

LEARNING WHEN AND WHERE TO ZOOM WITH DEEP REINFORCEMENT LEARNING

Student LE VAN THE

*2*0110746

ID: INTELLIGENT MECHATRONICS ENGINEERING

Major:

Uzkent, Burak, and Stefano Ermon. "Learning when and where to zoom with deep reinforcement learning." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2020.

- 1 Main Problem
- 2 Solution by DRL
- 3 Performance Evaluation

MAIN PROBLEM

High accuracy

High Expense

Low accuracy

Low Expense

High Resolution Image 160x160

Compression

Low Resolution Image

40x40

Classifier Ship network . Car

Classifier

network

Mouse

Cat

Ship

•

Car

Cause: many Information loss.

MAIN PROBLEM

<u>Limitation?</u> - Increase the computational cost with unmeaning information.

Block 4,8,9,13,16 are not meaning in cat classification

→ no need to use these block as input of Classifier Network

MAIN PROBLEM

In example, the method can reduce of 6/16 memory cost and computation

Proposed framework which dynamically drops image patches conditioned on the low-resolution image.

The workflow of the *PatchDrop*

Agent: The part of application that do the action (Policy Network and HR Classifier)

Environment: The NN architecture that performs optimization to get the best performance and ground true data.

ions:

Actions in step 1 (a_1): Choose the patches in low resolution image to sampled high-resolution image. (discrete action) Example: $a_1 = [0,0,0,0,0,0,0,0,0,0,0,0,0,0]$ drop all patches

Number of action a_1 : 2¹⁶

Actions in step 2 (a_2): Choose the label of classification. (discrete action) Example: $a_2=0$ The choosing label is Ship

 \rightarrow Number of action a_2 : N (N is the number of class)

States:

States in step 1: 2¹⁶ cases of choosing patch of image to generate high resolution.

step 1:

step 2:

Policy Network

Classifier

Actions

$$a_1 \in \{0,1\}^P$$

$$a_1 \in \{0, 1, \dots N - 1\}$$

$$R(\boldsymbol{a_1}, \boldsymbol{a_2}, y) = \begin{cases} 1 - \left(\frac{|\boldsymbol{a_1}|}{P}\right)^2 & \text{if } y = \hat{y} \ (\boldsymbol{a_2}) \\ -\sigma & \text{Otherwise} \end{cases}$$

penalizes the agent for selecting a large number of high-resolution patches

Step 1

$$n = 2^{16}$$

Step 2

N :number of class

$$R(\boldsymbol{a_1}, \boldsymbol{a_2}, y) = \begin{cases} 1 - \left(\frac{|\boldsymbol{a_1}|}{P}\right)^2 & \text{if } y = \hat{y} (\boldsymbol{a_2}) \\ -\sigma & \text{Otherwise} \end{cases}$$

14

TRAINING PROTOCOL: POLICY GRADIENT

Finetuning-1

- Use only **40% of full HR images** without any significant loss of accuracy in fMoW dataset → can save 100,000 dollars.

	Acc. (%) (Pt)	S	Acc. (%) (Ft-1)	S	Acc. (%) (Ft-2)	S
LR-CNN	61.4	0	61.4	0	61.4	0
SRGAN [19]	62.3	0	62.3	0	62.3	0
KD [37]	63.1	0	63.1	0	63.1	0
PCN [45]	63.5	0	63.5	0	63.5	0
HR-CNN	67.3	16	67.3	16	67.3	16
Fixed-H	47.7	7	63.3	6	64.9	6
Fixed-V	48.3	7	63.2	6	64.7	6
Stochastic	29.1	7	57.1	6	63.6	6
STN [31]	46.5	7	61.8	6	64.8	6
PatchDrop	53.4	7	67.1	5.9	68.3	5.2

Table 1: The performance of the proposed *PatchDrop* and baseline models on the fMoW dataset

- Samples about 50% of HR images on average with a minimal loss in the accuracy on ImageNet dataset.

	ImageNet						
	Acc. (%)	Acc. (%)	Acc. (%)	S			
	(Pt)	(Ft-1)	(Ft-2)	(Pt,Ft-1,Ft-2)			
LR-CNN	58.1	58.1	58.1	0,0,0			
SRGAN [19]	63.1	63.1	63.1	0,0,0			
KD [37]	62.4	62.4	62.4	0,0,0			
PCN [37]	63.9	63.9	63.9	0,0,0			
HR-CNN	76.5	76.5	76.5	16,16,16			
Fixed-H	48.8	68.6	70.4	10,9,8			
Fixed-V	48.4	68.4	70.8	10,9,8			
Stochastic	38.6	66.2	68.4	10,9,8			
STN [31]	58.6	69.4	71.4	10,9,8			
PatchDrop	60.2	74.9	76.0	10.1,9.1,7.9			

Table 2: The results on ImageNet datasets.

- Increase run-time performance in BagNet by **2 times**.

	Acc. (%) (Pt)	S	Acc. (%) (Ft-1)	S	Run-time. (%) (ms)
BagNet (No Patch Drop) [1]	85.6	16	85.6	16	192
CNN (No Patch Drop)	92.3	16	92.3	16	`-77
Fixed-H	67.7	10	86.3	9	98
Fixed-V	68.3	10	86.2	9	98
Stochastic	49.1	10	83.1	9	98
STN [19]	67.5	10	86.8	9	112
BagNet (PatchDrop)	77.4	9.5	92.7	8.5	98

Table: The performance of the PatchDrop and other models on improving BagNet on CIFAR10dataset

