Data preprocessing for machine learning

Feature generation from data

Data preprocessing for machine learning

Interesting read: The Bitter Lesson by R. Sutton

http://www.incompleteideas.net/Incldeas/BitterLesson.html

Data & Features

Goal: Make the learning easier, more robust, faster Select among:

Good, bad, noisy, unrelated, correlated... features

Features and information

Probability of error for the ML model

Features and information

Probability of error for the ML model

We want to increase the quality of the data & possibly reduce the number of features.

How?

- Some methods rely only on the data
- Many methods use expert knowledge (not in the dataset):
 - Use apriori knowledge or inductive bias

Data & Features

Mathematical model:

Sample: one realisation of a random variable

More samples \rightarrow more accurate statistics

Random samples from 3 different distributions?

Recap:

- We need as many samples as possible
- Several features, but not too many
- Features containing information

Pre-processing Cleaning and filtering

How to get good quality data?

- Remove outliers
- Normalize data
- Fill in missing values
- More advanced transformations

Use your knowledge of the data

• Future directions*: Self-supervised learning

^{*} beyond the scope of this course

Removing outliers

- Outlier or out-of-distribution point
- a data point that differs significantly from other observations.

Impact of outliers

- Example of linear regression
- Loss function

$$E = \sum_{i} (y_i - \hat{y}_i)^2$$

Very sensitive to outliers because of the square

Linear regression including the outlier

Linear regression without the outlier

Normalizing data

- Normalize the feature values to mean zero and variance 1
- For feature i , sample j :

$$y_i(j) = \frac{x_i(j) - \mu_j}{\sigma_j}$$

Gradient step $w_{n+1} = w_n - \alpha \nabla E(w_n)$

If this feature is x1000 + 1000

→ The gradient can be much larger or smaller in one direction but the step is the same for all

Filling missing values

Imputation of missing values

See: https://scikit-learn.org/stable/modules/impute.html

Filling missing values

Imputation of missing values

See: https://scikit-learn.org/stable/modules/impute.html

- Simple approach 1: discard the samples with missing values
- Simple approach 2: replace by the mean value of the feature
- More advanced approach: find the k most similar samples (using the other features) and replace taking (an average of) their value
- Even more advanced approach: train a ML model to predict the missing value from the rest of the data

Feature selection

How to reduce the number of features?

- Statistics on the features: looking at the mean/variance of the different classes
- Comparing features (correlations)

Useless feature

Correlated features

When is feature preprocessing is important?

- When the dataset is small
- When the quality of the features is bad (noise, missing values)
- When we do not have a nice table of features, ex: text ...

Feature generation

https://www.kaggle.com/code/ryanholbrook/creating-features https://www.kaggle.com/learn/data-cleaning

Not all raw data are matrices of real numbers

Methods we have seen:

- 1) expect vectors of real numbers per sample,
- 2) the position of a feature in the vector is not important (as long as it keeps the same position during training and testing)

Not all raw data are matrices of real numbers

1) Vectors of real numbers per sample

What about categorical data? Text?

Table of values: Matrix

2) the position of a feature in the vector is not important

What about time-series? Images? Point clouds? Networks?
How to account for the spatial structure?

From categories to numbers

1) Assign a number to each category

Marks A B C D E F \rightarrow 1 2 3 4 5 6 fruits: Apples Oranges Bananas \rightarrow ?

Close category should have close numbers No similarity between categories? \rightarrow **one-hot-encoding**

Apples	Oranges	Bananas
1	0	0
0	1	0
0	0	1

Apples + Bananas	
1	
0	
1	

- Categories all at the same distance
- Adding categories makes sense

But:

- Size increase 1 value \rightarrow n values
- Binary, not real

From categories to numbers

Instead of one-hot-encoding, we could have hash values $n \text{ binary numbers} \rightarrow d \text{ real numbers with } d < n$

- Very good if we have many categories
- But: close hash values do not mean similar samples. Distance between hash values does not make sense

Ideally: we would like an encoding where similar categories are close, when we have this information about the categories. (we see that later on)

Text data

How to turn a text into a feature vector?

- Cut the text in elementary pieces or "tokens": words, n-grams or letters
- Most common: tokens = words

The bag of words

- Select a list of important keywords
- Each entry in the vector correspond to a keyword
- 1 if the keyword is present (or count), 0 otherwise

Can use a list of "stop-words" which define unimportant words

Note: the positions of the words in the text are lost

TF-IDF

Most common words are not very informative: "the", "and", ... How to select relevant ones **automatically**?

TF-IDF: Term Frequency - Inverse Document Frequency Data: a set of n text documents

- k(t,d) number of term t in document d
- Term Frequency in document d: $tf(t,d) = k(t,d)/\Sigma_d k(t,d)$
- Inverse document frequency: df(t) the number of documents where the term t appear $idf(t) = \log \frac{n}{1 + df(t)}$

$$tf\text{-}idf(t,d) = tf(t,d) \times idf(t)$$

High score for words appearing often

Low score for words appearing often **everywhere**

Idea:

- 1) neighborhood in time is important
- 2) pattern invariant by translation along time

Locality and windowing: cut the signal in pieces

Features for this sample

Example of features for a time window: mean, variance, zero-crossing, autocorrelation, Fourier transform coefficients

More examples: https://tsfresh.readthedocs.io/

Images

Idea:

- 1) neighborhood in space is important
- 2) pattern invariant by translation along space

Locality and windowing. Cut the image in patches, with or without overlap

"Convolution" special architecture
"Convolutional neural networks", learn
filters / elementary shapes.

Wikimedia CC-BY-SA-4.0 by MTheiler

Summary for data with geometry

Information is in patterns

Patterns are particular combinations of neighbor values.

 \rightarrow Patterns spread across features.

It is important to encode the geometry.

Not all ML methods expect a matrix of samples and features!

More recent feature selection / generation

The bitter lesson strikes back

Self-supervised learning

- Examples:
- Autoencoders
- BERT (text and language)
- $\bullet \quad Other \ tasks \ {\rm https://ai.googleblog.com/2021/09/discovering-anomalous-data-with-self.html}$

Principle: Modify the data and train to detect the modification or reconstruct the original data

Embedding or latent representation: Machine internal representation of the input

Self-supervised learning

Embedding or latent representation: Machine internal representation of the input

Text data

What about word similarity? And encoding with real numbers?

Word2vec: Associate a word with a feature vector in some latent space.

• Learning process with a neural network

- Words are similar if they are often surrounded by the same words
- Operation on embeddings: king-man+women = queen, Paris France + Italy = Rome

Word2vec

```
Links for more info (optional): 
https://jaketae.github.io/study/word2vec/http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
```

Matrices W have learnable weights (entries)

Self-supervised learning

Auto encoder: Reconstruct the input

- * semi-supervised
- * supervised

Transfer learning

Train on task 1 Supervised

* supervised

Self-supervised learning

Multi-modal

Example: CLIP for associating image and text, https://openai.com/research/clip