USING ATTENTION FOR SPEECH RECOGNITION

Attention ASR at a Glance

Attention ASR at a Glance

Attention ASR at a Glance

Network defines $p(Words|Audio; \Theta)$ where Θ are parameters.

Training uses gradient optimization

"Language model" RNN Generates text letter-by-letter

Alignment model:
Attention mechanism

"Acoustic model"
Convolutional and
recurrent layers

Speech features Mel spectrogram

Attention Mechanism in Action

Challenges

- Overconfidence.
- Long sequences and repetitions.
- Language model integration and coverage.

Overconfidence

Ground truth, total log probability -25

Beam search result: total log probability -3.7

Key Observations

- Accurate next-step predictions:
 99.9% train/96% test
- Overconfidence:
 p(first guess) >> p(second guess)
- A "second guess" of the net costs as much as several "first guess" predictions
 - Beam search ineffective at large beams
 - Very hard to balance decoding costs (e.g. LM)

A Simple Experiment

After training, tweak SoftMax temperature

SoftMax(Y) =
$$\frac{\exp(Y_i/T)}{\sum_j \exp(Y_j/T)}$$

Training With 1-hot Labels

The cross-entropy cost for one utterance

$$-\sum_{i=1}^{N} \sum_{c} [Y_i = c] \log p_{\Theta}(Y_i | Y_{\leq i}, X_i)$$

- When model is 99% accurate...
- The only way to reduce cost is to make $p_{\Theta}(Y_i|Y_{< i},X_i)$ a Dirac delta...

Training With Label Smoothing

- Introduced in Inception V2 (arXiv:1512.00567)
- Change the cost to:

$$-\frac{1}{N}\sum_{i=1}^{N}\sum_{c=1}^{C}\mathbf{T}(Y_{i}, \mathbf{c})\log p_{\Theta}(Y_{i}|X_{i})$$

• $T(Y_i, c)$ is a smoothing distribution, e.g.

$$T(Y_i, c) = \begin{cases} \beta, & \text{when } Y_i = c \\ \frac{1 - \beta}{C - 1}, & \text{otherwise} \end{cases}$$

• Even better: smooth the $1-\beta$ according to class marginal probabilities (unigrams)

Effects of Label Smoothing

- Reduces overconfidence and regularizes
- Also prevents gradient vanishing:
 - Without smoothing SoftMax derivative is $p_{\Theta}(Y_i|X_i) [Y_i = c]$
 - This vanishes when $p_{\Theta}(Y_i|X_i) \approx 1$
 - Effectively the model stops training on correctly classified characters

Label Smoothing vs Other Regularizers

At a high level, all regularizers want to forbid large changes of output for small changes of input.

E.g. weight decay

- Label smoothing may be easier to use:
 - Easy to say how smooth the output should be
 - Hard to say how large the weights should be

Effects of Label smoothing

- Regularization (next character accuracy increase 96% -> 97%)
- Increase of neg log-probability of best predictions -> other costs easier to balance

SoftMax Temperature and Label Smoothing

• Temperature tweaking no longer needed:

Trouble With Long Sequences

A simple experiment:

- 1. Train a network as usual.
- 2. Concatenate test utterances a few times.
- 3. Decode as usual.

Performance drops dramatically.

On long utterances decoding completely fails.

Investigation of Long Inputs

The setup:

- concatenate utterances
- do force alignment (feed the correct inputs)

Typical result

Our hypothesis: the net learns an implicit location encoder. It is not robust to long utterances.

Location-aware Attention

- We want to separate repetitions of the same sound
- Use the selection from the last step to make the new selection
- This enables the model to learn concepts like "later than last" or "close to last".

Location-aware attention helps

Decoding error rate increases from 18% to 20%

- One more "trick": constrain the attention mechanism to select only few frames
 - Keep up to K with highest scores
 - Limit selection to the vicinity of previous one

Chorowski et al., "Attention-based models for speech recognition", NIPS 2015

Decoding With Language Models

Extend the beam search cost

$$\hat{Y} = \arg\min_{Y} - \log p_{\Theta}(Y|X) - \alpha p_{LM}(Y)$$

Transcript	LM cost	Model cost	
	$\log p(y)$	$\log p(y x)$	
"chase is nigeria's registrar and the	-108.5	-34.5	Ground truth
society is an independent organi-			
zation hired to count votes"			
"in the society is an independent	-64.6	-19.9	Decoded
organization hired to count votes"			
"chase is nigeria's registrar"	-40.6	-31.2	Severe Transcript Truncation
"chase's nature is register"	-37.8	-20.3	
""	-3.5	-12.5	

Promoting long transcripts

Seems easy:

$$\widehat{Y} = \arg\min_{Y} - \log p_{\Theta}(Y|X) - \alpha p_{LM}(Y) - \beta |Y|$$

Problem: if any sequence of characters is cheap and the cost becomes negative, the model will keep repeating itself...

Coverage Criterion

Force decoding of all frames, but prevent looping.

coverage =
$$\sum_{f} [\sum_{i} \alpha_{fi} > \tau]$$

Can't loop: a frame is counted at most once

BEYOND SIMPLE SPEECH RECOGNITION

Speech-to-text translation

Seq2seq model

Multitask Learning, or Exploit All Data

Share weights of the decoder, separate encoders

Multitask Learning, or Exploit All Data

Share weights of the encoder, separate decoders

Seq2seq Speech Translation: Attention

- recognition attention very confident
- translation attention smoothed out across many spectrogram frames for each output character
 - o ambiguous mapping between Spanish speech acoustics and English text

Seq2seq Speech Translation: Attention

- speech recognition attention is mostly monotonic
- translation attention reorders input: same frames attended to for "vive aqui" and "living here"

Weiss, Chorowski et al., Sequence-to-Sequence Models Can Directly Translate Foreign Speech, INTERSPEECH 2017

Seq2seq Speech Translation: Example attention

translation model attends to the beginning of input (i.e. silence) for the last few letters in each word

o already made a decision about word to emit, just acts a language model to spell it out.

End-to-end systems in NLP: How to parse sentences?

For constituency parsing: Treat parsing as a sequence-to-sequence problem:

- Input: sentence "Go."
- Output: linearized parse tree: "(S (VP XX)VP .)S END"

O. Vinyals et al, "Grammar as a Foreign Language", NIPS 2015

Dependency parsing

- Desired output: directed edges between words.
- At each step the attention selects a few words.
- Idea: use the selection weights as pointers.

Chorowski et al. "Read, Tag, and Parse All at Once, or Fully-neural Dependency Parsing", arxiv https://arxiv.org/pdf/1609.03441

Dependency parsing

For each word *w*Two operations:

- 1. Find head *h* (use attention mechanism)
- 2. Use (w, h) to predict dependency type

From characters to word embeddings

Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, "Character-Aware Neural Language Models," arXiv:1508.06615 [cs, stat], Aug. 2015.

From characters to parse trees

Reader reads orthographic representations of words and is sensitive to morphemes. Tagger puts words into context

Parser finds the dependency edges.

Jabberwocky (Lewis Carroll)

Twas brillig and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.

Żabrołak (Stanisław Barańczak)

```
Brzdęśniało już
                            ślimonne
                                             prztowie
                       qub adj:sg:nom:n:pos
         praet:sg:n:perf
                                           subst:sg:nom:n
                                                      gulbieży
  Wyrło
                                  się
             i warło
                                           W
             conj praet:sg:n:imperf qub prep:acc:nwok
                                                    subst:pl:acc:m3
praet:sg:n:perf
            Zmimszałe
                              ćwiły
                                          borogowie
          adj:pl:acc:m3:pos
                          praet:pl:f:imperf subst:pl:nom:m1
                      grdypały z
            rcie
                                                    mrzerzy
                    praet:pl:f:imperf prep:gen:nwok
        subst:pl:nom:n
                                                  subst:sg:gen:f
```

<u>Underlined</u> words are neologisms, green are correct!

Multilingual Grammatical Relations

Polish word	Closest russian embedings
przedwrześniowej	адренергической тренерской таврической
	непосредственной археологической
	философской <i>верхнюю</i>
większych	автомобильных <i>трёхдневные</i> технических
	практических официальных оригинальных
policyjnym	главным историческим глазным непосре-
	дственным <i>косыми</i> летним двухсимвольным

- Green Russian words have similar grammatical function to Polish words.
- -ской (skoy) and -нной (nnoy) quite distant from polish —owej (ovey).
- 3-letter -ych paired with 2 letter -ых