Balanced Weighing Matrices

Thomas Pender
***Joint work with Hadi Kharaghani, Sho Suda

Department of Mathematics Simon Fraser University

Nov 4th, 2023

Summary

- Preliminaries
- Novel Construction of Weighing Matrices
- 3 A New Class of Balanced Weighing Matrices

Preliminaries

Definition. Weighing Matrix

A $v \times v$ (-1,0,1)-matrix W such that

$$WW^t = kI_v$$
.

Write W(v, k).

- W(v, v) is a Hadamard matrix
- W(v, v 1) is a conference matrix

• A W(19,9):

• Verify W is a weighing matrix:

Definition: Balanced Incomplete Block Design

- A binary $v \times b$ (0,1)-matrix A such that:

 - $2 J_{v}A = kJ_{v}.$

Write 2- (v, k, λ) -design.

• The design is symmetric if v = b (equiv. k = r).

• A symmetric 2-(19, 9, 4)-design:

• Verify A is a symmetric design:

• Verify A is a symmetric design:

Definition. Balanced Weighing Matrices

- If W is a W(v, k), then W is balanced if |W| is the incidence matrix of a symmetric 2- (v, k, λ) -design, $\lambda = k(k-1)/(v-1)$.
- Write BW(v, k).

• Our example W(19, 9) is a BW(19, 9):

- The "classical" parameters from relative difference sets.
- The BW(19,9) W is not constructable from a relative difference set. Computationally found by Gibbons and Mathon (1987).

• Previous state of the art:

Theorem. RDS construction of BWs

There is a BW with parameters

$$\left(\frac{q^{d+1}-1}{q-1},q^d\right)$$

whenever (1) q odd and d arbitrary and (2) q and d even.

- (1) Nonlinear hyperplanes of $GF(q^{d+1})$: GF(q) due to Bose (1942).
- (2) Lifting of a "Waterloo decomposition" of classical difference sets due to Arasu, et al. (1995).

Novel Construction of Weighing Matrices

- Equivalencies of weighing matrices (and BWs):
 - permutations of rows
 - permutations of columns
 - negation of rows
 - negation of columns
- Every weighing matrix is equivalent to one of the following form

$$\begin{pmatrix} \mathbf{0} & R \\ \mathbf{1} & D \end{pmatrix}$$
.

- R is the residual-part.
- D is the derived-part.

• Our example *BW*(19, 9):

Definition. Simplex code

- q a prime power and d > 0.
- ullet Form matrix G with columns given by reps. of 1-D subspaces of $GF(q^{d+1})$.
- The simplex code is $S_{q,d} = row(G)$.

Proposition. Hamming weight

$$wt(x) = q^d$$
 for all $x \in \mathcal{S}_{q,d}/\{\mathbf{0}\}$.

- Ingredients of construction:
 - A normalized W(v, q) (seed matrix) with residual-part R and derived-part D.
 - A $W((q^{d+1}-1)/(q-1), q^d)$, say W.
 - ▶ A simplex code $S_{q,d}$.

- Recipie of construction:
 - Form $A = W \otimes R$.
 - ▶ Form *B* by replacing elements of $S_{q,d}$ by rows of *D*.
 - ► Then

$$\begin{pmatrix} 0 & A \\ 1 & B \end{pmatrix}$$

is a
$$W((v-1)(q^{d+1}-1)/(q-1)+1, q^{d+1})$$
.

Theorem. (Kharaghani, et al., 2022b)

If there is a W(v,q), then there is a weighing matrix with parameters

$$\left(rac{(v-1)(q^{d+1}-1)}{q-1}+1,q^{d+1}
ight)$$

whenever:

- (1) q is odd and every d > 0, and
- (2) q and d are both even.

Seed (v, k)	Succident (v', k')	Seed (v, k)	Succident (v', k')
(6, 5):	(31, 25), (156, 125), (781, 625)	(16, 3):	(69, 9), (196, 27), (601, 81)
(8, 5):	(43, 25), (218, 125)	(16, 5):	(91, 25), (466, 125)
(8, 7):	(57, 49), (400, 343)	(16, 7):	(121, 49), (856, 343)
(10, 5):	(55, 25), (280, 125)	(16, 9):	(151, 81)
(10, 9):	(91, 81), (820, 729)	(16, 11):	(181, 121)
(12, 5):	(67, 25), (342, 125)	(16, 13):	(211, 169)
(12, 7):	(89, 49), (628, 343)	(18, 13):	(239, 169)
(12, 9):	(111, 81)	(19, 9):	(181, 81)
(13, 9):	(121, 81)	(20, 7):	(153, 49)
(14, 9):	(131, 81)	(20, 13):	(267, 169)
(14, 13):	(183, 169)		

A New Class of BWs

• Our example *BW*(19, 9):

- Let G be a finite group not containing the symbol 0.
- For $A \subseteq G$, identify $A = \sum_{g \in A} g$ in $\mathbb{Z}[G]$.
- For $A \in \mathbb{Z}[G]$, write $A^{(h)} = \sum_{g \in G} a_g g^h$.

- Let Θ be a $v \times v$ (0, G)-matrix.
- We interpret Θ as a matrix over $\mathbb{Z}[G]$.
- Define $\Theta^{(h)}$ by $\Theta^{(h)}_{ij}$.
- Write $\Theta^* = (\Theta^{(-1)})^t$.

Definition. Balanced generalized weighing matrices

- *G* a finite group of order *n*.
- A $v \times v$ (0, G)-matrix Θ is a $BGW(v, k, \lambda; G)$ if

$$\Theta\Theta^* = (k \cdot e)I + \frac{\lambda G}{n}(J - I).$$

Theorem. Classical BGWs

- Let q be a prime power and d > 0 an integer.
- For each q and d there is a BGW with parameters

$$\left(\frac{q^{d+1}-1}{q-1},q^d,q^d-q^{d-1}\right)$$

over C_{a-1} .

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀♀

• A BGW(10, 9, 8; C₄):

$$\begin{pmatrix} 1 & a & 1 & a^3 & a & 0 & 1 & a & a & a \\ a^2 & 1 & a & 1 & a^3 & a & 0 & 1 & a & a \\ a^2 & a^2 & 1 & a & 1 & a^3 & a & 0 & 1 & a \\ a^2 & a^2 & a^2 & 1 & a & 1 & a^3 & a & 0 & 1 \\ a & a^2 & a^2 & a^2 & 1 & a & 1 & a^3 & a & 0 \\ 0 & a & a^2 & a^2 & a^2 & 1 & a & 1 & a^3 & a \\ a^2 & 0 & a & a^2 & a^2 & a^2 & 1 & a & 1 & a^3 \\ 1 & a^2 & 0 & a & a^2 & a^2 & a^2 & 1 & a & 1 \\ a & 1 & a^2 & 0 & a & a^2 & a^2 & a^2 & 1 & a \\ a^2 & a & 1 & a^2 & 0 & a & a^2 & a^2 & a^2 & 1 \end{pmatrix}$$

Decomposition matrices:

$$\begin{pmatrix} 1 & a & 1 & a^3 & a & 0 & 1 & a & a & a \\ a^2 & 1 & a & 1 & a^3 & a & 0 & 1 & a & a \\ a^2 & a^2 & 1 & a & 1 & a^3 & a & 0 & 1 & a \\ a^2 & a^2 & a^2 & 1 & a & 1 & a^3 & a & 0 & 1 \\ a & a^2 & a^2 & a^2 & 1 & a & 1 & a^3 & a & 0 \\ 0 & a & a^2 & a^2 & a^2 & 1 & a & 1 & a^3 & a \\ a^2 & 0 & a & a^2 & a^2 & a^2 & 1 & a & 1 & a^3 \\ 1 & a^2 & 0 & a & a^2 & a^2 & a^2 & 1 & a & 1 \\ a & 1 & a^2 & 0 & a & a^2 & a^2 & a^2 & 1 & a \\ a^2 & a & 1 & a^2 & 0 & a & a^2 & a^2 & a^2 & 1 \end{pmatrix}$$

• Decomposition matrices:

• Let Θ be a BGW with parameters

$$\left(\frac{9^{d+1}-1}{8}, 9^d, 9^d - 9^{d-1}\right)$$

over the aroup $C_4 = \langle a : a^4 = 1 \rangle$.

• Decompose Θ as

$$\Theta = \Theta_1 + a\Theta_a + a^2\Theta_{a^2} + a^3\Theta_{a^3},$$

where the Θ_i s are disjoint (0,1)-matrices.

- Apply $R_1 \mapsto -R_2 \mapsto -R_1 \mapsto R_2 \mapsto R_1$.
- Form:

$$\Theta \otimes R_1 = \Theta_1 \otimes R_1 + \Theta_a \otimes R_1^a + \Theta_{a^2} \otimes R_1^{a^2} + \Theta_{a^3} \otimes R_1^{a^3}$$
$$= \Theta_1 \otimes R_1 - \Theta_a \otimes R_2 - \Theta_{a^2} \otimes R_1 + \Theta_{a^3} \otimes R_2$$

• Form D by substituting for the elements of $S_{9,d}$ the rows of the derived part of W_{19} .

The matrix

$$\begin{pmatrix} \mathbf{0} & \Theta \otimes R_1 \\ \mathbf{1} & D \end{pmatrix}$$

is a balanced weighing matrix.

Theorem. (Kharaghani, et al., 2022a)

For every d > 0, there is a balanced weighing matrix with parameters

$$\left(\frac{9^{d+2}-9}{4}+1,9^{d+1}\right)$$
.

• These are signings of some of the Ionin-type symmetric designs (Ionin, 2001).

Done!