0.1 Método dos terços

A partir de x_1 e x_2 , calculam-se x_3 e x_4 (pontos que dividem o intervalo $[x_1, x_2]$ em 3 partes iguais).

Se $f(x_4) < f(x_3)$, então $x_1 = x_3$; senão se $f(x_4) > f(x_3)$, então $x_2 = x_4$.

0.2Regra Aurea

A partir de x_1 e x_2 , calculam-se $x_3 = x_1 + A.(x_2 - x_1)$ e $x_4 = x_1 + B.(x_2 - x_1)$, tais que $B = \frac{\sqrt{5}-1}{2}$ e $A = B^2$. Se $f(x_3) < f(x_4)$, então $x_2 = x_4$; senão se $f(x_3) > f(x_4)$, então $x_1 = x_3$.

0.3Método do Gradiente

$$x_{j}^{(i+1)} = x_{j}^{(i)} - h.\frac{\delta f^{(i)}}{\delta x_{j}} (j = 1, 2, ..., n),$$

em que h é o passo.

Se $f(x^{(i+1)}) < f(x^{(i)})$, dá-se novo passo com h = 2 * h.

Se $f(x^{(i+1)}) > f(x^{(i)})$, não se efetua o passo e faz-se nova tentativa com $h = \frac{h}{2}$.

0.4 Método da Quádrica

Só é aplicável nas vizinhanças imediatas do mínimo (ou máximo).

$$x_i^{n+1} = x_n - H^{-1}x\nabla f(x_i^n),$$

sendo H^{-1} o inverso do determinante da matriz hessiana.

0.5Método de Levenberg-Marquardt

O passo é a soma dos passos dos 2 método anteriores:

$$x_{n+1} = x_n - h_{L.M},$$

tal que $h_{L,M} = H^{-1}\nabla + \lambda \nabla$, sendo λ o parâmetro a determinar mediante a evolução do método:

- Se $f(x_{n+1}) < f(x_n), \lambda = \frac{\lambda}{2}$
- Senão se $f(x_{n+1}) > f(x_n), h = h * 2$