| D 17     |  |  |  |  |  |
|----------|--|--|--|--|--|
| Reg. No. |  |  |  |  |  |



## IV SEMESTER B. TECH SPECIAL END SEMESTER EXAMINATION, NOVEMBER 2024 MATLAB FOR ENGINEERS [ELE 4303]

Time: 3 Hours Date: 28, NOVEMBER 2024 Max. Marks: 50

## **Instructions to Candidates:**

- ❖ Answer **ALL** the questions.
- Missing data may be suitably assumed.

| Q No. | Question                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |    |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|----|--|--|
| 1A.   | What is the difference between a script and a function in MATLAB, and when would you use each?                                                                                                                                                                                                                                                          |  |  |  |  |  |    |  |  |
| 1B.   | Write a MATLAB code to create a 1x10 array using colon operator (:), in which the first five numbers are even (between 2 and 10) and last five numbers are odd (between 1 and 9).                                                                                                                                                                       |  |  |  |  |  |    |  |  |
| 1C.   | List any FOUR features of MATLAB that make it particularly useful for engineers in fields such as control systems, signal processing, and data analysis?                                                                                                                                                                                                |  |  |  |  |  |    |  |  |
| 2A.   | Write a MATLAB <b>"for loop"</b> to iterate through the array A = [2, 4, 6, 8, 10] and display each element multiplied by 3.                                                                                                                                                                                                                            |  |  |  |  |  |    |  |  |
| 2В.   | MATLAB function: <b>sortrows</b> (x,n) - Sorts the rows in a matrix 'x' on the basis of the values in column 'n'.  The following table gives the finishing time of different skaters in a skating race.  Skater Number 1 2 3 4 5 Time (min) 42 43 41 40 45  Write a MATLAB code to sort the table in ascending order, based on the race finishing time. |  |  |  |  |  | 03 |  |  |
| 2C.   | Write a <b>RECURSIVE</b> function to search for an element in an unsorted array. Obtain its <b>TIME COMPLEXITY</b> .                                                                                                                                                                                                                                    |  |  |  |  |  | 04 |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |    |  |  |

ELE 4303 Page 1 of 3

| 3A. | Match the command with its correct description:  Command  1. plot(x, y, 'r') 2. plot(x, y, 'LineWidth', 2) 3. plot(x, y, 'o') 4. xlabel('Time (s)') 5. title('Sample Plot') 6. legend('Data 1', 'Data 2')                                                                   | Options  A. Adds a title to the plot. B. Plots x and y as a red dashed line. C. Sets the thickness of the line in the plot. D. Plots x and y as circular markers. E. Adds a label to the x-axis. F. Adds a legend for multiple data sets in the plot. | 03 |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| 3В. | The following is the code plot to sinewave in MATLAB:  freq = 0.2*pi; w = 2*pi*freq; A = 1.25; t = linspace(0,pi,10000); ft = A * sin(w*t); plot(t, ft), title("Sine Wave"), xlabel("Time"), ylabel("Sine wave function")  Modify the code to plot only positive values.    |                                                                                                                                                                                                                                                       |    |  |  |  |
| 3C. | Consider the following code in MATLAB: $x = '10';$ $y = 5;$ $z = x + y;$ Is the above code VALID or INVALID? Give suitable reasons. If INVALID suggest a way in which the code can be corrected.                                                                            |                                                                                                                                                                                                                                                       |    |  |  |  |
| 4A. | Consider the following MATLAB code:  syms x f = x^3 + 4*x^2 - 10*x + 5; f_prime = diff(f, x); f_double_prime = diff(f_prime, x); roots = solve(f == 0, x); disp(f_prime); disp(f_double_prime); disp(roots);  Give the output of each display command after it is executed. |                                                                                                                                                                                                                                                       |    |  |  |  |
|     |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                       | 03 |  |  |  |

ELE 4303 Page 2 of 3

| 4B.         | Obtain a smooth sine curve using the following data points:                                                                                                                                                                                                                                                                                                                                              |       |                        |               |          |              |                |           |                     |    |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------|---------------|----------|--------------|----------------|-----------|---------------------|----|
|             | X                                                                                                                                                                                                                                                                                                                                                                                                        | 0     | 45                     | 135           | 180      | 225          | 315            | 360       |                     |    |
|             | у                                                                                                                                                                                                                                                                                                                                                                                                        | 0     | 0.7071                 | 0.7071        | 0        | -0.7071      | -0.7071        | 0         |                     |    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                          |       |                        | 1             |          | 1            |                |           | _                   |    |
|             | MATLAB functions:                                                                                                                                                                                                                                                                                                                                                                                        |       |                        |               |          |              |                |           |                     |    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                          |       |                        |               |          | -            | -              |           | e argument p is a   |    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                          |       | O                      |               | ements   | are the coe  | efficients (in | n descer  | nding powers) o     | f  |
|             | an n                                                                                                                                                                                                                                                                                                                                                                                                     | th-de | egree poly             | nomial.       |          |              |                |           |                     |    |
|             | n = 1                                                                                                                                                                                                                                                                                                                                                                                                    | polví | f <b>it</b> (x.v.n) re | eturns the    | coeffici | ents for a p | olvnomial ı    | n(x) of c | degree n that is a  | 1  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                          |       |                        |               |          | _            | -              |           | ients in p are in   |    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                          |       |                        | s, and the le |          |              | J              |           | •                   |    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                          |       |                        |               |          |              |                |           |                     |    |
| <b>4</b> C. | Example of solving linear equations in MATLAB is given below:  syms x y z  eqn1 = 2*x + y + z == 2;  eqn2 = -x + y - z == 3;  eqn3 = x + 2*y + 3*z == -10;  [x y z]=solve(eqn1, eqn2, eqn3);  In the similar way write MATLAB code to solve:  The ratio of two numbers is 3/5. If 4 is added to the first and 6 to the second, the ratio becomes the reciprocal of the original ratio. Find the numbers. |       |                        |               |          |              |                | 04        |                     |    |
| 5A.         | Explain how MATLAB Simulink can be useful for modeling and simulating dynamic systems in engineering applications. Provide at least two specific examples of how Simulink is beneficial in these scenarios.                                                                                                                                                                                              |       |                        |               |          |              |                |           |                     |    |
|             | Give the Simulink block diagram to obtain the step response of the following                                                                                                                                                                                                                                                                                                                             |       |                        |               |          |              |                |           |                     |    |
| 5B.         | equation: $\dot{y} = 5f(t) - 7y$                                                                                                                                                                                                                                                                                                                                                                         |       |                        |               |          |              |                |           | 03                  |    |
| 5C.         | List<br>of w                                                                                                                                                                                                                                                                                                                                                                                             | -     | FOUR tooll             | ooxes in M    | ATLAB.   | Elaborate (  | on how the     | y are us  | seful in your field | 04 |

ELE 4303 Page 3 of 3