HighOrderDGTransportSolver

Generated by Doxygen 1.8.14

Contents

1	Hier	archica	I Index	1
	1.1	Class	Hierarchy	1
2	Clas	s Index	r .	3
	2.1	Class	List	3
3	Clas	s Docu	mentation	5
	3.1	trt::Add	dCoefficient Class Reference	5
		3.1.1	Detailed Description	5
	3.2	trt::Arr	ray< T > Class Template Reference	6
		3.2.1	Detailed Description	7
		3.2.2	Constructor & Destructor Documentation	7
			3.2.2.1 Array() [1/2]	7
			3.2.2.2 Array() [2/2]	7
	3.3	trt::Bas	sis Class Reference	8
		3.3.1	Detailed Description	8
		3.3.2	Constructor & Destructor Documentation	8
			3.3.2.1 Basis()	8
	3.4	trt::Bili	nearIntegrator Class Reference	9
		3.4.1	Detailed Description	9
	3.5	trt::Co	efficient Class Reference	9
		3.5.1	Detailed Description	10
	3.6	trt::Co	nstantCoefficient Class Reference	10
		361	Detailed Description	11

ii CONTENTS

3.7	trt::Con	nstantOpacity Class Reference	. 11
	3.7.1	Detailed Description	. 11
3.8	trt::Don	mainIntegrator Class Reference	. 12
	3.8.1	Detailed Description	. 12
3.9	trt::Eler	ment Class Reference	. 12
	3.9.1	Detailed Description	13
	3.9.2	Constructor & Destructor Documentation	. 14
		3.9.2.1 Element()	. 14
3.10	trt::EITr	rans Class Reference	. 14
	3.10.1	Detailed Description	15
3.11	trt::FES	Space Class Reference	15
	3.11.1	Detailed Description	15
	3.11.2	Constructor & Destructor Documentation	16
		3.11.2.1 FESpace()	16
3.12	trt::Fun	nctionCoefficient Class Reference	16
	3.12.1	Detailed Description	. 17
3.13	trt::Fun	nctionOpacity Class Reference	. 17
	3.13.1	Detailed Description	. 18
3.14	trt::Fun	nctionStateCoefficient Class Reference	18
	3.14.1	Detailed Description	. 18
3.15	trt::Gric	dFunction Class Reference	. 19
	3.15.1	Detailed Description	. 19
3.16	trt::Gric	dFunctionCoefficient Class Reference	20
	3.16.1	Detailed Description	20
3.17	trt::L2S	Segment Class Reference	20
	3.17.1	Detailed Description	. 21
3.18	trt::L2S	Space Class Reference	. 21
	3.18.1	Detailed Description	21
3.19	trt::Line	earIntegrator Class Reference	. 22
	3.19.1	Detailed Description	. 22

CONTENTS

3.20	trt::Lua	Reader Class Reference	22
	3.20.1	Detailed Description	24
	3.20.2	Constructor & Destructor Documentation	24
		3.20.2.1 LuaReader()	24
	3.20.3	Member Function Documentation	24
		3.20.3.1 Parse()	24
3.21	trt::Mas	ssIntegrator Class Reference	25
	3.21.1	Detailed Description	25
3.22	trt::Mat	trix Class Reference	25
	3.22.1	Detailed Description	27
3.23	trt::Noc	de Class Reference	27
	3.23.1	Detailed Description	27
	3.23.2	Constructor & Destructor Documentation	28
		3.23.2.1 Node()	28
3.24	trt::Opa	acity Class Reference	28
	3.24.1	Detailed Description	29
3.25	trt::Poly	y1D Class Reference	29
	3.25.1	Detailed Description	29
	3.25.2	Constructor & Destructor Documentation	29
		3.25.2.1 Poly1D()	30
3.26	trt::Qua	adrature Class Reference	30
	3.26.1	Detailed Description	30
	3.26.2	Constructor & Destructor Documentation	31
		3.26.2.1 Quadrature()	31
3.27	trt::Sub	otractCoefficient Class Reference	31
	3.27.1	Detailed Description	32
3.28	trt::Swe	eeper Class Reference	32
	3.28.1	Detailed Description	33
3.29	trt::Tim	er Class Reference	33
	3.29.1	Detailed Description	33

iv CONTENTS

3.30	trt::Trai	nsportOperator Class Reference	33
	3.30.1	Detailed Description	35
	3.30.2	Constructor & Destructor Documentation	35
		3.30.2.1 TransportOperator()	35
	3.30.3	Member Function Documentation	35
		3.30.3.1 BackwardEuler()	35
		3.30.3.2 NewtonIteration()	36
		3.30.3.3 SourceIteration()	36
3.31	trt::TVe	ector Class Reference	37
	3.31.1	Detailed Description	38
3.32	trt::Vec	etor Class Reference	38
	3.32.1	Detailed Description	39
	3.32.2	Constructor & Destructor Documentation	39
		3.32.2.1 Vector()	39
3.33	trt::Wa	IlTimer Class Reference	40
	3.33.1	Detailed Description	40
3.34	trt::We	akConvectionIntegrator Class Reference	41
	3.34.1	Detailed Description	41
3.35	trt::Wri	ter Class Reference	41
	3.35.1	Detailed Description	42
	3.35.2	Member Function Documentation	42
		3.35.2.1 Write()	42
Index			45

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

$trt::Array < T > \dots$	6
trt::Array< double >	6
trt::Vector	 38
trt::GridFunction	 19
trt::TVector	 37
trt::Array< std::string >	6
trt::Array< trt::Element *>	6
trt::Array< trt::GridFunction *>	6
trt::Array< trt::Node *>	6
trt::Array< trt::Poly1D >	6
trt::Basis	8
trt::BilinearIntegrator	9
trt::MassIntegrator	
trt::WeakConvectionIntegrator	
trt::Coefficient	
trt::AddCoefficient	
trt::ConstantCoefficient	
trt::FunctionCoefficient	
trt::FunctionStateCoefficient	
trt::GridFunctionCoefficient	
trt::Opacity	
trt::ConstantOpacity	
trt::FunctionOpacity	
trt::SubtractCoefficient	
trt::Element	
trt::L2Segment	 20
trt::EITrans	14
trt::FESpace	15
trt::L2Space	 21
trt::LinearIntegrator	22
trt::DomainIntegrator	 12
trt::LuaReader	22
trt::Matrix	25

2 Hierarchical Index

trt::Node																			 			27
trt::Poly1D																			 			29
trt::Quadrature																			 			30
trt::Sweeper .																			 			32
trt::Timer																			 			33
trt::TransportOp	oera	itoi	٠.																 			33
trt::WallTimer																			 			40
trt··Writer																						41

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

trandoemicient	
Add two coefficients together	5
trt::Array< T >	
Template class for wrapping std::vector. Mostly provides out of range checks	6
trt::Basis	
Represent a collection of basis functions (in reference space) of an arbitrary polynomial order .	8
trt::BilinearIntegrator	
Abstract class for bilinear forms	9
trt::Coefficient	
Abstract class for evaluating things	9
trt::ConstantCoefficient	
Evaluates to a constant value	10
trt::ConstantOpacity	
Constant opacity	11
trt::DomainIntegrator	
Domain integrator $B_i q dx$	12
trt::Element	
Abstract class for elements	12
trt::ElTrans	
Reference to physical space transformation	14
trt::FESpace	
Abstract class for finite element spaces	15
trt::FunctionCoefficient	
Evaluate a function	16
trt::FunctionOpacity	
Space, temperature dependent opacity	17
trt::FunctionStateCoefficient	
Evaluate a 2D function through setting the state	18
trt::GridFunction	
Represent a solution vector on an FESpace	19
trt::GridFunctionCoefficient	
Evaluate a GridFunction as a coefficient	20
trt::L2Segment	
1D discontinuous galerkin element	20
trt::L2Space	
Discontinuous Galerkin finite element space	21

Class Index

trt::LinearIntegrator	
Abstract class for linear forms	22
trt::LuaReader	
Read in and access a Lua script	22
trt::MassIntegrator	
Integrate a mass matrix $\int B_i B_j dx$	25
trt::Matrix	
Store a matrix	25
trt::Node	
Represent an FEM node	27
trt::Opacity	
Abstract representation of space and temperature dependent opacity	28
trt::Poly1D	
Represent a polynomial of one variable	29
trt::Quadrature	
Arbitrary order Gauss Legendre quadrature	30
trt::SubtractCoefficient	
Subtract a coefficient from another one	31
trt::Sweeper	
Performs direct inversion of transport equation	32
trt::Timer	
Stopwatch class that wraps std::chrono	33
trt::TransportOperator	
Driver for transport solver	33
trt::TVector	
Store psi. strides in space then angle	37
trt::Vector	
Class for storing a vector of doubles	38
trt::WallTimer	
Singleton class for wall timer using std::chrono	40
trt::WeakConvectionIntegrator	
Integrate weak convection matrix $\int -B_j rac{dB_i}{dx} dx$	41
trt::Writer	
Stores pointers to GridFunctions and writes them to file	41

Chapter 3

Class Documentation

3.1 trt::AddCoefficient Class Reference

add two coefficients together

```
#include <Coefficient.hpp>
```

Inheritance diagram for trt::AddCoefficient:

Public Member Functions

- AddCoefficient (Coefficient *c1, Coefficient *c2)
 constructor. adds c1 and c2
- double Eval (ElTrans &trans, double xref) const evaluate

Private Attributes

- Coefficient * _c1
- Coefficient * _c2

Additional Inherited Members

3.1.1 Detailed Description

add two coefficients together

The documentation for this class was generated from the following file:

/home/sam/trt/fem/Coefficient.hpp

3.2 trt::Array < T > Class Template Reference

Template class for wrapping std::vector. Mostly provides out of range checks.

```
#include <Array.hpp>
```

Public Member Functions

```
• Array ()
      default constructor
• Array (int N)
      initialize
• Array (int N, T val)
      initialize and set values

    void operator= (const Array< T > &a)

      copy assignment

    Array (std::initializer_list< T > list)

      construct from initializer list

    void operator= (std::initializer_list< T > list)

      set from initializer list
· int Size () const
      return the size of the array

    void Resize (int N)

      resize the array
T & operator[] (int ind)
      access to the array

    const T & operator[] (int ind) const

      const access to the array

    void operator= (T val)

      set all elements to val

    void Append (T val)

      add to end of Array

    void Append (const Array< T > &a)

      add an array to the back of this
• void Clear ()
      clear contents of vector

    void Intersection (const Array< T > &x, Array< T > &r) const

      return the intersection of two arrays

    bool operator== (const Array< T > &a) const

      test if two arrays are the same
• void Transpose ()
      reverse order of array

    void Print (std::ostream &out=std::cout) const

      print the Array

    double * Data ()

      direct access to the data

    const double * Data () const
```

const direct access to the data

access to the last element

• double & Last ()

Private Attributes

std::vector < T > _vector
 vector that stores all the data

3.2.1 Detailed Description

```
\label{eq:template} \begin{split} \text{template} &< \text{class T = int} > \\ \text{class trt::Array} &< \text{T} > \end{split}
```

Template class for wrapping std::vector. Mostly provides out of range checks.

3.2.2 Constructor & Destructor Documentation

3.2.2.1 Array() [1/2]

initialize

Parameters

```
N size of array
```

3.2.2.2 Array() [2/2]

initialize and set values

Parameters

Ν	size of array
val	initial value

The documentation for this class was generated from the following file:

/home/sam/trt/general/Array.hpp

3.3 trt::Basis Class Reference

represent a collection of basis functions (in reference space) of an arbitrary polynomial order

```
#include <Basis.hpp>
```

Public Member Functions

• Basis (int order)

constructor

const Poly1D & operator[] (int i) const

access to ith basis function

• const Poly1D & Derivative (int i) const

access to ith derivative

· int Size () const

return the number of basis functions

Private Attributes

```
• int _order
```

polynomial order

Array< Poly1D > _p

polynomials

Array< Poly1D > _dp

derivatives of polynomials

3.3.1 Detailed Description

represent a collection of basis functions (in reference space) of an arbitrary polynomial order

3.3.2 Constructor & Destructor Documentation

3.3.2.1 Basis()

```
trt::Basis::Basis (
          int order )
```

constructor

Parameters

order	polynomial orde	er
-------	-----------------	----

The documentation for this class was generated from the following files:

- · /home/sam/trt/fem/Basis.hpp
- /home/sam/trt/fem/Basis.cpp

3.4 trt::BilinearIntegrator Class Reference

abstract class for bilinear forms

```
#include <BilinearIntegrator.hpp>
```

Inheritance diagram for trt::BilinearIntegrator:

Public Member Functions

• BilinearIntegrator ()

default constructor

· virtual void Assemble (Element &el, Matrix &elmat)

assemble a local matrix

3.4.1 Detailed Description

abstract class for bilinear forms

The documentation for this class was generated from the following file:

• /home/sam/trt/fem/BilinearIntegrator.hpp

3.5 trt::Coefficient Class Reference

abstract class for evaluating things

```
#include <Coefficient.hpp>
```

Inheritance diagram for trt::Coefficient:

Public Member Functions

 virtual double Eval (ElTrans &trans, double xref) const interface for evaluating with a transformation

• void SetState (double state)

set the state

Protected Attributes

• double _state store a constant parameter that can be used in evaluating 2D functions

3.5.1 Detailed Description

abstract class for evaluating things

The documentation for this class was generated from the following file:

· /home/sam/trt/fem/Coefficient.hpp

3.6 trt::ConstantCoefficient Class Reference

evaluates to a constant value

```
#include <Coefficient.hpp>
```

Inheritance diagram for trt::ConstantCoefficient:

Public Member Functions

• ConstantCoefficient (double c)

constructor

 double Eval (ElTrans &trans, double xref) const evaluate

Private Attributes

• double _c

constant value

Additional Inherited Members

3.6.1 Detailed Description

evaluates to a constant value

The documentation for this class was generated from the following file:

· /home/sam/trt/fem/Coefficient.hpp

3.7 trt::ConstantOpacity Class Reference

constant opacity

#include <Opacity.hpp>

Inheritance diagram for trt::ConstantOpacity:

Public Member Functions

- ConstantOpacity (double c)
 - constructor
- double Eval (ElTrans &trans, double xref) const evaluate

Private Attributes

double _c
 constant value

Additional Inherited Members

3.7.1 Detailed Description

constant opacity

The documentation for this class was generated from the following file:

/home/sam/trt/trt/Opacity.hpp

3.8 trt::DomainIntegrator Class Reference

domain integrator $B_i q dx$

#include <LinearIntegrator.hpp>

Inheritance diagram for trt::DomainIntegrator:

Public Member Functions

• DomainIntegrator ()

constructor

DomainIntegrator (Coefficient *c)

construct with coefficient

· void Assemble (Element &el, Vector &elvec)

assemble

Private Attributes

Coefficient * _c

store the function to integrate

Vector _shape

store shape function evaluations

3.8.1 Detailed Description

domain integrator $B_i q dx$

The documentation for this class was generated from the following files:

- /home/sam/trt/fem/LinearIntegrator.hpp
- /home/sam/trt/fem/LinearIntegrator.cpp

3.9 trt::Element Class Reference

abstract class for elements

#include <Element.hpp>

Inheritance diagram for trt::Element:

Public Member Functions

• Element (Node left, Node right, int order)

constructor

∼Element ()

destructor

• virtual void CalcShape (double x, Vector &shape) const evaluate all basis functions at an integration point

• virtual void CalcGradShape (double x, Vector &shape) const

evaluate derivative of all basis functions at an integration point

• void CalcPhysGradShape (double x, Vector &shape) const evaluate derivatives in physical space (divide by Jacobian)

• int NumNodes () const

return the number of nodes in this element

• const Node & GetNode (int i) const

return the ith FEM node

Node & GetNode (int i)

return the ith FEM node

• ElTrans & GetTrans ()

return the element transformation

double Interpolate (double x, const Vector &u) const

interpolate to a point

void GetVDofs (Array< int > &vdofs) const

get the ids of all nodes in the element

• int GetOrder () const

return the polynomial order of this element

Protected Attributes

Node & _left

left end point node

Node & _right

right end point node

· int _order

polynomial order

• int bcl

left boundary condition

• int bcr

right boundary condition

· Basis _basis

basis object

• ElTrans * trans

element transformation for *this

Array< Node * > _nodes

store FEM nodes

3.9.1 Detailed Description

abstract class for elements

3.9.2 Constructor & Destructor Documentation

3.9.2.1 Element()

constructor

Parameters

xI	left end point
xr	right end point
order	polynomial order
bcl	left boundary condition
bcr	right boundary condition

The documentation for this class was generated from the following files:

- /home/sam/trt/fem/Element.hpp
- · /home/sam/trt/fem/Element.cpp

3.10 trt::EITrans Class Reference

reference to physical space transformation

```
#include <ElTrans.hpp>
```

Public Member Functions

```
• ElTrans (Element *el) constructor
```

• double Jacobian (double xref)

evaluate jacobian in reference space

double Transform (double xref)

transform reference to physical space

• Element & GetElement ()

return the element

Private Attributes

• Element * _el store the element

3.10.1 Detailed Description

reference to physical space transformation

The documentation for this class was generated from the following files:

- /home/sam/trt/fem/ElTrans.hpp
- /home/sam/trt/fem/ElTrans.cpp

3.11 trt::FESpace Class Reference

abstract class for finite element spaces

```
#include <FESpace.hpp>
```

Inheritance diagram for trt::FESpace:

Public Member Functions

- FESpace (int Ne, double xb, int order)
 constructor
- int GetVSize () const

return the number of unknowns

- int GetNumElements () const
 - return the number of elements
- int GetNumNodes () const

return the number of nodes

- Element & GetElement (int e)
 - access to element e
- const Node & GetNode (int i) const

access to node i

Protected Attributes

Array< Element * > _els

store the elements in the FESpace

Array< Node * > _nodes

store their nodes

3.11.1 Detailed Description

abstract class for finite element spaces

3.11.2 Constructor & Destructor Documentation

3.11.2.1 FESpace()

```
trt::FESpace::FESpace (
    int Ne,
    double xb,
    int order )
```

constructor

Parameters

Ne	number of elements
order	polynomial order

The documentation for this class was generated from the following files:

- /home/sam/trt/fem/FESpace.hpp
- · /home/sam/trt/fem/FESpace.cpp

3.12 trt::FunctionCoefficient Class Reference

evaluate a function

```
#include <Coefficient.hpp>
```

Inheritance diagram for trt::FunctionCoefficient:

Public Member Functions

- FunctionCoefficient (double(*f)(double x))
 - constructor
- double Eval (ElTrans &trans, double xref) const evaluate

Private Attributes

double(* _f)(double)
 store the function

Additional Inherited Members

3.12.1 Detailed Description

evaluate a function

The documentation for this class was generated from the following file:

· /home/sam/trt/fem/Coefficient.hpp

3.13 trt::FunctionOpacity Class Reference

space, temperature dependent opacity

```
#include <Opacity.hpp>
```

Inheritance diagram for trt::FunctionOpacity:

Public Member Functions

- FunctionOpacity (double(*f)(double x, double T))
 constructor
- FunctionOpacity (double(*f)(double x))

constructor for space only dependence

 double Eval (ElTrans &trans, double xref) const evaluate

Private Attributes

- double(* _f)(double x, double T)
 store function of space, temperature
- double(* _g)(double x)
 store function of space only

Additional Inherited Members

3.13.1 Detailed Description

space, temperature dependent opacity

The documentation for this class was generated from the following files:

- · /home/sam/trt/trt/Opacity.hpp
- · /home/sam/trt/trt/Opacity.cpp

3.14 trt::FunctionStateCoefficient Class Reference

evaluate a 2D function through setting the state

```
#include <Coefficient.hpp>
```

Inheritance diagram for trt::FunctionStateCoefficient:

Public Member Functions

- FunctionStateCoefficient (double(*f)(double, double))
 constructor
- double Eval (ElTrans &trans, double xref) const evaluate

Private Attributes

double(* _f)(double, double)
 store the 2D function

Additional Inherited Members

3.14.1 Detailed Description

evaluate a 2D function through setting the state

The documentation for this class was generated from the following file:

· /home/sam/trt/fem/Coefficient.hpp

3.15 trt::GridFunction Class Reference

represent a solution vector on an FESpace

#include <GridFunction.hpp>

Inheritance diagram for trt::GridFunction:

Public Member Functions

• GridFunction (FESpace *space)

constructor

• FESpace * GetSpace () const

return the FESpace associated with the solution vector

double L2Error (Coefficient *exact)

return the L2 error

void Project (double(*f)(double))

evaluate a function and store in this

void Project (Coefficient *c)

evaluate at a coefficient at every node

• void operator= (double val)

assign all elements to a value

Private Attributes

FESpace * _space

space associated with the solution vector

3.15.1 Detailed Description

represent a solution vector on an FESpace

The documentation for this class was generated from the following files:

- · /home/sam/trt/fem/GridFunction.hpp
- /home/sam/trt/fem/GridFunction.cpp

3.16 trt::GridFunctionCoefficient Class Reference

evaluate a GridFunction as a coefficient

#include <Coefficient.hpp>

Inheritance diagram for trt::GridFunctionCoefficient:

Public Member Functions

- GridFunctionCoefficient (GridFunction &gf)
- double Eval (ElTrans &trans, double xref) const evaluate the grid function coefficient

Private Attributes

GridFunction * _gf
 store the grid function

Additional Inherited Members

3.16.1 Detailed Description

evaluate a GridFunction as a coefficient

The documentation for this class was generated from the following files:

- · /home/sam/trt/fem/Coefficient.hpp
- · /home/sam/trt/fem/Coefficient.cpp

3.17 trt::L2Segment Class Reference

1D discontinuous galerkin element

#include <L2Segment.hpp>

Inheritance diagram for trt::L2Segment:

Public Member Functions

- L2Segment (Node left, Node right, int order)
 constructor
- void CalcShape (double x, Vector &shape) const evaluate basis functions
- void CalcGradShape (double x, Vector &gshape) const evaluate derivatives of basis functions

Additional Inherited Members

3.17.1 Detailed Description

1D discontinuous galerkin element

The documentation for this class was generated from the following files:

- · /home/sam/trt/fem/L2Segment.hpp
- · /home/sam/trt/fem/L2Segment.cpp

3.18 trt::L2Space Class Reference

Discontinuous Galerkin finite element space.

```
#include <FESpace.hpp>
```

Inheritance diagram for trt::L2Space:

Public Member Functions

L2Space (int Ne, double xb, int order)
 constructor

Additional Inherited Members

3.18.1 Detailed Description

Discontinuous Galerkin finite element space.

The documentation for this class was generated from the following files:

- /home/sam/trt/fem/FESpace.hpp
- /home/sam/trt/fem/FESpace.cpp

3.19 trt::LinearIntegrator Class Reference

abstract class for linear forms

#include <LinearIntegrator.hpp>

Inheritance diagram for trt::LinearIntegrator:

Public Member Functions

• LinearIntegrator ()

default constructor

• virtual void Assemble (Element &el, Vector &elvec)

assemble a local right hand side vector

3.19.1 Detailed Description

abstract class for linear forms

The documentation for this class was generated from the following file:

· /home/sam/trt/fem/LinearIntegrator.hpp

3.20 trt::LuaReader Class Reference

read in and access a Lua script

#include <Lua.hpp>

Public Member Functions

LuaReader (std::string filename)

constructor

• LuaReader ()

default constructor

void SetLuaFile (std::string filename)

set the lua script file name

void Parse (int argc, char *argv[], std::string def="none")

parse argc and argv for Lua file name

• void VectorFunction (const char *field_name, double x, Vector &v) const

return a vector valued function named field_name

• double ScalarFunction (const char *field_name, double x) const

return a scalar valued function name field_name

double ScalarFunction (const char *field_name, double x, double mu) const

return a scalar valued function named field_name that takes two arguments

double Double (const char *field_name) const

return a double named field_name from lua script

double Double (const char *field_name, double def) const

return a double with default value if not found

int Int (const char *field_name) const

return a required integer named field_name

• int Int (const char *field_name, int def) const

return an optional integer name field name. Returns def if not found

std::string String (const char *field_name) const

read a string field_name from lua script

std::string String (const char *field_name, std::string def) const

read an optional string return def if not found

bool Bool (const char *field_name) const

return a bool value. Returns false if not found

• double SourceFunction (double x)

evaluate source_function from lua script. Lua keyword = source_function

double InitialConditions (double x)

evaluate initial conditions. Lua keyword = initial_function

std::string OutputFile () const

return the output name from lua script. Lua keyword = output_file

• double EndTime () const

return the end time. Lua keyword = end_time

· double TimeStep () const

return the time step. Lua keyword = time_step

• int WriteFreq () const

return the writer frequency. Lua keyword write_freq

• int FEOrder () const

return the fe order. Lua keyword = fe_order

Private Attributes

lua_State * _state

lua parser

3.20.1 Detailed Description

read in and access a Lua script

3.20.2 Constructor & Destructor Documentation

3.20.2.1 LuaReader()

constructor

Parameters

filename	name of lua script
----------	--------------------

3.20.3 Member Function Documentation

3.20.3.1 Parse()

parse argc and argv for Lua file name

Parameters

argc	number of command line arguments
argv	command line arguments array
def	default lua script to load if Lua script not specified

The documentation for this class was generated from the following files:

- · /home/sam/trt/utils/Lua.hpp
- /home/sam/trt/utils/Lua.cpp

3.21 trt::MassIntegrator Class Reference

integrate a mass matrix $\int B_i B_j dx$

#include <BilinearIntegrator.hpp>

Inheritance diagram for trt::MassIntegrator:

Public Member Functions

· MassIntegrator ()

default constructor

• MassIntegrator (Coefficient *c)

constructor with coefficient

• void Assemble (Element &el, Matrix &elmat)

assemble local mass matrix

Private Attributes

• Coefficient * _c

coefficient

• Vector _shape

store shape evaluations

Matrix _op

store outer product of shape functions

3.21.1 Detailed Description

integrate a mass matrix $\int B_i B_j dx$

The documentation for this class was generated from the following files:

- · /home/sam/trt/fem/BilinearIntegrator.hpp
- /home/sam/trt/fem/BilinearIntegrator.cpp

3.22 trt::Matrix Class Reference

store a matrix

#include <Matrix.hpp>

Public Member Functions

```
• Matrix ()
     default constructor
• Matrix (int m, int n=-1)
      constructor. defaults to square

    Matrix (const Matrix &m)

     copy constructor

    Matrix & operator= (const Matrix &m)

     copy assignment
• void Resize (int m, int n=-1)
     set the size
· int Height () const
     return the number of rows
• int Width () const
     return the number of columns
• const double * Data () const
     const access to data

    double * Data ()

     direct access to the data
• double & operator() (int i, int j)
     index into matrix. Hides COLUMN MAJOR bs behind the scenes for stupid LAPACK
• double operator() (int i, int j) const
     const index into matrix

    void Solve (const Vector &b, Vector &x) const

      solve the system Ax = b using lapack's dgesv (LU factor and solve)

    void operator*= (double val)

     scale all elements by val

    void operator+= (const Matrix &mat)

     add a matrix to this
· void Add (const Matrix &a, Matrix &sum) const
     add two matrices together
· void Mult (double alpha, const Vector &x, double beta, Vector &b) const
      \textit{do } b = alphathisx + beta*b
· void Mult (const Vector &x, Vector &b) const
     just matrix vector product

    std::ostream & Print (std::ostream &out=std::cout) const

     print to output
```

Private Attributes

```
    Array< double > _data
        store the data
    int _m
        number of rows
    int _n
        number of cols
```

3.22.1 Detailed Description

store a matrix

The documentation for this class was generated from the following files:

- /home/sam/trt/linalg/Matrix.hpp
- · /home/sam/trt/linalg/Matrix.cpp

3.23 trt::Node Class Reference

```
represent an FEM node
```

```
#include <Node.hpp>
```

Public Member Functions

- Node (double x, double xref, int gid, int bc)
 - constructor
- void SetGlobalID (int id)
 - set the global id
- · int GlobalID () const
 - return the global id
- int BC () const
 - return the boundary type
- double X () const
 - return node location
- double XRef () const
 - return location in reference space

Private Attributes

- double _x
 - location in physical space
- · double xref
 - location in reference space
- int _gid
 - global id of this node
- int bc
 - boundary type

3.23.1 Detailed Description

represent an FEM node

3.23.2 Constructor & Destructor Documentation

3.23.2.1 Node()

constructor

Parameters

X	node location in physical space
xref	node location in reference space
gid	global id
bc	boundary condition type

The documentation for this class was generated from the following file:

• /home/sam/trt/fem/Node.hpp

3.24 trt::Opacity Class Reference

abstract representation of space and temperature dependent opacity

```
#include <Opacity.hpp>
```

Inheritance diagram for trt::Opacity:

Public Member Functions

void SetTemperature (const Vector &T)
 set the temperature Vector for evaluating temperature dependence

Protected Attributes

Vector _T
 store the tempearture Vector

3.24.1 Detailed Description

abstract representation of space and temperature dependent opacity

The documentation for this class was generated from the following file:

· /home/sam/trt/trt/Opacity.hpp

3.25 trt::Poly1D Class Reference

represent a polynomial of one variable

```
#include <Basis.hpp>
```

Public Member Functions

• Poly1D ()

default constructor

• Poly1D (const Array< double > &c)

constructor

double Eval (double x) const

evaluate at a point

• Poly1D Derivative () const

return the derivative of *this

 std::ostream & Print (std::ostream &out=std::cout) const print the polynomial to the ofstream

Private Attributes

Array< double > _c
 store the polynomial coefficients

3.25.1 Detailed Description

represent a polynomial of one variable

3.25.2 Constructor & Destructor Documentation

3.25.2.1 Poly1D()

```
\label{lem:poly1D::Poly1D::Poly1D (} $$ const Array< double > & $c$ ) [inline]
```

constructor

provide coefficients in ascending powers

The documentation for this class was generated from the following file:

· /home/sam/trt/fem/Basis.hpp

3.26 trt::Quadrature Class Reference

arbitrary order Gauss Legendre quadrature

```
#include <Quadrature.hpp>
```

Public Member Functions

- Quadrature (int p, double a=0, double b=1)
 - constructor
- int NumPoints () const

return the number of integration points

· double Point (int i) const

return the ith integration point

• double Weight (int i) const

return the ith weight

• int Order () const

return the integration order

Private Attributes

```
    int _p
```

integration order

• double _a

lower limit

• double _b

upper limit

Array< double > _x

integration points

• Array< double > _w

integration weights

3.26.1 Detailed Description

arbitrary order Gauss Legendre quadrature

3.26.2 Constructor & Destructor Documentation

3.26.2.1 Quadrature()

```
trt::Quadrature::Quadrature ( int p, double a = 0, double b = 1)
```

constructor

Parameters

р	integration order
а	lower limit of integration
b	upper limit of integration

The documentation for this class was generated from the following files:

- /home/sam/trt/general/Quadrature.hpp
- /home/sam/trt/general/Quadrature.cpp

3.27 trt::SubtractCoefficient Class Reference

subtract a coefficient from another one

```
#include <Coefficient.hpp>
```

Inheritance diagram for trt::SubtractCoefficient:

Public Member Functions

- SubtractCoefficient (Coefficient *c1, Coefficient *c2)
- double Eval (ElTrans &trans, double xref) const evaluate the two coefficients and subtract

constructor. evaluates c1 - c2

Private Attributes

- Coefficient * _c1
- Coefficient * _c2

Additional Inherited Members

3.27.1 Detailed Description

subtract a coefficient from another one

The documentation for this class was generated from the following file:

· /home/sam/trt/fem/Coefficient.hpp

3.28 trt::Sweeper Class Reference

performs direct inversion of transport equation

```
#include <Sweeper.hpp>
```

Public Member Functions

- Sweeper (FESpace *space, Quadrature &quad, Coefficient *inflow)
 - constructor
- void Solve (Coefficient *sig_s, Coefficient *sig_t, Coefficient *q, TVector *dq, const Vector &phi, TVector &psi) const

perform a sweep for all angles

void SweepLR (double mu, Coefficient *sig_s, Coefficient *sig_t, Coefficient *q, Vector *dq, const Vector &phi, Vector &psi_n) const

sweep from left to right (mu > 0)

• void SweepRL (double mu, Coefficient *sig_s, Coefficient *sig_t, Coefficient *q, Vector *dq, const Vector &phi, Vector &psi_n) const

sweep from right to left (mu < 0)

void SweepLR (double mu, Coefficient *sig_s, Coefficient *sig_t, Coefficient *q, const Vector &phi, Vector &psi n) const

sweep without the discrete source

void SweepRL (double mu, Coefficient *sig_s, Coefficient *sig_t, Coefficient *q, const Vector &phi, Vector &psi_n) const

sweep without discrete source

Private Attributes

• FESpace * _space

store FE space for psi

Quadrature _quad

store quadrature object for angular integration

· Coefficient * _inflow

store the inflow function

3.28.1 Detailed Description

performs direct inversion of transport equation

The documentation for this class was generated from the following files:

- /home/sam/trt/trt/Sweeper.hpp
- · /home/sam/trt/trt/Sweeper.cpp

3.29 trt::Timer Class Reference

```
stopwatch class that wraps std::chrono
```

```
#include <Timer.hpp>
```

Public Member Functions

```
• Timer ()
```

constructor

• void Start ()

start the clock

• void Stop ()

stop the clock

• double GetDuration () const

return the duration

Private Attributes

```
\bullet \quad \mathsf{std} \\ : \mathsf{chrono} \\ : \mathsf{time\_point} \\ < \mathsf{std} \\ : \mathsf{chrono} \\ : \mathsf{system\_clock} \\ > \\ \_ \\ \mathsf{start} \\
```

```
store the start time
```

std::chrono::duration< double > _el

store the elapsed time

3.29.1 Detailed Description

stopwatch class that wraps std::chrono

The documentation for this class was generated from the following files:

- · /home/sam/trt/utils/Timer.hpp
- /home/sam/trt/utils/Timer.cpp

3.30 trt::TransportOperator Class Reference

driver for transport solver

```
#include <TransportOperator.hpp>
```

Public Member Functions

TransportOperator (FESpace *space, int Nangles, Opacity *sig_s, Opacity *sig_t, Coefficient *q, Coefficient *inflow, Opacity *cv=NULL)

constructor

· void SourceIteration (TVector &psi, int niter, double tol) const

source iteration but with opacities from constructor

• int SourceIteration (Coefficient *sig_t, Coefficient *sig_s, Coefficient *q, TVector *dq, int niter, double tol, TVector &psi, bool LOUD=false) const

perform source iteration with a discrete source

 void NewtonIteration (const TVector &psi_p, const Vector &T_p, int n_outer, double t_outer, int n_inner, double t_inner, double dt, TVector &psi, Vector &T)

perform one newton temperature iteration

• void BackwardEuler (const TVector &psi_p, int niter, double tol, double dt, TVector &psi)

perform one time step

void ComputeScalarFlux (const TVector &psi, Vector &phi) const

compute the scalar flux

void SetA (double a)

set the radiation temperature thing (a)

Private Member Functions

- void FormSource (double dt, const TVector &psi_p, const Vector &T_p, const Vector &Ts, TVector &dq) const form the source term for backward euler Newton Iteration
- void FormScattering (double dt, const Vector &Ts, Vector &scattering) const

form the scattering coefficient for backward euler Newton iteration

void UpdateTemperature (double dt, const Vector &T_old, const Vector &T_p, const Vector &phi, Vector &T)
 const

update the temperature vector

Private Attributes

FESpace * _space

store the FESpace

• int _Nangles

number of angles

• Coefficient * _sig_a

abs cross section

Opacity * _sig_s

scattering cross section

Opacity * _sig_t

total cross section

Coefficient * _q

source function

Coefficient * _inflow

inflow function

Opacity * _cv

heat capacity

double _c

speed of light

• double _a

radiation temperature thing

Quadrature _quad

Sn angular quadrature object.

• Sweeper _sweeper

sweeper to invert each source iteration

3.30.1 Detailed Description

driver for transport solver

3.30.2 Constructor & Destructor Documentation

3.30.2.1 TransportOperator()

```
trt::TransportOperator::TransportOperator (
    FESpace * space,
    int Nangles,
    Opacity * sig_s,
    Opacity * sig_t,
    Coefficient * q,
    Coefficient * inflow,
    Opacity * cv = NULL )
```

constructor

Parameters

finite	element space for transport	
Nangles	number of angles (S_?)	
sig_s	scattering cross section	
sig_t	total cross section	
q	source	
CV	heat capacity	

3.30.3 Member Function Documentation

3.30.3.1 BackwardEuler()

```
int niter,
double tol,
double dt,
TVector & psi )
```

perform one time step

Parameters

in	psi⊷	angular flux from previous time step
	_p	
in	niter	maximum number of source iterations to try
in	tol	iterative tolerance to stop at
in	dt	time step size
out	psi	angular flux at next time step

3.30.3.2 NewtonIteration()

perform one newton temperature iteration

Parameters

in	psi_p	angular flux from previous iteration
in	<i>T_p</i>	temperature from previous iteration
in	n_outer	max number of newton iterations
in	t_outer	newton iteration tolerance
in	n_inner	max number of source iterations
in	t_inner	source iteration tolerance
in	dt	time step size
out	psi	converged angular flux
out	T	converged temperature

3.30.3.3 Sourcelteration()

```
Coefficient * sig_s,
Coefficient * q,
TVector * dq,
int niter,
double tol,
TVector & psi,
bool LOUD = false ) const
```

perform source iteration with a discrete source

Parameters

in	sig⊷	total interaction (term that multiplies psi on LHS)
	_t	
in	sig⊷	scattering (phi term that is lagged)
	_s	
in	q	fixed source on rhs
in	dq	discrete source term. can be null
in	niter	maximum number of iterations
in	tol	relative tolerance before stopping
in,out	initial	guess for psi. final solution returned in psi
in	LOUD	print iteration info to terminal

The documentation for this class was generated from the following files:

- /home/sam/trt/trt/TransportOperator.hpp
- /home/sam/trt/trt/TransportOperator.cpp

3.31 trt::TVector Class Reference

store psi. strides in space then angle

```
#include <TVector.hpp>
```

Inheritance diagram for trt::TVector:

Public Member Functions

- TVector (FESpace *space, int Nangles)
 constructor
- double & operator() (int angle, int i)

2D indexing

• double operator() (int angle, int i) const

const indexing

• void operator= (double val)

set all values

• void GetAngle (int angle, Vector &psi_n) const

get an angle

• void SetAngle (int angle, const Vector &psi_n)

set an angle

• FESpace * GetSpace () const

return the FESpace

Private Attributes

• FESpace * _space

Finite element space this is build on.

int _Nangles

number of angles

3.31.1 Detailed Description

store psi. strides in space then angle

The documentation for this class was generated from the following files:

- /home/sam/trt/trt/TVector.hpp
- /home/sam/trt/trt/TVector.cpp

3.32 trt::Vector Class Reference

class for storing a vector of doubles

```
#include <Vector.hpp>
```

Inheritance diagram for trt::Vector:

Public Member Functions

Vector (int N, double val=0)

constructor

• Vector ()

default constructor

void operator= (const Vector &v)

copy assignment

void operator= (double val)

set all elements to a value

void operator/= (double val)

divide all entries by val

void operator*= (double val)

multiply all entries by val

• double operator* (const Vector &v) const

dot product

· void OuterProduct (const Vector &v, Matrix &mat) const

outer product

void GetSubVector (const Array< int > &vdofs, Vector &subv) const

return the subvector corresponding to the ordering in vdofs

void operator+= (const Vector &v)

add a vector to this

· void Subtract (const Vector &v, Vector &diff) const

subtract from this

• bool IsFinite () const

check if all entries in vector are finite

3.32.1 Detailed Description

class for storing a vector of doubles

3.32.2 Constructor & Destructor Documentation

3.32.2.1 Vector()

```
trt::Vector::Vector (
          int N,
          double val = 0 )
```

constructor

Parameters

Ν	size of vector	
val	initial value for all elements	

The documentation for this class was generated from the following files:

- /home/sam/trt/linalg/Vector.hpp
- · /home/sam/trt/linalg/Vector.cpp

3.33 trt::WallTimer Class Reference

singleton class for wall timer using std::chrono

```
#include <WallTimer.hpp>
```

Public Member Functions

~WallTimer ()
 destructor: prints wall time

Static Public Member Functions

• static WallTimer & instance ()

returns a static instance so only one can exist in the program

Private Member Functions

WallTimer ()
 private constructor prevents instantiating more than one WallTimer

Private Attributes

- std::chrono::time_point< std::chrono::system_clock > _start store start time
- std::chrono::duration< double > _el
 store the elapsed time
- bool _init

true if initialized

3.33.1 Detailed Description

singleton class for wall timer using std::chrono

The documentation for this class was generated from the following files:

- /home/sam/trt/utils/WallTimer.hpp
- · /home/sam/trt/utils/WallTimer.cpp

3.34 trt::WeakConvectionIntegrator Class Reference

integrate weak convection matrix $\int -B_j \frac{dB_i}{dx} dx$

#include <BilinearIntegrator.hpp>

Inheritance diagram for trt::WeakConvectionIntegrator:

Public Member Functions

- WeakConvectionIntegrator ()
 constructor
- WeakConvectionIntegrator (Coefficient *c)

constructor with coefficient

• void Assemble (Element &el, Matrix &elmat)

assemble local matrix

Private Attributes

- Coefficient * _c
 - store coefficient
- Vector _shape

store shape evals

- Vector _gshape
 - store grad shape evals
- Matrix _op

outer product

3.34.1 Detailed Description

integrate weak convection matrix $\int -B_j \frac{dB_i}{dx} dx$

The documentation for this class was generated from the following files:

- /home/sam/trt/fem/BilinearIntegrator.hpp
- /home/sam/trt/fem/BilinearIntegrator.cpp

3.35 trt::Writer Class Reference

stores pointers to GridFunctions and writes them to file

#include <Writer.hpp>

Public Member Functions

```
    Writer (std::string name="solution")
```

constructor. provide base name for output files

• void Add (GridFunction &gf, std::string name)

add a solution variable to the output list

void SetFreq (int f)

set the output frequency for time dependent calculations

• void Write (bool force=false)

write to file

Private Attributes

int _f

output frequency

Array< GridFunction * > _gf

store pointers to GridFunctions

• Array< std::string > _names

store their corresponding names

• std::string _base_name

store the base name

• int _count

number of times Write has been called

· int _writes

number of files written

3.35.1 Detailed Description

stores pointers to GridFunctions and writes them to file

3.35.2 Member Function Documentation

3.35.2.1 Write()

```
void trt::Writer::Write (
          bool force = false )
```

write to file

Parameters

force writes regardless of frequency if true

The documentation for this class was generated from the following files:

- /home/sam/trt/utils/Writer.hpp
- /home/sam/trt/utils/Writer.cpp

Index

Array	trt::FunctionCoefficient, 16
trt::Array, 7	trt::FunctionOpacity, 17
	trt::FunctionStateCoefficient, 18
BackwardEuler	trt::GridFunction, 19
trt::TransportOperator, 35	trt::GridFunctionCoefficient, 20
Basis	trt::L2Segment, 20
trt::Basis, 8	trt::L2Space, 21
	trt::LinearIntegrator, 22
Element	trt::LuaReader, 22
trt::Element, 14	LuaReader, 24
FESpace	Parse, 24
trt::FESpace, 16	trt::MassIntegrator, 25
IIII Lopace, 10	trt::Matrix, 25
LuaReader	trt::Node, 27
trt::LuaReader, 24	Node, 28
ii tii Luuri Tuudun, E i	trt::Opacity, 28
NewtonIteration	trt::Poly1D, 29
trt::TransportOperator, 36	Poly1D, 29
Node	trt::Quadrature, 30
trt::Node, 28	Quadrature, 31
	trt::SubtractCoefficient, 31
Parse	trt::Sweeper, 32
trt::LuaReader, 24	trt::TVector, 37
Poly1D	trt::Timer, 33
trt::Poly1D, 29	trt::TransportOperator, 33
•	BackwardEuler, 35
Quadrature	NewtonIteration, 36
trt::Quadrature, 31	SourceIteration, 36
	TransportOperator, 35
Sourcelteration	trt::Vector, 38
trt::TransportOperator, 36	Vector, 39
	trt::WallTimer, 40
TransportOperator	trt::WeakConvectionIntegrator, 41
trt::TransportOperator, 35	trt::Writer, 41
trt::AddCoefficient, 5	Write, 42
trt::Array	
Array, 7	Vector
trt::Array $<$ T $>$, 6	trt::Vector, 39
trt::Basis, 8	Write
Basis, 8	trt::Writer, 42
trt::BilinearIntegrator, 9	ti t vv iitei, 42
trt::Coefficient, 9	
trt::ConstantCoefficient, 10	
trt::ConstantOpacity, 11	
trt::DomainIntegrator, 12	
trt::ElTrans, 14	
trt::Element, 12	
Element, 14	
trt::FESpace, 15	
FESpace, 16	