Deterministic Optimization

Unconstrained

Optimization: Derivative-

Free Methods Shabbir Ahmed

Anderson-Interface Chair and Professor School of Industrial and Systems Engineering

Multivariate functions

Optimality Conditions

Learning objectives:

 Recognize the Nelder-Mead Method

Derivative-free Algorithms for Unconstrained Optimization

```
(P): \min\{f(x) \mid x \in \mathbb{R}^n\}.
```

- Golden Section search (n = 1)
- Quadratic fit (n = 1)
- Nelder-Mead method (n > 1)

The Nelder-Mead Method

$$\min\{f(x) \mid x \in \mathbb{R}^n\}.$$

Each iteration maintains an ordered set of n+1 solution points, i.e. at iteration k, the solution points are labeled x_1^k, \ldots, x_{n+1}^k such that

$$f(x_1^k) \le f(x_2^k) \le \ldots \le f(x_{n+1}^k).$$

Each iteration requires function evaluations and sorting.

No formal convergence theory but works well in practice.

The Nelder-Mead Method

Step 0. Choose n+1 distinct solution points x_1^0, \ldots, x_{n+1}^0 . Set the iteration counter k=0.

- Step 1. Order the solution points. Compute the best-n centroid $\overline{x}^k = (1/n) \sum_{i=1}^n x_i^k$.
- Step 2. If $\sum_{i=1}^{n} |f(x_i^k) f(\overline{x}^k)| < \epsilon$, STOP and report the better of x_1^k and \overline{x}^k .

The Nelder-Mead Method

- Step 3. Try to find a better solution point x_b^k along the direction $(\overline{x}^k x_{n+1}^k)$ using various rules. If you find one, replace x_{n+1}^k by x_b^k , update $k \leftarrow k+1$ and go to step 1.
- Step 4. Shrink the current solution set towards the best solution x_1^k by $x_i^{k+1} \leftarrow 0.5(x_1^k + x_i^k)$ for all $i = 1, \ldots, n+1$. Update k and go to step 1.

$$f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2$$

Source: https://en.wikipedia.org/wiki/Nelder%E2%80%93 Mead_method Implemented in the Matlab routine fminsearch.

See also scipy.optimize.minimize(method='Nelder-Mead')

Summary

- The Nelder-Mead method is a numerical algorithm for minimizing a multivariate function using only function evaluations
- It is not guaranteed to converge but often works well