

Workshop on Architecting Memory Technologies ASPLOS XV, 2010

So Little Bandwidth, So Many Memories

Hsien-Hsin S. Lee

Electrical & Computer Engineering Georgia Tech

Workshop on Architecting Memory Technologies ASPLOS XV, 2010

So Little Bandwidth, So Many Memories

Electrical & Computer Engineering Georgia Tech

Once Upon A Time

An Unbalanced System

Source: Bob Colwell keynote ISCA'29 2002

Bandwidth Wall on Conventional Processors

- DDR3 ~ 40mW per pin
- 1024 data pins ~ 40W
- 4096 data pins ~ 160W
- ITRS predicts slow growth in pin count
 - 2/3 for Power and ground, 1/3 for Signal I/O
 - Limited by physical metal properties and cost

3D Memory-Stacked Processor

Via Bandwidth Potential of 3D-IC

- High f2f via/TSV frequency
- High f2f via/TSV bandwidth
- Dense f2f via/TSV provides many independent channels

- Short f2f via/TSV improve
 - Latency
 - Power
 - For both signal and clock
- 1 ~ 10s TB/sec or even higher

3D-MAPS Prototype @Georgia Tech

Bandwidth Potential of 3D-MAPS

3D-MAPS Specification

Number of cores = 64 (5-stage, 2-way VLIW, in-order)

Clock frequency = 266MHz

Supply voltage = 1.5V

Power consumption = 4 to 7W (64 cores + 64 mem tiles)
Core-to-core communication: 2D-mesh (message passing)

Memory model: 4KB SRAM scratchpad per core

Memory access: 1 to 4 Byte/cycle

Core to memory communication: F2F vias

Data Bandwidth

Benchmark	DBW	DBW(a)
String search Matrix multiply AES standard Histogram Sobel detector K-means Median filter Motion est.	1.60Nf 2.00Nf 2.92Nf 4.00Nf 2.00Nf 2.66Nf 2.18Nf 0.67Nf	27.2 GB/s 34.0 GB/s 49.7 GB/s 68.1 GB/s 34.0 GB/s 45.3 GB/s 37.1 GB/s 11.4 GB/s

Revisiting Prior Architectural "False Truth"

Common wisdom

Bandwidth problems can be cured with money, latency problems are harder because the speed of light is fixed — you can't bribe God.

 We challenge this to ameliorate "latency" using bandwidth

- TSV or F2F vias
 - Are fast (< 1F04)
 - Are high density
 - Eliminate trailing-edge

Revisiting Cache Line Size

Georgia Institute
of Technology

SMART-3D: L2 and 3D DRAM

- Greater than 2x speedup for single- and multi-core.
- Avg 48% energy saving

So Many Memories, So Many Hierarchies

Memory Type	DRAM	6T SRAM	NOR FLASH	PCM	MRAM	STT-RAM	FeRAM	Memristor
Volatility	Volatile	Volatile	NVM	NVM	NVM	NVM	NVM	NVM
Cell Size (F ²)	6 - 12	50 -80	7 - 11	5 - 8	16-40	6-20	Large	scalable
Read	Destructive	Partial Destructive	Non-Destructive	Non-Destructive	Non-Destructive	Non-Destructive	Destructive	Non-Destructive
Erase Granularity	Direct	Direct	Block	Direct	Direct	Direct	Direct	Direct
Write/Erase/Read Time	50ns/50ns/50ns	8ns/8ns/8ns	1μs/1-100ms/60ns	10ns/50ns/20ns	30ns/30ns/30ns	20ns/20ns/20ns	80ns/80ns/80ns	??
Programming Energy	Medium	Medium	High	Medium	Medium	Low	Medium	Low?
Write/Read Endurance	~∞/~∞	~∞/~∞	106/~∞	10 ⁸ ~10 ¹² /~∞	10 ¹² /10 ¹²	10 ¹⁵ /10 ¹⁵ (?)	10 ¹² /10 ¹²	10 ⁷ /?
Multi-Level Cell	No	No	Yes	Yes	stacking	stacking	No	stacking
Cost per bit	Low	High	Medium	Low	??	??	High	??
Supply Voltage	3V	<1V	6-8V	1.5-3V	3V	<1.5V	2-3V	<1.5V?

Example of Memory Hierarchy with Many Memories

- Co-optimize: density, speed, reliability, and read/write power
- Some memories can co-locate at the same level
- Probably no one-size-fits-all

Reliability and Resilience Issues

- Write endurance
 - Eliminating redundant writes
 - Wear-leveling
 - Behavior of average application (a slew of prior work)
 - Worst case or malicious behavior [Security Refresh, ISCA-37,2010]
- In the face of faults
 - Fault-aware
 - Resilient operations
- Disturbance
 - Proximity disturbance
 - Read disturbance

Security Refresh for PCM

MLC Density vs. Read Performance

- Serial sensing (storing 2-bit per MLC)
- Allocating data in sequential manner

Red Block Read Request

PRAM Page 00 01 10 11 11 10 01 00

1st Vref = ½ Vdd

MSB Read

 2^{nd} Vref = $\frac{1}{4}$ or $\frac{3}{4}$ Vdd

LSB Read

Row Buffer | 00 01 10 11 | 11 10 01 00

Column Mux

Georgia Institute

MLC Density vs. Read Performance

Stride the bit pattern of data across MLC cells

Red Block Read Request

1st Vref = ½ Vdd

MSB Read

 2^{nd} Vref = $\frac{1}{4}$ or $\frac{3}{4}$ Vdd

LSB Read

Row Buffer 01 01 0110 10 01 10 10

Column Mux

Georgia Institute

How does the system map the MFU lines to "Red" MSB location?

Summary

Bandwidth wall

- 3D can provide a short-term balanced system
- Should we move instructions rather than data?

Several emerging memory technologies

- + New opportunities, yet new challenges, too
- + Process-scalable, non-volatile, High-density
- + Better memory hierarchy
- Reliability
- Cost? Can we produce volume?

