



#### **DESENVOLVIMENTO DE SOFTWARE MULTIPLATAFORMA**

Disciplina: IBD-016 – BANCO DE DADOS - NÃO RELACIONAL Aula 02: Introdução aos conceitos de Data Warehouse

Data 22/02/2024

Prof. Me. Anderson Silva Vanin

### **Data Warehouse**

Faculdade de Tecnologia de Mauá

- Definição
- Ambiente
  - Ferramentas ETL
  - Data Marts
- Arquiteturas
  - Global
  - Data Marts independentes
  - Data Marts integrados
- Implementação
  - Top Down
  - Botton up
  - Combinada
- Metadados



### Introdução

- A informação é o melhor recurso do qual empresas podem dispor para tomar decisões
- Obtida analisando históricos sobre vendas, clientes, produtos, etc
- Dados conflitantes de fontes diversas podem gerar informações desencontradas



### Introdução

 A quantidade de dados a serem considerados cresce com a expansão do negócio e com o passar do tempo...



 Data Warehouses auxiliam a resolver esses problemas ao prover montantes gigantescos de dados temporais integrados para posterior análise!



### Introdução

- Criado pela IBM na década de 60 com o nome Information WareHouse
- Relançado diversas vezes sem sucesso
- O nome Data WareHouse foi dado por William Inmon, considerado o pai desta tecnologia
  - Tornou-se viável com o surgimento de novas tecnologias para armazenar e processar uma grande quantidade de dados.



### Definição

Conjunto de dados **agrupados por assunto**, **integrados**, variável em relação ao **tempo** e **não volátil**, que serve de suporte para o processo de **tomada de decisões**.





#### Orientado a Assunto

- Um Data Warehouse está sempre orientado ao redor do principal assunto da organização
  - Ao contrário de aplicações clássicas, orientadas por processos/funções

#### Integrado

- Os dados criados dentro de um ambiente de Data Warehouse são integrados
- A integração beneficia com a convenção consistente de nomes, estrutura consistente de códigos etc



### Definição

- Não volátil
  - Os dados nunca são excluídos nem alterados de um Data Warehouse
- Variante no tempo
  - Data Warehouse apresenta os dados com seu posicionamento em relação ao tempo



### Comparativo com BD operacional

| Aspecto               | BD Operacional            | Data Warehouse                 |
|-----------------------|---------------------------|--------------------------------|
| Usuários              | Funcionários              | Alta administração             |
| Utilização            | Tarefas Cotidianas        | Decisões estratégicas          |
| Padrão de Uso         | Previsíveis               | Difícil de prever              |
| Princípio de Func.    | Com base em transações    | Com base em análise de dados   |
| Valores de dados      | Valores atuais e voláteis | Valores históricos e imutáveis |
| Detalhamento          | Alto                      | Sumarizado                     |
| Organização dos dados | Orientado a aplicações    | Orientado a assunto            |



### **Comparativo com BD operacional**

Algumas diferenças adicionais do Data Warehouse para um BD operacional

- Permitem a redundância de dados
- Buscas complexas e ad hoc (personalizadas pelo usuário)
- Modelagem de dados multidimensional

## Faculdade de Tecnologia

#### **Ambiente de Data Warehouse**

### Centralizado



## Faculdade de Tecnologia

#### **Ambiente de Data Warehouse**

### Com Data Marts







#### **Extraction, Transformation and Load**

- Consiste da integração e limpeza dos dados
- Integração: consolidação dos dados de diversas origens
- Limpeza: rejeição de valores inválidos



#### **Extraction, Transformation and Load**

- Os processos ETL consomem 70% do tempo de desenvolvimento em um projeto de DW
- Estes processos são específicos para cada organização
- Opcionalmente, pode-se ter uma segunda área intermediária, chamada
   Operational Data Store (ODS)



#### **Extraction, Transformation and Load**

 Carga – receber os dados de diversos Sistemas de Processamento de Transações





#### **Extraction, Transformation and Load**

- Transformação e integração processo de formatação e modificação de dados extraídos de várias origens para transformá-los em informações úteis ao Data Warehouse
- Os dados de origem são consistentes mas apresentados de diferentes formas





### **Extraction, Transformation and Load**

• Transformação e integração

| Nome_Cliente | Categoria | Compras |
|--------------|-----------|---------|
| Barr, Adam   | II        | 17,60   |
| Chai, Sean   | IV        | 52,80   |
| Melia, Erin  | VI        | 8,82    |
|              |           |         |

| Nome_Cliente | Categoria | Compras |
|--------------|-----------|---------|
| Barr, Adam   | 2         | 17,60   |
| Chai, Sean   | 4         | 52,80   |
| Melia, Erin  | 6         | 8,82    |
|              |           |         |

| Primeiro | Ultimo | Categ | Compras |
|----------|--------|-------|---------|
| Adam     | Barr   | 2     | 17,60   |
| Sean     | Chai   | 4     | 52,80   |
| Erin     | Melia  | 6     | 8,82    |
|          |        |       |         |

| junção        | Nome_Cliente | Categ | Compras |
|---------------|--------------|-------|---------|
| $\overline{}$ | Barr, Adam   | 2     | 17,60   |
| <b>_</b> /    | Chai, Sean   | 4     | 52,80   |
|               | Melia, Erin  | 6     | 8,82    |
|               |              |       |         |

| Nome_Cliente | Preço | Qtde |
|--------------|-------|------|
| Barr, Adam   | 0,55  | 32   |
| Chai, Sean   | 1,10  | 48   |
| Melia, Erin  | 0,98  | 9    |
|              |       |      |



mudança

|   | Nome_Cliente | Preço | Qtde | Total         |
|---|--------------|-------|------|---------------|
| L | Barr, Adam   | 0,55  | 32   | 17,60         |
| L | Chai, Sean   | 1,10  | 48   | <b>52</b> ,80 |
|   | Melia, Erin  | 0,98  | 9    | 8,82          |
|   |              |       |      |               |



#### **Ambiente de Data Warehouse – Data Mart**

- Data Mart Subconjunto lógico de um Data Warehouse, um Data Warehouse setorial
  - Geralmente descritos como um subconjunto dos dados contidos em um Data
     Warehouse extraído para um ambiente separado





### Arquitetura de Data Warehouses

#### Arquitetura global

Utiliza um repositório comum de dados, integrado, utilizado por toda a organização





### Arquitetura de Data Warehouses

- Arquitetura de data marts independentes
  - Possui um data mart para atender a cada departamento em específico
  - Não se tem acesso aos data marts de outros departamentos





### **Arquitetura de Data Warehouses**

- Arquitetura de data marts integrados
  - Possui um data mart para atender a cada departamento em específico
  - Os dados são compartilhados entre os data marts de diferentes departamentos



### Implementação de Data Warehouses



#### Abordagem Top-down

- O modo como os dados serão armazenados e consultados nasce do DW e posteriormente são distribuídos entre os Data Marts
- Tem objetivo de atender às necessidades da organização como um todo e não departamentos isolados
- Modelo mais comum de implementação
- Demorada implementação e resultado apenas a longo prazo



### Implementação de Data Warehouses

#### Abordagem Bottom-up

- Parte dos Data Marts até compor o DW por completo
- Maior dificuldade na padronização dos dados
- Implementação mais rápida e manutenção mais fácil devido ao menor tamanho das partes

## Implementação de Data Warehouses



#### Abordagem Combinada

- Combina características de ambas abordagens
- Planejamento geral da estruturação do DW para toda a organização (conforme Top-down)
- Desenvolvimento dos data marts de forma graduada, apresentando funcionalidades parciais
- A criação de cada data mart é padronizada para facilitar a integração dos dados



#### **Metadados**

- "Dados sobre dados"
- Possuem papel de grande importância nos DW
  - Especialmente na fase de desenvolvimento, onde especificam os dados de variadas fontes..

# Faculdade de Tecnologia

### Modelagem - Introdução

- Características do Modelo Entidade-Relacionamento
  - Foco em aplicações transacionais
  - Foco no armazenamento momentâneo (não-histórico) da informação
  - Tende a um grande número de tabelas
  - Eficiente apenas para consultas simples e diretas



### Modelagem - Introdução

- Necessidades em um ambiente de Data Warehouse
  - Foco em aplicações gerenciais
  - Análise histórica das informações
  - Visão ampla das informações (sumarizações, cruzamentos)
  - Visualizar os dados sob diferentes perspectivas (consultas complexas)
- Para implementar um Data Warehouse necessitamos de um novo modelo, diferente do ER tradicional...



- Representar os tipos de dados por uma estrutura chamada cubo de dados
  - Células contêm valores
  - Lados definem as dimensões de análise
- Normalmente também refere-se a cubo de dados mesmo quando há mais de 3 dimensões
  - No entanto, o termo técnico para tal estrutura é Hipercubo







#### Visão Relacional X Visão Multidimensional

- Visão relacional
  - Volume de vendas de uma loja de instrumentos musicais por instrumento e estado

| Instrumento | Estado | Qtde. Vendas |
|-------------|--------|--------------|
| Violão      | MG     | 140          |
| Violão      | RJ     | 100          |
| Violão      | SP     | 150          |
| Guitarra    | MG     | 140          |
| Guitarra    | RJ     | 120          |
| Guitarra    | SP     | 80           |
| Bateria     | MG     | 30           |
| Bateria     | RJ     | 20           |
| Bateria     | SP     | 50           |



#### Visão Relacional X Visão Multidimensional

- Visão multidimensional
  - Volume de vendas de uma loja de instrumentos musicais por instrumento e estado







#### Visão Relacional X Visão Multidimensional

- Visão multidimensional
  - Hipercubo







- Elementos básicos
  - Fatos aquilo que pode ser representado por valores numéricos. Esse conjunto de valores é também chamado métricas ou medidas. Ex.: Vendas
  - Dimensões determinam o contexto no qual os fatos são analisados. Ex.:
     Local, Ano e Produto
  - Variáveis atributos numéricos que representam os fatos. Ex.: Valor (R\$) das vendas, Unidades vendidas



- Star Schema (Esquema Estrela)
  - Forma de dispor as tabelas do banco para simular um banco de dados multidimensional
  - Composto por uma tabela dominante, chamada tabela de fatos, rodeada de tabelas auxiliares, chamadas tabelas de dimensão;
  - A tabela de fatos conecta-se às demais por múltiplas junções e as tabelas de dimensões se conectam com apenas uma junção à tabela de fatos.



Star Schema (Esquema Estrela)





Star Schema (Esquema Estrela)



## Faculdade de Tecnologia

### **Modelagem Multidimensional**

Star Schema (Esquema Estrela)



# Faculdade de Tecnologia de Maya

- Star Schema (Esquema Estrela)
- Exemplo de tabela de dimensão resultante
  - Produto

| Id do Produto | Descrição       | Preço | Tipo  |
|---------------|-----------------|-------|-------|
| 101           | Espaguete       | 10    | Massa |
| 102           | Hamburguer      | 5     | Carne |
| 103           | Talharim        | 15    | Massa |
| 104           | Peito de Frango | 20    | Carne |

# Fatec Faculdade de Tecnologia de Mauá

- Star Schema (Esquema Estrela)
- Exemplo de tabela de fatos
  - Vendas

| ld do Tempo | Id do Produto | ld do<br>Funcionário | Unidades<br>Vendidas | Valor de Venda |
|-------------|---------------|----------------------|----------------------|----------------|
| 031011      | 101           | 200                  | 10                   | 500            |
| 041011      | 101           | 200                  | 13                   | 650            |
| 051011      | 101           | 200                  | 15                   | 700            |
| 061011      | 101           | 200                  | 20                   | 1000           |



- Membros de uma dimensão
  - São os elementos das dimensões
  - Hierarquia de dimensão
    - Ex.: Cidade, estados e regiões formam a dimensão "Local", assim como ano, trimestre e mês formam a dimensão "Tempo"





Membros de uma dimensão





- As dimensões representam entidades que evoluem com o tempo...
  - Por exemplo, um cliente pode deixar de ser solteiro e casar-se
  - Para tratar essas atualizações, pode-se tratar as dimensões de três formas diferentes
  - De acordo com a importância de se ter informações históricas!

# Faculdade de Tecnologia de Maya

- Dimensão Tipo 1
  - O histórico não é relevante!
  - As alterações podem ser feitas diretamente no registro em questão sem salvar o valor anterior
  - Ex.: Godofredo tinha seu estado civil solteiro até 02/07/2013
  - Godofredo casou-se dia 02/07/2013
  - Godofredo teria seu estado civil atualizado para casado



• Dimensão Tipo 1

| Id do Cliente | Nome      | Estado_Civil |
|---------------|-----------|--------------|
| 101           | Godofredo | Solteiro     |

| Id do Cliente | Nome      | Estado_Civil |
|---------------|-----------|--------------|
| 101           | Godofredo | Casado       |



- Dimensão Tipo 2
  - O histórico é relevante!
  - Inserção de um novo registro na mesma entidade dimensional refletindo a mudança
  - Ex.: Existirão dois registro do Godofredo, o 1º referente a seu estado civil até
     02/07/13 e o outro após essa data como casado
  - Na tabela de fatos vendas, o primeiro registro de Godo está vinculado às vendas anteriores a 02/07/13 e o outro às vendas posteriores



• Dimensão Tipo 2

| ld do Cliente | Nome      | Estado_Civil | Status |
|---------------|-----------|--------------|--------|
| 101           | Godofredo | Solteiro     | Antigo |
| 101           | Godofredo | Casado       | Atual  |

# Faculdade de Tecnologia de Maya

- Dimensão Tipo 3
  - O histórico é relevante e deseja-se analisar dados usando os status original e atual
  - São necessários campos para armazenar
    - Status original do atributo
    - Status atual do atributo
    - Data efetiva da última alteração do campo
  - Apenas dois status podem ser rastreados: o atual e o original!



• Dimensão Tipo 3

| Id do Cliente | Nome      | Estado_Civil_Original | Estado_Civil_Atual | Data_Efetiva |
|---------------|-----------|-----------------------|--------------------|--------------|
| 101           | Godofredo | Solteiro              | Casado             | 02/07/2013   |

E se a esposa de Godo largá-lo???

| Id do Cliente | Nome      | Estado_Civil_Original | Estado_Civil_Atual | Data_Efetiva |
|---------------|-----------|-----------------------|--------------------|--------------|
| 101           | Godofredo | Solteiro              | Divorciado         | 04/07/2013   |

 Não terá como fazer análise sobre informações de quando Godo era casado

## Faculdade de Tecnologia

### **Modelagem Multidimensional**

- Granularidade
  - É o nível de detalhe das tabelas
  - Quanto menor o "grão" maior a granularidade

MENOR Granularidade



MAIOR Granularidade





• Esquema Snowflake (Bloco de neve)





- Agregação
  - Através da agregação cria-se novas entidades contendo dados sumarizados







- Quatro passos básicos
  - 1º Definir o FATO de negócio
  - 2º Definir a GRANULARIDADE utilizada
  - 3º Definir as DIMENSÕES do fato
  - 4º Definir as MEDIDAS do fato



#### Exemplo

- Uma rede de restaurantes tem 50 filiais localizadas em vários estados da federação. Cada filial oferece mais de 1000 produtos diferentes nas categorias bebidas e pratos.
- A diretoria da empresa deseja analisar as vendas, os custos e os lucros obtidos bem como os funcionários mais ativos.
- Promoções e festivais são utilizados para atrair clientes e potencializar as vendas.



- Exemplo
  - A diretoria da empresa determinou que é estratégico para a tomada de decisões analisar o movimento diário de cada produto, para que possa direcionar as promoções ou festivais de acordo com os resultados das análises realizadas
  - Avaliar o movimento diário de cada produto consiste em analisar as vendas de produtos, levando em conta os preços praticados e as filiais que realizaram tais vendas



- Exemplo
  - 1º Definir o FATO
  - Qual elemento central a empresa deseja analisar???
  - R.: Vendas



- Exemplo
  - 2º Definir a GRANULARIDADE
  - Em que nível de detalhe a empresa deseja analisar???
    - "é estratégico para a tomada de decisões analisar o movimento diário de cada produto"
  - R.: Diário
    - (com respeito a outras dimensões não foi especificado)

# Faculdade de Tecnologia de Maya

- Exemplo
  - 3º Definir as DIMENSÕES
    - Quais aspectos s\u00e3o relevantes para se realizar as an\u00e1lises que a empresa solicita do fato???
    - De forma geral, alguns fatores a se observar são
      - O quê → Produto
      - Quem → Funcionário
      - Quando → Tempo
      - Onde → Local (filial)
    - Pode-se ainda levar em conta outros objetivos especificados para a análise dos fatos, como Promoções



- Exemplo
  - 4º Definir as MEDIDAS
    - Como o desempenho de vendas pode ser medido????
    - R.: Quantidade vendida, valor unitário e total da venda, valor da compra

### Faculdade de Tecnologia

### **Modelagem Multidimensional**

Exemplo – Modelo estrela correspondente

