A Machine Learning and Time Series Approach to

the Ground-Level CO₂ Forecast

The Ultimate Goal

To predict and forecast future monthly average ground-level CO₂ concentrations (in parts per million, ppm) based on historical observations and related atmospheric and meteorological data, using a hybrid machine learning (Random Forest) and time series (SARIMA) approach.

Predicted CO₂: Last 6 Months + 12-Month Forecast (SARIMA)

Modeling Approach

Component	Method	Field
Random Forest	Supervised ML	Machine Learning
SARIMA	Parametric model	Statistics / Time Series
Combined Approach	ML + Forecasting	Hybrid (Data Science)

What They Do

Step	What It Does
Random Forest	Learns patterns from atmospheric and meteorological variables to estimate CO₂
SARIMA	Statistically extrapolates time series based on historical trends
No human rule-based programming	All relationships are learned from data , not manually encoded

Why Hybrid

Limitation of Random Forest	How SARIMA Adds Value
Does not model time-dependent structure	SARIMA handles lags, trends, seasonal cycles
No built-in forecasting horizon	SARIMA projects into the future using temporal dynamics
Ignores autocorrelation in residuals	SARIMA models serial correlation for more accurate forecast

Limitation of SARIMA	How the Hybrid Approach Helps
Assumes linear relationships	Random Forest handles non-linear patterns and interactions
Cannot use many external predictors	Random Forest uses multi-dimensional input features
Struggles with sudden changes or shifts	Random Forest can adapt to external drivers (e.g., temperature, wind)
Poor at spatial or multivariate integration	Random Forest can ingest diverse datasets easily

Input Parameters

Parameter	Description	Role	Source
co2obs	CO ₂ concentration (ground-based)	Target	BMKG
tcco2	Total column CO ₂ (satellite)	Feature	NASA
tcco_1e4	Total column CO	Feature	ECMWF
tcch4_1e4	Total column CH ₄	Feature	ECMWF
u10	10m U-component of wind	Feature	ECMWF
v10	10m V-component of wind	Feature	ECMWF
t2m	2m temperature	Feature	ECMWF
mslp	Mean sea level pressure	Feature	ECMWF

Comparing Correlations

Influence from other features? Seasonal patterns? Non-linearity?

Feature Importance

High

Feature Contribution

Feature	Definition	Relevance at Bukit Kototabang
tcco2	Total column CO_2 (from satellite OCO-2), in ppm	Captures the regional CO ₂ burden above BKT. High columns often coincide with large-scale CO ₂ enhancements (e.g. biomass-burning outflows or continental plumes) that, once mixed down, raise surface CO ₂ at the elevated plateau site.
tcch4_1e4	Total column CH ₄ (scaled by 1×10 ⁴), in molecules/cm ²	Acts as a co-indicator of wetland or combustion sources around Sumatra. Elevated CH ₄ columns frequently accompany CO ₂ enhancements from tropical wetlands or fire events, improving model sensitivity to joint GHG variability.
v10	Meridional wind at 10 m (north–south component), in m s ⁻¹	Reflects seasonal shifts in monsoonal transport: SSE winds (DJF-MAM) versus NNW winds (JJA-SON). Positive v10 (northward flow) can bring CO ₂ -rich air from northern land sources, while negative v10 (southward) brings cleaner maritime air.
tcco_1e4	Total column CO (scaled by 1×10 ⁴), in molecules/cm ²	Traces combustion (biomass burning, local agriculture) around the station. Peaks in column CO often coincide with fire emissions in West Sumatra, serving as a proxy for CO ₂ co-emissions that elevate surface mixing ratios.
t2m	2 m air temperature, in °C	Governs boundary-layer dynamics at the ~865 m elevation of BKT. Warmer days (up to ~25 °C) enhance thermal mixing and CO₂ draw-down, while cooler nights (down to ~16 °C) suppress mixing, allowing CO₂ to accumulate near the surface.
u10	Zonal wind at 10 m (east–west component), in m s ⁻¹	Controls east—west advection of air masses: westerlies (–u10) bring maritime-boundary air from the Indian Ocean (low CO ₂), easterlies (+u10) can transport continental plumes from Sumatra or beyond, modulating surface CO ₂ .
mslp	Mean sea-level pressure, in hPa.	Encodes synoptic-scale stability: high pressure promotes subsidence and shallow mixing (raising surface CO ₂), whereas low pressure enhances turbulence and vertical mixing (diluting CO ₂). Seasonal pressure patterns influence local CO ₂ signals.