

Microwave Remote Sensing Lab (MRSLab), IIT Bombay

12/21/2020

Running a script from Snappy

We use a python script (snappy_backscatterLAI.py) from Snappy to generate LAI map given Sentinel-1 VV and VH data (in C11 and C22 form) using Water Cloud Model inversion. **User Guide:**

- Download the Script (snappy_backscatterLAI.py) and a sample LUT (generated from forward WCM) rice LUT.csv from Github repository.
- Copy these two files in snappy installation directory
 C:\Anaconda3\envs\snappy36\Lib\snappy\examples\LAI AWS
- Keep Sentinel-1 preprocessed data in C:\Anaconda3\envs\snappy36\Lib\snappy\testdata

Running script from snappy

1. Open Anaconda Command prompt (no Admin privileges are required)

```
>> conda activate snappy36
>> cd to snappy directory where script was
copied(C:\Anaconda3\envs\snappy36\Lib\snappy\examples\LAI_A
WS)
C:\Anaconda3\envs\snappy36\Lib\snappy\examples\LAI_AWS>pyth
on.exe snappy_backscatterLAI.py
../../testdata/S1A_IW_SLC__1SDV_20180816_Orb_Cal_deb_ML_sub
set_mat_Spk_TC.dim
```

Where

../../testdata/S1A_IW_SLC__1SDV_20180816_Orb_Cal_deb_ML_subset __mat_Spk_TC.dim is the directory path of Sentinel-1 preprocessed data having C11 and C22 bands.

Resources:

https://forum.step.esa.int/t/snappy-where-to-start/1463