Geometry Note

Ran Xie

September 17, 2022

1 Definitions

Space of linear function L(V, W) vector space of linear functions from V to W.

Dual Space $V^* = L(V, R)$. For each basis $\{e_i\}$ of V, there exists unique $\{e^i\}$ of V^* such that $e^i(e_j) = \delta^i_j$

Tensor Space $T_s^r = \underbrace{V \otimes V}_{\text{r times}} \otimes \underbrace{V^* \otimes V^*}_{\text{s times}}$ is space

of multilinear functions on

$$\underbrace{V^* \times \ldots \times V^*}_{\text{r times}} \times \underbrace{V \times \ldots \times V}_{\text{s times}}$$

Tensor Product between A of (r, s) and B of (t, u), is

$$A \otimes B(\tau^1, \dots, \tau^{r+t}, v_1, \dots, v_{s+u})$$

$$= A(\tau^1, \dots, \tau^r, v_1, \dots, v_s)$$

$$B(\tau^{r+1}, \dots, \tau^{r+t}, v_{s+1}, \dots, v_{s+u})$$

Vector Field X on coordinate neighborhood U of a manifold M, with coordinate x^i . For each point $p, X = X^i \partial_i$, $X[f] = X^i \partial_i f$

Change of Coordinates If Y has coordinate neighborhood V of y^i , then $Y^i = X^j \frac{\partial y^i}{\partial x^j}$

Map Differential(Pushforward) F_* is induced map $F_*: TM \to TN$ of C^{∞} map $F: M \to N$. $F_*(v_p) = (F_*v)_{F(p)}$. With coordinate, $F_* = [\partial_j(y^i \circ F)]$, the Jacobian of F. Note that $y^i \circ F = F^i(x^1, \ldots, x^m)$

Tensor Bundle $T_s^r M$ of type (r, s) is the union of all tensor spaces $M_s^r(p)$ at each point $p \in M$.

Tangent Bundle $TM = T_0^1 M$,

Scalar Bundle $T_0^0 M = M \times \Re$,

Cotangent Bundle/ Differentials / Phase space $T_1^0 M$

Tensor Field T of type (r, s), $T(p) \in T_s^r M(p)$ for each p. (1, 0) is vector field, (0, 0) gives real-valued function. (0, 1) gives differential.

Tensor Coordinate of T_s^r wrt coordinate x^i are d^{r+s} real-valued functions

$$T^{i_1\dots i_r}_{j_1\dots j_s}=T(dx^{i_1},\dots dx^{i_r},\partial_{j_1},\dots,\partial_{j_s})$$

Tensor Product

Exterior Product

Differential forms p-form is C^{∞} skew-symmetric covariant tensor field of degree p (type (0, p)). Local basis has $\binom{d}{p}$ p-forms $dx^{i_1} \cdots dx^{i_p}$ where (i_1, \ldots, i_p) is increasing.