# Linear Classifiers

\*

\* IDC

HERZLIYA

\*

Ariel Shamir Zohar Yakhini



#### Outline

- Decision Functions
- Linear Separability
- Linear decision boundaries
- The perceptron algorithm
- Least Means Squares
- Nonlinear mapping of features
- Logistic regression
- Mapping to higher dimension

- Coming up:
  - More examples of mapping to higher dimensions
  - Cover's Theorem
  - Dual perceptron
  - Kernels
  - SVMs

#### Classification



#### 2D Feature Space

- Two numerical features x1, x2.
- Each instance is a 2D point
- Classification training set: each instance has a label (blue, red)
- Hypothesis can be defined as a function



#### Discriminant Functions

- We define a scalar function f:X→R from feature space to R
- To classify an instance x, we check if f(x)>0 or f(x)<0



#### f(x) = 0 is the **decision boundary**



Key Decision: which function?

### Simplest Function: Linear

- For example, Assume that our instance space is  $\mathbb{R}^2$  (two features)
- Each instance is a point
- To represent a line in 2D we can use a linear implicit function in 2D

$$f(x,y) = w_1 x + w_2 y + w_0$$

• A line is defined by setting f(x, y) = 0



# Simplest Function: Linear

• A dichotomy in  $\mathbb{R}^2$  is separable by this line if:

$$f(x,y) > 0 \Rightarrow +1,$$
  
 $f(x,y) < 0 \Rightarrow -1$ 

• This is called Linear Separability



#### Geometric Interpretation



### Geometric Interpretation



# Distance from the origin to a hyperplane



# Higher dimensions

A hyperplane is defined by the vector perpendicular to it (its normal vector) and a scalar  $w_0$  (which determines the position):

$$U = \{ \vec{x} \in \mathbb{R}^d : \vec{x} \cdot \vec{w} = w_0 \}$$



#### Linear Discriminant Function

Note: we assume we have  $x_0 = 1$ 

Linear discriminant function

$$f(\vec{x}) = w_0 + w_1 x_1 + \dots + w_n x_n = \vec{w} \cdot \vec{x}$$

- Learning = find the weights  $\vec{w}$  that define the function
- The decision boundary is a hyperplane in n dimensions
- Will work if we have linearly separable concepts



© Ariel Shamir IDC 13



# A hyperplane as a linear separator

Consider the decision function

$$h(\vec{x}) = \operatorname{sgn}(\vec{x} \cdot \vec{w} + w_0)$$

In this figure, who is w? what is b? what values does h take for various points?



Consider the feature vectors  $\vec{x}_i$  ,  $i=1\dots m$  , and the matching labels  $y_i$  .

What can we say about the expressions

$$y_i(\vec{x}_i \cdot \vec{w} + \mathbf{w}_0)$$



# The Perceptron



$$o(x_1,...,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + ... + w_n x_n > 0 \\ -1 & \text{otherwise} \end{cases}$$

Or, in vector notations:

$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w}\vec{x} > 0 \\ -1 & \text{otherwise} \end{cases}$$

#### Learning Procedure

- Given a set of sample points and their classification (-1 or 1) we need to adjust the **weights**  $\vec{w}$  of the perceptron so that we will have the correct output for each sample.
- What is the simplest algorithm?
  - Start with random weights and improve
- How to improve?
  - Measure the error!
- What is the simplest error function?
  - output(x) target(x)

# Perceptron Training Rule



# Updating the weights

$$\Delta w_i = -\eta (o - t) x_i$$
$$w_i \leftarrow w_i + \Delta w_i$$

- If the instance x is classified correctly then no update!
- For any training instance x that is misclassified at the present iteration:
- if C(x) = +1 we update the weights as:

$$w = w + 2\eta x$$

• if C(x) = -1 we update the weights as:

$$w = w - 2\eta x$$

#### Justification of the Rule

$$\Delta w_i = -\eta x_i (o - t)$$

If  $(o_i-t_i) = 0$  then  $\Delta w_i$  is 0 and there is no update Otherwise:  $w_i \leftarrow w_i + \Delta w_i$ 

| О  | t  | o-t | Xi | $\Delta w_{i}$ | W <sub>i</sub> ·X <sub>i</sub> |
|----|----|-----|----|----------------|--------------------------------|
| -1 | +1 | <0  | >0 | >0             | increased                      |
| -1 | +1 | <0  | <0 | <0             | increased                      |
| +1 | -1 | >0  | >0 | <0             | decreased                      |
| +1 | -1 | >0  | <0 | >0             | decreased                      |

#### The Perceptron Learning Algorithm

- Assume the target value for classification are  $t \in \{-1, +1\}$
- The perceptron seeks to find a linear separator with NO ERRORs.
- Is this always possible?

Initialize each  $w_i$  to some small random number.

Until termination do

For each  $\vec{x}_d$  in D compute

$$o_d = \operatorname{sgn}(\vec{w} \cdot \vec{x}_d)$$

For each linear unit weight  $w_i$ , Do

$$\Delta w_i = -\eta (o_d - t_d) x_{id}$$
$$w_i = w_i + \Delta w_i$$

 $\Delta w_i = -\eta (o_d - t_d) x_{id}$ 

n+1 weights to be updated in the normal vector

# Why does $E[\overrightarrow{w}]$ improve in every iteration?

Red dots are positive (t = +1)The marked one is initially misclassified Recall that we then update by setting:

$$w^{(j+1)} = w^{(j)} + 2\eta x$$

We therefore get, for a misclassified x with C(x) = +1:

$$w^{(j+1)} \cdot x > w^{(j)} \cdot x$$





#### Rosenblatt's Perceptron Theorem

The Perceptron learning algorithm converges to a perfect classifier (no errors on the training data) iff the training data, D, is linearly separable.

- Note: we also need to control  $\eta$  to really guarantee convergence (if its too big we may overshoot the perfect classifier)
- Some results on the rate of convergence were proven and can be useful in the context of ANNs (and deep learning)
- The Perceptron itself is not a practical learning approach but is an important component of many modern learning approaches.



Frank Rosenblatt Cornell Univ, NY, US 1928-1971

# However - data is not always linearly separable ....



# Data is not always linearly separable ....

#### London walking commuters



#### Lipids vs peptides (Dittwald et al)



# What to do if the data is NOT linearly separable?

- Later... we map it to higher dimension where it is more likely to be linearly separable.
- Today... we still use a linear classifier that will be a (good?)
  approximation for the real discriminant function!
- We want to reduce the classification errors as much as possible.
- We can't use the perceptron rule since it may not converge. We are looking for a better rule.

#### A Linear Unit



Consider simple linear unit (with no threshold), where

$$o = w_0 + w_1 x_1 + ... + w_n x_n = \vec{w} \cdot \vec{x}$$

# Learning?

What error function can we use?

Let's try to learn  $w_i$ 's that minimize the squared error over all sample points:

$$E[\vec{w}] = \frac{1}{2} \sum_{d \in D} (o_d - t_d)^2 = \frac{1}{2} \sum_{d \in D} (\vec{w} \cdot \vec{x}_d - t_d)^2$$

Where *D* is a set of training examples

#### Error in the Weights Space

- The error E(w) is a function  $E:R^{n+1} \rightarrow R$  of the set of weights.
- Minimizing this function is like searching for a minimum on the functional high dimensional surface.
- For a smooth function, the direction of maximum increase/decrease at each point is the gradient/negative gradient:



#### Gradient Descent Rule

The gradient of E is 
$$\nabla E[\vec{w}] = \left(\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \dots, \frac{\partial E}{\partial w_n}\right)$$

Hence, the training rule will be  $\Delta \vec{w} = -\eta \nabla E[\vec{w}]$  or  $\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$ 

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} \left( \vec{w} \vec{x}_d - t_d \right)^2 = \frac{$$

$$= \frac{1}{2} \sum_{d \in D} 2(\vec{w}\vec{x}_d - t_d) \frac{\partial}{\partial w_i} (\vec{w}\vec{x}_d - t_d) = \sum_{d \in D} (o_d - t_d) x_{id}$$

The training rule  $\Delta \vec{w} = -\eta \nabla E[\vec{w}]$  becomes for each weight i:

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} = -\eta \sum_{d \in D} (o_d - t_d) x_{id}$$

### LMS Algorithm

Input:  $\eta$ , a set of training examples D

 $\eta$  is the learning rate (e.g., 0.05)

Each training example is a pair of the form  $\langle \vec{x}, t \rangle$ , where :

 $\vec{x}$  is the vector of input values, t is the target output value.

Initialize each  $w_i$  to some small random number.

Until termination do

For each  $\vec{x}_d$  in D compute

$$o_d = \vec{w} \cdot \vec{x}_d$$

For each linear unit weight  $w_i$ , Do

$$\Delta w_i = -\eta \sum_{d \in D} (o_d - t_d) x_{id}$$

$$w_i = w_i + \Delta w_i$$

#### Reminder: Perceptron Algorithm

Input:  $\eta$ , a set of training examples D

 $\eta$  is the learning rate (e.g., 0.05)

Each training example is a pair of the form  $\langle \vec{x}, t \rangle$ , where :

 $\vec{x}$  is the vector of input values, t is the target output value.

Initialize each  $w_i$  to some small random number.

Until termination do

For each  $\vec{x}_d$  in D compute

$$o_d = \operatorname{sgn}(\vec{w} \cdot \vec{x}_d)$$

For each linear unit weight  $w_i$ , Do

$$\Delta w_i = -\eta \sum_{d \in D} (o_d - t_d) x_{id}$$

$$w_i = w_i + \Delta w_i$$

#### What Does LMS Minimize?

- The target numerical output of the linear unit on all training examples are their classification values (+1,-1)
- This means we will get a linear hyper-plane that **minimizes the sum of square distances** between the training samples and the **offset** (either +1 or -1) to this hyper-plane

$$E[\vec{w}] = \frac{1}{2} \sum_{d \in D} (o_d - t_d)^2 = \frac{1}{2} \sum_{d \in D} (\vec{w} \cdot \vec{x}_d - t_d)^2$$

#### Minimize the SSE



35

#### LMS Problem



Minimize the distance between the positive instances and the +1 iso-line of the function

Minimize the distance between the negative instances and the -1 iso-line of the function

 This is different than minimizing the number of misclassified samples, and in fact may lead to some error even if the samples are linearly separable.

## LMS Problem

$$E[\vec{w}] = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 = \frac{1}{2} \left[ \sum_{d \in D^+} (\vec{w} \cdot \vec{x}_d - 1)^2 + \sum_{d \in D^-} (\vec{w} \cdot \vec{x}_d + 1)^2 \right]$$



#### **Perceptron**

#### **LMS**

Initialize each  $w_i$  to some small random number.

Until termination do

For each  $\vec{x}_d$  in D compute

$$o_d = \operatorname{sgn}(\vec{w} \cdot \vec{x}_d)$$

For each linear unit weight  $w_i$ , Do

$$\Delta w_i = -\eta \sum_{d \in D} (o_d - t_d) x_{id}$$

$$W_i = W_i + \Delta W_i$$

Initialize each  $w_i$  to some small random number.

Until termination do

For each  $\vec{x}_d$  in D compute

$$o_d = \vec{w} \cdot \vec{x}_d$$

For each linear unit weight  $w_i$ , Do

$$\Delta w_i = -\eta \sum_{d \in D} (o_d - t_d) x_{id}$$

$$w_i = w_i + \Delta w_i$$

- Optimizes number of errors
- Finds the separating plane if class is linearly separable.
- If not, it may not converge!

 Optimizes the distance to +1 and -1 lines

$$E[\vec{w}] = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 = \frac{1}{2} \left[ \sum_{d \in D^+} (\vec{w} \cdot \vec{x}_d - 1)^2 + \sum_{d \in D^-} (\vec{w} \cdot \vec{x}_d + 1)^2 \right]$$

Uses gradient descend

# LMS Algorithm (Stochastic Gradient Descent)

Input:  $\eta$ , a set of training examples D

 $\eta$  is the learning rate (e.g., 0.05)

Each training example is a pair of the form  $\langle \vec{x}, t \rangle$ , where :

 $\vec{x}$  is the vector of input values, t is the target output value.

Initialize each  $w_i$  to some small random number.

Until termination do

For each  $\vec{x}_d$  in S compute  $o_d = \vec{w} \cdot \vec{x}_d$ For each linear unit weight  $w_i$ , Do  $\Delta w_i = -\eta \sum_{d \in S} (o_d - t_d) x_{id}$   $w_i = w_i + \Delta w_i$ 

## Linear Classification Revisited

- Perceptron used  $sgn(\vec{w} \cdot \vec{x}_d)$  to choose between -1 or 1, but cannot use gradient descent
- LMS solution using  $(\vec{w} \cdot \vec{x}_d)$  had problems as it did not find the global solution and was optimizing to offsets of +1 ad -1
- We want to use **probabilistic** formulation
- We also look for a continuous domain that will represent the sign function so that we would be able to derive and use gradient descend algorithm

## Logistic Regression

- A classification algorithm.
- Yields a family of linear separators
- The training data, in the binary case, consists of feature vectors and associated labels:  $\{(\vec{x}^{(i)}, y^{(i)})\}_{i=1..m}$
- We learn a predictor hypothesis  $h(\vec{x})$   $h: \mathbb{R}^k \to \mathbb{R}$
- Smoothly generalizes to any finite number of classes
- LoR is particularly important because it is a basic building block of artificial neural networks and of deep learning.



## Interpretation as probabilities

- In LoR we want the values of h to be interpreted as probabilities.
- This means that  $0 \le h(\vec{x}) \le 1$ .
- We will also interpret values closer to 1 as probably coming from C1 and numbers closer to 0 as probably coming from C0.

## The sigmoid function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

#### Some properties:

- Smooth
- Monotone
- Range? Limits?
- Derivative:

$$\sigma'(x) = \sigma(x) (1 - \sigma(x))$$





# Derivative of Sigmoid

$$\frac{\partial}{\partial x}\sigma(x) = \frac{\partial}{\partial x} \frac{1}{(1+e^{-x})} = \frac{\partial}{\partial x} (1+e^{-x})^{-1} =$$

$$= -(1+e^{-x})^{-2} \frac{\partial}{\partial x} e^{-x} =$$

$$= -(1+e^{-x})^{-2} \frac{\partial}{\partial x} e^{-x} =$$

$$= -(1+e^{-x})^{-2} \frac{e^{-x}}{(-1)} =$$

$$= \frac{1}{(1+e^{-x})} \frac{e^{-x}}{(1+e^{-x})} =$$

$$= \frac{1}{(1+e^{-x})} \frac{1+e^{-x}}{(1+e^{-x})} =$$

$$= \frac{1}{(1+e^{-x})} \left(1 - \frac{1}{1+e^{-x}}\right) = \sigma(x)(1-\sigma(x))$$

# Our Central Assumption

- $P(X \mid Y)$  is a sigmoid function applied to <u>some linear combination</u> of the input features.
  - Mathematically, logistic regression assumes a vector  $\vec{w} \in \mathbb{R}^{k+1}$  so that for points  $\vec{x} \in \mathbb{R}^k$  we have:

$$P(X = \vec{x}|Y = 1) = \sigma(w^T x) = \frac{1}{1 + e^{-w^T x}} = \frac{e^{w^T x}}{1 + e^{w^T x}}$$

Where  $w^T x = w_0 + \sum_{i=1}^k w_i x_i$ 



## ML Classifier

• Now, assuming priors are the same (or we don't know them), using Bayes we get:

• 
$$P(y = 1|x) = P(x|y = 1) = h_w(\vec{x})$$

• 
$$P(y = 0|x) = 1 - P(y = 1|x) = 1 - h_w(\vec{x})$$

• So:

```
Choose 1 if P(y = 1|\vec{x}) > P(y = 0|\vec{x}) else choose 0 \rightarrow Choose 1 if h_w(\vec{x}) > 1 - h_w(\vec{x}) else choose 0 \rightarrow Choose 1 if h_w(\vec{x}) > 0.5 else choose 0
```

# Example

- For a given instance  $\vec{x}$ ,
- if  $\vec{w} \cdot \vec{x} > 0$  then we get  $\sigma(\vec{w} \cdot \vec{x}) > 0.5$  and we will classify  $\vec{x}$  as 1
- if  $\vec{w} \cdot \vec{x} < 0$  then we get  $\sigma(\vec{w} \cdot \vec{x}) < 0.5$  and we will classify  $\vec{x}$  as 0



Probabilistic Interpretation

• We interpret  $h_w(\vec{x}) = \sigma(\vec{w} \cdot \vec{x})$  as the (conditional) probability of x being classified to 1:

• 
$$h_w(\vec{x}) = P(x|y=1)$$

• The furthest  $\vec{x}$  is from the boundary the highest its probability to be classified correctly!



# Minimizing the Risk (under 0/1 cost)

- Given  $\vec{x}$  we classify it either to 0 or 1
- The risk of choosing 0 is  $P(y = 1|x) = h_w(\vec{x})$
- The risk of choosing 1 is  $P(y = 0|x) = 1 h_w(\vec{x})$
- Hence, the loss that we may pay if we choose wrongly is:

$$h_w(\vec{x})$$
 if y=1, and  $1 - h_w(\vec{x})$  if y=0

We can combine both by using a simple trick:

$$loss(\vec{x}, \vec{w}) = (h_w(\vec{x}))^y (1 - h_w(\vec{x}))^{1-y}$$

• We can use the -log function (monotonic decreasing) to get an equivalent loss:

$$loss(\vec{x}, \vec{w}) = -y \ln(h_w(\vec{x})) - (1-y) \ln(1-h_w(\vec{x}))$$

## Note: this is also called Cross Entropy Loss

Reminder: binary entropy is:

$$-p\log(p) - (1-p)\log(1-p)$$

- Cross entropy between two binary distributions p and q  $-p \log(q) (1-p) \log(1-q)$
- More generally:

$$-\sum_{x\in X}p(x)\log(q(x))$$

Used as loss function in neural networks

## Loss on All Data

• Assume we have m training examples, the total loss would be  $Loss(\vec{w}) =$ 

$$= -\sum_{d=1}^{m} \left( y^{(d)} \ln(h_w(\vec{x}^{(d)})) + \left( 1 - y^{(d)} \right) \ln(1 - h_w(\vec{x}^{(d)})) \right) =$$

$$= -\sum_{d=1}^{m} \left( y^{(d)} \ln(\sigma(\vec{w} \cdot \vec{x}^{(d)})) + \left( 1 - y^{(d)} \right) \ln(1 - \sigma(\vec{w} \cdot \vec{x}^{(d)})) \right)$$

- This can be minimized using gradient descent!
- Deriving for each  $w_i$

$$\frac{\partial}{\partial w_i} \log(\overrightarrow{w}) = -\sum_{d=1}^m \frac{\partial}{\partial w_i} \left( (y^{(d)} \ln(\sigma(\overrightarrow{w} \cdot \overrightarrow{x}^{(d)})) + (1 - y^{(d)}) \ln(1 - \sigma(\overrightarrow{w} \cdot \overrightarrow{x}^{(d)})) \right)$$

# Deriving for One Given Instance (x<sup>(d)</sup>,y<sup>(d)</sup>)

$$\frac{\partial}{\partial w_{i}} \left( \left( y \ln \left( \sigma(\overrightarrow{w} \cdot \overrightarrow{x}) \right) - (1 - y) \ln (1 - \sigma(\overrightarrow{w} \cdot \overrightarrow{x})) \right) =$$

$$\left( y \frac{1}{\sigma(\overrightarrow{w} \cdot \overrightarrow{x})} - (1 - y) \frac{1}{1 - \sigma(\overrightarrow{w} \cdot \overrightarrow{x})} \right) \frac{\partial}{\partial w_{i}} \sigma(\overrightarrow{w} \cdot \overrightarrow{x}) =$$

$$\left( y \frac{1}{\sigma(\overrightarrow{w} \cdot \overrightarrow{x})} - (1 - y) \frac{1}{1 - \sigma(\overrightarrow{w} \cdot \overrightarrow{x})} \right) \sigma(\overrightarrow{w} \cdot \overrightarrow{x}) \left( 1 - \sigma(\overrightarrow{w} \cdot \overrightarrow{x}) \right) \frac{\partial}{\partial w_{i}} (\overrightarrow{w} \cdot \overrightarrow{x}) =$$

$$\left( \frac{y (1 - \sigma(\overrightarrow{w} \cdot \overrightarrow{x})) - (1 - y) \sigma(\overrightarrow{w} \cdot \overrightarrow{x})}{\sigma(\overrightarrow{w} \cdot \overrightarrow{x}) \left( 1 - \sigma(\overrightarrow{w} \cdot \overrightarrow{x}) \right)} \right) \sigma(\overrightarrow{w} \cdot \overrightarrow{x}) \left( 1 - \sigma(\overrightarrow{w} \cdot \overrightarrow{x}) \right) \frac{\partial}{\partial w_{i}} (\overrightarrow{w} \cdot \overrightarrow{x}) =$$

$$\left( y (1 - \sigma(\overrightarrow{w} \cdot \overrightarrow{x})) - (1 - y) \sigma(\overrightarrow{w} \cdot \overrightarrow{x}) \right) r_{i} =$$

$$\left( y - \sigma(\overrightarrow{w} \cdot \overrightarrow{x}) \right) r_{i}$$

# Minimizing Total Loss

$$\frac{\partial}{\partial w_i} \operatorname{loss}(\overrightarrow{w}) = -\sum_{d=1}^{m} \frac{\partial}{\partial w_i} \left( (y^{(d)} \ln(\sigma(\overrightarrow{w} \cdot \overrightarrow{x}^{(d)})) + (1 - y^{(d)}) \ln(1 - \sigma(\overrightarrow{w} \cdot \overrightarrow{x}^{(d)})) \right) =$$

$$-\sum_{d=1}^{m} \left( y^{(d)} - \sigma(\overrightarrow{w} \cdot \overrightarrow{x}^{(d)}) \right) x_i^{(d)} = \sum_{j=1}^{m} \left( \sigma(\overrightarrow{w} \cdot \overrightarrow{x}^{(d)}) - y^{(d)} \right) x_i^{(d)}$$

Now we can define the gradient:

$$\nabla \operatorname{cost}(\overrightarrow{w}) = \left(\frac{\partial}{\partial w_1} \operatorname{cost}(\overrightarrow{w}), \dots, \frac{\partial}{\partial w_n} \operatorname{cost}(\overrightarrow{w})\right)$$

and use gradient descent

## Gradient Descent Rule

• 
$$\Delta w_i = -\eta \sum_{d=1}^m \left( \left( \sigma(\overrightarrow{w} \cdot \overrightarrow{x}^{(d)}) - y^{(d)} \right) x_i^{(d)} \right)$$

- $w_i = w_i + \Delta w_i$
- Or the stochastic version:

$$w_i = w_i - \eta \left(\sigma(\overrightarrow{w} \cdot \overrightarrow{x}^{(d)}) - y^{(d)}\right) x_i^{(d)}$$

- This is called Logistic Regression although it is a classification algorithm not to be confused with regression
- Instead of using just linear relation, we map the linear relation with another function

## Multiple classes

#### MNIST training data

```
98365723
62685889
```



## Multi Class Classification





56

## One vs. All Classifier for "2"





Negative: all others



## Multi-class by using One vs All





## Summary

- Logistic regression is an approach to classification. The name is misleading ...
- The execution algorithm (or the model) classifies based on a vector of numerical features
- The approach is based on the LoR assumption. Namely  $P(\vec{x}|y=1) = \sigma(w^T\vec{x})$
- The learning process uses Gradient Descent to find w.
- No pseudo inverse solution for LoR
- Extends to multiple classes (OvA, softmax, others ...)

## Comparison of Linear Classification Algorithms

Perceptron:

$$w_i = w_i - \eta \left( \operatorname{sgn}(\overrightarrow{w} \cdot \overrightarrow{x}^{(d)}) - y^{(d)} \right) x_i^{(d)}$$

Least Square:

$$w_i = w_i - \eta \left( \overrightarrow{w} \cdot \overrightarrow{x}^{(d)} - y^{(d)} \right) x_i^{(d)}$$

Logistic Regression:

$$w_i = w_i - \eta \left(\sigma(\vec{w} \cdot \vec{x}^{(d)}) - y^{(d)}\right) x_i^{(d)}$$

# Comparison of Loss functions

• Regression:

$$E[\vec{w}] = \frac{1}{|D|} \sum_{d \in D} (\vec{w} \cdot \vec{x}^{(d)} - t_d)^2$$

• Perceptron:  $\frac{1}{|D|}$ 

$$E[\vec{w}] = \frac{1}{|D|} \sum_{d \in D} \left( \operatorname{sgn}(\vec{w} \cdot \vec{x}^{(d)}) - t_d \right)$$

• LMS:

$$E[\vec{w}] = \frac{1}{|D|} \left[ \sum_{d \in D^{+}} (\vec{w} \cdot \vec{x}^{(d)} - 1)^{2} + \sum_{d \in D^{-}} (\vec{w} \cdot \vec{x}^{(d)} + 1)^{2} \right]$$

Logistic Regression

$$E[\overrightarrow{w}] = \frac{1}{|D|} \sum_{d=1}^{m} \left( -y^{(d)} \ln(\sigma(\overrightarrow{w} \cdot \overrightarrow{x}^{(d)})) - \left(1 - y^{(d)}\right) \ln(1 - \sigma(\overrightarrow{w} \cdot \overrightarrow{x}^{(d)})) \right)$$

#### Non-Linear Decision Boundaries

- Decision boundaries which separate between classes may not always be linear
- In fact, they will sometimes be very complex boundaries and therefore may sometimes require the use of highly non-linear discriminant functions

## The Perceptron and Linear Separability

In 1D: 
$$w_1 \cdot x + w_0 > 0 \quad \text{or} \quad C(x) = \operatorname{sgn}(w, x)$$
 
$$w = (w_1, w_0)$$



# Can We Build a 1D Perceptron for This?

• Red: C(x) = -1

• Blue: C(x) = +1



# Example: Mapping x to $y=(x-\mu_0)^2$



# 1D Perceptron After Mapping

$$w_{1} \cdot y + w_{0} = w_{1} \cdot (x - \mu_{0})^{2} + w_{0} > 0$$

$$w = (w_{1}, w_{0})$$

# Mapping to Higher Dimension



## Linear Separability in the Target Space



# Linear separation in 2D? 3D?



# Mapping into 3D



Are the classes linearly separable now?

# Will pick up from here next time .... and continue to SVMs