Logic, Automata, and Games IV: Decidability of Monadic Theories

Wolfgang Thomas

RWTHAACHEN

Nordic School, Nordfjordeid, May 2013

Overview

- 1. Undecidability Results
- 2. Decidability Results
- 3. The Pushdown Hierarchy

The Infinite Grid

The infinite grid is the structure

$$G_2 = (\mathbb{N} \times \mathbb{N}, (0,0), S_1, S_2)$$

where
$$S_1(i,j) = (i+1,j), S_2(i,j) = (i,j+1)$$

Undecidability of Monadic Grid-Theory

The monadic second-order theory of the infinite grid is undecidable.

Proof

by reduction of the halting problem for Turing machines:

For any TM M construct a sentence φ_M of the monadic second-order language of G_2 such that

M halts when started on the empty tape iff $G_2 \models \varphi_M$.

Configurations of M

Assume that M works on a left-bounded tape.

A halting computation of \boldsymbol{M} can be coded by a finite sequence of configuration words

$$C_0, C_1, \ldots, C_m$$
.

We can arrange the configurations row by row in a right-infinite rectangular array:

etc.

Describing an M-Run

The sentence φ_M will express over G_2 the existence of such an array of configurations.

```
a_0, \ldots, a_n are the tape symbols (a_0 is the blank) q_0, \ldots, q_k are the states of M, special halting state q_s We use set variables X_0, \ldots, X_n, Y_0, \ldots, Y_k X_i collects the grid positions where a_i occurs, Y_i collects the grid positions where state q_i occurs. \varphi_M: \exists X_0, \ldots, X_n, Y_0, \ldots, Y_k (Partition(X_0, \ldots, Y_k)
```

- \wedge "the first row is the initial M-configuration"
- ∧ "a successor row is the successor configuration of the preceding one"
- ∧ "at some position the halting state is reached")

Use of Interpretations

An MSO-interpretation of a structure $\mathcal{A}=(A,R^{\mathcal{A}},\ldots)$ in a structure \mathcal{B} is a description of \mathcal{A} in \mathcal{B}

Here we use MSO for the description.

Assume A is MSO-interpretable in B.

Then:

 $\mathsf{MTh}(\mathcal{A})$ undecidable implies $\mathsf{MTh}(\mathcal{B})$ undecidable.

 $MTh(\mathcal{B})$ decidable implies $MTh(\mathcal{A})$ decidable.

Interpretations Formally

An MSO-interpretation of a structure $\mathcal{A}=(A,R^{\mathcal{A}},\ldots)$ in a structure \mathcal{B} is given by

- **a** "domain formula" $\varphi(x)$
- for each relation $R^{\mathcal{A}}$ of \mathcal{A} , say of arity m, an MSO-formula $\psi(x_1,\ldots,x_m)$

such that ${\mathcal A}$ is isomorphic to $(\varphi^{\mathcal B},\psi^{\mathcal B},\ldots)$

Then there is a transformation of MSO-sentences χ (in the signature of $\mathcal A$) to sentences χ' (in the signature of $\mathcal B$) such that

$$\mathcal{A} \models \chi \text{ iff } \mathcal{B} \models \chi'.$$

Consequence:

If $\mathcal A$ is MSO-interpretable in $\mathcal B$ and the MSO-theory of $\mathcal B$ is decidable, then so is the MSO-theory of $\mathcal A$.

A Hidden Grid

Consider the expansion of the tree T_2 by the two first-letter-adding functions:

$$p_0(w) = 0 \cdot w, \quad p_1(w) = 1 \cdot w$$

The MSO-theory of (T_2, p_0, p_1) is undecidable.

Proof: Give interpretation of G_2 in (T_2, p_0, p_1)

Domain formula, using
$$\sigma_i(z,z'):zi=z' \ (i=0,1)$$

$$\varphi(x): \exists y(\sigma_0^*(\varepsilon,y) \wedge \sigma_1^*(y,x))$$

$$\psi_1(x,y): p_0(x) = y, \ \psi_2(x,y): x1 = y$$

Another Hidden Grid

Consider the binary tree with Equal-Level Predicate E

$$E(u,v) :\Leftrightarrow |u| = |v|$$

Obtain (T_2, E) .

The MSO-theory of (T_2, E) is undecidable.

Proof: Use *E* to define again the grid 0*1*.

Quantification over Binary Relations

By the results of Gödel, Tarski, Turing we know:

The first-order theory of $(\mathbb{N}, +, \cdot, 0, 1)$ is undecidable.

Already Gödel remarked in 1931:

In the second-order language (with quantifiers over elements and relations) one can define define + and \cdot in $(\mathbb{N}, +1)$.

Consequence:

The second-order theory of $(\mathbb{N}+1)$ is undecidable.

$$x + y = z$$

iff

$$\forall R([R(0,x) \land \forall s, t(R(s,t) \rightarrow R(s+1,t+1))] \rightarrow R(y,z))$$

Adding Double Function to $(\mathbb{N}, +1)$

double(x) := 2x.

Robinson 1958:

The (weak) MSO-theory of $(\mathbb{N}, +1, double)$ is undecidable.

We follow a proof idea of Elgot and Rabin [JSL 31 (1966)].

Code a relation
$$R = \{(m_1, n_1), \dots, (m_k, n_k)\}$$

by a set
$$M_R = \{m'_1 < n'_1 < \ldots < m'_k < n'_k\}$$

For each n we need an infinite set of code numbers.

Take as codes of n all numbers $2^i \cdot (double(n) + 1)$

Example

$$R = \{(2,1), (0,2)\}$$

A code set M_R contains

$$1 \cdot 5 < 2 \cdot 3 < 8 \cdot 1 < 2 \cdot 5$$

A Remark

There is an MSO-formula OddPos(X, x) that expresses

- $\blacksquare X(x)$
- in the <-listing of X-elements, x occurs on an odd position.

Use $\psi(X,z,z')$:

$$X(z) \wedge X(z')$$

 \wedge there is precisely one y between z, z' with X(y)

 $OddPos(X,x): \psi^*(X,\min(X),x)$

Next(X, x, y) says "in X, y is the next element after x

Definability of Decoding

Let
$$\varphi_2(z,z') := double(z) = z'$$

Then

"s is a code of x": $\exists y (\text{double}(x) + 1 = y \land \varphi_2^*(y,s))$

Translation of $\exists R(R(x,y)...)$:

$$\exists X (\exists s \exists t (s \text{ is code of } x \land t \text{ is code of } y)$$

$$\wedge \text{OddPos}(X, s) \wedge \text{Next}(X, s, t)$$

A Sharper Result

Let $f: \mathbb{N} \to \mathbb{N}$ be

- strictly increasing,
- lacksquare $f id_{\mathbb{N}}$ be monotone and unbounded.

Then $MTh(\mathbb{N}, +1, 0, f)$ is undecidable.

[W. Th., A note on undecidable extensions of monadic second order arithmetic, Arch math. Logik 17 (1975)]

Decidability Results

A First Example

Show Rabin's Tree Theorem for $T_3 = (\{0,1,2\}^*, S_0^3, S_1^3, S_2^3)$.

Idea: Obtain a copy of T_3 in T_2 :

Consider T_2 -vertices in $T = (10 + 110 + 1110)^*$.

Interpretation: Details

The element $i_1 \dots i_m$ of T_3 is coded by

$$1^{i_1+1}0...1^{i_m+1}0$$
 in T_2 .

Define the set of codes by

 $\varphi(x)$: "x is in the closure of ε under 10-, 110-, and 1110-successors"

Define the 0-th, 1-st 2-nd successors by

$$\psi_0(x,y), \psi_1(x,y), \psi_2(x,y)$$

The structure $(\varphi^{T_2}, (\psi_i^{T_2})_{i=0,1,2}, \varepsilon)$ is isomorphic to T_3 .

Another Interpretation

 $MTh(\mathbb{Q}, <)$ is decidable. (Rabin 1969)

Work with the tree nodes w01

With the lexicographic order they give a countable dense linear order.

This order is isomorphic to $(\mathbb{Q}, <)$ (Cantor)

So we have an interpretation of $(\mathbb{Q}, <)$ in T_2 .

Much more difficult: $MTh(\mathbb{R},<)$ is undecidable. (Shelah 1975)

Pushdown Graphs

Consider \mathcal{A} for language $L = \{a^n b^n \mid n \geq 0\}$:

$$\mathcal{A} = (\{q_0, q_1\}, \{a, b\}, \{Z_0, Z\}, q_0, Z_0, \Delta)$$
 with

$$\Delta = \left\{ \begin{array}{ll} (q_0, Z_0, a, q_0, ZZ_0), & (q_0, Z, a, q_0, ZZ), \\ (q_0, Z, b, q_1, \varepsilon), & (q_1, Z, b, q_1, \varepsilon) \end{array} \right\}$$

Initial and final configuration: q_0Z_0

The associated pushdown graph (of reachable configurations only) is:

$$q_0Z_0 \xrightarrow{a} q_0ZZ_0 \xrightarrow{a} q_0ZZZ_0 \xrightarrow{a} \cdots$$
 $q_1Z_0 \xleftarrow{b} q_1ZZ_0 \xleftarrow{b} q_1ZZZ_0 \xleftarrow{b} \cdots$

Interpretation: Second Example

A pushdown graph is MSO-interpretable in T_2

Given pushdown automaton \mathcal{A} with stack alphabet $\{1,\ldots,k\}$ and states q_1,\ldots,q_m .

Let $G_A = (V_A, E_A)$ be the corresponding PD graph. $n := \max\{k, m\}$

Find an MSO-interpretation of G_A in T_n .

Represent configuration $(q_j, i_1 \dots i_r)$ by the vertex $i_r \dots i_1 j$.

 \mathcal{A} -steps lead to local moves in T_n .

E.g. a push step from vertex $i_r \dots i_1 j$ to $i_r \dots i_1 i_0 j'$.

These edges are easily definable in MSO.

Hence: The MSO-theory of a PD graph is decidable.

Unfoldings

Given a graph $(V, (E_a)_{a \in \Sigma}, (P_b)_{b \in \Sigma'})$

the unfolding of G from a given vertex v_0 is the following tree $T_G(v_0)=(V',(E'_a)_{a\in\Sigma},(P'_b)_{b\in\Sigma'})$:

- V' consists of the vertices $v_0 a_1 v_1 \dots a_r v_r$ with $(v_{i-1}, v_i) \in E_{a_i}$,
- E_a' contains the pairs $(v_0a_1v_1...a_rv_r,v_0a_1v_1...a_rv_rav)$ with $(v_r,v) \in E_a$,
- P'_h the vertices $v_0 a_1 v_1 \dots a_r v_r$ with $v_r \in P_h$.

Examples

Unfolding Preserves Decidability

Theorem (Muchnik, Courcelle/Walukiewicz)

If the MSO-theory of G is decidable and v_0 is an MSO-definable vertex of G, then the MSO-theory of $T_G(v_0)$ is decidable.

Proof Architecture (for Pushdown Graphs)

Given an unfolding T of a pushdown graph G.

T is finitely branching, with labels say in Σ inherited from G.

For each MSO-formula $\varphi(X_1,\ldots,X_n)$ find a parity tree automaton \mathcal{A}_{φ} such that

$$\mathcal{A}_{\varphi}$$
 accepts $T(P_1,\ldots,P_n)$ iff $T[P_1,\ldots,P_n) \models \varphi(X_1,\ldots,X_n)$

The construction of the $\mathcal{A}\varphi$ follows precisely the pattern of Rabin's equivalence theorem.

Essential: In the complementation step we use the finite out-degree of $\it G$.

The general case is more involved.

Caucal's Proposal

We have now two processes which preserve decidability of MSO-theory:

- interpretation (transforming a tree into a graph)
- unfolding (transforming a graph into a tree)

Let us apply them in alternation!

We obtain the Caucal hierarchy or pushdown hierarchy.

Definition

- lacksquare \mathcal{T}_0 = the class of finite trees
- G_n = the class of graphs which are MSO-interpretable in a tree of T_n
- **T**_{n+1} = the class of unfoldings of graphs in G_n

Each structure in the pushdown hierarchy has a decidable MSO-theory.

Nontrivial fact:

The sequence $\mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, \dots$ is strictly increasing.

The First Levels

- lacksquare \mathcal{G}_0 is the class of finite graphs.
- lacksquare \mathcal{T}_1 contains the regular trees.
- **ullet** \mathcal{G}_1 contains the prefix-recognizable graphs.

A Finite Graph, a Regular Tree, a PD Graph

Unfolding Again

Interpretation of Bottom Line

The sequence of leaves defines a copy of the successor structure of the natural numbers.

We give interpretation with regular expressions rather than MSO

Domain expression: $b + a^*c(d+e)^*f$

Successor relation:

$$\overline{b}acf+$$

$$\overline{f}\overline{e}^*\overline{c}acd^*f +$$

$$\overline{f}\overline{e}^*\overline{d}ed^*f$$

Predicate "power of 2": $b + a^*cd^*f$

Result: $(\mathbb{N}, Succ, Pow_2)$ is a structure in the Caucal hierarchy.

Towards Factorial Predicate

 $(\mathbb{N}, Succ, Fac)$

We start as follows:

Continuation: Unfolding and Interpretation

Obtaining $(\mathbb{N}, +1, Fac)$

Scope of Hierarchy?

The pushdown hierarchy is a very rich class of structures all of which have a decidable MSO-theory.

Open questions:

- Understand which structures belong to the hierarchy
- Compute the smallest level on which a structure occurs

There are structures ${\cal S}$ which have a decidable monadic theory but do not belong to the hierarchy.

(Example: Consider the set P of iterated 2-powers 1, 2, 2^2 , 22, etc., and take $(\mathbb{N}, +1, P)$.)