Multiple Linear Regression Model

Step 1 - *Importing Libraries*

```
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
```

Step 2 - Importing Dataset

```
In [2]:
    df = pd.read_csv("Dataset\Salary_Data.csv")
    df.head()
```

Out[2]:	YearsExperie	nce	Age	Salary
	0	1.1	21.0	39343
	1	1.3	21.5	46205
	2	1.5	21.7	37731
	3	2.0	22.0	43525
	4	2.2	22.2	39891

Step 3 - Splitting dataset into training data and testing data

Step 4 - Fit Linear Regression Model

```
model.coef_
Out[5]: array([6153.35330145, 1836.01359426])

In [6]: # Intercept of Model
    b = model.intercept_
    b

Out[6]: -6661.98719881312

In [7]:    i1 = model.coef_[0]
    i2 = model.coef_[1]
```

Step 5 - Prediction

Formula for Prediction: Salary = i1 Years Experience + 12 Age + b

```
In [8]: model.predict([[1.1,21]])
Out[8]: array([38662.98691225])
```

Assignment

```
In [9]: # How to test the efficiency of the model
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0
    reg = LinearRegression().fit(x_train, y_train)
    train_score = reg.score(x_train, y_train)
    test_score = reg.score(x_test, y_test)
    efficiency = test_score*100
    print("Efficiency of Model :", efficiency)
```

Efficiency of Model: 98.77833011811587