DMT Seminar 2020/21

Biomechanical Rehab Device for Long COVID

Group-5C [Actuation Subassembly]:

Jonas Petersen, Manith Adikari, Kushal Chudasama, Mohamed Amtouti, Georgy Godelashvili

INTRO

Project Overview

 Shoulder exoskeleton to assist patients with Long COVID symptoms

- Subsystems:
 - Actuation
 - Structural
 - o Limb Support

INTRO

Ideation

1. Rehabilitation device

Assistive or resistive? Body part?

2. Assistive single shoulder exoskeleton.

Linear actuators? Cable push? Cable pull?

3. Cable push.

>>>

Subassembly split: Structural support 05A, limb support 05B, <u>Actuation 05C</u>

INTRO

PDS Development

- Gravity compensation of 6 kg arm
- Full arm flexion in 5 s
- Continuous operation 2 hours
- Noise < 50 dB
- Mass < 2.5kg
- Product life > 2 years
- Complies with WEEE

Final Design: Lever Based Actuation

- Pushes on triceps to raise the arm
- Pulley system to rotate shoulder joint
- Position & Force Sensors for user control
- Motor-gearbox actuates spool

Actuation Subassembly

12V DC Motor

172:1 Gearbox Transmission

77Wh Battery Pack & 9V Auxiliary Supply

Electronics Enclosure

Drive Shaft-Spool Assembly

Sensors

Control System

Power Considerations

Required:

■ Torque: 49.9 mNm

Power: 26.5 W

Max Capability:

■ Torque: 54.3 mNm

Power: 40 W

Drivetrain

Cantilevered Spool

Flexible Coupling

Min. Required Gear Ratio: 441

Achieved Gear Ratio: 488

Control System

- Control system adopted from literature
- Gravity Estimator modelled
- Encoders for position sensing
- Strain gauge for force sensing

Circuit Diagram

- Arduino Microcontroller
- Two Rotary Encoders
- Two Strain Gauges [Half Bridge Config.]
- 9V Arduino Supply
- Motor Driver

Manufacturing Considerations

[Angle bracket 1st 2nd and 3rd iterations]

1st iteration

Bent Aluminium

2nd iteration

Milled Aluminium Block

3rd iteration

Milled from L-Shape Aluminium Block

MAKE

Budgeting

- Maxon drivetrain : highest cost component
- Manufactured parts from workshops
- Bulk Production will be cheaper

Total Subassembly Iteration #1

Cost: £**2243.27** (incl. Testing)

Manufacturing Review

- Overall effective assembly
- Tolerances functional
- Shaft had minor lip [removed]
- Spool needed press fit onto shaft

TEST

Overview

Major Tests:

[Critical & Complex]

Shaft-Spool Loading Test

Strain Gauge Test

Further Tests:

Battery Life

[Separate & Basic]

TEST

Major Test #1: Strain Gauges

Manufactured test plate

- Attached Strain Gauges to Group 5B Bar
- Applied Force Readings
 - Correlative
 - Low Errors [< 1.5 N]
 - Moderate Inaccuracies [1 30 N]
 - Minimal drift [tested up to 20 mins]

TEST

Major Test #2: Shaft-Spool Assembly

- Static Loading up to 450 N *
 - **5**-minute periods
- ightharpoonup Dynamic Loading up to 450 N *
 - $\overline{\mathsf{M}}$ Max Speed = 5 m/s User Actuation
- Backdrivable
 - Free User movement
 - Wear on shaft-spool assembly

REDESIGN

Spool and Shaft

- Spool changed to hourglass shape
- Increased flange thickness
- Cable routing hole now at a 45° angle
- Second keyway added to the shaft

REDESIGN

Casing

- 3 mm wall thickness
- 2° draft angle
- Acrylic (PMMA)
- Mould Quote: **£ 4812**
- Total cost per unit: **£10.79** for 500 units
- Additive manufacturing Quote: £66.19
- At 79 units injection moulding becomes cheaper (£64.45 per unit)

Evaluation: PDS vs Prototype

		Element	Statement or Criteria	Evaluation
	1	Performance	Actuation system must provide suitable power to enable full arm	Verified output RPM and torque transmitted to lever system in the shaft loading test
			flexion in minimum time of 5 seconds	under maximum expected loading conditions as described in detail in section 9.1.
	2			Perform a full test of each motion 3 times and measure angles. Check if range of
			Range of movement: Assisted Forward Flexion 0° to 160°	movement is within set boundaries (See Main PDS). Not completed due to limited GTA time.
			Assisted Forward Flexion 0 to 100	unie.
	3		Actuation provides minimum torque to lift an arm of maximum mass	Verified torque transmitted to lever system in the shaft loading test under maximum
			of 6 kg	expected loading conditions as described in detail in section 9.1.
	4		Battery life: 5 hours	GTA time limitations did not allow for low priority battery life test, but manufacturers specifications ensure 5 hours lifetime.
	5		Battery charging: <6 hours for full charge, <2 hours for 50%	Manufacturer specifications.
	6		User interface, including power switch and fail-safe mechanism.	Part of future progression of the project due to shift of focus from electrical to
			, 31	mechanical aspects.
	7		Design primarily for indoor use	Test the product under minor splash conditions while turned off and check if water is
ion				entering electronics
Operation	8		Aim for water resistance. Withstand minor water splashes.	Discarded during early design stages. Benefits do not justify the effort, consensus
ďO	0	N	IP65-66	amongst all three subteams to remove criterion from PDS.
	9	Noise	The device must not cause noise that hinders conversation. Aim for max of around 50 dBA	Manufacturer Maxon specifies an operating noise of 44 dBA for the motor and testing confirmed no significant additional frictional noise.
			max of around 30 dbA	commed no significant additional metional noise.
	10	Weight	The entire device should weigh less than 2.5 kg	CAD model evaluation of the Actuation subassembly yielded 1.7kg which exceeds a
				third of the given limit considerably. Main weight contributions stem from the motor- gearbox assembly (404g), battery pack (365g) and further steel drivetrain components
				which need to withstand loads of up to 440N.
				· ·
	11	Ergonomics	Any switches or buttons can be activated without need for excessive	Standard switch, manufacturer specifications.
			force (approx. under 200g)	
			1	

Imperial College London

Evaluation: PDS vs Prototype

	12	Safety	All machined parts deburred and chamfered. No exposed transmission elements. Safety stop button that brings system to halt (does not just cut power)	Assembling and testing the final product confirmed.
Life	13	Service Life	2 Year total product life Motor: 2 hours daily (1451 Hrs) Sensor and Frame: 4-5 Hours Daily (3652 Hrs)	Bought from established manufacturers, components are rated to last 2 years.
	14		Maintenance matches the service life of 2 years	Bought from established manufacturers, components are rated to last 2 years.
	15	Sustainability	Optimise for use of recyclable materials and reusable elements	Design reviewed.
	16	Maintenance	Minimal maintenance required, e.g., user should not be required to lubricate moving parts themselves. Quick and easy replacement of critical parts if necessary	Design reviewed.
	17	Quantity	Produce 1 prototype with 3 sub-assemblies	N/A
Producer	18	Product Cost	Total £3000 to purchase all the components and external manufacture and external testing cost, £1000 for each sub-assembly	Budgeting, details in "Design Report" [7]. Budget exceeded but sufficiently justified.
	19	Materials Consideration	Materials with high fatigue life. High strength to weight ratio materials. Metallic parts must be corrosion resistant	Used Cambridge Engineering Selector and selected materials that satisfy the relevant performance indices.
Pro	20		Materials in contact with skin must be inert and pliable. Does not cause allergic or dermatological reactions	Material Data Sheet from supplier confirms this.
	21	Manufacturing	Use standard components where possible	Used suppliers from the Imperial College Information System.
	22	Constraints	Parts able to be manufactured in local plants (United Kingdom)	Only UK based manufacturers were used. (Maxon is Swiss, but the parts were off-shelf and had an acceptable lead time of 10 days.)
Regulatory	23	End of Life Disposal & Sustainability/ Environmental concerns	Electric and Electronic components must comply with Waste Electrical and Electronic Equipment (WEEE) regulations Use of recyclable plastics Batteries must be adequately disposable	Design reviewed.

Fully met: 78%

Missed: 9%

(Waterproofness: Discarded)

Steps To Market Entry

Superassembly test and revision

MHRA compliance

Rollout to volunteering patients

Design iteration

Serial production

Market entry

Summary

DESIGN

Slides 5-11

MAKE

Slides 12-13

TEST

Slides 14-16

REDESIGN

Slides 17-18

Imperial College London

Shoulder Concepts

24

Calculations: Gear Ratio

Calculations: Torque And Max Tension

Actuation Subassembly - Full Component Overview

Battery Considerations

