CheatSheet d'optimisation

Yehor Korotenko

October 12, 2025

Abstract

Ce cheatsheet donne les énoncés des théorèmes et propositions important(e)s du cours d'optiomisation de L2DD Info-Maths à Paris-Saclay.

Théorème 3.1.6 (Théorème des fonctions implicites) Soit U un ouvert de \mathbb{R}^n et $g_1, \dots, g_m : U \to \mathbb{R}$ des fonctions de classe \mathcal{C}^k . Soit $\tilde{\boldsymbol{x}} \in U$ tel que $g_i(\tilde{\boldsymbol{x}}) = 0$ pour tout $1 \le i \le m$. Si la famille de vecteurs

$$\nabla g_1(\tilde{\boldsymbol{x}}), \cdots, \nabla g_m(\tilde{\boldsymbol{x}}) \in \mathbb{R}^n$$

est libre, alors – **quitte à permuter les coordonnées** – il existe un ouvert $V \subset \mathbb{R}^{n-m}$ contenant $(\tilde{x}_1, \dots, \tilde{x}_{n-m})$, un ouvert $W \subset \mathbb{R}^m$ contenant $(\tilde{x}_{n-m+1}, \dots, \tilde{x}_n)$ et une fonction de classe \mathcal{C}^k

$$\varphi: V \to W$$

tels que pour tout $x \in V \times W$ on ait

$$g_1(x) = \dots = g_m(x) = 0 \iff (x_{n-m+1}, \dots, x_n) = \varphi(x_1, \dots, x_{n-m}).$$

Proposition 3.1.8. Sous les hypothèses du Théorème 3.1.6, on a

$$\frac{\partial \varphi}{\partial x_i} (\tilde{x}_1, \dots, \tilde{x}_{n-m}) = -(D_{\tilde{x},2}g)^{-1} \left(\frac{\partial g}{\partial x_i} (\tilde{x}) \right),\,$$

 $où g = (g_1, \ldots, g_m).$

Théorème 3.1.9 (Théorème des fonctions implicites) Soit $f: U \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 , soient $g_1, \dots, g_m: U \to \mathbb{R}$ des fonctions également de classe \mathcal{C}^1 . Supposons que la restriction de f à l'ensemble

$$S = \{x \in U \mid g_i(x) = 0 \text{ pour tout } 1 \le i \le m\}$$

admet un extremum local en un point \bar{x} . Si la famille de vecteurs

$$\nabla g_1(\bar{x}), \cdots, \nabla g_m(\bar{x})$$

est libre, alors il existe $\lambda_1, \dots, \lambda_m \in \mathbb{R}$ tels que

$$\nabla f(\bar{x}) = \sum_{i=1}^{m} \lambda_i \nabla g_i(\bar{x}).$$