## Stanford CS224W: Graph as Matrix: PageRank, Random Walks and Embeddings

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



#### **ANNOUNCEMENTS**

- Homework 1 will be released after class
- Next Thursday (10/07): Colab 1 due, Colab 2 out
  - Do Colab 0! It has almost everything you need to complete Colab 1.
- Office hours: we've added Zoom links to our OH calendar.
  - See <a href="http://web.stanford.edu/class/cs224w/oh.html">http://web.stanford.edu/class/cs224w/oh.html</a> for OH calendar, Zoom links, and QueueStatus link.

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



## Graph as Matrix

## In this lecture, we investigate graph analysis and learning from a matrix perspective.

- Treating a graph as a matrix allows us to:
  - Determine node importance via random walk (PageRank)
  - Obtain node embeddings via matrix factorization (MF)
  - View other node embeddings (e.g. Node2Vec) as MF
- Random walk, matrix factorization and node embeddings are closely related!



# Stanford CS224W: PageRank (aka the Google Algorithm)

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



## Example: The Web as a Graph

Q: What does the Web "look like" at a global level?

- Web as a graph:
  - Nodes = web pages
  - Edges = hyperlinks
  - Side issue: What is a node?
    - Dynamic pages created on the fly
    - "dark matter" inaccessible database generated pages



## The Web as a Graph

I teach a class on Networks.

CS224W: Classes are in the Gates building

Computer Science Department at Stanford

Stanford University

## The Web as a Graph



- In early days of the Web links were navigational
- Today many links are transactional (used not to navigate from page to page, but to post, comment, like, buy, ...)

## The Web as a Directed Graph



## Other Information Networks





**Citations** 

References in an Encyclopedia

## What Does the Web Look Like?

- How is the Web linked?
- What is the "map" of the Web?

#### Web as a directed graph [Broder et al. 2000]:

- Given node v, what nodes can v reach?
- What other nodes can reach v?



## Ranking Nodes on the Graph

- All web pages are not equally "important" thispersondoesnotexist.com vs. www.stanford.edu
- There is large diversity in the web-graph node connectivity.
- So, let's rank the pages using the web graph link structure!



## **Link Analysis Algorithms**

- We will cover the following Link Analysis approaches to compute the importance of nodes in a graph:
  - PageRank
  - Personalized PageRank (PPR)
  - Random Walk with Restarts

## Links as Votes

- Idea: Links as votes
  - Page is more important if it has more links
    - In-coming links? Out-going links?
- Think of in-links as votes:
  - www.stanford.edu has 23,400 in-links
  - thispersondoesnotexist.com has 1 in-link
- Are all in-links equal?
  - Links from important pages count more
  - Recursive question!

## PageRank: The "Flow" Model

- A "vote" from an important page is worth more:
  - Each link's vote is proportional to the importance of its source page
  - If page i with importance r<sub>i</sub> has d<sub>i</sub> out-links, each link gets r<sub>i</sub> / d<sub>i</sub> votes
  - Page j's own importance r<sub>j</sub> is the sum of the votes on its inlinks



## PageRank: The "Flow" Model

- A page is important if it is pointed to by other important pages
- Define "rank"  $r_j$  for node j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 $d_i$  ... out-degree of node i

You might wonder: Let's just use Gaussian elimination to solve this system of linear equations. Bad idea!

#### The web in 1839



#### "Flow" equations:

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

## PageRank: Matrix Formulation

- Stochastic adjacency matrix M
  - $lackbox{ } d_i$  is the outdegree of node i
  - If  $i \rightarrow j$ , then  $M_{ji} = \frac{1}{d_{i}}$ 
    - M is a column stochastic matrix
      - Columns sum to 1



- Rank vector r: An entry per page
  - $lackbox{r}_i$  is the importance score of page  $oldsymbol{i}$
  - $\sum_i r_i = 1$
- The flow equations can be written

$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

## Example: Flow Equations & M



|                | r <sub>y</sub> | r <sub>a</sub> | r <sub>m</sub> |  |
|----------------|----------------|----------------|----------------|--|
| ry             | 1/2            | 1/2            | 0              |  |
| ra             | 1/2            | 0              | 1              |  |
| r <sub>m</sub> | 0              | 1/2            | 0              |  |

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

## Connection to Random Walk

#### Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t+1, the surfer follows an out-link from i uniformly at random
- lacktriangle Ends up on some page  $m{j}$  linked from  $m{i}$
- Process repeats indefinitely

#### Let:

- p(t) ... vector whose  $i^{th}$  coordinate is the prob. that the surfer is at page i at time t
- lacksquare So,  $m{p}(m{t})$  is a probability distribution over pages



$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

## The Stationary Distribution

- Where is the surfer at time *t*+1?
  - Follow a link uniformly at random  $p(t+1) = M \cdot p(t)$



Suppose the random walk reaches a state

$$p(t+1) = M \cdot p(t) = p(t)$$

then p(t) is stationary distribution of a random walk

- Our original rank vector r satisfies  $r = M \cdot r$ 
  - So, r is a stationary distribution for the random walk

## Recall Eigenvector of A Matrix

Recall from lecture 2 (eigenvector centrality), let  $A \in \{0, 1\}^{n \times n}$  be an adj. matrix of undir. graph:



- Eigenvector of adjacency matrix: vectors satisfying  $\lambda c = Ac$
- c: eigenvector;  $\lambda$ : eigenvalue
- Note:
  - This is the definition of eigenvector centrality (for undirected graphs).
  - PageRank is defined for directed graphs

## Eigenvector Formulation

The flow equation:

$$1 \cdot r = M \cdot r$$

$$\begin{vmatrix} r_y \\ r_a \\ r_m \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{vmatrix} \begin{vmatrix} r_y \\ r_a \\ r_m \end{vmatrix}$$

- So the rank vector r is an eigenvector of the stochastic adj. matrix M (with eigenvalue 1)
  - Starting from any vector u, the limit M(M(...M(M u))) is the **long-term distribution** of the surfers.
    - PageRank = Limiting distribution = principal eigenvector of M
    - Note: If r is the limit of the product  $MM \dots Mu$ , then r satisfies the flow equation  $1 \cdot r = Mr$
    - So r is the principal eigenvector of M with eigenvalue 1
- We can now efficiently solve for r!
  - The method is called Power iteration

## PageRank: Summary

#### PageRank:

- Measures importance of nodes in a graph using the link structure of the web
- Models a random web surfer using the stochastic adjacency matrix M
- PageRank solves r = Mr where r can be viewed as both the principle eigenvector of M and as the stationary distribution of a random walk over the graph

## Stanford CS224W: PageRank: How to solve?

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



## PageRank: How to solve?

## Given a graph with *n* nodes, we use an iterative procedure:

- Assign each node an initial page rank
- Repeat until convergence  $(\sum_{i} |r_{i}^{t+1} r_{i}^{t}| < \epsilon)$ 
  - Calculate the page rank of each node

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

 $d_i$  .... out-degree of node i

## **Power Iteration Method**

- Given a web graph with N nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
  - Initialize:  $r^{(0)} = [1/N, ..., 1/N]^T$
  - Iterate:  $r^{(t+1)} = M \cdot r^{(t)}$
  - Stop when  $|\boldsymbol{r}^{(t+1)} \boldsymbol{r}^{(t)}|_1 < \varepsilon$

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

$$l_i \dots \text{ out-degree of node } l$$

 $d_i$  .... out-degree of node i

 $|x|_1 = \sum_{i=1}^{N} |x_i|$  is the L<sub>1</sub> norm Can use any other vector norm, e.g., Euclidean

About 50 iterations is sufficient to estimate the limiting solution.

## PageRank: How to solve?

#### Power Iteration:

- Set  $r_i \leftarrow 1/N$
- 1:  $r'_j \leftarrow \sum_{i \rightarrow j} \frac{r_i}{d_i}$
- 2: If  $|r r'| > \varepsilon$ :
  - $r \leftarrow r'$
- **3:** go to **1**

#### Example:





|   | y   | a   | m |
|---|-----|-----|---|
| y | 1/2 | 1/2 | 0 |
| a | 1/2 | 0   | 1 |
| m | 0   | 1/2 | 0 |

$$r_y = r_y/2 + r_a/2$$
  
 $r_a = r_y/2 + r_m$   
 $r_m = r_a/2$ 

## PageRank: How to solve?

#### Power Iteration:

- Set  $r_i \leftarrow 1/N$
- 1:  $r'_j \leftarrow \sum_{i \rightarrow j} \frac{r_i}{d_i}$
- 2: If  $|r r'| > \varepsilon$ :
  - $r \leftarrow r'$
- **3:** go to **1**

#### Example:



$$\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} \begin{bmatrix} 1/3 \\ 3/6 \\ 1/6 \end{bmatrix} \begin{bmatrix} 5/12 \\ 1/3 \\ 3/12 \end{bmatrix} \begin{bmatrix} 9/24 \\ 11/24 \\ 1/6 \end{bmatrix} \dots \begin{bmatrix} 6/15 \\ 6/15 \\ 3/15 \end{bmatrix}$$

Iteration 0, 1, 2, ...

$$r_y = r_y/2 + r_a/2$$
 $r_a = r_y/2 + r_m$ 
 $r_m = r_a/2$ 

## PageRank: Three Questions

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$
 or equivalently  $r = Mr$ 

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

## PageRank: Problems

#### **Two problems:**

- (1) Some pages are dead ends (have no out-links)
  - Such pages cause importance to "leak out"
- (2) Spider traps

   (all out-links are within the group)
  - Eventually spider traps absorb all importance

## Does this converge?

The "Spider trap" problem:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

## Does it converge to what we want?

#### The "Dead end" problem:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

#### Example:

| Iteration        | : 0, | 1, | 2, | 3 |
|------------------|------|----|----|---|
| r <sub>a</sub> _ | 1    | 0  | 0  | 0 |
| $r_b =$          | 0    | 1  | 0  | 0 |

## Solution to Spider Traps

- Solution for spider traps: At each time step, the random surfer has two options
  - With prob.  $\beta$ , follow a link at random
  - With prob. **1-\beta**, jump to a random page
  - Common values for  $\beta$  are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps



## Solution to Dead Ends

- Teleports: Follow random teleport links with total probability 1.0 from dead-ends
  - Adjust matrix accordingly



## Why Teleports Solve the Problem?

## Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem, but with traps
   PageRank scores are not what we want
  - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
  - The matrix is not column stochastic so our initial assumptions are not met
  - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

## Solution: Random Teleports

- Google's solution that does it all:
  - At each step, random surfer has two options:
  - With probability  $\beta$ , follow a link at random
  - With probability  $1-\beta$ , jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i o j} \beta \; rac{r_i}{d_i} + (1 - eta) rac{1}{N} \; \stackrel{ ext{d}_i \dots \, ext{out-degree}}{N}$$

This formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

## The Google Matrix

PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

The Google Matrix G:

 $[1/N]_{NxN}...N$  by N matrix where all entries are 1/N

$$G = \beta M + (1 - \beta) \left[ \frac{1}{N} \right]_{N \times N}$$

- We have a recursive problem:  $r = G \cdot r$ And the Power method still works!
- What is  $\beta$ ?

random walk is just un intuition pever simulateit.

• In practice  $\beta = 0.8, 0.9$  (make 5 steps on avg., jump)

# Random Teleports ( $\beta = 0.8$ )



# PageRank Example



Image credit: Wikipedia

# Solving PageRank: Summary

- PageRank solves for r = Gr and can be efficiently computed by power iteration of the stochastic adjacency matrix (G)
- Adding random uniform teleportation solves issues of dead-ends and spider-traps

# Stanford CS224W: Random Walk with Restarts and Personalized PageRank

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



# **Example: Recommendation**

#### Given:

A bipartite graph representing user and item interactions (e.g. purchase)



# Bipartite User-Item Graph

- Goal: Proximity on graphs
  - What items should we recommend to a user who interacts with item Q?
  - Intuition: if items Q and P are interacted by similar users, recommend P when user interacts with Q



# Bipartite User-to-Item Graph

Which is more related A,A' or B,B'?



# Node proximity Measurements

Which is more related A,A', B,B' or C,C'?



# Node proximity Measurements

Which is more related A,A', B,B' or C,C'?



# Node proximity Measurements

Which is more related A,A', B,B' or C,C'?



Personalized Page Rank/Random Walk with Restarts

# **Proximity on Graphs**

#### PageRank:

- Ranks nodes by "importance"
- Teleports with uniform probability to any node in the network
- Personalized PageRank:
  - Ranks proximity of nodes to the teleport nodes S
- Proximity on graphs:
  - Q: What is most related item to Item Q?
  - Random Walks with Restarts
    - Teleport back to the starting node:  $S = \{Q\}$

## Idea: Random Walks

#### Idea

- Every node has some importance
- Importance gets evenly split among all edges and pushed to the neighbors:
- Given a set of QUERY\_NODES, we simulate a random walk:
  - Make a step to a random neighbor and record the visit (visit count)
  - With probability ALPHA, restart the walk at one of the QUERY NODES
  - The nodes with the highest visit count have highest proximity to the QUERY\_NODES

## Random Walks

#### Idea:

- Every node has some importance
- Importance gets evenly split among all edges and pushed to the neighbors
- Given a set of QUERY NODES Q, simulate a random walk:



# Random Walk Algorithm

### Proximity to query node(s) Q:

```
item = QUERY_NODES.sample_by_weight()
for i in range( N_STEPS ):
    user = item.get_random_neighbor()
    item = user.get_random_neighbor()
    item.visit_count += 1
    if random() < ALPHA:
        item = QUERY_NODES.sample.by_weight()</pre>
```



# Random Walk Algorithm

Proximity to query node(s) Q:

```
ALPHA = 0.5
                                item = QUERY_NODES.sample_by_weight()
  QUERY NODES =
                                for i in range( N_STEPS ):
                                    user = item.get_random_neighbor()
                                    item = user.get_random_neighbor()
                                    item.visit_count += 1
Number of visits by
                                    if random( ) < ALPHA:</pre>
random walks starting at Q
                                       item = QUERY_NODES.sample.by_weight()
                                  Query Item Q
                                           16
                User 1
                                    User 2
                                                         User 3
                                                                           User 4
```

## **Benefits**

- Why is this a good solution?
- Because the "similarity" considers:
  - Multiple connections
  - Multiple paths
  - Direct and indirect connections
  - Degree of the node



# Summary: Page Rank Variants

#### PageRank:

- Teleports to any node
- Nodes can have the same probability of the surfer landing:

- Topic-Specific PageRank aka Personalized PageRank:
  - Teleports to a specific set of nodes
  - Nodes can have different probabilities of the surfer landing there:

$$S = [0.1, 0, 0, 0.2, 0, 0, 0.5, 0, 0, 0.2]$$

- Random Walk with Restarts:
  - Topic-Specific PageRank where teleport is always to the same node:

$$S = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]$$

# Summary

- A graph is naturally represented as a matrix
- We defined a random walk process over the graph
  - Random surfer moving across the links and with random teleportation
  - Stochastic adjacency matrix M
- PageRank = Limiting distribution of the surfer location represented node importance by new
  - Corresponds to the leading eigenvector of transformed adjacency matrix M.

# Stanford CS224W: Matrix Factorization and Node Embeddings

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



## **Embeddings & Matrix Factorization**

Recall: encoder as an embedding lookup



**Objective**: maximize  $\mathbf{z}_v^{\mathrm{T}}\mathbf{z}_u$  for node pairs (u, v) that are similar

## **Connection to Matrix Factorization**

- Simplest **node similarity**: Nodes u, v are similar if they are connected by an edge
- This means:  $\mathbf{z}_{v}^{\mathrm{T}}\mathbf{z}_{u} = A_{u,v}$  which is the (u,v) entry of the graph adjacency matrix A
- Therefore,  $\mathbf{Z}^T \mathbf{Z} = A$



## **Matrix Factorization**

- The embedding dimension d (number of rows in Z) is much smaller than number of nodes n.
- Exact factorization  $A = Z^T Z$  is generally not possible
- However, we can learn Z approximately
- Objective:  $\min_{\mathbf{Z}} \| \mathbf{A} \mathbf{Z}^T \mathbf{Z} \|_2$ 
  - We optimize Z such that it minimizes the L2 norm (Frobenius norm) of  $A Z^T Z$
  - Note in Lecture 3 we used softmax instead of L2. But the goal to approximate  $\mathbf{A}$  with  $\mathbf{Z}^T \mathbf{Z}$  is the same.
- Conclusion: Inner product decoder with node similarity defined by edge connectivity is equivalent to matrix factorization of A.

# Random Walk-based Similarity

- DeepWalk and node2vec have a more complex node similarity definition based on random walks
- DeepWalk is equivalent to matrix factorization of the following complex matrix expression:

$$\log\left(vol(G)\left(\frac{1}{T}\sum_{r=1}^{T}(D^{-1}A)^{r}\right)D^{-1}\right) - \log b$$

Explanation of this equation is on the next slide.

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec, WSDM 18

# Random Walk-based Similarity

#### Volume of graph



- Node2vec can also be formulated as a matrix factorization (albeit a more complex matrix)
- Refer to the paper for more details:

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec, WSDM 18

## Limitations (1)

# Limitations of node embeddings via matrix factorization and random walks

 Cannot obtain embeddings for nodes not in the training set



Training set

A newly added node 5 at test time (e.g., new user in a social network)

Cannot compute its embedding with DeepWalk / node2vec. Need to recompute all node embeddings.

## Limitation (2)

Cannot capture structural similarity:



- Node 1 and 11 are structurally similar part of one triangle, degree 2, ...
- However, they have very different embeddings.
  - It's unlikely that a random walk will reach node 11 from node 1.
- DeepWalk and node2vec do not capture structural similarity.

# Limitations (3)

Cannot utilize node, edge and graph features



#### **Feature vector**

(e.g. protein properties in a protein-protein interaction graph)

DeepWalk / node2vec embeddings do not incorporate such node features

Solution to these limitations: Deep Representation Learning and Graph Neural Networks

(To be covered in depth next week)

# Summary

#### PageRank

- Measures importance of nodes in graph
- Can be efficiently computed by power iteration of adjacency matrix
- Personalized PageRank (PPR)
  - Measures importance of nodes with respect to a particular node or set of nodes
  - Can be efficiently computed by random walk
- Node embeddings based on random walks can be expressed as matrix factorization
- Viewing graphs as matrices plays a key role in all above algorithms!