







| Název a adresa školy:                                           | Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01                        |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| IČO:                                                            | 47813121                                                                                                                 |
| Projekt:                                                        | OP VK 1.5                                                                                                                |
| Název operačního programu:                                      | OP Vzdělávání pro konkurenceschopnost                                                                                    |
| Typ šablony klíčové aktivity:                                   | V/2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol (32 vzdělávacích materiálů) |
| Název sady vzdělávacích materiálů:                              | TEK II STV                                                                                                               |
| Popis sady vzdělávacích materiálů:                              | Technické kreslení II pro obor STV, 2. ročník                                                                            |
| Sada číslo:                                                     | F-17                                                                                                                     |
| Pořadové číslo vzdělávacího materiálu:                          | 17                                                                                                                       |
| Označení vzdělávacího materiálu:<br>(pro záznam v třídní knize) | VY_32_INOVACE_F-17-17                                                                                                    |
| Název vzdělávacího materiálu:                                   | Průnik přímky s rovinou                                                                                                  |
| Zhotoveno ve školním roce:                                      | 2011/2012                                                                                                                |
| Jméno zhotovitele:                                              | Mgr. Zuzana Vildomcová                                                                                                   |

# Průnik přímky s rovinou

Pokud je přímka s rovinou různoběžná, protíná ji v bodě, který nazveme průsečík. K sestrojení průsečíku přímky s rovinou použijeme tzv. metodu krycí přímky, kterou si vysvětlíme na řešeném příkladu.

Příklad: Sestrojte průsečík Q přímky  $a \equiv AB$ , A[2;1;0], B[-5;4;8] s rovinou  $\alpha(-4;5;3)$ .

Řešení: Krycí přímku k zvolíme tak, že leží v rovině  $\alpha$  a zároveň se její půdorys  $k_1$  "kryje" s půdorysem  $a_1$  přímky a, tzn.  $a_1=k_1$ . Protože přímka k leží v rovině  $\alpha$ , její nárys  $k_2$  sestrojíme pomocí jejích stopníků, které leží na stopách roviny  $\alpha$ . Přímky k,a jsou různoběžné, jejich průsečík Q určíme nejprve nárysem  $Q_2=k_2 \cap a_2$ , půdorys  $Q_1$ odvodíme pomocí ordinály na půdorysu přímek  $a_1=k_1$ . Protože bod Q leží na přímce a a zároveň na přímce a, která leží v rovině a, je bod a0 hledaný průsečík.











Obrázek: Průnik přímky s rovinou – řešený příklad.

# Přímka a rovinný obrazec

Pokud máme určit bod, ve kterém přímka protíná rovinný obrazec, můžeme použít předchozí konstrukci a řešit průsečík přímky s rovinou, ve které rovinný obrazec leží. Dá se ale použít i jiný









postup, který také využívá metodu krycí přímky, ale místo znalostí o stopách roviny využijeme vzájemnou polohu dvou přímek.

Příklad: Sestrojte průsečík přímky  $a \equiv AB$ , A[2;3;6], B[-2;2;2] a trojúhelníku FGH, kde F[2;0;5], G[-3;3;4], H[0;5;1,5]. Vyznačte viditelnost.



Obrázek: Průnik přímky s trojúhelníkem – řešený příklad.









Řešení: Krycí přímku k zvolíme tak, že se její půdorys  $k_1$  "kryje" s půdorysem  $a_1$  přímky a, tzn.  $a_1=k_1$ , zároveň však přímka k leží v rovině trojúhelníku FGH. To prakticky znamená, že přímka k je různoběžná se stranami trojúhelníku FGH. Jestliže označíme S průsečík přímky k se stranou FG, vyznačíme půdorys  $S_1=k_1\cap F_1G_1$  , nárys  $S_2$  bodu odvodíme na nárysu  $F_2G_2$  strany pomocí ordinály. Stejným způsobem sestrojíme sdružené průměty průsečíku R přímky k se stranou FH. Nárys  $k_2$  krycí přímky je určen nárysy bodů  $S_2, R_2$ . Přímky k, a jsou různoběžné, jejich průsečík Q určíme nejprve nárysem  $Q_2=k_2\cap a_2$ , půdorys  $Q_1$ odvodíme pomocí ordinály na půdorysu přímek  $a_1=k_1$ . Bod Q je hledaný průsečík přímky a s trojúhelníkem FGH.

Postupně rozhodneme o viditelnosti přímky v jednotlivých průmětech. Viditelnost v půdorysu: Přímka a je mimoběžná se stranou FH. V průsečíku půdorysů splývají půdorys  $R_1$  bodu R, který leží na straně FH a zároveň půdorys  $U_1$  bodu U, který leží na přímce a. Nárys  $R_2$  už máme sestrojený, nárys  $U_2$  sestrojíme na nárysu  $a_2$  přímky. Když v nárysu porovnáme z-ové souřadnice obou bodů, je zřejmé, že  $z_R < z_U$ . Bod U leží tedy ve skutečnosti nad bodem R, a proto je v půdorysu viditelný bod U přímky a. Polopřímka QU leží nad trojúhelníkem a je viditelná, část polopřímky k ní opačné leží pod trojúhelníkem a není vidět.

Viditelnost v nárysu určíme podobným způsobem, např. použitím bodů V,W, kde  $V_2=W_2$  a zároveň  $V\in a,W\in GH$ . Porovnáním y–ových souřadnic zjistíme, že  $y_V< y_W$ , což znamená, že bod W trojúhelníku leží před bodem V přímky. Přímka a je tedy v tomto místě za trojúhelníkem a není vidět. Viditelná bude až polopřímka QU.

## Seznam použité literatury

• ŠVERCL, J., LEINVEBER J. a kol.: *Technické kreslení a základy deskriptivní geometrie*. Praha: Scientia, 1999. ISBN 80-7183-162-X.