Lecture 5

Rajiv Kumar rajiv.kumar@iitjammu.ac.in

September 17, 2021

Elementary Matrices

Theorem

A linear system of equations has either no solution, or a unique solution, or infinitely many solutions.

Corollary

Any homogeneous linear system of equations is either a trivial solution or infinitely many solutions.

Corollary

Let Ax = O be a linear system of n variables and m equations. If m < n, then system has infinitely many solutions.

Proof. Exercise.

Remark

Suppose Ax = O be a homogeneous system with number of variables equal to number of number of equations, say n. Further, suppose that Ax = O has a trivial unique solution. The system does not have a free variable. Hence the number of non-zero rows of RREF of A is n, so A is row equivalent to I. On the other side suppose A is row equivalent to I, hence the system has no free variable. Thus system has only trivial solution.

Solutions of Ax = O and Ax = b

Let $A\mathbf{x} = \mathbf{O}$ and $A\mathbf{x} = \mathbf{b}$ be systems of linear equations. Let S denote the set of solutions of the homogeneous system $A\mathbf{x} = \mathbf{O}$. Let \mathbf{x}_p be a particular solution of the system $A\mathbf{x} = \mathbf{b}$. Then the set of all solutions of system $A\mathbf{x} = \mathbf{b}$ is given by

$$\{\mathbf{x}_h + \mathbf{x}_p; \mathbf{x}_h \in S\}.$$

Suppose $\mathbf{x}_h \in S$ and \mathbf{x}_p is a particular solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$. Then $\mathbf{A}\mathbf{x}_h = \mathbf{O}$ and $\mathbf{A}\mathbf{x}_p = \mathbf{b}$ and hence

 $\mathbf{A}(\mathbf{x}_h + \mathbf{x}_p) = \mathbf{A}\mathbf{x}_h + \mathbf{A}\mathbf{x}_p = \mathbf{O} + \mathbf{b} = \mathbf{b}$. This implies that set of solutions of $\mathbf{A}\mathbf{x} = \mathbf{b}$ contains $\{\mathbf{x}_h + \mathbf{x}_p; \mathbf{x}_h \in S\}$. Other side is an exercise.

Elementary Row Matrices

Definition

A matrix is said to *elementary row matrix* if it is one of the following:

- 1. $E_i(c)$ is the matrix obtained from I_n by multiplying ith row by a non-zero scalar c
- 2. E_{ij} is obtained from I_n by interchanging ith rows and jth row.
- 3. $E_{ij}(c)$ is obtained from I_n by adding c time the jth row into ith row.

Effects. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $E \in \mathbb{R}^{m \times m}$. Then,

- 1. if $E = E_i(c)$, EA is the matrix obtained from A by multiplying ith row by a non-zero scalar c
- 2. if $E = E_{ij}$, then EA is obtained from A by interchanging ith rows and jth row.
- 3. if $E = E_{ij}(c)$, then EA is obtained from A by adding c time the jth row into ith row.

Proof. Exercise

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 and $E = E_{12}(3)$. Then $E = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$ and we get $E\mathbf{A} = \begin{bmatrix} 13 & 17 & 21 \\ 4 & 5 & 6 \end{bmatrix}$. Also note that, if we apply elementary row operation $R_1 \to R_1 + 3R_3$ on \mathbf{A} , we get $\begin{bmatrix} 13 & 17 & 21 \\ 4 & 5 & 6 \end{bmatrix}$.

Theorem

Let A be a matrix and E be an elementary matrix by performing some elementary row operation on I. Then EA is a matrix obtained from A by performing same elementary row operation.

Corollary

Elementary matrices are invertible.

Proof.

1.
$$E_i(c)E_i\left(\frac{1}{c}\right)=I=E_i\left(\frac{1}{c}\right)E_i(c)$$
, where $c\neq 0$.

- **2**. $E_{ij}E_{ij} = I$.
- 3. $E_{ij}(c)E_{ij}(-c) = I = E_{ij}(-c)E_{ij}(c)$.

Theorem

Let A be an invertible matrix of size n and $\mathbf{b} \in \mathbb{R}^{1 \times n}$. Then $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution.

Proof. Let $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$. Then $\mathbf{A}\mathbf{x} = \mathbf{A}(\mathbf{A}^{-1}\mathbf{b}) = (\mathbf{A}\mathbf{A}^{-1})\mathbf{b} = I\mathbf{b} = \mathbf{b}$. Hence $\mathbf{A}^{-1}\mathbf{b}$ is a solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$. Suppose \mathbf{x}_1 be the another solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$. Then $\mathbf{A}\mathbf{x}_1 = \mathbf{b}$. Multiply both sides by \mathbf{A}^{-1} , we get $\mathbf{A}^{-1}(\mathbf{A}\mathbf{x}) = \mathbf{A}^{-1}\mathbf{b}$. This gives $\mathbf{x}_1 = \mathbf{A}^{-1}\mathbf{b}$.

Theorem

Let $A \in \mathbb{R}^{n \times n}$. Then the following conditions are equivalent:

- a) A is an invertible matrix.
- b) The matrix equation Ax = 0 has the unique solution x = 0.
- c) The reduced row-echelon form of A is I_n .

Proof. (a) \Rightarrow (b) Assume that **A** is an invertible matrix. Then there exists a matrix **B** such that $\mathbf{AB} = I_n = \mathbf{BA}$.

Now consider the matrix equation Ax = O. Then B(Ax) = BO = O implies that (BA)x = O. Since $BA = I_n$, it follows that $I_nx = O$, i.e., x = O.

(b) \Rightarrow (c) Because the matrix equation $\mathbf{A}\mathbf{x} = \mathbf{O}$ has the unique solution $x_1 = 0, x_2 = 0, \dots, x_n = 0$, there is no free variable. That is, all variables are leading variables. Since system has exactly n equations, the reduced system is

$$x_1 = 0$$

$$x_2 = 0$$

$$x_n = 0.$$

Thus reduced row-echelon form of A is I_n .

(c) \Rightarrow (a) We know that by a (finite) sequence of elementary row operations, the matrix A can be transformed into a reduced row-echelon matrix A'. Thus there are finitely many elementary matrices E_1, E_2, \ldots, E_t such that

$$E_t E_{t-1} \cdots E_2 E_1 A = A' = I_n.$$

Thus $B = E_t E_{t-1} \cdots E_2 E_1$ is the inverse of A.