Test Your Understanding: proof

Test yourself by filling in the blanks.

1. An integer is even if, and only if, it
2. An integer is odd if, and only if, it
3. An integer is prime if, and only if,
4. An integer is composite if, and only if,
5. If $n = 2k + 1$ for some integer k, then
6. Given integers a and b , if there exists an integer k such that $b = ak$, then
7. To find a counterexample for a statement of the form " $\forall x \in D$, if $P(x)$ then $Q(x)$ " you find
8. According to the method of generalizing from the generic particular, to prove that every element of a domain satisfies a certain property, you suppose that and you show that
9. According to the method of direct proof, to prove that a statement of the form " $\forall x$ in D , if $P(x)$ then $Q(x)$ " is true, you suppose that and you show that
 Proofs should always be written in sentences, and each assertion made in a proof should be accompanied by a
11. The fact that a universal statement is true in some instances does not imply that it is
12. When writing a proof, it is a mistake to use the same letter to represent
13. A real number is rational if, and only if,
14. An integer a divides an integer b if, and only if,
15. If a and b are integers, the notation $a \mid b$ stands for, and the notation a/b stands for
·
16. According to the theorem about divisibility by a prime number, given any integer $n > 1$, there is a
17. The unique factorization theorem (fundamental theorem of arithmetic) says that given any integer $n > 1$, n can be written as a in a way that is unique, except possibly for the in which the numbers are written.
18. The quotient-remainder theorem says that given any integer n and any positive integer d , there exist unique integers q and r such that
19. If n is a nonnegative integer and d is a positive integer, then n div $d =$ and n mod $d =$ where $$.
20. The parity property says that any integer is either

Answers

- 1. equals twice some integer
- 2. equals twice some integer plus 1
- it is greater than 1, and if it is written as a product of positive integers, then one of the integers is 1
- 4. it is greater than 1, and it can be written as a product of positive integers neither of which is
- 5. n is an odd integer
- a divides b (or a | b, or a is a factor of b; or a is a divisor of b; or b is divisible by a; or b is a
 multiple of a)
- 7. an element of D for which P(x) is true and Q(x) is false
- 8. you have a particular but arbitrarily chosen element of the domain that element satisfies the property
- 9. x is any [particular but arbitrarily chosen] element of D for which P(x) is true Q(x) is true
- 10. complete; reason that justifies the assertion
- 11. true in all instances
- 12. two different quantities
- 13. it can be written as a ratio of integers with a nonzero denominator
- 14. there is an integer, say k, such that b = ak
- 15. the sentence "a divides b"; the real number a divided by b (if $b \neq 0$)
- 16. prime number that divides n
- 17. product of prime numbers, order
- 18. n = dq + r and $0 \le r < d$
- 19. $q; r; n = dq + r \text{ and } 0 \le r < d$
- 20. even or odd