CSCE 222 [Sections 502, 503] Discrete Structures for Computing Spring 2017 – Hyunyoung Lee

Problem Set 2

Due dates: Electronic submission of yourLastName-yourFirstName-hw2.tex and yourLastName-yourFirstName-hw2.pdf files of this homework is due on Friday, 2/3/2017 before 11:00 a.m. on http://ecampus.tamu.edu. You will see two separate links to turn in the .tex file and the .pdf file separately. Please do not archive or compress the files. A signed paper copy of the pdf file is due on Friday, 2/3/2017 at the beginning of class. If any of the three submissions are missing, your work will not be graded.

Section: 503

Name: Joseph Martinsen

Resources. (All people, books, articles, web pages, etc. that have been consulted when producing your answers to this homework.)

On my honor, as an Aggie, I have neither given nor received any unauthorized aid on any portion of the academic work included in this assignment. Furthermore, I have disclosed all resources (people, books, web sites, etc.) that have been used to prepare this homework.

Signature:

Problem 1. Section 1.4, Exercise 30, page 54.

Solution.

$$x \in \{1, 2, 3\}$$
 $y \in \{1, 2, 3\}$

a)

$$\exists x \ P(x,3) \equiv P(1,3) \lor P(2,3) \lor P(3,3)$$

b)

$$\forall y \ P(1,y) \equiv P(1,1) \land P(1,2) \land P(1,3)$$

c)

$$\exists y \ \neg P(2,y) \equiv \neg P(2,1) \lor \neg P(2,2) \lor \neg P(2,3)$$

d)

$$\forall x \ \neg P(x,2) \equiv \neg P(1,2) \land \neg P(2,2) \land \neg P(3,2)$$

Problem 2. Section 1.4, Exercise 36, page 55.

Solution.

- a) When x = 1, $1^2 = 1$ and x = 0, $0^2 = 0$ \therefore The counter examples are x = 0, 1
- b) When $x = \sqrt{2}$, $(\sqrt{2})^2 = 2$ and $x = -\sqrt{2}$, $(-\sqrt{2})^2 = 2$. The counter examples are $x = \pm \sqrt{2}$
- c) When x = 0, |0| = 0 it follows that $0 \ge 0$ \therefore The counter example is x = 0

Problem 3. Section 1.5, Exercise 28 b), c), e), and i), page 67. Justify your answer or give a counterexample.

Solution.

- b) $\forall x \exists y (x = y^2)$ is **false** for when x = -1 because there is no real number that satisfies $y^2 = -1$
- c) $\exists x \forall y (xy = 0)$ is **true** for all y when x = 0
- e) $\forall x(x \neq 0 \rightarrow \exists y(xy=1))$ for all x that does not equal 0 there exists a real number y that is equivalent to $\frac{1}{x}$ and it can be shown that $x \cdot \frac{1}{x} = 1$. the statement is **true**
- i) $\forall x \exists y (x + y = 2 \land 2x y = 1)$

For when x = 0 the equation x + y = 2 the solution for y is 2. Also for when x = 0 the equation 2x - y = 1 the solution for y is -1

 \therefore the statement is **false** with x = 0 as a counterexample.

Problem 4. Section 1.5, Exercise 46, page 68. Justify your answer or give a counterexample.

Solution.

 $\exists x \forall y \ (x \leq y^2)$

- a) $\mathbb{D} = \{x, y \in \mathbb{R}^+\}$ for when x = 1
- b) $\mathbb{D} = \{x, y \in \mathbb{Z}\}$
- c) $\mathbb{D} = \{x, y \in \mathbb{R} | (\mathbf{x}, \mathbf{y}) \neq 0\}$

Problem 5. Section 1.6, Exercise 6, page 78.

Solution.

P: It rains

Q: It is foggy

R: Sailing race will be held

 ${\cal S}$: Lifesaving demonstration occurs

T: Trophy is awarded

∴ It will rain and there will be no race :(

Problem 6. Section 1.6, Exercise 14 d), page 79.

Solution.

There is someone in this class who has been to France. Everyone who goes to France visits the Louvre. Therefore, someone in this class has visited the Louvre

P(x): x is in this class Q(x): x has been to France R(x): x has visited the Lourve

$\exists x (P(x) \land Q(x)$	Given	(1)
$\forall x (Q(x) \to R(x))$	Given	(2)
$P(a) \wedge Q(a)$	Exisitential instantiation on (1)	(3)
$Q(a) \to R(a)$	Universal instatiation on (2)	(4)
P(a)	Simplification on (3)	(5)
Q(a)	Simplification on (3)	(6)
R(a)	Modus Ponnes on (4) and (6)	(7)
$P(a) \wedge R(a)$	Conjunction on (5) and (7)	(8)
$\exists x (P(x) \land R(x)) \Box$	Existential generation on (8)	(9)

Problem 7. Section 1.7, Exercise 18, page 91.

Solution.

$$P:3n+2$$
 is even $Q:n$ is even $P\to Q$

If $n \in \mathbb{Z}$ and 3n + 2 is even, n is even

1. a proof by contraposition $\neg Q \rightarrow \neg P$

If n is odd, then 3n+2 is odd Since n is assumed to be odd, it must be of the form n=2k+1 where $k\in\mathbb{Z}$

$$3n + 2$$

 $3(2k + 1) + 2$
 $6k + 3 + 2$
 $6k + 4 + 1$
 $2(3k + 2) + 1$
 $2m + 1$ where $m = 3k + 2$

 $2\mathrm{m}+1$ is odd so it follows that If $n\in\mathbb{Z}$ and $3\mathrm{n}+2$ is even, n is even by contraposition

2. a proof by contradiction $P \wedge \neg Q$

Assume 3n+2 is even but n is odd. Since n is odd it must be in the form of n=2k+1 where $k\in\mathbb{Z}$

$$3n + 2$$

 $3(2k + 1) + 2$
 $6k + 3 + 2$
 $6k + 4 + 1$
 $2(3k + 2) + 1$
 $2m + 1$ where $m = 3k + 2$

2m + 1 is odd which contradicts the assumption that 3n + 2 is even so it follows that If $n \in \mathbb{Z}$ and 3n + 2 is even, n is even by contradiction

Problem 8. Section 1.7, Exercise 22, page 91. Prove by contradiction.

Solution. Assume that if you pick three socks from a drawer containing just blue socks and black socks, that you will not get a pair of blue socks or a pair of black socks. Here the domain of socks within the drawer are {blue, black}. For

the first two picks, the socks must be of the order [blue, black] or [black, blue]. If it was any other case, a pair of socks would be obtained. For the third pick, there are two options. One option occurs when the third sock is black, which results in [blue, black,black] or [black, blue, black]. The second option occurs when the thrid sock is blue, which results in [blue, black, blue] or [black, blue, blue]. Both of these options result in a pair of socks occuring which contradicts the premise that no pairs would occur

 \therefore by proof by contradiction, you will have a pair of blue or a pair of black socks when picking from this drawer.

Problem 9. Section 1.7, Exercise 24, page 91. Prove by contradiction.

Solution.

Problem 10. Let n > 1 be an integer. Prove by contradiction that if n is a perfect square, then n + 3 cannot be a perfect square.

Solution.

Checklist:		
	Did you type in your name and section?	
	Did you disclose all resources that you have used?	
	(This includes all people, books, websites, etc. that you have consulted.)	
	Did you sign that you followed the Aggie Honor Code?	
	Did you solve all problems?	
	Did you submit the .tex and .pdf files of your homework to the correct link	
	on eCampus?	

□ Did you submit a signed hardcopy of the pdf file in class?