

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) **Patentschrift**
(10) **DE 101 00 586 C 1**

(51) Int. Cl. 7:
C 12 N 15/11
C 12 N 15/87
C 12 N 15/63

(53)

(21) Aktenzeichen: 101 00 586.5-41
(22) Anmeldetag: 9. 1. 2001
(43) Offenlegungstag: -
(45) Veröffentlichungstag der Patenterteilung: 11. 4. 2002

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(23) Patentinhaber:
Ribopharma AG, 95447 Bayreuth, DE
(24) Vertreter:
Gaßner, W., Dr.-Ing., Pat.-Anw., 91052 Erlangen

(27) Erfinder:
Kreutzer, Roland, Dr., 95447 Bayreuth, DE; Limmer, Stefan, Dr., 95447 Bayreuth, DE; Rost, Sylvia, Dr., 95447 Bayreuth, DE; Hadwiger, Philipp, Dr., 95447 Bayreuth, DE
(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:
WO 00 44 895 A1

(54) Verfahren zur Hemmung der Expression eines Ziegen
(57) Die Erfindung betrifft ein Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle, umfassend die folgenden Schritte:
Einführen mindestens eines Oligoribonukleotids (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge, wobei das Oligoribonukleotid (dsRNA I) eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur komplementär zum Zielgen ist, und wobei zumindest ein Ende (E1) des Oligoribonukleotids (dsRNA I) einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist.

DE 101 00 586 C 1

DE 101 00 586 C 1

Beschreibung

- [0001] Die Erfindung betrifft ein Verfahren, eine Verwendung, ein Oligoribonukleotid und einen Kit zur Hemmung der Expression eines Zielgens.
- 5 [0002] Aus der WO 99/32619 sowie der WO 00/44895 sind Verfahren zur Hemmung der Expression von medizinisch oder biotechnologisch interessanten Genen mit Hilfe eines doppelsträngigen Oligoribonukleotids (dsRNA) bekannt. Die bekannten Verfahren sind nicht besonders effektiv.
- [0003] Aufgabe der vorliegenden Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es sollen insbesondere ein möglichst wirksames Verfahren, eine möglichst wirksame Verwendung, ein Oligoribonukleotid und ein 10 Kit angegeben werden, mit denen eine noch effizientere Hemmung der Expression eines Zielgens erreichbar ist.
- [0004] Diese Aufgabe wird durch die Merkmale der Ansprüche 1, 36 und 71 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 35, 37 bis 70 und 72 bis 98.
- [0005] Mit den erfundungsgemäß beanspruchten Merkmalen wird überraschender Weise eine drastische Erhöhung der Effektivität der Hemmung der Expression eines Zielgens erreicht. Die genauen Umstände dieses Effekts sind noch nicht 15 geklärt. Es wird angenommen, dass durch die besondere Ausbildung zumindest eines Endes des Oligoribonukleotids die Stabilität desselben erhöht wird. Durch die Erhöhung der Stabilität wird die wirksame Konzentration in der Zelle erhöht. Die Effektivität ist gesteigert.
- [0006] Die Effektivität kann weiter gesteigert werden, wenn zumindest ein Ende zumindest ein nicht nach Watson & 20 Crick gepaartes Nukleotid aufweist. Es können auch beide Enden ungepaarte Nukleotide aufweisen. Eine besondere Erhöhung der Stabilität des erfundungsgemäßen Oligoribonukleotids ist beobachtet worden, wenn das Ende das 3'-Ende eines Strangs der doppelsträngigen Struktur ist.
- [0007] Nach einem weiteren Ausgestaltungsmerkmal wird die Effektivität des Verfahrens erhöht, wenn zumindest ein weiteres, vorzugsweise ein entsprechend dem erfundungsgemäßen Oligoribonukleotid ausgebildetes, Oligoribonukleotid 25 in die Zelle eingeführt wird, wobei ein Strang oder zumindest ein Abschnitt des Strangs der doppelsträngigen Struktur des Oligoribonukleotids komplementär zu einem ersten Bereich des Zielgens ist, und wobei ein Strang oder zumindest ein Abschnitt des Strangs der doppelsträngigen Struktur des weiteren Oligoribonukleotids komplementär zu einem zweiten Bereich des Zielgens ist. Die Hemmung der Expression des Zielgens ist in diesem Fall deutlich gesteigert.
- [0008] Es hat sich weiter als vorteilhaft erwiesen, wenn das weitere Oligoribonukleotid eine doppelsträngige, aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist. Nach einem weiteren Ausgestaltungsmerkmal kann das Oligoribonukleotid und/oder das weitere Oligoribonukleotid auch eine doppelsträngige aus weniger 30 als 25 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweisen.
- [0009] Der erste und der zweite Bereich können abschnittsweise überlappen, aneinandergrenzen oder auch voneinander beabstandet sein.
- [0010] Insbesondere hinsichtlich der Tumortherapie wird eine weitere Steigerung der Effizienz dann beobachtet, wenn 35 die Zelle vor dem Einführen des/der Oligoribonukleotid/e mit Interferon behandelt wird.
- [0011] Die erfundungsgemäßen Oligoribonukleotide können dann besonders einfach in die Zelle eingeschleust werden, wenn sie in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen werden. Es ist auch möglich das/die Oligoribonukleotid/e in virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen einzuschließen.
- 40 [0012] Das Zielgen kann nach einem weiteren Ausgestaltungsmerkmal eine der in dem anhängenden Sequenzprotokoll wiedergegebenen Sequenzen SQ001 bis SQ140 aufweisen. Es kann auch aus der folgenden Gruppe ausgewählt sein: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.
- [0013] Das Zielgen wird zweckmäßiger Weise in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert. Es kann Bestandteil eines Virus oder Viroids, insbesondere eines humanpathogenen Virus oder Viroids, sein. Das Virus oder 45 Viroid kann auch ein tier- oder pflanzenpathogenes Virus oder Viroid sein.
- [0014] Nach einem weiteren Ausgestaltungsmerkmal ist vorgesehen, dass die ungepaarten Nukleotide durch Nukleosidthiophosphate substituiert sind.
- [0015] Die doppelsträngige Struktur der erfundungsgemäßen Oligoribonukleotide kann weiter durch eine chemische 50 Verknüpfung der beiden Stränge stabilisiert werden. Die chemische Verknüpfung kann durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet werden. Es hat sich weiter als zweckmäßig und die Stabilität erhöhend erwiesen, wenn die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden des erfundungsgemäßen Oligoribonukleotids gebildet ist. Weitere vorteilhafte Ausgestaltungen hinsichtlich der chemischen Verknüpfung können den Merkmalen der Ansprüche 23 bis 29 entnommen werden, ohne dass es dafür einer näheren Erläuterung bedarf.
- [0016] Zum Transport der erfundungsgemäßen Oligoribonukleotide hat es sich ferner als vorteilhaft erwiesen, dass diese an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben werden. Das Hüllprotein kann vom Polyomavirus abgeleitet sein. Das Hüllprotein kann insbesondere das Virus-Protein 1 und/oder das Virus-Protein 2 des Polyomavirus enthalten.
- 60 [0017] Nach einer weiteren Ausgestaltung ist vorgesehen, dass bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist. Ferner ist es von Vorteil, dass das/die Oligoribonukleotid/c zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist/sind. Die Zelle kann eine Vertebratenzelle oder eine menschliche Zelle, wobei eine menschliche embryonale Stammzelle oder eine menschliche Keimzelle ausgeschlossen sind, sein.
- [0018] Nach weiterer Maßgabe der Erfindung wird die Aufgabe gelöst durch ein Oligoribonukleotid mit einer doppel-

strängigen, aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildeten Struktur, wobei ein Strang oder zumindest ein Abschnitt des Strangs der doppelsträngigen Struktur komplementär zu einem Zielgen ist, wobei zumindest ein Ende des Oligoribonukleotids zumindest einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist, und wobei die Sequenz des Zielgens eine der im anhängenden Sequenzprotokoll wiedergegebenen Sequenzen SQ001 bis SQ140 ist.

[0019] Wegen der weiteren vorteilhaften Ausgestaltung des Oligoribonukleotids wird auf die vorangegangenen Ausführungen verwiesen.

[0020] Nach weiterer Maßgabe der Erfindung wird die Aufgabe außerdem gelöst durch einen Kit mit einem erfundungsgemäßen Oligoribonukleotid und einem weiteren doppelsträngigen Oligoribonukleotid, wobei das weitere Oligoribonukleotid eine doppelsträngige aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, wobei ein Strang oder zumindest ein Abschnitt eines Strangs der doppelsträngigen Struktur komplementär zum Zielgen ist, und/oder Interferon.

[0021] Die Erfindung wird nachfolgend anhand der Zeichnungen beispielhaft erläutert. Es zeigen:

[0022] Fig. 1a-c schematisch ein erstes, zweites und drittes Oligoribonukleotid und

[0023] Fig. 2 schematisch ein Zielgen.

[0024] Die in den Fig. 1a bis c gezeigten Oligoribonukleotide dsRNA I, dsRNA II und dsRNA III weisen jeweils ein erstes Ende E1 und ein zweites Ende E2 auf. Das erste Oligoribonukleotid dsRNA I und das dritte Oligoribonukleotid dsRNA III weisen an ihren Enden E1 und E2 einzelsträngige aus etwa 1 bis 4 ungepaarten Nukleotiden gebildete Abschnitte auf. Beim zweiten Oligoribonukleotid dsRNA II handelt es sich um ein langes Oligoribonukleotid mit mehr als 49 Nukleotidpaaren.

[0025] In Fig. 2 ist schematisch ein auf einer DNA befindliches Zielgen gezeigt. Das Zielgen ist durch einen schwarzen Balken kenntlich gemacht. Es weist einen ersten Bereich B1, einen zweiten Bereich B2 und einen dritten Bereich B3 auf.

[0026] Jeweils ein Strang S1, S2 und S3 des ersten dsRNA I, zweiten dsRNA II und dritten Oligoribonukleotids dsRNA III ist komplementär zum entsprechenden Bereich B1, B2 und B3 auf dem Zielgen.

[0027] Die Expression des Zielgens wird dann besonders wirkungsvoll gehemmt, wenn die kurzkettigen ersten dsRNA I und dritten Oligoribonukleotide dsRNA III an ihren Enden E1, E2 einzelsträngige Abschnitte aufweisen. Die einzelsträngigen Abschnitte können sowohl am Strang S1, S3 als auch am Gegenstrang oder am Strang S1, S3 und am Gegenstrang ausgebildet sein. Es hat sich weiter gezeigt, dass ab einer bestimmten Länge der Oligoribonukleotide, z. B. ab einer Länge von mehr als 49 Nukleotidpaaren, eine einzelsträngige Ausbildung der Enden E1, E2 weniger stark zur Unterdrückung der Expression des Zielgens beiträgt. Bei langen Oligoribonukleotiden, hier beim zweiten Oligoribonukleotid dsRNA II, ist eine einzelsträngige Ausbildung an den Enden E1, E2 nicht unbedingt erforderlich.

[0028] Die Bereiche B1, B2 und B3 können, wie in Fig. 2 gezeigt, von einander beabstandet sein. Sie können aber auch an einander grenzen oder überlappen.

[0029] Im Falle der einzelsträngigen Ausbildung der Enden E1, E2 sind alle denkbaren Permutationen möglich, d. h. es können ein Ende oder beide Enden des Strangs S1, S2, S3 oder ein Ende oder beide Enden des Gegenstrangs überstehen. Der einzelsträngige Abschnitt kann 1 bis 4 gepaarte Nukleotide aufweisen. Es ist auch möglich, dass ein Ende oder beide Enden E1, E2 mindestens ein nicht nach Watson & Crick gepaartes Nukleotidpaar aufweisen.

Ausführungsbeispiel

[0030] Es wurden aus Sequenzen des Grün-fluoreszierenden Proteins (GFP) der Alge *Aequoria victoria* abgeleitete doppelsträngige RNAs (dsRNAs) hergestellt und zusammen mit dem GFP-Gen in Fibroblasten mikroinjiziert. Anschließend wurde die Fluoreszenzabnahme gegenüber Zellen ohne dsRNA ausgewertet.

Versuchsprotokoll

[0031] Mittels eines RNA-Synthesizer (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen SQ141 und SQ142 ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge (bei SQ142 mit zwei Nukleotiden langen überstehenden Einzelstrangenden) synthetisiert. Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Aufheizen des stöchiometrischen Gemisches der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 90°C und nachfolgendes langsames Abkühlen über 6 Stunden auf Raumtemperatur. Anschließend erfolgte Reinigung mit Hilfe der HPLC. Die so erhaltenen dsRNAs wurden in die Testzellen mikroinjiziert.

[0032] Als Testsystem für diese *in vivo*-Experimente diente die murine Fibroblasten-Zelllinie NIH/3T3. Mit Hilfe der Mikroinjektion wurde das GFP-Gen in die Zellen eingebracht. Die Expression des GFP wurde unter dem Einfluß gleichzeitig mittransfizierter sequenzhomologer dsRNA untersucht. Die Auswertung unter dem Fluoreszenzmikroskop erfolgte 3 Stunden nach Injektion anhand der grünen Fluoreszenz des gebildeten GFP.

Vorbereitung der Zellkulturen

[0033] Die Zellen wurden in DMEM mit 4,5 g/l Glucose, 10% fötalem Rinderserum unter 7,5% CO₂-Atmosphäre bei 37°C in Kulturschalen inkubiert und vor Errichten der Konfluenz passagiert.

[0034] Das Ablösen der Zellen erfolgte mit Trypsin/EDTA. Zur Vorbereitung der Mikroinjektion wurden die Zellen in Petrischalen überführt und bis zu Bildung von Mikrokolonien weiter inkubiert.

Mikroinjektion

[0035] Die Kulturschalen wurde zur Mikroinjektion für ca. 10 Minuten aus dem Inkubator genommen. Es wurde in ca.

DE 101 00 586 C 1

- 50 Zellen pro Ansatz innerhalb eines markierten Bereiches unter Verwendung des Mikroinjektionssystems FemtoJet der Firma Eppendorf, Deutschland, einzeln injiziert. Anschließend wurden die Zellen weitere drei Stunden inkubiert. Für die Mikroinjektion wurden Borosilikat-Glaskapillaren der Firma Eppendorf mit einem Spalteninnendurchmesser von 0,5 µm verwendet. Die Mikroinjektion wurde mit dem Mikromanipulator 5171 der Firma Eppendorf durchgeführt. Die 5 Injektionsdauer betrug 0,8 Sekunden, der Druck ca. 80 hPa. Die in die Zellen injizierten Proben enthielten 0,01 µg/µl pGFP-C1 (Clontech Laboratories GmbH, Heidelberg, Deutschland) sowie an Dextran-70000 gekoppeltes Texas-Rot in 14 mM NaCl, 3 mM KCl, 10 mM KPO₄, pH 7,5. Zusätzlich wurden in ca. 100 pl folgende dsRNAs zugegeben:
 10 Ansatz 1: 10 µM dsRNA (Sequenzprotokoll SQ141); Ansatz 2: 10 µM dsRNA (Sequenzprotokoll SQ142); Ansatz 3: ohne RNA. Die Zellen wurden bei Anregung mit Licht der Anregungswellenlänge von Texas-Rot, 568 nm, bzw. von GFP, 513 nm, mittels eines Fluoreszenzmikroskops untersucht. Die Fluoreszenz aller Zellen im Gesichtsfeld wurde bestimmt und in Relation zur Zelldichte (ausgedrückt durch deren Gesamtproteinkonzentration) gesetzt.

Ergebnis und Schlussfolgerung

- 15 [0036] Bei einer Gesamtkonzentration von 10 µM dsRNA konnte beim Einsatz der dsRNA mit den an beiden 3'-Enden um je zwei Nukleotide überstehenden Einzelstrangbereichen (Sequenzprotokoll SQ142) eine merklich erhöhte Hemmung der Expression des GFP-Gens in Fibroblasten beobachtet werden im Vergleich zur dsRNA ohne überstehende Einzelstrangenden (Tabelle 1).
 20 [0037] Die Verwendung von kurzen (20–25 Basenpaare enthaltenden) dsRNA-Molekülen mit Überhängen aus wenigen, vorzugsweise ein bis drei nicht-basengepaarten, einzelsträngigen Nukleotiden ermöglicht somit eine vergleichsweise stärkere Hemmung der Genexpression in Säugerzellen als mit dsRNAs derselben Anzahl von Basenpaaren ohne die entsprechenden Einzelstrangüberhänge bei jeweils gleichen RNA-Konzentrationen.

Tabelle 1

Ansatz	dsRNA	10 µM
1	SQ141	-
2	SQ142 (überstehende Enden)	++
3	ohne RNA	-

[0038] Die Symbole geben den relativen Anteil an nicht oder schwach fluoreszierende Zellen an (++> 90%; ++60–90%; +30–60%; -< 10%).

40

45

50

55

60

65

DE 101 00 586 C 1

SEQUENZPROTOKOLL

<110> Ribopharma AG

<120> Verfahren zur Hemmung der Expression eines Zielgens

5

<130>

<140>

<141>

10

<160> 142

<170> PatentIn Ver. 2.1

15

<210> 1

<211> 2955

<212> DNA

<213> Homo sapiens

20

<300>

<302> Eph A1

<310> NM00532

25

<300>

<302> ephrin A1

<310> NM00532

<400> 1

atggagcggc gctggccctt ggggcttaggg ctgggtctgc tgctctgcgc cccgctgccc 60
 ccggggcgcc gcgcacaaggaa agttactctg atggacacaaa gcaaggcaca gggagagctg 120
 ggctggctgc tggatccccccc aaaagatggg tggagtgaac agcaacagat actaatggg 180
 acaccctctt acatgtacca ggactgccc atgcaaggac gcagagacac tgaccactgg 240
 cttcgctcca attggatcta cgcggggag gaggttccc gcgtccacgt ggagctgcag 300
 ttcaccgtgc gggactgcaa gagttccctt gggggagccg ggcctctggg ctgcaaggag 360
 accttcaacc ttctgtacat ggagagtgc caggatgtgg gcatctcgat cgcacggccc 420
 ttgtttccaga agttaaccac ggtggctgca gaccagagct tcaccattcg agaccttgcg 480
 tctggctccg taaagctgaa tggagctgc tgctctctgg gccgcctgac cgcgcgtggc 540
 ctctaccctcg ctttccacaa cccgggtgcc ttgtgtggcc ttgtgtctgt cgggtcttc 600
 taccagcgct gtcttgagac cctgtatggc ttggcccaat tcccagacac tctgcctggc 660
 cccgcgtggg tggatggaaat ggcgggcacc tgcttgcctt acgcgcgggc cagccccagg 720
 ccctcagggtg caccggccat gcactgcgc cctgtatggcg agtggctgtt gcctgttagga 780
 cgggtccact gtgagcttgg ctatgaggaa ggtggcgtg gcaagacat tggtgcctgc 840
 cctagcggct cttaccggat ggacatggac acacccattt gtctcacgtg ccccccagcag 900
 agcaactgctg agtctgaggg ggcaccatc tgtaacctgtg agagcggcca ttacagact 960
 cccggggagg gcccccaaggat ggcattgcaca ggtttccctt cggcccccgg aaacctgagc 1020
 ttctctgcctt caggactca gctctccctg cgttggaaac ccccaagcaga tacgggggaa 1080
 cgccaggatg tcagatacag tggagggtg tcccaatgtc agggcacatc acaggacggg 1140
 gggccctgcc accctgtgg ggtgggtcg cacttctcgcc cggggggcccg ggcgttcacc 1200
 acacccatcg tgcattgtcaa tggcttggaa ccttatgcca actacacccat taatgtggaa 1260
 gccccaaatg gatgttcagg gctgggcage tctggccatg ccagcacccatc agtcacatc 1320
 agcatggggc atgcagatgc actgtcaggc ctgtctctgtg gacttgtgaa gaaagaaccg 1380
 aggcaacttag agtgcacccgt ggcgggggtcc cggcccccggaa gcccctgggc gaacctgacc 1440
 tatgagctgc acgtgtcgaa ccaggatgaa gaacggtacc agatggttt agaaccagg 1500
 gtcttgcgtg caagatgtgc acgtgcaccc acatacatcg tcagatccg aatgtgacc 1560
 ccactgggtc ctggccctttt ctccccatgtgat catgagttt ggaccaggccc accagtgtcc 1620
 agggccctga ctggaggaga gattgtagcc gtcatcttg ggctgtgtct tggtgcagcc 1680

60

65

DE 101 00 586 C 1

ttgcgtcttg ggattctcgt tttccgggtcc aggagagccc agcggcagag gcagcaggagg 1740
 cacgtgaccg cgccacccat gtggatcgag aggacaagct gtgctgaagc ctatgtgg 1800
 acctccaggc atacgaggac cctgcacagg gaggcttggc ctttacccgg aggctggct 1860
 aatttcctt cccgggagct tgatccagcg tggctgtatgg tggacactgt cataggagaa 1920
 ggagagttt gggaaagtgtta tcgagggacc ctcaggctcc ccagccagga ctgcaagact 1980
 gtggccatta agaccttaaa agacacatcc ccaggtggcc agtgggtggaa cttccttcga 2040
 gaggcaacta tcatgggcca gtttagccac ccgcataattc tgcacatgttga aggctgcgtc 2100
 acaaagcgaa agccgatcat gatcatcaca gaattttatgg agaatgcgc cctggatgcc 2160
 ttccgtgggg agcgggagga ccagctggc cctgggcagc tagtggccat gtcgcagggc 2220
 atagcatctg gcatgaacta ctcagtaat cacaattatg tccaccggga cttggctgcc 2280
 agaaaacatct tggtgaatca aaacctgtgc tgcaaggtgt ctgactttgg cctgactcgc 2340
 ctccgtgatg actttgtatgg cacatacga acccaggggag gaaagatccc tatccgttgg 2400
 acagccccctg aagccatttc ccatcggttccatccacag ccagcgatgt gttggagcttt 2460
 gggatttgta tggggaggt gctgagctt ggggacaagg cttatggggaa gatgagcaat 2520
 caggaggta tgaagagcat tgaggatggg taccgggtgc cccctctgt ggactgcct 2580
 gcccctctgt atgagctcat gaagaactgc tgggcataatg accgtggcccg cccggccacac 2640
 ttccagaagc ttccaggcaca tctggagcaa ctgcttgcca accccccactc cctcgccgacc 2700
 attgccaact ttgaccccaag ggtgactctt cgcctgcccgc gcctgagtgg ctcagatggg 2760
 atcccgatctt gaaccgtctc ttagtggctc gagtccataac gcatgaaacg ctacatctgt 2820
 cactccact cggctgggtt ggacaccatg gagttgtgtgc tggagctgac cgctgaggac 2880
 ctgacgcaga tggaaatcac actgccccggg caccagaagc gcatttttg cagtattcag 2940
 ggattcaagg actga 2955

 <210> 2
 <211> 3042
 <212> DNA
 <213> Homo sapiens

 <300>
 <302> ephrin A2
 <310> XM002088

 <400> 2
 gaagttgcgc gcaggccggc gggcgggagc ggacacccag gcccggctgc aggctgcgg 60
 gtgtcgaaaa gcccggctcg gggggatcggtt accggagagcg agaagcgcgg catggagctc 120
 caggcagggc gcccgtctgg cgcctgtgtt tggggctgtg cgctggccgc ggccggggcg 180
 gcgcaaggca aggaagtgtt actgtggac tttgtgtcag ctggaggggg gctggctgg 240
 ctcacacacc cgtatggcaa agggtggac ctgtgcaga acatcatgaa tgacatgcgc 300
 atctacatgt actccgtgtt caacgtatg tctggccacc accgacaactg gctccgcacc 360
 aactgggtgt accggaggaga ggctgagctt atcttcattt agctcaagtt tactgtacgt 420
 gactgcaaca gttccctgg tggcggccagc tcttgcagg agactttcaa cctctactat 480
 gccgagtcgg acctggacta cggcaccaccc tttccagaagc gcctgttcac caagatttgc 540
 accattgcgc ccatgtatgat caccgtcagc agcgacttcg aggccaccca cgtgaagctg 600
 aacgtggagg agcgctccgt gggccgctc acccgcaaaag gtttctacct ggcctccag 660
 gatatacggtg cctgtgtggc gctgtctcc gtcctgttct actacaagaa gtgccccggag 720
 ctgctgcagg gcctggccca cttccctgtt accatgcgcg gctctgtatgc accttccctg 780
 gccactgtgg cccggcaccctg tttggacccatg gccgtgggtgc caccgggggg tgaagagccc 840
 cgtatgtact gtgcagtggaa tggcggacttgg ctgggtccccca ttggggcagtg cctgtggccag 900
 gcagggctacg aagaagggttggaa ggatgcgtc caggcctgtt cgcctggatt ttttaagttt 960
 gaggcatctg agagccccctg cttggatgtc cttggacaca cgtgtccatc ccctgagggt 1020
 gccacccctt gggagggtgtt ggaaggcttc ttccggggcac ctcaggacc accgtgcgtat 1080
 ccttgcacac gaccccccctc cggccacac tacctcacaag cctgtggcat ggggtccaaag 1140
 gtggagctgc gctggacccc ccctcaggac agcggggggcc gcgaggacat tttttacacgc 1200
 gtcacactcg aacagtgttgc gcccggatctt gggaaatgcg gggccgtgtga ggcaggatgt 1260
 cgctactcg gacccctctca cggactgacc cgcaccatgt tgacagttag cgcacccatgg 1320
 cccacatgtt actacacccat caccgtggag gcccgcataatg gctgtctcagg ccttqtaacc 1380

DE 101 00 586 C 1

agccgcagct tccgtactgc cagtgtcagc atcaaccaga cagagcccccc caaggtgagg 1440
 ctggagggcc gcagcaccac ctcgcttagc gtcctcgga gcatcccccc gccgcagcag 1500
 agccgagtgt ggaagtacga ggtcaattac cgcaagaagg gagactccaa cagactacaat 1560
 gtgcggcga ccgagggttt ctccgtgacc ctggacgacc tgccccaga caccacctac 1620
 ctggtccagg tgcaggcact gacgcaggag gcccaggggg cggcagcaa ggtgcacgaa 1680
 ttccagacgc tgtccccgga gggatctggc aacttggcgg tgattggcgg cgtggctgc 1740
 ggtgtggtcc tgcttctggt gctggcagga gttggcttct ttatccaccc cagaggaag 1800
 aaccacgtg cccgcccagtc cccggaggac gtttacttct ccaagtcaaga acaactgaag 1860
 cccctgaaga catacgtgga ccccccacaca tatgaggacc ccaaccaggc tgttgtgaag 1920
 ttcaactaccg agatccatcc atcctgtgtc actcggcaga aggtgatcgg agcaggagag 1980
 tttggggagg tgtacaaggg catgtcaag acatcctcg ggaagaagga ggtgcgggtg 2040
 gccatcaaga cgctgaaaggc cggctacaca gagaaggcgc gagtggactt cctcggcag 2100
 gccgcacca cggccaggat cagccaccac aacatcatcc gcctagaggg cgtcatctcc 2160
 aaatacaagc ccatgtatcatc tacactgtag tacatggaga atggggccct ggacaagttc 2220
 cttcgggaga aggatggcga gttcagcgtg ctgcagctgg tgggcatgt gggggcattc 2280
 gcagctggca tgaagtacct ggccaacatg aactatgtgg accgtgaccc ggctggccgc 2340
 aacatcctcg tcaacagcaa cctggcttcg aagggtgtcg actttggctt gtcccgctg 2400
 ctggaggacg accccggggc cacctacacc accagtggcg gcaagatccc catccgctgg 2460
 accggcccccgg aggccatttc ctacccgaaatg ttcacctctg ccagcgcacgt gtggagctt 2520
 ggcattgtca tgtgggaggt gatgacccat ggcgagcggc cctactggga gttgtccaaac 2580
 cacgaggta taaaagccat caatgtggc ttccggctcc ccacacccat ggactgcccc 2640
 tccgcacatc accagctcat gatgcagtgc tggcagcagg agcgtgcccc ccgccccaaag 2700
 ttgcgtgaca tcgtcagcat cctggacaag ctcatcgatc cccctgactc cctcaagacc 2760
 ctgggtgact ttggggggggc cgtgtctatc cggctcccca gcacgagcgg ctcggagggg 2820
 gtgccttcc gcacgggtgc cgagtggctg gagtccatca agatgcagca gtatacggag 2880
 cacttcatgg cggccggcta cactgcacatc gagaagggtgg tgcagatgac caacgacgac 2940
 atcaagagga ttgggggtcg gctggccggc caccagaagc gcatgccta cagcctgctg 3000
 ggactcaagg accaggtgaa cactgtgggg atccccatct ga 3042

30

<210> 3
 <211> 2953
 <212> DNA
 <213> Homo sapiens

35

<300>
 <302> ephrin A3
 <310> NM005233

40

atggattgtc agctctccat ctcctccctt ctcagctgtc ctgttctcga cagcttcggg 60
 gaactgattc cgcagccttc caatgaagtc aatctactgg attcaaaaaac aattcaaggg 120
 gagctgggtt ggtatcttta tccatcacat ggggtggaaag agatcagtgg tggatgtcaa 180
 cattacacac ccatcaggac ttaccaggatc tgcaatgtca tggaccacag tcaaaacaat 240
 tggctgagaa caaaactgggt ccccaggaaac tcaagtcaga agatttatgt ggagctcaag 300
 ttcactctac gagactgcaat tagcattcca ttggtttttag gaacttgc当地 ggagacattc 360
 aacctgtact acatggagtc tgatgtatcat gatggggatc aatttcgaga gcatcagttt 420
 acaaaggatg acaccatgtc agctgtatc agtttcaatc aaatggatct tggggaccgt 480
 attctgtatc tcaacactgtc gattagagaa gtaggttcgt tcaacaagaa gggattttat 540
 ttggcatttc aagatgttg tgcttgcgtt gccttgggtt ctgtgagatg atacttcaaa 600
 aagtgcctat ttacagtgtc gaatctggc atgtttccat acacggtacc catggactcc 660
 cagtcctgg tggagggttag agggctttgt gtcaacaatt ctaaggagga agatccctca 720
 aggtgtact gcagttacatc agggcgtatgg ctgttgcgtt ttggcaagtg ttccctgcaat 780
 gctggctatc aagaaagagg tttatgtgc caagcttgc gaccagggtt ctacaaggca 840
 ttggatggta atatgtatc tgcttaatgc ccccttcataa gttctactca ggaagatgg 900
 tcaatgtatc gcaggtgtga gaataattac ttccggccatc acaaagaccc tccatccatg 960
 gtttgcgttcc gaccctccatc ttccatccatc aatgttatct ctaatataaa cgagacctca 1020

55

60

DE 101 00 586 C 1

5 gttatccctgg actggaggtt gcccctggac acaggaggcc ggaaagatgt taccttcAAC 1080
 atcatatgtt aaaaatgtgg gtggaatata aaacagtgt agccatgcAG cccaaATGTC 1140
 cgcttcctcc ctgcacagtt tggactcacc aacaccacGG tgacagtgc AGACCTTCTG 1200
 gcacatacta actacacCC ttgagattgtat gccgttaatG gggTGTcAGA gtcgagTC 1260
 ccaccaagac agtttgcTG ggtcagcatC acaactaATC aggctgCTCC atcacCTGTC 1320
 ctgacgatta agaaagatcg gacCCcAGA aatAGcatCT CTTGTCCTG gcaagaACCT 1380
 gaacatccCA atgggatcat attggactac gaggtcaatA actataaaa GCAAGAACAA 1440
 gaaacaagtt ataccatctt gagggcaAGA ggcacAAatG ttaccatcAG tagcCTCAAG 1500
 10 cctgacacta tatacgTATT ccaaATCCGA gcccGAACAG ccgttgATA tgggacGAAC 1560
 agccgcaagt ttgaggTTGA aactagtCCa gacttTTCT ccatCTCTGG tggaaAGTAGC 1620
 caagtggTCa tgatcgCCAT ttcaGCGGA gtagcaATTa ttctCCTCAC tggTGTcATC 1680
 tatgtttGA ttgggaggtt ctgtggCTAT aagtcaAAAC atggggCAGA tggaaaaAGA 1740
 15 cttcattttG gcaatggcA tttaAAACTT ccaggTCTCA ggacttatGT tgacCCACAT 1800
 acatatgaag accctacCCa agctgttCAT gaggTTGCCA aggaatttGGA tgccACCAAC 1860
 atatccATTG ataaAGTTGT tggagcAGGT gatttGGAG aggtgtGCAG tggtcgCTTA 1920
 aaacttcCCTT caaaaaAGA gatttcAGTG gccattAAAC ccctgAAAAGT tggtcacACA 1980
 gaaaAGCAGA ggagagACTT cctgggAGAA gcaAGCATTa tgggacAGT tgaccACCCC 2040
 aatatcATTc gactggAAGG agttgttAcc AAAAGTAAGC cagttatGAT tgcacAGAA 2100
 tacatggaga atggTTcTTT ggatAGTTTC ctacgtAAAC acgatGCCA gttactGTC 2160
 attcagCTAG tggggatGCT tcgagggATA gcatctGGCA tgaagtACCT gtcagacATG 2220
 ggctatgtTC accgagACCT cgctgCTCGG aacatCTTGa tcaacAGTA ctgggtGTG 2280
 aaggtttCTG attcggACT ttccgGTGTC ctggaggATG acccAGAAGC tgcttataCA 2340
 acaagaggAG ggaagatccc aatcaggTGG acatcACCAAG aagctatAGC ctaccGCAAG 2400
 25 ttcacgtcAG ccagcgtATG atggagTTAT gggattGTT tctgggAGGT gatgtCTTAT 2460
 ggagagAGAC catactggGA gatgtccAAAT caggatgtAA ttaaAGCTGT agatgaggGC 2520
 tattcactGC caccCCCCAT ggactGCCA gctgcTTGT atcagctGAT gctggactGC 2580
 tggcagaaAG acaggaACAA cagACCCAAAG ttgagcAGA ttgttagtAT tctggacaAG 2640
 ctatccGGa atccccGGAG cctgaAGATC atcaccAGTG cagccGCAAG gccatCAAAC 2700
 30 ctcttctGG accaaAGCAA tttgatATC tctacCTTC cagcaACAGG tgactggCTT 2760
 aatgggttCC ggacAGCACA ctgcaAGGAA atcttcACGG gctggAGA cagtTCTGT 2820
 gacacaatAG ccaagATTc cacAGatGAC atggaaaaAGG ttggTGTcAC cgtggTTGG 2880
 ccacagaAGA agatcatcAG tagcattAAAG gctctAGAAA cgcaatCAAAG gaatggCCCA 2940
 gttccCGTGT aaa 2953

35 <210> 4
 <211> 2784
 <212> DNA
 40 <213> Homo sapiens

<300>
 <302> ephrin A4
 <310> XM002578

45 <400> 4
 atggatgaaa aaaatacacc aatccGAACC taccAAGTGT gcaatgtGAT ggaacCCAGC 60
 cagaataact ggctacGAAC tgattggATC acccGAGAAG gggctcaAGAG ggtgtatATT 120
 50 gagattaaAT tcacCTTGAAG ggactGCAAT agtcttCCG gctgtatGGG gacttgcAG 180
 gagacgttTA acctgtACTA ctatGAATCA gacaACGACA aagAGCgtTT catcAGAG 240
 aaccAGTTG tcaAAATTGA caccATTGCT gctgtatGAGA gcttcACCCCA agtggACATT 300
 ggtgacAGAA tcatGAAGGT gAACACGGAG atCCGGGATG tagggcATT aagcaAAAG 360
 gggTTTacc tggctttcA ggtatgtGGGG gcctgcATCG ccctggTATC agtccgtGT 420
 ttctataAAA agtgtccACT cacAGTCCGC aatctggccc agtttcTGTa caccatcaca 480
 55 gggctgata cgtctccCT ggtggAAAGTt cgaggctCTC gtgtcaACAA ctcagaAGAG 540
 aaagatgtc cAAAAAtgtA ctgtggggCA gatgttGAAT ggctggTACc cattggcAAC 600
 tgccatGCA acgctggcA tgaggAGCgg agcggAGAAt gccaAGCTG cAAAAttGGA 660
 tattacaagg ctctctccAC ggtatGCCACc tggcCAAGt gcccACCCCA caqctactCT 720

60

65

DE 101 00 586 C 1

gtctggggaa	gaggccaccc	gtgcacctgt	gaccgaggct	ttttcagagc	tgacaacat	780
gctgcctcta	tgcctgcac	ccgtccacca	tctgtcccc	tgaacttgc	ttcaaatgtc	840
aacgagacat	ctgtgaacct	ggaatggagt	agccctcaga	atacaggtgg	ccgcccaggac	900
atttcctata	atgtgtatg	caagaaaatgt	ggagctggt	accccagcaa	gtggcgtccc	960
tgtggaaatg	gggtccacta	caccccacag	cagaatggct	tgaagaccac	caaagtctcc	1020
atcaactgacc	tcctagctca	taccaattac	acctttgaaa	tctgggctgt	aatggagtg	1080
tccaaatata	accctaacc	agaccaatca	gtttctgtca	ctgtgaccac	caaccaagca	1140
gcaccatcat	ccatgtctt	ggtccaggt	aaagaagtca	caagatacag	tgtggactg	1200
gttggctgg	aaccagatcg	gcccaatggg	gtaatcctgg	aatatgaagt	caagtattat	1260
gagaaggatc	agaatgagcg	aagctatcg	atagttcgga	cagctgcccag	gaacacagat	1320
atcaaaggcc	tgaaccctct	cacttccat	gttttccacg	tgcgagccag	gacagcagct	1380
ggctatggag	acttcgtga	gcccctggag	gttacaacca	acacagtgc	ttcccccgtc	1440
atggatgt	gggtaactc	cacagtcctt	ctggctctg	tctcgggca	tgtgggtctg	1500
gtggtaattc	tcatgtcgc	ttttgtcata	agccggagac	ggagtaataa	cagtaaagcc	1560
aaacaagaag	cggatgaaga	gaaacatttg	aatcaagggt	taagaacata	tgtggacccc	1620
tttacgtacg	aagatccaa	ccaagcagt	cgagattt	ccaaagaaat	tgacgcatcc	1680
tgcattaaga	ttgaaaaatg	tataggatg	ggtaatttg	gtgaggtatg	cagtggcgt	1740
ctcaaagtgc	ctggcaagag	agagatctgt	gtggctatca	agactctgaa	agctggttat	1800
acagacaaac	agaggagaga	cttccctgagt	gaggccagca	tcatggaca	gtttgaccat	1860
ccgaacatca	ttcacttgg	aggcgtggc	actaaatgt	aaccagtaat	gatcataaaca	1920
gagttacatgg	agaatggctc	cttggatgca	tccctcagga	aaaatgtatgg	cagatttaca	1980
gtcattcgc	tggggcat	gtttcgtggc	attgggtctg	ggatgaagta	tttatctgtat	2040
atgagctatg	tgcatcgta	tctggccgc	cggaacatcc	tgtgaacag	caacttggtc	2100
tgcaaagtgt	ctgattttgg	catgtcccg	gtgcttgagg	atgtatccgc	agcagettac	2160
accaccaggg	gtggcaagat	tcctatccgg	tggactgc	cagaagcaat	tgcctatctg	2220
aaatttcacat	cagcaagt	tgtatggagc	tatggatcg	ttatgtggga	agtgtatgtc	2280
tacggggaga	ggcccttattg	ggatatgtcc	aatcaagatg	tgattaaagc	cattgaggaa	2340
ggctatcggt	tacccctctt	aatggactgc	cccatgtgc	tccaccagct	gatgttagac	2400
tgctggcaga	aggagaggag	cgacaggct	aaatttggc	agattgtca	catgtggac	2460
aaactcatcc	gcaaccccaa	cagcttgaag	aggacaggga	cggagagctc	cagaccta	2520
actgccttgt	tggatccaag	ctccccctgaa	ttctctgt	tgtatcgt	gggcgtattgg	2580
ctccaggcc	ttaaaatgg	ccggatataag	gataactca	cagctgtgg	ttataccaca	2640
ctagaggctg	tggtgcacgt	gaaccaggag	gacctggca	gaatttggat	cacagccatc	2700
acgcaccaga	ataagatttt	gagcgtgtc	cagggatgc	gaacccaaat	gcagcagatg	2760
cacggcagaa	tggtcccg	ctga				2784

<210> 5
<211> 2997
<212> DNA
<213> Homo sapiens

<300>
<302> ephrin A7
<310> XM004485

```

<400> 5
atggtttttc aaactcggtt cccttcatgg attatTTTtat gctacatctg gctgctccgc 60
tttgcacaca caggggagggc gcaggctgcg aaggaagtac tactgttggaa ttctaaagca 120
caacaaacag agttggagtg gatttccctt ccaccatg ggtggaaaga aatttagtgg 180
ttggatgaga actatacccc gatacgaaca taccagggtgt gccaagtcat ggagcccaac 240
caaacaact ggctcgccgac taactggatt tccaaaggca atgcacaaag gatTTTgtta 300
gaattgaaat tcacccctgag ggattgttaac agtcttccctg gacttactggg aacttgcag 360
ggaaacattt atttgtacta ttatggaaaca gactatgaca ctggcaggaa tataagagaa 420
aacctctatg taaaaataga caccattgtc gcatatgtttt gttttttttttt aggtgacccctt 480
ggtagttatc ttgccttca ggatgttaggg gttttttttttt gtccaaaag 540
ggatttctatc ttgccttca ggatgttaggg gttttttttttt tgtcaaaqtq 600

```

DE 101 00 586 C 1

	tactacaaga	agtgcgtggc	cattattgag	aacttagcta	tctttccaga	tacagtact	660
5	ggttcagaat	tttcctctt	agtcgagggt	cgaggggacat	gtgtcagcg	tgcagggaaa	720
	gaagcggaaa	acgccccca	gatcactgc	agtgcagaag	gagaatgggt	agtgcaccatt	780
	ggaaaatgt	tctgcaaagc	aggctaccag	aaaaaaggag	acacttgta	accctgtggc	840
	cgtgggttct	acaagtcttc	ctctcaagat	cttcagtgc	ctcggtgtcc	aactcacagt	900
10	ttttctgata	aagaagggtc	ctccagatgt	aatgtgaag	atgggttatta	cagggctcca	960
	tctgaccac	catacgttgc	atgcacaagg	cctccatctg	caccacagaa	cctcattttc	1020
	aacatcaacc	aaaccacagt	aagttggaa	tgaggctctc	ctgcagacaa	tggggaaaga	1080
	aacgatgtga	cctacagaat	attgtgtaa	cggtgcagtt	gggagcaggg	cgaatgtgtt	1140
	ccctgtggga	gtaacattgg	atacatgccc	cagcagactg	gattagagga	taactatgtc	1200
15	actgtcatgg	acctgtctgc	ccacgcta	tatactttt	aagttgaagc	tgtaaatggg	1260
	gtttctgact	taagccgatc	ccagaggctc	tttgctgct	tcagtatcac	cactggtcaa	1320
	gcagctccct	cgcaagtgg	tggagtaatg	aaggagagag	tactgcagcg	gagtgtcgag	1380
	ctttcttgc	aggaaccaga	gcatcccaat	ggagtcatca	cagaatatga	aatcaagtat	1440
	tacgagaaag	atcaaaggga	acggacccatc	tcaacagttaa	aaaccaagtc	tacttcagcc	1500
20	tccattaacc	atctgaaacc	aggaacagtg	tatgttttcc	agattcgggc	tttactgtc	1560
	gttggttatg	gaaattacag	tcccagactt	gatgttgc	cactagagga	actacaggt	1620
	aaaatgttt	aagctacagc	tgtctccagt	gaaacagaaatc	ctgttattat	cattgctgtg	1680
	gttgctgtag	ctgggaccat	cattttggtg	ttcatggtc	ttggcttcat	cattgggaga	1740
	aggcactgtg	gttatagcaa	agctgaccaa	gaaggcgatg	aagagcttta	cttctatttt	1800
25	aaatttccag	gcacccaaac	ctacattgac	cctgaaaccc	atgaggaccc	aaatagagct	1860
	gtccatcaat	tcgccaagga	gctagatgcc	ttctgttatta	aaattgagcg	tgtgatttgg	1920
	gcaggagaat	tcgggtgaagt	ctgcagtggc	cgtttggaaac	ttccaggggaa	aagagatgtt	1980
30	gcagtagcca	taaaaaccct	gaaagttgg	tacacagaaa	aacaaggag	agactttttg	2040
	tgtgaagcaa	gcatcatggg	gcagtttgac	cacccaaatg	ttgtccattt	ggaagggggtt	2100
	gttacaagag	ggaaaccagt	catgatagta	atagagttca	tggaaaatgg	agccctagat	2160
	gcatttctca	ggaaaacatga	tgggcaattt	acagtcattt	agtttagtgg	aatgctgaga	2220
35	ggaatttgcg	ctggaaatgg	atattttggct	gatatggat	atgttacacag	ggaccttgca	2280
	gctcgaata	ttcttgtcaa	cagcaatctc	gtttgtaaag	tgtcagattt	tggcctgtcc	2340
	cgagtttag	aggatgtatcc	agaagctgtc	tatacaacta	ctgggtggaa	aattccagta	2400
	aggtggacag	cacccgaagc	catccaggatc	cgaaaattca	catcagccag	tgtatgtatgg	2460
40	agctatggg	tagtcatgt	ggaaggatgt	tcttattgtgg	aaagaccta	tggggacatg	2520
	tcaaatcaag	atgttataaa	agcaatagaa	gaagggttac	gtttaccacg	accatcatggac	2580
	tgcctcagctg	gccttccacca	gtaatgttg	gattttggc	aaaaggagcg	tgtctgaaagg	2640
	ccaaaatttg	aacagatagt	tggaaattcta	gacaaaatga	ttcggaaaccc	aaatagtctg	2700
	aaaactcccc	tgggaaacttg	tagtaggc	ataagccctc	ttctggatca	aaacactctt	2760
	gatttcacta	ccttttgc	agttggagaa	tggctacaag	ctattaagat	gaaaagatat	2820
	aaagataatt	tcacggcagc	tggctacaat	tcccttgaat	cagttagccag	gatgactatt	2880
	gaggatgtga	tgagtttagg	gatcacactg	gttgggtc	aaaagaaaaat	catgagcagc	2940
	attcagacta	tgagagcaca	aatgtocat	ttacatggaa	ctggcattca	aqtgtqa	2997

45 <210> 6
<211> 3217
<212> DNA
<213> *Homo sapiens*

50 <300>
<302> ephrin A8
<310> XM001921

```

<400> 6
ncbsncvwrn mdnctdrtn g nmstrctrst tanmymmsar chbmdrtnn nc tdstrctrgn 60
55 mstmmtanmy rmtsndhstr ycbardasna stagnbankg rahcsm datv washtmantt 120
hdbrandnkb arggnbankh msanshahar tntanmycsm bmrnarnv dn tn hmsansha 180
hamrnaaccs snmvr snmga tggccccgc cccggggcgc ctgccccctg cgctctgggt 240
cgta cggcc gcccacctg cgtgtccgcg gcgccggcg aagtqaattt 300

```

60

65

DE 101 00 586 C 1

gctggacacg tcgaccatcc acggggactg gggctggctc acgtatccgg ctcatgggtg 360
 ggactccatc aacgagggtt acgagtcctt ccagccatc cacacgtacc aggttgcaa 420
 cgtcatgaga cccaaaccaga acaactggct ggcacgago tgggtcccc gagacggcgc 480
 ccggcgctc tatgctgaga tcaagttac cctgcgcgac tgcaacagca tgctgggtg 540
 gctgggcacc tgcaaggaga cttcaacct ctactacctg gagtcggacc gcgacctggg 600
 ggccagcaca caagaaagcc agttctcaa aatcgacacc attgcggccg acgagagctt 660
 cacaggtgcc gacttgggt tgccggctct caagctcaac acggagggtgc gcagtgtggg 720
 tcccctcagc aagcgcggct tctacctggc ctccaggac ataggtgcct gcctggccat 780
 cctctctctc cgcattact ataagaagtg cctgcccatt gtgcgaatc tggctgcctt 840
 ctgcggggca gtgacggggg cggactcgct ctcactgggt gaggtgaggg gccagtgcgt 900
 gccggactca gaggagcggg acacacccaa gatgtactgc agcgcggagg gcgagtggct 960
 cgtccccat ggc当地atgcg tggcactgc cgctacgag gagcggcggg atgcctgtgt 1020
 ggcctgttag ctgggtcttca acaactgcg ccttggggac cagctgtgtg cccgctgccc 1080
 tcccacagc aactcccgat ctccagccgc ccaagcctgc cactgtgacc tcaactacta 1140
 ccgtcagcc ctggacccgc ctgcctcagc ctgcacccgg ccacccctgg caccagtgaa 1200
 cctgatctcc agtgtgaatg ggacatcagt gactctggag tggggccctc ccctggacc 1260
 aggtggccgc agtgacatca cctacaatgc cgtgtgccgc cgctccccct gggacttag 1320
 ccgctgcgag gcatgtggga gccggaccccg ctttggccccc cagcagacaa gcctgggtca 1380
 ggccagcctg ctggtgccca acctgctggc ccacatgaac tactccttctt ggatcgaggc 1440
 cgtcaatggc gtgtccgacc tgagccccga gccccccgg gccgctgtgg tcaacatcac 1500
 cacgaaccag gcagccccgtt cccaggtgtt ggtgatccgt caagagcggg cggggcagac 1560
 cagcgtctcg ctgctgtggc aggagcccg gcaagccgaac ggcacatcatc tggagtatga 1620
 gatcaagtac tacgagaagg acaaggagat gcaagagctac tccacccatc agggcgtcac 1680
 caccagagcc accgtctccg gcctcaagcc gggcacccgc tacgtgttcc aggtccgagc 1740
 ccgcaccta gcaggctgtg gcccgttccag ccaggccatg gaggtggaga cccggaaaacc 1800
 ccggccccgc tatgacaccca ggaccattgt ctggatctgc ctgacgtca tcaacggccct 1860
 ggtgggtctt ctgctctctc tcatctgcaaa gaagaggcac tggcttaca gcaaggcctt 1920
 ccagactcg gacgaggaga agatgacta tcaaatggg caggcacccc cacctgtt 1980
 cctgcctctg catcacccccc cgggaaagct cccagagccc cagttctatg cggaaaaacc 2040
 cacctacgag gagccaggcc gggggggccg cagtttact cgggagatcg agggctctag 2100
 gatccacatc gagaaaatca tcggctctgg agactccggg gaagtctgt acggggaggct 2160
 gccccgtccca gggcagccggg atgtggccgtt gggccatcaag gccctcaaa cccgctacac 2220
 ggagagacag aggcgggact tcctgagcga ggcgtccatc atggggcaat tcgaccatcc 2280
 caacatcatc cgcctcgagg gtgtcgatc ccgtggccgc ctggcaatga ttgtgactga 2340
 gtacatggag aacggctctc tggacacctt cctgaggacc cacgacgggc agttcaccat 2400
 catgcagctg gtgggcatgc tgagaggat ggggtccggc atgcgttacc tctcagaccc 2460
 gggctatgtc caccgagacc tggccggccg caacgttccctg gttgacagca acctggctg 2520
 caagggtct gacttcgggg tctcacgggt gctggaggac gaccggatg ctgcctacac 2580
 caccacgggc gggaaagatcc ccatccgtg gacggggccca gagggccatcg ccttccgcac 2640
 cttctcctcg gccagcgacg tggggactt cggcgtggc atgtggggagg tgctggctta 2700
 tggggaggg ccctacttggaa acatgaccaaa cggggatgtc atcagctcg tggaggagg 2760
 gtaccgcctg cccgcacccca tgggctggcc ccaacgttccctg caccagctca tgctcgactg 2820
 ttggcacaag gaccggccgc agcggccctcg ctgttccctag attgtcagtg tcctcgatgc 2880
 gtcatccgc agccctgaga gtctcgaggc caccgcccaca gtcagcagggt gcccacccccc 2940
 tgccttcgtc cggagctgtt tgacccctgg agggggcage ggtggcggtg ggggcctcac 3000
 cgtgggggac tggctggact ccatccgtat gggccggatc cgagaccact tcgctgcggg 3060
 cggatactcc tctctggca tgggtctacg catgaacgccc caggacgtgc ggcacccctggg 3120
 catcaccctc atggggccacc agaagaagat cctgggcagc attcagacca tgcgggcccc 3180
 gctgaccaggc acccaggggc cccgcggca cctctga 3217

<210> 7
 <211> 1497
 <212> DNA
 <213> Homo sapiens

<300>

55

60

65

DE 101 00 586 C 1

<308> U83508

<300>

5 <302> angiopoietin 2
 <310> U83508

<400> 7

10 atgacagtt tccttcctt tgcttcctc gctgccatc tgactcacat agggtgccgc 60
 aatcagcgcc gaagtccaga aaacagtggg agaagatata accggattca acatgggcaa 120
 ttgtccata ctttcatttcc tccagaacac gatggcaact gtcgtgagag tacgacagac 180
 cagtacaaca caaacgctct gcagagagat gctccacacg tggAACCGGA tttctttcc 240
 cagaacctt aacatcttgg aacatgtat gaaaattata ctcagtggtc gcaaaaactt 300
 gagaattaca ttgtggaaaa catgaatcg gagatggcc agatacagca gaatgcagtt 360
 15 cagaaccaca cggcttaccat gctggagata ggaaccaggcc tcctctctca gactgcagag 420
 cagaccagaa agctgacaga tggtagacc cagttactaa atcaaaactt tcgacttgag 480
 atacagctgc tggagaatttccattatccacc tacaagcttag agaagcaact tcttcacag 540
 acaaattgaaa tcttgaagat ccataaaaaa aacagtttat tagaacataa aatcttagaa 600
 atggaaaggaa aacacaagga agatgtggac accttaaagg aagagaaaaga gaaccttcaa 660
 20 ggcttggta ctcgtcaaac atatataatc caggagctgg aaaagcaatt aaacagagct 720
 accaccaaca acagtgtcct tcagaagcag caactggc tgatggacac agtccacaac 780
 cttgtcaatc ttgtcaactt aagggatgtt ttactaaagg gaggaaaaag agaggaagag 840
 aaaccatcta gagactgtgc agatgtat tcaagctgg ttaataaaaag tggaatctac 900
 actattttt ttaataataat gccaacccc aaaaagggtgt tttgcaatat ggatgtcaat 960
 25 gggggagggtt ggactgtat acaacatcgtaaagatggaa gtcttagattt ccaaagaggc 1020
 tggaaaggat ataaaaatggg tttggaaat ccctccgggt aatattggct gggaaatgag 1080
 tttatTTTG ccattaccag tcagaggcag tacatgtctaa gaattgagtt aatggactgg 1140
 gaagggaaacc gaggcttattc acagttatc agatccaca tagggaaatga aaagcaaaac 1200
 tataggttgt attaaaagg tcacactggg acagcaggaa aacagagcag cctgatctta 1260
 30 cacgggtctg atttcagcact taaagatgtc gataatgaca actgtatgtg caaatgtgcc 1320
 ctcatgttaa caggaggatg gtggtttgat gcttggcc ccttcaatct aaatggaaatg 1380
 ttctatactg cgggacaaaaa ccatggaaaaa ctgaatgggaa taaagtggca ctacttcaaa 1440
 gggcccgattt actccttacg ttccacaact atgatgattc gacctttaga ttttga 1497

35 <210> 8
 <211> 3417
 <212> DNA
 <213> Homo sapiens

40 <300>
 <310> XM001924

<300>

45 <302> Tie1

<400> 8

50 atgggtctggc ggggtcccccc tttcttgcctc cccatcccttct tcttggcttc tcatgtggc 60
 gcccgggtgg acctgacgtc gctggccaaatcctgatc cggacccccc ggcgttcttc 120
 ctgacttgcg tggctgggaa gggccggggcg gggaggggct cggacccctcg gggccccc 180
 ctgctgtgg agaaggacga ccgtatcgatc cgcacccccc cccggccacc cctgcgcctg 240
 gcccggcaacg gttcgacca ggtcacgtt cggcggttctt ccaagccctc ggacccgtg 300
 ggcgttcttctt cctgcgtggg cgggtctggg ggcggccgc cgcgcgtcat ctacgtgcac 360
 aacagccctg gagcccaccc gcttccagac aaggtcacac acactgtgaa caaagggtgac 420
 55 accgctgtac ttctgcacg tggcacaag gagaaggcaga cagacgtat ctggaaagagc 480
 aacggatctt acttctacac cctggactgg catgaagccccc aggatggcc gttctgtcg 540
 cagctccaaatgtgcagcc accatcgagc ggcacatctaca gtgccactta cctggaaagcc 600
 agccccctgg gcagcgccctt cttcggttc atcgatgggg gttgtggggc tggcgctgg 660

60

65

DE 101 00 586 C 1

gggccaggct gtaccaagga gtgcccaggt tgccctacatg gaggtgtctg ccacgaccat 720
 gacggcgaat gtgtatgccc ccctggcttc actggcaccc gctgtgaaca ggcctgcaga 780
 gagggccgtt ttgggcagag ctgcccaggag cagtggccag gcatatcagg ctgcggggc 840
 ctcacccct gcctcccaaga cccctatggc tgctcttgc gatctggctg gagaggaagc 900
 cagtggcaag aagcttgtgc cccctggcat tttgggctg attggccact ccagtggccag 960
 tgtcagaatg gtggcacttg tgaccgggtc agtgggtgtg tctgccccctc tgggtggcat 1020
 ggagtgcact gtgagaagtc agaccggatc cccagatcc tcaacatggc ctcagaactg 1080
 gagttcaact tagagacgat gccccggatc aactgtgcag ctgcaggaa ccccttcccc 1140
 gtgcggggca gcatagagat acgcaagcca gacggcaactg tgctctgtc caccaggcc 1200
 attgtggagc cagagaagac cacagctgag ttcgaggtgc cccgcttgggt tcttgcggac 1260
 agtgggttct gggagtgcgg tttgtccaca tctggggcc aagacagccg ggcgttcaag 1320
 gtcaatgtga aagtggcccc cgtggccctg getgcaccc ggtctctgtac caaggagagc 1380
 cgccagcttggc tgggtctcccc gctggctcg ttctctgggg atggaccat ctccactgtc 1440
 cgcctgcact accggccccc ggacagatcc atggactgtt cgaccattgt ggtggacccc 1500
 agtgagaacg tgacgttaat gaacctgggg ccaaagacag gatacagtgt tcgtgtcag 1560
 ctgagccggc caggggaaagg aggagagggg gcctggggc cttccacccat catgaccaca 1620
 gactgtcctg agcctttgtt gcagccgtgg ttggagggct ggcatgtgga aggcaactgac 1680
 cggctgcagtg ttagctggc cttggccctg gtggccggc cactgtgtgg cgacggttc 1740
 ctgctgcgc tttggggacgg gacacggggg caggagcggc gggagaacct ctcatcccc 1800
 caggccgcga ctggccctt gacgggactc acggctggc cccactacca gctggatgtg 1860
 cagcttacc actgcacccct cctggggcccg gcctggcccc ctgcacacgt gtttctgccc 1920
 cccagtgggc cttccagcccc cggacacccct cacggccagg ccctctcaga ctccgagatc 1980
 cagctgacat ggaaggcaccc ggaggctctg cttggggccaa tatccaagta ctttgtggag 2040
 gtgcagggtgg ctgggggtgc aggagacca ctgtggatag acgtggacag gcctgaggag 2100
 acaaggacca toatccgtgg cctcaacgccc agcagcgcgt accttctcgg catgcggggc 2160
 agcattcagg ggctcgggga ctggagcaac acatgagaag agtccacccct gggcaacggg 2220
 ctgcaggctg agggcccaatg ccaagagagc cggcagctg aagaggccctt ggtatcagcag 2280
 ctgatcttgg cgggtgtggg ctccgtgtct gccacctgtcc tcaccatctt ggctccctt 2340
 ttaaccctgg tttgtccatccg cagaagctgc ctgcacatggc gacgcacccctt cacattaccag 2400
 tcaggctcg gcgaggagac catccctgcag ttcaagctcg ggaccttgc acattaccgg 2460
 cggccaaaac ttcagcccgaa gcccctgagc taccctgtc tagagtggga ggacatcacc 2520
 tttgaggacc tcatcgggga ggggaaacttc ggccaggtca tccggccat gatcaagaag 2580
 gacgggctga agatgaacgc agccatcaaa atgtgaaag agtatgcctc tgaaaatgac 2640
 catcggtact ttgggggaga actggaaagt ctgtgcaaat tggggcatca ccccaacatc 2700
 atcaacctcc tggggccctg taagaaccga ggttacttgc atatcgctat tgaatatgcc 2760
 ccctacggaa acctgtcaga ttttctgcgg aaaagccggg tccttagagac tgaccagct 2820
 tttgctcgag agcatgggac agcctctacc cttagctccc ggcagctgct gcgttgcgc 2880
 agtgatgcgg ccaatggcat gcagttacgtc agtggaaagc agttcatcca cagggacctg 2940
 gctgcccggaa atgtgtctggg cggagagaac ctggcctcca agattgcaga ctteggccctt 3000
 ttcggggag aggagggtta ttgtgaagaag acgtatggggc gtctccctgt ggcgtggatg 3060
 gccattgagt ccctgaacta cagtgtctat accaccaaga gtgtatgtcg gtccctttgg 3120
 gtccttcttt gggagatagt gaggcttggg ggtacaccctt actgtggcat gacctgtgcc 3180
 gagctctatg aaaagctgcc ccagggtcac cgcacggcgc agcctcgaaa ctgtgacgat 3240
 gaagtgtacg agctgtatgcg tcagtgtctgg cgggaccgtc cctatgagcg acccccttt 3300
 gcccagattt cgctacagct aggccgcgt ctggaaagcca ggaaggccta tttgtgaacatg 3360
 tcgctgtttt agaacttcac ttacgcgggc attgtatgcctt cagctgagga ggcctga 3417

<210> 9
 <211> 3375
 <212> DNA
 <213> Homo sapiens

<300>
 <302> TEK
 <310> L06139

5

10

15

20

30

35

40

45

50

55

60

65

DE 101 00 586 C 1

<400> 9
atggactctt tagccagctt agttctctgt ggagtcagct tgctctttc tggaaactgtg 60
gaagggtgcca tggacttgat cttgatcaat tccctacctc ttgtatctga tgcgtaaaaca 120
tcttcaccc gcatggcc tcgggtggcgc cccatgagc ccatcaccat agaaggggac 180
tttgaagcct taatgaacca gcaccaggat ccgctggaa tgtaactcaaga tgcgtaccaga 240
aatgggcta aaaaagtgt ttggaaagaga gaaaaggcata gtaagatcaa tgggtcttat 300
ttctgtgaag ggcgagttcg aggagaggca atcaggatac gaaccatgaa gatgcgtcaa 360
caagcttct tcctaccagc tactttaact atgactgtgg acaaggggaga taacgtgaac 420
atattttca aaaaggtatt gattaaagaa gaagatgcag tgatttacaa aaatggttcc 480
ttcatccatt cagtgc(cc) gcatgaagta cctgatattc tagaagtaca cctgcctcat 540
gctagcccc aggatgtctgg agtgtactcg gccaggatata taggaggaaa cctcttcacc 600
tcggccttca ccaggctgtat gtcgggaga tggtaagccc agaagtgggg acctgaatgc 660
aaccatctt ctgactgtctt tgatgaaatac ggtgtctgcg atgaagatac tgagaatgc 720
atttgcctc ctgggtttat gggaaaggacg tggtgaaagg cttgtgaact gcaacacgtt 780
ggcagaacct gtaaaagaag gtgcagtgg caagaggat gcaagttta tggttctgt 840
ctccctgacc cctatgggtg ttccctgtgcc acaggctgg aagggtctgc tgcaatgaa 900
gcatgccacc ctggttttt cgggcccagat tgtaagctt ggtcagctg caacaatggg 960
gagatgtgtg atcgcttcca aggtatgtctc tgctctccag gatggcaggg gctccagtt 1020
gagagagaag gcatacccgag gatgacccca aagatagtgg atttgcaga tcatatagaa 1080
gtaaacagtg gtaaaatttaa tcccatattgc aagatctctg gctggccgtt acctactaat 1140
gaagaaaatga ccctgggtgaa gccggatggg acagtgtctt atccaaaaga cttaaccat 1200
acggatcatt tctcagtagc catattcacc atccacccggat tcctcccccc tgactcagga 1260
gttgggtct gcagtgtgaa cacagtggct gggatggtgaaaagccctt caacatttct 1320
gttaaaggtc ttccaaagcc cctgaatgcc caaacacgtga ttgacactgg acataacttt 1380
gtgtcatca acatcagctc tgagccttac tttggggatg gaccaatcaa atccaaagaag 1440
cttctataca aaccctgttacatcatttg gttggcacaatattcaatg gacaaatgag 1500
attgttacac tcaactattt ggaacactcg acagaatatg aactctgtgt gcaactggtc 1560
cgctgtggag aggggtgggaa agggcactt gacactgtgaaacgttcc 1620
atcgactcc ctccctccaag aggttataat ctccctgccta aaatctcagac cactctaaat 1680
ttgacctggc aaccaatatt tccaaagctcg gaagatgact ttatgttga agtggagaga 1740
aggtctgtgc aaaaaagtga tcagcagaat attaaaggtc caggcaactt gacttcggtg 1800
ctacttaaca acttacatcc cagggagcag tacgtggtcc gagctagatg caacaccaag 1860
gcccaaggggg aatggagtga agatctcaat gttggaccctt tagtgcacat tcttcctct 1920
caaccagaaa acatcaagat ttccaaacattt acacactccctt cggtgtgtat ttctggaca 1980
atattggatg gctattctat ttcttctattt actatccgtt acaagggttca aggcaagaat 2040
gaagaccaggc acgttggatgt gaagataaag aatggccacca tcattcagta tcagctcaag 2100
ggccatgagc ctgaaacaggc ataccaggatg gacatcttttgc gagaacacaa catagggtca 2160
agcaacccagg cttttctca tgaactgggtt accctcccaat aatctcaagc accagcggac 2220
ctcgaggggg ggaagatgtg gttatagcc atccctggctt ctgtgtggat gaccctgcctg 2280
actgtctgt tggccttttctt gatcatatttgc aatttgcgaa gggcaaatgt gcaaaaggaga 2340
atggcccaag ctttccaaaaa cgtgagggaa gaaccagctg tgcgttcaat ctcaggact 2400
ctggccctaa acaggaaaggc caaaaaaaaac ccagatccta caatttattcc atgtgttgc 2460
tggaatgaca tcaaatttca agatgtgattt gggggaggcataatttggca atgttcttaag 2520
gchgcatca agaaggatgg gttacggatg gatgtgccttcaaaagaat gaaagaataat 2580
gcctccaaag atgatcacatggacttgc ggagaactgg aagttctttg taaacttggaa 2640
caccatccaa acatcatcaa tctcttagga gcatgtgaac atcgaggcttca ttttgcacat 2700
gccattgtgt acgcggccca tggaaacctt ctggacttcc ttcgcacatggcgttgc 2760
gagacggacc cagcatttgc cattgcaat agcaccgcgtt ccacactgtc ctcccgac 2820
ctcccttcaat tcgctggccat cgtggcccg ggcatggacttcttgcgatggacttcc 2880
atccccaggatggacttgc cagaaacat tttagtgggtt aaaaactatgtt gcaaaaaata 2940
gcagattttgc gatgtcccg aggtcaagatg gtgtacgtgaaaagacaat gggaaaggctc 3000
ccagtgccgtt gatggccat cggatctacttgc aatttacatgt tgcacacaatc acacagtgtat 3060
gtatggcttctt atgtgtgtt actatggggatgttgcgatggacttcc 3120
gggatgtactt gtcagaact ctacgagaag ctgccccagg gtcacagactt gggaaaggccc 3180
ctgaactgtg atgatgaggatgttgc gatgtatcttgc atgagacaat gtcggccggatggccttat 3240
gagaggccat catttgccttca gatattgggtt tccttacatgtt gaaatgttgcgaaatggcgttgc 3300
acctacgtga ataccacatgttgcgatggacttgcgatggacttcc 3360

60

65

DE 101 00 586 C 1

gaagaagcggtt ccttag

3375

<210> 10
 <211> 2409
 <212> DNA
 <213> Homo sapiens

<300>
 <302> beta5 integrin
 <310> X53002

<400> 10
 ncbsncvra tgccgcgggc cccggcgccg ctgtacgcct gcctcctggg gctctgcgcg 60
 ctccctcccc ggctcgcagg tctcaacata tgcactagtga aagtgccac ctcatgtgaa 120
 gaatgtctgc taatccaccc aaaatgtgcc tgggtctcca aagaggactt cggaaagccca 180
 cggtccatca cctctcggtg tgatctgagg gcaaaaccttgc taaaaaatgg ctgtggaggt 240
 gagatagaga gcccagccag cagcttccat gtcctgagga gcctgcggccct cagcagcaag 300
 ggttcgggct ctgcaggctg ggacgtcatt cagatgacac cacaggagat tgccgtgaac 360
 ctccggcccg gtgacaagac caccttccag ctacaggttc gccagggtggg ggactatcct 420
 gtggacctgt actacctgtat ggacctctcc ctgtccatga aggtgactt ggacaatatac 480
 cggagccctgg gcaccaaact cgccggaggag atgaggaagc tcaccagcaa cttccgttg 540
 ggattttgggt cttttgttga taaggacatc ttcctttct cctacacggc accgaggta 600
 cagaccaatc cgtgcattgg ttacaagtgtt tttccaaattt ggtccccctc ctttgggttc 660
 cggcatctgc tgcctctcac agacagatgtt gacagcttca atgaggaagt tcggaaacag 720
 agggtgtccc ggaaccggaga tggcccttag gggggcttggt atgcgtact ccaggcagcc 780
 gtctgcaagg aagaatgttg ctggcggaaag gatgcactgc atttgtgtt gttcacaaaa 840
 gatgtatgtc cccacatcgc attggatgga aaattggag gcttgggtca gcccacacgt 900
 ggccagtgtcc acctgttgcg ggcacacggg tacacagcat ccaaccagat ggactatcca 960
 tcccttgct tgcctggaga gaaattggca gagaacaaca tcaacactcat ctttgcagt 1020
 aaaaaaaaaacc attatatgtt gtacaagaat ttacageccc tgataccctgg aacaacgggt 1080
 gagatttttag atggagactc caaaaatattt attcaactga ttattaatgc atacaatagt 1140
 atcccggtcta aagtggagtt gtcagtctgg gatcagccctt aggtatctaa tctcttctt 1200
 actgtctacctt gccaagatgg ggtatcctat cctggtcaga ggaagtgtga gggtctgaag 1260
 attggggaca cggcatcttt tgaagtatca ttggaggccc gaagctgtcc cagcagacac 1320
 acggagcatg tgtttgcctt gggccgggtt ggattttgggg acagcctggc ggtgggggtc 1380
 acctacaact gcacggtcggtt ctgcagctgtt gggctggaaac ccaacacggc caggtgtcaac 1440
 gggagcggga cctatgtctg cggccctgtgtt gagtgcagcc cccggctaccc cggcaccagg 1500
 tgcgagtgcc aggtatggggaa acaccagacat gtttaccggaa acctgtggcgg gggggcagag 1560
 ggcaagccac tggcagcggtt gggccgggtt tgcaactgc accagtgtcc ctgtttcgag 1620
 agcgagttt gcaagatcta tggggctttc tggatgtgcg acaacttctc ctgtgcagg 1680
 aacaaggaggat tcctctgttc aggccatggc gatgtcaacttgc tggacagaca tcaagcacatg cggggccaga 1740
 gcaggttaca tcggggacaa ctgtaaactgc tggacagaca tcaagcacatg cggggccaga 1800
 gatggccaga tctgcagcgtt gggccgggtt tggatgtgcg gggatgtcc atgcacccgg 1860
 cccggggctt ttggggagat tggatgtgcg tggatgtgcg acaacttctc ctgtgcagg 1920
 aagagagatt gctgtcgatgtt cctgtctgtt cactctggaa aacctgacaa ccagactgtc 1980
 cacacccat gcaaggatgtt ggtgatcaca tgggtggaca ccatgtgaa agatgaccag 2040
 gaggctgtgc tatgtttcta caaaaaccttca aaggactgtgg tcaatgtgtt cacctatgt 2100
 gagctccca gttggaaatgtt caacactgtgg tggatgtgcg tggaaacacc 2160
 cccaaacccca tgccatctt cctgtctgtt gtcggatgtca tggatgtgcg tggatgtgc 2220
 ctccctgggtt tctggaaatgtt gtttgcgttccatccacggcc gggatgtgcg tggaaatgtt 2280
 cagagcgacat gatccagggtt ccggctatgttca aaggatgtgg tcaatgtgtt cagaaaccc 2340
 atctccacgc acactgtggat tttcaccttc aacaatgttca aaaaatccta caatggcact 2400
 gtggactgtca

60

DE 101 00 586 C 1

```

<210> 11
<211> 2367
<212> DNA
<213> Homo sapiens
5

<300>
<302> beta3 integrin
<310> NM000212

10 <400> 11
atgcgagcgc gcccggcc cggccgctc tggcgactg tgctggcgct gggggcgctg 60
gcggcggtt gcttaggagg gccaaacatc tgaccacgc gaggtgttag ctccgtccag 120
cagtgcctgg ctgtgagccc catgtgtcc tgggtctctg atgaggccct gcctctggc 180
tcacctcgat gtgacatgaa ggagaatctg ctgaaggata actgtgcctt agaatccatc 240
15 gagttccca gtagtgaggc ccgagacta gaggacaggc ccctcagcga caagggtct 300
ggagacagct cccaggtcac tcaagtca gcccagagga ttgcacttcg gctccggcca 360
gatgattcga agaatttctc catccaatgt cgccaggtgg aggattaccc tggacatc 420
tactacttga tggacctgtc ttactccatg aaggatgtc tggagcat ccagaacctg 480
20 ggtaccaagc tggccaccca gatgcgaaag ctcaccagta acctgcggat tggcttcggg 540
gcatttgtgg acaaggctgt gtcaccatac atgtatatact cccccaccaga ggccttcgaa 600
aaccctgtct atgatatgaa gaccacctgc ttgcccattt ttggctacaa acacgtgtg 660
acgctaactg accaggtgac ccgcttcaat gagaaatgtga agaagcagag tggacatc 720
aaccgagatg ccccgagggg tggcttgcat gccatcatgc aggctacatg ctgtatgaa 780
25 aagattggct ggaggaatgt gtcatccccat ttgctgggtt ttaccactga tgccaagact 840
catatacgat tggacgaaag gctggcaggc attgtccagc ctaatgcgg gcagtgtcat 900
gttggtagt gcaatcattt ctctgcctcc actaccatgg attatccctc tttggggctg 960
atgactgaga agtataatccca gaaaaacatc aattttatgtt ttgcagtgc tgaaaatgt 1020
gtcaatctct atcagaacta tagtgatgc atccccaggaa ccacagtgg ggttctgtcc 1080
30 atggatttca gcaatgtccct ccagcttattt gttgatgtt atggaaaat ccgttctaaa 1140
gttagagctgg aagtgcgtga cctccctgaa gagttgtctc tttttttca tgccacctgc 1200
ctcaacaatg aggtcatccc tggcctcaag ttttgcattt gactcaagat tggagacacg 1260
gtgagcttca gatttgaggc caaggtgcga ggtgtccccc aggagaagga gaagtcctt 1320
accataaagc ccgtggcctt caaggacacgc ctgatgtcc aggtcacctt tgattgtgac 1380
35 ttttttttttggcc aggccccaaagc tgaacccat agccatcgct gcaacaatgg caatgggacc 1440
tttgtagtgg gggtagtgcctt ttgtggcctt ggctggctgg gatccatgt tgagtgtca 1500
gaggaggact atcgcccttc ccaggcaggac gaatgcgc gcccggaggg tcagccctgc 1560
tgcagccagc gggggcggatgtt cctctgtgtt caatgtgtt gccacagcag tgactttggc 1620
aagatcacgg gcaagatggc cgagtgtgac gacttctctt gtgtccgtt caagggggag 1680
40 atgtgtctcg gccatggcca gtgcagctgtt gggactgccc ttttttttttggcc ttttttttttggcc 1740
ggctactact gcaactgtac cacgcgtact gacacccatc ttttttttttggcc ttttttttttggcc 1800
tgcagccggcc gggggcggatgtt ttttttttttggcc ttttttttttggcc ttttttttttggcc 1860
ggggacaccc ttttttttttggcc ttttttttttggcc ttttttttttggcc ttttttttttggcc 1920
gtggagtgtt ttttttttttggcc ttttttttttggcc ttttttttttggcc ttttttttttggcc 1980
45 ttttttttttggcc ttttttttttggcc ttttttttttggcc ttttttttttggcc ttttttttttggcc 2040
tgtacccatata gaaatgagga ttttttttttggcc ttttttttttggcc ttttttttttggcc 2100
ggaaatgttca ttttttttttggcc ttttttttttggcc ttttttttttggcc ttttttttttggcc 2160
gtgggttttttggcc ttttttttttggcc ttttttttttggcc ttttttttttggcc ttttttttttggcc 2220
tggaaactcc ttttttttttggcc ttttttttttggcc ttttttttttggcc ttttttttttggcc 2280
50 gcccggccaa aatggggacac agccaaacaaac ccactgtata aagggccac gtctacccatc 2340
accaatatacgttaccggggg cacttaa 2367

<210> 12
55 <211> 3147
<212> DNA
<213> Homo sapiens

```

60

65

DE 101 00 586 C 1

<300>
<302> alpha v intergrin
<310> NM0022210

<400> 12	5
atggctttc cgccgcggcg acggctgcgc cteggcccc gcggcctccc gtttcttc 60	
tcgggactcc tgctacctct gtgccgcgc ttcaacctag acgtggacag tcctgccag 120	
tactctggcc ccgagggaaag ttacttcggc ttccggctgg atttcttctg gcccagcg 180	
tcttcccgaa tggggatctct cgtggagct cccaaagcaa acaccaccca gcctgggatt 240	
gtggaggag ggcaggctct caaatgtgac tggcttcta cccggcggtg ccagccatt 300	10
gaatttgatg caacaggcaa tagagattt gccaaggatg atccattgga atttaagtcc 360	
catcgttgtt tggaggtcg aaacaggata aaatttttgc ctgtggccca 420	
ttgttaccatt ggagaactga gatggaaacag gagcgagac ctgtggaaac atgtttctt 480	
caagatggaa caaagactgt tggtatgtt ccatgttagat cacaagatat tgatgtgtat 540	
ggacagggat ttgtcaagg aggattcagc attgatTTA ctaaagctga cagagtactt 600	
cttgggtgc ctggtagctt ttattggcaa ggtcagctt tttcgatca agtggcagaa 660	
atcgatatacta aatacgaccc caatgtttac agcatcaagt ataataacca attagcaact 720	
cggaactgcac aagctatTTT tgatgacagc tattttgggtt attctgtggc tgcggagat 780	
ttcaatgggt atggcataga tgactttgtt tcaggagttc caagagcagc aaggacttt 840	
ggaatggttt atatTTTGA tggaaagaac atgttctctt tatacaattt tactggcgag 900	20
cagatggctg catatTCGGG attttctgtt gctgccactg acattaatgg agatgattat 960	
gcagatgtgt ttattggago acctctcttc atggatcgat gctctgtatgg caaaactccaa 1020	
gagggtgggc aggtctcagt gtctctacag agagcttcag gagacttcca gacgacaaag 1080	
ctgaatgggtt ttggggatctt tgcaegggtt ggcagtgcac tagctctttt gggagatctg 1140	
gaccaggatg ttggatcatga tatttcaattt gtcgttccat atgggggtga agataaaaaa 1200	
ggaattgtttt atatTTTCA tggaaagatca acaggcttga acgcagtccc atctaaatc 1260	
cttgaaggggc agtgggctgc tgcggatcgat ccaccaagct ttggcttattt aatgaaaagga 1320	
gccacagata tagacaaaaaa tggatatcca gacttattt taggagctt ttggtagat 1380	
cgagctatct tatacaggggc cagaccaggat atactgtaa atgctggctc tgaagtgtac 1440	30
cctagcattt taaatcaaga caataaaaaacc tgctcaactgc ctggaaacagc tctcaaagtt 1500	
tcctgtttta atgttaggtt ctgtttaaaag gcagatggca aaggagttact tcccaggaaa 1560	
cttaatttcc aggtggaaact tcttttggat aaactcaagc aaaaggggagc aattcgacga 1620	
gcactgtttc tctacagcag gtccccaaat cactccaaga acatgactat ttcaaggggg 1680	
ggactgatgc agtgtgagga attgatagcg tatctgcggg atgaatctga atttagagac 1740	35
aaactcactc caattactat ttttatggaa tattcggttgc attatagaac agctgtgtat 1800	
acaacaggct tgcaacccat tcttaaccag ttacgcctg ctaacattag tcgcacaggct 1860	
cacattctac ttgactgtgg tgaagacaat gtctgtaaac ccaagcttgc agtttctgtat 1920	
gatagtgtatc aaaagaagat cttatTTGGG gatgacaacc ttctgcacattt gattttaag 1980	
gctcagaatc aaggagaagg tgcctacgaa gctgagctca tcggttccat tccactgcag 2040	40
gctgatTTCA tcgggggtgtt ccggaaacaat gaagccttag caagacttcc tctgtcattt 2100	
aagacagaaa accaaactcg ccagggttgc tggaccttgc gaaacccaaat gaaggcttgc 2160	
actcaactct tagctggctc tgcgttcaatgtt gtcaccaggc agtcagagat ggataacttct 2220	
gtgaatTTG acttacaaat ccaaagctca aatctatttgc taagaggagt ctcgacttcc 2280	
tctcacaag ttgatcttgc tggatTTAGCT gcaatgttgc agaacccttgc gactgaagaa 2340	45
gatcatatct ttcttccat tccaaactgg gggcacaagg gatgttggc cagttgttca gactatggat 2400	
gatgttggc cagttgttca gcacatctat gagctgagaa acaatggtcc aagtccattc 2460	
agcaaggcaat tgctccatct tcagtgcct tacaatata ataataaacac tctgttgcatt 2520	
atccttcattt atgatattgtt tggaccaatg aactgcactt cagatatggc gatcaaccct 2580	
tttggatattt agatctcatc ttggcaaaaca actggaaaaga atgacacatg tgccggcaa 2640	
ggtgagcggg accatctcat cactaaggcg gatcttgcctc tcagtgttgc agatattcac 2700	50
actttgggtt ttggatTTGC tcagtgcctt aagattgtct gccaagttgg gagatttagac 2760	
agagggaaaaga gtgcaatctt gtacgtaaag tcattactgtt ggactgagac ttttatgtat 2820	
aaagaaaatc agaatcattc ctattctctg aagtgcgtct cttcattttaa tgcatacgat 2880	
tttccttata agaatcttcc aatttggatgatc accaccaact ccacattgtt taccactaat 2940	
gtcacctggg gcattcagcc agcgcccatg cctgtgcctg tgggttgcatttttagca 3000	
gttcttagcag gattgttgc actggctgtt ttggatTTTG taatgtacag gatggcttt 3060	55

60

65

DE 101 00 586 C 1

ttaaacggg tccggccacc tcaagaagaa caagaaagg agcagctca acctcatgaa 3120
 aatggtaag gaaaactcaga aacttaa 3147

5

<210> 13
 <211> 402
 <212> DNA
 10 <213> Homo sapiens

<300>
 <302> CaSm (cancer associated SM-like oncogene)
 <310> AF000177

15

<400> 13
 atgaactata tgcctggcac cgccagcctc atcgaggaca ttgacaaaaa gcacttggtt 60
 ctgcttcgag attgaaggac acttataggc ttttaagaa gcattgatca atttgcac 120
 ttagtgcac atccagactgt ggagcgatt catgtggca aaaaatacgg tgatattcct 180
 20 cgagggattt ttgtggtcag aggagaaaaat gtggcttac taggagaaaat agacttggaa 240
 aaggagagtg acacaccccct ccagcaagta tccattgaag aaattctaga agaacaagg 300
 gtggAACAGC agaccaagct ggaAGCAGAG aagttgaaag tgcaggcccT gaaggaccga 360
 ggtcttcca ttccctcgagc agatactttt gatgagtact aa 402

25

<210> 14
 <211> 1923
 <212> DNA
 <213> Homo sapiens

30

<300>
 <302> c-myb
 <310> NM005375

35

<400> 14
 atggccgaa gacccggca cagcatatat agcagtgacg aggatgatga ggactttgag 60
 atgttgacc atgactatga tggctgtctt cccaaagtctg gaaagcgatca cttggggaaa 120
 acaaggtaa cccgggaaaga ggatgaaaaaa ctgaaagaagc tggtggaaaca gaatggaaaca 180
 gatgactgga aagtatttgc caatttctc ccgaatcgaa cagatgtgca gtgccagcac 240
 40 cgatggcaga aagtactaaa ccctgagctc atcaagggtc cttggaccac agaagaagat 300
 cagagagtga tagagcttgt acagaaatac ggtccgaaac gttggctgtt tattgccaag 360
 cacttaaagg ggagaattgg aaaacaatgt agggagaggt ggcataacca cttgaatcca 420
 gaagttaaaga aaacctcctg gacagaagag gaagacagaa ttatttacca ggcacacaaag 480
 agactgggaa acagatgggc agaaatcgca aagctactgc ctggacgaaac tgataatgtc 540
 45 atcaagaacc acttggaaattc tacaatgcgt cgaaaggctc aacaggaagg ttatctgcag 600
 gagtcctcaa aagccagccca gccagcgtg gccacaagct tccagaagaa cagtcatttg 660
 atgggttttg ctcaggctcc gcctacagct caactccctg ccactggcca gcccactgtt 720
 aacaacgact attccttata ccacatttct gaagcacaaa atgtctccag tcatgttcca 780
 taccctgttag ctttatcatgt aaatatagtc aatgtccctc agccagctgc cgcagccatt 840
 50 cagagacact ataatgtga agaccctgt aaggaaaagc gaataaagga attagaattg 900
 ctcctaattgt caaccggagaa tgagctaaaa ggacagcagg tgctaccaac acagaaccac 960
 acatgcagct accccgggtg gcacagcacc accattggcc accacacccag acctcatgga 1020
 gacagtgcac ctgtttccctg tttggggaaa caccactcca ctccatctct gccagcggat 1080
 cctggctccc tacctgaaga aaggcgctcg ccagcaaggt gcatgatctt gcatgtcgtt 1140
 55 accattctgg ataatgttaa gaaccttta gaatttgcag aaacactcca atttatagat 1200
 tctttcttaa acacttccag taaccatgaa aactcagact tggaaatgcc ttcttaact 1260
 tccacccccc tcattggtca caaattgact gttacaacac catttcataag agaccagact 1320
 gtgaaaactc aaaaggaaaa tactgtttt agaaccctcag ctatcaaag gtcaatctta 1380
 gaaagctctc caagaactcc tacaccattc aaacatgcac ttgcagctca agaaattaaa 1440

60

65

DE 101 00 586 C 1

tacggcccc tgaagatgct acctcagaca ccctctcatc tagtagaaaga tctgcaggat 1500 gtgatcaaac aggaatctga tgaatctgga ttttgtctg agtttcaaga aaatggacca 1560 cccttactga agaaaatcaa acaagaggtg gaatctccaa ctgataaaatc aggaaacttc 1620 ttctgctcac accactggga aggggacagt ctgaataccc aactgttac gcagacctcg 1680 cctgtgcag atgcaccgaa tattcttaca agtccgtt taatggcacc agcatcagaa 1740 gatgaagaca atgttctcaa agcattaca gtacctaaaa acaggtccct ggcgagcccc 1800 ttgcagcctt gttagcgtac ctgggaacct gcattctgtg gaaagatgga ggagcagatg 1860 acatcttcca gtcaagctcg taaatacgtg aatgcattct cagccggac gctggtcatg 1920 tga 1923	5 10
 <210> 15	
<211> 544	
<212> DNA	
<213> Homo sapiens	15
 <300>	
<302> c-myc	
<310> J00120	20
 <400> 15	
gacccccc gag ctgtgctgct cgcggccgcc accgcccggc cccggccgtc cctggctccc 60 ctcctgcctc gagaaggcga gggcttctca gaggcttgc gggaaaaaga acggaggag 120 ggatgcgcgt gagtataaaa gccgggttttc gggctttat ctaactcgct gtagtaattc 180 cagcggagg cagaggcgc gacggggcgg ccggcttaggg tggaaagagcc gggcgagcag 240 agctgcgtg cggcgctctt gggaaaggag atccggagcg aatagggggc ttccgccttg 300 gcccagccct cccgctgatc ccccaaggccag cggtccgcaaa cccttgcgc atccacgaaa 360 ctttgcccattt acgacggggc gggcaacttgc cacttggact tacaacaccc gagcaaggac 420 gcgactctcc ctagcggggc aggctattctt gcccatttgg ggacacttcc ccggccgtgc 480 caggacccgc ttctctgaaa ggctctccctt gcagctgtt agacgctgga ttttttcgg 540 gtag 544	25 30
 <210> 16	
<211> 618	
<212> DNA	
<213> Homo sapiens	35
 <300>	
<302> ephrin-A1	
<310> NM004428	40
 <400> 16	
atggagttcc tctggccccc tctttgggt ctgtgctgca gtctggccgc tgctgatcgc 60 cacaccgtct tctggAACAG ttcaaatccc aagttccggaa atgaggacta caccatacat 120 gtgcagctga atgactacgt ggacatcatc tgtccgcact atgaagatca ctctgtggca 180 gacgctgcca tggagcagta catactgtac ctgggtggagc atgaggagta ccagctgtgc 240 cagccccagt ccaaggacca agtccgcgtgg cagtgcacacc ggcccagtgc caagcatggc 300 ccggagaagc tggctggaaa gttccagcgc ttcacacatt tcacccctggg caaggagttc 360 aaagaaggac acagctacta ctacatctcc aaaccatcc accagcatga agaccgctgc 420 ttgagggtga aggtgactgt cagtggcaaa atcactcaca gtcctcagc ccatgtcaat 480 ccacaggaga agagacttgc agcagatgac ccagagggtgc gggttctaca tagcatcggt 540 cacagtgtg cccccacgcctt cttccactt gcctggactg tgctgctcct tccacttgc 600 ctgctgcaaa ccccggtga 618	45 50 55
 <210> 17	
	60

DE 101 00 586 C 1

```

<211> 642
<212> DNA
<213> Homo sapiens

5 <400> 17
atggcgcccc cgcaagcgccc gctgctcccg ctgctgtcctc tgctgttacc gctgccgccc 60
ccgccttcg cgcgcgccc ggacgcccggc cgcgcacta cggaccgcta cgcgtctac 120
tggaaaccgca gcaacccca gttccacgca ggcgcggggg acgacggcg gggctacacg 180
10 gtggaggtga gcatcaatga ctacctggac atctactgtc cgcactatgg ggcgcgcgtg 240
ccgcggcccg agcgcatgaa gcactacgtg ctgtacatgg tcaacggcgaa gggccacgccc 300
tectgcgacc accgcccaggc cggcttcaag cgctgggagt gcaaccggcc cgcggccccc 360
ggggggccgc tcaagtttc ggagaagttc cagcttca cgccttc cctgggcttc 420
gagttccggc cggccacgca gtattactac atctctgcca cgcctccaa tgctgtggac 480
15 cggccctgccc tgcgactgaa ggtgtacgtg cggccgacca acgagacccgt gtacgaggct 540
cctgagccca tcttacccagg caataactcg tgttagcagcc cggcgggtg cgccttc 600
ctcagcacca tccccgtgt ctggaccctc ctgggttctc ag 642

20 <210> 18
<211> 717
<212> DNA
<213> Homo sapiens

25 <300>
<302> ephrin-A3
<310> XM001787

<400> 18
30 atggcgccgg ctcccgctgct gctgctgtc ctgctgtgc cctgtccgt gctgccgctg 60
ctggcccaag ggcccgagg ggcgtggg aaccggcatg cggtgtactg gaacagctcc 120
aaccaggcacc tgcggcgaga gggctacacc gtgcaggta acgtgaacgaa ctatctggat 180
atttactgccc cgcactacaa cagctccggg gtggggcccg gggccggacc gggggccgga 240
ggcggggcag agcagtacgt gctgtacatg gtgagccgca acggctaccg cacctgcaac 300
35 gccaggccagg gcttcaagcg ctgggagtgc aaccggccgc acggcccgca cagccccatc 360
aagttctcg agaagttcca ggcgtacagc gccttcttc tgggctacga gttccacgccc 420
ggccacgagt actactacat ctccacgccc actcacaacc tcgactggaa gtgtctgagg 480
atgaagggtgt tgcgtctgtc cgcctccaca tcgactccgg gggagaagcc ggtccccact 540
40 ctcccccaatgttccatggg ccccaatatg aagatcaacg tgctggaaaga ctggagggaa 600
gagaaccctc aggtgccccaa gcttgagaag agcatcagcg ggaccagccc caaacgggaa 660
cacctgcccc tggccgtggg catcgcccttc ttccatgtc cggttcttggc ctccctag 717

45 <210> 19
<211> 606
<212> DNA
<213> Homo sapiens

50 <300>
<302> ephrin-A3
<310> XM001784

<400> 19
55 atgcggctgc tgccccctgct gggactgtc ctctggccg ctttcctcg ctccttc 60
cgcgccccct ccagcctccg ccacgtatgc tactggact ccagtaaccc caggttgc 120
cgaggagacg ccgtgggtgg aactggccctc aacgattacc tagacattgt ctgcaccc 180
tacgaaggcc caggcccccc tgagggcccc gagacgtttg ctttgcatac ggtggactgg 240
ccaggtatcg agtcctgcca ggcagaggc cccggccct acaagcgctg ggtgtgtcc 300

60

```

DE 101 00 586 C 1

ctgcctttg gccatgttca atttcagag aagattcagc gcttcacacc cttccccc 360
 ggcttgagt tcttacctgg agagacttac tactacatct cggtccccac tccagagagt 420
 tctggccagt gcttggggct ccagggtgtct gtctgctgca aggagaggaa gtctgagtca 480
 gcccattctg ttggggagcc tggagagagt ggacacatcg ggtggcgagg gggggacact 540
 cccagccccc tctgtctttt gcttactg ctgcttctga ttcttcgtct tctgcgaatt 600
 ctgtga 606

5

<210> 20
 <211> 687
 <212> DNA
 <213> Homo sapiens

10

<300>
 <302> ephrin-A5
 <310> NM001962

15

<400> 20
 atgttgcacg tggagatgtt gacgctgggtg tttctgggtgc tctggatgtg tgtgttcage 60
 caggaccggc gtcacaaggc cgctcgccac cgctacgctg tctactggaa cagcagcaac 120
 cccagattcc agaggggtga ctaccatatt gatgtctgta tcaatgacta cctggatgtt 180
 ttctggccctc actatgagga ctccgtccca gaagataaga ctgagcgcta tgtccctcac 240
 atggtaact ttgatggcta cagtgcctgc gaccacactt ccaaagggtt caagagatgg 300
 gaatgttaacc ggcctcaactc tccaaatggg cgcgtgaagt tctctgaaaa attccagctc 360
 ttcaacctt ttctcttagg atttgaattt agggcaggcc gagaatattt ctacatctcc 420
 tctcaatcc cagataatgg aagaaggccc tggatggatc tcaaaagtctt tgtgagacca 480
 acaaatacg ttagaaaac tatagggtt catgatcgta tttcgtatgt taacgacaaa 540
 gtagaaaaatt cattagaacc agcagatgac accgtatcatg agtcagccga gccatccgc 600
 ggcgagaacg cggcacaac accaaggata cccagccgccc ttttggcaat cctactgttc 660
 ctccctggcga tgctttgac attata 687

20

25

30

<210> 21
 <211> 2955
 <212> DNA
 <213> Homo sapiens

35

<400> 21
 atggccctgg attatctact actgctccctc ctggcatacg cagtggctgc gatggaaagaa 60
 acgttaatgg acaccagaac ggctactgca gagctgggtt ggacggccaa tcctgcgtcc 120
 ggggtggaaag aagtctgtgg ctacgatgaa aacctgaaca ccatccgcac ctaccagggt 180
 tgcaatgtct tcgagcccaa ccagaacaat tggctgtca ccacccatcat caaccggcg 240
 ggggccccatc gcatctacac agagatgcgc ttcaactgtga gagactgcag cagccccc 300
 aatgtccctcag gatcctgcaaa ggagacccctc aacctgtatt actatgagac tgactctgtc 360
 attgcacca aagaagtctgc cttctgggtt gagccccctt acctcaaagt agacaccatt 420
 gctgcagatg agagcttctc ccaggtggac tttggggaa ggctgtatgaa ggtaaacaca 480
 gaagtctggagg gctttggggc tcttactctgg aatgggtttt acctcgctt tcaggattat 540
 ggagctgtta tggatggatc ttctgtccgt gtcttctca aaaagtgtcc cagcattgtg 600
 caaaattttt cagtgtttcc agagactatg acaggggcag agagcacatc tctgggtatt 660

40

45

50

55

gctcggggca catgcattccc caacgcagag gaagtggacg tgcccatcaa actctactgc 720
 aacggggatg gggaatggat ggtgcattt gggcgatgca cctgcaagcc tggctatgag 780
 cctgagaaca gcgtggcatg caaggcttgc cctgcaggga cattcaaggc cagccaggaa 840
 gctgaaggct gctcccactg cccctccaaac agccgtcccc ctgcagagcc gtctccatc 900
 tgcacctgtc ggaccgggtt ttaccggatcg gactttgacc ctccagaagt ggcatgcact 960
 agcgtcccat cagggtcccccg caatgttattt tccatgtca atgagacgtc catcattctg 1020
 gagtgccacc ctccaaggga gacaggtggg cggatgtatc tgacctacaa catcatctgc 1080
 aaaaagtgtcc gggcagaccg ccggagctgc tcccgctgtc acgacaatgt ggagttgtg 1140

60

65

DE 101 00 586 C 1

cccaggcgc tgggcctgac ggagtgcgc gtctccatca gcagcctgtg ggcccacacc 1200
 ccctacacct ttgacatcca ggcattcaat ggagtctcca gcaagagtcc ctccccccca 1260
 5 cagcacgtct ctgtcaacat caccacaaac caagccgccc cctccacccgt tcccatcatg 1320
 cacaagtca gtgccactat gaggagcatc accttgcata ggcacagcc ggagcagccc 1380
 aatgcatca tcctggacta tgagatccgg tactatgaga aggaacacaa tgagttcaac 1440
 tcctccatgg ccaggagtca gaccaacaca gcaaggattg atgggctgct gcctggatg 1500
 gtatatgtgg tacaggtgcg tgccgcact gttgctggct acggcaagtt cagtgcaag 1560
 atgtcttcc agactctgac tgacgatgat tacaagttag agctgaggga cagctgccc 1620
 10 ctgattgtg gtcggcagc ggccggggtc gtgttcgtt tgcccttggt ggcacatctct 1680
 atcgctgtta gcaggaaacg ggcttatagc aaagaggctg tgcacgcga taagctccag 1740
 cattacagca caggccgagg ctccccaggat atgaagatct acattgaccc cttaacttat 1800
 gaggatccca acgaagctgt ccgggagttt gccaaggaga ttgatgtatc ttttgtaaa 1860
 attgaagagg tcatcgagc aggggagttt ggagaagttt acaaggggcg tttgaaactg 1920
 15 ccagcaga gggaaatcta cgtggccatc aagaccctga aggccaggta ctggagaag 1980
 cagcgtcggt acttctgag tgaggcgagc atcatgggac agttcgacca tcctaacatc 2040
 attcgctgg agggtgtgtt cacaaggat cgccgtgtca tgatcatcac agagttcatg 2100
 gagaatgggt cattggattc ttcttcagg caaatgacg ggcagttcac cgtgatccag 2160
 ctttgtggta tgctcagggg catcgctgtc ggcataatc acctggctgt gatgattat 2220
 20 gtgcacatccc acctggctgc taggaacatt ctggtcacaa gtaacctgtt gtgcaggg 2280
 tccgacttt gcctctcccg ctacctccag gatgacaccc cagatccac ctacaccagc 2340
 tccttgggag ggaagatccc tttggatgg acagctccag aggccatccg ctaccgcaag 2400
 ttcacttcag ccagcgacgt ttggagctat gggatcgta tttggaaagt catgtcattt 2460
 ggagagagac cctattggga tatgtccaaac caagatgtca tcaatgcacat cgagcaggac 2520
 25 taccggctgc ccccacccat ggactgtcca gtcgtctac accagctcat gctgactgt 2580
 tggcagaagg accggaacag ccggcccccgg tttggggaga ttgtcaacac cctagataag 2640
 atgatccggaa accccggcaag tctcaagact gtggcaacca tcaccgcgt gcctcccaag 2700
 cccctgctcg acccgctccat cccagacttc acggccttta ccaccgtgga tgactggctc 2760
 aegccatca aaatggtcca gtacaggac agcttcctca ctgctggct caccccttc 2820
 30 cagctggtca cccagatgac atcagaagac ctcttgagaa taggcatac cttggcaggc 2880
 catcagaaga agatcctgaa cagcattcat tctatgaggg tccagataag tcagtcacca 2940
 acggcaatgg catga 2955

35 <210> 22
 <211> 3168
 <212> DNA
 <213> Homo sapiens

40 <400> 22
 atggctctgc ggaggctggg ggccgcgcgtc ctgctgtgc cgctgctgc cgccgtggaa 60
 gaaacgctaa tggactccac tacagcgact gctgagctgg gctggatgtt gcattccca 120
 tcaggggtggg aagaggttag tggctacgt gagaacatga acacgatccg cacgtaccag 180
 gtgtgcaacg tggctggatc aagccagaac aactggctac ggaccaagtt tttccggcgc 240
 45 cgtggccccc acccgatcca cgtggagatg aagtttcgg tgcgtgactg cagcagcatc 300
 cccagcggtc ctggctctg caaggagacc ttcaacctct attactatga ggctgacttt 360
 gactcggcca ccaagacctt ccccaactgg atggagaatc catgggtgaa ggtggataacc 420
 attcagccg accagagactt ctcccagggt gacctgggt gccgcgtcat gaaaatcaac 480
 accgggtgc ggagcttcgg acctgtgtcc cgcacggct tctacctggc cttccaggac 540
 50 tatggcggt gcatgtccct catgcgcgtc cgtgttttct accgcaagtg ccccccgcac 600
 atccagaatg ggcacatctt ccaggaaacc ctgtcggggg ctgagagcac atcgctgggt 660
 gctgccccggg gcaactgcgt cgccaaatgcgt gaagaggtgg atgtaccat caagctctac 720
 tgtaacgggg accggcgatgt gctgggtccc atcgggcgt gcatgtgcaaa agcaggcttc 780
 gaggccgtt gaaatggcact cgtctggca ggttgcgtt ctgggacttt caaggccaac 840
 55 caaggggatg aggccctgtac ccactgtccc atcaacagcc ggaccacttc tgaaggggcc 900
 accaactgtg tctggcccaa tggctactac agagcagacc tggacccccc ggacatgeccc 960
 tgcacaacca tccccctccgc gccccaggct gtgatttcca gtgtcaatga gaccccttc 1020
 atgctggagt ggacccctcc cgcgcactcc ggaggccgag aggacctgt ctacaacatc 1080

60

65

DE 101 00 586 C 1

atctgcaaga gctgtggctc gggccggggt gcctgcaccc gctgcgggga caatgtacag 1140
 tacgaccac gccagctagg cctgaccgag ccacgcattt acatcagtga cctgctggcc 1200
 cacacccagt acacccatcg aatccaggct gtgaacggcg ttactgacca gagcccccttc 1260
 tcgcctcagt tcgcctctgt gaacatcacc accaaccagg cagctccatc ggcagtgtcc 1320 5
 atcatgcac aggtgagccg caccgtggac agcattaccc tgcgtgttc ccagccagac 1380
 cagcccaatg gcgtgatcc ggactatgag ctgcgtact atgagaagga gctcagttag 1440
 tacaacgcca cagccataaa aagccccacc aacacggtca ccgtgcaggg cctccaaagcc 1500
 ggcgccatct atgtcttcca ggtgcgggca cgacccgtgg caggctacgg ggcgtacacg 1560
 ggcgaatgt acttccagac catgacagaa gcccgttacc agacaaggat ccaggagaag 1620
 ttgcactca tcatacgctc ctcggccgtc ggccctggct tcctcatgc tgggttgtc 1680 10
 atcgccatcg tggtaacag acgggggtt gagegtgtc actcggagta cacggacaag 1740
 ctgcaacact accaccatgg ccacatgacc ccaggcatga agatctacat cgatcccttc 1800
 acctacgagg accccaaacga ggcagtgcgg gagtttgcca agggaaatgtg catctcctgt 1860
 gtcaaaaattg agcaggtgt cggagcaggag gagtttggcg aggtctcgag tggccacctg 1920
 aagctgcccag gcaagagaga gatctttgtt gccatcaaga cgctcaagtc gggctacacg 1980 15
 gagaagcagc gcccggactt cctgagcgaa gcctccatca tggccaggat cgaccatccc 2040
 aacgtcatcc acctggaggg tgcgtgacc aagagcacac ctgtatgtat catcaccgag 2100
 ttcatggaga atggctccct ggactccctt ctccggcaaa acgatggca gttcacagtc 2160
 atccagctgg tggcatgtc tcggggcatac gcaactggca tgaagtacct ggcagacatg 2220
 aactatgttc accgtgaccc ggctgcccgc aacatccctcg tcaacagcaa cctggcttc 2280
 aagggttcgg actttggctt ctcacgctt ctagaggacg atacctcaga ccccacctac 2340
 accagtggcc tggggcgaaa gatccccatc cgctggacag ccccggaagc catccagtag 2400
 cggaaatgtca ctcggccag tgatgtgtgg agtacacggca ttgtatgtg ggaggtgtg 2460
 tcctatgggg ageggcccta ctgggacatg accaaccagg atgtaatcaa tgccatttag 2520 25
 caggactt ggtggccacc gcccattggac tgcccgagcg ccctgcacca actcatgtc 2580
 gactgttggc aagaggaccc caaccacccg cccaaatgtt caacacgcta 2640
 gacaagatga tccgcataatcc caacacccctt aaagccatgg cggcccttc ctctggcatc 2700
 aacctggccgc tgcgtggaccc cacgatcccc gactacacca gcttaacac ggtggacgag 2760
 tggctggagg ccatcaagat gggcagttac aaggagatg tgcgcataatcc cggcttcacc 2820
 tccttgacg tgcgtgtctca gatgtatgtt gaggacattc tccgggttgg ggtcaacttt 2880 30
 gctggccacc agaaaaaaaaat cctgaacagt atccaggtga tgcggggcgca gatgaaccag 2940
 attcagtcg tggagggccca gcccactcgcc aggaggccac gggccacccggg aagaaccaag 3000
 cgggtggccacc caccgagacgt caccatggaa acatgcaact caaacgacgg aaaaaaaaaag 3060
 ggaatggaa aaaagaaaaac agatcttggg agggggccggg aaatacaagg aatattttt 3120
 aaagaggatt ctcataagga aagcaatgac tgccttgcg gggataa 3168 35

<210> 23

<211> 2997

40

<212> DNA

<213> Homo sapiens

<400> 23

atggccagag cccgcccccc gcccggccg tcggccggcc cggggcttct gcgcgtgtc 60 45
 cctccgctgc tgcgtgtcc gctgtgtctg ctggccggcc gctgcggggc gctggaaagag 120
 accctcatgg acacaaaatg ggttaacatct gagttggctt ggacatctca tccagaaagt 180
 ggggtggaaag aggtgatgtgg ctacgtatgg gccatgaatc ccatccgcac ataccaggat 240
 tgaatgtgc gcgatgtcaag ccagaacaaatc tggcttcgc ggggttcat ctggccggcc 300
 gatgtgcacg ggttctacgt ggagctcaag ttcaactgtgc gtactgcac cagcatcccc 360
 aacatcccccg gtccttgccaa ggagacccctt aacctttctt actacgaggc tgacagcgat 420 50
 gtggcctcag ctcctccccc cttctggat gagaacccctt acgtgaaagt ggacaccatt 480
 gcaccccgatg agagtttcc gcccggccgt gcaacacccaa ggtgcgcagc 540
 tttggccacc ttccaaaggc tggcttctac ctggcccttcc aggaccaggcc cgcctgcatt 600
 tcgcctcatct ccgtgcgcgc cttctacaag aagtgtgcatt ccaccacccg aggcttcgc 660
 ctcttcccccg agaccctcac tggggccggag cccacccctgc tggtcatttc tcctggcacc 720 55
 tgcatacccta acggccgtggaa ggtgtcggtt ccactcaagc tctactgcac ccgcgtatggg 780
 gagttggatgg tgcctgtggg tgcctgcacc tgcgtgtcc gccatgaccc agctgccaag 840

60

65

DE 101 00 586 C 1

5 gagtcccagt gccgccccctg tccccctggg agctacaagg cgaagcaggg agaggggccc 900
 tgcctccat gtccccccaa cagccgtacc acctccccag cgcgcacat ctgcacactgc 960
 cacaataact tctaccgtgc agactcggac tctggggaca gtgcctgtac caccgtgcc 1020
 tctccacccc gaggtgtgat ctccaatgtg aatgaaacct cactgatctt cgagtggagt 1080
 gagccccggg acctgggtg ccgggatgac ctccgtaca atgtcatctg caagaagtgc 1140
 catggggctg gaggggcctc agcctgtca cgtgtgatg acaacgtgga gtttgtgcct 1200
 cggcagctgg gcctgtcgga gccccgggtc cacaccagcc atctgtggc ccacacgcgc 1260
 tacaccttg aggtgcaggc ggtcaacggt gtctcgggca agagccctt gcccctcg 1320
 tatgcccccg tgaatatcac cacaaccag gtcgtccctt ctgaagtgc cacactacgc 1380
 10 tgcacagca gtcaggcag cagcctcacc ctatcctggg caccggcaga gcccccaac 1440
 ggagtcatcc tggactacga gatgaagtac ttgagaaga gcgaggcgt cgcctccaca 1500
 gtgaccagcc agatgaact cgtgcagctg gacgggctt ggcctgacgc cgcctatgtg 1560
 gtccaggctt gtgcccgcac agtagctggc tattggcagt acagccccc tgccgagttt 1620
 15 gagaccacaa tgagagaggg ctctggggc cagcagctcc aggagcaget tcccttcattc 1680
 gtgggctccg ctacagctgg gttgttttc gtggggctg tcgtgtcat cgetatcg 1740
 tgcctcagga agcagcaca cggctctgat tcggagatc cggagaaggt gcagcagtt 1800
 attgctcctg gaatgaaggt ttatattgac ctttttacact acgaggaccc taatgaggct 1860
 gttcgggagt ttgccaagga gatgcacgtg tcctgcgtca agatcgagga ggtgatcg 1920
 20 gctgggaaat ttggggaaat gtgcccgtt cgactgaaac agcctggcc ccgagaggtg 1980
 tttgtggcca tcaagacgct gaagggtggc tacaccgaga ggcagcggcg ggacttccta 2040
 agcgaggcct ccatcatggg tcagttgtat caccggata taatccggct cgaggcg 2100
 gtcacccaaa gtcggccagt tatgatcctc actgagttca tggaaaactg cgcctggac 2160
 tccttcctcc ggctcaacga tgggcagttc acgtcatcc agctggggg catgttgcgg 2220
 25 ggcattgtcg cccgcgtgaa gtacctgtcc gagatgaact atgtgcaccc cgacctggct 2280
 gtcgcacaacaa tccttgcata cagcaacccgt gtctgc 2340
 cgcttcctgg aggtgacccc ctccgatctt acctacacca gttccctggg cggaaagatc 2400
 cccatccgcg ggactgcccc agggccata gcctatcgga agttcacttc tgetagtgt 2460
 gtctggagct acggattgtt catgtggggat gtcatgagct atggagagcg accctactgg 2520
 30 gacatgagca accaggatgtt catcaatgcc gtggagcagg attaccgggt gccaccaccc 2580
 atggactgtc ccacagcact gcaccagctc atgtggact gctgggtgcg ggaccgaaac 2640
 ctcagccca aattctccca gattgtcaat accctggaca agtcatccg caatgtgc 2700
 agcctcaagg tcattgccag cgctcgtt ggcattgtc acgcccctctt ggaccgtt 2760
 gtcccagatt acacaacctt cacgacagt ggtattggc tggatgcatt caagatggg 2820
 35 cggtacaagg agagcttcgt cagtgcgggg tttcattt ttgacctggt ggcccagatg 2880
 acggcagaag acctgtccg tattggggc accctggccg gccaccagaa gaagatcctg 2940
 agcagtatcc aggacatgcg gtcgcagatg aaccagacgc tgcctgtgca ggtctga 2997

40 <210> 24
 <211> 2964
 <212> DNA
 <213> Homo sapiens

45 <400> 24
 atggagctcc gggtgctgct ctgctggct tcgttggccg cagctttggaa agagaccctg 60
 ctgaacacaa aattggaaac tgctgatctg aagtgggtga cattccctca ggtggacggg 120
 cagtgggggg aactgagccgg cctggatgag gaacagcaca gcgtgcgcac ctacgaagt 180
 tttgtgaatgc agcgtgcccc gggccaggcc caactggctt gcacagggtt ggtcccacgg 240
 50 cggggcccg tccacgtta cgccacgtt cgcttcacca tgctcgatgt cctgtccctg 300
 cctcgggctg ggcgcctctg caaggagacc ttccacgtt tctactatga gagcgatgcg 360
 gacacggcca cggccctcac gccagccgg atggagaacc cctacatcaa ggtggacacg 420
 gtggcccgcc agcatctcac cggaaagcgc cctggggccg agggccacccg gaaggtgaat 480
 gtcaagacgc tgcgtctggg accgctcagc aaggctggct tctacctggc ctteccaggac 540
 55 cagggtgcct gcatggccct gctatccctg caccccttctt aaaaaaagtgcg 600
 actgtgaacc tgactcgatt cccggagact gtgcctcggtt agctgggtt gcccgtggcc 660
 ggttagctgcg tgggtggatgc cgccccccca cctggcccca gccccagctt ctactgcgt 720
 gaggatggcc agtggggccga acagccggc acgggtgcg gctgtgcctt ggggttcag 780

60

65

DE 101 00 586 C 1

gcagctgagg ggaacaccaa gtgccgagcc tggcccagg gcaccccaa gcccgtca 840 ggagaagggt cctgccagcc atgcccagcc aatagccact ctaacaccat tggatctgcc 900 gtctgccagt gcccgtcgg ggacttccgg gcacgcacag accccccggg tgacccctgc 960 accaccctc cttcggtccc gcggagcgtg gttcccgcc tgaacggcgc ctccctgcac 1020 ctggaatgga gtgccccctt ggagtcgtt ggccgagagg acctcaccta cgccctccgc 1080 tgccgggagt gcccacccgg aggctctgt gcccctgcg ggggagacct gacttttgac 1140 cccggccccc gggacctggt ggagccctgg gttgtggtc gagggtcacg tccggacttc 1200 acctatacct ttgaggtcac tgcatgttgc acgggtatctt ccttagccac gggcccgtc 1260 ccatttgagc ctgtcaatgt caccactgac cgagaggta ctcctgcagt gtctgacatc 1320 5 cgggtgacgc ggtcctcacc cagcagctt agcctggct gggctgtcc cggggcaccc 1380 agtggggcgt ggctggacta cgaggtcaaa taccatgaga agggcgccga gggcccagc 1440 agcgtgcgg tcttgaagac gtcagaaaac cgggcagage tcggggggt gaagcgggga 1500 gccagctacc tgggtcgagg acgggcgcgc tctgaggccg gctacgggccc cttcggccag 1560 gaacatcaca gccagaccca actggatgag agcgagggtc ggcggagca gctggccctg 1620 attgcggca cggcagtcgt gggtgtggc ctggctctgg tggtcattgt ggtcgcagtt 1680 10 ctctgcctca ggaaggcagag caatgggaga gaagcagaat attcggacaa acacggacag 1740 tatctcatcg gacatggta taaggcttac atcgacccct tcacttata agacccta 1800 gaggctgtga gggaaatttgc aaaagagatc gatgtctctt acgtcaagat tgaagaggtg 1860 attgtgcag gtgagtttg cgaggtgtc cggggcgcc tcaaggcccc agggaaagaag 1920 gagagctgtg tggcaatcaa gaccctgtt ggtggctaca cggagcgcga gggcgctgag 1980 tttctgagcg aggccctccat catgggccc ttcgagcacc ccaatatcat cggctggag 2040 ggcgtggta ccaacagcat gcccgtcatg attctcacag agttcatgga gaacggcc 2100 ctggactctt tcctgcccgt aaacgacgga cagttcacag tcatccagct cgtggccatg 2160 ctggggggca tggctctggg catgcggta cttggcggaga ttagctacgt ccacccgagac 2220 25 ctggctgtc gcaacatccat agtcaacagc aacctcgct gcaaaagtgtc tgactttggc 2280 cttttccat tcctggagga gaacttcc gatcccaccc acacgagtc cctgggagga 2340 aagattccca tccgatggac tggcccccgg gccattgcct tccggaagtt cacttccgccc 2400 agtgtgcct ggagttacgg gattgtatg tgggagggtga tgcattttgg ggagaggccg 2460 tactggaca tggcaatca ggacgtgtc aatggccattt aacaggacta cggctgccc 2520 cccggcccccag actgtccac cttccctccac cagtcatgc tggactttg gcagaaaagac 2580 cggaaatgccc ggccccgtt ccccccagggt gtcagcgc tggacaagat gatccggaaac 2640 cccggccagcc tcaaaaatcg tggccgggag aatggccgggg cctcacaccc tctcctggac 2700 cagcggcagc ctcactactc agcttttggc tctgtggggcg agtggcttcg ggccatcaaa 2760 atggaaagat acgaagcccg tttcgccagcc gctggctttg gtccttcga gctgtcagc 2820 30 cagatctctg ctgaggaccc gtcggaaatc ggagtactc tggcgggaca ccagaagaaa 2880 atcttggcca gtgtccagca catgaagtcc caggccaaagc cgggaaccccc gggtgggaca 2940 ggaggaccgg ccccgccagta ctga 2964
--

40

<210> 25
 <211> 1041
 <212> DNA
 <213> Homo sapiens

45

<300>
 <302> ephrin-B1
 <310> NM004429

50

atggctcgcc ctggccagcg ttggctcgcc aagtggcttg tggcgatggt cgtgtggcg 60 ctgtggccgc tcgccacacc gctggccaaag aacctggagc cctgtatccctg gagctccctc 120 aaccccaagt tcctgagtgg gaagggtttt gtatcttcc cggaaattgg agacaagctg 180 gacatcatct gccccccgagc agaaggcaggc cggccctatg agtactacaa gctgtacctg 240 gtggggctcg agcaggcagc tgcctgttagc acatgttcc accccaaacgt gttggtcacc 300 tgcaataggc cagaggcagga aatacgctt accatcaagt tccaggagtt cagcccaac 360 tacatgggcc tggagttcaa gaagcaccat gattactaca ttacctcaac atccaatgga 420 agcctggagg ggctggaaaa cggggaggcc ggtgtgtgcc gcacacgcac catgaagatc 480
--

60

65

atcatgaagg ttgggcaaga tcccaatgt gtgacgcctg agcagctgac taccagcagg 540
 cccagcaagg aggtagacaa cactgtcaag atggccacac aggcccctgg tagtcgggac 600
 tccctgggtg actctgtatgg caagcatgag actgtgaacc aggaagagaa gagtggccca 660
 ggtcaagtg ggggcagcag cggggacccct gatggcttct tcaactccaa ggtggcattg 720
 ttcgcggctg tcgggtccgg ttgcgtcata ttcctgtca tcatactttt cctgacggtc 780
 ctactactga agctacgcaa gcggcacccgc aagcacacac agcagcgggc ggctgcccte 840
 tcgctcagta ccctggccag tcccaagggg ggcagtggca cagcgggac cgagccccage 900
 gacatcatca tcccttaag gactacagag aacaactact gccccacta tgagaagggtg 960
 agtggggact acgggcaccc tgcgtacatc gtccaaagaga tgccgccccca gagccggcg 1020
 aacatctact acaaggctcg a 1041

<210> 26
 <211> 1002
 <212> DNA
 <213> Homo sapiens

<300>

<400> 26
 atggctgtga gaagggactc cgtgtggaag tactgctggg gtgttttatgc ggttttatgc 60
 agaactgcga tttccaaatc gatagttttta gggctatctt attggaaattc ctcgaactcc 120
 aaatttctac ctggacaagg actggtaacta taccacaga taggagacaa attggatatt 180
 atttggccca aagtggactc taaaactgtt ggccagttt aatattataa agtttatatg 240
 gttgataaaag accaaggcaga cagatgcact attaagaagg aaaatacccc tctctcaac 300
 tggccaaac cagaccaaga tatcaaatttcc accatcaagt ttcaagaattt cagccctaac 360
 ctctggggtc tagaatttca gaagaacaaa gattattaca ttatatctac atcaaattggg 420
 tcttttgggg gcctggataa ccaggaggga ggggtgtgcc agacaagagc catgaagatc 480
 ctcatgaaag ttggacaaga tgcaaggatct gctggatcaa ccaggaaataa agatccaaca 540
 agacgtccag aactagaagc tggtacaaat ggaagaaggat cgacaacaag tccctttgtt 600
 aaacccaaatc cagggttctag cacagacggc aacagcggc gacattcggg gaacaacatc 660
 ctgggttccg aagtggccctt atttgagggtt attgtttcag gatgcatat cttcatcg 720
 atcatcatca cgctgggtt cctcttgcg aagtacccggg ggagacacag gaagcactcg 780
 ccgcagcaca cgaccacgct gtcgctcagc acactggca cacccttgcg cagccgttac 840
 aacaacggctt cagagccccag tgacattatc atcccgctaa ggactgcccga cagcgcttc 900
 tgccctcaactt acgagaagggtt cagccgcac tacggcacc cgggtgtacat cgtccaggag 960
 atggcccccgc agagccccggc gaacatttac tacaagggtctt ga 1002

<210> 27
 <211> 1023
 <212> DNA
 <213> Homo sapiens

<400> 27
 atggggcccc cccattctgg gcccgggggc gtgcgagtcg gggccctgt gctgctgggg 60
 gttttggggc tgggtgtctgg gtcagcctg gagcctgtct actggaaatc ggcataaag 120
 aggtttccagg cagagggtgg ttatgtgtc taccctcaga tcggggaccc gctagacctg 180
 ctctggccccc gggccggcc tectggccct cactcctctc ctaattatga gtttacaag 240
 ctgtacctgg taggggggtgc tcaggggccgg cgctgtgagg cacccttgc cccaaacctc 300
 cttctcaattt gtgatcggcc agacctggat ctcggcttca ccatcaaggat ccaggagtt 360
 agccctaattt tctggggcca cggatccgc tggcaccacg attactacat cattgccaca 420
 tcggatggga cccggggaggg cctggagagc tggcaggagc gtgtgtgcctt aaccagaggc 480
 atgaagggtgc ttctccgagt gggacaaggat ccccgaggag gggctgtccc cccaaaaacct 540
 gtgtctgaaa tgcccatggaa aagagacca gggccggcc acagcctgga gcctgggaag 600
 gagaacctgc caggtgaccc caccagcaat gcaacctccc ggggtgtga aggccccctg 660
 cccccccttca gcatgcctgc agtggctggg gcagcagggg ggctggcgct gctttgtc 720

60

65

DE 101 00 586 C 1

ggcgtggcag gggctggggg tgccatgtgt tggcgagac ggcccccaa gccttcggag 780 atcgccacc ctggtcctgg ctccctcggg aggggagggt ctctggccct ggggggttga 840 ggtggatgg gacctcggga ggctgagcct gggagctag ggatagctct gcgggggtggc 900 ggggctgcag atccccctt ctgccccac tatgagaagg tgagtggta ctatggcat 960 cctgtgtata tcgtcagga tggcccccc cagagccctc caaacatcta ctacaaggta 1020 tga 1023	5
<210> 28 <211> 3399 <212> DNA <213> Homo sapiens	10
<300> <302> telomerase reverse transcriptase <310> AF015950	15
<400> 28 atgcccgcg ctcggcgtg ccgagccgtg cgctccctgc tgccgcagcca ctaccgcgag 60 gtgctccgc tgccacgtt cgtgcggcgc ctggggccccc agggctggcg gctgtgcag 120 cgccgggacc cggcggttt cggcgcgctg gtggcccagt gcctgtgtg cgtccctgg 180 gacgcacggc cggccccccgc cgccccctcc ttccgcagg tgcctgcct gaaggagctg 240 gtggcccgag tgctgcagag gctgtgcagag cgccgcgcga agaacgtgt ggccttcggc 300 ttcgcgtgc tgacggggc cggcggggc ccccccggagg ccttcaccac cagcgtgcgc 360 agctacctgc ccaacacggt gaccgacga ctgcggggga gcgccggctg ggggctgtg 420 ctgcggcgc tgccgacga cgtgtggtt cacctgtgg caccgtgcgc gctctttgtg 480 ctggggcgc ccaagctgcgc ctaccagggtg tgccggccgc cgctgtacca gctccggct 540 gccactcagg cccggcccccc gccacacgtt agtgacccccc gaaggcgtct gggatgcgaa 600 cgccgttgc accatagcgt caggaggcc ggggtcccccc tgggcctgcc agccccgggt 660 gchgaggaggc gccggggcag tgccagccga agtctgcgt tgcccaagag gcccaggcgt 720 ggcgctgccc ctgagccggc gcgacgccc gttggcagg ggtccctggc ccacccgggc 780 aggacgcgtg gaccgagtga cctgtggttc tggatgtgtt cacctgcacag accccggcga 840 gaagccaccc ttggaggg tgccgtcttcc ggcacgcgc actccaccc atccgtggc 900 cgccagcacc acggggccc cccatccaca tcgcggccac cacgtccctg ggacacgcct 960 tgtcccccgg ttagccgcga gaccaagcac ttccctact cctcaggcga caaggaggcag 1020 ctgcggccct ctttctact cagctctcg aggcccagec tgactggcgc tcggaggctc 1080 gtggagacca tctttctggg ttccaggccc tggatgcac ggactccccc caggttgc 1140 cgccgtcccc agcgctactg gcaaatgggg cccctgttgc tggagctgt tgggaaccac 1200 gchgactgccc cttacggggt gtcctcaag acgcactgccc cgctgcgagc tgccgtcacc 1260 ccagcagccg gtgtctgtgc cggggagaag ccccaaggct ctgtggcgc ccccgaggag 1320 gaggacacag accccctgcg cctggtgcag ctgcctccgc agcacagcag cccctggcag 1380 gtgtacggct tcgtcgggc ctgcctgcgc cggctgggtgc ccccaaggct ctggggctcc 1440 aggcacaacg aacgcgcctt ctcaggaac accaagaat tcatctccct ggggaagcat 1500 gccaagctt cgcgtcagga gtcgacgtgg aagatgagcg tgccggactg cgcttggctg 1560 cgccaggagcc cgggggttgg ctgtttccg gcccacggc accgtctcg tgaggagatc 1620 ctggccaagt tcctgcactg gctgtatgagt tggtacgtcg tcgagctgt caggttttc 1680 tttatgtca cggagaccac gttcaaaag aacaggtct ttttctaccg gaagagtgtc 1740 tggagaagt tccaaagcat tggaaatcaga cagcaattga agagggtgca gctgcggggag 1800 ctgtcggaaag cagaggtcag gcaacatcgga gaagccaggc ccggccctgtc gacgtccaga 1860 ctccgcgttca tccccaaagcc tgacgggtg cggccgttgc tgaacatgga ctacgtcg 1920 ggagccagaa ctttccgcag agaaaaggagg cggcagcgtc tcacctcgag ggtgaaggca 1980 ctgttacggc tgctcaacta cgagcggggc cggcgcccccg gcctctggg cgcctctgtg 2040 ctgggcttgg acatatatcca caggccctgg cgcacattcg tgctgcgtgt gcggggccag 2100 gacccggccgc ctgagctgtt ctttgcgtt gttggatgtga cggccgcgtt cgacaccatc 2160 ccccaggacca ggctcacggc ggtcatcgcc agcatcatca aaccccaagaa cacgtactgc 2220 gtgcgtcggt atgcgtggc ccagaaggcc gcccattggc acgtccgc当地 ggccttc当地 2280 agccacgtctt ctacccttgcg agacctccag ccgtacatgc gacagttcg ggcctcacctg 2340	30
	35
	40
	45
	50
	55
	60

65

DE 101 00 586 C1

DE 101 00 586 C1

acagggttct	tcatgaatct	ggaggaagac	atgaccagg	atgcctatta	ttacagtgg	360
atttgtgctg	gggtgctgg	tgctgcttac	attcagg	cattttgg	cctggcag	420
ggaagacaaa	tacacaaaat	tagaaaacag	tttttcatg	ctataatcg	acaggagata	480
ggctggg	atgtgcacga	tgttggggag	cttaacaccc	gacttacaga	tgtatgtct	540
aagattaatg	aagaattgg	tgacaaaatt	ggaatgttct	ttagtcaat	ggcaacattt	600
ttcactgggt	ttatagtagg	atttacacgt	ggttggaagc	taacccttg	gattttggc	660
atcagtcc	ttcttggact	gtcagctgt	gtctggcaa	agataactatc	ttcatttact	720
gataaagaac	tcttagcgta	tgcaaagat	ggagcagtag	ctgaagaggt	cttggcagca	780
attagaactg	tgattgcatt	tggaggaca	aagaaagaac	tgaaaaggta	caacaaaaat	840
ttagaagaag	ctaaaagaat	tgggataaag	aaagctatta	cagccaat	ttctataggt	900
gctgtttcc	tgctgatcta	tgcatttat	gctctggc	tctgttatgg	gaccacctt	960
gtcctctcg	gggaatattc	tattggaca	gtactcactg	tatttctgt	attaatttggg	1020
gcttttagt	ttggacaggc	atctcca	attgaagcat	ttgcaatgc	aagaggagca	1080
gcttatgaaa	tcttcaagat	aattgataa	aagccaagta	tgacagc	ttcgaagat	1140
gggcacaaac	cagataat	taagggaat	ttggaaatca	gaaatgttca	cttcagttac	1200
ccatctcgaa	aagaagttaa	gatcttga	ggtctgaacc	tgaagtgca	gagtggcag	1260
acggtggccc	ttggtggaaa	cagtggctg	gggaagagca	caacagtcc	gctgtatcg	1320
aggctctatg	accccacaga	ggggatggc	agtgttgatg	gacaggat	taggaccata	1380
aatgttaagg	ttctacggg	aatcattgg	gtggtgatc	aggaacctgt	attgtttgcc	1440
accacgatag	ctgaaaacat	tgcgtatgg	cgtgaaaatg	tcaccatgg	tgagattgag	1500
aaagctgtca	aggaagccaa	tgcctatgac	tttacatg	aactgcctc	taaatttgc	1560
accctgggt	gagagagagg	ggcccagt	agtgttggc	agaagcagag	gategccatt	1620
gcacgtgccc	ttggggc	ccccaaagatc	ctcctgt	atgaggcc	gtcagcctt	1680
gacacagaaa	gcaagcagt	ggttcaggt	gctctggata	aggccagaa	aggtcggacc	1740
accatttgta	tagtcatcg	tttgtctaca	tttgcataatg	ctgacgtcat	cgctggttc	1800
gatgttgag	tcatttgtg	gaaaaggaa	catgtgaa	tcatgaaaga	gaaaggcatt	1860
tacttcaaac	ttgtc	gcagacagca	ggaatgtaa	ttgaatttga	aatgcagct	1920
gatgaatcca	aaagtaaaat	tgatgc	tttgc	aaaatgtt	caatgatttca	1980
ctaataagaa	aaagatcaac	tcgttagg	gtccgtt	gatacgtt	agatccat	2040
cttagtacca	aagggtct	ggatgaaa	atac	tttgc	tttgc	2100
aagctaatt	taactgat	gccttattt	gttgg	tat	tttgc	2160
ggaggcc	aaccagg	tgcaataa	tttcaaa	tttgc	tttcaaa	2220
attgtatgt	ctgaaacaaa	acgacaga	atgtactt	tttgc	tttgc	2280
cttggattt	tttgc	tacatttt	tttgc	tttgc	tttgc	2340
gagatc	ccaa	ccgat	gttgc	tttgc	tttgc	2400
caagcactg	aaagataagaa	aaactagaa	aaacacc	ggatgttgc	tttgc	2460
gaaaactcc	gaaccgtt	tttgc	tttgc	tttgc	tttgc	2520
cagagt	tttgc	tttgc	tttgc	tttgc	tttgc	2580
ttttc	ccca	ccca	tttgc	tttgc	tttgc	2640
ttagcaattt	tacccat	tgcaat	ggatgttgc	tttgc	tttgc	2700
caagcactg	aaagataagaa	aaactagaa	aaacacc	ggatgttgc	tttgc	2760
gaaaactcc	gaaccgtt	tttgc	tttgc	tttgc	tttgc	2820
cagagt	tttgc	tttgc	tttgc	tttgc	tttgc	2880
ttttc	ccca	ccca	tttgc	tttgc	tttgc	2940
tacttgg	cacataa	catgac	tttgc	tttgc	tttgc	3000
gtcttgg	ccatgg	ggggca	tttgc	tttgc	tttgc	3060
aaaatatacg	cagccc	catcat	tttgc	tttgc	tttgc	3120
agcacgg	gcctat	gaacacat	tttgc	tttgc	tttgc	3180
ttcaactt	ccaccc	ggacat	tttgc	tttgc	tttgc	3240
aaaggcc	cgctgg	tttgc	tttgc	tttgc	tttgc	3300
ctcctgg	ggttt	tttgc	tttgc	tttgc	tttgc	3360
aagcactg	atgtt	tttgc	tttgc	tttgc	tttgc	3420
ctgttt	acttgc	tttgc	tttgc	tttgc	tttgc	3480
cataataa	atgcact	tttgc	tttgc	tttgc	tttgc	3540
caacgcatt	ccatag	tttgc	tttgc	tttgc	tttgc	3600
gccacgtc	ctctgg	tttgc	tttgc	tttgc	tttgc	3660
agagaaggc	gcac	tttgc	tttgc	tttgc	tttgc	3720

60

65

DE 101 00 586 C 1

ttaatagtgg tggcagagtc aaggagcatg gcacgcata gcagctgctg 3780
 gcacagaaag gcatctattt ttcaatggc agtgtccagg ctgaaacaaa gcgccagtga 3840

5 <210> 31
 <211> 1318
 <212> DNA
 <213> Homo sapiens

10 <300>
 <302> UPAR (urokinase-type plasminogen activator receptor)
 <310> XM009232

15 <400> 31
 atgggtcacc cgccgctgct gccgctgctg ctgctgctcc acacctgcgt cccagcctct 60
 tggggcctgc ggtgcata gtaaacc aacggggatt gcccgtgtgg aaggtgcgcc 120
 ctgggacagg acctctgcag gaccacgatc gtgcgttgc gggagaagg agaagagctg 180
 gagctgtgg agaaaaagctg tacccactca gagaagacca acaggaccct gagtatcgg 240
 20 actggcttgc agatcacccag ctttaccgag gttgtgtgt gtttagactt gtcaaccag 300
 ggcaactctg gcccggctgt cacatttcc cgaagccgtt acctcgaatg catttcctgt 360
 ggctcatcg acatgagctg tgagaggggc cggcaccaga gcctgcagtgc ccgcagccct 420
 gaagaacagt gcctggatgt ggtgaccac tggatccagg aaggtgaaga agggcgtcca 480
 aaggatgacc gccacccctcg tggctgtggc tacccctccg gctgcccggg ctccaatgg 540
 25 ttccacaaca acgacacccat ccacttctg aaatgctgca acaccaccaa atgcaacgag 600
 gggccaaatcc tgaggttgc aaatctgcg cagaatggcc gcctgcgtt cagctgcaag 660
 gggaaacagca cccatggatg ctccctctgaa gagacttcc tcattgcactg ccgaggcccc 720
 ataaatcaat gtcgttgcg caccggact cacaaccga aaaaccaaag ctatatggta 780
 agaggctgtg caaccgcctc aatgtgcca catgcccacc tgggtgacgc cttcagcatg 840
 30 aaccacattt atgtctctg ctgtactaaa agtggctgtt accacccaga cctggatgtc 900
 cagtaccgca gttgggctgc tcctcagcct ggcctgccc atctcagcct caccatcacc 960
 ctgctaata gtcggcact gttgggaggg actctctct ggacctaacc ctgaaatccc 1020
 cctctctgc ctggctggat cggggggacc ctttgcctt tccctcggtt cccagcccta 1080
 cagacttgcgt gtgtgacccctc aggccagtgt gcccacccctt ctgggcctca gttttccag 1140
 35 ctatgaaaac agctatctca caaagttgtg tgaagcagaa gagaaaagct ggaggaaggc 1200
 cgtggccaa tggagagct cttgttatta ttaatattgt tgccgctgtt gtgttgg 1260
 tattaattaa tattcatatt atttattttt tacttacata aagattttgtt accagtgg 1318

40 <210> 32
 <211> 636
 <212> DNA
 <213> Homo sapiens

45 <300>
 <302> Bak
 <310> U16811

<400> 32
 atggcttcgg ggcaggcccc aggtcctccc aggcaggagt gcccggagggc tgcctgccc 60
 tctgcttcgg agggcagggt agcccaggac acaggagggt tttccggcag ctacgttttt 120
 taccggccatc agcaggaaaca ggaggctgaa ggggtggctg cccctgccc cccagagatg 180
 gtcacccatc ctctgcacc tagcagcacc atggggcagg tgggacggca gtcggccatc 240
 atcggggacg acatcaaccg acgtatgac tcagagttcc agaccatgtt gcagcacctg 300
 55 cagccacccgg cagagaatgc tcatgagttt ttcaccaaga ttggccaccag cctgttgag 360
 agtggcatca atggggcccg tgggtggctt cttctggct tcggctaccg tctggcccta 420
 cacgttacc agcatggcct gactggctt ctagggcagg tgaccggctt cgtggcggac 480
 ttcatgctgc atcaactgcat tgcccggtgg attgcacaga ggggtggctg ggtggcggcc 540

60

65

DE 101 00 586 C 1

ctgaaactgg gcaatggtcc catcctgaac gtgtcggtgg ttctgggtgt ggttctgttg 600
ggccagttt tggtacgaag attcttcaaaa tcatga 636

<210> 33
<211> 579
<212> DNA
<213> *Homo sapiens*

<300>
<302> Bax alpha
<310> L22473

```

<400> 33
atggacgggt ccggggagca gcccagaggc gggggggccca ccagctctga gcagatcatg 60
aagacagggg ccctttgtct tcagggtttc atccaggatc gagcaggcg aatggggggg 120
gaggcaccccg agctggccct ggacccggtg cctcaggatg cggtccaccaa gaagctgagc 180
gagtgtctca agcgcacatcg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
gcccccggtgg acacagactc ccccccggagag gtcttttcc gagtggcagc tgacatgtt 300
tctgacggca acttcaactg gggccgggtt gtcgccttt tctactttgc cagcaaactg 360
gtgtcaagg ccctgtgcac caaagggtcccc gaaactgatca gaaccatcat gggctggaca 420
ttggacttcc tccggggagcg gctgttgggc tggatccaag accagggtgg ttgggacggc 480
ctctctctct actttgggac gcccacgtgg cagaccgtga ccatctttgt ggccggagtg 540
ctcacccggct cgctcaccat ctggagaagatggctga 579

```

<210> 34
<211> 657
<212> DNA
<213> Homo sapiens

<300>
<302> Bax beta
<310> L22474

<400> 34		40
atggacgggt ccggggagca gcccagaggc gggggggccca ccagctctga gcagatcatg 60		
aagacagggg ccctttgtct tcagggtttc atccaggatc gagcagggcg aatggggggg 120		
gaggcaccccg agctggccct ggaccgggtg cctcaggatg cgtccaccaa gaagctgagc 180		
gagtgtctca agcgcatcg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240		
gccgcgttgg acacagactc ccccccggag gtcttttcc gagtggcagc tgacatgttt 300		
tctgacggca acttcaactg gggccgggtt gtcggccctt tctactttgc cagcaaactg 360		
gtgctcaagg ccctgtgcac caagggtccgc gaactgtatca gaaccatcat gggctggaca 420		
ttggacttcc tccgggagcg gctgttgggc ttgatccaag accagggtgg ttgggtgaga 480		
ctcctcaaggc ctccctcaccc ccaccaccgc gccctcacca ccggccctgc cccaccgtcc 540		
ctggcccccccg ccactctctt gggaccctgg gccttctgga gcaggttcac gtgggtccct 600		
ctccccatct tcagatcatc agatgtggtc tataatgcgt tttcttacq tqtctqa 657		

<210> 35
<211> 432
<212> DNA
<213> *Homo sapiens*

<300>
<302> Bax delta
<310> U19599

60

DE 101 00 586 C 1

5 <400> 35
 atggacgggt ccggggagca gcccagaggc ggggggcca ccagctctga gcagatcatg 60
 aagacagggg ccctttgtc tcagggatg attgccgcg tggacacaga ctcccccca 120
 gaggtcttttcccgatggc agctgacatg tttctgacg gcaactcaa ctggggccgg 180
 gttgtcgccc ttttctactt tgccagaaa ctggtgctca aggccctgtg caccaaagg 240
 ccggaaactga tcagaaccat catggctgg acattggact tcctccggga gggctgtt 300
 ggctggatcc aagaccaggg tggttggac ggctccctct cctactttg gacccccacg 360
 tggcagaccg tgaccatctt tgtggcgaa gtgctcaccc ctcgctcac catctggaa 420
 10 aagatgggct ga 432

15 <210> 36
 <211> 495
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> Bax epsilon
 <310> AF007826

25 <400> 36
 atggacgggt ccggggagca gcccagaggc ggggggcca ccagctctga gcagatcatg 60
 aagacagggg ccctttgtc tcagggatc atccaggatc gggcaggcg aatggggggg 120
 25 gggcaccgg agctggccct ggacccgggtg cctcaggatg cgtccaccaa gaagctgagc 180
 gagtgtctca aegcgatecg ggacgaactg gacgtaaca tggagctgca gaggatgatt 240
 gccgcgtgg acacagactc ccccccggagag gtctttttcc gagtggcagc tgacatgtt 300
 tctgacggca acttcaactg gggccgggtt gtgcctttt tctactttgc cagcaaactg 360
 30 gtgctcaagg ctggcgtgaa atggcgtgat ctggcgtcac tgcaacccctt gcctccctgg 420
 ttcaagcgat tcaacctgcct cagcatccca aggagctggg attacaggcc ctgtgcacca 480
 aggtggccgga actga 495

35 <210> 37
 <211> 582
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> bcl-w
 <310> U59747

45 <400> 37
 atggcgaccc cagcctcgcc cccagacaca cgggctctgg tggcagactt tgttagttat 60
 aagctgagggc agaagggtt tgcactgtgg gctggccccc gggagggccc agcagctgac 120
 cccgctgcacc aagccatgca ggcagctgg gatgagttcg agaccccgctt cccggcgcacc 180
 ttctctgtat tggcggtca gctgcatgtg acccccaggct cagcccagca acgcttcacc 240
 caggcttcgg accaactttt tcaagggggc cccaaactggg gccgccttgtt agectttttt 300
 50 gtctttgggg ctgcactgtg tgctgagatgt gtcacaagg agatggaaacc actgggtggg 360
 caagtgcagg agtggatggt ggccttacactg gagacgcggc tggctgactg gatccacagc 420
 agtggggctt gggcgaggt cacagctata tacggggacgg gggccctggg ggaggcgcgg 480
 cgtctgcggg aggggaactg ggcatacgatg aggacagtgc tgacgggggc cgtggcactg 540
 gggccctgg taactgttagg ggcctttttt gctagcaagt ga 582

55 <210> 38
 <211> 2481

60

65

DE 101 00 586 C 1

<212> DNA
<213> Homo sapiens

<300>
<302> HIF-alpha
<310> U22431

5

<210> 39
<211> 481
<212> DNA
<213> *Homo sapiens*

55

60

DE 101 00 586 C 1

<300>
<302> ID1
<310> X77956

5 <400> 39
atgaaagtgcg ccagtggcag caccgccacc gcccggcg ggcccaagctg cgccgtgaag 60
gccggcaaga cagcgacgg tgccggcgag gtggtgcgt gtctgtctga gcagagcgtg 120
gccatctcgc gctgcccggg cgccggcg cgccgtgcctg ccctgcttga cgaggcagcag 180
10 gtaaaacgtgc tgctctacga catgaacggc tttactcac gcctcaagga gctgggtcccc 240
accctggcccc agaaccgcaa ggtgagaag gtggagatttccagcacgt catcgactac 300
atcagggacc ttcaagtggta gctgaactcg gaatccgaag ttgggacccc cggggccga 360
gggctgcccgg tccgggttc gctcagcacc ctcaacggcg agatcagcgc cctgacggcc 420
gaggcggcat gcttccctgc ggacgatcgc atttgtgtc gctgaatggtaaaaaaaaaaaaa 480
15 a 481

<210> 40
<211> 110
20 <212> DNA
<213> Homo sapiens

<300>
<302> ID2B
25 <310> M96843

<400> 40
tgaaaggctt cagttccgtg aggtccatta ggaaaaaacag cctgttggac caccgcctgg 60
gcatctccca gagcaaaacc ccgggtggatg acctgtatgatg cctgtgtaa 110

30 <210> 41
<211> 486
<212> DNA
35 <213> Homo sapiens

<300>
<302> ID4
<310> Y07958

40 <400> 41
atgaaggccgg tgagccccgt ggcgcctcg ggccgcaagg cgccgtcggttgcggcg 60
ggggagctgg cgctgcgtg cctggcccgag cacggccaca gcctgggtgg ctccgcagcc 120
gcggccggcg cgccggcgcc agcgcgtgt aaggccggcggcggccgc 180
45 ggcgtgtcc tgcagtgcgtatgaacgcacgtatgtatagcc gcctgcggag gctgggtcccc 240
accatccccgc ccaacaagaa agtcagcaaa gtggagatcc tgccgcacgt tatcgactac 300
atcctggacc tgcagctggc gctggagacg cacccggcccc tgctgaggca gccaccaccc 360
cccgcgcgc cacaccaccc ggccgggacc tgccagcccg cgccgcgcgcg gacccgcctc 420
actgcgcgtca acaccgaccc ggccggcgcg gtgaacaagc agggcgacag cattctgtgc 480
50 cgctga 486

<210> 42
<211> 462
55 <212> DNA
<213> Homo sapiens

<300>

60

DE 101 00 586 C 1

<302> IGF1
 <310> NM000618

<400> 42
 atggaaaaaa tcagcagtct tccaacccaa ttattnaagt gctgctttg tgatttcttg 60
 aaggtaaga tgcacaccat gtcctctcg catctctct acctggcgct gtgcctgctc 120
 accttcacca gctctgccac ggctggaccg gagacgctct gccccgtga gctggat 180
 gctcttcagt tcgtgtgtgg agacaggggc ttttattca acaagccac agggatggc 240
 tccagcagtc ggagggcgcc tcagacagtc atcgtggatg agtgcgtt ccggagctgt 300
 gatctaaggaa ggctggagat gtattgcgc cccctcaagc ctgccaagtc agctcgctct 360
 gtccgtgccc agcgcacac cgacatgccc aagaccaga aggaagtaca tttgaagaac 420
 gcaagttagag ggagtgcagg aaacaagaac tacaggatgt ag 462

15
 <210> 43
 <211> 591
 <212> DNA
 <213> Homo sapiens

20
 <300>
 <302> PDGFA
 <310> NM002607

<400> 43
 atgaggacct tggcttgcct gctgctcctc ggctgcggat acctcgccca tttctggcc 60
 gaggaagccg agatcccccg cgaggtgatc gagaggctgg cccgcagtc gatccacagc 120
 atccggacc tcacgcact cctggagata gactccgtag ggagttagga ttctttggac 180
 accagcctga gagtcacgg ggtccacgac actaaggcatg tgcccgagaa gcggccctg 240
 cccatcgga ggaagagaag catcgaggaa gctgtccccc ctgtctgaa gaccaggacg 300
 gtcatttacg agatttcctcg gagtcaggc gaccccacgt ccggcaactt cctgatctgg 360
 ccccgctgcg tggaggtgaa acgctgcacc ggctgctgca acacgagoag tgtcaagtgc 420
 cagccctccc gctccacca ccgcagcgtc aagtgccca aggtgaaata cgtcaggaag 480
 aagccaaaat taaaagaagt ccaggtgagg ttagaggac atttggatgt cgcctgcgc 540
 accacaagcc tgaatccgga ttatcggaa gaggacacgg atgtgaggta 591 55

40
 <210> 44
 <211> 528
 <212> DNA
 <213> Homo sapiens

45
 <300>
 <302> PDGFRA
 <310> XM003568

<400> 44
 atggccaagc ctgaccacgc taccagtgaa gtctacgaga tcatggtaa atgctggaaac 60
 agtgagccgg agaagagacc ctccctttac caccgtgtg agattgtgaa gaatctgctg 120
 cctggacaat ataaaaagat ttatgaaaaa attcacctgg acttcctgaa gagtgaccat 180
 cctgctgtgg cacgcacgtcg tggactca gacaatgc acatgggtt cacctacaaa 240
 aacgaggaag acaagctgaa ggactgggg ggttgtctgg atgagcagag actgagcgct 300
 gacagtggct acatcattcc tctgcctgac attgaccctg tccctgagga ggaggacctg 360
 ggcaagagga acagacacag ctgcagacc tctgaagaga gtgcatttga gacgggttcc 420
 agcaggttcca cttcatcaa gagagaggac gagaccattt aagacatcga catgtggat 480
 gacatcgca tagactcttc agacctggtaa gaagacagct tcctgtaa 528

60

65

DE 101 00 586 C 1

5 <210> 45
 <211> 1911
 <212> DNA
 <213> Homo sapiens

 10 <300>
 <302> PDGFRB
 <310> XM003790

 15 <400> 45
 atgcggcttc cgggtgcgat gccagctctg gccctcaaag gcgagctgtct gttgtgtct 60
 ctcccttac ttctggAAC acagatctt caggcctgg tcgtcacacc cccggggcca 120
 gagttgtcc tcaatgtctc cagcacccctt gttctgaccc gtcgggttc agctccggtg 180
 gtgtggAAC ggatgtccccca ggagccccca caggaaatgg ccaaggccca ggatggcacc 240
 ttctccagcg tgctcacact gaccaacccctt actgggttag acacgggaga atactttgc 300
 acccacaatg actcccgtagg actggggaccc gatgagccga aacggctta catctttgtg 360
 ccagatccccca ccgtgggtt cctccctaat gatgccgggg aactattcat ctttctcacg 420
 gaaataactg agatcaccat tccatgccga gtaacagacc cacagctgtt ggtgacactg 480
 20 cacgagaaga aaggggacgt tgactgcct gtcccctatg atcaccaacg tggctttct 540
 ggtatcttg aggacagaag ctacatctgc aaaaccacca ttggggacag ggaggtggat 600
 tctgtatgcct actatgtctc cagactccag gtgtcatcca tcaacgtctc tgtgaacgca 660
 gtgcagactg tgggtccggca gggtgagaac atcaccctca tggatgtt gatcgaaat 720
 gaggtggta acttgcgtt gacatacccc cgeaaagaaa gtggggcgct ggtggagccg 780
 25 gtgactgtact tccctttggat tatgccttac cacatccgtt ccacatctgc catccccagt 840
 gccgagtttag aagactcggg gacctacacc tgcataatgtga cggagagtgt gaatgaccat 900
 caggatgaaa aggccatcaa catcacgtt gttgagagccg gtcacgttgc gtccttggca 960
 gaggtggggca cactacaattt tgctgatgtt catccggccg ggacactgtca ggttagtggc 1020
 gaggcctacc caccggccac tggctctgtt ttcggggacaa acggccacctt gggcgactcc 1080
 30 agcgtggcg aaatgcgcct gtccacgcgc aacgtgttgg agaccggta tggatgtt 1140
 ctgacacttgg ttcgtgtgaa ggtggcagag gtcggccactt acacatcgcc ggccttccat 1200
 gaggatgttgg aggtccagct tccctttccat ctacagatca atgtccctgtt ccgagtgttgc 1260
 gagctaaatgtt agagccaccc tgcacgttggg gaaacagacag tccgctgttgc tggccggggc 1320
 atgccccaggc cgaacatcat ctggatgttgc tgcagagacc tcaaaaggatg tccacgttgc 1380
 35 ctggccggca cgctgttggg gaaacaggatcc gaaaggagaga gccagctggta gactaacgtt 1440
 acgtacttggg aggaggagca ggagtttggat gtgttgcgtt cactgcgttgc gtcacgttgc 1500
 gatcgccac tggctgttgcgtt ctgcacgttgc cgcaacgttgc tggccaggat caccggagg 1560
 gtcatcggtt tggccacactt cttggccctt aagggtgttgc tgatctcgatc catcttggcc 1620
 ctggatgttgc taccatcat ctcccttac atccatcatca tgctttggca gaaaggccca 1680
 40 cgttacgaga tccgtgttggaa ggtgttggat tctgtgttgcgtt ctgcacggccca tgatgttgc 1740
 tacgtggacc ccatgcgttgcgtt gcccattatgtac tccacgttggg agctggccgc ggaccagctt 1800
 gtgtggggac gcaaccctcggtt ctctggggcc tttggggaggc tggtggaggc cacggatcat 1860
 ggcctgagcc attttcaagc cccaaatggaa gtggccgtca aaaatgttta a 1911

 45 <210> 46
 <211> 1176
 <212> DNA
 <213> Homo sapiens

 50 <300>
 <302> TGFbeta1
 <310> NM000660

 55 <400> 46
 atgcggccctt ccgggtgcgtt gctgtgttgcgtt ctgtgttgcgtt cgtgtgttgcgtt gctactgggtt 60
 ctgacgcctt gcccggccggc cgcggactt tccacgttgcgtt agactatgttca catggagctt 120
 gtgaaggcgatcga agcgttgcgttgcgtt ggcacatccgc ggcacatccgc tgcgttgcgtt gtcgttgcgtt 180

 60

 65

DE 101 00 586 C 1

agccccccga gccaggggga ggtgcgcgccc ggcccgcgtc ccgaggccgt gctgcgcctg 240
 tacaacagca cccgcgaccg ggtggccggg gagagtgcag aaccggagcc cgagccttag 300
 gcccactact acgccaagga gtcacccgcgt tgctaatgg tggaaaccca caaccaaattc 360
 tatgacaaga tcaagcagag tacacacacat atatatatgt tttcaacac atcagagtc 420
 cgagaagcg gtttgcacc cgtgttgctc tccggccag actgcgtct gttggaggagg 480
 ctcaagttaa aagtggagca gcacgtggag ctgtaccaga aatacagcaa caattctgg 540
 cgataccctca gcaaccggct gtcggcaccc agcactcgc cagagtgggtt atcttttgat 600
 gtcaccggag ttgtgcggca gtgggttgagc cgtggagggg aaattgaggg ctttcgcctt 660
 agcgcactact gtcctgtga cagcaggat aacacactgc aagtggacat caacgggttc 720
 actaccggcc gccgagggtga cttggccacc attcatggca tgaaccggcc ttctctgttt 780
 ctcatggcca cccccgtggag gaggggccca gatctgcaaa gtcggccca cccggagcc 840
 ctggacacca actattgtt cagctccacg gagaagaact gtcgcgtgcg gcaactgtac 900
 attgacttcc gcaaggacat cggctggaa tggatccacg agcccaaggg ctaccatgcc 960
 aacttctgc tcggccctg cccctacatt tggagcctgg acacgcagta cagcaaggtc 1020
 ctggccctgt acaaccagea taacccggggc gcttcggcgg cggcgtgctg cgtggcccgag 1080
 gcgctggagc cgctgccccat cgtgtactac gtggccgca agcccaaggt ggagcactg 1140
 tccaacatga tcgtgcgetc ctgcaagtgc agtgcga 1176

<210> 47
 <211> 1245
 <212> DNA
 <213> Homo sapiens

<300>
 <302> TGFbeta2
 <310> NM003238

<400> 47
 atgcactact gtgtgctgag cgctttctg atcctgcatt tggtcacggc cgcgctcagc 60
 ctgtctacct gcagcacact cgatatggac cagttcatgc gcaagaggat cgagggcgatc 120
 cccggccaga tcctgagcaa gtcgaagctc accagtcccc cagaagacta tcctgagggcc 180
 gaggaagtcc cccccggaggt gatccatcataacacgca ccaggactt gtcggaggag 240
 aaggcgagcc ggagggcgcc cgcctgcgag cgcgagagga gcaacggca gtaactacgcc 300
 aaggaggtt acaaataaga catggccccc ttctccctt ccggaaaatgc catcccgccc 360
 actttctaca gaccctactt cagaatttgtt cgatttgcg tctcagcaat ggagaagaat 420
 gtttccaaatt tggtaaaaggc agagttcaga gtcttcgtt tgcagaacccc aaaagccaga 480
 gtgcctgaaac aacggattga gctatatcag attctcaagt ccaaagattt aacatctcca 540
 accccagcgatc acatcgacag caaaggatgtt aaaacaagag cagaaggcga atggctctcc 600
 ttgcgtgtaa ctgtatgtt tcatgaatgg cttcaccata aagacaggaa cctgggattt 660
 aaaataaagtct tacactgtcc ctgctgcact tttgttccat ctaataatta catcatccca 720
 aaaaaaaagt gagaactaga agcaagattt gcaggatgg atggcaccc cacatataacc 780
 agtgggtgatc agaaaactat aaagtccact aggaaaaaaa acagtgggaa gacccacat 840
 ctccctgtctaa tggatattgc cttccatcaga cttgagtcac aacagaccaa cccggggaaag 900
 aagcgtgttt tggatgcggc ctattgtctt agaaaatgtc aggataattt ctgcgtacgt 960
 ccacttttaca ttgatttcaa gagggtcta ggggtggaaat ggatcacacgaa acccaaagg 1020
 tacaatgcctt acttctgtgc tggagcatgc ccgtatttat ggagttcaga cactcagcac 1080
 agcagggtcc tgagcttata taataccata aatccagaag cactgttcc tccttgcgtc 1140
 gtgtcccaag atttagaacc tctaaccatt ctctactaca ttggcaaaac acccaagatt 1200
 gaacagcttt ctaatatgtat tgtaaaagtct tgcaaatgc gctaa 1245

<210> 48
 <211> 1239
 <212> DNA
 <213> Homo sapiens

DE 101 00 586 C 1

```

<300>
<302> TGFbeta3
<310> XM007417

5 <400> 48
atgaagatgc acttgcaaag ggctctggc gtcctggccc tgctgaactt tgccacggc 60
agcctcttc tgcacttg caccaccc gacttcggcc acatcaagaa gaagagggtg 120
gaagccatta ggggacagat cttagacaag ctcaggctca ccagcccccc tgagccaacg 180
10 gtgatgaccc acgtccctta tcaggtcctg gcccttaca acagcaccccg ggagctgctg 240
gaggagatgc atggggagag ggaggaaggc tgcacccagg aaaacacccga gtcgaatac 300
tatccaaag aaatccataa attcgacatg atccaggggc tggcggagca caacgaactg 360
gctgtctgc ctaaaggaaat tacctccaag gtttccgt tcaatgtgtc ctcagtggag 420
aaaaatagaa ccaacccattt ccgagcagaa ttccgggtct tgcgggtgcc caaccccaacg 480
15 tctaagcggc atgagcagag gatcgaccc ttccagatcc ttcggccaga tgagcacatt 540
gccaacccgc gctatatccg tggcaagaat ctggccacac ggggactgc cgagttggctg 600
tccttgatg tcactgacac tgcgtgtgag tggctgttga gaagagatgc caacttaggt 660
ctagaaatca gcatttactg tccatgtcac acccttcagc ccaatggaga tatcctggaa 720
aacattcacc aggtgtatggaa aatcaaattt aaaggcgtgg acaatggaga tgaccatggc 780
20 cgtggagatc tggggcgcct caagaagcag aaggatcacc acaacccctca tctaattcctc 840
atgatgatcc ccccacccgc gctcgacaac ccggccagg ggggtcagag gaagaagccg 900
gctttggaca ccaatttactg ctccgcac ttggaggaga actgctgtgt ggcgcgcgc 960
tacatttactt tccgacagga tctggctgg aagtgggtcc atgaacctaa gggctactat 1020
gccaacttct getcaggccc ttgcccatac ctccgcgttg cagacacaac ccacacccgc 1080
25 gtgctggac tgcataacac tctgaaccctt gaagcatctg cctcgccctt ctgcgtgccc 1140
caggacctgg agccccctgac catcctgtac tatgttggaa ggaccccaa agtggagcag 1200
ctctccaaaca tggtggtaaa tgttagctga 1239

30 <210> 49
<211> 1704
<212> DNA
<213> Homo sapiens

35 <300>
<302> TGFbetaR2
<310> XM003094

40 <400> 49
atgggtcggg ggctgctcag gggctgtgg ccgtgcaca tcgtcctgtg gacgcgtatc 60
gccagcacga tcccacccga cggtcagaag tcgttataata acgacatgtat agtcaactgac 120
aacaacccgtg cagtcaagtt tccacaactg tgtaaaatttt gtatgttgg atttttccacc 180
tgtgacaacc agaaaatccgt catgagcaac tgcacgtca cctccatctg tgagaagcca 240
caggaagtct gtgtggctgt atggagaaaag aatgacgaga acataacact agagacagtt 300
45 tgccatgacc ccaagctccc ctaccatgac tttattctgg aagatgctgc ttctccaaag 360
tgcatatga agaaaaaaa aaagcctgtt gagactttct tcatgtgttc ctgttagctct 420
gatgagtgtca atgacaacat catcttctca gaagaatata acaccagcaa tcctgacttg 480
ttgcttagtca tatttcaagt gacaggcatc agcctcctgc caccactggg agttggccata 540
tctgtcatca tcatcttctca ctgttacccgc gttAACCGGC agcagaagct gagttcaacc 600
50 tggaaaaccg gcaagacgcg gaagctgacat gagttcagecg agcactgtgc catcatcctg 660
gaagatgacc gctgtgacat cagttccacg tgcgttacca acatcaacca caacacagag 720
ctgtgtccca ttgagctggc caccctgtgg gggaaagggtc gctttgttca ggtctataag 780
gccaagctga agcagaacac ttcaagacgcg ttggagacag tggcgttca gatctttccc 840
55 tatgaggagt atgccttcttgc gaagacacag aaggacatct tctcagacat caatctgaag 900
catgagaaca tactccagtt cctgacggctt gaggagccgg aagacggagggtt gggaaaccaa 960
tactggctga tcaccgcctt ccacgcacaa ggcaacccatc aggagtacctt gacgcggcat 1020
gtcatcagct gggaggaccc gcgcaagctg ggcagctccc tcggccgggg gattgctcac 1080
ctccacacttcc atgtgggagg cccaaagatgc ccatcggtca caggacccctc 1140

60

```

65

DE 101 00 586 C 1

aagagctcca atatcctcgtaagaacgac ctaacctgct gcctgtgtga cttgggctt 1200
 tccctgcgtc tggaccctac tctgtctgtg gatgacgtgg ctaacagtgg gcaggtggga 1260
 actgcaagat acatggctcc agaagtccta gaatccagga tgaatttggaaat gacatctcg 1320
 tccttcaggc agacccgtatgt ctactccatg gctctgggtgc tctgggaaat gacatctcg 1380 5
 tgtaatgcag tgggagaagt aaaagattat gagcctccat ttgggtccaa ggtgcgggg 1440
 caccctgtg tcgaaagcat gaaggacaac gtgttgagag atcgaggcg accagaaatt 1500
 cccagcttct ggctcaaccca ccagggcatac cagatgggtgt gtgagacgtt gactgagtgc 1560
 tggaccacg acccagaggg ccgttcaca gcccagtgtg tggcagaacg cttcagttag 1620
 ctggagcatac tggacaggct ctcggggagg agctgctcgg aggagaagat tcctgaagac 1680
 ggctccctaa acactaccaa atag 1704 10

<210> 50
<211> 609
<212> DNA
<213> Homo sapiens 15

<300>
<302> TGFbeta3
<310> XM001924 20

<400> 50
atgttcattt acaccattat tgagaatatt tgcctaaag atgaatctgt gaaattctac 60
agtcccaaga gaggactt tcctatcccc caagctgaca tggataagaa gcgattcgc 120
tttgttca agcctgtctt caacacccca ctgtctttc tacagtgtga gctgacgtg 180
tgtaatgcaga tggagaagca ccccccaagtttgcctaaatgt gtgtgcctcc tgacgaagcc 240
tgccctcgc tggacgcctc gataatctgg gccatgtatc agaataagaa gacgttcaact 300
aagcccttg ctgtgatcca ccatgaagca gaatctaaag aaaaagggtcc aagcatgaag 360
gaaccaaatac caatttctcc accaattttc catggcttgg acacccctaac cggtatgggc 420
attgcgtttt cagcctttgt gatcgagca ctccgtacgg gggcattgtg gtacatctat 480
tctcacacag gggagacagc aggaaggcag caagtccccca cctccccc accctcgaa 540
aacagcagtg ctgcccacag catcgccgac acgcagagca cgccattgtc cagcagcagc 600
acggccctag 609 30

<210> 51
<211> 3633
<212> DNA
<213> Homo sapiens 35

<300>
<302> EGFR
<310> X00588 40

<400> 51
atgcgaccctt ccgggacggc cggggcagcg ctccctggcgc tgctggctgc gctctgccc 60
gcgagtcggg ctctggagga aaagaaatgt tgccaaggca cgagtaacaa gctcacgcag 120
ttggcactt ttgaagatca ttttctcagc ctccagagga ttttcaataa ctgtgaggtg 180
gtccttggaa atttggaaat tacctatgtg cagaggaatt atgatctttc tttttttaaag 240
accatccagg aggtggctgg ttatgttcttccatggccctca acacagtggc gcaatttcc 300
ttggaaaacc tgcaatcat cagaggaat atgtactacg aaatttccata tgcccttagca 360
gtcttatcta actatgtatgc aaataaaaacc ggactgaagg agctgccccat gagaatatta 420
cagaaatcc tgcatggcgc cgtgcgggttc agcaacaacc ctggccctgtg caacgtggag 480
agcatccagt ggcgggacat agtcagcagt gactttctca gcaacatgtc gatggacttc 540
cagaaccacc tggcagctg ccaaaaatgt gatccaagct gtcccaatgg gagctgtgg 600
ggtgccaggag aggagaactg ccagaaaactg accaaaaatca tctgtgccca gcagtgtcc 660
gggcgtgtcc gtggcaagtc ccccaagtgc tgctgccaca accagtgtgc tgcaggctgc 720 55

60

DE 101 00 586 C 1

acaggccccc gggagagcga ctgcctggtc tgccgcaaat tccgagacga agccacgtgc 780
 aaggacacct gccccccact catgctctac aaccggccca cgtaccagat ggatgtgaac 840
 cccgagggca aatacagctt tggtgcacc tgctgtgaaga agtgtcccg taattatgtg 900
 5 gtgacagatc acggctcgta cgtccgagcc tggtggccg acagctatga gatggaggaa 960
 gacggcgtcc gcaagtgtaa gaagtgcgaa gggccttgcg ccaaagtgtg taacgaaata 1020
 ggtattggtg aattttaaaga ctcactctcc ataaatgcta cgaatattaa acacttcaaa 1080
 aactgcacct ccatcagtgg cgatctccac atcctgccgg tggcatttag gggtactcc 1140
 ttcacacata ctccctctt gnatccacag gaactggata ttctgaaaac cgtaaaggaa 1200
 atcacagggt ttttgcgtat tcaggcttgg cctgaaaaca ggacggaccc ccatgcctt 1260
 10 gagaacctag aaatcatacg cggcaggacc aagaacatg gtcagtttc tcttcagtc 1320
 gtcagcctga acataacatc cttgggatta cgctccctca aggagataag tgatggagat 1380
 gtgataattt cagggaaacaa aaattttgtgc tatgcaata caataaactg gaaaaaactg 1440
 tttgggaccc cccgtcagaa aacccaaatt ataagcaaca gaggtgaaaa cagctgcaag 1500
 15 gccacaggcc aggtctgcca tgccttgcg tcccccgagg gctgctggg cccggagccc 1560
 agggactgcg tctcttgcgc gaatgtcagc cgaggcaggg aatgcgtgga caagtgcag 1620
 cttctggagg gtgagccaag ggagttgtg gagaactctg atgtcataca gtgcaccca 1680
 gagtgcctgc ctcaggccat gaacatcacc tgcacaggac ggggaccaga caactgtatc 1740
 cagtgtgccc actacattga cggccccac tgcgtcaaga cctgccccgc aggagtcatg 1800
 ggagaaaaca acaccctggt ctggaaagtac gcagacgccc gccatgtgtg ccacctgtgc 1860
 20 catccaaact gcacctacgg atgcacttgg ccaggcttgc aaggctgtcc aacgaatggg 1920
 cctaagatcc cgtccatcgc cactggatg gtggggccccc tcccttgcgt gctgggtgt 1980
 gcccgggaa tcggccttcatcgaagg cgccacatcg ttccggacg cacgtgcgg 2040
 aggctgtgc aggagagggaa gcttgtggag cctcttacac ccagtggaga agctcccaac 2100
 25 caagetcttct tgaggatctt gaaggaaact gaattcaaaa agatcaaaatg gctgggttcc 2160
 ggtgcgttcg gacgggtgtt taagggactt tgatcccag aagggtgagaa agttaaaatt 2220
 cccgtcgcta tcaaggaaattt aagagaagca acatctccga aagccaaacaa ggaatcttc 2280
 gatgaagectt acgtgtggc cagcgtggc aaccccccacg tgcgtccgt gctggcatac 2340
 tgcctccactt ccaccgtgca actcatcaccg cagctcatgc ctttcggctg cctctggac 2400
 30 tatgtccggg aacacaaaaga caatatttgc tcccaacttgc tgctcaactg gtgtgtcag 2460
 atcgcaaagg gcatgaacta cttggaggac cgtcgcttgc tgcacccgca cctggcagcc 2520
 aggaacgtac tggtaaaaac accgcagcat gtcaagatca cagattttgg gctggccaaa 2580
 ctgctgggtt cggaaagagaa agaataccat gcagaaggag gcaaagtgcc tatcaagtgg 2640
 atggcattgg aatcaattttt acacagaatc tatacccacc agagtgtatgt ctggagctac 2700
 35 ggggtgaccg ttgggagtt gatgacctt ggatccaagg catatgacgg aatccctgcc 2760
 agcgagatct cctccatctt ggagaaaggaa gaacgcctcc ctcagccacc catatgtacc 2820
 atcgatgtt acatgtatcat ggtcaagtgc tggatgatag acgcagatag tcgccccaaag 2880
 ttccgtgagt tgatcatcga attctccaaa atggcccgag acccccacgctt cttccatgc 2940
 attcaggggg atgaaagaat gcatggca agtcttacag actccaaactt ctaccgtgcc 3000
 40 ctgatggatg aagaagacat ggacgcgtg gtggatgccg acgagtaactt catcccacag 3060
 cagggttct tcagcagccc ctccacgtca cggactcccc tccctgagctc tctgagtgc 3120
 accagcaaca attccaccgt ggcttgcatt gatagaaaatg ggctgcaaaag ctgtcccatc 3180
 aaggaagaca gcttcttgcg cgcatacagc tcagacccca caggcgcctt gactgaggac 3240
 agcatagacg acacccctt cccagtgcctt gaatacataa accagtcgtt tcccaaaaagg 3300
 45 cccgctggct ctgtcagaa tccgtctat cacaatcagc ctctgaaccc cgcggccacg 3360
 agagacccac actaccagga ccccccacagc actgcgtgg gcaaccccgaa gtatctcaac 3420
 actgtccagc ccacctgtgtt caacagcaca ttgcacagcc ctgcccactg ggcccaaggaaa 3480
 ggcagccacc aaatttagcct ggacaaccctt gactaccagc aggactttt tcccaaggaa 3540
 gccaagccaa atggcatctt taagggtctcc acagctgaaa atgcagaata cctaagggtc 3600
 50 ggcacaaaaa gcaagtgaattt tattggagca tga 3633

<210> 52

<211> 3768

<212> DNA

55 <213> Homo sapiens

<300>

60

65

DE 101 00 586 C 1

<302> ERBB2
<310> NM004448

<400> 52

atggagctgg cggccttgtg ccgcgtgggg ctccctctcg ccctcttgcc ccccgagcc	60	
5	gcgagcaccc aagtgtgcac cggcacagac atgaagctgc ggctccctgc cagtcggag	120
acccacactgg acatgtcccg ccacctctac cagggtgtcc aggtgtgtca gggaaacctg	180	
gaactcacct acctgcccac caatgccagc ctgtccttcc tgcaaggatcc ccaggaggtg	240	
cagggtacg tgctcatcgc tcacaaccaa gtgaggcagg tcccactgca gaggtgtccg	300	
attgtgcgag gcacccagct ctttggggac aactatgccc tggccgtgtc agacaatgg	360	
10	gaccgcgtga acaataccac ccctgtcaca ggggctcccc caggaggct gcgggagctg	420
cagctcgaa gcctcacaga gatcttggaaa ggaggggtct tgatccagcg gaaccccaag	480	
ctctgttacc aggacacgtt ttgtgttggag gacatcttcc acaagaacaa ccagctggct	540	
ctcacactga tagacaccaa ccgtctcgg gcctgtccacc cctgttctcc gatgtgttaag	600	
ggctcccgct gctggggaga gagttcttag tgggttca gctgtacgctg cactgtctgt	660	
gcccgtggct gtgtcccgctg caaggggcca ctggccactg actgtgttcca tgagcagtgt	720	
gctgcggct gcacgggccc caagcactt gactgttgg cctgccttca cttaaccac	780	
agtggatct gttagtgcgtca ctggccagcc ctggtcaccc acaacacaga cacgtttgag	840	
tccatgtccca atcccgaggg ccggtatataca ttccggccca gctgtgttgc tgcctgtccc	900	
20	tacaactacc ttcttacggc cgtggatcc tgacaccctcg tctgccccct gcacaaccaa	960
gagggtacag cagaggatgg aacacagcgg tgtgagaagt gcagcaagcc ctgtgcccga	1020	
gtgtgtatg gtctgggcat ggagcactt cgagaggtga gggcagttac cagtgccaaat	1080	
atccaggagt ttgtgttggctg caagaagatc ttggggagcc tggcattttc gccggagagc	1140	
tttgatgggg acccagctc caacactgccc cccgtccagc cagagcagct ccaagtgttt	1200	
25	gagactctgg aagagatcac aggttaccta tacatctcg catggccgga cagctgcct	1260
gacccctcg ttttcccgaaa cctgtcaagta atccggggac gaattctgca caatggcgcc	1320	
tactcgta cctgtcaagg gctgggcattc agtggctgg ggctgcgtc actgagggaa	1380	
ctggcgtgt gactggccct catccacccat aacaccacc tctgttctgt gcacacgggt	1440	
ccctggacc agctttttag gaacccgcac caagctctgc tccacactgc caacccgcca	1500	
30	gaggacgagt gtgtggcgtg gggcctggcc tgccaccagc tgtgcggcc agggactgc	1560
tgggtcccg gggccacccca gtgtgtcaac tgcaaggatc tccctcgccgg ccaggagtgc	1620	
gtggaggaat gccgagttact gcaggggttc cccaggaggat atgtgaatgc caggactgt	1680	
ttggcggtcc accctgagtg tcagccccag aatggctcg tgacctgttt tggacccggag	1740	
gctgaccagt gtgtggcgtg tgcccactat aaggaccctc ccttctcggtt ggcccgctgc	1800	
cccagcggtg taaaacactga cctctcttac atgcccattt ggaagttcc agatgaggag	1860	
ggcgcatgcc acccttgcctt catcaactgc accactctt gtgtggaccc ggtgacaag	1920	
gggtcccccg ccgagcagag agccagccct ctgacgttca tcgtctctgc ggtgggttggc	1980	
attctgtgg tctgtgttggc tgggtgttcc tttgggtatcc tcatcaagcg acggcagcag	2040	
aagatccgaa agtacacgtt gcgagactg ctgcaggaaa cggagctgtt ggagccgctg	2100	
40	acaccttagcg gagcgatgcc caaccaggcg cagatgcgg tctctgaaaga gacggagctg	2160
aggaaggtga agtgcttgg atctggcgct tttggcacag tctacaaggg catctggatc	2220	
cctgtatgggg aaaaatgtt aattccatgt gccatcaaag ttttgaggaa aaacacatcc	2280	
cccaaagcca acaaagaaat cttaqacgaa gcatacgatc tggctgggtt gggctccca	2340	
tatgtctccc gccttctggg catctgcctt acatccacgg tgcagctgtt gacacagctt	2400	
45	atgcctctatg gtcgccttcc agaccatgtc cggaaaaacc gccggacgcctt gggctccca	2460
gacctgtgtt gactgggttat gcagattgcc aaggggatga gtcacacttgg ggtatgtgcgg	2520	
ctcgatccaca gggacttggc cgctcgaaac gtgtgttca agtgcgttccaa ccatgtcaaa	2580	
attacagact tcgggtctggc tcgggtgtgtt gacattgtac agtgcgttccaa ccatgtcaaa	2640	
ggggcaagg tggccatcaa gtggatggcg ctgggttca ttctccgcgg gcggttcacc	2700	
50	caccagatgtt atgtgttggag ttatgtgtt gactgtgtgg agtgcgttccaa ccatgtcaaa	2760
aaaccttacg atgggttccca agcccgaggatcccttgcgttccaa ccatgtcaaa	2820	
ctgccccagc ccccccattcg caccattgtt gtcacatgtc tcatggatccaa atgtgttggat	2880	
attgactctg aatgtcggtcc aagattcccg gagggtgtt gtcatttc cccgtatggcc	2940	
agggacccccc agcgcttgcgtt ggtcatcccg aataggact tggggccacgc cagtccttgc	3000	
gacagcacct tctaccgttcc actgtgttggag gacatgtaca tggggactt ggtgttgcgtt	3060	
gaggagttatc tggtaaaaaa gcaagggttcc ttctgttccag accctgtccccc gggcgctggg	3120	
ggcatggtcc accacaggca ccgcagatca tctaccaggaa gtggcggtgg ggacactgaca	3180	

60

65

DE 101 00 586 C 1

5 ctagggctgg agccctctga agaggaggcc cccaggtctc cactggcacc ctccgaaggg 3240
 gctggctccg atgtatttga tggtgacctg ggaatgggg cagccaaggg gctgcaaagc 3300
 ctcccccacac atgaccccaag ccctctacag cggtagtgc aggacccac agtaccctg 3360
 ccctctgaga ctgatggcta cgttggcccc ctgacctgca gccccccagcc tgaatatgtg 3420
 aaccagccag atgttcggcc ccagccccct tcgccccgag agggccctct gcctgctgcc 3480
 cgacctgctg gtgccactct ggaaaggccc aagactctc ccccaggaaa gaatggggtc 3540
 gtcaaagacg ttttgcctt tgggggtgcc gtggagaacc cggagtactt gacacccag 3600
 ggaggagctg cccctcagcc ccaccctct cctgccttca gcccagcctt cgacaacctc 3660
 tattactggg accaggaccc accagagcgg gggctccac ccagcacctt caaagggaca 3720
 10 cctacggcag agaaccacaga gtacctgggt ctggacgtgc cagtgtga. 3768

15 <210> 53
 <211> 1986
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> ERBB3
 <310> XM006723

25 <400> 53
 atgcacacaact tcagtgtttt ttccaatttg acaaccattt gaggcagaag cctctacaac 60
 cggggcttct cattgttgat catgaagaac ttgaatgtca catctctggg cttccgatcc 120
 ctgaaggaaa tttagtgcgtgg gcttatctat ataagtgcctt ataggcgact ctgctaccac 180
 cactctttaa actggaccaa ggtgcttcgg gggctacgg aagagcgact agacatcaag 240
 cataatcgcc cgcgcagaga ctgcgtggca gaggcggaaa tggtgaccc actgtgtcc 300
 tctggggat gctggggccc aggccctgtt cagtgttgtt cctgtcggaaa ttatagccg 360
 30 ggagggtgtct gtgtgaccca ctgcaacattt ctgaatgggg agcctcgaga atttgcctt 420
 gaggccgaat gcttctctg ccacccggaa tgccaaacccca tggagggcac tgccacatgc 480
 aatggctcg gctctgatac ttgtgctcaa tggccctt ttcgagatgg gccccactgt 540
 gtgagcagct gcccccatgg agtcttaggt gccaaggccc caatctacaa gtacccagat 600
 gttcagaatg aatgtcgccctt ctgcatttgc aactgcaccc agggtgttaa aggaccagag 660
 35 cttcaagact gtttaggaca aacactgggt ctgatcgccaa aaacccatct gacaatggct 720
 ttgacagtga tagcaggatt ggtgtgtt ttcattatgc tggccggcac ttttctctac 780
 tggcggtggc gccggattca gaataaaagg gctatgggc gatacttggg acggggtag 840
 agcatagacg ctctggaccc cagtggaaag gctaaacaaag tcttggccag aatcttcaaa 900
 gagacagacg taaggaaatg taaaatgtt ggctgggtt tctttggaaat tggcacaaa 960
 40 ggagtggttgc tccctgaggg tgaatcaatc aagattccatg ttcgcattaa agtcatttgc 1020
 gacaagagtgc gacggcagag ttttcaagct gtgcacatc atatgtgc cattggcagc 1080
 ctggaccatg cccacattgt aaggctgttgg gactatgcc cagggtcatc tctgcagctt 1140
 gtcactcaat atttgcctt ggggtctctg ctggatcatg tgagacaaca cggggggca 1200
 ctggggccac agtgcgtgttgc caactggggaa gtacaaatttgc ccaaggaaat gtactacattt 1260
 45 gaggaacatg gtatgtgc taaaatgttgg gctgtccggaa acgtgcatactt caagtcaccc 1320
 agtcagggttgc agtggcaga ttttgggttgc gctgacatc tgcctcttgc tgataagcag 1380
 ctgtctatatac gtgaggccaa gactccaaattt aagtggatgg cccttgagag tatccacttt 1440
 gggaaataca cacaccagag tgatgtctgg agtatgggt tgacagtttgc ggagttgatg 1500
 accttcgggg cagagccata tgcagggtca cgattggctt aagtaccaga cctgttagag 1560
 50 aaggggggacg gtttggcaca gccccagatc tgacaaatttgc atgtctacat ggtgtgttc 1620
 aagtgttggc tggatgttgc aacatttgc ccaacccatgg aagaacttgc caatgtgttc 1680
 accagatgg cccgagaccc accacggatctt ctggatcatgaa agagagagag tggggcttgg 1740
 atagccctgtt gcccagagcc ccatgggttgc acaaacaaga agctagagaga agtagagctg 1800
 gagccagaac tagaccttgc cctagacttgc gaagcagagg aggacaacctt ggcaaccacc 1860
 55 acactgggttgc cccctcag cctaccatgg gaaacactt atcgccacg tggggccacg 1920
 agccttttaa gtccatcatc tggatcatg cccatgttgc agggtaatct tgggggttctt 1980
 ctttag. 1986

60

65

DE 101 00 586 C 1

<210> 54
<211> 1437
<212> DNA
<213> *Homo sapiens*

5

<300>
<302> ERBB4
<310> XM002260

10

```

<400> 54
atgatgttacc tggaaagaaaag acgactcggtt catcgggatt tggcagcccc taatgtctta 60
gtgaaatctc caaacccatgt gaaaatcaca gattttgggc tagccagact cttggaaagga 120
gataaaaaaag agtacaatgc tgatggagga aagatgccaa ttaaatggat ggctctggag 180
tgtatacatt acaggaaatt cacccatcg agtgacgttt ggagctatgg agttactata 240
tgggaactga tgaccttgg agggaaaaccc tatgtatggaa ttccaacgcgg agaaaatccct 300
gatttattag agaaaaggaga acgtttgcct cagccccc tctgcactat tgacgtttac 360
atggtcatgg tcaaataatggt gatgattgtat gctgacagta gacctaatt taaggaactg 420
gctgctgagt tttcaaggat ggctcgagac cctcaagat acctagttat tcagggtgat 480
gatcgatga agctcccgag tccaaatgac agcaagttct ttccagaatct cttggatgaa 540
gaggatttgg aagatatgtat ggtatgttag gagtaacttgg tccctcaggc tttcaacatc 600
ccacccctccca tctatacttc cagagcaaga attgactcga ataggagtga aattggacac 660
agcccccttc ctgcctacac ccccatgtca gggaaaccagt ttgtataccg agatggaggt 720
tttgcgtgtg aacaaggagt gtctgtgccc tacagagccc caactagcac aattccagaa 780
gctctgtgg cacagggtag tactgtcttag atttttgtat actcctgtg taatggcacc 840
ctacgcaagc cagttggcacc ccatgtccaa gagacagta gcacccagag gtacagtgt 900
gacccccccg tgtttgcctt cagaacggagc ccacgaggag atgttggatga ggaagggtac 960
atgactccta tgcgagacaa accccaaacaa gaatacctga atccagtggaa ggagaaccct 1020
tttgcgttctc ggagaaaaaaaaa tggagacctt caagcattgg ataatcccgaa atatcacaat 1080
gcatccaatg gtccacccaa ggccgaggat gatgtatgtaa atgagccact gtacctcaac 1140
acctttggca acacccctggg aaaagcttag tacctgaaga acaacataact gtcaatgcca 1200
gagaaggcca agaaaagcggtt tgacaacccct gactactggaa accacagccct gccacccctgg 1260
agcaccccttc agcacccttgcaga ctacctgtcag gagtacagca caaaatattt ttataaacag 1320
aatggggcggaa tccggccttat tggcggagag aatcctgaat acctctctga gttctccctg 1380
aagccaggca ctgtgtgtgcc gcctccaccc tacagacacc ggaataactgtt ggtgtaa 1437

```

15

<210> 55
<211> 627
<212> DNA
<213> *Homo sapiens*

40

<300>
<302> FGF10
<310> NM004465

45

```

<400> 55
atgtggaaat ggatactgac acatttgtgcc tcagccttc cccacctgcc cggctgtgc 60
tgtctgtctt ttttgtgtct gttcttggtg tcttcgtcc ctgtcacctg ccaaggccctt 120
ggtcaggaca tgggtcacc accaggccacc aactcttctt cttccctctt ctccctctctt 180
tccagcgccgg gaaggcatgt gcggagctac aatcacccctt aaggagatgt cgcgtggaga 240
aagcttattct ctttcaccaa gtactttctt aagattgaga agaacgggaa ggtcagcgggg 300
accagaaggaga actgcccc gtacagcatc ctggagataa catcagttaga aatcggagtt 360
gttgcgtca aagccattaa cagcaactat tacttagcca tgaacaagaaa gggaaaactc 420
tatggctcaa aagaatttaa caatgactgt aagctgaaagg agaggataga gggaaaatgg 480
tacaataacct atgcatttca taactggca catabtggga ggcaaatgtt tggtggattt 540
aatggaaaaag gagctccaag gagaggacag aaaacacgaa gggaaaaacac ctctqctcac 600

```

50

tttcttccaa tgggttaca ctcata

627

5 <210> 56
 <211> 1069
 <212> DNA
 <213> Homo sapiens

10 <300>
 <302> FGF11
 <310> XM008660

<400> 56
 ncbsncvwrb mdnctdrtnng nmstrctrst tanmymmssar chbmdrtnnc tdstrctrgn 60
 mstmmtnmy rmtsndhstr ycbardasna stagnbankg rahcsmmdatv washtmantt 120
 hdbbrandnkb arggnbankh msansbrbas tgrrtntanm ycsmbmrnar nvdntnhmsa 180
 nsbrbastgr wthactrgmr naaccssnmv rsnmgkywrd ssrchmanrg ansmhmsans 240
 karytamtaa chrdatacra natavrtbra tatstmmamm aathrarmat scatarrhn 300
 mndahmrrnc basstathrs ncbanntatn rcttdrcts bmssnrnasb mttdnvnatn 360
 acnrrrbtch ngynrmatnn hbthsdamds aatggcgccg ctggccagta gcctgatccg 420
 gcagaagcgg gaggtcccg agccccgggg cagccggccg gtgtccgcgc agcggcgcgt 480
 gtgtccccgc ggcaccaagt ccctttcca gaagcagetc ctcacccctgc tgtccaagg 540
 gcgactgtgc gggggggcggc cccgcggcc ggaccgcggc ccggagccctc agctcaaagg 600
 25 catcgtaacc aaactgttct gcccggcagg ttcttacetc caggcgaatc ccgacggaag 660
 catccaggc accccagagg ataccagetc cttcacccac ttcaacctga tccctgtggg 720
 cttccgttg gtcacccatcc agagcgccaa gctgggtcac tacatggcca tgaatgctga 780
 gggactgctc tacagttcgc cgcatttcac agctgagtg cgctttaagg agtgtgtctt 840
 tgagaattac tacgtcctgt acgcctctgc tcttacccgc cagcgtcggt ctggccggc 900
 30 ctggtaacctc ggcctggaca aggagggca ggtcatgaag gaaaaccgag ttaagaagac 960
 caaggcagct gcccaacttc tgcccaagct cctggaggtg gccatgtacc aggacecttc 1020
 tctccacagt gtcggcagg cttcccttc cagttccctt gccccctt 1069

35 <210> 57
 <211> 732
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> FGF12
 <310> NM021032

<400> 57
 45 atggctgcgg cgatagccag ctccttgate cggcagaagc ggcaggcgag ggagtccaaac 60
 agcgaccgag tgcggcctc caagcggccgc tccagccccca gcaaagacgg ggcgtccctg 120
 tgcgagaggc acgtcctcgg ggtgtttagc aaagtgcgtc tctgcagcgg ccccaagagg 180
 cccggaggc ggagaccaga accccagetc aaagggattt tgacaagggtt attcagccag 240
 caggataact tcctgcagat gcacccagat ggttaccattt atgggaccaa ggacgaaaac 300
 50 agcgactaca ctctttcaa tctaattccc gtggccctgc gtgtagtggc catccaagga 360
 gtgaaggcta gctcttatgt ggccatgaat ggtgaaggct atctctacag ttcagatgtt 420
 ttcactccag aatgcaattt caaggaatct gtgtttgaaa actactatgt gatcttattct 480
 tccacactgt accgcccagca agaatcaggc cgagcttggt ttctgggact caataaaagaa 540
 ggtcaaaatta tgaaggggaa cagagtgaag aaaaccaagc cctcatcaca ttttgtaccg 600
 55 aaaccttattt aagtgtgtat gtacagagaa ccatcgctac atgaaattgg agaaaaacaa 660
 gggcgttcaa gggaaaaggatc tggaaacacca accatgaatg gaggcaaaatgt tgcgtatcaa 720
 gattcaacat ag 732

60

65

DE 101 00 586 C 1

<210> 58
<211> 738
<212> DNA
<213> Homo sapiens

5

<300>
<302> FGF13
<310> XM010269

<400> 58 10
atggccggcg ctatcgccag ctcgctcatc cgtcagaaga ggcaaggccc cgagcgcgag 60
aaatccaacg cctgcaagtgt tgcagcgc cccagcaaag gcaagaccag ctgcgacaaa 120
aacaagttaa atgtctttc cgggtcaaa ctttcggct ccaagaagag ggcagaaga 180
agaccagagc ctcagcttaa gggatagtt accaagctat acagccgaca aggttaccac 240
ttgcagctgc aggccgatgg aaccattgtat ggcaccaaag atgaggacag cacttacact 300
ctgtttaacc tcatccctgt gggctgcga gtggcgtcta tccaaaggagt tcaaaccac 360
ctgtacttgg caatgaacag tgaggatac ttgtacacct cggaaacctt cacacctgag 420
tgcaaattca aagaatcgt gtttggaaat tattatgtga catattcatc aatgatatac 480
cgtcagcagc agtcaggccg aggggtgtat ctgggtctga acaaagaagg agagatcatg 540
aaaggcaacc atgtgaagaa gaacaagcct gcagctcatt ttctgcctaa accactgaaa 600
gtggccatgt acaaggagcc atcactgcac gatctcacgg agttctcccg atctggaagc 660
gggaccccaa ccaagagcag aagtgtctct ggcgtctga acggaggcaa atccatgagc 720
cacaatgaat caacgttag 738

25

<210> 59
<211> 624
<212> DNA
<213> Homo sapiens

30

<300>
<302> FGF16
<310> NM003868

<400> 59 35
atggcagagg tggggggcgt cttegcctcc ttggactggg atctacacgg cttctcctcg 60
tctctggga acgtgcctt agctgactcc ccaggttcc tgaacgagcg cctggccaa 120
atcgagggga agctgcagcg tggctcaccc acagacttcg cccacctgaa ggggatcctg 180
ccgcggccgc agctctactg ccgcaccggc ttccacctgg agatcttccc caacggcacg 240
gtgcacggga cccgccacga ccacagccgc ttccgaatcc tggagtttat cagcctggct 300
gtggggctga tcagcatccg gggagtggac tctggctgt accttagaat gaatgagcga 360
ggagaactct atgggtcgaa gaaactcaca cgtgaatgt ttttccggga acagttgaa 420
gaaaacttgt acaacaccta tgcctcaacc ttgtacaaac attcgactc agagagacag 480
tattacgtgg cctgaacaa agatggctca ccccgaggag gatacaggac taaacgacac 540
cagaattca ctcactttt acccaggcct gtagatcctt ctaagttgcc ctccatgtcc 600
agagacctct ttcaactatag gtaa 624

45

<210> 60
<211> 651
<212> DNA
<213> Homo sapiens

50

<300>
<302> FGF17
<310> XM005316

55

60

65

DE 101 00 586 C 1

5 <400> 60
 atgggagccg cccgcctgct gcccaacctc actctgtgct tacagctgct gattctctgc 60
 tgtcaactc agggggagaa tcaccgtct cctaattta accagtaactt gagggaccag 120
 ggcgcctga ccgaccagct gagcaggcg cagatcccg 180
 accagtggca acgacgtgca ggtcaccgg cgtcgcatt 240
 aacaagttt ccaagctcat agtggagacg gacacgttg 300
 ggggctgaga gtgagaagta catctgtatg aacaagaggg 360
 agcggagaaga gcaaagactg cgtttcacg gagatcgtgc 420
 ttccagaacg cccggcacga gggctggttc atgccttca 480
 10 caggctcccc gcaagccgcca gaaccagcgc gagggccact tcatcaagcg cctctaccaa 540
 ggccagctgc ccttccccaa ccacgcccag aagcagaagc agttcgagtt tgtggctcc 600
 gccccaccc gccggaccaa gcgcacacgg cggcccccagc ccctcacgta g 651

 15 <210> 61
 <211> 624
 <212> DNA
 <213> Homo sapiens

 20 <300>
 <302> FGF18
 <310> AF075292

 25 <400> 61
 atgtattcag cggccctccgc ctgcacttgc ctgtgtttac acttcctgct gctgtgcttc 60
 caggtacagg tgctgggtgc cgaggagaac gtggacttcc 120
 acgcgggctc gggacgtatgt gagccgtaaag cagtcgcgc 180
 accagtggaa aacacatccca ggtcctggc cgaggatca 240
 30 gacaagtatg cccagctcct agtggagaca gacaccttcg 300
 ggcaaggaga cgaattcta cctgtgcatt aaccgcaaag 360
 gatggcacca gcaaggagtg tggatgttcatc gagaagggtt 420
 ctgatgtcgg ctaagtactc cggctggtagtac gtggcttca 480
 aaggggccca agaccggga gaaccagcag gacgtgcatt 540
 35 gggcagccgg agttcagaa gcccattcaag tacacgacgg tgaccaagag gtcccgctgg 600
 atccggccca cacaccctgc ctag 624

 <210> 62
 40 <211> 651
 <212> DNA
 <213> Homo sapiens

 <300>
 45 <302> FGF19
 <310> AF110400

 <400> 62
 atgcggagcg ggtgtgtggg ggtccacgta tggatcctgg cggccctctg gctggccgtg 60
 50 gccggccgc cccctcgccctt ctcggacgcg gggcccccacg tgcactacgg ctggggcgac 120
 cccatccgc tgcggcacct gtacacccctc ggcacccacg ggctctccag ctgcttcctg 180
 cgcatccgtg cgcacggcgt cgtggactgc ggcggggcc 240
 gagataagg cagtcgtctc cggggacgtg gccatcaagg 300
 ctctgcattgg ggcggacgg caagatgcag ggctgcttc 360
 55 gctttcgagg aggagatccg cccagatggc tacaatgtgt 420
 ctcccggtct ccctgagcag tgccaaacag cggcagctgt acaagaacag aggcttctt 480
 ccactcttc attcctgcc catgctgccc atggtcccag aggagcctga ggacccagg 540

60

65

DE 101 00 586 C 1

ggccacttgg aatctgacat gttcttgc cccctggaga ccgacagcat ggaccattt 600
ggcgtgtca cggactgga ggcgtgagg agtcccagt ttgagaagta a 651

5
 <210> 63
 <211> 468
 <212> DNA
 <213> Homo sapiens 10

 <400> 63
 atggctgaag gggaaatcac cacccataca gccctgaccg agaagttaa tctgcctcca 60
 gggattaca agaagccaa actcctctac tgttagcaacg gggccactt cctgaggatc 120
 ctccggatg gcacagtgg tggacaagg gacaggagcg accagcacat tcagctgcag 180
 ctcagtgcgg aaagcgtgg ggaggtgtat ataaaagaga ccgagactgg ccagacttg 240
 gccatggaca ccgacgggct tttatacggc tcacagacac caaatgagga atgtttgttc 300
 ctggaaaggc tggaggagaa ccattacaac acctatatat ccaagaagca tgcagagaag 360
 aattgtttg ttggcctcaa gaagaatggg agctgcaaac gcggtcctcg gactcactat 420
 gcccagaaag caatcttgtt tctccccctg ccagtctctt ctgattaa 468 20

 <210> 64
 <211> 636
 <212> DNA
 <213> Homo sapiens 25

 <300>
 <302> FGF20
 <310> NM019851 30

 <400> 64
 atggctccct tagccgaagt cgggggctt ctggggcgcc tggagggtt gggccagcag 60
 gtgggttcgc atttcctgtt gcctcctgcc ggggagcggc cgccgctgtc ggccgagcgc 120
 aggagcgcgg cgagcggag cggccgcggc gggccggggg ctgcgcagat ggcccacctg 180
 cacggcatcc tgccgcgcgc gcagcttat tgccgcaccc gcttccacct gcagatcctg 240
 cccgacggca gctgtcaggg caccgcgcag gaccacagcc tcttcggat cttggattc 300
 atcagtgtgg cagtgggact ggtcagttt agaggtgtgg acagtggatc tctatcttgg 360
 atgaatgaca aaggagaact ctatggatca gagaactt cttccgaatg catctttagg 420
 gagcagttt aagagaactg gtataacacc tattcatcta acatataaa acatggagac 480
 actggccgca ggtatttgt ggcacttaac aaagacggaa ctccaagaga tggcccgagg 540 40
 tccaaagggc atcagaaatt tacacatttac ttaccttagac cagtggatcc agaaagagg 600
 ccagaattgt acaaggaccc actgatgtac acttga 636

 <210> 65
 <211> 630
 <212> DNA
 <213> Homo sapiens 45

 <300>
 <302> FGF21
 <310> XM009100 50

 <400> 65
 atggactcgg acgagaccgg gttcgagcac tcaggactgt gggtttctgt gctggctgg 60
 cttctgtgg ggcctgca ggcacacccc atccctgact ccagtcctct cctgcaatc 120
 gggggccaa gtcggcagcg gtacctctac acagatgtat cccagcagac agaagccac 180
 ctggagatca gggaggatgg gacgggtggg ggcgtgctg accagagccc cgaaagtctc 240 55

 60

 65

DE 101 00 586 C 1

ctgcagctga aaggcattgaa gccgggagtt attcaaatct tgggagtc aa gacatccagg 300
 ttcctgtgcc agcggccaga tggggccctg tatggatcg tc cacttta ccctgaggcc 360
 5 tgcagcttcc gggagctgtct tcttgaggac ggatacaatg ttaccatgc cgaagccac 420
 ggcctccgc tgcaacctgc agggaaacaag tccccacacc gggaccctgc accccgagga 480
 ccagctcgct tcctgcccact accaggcctg ccccccgcac tccccggagcc accccgaatc 540
 ctggcccccc agccccccga tgtggctcc tcggaccctc tgagcatggt gggacettcc 600
 cagggccgaa gccccagcta cgcttctcga 630

10 <210> 66
 <211> 513
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> FGF22
 <310> XM009271

20 <400> 66
 atgcggccgc gcctgtggct gggcctggcc tggctgtgc tggcgccggc gcccggacgccc 60
 gcgaaaaacc c gagcgcgtc ggggggaccg cgcagctacc cgcaccttggaa gggcgacgtg 120
 cgctggccgc gccttttctc ctccactcac ttcttctgc gcgtggatcc cggcgccgc 180
 gtgcaggcgca cccgctggcg ccacggccag gacagcatcc tggagatccg ctctgtacac 240
 25 gtggcgctcg tggcatcaa agcagtgtcc tcaggcttct acgtggccat gaaccggcgg 300
 gggccgcctt acgggtcgcg actctacacc gtggactgca gttccggga ggcgcacgaa 360
 gagaacggcc acaacacacta cgcctcacag cgctggccgc gccgccccca gcccattgttc 420
 ctggcgctgg acaggagggg gggggcccg ccaggcgccg ggacgccccg gtaccacctg 480
 tccgccttact tcctggccgt cctggcttcc tga 513

30 <210> 67
 <211> 621
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> FGF4
 <310> NM002007

40 <400> 67
 atgtcggggc cggggacggc cgcggtagcg ctgtcccg cggtcctgtc ggccttgc 60
 ggcgcctggg cggggcgagg gggcgccgc gcacccactg caccggacgg cacgtggag 120
 gcccggctgg agcggccgtg ggagagccgt gtggcgctt cgttggcgcg cctggcggtg 180
 45 gcagcgcagc ccaaggaggc gggcgccag a cggcgcccg ggcactacct gctgggcac 240
 aaggcgctgc ggcggctcta ctgcaacgtg ggcacatgg tccacctcca ggcgcctcccc 300
 gacggccgca tcggcgccgc gcacggac accggcgaca ggcctgttggaa gctctcgcccc 360
 gtggagcgcc gctgtgtgag catcttcggc gtggccagcc ggttcttgc ggcgcacgac 420
 50 agcaaggcgca agctctatgg ctgccttcc ttaccatgt agtgcacgtt caaggagatt 480
 ctccctccca acaactacaa cgcctacag tccatacaatg accccggcat gttcatcgcc 540
 ctgagcaaga atgggaagac caagaagggg aaccggatgt cgcccaat gaagggtcacc 600
 cacttcctcc ccaggctgtg a 621

55 <210> 68
 <211> 597
 <212> DNA
 <213> Homo sapiens

60

DE 101 00 586 C 1

<300>			
<302> FGF6			
<310> NM020996			
<400> 68			5
atgtcccgaa gaggcaggacg tctgcaggc acgctgtggg ctctcgctt cctaggcatc 60			
ctagtggca tgggtgggcc ctcgcctgca ggacccctg ccaacaacac gctgctggac 120			
tcgagggct gggcacccct gctgtccagg tctcgccgg ggctagctgg agagattgcc 180			
ggggtaact gggaaagtgg ctatgggtg gggatcaagc ggcagcggag gctctactgc 240			
aacgtggca tcggcttca cctccaggtg ctccccgacg gccggatcag cgggaccac 300			10
gaggagaacc cttacagcct gctggaaatt tccactgtgg agcgaggcgt ggtgagtctc 360			
tttgaggtg gaagtggccct cttegttgcc atgaacagta aaggaagatt gtacgcaacg 420			
cccagttcc aagaagaatg caagttcaga gaaaccctcc tgcccaacaa ttacaatgcc 480			
tacgagtcg acttgtacca agggacctac attccctga gcaaatacgg acgggtaaag 540			
cggggcagca aggtgtcccc gatcatgact gtcactcatt tcctccctcag gatctaa 597			15
<210> 69			
<211> 150			
<212> DNA			
<213> Homo sapiens			20
<300>			
<302> FGF7			
<310> XM007559			25
<400> 69			
atgtcttggc aatgcacttc atacacaatg actaatctat actgtgatga tttgactcaa 60			
aaggagaaaa gaaattatgt agttttcaat tctgattcct attcacctt tgtttatgaa 120			
tggaaagctt tgtgcaaaaat atacatataa 150			30
<210> 70			
<211> 628			
<212> DNA			35
<213> Homo sapiens			
<300>			
<302> FGF9			
<310> XM007105			40
<400> 70			
gatggctccc ttaggtgaag ttggaaacta tttcggtgtg caggatgcgg taccgtttgg 60			
gaatgtgccct gtgttgcgg tggacagccc ggaaaaatggta agtgcaccc tgggtcagtc 120			
cgaaggcaggg gggctcccca ggggacccgc agtcacggac ttggatcatt taaagggat 180			45
tctcaggcgg aggcaagctat actgcaggac tggatccac ttagaaatct tcccaatgg 240			
tactatccag ggaaccaggaa aagaccacag ccgatggc attctggat ttatcgtat 300			
agcagtggc ctggtcagca ttggatggcgt ggacagtggc ctctacctcg ggatgaatgaa 360			
gaagggggag ctgtatggat cagaaaaact aacccaagag tggatggatca gagaacagtt 420			
cgaagaaaaac tggatataata cgtactcatc aaacatat aagcacgtgg acactggaa 480			50
gcgataactat gttgcattaa ataaagatgg gaccccgaga gaagggacta ggactaaacg 540			
gcaccagaaa ttccacacatt ttttacctag accagtggac cccgacaaag tacctgaact 600			
gtataaggat attctaagcc aaagttga 628			628
<210> 71			
			55
			60
			65

DE 101 00 586 C 1

<211> 2469
 <212> DNA
 <213> Homo sapiens

5 <300>
 <302> FGFR1
 <310> NM000604

10 <400> 71
 atgtggagct ggaagtgcct cctttctgg gctgtgctgg tcacagccac actctgcacc 60
 gctaggccgt ccccgacatt gcctgaacaa gcccagccct ggggagcccc tggtaagt 120
 gagtccttcc tggtccacc cggtgacatt ctgcagctt gctgtcgct gcgggacgat 180
 gtgcagagca tcaactggct gccggacggg gtgcagctgg cgaaaagcaa ccgcacccgc 240
 atcacagggg aggaggtggg ggtgcaggac tccgtgccc cagactccgg ccttatgct 300
 tgcgtAACCA gcggccctc gggcagtgt accacact tctcgtaaa tgttcagat 360
 gctctccctt cctcgaggaa tgatgtat gatgtact ccttcaga ggagaaagaa 420
 acagataaca ccaaaccaaa cctgtatccc stgtctccat attggacatc cccagaaaag 480
 atggaaaaaga aattgtcatgc agtgcggct gccaagacag tgaattcaa atgccttcc 540
 20 agtgggaccc caaaccacact gtcgcctgg ttggaaaatg gcaagaatcaa caaacctgac 600
 cacagaattt gaggctacaa ggtccgttat gccacctggg gcatcataat ggactctgtg 660
 gtgcctctg acaaggccaa ctacacctgc attgtggaga atgagttacgg cagcatcaac 720
 cacacatacc agctggatgt cgtggagccg tccctcacc gcccattct gcaagcagg 780
 ttgcggcca acaaaccatg gcccctggg agcaacgtgg agttcatgtg taagggtac 840
 25 agtgcacccgc agccgcacat ccagtggctt aagcacatcg aggtgaatgg gagaaggatt 900
 ggcacccagaca acctgcctta tgtccagatc ttgaagactg ctggagttaa taccaccgac 960
 aaagagatgg aggtgcctca cttaaagaaat gtctcctttg aggacgcagg ggagatatacg 1020
 tgcttggccg gtaacttat cggactctcc catcaactctg catggttgac cgttctggaa 1080
 gcccctggaa agaggccggc agtgcgtacc tccgtccctgt acctggagat catcatctat 1140
 30 tgcacagggg ctttcctcat ctccgtatgtggggctgg tcatcgatca caagatgaag 1200
 agtggatcca agaagagtga ctccacacg cagatggctg tgcacaagct ggccaagagc 1260
 atccctctgc gcagacaggat aacagtgtct gtcgtacttca gtgcatccat gaactctggg 1320
 gttcttctgg ttccggccatc acggctctcc tccgtgggat tcccatgtt acgcagggtc 1380
 tctgagatatg agttcccgaa agaccctgc tggagctgc ctccggacag actggcttta 1440
 35 ggcaaaaccc tggagaggg ctgttttggg cagggtgggt tggcagaggc tatcggtcg 1500
 gacaaggaca aacccaaccc tgtgacaaa gtggctgtga agatgttga gtcggacgca 1560
 acagagaaag acttgtcaga cctgatctca gaaatggaga tcatgttgc gatcgaaag 1620
 cataagaat tcatcaaccc gtcggggcc tgcacgcagg atggccctt gtatgtcatc 1680
 gtggatgtatg cttccaaaggaa caacctgcgg gaggatctgc aggcccggag gccccccagg 1740
 40 ctggaaatct getacaaccc cagccacac ccaggaggac agtctctcc caaggacctg 1800
 gtgtcctgcg cttaccagggt ggccggaggc atggatctc tggcctccaa gaagtgcata 1860
 caccgagacc tggcagcccg gaatgtctg gtgcacaggaa acaatgtatg gaagatagca 1920
 gactttggcc tggcacggga cattcaccac atcgactact ataaaaagac aaccaacggc 1980
 cgactgcctg tggaaatgtt ggcacccgag gcattatttgc accggatcta caccaccc 2040
 45 agtgcgtgt ggtcttctgg ggtgcctctg tggagatct tcactctgg cggtccccca 2100
 taccgggtg tggctgtggaa ggaacttttca aagctgtca aggagggtca ccgcattggac 2160
 aagcccgatc actgcacccaa cgagctgtac atgatgtatc gggactgtg gcatgcagt 2220
 ccctcacaga gacccacccaa caagcagctg gtggaaagacc tggacccgtat cgtggcttg 2280
 acctccaaacc agaggatccctt ggacctgtcc atgcccctgg accagtactc ccccgatctt 2340
 50 cccgacaccc gtagctctac gtgcctctca gggaggatt ccgtcttctc tcatgagccg 2400
 ctggccgggg agccctgcctt gccccgacac ccagccacg ttgccaatgg cggactcaaa 2460
 cggccgtga
 2469

55 <210> 72
 <211> 2409
 <212> DNA
 <213> Homo sapiens

60

65

DE 101 00 586 C 1

<300>
 <302> FGFR4
 <310> XM003910

<400> 72 5
 atgcggctgc tgctggccct gttgggggtc ctgctgagtg tgcctgggcc tccagtctt 60
 tccctggagg cctctgagga agtggagctt gagccctgccc tggctcccaag cctggagcag 120
 caagagcagg agctgacagt agccctggg cagccctgtgc ggctgtctg tggcgccgt 180
 gagcgtggtg gccactggta caaggaggcc agtcgcctgg cacctgctgg cctgtacgg 240
 ggctggaggg gcccctaga gattgcacg ttccatccctg aggtgctgg ccgttacetc 300
 tgcctggcac gaggctccat gatcgctctg cagaatctca ccttgattac aggtgactcc 360
 ttgacctcca gcaacgtga tgaggacccc aagtcccata gggacctctc gaataggcac 420
 agttacccccc agcaaggacc ctactggaca caccccccagc gcatggagaa gaaactgcac 480
 gcagtacctg cggggaaacac cgtcaagttc cgctgtccag ctgcaggccaa cccacgccc 540
 accatccgt ggcttaagga tggacaggcc tttcatgggg agaaccgcat tggaggcat 600
 cggctgcgcc atcagactg gagtctctg atggagagcg tggcccttc ggaccggc 660
 acatacacct gcctggtaga gaacgctgtg ggcagcatcc gtataacta cctgctagat 720
 gtgctggagc ggtccccca cccggccatc ctgcaggccg ggctccccc caacaccaca 780
 gccgtggtg ggagctgtg tgcacgggtt acagcgatgc ccagccccac 840
 atccagtggc tgaagcacat cgtcatcaac ggcagcagct tcggagccga cggttcccc 900
 tatgtcaag tcctaaagac tgcagacatc aatagctcg aggtggaggt cctgtacctg 960
 cggAACGTGT cagccgagga cgcaggcgag tacacctgccc tcgcaggccaa ttccatcgcc 1020
 ctctccattacc agtctgcctg gtcacgggtg ctgcaggccg aggacccac atggaccgca 1080
 gcagcggcccg aggccaggta tacggacatc atctgtacg cgctgggctc cctggcctt 1140
 gctgtctcc tgcgtctggc caggctgtat cgagggcagg cgctccacgg cgggacccc 1200
 cggcccccccg ccactgtgca gaagctctcc cgctccctc tggccgacaa gttctccctg 1260
 gagtcaggct ctccggcaa gtcaagctca tcctggtagc gaggcgtcg tctctcc 1320
 agcggcccccg cttgtctcgc cggccctctg agtctagatc tacctctcga cccactatgg 1380
 gagttccccc gggacaggct ggtgttggg aagccctag gcgagggtc ctggccag 1440
 gtagtacgtg cagaggccct tggcatggac cctggccggc ctgaccaagc cagactgtg 1500
 gccgtcaaga tgctcaaaga caacgcctct gacaaggacc tggccgacct ggtctcgag 1560
 atggaggtga tgaagctgtat cggccgacac aagaacatca tcaacctgtct tgggtctgc 1620
 acccaggaag gggccctgtta cgtgtatctg gagtgcggcc ccaaggaaaa cctgcgggag 1680
 ttccctgggg cccggcgccc cccaggcccc gacccctagcc cgcacgggtc tcggagcagt 1740
 gagggccgc ttcctttccc agtccctggc tcctgcgcct accaggtggc cggaggcatg 1800
 cagtatctgg agtccccggaa gtgtatccac cggacactgg ctgcccgc aa tgcgtgggt 1860
 actgaggacca atgtgtatgaa gattgtgtac ttggggctgg cccggggcgtt ccaccacatt 1920
 gactactata aaaaaaccag caacggccgc ctgcctgtga agtggatggc gcccggggcc 1980
 ttgtttgacc ggggtgtacac acaccaggat gacgtgtgtt ctggatggat cctgttatgg 2040
 gagatctca ccctcggggg ctcccccgtat cttggcatcc cggtgaggaa gctgttctcg 2100
 ctgctgggg aggacatcg gatggaccga ccccccacact gcccccccaaa gctgtacggg 2160
 ctgatgcgtg agtgcgtggca cgcaggcccc tcccaaggaggc ttcacccatca gcaactgtgg 2220
 gaggcgtgg acaagggtctt gctggccgtc tctgaggagt acctcgaccc cccgcctgacc 2280
 ttccggaccct atccccctc tgggtgggac gccagcagca cctgtctcc cagcgattt 2340
 gtcttcagcc acgacccccc gccattggga tccagctct tccccttccgg gtctgggggtg 2400
 cagacatga 2409 45

<210> 73 50
 <211> 1695
 <212> DNA
 <213> Homo sapiens

<300>
 <302> MT2MMP
 <310> D86331 55

60

65

DE 101 00 586 C 1

<400> 73

```

atgaagcggc cccgctgtgg ggtgccagac cagttcgaaaa tacgagtgtaa agccaacctg 60
cgccggcgta ggaaggcgta cgccttacc gggagggaaat ggaacaacca ccatctgacc 120
5 ttagcatcc agaactacac ggagaatgg ggcgtgtacc actcgatgg ggcgggtgc 180
agggccttcc gcgtgtggaa gcaggccacg cccctgttcc tccaggaggt gcccattatgag 240
gacatccggc tccggcgaca gaaggaggcc gacatcatgg tactcttgc ctctggcttc 300
cacggcgaca gtcgcccgtt tgatggcacc ggtggcttc tggccacgc ctattccct 360
ggccccggcc taggcggggaa caccatgg gacgcagatg agccctggac cttctccagc 420
10 actgacactgc atggaaacaa cctcttctg gtggcagtgc atgagctggg ccacgcgtc 480
gggctggagc actccagcaa ccccaatgcc atcatggcgc cgttctacca gtggaggac 540
gttgacaact tcaagctgcc cgaggacgt ctccgtggca tccagcagct ctacggtacc 600
ccagacggc accacacagcc taccggccct ctccccactg tgacggccacg gccggcaggc 660
cgccctgacc accggccggcc cggccctccc cagggcaccac ccccaagggtgg gaagccagag 720
15 cgccccccaa agccggggccccc cccagttccag ccccgagccca cagagcggcc cgaccaggat 780
ggcccccaaca tctggcaggg ggactttgac acagtggccca tgcttcgggg ggagatgttc 840
gtgttcagg gccgtgttcc ctggcggatc cggcacaacc ggtctctggca caactatccc 900
atgcccattcg ggcacttctg gctgtgtctg cccgggtgaca tcagtgtctc ctacgagcgc 960
caagacggc tttttgtctt ttcaaaatggt gaccgtact ggcttcttcg agaagcgaac 1020
20 ctggagcccg gotacccaca gccgctgacc agctatggcc tggccatccc ctatgaccgc 1080
attgacacgg ccatctggcc ggagccacca ggcacaccc ttttcttcca agaggacagg 1140
tactggcgt tcaacggagga gacacagcgt ggagaccctg ggtaccccaa gcccattcgt 1200
gtctggcagg ggatccctgc ctccccctaaa gggcccttcc tgagcaatga cgcagcctac 1260
acctaattct acaaggggcac caaataactgg aaatttcgaca atgagcgcct gggatggag 1320
25 cccggctacc ccaagtccat cctgcgggac ttcatgggt gccaggagca cgtggagcca 1380
ggcccccgat gccccgacgt gggccggccg cccttcaacc cccacggggg tgccagagccc 1440
ggggccggaca ggcgcagaggg cgacgtgggg gatggggatg gggactttgg gggccgggtc 1500
aacaaggaca ggggcggccg cgtgtgtgtg cagatggagg aggtggcaag gacggtaac 1560
gtggatgg tgcgtgtgcc actgctgtc ctgtctgcg tccctggccct cacctacgcg 1620
30 ctgggtcaga tgcagcgc当地 ggggtgc当地 cgtgtctgc tttactgc当地 ggcgtcgctg 1680
caggagtggg tctga 1695

```

<210> 74

35 <211> 1824

<212> DNA

<213> Homo sapiens

<300>

40 <302> MT3MMP

<310> D85511

<400> 74

```

atgatcttac tcacatttca gactggaaat cgggtggatt tcgtgcata tcgggggtg 60
45 ttttcttgc aaacattgtt ttggattttt tgcgttacat tctgcggaaac ggagcgttat 120
ttcaatgtgg aggtttgggtt acaaaaatgtt ggcttccatc caccgactga ccccaagaatg 180
tcagtgtgc gctctgcaga gaccatgtc gttttttttt ctggccatgtc gcaatgttat 240
ggcattaaca tgcacaggaaa agtggacaga aacacaattt gactggatgaa gaagcccega 300
tgccgtgtac ctgaccagac aagaggatgc tccaaatttc atattctgtc aaagcgatata 360
50 gcatttgcac gacagaaaatg gcaagcacaatg cacatctt acagtataaa gaacgttaact 420
ccaaaatgtt gagaccctgtt gactcgatggt gctatttgcg tgcctttgt tgcgtggcag 480
aatgttactt ctgttgcatt tgaagaatggt cccttacatgtt aattttttttt tggcaaacgt 540
gatgtggata taaccattat ttttgcattt ggtttccatg gggacagctc tccctttgtat 600
55 ggagagggag gatttttggc acatgcctac ttccctggac caggaattgg aggagatacc 660
catttttactt cagatgagcc atggacacta gaaatctt atcatgttgggaaatgactt 720
tttcttgcactt cgttccatgtt actggacat gcttggat tggacatcc caatgacccc 780
actgccttccatt ttaccatgtt atggaaacatg acaacttcaa actacactt 840

```

60

65

DE 101 00 586 C 1

gatattttac agggcatcca gaagatataat ggtccacctg acaagatcc tccacctaca	900	
agacctctac cgacagtgcc cccacaccgc tcatttctc cggctgaccc aaggaaaaat	960	
gacaggccaa aacccctcg gcctccaacc ggtagacccct cctatccccg agccaaaccc	1020	
aacatctgtg atgggaactt taacactcta gctatttttc gtcgtgagat gttgttttc	1080	5
aaggaccgt gttttggcg agtgagaaac aacagggtga tggatggata cccaaatgca	1140	
attacttaat tctggcgaaa ctgcctct agatcgtatc cagtttatga aaatagcgac	1200	
gggaattttg tggtctttaa aggttaacaaa tattgggtgt tcaaggatac aactcttcaa	1260	
cctggttacc ctcatgact gataaccctt ggaagtggaa ttccccccta tggatttgat	1320	
tcaggcattt ggtgggagga cgtcggaaa acctatttct tcaagggaga cagatattgg	1380	10
agatatagtg aagaatgaa aacaatggac cctggctatc ccaagccaa cacagtctgg	1440	
aaaggatcc ctgaatctcc tcagggagca ttgtacaca aagaaaatgg cttacgtat	1500	
ttcttacaaag gaaaggaggtt ttggaaattt aacaaccaga tactcaaggt agaacctgga	1560	
tatccaagat ccattctcaa ggattttatg ggctgtatg gaccaacaga cagagttaaa	1620	
gaaggacaca gcccaccaga tgatgttagac attgtcatca aactggacaa cacagccagc	1680	
actgtgaaag ccatacgat tgcatttttcc tgcatttttgc ctttatgcct ctttgtattt	1740	15
gtttacactg tggccaggta caagaggaaa ggaacacccc gccacatact gtactgtaaa	1800	
cgctctatgc aagagtgggt gtga	1824	
20		
<210> 75		
<211> 1818		
<212> DNA		
<213> Homo sapiens		
25		
<300>		
<302> MT4MMP		
<310> AB021225		
30		
<400> 75		
atgcggcgcc ggcgcggccgg gggaccggc cggccggccc cagggccgg actctcgccg	60	
ctgcgcgtgc tgccgcgtcc gctgcgtgc ctgcgtgc cttgggacccg cgggggtgc	120	
gcccgcggcc aaccgcgcg ggcgcggcgg gacccgtcc tggagttggaa gtggctaaac	180	
agggtcggtt acctgcggcc ggcgtggcc acaacaggcc agctgcacac gcaagaggag	240	
ctgtctaaagg ccatcacacgc catgcacgg tttgggtggcc tggaggccac cggcatcctg	300	
gacgaggcca ccctggccct gatgaaaacc ccacgcgtct cctgtccaga cctccctgtc	360	35
ctgaccggc ctcgcaggag acgcggcgtt ccaggccccc ccaagtggaa caagaggaac	420	
ctgtcggtt gggccggccac gttccacccgg gactcaccac tggggcacga cacggcgt	480	
gcactcatgt actacggccct caagggtctgg aggcacattt cggccctgtaa cttccacgg	540	
gtggccggca gcacccggca catccagatc gacttctca aggccgacca taacgacggc	600	
taccccttcg acgcccggcg gcacccgtcc caccgttct tcccgctcgg gatggccac	660	
gcccgggtaca cccactttaa cgatgcgg gctggaccc tggccgttccgg 720		
gggatggacc tggttgcagt ggctgtccac gagttttggcc acgcattttgg gttaaagccat	780	
gtggccgtc cacactccat catgcggccg tactaccagg ggccgggtgg tgaccggctg	840	
cgctacggc tcccttacga ggacaagggtt cgcgtctggc agctgtacgg tgcggggag	900	
tctgtgtctc ccacggcgca gcccggggac cttcccttcg tgccggagcc cccagacaac	960	45
cggtccagcg cccggcccaag gaaggacgtt cccacacatg gcagcactca ctttgcacgg	1020	
gtggcccgaga tccgggggtga agcttttttc ttcaaaggca agtacttctg gcccgtacg	1080	
cgggacccggc acctgggtgc ctcgcacccgg gcacacatgc accgcgttctg gcccgggtctg	1140	
ccgcgtcacc tggacacggc ggacgcggcgt tacggacgcga ccagcgacca caagatcg	1200	
ttctttaaaag gagacaggta ctgggtgtt aaggacaata acgttagagga aggatacccg	1260	
cgccccgtct ccgacttca gttcccttgc gggccatcg acgcgtcgtt ctcctggcc	1320	
cacaatgaca ggacttattt cttaaggac cagctgtact ggcgtctacga tgaccacacg	1380	
aggccatcg accccggcta ccccgcccaag agcccccgtt ggagggtgt ccccgacgc	1440	
ctggacacgc ccatgcgtt gtcgcacggt gcctctact tcttccgtt ccaggatgc	1500	
tggaaagtgc tggatggcga gctggagggtt gcacccgggtt accccacatgc cacggccgg	1560	
gactggctgg tggatggaga ctcacaggcc gatggatctg tggctgggg cgtggacgc	1620	
gcagagggggc cccggccccc tccaggacaa catgaccaga gccgctcgga ggacggttac	1680	

60

65

DE 101 00 586 C 1

<310> AJ27137

<400> 77

atgcggctgc ggctccggct tctggcgctg ctgcttctgc tgctggcacc gcccgcgc 60
 gccccgaagc cctcggcgca ggacgtgagc ctggcgctgg actggctgac tcgctatgg 120
 tacctgccgc caccggcacc tgcccaggcc cagctgcaga gcccggatgaa gttgcgcgat 180
 gccatcaaag tcatgcagag gttcgggggg ctgcccggaga cggccgcatt ggaccgggg 240
 acatggcca ccatgcgtaa gccccgtgc tcctgcctg acgtgctggg ggtgggggg 300
 ctggtcaggg ggcgtcgccg gtacgtctg agcggcagcg tggaaagaa gcaaccctgt 360
 acatggggggg taacgttcctt ccccaagagc tcggctgtga gccaggagac cgtgcgggtc 420
 ctcatgagct atgcctgtat ggcctggggc atggagttagtgc gctcacatt tcatgagggt 480
 gattcccccc aggggcaggaa gcccggacate ctcatgcact ttgcccgcgc cttccaccag 540
 gacagctacc ctttcgacgg gttggggggc acccttagcc atgccttctt ccctggggag 600
 caccggatct cccggggacac tcacttttgac gatggggaaa cctggacttt tgggtcaaaa 660
 gacggcgagg ggaccggacct gtttggcgta gctgtccatg agtttggcca cggccctgggc 720
 ctggggccact cctcagcccc caactccattt atggggccct tctacccaggg tccgggtggc 780
 gaccctgaca agtaccggct gtctcaggat gaccgcgtg gcctgcacca actctatggg 840
 aaggcgcccc aaacccata tgacaagccc acaaggaaaac ccctggctcc tccggcccgag 900
 ccccccggct cggccacaca cagcccatcc ttcccatcc ctgatcgatg tgaggggcaat 960
 tttgacgcca tcgccaacat ccgagggggaa actttttctt tcaaaaggccc ctgggtctgg 1020
 cgccctccagc cctccggaca gctgggttcc cccggacccg cacggctgca cccgttctgg 1080
 gagggggctgc cccggccagggt gagggttgtg caggccggct atgctcgca cccggacccg 1140
 cgaatccctcc tcttttagcggt gcccggatcc tgggtttcc aggaccggca gctggggggc 1200
 gggggcgggc cgctcacggg gctggggctg ccccccggggag aggagggtgga cggccgttcc 1260
 tcgtggccac agaacggggaa gacctacccg gtccggggcc ggcagtactg ggcgtacgac 1320
 gagggggcgcc cccggccggaa cccgggttcc cctccggacc tgagccctgg ggaaggcgcc 1380
 ccccccctcc ctgacgtatg caccgtcage aacgcagggtg acacccatctt cttcaaggggc 1440
 gcccactact ggccgttccc caagaacacgc atcaagaccg agccggacgc ccccccggcc 1500
 atggggccca actgggttggaa ctggcccgcc ccggactctg gtccggccg ccccaaggccc 1560
 cccaaaggcga ccccccgtgtc cggaaacctgc gattgtcagt gcgagctaa ccaggccgca 1620
 ggacgttggc ctgtccccat cccgctgtcc ctctggcccc tgctgggtggg ggggttagcc 1680
 tcccgtga 1689

35

<210> 78

<211> 1749

<212> DNA

<213> Homo sapiens

40

<300>

<302> MTMMP

<310> X90925

<400> 78

atgtctcccg ccccaagacc ctccgggtgt ctctgtctcc ccctgtctac gctggcacc 60
 ggcgtcgcc cccctcggtc ggcccaaaagc agcagttca gccccgaagc ctggctacag 120
 caatatggct actgtctcc cggggaccta cgtacccaca cacagcgctc accccaggatca 180
 ctctcggcc ccatcgctgc catgcagaag ttttacggct tgcaagtaac aggccaaagct 240
 gatgcagaca ccatgaaggc catggggccg ccccgatgtg gtgttccaga caagtttggg 300
 gctgagatca agggccatgt tcgaaggaaag cgtacccgca tccagggtct caaatggcaa 360
 cataatgaaa tcactttctg catccggaaat tacaccccca aggtggggca gatgtccaca 420
 tacggggccca ttgcgttccggc gttccgggtg tggggatgt ccacaccact ggcgttccgc 480
 gaggtggccct atgcctacat ccgtgaggggc catgagaagc aggccgacat catgtcttc 540
 tttggccgggg gcttccatgg cgacagccacg cccttcgtatg gtggggccg cttccgggg 600
 catgcctact tcccaggccc caacatttggaa ggagacaccc actttgactc tgccgagcc 660
 tggactgtca ggaatgagga tctgaatggaa aatgacatct tcctgggtggc tggcgtacgag 720
 ctggggccatg ccctggggct cggacattcc agtgaccctt cggccatcat ggcaccctt 780

60

65

DE 101 00 586 C 1

5	taccagtgg a tggacacgga gaattttgtg ctgccccatg atgaccgccg gggcatccag 840 caacttatg ggggtgatgc agggttcccc accaagatgc cccctcaacc caggactacc 900 tcccggcctt ctgttcctga taaaacccaaa aaccccacct atgggcccaa catctgtgac 960 ggaaaccttg acaccgtggc catgctccga gggagatgt ttgtctcaa ggagcgctgg 1020 ttctggcggg tgaggaataa ccaagtgtatg gatggatacc caatgcccatttggccagttc 1080 tggcgccggc tgccctgcgtc catcaacact gcctacgaga ggaaggatgg caaattcgtc 1140 ttcttcaaag gagacaagca ttgggtgtt gatgaggcgat cccctggaaacc tggctacccc 1200 aagcacatta aggagctggg ccgaggcgat cctaccgaca agattgtatgc tgctctttc 1260 tggatgcca atggaaagac ctacttctt cgtggaaaca agtactaccg tttcaacgaa 1320 gagctcaggc cagtggatag cgagtacccc aagaacatca aagtctggg aggatccct 1380 gagtcctcca gagggttattt catggcagc gatgaagtct tcacttactt ctacaagggg 1440 aacaataact gggaaattcaa caaccagaag ctgaaggtag aaccgggcta ccccaagcc 1500 gcccctgggg actggatggg ctgcccattcg ggaggccggc cggatgaggg gactgaggag 1560 gagacgggg tgatcatcat tgagggtggc gaggaggcg gccggggcggt gagcgcggct 1620 gcccgtgtc tgccctgtct gctgtcttc ctgggtctgg cgggtggcct tgcaagtctt 1680 ttcttcagac gccatggac ccccaaggcga ctgtctact gcaagcgatc cctgtggac 1740 aaggctgta 1749
20	<210> 79 <211> 744 <212> DNA <213> Homo sapiens
25	<300> <302> FGF1 <310> XM003647
30	<400> 79 atggccgcgg ccatcgctag cggcttgcattt cggcagaagc ggcaggcgcg ggagcagcac 60 tgggaccggc cgtctgcccag caggaggcgg agcagccccca gcaagaaccg cgggtctgc 120 aacggcaacc tggtgatataat cttctccaaa gtggcatct tcggcctcaa gaagcgcagg 180 ttgcgcgcgc aagatccccca gctcaagggtt atagtgcacca ggttatattt caggcaaggc 240 tactacttgc aatgcaccc cgttggatctt ctcgtggaa ccaaggatga cagcaactaat 300 tctacacttgc tcaacactcat accagtggga ctacgttttgc ttgccttccca gggagtgaaa 360 acagggttgtt atatagccat gaatggagaa ggttacctt acccatcaga actttttacc 420 cctgaatgc agttttaaaat atctgtttt gaaaattattt atgtatctt ctcatccatg 480 ttgtacagac aacaggaatc tggtagagcc tgggttttgg gattaaataa ggaaggccaa 540 gctatgaaag ggaacagagt aaagaaaaacc aaaccaggat ctcatttttcc acccaagcc 600 ttggaaagtttgc ccatgttaccg agaaccatctt tcgtatgtt ttggggaaac ggtcccgaaag 660 cctgggggtga ccccaagtaa aagcacaatgtt gctgtgtcaat taatgaatgg aggcaacca 720 gtcaacaaga gttaagacaac atag 744
45	<210> 80 <211> 468 <212> DNA <213> Homo sapiens
50	<300> <302> FGF2 <310> NM002006
55	<400> 80 atggcagccg ggagcatcac cacgtgtcccc gccttgcggc aggtggcg cagcggcgcc 60 ttcccgcccg gccacttcaa ggaccccaag cggctgtact gcaaaaacgg gggcttcttc 120 ctgcgcaccc accccgacgg ccgagttgac ggggtccggg agaagagcga ccctcacatc 180
60	

DE 101 00 586 C 1

aagctacaac ttcaaggaga agagagagga gttgtgtcta tcaaaggagt gtgtgctaac 240
 cgttacctgg ctatgaagga agatgaaaga ttactggctt ctaaatgtgt tacggatgag 300
 tgtttctttt ttgaacgatt ggaatctaatac aactacaata cttaccggtc aaggaaatac 360
 accagtttgtt atgtggcaact gaaacgaaact gggcagttatac aacttggatc caaaacagga 420
 cctggcaga aagctataact ttttcttcca atgtctgcta agagctga 468

5

<210> 81
 <211> 756
 <212> DNA
 <213> Homo sapiens

10

<300>
 <302> FGF23
 <310> NM020638

15

<400> 81
 atgttggggg cccgcctcag gctctgggtc tgcctgttgc gcagcgctcg cagcatgagc 60
 gtcctcagag cctatccccaa tgcctccca ctgcctggct ccagctgggg tggcctgatc 120
 cacctgtaca cagccacagc caggaacagc taccacctgc agatccacaa gaatggccat 180
 gtggatggcg caccatca gaccatctac agtgcctga tgatcgatc agaggatgct 240
 ggcttgtgg tattacagg tgtgtatgac agaagatacc tctgcattggta ttccagggc 300
 aacattttg gatcacacta ttgcaccccg gagaactgca ggttccaaca ccagacgctg 360
 gaaaacgggt acgacgtcta ccactctct cagtatcact tcctggtcag tctggccgg 420
 gcgaagagag ctttcctgac aggcatgaaac ccaccccccgt actcccgatc cctgtccgg 480
 aggaacgaga tccccctaat tcacttcaac accccctatac cacggcggca caccggagc 540
 gccgaggacg actcgaggacg ggacccctg aacgtgtca agccccggc cccgatgacc 600
 ccggcccccgg ctttcctgttc acaggagctc ccgagcggc aggacaacag cccgatggcc 660
 agtacccat taggggtggc cagggcggt cgagtgaaca cgcacgtgg gggAACGGG 720
 ccggaaaggct gccggccctt cgccaagttc atctag 756

20

25

<210> 82
 <211> 720
 <212> DNA
 <213> Homo sapiens

35

<300>
 <302> FGF3
 <310> NM005247

40

<400> 82
 atgggcctaa tctggctgct actgcgtcagc ctgcgtggagc cgggctggcc cgcaaggggc 60
 cctggggcgc ggttgcggcg cgatgcgggc ggcgtggcg gctctacga gcacccctggc 120
 gggggcccccc ggcggccgca gctctactgc gccacgaatg accacccatca gctgcaccccg 180
 agggggccgcg tcaacggcag cctggagaac aggcgttaca gtatgttggta gataacggca 240
 gtggaggtgg gcatgtggc catcagggtt ctcttctccg ggcgttaccc ggccatgaac 300
 aagaggggac gactctatgc ttccggagcac tacagcggcc agtgcgagggt tttggagccg 360
 atccacgacg tggctataa tacgtatgcc tcccggtgtt accggacggt gtctagtaag 420
 cctggggcccc gccggcagcc cagcggccgag agactgtgtt acgtgtctgtt gaacggcaag 480
 ggccggccccc gcaggggctt caagacccgc cgccacacaga agtccctccctt gttectggcc 540
 cgctgtctgg accacaggga ccacgagatg gtgcggcagc tacagatgg gctgcccaga 600
 cccctggta agggggtcca gccccgacgg cggcggcaga agcagagccc ggataacctg 660
 gagcccttc acgttcagggc ttccgagactg ggctccctcagc tggaggccag tgccacttag 720

45

50

55

<210> 83

60

65

DE 101 00 586 C 1

<211> 807
<212> DNA
<213> Homo sapiens

5 <300>
<302> FGF5
<310> NM004464

10 <400> 83
at gagttgt ctttccttc ctccttc ttcagccacc tgatccttag cgccctggct 60
cacgggaga agcgctcgc ccccaaagg caacccggac ccgctgccac tgataggaac 120
cctataggct ccaggcagcag acagagcagc agtagcgcta tgtcttc tctgcctcc 180
tcctcccccg cagttctct gggcagccaa ggaagtggct tggagcagag cagttccag 240
15 tggagccccct cggggcgccg gaccggcagc ctctactgca gagtggccat cggttccat 300
ctgcagatct accccggatgg caaatgtaat ggatcccacg aagccaatat gttaagtgtt 360
ttggaaatata ttgtgtgtc tcaggggatt gttagaatac gaggagttt cagcaacaaa 420
tttttagcga tgcaaaaaaaaa agaaaaactc catgcaagtg ccaagttcac agatgactgc 480
aagttcaggg agcgtttca agaaaaatagc tataatacct atgcctcagc aatacataga 540
20 actgaaaaaaaaa cagggcgggg gtggatgtt gccctgaata aaagaggaaa agccaaacga 600
gggtgcagcc cccgggttaa accccagcat atctctaccc attttcttcc aagattcaag 660
cagtccggc agccagaact ttcttcacg ttactgttc ctgaaaagaa aaatccacct 720
agccctatca agtcaaagat tccctttct gcacctcgga aaaataccaa ctcagtgaaa 780
tacagactca agtttcgctt tggataa 807

25

<210> 84
<211> 649
<212> DNA
<213> Homo sapiens

30 <300>
<302> FGF8
<310> NM006119

35 <400> 84
atgggcagcc cccgctccgc gctgagctgc ctgctgttgc acttgctggc cctctgcctc 60
caagcccagg taactgttca gtcctcacct aattttacac agcatgtgag ggagcagagc 120
ctggtagcgg attagctcag ccggcgctc atccggacct accaactcta cagccgcacc 180
40 agcgggaagg acgtgcaggc cctggccaaac aagcgcatac acgccatggc agaggacggc 240
gacccttcg caaatgcata cgtggagacg gacacccctt gaaagcagat tcgagtcgaa 300
ggagccgaga cgggcctcta catctgcata aacaagaagg ggaagctgat cgccaaagagc 360
aacggcaag gcaaggactg cgtcttcacg gagattgtgc tggagaacaa ctacacagcg 420
ctgcagaatg ccaagtaacg gggctggatc atggcctca cccgcaaggg cggccccgc 480
45 aagggtctcca agacgcggca gcaccagcgt gaggcttact tcatgaagcg gctgccccgg 540
ggccaccacaca ccaccggagca gagecctcgcc ttcgagttcc tcaactaccc gcccttcacg 600
cgccaggctgc gccggcagcca gaggacttgg gccccggaaac cccgataagg 649

50 <210> 85
<211> 2466
<212> DNA
<213> Homo sapiens

55 <300>
<302> FGFR2
<310> NM000141

60

65

DE 101 00 586 C 1

<400> 85

atggtcagct	gggtgcgtt	catctgcctg	gtcgtggtca	ccatggcaac	cttgtccctg	60
gccccggccct	ccttcagttt	agttgaggat	accacattag	agccagaaga	gccaccaacc	120
aaataccaaa	tctctcaacc	agaagtgtac	gtggctgcgc	caggggagtc	gctagaggtg	180
cgctgcctgt	tgaaagatgc	cgccgtgate	agttggacta	aggatgggg	gcacttgggg	240
cccaacaata	ggacagtgt	tattggggag	tacttgcaga	taaaggcg	cacgcctaga	300
gactccgccc	tctatgctt	tactgcccagt	aggactgtag	acagtgaac	ttggacttc	360
atggtgaatg	tcacagatgc	catctcatcc	ggagatgtat	aggatgacac	cgatggcg	420
gaagatttt	tcagtggagaa	cagtaacaac	aagagagcac	catactggac	caacacagaa	480
aagatggaaa	agcggtccca	tgctgtgcct	ggggccaaca	ctgtcaagtt	tcgctgccc	540
gccccggggg	acccaaattgc	aaccatgggg	tggctaaaa	acgggaaagg	gtttaaagcag	600
gagcatcgca	ttggaggctaa	caaggtacga	aaccgcact	ggagcctcat	tatggaaagt	660
gtggtcccat	ctgacaaaggaa	aaattatacc	tgtgtgtgg	agaatgaata	cgggtccatc	720
aatcacacgt	accacctgg	tgttggag	cgatgcctc	accggggcat	ccttcaagcc	780
ggactgcgg	caaataccctc	cacagtggc	ggaggagacg	tagagtttg	ctgcaagtt	840
tacagtgtat	cccagccccca	catccagttt	atcaagcact	tggaaaagaa	cggcagtaaa	900
tacggggcccg	acgggctgcc	ctacccatca	gttctcaagg	ccggccgtgt	taacaccacg	960
gacaaagaga	tttaggttct	ctatattcgg	aatgttaactt	tttagggacgc	tggggatata	1020
acgtgcttgg	cgggttaattt	tattgggata	tcctttca	ctgcatgggt	gacagttctg	1080
ccagcgcctg	gaagagaaaa	ggagattaca	gttccccag	actacctgg	gatagccatt	1140
tactgcata	gggtcttctt	aatgcctgt	atgggtgtaa	cagtcatcct	gtgccgaatg	1200
aagaacacga	ccaagaagcc	agacttcagc	agccagccgg	ctgtgcacaa	gctgacccaa	1260
cgtatcccccc	tggcggagaca	ggtaacagg	tcggctgagt	ccagtcctc	catgaactcc	1320
aacacccccc	tggtgaggat	aacaacacgc	ctctttcaa	ccgcagacac	ccccatgctg	1380
gcaggggtct	cggatgtat	acttccagag	gaccaaaaat	gggagtttc	aagagataag	1440
ctgacactgg	gcaacccctt	ggggagaagg	tgtttggc	aatgtgtat	ggcggaaagca	1500
gtggaaattt	acaaaagacaa	gccccaggag	ggcgttacc	tggccgtgaa	gatgtgaaa	1560
gatgtatgca	cagagaaaaga	cccttctgt	ctgggtcag	agatggagat	gatgaagatg	1620
attggaaaac	acaagaatat	cataaaatctt	cttggagcc	gcacacagga	tgggcctctc	1680
tatgtcatag	tttagtatgc	ctctaaaggc	aacctcccg	aataacctcc	agccggagg	1740
ccacccggga	tggagtactc	ctatgacatt	aaccgtgtt	ctgaggagca	gatgacccctc	1800
aaggacttgg	tgtcatgcac	ctaccagct	gccagaggca	tggagtactt	ggcttccaa	1860
aaatgtattt	atcgagattt	agcagccaga	aatgtttgg	taacagaaaa	caatgtgtat	1920
aaaatagcag	actttggact	cgccagagat	atcaacaata	tagactatta	aaaaagaccc	1980
accaatgggc	ggcttccagt	caagtggat	gtcccaaaag	ccctgtttga	tagagtatac	2040
actcatcaga	gtgtatgtct	gtctttcgg	gtgttaatgt	gggagatctt	cacttttaggg	2100
ggctgcctt	accagggtat	tcccgtggag	gaactttta	agctgtgtaa	ggaaggacac	2160
agaatggata	agccagccaa	ctgcaccaac	gaactgtaca	tgtatgtat	ggactgttgg	2220
catgcgtgc	cctcccagag	accaacgtt	aagcaatttgg	tagaaagactt	ggatgtcaatt	2280
ctcaacttca	caaccaatga	ggaataactt	gacctcagcc	aacctctcg	acagtattca	2340
ccttagttacc	ctgacacacaag	aagttcttgc	tcttcaggag	atgattctgt	tttttctcca	2400
gaccccatgc	cttacgaacc	atgccttcc	cagtatccac	acataaaacgg	cagtgttaaa	2460
acatga						2466

<210> 86

<211> 2421

<212> DNA

<213> Homo sapiens

50

<300>

<302> FGFR3

<310> NM000142

55

<400> 86

atgggcgccc ctgcctgcgc cctcgcgctc tgcggtggccg tggccatcggt ggccggcgcc 60
tccttcggagt ccttggggac ggagcagcgc gtcgtgggc gagcggcaga agtccccggc 120

65

DE 101 00 586 C 1

ccagagccccg gccagcagga gcagttggtc ttccggcagcg gggatgtgt ggagctgagc 180
 tgcggccccc cccgggggtgg tcccatgggg cccactgtct gggtaagga tggcacagg 240
 ctgggtccct cggagcgtgt cctgggggg ccccaagcggc tgcagggtgt gaatgcctcc 300
 5 cacgaggact cccggggccta cagctgccgg cagcggctca cgcagcgtgt actgtgccac 360
 ttcagtgtgc gggtgacaga cgctccatcc tcgggagatg acgaagacgg ggagacgag 420
 gctgaggaca cagggtgtgg cacagggggc cttactgtgg cacggccca gggatggac 480
 aagaagctgc tggccgtgcc ggccgccaac accgtccgt tccgctgccc agccgctgac 540
 aaccggactc cttccatctc ctggctgaag aacggcaggg agttccgcgg cgagcaccgc 600
 10 attggaggca tcaagctgcg gcatcagcag tggagcctgg tcatggaaag cgtggtgc 660
 tcggaccgcg gcaactacac ctgcgtcg gagaacaagt ttggcagcat cccgcagacg 720
 tacacgtgg aegtgctgg ggcgtccccg caccggccca tcctgcagggc gggctgccc 780
 gccaaccaga cggcgggtgt gggcggcgtac gtggagttcc actgcaaggt gtacagtgac 840
 gcacagcccc acatccaggat gctcaagcac gtggaggtga acggcagcaa ggtggcccg 900
 15 gacggcacac cttacgttac cgtctcaag acggcggcgtac ctaacaccac cgacaaggag 960
 ctagaggttc ttccttgca caacgttacc ttggaggatc cggggggatc caccgtcc 1020
 gcccggcaatt ctattgggtt ttctcatcac tctgggtggc ttgtgggtgt gccagccgag 1080
 gaggagctgg tggaggctga cgaggccggc atgtgtatg caggcatct cagctacggg 1140
 gtgggcttct tctgttcat cttgggtgt gggctgtga cgtctggcc cctgcgcagc 1200
 20 ccccccaaga aaggcctggg ctccccacc gtgcacaaga tctcccggtt cccgtcaag 1260
 cgacaggtgt ccctggagtc caacgcgtcc atgagcttca acacaccact ggtgcgcata 1320
 gcaaggctgt ctcaggggg gggccccacg ctggccaatg tctccgagct cgagctgc 1380
 25 gcccaccaca aatggggagct gtctcgggccc cggctgaccc tgggcaagcc cttggggag 1440
 ggctgttcg gccagggtgg catggcggag gccatcgccca ttgacaagga cggggccgccc 1500
 aagcctgtca cctgtagccgt gaagatgtgt aaagacgtatg ccactgacaa ggacctgtcg 1560
 gacgggtgt ctggatggaa gatgtatggaa atgatcggtt tggggaggtt cggggcc 1620
 30 ctgctggggc cttgcacgcg gggggggccc ctgtacgtgc tggggggatc cggggcc 1680
 ggtaacctgc gggagttct gggggcgggg cggggccggg gcctggacta ctccctcgac 1740
 acctgcaagc cggccggagga gcagcttacc ttcaaggacc tgggttctg tgcctaccag 1800
 gtggccgggg gcatggagta ctggcctcc cagaagtgca tccacaggga cttggctgccc 1860
 35 cgcaatgtgc tggtggccgcg ggacaacgtg atgaagatcg cagacttcgg gctggcccg 1920
 gacgtgcaca acctcgacta ctacaagaag acaaccaacg gccggctgcc cgtgaagtgg 1980
 atggcgcctg aggcttggat tgaccgttca tacacttaccg agagtgtacgt ctggccctt 2040
 ggggttctgc tctggggat cttcacgtt gggggccccc cgtaccccg catccctgtg 2100
 40 gaggagctct tcaagctgtc gaaggaggcc caccgcattt acaagccgc caactgcaca 2160
 cacggactgt acatgtatcat gcggggatgtc tggcatggcc cgcctccca gaggcccacc 2220
 ttcaagcage tggggggatc cttggaccgt gtcccttaccg tgacgtccac cgacgagttac 2280
 ctggacactgt cggccctttt cgagcgttac tcccccgggtt gccaggacac ccccaagctcc 2340
 agctccctcg gggacgactc cgtgtttggc cacgacgttgc tgccccggc cccacccagc 2400
 agtgggggtt cggggacgtg a 2421

<210> 87
 <211> 2102
 45 <212> DNA

<213> Homo sapiens

<300>
 <302> HGF
 50 <310> E08541

<400> 87
 atgcagaggg acaaaggaaa agaagaaata caattcatga attcaaaaaa tcagcaaaaga 60
 ctaccctaat caaaatagat ccagcaactga agataaaaac caaaaaatgt aataactgcag 120
 55 accaatgtgc taatagatgt actaggaaata aaggacttcc attcaacttgc aaggctttt 180
 tttttgataaa agcaagaaaa caatgcctt ggttccctt caatagcatg tcaagtggag 240
 tgaaaaaaga atttggccat gaatttgacc tctatgaaaa caaagactac attagaaact 300
 gcatcatgg taaaggacgc agctacaagg gaacagtatc tatcactaag agtggcatca 360

60

65

DE 101 00 586 C 1

aatgtcgacc	ctggagttcc	atgataccac	acgaacacag	cttttgcct	tcgagctatc	420
ggggtaaaga	cctacaggaa	aactactgtc	gaaatcctcg	aggggaagaaa	gggggaccct	480
ggtgttccac	aagcaatcca	gaggtacgct	acgaagtctg	tgacattcc	cagtgttcag	540
aagttgaatg	catgacctgc	aatggggaga	gttatcgagg	tctcatggat	catacagaat	600
caggcaagat	ttgtcagcgc	tgggatcatc	agacaccaca	ccggcacaaa	ttcttgccctg	660
aaagatatacc	cgacaagggc	tttgatgata	attattgccc	caatcccgt	ggccagccga	720
ggccatggtg	ctatactctt	gaccctcaca	cccgtggga	gtactgtgca	attaaaaacat	780
gcgctgacaa	tactatgaat	gacactgtat	ttccttggaa	acaactgaa	tgcatccaag	840
gtcaaggaga	aggctacagg	ggcactgtca	ataccatttg	aatggaaatt	ccatgtcgc	900
gttgggattc	tcagtatct	cacgagcatg	acatgactcc	tgaaaatttc	aagtgcagg	960
acctacgaga	aaattactgc	cgaaaatccag	atgggtctga	atcacccctgg	tgttttacca	1020
ctgatccaaa	catccgagtt	ggctactgtc	cccaaattcc	aaactgtgtat	atgtcacatg	1080
gacaagattt	ttatctgtggg	atggccaaa	attatatggg	caacttacatc	caaacaagat	1140
ctggactaac	atgtcaatg	tgggacaaga	acatggaga	tttacatcg	catatcttc	1200
gggaaccaga	tgcaagtaag	ctgaatgaga	attactgccc	aaatccagat	gatgtgctc	1260
atggaccctg	gtgtcacacg	ggaaaatccac	tcatttcttg	ggattattgc	cctatttctc	1320
gttgtgaagg	tgataccaca	cctacaatag	tcaattttaga	ccatcccgta	atatctgtg	1380
ccaaaagggaa	acaattgcga	gttgttaatg	ggattccaac	acgaacaaac	ataggatgga	1440
tggtagttt	gagatacaga	aataaaacata	tctcgagg	atcattgata	aaggagagtt	1500
gggttcttac	tgcacgacag	tgtttccctt	ctcgagactt	gaaagattat	gaagcttggc	1560
ttggaaattca	tgatgtccac	ggaagaggag	atgagaatg	caaacaggtt	ctcaatgttt	1620
cccagctgtt	atatggccct	gaaggatcag	atctggttt	aatgaagctt	gccaggctg	1680
ctgtccttgg	tgattttgtt	agtacgatg	atttaccta	ttatggatgc	acaatttctg	1740
aaaagaccag	ttgcagtgtt	tatggctgg	gctacactgg	attgtatcaac	tatgtggcc	1800
tattacgatg	ggcacatctc	tatataatgg	gaaatgagaa	atgcagccag	catcatcgag	1860
ggaaggtgac	tctgaaatgag	tctgaaat	gtgtctgggc	tggaaaatgt	ggatcaggac	1920
catgtgaggg	ggattatggt	ggcccaacttg	tttggatgca	acataaaaatg	agaatggttc	1980
ttgggtgtcat	tgttccctgg	cgtggatgtg	ccatttccaaa	tcgtcctgtt	atttttgtcc	2040
gagtagcata	ttatgcaaaa	tggatacaca	aaattatttt	aacatataag	gtaccacagt	2100
ca						2102

<210> 88
<211> 360
<212> DNA
<213> *Homo sapiens*

<300>
<302> ID3
<310> XM001539

<400> 88
atgaaggcgc tgagccccgt gcgcggctgc tacgaggcggttgtgtgcct gtcggAACgc 60
agtctggcca tcgccccgggg ccgagggaaag ggcccccgcag ctgaggagcc gctgagctt 120
ctggacgaca tgaaccactg ctactcccgctgcgggaaactggtacccgg agtcccggaga 180
ggcactcagc tttagccaggt gggaaatcccta cagcgcgtca tcgactacat tctcgacctg 240
caggtagtcc tggccgagcc agccccctggatccccctgtatgcgcggggacacttcccatccag 300
acagccgagc tcactccggaaacttgtatc tccaaacgaca aaaggagctttgcccactqa 360

<210> 89
<211> 743
<212> DNA
<213> *Homo sapiens*

<300>
<302> TGF2

60

65

DE 101 00 586 C 1

<310> NM000612

<400> 89

5 atgggaatcc caatggggaa gtcgatgctg gtgttctca ctttcttggc ctgcgcctcg 60
 tgctgcattc ctgcattaccc ccccagttag accctgtcg gcggggagct ggtggacacc 120
 ctccagttcg tctgtggggc cggcgctc tacttcagca ggcccccaag ccgtgtgagc 180
 cgtcgcagcc gtggcatcggt tgaggagtgc tggttccgca gctgtgaccc gcccctctg 240
 gagacgtact gtgcataccccc cgccaagtcc gagaggacg tgcgcaccc tccgaccgtg 300
 10 cttccggaca acttcccccag atacccctg ggcaagttct tccaatatga cacctggaag 360
 cagtcaccc accgcgcctgcg caggggcctg cctgcctcc tgcgtgcctcg ccggggtcac 420
 gtgctcgcca aggagctcga ggcgttcagg gaggccaaac gtcaccgtcc cctgattgct 480
 ctaccaccc aagaccccccgc ccacggggc gccccccag agatggccag caatcggaag 540
 tgagcaaaac tgccgcagaat ctgcagcccg gcccacat cctgcagccct cctctgacc 600
 15 acggacgttt ccatcagggtt ccatcccgaa aatctctcg ttccacgtcc ccctggggct 660
 ttcctgacc cagttcccgat gccccgcctc cccgaaacag gctactctcc tcggccccc 720
 ccatcgggct gaggaagcac agc 743

20 <210> 90

<211> 7476

<212> DNA

<213> Homo sapiens

25 <300>

<302> IGF2R

<310> NM000876

<400> 90

30 atggggggccg ccgcgcggccg gagcccccac ctggggcccg cgcccgcccg cgcgcgcag 60
 cgctctgc tcctgcgtca gctgctgtc ctgcgtctg ccccgccgtc cacgcaggcc 120
 caggccgccc cgttcccccga gctgtcagt tatacatggg aagctgttga tacaaaaaat 180
 aatgtacttt ataaaatcaa catctgtgga agtgtggata ttgtccagtgc gggccatca 240
 agtgctgttt gtatgcacga cttgaagaca cgcacttac attcagtggg tgactctgtt 300
 35 ttgagaagtgc caaccagatc tctcctggaa ttcaacacaa cagtgcgtgc tgaccagcaa 360
 ggcacaaatc acagagtccaa gaggcaggatt gccttcctgt gttggaaaac cctggaaact 420
 cctgaatttg taactgcacaa agaatgtgtg cactactttt agtggaggac cactgcagcc 480
 tgcaagaaag acatatttaa agcaaataag gaggtgcatt gctatgtgtt tgatgaagag 540
 ttgaggaagc atgatctcaa tcctctgtc aagcttagtgc tgccctactt ggtggatgac 600
 40 tccgatccgg acacttctctt attcatcaat gtttgttagat acatagacac actacgagac 660
 ccaggttcac agtgcgggc ctgtcccccc ggcactgcgc cctgcctgtt aagaggacac 720
 caggcggttgc atgttggcca gccccggac ggactgaagc tggtgcgcac ggacaggctt 780
 gtcctgagtt acgtgagggaa agaggcagga aagcttagact tttgtatgg tcacagccct 840
 gcggtgacta ttacattttgtt tgccgcgtc gagcggagag agggcaccat tcccaaactc 900
 45 acagctaaat ccaactgcgc ctatgaaatt gagtggatta ctgagtatgc ctgcacacaga 960
 gattacctgg aaagtaaaac ttgttctctg agccgcgac agcaggatgt ctccatagac 1020
 ctcacaccac ttgcccagag cggagggtca tcctatattt cagatggaaa agaatattt 1080
 ttttatttga atgtctgtgg agaaaactgaa atacagttct gtaataaaaa acaagctgca 1140
 gtttgcctaaag tggaaaaagag cgataccctt caagtcaaaag cagcaggaag ataccacaat 1200
 50 cagacccctcc gatattcgca tggagaccc accttgcattt attttggagg tgatgaatgc 1260
 agctcagggt ttccagcgat gaggcgtcata aactttgcatt gcaataaaa cgcaggtaac 1320
 gatggaaag gaacttctgtt attcacaggg gaggtgtact gcacactt ctteacatgg 1380
 gacacggaaat acgcctgtgt taaggagaag gaagacctcc tctgcgggtgc caccgacggg 1440
 aagaagcgtc atgacctgtc cgcgcgttgc cgcctatgcag aaccagagca gaattggaa 1500
 55 gctgtggatg gcaagtcagac ggaaacagag aagaaggatt ttttcattaa tattttgcac 1560
 agagtgcgtc aggaaggaa ggcacgagggt tgccctggagg acgcggcagt gtgtgcagt 1620
 gataaaaaatg gaagtaaaaaa tctggaaaaa ttttttcctt ctcccatgaa agagaaagga 1680
 aacattcaac tctcttatttc agatgggtat gattgtggtc atggcaagaa aattaaaact 1740

60

65

DE 101 00 586 C 1

aatatcacac ttgtatgcaa gccagggtat ctggaaagtg caccagtgtt gagaacttct 1800
 gggaaaggcg gttgtttta tgagtttag tggcgcacag ctgcggcctg tgcgtgtct 1860
 aagacagaag gggagaactg cacggcttt gactcccagg cagggtttc ttttgactta 1920
 tcacctctca caaagaaaaa tggtgcctat aaagttgaga caaagaagta tgactttat 1980 5
 ataaatgtgt gtggcccggt gtctgtgagc ccctgtcagc cagactcagg agcctgccag 2040
 gtggaaaaaa gtgatgagaa gacttggAAC ttgggtctga gtaatgcgaa gcttcataat 2100
 tatgtatggga tgatccaact gaactacaga ggcggcacac cctataacaa tgaaagacac 2160
 acaccgagag ctacgctcat caccttctc tgtgatcgag acgcgggagt gggcttccct 2220
 gaatatcagg aagaggataa ctccacccat aacttcccggt ggtacaccag ctatgcctgc 2280
 ccggaggagc ccctggaatat cgtagtgacc gacccttcca cgctggagca gtacgacctc 2340 10
 tccagtctgg caaaatctgtt aggtggccctt ggaggaaaact ggtatgcctat ggacaactca 2400
 ggggaacatcg tcacgtggag gaaataactat attaacgtgt gtcggccctt gaattccagt 2460
 cccggctgca accgatatgc atcggcttgc cagatgaagt atgaaaaaga tcagggctcc 2520
 ttcactgaag tggttccat cagtaacttgg ggaatggcaa agacggcccc ggtgggttag 2580
 gacagcggca gcctccttctt ggaatacgtg aatgggtcggt cctgcaccc cagcgtatgc 2640 15
 agacagacca catataaccac gaggatccat ctgcgtctgtt ccagggcag gctgaacacg 2700
 caccatctt tttctctcaa ctggagatgt gtggtcaggat tcctgtggaa cacagaggct 2760
 gcctgtccca ttcaagacaac gacggataca gaccaggctt gctctataag ggatcccac 2820
 agtggatttg tgtttaatct taatccgta aacagttcgc aaggatataa cgtctctggc 2880
 attggaaaga tttttatgtt taatgtctgc ggacaaatgc ctgtctgtt gaccatctt 2940 20
 ggaaaacctg cttctggctg tgaggcagaa acccaaactg aagagctaa gaattggaaag 3000
 ccagcaaggc cagtcggat tgagaaaagc ctccagctgt ccacagaggg cttcatcact 3060
 ctgacctaca aaggccctct ctctgcctaa ggtacccgtg atgctttat cgtccgttt 3120
 gtttgcattg atgatgtttt ctccaggccc ctccaaattcc tgcatcaaga tatcgactct 3180 25
 gggcaaggga tccgaacac ttactttgag tttggaaacccg ctttggctg tgttccctt 3240
 ccagtgact gcaagtcac cgacccgtgtt ggaatgagt acgacctgac tggctctaagc 3300
 acagtcagga aacccctggac ggctgttgac acctctgtcg atggagaaaaa gaggacttcc 3360
 tatttgagcg ttgcataatcc tctcccttac attctggat gccaggcag cgcagttggg 3420
 tcttgcttag tgtcagaagg caatagctgg aatctgggtg tggcgcagat gagtcccaa 3480 30
 gccgcggcga atggatctt gaggcatcatg tatgtcaacg gtgacaagtg tggaaaccag 3540
 cgcttctcca ccaggatcac gtttgcgtgt gctccagatat cgggctcacc agcatttcag 3600
 cttcaaggatg gtttgagta cgtgtttatc tggagaactg tggaaagctg tcccttgc 3660
 agagtgaaag gggacaactg tgaggtaaaa gaccaaggc atggcaactt gtatgacctg 3720
 aagccctgg gcctcaacga caccatctg agcgtggcg aatacactta ttacttccgg 3780 35
 gtctgtggga agttttctc agacgctctgc cccacaagtg acaagtcacaa ggtggctcc 3840
 tcatgtcagg aaaagcggga accgcaggga tttccaaagat tggcaggctc cctgactcag 3900
 aagctaactt atgaaaatgg cttgttaaaa atgaaacttca cggggggggg cacttgcct 3960
 aaggtttatac agcgttccac agccatctt tttactgtg atggcaactt gtatgacctg 4020
 gtatttctaa aggagacttc agattttcc tacttgtttg agtggcgcac gcagatgcc 4080 40
 tgcccacctt togtatctgac tgaatgttca ttccaaagat gggctggcaa ctccttcgac 4140
 ctctctgtccc tgcataaggta cagtgacaac tggaaagcca tcaactggac gggggacccg 4200
 gacactacc tcatcaatgt ctgcaagttt ctggccccccg aggctggac tgagccgtgc 4260
 cctccagaag cagccgcgtg tctgtgggt ggctccaagc cctgtgaacctt cggcagggt 4320
 agggacggac ctcagtgagc agatggcata attgtctga aatacgttga tggcgactt 4380
 tgcataaggatg ggattcgaa aaagtcaacc accatccgtat tcacctgcagc cgagagccaa 4440 45
 gtgaactcca gggccatgtt catcagcgcc gtggaggact gtgagttacac ctttgcctgg 4500
 cccacagcca cagccctgtcc catgaagagc aacgagcatg atgactgccca ggtcacaac 4560
 ccaagcacag gacacctgtt tgatctgagc tccttaagtg gcagggccggg attcacagct 4620
 gcttacagcg agaagggggtt gtttacatg agcatctgtg gggagaatga aaactgccct 4680
 cctggcggtt gggctgttt tggacagacc aggattagcg tggcaaggc caacaagagg 4740 50
 ctgagatacg tgaccaggat cctgcagctg gtgtacaagg atgggtcccc ttgtccctcc 4800
 aaatccggcc tgagctataa gagtgtgatc agtttcgtgt gcaggctga ggccggccca 4860
 accaataggc ccatgctcat ctccctggac aacgagacat gcaacttctt cttcttgc 4920
 cacacccgc tggcctgcga gcaagcgacc gaatgttccg tgaggaatgg aagcttattt 4980
 gttgacttgtt ctcccttat tcatcgact ggtggatgtt aggtttatga tgagagttag 5040
 gatgtatgcct ccgataccaa ccctgatttc tacatcaata tttgtcagcc actaaatccc 5100
 atgcacgcag tggccctgtcc tgccggagcc gctgtgtcga aagtttctat tcatggcccc 5160 55

60

65

cccatagata tcggccgggt agcaggacca ccaaatactca atccaatagc aaatgagatt 5220
 tacttgaatt ttgaaagcg tactccctgc ttagcggaca agcatttcaa ctacacctcg 5280
 5 ctcatcgctt ttcaactgtaa gagagggtgt agcatggaa cgccctaagct gtttaaggacc 5340
 agcgagtgcg actttgtgtt cgaatgggg acctctgtcg tctgtccctga tgaagtgggg 5400
 atggatggct gtaccctgac agatgacgac ctcctctaca gcttcaactt gtccaggcct 5460
 tccacgagca cctttaaggt gactcggcac tcgcccacact acagcgttgg ggtgtgcacc 5520
 10 tttcagtcg gcccagaaca aggaggctgt aaggacgggg gaggctgtct gcttcaggc 5580
 accaaggggg catcccttg acggctgaa tcaatgaaaac tggattacag gcaccaggat 5640
 gaagcggctcg ttttaagttt cgtgaatggt gatcggtgcc ctccagaaac cgatgacggc 5700
 15 gtccccctgtg tcttccctt catattcaat gggaaagagct acgaggagtg catcatagag 5760
 agcaggggcga agctgtgggt tagcacaact gcgactacg acagagacca cgagtggggc 5820
 ttctgcagac actcaaacag ctaccggaca tccagcatca tatttaagtg tgatgaagat 5880
 gaggacattg ggaggccaca agtcttcagt gaagtgcgtg ggtgtatgt gacatttgag 5940
 20 tggaaaccaa aagtgtctg ccctccaaag aagttggagt gcaaattcgt ccagaaacac 6000
 aaaacctacg acctcggct gctctcctc tcaaccgggt cctggccct ggtccacaac 6060
 ggagtctcg actatataaa tctgtggccag aaaatataa aaggccccct gggctgtct 6120
 gaaaggccca gcatttgcag aaggaccaca actggtgacg tccaggctt gggactcggt 6180
 cacacccaga agctgggtgt cataggtgac aaagttgttgc tcacgtactc caaaggttat 6240
 25 ccgtgtgggt gaaataagac cgcatcctcc gtatagataat tgacctgtac aaagacgggt 6300
 ggcagacctg cattcaagag gtttgatatac gacagctgca ttactactt cagctggac 6360
 tcccgggctg cctgcggcgt gaagcctcag gaggtgcaga tggtaatgg gaccatcacc 6420
 aaccctataa atggcaagag cttcagccctc ggagatattt attttaagct gttcagagcc 6480
 tctgggaca tgaggaccaaa tggggacaac tacctgtatg agatccaaact ttcctccatc 6540
 30 acaagctcca gaaacccggc gtgctctgga gccaacatata gccaggtgaa gcccaacgat 6600
 cagcaactca gtggaaagt tggAACCTCT gacaagacca agtactacct tcaagacggc 6660
 gatctcgatg tcgtgtttgc ctcttcctct aagtgcggaa aggataagac caagtctgtt 6720
 tcttcacca tcttcctcca ctgtgaccct ctgggtggagg acggatccc cgagttcagt 6780
 cacagactg ccgactgcca gtaccccttc tcttgtaca cctcagccgt gtgtccctgt 6840
 35 ggggtgggt ttgacagcga gaatccccgg gacgacgggc agatgcacaa ggggtgtca 6900
 gaacggagcc aggcaactgg cgccgtgtc agctctgtc tgggtggcgct caccctgtgc 6960
 ctgctggccc tggtaatggca caagaaggag aggaggaaaa cagtataag taagctgacc 7020
 acttgctgtaa ggagaagttc caacgtgtcc tacaataact caaaggtaaa taagaagaa 7080
 gagacagatg agaatgaaac agatggctg atgaaagaga tccagctgcc tcctccacgg 7140
 40 cagggaaagg aaggccggaa gaacggccat attaccacca agtcagtgaa agccctcagc 7200
 tccctcgatg gggatgacca ggacagttag gatgagggtt tgaccatccc agaggtaaa 7260
 gttcaactcg gcaaggggggc tggggcagag agctccacc cagtggaaa cgacacagac 7320
 aatgccttc aggagcgtga ggacgtatgg gtggggctgg tcaggggtga gaaggcgagg 7380
 aaagggaaagt ccagctctgc acagcagaag acagtggatctt ccaccaagct ggtgccttc 7440
 catgacgaca gcgacgagga cctttacac atctga 7476

<210> 91
 <211> 4104
 45 <212> DNA
 <213> Homo sapiens

<300>
 <302> IGF1R
 50 <310> NM000875

<400> 91
 atgaagtctg gctccggagg agggtcccccg acctcgctgt gggggctctt gtttctctcc 60
 gccgcgtct cgctctggcc gacgagtggaa gaaatctgcg ggccaggcat cgacatccgc 120
 55 aacgactatc agcagctgaa ggcgcctggag aactgcacgg tgatcgagg ctacccac 180
 atccgtctca tctccaaggc cgaggactac cgacgttacc gcttccccaa gtcacggtc 240
 attaccgagt acttgctgtt gttccgagtg gctggccctcg agagcctcg agaccccttc 300
 cccaaacctca cggtcatccg cggctggaaa ctcttctaca actacggccct ggtcatcttc 360

60

65

DE 101 00 586 C 1

gagatgacca atctcaagga tattgggctt tacaacctga ggaacattac tcgggggcc 420
 atcaggattg agaaaaatgc tgacctctgt tacctctcca ctgtggactg gtcctgatc 480
 ctggatcggt tgcataataa ctacattgtg ggagaataagc ccccaaagga atgtgggac 540
 ctgtgtccag ggaccatggc ggagaagccg atgtgtgaga agaccaccaat caacaatgag 600
 tacaactacc gctgctggac cacaaaccgc tgcagaaaaa tgcggccaaagc acgtgtgg 660
 aaggccgcgt gcacccgagaa caatgagtgc tgcaccccg agtgcctggc cagctgcgc 720
 ggcctgaca acgacacccgc ctgtgttagt tgcggccact actactatgc cggtgtctgt 780
 gtgcctgcct gcccggccaa cacctacagg ttgagggtc ggcgtgtgt ggaccgtgac 840
 ttctgcgcca acatccctcag cgccgagagc agcgactccg aggggttgt gatccacgac 900
 ggcgagtgca tgcaggagtg cccctcgcc ttcatccgca acggcagcca gagcatgtac 960
 tgcacccctt gtgaaggtcc ttgcccggaa gtcgtgtgagg aagaaaagaa aacaaagacc 1020
 attgattctg ttacttctgc tcagatgctc caaggatgca ccatcttcaa gggcaatttg 1080
 ctcatcaca tccgacgggg gaataacatt gcttcagagc tggagaacatt catggggctc 1140
 atcgagggttgc tgcggccctc cgtgaagat cgcatttctc atgccttggc tcccttgc 1200
 ttcctaaaaa accttcgcct catccttagga gaggagcgc tagaaggaa ttactccctc 1260
 tacgtcctcg acaaccagaa ctgcacca ctgtggact gggaccaccc caacccgtgacc 1320
 atcaaagcag ggaaaatgtt ctttgccttc aatcccaaat tatgtgtttc cgaaatttac 1380
 cgcatggagg aagtgcacgg gactaaaggc cgcggaaagca aaggggacat aaacaccagg 1440
 aacaacgggg agagagccctc ctgtgaaaagt gacgtcctgc atttcaccc caccaccacg 1500
 tcgaagaatc gcatcatcat aacctggcac cggtaccggc cccctgacta caggatgtcc 1560
 atcagcttca cgcgttacta caaggaagca ccctttaaga atgtcacaga gtatgtggg 1620
 caggatgcct gcggctccaa cagctggaaac atgggtggacg tggacccccc gcccacaag 1680
 gacgtggagc cccgcattt actacatggg ctgaaaggccct ggactcagta cgcgtttac 1740
 gtcaaggctg tgaccctcact catgggtggag aacgaccata tccgtggggc caagagttag 1800
 atcttgata ttcgcaccaa tgcttcagtt ctttccattc ctttggacgt tcttcagca 1860
 tcgaactct ctttgcgtt aatcggttgc tggaaaccctc cctctctgc caacggcaac 1920
 ctgaggttact acattgtgc ctggcagccg cagccctcagg acggctaccc ttaccggcac 1980
 aattactgtt cccaaagacaa aatccccatc aggaagtatg cgcacccgc catcgacatt 2040
 gaggagggtca cagagaaccc caagacttagt gttgtgggt gggagaagg gcctgtgtc 2100
 gcctgccccca aaactgttgc cggaaaggc gcccggaaagg aggaggctga atacccgaa 2160
 gtcttgaga atttccctgca caactccatc ttctgtggccca gacctgaaagc gacccggaa 2220
 gatgtcatgc aagtggccaa caccaccatg tccagccgaa gacacccata acatcaccga 2280
 agatggata acaaggagag aactgtcatt tctaaccctc gacccatcattt aatccatggc 2340
 atcgatatacc acagctgca ccacgggtt gagaagctgg gtcgtggacgc 2400
 gtcttgcaaa ggactatgccc cgcagaagga gcatgtaca accggctaaa cccggggaa 2460
 gagccaaaggc ctgaaaactc catcttttta aatggccggc ttcttgcgttcatc 2520
 ttgattctaa tttatgaaat aaaatccgaa tcacaaggta aggtacgcg agaatgtgt 2580
 tccagacagg aatccatggaa gtatgggggg gccaagctaa accggctaaa cccggggaa 2700
 tacacagccc ggattcaggc cacatcttc tctgggatg ggtctgtggc agatctgtg 2760
 ttcttctatg tccaggccaa aacaggatata gaaaacttca tccatctgt catcgctgc 2820
 cccgtcgctg tccctgttgcgttgggggg ttgtgttgc tgcgtgtacgt ttccataga 2880
 aagagaaaata acacccgggtt gggggatggc gtgtgtatg cctctgtgaa cccgggtac 2940
 ttcagcgctg ctgtatgttgc tgcgtgtatg gatggggagg tggctcggtt gaaatgttcc 3000
 atgagccggg aacttggggca ggggtcggtt gggatggtct atgaaggagt tgccaagggt 3060
 gtggtaaaatg atgaacccatc aaccagatgt gccattaaaaa cagtgtacgc ggcggcaac 3120
 atgcgtgaga ggattgagtt tctcaacggaa gcttctgtga tgaaggagtt caattgtcac 3180
 catgtgtgc gattgtgtgg tgcgtgttgc caaggccagc caacactgtt catcatggaa 3240
 ctgtatgttgc gggccgtatc caaaaaggat tcccggttgc tgaggccaga aatggagaat 3300
 aatccactcc tagcacccctc aacccgtggc aagatgttgc agatggccgg agagattgca 3360
 gacggccatgg cataccctcaa cgccaaataag ttctgttgcaca gagacccgttgc tgccggaaat 3420
 tgcgtgttag ccgaagattt cacagtcataa atccggagatt ttgtgtatgac gcgagatatac 3480
 tatgagacag actattaccg gaaaggaggc aaagggtgtc tgccctgtggc ctggatgtct 3540
 cctgagttcc tcaaggatgg agtcttccacc acttacttgc acgtctggc ttccgggtc 3600
 gtcctctggg agatcgccac actggccggc cagcccttacc agggcttgc caacggacaa 3660
 gtccttcgct tcgtatgttgc gggccggccctt ctggacaaggc cagacaactg ttctgtacatg 3720
 ctgtttgttgc acatccatc gtcgtgttgc tataacccca agatggaggcc ttcccttcgt 3780

60

65

DE 101 00 586 C 1

gagatcatca gcagcatcaa agaggagatg gagcctggct tccgggaggt ctccttctac 3840
 tacagcgagg agaacaagct gcccggccg gaggagctgg acctggagcc agagaacatg 3900
 gagagcgccc cccctggaccc ctggcctcc tcgtctccc tgccactgcc cgacagacac 3960
 5 tcaggacaca aggcccgagaa cggccccggc cctgggggtgc tggtctctccg cgccagcttc 4020
 gacgagagac agccttacgc ccacatgaac gggggccgca agaacgagcg ggccttgccg 4080
 ctgccccagt cttcgacactg ctga 4104

10 <210> 92
 <211> 726
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> PDGFB
 <310> NM002608

<400> 92

20 atgaatcgct gtggggcgct cttcctgtct ctctgctgtc acctgcgtct ggtcagcgcc 60
 gagggggacc coattcccgaa ggagctttat gagatgtga gtgaccactc gatecgctcc 120
 tttgtatgatc tccaacgcct gctgcacgga gaccccgag aggaagatgg ggccgagttg 180
 gacctgaaca tgaccgcctc ccactctggaa ggcgagctgg agagcttggc tcgttggaaa 240
 aggaggctgg gttccctgac cattgtctgg cggccatga tcgcccggatg caagacgcgc 300
 25 accgagggtgt tcgagatctc cggcgccctc atagaccgc ccaacgccaa cttectggtg 360
 tggcccccgt gtgtggaggt gcagcgctgc tccggctgtc gcaacaacccg caacgtgcag 420
 tgccgccccca cccaggtgca gctgcgaccc gtccaggtga gaaagatcgaa gattgtgcgg 480
 aagaagccaa tctttaagaa ggccacgggt acgcttggaa accacctggc atgcaagtgt 540
 gagacagtgg cagctgcacg gcctgtgacc cgaagcccg ggggttccca ggagcagcga 600
 30 gccaaaacgc cccaaactcg ggtgaccatt cggacgggtc gagtccgcgg gcccccaag 660
 ggcaagcacc ggaattccaa gcacacgcata gacaagacgg cactgaagga gacccttgg 720
 gccttag 726

35 <210> 93
 <211> 1512
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> TGFbetaR1
 <310> NM004612

<400> 93

45 atggaggccgg cggtcgctgc tccgcgtccc cggtcgctcc tcctcggtct ggccggccgg 60
 gccggccgg cggcgccgt gctccgggg ggcacggcg tacagtgttt ctgcacaccc 120
 tgtacaaaag acaattttac ttgtgtgaca gatgggctct gctttgtctc tgcacagag 180
 accacagaca aagttataca caacagcatg tgcatacgatc aaattgactt aattcccgaa 240
 gataggccgt ttgtatgtgc accctcttca aaaactgggt ctgtgactac aacatattgc 300
 50 tgcaatcagg accattgcaaa taaaatagaa cttccaaacta ctgtaaagtc atcacctggc 360
 cttggccctg tgaactggc agctgtcatt gctggaccag tgcgttctgt ctgcacatc 420
 ctcatgttga tggcttatat ctgcacaaac cgcaactgtca ttcaccatcg agtgcacaaat 480
 gaagaggacc cttcatttgc tgcgcctttt atttcagagg gtaactacgtt gaaagactta 540
 atttatgata tgacaacgc aggttctggc tcagggttac cattgttttgc tcagagaaca 600
 55 attgcgagaa ctattgtttt acaagaaagc attggcaag gtcgatggg agaagtttgg 660
 agagggaaagt ggccggggaga agaagttgtt gttaaagatat ttcctcttag agaagaacgt 720
 tcgtgggtcc gtgaggcaga gatttatcaa actgtaatgt tacgtcatga aaacatccctg 780
 ggattttag cagcagacaa taaagacaat ggtacttggc ctcagctctg gttgggtgtca 840

60

65

DE 101 00 586 C 1

gattatcatg agcatggatc ccttttgat tacttaaaca gatacacagt tactgtggaa 900
 ggaatgataa aacttgcct gtccacggcg agcggcttg cccatctca catggagatt 960
 gttgttaccc aaggaaagcc agccatgtct catagagatt taaaatcaa gaatatctt 1020
 gtaaagaaga atgaaacttg ctgtattgca gacttaggac tggcagtaag acatgattca 1080
 gccacagata ccattgataat tgctccaaac cacagagtgg gaacaaaaag gtacatggcc 1140
 cctgaagttc tcgatgattc cataaatatg aaacattttg aatccttcaa acgtgctgac 1200
 atctatgcaa tgggcttagt attctggaa attgctcgac gatgttccat tgggtaatt 1260
 catgaagatt accaactgcc ttattatgtat cttgtacctt ctgaccatc agttaagaa 1320
 atgaaaaaaat ttgttgtga acagaagatg aggccaaata tcccaaacag atggcagagc 1380
 tgtgaagctt tgagagtaat ggctaaaatt atgagagaat gtttgtatgc caatggagca 1440
 gcttagctt cagcattgctg gattaagaaa acattatcgca aactcagtc acagaaggc 1500
 atcaaatgtt aa 1512 5

 <210> 94 15
 <211> 4044
 <212> DNA
 <213> Homo sapiens

 <300> 20
 <302> Flk1
 <310> AF035121

 <400> 94 25
 atgcagagca aggtgctgct ggccgtcgcc ctgtggctct gcgtggagac ccggggccccc 60
 tctgtgggtt tgcctagtgt ttctcttgat ctggccaggc tcagcataca aaaagacata 120
 cttacaatttta aggttaatac aactcttcaa attacttgc ggggacagag ggacttggac 180
 tggcttggc ccaataatca gagtggcagt gagcaagggg tggaggtgac tgagtgcage 240
 gatggctct tctgttaagac actcacaatt cccaaatgtga tcggaaatgtga cactggagcc 300
 tacaagtgtct tctaccggga aactgacttg gcctcggtca tttatgtcta ttttcaagat 360
 tacagatctc catttattgc ttctgttagt gaccaacatg gagtcgtgtt cattactgag 420
 aacaaaaaca aaactgtggt gattccatgt ctgggttcca tttcaaaatctt caacgtgtca 480
 ctttgc当地 gatacccaaa gaaagatgtt gttctgtat gtaacagaat ttctgggac 540
 agcaagaagg gctttactat tcccagctac atgatcagct atgctggcat ggtcttctgt 600
 gaagaaaaaa ttaatgtga aagttaccag tctattatgt acatagtgtt cggtttaggg 660
 tataggattt atgatgtggt tctgagtcgg tctcatggaa ttgaactata ttttggagaa 720
 aagcttgtt taatttgtac agcaagaact gaactaaatg tggggattgtt cttcaactgg 780
 gaataccctt ctgc当地 gacca agtgcataag aaacttggaa accggagacct aaaaacccag 840
 tctggagtg agatgaagaa attttggc accttaacta tagatgggtt aacccggagt 900
 gaccaaggat tgacccatcg tgcagcatcc agtgggctgtt tgaccaagaa gaacagcaca 960
 tttgtcagggt tccatgaaaaa acctttgtt gctttggaa gtggcatgg atctctgggt 1020
 gaagccacgg tgccccggc tgtcagaatc cctgc当地 gaaataaaaat taaaggggg 1080
 gaaataaaaat ggtataaaaaa tggaaataaccctt gttgatgtca atcacacaat taaaggggg 1140
 catgtactga cgattatggc agtgagtgaa agagacacag gaaattacac tgc当地 cttt 1200
 accaataccca ttccaaagga gaagcagagc catgtggctt ctctgggtt gtatgtccca 1260
 ccccaaggattt gtgagaaatc tctaatctt cctgtggatt cctaccagta cggcaccact 1320
 caaacgctga catgtacggc ctatgcatt cctcccccgcg atcacatcca ctggatttgg 1380
 cagttggagg aagagtgcgc caacggccc agccaagctg tctcagtgac aaaccatatac 1440
 ccttgc当地 aatggagaag tggaggacatc tccaggggat gaaataaaaat tgaagttat 1500
 aaaaatcaat ttgtctaat tgaaggaaaaa aacaaaactg taagtaccct ttttatccaa 1560
 gcccccaatg tgc当地 gttt gtaaaaatgtt gacccggc aaaaaatgtt gggggag 1620
 agggtgatct ccttccacgt gacccgggtt cctggaaatataa ctttgc当地 tgacatgcag 1680
 cccactgagc agggagagcgt gtctttgtgg tgcactgcag acagatctac gtttggaaac 1740
 ctcacatgtt acaagcttgg cccacagccct ctggccatcc atgtgggaga gttgcccaca 1800
 cctgtttgc当地 agaacttggaa tactctttgg aaattgtatcc accccatgtt ctctatagc 1860
 acaaataatgaca ttttgc当地 ggacccatggaa aatgtccatcc tgcaggacca aggagactat 1920
 gtctgc当地 ctcaagacag gaagaccaag aaaagacattt gacccggcag gacccatcc 1980 55

 60

65

DE 101 00 586 C 1

5 gtcctagagc gtgtggcacc cacgatcaca gaaaaacctgg agaatcagac gacaagtatt 2040
 gggaaagca tcgaagtctc atgcacggca tctggaaatc cccctccaca gatcatgtgg 2100
 tttaaagata atgagacccct tgtagaagac tcagggattt gattgaagga tggaaaccgg 2160
 aacctcacta tccgcagagt gaggaggag gaccaaggcc tctacacctg ccagccatgc 2220
 agtgttctt gctgtgcaaa agtggaggca ttttcataa tagaagggtc ccagaaaag 2280
 acgaacttgg aaatcattat tctagtaggc acggcggtga ttgccatgtt ctctggcta 2340
 cttctgtca tcatcctacg gaccgttaag cggccaatg gaggggaact gaagacaggc 2400
 tacttgtcca tcgtcatgaa tccagatgaa ctcccattgg atgaacattt tgaacgactg 2460
 ccttatgatg ccagcaaatg ggaattcccc agagaccggc tgaagctagg taaggcttt 2520
 ggcgcgtggc ctttgccca agtggattgaa gcagatgcct ttggatttga caagacagca 2580
 acttgcagga cagtagcagt caaaatgtt aaagaaggag caacacacag tgagcatcga 2640
 gctctcatgt ctgaactcaa gatcctcatt catattggc accatctcaa tgtgtcaac 2700
 cttcttaggt cctgtacccca gccaggaggc ccactcatgg tgattgtggg attctgcaaa 2760
 15 tttggaaacc tggccactta cctgaggagc aagagaaatg aattttgtccc ctacaagacc 2820
 aaaggggcac gattccgtca agggaaagac tacgttggg caatccctgt ggatctgaaa 2880
 cggcgcttgg acagcatcac cagtagccag agtcagccca gctctggatt tggaggag 2940
 aagtccctca gtgtgttaga agaagaggaa gctctgaaatc atctgtataa ggacttcctg 3000
 accttggagc atctcatctg ttacagcttc caagtggcta agggcatggg gttctggca 3060
 20 tcgcgaaagt gtatccacag ggacctggcg gcacgaaata tcctcttatac ggagaagaac 3120
 gtggttaaaa tctgtgactt tggcttggcc cggatattt ataaagatcc agattatgtc 3180
 agaaaaggag atgtcgctt ccctttgaaa tggatggccc cagaaacaat ttttgcaga 3240
 gtgtacacaa tccagagtga cgtctggct tttgtgttt tgctgtggg aatattttcc 3300
 ttaggtgctt ctccatatatcc tggggtaaaag attgtatgaaat aattttgttag gcgattgaaa 3360
 25 gaaggaacta gaatgaggggc ccctgattt actacaccag aatgtacca gaccatgctg 3420
 gactgtggc acggggagcc cagtcagaga cccacgtttt cagagttggg ggaacattt 3480
 gggaaatctt tgcagactaa tgctcagcag gatggcaag actacattgt tctccgata 3540
 tcagagactt tgacatggg agaggattt ggactcttc tgcctaccc acctgtttcc 3600
 tggatggagg aggaggaaatg atgtgacccc aattttccatt atgacaacac agcaggaatc 3660
 30 agtcagtatc tgcagaacag taagcggaaatg agccggccctg tgagtgtaaa aacattt 3720
 gatatccctg tagaagaacc agaagtaaaa gtaatccctg atgacaacca gacggacagt 3780
 ggtatggttc ttgcctcaga agagctgaaa actttggaaatc acagaacccaa attatctcca 3840
 tctttgggt gaaatgggtcc cagcaaaagc agggagtctg tggcatctga aggctcaaac 3900
 cagacaagcg gtcaccatgc cggatatcac tccgatgaca cagacaccac cgtgtactcc 3960
 35 agtgaggaag cagaactttt aaagctgata gagattggag tgcaaaccgg tagcacagcc 4020
 cagattctcc agcctgactc gggg 4044

<210> 95
 40 <211> 4017
 <212> DNA
 <213> Homo sapiens

<300>
 45 <302> Flt1
 <310> AF063657

<400> 95
 atggtcagct actggggacac cggggcctg ctgtgcgc tgctcagctg tctgtttctc 60
 50 acaggatcta gttcagggttc aaaattaaaa gatccctgaaatc tgagttttaa aggccacccag 120
 cacatcatgc aagcaggcca gacactgcat ctccaatgca ggggggaagc agcccataaa 180
 tggtcttgc ctgaaatggt gagaaggaa agcggaaaggc tgagcataac taaatctgcc 240
 tggatggaaa atggcaaaaca attctgcagt actttaccc tgaacacagc tcaagaaac 300
 55 cacactggct tctacagctg caaatatcta gctgtaccta cttcaaagaa gaaggaaaca 360
 gaatctgcaa tcttatatt tatttagtgat acaggttagac ctttcgtaga gatgtacagt 420
 gaaatcccg aaattataca catgactgaa ggaaggggc tcgtcatccc ctgccccgggtt 480
 acgtcaccta acatcactgt tactttaaaa aagttccac ttgacacttt gatccctgat 540
 ggaaaacgc taatctggta cagtagaaatg ggcttcatca tatcaaattgc aacgtacaaa 600

60

65

DE 101 00 586 C 1

gaaataggc ttctgacctg tgaagcaaca gtcataatggc atttgtataa gacaaaactat 660
 ctcacacatc gacaaaacca tacaatcata gatgtccaa taagcacacc acgcccagtc 720
 aaattactta gaggccatac tcttgcctc aattgtactg ctaccactc cttgaacacg 780
 agagttcaaa tgacctggag ttaccctgat gaaaaaaaaa agagagctc cgtaaggcga 840
 cgaattgacc aaagcaattc ccatgccaac atattctaca gtgttcttac tattgacaaa 900
 atgcagaaca aagacaaaagg actttatact tgctgttaa ggagtggacc atcattcaaa 960
 tctttaaca cctcagtgca tatatatgat aaagcattca tcactgtgaa acatcgaaaa 1020
 cagcagggtc ttgaaaaccgt agctggcaag cggcttacc ggctcttat gaaagtgaag 1080
 gcattccct cgccggaaagt tgtatggta aaagatgggt tacctgcac tgagaaatct 1140
 gtcgttatt tgactcgtgg ctactcgta attatcaagg acgttaactga agaggatgca 1200
 gggattata caatctgtc gagcataaaa cagtc当地 1260
 actctaattt tcaatgtgaa accccagatt tacgaaaagg ccgtgtcatc gtttccagac 1320
 ccggctctc accccactgg cagcagacaa atccgtactt gtaccgcata tggtatccct 1380
 caacctacaa tcaagtgggt ctggcccc tctaaccata atcattccga agcaaggtgt 1440
 gactttgtt ccaataatga agatcctt atcctggatg gttttaaaaa cctcactgcc 1400
 agaattgaga gcatcactca ggcgcattggcata ataatagaag ctgacagcaa catggaaac 1500
 accttggttg tggctgactc tagaatttct ggaatctaca gaaagaataa gatggcttagc 1560
 gttggactg tgggaaagaaa cataagctt tataatcacag atgtgccaaa tgggttcat 1620
 gttaacttgg aaaaaatgccc gacggaaagga gaggacctga aactgtctt cacagttAAC 1740
 aagttttat acagagacgt tacttggatt ttactcgga cagttataa cagaacaatg 1800
 cactacagta ttagcaagca aaaaatggcc atcactaagg agcactccat cactcttaat 1860
 cttaccatca tgaatgtttc cctgcaagat tcagggcacct atgcctgcag agccaggaat 1920
 gtatacacag gggaaagaaaat cctccagaag aaagaaatta caatcagaga tcaggaagca 1980
 ccataccctc tgccaaacact cagtgtacac acagtggca tcagcaggcc caccacttta 2040
 gactgtcatg ctaatgggtt ccccgagccct cagatcaattt gttttaaaaa caaccacaaa 2100
 atacaacaag agcctggaaat tatttttaga ccaggaagca gcacgcgttt tattgaaaga 2160
 gtcacagaag aggtatggagg ttttgcatac tgc当地 agtctaatctt gggctctgtg 2220
 gaaagtttag catacctac tggcaagga acctcgacaa tttttttttt 2280
 actctaaccat gcacctgtgt ggctgcact ctcttcttgc tecttataa ccttcttate 2340
 cgaaaaatga aaaggcttcc ttctgaaata aagactgact acctatcaat tataatggac 2400
 ccagatgaag ttcccttggaa tgagcgtgt gagcggctcc cttatgatgc cagcaagtgg 2460
 gagtttggcc gggagagact taaactggcc aaatcacttg gaagaggggc ttttggaaaa 2520
 gtgggtcaag catcagcatt tggcattaag aaatcaccta cgtgcccggac tggctgtgt 2580
 aaaatgtca aagagggggc cacggccagc gagtacaaag ctctgtatc tgagctaaaa 2640
 atcttgcacc acattggcca ccatctgaac gtgtttaacc tgctggagc ctgcaccaag 2700
 caaggaggc ctctgtatggt gattgtgaa tactgcaaat atggaaatctt ctccaaactac 2760
 ctcaagagca aacgtgactt atttttctc aacaaggatg cagcactaca catggagcct 2820
 aagaagaaaa aatggagcc aggcttggaa caaggcaaga aaccaagact agatagcgtc 2880
 accagcagcg aaagcttgc gagctccgc ttccaggaag ataaaaatgtt ggtgtatgtt 2940
 gaggaagagg aggattctga cggtttctac aaggagccca tcttacatggc agatctgatt 3000
 tcttacagtt ttcaagtggc cagaggcatg gagttctgt ctccagaaaa gtgcattcat 3060
 cgggacctgg cagcgagaaa cattcttta tctgagaaca acgtgggtgaa gattttgtat 3120
 tttggcttg cccggatata ttataagaac cccgattatg tgagaaaaagg agatactcga 3180
 ctccctctga aatggatggc ttctgaatct attttgcataa atatctacag caccaagagc 3240
 gacgtgtgtt ctacggagt attgtgtgg gaaatcttctt ccttaggtgg gtctccatc 3300
 ccaggaggatc aatggatga ggactttgc agtgcctga gggaggcat gaggatgaga 3360
 gtcctgtatc actctactcc tggaaatctat cagatcatgc tggactgctg gcacagagac 3420
 cccaaagaaaa ggc当地 agatttgc当地 taaatgtttt caagttcatg 3660
 aatgtacaac agatggtaa agactacatc ccaatcaatg taggtgattt gettcaagca 3480
 gggtttacat actcaactcc tgc当地 tcttctc gaggacttct ccataactgac agggaaatagt 3540
 cccggattttta attcaggaag ctctgtatgat gtccatgat tcaagggaaat tattttagt 3600
 agcctggaaa gaatcaaaaat ctttggaaagaa cttttaccga atgcccacccatc catgtttgtat 3720
 gactaccagg ggc当地 agccggccatc tggctggccatc tgctgaagcg ctccacctgg 3780
 actgacagca aaccccaaggc ctccgtcaag attgacttgc gagtaaccag taaaatggaa 3840
 gagtcggggc tggctgtatgt cagcaggccc agtttctgca attccagctg tggccacgtc 3900
 agcgaaggca agcgcaggtt cacctacgac cacgctgaccc tggaaagggaa aatcgctgc 3960
 tgctcccccgc ccccaactacta caactcggtg gtcctgtact ccacccaccatctag 4017

60

65

<210> 96
 <211> 3897
 <212> DNA
 <213> Homo sapiens
 5
 <300>
 <302> Flt4
 <310> XM003852
 10 <400> 96
 atgcagcggg gcgccgcgt gtgcctgcga ctgtggctct gcctggact cctggacggc 60
 ctggtgagt gctactccat gaccccccgg accttgaaca tcacggagga gtcacacgtc 120
 atcgacacccg gtgcacgcct gtccatctcc tgcaaggggac agcaccctcg 180
 tggcaggag ctcaggaggg gccagccacc ggagacaagg acagcgagga cacgggggtg 240
 gtgcgagact gcgaggcgcac agacgcagg ccctactgca aggtgttgc gctgcacgag 300
 gtacatgcca acgacacagg cagctacgtc tgcatactaca agtacatcaa ggcacgcattc 360
 gagggcacca cggccgcacag ccctactgtc ttctgtgagag actttgagca gccatttc 420
 aacaagctg acacgcttctt ggtcaacagg aaggacgcca tgggggtgc ctgtctgg 480
 20 tccatccccg gcctcaatgt cacgctgcgc tgcacaaggct cgggtctgt gccagacggg 540
 caggagggtgg tggggatgaa cggcggggc atgctcggtt ccacgcact gctgcacgat 600
 gcccgttacc tgcagtgcga gaccacctgg ggagaccagg acttccttc caaccccttc 660
 ctgggtgcaca tCACAGGCA CGAGCTCTAT GACATCCAGC tggggccag gaagtcgtg 720
 gagctgttgg tagggggagaa gctggcttgc aactgcacccg tggggctgt gtttaactca 780
 25 ggtgttacact ttgactggga ctacccaggaa aacgcaggcag agcggggtaa gttttttttt 840
 gagcgcacgtt cccaggcagac ccacacagaa ctctccagca tcctgaccat ccacaacgtc 900
 agccgcacgc accttgggttc gtatgtgtc aaggccaaca acggcatcca gcgatttcgg 960
 gagagcaccg aggttgcattgt gcataaaaat cccttcatca gctgtcgatg gctcaaagga 1020
 cccatccctgg aggccacggc aggagacgag ctggtaagc tggccgtgaa gctggcagcg 1080
 30 taccctcccg cccaggatcca gtggtaacaag gatggaaagg cactgtccgg ggcgcacagt 1140
 ccacatgccc tgggtctcaa ggaggtgaca gaggccagca caggcaccta caccctcgcc 1200
 ctgttggact ccgcgtgttgc cctgaggcgc aacatcgcc tggagctgtt ggtaatgtg 1260
 cccccccaga tacatgagaa ggaggcttcc tccccccagca tctactcgcc tCACAGCCGC 1320
 caggccctca cctgcacggc ctacgggttgc cccctgcctc tcagcatcca gtggcactgg 1380
 35 cggcccttggaa caccctgcaaa gatgttgcc cagcgtagtc tccggccggc gcagcagcaa 1440
 gacccatgc cacagtgcgc tgactggagg gcggtgaccg cgcaggatgc cgtaaacccc 1500
 atcgagagcc tggacacctg gaccgagttt gtggagggaa agaataagac tggagatgtc 1560
 ctgggtatcc agaaatgccaat cgtgtctgca atgtacaagt gttgttctc caacaagggt 1620
 ggcggatgtt acggcgctcat ctacttctat gtgaccacca tccccgacgg ctteaccatc 1680
 40 gaatccaagg catccggagga gctacttagag ggcaggccgg tgctcttgag ctgccaagcc 1740
 gacagctaca atgacgagca tctgcgttgc taccgcctca acctgtccac gctgcacgat 1800
 ggcgcacggga acccgcttctt gctcgactgc aagaacgtgc atctgttgc caccctctg 1860
 gccgcacggcc tgaggagggtt ggcaccttgg ggcgcacggc ccacgctcag cctgagatc 1920
 cccccggcgc cggccggagca cgaggcccac tatgtgtgc aagtgcaga cccggcgcagc 1980
 45 catgacaaggc actgccacaa gaagttacctg tcgtgtcagg ccctggaaacgc ccctcggtc 2040
 acgcagaact tgaccgaccc tctggtaac gtgagcgact cctggagat gcatccagcg 2100
 gtggccggag cgcacgcgc cagcatgttgc tggtaacaaag acggagggct gctggaggaa 2160
 aagtctggag tcgacttggc ggactccaac cagaagctga gcatccagcg cgtgcgcgag 2220
 gaggatgcgg gacgctatct gtgcagctgt tgcaacgcac agggctcgat caactctcc 2280
 50 gccagcggtgg ccgtggaaagg ctcccgaggat aaggcagca tggagatgtt gatccttgc 2340
 ggtaccggcg tcatcgctgt ctctttctgg gtcccttcc tcctcatott ctgttaacatg 2400
 aggaggccgg cccacgcaga catcaagacg ggctacctgt ccatcatcat ggaccccccgg 2460
 gaggtgcctc tgaggaggca atgcgaataac ctgccttacg atgcgcacca gtgggaattc 2520
 cccccggagac ggcgtgcaccc tggggagatgt ctggctacg ggccttccg gaaggtgg 2580
 55 gaagctcccg ctttccgcacat ccacaaggcgc agcagctgtt acaccgtggc cgtaaaatg 2640
 ctgaaagagg ggcgcacggc cagcgagcag cgcgcgtga tggggatgtt caagatctc 2700

60

65

DE 101 00 586 C 1

attcacatcg gcaaccaccc tAACCGTGGTC AACCTCTCG GGGCGTGAC CAAGCCGAG 2760
 ggccccctca tggtgatcgt ggagttctgc aagtacggca acctctccaa cttcctgccc 2820
 gccaaggcggg acgccttcag cccctgcgcg gagaagtcg cccgagcagcg cggacgcgttc 2880
 cgcgccatgg tggagctcgc caggctggat cggaggcggc cggggagcag cgacagggtc 2940
 ctcttcgcgc ggttctcgaa gaccgagggc ggagcggagc gggcttctcc agaccaagaa 3000
 gctgaggacc tggctcgtag cccgctgacc atgaaagatc ttgtctgcta cagttccag 3060
 gtggccagag ggatggagtt cctggcttcc cgaaagtgc tccacagaga cctggctgtc 3120
 cggAACATTC tgctgtcgga aagcgacgtg gtgaagatct gtgactttgg cttggccgg 3180
 gacatctaca aagaccccgaa ctacgtccgc aaggcagtg cccggctgccc cctgaagtgg 3240
 atggcccttg aaagcatctt cgacaagggt tacaccacgc agagtgaegt gtggccctt 3300
 ggggtgcctc tctgggagat cttctctctg gggcctccc cgtaccctgg ggtgcagatc 3360
 aatgaggagt tctggccagcg gctgagagac ggcacaagga tgagggccccc ggagctggcc 3420
 actcccgcca tacggccgcat catgctgaac tgctggtccg gagaccccaa ggcgagacct 3480
 gcatttcggc agctgggtggaa gatcctgggg gacctgctcc agggcagggg cctgcaagag 3540
 gaagaggagg tctgcattggc cccgcgcagc tctcagagct cagaagaggg cagttctcg 3600
 cagggtgtcca ccatacgccct acacatgcgc caggctgacg ctgaggacag cccgccaagc 3660
 ctgcagcggcc acagcctggc cgccaggat tatcaactggg ttgcctttcc cgggtgcctg 3720
 gccagagggg ctgagaccccg tggttctcc aggatgaaga cattttgagga attccccatg 3780
 accccaacga cctacaaaagg ctctgtggac aaccagacag acagtgggat ggtgtggcc 3840
 tcggaggagt ttgagcagat agagagcagg catagacaag aaagcggctt caggtag 3897

<210> 97
 <211> 4071
 <212> DNA
 <213> Homo sapiens

<300>
 <302> KDR
 <310> AF063658

<400> 97

atggagagca aggtgctgct ggccgtcgcc ctgtggctct gcgtggagac cccggccgccc 60
 tctgtgggtt tgcctagtgt ttctcttgat ctggcccgac tcagcataca aaaagacata 120
 cttacaatta aggctaatac aactcttcaa attacttgc ggggacagag ggacttggac 180
 tggcttggc ccaataatca gagtggcagt gagcaaaggg tggaggtgac tgagtgcagc 240
 gatggcctct tctgttaagac actcacaatt ccaaaggta tcggaaatga cactggagcc 300
 tacaagtgtc tctacggggaa aactgacttg gcctcggtca tttatgtcta tggtaaagat 360
 tacagatctc catttattgc ttctgttagt gaccaacatg gactcggtta cattacttag 420
 aacaaaaaca aaactgtggt gatccatgt ctgggtccaa ttccaaatct caacgtgtca 480
 ctttggcataa gatacccaaa aagagattt gttcctgtat gtaacagaat ttccctggac 540
 agcaagaagg gctttactat tcccagctac atgatcagct atgctggcat ggtcttctgt 600
 gaagaaaaaa ttaatgtga aagttaccag tctattatgt acatagttgt cgttgttaggg 660
 tatagattt atgatgtggt tctgagtcgg tctcatggaa ttgaactatac tggtaggaa 720
 aagcttgcct taaattgtac agcaagaact gaactaaatg tggggattga cttcaactgg 780
 gaataccctt cttcgaagca tcagcataag aaacttgtaa accgagacct aaaaaccccg 840
 tctgggagtg agatgaagaa atttttgagc accttaacta tagatgggtt aacccggagt 900
 gaccaaggat tgcacacctg tgcagcatcc agtgggctga tgaccaagaa gaacagcaca 960
 tttgtcaggg tccatggaaa acctttttgtt gctttggaa gtggcatgga atctctggtg 1020
 gaagccacgg tggggagcg tgcagaatc cctgcgaagt accttggta cccaccccca 1080
 gaaataaaaat gtataaaaaa tggaaatacccttgcgttca atcacacaat taaagccgggg 1140
 catgtactga cgattatggaa agtgagtttttggaa agagacacag gaaattacac tgcattcctt 1200
 accaatccca tttcaaaaggaa gaagcagggc catgtggctc ctctgggtt gtatgtccca 1260
 ccccagattt gtgagaaaatc tctaatctt cctgtggatt cctaccagta cggcaccact 1320
 caaacgctga catgtacggt ctatgccatt cctccccccgc atcacatcca ctggatttgg 1380
 cagttggagg aagagtgcgc caacgagccc agccaagctg tctcagtgac aaaccatatac 1440
 ctttgcgttca aatggagaag tgcgtggaggat ttcaggaggaa gaaataaaaat tgaagttat 1500

60

65

DE 101 00 586 C 1

aaaaatcaat ttgctcta at tgaaggaaaa aacaaaactg taagtaccct tgttatccaa 1560
gcggcaa atg tgcagctt gtacaatgt gaagcgtca acaaagtccg gagaggagag 1620
agggatct cttccacgt gaccagggt cctgaaatta ctttgcacc tgacatgcag 1680
5 cccactgagc aggagagcgt gtcttgtgg tcactgcag acagatctac gttgagaac 1740
ctcacatggt acaagcttgg cccacagcct ctgcaccatcc atgtgggaga gttgccaca 1800
cctgttgc a agaacttggg tactcttgg aaattgaatg ccaccatgtt ctctaatacg 1860
acaaatgaca tttgatcat ggagcttaag aatgcacccct tgcaggacca aggagactat 1920
gtctgccttgc ctc aagacag gaagaccaag aaaagacatt gcgtggtcag gcagtcaca 1980
10 gtcctagagc gtgtggcacc cacgatcaca ggaaacctgg agaatcagac gacaagtatt 2040
ggggaaagca tcaagtc atgcacggca tctggatcc cccctccaca gatcatgtgg 2100
tttaaagata atgagaccct ttagaagac tcaggatgg tattgaagga tggaaaccgg 2160
aacctcaacta tcgcagagt gaggaggag gaccaaggcc tctacacccctg ccaggcatgc 2220
agtgtcttgc gtgtgc aaaa agtggaggca ttttccataa tagaagggtc ccaggaaaag 2280
15 acgaacttgg aatcattat tctagtaggc acggcgtga ttgcccattt cttctggcta 2340
cttctgtca tcatctacg gaccgttaag cggcccaatg gagggaact gaagacaggc 2400
tacttgtcca tctgtatggc tccagatgaa ctccattgg atgaacatgg tgaacgactg 2460
ccttatgatg ccagcaatg ggaattcccc agagaccggc tgaagctagg taaggctt 2520
ggccgtggc ccttggccaa agtgattgaa gcagatgcct ttgaaattga caagacagca 2580
20 acttgcagga cagtagcgt caaaatgtt aaaaaggag caacacacag tgagcatcga 2640
gctctcatgt ctgaactcaa gatcctcatt catattggc accatctcaa tgtggtcaac 2700
cttcttaggtt cctgtaccaa gccaggagg ccactcatgg tgattgtgg aattctgcaaa 2760
tttggaaacc tgcactta cctgaggagc aagagaatg aatttgccttcc ctacaagacc 2820
aaaggggcac gattccgtca agggaaagac tacgttggag caatccctgt ggatctgaaa 2880
25 cggcgttgg acagcatcac cagtagccag agtcagccca gctctggatt tgtggaggag 2940
aagtccctca gtgtatgtaga agaagaggaa gctctgtcaag atctgtataa ggacttcctg 3000
accttggcgc atctcatctg ttacagcttc caagtggtca agggcatggta gttctggca 3060
tcgcgaaagt gtatccacag ggacctggcg gcacgaaata tcctttatc ggagaagaac 3120
gtggtaaaa tctgtgactt tggcttggcc cggatattt aaaaatgttcc agattatgtc 3180
30 agaaaaggag atgctcgcc ccccttggaaa tggatggccc cagaaacaat ttttgcaga 3240
gtgtacacaa tccagagtga cgtctggct tttgtgttt tgctgtggaa aatatttcc 3300
ttaggtgctt ctcacatcc tgggttaaag attgtgaaag aattttgttag gcgattgaaa 3360
gaaggaacta gaatggggc ccctgattt actacaccag aatgtacca gaccatgctg 3420
gactgtggc acggggagcc cagtcagaga cccacgttt cagagttgg ggaacattt 3480
35 gggaaatctct tcaagctaa tgctcagcag gatggcaag actacattgt tcttcgata 3540
tcagagactt tgagcatgga agaggattct ggactcttc tgcctaccc acctgtttcc 3600
tgtatggagg aggaggaatg atgtgacccca aatttccatt atgacaacac agcaggaatc 3660
40 agtcgtatc tgcagaacag taagcgaag agccggctg tgagtgtaaa aacatttgaa 3720
gatatccctgt tagaagaacc agaagtaaaa gtaatccag atgacaacca gacggacagt 3780
45 ggtatgttgc ttgcactcaga agagctgaaa acttggaaag acagaaccaa attatctcca 3840
tcttttgtg gaatgggtcc cagcaaaagc aggagtc tggcatctg aggtctaaac 3900
cagacaagcg gctaccagtc cggatatcac tccgatgaca cagacaccac cgttactcc 3960
agtggaggaag cagaactttt aaagctgata gagattggag tggaaaccgg tagcacagcc 4020
cagattctcc agcctgactc gggaccaca ctgagcttc ctcccttttta a 4071

45

<210> 98
<211> 1410
<212> DNA
50 <213> Homo sapiens

<300>
<302> MMP1
<310> M13509

55 <400> 98
atgcacagct ttccctccact gctgctgctg ctgttctggg gtgtgggtc tcacagcttc 60
ccagcgtactc tagaaacaca agagcaagat gtggacttag tccagaaata cctggaaaaa 120

60

65

DE 101 00 586 C 1

tactacaacc tgaagaatga tgggaggcaa gttgaaaagc ggagaaaatag tggcccaagt 180
 gttaaaaaat tgaagcaat gcaggaattc tttgggctga aagtgactgg gaaaccagat 240
 gctgaaaaccc tgaagggtat gaagcagccc agatgtggag tgccctgatgt ggctcagttt 300
 5
 gtcctcaactg agggaaaaccc tcgctggag caaacacatc tgaggtacag gattgaaaat 360
 tacacgcacatg atttgccaag agcagatgtg gaccatgccca ttgagaaagc ttcccaactc 420
 tggagtaatg tcacacccct gacattcacc aaggctctg agggtcaagc agacatcatg 480
 atatcttttgc tcaggggaga tcatcgggac aactctcctt ttgatggacc tggagggaaat 540
 ctgtcatg ctttcaacc agggccaggat attggagggg atgctcattt tgatgaaat 600
 gaaaggtgga ccaacaattt cagagagtac aacttacatc gtgttgcggc tcatgaaactc 660
 10
 ggcattctc ttggactctc ccattctact gatacgcccc ttgtatgtatcc ccttagctac 720
 accttcagtg gtatgttca gctagctcag gatgacattt atggcatcca agccatatat 780
 ggacgttccc aaaatccctgt ccagccatc ggcccacaaa ccccaaagc gtgtgacagt 840
 aagctaacctt ttgtatgtat aactacgatt cggggagaag tgatgttctt taaagacaga 900
 ttctacatgc gcacaaaatcc cttctaccccg gaagttgagc tcaatttcat ttctgttttc 960
 15
 tggccacaac tgccaaatgg gcttgaagct gcttacgaat ttggcgacag agatgaaagtc 1020
 cggttttca aaggaaataa gtactggct gttcaggac agaatgtgt acacggatac 1080
 cccaggaca tctacagctc ctttggctt cctagaactg tgaagcatat cgatgctgtc 1140
 ctttctgagg aaaacactgg aaaaacctac ttctttgtt ctaacaaata ctggaggat 1200
 gatgaatata aacgatctat ggtatccaatg tattccaaaaa tgatagcaca tgactttcct 1260
 ggaattggcc acaaaggatg tgcagtttc atgaaagatg gatTTTCTA tttcttcat 1320
 ggaacaagac aatacaaattt tgatctaaa acgaagagaa ttttgactct ccagaaagct 1380
 aatagctgt tcaactgcag gaaaaattga 1410

 25
 <210> 99
 <211> 1743
 <212> DNA
 <213> Homo sapiens

 30
 <300>
 <302> MMP10
 <310> XM006269

 <400> 99
 35
 aaagaaggta agggcagtga gaatgtatgc tcttgcattt cttgtgtgt tttgtctgcc 60
 agtctgtct gcctatccctc tgagtgggc agcaaaaagag gaggactcca acaaggatct 120
 tgcccaagaa taccttagaaa agtactacaa cctcgaaaag gatgtgaaac agtttagaag 180
 aaaggacagt aatctcattt ttaaaaaat ccaaggaatg cagaagttcc ttgggttgg 240
 ggtgacaggc aagcttagaca ctgacactt ggaggtgtat cgcaagccca ggtgtggagt 300
 40
 tcctgacgtt ggtcacttca gtcctttcc tggcatgccg aagtggagga aaacccacct 360
 tacatcacagg attgtgaatt atacaccaga tttgccaaga gatgtgttgc attctccat 420
 tgagaaagct ctgaaagtct gggaaagaggt gacttccactt acatttccca ggctgtatga 480
 aggagaggct gatataatga tctctttgc agttaaagaa catggagat tttactctt 540
 tgatggccca ggacacagtt tggctcatgc ctacccacct ggacctggc tttatggaga 600
 45
 tattcaactt gatgtatgtt aaaaatggac agaagatgca tcagggaccca atttattcct 660
 cgttgtctg catgaacttgc gccactccct gggctctt cactcagccca acactgaagc 720
 tttgtatgtac ccactctaca actcatttac agagctcgcc cagttccggc tttcgcaaga 780
 tgatgtatgtt ggcatttcagt ctctctacgg acctccccct gcctctactg aggaacccct 840
 ggtgcccaca aatctgttc ctccgggatc tgagatgcca gccaagtgtg atcctgttt 900
 50
 gtccttcgat gccatcagca ctctgagggg agaatatctg ttctttaaag acagatattt 960
 ttggcgaaga tccacttgg accctgaacc tgaatttcat ttgatTTCTG cattttggcc 1020
 ctctcttcca tcatatTTGG atgctgcata tgaagttaac agcaggagaca ccgtttttat 1080
 ttttaaagga aatgagttct gggccatcag agggaaatgag gtacaaggcag gttatccaag 1140
 aggcattccat accctgggtt ttccctccaaac cataaggaaa attgatgcag ctgtttctga 1200
 55
 caagggaaatg aagaaaacat acttcttgc agcggacaaa tactggagat ttgatgaaaa 1260
 tagccagtcc atggagcaag gttcccttag actaatagct gatgacttgc caggagttga 1320
 gcctaaggat tgcgttat tacaggcatt tggatTTTC tacttcttca gttggatcattc 1380

60

65

DE 101 00 586 C 1

5 acagttttag tttgacccca atgccaggat ggtgacacac atattaaaga gtaacagctg 1440
 gttacattgc taggcgagat aggggaaaga cagatatggg tggtttaat aaatctaata 1500
 attattcatc taatgtatta tgagccaaa tggttaattt ttccctgcatt ttctgtgact 1560
 gaagaagatg agccttcag atatctgcatt gtgtcatgaa gaatgtttctt ggaattcttc 1620
 acttgctttt gaattgcact gaacagaatt aagaaataact catgtgcaat aggtgagaga 1680
 atgtattttc atagatgtgt tattacttcc tcaataaaaaa gttttatttt gggcctgttc 1740
 ctt 1743

10 <210> 100
 <211> 1467
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> MMP11
 <310> XM009873

20 <400> 100
 atggctccgg cgcctggct ccgcagcgcg gccgcgcgcgc ccctcctgcc cccgatgctg 60
 ctgtctgc tccagccccc gcccgtctg gcccggcgc tgccgcggc cgccccaccac 120
 ctccatgcgg agaggagggg gccacagccc tggcatgcag ccctgcccag tagcccgca 180
 cctgcggccctg ccacgcggg agccccccgg cctgcccagca gcctcaggcc tcccgctgt 240
 ggcgtgcggc acccatctga tgggctgagt gcccgcaccc gacagaagag gttcgtgctt 300
 tctggcgggc gctggggagaa gacggaccc actacacgga tccttcgggtt cccatggcag 360
 ttggtgccagg agcagggtgcg gcagacgtg gcagaggccc taaaggtatg gagcgatgtg 420
 acgcactca ccttactga ggtgcacgg gggcgtctg acatcatgtat cgacttcgccc 480
 aggtactggc atggggacga cctgcgtttt gatggggctgg gggcgtctt ggccatgccc 540
 30 ttcttccca agactcaccc agaaggggat gttcacttcg actatgtatg gacactggact 600
 atcggggatg accagggcac agacctgctg caggtggcag cccatgaatt tggccacgtg 660
 ctgggctgc agcacacaac agcagccaag gcctgtatgt ccgccttca cacccttcgc 720
 taccactga gtctcagccc agatgactgc agggggcgttc aacacctata tggccagccc 780
 tggcccactg tcacctccag gaccccgacc ctgggggggg aggctgggat agacaccaat 840
 35 gagattgcac cgctggagcc agacgccccg ccagatgcct gtgaggcctc ctttgacgcg 900
 gtctccacca tccgaggcga gctcttttc ttcaaagcgg gctttgtgt ggcgcctccgt 960
 gggggccage tgcagccccg ctaccaggca ttggcctctc gcaactggca gggactgccc 1020
 agccctgtgg acgtgcctt cgaggatgcc cagggccaca ttgggttctt ccaaggtgt 1080
 cagtaactggg tttacgcgg tgaaaagcca gtccctggcc ccgcacccctt caccgagctg 1140
 40 ggcctggta gtttcccggtt ccatgctgcc ttggtctgg gttttcgagaa gaacaagatc 1200
 tacttcttcc gaggcaggga ctactggctt tttccacccca gcacccggcg tttttttttt 1260
 cccgtgcggcc gcaaggccac tgactggaga ggggtgcctt ctgagatcga cgctgccttc 1320
 caggatgctg atggctatgc ctacttcgtt cggggccggcc tttactggaa gtttggccct 1380
 gtgaagggtga aggctctggaa aggctccccc cgtctcgtgg gtcctgactt ctttggctgt 1440
 45 gcccggccctt ccaacacttt cctctgtt 1467

<210> 101
 <211> 1653
 <212> DNA
 <213> Homo sapiens

50 <300>
 <302> MMP12
 <310> XM006272

55 <400> 101
 atgaaggtttcc ttcttaataact gtcctgcag gccactgctt ctggagctct tccctgaac 60

60

65

DE 101 00 586 C 1

agctctacaa gcctggaaaa aaataatgt ctatttggc agagataactt agaaaaattt 120
 tatggcctg agataaaaca acttcaggatg acaaaaatga aatataatgtt aaacttaatg 180
 aaaaaaaaaa tccaagaaaat gcagcaccc ttgggtctga aagtgacccg gcaactggac 240
 acatctaccc tggagatgat gcacgcaccc cgtatggagg tccccatgtt ccacatcc 300 5
 agggaaaatgc cagggggggcc cgtatggagg aacacattata tcacctacag aatcaataat 360
 tacacacctg acatgaaccc tgaggatgtt gactacgcaa tccgaaagc tttccaagta 420
 tggagtaatg ttaccccctt gaaattcagc aagattaaca caggcatggc tgacatttt 480
 gtggtttttgc cccgtggagc tcatggagac ttccatgtt 10
 cttagccatg ctttggacc tggatctggc attggagggg atgcacattt cgatgaggac 600
 gaattctgga ctacacattc aggagnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 660
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 720
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 780
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 840
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 900 15
 nnnnnnnnnn nnnnnnnnnn nnnnnngagag gatccaaagg cctaatgtt ccccacatc 960
 aaatatgttg acatcaacac atttcgcctc tctgtgtatc acatcggtt cattcgtcc 1020
 ctgtatggag accccaaaaga gaaccaacgc ttgccaatc ctgacaattt agracagct 1080
 ctctgtgacc ccaatttggat ttttgcgtt gtcactaccg tggaaataa gatctttt 1140
 ttcaaaagaca gtttcttctg gctgaagggtt tctggagagac caaagaccag tgtaattta 1200 20
 atttcttcct tatggccaac cttgcacatc ggcattgaag ctgttatga aatttgaagcc 1260
 agaaatcaag tttttcttt taaagatgac aaataactgtt taatttagcaa ttttaagacca 1320
 gagccaaattt atcccaagag catacattct tttggttttc ctaactttgtt gaaaaaaattt 1380
 gatgcagctg ttttttaacc accgtttttt aggcacctact tctttgtaga taaccagtat 1440
 tggaggtatg atgaaaggag acagatgtt gaccctgggtt atcccaaactt gattaccaag 1500
 aacttccaaag gaatcgcccaaaaatgtt gcaatctttt actctaaaaaa caaataactac 1560 25
 tattttttcc aaggatctaa ccaatttggaa tatgacttcc tactccaaacg tatcaccaaa 1620
 acactgaaaaa gcaatagctg gtttgggtt tag 1653

<210> 102
 <211> 1416
 <212> DNA
 <213> Homo sapiens 30

<400> 102 35
 atgcatccag gggctctggc tgccttcctc ttcttggact ggactcattt tcggccctg 60
 cccctccca gtgggtgtga tgaagatgat ttgtctgagg aagacctcca gtttgcagag 120
 cgctacctga gatcatacta ccatccata aatctcgccg gaatcctgaa ggagaatgca 180
 gcaagctcca tgactggag gctccgagaa atgcagtctt tcttcggctt agaggtgact 240 40
 ggcaaaacttgc acgataacac cttagatgtc atggaaaaggc caagatgcgg gtttctgtat 300
 gtgggtgaat acaatgtttt ccctcgaaact cttaaatggt ccaaaatggaa tttaacctac 360
 agaattgtga attacaccccc tgatgtact cattctgaag tcgaaaaggc attcaaaaaaa 420
 gccttcaaaat tttggtcccgta tgtaacttctt ctgaatttttta ccagacttca cgatggcatt 480
 gctgacatca tgatctctt tggaaattttaag gacatggcg acttctaccctt attatggagg agatgccat 540 45
 ccctctggcc tgctggctca tgctttccctt cctggggccaa attatggagg agatgccat 600
 tttgtatgtt atgaaacactg gacaaggtagt tccaaaggctt acaacttggtt tcttgggtct 660
 ggcgcattgtt tggccactc cttaggtctt gaccactcca aggaccctgg agcactcatg 720
 ttcccttatctt acacctacac cggccaaaaggc cactttatgc ttccctgtatga cgatgtacaa 780
 gggatccaggat cttcttatgg tccaggagat gaagacccca accctaaaca tccaaaaacg 840 50
 ccagacaaat gtgacccttc ttatccctt gatgcattt ccagtctccg aggagaaaaca 900
 atgatctttt aagacagattt cttctggcgc ctgcatttcc acgagggttga tgcggagctg 960
 tttttaaacgaa aatcattttgc gccaactt cccaaaccgtt ttgatgttc atatgagcac 1020
 cttctcatg acctcatctt catcttcaga ggttagaaaat tttgggtctt taatggttat 1080
 gacattctgg aagggtatcc caaaaaaaaat tctgaactgg gtcttccaaa agaagttaaag 1140
 aagataatgtt cagctgttca ctttggggat acaggcaaga ctcttcgtt ctcaggaaac 1200 55
 caggctctggaa gatatgttca tactaaccat attatggata aagactatcc gagactaata 1260
 gaagaagact tcccaggaaat tgggtatgttca gtagatgtt tctatgagaa aatggttat 1320

60

65

DE 101 00 586 C 1

atcttatttt tcaacggacc catacagtt gaatacagca tctggagtaa ccgtattgtt 1380
cgcgcatgc cagcaaattc cattttgtgg tgttaa 1416

5 <210> 103
 <211> 1749
 <212> DNA
 <213> Homo sapiens
 10 <300>
 <302> MMP14
 <310> NM004995
 15 <400> 103
 atgtctcccg ccccaagacc cccccgttgt ctccctgctcc ccctgctcac gctccggcacc 60
 gcgcgtcgct ccctcggtctc ggcccaaaggc agcagacttca gccccaaaggc ctggctacag 120
 caaatatggct acctgcctcc cggggaccta cgtacccaca cacagcgctc accccagtca 180
 ctctcagcgg ccatcgctgc catgcagaag tttacggct tgcaagtaac aggccaaagct 240
 20 gatgcagaca ccatgaaggc catgaggcgc ccccgatgtg gtgttccaga caagtttggg 300
 gctgagatca agggccatgt tcgaaggaag cgctacgcca tccagggtct caaatggcaa 360
 catabatggaa tcactttctg catccagaat tacaccccca aggtgggcga gtatgccaca 420
 tacgaggcctt ttgcgaaggc gttccgcgtg tgggagagtg ccacaccact ggcgttccgc 480
 gaggtgcctt atgcctacat ccgtgagggc catgagaago aggccgacat catgatctc 540
 25 tttggcgagg gttccatgg cgacagcagc cccttcgtat gtgaggggcgg ctccctggcc 600
 catgcctact tcccaggccc caacattgg aagagacaccc actttgacte tgccgagct 660
 tggactgtca ggaatgagga tctgaatgg aatgcacatct tccttggtgc tgcacgag 720
 ctggccatcg ccctggggct cgagcattcc agtgaccctt cggccatcat ggcaccctt 780
 taccagtggc tggacacggc gaattttgtg ctgcccgtat atgaccggcgg gggatcccg 840
 30 caaccttatg ggggtgagtc agggttcccc accaagatgc cccctcaacc cagactacc 900
 tccggccctt ctgttctgtaa aaaaaaaa aaccccacct atggggcccaa catctgtgac 960
 gggaaactttg acaccgtggc catgctccga ggggagatgt ttgttcttcaa ggagcgctgg 1020
 ttctggcggg tgaggaataa ccaagtgtat gatggatacc caatgcccatttggccat 1080
 tggccggggc tgcctcgctc catcaacact gctacgaga ggaaggatgg caaattcgtc 1140
 35 ttcttcaaag gagacaaggc ttgggtgtt gatgaggcgt ccctggaaacc tggcttacccc 1200
 aagcacatta aggagctggg ccgaggcgt cctaccgaca agattgtatgc tgctctttc 1260
 tggatgcccata tggaaagac ctacttttc cgtggaaaaca agtactaccg tttcaacgaa 1320
 gagctcaggg cagtggatag cgatgtcccc aagaacatca aagtctggaa agggatccct 1380
 40 gagtctccca gagggtcatt catggcgac gatggatgt tcacttactt ctacaagggg 1440
 aacaataact gaaattcaa caaccagaag ctgaaaggtag aaccgggcta ccccaaggta 1500
 gccctgaggg actggatggg ctgcccattcg ggaggccggc cggatgggg gactgaggag 1560
 gagacggagg tgatcatcat tgaggtggac gaggaggcgc gccccgggtt gacgcggct 1620
 gccgtggtgc tgccctgtctc gctgctctc ctgggtgtgg cgggtggccct tgcaacttcc 1680
 45 ttcttcagac gccatggac ccccaggcga ctgctctact gccagcgatc cctgctggac 1749
 aaggctgtga

50 <210> 104
<211> 2010
<212> DNA
<213> Homo sapiens

55 <300>
<302> MMP15
<310> NM002428

60 <400> 104
atgggcagcgc acccgagcgc gccccggacgg ccggggcttggaa cggggcaqccct cctcqqqcqac 60

60

DE 101 00 586 C 1

cgggaggagg cggcgcggcc gcgactgtcg ccgctgtcc tggtgcttc gggctgcctg 120
 ggccttggcg tagccggccga agacgcggag gtccatgccg agaactggct gcccgtttat 180
 ggctacctgc ctcagccccag ccgcctatgt tccaccatgc gttccggcca gatcttggcc 240
 tcggcccttg cagagatgca ggcgttctac gggatccccag tcacccgtgt gtcgcacgaa 300
 gagaccaagg agtggatgaa gggcccccgc tgtgggtgc cagaccagt ggggtacgaa 360
 gtgaaagcca acctgcggcg gcgtcgaaag cgctacgccc tcaccggagaa gaagtggaa 420
 aaccaccatc tgaccttag catccagaac tacacggaga agttggctg gtaccactcg 480
 atggaggcgg tgcgccaggc ctccgcgtg tgggacggg ccacgccccat ggtcttccag 540
 gaggtgcctt atgaggacat ccggctgcgg cgacagaagg aggccgacat catggtactc 600
 ttgcctctg gctttcacgg cgacagctcg ccgtttatgc gcaccgggtgg ctttctggcc 660
 cacgcattt tccctggccc cggccttaggc ggggacaccc attttgacgc agatgagccc 720
 tggaccttcc ccaactgtg cctgcattggaa aacaacctt tcctgggtgg agtgcatgag 780
 ctggccacg cgctggggct gggacactt cggacttccatgc ggcgccttc 840
 taccagtggaa aggacgttga caacttcaag ctgcggcagg agcatctccg tggcatccat 900
 cagctctacg gtacccaga cggtcagcca cggcttccatgc accgttccccc cactgtgacg 960
 ccacggccgc caggccggcc tgaccacccg cggcccccggc ctcccccagcc accaccccca 1020
 ggtgggaagc cagacggccccc cccaaagccg gggcccccggc tccagccccgg agccacacag 1080
 cggcccgacc agtatggccc caacatctgc gacggggact ttgacacagt ggcacatgtt 1140
 cgcggggaga tggctgtt caagggccgc tggttctggc gatccggca caaccgcgtc 1200
 ctggacaact atccatgcc catcgccac ttctggcgtg gtctgcccgg tgacatcagt 1260
 gtcgcctacg agcggcaaga cggtcgtttt gtcttttca aagggtgaccc ctactggctc 1320
 tttcgagaag cgaaccttggc gcccggctac ccacagccgc tgaccagcta tggcctggc 1380
 atccccatgc accgcatttga cacggccatc tgggtggagc ccacaggccca caccttcttc 1440
 ttccaagagg acaggtactg ggcgttcaac gggagacac agcgtggaga ccctgggtac 1500
 ccaagccca tcagtgtctg gcagggggate cctgcctccc ctaaaaggggc cttccctgagc 1560
 aatgcgcac cttcacactt ctcttacaag ggcacccaaat actggaaat cggacaatgag 1620
 cgcctcgccg tggagccccgg ctaccccaag tccatctgc gggacttcat gggctgcccag 1680
 gagcacgtgg agccaggcccccc cgcgtggccc gacgtggccc gggcccccctt caaccccccac 1740
 ggggggtgcag agccgggggc ggacagcgca gggggcgacg tgggggatgg gatggggac 1800
 tttggggccg ggtcaacaa ggacgggggc agccgtgtgg tggtgcatgatgg ggggggggtg 1860
 gcacggacgg tgaacgttgt gatgggtctg gtgcactgc tgctgctgt ctgcgttctg 1920
 ggcctcacct acgcgttgtt gcagatgcac cgcacgggtt cgcacacgtgt cttgttttac 1980
 tgcaagcgct cgctgcagga tgggtctga 2010

 <210> 105
 <211> 1824
 <212> DNA
 <213> Homo sapiens

 <300>
 <302> MMP16
 <310> NM005941

 <400> 105
 atgatcttac tcacatttgc cactggaaaga cggttggatt tcgtgcattca ttcgggggtt 60
 tttttcttc aaaccccttgc ttggattttt tggatgttgc tgcgtacatgc tgcggaaac ggagcaatgt 120
 ttcaatgttgc aggtttggttt acaaaaatgttgc ggctacccatc caccgttgc ccccaatgttgc 180
 tcagtgttgc gctctgcaga gaccatgttgc tctgccttgc tgccttgc gatccgttgc 240
 ggcatttataca tggatggaaa agtggacacaa aacacatgttgc tggatgttgc gatccgttgc 300
 tggcggttgc tggatggaaa aacatgttgc tccaaatgttgc tggatgttgc gatccgttgc 360
 gcatgttgc gacatgttgc gacatgttgc tggatgttgc tggatgttgc gatccgttgc 420
 cccaaatgttgc gacatgttgc tggatgttgc tggatgttgc gatccgttgc 480
 aatgttgc tggatgttgc tggatgttgc tggatgttgc gatccgttgc 540
 gatgttgc tggatgttgc tggatgttgc tggatgttgc gatccgttgc 600
 ggagagggggatggatgttgc tggatgttgc tggatgttgc gatccgttgc 660
 cttttgtact cttttgtact tggatgttgc tggatgttgc tggatgttgc gatccgttgc 720

DE 101 00 586 C 1

	tttctttag cagtccatga actgggacat gctctggat tggagcatt caatgacccc 780
5	actgccatca tggctccatt ttaccgtac atggaaacag acaacttcaa actaccta 840
	gatgatttac agggcatcca gaaaatatat ggccaccccg acaagattcc tccacccata 900
	agacctctac cgacagtgc cccacaccgc tcttccctc cggctgaccc aaggaaaaat 960
	gacaggccaa aacctcccg gcctccaaacc ggcagacccct cctatcccg agccaaaccc 1020
10	aacatctgtg atgggaaactt taacactcta gctattctc gtcgtgagat gtttgggg 1080
	aaggaccagt gttttggcg agtgagaaac aacagggtga tggatggata cccaatgcaa 1140
	attacttact tctggggggg cttgcctcct agtacgtat cagttatga aaatagcgac 1200
15	ggaaatttg ttttttaa aggtaacaaa tattgggtgt tcaaggatata aactcttcaa 1260
	cctggttacc ctcatgactt gataaccctt ggaagtggaa ttccccctca tggatttgat 1320
	tcagccatcc ggtgggagga cgtcgggaaa acctatttct tcaaggagaga cagatattgg 1380
	agatatagtg aagaaatgaa aacaatggac cctggctatc ccaagccat cacagtctgg 1440
20	aaaggatcc ctgaatctcc tcaggagca ttttacaca aagaaaatgg cttaacgtat 1500
	ttctacaagaa gaaaggatgtt gttttttatc aacaaccaga tactcaaggt agaacctgga 1560
	catccaaatg ccattccctaa ggatttatc ggctgtgtat gaccaacaga cagagttaaa 1620
	gaaggacaca gcccacccaga tgatgttagac attgtcatca aactggacaa cacagccagc 1680
	actgtgaaag ccatacgat tgcattccc tgcattttgg ccttatgcct cttgttattg 1740
	gttttacactg tttccatgtt caagagaaa ggaacacccc gccacatact gtactgtaaa 1800
25	cgctctatgc aagagtgggt gtga 1824

<210> 106
 <211> 1560
 25 <212> DNA
 <213> Homo sapiens

<300>
 <302> MMP17
 30 <310> NM004141

	<400> 106
	atgcagcagt ttgggtggct ggaggccacc ggcatctgg acgaggccac cctggccctg 60
35	atgaaaaccc caccgtgttc cctgccagac ctccctgtcc tgacccaggc tcgcaggaga 120
	cggccaggctc caggccccac caagtggAAC aagaggAACC tgcgtggag ggtccggacg 180
	tcccccacggg actcaccact gggcacgac acgtgtcgat cactcatgtt ctacgcccctc 240
	aaggcttggc ggcacattgc gcccctgaac ttccacgggg tggccggcag caccggcag 300
40	atccagatcg acttctccaa ggccgaccat aacgacggct acccccttcga cggccccggc 360
	ggcacccgtt cccacgcctt cttcccccggc caccaccaca cgcgggggaa caccacttt 420
	gacgtacgc aggcctggac cttccgttcc tgcgtatggc acgggatggc cctgtttgca 480
45	gtggctgtcc acgatgttgg ccaegccatt gggtaagcc atgtggccgc tgcaactcc 540
	atcatgcggc cgtactacca gggccgggtg ggtgacccgc tgcgtacgg gtccttctac 600
	gaggacaagg tgcgtgttgc gcaatgttgc ggtgtgggg agtctgttgc tccacggcg 660
50	cagcccgagg agccctccct gtcggggag ccccccagaca accggccatc cggccggccc 720
	aggaaggacg tgccccacag atgcacgtact cacttttgcg cggccggccca gatccgggt 780
	gaagctttct ttttcaagg caagtacttc tggccgttgc cggccggaccc gcacctgggt 840
55	tccctgcagg cggcacatgc gcaccgcctt tggccggggcc tggccgttgc cctggacagg 900
	gtggacggcg ttttccatgtt caccggcgac cacaagatcg tttttttaa aggagacagg 960
	tactgggtgt tcaaggacaa taacgttagag gaaggatacc cggccggccgt ctccgacttc 1020
60	agccctccgc ctggccggcat cgacgtgtcc ttcttccctgg cccacaatgtt caggacttat 1080
	ttttttttaagg accagctgtt ctggccgttgc gatgaccaca cggggccatc ggacccggc 1140
	taccccgccc agagccccctt gtgggggggt gtcccccggc cggccatgcgc 1200
	tggccggacg gtgccttccat cttttccgtt ggccaggatc actggaaatgt gtcggatggc 1260
	gagctggagg tggccacccgg gtttttttttccacggccc gggactggct ggtgtgtgg 1320
65	gactcacagg ccgtatggatc ttttttttttggc ggcgtggacg cggccgggg gccccggc 1380
	cctccaggac aacatgacca gagccgttgc gaggacgggtt acggggctt ctcatgcacc 1440
	tctggggcat ctttttttttggccacccgg tggccgttgc catgtgtctg 1500
	ctggccgc cactgttgcacc agggccctt gggacaggcg cccaggccctt gacgtatgtt 1560

60

65

DE 101 00 586 C 1

<210> 107
<211> 1983
<212> DNA
<213> Homo sapiens

5

<300>
<302> MMP2
<310> NM004530

10

<400> 107

atggaggcg	taatggccc	gggcgcgctc	acgggtcccc	tgagggcgct	ctgttcctg	60
ggctgcctgc	tgagccacgc	cgccgcgcg	ccgtcgccca	tcatcaagtt	ccccggcgat	120
gtcgccccca	aaacggacaa	agagtggca	gtcaataacc	tgaacaccc	ctatggctgc	180
cccaaggaga	gctgcaaccc	gtttgtgctg	aaggacacac	taaagaagat	gcagaagttc	240
tttggactgc	cccacagagg	tgatctgac	cagaatacca	tcgagaccat	gcggaagcca	300
cgctgcggca	accaggatgt	ggccaactac	aacttcttc	ctcgcaagcc	caagtggac	360
aagaaccaga	tcacatacag	gatcattggc	tacacaccc	atctggaccc	agagacagt	420
gatgtatgcct	ttgctcg	cttccaagtc	tggcgatg	tgacc	gcgggttct	480
cgaatccatg	atggagaggc	agacatcatg	atcaacttt	gccgctggga	gcatggcgat	540
ggataccccct	ttgacggtaa	ggacggactc	ctgctcatg	ccttcggcccc	aggeacttgt	600
gttggggag	actcccat	tgatgacgat	gagctatgg	ccttggagaa	aggccaagt	660
gtccgtgtga	agtatggcaa	cgccatggg	gagta	agttccccc	cttggtaat	720
ggcaaggagt	acaacagctg	ca	ggccgcagcg	atggctt	ctgggtctcc	780
accacctaca	actttgagaa	ggatggcaag	tacggctt	gtccccc	agccgtt	840
accatggcg	gcaacgctga	aggacagccc	tgcaagttt	cattccg	ccaggcaca	900
tcctatgaca	gtgcacccac	tgaggccc	acggatggct	accgctgg	cgccaccact	960
gaggactacg	accgcgacaa	gaagtatggc	ttctggcc	agaccgc	gtccactgtt	1020
gggtggaaact	cagaagggtc	ccccctgtc	ttccccctca	c	caacaaat	1080
gagagctgca	coacgcgg	ccgcgtgac	ggaaagatgt	gtgtgcgac	cacagccaa	1140
tacatgacg	accgc	gggtt	cctgaccaag	gttacagc	gttcctcg	1200
gcagcccacg	agtttggca	cgccatgggg	ctggagact	cccaagac	tggggcc	1260
atggcaccca	tttacaccta	caccaagaac	ttcgtctgt	cccaggatg	catcaagg	1320
attcaggagc	tctatggggc	ctctcctgac	attgac	gcacccgg	caccccccaca	1380
ctggccc	taactcctga	gatctgaaa	caggacattt	tattt	catcgct	1440
atccgtgg	agatctt	cttcaaggac	cggtt	ggcg	gttcc	1500
gacaagccca	tggggcc	gtgtggcc	acattctgc	ctgag	ggaaa	1560
gatgcgtat	acaggcccc	acaggaggag	aaggctgt	tcttgc	aat	1620
tggatctact	cagccagc	cctggagc	gggtacccca	agccactg	cagc	1680
ctggccc	atgtccagcg	agtggat	gcctttaact	ggagcaaaa	caagaagaca	1740
tacatctt	ctggagacaa	attctggaga	tacaatgagg	tgaagaagaa	aatggat	1800
ggcttccca	actcata	agatgcctg	aatgc	ccgataac	ggatgc	1860
gtggacctgc	aggcgccgg	tcacag	ttctcaagg	gtgc	tat	1920
gagaacccaa	gtctgaagag	cgtgaagtt	ggaagcat	cctgaag	aatccgact	1980
tga						1983

45

<210> 108
<211> 1434
<212> DNA
<213> Homo sapiens

50

<300>
<302> MMP2
<310> XM006271

55

60

65

DE 101 00 586 C 1

<300>
 <302> MMP3
 <310> XM006271

5 <400> 108
 atgaagagtc ttccaatcct actgttgctg tgcgtggcag tttgctcagc ctatccattg 60
 gatggagctg caaggggtga ggacaccagc atgaacacctg ttcagaaata tctagaaaac 120
 tactacgacc tcgaaaaaga tgtgaaacag tttgttagga gaaaggacag tggcctgtt 180
 10 gttaaaaaaaaa tccgagaaat gcagaagttc cttggattgg aggtgacggg gaagctggac 240
 tccgacactc tggaggttat gcgcaagccc aggtgtggag ttcctgacgt tggtcacttc 300
 agaaccttcc otggcatccc gaagtggagg aaaacccacc ttacatacag gattgtgaat 360
 tatacaccag atttgccaaa agatgtgtt gattctgctg ttgagaaagc tctgaaagtc 420
 tggaaagagg tgactccact cacattctcc aggctgtatg aaggagagc tgatataatg 480
 15 atctctttt cagtttagaga acatggagac ttttaccctt ttgatggacc tggaaatgtt 540
 ttggccatcg cctatgccccc tgggcaggg attaatggag atgcccactt tgatgtatg 600
 gaacaatgga caaaggatad aacagggacc aatttatttc tcgttgc tcatgaaatt 660
 ggcactccc tgggtctctt tcacttcagcc aacactgaag ctttgatgtt cccactctat 720
 cactcactca cagacctgac tgggtccgc ctgtctcaag atgatataaa tggcattcag 780
 20 tccctctatg gaccccccctgactccccct gagacccccc ttgttaccac ggaacctgtc 840
 cttccagaac ctgggacgccc agccaaatgt gatctgttgc ttgccttgc tgctgtcagc 900
 actctgaggg gagaatccctt gatctttaaa gacaggact tttggcgc aaatccctcagg 960
 aagcttgaac ctgaatttgc tttgatctctt ccatcttgc catctctcc ttcaaggcgtg 1020
 gatgcccat atgaagttac tagcaaggac ctgcgtttca tttttaaagg aaatcaattc 1080
 25 tggccatca gaggaaatga ggtacgagct ggatacccaa gaggcatcca caccctagg 1140
 ttccctccaa ccgtgaggaa aatcgatgca gccatttctg ataaggaaaa gaacaaaaca 1200
 tattttttt tagaggacaa atactggaga tttgatgaga agagaaatc catggagcca 1260
 ggcttccca agcaaatacg tgaagactttt ccagggattt actcaaagat tgatgtgtt 1320
 tttgaagaat ttgggttctt ttatttctt actggatctt cacagtggaa gtttgcacca 1380
 30 aatgcaaaaga aagtgcacaca cactttgaag agtaacagct ggcttaattt ttga 1434

<210> 109
 <211> 1404
 35 <212> DNA
 <213> Homo sapiens

<300>
 <302> MMP8
 40 <310> NM002424

<400> 109
 atgttctccc tgaagacgct tccatttctg ctcttaactcc atgtgcagat ttccaaggcc 60
 ttccctgtat ctctaaaga gaaaaataca acaaactgttcc aggactactt ggaaaagttc 120
 45 tacaatttac caagcaacca gtatcgttcc acaaggaaatg atggcactaa tgtgatcgtt 180
 gaaaagctta aaaaaatgca gcgattttt gggttgaatg tgacggggaa gccaaatgag 240
 gaaactctgg acatgtatgaa aaaggccctgc tgggtgatgc ctgacagtttgg tggttttagt 300
 ttaaccccaag gaaaccccaa gtgggaacgc actaacttgc cctacaggat tcgaaactat 360
 accccacacgc tgcagggc tgaggtagaa agagctatca aggatgcctt tgaactctgg 420
 50 agtgttgcac cacctctcat ctccaccagg attcacagg gagaggcaga tatcaacatt 480
 gcttttacc aaagagatca cggtgacaat tctccatttgc atggacccaa tggaaatcctt 540
 gctcatgcct ttccaggccagg ccaaggattt ggaggagatg ctcattttgc tgccgaagaa 600
 acatggacca acaccccgaaattacaac ttgtttcttgc ttgctgctca tgaatttggc 660
 cattcttgg ggctcgctca ctccctgtac cctgggtgcct tgatgtatcc caactatgtt 720
 55 ttcaggaaaaa ccagcaacta ctcaactccctt caagatgaca tcgatggcat tcaggccatc 780
 tatggactttt caagcaaccc tatccaaacctt actggaccaa gcacacccaa accctgtgac 840
 cccaggtttga cattttgatgc tattcaccaca ctccgtggag aaatactttt cttaaagac 900
 aggtacttctt ggagaaggca tcctcagcta caaagagtcg aaatgaattt tatttctcta 960

60

65

DE 101 00 586 C 1

ttctggccat cccttccaac tggtatacag gctgcttatg aagatttga cagagacetc 1020 attttctat ttaaaggca ccaatactgg gctctgagt gctatgatat tctgcaaggt 1080 tatcccaagg atatatcaa ctatggcttc cccagcagcg tccaaagcaat tgacgcagct 1140 gttttctaca gaagtaaaaac atacttctt gtaaatgacc aattctggag atatgataac 1200 caaagacaat tcatggagcc aggttatccc aaaagcatat caggtgcctt tccaggaata 1260 gagagtaaag ttgatgcagt tttccagcaa gaacatttct tccatgtctt cagtgacca 1320 agatattacg catttgcatttctt tattgtcttag agagttacca gagttgcag aggcaataaa 1380 tggcttaact gtagatatgg ctga 1404	5
10	
<210> 110 <211> 2124 <212> DNA <213> Homo sapiens	15
<300>	
<302> MMP9 <310> XM009491	
20	
<400> 110 atgagcctct ggcagccccct ggtcctgggt ctccctgggtc tgggctgtc ctttgcgtc 60 cccagacagc gccagtcac ccttgcgtc ttccctggag acctgagaac caatctcacc 120 gacaggcagc tggcagagga atacctgtac cgctatgggt acactcggtt ggcagagatg 180 cgtggagagt cgaatctct ggggcctgcg ctgtgcgttc tccagaagca actgtccctg 240 cccgagacccg gttagctggta taggcacacg ctgaaggcca tgcgaacccc acgggtcg 300 gtcccgagacc tggcagattt ccaaaccctt gagggcgacc tcaagtggca ccaccacaac 360 atcacattt ggatccaaaaa ctactcgaa gacttgcgc gggcggtgt tgacgacgcc 420 tttgcggcg ctttcgcact gtggagcgcg gtgacgcgc tcacccctac tgcgtgtac 480 agccgggacg cagacatcgat cttccatgtt ggtgtcgggg agcacggaga cgggtateccc 540 ttcgcacggga aggacgggct cctggcacac gccttcctc ctggccccc cattcaggga 600 gacgcccatt tcgacgatga cgagttgtgg tccctggca agggcgctgt ggttccact 660 cggttggaa acgcagatgg cgccgcctgc cacttccct tcacccctc gggccgcctcc 720 tactctgcct gcaccaccga cggtgcgtcc gacggcttgc cctgggtcag taccacggcc 780 aactacgaca ccgcacgaccc gtttgcgttc tgccccagcg agagactcta caccaggac 840 ggcaatgcgt atggaaacc ctgcccattt ccattcatct tccaaggcca atcctactcc 900 gcctgcacca cggacggctcg ctccgcacggc taccgttgt gcccaccac cgccaactac 960 gaccgggaca agcttctgg cttctgcctt acccgagctg actcgacgg gatggggggc 1020 aactcggcg gggagctgtg cgttccatccc ttcaactttcc tgggtaaagg gtactcgacc 1080 tgttaccacgg agggccggcg agatggggc cttctgggtcg ctaccaccc tcaccatgtac 1140 agcgacaaaga atggggctt ctggccggc caaggatataa gtttgcgtt cgtggccggc 1200 catgagttcg gcccacggct gggcttagat catccctcgt tgccggaggc gtcatgtac 1260 cctatgtacc gtttactgt gggggccccc ttgcataagg acgacgtgaa tggcatccgg 1320 cacctctatg ttcaactggcc tgaacctgag ccacggcctc caaccaccc cacaccgcag 1380 cccacggctc ccccgacggc ctggccacc ggaccccccctc ctgtccaccc ctcagagcgc 1440 cccacagctg gccccacagg tccccctca gctggccccc caggtccccc cactgtggc 1500 ccttctacgg caactactgt gcctttgatg ccgtggacg atgcctgcaa cgtgaacatc 1560 ttcgacgcca tgcggagat tgggaaccag ctgtatttgt tcaaggatgg gaagtactgg 1620 cgatttctcg agggcagggg gagccggccg cagggccctt cccttgcgtc cgacaagtgg 1680 cccgcgtgc cccgcacagct ggactcggtc ttgaggagc ggctctcoaa gaagcttttc 1740 ttcttctcg ggcggccagggt gtgggtgtac acaggcgcgt cggtgcgttccc gggaggcgt 1800 ctggacaaaggc tggccctggg agccgcacgtg gcccagggtga cggggccctt ccggagtggc 1860 aggggaaaga tgcgtgtt cagcggccgg cgccctctggaa gtttgcgtt gaaaggcgcag 1920 atggtgatc cccggagcgc cagcgagggtg gaccggatgt tccccgggtt gccttggac 1980 acgcacgcacg tttccagta ccgagagaaa gcctatttct gccaggacccg ctactgtgg 2040 cgctgtggatc cccggaggtt gttgaaccag gtggaccaag tgggtactgt gacctatgac 2100 atcctgcagt gcccctgagga ctatg 2124	35
40	
45	
50	
55	
60	
65	

5 <210> 111
 <211> 2019
 <212> DNA
 <213> Homo sapiens

 10 <300>
 <302> PKC alpha
 <310> NM002737

 15 <400> 111
 atggctgacg tttcccgaa caacgactcc acggcgtctc aggacgtggc caaccgcttc 60
 gcccgcggaaag gggcgctgaa gcagaagaac gtgcacgagg tgaaggacca caaattcatc 120
 ggcgcgttct tcaaggcggcc caccttctgc agccactgca cccgacttcat ctgggggttt 180
 gggaaacaag gcttccatgt ccaagtttgc tggtttgtgg tccacaagag gtgcctgaa 240
 ttgttactt tttttgtcc ggggtccggat aaggggacccg acactgtga ccccgaggagc 300
 aagcacaagt tcaaaaatcca cacttaacggaa agccccaccc tctgcgtatca ctgtgggtca 360
 ctgctctatg gacttatcca tcaaggatg aaatgtaca cctgcgtat gaacgttac 420
 aagcaatgcg tcatcaatgt ccccgccctc tgccgaatgg atcacactga gaagaggggg 480
 20 cggttttacc taaaggctga gggtgctgtat gaaaagctcc atgtcacatgt acggatgtca 540
 aaaaatctaa tccctatggaa tccaaacggg ctttcagatc cttatgtgaa gctgaaaactt 600
 attccgtatc ccaagaatga aagcaagcaa aaaacaaaaa ccatccgctc cacactaaat 660
 ccgcagtggaa atgagtccct tacattcaaa ttgaaacctt cagacaaaga ccgacgactg 720
 tctgttagaa tctggggactg ggatcgaaaca acaaggaatg acttcatggg atccctttcc 780
 25 ttggaggtt cggagctgtat gaagatggcg gccagtgatc ggtacaagtt gcttaaccaa 840
 gaagaaggtg agtactacaa cgtaccatt ccggaaagggg acggagaagg aaacatggaa 900
 ctcaggcaga aattcgagaa agccaaactt ggcctctgtg gcaacaaagt catcagtccc 960
 tctgaagaca gggaaacaacc ttccaaacaaac cttgaccggat tgaaactcacc 1020
 ttccctatggat ttggggaaaa ggggaggttt gggaaagggtga tgcttgccga caggaagggc 1080
 30 acagaagaac tttatgtcaat caaaatctg aagaaggatg ttgtgattca ggatgatgac 1140
 gtggagtgca ccatggataa aaagcgagtc ttggccctgc ttgacaaaacc cccgttctt 1200
 acgcagctgc acttcctgtt ccagacatgt gatccgtgt acttcgtatcat ggaatatgtc 1260
 aacgggtgggg acctcatgtat ccacattcag caagtagggaa aatttaaaggaa accacaagca 1320
 gtattctatg cggcagagat ttccatcgaa ttgttcttc ttcataaaaag aggaatcatt 1380
 35 tataggatc tgaagtttgc taacgtatc ttggattcag gactttggaa tttgtcaagga acacatgtat gatggatca 1440
 actccagatt atatcgcccc agagataatc gcttacatc gtcgttccctt ggccttctt 1500
 ttgtggccctt atggcgctctt ttgttatgaa atgttgcgg gtcgttccctt 1560
 gaagatggaaag acggatctt tcacgttcatc atggaggatc acgttccatc 1620
 40 ttgtccaagg aggctgtttc tatctgcataa ggactgtatgaa cccaaaccccccc agccaagccgg 1740
 ctggctgtg ggccttgagggg ggagaggac gtgagagagc atgccttctt ccggaggatc 1800
 gactggaaaa aactggagaa cagggagatc cagccacat tcaagcccaa agtgtgtggc 1860
 aaaggagcag agaactttgtatc caagtcttc acacgaggac agccctgtt aacaccaccc 1920
 gatcagctgg ttattgtctaa catagaccatc tctgttttgc aagggttctc gtatgtcaac 1980
 45 ccccaatggat tgcacccat cttacagatc gcagttatgaa 2019

50 <210> 112
 <211> 2022
 <212> DNA
 <213> Homo sapiens

 55 <300>
 <302> PKC beta
 <310> X07109

 <400> 112

60

65

DE 101 00 586 C 1

atggctgacc cggctgcggg gccgcccgg agcgagggcg aggagagcac cgtgcgttc 60		
gccecaag gcgcctccg gcagaagaac gtgcatttgc tcaagaacca caaattcacc 120		
gcccgttct tcaaggcgc caccttctgc accactgca cgcacttcat ctggggcttc 180		
gggaagcagg gattccagtgc ccaagttgc tgctttgtgg tgcacaagcg gtgcctgaa 240		5
tttgtcacat tctcctgccc tggcgctgac aagggtccag cctccatgt ccccgccgc 300		
aaacacaagt ttaagatcca cacgtactcc agccccacgt tttgtgacca ctgtgggtca 360		
ctgctgtatg gactcatcca ccagggatg aaatgtgaca cctgcatgt gaatgtgcac 420		
aagcgtcg tgatgaatgt tcccagctg tggtgcacgg accacacgg ggcgcgcggc 480		
cgcatctaca tccaggccca catcgacagg gacgtcctca ttgtcctcg aagagatgct 540		10
aaaaaccttg tacctatgga ccccaatggc ctgtcagatc cctacgtaaa actgaaactg 600		
atccccatc caaaaagtga gagcaaacag aagaccaaaa ccatcaaatg ctcctcaac 660		
cctgagtggaa atgagacatt tagatttcag ctgaaagaat cggacaaga cagaagactg 720		
tcagtagaga ttggggattt ggatttgacc agcaggaatg acttcatggg atctttgtcc 780		
tttgggattt ctgaacttca gaaggccagt gttgtatggct ggttaagtt actgagccag 840		15
gaggaaggcg agtacttca tgcgcctgtg ccaccagaag gaagtggagc caatgaagaa 900		
ctgcggcaga aatttggagag ggccaagatc agtcaggggaa ccaagggtccc ggaagaaaag 960		
acgaccaca ctgtctccaa atttgacaac aatggcaaca gagaccggat gaaactgacc 1020		
gattttact tcctaattgt gctggggaaa ggcagcttt gcaagggtcat gctttcagaa 1080		
cgaaaaaggca cagatgagct ctatgcgtg aagatccgt aagaaggacgt tgcgtatccaa 1140		20
gatgtgacg tggagtgcac tatggggag aagcggtgtg tggccctgccc tggggccgg 1200		
cccttcctga cccagctcca ctccctgttc cagaccatgg accgcctgtt ctttgcgt 1260		
gagtaatgtc atggggggca cctcatgtat cacatccagc aagtcggccg gttcaaggag 1320		
ccccatgtcg tattttacgc tgcagaaatt gccatcggtc tggccctt acagagtaag 1380		
ggcattcattt accgtgaccc aaaacttgac aacgtgtatc tgcattctga gggacacatc 1440		
aagattggcg attttggcat gtgtaaaggaa aacatctggg atgggggtgac aaccaagaca 1500		
ttctgtggca ctccagacta catgcccccc gagataattt ctatcagcc ctatgggaag 1560		
tccgtggattt ggtggggcatt tggagtccctg ctgtatgaaa tggggctgg gcagggcacc 1620		
tttgaagggg aggatgaaga tgaactcttc caatccatca tggaaacacaa cgtagcctat 1680		
cccaagtcta tgcctcaaggaa agctgtggcc atctgcctaa ggctgtatgac caaacaccca 1740		30
ggcaaacgtc tgggttggc acctgaaggc gaacgtata tcaaagagca tgcatttttc 1800		
cggtatattt attggggagaa acttgaacgc aaagagatcc agccccctta taagccaaaa 1860		
gcttggggc gaaatgctga aaacttcgac cgattttca cccggccatcc accagtcata 1920		
acaccccccg accaggaatg catcaggaat attgaccaat cagaattcga aggattttcc 1980		
tttgttaact ctgaattttt aaaacccgaa gtcaagagct aa 2022		35

<210> 113
<211> 2031
<212> DNA
<213> Homo sapiens

40

<300>
<302> PKC delta
<310> NM006254

45

<400> 113		
atggcgccgt tcctgcgcatt cgccttcaac tcctatgagc tgggctccct gcaggccgag 60		
gacgaggcga accagccctt ctgtgcgtg aagatgaagg aggcgcgtcag cacagagcgt 120		
gggaaaaacac tggtgcagaa gaaggccacc atgtatccgt agtggaaatc gacgttcgtat 180		50
gccccacatct atgagggggcg cgtcatccatc attgtgtctaa tgcggggcagc agaggagcca 240		
gtgtctgagg tggccgtgg tggccgtgg ctggccgagc gctgcaagaa gaacaatggc 300		
aaggctgagt tggccgtgg cctgcgcctt caggccaaagg tggatgtgtc tggccgtat 360		
ttccctggagg acgtggattt caaacaatct atgcgcgtt aggacgggc caagttccca 420		
acgtatgaaacc gccggggcacc catcaaacag gccaaatcc actacatcaa gaaccatgag 480		
tttatcgcca ctttctttgg gcaaccacc ttctgttctg tggccaaaga ctttgcgtt 540		55
ggcctcaaca agcaaggcta caaatgcagg caatgtaacg ctgccttcca caagaaatgc 600		
atcgacaaga tcatcgccag atgcactggc accgcggcca acagccggga cactatattc 660		

60

65

DE 101 00 586 C 1

cagaaaagaac gtttcaacat cgacatgccg caccgttca aggttcacaa ctacatgagc 720
 cccaccttct gtgaccactg cggcagcctg ctctggggac tggtaagagc gggattaaag 780
 tgtgaagact gcggcatgaa tgtcaccat aaatgcggg agaagggtggc caacctctgc 840
 5 ggcataacc agaagcttt ggctgaggcc ttgaaccaag tcacccagag agctccccgg 900
 agatccagact cagccctctc agagctgtt gggatatact agggtttgcg gaagaagacc 960
 ggagttgtcg gggaggacat gcaagacaac agtgggacct acggcaagat ctgggaggc 1020
 agcagcaagt gcaacatcaa caactcatac ttcccacaagg ttctgggca aggagcttc 1080
 gggaaagggtgc tgcttggaga gctgaaggc agaggagagt actctgcctt caaggccctc 1140
 10 aagaaggatg tggtcctgtat cgacgacgc gttggagtgc ccattgggtga gaagcgggtg 1200
 ctgacacttg cccagagaaa tcccttctc acccaccta tctgcaccc tccagaccaag 1260
 gaccacctgt tctttgtat ggagttcctc aacggggggg acctgatgtt ccacatccag 1320
 gacaaaaggcc gctttgaact ctaccgtgc acgtttatg ccgtgagat aatgtgtgga 1380
 15 ctgcaggttc tacacagcaa gggcatcatt tacagggacc tcaaactgga caatgtgtcg 1440
 ttggccggg atggccacat caagatgac gactttggg tggtaaaga gaacatattc 1500
 ggggagagcc gggccagcac ctctgcggc acccctgact atatgcgcccc tgagatccct 1560
 caggccctga agtacacatt ctctgtggac tggatgttcc tctgtacgag 1620
 atgctcattt gccagtcctt cttccatgtt gatgtgagg atgaacttcc cgagtccatc 1680
 cgtgtggaca cggccacatta tccccctgg atccacaagg agtccaagg catccctggag 1740
 20 aagctctttg aaagggaacc aaccaagagg ctggaaatga cggggaaacat caaaatccac 1800
 ccctcttca agaccataaa ctggactctg ctggaaaagc ggaggttgg gccacccttc 1860
 aggcccaaag tgaagtcacc cagagactac agtaactttg accaggagtt cctgaacgag 1920
 aaggcgcgc ttcctctacag cgacaagaac ctcatcgact ccatggacca gtctgcattc 1980
 gctggcttct ctttgtgaa ccccaaattt gggcacctcc tggaaagattt a 2031
 25
 <210> 114
 <211> 2049
 <212> DNA
 30 <213> Homo sapiens
 <300>
 <302> PKC eta
 <310> NM006255
 35 <400> 114
 atgtcgtctg gcaccatgaa gttcaatggc tatttgggg tccgcattgg tgaggcagt 60
 gggctgcagc ccacccctgt gtccctgcgc cactcgctt tcaagaaggcc accacagctg 120
 ctggaccctt atctgacggt gagcgtggac cagggtgcgg tggccagac cagcaccaag 180
 40 cagaagacca acaaaccac gtacacgag gagtttgcg taaacgtcac cgacggccgc 240
 cacctcgagt tggccgtt ccacgagacc cccctgggtt acgacttctg gccaactgc 300
 accctcgagt tccaggagct cgtcgccacg accggccctt cggcacaccc cgagggttgg 360
 gtggatctcg agccagaggg gaaagtattt tggtaataa cccttaccgg gagttcact 420
 gaagctactt tccagagaga ccggatctttaa aacattttt ccaggaagcg ccaaagggt 480
 45 atgcgaaggc gagtccacca gatcaatggc cacaaggatc tggccacgt tctgaggcag 540
 cccacctact gtctcactg cagggagttt atctggggat tggggatggaa acagggttat 600
 cagtggcaag tggcacctgt tggatcttccat aaacgctgc atcatctaat tggatcagcc 660
 tggatcttgc aaaacaatat taacaaatgt gattcaaaga ttgcagaaca gaggttgggg 720
 atcaacatcc cacacaagtt cagcatccac aactacaaag tgccaaacatt ctgcgtac 780
 50 tggctcac tggatctgggg aataatgcgca aaggacttca agtgtaaaat atgtaaaatg 840
 aatgtgcata ttcgatgtca agcgaacgtg gcccctaact tggggatggaa tgggttggaa 900
 cttggcaaga ccctggcagg gatgggttca caccggaa atatttctcc aacctcgaaa 960
 ctcgttcca gatcgaccctt aagacgacag gggaaaggaga gcaagaaaga agggaaatggg 1020
 attgggttta attcttccaa ccgacttggt atcgacaact ttgatgttcat ccgagtttg 1080
 55 gggaaagggg gttttggaa ggtgtatgtt gcaagagttt aagaaaacagg agacccat 1140
 gctgtgaagg tgctgaagaa ggacgtgatt ctgtggatg atgtgtgga atgcaccatg 1200
 accgagaaaa ggatctgtc tctggccgc aatcaccctt ccctcactca gttgttctgc 1260
 tgcttcaga ccccgatcg tctgtttttt gtgtatggat ttgtgaatgg ggggtgacttg 1320

60

65

DE 101 00 586 C 1

atgttccaca ttcagaagtc tcgtcgaaaa gatgaagcac gagctcgctt ctatgctgca 1380 gaaatcattt cggctctcat gttectccat gataaaggaa tcatctatag agatctgaaa 1440 ctggacaaatg tcctgttggc ccacgagggt cactgtaaac tgccagactt cgaaatgtgc 1500 aaggagggga tttgaatgg tgcaccacg gccacattct tgccagactc agactatata 1560 gctccagaga tcctccagga aatgctgtac gggctgcag tagactgtg ggcaatggc 1620 gtgttgcct atgagatgt ctgtggcac ggcctttt aggccagagaa tgaagatgac 1680 ctcttgagg ccatactgaa tcatgggtg gtcacccta cctggctcca tgaagatgcc 1740 acaggatcc taaaatctt catgaccaag aaccccccacca tgccgttgg cagccgtact 1800 caggaggcg agcaccatc cttgagacat ccttttttta agggaaatcga ctggcccg 1860 ctgaaccatc gccaaataga accgccttcc agaccccgaaa tcaaattccg agaagatgtc 1920 agtaatttt accctgactt cataaaggaa gagccagtt taactccaaat tgatgaggaa 1980 catctccaa tgattaacca ggatgagttt agaaactttt cctatgtgtc tccagaattt 2040 caaccatag 2049	5
	15
<210> 115 <211> 948 <212> DNA <213> Homo sapiens	20
<300> <302> PKC epsilon <310> XM002370	
<400> 115 atgtggcag aactcaaggg caaagatgaa gtatatgctg tgaaggctt aaagaaggac 60 gtcatccctc agatgtatgc cgtggactgc acaatgacag agaagaggat tttggctctg 120 gcacgaaac acccgatcc tacccaaact tactgtctgc tccagacccaa ggaccgcctc 180 tttttcgtca tggaaatgtt aaatgggtgg gactcgtatgtt tcacatggc cgcgtcccg 240 aaattcgacg agcctcggtc acgggttatc gctcgaggatc ttccatcgcc cctcatgttc 300 ctccaccagc atggagtcat ctacaggat ttggaaactgg acaacatctt tctggatgca 360 gaaggtcaact gcaagctggc tgacttcggg atgtgcaagg aagggttcatc gaatgggtgt 420 acgaccacca cgttctgtgg gactcctgac tacatagtc ctggatccgc gcaggagttt 480 gagttatggcc cttccgtggc ctgggtggcc ctgggggtgc tgatgtacga gatgtggct 540 ggacagccctc ctttgaggc cgacaatgag gacgacatat ttgagtcctt cctccatgac 600 gacgtgtgtt acccagtctg gctcagaag gagctgtca gcatcttgcgaa agcttcatg 660 acgaagaatc cccacaagcg cttgggtgtt gtggcatgc agaatggcga ggacccatc 720 aagcagcacc catttttcaa agagatttgc tgggtgtcc tggagcagaa gaagatcaag 780 ccacccttca aaccacgcatt taaaacccaa agagacgtca ataattttga ccaagacttt 840 acccggaaag agccggtaact cacccttgc gaccaagca ttgtaaagca gatcaaccag 900 gaggaattca aaggtttctc ctactttgtt gaagacctga tgccctga 948	35
<210> 116 <211> 1764 <212> DNA <213> Homo sapiens	45
<300> <302> PKC iota <310> NM002740	50
<400> 116 atgtccccaca cggtcgcagg cggcgccagc ggggaccatt cccaccagggt ccgggtgaaa 60 gcctactacc gcggggatatt catgataaaca catttgcac cttccatctc ctttgaggc 120 ctttgcaatg agttcgaga catgtgttct tttgacaacg aacagctttt caccatgaaa 180 tggatagatg agaaggaga cccgtgtaca gatcatctc agttggagtt agaagaagcc 240	55
	60

65

DE 101 00 586 C 1

	ttagagactt atgagctaaa	caaggattct	gaactcttga	ttcatgttgtt	cccttgtgtt	300
	ccagaacgtc ctgggatgcc	ttgtccagga	gaagataaat	ccatctaccg	tagagggtca	360
	cggcgctgga gaaagcttta	ttgtcccaat	ggccacactt	tccaagccaa	gcgttcaac	420
5	aggcgtgctc actgtccat	ctgcacagac	cgaatatggg	gacttggacg	ccaaggatat	480
	aagtgcata actgcaact	cttgggttcat	aagaagtgcc	ataaaactctgt	cacaattgaa	540
	tgtggccggc attctttgcc	acaggaacca	gtgatgccc	tggatca	atccatgcat	600
	tctgaccatg cacagacagt	aattccatat	aatccttcaa	gtcatgagag	tttggatcaa	660
	gttggtgaag aaaaagaggg	aatgaacacc	agggaaagtg	gcaaagcttc	atccagtcta	720
10	ggtcctcagg attttgattt	gctccggta	ataggaagag	gaagtttatgc	caaagtactg	780
	ttgggtcgat taaaaaaaaac	agatcgatt	tatgcaatga	aagttgtgaa	aaaagagctt	840
	gttaatgatg atgaggatat	tgattggta	cagacagaga	agcatgttgtt	tgagcaggca	900
	tccaaatcatc ctttccttgc	tgggctgcat	tcttgcattt	agacagaaaag	cagattgttc	960
15	ttttttatag agtatgtaaa	tggaggagac	ctaatttttc	atatgcacgc	acaaaagaaaa	1020
	cttcctgaag aacatggccag	attttactct	gcagaaatca	gtcttagcatt	aaattatctt	1080
	catgagcgag ggataatttt	tagagatttg	aaactggaca	atgtattact	ggactctgaa	1140
	ggccacatta aactca	ctacggcatg	tgttggaaag	gattacggcc	aggagataca	1200
	accagcaact tctgtggta	tcctaattac	atgtctctg	aaattttaaag	aggagaagat	1260
20	tatgtttca gtgttgactg	gtgggtctt	ggagtgtca	tgtttgagat	gatggcagga	1320
	aggcttccat ttgatattgt	tggggctcc	gataaccctg	accagaacac	agaggattat	1380
	ctcttccaag ttattttgg	aaaacaaaatt	cgcataccac	gttctctgtc	tgtaaaagct	1440
	gcaagtgttc tgaagagttt	tcttaataag	gacccttaagg	aaatggatgg	ttgtctatcc	1500
25	caaacaggat ttgctgatat	tcagggcac	ccgttcttcc	gaaatgttga	ttgggatatg	1560
	atggagcaaa aacagggtgg	acctccctt	aaacccaaata	tttctgggaa	atttggtttg	1620
	gacaactttg attctcagtt	tactaatgaa	cctgtccagc	tcactccaga	tgacgtgac	1680
	attgtgagga agattgtatca	gtctgaattt	gaaggttttg	agtatataaa	tcctcttttg	1740
	atgtctgcag aagaatgtgt	ctga				1764

30 <210> 117
<211> 2451
<212> DNA
<213> *Homo sapiens*

35 <300>
<302> PKC mu
<310> XM007234

60

65

DE 101 00 586 C 1

gtaaaaactt	cagctttaat	tcctaatggg	gccaaatcc	attgtttcg	aatcaactacg	1200
gc当地atgt	tgtattatgt	gggagaaaat	gtggcaatc	cttccagccc	atcaccaat	1260
aacagtgtt	tcaccagtgg	cgttggtgc	gatgtggcca	ggatgtggga	gatagccatc	1320
cagcatgccc	ttatggccgt	cattccaaag	ggctccccc	tgggtacagg	aaccacttg	1380
cacagagata	tctctgttag	tatccatgt	tccaaattgcc	agattcaaga	aatgtggac	1440
atcagcacag	tatatcagat	ttttcctgtat	gaagtaactgg	gttctggaca	gtttggaaatt	1500
gtttatggag	gaaaacatcg	taaaaacagg	agagatgttag	ctattaaaat	cattgacaaa	1560
ttacgattt	caacaaaaca	agaaaagccag	cttcgtaatg	aggttgcata	tctacagaac	1620
cttcatcacc	ctgggttgt	aaatttggag	tgtattttg	agacgcctga	aagagtgtt	1680
gttggatgtt	aaaaactccaa	tggagacatg	ctggaaatga	tcttgtcaag	tggaaaaggc	1740
agggtgcac	agcacataaac	gaagttttta	attactcaga	tactcgtggc	tttgcggcac	1800
cttcatttt	aaaaatatcg	tcaactgtgac	ctcaaaaccag	aaaatgtgtt	gctagcccta	1860
gctgatcctt	ttcccttaggt	gaaaactttgt	gattttgggtt	ttggccggat	cattggagag	1920
aagtcttcc	ggaggtcagt	gggtgggtacc	ccccgttacc	tggtctctga	gggtcttaagg	1980
aacaagggt	acaatcgctc	tctagacatg	tgggtctgtt	gggtcatcat	ctatgttaagc	2040
ctaagcggca	cattccatt	taatgaagat	gaagacatac	acgaccaaaat	tcagaatgca	2100
gctttcatgt	atccacaaaa	ttccctggaaag	gaaatatctc	atgaagccat	tgatcttata	2160
aacaatttgc	tgcaagtaaa	aatgagaaaag	cgctacagt	tgataagac	cttgaggccac	2220
ccttggctac	aggactatca	gacctggta	gatttgcag	agctggatg	caaaatcggg	2280
gagcgttaca	tcaccatga	aagtgtatgc	ctgagggtgg	agaagtatgc	aggcgagcag	2340
gggctgcagt	acccacacaca	cctgtatcaat	ccaagtgtca	gccacagtga	cactccttgag	2400
actgaagaaa	cagaaatgaa	agccctcggt	gagcgtgtca	gcatacctatg	a	2451

<210> 118
<211> 2673
<212> DNA
<213> *Homo sapiens*

<300>
<302> PKC nu
<310> NM005813

<400> 118
 atgtctgcaa ataattcccc tccatcagcc cagaagtctg tattaccac agctattcct 60
 gctgtgctt cagctgctt ccgtgttca agtcctaaga cggacttc tgcccactc 120
 tctaattggaa gttcagtgc accatcactc accaactcca gaggtcttagt gcatacagtt 180
 tcatttctac tgcaattgg ctcacacgg gagagtgtta ccattgaagc ccaggaactg 240
 tctttatctg ctgtcaagga tcttgtgtgc tccatagttt atcaaaaagg tccagagtgt 300
 ggattcttg gcatgtatga caaaaattctt ctcttcgcc atgacatgaa ctcagaaaaac 360
 attttgcagg tgattacctc agcagatgaa atacatgaag gagacatgtt ggaagtgtt 420
 ctttcagtt tagccacagt agaagacttc cagattcgcc cacatactct ctatgtacat 480
 tcttacaaaag ctccctacttt ctgtgattac tgtggtgaga tgcgtgggg attggtaacgt 540
 caaggactga aatgtgaagg ctgtggatta aattaccata aacgatgtgc cttcaagatt 600
 ccaaaataact gtatggagt aagaaagaga cgtctgtcaa atgtatctt accaggaccc 660
 ggcctcttag ttccaagacc cttacagcc gaatatgttag cccttcccg tgaagagtca 720
 catgtccacc aggaacaaag taagagaatt ccttcttgg gtgtcgccc aatctggatg 780
 gaaaagatgg taatgtgcag agtggaaagg ccacacat ttgtgttca ctcttacacc 840
 cgtccccacga tatgtcagta ctgcaagcg ttactgaaag gccttttgc ccaaggaatg 900
 cagtgtaaag attgaaaatt caactgccc aaacgcgtg cataaaaagt accaagagac 960
 tgcccttggag aggttacttt caatggagaa cttccatgc tggaaacaga tacagatata 1020
 ccaatggata ttgacaataa tgacataaaat agtgcatagtt gtgggggtt ggatgcacaca 1080
 gaagagccat caccggcaga agataagatg ttcttcttgg atccatgtg tctcgatgtg 1140
 gaaagagatg aagaagccgt taaaacaatc agtccatcaa caagcaataa tattccgtt 1200
 atgagggtt tacaatccat caagcacaca aagagggaaa gcagcacaat ggtgaaggaa 1260
 ggggtggatgg tccattacac cagcaggat aacctgagaa agaggcatta ttggagacct 1320
 gacagcaaat gtctaacatt atttcagaat gaatctggat caaaqtatta taagggaaatt 1380

60

ccactttcag aaattctccg catatctca ccacgagatt tcacaaacat ttacacaaggc 1440
 agcaatccac actgtttga aatcattact gatactatgg tataacttcgt tggtgagaac 1500
 aatggggaca gctctataa tcctgtctt gtcgcactg gagttggact tgatgttagca 1560
 5 cagagctggg aaaaagcaat tcgccaagcc ctcatgcctg ttactccta agcaagtgtt 1620
 tgcacttctc cagggcaagg gaaagatcac aaagatttg ctacaagtat ctctgttatct 1680
 aattgtcaga ttcaggagaa tgtggatatac agtactgttt accagatctt tgcatcgag 1740
 gtgcttgggtt caggccagtt tggcatcggtt tatggaggaa aacatagaaa gactggggagg 1800
 gatgtggcta ttaaagtaat tgataagatg agattccccaa caaaaacaaga aagtcactc 1860
 10 cgtaatgaag tggctatttt acagaatttg caccatcctg ggattgtaaa cctgaaatgt 1920
 atgtttgaaa ccccagaacg agtcttgcata gtaatggaaa agctgcattgg agatatgtt 1980
 gaaatgattc tatccagtga gaaaagtccg cttccagaac gaattactaa attcatggtc 2040
 acacagatac ttgttgcctt gaggaaatctg catttaaga atattgtca ctgtgattta 2100
 aagccagaaa atgtgtgcgt tgcatcagca gaggcatttc ctcaggtaa gctgtgtgac 2160
 15 tttggatttg cacgcacatc tggtaaaaag tcattcaggaa gatctgtgtt aggaactcca 2220
 gcatacttag cccctgaagt tctccggagc aaaggttaca accggtccct agatatgtgg 2280
 tcagttggag ttatcatcta tggagccctc agtggcataat ttccctttaa tgaggatgaa 2340
 gatataaatg accaaaatcca aatgcgtca tttatgtacc caccaaaatcc atggagagaa 2400
 atttctggtg aagcaattga tctgataaac aatctgttc aagtgaagat gaaaaaacgt 2460
 20 tacagtgttg acaaatactct tagtcatccc tggctacagg actatcagac ttggcttgac 2520
 cttagagaat ttggaaactcg cattggagaa cgttacatta cacatgaaag tgatgtgct 2580
 cgctggaaa tacatgcata cacacataac cttgtataacc caaagcactt cattatggct 2640
 cctaattccag atgatatggaa agaagatcct taa 2673

25 <210> 119
 <211> 2121
 <212> DNA
 <213> Homo sapiens

30 <300>
 <302> PKC tau
 <310> NM006257

35 <400> 119
 atgtcgccat ttcttcggat tggcttgtcc aactttgact gcggttcctg ccagtcttgt 60
 cagggcgagg ctgttaaccc ttactgtgt gtgtctgtca aagagtatgt cgaatcagag 120
 aacgggcaga tgatataatcca gaaaaagcct accatgtacc caccctggaa cagcaacttt 180
 gatgcccata tcaacaaggaa aagagtcatg cagatcattt tgaaaggccaa aaacgtggac 240
 40 ctcatctctc aaaccacccgt ggagctctac tgctgtggctg agaggtgcag gaagaacaac 300
 gggaaagacag aaatatgtttt agagctgtaaa cctcaaggcc gaatgtcaat gaatgcaaga 360
 tactttctgg aatatgatgtgca cacaaggac atgaatgtt ttgagacgga aggcttcttt 420
 gctttgcatac agcgccgggg tgccatcaag caggccaaagg tccaccacatg caagtgcac 480
 gagttcactg ccacacccgtt cccacagccc acattttgt ctgtctgcca cgagttgtc 540
 45 tggggcctga acaaacagggtt ctaccagtgc cgacaatgc atgcagcaat tcacaagaag 600
 tgtattgata aagttatagc aaagtgcaca ggatcagctt tcaatagccg agaaaccatg 660
 ttccacaagg agagattcaa aattgacatg ccacacagat taaaagtctt caattacaag 720
 agccgcacct tctgtgaaca ctgtggacc ctgtgtgtgg gactggcactg gcaaggactc 780
 aagtgtatg catgtggcat gaatgtgcata catagatgcc agacaaaaggtt ggccaaacctt 840
 50 tggcgcataa accagaagct aatggctgaa ggcgtggcca tgattgagag cactcaacag 900
 gtcgcgtgtc taagagatc tgaacagatc ttcaagagaag gtccgggttga aattggcttc 960
 ccatgctcca tcaaaaaatgtg agcaaggccg ccatgtttac cgacaccggg aaaaagagag 1020
 cctcaggccca ttccctggaa gtctccgtt gatgaggtgg ataaaatgtt ccattttcca 1080
 gaacctgaaac tgaacaaaga aagaccatct ctgcagatca aactaaaaat tgaggatttt 1140
 55 atcttgacaca aatgttgggg gaaaggaagt ttggcaagg tcttcctggc agaattcaag 1200
 aaaaccaatc aatttttcgc aataaaggcc ttaaagaaaatg atgtggctt gatggacgat 1260
 gatgttgagt gcacgatggt agagaagaga gtttttctt tggcctggaa gcatccgtt 1320
 ctgacgcaca tggggatgtac attccagacc aaggaaaacc tctttttgtt gatggagttt 1380

60

DE 101 00 586 C 1

ctcaacggag gggacttaat gtaccacatc caaagctgcc acaagttcga ccttccaga 1440		
gcgacgttt atgctgctga aatcatttctt ggtctgcagt tccttcattc caaaggaata 1500		
gtctcacagg acctgaagct agataacatc ctgttagaca aagatggaca tatcaagatc 1560		5
gcccgtttt gaatgtgcaa ggagaacatc tttaggatgt ccaagacgaa taccttctgt 1620		
gggacacctg actacatcg cccagagatc ttgtgggtc agaaatacaa ccactctgtg 1680		
gactgggtgt ctttcgggt ttcctttat gaaatgtcga ttggtcagtc gccttccac 1740		
gggcaggatg aggaggagct cttccactcc atccgcatgg acaatccctt ttacccacgg 1800		
tggctggaga aggaagcaaa ggaccttctg gtgaagctct tcgtgcgaga acctgagaag 1860		
aggctggcg tgaggggaga catccggccag caccctttgt ttccggagat caactggag 1920		
gaaccttgaac ggaaggagat tgaccacccg ttccggccga aagtgaatac accatttgac 1980		10
tgcagcaatt tcgacaaaaga attcttaaac gagaagcccc ggctgtcatt tgccgacaga 2040		
gcactgatca acagcatgga ccagaatatg ttcaaggaact ttcccttcat gaacccccc 2100		
atggagcggc tgatatctgt a 2121		
15		
<210> 120		
<211> 1779		
<212> DNA		
<213> Homo sapiens		20
<300>		
<302> PKC zeta		
<310> NM2744		
25		
<400> 120		
atgcccagca ggaccgaccc caagatggaa gggagcggcg gccgcgtccg cctcaaggcg 60		
cattacgggg gggacatctt catcaccagc gtggacgccc ccacgacctt cgaggagctc 120		
tgtgaggaag ttagagacat gtgtcgctg caccagcgc accccgctcac cctcaagtgg 180		
gtggacagcg aagggtgaccc ttgcacgggt tcctccaga tggagctggaa agaggcttc 240		
cgcctggccc gtcagtgcag ggtgaaggc ctcatcatc atgttttccc gaggacccc 300		
gagcagcctg gcctgcctat tccgggagaa gacaaatcta tctaccgcgg gggagccaga 360		
agatggagga agctgtaccc tgccaaacggc caccctttcc aagccaagcg cttaaacagg 420		
agagcgtact gccgtcagtg cagcgagagg atatggggcc tcgcgaggca aggctacagg 480		
tgcataact gcaaaactgct ggtccataag cgctgcccacg gcctcgccc gctgacctgc 540		
aggaagcata tggattctgt catgccttcc caagagcctc cagtagacga caagaacgag 600		
gacgcggacc ttcccttccga ggagacagat ggaattgctt acatttcctc atcccgaaag 660		
catgacagca taaaagacga ctcggaggac cttaagccag ttatcgatgg gatggatgga 720		
atcaaaaatct ctcaaaaaatc tggggctgcag gactttgacc taatcagagt catcgccgc 780		
ggggagctacg ccaaggttct cctgggtcgg ttgaaagaaga atgaccaaatttacgccc 840		
aaagtggta agaaaagagct ggtgcattat gacggaggata ttgactgggt acagacagag 900		
aagcacgtgt ttgagcggc atccagaaac cccttcctgg tcggattaca ctccctgttc 960		
cagacgacaa gtcgggtgtt cctggtcatt gagatgtca acggccggga cctgtatgttc 1020		
cacatgcaga ggcagaggaa gtcctctgag gagcacgcca gtttctacgc ggccgagatc 1080		
tgcatacgccc tcaacttctt gcacgagagg gggatcatct acaggggacat gaagctggac 1140		
aacgttctcc tggatgcggg cgggcacatc aagctcacag actacggcat gtgcaggaa 1200		45
ggcctggccc ctggtgacac aacgagact ttctgcggaa ccccgaatta catcgcccc 1260		
gaaatccctgc ggggagagga gtacgggttc agcgtggact ggtggcgct gggagtcctc 1320		
atgtttgaga tggatggccgg gcgctccccc ttgcacatca tcaccgacaa cccggacatg 1380		
aacacagagg actacctttt ccaagtgtatc ctggagaagc ccatccggat ccccccgttc 1440		
ctgtccgtca aagcctccca tggataaaa ggattttaaa ataaggaccc caaagagagg 1500		
ctcggtcgcc gcccacagac tggatttctt gacatcaatg cccacgcgtt cttccgcagc 1560		
atagactggg acttgcgtggaa gaagaagcag gcgcctccctc cattccagcc acagatcaca 1620		
gacgactacg gtcggacaa ctttgacaca cagttcacca gcgagccgt gcagctgacc 1680		
ccagacgatg agatgcccatt aagaggatc gaccgtcgatc agttcgaagg ctttgagttat 1740		
atcaacccat tattgtgtc caccgaggag tcgggtgtga 1779		55
60		
65		

DE 101 00 586 C 1

<210> 121
<211> 576
<212> DNA
5 <213> Homo sapiens

<300>
<302> VEGF
<310> NM003376

10 <400> 121
atgaacttgcgtgtttc tgctgtcttg ggtgcattgg agcattgcct tgctgctcta cctccaccat 60
gccaagtggt cccaggctgc acccatggca gaaggaggag ggcagaatca tcacaagtg 120
gtgaagttc tggatgtcta tcagcgacg tactgccatc caatcgagac cctgtggac 180
15 atcttccagg agtaccctga tgagatcgag tacatcttca agccatctg tgtgcccctg 240
atgcgtcgccgggctgtc caatgcggag ggctggagt gtgtgccccac tgaggagtcc 300
aacatcacca tgcagattat gcgatccaaa cctcacaagag ccacgcatttgcgaggatc 360
agcttcctac agcacaacaa atgtgaatgc agaccaaaaaa aagatagac aagacaagaa 420
aatccctgtg ggccttgctc agagcgagaa aagcatttgt ttgtacaaga tccgcagacg 480
20 tgtaaatgtt cctgcacaaaaa cacagactcg cgttgcaagg cgaggcagct tgagttaaac 540
gaacgtactt gcagatgtga caagccgagg cggta 576

<210> 122
25 <211> 624
<212> DNA
<213> Homo sapiens

<300>
30 <302> VEGF B
<310> NM003377

<400> 122
atgagccctc tgctccggcg cctgctgctc gcccactcc tgcagctggc ccccgccag 60
35 gcccctgtct cccagcctga tgccctggc caccagagga aagtgggtgc atggatagat 120
gtgtataactc ggcgtacactg ccagccccgg gaggtgggtgg tgcccttgac tgtggagctc 180
atggccaccg tgccaaaca gctggtggcc agctgcgtga ctgtgcagcg ctgtgggtggc 240
tgctgccctg acgatggcct ggagtgtgtg cccactgggc agcacaagt ccggatgcag 300
atcctcatga tccggtaccc gggcgtcag ctgggggaga tgcgttggaa agaacadagc 360
40 cagtgtgaat gcaagaccaa aaaaaaggac agtgcgtgtga agccagacag ggctgccact 420
ccccaccacc gtcggccggcc ccgttctgtt ccgggctggg actctgcacc cggagccacc 480
tccccagctg acatcacccca tcccactcca gccccaggcc cctctgcacc cgtgcaccc 540
agcaccacca ggcgcctgac ccccgaccc gccgcggccg ctgcggacgc cgcagettcc 600
tccgtgcca agggcggggc ttag 624
45

<210> 123
<211> 1260
<212> DNA
50 <213> Homo sapiens

<300>
<302> VEGF C
<310> NM005429
55 <400> 123
atgcacttgc tgggtttttt ctctgtggcg tttttctgtc tgcggcgctgc gctgtcccg 60
ggtcctcgcg aggccggcc cggccggcc gccttcgagt ccggactcga cctctcgac 120
60

DE 101 00 586 C 1

gcggagcccc acgcgggcga ggccacggct tatgcaagca aagatctgga ggagcagtt 180
 cggctgtgt ccagttaga tgaactcatg actgtactct acccagaata ttggaaaatg 240
 tacaagtgtc agetaaggaa aggaggctgg caacataaca gagaacagggc caacctcaac 300
 tcaaggacag aagagactat aaaatttgc gcagcacatt ataatacaga gatcttgaaa 360
 agtattgata atgagtggag aaagactcaa tgcatgccac gggaggtgt tatagatgtg 420
 gggaggagt ttggagtcgc gacaaacacc ttctttaaac ctccatgtgt gtccgtctac 480
 agatgtgggg gttgctgcaa tagtggggg ctgcagtgc tgaacaccag cacgagctac 540
 ctcagaaga cgttatgttga aattacagtgc cctctctctc aaggcccca accagtaaca 600
 atcagtttg ccaatcacac ttccctggca tgcatgtcta aactggatgt ttacagacaa 660
 gttcattcca ttattagac ttccctgcca gcaacactac cacagtgtca ggcagcgaac 720
 aagacctgccc ccaccaatta catgtggaaat aatcacatct gcagatgcct ggctcaggaa 780
 gatttatgt ttccctcgga tgctggagat gactcaacag atggatttca tgacatctgt 840
 ggaccaaaca aggagctgga tgaagagacc tgcgtgtg tctgcagagc ggggcttcgg 900
 cctgcacgt gtggacccca caaagaacta gacagaaact catgcccagtgt tgtctgtaaa 960
 aacaacttcccccagccca atgtggggcc aaccgagaat ttgtgaaaaa cacatgcccag 1020
 tggatgtgaaatggggcc aaccgagaat ttgtgaaaaa cacatgcccag 1080
 gaatgtacag aaagtccaca gaaatgttg ttaaaaggaa agaagttcca ccaccaaaca 1140
 tgcagctgtt acagacggcc atgtacgaac cgccagaagg cttgtgagcc aggattttca 1200
 tatagtgaag aagtgtgtcg ttgtgtccct tcatatttggaa aagaccaca aatgagctaa 1260

20

<210> 124
 <211> 1074
 <212> DNA
 <213> Homo sapiens

25

<300>
 <302> VEGF D
 <310> AJ000185

30

<400> 124
 atattcaaaa tgtacagaga gtgggttagtg gtgaatgttt tcatgatgtt gtacgtccag 60
 ctgggtcagg gctccagtaa tgaacatggc ccagtgaagc gatcatctca gtccacattg 120
 gaacgatctg aacagcagat cagggctgtct tagtttgg aggaactact tcgaattact 180
 cactctgagg actggaaagct gtggagatgc aggctgaggc tcaaaagttt taccagtatg 240
 gactctcgct cagcatccca tgggtccact aggtttgcgg caactttctt tgacattgaa 300
 acactaaaag ttatagatga agaatggcaa agaactcagt gcagccctag agaaacgtgc 360
 gtggaggtgg ccagttagtgc ggggaagagt accaacacat tcttcaagcc cccttgcgtg 420
 aacgtgttcc gatgtgggtgg ctgttgcattt gaagagagcc ttatctgtat gaacaccaggc 480
 acctcgatata ttccaaaca gctcttttag atatcgtgc ctgttgcattt agtaccgttgc 540

35

ttagtgcctg ttaaaaggatgc caatcataca ggtttaagt gtttgcattt agccccccgc 600
 catccataact caattatcag aagatccatc cagatccctg aagaagatcg ctgttccat 660
 tccaaacac tctgtccat tgcatttgcattt tggttagca acaaatttgc atgtgttttg 720
 caggaggaaa atccacttgc tggaaacagaa gaccactctc atctccagga accagcttc 780
 tggggccac acatgtatgtt tgacgaagat cgttgcgtgt gtgtctgtaa aacaccatgt 840

40

cccaaagatc taatccagca ccccaaaaac tgcatttgcattt ttggttgcattt agaaagtctg 900
 gagacctgtt ggcagaagca caagcttattt caccacagca cctgcagctg tgaggacaga 960
 tggcccttcc ataccagacc atgtgcattt ggcaaaacag catgtgcattt gcatttgcgc 1020
 ttccaaagg agaaaaggcc tggccagggg ccccacagcc gaaagaatcc ttgttgcattt 1074

50

<210> 125
 <211> 1314
 <212> DNA
 <213> Homo sapiens

55

<300>

60

DE 101 00 586 C 1

<302> E2F
<310> M96577

5 <400> 125
atggccttgg ccggggcccc tgcgggccc ccatgcgcgc cggcgcttga ggcctgttc 60
ggggccggcg cgctgcggct gctgacttc tcgcagatcg tcatcatctc cgcgcgcag 120
gacgcacgac cccgcggc tccacggc cccgcggc cggccgcgg cccctgcac 180
cctgacctgc tgctttcgac cacaccgac ggcggccggc ccacacccag tgcggccgg 240
cccgccctcg gccgcccccc ggtgaagcgg aggctggacc ttggaaactga ccatcgtac 300
ctggccgaga gcaagtggcc agctcgccg agaggccgc atccaggaaa aggtgtgaaa 360
tccccgggg agaagtcaac ctatgagacc tcactgaatc tgaccaccaa gcgttcctg 420
gagctgtga gccactcgcc tgacgggttc gtgcacctga actgggctgc cgaggtgctg 480
aagggtcaga agcggcgcat ctatgacatc accaactgtcc ttgagggcat ccagctcatt 540
15 gccaagaagt ccaagaacca catccagtgg ctgggcagcc acaccacagt gggcgtcgcc 600
ggacggcttg aggggttgac ccaggaccc tcgacagctgc aggagagcga gcagcagctg 660
gaccacctga tgaatatctg tactacgac ctgcgcctgc tctccgagga cactgacagc 720
cagccctgg cctacgtgac gtgtcaggac ctctgttagca ttgcagaccc tgcagagcag 780
atggttatgg tcatcaaaac ccctcttag acccagctcc aagccgtgga ctcttcggag 840
20 aactttcaga ttcctttaa gagcaaacaa ggccgcgtcg atgttttctt gtgccttgag 900
gagaccgtag gtgggatcag ccctggaaag accccatccc aggaggtcac ttctgaggag 960
gagaacaggg ccactgactc tgccaccata gtgtcaccac caccatcatc tccccctca 1020
tccctcacca cagatcccac ccagtctcta ctctgttaga agcaagaacc gctgttgtcc 1080
cgatggcgc gcctgcggcc tccctgtggac gaggaccgc tgcccccgct ggtggccggcc 1140
25 gactcgctcc tggagcatgt gggggaggac ttctccggcc tcctccctga ggagttcatc 1200
agccttccc caccacga ggccctcgac taccacttcg gcctcgagga gggcgaggc 1260
atcagagacc tcctcgactg tgactttggg gacccatccc ccctggattt ctga 1314

30 <210> 126
<211> 166
<212> DNA
<213> Human papillomavirus

35 <300>
<302> EBER-1
<310> J02078

40 <400> 126
ggacctacgc tgcccttagag gttttgttag ggaggagacg tgtgtggctg tagccacccg 60
tcccggtac aagtcccggt tggtgaggac ggtgtctgtg gttgtcttcc cagactctgc 120
tttctgcccgt ctccgtcaaa gtaccagctg gtggccgca tgaaaa 166

45 <210> 127
<211> 172
<212> DNA
<213> Hepatitis C virus

50 <300>
<302> EBER-2
<310> J02078

55 <400> 127
ggacagccgt tgcccttagt gtttcggaca caccgccaac gtcagtgcg gtgctaccga 60
cccgaggta agtcccggtt gaggagaaga gaggcttccc gccttagagca tttgcaagtc 120
aggattctct aatccctctg ggagaagggt attcggcttg tccgctatatt tt 172

60

65

DE 101 00 586 C 1

<210> 128		
<211> 651		
<212> DNA		
<213> Hepatitis C virus		5
<300>		
<302> NS2		
<310> AJ238799		
<400> 128		10
atggaccggg agatggcagc atcggtcgga ggcgcgggtt tcgttaggtct gatactcttg 60		
accttgtcac cgcaactataa gctgttcctc gctaggctca tatgggtggtt acaatatttt 120		
atcaccaggc ccgaggcaca cttgcaagtg tggatcccccc ccctcaacgt tcgggggggc 180		
cgcgtatggc tcatccctt cacgtgcgcg atccacccag agctaattt taccatcacc 240		
aaaatcttcg tcgcactact cggtccactc atggtgcctc aggctggat aaccaaaagtg 300		
ccgtacttcg tgccgcaca cgggctcatt cgtgcattca tgctggcg 360		
gggggttatt atgtccaaat ggctctcatg aagttggccg cactgacagg tacgtacgtt 420		
tatgaccatc tcaccccaact gcccggactgg gcccacgcgg gcctacgaga ccttgcggtg 480		
gcagttgagc ccgtcgctt ctctgatatg gagaccaagg ttatcacctg gggggcagac 540		
accggggcgt gtggggacat catcttggc ctgcccgtt ccgcccgcag ggggaggag 600		
atacatctgg gaccggcaga cagcctgaa gggcagggtt ggcgactcct c 651		
<210> 129		25
<211> 161		
<212> DNA		
<213> Hepatitis C virus		
<300>		30
<302> NS4A		
<310> AJ238799		
<400> 129		
gcacctgggt gctggtaggc ggagtcctag cagctctggc cgcgtattgc ctgacaacag 60		
gcagcggtt cattgtggc aggatcatct tgtccggaaa gccggccatc attcccgaca 120		
ggaaagtctt ttaccgggag ttccatgaga tggaaagatgt c 161		
<210> 130		40
<211> 783		
<212> DNA		
<213> Hepatitis C virus		
<300>		45
<302> NS4B		
<310> AJ238799		
<400> 130		
gcctcacacc tcccttacat cgaacaggaa atgcagctcg ccgaacaatt caaacagaag 60		
gcaatcggtt tgctgaaac agccaccaag caagcggagg ctgctgctcc cgtgggtggaa 120		
tccaaatggc ggaccctcga agcccttctgg gccaaggata tgtggatattt catcagcggg 180		
atacaatatt tagcaggctt gtccactctg cctggcaacc ccgcgatagc atcaactgtatg 240		
gcattcacag cctctatcac cagccgcctc accacccaaac ataccctctt gtttacatc 300		
ctggggggat gggtggccgc ccaacttgc cctccctcg ctgcttctgc ttctgtggc 360		
gccggcattcg ctggagcggc tggtggcagc ataggcctt ggaagggtgt tggatattt 420		
ttggcagggtt atggagcagg ggtggcaggc gcgcgttgc ccttaaggt catgagcggc 480		
		60
		65

DE 101 00 586 C 1

gagatgccct ccaccggagga cctggtaac ctactccctg ctatcccttc ccctggcgcc 540
 ctatcgctcg gggtcgtgtg cgcaagcgata ctgcgtcggc acgtggggcc aggggagggg 600
 gctgtcagt gatataacccg gctgatagcg ttgcgttgc gggtaacca cgatcccccc 660
 acgcactatg tgccctgagag cgacgctgca gcacgtgtca ctcagatct cttagtctt 720
 accatcaactc agctgctgaa gagggttcac cagtggatca acgaggactg ctccacgcca 780
 tgc
 5
 10 <210> 131
 <211> 1341
 <212> DNA
 <213> Hepatitis C virus
 15 <300>
 <302> NS5A
 <310> AJ238799
 20 <400> 131
 tccggctcg ggctaagaga tgtttggat tggatatgca cggtgttgac tgatttcaag 60
 acctggctcc agtccaagct cctgcccga ttgcggggag tcccctctt ctcatgtcaa 120
 cgtgggtaca agggagtctg gcggggcgac ggcatacatgc aaaccacctg cccatgtgga 180
 gcacagatca ccggacatgt gaaaaacggt tccatgagga tcgtggggcc taggacctgt 240
 agtaacacgt ggcataggAAC attccccatt aacgcgtaca ccacgggccc ctgcacgccc 300
 25 tccccggcgc caaatttac tagggcgctg tggcggttgg ctgtcgagga gtacgtggag 360
 gttacgcggg tggggattt ccactacgtg acgggcatga ccactgacaa cgtaaagtgc 420
 cctgtcagg ttccggccccc cgaatcttc acagaagtgg atgggggtgcg gttgcacagg 480
 tacgctccag cgtgcaaaa cctcttacgg gaggaggtca cattccttgcg cggctcaat 540
 caatacctgg ttgggtcaca gtccttacgc gaggccgaac cggacgtac agtctcaact 600
 30 tccatgctca ccgacccttc ccacattacg gggagacgg ctaagcttag gtcggccagg 660
 ggtatcccc cctccttggc cagctcatca gtagccagc tgtctgcgc ttcttgaag 720
 gcaacatgca ctaccgtca tgactcccc gacgctgacc tcatacgaggc caacctctg 780
 tggccggcagg agatggggcg gaacatcacc cgcgtggagt cagaaaataa ggttagtaatt 840
 ttgactctt tcgagccgtt ccaagccggag gaggatgaga gggaaagtatc cggtccggcg 900
 35 gagatcctgc ggagggtccag gaaattccct ctagcgatgc ccatatggc acggccggat 960
 tacaaccctc cactgttaga gtccttggaa gacccggact acgtccctcc agtggtagac 1020
 ggggtccat tgccgcctgc caaggccccct ccgataccac ctccacggag gaagaggacg 1080
 gttgtcttgc cagaatctac cgtgtttct gccttggcg agctcgccac aaagaccttc 1140
 40 ggcagctccg aatcgccggc cgtcgacacg ggcacggcaa cggcccttcc tgaccagccc 1200
 tccgacgacg ggcacggcggg atccgacgtt gagtcgtact ctccatgcc ccccttgag 1260
 ggggagccgg gggatcccgatctcagcgac gggcttgggt ctaccgtaa cgaggaggct 1320
 agtggaggacg tcgtctgtc
 45 <210> 132
 <211> 1772
 <212> DNA
 <213> Hepatitis C virus
 50 <300>
 <302> NS5B
 <310> AJ238799
 55 <400> 132
 tcgtatgtcc acacatggac aggcccttg atcacgccc ggcgtcgaaa gggaaaccaag 60
 ctgcccattca atgcactgtg caacttttgc cttccgttacc acaactttgt ctatgttaca 120
 acatctcgca ggcacggctt ggcggcagaag aaggtcacct ttgacagactt gcaaggcttgc 180
 gacgaccactt accggggacgt gctcaaggag atgaaggcga aggcgtccac agttaaggct 240

60

65

DE 101 00 586 C 1

aaacctctat ccgtggagga agcctgtaag ctgacgcccc cacattccgc cagatctaaa 300
 tttggctatg gggcaaggaa cgtccgaaac ctatccagca aggccgtaa ccacatccgc 360
 tccgtgtgga aggacttgc ggaagacact gagacaccaa ttgacaccac catcatggca 420
 aaaaatgagg ttttctgcgt ccaaccagag aagggggggc gcaagccagc tcgccttata 480
 gtattcccgat atttgggggt tcgtgtgtc gagaataatgg cccttacga tgtgtctcc 540
 accctccctc aggccgtat gggctttca tacggattcc aatactctcc tggacagcgg 600
 gtcgagttcc tggtaatgc ctggaaagcg aaaaatgcc ctatgggctt cgcatatgac 660
 acccgctgtt ttgactcaac ggtcaactgag aatgacatcc gtgttgagga gtcataatc 720
 caatgttgtg acttggcccc cgaagccaga caggccataa ggtcgctcac agagcggctt 780
 tacatgggg gccccctgac taattctaaa gggcagaact gcccgtatcg cccgtgccgc 840
 gcgagcgggtg tactgacgac cagctgcgtt aataccctca catgttactt gaagccgct 900
 gccggctgtc gagctgcgaa gtcacccggc tgacacatgc tcgtatgcgg agacacctt 960
 gtcgttatct gtgaaaagcgc ggggacccaa gaggacgagg cgagccctacg ggccttcacg 1020
 gaggtatga ctatgactc tgccccccct ggggacccgc ccaaaccaga atacgacttg 1080
 gagttataa catcatgctc ctccaatgtg tcagtcgc acgatgcac tggccaaagg 1140
 gtgtactata tcacccgtga ccccccaccc cccctgcgc gggctgcgt ggagacact 1200
 agacacactc cagtcaattc ctggcttaggc aacatcatca tttatgcgc caccctgtgg 1260
 gcaaggatga tcctgatgac tcatttttc tccatccttc tagtcagga acaactgaa 1320
 aaagccctag attgtcagat ctacggggcc tggtaactcca ttgagccact tgacctac 1380
 cagatcatc aacgactcca tggccttagc gcattttcac tccatagttt ctctccagg 1440
 gagatcaata ggggtggcttc atgcctcagg aaacttgggg taccggccctt gcgagtctgg 1500
 agacatcggg ccagaagtgt cccgcgttgg ctactgtccc agggggggag ggctgcact 1560
 tgtggcaagt acctcttcaa ctgggcagta aggaccaagc tcaaactcac tccaatcccg 1620
 gctgcgtccc agttggattt atccagctgg ttctgtctg gttacagcgg gggagacata 1680
 tatcacagcc tgcgtgtgc ccgaccccgcc tggttcatgt ggtgcctact cctactttct 1740
 gtaggggttag gcatctatct actccccaac cg 1772

<210> 133
 <211> 1892
 <212> DNA
 <213> Hepatitis C virus

<300>
 <302> NS3
 <310> AJ238799

<400> 133

cgcctattac ggccctactcc caacagacgc gaggcctact tggctgcattc atcaactagcc 60
 tcacaggccg ggacaggaac caggctcagg gggagggtcca agtggcttcc accgcaaac 120
 aatcttcctt ggcgacctgc gtaatggcg tggatggac tggatcatcat ggtggccgt 180
 caaagaccct tggccggccca aaggcccaa tcacccaaat gatccatcatgtt gttggaccagg 240
 acctcgctgg ctggcaagcg ccccccgggg cccgttccctt gacaccatgc acctgcggca 300
 gtcggaccc ttacttggtc acgaggcatg ccgtatgtcat tccgggtgcgc cggccggggcg 360
 acagcagggg gagectactc tccccccaggc ccgttcccta cttgaaggcc ttttccggcg 420
 gtccactgtc ctggccctcg gggcacgttgg tggcatctt tccgggtgcgc gtgtgcaccc 480
 gaggggttgc gaaggccgtg gactttgtac ccgtcgagtc tatggaaacc actatgcgg 540
 ccccggtctt cacggacaac tggcccttc cggccgtacc gcaagacattc caggtggccc 600
 atctcacacgc ccctactggt agccggcaaga gcaactaagg gccggctgcg tatgcagccc 660
 aagggtataa ggtgttgc ctgaacccgt ccgtcgccgc cacccttagt ttcggggcg 720
 atatgtctaa ggcacatggt atcgacccata acatcagaac cggggtaagg accatccacca 780
 cgggtgcccc catcagctac tccacccatg gcaagtttct tccggacgggt ggttgcctg 840
 ggggcgccta tgacatcata atatgtatg agtgcactc aactgactcg accactatcc 900
 tgggcacatggc cacagtcctg gaccaagcgg agacggctgg agcgcgcactc gtcgtgtcg 960
 ccaccgtac gcctccggga tgggtcaccg tgccacatcc aaacatcgag gaggtggctc 1020
 tgtccacac tggagaaatc ccctttatg gcaagccat ccccatcgag accatcaagg 1080
 gggggaggca cctcattttc tgccatttca agaagaaatg tgatgagctc gccgcgaagc 1140

60

65

DE 101 00 586 C 1

5 tgcggccct cggactcaat gctgttagcat attaccgggg ccttgatgta tccgtcatac 1200
 caactagcg agacgtcatt gtcgttagcaa cggacgctct aatgacgggc tttaccggcg 1260
 atttcgactc agtgatcgac tgcaatacat gtgtcaccca gacagtgcac ttcaagcctgg 1320
 acccgacctt caccatttag acgacgaccg ggcgaggcag gactggtagg ggcagatgg gcatttacag 1380
 ggcctcggtt catgttcgtat tcctcggttc tggcgagtg ctatgacgct ggctgtgtt 1440
 ggtacgagct cacgcccccc gagacctcg tttaggttgcc ggcttaccta aacacaccag 1500
 ggttcccgt ctgccaggac catctggagt tctgggagag cgtcttaca ggcctcaccc 1560
 10 acatagacgc ccatttcttgc tcccagacta agcaggcagg agacaacttc ccctacctgg 1620
 tagcatacca ggctacgggt tgcccgagg ctcaggctcc acctccatcg tggaccaaa 1680
 tgtggaagtg ttcatacagg ctaaaagccta cgctgcacgg gccaacgc 1740
 ggctggggacg cgttcaaaaac gaggttacta ccacacaccc cataaccaaa tacatcatgg 1800
 catgcatgtc ggctgacctg gaggtcgtca cg 1860
 1892

15 <210> 134
 <211> 822
 <212> DNA
 20 <213> Homo sapiens

<300>
 <302> stmn cell factor
 <310> M59964

25 <400> 134
 atgaagaaga cacaacttg gattctcaact tgcatattatc tttagtgcct cctatttaat 60
 cctctcgtaa aactgaagg gatctgcagg aatctgtgtga ctaataatgt aaaagacgtc 120
 actaaattgg tggcaaatct tccaaaagac tacatgataa ccctcaataa tgtccccggg 180
 30 atggatgtt tgccaaagtca ttgttgata agcgagatgg tagtacaattt gtcagacagc 240
 ttgactgatc ttctggacaa gtttcaaat atttctgtaa gcttggatgaa ttatccatc 300
 atagacaaac ttgtgaatat agtgcgtac ctttggatg gcttggatgaa aaactcatct 360
 aaggatctaa aaaaatcatt caagggccca gaacccaggc tctttactcc tgaagaattc 420
 tttagaattt ttaatagatc cattgtatgcc ttcaaggact ttgttagtgc atctgaaact 480
 35 agtgtttgtg tggtttcttca aacattaatg cctggaaaaag attccagagt cagtgtcaca 540
 aaaccattna tggttacccccc tggtgcagcc agtccctta ggaatgacag cagtagcagt 600
 aataggaagg cccaaaatcc ccctggagac tccagcctac actgggcagc catggcattt 660
 ccagcattgt ttctcttat aattggcttt gctttggag ctttataactg gaagaagaga 720
 cagccaaatc ttacaaggc agttgaaaat atacaaatata atgaagagga taatgagata 780
 40 agtatgttgc aagagaaaaga gagagatgtt caagaagtgt aa 822

<210> 135
 <211> 483
 45 <212> DNA
 <213> Homo sapiens

<300>
 <302> TGFalpha
 50 <310> AF123238

<400> 135
 atggccccct cggctggaca gctggccctg ttgcgtctgg gtattgtgtt ggctgcgtgc 60
 caggccttgg agaacagcac gtccccgtg agtgcagacc cggccgtgca tgcagcagt 120
 55 gtgtcccaatt ttaatgactg cccagattcc cacactcagt tctgttcca tggAACCTGC 180
 aggtttttgg tgcaggagga caagccagca tgggtctgcc attctgggtt cgttgggtca 240
 cgctgtgagc atgcggaccc cctggccgtg gtggctgcca gccagaagaa gcaggccatc 300
 accgccttgg tgggttctc catcgatggcc ctggctgtcc ttatcatcac atgtgtgt 360

60

65

DE 101 00 586 C 1

atacactgt gccaggctccg aaaacactgt gagtggtgcc gggccctcat ctgcccggcac 420
gagaagccca gcgccttcct gaagggaaaga accgcttgc tgcactcaga aacagtggtc 480
tga 483

5

<210> 136
<211> 1071
<212> DNA
<213> *Homo sapiens*

10

<300>
<302> GD3 synthase
<310> NM003034

25

<210> 137
<211> 744
<212> DNA
<213> *Homo sapiens*

40

<300>
<302> FGF14
<310> NM004115

60

65

gtcaacaaga gtaagacaac atag

744

5 <210> 138
 <211> 1503
 <212> DNA
 <213> Human immunodeficiency virus

10 <300>
 <302> gag (HIV)
 <310> NC001802

15 <400> 138
 atgggtgcga gaggcgtcagt attaagcggg ggagaatttag atcgatggga aaaaatttcgg 60
 ttaaggccag ggggaaagaa aaaatataaa ttaaaaacata tagtatggc aagcaggag 120
 ctagaacgt tcgcgttta tcctggctg tttagaacat cagaaggctg tagacaata 180
 ctgggacagc tacaaccatc ccttcagaca ggatcagaag aacttagatc attatataat 240
 acagtagcaa ccctctattt tgtgcataa aggatagaga taaaagacac caaggaagct 300
 ttagacaaga tagaggaaga gcaaaacaaa agtaagaaaa aagcacagca agcagcagct 360
 gacacaggac acagcaatca ggtcagccaa aattacccta tagtgcagaa catccagggg 420
 caaatggta atcaggccat atcacctaga actttaaatg catggtaaa agtagtagaa 480
 gagaaggctt tcagcccaga agtgataccc atgttttcag cattatcaga aggagccacc 540
 ccacaagatt taaacaccat gctaaacaca gtggggggac atcaagcagc catgcaaatg 600
 ttaaaagaga ccatcaatga ggaagctgca gaatggata gagtgcattc agtgcattc 660
 gggcatttgc caccaggcca gatgagagaa ccaagggaa gtgacatgc aggaactact 720
 agtaccccttc aggaacaaat aggtggatg acaaataatc cacctatccc agtaggagaa 780
 atttataaaa gatggataat cctgggatta aataaaaatag taagaatgt tagccctacc 840
 agcattctgg acataagaca aggaccaaag gaacccttta gagactatgt agacccgttc 900
 tataaaactc taagagccga gcaagcttca caggaggtaa aaaaattggat gacagaaacc 960
 ttgttgttcc aaaatgcgaa cccagattgt aagactattt taaaagcatt gggaccagcg 1020
 gctacactag aagaaatgtat gacagcatgt cagggagtag gaggaccgg ccataaggca 1080
 agagtttgg ctgaagcaat gagccaagta acaaatttcg ctaccataat gatgcagaga 1140
 ggcaattttt ggaaccaaag aaagattgtt aagtgttca attgtggcaa agaaggcacc 1200
 acagccgaaa attgcaggcc cccttagaaaa aaggctgtt ggaatgtgg aaaggaagga 1260
 caccaaatga aagattgtac tgagagacag gctaatttt tagggaagat ctggccttcc 1320
 tacaaggaa ggccaggggaa ttttcttcag agcagaccag agccaacacg cccaccagaa 1380
 gagacttca ggtctgggtt agagacaaca actccccctc agaaggcagga gccgatagac 1440
 aaggaactgt atcccttaac ttccctcagg tcactcttg gcaacgaccc ctcgtcacaa 1500
 taa 1503

45 <210> 139
 <211> 1101
 <212> DNA
 <213> Human immunodeficiency virus

50 <300>
 <302> TARBP2
 <310> NM004178

55 <400> 139
 atgagtgaag aggagcaagg ctccggact accacggct gcgggctgcc tagatagag 60
 caaatgtgg ccgccaaccc aggcaagacc ccgatcagcc ttctgcagga gtatggacc 120
 agaataggga agacgcctgt gtacgacctt ctcaaagccg agggccaagc ccaccagcct 180
 aatttcacct tccgggtcac cggtggcagc accagctca ctggtcaggg ccccagcaag 240
 aaggcagcca agcacaaggc agctgaggtg gccctcaaac acctcaaagg ggggagcatg 300
 ctggagccgg ccctggagga cagcagttt ttttctcccc tagactcttc actgccttag 360

60

65

DE 101 00 586 C 1

gacattccgg ttttactgc tgcagcagct gctaccccag ttccatctgt agtcctaacc 420		
aggagcccc ccatggact gcagccccct gtcccccctc agcagtctga gtgcacaaaa 480		
gttggtgctc tgccaggagct ggtggcagaa aaggctggc gggtgcggaa gtacacagt 540		
acccaggagt ctggccaggc ccaccgaaa gaattcacca tgacctgtcg achtggagcgt 600		5
tccattgaga ttgggagtgg cacttccaaa aaattggcaa agcggaatgc ggcggccaaa 660		
atgctcttc gactgcacac ggtgcctctg gatgcccccgg atggcaatga ggtggagcct 720		
gatgtgacc acttctccat tggtgtggc ttccgcctgg atggtctcg aaaccggggc 780		
ccaggttgc a cttgggattc tctacgaaat tcagtaggag agaagatct gtccctccgc 840		
atgtgtccc tgggctccct ggggtgcctg ggccctgcct gctgcccgtgt cctcagtgag 900		
ctctctgagg agcaggccct tcacgtcago tacccggata ttgaggagct gagcgtgag 960		10
ggactctgcc a gtcctggt ggaactgtcc acccagccgg ccactgtgtg tcatggctct 1020		
gcaaccacca gggaggcage ccgtggtag gctgcccggc gtgccttgca gtacctaag 1080		
atcatggcag gcagcaagt a 1101		
		15
 <210> 140		
<211> 219		
<212> DNA		
<213> Human immunodeficiency virus		20
 <300>		
<302> TAT (HIV)		
<310> U44023		
 <400> 140		25
atggagccag tagatcctag cctagagccc tggaaggatc caggaagtca gcctaagact 60		
gcttgcattca cttgttattt taaagagtgt tgctttcatt gccaagttt tttcataaca 120		
aaaggcttag gcatctctta tggcaggaag aacggagac agcgtacgaa aactcctcaa 180		
ggtcatcaga ctaatcaagt ttctctatca aacgactaa 219		30
 <210> 141		
<211> 21		
<212> RNA		
<213> Künstliche Sequenz		35
 <220>		
<223> Beschreibung der künstlichen Sequenz: anti-GFP		
 <400> 141		40
ccacauaag cagcacgacu u		21
 <210> 142		
<211> 27		45
<212> RNA		
<213> Künstliche Sequenz		
 <220>		
<223> Beschreibung der künstlichen Sequenz: anti-GFP; 3'-Überhänge		50
 <400> 142		
gacccacaua gaagcagcac gacuuucu		27
		55

Literatur

- Bass, B. L., 2000. Double-stranded RNA as a template for gene silencing. *Cell* 101, 235–238.
- Bosher, J. M. and Labouesse, M., 2000. RNA interference: genetic Wand and genetic watchdog. *Nature Cell Biology* 2, E31–E36.
- Caplen, N. J., Fleenor, J., Fire, A., and Morgan, R. A., 2000. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. *Genes* 252, 95–105.
- Clemens, J. C., Worby, C. A., Simonson-Leff, N., Muda, M., Maehama, T., Hemmings, B. A., and Dixon, J. E., 2000. Use of doublestranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. *Proc.Natl.Acad.Sci.USA* 97, 6499–6503.
- Ding, S. W., 2000. RNA silencing. *Curr. Opin. Biotechnol.* 11, 152–156.

- Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C., 1998. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*. *Nature* 391, 806–811.
- Fire, A., 1999. RNA-triggered genesilencing. *Trends Genet.* 15, 358–363.
- 5 Freier, S. M., Kierzek, R., Jaeger, J. A., Sugimoto, N., Caruthers, M. H., Neilson, T., and Turner, D. H., 1986. Improved freeenergy parameters for prediction of RNA duplex stability. *Proc. Natl. Acad. Sci. USA* 83, 9373–9377.
- Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J., 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in *Drosophila* cells. *Nature* 404, 293–296.
- Limmer, S., Hofmann, H.-P., Ott, G., and Sprinzl, M., 1993. The 3'-terminal end (NCCA) of tRNA determines the structure and stability of the aminoacyl acceptor stem. *Proc. Natl. Acad. Sci. USA* 90, 6199–6202.
- 10 Montgomery, M. K. and Fire, A., 1998. Double-stranded RNA as a mediator in sequence-specific genetic silencing and cosuppression. *Trends Genet.* 14, 255–258.
- Montgomery, M. K., Xu, S., and Fire, A., 1998. RNA as a target of double-stranded RNA-mediated genetic interference in *Caenorhabditis elegans*. *Proc. Natl. Acad. Sci. USA* 95, 15502–15507.
- 15 Ue-Tei, K., Zenno, S., Miyata, Y., and Saigo, K., 2000. Sensitive assay of RNA interference in *Drosophila* and Chinese hamster cultured cells using firefly luciferase gene as target. *FEBS Lett.* 479, 79–82.
- Zamore, P. D., Tuschl, T., Sharp, P. A., and Bartel, D. P., 2000. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. *Cell* 101, 25–33.

Patentansprüche

- 20 1. Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle umfassend die folgenden Schritte:
Einführen mindestens eines Oligoribonukleotids (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,
wobei das Oligoribonukleotid (dsRNA I) eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur komplementär zum Zielgen ist,
und wobei zumindest ein Ende (E1) des Oligoribonukleotids (dsRNA I) einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist.
- 25 2. Verfahren nach Anspruch 1, wobei zumindest ein Ende (E1, E2) zumindest ein nicht nach Watson & Crick gepaartes Nukleotid aufweist.
- 30 3. Verfahren nach einem der vorhergehenden Ansprüche, wobei beide Enden (E1, E2) ungepaarte Nukleotide aufweisen.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Ende (E1) das 3'-Ende eines Strangs der doppelsträngigen Struktur ist.
- 35 5. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest ein weiteres, vorzugsweise entsprechend dem Oligoribonukleotid (dsRNA I) nach einem der vorhergehenden Ansprüche ausgebildetes, Oligoribonukleotid (dsRNA II) in die Zelle eingeführt wird,
wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur des Oligoribonukleotids (dsRNA I) komplementär zu einem ersten Bereich (B1) des Zielgens ist,
40 und wobei ein Strang (S2) oder zumindest ein Abschnitt des Strangs (S2) der doppelsträngigen Struktur des weiteren Oligoribonukleotids (dsRNA II) komplementär zu einem zweiten Bereich (B2) des Zielgens ist.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das weitere Oligoribonukleotid (dsRNA II) eine doppelsträngige aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist.
- 45 7. Verfahren nach einem der Ansprüche 1 bis 5, wobei das Oligoribonukleotid (dsRNA I) und/oder das weitere Oligoribonukleotid (dsRNA II) eine doppelsträngige aus weniger als 25 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist/en.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinandergrenzen.
- 50 9. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabstandet sind.
10. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Zelle vor dem Einführen des/der Oligoribonukleotids/e (dsRNA I, dsRNA II) mit Interferon behandelt wird.
- 55 11. Verfahren nach einem der vorhergehenden Ansprüche, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) in micellare Strukturen, vorzugsweise in Liposomen, eingeschlossen wird/werden.
12. Verfahren nach einem der vorhergehenden Ansprüche, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) in virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen eingeschlossen wird/werden.
- 60 13. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 des Sequenzprotokolls aufweist.
14. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.
- 65 15. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmoidien, exprimiert wird.
16. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.
17. Verfahren nach Anspruch 16, wobei das Virus ein humanpathogenes Virus oder Viroid ist.
- 65 18. Verfahren nach Anspruch 17, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

DE 101 00 586 C 1

19. Verfahren nach einem der vorhergehenden Ansprüche, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind. 5
20. Verfahren nach einem der vorhergehenden Ansprüche, wobei die doppelsträngige Struktur durch eine chemische Verknüpfung der beiden Stränge stabilisiert wird.
21. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird. 10
22. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden (E1, E2) gebildet ist.
23. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicooxy-1,3-propandiol)- und/oder Polyethylenglycol-Ketten sind. 10
24. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Purinanaloge gebildet wird.
25. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet wird. 15
26. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet wird.
27. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen. 20
28. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet wird.
29. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt wird. 25
30. Verfahren nach einem der vorhergehenden Ansprüche, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden. 30
31. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.
32. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält. 35
33. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.
34. Verfahren nach einem der vorhergehenden Ansprüche, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist/sind. 35
35. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.
36. Verwendung eines Oligoribonukleotids (dsRNA I) zur Hemmung der Expression eines Zielgens in einer Zelle, wobei das Oligoribonukleotid (dsRNA I) eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur komplementär zum Zielgen ist, und wobei zumindest ein Ende (E1) des Oligoribonukleotids (dsRNA I) einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist. 40
37. Verwendung nach Anspruch 36, wobei zumindest ein Ende (E1, E2) zumindest ein nicht nach Watson & Crick gepaartes Nukleotid aufweist.
38. Verwendung nach einem der Ansprüche 36 oder 37, wobei beide Enden (E1, E2) ungepaarte Nukleotide aufweist. 45
39. Verwendung nach einem der Ansprüche 36 bis 38, wobei das Ende (E1) das 3'-Ende eines Strangs der doppelsträngigen Struktur ist.
40. Verwendung nach einem der Ansprüche 36 bis 39, wobei zumindest ein weiteres, vorzugsweise entsprechend dem Oligoribonukleotid (dsRNA I) nach einem der vorhergehenden Ansprüche ausgebildetes, Oligoribonukleotid (dsRNA II) in die Zelle eingeführt wird, wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur des Oligonukleotids komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei ein Strang (S2) oder zumindest ein Abschnitt des Strangs (S2) der doppelsträngigen Struktur des weiteren Oligonukleotids (dsRNA II) komplementär zu einem zweiten Bereich (B2) des Zielgens ist. 50
41. Verwendung nach einem der Ansprüche 36 bis 40, wobei das weitere Oligoribonukleotid eine doppelstängige aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist. 55
42. Verwendung nach einem der Ansprüche 36 bis 40, wobei das Oligoribonukleotid und/oder das weitere Oligoribonukleotid eine doppelstängige aus weniger als 25 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist/en.
43. Verwendung nach einem der Ansprüche 36 bis 42, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinandergrenzen. 60
44. Verwendung nach einem der Ansprüche 36 bis 43, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabstandet sind.
45. Verwendung nach einem der Ansprüche 36 bis 44, wobei die Zelle vor dem Einführen des/der Oligoribonukleotids/e mit Interferon behandelt wird. 65
46. Verwendung nach einem der Ansprüche 36 bis 45, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) in micellare Strukturen, vorzugsweise in Liposomen, eingeschlossen wird/werden.
47. Verwendung nach einem der Ansprüche 36 bis 46, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) in

DE 101 00 586 C 1

virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen eingeschlossen wird/werden.

48. Verwendung nach einem der Ansprüche 36, bis 47, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 des Sequenzprotokolls aufweist.

5 49. Verwendung nach einem der Ansprüche 36 bis 48, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.

50. Verwendung nach einem der Ansprüche 36 bis 49, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmoidien, exprimiert wird.

51. Verwendung nach einem der Ansprüche 36 bis 50, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

10 52. Verwendung nach Anspruch 51, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

53. Verwendung nach Anspruch 52, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

54. Verwendung nach einem der Ansprüche 36 bis 53, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

15 55. Verwendung nach einem der Ansprüche 36 bis 54, wobei die doppelsträngige Struktur durch eine chemische Verknüpfung der beiden Strände stabilisiert wird.

56. Verwendung nach einem der Ansprüche 36 bis 55, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

20 57. Verwendung nach einem der Ansprüche 36 bis 56, wobei die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden (E1, E2) gebildet ist.

58. Verwendung nach einem der Ansprüche 36 bis 57, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Polyethylenglycol-Ketten sind.

25 59. Verwendung nach einem der Ansprüche 36 bis 58, wobei die chemische Verknüpfung durch Purinanaloge gebildet ist.

60. Verwendung nach einem der Ansprüche 36 bis 59, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet ist.

61. Verwendung nach einem der Ansprüche 36 bis 60, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloge gebildet ist.

30 62. Verwendung nach einem der Ansprüche 36 bis 61, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.

63. Verwendung nach einem der Ansprüche 36 bis 62, wobei die chemische Verknüpfung durch in der Nähe der Enden des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet wird.

35 64. Verwendung nach einem der Ansprüche 36 bis 63, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen gebildet ist.

65. Verwendung nach einem der Ansprüche 36 bis 64, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben ist.

40 66. Verwendung nach einem der Ansprüche 36 bis 65, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

67. Verwendung nach einem der Ansprüche 36 bis 66, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

45 68. Verwendung nach einem der Ansprüche 36 bis 67, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

69. Verwendung nach einem der Ansprüche 36 bis 68, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

70. Verwendung nach einem der Ansprüche 36 bis 67, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

50 71. Oligoribonukleotid (dsRNA I) mit einer doppelsträngigen aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildeten Struktur, wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur komplementär zu einem Zielgen ist, wobei zumindest ein Ende (E1) des Oligoribonukleotids (dsRNA I) einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist, und wobei die Sequenz des Zielgens eine der Sequenzen SQ001 bis SQ140 des Sequenzprotokolls ist.

55 72. Oligoribonukleotid nach Anspruch 71, wobei zumindest ein Ende (E1, E2) zumindest ein nicht nach Watson & Crick gepaartes Nukleotid aufweist.

73. Oligoribonukleotid nach einem der Ansprüche 71 und 72, wobei beide Enden (E1, E2) ungepaarte Nukleotide aufweisen.

74. Oligoribonukleotid nach einem der Ansprüche 71 bis 73, wobei das Ende (E1) das 3'-Ende eines Strangs oder beider Strände der doppelsträngigen Struktur ist.

60 75. Oligoribonukleotid nach einem der Ansprüche 71 bis 74, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.

76. Oligoribonukleotid nach einem der Ansprüche 71 bis 75, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmoidien, exprimiert wird.

65 77. Oligoribonukleotid nach einem der Ansprüche 71 bis 76, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

78. Oligoribonukleotid nach Anspruch 77, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

79. Oligoribonukleotid nach Anspruch 17, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus

oder Viroid ist.

80. Oligoribonukleotid nach einem der Ansprüche 71 bis 79, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind. 5
81. Oligoribonukleotid nach einem der Ansprüche 71 bis 80, wobei die doppelsträngige Struktur durch eine chemische Verknüpfung der beiden Stränge stabilisiert ist. 5
82. Oligoribonukleotid nach einem der Ansprüche 71 bis 81, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswchselwirkungen, oder durch Metall-Ionenkoordination gebildet ist. 10
83. Oligoribonukleotid nach einem der Ansprüche 71 bis 82, wobei die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden gebildet ist. 10
84. Oligoribonukleotid nach einem der Ansprüche 71 bis 83, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Polyethylenglycol-Ketten sind. 10
85. Oligoribonukleotid nach einem der Ansprüche 71 bis 84, wobei die chemische Verknüpfung durch Purinanaloga gebildet ist. 15
86. Oligoribonukleotid nach einem der Ansprüche 71 bis 85, wobei die chemische Verknüpfung durch Azabenzol-einheiten gebildet ist. 15
87. Oligoribonukleotid nach einem der Ansprüche 71 bis 86, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet ist. 20
88. Oligoribonukleotid nach einem der Ansprüche 71 bis 87, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen. 20
89. Oligoribonukleotid nach einem der Ansprüche 71 bis 88, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet ist. 25
90. Oligoribonukleotid nach einem der Ansprüche 71 bis 89, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt ist. 25
91. Oligoribonukleotid nach einem der Ansprüche 71 bis 90, wobei die Oligoribonukleotid (dsRNA I, dsRNA II) an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben ist. 30
92. Oligoribonukleotid nach einem der Ansprüche 71 bis 91, wobei das Hüllprotein vom Polyomavirus abgeleitet ist. 30
93. Oligoribonukleotid nach einem der Ansprüche 71 bis 92, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/ oder das Virus-Protein 2 (VP2) des Polyomavirus enthält. 35
94. Oligoribonukleotid nach einem der Ansprüche 71 bis 93, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist. 35
95. Oligoribonukleotid nach einem der Ansprüche 71 bis 94, wobei die Oligoribonukleotid (dsRNA I, dsRNA II) zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist. 35
96. Oligoribonukleotid nach einem der Ansprüche 71 bis 95, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) in micellare Strukturen, vorzugsweise in Liposomen, eingeschlossen ist. 40
97. Oligoribonukleotid nach einem der Ansprüche 71 bis 96, wobei das/die Oligoribonukleotid/e (dSRNA I, dsRNA II) in virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen eingeschlossen wird/werden. 40
98. Kit umfassend
mindestens ein Oligoribonukleotid (dsRNA I) nach einem der vorhergehenden Ansprüche und
mindestens ein weiteres Oligoribonukleotid (dsRNA II) mit einer doppelsträngigen aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildeten Struktur, wobei ein Strang oder zumindest ein Abschnitt des Strangs der doppelsträngigen Struktur komplementär zum Zielgen ist,
und/oder
Interferon. 45
99. Kit nach Anspruch 98, wobei zumindest ein Ende (E1) des weiteren Oligoribonukleotids (dsRNA II) zumindest einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist. 50

Hierzu 1 Seite(n) Zeichnungen

55

60

65

Fig. 1a

Fig. 1b

Fig. 1c

Fig. 2