Embedded computing for scientific and industrial imaging applications

Lecture 1 - Goal of course, overview, requirements.

HanByul Yang (Senior Engineer @ Samsung Medison)

- 양한별 (HanByul Yang)
- Senior Engineer @ Samsung Medison
- yhbyhb@yonsei.ac.kr

Assignments and grading

- See course webpage for schedule and assignments.
- 3 homework assignments and a final project
- These will be turned in by pushing to a GitHub repository.

Embedded computing?

embedded computing

All

Images

News

Videos

Maps

More ▼

Search tools

Arduino Tre

Embedded system?

Embedded system

- Any computer that is a component in a larger system and that relies on its own microprocessor Wayne Wolf, Princeton University,
 What_is_embedded_computing
- An embedded system is a computer system with a dedicated function within a larger mechanical or electrical system.often with real-time computing constraints. - https://en.wikipedia.org/wiki/Embedded_system

Embedded system

- Low power consumption, small size, rugged operating ranges, and low per-unit cost. limited processing resources,
- Modern embedded systems are often based on microcontrollers (i.e. CPUs with integrated memory or peripheral interfaces)
- dedicated to specific tasks, reduce the size and cost of the product and increase the reliability and performance.
- range from portable devices to large stationary installations
 (smart phones, vehicles, medical devices such as MRI, CT and US)
- Complexity varies from low, with a single microcontroller chip, to very high with multiple units, peripherals and networks mounted inside a large chassis or enclosure.

Example - AP (Application processor)

- Memory, Display system/controller
- Multimedia en/decoding codec
- 2D/3D accelerator engine,
- ISP(Image Signal Processor),
- Camera, Audio, Modem,
- High & low speed Serial/Parallel connectivity interface
- ⇒ SOC(System-On-Chip)

ref: https://news.samsung.com/kr/482

Diagnostic ultrasound imaging system

- Ultrasound system
 - Computing unit ASIC, FPGA, DSP
 - Storage RAMs and ROMs
 - User Interface Ultrasound transducer
- Industrial embedded computer
 - o Computing unit CPU, GPU
 - Storage RAMs, ROMs, HDD and SSD
 - o Communication ethernet, WIFI, USB
 - User Interface Key panel, Keyboard and trackball

Examples

Raspberry Pi

- https://www.raspberrypi.org/
- Credit card-sized single-board computers
- Promoting the teaching of basic computer science in schools and developing countries
- Pi 1 released in Feb 2012.
 Pi 3 released in Feb 2016.
- Raspbian, Ubuntu, Windows 10 IOT
- Python and Scratch
- 8 million in 2016
- https://github.com/raspberrypi

Arduino

- https://www.arduino.cc/
- open-source electronics platform based on easy-to-use hardware and software.
- 700,000 official boards in 2013.
- https://github.com/arduino
- C/C++

Goal of this course

Essential skills for embedded computing

- Essential to know if you eventually want to work on embedded systems.
- Extremely useful for any embedded computing project, even on a laptop.

Strategy

- Concentrate on basics, simple motivating examples.
- Focusing hands-on experience.
- Learn what's out there to help select what's best for your needs.

Focus and Topics

Efficiently using your computing units

- Basic computer architecture
- Languages issues, e.g. compiled vs. interpreted, object oriented, etc.
- Specific languages: C
- Parallel computing with OpenMP

Efficient programming and good software practices

- Version control system : Git and GitHub
- C with visual studio
- Debuggers, code development and testing

Class materials

- All class materials are on GitHub repository.
 - Recommend having a GitHub account.
- You can clone the repository or download from webpage
 - o https://github.com/CSE6000/Fall2016

Prerequisites

Some programming experience in some language, e.g., Python, Matlab, C/C++, Java. Swift, C#

You should be comfortable:

- editing a file containing a program and executing it,
- using basic structures like loops, if-then-else, input-output
- writing subroutines or functions in some language

You are not expected to know C

Some basic knowledge of linear algebra - vector or matrices addition, multiplication, solving a linear system

Some comfort level for learning new software and willingness to dive into lots of new things

Requirements and recommendations

- Requirements
 - o <u>Git</u>
 - Any C compiler
 - GitHub account
- Recommendations
 - Microsoft Windows 10
 - MS Visual Studio 2015 Community
 - Git for Windows

Note: Linux is often required for embedded computing, but learning linux is not part of this class