Single Processor Performance

Introduction

Fundamentals of Quantitative

Chapter 1

Design and Analysis

A Quantitative Approach, Sixth Edition Computer Architecture

Current Trends in Architecture

Copyright © 2019, Elsevier Inc. All rights reserved.

Introduction

- Cannot continue to leverage Instruction-Level parallelism (ILP)
- Single processor performance improvement ended in 2003
- New models for performance:
- Data-level parallelism (DLP)
- Thread-level parallelism (TLP)
- Request-level parallelism (RLP)
- These require explicit restructuring of the application

Copyright © 2019, Elsevier Inc. All rights reserved.

Introduction

Computer Technology

Copyright © 2019, Elsevier Inc. All rights reserved

- Performance improvements:
- Improvements in semiconductor technology Feature size, clock speed
- Improvements in computer architectures
- Enabled by High Level Language compilers, UNIX
- Lead to RISC architectures
- Together have enabled:
- Lightweight computers
- Productivity-based managed/interpreted programming languages

Flynn's Taxonomy

- Single instruction stream, single data stream (SISD)
- Classes of Computers Single instruction stream, multiple data streams (SIMD)
 - Vector architectures
- Multimedia extensions
- Graphics processor units
- Multiple instruction streams, single data stream (MISD)
 - No commercial implementation
- Multiple instruction streams, multiple data streams (MIMD)
- Tightly-coupled MIMD

Loosely-coupled MIMD

Copyright © 2019, Elsevier Inc. All rights reserved

Defining Computer Architecture

Defining Computer Architecture

instruction operands, available operations, control flow

instructions, instruction encoding

registers, memory addressing, addressing modes,

 Instruction Set Architecture (ISA) design "Old" view of computer architecture:

i.e. decisions regarding:

"Real" computer architecture:

- Specific requirements of the target machine
- Design to maximize performance within constraints: cost, power, and availability
- Includes ISA, microarchitecture, hardware

Copyright © 2019, Elsevier Inc. All rights reserved.

Classes of Computers

Sub-class: Supercomputers, emphasis: floating-point

performance and fast internal networks

Internet of Things/Embedded Computers

Emphasis: price

Emphasis on availability and price-performance

Emphasis on availability, scalability, throughput

Emphasis on price-performance

Servers

Desktop Computing

Clusters / Warehouse Scale Computers

Used for "Software as a Service (SaaS)"

Emphasis on energy efficiency and real-time

e.g. smart phones, tablet computers

Personal Mobile Device (PMD)

Classes of Computers

Copyright © 2019, Elsevier Inc. All rights reserved

Parallelism

- Classes of parallelism in applications:
- Data-Level Parallelism (DLP)
- Task-Level Parallelism (TLP)
- Classes of architectural parallelism:
- Instruction-Level Parallelism (ILP)
- Vector architectures/Graphic Processor Units (GPUs)
- Thread-Level Parallelism
- Request-Level Parallelism

RISC-V: data transfer, arithmetic, logical, control, floating point

Defining Computer Architecture

Instruction Set Architecture

caller

temporaries

t3-t6

x28-x31

caller

return addr

ū sb g p

× X

n/a

constant 0

zero

Š

callee

stack ptr gbl ptr

caller

FP temps

ft0-ft7 fs0-fs1

callee caller

saved

s V

 Register-memory vs load-store General-purpose registers

Class of ISA

Defining Computer Architecture

RISC-V registers

32 g.p., 32 f.p.

arguments

a0-a7

x10-x17 x18-x27

s2-s11

callee

FP saved

arguments

fa0-fa7

f10-f17

61-81 4-0J

FP saved

fs2-fs21

f18-f27

callee

saved/

caller

temporaries

t0-t2 s0/fp

x5-x7

8

<u>×</u>

ž

thread ptr

FP temps

ft8-ft11

f28-f31

frame ptr

Copyright © 2019, Elsevier Inc. All rights reserved

See Fig. 1.5 in text

Control flow instructions

 Use content of registers (RISC-V) vs. status bits (x86, ARMv7, ARMv8) Return address in register (RISC-V, ARMv7, ARMv8) vs. on stack (x86)

Encoding

 Fixed (RISC-V, ARMv7/v8 except compact instruction set) vs. variable length (x86)

Copyright © 2019, Elsevier Inc. All rights reserved.

Trends in Technology

Integrated circuit technology (Moore's Law)

Trends in Technology

Transistor density: 35%/year

Die size: 10-20%/year

Integration overall: 40-55%/year

DRAM capacity: 25-40%/year (slowing)

8 Gb (2014), 16 Gb (2019), possibly no 32 Gb

Flash capacity: 50-60%/year

8-10X cheaper/bit than DRAM

Magnetic disk capacity: recently slowed to 5%/year

 Density increases may no longer be possible, maybe increase from 7 to 9 platters

8-10X cheaper/bit then Flash

200-300X cheaper/bit than DRAM

Copyright © 2019, Elsevier Inc. All rights reserved.

RISC-V: byte addressed, aligned accesses faster

Memory addressing

Instruction Set Architecture

RISC-V: Register, immediate, displacement

(base+offset)

Addressing modes

Defining Computer Architecture

Other examples: autoincrement, indexed, PC-relative

Types and size of operands

RISC-V: 8-bit, 32-bit, 64-bit

Bandwidth and Latency

300-1200X improvement for memory and disks

32,000-40,000X improvement for processors

Total work done in a given time

Bandwidth or throughput

Trends in Technology

Time between start and completion of an event

Latency or response time

6-8X improvement for memory and disks

50-90X improvement for processors

Transistors and Wires

- Feature size
- Minimum size of transistor or wire in x or y dimension
- 10 microns in 1971 to .011 microns in 2017
- Transistor performance scales linearly
- Wire delay does not improve with feature size!
- Integration density scales quadratically

Copyright © 2019, Elsevier Inc. All rights reserved

Trends in Power and Energy

Problem: Get power in, get power out

Power and Energy

Thermal Design Power (TDP)

- Characterizes sustained power consumption
- Used as target for power supply and cooling system
 - Lower than peak power (1.5X higher), higher than average power consumption
- Clock rate can be reduced dynamically to limit power consumption
- Energy per task is often a better measurement

Sopyright © 2019, Elsevier Inc. All rights res

Bandwidth and Latency

Copyright © 2019, Elsevier Inc. All rights reserved

Log-log plot of bandwidth and latency milestones

Trends in Power and Energy

Reducing Power

- Techniques for reducing power:
- Do nothing well
- Dynamic Voltage-Frequency Scaling

- Low power state for DRAM, disks
- Overclocking, turning off cores

Copyright © 2019, Elsevier Inc. All rights reserved.

Trends in Power and Energy

Scales with number of transistors

To reduce: power gating

Static power consumption

Static Power

25-50% of total power Current_{static} x Voltage

32b SRAM Read (8KB) 32b DRAM Read

8b Add 16b Add 32b Add 16b FB Add 32b FB Add 8b Mult 32b Mult 16b FB Mult

Copyright © 2019, Elsevier Inc. All rights reserved

Dynamic Energy and Power

Dynamic energy

Trends in Power and Energy

- Transistor switch from 0 -> 1 or 1 -> 0
- ½ x Capacitive load x Voltage²
- Dynamic power
- ½ x Capacitive load x Voltage² x Frequency switched
- Reducing clock rate reduces power, not energy

Copyright © 2019, Elsevier Inc. All rights reserved

Power

- consumed ~ 2 W Intel 80386
- Core i7 consumes 130 W 3.3 GHz Intel
 - 1.5 x 1.5 cm chip dissipated from Heat must be
- This is the limit of cooled by air what can be

Measuring Performance

Cost driven down by learning curve

Yield

Trends in Cost

Principles of Computer Design

Principles

Take Advantage of Parallelism

 e.g. multiple processors, disks, memory banks, pipelining, multiple functional units

Principle of Locality

Reuse of data and instructions

Focus on the Common Case

Microprocessors: price depends on

■ DRAM: price closely tracks cost

10% less for each doubling of volume

Amdahl's Law

Copyright © 2019, Elsevier Inc. All rights reserved.

Principles

The Processor Performance Equation

Principles of Computer Design

CPU time = CPU clock cycles for a program imes Clock cycle time

CPU time = $\frac{CPU}{CPU}$ clack cycles for a program Clock rate

CPU cłock cycles for a program Instruction count CPU time $lue{}$ Instruction count imes Cycles yer instruction <math> imes Clock cycle time

$$\frac{Instructions}{Program} \times \frac{Clock \, cycles}{Instruction} \times \frac{Seconds}{Clock \, cycle} = \frac{Seconds}{Rragram} = CPU \, time$$

Copyright © 2019, Elsevier Inc. All rights reserved

Copyright © 2019, Elsevier Inc. All rights reserved

Measuring Performance

Typical performance metrics:

Response time

Throughput

Speedup of X relative to Y

Execution time

Wall clock time: includes all system overheads

CPU time: only computation time

Benchmarks

Kernels (e.g. matrix multiply)

Toy programs (e.g. sorting)

Synthetic benchmarks (e.g. Dhrystone)

Benchmark suites (e.g. SPEC06fp, TPC-C)

Copyright © 2019, Elsevier Inc. All rights reserved

Exercise

- Which is the best to be used to evaluate a new computer system?(
- Kernel benchmarks
- B. Real workload
- Toy benchmarks
- Synthetic benchmarks
- Have a brief introduction of Flynn's Taxonomy.

Principles of Computer Design

Principles

Different instruction types having different

$$CPU$$
 clock eyeles $=\sum_{i=1}^{n}IC_{i}\times CPI_{i}$

$$CPU$$
 time = $\left(\sum_{i=1}^{n} IC_{i} \times CPI_{i}\right) \times Clock cycle time$

Copyright © 2019, Elsevier Inc. All rights reserved

Fallacies and Pitfalls

- All exponential laws must come to an end
- Dennard scaling (constant power density)
- Stopped by threshold voltage
 - Disk capacity
- 30-100% per year to 5% per year
- Moore's Law
- Most visible with DRAM capacity
 - ITRS disbanded
- Only four foundries left producing state-of-the-art logic chips
 - 11 nm, 3 nm might be the limit

