MCT6, MCT61, MCT62, MCT66 MCT6X, MCT61X, MCT62X, MCT66X

APPROVALS

• UL recognised, File No. E91231 Package Code " FF "

'X'SPECIFICATIONAPPROVALS

- VDE 0884 in 3 available lead form:-
 - -STD
 - -Gform
 - SMD approved to CECC 00802

DESCRIPTION

The MCT6, MCT61, MCT62 & MCT66 series of optically coupled isolators consist of infrared light emitting diodes and NPN silicon photo transistors in space efficient dual in line plastic packages mounted two channels per unit.

FEATURES

Options:
 10mm lead spread - add G after part no.

 Surface mount - add SM after part no.
 Tape&reel - add SMT&R after part no.

• High Isolation Voltage (5.3kV_{RMS})

APPLICATIONS

- Computer terminals
- Industrial systems controllers
- Measuring instruments
- Signal transmission between systems of different potentials and impedances

ABSOLUTEMAXIMUMRATINGS (25°C unless otherwise specified)

Storage Temperature ______ -40°C to +125°C Operating Temperature _____ -25°C to +100°C Lead Soldering Temperature (1/16 inch (1.6mm) from case for 10 secs) 260°C

INPUTDIODE

Forward Current	50mA
Reverse Voltage	6V
Power Dissipation	70mW

OUTPUTTRANSISTOR

Collector-emitter Voltage BV _{CEO}	30V
Emitter-collector Voltage BV _{ECO}	6V
Collector Current	50mA
Power Dissipation	150mW

POWERDISSIPATION

Total Power Dissipation	170mW
(derate linearly 2.67mW/°C above 25°C))

ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1UD Tel: (01429) 863609 Fax: (01429) 863581

1777/08 DB92012

ELECTRICAL CHARACTERISTICS ($\rm T_{A} = 25^{\circ}C$ Unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V_F)			1.5	V	$I_F = 20 \text{mA}$
	Reverse Current (I_R)			10	μΑ	$V_R = 3V$
Output	$ \begin{array}{l} Collector-emitter Breakdown (BV_{CEO}) \\ Emitter-collector Breakdown (BV_{ECO}) \\ Collector-emitter Dark Current (I_{CEO}) \end{array} $	30 6		100	V V nA	$I_{C} = 1 \text{mA (note 2)}$ $I_{E} = 100 \mu \text{A}$ $V_{CE} = 10 \text{V}$
Coupled	Current Transfer Ratio (CTR) (Note 2) MCT6 MCT61 MCT62 MCT66	20 50 100 6			% % % %	$\begin{array}{c} 10 \mathrm{mAI_F}, 10 \mathrm{VV_{CE}} \\ 5 \mathrm{mAI_F}, 5 \mathrm{VV_{CE}} \\ 5 \mathrm{mAI_F}, 5 \mathrm{VV_{CE}} \\ 10 \mathrm{mAI_F}, 10 \mathrm{VV_{CE}} \end{array}$
	$\label{eq:continuous} \begin{aligned} & \text{Collector-emitter Saturation Voltage V}_{\text{CESAT}} \\ & & \text{MCT6,61,62} \\ & & \text{MCT66} \end{aligned} \\ & \text{Input to Output Isolation Voltage V}_{\text{ISO}} \\ & \text{Input-output Isolation Resistance R}_{\text{ISO}} \\ & \text{Output Rise Time, tr} \\ & \text{Output Fall Time, tf} \end{aligned}$	5300 5x10 ¹⁰	4 3	0.4 0.4	V V V V M	$16\text{mAI}_{\text{F}}, 2\text{mAI}_{\text{C}}$ $40\text{mAI}_{\text{F}}, 2\text{mAI}_{\text{C}}$ See note 1 $V_{\text{Io}} = 500\text{V (note 1)}$ $I_{\text{C}} = 2\text{mA}, V_{\text{CE}} = 2\text{V},$ $R_{\text{L}} = 100\Omega (\text{Fig. 1})$

Note 1 Measured with input leads shorted together and output leads shorted together.

Note 2 Special Selections are available on request. Please consult the factory.

DB92012m-AAS/A4

Collector Power Dissipation vs. Ambient Temperature

Collector Current vs. Collector-emitter Voltage

Forward Current vs. Ambient Temperature

Relative Current Transfer Ratio vs. Forward Current

Relative Current Transfer Ratio vs. Ambient Temperature

Collector-emitter Saturation Voltage vs. Ambient Temperature

