1 Protokolle und Stapel

1.1 OSI-Referenzmodell

1.2 IEEE 802

Sicherungsschich (Data Link Layer)	t LLC	802.2 Logical Link Control					
	MAC	802.3 Ethernet	802.4 Token Bus	802.5 Token Ring		802.15 Wireless	802.16 Broadband
Bitübertragungs- schicht (Physical Layer)	PHY				LAN	Personal Area Networks	Wireless Metropo- litan Area Networks

LLC (Logical Link Control) 3 Arten von Logical Links: unbestätigt/verbindungslos, bestätigt/verbindungslos, verbindungsorientiert

MAC (Media Access Control) Zugriff auf das gemeinsame Medium, z.B.: CSMA/CD (Ethernet), CSMA/CA (WLAN)

PHY Bitübertragungsschicht

1.3 TCP/IP-Protokollsuite

Anwendungsschicht (Application Layer) FTP, HTTP, SMTP, Telnet, DNS, DHCP

Transportschicht (Transport Layer)
TCP, UDP

Internetschicht (Internet Layer)

IP, ICMP, ARP, Multicast IP, Mobile IP

Netzwerkschicht (Network Layer)

SLIP, PPP, Ethernet, Token Ring, WLAN

1.4 Adressierung

2 Bitübertragung

2.1 Betriebsweisen

Asynchron Start-Stop-Erkennung notwendig; In der Regel langsamer als synchron

Simplex $S \to E$

Simplex mit Quittung $S \xrightarrow{\text{Daten}} E \xrightarrow{\text{Quittung}} S$

Halbduplex Sender und Empfänger auf beiden Seiten, teilen gemeinsame Leitung

Vollduplex Sender und Empfänger auf beiden Seiten mit eigener Leitung (2 · Simplex)

2.1.1 Modulationsarten

 $\label{lem:condition} Amplituden modulation, \ \ Frequenz modulation, \ \ Phasen modulation$

2.2 Theoretische Obergrenzen für Datenraten2.2.1 Nyquist-Frequenz

Maximale Schrittgeschwindigkeit bei einer Bandbreite ${\cal B}$

$$V_{\text{max}} = 2 \cdot B$$

Maximale Datenrate in $\frac{Bit}{s}$ bei L diskreten Stufen, ungestört

$$D_{\max} = 2 \cdot B \cdot \log_2(L)$$

2.2.2 Rauschsignal

Umrechnung des Signal-Rausch-Abstandes von dB in Signal

$$SNR = \frac{Signal}{Noise}$$

SNR [dB] =
$$10 \cdot \log_{10} \left(\frac{S}{N} \right)$$

2.2.3 Shannon-Hartley-Gesetz

Maximale Datenrate bei bandbreitenbegrenztem, gestörten Übertragungskanal

$$D_{\max} = B \cdot \log_2 \left(1 + \frac{S}{N} \right)$$

2.3 Kodierung

2.4 Allgemeines

• Non-Return to Zero:

0-Bit \rightarrow LOW

 $1\text{-Bit} \to \text{HIGH}$

• Non-Return to Zero Inverted:

 $0\text{-Bit} \to \text{Widerholung des letzten Signals}$

1-Bit \rightarrow Änderung des Signals (Mittig zwischen)

Manchester-Kodierung Ist ein XOR von NRZ und Takt, Vorteil: in jedem Takt ein Wechsel Nachteil: die Änderungsrate der Signalwechsel verdoppelt sich Manchester: Bitrate = Baudrate/2; NRZ, NRZI: Bitrate = Baudrate

2.5 AMI-Code (Alternate Mark Inversion)

0-Bit $\Rightarrow 0$ -Signal

1-Bit \Rightarrow 1- oder -1-Signal, Wechsel gegenüber dem letzten 1-Bit

2.5.1 B8ZS-Code

• Jeweils acht 0-Bits werden durch

- Code-Verletzungen kodiert
- Sonst wie AMI

2.5.2 HDB3-Code