HW2: To be, or not to be

Report

Pushkar Singh Negi

Ku ID: 2946319

EECS 731: Introduction to Data Science

Notebook1: Deduced Additional Information, visualization and classification model: HW_2_Shakespeare_data_new.ipynb

Input raw dataset : Shakespeare_data.csv

Processed dataset : Shakespeare_ds_importantPlayer.csv,

Shakespeare_ds_numberOfWordsCol.csv, Shakespeare_ds_Most_common_word.xlsx,

Jupyter Notebook File name : HW_2_Shakespeare_data_new.ipynb

- **1.** Imported the Shakespeare_data.csv file using pandas in dataframe.
- 2. Checked the total non-null entries to handle missing values.
- 3. Replaced NaN values in Player column to Uknonw.
- **4.** Analyzed the dataset with the help of various commands, such finding the total unique players in the Player column.
- 5. Next, I found out the additional information#1 i.e. for each Play, number of lines (PlayerLine) spoken by each Player with the help of groupby feature.
- Next, I applied various pandas feature to convert the above result dataset into a panda frame.Out[16]:

Play	Player	
A Comedy of Errors	ADRIANA	284
	AEGEON	150
	AEMELIA	75
	ANGELO	99
	ANTIPHOLUS	6
	BALTHAZAR	31
	Courtezan	43
	DROMIO OF EPHESUS	191
	DROMIO OF SYRACUSE	323
	DUKE SOLINUS	97
	First Merchant	19

PlayerLine

- 7. Next, I found out the additional information#2 i.e. to count the number of PlayerLine corresponding to each Play with the help of groupby feature.
- **8.** Next, I applied indexing and converted the resulted dataset into a frame.
- **9.** After sorting the values on the basis of PlayerLine in the above dataset, we got to know an additional information that which Play has the maximum number of line and which all play are more important than the other.

nomy vm	3713	riciny vin
A Winters Tale	3489	A Winters Tale
Troilus and Cressida	3711	Troilus and Cressida
Othello	3762	Othello
King Lear	3766	King Lear
Antony and Cleopatra	3862	Antony and Cleopatra
Richard III	3941	Richard III
Cymbeline	3958	Cymbeline
Coriolanus	3992	Coriolanus
Hamlet	4244	Hamlet

10. Visualizations: Plotted a graph to show: PlayerLine against Name of the Play

- 11. Next, I found out the additional information#3 i.e. Number of Players corresponding to each Play.
- **12.** Applied, transformations and found an additional information: play that has maximum and minimum player

Out[38]:

Name of the Play	Number of Players	
Two Gentlemen of Verona	18	0
Twelfth Night	19	1
The Tempest	20	2
A Comedy of Errors	21	3
Loves Labours Lost	21	4
Much Ado about nothing	24	5
Merchant of Venice	24	6
Merry Wives of Windsor	25	7
Alls well that ends well	26	8
Measure for measure	26	9
King Lear	27	10
Titus Andronicus	28	11
Δe vou lika it	28	12

13. Visualizations: Plotted a graph between: Name of the Play and Number of Players

- 14. Additional Information #4: On the basis of number of words in each PlayerLine corresponding to each Player, found the the Player that spoke the maximum number of words, and hence is the important/ or the player that has spent most time in the play.
- 15. My findings --> Player named GLOUCESTER has maximum number of 14319 total words in all the PlayerLine, and hence the important/main.
- **16. Visualization:** Plotted a graph between Number of words in the PlayerLine against Player.
- **17. Saved** the resulted dataframe in .csv and have checked in git repo.
- 18. Additional Information #5: Made a list of most frequent distinct words used in the play by their occurance.

```
Out[79]: dict_items([('act', 249), ('i', 18949), ('scene', 755), ('i.', 257), ('london.', 45), ('the', 26991), ('palace.', 116), ('ent er', 1953), ('king', 888), ('henry,', 54), ('lord', 782), ('john', 122), ('of', 15697), ('lancaster,', 29), ('earl', 82), ('w estmoreland,', 14), ('sir', 439), ('walter', 17), ('blunt,', 19), ('and', 24245), ('others', 118), ('so', 3645), ('shaken', 3), ('as', 5441), ('we', 3172), ('are,', 93), ('wan', 2), ('with', 7342), ('care,', 32), ('find', 474), ('a', 13997), ('tim e', 664), ('for', 7034), ('frighted', 12), ('peace', 162), ('to', 18129), ('pant,', 1), ('breathe', 48), ('short-winded', 1), ('acents', 5), ('new', 158), ('broils', 5), ('be', 6269), ('commenced', 2), ('in', 10212), ('strands', 1), ('afar', 19), ('r emote.', 1), ('no', 2753), ('more', 1763), ('thirsty', 6), ('entrance', 13), ('this', 5704), ('soil', 13), ('shall', 3351), ('daub', 3), ('her', 3001), ('lips', 65), ('own', 607), ("children's", 12), ('blood,', 170), ('nor', 914), ('trenching', 1),
```

- **19.** Saved the resulted dataframe in .csv and have checked in git repo.
- 20. Did visualization for each player against number of lines.
- 21. **LOGISTIC REGRESSION:** In order to apply logistic regression model, changed the datatype of all attribute to int.
- 22. Splited the data into testing and training data with the help of sklearn.model_selection import train_test_split
- 23. Fitted the X_train and y_train set
- 24. Applied the predictions and calculated the accuracy.

Notebook2: Deduced Additional Information, visualization and classification model: Shakespeare_notebook2.ipynb

In this notebook also I have continued working on the training and test dataset and applied logistic regression approach and for various combination of features (attributes) and also used additional information for the logistic regression model.