DFNets: Spectral CNNs for Graphs with Feedback-Looped Filters

Asiri Wijesinghe and Qing Wang

Research School of Computer Science, ANU College of Engineering and Computer Science The Australian National University, Canberra ACT 0200, Australia {asiri.wijesinghe, qing.wang}@anu.edu.au

Introduction

• We propose *Distributed Feedback-Looped Network* (DFNet) which is a novel spectral CNN architecture with feedback-looped graph filters.

Feedback-Looped Filters

• Feedback-looped filters belong to a class of Auto Regressive Moving Average (ARMA) filters.

$$h_{\psi,\phi}(L)x = \left(I + \sum_{j=1}^{p} \psi_j L^j\right)^{-1} \left(\sum_{j=0}^{q} \phi_j L^j\right) x, \tag{1}$$

where p and q refer to the feedback and feedforward degrees, respectively. $\psi \in \mathbb{C}^p$ and $\phi \in \mathbb{C}^{q+1}$ are two vectors of complex coefficients.

• The frequency response of feedback-looped filters is defined as:

$$h(\lambda_i) = \frac{\sum_{j=0}^q \phi_j \lambda_i^j}{1 + \sum_{j=1}^p \psi_j \lambda_i^j}.$$
 (2)

• To circumvent the issue of matrix inversion for large graphs, feedback-looped filters use the following approximation:

$$\bar{x}^{(0)} = x \text{ and } \bar{x}^{(t)} = -\sum_{j=1}^{p} \psi_j \tilde{L}^j \bar{x}^{(t-1)} + \sum_{j=0}^{q} \phi_j \tilde{L}^j x,$$
 (3)

where $\tilde{L} = \hat{L} - (\frac{\hat{\lambda}_{max}}{2})I$, $\hat{L} = I - \hat{D}^{-1/2}\hat{A}\hat{D}^{-1/2}$, $\hat{A} = A + I$, $\hat{D}_{ii} = \sum_{j} \hat{A}_{ij}$ and $\hat{\lambda}_{max}$ is the largest eigenvalue of \hat{L} .

- To alleviate the issues of gradient vanishing/ exploding and numerical instabilities, we use two techniques:
- -Scaled-normalization technique: centralizes the eigenvalues of the Laplacian \hat{L} and reduces its spectral radius bound.
- -Cut-off frequency technique: allows the generation of ideal high-pass filters so as to sharpen a signal by amplifying its graph Fourier coefficients.

Coefficient Optimization

• We aim to find the optimal coefficients ψ and ϕ that make the frequency response as close as possible to the desired frequency response,

$$\acute{e}(\tilde{\lambda}_i) = \hat{h}(\tilde{\lambda}_i) - \frac{\sum_{j=0}^q \phi_j \tilde{\lambda}_i^j}{1 + \sum_{j=1}^p \psi_j \tilde{\lambda}_i^j} \tag{4}$$

• Linear approximation of the error (w.r.t. ψ and ϕ) is defined as:

$$e(\tilde{\lambda}_i) = \hat{h}(\tilde{\lambda}_i) + \hat{h}(\tilde{\lambda}_i) \sum_{j=1}^p \psi_j \tilde{\lambda}_i^j - \sum_{j=0}^q \phi_j \tilde{\lambda}_i^j.$$
 (5)

• Let $\alpha \in \mathbb{R}^{n \times p}$ with $\alpha_{ij} = \tilde{\lambda}_i^j$ and $\beta \in \mathbb{R}^{n \times (q+1)}$ with $\beta_{ij} = \tilde{\lambda}_i^{j-1}$ be two Vandermonde-like matrices. The coefficients ψ and ϕ can be learned by minimizing e as a convex constrained least-squares optimization problem:

minimize_{$$\psi,\phi$$} $||\hat{h} + diag(\hat{h})\alpha\psi - \beta\phi||_2$ (6)
subject to $||\alpha\psi||_{\infty} \le \gamma$ and $\gamma < 1$

Spectral Convolutional Layer

• Let $\mathbf{P} = -\sum_{j=1}^{p} \psi_j \tilde{L}^j$ and $\mathbf{Q} = \sum_{j=0}^{q} \phi_j \tilde{L}^j$. The propagation rule of a spectral convolutional layer is defined as:

$$\bar{X}^{(t+1)} = \sigma(\mathbf{P}\bar{X}^{(t)}\theta_1^{(t)} + \mathbf{Q}X\theta_2^{(t)} + \mu(\theta_1^{(t)}; \theta_2^{(t)}) + b), \tag{7}$$

where σ refers to a non-linear activation function and $\bar{X}^{(0)} = X \in \mathbb{R}^{n \times f}$. $\bar{X}^{(t)}$ is a matrix of activations in the t^{th} layer.

Theoretical Analysis

- DFNets has several nice properties:
- -Improved localization
- -Linear convergence
- Efficient computation
- Universal design
- -Guaranteed stability
- Dense architecture

	Spectral Graph Filter	Type	Learning	Time	Memory
			Complexity	Complexity	Complexity
	Chebyshev filters	Polynomial	O(k)	O(km)	O(m)
	Lanczos filters		O(k)	$O(km^2)$	$O(m^2)$
	Cayley filters		O((r+1)k)	O((r+1)km)	O(m)
	ARMA ₁ filters	Rational	O(t)	O(tm)	O(m)
	d parallel ARMA ₁ filters	polynomial	O(t)	O(tm)	O(dm)
	Feedback-looped filters (ours)		O(tp+q)	O((tp+q)m)	O(m)

Numerical Experiments

• Comparison with the state-of-the-art methods.

Model	Cora	Citeseer	Pubmed	NELL
SemiEmb	59.0	59.6	71.1	26.7
LP	68.0	45.3	63.0	26.5
DeepWalk	67.2	43.2	65.3	58.1
ICA	75.1	69.1	73.9	23.1
Planetoid*	64.7	75.7	77.2	61.9
Chebyshev	81.2	69.8	74.4	_
GCN	81.5	70.3	79.0	66.0
LNet	79.5	66.2	78.3	_
AdaLNet	80.4	68.7	78.1	-
CayleyNet	81.9*	_	_	_
$ARMA_1$	83.4	72.5	78.9	_
GAT	83.0	72.5	79.0	_
GCN + DenseBlock	82.7 ± 0.5	71.3 ± 0.3	81.5 ± 0.5	66.4 ± 0.3
GAT + Dense Block	83.8 ± 0.3	73.1 ± 0.3	81.8 ± 0.3	_
DFNet (ours)	$\textbf{85.2} \pm \textbf{0.5}$	$\textbf{74.2} \pm \textbf{0.3}$	84.3 ± 0.4	$\textbf{68.3} \pm \textbf{0.4}$
DFNet-ATT (ours)	$\textbf{86.0} \pm \textbf{0.4}$	$\textbf{74.7} \pm \textbf{0.4}$	$\textbf{85.2} \pm \textbf{0.3}$	$\textbf{68.8} \pm \textbf{0.3}$

• Comparison under different polynomial orders (DFNet).

DF-ATT (ours)

 83.4 ± 0.5 73.1 ± 0.4 82.3 ± 0.3 67.6 ± 0.3

• Node embeddings (top: Pubmed; bottom: Cora).

