2021-2022 秋季学期《高等电力网络分析》 第二次课程作业

吕睿可 2021310617

December 12, 2021

1 牛顿-拉夫逊方法求解潮流方程

1.1 牛顿-拉夫逊方法求解潮流方程的基本形式,求解 IEEE 14 节 点和 39 节点系统的潮流

所编写的牛顿-拉夫逊(NR)方法求解潮流方程函数见 myNewtonpf.m,参数提供节点导纳矩阵 YBus, 复功率注入矩阵 Sbus, 初始节点电压(以及 PV 节点的给定电压),节点类型向量 ref,pv,pq,输出稳态下各节点复电压。具体求解方法参考教材 (7-21) 式到 (7-30),采用极坐标形式。程序整体框架参考了内置 newtonpf的架构。其中雅可比矩阵推导如 Figure 1:

主程序见 main_1.m。在主程序中,对于 IEEE 14 和 39 节点系统,分别调用内置 makeYBus、makeSbus、bustypes 生成节点导纳矩阵、复功率注入矩阵和节点类型向量,初始电压向量为 mpc.bus 中设定值。然后使用 myNewtonpf 函数求解潮流,2 次迭代后收敛(tol = 1e-8),所得复电压向量如 Table 1。可以看到解里初始值比较近。

1.2 对比 runpf 函数中的 NR 方法(newtonpf)

将所得结果与内置 runpf('NR') 结果 (用结果构造复电压向量 V2) 进行比较,发现 IEEE 14 和 39 节点潮流相差分别为: myNewtonpf 和 newtonpf 的差别: norm(V1 - V2, inf): 2.2204e-16/4.5183e-16。由此验证了所编写程序的正确性。

阅读 newtonpf.m 程序。程序主要步骤:

(line: 38-46) 根据参数数量以及选项设置收敛判据、最大迭代次数、线性求解器等参数;

(line: 48-53) 初始化待求量 V;

研究 J矩阵
$$S = diag(\dot{V}) \cdot \dot{\mathbf{I}}^{\dagger}$$
 , 其中 $\dot{\mathbf{I}} \cdot \dot{\mathbf{I}} \cdot \dot{\mathbf{I}}^{\dagger}$, 其中 $\dot{\mathbf{I}} \cdot \dot{\mathbf{I}}^{\dagger}$, $\dot{\mathbf{I}} \cdot \dot{\mathbf{I}}^{\dagger}$

Figure 1: 雅可比矩阵推导

Table 1: 复电压向量计算结果

初始值 V0	计算值 V1	V1-V0
1.0600 + 0.0000i	1.0600 + 0.0000i	0.0000 + 0.0000i
1.0411 - 0.0907i	1.0411 - 0.0908i	-0.0000 - 0.0000i
0.9852 - 0.2224i	0.9852 - 0.2225i	-0.0000 - 0.0001i
1.0025 - 0.1827i	1.0012 - 0.1822i	-0.0013 + 0.0005i
1.0080 - 0.1557i	1.0076 - 0.1555i	-0.0005 + 0.0002i
1.0372 - 0.2628i	1.0372 - 0.2629i	-0.0000 - 0.0000i
1.0332 - 0.2456i	1.0328 - 0.2453i	-0.0004 + 0.0003i
1.0605 - 0.2519i	1.0605 - 0.2519i	0.0000 + 0.0000i
1.0203 - 0.2722i	1.0202 - 0.2722i	-0.0001 + 0.0000i
1.0147 - 0.2738i	1.0147 - 0.2737i	-0.0000 + 0.0001i
1.0220 - 0.2698i	1.0219 - 0.2698i	-0.0001 + 0.0000i
1.0187 - 0.2743i	1.0189 - 0.2744i	0.0002 - 0.0001i
1.0135 - 0.2746i	1.0138 - 0.2746i	0.0004 - 0.0000i
0.9957 - 0.2863i	0.9952 - 0.2860i	-0.0004 + 0.0002i

Figure 2: 修改平衡节点前/后潮流计算结果

(line: 55-60) 由于在雅可比矩阵中, PQ 节点、PV 节点的编号是分别连续的,但是实际的节点编号却并不是按照其节点类型来的,因此需要建立一个原始节点编号到解向量中所处位置的映射;

(line: 62-79) 计算初始 PQ 失配量,并判断是否符合收敛判据,若不符合则开始迭代;

(line: 81-89) 线性求解器选择;

(line: 91-140)NR 法迭代过程, 其中雅可比矩阵的构造 (line: 96-107) 中, dSbus_dV 中 S 对解的偏导的推导 (line: 97) 见 Figure 1, 此外还考虑了节点负荷关于电压的变化以及偏导 (line: 98-99)。迭代过程还包括: x 更新 (line: 019-122)、失配量计算和收敛判断 (line: 124-139)。

(line: 142-146) 超出最大迭代次数判断。

主要编程技巧:

- (1)矩阵语言:在雅可比矩阵构造和解向量构造、更新过程中,matpower都不是用循环语句,而是用矩阵语言巧妙索引,代码十分简洁;
 - (2) 函数封装:对于求解偏导的函数,直接用 dSbus dV 函数;
- (3) 函数句柄: newtonpf 中考虑了负荷功率可能受电压幅值影响而变化,因此复功率注入写成了电压幅值的函数 Sbus(Vm),同时,这个函数是由 makeSbus 的函数句柄实现的 (runpf.m, line: 252),这样每次计算 Sbus 只需要输入一个参数。(Sbus = @(Vm)makeSbus(baseMVA, bus, gen, mpopt, Vm))

1.3 修改平衡节点

将 IEEE 14 节点系统的平衡节点从节点 1 修改为节点 6, 节点 1 改为 PV 节点, 重新计算潮流,得到结果的比较如 Figure 2。可以看到,修改平衡节点后,各节点电压幅值没有变化,相对相角也没有变化,无功也没有变化,但是节点 1 和节点 6 的有功功率发生变化。将平衡节点从节点 1 修改为节点 6, 节点 6 注入无功功率为-0.01 MW,这是因为平衡节点的有功功率不再能给定。这对于该节点而

delta_P_cal ×			delta_P_est1 ×				
46x1 double			46x1 double				
	1	2		1	2		
1	22.2673		1	21.3834			
2	-22.2673		2	-21.3834			
3	12.5019		3	11.3328			
4	9.9998		4	10.0506			
5	-1.4211e-13		5	5.3637e-13			
6	-14.6056		6	-14.7863			
7	26.9755		7	26.1191			
8	-193.8945		8	-194.8865			
9	179.2485		9	180.1002			
10	-187.7588		10	-187.2193			

Figure 3: 支路(25,26) 开断后的潮流变化: 实际变化/LODF1 计算

言应该是不合理的,因为节点 6 没有吸收有功的能力。因此,将节点 1 作为平衡 节点的计算结果更为合理。

2 潮流方程的特殊解法

2.1 编写计算支路开断分布因子的程序,开断 IEEE 39 节点系统中的支路(25,26),计算开断后的潮流变化

主程序见 main_2.m。编写计算支路开断分布因子的函数(见 myMakeLODF.m),给定 mpc,生成当前的支路开断分布因子矩阵 LODF。该函数利用教材 (8-42) 式 到 (8-47) 式,生成 LODF。其中,以 1/x 为支路参数生成的 n*n 阶电纳矩阵为 利用 matpower 内置 makeBdc 函数生成 (line:17),但需要划去参考节点对应的行和列 (line:19-22)。

对于 IEEE 39 节点,利用 myMakeLODF 生成 LODF1,调用 runpf 函数得到 初始潮流 1; 然后将 (25, 26) 支路开断,再次调用 runpf 得到潮流 2。将计算开断后的潮流变化(潮流 2 - 潮流 1)与用 LODF1 和潮流 1 的计算的结果比较如 Figure 3。得到 myMakeLODF 与实际开断后潮流变化之差: $norm(delta_P_cal-delta_P_est1, inf) = 2.6875$ 。

上述结果与 makeLODF 得到的计算结果一致,其中,makeLODF 得到的支路开断分布因子矩阵 LODF2 和所编写程序的 LODF1 的比较如 Figure 4。可以看到,LODF1 和 LODF2 基本相同,但是在树支支路等地方的处理(第五列)不同。

	LODF1 ×	LODF2	×				LODF1 ×	LODF2	×				
$\overline{\mathbb{H}}$	46x46 double						46x46 double						
	1	2	3	4	5		1	2	3	4	5		
1	-1	1.0000	-0.3546	-0.1202	0	1	-1	1.0000	-0.3546	-0.1202	0.1250		
2	1.0000	-1	0.3546	0.1202	0	2	1.0000	-1	0.3546	0.1202	-0.2500		
3	-0.8009	0.8009	-1	0.8798	0	3	-0.8009	0.8009	-1	0.8798	0.5000		
4	-0.1991	0.1991	0.6454	-1	0	4	-0.1991	0.1991	0.6454	-1	-1		
5	0	0	0	0	-1	5	0	0	0	0	-1		
6	-0.6882	0.6882	-0.4102	0.1439	0	6	-0.6882	0.6882	-0.4102	0.1439	-0.5000		
7	-0.1127	0.1127	-0.5898	0.7360	0	7	-0.1127	0.1127	-0.5898	0.7360	0.8125		
8	-0.6701	0.6701	-0.2771	-0.0266	0	8	-0.6701	0.6701	-0.2771	-0.0266	-3.5000		
9	-0.0181	0.0181	-0.1331	0.1704	0	9	-0.0181	0.0181	-0.1331	0.1704	0.5000		
10	-0.1070	0.1070	-0.0738	0.0360	0	10	-0.1070	0.1070	-0.0738	0.0360	0		
11	-0.5631	0.5631	-0.2034	-0.0626	0	11	-0.5631	0.5631	-0.2034	-0.0626	2		
12	-0.4369	0.4369	-0.1512	-0.0576	0	12	-0.4369	0.4369	-0.1512	-0.0576	2		
13	0.3299	-0.3299	0.0774	0.0936	0	13	0.3299	-0.3299	0.0774	0.0936	2		
14	-2.8538e-15	5.6300e-15	2.0633e-15	-1.6461e-15	0	14	-2.0091e-14	4.5040e-15	1.0454e-14	-5.2676e-15	-2		
15	-0.4369	0.4369	-0.1512	-0.0576	0	15	-0.4369	0.4369	-0.1512	-0.0576	0		

Figure 4: myMakeLODF 得到的 LODF1 与内置 makeLODF 计算得到 LODF2 比较

	delta_P_ca	l ×		delta_P_est	1 ×
	46x1 double	,		46x1 double	
	1			1	2
1	14.4525		1	12.6840	
2	-14.4525		2	-12.6840	
3	77.5369		3	78.4058	
4	-62.9305		4	-65.7218	
5	5.6843e-14		5	5.3637e-13	
6	-6.0849		6	-4.1539	
7	82.9197		7	82.5597	
8	-201.6939		8	-200.8228	
9	195.5848		9	196.6689	
10	-190.9113		10	-188.2467	

Figure 5: 支路 (25,26), (10,13) 开断后的潮流变化: 实际变化/LODF1 计算

Table 2: 开断顺序对潮流变化影响 (norm(delta_P_cal - delta_P_est, inf))

	LODF 方法	开 (25,26)	开 (25,26),(10,13)	开 (10,13)	开 (10,13),(25,26)
用新潮流计算	myMakeLODF	2.5344	5.6093	2.6875	5.6093
	makeLODF	2.5344	5.6093	2.6875	5.6093
用初始潮流计算	myMakeLODF	-	5.9108	-	10.0506
	makeLODF	-	5.9108	-	10.0506

2.2 多条支路开断的情况

在上面已经开断了 (25, 26) 的情况下,利用 myMakeLODF 重新计算 LODF1'; 然后将 (10, 13) 支路开断,再次调用 runpf 得到潮流 3。将计算开断后的总的潮流变化(潮流 3-潮流 1)与用 LODF1' 和潮流 2 的计算结果(加上 LODF1 和潮流 1 的计算结果)比较如 Figure 5。得到 myMakeLODF 与实际开断后潮流变化之差: $norm(delta_P_cal-delta_P_est1, inf) = 5.6093$,与 makeLODF 的计算结果一致。

此外,改变支路的开断顺序,统计 LODF 计算结果与实际开断后潮流变化的差值如 Table 2。可以看出,两条支路的开断顺序不会导致不同的潮流结果。此外,所编写的 myMakeLODF 与内置 makeLODF 计算结果一致。但是如果在上面的计算中,不是用第一次开断后的潮流计算第二次开断对应的潮流变化,而是都用初始潮流进行计算,则计算结果会和开断顺序有关。

3 小结

- 1、熟悉 matpower 中潮流计算部分的思路与用法,明确各类潮流计算方法的 具体步骤与实现方法,学习利用矩阵运算和函数句柄增加代码的可读性和简洁性;
- 2、熟悉 matpower 中开断分布因子程序的编写思路,自己用代码验证了教材中公式的正确性。