Ch4. Swin Transformer V2

Swin Transformer V2: Scaling Up Capacity and Resolution

Swin Transformer vs ViT

- Swin Transformer
 - 연산량이 window 수에 선형적으로 증가
 - High resolution task 수행
 - Hierarchical representation을 학습
 - Object Detection task 수행
 - Backbone으로 사용

- ViT
 - 연산량이 image 크기의 제곱에 비<mark>례</mark>
 - → High resolution task를 수행 X
 - Hierarchical한 구조X
 - → Object Detection task 수행의 어려움
 - → backbone의 역할의 어려움

Swin Transformer architecture

Architecture

Two Swin Transformer blocks

Swin Transformer architecture

Patch Partition&Linear Embedding

Input image 16x16x3

4x4 크기의 patch (16/4)x(16/4)개 존재

- Patch가 하나의 token
- Patch가 4x4일때, 16x16x3 input image→48차원 1D 16개로 flatten

Patch Merging

- 2x2 의 neighboring (attention window 내) patch들을 하나의 patch로 concat
- CNN에서 Feature map size를 2배 줄이면, channel 수를 2배로 늘리 것과 비슷

- W-MSA: Local Window 내에서 self attention
- SW-MSA: Local Window 간의 연결성 부여

Two Swin Transformer blocks

- SW-MSA
 - SW-MSA 실행 시, window 개수: $\left(\frac{N_h}{M} + 1\right) \times \left(\frac{N_w}{M} + 1\right) \rightarrow$ window 증가
 - Cyclic Shift 와 Attention Mask를 통해 W-MSA와 동일한 window 개수 사용

• Cyclic Shift 와 Attention Mask(SW-MSA)

Swin Transformer v2

τ

Swin Transformer block

Z'+1

MLP

MLP

LN

LN

SW-MSA

LN

Z'-1

Z'

Z'

Self attention

Scaled cosine function

$$Sim(q_i, k_j) = cosine(q_i, k_j)/\tau + B_{ij}$$

$$A \cdot B = ||A|| \, ||B|| \cos \theta$$
$$\cos(\theta) = \frac{A \cdot B}{||A|| \, ||B||}$$

$$Sim(q_i, k_j) = \frac{q_i \cdot k_j}{||q_i|| ||k_j||} / \tau + B_{ij}$$

log-spaced CPB

Relative coordinates

Window size(M) = 3

x axis

1	2	3
4	5	6
7	8	9

1	0	0	0	-1	-1	-1	-2	-2	-2
2	0	0	0	-1	-1	-1	-2	-2	-2
3	0	0	0	-1	-1	-1	-2	-2	-2
4	1	1	1	0	0	0	-1	-1	-1
5	1	1	1	0	0	0	-1	-1	-1
6	1	1	1	0	0	0	-1	-1	-1
7	2	2	2	1	1	1	0	0	0
8	2	2	2	1	1	1	0	0	0
9	2	2	2	1	1	1	0	0	0

 Δx

y axis						
1	2	3				
4	5	6				
7	8	9				

	_	2	3	4	3	0	/	0	9
1	0	-1	-2	0	-1	-2	0	-1	-2
2	1	0	-1	1	0	-1	1	0	-1
3	2	1	0	2	1	0	2	1	0
4	0	-1	-2	0	-1	-2	0	-1	-2
5	1	0	-1	1	0	-1	1	0	-1
6	2	1	0	2	1	0	2	1	0
7	0	-1	-2	0	-1	-2	0	-1	-2
8	1	0	-1	1	0	-1	1	0	-1
9	2	1	0	2	1	0	2	1	0

log-spaced CPB

• Log-spaced coordinates :

 $\widehat{\Lambda \chi}$

$$\widehat{\Delta x} = \operatorname{sign}(x) \cdot \log(1 + |\Delta x|),$$

$$\widehat{\Delta y} = \operatorname{sign}(y) \cdot \log(1 + |\Delta y|),$$

	$\Delta \lambda$									
	1	2	3	4	5	6	7	8	9	
1	0	0	0	-0.6931	-0.6931	-0.6931	-1.0986	-1.0986	-1.0986	
2	0	0	0	-0.6931	-0.6931	-0.6931	-1.0986	-1.0986	-1.0986	
3	0	0	0	-0.6931	-0.6931	-0.6931	-1.0986	-1.0986	-1.0986	
4	0.6931	0.6931	0.6931	0	0	0	-0.6931	-0.6931	-0.6931	
5	0.6931	0.6931	0.6931	0	0	0	-0.6931	-0.6931	-0.6931	
6	0.6931	0.6931	0.6931	0	0	0	-0.6931	-0.6931	-0.6931	
7	1.0986	1.0986	1.0986	0.6931	0.6931	0.6931	0	0	0	
8	1.0986	1.0986	1.0986	0.6931	0.6931	0.6931	0	0	0	
9	1.0986	1.0986	1.0986	0.6931	0.6931	0.6931	0	0	0	

	1	2	3	4	5	6	7	8	9
1	0	-0.6931	-1.0986	0	-0.6931	-1.0986	0	-0.6931	-1.0986
2	0.6931	0	-0.6931	0.6931	0	-0.6931	0.6931	0	-0.6931
3	1.0986	0.6931	0	1.0986	0.6931	0	1.0986	0.6931	0
4	0	-0.6931	-1.0986	0	-0.6931	-1.0986	0	-0.6931	-1.0986
5	0.6931	0	-0.6931	0.6931	0	-0.6931	0.6931	0	-0.6931
6	1.0986	0.6931	0	1.0986	0.6931	0	1.0986	0.6931	0
7	0	-0.6931	-1.0986	0	-0.6931	-1.0986	0	-0.6931	-1.0986
8	0.6931	0	-0.6931	0.6931	0	-0.6931	0.6931	0	-0.6931
9	1.0986	0.6931	0	1.0986	0.6931	0	1.0986	0.6931	0

log-spaced CPB

Continuous relative position bias

Architecture Variants

Architecture hyper-parameters

```
Swin-T: C = 96, layer numbers = \{2, 2, 6, 2\}

Swin-S: C = 96, layer numbers =\{2, 2, 18, 2\}

Swin-B: C = 128, layer numbers =\{2, 2, 18, 2\}

Swin-L: C = 192, layer numbers =\{2, 2, 18, 2\}

SwinV2-H: C = 352, #. block = \{2, 2, 18, 2\}

SwinV2-G: C = 512, #. block = \{2, 2, 42, 4\}
```

* C는 첫 번째 Stage의 hidden layer의 channel 개수

Summary

- Hierarchical representation을 학습
 - Object Detection task 수행
 - Backbone으로 사용

Architecture

Two Swin Transformer blocks

