Identifying Network Ties from Panel Data: Theory and an application to tax competition

Aureo de Paula, Imran Rasul, Pedro C.L. Souza Working paper, 2023

Presenter: Haoyang Li

Why this paper

- Detailed elucidation of the identification of unknown network
- Estimation method (GMM) for small samples (T=5)
- Comparisons with geographic networks

Geographic VS Economic network

Figure 1B: Network Graph of US States, Identified Economic Neighbors

Motivation

- Behaviour is shaped by social interactions between agents:
 Educational test scores, technology adoption, firms' networks, ties between jurisdictions, etc.
- Information on social ties missing or too hard to collect:
 Postulated or elicited networks remain imperfect solutions (Chandrasekhar and Lewis, 2011; De Paula, 2017)
- Validation of social ties infeasible.

This paper:

Deriving sufficient conditions for global identification of the entire structure without information on the network ties.

Identification – Set up

The model:

$$y_{it} = \rho_0 \sum_{j=1}^{N} W_{0,ij} y_{jt} + \beta_0 x_{it} + \gamma_0 \sum_{j=1}^{N} W_{0,ij} x_{jt} + \epsilon_{it}.$$
 (1)

Or in matrix notation:

$$y_t = \rho_0 W_0 y_t + \beta_0 x_t + \gamma_0 W_0 x_t + \epsilon_t$$
 (2)

Assumptions:

- $\mathbb{E}(\epsilon_t|x_t) = 0$ or $\mathbb{E}(\epsilon_t|z_t) = 0$
- \bullet W_0 predetermined and constant
- N fixed and possibly large

Parameters: $\theta_0 = (W_0, \rho_0, \beta_0, \gamma_0)$.

Identification – Reduced form

$$y_t = \Pi_0 x_t + v_t, \tag{3}$$

where

$$\Pi_0 = (I - \rho_0 W_0)^{-1} (\beta_0 I + \gamma_0 W_0),$$

$$v_t = (I - \rho_0 W_0)^{-1} \epsilon_t.$$

Identification strategy:

How changes in x_{it} reverberate through the system and impact y_t . Summarized by entries of Π_0 .

Identification – Six assumptions

Assumptions underpinning main identification results:

(A1)
$$(W_0)_{ii} = 0, i = 1, 2, ..., N$$
.
Now parameter vector $\theta = (W_{12}, ..., W_{N,N-1}, \rho, \beta, \gamma)' \in \mathbb{R}^m$, where $m = N(N-1) + 3$.

(A2)
$$\sum_{j=1}^{N} |\rho_0(W_0)_{ij}| < 1$$
, $||W_0|| < C$, $|\rho_0| < 1$. Implications:

- maximum eigenvalues of $\rho_0 W_0$ is less than 1.
- $(I \rho_0 W_0)$ is non-singular.
- $(I \rho_0 W_0) = \sum_{j=0}^{\infty} (\rho_0 W_0)^j$ is appropriate.

Identification – Six assumptions

Expanding expression for $\Pi(\theta_0)$:

$$\Pi(\theta_0) = (I - \rho_0 W_0)^{-1} (\beta_0 I + \gamma_0 W_0)$$
(4)

$$= \beta_0 I + (\rho_0 \beta_0 + \gamma_0) \sum_{k=1}^{\infty} \rho_0^{k-1} W_0^k$$
 (5)

(A3)
$$(\rho_0\beta_0 + \gamma_0) \neq 0.$$

At least one row of W_0 sums up to a fixed and known number:

(A4) There is an *i* such that $\sum_{i} (W_0)_{ij} = 1$.

Required for identification of ρ_0 and γ_0 .

Identification – Six assumptions

(A5) There exists I, k such that $(W_0^2)_{II} \neq (W_0^2)_{kk}$, i.e. The diagonal of W_0^2 is not proportional to ι , an $N \times 1$ vector of ones.

Required for identification of ρ_0 and γ_0 when W_0 is known (Bramoullé et al., 2009). An example for identification with assumptions above:

$$\Pi_0 = \frac{1}{455} \begin{bmatrix} 275 & 310 & 0 \\ 310 & 275 & 0 \\ 0 & 0 & 182 \end{bmatrix} \Rightarrow W_0 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

From (3,3) element of Π_0 : $\beta_0 = \frac{182}{455} = 0.4$.

Note that $(I - \rho_0 W_0)\Pi_0 = \beta_0 I + \gamma_0 W_0$.

From (1,1) elements of both matrices: $\frac{275}{455} - \rho_0 \frac{310}{455} = 0.4 \Rightarrow \rho_0 = 0.3$.

From (1,2) elements: $\gamma_0 = \frac{310}{455} - 0.3 \frac{275}{455} = 0.5$.

(A6) y_t and x_t are observed for individuals i = 1, 2, ..., N, and instances t = 1, 2, ..., T, and the network W_0 does not depend on t.

Identification – Main results

Let $\lambda_{0,j}$ denote an eigenvalue of W_0 with eigenvector $v_{0,j}$ for j=1,2,...,N. Under assumptions (A2) and (A3):

$$\Pi_{0} v_{0,j} = \beta_{0} v_{0,j} + (\rho_{0} \beta_{0} + \gamma_{0}) \sum_{k=1}^{\infty} \rho_{0}^{k-1} W_{0}^{k} v_{0,j}
= \left[\beta_{0} + (\rho_{0} \beta_{0} + \gamma_{0}) \sum_{k=1}^{\infty} \rho_{0}^{k-1} \lambda_{0,j}^{k} \right] v_{0,j}
= \frac{\beta_{0} + \gamma_{0} \lambda_{0,j}}{1 - \rho_{0} \lambda_{0,j}} v_{0,j}$$
(6)

Eigencentralities may be identified from Π_0 even when W_0 is not identified. Eigencentralities allow a mapping back to underlying models of social interactions (De Paula, 2017; Jackson et al., 2017).

Identification – Main results

 $\theta_0 \in \Theta$ is **locally identified** under assumptions (A1) - (A6). Identifying the sign of $(\rho_0 \beta_0 + \gamma_0)$ is required for **global identification**.

Corollary 3. Assume A(1)-A(6). If $\rho_0 > 0$ and $(W_0)_{ij} \ge 0$, the model is globally identified.

Corollary 4. Assume A(1)-A(6), $(W_0)_{ij} \ge 0$ and W_0 is irreducible. If W_0 has at least two real eigenvalues or $|\rho_0| < \sqrt{2}/2$, then the model is globally identified.

Corollary 4 rules out cases where the network is not connected.

Identification – Extensions

Individual fixed effects:

$$y_t = \rho_0 W_0 y_t + \beta_0 x_t + \gamma_0 W_0 x_t + \alpha^* + \epsilon_t$$
 (7)

Common shocks:

$$y_t = \rho_0 W_0 y_t + \beta_0 x_t + \gamma_0 W_0 x_t + \alpha_t \iota + \epsilon_t$$

(A4')
$$\sum_{j}^{N}(W_0)_{ij}=1$$
 for all $i=1,2,...,N$. (row sum normalization)

Let
$$H = \frac{1}{N}\iota\iota\iota'$$
,

$$(I - \rho_0 W_0)^{-1} \alpha_t \iota = \frac{\alpha_t}{1 - \rho_0} \iota \Rightarrow (I - H)(I - \rho_0 W_0)^{-1} \alpha_t \iota = 0$$

(8)

Identification – Extensions

More entensions:

- Multivariate covariates: if at least one $W_x = \gamma_0 W_0$.
- Heterogenous β_0 : If at least one $\beta_{0,k}$ is homogeneous.
- Time-varying W: Gaussian kernel throughout the entire periods (Kapetanios et al., 2019).

Estimation

Parameter vector $\theta = (W_{12}, ..., W_{N,N-1}, \rho, \beta, \gamma)' \in \mathbb{R}^m$, where m = N(N-1) + 3.

OLS requires $m \ll NT \Rightarrow N \ll T$. Instead, high dimensional techniques can be used with **sparsity assumption**:

 W_0 is sparse if $\tilde{m} \ll NT$, where \tilde{m} is the number of non-zero elements.

Adaptive Elastic Net GMM estimator (Caner and Zhang, 2014) converges at rate:

$$\sqrt{\textit{NT}/\tilde{\textit{m}}} = \sqrt{\textit{NT}/[\textit{dN}(\textit{N}-1) + \textit{K}]} = \textit{O}(\sqrt{\textit{T}/\textit{dN}})$$

Estimation – GMM Estimator

Penalized GMM objective function:

$$G_{NT}(\theta, p) \equiv g_{NT}(\theta)' M_T g_{NT}(\theta) + p_1 \sum_{\substack{i,j=1\\i\neq j}}^{N} |W_{i,j}| + p_2 \sum_{\substack{i,j=1\\i\neq j}}^{N} |W_{i,j}|^2$$
(9)

where $g_{NT}(\theta) = \sum_{t=1}^{T} [x_{1t}e_t(\theta)' \dots x_{Nt}e_t(\theta)']'$ is an $N^2 \times 1$ vector.

L1 norm term shrinks parameters to zero.

L2 norm term works better when covariates are correlated (Zou and Zhang, 2009).

N(N-1) + 3 parameters: computationally expensive.

Estimation – Two step optimization

Note that for any give ρ, β, γ , the residual is linear in W:

$$e_t(\theta) = y_t - X_t \beta - W(\rho y_t + x_t \gamma) = \tilde{y}_t(\beta) - W\tilde{x}_t(\rho, \gamma).$$

This motives a two step routine:

$$\min_{\theta \in \mathbf{R}^m} G_{NT}(\theta, p) = \min_{(\rho, \beta, \gamma) \in \mathbf{R}^3} \left[\min_{W_{ij} \in \mathbf{R}^{N(N-1)}} G_{NT}(\theta, p) \right]$$

A computationally efficient solution through Least Angle regression (LARS) is available for expression in brackets.

Finally, fix the support and estimate without penalization (Post-LASSO).

The estimator is asymptotically normal (Caner and Zhang, 2014), hence hypothesis testing and inference on θ can be conducted.

Figure A1: Simulation Results, Adaptive Elastic Net GMM
A. % of zeros
B. % of non-zeros

125

C. Mean Absolute Deviation of

D. Mean Absolute Deviation of

Figure A3: Simulated and True Networks

A. Erdos-Renyi

C. High-school

B. Political Party

D. Village

Table A2: Simulation Results, Adaptive Elastic Net GMM, Alternative Network Sizes

		A. Erdos-Renyi		B. Political party			
	N = 15	N = 30	N = 50	N = 15 N = 30 N = 50			
	T=50 100 150	T=50 100 150	T=50 100 150	T=50 100 150 T=50 100 150 T=50 100 150			
% True Zeroes	.945 .960 .974	.985 .975 .976	5 .975 .976 .997 .997 .991 .939 .958 .975 .973 .964 .969 .993 .993	.939 .958 .975 .973 .964 .969 .993 .993 .985			
	(.016) (.014) (.011)	(.006) (.006) (.005)	(.001) (.001) (.003)	(.017) (.015) (.012) (.007) (.007) (.006) (.002) (.002) (.003)			
% True Non-Zeroes	.973 .996 1.000	.986 .998 1.000	.993 .999 1.000	.949 .980 .993 .937 .964 .973 .974 .989 .995			
	(.045) (.017) (.004)	(.023) (.007) (.004)	(.013) (.004) (.001)	(.063) (.038) (.022) (.048) (.037) (.032) (.025) (.016) (.012)			
$MAD(\widehat{W})$.027 .014 .008	.009 .009 .008	.004 .001 .003	.037 .024 .019 .023 .018 .015 .013 .007 .007			
	(.009) (.006) (.004)	(.004) (.002) (.002)	(.002) (.001) (.001)	(.008) (.005) (.004) (.004) (.003) (.002) (.002) (.001) (.001)			
$MAD(\widehat{II})$.030 .017 .011	.012 .010 .008	.005 .002 .003	.038 .026 .021 .023 .018 .016 .012 .007 .008			
	(.008) (.005) (.003)	(.004) (.002) (.002)	(.002) (.001) (.001)	(.007) (.005) (.003) (.004) (.002) (.002) (.002) (.001) (.001)			
$\widehat{oldsymbol{ ho}}$.270 .281 .282	.280 .304 .300	.279 .298 .309	.242 .250 .246 .199 .241 .232 .205 .250 .272			
	(.070) (.046) (.037)	(.039) (.030) (.025)	(.026) (.018) (.017)	(.082) (.053) (.043) (.056) (.042) (.036) (.033) (.023) (.022)			
$\hat{oldsymbol{eta}}$.409 .405 .403	.403 .402 .402	.402 .400 .400	.411 .404 .399 .404 .402 .401 .404 .400 .401			
•	(.043) (.029) (.024)	(.030) (.020) (.017)	(.024) (.016) (.013)	(.046) (.030) (.025) (.031) (.021) (.017) (.025) (.016) (.013)			
$\widehat{oldsymbol{\gamma}}$.618 .549 .518	.563 .572 .552	.519 .505 .529	.593 .508 .471 .561 .560 .512 .483 .469 .513			
	(.071) (.045) (.031)	(.043) (.034) (.027)	(.025) (.019) (.019)	(.079) (.051) (.037) (.057) (.042) (.037) (.028) (.023) (.024)			

Figure 1B: Network Graph of US States, Identified Economic Neighbors Geographic network edges Removed (geographic) edges in economic network New edges added in economic networks

Figure 2: Out-degree Distribution

Figure 6: General Equilibrium Impacts of South Carolina Tax Rises

Panel B. Economic Network, relative to Geographic Network State's Reaction to 10% increase in SC taxes, relative to Geographic Network

Positive values: higher equilibrium taxes under economic than geographic neighbors Negative values: lower equilibrium taxes under economic than geographic neighbors

Table 4: Predicting Links to Economic Neighbors

Linear Probability Model

Dependent variable = 1 if Economic Link Between States Identified, = 0 if geographically linked Robust standard errors in parentheses

	Distance	Economic and Demographic Homophily	Labor Mobility	Yardstick Competition	Tax Havens	Fixed Effects
	(1)	(2)	(3)	(4)	(5)	(6)
Distance	.890***	.921***	.921***	.940***	.940***	1.287***
	(.081)	(.082)	(.082)	(.091)	(.091)	(.120)
Distance sq.	135***	139***	139***	144***	145***	255***
	(.025)	(.024)	(.025)	(.027)	(.027)	(.039)
GDP Homophily		063	063	083	092	219
		(.078)	(.079)	(.082)	(.085)	(.348)
Demographic Homophily		-1.745***	-1.745***	-1.047*	960	.579
		(.552)	(.554)	(.605)	(.604)	(1.240)
Net Migration			033	020	185	039
			(.603)	(.577)	(.612)	(1.48)
Political Homophily				337***	321***	287*
				(.120)	(.119)	(.155)
Tax Haven					093**	
					(.036)	
Origin and destination FE	No	No	No	No	No	Yes
Adjusted R-squared	.664	.664	.664	.651	.657	.831
Observations	254	254	254	212	212	212

Thank you!

Identifying Network Ties from Panel Data: Theory and an application to tax competition

Aureo de Paula, Imran Rasul, Pedro C.L. Souza Working paper, 2023

Presenter: Haoyang Li

References I

- Arun Chandrasekhar and Randall Lewis. Econometrics of sampled networks. *Unpublished manuscript, MIT.[422]*, 2:7, 2011.
- Aureo De Paula. Econometrics of network models. In *Advances in economics and econometrics: Theory and applications, eleventh world congress*, pages 268–323. Cambridge University Press Cambridge, 2017.
- Yann Bramoullé, Habiba Djebbari, and Bernard Fortin. Identification of peer effects through social networks. *Journal of econometrics*, 150(1): 41–55, 2009.
- Matthew O Jackson, Brian W Rogers, and Yves Zenou. The economic consequences of social-network structure. *Journal of Economic Literature*, 55(1):49–95, 2017.
- George Kapetanios, Riccardo M Masolo, Katerina Petrova, and Matthew Waldron. A time-varying parameter structural model of the uk economy. *Journal of Economic Dynamics and Control*, 106:103705, 2019.

References II

Mehmet Caner and Hao Helen Zhang. Adaptive elastic net for generalized methods of moments. *Journal of Business & Economic Statistics*, 32(1): 30–47, 2014.

Hui Zou and Hao Helen Zhang. On the adaptive elastic-net with a diverging number of parameters. *Annals of statistics*, 37(4):1733, 2009.