1.	选择填空题					
(1)	把模拟量转	换成为相应数	数字量的转换	英器件称为_	o	
	(a) 数-模转	换器 (b) I	DAC (c)	D/A 转换器	(d) ADC	
(2)	把数字量转换		其拟量的过程	称为	o	
	(a) 数-模转	换 (b) D	AC (c)	A/D 转换器	(d) ADC	
(3)	n 位 DAC 最	大的输出电点	玉 u _{Omax} 为	U_{Δ}		
	(a) $(2^n - 1)$	(b) 2 ^b	(c)	2^{n+1} (6	d) $(2^n + 1)$	
(4)	n 位二进制的	J A/D 转换器	可分辨出满	量程值	的输入变化量。	
	(a) $1/(2^n+1)$	(b) $1/2^n$	(c) 1/($(2^n-1) \qquad (d)$) 无法确定	
(5)	DAC 单位量	化电压的大	小等于 D _n 为	时,DA	C输出的模拟电	压值。
	(a) 1 ((b) <i>n</i>	(c) 2^n -1	(d) 2^{n}		
(6)	改变倒T型	电阻网络 DA	AC的,ī	可以改变 DA	AC 单位量化电压	<u>.</u>
	(a) U_{Δ}	b) $V_{\rm CC}$	(c) $V_{\rm EE}$	(d) V_{REF}		

(7) 与倒 T 型电阻网络 DAC 相比,权电流网络 D/A 转换器的主要优点是消
除了对转换精度的影响。
(a) 网络电阻精度 (b) 模拟开关导通电阻
(c) 电流建立时间 (d) 加法器
(8) 如要将一个最大幅度为 5.1V 的模拟信号转换为数字信号,要求输入每
变化 20mV,输出信号的最低位(LSB)发生变化,应选用位 ADC。
(a) 6 (b) 8 (c) 10 (d) 12 $5. \frac{1V}{20mV} = 255$
(9) 如要将一个最大幅度为 7.99V 的模拟信号转换为数字信号,要求 ADC
的分辨率小于 10mV ,最少应选用位 ADC。 7.99 $V/10mV = 799$
(a) 6 (b)8 (c) 10 (d) 12
(10) 若双积分 A/D 转换器第一次积分时间 T_1 取 20ms 的整倍数,它便具有
的优点。
(a) 较高转换精度 (b) 极强抗 50Hz 干扰
(c) 较快的转换速度 (d) 较高分辨率

- (11) 逐次渐近型 A/D 转换器转换时间大约在_____的范围内。
 - (a) 几十纳秒 (b) 几十微秒 (c) 几十毫秒 (d) 几百毫秒
- (12) 双积分 A/D 转换器转换时间大约在_____的范围内。
 - (a) 几十纳秒 (b) 几十微秒 (c) 几百微秒 (d) 几十毫秒
- (13) 采样-保持器按一定采样周期把时域上____信号变为时域上____信号。
 - (a) 连续变化的 (b) 模拟 (c) 离散的 (d) 数字

2.	填空题	(请在空格中填上合适的词语,	将题中的论述补充完整)
			13/2 1 43/02 11/0/04

- - (3) DAC 的单位量化电压为 U_{Δ} ,则它的最大输出电压 $(2''-1)U_{\Delta}$ 。
 - (4) 电流输出型的 D/A 转换器的后面一般要接一个______电路。
 - (5) 按转换速度,集成 ADC 可分为____、____和___模 -数转换器。
 - (6) 双积分式 A/D 转换器就是一种典型的______变换型 ADC。
 - (7) 一个 8 位 DAC 的最小输出电压增量为 0.02 伏,当输入为 11001000 时,输出电压 u_0 为______ 伏。 $0.02 \times 200 = 4V$

	(9) 一10位	ADC 的:	最小分辨电	压为 8mV	/,采用[四舍五入的	的量化方	7法,	若输
入电	见压为 5.337V	,则输出	数字量为_	5.	337/(0.008 =	667. 12	25 ≈	667
	(10) 8 位并行				数量应	为	(1010 °	0110	1
	(11) 转换速	度最快的	I A/D 转换器	器是		_			
	(12) D/A 转	换器的转	换精度主要	是由		П	来决员	定的。	
	(13) D/A 转	换器的转	换误差包括	<u> </u>		和_		_等。	
	(14) A/D 转	换器的主	要参数是		和	· · · · · ·			
	(15) A/D 转	换器的转	换误差包括	i	_`	和		_等。	
	(16) 双积分	A/D 转换	英器的优点 是	是具有极势	虽	的,但	包它的转	换速	度较
慢,	完成一次 A	D转换一	般需	o					
	(17) 由于A	D转换器	不能直接对	付快速连续	读变化的	模拟输入	信号uɪì	进行转	接换,
一般	g就需要增加·	一个	o						
	(18) 根据采	样定理,	采样频率 f	至少是被	b 采样信	号最高频	率 fh 的_		o

10.1 一个8位的DAC的单位量化电压为0.01V, 当输入代码分别为01011011、11100100时, 输出电压 u_0 为多少伏? 若其分辨率用百分数表示,则应是多少?

【解】

输入代码为01011011时

$$u_{0} = D_{n}U_{\Delta} = 91 \times 0.01 = 0.91 V$$

输入代码为11100100时

$$u_{\rm o} = D_n U_{\Delta} = 228 \times 0.01 = 2.28 V$$

8位DAC的分辨率为:

$$\frac{1}{2^8 - 1} \times 100\% = 0.3922\%$$

10.3 用一个4位二进制计数器74163、一个4位DAC和一个与非门设计一个能够产生图题11.3阶梯波形的发生电路。

[解] 74163为全同步式加法计数器。由阶梯波可知,共需要0~11这12个状态,所以应设计成模12进制计数器,最后有效状态为11。

10.5 由图题所构成的任意波形发生电路中,DAC是一个R-2R倒T型网络DAC,若其参考电压 $V_{REF} = +5V$,计数器的时钟频率为10kHz,RAMI存储器中存放的数据如表所示。试画出输出波形 u_{so} 。

A_3	A_2	\mathbf{A}_1	A_0	D_3	\mathbf{D}_2	\mathbf{D}_1	$\mathbf{D_0}$
0	o	0	0	0	o	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	1	1	1
0	1	0	0	1	1	1	1
0	1	o	1	1	1	1	1
0	1	1	0	0	1	1	1
0	1	1	1	0	0	1	1
1	0	0	0	0	o	0	1
1	0	0	1	0	o	0	0
1	0	1	0	0	О	0	1
1	0	1	1	0	o	1	1
1	1	0	0	0	1	o	1
1	1	0	1	0	1	1	1
1	1	1	0	1	О	0	1
1	1	1	1	1	o	1	1

上页 下页

返回

A_3	A_2	\mathbf{A}_1	A_0	\mathbf{D}_3	\mathbf{D}_2	\mathbf{D}_1	\mathbf{D}_0
О	o	o	o	0	o	o	0
О	О	o	1	0	0	0	1
О	О	1	0	0	О	1	1
О	О	1	1	0	1	1	1
О	1	О	0	1	1	1	1
О	1	О	1	1	1	1	1
О	1	1	0	0	1	1	1
О	1	1	1	0	О	1	1
1	О	О	0	0	О	О	1
1	О	О	1	0	О	О	О
1	О	1	0	0	o	О	1
1	0	1	1	0	o	1	1
1	1	0	0	0	1	О	1
1	1	0	1	0	1	1	1
1	1	1	0	1	О	О	1
1	1	1	1	1	o	1	1

74160为十进制计 数器。

根据DAC输出电 压与输入数字量 D_n 的关系

 $u_{\rm o} = V_{\rm REF}/2^{10} \times D_{\rm n}$ 可求得输出依次为 $0{\rm V}, \ 0.3125{\rm V},$ $0.9375{\rm V}, \ 2.1875,$ 4.6875.

波形具有对称特 性。

- 10.7 对于图题所示的快闪型 ADC,若 $V_{REF} = 7.5V$,试回答: (1) 求出电路的分辨电压 U_{Λ} 。
- (2)该电路是舍尾取整的量化 方法,还是四舍五入的量化方法? 最大量化误差是多少?
- (3) 当输入电压 $u_s = 2.6$ V时,输出的数字量 $d_2d_1d_0$ 为什么?

上页

下页

返回

[解] (1) 根据分压电路可知,最下面的电阻 R/2 处对应的节点电压为 $V_{\rm REF}/15$ 。由下至上各节点电压依次为 $3V_{\rm REF}/15$, $5V_{\rm REF}/15$, $7V_{\rm REF}/15$, $9V_{\rm REF}/15$, $11V_{\rm REF}/15$, $13V_{\rm REF}/15$ 。因此,分辨电压 $U_{\Lambda}=2V_{\rm REF}/15=1$ V。

- (2) 该电路采用的是四舍五入的量化方法。最大量化误差 = $\pm 0.5~U_{\Delta}$ = $\pm 0.5V$ 。
- (3) 输入电压 $u_s = 2.6$ V时,输出数字量 $D_n = u_s/U_\Delta = 2.6$ V/1V ≈ 2.6。按照四舍五入的量化方法 $D_n = 3$ 。因此, $d_2d_1d_0 = 011$ 。

上页 下页 返回

10.12 某信号采集系统要求用一个集成ADC芯片在1s内对32个热电偶的输出电压分时进行转换。已知热电偶输出电压范围为0~0.025V(对应于0~400℃温度范围),需要分辨的温度为0.1℃。试问应选择多少位的ADC? 其转换时间至多为多少?

[解]

根据题意,至少要有400℃/0.1℃ = 4000个分度。 取 $2^n \ge 4000$,得n = 12,应选择12位的ADC。

转换时间≤1s/32 = 0.03125s

