

Application

Image Classification

Object Detection

Neural Style transfer

Why not NN?

Convolution

6 × 6

 $n \times n$

 3×3

 $f \times f$

 4×4

 $(n - f + 1) \times (n - f + 1)$

Vertical edge detection

1		1			
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
(4 /					

	1	0	-1
*	1	0	-1
	1	0	-1
		3×3	0

1			
0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0
14x4			

Padding

Valid Conv. = no padding Same Conv. = pad so that output size is the same as input size. p=(f-1)/2

*

=

 6×6 (n + 2p - f + 1) × (n + 2p - f + 1)

 $n \times n$ 8×8 Padding (p) = 1

Why padding?

- Throwing away information from edges.
- Shrink the image every time after convolution.

Strided Convolution

*

=

6 × 6

$$\left[\frac{n+2p-f}{S} + 1 \right] \times \left[\frac{n+2p-f}{S} + 1 \right]$$

Convolution on RGB image

Summary of Notation

If layer 1 is a convolution layer:

```
f[l] = \text{filter size} \qquad \qquad \text{Input:} \quad \underbrace{\bigcap_{H}^{(l-1)} \bigcap_{H}^{(l-1)} \bigcap_{H}^{(l-1)}}_{N_{U}} \times \underbrace{\bigcap_{C}^{(l-1)}}_{N_{C}} \leftarrow \underbrace{\bigcap_{C}^{(l-1)} \bigcap_{H}^{(l-1)} \bigcap_{H}^{(l-1)}}_{N_{U}} \times \underbrace{\bigcap_{C}^{(l-1)} \bigcap_{H}^{(l-1)} \bigcap_{H}^{(l-1)}}_{N_{U}} \times \underbrace{\bigcap_{C}^{(l-1)} \bigcap_{H}^{(l-1)} \bigcap_{H}^{(l-1)} \bigcap_{H}^{(l-1)}}_{N_{U}} \times \underbrace{\bigcap_{C}^{(l-1)} \bigcap_{H}^{(l-1)} \bigcap_{H}^{
```

ConvNet

	Shape
Input	(39,39,3)
Conv1 (f=3, s=1, p=0), 10-filters	
Conv2 (f=5, s=2, p=0) 20-filters	
Conv3 (f=5, s=2, p=0) 40-filters	
Flatten	

Types of Layer in ConvNets

- Convolution (Conv)
- Pooling (pool)
- Fully Connected (FC)

Pooling

Max pooling

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

No parameters to learn in pooling

Summary of pooling

Hyperparameters:

f: filter size

s: stride

Max or average pooling

$$N_{H} \times N_{\omega} \times N_{c}$$

$$\left[N_{H} - f + 1 \right] \times \left[N_{\omega} + 1 \right]$$

$$\times N_{c}$$

LeNet-5

	Shape	Parameters
Input	(32,32,3)	-
Conv1 (f=5, s=1), 8-filters (3D-Filters)	(28,28,8)	608
Pool1	(14,14,8)	-
Conv2 (f=5, s=1) 16-filters	(10,10,16)	3216
Pool2	(5,5,16)	-
FC3	120	48120
FC4	84	10164
Output-SoftMax	10	850

List of Parameters and Hyperparameters

Hyperparameters: Which needs to be tuned, Usually with validation set

- 1. Kernel size 3 x 3, 5 x 5, 7 x 7
- 2. Stride 1, 2 or 3
- 3. Padding size 0, 1, 2
- 4. Number of filters 32, 64, 128, etc..
- 5. No of hidden layers Trial and error
- 6. No of neurons in each hidden layer Trial and error
- 7. Learning rate 0.1, 0.01, 0.001
- 8. Activation functions
- 9. Number of iteration Trial and error
- 10. No. of Epoch Trial and error
- 11. Batch size 4, 8, 16, 32, 64, 128 (Power of 2)
- 12. Regularization Dropout, L1, L2
- 13. Weights and Bias Initialization Zero, Random, He
- 14. Optimization algorithm SGD, ADAM, RMSProp
- 15. Learning Rate decay
- 16. Momentum 0.9
- 17. Number of iterations, epoch and batch size

Parameters: Which are learned during training, Weights and bias.

Transfer Learning

- Transfer learning is a machine learning technique where a model trained on one task is re-purposed on a second related task.
- Transfer learning with convolutional neural networks (CNNs) has revolutionized the field of computer vision by enabling the reuse of pre-trained models on new, related tasks. This powerful technique leverages the knowledge learned from large-scale datasets, allowing for faster and more accurate model training, even with limited labeled data.
- transfer learning significantly reduces the need for extensive training time and computational resources.

- Transfer learning takes advantage of the fact that CNNs trained on large datasets, such as ImageNet, have learned general features that are relevant to many visual tasks. Instead of training a CNN from scratch on a new dataset, transfer learning involves using a pretrained CNN as a starting point and fine-tuning it on the new dataset.
- The pre-trained CNN acts as a feature extractor, capturing high-level visual representations. These features are then passed to new layers designed for the specific task. The pre-trained layers are frozen during fine-tuning, while the new layers are adjusted.

Steps to Implement Transfer Learning

- Select a Pre-trained Model
- Load Pre-trained Model
- Customize the Model
- Freeze Pre-trained Layers
- Prepare Data
- Train the Model
- Fine-tuning (Optional)
- Evaluate and Test

Example for transfer learning

```
import tensorflow as tf
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.applications import VGG16
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense
from tensorflow.keras.utils import to_categorical

# Load CIFAR-10 dataset
(itrain, ltrain), (itest, ltest) = cifar10.load_data()

# Preprocess the data
itrain = itrain / 255.0
itest = itest / 255.0
ltrain = to_categorical(ltrain)
ltest = to_categorical(ltest)
```

```
# Load pre-trained VGG16 model (excluding the top fully-connected layers)
basem = VGG16(weights='imagenet', include_top=False, input_shape=(32, 32, 3))
# Freeze the pre-trained layers
for layer in basem layers:
   layer.trainable = False
# Create a new model on top
semodel = Sequential()
semodel.add(basem)
semodel.add(Flatten())
semodel.add(Dense(256, activation='relu'))
semodel.add(Dense(10, activation='softmax')) # CIFAR-10 has 10 classes
# Compile the model
semodel.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accuracy']
# Train the model
semodel.fit(itrain, ltrain, epochs=10, batch size=32, validation data=(itest, ltest))
# Evaluate the model on test data
ltest, atest = semodel.evaluate(itest, ltest)
print("Test accuracy:", atest)
```

