数学建模 复习

张恒鑫 2018. 06. 18

1 MATLAB 基础知识	5
1.1 线性代数在 MATLAB 中的实现	5
1.2 微积分在 MATLAB 中的实现	6
1.3 数据插值、你和在 MATLAB 中的实现	7
2 微分方程及差分方程	8
2.1 基本概念	8
2.2 解法	8
2.3 建模举例	8
2.3.1 人口预测模型(连续)	8
2.3.2 蛛网模型 (离散)	9
2.4 真题	10
3 最优化方法	11
3.1 线性规划	11
3.1.1 线性规划的基本概念	11
3.1.2 例题(P78)	12
3.2 非线性规划	13
3.2.1 基本概念和极值条件	13
3.3 整数规划	14
3.3.1 基本模型	14
3.3.2 常用求解方法	15
3.3.3 例题	15
3.4 动态规划	16
3.4.1 基本概念	16
3.4.2 例题	16
3.5 真题	17
4 回归分析	18
4.1 线性回归分析	18
4.1.1 基本概念和前提条件	18
4.1.2 简单线性回归模型	18
4.1.3 最小二乘估计	19
4.1.4 回归系数的假设检验	19

		4.1.5 多重线性回归与相关分析	. 20
	4.2	二分类 logistic 回归模型	.21
	4.3	真题	.22
5 7	漠糊数	艾学	. 23
	5.1	模糊集的基本概念	.23
		5.1.1 模糊子集和隶属函数	.23
		5.1.2 隶属函数的确定方法(写三种)	.23
	5.2	模糊矩阵及运算性质	.23
		5.2.1 模糊矩阵	.23
		5.2.2 模糊矩阵间的关系及并、交、余运算	.24
		5.2.3 模糊矩阵的合成(考)	25
		5.2.4 模糊矩阵的 λ - 截矩阵(考)	. 26
	5.3	模糊综合评价模型	.27
	5.4	模糊聚类分析	.29
	5.4	真题	.32
6	神经区	网络	.33
	6.1	神经网络三要素(考)	.33
	6.2	拓扑结构	.34
	6.3	学习规则	.34
	6.4	常用神经网络	.34
7	图论		. 35
	7.1	真题	.35
	7.2	定义和术语	.35
	7.3	最短路径算法	.36
		7.3.1 Dijkstra 算法	.36
		7.3.2 Floyed 算法	. 37
	7.4	例题	.38
8	层次分	分析法	. 39
	8.1	建立层次结构模型	.39
	8.2	构造判断(成对比较)矩阵	40
	8.3	层次单排序及其一致性检验	.41
	8.4	层次总排序及其一致性检验	.43

8.5	例题44	
8.6	真题47	,

1 MATLAB 基础知识

1.1 线性代数在 MATLAB 中的实现

命令	意义
d=eig(A),[v,d]=eig(A)	特征值和特征向量
det(A)	行列式计算
Inv(A)	矩阵的逆
Orth(A)	正交化
Poly(A)	特征多项式
Rank(A)	矩阵的秩
Trace(A)	矩阵的迹
Zeros(m,n)	m 行 n 列零矩阵
Ones(m,n)	m 行 n 列全 1 矩阵
Eye(m,n)	n 阶单位矩阵
Rand(m,n)	m 行 n 列的均匀分布随机数矩阵
Randn(m,n)	m 行 n 列的正态分布随机数矩阵
Rref(A)	简化矩阵为行最简形形式
a=linspace(i,j,n)	生成有 n 个元素的行向量, 在 i,j 间等分分布
N=length(A)	矩阵 A 的行数和列数的最大值

[m,n]=length(A)	矩阵 A 的行数和列数
1.2 微积分在 MATLAB 中的实现	
命令	意义
Sym	创建一个符号变量
Syms	创建多个符号变量
Eval	串演算指令
Simplify	符号计算中进行简化操作
Limit(f,x,a)	求表达式 f 当 x 趋向 a 时的极限
Diff(A,x,n)	对以 x 为变量的表达式进行 n 次微分
Trapz(x,y)	梯形积分法
Z=quad('fun',a,b,tol)	变步长数值积分
r=dblquad('integral',xmin,xmax,ymin,yma	二重积分
x)	
Int(f)	符号积分
Dsolve('eqn1','eqn2',···,'x')	求微分方程的解析解
[t,y]=ode23('F',ts,y0,options)	龙格-库塔公式

1.3 数据插值、你和在 MATLAB 中的实现

命令	意义
Yi=interp1(x,y,xi,method)	一维插值。nearest 最近插值;linear 线性插值;spline 三次样条插值;cubic 三次插值
Yy=spline(x,y,xx)	三次样条插值
Zi=interp2(x,y,z,Xi,Yi,'method')	高维插值
P=polyfit(x,y,n)	最小二乘法曲线拟合,返回多项式的系 数
[p,s]=polyfit(x,y,n)	p 是多项式系数, s 是预测误差

2 微分方程及差分方程

2.1 基本概念

- ✓ 微分方程建模研究的对象是<u>连续变量</u>,差分方程建模研究的对象是<u>离散</u> <u>对象</u>;
- ✓ 微分方程中所出现的未知函数的导数的最高阶数,称为微分方程的阶。

2.2 解法

- 1.变量可分离方程
- 2.一阶线性微分方程
- 3.伯努利方程
- 4.常系数齐次线性微分方程

2.3 建模举例

2.3.1 人口预测模型 (连续)

1.马尔萨斯(Malthus)人口模型、指数增长模型

设时刻 t 的人口为 N(t), 假设在 t 到 $t+\Delta t$ 时间段人口增长量为

$$N(t+\Delta t)-N(t)=rN(t)\Delta t$$

并设 t=t0 时刻的人口为 N0,于是(两边同除 Δt)

$$\begin{cases} \frac{dN}{dt} = rN \\ N(t_0) = N_0 \end{cases}$$

变量分离得到解为

$$N(t) = N_0 e^{r(t - t_0)}$$

2.Logistic 模型、阻滞增长模型

引入常数 Vm(最大人口容量),用来表述自然条件所能容许的最大人口数。并假设增长率等于 $r(1-\frac{N(t)}{N_{\cdots}})$.

那么模型改为

$$\begin{cases} \frac{dN}{dt} = r \left(1 - \frac{N}{N_m}\right) N \\ N(t_0) = N_0 \end{cases}$$

其解为

$$N(t) = \frac{N_m}{1 + \left(\frac{N_m}{N} - 1\right)} e^{-r(t - t_0)}$$

2.3.2 蛛网模型 (离散)

许多商品的生产销售都是有周期性的,如何建立数学模型来表现和分析市场趋势?

1.模型假设与建立

将市场演变模式划分为若干段,用自然数n来表示。

设第 \mathbf{n} 个时段商品的数量为 x_n ,价格为 y_n 。需求函数 $y_n = f(x_n)$, \mathbf{f} 是单调减少的。因此差分方程为

$$x_{n+1} = h[f(x_n)], y_{n+1} = f[h(y_n)]$$

2.模型的几何表现与分析(变化规律、趋势和稳定点)

$$(x_n, y_n) = (x_n, f(x_n)), (x_{n+1}, y_n) = (x_{n+1}, g(x_{n+1}))$$

点列 $p_1(x_1, y_1), p_2(x_2, y_1), p_3(x_2, y_2), p_4(x_3, y_2)$ ··· 连接起来,就会形成像蛛网一样的折线,这个图形被成为蛛网模型。

如果点列 $p_1(x_1,y_1), p_2(x_2,y_1), p_3(x_2,y_2), p_4(x_3,y_2)$ …最后收敛与点 p0,则 $x_n \to x_0, y_n \to y_0$,并且 p0 就是两条曲线的交点,从而是稳定的。

几何上进一步分析: 如果曲线 y=f(x)和 y=g(x)在交点 p0 处的切线斜率绝对值记为 k_f , k_g ,则当 kf<kg 时 p0 是稳定的; 当 kf>kg 是 p0 是不稳定的。

2.4 真题

人工繁殖某种细菌,其增长速度和当时的细菌数成正比,已知在3个小时的时候,有细菌数10⁴个,在5个小时有4*10⁴个,请问在开始时有多少细菌。

解:设 t 时刻细菌数为 N(t),则 dN/dt 表示其增长速度,根据题意有

$$\frac{dN}{dt} = kN$$

又设 $N(0) = N_0$ 解得

$$N = N_0 e^{kt}$$

带入数据,即可求得。

3 最优化方法

- 3.1 线性规划
- 3.1.1 线性规划的基本概念

研究在一组线性约束之下,某个函数的最大值或最小值问题,这类问题被成为线性规划问题。

标准型如下:

目标函数 $\min z = c_1 x_1 + c_2 x_2 + ... + c_n x_n$

限制条件s.t.
$$\begin{cases} a_{11}x_1 + \ldots + a_{1n}x_n \leq (=, \geq)b_1 \\ a_{21}x_1 + \ldots + a_{2n}x_n \leq (=, \geq)b_2 \\ \ldots \\ a_{n1}x_1 + \ldots + a_{nn}x_n \leq (=, \geq)b_n \end{cases}$$

- ✓ 定理1线性规划问题的可行域是凸集
- ✓ 定理2线性规划问题的基本可行解对应于可行域的定点
- ✓ 定理 3 若可行域有界,一定在可行域的某顶点达到最优;若可行域无解, 可能有最优解,也可能无最优解;若有最优解,必在某顶点。

可行解(或可行点): 满足所有约束条件的向量 $x = (x_1, x_2, x_n)^T$

可行集(或可行域): 所有的可行解的全体

$$D=\{x\big|Ax=b,x\geq 0\}$$

最优解:在可行域中目标函数值最大(或最小)的可行解,最优解的全体称为最优解集合

$$O = \{x \in D | c^{\mathsf{T}} x \le c^{\mathsf{T}} y, \forall y \in D \}$$

最优值:最优解的目标函数值

$$v = c^{\mathrm{T}} x, x \in O$$

3.1.2 例题(P78)

3.2 非线性规划

3.2.1 基本概念和极值条件

若目标函数或约束条件中包含非线性函数,则称这种规划问题为非线性规划。

令
$$g(x) = (g_1(x),...,g_p(x))^T$$
 $h(x) = (h_1(x),...,h_p(x))^T$, 其中, $g: R^n$ $R^p,h: R^n$ R^q , 那么(MP)可简记为
$$\begin{cases} \min & f(x) \\ s.t. & g(x) \le 0 \end{cases}$$
 或者 $\min_{x \in X} f(x)$ $h(x) \le 0$

定义 4.1 对于非线性规划(MP),若 $x^* \in X$,并且有 $f(x^*) \le f(x)$, $\forall x \in X$

则称 x^* 是(MP)的整体最优解或整体极小点,称 $f(x^*)$ 是 (MP)的整体最优值或整体极小值。如果有

$$f(x^*) < f(x), \forall x \in X, x \neq x^*$$

则称 x^* 是(MP)的严格整体最优解或严格整体极小点,称 $f(x^*)$ 是(MP)的严格整体最优值或严格整体极小值。

3.3 整数规划

3.3.1 基本模型

在某些线性规划问题中,变量只有取整数值才有意义。

一般整数规划:

$$\min c^{\mathsf{T}} x$$

$$s.t. \begin{cases} Ax \ge b \\ x_i = 0,1; i = 1,2,...,n \end{cases}$$

混合整数规划:

$$\min c^{T} x$$

$$\int Ax \ge b$$

$$s.t. \begin{cases} x \ge 0 \\ x_{i}$$
 为整数, $i = 1, 2, ..., p$

3.3.2 常用求解方法

- ▶ 分支定界:对有约束条件的最优化问题的可行解空间恰当地进行系统搜索。 把全部可行解空间反复地分割为越来越小的子集,称为分支;并且对每个子 集内的解集计算一个目标下界,这就是定界。在每次分支后,凡是界限不优 于已知可行解集目标值的那些子集不再进一步分支。
- ▶ 割平面法:
- ▶ 隐枚举法
- ▶ 匈牙利法
- ▶ 蒙特卡罗法

3.3.3 例题

3.4 动态规划

3.4.1 基本概念

动态规划本质上是多阶段决策过程:

1.阶段:

把一个问题的过程,恰当地分为若干个相互联系的阶段,以便于按一定的次序去求解。

描述阶段的变量称为阶段变量。阶段的划分,一般是根据时间和空间的自然特征来进行的,但要便于问题转化为多阶段决策。、

2、状态:

表示每个阶段开始所处的自然状况或客观条件。通常一个阶段有若干个状态,描述过程状态的变量称为状态变量。

3、决策:

表示当过程处于某一阶段的某个状态时,可以作出不同的决定,从而确定下一阶段的状态,这种决定称为决策。

4、策略:

是一个按顺序排列的决策组成的集合。在实际问题中,可供选择的策略有一定的范围,称为允许策略集合。从允许策略集合中找出达到最优效果的策略称为最优策略。

5、状态转移方程:

是确定过程由一个状态到另一个状态的演变过程,描述了状态转移规律。

6、指标函数和最优值函数:

用来衡量所实现过程优劣的一种数量指标,为指标函数。指标函数的最优值, 称为最优值函数。在不同的问题中,指标函数的含义是不同的,它可能是距离、 利润、成本、产量或资源消耗等。

3.4.2 例题

3.5 真题

1. (P88)

- ◆ **定理1(必要条件)** 设函数 f(x)定义在 S 属于 R^n 上且可导, x*是 S 的一个内点, 若 x*是 f(x)的一个极小点,则梯度为零,满足的点称为稳定点或驻点。
- ✓ 定理 2 (充分条件) 设函数 f(x)是定义上的二阶连续可微实函数, x*是 S 的一个内点, 若梯度为零且在 x*的海塞矩阵正定,则 f(x)在 x*处取严格 极小值。

2. (整数规划、背包问题)

某人出国留学整理行李,现有三个旅行包,容积大小分别为 10L,15L 和 20L。根据需要列出需带物品清单,其中必带物品有 7 件,其体积分别为 4、3、1.5、2.5、4.5、7.6、1.9。尚有 10 件可带可不带的物品,如果不带将在目的地购买,这些物品的体积和价格如下表。建立数学规划模型,以给出合理的安排方案把物品放在三个旅行包。(只写出建模过程以及模型,不要求具体求解)

物品	1	2	3	4	5	6	7	8	9	10
体积	2	3.5	5	4.3	3.2	1.2	7	4.2	2.5	1
价格	15	45	100	70	50	75	200	90	20	30

4 回归分析

4.1 线性回归分析

4.1.1 基本概念和前提条件

简单线性回归: 只包含两个有"依存关系"的变量,一个变量(反应变量) 随另一个变量(解释变量)的变化而变化,且呈直线变化趋势;当涉及多个自变量时称为多重线性回归。

前提条件:

- 1. 线性: X 依次增加或减少一个单位, Y 的平均改变量保持不变。(dY=c)
- 2. 独立性:任意两观察值相互独立
- 3. 正态性:给定 X, Y 的取值服从正态分布
- 4. 等方差性:对应不同 X 值, Y 值的总体变异相同

4.1.2 简单线性回归模型

总体线性回归方程一般表达式为:

$$\mu_{Y|X} = \alpha + \beta X$$

 α 为回归直线在 Y 轴上的**截距**,统计学意义为 X=0 时所估计出 Y 的平均水平; β 为在**总体回归系数**,即**直线斜率**。

样本线性回归方程:

$$\hat{Y} = a + bX$$

简单线性回归方程:

$$Y = \alpha + \beta X + \varepsilon$$

其中 $\varepsilon \sim N(0, \sigma^2)$,并称 $Y - \hat{Y}$ 为残差

4.1.3 最小二乘估计

找一条直线,使得实测点至该直线的纵向距离 $(残差Y-\hat{Y})$ 的平方和最小,此平方和称为残差平方和,记为 $SS_{\rm RE}$

$$b = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sum (X - \overline{X})^2}, a = \overline{Y} - b\overline{X}$$

4.1.4 回归系数的假设检验

- ①检验回归模型是否成立(方差分析)②检验总体回归系数 β 是否为零(t 分布)
 - 1) 总变异的分解:

$$v_{\triangle} = n-1, v_{\Box\Box} = 1, v_{\Xi} = n-2$$

$$SS_{\ddot{x}} = \sum (Y - \overline{Y})^2$$

$$SS_{\text{RE}} = \sum (Y - \hat{Y})^2$$

 $SS_{\text{\tiny DL}} = \sum (\hat{Y} - \overline{Y})^2$,回归平方和越大,回归效果越好

2)回归模型的假设检验(F检验)

$$F = rac{SS_{\mathrm{回归}} / v_{\mathrm{回归}}}{SS_{\mathrm{残差}} / v_{\mathrm{st}}} = rac{MS_{\mathrm{回归}}}{MS_{\mathrm{戎\&}}}$$

3) 回归系数的假设检验(t 统计量)

$$\begin{split} H_0: \beta &= 0; H_1: \beta \neq 0; \alpha = 0.05 \\ t &= \frac{b-0}{S_b}, v = n-2 \\ S_b &= \frac{S_{Y,X}}{\sum (X - \overline{X})^2} \\ S_{Y,X} &= \sqrt{\frac{SS_{\% / \overline{Z}}}{n-2}} \end{split}$$

在简单线性回归模型中, $t = \sqrt{F}$

4)总体回归系数的区间估计

$$b \pm t_{\alpha/2,\nu} S_b$$

5)决定系数

$$R^2 = \frac{SS_{\Box \Box}}{SS_{\Leftrightarrow}}$$

6) 预测个体的容许区间

$$\hat{Y} \pm t_{\alpha/2, n-2} S_Y$$

$$S_{Y} = S_{Y, X} \sqrt{1 + \frac{1}{n} + \frac{(X_{i} - \overline{X})^{2}}{\sum (X - \overline{X})^{2}}}$$

7) 预测均数的置信区间

$$\hat{Y} \pm t_{\alpha/2,n-2} S_{\hat{Y}}$$

$$S_{\hat{Y}} = S_{Y, X} \sqrt{\frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum (X - \overline{X})^2}}$$

- 4.1.5 多重线性回归与相关分析
- 1. 多种线性回归模型

$$Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + \beta_k x_{ki} + \varepsilon_i$$

2.多种线性回归方程

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \ldots + b_k x_k$$

3.数据标准化

$$X_i^* = \frac{X_i - \overline{X}_i}{S_i}$$

4.标准化偏回归系数

指消除了因变量 y 和自变量 x1, x2, \cdots xn 所取单位的影响之后的回归系数, 其绝对值的大小直接反映了 xi 对 y 的影响程度。

4.2 二分类 logistic 回归模型

4.3 真题

- (1) 线性回归分析的前提条件是什么?
- (2) 在多重线性回归分析中,当自变量存在较强的相关性时,发现多重共线性现象,如何判断和处理多重共线性?

5 模糊数学

1965 年,美国控制论专家(考)<u>扎德 Zadeh(LotfiA. Zadeh)教授</u>在InformationandControl杂志上发表了题为 FuzzySets 的论文,提出用"隶属函数"来描述现象差异的中间过渡,从而突破了经典集合论中属于或不属于的绝对关系。Zadeh 教授这一开创性的工作,标志着数学的一个新分支——模糊数学的诞生。

5.1 模糊集的基本概念

5.1.1 模糊子集和隶属函数

设 U 是论域, 称映射

$$A(x): U \to [0,1]$$

确定了一个 U上的模糊子集 A,映射 A(x)称为 A 的隶属函数,它表示 x 对 A 隶属程度. (隶属函数求的是论域元素的隶属度)

使 A(x)=0.5 的点 x 称为 A 的过渡点,此点最具模糊性. 当映射 A(x) 只取 0 或 1 时,模糊子集 A 就是经典子集。

模糊集合 A 可以表示为:

$$A = \frac{\mu A(x_1)}{x_1} + \frac{\mu A(x_2)}{x_2} + \dots + \frac{\mu A(x_n)}{x_n}$$

5.1.2 隶属函数的确定方法(写三种)

- ✓ 模糊统计方法
- ✓ 三分法
- ✓ 德尔菲法(专家评分法)
- ✓ 指派方法
- ✓ 其他方法

5.2 模糊矩阵及运算性质

5.2.1 模糊矩阵

设 R= (r_{ij}) m×n,若 0 $\leq r_{ij} \leq$ 1,则称 R 为模糊矩阵.当 r_{ij} 只取 0 或 1 时,称 R

为布尔(Boole)矩阵.当模糊方阵 $R=(r_{ij})n\times n$ 的对角线上的元素 r_{ij} 都为 1 时,称 R 为模糊自反矩阵.

5.2.2 模糊矩阵间的关系及并、交、余运算

设
$$A=(a_{ij})_{m\times n}$$
, $B=(b_{ij})_{m\times n}$ 都是模糊矩阵,定义相等: $A=B\Leftrightarrow a_{ij}=b_{ij}$;
包含: $A\leq B\Leftrightarrow a_{ij}\leq b_{ij}$;
并: $A\cup B=(a_{ij}\vee b_{ij})_{m\times n}$;
交: $A\cap B=(a_{ij}\wedge b_{ij})_{m\times n}$;
余: $A^c=(1-a_{ij})_{m\times n}$.

例 3 (P292)

例3 设
$$A = \begin{pmatrix} 0.1 & 0.3 \\ 0.2 & 0.1 \end{pmatrix}, B = \begin{pmatrix} 0.2 & 0.1 \\ 0.3 & 0.2 \end{pmatrix},$$
 则
$$A \cup B = \begin{pmatrix} 0.2 & 0.3 \\ 0.3 & 0.2 \end{pmatrix}, A \cap B = \begin{pmatrix} 0.1 & 0.1 \\ 0.2 & 0.1 \end{pmatrix}, A^c = \begin{pmatrix} 0.9 & 0.7 \\ 0.8 & 0.9 \end{pmatrix}$$

5.2.3 模糊矩阵的合成(考)

设
$$A = (a_{ik})_{m \times s}, B = (b_{kj})_{s \times n},$$
 称模糊矩阵
$$A^{\circ} B = (c_{ij})_{m \times n},$$
 为 $A = B$ 的合成,其中 $c_{ij} = \bigvee \{(a_{ik} \land b_{kj}) \mid 1 \le k \le s\}$.

例 4 (P293)

设
$$A = \begin{pmatrix} 0.4 & 0.7 & 0 \\ 1 & 0.8 & 0.5 \end{pmatrix}, B = \begin{pmatrix} 1 & 0.7 \\ 0.4 & 0.6 \\ 0 & 0.3 \end{pmatrix},$$
 則 $A \circ B = \begin{pmatrix} 0.4 & 0.6 \\ 1 & 0.7 \end{pmatrix}, B \circ A = \begin{pmatrix} 0.7 & 0.7 & 0.5 \\ 0.6 & 0.6 & 0.5 \\ 0.3 & 0.3 & 0.3 \end{pmatrix}$

5.2.4 模糊矩阵的 λ-截矩阵 (考)

 $\partial A = (a_{ij})_{m \times n},$ 对任意的 $\lambda \in [0, 1],$ 称 $A_{\lambda} = (a_{ij}^{(\lambda)})_{m \times n},$ 为模糊矩阵A的 $\lambda -$ 截矩阵, 其中 当 $a_{ij} \geq \lambda$ 时, $a_{ij}^{(\lambda)} = 1;$ 当 $a_{ij} < \lambda$ 时, $a_{ij}^{(\lambda)} = 0.$ 显然,A的 $\lambda -$ 截矩阵为布尔矩阵.

例 (P294)

$$\mathbf{A} = \begin{pmatrix} 1 & 0.5 & 0.2 & 0 \\ 0.5 & 1 & 0.1 & 0.3 \\ 0.2 & 0.1 & 1 & 0.8 \\ 0 & 0.3 & 0.8 & 1 \end{pmatrix}, \quad \mathbf{A}_{0.3} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

5.3 模糊综合评价模型

(1) 首先要求出模糊评价矩阵 P, 其中 P_{ij} 表示方案 X 在第i 个目标处于第j 级评语的隶属度,当对多个目标进行综合评价时,还要对各个目标分别加权,设第i 个目标权系数为 W_i ,则可得权系数向量:

$$A = (W_1, W_2, ..., W_n)$$

(2) 综合评判

利用矩阵的模糊乘法得到综合模糊评价向量 $B = A \odot P$ (其中 \odot 为模糊乘法),根据运算 \odot 的不同定义,可得到不同的模型

模型1 M(A, V)——主因素决定型

$$b_j = \max\{(a_i \land p_{ij}) | 1 \le i \le n\} (j = 1, 2, \dots, n)$$

模型2 M(·, V)——主因素突出型`

$$b_j = \max\{(a_i \cdot p_{ij}) | 1 \le i \le n\} (j = 1, 2, \dots, m)$$

模型3 M(·, +) — 加权平均型

$$b_j = \sum (a_i \cdot p_{ij})(j = 1, 2 \cdot \cdot \cdot m)$$

例1: 对某品牌电视机进行综合模糊评价

• 设评价指标集合:

U = {图像,声音,价格};

• 评语集合:

V = {很好, 较好, 一般, 不好};

首先对图像进行评价:

假设有30%的人认为很好,50%的人认为较好,20%的人认为一般,没有人认为不好,这样得到图像的评价结果为

(0.3, 0.5, 0.2, 0)

同样对声音有: (0.4, 0.3, 0.2, 0.1)

对价格为: (0.1, 0.1, 0.3, 0.5)

所以有模糊评价矩阵:

$$P = \begin{pmatrix} 0.3 & 0.5 & 0.2 & 0 \\ 0.4 & 0.3 & 0.2 & 0.1 \\ 0.1 & 0.1 & 0.3 & 0.5 \end{pmatrix}$$

设三个指标的权系数向量:

应用模型1, b_i =max $\{(a_i \land r_{ij})$ 有综合评价结果为:

$$B = A \odot P$$
= (0.3, 0.5, 0.2, 0.2)

归一化, 得: (即将每分量除以分量总和)

$$C = (0.25, 0.42, 0.17, 0.17)$$

所以综合而言, 电视机还是比较好的比重大。

5.4 模糊聚类分析

模糊聚类的基本步骤(课本P300):

第一步:确定分类对象,标定相关的数据,数据标准化。

(P300~301)

第二步:根据原始矩阵建立与其相应的模糊相似矩阵。

(P301~303)

第三步: 在模糊相似关系的基础上建立模糊等价关系, 并进行聚类。 (P303~305)

例3: 环境单位的分类模型 (课本P305)

1. 问题的提出

已知环境质量的好坏是通过空气、水分、土壤、植被四个方面来反映的。现假设有 5 个单位的环境质量数据如下:

$$X = \{I, II, III, IV, V\}$$

其中,I = (5,5,3,2),II = (2,3,4,5),III = (5,5,2,3),IV = (1,5,3,1),V = (2,4,5,1)。请你根据这 5 个单位的环境质量,对这五个地方进行分类。

2. 利用模糊聚类方法建立环境单位的分类模型

为了解决本问题,课本给出了三种不同的方法,即 等价闭包法、最大树法和编网法。

这里只介绍利用"等价闭包法"

首先取c=0.1,用绝对值减数法 (P303 第 1 行)来 建立模糊相似矩阵 $R=\left(r_{ij}\right)_{5\times 5}$,其中

$$r_{ij} = \begin{cases} 1, & i = j; \\ 1 - 0.1 \cdot \sum_{k=1}^{4} |x_{ik} - x_{jk}|, & i \neq j. \end{cases}$$
 ($i, j = 1, 2, 3, 4, 5$)

用绝对值减数法得到的模糊相似矩阵如下:

$$R = \begin{bmatrix} 1 & 0.1 & 0.8 & 0.5 & 0.3 \\ 0.1 & 1 & 0.1 & 0.2 & 0.4 \\ 0.8 & 0.1 & 1 & 0.3 & 0.1 \\ 0.5 & 0.2 & 0.3 & 1 & 0.6 \\ 0.3 & 0.4 & 0.1 & 0.6 & 1 \end{bmatrix}$$

下面利用平方法来求传递闭包(模糊等价矩阵) t(R):

(理论依据见课本 P297 定理 5 以及最后一段)

$$R^{2} = \begin{bmatrix} 1 & 0.3 & 0.8 & 0.5 & 0.5 \\ 0.3 & 1 & 0.2 & 0.4 & 0.4 \\ 0.8 & 0.2 & 1 & 0.5 & 0.3 \\ 0.5 & 0.4 & 0.5 & 1 & 0.6 \\ 0.5 & 0.4 & 0.3 & 0.6 & 1 \end{bmatrix} \Rightarrow R^{4} = \begin{bmatrix} 1 & 0.4 & 0.8 & 0.5 & 0.5 \\ 0.4 & 1 & 0.4 & 0.4 & 0.4 \\ 0.8 & 0.4 & 1 & 0.5 & 0.5 \\ 0.5 & 0.4 & 0.5 & 1 & 0.6 \\ 0.5 & 0.4 & 0.5 & 0.6 & 1 \end{bmatrix}$$

$$\Rightarrow R^8 = \begin{bmatrix} 1 & 0.4 & 0.8 & 0.5 & 0.5 \\ 0.4 & 1 & 0.4 & 0.4 & 0.4 \\ 0.8 & 0.4 & 1 & 0.5 & 0.5 \\ 0.5 & 0.4 & 0.5 & 1 & 0.6 \\ 0.5 & 0.4 & 0.5 & 0.6 & 1 \end{bmatrix}$$

这说明, $t(R) = R^4$ 。

$$0.6 < lpha \le 0.8$$
: $t(R)_{lpha} = egin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ & 1 & 0 & 0 \\ & & & 1 & 0 \\ & & & & 1 \end{bmatrix}$ 此时, X 分为 4 类: $\{I,III\}$, $\{II\}$, $\{IV\}$, $\{V\}$ 。
$$0.5 < lpha \le 0.6$$
: $t(R)_{lpha} = egin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ & & & 1 & 0 \\ & & & & 1 & 1 \\ & & & & 1 \end{bmatrix}$ 此时, X 分为 3 类: $\{I,III\}$, $\{II\}$, $\{IV,V\}$ 。

え値	分类数	聚类结果
$0.8 < \alpha \le 1$	5	$\{I\}$, $\{II\}$, $\{III\}$, $\{IV\}$, $\{V\}$
$0.6 < \alpha \le 0.8$	4	$\{I,III\}$, $\{II\}$, $\{IV\}$, $\{V\}$
$0.5 < \alpha \le 0.6$	3	$\{I,III\}$, $\{II\}$, $\{IV,V\}$
$0.4 < \alpha \le 0.5$	2	$\{I,III,IV,V\}$, $\{II\}$
$0 < \alpha \le 0.4$	1	$\{I,II,III,IV,V\}$

5.4 真题

设论域 $U = \{x_1, x_2, ..., x_n\}$, 且 U 上的模糊集合 A 和 B 分别为

$$A = \frac{0.5}{x_1} + \frac{0.3}{x_2} + \frac{0.4}{x_3} + \frac{0.2}{x_4}, B = \frac{0.2}{x_1} + \frac{0}{x_2} + \frac{0.6}{x_3} + \frac{1}{x_4}$$

求出 $A \cup B$, A B, A^C

6 神经网络

人工神经元网络,简称神经网络,是一种旨在模仿人脑结构及其功能的信息处理系统,是由大量的人工神经元按照一定的拓扑结构广泛互连形成的,并按照一定的学习规则,通过对大量样本数据的学习和训练,把网络掌握的人工神经元网络,简称神经网络,是一种旨在模仿人脑结构及其功能的信息处理系统,是由大量的人工神经元按照一定的拓扑结构广泛互连形成的,并按照一定的学习规则,通过对大量样本数据的学习和训练,把网络掌握的"知识"以神经元之间的连接权值和阈值的形式储存下来,利用这些以神经元之间的连接权值和阈值的形式储存下来,利用这些"知识"可以实现某种人脑功能的推理机。

6.1 神经网络三要素(考)

- (1) 构成神经网络的基本单元——神经元;
- (2) 神经元之间的连接方式——神经网络的拓扑结构
- (3)用于神经网络学习和训练,修正神经元之间的连接权值和阈值的用于神经网络学习和训练,修正神经元之间的连接权值和阈值的**学习规则**。

常用的转移函数有:

(1) 阈值函数
$$f(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

(2) 线性函数
$$f(x) = kx$$

(3) 对数Sigmoid函数
$$f(x) = \frac{1}{1 + e^{-x}}$$

(4) 对数Sigmoid函数
$$f(x) = \tanh(x) = \frac{1 - e^{-x}}{1 + e^{-x}}$$

(5) 高斯函数
$$f(x) = e^{-x^2/\delta^2}$$

6.2 拓扑结构 (考)

(1) 层次型拓扑结构

(2) 互连型拓扑结构

6.3 学习规则(考)

- ✔ 有导师学习(有监督学习)
- ✔ 无导师学习(无监督学习)
- ✔ 死记式学习

6.4 常用神经网络

一种是基于误差反传算法的前馈神经网络,即 BP 神经网络,主要用来实现非线性映射;(有监督学习)

另一种是自组织神经网络,例如,主要用来实现非线性映射;另一种是自组织神经网络,例如自组织特征映射(SOM)主要用来聚类和模式识别。(无监督学习)

真题:论述 BP 神经网络和 SOM 神经网络的主要功能和应用领域。

7图论

7.1 真题

1.具有 n 个顶点的有向图至少应有 n 条边才能确保是强连通图。

2.某个城市有 V1,V2, V3 和 V4 共 4 个区,如图所示,现在要在该城建一个消防站为 4 个区服务,问应设在那个区使得 4 个区离消防站之和最近。

7.2 定义和术语

无向图

路径: 在无向图 G=(V,{E})中由顶点 v 至 v ''的顶点序列。

回路或环:第一个顶点和最后一个顶点相同的路径。

简单回路或简单环:除第一个顶点和最后一个顶点之外,其余顶点不重复出现的回路。

连通: 顶点 v 至 v ''之间有路径存在

连通图: 无向图图 G 的任意两点之间都是连通的,则称 G 是连通图。

连通分量: 极大连通子图

有向图

路径: 在有向图 $G=(V,\{E\})$ 中由顶点 V 经有向边至 V' 的顶点序列。

回路或环:第一个顶点和最后一个顶点相同的路径。

简单回路或简单环:除第一个顶点和最后一个顶点之外,其余顶点不重复出现的回路。

连通: 顶点 v 至 v ''之间有路径存在

强连通图:有向图图 G 的任意两点之间都是连通的,则称 G 是强连通图。

强连通分量:极大连通子图

生成树:极小连通子图。包含图的所有 n 个结点,但只含图的 n-1 条边。在生成树中添 加一条边之后,必定会形成回路或环,但是含有 n-1 条边的图不一定是生成树

完全 图: 有 n(n-1)/2 条边的无向图。其中 n 是结点个数。

有向完全图: 有 n(n-1) 条边的有向图。其中 n 是结点个数。

边的权值,边有权的图称之为网络。

邻接点:边用顶点的无序偶对(vi, vi)来表示,称顶点 vi 和顶点 vi 互为邻接

点

稠密图、稀疏图。若一个图接近完全图,称为稠密图;称边数很少的图为稀疏图

无向图结点的度:指依附于某顶点 v 的边数 记为 TD (v)

有向图结点的出度和入度:顶点v的入度是指以顶点为终点的弧的数目。记为ID(v)

n个顶点的图中顶点度和边的关系:

$$2e = \sum_{i=1}^{n} TD(v_{i})$$

7.3 最短路径算法

7.3.1 Dijkstra 算法

按距 u 从近到远为顺序,依次求得 u0 到图 G 的各顶点的最短路和距离,直至顶点 v(或直至图 G 的所有顶点)。

步骤①:把结点集 V 分割为二子集 S,T.开始时 S={a},T=V-S.

步骤②:对每结点 t 属于 T,求出 D(t)之后再定出 x 属于 T 使得 $D(x)=\min\{D(x)|t$ 属于 T}.

步骤③:置 S 为 S \cup {x}置 T为T-{x}.若 T=空集 则停止,否则转步骤②作下一次循环.

7.3.2 Floyed 算法

2、每一对顶点之间的最短路径: Floyd 算法

• 实例及求解过程:

Floyd 算法的求解过程

设 C 为 n 行 n 列的代价矩阵, c[i,j]为 i---> j 的权值。如果 i=j; 那么 c[i,j]=0。如果 i 和 j 之间无有向边;则 c[i,j]=∞

- 1、使用 n 行 n 列的矩阵 D 用于计算最短路径。 初始时, D[i,j] = c[i,j]
- 2、进行 n 次迭代 在进行第 k 次迭代时,我们将使用如下的公式。

$$D_{k}[i,j] = M \text{ IN } \begin{cases} D_{k-1}[i,j] \\ \\ \\ d_{k-1}[i,k] + d_{k-1}[k,j] \end{cases}$$

注意: 第 k 次迭代时,针对结点 k 进行。原 dk-1 矩阵的第 k 行,第 k 列保持不变。左上至右下的对角线元素也不变。

请看实例: 注意: $k=0\sim (n-1)$ 。如在由 D初值得到 D_0 时, 原D初值的第0行,第0列不变,仍反应在 D_0 中。

7.4 例题

中心问题:有些公共服务设施(例如一些紧急服务型设施如急救中心、消防战等)的选址,要求网络中最远的被服务点距离服务设施的距离尽可能小。例如:某城市要建立一个消防站,为该市所属的七个区服务,如下图所示。问应设在那个区,才能使它至最远区的路径最短。

解: (1) 用 Floyd 算法求出距离矩阵 $D = (d_{ij})_{v \times v}$:

$$D = \begin{pmatrix} 0 & 3 & 5 & 10 & 7 & 5.5 & 7 \\ 3 & 0 & 2 & 7 & 4 & 2.5 & 4 \\ 5 & 2 & 0 & 5 & 2 & 4.5 & 6 \\ 10 & 7 & 5 & 0 & 3 & 7 & 8.5 \\ 7 & 4 & 2 & 3 & 0 & 4 & 5.5 \\ 5.5 & 2.5 & 4.5 & 7 & 4 & 0 & 1.5 \\ 7 & 4 & 6 & 8.5 & 5.5 & 1.5 & 0 \end{pmatrix}$$

(2) 计算在各点 v_i 设立服务设施的最大服务 距离 $S(v_i)$

$$S(v_i) = \max_{1 \le j \le \nu} \{d_{ij}\}, \quad i = 1, 2, ..., \nu$$

有: $S(v_1) = 10$, $S(v_2) = 7$, $S(v_3) = 6$, $S(v_4) = 8.5$, $S(v_5) = 7$, $S(v_6) = 7$, $S(v_7) = 8.5$.

(3) 求出顶点 v_k ,使 $S(v_k) = \min_{1 \le i \le \nu} \{S(v_i)\}$,则 v_k 就是要求的建立消防站的地点。因为 $S(v_3) = 6$ 最小,故应将消防站设在 v_3 处。此点称为图的中心点。

8 层次分析法

运用层次分析法构造系统模型时,大体可以分为以下四个步骤:

- 1. 建立层次结构模型
- 2. 构造判断(成对比较)矩阵
- 3. 层次单排序及其一致性检验
- 4. 层次总排序及其一致性检验

8.1 建立层次结构模型

将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系 分为最高层、中间层和最低层,绘出层次结构图。

最高层:决策的目的、要解决的问题。

最低层:决策时的备选方案。

中间层:考虑的因素、决策的准则。

对于相邻的两层, 称高层为目标层, 低层为因素层。

8.2 构造判断(成对比较)矩阵

判断矩阵元素aii的标度方法

标度	含义
1	表示两个因素相比,具有同样重要性
3	表示两个因素相比,一个因素比另一个因素稍微重要
5	表示两个因素相比,一个因素比另一个因素明显重要
7	表示两个因素相比,一个因素比另一个因素强烈重要
9	表示两个因素相比,一个因素比另一个因素极端重要
2, 4, 6, 8	上述两相邻判断的中值
倒数	因素i与j比较的判断a _{ij} ,则因素j与i比较的判断a _{ji} =1/a _{ij}

$a_{ij} \cdot a_{jk} = a_{ik}, \quad i, j, k = 1, 2, \quad , n$ 满足 的正互反阵 A 称一致阵。

一致阵性质:

- 1.A 的秩为 1, A 的唯一非零特征根为 n
- 2.非零特征根 n 所对应的特征向量归一化后可作为权向量

$$Aw = nw$$

对于不一致(但在允许范围内)的成对比较阵 A, Saaty 等人建议用对应于最大特征根 的特征向量作为权向量 \mathbf{w} ,即

$$Aw = \lambda w$$

8.3 层次单排序及其一致性检验

定理:

- 1.n 阶一致阵的唯一非零特征根为 n
- 2.n 阶正互反阵 A 的最大特征根 >=n, 当且仅当 =n 时 A 为一致阵 定义一致性指标:

$$CI = \frac{\lambda - n}{n - 1}$$

- CI=0,有完全的一致性
- CI 接近于 0, 有满意的一致性
- CI 越大,不一致越严重

随机一致性指标 RI

n	1	2	3	4	5	6	7	8	9	10	11
RI	0	0	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49	1.51

定义一致性比率:

$$CR = \frac{CI}{RI}$$

一般, 当一致性比率 CR<0.1, 不一致程度在容许范围之内。

例:

"选择旅游地"中 准则层对目标的权 向量及一致性检验

最大特征根 2=5.073

准则层对目标的成对比较阵

$$A = \begin{bmatrix} 1 & 1/2 & 4 & 3 & 3 \\ 2 & 1 & 7 & 5 & 5 \\ 1/4 & 1/7 & 1 & 1/2 & 1/3 \\ 1/3 & 1/5 & 2 & 1 & 1 \\ 1/3 & 1/5 & 3 & 1 & 1 \end{bmatrix}$$

权向量(特征向量)w =(0.263,0.475,0.055,0.090,0.110)T

一致性指标
$$CI = \frac{5.073 - 5}{5 - 1} = 0.018$$

随机一致性指标 RI=1.12 (查表)

一致性比率 CR=0.018/1.12=0.016<0.1

通过一致 性检验

正互反阵最大特征根和特征向量的简化计算:

简化计算的思路——一致阵的任一列向量都是特征向量,一致性尚好的正互 反阵的列向量都应近似特征向量,可取其某种意义下的平均。

和法——取列向量的算术平均

例
$$A = \begin{bmatrix} 1 & 2 & 6 \\ 1/2 & 1 & 4 \\ 1/6 & 1/4 & 1 \end{bmatrix}$$
 列向量 $\begin{bmatrix} 0.6 & 0.615 & 0.545 \\ 0.3 & 0.308 & 0.364 \\ 0.1 & 0.077 & 0.091 \end{bmatrix}$ 中 $\begin{bmatrix} 0.587 \\ 0.324 \\ -w \\ 0.089 \end{bmatrix}$ $\lambda = \begin{bmatrix} 1.769 \\ 0.974 \\ 0.268 \end{bmatrix}$ $\lambda = \frac{1}{3} (\frac{1.769}{0.587} + \frac{0.974}{0.324} + \frac{0.268}{0.089}) = 3.009$ 精确结果: $w = (0.588, 0.322, 0.090)^{T}$, $\lambda = 3.010$

8.4 层次总排序及其一致性检验

计算某一层次所有因素对于最高层(总目标)相对重要性的权值, 称为层次总 排序。这一过程是从最高层次到最低层次依次进行的。

$$B$$
 层的层次总排序为: $B_1: a_1b_{11} + a_2b_{12} + a_mb_{1m}$ 即 B 层第 i 个因素对总目 $B_2: a_1b_{21} + a_2b_{22} + a_mb_{2m}$ 标 $\sum_{j=1}^{m} a_jb_{ij}$ 的权值为: $a_1b_{n1} + a_2b_{n2} + a_mb_{nm}$

$$B$$
 层的层次总排序为: $B_1: a_1b_{11} + a_2b_{12} + a_mb_{1m}$ 层第 i 个因素对总目 $B_2: a_1b_{21} + a_2b_{22} + a_mb_{2m}$ $\sum_{i=1}^{m} a_ib_{ii}$

$$B_n: a_1b_{n1} + a_2b_{n2} + a_mb_{nm}$$

ВА	$A_1, A_2, \\ a_1, a_2,$, A _m	B层的层次 总排序
B ₁	b_{11} b_{12}	b_{1m}	$\sum_{\substack{j=1\\m}}^m a_j b_{1j} = b_1$
B_2	b_{21} b_{22}	b_{2m}	$\sum_{j=1}^{m} a_j b_{2j} = b_2$
B_n	b_{n1} b_{n2}	b_{nm}	$\sum_{j=1}^{m} a_{j} b_{nj} = b_{n}$

$$CR = \frac{a_1 C I_1 + a_2 C I_2 + a_m C I_m}{a_1 R I_1 + a_2 R I_2 + a_m R I_m}$$

8.5 例题

旅游问题

(1)建模

 A_1, A_2, A_3, A_4, A_5

分别分别表示景色、费用、 居住、饮食、旅途。

 B_1, B_2, B_3

分别表示苏杭、北戴河、桂林。

(2) 构造成对比较矩阵

$$A = \begin{bmatrix} 1 & \frac{1}{2} & 4 & 3 & 3 \\ \frac{2}{1} & \frac{1}{7} & 7 & 5 & 5 \\ \frac{1}{4} & \frac{1}{7} & 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{5} & 2 & 1 & 1 \\ \frac{1}{3} & \frac{1}{5} & 3 & 1 & 1 \end{bmatrix} \qquad B_1 = \begin{bmatrix} 1 & 2 & 5 \\ \frac{1}{2} & 1 & 2 \\ \frac{1}{5} & \frac{1}{2} & 1 \end{bmatrix}$$

$$B_1 = \begin{vmatrix} 1 & 2 & 5 \\ \frac{1}{2} & 1 & 2 \\ \frac{1}{5} & \frac{1}{2} & 1 \end{vmatrix}$$

$$B_{2} = \begin{bmatrix} 1 & \frac{1}{3} & \frac{1}{8} \\ 3 & 1 & \frac{1}{3} \\ 8 & 3 & 1 \end{bmatrix} \quad B_{3} = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ \frac{1}{3} & \frac{1}{3} & 1 \end{bmatrix} \quad B_{4} = \begin{bmatrix} 1 & 3 & 4 \\ \frac{1}{3} & 1 & 1 \\ \frac{1}{4} & 1 & 1 \end{bmatrix} \quad B_{5} = \begin{bmatrix} 1 & 1 & \frac{1}{4} \\ 1 & 1 & \frac{1}{4} \\ 4 & 4 & 1 \end{bmatrix}$$

(3) 计算层次单排序的权向量和一致性检验

成对比较矩阵 A 的最大特征值 $\lambda = 5.073$

该特征值对应的归一化特征向量

$$\omega = \{0.263, 0.475, 0.055, 0.099, 0.110\}$$

则
$$CI = \frac{5.073 - 5}{5 - 1} = 0.018$$
 $RI = 1.12$

故
$$CR = \frac{0.018}{1.12} = 0.016 < 0.1$$

表明A 通过了一致性验证。

对成对比较矩阵 B_1, B_2, B_3, B_4, B_5 可以求层次总排序的权向量并进行一致性检验,结果如下:

k	1	2	3	4	5
ω_{k1}	0.595	0.082	0.429	0.633	0.166
ω_{k2}	0.277	0.236	0.429	0.193	0.166
ω_{k3}	0.129	0.682	0.142	0.175	0.668
λ_k	3.005	3.002	3	3.009	3
CI_k	0.003	0.001	0	0.005	0
RI_k	0.58	0.58	0.58	0.58	0.58

计算 CR, 可知 B_1, B_2, B_3, B_4, B_5 通过一致性检验。

(4) 计算层次总排序权值和一致性检验

 B_1 对总目标的权值为:

$$0.595 \times 0.263 + 0.082 \times 0.475 + 0.429 \times 0.055 + 0.633 \times 0.099 + 0.166 \times 0.110 = 0.3$$

同理得 $,B_2,B_3$ 对总目标的权值分别为: $0.246,\ 0.456,$ 决策层对总目标的权向量为: $\left\{0.3,\ 0.246,\ 0.456\right\}$

$$\mathbb{Z}$$
 $CR = (0.263 \times 0.003 + 0.475 \times 0.001
 $+ 0.055 \times 0 + 0.099 \times 0.005 + 0.110 \times 0)$
 $/ 0.58 = 0.015 < 0.1$$

故,层次总排序通过一致性检验。

 $\{0.3, 0.246, 0.456\}$ 可作为最后的决策依据。 即各方案的权重排序为 $B_3 > B_1 > B_2$ 又 B_1, B_2, B_3 分别表示苏杭、北戴河、桂林

故最后的决策应为去桂林。

8.6 真题

建立了如下的准则层对目标层O的成对比较矩阵

$$A = \begin{pmatrix} 1 & 1/3 & 2 \\ 3 & 1 & 5 \\ 1/2 & 1/5 & 1 \end{pmatrix}$$

(1) 已知矩阵 A 的最大特征值对应的归一化的特征向量为:

判断 A 的一致性是否可以接受(已知 RI=0。58)

(2) 已知方案层 C1, C2,C3 对准则层 B1,B2,B3 的权向量分别为 (0.105,0.258,0.637),(0.592,0.333,0.075),(0.149,0.066,0.785),据此计算选择何种方案.