Deep Learning Essentials

Agenda

- 1. Quick intro to python data structures and control structures, functions (with hands on exercise) 15-20 mins
- 2.Quick intro to NumPy and basic NumPy capabilities, with quick hands-on exercise 20 mins
- 3.Linear Regression using NumPy (theory on Linear Regression with Hands-on exercise) 30 mins
- 4. Exploratory Data Analysis on Housing Dataset (Basic plotting) 30min
- 5.Closed form Linear Regression on Housing Dataset using scikit-learn 30min
- 6.Gradient Descent Linear Regression on Housing Dataset using PyTorch (but without GPU support) 10min

Plan for the afternoon

Time	Activity
14:00 – 14:30	Introduction (30')
14:30 – 15:45	Work session in groups (1h15) - 45min intro - 30min hands-on linear regression
15:45 – 16:00	Break
16:00 – 17:00	Work session in groups (1h)

Schedule

Event No.	Details	
Event 1	Deep Learning Essentials	
1st Nov 2024	Covers the basics of Python and necessary packages required for Deep Learning such as numpy, scipy, pandas etc.	
Event 2	Deep Learning for Regression and Classification	
8th Nov 2024	Will cover the basics of PyTorch, as well as how to use PyTorch for performing regression and classification tasks.	
Event 3	Deep Learning for Images	
TBD – Sem 2 – 2024-25	In this event, we will extend the classification using deep learning, specifically focusing on datasets involving images.	
Event 4	Deep Learning for Sequence Data (text and time series)	
TBD – Sem 2 – 2024-25	In this event, we will focus on using Deep Learning models for datasets involving sequences or temporal relations. We plan to cover examples from both text and time-series datasets.	
Event 5	Reinforcement Learning	
TBD – Sem 2 – 2024-25	This session will introduce Deep Reinforcement Learning techniques with some practical applications.	
NTLL DL b catagoria		

About Hackathon

Hackathon

Hackathon Prizes

• Winner: SGD 300

• Runner Up : SGD 150

• Honorable Mention: SGD 50

• Participation Prizes: 10 x Starbucks / FairPrice vouchers

Team Setup

- The hackathon is open to individuals who have attended at least 3 out of 4 sessions of the DL Bootcamp.
- Teams can be formed on the spot or come prepared with a pre-established group.
- Each team must comprise of min 4 to max 5 members.

What is Deep Learning?

- Machine learning: learn from examples or data
- Deep Learning: use artificial neural networks: weight * variable + some non-linear layer

$$y = \sigma \left(W_L \dots \sigma \left(W_2 \sigma (W_1 x) \right) \right)$$

Deep Learning

https://cdn-images-1.medium.com/max/2400/1*1mpE6fsq5LNxH31xeTWi5w.jpeg

Why Deep Learning?

- Find hidden patterns in a lot of data (high-dimensional, complex, etc.)
- Many applications, open models
 - Material properties prediction
 - Protein folding: see AlphaFold
 - Text generation/Natural Language Processing: ChatGPT
 - Image generation: DALLE, MidJourney, etc.
 - Computer Vision: ImageNet, image segmentation, detect face in phone, etc.

•

Deep Fakes...

Your interest

Examples

You

suggest a simple dataset to use to predict material property using deep

ChatGPT

For predicting material properties using deep learning, you might conside Materials Project database, which provides extensive information on var Let's formulate this as a regression problem, where we aim to predict a number property (e.g., band gap) based on certain features.

Dataset:

Materials Project Database - Band gap prediction.

Mathematical Formulation:

Given a dataset with N samples, where each sample is represented by a X_i and the corresponding material property (band gap) y_i , the goal is to mapping function f such that $f(X_i) \approx y_i$.

Python Code (using PyTorch):

python

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset

ML 101

- Approximate a function $y = f(x; \theta)$
 - x: image pixels; y: classes (dog, cat)
 - x: house size; y: house price
 - θ are the parameters

- Classification: discrete categories
- Regression: continuous categories

Pro & Cons of DL

Pro	Cons
 Can learn features & representations easily Ability to process a lot of data Flexible framework Maps well into parallel hardware (GPU and others) 	 Hard to understand and build intuition of why the model works: explainability and interpretability Requires a lot of data and expensive hardware.

ML workflow

https://www.coursera.org/learn/ml-foundations?specialization=machine-learning

Python 101: Why Python?

• A lot of libraries for ML/DL: PyTorch, scikit-learn, pandas, numpy

• Easy to learn, simple syntax

• Interactive notebooks: Jupyter Notebook, Kaggle, Google Collab

• Free & open-source

NTU DL bootcamp

15

Python 101: Basic features

```
Train:
                   Data
Data
         Function
                        def vowel_count(word):
                             vowels = ["a", "e", "i", "o", "u"]
                Data
                             count = 0
       count
                             for char in word: # loops
                                 if char in vowels: # conditions
                                     count += 1
                             return count
                        vowel_count("hello")
```

```
MyModel: Class
```

my_model: Data1 params: Data2

...

Train: Function1
Test: Function2

..

Google Colab: Our tool for today

Can you open the notebooks?

18

Work session 1.0

Handling numbers & data: numpy

Numpy is library for handling array, vector & matrices

- Provide all keys operations in arrays
 - Creation : a = np.array([[1, 2, 3], [4, 5, 6]])
 - Add/subtract/multiply: a + b, a b, a * b, ...
 - Dot product and matrix multiplication: a @ b
 - Slicing: *a*[1]=> [4,5,6]

Plotting: matplotlib

 Matplotlib is the Python library used to plot data

 You can create easily different types of plots (scatter plot, histogram, X-Y plot), add legend and different details.

Work Session 1.1

Linear Regression

Linear regression makes predictions about the linear relationship between the input variable x (contrast) and the output variable y (neural response).

We are not considering the intercept for simplicity, resulting in a one-parameter model.

Linear Regression: MSE

$$\min_{ heta} rac{1}{N} \sum_{i=1}^{N} (y_i - heta x_i)^2$$

Mean Squared Error (MSE)

MSE computes the average error between the model prediction $\,\hat{y}\,$ and the true $\,y.$

24

Work session 2

Housing data exploration

Let's explore a housing data

Relevant plots

- Linear regression model
 - Scikit-learn
 - PyTorch

Deep Learning & Pytorch

Pytorch one of the most popular libraries for deep learning

- Components of a DL model:
 - The model itself: the structure of the model
 - A loss function (error metric)
 - An optimization algorithm
 - The training loop

References / Reading

- Python introduction: https://swcarpentry.github.io/python-novice-inflammation/
- More on scientific python: https://lectures.scientific-python.org/
- https://deeplearning.neuromatch.io/
- NeuroMatch Academy: <u>https://deeplearning.neuromatch.io/tutorials/W1D1_BasicsAndPytorch/chapter_title.html</u>
- Exploratory computing w/ Python: https://mbakker7.github.io/exploratory computing with python/

NTU DL bootcamp

28

Please provide your feedback!

