m is infeasible

Case 2.3: If $g_{\min} \leq h_{\max}$ and $g_{\max} \geq h_{\min}$, no feasible solution exists.

Case 2: $F(x_m) > 0$ (cont'd)

 x_m is infeasible

Case 2.2: If $g_{\text{max}} < h_{\text{min}}$, then $x_0 > x_m$.

A procedure to address some questions

Procedure 6-1

65

67

Input: The value x_m of x-coordinate of a point.

Output: Whether it is meaningful to continue searching from x_m and if yes, output the direction of the searching.

1.
$$F_1(x) = \max\{a_i x + b_i : i \in I_1\}.$$

 $F_2(x) = \min\{a_i x + b_i : i \in I_2\}.$
 $F(x) = F_1(x) - F_2(x).$
2. $g_{\min} = \min\{a_i : i \in I_1, a_i x_m + b_i = F_1(x_m)\}.$
 $g_{\max} = \max\{a_i : i \in I_1, a_i x_m + b_i = F_1(x_m)\}.$
 $h_{\min} = \min\{a_i : i \in I_2, a_i x_m + b_i = F_2(x_m)\}.$
 $h_{\max} = \max\{a_i : i \in I_2, a_i x_m + b_i = F_2(x_m)\}.$

A procedure to address some questions (cont'd)

Procedure 6-1 (cont'd)

- 3. Case 1: $F(x_m) \leq 0$
- $/* x_m$ is feasible */
- (a) If $g_{min} > 0$ and $g_{max} > 0$, report $x_0 < x_m$ and exit.
- (b) If $g_{min} < 0$ and $g_{max} < 0$, report $x_0 > x_m$ and exit.
- (c) If $g_{min} < 0$ and $g_{max} > 0$, report " x_m is the optimal solution" and exit.

Case 2: $F(x_m) > 0$

- $/* x_m$ is infeasible */
- (a) If $g_{min} > h_{max}$, report $x_0 < x_m$ and exit.
- (b) If $g_{\text{max}} < h_{\text{min}}$, report $x_0 > x_m$ and exit.
- (c) If $g_{\min} \leq h_{\max}$ and $g_{\max} \geq h_{\min}$, report "no feasible solution exists" and exit.

69

71

Prune and search algorithm (cont'd)

5. if $x_0 > x_m$ then

For each $x_{ij} < x_m$ and $i, j \in I_1$, prune constraint $y \ge a_i x + b_i$ if $a_i < a_j$; otherwise, prune $y \ge a_i x + b_j$.

For each $x_{ij} < x_m$ and $i, j \in I_2$, prune constraint $y \le a_i x + b_i$ if $a_i > a_j$; otherwise, prune $y \le a_i x + b_i$.

end if

if $x_0 < x_m$ then

For each $x_{ij} > x_m$ and $i, j \in I_1$, prune constraint $y \ge a_i x + b_i$ if $a_i > a_j$; otherwise, prune $y \ge a_j x + b_j$.

For each $x_{ij} > x_m$ and $i, j \in I_2$, prune constraint $y \le a_i x + b_i$ if $a_i < a_j$; otherwise, prune $y \le a_i x + b_j$.

end if

6. Go to step 1.

Prune and search algorithm

A algorithm for solving two-variable linear programming problem

- 1. If there are no more than two constraints in I_1 and I_2 , solve this problem by a brute force method.
- 2. Arrange the constraints in I_1 into disjoint pairs, as well as the constraints in I_2 into disjoint pairs. For each pair, if $a_ix + b_i$ is parallel to $a_jx + b_j$, delete $a_ix + b_i$ if

 $b_i < b_j$ for $i, j \in I_1$ or $b_i > b_j$ for $i, j \in I_2$.

Otherwise, find the intersection p_{ij} of $y = a_i x + b_i$ and $y = a_j x + b_j$ and let the x-coordinate of p_{ij} be x_{ij} .

- 3. Find the median x_m of x_{ii} 's.
- 4. Apply Procedure 6-1 to x_m . If x_m is the optimal, report x_m and exit. If no feasible solution exits, report this and exit.

Time complexity of prune and search algorithm

▶ Because we can prune $\lfloor \frac{n}{4} \rfloor$ constraints for each iteration, and each step in the prune and search algorithm takes $\mathcal{O}(n)$ time, the algorithm is of the order $\mathcal{O}(n)$.

Constrained 1-center problem

- ▶ Below, we introduce an algorithm for the so-called constrained 1-center problem where the center is restricted to lying on a straight line.
- ▶ Without losing generality, we assume that the straight line is y = y'.

Definition:

- lnput: n planar points and a straight line y = y'
- ▶ Output: a smallest circle to cover the *n* planar points such that its center (x^*, y') lies on y = y'

Prune and search algorithm (cont'd)

Constrained 1-center problem

- 4. Find the median of the $\lceil \frac{n}{2} \rceil$ $x_{i,i+1}$'s and denote it by x_m .
- 5. Calculate the distance between p_i and x_m for all i. Let $I = \{p_i : p_i \text{ is a farthest point from } x_m\}$. Let x_i be the projection of p_i on y = y' for each $p_i \in I$. Case 1: If $x_i < x_m$ for every $p_i \in I$, then $x^* < x_m$.

Prune and search algorithm

Constrained 1-center problem

- 1. If n < 2, solve this problem by a brute force method.
- 2. Form disjoint pairs of points $(p_1, p_2), \ldots, (p_{n-1}, p_n)$. If there are odd number points, let the final pair be (p_n, p_1) .
- 3. For each pair (p_i, p_{i+1}) , find the point $x_{i,i+1}$ on y = y' such that $d(p_i, x_{i,i+1}) = d(p_{i+1}, x_{i,i+1}).$

73

Prune and search algorithm (cont'd)

Constrained 1-center problem

5. (cont'd)

Case 2: If $x_i > x_m$ for every $p_i \in I$, then $x^* > x_m$.

Prune and search algorithm (cont'd)

Constrained 1-center problem

5. (cont'd)

Case 3: For other cases, we have $x^* = x_m$.

/* Note that $p_{i_1}, p_{i_2} \in I$ */

77

79

Prune and search algorithm (cont'd)

Constrained 1-center problem

6. (cont'd)

if $x^* > x_m$ then

For each $x_{i,i+1} < x_m$, prune away p_i if p_i is closer to x_m than p_{i+1} ; otherwise, prune away p_{i+1} .

end if

7. Go to step 1.

Prune and search algorithm (cont'd)

Constrained 1-center problem

6. **if** $x^* < x_m$ **then**

For each $x_{i,i+1} > x_m$, prune away p_i if p_i is closer to x_m than p_{i+1} ; otherwise, prune away p_{i+1} .

end if

Time complexity of prune and search algorithm

Constrained 1-center problem

- ▶ There are $\lfloor \frac{n}{4} \rfloor x_{i,i+1}$'s lying in the left (right) side of x_m .
- ▶ Hence, we can prune away $\lfloor \frac{n}{4} \rfloor$ points for each iteration.
- ▶ Each such iteration takes $\mathcal{O}(n)$ time.
- ► Therefore, the time complexity of the above algorithm for the constrained 1-center problem is:

$$T(n) = T(\frac{3n}{4}) + \mathcal{O}(n)$$

= $\mathcal{O}(n)$