TERMODINÂMICA E MÁQUINAS TÉRMICAS (EQE – 363) Prof. Frederico W. Tavares 6a Lista de Exercícios

- 1 Prova) Uma corrente contendo 1 mol de A e 1 mol de inerte (I) entra num reator catalítico de leito fixo para formar B através da seguinte reação: A(g) \Leftrightarrow B(g), onde $\Delta G_{298K} = 600cal / mol$ e $\Delta H_{298K} \cong \Delta H_{596K} = 1200cal / mol$. Considerando o comportamento de gás ideal, onde a constante universal dos gáses é R = 2cal / gmol K, calcule as composições de A e B (y_A e y_B) em equilíbrio quando o reator opera a 596K e 2 bar.
- 9.5) O metanol pode ser obtido pela hidrogenação em fase vapor do monóxido de carbono, de acordo com a seguinte reação: $CO(g) + 2 H_2(g) = CH_3OH(g)$. Esta reação é efetuada a 400 K e 1 atm. A análise do vapor em equilíbrio que sai do reator mostra que contém 40 % (em mols) de H_2 .
- a. Admitindo comportamento de gás ideal, determine as frações molares de CO e de CH₃OH no produto em equilíbrio.
- b. Seria esperado que a fração de H₂ na mistura em equilíbrio fosse maior ou menor que 40%, caso a reação ocorresse a 500 K e 1 atm e partindo da mesma carga inicial que em a? Por quê? Admita comportamento de gás ideal ideal.

Dados: Na reação acima, a 400 K. K=1,52 e ΔH= -22,580 kcal

- 9.10) Determine uma expressão, válida em densidades baixas ou moderadas (por exemplo, com $Vr \ge 2$), relacionando a composição do monômero em equilíbrio y_A , a uma temperatura T e a uma pressão P, na polimerização em fase gasosa: $lA(g) = A_l(g)$. Não admita comportamento de gás ideal. A constante de equilíbrio K é conhecida para a reação e conhecem-se, também, quaisquer outros parâmetros da equação de estado.
- 9.13) A energia livre de Gibbs molar, G, de uma mistura gasosa de n- pentano (n- C_5) e o neopentano (neo- C_5), a 1 atm e 400K, é dada pela expressão: G=9.600 y_1 +8.900 y_2 +800(y_1 ln $y_1 + y_2$ ln y_2), onde o índice 1 corresponde ao n- C_5 e o índice 2 ao neo- C_5 , e G está em cal/mol.
- a. Determine a composição no equilíbrio, a 1 atm e 400 K, na reação de isomerização entre n-C₅ e neo-C₅.
- b. Faça um gráfico de G contra y_1 para o sistema n- C_5 / neo- C_5 , a 1 atm e 400 K. Indique a localização da composição em equilíbrio encontrada como resposta à questão da parte a.
- 9.25) Considere as duas reações seguintes em fase gasosa:

Reação a: A + B = C + D e Reação b: A + C = 2E

Na temperatura da reação K_a = 2,667 e K_b = 3,200. A pressão no reator é de 10 atm, e carga consistente em 2 mols de A para 1 mol de B.

- a) Sabendo-se que **não** existe C dentro do reator, calcule a composição da mistura reacional em equilíbrio.
- b) Sabendo-se que existe C dentro do reator, calcule a composição da mistura reacional em equilíbrio.
- 9.28) Um método para a fabricação de gás de síntese depende da reação do metano como vapor de água, catalisada, de acordo com a equação: $CH_4(g) + H_2O(g) = CO(g) + 3 H_2(g)$. A única outra reação que ocorre ordinariamente a um grau apreciável é a reação de deslocamento do gás de água:

 $CO(g) + H_2O(g) = CO_2(g) + H_2(g)$. São conhecidas as seguintes entalpias livres de formação, em cal/mol:

	ΔH ⁰ a 600 K	ΔH ⁰ a 1300 K	ΔG ⁰ a 600 K	ΔG ⁰ a 1300 K
CH ₄	-19.890	-21.920	-5.490	+12.500
H ₂ O(g)	-58.490	-59.620	-51.150	-42.020

CO	-36.330	-27.210	-39.360	-54.240
CO_2	-94.120	-94.460	-94.440	-94.680

Admita que o equilíbrio seja atingido nas duas reações mencionadas acima, em todas as questões que se propõem a seguir:

- a. Seria preferível efetuar a fabricação do gás de síntese a 1 atm ou a 100 atm? Por quê?
- b. Seria melhor efetuar a fabricação do gás de síntese de modo que a temperatura máxima atingida no reator fosse de 600 ou de 1300 K? Por quê?
- c. Estime a razão molar entre hidrogênio e monóxido de carbono, nas condições consideradas melhores nas partes a e b, quando o gás de síntese é obtido a partir de uma carga de 1 mol de vapor e 1 mol de metano.
- d. Repita o cálculo da parte c quando a carga consiste em 2 mols de vapor para 1 mol de metano.
- e. Como seria alterada a composição da carga para que a razão entre hidrogênio e monóxido de carbono, no gás de síntese, fosse mais baixa que na parte c, nas mesmas condições de temperatura e pressão?
- f. Calcule a carga térmica do reator, nas condições de temperatura e pressão da parte d, quando o metano e o vapor de água são pré-aquecidos a 600 K.
- g. Há algum perigo de haver deposição do carbono, mediante a reação: 2CO = C + CO₂, nas condições da parte c? E nas condições da parte d? Caso haja este perigo, como seria alterada a composição da carga de modo a tornar improvável a formação do depósito?
- 2 Prova) Uma mistura equimolar de A e B entra num reator e os componentes participam das seguintes reações a 450 K e 2 atm: A (g) \Leftrightarrow B (g) e B (g) \Leftrightarrow 2 D (g). Considerando o comportamento de gás ideal e que só existem A, B e D dentro do sistema, calcule a composição de equilíbrio na saída do reator. Dados: Energias livres de Gibbs e calores de formação dos componentes a 400 K e 1 atm no estado de referência de gás ideal.

Compostos	ΔG_f^0 (cal/gmol)	$\Delta H_{\rm f}^0({ m cal/gmol})$
A	20	40000
В	25	30000
D	15	50000

3 Prova) Uma mistura de 20% de A, 30% de B e o restante de inerte I entra num reator e os componentes participam das seguintes reações a 500 K e 4 atm: $A(g) \Leftrightarrow B(g) = B(g) \Leftrightarrow 2D(s)$. Considerando o comportamento de gás ideal e que D é sólido dentro do sistema, calcule a composição da fase gasosa de equilíbrio na saída do reator.

Dados: Energias livres de Gibbs e calores de formação dos componentes a 400 K e 1 atm no estado de referência de gás ideal para os compostos A e B e no estado de sólido puro para D.

Compostos	$\Delta G_f^0(cal/gmol)$	ΔH_f^0 (cal/gmol)
A	200	4000
В	250	3000
D	150	2500