Übungsblatt 3

Anmerkung: Aus organisatorischen Gründen wird das Kapitel Skalarprodukte schon in diesem Blatt behandelt.

Aufgabe 1

Bestimmen Sie jeweils die Lösungsmenge des linearen Gleichungssystems $A \cdot x = b$.

a)
$$A = \begin{pmatrix} 3 & 3 & -1 & 1 & -6 \\ 1 & -1 & 2 & 0 & -2 \\ 0 & -6 & 7 & -1 & 0 \end{pmatrix}$$
, $b = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$
b) $A = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 4 & 3 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$
c) $A = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 2 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$

Aufgabe 2

Berechnen Sie die Determinante der folgenden Matrix:

$$\begin{pmatrix} 1 & -2 & -1 & 0 \\ 0 & 1 & 4 & 1 \\ 9 & 2 & 3 & -1 \\ 8 & 2 & 3 & -1 \end{pmatrix}$$

Aufgabe 3

Zeigen Sie, dass

$$\det \left(\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1+x & 1 & 1 & 1 \\ 1 & 1 & 1+y & 1 & 1 \\ 1 & 1 & 1 & 1+z & 1 \\ 1 & 1 & 1 & 1 & 1+w \end{pmatrix} \right) = xyzw.$$

Aufgabe 4

Gegeben sei die folgende Matrix

$$M_n = \begin{pmatrix} 2 & 1 & 0 & \cdots & 0 \\ 1 & 2 & 1 & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 2 & 1 \\ 0 & \cdots & 0 & 1 & 2 \end{pmatrix} \in \operatorname{Mat}(n, n, \mathbb{R}).$$

Berechnen Sie $\det(M_n)$.

Hinweis: Benutzen Sie vollständige Induktion nach n.

Aufgabe 5

Betrachten Sie zwei Vektoren $v, w \in \mathbb{R}^2$. Zeigen Sie, dass für den Flächeninhalt F des von v und w aufgespannten Parallelogramms gilt $F = |\det(v, w)|$.

Aufgabe 6

Invertieren Sie folgende Matrizen:

a)
$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 2 & 4 & 6 \\ 1 & 1 & 1 \\ 2 & 2 & 3 \end{pmatrix}$

Aufgabe 7

Sei $V = \mathbb{C}^n$, $n < \infty$. Betrachten Sie die durch $A \in \mathrm{Mat}(n, n, \mathbb{C})$ induzierte Sesquilinearform

$$b: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}, \qquad (v, w) \mapsto v^* A w = \sum_{i,j=1}^n \overline{v_i} A_{ij} w_j.$$

Welche Bedingungen müssen für A gelten, damit b ein Skalarprodukt ist?

Aufgabe 8

Gegeben seien der euklidische \mathbb{R} -Vektorraum $(V, \langle \cdot, \cdot \rangle)$, $x, y \in V \setminus \{0\}$ und der Abstand d(t) = ||x - ty||, wobei die Norm durch das Skalarprodukt $||v|| = \sqrt{\langle v, v \rangle}$ induziert wird. Finden Sie t_0 , bei dem d minimal wird, und geben Sie $d(t_0)$ explizit an.

Aufgabe 9

Es sei $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf einem K-Vektorraum V.

(a) Zeigen Sie die Parallelogrammgleichung.

$$\forall x, y \in V: \quad ||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$$

(b) Zeigen Sie den Satz des Pythagoras.

$$\forall x, y \in V : x \perp y \implies ||x + y||^2 = ||x||^2 + ||y||^2$$

Zeigen Sie im Fall $K = \mathbb{R}$, dass auch die Umkehrung gilt:

$$\forall x, y \in V: \quad ||x + y||^2 = ||x||^2 + ||y||^2 \quad \Rightarrow \quad x \perp y$$

2