

Daniel Rutschmann AKA dacin21

Tycho

Subtask 1 Try waiting 0, 1, ..., p-1 seconds. The *i*-th hiding spot helps only when waiting $a[i] \mod p$ seconds. $\mathcal{O}(p+n)$

April 29, 2023 BOI 2023 — Solution Presentation Tycho

Subtask 1 Try waiting $0, 1, \ldots, p-1$ seconds. The *i*-th hiding spot helps only when waiting $a[i] \mod p$ seconds. $\mathcal{O}(p+n)$

Subtask 3 Dijkstra/DP over states (position, time until next pulse). $\mathcal{O}(bp)$

April 29, 2023 BOJ 2023 – Solution Presentation Tycho

Subtask 1 Try waiting $0, 1, \ldots, p-1$ seconds. The *i*-th hiding spot helps only when waiting $a[i] \mod p$ seconds. $\mathcal{O}(p+n)$

Subtask 3 Dijkstra/DP over states (position, time until next pulse). $\mathcal{O}(bp)$

Observations

Only wait at hiding spots. Wait until right after the next pulse.

Subtask 2 Try all 2^n subsets of hiding spots. $\mathcal{O}(2^n \cdot n)$

April 29, 2023 BOI 2023 — Solution Presentation Tycho

Dynamic Programming

DP[i]: minimum damage taken after waiting at i-th hiding spot.

$$DP[i] = \min_{j < i} \left(DP[j] + \underbrace{\left[\frac{a[i] - a[j]}{p} \right] \cdot p}_{\text{environment}} + \underbrace{\left[\frac{a[i] - a[j]}{p} \right] \cdot d - d}_{\text{radiation pulses}} \right)$$

$$= \min_{j < i} \left(DP[j] + \left[\frac{a[i] - a[j]}{p} \right] \cdot (p + d) - d \right)$$

Tycho

April 29, 2023 BOI 2023 – Solution Presentation

Dynamic Programming

DP[i]: minimum damage taken after waiting at *i*-th hiding spot.

$$DP[i] = \min_{j < i} \left(DP[j] + \underbrace{\left[\frac{a[i] - a[j]}{p} \right] \cdot p}_{\text{environment}} + \underbrace{\left[\frac{a[i] - a[j]}{p} \right] \cdot d - d}_{\text{radiation pulses}} \right)$$

$$= \min_{j < i} \left(DP[j] + \left[\frac{a[i] - a[j]}{p} \right] \cdot (p + d) - d \right)$$

Subtask 4 DP in $\mathcal{O}(n^2)$. **Subtask 5** For each $a[j] \mod p$, check only the latest j. $\mathcal{O}(np)$

$$DP[i] = \min_{j < i} \left(DP[j] + \left\lceil \frac{a[i] - a[j]}{p} \right\rceil \cdot (p + d) - d \right)$$
$$\left\lceil \frac{a[i] - a[j]}{p} \right\rceil = \left\lfloor \frac{a[i]}{p} \right\rfloor - \left\lfloor \frac{a[j]}{p} \right\rfloor + \begin{cases} 1 & a[i] \mod p > a[j] \mod p \\ 0 & \text{otherwise} \end{cases}$$

April 29, 2023 BOI 2023 – Solution Presentation Tycho

$$\mathrm{DP}[i] = \min_{j < i} \left(\mathrm{DP}[j] + \left\lceil \frac{a[i] - a[j]}{p} \right\rceil \cdot (p + d) - d \right)$$

$$\left\lceil \frac{a[i] - a[j]}{p} \right\rceil = \left\lfloor \frac{a[i]}{p} \right\rfloor - \left\lfloor \frac{a[j]}{p} \right\rfloor + \left\{ 1 \quad a[i] \bmod p > a[j] \bmod p \\ 0 \quad \text{otherwise} \right\}$$

$$\underline{\mathrm{DP}[i] - \left\lfloor \frac{a[i]}{p} \right\rfloor \cdot (p + d)}_{\text{depends on } i} = \min_{j < i} \left(\underline{\mathrm{DP}[j] - \left\lfloor \frac{a[j]}{p} \right\rfloor \cdot (p + d)} + \underbrace{\left\{ p + d \quad \dots \atop 0 \quad \dots \right\}}_{\text{range query}} \right) - d$$

 \rightarrow Range min-query on $[0, a[i] \mod p)$ and $[a[i] \mod p, p)$.

April 29, 2023 BOI 2023 – Solution Presentation Ty

$$\mathrm{DP}[i] = \min_{j < i} \left(\mathrm{DP}[j] + \left\lceil \frac{a[i] - a[j]}{p} \right\rceil \cdot (p + d) - d \right)$$

$$\left\lceil \frac{a[i] - a[j]}{p} \right\rceil = \left\lfloor \frac{a[i]}{p} \right\rfloor - \left\lfloor \frac{a[j]}{p} \right\rfloor + \left\{ 1 \quad a[i] \bmod p > a[j] \bmod p \\ 0 \quad \text{otherwise} \right\}$$

$$\underline{\mathrm{DP}[i] - \left\lfloor \frac{a[i]}{p} \right\rfloor \cdot (p + d)} = \min_{j < i} \left(\underline{\mathrm{DP}[j] - \left\lfloor \frac{a[j]}{p} \right\rfloor \cdot (p + d)} + \underbrace{\left\{ p + d \quad \dots \atop 0 \quad \dots \right\}}_{\text{range query}} \right) - d$$
depends on i

 \rightarrow Range min-query on $[0, a[i] \mod p)$ and $[a[i] \mod p, p)$. **Subtask 6** Min-segment tree over $a[j] \mod p$. $\mathcal{O}(p + n \log p)$. **Subtask 7** Coordinate Compression / Implicit segment tree. $\mathcal{O}(n \log p)$