APPENDIX II:

CLAIM AMENDMENTS:

Amend Claims 11, 20 and 22 as indicated in the following listing of the claims:

- 1. to 9. (canceled)
- 10. (previously presented) A solid mixture comprising
 - a) a sulfonylurea herbicide, and
 - b) an alkylpolyglycoside.
- 11. (currently amended) The solid mixture as claimed in claim 10, comprising a sulfonylurea <u>herbicide</u> of the formula

where:

R¹ is

 C_1-C_4 -alkyl, which may carry from one to five of the following groups: methoxy, ethoxy, SO_2CH_3 , cyano, chlorine, fluorine, SCH_3 , and $S(O)CH_3$,

halogen,

a group ER^{19} in which E is O, S or NR^{20} ,

COOR12,

NO2,

 $S(0)_{n}R^{17}$, $SO_{2}NR^{15}R^{16}$ or $CONR^{13}R^{14}$;

- R² is hydrogen, methyl, halogen, methoxy, nitro, cyano, trifluoromethyl, trifluoromethoxy, difluoromethoxy or methylthio;
- Y is F, CF₃, CF₂Cl, CF₂H, OCF₃, OCF₂Cl, C₁-C₄-alkyl or C₁-C₄-alkoxy;
- X is $C_1-C_2-alkoxy$, $C_1-C_2-alkyl$, $C_1-C_2-alkyl$ thio, $C_1-C_2-alkyl$ amino, $di-C_1-C_2-alkyl$ amino, halogen, C_1-C_2-h aloalkyl, C_1-C_2-h aloalkoxy;
- R is hydrogen or methyl;
- R^{19} is C_1-C_4 -alkyl, C_2-C_4 -alkenyl, C_2-C_4 -alkynyl or C_3-C_6 -cycloalkyl, each of which may carry from 1 to 5 halogen atoms, furthermore, in the case that E is O or NR^{20} , R^{19} is also methyl-

070615 - 15 -

sulfonyl, ethylsulfonyl, trifluoromethylsulfonyl, allylsulfonyl, propargylsulfonyl or dimethylsulfamoyl;

- R²⁰ is hydrogen, methyl or ethyl;
- R^{12} is a C_1-C_4 -alkyl group which may carry up to three of the following radicals: halogen, C_1-C_4 -alkoxy, allyl or propargyl;
- R^{17} is a C_1-C_4 -alkyl group which may carry from one to three of the following radicals: halogen, C_1-C_4 -alkoxy, allyl or propargyl;
- R^{15} is hydrogen, a C_1-C_2 -alkoxy group or a C_1-C_4 -alkyl group;
- R¹⁶ is hydrogen or a C₁-C₄-alkyl group;
- R^{13} is H, C_1-C_4 -alkyl, or C_1-C_4 -alkoxy;
- R^{14} is C_1-C_4 -alkyl;
- n is 1-2; and
- Z is N or CH.
- 12. (previously presented) The solid mixture as claimed in claim 10, comprising a further herbicidally active compound c).
- 13. (previously presented) The solid mixture as claimed in claim 10, comprising from 0.5 to 75% by weight of the component a).
- 14. (previously presented) The solid mixture as claimed in claim 10, comprising from 1 to 50% by weight of the component b).
- 15. (previously presented) The solid mixture as claimed in claim 10, comprising an alkylpolyglycoside having a degree of polymerization of 1-3.
- 16. (previously presented) The solid mixture as claimed in claim 15, comprising an alkylpolyglycoside having a degree of polymerization of 1-2.
- 17. (previously presented) A method of controlling undesirable plant growth, which comprises treating the plants and/or the area to be kept free of the plants with a herbicidal amount of a solid mixture as claimed in claim 10.
- 18. (canceled)
- 19. (previously presented) The solid mixture as claimed in claim 10, further comprising ammonium sulfate.

070615 - 16 -

- 20. (currently amended) the The method of claim 17, wherein the alkylpolyglycoside functions as a wetting agent.
- 21. (previously presented) The solid mixture as claimed in claim 10, comprising from 1 to 75% by weight of the component b).
- 22. (currently amended) The solid mixture as claimed in claim 10, wherein the sulfonylurea herbicide has the formula

where

J is
$$R^2$$
, R^3 , R^4 , R^3 , R^4 , R^5 , R^6 , R^6 , R^7 , R^6 , $R^$

- R is H or CH_3 ;
- is F, Cl, Br, NO₂, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₃-C₄-cycloalkyl, C₂-C₄-haloalkenyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₂-C₄-alkoxyalkoxy, CO₂R¹², C(O)NR¹³R¹⁴, SO₂NR¹⁵R¹⁶, S(O)_nR¹⁷, C(O)R¹⁸, CH₂CN or L;
- R² is H, F, Cl, Br, CN, CH₃, OCH₃, SCH₃, CF₃ or OCF₂H;
- R^3 is Cl, NO_2 , CO_2CH_3 , $CO_2CH_2CH_3$, $SO_2N(CH_3)_2$, SO_2CH_3 , $SO_2CH_2CH_3$, OCH_3 , or OCH_2CH_3 ;

070615 - 17 -

- R⁴ is C_1-C_3 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy, C_2-C_4 -haloalkenyl, F, Cl, Br, NO₂, CO_2R^{12} , C(O)NR¹³R¹⁴, $SO_2NR^{15}R^{16}$, S(O)_nR¹⁷, C(O)R¹⁸ or L;
- R^5 is H, F, Cl, Br or CH_3 ;
- R⁶ is C_1-C_4 -alkyl, C_1-C_4 -alkoxy, C_2-C_4 -haloalkenyl, F, Cl, Br, CO_2R^{12} , $C(O)R^{13}R^{14}$, $SO_2NR^{15}R^{16}$, $S(O)_nR^{17}$, $C(O)R^{18}$ or L;
- R7 is H, F, Cl, CH3 or CF3;
- R^8 is H, C_1-C_4 -alkyl or pyridyl;
- R⁹ is $C_1-C_4-alkyl$, $C_1-C_4-alkoxy$, F, Cl, Br, NO₂, CO_2R^{12} , $SO_2NR^{15}R^{16}$, $S(O)_nR^{17}$, OCF₂H, $C(O)R^{18}$, $C_2-C_4-haloalkenyl$ or L;
- R¹⁰ is H, Cl, F, Br, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy;
- R¹¹ is H, C_1-C_4 -alkyl, C_1-C_4 -alkoxy, C_2-C_4 -alkoxy; haloalkenyl, F, Cl, Br, CO_2R^{12} , $C(O)NR^{13}R^{14}$, $SO_2NR^{15}R^{16}$, $S(O)_nR^{17}$, $C(O)R^{18}$ or L;
- R^{12} is C_1-C_4 -alkyl, with or without substitution by halogen, C_1-C_4 -alkoxy or CN, allyl or propargyl;
- R^{13} is H, C_1-C_4 -alkyl or C_1-C_4 -alkoxy;
- R^{14} is C_1-C_4 -alkyl;
- R^{15} is H, C_1-C_4 -alkyl, C_1-C_4 -alkoxy, allyl or cyclopropyl;
- R^{16} is H or C_1-C_4 -alkyl;
- R¹⁷ is C₁-C₄-alkyl, C₁-C₄-haloalkyl, allyl or propargyl;
- R^{18} is C_1-C_4 -alkyl, C_1-C_4 -haloalkyl or C_3-C_5 -cycloalkyl, with or without substitution by halogen;
- n is 0, 1 or 2;
- L has the structure

where

- R_i is H or C₁-C₃-alkyl;
- W is 0 or S;
- X is H, C_1-C_4 -alkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy, C_1-C_4 -haloalkyl, C_1-C_4 -haloalkylthio, C_1-C_4 -alkylthio, halogen, C_2-C_5 -alkoxyalkyl, C_2-C_5 -alkoxyalkoxy, amino, C_1-C_3 -alkylamino or di(C_1-C_3 -alkyl) amino;
- Y is H, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkyl-thio, C_1 - C_4 -haloalkylthio, C_2 - C_5 -alkoxyalkyl, C_2 - C_5 -alkoxyal-

070615 - 18 -

Serial No. 10/043,241 BRATZ et al. 42044 Cont

koxy, amino, C_1-C_3 -alkylamino, di(C_1-C_3 -alkyl)amino, C_3-C_4 -alkenyloxy, C_3-C_4 -alkanyloxy, C_2-C_5 -alkylthioalkyl, C_2-C_5 -alkylsulfonylalkyl, C_1-C_4 -haloalkyl, C_2-C_4 -alkenyl, C_3-C_5 -cycloalkyl, azido, fluorine or cyano; and

Z is CH or N;

or is an agriculturally useul salt thereof.

23. (previously presented) The solid mixture as claimed in claim 10, wherein the alkylpolyglycoside has the formula

$$R^{21}O(Z)_{a}$$

where R^{21} is an alkyl radical having from 4 to 30 carbon atoms and Z is a glycoside radical having from 5 to 6 carbon atoms and a is in the range from 1 to 6.

070615 - 19 -