Дисциплина: Численные методы Лабораторное задание №1

Отчет

Тема: Решение систем линейный уравнений с разреженными матрицами специального вида

Выполнили: студенты 3 курса 8 группы Крутько А.С. Сикарев Р.О.

Проверила: старший преподаватель Фролова О.А.

Оглавление

Постановка задачи	3
Теоретическая часть	4
Алгоритм	5
Тестипование	9

Постановка задачи

Решить систему линейных уравнений с разреженными матрицами специального вида:

Результатом работы предложенного нами алгоритма является матрица вида:

Где символ * обозначает любое число.

Алгебраический вид системы представлен следующим образом:

$$\begin{cases} fc_1x_1 + sc_1x_1 = f_1 \\ fc_2x_1 + sc_2x_2 + td_2x_3 = f_2 \\ fc_3x_1 + sc_3x_2 + td_3x_4 + md_3x_3 = f_3 \\ fc_ix_1 + sc_ix_2 + bd_{i-1}x_{i-1} + md_ix_i + td_ix_{i+1} = f_i, \quad i = 4 \dots n-1 \\ fc_nx_1 + sc_nx_2 + bd_{n-1}x_{n-1} + md_nx_n = f_n \end{cases}$$

 Π ри этом

$$fc_1 = md_1, sc_1 = td_1,$$

 $fc_2 = bd_1, sc_2 = md_2,$
 $sc_3 = bd_2$

Обозначения векторов взяты из части отчета «Алгоритм»

Теоретическая часть

При решении данной задачи были использованы простейшие действия с матрицами и их строками, а именно:

- Умножение строк на число
- Сложение строк

Алгоритм

Алгоритм работы готового решения данного задания, не включая заполнение полей данными и вывод ответа, можно разбить на три этапа. Каждый из этапов был выделен в коде в отдельную функцию. Данные функции получают в качестве аргумента набор векторов. Обозначения для векторов были выбраны следующие:

- md главная диагональ
- td верхняя диагональ
- bd нижняя диагональ
- f вектор правой части системы уравнений
- fc «испорченный» вектор, отвечающий за первый «испорченный» столбец
- sc «испорченный» вектор, отвечающий за второй «испорченный» столбец

Кроме того, была использована вспомогательная функция refreshDiagonals, которая в качестве аргументов получает вектора md, td, bd, fc, sc и выполняет следующие действия:

- 1. Элементу с индексом 0 вектора *md* присваивает элемент с индексом 0 вектора *fc*
- 2. Элементу с индексом 1 вектора *md* присваивает элемент с индексом 1 вектора *sc*
- 3. Элементу с индексом 1 вектора bd присваивает элемент с индексом 1 вектора fc
- 4. Элементу с индексом 2 вектора bd присваивает элемент с индексом 2 вектора sc
- 5. Элементу с индексом 1 вектора *td* присваивает элемент с индексом 0 вектора *sc* Таким образом данная функция копирует равные значения согласно условию задачи.

Блок-схемы с описанием каждого из этапов представлены на следующих страницах отчета.

Первый этап.

На вход метод получает 6 векторов: md, td, bd, f, fc, sc.

Второй этап.

На вход метод получает 4 вектора: md, td, bd, f.

Третий этап. На вход метод получает 6 векторов: *md*, *td*, *bd*, *f*, *fc*, *sc*.

Если при решении уравнения не было деления на ноль, то высчитываем точность полученного результата согласно предложенному алгоритму и выводим результаты решения.

Тестирование

No	Размерность	Диапазон	Среднее значение	Средняя
Теста	системы	значений	оценки точности	относительная
		элементов	погрешности	погрешность системы
		матрицы		
1	10	-10 10	2.10942e-15	8.73804e-15
2	10	-100 100	1.44329e-15	1.98643e-13
3	10	-1000 1000	5.32907e-15	1.06305e-15
4	100	-10 10	1.27898e-13	4.69092e-13
5	100	-100 100	1.42109e-13	4.87924e-12
6	100	-1000 1000	6.90648e-12	1.30699e-12
7	1000	-10 10	1.29376e-10	1.01149e-11
8	1000	-100 100	1.63709e-11	4.5221e-12
9	1000	-1000 1000	2.38742e-12	5.37224e-12