```
5/7/1
DIALOG(R) File 351: Derwent WPI
(c) 2002 Derwent Info Ltd. All rts. reserv.
011178168
WPI Acc No: 1997-156093/199715
Composite dental material for fillings, bonding crowns or making
dentures, inlays, crowns etc. - comprises a metal oxide-silica-organic
cpd. complex cpd.
Patent Assignee: GC CORP (GCDE'); GC DENTAL IND CORP (GCDE)
Inventor: SATO H
Number of Countries: 004 Number of Patents: 005
Patent Family:
             Kind
                   Date
                            Applicat No
Patent No
                                          Kind
                                                 Date
                                                          Week
            A1 19970227 DE 1034189
DE 19634189
                                           Α
                                               19960823
                                                         199715
GB 2304720 A 19970326 GB 9617030
                                                19960814 199716
                                           А
JP 9059119
             A 19970304 JP 95235987
                                          A 19950823 199719
             A 19980630 US 96689779
US 5773489
                                          A
                                                19960814 199833
GB 2304720
             B 19990818 GB 9617030
                                          Α
                                                19960814 199935
Priority Applications (No Type Date): JP 95235987 A 19950823
Patent Details:
                        Main IPC
                                    Filing Notes
Patent No Kind Lan Pg
DE 19634189 A1 20 A61K-006/02
GB 2304720
             Α
                   50 A61K-006/093
JP 9059119
                   17 A61K-006/08
             Α
US 5773489
             Α
                      A61K-006/00
GB 2304720
                      A61K-006/093
Abstract (Basic): DE 19634189 A
        Inorganic - organic composite dental filling material in whose
    particles visible light at 360 - 830 nm does not scatter and having a
    refractive index (nD) for the sodium D-line of 1460 - 1600, comprises a
    cpd. of formula (I)
        aM10x/2.bSi02.cM20(4-i-j)/2R1iR2j (I)
       M1 = Ti, Zr, Y, La, Ta or Al, bonded to Si or M2 via a crosslinking
    O atom ; M2 = Si and / or Ti ; R1 = non-functional gp. ; R2 = organic
    cpd. reacted with an organic functional gp.; a/(a + b) = 0 - 0.65;
    c/(a + b) = 0.02 - 3; i = 0 - 2; j = 1 - 3; (i + j) = 1 - 3; and x
    = valency of M1.
       Pref., if M2 is Si then R2 is an organic cpd. that has been reacted
    with a cpd. contg. an unsatd. double bond, glycidyloxy, amino, mercapto
    or alkoxy qp., and if M2 is Ti then R2 is an organic cpd. that has been
    reacted with a cpd. contq. an unsatd. double bond or an amino qp. R1 is
    phenyl and / or 1-10C alkyl. M1 is chosen from one or more of Zr, Y, La
    or Ta and a/(a + b) = 0.1 - 0.65.
       USE - Used as filling material or bonding agent for securing
    artificial crowns, or for inlays, crowns, bridges or dentures.
       ADVANTAGE - Improved surface smoothness with resistance to
    abrasion, improved matrix mechanical properties and reduced
    transparency.
       Dwq.0/0
Derwent Class: D21; E11
International Patent Class (Main): A61K-006/00; A61K-006/02; A61K-006/08;
 A61K-006/093
International Patent Class (Additional): A61K-006/027; A61K-006/083;
  C08F-283/12; C08G-077/20; C08G-079/00
```

J

(51) Int. Cl.6:

A 61 K 6/027 A 51 K 6/083

BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift ₁₀₀ DE 196 34 189 A 1

Aktenzeichen:

196 34 189.2

Anmeldetag: 23. 8.96

Offenlegungstag:

27. 2.97

DEUTSCHES PATENTAMT

(3) Unionspriorität: (2) (3) (3) 23.08.95 JP 235987/95

(71) Anmelder:

GC Corp., Tokio/Tokyo, JP

(74) Vertreter:

Müller-Boré & Partner, 81671 München

(72) Erfinder:

Sato, Hisashi, Tokio/Tokyo, JP

- (54) Anorganisch-organische Dental-Verbundfüllungsmaterialien
- Anorganisch-organische Dental-Metallverbundfüllungsmaterialien sind gezeigt, die sichtbares Licht von 360 bis 830 nm in ihren Teilchen nicht streuen, einen Brechungsindex nD der D-Linie von Natrium im Bereich von 1,460 ≤ nD ≤ 1,600 haben und die durch die folgende empirische Durchschnittsformel dargestellt sind:

$$aM^{1}O_{x/2}\cdot bSiO_{2}\cdot cM^{2}O_{(4-1-j)/2}R^{1}{}_{1}R^{2}{}_{j}$$

worin bedeuten:

M1 ist ein Mitglied oder mehrere Mitglieder, ausgewählt aus Ti, Zr, Y, La, Ta und Ai, das an Si oder M² über den

vernetzten Sauerstoff gebunden ist; und X ist die Wertigkeit von M1;

M2 ist Si und/oder Ti;

R¹ ist eine nicht-funktionelle Gruppe; und R² ist eine organische Verbindung, die mit einer organischen funktionellen Gruppe umgesetzt ist:

ist 0, 1 oder 2; und 1 ist 1, 2 oder 3, vorausgesetzt, daß $\leq (\pm \pm \pm) \leq 3$ erfüllen; und die Gleichung a, \underline{b} und \underline{c} sind jeweils ein molares Verhältnis, vorausgesetzt, daß $\frac{a}{a}$, $\frac{b}{b}$ und $\frac{a}{a}$ die Gleichungen $0 \le a/(a+b) \le$ $0.65 \text{ und } 0.02 \le c/(a + b) \le 3.0 \text{ erfüllen.}$

Beschreibung

GEBIET DER ERFINDUNG

Die vorliegende Erfindung betrifft Füllungsmaterialien, die als Zahnerhaltungsmaterialien und Zahnersatz verwendet werden. (Der Ausdruck "Zahnerhaltungsmaterial" umfaßt auch Zahnersatz.) Die Füllungsmaterialien gemäß der vorliegenden Erfindung sind mit polymerisierbaren Monomeren, Polymerisationskatalysatoren und dergleichen gemischt und werden dann als Zahnerhaltungsmaterialien geliefert. Die Zahnerhaltungsmaterialien, auf die sich die vorliegende Erfindung bezieht, werden als Dental-Verbundharz bezeichnet und bedeuten Zahnerhaltungsmaterial für Füllungen, Kronen-Prothesen und als Inlays, Kronen und Brücken, Prothesenmaterialien und Zahnaufsatz-Konstruktionsmaterialien.

HINTERGRUND DER ERFINDUNG

Bisher wurden Füllungsmaterialien, die mit polymerisierbaren Monomeren und Polymerisationskatalysatoren gemischt sind und dann für Zahnerhaltungsmaterialien verwendet werden, grob wie folgt eingeteilt.

Füllungsmaterialien (1)

Gemahlene Produkte von synthetischen oder natürlichen anorganischen Verbindungen, wie Quarz, Kieselglas, Alkali- und Erdalkalialuminosilicatgläser, Alkali- und Erdalkalialuminoborsilicatgläser, Erdalkalialuminosilicatgläser und Erdalkalialuminoborsilicatgläser

Füllungsmaterial (2)

Sphärische Pulver von Siliciumdioxid oder Silicatgläsern, hergestellt durch das Sol-Gel-Verfahren oder die Selbstverbrennung von Metallen.

Füllungsmaterialien (3)

Kolloidale Kieselsäure mit einer Größe im Nanometerbereich, hergestellt durch Dampfphasenverfahren.

Füllungsmaterialien (4)

Gemahlene Produkte von anorganisch-organischen Verbundverbindungen, hergestellt durch Mischen und dann Polymerisieren der oben beschriebenen Füllungsmaterialien (1), (2) oder (3) mit polymerisierbaren Monomeren.

Füllungsmaterialien (5)

Anorganisch-organische eingekapselte Verbundpulver, enthaltend die oben beschriebenen Füllungsmaterialien (1), (2) und (3) als Kern und polymerisierbare Monomere als Beschichtungsmaterial.

Füllungsmaterialien (6)

Organische Füllungsmaterialien, wie PMMA, das keinen organischen Füller enthält.

Andere

Füllungsmaterialien, in welchen die Oberflächen der oben beschriebenen Füllungsmaterialien (1), (2) oder (3) mit einem Verarbeitungsmittel modifiziert sind, um die Benetzbarkeit mit polymerisierbaren Monomeren zu verbessern, die eingemischt werden sollen, oder einem Verarbeitungsmittel, das zur Umsetzung damit fähig ist.

Je nach dem Verwendungszweck der Zahnerhaltungsmaterialien, werden verschiedene Arten von Füllungsmaterialien, polymerisierbarer Monomeren und Polymerisationsinitiatoren geeignet ausgewählt, und die verschiedenen Funktionen, wie beschrieben, werden je nach den jeweiligen Zwecken erteilt. Geeignete Konsistenz und Handhabung

Mechanische Festigkeit

Geringes Polymerisationsschrumpfen

60 Abriebbeständigkeit

5

15

20

25

30

35

40

45

50

Koeffizient der thermischen Ausdehnung nahe dem der Zähne

Geeignete Transparenz

Oberflächenglätte

Obwohl die oben beschriebenen gemahlenen Produkte von anorganischen Verbindungen als Füllungsmaterialien (1) zur geeigneten Konsistenz und Handhabung, der mechanischen Festigkeit, dem geringen Polymerisationsschrumpfen, dem Koeffizienten der thermischen Ausdehnung nahe dem der Zähne und der geeigneten Transparenz beitragen, beeinträchtigen sie die Oberflächenglätte, was zur Verringerung der Abriebfestigkeit führt. Obwohl Füllungsmaterialien mit einer maximalen Teilchengröße von 2 um und einer mittleren Teilchen-

größe von etwa 0,1 bis 0,9 um (sogenannte "Submikron-Füller"), die in den letzten Jahren benutzt wurden, eine Oberflächenglätte wie der der natürlichen Zähne unmittelbar nach der Restaurierung verleihen, geht ihre Glätte in der Kavität mit der Zeit verloren. Auch neigen sie dazu, da die "Submikron-Füller" sehr klein sind, in den Funktionen bezüglich des geringen Polymerisationsschrumpfens und des Koeffizienten der thermischen Ausdehnung nahe dem der Zähne, niedriger zu werden.

Obwohl die sphärischen Pulver von Glas als Füllungsmaterialien (2) zur mechanischen Festigkeit, Abriebbeständigkeit, dem Koeffizienten der thermischen Ausdehnung nahe dem der Zähne und der Oberflächenglätte beitragen, sind sie nicht überlegen bezüglich des geringen Polymerisationsschrumpfens und der geeigneten Transparenz. Präparationen der Füllungsmaterialien (2) mit ausreichenden Brechungsindices sind schwierig. Wenn jedoch Unterschiede im Brechungsindex zwischen den Füllungsmaterialien und den Matrices bestehen, wird das erhaltene Zahnerhaltungsmaterial opak. Insbesondere in dem Fall, wo die Füllungsmaterialien noch feiner zubereitet werden als die Füllungsmaterialien (1), wird das erhaltene Zahnerhaltungsmaterial opak. Das Füllungsmaterial (2) streut Licht mit einer spezifischen Wellenlänge im sichtbaren Bereich innerhalb eines vorgeschriebenen Teilchengrößenbereiches und verleiht eine besondere Opakität (Opaleszenz). Aus diesem Grund ist die Menge an Füllungsmaterial (2) klein, um die Transparenz aufrechtzuerhalten, die für Zahnerhaltungsmaterialien notwendig ist, und das Füllungsmaterial (2) wird im allgemeinen in Kombination mit dem Füllungsmaterial (1) benutzt. Auch ist die Art der polymerisierbaren Monomeren, die benutzt werden können, beschränkt.

Obwohl kolloidale Kieselsäure als Füllungsmaterial (3) zur geeigneten Konsistenz und Handhabung und der Oberflächenglätte beiträgt, kann von ihm nicht erwartet werden, daß es die anderen Funktionen zeigt. Das 20 Füllungsmaterial (3) verleiht Opaleszenz, wie das Füllungsmaterial (2), innerhalb eines vorgeschriebenen Teilchengrößenbereiches. Das Füllungsmaterial (3) spielt eine Hilfsrolle für das Füllungsmaterial (1).

Obwohl die gemahlenen Produkte von anorganischen-organischen Verbundverbindungen als Füllungsmaterial (4) und die anorganischen-organischen eingekapselten Verbundpulver als Füllungsmaterial (5) zu der geeigneten Konsistenz und Handhabung und zum geringen Polymerisationsschrumpfen beitragen, bleiben, da sie die Nachteile der anorganischen Füllungsmaterialien, die darin enthalten sind, nicht überwinden können, nicht nur die Merkmale des Füllungsmaterials (1), wie oben beschrieben, sie sind auch nachteilig zur Erzielung eines Koeffizienten der thermischen Ausdehnung nahe dem der Zähne.

Obwohl die organischen Füller als Füllungsmaterial (6) zur geeigneten Konsistenz und Handhabung, dem geringen Polymerisationsschrumpfen, der geeigneten Transparenz und der Oberflächenglätte beitragen, tragen 30 sie überhaupt nicht dazu bei, mechanische Festigkeit und Abriebbeständigkeit zu zeigen.

Das heißt, daß organische Füller mit einer Größe, welche die Submikron-Größenordnung übersteigt, sehr verschieden sind in der Härte von dem Matrixharz, so daß ihre Abriebgeschwindigkeit in der Mundhöhlung verschieden ist von der der letzteren. Daher wird eine Unebenheit auf der Oberfläche erzeugt, und es erfolgt ein Aiisfallen des Füllers, wodurch die Oberflächenglätte verlorengeht. Da auch die Herstellung von sehr feinen sphärischen anorganischen Füllern mit annehmbaren Brechungsindices schwierig ist, verleihen sie Opaleszenz, wenn ein Unterschied im Brechungsindex zu dem des Matrixharzes besteht. So ist ihre Menge bei der Verwendung tatsächlich beschränkt. Außerdem ist die feine kolloidale Kieselsäure mit einer Größe im Nanometerbereich schlecht in der mechanischen Verstärkungswirkung und wird zusammen mit dem Matrixharz abgerieben.

Als andere Füllungsmaterialien gibt es einen Füller vom sogenannten [Alkoxid + Kupplungsmittel]-Typ als sphärische oder sphäroidale Teilchen, die in situ durch gemeinsame Hydrolyse von Metallalkoxiden und Metallalkoxiden, die organische funktionelle Gruppen enthalten, wie dies in der japanischen Offenlegungsschrift Nr. 2-248315, der japanischen Offenlegungsschrift Nr. 2-225302 und der japanischen Offenlegungsschrift Nr. 2-288816 beschrieben ist. Diese Teilchen haben organische funktionelle Gruppen im Inneren und auf den Oberflächen, und wenn sie als Füller für Zahnerhaltungsmaterialien benutzt werden, können nur die organischen funktionellen Gruppen, die auf den Oberflächen freiliegen, mit dem Matrixharz reagieren. Dieser Füller ist identisch zu einem, der erhalten wird, wenn man einen existierenden anorganischen Füller der Oberflächenbehandlung mit einem Alkoxysilan, das organische funktionelle Gruppen enthält und im allgemeinen als Silankupplungsmittel bezeichnet wird, unterzieht und entspricht dem oben beschriebenen Füllungsmaterial (2).

Außerdem gibt es einen Füller vom sogenannten [(Alkoxid + Kupplungsmittel) + organische Verbindung] -Typ als sphärische oder sphäroidale Teilchen von anorganisch-organischem Verbund, hergestellt durch gemeinsame Hydrolyse von Metallalkoxiden und Metallalkoxiden, die organische funktionelle Gruppen enthalten, um in situ sphärische oder sphäroidale Teilchen zu bilden, die dann mit Vinylmonomeren versetzt und gepfropft werden, während die Polymerisation in Gegenwart eines radikalischen Polymerisationskatalysators erfolgt, wie dies in der japanischen Offenlegungsschrift Nr. 4-15209 gezeigt ist. Während jedoch der Füller, wie er in diesem Patent gezeigt ist, neu ist bezüglich des Hersteilungsverfahrens, entspricht er doch dem oben beschriebenen Füllungsmaterial (5), und es besteht eine Korngrenze zwischen der anorganischen Verbindung und der organischen Verbindung.

Im Lichte des Öbigen wurden gemäß der herkömmlichen Technologie noch keine Füllungsmaterialien entwikkelt, die gänzlich mit den Funktionen versehen sind, so daß sie die Oberflächenglätte selbst nach Abrieb aufrechterhalten, das Matrixharz mechanisch verstärken und den Zahnerhaltungsmaterialien Transparenz verleihen.

ZUSAMMENFASSUNG DER ERFINDUNG

Die vorliegende Erfindung zielt daher auf die Bereitstellung von neuen anorganisch-organischen Verbundzahnfüllungsmaterialien, die nicht nur die oben beschriebenen Mängel der herkömmlichen Füller überwinden, falls sie als Dental-Restaurierungsmaterialien verwendet werden, um die Funktionen zu verbessern, d. h., die

Oberflächenglätte in der Mundhöhle beizubehalten, das Matrixharz mechanisch zu verstärken und Transparenz zu verleihen, sondern die auch alle oben beschriebenen Funktionen befriedigen können, die für Zahnerhaltungsmaterialien erforderlich sind.

Als Ergebnis haben die vorliegenden Erfinder anorganisch-organische Verbundfüllungsmaterialien erhalten, indem anorganische Komponenten mit organischen Komponenten während der Synthese aus einem Metallalkoxid umgesetzt werden, ohne irgendwelche existierenden anorganischen Füllungsmaterialien als anorganische Komponenten zu benutzen, um anorganisch-organische Verbundmaterialien zu erhalten, die dann vermahlen werden. Als Ergebnis der Verwendung des anorganisch-organischen Verbundfüllers als Zahnerhaltungsmaterialien können die oben beschriebenen verschiedenen Funktionen, die für Zahnerhaltungsmaterialien nötig sind, erfüllt werden.

Das heißt, die anorganisch-organischen Dental-Verbundfüllungsmaterialien gemäß der vorliegenden Erfindung sind anorganisch-organische Dental-Verbundfüllungsmaterialien, die sichtbares Licht von 360 bis 830 nm in ihren Teilchen nicht streuen, da keine Korngrenze vorhanden ist, einen Brechungsindex nD für die D-Linie von Natrium im Bereich von 1,460 \leq nD \leq 1,600 haben und die durch die folgende empirische Durchschnittsformel dargestellt sind:

 $aM^{1}O_{x/2} \cdot bSiO_{2} \cdot cM^{2}O_{(4-i-j)/2}R^{1}iR^{2}j$

worin bedeuten:

30

M¹ ist ein Mitglied oder mehrere Mitglieder, ausgewählt aus Ti, Zr, Y, La, Ta und Al, das an Si oder M² über den vernetzten Sauerstoff gebunden ist; und x ist die Wertigkeit von M¹; M² ist Si und/oder Ti:

R¹ ist eine nicht-funktionelle Gruppe; und R² ist eine organische Verbindung, die mit einer organischen funktionellen Gruppe umgesetzt ist;

i ist 0, 1 oder 2; und j ist 1, 2 oder 3, vorausgesetzt, daß i und j die Gleichung $1 \le (i + j) \le 3$ erfüllen; und a, b und c sind jeweils ein molares Verhältnis, vorausgesetzt, daß a, b und c die Gleichungen $0 \le a/(a + b) \le 0.65$ und $0.02 \le c/(a + b) \le 3.0$ erfüllen.

AUSFÜHRLICHE BESCHREIBUNG DER ERFINDUNG

Die Komponenten der oben beschriebenen empirischen Durchschnittsformel werden nun im einzelnen beschrieben.

 $M^1O_{x/2}$ stellt Derivate des Alkoxids, Acetylacetonats, Nitrats oder Acetats von Ti, Zr, Y, La, Ta oder Al dar, wobei x die Wertigkeit von M^1 ist. Als Alkoxide von verschiedenen Metallen können als Beispiel verschiedene Alkoxide, wie Methoxide, Ethoxide. n-Propoxide, Isopropoxide, n-Butoxide und tert-Butoxide genannt werden. Als diese Materialien können im Handel erhältliche Produkte oder alkoholische Lösungen von Alkoxiden, die durch Umsetzung der Metalle und Alkohole erhalten sind, verwendet werden. Zr, La und Al für das Acetylacetonat, Ti, Y, La und Al für das Nitrat und Y, La und Al für das Acetat sind als Handelsprodukte erhältlich. Da andere als diese Metalle im allgemeinen teuer sind oder solche Eigenschaften haben, daß sie dazu neigen, im Sol-Gel-Verfahren ausgefällt zu werden, leicht eine Korngrenze bilden oder leicht verfärbt werden, sind sie ungeeignet für die Einführung in die Zahnerhaltungsmaterialien. Aus den gleichen Gründen ist auch, selbst wenn M^1 Ti, Zr, Y, La, Ta oder Al ist, eine Begrenzung im Bereich von $0 \le a/(a + b) \le 0,65$. Falls die Zahnerhaltungsmaterialien unter Verwendung der anorganisch-organischen Zahnverbundfüllungsmaterialien gemäß der vorliegenden Erfindung hergestellt werden, ist es dann bevorzugt, wenn es erforderlich ist, den Zahnerhaltungsmaterialien Röntgenkontrasteigenschaften zu verleihen, daß M^1 eines oder mehrere Mitglieder, ausgewählt aus Zr, Y, La und Ta ist, und daß a und b die Gleichung $0,10 \le a/(a + b) \le 0,65$ erfüllen.

SiO₂ ist ein Derivat eines Alkoxids von Si, und Methoxide. Ethoxide, n-Propoxide, Isopropoxide, n-Butoxide, tert-Butoxide und der gleichen können als Beispiel genannt werden. Auch Dimere bis Hexamere von Alkoxiden davon können benutzt werden.

M2O(4-i-jy2R1iR2j stellt Derivate von reaktiven Alkoxysilanen dar, die im allgemeinen Silankupplungsmittel genannt werden, wenn M2 Si ist. Zu Beispielen von Alkoxysilanen, welche eine ungesättigte Doppelbindung haben, gehören: 3-Methacryloxypropyltrimethoxysilan, 3-Methacryloxypropyltriethoxysilan, 3-Acryloxypropyl-3-Methacryloxypropylmethyldimethoxysilan, trimethoxysilan. 3-Methacryloxypropylmethyldiethoxysilan, 3-Acryloxypropylmethyldimethoxysilan, 2-Methacryloxyethoxypropyltrimethoxysilan, Vinyltrimethoxysilan, Vinyltriethoxysilan und Vinyl-tris-(2-methoxyethoxy) silan. Zu Beispielen von Alkoxysilanen mit einer Glycidoxylgruppe gehören: 2-(3,4-Epoxycyclohexyl)ethyltrimethoxysilan, 3-Glycidoxypropyltrimethoxysilan, 3-Glycidoxypropylmethyldimethoxysilan, 3-Glycidoxypropylmethyldiethoxysilan und 3-Glycidoxypropyltriethoxysilan. Zu Beispielen von Alkoxysilanen mit einer Aminogruppe gehören: N-2-(Aminoethyl)-3-aminopropyltrimethoxysilan, N-2-(Aminoethyl)-3-arninopropyltriethoxysilan, 3-Aminopropyltrimethoxysilan, 3-Aminopropyltriethoxysilan und N-Phenyl-3-aminopropyltrimethoxysilan. Zu Beispielen von Alkoxysilanen mit einer Mercaptogruppe gehören: 3-Mercaptopropyltrimethoxysilan und 3-Mercaptopropyltriethoxysilan. Zu Beispielen von Alkoxysilanen mit einer Alkoxylgruppe gehören: Methyltrimethoxysilan, Dimethyldimethoxysilan, Phenyltrimethoxysilan, Diphenyldimethoxysilan, Methyltriethoxysilan, Dimethyldiethoxysilan, Phenyldimethoxysilan, Diphenyldimethoxysilan, Isobutyltrimethoxysilan und Decyltrimethoxysilan, zusätzlich zu den oben als Beispiel genannten Verbindungen. Die Alkoxylgruppe und/oder Silanolgruppe des oben beschriebenen Kupplungsmittels sind/ist mit Derivaten von verschiedenen Alkoxiden, Acetylacetonaten. Nitraten oder Acetaten von Ti, Zr, Y, La, Ta oder Al, die durch M¹Ox/2 dargesteilt sind, wobei x die Wertigkeit von M¹ ist, und/oder verschiedenen Alkoxidderivaten von Si umgesetzt.

196 34 189

 $M^2O_{(4-i-j)/2}R^{i}R^{2}_{j}$ stellt Derivate eines reaktiven Alkoxytitans dar, die im allgemeinen Titanatkupplungsmittel genannt werden, wenn M2 Ti ist. Zu Beispielen von Titanatkupplungsmitteln mit einer ungesättigten Doppelbindung gehören: Isopropyldimethacrylisostearoyltitanat, Isopropyldiacrylisostearoyltitanat, Isopropyltrimethacryltitanat, Isopropyltriacryltitanat, Oxyacetyldimethacryltitanat und Oxyacetyldiacryltitanat. Zu Beispielen von

Titanatkupplungsmitteln mit einer Aminogruppe gehören:

Isopropyltri(N-diethylamino)titanat, Isopropyltri(2-aminobenzoyl)titanat, Isopropyltri(tetraetnylentriamin)titanat. Isopropyl-4-aminobenzolsulfonyldi(dodecylbenzolsulfonyl)titanat und Isopropyldi(4-aminobenzoyl)isostearoyltitanat. Die Alkoxylgruppe und/oder Titanolgruppe der oben beschriebenen Kupplungsmittel sind/ist mit Derivaten von verschiedenen Alkoxiden, Acerylacetonaten, Nitraten oder Acetaten von Ti, Zr, Y, La, Ta oder Ai, die durch M¹O_{x/2} dargestellt sind, wobei x die Wertigkeit von M¹ ist, und/oder verschiedenen Alkoxidderivaten 10 von Si umgesetzt.

R1 ist eine Phenylgruppe und/oder eine nicht funktionelle Gruppe, welche durch CnH2n+1 dargestellt wird,

wobei n 1 bis 10 ist.

R2 ist eine organische Verbindung, die mit einer funktionellen Gruppe umgesetzt ist, ausgewählt aus der ungesättigten Doppelbindung, der Glycidoxylgruppe, der Aminogruppe, der Mercaptogruppe oder der Alkoxylgruppe des Silankupplungsmittels und/oder des Titanatkupplungsmittels. Aus diesem Grund neigt dann, wenn die Menge an Kupplungsmitteln zu klein ist, die eingeführte organische Verbindung dazu, eine Korngrenze allein ohne Umsetzung mit der funktionellen Gruppe der Kupplungsmittel zu bilden. Wenn andererseits die Menge an Kupplungsmitteln zu groß ist, neigt die funktionelle Gruppe der Kupplungsmittel dazu, in den Teilchen zu bleiben, wodurch die Festigkeit als Füller herabgesetzt wird. Daher ist das Verhältnis der Kupp- 20 lungsmittel auf den Bereich von $0.02 \le c/(a + b) \le 3.0$ beschränkt.

Auch wenn M2 Si ist, ist R2 eine organische Verbindung, die mit einer funktionellen Gruppe umgesetzt ist, ausgewählt aus der ungesättigten Doppelbindung, der Glycidoxylgruppe, der Aminogruppe. der Mercaptogruppe oder der Alkoxylgruppe, oder wenn M2 Ti ist, dann ist R2 eine organische Verbindung, umgesetzt mit einer funktionellen Gruppe, ausgewählt aus der ungesättigten Doppelbindung oder der Aminogruppe, und R1 ist eine 25 Phenylgruppe und/oder eine nichtfunktionelle Gruppe, dargestellt durch C_nH_{2n+1}, worin n gleich 1 bis 10 ist.

Zu Beispielen von organischen Verbindungen, die mit der ungesättigten Doppelbindung des Kupplungsmittels reagieren, gehören ungesättigte Polyester und Harze von Monomeren mit einer ungesättigten Doppelbindung, wie Methylmethacrylat, Ethylmethacrylat, Isopropylmethacrylat, 2-Hydroxyethylmethacrylat, 3-Hydroxypropylmethacrylat, 2-Hydroxy-1,3-dimethacryloxypropan, n-Butylmethacrylat, Isobutylmethacrylat, Hydroxypropylmethacrylat, Tetrahydrofurfuryimethacrylat, Glycidylmethacrylat, 2-Methoxyethylmethacrylat, 2-Ethylhexylmethacrylat, Benzylmethacrylat, Phenylmethacrylat, Phenoxyethylmethacrylat, 2,2-Bis(methacryloxyphenyl)propan, 2,2-Bis [4-(2-hydroxy-3-methacryloxypropoxy)phenyl)propan, 2,2-Bis(4-methacryloxydiethoxyphenyl)propan, 2.2-Bis(4-methacryloxypolyethoxyphenyl)propan, Ethylenglykoldimethacrylat. Diethylenglykoldimethacrylat, Triethylenglykoldimethacrylat, Butylenglykoldimethacrylat, Neopentylglykoldimethacrylat, 1,3-Butandioldimethacrylat, 1,4-Butandioldimethacrylat, 1,6-Hexandioldimethacrylat, Trimethylolpropantrimethacrylat, Trimethyloiethantrimethacrylat, Pentaerythrittrimethacrylat, Trimethyloimethantrimethacrylat, Pentaerythrittetramethacrylat und entsprechende Acrylate und Methacrylate oder Acrylate mit einer Urethanbindung in ihrem Molekül, z. B. Di-2-methacryloxyethyl-2,2,4-trimethylhexamethylendicarbamat und das entsprechende Acryla: Da diese Methacrylate und Acrylate als Dentalmaterialien bekannt sind, werden sie ge- 40 wünschtenfalls rein oder in Mischung verwendet.

Zu Beispielen von organischen Verbindungen, die mit der Glycidoxylgruppe des Kupplungsmittels reagieren, gehören Epoxyharze, alkoholische Hydroxylgruppen-enthaltende Harze, wie Phenolharze. Verbindungen auf Aminbasis, wie aliphatische Polyamine, Polyamidharze und aromatische Diamine, Gemische von Verbindungen auf Aminbasis mit Epoxyharzen, Verbindungen mit einer ungesättigten Doppelbindung und einer Glycidylgrup- 45 pe, wie Glycidylmethacrylat und Allyiglycidylether und Gemische davon mit Epoxyharzen. Sie werden ge-

wünschtenfalls allein oder in Mischung verwendet.

Zu Beispielen von organischen Verbindungen, die mit der Aminogruppe des Kupplungsmittels reagieren, gehören Epoxyharze, Phenolharze, Verbindungen mit einer ungesättigten Doppelbindung und einer Glycidylgruppe, wie Glycidylmethacrylat und Allylglycidylether, Verbindungen mit einer Isocyanatgruppe und/oder 50 Gemische davon mit Polyolen. Sie werden gewünschtenfalls allein oder in Mischung verwendet.

Zu Beispielen von organischen Verbindungen, die mit der Mercaptogruppe reagieren, gehören die oben erwähnten Verbindungen mit einer ungesättigten Doppelbindung allein und/oder Gemische davon, Verbindun-

gen mit einer Isocyanatgruppe und/oder Gemische davon mit Polyolen.

Zu Beispielen von organischen Verbindungen, die mit der Alkoxylgruppe des Kupplungsmittels reagieren, 55 gehören Epoxyharze mit einer Hydroxylgruppe, Polymere und/oder Copolymere mit einer Carboxylgruppe, wie Polyacrylsäure, Polymaleinsäure und Polyitaconsäure, Polyolmethacrylate und/oder -acrylate mit einer Hydroxylgruppe und einer ungesättigten Doppelbindung allein, wie 2-Hydroxyethylmethacrylat, 3-Hydroxypropylmethacrylat, 2-Hydroxy-1,3-dimethacryloxypropan, Hydroxypropylmethacrylat und 2.2-Bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]-propan, und/oder Gemische davon. In dem Fall, wo die organische funktionelle Gruppe eine Alkoxylgruppe ist, können Tetraethoxysilan, Tetramethoxysilan und dergleichen ohne Verwendung des Kupplungsmittels benutzt werden. In diesem Fall entspricht die empirische Durchschnittsformel gemäß der vorliegenden Erfindung der folgenden Formel:

 $M^2O_{(4+i+j)/2}R^1iR^2j$

65

· Ewill,

1

worin M2 gleich Si, i gleich 0 und j gleich 1,2 oder 3 sind.

Die organischen Verbindungen, die oben als Beispiel genannt wurden, sind bekannt als Harze für allgemeine

Zwecke und sind von verschiedenen Firmen erhältlich, wie Yuka Shell Epoxy Co., Ltd., Mitsui Petrochemical Industries, Ltd., Dainippon Ink and Chemicals Inc., Sumitomo Chemical Co., Ltd., Sumitomo Bayer Urethane Co., Ltd., NOF Corporation, Nippon Kayaku Co., Ltd., Mitsubishi Gas Chemical Company, Inc. und Mitsubishi Rayon Co., Ltd. und man kann auf Kataloge "Plastics Material Lectures", publiziert von Nikkan Kogyo Shinbunsha, "Chemical Products Inquiries", publiziert von Kagaku Kogyo Nipposha, und dergleichen bezug nehmen.

Falls die anorganisch-organischen Verbundzahnfüllungsmittel gemäß der vorliegenden Erfindung mit polymerisierbaren Monomeren Polymerisationskatalysatoren und dergleichen gemischt und dann als Zahnerhaltungsmaterialien benutzt werden, ist es, wenn die einzumischenden polymerisierbaren Monomeren eine Verbindung mit einer ungesättigten Doppelbindung sind, geeignet, daß die Teilchenoberflächen durch ein Silankupplungsmittel als Verarbeitungsmittel modifiziert werden, was die Benetzbarkeit verbessert, oder das umgesetzt werden kann. Zu Beispielen von Verarbeitungshilfen, die die Benetzbarkeit verbessern oder umgesetzt werden können, gehören Silankupplungsmittel. Insbesondere 3-Methacryloxypropyltrimethoxysilan, 3-Methacryloxypropylmethyldimethoxysilan, 3-Methacryloxypropylmethyldiethoxysilan, 3-Acryloxypropylmethyldimethoxysilan, 2-Methacryloxyethoxypropyltrimethoxysilan, Vinyltrimethoxysilan, Vinyltris(2-methoxyethoxy)silan, 2-(3,4-Epoxycyclohexyl)ethyltrimethoxysilan, 3-Glycidoxypropyltrimethoxysilan, 3-Glycidoxypropyltrimethoxysilan, 3-Glycidoxypropyltriethoxysilan, N-2-(Aminomethyl)-3-aminopropyltriethoxysilan, N-2-(Aminomethyl)-3-aminopropyltriethoxysilan, 3-Aminopropyltrimethoxysilan, N-Phenyl-3-aminopropyltrimethoxysilan, 3-Mercaptopropyl-triethoxysilan sind brauchbar.

Falls die anorganisch-organischen Dental-Verbundsfüllungsmaterialien gemäß der vorliegenden Erfindung als Dentalerhaltungsmaterialien vorgesehen sind, ist eine der wichtigen Funktionen die geeignete Transparenz. Wenn die anorganisch-organischen Dental-Verbundfüllungsmaterialien gemäß der vorliegenden Erfindung einen Brechungsindex nD bei der D-Linie von Natrium im Bereich von 1,460 ≤ nD ≤ 1,600 haben, können sie eine geeignete Transparenz verleihen, so daß sie die praktische Verwendung als Zahnerhaltungsmaterialien aushalten. Damit die Zahnerhaltungsmaterialien die Oberflächenglätte selbst nach Abrieb beibehalten und damit die Verstärkungswirkung als Füller bemerkenswert gezeigt werden kann, ist es bevorzugt, daß die Menge der anorganischen Komponente im Füllungsmaterial von 10 bis 80 Gew.-% ist. Außerdem werden in dem Fall, wo das Füllungsmaterial eine mittlere Teilchengröße von 0,1 bis 50 um hat, die Merkmale des Füllungsmaterials bei der Dentalrestaurierung und die fertige polierte Oberfläche gut, und daher ist dies bevorzugt.

Die vorliegende Erfindung wird unten weiter unter Bezugnahme auf die folgenden Beispiele beschrieben.

30

45

[Gemeinsame Bedingungen]

Ethoxide (abgekürzt OEt) von Si und Ta, Isopropoxide (abgekürzt OiPr) von Ti, Y. La und Al und ein n-Butoxid (abgekürzt OnBu) von Zr wurden jeweils verwendet. Die Zusammensetzungen sind in Tabelle 1 zusainmengefaßt und beschrieben. Die Hydrolyse der verschiedenen Alkoxide wurde bei Zimmertemperatur durchgeführt und die Alterung wurde bei 90°C durchgeführt.

Lösung (1)

In einer getrockneten Stickstoffatmosphäre wurden destillierter und entwässerter t-Butylalkohol (abgekürzt t-BuOH) und Siliciumtetraethoxid (abgekürzt TEOS) gewogen und tropfenweise mit einer sauren wäßrigen Lösung von t-Butylalkohol in einen Kolben gegeben, der mit einem Rückflußkühler ausgestattet war, um die Lösung (1) herzustellen.

Lösung (2)

In einer getrockneten Stickstoffatmosphäre wurden destillierter und entwässerter t-Butylalkohol und jedes der Metallalkoxide gewogen und tropfenweise unter Rühren zur Lösung (1) gegeben, und dann wurde tropfenweise destilliertes Wasser unter Rückflußbedingungen unter Erhitzen zugefügt, um Lösung (2) herzustellen.

BEISPIEL 1

In einer getrockneten Stickstoffatmosphäre wurden destillierter und entwässerter t-Butylalkohol und 3-Methacryloxypropyltrimethoxysilan (abgekürzt 3MtPTMeS) gewogen und tropfenweise mit einer sauren wäßrigen Lösung von t-Butylalkohol in einen Kolben gegeben, der mit einem Rückflußkühler und einem Rührer ausgestattet war. Das Gemisch wurde tropfenweise mit der Lösung (1) und dann mit destilliertem Wasser versetzt. Das Gemisch wurde weiter mit 2,2-Bis(4-methyacryloxypolyethoxyphenyl)propan (abgekürzt Bis-MEPP) und Triethylenglykoldimethacrylat (abgekürzt TEGDMA) unter Rückflußbedingungen unter Erhitzen versetzt. Außerdem wurde das Gemisch mit einer Lösung von Azobisisobutyronitril in t-Butylalkohol versetzt, gefolgt von tropfenweiser Zugabe einer basischen wäßrigen Lösung von t-Butylalkohol, um die ganze Lösung zu gelieren. Das Gel wurde unter Rückflußbedingungen gealtert, während es erhitzt wurde, dann gemahien und dann mit Methanol gewaschen. Das Produkt wurde unter Erhitzen unter vermindertem Druck unter Durchfluß von getrocknetem Stickstoffgas getrocknet, um anorganisch-organisches Verbundfüllungsmaterial zu erhalten.

70 Gew.-Teile des Pulvers, dem 1 Gew.-Teil 2-Methacryloxypropyltrimethoxysilan zugesetzt war, wurden unter Vakuum mit 30 Gew.-Teilen eines Monomergemisches von Di-2-methacryloxyethyl-2,2,4-trimethylhexamethylendicarbamat (abgekürzt UDMA), TEGDMA und Bis-MEPP versetzt, das 0,1 Gew.-Teile Kampferchinon und 0,5 Gew.-Teile Dimethylaminomethacrylat enthielt, und das so eingestellt war, daß sich nach der

196 '34 189 DE.

Härtung ein Brechungsindex nahe dem des anorganisch-organischen Verbundfüllungsmaterials ergab, um ein Zahnerhaltungsmaterial herzustellen, das dann für die Prüfungen benutzt wurde. Die Ergebnisse sind in Tabelle 1 zusammengefaßt

BEISPIELE 2 BIS 8

5

20

In einer getrockneten Stickstoffatmosphäre wurden destillierter und entwässerter t-Butylalkohol und 3-Methacryloxypropyltrimethoxysilan gewogen und tropfenweise mit einer sauren wäßrigen Lösung von t-Butylalkohol in einen Kolben gegeben, der mit einem Rückflußkühler und einem Rührer ausgestattet war. Das Gemisch wurde tropfenweise mit der Lösung (2) versetzt, die durch Verwendung jedes der Metalloxide hergestellt war, wie in Tabelle 1 gezeigt, und dann mit destilliertem Wasser. Nach dem Altern wurde das Gemisch mit Bis-MEPP und TEGDMA versetzt. Außerdem wurde das Gemisch tropfenweise mit einer Lösung von Azobisisobutyronitril (0,5 Gew. Teile, bezogen auf die Summe der Monomeren, im folgenden das gleiche) in t-Butylalkohol versetzt, gefolgt von tropfenweiser Zugabe einer basischen wäßrigen Lösung von t-Butylalkohol, um die ganze Lösung zu gelieren. Das Gel wurde unter Rückfiußbedingungen und Erhitzen gealtert, gemahlen und cann mit 15 Methanol gewaschen. Das Produkt wurde unter Erhitzen unter vermindertem Druck und unter Durchströmung von getrocknetem Stickstoffgas getrocknet, um anorganisch-organische Verbundfüllungsmaterialien zu erhalten. Zahnerhaltungsmaterialien wurden hergestellt durch Verwendung jedes dieser Füllungsmaterialien in der gleichen Weise wie in Beispiel 1, die dann für die Prüfungen verwendet wurden. Die Ergebnisse sind in Tabelle 1 und 2 zusammengefaßt-

BEISPIELE 9 UND 10

Bei der Herstellung der anorganisch-organischen Verbundfüllungsmaterialien wurde Methylmethacrylat (abgekürzt MMA) als organische Verbindung gemäß der Methode von Beispiel 2 eingebracht, um anorganisch-organische Verbundfüllungsmaterialien zu erhalten. Zahnerhaltungsmaterialien wurden in der gleichen Weise wie in Beispiel 1 hergestellt und dann für die Prüfungen verwendet. Die Ergebnisse sind in Tabelle 2 zusammengefaßt.

BEISPIELE 11 UND 12

Bei der Herstellung der anorganisch-organischen Verbundfüllungsmaterialien wurde ein Gemisch von MMA und Benzylme!hacrylat (abgekürzt BZMA) als organische Verbindung gemäß der Methode von Beispiel 3 eingeführt, um anorganisch-organische Verbundfüllungsmaterialien zu erhalten. Zahnerhaltungsmaterialien wurden in der gleichen Weise wie in Beispiel 1 hergestellt und dann für die Prüfungen verwendet. Die Prüfergeb- 35 nisse sind in Tabelle 3 zusammengefaßt.

BEISPIELE 13 BIS 15

Bei der Herstellung des anorganisch-organischen Verbundfüllungsmaterials wurde wie in Beispiel 2 verfahren, 40 mit der Ausnahme, daß das Mischungsverhältnis geändert wurde, um anorganisch-organische Verbundfüllungsmaterialien zu erhalten. Zahnerhaltungsmaterialien wurden in der gleichen Weise wie in Beispiel 1 hergestellt und dann für die Prüfungen verwendet. Die Ergebnisse sind in Tabelle 3 zusammengefaßt.

BEISPIELE 16 UND 17

Bei der Herstellung der anorganisch-organischen Verbundfüllungsmaterialien wurden die gleichen Substanzen verwendet wie sie in Beispiel 1 enthalten waren, mit der Ausnahme, daß nur die Mahlbedingungen geändert wurden, um anorganisch-organische Verbundfüllungsmaterialien zu erhalten. Zahnerhaltungsmaterialien wurden in der gleichen Weise wie in Beispiel 1 hergestellt und dann für die Prüfungen verwendet. Die Ergebnisse 50 sind in Tabelle 4 zusammengefaßt.

BEISPIEL 18

In einer getrockneten Stickstoffatmosphäre wurde destillierter und entwässerter t-Butylalkohol und 3-Metha- 55 cryloxypropylmethyldimethoxysilan (abgekürzt 3MtPMDMeS) gewogen und tropfenweise mit einer sauren wäßrigen Lösung von t-Butylalkohol in einem Kolben versetzt, der mit einem Rückflußkühler und einem Rührer ausgestattet war. Das Gemisch wurde tropfenweise mit Lösung (1) und dann mit destilliertem Wasser versetzt. Das Gemisch wurde weiter mit Bis-MEPP und TEGDMA unter Rückflußbedingungen und Erhitzen versetzt. Zusätzlich wurde das Gemisch mit einer Lösung von Azobisisobutyronitril in t-Butylalkohol versetzt, gefolgt von tropfenweiser Zugabe einer basischen wäßrigen Lösung von t-Butylalkohol, um die ganze Lösung zu gelieren. Das Gei wurde unter Rückflußbedingungen und Erhitzen gealtert, gemahlen und dann mit Methanol gewaschen. Das Produkt wurde unter Erhitzen bei vermindertem Druck und unter Durchfluß von getrocknetem Stickstoffgas getrocknet, um anorganisch-organische Verbundfüllungsmaterialien zu erhalten. Ein Zahnerhaltungsmaterial wurde unter Verwendung dieses Füllungsmaterials in der gleichen Weise wie in Beispiel 1 65 hergestellt, das dann für die Prüfungen verwendet wurde. Die Ergebnisse sind in Tabelle 4 angegeben.

BEISPIEL 19

In einer getrockneten Stickstoffatmosphäre wurden destillierter und entwässerter Dimethylketon. 2,2-Bis(4-glycidyloxyphenyl)propan (abgekürzt BisGPhP) und 3-Glycidyloxypropyltrimethoxysilan (abgekürzt 3GPTMeS) gewogen und tropfenweise mit einer Lösung eines Polyamidharzes mit einer Aminzahl von 210 (abgekürzt Polyamid) in Dimethylketon in einem Kolben versetzt, der mit einem Rückflußkühler und einem Rührer ausgestattet war. Das Gemisch wurde tropfenweise mit Lösung (2) unter Rückflußbedingungen und Erhitzen und dann mit einer basischen wäßrigen Lösung von Dimethylketon versetzt, um die ganze Lösung zu gelieren. Das Gel wurde unter Rückflußbedingungen und Erhitzen gealtert, gemahlen und dann mit Methanol gewaschen. Das Produkt wurde unter Erhitzen unter vermindertem Druck bei Durchfluß von getrocknetem Stickstoffgas getrocknet, um anorganisch-organische Verbundfüllungsmaterialien zu erhalten.

70 Gew.-Teile des Pulvers, das mit 1 Gew.-Teil 3-Methacryloxypropyltrimethoxysilan versetzt war, wurden unter Vakuum mit 30 Gew.-Teilen eines Monomergemisches von UDMA und Neopentylglykoldimethacrylat (abgekürzt NPGDMA), das 0,1 Gew.-Teile Kampferchinon und 0,5 Gew.-Teile Dimethylaminomethacrylat enthielt, verknetet, was so eingestellt war, daß es nach der Härtung einen Brechungsindex nahe dem des anorganisch-organischen Verbundfüllungsmaterials hatte, um ein Zahnerhaltungsmaterial herzustellen, das dann für die Prüfungen benutzt wurde. Die Ergebnisse sind in Tabelle 4 zusammengefaßt.

BEISPIEL 20

In einer getrockneten Stickstoffatmosphäre wurden destillierter und entwässerter Dimethylketon und 3-Aminopropyltrimethoxysilan (abgekürzt 3APTMeS) gewogen und tropfenweise mit Glycidylmethacrylat (abgekürzt GMA) in einem Kolben versetzt, der mit einem Rückflußkühler und einem Rührer ausgestattet war. Das Gemisch wurde tropfenweise mit Lösung (2) unter Rückflußbedingungen und Erhitzen versetzt, gefolgt von Zugabe von Bis-MEPP und TEGDMA dazu. Das Gemisch wurde tropfenweise mit der Lösung von Azobisisobutyronitril in Dimethylketon und dann mit einer basischen wäßrigen Lösung von Dimethylketon versetzt, um die ganze Lösung zu gelieren. Das Gel wurde unter Rückflußbedingungen und Erhitzen gealtert, gemahlen und dann mit Methanol gewaschen. Das Produkt wurde unter Erhitzen unter vermindertem Druck bei Durchfluß von getrocknetem Stickstoffgas getrocknet, um anorganisch-organische Verbundfüllungsmaterialien zu erhalten.

Auch ein Zahnerhaltungsmaterial wurde in der gleichen Weise wie in Beispiel 19 hergestellt, während ein Monomergemisch von Bis-MEPP und TEGDMA verwendet wurde, das dann für die Prüfungen verwendet wurde. Die Ergebnisse sind in Tabelle 4 zusammengefaßt.

BEISPIEL 21

In einer getrockneten Stickstoffatmosphäre wurden destillierter und entwässerter t-Butylalkohol und 3-Mercaptopropyltrimethoxysilan (abgekürzt 3McPTMeS) gewogen und tropfenweise mit einer sauren wäßrigen Lösung von t-Butylalkohol zur Hydrolyse in einem Kolben versetzt, der mit einem Rückflußkühler und einem Rührer ausgestattet war. Das Gemisch wurde tropfenweise mit Lösung (2) versetzt, gefolgt von Zugabe von Bis-MEPP und TEGDMA unter Rückflußbedingungen und Erhitzen. Das Gemisch wurde tropfenweise mit einer Lösung von Azobisisobutyronitril in t-Butylalkohol versetzt und dann mit einer basischen wäßrigen Lösung von t-Butylalkohol, um die ganze Lösung zu gelieren. Das Gel wurde unter Rückflußbedingungen und Erhitzen gealtert, gemahlen und dann mit Methanol gewaschen. Das Produkt wurde durch Erhitzen unter vermindertem Druck bei Durchfluß von getrocknetem Stickstoffgas getrocknet, um anorganisch-organische Verbundfüllungsmaterialien zu erhalten. Auch ein Zahnerhaltungsmaterial wurde in der gleichen Weise wie in Beispiel 20 hergestellt, das dann für die Prüfungen verwendet wurde. Die Ergebnisse sind in Tabelle 5 zusammengefaßt.

BEISPIEL 22

50

In einer getrockneten Stickstoffatmosphäre wurden destillierter und entwässerter Dimethylketon, Phenyltrimethoxysilan (abgekürzt PhTMeS). 1,3-Butandiol (abgekürzt 1,3BG) und p-Toluolsulfonsäure gewogen, und das Gemisch wurde unter Erhitzen auf 110°C zum Rückfluß in einem Kolben erhitzt, der mit einem Rückflußkühler und einem Rührer ausgestattet war. Nach Abkühlen auf 60°C wurde das Gemisch tropfenweise mit Lösung (2) versetzt und dann zum Rückfluß erhitzt. Das erhaltene Gemisch wurde tropfenweise mit einer basischen wäßrigen Lösung von t-Butylalkohol versetzt, um die ganze Lösung zu gelieren. Das Gel wurde unter Rückflußbedingungen und Erhitzen gealtert, gemahlen und dann mit Methanol gewaschen. Das Produkt wurde durch Erhitzen unter vermindertem Druck bei Durchfluß von getrocknetem Stickstoffgas getrocknet, um anorganischorganische Verbundfüllungsmaterialien zu erhalten. Auch ein Zahnerhaltungsmaterial wurde in der gleichen Weise wie in Beispiel 19 hergestellt, das dann für die Prüfungen verwendet wurde. Die Ergebnisse sind in Tabelle 5 zusammengefaßt.

BEISPIEL 23

In einer getrockneten Stickstoffatmosphäre wurden destillierter und entwässerter Dimethylketon, Diphenyldimethoxysilan (abgekürzt DPhDMeS), 1.3BG und p-Toluolsulfonsäure gewogen und das Gemisch wurde unter Erhitzen bei 110°C in einem Kolben, der mit einem Rückflußkühler und einem Rührer versehen war, zum Rückfluß erhitzt. Nach Abkühlen auf 60°C wurde das Gemisch tropfenweise mit Lösung (2) versetzt und dann

zum Rücksluß erhitzt. Das erhaltene Gemisch wurde tropfenweise mit einer basischen wäßrigen Lösung von t-Butylalkohol versetzt, um die ganze Lösung zu gelieren. Das Gel wurde unter Rückslußbedingungen und Erhitzen gealtert, gemahlen und dann mit Methanol gewaschen. Das Produkt wurde unter Erhitzen unter vermindertem Druck bei Durchfluß von getrocknetem Stickstoffgas getrocknet, um anorganisch-organische Verbundfüllungsmaterialien zu erhalten. Auch ein Zahnerhaltungsmaterial wurde in der gleichen Weise wie in Beispiel 19 hergestellt, das dann für die Prüfungen verwendet wurde. Die Ergebnisse sind in Tabelle 5 zusammengefaßt.

BEISPIEL 24

10

In einer getrockneten Stickstoffatmosphäre wurden destillierter und entwässerter t-Butylalkohol und Isopropyltrimethacryloyl titanat (abgekürzt IPTMtT) gewogen und tropfenweise mit einer sauren wäßrigen Lösung von t-Butylalkohol zur Hydrolyse in einem Kolben versetzt, der mit einem Rückflußkühler und einem Rührer ausgestattet war. Die Mischung wurde tropfenweise mit Lösung (2) versetzt, gefolgt von Zugabe von Bis-MEPP und TEGDMA unter Rückflußbedingungen und Erhitzen. Das Gemisch wurde tropfenweise mit einer Lösung von Azobisisobutyronitril in t-Butylalkohol versetzt und dann mit einer basischen wäßrigen Lösung von t-Butylalkohol, um die ganze Lösung zu gelieren. Das Gel wurde unter Rückflußbedingungen und Erhitzen gealtert, gemahlen und dann mit Methanol gewaschen. Das Produkt wurde unter Erhitzen unter vermindertem Druck bei Durchfluß von getrocknetem Stickstoffgas getrocknet, um anorganisch-organische Verbundfüllungsmaterialien zu erhalten. Auch ein Zahnerhaltungsmaterial wurde in der gleichen Weise wie in Beispiel 20 hergestellt, das dann für die Prüfungen verwendet wurde. Die Ergebnisse sind in Tabelle 5 zusammengefaßt.

BEISPIEL 25

In einer getrockneten Stickstoffatmosphäre wurden destillierter und entwässerter Dimethylketon und Isopropyltri(N-diethylamino)titanat (abgekürzt IPTAT) gewogen und tropfenweise mit Glycidylmethacrylat unter Rückflußbedingungen und Erhitzen in einem Kolben versetzt, der mit einem Rückflußkühler und einem Rührer ausgestattet. Das Gemisch wurde tropfenweise mit Lösung (2) unter Rückflußbedingungen und Erhitzen versetzt, gefolgt von Zugabe von Bis-MEPP und TEGDMA. Das Gemisch wurde tropfenweise mit einer Lösung von Azobisisobutyronitril in Dimethylketon versetzt und dann mit einer basischen wäßrigen Lösung von Dimethylketon, um die ganze Lösung zu gelieren. Das Gel wurde unter Rückflußbedingungen und Erhitzen gealtert, gemahlen und dann mit Methanol gewaschen. Das Produkt wurde unter Erhitzen unter vermindertem Druck bei Durchfluß von getrocknetem Stickstoffgas getrocknet, um anorganisch-organische Verbundfüllungsmaterialien zu erhalten. Auch ein Zahnerhaltungsmaterial wurde in der gleichen Weise wie in Beispiel 19 hergestellt, das dann für die Prüfungen verwendet wurde. Die Ergebnisse sind in Tabelle 5 zusammengefaßt.

VERGLEICHSBEISPIEL 1

2 Gew.-Teile 3-Methacryioxypropyltrimethoxysilan wurden zu den gemahlenen Produkten eines Erdalkalialuminoborsilicatgases mit einer mittleren Teilchengröße von 1 µm gegeben, um ein Füllungsmaterial zu bilden. 40 Gew.-Teile dieses Pulvers wurden unter Vakuum mit 30 Gew.-Teilen eines Monomergemisches von Bis-MEPP und TEGDMA verknetet, das 0,1 Gew.-Teile Kampferchinon und 0,5 Gew.-Teile Dimethylaminomethacrylat enthielt, um ein Zahnerhaltungsmaterial zu bilden, das dann für die Prüfung verwendet wurde. Die Ergebnisse sind in Tabelle 5 zusammengefaßt.

VERGLEICHSBEISPIEL 2

In einer getrockneten Stickstoffatmosphäre wurde Ethanol gewogen und tropfenweise mit Siliciumtetraethoxid und einer basischen wäßrigen Lösung von Ethanol, getrennt, jedoch gleichzeitig, unter Rühren in einem Kolben versetzt, der mit einem Rückflußkühler und einem Rührer ausgestattet war. Die so erhaltenen sphärischen Teilchen wurden mit destilliertem Wasser gewaschen und dann bei 400°C getrocknet um ein Füllungsmaterial zu bilden. 62 Gew.-Teile des Pulvers mit 4 Gew.-Teilen zugesetztem 3-Methacryloxypropyltrimethoxysilan wurden unter Vakuum mit 38 Gew.-Teilen eines Monomergemisches von UDMA und TMPTMA verknetet, das 0.1 Gew.-Teile Kampferchinon und 0.5 Gew.-Teile Dimethylaminomethacrylat enthielt, um ein Zahnerhaltungsmaterial zu bilden, das dann für die Prüfungen verwendet wurde. Die Ergebnisse sind in Tabelle 5 zusammengefaßt.

VERGLEICHSBEISPIEL 3

Kolloidale Kieselsäure mit einer Größe im Nanometerbereich, die nach dem Dampfphasenverfahren hergestellt war, R972 von Nippon Aerosil Co., Ltd. wurde benutzt und als Füllungsmaterial vorgesehen. 48 Gew.-Teile dieses Pulvers wurden unter Vakuum mit 52 Gew.-Teilen eines Monomergemisches von UDMA und TMPTMA verknetet, das 0.1 Gew.-Teile Kampferchinon und 0,5 Gew.-Teile Dimethylamonomethacrylat enthielt, um ein Zahnerhaltungsmaterial herzustellen, das dann für die Prüfungen benutzt wurde. Die Ergebnisse sind in Tabelle 5 zusammengefaßt.

VERGLEICHSBEISPIEL 4

2 Gew.-Teile 3-Methacryloxypropyltrimethoxysilan wurden zu den gemahlenen Produkten eines Erdalkalialuminoborsilicatgases mit einer mittleren Teilchengröße von 1 µm gegeben, um ein Füllungsmaterial zu bilden. 75 Gew.-Teile dieses Pulvers wurden unter Vakuum mit 25 Gew.-Teilen eines Monomergemisches von Bis-MEPP und TEGDMA verknetet, das 0,5 Gew.-Teile Benzoylperoxid enthielt. Nach Wärmepolymerisation wurde das erhaltene Pulver der Kugelmahlung unterworfen, um ein anorganisch-organisches Verbundfüllungsmaterial mit einer mittleren Teilchengröße von 3 um zu erhalten. 60 Gew.-Teile dieses Pulvers wurden unter Vakuum mit 40 Gew. -Teilen eines Monomergemisches von Bis-MEPP und TEGDMA verknetet, das 0,1 Gew.-Teile Kampferchinon und 0,5 Gew.-Teile Dimethylaminomethacrylat enthielt, um ein Zahnerhaltungsmaterial zu bilden, das dann für die Prüfungen verwendet wurde. Die Ergebnisse sind in Tabelle 6 zusammengefaßt.

VERGLEICHSBEISPIEL 5

Gemahlene Produkte eines Erdalkalialuminoborsilicatglases mit einer mittleren Teilchengröße von 1 µm wurden mit 10 Gew.-Teilen Polymethylmethacrylat mittels eines Hybridizers eingekapselt, der von Nara Machinery Co., Ltd. hergestellt wird, um ein Füllungsmaterial zu bilden. 60 Gew.-Teile dieses Pulvers wurden unter Vakuum mit 40 Gew.-Teilen eines Monomergemisches von Bis-MEPP und TEGDMA verknetet, das 0,1 Gew.-Teile Kampferchinon und 0,5 Gew.-Teile Dimethylaminomethacrylat enthielt, um ein Zahnerhaltungsmaterial herzustellen, das dann für die Prüfungen verwendet wurde. Die Ergebnisse sind in Tabelle 6 zusammengefaßt.

VERGLEICHSBEISPIEL 6

Als organische Füllungsmaterialien, die frei von anorganischem Füllungsmaterial sind, wurde ein sphärisches Pulver eines Methylmethacrylat-Benzylmethacrylat-Copolymeren verwendet (mittlere Teilchengröße: 19 µm) und als Füllungsmaterial vorgesehen. 67 Gew.-Teile dieses Pulvers wurden unter Vakuum mit 33 Gew.-Teilen eines Monomergemisches von Bis-MEPP und TEGDMA verknetet, das 0,1 Gew.-Teile Kampferchinon und 0,5 Gew.-Teile Dimethylaminomethacrylat enthielt, um ein Zahnerhaltungsmaterial herzustellen, das dann für die Prüfungen verwendet wurde. Die Ergebnisse sind in Tabelle 6 zusammengefaßt.

VERGLEICHSBEISPIEL 7

Bei der Herstellung des anorganisch-organischen Verbundfüllungsmaterials wurden die gleichen Substanzen wie in Beispiel 1 verwendet, jedoch wurde ihr Mischungsverhältnis so geändert, daß der Brechungsindex eingestellt wurde. Auch ein Zahnerhaltungsmaterial wurde hergestellt, wobei ein Monomergemisch von UDMA und TMPTMA in der gleichen Weise wie in Beispiel 1 verwendet wurde und das dann für die Prüfungen benutzt wurde. Die Ergebnisse sind in Tabelle 6 zusammengefaßt.

VERGLEICHSBEISPIEL8

Bei der Herstellung des anorganisch-organischen Verbundfüllungsmaterials wurden die gleichen Substanzen wie in Beispiel 3 benutzt, jedoch wurde ihr Mischungsverhältnis geändert, um den Brechungsindex einzustellen. Auch ein Zahnerhaltungsmaterial wurde hergestellt durch Verwendung von Bis-MEPP als Monomeres in der gleichen Weise wie in Beispiel 1 und dann für die Prüfungen verwendet. Die Ergebnisse sind in Tabelle 6 zusammengefaßt.

VERGLEICHSBEISPIEL 9

Bei der Herstellung des anorganisch-organischen Verbundfüllungsmaterials wurden die gleichen Substanzen wie in Beispiel 2 benutzt, jedoch wurde ihr Mischungsverhältnis verändert. Auch ein Zahnerhaltungsmaterial wurde in der gleichen Weise wie in Beispiel 1 hergestellt und dann für die Prüfungen verwendet. Die Ergebnisse sind in Tabelle 6 zusammengefaßt.

55

VERGLEICHSBEISPIELE 10 UND 11

Bei der Herstellung des anorganisch-organischen Verbundfüllungsmaterials wurden die gleichen Substanzen wie in Beispiel 1 benutzt, jedoch wurde ihr Mischungsverhältnis verändert. Auch ein Zahnerhaltungsmaterialien wurden in der gleichen Weise wie in Beispiel 1 hergestellt und für die Prüfungen verwendet. Die Ergebnisse sind in Tabelle 7 zusammengefaßt.

VERGLEICHSBEISPIELE 12 UND 13

Bei der Herstellung des anorganisch-organischen Verbundfüllungsmaterials wurden die gleichen Substanzen wie in Beispiel 1 benutzt, jedoch wurde ihr Mischungsverhältnis verändert.

Zahnerhaltungsmaterialien wurden hergestellt, indem ein Monomergemisch von Bis-MEPP und TEGDMA in der gleichen Weise wie in Beispiel 1 verwendet wurde und dann wurden sie für die Prüfungen verwendet. Die Ergebnisse sind in Tabelle 7 zusammengefaßt.

VERGLEICHSBEISPIELE 14 UND 15

Bei der Herstellung des anorganisch-organischen Verbundfüllungsmaterials wurden die gleichen Substanzen wie in Beispiel 1 im gleichen Mischungsverhältnis wie im Beispiel 1 benutzt, jedoch wurden die Mahlbedingungen des Gels geändert. So wurden zwei Arten von Füllungsmaterialien erhalten, die verschiedene mittlere Teilchengrößen hatten. Zahnerhaltungsmaterialien wurden hergestellt, indem ein Monomergemisch von Bis-MEPP und TEGDMA in der gleichen Weise wie in Beispiel 1 verwendet wurde und die dann für die Prüfungen verwendet wurden. Die Ergebnisse sind in Tabelle 7 zusammengefaßt.

Jedes der Füllungsmaterialien der vorstehenden Beispiele 1 bis 25 und Vergleichsbeispiele 1 bis 15 wurde der Messung der mittleren Teilchengröße, des Brechungsindex und des Gehalts an anorganischem Material unterworfen. Die Zahnerhaltungsmaterialien der vorstehenden Beispiele 1 bis 25 und Vergleichsbeispiele 1 bis 15 wurden der Messung der Transparenz, der Drei-Punkt-Biegefestigkeit, der Zehn-Punkt-Durchschnitts-Rauhheit nach Polieren, der Zehn-Punkt-Oberflächenrauhheit nach dem Abriebtest, der Abriebtiefe und des Röntgenkontrastes unterworfen. Die Methoden sind wie folgt.

Mittlere Teilchengröße

15

25

40

65

Drei Löffel voll des gleichmäßig mit einer Mikrospatel gemischten Füllungsmaterials wurden in ein getrocknetes 50 ml Becherglas gegeben und nach Zugabe eines Dispersionsmediums (eine 0,3 gew.-%ige wäßrige Natriumhexametaphosphatlösung) wurde das Gemisch gerührt. Das erhaltene Gemisch wurde mit Ultraschallwellen 3 Minuten bestrahlt, um eine Lösungsaufschlämmung herzustellen. Diese Aufschlämmung wurde mittels eines Teilchengrößen-Verteilungsanalysators vom Laser-Beugungstyp (SALD-1000, hergestellt von Shimadzu Corporation) gemessen.

Brechungsindex (nD)

Das Füllungsmaterial wurde in ein Reagenzglas gegeben, mit einer gemischten Flüssigkeit Xylol/Heptan/Chlornaphthalin mit geringerem Brechungsindex als der erwartete Brechungsindex des Füllungsmaterials versetzt und geeignet mit einer Mischflüssigkeit versetzt und gemischt, die einen höheren Brechungsindex hatte als der erwartete Brechungsindex, und die Aufschlämmung wurde unter der D-Linie von Natrium beobachtet.

Wenn der Brechungsindex der Flüssigkeit nahe an den Index des Füllungsmaterials kam, verschwand das Pulver scheinbar. Die Flüssigkeit mit diesem Index wurde wieder hergestellt und mehrere Arten von gemischten Flüssigkeiten, die jeweils einen um etwa 0.002 verschiedenen Brechungsindex voneinander hatten, wurden hergestellt. Diese Flüssigkeiten wurden einzeln in das Reagenzglas gegeben, in dem das Füllungsmaterial war, gefolgt vom Vergleich. Unter diesen wurde die Flüssigkeit, welche die höchste Transparenz hatte, bezüglich des Brechungsindex mittels eines Abbe-Refraktometers gemessen und der Wert wurde als Brechungsindex der Pulverprobe festgestellt. Die Messung wurde bei einer Temperatur von 23°C und einer relativen Feuchtigkeit von 50% durchgeführt.

Gehalt an anorganischem Material

Das Füllungsmaterial wurde genau in einem keramischen Tiegel zum konstanten Gewicht unter Erhitzen bei 700°C gewogen. Die Temperatur wurde von Zimmertemperatur bis 700°C innerhalb 3 Stunden erhöht, dann wurde die Temperatur 2 Stunden aufrechterhalten, um das organische Material abzubrennen. Die Arbeitsweise zur Erzielung des konstanten Gewichtes wurde wiederholt und mit einer Genauigkeit von 0,2 mg bewirkt. Nach dem Verglühen wurde der Prozentgehalt des Gewichts, das konstant war, zu dem Probengewicht als Gehalt an anorganischem Material bestimmt.

Transparenz

Das Zahnerhaltungsmaterial wurde in eine Form gefüllt, die einen Innendurchmesser von 20 mm und eine Dicke von 1 mm hatte, in Preßkontakt mit einer Glasplatte über eine Cellophanfolie gebracht und mit Licht mittels eines Bestrahlungsgeräts für sichtbares Licht (Labolight LV-II, hergestellt von GC CORPORATION) 5 Minuten bestrahlt. Nach Polieren mit einem Schmirgelpapier Nr. 600 wurde die erhaltene Probenoberfläche nacheinander mit einer Aufschlämmung von Wasser und Poliersand (fein) für die Zahnersatzkunde und mit einer Saufschlämmung von Wasser und Aluminiumoxid (0,3 µm) für die Endpolitur poliert, wobei die Oberfläche in einer Dicke von (1,00 ± 0,01) mm fertiggestellt war. Sunream (hergestellt von Daiwa Lighting Co., Ltd.) wurde als Lichtquelle benutzt. Der Abstand zwischen der Lichtquelle und der Oberfläche der Probe war 1 m. Ein Spektrophotometer vom Typ der Photodiodenanordnung (Spectra Scan PR650, hergestellt von Photo Research Co., Ltd.) wurde als Kolorimeter benutzt, und die mittleren Φ 3 mm der Probenoberfläche auf der Licht falle oder der Standard-Weiß-Platte (Magnesiumoxid) wurde bei einem Winkel von 450 gegen die Richtung der Probenoberfläche gemessen. L*(Schwarz) und L*(Weiß) im CIE-L*a*b*-Farbspezifikationssystem wurden berechnet und für (L*(Weiß) — L*(Schwarz)/L*(Weiß) ersetzt, wodurch ein Index für die Transparenz erhalten wurde.

Biegefestigkeit

Das Zahnerhaltungsmaterial wurde in eine Form mit einer Größe von $2 \times 2 \times 25$ mm gefüllt, mit einer Glasplatte über eine Cellophanfolie in Preßkontakt gebracht und mit einem Licht mittels eines Bestrahlungsge-

räts für sichtbares Licht (New Light VL – II, hergestellt von GC CORPORATION) von der oberen Richtung auf einer Seite 60 Sekunden so bestrahlt, daß das ganze exponiert war. Die erhaltenen Proben wurden in destilliertem Wasser bei 37°C 24 Stunden eingetaucht und dann der Drei-Punkt-Beigeprüfung mittels eines Autograph (hergestellt von Shimadzu Corporation) bei einer Spanne von 20 mm und einer Kreuzkopfgeschwindigkeit von 1 mm/min unterworfen.

Zehn-Punkt-Durchschnitts-Rauhigkeit

Das Zahnerhaltungsmaterial wurde in eine Form mit einem Innendurchmesser von 20 mm und einer Dicke von 2 mm gefüllt, in Preßkontakt mit einer Glasplatte über eine Cellophanfolie gebracht und mit Licht mittels eines Bestrahlungsgeräts für sichtbares Licht (New Light VL — II, hergestellt von GC CORPORATION) von der oberen Richtung auf einer Seite 60 Sekunden so bestrahlt, daß das ganze exponiert wurde. Nach Polieren der bestrahlten Oberflächen mit einem Schmirgelpapier Nr. 600 wurde die erhaltene Oberfläche nacheinander mit einer Aufschlämmung von Wasser und Poliersand (fein) für die Zahnersatzkunde und einer Aufschlämmung von Wasser und Aluminiumoxid (0,3 µm) für die Endpolitur poliert. Die fertig polierte Oberfläche wurde bezüglich der Zehn-Punkt-Durchschnittsrauhheit mittels eines Oberflächenrauhheitsprüfers (hergestellt von Kosaka Laboratory Ltd.) gemessen.

Zahnbürsten-Abrieb

Das Zahnerhaltungsmaterial wurde in eine Form gefüllt, die einen Innendurchmesser von 10 mm und eine Dicke von 2 mm hatte, in Preßkontakt mit einer Glasplatte über eine Cellophanfolie gebracht und mit Licht mittels eines Bestrahlungsgeräts für sichtbares Licht (New Light VL—II, hergestellt von GC CORPORATION) von der oberen Richtung auf einer Seite 60 Sekunden so bestrahlt, daß das ganze exponiert wurde. Nach Polieren der bestrahlten Oberfläche mit einem Schmirgelpapier Nr. 600 wurde die erhaltene Oberfläche nacheinander mit einer Aufschlammung von Wasser und einem Poliersand (fein) und einer Aufschlämmung von Wasser und Aluminiumoxid (0,3 µm) für die Endpolitur poliert. Die Probe wurde im Prüfgerät befestigt, ein halber Teil der fertigpolierten Oberfläche wurde durch ein Blech aus rostfreiem Stahl mit einer Dicke von 0,1 mm abgedeckt und eine Zahnbürste wurde reziprokal 10.000 Mal bei einer Gleitdistanz von 50 mm und mit einer Belastung von 500 gf in einer wäßrigen Aufschlämmung einer Zahnpasta (Handelsname: White & White, hergestellt von Lion Corporation) bewegt. Nach der Prüfung wurde die abgeriebene Oberfläche der Probe bezüglich der Abriebtiefe durch die Profilmessung gemessen sowie die Zehn-Punkt-Durchschnittsrauhigkeit mittels eines Oberflächenrauhigkeitsprüfers (hergestellt von Kosaka Laboratory Ltd.), bestimmt.

Kompressionsabrieb

Ein Rahmen aus rostfreiem Stahl, dessen innerer Teil aus einem Konus mit einem Basalteil von Φ 6 mm × H2 mm, einer Prüfoberfläche von Φ 2,1 mm × H1 mm und einem Zwischenteil von H2 mm (Gesamthöhe: 5 mm) bestand, wurde so auf eine Glasplatte gesetzt, daß die Prüfoberfläche nach unten zeigte, und etwa eine Hälfte des Zahnerhaltungsmaterials wurde eingefüllt und mit Licht mittels eines Bestrahlungsgeräts für sichtbares Licht (New Light VL-II, hergestellt, von GC CORPORATION) 60 Sekunden bestrahlt. Dann wurde das Zahnerhaltungsmaterial bis zum Basalteil aufgefüllt, in Preßkontakt mit einer Glasplatte über eine Cellophanfolie gebracht und mit Licht 60 Sekunden bestrahlt. Nach weiterem Bestrahlen mit Licht von der Prüfoberfläche für 30 Sekunden wurde die Probe aus der Form genommen und in destilliertes Wasser bei 37°C 24 Stunden eingetaucht. Die Proben wurden dann in einen Abriebprüfer eingesetzt und reziprok links und rechts auf einem Schmirgelpapier (Nr. 600 - Nr. 1000) bewegt, um eine parallele Ebene zwischen der Basaloberfläche und der Prüfoberfläche zu erhalten. Die Proben wurden einmal abgenommen, und dann wurde der Basalteil davon durch ein Siliconabdruckmaterial abgedeckt und in eine 0,1 N-wäßrige NaOH-Lösung bei 37°C 6 Stunden eingetaucht. Die Proben wurden mit destilliertem Wasser gewaschen und dann bezüglich der Höhe mittels eines Mikrometers gemessen und dann in den Abriebprüfer eingesetzt. Ein Poliermittel, das ein sphärisches Pulver aus Polymethylmethacrylat (unter 250 um) und Glycerin (1/1 Gew/Vol.) enthielt, wurde auf ein Schmirgeltuch gegossen, das auf eine parallele Glasplatte laminiert war. Die Proben wurden einer Belastung von 8,84 kgf/cm² unterworfen und der Kompressionsgleitbewegung für 100.000 Zyklen mit einer Geschwindigkeit von 130 Zyklen pro Minute unterworfen, wobei die reziproke Bewegung nach rechts und links (Gleitdistanz: 25 mm), die einer Auf- und Abbewegung folgte, als ein Zyklus bewertet wurde. Nach der Prüfung wurde die Höhe der Proben gemessen und die Unterschiede vor und nach der Prüfung wurden als Abriebmenge bestimmt. Die Zehn-Punkt-Durchschnittsrauhigkeit auf den Proben nach der Prüfung wurde ebenfalls gemessen.

Röntgen-Kontrasteigenschaften

Die Prüfung wurde gemäß ISO4049-1988 durchgeführt. Das heißt, die Proben mit der gleichen Dicke wie eine Aluminiumscheibe wurden dem gleichen Röntgenfilm ausgesetzt und der Vergleich wurde bezüglich der Kontrasteigenschaften vorgenommen.

60

		Merkmale	therlegen in den mer medanischen Etgenschaften und der Transparenz cowie in der Coefiitelenglitte	Worlegen in den medianischen Eigenschaften und der Transparenz eowie in der	Uzerlogen in den medsanischen Eigenschaften urd der Trausparenz coxie in der Coerfakhergiätte	Uzerlegen in den medsaulschen Elgenschaften und der Transparens sonde in der Charelladsschaften	Userlegal in dei nechanlechen Eigenschafter, ust der Transparent der Transparent	Uzetegen in den medvanlerden Elgenedakten und der Trensparent Bode in der Gortiladentiste
ialien	Peringan-	kontrast- elgen- adiatten	Hentger ala Aluminiun der gleichen Elicka	Miniger als Aluminium der gleichen inicke	Mehr els Aliminiun der gleichen Dicke	2.1 0.29 Metr ala (0.3)(0.09) Aluminum der gleichen inche	Mair alo Aluminion der glatchen Litcke	More als Alindralin der glodchen Licke
Jamter	tous	Rau higk. (1m)	0.23	0.25	0.26	0.29	0.20	0.31
Zalmerhaltungsinterialien	Kapresulaus- abrieb	Tiefe (Irm)	3.1 0.23 (0.4)(0.09)	(0.2) (0.11)	2.5 0.26 (0.5)(0.07)	2.1 0.29 (0.3)(0.09)	(0.3)(0.08)	2.4 0.31 (0.6)(0.08)
zanez		Rau- tidok. (µm)		0.27	0.24 (0.07)	0.27		0.28
	2alei Austen - abrieb	ejell.	2.6 (0.5)((0.3)	(0.2)(0.07) (0.5)(0.07)	2.4 0.27 (0.3)(0.08)	2.8 0.24 (0.4)(0.11)	2.5 0.28
	Punkt-		(13)(0,02) (0,5)(0,07)	(11)(0.03) (0.3)(0.06) (0.2)(0.11)	(13) (0.03)	(11) (0.04)	(16) (0.02)	131 0.20 (19)(0.03)
		kelt (Mpa)	(13)	<u> </u>	€ (5)	9 1 (E	(91)	(19)
	Traus. Blego-		0.77	0.73	0.67	0.74	0.76	0.72
	אלא אליים איי	otyani- achen Material (Gev1)	48.7 0.77	50.7	48.9	48.3	51.2	49.4
	Bro- Count Trais-Blego-dwage-mi an- parent featly	(nD)	1.406	1.505	1.512	1.505	1.509	1.511
	Mtt.l. B Tell-	chen- cuttion (pm)	5.3	5.2	5.9	5.3	5.2	6.4
(6)		Varbin- chargen	(11 shtepp 1 /тесока =9/1 43.32	(Ыляндер 1 /тесоил =9/1 44.30	(Dishepp /Tegoha =9/1 46.47	(1 61sKEPP 1 /TEGDNA =9/1 45.96	(DISHEPP 1 /TECOHA =9/1 48.46	(1 D.I SHEPP 1 / TEGDHA = 9/1 51.36
uteriali	Ü	(a+b)	0.25	0.25	0.25	0.25	0.25	0.25
Hans	5	(a-+-b)	0.0	0.05	0.05	0.05	0.02	0.05
edoud()	-	(8)	103.6	85.57	85.57	84.67	8A.67	86.47
udsdæ V	Ę.	(g)		0.366	0.366	0.366	0.366	0.366
Angantadronyadade Vedaudüllurjamterlahten	1,11	(%)	0.410	0.392	0.392	0.392	0.3812	0,392
Antyan		$\overline{}$	3HtP TNeS 62.09	MrP TheS 62.09	OHTP THES 62.09	3HtP THeS 62,09	38tP THeS 62.09	3HtP 1HeS 62.00
	3	(§)	ı	11 01Pr 14.21	Zr Oußu 19, 18	y 01Pr 13.31	1.0 01Pr 15.81	Ta Ogt 20,31
	1608		208.3	197.9	197.9	197.9	197.9	197.0
			Betratel	Patquiel 2	belepted 3	Betaptat 4	Betaplet 5	Detapitot 6

Beneikingeni Die Zolden in Kloninen zeigen eine Starbutdaardenag

Tabelle 1

	1			<u> </u>						
5			• (ध्याप्रस्	Uperiogen in den medanledten Elgenschaften und der Transparenz sowle in der Gorfikalverjätte	therlegen in den medanlechen Eigenscheften und der Transparenz soale in der Cherfiëdenglätte	Uperlegen in den mechanischen Eligenschaften und der Transparenz soule in der Charfillächergiblite	therloger in den mechanischen Eligenschaften urd der Transpatenz sowie in der Chefilächenglätte			
10	•	len	Rontger- kontrast- eigen- adlaften	Mehr als Aluminium der gleichen Lücke	Meir els Aliminium der gleidier Dicke	Gleich wie Aluminium der gleichen Elicke	Mehr ala Alumfulum der glaichen Bicke			
15		Zahrethaltunganaterialien	Konpressions- abrieb Tiofe Rau- hiok,	2.8 0.22 (0.3)(0.06)	2.1 0.21 (0.3)(0.09)	1.7 0.20 dielch wie (0.2)(0.03) Alminium der gleich Exce	1,4 0,22 (0,2)(0,03);			
20		Salverhal	Zalutkinsten- Kabrielo abrielo al Tiefe Rau- T. Inigk.	2.9 0.25 (0.5)(0.06)	1.9 0.24 (0.3)(0.06)	3.2 0.20 (0.4)(0.04)	3,6 (0.19			
25			· - ·	(13)(0.02) (0	0.17	(10)(0.02) (((12)(0.03) ((17)			
30			Gebalt Trans-Bloge- Zean- an an- parenz festig-Bulkt- organi- setten keit Durch- setten keit Durch- lecten limpa Bulkt.	0.72	0.64	0.73	0.66			
			g, ×	1.407 49.5	1.539 50.3	1.517 10.2	1,544 10.3			
35			Mittl. Tell- dyn- große (jml	5.2	5.3	26	30			
40		stecialien	i Orga- j nische Verbin- dangen	(ВІ SMEPP 1 /ТЕСТИК =9/1 42.86	G BISNEPP 1 / TISTDHA = 9/1 50.62	0 MHA 1 197.3	03.42 03.42			
45		erifullingsouterialien	uztallalugza	ard (Willingson	ardfillluga.	(a+b)(a+b)	0.05 0.25	0.15 0.25	0.40 0.25	0.65 0.25
		Anorganisch-organische Verba	11,0 (g)	84.67	85.6	19.6	24.1			
50		gantedr-org	HC1 (A11, (K)	0.392 0.368	0.355 0.332	0.066 0.092	0.052 0.110			
55		Ano	H. (B)	 	3HtP 0. 1HeS 62.09	3MtP 0. THeS 15.52	ЭнгР 18.63,			
60			ξ (g)	41 01Pr 10.21	1 13 01Pr 14.21 Zr Onbu 38.37	5 Y 01Pr 13.31 La 01Pr 15.81	8 AL 01Pr 18,38 71 01Pr 17,06 7r 0mBu 17,26			
	16.2		11:05	107.9	le1 177.1	Delgael 31.25	21.88			
65	Tabelle 2			Betspfe-1	Detaple1	Pelus 9	Beispiel 10			

Penerhargeni Die Zahlen in Klamem zeigen eine Standeubbeichung

_	T		\top			<u> </u>			
		Hickorolo	Decloyen In den	nedwinden Elgeschaften uid	der Trausparenz earle in der Oberflächerplätte	Userlogen in den neckunischen Elgenschaften und der Transparenz soufe in der Gerfüllenentitte	Userlegen in den mechanischen Eigenschaften und der Transparenz sowie in der Oorflichensitte	Userlegen in den medani schrin. Elgenschaften urd der Trensparerz schle in school	Uberleger in den mechanischen Elgewechnften und der Trausparent exale in der Ocerflächerglikte
alten	Röntgen-	kontraet- elgen- echaften		Meter ala Alumintum	der gleichen Dicke	Gleich We Aumindun der gipichen Eicke	Meir ala Aluminium der gleiden Dicke	Mehr ala Alumintum dor gloichen ilicke	Mair als Auminium der gleichen Dicko
mater	tons-	Rau-		(0.04)		0.22	0.26 (0.07)	(0.03) (0.03)	0, 23
Zahrethalturganeterlalien	Karpressions- abritch	Tiefe F		(0.6)(0.04)		1.9 0.22 (0.2)(0.03)	(0.4)	3.1	(0.2)(0.65)
Zalvier		Fau- htgk.		(0.0)		0.27 (0.07)	0.33 (0.10)	0.29	0,19
	Zahrichroten- abriteb			(0.4)(0.09)		3.9	2.7 6.33 2.3 0.26 (0.4)(0.10) (0.4)(0.07)	(0.3)(0.08)	3.2 0.19
		1	<u> </u>	(23)(0,03)		(9)(0.02) (0.7)(0.07)	(16) (0.03)	137 0,25 (14)(0,04)	(11)(0,03)
	Mege-	Kelt. (Mpa)		(53)) (6)	(16)	(14)	(11)
	Trans- mege- 2dm- piteiz festig- hakt-	<u>* -</u>	 -			0.64	0.61	15.0	0.49
	Catalt Trans- mege- an an- picenz festig	organi- schen Material	g e	0.0		21.1	70.3	68.9	50.6
	Bre- (xhalt chargs- an an-	Index (n)	1.60	/0c.	-	1.521	1,531	1.580	1,598
	Matti.		_				6.0	1.1	
illuxyanterialien	Orya- Nache		 -	A CHESTINA	=9/1 13.56	0 HHA 1 702HA =9/1 59.25	(B1sHEPP 1 /TECSHA =9/1 18.31	(Bishepp 1 / Teanh =9/1 29.40	(UDHA / ТЕСПНА =1/1 76.03
Hurgran	2	(a+b)	60	70.0		3.0	0.10	0.10	0.10
cteerdfil	-	(a+b)				0.02	0.10	0.20	9.0
Isday V	=		١			23.41	77.46	81.07	42.3
idi-orga		£ 3	1 6	0.32 13.14 0.03		0.083	0.324	0.290	0.366
Promantach-organische Verturdill	<u></u>	<u> </u>				0.089	0.346	0.310	0.146 0.366
1	-	¥ (§	. i	J.KeS	4.97	34tP 74.5	3HtP 13leS 24.84	3HLP (7	3HtP THES 24.84
	17	± 3	Ť		19.18	7r OnBu 1.918	7r On Bu 38.37	Ta OEt 81.25	M. 01Pr 71.49 Y 26.62 La 01Pr 63.23
	á	S (3	(2)	7. 21.		19.79	187.5	166.7	72.92
	<u>.</u>		10/15/15	11		Petspial 12	Matsystest 13	Betapiet 14	Misplel 15

6:

5				APENDA O	Therlegen in den medwaleden Eigenschaften und der Freusparenz esche in der Coerlischenglätte	Userlogen in den mechanischen Elgenschaften urd der Transparenz sowie in der Gerflächentatte	theritagen in den medaal achen Elganschaften und der Transpareuz gode in der	Coeffieldenjlätte Coeffieldenjlätte Coeffielden in den Erjouschritten und der Trausparen, sodie in der	Coeffidospilate Cheriogen in den mechantsdien der Transeren eode in der Coeffidosepilkte
10		alten	Röntgen-	olgen- echaften	Meniger ale Aluminium der gleichen Dicke	Heniger wie Alminium der gleichen Litcke	Heriger als Aluminium der gleichen Dicke	Haulger als Aluminium der gleichen, Dicke	Mater ale Alterfolom des gleichen Dicke
15		Zainethaltungsnaterialien	Kompressions- abriteb	Tiefe Rau- higk. (im) (im)	1.9 0.19 (0.2)(0.06)	1.5 0.22 (0.4)(0.03)	(0.3)(0.01)	0.0 0.22 (0.3)(0.04)	1.9 0.28 (0.3)(0.05)
20		Zalment	Zahriblizaten 11 obriko	Tiefo Rau- 1 (jm) higk.	2.9 0.26 (0.4)(0.07)	3.2 0.29 (0.5)(0.06)	4.3 0.19 (0.5)(0.06)	3.3 0.25 (0.5) (0.10)	3.3 0.36 (0.7) (0.08)
25			Zehn-	keit gebn. T (Hpa) Raulik.	(9)(0.02)	(12)(0.04)	(12)(0.02)	(10)(0.02)	(9)(0.04)
30			Gehalt Trans-Blogo-	Organit R Bechem Matorial [Gew1]	49.7 0.72	49.7 0.78	50.0 0.74	49.6 0.61	48.9 0.59
35			Bre- dums-	index (nD)	1.496	1.496	1,494	1.462	1,533
40		sterialien	Örge- Mitti.		0.1 /ТЕСОИА =9/1 43.32	01.sMGPP 48 /TEGDHA =9/1 43.32	01 sHGPP 7.7 /Тисхони =9/1 39.56	BisGPhP 9.2 16.28 Р-Аміде 30.04	GNA 7.8 14.22 D1 SMGPP /TUSDNA =9/1 52.38
45		Protyauladi-organische Verbundfüllungsraterialien	o	(a-t-b)(a-t-b)	0 0.25 0	0.25 0	0 0.25	0 0.25 0	0.10 0.10
		organische Ver	e c	(g)	103.6 0.0	103.6 0.0	81.1	85.3 0.	77.46 0.10
50		Protyanisch	IN STATE	(B) (B)	0.410 0.383	0.410 0.383	0.410 0.383	0.365 0.341	0.328 0.307
55			3	<u> </u>	3HLP 0. THES 62,09	3NtP 0 THES 62.09	3NtP 0 MDMeS 58.09	3GP 0 THeS 59.08	3лР тнеS 17.93
60			1500		208,3	208.3	208.3 —	208.3	187.5 Zr OnBu 38.37
63	Takello 4			(g)	(ettpla) 200	Peleptel 20	Bulaple 20	Dulquul 20	Parispice 18

Benerkingen: Die Zahlen in Klammern zeigen eine Standardabweichung

	Methiolo		Operiogen in den sectamischen Edyscholien und Edyscholien und Ger Trausparenz gode in der Gerfächenglätte	Userlogen in der medantschen und echen Elgenschaften und der Trausparenz sowie in der	Dorflikaterylatte Uverlogen in den nuchent- uchen Etgenschaften und der Trausparenz sowie in der Overflikateurylätte	Uzrioyer in den medaniachen Eigunschaften und der Trant parenz oorde in dei: Goriffachenglakte	Derloge, in der motanischen Eigenschaften urd der Trensparent esche in der	Schlechter in der Coerfibenergiatte	Schlechter in der Transparenz	Schlediter in dan medaulocien Eigenschaften
Zalmethalturymotterfallum	Röntgen- kantrast- alom-	schaften	indu: ala Alundulum der glaidien Dicka	Alminiun der gleichen Dete		Mehr ala Aludulum der gleichen Dicke		Muhr ala Mudulum der gleichen	Wentger ala Numbrium der glotchen	
r yanat	lona-	ntyk. (1m)	0.19 (0.04)	0.29	0.19 (0.04)	0.22	2.2 0.18 (0.4)(0.05)	1.2 (0.4)	0.78	0.25
erhaltu	Kompress abrileb	<u> </u>	1.1 0.19 (0.3)(0.04)	2.3 0.29 (0.4)(0.08)	(0.2)	1.5 0.22 (0.6)(0.05)	2.2 (0.4)	(3.1)	(3.1)	25
u fez		Mgk.		0.31	0.22		5.5 0.38 (1.2)(0.10)	1.1 0.78 (0.8)(0.12)	1.5 0.45 (0.8)(0.12)	26 0.85 (5.1)(0.11)
	Zalvitilira abritch Tiefe		4.8 0.32 (1.3)(0.07)	3.3 0.31 (0.4)(0.04)	4.1	4.1 0.33 (0.8)(0.05)		1.1 (0.8)	0.8)	
	Zehn- Punkt- Durch-		119 0.11 (16)(0.04)	(12) (0.04)	(10)(0.02) (0.3)(0.02)	(11)(0.04)	(8)(0.03)	138 0.18 (18)(0.0G)	(11) (0.06)	02 0.11 (4)(0.03)
	Bleye- fusciq- kelt	(Mpa) Raubk.	011 011)	Ē Ĉ	(10)	(11)	= [©]	138	[E]	102
	Trans- Bleyer Parkt- parenz fierig Durch-		0.59	0,53	0.71	0.63	0.74	0,69	0.15	0.68
		Material (Gew1)	51.1	52.0	31.1	1.536 40.1 0.63	37.5	001	001	08.3
	Dre- changs- Infox	3	1.530	1.460	1.502	1.536	1.505	1.530	1.452	0.016 1.450
	Mittl. B	grow (Im)	8°.5	6,8	7.1	=	EZ	0.0	0.6	0.016
Protection organische Veilkerdfillungenterfallen	Orga- nische Verbin-		DisMEPP /TEGDHA =9/1 62.63	1,30G	7,30G	. ИОИЛ 1 /ТЕСШИЛ =1/1 86.05	d GHA 42.65	1	i	1
dfullun	0	(d + b)	0.25	0.50	2.0	0.10	0.10	1		
y Veilar		8) (4.+-в)	0.10	0.0	0.0	0.10	0.10	-11	i	
gantach	0.1	(8)	85.6	1.00	72.1	73.8	73.8	i Erdalka	180.2	
unisch o	,	(g)		0.341	0.255	0.312	0.312	AUXTO VA	34.06	esel sture
Arong	101	(3)	0.374 0.349		0.182	0.334	0.334	ilene Pro	1	idale Ki
İ	ž		·	PhTHes 0.365 99.15	OPh DileS 244.3	36.22	IPTAT THES 41.64	che genel las		dra kolle
	ī _k	(K)	7x 3 0ndsu 1 38,37	1	ı	Zr. OnBu 38.37	1r OnBu 38,37	Im Kurkel enhältliche geneinene Frankte van Euchkelf- alunirkbusilicatgias	1	In lardel erhältliche kolloichile Kieselskurn (Percell 1892)
	1608	(×)	187.5	208.3	104.2	187.5	187,5	Im Iturbi	208.3	In Hardel (Petoall
	<u> </u>	<u> </u>	(seleptor)	Inlupiel 2	(Kdp)let	(ketaptut 24	Beteptet 25	Var- gleichs- bsp. 1	Ver- yleichu- bop. 2	Ver-

benerkurgen: Die Zahlen in Klemmern zeigen eine Stardardsbandelung

	_									,		
. 5		l'en		Herbrale	Schlechter in der Cerfilkdergilkte	Schlechter in der Transpacenz und Oberflächenglätte	Schlechter in den mechanischen Eigenschaften	Schlechter in der Transparenz	Schlechter in dur Transpurgiz	Schlechtor in der Transparenz		
10			Rungen-	elgen- achaften	Helic als Aluminium der gleichen Dicks	Hehr als Aluminium der gleichen	Maniger als . Aluminium der gleichen Dicke	Meniger als Aluminium der gleichen Dicke	Petr ala Aluntum der glaldten Dicke	Meniger als Aliminium der gleichen Dicke		
15		Zahnethaltungsmaterialien	slons-	Patr- htgk. (pm)	0.81	1.0	0.33 (0.04)	0.22 (0.03)	(0.3) (0.06)	4.9 0.66 (0.3)(0.14)		
			Konpressions- abrieb	Tiefe	81 (9.1)	26 (2.2)	8.1 (1.1)	(0.4)	(0.3)			
20			Zahnert		Rau- hidgk. (j.m)	0.83	0.74	0.46 (0.15)	3.8 0.34 (0.8)(0.12)	(0.2)(0.03)	(0.4)(0.05)	
				Zahrbürsten- abrieb	Tiefe (jm)	1.1 0.83 (0.8)(0.08)	2,2 0,74 (0.6)(0,11)	31 (4.4)	3.8 (0.8)	(0.2)	2.5 (0.4)	
25				Bath. Rauthk.	(5)(0.05)	105 0.23 (18)(0.04)	0.08 (0.02)	108 0.08 (6)(0.02)	(13)(0,05)	131 0.18 (13)(0.M)		
			Blege- festig-	kelt (Mpa)	108	105	92	108	(13)	(13)		
30			Trans-		0.56	0.21	0.58	0.21	0,19	0.13		
			Schalt an an-	Schem Material (Gev1)	75	16	0.0	78.9	50.2	49.6		
35			Dre- churgs-	index (nb)	1.530		1.522	1.458	1,611			
	·		Mtt.	dien- gittige (j.m.)	7.1	1.2	19	7.1	7,8	6.7		
40			materialien	materialien	Promyanisch-organische Verdanfüllingsmeterfalten	i Orga-		- 01shepp - / Tecoha =1/1	- PHHA	1	() UDHA 1 12.78	d bishep /Techka =4/6 76.03
		fulling	U	(a+b)				0.02	0.10	0.25		
45		Vertur	a	(a+b)	듈	-116		0.0	0.65	0.70		
		yant sche	=	(8)	n Produk	n Erdelk wn 84		73.1	42.3	85.57		
50	emo-tha	ntecti-on	3	(R)	arahlene Abramere	chkte vo s Rilver onl	-	0.344	0.366	0.290		
		Prompant	5	(g)	lichen g catglas/	lene Pro kapselte hanofusi		0,368	0.146	0.155		
55			5	[(g)	of ectivities of extraction of the Manuel of	the genuli las/etrojel etro Med	ver)	3MtP TMeS 4.97	ЭнгР ТиеS 24.84	3HtP THeS 62.09		
60			<u>-</u>	(3)	Notes vo. In luriol stillities gaablesen Protikten vo. Ertalkallalunischoraliisatglas/Axontes → Momepolymeriaation → Mahlen	Im liardel ethältliche genälilene Produte von Erdalkall- alunirröngallostojas/eingskapreites fälver von AMR (hergestellt chuch eine Mechanofusion)	RPA/192 (Recipalver)	l	AL 01Pr 71.49 Y 01Pr 26.62 La 01Pr	11 01Pr 109.0		
	9		2001	(g)	theten in An Ental MπepΩly	in Handel Munitrobo hergeste	144/19Z	208.3	72.92	65.5		
65	Table 6		·		ver- gleichs- ksp. 4	Ver- I gluichs- a	-		Ver- gleichs- Bep. 8	Var- gleichs- bsp. 9		

Benerkurgen: Die Zahlan in Klamem zeigen eine Standaktalweichung

		herkmin		on the first in the	Stable in den installades Elgen- adiation in Inspective Zairteinbufft	Statester in den liedend den Riger- adwirten, trabesorben Zalatere enwärten	Batters of in der Cost of seglitte unt in Propressions- skrie.	Schleiter in den mycharlsinen Elgen- echeftere, hiskesynkre Zahvan stendarten	Schlesser in den neckwasser Elger- adaktes, askaondere Konpressjespabrida
alten	l'Chtgen-	etyan- adafter		Heldger als Aludalan der glolden Bloko	(8)(0.02) (2.5)(0.89) (0.4)(0.07) Atundulun der glotchen	Periger ale Alminium der gleichen Dicke	Hadger ale Aluminium dar gleichen fücke	Merdger ale Aluminium der gleichen picke	(0.5)(0.07) (4.1)(0.42) Aluntuun iyake
grateri	-Et 101	Ratt-	î I	0.77	4.5 0.44 (0.4)(0.07)	1.8 0.23	0.56	4.5 0.44 (0.4)(0.07)	3.8 (0.42)
Zamertaltungsnaterialten	Kopressions- abrieb	Tiefe		7.9 0.77 (0.8)(0.11)	4.5 (0.4)	1 -	(13)(0.03) (0.3)(0.23) (1.5)(0.10)	(11)(0.02) (2.5)(0.89) (0.4)(0.07)	56 (4.1)
Zahnei			3	0.29	4.5 (0.89)	(8)(0.02) (0.9)(0.23)	2.3 0.82 (0.3)(0.23)	4.5 (0.89)	0,30 (0.07)
	Zalerkitenten- abriteb		(E	2.2 0.29 (0.6)(0.06	35 (2.5)	23 (0.9)	(0.3)	35 (2.5)	
		octun. Kuulik.	(110)	(13)(0.06) (0.6)(0.06)	(8)(0.02)	(8)(0.02)	(13)(0.03)	105 0.15 (11)(0.02)	141 0.22 (14)(0.02)
	filege Zelar- featig-faukt-		lact.	(13)	1.0	(8)	(13)	(11)	<u> </u>
				0.11	0.65	6.8 0.63	0.57	0.53	0.68
-	Cebalt on m-	organi- oction Material	(Cex. ~)	78.9	21.0	l	85.2	49.7	49.7
	: 5	Index			1.488 21.0 0.65	1.528	0.7 1.517 85.2	1.492 49.7 0.53	1,496 49.7
	Met. Dec.	drai-	7	2.8	22	=	0.7	0.05	601
Alten	Chya	Varbin- rhagen		Ві sмGPР / ТЕСБИА = 9/1 13.90	0 bisмEPP /ТЕСОНА =9/1 69.27	(01sHe?P //TEGOHA =1/1 146,9	(1) (SMEPP / TEGDIA = 9/1 8.27	(D.S.MEPP /TEGOHA =9/1 43.32	(BisHEPP //ТЕСВНА =9/1 43,32
Jamat or 1		(a.t.b)		0.01	0.	0.1	0.02	0.25	0.25
etti lub	9) (1.1.0)			0.0	0.0	0.0	0.0	0.0
e Vertu	=		(8)	72.60	28.82	12.61	73.14		103.6
tyanlach		((8)	3.342		0.051	0.344 73.14	0.383 103.6	0.383
Arrayanisch-ouganische Verhuziffillhaspsmiterialita			(19)	0.366 0.342 72.60 0.0	0.109 0.102	0.055	0.368	0.410	0.410
Mont	7		(8)	3AtP THeS 2.48	3HLP THES 99.34	JHLP THeS 24.84	3HLP THES 4.97	ЭнтР ТНеS 62.09	3HtP THeS 62.00
		= (33	1	1	ı	1	1	ì
		7	(9)	208.3	20.83	20. 83	208.3	208.3	208.3
	·			Vet- glubtar kep. 10	9 =	Ver- gleichs- lep. 12	Vuc- gleich: Rgr, 13	Ver- gletchi- lap. 14	Ver- gleichs- lep. 15

Denochangen like Zahlen in Klaumen zelgen eine Starkardsbeitdarg

1

Wie aus den in den Tabellen gezeigten Ergebnissen klar ist, ist das anorganisch-organische Verbundfüllungsmaterial gemäß der vorliegenden Erfindung mit überlegenen Effekten versehen, insbesondere wenn es für Zahnerhaltungsmaterialien benutzt wird, wo es eine überlegene mechanische Festigkeit und Abriebbeständigkeit und eine geeignete Konsistenz und Handhabung hat, einen Koeffizienten der Wärmeausdehnung nahe dem der Zähne und einen geringen Polymerisationsschrumpfungswert zeigt und eine geeignete Transparenz und Oberflächenglätte in der Mundhöhlung zeigt. Daher wird die vorliegende Erfindung zur Zahnbehandlung sehr beitragen.

Obwohl die Erfindung im einzelnen und unter Bezugnahme auf spezifische Ausführungsformen davon beschrieben wurde, ist dem Fachmann ersichtlich, daß verschiedene Abänderungen und Modifikationen gemacht werden können, ohne sich vom Geist und Bereich der Erfindung zu entfernen.

Patentansprüche

Anorganisch-organische Dental-Verbundfüllungsmaterialien, die sichtbares Licht von 360 bis 830 nm in ihren Teilchen nicht streuen, einen Brechungsindex nD der D-Linie von Natrium im Bereich von 1,460 ≤ nD ≤ 1,600 haben und die durch die folgende empirische Durchschnittsformel dargestellt sind:

 $aM^{1}O_{x/2} \cdot bSiO_{2} \cdot cM^{2}O_{(4-i-j)/2}R^{1}iR^{2}j$

worin bedeuten:

M¹ ist ein Mitglied oder mehrere Mitglieder, ausgewählt aus Ti, Zr, Y, La, Ta und Al, das an Si oder M² über den vernetzten Sauerstoff gebunden ist; und x ist die Wertigkeit von M¹; M² ist Si und/oder Ti;

R¹ ist eine nicht-funktionelle Gruppe; und R² ist eine organische Verbindung, die mit einer organischen funktionellen Gruppe, umgesetzt ist;

i ist 0, 1 oder 2; und j ist 1, 2 oder 3, vorausgesetzt, daß i und j die Gleichung $1 \le (i + j) \le 3$ erfüllen; und a, b und c sind jeweils ein molares Verhältnis, vorausgesetzt, daß a, b und c die Gleichungen $0 \le a/(a + b) \le 0,65$ und $0,02 \le c/(a + b) \le 3,0$ erfüllen.

2. Füllungsmaterialien nach Anspruch 1, dadurch gekennzeichnet, daß dann, wenn M² Si ist, R² die organische Verbindung ist, die umgesetzt ist mit einer funktionalen Gruppe, ausgewählt aus einer ungesättigten Doppelbindung, einer Glycidoxylgruppe, einer Aminogruppe, einer Mercaptogruppe und einer Alkoxylgruppe; wenn M² Ti ist, dann ist R² eine organische Verbindung, umgesetzt mit einer funktionellen Gruppe, ausgewählt aus der ungesättigten Doppelbindung und einer Aminogruppe; und R¹ ist eine Phenylgruppe und/oder eine nicht-funktionelle Gruppe, dargestellt durch C_nH₂n + 1, worin n 1 bis 10 ist.

3. Füllungsmaterialien nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß M¹ ein Mitglied oder mehrere Mitglieder, ausgewählt aus Zr, Y, La und Ta ist; und a und b die Gleichung 0,10 ≤ a/(a + b) ≤ 0,65 erfüllen.
 4. Füllungsmaterialien nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie einen Gehalt an anorganischem Material im Bereich von 10 bis 80 Gew.-% haben.

5. Füllungsmaterialien nach irgendeinem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie eine mittlere Teilchengröße von 0,1 bis 50 um haben.

6. Füllungsmaterialien nach irgendeinem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Oberflächen der Teilchen mit einem Silankupplungsmittel modifiziert sind.

45

40

15

20

25

30

50

55

60

65