MTH127: Homework 3

james francis toy iv

2010-02-03

- 1. Since the entry at A_{ij} is the coefficient of x_i in equation i, A_{ij} returns 4 at x_i . This means that A_{ij} can only return 4 when i=j. Also we can note here that this means the diagonal entries of A are 4. For the case when A_{ij} returns -1 it is a bit more tricky. A_{ij} returns -1 when x_j is adjacent to x_i . The rest of the matrix A are 0 since we know nothing else matters for setting up the equation.
- 2. Using information from the first problem we know the coefficients are -1 when x_j and x_i are adjacent and vice versa. Also since the diagonal is filled with 4 since A_{ij} returns 4 @ i = j the matrix must be symmetrical.
- 3. I do not understand what semidefinite means.
- 4. If k = 50, 7500 variables; $size(A) = 7500^2$.
 - (a) standard MB (with respect to computer memory) == 1048576 bytes (1024², 2²⁰). So we would use size(A) * 8 (bytes), this would yield 450000000 bytes; however consider the MB constraints so : 450000000/1024² = 429MB
 - (b) whos (at k = 50) returns : A 7500x7500 475204 double sparse
 - (c) I dont know what density is.
 - (d) cond num = 3.0991e+03
 - (e) relative error = 6.8814e-13
- 5. Seems like the shape is a negation of some kind; it went from being convex to concave. I do not know what a Laplacian is.