Visual Explanations from Deep Networks via Gradient-based Localization

Tae-hwi Kim

ICCV, 2017

- 대부분의 딥러닝 모델은 예측 결과에 대한 원인을 쉽게 파악할 수 없음
- 하지만 예측에 대한 신뢰성과 추가적인 분석을 위해 그 원인을 파악하는 작업은 매우 중요하다.

> CAM(Class Activation Mapping)

: Global Average Pooling (GAP) Layer를 이용 해 CNN의 예측 결과에 대해 그 원인을 파악할 수 있는 방법을 제시

<고관절 골절 탐지> → 병 원인 진단

General CNN

* Images from.. https://tyami.github.io/deep%20learning/CNN-visualization-Grad-CAM/

각 Feature map을 Flatten하는 구조

* Images from..

https://tyami.github.io/deep%20learning/CNN-visualization-Grad-CAM/

CAM

: 기존 CNN 마지막 Layer와 FC Layer 사이에 GAP Layer를 추가!

• CAM

* Images from.. https://tyami.github.io/deep%20learning/CNN-visualization-Grad-CAM/

• CAM - Limitations

- 1. Global Average Pooling Layer가 반드시 필요하다.
- 2. Conv layer의 마지막 Layer에서만 사용할 수 있다.

〉 좀 더 괜찮은 방법이 없을까?

Global Average Pooling

Introduction

CAM의 한계점을 보완하기 위해 GAP Layer를 사용하지 않는 방법을 제안, "Gradient는 Input x가 어떤 Class C에 대해 끼치는 영향력"이라는 관점에서 시작.

Gradient [Total amount of effect of input K on output class C]

Methods

기존의 CNN 구조를 그대로 사용하며, GAP을 통해 얻는 Feature map의 Weight는 Gradient를 통해 얻는다.

+) Pixel-wise sum 결과에 대한 ReLU 함수 적용.

<C class에 대한 CAM Score>

$$S^c = \sum_{k} W_k^c \frac{1}{Z} \sum_{i} \sum_{j} A_{i,j}^k$$

$$L_{Grad-CAM}^{c} = ReLU \sum_{k} a_{k}^{c} A^{k}$$

$$a_k^c = \frac{1}{Z} \sum_{i} \sum_{j} \frac{\partial y_c}{\partial A_{i,j}^k}$$

Methods

기존 CNN 구조를 그대로 사용,

각 Feature map을 Flatten 해준다.

Methods

Methods

> Class 예측 결과에 대해, 각 Feature map의 (i,j)에 대한 **Gradient**를 Weight로 사용하자.

Methods

Feature map에 GAP을 통한 Weight가 아닌 Gradient로 Heatmap 생성.

〉여기서 **Z**는 각 Feature map의합으로, 해당 픽셀(i,j)이 전체에대해 <u>비율 상 얼마나 영향력을</u> 가지는 지 나타나게 해줌.

Comparison with CAM

Experimental Results

		Classification		Localization	
		Top-1	Top- 5	Top- 1	Top- 5
VGG-16	Backprop [51] c-MWP [58] Grad-CAM (ours)	30.38 30.38 30.38	10.89 10.89 10.89	61.12 70.92 56.51	51.46 63.04 46.41
	CAM [59]	33.40	12.20	57.20	45.14
AlexNet	c-MWP [58] Grad-CAM (ours)	44.2 44.2	20.8 20.8	92.6 68.3	89.2 56.6
GoogleNet	Grad-CAM (ours) CAM [59]	31.9 31.9	11.3 11.3	60.09 60.09	49.34 49.34

Table 1: Classification and localization error % on ILSVRC-15 val (lower is better) for VGG-16, AlexNet and GoogleNet. We see that Grad-CAM achieves superior localization errors without compromising on classification performance.

• Summary

- 1. 모델 구조의 변형 없이 예측 결과에 대한 분석 및 원인 파악 가능.
- 2. Gradient(by back-propagation)를 사용하기 때문에 **어느 Layer에서든 heatmap을 그려 분석할** 수 있음.
- 3. ReLU를 사용하면서 보다 많은 Class에 대해 명확한 Localization이 이루어지는 모습을 확인할 수 있었음.