Potential Cardinality

or: Pretend it works and see where it gets you

Richard Rast

University of Maryland

Notre Dame Logic Seminar December 1, 2015

- 1. Which is bigger? (up to isomorphism)
 - The class of countable graphs
 - The class of countable Q-vector spaces

- 1. Which is bigger? (up to isomorphism)
 - \bullet The class of countable graphs
 - The class of countable Q-vector spaces

- 1. Which is bigger? (up to isomorphism)
 - \bullet The class of countable graphs
 - The class of countable Q-vector spaces
- 2. Which is bigger? (up to isomorphism)
 - The class of countable graphs
 - The class of countable sets of countable Q-vector spaces

- 1. Which is bigger? (up to isomorphism)
 - \bullet The class of countable graphs
 - The class of countable Q-vector spaces
- 2. Which is bigger? (up to isomorphism)
 - \bullet The class of countable graphs
 - The class of countable sets of countable Q-vector spaces

Borel Reductions

Let (X, E) and (Y, F) be equivalence relations on standard Borel spaces.

Definition

Say $(X, E) \leq_{B} (Y, F)$ if there is a function $f: X \to Y$ satisfying:

- f is Borel
- For all $a, b \in X$, aEb iff faFfb

Think: (X, E) is at most as complicated as (Y, F)

First Examples

If $\Phi \in L_{\omega_1\omega}$, then $\operatorname{Mod}(\Phi)$ is a Polish (standard Borel) space.

- Let X be the space of countable \mathbb{Q} -vector spaces.
- Let Y be the space of countable sets of countable \mathbb{Q} -vector spaces.
- Let Z be the space of countable graphs.

$$(X,\cong) <_{\scriptscriptstyle{B}} (Y,\cong) <_{\scriptscriptstyle{B}} (Z,\cong)$$

The Low End: Borel Relations

Fact: If $(X, E) \leq_B (Y, F)$ and F is a Borel subset of $Y \times Y$, then E is also Borel.

Some examples: All the following are Borel and equivalent to $(\operatorname{Mod}(T),\cong)$ for some appropriate first-order T:

- $\mathbf{0} \cong_{\mathbf{0}}$: Integers, up to equality
- $\bullet \cong_1$: Real numbers, up to equality
- $2 \cong_2$: Countable sets of reals, up to equality
- $\mathfrak{S}\cong_3$: Countable sets of countable sets of reals, up to equality :

Fact: $\cong_{\alpha} <_{\beta} \cong_{\beta}$ whenever $\alpha < \beta$.

Fact: \cong_{ϕ} is Borel if and only if $\operatorname{sr}(\phi) < \omega_1$ if and only if $\cong_{\phi} \leq_{\beta} \cong_{\alpha}$ for some $\alpha < \omega_1$

The Upper Edge: Borel Completeness

Definition

Say ϕ is Borel complete if it is $\leq_{\mathbb{R}}$ -maximal.

That is, for all ψ , $\psi \leq_{\mathbb{R}} \phi$.

Theorem (Friedman, Stanley)

Lots of things are Borel complete. Things like linear orders, graphs, fields, groups, trees,

Evidently if ϕ is Borel complete, \cong_{ϕ} is not Borel.

Excellent question: Suppose $\phi \in L_{\omega_1\omega}$. Must \cong_{ϕ} be either Borel or Borel complete? What if ϕ is first-order?

It is relatively straightforward to show $\phi \leq_{\!\scriptscriptstyle B} \psi$ – just write down a map.

It is not at all obvious how to show $\phi \not\leq_{\mathbb{R}} \psi$.

It is relatively straightforward to show $\phi \leq_{\mathsf{B}} \psi$ – just write down a map.

It is not at all obvious how to show $\phi \not\leq_{\mathbb{R}} \psi$. Some attempts:

• If \cong_{ψ} is Borel and low in the hierarchy (e.g. essentially countable) there are some technical tools from descriptive set theory.

It is relatively straightforward to show $\phi \leq_{\mathsf{B}} \psi$ – just write down a map.

It is not at all obvious how to show $\phi \not\leq_{\mathbb{R}} \psi$. Some attempts:

- If \cong_{ψ} is Borel and low in the hierarchy (e.g. essentially countable) there are some technical tools from descriptive set theory.
- **2** If \cong_{ψ} and \cong_{ϕ} are both Borel, there are some fairly coarse tools.

It is relatively straightforward to show $\phi \leq_{\mathsf{B}} \psi$ – just write down a map.

It is not at all obvious how to show $\phi \not\leq_{\mathbb{R}} \psi$. Some attempts:

- If \cong_{ψ} is Borel and low in the hierarchy (e.g. essentially countable) there are some technical tools from descriptive set theory.
- **2** If \cong_{ψ} and \cong_{ϕ} are both Borel, there are some fairly coarse tools.
- We could just check how many countable models each sentence has.

It is relatively straightforward to show $\phi \leq_{\mathsf{B}} \psi$ – just write down a map.

It is not at all obvious how to show $\phi \not\leq_{\mathbb{R}} \psi$. Some attempts:

- If \cong_{ψ} is Borel and low in the hierarchy (e.g. essentially countable) there are some technical tools from descriptive set theory.
- **2** If \cong_{ψ} and \cong_{ϕ} are both Borel, there are some fairly coarse tools.
- We could just check how many countable models each sentence has.

These never seem to apply to first-order examples, for some reason.

Let (X, E) be as usual, and let (X^{ω}, E^{ω}) be the jump:

Let $\overline{x} = \{x_n : n \in \omega\}$ and $\overline{y} = \{y_n : n \in \omega\}$ so $\overline{x}, \overline{y} \in X^{\omega}$. $\overline{x}E^{\omega}\overline{y}$ iff there is a $\sigma \in S_{\infty}$ where $x_n = y_{\sigma(n)}$ for all n.

Theorem (Friedman, Stanley)

If (X, E) is as usual, $E \subset X \times X$ is Borel, and E has more than one class, then $(X, E) <_R (X^{\omega}, E^{\omega})$.

Let (X, E) be as usual, and let (X^{ω}, E^{ω}) be the jump:

Let $\overline{x} = \{x_n : n \in \omega\}$ and $\overline{y} = \{y_n : n \in \omega\}$ so $\overline{x}, \overline{y} \in X^{\omega}$. $\overline{x}E^{\omega}\overline{y}$ iff there is a $\sigma \in S_{\infty}$ where $x_n = y_{\sigma(n)}$ for all n.

Theorem (Friedman, Stanley)

If (X, E) is as usual, $E \subset X \times X$ is Borel, and E has more than one class, then $(X, E) <_R (X^{\omega}, E^{\omega})$.

Hard Proof:

• Suppose $F: (X^{\omega}, E^{\omega}) \leq_{\scriptscriptstyle B} (X, E)$

Let (X, E) be as usual, and let (X^{ω}, E^{ω}) be the jump:

Let $\overline{x} = \{x_n : n \in \omega\}$ and $\overline{y} = \{y_n : n \in \omega\}$ so $\overline{x}, \overline{y} \in X^{\omega}$. $\overline{x}E^{\omega}\overline{y}$ iff there is a $\sigma \in S_{\infty}$ where $x_n = y_{\sigma(n)}$ for all n.

Theorem (Friedman, Stanley)

If (X,E) is as usual, $E \subset X \times X$ is Borel, and E has more than one class, then $(X,E) <_{_{\! B}} (X^\omega,E^\omega)$.

Hard Proof:

- Suppose $F: (X^{\omega}, E^{\omega}) \leq_{\scriptscriptstyle B} (X, E)$
- Use F to construct a Borel $G: (X^{\omega})^{\omega} \to X^{\omega}$ which is a diagonalizer for (X^{ω}, E^{ω})

Let (X, E) be as usual, and let (X^{ω}, E^{ω}) be the jump:

Let $\overline{x} = \{x_n : n \in \omega\}$ and $\overline{y} = \{y_n : n \in \omega\}$ so $\overline{x}, \overline{y} \in X^{\omega}$. $\overline{x}E^{\omega}\overline{y}$ iff there is a $\sigma \in S_{\infty}$ where $x_n = y_{\sigma(n)}$ for all n.

Theorem (Friedman, Stanley)

If (X,E) is as usual, $E \subset X \times X$ is Borel, and E has more than one class, then $(X,E) <_{_{\! B}} (X^\omega,E^\omega)$.

Hard Proof:

- Suppose $F: (X^{\omega}, E^{\omega}) \leq_{\scriptscriptstyle B} (X, E)$
- Use F to construct a Borel $G: (X^{\omega})^{\omega} \to X^{\omega}$ which is a diagonalizer for (X^{ω}, E^{ω})
- No such G exists, since E^{ω} is Borel

Let (X, E) be as usual, and let (X^{ω}, E^{ω}) be the jump:

Let $\overline{x} = \{x_n : n \in \omega\}$ and $\overline{y} = \{y_n : n \in \omega\}$ so $\overline{x}, \overline{y} \in X^{\omega}$. $\overline{x}E^{\omega}\overline{y}$ iff there is a $\sigma \in S_{\infty}$ where $x_n = y_{\sigma(n)}$ for all n.

Theorem (Friedman, Stanley)

If (X, E) is as usual, $E \subset X \times X$ is Borel, and E has more than one class, then $(X, E) <_{\triangleright} (X^{\omega}, E^{\omega})$.

Let (X, E) be as usual, and let (X^{ω}, E^{ω}) be the jump:

Let $\overline{x} = \{x_n : n \in \omega\}$ and $\overline{y} = \{y_n : n \in \omega\}$ so $\overline{x}, \overline{y} \in X^{\omega}$. $\overline{x}E^{\omega}\overline{y}$ iff there is a $\sigma \in S_{\infty}$ where $x_n = y_{\sigma(n)}$ for all n.

Theorem (Friedman, Stanley)

If (X, E) is as usual, $E \subset X \times X$ is Borel, and E has more than one class, then $(X, E) <_{_{\! B}} (X^\omega, E^\omega)$.

Wrong Proof:

 Drop the word "countable" from however we informally describe everything.

Let (X, E) be as usual, and let (X^{ω}, E^{ω}) be the jump:

Let $\overline{x} = \{x_n : n \in \omega\}$ and $\overline{y} = \{y_n : n \in \omega\}$ so $\overline{x}, \overline{y} \in X^{\omega}$. $\overline{x}E^{\omega}\overline{y}$ iff there is a $\sigma \in S_{\infty}$ where $x_n = y_{\sigma(n)}$ for all n.

Theorem (Friedman, Stanley)

If (X, E) is as usual, $E \subset X \times X$ is Borel, and E has more than one class, then $(X, E) <_{\mathbb{R}} (X^{\omega}, E^{\omega})$.

Wrong Proof:

- Drop the word "countable" from however we informally describe everything.
- Now X/E has $\kappa > 2$ classes; since E is Borel, $\kappa < \infty$.

Let (X, E) be as usual, and let (X^{ω}, E^{ω}) be the jump:

Let $\overline{x} = \{x_n : n \in \omega\}$ and $\overline{y} = \{y_n : n \in \omega\}$ so $\overline{x}, \overline{y} \in X^{\omega}$. $\overline{x}E^{\omega}\overline{y}$ iff there is a $\sigma \in S_{\infty}$ where $x_n = y_{\sigma(n)}$ for all n.

Theorem (Friedman, Stanley)

If (X, E) is as usual, $E \subset X \times X$ is Borel, and E has more than one class, then $(X, E) <_{_{\! B}} (X^\omega, E^\omega)$.

Wrong Proof:

- Drop the word "countable" from however we informally describe everything.
- Now X/E has $\kappa \geq 2$ classes; since E is Borel, $\kappa < \infty$.
- The jump of (X, E) is essentially nonempty multisubsets of X/E, so X^{ω}/E^{ω} has at least $2^{\kappa}-1$ classes.

Let (X, E) be as usual, and let (X^{ω}, E^{ω}) be the jump:

Let $\overline{x} = \{x_n : n \in \omega\}$ and $\overline{y} = \{y_n : n \in \omega\}$ so $\overline{x}, \overline{y} \in X^{\omega}$. $\overline{x}E^{\omega}\overline{y}$ iff there is a $\sigma \in S_{\infty}$ where $x_n = y_{\sigma(n)}$ for all n.

Theorem (Friedman, Stanley)

If (X, E) is as usual, $E \subset X \times X$ is Borel, and E has more than one class, then $(X, E) <_{\scriptscriptstyle B} (X^{\omega}, E^{\omega})$.

Wrong Proof:

- Drop the word "countable" from however we informally describe everything.
- Now X/E has $\kappa \geq 2$ classes; since E is Borel, $\kappa < \infty$.
- The jump of (X, E) is essentially nonempty multisubsets of X/E, so X^{ω}/E^{ω} has at least $2^{\kappa}-1$ classes.
- $2^{\kappa} 1 > \kappa$, so you can't reduce X^{ω}/E^{ω} to X/E.

Roadmap

- Borel Reductions
- Potential Cardinality
- Model Theory, Revisited
- 4 A Worked Example

Potentiality

Let A be any set. Let $\mathbb{V}[G]$ collapse $|\operatorname{trcl}(A)|$. Then A is hereditarily countable in $\mathbb{V}[G]$, as well as in any $\mathbb{V}[G][H]$. Phrased another way:

Every set is potentially hereditarily countable.

Potentiality

Let A be any set. Let $\mathbb{V}[G]$ collapse $|\operatorname{trcl}(A)|$. Then A is hereditarily countable in $\mathbb{V}[G]$, as well as in any $\mathbb{V}[G][H]$. Phrased another way:

Every set is potentially hereditarily countable.

Let α be any ordinal; then α is "potentially in ω_1 ." But if A is not an ordinal, A is still not an ordinal in $\mathbb{V}[G]$, so A is not potentially in ω_1 .

Sets are potentially in ω_1 iff they are ordinals.

Making it Rigorous

Let $\phi(x)$ be a (meta)-formula with parameters from HC. Say ϕ is a strong definition if its truth (persistently) does not change under forcing.

Precisely:

For any
$$\mathbb{V}[G]$$
, any $a \in \mathrm{HC}^{\mathbb{V}[G]}$ and any $\mathbb{V}[G][H]$, $\mathrm{HC}^{\mathbb{V}[G]} \models \phi(a)$ iff $\mathrm{HC}^{\mathbb{V}[G][H]} \models \phi(a)$.

Making it Rigorous

Let $\phi(x)$ be a (meta)-formula with parameters from HC. Say ϕ is a strong definition if its truth (persistently) does not change under forcing.

Precisely:

For any
$$\mathbb{V}[G]$$
, any $a \in HC^{\mathbb{V}[G]}$ and any $\mathbb{V}[G][H]$, $HC^{\mathbb{V}[G]} \models \phi(a)$ iff $HC^{\mathbb{V}[G][H]} \models \phi(a)$.

Let a be any set. Say a potentially satisfies ϕ if, for some (any) forcing extension $\mathbb{V}[G]$ in which a is hereditarily countable, $\mathrm{HC}^{\mathbb{V}[G]} \models \phi(a)$.

The potential class $\phi_{\rm ptl}$ is the set of all a which potentially satisfy ϕ .

It's Easier than It Sounds

Some examples:

- $\bullet \ \operatorname{HC}_{\operatorname{ptl}} \ \mathsf{is} \ \mathbb{V}$
- $(\omega_1)_{\rm ptl}$ is ON
- ullet ω_{ptl} is ω
- $\bullet \ \mathbb{R}_{ptl} \ \text{is} \ \mathbb{R}$

It's Easier than It Sounds

Some examples:

- ullet $\mathrm{HC}_{\mathrm{ptl}}$ is $\mathbb V$
- $(\omega_1)_{\rm ptl}$ is ON
- ullet $\omega_{
 m ptl}$ is ω
- ullet $\mathbb{R}_{\mathrm{ptl}}$ is \mathbb{R}

Some more:

- If X is strongly definable, the potential class of "countable sets of elements of X" is $\mathcal{P}(X_{\mathrm{ptl}})$
- If X and Y are strongly definable, $(X^Y)_{\rm ptl}$ is $(X_{\rm ptl})^{Y_{\rm ptl}}$
- If $\{X_i: i \in I\}$ are strongly definable, $(\bigcup_{i \in I} X_i) = \bigcup_{i \in I_{\mathrm{ptl}}} (X_i)_{\mathrm{ptl}}$

Potential Cardinality

Proposition

If $f: X \to Y$ is an injection (persistently, and everything is strongly definable) then $f_{\text{ptl}}: X_{\text{ptl}} \to Y_{\text{ptl}}$ is also an injection.

If X is strongly definable, define the potential cardinality of X as $|X_{ptl}|$.

Potential Cardinality

Proposition

If $f: X \to Y$ is an injection (persistently, and everything is strongly definable) then $f_{\rm ptl}: X_{\rm ptl} \to Y_{\rm ptl}$ is also an injection.

If X is strongly definable, define the potential cardinality of X as $|X_{\rm ptl}|$.

Some examples:

- ullet $\|\mathbb{R}\| = \beth_1$
- $\|\mathcal{P}_{\aleph_1}(\mathbb{R})\| = \beth_2$
- $\|\omega_1\| = \infty$
- $\|\mathcal{P}_{\aleph_1}(X)\| = 2^{\|X\|}$
- $||X^Y|| = ||X||^{||Y||}$
- $\|\bigcup_{i \in I} X_i\| = \|I\| + \sup_{i \in I} \|X_i\|$

Roadmap

- Borel Reductions
- 2 Potential Cardinality
- Model Theory, Revisited
- 4 A Worked Example

Scott Sentences, More Generally

We can define canonical Scott sentences for any model M in the usual way. Call this sentence css(M); note $css(M) \in L_{|M|^+\omega}$.

Theorem

Let M and N be L-structures. The following are equivalent:

- $> N \models css(M)$
- **3** *M* and *N* are back-and-forth equivalent.
- \bullet M and N are potentially isomorphic.

Scott Sentences, Most Generally

A canonical Scott sentence extending ϕ is an $L_{\infty\omega}$ -sentence ψ satisfying all the following:

- ullet ψ fits the syntactic form of a canonical Scott sentence.
- ullet ψ is not formally inconsistent.
- $\psi \wedge \neg \phi$ is formally inconsistent.

Fact: these conditions are equivalent to "in some (any) forcing extension in which $\phi \wedge \psi \in L_{\omega_1 \omega}$, ψ is the Scott sentence of a countable model of ϕ ."

Scott Sentences, Most Generally

A canonical Scott sentence extending ϕ is an $L_{\infty\omega}$ -sentence ψ satisfying all the following:

- ullet ψ fits the syntactic form of a canonical Scott sentence.
- ullet ψ is not formally inconsistent.
- $\psi \wedge \neg \phi$ is formally inconsistent.

Fact: these conditions are equivalent to "in some (any) forcing extension in which $\phi \wedge \psi \in L_{\omega_1 \omega}$, ψ is the Scott sentence of a countable model of ϕ ."

Fact: $CSS(\phi)_{ptl}$ is the set of all canonical Scott sentences extending ϕ .

Warning: canonical Scott sentences may not have models in \mathbb{V} .

The Actual Point of All This Machinery

Theorem

If $f : \operatorname{Mod}(\Phi_1) \leq_B \operatorname{Mod}(\Phi_2)$, then the map $\operatorname{css}(M) \mapsto \operatorname{css}(f(M))$ is a persistent strongly definable injection.

So define $\|\Phi\|$ as $|CSS(\Phi)_{ptl}|$.

Corollary

If $\|\Phi\| > \|\Psi\|$, then $\operatorname{Mod}(\Phi) \not\leq_{\scriptscriptstyle R} \operatorname{Mod}(\Psi)$.

For any ϕ , let $I_{\infty\omega}(\phi)$ be the number of back-and-forth inequivalent models of ϕ .

Theorem

If isomorphism for ϕ is Borel, then $I_{\infty\omega}(\phi) < \beth_{\omega_1}$.

For any ϕ , let $I_{\infty\omega}(\phi)$ be the number of back-and-forth inequivalent models of ϕ .

Theorem

If isomorphism for ϕ is Borel, then $I_{\infty\omega}(\phi) < \beth_{\omega_1}$.

Easy proof:

• Since ϕ is Borel, $\phi \leq_{\!\scriptscriptstyle B} \cong_{\alpha}$ for some $\alpha < \omega_1$

For any ϕ , let $I_{\infty\omega}(\phi)$ be the number of back-and-forth inequivalent models of ϕ .

Theorem

If isomorphism for ϕ is Borel, then $I_{\infty\omega}(\phi) < \beth_{\omega_1}$.

Easy proof:

- Since ϕ is Borel, $\phi \leq_{\!\scriptscriptstyle B} \cong_{\alpha}$ for some $\alpha < \omega_1$
- By an easy induction on α , $\|\cong_{\alpha}\|=\beth_{-1+\alpha+1}$

For any ϕ , let $I_{\infty\omega}(\phi)$ be the number of back-and-forth inequivalent models of ϕ .

Theorem

If isomorphism for ϕ is Borel, then $I_{\infty\omega}(\phi) < \beth_{\omega_1}$.

Easy proof:

- Since ϕ is Borel, $\phi \leq_{\!\scriptscriptstyle B} \cong_{\alpha}$ for some $\alpha < \omega_1$
- By an easy induction on α , $\parallel \cong_{\alpha} \parallel = \beth_{-1+\alpha+1}$
- $I_{\infty\omega}(\phi) \leq \|\phi\| \leq \|\cong_{\alpha}\| = \beth_{-1+\alpha+1} < \beth_{\omega_1}$

Roadmap

- Borel Reductions
- 2 Potential Cardinality
- Model Theory, Revisited
- 4 A Worked Example

Axioms for an Example

Let $L = \{E_n : n \in \omega\}$. REF will be the *L*-theory with the following axioms:

- Each E_n is an equivalence class with 2^n classes.
- Each E_{n+1} refines E_n .
- Each E_n -class splits into exactly two E_{n+1} -classes.

Proposition

REF is complete with quantifier elimination and a prime model. It is small, superstable, and not ω -stable.

REF Is Not Borel

Fact: \cong_{ϕ} is Borel if and only if, for some $\alpha < \omega_1$, \equiv_{α} implies isomorphism for countable models of ϕ .

Proposition

Isomorphism for REF is not Borel.

Proof outline:

- Since REF is complete with more than one model, \equiv_0 does not imply isomorphism.
- Suppose $A, B \models \text{REF}$ are countable, $A \equiv_{\alpha} B$, and $A \not\cong B$.
- Let X and Y be disjoint countable dense subsets of 2^{ω} .
- Construct M_X and M_Y countable where $M_X \equiv_{\alpha+1} M_Y$ but $M_X \not\cong M_Y$.
- Similar construction at limit stages.

Coding a Bit of Complexity

Prop: $\cong_2 \leq_B REF$ Proof outline:

- Pick a prime model of REF; label its elements by $2^{<\omega}$
- ② Fix an enumeration $f: 2^{<\omega} \to \omega$; expand each element η to have color $f(\eta)+1$
- **3** Given $X \subset 2^{\omega}$ countable, for each $\eta \in X$, add new elements a_{η} with E_{∞} class η and color ∞
- \odot Call the result M_X
- **1** If $M_X \cong M_Y$, then the isomorphism preserves colors, so X = Y (and conversely)

Corollary: $I_{\infty\omega}(\text{REF}) \geq \beth_2$.

Proof: Leave off the word "countable" in step 3.

Prop:
$$I_{\infty\omega}(REF) = \beth_2$$
.
Proof:

• Let $M \models REF$ be arbitrary.

Prop:
$$I_{\infty\omega}(REF) = \beth_2$$
.
Proof:

- Let $M \models REF$ be arbitrary.
- For each a, drop a cocountable subset of a/E_{∞}

Prop: $I_{\infty\omega}(REF) = \beth_2$. Proof:

- Let $M \models REF$ be arbitrary.
- ullet For each a, drop a cocountable subset of a/E_{∞}
- Call the result N; $N \equiv_{\infty} M$.

Prop:
$$I_{\infty\omega}(REF) = \beth_2$$
.
Proof:

- Let $M \models REF$ be arbitrary.
- For each a, drop a cocountable subset of a/E_{∞}
- Call the result N; $N \equiv_{\infty\omega} M$.
- $|N| \leq \beth_1$, so $I_{\infty\omega}(\text{REF}) \leq 2^{\beth_1} = \beth_2$

Prop: $I_{\infty\omega}(REF) = \beth_2$. Proof:

- Let $M \models REF$ be arbitrary.
- For each a, drop a cocountable subset of a/E_{∞}
- Call the result N; $N \equiv_{\infty\omega} M$.
- $|N| \leq \beth_1$, so $I_{\infty\omega}(\text{REF}) \leq 2^{\beth_1} = \beth_2$

Warning: $I_{\infty\omega}(\phi) \leq_{\mathbb{B}} \|\phi\|$ but this is strict in general. So this gives us no information about Borel reducibility on its own.

Difficult Fact: If $\phi \in \mathrm{CSS}(\mathrm{REF})_{\mathrm{ptl}}$, then ϕ has a model. Proof Idea:

• Give a concise list of invariants of a model, called data.

- Give a concise list of invariants of a model, called data.
- Show that data(M) = data(N) iff $M \equiv_{\infty\omega} N$.

- Give a concise list of invariants of a model, called data.
- Show that data(M) = data(N) iff $M \equiv_{\infty \omega} N$.
- Show that if $\phi \in \mathrm{CSS}(\mathrm{REF})_{\mathrm{ptl}}$, then $\mathrm{data}(\phi) \in \mathbb{V}$.

- Give a concise list of invariants of a model, called data.
- Show that data(M) = data(N) iff $M \equiv_{\infty \omega} N$.
- Show that if $\phi \in \mathrm{CSS}(\mathrm{REF})_{\mathrm{ptl}}$, then $\mathrm{data}(\phi) \in \mathbb{V}$.
- Use $data(\phi)$ to construct an *L*-structure *M* in \mathbb{V} .

- Give a concise list of invariants of a model, called data.
- Show that data(M) = data(N) iff $M \equiv_{\infty \omega} N$.
- Show that if $\phi \in \mathrm{CSS}(\mathrm{REF})_{\mathrm{ptl}}$, then $\mathrm{data}(\phi) \in \mathbb{V}$.
- Use $data(\phi)$ to construct an *L*-structure *M* in \mathbb{V} .
- Show that $M \equiv_{\infty\omega} N$, where N is in $\mathbb{V}[G]$ and $N \models \phi$.

- Give a concise list of invariants of a model, called data.
- Show that data(M) = data(N) iff $M \equiv_{\infty \omega} N$.
- Show that if $\phi \in \mathrm{CSS}(\mathrm{REF})_{\mathrm{ptl}}$, then $\mathrm{data}(\phi) \in \mathbb{V}$.
- Use $data(\phi)$ to construct an *L*-structure *M* in \mathbb{V} .
- Show that $M \equiv_{\infty\omega} N$, where N is in $\mathbb{V}[G]$ and $N \models \phi$.
- Conclude that $M \models \phi$.

Difficult Fact: If $\phi \in CSS(REF)_{ptl}$, then ϕ has a model. Proof Idea:

- Give a concise list of invariants of a model, called data.
- Show that data(M) = data(N) iff $M \equiv_{\infty \omega} N$.
- Show that if $\phi \in \mathrm{CSS}(\mathrm{REF})_{\mathrm{ptl}}$, then $\mathrm{data}(\phi) \in \mathbb{V}$.
- Use $data(\phi)$ to construct an *L*-structure *M* in \mathbb{V} .
- Show that $M \equiv_{\infty\omega} N$, where N is in $\mathbb{V}[G]$ and $N \models \phi$.
- Conclude that $M \models \phi$.

Thus $\|\text{REF}\| = I_{\infty\omega}(\text{REF})$.

REF Is Not Borel Complete

Theorem

Proof:
$$\|\cong_3\|=\beth_3$$
, while $\|\text{REF}\|=I_{\infty\omega}(\text{REF})=\beth_2<\beth_3$.

Corollary

There is a first-order theory whose isomorphism relation is neither Borel nor Borel complete.

Extensions

Corollary: For every ordinal $2 \le \alpha < \omega_1$, there is a complete first-order theory T_{α} where:

- $\bullet \cong_{\alpha} \leq_{\mathsf{R}} T_{\alpha}$
- Isomorphism for T_{α} is not Borel
- ullet $\cong_{\alpha+1} \not\leq_{\scriptscriptstyle R} T_{\alpha}$, and in particular T_{α} is not Borel complete.

Open: Is the above possible for $\alpha = 0$ or $\alpha = 1$?

The case $\alpha=1$ is known to be possible for $L_{\omega_1\omega}$ -sentences (eg: abelian p-groups), but is still open for first-order theories.

The case $\alpha=0$ is exactly Vaught's conjecture.