

Grundlagen der elektrischen Energietechnik

Teil 2: Elektromechanische Energieumformung

3. Übung: Drehfelder und Synchronmaschine

SoSe 2024

Prof. Dr.-Ing. Markus Henke, T.-H. Dietrich

Gliederung

- Drehfelder
- Synchronmaschine

Gleichstrommaschinen

Drehfelder

Ziel: Erzeugung einer umlaufenden Luftspaltfeldwelle in der Maschine

Funktion der Drehfeldmaschine (p=1) am Beispiel der Synchronmaschine

Drehfelder

Prinzip: Drehfelder entstehen, wenn die räumliche und zeitliche Verschiebung der einzelnen Stränge gleich ist

$$i_U = \hat{i} \cdot \cos(\omega t)$$

$$i_{\scriptscriptstyle V} = \hat{i} \cdot \cos(\omega \, t - 120^\circ)$$

$$i_W = \hat{i} \cdot \cos(\omega t - 240^\circ)$$

Entstehung des Drehfeldes

Entstehung des Drehfeldes

Einfluss der Polpaarzahl

p=1 n₀ = 3000 U/min bei 50 Hz

p=2 n₀ = 1500 U/min bei 50 Hz

p=4 n_o = 750 U/min bei 50 Hz

Stator:

Speise-/Ständerfrequenz: f_S

$$\omega_S = 2\pi \cdot f_S$$

$$\Omega_0 = \frac{\omega_S}{p}$$

Rotor:

Drehzahl: $n = \frac{\Omega}{2\pi}$

"synchron": $n_0 = \frac{\Omega_0}{2\pi} \left[\frac{1}{s} \right]$

Stern-Dreieckschaltung von Drehstromwicklungen

Index "L" = Zuleitung

Index "s" = Strang (Ständer)

gegeben z. B: 400 V-50 Hz Drehstromnetz => U_L = 400V (Effektivwert)

Sternschaltung: 人

Für Rechnung: U_S , $I_S = ?$

$$U_S = \frac{U_L}{\sqrt{3}}$$

Stern-Dreieckschaltung von Drehstromwicklungen

Index "L" = Zuleitung

Index "s" = Strang (Ständer)

gegeben z. B: 400 V-50 Hz Drehstromnetz => U_L = 400V (Effektivwert)

Dreieckschaltung: \triangle

Für Rechnung: U_S , $I_S = ?$

$$U_{S} = U_{I}$$

$$I_S = \frac{I_L}{\sqrt{3}}$$

Gliederung

Drehfelder

Synchronmaschine

Vollpolsynchronmaschine

Eine zweipolige Vollpol-Synchronmaschine wird in Dreieckschaltung an einem 400V-50Hz-Drehstromnetz betrieben. Bei einem Nennerregerstrom von $I_{f,N} = 2$ A beträgt die Polradspannung $U_{p,N} = 393,5$ V. Für die Synchronreaktanz X_d wurde durch eine Kurzschlussmessung der Wert $X_d = 1,13$ Ω ermittelt.

Verluste können vernachlässigt werden ($R_s = 0$).

- 2.1 Berechnen Sie für Nennerregung und einem Lastmoment von $M_L = 170 \, \text{Nm}$ den Polradwinkel \mathcal{G} , den Strangstrom I_s und den Phasenwinkel φ zwischen Strangspannung und Strangstrom.
- 2.2 Welcher Erregerstrom I_f^* muss eingestellt werden, damit die Maschine zur Blindleistungskompensation bei gleicher Wirkleistung wie im Aufgabenteil 2.1 und mit betragsmäßig gleichem Phasenwinkel *übererregt* betrieben wird (Hilfe: Stromortskurve)?
- 2.3 Mit welchem Moment muss die Maschine angetrieben werden, damit bei unveränderter Erregung gegenüber 2.2 im Generatorbetrieb reine Wirkleistung ins Netz eingespeist wird?

Ersatzschaltbild

Stromortskurve

zu 2.1: θ , I_s und φ bei Nennerregung und Belastung mit $M_L = 170$ Nm?

Skript:
$$\underline{I}_{s(d,q)} = I_d + jI_q \text{ mit } I_d = \frac{U_s \cdot \cos \vartheta - U_p}{X_d} \text{ und } I_q = \frac{U_s \cdot \sin \vartheta}{X_d}$$
oder: $\underline{I}_{s(w,b)} = I_w + jI_b \text{ mit } I_w = \frac{U_p \cdot \sin \vartheta}{X_d} \text{ und } I_b = \frac{U_p \cdot \cos \vartheta - U_s}{X_d}$

zu 2.2: $I_f^* = ?$ damit übererregt bei gleicher Wirkleistung

konstante Wirkleistung, aber übererregt: $\Rightarrow I_w^* = I_w$ $I_b^* = -I_b$

Stromortskurve (siehe Skript):

$$\underline{I}_{A} = -j\frac{U_{s}}{X_{d}} \implies |\underline{I}_{A}| = I_{A} = \frac{U_{s}}{X_{d}}$$

$$\underline{I}_{C} = +j\frac{U_{p}}{X_{d}} \cdot e^{-j\theta} \implies |\underline{I}_{C}| = I_{C} = \frac{U_{p}}{X_{d}}$$

zu 2.3: M^{**} = ? damit generatorisch reine Wirkleistungsabgabe $(I_f^{**} = I_f^*)$

