CSI 4133 - Lab 01

An introduction to OpenCV

Contents

Introduction to the following methods

- Display image
- Save image
- Down-sample image
 - · Resize image
- Quantize Image
 - · Scale image contents

Installation

Windows

\$ pip install opency-python

Mac

\$ pip install opency-python
Or

\$ brew install opencv3 --with-contrib --with-python3

Linux

\$ sudo apt-get install libopency-dev python-opency

Check installation

import cv2

PART A: Display an Image

Read an image

- · cv2.imread(arg1, arg2)
 - arg1 string representing the path of the image
 - arg2 flag that specifies how the image should be read
 - ·cv2.IMREAD_COLOR / 1:
 - · Loads a color image
 - · Any transparency of the images is neglected
 - · Default flag
 - · cv2.IMREAD_GRAYSCALE / 0:
 - · Loads image in grayscale mode
 - ·cv2.IMREAD_UNCHANGED / -1:
 - · Loads image as such including alpha channel
 - · Alpha channel controls the transparency of a color

PART A: Display an Image

Display an image

- · cv2.imshow(arg1, arg2)
 - arg1 window name
 - arg2 image
- · cv2.waitKey(N)
 - Waits N milliseconds for a keyboard event
 - N=0 will make it wait indefinitely
- · cv2.destroyAllWindows()
 - Destroys all the windows we created

PART A: Display an Image

cv2.IMREAD_COLOR

cv2.IMREAD_GRAYSCALE

cv2.IMREAD_UNCHANGED

PART B: Save an Image

Save an image

- · cv2.imwrite(arg1, arg2)
 - arg1 string representing the file name. Include image format (jpg, png, ...)
 - arg2 image to be saved
- · Creating an image from scratch
 - import numpy as np
 - np.zeros((height,width,3), np.uint8)
 - Use .shape to find height and width
 - · What is an image??
- · For more information
 - https://docs.opencv.org/4.6.0/d9/df8/tutorial root.html
 - Adding
 - Blending
 - Changing brightness

PART C: Down-sample an Image

Selecting one single value to represent several values

- · Makes the data more manageable
- · Reduces the dimensionality of the data, enabling faster processing of data
- · Reduces storage size of the data

PART D: Quantize an Image

Mapping of a large range of possible sample values into a smaller range of values or codes.

A gray image of 256 levels

A gray image of 16 levels

A gray image of 2 levels

PRACTICE

Goal: Introduce students to methods that create new images, resize images & scale image contents.

- · Task 1: Display image
 - Load image 'field.jpg' and show the original image.

PRACTICE

- · Task 2: Down-sample Image
 - Mini-Goal: Down-sample the loaded image (variable id='imgOriginal') by a factor of 4
 - Hint: Try shrinking the original image by a factor of four and then expanding the resulting image back to the original dimensions
 - An example Down-sampled image (X4)

PRACTICE

- · Task 3: Quantize Image
 - Mini-Goal: Quantize a loaded image (variable id='imgOriginal') by a factor of 32.
 - An example Quantized image (X16)

END

THANK YOU