Multi-view Recurrent Neural Acoustic Word

Embeddings with Phonetic Embeddings

Valerie, Lynn TTIC 31110 06/11/2020

Presentation Outline

Acoustic Word Embeddings: Goals and Motivation

Key Related Work: He et al, 2017

Data and Experimental Setup

Results and Figures

Conclusions: Challenges, Limitations, Future Work

Acoustic Word Embeddings (AWE)

Key Related Work

Multi-view Recurrent Neural Acoustic Word Embeddings (He et al., 2017)

Idea: two views (character sequence and utterance), contrastive objectives

Future work they suggested: use phonetic sequence instead of character sequence

Method	Test AP	Test AP
	(acoustic)	(cross-view)
MFCCs + DTW (Kamper et al., 2016)	0.214	,
Correspondence autoencoder + DTW (Kamper et al., 2015)	0.469	
Phone posteriors + DTW (Carlin et al., 2011)	0.497	
Siamese CNN (Kamper et al., 2016)	0.549	
Siamese LSTM (Settle & Livescu, 2016)	0.671	
Our multi-view LSTM $obj^0 + obj^2$	0.806	0.892

Goals, Motivation, Research Questions

1. Performance with acoustic + phonetic embeddings vs. acoustic + text?

- 2. Performance with cost-sensitive margins vs. fixed margins in different objectives?
 - a. (The paper's best results are reported on fixed margin+obj0+obj2, and they used cost-sensitive margins only for obj0)

Extend cost-sensitive margins to account for weighted phoneme substitution cost

Data and Experimental Setup

Dataset: Switchboard (same as in He et al.)

Figure 1: Illustration of our embedding architecture and contrastive multi-view approach.

Technical Details: Contrastive Objectives

$$\min_{f,g} \operatorname{obj}^{0} := \frac{1}{N} \sum_{i}^{N} \max \left(0, \ m + dis \left(f(\mathbf{x}_{i}^{+}), \ g(\mathbf{c}_{i}^{+}) \right) - dis \left(f(\mathbf{x}_{i}^{+}), \ g(\mathbf{c}_{i}^{-}) \right) \right)$$

obj0: margin + dist(utterance, true label) - dist(utterance, most offending false label)

$$\min_{f,g} \text{ obj}^2 := \frac{1}{N} \sum_{i}^{N} \max \left(0, \ m + dis \left(f(\mathbf{x}_i^+), \ g(\mathbf{c}_i^+) \right) - dis \left(f(\mathbf{x}_i^-), \ g(\mathbf{c}_i^+) \right) \right)$$
obj2: margin + dist(utterance, true label) - dist(most offending utterance, true label)

Cost-sensitive margins

$$m(\mathbf{c}^+, \ \mathbf{c}^-) := m_{\max} \cdot rac{\min \left(t_{\max}, \ editdis(\mathbf{c}^+, \ \mathbf{c}^-)
ight)}{t_{\max}}$$

Edit Distance, with hyperparameters max margin and max threshold

Technical Details: Edit Distance

- Levenshtein string edit distance applied to phones
 - Insertion, deletion, and substitution each has cost 1
- Use weighted phone substitution costs
 - Idea: AH is more different from ER than it is from AW
 - Substituting **AH** with **ER** should be more expensive than substituting **AH** with **AW**

Results: Tabulated

Table 1: Development set results.

Subword	Margin	Objective	Dev AP (acoustic)	Dev AP (cross-view)
Chars	Fixed	obj^0	0.723	0.648
		$obj^0 + obj^2$	0.742	0.658
	Levenshtein	obj^0	0.741	0.615
Phones	Fixed	obj^0	0.775	0.730
		$obj^0 + obj^2$	0.785	0.738
	Levenshtein	obj^0	0.779	0.726
		$obj^0 + obj^2$	0.786	0.731
	Weighted	obj^0	0.687	0.641

Acoustic:

Given a pair of utterances, decide whether they are the same word or different words

Cross-view:

Given a pair: an utterance and a character/phone sequence, decide if the utterance is an example of the word

Note: Due to computing resource limitation, the edit distance models didn't fully converge and the weighted one has only been trained for 10 epochs

Results: Tabulated

Table 2: Test set results.

Subword	Margin	Objective	Test AP (acoustic)	Test AP (cross-view)
Chars	Fixed	obj^0	0.818	0.732
		$obj^0 + obj^2$	0.818	0.734
	Levenshtein	obj^0	0.806	0.689
Phones	Fixed	obj^0	0.836	0.775
		$obj^0 + obj^2$	0.847	0.786
	Levenshtein	obj^0	0.839	0.769
		$obj^0 + obj^2$	0.837	0.774
	Weighted	obj^0	0.755	0.673
Our multi-view LSTM $obj^0 + obj^2$		0.806	0.892	

(From He et al.)

Results: Average Precision vs. Epoch

Results: t-SNE for Common Suffixes

Conclusion: Challenges, Limitations & Future Works

- More hyperparameter tuning
 - For cost-sensitive, in addition to RNN hyperparameters, we can tune margin max and threshold max
- Speed up training
 - Especially for edit distance models
 - Solution: Instead of computing edit distances on the fly, precompute and store them in a lookup table
 - For a training vocab of 9000, this requires 9000*9000*8 bytes = ~1 GB

Q & A

(Something Situation

Live demo in your own browser: (Make sure to select 'Suffix' for color map)

shorturl.at/pvHRW

