Math Tools

Note: Probability and measure

Nov 2024

Lecturer: Typed by: Zhuohua Shen

Contents

1	Measure Theory 1.1 Expectation	1
2	Law of Large Numbers 2.1 Almost Surely Convergence	1
3	Central Limit Theorem	1
4	Random Walks	1
	Proofs A.1 Proofs - section 4	
Uε	mbridge University Press.	

1 Measure Theory

1.1 Expectation

Lemma 1.1. Let $X \geq 0$, p > 0, we have $\mathbb{E}X^p = \int_0^\infty px^{p-1}\mathbb{P}(X > x)\mathrm{d}x$.

2 Law of Large Numbers

2.1 Almost Surely Convergence

This lemma gives an equivalent relation between expectation and sum of tail probability.

Lemma 2.1. Let X_i iid and $\varepsilon > 0$, then $\sum_{n=1}^{\infty} \mathbb{P}(|X_n| > n\varepsilon) \le \varepsilon^{-1} \mathbb{E} |X_i| \le \sum_{n=0}^{\infty} \mathbb{P}(|X_n| > n\varepsilon)$.

3 Central Limit Theorem

4 Random Walks

Random walk (RW): Let X_i be iid rvs in \mathbb{R}^d . Let $S_n = \sum_{i=1}^n X_i$. Then $\{S_n : n \geq 1\}$ is called a RW. Take $S_0 = 0$. Simple random walk (SRW): If $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = 1/2$, then $\{S_n\}$ is called a SRW in \mathbb{R}^1 . If $\mathbb{P}(X_i = (1, 1)) = \mathbb{P}(X_i = (1, -1)) = \mathbb{P}(X_i = (-1, -1)) = 1/4$, then called a SRW in \mathbb{R}^2 .

Long-term behavior of RW

Permutable (or exchangeable): An event that does not change under finite permutation of $\{X_1, X_2, \ldots\}$.

- All events in the tail σ -field \mathcal{T} are permutable.
- $\{\omega : \mathbf{S}_n(\omega) \in B \text{ i.o.}\}\$ is permutable but not tail event.
- $\{\omega : \limsup_{n\to\infty} \mathbf{S}_n(\omega)/c_n \geq 1\}.$

Theorem 4.1 (Hewitt-Savage 0-1 law). If X_i iid and event A is permutable, then $\mathbb{P}(A) = 0$ or 1.

Theorem 4.2 (Long-term behavior of RW A.1). For a RW in \mathbb{R} , one of the following has probability 1:

- (i) $S_n = 0$ for all n;
- (ii) $S_n \to \infty$ as $n \to \infty$;
- (iii) $S_n \to -\infty$ as $n \to \infty$;
- (iv) $-\infty = \liminf_n S_n < \limsup_n S_n = \infty$.

For two levels a < b, find the probability that RW reaches b before a

Filtration: Let X_i be a sequence of rvs, $\{\mathcal{F}_n := \sigma(X_1, \dots, X_n)\}_{n=1}^{\infty}$ as an increasing sequence of σ -fields, is called a filtration. We usually take $\mathcal{F}_0 = \{\phi, \Omega\}$.

Stopping time/optional random variable/optimal time/Markov time: $\tau \in \mathbb{N}^+ \cup \{\infty\}$ is a stopping time w.r.t. $\{\mathcal{F}_n\}$ if $\{\tau = n\} \in \mathcal{F}_n, \forall n \in \mathbb{N}^+. \text{ (Equivalent def: } \{\tau \leq n\} \in \mathcal{F}_n \text{ or } \{\tau \geq n+1\} \in \mathcal{F}_n \text{ for } n \in \mathbb{N}^+)$

• If τ_1, τ_2 are stopping time, then $\tau_1 \wedge \tau_2, \tau_1 \vee \tau_2, \tau_1 + \tau_2$ are stopping times.

Proofs \mathbf{A}

Proofs - section 4

Proof of Theorem 4.2. By the 0-1 law 4.1, $\{\limsup_n S_n \geq c\}$ has probability 0 or 1, meaning that $\limsup_n S_n = c \in C$ $[-\infty, \infty]$ w.p.1. Since $S_n \stackrel{\mathrm{d}}{=} S_{n+1} - X_1$, we have $c = c - X_1$. (i) If $c \in \mathbb{R}$, then $X_1 \equiv 0$ a.s., so $S_n = 0$ for all n a.s.

- If $X_1 \neq 0$ a.s., then $c = -\infty$ or ∞ ,
- (ii) If $c = \infty$, and $\liminf_n S_n = \infty$, then case (ii);
- (iii) If $c = -\infty$, and $\liminf_n S_n = -\infty$, then case (iii);
- (iv) If $c = \infty$, and $\liminf_n S_n = -\infty$, then case (iv).

References

2