Obiettivo: Classificare per Predire

- Predire lo <u>stato renale finale</u> del paziente alla fine della sua degenza in terapia intensiva (UCI)
- Punto di partenza: dati clinici e situazione del paziente al termine del primo giorno in UCI

Parametri alle 24 ore

Database: il progetto Nefroint

- Sviluppato nell'U.O. di Nefrologia, ULSS 6 (VI)
- Raccoglie dati da 23 centri di UCI italiani
- 100 pazienti con 47 features divise in:
 - Caso clinico e dettagli (18)
 - Punteggi dello score "APACHE II" (12)
 - Parametri da analisi di laboratorio (14)
 - Insufficienza Renale Acuta (IRA; AKI in inglese) (2)
 - Sepsi (1)

Database: il training set

- Parte del progetto Nefroint
- 100 pazienti con 10 features:
 - Età
 - Tipologia del paziente all'ingresso
 - Diabete
 - Punteggio dello score "APACHE (Acute Physiology and Cronic Health Evaluation)" per Na, ematocrito, leucociti
 - Diuresi alle 24 ore e la peggiore delle 6 ore normalizzate al peso del paziente
 - Uso di diuretici
 - Insufficienza Renale Acuta nelle prime 24 ore
- 2 classi:
 - Normal (74): funzione renale normale
 - Renal dysfunction (26): funzionalità renale compromessa

Alcuni parametri sono continui....

Altri parametri sono discreti....

Il software "Rapidminer"

- Precedentemente chiamato Y.A.L.E. (Yet Another Learning Environment)
- Implementa una vasta gamma di librerie:
 - Pre-processing dei dati
 - Classificatori supervisionati e non
 - Feature Selection
 - Validazione
 - ...
- Disponibile sul sito: www.rapidminer.com con una serie di tutorial su You Tube

Tra i metodi di classificazione:

- Classificatori Bayesiani
- Reti neurali
- Alberi decisionali
- Classificatori k-NN

Tra i metodi di selezione:

- Forward selection
- Backword elimination

Tra i metodi di validazione:

Leave-one-out cross validation

RISULTATI

Classificatore W-Naive Bayes

Tabella di contingenza

		True			
		Renal dysfunction	Normal		
Predicted	Renal dysfunction	18	1	94.74%	ppv
Pred	Normal	8	73	90.12%	npv
Γ		69.23%	98.65%		
		sensitivity	specificity		

I parametri selezionati sono:

- APACHE2 Creatinine*
- lab_hemoglobin
- lab_WBC
- AKI first day
- sepsis_type_id
- rrt
- APACHE2_Na
- Weight
- · patient type
- APACHE2_temp
- APACHE2_MAP
- lab diuretic use

Si possono definire vari indici

			141		
		Condition (as determined by "Gold standard")			
	Total population	Condition positive	Condition negative	Prevalence = Σ Condition positive Σ Total population	
Test outcome	Test outcome positive	True positive	False positive (Type I error)	Positive predictive value (PPV, Precision) = Σ True positive Σ Test outcome positive	False discovery rate (FDR) = Σ False positive Σ Test outcome positive
	Test outcome negative	False negative (Type II error)	True negative	False omission rate (FOR) = Σ False negative Σ Test outcome negative	Negative predictive value (NPV) = Σ True negative Σ Test outcome negative
	Positive likelihood ratio (LR+) = TPR/FPR	True positive rate (TPR, Sensitivity, Recall) = Σ True positive Σ Condition positive	False positive rate (FPR, Fallout) = Σ False positive Σ Condition negative	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	
	Negative likelihood ratio (LR-) = FNR/TNR	False negative rate (FNR) = Σ False negative Σ Condition positive	True negative rate (TNR, Specificity, SPC) = Σ True negative Σ Condition negative		
	Diagnostic odds ratio (DOR) =			•	

LR+/LR-

Si può generalizzare al caso di più classi: Confusion Table

Accuracy: 84.59%		TRUE				
		Class 1	Class 2	Class 3	class precision	
	Class 1	377	19	26	89.34%	
Predicted	Class 2	15	62	31	57.41%	
Pred	Class 3	25	37	400	86.58%	
	class recall	90.41%	52.54%	87.53%		

Stima della densità di probabilità istogramma kernel

For the kernel density estimate, we place a normal kernel with variance 2.25 (red dashed lines) on each of the data points x_i . The kernels are summed to make the kernel density estimate (solid blue curve). The smoothness of the kernel density estimate is evident compared to the discreteness of the histogram, as kernel density estimates converge faster to the true underlying density for continuous random variables

Stima con kernels

Kernel density estimate with different bandwidths of a random sample of 100 points from a standard normal distribution. Grey: true density (standard normal). Red: KDE with h=0.05. Black: KDE with h=0.337. Green: KDE with h=2.