第 11 讲: 逃稅

范翻

中央财经大学

2024年11月19日

中国财政发展协同创新中心

— Center for China Fiscal Development —

◆ロト ◆酉 ▶ ◆ 豊 ト ◆ 豊 ・ 夕 Q ②

逃税

逃税 (tax evasion) 是指纳税人违反税法规定不缴或少缴税款的非法行为。

- 逃税与避税 (tax avoidance): 避税是指重新组织经济活动以 降低纳税额的行为。
- 黑色经济、影子经济或隐形经济 (black, shadow, or hidden economy) 是指取得收入但没有申报的一切经济活动,包括 违法行为和合法但没有申报的收入。
- 未度量 (unmeasured) 经济师影子经济加上一些为自己而做 (do-it-yourself) 的工作。

逃税的度量

由于逃税行为的非法性,个人有动机隐瞒其行为。因此需要通过 其他可观测的经济变量来推断:

- 利用调查数据直接或间接地作为评估程序的投入。
- 利用可观测的其他经济变量来大致推断逃税的程度或隐形经济。
 - 直接投入 (direct input) 方法: 电力
 - 货币 (monetary) 方法: 隐形经济的交易多以现金形式展开

隐形经济的规模

Table 17.1 Hidden economy as percentage of GDP, average over 1990 to 1993

Developing	Transition	OECD
Egypt 68–76%	Georgia 28–43%	Italy 24–30%
Thailand 70%	Ukraine 28-43%	Spain 24–30%
Mexico 40-60%	Hungary 20–28%	Denmark 13-23%
Malaysia 38–50%	Russia 20–27%	France 13–23%
Tunisia 39-45%	Latvia 20–27%	Japan 8–10%
Singapore 13%	Slovakia 9–16%	Austria 8–10%

Source: Schneider and Enste (2000).

逃税决策 I

假定:

- 纳税人的收入水平为 Y, 纳税人知道该信息, 但征税机关不知道;
- 纳税人申报收入 X, 并按照固定税率 $t \ge 0$ 征税,未申报收入 $Y X \ge 0$:
 - 如果纳税人逃税,且没有被抓住,其收入水平为

$$Y^{nc} = \, Y - t X$$

如果纳税人因逃税被抓,所有的收入都必须纳税,且征税机 关会按逃税额征收 F 比例的罚款,其收入水平为

$$Y^{c} = (1-t)Y - Ft(Y-X)$$

• 纳税人从收入 Y 获得的效用为 U(Y)

◆□▶◆□▶◆豆▶◆豆> り<00</p>

逃税决策 II

假定:

- 征税机关会进行税收稽查,纳税人如果低保收入的话,被抓的可能性为p
- 纳税人最大化期望效用:

$$\max_{X} E[U(X)] = (1 - p)U(Y^{nc}) + pU(Y^{c})$$
 (1)

• 消费者的预算约束满足:

$$Y^{c} = -FY^{nc} + (1+F)(1-t)Y$$

图示 I: 内部选择

Figure 17.1 Interior choice: $0 < X^* < Y$

图示 II: 角点解

Figure 17.2 Corner solutions

逃税条件 I

在给定效用水平下,对期望效用函数式 (??) 进行全微分,得到 无差异曲线的斜率:

$$\frac{dY^c}{dY^{nc}} = -\frac{[1-p]U'(Y^{nc})}{pU'(Y^c)}$$

在 45° 线上 $Y^{nc} = Y^{c}$ 。因此,在该点不管逃税这被抓住与否,两种收入的边际效用相同,意味着:

$$\frac{dY^c}{dY^{nc}} = -\frac{[1-p]}{p}$$

预算约束线的斜率为 -F。因此,发生逃税的条件为:

$$\frac{1-p}{p} > F \Longrightarrow p < \frac{1}{1+F}$$

逃税条件 II

逃税条件 $p < \frac{1}{1+F}$ 意味着:

- 这是决定逃税是否发生的触发条件,并没有说明逃税程度如何;
- ② 该条件只取决于罚款比率和审查概率;
- ③ 该条件可以给出一些实际评估:
 - 典型对逃税的惩罚水平 F 介于 0.5 到 1 之间,例如英国规定最高罚款为流失税款的 100%;
 - p在现实中很小,合理的估计大概在1 到1%之间,因此几 乎所有人都会选择逃税;
 - 现实中没有如此普遍的逃税,纳税人表现地比期望的更加诚实。

逃税数量 I

模型中影响逃税的变量一共有四个:

- 收入水平 Y
- 税率 t
- 审查概率 p
- 罚款率 F

逃税数量 II: 审查概率增加

Figure 17.3
Increase in detection probability

逃税数量 III: 罚款率增加

Figure 17.4 Increase in the fine rate

逃税数量 IV: 税率增加

Figure 17.5 Income increase

逃税数量 V: 收入增加

Figure 17.6 Tax rate increase

审计与惩罚I

政府所能获得的期望收入为:

$$R = tX + p(1+F)t[Y-X]$$

对审查概率 p 求导数, 只要 pF < 1 - p (注意这是逃税发生的前提), 审查概率增加对政府收入的影响为正:

$$\frac{\partial R}{\partial p} = (1+F)t[Y-X] + t[1-p-pF]\frac{\partial X}{\partial p} > 0$$

对罚款率 F 求导数,罚款率提高也会增加政府收入:

$$\frac{\partial R}{\partial F} = pt[Y - X] + t[1 - p - pF] \frac{\partial X}{\partial F} > 0$$

审计与惩罚 II

政府可以通过增加额外的税收稽查员来提高审查概率,通过立法或法院裁定提高罚款率。

- 税收稽查员需要薪水,因此增加 p 是有成本的;
- 改变罚款率不会涉及成本,因此增加 F 是有效且没有成本的。

因此,政府的理性行为应该是"以零概率吊住纳税人"(Serge Kolm):

政府实际上不应试图去抓住逃税者上付出努力,而应该严厉惩罚被逮捕的逃税者。

审计与惩罚 III

但是在实践中并没有观察到类似的现象,这可能是因为:

- 最大化政府收入和最大化社会福利并不必然是一致的目标, 对被抓的逃税者施加无穷大罚款,将会严重损害社会福利;
- 政府因素的影响,严惩逃税者在政治上可能会比较危险,尤 其是逃税非常普遍的情况下;
- 实践中审查和惩罚由不同的政府机构决定和执行;
- 惩罚-威慑原则:惩罚应该与罪行相符,否则人们会倾向更严重的犯罪。

逃税的证据 I

随着收入增加,申报收入占调查收入的比例会稳定下降。

Table 17.2 Declaration and income

Income interval	17–20	20–25	25–30	30–35	35–40
Midpoint	18.5	22.5	27.5	32.5	37.5
Assessed income	17.5	20.6	24.2	28.7	31.7
Percentage	94.6	91.5	88.0	88.3	84.5

Source: Mork (1975).

逃税的证据 II

逃税倾向随审查概率和年龄上升而下降,收入增加也会降低逃税倾向。

Table 17.3 Explanatory factors

Variable	Propensity to evade	Extent of evasion
Inequity	0.34	0.24
Number of evaders known	0.16	0.18
Probability of detection	-0.17	
Age	-0.29	
Experience of audits	0.22	0.29
Income level	-0.27	
Income from wages and salaries	0.20	

Source: Spicer and Lundstedt (1976).

逃税的证据 III

实验研究表明:

- 女性比男性更经常逃税,但额度都比较小;
- 购买彩票的人(风险偏好型)并不比不买彩票的人更可能逃税,但是一旦逃税,税额都更大;
- 逃税并不被视作等同于简单博弈,除了风险以外,还有更多 社会方面的因素会影响逃税决策。

诚实效应 I

假定在纳税人的效用函数中引入诚实度:

$$U = U(Y) - \chi E$$

其中:

- χ 代表纳税人的诚实度;
- E = Y − X 表示逃稅程度;
- χE 是偏离完全诚实状态的效用成本 (或心理成本)。

对于给定的逃税水平, χ 越大,效用损失越大。这样人口可以分为两部分:

- 一些纳税人选择不逃税 (χ 值非常大);
- 一些纳税人选择逃税 (χ 值比较小)。

诚实效应 II

假设将逃税者与不逃税者区分开的 χ 值为 $\hat{\chi}$ 。此时模型中任意 参数 (p,F,t) 的改变都有两种效应:

- 改变了逃税的收益,从而会改变 û,例如提高税率会提高逃税收益,导致更多的纳税人逃税;
- 影响所有的现有逃税者的决策,综合来看增加税率可能会导致更多的逃税者。

税收遵从博弈 I

假定:

- 税务机构和纳税人之间会进行博弈;
- 税务机构的策略是,对任意给定的申报水平选择审查概率, 对于不同的申报水平不必是常数;
- 纳税人的策略是给定税务机构的审查策略选择自己的申报水平。

纳什均衡要求:

- 在给定的申报水平下,审计策略最大化税收收入扣除审计成本的剩余部分;
- 在给定的审计策略下,申报水平最大化纳税人的效用。

税收遵从博弈 II

Revenue service

		Audit	No audit
Taxpayer	Evasion	Y-T-F, $T+F-C$	<i>Y</i> , 0
	No evasion	Y-T, $T-C$	Y – T, T

Figure 17.7 The audit game

税收遵从博弈 III

假定纳税人的逃税概率是 e,税务机关的审查概率是 p,混合策略均衡要求:

- 给定纳税人的混合策略是 $(e^*,1-e^*)$,税务机关对于审计与不审计无差异;
- 给定税务机关的混合策略是 $(p^*, 1-p^*)$, 纳税人对于逃税和不逃税无差异。

前一个条件要求:

$$C = e[T + F] \Longrightarrow e^* = \frac{C}{T + F}$$

后一个条件要求:

$$(1-p)T = pF \Longrightarrow p^* = \frac{T}{T+F}$$

税收遵从博弈 IV

均衡概率是由税务机关与纳税人之间的策略互动决定的:

- 审计概率随着罚款的上升而下降,尽管更高的罚款可能预期 会使审计更有收益;
- 逃稅不会伴随高稅率,因为高稅率会导致政府更多地审计。纳稅人的均衡收益为:

$$u^* = Y - T + e^*[T - p^*(T + F)] = Y - T.$$

税收机关的均衡收益为:

$$v^* = (1 - e^*)T + p^*[e^*(T + F) - C] = T - \frac{C}{T + F}T.$$

因此, 逃税的净损失是:

$$\Delta = \frac{C}{T+F}T.$$