Value-based RL:

用神经网络去拟合optimal action-value function Q*

Goal: Win the game (\approx maximize the total reward.)

Question: If we know $Q^*(s, a)$, what is the best action?

• Obviously, the best action is $a^* = \operatorname{argmax} Q^*(s, a)$.

Challenge: We do not know $Q^*(s, \mathbf{a})$.

- Solution: Deep Q Network (DQN)
- Use neural network $Q(s, \mathbf{a}; \mathbf{w})$ to approximate $Q^*(s, \mathbf{a})$

- Input shape: size of the screenshot.
- Output shape: dimension of action space.

trained DQN: 假如我们有一个trained DQN (Q*), 如何将其应用于agent?

问: 我们要利用什么数据,如何训练一个DQN来去拟合Q*?

Temporal Difference (TD) Learning

pediction:

$$Q_{t} = Q^{*}(S_{t}, 0, 0, 1)$$

$$V_{t} = V_{t} + V_{t} Q^{*}(S_{t+1}, 0, 1)$$

$$V_{t} = V_{t} + V_{t} Q^{*}(S_{t+1}, 0, 1)$$

$$V_{t} = V_{t} + V_{t} Q^{*}(S_{t+1}, 0, 1)$$

$$V_{t+1} = V_{t} + V_{t} Q^{*}(S_{t+1}, 0, 1)$$

$$V_{t} = V_{t} + V_{t} Q^{*}(S_{t}, 0, 1$$

THEN:

[1]:

$$\vec{Q}(\vec{S}_{1}, \vec{O}_{1}; W_{1}) = \max_{\vec{T}} \vec{Q}_{\vec{T}}(\vec{S}_{1}, \vec{O}_{1}; W_{1})$$

$$= \max_{\vec{T}} E[U_{1}|\vec{S}_{1}=\vec{S}_{1}, A_{1}=\vec{O}_{1}; W_{1}]$$

$$\vec{Q}(\vec{S}_{1}+1, \vec{O}_{1}+1; W_{1}) = \max_{\vec{T}} \vec{Q}_{\vec{T}}(\vec{S}_{1}+1, \vec{O}_{1}+1; W_{1})$$

$$= \max_{\vec{T}} E[U_{1}+1|\vec{S}_{1}=\vec{S}_{1}+1, A_{1}+1=\vec{O}_{1}+1; W_{1}]$$

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \gamma^4 \cdot R_{t+4} + \cdots$$

 $= R_t + \gamma \cdot (R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+3} + \gamma^3 \cdot R_{t+4} + \cdots)$
 $= U_{t+1}$

Temporal Difference (TD) Learning

Algorithm: One iteration of TD learning.

- 1. Observe state $S_t = s_t$ and perform action $A_t = a_t$.
- 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$.
- 3. Differentiate the value network: $\mathbf{d}_t = \frac{\partial Q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.
- 4. Environment provides new state s_{t+1} and reward r_t .
- 5. Compute TD target: $\mathbf{y}_t = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t)$.
- 6. Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot (\mathbf{q}_t \mathbf{y}_t) \cdot \mathbf{d}_t$.