ax.plot(val_losses[i], label='Test Loss') ax.set_title(f'Model {names[i]} Losses') ax.set_xlabel('Epoch') ax.set_ylabel('Loss') ax.legend() plt.tight_layout() # 关闭空的子图 for j in range(i + 1, rows * cols): row = j // colscol = j % cols ax = axes[row][col] if rows > 1 else axes[col] ax.axis('off') plt.show() plot_val_acc 函数可以接受模型的验证准确率、模型名称、绘图样式,然后将所有模型的验证集准确率进行对比 In [5]: def plot_val_acc(val_acc_list, model_names, styles=None, figsize=(15, 5), title='Model Accuracy', y if styles is None: styles = [':', '-.', '--', ':', '-.', '--', '-'] * (len(val_acc_list) // 4 + 1) plt.figure(figsize=figsize) for i, val_acc in enumerate(val_acc_list): plt.plot(val_acc, linestyle=styles[i % len(styles)], label=model_names[i]) plt.title(title) plt.ylabel(ylabel) plt.xlabel(xlabel) plt.legend(loc='upper left') axes = plt.gca() axes.set_ylim(ylim) plt.show() 模型训练函数定义 定义模型训练的函数,返回 train_loss , train_acc , val_loss , val_acc 模型的 Optimizer 使用 Adam , criterion 使用交叉墒损失 In [6]: def train_model(model, train_loader, test_loader, epochs=20, device="cpu"): criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) $train_acc = []$ $val_acc = []$ train_loss = [] val_loss = [] for epoch in range(epochs): # Training phase model.train() correct = 0 total = 0 running loss = 0.0for images, labels in train_loader: images, labels = images.to(device), labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() train_loss.append(running_loss / len(train_loader)) train acc.append(correct / total) # Validation phase model.eval() correct = 0 total = 0running_loss = 0.0 with torch.no_grad(): for images, labels in test_loader: images, labels = images.to(device), labels.to(device) outputs = model(images) loss = criterion(outputs, labels) running_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() val_loss.append(running_loss / len(test_loader)) val_acc.append(correct / total) if epoch % 2 == 0 or epoch + 1 == epochs: print(f"Epoch {epoch+1}/{epochs}, Train Loss: {train_loss[-1]:.4f}, Train Accuracy: {tr return train_loss, train_acc, val_loss, val_acc 比较试验 1. 探究 convolution—subsambling pairs 对模型影响 建立一个简单的模型,探究不同的 convolution—subsambling pairs 对数对模型的影响。我们比较了四种参数的组 合,通过堆叠(32x32的卷基层+2x2的池化层): 1. 32CP2 2. 32CP2-32CP2 3. 32CP2-32CP2-32CP2 4. 32CP2-32CP2-32CP2 模型定义 In [7]: class SimpleCNN(nn.Module): def __init__(self, conv_subsample_pairs): super(SimpleCNN, self).__init__() layers = [] $in_{channels} = 3$ $out_channels = 32$ for i in range(conv_subsample_pairs): layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=5, stride=1, padding=2)) layers.append(nn.ReLU()) layers.append(nn.MaxPool2d(kernel_size=2, stride=2)) in_channels = out_channels out_channels += 16 out_channels -= 16 layers.append(nn.Flatten()) # Compute the size of the input to the linear layer (taking into account the pooling) linear_input_size = out_channels * (32 // (2 ** conv_subsample_pairs)) ** 2 layers.append(nn.Linear(linear_input_size, 10)) self.model = nn.Sequential(*layers) def forward(self, x): return self.model(x) 实验过程 In [8]: pairs_list = [1, 2, 3, 4] names = [f"{pairs} pairs" for pairs in pairs_list] styles = [':', '-.', '--', '-'] train_loss_list = [] train_acc_list = [] val_loss_list = [] val_acc_list = [] for pairs in pairs_list: print(f"Training with {pairs} convolution-subsampling pairs...") model = SimpleCNN(conv_subsample_pairs=pairs).to(device) train_loss, train_acc, val_loss, val_acc = train_model(model, train_loader, test_loader, epochs train_loss_list.append(train_loss) train_acc_list.append(train_acc) val_loss_list.append(val_loss) val_acc_list.append(val_acc) Training with 1 convolution—subsampling pairs... Epoch 1/20, Train Loss: 1.3810, Train Accuracy: 0.5179, Validation Loss: 1.1692, Validation Accuracy y: 0.5905 Epoch 3/20, Train Loss: 0.9799, Train Accuracy: 0.6658, Validation Loss: 1.0447, Validation Accuracy y: 0.6421 Epoch 5/20, Train Loss: 0.8724, Train Accuracy: 0.7014, Validation Loss: 1.0099, Validation Accurac Epoch 7/20, Train Loss: 0.8006, Train Accuracy: 0.7235, Validation Loss: 1.0607, Validation Accurac y: 0.6448 Epoch 9/20, Train Loss: 0.7351, Train Accuracy: 0.7486, Validation Loss: 1.0446, Validation Accurac y: 0.6540 Epoch 11/20, Train Loss: 0.6897, Train Accuracy: 0.7621, Validation Loss: 1.0670, Validation Accura cy: 0.6510 Epoch 13/20, Train Loss: 0.6447, Train Accuracy: 0.7773, Validation Loss: 1.0926, Validation Accura Epoch 15/20, Train Loss: 0.6026, Train Accuracy: 0.7918, Validation Loss: 1.1199, Validation Accura cy: 0.6504 Epoch 17/20, Train Loss: 0.5692, Train Accuracy: 0.8038, Validation Loss: 1.2048, Validation Accura cy: 0.6400 Epoch 19/20, Train Loss: 0.5367, Train Accuracy: 0.8128, Validation Loss: 1.2488, Validation Accura cy: 0.6383 Epoch 20/20, Train Loss: 0.5244, Train Accuracy: 0.8178, Validation Loss: 1.2282, Validation Accura Training with 2 convolution—subsampling pairs... Epoch 1/20, Train Loss: 1.3429, Train Accuracy: 0.5232, Validation Loss: 1.0762, Validation Accurac y: 0.6224 Epoch 3/20, Train Loss: 0.8391, Train Accuracy: 0.7084, Validation Loss: 0.8692, Validation Accurac y: 0.7039 Epoch 5/20, Train Loss: 0.6852, Train Accuracy: 0.7625, Validation Loss: 0.8378, Validation Accurac Epoch 7/20, Train Loss: 0.5915, Train Accuracy: 0.7945, Validation Loss: 0.8225, Validation Accurac Epoch 9/20, Train Loss: 0.5155, Train Accuracy: 0.8207, Validation Loss: 0.8593, Validation Accurac y: 0.7233 Epoch 11/20, Train Loss: 0.4510, Train Accuracy: 0.8409, Validation Loss: 0.9100, Validation Accura cy: 0.7219 Epoch 13/20, Train Loss: 0.3986, Train Accuracy: 0.8604, Validation Loss: 0.9556, Validation Accura cy: 0.7244 Epoch 15/20, Train Loss: 0.3563, Train Accuracy: 0.8747, Validation Loss: 1.0499, Validation Accura cy: 0.7153 Epoch 17/20, Train Loss: 0.3153, Train Accuracy: 0.8880, Validation Loss: 1.1683, Validation Accura cy: 0.7088 Epoch 19/20, Train Loss: 0.2778, Train Accuracy: 0.9010, Validation Loss: 1.2234, Validation Accura cy: 0.7100 Epoch 20/20, Train Loss: 0.2581, Train Accuracy: 0.9088, Validation Loss: 1.2706, Validation Accura cy: 0.7090 Training with 3 convolution—subsampling pairs... Epoch 1/20, Train Loss: 1.4008, Train Accuracy: 0.4926, Validation Loss: 1.0932, Validation Accuracy y: 0.6059 Epoch 3/20, Train Loss: 0.8093, Train Accuracy: 0.7189, Validation Loss: 0.8617, Validation Accuracy y: 0.6967 Epoch 5/20, Train Loss: 0.6043, Train Accuracy: 0.7903, Validation Loss: 0.8218, Validation Accurac y: 0.7283 Epoch 7/20, Train Loss: 0.4654, Train Accuracy: 0.8363, Validation Loss: 0.8296, Validation Accurac y: 0.7317 Epoch 9/20, Train Loss: 0.3545, Train Accuracy: 0.8761, Validation Loss: 0.9263, Validation Accuracy y: 0.7175 Epoch 11/20, Train Loss: 0.2699, Train Accuracy: 0.9045, Validation Loss: 1.0519, Validation Accura cy: 0.7263 Epoch 13/20, Train Loss: 0.2131, Train Accuracy: 0.9235, Validation Loss: 1.1838, Validation Accura cy: 0.7340 Epoch 15/20, Train Loss: 0.1806, Train Accuracy: 0.9352, Validation Loss: 1.3708, Validation Accura Epoch 17/20, Train Loss: 0.1460, Train Accuracy: 0.9481, Validation Loss: 1.5741, Validation Accura cy: 0.7170 Epoch 19/20, Train Loss: 0.1352, Train Accuracy: 0.9521, Validation Loss: 1.6596, Validation Accura cy: 0.7236 Epoch 20/20, Train Loss: 0.1231, Train Accuracy: 0.9559, Validation Loss: 1.8023, Validation Accura cy: 0.7200 Training with 4 convolution-subsampling pairs... Epoch 1/20, Train Loss: 1.4315, Train Accuracy: 0.4763, Validation Loss: 1.1034, Validation Accurac y: 0.6057 Epoch 3/20, Train Loss: 0.7710, Train Accuracy: 0.7303, Validation Loss: 0.8305, Validation Accurac y: 0.7119 Epoch 5/20, Train Loss: 0.5395, Train Accuracy: 0.8112, Validation Loss: 0.8040, Validation Accurac y: 0.7349 Epoch 7/20, Train Loss: 0.3727, Train Accuracy: 0.8675, Validation Loss: 0.8422, Validation Accurac y: 0.7410 Epoch 9/20, Train Loss: 0.2436, Train Accuracy: 0.9137, Validation Loss: 1.0891, Validation Accuracy y: 0.7267 Epoch 11/20, Train Loss: 0.1762, Train Accuracy: 0.9383, Validation Loss: 1.2451, Validation Accura cy: 0.7348 Epoch 13/20, Train Loss: 0.1387, Train Accuracy: 0.9510, Validation Loss: 1.4151, Validation Accura cv: 0.7314 Epoch 15/20, Train Loss: 0.1290, Train Accuracy: 0.9556, Validation Loss: 1.5842, Validation Accura cy: 0.7320 Epoch 17/20, Train Loss: 0.1369, Train Accuracy: 0.9528, Validation Loss: 1.6246, Validation Accura cy: 0.7317 Epoch 19/20, Train Loss: 0.1137, Train Accuracy: 0.9619, Validation Loss: 1.8086, Validation Accura cy: 0.7248 Epoch 20/20, Train Loss: 0.1139, Train Accuracy: 0.9618, Validation Loss: 1.7957, Validation Accura cy: 0.7293 实验结果 In [9]: plot_val_acc(val_acc_list, names, styles=styles, title="Effect of Convolution-Subsampling Pairs on Effect of Convolution-Subsampling Pairs on CIFAR-10 1.0 ····· 1 pairs --- 2 pairs --- 3 pairs 0.9 4 pairs 0.8 Validation Accuracy 0.6 0.5 0.0 2.5 5.0 12.5 15.0 17.5 10.0 Epoch plot_model_losses(train_loss_list, val_loss_list, names) Model 3 pairs Losses Train Loss Test Loss 1.2 1.50 1.2 1.0 1.25 s 1.00 Loss 8.0 0.8 0.6 0.50 0.25 17.5 15.0 10.0 12.5 10.0 12.5 Model 4 pairs Losses Train Loss 1.50 1.25 ss 1.00 0.75 0.50 0.25 可以看到,我们使用三次堆叠的结果就可以在当前的状态下得到很好的结果。 2. 探究 feature map nums 对模型影响 探究特征图通道深度的影响,组合如下: 16-32-48, 32-48-64, 64-96-128 模型定义 In [11]: class SimpleCNN(nn.Module): def __init__(self, channels_config=None): super(SimpleCNN, self).__init__() layers = [] $in_{channels} = 3$ # 设置默认的通道数递增配置 if channels_config is None: channels_config = [16, 32, 48] # 默认配置: 16 -> 32 -> 48 # 根据conv_subsample_pairs和channels_config设置卷积层 for i in range(3): out_channels = channels_config[i] layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=5, stride=1, padding=2)) layers.append(nn.ReLU()) layers.append(nn.MaxPool2d(kernel_size=2, stride=2)) in_channels = out_channels layers.append(nn.Flatten()) linear_input_size = in_channels * 16 layers.append(nn.Linear(linear_input_size, 10)) self.model = nn.Sequential(*layers) def forward(self, x): return self.model(x) 实验过程 In [12]: # 实验过程 channel_configs = [[16, 32, 48], # 组合1 [32, 48, 64], # 组合2 [64, 96, 128] # 组合3 names = [f"Channels: {cfg}" for cfg in channel_configs] styles = [':', '-.', '--'] train_loss_list = [] train_acc_list = [] val_loss_list = [] val_acc_list = [] In [13]: # 进行实验 for channel_config in channel_configs: print(f"Training with channel config {channel_config}...") model = SimpleCNN(channels_config=channel_config).to(device) # 假设使用3层卷积 train_loss, train_acc, val_loss, val_acc = train_model(model, train_loader, test_loader, epochs train_loss_list.append(train_loss) train_acc_list.append(train_acc) val_loss_list.append(val_loss) val_acc_list.append(val_acc) Training with channel config [16, 32, 48]... Epoch 1/10, Train Loss: 1.4488, Train Accuracy: 0.4772, Validation Loss: 1.2008, Validation Accurac y: 0.5697 Epoch 3/10, Train Loss: 0.9038, Train Accuracy: 0.6826, Validation Loss: 0.8988, Validation Accurac y: 0.6854 Epoch 5/10, Train Loss: 0.7217, Train Accuracy: 0.7491, Validation Loss: 0.8335, Validation Accurac y: 0.7096 Epoch 7/10, Train Loss: 0.6109, Train Accuracy: 0.7886, Validation Loss: 0.8067, Validation Accurac y: 0.7286 Epoch 9/10, Train Loss: 0.5301, Train Accuracy: 0.8143, Validation Loss: 0.8605, Validation Accurac Epoch 10/10, Train Loss: 0.4927, Train Accuracy: 0.8294, Validation Loss: 0.8607, Validation Accura cy: 0.7263 Training with channel config [32, 48, 64]... Epoch 1/10, Train Loss: 1.3867, Train Accuracy: 0.4993, Validation Loss: 1.1196, Validation Accurac y: 0.6078 Epoch 3/10, Train Loss: 0.8048, Train Accuracy: 0.7203, Validation Loss: 0.8600, Validation Accurac y: 0.7054 Epoch 5/10, Train Loss: 0.6145, Train Accuracy: 0.7860, Validation Loss: 0.7907, Validation Accurac y: 0.7362 Epoch 7/10, Train Loss: 0.4815, Train Accuracy: 0.8306, Validation Loss: 0.8165, Validation Accuracy y: 0.7400 Epoch 9/10, Train Loss: 0.3714, Train Accuracy: 0.8698, Validation Loss: 0.8755, Validation Accurac y: 0.7355 Epoch 10/10, Train Loss: 0.3372, Train Accuracy: 0.8820, Validation Loss: 0.9979, Validation Accura Training with channel config [64, 96, 128]... Epoch 1/10, Train Loss: 1.2979, Train Accuracy: 0.5336, Validation Loss: 0.9865, Validation Accurac y: 0.6550 Epoch 3/10, Train Loss: 0.6966, Train Accuracy: 0.7576, Validation Loss: 0.7938, Validation Accuracy y: 0.7297 Epoch 5/10, Train Loss: 0.4601, Train Accuracy: 0.8391, Validation Loss: 0.7734, Validation Accurac y: 0.7505 Epoch 7/10, Train Loss: 0.2842, Train Accuracy: 0.9015, Validation Loss: 0.8819, Validation Accurac y: 0.7491 Epoch 9/10, Train Loss: 0.1870, Train Accuracy: 0.9334, Validation Loss: 1.0969, Validation Accuracy Epoch 10/10, Train Loss: 0.1584, Train Accuracy: 0.9432, Validation Loss: 1.2290, Validation Accura cy: 0.7437 实验结果 In [14]: # 绘制验证精度图 plot_val_acc(val_acc_list, names, styles=styles, title="Effect of Different Channel Configurations Effect of Different Channel Configurations on CIFAR-10 ···· Channels: [16, 32, 48] Channels: [32, 48, 64] --- Channels: [64, 96, 128] 0.9 Validation Accuracy 0.5 Epoch In [15]: # 绘制训练和验证损失图 plot_model_losses(train_loss_list, val_loss_list, names) Model Channels: [16, 32, 48] Losses Model Channels: [32, 48, 64] Losses Model Channels: [64, 96, 128] Losses Test Loss Test Loss 1.2 1.2 1.2 1.0 1.0 ss 1.0 Loss 0.8 0.6 0.8 0.6 0.6 Test Loss Epoch Epoch Epoch 可以看出,feature map nums对模型有一定的影响,我们选择64-96-128,即最大的。 3. 探究 dense layer 对模型影响 模型定义 In [16]: class SimpleCNN(nn.Module): def __init__(self, dense_size=None): super(SimpleCNN, self).__init__() layers = [] $in_channels = 3$ # 固定的通道数配置: [64, 96, 128] channels_config = [64, 96, 128]# 根据固定的通道配置设置卷积层 for i in range(3): out_channels = channels_config[i] layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=5, stride=1, padding=2)) layers.append(nn.ReLU()) layers.append(nn.MaxPool2d(kernel_size=2, stride=2)) in_channels = out_channels # Flatten卷积后的输出 layers.append(nn.Flatten()) # 固定Dense层的配置, dense_size从0-32-64-128-256到1024 if dense_size is None: dense_size = 32 # 默认配置为32 layers.append(nn.Linear(in_channels * 16, dense_size)) # 16是经过池化后的每个特征图的大小 layers.append(nn.ReLU()) # 最后是10个分类 layers.append(nn.Linear(dense_size, 10)) self.model = nn.Sequential(*layers) def forward(self, x): return self.model(x) 实验过程 In [17]: dense_sizes = [32, 64, 128, 256, 1024] # Dense层的尺寸变化配置 names = [f"Dense: {size}" for size in dense_sizes] styles = [':','-.','--',':','-.','--','-',':','-.','--','-'] train_loss_list = [] train_acc_list = [] val_loss_list = [] val_acc_list = [] In [18]: # *进行实验* for dense size in dense sizes: print(f"Training with dense size {dense_size}...") model = SimpleCNN(dense_size=dense_size).to(device) train_loss, train_acc, val_loss, val_acc = train_model(model, train_loader, test_loader, epochs train_loss_list.append(train_loss) train_acc_list.append(train_acc) val_loss_list.append(val_loss) val_acc_list.append(val_acc) Training with dense size 32... Epoch 1/10, Train Loss: 1.4409, Train Accuracy: 0.4744, Validation Loss: 1.1254, Validation Accurac y: 0.6013 Epoch 3/10, Train Loss: 0.7679, Train Accuracy: 0.7322, Validation Loss: 0.8364, Validation Accurac Epoch 5/10, Train Loss: 0.5414, Train Accuracy: 0.8115, Validation Loss: 0.7561, Validation Accurac y: 0.7488 Epoch 7/10, Train Loss: 0.3735, Train Accuracy: 0.8684, Validation Loss: 0.8341, Validation Accurac y: 0.7441 Epoch 9/10, Train Loss: 0.2532, Train Accuracy: 0.9111, Validation Loss: 1.0066, Validation Accurac y: 0.7395 Epoch 10/10, Train Loss: 0.2144, Train Accuracy: 0.9248, Validation Loss: 1.0987, Validation Accura cy: 0.7449 Training with dense size 64... Epoch 1/10, Train Loss: 1.3872, Train Accuracy: 0.4979, Validation Loss: 1.0646, Validation Accurac y: 0.6220 Epoch 3/10, Train Loss: 0.7280, Train Accuracy: 0.7463, Validation Loss: 0.8746, Validation Accurac y: 0.7001 Epoch 5/10, Train Loss: 0.4925, Train Accuracy: 0.8269, Validation Loss: 0.7757, Validation Accurac y: 0.7509 Epoch 7/10, Train Loss: 0.3154, Train Accuracy: 0.8890, Validation Loss: 0.8637, Validation Accuracy Epoch 9/10, Train Loss: 0.2039, Train Accuracy: 0.9284, Validation Loss: 1.0075, Validation Accurac y: 0.7486 Epoch 10/10, Train Loss: 0.1736, Train Accuracy: 0.9386, Validation Loss: 1.1163, Validation Accura cy: 0.7471 Training with dense size 128... Epoch 1/10, Train Loss: 1.3708, Train Accuracy: 0.5017, Validation Loss: 1.0513, Validation Accurac Epoch 3/10, Train Loss: 0.7133, Train Accuracy: 0.7493, Validation Loss: 0.7721, Validation Accurac y: 0.7375 Epoch 5/10, Train Loss: 0.4666, Train Accuracy: 0.8354, Validation Loss: 0.8002, Validation Accuracy y: 0.7356 Epoch 7/10, Train Loss: 0.2932, Train Accuracy: 0.8943, Validation Loss: 0.9680, Validation Accurac y: 0.7260 Epoch 9/10, Train Loss: 0.1913, Train Accuracy: 0.9317, Validation Loss: 1.0809, Validation Accurac y: 0.7435 Epoch 10/10, Train Loss: 0.1591, Train Accuracy: 0.9446, Validation Loss: 1.1719, Validation Accura cy: 0.7470 Training with dense size 256... Epoch 1/10, Train Loss: 1.3918, Train Accuracy: 0.4919, Validation Loss: 1.0818, Validation Accuracy y: 0.6114 Epoch 3/10, Train Loss: 0.7510, Train Accuracy: 0.7354, Validation Loss: 0.8365, Validation Accurac y: 0.7169 Epoch 5/10, Train Loss: 0.5091, Train Accuracy: 0.8198, Validation Loss: 0.7824, Validation Accurac y: 0.7400 Epoch 7/10, Train Loss: 0.3358, Train Accuracy: 0.8816, Validation Loss: 0.9143, Validation Accurac y: 0.7499 Epoch 9/10, Train Loss: 0.2179, Train Accuracy: 0.9225, Validation Loss: 1.0651, Validation Accurac y: 0.7484 Epoch 10/10, Train Loss: 0.1834, Train Accuracy: 0.9347, Validation Loss: 1.2453, Validation Accura cy: 0.7427 Training with dense size 1024... Epoch 1/10, Train Loss: 1.3677, Train Accuracy: 0.5008, Validation Loss: 1.1076, Validation Accurac y: 0.6080 Epoch 3/10, Train Loss: 0.7417, Train Accuracy: 0.7396, Validation Loss: 0.8242, Validation Accuracy y: 0.7126 Epoch 5/10, Train Loss: 0.4509, Train Accuracy: 0.8403, Validation Loss: 0.8316, Validation Accurac y: 0.7344 Epoch 7/10, Train Loss: 0.2359, Train Accuracy: 0.9164, Validation Loss: 1.0117, Validation Accurac y: 0.7371 Epoch 9/10, Train Loss: 0.1334, Train Accuracy: 0.9533, Validation Loss: 1.2565, Validation Accurac y: 0.7372 Epoch 10/10, Train Loss: 0.1347, Train Accuracy: 0.9544, Validation Loss: 1.3069, Validation Accura cy: 0.7342 实验结果 In [19]: # 绘制验证精度图 plot_val_acc(val_acc_list, names, styles=styles, title="Effect of Dense Layer Size on CIFAR-10", yl Effect of Dense Layer Size on CIFAR-10 1.0 Dense: 32 ·- Dense: 64 --- Dense: 128 0.9 Dense: 256 Dense: 1024 Validation Accuracy 9.0 9.0 0.5 Epoch In [20]: # 绘制训练和验证损失图 plot_model_losses(train_loss_list, val_loss_list, names) Model Dense: 32 Losses Model Dense: 64 Losses Model Dense: 128 Losses Train Los 1.4 Test Loss Test Loss Test Loss 1.2 1.2 1.2 1.0 1.0 1.0 8.0 0.8 8.0 [2 0.6 0.6 0.4 0.4 0.4 0.2 Epoch Model Dense: 256 Losse Model Dense: 1024 Losses 1.4 1.2 1.2 1.0 1.0 8.0 0.6 0.4 4. 探究 How much dropout 对模型影响 模型定义 In [21]: class SimpleCNN(nn.Module): def __init__(self, dropout_rate=None):

super(SimpleCNN, self).__init__()

固定的通道数配置: [64, 96, 128] channels_config = [64, 96, 128]

layers.append(nn.ReLU())

in_channels = out_channels

如果指定了Dropout率,则添加Dropout层

layers.append(nn.Linear(256, 10))

self.model = nn.Sequential(*layers)

layers.append(nn.Dropout(dropout_rate))

dropout_rates = [0.1, 0.2, 0.3, 0.4, 0.5] # Dropout层的递增配置

print(f"Training with dropout rate {dropout_rate}...")
model = SimpleCNN(dropout_rate=dropout_rate).to(device)

names = [f"Dropout: {rate}" for rate in dropout_rates]

out_channels = channels_config[i]

layers.append(nn.MaxPool2d(kernel_size=2, stride=2))

layers.append(nn.Linear(in_channels * 16, 256)) # 16是经过池化后的每个特征图的大小

train_loss, train_acc, val_loss, val_acc = train_model(model, train_loader, test_loader, epochs

layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=5, stride=1, padding=2))

根据固定的通道配置设置卷积层

for i in range(3):

Flatten卷积后的输出

固定Dense层的配置: 256

最后是10个分类

def forward(self, x):

实验过程

进行实验

train_loss_list = []
train_acc_list = []
val_loss_list = []
val_acc_list = []

In [22]: # 实验过程

return self.model(x)

styles = [':', '-.', '--', '-', ':']

for dropout_rate in dropout_rates:

train_loss_list.append(train_loss)
train_acc_list.append(train_acc)
val_loss_list.append(val_loss)
val_acc_list.append(val_acc)

layers.append(nn.ReLU())

if dropout_rate is not None:

layers.append(nn.Flatten())

layers = []
in_channels = 3

消融实验

本次实验探究了以下五种因素对模型的影响:

1. convolution-subsambling pairs

2. feature map nums

导入本次实验的库

import matplotlib.pyplot as plt

transform = transforms.Compose([
 transforms.ToTensor(),

from torchvision import datasets, transforms
from torch.utils.data import DataLoader

In [2]: device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

Extracting ./data/cifar-10-python.tar.gz to ./data

In [4]: | def plot_model_losses(train_losses, val_losses, names):

Files already downloaded and verified

创建绘图函数

nets = len(names)

if rows == 1:

创建一个符合网格布局的图形

for i in range(nets):
 row = i // cols
 col = i % cols

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)

| 170498071/170498071 [00:03<00:00, 49038513.09it/s]

plot_model_losses 函数可以将多个模型的loss训练过程绘画在一张图,便于展示结果。

fig, axes = plt.subplots(rows, cols, figsize=(cols * 6, rows * 5))

rows = (nets + cols - 1) // cols # 计算行数,确保布局合理

axes = [axes] # 如果只有一行,确保 axes 是一个列表

ax = axes[row][col] **if** rows > 1 **else** axes[col]

ax.plot(train_losses[i], label='Train Loss')

确保 train_losses[i] 和 val_losses[i] 是一维数组或列表

train_dataset = datasets.CIFAR10(root="./data", train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR10(root="./data", train=False, download=True, transform=transform)

Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.g

import torch.optim as optim

3. dense layers

5. Augmentation

import numpy as np

import torch.nn as nn

4. dropout

In [1]: import pandas as pd

import torch

device

In [3]: # Load CIFAR-10

])

Out[2]: device(type='cuda')

导入数据集

本notebook是任庆桦老师在24fall江苏大学人工智能专业实践的小组作业。基于cifar10数据集的模型消融实验,主要是通过有目的地移除或替换模型中的某些组件或功能,研究这些组件对模型性能的影响,从而理解模型的关键特性和有效

0.6 - 0.4 - 0.2 - 0 1.4 - 1.2 - 1.0 - 89 0.8 -	Model_losses(train_loss_list, val_loss_list, names) Model Dropout: 0.1 Losses Model Dropout: 0.2 Losses Model Dropout: 0.3 Losses Train Loss Test Loss 1.4 1.2 1.0 1.0
1.2 -	Model Dropout: 0.4 Losses Model Dropout: 0.4 Losses Model Dropout: 0.5 Losses
	1.4 Test Loss 1.4 0.6
	入 Augmentation 对模型影响
: # 强力 train t t	古的数据增强组合,只应用于训练集 n_transform = transforms.Compose([transforms.RandomHorizontalFlip(), # 随机水平翻转,保持不变 transforms.RandomRotation(5), # 随机旋转角度减小,从15度减少到5度 transforms.RandomResizedCrop(32, scale=(0.9, 1.0)), # 随机裁剪,缩放范围减小(不小于90%) transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1), # 随机调整颜色柳
t]) # 仅这 test_	#####################################
# 加韓 trair test_ trair	就CIFAR-10数据集 n_dataset_aug = datasets.CIFAR10(root="./data", train= True , download= True , transform=train_tr dataset = datasets.CIFAR10(root="./data", train= False , download= True , transform=test_transform= n_loader_aug = DataLoader(train_dataset_aug, batch_size=64, shuffle= True) loader = DataLoader(test_dataset, batch_size=64, shuffle= False)
Files 模型 : for i	already downloaded and verified already downloaded and verified 定义 mages, labels in train_loader_aug: 进择第一张图像
# i i #	### #################################
p	olt.title(f"Label: {labels[0].item()}") olt.axis('off') # 不显示坐标轴 olt.show() oreak # 只显示一个批次中的第一张图像 Label: 4
ø	
	SimpleCNN(nn.Module):
C	lefinit(self): super(SimpleCNN, self)init() layers = [] in_channels = 3 # 固定的通道数配置: [64, 96, 128] channels_config = [64, 96, 128] # 根据固定的通道配置设置卷积层
	for i in range(3): out_channels = channels_config[i] layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=5, stride=1, padding=2 layers.append(nn.ReLU()) layers.append(nn.MaxPool2d(kernel_size=2, stride=2)) in_channels = out_channels # Flatten卷积后的输出
	layers.append(nn.Flatten()) # 固定Dense层的配置: 256 layers.append(nn.Linear(in_channels * 16, 256)) # 16是经过池化后的每个特征图的大小 layers.append(nn.ReLU()) layers.append(nn.Dropout(0.5))
d	# 最后是10个分类 layers.append(nn.Linear(256, 10)) self.model = nn.Sequential(*layers) lef forward(self, x): return self.model(x)
: model # 进行 train	_loss, train_acc, val_loss, val_acc = train_model(model, train_loader_aug, test_loader, epoc 1/30, Train Loss: 1.5701, Train Accuracy: 0.4244, Validation Loss: 1.2412, Validation Accura
Epoch y: 0.6 Epoch y: 0.7 Epoch y: 0.7	3/30, Train Loss: 1.0553, Train Accuracy: 0.6336, Validation Loss: 0.9081, Validation Accura 813 5/30, Train Loss: 0.8995, Train Accuracy: 0.6918, Validation Loss: 0.8107, Validation Accura 278 7/30, Train Loss: 0.8181, Train Accuracy: 0.7182, Validation Loss: 0.7947, Validation Accura 265 9/30, Train Loss: 0.7621, Train Accuracy: 0.7373, Validation Loss: 0.7275, Validation Accura
cy: 0. Epoch cy: 0. Epoch cy: 0. Epoch cy: 0.	13/30, Train Loss: 0.6912, Train Accuracy: 0.7632, Validation Loss: 0.6923, Validation Accur 7693 15/30, Train Loss: 0.6690, Train Accuracy: 0.7724, Validation Loss: 0.6676, Validation Accur 7781 17/30, Train Loss: 0.6485, Train Accuracy: 0.7784, Validation Loss: 0.6705, Validation Accur
cy: 0. Epoch	7804 21/30, Train Loss: 0.6048, Train Accuracy: 0.7908, Validation Loss: 0.6932, Validation Accur 7851 23/30, Train Loss: 0.5996, Train Accuracy: 0.7942, Validation Loss: 0.6810, Validation Accur 7831 25/30, Train Loss: 0.5825, Train Accuracy: 0.8027, Validation Loss: 0.6530, Validation Accur 7930 27/30, Train Loss: 0.5758, Train Accuracy: 0.8021, Validation Loss: 0.6441, Validation Accur
cy: 0. Epoch cy: 0.	29/30, Train Loss: 0.5552, Train Accuracy: 0.8091, Validation Loss: 0.6364, Validation Accur 7926 30/30, Train Loss: 0.5608, Train Accuracy: 0.8079, Validation Loss: 0.6613, Validation Accur 7885 <u>N验证精度图</u> val_acc([val_acc], ['Dropout: 0.5 with Strong Augmentation'], styles=['-'], title="Effect of
0.1 - 0.0 -	Effect of Dropout and Strong Augmentation on CIFAR-10 — Dropout: 0.5 with Strong Augmentation
Validation Accuracy - 8.0 0.5	0 5 10 15 20 25 3
plot_	Epoch 如训练和验证损失图 model_losses([train_loss], [val_loss], ['Dropout: 0.5 with Strong Augmentation']) odel Dropout: 0.5 with Strong Augmentation Losses Train Loss Test Loss
1.2 -	

Training with dropout rate 0.1...

Training with dropout rate 0.2...

Training with dropout rate 0.3...

Training with dropout rate 0.4...

Training with dropout rate 0.5...

y: 0.6291

y: 0.7270

y: 0.7473

y: 0.7595

y: 0.7537

cy: 0.7547

y: 0.6073

y: 0.7308

y: 0.7492

y: 0.7577

cy: 0.7552

y: 0.5854

y: 0.7033

y: 0.7420

y: 0.7579

y: 0.7476

cy: 0.7600

y: 0.5869

y: 0.7226

y: 0.7469

y: 0.7424

y: 0.7483

cy: 0.7567

y: 0.5906

y: 0.7136

y: 0.7443

y: 0.7451

Epoch 1/10, Train Loss: 1.3614, Train Accuracy: 0.5069, Validation Loss: 1.0579, Validation Accuracy

Epoch 3/10, Train Loss: 0.7117, Train Accuracy: 0.7520, Validation Loss: 0.8121, Validation Accuracy

Epoch 5/10, Train Loss: 0.4681, Train Accuracy: 0.8345, Validation Loss: 0.7630, Validation Accuracy

Epoch 7/10, Train Loss: 0.3068, Train Accuracy: 0.8906, Validation Loss: 0.8251, Validation Accurac

Epoch 9/10, Train Loss: 0.2104, Train Accuracy: 0.9247, Validation Loss: 1.0436, Validation Accuracy

Epoch 10/10, Train Loss: 0.1781, Train Accuracy: 0.9373, Validation Loss: 1.1021, Validation Accura

Epoch 1/10, Train Loss: 1.4083, Train Accuracy: 0.4889, Validation Loss: 1.1035, Validation Accuracy

Epoch 3/10, Train Loss: 0.7703, Train Accuracy: 0.7331, Validation Loss: 0.7829, Validation Accurac

Epoch 5/10, Train Loss: 0.5409, Train Accuracy: 0.8111, Validation Loss: 0.7555, Validation Accuracy

Epoch 7/10, Train Loss: 0.3818, Train Accuracy: 0.8632, Validation Loss: 0.8447, Validation Accuracy

Epoch 9/10, Train Loss: 0.2757, Train Accuracy: 0.9013, Validation Loss: 0.8712, Validation Accuracy

Epoch 10/10, Train Loss: 0.2420, Train Accuracy: 0.9132, Validation Loss: 0.9894, Validation Accura

Epoch 1/10, Train Loss: 1.4474, Train Accuracy: 0.4699, Validation Loss: 1.1620, Validation Accurac

Epoch 3/10, Train Loss: 0.8336, Train Accuracy: 0.7084, Validation Loss: 0.8603, Validation Accuracy

Epoch 5/10, Train Loss: 0.6090, Train Accuracy: 0.7860, Validation Loss: 0.7576, Validation Accuracy

Epoch 7/10, Train Loss: 0.4602, Train Accuracy: 0.8365, Validation Loss: 0.7613, Validation Accuracy

Epoch 9/10, Train Loss: 0.3581, Train Accuracy: 0.8718, Validation Loss: 0.8225, Validation Accuracy

Epoch 10/10, Train Loss: 0.3166, Train Accuracy: 0.8857, Validation Loss: 0.9037, Validation Accura

Epoch 1/10, Train Loss: 1.4778, Train Accuracy: 0.4608, Validation Loss: 1.1343, Validation Accurac

Epoch 3/10, Train Loss: 0.8409, Train Accuracy: 0.7065, Validation Loss: 0.8045, Validation Accuracy

Epoch 5/10, Train Loss: 0.6232, Train Accuracy: 0.7838, Validation Loss: 0.7622, Validation Accuracy

Epoch 7/10, Train Loss: 0.4783, Train Accuracy: 0.8327, Validation Loss: 0.8340, Validation Accuracy

Epoch 9/10, Train Loss: 0.3659, Train Accuracy: 0.8709, Validation Loss: 0.8998, Validation Accuracy

Epoch 10/10, Train Loss: 0.3227, Train Accuracy: 0.8873, Validation Loss: 0.8650, Validation Accura

Epoch 1/10, Train Loss: 1.4780, Train Accuracy: 0.4587, Validation Loss: 1.1431, Validation Accuracy

Epoch 3/10, Train Loss: 0.8725, Train Accuracy: 0.6986, Validation Loss: 0.8259, Validation Accuracy

Epoch 5/10, Train Loss: 0.6634, Train Accuracy: 0.7690, Validation Loss: 0.7487, Validation Accuracy

Epoch 7/10, Train Loss: 0.5320, Train Accuracy: 0.8139, Validation Loss: 0.7603, Validation Accuracy

Epoch 9/10, Train Loss: 0.4345, Train Accuracy: 0.8461, Validation Loss: 0.8024, Validation Accuracy