Autor: M. Nadolski E-Mail: nadolski@fu-berlin.de

Kernfragen

"Lineare Algebra fur Ingenieurwissenschaften"

1 Vektorräume

Im Folgenden sei K ein beliebiger Körper und V ein K-Vektorraum.

Frage 1. Was ist ein Körper?

Frage 2. Wie ist ein *K*-Vektorraum $(V, +, \cdot)$ definiert?

Frage 3. Wie sind die komplexen Zahlen \mathbb{C} definiert? Wie sind $z_1 \cdot z_2$ und $z_1 + z_2$ für komplexe Zahlen $z_1, z_2 \in \mathbb{C}$ definiert.

Frage 4. Sei $z \in \mathbb{C}$ und \bar{z} die konjugiert komplexe Zahl zu z. Wie ist \bar{z} definiert? Bestimmte Real- und Imaginärteil folgender Ausdrücke:

(i)
$$z\bar{z}$$
 (v) $z = \frac{1}{1-i\sqrt{3}}$

(ii)
$$\frac{1}{2}(z+\bar{z})$$

(ii)
$$\frac{1}{2}(z+z)$$

(iii) $\frac{1}{2}(z-\bar{z})$
(vi) $z = \frac{(-2+5i)\cdot(1+3i)}{2+3i} - (\frac{2}{13} - \frac{3}{13}i)$

(iv)
$$z=\frac{1}{i}$$
 (vii) $z=e^{i\varphi}, \ \varphi\in\mathbb{R}$

Frage 5. Sei $z \in \mathbb{C}$. Bestimme alle Lösungen von:

(i)
$$z^2 = 1$$
 (iv) $z^3 = -i$

(ii) $z^2 = -1$

(iii) $z^2 + (1+i)z + i = 0$

Frage 6. Wie sind Untervektorräume eines *K*-Vektorraums *V* definiert?

Frage 7. Sei $U \subset V$ eine Menge. Wie ist die lineare Hülle span U definiert?

Frage 8. Sei $U \subset V$ eine Menge. Wann ist U ein Erzeugendensystem von V?

Frage 9. Seien $v_1, \ldots, v_n \in V$. Wann heißen sie linear unabhängig? Sei $U \subset V$ eine beliebige Menge. Wann heißt U linear unabhängig?

(v) $z^4 = -4$

Frage 10. Gebe zwei verschiedene aber äquivalente Definitionen einer Basis von V an. Wie ist die Dimension $\dim_K V$ von V definiert?

Frage 11. Bestimme die Dimensionen folgender Vektorräume:

- (i) $\dim_{\mathbb{R}} \mathbb{R}^2$
- (ii) $\dim_{\mathbb{R}} \mathbb{C}$
- (iii) $\dim_{\mathbb{C}} \mathbb{C}$
- (iv) $\dim_{\mathbb{Q}} \mathbb{R}$

Von nun an sei V ein endlich-dimensionaler Vektorraum

Frage 12. Seien U, W Untervektorräume von V. Wie sind Summe U + W und direkte Summe $U \oplus W$ definiert.

Frage 13. Beweise oder Widerlege: Ist B_U eine Basis von U und B_W eine Basis von W, dann ist $B_U \cup B_W$ eine Basis von U + W.

Frage 14. Bestimme die Dimension des Unterraums von \mathbb{R}^4 , der von den Vektoren

$$\begin{pmatrix} 1 \\ -4 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -3 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ -8 \\ -2 \\ 7 \end{pmatrix}$$

aufgespannt wird.

Frage 15. Gegeben Sei

$$B = \left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\}$$

Zeige, dass *B* eine Basis des \mathbb{R}^3 ist!

Frage 16. Gegeben Sei eine Menge M von Vektoren des \mathbb{R}^3 :

$$M = \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 7 \end{pmatrix} \right\}$$

Welche Dimension hat span *M*? Gebe eine Basis von span *M* an!

Frage 17. Gegeben sei eine Menge M von Vektoren des \mathbb{R}^3 :

$$M = \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$$

Ergänze M zu einer Basis von \mathbb{R}^3 !

2 Matrizen und Gauß'sches Eliminationsverfahren

Von hier an bezeichnen wir mit $\operatorname{Mat}(K, n, m)$ die Menge aller $n \times m$ -Matrizen mit Einträgen aus dem Körper K.

Frage 18. Wie sind Matrizenaddition und -multiplikation definiert? Ist $(Mat(K, n, n), +, \cdot)$ ein Ring? Ist es ein Körper? Begründung!

Frage 19. Wie ist der Spalten- bzw. Zeilenrang einer Matrix $M \in Mat(\mathbb{R}, n, m)$ definiert?

Frage 20. Rechne folgende Produkte aus:

(i)
$$M_1 = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ 3 & 1 & 7 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \qquad M_2 = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ 3 & 1 & 7 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad M_3 = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ 3 & 1 & 7 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

(ii)

$$M_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ 3 & 1 & 7 \end{pmatrix}, \qquad M_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ 3 & 1 & 7 \end{pmatrix}, \qquad M_3 = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ 3 & 1 & 7 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

(iii)

$$M_1 = a \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ 3 & 1 & 7 \end{pmatrix} \qquad M_2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ 3 & 1 & 7 \end{pmatrix}, \qquad M_3 = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ 3 & 1 & 7 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$