R documentation

of all in 'man'

October 5, 2022

R topics documented:

Index

batches_analysis	2
contract_data	2
exports_filtered_plots	3
exports_plots	4
flowSim_plot	4
flowSim_plot_dens	5
gen_igraph_network	5
gen_visnetwork_data	6
_ get_csv	6
get_densRange	7
get_distance_loc_vs_test	8
get_groups_based_on_clustering	8
get_heterogeneity_score	9
get_hull_all_gates	9
get_inds_files_selected	10
get_new_colors_based_on_groups	10
get_similarity_all_plots	11
get_similarity_all_plots_v2	
get_similarity_selected_plot	12
get_size_based_on_groups	13
import_all_dfs	
import_df_features	14
myKmeans	15
plot_visnet	15
rename_files	16
- 1	
	18

2 contract_data

ysis batches_analysis
ysis batches_analysis

Description

function to analyze each batch. A batch is a fragment of the original dataset. Internal function.

Usage

```
batches_analysis(all_groups, n_cores, final_df, path_dir, thr_score,
    progress_bar = T, nboots)
```

Arguments

all_groups	All batches names to analyze
n_cores	Number to use
final_df	Dataframe of features reduced
path_dir	Path to input directory. Mandatory.
thr_score	Threshold for filtering the similarity scores
progress_bar	If False, disable progress bar.
nboots	Number of bootstrap simulations for the density identity test. Default to 6

Value

List of results batch analysis

contract_data	contract_data	

Description

function to contract the visnetdata object (containing nodes and edges info). Internal function.

Usage

```
contract_data(data)
```

Arguments

data List of the full VisNetwork dataframe containing the edges and nodes information

Value

A list of two VisNetwork dataframes containing the contracted information of nodes and edges

exports_filtered_plots 3

```
exports_filtered_plots

exports_filtered_plots
```

Description

function to export only the files to keep for each group

Usage

```
exports_filtered_plots(visnetdata, df_features, path_expr_data,
  path_output = NULL, n_cores = 1, type = "dens", filter_thr = 2.1,
  plot_dendrogram = F, seed_n = 40)
```

Arguments

	visnetdata	list of dataframes containing the edges and nodes information in VisNetwork format
	df_features	A dataframe containing the original features set (before the tsne reduction) of all input files
	path_expr_data	Path to directory containing the expression data of the files analyzed
	path_output	Path to the directory where to export the plots for each group If path_output=NULL, no plots are generated. Default to NULL
	n_cores	Number of cores to use. Default to 1
	filter_thr	float number indicating the cut height for the dendrogram generated by the hierarchical clustering. Default to 2.1
plot_dendrogram		
		If True, the plot of the dendrogram is generated (It may fail for some groups). Default to False.
	seed_n	Set seed number. Default to 40.

Value

A list of the selected files names to keep for each group

Examples

```
exports\_filtered\_plots (visnet data=visnet data, df\_features=df\_features, path\_expr\_data="path to input directory", path\_output=NULL, n\_cores=1, filter\_thr=2.1, plot\_dendrogram=F)
```

flowSim_plot

Description

function to export all plots for each group

Usage

```
exports_plots(visnetdata, path_expr_data, path_output = NULL,
   n_cores = 1, type = "dens", path_gates = NULL)
```

Arguments

visnetdata list of dataframes containing the edges and nodes information in VisNetwork

format

path_expr_data Path to directory containing the expression data of the files analyzed

path_output Path to the directory where to export the plots for each group If path_output=NULL,

no plots are generated. Default to NULL

n_cores Number of cores to use. Default to 1
path_gates Path of gates data, default to NULL

Value

A list of all file names for each group.

Examples

```
exports_plots(visnetdata=visnetdata,path_expr_data="path to input directory",path_output=NULL,n_cores=1)
```

|--|

Description

function to generate the scatter plot with colored density of the events. Internal function.

Usage

```
flowSim_plot(df, plot_gate = F)
```

Arguments

df Dataframe containing the two markers expression data.

plot_gate show gates?,default to False

flowSim_plot_dens 5

Value

Plot object

flowSim_plot_dens

flowSim_plot_dens

Description

function to generate the denity scatter plot with density on the sides. Internal function.

Usage

```
flowSim_plot_dens(df)
```

Arguments

df

Dataframe containing the two markers expression data.

Value

Plot object

gen_igraph_network

Generate igraph network

Description

function to generate the igraph network from similiraty scores

Usage

```
gen_igraph_network(similarity_output, method_clust = "louvain")
```

Arguments

```
similarity_output
```

The distance matrix generated by the get_similarity_all_plots functions

method_clust clustering method: louvain, infomap. Default to louvain

Value

two objects \$igraph_network : igraph network object \$partition : vector of the clusters association

Examples

```
gen_igraph_network(similarity_output=out,method_clust="louvain")
```

6 get_csv

```
{\tt gen\_visnetwork\_data} \qquad {\tt gen\_visnetwork\_data}
```

Description

function to convert igraph network to a list of two VisNetwork dataframes containing the edges and nodes information needed to generate a VisNetwork object

Usage

```
gen_visnetwork_data(igraph_network, contract_net = F,
    single_nodes_black = T)
```

Arguments

Value

If contracted_net=False, a list of full VisNetwork dataframes is generated, if contracted_net=True, a list of contracted VisNetwork dataframes is returned. \$nodes: dataframe containing the nodes information (full or contracted) \$edges: dataframe containing the edges information (full or contracted)

Examples

```
gen_visnetwork_data(igraph_network=igraph_network,contract_net=F)
```

```
get_csv get_csv
```

Description

function to convert fcs files in bivariate csv files

Usage

```
get_csv(path, channels = NULL, markers = NULL, path.output)
```

get_densRange 7

Arguments

path path of the directory with fcs files to convert channels

Vector reporting the two channels to consider

markers Vector reporting the two markers to consider. Considered only if channels==NULL

path.output directory path to export the converted csv files

Examples

```
get_csv(path="path/to/directory",channels=c("FSC-A","FSC-H"),path.output="path/to/directory")
```

get_densRange
get_densRange

Description

function to get the correct coordinates (correct range) based on the density coordinates x and y generated by the density() function. Internal function.

Usage

```
get_densRange(x, y, thr, direction = FALSE)
```

Arguments

x x axis density coordinates y y axis density coordinates

thr Treshold of expression where to start the density calculation direction On the left (FALSE) or on the right (TRUE) of the threshold

Value

Coordinates density points for the x and y axis

```
get_distance_loc_vs_test
```

get distance selected file vs another local file

Description

function to compare the similiraty between selected file and another file of the input directory based on the density of marker expression values. Internal function.

Usage

```
get_distance_loc_vs_test(test_df, loc_df, show_plot = "none",
    nboot = 50)
```

Arguments

test_df Dataframe of selected file

loc_df Dataframe of another file of the input directory

show_plot show plot of the density comparison

nboot Number of simulations for the permuation identity test between the densities.

Value

A list of two float numbers \$pvalue_mark_1 : pvalue first marker comparison \$pvalue_mark_2 : pvalue second marker comparison

```
get_groups_based_on_clustering
```

Generate groups based on a clustering method

Description

function to clusterize the samples using different methods. Internal function.

Usage

```
get_groups_based_on_clustering(igraph_network, method = "louvain")
```

Arguments

```
igraph_network iGraph network object
method_clust clustering method: louvain, infomap. Default to louvain
```

Value

dataframe reporting groups association

get_heterogeneity_score

```
get_heterogeneity_score
```

Get heterogeneity score

Description

function to get the heterogeneity score of a dataset

Usage

```
get_heterogeneity_score(igraph_network, partition_vec, visnetdata)
```

Arguments

igraph_network Igraph network object

partition_vec Vectors of files and clusters associations

visnetdata list of dataframes containing the edges and nodes information in VisNetwork

format

Value

A single float number indicating the final heterogeneity score

Examples

```
{\tt gen\_igraph\_network(igraph\_network=igraph\_network,partition\_vec=partition\_vec,visnetdata=visnetdata)}
```

```
get_hull_all_gates
```

get_hull_all_gates

Description

function to get the convex hull of all gates. Internal function

Usage

```
get_hull_all_gates(gated_df)
```

Arguments

df_groups

Dataframe containing the groups associations

Value

A list containing the convex hull for all classes

Description

function to get indices for the paths of the files selected

Usage

```
get_inds_files_selected(path_dir, files_selected, return_path = F)
```

Arguments

path_dir path of the directory to explore

files_selected Vector containing the names of the files whose indices need to be found

return_path If True, return paths instead of indices. Default to False

Value

Vector containing the indices of the files

Examples

```
get_inds_files_selected(path_dir="path/to/directory",files_selected=vector_names)
```

Description

function to get new colors based on groups. Internal function

Usage

```
get_new_colors_based_on_groups(df_groups)
```

Arguments

df_groups Dataframe containing the groups associations

Value

A dataframe containing the association between groups, files and colors

get_similarity_all_plots

```
get_similarity_all_plots
```

Generate similarity scores all files V1 mode

Description

function to generate the similarity scores for all the files within the input directory. V1 mode (for small datasets only,N<500).

Usage

```
get_similarity_all_plots(n_samples = NULL, path_dir, thr_score = 0.6,
    n_cores = 1, nboots = NULL)
```

Arguments

n_samples	Number of files to analyze. If NULL, all files are analyzed. Default to NULL.
path_dir	Path to tthe input directory
thr_score	Threshold for filtering only the most significant similarity score, it ranges from 0 to 1. Default to 0.6
n_cores	Number of cores to use, default to 1
nboots	Number of bootstrap simulations for the density identity test. If NULL, it is set based on number of files anayzed. Default to NULL

Value

A list of two dataframes \$edges: A dataframe containing edges information of the network. The weight of each edge is the similarity score between the two files/nodes \$nodes: A dataframe containing several nodes information (Node ID,cluster color etc...)

Examples

```
get_similarity_all_plots(path_dir="path to input directory",thr_score=0.9,n_cores=1)
```

```
get_similarity_all_plots_v2
```

Generate similarity scores all files V2 mode

Description

function to generate the similarity scores for all the files within the input directory. V2 mode (for big datasets)

Usage

```
get_similarity_all_plots_v2(n_samples = NULL, path_dir,
   thr_score = 0.9, n_cores = 1, n_batches = NULL,
   show_tsne_plot = T, progress_bar = T, size_points_tsne = 15,
   nboots = 6)
```

Arguments

n_samples	Number of files to analyze. If NULL, all input files are anayzed. Default to NULL.	
path_dir	Path to input directory. Mandatory.	
thr_score	Treshold for filtering only the most significant similarity score, it ranges from 0 to 1. Default to 0.9	
n_cores	Number of cores to use, default to 1	
n_batches	Number of batches to use = number of parts in which the input datasets must be divided to increase speed and memory efficiency. If number of files <= 2000 files, this integer is automatically estimated, otherwise it needs to be defined. As the value increases, less memory and time is required but also more residual homogeneity is generated.	
show_tsne_plot	show scatter plot of tsne reduced dataset of the density features. Default to True.	
progress_bar	if False, disable progress bar. Default to True.	
size_points_tsne		
	Size of points in t-sne plot. Default to 2	
nboots	Number of bootstrap simulations for the density identity test. Default to 6	

Value

A list of three dataframes \$edges: A dataframe containing edges information of the network. The weight of each edge is the similarity score between the two files/nodes \$nodes: A dataframe containing several nodes information (Node ID,cluster color etc...) \$df_features: A dataframe containing the original features set (before the tsne reduction) of all input files

Examples

```
get_similarity_all_plots_v2(n_samples=1:2000,path_dir="path to input directory",thr_score=0.9,n_cores=1,n_batch

get_similarity_selected_plot

    Get similarity score selected file
```

Description

function to get the similarity of one file vs the rest. Internal usage only.

Usage

```
get_similarity_selected_plot(list_all_input_dfs, name_ref_plot, n_cores,
   names_analyzed_vec, n_boots)
```

Arguments

list_all_input_dfs

List of the dataset of the input directory generated by the import_all_dfs function

name_ref_plot file to analyze

n_cores Number of cores to use

names_analyzed_vec

Vector containing the names of the files already analyzed in a previous iteration

densities

Value

Dataframe of the similarity scores for the selected file

```
{\tt get\_size\_based\_on\_groups} \\ {\tt get\_size\_based\_on\_groups}
```

Description

function to get size of groups based on groups. Internal function

Usage

```
get_size_based_on_groups(df_groups)
```

Arguments

df_groups Dataframe containing the groups associations

Value

A dataframe containing the association between groups, files and size

14 import_df_features

import_all_dfs	Import files to	analyze

Description

function to import all datasets of the input directory

Usage

```
import_all_dfs(n_samples = NULL, paths_dir = NULL,
  paths_plots = NULL, n_cores = 1)
```

Arguments

n_samples Number of files to analyze. If NULL, all files are analyzed. Default to NULL. paths_dir directory path of the input files to analyze

paths_plots Mandatory if paths_dir==NULL, it is possible to feed a list of the paths of the

input files to analyze

n_cores The number of cores to use, default to 1

Value

list of all input dfs

Examples

```
import_all_dfs(paths_dir="path_to_input_directory",paths_plots=NULL,n_cores=1)
```

Description

function to import the features set of all the files under analysis

Usage

```
import_df_features(n_samples = NULL, paths_dir, n_cores = 1,
    progress_bar = T)
```

Arguments

paths_dir directory path of the input files to analyze n_cores The number of cores to use, default to 1

progress_bar If False,progress bar is disabled. Default to True

myKmeans 15

Value

```
a dataframe of the features set (columns) for each file (row)
```

Examples

```
import_df_features(n_samples=1:5,paths_dir="path_to_input_directory",n_cores=1)
```

 ${\sf myKmeans}$

kmeans function

Description

function to perform k-means clustering on the tsne reduced dataset of density features. Internal function.

Usage

```
myKmeans(dist, k)
```

Arguments

dist dataframe of the tsne reduced features set between the files

k Number of centers

Value

k-means clustering output

plot_visnet

plot_visnet

Description

function to plot the visnetwork based on the similarity scores

Usage

```
plot_visnet(visnetdata, show_legend = F, remove_single_files = F,
    select_group = NULL, size_nodes = NULL)
```

rename_files

Arguments

visnetdata list of dataframes containing the edges and nodes information in VisNetwork

format

show_legend show legend?

remove_single_files

If True, single files (black nodes) are removed from the analysis.

select_group A vector indicating the names of the groups to visualize. If NULL, all groups

are visualized. Default to NULL

size_nodes Set size of the nodes. Default to NULL.

Value

VisNetwork object

Examples

```
plot_visnet(visnetdata=visnetdata,show_legend=F,remove_single_files=F,select_group=NULL)
```

Description

Function to rename files within a directory

Usage

```
rename_files(path_dir, to_replace, string, to_replace_fixed = T)
```

Arguments

path_dir path of the directory with files to rename

to_replace Pattern to replace. if to_replace_fixed=F, regex expression can be used.

string string to replace the pattern selected

to_replace_fixed

if False, to_replace can be also a regex expression. Default to True.

Examples

rename_files(path_dir="path/to/directory",to_replace="pattern to replace",string="string replaced",regex_expr=F

show_plot 17

show_plot	show_p	lot
3110W_PIOL	snow_p	$\iota O \iota$

Description

function to visualize the selected plot using the flowSim_plot or flowSim_plot_dens function

Usage

```
show_plot(path_data_file, type = "classic")
```

Arguments

```
path_data_file Path to the csv files to visualize
```

type of visualization: "classic" or "dens". Default to classic. the "dens" version

has the density of the markers on the side of each axis.

Value

Plot object

Examples

```
show_plot(path_data="path to input directory",type="classic")
```

Index

```
* Internal
                                                myKmeans, 15
    batches_analysis, 2
                                                plot_visnet, 15
    contract_data, 2
    flowSim_plot, 4
                                                rename_files, 16
    flowSim_plot_dens, 5
    get_densRange, 7
                                                show_plot, 17
    get_distance_loc_vs_test, 8
    get_groups_based_on_clustering, 8
    get_hull_all_gates, 9
    get_new_colors_based_on_groups, 10
    get_similarity_selected_plot, 12
    get_size_based_on_groups, 13
    myKmeans, 15
\verb|batches_analysis|, 2
contract_data, 2
exports_filtered_plots, 3
exports_plots, 4
flowSim_plot, 4
flowSim_plot_dens, 5
gen_igraph_network, 5
gen_visnetwork_data, 6
get_csv, 6
get_densRange, 7
get_distance_loc_vs_test, 8
get_groups_based_on_clustering, 8
get_heterogeneity_score, 9
get_hull_all_gates, 9
get_inds_files_selected, 10
get_new_colors_based_on_groups, 10
get_similarity_all_plots, 11
get_similarity_all_plots_v2, 11
get_similarity_selected_plot, 12
get_size_based_on_groups, 13
import_all_dfs, 14
import_df_features, 14
```