DiD for Big Data in R Theoretical Background

Bradley Setzler, Penn State

This draft compiled on: October 30, 2022

Notation and Identification (1/4)

Notation and Definition of Treatment:

- i: unit of observation.
 → We will often say "individual".
- t: calendar time. Sample time frame is \mathcal{T} .
 - \rightarrow We will often say "'year".
- $D_{i,t}$: indicator for currently receiving treatment. \rightarrow Permanent treatment: $D_{i,t} = 1 \implies D_{i,t+1} = 1, \ t \in \mathcal{T}$.
- $G_i \equiv \min\{t : D_{i,t} = 1\}$: time that *i* first receives treatment.
 - \rightarrow We will often say "cohort" or "onset time". \rightarrow If *i* never receives treatment, we can write $G_i = \infty$.
 - \rightarrow Note: $D_{i,t} \equiv 1\{t \geq G_i\}$.
- $E_{i,t} \equiv (t G_i)$: time since first treatment.
 - \rightarrow We will often say "event time".
 - → Sometimes we will consider fixing an event time *e* years after treatment versus *b* years before treatment.
- Potential outcomes: Let $Y_{i,t}(g)$ denote the outcome that is experienced if treated at g.
- Observed outcome: $Y_{i,t} = Y_{i,t}(\infty) + \sum_g 1\{G_i = g\}(Y_{i,t}(g) Y_{i,t}(\infty)).$

Notation and Identification (2/4)

Goal: Identify ATT at an event time. We assume throughout that the goal is to identify the average treatment effect on the treated (ATT) at event time *e*. Formally, we seek to identify,

$$\mathrm{ATT}_e \equiv \mathbb{E}[Y_{i,t}(g) - Y_{i,t}(\infty)|E_{i,t} = e]$$

The identification challenge is that $\mathbb{E}[Y_{i,t}(\infty)|E_{i,t}=e]$ is a counterfactual object – it is the average outcome that would have been experienced by those receiving treatment for e years if they had not received treatment.

Decomposition into cohort-specific ATTs. Define,

$$ATT_{g,e} \equiv \mathbb{E}[Y_{i,g+e}(g) - Y_{i,g+e}(\infty)|G_i = g]$$

$$\omega_{g,e} \equiv \mathbb{E}[G_i = g|E_{i,t} = e]$$

where the cohort shares that have been treated at each event time $(\omega_{g,e})$ are observed. Rearranging terms,

$$ATT_e = \sum_{g} \omega_{g,e} ATT_{g,e}$$

Thus, given e, it is sufficient to identify $ATT_{g,e}$, $\forall g$ s.t. $\omega_{g,e} > 0$.

Notation and Identification (3/4)

Control Group: Define a control group membership indicator $\mathcal{C}_{g,e}(G_i)$. At a minimum, $\mathcal{C}_{g,e}(G_i)=1 \implies G_i > (g+e)$. We may further restrict \mathcal{C} based on context, e.g., some consider the never-treated control group, $\mathcal{C}_{g,e}(G_i)=1\{G_i=\infty\}$.

Assumption 1: Parallel trends.

$$\exists b < 0 \text{ s.t.} \quad \mathbb{E}[Y_{i,g+e}(\infty) - Y_{i,g+b}(\infty) | \mathcal{C}_{g,e}(G_i) = 1]$$
$$= \mathbb{E}[Y_{i,g+e}(\infty) - Y_{i,g+b}(\infty) | G_i = g], \ \forall e \ge 0$$

This restricts the relationship between the treated group $G_i = g$ and the control group $C_{g,e}(G_i)=1$: the change in average outcome for the treated group would have been the same in the absence of treatment as that of the control group.

Assumption 2: No anticipation.

$$\exists b < 0 \text{ s.t. } \mathbb{E}[Y_{i,g+b}(g)|G_i = g] = \mathbb{E}[Y_{i,g+b}(\infty)|G_i = g], \ \forall g$$

This restricts *when* the treated cohorts respond to treatment.

Note: Both assumptions need only hold for the event time e and pre-period b chosen by the researcher.

Notation and Identification (4/4)

Difference-in-differences: Define the population estimator,

$$\mathsf{DiD}_{g,e} \equiv \mathbb{E}[Y_{i,g+e} - Y_{i,g+b} | G_i = g] - \mathbb{E}[Y_{i,g+e} - Y_{i,g+b} | \mathcal{C}_{g,e}(G_i) = 1]$$

It depends only on observed outcomes, not counterfactuals.

Impose parallel trends: By the parallel-trends assumption, we can replace the second expectation as follows:

$$\mathsf{DiD}_{g,e} \equiv \mathbb{E}[Y_{i,g+e} - Y_{i,g+b} | G_i = g] - \mathbb{E}[Y_{i,g+e}(\infty) - Y_{i,g+b}(\infty) | G_i = g]$$

Impose no anticipation: By the no-anticipation assumption, we can cancel out the two terms involving $Y_{i,g+b}$:

$$\mathsf{DiD}_{g,e} \equiv \mathbb{E}[Y_{i,g+e}|G_i = g] - \mathbb{E}[Y_{i,g+e}(\infty)|G_i = g] = \mathsf{ATT}_{g,e}$$

Thus, we have proven that $DiD_{g,e} = ATT_{g,e}$ if the parallel-trends and no-anticipation assumptions hold for the pair (g,e).

Result: If parallel-trends and no-anticipation hold $\forall g \text{ s.t. } \omega_{g,e} > 0$,

$$\mathsf{ATT}_e = \sum_{g: \ w_{g,e} > 0} \omega_{g,e} \mathsf{DiD}_{g,e}$$

Estimator used by DiD for Big Data (1/4)

Estimator based on averages. Replacing population means with sample means, the package implements the following DiD:

$$\mathrm{DiD}_{g,e} = \underbrace{\mathbb{E}[Y_{i,g+e} - Y_{i,g+b} | G_i = g]}_{\text{Difference for treated group}} - \underbrace{\left(\mathbb{E}[Y_{i,g+e} - Y_{i,g+b} | \mathcal{C}_{g,e}(G_i) = 1]\right)}_{\text{Difference for control group}}$$

where, following Callaway and Sant'Anna (2021), we require that parallel-trends and no-anticipation holds for one of these 3 possible control groups:

$$\label{eq:cge} \begin{array}{ll} \text{``all''} & \mathcal{C}_{g,e}(\textit{G}_i) = \mathbb{1}\{\textit{G}_i > (g+e)\} \\ \text{``future-treated''} & \mathcal{C}_{g,e}(\textit{G}_i) = \mathbb{1}\{\textit{G}_i > (g+e) \& \textit{G}_i < \infty\} \\ \text{``never-treated''} & \mathcal{C}_{g,e}(\textit{G}_i) = \mathbb{1}\{\textit{G}_i = \infty\} \end{array}$$

Researcher choices. The DiD researcher must make 3 choices:

- 1. What is the range of event times e for which you would like ATT_e estimates? Default: e = -5, ..., 5.
- **2.** Which pre-period should be the base? Default: b = -1.
- **3.** Which of the 3 control selections \mathcal{C} to use? Default: "all".

Estimator used by DiD for Big Data (2/4)

Fix some (e, b, g). Consider testing ATT_{g,e} = 0.

Notation: Consider treatment group $\mathcal{T} \equiv 1\{G_i = g\}$ and control group \mathcal{C} , which could be any of the three options above.

Define within-i differences $A_i \equiv Y_{i,g+e} - Y_{i,g+b}$, $i \in \mathcal{T}$ with mean $\mu_A \equiv \mathbb{E}[A_i|i \in \mathcal{T}]$, and $B_i \equiv Y_{i,g+e} - Y_{i,g+b}, i \in \mathcal{C}$ with mean $\mu_B \equiv \mathbb{E}[B_i | i \in \mathcal{C}]$, where subscripts are dropped if unambiguous.

Hypothesis Testing: Since ATT_{g,e} $\equiv \mu_A - \mu_B$, consider,

Test statistic:
$$DiD_{g,e} = \overline{A} - \overline{B}$$
, Null $H_0: \mu_A - \mu_B = 0$

Central Limit Theorem: Denote the population variances by $\sigma_A^2 \equiv \text{Var}[A_i|i \in \mathcal{T}]$ and $\sigma_B^2 \equiv \text{Var}[B_i|i \in \mathcal{C}]$. By the CLT under the null, and that the samples are drawn independently across i,

$$\overline{A} \sim_d \mathcal{N}\left(\mu_A, \ \sigma_A^2/N_A\right), \quad \overline{B} \sim_d \mathcal{N}\left(\mu_B, \ \sigma_B^2/N_B\right)$$

$$\implies \mathsf{DiD}_{g,e} = \left(\overline{A} - \overline{B}\right) \sim_d \mathcal{N}\left(0, \ \sigma_A^2/N_A + \sigma_B^2/N_B\right)$$

Thus, $SE(DiD_{g,e}) = \sqrt{\sigma_A^2/N_A + \sigma_B^2/N_B}$. The empirical counterpart is trivial to compute (e.g. no matrix inversion needed). $_{_{7/13}}$

Estimator used by DiD for Big Data (3/4)

We usually are not interested in the ATT for a specific cohort g. Instead, we are usually interested in the ATT that is e years after treatment, averaging across cohorts.

Average Effects by Event Time. Let ω_g denote the share of treated units in cohort g. Since treated cohorts are independent of one another at a given e, CLT implies,

$$\mathsf{DiD}_{e} = \sum_{\mathcal{G}} \omega_{g} \mathsf{DiD}_{g,e}, \quad \mathsf{SE}\left(\mathsf{DiD}_{e}\right) = \sqrt{\sum_{g \in \mathcal{G}} \omega_{g}^{2} \mathsf{SE}(\mathsf{DiD}_{g,e})^{2}}$$

Average across Event Times: Similarly, we are often interested in an average of DiD_e across event times. Letting $\mathcal E$ denote a set of event times (e.g. $\mathcal E=\{1,2,3\}$), we are typically interested in the equally-weighted average, which has the following SE:

$$\mathsf{DiD}_{\mathcal{E}} = \frac{1}{|\mathcal{E}|} \sum_{\mathcal{E}} \mathsf{DiD}_{e}, \quad \mathsf{SE}\left(\mathsf{DiD}_{\mathcal{E}}\right) = \frac{1}{|\mathcal{E}|} \sqrt{\sum_{e \in \mathcal{E}} \mathsf{SE}(\mathsf{DiD}_{e})^{2}}$$

The R package provides all possible DiD_e with their SEs by default, and user-friendly options to estimate various $DiD_{\mathcal{E}}$ and their SEs.

Estimator used by DiD for Big Data (4/4)

Event study parameters: For $\mathcal{H} \in \{\mathcal{T}, \mathcal{C}\}$, one may wish to plot averages across event times:

$$\bar{Y}_{g,e}^{\mathcal{H}} = \sum_{i \in \mathcal{H}_g} Y_{i,g+e}, \ \mathsf{SE}(\bar{Y}_{g,e}^{\mathcal{H}}) = \sqrt{\frac{\sigma_{\mathcal{H},g,e}^2}{|\mathcal{H}_g|}}, \ \sigma_{\mathcal{H},g,e}^2 = \mathsf{Var}[Y_{i,g+e}|i \in \mathcal{H}_g]$$

$$\bar{Y}_{e}^{\mathcal{H}} = \sum_{g \in \mathcal{G}} \omega_{g} \bar{Y}_{g,e}^{\mathcal{H}}, \ \mathsf{SE}(\bar{Y}_{g,e}^{\mathcal{H}}) = \sqrt{\sum_{g} \omega_{g}^{2} \mathsf{Var}(\bar{Y}_{g,e}^{\mathcal{H}})},$$

The package provides these means and SEs by default.

Plots: The package also provides automated plots, both for presenting the event study parameters and for presenting the ATT estimates. These can be plotted by (g,e) or by e (average over g).

Accounting for Covariates (1/4)

Recall: Definition of parallel trends.

$$\exists b < 0 \text{ s.t.} \quad \mathbb{E}[Y_{i,g+e}(\infty) - Y_{i,g+b}(\infty) | \mathcal{C}_{g,e}(G_i) = 1]$$

$$= \mathbb{E}[Y_{i,g+e}(\infty) - Y_{i,g+b}(\infty) | G_i = g], \ \forall e \ge 0$$

Time-invariant Covariate: Suppose potential outcomes in the case with no-treatment are given by the model,

$$Y_{i,t}(\infty) = \alpha_i + \mu_t + X_i \beta_t + \epsilon_{i,t}$$

Is the parallel-trends condition violated? Note that,

$$Y_{i,g+e}(\infty) - Y_{i,g+b}(\infty) = (\mu_{g+e} - \mu_{g+b}) + X_i(\beta_{g+e} - \beta_{g+b})$$

Plugging this into the expectations above, we see that:

- 1. If $\beta_{g+e} = \beta_{g+b}$, then parallel trends holds, as X_i cancels out in $Y_{i,g+e}(\infty) Y_{i,g+b}(\infty)$.
- 2. If $\beta_{g+e} \neq \beta_{g+b}$, then parallel trends holds only if,

$$\mathbb{E}[X_i|\mathcal{C}_{g,e}(G_i)=1] = \mathbb{E}[X_i|G_i=g]$$

Accounting for Covariates (2/4)

Recap: If $Y_{i,t}(\infty) = \alpha_i + \mu_t + X_i\beta_t + \epsilon_{i,t}$ and $\beta_{g+e} \neq \beta_{g+b}$, then parallel trends holds only if,

$$\mathbb{E}[X_i|\mathcal{C}_{g,e}(G_i)=1] = \mathbb{E}[X_i|G_i=g]$$

Discrete correction: If $X_i \in \mathcal{X}$ is discrete, parallel trends holds if we condition on treatment and control groups with the same X_i :

$$\mathbb{E}[X_i|\mathcal{C}_{g,e}(G_i)=1 \& X_i=x] - \mathbb{E}[X_i|G_i=g \& X_i=x]=x-x=0$$

I.e. parallel trends must hold mechanically when conditioning on treatment and control groups within the same $X_i = x$ bin.

Testing: Define $DiD_{g,e}(x)$ as follows:

$$\mathbb{E}[Y_{i,g+e} - Y_{i,g+b} | G_i = g \& X_i = x] - \mathbb{E}[Y_{i,g+e} - Y_{i,g+b} | C_{g,e}(G_i) = 1 \& X_i = x]$$

Then, we can test that $ATT_{g,e}$ is zero using,

$$\begin{aligned} \mathsf{DiD}_{g,e} &= \sum_{\mathcal{X}} \omega_g(x) \mathsf{DiD}_{g,e}(x), \quad \omega_g(x) = \mathbb{E}[X_i = x | G_i = g] \\ \mathsf{SE}\left(\mathsf{DiD}_{g,e}\right) &= \sqrt{\sum_{x \in \mathcal{X}} (\omega_g(x))^2 \mathsf{SE}(\mathsf{DiD}_{g,e}(x))^2} \end{aligned}$$

Accounting for Covariates (3/4)

Time-varying Covariates: Suppose that it is the covariates X rather than the coefficient β that varies over time:

$$Y_{i,t}(\infty) = \alpha_i + \mu_t + X_{i,t}\beta + \epsilon_{i,t}$$

Is parallel trends violated? Note that,

$$Y_{i,g+e}(\infty) - Y_{i,g+b}(\infty) = (\mu_{g+e} - \mu_{g+b}) + (X_{i,g+e} - X_{i,g+b})\beta$$

Plugging this into the expectations above, parallel trends requires

$$\mathbb{E}[X_{i,g+e} - X_{i,g+b} | \mathcal{C}_{g,e}(G_i) = 1] = \mathbb{E}[X_{i,g+e} - X_{i,g+b} | G_i = g]$$

Though this will not hold in general, it holds if X is age or time, as $X_{i,g+e}-X_{i,g+b}=(e-b)$ is the same for $G_i=g$ and \mathcal{C} .

Discrete correction for time-varying covariates: Suppose $X \in \mathcal{X}$ is discrete. Then, the difference $\tilde{X}_i \equiv X_{i,g+e} - X_{i,g+b}$ is also discrete. We can condition on $\tilde{X}_i = x$ and use the same approach we used for time-invariant covariates above.

Accounting for Covariates (4/4)

Recall: We consider the case in which *X* varies over time:

$$Y_{i,t}(\infty) = \alpha_i + \mu_t + X_{i,t}\beta + \epsilon_{i,t}$$

Regression representation: Let $\mathcal{H}_{g,e}$ denote the union of the treated and control group for a particular (g,e) pair. Then,

$$(Y_{i,g+e} - Y_{i,g+b}) = \tilde{\mu} + 1\{G_i = g\}(Y_{i,g+e}(g) - Y_{i,g+e}(\infty)) + (X_{i,g+e} - X_{i,g+b})\beta + \tilde{\epsilon}, \quad \forall i \in \mathcal{H}_{g,e}$$

which is a regression equation with no fixed effects that can be estimated separately for each g, e pair. In particular, the coefficient on $1\{G_i = g\}$ recovers $\mathbb{E}[Y_{i,g+e}(g) - Y_{i,g+e}(\infty)|G_i = g]$.

OLS: Thus, we can apply OLS to regress $Y_{i,g+e} - Y_{i,g+b}$ on $1\{G_i = g\}$ and $X_{i,g+e} - X_{i,g+b}$, using the standard OLS point estimate and SE for the coefficient on $1\{G_i = g\}$. Note that this OLS formulation accommodates both discrete and continuous $X_{i,t}$. Importantly, no fixed effects have to be estimated, even in the case with continuous time-varying covariates – the regression just has a few regressors, remaining computationally fast and efficient.