Definition (Categorical Product)

and $\mathbf{g} = (\phi_{f,\mathbf{g}}) \circ \pi_2$.

Let **C** be a category and let $X, Y \in \mathsf{Ob}_{\mathbf{C}}$ be objects. The *product* of X and Y is:

Constituents

- 1. an object $Z \in Ob_{\mathbb{C}}$ (this is "the product of X and Y");
- 2. projection morphisms $\pi_1: Z \to X$ and $\pi_2: Z \to Y$,

Conditions

1. For any $T \in \mathrm{Ob}_{\mathbb{C}}$ and any morphisms $f: T \to X, g: T \to Y$, there exists a *unique* morphism $\phi_{f,g}: T \to Z$ such that $f = (\phi_{f,g}) \ ^{\circ}_{,g} \pi_1$