Линейные коды

В линейных кодах множество допустимых кодовых слов замкнуто по операции \oplus «сложение по модулю 2»

В линейных кодах множество допустимых кодовых слов замкнуто по операции \oplus «сложение по модулю 2»

Свойства операции ⊕:

- ассоциативность $a \oplus (b \oplus c) = (a \oplus b) \oplus c$
- наличие нейтрального (нулевого) элемента e = 000
- наличие противоположного элемента
- коммутативность $a \oplus b = b \oplus a$

В линейных кодах множество допустимых кодовых слов замкнуто по операции \oplus «сложение по модулю 2»

Свойства операции ⊕:

- ассоциативность $a \oplus (b \oplus c) = (a \oplus b) \oplus c$
- наличие нейтрального (нулевого) элемента e = 000
- наличие противоположного элемента
- коммутативность $a \oplus b = b \oplus a$

Множество элементов вместе с определённой на нём операцией с перечисленными свойствами представляет коммутативную группу

Образующие группы — элементы, из комбинации которых можно получить все остальные элементы группы

 $G_{n,k}$ – порождающая матрица

n -- общее число разрядов кодового слова

k -- число информационных разрядов

Образующие группы — элементы, из комбинации которых можно получить все остальные элементы группы

 $G_{n,k}$ – порождающая матрица

 $n\,$ -- общее число разрядов кодового слова

k -- число информационных разрядов

Пример:
$$\mathbf{G}_{3,3} = \begin{vmatrix} 100 \\ 010 \\ 001 \end{vmatrix}$$

Контрольные разряды в линейных кодах определяются как линейные функции от других разрядов:

$$a_i = \sum_{\substack{j=0\\j\neq i}}^{n-1} C_{ij} a_j$$

Контрольные разряды в линейных кодах определяются как линейные функции от других разрядов:

$$a_i = \sum_{\substack{j=0\\j\neq i}}^{n-1} C_{ij} a_j$$

Пример кода с контролем по чётности:

$$a_0 = a_1 \oplus a_2 \oplus \ldots \oplus a_k$$

Контрольные разряды в линейных кодах определяются как линейные функции от других разрядов:

$$a_i = \sum_{\substack{j=0\\j\neq i}}^{n-1} C_{ij} a_j$$

Пример кода с контролем по чётности:

$$a_0 = a_1 \oplus a_2 \oplus \ldots \oplus a_k$$

$$\mathbf{G}_{4,3} = \begin{vmatrix} 100 & 1 \\ 010 & 1 \\ 001 & 1 \end{vmatrix}$$

Коды Хэмминга — это линейные коды, способные исправлять одну ошибку в контролируемом блоке (слове) и построенные на основе формулы:

$$a_i = \sum_{\substack{j=0\\j\neq i}}^{n-1} C_{ij} a_j$$

Вектор ошибки — это слово длины n, которое имеет единицу на месте неверно переданной цифры, а в остальных разрядах имеет нули.

Вектор ошибки — это слово длины n, которое имеет единицу на месте неверно переданной цифры, а в остальных разрядах имеет нули.

 Кодовое слово
 информационные разряды
 контрольные разряды

 к
 n-k

Вектор ошибки — это слово длины n, которое имеет единицу на месте неверно переданной цифры, а в остальных разрядах имеет нули.

Вектор ошибки — это слово длины n, которое имеет единицу на месте неверно переданной цифры, а в остальных разрядах имеет нули.

	I	Векто	р ош	ибки Е	-			
a_6	a ₅	a_4	a_3	a_2	a_1	a_0		
1	0	0	0	0	0	0		
0	1	0	0	0	0	0		
0	0	1	0	0	0	0		
0	0	0	1	0	0	0		
0	0	0	0	1	0	0		
0	0	0	0	0	1	0		
0	0	0	0	0	0	1		
0	0	0	0	0	0	0		

	ı	Векто	р ош	ибки Е	=		Ci	индро	М
a_6	a ₅	a_4	a_3	a_2	a_1	a_0	s ₂	s ₁	<i>s</i> ₀
1	0	0	0	0	0	0			
0	1	0	0	0	0	0			
0	0	1	0	0	0	0			
0	0	0	1	0	0	0			
0	0	0	0	1	0	0			
0	0	0	0	0	1	0			
0	0	0	0	0	0	1			
0	0	0	0	0	0	0			

	ı	Векто	р ош	ибки Е	=		Ci	индро	М
a_6	a ₅	a_4	a_3	a_2	a_1	a_0	s ₂	s ₁	<i>s</i> ₀
1	0	0	0	0	0	0			
0	1	0	0	0	0	0			
0	0	1	0	0	0	0			
0	0	0	1	0	0	0			
0	0	0	0	1	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	0	0	0	0	0

		Векто	р ош	ибки Е	-		Ci	индро	М
a_6	a ₅	a_4	a_3	a_2	a_1	a_0	s ₂	s ₁	s ₀
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	1	1
0	0	0	0	1	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	0	0	0	0	0

	L	Векто	р ош	ибки <u>Е</u>	-		Ci	индро	М
a_6	a_5	a_4	a_3	a_2	a_1	a_0	s ₂	<i>S</i> ₁	s ₀
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	1	1
0	0	0	0	1	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	0	0	0	0	0

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

	L	Векто	р ош	ибки <u>Е</u>	-		Ci	индро	М
a_6	a_5	a_4	a_3	a_2	a_1	a_0	s ₂	<i>S</i> ₁	s ₀
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	1	1
0	0	0	0	1	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	0	0	0	0	0

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

		Векто	р ош	ибки <i>Е</i>	-		Ci	индро	М
a_6	a_5	a_4	a_3	a_2	a_1	a_0	s ₂	<i>S</i> ₁	s ₀
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	1	1
0	0	0	0	1	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	0	0	0	0	0

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

	L	Векто	р ош	ибки <i>Е</i>	-		Ci	индро	М
a_6	a ₅	a_4	a_3	a_2	a_1	a_0	s ₂	<i>S</i> ₁	s_0
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	1	1
0	0	0	0	1	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	0	0	0	0	0

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

		Векто	р ош	ибки <u>Е</u>	-		Ci	индро	М
a_6	a_5	a_4	a_3	a_2	a_1	a_0	s ₂	<i>S</i> ₁	s ₀
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	1	1
0	0	0	0	1	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	0	0	0	0	0

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

	ı	Векто	р ош	ибки <i>Е</i>	<u>-</u>		Ci	индро	М
a_6	a_5	a_4	a_3	a_2	a_1	a_0	s ₂	<i>S</i> ₁	s ₀
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	1	1
0	0	0	0	1	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	0	0	0	0	0

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

$$a_2 = a_4 \oplus a_5 \oplus a_6$$

Пример построения кода для n = 7

	L	Векто	р ош	ибки <i>Е</i>	-		Cı	индро	М
a_6	a_5	a_4	a_3	a_2	a_1	a_0	s ₂	S_1	s_0
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	1	1
0	0	0	0	1	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	0	0	0	0	0

Кодер:

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$a_2 = a_4 \oplus a_5 \oplus a_6$$

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

Пример передачи слова 0110

$$a_6$$
 a_5 a_4 a_3 a_2 a_1 a_0

0 1 1 0 ? ? ?

Кодер:

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$a_2 = a_4 \oplus a_5 \oplus a_6$$

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

Пример передачи слова 0110

$$a_6$$
 a_5 a_4 a_3 a_2 a_1 a_0

0 1 1 0 ? ? ?

$$a_0 = 0 \oplus 1 \oplus 0 = 1$$

Кодер:

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$a_2 = a_4 \oplus a_5 \oplus a_6$$

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

Пример передачи слова 0110

$$a_0 = 0 \oplus 1 \oplus 0 = 1$$

$$a_1 = 0 \oplus 1 \oplus 0 = 1$$

Кодер:

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$a_2 = a_4 \oplus a_5 \oplus a_6$$

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

Пример передачи слова 0110

$$a_6$$
 a_5 a_4 a_3 a_2 a_1 a_0 0110???

$$a_0 = 0 \oplus 1 \oplus 0 = 1$$

$$a_1 = 0 \oplus 1 \oplus 0 = 1$$

$$a_2 = 1 \oplus 1 \oplus 0 = 0$$

Кодер:

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$a_2 = a_4 \oplus a_5 \oplus a_6$$

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

Пример передачи слова 0110

Передаваемое слово

$a_0 = 0 \oplus 1 \oplus 0 = 1$

$$a_1 = 0 \oplus 1 \oplus 0 = 1$$

$$a_2 = 1 \oplus 1 \oplus 0 = 0$$

Кодер:

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$a_2 = a_4 \oplus a_5 \oplus a_6$$

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

Пример передачи слова 0110

Принятое слово

Кодер:

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$a_2 = a_4 \oplus a_5 \oplus a_6$$

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

Пример передачи слова 0110

Принятое слово

$$s_0 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

Кодер:

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$a_2 = a_4 \oplus a_5 \oplus a_6$$

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

Пример передачи слова 0110

Принятое слово

$$s_0 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

$$s_1 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

Кодер:

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$a_2 = a_4 \oplus a_5 \oplus a_6$$

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

Пример передачи слова 0110

Принятое слово

$$s_0 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

$$s_1 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

$$s_2 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$$

Кодер:

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$a_2 = a_4 \oplus a_5 \oplus a_6$$

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

Пример передачи слова 0110

Принятое слово

$$s_0 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

$$s_1 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

Синдром = 101

$$s_2 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$$

Кодер:

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$a_2 = a_4 \oplus a_5 \oplus a_6$$

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

Пример построения кода для n = 7

	L	Векто	р ош	ибки Е	-		Ci	индро	М
a_6	a_5	a_4	a_3	a_2	a_1	a_0	s ₂	S_1	s_0
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	1	1
0	0	0	0	1	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	0	0	0	0	0

Кодер:

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$a_2 = a_4 \oplus a_5 \oplus a_6$$

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

Пример передачи слова 0110

Принятое слово

Вектор ошибки

Кодер:

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$a_2 = a_4 \oplus a_5 \oplus a_6$$

Декодер:

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

Пример передачи слова 0110

Принятое слово

 \oplus

Вектор ошибки

Исправленное слово

Кодер:

$$a_0 = a_3 \oplus a_4 \oplus a_6$$

$$a_1 = a_3 \oplus a_5 \oplus a_6$$

$$a_2 = a_4 \oplus a_5 \oplus a_6$$

Декодер:

$$s_0 = a_0 \oplus a_3 \oplus a_4 \oplus a_6$$

$$s_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_6$$

$$s_2 = a_2 \oplus a_4 \oplus a_5 \oplus a_6$$

$$2^{n-k} \ge n+1$$

При заданном числе информационных разрядов k длина кодового слова n:

$$2^{n-k} \ge n+1$$

Избыточность кода Хэмминга имеет локальные минимумы, когда неравенство превращается в равенство:

код 7,4:
$$Q = \frac{7-4}{7} \cdot 100\% \cong 43\%$$

код 15,11:
$$Q = \frac{15-11}{15} \cdot 100\% \cong 27\%$$

При заданном числе информационных разрядов k длина кодового слова n:

$$2^{n-k} \ge n+1$$

Избыточность кода Хэмминга имеет локальные минимумы, когда неравенство превращается в равенство:

код 7,4:
$$Q = \frac{7-4}{7} \cdot 100\% \cong 43\%$$

код 15,11:
$$Q = \frac{15-11}{15} \cdot 100\% \cong 27\%$$

код 1010, 1000:
$$Q = \frac{1010 - 1000}{1010} \cdot 100\% \cong 1\%$$

Формирование кодового слова Р в матричной форме:

$$P = IG$$

где I – информационная матрица-строка;

G – генераторная матрица.

Формирование кодового слова Р в матричной форме:

$$P = IG$$

где I — информационная матрица-строка;

G – генераторная матрица.

Пример — код с контролем по чётности при k = 3, l = 110

$$\mathbf{P} = (110) \times \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} =$$

Формирование кодового слова Р в матричной форме:

$$P = IG$$

где I – информационная матрица-строка;

G – генераторная матрица.

Пример – код с контролем по чётности при k = 3, l = 110

$$\mathbf{P} = \begin{vmatrix} 1 & 1 & 0 \end{vmatrix} \times \begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{vmatrix} =$$

$$= |(1 \cdot 1 \oplus 1 \cdot 0 \oplus 0 \cdot 0) \quad (1 \cdot 0 \oplus 1 \cdot 1 \oplus 0 \cdot 0) \quad (1 \cdot 0 \oplus 1 \cdot 0 \oplus 0 \cdot 1) \quad (1 \cdot 1 \oplus 1 \cdot 1 \oplus 0 \cdot 1)| = |1 \quad 1 \quad 0 \quad 0|$$

Определение правильности принятого слова в матричной форме:

 \mathbf{PH}^{T}

где **H** – проверочная матрица-строка

Определение правильности принятого слова в матричной форме:

$$\mathbf{P}\mathbf{H}^T = 0$$

где Н – проверочная матрица-строка

Для рассмотренного примера:

$$\mathbf{H} = \begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$$

Определение правильности принятого слова в матричной форме:

$$\mathbf{P}\mathbf{H}^T = 0$$

где Н – проверочная матрица-строка

Для рассмотренного примера:

$$\mathbf{H} = \begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{vmatrix} \times \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} = 1 \cdot 1 \oplus 1 \cdot 1 \oplus 0 \cdot 1 \oplus 0 \cdot 1 = 0$$

Генераторная матрица кода 7,4:

$$\mathbf{G}_{7,4} = \begin{vmatrix} 1000111 \\ 0100110 \\ 0010101 \\ 0001011 \end{vmatrix}$$

Генераторная матрица кода 7,4:

Генераторная матрица кода 7,4:

Генераторная матрица кода 7,4:

$$\mathbf{G}_{7,4} = \begin{vmatrix} 1000111 \\ 0100110 \\ 0010101 \\ 0001011 \end{vmatrix}$$

Пример составления кодового слова:

$$\mathbf{P} = \mathbf{I} \times \mathbf{G} = |1010| \times \begin{vmatrix} 1000111 \\ 0100110 \\ 0010101 \\ 0001011 \end{vmatrix} = |1010010|$$

Проверочная матрица кода 7,4:

$$\mathbf{H}_{7,4} = \begin{vmatrix} 1110100 \\ 1101010 \\ 1011001 \end{vmatrix}$$

Строки матриц **H** и **G** взаимно ортогональны:

$$\mathbf{G} \times \mathbf{H}^T = 0$$

Синдром:

$$S = PH^T$$

Например для допустимого кодового слова 0110011:

$$S = |0110011| \times \begin{vmatrix} 111 \\ 101 \\ 011 \\ 100 \\ 010 \\ 001 \end{vmatrix} = |000|$$

Синдром:

$$S = PH^T$$

Для кодового слова, содержащего однократную ошибку:

$$S = |0110011| \times |011| = |011|$$

$$100$$

$$010$$

$$001$$