Solutions to Past Preliminary Analysis Exams

Joseph McGuire

August 7, 2020

Spring 2020

- **1.** Let (f_n) be a sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$ and let $f : \mathbb{R} \to \mathbb{R}$ be a function. Suppose that f_n is bounded for each $n \in \mathbb{N}$.
- **1.1.** Prove that if $f_n \to f$ uniformly on \mathbb{R} , then f is bounded.

Proof. Suppose that $f_n : \mathbb{R} \to \mathbb{R}$ is a sequence of bounded functions, converging uniformly to a function $f : \mathbb{R} \to \mathbb{R}$. Then for all $n \in \mathbb{N}$ there exists a $M_n \geq 0$ such that $|f_n(x)| \leq M_n$ for all $x \in \mathbb{R}$. Additionally for all $\epsilon > 0$ there exists a $K(\epsilon) \in \mathbb{N}$ such that if $x \in \mathbb{R}$ and $n \geq K(\epsilon)$, then $|f_n(x) - f(x)| < \epsilon$. Letting $\epsilon > 0$ be fixed we have for all $n \geq K(\epsilon)$ and $x \in \mathbb{R}$, $|f_n(x) - f(x)| < \epsilon$.

$$|f_n(x) - f(x)| < \epsilon \implies |f(x) - f_n(x)| < \epsilon$$

 $\implies f(x) < \epsilon + f_n(x)$
 $\implies f(x) < \epsilon + M_n$

Both M_n and ϵ are fixed here, hence for $M=M_n+\epsilon$, for a particular $n\geq K(\epsilon)$, for a particular $\epsilon>0$, we have $|f(x)|< M=M_n+\epsilon$ for all $x\in\mathbb{R}$. Thus f is bounded on all of \mathbb{R} .

1.2. If each f_n is continuous and $f_n \to f$ pointwise on \mathbb{R} , does f have to be bounded? Give a proof or a counter example.

Solution. Consider the sequence of functions defined by:

$$f_n(x) = \begin{cases} |x|, & |x| \le n \\ n, & otherwise \end{cases}$$

I'll show that f_n converges pointwise onto the function $f(x) = |x|, x \in \mathbb{R}$, that each f_n is bounded and continuous on \mathbb{R} , but that f is unbounded.

(Continuity of f_n) First we'll show that for any $n \in \mathbb{N}$ f_n is continuous on $(-\infty, -n) \cup (n, +\infty)$. Let $\epsilon > 0$ be given. Suppose c,x are in the interval we're considering, $(-\infty, -n) \cup (n, \infty)$ with $0 < |x - c| < \delta(\epsilon)$, then $|f_n(x) - f_n(c)| = |0| = 0 < \epsilon$. Hence $f_n(x)$ is continuous on $(-\infty, -n) \cup (n, \infty)$.

Considering (-n,n) now: Let $\epsilon > 0$ be given and $\delta(\epsilon) = \epsilon$. Suppose $x, c \in (-n,n)$ and $0 < |x-c| < \delta(\epsilon) = \epsilon$. Then

$$|f_n(x) - f_n(c)| = ||x| - |c||$$

 $\leq |x - c|, by \text{ the triangle inequality}$
 $< \delta(\epsilon) = \epsilon$

Hence f_n is continuous on (-n, n).

Finally to show that f_n is continuous on $x \in \{-n, n\}$ we'll use the alternative definition of continuous functions, which is f_n is continuous at a point c if a sequence in $(x_k) \to c$ in \mathbb{R} , then $(f_n(x_k)) \to f_n(c)$.

Let $(x_k) \to n$ in \mathbb{R} . Then for all $\epsilon > 0$, there exists a $K(\epsilon) \in \mathbb{N}$ such that if $k \geq K(\epsilon)$, then $|x_k - n| < \epsilon$. We'll show then that $(f_n(x_k)) \to f_n(n)$. Let $\epsilon > 0$. Then let $K_1(\epsilon) = K(\epsilon)$, where $K(\epsilon)$ is defined above. Suppose $k \geq K_1(\epsilon)$, then

$$|f_n(x_k) - f_n(n)| = |f_n(x_k) - |n||$$

$$= |n - f_n(x_k)|$$

$$\leq |n - |x_k||, \text{ since } f_n(x_k) \leq n$$

$$\leq |n - x_k|$$

$$< \epsilon, by \text{ our choice of } K_1(\epsilon)$$

Thus the sequence $\lim_{k\to\infty} (f_n(x_k)) = f_n(n)$. Hence f_n is continuous at n, for any $n \in \mathbb{N}$. Therefore, f_n is continuous at every point on \mathbb{R} .

(Pointwise Convergence)

Let $\epsilon > 0$ be given and $x \in \mathbb{R}$. Then choose $K(\epsilon, x) = x$. Suppose $n \geq K(\epsilon, x)$. Then

$$|f_n(x) - f(x)| = |f_n(x) - |x||$$

$$\leq |n - |x||$$

$$\leq |n - x|$$

$$= n \left| 1 - \frac{x}{n} \right|$$

$$\leq n \left| 1 - \frac{x}{K(\epsilon, x)} \right|$$

$$= n|1 - 1|$$

$$= 0$$

$$< \epsilon$$

Thus $(f_n) \to f$, pointwise on \mathbb{R} .

(f is unbounded)

Suppose for sake of contradiction, that there exists a $M \ge 0$ such that $|f(x)| \le M$, for all $x \in \mathbb{R}$. Then $||x|| \le M \implies |x| \le M$, for all $x \in \mathbb{R}$. So that is if x = M + 1, then $|M + 1| \le M \implies 1 \le 0$. A contradiction, hence f must be unbounded on all of \mathbb{R} .

So this is a counterexample to the claim above.

2. Show that the function

$$f(x) = \begin{cases} x^2, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$$

is differentiable only at $x \neq 0$.

Solution. First, we'll use the contrapositive of the theorem stating, if f is differentiable on $A \subseteq \mathbb{R}$, then f is continuous on $A \subseteq \mathbb{R}$; that is, if f isn't continuous on $A \subseteq \mathbb{R}$, then f isn't differentiable on $A \subseteq \mathbb{R}$. So we'll show that f isn't continuous on $\mathbb{R} \setminus \{0\}$. Then we'll use the epsilon-delta definition of the derivative to show that f is differentiable at 0.

First, note that irrationals are all limit points to the rationals, and vice-a-versa. This is a consequence that between any two real numbers there are irrational and rational numbers. Meaning that for any irrational number there is a sequence of rationals converging to that irrational number, since we can get arbitrarily close to any irrational with a sequence of rationals, similarly for the rationals and irrationals.

So let (a_n) be a sequence of rational numbers such that $(a_n) \to \zeta$, where $\zeta \in \mathbb{R} \setminus \mathbb{Q}$. Then we have $f(a_n) = a_n^2$ for all $n \in \mathbb{N}$, and $f(\zeta) = 0$. But we know that the sequence $(a_n) \to \zeta \neq 0$, hence $(a_n \cdot a_n) \to \zeta^2 \neq 0$. Thus we have a sequence (a_n) converging to ζ , but $f(a_n)$ doesn't converge to $f(\zeta)$, and so f is discontinuous on $\mathbb{R} \setminus \mathbb{Q}$.

Similarly, let (b_n) be sequence in $\mathbb{R} \setminus \mathbb{Q}$ converging to $r \in \mathbb{Q} \setminus \{0\}$. Then $f(b_n) = 0$, for all $n \in \mathbb{N}$, and $f(r) = r^2 \neq 0$. Clearly $(f(b_n)) \to 0 \neq f(r)$. Hence f must be discontinuous on $\mathbb{R} \setminus \mathbb{Q}$.

Now we will show that f is differentiable at 0. Let $\epsilon > 0$ be given and choose $\delta(\epsilon) = \epsilon$. Suppose $x \in \mathbb{R}$ such that $0 < |x| < \delta(\epsilon) = \epsilon$. Then

$$\left| \frac{f(x) - f(0)}{x - 0} - 0 \right| = \left| \frac{f(x)}{x} \right|$$

If $x \in \mathbb{Q}$ we have $f(x) = x^2$, hence $\left| \frac{f(x)}{x} \right| = |x| < \delta = \epsilon$. If $x \in \mathbb{R} \setminus \mathbb{Q}$, then f(x) = 0, hence $\left| \frac{f(x)}{x} \right| = 0 < \epsilon$. Thus we have f'(0) = 0.

3. Consider the sequence of functions

$$f_k(x) = \frac{x^k(\sin(kx^2+1) + \cos(\pi - 5x))}{k!}.$$

Prove that the series $\sum_{k=0}^{\infty} f_k$ converges uniformly on any interval of the form [-M, M] in \mathbb{R} .

Proof. First let $x \in [-M, M]$ for some $M \geq 0$. Then note that

$$f_k(x) = \frac{x^k (\sin(kx^2 + 1) + \cos(\pi - 5x))}{k!}$$

$$\leq \frac{2x^k}{k!}$$

$$\leq \frac{2|x|^k}{k!}$$

$$\leq \frac{2M^k}{k!}.$$

We'll employ the Weierstrass M-Test to show that $\sum_{k=0}^{\infty} f_k(x)$; that is we'll show that $\sum_{k=0}^{\infty} \frac{2M^k}{k!}$ is convergent. First note that the Taylor expansion of e^x is:

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}, x \in \mathbb{R}$$

So that $\sum_{k=0}^{\infty} \frac{2M^k}{k!} = 2\sum_{k=0}^{\infty} \frac{M^k}{k!} = 2e^M$. Thus, by the Weierstrass M-Test, we have $\sum_{k=0}^{\infty} f_k(x)$ is converges uniformly on [-M, M].

4. A function $f: \mathbb{R} \to \mathbb{R}$ is Lipschitz on a set $A \subseteq \mathbb{R}$ if there exists a constant $M \geq 0$ such that $|f(x) - f(y)| \leq M|x - y|$ for all $x, y \in A$.

4.1. Assume that f is a differentiable function on \mathbb{R} and let f' be continuous on [a,b]. Prove that f is Lipschitz on [a,b].

Proof. Assume our hypothesis of f being differentiable on \mathbb{R} and f' continuous on [a,b]. First note for any $x,y\in [a,b]$ such that x< y, that f is differentiable on (x,y) and f' is continuous on [x,y]. Then by the Mean Value Theorem for any $x,y\in [a,b]$, there's a $c\in (x,y)$ such that $f(y)-f(x)=f'(c)(y-x)\Longrightarrow f'(c)=\frac{f(y)-f(x)}{y-x}$. Moreover, by the fact that f' is continuous on [a,b] and that [a,b] is closed and bounded hence must be compact by the Hiene-Borel-Weierstrass Theorem, f'([a,b]) must also be compact, because the images of compact sets under continuous functions must also be compact. Hence f'([a,b]) is bounded, so there exists a $M\geq 0$, such that $|f'(x)|\leq M$ for all $x\in [a,b]$. So that for any $x,y\in [a,b]$ there exists $c\in (x,y)$ such that

$$f'(c) = \frac{f(y) - f(x)}{y - x}$$

$$\leq \frac{|f(y) - f(x)|}{y - x}$$

$$= |f'(c)|$$

$$\leq M$$

Thus there exists a $M \ge 0$, such that $|f(y) - f(x)| \le M(y - x)$. Hence f is Lipschitz on [a, b].

4.2. Prove that a Lipschitz function $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous on \mathbb{R} .

Proof. Suppose that f satisfies the Lipschitz condition on \mathbb{R} . Then there exists a $M \geq 0$ such that $|f(y) - f(x)| \leq M|y - x|, x, y \in \mathbb{R}$.

We wish to show that f is uniformly continuous on \mathbb{R} , so let $\epsilon > 0$ and choose $\delta(\epsilon) = \frac{\epsilon}{M}$. Suppose $x, y \in \mathbb{R}$ such that $0 < |y - x| < \delta(\epsilon)$. So we have $|f(y) - f(x)| \le M|y - x| < M\frac{\epsilon}{M} = \epsilon$. Thus f is uniformly continuous on \mathbb{R} .

5.

5.1. State the definition for $f:[a,b] \to \mathbb{R}$ to be Riemann intergratable on [a,b].

Solution. f is Riemann integratable on [a,b], if there exists a $I \in \mathbb{R}$ such that for all $\epsilon > 0$, there exists a partition of [a,b], P_{ϵ} , with partition points $(x_0,...,x_n)$, with $x_0 = a$ and $x_n = b$, so that if P is a refinement of P_{ϵ} , then $|\sum_{k=1}^{n} f(\zeta_k)(x_k - x_{k-1}) - I| < \epsilon$, with $x_{k-1} \le \zeta_k \le x_k$ for $k \in \{1,...,n\}$.

5.2. Define $f:[0,4] \to \mathbb{R}$ to be defined by

$$f(x) = \begin{cases} 1, & x \in [0, 1) \\ 2, & x \in [1, 2) \\ 3, & x \in [2, 3) \\ 4, & x \in [3, 4] \end{cases}$$

Use the definition of Riemann integral to prove that f is Riemann integratable on [0,4].

Proof. Let $\epsilon > 0$ be given and choose $P_{\epsilon} = (0, 1, 2, 3, 4)$ be a partition of [a, b] defined by those partition points. Then for any refinement of P_{ϵ} , call it P, it must be of the form: $P = (0, x_1, ..., 1, ..., 2, ..., 3, ..., x_{n-1}, 4)$; that is, any refinement of a partition must contain the partition's partition points, in this case 0, 1, 2, 3, 4. So that there exists indicies a, b, c, d such that $x_a = 1, x_b = 2, x_c = 3, x_d = 4$. So then

$$\sum_{k=1}^{\infty} f(\zeta_k)(x_k - x_{k-1}) = \sum_{k=1}^{a} 1 \cdot (x_k - x_{k-1})$$

$$+ \sum_{k=a+1}^{b} 2 \cdot (x_k - x_{k-1})$$

$$+ \sum_{k=b+1}^{c} 3 \cdot (x_k - x_{k-1})$$

$$+ \sum_{k=c+1}^{\infty} 4 \cdot (x_k - x_{k-1})$$

$$= 1 + 2 + 3 + 4$$

$$= 10$$

Hence $\left|\sum_{k=1}^{n} f(\zeta_k)(x_k - x_{k-1}) - 10\right| = 0 < \epsilon$. Thus f is Riemann integratable on [a, b].

Winter 2020

6. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous, period function. Prove that the set $f(\mathbb{R})$ is compact. (Recall that a function $f: \mathbb{R} \to \mathbb{R}$ is periodic if there exists a nonzero constant P such that f(x) = f(x + P) for all $x \in \mathbb{R}$.)

Proof. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous periodic with period P, so that for all $x \in \mathbb{R}$, f(x) = f(x+P). To show $f(\mathbb{R})$ is compact we'll use Heine-Borel to prove the equivalent that $f(\mathbb{R})$ is closed and bounded. For any $x \in \mathbb{R}$ we have f(x) = f(x+P), and since [x,x+P] is compact by Heine-Borel, we have that $f(z^*) = \sup\{f(z) : z \in [x,x+P]\}$ and $f(z_*) = \inf\{f(z) : z \in [x,x+P]\}$ exist. So that $f(z_*) \le f(z) \le f(z^*)$ for all $z \in [x,x+P]$ and since f is periodic, we have $f(z_*+P) \le f(z+P) \le f(z^*+P)$, for $z+P \in [x+P,x+2P]$. Repeating this process for [x+(n-1)P,x+nP] we find this is true for any $n \in \mathbb{Z}$, any $c \in \mathbb{R}$ is contained in such an interval, so that f is bounded in \mathbb{R} . Hence $f(\mathbb{R})$ is bounded.

Since $f(\mathbb{R})$ is bounded above by $f(z^*)$ and below $f(z_*)$, we have that the complement of $f(\mathbb{R})$ is: $(-\infty, f_*) \cup (f^*, +\infty)$, an open set. So $f(\mathbb{R})$ is closed in \mathbb{R} .

By Hiene-Borel,
$$f(\mathbb{R})$$
 is compact.

7. Consider the sequence $\{a_n\}$ given by

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}.$$

7.1. Prove that $\{a_n\}$ is increasing.

Proof. We'll show the equivalent statement that $a_{n+1} - a_n \ge 0$, $n \in \mathbb{N}$.

$$a_{n+1} - a_n = \frac{1}{n+2} + \dots + \frac{1}{2n} + \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1} - \dots - \frac{1}{2n}$$

$$= \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1}$$

$$= \frac{(2n+2)(n+1) + (2n+1)(n+1) - (2n+1)(2n+2)}{(n+1)(2n+1)(2n+2)}$$

$$= \frac{2n^2 + 4n + 2 + 2n^2 + 3n + 1 - 4n^2 - 4n - 2n - 2}{(n+1)(2n+1)(2n+2)}$$

$$= \frac{1}{(2n+1)(2n+2)} \ge 0$$

Thus $\{a_n\}$ is increasing.

7.2. Prove that $\{a_n\}$ converges.

Proof. Here we'll use the fact that for a bounded increasing sequence must converge, but won't proof the limit. Note, for $n \in \mathbb{N}$:

$$a_n = \frac{1}{n+1} + \dots + \frac{1}{2n}$$

$$\leq \frac{n}{n+1}$$

$$< 1$$

So $\{a_n\}$ is bounded and increasing, and hence $\lim_{n\to\infty} a_n$ exists and is less than or equal to 1.

8. Let $f: [-1,+1] \to \mathbb{R}$ be continuous. Suppose that f is differentiable on $(-1,0) \cup (0,1)$ and that $\lim_{x\to 0} f'(x) = \alpha$ for some $\alpha \in \mathbb{R}$. Show that f'(0) exists and that $f'(0) = \alpha$.

Proof. We'll use the fact that f is differentiable at c if and only if the limit $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ exists, and that the value of that limit is the derivative, if it exists.

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x}$$

This is an indeterminate form, since $\lim_{x\to 0} x=0$ and $\lim_{x\to 0} f(x)-f(0)=0$, the last following since f is continuous on [-1,1], but f and x are differentiable on $(-1,0)\cup(0,1)$ so that by L'Hopital's rule we have:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} f'(x) = \alpha$$

Therefore, we have f'(0) exists and is exactly α .

9. Consider the function

$$f(x) = \sum_{n=1}^{\infty} \frac{\sin(x^n)}{n^2 x^n}$$

9.1. Prove that f is continuous on $[1, \infty)$.

Proof. We will use the fact that if a sequence of functions on $D \subseteq \mathbb{R}$ converges, all of which are continuous on $D \subseteq \mathbb{R}$, and converge uniformly to a function $f: D \to \mathbb{R}$, that f will be continuous on D.

Here we'll show that the sequence of partial sums $f_n(x) = \sum_{k=1}^n \frac{\sin(x^k)}{k^2x^k}$ is both continuous on $[1,\infty)$ and that it converges uniformly to f, by the Weierstrass M-Test. First, we'll use the fact that $\sin(x), x$ are continuous on \mathbb{R} , for $n \in \mathbb{N}$, so x^n is just the multiplication of x and hence is continuous on \mathbb{R} , so that they're composition: $\sin(x^n)$ is continuous on \mathbb{R} . Similarly, n^2 is a constant for $n \in \mathbb{N}$ and x^n is continuous, so their product is continuous, and since $n^2x^n \neq 0$ for $x \in [1,\infty)$ and $n \in \mathbb{N}$, we have each $\frac{\sin(x^n)}{x^nn^2}$ is continuous for each $n \in \mathbb{N}$. Finally, the addition of continuous functions is continuous so that $f_n(x)$ is continuous.

Now for uniform convergence, we have for $x \in [1, \infty)$:

$$\frac{\sin(x^n)}{n^2 x^n} \le \frac{1}{n^2}$$

 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent p-series, so that by the Weierstrass M-Test $(f_n(x)) \to f(x)$ uniformly on $[1, \infty)$. So by the uniform convergence theorem, f is continuous on $[1, \infty)$.

9.2. Prove that, in fact f is continuous on $(0, \infty)$.

Proof. First, note that the McClaurin Series of $\sin(x)$ is: $\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{2k-1}}{(2k-1)!}$. So that $\sin(x^n) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} (x^n)^{2k-1}}{(2k-1)!} = x^n - \frac{x^3 n}{3!} + \frac{x^{5n}}{5!} - \dots$ Additionally, the radius of convergence is all of \mathbb{R} . This gives us

$$\sin(x^n) = x^n \left(1 - \frac{x^2 n}{3!} + \frac{x^{4n}}{5!} - \dots \right) \le x^n \left(1 + \frac{1}{3!} + \frac{1}{5!} + \dots \right),$$

on $x \in (0,1)$. Additionally note the series $\sum_{k=1}^{n} \frac{1}{(2k-1)!}$ is absolutely convergent by the ratio test:

$$\lim_{n \to \infty} \frac{(2n-1)!}{(2n+1)!} = \lim_{n \to \infty} \frac{1}{(2n+1)2n} = 0$$

So that there's some positive constant c that's the sum of this series: $c = \sum_{n=1}^{\infty} \frac{1}{(2n-1)!}$. So then on $x \in (0,1)$ we have $\sin(x^n) \leq x^n c$.

So Weierstrass M-Test baby:

$$\frac{\sin(x^n)}{x^n n^2} \le \frac{x^n c}{x^n n^2}$$
$$= \frac{c}{n^2}$$

Again $\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$, so $\sum_{n=1}^{\infty} \frac{c}{n^2} < \infty$. Thus by the Weierstrass M-Test, we have that $(f_n) \to f$ uniformly, and thus f is continuous on (0,1). Hence f is continuous on $(0,\infty)$.

10. Let $f:[0,1] \to \mathbb{R}$ be continuous. Prove that

$$\lim_{n\to\infty} \int_0^1 f(x)x^n \ dx = 0$$

Proof. Let $f:[0,1] \to \mathbb{R}$ be continuous. Then since x^n is non-negative on [0,1] for any $n \in \mathbb{N}$, we have that by the first-mean value theorem there exists a $c \in (0,1)$ such that:

$$\int_0^1 f(x)x^n \ dx = f(c)\int_0^1 x^n \ dx = f(c)\frac{x^{n+1}}{n+1}\Big|_0^1 = \frac{f(c)}{n+1}$$

So that $\lim_{n\to\infty}\int_0^1 f(x)x^n\ dx=\lim_{n\to\infty}\frac{f(c)}{n+1}=0$. For the case that f(c)=0, we may use L'Hopital's with n, since x+1 is differentiable with respect to x and f(c) is a constant and thus differentiable with respect to x. $\lim_{n\to\infty}\frac{0}{n+1}=\frac{\lim\limits_{n\to\infty}0}{\lim\limits_{n\to\infty}1}=0$. So that either way $\lim\limits_{n\to\infty}\int_0^1 f(x)x^n\ dx=0$.

Spring 2019

11. Show that the set $\{0\} \cup \{\frac{1}{n} : n \in \mathbb{Z}^+\} \cup \{1 + \frac{1}{n} : n \in \mathbb{Z}^+\}$ is compact using the open-cover definition of compactness.

Proof. Let $\{G_{\alpha}\}_{\alpha\in I}$ be an arbitrary open cover of the set described above with the arbitrary index set I, so that for all $\alpha\in I$, G_{α} is open in \mathbb{R} . Then for some $\delta>0$, $(-\delta,\delta)\subseteq G_{\alpha}$ for some $\alpha\in I$. That is there's a positive constant $\delta>0$ that we can make arbitrarily small to fit it in to some G_{α} , call this set G_0 . This is possible because the standard topology of \mathbb{R} is made up of arbitrary unions of open intervals. So then by the Archimedean principle, there exists a $N\in\mathbb{N}$ such that $0<\frac{1}{N}<\delta$. So for all $n\geq N$ we have $\frac{1}{n}\in(-\delta,\delta)$. So that $\{0,1/N,1/(N+1),\ldots\}\subseteq(-\delta,\delta)$. Additionally there must exist a set in the collection $\{G_{\alpha}\}_{\alpha\in I}$ such that $\frac{1}{N-1}\in G_{\alpha}$, call it G_1 , similarly for $\frac{1}{N-2},\ldots,\frac{1}{N-(N-1)}$. Call this sequence G_2,\ldots,G_{N-1} .

Note for $G_{N-1} \supseteq (1-\epsilon, 1+\epsilon)$, for some $\epsilon > 0$. So again by the Archimedean principle, there's a $M \in \mathbb{N}$ such that $1 < 1 + \frac{1}{M} < 1 + \epsilon$. So that $\frac{1}{m} \in (1-\epsilon, 1+\epsilon)$ for all $m \ge M$, with $m \in \mathbb{N}$. Similarly as before, then there exists $G_{N+1} \in \{G_{\alpha}\}_{\alpha \in I}$ such that $1 + \frac{1}{M-1} \in G_{N+1}$, so on until $1 + \frac{1}{M-(M-1)} \in G_{M+N}$.

So that any open cover $\{G_{\alpha}\}_{{\alpha}\in I}$ of the set $\{0\}\cup\{\frac{1}{n}:n\in\mathbb{N}\}\cup\{1+\frac{1}{n}|n\in\mathbb{N}\}\subseteq\bigcup_{n=1}^{M+N}G_n$ admits a finite subcover. Thus the set is compact.

12. Show that if (a_n) is a decreasing sequence of positive numbers and $\sum_{n=1}^{\infty} a_n$ diverges, then

$$\lim_{n \to \infty} \frac{a_1 + a_3 + \dots + a_{2n-1}}{a_2 + a_4 + \dots + a_{2n}} = 1$$

13. Show that $\sqrt{1-x} \le 1 - \frac{x}{2} - \frac{x^2}{8}$ for all $x \in [0,1]$.

Proof. First note that $\sqrt{1-x}$ is a continuous function on [0,1] because it can be constructed from sums of and compositions of $1,x,x^{1/2}$, and it's for all $x\in[0,1)$ it's derivative exists on [0,x). By Taylor's theorem, for all $x\in(0,1)$, there exists a $\gamma\in(0,x)$ for which $\sqrt{1-x}=\frac{f(0)}{0!}x^0+\frac{f'(0)}{1!}x^1+\frac{f''(0)}{2!}x^2+O(x^3)=1-\frac{x}{2}-\frac{x^2}{8}-\frac{\gamma^{-5/2}}{3!}x^3$. Both $-x,-x^2,-x^3$ are monotonically increasing decreasing on [0,1], hence $\sqrt{1-x}=1-\frac{x}{2}-\frac{x^2}{8}-\frac{\gamma^{-5/2}}{3!}x^3\leq 1-\frac{x}{2}-\frac{x^2}{8}$.

14. Show that the following series converges uniformly on $(r, +\infty)$ for any real number r > 1.

$$\sum_{n=1}^{\infty} \frac{n \ln(1+nx)}{x^n}$$

Proof. Let $r \in (1,\infty)$. Then note that for any $x \in (r,\infty)$ we have that the derivative of $\frac{\ln(1+nx)}{x^n}$ is negative if and only if $\frac{n}{1+nx}x^n - \frac{n\ln(1+nx)}{x^{n-1}} < 0 \iff \frac{1}{(1+nx)x} < \ln(1+nx) \iff 1 < x(1+nx)\ln(1+nx)$ which is certainly true for $x \in (r,\infty), n \in \mathbb{N}$. So then $n\frac{\ln(1+nx)}{x^n} \leq \frac{n\ln(1+nr)}{r^n}$. So we will show that the series $\sum_{n=1}^{\infty} \frac{n\ln(1+nr)}{r^n} < \infty$ and employ the Weierstrass M-Test to show that this series converges uniformly on (r,∞) .

We will show convergence through the ratio test:

$$\lim_{n \to \infty} \frac{(n+1)\ln(1+(n+1)r)}{r^{n+1}} \frac{r^n}{n\ln(1+nr)}$$

$$= \frac{1}{r} \lim_{n \to \infty} (1+\frac{1}{n}) \frac{\ln(1+(1+n)r)}{\ln(1+nr)}$$

We'll focus now on the last piece of the equation above:

$$\lim_{n \to \infty} \frac{\ln(1 + (1+n)r)}{\ln(1+nr)}$$

$$\leq \lim_{n \to \infty} \frac{\ln((n+1)(1+r))}{\ln(1+nr)}$$

$$\leq \lim_{n \to \infty} \frac{\ln(n+1)}{\ln(1+nr)} + \frac{\ln(r+1)}{\ln(1+nr)}$$

$$\leq \lim_{n \to \infty} \frac{\ln\left(1 + \frac{1}{n}\right)}{\ln\left(r + \frac{1}{n}\right)} + 0$$

$$= 0$$

Thus $\frac{1}{r}\lim_{n\to\infty}(1+\frac{1}{n})\cdot 0=0$ and by the Ratio test $\sum_{n=1}^{\infty}\frac{n\ln(1+nr)}{r^n}<\infty$ for any $r\in(1,\infty)$ and by the Weierstrass M-test, $\sum_{n=1}^{\infty}\frac{n\ln(1+nx)}{x^n}$ is uniformly convergent on (r,∞) for any $r\in(1,\infty)$.

15.

15.1. State a definition for a real valued function $f:[a,b]\to\mathbb{R}$ to be Riemann integratable.

Solution. f is Reimann integratable on [a,b] if there exists a $I \in \mathbb{R}$ such that for all $\epsilon > 0$ there exists a partition $P_{\epsilon} = (x_0, x_1, ..., x_N)$ of [a,b] such that any refinement of P_{ϵ} , call it $Q = (x_0, ..., x_1, ..., x_N, ..., x_M)$, satisfies

$$\left| \sum_{n=1}^{M} f(\zeta_n)(x_n - x_{n-1}) - I \right| \le \epsilon$$

for any choice of $\zeta_n \in [x_{n-1}, x_n]$.

15.2. Let $f:[0,1] \to \mathbb{R}$ be Thomae's function, defined by

$$f(x) = \begin{cases} \frac{1}{n}, & \text{if } x = \frac{m}{n} \text{ for relatively prime natural numbers } m \text{ and } n \\ 0, & \text{otherwise} \end{cases}$$

Show that f is Riemann integratable.

Proof. Let $\epsilon > 0$ and I = 0 from the above definition. Then define the set $B = \{1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, ..., \frac{1}{N}, ..., \frac{N-1}{N}\}$. Note that by the definition of Thomae's function, if $x \notin B_N$, then $f(x) \leq \frac{1}{N}$ and if $x \in B_N$, then there are at most 2N outputs larger than f(x). Define the partition $P_{\epsilon} = (x_0, ..., x_N)$ such that $\frac{1}{N} < \frac{\epsilon}{2}$ and that $x_n - x_{n-1} < \frac{\epsilon}{4\#B}$. So then, we'll break the set $\{\zeta_i : i \in \{1, ..., M\} \text{ and } \zeta_i \in [x_{i-1}, x_i]\}$ into two distinct sets, $\{\zeta_i \in B : i \in \{1, ..., M\}$ and $\zeta_i \in [x_{i-1}, x_i]\}$ and it's complement relative to the tagged set. So that we define the set of indicies as N_1 and N_2 , respectively, so that $\#N_1 + \#N_2 = \#M$. That is, for $n \in N_1$, $\zeta_n \in B$ and $n \in N_2$, $\zeta_n \notin B$.

$$|\sum_{n=1}^{M} f(\zeta)(x_n - x_{n-1})| = \sum_{n \in N_1} f(\zeta_n)(x_n - x_{n-1}) + \sum_{n \in N_2} f(\zeta_n)(x_n - x_{n-1})$$

$$\leq \sum_{n \in N_1} f(\zeta_n)(x_n - x_{n-1}) + \sum_{n \in N_2} \frac{(x_n - x_{n-1})}{N}$$

$$\leq 1(2\#B)(x_{Max} - x_{x_{Max-1}}) + \frac{1}{N}$$

$$\leq \frac{2\#B\epsilon}{4\#B} + \frac{\epsilon}{2} < \epsilon$$

Therefore Thomae's function is Riemann integratable on [0,1] with integral equal to 0.

Spring 2018

16. Prove that the series $\sum_{n=1}^{\infty} \frac{n^2}{3^n}$ converges by showing that the sequence of partial sums is Cauchy.

Proof. First, playing around with geometric sums. Note that the geometric partial sums, for $|x| \in (0,1)$, are given as: $\sum_{n=1}^{n} x^{k-1} = \frac{1-x^{n+1}}{1-x}$. So that we get the following partial sums for $|x| \in (0,1)$:

$$\begin{split} \sum_{k=1}^n x^k &= \frac{x - x^{n+2}}{1 - x} \\ \sum_{k=1}^n k x^{k-1} &= \frac{1 - (n+2)x^{n+1}}{1 - x} + \frac{x - x^{n+2}}{1 - x} \\ \sum_{k=1}^n k x^k &= \frac{x - (n+2)x^{n+2}}{1 - x} + \frac{x^2 - x^{n+3}}{1 - x} \\ \sum_{k=1}^n k^2 x^{k-1} &= \frac{1 - (n+2)^2 x^{n+1}}{1 - x} + \frac{x - (n+2)x^{n+2}}{(1 - x)^2} + \frac{2x - (n+3)x^{n+2}}{(1 - x)^3} + \frac{2x^2 - 2x^{n+3}}{(1 - x)^3} \\ \sum_{k=1}^n k^2 x^k &= \frac{x - (n+2)^2 x^{n+2}}{1 - x} + \frac{x^2 - (n+2)x^{n+3}}{(1 - x)^2} + \frac{2x^2 - (n+3)x^{n+2}}{(1 - x)^2} + \frac{2x^3 - 2x^{n+4}}{(1 - x)^3}. \end{split}$$

Next we'll use the final piece in the above, to get:

$$\sum_{k=1}^{n} k^2 x^k \le \frac{x}{1-x} + \frac{x^2}{(1-x)^2} + \frac{2x^2}{(1-x)^2} + \frac{2x^3}{(1-x)^3}$$

Now the proof. Let $\epsilon > 0$ and choose $N(\epsilon) \in \mathbb{N}$ to be an natural number. Suppose $m \geq n \geq N(\epsilon)$, then:

$$\left| \sum_{k=1}^{m} k^2 \frac{1}{3^k} - \sum_{k=1}^{n} k^2 \frac{1}{3^k} \right| = \left| \sum_{k=1}^{m} \frac{k^2}{3^k} - \frac{3}{2} + \frac{3}{2} - \sum_{k=1}^{n} \frac{k^2}{3^k} \right|$$

$$\leq \left| \sum_{k=1}^{m} \frac{k^2}{3^k} - \frac{3}{2} \right| + \left| \sum_{k=1}^{n} \frac{k^2}{3^k} - \frac{3}{2} \right|$$

$$\leq \left| \frac{3}{2} - \frac{3}{2} \right| + \left| \frac{3}{2} - \frac{3}{2} \right|$$

$$= 0 < \epsilon$$

Thus the series $\sum_{n=1}^{\infty} \frac{n^2}{3^n}$ is Cauchy.

17.

17.1. Let (f_n) be a sequence of functions defined on $A \subseteq \mathbb{R}$ that converges uniformly on A to a function f. Prove that if each f_n is continuous at $c \in A$, then f is continuous at c.

Proof. Let (f_n) be a sequence of functions, such that $f_n: A \subseteq \mathbb{R} \to \mathbb{R}$, converge uniformly to f on A. So that for all $\epsilon > 0$, there exists a $N(\epsilon) \in \mathbb{N}$ such that if $n \geq N(\epsilon)$ and $x \in A$, then $|f_n(x) - f(x)| < \epsilon$. Additionally, suppose that f_n is continuous at $c \in A$. So that for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $0 < |x - c| < \delta$, then $|f_n(x) - f_n(c)| < \epsilon$ for any $n \in \mathbb{N}$.

Now let $\epsilon > 0$. Choose $N(\epsilon)$, such that if $n \geq N(\epsilon)$ and $x \in A$, then $|f_n(x) - f(x)| < \frac{\epsilon}{3}$. Now fix n to be any $n \geq N(\epsilon)$. Choose $\delta(\epsilon) > 0$ be such that $|f_n(x) - f_n(c)| < \frac{\epsilon}{3}$. Suppose $|x - c| < \delta(\epsilon)$ Then:

$$|f(x) - f(c)| = |f(x) - f_n(x) + f_n(x) + f_n(c) - f_n(c) - f(c)|$$

$$\leq |f(x) - f_n(x)| + |f_n(x) - f_n(c)| + |f_n(c) - f(c)|$$

$$\leq \frac{\epsilon}{3} (\text{uniform convergence}) + \frac{\epsilon}{3} (\text{continuity of } f_n \text{ at } c) + \frac{\epsilon}{3} (\text{uniform convergence})$$

$$= \epsilon$$

Thus f is continuous at $c \in A$.

17.2. Give an example to show that the result above is false if we only assume that (f_n) converges pointwise to f on A.

Solution. Consider the function $f_n:[0,1]\to\mathbb{R}$ given by $f_n:x\mapsto x^n$, for $n\in\mathbb{N}$. I'll show that this function converges pointwise to the piecewise function $f(x)=\begin{cases} 0 & 0\leq x<1\\ 1 & x=1 \end{cases}$, that each f_n is continuous on [0,1], but that f is discontinuous at x=1.

Pointwise Convergence Let $\epsilon > 0$ and choose $N(x, \epsilon)$ such that $x^{N(\epsilon, x)} < \epsilon$. Suppose $x \in [0, 1)$ and $n \geq N(\epsilon, x)$, then

$$|f(x) - f_n(x)| \le |x^n|$$

 $\le |x^{N(\epsilon)}| < \epsilon.$

Finally for x = 1:

$$|1 - f_n(1)| = 0 < \epsilon$$

Thus $(f_n) \to f$, pointwise, on [0,1].

Continuity of f_n Note that the function f(x) = x is continuous on [0,1] and multiplication of continuous functions preserves continuity, so that x^n is continuous on [0,1].

Discontinuity of f at x=1 We'll show this by giving a sequence that converges to 1 on [0,1], but whose image doesn't converge to f(1). Consider the sequence $(a_n)=(1-\frac{1}{n})\to 1$, but under f, $f(a_n)=f\left(1-\frac{1}{n}\right)=0$, for all $n\in\mathbb{N}$. So that $(a_n)\to 1$ but $(f(a_n))\not\to f(1)$.

18. Consider the function

$$f(x) = \sum_{k=1}^{\infty} \frac{x}{k(1+kx^2)}$$

18.1. Fix $\epsilon > 0$. Prove that f is continuous for $|x| \geq \epsilon$.

Proof. Note that by the previous problem, that if $(f_n) \to f$ uniformly, and f_n is continuous on a set $A \subseteq \mathbb{R}$, then f is continuous on A. Here I'll employ this by showing that the series converges uniformly and that each partial sum is continuous on $|x| \ge \epsilon$, so that f is continuous on $|x| \ge \epsilon$.

First, suppose $\epsilon \leq |x|$. Note that the partial sums of the series: $\sum_{k=1}^n \frac{x}{k+k^2x^2}$ are continuous on $|x| \geq \epsilon$, since x is a continuous function, $k+k^2x^2$ is a continuous function for any given $k \in \{1,...,n\}$ and never attains the value of 0. So since the sum of and division of such functions results in continuous functions each s_n is continuous on all of \mathbb{R} .

To show that the series converges uniformly, we'll employ the Weierstrass M-Test:

$$\frac{x}{k+k^2x^2} \le \frac{|x|}{k+k^2x^2}$$

$$\le \frac{|x|}{k^2x^2}$$

$$\le \frac{1}{k^2|x|}$$

$$\le \frac{1}{k^2\epsilon}$$

We know $\frac{1}{\epsilon} \sum_{k=1}^{\infty} \frac{1}{k^2}$ converges since it's a p-series with p > 1. Hence $\sum_{k=1}^{\infty} \frac{x}{k(1+kx^2)}$ converges uniformly on $|x| \ge \epsilon$. And thus by the previous problem, f is continuous on $|x| \ge \epsilon$.

18.2. Prove that, in fact, f is continuous on \mathbb{R} .

Proof. First, note that for any $x \in \mathbb{R} \setminus \{0\}$ we can choose an ϵ satisfying the previous condition. The only such number we cannot do this for is x = 0. So we'll show that f_n is continuous on $\{0\}$, that it converges uniformly on this set, so that f is continuous at x = 0.

Note that $f_n(0) = 0$ for all $n \in \mathbb{N}$, so that f_n is continuous on $\{0\}$. Moreover $\frac{x}{k(1+kx^2)} \leq 0$ for all $k \in \mathbb{N}$ and $x \in \{0\}$, and since $\sum_{n=1}^{\infty} 0 = 0$, we have by the Weierstrass M-Test, the unsuprising result that f_n converges uniformly to f = 0 on $\{0\}$. Hence by the previous result f is continuous at x = 0, conjoined with the previous problem this gives us that f is continuous on \mathbb{R} .

19. Suppose $f: \mathbb{R} \to \mathbb{R}$ is differentiable and that |f'(x)| < 1 for all $x \in \mathbb{R}$.

19.1. Prove that f has at most one fixed point.

Proof. Assume that $f: \mathbb{R} \to \mathbb{R}$ is differentiable with |f'(x)| < 1 for all $x \in \mathbb{R}$. For sake of contradiction, we'll suppose there exists $c, d \in \mathbb{R}$ such that f(c) = c and f(d) = d, with $d \neq c$, and without loss of generality assume that d > c. We then have, f(d) - f(c) = d - c so that $\frac{f(d) - f(c)}{d - c} = 1$. But by the mean value theorem we have that there exists a $z \in (c, d)$ such that $f(d) - f(c) = f'(z)(d - c) \implies f'(z) = \frac{f(d) - f(c)}{d - c} = 1$. A contradiction of our hypothesis that |f'(x)| < 1 for all $x \in \mathbb{R}$.

19.2. Show that the following function satisfies |f'(x)| < 1 for all $x \in \mathbb{R}$ but has no fixed points

$$f(x) = \ln(1 + e^x)$$

Solution. Taking the derivative of f(x):

$$f'(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$

We have $e^{-x} > 0$ for all $x \in \mathbb{R}$, hence: $1 < 1 + e^{-x} \implies \frac{1}{1 + e^{-x}} < 1$ for all $x \in \mathbb{R}$.

To show there are no fixed points of the function, we'll assume there is at least 1 and show this leads to a contradiction. Let f(x) = x for some $x \in \mathbb{R}$, so that

$$\ln(1 + e^x) = x$$

So we have $e^x = 1 + e^x \implies 1 = 0$, a beautiful contradiction. Thus f has no fixed points on \mathbb{R} .

20.

20.1. State the definition for $f:[a,b] \to \mathbb{R}$ to be Riemann integratable on [a,b].

Solution. Define the lower (upper) Reimann sum to be defined on a partition $P = (x_0 = a, ..., x_n = b)$ such that the lower Reimann sum is: $L(P; f, x) = \sum_{k=1}^{n} m_k (x_k - x_{k-1})$ with $m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$. The upper Reimann sum: $U(P; f, x) = \sum_{k=1}^{n} M_k (x_k - x_{k-1})$ with $M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}$. So we define the lower Riemann integral as $(L) \int_a^b f \, dx = \sup\{L(P; f, x) : P \text{ is any partition of } [a, b]\}$ and $(U) \int_a^b f \, dx = \inf\{U(P; f, x) : P \text{ is any partition of } [a, b]\}$.

f is Riemann integratable if and only if (U) $\int_a^b f \, dx = (L) \int_a^b f \, dx = \int_a^b f \, dx$ with the latter being the integral of f on [a,b].

20.2. Use your definition from (a) to prove that if $f:[a,b] \to \mathbb{R}$ is continuous and $\int_a^b |f(x)| dx = 0$, then f(x) = 0 for all $x \in [a,b]$.

Proof. Suppose that $f:[a,b]\to\mathbb{R}$ is continuous and $\int_a^b |f(x)|\ dx=0$.

First, note that f being continuous on [a,b] implies |f| is continuous on [a,b]. Moreover, by the Heine-Borel theorem and the fact that continuous functions send compact sets to compact sets, we have that |f| is bounded on the interval [a,b]. So that for any partition $P=(x_0=a,...,x_N=b)$, suc that $a=x_0 < x_1 < ... < x_n=b$, we'll have for the function |f|:

$$0 \le L(P; f, x) = \sum_{k=1} m_k (x_k - x_{k-1}) \le U(P; f, x) = \sum_{k=1} M_k (x_k - x_{k-1}) \le 0$$

Following from the fact that $x_k - x_{k-1} > 0$ and $|f| \ge 0$. This gives us $\sum_{k=1}^n m_k(x_k - x_{k-1}) = \sum_{k=1}^n M_k(x_k - x_{k-1}) = 0$, so that $\sum_{k=1}^n (M_k - m_k)(x_k - x_{k-1}) = 0$. Since $(x_k - x_{k-1}) \ne 0$ by the definition of our partition, we have that for each $k \in \{1, ..., n\}$, $M_k - m_k = 0 \implies M_k = m_k$. And since $\sum_{k=1}^n M_k(x_k - x_{k-1}) = 0$, with all the terms positive and $x_k \ne x_{k-1}$ for all $k \in \{1, ..., n\}$ we have each

 $M_k = 0 = m_k$ for all k. So |f(x)| = 0 on all $x \in [x_{k-1}, x_k]$ for all $k \in \{1, ..., n\}$, implying that |f(x)| = 0on [a, b]. This gives us:

$$|f(x)| = 0$$
$$\sqrt{(f(x))^2} = 0$$
$$(f(x))^2 = 0$$
$$f(x) = 0$$

for all $x \in [a, b]$.

Spring 2010

21. Let K be a compact subset of \mathbb{R} and let f be a continuous function from K into \mathbb{R} . Use the open cover definition of compactness to show that f(K) is compact.

Proof. Let $K \subseteq \mathbb{R}$ be compact and $f: K \to \mathbb{R}$.

Then for any open cover of K, $\{O_{\alpha}\}_{{\alpha}\in I}$ for an arbitrary index set I, there exists a finite subcover of

So let $\bigcup_{\alpha \in I} O_{\alpha}$ be an open cover of f(K). Then $f(K) \subseteq \bigcup_{\alpha \in I} O_{\alpha \in I}$. Then we'll show $K \subseteq f^{-1}\left(\bigcup_{\alpha \in I} O_{\alpha}\right)$. Let $x \in K$ so that $f(x) \in f(K)$, hence $f(x) \in \bigcup_{\alpha \in I} O_{\alpha}$. So that there exists a O_{α} such that $f(x) \in O_{\alpha}$. Thus $x \in f^{-1}(O_{\alpha}) \subseteq f^{-1}(\bigcup_{\alpha \in I} O_{\alpha})$. Hence $K \subseteq f^{-1}(\bigcup_{\alpha \in I} O_{\alpha})$. Note $\bigcup_{\alpha \in I} O_{\alpha}$ is an open set in \mathbb{R} , because it's the union of open sets O_{α} . So that since f is continuous $f^{-1}(\bigcup_{\alpha \in I} O_{\alpha})$ is open in \mathbb{R} . Furthermore, we'll show that $f^{-1}(\bigcup_{\alpha \in I} O_{\alpha}) \subseteq \bigcup_{\alpha \in I} f^{-1}(O_{\alpha})$. Take $g \in f^{-1}(\bigcup_{\alpha \in I} O_{\alpha})$. Then there exists a $g \in f^{-1}(O_{\alpha})$ such that $g \in f^{-1}(O_{\alpha})$. But there must exists a $g \in f^{-1}(O_{\alpha})$ for some $g \in f^{-1}(O_{\alpha})$ and that $g \in f^{-1}(O_{\alpha})$ for some $g \in f^{-1}(O_{\alpha})$ and that $g \in f^{-1}(O_{\alpha})$ so that $g \in f^{-1}(O_{\alpha})$ is an open cover of $g \in f^{-1}(O_{\alpha})$ and that $g \in f^{-1}(O_{\alpha})$ is an open cover of $g \in f^{-1}(O_{\alpha})$ and that $g \in f^{-1}(O_{\alpha})$ is an open cover of $g \in f^{-1}(O_{\alpha})$ and that $g \in f^{-1}(O_{\alpha})$ is an open cover of $g \in f^{-1}(O_{\alpha})$ and that $g \in f^{-1}(O_{\alpha})$ is an open cover of $g \in f^{-1}(O_{\alpha})$ so that $g \in f^{-1}(O_{\alpha})$ is an open cover of $g \in f^{-1}(O_{\alpha})$ so that there must exist a finite subcover of $g \in f^{-1}(O_{\alpha})$ is an open cover of $g \in f^{-1}(O_{\alpha})$ so that there must exist a finite subcover of $g \in f^{-1}(O_{\alpha})$ is an open cover of $g \in f^{-1}(O_{\alpha})$. $K \subseteq \bigcup_{k=1}^n O_{\alpha_k}$. We'll show that $f(K) \subseteq f(\bigcup_{k=1}^n O_{\alpha_n}) \subseteq \bigcup_{k=1}^n f(O_{\alpha_n})$. Take $y \in f(K)$, then there exists a $x \in K \subseteq \bigcup_{k=1}^n O_{\alpha_k}$, hence $y \in f(\bigcup_{k=1}^n O_{\alpha_k})$. So $x \in \bigcup_{k=1}^n O_{\alpha_k}$, so that there exists a O_{α_k} such that $x \in O_{\alpha_k}$.

Hence $y = f(x) \in \bigcup_{k=1}^{n} O_{\alpha_k}$. And we have $f(K) \subseteq \bigcup_{k=1}^{n} O_{\alpha_k}$ and we have f(K) is compact in \mathbb{R} .

22. Let $\{a_n\}$ be a sequence of real numbers which converges to a. Prove

$$\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = a.$$

Hint: If $1 \le j \le n$ and $b_1, b_2, ..., b_n \in \mathbb{R}$, then $b_1 + b_2 + ... + b_n = (b_1 + ... + b_j) + (b_{j+1} + ... + b_n)$.

Proof. Let $\{a\}$ be a sequence of real numbers converging to a.

Let $\epsilon > 0$ be given. Choose $N(\epsilon) \in N$ such that $|a_n - a| < \epsilon/2$ whenever $n \ge N(\epsilon)$. Suppose $n \ge N(\epsilon)$, and let $b = \sup\{|a_n - a| : 1 \le n \le N(\epsilon)\}$, then

$$\left| \frac{a_1 + \dots + a_n}{n} - a \right| \le \frac{1}{n} |(a_1 - a) + \dots + (a_n - a)|$$

$$\le \frac{1}{n} |(a_1 - a) + \dots + (a_{N(\epsilon)} - a) + \dots + (a_n - a)|$$

$$\le \frac{|a_1 - a| + \dots + |a_{N(\epsilon)} - a|}{n} + \frac{|a_{N(\epsilon)+1} - a| + \dots + |a_n - a|}{n}$$

$$\le \frac{N(\epsilon)b}{n} + \frac{(n - N(\epsilon))\frac{\epsilon}{2}}{n}.$$

For large values of $n \ge N(\epsilon)$ we can impose $\frac{N(\epsilon)}{n} < \frac{\epsilon}{2b}$, so that $\left| \frac{a_1 + \ldots + a_n}{n} - a \right| < \epsilon$. Hence $\lim_{n \to \infty} \frac{a_1 + \ldots + a_n}{n} = \frac{1}{n}$ a, where $\lim_{n\to\infty} a_n = a$.

23. Let $f:[a,b] \to \mathbb{R}$ be a continuous function and differentiable on (a,b), with f'(x) > 0 for all $x \in (a, b)$.

23.1. Show f has an inverse defined on [f(a), f(b)].

Proof. We'll show that f is invertible on [a,b] so that the inverse has domain [f(a),f(b)]. Let f(x)=f(y) for some $x,y\in [a,b]$. Without loss of generality, assume $x\leq y$. Then since f is continuous on $[x,y]\subseteq [a,b]$ and differentiable on (x,y), so by Rolle's theorem there exists a $c\in (x,y)$ such that f'(c)=0, a contradiction since f'>0 on (a,b). So that $f(x)\neq f(y)$ for all $x,y\in [a,b]$ hence f is 1-1 on [a,b]. Moreover, f will always be onto f([a,b]). So that f is invertible on $[a,b]\to [f(a),f(b)]$.

23.2. Prove that f^{-1} is differentiable on (f(a), f(b)) and $(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$.

Proof. Let $f:[a,b]\to\mathbb{R}$ be continuous, and differentiable on (a,b), with f'(x)>0 for all $x\in(a,b)$. Then we have $f^{-1}(y)$ exists on [f(a),f(b)]. So show it's differentiable on all $c\in(f(a),f(b))$ we'll show that $\lim_{y\to c}\frac{f^{-1}(y)-f^{-1}(c)}{y-c}$ exists for all $c\in(f(a),f(b))$ and is equal to $\frac{1}{f'(f^{-1}(y))}$. First note that

$$\frac{1}{f'(f^{-1}(c))} = \frac{1}{\lim_{f^{-1}(y) \to f^{-1}(c)} \frac{f(f^{-1}(y)) - f(f^{-1}(c))}{f^{-1}(y) - f^{-1}(c)}} = \frac{1}{\lim_{x \to d} \frac{f(x) - f(d)}{x - d}}$$

This is guranteed to exist since f'(x) > 0 for all $x \in (a,b)$ and f'(x) is differentiable on (a,b). Then:

$$(f^{-1})'(c) = \lim_{f^{-1}(y) \to f^{-1}(c)} \frac{f^{-1}(y) - f^{-1}(c)}{y - c}$$

$$= \lim_{x \to d} \frac{x - d}{f(x) - f(d)}$$

$$= \frac{1}{\lim_{x \to d} \frac{f(x) - f(d)}{x - d}}$$

$$= \frac{1}{f'(f^{-1}(y))}$$

The result that we desired.

24.

24.1. State the definition for a function f to be Riemann integratable on [0,1].

Solution. Let $P=(x_0=a,...,x_n=b)$ be a partition of [a,b], the upper/lower Riemann sums are defined as $U(P;f,x)=\sum_{k=1}^n M_k(x_k-x_{k-1})$ and $L(P;f,x)=\sum_{k=1}^n m_k(x_k-x_{k-1})$, respectively, where $m_k=\inf\{f(x):x\in[x_{k-1},x_k]\}$ and $M_k=\sup\{f(x):x\in[x_{k-1},x_k]\}$. Then we define the Riemann integral in terms of the upper/lower Riemann integrals:

$$(U)$$
 $\int_a^b f \ dx = \inf\{U(P; f, x) : P \ is \ any \ partition \ of [a, b]\}$

and

$$(L) \int_a^b f \ dx = \sup \{ L(P; f, x) : P \ is \ any \ partition \ of [a, b] \}$$

So that f is Riemann integratable if and only if $(U) \int_a^b f \ dx = (L) \int_a^b f \ dx$ with the integral value being that shared value.

24.2. *Let*

$$f(x) = \begin{cases} -1, & \text{if } x \in \mathbb{Q} \\ 1, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Use the definition stated in part (a) to prove f isn't Riemann integratable on [0,1].

Proof. Let $P=(x_0=0,...,x_N=1)$ be any partition of [0,1]. Then since $\mathbb Q$ is dense in $\mathbb R$ as well as $\mathbb R\setminus\mathbb Q$ we have that $M_k=1$ and $m_k=0$ for all $k\in\{1,...,N\}$, so that $L(P;f,x)=\sum_{k=1}^N m_k(x_k-x_{k-1})=0$ and $U(P;f,x)\sum_{k=1}^N M_k(x_k-x_{k-1})=1$, for any partition. Thus we have $(L)\int_0^1 f\ dx=0$ and $(U)\int_0^1 f\ dx=1$, so that f is not Riemann integratable on [0,1].

24.3. Let

$$g(x) = \begin{cases} x, & \text{if } 0 \le x < 1\\ x+1, & \text{if } 1 \le x \le 2 \end{cases}$$

Use the definition in part (a) to prove that g is Riemann integratable on [0,2].

Proof. Let g be the function defined above.

Consider the partition of [a,b], $(0,\frac{1}{N},...,1,\frac{N+1}{N},...,2)$. So that $L(P;f,x)=\sum\limits_{k=1}^{2N}m_k(x_k-x_{k-1})=\frac{1}{N}\sum\limits_{k=1}^{2N}m_k=\frac{1}{N}\sum\limits_{k=1}^{N}\frac{k-1}{N}+\frac{1}{N}\sum\limits_{k=N+1}^{2N}(1+\frac{k-1}{N})=\frac{N-1}{N}+\frac{1}{N}\sum\limits_{k=1}^{2N}\frac{k-1}{N}=1-\frac{1}{N}+\frac{2N(2N-1)}{2N^2}=1-\frac{1}{N}+\frac{2N-1}{N}=1-\frac{1}{N}+\frac{2N}{N}=1-\frac{2N}{N}=1-\frac{1}{N}+\frac{2N}{N}=1-\frac{2N}{N}=1-\frac{2N}{N}=1-\frac{2N}{N}=1-\frac{2N}{N}=1-\frac{2N}{N}=1-\frac{2N}{N}=1-\frac{2N}{N}=1-\frac{2N}{N}=1-\frac{2N}{N}=1-\frac{2N}{N}=1-\frac{2N}{N}=1-\frac{2N}{N}=1-\frac{2N}{N}=1-\frac{2N}{N}=1-\frac{2$

$$U(P; f, x) = \frac{1}{N} \sum_{k=1}^{N-1} \frac{k}{N} + \frac{1}{N} \sum_{k=N}^{2N} (1 + \frac{k}{N})$$

$$= \frac{N}{N} + \frac{1}{N} \sum_{k=1}^{2N} \frac{k}{N}$$

$$= 1 + \frac{2N(2N+1)}{2N^2}$$

$$= 1 + 2 + \frac{1}{N}$$

Taking $N \to \infty$ we have that $(U) \int_0^2 f \ dx \le 3$. Thus

$$(U) \int_{0}^{2} f \ dx = (L) \int_{0}^{2} f \ dx$$

and f is Riemann integratable on [0, 2].

25.

25.1. Let $\{f_k\}$ be a sequence of real-valued functions defined on a set $E \subseteq \mathbb{R}$. State the definition for the series $\sum_{k=0}^{\infty} f_k(x)$ to converges uniformly on E.

Solution. $(\sum_{k=1}^n f_k) \to f$ uniformly on D if and only if for all $\epsilon > 0$, there exists a $N(\epsilon) \in \mathbb{N}$ such that if $x \in D$ and $n \geq N(\epsilon)$, then $|\sum_{k=1}^n f_k(x) - f(x)| < \epsilon$.

25.2. Use the definition stated in (a) to prove that $\sum_{k=0}^{\infty} x^k$ converges uniformly on any closed interval [a,b] such that $[a,b] \subset (-1,1)$.

Proof. Let $\epsilon > 0$ be given. Let $[a, b] \subset (-1, 1)$ Choose $N(\epsilon) \in \mathbb{N}$ such that $|b^{N(\epsilon)+1}| < (1-a)\epsilon$. Suppose $n \geq N(\epsilon)$ and $x \in [a, b]$, then

$$|f_n(x) - f(x)| = |\sum_{k=0}^n x^k - \frac{1}{1-x}|$$

$$\le |\frac{1-x^{n+1}}{1-x} - \frac{1}{x}|$$

$$\le |\frac{-x^{n+1}}{1-x}|$$

$$\le |\frac{b^{n+1}}{1-x}|$$

$$\le |\frac{b^{n+1}}{1-a}|$$

$$\le |\frac{(1-a)\epsilon}{1-a}| < \epsilon$$

Thus $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ uniformly on $[a,b] \subset (-1,1)$.

25.3. Use the definition stated in (a) to prove that $\sum_{k=0}^{\infty} x^k$ doesn't converge uniformly on (-1,1).

Proof. Let $0 < \epsilon_0 < 1$ be fixed, then we'll show that the series doesn't converge uniformly on $(\frac{1}{1-\epsilon_0}, 1)$. Let $N(\epsilon) \in \mathbb{N}, x \in (\frac{1}{1-\epsilon_0}, 1)$, and $n \geq N(\epsilon)$. Then:

$$|\sum_{k=0}^{n} x^{k} - \frac{1}{1-x}| = |\frac{1-x^{n+1}}{1-x} - \frac{1}{1-x}|$$

$$= \frac{x^{n+1}}{1-x}$$

$$\geq \frac{\frac{1}{(1-\epsilon_{0})^{n+1}}}{1 - \frac{1}{1-\epsilon_{0}}}$$

$$\geq \frac{1}{(1-\epsilon_{0})^{n+1}} \frac{1}{\epsilon_{0}}$$

Note $1 \ge \epsilon_0 (1 - \epsilon_0)^{n+1}$, for $n \in \mathbb{N}$ and so $\frac{1}{(1 - \epsilon_0)^{n+1}} \ge \epsilon_0$. So that:

$$\left|\frac{x^{n+1}}{1-x}\right| \ge 1$$

for $x \in (\frac{1}{1-\epsilon_0}, 1)$. Hence $\sum_{k=1}^{\infty} x^k$ doesn't converge uniformly on $(\frac{1}{1-\epsilon_0}, 1)$ for a fixed $0 < \epsilon_0 < 1$, and thus doesn't converge