МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики

Кафедра: высокопроизводительных вычислений и системного программирования

Направление подготовки: «Прикладная математика и информатика» Магистерская программа: «Вычислительные методы и суперкомпьютерные технологии»

ОТЧЕТ

по третьей лабораторной работе

на тему:

«Численное интегрирование систем обыкновенных дифференциальных уравнений»

Выполнил: студент группы <u>3824М1ПМвм</u> Ивлев А.Д.

Нижний Новгород 2024

Оглавление

1.	. Введение и постановка задачи	3
2.	. Численные методы решения ОДУ	4
	2.1 Метод Эйлера	4
	2.2 Метод Рунге-Кутта 4-го порядка	4
3.	. Результаты экспериментов	6
	3.1 Реализация метода Эйлера и метода Рунге-Кутта 4-го порядка	6
	3.2 Локальная погрешности методов на примерах 1–3	6
	3.2 Локальная погрешности методов на примере хаотического аттрактора.	8
4.	. Заключение	10

1. Введение и постановка задачи

В данной работе будет исследоваться численное решение задачи Коши, которое задаётся системой ОДУ 1-го порядка и начальными условиями x_0 :

$$\begin{cases} \dot{x} = f(t, x) \\ x(t_0) = x_0 \end{cases}, x \in \mathbb{R}^n, t \ge t_0 \ge 0$$
 (1)

Для этого будут рассмотрены и реализованы метод Эйлера и метод Рунге-Кутта 4-го порядка. Будет проведено сравнение точности и сложности вычислений данных методов.

Проверка работоспособности и сравнение методов будет проводиться на 4 примерах:

1.
$$\dot{x} = f(t, x) = -x$$

Для данного примера известно аналитическое решение $x = x_0 e^{-t}$. И система имеет единственное устойчивое состояние равновесия $x^* = 0$.

2.
$$\dot{x} = f(t, x) = x$$

Для данного примера известно аналитическое решение $x = x_0 e^t$. И система имеет единственное неустойчивое состояние равновесия $x^* = 0$.

3.
$$\ddot{z} + z = 0$$

Сначала, с помощью замены $y = \dot{z}$ приведём ОДУ 2-го порядка к системе ОДУ 1-го порядка разрешенных относительно производной.

$$\begin{cases} \dot{y} = -z \\ \dot{z} = y \end{cases}$$

Тогда $x = x(y, z) \in \mathbb{R}^2$, а преобразование f(t, x) задаётся оператором:

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Для данного примера известно аналитическое решение $x = (\sin(t), \cos(t))x_0$. Характеристическое уравнение системы: $\lambda^2 + 1 = 0$. То есть $\lambda = \pm i$ – чисто мнимые и состояние равновесия типа центр.

4. Хаотический аттрактор Рёсслера

$$\begin{cases} \dot{x} = -y - z \\ \dot{y} = x + ay \end{cases}$$
, где $a = b = 0.2$, $c = 5.7$ $\dot{z} = b + z(x - c)$

Для данного примера неизвестно аналитическое решение. Данная система нелинейна, определение состояния равновесия и его устойчивость требуют дополнительных исследований.

В рамках данной работы необходимо:

- Реализовать метод Эйлера и метод Рунге-Кутта 4-го порядка
- Для примеров 1-3 построить зависимость погрешности методов от времени при шагах методов h=0.1,0.01,0.001.
- Для примера 4 построить траектории в плоскостях $\{x, y\}$, $\{x, z\}$. Также построить зависимость погрешности методов для каждой координаты от времени при шагах методов h=0.1,0.01,0.001.

2. Численные методы решения ОДУ

В данной работе будут рассмотрены два итерационных численный метода для приближенного вычисления решения задачи Коши заданной системой ОДУ 1-го порядка, которое можно описать формулами (1): метод Эйлера и метод Рунге-Кутта 4-го порядка (РК4).

Оба метода вычисляют значения на отрезке интегрирования $[t_0, T]$ с шагом h, используя только значение предыдущего шага, то есть являются одношаговыми. Погрешность методов можно разделить на два вида локальную и глобальную:

Глобальная погрешность – погрешность на всём отрезке интегрирования: $E = |x(T) - \tilde{x}(T)|$, где \tilde{x} – приближённо вычисленное решение.

Локальная погрешность – погрешность на итерации: $e_i = |x(t_0 + ih) - \tilde{x}(t_0 + ih)|$, где \tilde{x} – приближённо вычисленное решение, i –номер итерации.

2.1 Метод Эйлера

Условия применимости:

• Функция f(t,x) должна быть непрерывной и дифференцируемой до 2 порядка в области определения. Иначе могут не выполняться оценки погрешности.

Алгоритм

- Инициализация:
 - x_0 Задать отрезок интегрирования x_0 , начальное значение x_0 = x_0 и шаг метода x_0 и шаг метода x_0
- Итерационный процесс:

$$\begin{array}{ll}
\circ & x_{n+1} = x_n + hf(t_n, x_n) \\
\circ & t_{n+1} = t_n + h
\end{array}$$

- Критерий остановки:
 - Достижение конца отрезка интегрирования Т

Плюсы:

- Низкие вычислительные затраты
- Простота реализации

Минусы:

• Низкая точность: локальная погрешность $O(h^2)$, глобальная O(h)

2.2 Метод Рунге-Кутта 4-го порядка

Условия применимости:

• Функция f(t,x) должна быть непрерывной и дифференцируемой до 5 порядка в области определения. Иначе могут не выполняться оценки погрешности.

Алгоритм

- Инициализация:
 - \circ Задать отрезок интегрирования $[t_0,T],$ начальное значение $x(t_0)=x_0$ и шаг метода h>0
- Итерационный процесс:
 - о Вычислить коэффициенты:

$$k_{1} = f(t_{n}, x_{n})$$

$$k_{2} = f(t_{n} + \frac{h}{2}, x_{n} + \frac{h}{2}k_{1})$$

$$k_{3} = f(t_{n} + \frac{h}{2}, x_{n} + \frac{h}{2}k_{2})$$

$$k_{4} = f(t_{n} + h, x_{n} + hk_{3})$$

$$x_{n+1} = x_{n} + \frac{h}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

$$t_{n+1} = t_{n} + h$$

- Критерий остановки:
 - \circ Достижение конца отрезка интегрирования T

Плюсы:

• Высокая точность: локальная погрешность $O(h^5)$, глобальная $O(h^4)$

Минусы:

• Большие вычислительные затраты (4 вычисления f(t, x) на шаг)

3. Результаты экспериментов

Программная реализация выполнялась на языке python. Полный код доступен по ссылке: https://github.com/Faert/NLD_Lab.

Далее точность решения будет оцениваться по локальной погрешности методов. Но поскольку для примера 4 не известно точное решение, то будет подсчитана верхняя оценка погрешности в виде $e_i = |\tilde{x}_i - \bar{x}_{2i}|$, где \tilde{x}_i — приближенное решение на i-ом шаге вычисленное с шагом h, а \bar{x}_{2i} — приближенное решение в той же точке вычисленное с шагом $\frac{h}{2}$.

3.1 Реализация метода Эйлера и метода Рунге-Кутта 4-го порядка

Метод Эйлера:

```
0 | def Euler(func, x0, t0, T, h, history, func error = None):
1 1
       xs = x0
2 |
       while t0 < T:
3 |
          x1=x0+h*func(x0)
4 |
           t0+=h
           if(func error!=None):
5 |
               history.append([t0, x1, func error(t0, xs, x1)])
8 |
               history.append([t0, x1])
           x0 = x1
10| return x0
```

Метод Рунге-Кутта 4-го порядка:

```
0 | def RK4(func, x0, t0, T, h, history, func error = None):
       xs = x0
2. 1
       while t0 < T:
3 |
           k1=func(x0)
4 |
           k2 = func(x0 + h/2 * k1)
           k3 = func(x0 + h/2 * k2)
           k4=func(x0+h*k3)
7 |
           x1=x0+h/6*(k1+2*k2+2*k3+k4)
8 |
           t0+=h
9 |
           if (func error!=None):
10|
               history.append([t0, x1, func error(t0, xs, x1)])
           else:
111
               history.append([t0, x1])
121
           x0 = x1
14| return x0
```

Где func — функция f(t,x), x_0 — значение $x = x(t_0)$, t_0 и Т границы отрезка интегрирования, t_0 — шаг итерационного метода, history — ссылка на список, где храниться история вычислений, func_error — функция подсчета локальной погрешности.

3.2 Локальная погрешности методов на примерах 1-3

Так как для данных примеров нам известно точное решение, то мы можем вычислить локальную погрешность: $e_i = |x(t_0 + ih) - \tilde{x}(t_0 + ih)|$, где \tilde{x} – приближённо вычисленное решение, i –номер итерации. На графиках же будет изображён десятичный логарифм данной погрешности для более детального исследования.

Для первого примера (Рисунок 1) наблюдается ожидаемое поведение состояние системы стримится к асимптотически устойчивому состоянию x=0. И локальная погрешность стримиться к 0. Для метода РК4 при h=0.001 наблюдаются небольшие пики падения погрешности, возможно это связано с тем, что $h^4=10^{-12}$, что близко к машинной точности вычислений. Также наблюдается ожидаемое поведение погрешности: при уменьшении шага в 10 раз локальная погрешность метода Эйлера

уменьшается примерно на порядок, а погрешность метода Рунге-Кутта на 4, что соответствует оценкам.

Рисунок 1. Приближенное решение \widetilde{x} и локальная погрешность е x^* от параметра $t \in [0, 10]$ для первого примера $\dot{x} = -x$ при $x_0 = 1$.

Для второго примера (Рисунок 2) также наблюдается ожидаемое поведение состояние системы уходит от неустойчивого состояния x=0. И погрешность увеличивается со временем.

Рисунок 2. Приближенное решение \widetilde{x} и локальная погрешность е x^* от параметра $t \in [0, 10]$ для второго примера $\dot{x} = x$ при $x_0 = 1$

Для третьего примера (Рисунок 3) ожидаемое поведение цикл с центром в 0. Что подтверждается графиками, но из-за растущей погрешностей состояние со временем удаляется от истинной траектории. Так же выявлена периодичность с частотой 2π в поведении локальной погрешности, что на графике отображено фиолетовыми линиями.

Рисунок 3. Приближенное решение \tilde{x} в плоскости $\{x,\dot{x}\}$ и локальная погрешность е x^* от параметра $t \in [0,10]$ для третьего примера $\ddot{x}+x=0$ при $x_0=(1,1)$

Поведение графиков соответствует теоретическим выкладкам. Метод Рунге-Кутта 4-го порядка показывает лучшую точность, чем метод Эйлера при больших затратах на вычисления.

3.2 Локальная погрешности методов на примере хаотического аттрактора

Сначала рассмотрим, как изменяется состояние системы с течением времени. Для более точных вычислений был выбран метод Рунге-Кутта с шагом h=0.001.

Рисунок 4. Поведения решение \tilde{x} системы хаотического аттрактора Рёсслера в плоскости $\{x,y\},\{x,z\}$ при $x_0=(1,1,1)$ на отрезке $t\in[0,1000]$

Можно заметить, что состояние в плоскости $\{x,y\}$ выходит на некоторую кривую, описанную вокруг начала координат. А из графика плоскости $\{x,y\}$ можно заметить, что

со временем z стремиться колеблется в диапазоне от 0 до 25 причём пик находится в x=5.7 — значению параметра c.

Теперь рассмотрим поведение оценок локальной погрешности для каждой координаты.

Рисунок 5. Оценки локальной погрешности для координат системы хаотического аттрактора Рёсслера при $x_0 = (1,1,1)$ на отрезке $t \in [0,20]$

Из рисунка 5 можно заметить, что оценка локальной погрешности возрастает для всех координат. Также можно заметить некоторую периодичность в её поведении, но период различен для всех методов и выборов их шага.

4. Заключение

В данной работе были рассмотрены и реализованы два итерационных численный метода для приближенного вычисления решения задачи Коши (1): метод Эйлера и метод Рунге-Кутта 4-го порядка.

С их помощью были исследованы 4 различные системы. Теоретический анализ которых был подтверждён результатами экспериментов. Также было показано, что метод Рунге-Кутта 4-го порядка имеет большую точность, взамен на большую трудоёмкость.