

T1481

SEQUENCE LISTING

<110> Bonnert, Timothy Peter

RECEIVED

<120> HUMAN VANILLOID RECEPTOR-LIKE RECEPTOR

JUN 19 2002

<130> T1481

TECH CENTER 1600/2900

<140> 09/445,614

<141> 1999-12-08

<150> 9827016.8

<151> 1998-12-08

<160> 19

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 2469

<212> DNA

<213> Homo sapiens

<400> 1

cacgaggccg acgcgcagct	gggaggaaga caggaccctt	gacatctcca tctgcacaga	60
ggtcctggct ggaccgagca	gcctcctcct cctaggatga	cctcacccctc cagctctcca	120
gttttcaggt tggagacatt	agatggaggc caagaagatg	gctctgaggc ggacagagga	180
aagctggatt ttgggagcgg	gctgcctccc atggagtac	agttccaggg cgaggaccgg	240
aaattcgccc ctcagataag	agtcaacctc aactaccgaa	aggaaacagg tgccagtcag	300
ccggatccaa accgatttga	ccgagatcgg ctcttcaatg	cggtctcccg gggtgtcccc	360
gaggatctgg ctggacttcc	agagtaacctg agcaagacca	gcaagtacct caccgactcg	420
gaatacacag agggctccac	aggttaagacg tgcctgatga	aggctgtgtc gaaccttaag	480
gacggagtca atgcctgcat	tctgccactg ctgcagatcg	acagggactc tggcaatcct	540
cagccctgg taaatgcccc	gtgcacagat gactattacc	gaggccacag cgctctgcac	600
atcgccatcg agaagaggag	tctgcagtgt gtgaagctcc	tggtgagaa tggggccaat	660
gtgcatgccc gggcctgcgg	ccgcttcttc cagaagggcc	aagggacttg ctttatttc	720
ggtgagctac ccctctctt	ggccgcttgc accaagcagt	ggatgtgtt aagctacctc	780
ctggagaacc cacaccagcc	cgccagcctg caggccactg	actcccaggc caacacagtc	840
ctgcattgccc tagtgcgtat	ctcggacaac tcagctgaga	acattgcact ggtgaccagc	900
atgtatgcgt ggctcctcca	agctggggcc cgcctctgcc	ctaccgtgca gcttgaggac	960
atccgcaacc tgcaggatct	cacgcctctg aagctggccg	ccaaggaggg caagatcgag	1020
attttcaggc acatcctgca	gcgggagtt tcaggactga	gccacccttc cggaaagttc	1080
accgagtggt gctatggcc	tgtccgggtg tcgctgtatg	acctggcttc tgtggacagc	1140
tgtgaggaga actcaagtct	ggagatcatt gcctttcatt	gcaagagccc gcaccgacac	1200
cgaatggtcg ttttggagcc	cctgaacaaa ctgctgcagg	cgaaatggga tctgctcatc	1260
cccaagttct tcttaaactt	cctgtgtaat ctgatctaca	tgttcatctt caccgctgtt	1320
gcctaccatc agcctaccct	gaagaagcag gccgcccctc	acctgaaagc ggaggttggaa	1380
aactccatgc tgctgacggg	ccacatecct atcctgctag	ggggatcta ctcctcgtg	1440
ggccagctgt ggtacttctg	gccccgcac gtgtcatct	ggatctcggtt catagacagc	1500
tactttggaaa tccttcttct	gttccaggcc ctgctcacag	tggtgccca ggtgctgtgt	1560
ttcctggcca tcgagtggt	cctgcctctg cttgtgtctg	cgctggtgct gggctggctg	1620
aacctgctt actatacag	tggttccag cacacaggca	tctacagtgt catgatccag	1680
aaggtcattcc tgcgggaccc	gctgcgttcc cttctgatct	acttagtctt cttttcggc	1740
ttcgctgttag ccctggtag	cctgagccag gaggcttggc	ggcccaaggc tcctacaggc	1800
cccaatgcca cagagtcagt	gcagccatg gagggacagg	aggacgaggg caacggggcc	1860

cagtacaggg	gtatcctgga	agcctccttg	gagctttca	aattcaccat	cgccatgggc	1920
gagctggcct	tccaggagca	gctgacttc	cgcggcatgg	tgctgctgct	gctgctggcc	1980
tacgtgctgc	tcacctacat	cctgctgctc	aacatgctca	tcgcctcat	gagcgagacc	2040
gtcaacagtg	tcgcccactga	cagctggagc	atctggaagc	tgcagaaaagc	catctctgtc	2100
ctggagatgg	agaatggcta	ttggtgggtgc	aggaagaagc	agcgggcagg	tgtgatgctg	2160
accgttggca	ctaagccaga	tggcagcccc	gatgagcgct	ggtgcttcag	ggtggaggag	2220
gtgaactggg	cttcatggga	gcagacgctg	cctacgctgt	gtgaggaccc	gtcagggcca	2280
ggtgtccctc	gaactctcg	gaaccctgtc	ctggcttccc	ctcccaagga	gatgaggat	2340
ggtgectctg	aggaaaacta	tgtgcccgtc	cagctcctcc	agtccaactg	atggcccaga	2400
tgcagcagga	ggccagagga	cagagcagag	gatcttcca	accacatctg	ctggctctgg	2460
gttcccagt						2469

<210> 2
<211> 764
<212> PRT
<213> Homo sapiens

<400> 2

Met	Thr	Ser	Pro	Ser	Ser	Ser	Pro	Val	Phe	Arg	Leu	Glu	Thr	Leu	Asp
1									5			10			15
Gly	Gly	Gln	Glu	Asp	Gly	Ser	Glu	Ala	Asp	Arg	Gly	Lys	Leu	Asp	Phe
									20			25			30
Gly	Ser	Gly	Leu	Pro	Pro	Met	Glu	Ser	Gln	Phe	Gln	Gly	Glu	Asp	Arg
									35			40			45
Lys	Phe	Ala	Pro	Gln	Ile	Arg	Val	Asn	Leu	Asn	Tyr	Arg	Lys	Gly	Thr
									50			55			60
Gly	Ala	Ser	Gln	Pro	Asp	Pro	Asn	Arg	Phe	Asp	Arg	Asp	Arg	Leu	Phe
									65			70			80
Asn	Ala	Val	Ser	Arg	Gly	Val	Pro	Glu	Asp	Leu	Ala	Gly	Leu	Pro	Glu
									85			90			95
Tyr	Leu	Ser	Lys	Thr	Ser	Lys	Tyr	Leu	Thr	Asp	Ser	Glu	Tyr	Thr	Glu
									100			105			110
Gly	Ser	Thr	Gly	Lys	Thr	Cys	Leu	Met	Lys	Ala	Val	Leu	Asn	Leu	Lys
									115			120			125
Asp	Gly	Val	Asn	Ala	Cys	Ile	Leu	Pro	Leu	Leu	Gln	Ile	Asp	Arg	Asp
									130			135			140
Ser	Gly	Asn	Pro	Gln	Pro	Leu	Val	Asn	Ala	Gln	Cys	Thr	Asp	Asp	Tyr
									145			150			160
Tyr	Arg	Gly	His	Ser	Ala	Leu	His	Ile	Ala	Ile	Glu	Lys	Arg	Ser	Leu
									165			170			175
Gln	Cys	Val	Lys	Leu	Leu	Val	Glu	Asn	Gly	Ala	Asn	Val	His	Ala	Arg
									180			185			190
Ala	Cys	Gly	Arg	Phe	Phe	Gln	Lys	Gly	Gln	Gly	Thr	Cys	Phe	Tyr	Phe
									195			200			205
Gly	Glu	Leu	Pro	Leu	Ser	Leu	Ala	Ala	Cys	Thr	Lys	Gln	Trp	Asp	Val
									210			215			220
Val	Ser	Tyr	Leu	Leu	Glu	Asn	Pro	His	Gln	Pro	Ala	Ser	Leu	Gln	Ala
									225			230			240
Thr	Asp	Ser	Gln	Gly	Asn	Thr	Val	Leu	His	Ala	Leu	Val	Met	Ile	Ser
									245			250			255
Asp	Asn	Ser	Ala	Glu	Asn	Ile	Ala	Leu	Val	Thr	Ser	Met	Tyr	Asp	Gly
									260			265			270
Leu	Leu	Gln	Ala	Gly	Ala	Arg	Leu	Cys	Pro	Thr	Val	Gln	Leu	Glu	Asp
									275			280			285

C
Cont'

Ile Arg Asn Leu Gln Asp Leu Thr Pro Leu Lys Leu Ala Ala Lys Glu
 290 295 300
 Gly Lys Ile Glu Ile Phe Arg His Ile Leu Gln Arg Glu Phe Ser Gly
 305 310 315 320
 Leu Ser His Leu Ser Arg Lys Phe Thr Glu Trp Cys Tyr Gly Pro Val
 325 330 335
 Arg Val Ser Leu Tyr Asp Leu Ala Ser Val Asp Ser Cys Glu Glu Asn
 340 345 350
 Ser Val Leu Glu Ile Ile Ala Phe His Cys Lys Ser Pro His Arg His
 355 360 365
 Arg Met Val Val Leu Glu Pro Leu Asn Lys Leu Leu Gln Ala Lys Trp
 370 375 380
 Asp Leu Leu Ile Pro Lys Phe Phe Leu Asn Phe Leu Cys Asn Leu Ile
 385 390 395 400
 Tyr Met Phe Ile Phe Thr Ala Val Ala Tyr His Gln Pro Thr Leu Lys
 405 410 415
 Lys Gln Ala Ala Pro His Leu Lys Ala Glu Val Gly Asn Ser Met Leu
 420 425 430
 Leu Thr Gly His Ile Leu Ile Leu Leu Gly Gly Ile Tyr Leu Leu Val
 435 440 445
 Gly Gln Leu Trp Tyr Phe Trp Arg Arg His Val Phe Ile Trp Ile Ser
 450 455 460
 Phe Ile Asp Ser Tyr Phe Glu Ile Leu Phe Leu Phe Gln Ala Leu Leu
 465 470 475 480
 Thr Val Val Ser Gln Val Leu Cys Phe Leu Ala Ile Glu Trp Tyr Leu
 485 490 495
 Pro Leu Leu Val Ser Ala Leu Val Leu Gly Trp Leu Asn Leu Leu Tyr
 500 505 510
 Tyr Thr Arg Gly Phe Gln His Thr Gly Ile Tyr Ser Val Met Ile Gln
 515 520 525
 Lys Val Ile Leu Arg Asp Leu Leu Arg Phe Leu Leu Ile Tyr Leu Val
 530 535 540
 Phe Leu Phe Gly Phe Ala Val Ala Leu Val Ser Leu Ser Gln Glu Ala
 545 550 555 560
 Trp Arg Pro Glu Ala Pro Thr Gly Pro Asn Ala Thr Glu Ser Val Gln
 565 570 575
 Pro Met Glu Gly Gln Glu Asp Glu Gly Asn Gly Ala Gln Tyr Arg Gly
 580 585 590
 Ile Leu Glu Ala Ser Leu Glu Leu Phe Lys Phe Thr Ile Gly Met Gly
 595 600 605
 Glu Leu Ala Phe Gln Glu Gln Leu His Phe Arg Gly Met Val Leu Leu
 610 615 620
 Leu Leu Leu Ala Tyr Val Leu Leu Thr Tyr Ile Leu Leu Leu Asn Met
 625 630 635 640
 Leu Ile Ala Leu Met Ser Glu Thr Val Asn Ser Val Ala Thr Asp Ser
 645 650 655
 Trp Ser Ile Trp Lys Leu Gln Lys Ala Ile Ser Val Leu Glu Met Glu
 660 665 670
 Asn Gly Tyr Trp Trp Cys Arg Lys Lys Gln Arg Ala Gly Val Met Leu
 675 680 685
 Thr Val Gly Thr Lys Pro Asp Gly Ser Pro Asp Glu Arg Trp Cys Phe
 690 695 700
 Arg Val Glu Glu Val Asn Trp Ala Ser Trp Glu Gln Thr Leu Pro Thr
 705 710 715 720

C
C
Cnf

Leu Cys Glu Asp Pro Ser Gly Ala Gly Val Pro Arg Thr Leu Glu Asn
 725 730 735
 Pro Val Leu Ala Ser Pro Pro Lys Glu Asp Glu Asp Gly Ala Ser Glu
 740 745 750
 Glu Asn Tyr Val Pro Val Gln Leu Leu Gln Ser Asn
 755 760

<210> 3
 <211> 51
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer

<400> 3
 tgttaccaat ctgaagtggg agcggccgcc tcattttttt tttttttttt t 51

<210> 4
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR Primer

<400> 4
 caggccccggg catgcacatt g 21

<210> 5
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR Primer

<400> 5
 ccagggcgag gaccggaaat t 21

<210> 6
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR Primer

<400> 6
 gacagctgga gcatctggaa g 21

<210> 7
 <211> 21
 <212> DNA
 <213> Artificial Sequence

C
Cm^t

<220>
<223> PCR Primer

<400> 7
gacagctgga gcatctggaa g 21

<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 8
cttccagatg ctccagctgt c 21

<210> 9
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 9
tttgccacca gaattcactg g 21

<210> 10
<211> 21
<212> DNA
<213> Artificial Sequence

C |
Cont'
<220>
<223> PCR Primer

<400> 10
ctctctttgg ccgccttgcac c 21

<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 11
ccagcactga gtttcctca c 21

<210> 12
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 12
gccctaccgt gcagcttgag g 21

<210> 13
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 13
tgccccacga ggaggtagat c 21

<210> 14
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 14
atggcgtatgt gcagagcgct g 21

<210> 15
<211> 21
<212> DNA
<213> Artificial Sequence

C1
Conj
<220>
<223> PCR Primer

<400> 15
agagtcaacc tcaaactacc g 21

<210> 16
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 16
gagcttctcc ctgcggtaa g 21

<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 17
aaggctgctg aaaaagcact g

21

<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 18
gctgggctgg ctgaacctgc

20

C
<210> 19
<211> 19
<212> DNA
<213> Artificial Sequence

CONT
<220>
<223> PCR Primer

<400> 19
gaggggcaatg agcatgttg

19