It Can Be Shown

 $Benjamin\ Nutter$

Contents

Ι	\mathbf{Pr}	robability Distributions	7
	The	e Bernoulli Distribution	9
	1	Cumulative Distribution Function	9
	2	Expected Values	10
	3	Moment Generating Function	10
	4	Theorems for the Bernoulli Distribution	11
		4.1 Validity of the Distribution	11
		4.2 Sum of Bernoulli Random Variables	11
	The	e Binomial Distribution	13
	5	Cumulative Distribution Function	13
	6	Expected Values	13
	7	Moment Generating Function	16
	8	Maximum Likelihood Estimator	17
		8.1 Likelihood Function	17
		8.2 Log-likelihood Function	18
		8.3 MLE for p	18
	9	Theorems for the Binomial Distribution	18
		9.1 Validity of the Distribution	18
		9.2 Sum of Binomial Random Variables	19
		9.3 Sum of Bernoulli Random Variables	19
	$Th\epsilon$	e Chi-Square Distribution	21
	10	Cumulative Distribution Function	21
	11	Expected Values	22
	12	Moment Generating Function	24
	13	Maximum Likelihood Function	25
		13.1 Likelihood Function	26
		13.9 Log likelihood Function	26

4 CONTENTS

		13.3	MLE for ν	26
	14	Theor	rems for the Chi-Square Distribution	27
		14.1	Validity of the Distribution	27
		14.2	Sum of Chi-Square Random Variables	27
		14.3	Square of a Standard Normal Random Variable	28
	Th	е Ехр	onential Distribution	31
	Th	e Gan	ama Distribution	33
	Th	e Geo	metric Distribution	35
	Th	е Нур	pergeometric Distribution	37
	Th	e Mul	tinomial Distribution	39
	Th	e Nor	mal Distribution	41
	Th	e Pois	son Distribution	43
	Th	e Skev	w-Normal Distribution	45
	Th	e Uni	form Distribution	47
	Th	e Wei	bull Distribution	49
II	F	reque	entist Hypothesis Testing	51
	Ma	antel-I	Haenszel Test	53
III		Sunnl	emental Subjects	55
111		Juppi	emental Subjects	99
	Ch	ebych	ev's Theorem	57
	Co	mbina	ations	59
	Th	e Cor	relation Coefficient	61
	Co	varian	ice	63
	Ex	perim	ental Designs	65
	Mo	ment	s and Moment Generating Functions	67

CONTENTS	t e e e e e e e e e e e e e e e e e e e
CONTENTS	•

	Summation	69
	The Method of Transformations	71
	Variance Paramter	73
ΙV	Non-Statistical Proofs	7 5
	The Binomial Theorem	77
	Functions	79
	The Geometric Series	81
	Integraion: Techniques and Theorems	83
	Logarithmic and Exponential Functions	85
	The Real Number System	87

6 CONTENTS

Part I Probability Distributions

The Bernoulli Distribution

A random variable is said to have a Bernoulli Distribution with parameter p if its probability mass function is:

$$p(x) = \begin{cases} p^x (1-p)^{1-x}, & x = 0, 1\\ 0 & \text{otherwise} \end{cases}$$

Where p is the probability of a sucess.

1 Cumulative Distribution Function

$$P(x) = \begin{cases} 0 & x < 0 \\ 1 - p & x = 0 \\ 1 & 1 \le x \end{cases}$$

Figure .1: The graphs on the left and right show a Binomial Probability Distribution and Cumulative Distribution Function, respectively, with p = .4. Note that this is identical to a Binomial Distribution with parameters n = 1 and p = .4.

2 Expected Values

$$E(X) = \sum_{i=0}^{1} x \cdot p(x)$$

$$= \sum_{i=0}^{1} x \cdot p^{x} (1-p)^{1-x}$$

$$= 0 \cdot p^{0} (1-p)^{1-0} + 1 \cdot p^{1} (1-p)^{1-1}$$

$$= 0 + p(1-p)^{0}$$

$$= p$$

$$E(X^{2}) = \sum_{i=0}^{1} x^{2} \cdot p(x)$$

$$= \sum_{i=0}^{1} x^{2} \cdot p^{x} (1-p)^{1-x}$$

$$= \sum_{i=0}^{1} 0^{2} \cdot p^{0} (1-p)^{1-0} + 1^{2} \cdot p^{1} (1-p)^{1-1}$$

$$= 0 \cdot 1 \cdot 1 + 1 \cdot p \cdot 1$$

$$= 0 + p$$

$$= p$$

$$\mu = E(X) = p$$

 $\sigma^2 = E(X^2) - E(X)^2 = p - p^2 = p(1-p)$

3 Moment Generating Function

$$M_X(t) = E(e^{tX}) = \sum_{i=0}^{1} e^{tx} p(x) = \sum_{i=0}^{1} e^{tx} p^x (1-p)^{1-x}$$
$$= e^{t0} p^0 (1-p)^{1-0} + e^t p^t (1-p)^{1-1} = (1-p) + e^t p = pe^t + (1-p)$$

$$M_X^{(1)}(t) = pe^t$$
$$M_X^{(2)}(t) = pe^t$$

$$E(X) = M_X^{(1)}(0) = pe^0 = p \cdot 1 = p$$

$$E(X^2) = M_X^{(2)}(0) = pe^0 = p$$

$$\mu = E(X) = p$$

$$\sigma^2 = E(X^2) - E(X)^2 = p - p^2 = p(1 - p)$$

4 Theorems for the Bernoulli Distribution

4.1 Validity of the Distribution

$$\sum_{x=0}^{1} p^{x} (1-p)^{1-x} = 1$$

Proof:

$$\sum_{x=0}^{1} p^{x} (1-p)^{1-x} = p^{0} (1-p)^{1} + p^{1} (1-p)^{0} = (1-p) + p = 1$$

4.2 Sum of Bernoulli Random Variables

Let $X_1, X_2, ..., X_n$ be independent and identically distributed random variables from a Bernoulli distribution with parameter p. Let $Y = \sum_{i=1}^{n} X_i$.

Then $Y \sim \text{Binomial}(n, p)$

Proof:

$$M_Y(t) = E(e^{tY}) = E(e^{tX_1}e^{tX_2}\cdots e^{tX_n}) = E(e^{tX_1})E(e^{tX_2})\cdots E(e^{tX_n})$$

$$= (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p))(pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p))(pe^t + (1-p))(pe$$

Which is the mgf of a Binomial random variable with parameters n and p. Thus, $Y \sim \text{Binomial}(n, p)$.

The Binomial Distribution

A random variable is said to follow a Binomial distribution with parameters n and p if its probability mass function is:\

$$p(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x}, & x = 0, 1, 2, \dots, n \\ 0 & \text{otherwise} \end{cases}$$

Where n is the number of trials performed and p is the probability of a success on each individual trial.

5 Cumulative Distribution Function

$$P(x) = \begin{cases} 0 & x < 0\\ \sum_{i=0}^{x} {n \choose i} p^{i} (1-p)^{n-i} & 0 \le x = 0, 1, 2, \dots, n\\ 1 & n \le x \end{cases}$$

A recursive form of the cdf can be derived and has some usefulness in computer applications. With it, one need only initiate the first value and additional cumulative probabilities can be calculated. It is derived as follows:

$$\begin{split} F(x+1) &= \binom{n}{x+1} p^{x+1} (1-p)^{n-(x+1)} \\ &= \frac{n!}{(x+1)!(n-(x+1))!} p^{x+1} (1-p)^{n-(x+1)} \\ &= \frac{n!}{(x+1)!(n-x-1)!} p^{x+1} (1-p)^{n-x-1} \\ &= \frac{(n-x)n!}{(x+1)x!(n-x)(n-x-1)!} p \cdot p^x \frac{(1-p)^{n-x}}{(1-p)} \\ &= \frac{(n-x)n!}{(x+1)x!(n-x)!} \cdot \frac{p}{1-p} p^x (1-p)^{n-x} \\ &= \frac{p}{1-p} \cdot \frac{n-x}{x+1} \cdot \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} \\ &= \frac{p}{1-p} \cdot \frac{n-x}{x+1} \cdot \binom{n}{x} p^x (1-p)^{n-x} \\ &= \frac{p}{1-p} \cdot \frac{n-x}{x+1} \cdot F(x) \end{split}$$

6 Expected Values

Let X be a binomial random variable with parameters n and p. The expected value of X is:

Figure .1: plot of chunk unnamed-chunk-8

$$E(X) = \sum_{x=0}^n x \cdot p(x)$$

$$= \sum_{x=0}^n x \binom{n}{x} p^x (1-p)^{n-x}$$
 For convenience, let $q=(1-p)$

$$\begin{split} &= \sum_{x=0}^n x \binom{n}{x} p^x q^{n-x} \\ &= \sum_{x=0}^n x \binom{n}{x} p^x q^{n-x} \\ &= 0 \cdot \binom{n}{0} p^0 q^n + 1 \cdot \binom{n}{1} p^1 q^{n-1} + \dots + n \binom{n}{n} p^n q^{n-n} \\ &= 0 + 1 \binom{n}{1} p^1 q^{n-1} + 2 \binom{n}{2} p^2 q^{n-2} + \dots + n \binom{n}{n} p^n q^{n-n} \\ &= n p^1 q^{n-1} + n (n-1) p^2 q^{n-2} + \dots + n (n-1) p^{n-1} q^{n-(n-1)} + n p^n \\ &= n p [q^{n-1} + (n-1) p q^{n-2} + \dots + p^{n-1}] \\ &= n p [\binom{n-1}{0} p^0 q^{n-1} + \binom{n-1}{1} p^1 q^{(n-1)-1} + \dots + \binom{n-1}{n-1} p^{n-1} q^{(n-1)} \\ &= n p (\sum_{x=0}^{n-1} \binom{n-1}{x} p^x q^{(n-1)-x}) \end{split}$$

By the Binomial Theorem,
$$\sum_{x=0}^{n} \binom{n}{x} a^x b^{n-x} = (a+b)^n$$

Resubstituting
$$(1-p)$$
 for q gives us

$$= np(p + (1 - p))^{n-1}$$

$$= np(p + 1 - p)^{n-1}$$

$$= np(1)^{n-1}$$

$$= np(1)$$

$$= np$$

 $= np(p+q)^{n-1}$

The Expected Value of X^2 is:

$$E(X^{2}) = \sum_{x=0}^{n} x^{2} p(x)$$
$$= \sum_{x=0}^{n} x^{2} {n \choose x} p^{x} (1-p)^{n-x}$$

For convenience, let q = (1 - p)

$$\begin{split} &=\sum_{x=0}^n x^2 \binom{n}{x} p^x q^{n-x} \\ &=0^2 \frac{n!}{0!(n-0)!} p^0 q^n + 1^2 \frac{n!}{1!(n-1)!} p^1 q^{n-1} + \dots + n^2 \frac{n!}{n!(n-n)!} p^n q^{n-n} \\ &=0+1 \frac{n!}{(n-1)!} p q^{n-1} + 2 \frac{n!}{1 \cdot (n-2)!} p^2 q^{n-2} + \dots + n \frac{n!}{(n-1)!(n-n)!} p^n \\ &=n p \Big[1 \frac{(n-1)!}{(n-1)!} p^0 q^{n-1} + 2 \frac{(n-1)!}{1(n-2)!} p^2 q^{n-2} + \dots + n \frac{(n-1)!}{(n-1)!(n-n)!} p^{n-1} \Big] \\ &=n p \Big[1 \frac{(n-1)!}{(1-1)!((n-1)-(n-1))!} p^{1-1} q^{n-1} + \dots + n \frac{(n-1)!}{(n-1)!((n-1)-(n-1))!} p^{n-1} e^{n-1} \Big] \\ &=n p \sum_{x=1}^n x \binom{n-1}{x-1} p^{x-1} 1^{(n-1)-(x-1)} \end{split}$$

Let y = x - 1 and n = m + 1 $\Rightarrow x = y + 1$ and m = n - 1

$$\begin{split} &= \sum_{y=0}^{m} (y+1) \binom{m}{y} p^{y} q^{m-y} \\ &= np \Big[\sum_{y=0}^{m} y \binom{m}{y} p^{y} q^{m-y} + \binom{m}{y} p^{y} q^{m-y} \Big] \\ &= np \Big[\sum_{y=0}^{m} y \binom{m}{y} p^{y} q^{m-y} + \sum_{y=0}^{m} \binom{m}{y} p^{y} q^{m-y} \Big] \end{split}$$

$$\sum_{y=0}^{m} y \binom{m}{y} p^{y} q^{m-y} \text{ is of the form}$$

of the expected value of Y, and E(Y) = mp = (n-1)p

$$\sum_{y=0}^{m} {m \choose y} p^{y} q^{m-y}$$
 is the sum of all

probabilities over the domain of Y,

which is 1.

$$= np(mp + 1)$$

$$= np[(n - 1)p + 1]$$

$$= np(np - p + 1)$$

$$= n^{2}p^{2} - np^{2} + np$$

The mean of X can be calculated as

$$\mu = E(X) = np$$

And the variance of X can be calculated by

$$\sigma^{2} = E(X^{2}) - E(X)^{2}$$

$$= n^{2}p^{2} - np^{2} + np - n^{2}p^{2}$$

$$= -np^{2} + np$$

$$= np(-p - 1)$$

$$= np(1 - p)$$

7 Moment Generating Function

$$M_X(t) = E(e^{tX}) = \sum_{x=0}^n e^{tx} p(x)$$

$$= \sum_{x=0}^n e^{tx} \binom{n}{x} p^x (1-p)^{n-x}$$

$$= \sum_{x=0}^n \binom{n}{x} e^{tx} p^x (1-p)^{n-x}$$

$$= \sum_{x=0}^n \binom{n}{x} (pe^{tx})^x (1-p)^{n-x}$$

By Binomial Theorem REF

$$\sum_{x=0}^{n} \binom{n}{x} b^x a^{n-x} = (a+b)^n$$

$$= [(1-p) + pe^t]^n$$

$$M_X^{(1)}(t) = n[(1-p) + pe^t]^{n-1}pe^t$$

$$\begin{split} M_X^{(2)}(t) &= n[(1-p) + pe^t]^{n-1}pe^t + n(n-1)[(1-p) + pe^t]^{n-2}(pe^t)^2 \\ &= npe^t[(1-p) + pe^t]^{n-1} + n(n-1)pe^{2t}[(1-p) + pe^t]^{n-2} \end{split}$$

$$\begin{split} E(X) &= M_X^{(1)}(0) \\ &= n[(1-p) + pe^0]^{n-1} pe^0 \\ &= n[1-p+p^{n-1}p \\ &= n(1)^{n-1} p = np \end{split}$$

$$\begin{split} E(X^2) &= M_X^{(2)}(0) = npe^0[(1-p) + pe^0]^{n-1} + n(n-2)pe^{2\cdot 0}[(1-p) + pe^0]^{n-2} \\ &= np(1-p+p)^{n-2} + n(n-1)p^2(1-p+p^{n-2}) \\ &= np(1)^{n-1} + n(n-1)p^2(1)^{n-2} = np + n(n-1)p^2 = np + (n^2-n)p^2 \\ &= np + n^2 + n^2p^2 - np^2 \end{split}$$

$$\mu = E(X) = np$$

$$\sigma^{2} = E(X^{2}) - E(X)^{2}$$

$$= np + n^{2}p^{2} - np^{2} - n^{2}p^{2}$$

$$= np - np^{2}$$

$$= np(1 - p)$$

8 Maximum Likelihood Estimator

Since n is fixed in each Binomial experiment, and must therefore be given, it is unnecessary to develop an estimator for n. The mean and variance can both be estimated from the single parameter p.

Let X be a Binomial random variable with parameter p and n outcomes $(x_1, x_2, ..., x_n)$. Let $x_i = 0$ for a failure and $x_i = 1$ for a success. In other words, X is the sum of n Bernoulli trials with equal probability of success and $X = \sum_{i=1}^{n} x_i$.

8.1 Likelihood Function

$$L(\theta) = L(x_1, x_2, \dots, x_n | \theta)$$

$$= P(x_1 | \theta) P(x_2 | \theta) \cdots P(x_n | \theta)$$

$$= [\theta^{x_1} (1 - \theta)^{1 - x_1}] [\theta^{x_2} (1 - \theta)^{1 - x_2}] \cdots [\theta^{x_n} (1 - \theta)^{1 - x_n}]$$

$$= \exp_{\theta} \left\{ \sum_{i=1}^{n} x_i \right\} \exp_{(1 - \theta)} \left\{ n - \sum_{i=1}^{n} x_i \right\}$$

$$= \theta^X (1 - \theta)^{n - X}$$

8.2 Log-likelihood Function

$$\begin{split} \ell(\theta) &= \ln L(\theta) \\ &= \ln \left(\theta^X (1 - \theta)^{n - X} \right) \\ &= X \ln(\theta) + (n - X) \ln(1 - \theta) \end{split}$$

8.3 MLE for p

$$\frac{d\ell(p)}{dp} = \frac{X}{p} - \frac{n - X}{1 - p}$$

$$0 = \frac{X}{p} - \frac{n - X}{1 - p}$$

$$\frac{X}{p} = \frac{n - X}{1 - p}$$

$$(1 - p)X = p(n - X)$$

$$X - pX = np - pX$$

$$X = np$$

$$\frac{X}{n} = p$$

So $\hat{p} = \frac{X}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the maximum likelihood estimator for p.

9 Theorems for the Binomial Distribution

9.1 Validity of the Distribution

$$\sum_{x=0}^{n} \binom{n}{x} p^{x} (1-p)^{n-x} = 1$$

Proof:

$$\sum_{x=0}^n \binom{n}{x} p^x (1-p)^{n-x} =$$

$$\sum_{x=0}^n \binom{n}{x} a^x b^{n-x} (a+b)^n.$$
 See Binomial Theorem REF.
$$= big(p+(1-p)^n)$$

$$= big(p + (1 - p))^n$$
$$= (1)^n$$
$$= 1$$

9.2 Sum of Binomial Random Variables

Let X_1, X_2, \ldots, X_k be independent random variables where X_i comes from a Binomial distribution with parameters n_i and p. That is $X_i \sim (n_i, p)$. Let $Y = \sum_{i=1}^{n} k X_i$. Then $Y \sim \text{Binomial}(\sum_{i=1}^{k} n_i, p)$.

Proof:

$$M_Y(t) = E(e^{tY})$$

$$= E(e^{t(X_1 + X_2 + \dots + X_k)})$$

$$= E(e^{tX_1}e^{tX_2} \dots e^{tX_k})$$

$$= E(e^{tX_1})E(e^{tX_2}) \dots E(e^{tX_k})$$

$$= \prod_{i=1}^k [(1-p) + pe^t]^{n_i}$$

$$= [(1-p) + pe^t]^{\sum_{i=1}^k n_i}$$

\ \ Which is the mgf of a Binomial random variable with parameters $\sum_{i=1}^{k} n_i$ and p.

Thus $Y \sim \text{Binomial}(\sum_{i=1}^k n_i, p)$.

9.3 Sum of Bernoulli Random Variables

Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables from a Bernoulli distribution with parameter p. Let $Y = \sum_{i=1}^{n} X_i$.

Then $Y \sim \text{Binomial}(n, p)$

Proof:

$$M_Y(t) = E(e^{tY})$$

$$= E(e^{tX_1}e^{tX_2} \cdots e^{tX_n})$$

$$= E(e^{tX_1})E(e^{tX_2}) \cdots E(e^{tX_n})$$

$$= (pe^t + (1-p))(pe^t + (1-p)) \cdots (pe^t + (1-p))$$

$$= (pe^t + (1-p))^n$$

Which is the mgf of a Binomial random variable with parameters n and p. Thus, $Y \sim \text{Binomial}(n, p)$.

The Chi-Square Distribution

A random variable X is said to have a Chi-Square Distribution with parameter ν if its probability distribution function is

$$f(x) = \begin{cases} \frac{x^{\frac{\nu}{2} - 1}e^{-\frac{x}{2}}}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})} & 0 < x, \ 0 < \nu \\ 0 & otherwise \end{cases}$$

 ν is commonly referred to as the degrees of freedom.

10 Cumulative Distribution Function

The cumulative distribution function for the Chi-Square Distribution cannot be written in closed form. It's integral form is expressed as

$$F(x) = \begin{cases} \int_{0}^{x} \frac{t^{\frac{\nu}{2} - 1} e^{-\frac{t}{2}}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} dt & 0 < x, \ 0 < \nu \\ 0 & otherwise \end{cases}$$

Figure .1: The graphs on the left and right depict the Chi-Square probability distribution and cumulative distribution functions, respectively, for $\nu=4,7,10$. As ν gets larger, the distribution becomes flatter with thicker tails.

11 Expected Values

$$\begin{split} E(X) &= \int_{0}^{\infty} x \frac{x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_{0}^{\infty} x \cdot x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_{0}^{\infty} x^{\frac{\nu}{2}} e^{-\frac{x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_{0}^{\infty} x^{\frac{\nu}{2}} e^{-\frac{x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \left[\Gamma(\frac{\nu}{2} + 1) 2^{\frac{\nu}{2} + 1} \right] \\ &= \frac{\Gamma(\frac{\nu}{2} + 1) 2^{\frac{\nu}{2} + 1}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \\ &= \frac{\frac{\nu}{2} \Gamma(\frac{\nu}{2}) 2^{\frac{\nu}{2} + 1}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \\ &= \frac{2\nu}{2} \\ &= \nu \end{split}$$

$$E(X^{2}) = \int_{0}^{\infty} x^{2} \frac{x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} dx$$

$$= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_{0}^{\infty} x^{2} \cdot x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}} dx$$

$$= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_{0}^{\infty} x^{\frac{\nu}{2} + 1} e^{-\frac{x}{2}} dx$$

$$\int_{0}^{\infty} x^{\alpha - 1} e^{-\frac{x}{\beta}} dx = \beta^{\alpha} \Gamma(\alpha)$$

$$= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \left[\Gamma(\frac{\nu}{2} + 2) 2^{\frac{\nu}{2} + 2} \right]$$

$$= \frac{\Gamma(\frac{\nu}{2} + 2) 2^{\frac{\nu}{2} + 2}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})}$$

$$= \frac{(\frac{\nu}{2} + 1) \Gamma(\frac{\nu}{2} + 1) 2^{\frac{\nu}{2} + 2}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})}$$

$$= \frac{(\frac{\nu}{2} + 1) \frac{\nu}{2} \Gamma(\frac{\nu}{2}) 2^{\frac{\nu}{2} + 2}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})}$$

$$= (\frac{\nu}{2} + 1) \frac{\nu}{2} \cdot 2^{2} = 2(\frac{\nu}{2} + 1) \nu$$

$$= (\nu + 2) \nu = \nu^{2} + 2\nu$$

$$\mu = E(X) = \nu$$

$$\sigma^2 = E(X^2) - E(X)^2 = \nu^2 + 2\nu - \nu^2 = 2\nu$$

12 Moment Generating Function

$$\begin{split} M_X(t) &= E(e^{tX}) \\ &= \int_0^\infty e^{tx} \frac{x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty e^{tx} \cdot x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{tx} e^{-\frac{x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{tx} e^{-\frac{x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{\frac{2tx}{2} - \frac{x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{-\frac{2tx-x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{-x \frac{-2t+1}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{-x \frac{1-2t}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{-x \frac{1-2t}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{-x \frac{1-2t}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{-x \frac{1-2t}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \left[\left(\frac{2}{1-2t} \right)^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2}) \right] \\ &= \frac{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2}) (1-2t)^{\frac{\nu}{2}}} \\ &= \frac{1}{(1-2t)^{\frac{\nu}{2}}} \\ &= (1-2t)^{-\frac{\nu}{2}} \end{split}$$

$$\begin{split} M_X^{(1)}(t) &= -\frac{\nu}{2} (1 - 2t)^{-\frac{\nu}{2} - 1} (-2) \\ &= \frac{2\nu}{2} (1 - 2t)^{-\frac{\nu}{2} - 1} \\ &= \nu (1 - 2t)^{-\frac{\nu}{2} - 1} \end{split}$$

$$\begin{split} M_X^{(2)}(t) &= (-\frac{\nu}{2} - 1)\nu(1 - 2t)^{-\frac{\nu}{2} - 2}(-2) \\ &= (\frac{2\nu}{2} + 2)\nu(1 - 2t)^{-\frac{\nu}{2} - 2} \\ &= (\nu + 2)\nu)(1 - 2t)^{-\frac{\nu}{2} - 2} \\ &= (\nu^2 + 2\nu)(1 - 2t)^{-\frac{\nu}{2} - 2} \end{split}$$

$$\begin{split} M_X^{(1)}(0) &= \nu (1 - 2 \cdot 0)^{-\frac{\nu}{2} - 1} \\ &= \nu (1 - 0)^{-\frac{\nu}{2} - 1} \\ &= \nu (1)^{-\frac{\nu}{2} - 1} \\ &= \nu \end{split}$$

$$\begin{split} M_X^{(2)}(0) &= (\nu^2 + 2\nu)(1 - 2 \cdot 0)^{-\frac{\nu}{2} - 2} \\ &= (\nu^2 + 2\nu)(1 - 0)^{-\frac{\nu}{2} - 2} \\ &= (\nu^2 + 2\nu)(1)^{-\frac{\nu}{2} - 2} \\ &= (\nu^2 + 2\nu) \end{split}$$

$$E(X) = M_X^{(1)}(0) = \nu$$

$$E(X^2) = M_X^{(2)}(0) = (\nu^2 + 2\nu)$$

$$\mu = E(X) = \nu$$

$$\sigma^2 = E(X^2) - E(X)^2 = \nu^2 + 2\nu - \nu^2 = 2\nu$$

13 Maximum Likelihood Function

Let x_1, x_2, \ldots, x_n be a random sample from a Chi-square distribution with parameter ν .

13.1 Likelihood Function

$$\begin{split} L(\theta) &= f(x_1 | \theta) f(x_2 | \theta) \cdots f(x_n | \theta) \\ &= \frac{x_1^{\nu/2 - 1} e^{-x_1/2}}{2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)} \cdot \frac{x_2^{\nu/2 - 1} e^{-x_2/2}}{2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)} \cdots \frac{x_n^{\nu/2 - 1} e^{-x_n/2}}{2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)} \\ &= \prod_{i=1}^n \frac{x_i^{\nu/2 - 1} e^{-x_i/2}}{2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)} \\ &= \left(2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)\right) \prod_{i=1}^n x_i^{\nu/2 - 1} e^{-x_i/2} \\ &= \left(2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)\right) \cdot \exp\left\{\sum_{i=1}^n \frac{x_i}{2}\right\} \cdot \prod_{i=1}^n x_i^{\nu/2 - 1} \\ &= \left(2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)\right) \cdot \exp\left\{\frac{1}{2} \sum_{i=1}^n x_i\right\} \cdot \prod_{i=1}^n x_i^{\nu/2 - 1} \end{split}$$

13.2 Log-likelihood Function

$$\begin{split} &\ell(\theta) = \ln\left(L(\theta)\right) \\ &= \ln\left[\left(2^{\nu/2}\Gamma\left(\frac{\nu}{2}\right)\right) \cdot \exp\left\{\frac{1}{2}\sum_{i=1}^{n}x_{i}\right\} \cdot \prod_{i=1}^{n}x_{i}^{\nu/2-1}\right] \\ &= \ln\left[\left(2^{\nu/2}\Gamma\left(\frac{\nu}{2}\right)\right)\right] + \ln\left(\exp\left\{\frac{1}{2}\sum_{i=1}^{n}x_{i}\right\}\right) + \ln\left(\prod_{i=1}^{n}x_{i}^{\nu/2-1}\right) \\ &= -n\ln\left(2^{\nu/2}\Gamma\left(\frac{\nu}{2}\right)\right) + \frac{1}{2}\sum_{i=1}^{n}x_{i} + \left(\frac{\nu}{2} - 1\right)\ln\left(\prod_{i=1}^{n}x_{i}\right) \\ &= -n\left(\ln(2^{\nu/2}) + \Gamma\left(\frac{\nu}{2}\right)\right) + \frac{1}{2}\sum_{i=1}^{n}x_{i} + \left(\frac{\nu}{2} - 1\right)\sum_{i=1}^{n}\ln x_{i} \\ &= -n\left(\frac{\nu}{2}\ln 2 + \ln\Gamma\left(\frac{\nu}{2}\right)\right) + \frac{1}{2}\sum_{i=1}^{n}x_{i} + \left(\frac{\nu}{2} - 1\right)\sum_{i=1}^{n}\ln x_{i} \\ &= -\frac{n\nu}{2}\ln 2 - n\ln\Gamma\left(\frac{\nu}{2}\right) + \frac{1}{2}\sum_{i=1}^{n}x_{i} + \left(\frac{\nu}{2} - 1\right)\sum_{i=1}^{n}\ln x_{i} \end{split}$$

13.3 MLE for ν

$$\frac{d\ell}{d\nu} = -\frac{n}{2}\ln 2 - \frac{n}{\Gamma(\frac{\nu}{2})}\Gamma'(\frac{\nu}{2}) \cdot \frac{1}{2} + 0 + \frac{1}{2}\sum_{i=1}^{n}\ln x_i$$
$$= -\frac{n}{2}\ln 2 - \frac{n}{2\Gamma(\frac{\nu}{2})}\Gamma'(\frac{\nu}{2}) + \frac{1}{2}\sum_{i=1}^{n}\ln x_i$$

$$0 = -\frac{n}{2} \ln 2 - \frac{n}{2\Gamma(\frac{\nu}{2})} \Gamma'(\frac{\nu}{2}) + \frac{1}{2} \sum_{i=1}^{n} \ln x_i$$

$$\frac{n}{2} \ln 2 - \frac{1}{2} \sum_{i=1}^{n} \ln x_i = -\frac{n}{2\Gamma(\frac{\nu}{2})} \Gamma'(\frac{\nu}{2})$$

$$n \ln 2 - \sum_{i=1}^{n} \ln x_i = -\frac{n}{\Gamma(\frac{\nu}{2})} \Gamma'(\frac{\nu}{2})$$

$$\frac{\sum_{i=1}^{n} \ln x_i - n \ln 2}{n} = \frac{\Gamma'(\frac{\nu}{2})}{\Gamma(\frac{\nu}{2})}$$

Due to the complexity of the Gamma function in this equation, no solution can be developed for ν in closed form. Thus, we have to rely on numerical methods to obtain a solution to the equation and find the maximum likelihood estimator.

14 Theorems for the Chi-Square Distribution

14.1 Validity of the Distribution

$$\int_{0}^{\infty} \frac{x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} dx = 1$$

Proof:

$$\int_{0}^{\infty} \frac{x^{\frac{\nu}{2}-1}e^{-\frac{x}{2}}}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})} dx = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})} \int_{0}^{\infty} x^{\frac{\nu}{2}-1}e^{-\frac{x}{2}} dx$$

$$\int_{0}^{\infty} x^{\alpha-1}e^{-\frac{x}{\beta}} dx = \beta^{\alpha}\Gamma(\alpha)$$

$$= \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})} \left[2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})\right]$$

$$= \frac{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$$

$$= 1$$

14.2 Sum of Chi-Square Random Variables

Let X_1, X_2, \ldots, X_n be independent Chi-Square random variables with parameter ν_i , that is $X_i \sim \chi^2(\nu_i)$, $i = 1, 2, \ldots, n$.

Suppose
$$Y = \sum_{i=1}^{n} X_i$$
.

Then
$$Y \sim \chi^2(\sum_{i=1}^n \nu_i)$$
.

28

_Proof:

$$M_Y(t) = E(e^{tY} = E(e^{t(X_1 + X_2 + \dots + X_n)})$$

$$= E(e^{tX_1}e^{tX_2} \dots e^{tX_n})$$

$$= E(e^{tX_1})E(e^{tX_2}) \dots E(e^{tX_n})$$

$$= (1 - 2t)^{-\frac{\nu_1}{2}}(1 - 2t)^{-\frac{\nu_2}{2}} \dots (1 - 2t)^{-\frac{\nu_n}{2}}$$

$$= (1 - 2t)^{\sum_{i=1}^{n} \nu_i}$$

Which is the mgf of a Chi-Square random variable with parameter $\sum_{i=1}^{n} \nu_i$. Thus $Y \sim \chi^2 \left(\sum_{i=1}^{n} \nu_i\right)$.

14.3 Square of a Standard Normal Random Variable

If $Z \sim N(0,1)$, then $Z^2 \sim \chi^2(1)$.

Proof:

$$\begin{split} M_{Z^2}(t) &= E(e^{tZ^2}) \\ &= \int_{-\infty}^{\infty} e^{tz^2} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tz^2} e^{-\frac{z^2}{2}} dz \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}(-2t+1)} dz \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}(1-2t)} dz \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}(1-2t)} dz \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}(1-2t)} dz \\ \text{When } f(x) \text{ is an even function } (??) \\ &= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{z^2}{2}(1-2t)} dz \\ \text{Let } u &= \frac{z^2}{2} (1-2t) \\ &\Rightarrow z &= \frac{\sqrt{2}u^{\frac{1}{2}}}{(1-2t)^{\frac{1}{2}}} \\ \text{So } dz &= \frac{\sqrt{2}u^{-\frac{1}{2}}}{2(1-2t)^{\frac{1}{2}}} \\ &= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-u} \frac{\sqrt{2}u^{-\frac{1}{2}}}{2(1-2t)^{\frac{1}{2}}} du \\ &= \frac{2\sqrt{2}}{2\sqrt{2\pi}(1-2t)^{\frac{1}{2}}} \int_{0}^{\infty} e^{-u} u^{-\frac{1}{2}} du \\ &= \frac{2\sqrt{2}}{2\sqrt{2\pi}(1-2t)^{\frac{1}{2}}} \int_{0}^{\infty} u^{\frac{1}{2}-1} e^{-u} du \\ \int_{0}^{\infty} x^{\alpha-1} e^{-\frac{\pi}{2}} dx = \beta^{\alpha} \Gamma(\alpha) \\ &= \frac{1}{\sqrt{\pi}(1-2t)^{\frac{1}{2}}} \Gamma(\frac{1}{2}) \\ &= \frac{\sqrt{\pi}}{\sqrt{\pi}(1-2t)^{\frac{1}{2}}} = (1-2t)^{-\frac{1}{2}} \end{split}$$

Which is the mgf of a Chi-Square random variable with 1 degree of freedom. Thus $Z^2 \sim \chi^2(1)$.

The Exponential Distribution

The Gamma Distribution

The Geometric Distribution

The Hypergeometric Distribution

The Multinomial Distribution

The Normal Distribution

The Poisson Distribution

The Skew-Normal Distribution

The Uniform Distribution

The Weibull Distribution

Part II Frequentist Hypothesis Testing

Mantel-Haenszel Test

Part III Supplemental Subjects

Chebychev's Theorem

Combinations

60 . COMBINATIONS

The Correlation Coefficient

Covariance

. COVARIANCE

Experimental Designs

Moments and Moment Generating Functions

Summation

70 . SUMMATION

The Method of Transformations

Variance Paramter

Part IV Non-Statistical Proofs

The Binomial Theorem

Functions

80 . FUNCTIONS

The Geometric Series

Integraion: Techniques and Theorems

Logarithmic and Exponential Functions

The Real Number System