Chapitre 20 - Espaces probabilisés finis

1 Univers d'une expérience aléatoire

1.1 Notion d'expérience aléatoire

On considère des expériences dont chacune peut avoir plusieurs résultats (ou issues) possibles qui dépendent du hasard.

1.2 Événements liés à une expérience aléatoire

Un événement lié à une expérience aléatoire est une condition sur le résultat de l'expérience qui est ou qui n'est pas réalisée et que l'on ne peut pas vérifier avant d'avoir réalisé l'expérience.

Exemple 1.1. Exemples d'événement :

« l'un des numéros obtenus est pair », « on a tiré plus de boules rouges que de vertes », « plus de 13 personnes sont entrées en 1 heure », « la pièce est conforme », « l'un des dés donne un 5 » ...

1.3 Univers

On admet que pour chaque expérience aléatoire, il existe un ensemble, noté Ω , appelé univers, dont les éléments représentent les différentes issues (résultats) possibles de l'expérience.

On note souvent $\omega \in \Omega$ une issue de l'expérience.

Un événement lié à une expérience aléatoire est représenté par une partie A de l'univers Ω de cette expérience : $A \subset \Omega$. Un événement représente donc un ensemble de résultats possibles.

Parmi toutes les issues possibles, celles pour lesquelles l'événement A est réalisé sont représentées par $\omega \in A$.

En PTSI, Ω est un ensemble fini et l'ensemble des événements est l'ensemble des parties de $\Omega : \mathcal{P}(\Omega)$.

1.4 Langage des événements

Définition 1.1. Un événement A est une partie de Ω : $A \subset \Omega$.

Un événement élémentaire est un événement qui peut être représenté par un singleton $\{\omega\}$.

Définition 1.2. À chaque événement A correspond son contraire « non A » que l'on note \overline{A}

L'événement certain est représenté par Ω et son contraire est l'événement impossible qui est représenté par Ø.

Définition 1.3. L'événement « A et B » est réalisé si et seulement si A et B sont réalisés au cours de la même expérience aléatoire. L'événement « A et B » est représenté par $A \cap B$.

Définition 1.4. Deux événements A et B sont dits incompatibles si et seulement si A et B sont disjoints, c'est à dire $A \cap B = \emptyset$.

Définition 1.5. L'événement « A ou B » est réalisé si et seulement si au moins l'un des 2 événements A ou B est réalisé au cours de la même expérience aléatoire. L'événement « A ou B » est représenté par $A \cup B$.

Définition 1.6. La condition « l'événement A implique l'événement B » est représenté par $A \subset B$.

Définition 1.7. On appelle système complet d'événements une famille $(B_i)_i \in I$ d'événements de Ω vérifiant :

$$orall i \in I, \quad B_i
eq \emptyset ext{ et } orall (i,j) \in I^2 ext{ tels que } i
eq j, \qquad B_i \cap B_j = \emptyset \quad ext{ et } \quad igcup_{i \in I} B_i = \Omega$$

2 Espace probabilisé fini

2.1 Probabilité

Définition 2.1. Une probabilité sur un univers fini Ω est une application $P:\mathcal{P}(\Omega)\longrightarrow [0,1]$ qui vérifie :

$$egin{aligned} P(\Omega) &= 1 \
ho &= 0, \end{aligned} egin{aligned} P(\Omega) &= 0, &= 0, \end{aligned} egin{aligned} P(A \cup B) &= P(A) + P(B) \end{aligned}$$

Un couple (Ω, P) où Ω est un univers fini et P une probabilité sur Ω s'appelle un espace probabilisé fini.

Propriétés d'une probabilité

Proposition 2.1. Soit (Ω, P) un espace probabilisé fini et soit A et B deux événements. On a

- $-P(\overline{A}) = 1 P(A),$
- $-P(\emptyset)=0$,
- $Si\ A \subset B$, alors $P(A) \leq P(B)$, $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

Proposition 2.2. Soit (Ω, P) un espace probabilisé fini.

- Pour A,B,C trois événements, $P(A\cup B\cup C)=P(A)+P(B)+P(C)-P(A\cap B)-P(B\cap C)-P(C\cap A)+P(C)$ $P(A \cap B \cap C)$,
- $\ \textit{Pour toute famille} \ (A_i)_{i \in I} \ \textit{d'événements deux à deux incompatibles, on a} \ P\left(\cup_{i \in I} A_i\right) = \sum_{i \in I} P(A_i).$
- $Si\ (B_i)_{i\in I}$ est un système complet d'événements, alors $\sum_{i\in I}P(B_i)=1$.

Germes de probabilité 2.3

Théorème 2.3. Soit $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ et p_1, p_2, \dots, p_n des réels.

Il existe une probabilité P sur Ω telle que $\forall i \in \llbracket 1, n \rrbracket$, $P(\{\omega_i\}) = p_i$ si et seulement si $\forall i, \ p_i \geqslant 0$ et $\sum_{i=1}^n p_i = 1$.

Dans ce cas, la probabilité P est unique et pour tout événement A, on a $P(A) = \sum_{i \ to \ \omega_i \in A} p_i$.

Équiprobabilité 2.4

Définition 2.2. Soit (Ω, P) un espace probabilisé fini avec $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$. On dit qu'il y a équiprobabilité si les probabilités de tous les événements élémentaires sont égales : $\forall i \in [1, n]$,

On dit que P est la probabilité uniforme.

Proposition 2.4. Soit (Ω, P) un univers fini. La probabilité uniforme P sur Ω est définie par

 $P(A) = \frac{|A|}{|\Omega|} = \frac{nombre\ de\ cas\ favorables}{nombre\ de\ cas\ total}$ pour tout événement A,

Remarque 2.1. L'équiprobabilité est souvent une hypothèse que l'on pose pour adapter un modèle probabiliste à une expérience.

Probabilités conditionnelles 3

Définition 3.1

Définition 3.1. Soit (Ω, P) un espace probabilisé et B un événement tel que P(B) > 0. On appelle probabilité de l'événement A sachant B (sachant que l'événement B est réalisé) :

$$P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Théorème 3.1. Soit (Ω, P) un espace probabilisé et B un événement avec P(B) > 0.

L 'application $P_B: egin{array}{ccc} \mathcal{P}(\Omega) & \longrightarrow & [0,1] \\ A & \longmapsto & P(A|B) \end{array}$ est une probabilité sur Ω appelée probabilité conditionnée à l'événement

Proposition 3.2. Pour A, B, C des événements avec P(B) > 0, on a $P_B(\overline{A}) = 1 - P_B(A)$ et $P_B(A \cup C) = P_B(A) + P_B(A \cup C)$ $P_B(C) - P_B(A \cap C)$.

3.2 Formule des probabilités composées

Théorème 3.3.

Pour A, B des événements avec P(B) > 0, on a $P(A \cap B) = P_B(A).P(B)$.

Pour A_1, A_2, \ldots, A_n des événements tels que $P(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) \neq 0$, on a

$$P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1) \cdot P_{A_1}(A_2) \cdot P_{A_1 \cap A_2}(A_3) \cdot \dots \cdot P_{A_1 \cap A_2 \cap \dots \cap A_{n-1}}(A_n)$$

3.3 Formule des probabilités totales

Théorème 3.4. Soit (Ω, P) un espace probabilisé et $(A_i)_{i \in [\![1,n]\!]}$ un système complet d'événements. Pour tout événement B, on a

$$P(B) = \sum_{i=1}^{n} P_{A_i}(B) P(A_i)$$

Corollaire 3.5. Soit A un événement tel que 0 < P(A) < 1.

Pour tout événement B, on a $P(B) = P(A) \cdot P_A(B) + P(\overline{A}) P_{\overline{A}}(B)$.

3.4 Formules de Bayes

Théorème 3.6. Soit $(\Omega, \mathcal{P}(\Omega), P)$ un espace probabilisé et A et B sont deux événements tels que P(A) > 0 et P(B) > 0, alors

$$P_B(A) = \frac{P_A(B)P(A)}{P(B)}$$

Théorème 3.7. $Si(A_i)_{i\in [\![1,n]\!]}$ est un système complet d'événements de probabilités non nulles et B est un événement de probabilité non nulle, alors

$$\forall j \in [1, n], \quad P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$

4 Indépendance

4.1 Indépendance de deux événements

Définition 4.1. Soit (Ω, P) un espace probabilisé. On dit que 2 événements A et B sont indépendants pour la probabilité P lorsque $P(A \cap B) = P(A).P(B)$.

Proposition 4.1. Soit A et B deux événements avec P(B) > 0. On a

A et B sont indépendants pour la probabilité P si et seulement si $P_B(A) = P(A)$.

Proposition 4.2. Si A et B sont deux événements indépendants, alors \overline{A} et B sont deux événements indépendants ainsi que A et \overline{B} , ainsi que \overline{A} et \overline{B} .

Remarque 4.1. Soit $\Omega = \{1, 2, 3, 4, 5, 6\}$ un univers fini et deux probabilités P_1 et P_2 :

On considère les 2 événements $A = \{1, 2\}$ et $B = \{2, 3\}$.

On montre que A et B sont indépendants pour la probabilité P_1 mais A et B ne sont pas indépendants pour la probabilité P_2 .

4.2 Indépendance de n événements

Définition 4.2. Soit (Ω, P) un espace probabilisé. Soit (A_1, A_2, \dots, A_n) des événements.

On dit que les événements A_1, A_2, \ldots, A_n sont mutuellement indépendants si pour toute partie $J \subset [1, n]$, on a

$$P\left(igcap_{i\in J}A_i
ight)=\prod_{i\in J}P(A_i)$$

On dit que les événements A_1, A_2, \ldots, A_n sont indépendants deux à deux si pour tous les indices $(i, j) \in (\llbracket 1, n \rrbracket)^2$, on a

$$P(A_i \cap A_j) = P(A_i).P(A_j)$$

Remarque 4.2. On lance 2 fois un dé cubique parfait. Soient les événements A_1 : "le premier nombre obtenu est pair", A_2 : "le deuxième nombre obtenu est impair", A_3 : "la somme des 2 nombres obtenus est paire".

On montre que A_1 , A_2 , A_3 sont deux à deux indépendants, mais ne sont pas mutuellement indépendants.