SERIES DE TIEMPO II

Duván Cataño

UNIVERSIDAD DE ANTIOQUIA Instituto de Matemáticas 2018-2

Contenido

- Conceptos
- 2 Modelos para Series de Tiempo
- 3 Identificación de Modelos
- 4 Estimación de Parámetros
- Pronóstico

Proceso Estocástico

- Un proceso estocástico es una familia de variables aleatorias $Z(\omega,t)$, donde ω pertenece al espacio muestral y t a un conjunto índice (generalmente \mathbb{Z}).
- Para ω fijo, $Z(\omega,t)$, como función de t, es una realización del proceso estocástico. Así una serie de tiempo es una realización de un cierto proceso estocástico.
- Para un conjunto finito de v.a. $\{Z_{t_1}, Z_{t_2}, \dots, Z_{t_n}\}$ de un proceso estocástico $\{Z(\omega, t): t \in \mathbb{Z}\}$, se define la función de distribución n-dimensional como

$$F(z_{t_1},\ldots,z_{t_n})=\mathbb{P}[z(\omega,t_1)\leq z_{t_1},\ldots,z(\omega,t_n)\leq z_{t_n}]$$

Proceso Estacionario

 Un proceso se dice estacionario en distribución de n-ésimo orden si su función de distribución n-dimensional es

$$F(z_{t_1}, \dots, z_{t_n}) = F(z_{t_1+k}, \dots, z_{t_n+k})$$
(1)

para cualquier n-tupla (t_1, \ldots, t_n) y $k \in \mathbb{Z}$.

- Un proceso se dice **Estrictamente Estacionario** si (1) es cierto para cualquier $n \in \mathbb{N}$. Además si (1) se cumple para n = m, entonces también se cumple para $n \leq m$.
- Un ejemplo inmediato de un proceso estocástico estrictamente estacionario lo constituye una sucesión de variables aleatorias i.i.d.
- Un proceso estrictamente estacionario puede no ser estacionario en covarianza, ya que puede no tener momentos de primer y segundo orden finitos.
- **Ejemplo:** el proceso formado por variables aleatorias independientes e idénticamente distribuidas Cauchy.

Funciones de media y varianza

- Generalmente se suprime la variable ω y se escribe $Z(\omega,t)$ simplemente como Z(t) o Z_t . Además el proceso es llamado de valor real si este sólo toma valores reales.
- Para un proceso de valor real $Z_t: t=0,\pm 1,\pm 2,\ldots$ se define la función de medias del proceso como:

$$\mu_t = E(Z_t)$$

• La función de varianza

$$\sigma_t^2 = E(Z_t - \mu_t)^2$$

Funciones de covarianza y correlación

 \bullet La función de covarianza entre Z_{t_1} y Z_{t_2}

$$\gamma(t_1, t_2) = E(Z_{t_1} - \mu_{t_1})(Z_{t_2} - \mu_{t_2})$$

 \bullet La función de correlación entre Z_{t_1} y Z_{t_2}

$$\rho(t_1, t_2) = \frac{\gamma(t_1, t_2)}{\sigma_{t_1} \sigma_{t_2}}$$

- Para un proceso estrictamente estacionario $\mu_t = \mu$, siempre que

 - $\sigma_t^2 = \sigma^2$, si $E(Z_t^2 < \infty)$, para todo t.
- \bullet Además dado que $F(z_{t_1},z_{t_2})=F(z_{t_1+k},z_{t_2+k})$ para cualquier enteros $t_1,\,t_2$ y k,

$$\gamma(t_1, t_2) = \gamma(t_1 + k, t_2 + k),$$

$$\rho(t_1, t_2) = \rho(t_1 + k, t_2 + k)$$

Haciendo $t_1 = t - k$ y $t_2 = t$, se tiene que

$$\gamma(t_1, t_2) = \gamma(t - k, t) = \gamma(t, t + k) = \gamma_k$$

$$\rho(t_1, t_2) = \rho(t - k, t) = \rho(t, t + k) = \rho_k$$

Así, para un proceso estrictamente estacionario con primeros dos momentos finitos, la función de covarianza y correlación entre Z_t y Z_{t+k} depende únicamente de la diferencia k entre los tiempos.

Proceso Débilmente Estacionario

- Un proceso es llamado débilmente estacionario de orden n, si todos sus momentos conjuntos hasta de orden n son finitos e invariantes en el tiempo.
- Un proceso débilmente estacionario de segundo orden tendrá media y varianza constantes y sus funciones de covarianza y correlación sólo dependerán del número de períodos que separan los términos del proceso.
- Esta clase de proceso es también llamado proceso estacionario en sentido amplio o proceso estacionario en covarianza o simplemente estacionario.

En la práctica, generalmente se trabaja con procesos estacionarios en covarianza. Este es un supuesto mucho menos restrictivo que la estacionaridad estricta y más fácil de probar en la práctica.

Ejemplo

Considere la serie

$$x_t = \sin(2\pi U t), \quad t = 1, 2, \dots,$$

donde U tiene una distribución uniforme en el intervalo (0,1).

- \bullet Probar que x_t es débilmente estacionaria.
- $\ \, \textbf{@} \,$ Probar que x_t no es estrictamente estacionaria. (Ejercicio)

Funciones de autocovarianza y autocorrelación

Para un proceso estacionario $\{Z_t\}$ escribimos

$$\gamma_k = cov(Z_t, Z_{t+k}) = E(Z_t - \mu)(Z_{t+k} - \mu)$$

у

$$\rho_k = \frac{cov(Zt, Zt + k)}{Var(Z_t)Var(Z_{t+k})} = \frac{\gamma_k}{\gamma_0}$$

donde $\gamma_0 = Var(Z_t) = Var(Z_{t+k})$. Como función de k, γ_k se denomina la función de autocovarianza y ρ_k la función de autocorrelación (ACF).

Propiedades

- $|\gamma_k| \le \gamma_0; \, |\rho_k| \le 1$
- \bullet γ_k y $\rho_k,$ son semidefinidas positivas en el sentido que

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \gamma_{|t_i - t_j| \ge 0} \tag{2}$$

У

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \rho_{|t_i - t_j| \ge 0} \tag{3}$$

para cualquier t_1, t_2, \ldots, t_n y $\alpha_1, \alpha_2, \ldots, \alpha_n$ reales.

Demostración:

DE ANTIQUIA

4日 > 4日 > 4 日 > 4 日 >

Función de autocorrelación parcial

 \bullet Se usa para medir el grado de correlación entre Z_t y Z_{t+k} luego de remover la dependencia lineal con las variables intermedias

$$Corr(Z_t, Z_{t+k}|Z_{t+1}, Z_{t+2}, \dots, Z_{t+k-1})$$

• Puede ser obtenida considerando el siguiente modelo de regresión para la variable Z_{t+k} de un proceso de media cero

$$Z_{t+k} = \phi_{k1} Z_{t+k-1} + \phi_{k2} Z_{t+k-2} + \ldots + \phi_{kk} Z_t + e_{t+k}$$

con e_{t+k} incorrelado con Z_{t+k-j} para $j \ge 1$.

• Multiplicando por Z_{t+k-j} y tomando esperanza se tiene

$$\gamma_j = \phi_{k1}\gamma_{j-1} + \phi_{k2}\gamma_{j-2} + \ldots + \phi_{kk}\gamma_{j-k}$$

$$\rho_j = \phi_{k1}\rho_{j-1} + \phi_{k2}\rho_{j-2} + \ldots + \phi_{kk}\rho_{j-k}$$

Función de autocorrelación parcial

• Para $j = 1, 2, \dots, k$ se tiene el sistema

$$\rho_{1} = \phi_{k1}\rho_{0} + \phi_{k2}\rho_{1} + \dots + \phi_{kk}\rho_{k-1}$$

$$\rho_{2} = \phi_{k1}\rho_{1} + \phi_{k2}\rho_{0} + \dots + \phi_{kk}\rho_{k-2}$$

$$\vdots$$

$$\rho_{k} = \phi_{k1}\rho_{k-1} + \phi_{k2}\rho_{k-2} + \dots + \phi_{kk}\rho_{0}$$

• Usando la regla Cramer para k = 1, 2, ... se tiene

$$\phi_{11} = \rho_1, \quad \phi_{22} = \frac{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & \rho_2 \end{vmatrix}}{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & 1 \end{vmatrix}}, \quad \phi_{33} = \frac{\begin{vmatrix} 1 & \rho_1 & \rho_1 \\ \rho_1 & 1 & \rho_2 \\ \rho_2 & \rho_1 & \rho_3 \end{vmatrix}}{\begin{vmatrix} 1 & \rho_1 & \rho_2 \\ \rho_2 & \rho_1 & \rho_2 \\ \rho_1 & 1 & \rho_1 \\ \rho_2 & \rho_1 & 1 \end{vmatrix}}$$

Función de autocorrelación parcial

• En general

$$\phi_{kk} = \frac{\begin{vmatrix} 1 & \rho_1 & \rho_2 & \dots & \rho_{k-2} & \rho_1 \\ \rho_1 & 1 & \rho_1 & \dots & \rho_{k-3} & \rho_2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \dots & \rho_1 & \rho_k \end{vmatrix}}{\begin{vmatrix} 1 & \rho_1 & \rho_2 & \dots & \rho_{k-2} & \rho_{k-1} \\ \rho_1 & 1 & \rho_1 & \dots & \rho_{k-3} & \rho_{k-2} \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \dots & \rho_1 & 1 \end{vmatrix}}$$

• Como una función de k, ϕ_{kk} es denominada función de autocorrelación parcial (PACF) entre Z_t y Z_{t+k} .

Proceso ruido blanco, RB

• Un proceso $\{a_t\}$ es llamado RB si este es una secuencia de v.a. incorreladas de una distribución fija con media constante $E(a_t) = \mu_a$, usualmente asumida como cero, varianza constante $Var(a_t) = \sigma_a^2$ y

$$\gamma_k = cov(a_t, a_{t+k}) = 0$$

para todo $k \neq 0$.

• De este modo, todo proceso RB es estacionario con función de autocovarianza

$$\gamma_k = \left\{ \begin{array}{ll} \sigma_a^2, & k = 0 \\ 0, & k \neq 0 \end{array} \right.$$

Proceso ruido blanco, RB

• La función de autocorrelación

$$\rho_k = \left\{ \begin{array}{ll} 1, & k = 0 \\ 0, & k \neq 0 \end{array} \right.$$

• La función de autocorrelación parcial

$$\phi_{kk} = \left\{ \begin{array}{ll} 1, & k = 0 \\ 0, & k \neq 0 \end{array} \right.$$

• Un proceso RB se dice Gausiano si su función de distribución conjunta es normal. En adelante se hace referencia solo a procesos ruido blanco Gausianos de media cero.

Estimación de la media, autocovarianzas y autocorrelaciones de un proceso estacionario

- Un proceso estacionario está caracterizado por su media μ , su varianza σ^2 , sus autocorrelaciones ρ_k , y sus autocorrelaciones parciales ϕ_{kk} .
- \bullet Dada una realización $Z_1,Z_2,\ldots,Z_T,$ de un proceso estacionario se tienen los siguientes estiamadores:
 - **Q** El estimador para la media $\mu_t = E[Z_t] : \bar{Z} = \frac{\sum_{t=1}^T Z_t}{T}$
 - ② Estimador Función Autocovarianza: $\hat{\gamma}_k = \frac{\sum_{t=1}^{T-k} (Z_t \bar{Z})(Z_{t+k} \bar{Z})}{T}$
 - 3 Estimador Función Autocorrelación: $\hat{\rho}_k = \frac{\hat{\gamma}_k}{\hat{\gamma}_0}$

Distribución muestral de $\hat{\rho}_k$

• Para un proceso estacionario Gaussiano y para muestras grandes, bajo el supuesto de que $\rho_k=0$ para k>m,

$$\hat{\rho}_k \sim^{aprox} \mathcal{N}(0, Var(\hat{\rho}_k)).$$

donde la varianza de $\hat{\rho}_k$ es:

$$Var(\hat{\rho}_k) \approx (1 + 2\hat{\rho}_1^2 + 2\hat{\rho}_2^2 + \dots + 2\hat{\rho}_m^2)/T$$

• Bajo el supuesto de que $\rho_k = 0$ para k > 0 (el proceso no está autocorrelacionado),

$$\hat{\rho}_k \sim^{aprox} \mathcal{N}(0, 1/T).$$

Distribución muestral de ϕ_{kk}

• Para un proceso estacionario Gaussiano y para muestras grandes, bajo el supuesto de que $\rho_k=0$ para todo k (proceso no está autocorrelacionado),

$$\phi_{kk} \sim^{aprox} \mathcal{N}(0, 1/T).$$

• Cuando k es grande con respecto a T, $\hat{\gamma}_k$, y por tanto $\hat{\rho}_k$, son estimados en forma muy imprecisa. Por esta razón se sugiere obtener sólo los primeros T/4 estimadores en el análisis de la serie de tiempo.

Propiedades de los estimadores

Representación de Medias Móviles (MA):

• Se puede expresar la serie de tiempo como

$$Z_t = \mu + a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \dots = \mu + \sum_{j=0}^{\infty} \psi_j a_{t-j}$$

donde $\sum_{j=0}^{\infty} |\psi_j| < \infty$ y donde $\psi_0 = 1$. El proceso $\{a_t\}$ es un Ruido Blanco.

- Todo proceso estacionario puramente no determinístico puede ser escrito en la forma anterior (Teorema de Wold). Este proceso también es llamado proceso lineal.
- El modelo en forma MA puede ser escrito como:

$$Z_t = \mu + \Psi(B)a_t$$

donde
$$\Psi(B) = \sum_{j=0}^{\infty} \psi_j B^j$$
 con $\psi_0 = 1$

Para que el proceso MA sea estacionario se requiere que

$$\sum_{j=0}^{\infty} |\psi_j| < \infty$$

Propiedades del proceso MA estacionario:

•
$$E(Z_t) = \mu$$

•
$$\gamma_k = \sigma^2 \sum_{i=0}^{\infty} \psi_i \psi_{i+k}$$

•
$$Var(Z_t) = \sigma^2 \sum_{i=0}^{\infty} \psi_i^2$$

$$\bullet \ \rho_k = \frac{\sum_{i=0}^{\infty} \psi_i \psi_{i+k}}{\sum_{i=0}^{\infty} \psi_i^2}$$

- γ_k y ρ_k
 - \bullet sólo dependen de k
 - son finitas

Representación Autorregresiva (AR):

• Se puede expresar la serie de tiempo como

$$Z_t = \theta_0 + \pi_1 Z_{t-1} + \pi_2 Z_{t-2} + \ldots + a_t$$

o, equivalentemente, usando el operador de rezagos B,

$$\pi(B)Z_t = \theta_0 + a_t$$

donde
$$\pi(B) = 1 - \pi_1 B - \pi_2 B^2 - \pi_3 B^3 - \dots$$
, con $\sum_{j=0}^{\infty} |\pi_j| < \infty$, y $\pi_0 = 1$.

- Para que un proceso MA estacionario tenga una representación AR, es necesario que las raíces del polinomio $\Psi(B)=0$ caigan todas fuera del circulo unidad.
- No todo proceso invertible es necesariamente estacionario. Para que un proceso invertible tenga una representación MA, es necesario que las raíces del polinomio $\pi(B)=0$ caigan todas fuera del círculo unidad.

UNIVERSIDAD DE ANTIOQUIA

Modelos para Series de Tiempo

Modelos

 Por tanto, para la modelación de un fenómeno se requiere usar un número finito de parámetros. De aquí surgen los modelos:

Autorregresivos de orden p, AR(p):

$$Z_t = \theta_0 + \phi_1 Z_{t-1} + \phi_2 Z_{t-2} + \ldots + \phi_p Z_{t-p} + a_t$$

De Medias Móviles de orden q, MA(q):

$$Z_t = \mu + a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} - \dots - \theta_q a_{t-q}$$

Autorregresivos y de Medias Móviles, ARMA(p, q):

$$Z_t = \theta_0 + \phi_1 Z_{t-1} + \phi_2 Z_{t-2} + \ldots + \phi_p Z_{t-p} + a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} - \ldots - \theta_q a_{t-q}$$

DE ANTIOQUIA

Duván Cataño

Identificación

Estimación

Pronóstico

