Problem Set 6

Aaron Wang

March 5 2024

1. (a) Show that $(c \neq 0 \land ac \mid bc) \implies (a \mid b)$ for all $a, b, c \in \mathbb{Z}$.

Proof. Let $a, b, c \in \mathbb{Z}$ and assume $c \neq 0 \land ac \mid bc$. From $ac \mid bc$, we know there is a k such that $(k \in \mathbb{Z})$ (ack = bc) by definition of divides. Using commutativity, we get akc = bc. Since we know $c \neq 0 \land akc = bc$, by multiplicative cancellation, we can conclude ak = b which implies $a \mid b$.

Q.E.D.

(b) Show that $(n \mid x \land n \mid y) \implies (n \mid ax + by)$ for all $n, x, y, a, b \in \mathbb{Z}$.

Proof. Let $a,b,n,x,y\in\mathbb{Z}$ and assume $n\mid x\wedge n\mid y$. By definition of division, we know there is a g such that $(g\in\mathbb{Z})$ (ng=x) and some value h for which nh=y. Now let k=ag+bh. Thus, we know that $n\cdot k=n\cdot (ag+bh)$. By the definition of division (and distribution and commutativity), we know that n|ang+bnh. Finally, by substitution, we know that n|ax+by.

Q.E.D.

2. For all $z \in \mathbb{Z}$, show that z is even implies z is not odd.

Proof. Let $z \in \mathbb{Z}$ and assume that z is even. By definition of even $2 \mid z$ and by definition of divides there is a k such that $(k \in \mathbb{Z})(2k = z)$. Towards a contradiction, assume that z is odd. By definition of odd, $2 \mid z - 1$ and as such, there is a k such that $(k \in \mathbb{Z})(2k = z - 1)$. Using substitution, we get 2k = 2k - 1. Subtract 2k from and multiply by -1 for both sides and we get 2k - 2k = 1. Furthermore, by distributivity, we get 2(k - k) = 1. Since $(k - k) \in \mathbb{Z}$, we conclude that $2 \mid 1$ which by the Absolute Monotonicity of Divisibility implies $|2| \le |1| \$ Consequently, we conclude that z is even implies z is not odd.

Q.E.D.

3. (a) For all $n \in \mathbb{N}$, show that n is even implies n+1 is odd.

Proof. Let $n \in \mathbb{N}$ and assume that n is even. This means that $2 \mid n$. Since n = (n+1)-1 we can conclude that $2 \mid (n+1)-1$ and consequently we know that n+1 is odd.

Q.E.D.

(b) For all $n \in \mathbb{N}$, show that n is odd implies n+1 is even.

Proof. Let $n \in \mathbb{N}$ and assume that n is odd. This means that $2 \mid n-1$. Note that $2 \mid 2$ $(2 \cdot k = 2 \text{ when } k = 1)$. Thus, $2 \mid n-1+2$ by (1b). Also, observe that n-1+2=n+1. Consequently, $2 \mid n+1$. Therefore, n+1 is even.

Q.E.D.

4. Show that $3 \mid n^3 - n$ for all $n \in \mathbb{N}$.

Proof. Proof by mathematical induction

Basis Step:

Need to show $3 \mid 0^3 - 0$.

Since $(0^3 - 0 = 0) \wedge (3 \mid 0)$ we can conclude $3 \mid 0^3 - 0$.

Inductive Step:

Let $k \in \mathbb{N}$ and assume that $3 \mid k^3 - k$.

Need to show $3 \mid \mathbb{S}(k)^3 - \mathbb{S}(k)$.

 $\mathbb{S}(k)^3 - \mathbb{S}(k) = (k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - k - 1 = k^3 - k + 3k^2 + 3k = (k^3 - k) + 3(k^2 + k)$ Let $b = k^2 + k$ and let a = 1. Now $(k^3 - k) + 3(k^2 + k) = a(k^3 - k) + 3b$.

Since $(3 \mid k^3 - k) \wedge (3 \mid 3) \wedge a, b \in \mathbb{Z}$ we can conclude $3 \mid a(k^3 - k) + 3b$ by (Problem 1b).

Since $(\mathbb{S}(k)^3 - \mathbb{S}(k) = a(k^3 - k) + 3b) \wedge (3 \mid a(k^3 - k) + 3b)$, we can conclude $3 \mid \mathbb{S}(k)^3 - \mathbb{S}(k)$. Therefore $3 \mid \mathbb{S}(k)^3 - \mathbb{S}(k)$.

Thus by mathematical induction, we can conclude $3 \mid n^3 - n$ for all $n \in \mathbb{N}$. Q.E.D.

5. The Fibonacci sequence is the recursive function $\mathcal{F}: \mathbb{N} \to \mathbb{N}$ below.

$$\mathcal{F}(0) := 0$$

$$\mathcal{F}(1) := 1$$

$$\mathcal{F}(n+2) := \mathcal{F}(n+1) + \mathcal{F}(n)$$

Show that
$$1 + \sum_{i=0}^{n} \mathcal{F}(i) = \mathcal{F}(n+2)$$
 for all $n \in \mathbb{N}$.

Proof. Proof by mathematical induction.

Basis Step:

Need to show
$$1 + \sum_{i=0}^{0} \mathcal{F}(i) = \mathcal{F}(0+2)$$

$$1 + \sum_{i=0}^{0} \mathcal{F}(i) = 1 + \mathcal{F}(0)$$
 By Equal 1
$$= \mathcal{F}(1) + \mathcal{F}(0)$$
 By definition of $\mathcal{F}(1)$ By definition of $\mathcal{F}(n+2)$ By addition

Inductive Step:

Let
$$k \in \mathbb{N}$$
 and assume that $1 + \sum_{i=0}^{k} \mathcal{F}(i) = \mathcal{F}(k+2)$.

Need to show
$$1 + \sum_{i=0}^{\mathbb{S}(k)} \mathcal{F}(i) = \mathcal{F}(\mathbb{S}(k) + 2).$$

$$1 + \sum_{i=0}^{\mathbb{S}(k)} \mathcal{F}(i) = 1 + \sum_{i=0}^{k} \mathcal{F}(i) + \mathcal{F}(\mathbb{S}(k))$$
 By Equation By IH
$$= \mathcal{F}(k+2) + \mathcal{F}(\mathbb{S}(k))$$
 By definition of $\mathbb{S}(n)$

$$= \mathcal{F}(k+3) + \mathcal{F}(\mathbb{S}(k))$$
 By Theorem
$$= \mathcal{F}(\mathbb{S}(k)+1) + \mathcal{F}(\mathbb{S}(k))$$
 By definition of $\mathbb{S}(n)$

$$= \mathcal{F}(\mathbb{S}(k)+2)$$
 By definition of $\mathcal{F}(n+2)$

Therefore we have concluded
$$1 + \sum_{i=0}^{\mathbb{S}(k)} \mathcal{F}(i) = \mathcal{F}(\mathbb{S}(k) + 2)$$
.

Thus by mathematical induction, we can conclude
$$1 + \sum_{i=0}^{n} \mathcal{F}(i) = \mathcal{F}(n+2)$$
 for all $n \in \mathbb{N}$.