- Low Supply Voltage Range 1.8 V to 3.6 V
- Ultralow-Power Consumption
 - Active Mode: 270 μA at 1 MHz, 2.2 V
 - Standby Mode: 0.7 μA
 - Off Mode (RAM Retention): 0.1 μA
- Ultrafast Wake-Up From Standby Mode in Less Than 1 μs
- 16-Bit RISC Architecture, 62.5-ns Instruction Cycle Time
- Basic Clock Module Configurations:
 - Internal Frequencies up to 16 MHz With Four Calibrated Frequencies to ±1%
 - Internal Very-Low-Power Low-Frequency Oscillator
 - 32-kHz Crystal
 - High-Frequency Crystal up to 16 MHz
 - Resonator
 - External Digital Clock Source
 - External Resistor
- 16-Bit Timer_A With Three Capture/Compare Registers
- 16-Bit Timer_B With Three Capture/Compare Registers
- Universal Serial Communication Interface
 - Enhanced UART Supporting Auto-Baudrate Detection (LIN)
 - IrDA Encoder and Decoder
 - Synchronous SPI
 - I²C™
- 10-Bit, 200-ksps A/D Converter With Internal Reference, Sample-and-Hold, Autoscan, and Data Transfer Controller

- Two Configurable Operational Amplifiers (MSP430x22x4 Only)
- Brownout Detector
- Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse
- Bootstrap Loader
- On Chip Emulation Module
- Family Members Include:

MSP430F2232: 8KB + 256B Flash Memory

512B RAM

MSP430F2252: 16KB + 256B Flash Memory

512B RAM

MSP430F2272: 32KB + 256B Flash Memory

1KB RAM

MSP430F2234: 8KB + 256B Flash Memory

512B RAM

MSP430F2254: 16KB + 256B Flash Memory

512B RAM

MSP430F2274: 32KB + 256B Flash Memory

1KB RAM

Available in a 38-Pin Thin Shrink

Small-Outline Package (TSSOP) and 40-Pin

QFN Package

 For Complete Module Descriptions, Refer to the MSP430x2xx Family User's Guide

description

The Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 μ s.

The MSP430x22xx series is an ultralow-power mixed signal microcontroller with two built-in 16-bit timers, a universal serial communication interface, 10-bit A/D converter with integrated reference and data transfer controller (DTC), two general-purpose operational amplifiers in the MSP430x22x4 devices, and 32 I/O pins.

Typical applications include sensor systems that capture analog signals, convert them to digital values, and then process the data for display or for transmission to a host system. Stand-alone radio-frequency (RF) sensor front ends are another area of application.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners

AVAILABLE OPTIONS

	PACKAGE	DEVICES
T _A	PLASTIC 38-PIN TSSOP (DA)	PLASTIC 40-PIN QFN (RHA)
-40°C to 85°C	MSP430F2232IDA MSP430F2252IDA MSP430F2272IDA MSP430F2234IDA MSP430F2254IDA MSP430F2274IDA	MSP430F2232IRHA MSP430F2252IRHA MSP430F2272IRHA MSP430F2234IRHA MSP430F2254IRHA MSP430F2274IRHA
-40°C to 105°C	MSP430F2232TDA [†] MSP430F2252TDA [†] MSP430F2272TDA [†] MSP430F2234TDA MSP430F2254TDA MSP430F2274TDA	MSP430F2232TRHA [†] MSP430F2252TRHA [†] MSP430F2272TRHA [†] MSP430F2234TRHA MSP430F2254TRHA MSP430F2254TRHA

[†] Product Preview

MSP430x22x2 device pinout, DA package

		1
TEST/SBWTCK [1 🔾 38	∏ P1.7/TA 2/TDO /TDI
DVCC [2 37	∏ P1.6/TA 1/TDI
P2.5/Rosc ∏	3 36	∏ P1.5/TA 0/TMS
DVSS [4 35	☐ P1.4/SMCLK/TCK
XOUT/P2.7 ∏	5 34	∏ P1.3/TA 2
XIN/P2.6 ∏	6 33	∏ P1.2/TA 1
RST/NMI/SBWTDIO	7 32	∏ P1.1/TA 0
P2.0/ACLK/A0 ∏	8 31	P1.0/TACLK /ADC 10CLK
P2.1/TAINCLK /SMCLK /A1	9 30	P2.4/TA 2/A4/VREF+/ VeREF+
P2.2/TA 0/A2 ∏	10 29	P2.3/TA 1/A3/VREF-/VeREF-
P3.0/UCB 0STE/UCA 0CLK/A5	11 28	∏ P3.7/A7
P3.1/UCB 0SIMO /UCB 0SDA	12 27	∏ P3.6/A6
P3.2/UCB 0SOMI /UCB 0SCL	13 26	☐ P3.5/UCA 0RXD /UCA0SOMI
P3.3/UCB OCLK/UCA OSTE	14 25	☐ P3.4/UCA 0TXD/UCA0SIMO
AVSS [15 24	P4.7/TBCLK
AVCC [16 23	P4.6/TBOUTH /A15
P4.0/TB0 ∏	17 22	∏ P4.5/TB2/A14
P4.1/TB1 ∏	18 21	∏ P4.4/TB1/A13
P4.2/TB2 ∏	19 20	∏ P4.3/TB0/A12
		j

MSP430x22x4 device pinout, DA package

TEST/SBWTCK [1 🔿	38	∏ P1.7/TA 2/TDO /TDI
DVCC [2 3	37	∏ P1.6/TA 1/TDI
P2.5/Rosc 🎞	3 3	36	□ P1.5/TA 0/TMS
DVSS 🔲	4 3	35	□ P1.4/SMCLK/TCK
XOUT/P2.7 🔲	5 3	34	∏ P1.3/TA2
XIN/P2.6	6 3	33	∏ P1.2/TA 1
RST/NMI/SBWTDIO [7 3	32	∏ P1.1/TA 0
P2.0/ACLK/A0/OA0I0 [8 3	31	P1.0/TACLK /ADC 10 CLK
P2.1/TAINCLK /SMCLK /A1/OA00 [9 3	30	P2.4/TA 2/A4/VREF +/VeREF +/OA1I0
P2.2/TA 0/A2/OA 0I1 🔲	10 2	29	P2.3/TA 1/A3/VREF -/VeREF -/OA 1 1 1 / OA 1 0
P3.0/UCB 0STE /UCA 0CLK /A5	11 2	28	□ P3.7/A7/OA1I2
P3.1/UCB 0SIMO/UCB 0SDA	12 2	27	T P3.6/A6/OA0I2
P3.2/UCB 0SOMI/UCB 0SCL	13 2	26	P3.5/UCA 0RXD /UCA0SOMI
P3.3/UCB 0CLK/UCA 0STE	14 2	25	P3.4/UCA 0TXD /UCA0SIMO
AVSS 🔲	15 2	24	∏ P4.7/TBCLK
AVCC [16 2	23	∏ P4.6/TBOUTH/A15/OA1I3
P4.0/TB0 🔲	17 2	22	∏ P4.5/TB2/A14/OA0I3
P4.1/TB1 🔲	18 2	21	∏ P4.4/TB1/A13/OA1O
P4.2/TB2 🔲	19 2	20	∏ P4.3/TB0/A12/OA0O

MSP430x22x2 device pinout, RHA package

MSP430x22x4 device pinout, RHA package

MSP430x22x2 functional block diagram

NOTE: See port schematics section for detailed I/O information.

MSP430x22x4 functional block diagram

NOTE: See port schematics section for detailed I/O information.

Terminal Functions, MSP430x22x2

TER	RMINAL			
NAME	DA	RHA	1/0	DESCRIPTION
	NO.	NO.	., 0	
P1.0/TACLK/ ADC10CLK	31	29	I/O	General-purpose digital I/O pin Timer_A, clock signal TACLK input ADC10, conversion clock
P1.1/TA0	32	30	I/O	General-purpose digital I/O pin Timer_A, capture: CCI0A input, compare: OUT0 output/BSL transmit
P1.2/TA1	33	31	I/O	General-purpose digital I/O pin Timer_A, capture: CCI1A input, compare: OUT1 output
P1.3/TA2	34	32	I/O	General-purpose digital I/O pin Timer_A, capture: CCI2A input, compare: OUT2 output
P1.4/SMCLK/ TCK	35	33	I/O	General-purpose digital I/O pin / SMCLK signal output Test Clock input for device programming and test
P1.5/TA0/ TMS	36	34	I/O	General-purpose digital I/O pin / Timer_A, compare: OUT0 output Test Mode Select input for device programming and test
P1.6/TA1/ TDI/TCLK	37	35	I/O	General-purpose digital I/O pin / Timer_A, compare: OUT1 output Test Data Input or Test Clock Input for programming and test
P1.7/TA2/ TDO/TDI [†]	38	36	I/O	General-purpose digital I/O pin / Timer_A, compare: OUT2 output Test Data Output or Test Data Input for programming and test
P2.0/ACLK/A0	8	6	I/O	General-purpose digital I/O pin / ACLK output ADC10, analog input A0
P2.1/TAINCLK/SMCLK/A1	9	7	I/O	General-purpose digital I/O pin Timer_A, clock signal at INCLK, SMCLK signal output ADC10, analog input A1
P2.2/TA0/A2	10	8	I/O	General-purpose digital I/O pin Timer_A, capture: CCI0B input/BSL receive, compare: OUT0 output ADC10, analog input A2
P2.3/TA1/ A3/V _{REF-} /V _{eREF-}	29	27	I/O	General-purpose digital I/O pin Timer_A, capture CCI1B input, compare: OUT1 output ADC10, analog input A3 / negative reference voltage output/input
P2.4/TA2/ A4/V _{REF+} /V _{eREF+}	30	28	I/O	General-purpose digital I/O pin / Timer_A, compare: OUT2 output ADC10, analog input A4 / positive reference voltage output/input
P2.5/ Rosc	3	40	I/O	General-purpose digital I/O pin Input for external DCO resistor to define DCO frequency
XIN/P2.6	6	3	I/O	Input terminal of crystal oscillator General-purpose digital I/O pin
XOUT/P2.7	5	2	I/O	Output terminal of crystal oscillator General-purpose digital I/O pin
P3.0/ UCB0STE/UCA0CLK/ A5	11	9	I/O	General-purpose digital I/O pin USCI_B0 slave transmit enable / USCI_A0 clock input/output ADC10, analog input A5
P3.1/ UCB0SIMO/UCB0SDA	12	10	I/O	General-purpose digital I/O pin USCI_B0 slave in/master out in SPI mode, SDA I ² C data in I ² C mode
P3.2/ UCB0SOMI/UCB0SCL	13	11	I/O	General-purpose digital I/O pin USCI_B0 slave out/master in in SPI mode, SCL I ² C clock in I ² C mode
P3.3/ UCB0CLK/UCA0STE	14	12	I/O	General-purpose digital I/O pin USCI_B0 clock input/output / USCI_A0 slave transmit enable
P3.4/ UCA0TXD/UCA0SIMO	25	23	I/O	General-purpose digital I/O pin USCI_A0 transmit data output in UART mode, slave in/master out in SPI mode

Terminal Functions, MSP430x22x2 (Continued)

TE	TERMINAL			
NAME	DA	RHA	I/O	DESCRIPTION
IVAIVIE	NO.	NO.	1/0	
P3.5/ UCA0RXD/UCA0SOMI	26	24	I/O	General-purpose digital I/O pin USCI_A0 receive data input in UART mode, slave out/master in in SPI mode
P3.6/A6	27	25	I/O	General-purpose digital I/O pin ADC10 analog input A6
P3.7/A7	28	26	I/O	General-purpose digital I/O pin ADC10 analog input A7
P4.0/TB0	17	15	I/O	General-purpose digital I/O pin Timer_B, capture: CCI0A input, compare: OUT0 output
P4.1/TB1	18	16	I/O	General-purpose digital I/O pin Timer_B, capture: CCI1A input, compare: OUT1 output
P4.2/TB2	19	17	I/O	General-purpose digital I/O pin Timer_B, capture: CCI2A input, compare: OUT2 output
P4.3/TB0/ A12	20	18	I/O	General-purpose digital I/O pin Timer_B, capture: CCI0B input, compare: OUT0 output ADC10 analog input A12
P4.4/TB1 A13	21	19	I/O	General-purpose digital I/O pin Timer_B, capture: CCI1B input, compare: OUT1 output ADC10 analog input A13
P4.5/TB2 A14	22	20	I/O	General-purpose digital I/O pin Timer_B, compare: OUT2 output ADC10 analog input A14
P4.6/TBOUTH A15	23	21	I/O	General-purpose digital I/O pin Timer_B, switch all TB0 to TB3 outputs to high impedance ADC10 analog input A15
P4.7/TBCLK	24	22	I/O	General-purpose digital I/O pin Timer_B, clock signal TBCLK input
RST/NMI/SBWTDIO	7	5	ı	Reset or nonmaskable interrupt input Spy-Bi-Wire test data input/output during programming and test
TEST/SBWTCK	1	37	I	Selects test mode for JTAG pins on Port1. The device protection fuse is connected to TEST. Spy-Bi-Wire test clock input during programming and test
DV _{CC}	2	38, 39		Digital supply voltage
AV _{CC}	16	14		Analog supply voltage
DV _{SS}	4	1, 4		Digital ground reference
AV _{SS}	15	13		Analog ground reference
QFN Pad	NA	Package Pad	NA	QFN package pad; connection to DV _{SS} recommended.

 $^{^{\}dagger}$ TDO or TDI is selected via JTAG instruction.

NOTE: If XOUT/P2.7/CA7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection to this pad after reset.

Terminal Functions, MSP430x22x4

TERMINAL						
NAME	DA RH		HA I/O	DESCRIPTION		
NAME	NO.	NO.	1/0			
P1.0/TACLK/ ADC10CLK	31	29	I/O	General-purpose digital I/O pin Timer_A, clock signal TACLK input ADC10, conversion clock		
P1.1/TA0	32	30	I/O	General-purpose digital I/O pin Timer_A, capture: CCI0A input, compare: OUT0 output/BSL transmit		
P1.2/TA1	33	31	I/O	General-purpose digital I/O pin Timer_A, capture: CCI1A input, compare: OUT1 output		
P1.3/TA2	34	32	I/O	General-purpose digital I/O pin Timer_A, capture: CCI2A input, compare: OUT2 output		
P1.4/SMCLK/ TCK	35	33	I/O	General-purpose digital I/O pin / SMCLK signal output Test Clock input for device programming and test		
P1.5/TA0/ TMS	36	34	I/O	General-purpose digital I/O pin / Timer_A, compare: OUT0 output Test Mode Select input for device programming and test		
P1.6/TA1/ TDI/TCLK	37	35	I/O	General-purpose digital I/O pin / Timer_A, compare: OUT1 output Test Data Input or Test Clock Input for programming and test		
P1.7/TA2/ TDO/TDI [†]	38	36	I/O	General-purpose digital I/O pin / Timer_A, compare: OUT2 output Test Data Output or Test Data Input for programming and test		
P2.0/ACLK/A0/OA0I0	8	6	I/O	General-purpose digital I/O pin / ACLK output ADC10, analog input A0 / OA0, analog input I0		
P2.1/TAINCLK/SMCLK/ A1/OA0O	9	7	I/O	General-purpose digital I/O pin / Timer_A, clock signal at INCLK SMCLK signal output ADC10, analog input A1 / OA0, analog output		
P2.2/TA0/ A2/OA0I1	10	8	I/O	General-purpose digital I/O pin Timer_A, capture: CCI0B input/BSL receive, compare: OUT0 output ADC10, analog input A2 / OA0, analog input I1		
P2.3/TA1/ A3/V _{REF-} /V _{eREF-} /OA1I1/OA1O	29	27	I/O	General-purpose digital I/O pin Timer_A, capture CCI1B input, compare: OUT1 output ADC10, analog input A3 / negative reference voltage output/input OA1, analog input I1 / OA1, analog output		
P2.4/TA2/ A4/V _{REF+} /V _{eREF+} /OA1I0	30	28	I/O	General-purpose digital I/O pin / Timer_A, compare: OUT2 output ADC10, analog input A4 / positive reference voltage output/input OA1, analog input I0		
P2.5/ R _{OSC}	3	40	I/O	General-purpose digital I/O pin Input for external DCO resistor to define DCO frequency		
XIN/P2.6	6	3	I/O	Input terminal of crystal oscillator General-purpose digital I/O pin		
XOUT/P2.7	5	2	I/O	Output terminal of crystal oscillator General-purpose digital I/O pin		
P3.0/ UCB0STE/UCA0CLK/ A5	11	9	I/O	General-purpose digital I/O pin USCI_B0 slave transmit enable / USCI_A0 clock input/output ADC10, analog input A5		
P3.1/ UCB0SIMO/UCB0SDA	12	10	I/O	General-purpose digital I/O pin USCI_B0 slave in/master out in SPI mode, SDA I ² C data in I ² C mode		
P3.2/ UCB01SOMI/UCB0SCL	13	11	I/O	General-purpose digital I/O pin USCI_B0 slave out/master in in SPI mode, SCL I ² C clock in I ² C mode		
P3.3/ UCB0CLK/UCA0STE	14	12	I/O	General-purpose digital I/O pin USCI_B0 clock input/output / USCI_A0 slave transmit enable		
P3.4/ UCA0TXD/UCA0SIMO	25	23	I/O	General-purpose digital I/O pin USCI_A0 transmit data output in UART mode, slave in/master out in SPI mode		

Terminal Functions, MSP430x22x4 (Continued)

TE	TERMINAL			
NAME	DA	RHA	1/0	DESCRIPTION
IVANIE	NO.	NO.	1,0	
P3.5/ UCA0RXD/UCA0SOMI	26	24	I/O	General-purpose digital I/O pin USCI_A0 receive data input in UART mode, slave out/master in in SPI mode
P3.6/A6/OA0I2	27	25	I/O	General-purpose digital I/O pin ADC10 analog input A6 / OA0 analog input I2
P3.7/A7/OA1I2	28	26	I/O	General-purpose digital I/O pin ADC10 analog input A7 / OA1 analog input I2
P4.0/TB0	17	15	I/O	General-purpose digital I/O pin Timer_B, capture: CCI0A input, compare: OUT0 output
P4.1/TB1	18	16	I/O	General-purpose digital I/O pin Timer_B, capture: CCI1A input, compare: OUT1 output
P4.2/TB2	19	17	I/O	General-purpose digital I/O pin Timer_B, capture: CCI2A input, compare: OUT2 output
P4.3/TB0/ A12/OA0O	20	18	I/O	General-purpose digital I/O pin Timer_B, capture: CCI0B input, compare: OUT0 output ADC10 analog input A12 / OA0 analog output
P4.4/TB1 A13/OA1O	21	19	I/O	General-purpose digital I/O pin Timer_B, capture: CCI1B input, compare: OUT1 output ADC10 analog input A13 / OA1 analog output
P4.5/TB2 A14/OA0I3	22	20	I/O	General-purpose digital I/O pin Timer_B, compare: OUT2 output ADC10 analog input A14 / OA0 analog input I3
P4.6/TBOUTH A15/OA1I3	23	21	I/O	General-purpose digital I/O pin Timer_B, switch all TB0 to TB3 outputs to high impedance ADC10 analog input A15 / OA1 analog input I3
P4.7/TBCLK	24	22	I/O	General-purpose digital I/O pin Timer_B, clock signal TBCLK input
RST/NMI/SBWTDIO	7	5	I	Reset or nonmaskable interrupt input Spy-Bi-Wire test data input/output during programming and test
TEST/SBWTCK	1	37	I	Selects test mode for JTAG pins on Port1. The device protection fuse is connected to TEST. Spy-Bi-Wire test clock input during programming and test
DV _{CC}	2	38, 39		Digital supply voltage
AV _{CC}	16	14		Analog supply voltage
DV _{SS}	4	1, 4		Digital ground reference
AV _{SS}	15	13		Analog ground reference
QFN Pad	NA	Package Pad	NA	QFN package pad connection to DV _{SS} recommended.

 $^{^{\}dagger}$ TDO or TDI is selected via JTAG instruction.

NOTE: If XOUT/P2.7/CA7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection to this pad after reset.

short-form description

CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

instruction set

The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2.

Table 1. Instruction Word Formats

Dual operands, source-destination	e.g., ADD R4,R5	R4 + R5> R5
Single operands, destination only	e.g., CALL R8	PC> (TOS), R8> PC
Relative jump, un/conditional	e.g., JNE	Jump-on-equal bit = 0

Table 2. Address Mode Descriptions

ADDRESS MODE	s	D	SYNTAX	EXAMPLE	OPERATION
Register	•	•	MOV Rs,Rd	MOV R10,R11	R10> R11
Indexed	•	•	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	M(2+R5)> M(6+R6)
Symbolic (PC relative)	•	•	MOV EDE,TONI		M(EDE)> M(TONI)
Absolute	•	•	MOV &MEM,&TCDAT		M(MEM)> M(TCDAT)
Indirect	•		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	M(R10)> M(Tab+R6)
Indirect autoincrement	•		MOV @Rn+,Rm	MOV @R10+,R11	M(R10)> R11 R10 + 2> R10
Immediate	•		MOV #X,TONI	MOV #45,TONI	#45> M(TONI)

NOTE: S = source D = destination

SLAS504B - JULY 2006 - REVISED JULY 2007

operating modes

The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled ACLK and SMCLK remain active MCLK is disabled
- Low-power mode 1 (LPM1)
 - CPU is disabled
 ACLK and SMCLK remain active
 MCLK is disabled
 DCO's dc-generator is disabled if DCO not used in active mode
- Low-power mode 2 (LPM2)
 - CPU is disabled
 MCLK and SMCLK are disabled
 DCO's dc-generator remains enabled
 ACLK remains active
- Low-power mode 3 (LPM3)
 - CPU is disabled
 MCLK and SMCLK are disabled
 DCO's dc-generator is disabled
 ACLK remains active
- Low-power mode 4 (LPM4)
 - CPU is disabled
 ACLK is disabled
 MCLK and SMCLK are disabled
 DCO's dc-generator is disabled
 Crystal oscillator is stopped

interrupt vector addresses

The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh to 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.

If the reset vector (located at address 0FFFEh) contains 0FFFFh (e.g., flash is not programmed) the CPU goes into LPM4 immediately after power up.

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-up External reset Watchdog Flash key violation PC out-of-range (see Note 1)	PORIFG RSTIFG WDTIFG KEYV (see Note 2)	Reset	OFFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG (see Notes 2 & 4)	(non)-maskable, (non)-maskable, (non)-maskable	0FFFCh	30
Timer_B3	TBCCR0 CCIFG (see Note 3)	maskable	0FFFAh	29
Timer_B3	TBCCR1 and TBCCR2 CCIFGs, TBIFG (see Notes 2 and 3)	maskable	0FFF8h	28
			0FFF6h	27
Watchdog Timer	WDTIFG	maskable	0FFF4h	26
Timer_A3	TACCR0 CCIFG (see Note 3)	maskable	0FFF2h	25
Timer_A3	TACCR1 CCIFG. TACCR2 CCIFG TAIFG (see Notes 2 and 3)	maskable	0FFF0h	24
USCI_A0/USCI_B0 Receive	UCA0RXIFG, UCB0RXIFG (see Notes 2)	maskable	0FFEEh	23
USCI_A0/USCI_B0 Transmit	UCA0TXIFG, UCB0TXIFG (see Notes 2)	maskable	0FFECh	22
ADC10	ADC10IFG (see Note 3)	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (eight flags)	P2IFG.0 to P2IFG.7 (see Notes 2 and 3)	maskable	0FFE6h	19
I/O Port P1 (eight flags)	P1IFG.0 to P1IFG.7 (see Notes 2 and 3)	maskable	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
(see Note 5)			0FFDEh	15
(see Note 6)			0FFDCh 0FFC0h	14 0, lowest

NOTES: 1. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h-01FFh) or from within unused address ranges.

- 2. Multiple source flags
- 3. Interrupt flags are located in the module.
- 4. (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot. Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event.
- 5. This location is used as bootstrap loader security key (BSLSKEY).
 - A 0AA55h at this location disables the BSL completely.
 - A zero (0h) disables the erasure of the flash if an invalid password is supplied.
- 6. The interrupt vectors at addresses 0FFDCh to 0FFC0h are not used in this device and can be used for regular program code if necessary.

SLAS504B - JULY 2006 - REVISED JULY 2007

special function registers

Most interrupt and module enable bits are collected into the lowest address space. Special function register bits not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement.

interrupt enable 1 and 2

UCBORXIE

UCB0TXIE

USCI_B0 receive-interrupt enable

USCI_B0 transmit-interrupt enable

Address	7	6	5	4	3	2	1	0			
00h			ACCVIE	NMIIE			OFIE	WDTIE			
			rw-0	rw-0			rw-0	rw-0	•		
WDTIE	Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in interval timer mode.										
OFIE	Oscillator fault enable										
NMIIE	(Non)-	maskable inte	rrupt enable								
ACCVIE	Flash	access violatio	n interrupt ena	able							
Address	7	6	5	4	3	2	1	0			
01h					UCB0TXIE	UCB0RXIE	UCA0TXIE	UCA0RXIE			
	rw-0 rw-0 rw-0 rw-0										
UCA0RXIE UCA0TXIE	_ '										

SLAS504B - JULY 2006 - REVISED JULY 2007

interrupt flag register 1 and 2

Address	7	6	5	4	3	2	1	0
02h				NMIIFG	RSTIFG	PORIFG	OFIFG	WDTIFG
				rw-0	rw-(0)	rw-(1)	rw-1	rw-(0)

WDTIFG Set on Watchdog Timer overflow (in watchdog mode) or security key violation.

Reset on V_{CC} power up or a reset condition at RST/NMI pin in reset mode.

OFIFG Flag set on oscillator fault

RSTIFG External reset interrupt flag. Set on a reset condition at $\overline{\text{RST}}/\text{NMI}$ pin in reset mode. Reset on V_{CC} power up.

PORIFG Power-On interrupt flag. Set on V_{CC} power up.

NMIIFG Set via RST/NMI-pin

Address 7 6 5 4 3 2 1 0 UCB0 UCB0 UCA0 UCA0 03h **TXIFG RXIFG TXIFG RXIFG** rw-1 rw-0 rw-1 rw-0

UCA0RXIFG USCI_A0 receive-interrupt flag
UCA0TXIFG USCI_A0 transmit-interrupt flag
UCB0RXIFG USCI_B0 receive-interrupt flag
UCB0TXIFG USCI_B0 transmit-interrupt flag

Legend rw: Bit can be read and written.

rw-0,1: Bit can be read and written. It is reset or set by PUC.rw-(0,1): Bit can be read and written. It is reset or set by POR.

SFR bit is not present in device.

memory organization

		MSP430F223x	MSP430F225x	MSP430F227x
Memory	Size	8KB Flash	16KB Flash	32KB Flash
Main: interrupt vector	Flash	0FFFFh-0FFC0h	0FFFFh-0FFC0h	0FFFFh-0FFC0h
Main: code memory	Flash	0FFFFh-0E000h	0FFFFh-0C000h	0FFFFh-08000h
Information memory	Size	256 Byte	256 Byte	256 Byte
	Flash	010FFh-01000h	010FFh-01000h	010FFh-01000h
Boot memory	Size	1KB	1KB	1KB
	ROM	0FFFh-0C00h	0FFFh-0C00h	0FFFh-0C00h
RAM	Size	512 Byte 03FFh-0200h	512 Byte 03FFh-0200h	1KB 05FFh-0200h
Peripherals	16-bit	01FFh-0100h	01FFh-0100h	01FFh-0100h
	8-bit	0FFh-010h	0FFh-010h	0FFh-010h
	8-bit SFR	0Fh-00h	0Fh-00h	0Fh-00h

bootstrap loader (BSL)

The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the application report, *Features of the MSP430 Bootstrap Loader*, TI literature number SLAA089.

BSL Function	DA Package Pins	RHA Package Pins
Data transmit	32 - P1.1	30 - P1.1
Data receive	10 - P2.2	8 - P2.2

flash memory

The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A to D can be erased individually, or as a group with segments 0-n. Segments A to D are also called *information memory*.
- Segment A contains calibration data. After reset, segment A is protected against programming or erasing. It can be unlocked, but care should be taken not to erase this segment if the calibration data is required.

peripherals

Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, refer to the MSP430x2xx Family User's Guide.

oscillator and system clock

The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very low power, low frequency oscillator, an internal digitally-controlled oscillator (DCO), and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic clock module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high frequency crystal, or the internal very low power LF oscillator.
- Main clock (MCLK), the system clock used by the CPU.
- Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.

DCO Calibration	DCO Calibration Data (provided from factory in flash info memory segment A)						
DCO Frequency	Calibration Register	Size	Address				
1 MHz	CALBC1_1MHZ	byte	010FFh				
	CALDCO_1MHZ	byte	010FEh				
8 MHz	CALBC1_8MHZ	byte	010FDh				
	CALDCO_8MHZ	byte	010FCh				
12 MHz	CALBC1_12MHZ	byte	010FBh				
	CALDCO_12MHZ	byte	010FAh				
16 MHz	CALBC1_16MHZ	byte	010F9h				
	CALDCO_16MHZ	byte	010F8h				

brownout

The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off.

digital I/O

There are four 8-bit I/O ports implemented—ports P1, P2, P3, and P4:

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Edge-selectable interrupt input capability for all the eight bits of port P1 and P2.
- Read/write access to port-control registers is supported by all instructions.
- Each I/O has an individually programmable pullup/pulldown resistor.

watchdog timer (WDT+)

The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

SLAS504B - JULY 2006 - REVISED JULY 2007

timer_A3

Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

			Timer_A3 Signa	al Connections			
	put umber	Device Input Signal	Module Input Name	Module Block	Module Output Signal	Output Pin Number	
DA	RHA					DA	RHA
31 - P1.0	29 - P1.0	TACLK	TACLK				
		ACLK	ACLK	-	NA		
		SMCLK	SMCLK	Timer	NA		
9 - P2.1	7 - P2.1	TAINCLK	INCLK	1			
32 - P1.1	30 - P1.1	TA0	CCI0A			32 - P1.1	30 - P1.
10 - P2.2	8 - P2.2	TA0	CCI0B	0000	T4.0	10 - P2.2	8 - P2.2
		V_{SS}	GND	CCR0	TA0	36 - P1.5	34 - P1.
		V_{CC}	V_{CC}				
33 - P1.2	31 - P1.2	TA1	CCI1A			33 - P1.2	31 - P1.:
29 - P2.3	27 - P2.3	TA1	CCI1B	0004	TAI	29 - P2.3	27 - P2.
		V_{SS}	GND	CCR1	TA1	37 - P1.6	35 - P1.
		V_{CC}	V_{CC}				
34 - P1.3	32 - P1.3	TA2	CCI2A			34 - P1.3	32 - P1.
_		ACLK (internal)	CCI2B	0000	TA2	30 - P2.4	28 - P2.
		V_{SS}	GND	CCR2		38 - P1.7	36 - P1.
		V_{CC}	V _{CC}			_	

timer_B3

Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

			Timer_B3 Sign	al Connections			
	put umber	Device Input Signal			Module Output Signal		tput umber
DA	RHA					DA	RHA
24 - P4.7	22 - P4.7	TBCLK	TBCLK				
		ACLK	ACLK] _			
		SMCLK	SMCLK	Timer	NA		
24 - P4.7	22 - P4.7	TBCLK	INCLK	1			
17 - P4.0	15 - P4.0	TB0	CCI0A		ТВО	17 - P4.0	15 - P4.0
20 - P4.3	18 - P4.3	TB0	CCI0B	0000		20 - P4.3	18 - P4.3
		V _{SS}	GND	CCR0			
		V _{CC}	V _{CC}	1			
18 - P4.1	16 - P4.1	TB1	CCI1A			18 - P4.1	16 - P4.1
21 - P4.4	19 - P4.4	TB1	CCI1B	0054	TD	21 - P4.4	19 - P4.4
		V _{SS}	GND	CCR1	TB1		
		V _{CC}	V _{CC}	1			
19 - P4.2	17 - P4.2	TB2	CCI2A			19 - P4.2	17 - P4.2
		ACLK (internal)	CCI2B	0000	TB2	22 - P4.5	20 - P4.5
		V _{SS}	GND	CCR2			
		V _{CC}	V _{CC}				

universal serial communications interface (USCI)

The USCI module is used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3 or 4 pin), I²C and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA.

USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.

USCI B0 provides support for SPI (3 or 4 pin) and I²C.

SLAS504B - JULY 2006 - REVISED JULY 2007

ADC₁₀

The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion result handling allowing ADC samples to be converted and stored without any CPU intervention.

operational amplifier OA (MSP430x22x4 only)

The MSP430x22x4 has two configurable low-current general-purpose operational amplifiers. Each OA input and output terminal is software-selectable and offer a flexible choice of connections for various applications. The OA op amps primarily support front-end analog signal conditioning prior to analog-to-digital conversion.

	OA0 Signal Connections						
Analog Input Pin Number DA RHA		Device Input Signal	Module Input Name				
			·				
8 - A0	6 - A0	OA010	OAxI0				
10 - A2	8 - A2	OA0I1	OA0I1				
10 - A2	8 - A2	OA0I1	OAxl1				
27 - A6	25 - A6	OA012	OAxIA				
22 - A14	20 - A14	OA0I3	OAxIB				

OA1 Signal Connections					
Analog Input Pin Number		Device Input Signal	Module Input Name		
DA	RHA		-		
30 - A4	28 - A4	OA1I0	OAxI0		
10 - A2	8 - A2	OA0I1	OA0I1		
29 - A3	27 - A3	OA1I1	OAxl1		
28 - A7	26 - A7	OA1I2	OAxIA		
23 - A15	21 - A15	OA1I3	OAxIB		

peripheral file map

PERIPHERALS WITH WORD ACCESS								
ADC10	ADC data transfer start address	ADC10SA	1BCh					
	ADC memory	ADC10MEM	1B4h					
	ADC control register 1	ADC10CTL1	1B2h					
	ADC control register 0	ADC10CTL0	1B0h					
	ADC analog enable 0	ADC10AE0	04Ah					
	ADC analog enable 1	ADC10AE1	04Bh					
	ADC data transfer control register 1	ADC10DTC1	049h					
	ADC data transfer control register 0	ADC10DTC0	048h					
Timer B	Capture/compare register	TBCCR2	0196h					
	Capture/compare register	TBCCR1	0194h					
	Capture/compare register	TBCCR0	0192h					
	Timer B register	TBR	0190h					
	Capture/compare control	TBCCTL2	0186h					
	Capture/compare control	TBCCTL1	0184h					
	Capture/compare control	TBCCTLO	0182h					
	Timer B control	TBCTL	0180h					
	Timer B interrupt vector	TBIV	011Eh					
Timer A	Capture/compare register	TACCR2	0176h					
Timer_A	Capture/compare register	TACCR1	0176h 0174h					
	Capture/compare register	TACCR0	0174h					
	Timer A register	TAR	017211 0170h					
	Capture/compare control	TACCTL2	0176h					
	Capture/compare control	TACCTL2	0164h					
		TACCTL1	0164h					
	Capture/compare control	TACTL	0162fi 0160h					
	Timer_A control	TAIV	010011 012Eh					
	Timer_A interrupt vector							
Flash Memory	Flash control 3	FCTL3	012Ch					
	Flash control 2	FCTL2	012Ah					
	Flash control 1	FCTL1	0128h					
Watchdog Timer+	Watchdog/timer control	WDTCTL	0120h					
	PERIPHERALS WITH BYTE ACCESS	_						
OA1 (MSP430x22x4 only)	Operational Amplifier 1 control register 1	OA1CTL1	0C3h					
	Operational Amplifier 1 control register 1	OA1CTL0	0C2h					
OA0 (MSP430x22x4 only)	Operational Amplifier 0 control register 1	OA0CTL1	0C1h					
	Operational Amplifier 0 control register 1	OA0CTL0	0C0h					
USCI BO	USCI B0 transmit buffer	UCB0TXBUF	06Fh					
_	USCI B0 receive buffer	UCB0RXBUF	06Eh					
	USCI B0 status	UCB0STAT	06Dh					
	USCI_B0 bit rate control 1	UCB0BR1	06Bh					
	USCI_B0 bit rate control 0	UCB0BR0	06Ah					
	USCI_B0 control 1	UCB0CTL1	069h					
	USCI_B0 control 0	UCB0CTL0	068h					
	USCI_B0 I2C slave address	UCB0SA	011Ah					
	USCI_B0 I2C own address	UCB0OA	0118h					
USCI_A0	USCI_A0 transmit buffer	UCA0TXBUF	067h					
_	USCI_A0 receive buffer	UCA0RXBUF	066h					
	USCI_A0 status	UCA0STAT	065h					
	USCI_A0 modulation control	UCA0MCTL	064h					
	USCI_A0 baud rate control 1	UCA0BR1	063h					
	USCI A0 baud rate control 0	UCA0BR0	062h					
	USCI A0 control 1	UCA0CTL1	061h					
	USCI A0 control 0	UCA0CTL0	060h					
	USCI A0 IrDA receive control	UCA0IRRCTL	05Fh					
	USCI A0 IrDA transmit control	UCAOIRTCTL	05Eh					
	USCI A0 auto baud rate control	UCA0ABCTL	05Dh					
	2001_7 to date bada fate control	SOMBOIL	וושטט					

SLAS504B - JULY 2006 - REVISED JULY 2007

	PERIPHERALS WITH BYTE ACCESS (cont	inued)	
Basic Clock System+	Basic clock system control 3 Basic clock system control 2 Basic clock system control 1 DCO clock frequency control	BCSCTL3 BCSCTL2 BCSCTL1 DCOCTL	053h 058h 057h 056h
Port P4	Port P4 resistor enable Port P4 selection Port P4 direction Port P4 output Port P4 input	P4REN P4SEL P4DIR P4OUT P4IN	011h 01Fh 01Eh 01Dh 01Ch
Port P3	Port P3 resistor enable Port P3 selection Port P3 direction Port P3 output Port P3 input	P3REN P3SEL P3DIR P3OUT P3IN	010h 01Bh 01Ah 019h 018h
Port P2	Port P2 resistor enable Port P2 selection Port P2 interrupt enable Port P2 interrupt edge select Port P2 interrupt flag Port P2 direction Port P2 output Port P2 input	P2REN P2SEL P2IE P2IES P2IFG P2DIR P2OUT P2IN	02Fh 02Eh 02Dh 02Ch 02Bh 02Ah 029h 028h
Port P1	Port P1 resistor enable Port P1 selection Port P1 interrupt enable Port P1 interrupt edge select Port P1 interrupt flag Port P1 direction Port P1 output Port P1 input	P1REN P1SEL P1IE P1IES P1IFG P1DIR P1OUT P1IN	027h 026h 025h 024h 023h 022h 021h 020h
Special Function	SFR interrupt flag 2 SFR interrupt flag 1 SFR interrupt enable 2 SFR interrupt enable 1	IFG2 IFG1 IE2 IE1	003h 002h 001h 000h

absolute maximum ratings (see Note 1)

Voltage applied at V _{CC} to V _{SS}	0.3 V to 4.1 V
Voltage applied to any pin (see Note 2)	0.3 V to V _{CC} +0.3 V
Diode current at any device terminal	±2 mA
Storage temperature range, T _{sta} (unprogrammed device, see Note 3)	55°C to 150°C
Storage temperature range, T _{sta} (programmed device, see Note 3) .	40°C to 105°C

- NOTES: 1. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 - 2. All voltages referenced to V_{SS}. The JTAG fuse-blow voltage, V_{FB}, is allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse.
 - 3. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

recommended operating conditions

		MIN	NOM	MAX	UNIT	
Supply voltage during program execution, V _{CC}		1.8		3.6	V	
Supply voltage during program/erase flash memory, V _{CC}		2.2		3.6	V	
Supply voltage, V _{SS}			0		V	
0 /	I version	-40		85		
Operating free-air temperature, T _A	T version	-40	3.6 3.6 0 85 105 4.15	°C		
Processor frequency f _{SYSTEM} (maximum MCLK frequency) (see Notes 1, 2 and Figure 1)	V _{CC} = 1.8 V, Duty cycle = 50% ±10%	dc		4.15		
	V _{CC} = 2.7 V, Duty cycle = 50% ±10%	dc		12	MHz	
	V _{CC} ≥ 3.3 V, Duty cycle = 50% ±10%	dc		16		

- NOTES: 1. The MSP430 CPU is clocked directly with MCLK.
 - Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency.
 - 2. Modules might have a different maximum input clock specification. Refer to the specification of the respective module in this data sheet.

Supply Voltage - V NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V_{CC} of 2.2 V.

Figure 1. Operating Area

SLAS504B - JULY 2006 - REVISED JULY 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

active mode supply current (into DV_{CC} + AV_{CC}) excluding external current (see Notes 1 and 2)

PARAMETER		TEST CONDITIONS	T _A	VCC	MIN	TYP	MAX	UNIT
I _{AM, 1MHz}	Active mode (AM)	f _{DCO} = f _{MCLK} = f _{SMCLK} = 1 MHz, f _{ACLK} = 32,768 Hz, Program executes in flash, BCSCTL1 = CALBC1_1MHZ,		2.2 V		270	390	μΑ
	current (1 MHz)	DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0		3 V		390	550	μΑ
I _{AM, 1MHz}	Active mode (AM)	f _{DCO} = f _{MCLK} = f _{SMCLK} = 1 MHz, f _{ACLK} = 32,768 Hz, Program executes in RAM, BCSCTL1 = CALBC1_1MHZ,		2.2 V		240		μΑ
	current (1 MHz)	DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0		3 V		340		μετ
	Active mode (AM) current (4 kHz)	$\begin{split} f_{MCLK} &= f_{SMCLK} = \\ f_{ACLK} &= 32,768 \text{ Hz/8} = 4,096 \text{ Hz}, \\ f_{DCO} &= 0 \text{ Hz}, \\ Program executes in flash, \\ SELMx &= 11, SELS = 1, \\ DIVMx &= DIVSx = DIVAx = 11, \\ CPUOFF &= 0, SCG0 = 1, SCG1 = 0, \\ OSCOFF &= 0 \end{split}$	-40-85°C	2.2 V		5	9	
			105°C	2.2 V			18	
I _{AM, 4kHz}			-40-85°C	3 V		6	10	μΑ
			105°C	3 V			20	
I _{AM,100kHz}		$f_{MCLK} = f_{SMCLK} = f_{DCO(0, 0)} \approx 100 \text{ kHz},$	-40-85°C	2.2 V		60	85	
	Active mode (AM)	f _{ACLK} = 0 Hz, Program executes in flash, RSELx = 0, DCOx = 0, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 1	105°C	2.2 V			95	
	current (100 kHz)		-40-85°C	3 V		72	95	μΑ
			105°C	3 V			105	

NOTES: 1. All inputs are tied to 0 V or V_{CC} . Outputs do not source or sink any current.

2. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

typical characteristics - active mode supply current (into DV_{CC} + AV_{CC})

Figure 2. Active Mode Current vs V_{CC} , $T_A = 25$ °C

Figure 3. Active Mode Current vs DCO Frequency

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

low power mode supply currents (into DV_{CC} + AV_{CC}) excluding external current (see Notes 1 and 2)

PAR	AMETER	TEST CONDITIONS	TA	VCC	MIN TYP	MAX	UNIT
I _{LPM0, 1MHz}	Low-power mode 0 (LPM0) current,	$\begin{split} &f_{MCLK}=0 \text{ MHz,} \\ &f_{SMCLK}=f_{DCO}=1 \text{ MHz,} \\ &f_{ACLK}=32,768 \text{ Hz,} \\ &BCSCTL1=CALBC1 \text{ 1MHZ,} \end{split}$		2.2 V	75	90	μΑ
	see Note 3	DCOCTL = CALDCO_1MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0		3 V	90	120	
ILPMO. 100kHz	Low-power mode 0 (LPM0) current,	$f_{MCLK} = 0 \text{ MHz},$ $f_{SMCLK} = f_{DCO(0, 0)} \approx 100 \text{ kHz},$ $f_{ACLK} = 0 \text{ Hz},$		2.2 V	37	48	uΑ
TEPMO, TOURHZ	see Note 3	RSELx = 0, DCOx = 0, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 1		3 V	41	65	μνι
		$f_{MCLK} = f_{SMCLK} = 0 MHz,$ $f_{DCO} = 1 MHz,$	-40-85°C	001/	22	29	
	Low-power mode	f _{ACLK} = 32,768 Hz,	105°C	2.2 V		31	
I _{LPM2}	2 (LPM2) current, see Note 4	BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ,	-40-85°C		25	32	μΑ
		CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0	105°C	3 V		34	
			-40°C		0.7	1.4	
			25°C	2.2 V	0.7	1.4	
	Low-power mode 3 (LPM3) current,	PM3) current, f _{ACLK} = 32,768 Hz,	85°C	2.2 V	2.4	3.3	- μΑ
			105°C		5	10	
LPM3,LFXT1	see Note 4		-40°C	3 V	0.9	1.5	
			25°C		0.9	1.5	
			85°C		2.6	3.8	
			105°C		6	12	
			-40°C		0.4	1.0	
			25°C	2.2 V	0.5	1.0	
	Low-power mode	$f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 \text{ MHz},$	85°C	2.2 V	1.8	2.9	
	3 current, (LPM3)	f _{ACLK} from internal LF oscillator (VLO),	105°C		4.5	9	
I _{LPM3,VLO}	see Note 4	CPUOFF = 1, SCG0 = 1, SCG1 = 1,	-40°C		0.5	1.2	μΑ
		OSCOFF = 0	25°C	3 V	0.6	1.2	
			85°C	3 V	2.1	3.3	
			105°C		5.5	11	
		food - fugur - fougur - 0 MHz	-40°C		0.1	0.5	
	Low-power mode	rent, CPUOFF = 1, SCG0 = 1, SCG1 = 1,	25°C	0.03//03/	0.1	0.5	пΑ
LI IVI~	4 (LPM4) current, see Note 5		85°C	2.2 V/3 V	1.5	3.0	
		OSCOFF = 1	105°C		4.5	9	

- NOTES: 1. All inputs are tied to 0 V or V_{CC} . Outputs do not source or sink any current.
 - 2. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF.
 - 3. Current for brownout and WDT clocked by SMCLK included.
 - 4. Current for brownout and WDT clocked by ACLK included.
 - 5. Current for brownout included.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

Schmitt-trigger inputs - Ports P1, P2, P3, P4, and RST/NMI

	PARAMETER	TEST CONDITIONS	vcc	MIN	TYP	MAX	UNIT
				0.45		0.75	V_{CC}
V_{iT+}	Positive-going input threshold voltage		2.2 V	1.00		1.65	.,
			3 V	1.35		2.25	٧
				0.25		0.55	V_{CC}
V _{IT} -	Negative-going input threshold voltage		2.2 V	0.55		1.20	.,
			3 V	0.75		1.65	V
V	Input voltage hystoresia (/ / / /		2.2 V	0.2		1.0	V
V _{hys}	Input voltage hysteresis (V _{IT+} - V _{IT-})		3 V	0.3		1.0	V
R _{Pull}	Pullup/pulldown resistor	For pullup: V _{IN} = V _{SS} ; For pulldown: V _{IN} = V _{CC}		20	35	50	kΩ
C _I	Input capacitance	$V_{IN} = V_{SS}$ or V_{CC}			5		pF

inputs - Ports P1 and P2

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
t _(int)	External interrupt timing	Port P1, P2: P1.x to P2.x, External trigger pulse width to set interrupt flag (see Note 1)	2.2 V/3 V	20			ns

NOTES: 1. An external signal sets the interrupt flag every time the minimum interrupt puls width t_(int) is met. It may be set even with trigger signals shorter than t_(int).

leakage current - Ports P1, P2, P3 and P4

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
I _{lka(Px.x)}	High-impedance leakage current	See Notes 1 and 2	2.2 V/3 V			±50	nA

NOTES: 1. The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pin(s), unless otherwise noted.

2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled.

SLAS504B - JULY 2006 - REVISED JULY 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

outputs - Ports P1, P2, P3 and P4

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP MAX	UNIT
		I _(OHmax) = -1.5 mA (see Note 1)	2.2 V	V _{CC} -0.25	V _{CC}	
V _{OH}	United and a feet afficial	I _(OHmax) = -6 mA (see Note 2)	2.2 V	V _{CC} -0.6	V_{CC}] ,,
	High-level output voltage	I _(OHmax) = -1.5 mA (see Note 1)	3 V	V _{CC} -0.25	V_{CC}	
		I _(OHmax) = -6 mA (see Note 2)	3 V	V _{CC} -0.6	V_{CC}	
		I _(OLmax) = 1.5 mA (see Note 1)	2.2 V	V _{SS}	V _{SS} +0.25	
 ,,	La la da la La La Hara	I _(OLmax) = 6 mA (see Note 2)	2.2 V	V_{SS}	V _{SS} +0.6	
V _{OL}	Low-level output voltage	I _(OLmax) = 1.5 mA (see Note 1)	3 V	V_{SS}	V _{SS} +0.25	7 /
		I _(OLmax) = 6 mA (see Note 2)	3 V	V_{SS}	V _{SS} +0.6	

NOTES: 1. The maximum total current, I_{OHmax} and I_{OLmax}, for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop specified.

output frequency - Ports P1, P2, P3 and P4

PARAMETER		TEST CONDITIONS	VCC	MIN TYP	MAX	UNIT
£_	Port output frequency	P1.4/SMCLK, $C_1 = 20 \text{ pF}, R_1 = 1 \text{ k}\Omega \text{ against } V_{CC}/2$	2.2 V		10	MHz
f _{Px.y} (with load)		(see Notes 1 and 2)	3 V		12	IVII IZ
£	Clock output frequency	P2.0/ACLK, P1.4/SMCLK, C _L = 20 pF	2.2 V		12	MHz
Port_CLK	Clock output frequency	(see Note 2)	3 V		16	IVITIZ

NOTES: 1. Alternatively a resistive divider with 2 times 2 kΩ between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider.

2. The output voltage reaches at least 10% and 90% $\ensuremath{V_{CC}}$ at the specified toggle frequency.

^{2.} The maximum total current, I_{OHmax} and I_{OLmax}, for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

typical characteristics - outputs

TYPICAL LOW-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT VOLTAGE

TYPICAL LOW-LEVEL OUTPUT CURRENT **LOW-LEVEL OUTPUT VOLTAGE**

TYPICAL HIGH-LEVEL OUTPUT CURRENT

HIGH-LEVEL OUTPUT VOLTAGE 0.0 V_{CC} = 2.2 V P4.5 -5.0

Figure 6

NOTE: One output loaded at a time

TYPICAL HIGH-LEVEL OUTPUT CURRENT

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

POR/brownout reset (BOR) (see Notes 1 and 2)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
V _{CC(start)}	See Figure 8	$dV_{CC}/dt \le 3 \text{ V/s}$		0.7 × V _(B_IT-)		V	
V _(B_IT-)	See Figure 8 through Figure 10	dV _{CC} /dt ≤ 3 V/s				1.71	V
V _{hys(B_IT-)}	See Figure 8	dV _{CC} /dt ≤ 3 V/s		70	130	210	mV
t _{d(BOR)}	See Figure 8					2000	μS
+	Pulse length needed at RST/NMI pin		2.2 V/3 V	2			c
t(reset)	to accepted reset internally		2.2 V/3 V				μS

- NOTES: 1. The current consumption of the brownout module is already included in the I_{CC} current consumption data. The voltage level $V_{(B \mid T-)} + V_{hvs(B \mid T-)}$ is $\leq 1.8V$.
 - During power up, the CPU begins code execution following a period of t_{d(BOR)} after V_{CC} = V_(B_IT-) + V_{hys(B_IT-)}. The default DCO settings must not be changed until V_{CC} ≥ V_{CC(min)}, where V_{CC(min)} is the minimum supply voltage for the desired operating frequency.

Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

typical characteristics - POR/brownout reset (BOR)

Figure 9. $V_{\text{CC(drop)}}$ Level With a Square Voltage Drop to Generate a POR/Brownout Signal

Figure 10. V_{CC(drop)} Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal

SLAS504B - JULY 2006 - REVISED JULY 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

main DCO characteristics

- All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15.
- DCO control bits DCOx have a step size as defined by parameter S_{DCO}.
- Modulation control bits MODx select how often f_{DCO(RSEL,DCO+1)} is used within the period of 32 DCOCLK cycles. The frequency f_{DCO(RSEL,DCO)} is used for the remaining cycles. The frequency is an average equal to:

$$f_{\text{average}} = \frac{32 \times f_{\text{DCO(RSEL,DCO)}} \times f_{\text{DCO(RSEL,DCO+1)}}}{\text{MOD} \times f_{\text{DCO(RSEL,DCO)}} + (32 - \text{MOD}) \times f_{\text{DCO(RSEL,DCO+1)}}}$$

DCO frequency

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
		RSELx < 14		1.8		3.6	
Vcc	Supply voltage range	RSELx = 14		2.2		3.6	٧
		RSELx = 15		3.0		3.6	
f _{DCO(0,0)}	DCO frequency (0, 0)	RSELx = 0, DCOx = 0, MODx = 0	2.2 V/3 V	0.06		0.14	MHz
f _{DCO(0,3)}	DCO frequency (0, 3)	RSELx = 0, DCOx = 3, MODx = 0	2.2 V/3 V	0.07		0.17	MHz
f _{DCO(1,3)}	DCO frequency (1, 3)	RSELx = 1, DCOx = 3, MODx = 0	2.2 V/3 V	0.10		0.20	MHz
f _{DCO(2,3)}	DCO frequency (2, 3)	RSELx = 2, DCOx = 3, MODx = 0	2.2 V/3 V	0.14		0.28	MHz
f _{DCO(3,3)}	DCO frequency (3, 3)	RSELx = 3, DCOx = 3, MODx = 0	2.2 V/3 V	0.20		0.40	MHz
f _{DCO(4,3)}	DCO frequency (4, 3)	RSELx = 4, DCOx = 3, MODx = 0	2.2 V/3 V	0.28		0.54	MHz
f _{DCO(5,3)}	DCO frequency (5, 3)	RSELx = 5, DCOx = 3, MODx = 0	2.2 V/3 V	0.39		0.77	MHz
f _{DCO(6,3)}	DCO frequency (6, 3)	RSELx = 6, DCOx = 3, MODx = 0	2.2 V/3 V	0.54		1.06	MHz
f _{DCO(7,3)}	DCO frequency (7, 3)	RSELx = 7, DCOx = 3, MODx = 0	2.2 V/3 V	0.80		1.50	MHz
f _{DCO(8,3)}	DCO frequency (8, 3)	RSELx = 8, DCOx = 3, MODx = 0	2.2 V/3 V	1.10		2.10	MHz
f _{DCO(9,3)}	DCO frequency (9, 3)	RSELx = 9, DCOx = 3, MODx = 0	2.2 V/3 V	1.60		3.00	MHz
f _{DCO(10,3)}	DCO frequency (10, 3)	RSELx = 10, DCOx = 3, MODx = 0	2.2 V/3 V	2.50		4.30	MHz
f _{DCO(11,3)}	DCO frequency (11, 3)	RSELx = 11, DCOx = 3, MODx = 0	2.2 V/3 V	3.00		5.50	MHz
f _{DCO(12,3)}	DCO frequency (12, 3)	RSELx = 12, DCOx = 3, MODx = 0	2.2 V/3 V	4.30		7.30	MHz
f _{DCO(13,3)}	DCO frequency (13, 3)	RSELx = 13, DCOx = 3, MODx = 0	2.2 V/3 V	6.00		9.60	MHz
f _{DCO(14,3)}	DCO frequency (14, 3)	RSELx = 14, DCOx = 3, MODx = 0	2.2 V/3 V	8.60		13.9	MHz
f _{DCO(15,3)}	DCO frequency (15, 3)	RSELx = 15, DCOx = 3, MODx = 0	3 V	12.0		18.5	MHz
f _{DCO(15,7)}	DCO frequency (15, 7)	RSELx = 15, DCOx = 7, MODx = 0	3 V	16.0		26.0	MHz
S _{RSEL}	Frequency step between range RSEL and RSEL+1	$S_{RSEL} = f_{DCO(RSEL+1,DCO)}/f_{DCO(RSEL,DCO)}$	2.2 V/3 V			1.55	ratio
S _{DCO}	Frequency step between tap DCO and DCO+1	$S_{DCO} = f_{DCO(RSEL,DCO+1)}/f_{DCO(RSEL,DCO)}$	2.2 V/3 V	1.05	1.08	1.12	ratio
Duty Cycle		Measured at P1.4/SMCLK	2.2 V/3 V	40	50	60	%

SLAS504B - JULY 2006 - REVISED JULY 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

calibrated DCO frequencies - tolerance at calibration

	PARAMETER	TEST CONDITIONS	TA	vcc	MIN	TYP	MAX	UNIT
Frequency to	olerance at calibration		25°C	3 V	-1	±0.2	+1	%
fCAL(1MHz)	1-MHz calibration value	BCSCTL1= CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms	25°C	3 V	0.990	1	1.010	MHz
fCAL(8MHz)	8-MHz calibration value	BCSCTL1= CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms	25°C	3 V	7.920	8	8.080	MHz
f _{CAL(12MHz)}	12-MHz calibration value	BCSCTL1= CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms	25°C	3 V	11.88	12	12.12	MHz
f _{CAL(16MHz)}	16-MHz calibration value	BCSCTL1= CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms	25°C	3 V	15.84	16	16.16	MHz

calibrated DCO frequencies - tolerance over temperature 0°C to +85°C

PARAMETER	TEST CONDITIONS	T _A	VCC	MIN	TYP	MAX	UNIT
1-MHz tolerance over temperature		0-85°C	3.0 V	-2.5	±0.5	+2.5	%
8-MHz tolerance over temperature		0-85°C	3.0 V	-2.5	±1.0	+2.5	%
12-MHz tolerance over temperature		0-85°C	3.0 V	-2.5	±1.0	+2.5	%
16-MHz tolerance over temperature		0-85°C	3.0 V	-3.0	±2.0	+3.0	%
	BCSCTL1= CALBC1 1MHZ,		2.2 V	0.970	1	1.030	
f _{CAL(1MHz)} 1-MHz calibration value	DCOCTL = CALDCO_1MHZ,	0-85°C	3.0 V	0.975	1	1.025	MHz
, ,	Gating time: 5 ms		3.6 V	0.970	1	1.030	
	BCSCTL1= CALBC1 8MHZ,		2.2 V	7.760	8	8.400	
f _{CAL(8MHz)} 8-MHz calibration value	DCOCTL = CALDCO_8MHZ,	0-85°C	3.0 V	7.800	8	8.200	MHz
	Gating time: 5 ms		3.6 V	7.600	8	8.240	
	BCSCTL1= CALBC1 12MHZ,		2.2 V	11.70	12	12.30	
f _{CAL(12MHz)} 12-MHz calibration value	DCOCTL = CALDCO_12MHZ,	0-85°C	3.0 V	11.70	12	12.30	MHz
, ,	Gating time: 5 ms		3.6 V	11.70	12	12.30	
fcді (16МН-) 16-МНz calibration value	BCSCTL1= CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ,	0-85°C	3.0 V	15.52	16	16.48	MHz
f _{CAL(16MHz)} 16-MHz calibration value	Gating time: 2 ms	0-65 C	3.6 V	15.00	16	16.48	IVI⊓Z

SLAS504B - JULY 2006 - REVISED JULY 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

calibrated DCO frequencies - tolerance over supply voltage $\mathbf{V}_{\mathbf{CC}}$

PARAMETER	TEST CONDITIONS	T _A	VCC	MIN	TYP	MAX	UNIT
1-MHz tolerance over V _{CC}		25°C	1.8 V - 3.6 V	-3	±2	+3	%
8-MHz tolerance over V _{CC}		25°C	1.8 V - 3.6 V	-3	±2	+3	%
12-MHz tolerance over V _{CC}		25°C	2.2 V - 3.6 V	-3	±2	+3	%
16 -Hz tolerance over V _{CC}		25°C	3.0 V - 3.6 V	-6	±2	+3	%
f _{CAL(1MHz)} 1-MHz calibration value	BCSCTL1= CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms	25°C	1.8 V - 3.6 V	0.970	1	1.030	MHz
f _{CAL(8MHz)} 8-MHz calibration value	BCSCTL1= CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms	25°C	1.8 V - 3.6 V	7.760	8	8.240	MHz
f _{CAL(12MHz)} 12-MHz calibration value	BCSCTL1= CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms	25°C	2.2 V - 3.6 V	11.64	12	12.36	MHz
f _{CAL(16MHz)} 16-MHz calibration value	BCSCTL1= CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms	25°C	3.0 V - 3.6 V	15.00	16	16.48	MHz

calibrated DCO frequencies - overall tolerance

	PARAMETER	TEST CONDITIONS	T _A	vcc	MIN	TYP	MAX	UNIT
1-MHz tolera	ance overall		I: -40-85°C T: -40-105°C	1.8 V to 3.6 V	-5	±2	+5	%
8-MHz tolera	ance overall		I: -40-85°C T: -40-105°C	1.8 V to 3.6 V	-5	±2	+5	%
12-MHz toler	rance overall		I: -40-85°C T: -40-105°C	2.2 V to 3.6 V	-5	±2	+5	%
16-MHz toler	rance overall		I: -40-85°C T: -40-105°C	3.0 V to 3.6 V	-6	±3	+6	%
fCAL(1MHz)	1-MHz calibration value	BCSCTL1= CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms	I: -40-85°C T: -40-105°C	1.8 V to 3.6 V	0.950	1	1.050	MHz
f _{CAL} (8MHz)	8-MHz calibration value	BCSCTL1= CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms	I: -40-85°C T: -40-105°C	1.8 V to 3.6 V	7.600	8	8.400	MHz
f _{CAL(12MHz)}	12-MHz calibration value	BCSCTL1= CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms	I: -40-85°C T: -40-105°C	2.2 V to 3.6 V	11.40	12	12.60	MHz
fCAL(16MHz)	16-MHz calibration value	BCSCTL1= CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms	I: -40-85°C T: -40-105°C	3.0 V to 3.6 V	15.00	16	17.00	MHz

typical characteristics - calibrated 1-MHz DCO frequency

Figure 11. Calibrated 1-MHz Frequency vs Temperature

Figure 12. Calibrated 1-MHz Frequency vs V_{CC}

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

wake-up from lower power modes (LPM3/4)

PARAMETER		TEST CONDITIONS	VCC	MIN TYP	MAX	UNIT	
^t DCO,LPM3/4	DCO clock wake-up time from LPM3/4 (see Note 1)	BCSCTL1= CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ	2.2 V/3 V		2		
		BCSCTL1= CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ	2.2 V/3 V		1.5		
		BCSCTL1= CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ	2.2 V/3 V		1	μS	
		BCSCTL1= CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ	3 V		1		
t _{CPU,LPM3/4}	CPU wake-up time from LPM3/4 (see Note 2)			1/f _{MCLK} + t _{Clock,LPM3/}	1		

NOTES: 1. The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK).

typical characteristics - DCO clock wake-up time from LPM3/4

Figure 13. Clock Wake-Up Time From LPM3 vs DCO Frequency

^{2.} Parameter applicable only if DCOCLK is used for MCLK.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

DCO with external resistor R_{OSC} (see Note 1)

	PARAMETER	TEST CONDITIONS	VCC	MIN TYP MAX	UNIT
DCO output frequency		DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0,	2.2 V	1.8	MHz
†DCO,ROSC	with R _{OSC}	$T_A = 25^{\circ}C$	3 V	1.95	IVII IZ
D _t	Temperature drift	DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0	2.2 V/3 V	±0.1	%/°C
D _V	Drift with V _{CC}	DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0	2.2 V/3 V	10	%/V

NOTES: 1. $R_{OSC} = 100k\Omega$. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and $T_K = \pm 50$ ppm/°C.

typical characteristics - DCO with external resistor Rosc

Figure 14. DCO Frequency vs R_{OSC}, V_{CC} = 2.2 V, T_A = 25°C

Figure 16. DCO Frequency vs Temperature, $V_{CC} = 3.0 \text{ V}$

Figure 15. DCO Frequency vs R_{OSC} , $V_{CC} = 3.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$

Figure 17. DCO Frequency vs V_{CC} , $T_A = 25$ °C

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

crystal oscillator, LFXT1, low frequency modes (see Note 4)

	PARAMETER	TEST CONDITIONS	vcc	MIN	TYP	MAX	UNIT	
f _{LFXT1,LF}	LFXT1 oscillator crystal frequency, LF mode 0, 1	XTS = 0, LFXT1Sx = 0 or 1	1.8 V - 3.6 V		32,768		Hz	
f _{LFXT1,LF,logic}	LFXT1 oscillator logic level square wave input frequency, LF mode	XTS = 0, LFXT1Sx = 3	1.8 V - 3.6 V	10,000	32,768	50,000	Hz	
	Oscillation allowance for LF	XTS = 0, LFXT1Sx = 0; f _{LFXT1,LF} = 32,768 kHz, C _{L,eff} = 6 pF			500		10	
OA _{LF}	crystals	XTS = 0, LFXT1Sx = 0; f _{LFXT1,LF} = 32,768 kHz, C _{L,eff} = 12 pF		200			kΩ	
		XTS = 0, XCAPx = 0			1			
	Integrated effective load	XTS = 0, XCAPx = 1			5.5			
$C_{L,eff}$	capacitance, LF mode (see Note 1)	XTS = 0, XCAPx = 2			8.5		pF	
	,	XTS = 0, XCAPx = 3			11			
Duty Cycle	LF mode	XTS = 0, Measured at P1.4/ACLK, f _{LFXT1,LF} = 32,768 Hz	2.2 V/3 V	30	50	70	%	
f _{Fault,LF}	Oscillator fault frequency, LF mode (see Note 3)	XTS = 0, LFXT1Sx = 3 (see Note 2)	2.2 V/3 V	10		10,000	Hz	

NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin).

Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal.

- 2. Measured with logic level input frequency but also applies to operation with crystals.
- 3. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- 4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.
 - Keep as short a trace as possible between the device and the crystal.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
 - Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter.

internal very low power, low frequency oscillator (VLO)

	PARAMETER	TEST CONDITIONS	T _A	VCC	MIN	TYP	MAX	UNIT
	\/I O francisco		-40-85°C	2.2 V/3 V	4	12	20	1.11=
f _{VLO}	VLO frequency		105°C	2.2 V/3 V			22	kHz
df _{VLO} /dT	VLO frequency temperature drift	(see Note 1)	I: -40-85°C T: -40-105°C	2.2 V/3 V		0.5		%/°C
df _{VLO} /dV _{CC}	VLO frequency supply voltage drift	(see Note 2)	25°C	1.8V - 3.6V		4		%/V

NOTES: 1. Calculated using the box method:

I version: (MAX(-40...85°C) - MIN(-40...85°C))/MIN(-40...85°C)/(85°C - (-40°C))

T version: (MAX(-40...105°C) - MIN(-40...105°C))/MIN(-40...105°C)/(105°C - (-40°C))

2. Calculated using the box method: (MAX(1.8...3.6 V) - MIN(1.8...3.6 V))/MIN(1.8...3.6V)/(3.6 V - 1.8 V)

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

crystal oscillator, LFXT1, high frequency modes (see Note 5)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
f _{LFXT1,HF0}	LFXT1 oscillator crystal frequency, HF mode 0	XTS = 1, LFXT1Sx = 0	1.8 V - 3.6 V	0.4		1	MHz
f _{LFXT1,HF1}	LFXT1 oscillator crystal frequency, HF mode 1	XTS = 1, LFXT1Sx = 1	1.8 V - 3.6 V	1		4	MHz
			1.8 V - 3.6 V	2		10	
f _{LFXT1,HF2}	LFXT1 oscillator crystal frequency, HF mode 2	XTS = 1, LFXT1Sx = 2	2.2 V - 3.6 V	2		12	MHz
	7.1. 1110de 2		3.0 V - 3.6 V	2		16	
	LFXT1 oscillator logic level		1.8 V - 3.6 V	0.4		10	
f _{LFXT1,HF,logic}	square-wave input frequency,	XTS = 1, LFXT1Sx = 3	2.2 V - 3.6 V	0.4		12	MHz
	HF mode		3.0 V - 3.6 V	0.4		16	
		$\begin{split} XTS &= 0, LFXT1Sx = 0, \\ f_{LFXT1,HF} &= 1 \text{ MHz, } C_{L,eff} = 15 \text{ pF} \end{split}$			2700		
OA _{HF}	Oscillation allowance for HF crystals (see Figure 18 and Figure 19)	$\begin{split} XTS &= 0, LFXT1Sx = 1 \\ f_{LFXT1,HF} &= 4 \text{ MHz}, C_{L,eff} = 15 \text{ pF} \end{split}$			800		Ω
	(see Figure 10 and Figure 19)	XTS = 0, LFXT1Sx = 2 f _{LFXT1,HF} = 16 MHz, C _{L,eff} = 15 pF			300		
$C_{L,eff}$	Integrated effective load capacitance, HF mode (see Note 1)	XTS = 1 (see Note 2)			1		pF
Duty Cycle	HF mode	XTS = 1, Measured at P1.4/ACLK, f _{LFXT1,HF} = 10 MHz	2.2 V/3 V	40	50	60	%
Duty Cycle	nr IIIoue	XTS = 1, Measured at P1.4/ACLK, f _{LFXT1,HF} = 16 MHz	2.2 V/3 V	40	50	60	70
f _{Fault,HF}	Oscillator fault frequency, HF mode (see Note 4)	XTS = 1, LFXT1Sx = 3 (see Notes 3)	2.2 V/3 V	30		300	kHz

NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).

Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal.

- 2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
- 3. Measured with logic level input frequency but also applies to operation with crystals.
- 4. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- $5. \ \ \, \text{To improve EMI on the LFXT1 oscillator the following guidelines should be observed.}$
 - Keep as short a trace as possible between the device and the crystal.
 - Design a good ground plane around the oscillator pins.
 - Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
 - Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
 - Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
 - If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
 - Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

typical characteristics - LFXT1 oscillator in HF mode (XTS = 1)

Figure 18. Oscillation Allowance vs Crystal Frequency, $C_{L,eff}$ = 15 pF, T_A = 25°C

Figure 19. XT Oscillator Supply Current vs Crystal Frequency, $C_{L,eff}$ = 15 pF, T_A = 25°C

MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER

SLAS504B - JULY 2006 - REVISED JULY 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

Timer_A

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
£	Timer A clock frequency	Internal: SMCLK, ACLK,	2.2 V			10	MHz
† _{TA}	Timer_A clock frequency	External: TACLK, INCLK, Duty cycle = 50% ±10%	3 V			16	IVI⊓∠
t _{TA,cap}	Timer_A, capture timing	TA0, TA1, TA2	2.2 V/3 V	20			ns

Timer_B

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
f	Timer B clock frequency	Internal: SMCLK, ACLK, External: TBCLK.	2.2 V			10	MHz
т _{ТВ}	Timer_b clock frequency	Duty cycle = 50% ±10%	3 V			16	IVII IZ
t _{TB,cap}	Timer_B, capture timing	TB0, TB1, TB2	2.2 V/3 V	20			ns

MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER

SLAS504B - JULY 2006 - REVISED JULY 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

USCI (UART Mode)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
fusci	USCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10%		fsystem		MHz	
f _{BITCLK}	BITCLK clock frequency (equals baud rate in MBaud)		2.2V /3 V			1	MHz
	UART receive deglitch time		2.2 V	50	150	600	ns
ι _τ	(see Note 1)		3 V	50	100	600	ns

NOTES: 1. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized, their width should exceed the maximum specification of the deglitch time.

USCI (SPI Master Mode, see Figure 20 and Figure 21)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP MAX	UNIT
f _{USCI}	USCI input clock frequency	SMCLK, ACLK Duty cycle = 50% ± 10%			f _{SYSTEM}	MHz
			2.2 V	110		
t _{SU,MI}	SOMI input data setup time		3 V	75		ns
	2014		2.2 V	0		
t _{HD,MI}	SOMI input data hold time		3 V	0		ns
	0040	UCLK edge to SIMO valid,	2.2 V		30	
^t valid,mo	SIMO output data valid time	C _L = 20 pF	3 V		20	ns

 $\text{NOTE:} \ \ f_{\text{UCxCLK}} = \frac{1}{2t_{\text{LO/HI}}} \text{with} \ t_{\text{LO/HI}} \geq \\ \\ \text{max}(t_{\text{VALID,MO(USCI)}} + \\ \\ t_{\text{SU,SI(Slave)}}, \\ t_{\text{SU,MI(USCI)}} + \\ \\ t_{\text{VALID,SO(Slave)}}).$

For the slave's parameters $t_{SU,SI(Slave)}$ and $t_{VALID,SO(Slave)}$, see the SPI parameters of the attached slave.

USCI (SPI Slave Mode, see Figure 22 and Figure 23)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
t _{STE,LEAD}	STE lead time STE low to clock		2.2 V/3 V		50		ns
t _{STE,LAG}	STE lag time Last clock to STE high		2.2 V/3 V	10			ns
t _{STE,ACC}	STE access time STE low to SOMI data out		2.2 V/3 V		50		ns
t _{STE,DIS}	STE disable time STE high to SOMI high impedance		2.2 V/3 V		50		ns
	01140		2.2 V	20			
t _{SU,SI}	SIMO input data setup time		3 V	15			ns
			2.2 V	10			
t _{HD,SI}	SIMO input data hold time		3 V	10			ns
	00111	UCLK edge to SOMI valid,	2.2 V		75	110	
t _{VALID,SO}	SOMI output data valid time	C _L = 20 pF	3 V		50	75	ns

 $\label{eq:note:note:note:note:} \text{NOTE:} \ \ f_{\text{UCxCLK}} = \frac{1}{2t_{\text{LO/HI}}} \, \text{with} \ \ t_{\text{LO/HI}} \, \geq \, \max(t_{\text{VALID,MO(Master)}} \, + \, t_{\text{SU,SI(USCI)}}, \, t_{\text{SU,MI(Master)}} \, + \, t_{\text{VALID,SO(USCI)}}).$

For the master's parameters $t_{SU,MI(Master)}$ and $t_{VALID,MO(Master)}$, see the SPI parameters of the attached master.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

Figure 20. SPI Master Mode, CKPH = 0

Figure 21. SPI Master Mode, CKPH = 1

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

Figure 22. SPI Slave Mode, CKPH = 0

Figure 23. SPI Slave Mode, CKPH = 1

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

USCI (I2C Mode) (see Figure 24)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
fusci	USCI input clock frequency	Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10%			fs	SYSTEM	MHz
f _{SCL}	SCL clock frequency		2.2 V/3 V	0		400	kHz
		f _{SCL} ≤ 100 kHz	2.2 V/3 V	4.0			
t _{HD,STA}	Hold time (repeated) START	f _{SCL} > 100 kHz	2.2 V/3 V	0.6			μS
	0	f _{SCL} ≤ 100 kHz	2.2 V/3 V	4.7			
t _{SU,STA}	Setup time for a repeated START	f _{SCL} > 100 kHz	2.2 V/3 V	0.6			μS
t _{HD,DAT}	Data hold time		2.2 V/3 V	0			ns
t _{SU,DAT}	Data setup time		2.2 V/3 V	250			ns
t _{SU,STO}	Setup time for STOP		2.2 V/3 V	4.0			μS
	Pulse width of spikes suppressed by		2.2 V	50	150	600	
t _{SP}	input filter		3 V	50	100	600	ns

Figure 24. I2C Mode Timing

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

10-bit ADC, power supply and input range conditions (see Note 1)

	PARAMETER	TEST CONDITIONS	TA	VCC	MIN	TYP	MAX	UNIT
V _{CC}	Analog supply voltage range	V _{SS} = 0 V			2.2		3.6	V
V _{Ax}	Analog input voltage range (see Note 2)	All Ax terminals. Analog inputs selected in ADC10AE register			0		V _{CC}	V
	ADC10 supply current	f _{ADC10CLK} = 5.0 MHz ADC10ON = 1, REFON = 0,	I: -40-85°C	2.2 V		0.52	1.05	
I _{ADC10}	(see Note 3)	ADC10SHT0 = 1, ADC10SHT1 = 0, ADC10DIV = 0	T: -40-105°C	3 V		0.6	1.2	mA
	Reference supply current,	f _{ADC10CLK} = 5.0 MHz, ADC10ON = 0, REF2_5V = 0, REFON = 1, REFOUT = 0	I: -40-85°C T: -40-105°C	2.2 V/3 V				
I _{REF+}	reference buffer disabled (see Note 4)	f _{ADC10CLK} = 5.0 MHz, ADC10ON = 0, REF2_5V = 1, REFON = 1, REFOUT = 0	I: -40-85°C T: -40-105°C	3 V		0.25	0.4	mA
	Reference buffer supply current with ADC10SR = 0	f _{ADC10CLK} = 5.0 MHz, ADC10ON = 0,	-40-85°C	2.2 V/3 V		1.1	1.4	
I _{REFB,0}	(see Note 4)	REFON = 1, REF2_5V = 0, REFOUT = 1, ADC10SR=0	105°C	2.2 V/3 V			1.8	mA
	Reference buffer supply current with ADC10SR = 1	f _{ADC10CLK} = 5.0 MHz, ADC10ON = 0, REFON = 1,	-40-85°C	2.2 V/3 V		0.5	0.7	mA
I _{REFB,1}	(see Note 4)	REF2_5V = 0, REFOUT = 1, ADC10SR=1	105°C	2.2 V/3 V			0.8	MA
C _I	Input capacitance	Only one terminal Ax selected at a time	I: -40-85°C T: -40-105°C				27	pF
R _I	Input MUX ON resistance	$0V \le V_{Ax} \le V_{CC}$	I: -40-85°C T: -40-105°C	2.2 V/3 V			2000	Ω

NOTES: 1. The leakage current is defined in the leakage current table with Px.x/Ax parameter.

^{2.} The analog input voltage range must be within the selected reference voltage range V_{R+} to V_{R-} for valid conversion results.

^{3.} The internal reference supply current is not included in current consumption parameter I_{ADC10} .

^{4.} The internal reference current is supplied via terminal V_{CC}. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

10-bit ADC, built-in voltage reference

	PARAMETER	TEST CONDITIO	NS	VCC	MIN	TYP	MAX	UNIT
	5	$I_{VREF+} \le 1 \text{ mA, REF2_5V} = 0$)		2.2			
V _{CC,REF+}	Positive built-in reference analog supply voltage range	I _{VREF+} ≤ 0.5 mA, REF2_5V =	: 1		2.8			V
	unalog supply voltage range	I _{VREF+} ≤ 1 mA, REF2_5V = 1			2.9			
V	Positive built-in reference	I _{VREF+} ≤ I _{VREF+} max, REF2_	5V = 0	2.2 V/3 V	1.41	1.5	1.59	.,
V_{REF+}	voltage	I _{VREF+} ≤ I _{VREF+} max, REF2_	5V = 1	3 V	2.35	2.5	2.65	V
	Maximum V _{REF+} load			2.2 V			±0.5	
I _{LD,VREF+}	current			3 V			±1	mA
	V	I_{VREF+} = 500 μA ± 100 μA, Analog input voltage $V_{Ax} \approx 0$. REF2_5V = 0	75 V,	2.2 V/3 V			±2	
	V _{REF+} load regulation	I_{VREF+} = 500 μA ± 100 μA, Analog input voltage $V_{Ax} \approx 1$. REF2_5V = 1	25 V,	3 V			±2	LSB
	V _{REF+} load regulation	I_{VREF+} = 100 μA \rightarrow 900 μA, $V_{Ax} \approx$ 0.5 x V_{REF+} ,	ADC10SR=0	3 V			400	ns
	response time	Error of conversion result ≤1 LSB	ADC10SR=1	3 V			2000	115
C _{VREF+}	Max. capacitance at pin V _{REF+} (see Note 1)	I _{VREF+} ≤ ±1 mA, REFON = 1, REFOUT = 1		2.2 V/3 V			100	pF
TC _{REF+}	Temperature coefficient	I _{VREF+} = const. with 0 mA ≤ I _{VREF+} ≤ 1 mA		2.2 V/3 V			±100	ppm/°C
t _{REFON}	Settling time of internal reference voltage (see Note 2)	I_{VREF+} = 0.5 mA, REF2_5V = REFON = 0 \rightarrow 1	: 0,	3.6 V			30	μs
		$I_{VREF+} = 0.5 \text{ mA},$ REF2_5V = 0,	ADC10SR=0	0.01/			1	
+	Settling time of reference buffer	REFON = 1, REFBURST = 1	ADC10SR=1	2.2 V			2.5	
^t REFBURST	(see Note 2)	I _{VREF+} = 0.5 mA, REF2_5V = 1,	ADC10SR=0	3 V			2	μS
		REFON = 1, REFBURST = 1	ADC10SR=1	υν			4.5	

NOTES: 1. The capacitance applied to the internal buffer operational amplifier, if switched to terminal P2.4/TA2/A4/V_{REF+}/V_{eREF+} (REFOUT=1), must be limited; the reference buffer may become unstable otherwise.

^{2.} The condition is that the error in a conversion started after t_{REFON} or t_{RefBuf} is less than ± 0.5 LSB.

MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER

SLAS504B - JULY 2006 - REVISED JULY 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

10-bit ADC, external reference (see Note 1)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP M	IAX	UNIT
V	Positive external reference input	V _{eREF+} > V _{eREF-} , SREF1 = 1, SREF0 = 0		1.4		V _{CC}	.,
V _{eREF+}	voltage range (see Note 2)	V _{eREF-} ≤ V _{eREF+} ≤ V _{CC} - 0.15 V, SREF1 = 1, SREF0 = 1 (see Note 3)		1.4		3.0	V
V _{eREF} -	Negative external reference input voltage range (see Note 4)	V _{eREF+} > V _{eREF-}		0		1.2	V
ΔV_{eREF}	Differential external reference input voltage range $\Delta V_{eREF} = V_{eREF+} - V_{eREF-}$	V _{eREF+} > V _{eREF-} (see Note 5)		1.4		V _{CC}	V
	Olatic to the constitute M	0V ≤ V _{eREF+} ≤ V _{CC} , SREF1 = 1, SREF0 = 0	0.03//03/			±1	
I _{VeREF+}	Static input current into V _{eREF+}	0V ≤V _{eREF+} ≤ V _{CC} - 0.15 V ≤ 3 V, SREF1 = 1, SREF0 = 1 (see Note 3)	2.2 V/3 V			0	μΑ
I _{VeREF} -	Static input current into V _{eREF} -	0V ≤ V _{eREF-} ≤ V _{CC}	2.2 V/3 V			±1	μΑ

- NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C_I, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
 - 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.
 - 3. Under this condition, the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply current I_{REFB} . The current consumption can be limited to the sample and conversion period with REBURST = 1.
 - 4. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.
 - 5. The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

10-bit ADC, timing parameters

	PARAMETER	TEST CONDIT	TIONS	VCC	MIN	TYP M	AX	UNIT
	ADO40 in a balant for a second	For specified performance of	ADC10SR=0	0.03//03/	0.45		6.3	
[†] ADC10CLK	ADC10 input clock frequency	ADC10 linearity parameters ADC10SR=1	2.2 V/3 V	0.45		1.5	MHz	
f _{ADC10OSC}	ADC10 built-in oscillator frequency	ADC10DIVx = 0, ADC f _{ADC10CLK} = f _{ADC10OS0}	,	2.2 V/3 V	3.7		6.3	MHz
		ADC10 built-in oscillate ADC10SSELx = 0,	,	2.2 V/3 V	2.06	3	6.3 3.51	
tconvert	Conversion time	fADC10CLK = fADC10OSC						
CONVERT	Conversion time	f _{ADC10CLK} from ACLK, SMCLK, ADC10SSEL				13× DC10DIV× f _{ADC10CLK}		μs
t _{ADC10ON}	Turn on settling time of the ADC	(see Note 1)					100	ns

NOTES: 1. The condition is that the error in a conversion started after t_{ADC10ON} is less than ±0.5 LSB. The reference and input signal are already settled.

10-bit ADC, linearity parameters

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
El	Integral linearity error		2.2 V/3 V			±1	LSB
E _D	Differential linearity error		2.2 V/3 V			±1	LSB
Eo	Offset error	Source impedance R_S < 100 Ω ,	2.2 V/3 V			±1	LSB
		SREFx = 010, unbuffered external reference, V _{eREF+} = 1.5 V	2.2 V		±1.1	±2	
		SREFx = 010, unbuffered external reference, V _{eREF+} = 2.5 V	±1.1	±2			
E _G	Gain error	SREFx = 011, buffered external reference (see Note 1), $V_{eREF+} = 1.5 V$	2.2 V		±1.1	±4	LSB
		SREFx = 011, buffered external reference (see Note 1), V _{eREF+} = 2.5 V	3 V		±1.1	±3	
		SREFx = 010, unbuffered external reference, V _{eREF+} = 1.5 V	2.2 V		±2	±5	
		SREFx = 010, unbuffered external reference, V _{eREF+} = 2.5 V	3 V		±2	±5	
E _T	Total unadjusted error	SREFx = 011, buffered external reference (see Note 1), $V_{eREF+} = 1.5 \text{ V}$	2.2 V		±2	±7	LSB
		SREFx = 011, buffered external reference (see Note 1), $V_{eREF+} = 2.5 \text{ V}$	3 V		±2	±6	

NOTES: 1. The reference buffer offset adds to the gain and total unadjusted error.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

10-bit ADC, temperature sensor and built-in V_{MID}

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
	Temperature sensor supply	REFON = 0, INCHx = 0Ah,	2.2 V		40	120	
I _{SENSOR}	current (see Note 1)	T _A = 25°C	3 V		60	160	μΑ
TC _{SENSOR} †		ADC10ON = 1, INCHx = 0Ah (see Note 2)	2.2 V/3 V	3.44	3.55	3.66	mV/°C
V _{Offset,Sensor}	Sensor offset voltage	ADC10ON = 1, INCHx = 0Ah (see Note 2)		-100		100	mV
		Temperature sensor voltage at T _A = 105°C (T version only)	2.2 V/3 V	1265	1365	1465	
	Sensor output voltage	Temperature sensor voltage at T _A = 85°C	2.2 V/3 V 1195 1295	1395			
V _{Sensor}	(see Note 3)	Temperature sensor voltage at T _A = 25°C	2.2 V/3 V	2.2 V/3 V 985 1085	1185	mV	
		Temperature sensor voltage at $T_A = 0$ °C	2.2 V/3 V	895	995	1095	
t _{Sensor} (sample)	Sample time required if channel 10 is selected (see Note 4)	ADC10ON = 1, INCHx = 0Ah, Error of conversion result ≤ 1 LSB	2.2 V/3 V	30			μs
	Current into divider at		2.2 V			NA	
I _{∨MID}	channel 11 (see Note 5)	ADC10ON = 1, INCHx = 0Bh	3 V			NA	μΑ
.,	M. alt the end does and did	ADC10ON = 1, INCHx = 0Bh,	2.2 V	1.06	1.1	1.14	V
V_{MID}	V _{CC} divider at channel 11	V _{MID} is ≈0.5 x V _{CC}	3 V	1.46	1.5	1.54	V
t _{VMID(sample)}	Sample time required if channel 11 is selected	ADC10ON = 1, INCHx = 0Bh,	2.2 V	1400			ns
-viviiD(sample)	(see Note 6)	Error of conversion result ≤ 1 LSB	3 V	1220			

NOTES: 1. The sensor current I_{SENSOR} is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON = 1 and INCH = 0Ah and sample signal is high). When REFON = 1, I_{SENSOR} is included in I_{REF+}. When REFON = 0, I_{SENSOR} applies during conversion of the temperature sensor input (INCH = 0Ah).

2. The following formula can be used to calculate the temperature sensor output voltage:

$$\begin{split} &V_{Sensor,typ} = TC_{Sensor} \left(\ 273 + T \left[^{\circ}C \right] \right) + V_{Offset,sensor} \left[mV \right] \text{ or } \\ &V_{Sensor,typ} = TC_{Sensor} T \left[^{\circ}C \right] + V_{Sensor} (T_A = 0^{\circ}C) \left[mV \right] \end{split}$$

3. Results based on characterization and/or production test, not TC_{Sensor} or V_{Offset,sensor}.

4. The typical equivalent impedance of the sensor is 51 k Ω . The sample time required includes the sensor-on time $t_{SENSOR(on)}$.

5. No additional current is needed. The $V_{\mbox{\scriptsize MID}}$ is used during sampling.

6. The on time, t_{VMID(on)}, is included in the sampling time, t_{VMID(sample)}; no additional on time is needed.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

operational amplifier OA, supply specifications (MSP430x22x4 only)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage range			2.2		3.6	V
		Fast Mode			180	290	
I _{CC}	Supply current (see Note 1)	Medium Mode	2.2 V/3 V		110	190	μΑ
		Slow Mode			50	80	
PSRR	Power supply rejection ratio	Non-inverting	2.2 V/3 V		70		dB

NOTES: 1. Corresponding pins configured as OA inputs and outputs respectively.

operational amplifier OA, input/output specifications (MSP430x22x4 only)

	PARAMETER	TEST CO	NDITIONS	VCC	MIN	TYP	MAX	UNIT
V _{I/P}	Input voltage range				-0.1		V _{CC} -1.2	V
		$T_A = -40 \text{ to } +55^\circ$	С		-5	±0.5	5	
l _{ikg}	Input leakage current (see Notes 1 and 2)	$T_A = +55 \text{ to } +85^\circ$	С	2.2 V/3 V	-20	±5	20	nA
	(See Notes 1 and 2)	$T_A = +85 \text{ to } +105$	5°C		-50		50	
		Fast Mode				50		
		Medium Mode	f _{V(I/P)} = 1 kHz			80		
		Slow Mode				140		\
V _n	Voltage noise density, I/P	Fast Mode				30		nV/√Hz
		Medium Mode	f _{V(I/P)} = 10 kHz			50		
		Slow Mode	. ,			65		
V _{IO}	Offset voltage, I/P			2.2 V/3 V			±10	mV
	Offset temperature drift, I/P	see Note 3		2.2 V/3 V		±10		μV/°C
	Offset voltage drift with supply, I/P	$0.3 \text{ V} \le \text{V}_{\text{IN}} \le \text{V}_{\text{CC}}$ $\Delta \text{V}_{\text{CC}} \le \pm 10\%, \text{ T}$	•	2.2 V/3 V			±1.5	mV/V
		Fast Mode, I _{SOU}	RCE ≤ -500 μA		V _{CC} -0.2		V _{CC}	
V _{OH}	High-level output voltage, O/P	Slow Mode, I _{SOU}	IRCE ≤ -150 μA	2.2 V/3 V	V _{CC} -0.1		V _{CC}	V
		Fast Mode, I _{SOUI}			V_{SS}		0.2	
V_{OL}	Low-level output voltage, O/P	Slow Mode, I _{SOU}	_{IRCE} ≤ +150 μA	2.2 V/3 V	V _{SS}		0.1	V
		R_{Load} = 3 k Ω , C_{Lo} $V_{O/P(OAx)}$ < 0.2 V	,			150	250	
•	Output resistance (see Figure 25 and Note 4)	R_{Load} = 3 k Ω , C_{Lo} $V_{O/P(OAx)} > V_{CC}$		2.2 V/3 V		150	250	Ω
		R_{Load} = 3 k Ω , C_{Lo} 0.2 V \leq V _{O/P(OAx)}				0.1	4	
CMRR	Common-mode rejection ratio	Noninverting		2.2 V/3 V		70	•	dB

NOTES: 1. ESD damage can degrade input current leakage.

2. The input bias current is overridden by the input leakage current.

3. Calculated using the box method

4. Specification valid for voltage-follower OAx configuration

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

Figure 25. OAx Output Resistance Tests

operational amplifier OA, dynamic specifications (MSP430x22x4 only)

	PARAMETER	TEST CONDITIONS	VCC	MIN TY	P MA	X	UNIT
		Fast Mode			1.2		
SR	Slew rate	Medium Mode		1	0.8		V/μs
		Slow Mode		1	0.3		
	Open-loop voltage gain			1	00		dB
φm	Phase margin	C _L = 50 pF			60		deg
	Gain margin	C _L = 50 pF			20		dB
		Noninverting, Fast Mode, $R_L = 47 \text{ k}\Omega$, $C_L = 50 \text{ pF}$:	2.2		
GBW	Gain-bandwidth product (see Figure 26 and Figure 27)	Noninverting, Medium Mode, $R_L = 300 \text{ k}\Omega$, $C_L = 50 \text{pF}$	2.2 V/3 V		1.4		MHz
		Non-inverting, Slow Mode, $R_L = 300 \text{ k}\Omega$, $C_L = 50 \text{pF}$		1	0.5		
t _{en(on)}	Enable time on	t _{on} , Noninverting, Gain = 1	2.2 V/3 V		10	20	μs
t _{en(off)}	Enable time off		2.2 V/3 V			1	μS

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

operational amplifier OA feedback network, resistor network (see Note 1) (MSP430x22x4 only)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
R _{total}	Total resistance of resistor string			76	96	128	kΩ
R _{unit}	Unit resistor of resistor string (see Note 2)			4.8	6	8	kΩ

NOTES: 1. A single resistor string is composed of 4 R_{unit} + 4 R_{unit} + 2 R_{unit} + 2 R_{unit} + 1 R_{unit} = 16 R_{unit} = R_{total}.

2. For the matching (i.e. the relative accuracy) of the unit resistors on a device refer to the gain and level specifications of the respective configurations.

operational amplifier OA feedback network, comparator mode (OAFCx = 3) (MSP430x22x4 only)

	PARAMETER	TEST CONDITIONS	vcc	MIN	TYP	MAX	UNIT
		OAFBRx = 1, OARRIP = 0		0.245	1/4	0.255	
		OAFBRx = 2, OARRIP = 0		0.495	1/2	0.505	
		OAFBRx = 3, OARRIP = 0		0.619 5/8 0.6			
		OAFBRx = 4, OARRIP = 0		N/A	(see Note	: 1)	
V_{Level}		OAFBRx = 5, OARRIP = 0		N/A	(see Note	: 1)	
		OAFBRx = 6, OARRIP = 0		N/A	(see Note	: 1)	
		OAFBRx = 7, OARRIP = 0	0004004	N/A	(see Note	: 1)	
	Comparator level	OAFBRx = 1, OARRIP = 1	2.2 V/3 V	0.061	1/16	0.065	V_{CC}
		OAFBRx = 2, OARRIP = 1		0.122	1/8	0.128	
		OAFBRx = 3, OARRIP = 1		0.184	3/16	0.192	
		OAFBRx = 4, OARRIP = 1		0.245	1/4	0.255	
		OAFBRx = 5, OARRIP = 1		0.367	3/8	0.383	
		OAFBRx = 6, OARRIP = 1		0.495	1/2	0.505	
		OAFBRx = 7, OARRIP = 1	6, OARRIP = 1 0.495 1	(see Note	1)		
		Fast Mode, Overdrive 10 mV			40		
		Fast Mode, Overdrive 100 mV	2.2 V/3 V		4		
		Fast Mode, Overdrive 500 mV	2.2 V/ 3 V	3			
		Medium Mode, Overdrive 10 mV			60		
t _{PLH} , t _{PHL}	Propagation delay (low-high and high-low)	Medium Mode, Overdrive 100 mV			6		μs
	(1047-111gir aria riigir-1044)	Medium Mode, Overdrive 500 mV			5		
		Slow Mode, Overdrive 10 mV			160		
		Slow Mode, Overdrive 100 mV			20		
		Slow Mode, Overdrive 500 mV			15		

NOTES: 1. The level is not available due to the analog input voltage range of the operational amplifier.

MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER

SLAS504B - JULY 2006 - REVISED JULY 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

operational amplifier OA feedback network, noninverting amplifier mode (OAFCx = 4) (MSP430x22x4 only)

	PARAMETER	TEST CONDITIONS	vcc	MIN	TYP	MAX	UNIT
		OAFBRx = 0		0.998	1.00	1.002	
		OAFBRx = 1		1.328	1.334	1.340	
		OAFBRx = 2		1.985	2.001	2.017	
G	0 :	OAFBRx = 3	0.03//.03/	2.638	2.667	2.696	
	Gain	OAFBRx = 4	2.2 V/ 3 V	3.94	4.00	4.06	
		OAFBRx = 5		5.22	5.33	5.44	
		OAFBRx = 6		7.76	7.97	8.18	
		OAFBRx = 7		15.0	15.8	16.6	
TUD	Total harmonic distortion/	Allerine	2.2 V		-60		i.D
THN	nonlinearity	All gains	3 V		-70		dB
t _{Settle}	Settling time (see Note 1)	All power modes	2.2 V/3 V		7	12	μs

NOTES: 1. The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The settling time of the amplifier itself might be faster.

operational amplifier OA feedback network, inverting amplifier mode (OAFCx = 6) (see Note 1) (MSP430x22x4 only)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
		OAFBRx = 1		-0.345	-0.335	-0.325	
		OAFBRx = 2		-1.023	-1.002	-0.979	
		OAFBRx = 3		-1.712	-1.668	-1.624	
G	Gain	OAFBRx = 4	2.2 V/ 3 V	-3.10	-3.00	-2.90	
		OAFBRx = 5		-4.51	-4.33	-4.15	
		OAFBRx = 6		-7.37	-6.97	-1.624 -2.90 -4.15 -6.57 -13.1	
		OAFBRx = 7		-16.3	-14.8	-13.1	
TUD	Total harmonic distortion/	Allerine	2.2 V		-60		10
THD	nonlinearity	All gains	3 V		-70	·	dB
t _{Settle}	Settling time (see Note 2)	All power modes	2.2 V/3 V		7	12	μS

NOTES: 1. This includes the 2 OA configuration "inverting amplifier with input buffer". Both OA needs to be set to the same power mode OAPMx.

2. The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The settling time of the amplifier itself might be faster.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

Flash Memory

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
V _{CC(PGM/} ERASE)	Program and erase supply voltage			2.2		3.6	V
f _{FTG}	Flash timing generator frequency			257		476	kHz
I _{PGM}	Supply current from V _{CC} during program		2.2 V/3.6 V		1	5	mA
I _{ERASE}	Supply current from V _{CC} during erase		2.2 V/3.6 V		1	7	mA
t _{CPT}	Cumulative program time (see Note 1)		2.2 V/3.6 V			10	ms
t _{CMErase}	Cumulative mass erase time		2.2 V/3.6 V	20			ms
	Program/erase endurance			10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	$T_J = 25^{\circ}C$		100			years
t _{Word}	Word or byte program time	see Note 2			30		
t _{Block, 0}	Block program time for first byte or word	see Note 2			25		
t _{Block, 1-63}	Block program time for each additional byte or word	see Note 2			18		
t _{Block, End}	Block program end-sequence wait time	see Note 2			6		t _{FTG}
t _{Mass Erase}	Mass erase time	see Note 2			10593		
t _{Seg Erase}	Segment erase time	see Note 2			4819		

NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes.

RAM

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _(RAMh)	RAM retention supply voltage (see Note 1)	CPU halted	1.6			V

NOTE 1: This parameter defines the minimum supply voltage V_{CC} when the data in RAM remains unchanged. No program execution should happen during this supply voltage condition.

^{2.} These values are hardwired into the flash controller's state machine ($t_{FTG} = 1/f_{FTG}$).

MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER

SLAS504B - JULY 2006 - REVISED JULY 2007

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

JTAG and Spy-Bi-Wire Interface

	PARAMETER	TEST CONDITIONS	vcc	MIN	TYP	MAX	UNIT	
f _{SBW}	Spy-Bi-Wire input frequency	2.2 V / 3 V	0		20	MHz		
t _{SBW,Low}	Spy-Bi-Wire low clock pulse length		2.2 V / 3 V	0.025		15	μS	
t _{SBW,En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge, see Note 1)		2.2 V/ 3 V			1	μs	
t _{SBW,Ret}	Spy-Bi-Wire return to normal operation time		2.2 V/ 3 V	15		100	μS	
£	TOK in a time and a control of		2.2 V	0		5	MHz	
f _{TCK}	TCK input frequency (see Note 2)		3 V	0	0 10			
R _{Internal}	Internal pull-down resistance on TEST		2.2 V/ 3 V	25	60	90	kΩ	

NOTES: 1. Tools accessing the Spy-Bi-Wire interface need to wait for the maximum t_{SBW,En} time after pulling the TEST/SBWCLK pin high before applying the first SBWCLK clock edge.

JTAG Fuse (see Note 1)

	PARAMETER	TEST CONDITIONS	vcc	MIN	TYP	MAX	UNIT
V _{CC(FB)}	Supply voltage during fuse-blow condition	T _A = 25°C		2.5			٧
V_{FB}	Voltage level on TEST for fuse blow			6		7	V
I _{FB}	Supply current into TEST during fuse blow					100	mA
t _{FB}	Time to blow fuse					1	ms

NOTES: 1. Once the fuse is blown, no further access to the JTAG/Test and emulation feature is possible, and it is switched to bypass mode.

^{2.} f_{TCK} may be restricted to meet the timing requirements of the module selected.

APPLICATION INFORMATION

Port P1 pin schematic: P1.0 to P1.3, input/output with Schmitt trigger

Port P1 (P1.0 to P1.3) pin functions

DIN NAME (D4 V	1.,		CONTROL BI	TS / SIGNALS
PIN NAME (P1.X)	X	FUNCTION	P1DIR.x	P1SEL.x
P1.0/	0	P1.0† (I/O)	I: 0; O: 1	0
TACLK/ADC10CLk		Timer_A3.TACLK	0	1
		ADC10CLK	1	1
P1.1/TA0	1	P1.1† (I/O)	l: 0; O: 1	0
		Timer_A3.CCI0A	0	1
		Timer_A3.TA0	1	1
P1.2/TA1	2	P1.2† (I/O)	l: 0; O: 1	0
		Timer_A3.CCI0A	0	1
		Timer_A3.TA0	1	1
P1.3/TA2	3	P1.3† (I/O)	l: 0; O: 1	0
		Timer_A3.CCI0A	0	1
		Timer A3.TA0	1	1

† Default after reset (PUC/POR)

NOTES: 1. N/A: Not available or not applicable

2. X: Don't care

Port P1 pin schematic: P1.4 to P1.6, input/output with Schmitt trigger and in-system access features

Port P1 (P1.4 to P1.6) pin functions

DINI NAME (D4 V)			CONT	CONTROL BITS / SIGNALS				
PIN NAME (P1.X)	X	FUNCTION	P1DIR.x	P1SEL.x	4-Wire JTAG			
P1.4/SMCLK/TCK	4	P1.4† (I/O)	I: 0; O: 1	0	0			
		SMCLK	1	1	0			
		тск	Х	Х	1			
P1.5/TA0/TMS	5	P1.5† (I/O)	I: 0; O: 1	0	0			
		Timer_A3.TA0	1	1	0			
		TMS	Х	Х	1			
P1.6/TA1/TDI/TCLK	6	P1.6† (I/O)	I: 0; O: 1	0	0			
		Timer_A3.TA1	1	1	0			
		TDI/TCLK (see Note 3)	Х	Х	1			

[†] Default after reset (PUC/POR)

- 2. X: Don't care
- 3. Function controlled by JTAG.

Port P1 pin schematic: P1.7, input/output with Schmitt trigger and in-system access features

Port P1 (P1.7) pin functions

PIN NAME (P1.X)	x	FUNCTION	CONTROL BITS / SIGNALS				
	^	FUNCTION	P1DIR.x	DIR.x P1SEL.x 4-Wire JTAG			
P1.7/TA2/TDO/TDI	7	P1.7† (I/O)	I: 0; O: 1	0	0		
		Timer_A3.TA2	1	1	0		
		TDO/TDI (see Note 3)	Х	Х	1		

† Default after reset (PUC/POR)

- 2. X: Don't care
- 3. Function controlled by JTAG.

Port P2 pin schematic: P2.0, P2.2, input/output with Schmitt trigger

Port P2 (P2.0, P2.2) pin functions

DIN NAME (DO V)		V	FUNCTION	CONTROL BITS / SIGNALS											
PIN NAME (P2.X)	Х	Y		P2DIR.x	P2SEL.x	ADC10AE0.y									
P2.0/ACLK/A0/OA0I0	0	0	P2.0† (I/O)	I: 0; O: 1	0	0									
								ACLK	1	1	0				
			A0/OA0I0 (see Note 3)	X	Х	1									
P2.2/TA0/A2/OA0I1	2	2	P2.2† (I/O)	I: 0; O: 1	0	0									
								- - 				Timer_A3.CCI0B	0	1	0
						Timer_A3.TA0	1	1	0						
			A2/OA0I1 (see Note 3)	X	Х	1									

[†] Default after reset (PUC/POR)

- 2. X: Don't care
- 3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.

Port P2 pin schematic: P2.1, input/output with Schmitt trigger

Port P2 pin schematic: P2.3, input/output with Schmitt trigger

MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER

SLAS504B - JULY 2006 - REVISED JULY 2007

Port P2 (P2.1) pin functions

PIN NAME (P2.X)	x	v	FUNCTION	CONT		NALS								
		,	FUNCTION	P2DIR.x	P2SEL.x	ADC10AE0.y								
P2.1/TAINCLK/SMCLK /A1/OA0O	1	1	P2.1† (I/O)	I: 0; O: 1	0	0								
			Timer_A3.INCLK	0	1	0								
												SMCLK	1	1
			A1/OA0O (see Note 3)	Х	Х	1								

[†] Default after reset (PUC/POR)

NOTES: 1. N/A: Not available or not applicable

- 2. X: Don't care
- 3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.

Port P2 (P2.3) pin functions

PIN NAME (P2.X)		.,	Y FUNCTION	CONTROL BITS / SIGNALS			
PIN NAME (P2.X)	X	Y		P2DIR.x	P2SEL.x	ADC10AE0.y	
P2.3/TA1/	3	3	P2.3† (I/O)	I: 0; O: 1	0	0	
A3/V _{REF-} /V _{eREF-} /			Timer_A3.CCI1B	0	1	0	
OA1I1/OA1O			Timer_A3.TA1	1	1	0	
			A3/V _{REF-} /V _{eREF-} /OA1I1/OA1O (see Note 3)	Х	Х	1	

[†] Default after reset (PUC/POR)

- 2. X: Don't care
- 3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.

Port P2 pin schematic: P2.4, input/output with Schmitt trigger

Port P2 (P2.4) pin functions

()								
PIN NAME (P2.X)	x	,	ELINOTION.	CONTROL BITS / SIGNALS				
PIN NAME (P2.A)		Y	FUNCTION	P2DIR.x	P2SEL.x	ADC10AE0.y		
P2.4/TA2/	4	4	P2.4† (I/O)	I: 0; O: 1	0	0		
A4/V _{REF+} /V _{eREF+} / OA1I0			Timer_A3.TA2	1	1	0		
OATIO			A4/V _{REF+} /V _{eREF+} /OA1I0 (see Note 3)	Х	Х	1		

[†] Default after reset (PUC/POR)

- 2. X: Don't care
- 3. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.

Port P2 pin schematic: P2.5, input/output with Schmitt trigger and external R_{OSC} for DCO

Port P2 (P2.5) pin functions

PIN NAME (P2.X)	· ·	FUNCTION	CONTROL BITS / SIGNALS				
PIN NAME (P2.A)	Х	FUNCTION	P2DIR.x				
P2.5/R _{OSC}	5	P2.5† (I/O)	I: 0; O: 1	0	0		
		N/A	0	1	0		
		DV _{SS}	1	1	0		
		Rosc	Х	Х	1		

[†] Default after reset (PUC/POR)

- 2. X: Don't care
- 3. Setting the ADC10AE0.y bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals.

Port P2 pin schematic: P2.6, input/output with Schmitt trigger and crystal oscillator input

Port P2 (P2.6) pin functions

PIN NAME (P2.X)	V			CONTROL BITS / SIGNALS		
PIN NAME (P2.A)	X	FUNCTION	P2DIR.x P2SEL.x			
P2.6/XIN	6	P2.6 (I/O)	I: 0; O: 1	0		
		XIN†	Х	1		

[†] Default after reset (PUC/POR)

NOTES: 1. N/A: Not available or not applicable

2. X: Don't care

Port P2 pin schematic: P2.7, input/output with Schmitt trigger and crystal oscillator output

Port P2 (P2.7) pin functions

PIN NAME (P2.X)	х	FUNCTION	CONTROL BITS / SIGNALS	
			P2DIR.x	P2SEL.x
XOUT/P2.7	6	P2.7 (I/O)	I: 0; O: 1	0
		XOUT† (see Note 3)	X	1

[†] Default after reset (PUC/POR)

- 2. X: Don't care
- 3. If the pin XOUT/P2.7 is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection to this pin after reset.

Port P3 pin schematic: P3.0, input/output with Schmitt trigger

Port P3 (P3.0) pin functions

PIN NAME (P3.X)	х	Υ	FUNCTION	CONTROL BITS / SIGNALS		
				P3DIR.x	P3SEL.x	ADC10AE0.y
P3.0/ UC1STE/UC0CLK/A5	0	5	P3.0† (I/O)	I: 0; O: 1	0	0
			UC1STE/UC0CLK (see Notes 3, 4)	X	1	0
			A5 (see Note 5)	Х	Х	1

[†] Default after reset (PUC/POR)

- 2. X: Don't care
- 3. The pin direction is controlled by the USCI module.
- 4. UC0CLK function takes precedence over UC1STE function. If the pin is required as UC0CLK input or output USCI1 will be forced to 3-wire SPI mode if 4-wire SPI mode is selected.
- 5. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.

Port P3 pin schematic: P3.1 to P3.5, input/output with Schmitt trigger

Port P3 (P3.1 to P3.5) pin functions

PIN NAME (P3.X)		FUNCTION	CONTROL BITS / SIGNALS	
	X		P3DIR.x	P3SEL.x
P3.1/ UC1SIMO/UC1SDA	1	P3.1† (I/O)	I: 0; O: 1	0
		UC1SIMO/UC1SDA (see Note 3)	X	1
P3.2/ UC1SOMI/UC1SCL	1	P3.2† (I/O)	I: 0; O: 1	0
		UC1SOMI/UC1SCL (see Note 3)	Х	1
P3.3/ UC1CLK/UC0STE	1	P3.3† (I/O)	I: 0; O: 1	0
		UC1CLK/UC0STE (see Notes 3, 4)	Х	1
P3.4/ UC0TXD/UC0SIMO	1	P3.4† (I/O)	I: 0; O: 1	0
		UC0TXD/UC0SIMO (see Note 3)	X	1
P3.5/ UC0RXD/UC0SOMI	1	P3.5† (I/O)	l: 0; O: 1	0
		UC0RXD/UC0SOMI (see Note 3)	Х	1

[†] Default after reset (PUC/POR)

- 2. X: Don't care
- 3. The pin direction is controlled by the USCI module.
- 4. UC1CLK function takes precedence over UC0STE function. If the pin is required as UC1CLK input or output USCI0 will be forced to 3-wire SPI mode even if 4-wire SPI mode is selected.

Port P3 pin schematic: P3.6 to P3.7, input/output with Schmitt trigger

Port P3 (P3.6, P3.7) pin functions

PIN NAME (P3.X)	x	Υ	FUNCTION	CONTROL BITS / SIGNALS		
				P3DIR.x	P3SEL.x	ADC10AE0.y
P3.6/A6/OA0I2	6	6	P3.6† (I/O)	I: 0; O: 1	0	0
			A6/OA0I2 (see Note 5)	Х	Х	1
P3.7/A7/OA1I2	7	7	P3.7† (I/O)	I: 0; O: 1	0	0
			A7/OA1I2 (see Note 5)	Х	Х	1

[†] Default after reset (PUC/POR)

- 2. X: Don't care
- 3. The pin direction is controlled by the USCI module.
- 4. UC1CLK function takes precedence over UC0STE function. If the pin is required as UC1CLK input or output USCI0 will be forced to 3-wire SPI mode if 4-wire SPI mode is selected.
- 5. Setting the ADC10AE0.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.

Port P4 pin schematic: P4.0 to P4.2, input/output with Schmitt trigger

Port P4 (P4.0 to P4.2) pin functions

PIN NAME (P4.X)		FUNCTION	CONTROL BITS / SIGNALS	
	X		P4DIR.x	P4SEL.x
P4.0/TB0	0	P4.0† (I/O)	I: 0; O: 1	0
		Timer_B3.CCI0A	0	1
		Timer_B3.TB0	1	1
P4.1/TB1	1	P4.1† (I/O)	I: 0; O: 1	0
		Timer_B3.CCI1A	0	1
		Timer_B3.TB1	1	1
P4.2/TB2	2	P4.2† (I/O)	I: 0; O: 1	0
		Timer_B3.CCI2A	0	1
		Timer_B3.TB2	1	1

† Default after reset (PUC/POR)

NOTES: 1. N/A: Not available or not applicable

2. X: Don't care

Port P4 pin schematic: P4.3 to P4.4, input/output with Schmitt trigger

[†] If OAADCx = 11 and not OAFCx = 000 the ADC input A12 or A13 is internally connected to the OA0 or OA1 output respectively and the connections from the ADC and the operational amplifiers to the pad are disabled.

MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER

SLAS504B - JULY 2006 - REVISED JULY 2007

Port P4 (P4.3 to P4.4) pin functions

PIN NAME (P4.X)			FUNCTION	CONTROL BITS / SIGNALS				
PIN NAME (P4.A)	Х	Υ	FUNCTION	P4DIR.x	P4SEL.x	ADC10AE1.y		
P4.3/TB0/A12/OA0O	3	4	P4.3† (I/O)	I: 0; O: 1	0	0		
			Timer_B3.CCl0B	0	1	0		
			Timer_B3.TB0	1	1	0		
			A12/OA0O (see Note 3)	Х	Х	1		
P4.4/TB1/A13/OA1O	4	5	P4.4† (I/O)	I: 0; O: 1	0	0		
			Timer_B3.CCl1B	0	1	0		
			Timer_B3.TB1	1	1	0		
			A13/OA1O (see Note 3)	Х	X	1		

[†] Default after reset (PUC/POR)

- NOTES: 1. N/A: Not available or not applicable
 - 2. X: Don't care
 - 3. Setting the ADC10AE1.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.

SLAS504B - JULY 2006 - REVISED JULY 2007

Port P4 pin schematic: P4.5, input/output with Schmitt trigger

MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER

SLAS504B - JULY 2006 - REVISED JULY 2007

Port P4 (P4.5) pin functions

PIN NAME (P4.X)	_	\ \ \	FUNCTION	CONTROL BITS / SIGNALS				
PIN NAME (P4.A)	X	Y	FUNCTION	P4DIR.x	P4SEL.x	ADC10AE1.y		
P4.5/TB3/A14/OA0I3	5	6	P4.5† (I/O)	I: 0; O: 1	0	0		
			Timer_B3.TB2	1	1	0		
			A14/OA0I3 (see Note 3)	Х	Х	1		

[†] Default after reset (PUC/POR)

NOTES: 1. N/A: Not available or not applicable

- 2. X: Don't care
- 3. Setting the ADC10AE1.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.

Port P4 pin schematic: P4.6, input/output with Schmitt trigger

Port P4 (P4.6) pin functions

DIN NAME (DA VI	X Y F	\ ,	FUNCTION	CONTROL BITS / SIGNALS				
PIN NAME (P4.X)		FUNCTION	P4DIR.x	P4SEL.x	ADC10AE1.y			
P4.6/TBOUTH/ A15/OA1I3		7	P4.6† (I/O)	I: 0; O: 1	0	0		
			ТВОИТН	0	1	0		
			DV _{SS}	1	1	0		
			A15/OA1I3 (see Note 3)	Х	Х	1		

[†] Default after reset (PUC/POR)

NOTES: 1. N/A: Not available or not applicable

- 2. X: Don't care
- 3. Setting the ADC10AE1.y bit disables the output driver as well as the input schmitt trigger to prevent parasitic cross currents when applying analog signals.

Port P4 pin schematic: P4.7, input/output with Schmitt trigger

Port P4 (P4.7) pin functions

PIN NAME (P4.X)	\ <u>\</u>	FUNCTION	CONTROL BITS / SIGNALS		
PIN NAME (P4.A)	Х	FUNCTION	P4DIR.x	P4SEL.x	
P4.7/TBCLK	7	P4.7† (I/O)	I: 0; O: 1	0	
		Timer_B3.TBCLK	0	1	
		DV _{SS}	1	1	

† Default after reset (PUC/POR)

NOTES: 1. N/A: Not available or not applicable

2. X: Don't care

SLAS504B - JULY 2006 - REVISED JULY 2007

JTAG fuse check mode

MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, I_{TF} , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.

When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense currents are terminated.

Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated.

The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see Figure 28). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition).

Figure 28. Fuse Check Mode Current, MSP430F22xx

NOTE:

The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit bootloader access key is used. Also, see the *bootstrap loader* section for more information.

MSP430x22x2, MSP430x22x4 MIXED SIGNAL MICROCONTROLLER

SLAS504B - JULY 2006 - REVISED JULY 2007

Data Sheet Revision History

Literature Number	Summary
SLAS504	Preliminary data sheet release.
SLAS504A	Production data sheet release. Updated specification and added characterization graphs. Updated/corrected port pin schematics.
SLAS504B	Maximum low-power mode supply current limits decreased. Added note concerning f _{UCxCLK} to USCI SPI parameters.

NOTE: The referring page and figure numbers are referred to the respective document revision.

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MSP430F2232IDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2232IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2232IRHAR	ACTIVE	QFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2232IRHAT	ACTIVE	QFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2232TDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2232TDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2232TRHAR	ACTIVE	QFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2232TRHAT	ACTIVE	QFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2234IDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2234IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2234IRHAR	ACTIVE	QFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2234IRHAT	ACTIVE	QFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2234TDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2234TDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2234TRHAR	ACTIVE	QFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2234TRHAT	ACTIVE	QFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2252IDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2252IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2252IRHAR	ACTIVE	QFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2252IRHAT	ACTIVE	QFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2252TDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2252TDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2252TRHAR	ACTIVE	QFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2252TRHAT	ACTIVE	QFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2254IDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

18-Sep-2008

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MSP430F2254IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2254IRHAR	ACTIVE	QFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2254IRHAT	ACTIVE	QFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2254TDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2254TDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2254TRHAR	ACTIVE	QFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2254TRHAT	ACTIVE	QFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2272IDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2272IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2272IRHAR	ACTIVE	QFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2272IRHAT	ACTIVE	QFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2272TDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2272TDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2272TRHAR	ACTIVE	QFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2272TRHAT	ACTIVE	QFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2274IDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2274IDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2274IRHAR	ACTIVE	QFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2274IRHAT	ACTIVE	QFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2274TDA	ACTIVE	TSSOP	DA	38	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2274TDAR	ACTIVE	TSSOP	DA	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2274TRHAR	ACTIVE	QFN	RHA	40	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
MSP430F2274TRHAT	ACTIVE	QFN	RHA	40	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

PACKAGE OPTION ADDENDUM

18-Sep-2008

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF MSP430F2274:

● Enhanced Product: MSP430F2274-EP

NOTE: Qualified Version Definitions:

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
- E. Package complies to JEDEC MO-220 variation VJJD-2.

THERMAL PAD MECHANICAL DATA

RHA (S-PVQFN-N40)

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

NOTES:

- 1) All linear dimensions are in millimeters
- 2) The Pin 1 Identification mark is an optional feature that may be present on some devices In addition, this Pin 1 feature if present is electrically connected to the center thermal pad and therefore should be considered when routing the board layout.

Exposed Thermal Pad Dimensions

RHA (S-PQFP-N40)

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

DA (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

38 PIN SHOWN

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- ⚠ Falls within JEDEC MO−153, except 30 pin body length.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated