DOL

Relaciones para los flujos de efectivo discretos con composición de final de periodo

Tipo	Encontrar/ Dado	Notación del factor y la fórmula	Relación	Programa de muestra del flujo de efectivo
Cantidad sencilla	F/P Cartidad compuesta	$(F/P_i(\rho)) = (1+i)^n$	F = P(F/P,j,n)	0 1 n
	P/F Valor presente	$(P/F,i,n) = \frac{1}{(1+i)^n}$	P = F(P/F, j, n) (Secc. 2.1)	P
Series uniformes	P/A Valor . presente	$(P/A,i,n) = \frac{(1+i)^n - 1}{i(1+i)^n}$	P = A(P/AJ,n)	الْلَالَانَ الْمُ
	A/P Recuperación	$(A/P,i,n) = \frac{i(1+i)^n}{(1+i)^n-1}$	A = P(A/P,j,n) (Secc. 2.2)	1 2 n-1 n
	F/A Cartidad compuesta	$(F/AJ.n) = \frac{(1+i)^n - 1}{i}$	F = A(F/A,j,n)	0 1 2 n - 1 n
	A/F Fondo de hundimiento	$(A/F.i.n) = \frac{i}{(1+i)^n - 1}$	A = F(A/F.j.n) (Secc. 2.3)	
Gradiente aritmético	P _c /G Valor presente	$(P/GJ,n) = \frac{(1+i)^n - in - 1}{i^2(1+i)^n}$	$P_G = G(P/G,i\pi)$	Pc Ac Ac Ac Ac
	A _c /G Series uniformes	$(A/Gj.n) = \frac{1}{i} - \frac{n}{(1+i)^c - 1}$	$A_G = G(A/G,i.n)$ (Secc. 2.5)	(a-1) G
Gradiente geométrico	P _i /A _i y g Valor presente	$P_{g} = \begin{cases} A_{i} \left[1 - \left(\frac{1+g}{1+i} \right)^{n} \right] \\ i - g \end{cases}$ $A_{i} \frac{n}{1+i}$	g ≠ i g − i	A ₁ (1+g) A ₁ (1+g) ⁻¹ 0 1 2 n-1 n
			(Seec. 2.6)	P3