

CD4076BMS

CMOS 4 -Bit D-Type Registers

FN3325 Rev 0.00 December 1992

Features

- · High Voltage Type (20V Rating)
- Three State Outputs
- Input Disabled Without Gating the Clock
- Gated Output Control Lines for Enabling or Disabling the Outputs
- Standardized Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- · 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Description

CD4076BMS types are four-bit registers consisting of D-type flip-flops that feature three-state outputs. Data Disable inputs are provided to control the entry of data into the flip-flops. When both Data Disable inputs are low, data at the D inputs are loaded into their respective flip-flops on the next positive transition of the clock input. Output Disable inputs are also provided. When the Output Disable inputs are both low, the normal logic states of the four outputs are available to the load. The outputs are disabled independently of the clock by a high logic level at either Output Disable input, and present a high impedance.

The CD4076BMS is supplied in these 16 lead outline packages:

Braze Seal DIP H4T
Frit Seal DIP H1E
Ceramic Flatpack H6W

Pinout

Functional Diagram

Absolute Maximum Ratings

Reliability Information

Thermal Resistance	θ_{ia}	$\theta_{\sf ic}$
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD) at +125°C)
For TA = -55°C to +100°C (Package Typ	oe D, F, K).	500mW
For TA = +100°C to +125°C (Package T	ype D, F, K) Derate
Lineari	ty at 12mW	/OC to 200mW
Device Dissipation per Output Transistor .		100mW
For TA = Full Package Temperature Rar	nge (All Pac	kage Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (N	NOTE 1)	SUB- GROUPS	TEMPERATURE	MIN	MAX	UNIT S
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μА
				2	+125°C	-	1000	μА
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μА
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
				3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load		1, 2, 3	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	,	1, 2, 3	+25°C, +125°C, - 55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	0.5V	1	+25°C	1.4	-	mΑ
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V		1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V		1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V		1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V		1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	4	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = V	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, - 55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, - 55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13.5V, VOL < 1.5V		1, 2, 3	+25°C, +125°C, - 55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, - 55°C	11	-	V
Tri-State Output	IOZL	VIN = VDD or GND	VDD = 20V	1	+25°C	-0.4	-	μΑ
Leakage		VOUT = 0V		2	+125°C	-12	-	<u>.</u> μΑ
			VDD = 18V	3	-55°C	-0.4	-	μ A

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A			LIMITS	
PARAMETER	SYMBOL			SUB- GROUPS	TEMPERATURE	MIN	MAX	UNIT S
Tri-State Output	IOZH	VIN = VDD or GND	VDD = 20V	1	+25°C	-	0.4	μА
Leakage		VOUT = VDD		2	+125°C	-	12	μА
			VDD = 18V	3	-55°C	-	0.4	μА

NOTES: 1. All voltages referenced to device GND, 100% testing being implemented.

 For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS (Notes 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	600	ns
Clock to Q Output	TPLH		10, 11	+125°C, -55°C	-	810	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
TTLH	l	10, 11	+125°C, -55°C	-	270	ns	

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	MITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μА
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μА
				+125°C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μА
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-2.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	7	-	V
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	250	ns
Clock to Q Output	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	180	ns
Propagation Delay	TPHL2	VDD = 5V	1, 2, 3	+25°C	-	460	ns
Reset		VDD = 10V	1, 2, 3	+25°C	-	200	ns
1		VDD = 15V	1, 2, 3	+25°C	-	150	ns
Propagation Delay	TPHZ	VDD = 5V	1, 2, 4	+25°C	-	300	ns
3 - State	TPLZ	VDD = 10V	1, 2, 4	+25°C	-	150	ns
l		VDD = 15V	1, 2, 4	+25°C	-	120	ns
Propagation Delay	TPZH	VDD = 5V	1, 2, 4	+25°C	-	300	ns
3 - State	TPZL	VDD = 10V	1, 2, 4	+25°C	-	150	ns
		VDD = 15V	1, 2, 4	+25°C	-	120	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
l	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Transition Time	TTLH	VDD = 10V	1, 2, 3	+25°C	-	-	ns
		VDD = 15V	1, 2, 3	+25°C	-	-	ns
Maximum Clock Input	FCL	VDD = 5V	1, 2, 3	+25°C	3	-	MHz
Maximum Clock Input requency		VDD = 10V	1, 2, 3	+25°C	6	-	MHz
l		VDD = 15V	1, 2, 3	+25°C	8	-	MHz
Minimum Data Setup	TS	VDD = 5V	1, 2, 3	+25°C	-	200	ns
Time		VDD = 10V	1, 2, 3	+25°C	-	80	ns
l		VDD = 15V	1, 2, 3	+25°C	-	60	ns
Minimum Data Hold Time	TW	VDD = 5V	1, 2, 3	+25°C	-	120	ns
Reset Pulse Width		VDD = 10V	1, 2, 3	+25°C	-	50	ns
l		VDD = 15V	1, 2, 3	+25°C	-	40	ns
Minimum Clock Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	200	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	100	ns
l		VDD = 15V	1, 2, 3	+25°C	-	80	ns
Minimum Data Input Set-	TS	VDD = 5V	1, 2, 3	+25°C	-	180	ns
Up Time		VDD = 10V	1, 2, 3	+25°C	-	100	ns
1		VDD = 15V	1, 2, 3	+25°C	-	70	ns
Maximum Clock Input	TRCL	VDD = 5V	1, 2, 3, 5	+25°C	-	15	μS
Rise and Fall Time	TFCL	VDD = 10V	1, 2, 3, 5	+25°C	-	5	μS
1		VDD = 15V	1, 2, 3, 5	+25°C	-	5	μS
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. CL = 50pF, RL = 1K, Input TR, TF < 20ns.
- 5. If more than one unit is cascaded, TRCL should be made less than or equal to the sum of the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	ITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORI	MANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre	Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1	(Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2	(Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1. 5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	IIL-STD-883			READ AND RECORD		
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD		
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4		

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILLATOR	
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	3 - 6	1, 2, 7 - 15	16			
Static Burn-In 2 Note 1	3 - 6	8	1, 2, 7, 9 -16			
Dynamic Burn-In Note 1	-	1, 2, 8 - 10, 15	16	3 - 6	7	11 - 14
Irradiation (Note 2)	3 - 6	8	1, 2, 7, 9 - 16			

NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of $47K \pm 5\%$; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

FIGURE 1. CD4076BMS LOGIC DIAGRAM

	ГΗ			

		DATA INPUT DISABLE		DATA	NEXT STATE OUTPUT	
RESET	CLOCK	G1	G2	D	Q	
1	X	X	X	X	0	
0	0	Х	Х	Х	Q	NC
0		1	Х	Х	Q	NC
0		Х	1	Х	Q	NC
0		0	0	1	1	
0		0	0	0	0	
0	1	Х	Х	Х	Q	NC
0		Х	Х	Х	Q	NC

When either Output Disable M or N is high, the outputs are disabled (high impedance state), however sequential operation of the flip-flops is not affected.

1 = High Level

X = Don't Care

0 = Low Level

NC = No Change

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

Typical Performance Characteristics (Continued)

FIGURE 6. TYPICAL PROPAGATION DELAY TIME vs LOAD CAPACITANCE (CLOCK TO Q)

FIGURE 7. TYPICAL TRANSITION TIME vs LOAD CAPACITANCE

FIGURE 8. TYPICAL MAXIMUM CLOCK INPUT FREQUENCY vs SUPPLY VOLTAGE

FIGURE 9. TYPICAL DYNAMIC POWER DISSIPATION vs FREQUENCY

	TEST	VOLTAGE
CHARACTER	AT D	AT Q
tPHZ	VDD	VSS
tPLZ	VSS	VDD
tPZL	VSS	VDD
tPZH	VDD	VSS

FIGURE 11. FUNCTIONAL WAVEFORM

Chip Dimensions and Pad Layout

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch)

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

© Copyright Intersil Americas LLC 1999. All Rights Reserved.

All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

