Compte Rendu Méthodes Numériques de Base Identification de conductivité

Théo Cachet Anaïs Hadj-Hazzem

Avril 2017

Tous les scripts auxquels fait référence ce compte-rendu sont écris en **Scilab**, commentés et placés dans le dossier Scilab-Code .

1 La méthode des differences finies

1.1 Question 1

Montrons que le θ -schéma (10) peut s'écrire comme l'égalité matricielle (11).

D'après l'équation (10), on a $\forall i = 1...n, k \geq 0$,

$$\frac{u_i^{(k+1)} - u_i^{(k)}}{\delta_t} = \frac{\theta}{\delta_x^2} [C_{i+\frac{1}{2}} u_{i+1}^{(k+1)} - (C_{i+\frac{1}{2}} + C_{i-\frac{1}{2}}) u_i^{(k+1)} + C_{i-\frac{1}{2}} u_{i-1}^{(k+1)}] + \frac{1-\theta}{\delta_x^2} [C_{i+\frac{1}{2}} u_{i+1}^{(k)} - (C_{i+\frac{1}{2}} + C_{i-\frac{1}{2}}) u_i^{(k)}] + C_{i-\frac{1}{2}} u_i^{(k)}]$$

$$\iff u_i^{(k+1)} - u_i^{(k)} = \theta \frac{\delta_t}{\delta_x^2} [C_{i+\frac{1}{2}} u_{i+1}^{(k+1)} - (C_{i+\frac{1}{2}} + C_{i-\frac{1}{2}}) u_i^{(k+1)} + C_{i-\frac{1}{2}} u_{i-1}^{(k+1)}] + (1-\theta) \frac{\delta_t}{\delta_x^2} [C_{i+\frac{1}{2}} u_{i+1}^{(k)} - (C_{i+\frac{1}{2}} + C_{i-\frac{1}{2}}) u_i^{(k)} + C_{i-\frac{1}{2}} u_{i-1}^{(k)}]$$

En séparant les termes d'itérations k et k+1 et en notant $\mu=\frac{\delta_t}{\delta_x^2}$ on obtient :

$$\iff u_i^{(k+1)} + \theta \mu (-C_{i+\frac{1}{2}} u_{i+1}^{(k+1)} + (C_{i+\frac{1}{2}} + C_{i-\frac{1}{2}}) u_i^{(k+1)} - C_{i-\frac{1}{2}} u_{i-1}^{(k+1)}) = u_i^k + (\theta - 1) \mu (-C_{i+\frac{1}{2}} u_{i+1}^{(k)} + (C_{i+\frac{1}{2}} + C_{i-\frac{1}{2}}) u_i^{(k)} - C_{i-\frac{1}{2}} u_{i-1}^{(k)})$$

On pose la matrice tridiagonale symétrique $A \in Mn(\mathbb{R})$,

$$A = \begin{pmatrix} C_{\frac{3}{2}} + C_{\frac{1}{2}} & -C_{\frac{3}{2}} & 0 & \cdots & 0 \\ -C_{\frac{3}{2}} & C_{\frac{5}{2}} + C_{\frac{3}{2}} & -C_{\frac{5}{2}} & \ddots & \vdots \\ 0 & -C_{i-\frac{1}{2}} & C_{i+\frac{1}{2}} + C_{i-\frac{1}{2}} & -C_{i+\frac{1}{2}} & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ \vdots & & & & & & \\ 0 & \cdots & 0 & & \end{pmatrix}$$

On obtient alors l'égalité matricielle suivante : $\forall i \geq 2$, $(I+\theta\mu A)U^{(k+1)}=(I+(\theta-1)\mu A)U^{(k)}$ (*)

Traitons le cas i = 1. En effet, l'équation précedente évaluée en i=1 donne :

$$\begin{split} u_1^{k+1} + & ((C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^{k+1} - C_{\frac{3}{2}}u_2^{k+1})\theta\mu = u_1^k + (\theta - 1)\mu((C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^k - C_{\frac{3}{2}}u_2^k) \\ \Leftrightarrow & u_1^{k+1} - u_1^k = (\theta - 1)\mu((C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^k - C_{\frac{3}{2}}u_2^k) - ((C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^{k+1} - C_{\frac{3}{2}}u_2^{k+1})\theta\mu \end{split}$$

Alors que d'aprés l'équation (10), nous devrions avoir :

$$u_1^{k+1} - u_1^k = \theta \mu (-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^{k+1} + C_{\frac{3}{2}}u_2^{k+1} + C_{\frac{1}{2}}u_0^{k+1}) + (1-\theta)\mu (-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^k + C_{\frac{3}{2}}u_2^k + C_{\frac{1}{2}}u_0^k)$$

Ainsi, en rajoutant à l'équation (*) la matrice B (multipliée par μ), tel que

$$\begin{split} B_1^k &= C_{\frac{1}{2}}(\theta u_0^{k+1} + (1-\theta)u_0^k) \text{ et } B_i^k = 0 \ \forall i = 2...n \ , \text{ on obtient pour i} = 1 : \\ u_1^{k+1} + \left((C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^{k+1} - C_{\frac{3}{2}}u_2^{k+1} \right)\theta \mu = u_1^k + (\theta - 1)\mu \left((C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^k - C_{\frac{3}{2}}u_2^k \right) + \mu C_{\frac{1}{2}}(\theta u_0^{k+1} + (1-\theta)u_0^k) \\ \Leftrightarrow u_1^{k+1} + \left((C_3 + C_1)u_1^{k+1} - C_3u_2^{k+1} - C_1u_2^{k+1} \right)\theta \mu = u_1^k + (\theta - 1)\mu \left((C_3 + C_1)u_1^k - C_3u_2^k - C_1u_0^k \right) \end{split}$$

$$\Leftrightarrow u_1^{k+1} + ((C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^{k+1} - C_{\frac{3}{2}}u_2^{k+1} - C_{\frac{1}{2}}u_0^{k+1})\theta\mu = u_1^k + (\theta - 1)\mu((C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^k - C_{\frac{3}{2}}u_2^k - C_{\frac{1}{2}}u_0^k) \\ \Leftrightarrow u_1^{k+1} - u_1^k = -((C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^{k+1} - C_{\frac{3}{2}}u_2^{k+1} - C_{\frac{1}{2}}u_0^{k+1})\theta\mu + (1 - \theta)\mu(-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^k + C_{\frac{3}{2}}u_2^k + C_{\frac{1}{2}}u_0^k) \\ \Leftrightarrow u_1^{k+1} - u_1^k = (-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^{k+1} + C_{\frac{3}{2}}u_2^{k+1} + C_{\frac{1}{2}}u_0^{k+1})\theta\mu + (1 - \theta)\mu(-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^k + C_{\frac{3}{2}}u_2^k + C_{\frac{1}{2}}u_0^k) \\ \Leftrightarrow u_1^{k+1} - u_1^k = (-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^{k+1} + C_{\frac{3}{2}}u_2^{k+1} + C_{\frac{1}{2}}u_0^{k+1})\theta\mu + (1 - \theta)\mu(-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^k + C_{\frac{3}{2}}u_2^k + C_{\frac{1}{2}}u_0^k) \\ \Leftrightarrow u_1^{k+1} - u_1^k = (-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^{k+1} + C_{\frac{3}{2}}u_2^{k+1} + C_{\frac{1}{2}}u_0^{k+1})\theta\mu + (1 - \theta)\mu(-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^k + C_{\frac{3}{2}}u_2^k + C_{\frac{1}{2}}u_0^k) \\ \Leftrightarrow u_1^{k+1} - u_1^k = (-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^{k+1} + C_{\frac{3}{2}}u_2^{k+1} + C_{\frac{1}{2}}u_0^{k+1})\theta\mu + (1 - \theta)\mu(-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^k + C_{\frac{3}{2}}u_2^k + C_{\frac{1}{2}}u_0^k) \\ \Leftrightarrow u_1^{k+1} - u_1^k = (-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^{k+1} + C_{\frac{3}{2}}u_2^{k+1} + C_{\frac{1}{2}}u_0^{k+1})\theta\mu + (1 - \theta)\mu(-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^k + C_{\frac{3}{2}}u_2^k + C_{\frac{1}{2}}u_0^k) \\ \Leftrightarrow u_1^{k+1} - u_1^k = (-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^{k+1} + C_{\frac{3}{2}}u_2^k + C_{\frac{1}{2}}u_0^k)\theta\mu + (1 - \theta)\mu(-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^k + C_{\frac{3}{2}}u_2^k + C_{\frac{1}{2}}u_0^k) \\ \Leftrightarrow u_1^{k+1} - u_1^k = (-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^k + C_{\frac{3}{2}}u_2^k + C_{\frac{1}{2}}u_0^k)\theta\mu + (1 - \theta)\mu(-(C_{\frac{3}{2}} + C_{\frac{1}{2}})u_1^k + C_{\frac{3}{2}}u_2^k + C_{\frac{3}{2}}u_2^k) \\ \Leftrightarrow u_1^{k+1} - u_1^k = (-(C_{\frac{3}{2}} + C_{\frac{3}{2}})u_1^k + C_{\frac{3}{2}}u_2^k + C_{\frac{3}{2}}u_2^$$

Ainsi, on retrouve l'équation (10), qui est donc vérifiée par l'équation matricielle $\forall i = 1...n$.

Conclusion : Le schéma (10) peut s'écrire de manière matricielle :

 $(I+\theta\mu A)U^{(k+1)}=(I+(\theta-1)\mu A)U^{(k)}\ \forall i=1...n$, tel que A est une matrice symétrique tridiagonale.

1.2 Question 2

Montrons que A est définie-positive.

Soit
$$x = {}^t\!(x_1, x_2, ..., x_n),$$

 ${}^t\!xAx = C_{\frac{1}{2}}x_1^2 + C_{\frac{3}{2}}(x_1 + x_2)^2 + ... + C_{i+\frac{1}{2}}(x_i + x_{i+1})^2 + ... + C_{n+\frac{1}{2}}(x_{n-1} + x_n)^2 + C_{n-\frac{1}{2}}x_n^2$
On obtient une somme de termes positifs. Ainsi ${}^t\!xAx \ge 0$. A est bien positive. De plus,

$${}^{t}xAx = 0 \iff \begin{cases} x_{1} = 0 \\ x_{2} = -x_{1} \\ \vdots \\ x_{n} = -x_{n-1} \end{cases} \iff \begin{cases} x_{1} = 0 \\ x_{2} = 0 \\ \vdots \\ x_{n} = 0 \end{cases} \iff x = 0_{\mathbb{R}^{n}} \text{ Donc } A \text{ est positive.}$$

Conclusion : la matrice A est symétrique, définie-positive.

2 Factorisation de Cholesky dans le cas tridiagonal

2.1 Question 3-4-5

Les fonctions **Scilab** se trouvent dans le dossier "Scripts". Nous avons créé une fonction "TestsPartie3.sce" qui permet de valider le bon fonctionnement des trois fonctions demandées. Précision la méthode de résolution.

2.2 Question 4

On résoud le système linéaire suivant

$$\begin{cases} l_{1,1} * z_1 = y_1 \\ l_{2,1} * z_1 + l_{2,2} * z_2 = y_2 \\ \vdots \\ l_{n-1,n-2} * z_{n-2} + l_{n-1,n-1} * z_{n-1} = y_{n-1} \\ l_{n,n-1} * z_{n-1} + l_{n,n} * z_n = y_n \end{cases} \iff \begin{cases} z_1 = \frac{g_1}{l_{1,1}} \\ z_2 = \frac{y_2 - l_{2,1} z_2}{l_{2,2}} \\ \vdots \\ z_{n-1} = \frac{y_{n-1} - l_{n-1,n-2} * z_{n-2}}{l_{n-1,n-1}} \\ z_n = \frac{y_n - l_{n,n-1} * z_{n-1}}{l_{n,n}} \end{cases}$$

2.3 Question 5

On transpose L, puis on résoud le système linéaire suivant

$$\begin{cases} l_{1,1} * x_1 + l_{2,1} * x_2 = z_1 \\ l_{2,2} * x_2 + l_{3,2} * x_3 = z_2 \\ \vdots \\ l_{n-1,n-1} * x_{n-1} + l_{n,n-1} * x_n = z_{n-1} \\ l_{n,n} * x_n = z_n \end{cases} \iff \begin{cases} x_1 = \frac{z_1 - l_{2,1} * x_2}{l_{1,1}} \\ x_2 = \frac{z_2 - l_{3,2} z_3}{l_{2,2}} \\ \vdots \\ x_{n-1} = \frac{z_{n-1} - l_{n,n-1} * x_n}{l_{n-1,n-1}} \\ x_n = \frac{z_n}{l_{n,n}} \end{cases}$$

On teste le bon fonctionnement des fonctions factorise, remonte et descente dans le fichier TestsPartie3.sce en vérifiant l'égalité de X dans le cas d'une résolution classique, et avec la méthode de Cholesky. On obtient bien le même résultat.

3 Problème stationnaire

3.1 Question 6

On étudie ici le problème stationnaire i.e. indépendant du temps. Après discrétisation par la méthode des différences finies, on obtient :

$$\begin{cases} -C_{i+\frac{1}{2}}u_{i+1} + (C_{i+\frac{1}{2}} + C_{i-\frac{1}{2}})u_i - C_{i-\frac{1}{2}}u_{i-1} = 0 \ \forall i = 1 \cdots n \\ u_{n+1} = 0 \end{cases}$$

Ce qui peut s'écrire sous la forme matricielle suivante :

$$A = \begin{pmatrix} C_{\frac{3}{2}} + C_{\frac{1}{2}} & -C_{\frac{3}{2}} & 0 & \cdots & \cdots & 0 \\ -C_{\frac{3}{2}} & C_{\frac{5}{2}} + C_{\frac{3}{2}} & -C_{\frac{5}{2}} & \ddots & & \vdots \\ 0 & -C_{i-\frac{1}{2}} & C_{i+\frac{1}{2}} + C_{i-\frac{1}{2}} & -C_{i+\frac{1}{2}} & & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & & & & & & & & \end{pmatrix} \begin{pmatrix} u_1 \\ \vdots \\ \vdots \\ \vdots \\ u_n \end{pmatrix} = \begin{pmatrix} u_0 C_{\frac{1}{2}} \\ 0 \\ \vdots \\ \vdots \\ u_n \end{pmatrix}$$

 $\forall i = 2 \cdots n - 1$ l'écriture matricielle est évidente.

Pour i = 1, l'égalité est respectée grâce au premier terme de B.

Pour i=n, l'égalité est respectée car les conditions aux limites de l'équation différentielle

impliquent $u_{n+1} = 0$.

La matrice A étant définie-positive, elle est inversible (cours). Ainsi le système admet une unique solution.

3.2 Question 7

On pose $\forall x \in]-l, l[, C(x) = exp(-x/l) \text{ et } u_0 = 1.$

$$\begin{cases} \frac{\partial}{\partial x} [exp(-x/l) \frac{\partial u}{\partial x}] = 0\\ u(-l) = 1\\ u(l) = 0 \end{cases}$$

Nous traitons ici du problème stationnaire c'est-à-dire indépendant du temps. Les dérivées partielles se transforment alors en dérivées simples. Nous obtenons donc, après simplification, l'équation différentielle du deuxième ordre suivante :

$$\left\{ \begin{array}{l} u^{''}(x) - \frac{1}{l}u^{'}(x) = 0 \forall x \in]-l, l[\\ u(-l) = 1\\ u(l) = 0 \end{array} \right.$$

Après résolution de l'équation caractéristique nous obtenons une appartenance pour u:

$$u \in \{A + Bexp(x/l), (A, B) \in \mathbb{R}^2\}$$

Il suffit maintenant de retrouver les constantes A et B grâce aux conditions limites. En conclusion :

$$u: [-l,l] \to \mathbb{R}$$

$$x \mapsto \frac{1}{e^{-1}-e^1}(e^{\frac{x}{l}}-e^1)$$
 Graphiquement, on obtient les résultats suivants :

Ainsi, on remarque que lorsque δ_x tend vers 0, la solution numérique semble coincider avec la solution explicite. Ceci est confirmé par la norme infinie de la différence entre la solution numérique et explicite. On trouve :

pas	erreur max
1	0.2304507
0.1	0.0231296
0.01	0.0023130
0.001	0.0002313

Ainsi, on constate que lorsque δ_x diminue d'un facteur 10, l'erreur maximale diminue de ce même facteur.

3.3 Question 8

Montrons comme suggéré que $M^{-1}N$ et A ont les mêmes vecteurs propres.

Avant tout, on sait que A est symétrique réelle définie positive (cad une matrice de produit scalaire) donc :

- A est diagonalisable (car symétrique réelle)
- Toute les valeurs propres de A sont strictement positives

Soit $X \in \mathbb{R}^n$ un vecteur propre de A non nul, et soit λ la valeur propre associée. Montrons que X est vecteur propre de $M^{-1}N$.

$$\begin{array}{l} M^{-1}NX=M^{-1}(I-\frac{1}{2}\mu A)X\\ \Longleftrightarrow\ M^{-1}NX=M^{-1}X-\frac{1}{2}\mu M^{-1}AX \end{array}$$

D'aprés les hypothèses $AX = \lambda X$ donc :

$$\begin{array}{l} M^{-1}NX = M^{-1}X - \frac{1}{2}\mu M^{-1}\lambda X \\ \Longleftrightarrow M^{-1}NX = (1 - \frac{1}{2}\mu\lambda)M^{-1}X \end{array}$$

Or il est facile de montrer que $Sp(M^{-1})=\left\{\frac{2}{2+\lambda\mu},\lambda\in Sp(A)\right\}$. En effet, $Sp(M^{-1})=\frac{1}{Sp(M)}$. De plus, $Sp(M)=Sp(I+\frac{1}{2}\mu A)=1+\frac{1}{2}\mu Sp(A)$. Notons $\lambda\in Sp(A)$. Alors $Sp(M)=1+\frac{1}{2}\mu\lambda=\frac{2+\lambda\mu}{2}$, d'où $Sp(M^{-1})=\frac{2}{2+\lambda\mu}$, tel que $\lambda\in Sp(A)$.

$$M^{-1}NX = (1 - \frac{1}{2}\mu\lambda)(\frac{2}{2+\lambda\mu})X = \frac{2-\lambda\mu}{2+\lambda\mu}X$$

Ainsi, $\forall X \in E_{\lambda}(A), X \in E_{\frac{2-\lambda\mu}{2+\lambda\mu}}(M^{-1}N)$. Mais celà n'implique qu'une inclusion. Or nous savons que A est diagonalisable. La somme des dimensions de ses espaces propres est donc n. La somme des dimensions des espaces propres de $M^{-1}N$ étant au plus n, nous obtenons ainsi l'égalité entre les vecteurs propres des deux matrices.

Conclusion: Nous avons donc $Sp(M^{-1}N) = \left\{\frac{2-\lambda\mu}{2+\lambda\mu}, \lambda \in Sp(A)\right\}$ et les valeurs propres λ de A étant strictement positives (ainsi que μ), on a : $-1 < \frac{2-\lambda\mu}{2+\lambda\mu} < 1$ c'est à dire : $\rho(M^{-1}N) < 1$.

3.4 Question 9

On obtient alors:

Montrons que la suite $U^{(k)}$ converge (quand le temps tend vers l'infini) vers la solution stationnaire de la partie précèdente en utilisant l'égalité (14).

$$U^{(k+1)} = M^{-1}NU^{(k)} + M^{-1}\mu B$$

Commençons par chercher le point fixe cette suite arithmético-géométrique. Soit $X\in\mathbb{R}^n$ tel que $X=M^{-1}NX+M^{-1}\mu B$

$$\iff X - M^{-1}NX = M^{-1}\mu B$$

$$\iff X(I - M^{-1}N) = M^{-1}\mu B$$

$$\iff X = (I - M^{-1}N)^{-1}M^{-1}\mu B$$

On définit une nouvelle "suite" V tel que $\forall k \in \mathbb{N}, V^{(k)} = U^{(k)} - X$.

$$\begin{split} &V^{(k+1)} = U^{(k+1)} - X \\ &= U^{(k+1)} - (I - M^{-1}N)^{-1}M^{-1}\mu B \\ &= M^{-1}NU^{(k)} + M^{-1}\mu B - (I - M^{-1}N)^{-1}M^{-1}\mu B \\ &= M^{-1}NU^{(k)} + (I - M^{-1}N)^{-1}(I - M^{-1}N)M^{-1}\mu B - (I - M^{-1}N)^{-1}M^{-1}\mu B \\ &= M^{-1}NU^{(k)} - M^{-1}N(I - M^{-1}N)M^{-1}\mu B \\ &= M^{-1}N(U^{(k)} - (I - M^{-1}N)M^{-1}\mu B) \\ &= M^{-1}N(U^{(k)} - (I - M^{-1}N)M^{-1}\mu B) = M^{-1}NV^{(k)} \end{split}$$

Par une récurrence simple on obtient : $V^{(k)}=(M^{-1}N)^kV^{(0)}$ et donc $\lim_{k\to\infty}V^{(k)}=0$ car $\rho(M^{-1}N)<1$ d'après la question précédente.

Conclusion:
$$\lim_{k\to\infty} U^{(k)} = (I - M^{-1}N)^{-1}M^{-1}\mu B = (M(I - M^{-1}N))^{-1}\mu B$$

= $(MI - N)^{-1}\mu B = (M - N)^{-1}\mu B = \frac{1}{\mu}\mu A^{-1}B = A^{-1}B$

Ainsi, peu importe la donnée initiale $U^{(0)}$, la solution du problème discrétisé converge bien vers la solution du problème stationnaire précédent.

3.5 Question 10

On obtient pour les paramètres suivants : $\delta_t=0.02,$ nbr Points = 500 , les graphes de la solution numérique á différents t_k fixés (0.2, 2, 20, 200) :

On remarque que pour t=0.2, une légère erreur persiste (même si l'on diminue fortement δ_t) pour le premier élèment du vecteur U. L'erreur semble cependant être "compensée" car pour des temps plus élevés, l'erreur disparait.

3.6 Question 11

Pour pouvoir calculer le flux, nous avons besoin de :

- 1. $C(x_{\frac{1}{2}})$, que nous obtenons grâce à l'équation (1), calculée par la fonction scilab C
- 2. δ_x donnée par $\frac{2*l}{n+1}$

- 3. $\frac{du_0}{dt} = \frac{2*t}{T^2}$ qui sera évaluée en $t = \frac{2T}{3}$ (t_{inter}) et t = T (t_{fin})
- 4. $u(x_1,t)$ que l'on calcule à l'aide de l'équation suivante : $U^{(k+1)} = M^{-1}NU^{(k)} + M^{-1}\mu B$. Ce sont les fonctions scilab appelées calculMembreDroit et iterTemps qui calculent $u(x_1,t_{inter})$ et $u(x_1,t_{fin})$.

Puis on utilise les fonctions crées pour calculer F_{inter} et F_{fin} .

3.7 Question 13

On considère $-l < x_1 < x_2 < x_3 < l$. On choisit le nouvel intervalle de recherche de la manière suivante :

- Si $J(x_1) > J(x_2)$ alors deux cas sont possibles :
 - Le premier cas correspond au cas où $J(x_2) > J(x_3)$. Cela signifie que le minimum n'appartient pas à l'intervalle $]-l;x_2[$, on peut donc réduire l'intervalle d'étude à $[x_2;l]$.
 - Le deuxième cas correspond au cas où $J(x_2) \leq J(x_3)$. Cela signifie que le minimum est compris entre x_1 et x_3 , on peut donc réduire l'intervalle de recherche à $[x_1; x_3]$
- Sinon, $J(x_1) \leq J(x_2)$, cela signifie que le minimum a déjà été dépassé, c'est à dire que le résultat est inférieur à x_1 . Ainsi, on peut réduire l'intervalle de recherche à $[-l; x_1]$

Cela correspond à la fonction appelée dichotomie dans le fichier Q13dichotomie.sce.

Dans un premier temps, nous avons testé cette fonction avec $f(x) = (x-2)^2$. Le résultat rendu par l'algorithme est bien 2. Si l'on applique la dichotomie à J pour trouver son minimum, on trouve (pour nbrPoints = 250) $x_d^* = -2.7803605$. Cela semble cohérent avec la courbe tracée à la question précedente.

3.8 Question **14**

Nous avons appliqué l'algorithme proposé, en choisissant arbitrairement $x_0 = \frac{min + max}{2}$. Ainsi, on trouve avec la méthode de Newton (pour nbrPoints = 250) $x_d^* = -2.779593$.