COSC343: Artificial Intelligence

Lecture 4: Probability Theory: introduction

Lech Szymanski

Dept. of Computer Science, University of Otago

Lech Szymanski (Otago)

Probability Theory

- Fundamental concept underlying all machine learning is uncertainty
- Probability theory = mathematical framework for quantification and manipulation of uncertainty
- What's the best action to take, when the outcome is uncertain?

In today's lecture

- Mathematical framework for dealing with uncertainty
- · Probability distributions
- · Conditional probability
- Independence
- Expectation

Lech Szymanski (Otago

COSC343 Lecture

Defining a sample space

A sample space is a model of 'all possible ways the world can be'.

- Formally, it's the space of all possible values of the input and outputs to the function
- · Each of these defines one dimension of the samples space
- · Each possible combination is called a sample point

Formally, a **probability model** assigns a probability to each sample point in a sample space.

- Each probability is between 0 and 1 inclusive
- · Probabilities for all points in the space sum to 1

Lech Szymanski (Otago

COSC343 Lecture 4

Lech Szymanski (Otago)

COSC343 Lecture

Examples of sample spaces

Dice roll

Double Dice roll

不	(1,6)	(2,6)	(3,6)	(4,6)	(5,6)	(6,6)
	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)
X_2	(1,4)	(2,4)	(3,4)	(4,4)	(5,4)	(6,4)
∠ 	(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	(6,3)
	(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	(6,2)
\perp	(1,1)	(2,1)	(3,1)	(4,1)	(5,1)	(6,1)
	\longleftarrow		<u> </u>	Z_—		\longrightarrow
	71					

Lech Szymanski (Otago

COSC343 Lecture 4

A simple probability model

A probability model induces a **probability distribution** for each possible value of the random variable.

- This distribution is a function, whose domain is all possible value for the random vairable, which returns probability for each possible value
- The distribution must sum to 1

n	1	2	3	4	5	6
P(X)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$$p(X) = \begin{cases} \frac{1}{6} & , \{X | X \in \mathbb{Z} \land 1 \le X \ge 6 \\ 0 & , \text{otherwise} \end{cases}$$

 Discrete uniform distribution – countable number of events and each event is equally likely

Probability distribution

Imagine we roll a single die. Our sample space has a single **random variable** (call it X), which has 6 possible values.

n	1	2	3	4	5	6
	P(X=1)	P(X=2)	P(X=3)	P(X=4)	P(X=5)	P(X=6)

We can estimate the probability at each point by generating a training set of $\,N$ die rolls and using relative frequencies of events in this set

$$P(X = n) = \frac{\text{count}(X = n)}{N}$$

Lech Szymanski (Otago)

COSC343 Lecture

Joint distribution

A distribution function over two, or more, random variables is called a **joint distribution**

• E.g. Double dice roll

 $\begin{cases} \frac{1}{36} &, \{(X,Y)|(X,Y) \in (\mathbb{Z},\mathbb{Z}) \land 1 \leq X \geq 6 \land 1 \leq Y\} \\ 0 &, \text{otherwise} \end{cases}$

Discrete uniform distribution – countable number of events and each event is equally likely

Lech Szymanski (Otago)

Y

COSC343 Lecture

Lech Szymanski (Otago

Some terminology

- An event is any subset of points in a sample space.
- The probability of an event E is the sum of probabilities of each sample point it contains.

$$P(E) = \sum_{\{n \in E\}} P(X = n)$$

Lech Szymanski (Otago

COSC343 Lecture 4

Events

- · Double dice roll
- What's $P(Y \ge 4)$?

₋ech Szymanski (Otago)

COSC343 Lecture 4

Events

- Double dice roll
- What's P(X = 5)?

Lech Szymanski (Otago)

COSC343 Lecture 4

A simple medical example

Consider a medical scenario, with 3 Boolean variables

- cavity (does the patient have a cavity or not?)
- toothache (does the patient have a toothache or not?)
- catch (does the dentist's probe catch on the patient's tooth?)

/ "not"

Here's an example probability model: the joint probability distribution $p(\mathit{Toothache}, \mathit{Cavity}, \mathit{Catch})$

	tooth	nache	_E	othache
	catch ¬catch		catch	□ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Lech Szymanski (Otago)

COSC343 Lecture

Inference from a joint distribution

Given a full joint distribution, we can compute the probability of any event simply by summing the probabilities of the relevant sample points.

E.g. how to calcualte P(toothache)?

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.06 = 0.2$$

	tooth	nache	─toothache	
	catch ¬catch		catch	□ catch
cavity	.108	.012	.072	.008
□ cavity	.016	.064	.144	.576

Lech Szymanski (Otago

COSC343 Lecture 4

Inference from a joint distribution

Given a full joint distribution, we can compute the probability of any event simply by summing the probabilities of the relevant sample points.

E.g. how to calcualte $P(cavity \lor toothache)$?

$$P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064$$
$$= 0.28$$

	toothache		─toothache	
	catch ¬catch		catch	□ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Inference from a joint distribution

Given a full joint distribution, we can compute the probability of any event simply by summing the probabilities of the relevant sample points.

E.g. how to calcualte $P(cavity \lor toothache)$?

	toothache		□toothache	
	catch ¬ catch		catch	□ catch
cavity	.108	.012	.072	.008
□ cavity	.016	.064	.144	.576

Lech Szymanski (Otago)

COSC343 Lecture 4

Set-theoretic relationships in probability

Given a full joint distribution, we can compute the probability of any event simply by summing the probabilities of the relevant sample points.

For instance: $P(a \lor b) = P(a) + P(b) - P(a \land b)$

True

Continuous random variables

The sample spaces we've seen so far have been built from descrete random variables. But you can build probability models using **continuous random variables** too.

- E.g. we can define a random variable *Temperature*, whose domain is the real numbers.
- In the real domain (even if it's bounded) domain there is an infinite number of samples. Probability of continuous random variable hitting a specific value is 0.
- However, we can talk about probability of value being in certain range.

Lech Szymanski (Otago

COSC343 Lecture 4

Probability density function

- For continuous variables, probability distributions are contintuos, and are referred to as probability denstity functions
- E.g. here's a function which gives uniform probability for values between 0 and 1

This funcitonion is a density; itengrates to 1. So:

$$P(0.425 \le x < 0.435) = \int_{0.425}^{0.435} p(x)dx = 0.01$$

Continuous random variables

Gaussian distribution

 A particularly useful probability function for continuous variables is the Guassian function (often referred to as the normal distribution)

Lots of real-world variables have this distribution

Lech Szymanski (Otago)

COSC343 Lecture 4

Gaussian distribution

ech Szymanski (Otago

OSC343 Lecture 4

Expectation

- Probability weighted value of all possible values of a function dependent on a random variable
- · "Average" result expected

Discrete distribution

Continuous distribution

$$E[g(x)] = \sum_{i} p(x_i)g(x_i) \qquad E[g(x)] = \int p(x)g(x)dx$$

Central Limit Theorem

Mean and variance

• The expected value of the random variable itself

$$\mu = E[x]$$

• The expected value of the squared deviation of random variable from its mean (measures the spread of a probability distribution).

$$\sigma^2 = E\left[(x - \mu)^2 \right]$$

An exampe: mean and variance of the normal distribution

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$E[x] = \mu$$

$$E[(x - \mu)^2] = \sigma^2$$

- · Guassian distribution is completely parametrised by its meand and variance
- σ standard deviation

Lech Szymanski (Otago

COSC343 Lecture 4

An example: mean and variance of the Beta distribution

$$p(x) = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{\int_0^1 u^{\alpha - 1} (1 - u)^{\beta - 1} du}$$

$$\mu=E[x]=rac{lpha}{lpha+eta}$$
 ੂੰ $E[(x-\mu)^2]=rac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$

An exampe: mean and variance of the exponential distribution

$$p(x) = \begin{cases} \lambda e^{-\lambda x} & x \geq 0, \\ 0 & x < 0. \end{cases}$$

 Mean is the point splitting the probability density, such that are under curve is exactly 0.5 on either side

Lech Szymanski (Otago)

COSC343 Lecture

Summary and reading

Probability theory is the foudnation for many learning algorithms.

 Key concepts: samples space, random variable, probability distribution, probability density, expectation

Reading for the lecture: AIMA Chapter 13 Sections 1-2 Reading for next lecture: AIMA Chapter 13 Section 3-6