How much distance do you lose due to the drag force acting on a bowling ball in projectile motion?

m-10kg r~15cm? air->p~1.2kg/m3 22.8 m Initial Speed 15 m/s

$$\vec{F}_{\rm drag} = \left(\frac{1}{2}C{\rm d}\,\rho Av^2,\,{\rm direction\ opposite\ the\ motion}\right)$$

Chapter 6 – Dynamics: Motion Along a Line

- Mass/Weight/Gravity
- Friction forces
- Drag forces

$$Re = \frac{\text{inertial forces}}{\text{viscous forces}} = \frac{\rho vL}{\eta}$$

 $\vec{F}_{\text{drag}} = \left(\frac{1}{2}Cd\rho Av^2, \text{ direction opposite the motion}\right)$ © 2022 Pearson Education, Inc.

TABLE 6.2 Density and viscosity

TABLE 6.3 Drag coefficients		Fluid	ρ (kg/m ³)	η (Pa s)
Object	$C_{\mathbf{d}}$	Air (20°C at sea level)	1.2	1.8×10^{-5}
Commercial airliner	0.024	Water (20°C)	1000	1.0×10^{-3}
Swimming fish	0.15	Water (40°C)	1000	6.5×10^{-4}
Toyota Prius	0.24	Ethyl alcohol (20°C)	790	1.3×10^{-3}
Pitched baseball	0.35		190	1.5 × 10
Racing cyclist	0.88	Olive oil (20°C)	910	8.4×10^{-2}
Running person	1.2	Honey (20°C)	1400	10
© 2022 Pearson Education, Inc.		Honey (40°C)	1400	1.7

© 2022 Pearson Education, Inc.

Team Up Questions

(assume C_d is either 0.5 or 1.0, you should know which)

$$\vec{F}_{\text{drag}} = \left(\frac{1}{2}Cd\rho Av^2, \text{ direction opposite the motion}\right)$$

© 2022 Pearson Education, Inc.

$$mg = \frac{1}{2} C_{d} \rho A v^{2}$$

$$A = 1 \times 2$$

How much distance do you lose due to the drag force acting on a bowling ball in projectile motion? Assume it's launched at 15 m/s at 45 degrees.

$$\frac{1}{2} \frac{Cd\rho A v^{2}}{U - 10 kg}$$

$$\frac{1}{2} \frac{1}{4} \frac{1}{V}$$

$$\frac{1}{2} \frac{1}{V} \frac{1}{V}$$

$$\frac{1}{2} \frac{1}{V}$$

https://phet.colorado.edu/sims/html/projectile-motion/latest/projectile-motion en.html