5

10

15

20

CLAIMS

- 1. Process for making high-performance polyethylene multifilament yarn comprising the steps of
 - a) making a solution of ultra-high molar mass polyethylene in a solvent;
 - b) spinning of the solution through a spinplate containing a plurality of spinholes into an air-gap to form fluid filaments, while applying a draw ratio DR_{fluid};
 - c) cooling the fluid filaments to form solvent-containing gel filaments;
 - d) removing at least partly the solvent from the filaments; and
 - e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DR_{solid},

characterized in that in step b) a fluid draw ratio $DR_{fluid} = DR_{sp} \times DR_{ag}$ of at least 50 is applied, wherein DR_{sp} is the draw ratio in the spinholes and DR_{ag} is the draw ratio in the air-gap, with DR_{sp} greater than 1 and DR_{ag} at least 1.

- 2. Process according to claim 1, wherein the spinplate contains at least 100 spinholes.
- 3. Process according to claim 1 or 2, wherein the spinhole has a geometry comprising a contraction zone, with a gradual decrease in diameter from diameter D₀ to D_n with a cone angle in the range 8-75°, and wherein the spinhole comprises a zone of constant diameter D_n with a length/diameter ratio L_n/D_n of from 0 to at most 25 downstream of a contraction zone.
- 4. Process according to any one of claims 1-2, wherein the cone angle is from 10 to 60°.
- 25 5. Process according to any one of claims 1-3, wherein the draw ratio in the spinholes is at least 5.
 - 6. Process according to claim 5, wherein the draw ratio in the spinholes is at least
- 7. Process according to any one of claims 1-5, wherein the spinhole further
 30 comprises a zone of constant diameter D_n downstream of a contraction zone,
 this zone having a length/diameter ratio L_n /D_n of at most 20.
 - 8. Process according to claim 6, wherein the ratio L_n / D_n is at most 15.
- 9. Process according to any one of claims 1-7, wherein the spinhole further comprises an inflow zone of constant diameter of at least D_0 , with a ratio L_0 / D_0 of at least 5.

WO 2005/066400 PCT/NL2004/000031

10. Process according to claim 8, wherein the ratio L_0 / D_0 is at least 10.

5

20

- 11. Process according to any one of claims 1-10, wherein a spinplate comprising at least 10 spinholes, each cylindrical spinhole having a inflow zone of constant diameter D_0 with L_0 / D_0 at least 10, a contraction zone with cone angle in the range 10-60°, and a downstream zone of constant diameter D_n with L_n / D_n at most 15 is applied.
- 12. Process according to any one of claims 1-10, wherein the fluid draw ratio DR_{fluid} applied to fluid filaments is at least 100.
- 13. Process according to any one of claims 1-11, wherein a 3-15 mass% solution of linear UHPE of IV 15-25 dl/g is spun through a spinplate containing at least 10 spinholes into an air-gap, the spinholes comprising a contraction zone with a cone angle in the range 10-60° and comprising a zone of constant diameter D_n with a length/diameter ratio L_n / D_n smaller than 10 downstream of a contraction zone, while applying a fluid draw ratio DR_{fluid} = DR_{sp} x DR_{ag} of at least 100 and a draw ratio DR_{solid} of between 10 and 30.
 - 14. Spinplate comprising at least 10 spinholes of geometry as defined in any one of claims 3-13.
 - 15. Spinplate according to claim 14 containing at least 100 spinholes.