34th USENIX Security Symposium (USENIX Security 2025)

MalGuard: Towards Real-Time, Accurate, and Actionable Detection of Malicious Packages in PyPI Ecosystem

Xingan Gao¹, Xiaobing Sun^{1,†}, Sicong Cao^{1,†}, Kaifeng Huang², Di Wu³, Xiaolei Liu⁴, Xingwei Lin⁵, Yang Xiang⁶

¹ Yangzhou University, ² Tongji University, ³University of Southern Queensland ⁴China Academy of Engineering Physics, ⁵Zhejiang University, ⁶Swinburne University of Technology

1.1 Open-Source Supply Chain

1.2 Traditional Feature Vector based Approaches

1.2 Traditional Feature Vector based Approaches

As time progresses, the dataset is continuously augmented with new malicious package samples, necessitating ongoing manual effort from security professionals to analyze their characteristics.

1.3 LLM based Approaches

1.3 LLM based Approaches

Iterative updates to LLMS and LMS are quite time-consuming and resource-intensive, and existing approaches lack the analysis of malicious packages

2 Empirical Study

Table 2: The categories of 132 different APIs in Feature Set.

Categories	API example
File-system access	os.mkdir() os.remove shutil.copy() write()
Process creation	subprocess.Popen multiprocessing.Process threading.Thread
Network access	socket.socket() requests request.urlopen()
Data encode & decode	base64.b64encode() base64.b64decode()
Package install	install.run() pip.main()
System access	os.getenv() os.getcwd()

Table 3: Effectiveness comparison of five different ML models and LLM-based approaches on the same dataset.

		Model Precision (%)		Time Consumption		
Group	Model			F1 score (%)	Pre-process (s/package)	Train (s)
	NB	55.2	98.4	70.7		0.19467
	XGBoost	98.1	98.4	98.2		4.79
ML	RF	98.5	98	98.2	0.8457	1.0126
	SVM	89.2	94.7	91.9		0.097
	MLP	98.1	98.2	98.1		22.85157
	EA4MP [37]	99.1	95.4	97.2	6.28	30,741.67
PTM	CEREBRO [46]	98.6	85.7	91.7	12.489	2,439
LLM	GPT-3.5-turbo [30]	99.0	99.3	99.1	-	-

Table 5: Effectiveness comparison of different ML models and LLM-based approaches on newer samples by training an old dataset.

	X	GBoost			RF		;	SVM			MLP		E	A4MP	
Metrics (%)	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
2021&2022	88.2	80.3	84.1	97.1	82.0	88.9	88.6	80.3	84.2	95.3	80.6	87.3	94.7	90.7	92.7
2023	86.4	59.0	70.1	90.1	59.3	71.5	83.3	49.2	61.9	87.3	62.1	72.6	81.6	84.3	82.9
2024	81.5	53.4	64.5	72.6	52.1	60.7♥	75.4	51.0	60.8	79.6	57.1	66.5	72.7	70.5	71.6

3.1 API Call Graph Centrality Analysis

Closeness Centrality

$$C_C(v) = \frac{N-1}{\sum_{u \in V, u \neq v} d(v, u)}$$

Degree Centrality

$$C_D(v) = \frac{\deg(v)}{N-1}$$

Katz Centrality

$$C_K(v) = \alpha \sum_{u \in V} A_{vu} C_K(u) + \beta$$

Harmonic Centrality

$$C_H(v) = \sum_{u \in V, u \neq v} \frac{1}{d(v, u)}$$

Table 6: The top 10 APIs calculated with different centrality in malicious&benign packages.

	Closeness	Degree	Harmonic	Katz
	setup	setup	join	setup
	exists	exists	open	exists
	subprocess.Popen	subprocess.Popen	decode	subprocess.Popen
	open	join	getattr	open
	join	open	encode	join
Malicious	range	range	map	install.run
	getattr	aetattr	exists	exec
	map	map	os.getenv	format
	os.getenv	exec	replace	os.getenv
	install.run	os.getenv	b64decode	expanduser
	open	open	len	setup
	len	len	join	open
	setup	setup	str	len
	print	join	isinstance	join
.	str	print	open	print
Benign	isinstance	str	int	str
	int	isinstance	list	isinstance
	format	int	print	int
	list	range	append	range
	super	format	super	list

3.2 Overflow of Our Approach: MalGuard

Workflow of MalGuard

An API Call Graph Centrality and LIME based Malicious PyPI packages Detection Approach:

- API Call Graph Generation
- ☐ Sensitive API Extraction and Filter
- Malicious Package Detection
- Explanation Output Generation based on LIME

3.3 API Call Graph Generation and Sensitive API Extraction and Filter

How to get rid of the feature sets that based on expert knowledge?

Table 7: The feature set dimension after pre-processing by general-purpose LLM.

Centrality	Closeness	Degree	Katz	Harmonic
Total Dimensions	265	255	294	135

3.4 Malicious Package Detection and Explanation Output Generation based on LIME


```
LIME Explanation for package pandas-numpy-8.19.3:
In file pandas-numpy-8.19.3/reqinstaller/ init .py line 6, the package holder use the sensitive api:
[requests.get],
in function/global global,
which may be used for:
[Performing unauthorized data extraction from a remote server',
'Conducting SQL injection attacks',
"Gather sensitive information from the server's response data"]
In file pandas-numpy-8.19.3/reqinstaller/ init .py line 11, the package holder use the sensitive api:
[subprocess.call],
in function/global global,
which may be used for:
['Execute harmful system commands or shell scripts']
In file pandas-numpy-8.19.3/setup.py line 7, the package holder use the sensitive api:
[setup],
in function/global global,
which may be used for:
[Potential for unauthorized access to sensitive data',
 'Possibility of injecting malicious code or backdoors during the setup']
In file pandas-numpy-8.19.3/setup.py line 15, the package holder use the sensitive api:
[find packages],
in function/global global,
which may be used for:
[Search for and gain unauthorized access to sensitive packages.]
In file pandas-numpy-8.19.3/setup.py line 38, the package holder use the sensitive api:
[base64.b64decode],
in function/global global,
which may be used for:
[Decoding base64-encoded strings.']
In file pandas-numpy-8.19.3/setup.py line 38, the package holder use the sensitive api:
[exec],
in function/global global,
which may be used for:
['Arbitrary code execution',
 'Injection attacks']
```

Figure 2: The explanation output result of malicious package pandas-numpy-8.19.3

4.1 Experimental Setup

Dataset

Dataset	#Malicious	#Benign
Guo et al. [23]	9,148	-
Sun et al. [37]	516	-
Our work	-	10,000
Total	9,664	10,000

Baselines

- VIRUSTOTAL
- OSSGADGET
- BANDIT4MAL
- EA4MP
- CEREBRO
- GUARDDOG

Evaluation Metrics

- Precision
- Recall
- F1-Score

Experiments

- 1. Effectiveness Evaluation
- 2. Ablation Study
- 3. Explainability Evaluation
- 4. Hyperparameter Sensitivity Analysis
- 5. Robustness against Adversarial Attack
- 6. Practicality

4.2 Effectiveness Evaluation & Ablation Study

Table 8: Effectiveness comparison with the SOTA baselines.

Approach	Precision (%)	Recall (%)	F1 score (%)
VIRUSTOTAL [15]	95.2	80.6	87.3
OSSGADGET [5]	74.8	85.0	79.6
BAND4MAL [39]	84.8	96.7	90.4
EA4MP [37]	99.1	95.4	97.2
CEREBRO [46]	98.6	85.7	91.7
GuardDog [16]	95.6	82.6	88.6
MALGUARD	99.6	98.4	99.0

Table 7: The feature set dimension after pre-processing by general-purpose LLM. From 500 dimension

Centrality	Closeness	Degree	Katz	Harmonic
Total Dimensions	265	255	294	135

	with Feature Filtering				w/o Feature Filtering				
Metric	es (%)	Closeness	Harmonic	Degree	Katz	Closeness	Harmonic	Degree	Katz
	Precision	99.4	92.5	99.3	99.6	99.9	99.9	99.9	94.9
RF	Recall	97.0	97.1	97.3	98.4	98.1	98.0	98.2	95.8
	F-1	98.2	94.8	98.3	99.0	99.0	99.0	99.1	95.3
	Precision	99.4	99.2	92.5	99.3	99.2	99.3	99.2	93.0
XGBoost	Recall	96.5	96.3	95.5	96.9	98.5	98.7	98.6	94.5
	F-1	97.9	97.7	94.0	98.1	98.8	99.0	98.9	93.7
	Precision	97.9	87.1	97.6	97.9	82.8	86.6	72.6	71.8
SVM	Recall	96.5	91.2	96.2	96.3	80.9	83.5	96.1	95.9
	F-1	97.2	89.1	96.9	97.1	81.8	85.0	82.7	82.1
	Precision	98.5	92.0	98.2	98.4	99.0	99.1	98.3	89.8
MLP	Recall	97.8	97.0	98.0	98.1	98.9	95.5	98.6	92.5
	F-1	98.1	94.4	98.1	98.2	99.0	97.3	98.4	91.1

The experimental results demonstrate that MalGuard achieves optimal effectiveness in terms of precision, recall, and F1 scores. The ablation study experimental results show that 1) Using API call graph centrality for automated feature extraction is effective. 2) Leveraging a general large language model can effectively help in filtering out irrelevant APIs from the feature set.

4.3 Explainability Evaluation

Table 10: Effectiveness of different ML Models in **Explanation Outputs Verification Dataset** (The Third Column shows the number of malicious packages that every model can detect and explain while the Fourth and Fifth Columns show the number of malicious packages that can be detected and accurately explained by more than 3 or 4 different models.).

Centrality	Model	Total detected	r>=3	r=4
	XGBoost	96		
	RF	95		
Closeness	SVM	94	95	93
	MLP	98		
	XGBoost	97		
	RF	96		
Degree	SVM	91	96	90
	MLP	97		
	XGBoost	95		
	RF	93		
Katz	SVM	88	93	86
	MLP	96		
	XGBoost	95		
	RF	93		
Harmonic	SVM	82	92	79
	MLP	95		

The experimental results demonstrate that the explainability content generated by MalGuard achieved an average score of 3.5 or higher, indicating that the explanation outputs are effective and useful for aiding in malicious behavior analysis.

4.3 Robustness against Adversarial Attack

The experimental results, show that as K increases, the model's effectiveness consistently improves across feature sets derived using four different centrality metrics. These findings suggest that setting K=500 allows the feature set to capture the most comprehensive set of suspicious APIs.

4.4 Hyperparameter Sensitivity Analysis

Figure 5: Model robustness against adversarial attacks.

These findings demonstrate that although MalGuard suffers some degradation under adversarial conditions, it maintains effectiveness at an acceptable level, highlighting its robustness against such attacks.

4.5 Practicality

Figure 5: Model robustness against adversarial attacks.

These findings demonstrate that although MalGuard suffers some degradation under adversarial conditions, it maintains effectiveness at an acceptable level, highlighting its robustness against such attacks.

In total, MalGuard discovered 144 suspicious packages. After manual review, 113 out of them were confirmed malicious. We reported these packages to the PyPI official. As of January 21, 2025, 109 of them have been removed.

5. Conclusion

1.1 Open-Source Supply Chain

3.1 Overflow of Our Approach: MalGuard

Workflow of MalGuard

An API Call Graph Centrality and LIME based Malicious PyPI packages Detection Approach:

- ☐ API Call Graph Generation
- ☐ Sensitive API Extraction and Filter
- ☐ Malicious Package Detection
- ☐ Explanation Output Generation based on LIME

2.1 Empirical Study

Table 2: The categories of 132 different APIs in Feature Set.

Categories	API example		
	os.mkdir()		
	os.remove		
File-system access	shutil.copy()		
	write()		
	•••		
	subprocess.Popen		
	multiprocessing.Process		
Process creation	threading.Thread		
	socket.socket()		
	requests		
Network access	request.urlopen()		
	base64.b64encode()		
Data encode & decode	base64.b64decode()		
	install.run()		
Package install	pip.main()		
	os.getenv()		
System access	os.getcwd()		
Djotem decess			

Table 3: Effectiveness comparison of five different ML models and LLM-based approaches on the same dataset.

					Time Consumption		
Group	Model	Precision (%)	Recall (%)	F1 score (%)	Pre-process (s/package)	Train (s)	
	NB	55.2	98.4	70.7		0.19467	
	XGBoost	98.1	98.4	98.2		4.79	
ML	RF	98.5	98	98.2	0.8457	1.0126	
	SVM	89.2	94.7	91.9	0.0.12	0.097	
	MLP	98.1	98.2	98.1		22.85157	
	EA4MP [37]	99.1	95.4	97.2	6.28	30,741.67	
PTM	CEREBRO [46]	98.6	85.7	91.7	12.489	2,439	
LLM	GPT-3.5-turbo [30]	99.0	99.3	99.1	-	-	

Table 5: Effectiveness comparison of different ML models and LLM-based approaches on newer samples by training an old dataset.

	XG	Boost			RF			SVM			MLP		E	A4MP	
Metrics (%) I	Precision	Recall	FI P	recision	Recall	FI	Precision	Recall	FI	Precision	Recall	F1	Precision	Recall	Fl
2021&2022	88.2 86.4	80.3 59.0	84.1 70.1	97.1 90.1	82.0 59.3	88.9 71.5		80.3 49.2	84.2 61.9		80.6 62.1	87.3 72.6		90.7 84.3	92.7 82.9
2024	81.5	53.4	64.5	72.6	52.1	60.7	75.4	51.0	60.8	79.6	57.1	66.5	72.7	70.5	71.6

4.2 Effectiveness Evaluation & Ablation Study

Table 8: Effectiveness comparison with the SOTA baselines.

Approach	Precision (%)	Recall (%)	F1 score (%
VIRUSTOTAL [15]	95.2	80.6	87.3
OSSGADGET [5]	74.8	85.0	79.6
BAND4MAL [39]	84.8	96.7	90.4
EA4MP [37]	99.1	95.4	97.2
CEREBRO [46]	98.6	85.7	91.7
GUARDDOG [16]	95.6	82.6	88.6
MalGuard	99.6	98.4	99.0

Table 7: The feature set	dimension	after pre-processing by
general-purpose LLM.	From	500 dimension

	Γ.	From 500 dimension							
Centralit	ty Closene	ss Degree	Katz	Harmonic					
Total Dimen	sions 265	255	294	135					

		with Feature Filtering					w/o Feature Filtering				
	Metri	cs (%)	Closeness	Harmonic	Degree	Katz	Closeness	Harmonic	Degree	Katz	
		Precision	99.4	92.5	99.3	99.6	99.9	99.9	99.9	94.9	
	RF	Recall	97.0	97.1	97.3	98.4	98.1	98.0	98.2	95.8	
		F-1	98.2	94.8	98.3	99.0	99.0	99.0	99.1	95.3	
	XGBoost	Precision	99.4	99.2	92.5	99.3	99.2	99.3	99.2	93.0	
		Recall	96.5	96.3	95.5	96.9	98.5	98.7	98.6	94.5	
		F-1	97.9	97.7	94.0	98.1	98.8	99.0	98.9	93.7	
	SVM	Precision	97.9	87.1	97.6	97.9	82.8	86.6	72.6	71.8	
		Recall	96.5	91.2	96.2	96.3	80.9	83.5	96.1	95.9	
		F-1	97.2	89.1	96.9	97.1	81.8	85.0	82.7	82.1	
		Precision	98.5	92.0	98.2	98.4	99.0	99.1	98.3	89.8	
	MLP	Recall	97.8	97.0	98.0	98.1	98.9	95.5	98.6	92.5	
		F-1	98.1	94.4	98.1	98.2	99.0	97.3	98.4	91.1	

The experimental results demonstrate that MalGuard achieves optimal effectiveness in terms of precision, recall, and F1 scores. The ablation study experimental results show that 1) Using API call graph centrality for automated feature extraction is effective. 2) Leveraging a general large language model can effectively help in filtering out irrelevant APIs from the feature set.

3

34th USENIX Security Symposium (USENIX Security 2025)

Thanks for listening!

- MX120230566@stu.yzu.edu.cn
- https://zenodo.org/records/15545824

