

Anomaly detection per frodi bancarie

A.A. 2022/2023 Progetto del corso di Data Mining

Studentessa Gaia Assunta Bertolino Mat. 242590

Step

01	Introduzione al problema	04	Applicazione del machine learning
02	Pre-processing	05	Tuning automatico
03	Valutazioni sugli attributi	06	Conclusioni sul test set

01 Introduzione al problema

Dataset contente transazioni con carta di credito

>> Obiettivo: trovare un modello in grado di individuare le transazioni fraudolente

ANOMALY DETECTION

Fonte: https://www.kaggle.com/datasets/kartik2112/fraud-detection?select=fraudTrain.csv

02 Pre-processing

Osservazioni sul dataset

Informazioni sugli attributi

Trasformazioni degli attributi e riduzione del dataset

Numero totale di records: 1.852.394

• Training set: 1.296.675 (70%)

• Test set: 555.719 (30%)

Venditore

Acquisto

Proprietario

Datetrans_date_trans_time

• zip

lat

Time

merchantdob

streetlong

Age

firstunix_time

• cc_num

 Le donne sono molto più soggette ad essere derubate

Genere

Sovrapposizione fra genere e età

2. Gli anziani sono più soggetti ad essere derubati

Legame probabilità-età

4. Ci sono città in cui si è più soggetti ad essere derubati

5. Nelle città più popolose si è più soggetti ad essere derubati

6. Negli orari più tardi è più facile compiere transazioni fraudolente

Orario

7. Transazioni fraudolente più piccole sono più facili da fare

Ammontare

One-hot encoding

Applicazione della funzione di correlazione

Rappresentazione grafica tramite heatmap

Rilevanza dell'attributo amt

Irrilevanza degli attributi *job* e *last*

Suddivisione fra training set effettivo e validation set

Numero totale di records: 1.296.675

• Training set: 868.772 (67%)

Validation set: 427.903 (33%)

Applicazione degli algoritmi di Machine Learning

- Decision tree
- Random forest
- Isolation forest
- Local Outlier Factor
- DBSCAN
- K-Nearest Neighbors

Training set labels

Decision Tree

- Accuracy 99.78%
- *Precision* 79.83%
- Recall 83.45%
- **F1** 0.9075
- AUC 0.9167

Random Forest

- Accuracy 99.85%
- *Precision* 97.41%
- Recall 76.91%
- F1 0.9294
- AUC 0.8845

Isolation Forest

- Accuracy 23.97%
- *Precision 0.16%*
- Recall 20.96%
- **F1** 0.1944
- AUC 0.2248

OVERFITTING

Local Outlier Factor

- *Accuracy* 7.87%
- Precision 0.47%
- Recall 74.66%
- **F1** 0.0741
- AUC 0.4107

OVERFITTING

DBSCAN

- Accuracy 99.42%
- Precision 0.0%
- Recall 0.0%
- **F1** 0.4985
- AUC 0.5000

K-Nearest Neighbors

- Accuracy 99.51%
- *Precision* 71.73%
- Recall 26.91%
- **F1** 0.6945
- AUC 0.6342

Criteri di valutazione

Algoritmo scelto: Decision Tree

Albero di decisione generato

Scores:

• Accuracy: 99.78%

• Precision: 79.93%

• Recall: 83.45%

• AUC: 0.9167

05 Tuning

Tuning su accuracy

Modello:

• Criterion: 'entropy'

• max_depth: 10

• min_samples_leaf: 10

• random_state: 30

Scores:

• Accuracy: 99.86%

• Precision: 93.1%

Recall:82.33%

• AUC: 0.9115

05 Tuning

Tuning su recall

Modello:

• Criterion: 'entropy'

• max_depth: 20

• min_samples_leaf: 5

• random_state: 30

Scores:

• Accuracy: 99.83%

• Precision: 86.33% **/**

• Recall: 84.94%

• AUC: 0.9243

05 Tuning

Tuning su f1

Modello:

• Criterion: 'entropy'

• max_depth: 10

• min_samples_leaf: 10

• random_state: 30

Scores:

• Accuracy: 99.87%

• Precision: 93.30%

• Recall: 82.68%

• AUC: 0.9132

05 Conclusioni sul test set

Miglior modello:

decision tree con tuning su recall score

- criterion='entropy'
- max_depth=20
- min_samples_leaf=5
- random_state=30

Scores sul test set:

• Accuracy: 99.84%

• Precision: 78.97%

• Recall: 79.86%

• AUC: 0.8989

