LISTA DE EXERCÍCIOS nº3 – LÓGICA PROPOSICIONAL (método da refutação)

- 1. As fórmulas da lógica proposicional possuem propriedades semânticas. Sendo assim:
 - a) O que significa dizer que uma fórmula é tautológica (ou uma tautologia, ou válida)?
 - b) O que significa dizer que uma fórmula é contraditória (ou insatisfatível)?
 - c) O que significa dizer que uma fórmula é satisfatível (ou contingente, ou factível)?
- **2.** Considere a tabela verdade das fórmulas abaixo. Para quais fórmulas é possível afirmar: é tautológica, é contraditória, é satisfatível? Justifique sua resposta.

a)								
	_	Р	\rightarrow	true				
	F	V	V	V				
	V	F	V	V				

<u>b</u>)									
	7	((P	V	Q)	\rightarrow	(P	\rightarrow	Q))	
	F	V	V	V	V	V	V	V	
	F	F	F	F	V	F	V	F	
	V	V	V	F	F	V	F	F	

c)										
(P	^	Q)	\leftrightarrow	(P	\rightarrow	Г	(Q	V	Г	P))
V	V	V	F	V	F	F	V	V	F	V
F	F	F	F	F	V	F	F	V	V	F

- **3.** Demonstre, utilizando o método da refutação ou absurdo, que as fórmulas a seguir são tautologias.
 - a) $(P \rightarrow R) \rightarrow (P \rightarrow R)$
 - b) $(P \rightarrow Q) \rightarrow ((P \rightarrow \neg Q) \rightarrow \neg P)$
 - c) $(P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$
 - d) $\neg ((P \rightarrow (Q \land \neg Q)) \land P)$
 - e) $((P \rightarrow (Q \rightarrow R)) \land (P \land \neg R)) \rightarrow \neg Q$
 - $f) \quad ((P \rightarrow Q) \land (R \rightarrow S)) \rightarrow ((P \land R) \rightarrow (Q \land S))$
 - g) $(P \lor Q) \leftrightarrow (Q \lor P)$
 - h) $(P \land Q) \leftrightarrow (Q \land P)$
 - i) $(\neg P \lor Q) \leftrightarrow (P \rightarrow Q)$
 - j) $(P \rightarrow (Q \rightarrow R)) \leftrightarrow ((P \land Q) \rightarrow R)$

- **4.** Demonstre, utilizando o método da refutação ou absurdo, que as fórmulas a seguir são contraditórias.
 - a) $\neg ((P \land Q) \rightarrow Q)$
 - b) $P \wedge (Q \wedge \neg P)$
 - c) $(P \wedge Q) \wedge \neg P$
 - d) $(P \wedge Q) \wedge (\neg P \wedge \neg Q)$
 - e) $\neg ((P \rightarrow R) \rightarrow ((Q \rightarrow R) \rightarrow ((P \lor Q) \rightarrow R)))$
 - $f) \quad \neg (((P \land Q) \to R) \to ((P \to R) \lor (Q \to R)))$
 - g) $\neg (((P \rightarrow (Q \lor R)) \land (\neg R \land \neg Q)) \rightarrow \neg P)$
 - $h) \quad \neg (P \wedge (Q \wedge \neg P)) \rightarrow ((P \wedge Q) \wedge \neg P)$
 - i) $\neg(\neg(P \lor Q) \leftrightarrow (\neg P \land \neg Q))$
 - $j) \quad \neg ((P \rightarrow Q) \rightarrow (((P \land Q) \leftrightarrow P) \land ((P \lor Q) \leftrightarrow Q)))$
- **5.** Determine, utilizando o método da refutação ou absurdo, se as fórmulas a seguir são tautologias, contraditórias ou satisfatíveis.
 - a) $(\neg P \lor \neg Q) \leftrightarrow \neg P$
 - b) $\neg ((P \land Q) \land (\neg P \land \neg Q))$
 - c) $\neg(\neg((P \land Q) \land \neg P))$
 - d) $((P \lor Q) \land (P \to Q)) \to P$
 - e) $\neg (((P \land \neg (\neg Q \leftrightarrow R)) \land (\neg R \land (\neg S \rightarrow Q))) \rightarrow (S \land P))$
 - $f) \quad ((P \rightarrow Q) \land (\neg (\neg Q \leftrightarrow R) \land ((\neg S \rightarrow \neg R) \land ((S \rightarrow (Q \land T)) \land \neg T)))) \rightarrow \neg P$
 - g) $((P \lor (Q \to R)) \leftrightarrow Q) \land \neg R$
 - h) $((P \rightarrow \neg P) \rightarrow Q) \land (Q \rightarrow \neg \neg P)$
 - i) $((\neg P \lor \neg R) \land (Q \to R)) \to (P \leftrightarrow \neg Q)$