PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10310783 A

(43) Date of publication of application: 24 . 11 . 98

(51) Int. CI

C10J 3/00 B09B 3/00

B09B 3/00

(21) Application number: 09137420

(22) Date of filing: 13 . 05 . 97

(71) Applicant: EBARA CORP

(72) Inventor: FUJIMURA HIROYUKI FUJINAMI SHOSAKU

TAKANO KAZUO IRIE MASAAKI HIROSE TETSUHISA NAGATOU SHIYUUICHI

OSHITA TAKAHIRO

(54) HIGH-TEMPERATURE GASIFICATION OF WASTE AND SYSTEM THEREFOR

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a method for the high-temperature gasification of wastes and a system therefor, intended to solve various problems including environmental pollution associated with waste dumping activities through collectively treating various wastes and afford a combustible gas predominant in carbon monoxide and hydrogen.

SOLUTION: This method comprises as follows: wastes are subjected to primary gasification in a fluidized bed oven 4, the resultant gaseous product and solid product are introduced into a melting furnace 6 where they are subjected to secondary gasification at high temperatures to obtain a gas as combustible component predominant in hydrogen and carbon monoxide; wherein both the primary and secondary gasifications are carried out under an elevated pressure of 5-50 atg, the fluidized bed oven is of internal circulation type, while the melting furnace of revolving type, the internal temperature of the fluidized bed oven is 750-950°C, the gas to be fed for gasification is prepared by adding steam to either air, oxygen-enriched air or oxygen (pref.

oxygen-enriched air or oxygen), and the internal temperature of the melting furnace is 1,200-1,600°C.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-310783

(43)公開日 平成10年(1998)11月24日

(51) Int.Cl. ⁶ C 1 0 J B 0 9 B	3/00 3/00	識別記号 ZAB	F I C 1 0 J 3/00 A B 0 9 B 3/00 ZAB 3 0 2 G 3 0 2 F
			審査請求 未請求 請求項の数14 FD (全 12 頁)
(21)出願番号		特願平9-137420	(71)出願人 000000239 株式会社荏原製作所
(22)出顧日		平成9年(1997)5月13日	東京都大田区羽田旭町11番1号 (72)発明者 藤村 宏幸 東京都大田区羽田旭町11番1号 株式会社 崔原製作所内
			(72)発明者 藤並 晶作 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内
·			(72)発明者 高野 和夫 東京都大田区羽田旭町11番1号 株式会社 在原製作所内
			(74)代理人 弁理士 吉嶺 桂 (外1名) 最終頁に続く

(54) 【発明の名称】 廃棄物の高温ガス化方法及び装置

(57)【要約】

【課題】 各種廃棄物を一括処理して、投棄に伴う環境 破壊等の諸問題を解決し、一酸化炭素、水素主体の可燃 性ガスを得る廃棄物の高温ガス化方法と装置を提供す る。

【解決手段】 廃棄物を流動層炉4で一次ガス化し、得られるガス状物と固体状物を溶融炉6に導入して高温で二次ガス化し、可燃成分として水素、一酸化炭素主体のガスを得ることを特徴とする廃棄物の高温ガス化方法としたものであり、前記一次ガス化と二次ガス化は5~50 a t g の加圧下に行い、また前記流動層炉は、内部循環式流動層炉を、溶融炉は旋回式溶融炉を用い、前記流動層炉は、内部温度が750~950℃で、ガス化のための送入ガスは空気、酸素富活空気、酸素のいずれかにスチームを添加して用い、前記溶融炉は、内部温度が1200~1600℃で、ガス化のための送入ガスは酸素富活空気又は酸素のいずれかにスチームを添加して用いるのがよい。

【特許請求の範囲】

【請求項1】 廃棄物を流動層炉で一次ガス化し、得られるガス状物と固体状物を後段の溶融炉で二次ガス化し、可燃成分として水素(H₂)、一酸化炭素(CO)主体のガスを得る廃棄物の高温ガス化方法において、前記流動層炉は、流動層部の温度を750~950℃として、該一次ガス化を5~50 a t gの加圧下で行うことを特徴とする廃棄物の高温ガス化方法。

【請求項2】 前記溶融炉は、内部温度を1200~1 600℃として、前記二次ガス化を5~50atgの加 10 圧下で行うことを特徴とする請求項1記載の廃棄物の高 温ガス化方法。

【請求項3】 前記流動層炉は、流動媒体を層内にて強制的に循環させる内部循環式流動層炉であることを特徴とする請求項1記載の廃棄物の高温ガス化方法。

【請求項4】 前記溶融炉は、内部に渦流が形成される 旋回式溶融炉であることを特徴とする請求項1記載の廃 棄物の高温ガス化方法。

【請求項5】 前記流動層炉へ供給する廃棄物は、低カロリー廃棄物と高カロリー廃棄物の混合割合を調整したものであることを特徴とする請求項1記載の廃棄物の高温ガス化方法。

【請求項6】 前記廃棄物は、石炭、オイルコークス等の性状の安定した補助原料を同時に用いることを特徴とする請求項1記載の廃棄物の高温ガス化方法。

【請求項7】 前記一次ガス化は、空気、酸素富活空気、酸素のいずれかにスチームを添加した含酸素ガスを送入してガス化し、前記二次ガス化は、酸素富活空気、酸素のいずれかにスチームを添加した含酸素ガスを送入してガス化することを特徴とする請求項1記載の廃棄物 30の高温ガス化方法。

【請求項8】 前記一次ガス化と二次ガス化に送入する 含酸素ガス中の全酸素量が、廃棄物の完全燃焼に必要な 理論量の0.3~0.6の範囲内であることを特徴とす る請求項7記載の廃棄物の高温ガス化方法。

【請求項9】 前記一次ガス化に送入する含酸素ガス中の酸素量が、廃棄物の完全燃焼に必要な理論量の0.1 ~0.3の範囲内であることを特徴とする請求項7記載の廃棄物の高温ガス化方法。

【請求項10】 前記二次ガス化に送入する含酸素ガス 40 中の酸素量が、廃棄物の完全燃焼に必要な理論量の0. 3~0. 5の範囲内であることを特徴とする請求項7記 載の廃棄物の高温ガス化方法。

【請求項11】 前記流動層炉は、廃棄物中の金属の大部分を酸化を受けない状態で回収することを特徴とする請求項1記載の廃棄物の高温ガス化処理方法。

【請求項12】 前記溶融炉は、供給される固体状物中の灰分を溶融スラグ化し、ガス状物中のダイオキシン類及びその前駆体をほぼ完全に分解することを特徴とする請求項1記載の廃棄物の高温ガス化方法。

【請求項13】 前記得られた水素、一酸化炭素主体のガスが、発電、工業用燃料ガス、或いはアンモニア、メタノール等化学工業原料の合成用として用いることを特徴とする請求項1記載の廃棄物の高温ガス化方法。

【請求項14】 廃棄物を比較的低温で一次ガス化する ための流動層炉と、得られるガス状物と固体状物を比較 的高温にて二次ガス化し、可燃成分として水素、一酸化 炭素主体のガスを得る溶融炉を有することを特徴とする 廃棄物の高温ガス化装置。

0 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、廃棄物のガス化に係り、特に、廃棄物を低温次いで高温でガス化することにより、スラグ、金属等の有用物並びに化学工業原料又は燃料となるガスを回収する廃棄物の高温ガス化方法と装置に関する。

[0002]

【従来の技術】従来、都市ごみ、廃タイヤ、下水汚泥、産業スラッジの相当割合が専用の焼却設備により、また、し尿や高濃度廃水が専用の廃水処理設備により処理されてきたが、依然として多くの産業廃棄物が未処理のまま投棄されており、環境を汚染している。一方、従来の焼却法に代わる新たな環境保全型の廃棄物処理技術として、ガス化と高温燃焼を組み合わせた「ガス化燃焼システム」の開発が各社により行われている。本ガス化燃焼システムの開発において先行しているものに、前段のガス化炉に堅型シャフト炉を用いた方式(以下、S方式)とロータリーキルン炉を用いた方式(以下、R方式)がある。

【0003】S方式では、ガス化炉内に乾燥・予熱ゾー ン (200~300℃) 、熱分解ゾーン (300~10 00℃)、燃焼・溶融ゾーン(1500℃以上)が上か ら順に層状に形成され、炉上部より投入された廃棄物と コークスは、より下方のゾーンで発生した高温の生成ガ スと熱交換しながら炉内を下降する。炉内を上昇した生 成ガスは後段の燃焼炉に供給され、約900℃で燃焼さ れる。熱分解ゾーンで生成した炭化物は、装入されたコ ークスとともに溶融・燃焼ゾーンに下降し、羽口から供 給された酸素富活空気により高温燃焼し、灰分と無機物 の全量を溶解する。R方式では、廃棄物は破砕処理後、 髙温空気により外熱されたドラム型の回転炉に供給さ れ、約450℃でゆっくり時間をかけて熱分解ガス化さ れる。この時生成する炭化物はガス化炉から排出され、 発火しない温度まで間接的に水冷される。次いで、微粉 砕された炭化物は、後段の旋回式溶融炉に供給され、ガ ス化炉からの生成ガスとともに1300℃で高温燃焼す ることにより、灰分を溶融スラグ化する。

【0004】これら2方式の課題について述べる。S方式のシャフト炉は、1700~1800℃の溶融ゾーンがガス化炉底部に存在するため、コークス等副資材や酸

素富活空気の使用が避けられず、このため運転費が上昇 する。また、コークス等の燃焼のため、二酸化炭素の排 出量が増加するといった問題もある。さらに、廃棄物中 の金属のほぼ全量が溶融されるため、金属毎に地金とし てリサイクル利用することが出来ない。本方式のガス化 炉は固定床炉というタイプに属するが、形状が様々な廃 棄物を層状に積み上げ、しかも最下部に燃焼・溶融ゾー ンがあるため、安定した運転が困難である。何故なら、 固定床炉ではガスを層内に均一に流すこと、すなわち通 気性の確保が極めて重要であるが、廃棄物の形状の多様 10 性からこれが難しく、ガスの吹き抜けや偏流が起きやす い。コークスの添加は、補助燃料の他にこうした通気性 の確保目的もあるが、十分とは言えず、ガス流量や炉内 圧の変動は抑え難い。また、発生ガスの全量が1000 ℃を越える高温域を通過するわけではないので、ダイオ キシン類やフラン類を完全に分解することは難しい。

【0005】一方、R方式のガス化炉は、高温空気を用いた外熱式の回転炉のため、伝熱が良くなく、従って炉の著しい大型化が避けられなかった。また、熱分解により生じたタールや未分解物が伝熱面を覆うため、伝熱が20悪化するといった問題があった。さらに、600℃にも達する高温空気を排ガスとの熱交換により得ることは、熱交換器の材料上にも無理があった。一方、生成する炭化物は、回転炉からガスと別に取り出し、微粉砕してから燃焼炉に供給し、回転炉から直接供給されるガスとともに高温燃焼させる。このため、排出、冷却、粉砕、貯留、供給といった炭化物用のハンドリング設備が必要となる。こうしたハンドリング中に炭化物の保有する熱が冷却や放熱により失われることは、エネルギー利用上好ましくない。なお、炭化物を冷却しないと、空気と接触30して発火する恐れがある。

【0006】この他にも、新たな廃棄物処理技術とし て、廃棄物をガス化した後に髙温燃焼してダイオキシン 類を分解するとともに灰分を溶融スラグ化する方法が各 種提案されている。しかしながら、ケミカルリサイクル の観点から、アンモニアやメタノールの合成を目的とし て、ガス化により水素、一酸化炭素を主成分とする可燃 性ガスを回収する技術は、今だに実用化されていない。 代表的な化学工業原料であるアンモニア(NH₃)から は硝酸、各種肥料(硝安、硫安、尿素)、アクリロニト リル、カプロラクタム等が、大量生産されている。アン モニアは窒素 (N₂) と水素 (H₂) から高圧下で触媒 を用いて合成されるが、水素は天然ガス、ナフサなどの スチームリフォーミングか、石油、石炭、石油コークス などの部分燃焼、いわゆるガス化により得られている。 【0007】水素は、メタノールの合成、水素化脱硫、 水素化分解、油脂の水素化、溶接にも用いられる。水素 原料の多くは海外から輸入されるため、二度にわたる石 油ショック以降、水素から得られる化学工業製品、特に

ため、安価でしかも自国内で調達可能な水素の原料が待望外しかった。一酸化炭素(CO)はガソリン、アルコール、有機酸、エステルなどの合成に用いられる。一酸化炭素も石炭やコークス等のガス化により得られ、水素と同様にこれら原料の多くは海外に依存しているため、安価で国内調達可能なものが待望されてきた。

[0008]

【発明が解決しようとする課題】本発明は、上記従来技術に鑑み、運転操作が容易で安全性に優れ、しかも熱効率が高く、発電あるいは工業用の燃料ガス並びに化学工業原料として用いられる水素、一酸化炭素主体の合成ガスを得るための廃棄物の高温ガス化方法及び装置を提供することを課題とする。

[0009]

【課題を解決するための手段】上記課題を解決するために、本発明では、廃棄物を流動層炉で一次ガス化し、得られるガス状物と固体状物を後段の溶融炉で二次ガス化し、可燃成分として水素、一酸化炭素主体のガスを得る廃棄物の高温ガス化方法において、前記流動層炉は、流動層部の温度を750~950℃として、一次ガス化を5~50atgの加圧下で行うことを特徴とする廃棄物の高温ガス化方法としたものである。上記方法において、流動層炉は、内部循環式流動層炉を用いるのが良く、また溶融炉は旋回式溶融炉を用いるのが良く、両者を併用して用いるのが最適であり、そして、溶融炉の内部温度は1200~1600℃として、前記二次ガス化を5~50atgの加圧下で行うのが良い。

【0010】前記の本発明で用いる流動層炉は、流動層 部の温度等を検知して、低カロリー廃棄物と高カロリー 廃棄物の混合割合を調整する制御方法を採ることがで き、また、用いる廃棄物に一定割合で石炭、オイルコー クス等の補助原料を加えてカロリー調整することが可能 である。また、前記流動層での一次ガス化は、ガス化の ために送入する含酸素ガスを空気、酸素富活空気、酸素 のいずれかにスチームを添加したものとするのが良く、 また、溶融炉での二次ガス化は、ガス化のために送入す る含酸素ガスを酸素富活空気、酸素のいずれかにスチー ムを添加したものとするのが良く、これらの送入する含 酸素ガスは、トータルとして含有する酸素量が、廃棄物 を完全燃焼させるに必要な理論量の0.3~0.6の範 囲とし、このうち一次ガス化に用いる流動層炉に供給す る酸素量は、理論量の0.1~0.3、二次ガス化に用 いる溶融炉に供給する酸素量は、同じく理論量の0.3 ~ 0.5 の範囲とするのが好ましい。

などの部分燃焼、いわゆるガス化により得られている。 【0007】水素は、メタノールの合成、水素化脱硫、 水素化分解、油脂の水素化、溶接にも用いられる。水素 原料の多くは海外から輸入されるため、二度にわたる石 油ショック以降、水素から得られる化学工業製品、特に アンモニア工業製品は国際競争力を失うに至った。この 50 また、流動層炉は、内部が還元雰囲気であるため、廃棄

30

40

物中の金属を未酸化状態で回収することができる。さら に、本発明では、廃棄物を750~950℃で一次ガス 化する流動層炉と、得られるガス状物と固体状物をその まま導入して1200~1600℃で二次ガス化し、可 燃成分として一酸化炭素、水素主体のガスを得る溶融炉 とを有する廃棄物の高温ガス化装置としたものである。

【0012】本発明で用いる流動層炉としては、流動層 部とフリーボード部を有し、流動層部の温度を750~ 950℃として用い、また、用いる旋回式溶融炉は、燃 焼室とスラグ分離室からなり、燃焼室でガス状物と固体 状物が送入する含酸素ガスと共に旋回流を形成して高温 ガス化し、溶融スラグ化した灰分はスラグ分離室でガス と分離して冷却される。本発明で用いる内部循環式流動 層炉とは、流動層中の流動媒体に強力な旋回流を形成さ せたもので、該旋回流は、流動層中に供給される流動化 ガスの線速度を部分的に強弱の違いを持たせることによ り生じさせる。従って、単なるバブリング式流動層と異 なり廃棄物の分散、破砕の機能に優れ、外部循環式流動 層のように複雑で大型化することもなく、加圧型として 用いるに容易な形態・構成が容易である。

【発明の実施の形態】以下、本発明を詳述する。本発明 では、都市ごみ、固形化燃料(RDF)、スラリー化燃 料 (SWM) 、バイオマス廃棄物、プラスチック廃棄物 (含FRP) 、自動車廃棄物(シュレッダーダスト、廃 タイヤ)、家電廃棄物、特殊廃棄物(医療廃棄物等)、 下水汚泥、し尿、高濃度廃液、産業スラッジ、選炭廃棄 物といった発熱量、水分率、形状が大きく異なる廃棄物 を用いることができるが、これらを適当に組合せて用い ることも可能である。ここで、固形化燃料、RDF(Re fuse-derived Fuel)は、都市ごみを破砕選別後圧縮成形 したものであり、スラリー化燃料、SWM (Solid Wate r Mixture)は、都市ごみを破砕後水スラリー化し、高圧 下で水熱分解により油化したものである。また、FRP は、繊維強化プラスチックのことであり、選炭廃棄物 は、選炭時に出るボタのようなものである。

【0014】これらの廃棄物は、初めに流動層炉に供給 されて一次ガス化されるが、特にこの流動層炉に内部循 環式流動層炉を採用することにより、廃棄物は細破砕程 度の前処理で供給することが可能となる。その理由は、 流動媒体の強力な旋回運動により、投入廃棄物の拡散、 混合が良好となり、また、大きなサイズの不燃物も排出 可能となるためである。こうした流動媒体の旋回運動の 効果については後述する。廃棄物のうち、都市ごみ、バ イオマス廃棄物、プラスチック廃棄物、自動車廃棄物等 は30cm程度に粗粉砕して用いる。水分率の高い下水 汚泥とし尿は、専用の処理場にてベルトプレス、遠心脱 水機等を用いて脱水ケーキとした後に、本プラントサイ トまで輸送する。固形化燃料、スラリー化燃料、高濃度 廃液はこのまま使用する。補助原料として加える石炭、

オイルコークスは、10mm以下に破砕して用いる。

【0015】上記廃棄物は、廃棄物自身の低位発熱量に より高カロリー廃棄物と低カロリー廃棄物に大別され る。一般的には、都市ごみ、固形化燃料、スラリー化燃 料、プラスチック廃棄物、自動車廃棄物、家電廃棄物は 前者であり、バイオマス廃棄物、特殊廃棄物(医療廃棄 物等)、下水汚泥/し尿の脱水ケーキ、高濃度廃液は後 者に属する。これらを、高カロリー廃棄物用ピット、低 カロリー廃棄物用ピット、タンクにそれぞれ受け入れ、 各々のピットやタンクにて十分攪拌・混合し、適宜ガス 化炉に供給する。廃棄物中に混入した金属はガス化炉内 に入っても、融点が流動層温度より高ければ未酸化状態 で回収される。従って、回収された金属は種類毎に地金 として利用が可能である。

【0016】また、投入廃棄物の質が一定であれば、投 入廃棄物とガス化のために送入するガスいわゆるガス化 剤の量比は一定となるが、投入廃棄物に占める低カロリ 一廃棄物の割合が増えたり、全体の水分率が高くなった りすると、流動層炉のガス化温度は所定値から下降す 20 る。こうした時には、投入廃棄物中の低カロリー廃棄物 と高カロリー廃棄物の量比を調整することにより、投入 廃棄物の発熱量を一定に保つことが、後段のガス利用の 上から望ましい。あるいは、発熱量の高い石炭等の補助 原料の割合を増して投入廃棄物のカロリー調整をするこ ともできる。

【0017】次に、本発明で用いる流動層炉について説 明する。この流動層炉を一次ガス化に用いる点が、本発 明の特徴となっている。流動層炉自体は、既に公知のも のであるが、可燃性ガスを得るために流動層炉と溶融炉 を組合せて用いることは従来技術と異なる点である。石 炭を微粉炭あるいは水スラリーとして高温ガス化する技 術は既に公知のものとなっているが、廃棄物の場合は微 粉砕することが石炭ほど容易でない。特に金属、ガレ キ、石のような不燃物を含有する場合は、ほとんど不可 能といえる。ところが、流動層炉を用いれば、廃棄物を バルクの状態で熱分解ガス化することができ、可燃性の ガス状物(ガス、タール)と固体状物(チャー)が生成 する。これらは、できれば混合した状態で後段の溶融炉 に送って高温で二次ガス化することが望ましい。

【0018】本発明で使用する流動層炉としては、公知 の加圧型の流動層炉、例えば用いる廃棄物の性状等を勘 案してバブリング型流動層炉等が考えられるが、特に、 本発明により考案された内部循環式流動層炉を用いるの が好適である。内部循環式流動層炉は、炉の水平断面を 円形とし、炉底中央部に比較的緩慢な流動層、炉底周辺 部に比較的活発な流動層を形成し、流動層の表面近傍の 内壁沿いに内側に傾斜した傾斜壁を設けて、流動媒体の 流れを周辺部から中央部へ転向することにより、炉底中 央部の緩慢流動層中を流動媒体が流動化しつつ下降し、 50 炉底周辺部の活発流動層中を流動媒体が流動化しつつ上 昇し、流動層下部にて流動媒体が中央部から周辺部へ、 流動層上部にて流動媒体が周辺部から中央部へ流動化し つつ移動するような流動媒体の活発な旋回運動を生ぜし める流動層部を有するものである。

【0019】こうした特殊な流動層をガス化に用いた時の特長を以下に記す。

- ① 生成するチャーが流動層上に堆積せず、流動層内に 均一に分散されるため、特に活発流動層におけるチャー の酸化が効率良く行える。チャーの酸化により発生する 熱は、流動媒体に伝えられ、中央部の緩慢流動層におけ 10 る熱分解ガス化の熱源として利用される。
- ② 流動層表面では、傾斜壁によって上昇する運動を転向された流動媒体が、中央部で激しく衝突するため、チャーが微粉砕される。流動媒体に硬い珪砂を用いることにより、微粉砕はさらに促進される。
- ③ 緩慢流動層での流動媒体の下降運動に伴う呑み込み作用により、固形廃棄物は細破砕程度の処理で供給することが出来る。このため、破砕設備を省略することが出来、破砕用の電力を低減出来る。

【0020】④ 流動媒体の旋回運動により、細破砕程度の前処理を施した廃棄物の投入の結果生ずる粗大な不燃物でも、容易に排出出来る。

⑤ 流動層内全域における流動媒体の旋回運動により、 発生する熱が拡散されるため、焼結物やクリンカーによ るトラブルを回避出来る。

通常用いられるバブリング型流動層の場合、流動媒体は 均一に流動化されるものの、横方向の分散はあまり良く ない。従って、上述の①~⑤において、本発明の内部循 環式流動層の方が通常用いられるバブリング流動層より 優ることは明らかである。

【0021】本発明で用いる流動層炉は、流動層温度を750~950℃としている。これに対し、廃棄物の完全燃焼(常圧下)を目的とする「ガス化燃焼システム」では、流動層温度は450~650℃としている。これはガス化反応の緩慢な進行とアルミニウムの回収を目的とするからである。ところが、加圧下のガス化では、圧力の上昇分だけ流動層単位容積当たりの原料供給量が増すため、ガス化の反応速度を上げてやる必要がある。このために、流動層温度を750~950℃としているのであるが、このため融点が660℃であるアルミニウムの回収は断念せざるを得ない。なお、この温度範囲の上限は、アグロメ(流動媒体の塊状化現象)の問題で決められる。

【0022】流動層炉の流動層へガス化のために送入する含酸素ガス(ガス化剤)は、空気、酸素富活空気、酸素のいずれかにスチームを添加したものとし、また、流動媒体としては砂(硅砂、オリビン砂など)、アルミナ、鉄粉、スラグ粒、砕石等を使用する。炉のフリーボードには送入ガスの供給は行わない。流動層炉での一次ガス化の際に生成するチャーは流動層中で粉砕されて微50

粉状となるため、ガスに同伴してそのまま溶融炉に導入 される。一方、流動層部は還元雰囲気であるため、廃棄 物中の金属の大部分を有用な未酸化の状態で取出せる。 ただし、回収出来る金属は、その融点が流動層温度以下 のものに限られる。

【0023】このように、廃棄物の一次ガス化に流動層 炉を用いることにより、多様な廃棄物の処理が可能で、しかも処理能力が高く、スケールアップが容易となる。また、機械的な駆動部が無く、温度等の調整操作が容易で、熱媒体との間の伝熱が良い。さらに、流動層炉として内部循環式流動層炉を用いると、廃棄物の無破砕処理が可能となるとともに、流動層内で炭化物が効率良く粉砕されてチャーとなること、流動層内でのチャーの分散が良いためガス化効率の高いこと、層内温度が均一に保たるためクリンカーの生成が抑えられること等の利点がある。

【0024】次に、溶融炉について説明する。溶融炉 は、流動層炉から導入されるガス状物 (ガス、タール) と固体状物 (チャー) を送入する含酸素ガス等のガス化 剤と接触させることにより、1200~1600℃の高 20 温で二次ガス化し、タール、チャーや炭化水素を完全に ガス化するとともに、含有する灰分を溶融スラグとして 炉底より排出するものである。溶融炉としては、テキサ コ炉のように上部から吹き込むタイプも使用できるが、 好ましくは、ガス状物と固体状物がガス化のための送入 ガスと共に燃焼室中に旋回渦流を形成しながら高温ガス 化して、灰分を溶融スラグ化し、溶融したスラグを連続 的に排出できる旋回式溶融炉を用いるのが良い。旋回式 溶融炉を用いれば、高負荷・高速燃焼が可能となるため 炉のコンパクト化が図れ、ガスの滞留時間分布が狭くな るためにカーボン転換率が上昇し、しかも、旋回流によ る遠心力作用により、スラグミスト捕集率を高くでき る。

【0025】溶融炉へのガス化のために送入する含酸素 ガスは、酸素富活空気、酸素のいずれかにスチームを添 加したものとすることができる。送入する含酸素ガス中 の酸素量は、廃棄物を完全燃焼させるために必要な理論 酸素量の0.3~0.5の範囲とするのがよい。そし て、流動層炉、溶融炉への全送入ガス中の酸素量は、理 論燃焼酸素量の0.3~0.6とする。こうして、溶融 炉から、低カロリー(1000~1500kcal/N m³ (dry)) から中カロリー (2500~4500 k c a 1 / Nm³ (d r y)) の燃料ガスを得ることが できる。これらのガス中には、可燃成分としてCO、H ₂が主体的に含まれる。廃棄物からCO、H₂主体のガ スを得、発電、工業用の燃料ガスあるいは化学工業原料 の合成用とすることは本発明の優れた特徴といえる。後 段の溶融炉で流動層炉から導出されるチャー中の灰分を スラグ化することにより、有害な重金属はスラグ中に封 じ込められ、溶出しなくなる。また、1200~160

0℃という高温により、ダイオキシン類とその前駆体並 びにPCB等はほぼ完全に分解される。

【0026】次に図1を参照して、得られたガスの性状と利用方法を述べる。利用方法を大別すると、エネルギー利用するサーマルリサイクルと化学工業原料に供するケミカルリサイクルがある。5~50atgの加圧状態で得られる可燃性ガスの用途には、ガスタービンを用いた複合サイクル発電とか、工業用燃料ガスとしての利用がある。あるいは、水素、メタン(SNG)、メタノール等アルコール類、ガソリン製造用の合成ガスとしての10利用がある。

【0027】水素は、合成ガスをCO転化後、脱CO2 により得られる。メタンは、CO転化によりCO/Hz 比を調整後、メタン化反応により得られる。メタノール は、CO転化後メタノール合成反応により得られる。メ タノールとエタノール以上の高級アルコールの混合物 は、アルコール合成反応により得られる。ガソリンは、 南アフリカ連邦のサゾールで実施されているように、フ イッシャートロプシュ反応により合成される。このよう に、対象とする廃棄物の質と量、並びに建設地の条件、 目的生成物などを考慮して最適なプロセスを選定するこ とが必要である。次に、スラグの利用について言及す る。廃棄物を原料とすると、得られるスラグ中の塩素量 は100mg/kg以下となるため、ポルトランドセメ ントの原料とすることができる。回収されるスラグに は、水砕スラグと徐冷スラグがあるが、路盤材、骨材、 透水材等の土木建築用資材、あるいは園芸用資材として 利用出来る。

[0028]

【実施例】以下、本発明を図面を用いて具体的に説明す 30 る。

実施例1

図2に、本発明の高温ガス化方法に用いる装置の一例の 概略構成図を示す。図2は、高圧(5~50atg)の 合成ガスを製造する実施例であり、図2において、1は ロックホッパシステム、2はホッパー、3はスクリュー フィーダ、4は流動層炉、5は流動層部、6は旋回式溶 融炉で、7は一次燃焼室、8は二次燃焼室、9はスラグ 分離室、10は廃熱ボイラ、11はスクラバー、aは廃 棄物、bは酸素、cはスチーム、dは不燃物、eは一次 40 ガス化ガス、e'は二次ガス化ガス、fはスラグ、f' は飛灰、gは生成ガスを示す。

【0029】廃棄物 a は、均一に混合後、ロックホッパーシステム 1 を経て、ホッパー 2 に投入される。次いで、スクリューフィーダ 3 により流動層炉 4 に定量供給される。流動層炉 4 の炉底には流動化ガスとして酸素 b とスチーム c の混合ガスが供給される。流動層炉 4 の流動層部 5 に落下した廃棄物は、 $750\sim950$ ℃に保持された流動層内で酸素とスチームからなる送入ガスと接触し、速やかに熱分解ガス化される。これにより、ガ

10

【0030】流動層炉4の流動層部5は還元雰囲気のため、原料中の金属のうち融点が流動層温度より高いものは、未酸化でクリーンな状態でガレキ、石、ガラス等とともに不燃物dとして炉底から排出される。このため、金属地金として再利用が可能となる。溶融炉6を出たガスは、廃熱ボイラ10でスチームcを回収後、NaOH水溶液を用いたスクラバー11で冷却・洗浄され、ダスト及びCO転化触媒を被毒するガス中のHC1等が除かれる。こうして、精製された生成ガスgが得られる。本ガスは工業用燃料ガスにも用いることが出来るが、この場合CO転化の必要は無いので、スクラバー11は簡略なもので済む。得られたH2、CO、CO2とH2Oから成るガスは化学工業原料用の合成ガスとして使用される。

【0031】次に、図3に示す流動層炉と溶融炉の拡大 図を用いて詳述する。なお、圧力条件は実施例1と同じ く5~50atgである。図3において、図2と同じ符 号は同じ名称を表し、12はフリーボード、13はバー ナ、14はトロンメル、15はバケットコンベア、16 はバーナである。図から明らかなように、一次ガス化に 用いられる流動層炉4は、既に説明した内部循環式流動 層炉と呼ばれるもので、流動媒体は中央部で流動化しつ つ下降し、周辺部で流動化しつつ上昇する旋回運動を行 っている。ロックホッパー1を介してホッパー2に供給 された廃棄物aと石炭jは、スクリュー式の定量供給装 置3を用いて流動層炉4に供給される。流動層炉4の下 方からは酸素 b とスチーム c の混合ガスが流動化ガスと して挿入され、分散板上に硅砂の流動層5が形成され る。廃棄物 a と石炭 j は流動層 5 の中央部に投入され、 750~950℃に保持された流動層5内に呑み込まれ つつ流動化ガス中の酸素と接触し、速やかに熱分解ガス 化される。流動媒体の旋回運動により、サイズの大きな 不燃物でも炉底に堆積することなく流動層部から排出さ れる。流動層炉4の炉底からはロックホッパ (図示せ ず)を介して流動媒体の硅砂が不燃物とともに排出さ れ、トロンメル14により粗大不燃物 d が分離される。 【0032】分離された硅砂hはバケットコンベア15

50 により上方へ搬送された後、ロックホッパ (図示せず)

を介して流動層炉4に戻される。不燃物 d 中には金属が 含まれるが、リサイクル可能な未酸化の状態で回収でき る。流動層5での一次ガス化によりガス、タール、チャ ーが生成する。ガスとタールは、気化して炉内を上昇す る。チャーは流動層5の旋回運動により微粉砕される。 チャーは多孔質で軽いため、生成ガスの上向きの流れに 同伴される。流動媒体に固い硅砂トを用いることで、チャーの粉砕は促進される。

【0034】実施例2

図4は、旋回式溶融炉に別の形式を用いた5~50atgの合成ガスを得るための別の実施例である。図4において、流動層炉は内部循環式流動層炉4を用いており、供給された廃棄物aより生成するチャーは、流動層上に堆積せず流動層内に均一に分散され、チャーの微粉化・ガス化が促進される。本タイプの流動層炉では、廃棄物は破砕粒度を大きくでき、サイズの大きい不燃物も排出が可能である。また、発生熱の拡散に秀れているためクリンカートラブルが少ない等の特長を有する。流動層炉4を出た生成ガスeは、旋回式溶融炉6の燃焼室7に供給され、供給された酸素bと旋回流中で混合しながら、1200~1600℃の高温で二次ガス化する。二次ガス化により生成したガスはスラグとともにスラグ分離室9に導かれ、水槽20に貯えられた水中に直接吹き込まれることにより急冷、洗浄される。

【0035】実施例3

図5は、別の形式の旋回式溶融炉を用いた実施例であり、5~50atgの合成ガスを得るためのものであ *40

*る。旋回式溶融炉6のスラグ分離室9には、輻射ボイラ 19が設置され、一旦水面近くまで下降したガスは水管 の裏側を通って排出されるようになっている。輻射ボイ ラ19内では、ガスの流れと重力の方向が一致するため、壁に付着したスラグは、大きく成長することなく落下する。また、流れ落ちるスラグ自身の熱も、輻射ボイ ラ19が回収するため、効率が高くなる。さらに、本面近くでガスの流れ方向が90°変化するため、ガス中に 含まれるスラグミストは、その慣性力により、ほとんどが水に捕集される。溶融炉6を出たガス e'は、対流ボイラ21に供給され、熱回収される。なお二次燃焼室8を省いて一次燃焼室7のみとすることも可能である。本 実施例は、発電を目的としたプロセスに適している。

12

【0036】実施例4

以下に図3の構成図における、代表的なテストデータを示す。表1は、ガス化に用いた廃棄物の性状である。これは、通常の都市ごみに石炭を添加してカロリー調整したものである。この廃棄物を、流動層炉にて800℃で一次ガス化し、次いで旋回式溶融炉にて1350℃で二次ガス化した時の結果を、表2~表4に示す。表2はガス化全体の物質収支であり、廃棄物の重量を100としている。ガス化剤としては酸素46とスチーム36が消費される。この結果、生成ガスは112と廃棄物より増えているが、これは主にガス化剤の酸素が加わったためである。表3は同様に両炉の熱収支である。これも廃棄物の燃焼熱を基準の100としているが、生成ガスの燃焼熱より、冷ガス効率は60%であることが判る。

【0037】この冷ガス効率は、時間当りの生成ガスの燃焼熱(高位ベース)の廃棄物の燃焼熱(高位ベース)に対する割合を示している。以上より、可燃性ガス回収を目的とする場合、廃棄物の低位発熱量は、ここで設定した3500kcal/kgをほぼ下限とすることが判る。低位発熱量が3500kcal/kgを上回るほど、冷ガス効率は高くなる。また、炉壁からの熱損失は5.9であるが、これを縮小できれば、冷ガス効率はさらに上昇する。表4は生成ガスの乾ガス組成であり、ガス中の水分はカウントしていない。可燃成分であるH2とCOで77%を占めていることが判る。

[0038]

【表 1 】

30

原料廃棄物の性状

水 分	25% (湿基準)
可燃分	66% (温基準)
灰 分	9% (温基準)
低位発熱量	3,500kcal/kg (温基準)
高位発熱量	5,034kcal/kg (湿基準)

[0039]

【表2】

物質収支

入量 原料廃棄物 酸素 スチーム 出量 生成ガス 水分 不燃物、スラグ	100 (基準) 46 36 112 61 9
---	--

[0040]

【表3】

支収熱

入 熱	原料廃棄物のQ	100 (基準)
ļ	スチームのH	7. 5
出熱	生成ガスのQ	60
	生成ガスのH	16.8
	生成ガス中の水分のH	21.1
	砂の放熱損失+	3. 7
	不燃物、スラグのH	
	炉壁の熱損失	5. 9

① 本熱収支は高位発熱量基準である。 注)

② Q:燃焼熱、

H:エンタルピー 【表4】

[0041]

生成ガスの乾ガス組成

H ₂	47%
co	30%
CO ₂	23%
1	

【0042】実施例5

図6に本発明に用いる他の装置の一例の全体構成図を示 す。図6では、高圧 (20atg程度) で低カロリーの 燃料ガスを製造後、ガスタービンを用いて複合発電を行 なうケースを示す。図6において、32はセラミックフ ィルター、33はガスタービン、34はスチームタービ ン、kは電力、mは排ガス、これ以外は図2と同じであ 50 【0043】この後、生成ガスは廃熱ボイラ10でスチ

る。流動層炉4に空気b″、溶融炉6に酸素富活空気 b′が供給されるため、溶融炉6からの生成ガスは H₂、CO、CO₂、N₂とH₂Oから成る低カロリー ガス (1000~1500kcal/Nm³ (dr y)) となる。流動層炉、溶融炉の温度条件は実施例1 と同じである。

(9)

15

ーム c を回収し、セラミックフィルター32で灰 f'を 分離後、ガスタービン33に供給され、電力kを発生 後、廃熱ボイラ10でスチーム c を回収し、大気放出さ れる。回収されたスチームcは、スチームタービン34 に供給され電力kを発生する。ここでは、生成ガスを高 温のまま脱塵後、ガスタービンに供給する方法を示した が、無論図2と同じように生成ガスを常温で精製してか らガスタービン33に供給することも可能である。ただ し、この方法では発電効率は若干低下する。

[0044]

【発明の効果】本発明は廃棄物を燃料ガスあるいは化学 工業原料用の合成ガスに変換する資源化方法を提供し、 環境保全を維持しつつ資源有価物の回収技術を提供する もので、サーマルリサイクル、マテリアルリサイクル、 ケミカルリサイクルを通じて廃棄物を新たな資源として 活用を計るものである。具体的には、以下の効果を得る ことができる。

① 一次ガス化と二次ガス化を組合せたガス化により廃 棄物を一酸化炭素、水素主体の中カロリーの合成ガスに 変換し、次いでアンモニア、メタノール等の化学工業原 20 一、12:フリーボード、13:バーナ、14、1 料にするというケミカルリサイクルが可能となる。

【0045】② 合成ガス生成の過程で灰分をスラグ化 して無害化することができる。生成スラグは土木建築材 としてマテリアルリサイクルできる。

③ 廃棄物中に含まれる鉄、銅、等の有価金属を未酸化 状態で回収できるためマテリアルリサイクルが可能とな る。

④ 低カロリーの可燃性ガスを回収することにより、ガ スタービン等の燃料あるいは工業用燃料ガスとしてサー マルリサイクルすることも可能である。

⑤ 1200~1600℃という高温度域を経るため、*

*有害なダイオキシン類をほぼ完全に分解できる。

【図面の簡単な説明】

【図1】本発明の処理方法によるガス化利用の全体概念

16

【図2】本発明の処理方法に用いる装置の一例を示す概

【図3】本発明の処理方法に用いる装置の別の一例を示 す概略構成図。

【図4】本発明の処理方法に用いる装置の別の一例を示 10 す概略構成図。

【図5】本発明の処理方法に用いる装置の別の一例を示 す概略構成図。

【図6】本発明の処理方法に用いる装置の別の一例を示 す概略構成図。

【符号の説明】

1:ロックホッパシステム、2:ホッパー、3:スクリ ューフィーダ、4:流動層ガス化炉、5:流動層部、

6:旋回溶融炉で、7:一次燃焼室、8:二次燃焼室、

9:スラグ分離室、10:廃熱ボイラ、11:スクラバ

4′:スクリーン(トロンメル)、15:流動媒体循環 路 (バケットコンベア)、16:バーナ、17、1

7′:ロックホッパー、18:傾斜壁、19:輻射ボイ ラ、20:水槽、21:対流ボイラ、22、22':貯 留槽、32:セラミックフィルター、33:ガスタービ ン、34:スチームタービン

a:廃棄物、b:酸素、b':酸素富化空気、b":空 気、c:水蒸気(スチーム)、d:不燃物、e:低温ガ ス化生成ガス、e':高温ガス化生成ガス、f:溶融ス 30 ラグ、g:合成ガス、h:流動媒体、i:水、j:石 灰、k:電力、m:排ガス

【図5】 【図2】

【図3】

[図4]

【図6】

フロントページの続き

(72)発明者 入江 正昭

東京都大田区羽田旭町11番1号 株式会社

荏原製作所内

(72)発明者 廣勢 哲久

東京都大田区羽田旭町11番1号 株式会社

荏原製作所内

(72)発明者 永東 秀一

東京都大田区羽田旭町11番1号 株式会社

荏原製作所内

(72)発明者 大下 孝裕

東京都大田区羽田旭町11番1号 株式会社

荏原製作所内

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-310783

(43) Date of publication of application: 24.11.1998

(51)Int.CI.

3/00 C10J

B09B 3/00

B09B 3/00

(21)Application number: 09-137420

(71)Applicant: EBARA CORP

(22)Date of filing:

13.05.1997

(72)Inventor: FUJIMURA HIROYUKI

FUJINAMI SHOSAKU

TAKANO KAZUO IRIE MASAAKI HIROSE TETSUHISA NAGATOU SHIYUUICHI **OSHITA TAKAHIRO**

(54) HIGH-TEMPERATURE GASIFICATION OF WASTE AND SYSTEM THEREFOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method for the high-temperature gasification of wastes and a system therefor, intended to solve various problems including environmental pollution associated with waste dumping activities through collectively treating various wastes and afford a combustible gas predominant in carbon monoxide and hydrogen.

SOLUTION: This method comprises as follows: wastes are subjected to primary gasification in a fluidized bed oven 4, the resultant gaseous product and solid product are introduced into a melting furnace 6 where they are subjected to secondary gasification at high temperatures to obtain a gas as combustible component predominant in hydrogen and carbon monoxide; wherein both the primary and secondary gasifications are carried out under an elevated pressure of 5-50 atg, the fluidized bed oven is of internal circulation type, while the melting furnace of revolving type, the internal temperature of the fluidized bed oven is 750-950° C, the gas to be fed

for gasification is prepared by adding steam to either air, oxygen-enriched air or oxygen (pref. either oxygen-enriched air or oxygen), and the internal temperature of the melting furnace is 1,200-1,600° C.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]
[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平10-310783

(43)公開日 平成10年(1998)11月24日

(51) Int.Cl. ⁶ C 1 0 J 3/00 B 0 9 B 3/00	識別記号 ZAB	FI A C10J 3/00 B09B 3/00 ZAB 302G 302F
D •		審査請求 未請求 請求項の数14 FD (全 12 頁)
(21)出願番号	特顏平9-137420	(71)出額人 000000239 株式会社荏原製作所 東京都大田区羽田旭町11番1号
. (22)出願日	平成9年(1997) 5月13日	(72)発明者 藤村 宏幸 東京都大田区羽田旭町11番1号 株式会社 崔原製作所內
		(72)発明者 藤並 晶作 東京都大田区羽田旭町11番1号 株式会社 崔原製作所内
		(72)発明者 高野 和夫 東京都大田区羽田旭町11番1号 株式会 東京都大田区羽田旭町11番1号
		在原数F/7/F7 (74)代理人 弁理士 吉嶽 桂 (外1名) 最終頁に新

(54) [発明の名称] 発棄物の高温ガス化方法及び装置

【課題】 各種廃棄物を一括処理して、投棄に伴う環境 (57)【要約】 破壊等の諸問題を解決し、一酸化炭素、水素主体の可燃 性ガスを得る廃棄物の高温ガス化方法と装置を提供す

【解決手段】 廃棄物を流動層炉4で一次ガス化し、得 られるガス状物と固体状物を溶融炉6に導入して高温で 二次ガス化し、可燃成分として水素、一酸化炭素主体の ガスを得ることを特徴とする廃棄物の高温ガス化方法と したものであり、前記一次ガス化と二次ガス化は5~5 Oatgの加圧下に行い、また前記流動層炉は、内部循 環式流動層炉を、溶融炉は旋回式溶融炉を用い、前記流 動層炉は、内部温度が750~950℃で、ガス化のた めの送入ガスは空気、酸素富活空気、酸素のいずれかに スチームを添加して用い、前記溶融炉は、内部温度が1 200~1600℃で、ガス化のための送入ガスは酸素 富活空気又は酸素のいずれかにスチームを添加して用い るのがよい。

【特許請求の範囲】

【請求項1】 廃棄物を流動層炉で一次ガス化し、得ら れるガス状物と固体状物を後段の溶融炉で二次ガス化 し 可燃成分として水素(H,)、一酸化炭素(CO) 主体のガスを得る廃棄物の高温ガス化方法において、前 記流動層炉は、流動層部の温度を750~950℃とし て、該一次ガス化を5~50atgの加圧下で行うこと を特徴とする廃棄物の高温ガス化方法。

【請求項2】 前記溶融炉は、内部温度を1200~1 600℃として、前記二次ガス化を5~50atgの加 10 【発明の詳細な説明】 圧下で行うことを特徴とする請求項1記載の廃棄物の高 温ガス化方法。

【請求項3】 前記流動層炉は、流動媒体を層内にて強 制的に循環させる内部循環式流動層炉であることを特徴 とする請求項1記載の廃棄物の高温ガス化方法。

【請求項4】 前記溶融炉は、内部に渦流が形成される 旋回式溶配炉であることを特徴とする請求項 1 記載の廃 **棄物の高温ガス化方法。**

【請求項5】 前記流動層炉へ供給する廃棄物は、低力 ものであることを特徴とする請求項1記載の廃棄物の高 温ガス化方法。

【請求項6】 前記廃棄物は、石炭、オイルコークス等 の性状の安定した補助原料を同時に用いることを特徴と する請求項1記載の廃棄物の高温ガス化方法。

【請求項7】 前記一次ガス化は、空気、酸素富活空 気、酸素のいずれかにスチームを添加した含酸素ガスを 送入してガス化し、前記二次ガス化は、酸素富活空気、 酸素のいずれかにスチームを添加した含酸素ガスを送入 してガス化することを特徴とする請求項1記載の廃棄物 30 【0003】S方式では、ガス化炉内に乾燥・予熱ゾー の高温ガス化方法。

【請求項8】 前記一次ガス化と二次ガス化に送入する 含酸素ガス中の全酸素量が、廃棄物の完全燃焼に必要な 理論量の0.3~0.6の範囲内であることを特徴とす る請求項7記載の廃棄物の高温ガス化方法。

【請求項9】 前記一次ガス化に送入する含酸素ガス中 の酸素量が、廃棄物の完全燃焼に必要な理論量の0.1 ~0.3の範囲内であることを特徴とする請求項7記載 の廃棄物の高温ガス化方法。

中の酸素量が、廃棄物の完全燃焼に必要な理論量の0. 3~0.5の範囲内であることを特徴とする請求項7記 載の廃棄物の高温ガス化方法。

【請求項11】 前記流動層炉は、廃棄物中の金属の大 部分を酸化を受けない状態で回収することを特徴とする 請求項1記載の廃棄物の高温ガス化処理方法。

【請求項12】 前記溶融炉は、供給される固体状物中 の灰分を溶融スラグ化し、ガス状物中のダイオキシン類 及びその前駆体をほぼ完全に分解することを特徴とする 請求項1記載の廃棄物の高温ガス化方法。

【請求項13】 前記得られた水素、一酸化炭素主体の ガスが、発電、工業用燃料ガス、或いはアンモニア、メ タノール等化学工業原料の合成用として用いることを特 徴とする請求項1記載の廃棄物の高温ガス化方法。

【請求項14】 廃棄物を比較的低温で一次ガス化する ための流動層炉と、得られるガス状物と固体状物を比較 的高温にて二次ガス化し、可燃成分として水素、一酸化 炭素主体のガスを得る溶融炉を有することを特徴とする 廃棄物の高温ガス化装置。

[0001]

【発明の属する技術分野】本発明は、廃棄物のガス化に 係り、特に、廃棄物を低温次いで高温でガス化すること により、スラグ、金属等の有用物並びに化学工業原料又 は燃料となるガスを回収する廃棄物の高温ガス化方法と 装置に関する。

[0002]

【従来の技術】従来、都市ごみ、廃タイヤ、下水汚泥、 産業スラッジの相当割合が専用の焼却設備により、ま ロリー廃棄物と高カロリー廃棄物の混合割合を調整した 20 た、し尿や高濃度廃水が専用の廃水処理設備により処理 されてきたが、依然として多くの産業廃棄物が未処理の まま投棄されており、環境を汚染している。一方、従来 の焼却法に代わる新たな環境保全型の廃棄物処理技術と して、ガス化と高温燃焼を組み合わせた「ガス化燃焼シ ステム」の開発が各社により行われている。本ガス化燃 焼システムの開発において先行しているものに、前段の ガス化炉に竪型シャフト炉を用いた方式(以下、S方 式) とロータリーキルン炉を用いた方式(以下、R方 式)がある。

ン (200~300℃)、熱分解ゾーン (300~10 00℃)、燃焼・溶融ゾーン (1500℃以上) が上か ら順に層状に形成され、炉上部より投入された廃棄物と コークスは、より下方のゾーンで発生した高温の生成ガ スと熱交換しながら炉内を下降する。炉内を上昇した生 成ガスは後段の燃焼炉に供給され、約900℃で燃焼さ れる。熱分解ゾーンで生成した炭化物は、装入されたコ ークスとともに溶融・燃焼ゾーンに下降し、羽口から供 給された酸素富活空気により高温燃焼し、灰分と無機物 【請求項 10】 前記二次ガス化に送入する含酸素ガス 40 の全量を溶解する。R方式では、廃棄物は破砕処理後、 高温空気により外熱されたドラム型の回転炉に供給さ れ、約450℃でゆっくり時間をかけて熱分解ガス化さ れる。この時生成する炭化物はガス化炉から排出され、 発火しない温度まで間接的に水冷される。次いで、微粉 砕された炭化物は、後段の旋回式溶融炉に供給され、ガ ス化炉からの生成ガスとともに1300°Cで高温燃焼す ることにより、灰分を溶融スラグ化する。

> 【0004】これら2方式の課題について述べる。S方 式のシャフト炉は、1700~1800°Cの溶融ゾーン 50 がガス化炉底部に存在するため、コークス等副資材や酸

素富活空気の使用が避けられず、このため運転費が上昇 する。また、コークス等の燃焼のため、二酸化炭素の排 出量が増加するといった問題もある。さらに、廃棄物中 の金属のほぼ全量が溶融されるため、金属毎に地金とし てリサイクル利用することが出来ない。本方式のガス化 炉は固定床炉というタイプに属するが、形状が様々な廃 棄物を層状に積み上げ、しかも最下部に燃焼・溶融ゾー ンがあるため、安定した運転が困難である。何故なら、 固定床炉ではガスを層内に均一に流すこと、すなわち通 気性の確保が極めて重要であるが、廃棄物の形状の多様 10 性からこれが難しく、ガスの吹き抜けや偏流が起きやす い。コークスの添加は、補助燃料の他にこうした通気性 の確保目的もあるが、十分とは言えず、ガス流量や炉内 圧の変動は抑え難い。また、発生ガスの全量が1000 ℃を越える高温域を通過するわけではないので、ダイオ キシン類やフラン類を完全に分解することは難しい。

【0005】一方、R方式のガス化炉は、高温空気を用いた外熱式の回転炉のため、伝熱が良くなく、従って炉の着しい大型化が避けられなかった。また、熱分解により生じたタールや未分解物が伝熱面を覆うため、伝熱が 20悪化するといった問題があった。さらに、600℃にも達する高温空気を排ガスとの熱交換により得ることは、熱交換器の材料上にも無理があった。一方、生成する炭化物は、回転炉からガスと別に取り出し、微粉砕してから燃焼炉に供給し、回転炉から直接供給されるガスとともに高温燃焼させる。このため、排出、冷却、粉砕、貯留、供給といった炭化物用のハンドリング設備が必要となる。こうしたハンドリング中に炭化物の保有する熱が冷却や放熱により失われることは、エネルギー利用上好ましくない。なお、炭化物を冷却しないと、空気と接触 30して発火する恐れがある。

【0006】この他にも、新たな廃棄物処理技術とし て、廃棄物をガス化した後に高温燃焼してダイオキシン 類を分解することもに灰分を溶融スラグ化する方法が各 種提案されている。しかしながら、ケミカルリサイクル の観点から、アンモニアやメタノールの合成を目的とし て、ガス化により水素、一酸化炭素を主成分とする可燃 性ガスを回収する技術は、今だに実用化されていない。 代表的な化学工業原料であるアンモニア(NH,)から は硝酸、各種肥料(硝安、硫安、尿素)、アクリロニト・40 リル、カプロラクタム等が、大量生産されている。アン モニアは窒素(N、)と水素(H、)から高圧下で触媒 を用いて合成されるが、水素は天然ガス、ナフサなどの スチームリフォーミングか、石油、石炭、石油コークス などの部分燃焼、いわゆるガス化により得られている。 【0007】水素は、メタノールの合成、水素化脱硫、 水素化分解、油脂の水素化、溶接にも用いられる。水素 原料の多くは海外から輸入されるため、二度にわたる石 油ショック以降、水素から得られる化学工業製品、特に アンモニア工業製品は国際競争力を失うに至った。この 50

ため、安価でしかも自国内で調達可能な水素の原料が待望久しかった。一酸化炭素(CO)はガソリン、アルコール、有機酸、エステルなどの合成に用いられる。一酸化炭素も石炭やコークス等のガス化により得られ、水素と同様にこれら原料の多くは海外に依存しているため、安価で国内調達可能なものが待望されてきた。

[0008]

[発明が解決しようとする課題] 本発明は、上記従来技術に鑑み、運転操作が容易で安全性に優れ、しかも熱効率が高く、発電あるいは工業用の燃料ガス並びに化学工業原料として用いられる水素、一酸化炭素主体の合成ガスを得るための廃棄物の高温ガス化方法及び装置を提供することを課題とする。

[0000]

【課題を解決するための手段】上記課題を解決するために、本発明では、廃棄物を流動層炉で一次ガス化し、得られるガス状物と固体状物を後段の溶融炉で二次ガス化し、可燃成分として水素、一酸化炭素主体のガスを得る廃棄物の高温ガス化方法において、前記流動層炉は、流動層部の温度を750~950℃として、一次ガス化を5~50atgの加圧下で行うことを特徴とする廃棄物の高温ガス化方法としたものである。上記方法において、流動層炉は、内部循環式流動層炉を用いるのが良く、また溶融炉は旋回式溶融炉を用いるのが良く、また溶融炉は旋回式溶融炉を用いるのが良く、で、また溶融炉は旋回式溶融炉を用いるのが良く、で、水融炉の内部温度は1200~1600℃として、前記二次ガス化を5~50atgの加圧下で行うのが良い。

【0010】前記の本発明で用いる流動層炉は、流動層 部の温度等を検知して、低カロリー廃棄物と高カロリー 廃棄物の混合割合を調整する制御方法を採ることがで き、また、用いる廃棄物に一定割合で石炭、オイルコー クス等の補助原料を加えてカロリー調整することが可能 である。また、前記流動層での一次ガス化は、ガス化の ために送入する含酸素ガスを空気、酸素富活空気、酸素 のいずれかにスチームを添加したものとするのが良く、 また、溶融炉での二次ガス化は、ガス化のために送入す る含酸素ガスを酸素富活空気、酸素のいずれかにスチー ムを添加したものとするのが良く、これらの送入する含 酸素ガスは、トータルとして含有する酸素量が、廃棄物 を完全燃焼させるに必要な理論量の $0.3\sim0.6$ の範 囲とし、このうち一次ガス化に用いる流動層炉に供給す る酸素量は、理論量の0.1~0.3、二次ガス化に用 いる溶融炉に供給する酸素量は、同じく理論量の0.3 ~0.5の範囲とするのが好ましい。

[0011]前記溶融炉は、灰分を溶融スラグ化するとともに、ダイオキシン類及びその前駆体をほぼ完全に分解することができる。本発明の方法で取得したガスは、5~50atgの高圧であるため、発電あるいは工業用の燃料ガス又は化学工業原料として用いることができ、また、流動層炉は、内部が還元雰囲気であるため、廃棄

物中の金属を未酸化状態で回収することができる。さら に、本発明では、廃棄物を750~950℃で一次ガス 化する流動層炉と、得られるガス状物と固体状物をその まま導入して1200~1600℃で二次ガス化し、可 燃成分として一酸化炭素、水素主体のガスを得る溶融炉 とを有する廃棄物の高温ガス化装置としたものである。 【0012】本発明で用いる流動層炉としては、流動層 部とフリーボード部を有し、流動層部の温度を750~ 950℃として用い、また、用いる旋回式溶配炉は、燃 焼室とスラグ分離室からなり、燃焼室でガス状物と固体 10 状物が送入する含酸素ガスと共に旋回流を形成して高温 ガス化し、溶融スラグ化した灰分はスラグ分離室でガス と分離して冷却される。本発明で用いる内部循環式流動 層炉とは、流動層中の流動媒体に強力な旋回流を形成さ せたもので、該旋回流は、流動層中に供給される流動化 ガスの線速度を部分的に強弱の違いを持たせることによ り生じさせる。従って、単なるバブリング式流動層と異 なり廃棄物の分散、破砕の機能に優れ、外部循環式流動 層のように複雑で大型化することもなく、加圧型として 用いるに容易な形態・構成が容易である。

【発明の実施の形態】以下、本発明を詳述する。本発明では、都市ごみ、固形化燃料(RDF)、スラリー化燃料(SWM)、バイオマス廃棄物、ブラスチック廃棄物(含FRP)、自動車廃棄物(シュレッダーダスト、廃タイヤ)、家電廃棄物、特殊廃棄物(医療廃棄物等)、下水汚泥、し尿、高濃度廃液、産業スラッジ、選炭廃棄物といった発熱量、水分率、形状が大きく異なる廃棄物を用いることができるが、これらを適当に組合せて用いることができるが、これらを適当に組合せて用いることも可能である。ここで、固形化燃料、RDF(Re 30 fuse-derived Fuel)は、都市ごみを破砕選別後圧縮成形したものであり、スラリー化燃料、SWM(Solid Water Mixture)は、都市ごみを破砕後水スラリー化し、高圧下で水熱分解により油化したものである。また、FRP

は、繊維強化プラスチックのことであり、選炭廃棄物

[0013]

は、選炭時に出るボタのようなものである。 【0014】これらの廃棄物は、初めに流動層炉に供給されて一次ガス化されるが、特にこの流動層炉に内部循環式流動層炉を採用することにより、廃棄物は細破砕程度の前処理で供給することが可能となる。その理由は、流動媒体の強力な旋回運動により、投入廃棄物の拡散、混合が良好となり、また、大きなサイズの不燃物も排出可能となるためである。こうした流動媒体の旋回運動の効果については後述する。廃棄物のうち、都市ごみ、バイオマス廃棄物、プラスチック廃棄物、自動車廃棄物は30cm程度に粗粉砕して用いる。水分率の高い下水汚泥とし尿は、専用の処理場にてベルトプレス、遠心脱水機等を用いて脱水ケーキとした後に、本プラント・サースをで輸送する。固形化燃料、スラリー化燃料、高濃度廃液はこのまま使用する。補助原料として加える石炭、 オイルコークスは、10mm以下に破砕して用いる。 【0015】上記廃棄物は、廃棄物自身の低位発熱量により高カロリー廃棄物と低カロリー廃棄物に大別される。一般的には、都市ごみ、固形化燃料、スラリー化燃料、プラスチック廃棄物、自動車廃棄物、家電廃棄物は前者であり、バイオマス廃棄物、特殊廃棄物(医療廃棄物等)、下水汚泥/し尿の脱水ケーキ、高濃度廃液は後者に属する。これらを、高カロリー廃棄物用ビット、タンクにそれぞれ受け入れ、各々のビットやタンクにて十分攪拌・混合し、適宜ガス化炉に供給する。廃棄物中に混入した金属はガス化炉内に入っても、融点が流動層温度より高ければ未酸化状態で回収される。従って、回収された金属は種類毎に地金として利用が可能である。

【0016】また、投入廃棄物の質が一定であれば、投入廃棄物とガス化のために送入するガスいわゆるガス化剤の量比は一定となるが、投入廃棄物に占める低カロリー廃棄物の割合が増えたり、全体の水分率が高くなったりすると、流動層炉のガス化温度は所定値から下降する。こうした時には、投入廃棄物中の低カロリー廃棄物と高カロリー廃棄物の量比を調整することにより、投入廃棄物の発熱量を一定に保つことが、後段のガス利用の上から望ましい。あるいは、発熱量の高い石炭等の補助原料の割合を増して投入廃棄物のカロリー調整をすることもできる。

【0017】次に、本発明で用いる流動層炉について説明する。この流動層炉を一次ガス化に用いる点が、本発明の特徴となっている。流動層炉自体は、既に公知のものであるが、可燃性ガスを得るために流動層炉と溶融炉を組合せて用いることは従来技術と異なる点である。石炭を微粉炭あるいは水スラリーとして高温ガス化する技術は既に公知のものとなっているが、廃棄物の場合は微粉砕することが石炭ほど容易でない。特に金属、ガレキ、石のような不燃物を含有する場合は、ほとんど不可能といえる。ところが、流動層炉を用いれば、廃棄物をバルクの状態で熱分解ガス化することができ、可燃性のガス状物(ガス、タール)と固体状物(チャー)が生成する。これらは、できれば混合した状態で後段の溶融炉に送って高温で二次ガス化することが望ましい。

40 【0018】本発明で使用する流動層炉としては、公知の加圧型の流動層炉、例えば用いる廃棄物の性状等を勘案してバブリング型流動層炉等が考えられるが、特に、本発明により考案された内部循環式流動層炉を用いるのが好適である。内部循環式流動層炉は、炉の水平断面を円形とし、炉底中央部に比較的緩慢な流動層、炉底周辺部に比較的活発な流動層を形成し、流動層の表面近傍の内壁沿いに内側に傾斜した傾斜壁を設けて、流動媒体の流れを周辺部から中央部へ転向することにより、炉底中央部の緩慢流動層中を流動媒体が流動化しつつ下降し、炉底周辺部の活発流動層中を流動媒体が流動化しつつ上

昇し、流動層下部にて流動媒体が中央部から周辺部へ、 流動層上部にて流動媒体が周辺部から中央部へ流動化し つつ移動するような流動媒体の活発な旋回運動を生ぜし める流動層部を有するものである。

【0019】こうした特殊な流動層をガス化に用いた時 の特長を以下に記す。

- ① 生成するチャーが流動層上に堆積せず、流動層内に 均一に分散されるため、特に活発流動層におけるチャー の酸化が効率良く行える。チャーの酸化により発生する る熱分解ガス化の熱源として利用される。
- ② 流動層表面では、傾斜壁によって上昇する運動を転 向された流動媒体が、中央部で激しく衝突するため、チ ャーが微粉砕される。流動媒体に硬い珪砂を用いること により、微粉砕はさらに促進される。
- ③ 後慢流動層での流動媒体の下降運動に伴う呑み込み 作用により、固形廃棄物は細破砕程度の処理で供給する ことが出来る。このため、破砕設備を省略することが出 来、破砕用の電力を低減出来る。

度の前処理を施した廃棄物の投入の結果生ずる粗大な不 燃物でも、容易に排出出来る。

⑤ 流動層内全域における流動媒体の旋回運動により、 発生する熱が拡散されるため、焼結物やクリンカーによ るトラブルを回避出来る。

通常用いられるバブリング型流動層の場合、流動媒体は 均一に流動化されるものの、横方向の分散はあまり良く ない。従って、上述の〇一〇において、本発明の内部循 環式流動層の方が通常用いられるバブリング流動層より 優ることは明らかである。

【0021】本発明で用いる流動層炉は、流動層温度を 750~950℃としている。これに対し、廃棄物の完 全燃焼 (常圧下) を目的とする「ガス化燃焼システム」 では、流動層温度は450~650℃としている。これ はガス化反応の緩慢な進行とアルミニウムの回収を目的 とするからである。ところが、加圧下のガス化では、圧 力の上昇分だけ流動層単位容積当たりの原料供給量が増 すため、ガス化の反応速度を上げてやる必要がある。こ のために、流動層温度を750~950℃としているの の回収は断念せざるを得ない。なお、この温度範囲の上 限は、アグロメ(流動媒体の塊状化現象)の問題で決め られる。

【0022】流動層炉の流動層へガス化のために送入す る含酸素ガス(ガス化剤)は、空気、酸素富活空気、酸 素のいずれかにスチームを添加したものとし、また、流 動媒体としては砂(硅砂、オリビン砂など)、アルミ ナ、鉄粉、スラグ粒、砕石等を使用する。炉のフリーボ ードには送入ガスの供給は行わない。流動層炉での一次 ガス化の際に生成するチャーは流動層中で粉砕されて微 50 じ込められ、溶出しなくなる。また、1200~160

粉状となるため、ガスに同伴してそのまま溶融炉に導入 される。一方、流動層部は還元雰囲気であるため、廃棄 物中の金属の大部分を有用な未酸化の状態で取出せる。 ただし、回収出来る金属は、その融点が流動層温度以下 のものに限られる。

【0023】このように、廃棄物の一次ガス化に流動層 **炉を用いることにより、多様な廃棄物の処理が可能で、** しかも処理能力が高く、スケールアップが容易となる。 また、機械的な駆動部が無く、温度等の調整操作が容易 熱は、流動媒体に伝えられ、中央部の緩慢流動層におけ 10 で、熱媒体との間の伝熱が良い。さらに、流動層炉とし て内部循環式流動層炉を用いると、廃棄物の無破砕処理 が可能となるとともに、流動層内で炭化物が効率良く粉 砕されてチャーとなること、流動層内でのチャーの分散 が良いためガス化効率の高いこと、層内温度が均一に保 たるためクリンカーの生成が抑えられること等の利点が

【0024】次に、溶配炉について説明する。溶融炉 は、流動層炉から導入されるガス状物(ガス、タール) と固体状物(チャー)を送入する含酸素ガス等のガス化 【0020】② 流動媒体の旋回運動により、細破砕程 20 剤と接触させることにより、1200~1600℃の高 温で二次ガス化し、タール、チャーや炭化水素を完全に ガス化するとともに、含有する灰分を溶融スラグとして 炉底より排出するものである。溶融炉としては、テキサ コ炉のように上部から吹き込むタイプも使用できるが、 好ましくは、ガス状物と固体状物がガス化のための送入 ガスと共に燃焼室中に旋回渦流を形成しながら高温ガス 化して、灰分を溶融スラグ化し、溶融したスラグを連続 的に排出できる旋回式溶融炉を用いるのが良い。旋回式 溶配炉を用いれば、高負荷・高速燃焼が可能となるため 30 炉のコンパクト化が図れ、ガスの滞留時間分布が狭くな るためにカーボン転換率が上昇し、しかも、旋回流によ る遠心力作用により、スラグミスト捕集率を高くでき

【0025】溶融炉へのガス化のために送入する含酸素 ガスは、酸素富活空気、酸素のいずれかにスチームを添 加したものとすることができる。送入する含酸素ガス中 の酸素量は、廃棄物を完全燃焼させるために必要な理論 酸素量の0.3~0.5の範囲とするのがよい。そし て、流動層炉、溶融炉への全送入ガス中の酸素量は、理 であるが、このため融点が660℃であるアルミニウム 40 論燃焼酸素量の0.3~0.6とする。こうして、溶融 炉から、低カロリー(1000~1500kcal/N m' (dry)) から中カロリー (2500~4500 kcal/Nm¹ (dry))の燃料ガスを得ることが できる。これらのガス中には、可燃成分としてCO、H . が主体的に含まれる。廃棄物からCO、H、主体のガ スを得、発電、工業用の燃料ガスあるいは化学工業原料 の合成用とすることは本発明の優れた特徴といえる。後 段の溶融炉で流動層炉から導出されるチャー中の灰分を スラグ化することにより、有害な重金属はスラグ中に封 0℃という高温により、ダイオキシン類とその前駆体並 びにPCB等はほぼ完全に分解される。

【0026】次に図1を参照して、得られたガスの性状 と利用方法を述べる。利用方法を大別すると、エネルギ 一利用するサーマルリサイクルと化学工業原料に供する ケミカルリサイクルがある。5~50atgの加圧状態 で得られる可燃性ガスの用途には、ガスタービンを用い た複合サイクル発電とか、工業用燃料ガスとしての利用 がある。あるいは、水素、メタン(SNG)、メタノー ル等アルコール類、ガソリン製造用の合成ガスとしての 10 ガス化の反応は二次燃焼室8で完結し、H、、CO、C 利用がある。

【0027】水素は、合成ガスをCO転化後、脱CO。 により得られる。メタンは、CO転化によりCO/H。 比を調整後、メタン化反応により得られる。メタノール は、CO転化後メタノール合成反応により得られる。メ タノールとニタノール以上の高級アルコールの混合物 は、アルコール合成反応により得られる。ガソリンは、 南アフリカ連邦のサゾールで実施されているように、フ ィッシャートロプシュ反応により合成される。このよう に、対象とする廃棄物の質と量、並びに建設地の条件、 目的生成物などを考慮して最適なプロセスを選定するこ とが必要である。次に、スラグの利用について言及す る。廃棄物を原料とすると、得られるスラグ中の塩素量 は100mg/kg以下となるため、ポルトランドセメ ントの原料とすることができる。回収されるスラグに は、水砕スラグと徐冷スラグがあるが、路盤材、骨材、 透水材等の土木建築用資材、あるいは園芸用資材として 利用出来る。

[0028]

る。

実施例1

図2に、本発明の高温ガス化方法に用いる装置の一例の 概略構成図を示す。図2は、高圧(5~50atg)の 合成ガスを製造する実施例であり、図2において、1は ロックホッパシステム、2はホッパー、3はスクリュー フィーダ、4は流動層炉、5は流動層部、6は旋回式溶 融炉で、7は一次燃焼室、8は二次燃焼室、9はスラグ 分離室、10は廃熱ボイラ、11はスクラバー、aは廃 棄物、bは酸素、cはスチーム、dは不燃物、eは一次 40 ガス化ガス、e′は二次ガス化ガス、fはスラグ、f′、 は飛灰、gは生成ガスを示す。

【0029】廃棄物aは、均一に混合後、ロックホッパ ーシステム 1 を経て、ホッパー 2 に投入される。次い で、スクリューフィーダ3により流動層炉4に定量供給 される。流動層炉4の炉底には流動化ガスとして酸素b とスチーム c の混合ガスが供給される。流動層炉4の流 動層部5に落下した廃棄物は、750~950℃に保持 された流動層内で酸素とスチームからなる送入ガスと接 触し、速やかに熱分解ガス化される。これにより、ガ

ス、タール、チャー、水蒸気が生成するが、チャーは流 動層の旋回運動により粉砕され微粉化される。これらは 一括して後段の旋回式溶配炉6の一次燃焼室7に供給さ れ、同じくガス化のために供給された酸素りと旋回流中 で混合しながら、1200~1600℃の高温で高速酸 化される。このため、チャーに含まれる灰分はスラグミ ストとなり、旋回流の遠心力により炉壁上のスラグ相に 捕捉され、炉壁を流れ下って二次燃焼室8に入り、スラ グfとしてスラグ分離室9の炉底から排出される。二次 O, とH, Cから成る5~50atgの中カロリーガス (2500~4500kcal/Nm³)となる。

【0030】流動層炉4の流動層部5は還元雰囲気のた め、原料中の金属のうち聖点が流動層温度より高いもの は、未酸化でクリーンな状態でガレキ、石、ガラス等と ともに不燃物dとして炉底から排出される。このため、 金属地金として再利用が可能となる。溶融炉6を出たガ スは、廃熱ボイラ10でスチームcを回収後、NaOH 水溶液を用いたスクラバー11で冷却・洗浄され、ダス ト及びCO転化触媒を抜毒するガス中のHC1等が除か れる。こうして、精製された生成ガスgが得られる。本 ガスは工業用燃料ガスにも用いることが出来るが、この 場合CO転化の必要は無いので、スクラバー11は簡略 なもので済む。得られたH、、CO、CO、とH、Oか ら成るガスは化学工業原料用の合成ガスとして使用され

【0031】次に、図3に示す流動層炉と溶融炉の拡大 図を用いて詳述する。なお、圧力条件は実施例1と同じ く5~50atgである。図3において、図2と同じ符 【実施例】以下、本発明を図面を用いて具体的に説明す 30 号は同じ名称を表し、12はフリーボード、13はバー ナ、14はトロンメル、15はバケットコンベア、16 はパーナである。図から明らかなように、一次ガス化に 用いられる流動層炉4は、既に説明した内部循環式流動 層炉と呼ばれるもので、流動媒体は中央部で流動化しつ つ下降し、周辺部で流動化しつつ上昇する旋回運動を行 っている。ロックホッパー1を介してホッパー2に供給 された廃棄物aと石炭jは、スクリュー式の定量供給装 置3を用いて流動層炉4に供給される。流動層炉4の下 方からは酸素bとスチームcの混合ガスが流動化ガスと して挿入され、分散板上に硅砂の流動層5が形成され る。廃棄物 a と石炭 j は流動層 5 の中央部に投入され、 750~950°Cに保持された流動層5内に呑み込まれ つつ流動化ガス中の酸素と接触し、速やかに熱分解ガス 化される。流動媒体の旋回運動により、サイズの大きな 不燃物でも炉底に堆積することなく流動層部から排出さ れる。流動層炉4の炉底からはロックホッパ(図示せ ず)を介して流動媒体の硅砂が不燃物とともに排出さ れ、トロンメル14により粗大不燃物はが分離される。 【0032】分離された硅砂hはバケットコンベア15 50 により上方へ撤送された後、ロックホッパ(図示せず)

を介して流動層炉4に戻される。不燃物d中には金属が 含まれるが、リサイクル可能な未酸化の状態で回収でき る。流動層5での一次ガス化によりガス、タール、チャ ーが生成する。ガスとタールは、気化して炉内を上昇す る。チャーは流動層るの旋回運動により微粉砕される。 チャーは多孔質で軽いため、生成ガスの上向きの流れに 同伴される。流動媒体に固い硅砂トを用いることで、チ ャーの粉砕は促進される。

[0033]流動層炉を出た生成ガスeは、旋回式溶融 炉6の一次燃焼室7に供給され、予熱された酸素bと旋 10 が水に捕集される。溶融炉6を出たガスe は、対流ボ 回流中で混合しながら、1200~1600℃の高温で 二次ガス化し、H., CO、CO, H. O主体のガス となる。反応は二次燃焼室8で完結し、生成ガス e′は スラグ分離室9から排出される。チャーに含まれる灰分 は高温のためにスラグミストとなり、旋回流の遠心力に より一次燃焼室7の炉壁上の溶配スラグ相に捕捉され、 炉壁を流れ下って二次燃焼室8に入り、スラグ分離部9 の底部より流下する。この後、スラグは直接又は間接的 に冷却されてスラグ粒となり、系外に排出される。な お、旋回溶融炉6の一次燃焼室7と二次燃焼室8には、 昇温バーナ16が1台ずつ設置されている。

【0034】実施例2

図4は、旋回式溶融炉に別の形式を用いた5~50at gの合成ガスを得るための別の実施例である。図4にお いて、流動層炉は内部循環式流動層炉4を用いており、 供給された廃棄物aより生成するチャーは、流動層上に 堆積せず流動層内に均一に分散され、チャーの微粉化・ ガス化が促進される。本タイプの流動層炉では、廃棄物 は破砕粒度を大きくでき、サイズの大きい不燃物も排出 が可能である。また、発生熱の並散に秀れているためク 30 に対する割合を示している。以上より、可燃性ガス回収 リンカートラブルが少ない等の特長を有する。流動層炉 4を出た生成ガスeは、旋回式溶融炉6の燃焼室7に供 給され、供給された酸素bと旋回流中で混合しながら、 1200~1600℃の高温で二次ガス化する。二次ガ ス化により生成したガスはスラグとともにスラグ分離室 9に導かれ、水槽20に貯えられた水中に直接吹き込ま れることにより急冷、洗浄される。

[0035] 実施例3

図5は、別の形式の旋回式溶配炉を用いた実施例であ り、5~50atgの合成ガスを得るためのものであ

る。旋回式溶融炉6のスラグ分離室9には、輻射ボイラ 19が設置され、一旦水面近くまで下降したガスは水管 の裏側を通って排出されるようになっている。輻射ボイ ラ19内では、ガスの流れと重力の方向が一致するた め、壁に付着したスラグは、大きく成長することなく落 下する。また、流れ落ちるスラグ自身の熱も、輻射ボイ ラ19が回収するため、効率が高くなる。 さらに、水面 近くでガスの流れ方向が90°変化するため、ガス中に 含まれるスラグミストは、その慣性力により、ほとんど イラ21に供給され、熱回収される。なお二次燃焼室8 を省いて一次燃焼室7のみとすることも可能である。本 実施例は、発電を目的としたプロセスに適している。 [0036] 実施例4

12

以下に図3の構成図における、代表的なテストデータを 示す。表1は、ガス化に用いた廃棄物の性状である。こ れは、通常の都市でみに石炭を添加してカロリー調整し たものである。この廃棄物を、流動層炉にて800℃で 一次ガス化し、次いで旋回式溶融炉にて1350℃で二 20 次ガス化した時の結果を、表2~表4に示す。表2はガ ス化全体の物質収支であり、廃棄物の重量を100とし ている。ガス化剤としては酸素46とスチーム36が消 費される。この結果、生成ガスは112と廃棄物より増 えているが、これは主にガス化剤の酸素が加わったため である。表3は同様に両炉の熱収支である。これも廃棄 物の燃焼熱を基準の100としているが、生成ガスの燃 焼熱より、冷ガス効率は60%であることが判る。

[0037] この冷ガス効率は、時間当りの生成ガスの 燃焼熱 (高位ベース) の廃棄物の燃焼熱 (高位ベース) を目的とする場合、廃棄物の低位発熱量は、ことで設定 した3500kca1/kgをほぼ下限とすることが判 る。低位発熱量が3500kcal/kgを上回るほ ど、冷ガス効率は高くなる。また、炉壁からの熱損失は 5. 9であるが、これを縮小できれば、冷ガス効率はさ らに上昇する。表4は生成ガスの乾ガス組成であり、ガ ス中の水分はカウントしていない。可燃成分であるH。 とCOで77%を占めていることが判る。

[0038]

40 【表1】

原料廃棄物の性状

水 分	25% (湿基準)	
可 燃 分	66% (湿基準)	_
灰 分	9% (湿基準)	
低位発熱量	3, 500kca1/kg	(湿基準)
髙位発熱量	5, 034kcal/kg	(湿基準)

[0039]

* * 【表2】

物質収支

入量	原料廃棄物	100	(基準)
	スチーム	3 6	i
出量	生成ガス	112	
	水 分	6 1	
	不燃物、スラグ	9	

[0040]

※ ※【表3】

熱収支

入熱	原料廃棄物のQ	100 (基準)
1	ステームのH	7.5
出熱	生成ガスのQ	60
	生成ガスのH	16.8
	生成ガス中の水分のH	21.1
	砂の放熱損失+	3. 7
	不燃物、スラグのH	
	炉壁の熱損失	5. 9

注) ① 本熱収支は高位発熱量基準である。

H:エンタルピー

★ ★ [表4]

[0041]

生成ガスの乾ガス組成

	
H ₂	47%
co	30%
CO ₂	23%

【0042】実施例5

図6に本発明に用いる他の装置の一例の全体構成図を示 す。図6では、高圧(20atg程度)で低カロリーの 燃料ガスを製造後、ガスタービンを用いて複合発電を行 なうケースを示す。図6において、32はセラミックフ ィルター、33はガスタービン、34はステームタービ ン、kは電力、mは排ガス、これ以外は図2と同じであ 50 【0043】この後、生成ガスは廃熱ボイラ10でスチ

- る。流動層炉4に空気b″、溶融炉6に酸素富活空気 b′が供給されるため、溶融炉6からの生成ガスは H,、CO、CO、、N、とH、Oから成る低カロリー ガス (1000~1500kcal/Nm³ (dr y)) となる。流動層炉、溶融炉の温度条件は実施例1 と同じである。

ーム c を回収し、セラミックフィルター32で灰 f ′を 分離後、ガスタービン33に供給され、電力 k を発生 後、廃熱ボイラ10でスチーム c を回収し、大気放出さ れる。回収されたスチームcは、スチームタービン34 に供給され電力kを発生する。とこでは、生成ガスを高 温のまま脱塵後、ガスタービンに供給する方法を示した が、無論図2と同じように生成ガスを常温で精製してか らガスタービン33に供給することも可能である。ただ し、この方法では発電効率は若干低下する。

[0044]

[発明の効果] 本発明は廃棄物を燃料ガスあるいは化学 工業原料用の合成ガスに変換する資源化方法を提供し、 環境保全を維持しつつ資源有価物の回収技術を提供する もので、サーマルリサイクル、マテリアルリサイクル、 ケミカルリサイクルを通じて廃棄物を新たな資源として 活用を計るものである。具体的には、以下の効果を得る ことができる。

① 一次ガス化と二次ガス化を組合せたガス化により廃 棄物を一酸化炭素、水素主体の中カロリーの合成ガスに 変換し、次いでアンモニア、メタノール等の化学工業原 20 一、12:フリーボード、13:バーナ、14、1 料にするというケミカルリサイクルが可能となる。

【0045】② 合成ガス生成の過程で灰分をスラグ化 して無害化することができる。生成スラグは土木建築材 としてマテリアルリサイクルできる。

③ 廃棄物中に含まれる鉄、銅、等の有価金属を未酸化 状態で回収できるためマテリアルリサイクルが可能とな

● 低カロリーの可燃性ガスを回収することにより、ガ スタービン等の燃料あるいは工業用燃料ガスとしてサー マルリサイクルすることも可能である。

⑤ 1200~1600℃という高温度域を経るため、*

* 有害なダイオキシン類をほぼ完全に分解できる。

【図面の簡単な説明】

【図1】本発明の処理方法によるガス化利用の全体概念

【図2】本発明の処理方法に用いる装置の一例を示す概 念構成図。

[図3] 本発明の処理方法に用いる装置の別の一例を示 す概略構成図。

【図4】本発明の処理方法に用いる装置の別の一例を示 10 す概略構成図。

【図5】本発明の処理方法に用いる装置の別の一例を示 す概略構成図。

[図6] 本発明の処理方法に用いる装置の別の一例を示 す概略構成図。

【符号の説明】

1:ロックホッパシステム、2:ホッパー、3:スクリ ューフィーダ、4:流動層ガス化炉、5:流動層部、

6:旋回溶融炉で、7:一次燃焼室、8:二次燃焼室、

9:スラグ分離室、10:廃熱ボイラ、11:スクラバ

4′:スクリーン(トロンメル)、15:流動媒体循環

路 (バケットコンベア)、16:バーナ、17、1 7′:ロックホッパー、18:傾斜壁、19:輻射ボイ ラ、20:水槽、21:対流ボイラ、22、22′:貯

留槽、32:セラミックフィルター、33:ガスタービ ン、34:スチームターピン

a:廃棄物、b:酸素、b′:酸素富化空気、b″:空 気、c:水蒸気(スチーム)、d:不燃物、e:低温ガ ス化生成ガス、 e′: 高温ガス化生成ガス、 f: 溶融ス 30 ラグ、g:合成ガス、h:流動媒体、i:水、j:石 灰、k:電力、m:排ガス

[図5] [図2]

[図4]

[図6]

フロントページの続き

(72)発明者 入江 正昭 東京都大田区羽田旭町11番 l 号 株式会社 荏原製作所内

(72)発明者 廣勢 哲久 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 永東 秀一 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内

(72)発明者 大下 孝裕 東京都大田区羽田旭町11番 l 号 株式会社 荏原製作所内