Esercitazione 9: Generazione di variabili aleatorie

Si vuole implementare in linguaggio C un programma di nome esercizio9. c in grado di generare un numero di istanze, molto grande, di variabili aleatorie. Successivamente il programma deve stimare la funzione di densità di probabilità attraverso il metodo dell'istogramma.

Generazione delle realizzazioni delle v.a.

A. Si scriva la funzione randn, così dichiarata:

```
double randn(double mu, double sigma)
```

che prende in ingresso valor medio (mu) e deviazione standard (sigma) e permette di generare <u>una realizzazione</u> di una v.a. con distribuzione gaussiana con il metodo di Marsaglia-Bray.

B. Successivamente, si scriva una funzione denominata rande:

```
double rande(double mu)
```

che a partire da una v.a. con distribuzione uniforme tra [0 e 1), permetta di generare <u>una realizzazione</u> di una v.a. con distribuzione esponenziale, secondo la formula

$$x = -muLog(1 - y)$$

```
dove y = (double) rand() / (RAND_MAX+1);
```

C. Generare un numero di istanze di v.a. pari ad N (definito dall'utente da input e tipicamente maggiore di 100'000) e memorizzarle in due vettori allocati dinamicamente.

D. Generare un vettore dei bin con la funzione linspace già usata. In particolare, per la v.a. Gaussiana l'intervallo di valori sarà [mu-3*sigma, mu-3*sigma], mentre per la v.a. esponenziale l'intervallo di valori sarà [0, 5*mu]. Il numero di bin (intervallini) sarà Nbin e verrà specificato dall'utente.

Creazione dell'istogramma e stima della funzione densità di probabilità (p.d.f.)

E. Dopo aver generato le istanze delle v.a. si scriva una funzione il cui prototipo è:

```
double* histocounts(double* x, int dimx, double* intv, int Nintv)
```

La funzione prende in input il puntatore al vettore x delle istanze delle v.a., la sua dimensione dimx, il puntatore al vettore intv, che è stato generato al punto D, e la sua dimensione.

La funzione restituisce un puntatore ad un vettore (allocato dinamicamente all'interno della funzione) di dimensione Nintv-1 che contiene il numero di istanze delle v.a. che sono contenute in ciascun bin.

- F. A partire dal vettore intv, generare un nuovo vettore (sempre di lunghezza Nintv-1) dei valori medi degli intervalli.
- G. Stampare in output il vettore dei bin.
- H. Normalizzare l'istogramma (cioè il vettore dei bin) affinché il suo integrale sia 1. Il nuovo vettore, dopo la normalizzazione sarà una stima della p.d.f.

Grafico delle p.d.f. in Matlab

Per poter graficare le p.d.f. in Matlab sarà necessario aprire in scrittura il file pdfGauss.m (che poi andrà chiuso prima di terminare il main) e scrivere al suo interno le seguenti informazioni (ripetere anche per pdfExp.m):

```
x = [-3.7500, -3.2500, ..., 13.7500];
f = [0.001960, 0.003160, 0.004200, ..., 0.000000];
figure;
plot(x, f);
```

Una volta creato il file, aprirlo con MATLAB e cliccare su Editor->Run per visualizzare i grafici. Incollare il grafico qui sotto.

Test conditions:

```
N = 30.000.000
#bins = 400
```


Questo file convertito in PDF deve essere caricato insieme al codice sviluppato e ai file pdfGauss.me pdfExp.m