COATING PARTICULATE

Patent Number:

JP6130401

Publication date:

1994-05-13

Inventor(s):

OTSUKA YUKIO

Applicant(s):

SEKISUI FINECHEM CO LTD

Requested Patent:

JP6130401

Application Number: JP19920282704 19921021

Priority Number(s):

IPC Classification:

G02F1/1339

EC Classification:

Equivalents:

JP3059008B2

Abstract

PURPOSE:To provide coating particulate which can be used for spacers of a liquid crystal display, spacers between films for various applications, etc., fixed to a substrate, and does not obstruct the function of LCD device when, for example, it is used for spacers of LCD.

CONSTITUTION: Coating particulate has a core particulate comprising organic material or inorganic material and a coated layer provided on the surface of the core particulate. The coated layer comprises a vinyl polymer and a composition containing peroxide, and is obtained by the polymerization of polymer with vinyl monomer containing acrylic monomer of 1 to 50% by weight. The half-life of peroxide is 100 hours and the temperature is 80 deg.C or over.

Data supplied from the esp@cenet database - 12

(19) 日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-130401

(43)公開日 平成6年(1994)5月13日

(51) Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

G 0 2 F 1/1339

500

7348-2K

審査請求 未請求 請求項の数1(全 6 頁)

(21)出願番号

特顏平4-282704

(22)出願日

平成4年(1992)10月21日

(71)出願人 000198798

積水フアインケミカル株式会社

大阪府大阪市北区西天湖2丁目4番4号

(72)発明者 大塚 有喜男

京都府宇治市南陵町1丁目1-71

(74)代理人 弁理士 大西 浩

(54) 【発明の名称】 被覆微粒子

(57)【要約】

【目的】 液晶表示装置のスペーサ、各種用途のフィル ム間のスペーサなどに利用可能であり、基板上に固定さ れ得、かつ、例えば液晶表示装置のスペーサとして利用 した際に液晶の機能を阻害しない、被覆微粒子を提供す

【構成】 有機材料または無機材料でなるコア微粒子お よび上記コア微粒子の表面に設けられた被覆層を有する 被覆微粒子であって、上記被覆層は、ビニル系ポリマー および過酸化物を含む組成物からなり、上記ポリマー が、1~50重量%の割合でアクリル系のモノマーを含 むビニル系モノマーを重合することにより得られ、上記 過酸化物の半減期が100時間である温度が、80℃以 上である、被覆微粒子。

【特許請求の範囲】

【請求項1】 有機材料または無機材料でなるコア微粒 子および該コア微粒子の表面に設けられた被覆層を有す る被覆微粒子であって、

1

該被覆層は、ピニル系ポリマーおよび過酸化物を含む組 成物でなり、

該ポリマーが、1~50 重量%の割合でアクリル系のモ ノマーを含むビニル系モノマーを重合することにより得 Sh.

該過酸化物の半減期が100時間である温度が、80℃ 10 以上である、被覆微粒子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、液晶表示セル用ギャッ プ材、エレクトロクロミック表示セル用ギャップ材、電 極版用スペーサ、または上記以外の用途のフィルム、シ ート、ブロック間の間隙保持のためのスペーサなどとし て有用な微粒子、さらに詳細には、有機材料または無機 材料からなる微粒子をコアとする被覆微粒子に関する。

[0002]

【従来の技術】液晶表示セルに用いられる液晶スペー サ、生化学分野のフローサイトメトリーに用いられる蛍 光微粒子などの標識材、電子顕微鏡による粒子の粒径測 定の際などに用いられる標準微粒子、免疫学的診断試薬 に用いられる診断用担体として、均一な粒径を有する無 機または有機の微粒子が用いられている。例えば、これ らの微粒子を液晶表示セル用のスペーサとして用いる場 合は、2枚の透過性ガラスまたはプラスチック基板の間 隙に、これらの微粒子が所定の間隙を置いて配置され、 この2枚の基板の間隔が一定に保たれる。これらのスペ 30 ないものでなくてはならない。 ーサーは、例えば、特開昭57-189117号公報、 特開昭59-24829号公報、特開平1-14402 1号公報に開示されている。

【0003】しかし、このような従来の液晶表示セルに おいては、微粒子が基板に固定されていないために、以 下のような問題があった。

【0004】(1)液晶表示セルを組み立てる工程にお いて、基板上への空気の吹き付けまたは基板上からの空 気の吸引の際に、基板上に配置されたスペーサが飛散し て消失する。

【0005】(2)液晶表示セルに液晶を注入する工程 において、スペーサが基板上を移動し、スペーサの配置 に偏りが生じる。

【0006】(3)液晶表示セルを駆動するとき、電気 的、液体力学的な力によりスペーサが移動する。

【0007】(4)カラーフィルターを装備したカラー 液晶表示素子では、カラーフィルターが存在する部分と しない部分との段差が大きいため、スペーサは凹部に容 易に落ち込み、その結果、スペーサとしての機能を果た さなくなる。

【0008】このような欠点を解消するため、スペーサ を基板に固定するための様々な試みがなされているが、 具体的な方法は確立されていない。

【0009】例えば、特開平1-247154号では、 有機または無機の微粒子にオレフィン系の樹脂をコート して接着性の微粒子を製造する方法が報告されている。 しかし、オレフィン系の樹脂は常温でも粘着性を示すた め、この接着性の微粒子を長時間放置しておくと次第に プロック化する傾向があり、長期保存に耐えられない。

【0010】特開昭63-94224号は、絶縁物の微 粒子にさらに粒径の小さいアクリル系の微粒子を機械的 な方法(メカノヒュージョン法)により接着させ、接着 性微粒子を得る方法を開示している。しかし、この方法 によって得られた微粒子は、接着性に乏しく、被覆に用 いられた微粒子を構成する樹脂が液晶中に溶解するた め、液晶を注入した後のセル中におけるスペーサの固定 は全く期待できない。

【0011】さらに、有機または無機の微粒子表面をエ ポキシ樹脂で被覆し、この被覆層を接着層とすることが 提案されている。エポキシ樹脂の使用は、熱硬化させた 場合に接着性を得ることを目的としている。エポキシ樹 脂を硬化するためにはアミン系の化合物が必要である が、アミン系の化合物は、液晶の作動に悪影響を及ぼす 恐れがあり、液晶表示素子に使用することは好ましくな い。また接着層の寿命は短く、長期保存に際しては、低 温で保存しなければならないという欠点がある。このよ うに、液晶表示素子などに使用される接着可能なスペー サは、スペーサとしての役割を有するだけではなく、異 常配向、デスクリネーションなどの悪影響を液晶に与え

[0012]

【発明が解決しようとする課題】本発明は、上記の問題 点を解決するべくなされたものであり、その目的は、例 えば液晶表示セル用スペーサとして用いた場合に、基板 に対して所望の接着性を有し、基板に固定され得る、微 粒子を提供することである。

【0013】本発明の他の目的は、微粒子の表面に設け た接着性の機能を有する被覆層が、通常の作業温度(1 0℃以下)では粘着性を全く示さず、接着温度(160 -220℃)では自己硬化作用により三次元構造となる 被覆微粒子であり、これを液晶セル用スペーサとして利 用する際に、液晶注入後も液晶に溶解せず接着性を維持 し、さらに液晶表示案子を組み立てて作動させた場合、 表示素子としての作動に異常を与えない、被覆微粒子を 提供することである。

[0014]

【課題を解決するための手段】本発明の被覆微粒了は、 有機材料または無機材料でなるコア微粒子およびこのコ ア微粒子の表面に設けられた被覆層を有する被覆微粒子 50 であって、上記の被覆層は、ビニル系ポリマーおよび過 (3)

酸化物を含む組成物でなり、上記のポリマーが、1~5 0 重量%の割合でアクリル系モノマーを含むピニル系モ ノマーを重合することにより得られ、上記の過酸化物の 半減期が100時間である温度が、80℃以上である。

【0015】本発明の微粒子のコア微粒子として使用さ れ得るコア微粒子は、有機物または無機物から形成され 得る。

【0016】有機物でなるコア微粒子の素材としては、 次の樹脂が利用され得る:ポリエチレン、ポリプロピレ ン、ポリメチルペンテン、ポリ塩化ビニル、ポリテトラ 10 フルオロエチレン、ポリスチレン、ポリメチルメタクリ レート、ポリエチレンテレフタレート、ポリプチレンテ レフタレート、ポリアミド、ポリイミド、ポリスルフォ ン、ポリフェニレンオキサイド、ポリアセタールなどの 熱可塑性樹脂;2個以上の2重結合を分子内に持ったモ ノマーの単独重合体または共重合体、例えばジビニルベ ンゼン重合体、ジビニルベンゼンースチレン共重合体、 ジピニルベンゼンーメタクリル酸エステル共重合体、ジ ピニルベンゼン-アクリロニトリル共重合体、トリアリ ルイソシアヌレート重合体;およびエポキシ樹脂、フェ 20 ノール樹脂、メラミン樹脂などの熱硬化性樹脂。上配の 有機物の中で特に好ましいものは、メラミン樹脂、ジビ ニルペンゼン重合体、ジビニルペンゼンースチレン共重 合体、ジビニルベンゼンーメタクリル酸エステル共重合 体、ジピニルペンゼン-アクリロニトリル共重合体、お よびトリアリルイソシアヌレート重合体である。

【0017】無機物でなるコア微粒子の素材としては、 ケイ酸ガラス、ホウケイ酸ガラス、鉛ガラス、ソーダ石 灰ガラス、アルミナ、アルミシリケートなどが使用され ガラス、ホウケイ酸ガラスである。

【0018】コア領粒子の形状は限定されないが、以下 に示す寸法の真球状、楕円球状、円柱状が好ましい。真 球状の場合には、直径は、好ましくは 0.1μ m \sim 1000 μ m、特に好ましくは、 $1 \mu m \sim 100 \mu m$ である。楕円球 状の場合には、短径は、好ましくは 0.1μ m \sim 1000 μ m、特に好ましくは、 $1 \mu m \sim 100 \mu m$ であり、長径対 短径の比は、好ましくは1~10であり、特に好ましく は、1~5である。円柱状の場合には、直径は、好まし くは 0.5μ m~ 1000μ mであり、特に好ましくは 3μ m 40 ~100 µmであり、高さ対直径の比は好ましくは0.5 ~20であり、特に好ましくは、0.5~5である。

【0019】本発明で使用されるコア微粒子は、無色ま たは適切な方法で着色されたものであり得る。着色微粒 子は、コア微粒子が有機物で形成されている場合、カー ポンプラック、分散染料、酸性染料、塩基性染料、金属 酸化物などでコア微粒子を処理して得られる。コア微粒 子が無機物で形成されている場合は、はじめにコア微粒 子の表面に有機物の被覆を形成し、次にこの被覆物を高 温で分解または炭化して着色微粒子とするか、またはコ ア微粒子を形成する材質自体に発色性の成分を含有させ て着色微粒子を得る。

【0020】本発明の被覆微粒子の被覆層を形成するア クリル系モノマーは、下配の一般式(1)または(2) で表される。

[0021]

 $CH_2 = CHCOOR^1$ \cdots (1)

ここでR1は、直鎖アルキル基、分岐アルキル基、有機 単環または有機多環を含む基、有機複素環を含む基、ア ミノ基、水酸基、またはカルポニル基を含む直鎖または 分岐アルキル基:または水素を表わす。(1)式で表さ れるアクリル系モノマーは、例えば、エチルアクリレー ト、プチルアクリレート、ベンジルアクリレート、イソ ポニルアクリレート、ヒドロキシエチルアクリレートな **どである。**

[0022]

CH₂=CHCOONR²R³ . . . (2)

ここでR²およびR³は、直鎖アルキル基、分岐アルキル 基、有機単環または有機多環を含む基、有機複素環を含 む基、アミノ基、水酸基、またはカルポニル基を含む直 鎖または分岐アルキル基;または水素を表わす。(2) 式で表されるアクリル系モノマーは、例えば、Nープト キシメチルアクリルアミド、N-エトキシアクリルアミ ドなどである。

【0023】本発明の微粒子の被覆層を形成するピニル 得る。上記の無機物の中で特に好ましいものは、ケイ酸 30 系モノマーとしては、酢酸ビニル、メタクリル酸エステ ル類、メタクリルアミドおよびその誘導体、スチレン、 各種の置換スチレン、アクリロニトリルなどがある。

> 【0024】本発明に使用する過酸化物は、分解温度の 高いものが好ましく、半減期が100時間になる温度が 80℃以上であることが必要である。これは、分解温度 が低いと、被覆層を形成する工程において過酸化物の分 解が進行し、接着工程での接着が容易でなくなること、 および保管中の性能の変化が著しくなり品質上の問題を 起こすことなどの理由による。本発明に有用な有機過酸 化物は、パーオキシケタール(PK)、ジアルキルパー オキサイド (DAP)、パーオキシジカーポネート(P DC)、パーオキシエステル (POE) などである。本 発明に有用な有機過酸化物の例を表1に示す。

[0025]

【表1】

(4)

特開平6-130401

<i>5</i> 名称	類別	<i>6</i> 半滅期が100時間 である温度(℃)
ジ キュミルハ ーオキサイト	DAP	102
t-7" fn+2:Nn" - 1+41}"	DAP	105
2、5ージ [・] メチルー2、5 ジ [・] (タージャリフ [・] チルパ [・] ーオキジ)へキサン	DAP	101
ターシャリファ チャス・ーヘーンソーエート	POE	85
n-7' fh-4 , 4 t' ス (t-7° fh n° - #キン) ウ゚ y y y d l h	PK .	85.5

【0026】本発明の被覆微粒子を得るには、例えば、 まず、上述のコア微粒子を共存させながらアクリル系モ ノマーとピニル系モノマーとの混合物を重合させて、コ ア微粒子表面にポリマー被覆層を形成させる。上記モノ マーを重合する方法としては、溶液重合、塊状重合およ びエマルジョン重合などの方法がある。過酸化物の付着* *のさせ易さ(後述)を考慮すると、重合方法は、溶液重 合、塊状重合、エマルジョン重合の順に好ましい。

【0027】重合により得られたポリマーは、以下のよ うな構造を有する。

[0028]

I

【0029】このポリマー構造において、「およびIIIは 30 造を形成する。この架橋構造により、例えば、本発明の ビニル系モノマー由来の構造であり、IIおよびIVはアク リル系モノマー由来の構造である。R'およびR'はそれ ぞれ水素またはメチル基であり、R⁶ およびR⁸ はそれぞ れフェニル基、置換フェニル基、CN-OOCR10など である。R'およびR'はそれぞれCOOR11またはCO ONR¹²R¹³であり、R¹⁰はメチル基、R¹¹はアルキル 基または置換アルキル基、R12およびR-3はそれぞれア ルキル基、水素を示す。このポリマー被覆層表面に過酸 化物を付着させることにより、本発明の被覆微粒子が得 られる。 例えば、溶液重合によりコア微粒子の表面に 40 晶表示素子としての機能が低下するからである。 ポリマー被覆層を形成し、次いでこの反応液に、上記有 機過酸化物を加える。この混合物を乾燥することによ り、本発明の被覆微粒子が得られる。

【0030】得られた被覆層を、過酸化物が分解するよ うな温度にまで加熱すると、過酸化物は分解してラジカ ルが発生する。

[0031] ROOR" \rightarrow RO' + R"O' 生じたラジカルは、ポリマー中のアクリル残基より水素 を引き抜いてポリマーラジカルを形成し、このポリマー 被覆微粒子を液晶表示セルスペーサとして用いた場合に も、被覆層は液晶注入後も液晶中へ溶出せず接着性を維 持し、その結果、本発明の被覆微粒子は、基板に固定さ れ得る。

【0032】被覆層の厚みとしては、コア微粒子の直径 の2~10%が好ましい。これは、被覆層が2%よりも 薄い場合は、加熱溶融した際に接着力が発現しにくく、 10%を超えると、加熱溶融した際に被覆層が流動し、 その流動物がスペーサーの基板と周辺に大きく広がり液

[0033]

【作用】本発明では、被覆層を構成する組成物に含有さ れる過酸化物は、加熱により分解してラジカルを発生す る。このラジカルが組成物に含有されるピニルポリマー 中のアクリル残基より水素を引き抜いてポリマーラジカ ルを形成する。そしてこのポリマーラジカル同士が再結 合またはその他の機構により架橋構造を形成する。本発 明の被覆微粒子を液晶セル用スペーサーとして用いた場 合にも、被覆層は液晶注入後も液晶中へ溶出せず接着性 ラジカル同士が再結合またはその他の機構により架橋構 50 を維持し、その結果、本発明の被覆微粒子は、基板に固

7

定され得る。

【0034】さらに、この過酸化物は、半減期が100時間になる温度が80℃以上であるので、被覆層形成の工程においては分解せず、接着工程における加熱の際に接着が容易に進行する。

[0035]

【実施例】次に実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。

【0036】(実施例)粒径が8.00μmのジピニル 10ベンゼン共集合体微粒子100gをフラスコに入れ、メチルエチルケトン300gを加え、十分に撹拌した。このフラスコ内を窒素で置換し、80℃まで加熱した。続いて、メチルメタクリレート25g、イソブチルアクリレート15g、nープチルアクリレート10g、およびアゾピスイソプチロニトリル1.5gからなるモノマーの混合物を、フラスコ中に1時間にわたって滴下した。滴下終了後、2時間加熱してモノマーの重合を完了させ、微粒子とポリマーの混合物を得た。この混合物に、ジキュミルパーオキサイド0.2gを加え、ポリエチレンフィルムの上に流し、薄い板状にして乾燥した。これを、粗粉砕してからポールミルに入れてさらに粉砕し、篩を用いて塊と所定の粒径を下回る微粒子を除去し、所望する被覆微粒子を得た。

【0037】接着試験:得られた被覆微粒子を、スペーサ散布機を用いてガラス基板上に散布した。これを100倍の倍率の拡大鏡で測定した。散布された被覆微粒子の偶数は、130/m²であった。

【0038】次に、これを加熱装置に入れ、180℃で1時間加熱してガラス基板上に固定した。これをアセト 30ン中に5分間浸費した後、水洗いして乾燥した。これを100倍の倍率の拡大鏡で測定すると、ガラス基板上の被覆微粒子の個数は128/mu²であった。これにより、基板上に散布された微粒子は加熱処理により実質的に個数が減少することなく基板上に接着して残留することがわかる。

【0039】上記の加熱処理されたガラス基板を、液晶中に浸液し、1時間放置した。上記と同じ拡大鏡で測定した結果、基板上に残留した被覆された微粒子の個数は、125/mm²であった。これにより、接着した被覆 40 微粒子は、ほとんど残留していることがわかる。

【0010】この被憂微粒子を用いて液晶セルを作成し、評価した結果、被覆微粒子の周辺部にごくわずかの液晶に配向異常があったこと以外は異常はなく、極めて優れた液晶素子が得られた。

【0041】(比較例1)過酸化物をポリマー被覆層の表面に付与しなかったこと以外は、実施例と同様にして被覆微粒子を得、ガラス基板上に散布した。100倍の倍率の拡大鏡で測定した結果、散布されたポリマー被覆微粒子の個数は、145/mmであった。

【0042】次に、実施例と同様に、これを加熱装置に入れ、180℃で1時間加熱してガラス基板上に固定した。これをアセトン中に5分間浸漬した後、水洗いして乾燥した。これを100倍の倍率の拡大鏡で測定する

と、ガラス基板 F.の被覆微粒子の偶数は15/mm²であった。これにより、上記被覆微粒子は基板から剥離し、ほとんど残留していないことがわかる。

[0043]上記の加熱処理されたガラス基板を、液晶中に浸漬し、1時間放置した。上記と同じ拡大線で測定した結果、基板上に残留した被覆微粒子の個数は、35/m²であった。これにより、本比較例の被覆微粒子は基板から剥離し、ほとんど残留していないことがわかる。

【0044】 (比較例2) 半減期が100時間以下になる温度が61℃である、tープチルパーオキシイソプチレートを過酸化物として使用したこと以外は、実施例と同様にして被覆微粒子を得、ガラス基板上に散布した。100倍の倍率の拡大鏡で測定した結果、散布された被覆微粒子の個数は、155/m²であった。

【0045】次に、実施例と同様に、これを加熱装置に入れ、180℃で1時間加熱してガラス基板上に固定した。これをアセトン中に5分間浸漬した後、水洗いして乾燥した。これを100倍の倍率の拡大鏡で測定すると、ガラス基板上の被覆微粒子の偶数は68/m²であった。これにより、被覆微粒子は基板から剥離し、ほとんど残留していないことがわかる。

【0046】上記の加熱処理されたガラス基板を、液晶中に浸漬し、1時間放置した。上記と同じ拡大鏡で測定した結果、基板上に残留した被覆微粒子の個数は、35/mm²であった。これにより、本比較例の被覆微粒子は基板から剥離し、ほとんど残留していないことがわかる。

[0047]

【発明の効果】本発明の被覆微粒子は、液晶表示用スペーサとして使用された場合、基板に対して所望の接着性を有し、基板に固定され得る。

【0048】本発明の被覆微粒子は、微粒子の表面に設けた接着性樹脂である被覆層が、通常の作業温度(10℃以下)では粘着性を全く示さず、接着温度(160~220℃)では自己硬化作用により三次元構造となり、液晶注入後も酸液晶に溶解せず接着性を維持し、さらに液晶表示素子を組み立てて作動させた場合、表示素子としての作動に異常を与えず、スペーサとして優れた効果を発揮する。

【0049】本発明の微粒子は、液晶表示セル用ギャップ材、エレクトロクロミック表示セル用ギャップ材、電極版用スペーサ、または上記以外の用途のフィルム、シート、ブロック間の間隙保持のためのスペーサなどとして有用であり、さらに、光学的またはその他の用途のために平面または凹面上に微細突起物を形成するためなど

(6) 特開平6-130401 9 10

にも用いられ得る。