On Laplacian Eigenmaps for Dimensionality Reduction

Dr. Juan Orduz

PyData Berlin 2018

Overview

Introduction

Warming Up
The Spectral Theorem

Motivation
Toy Model Example

The Algorithm

Description

Justification

Examples: Scikit-Learn

Spectral Geometry*
The Laplacian
The Heat Kernel

Can One Hear the Shape of a Drum? [Kac66]

A **differentiable manifold** is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. A (Riemannian) metric g allow us to measure distances.

Can One Hear the Shape of a Drum? [Kac66]

A **differentiable manifold** is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. A (Riemannian) metric g allow us to measure distances.

We can consider the **Laplacian** $L: C^{\infty}(M) \longrightarrow C^{\infty}(M)$ and its **spectrum** spec $(L) = \{\lambda_0, \lambda_1, \cdots, \lambda_k, \cdots \longrightarrow \infty\}.$

Can One Hear the Shape of a Drum? [Kac66]

A **differentiable manifold** is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. A (Riemannian) metric g allow us to measure distances.

We can consider the **Laplacian** $L: C^{\infty}(M) \longrightarrow C^{\infty}(M)$ and its **spectrum** spec $(L) = \{\lambda_0, \lambda_1, \cdots, \lambda_k, \cdots \longrightarrow \infty\}.$

If we are given spec(L) we can infer the dimension of M, its volume and its total scalar curvature.

Let us assume we have data points $x_1, \dots, x_k \in \mathbb{R}^N$ which lie on an unknown submanifold $M \subset \mathbb{R}^N$.

Key Observation

► Eigenfunctions of *L* on *M* can be used to define lower dimensional embeddings.

Idea ([BN03])

▶ Model M by constructing a graph G = (V, E) where close data points are connected by edges.

Let us assume we have data points $x_1, \dots, x_k \in \mathbb{R}^N$ which lie on an unknown submanifold $M \subset \mathbb{R}^N$.

Key Observation

► Eigenfunctions of *L* on *M* can be used to define lower dimensional embeddings.

Idea ([BN03])

- ▶ Model M by constructing a graph G = (V, E) where close data points are connected by edges.
- Construct the graph Laplacian L on G.

Let us assume we have data points $x_1, \dots, x_k \in \mathbb{R}^N$ which lie on an unknown submanifold $M \subset \mathbb{R}^N$.

Key Observation

► Eigenfunctions of *L* on *M* can be used to define lower dimensional embeddings.

Idea ([BN03])

- ▶ Model M by constructing a graph G = (V, E) where close data points are connected by edges.
- Construct the graph Laplacian L on G.
- ► Compute spec(L) and the corresponding eigenfunctions.

Let us assume we have data points $x_1, \dots, x_k \in \mathbb{R}^N$ which lie on an unknown submanifold $M \subset \mathbb{R}^N$.

Key Observation

► Eigenfunctions of *L* on *M* can be used to define lower dimensional embeddings.

Idea ([BN03])

- ▶ Model M by constructing a graph G = (V, E) where close data points are connected by edges.
- Construct the graph Laplacian L on G.
- Compute spec(L) and the corresponding eigenfunctions.
- ▶ Use these eigenfunctions to construct an embedding $F: V \longrightarrow \mathbb{R}^m$ for m < N

The Spectral Theorem

Let $A \in M_{n \times n}(\mathbb{R})$ be a symmetric matrix, i.e. $A = A^{\dagger}$.

The Spectral Theorem

Let $A \in M_{n \times n}(\mathbb{R})$ be a symmetric matrix, i.e. $A = A^{\dagger}$.

Recall

▶ $\lambda \in \mathbb{C}$ is an **eigenvalue** for A with **eigenvector** $f \in \mathbb{R}^n$, $f \neq 0$, if

$$Af = \lambda f$$
.

- ▶ A set of vectors $\mathcal{B} = \{f_1, f_2, \dots, f_n\}$ is a **basis** for \mathbb{R}^n if:
 - ► They are linearly independent.
 - ▶ They generate \mathbb{R}^n .
- $ightharpoonup \mathcal{B}$ is said to be an **orthonormal** basis if $\langle f_i, f_j \rangle = \delta_{ij}$.

The Spectral Theorem

Let $A \in M_{n \times n}(\mathbb{R})$ be a symmetric matrix, i.e. $A = A^{\dagger}$.

Recall

▶ $\lambda \in \mathbb{C}$ is an **eigenvalue** for A with **eigenvector** $f \in \mathbb{R}^n$, $f \neq 0$, if

$$Af = \lambda f$$
.

- ▶ A set of vectors $\mathcal{B} = \{f_1, f_2, \dots, f_n\}$ is a **basis** for \mathbb{R}^n if:
 - ► They are linearly independent.
 - ▶ They generate \mathbb{R}^n .
- $ightharpoonup \mathcal{B}$ is said to be an **orthonormal** basis if $\langle f_i, f_j \rangle = \delta_{ij}$.

Spectral Theorem

There exists an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A. Each eigenvalue is real.

Let $A \in M_n(\mathbb{R})$ be a symmetric matrix with spectral decomposition $\lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_n$.

For later purposes, we would like to find

$$\underset{||f||=1}{\operatorname{arg\,max}} \langle Af, f \rangle.$$

Let $A \in M_n(\mathbb{R})$ be a symmetric matrix with spectral decomposition $\lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_n$.

For later purposes, we would like to find

$$\underset{||f||=1}{\operatorname{arg max}} \langle Af, f \rangle.$$

Define the associated Lagrange optimization problem

$$\mathcal{L}(f,\lambda) = \langle Af, f \rangle - \lambda(||f||^2 - 1).$$

Let $A \in M_n(\mathbb{R})$ be a symmetric matrix with spectral decomposition $\lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_n$.

For later purposes, we would like to find

$$\underset{||f||=1}{\operatorname{arg max}} \langle Af, f \rangle.$$

Define the associated Lagrange optimization problem

$$\mathcal{L}(f,\lambda) = \langle Af, f \rangle - \lambda(||f||^2 - 1).$$

► Take the derivative with respect to f

$$\frac{\partial}{\partial f}\mathcal{L}(f,\lambda)=2(Af-\lambda f)\stackrel{!}{=}0.$$

Let $A \in M_n(\mathbb{R})$ be a symmetric matrix with spectral decomposition $\lambda_0 < \lambda_1 < \cdots < \lambda_n$.

For later purposes, we would like to find

$$\underset{||f||=1}{\operatorname{arg max}} \langle Af, f \rangle.$$

Define the associated Lagrange optimization problem

$$\mathcal{L}(f,\lambda) = \langle Af, f \rangle - \lambda(||f||^2 - 1).$$

Take the derivative with respect to f

$$\frac{\partial}{\partial f}\mathcal{L}(f,\lambda) = 2(Af - \lambda f) \stackrel{!}{=} 0.$$

Hence,

$$\underset{||f||=1}{\arg\max}\langle Af,f\rangle=f_n\quad\text{and}\quad\underset{||f||=1}{\arg\min}\langle Af,f\rangle=f_0.$$

Step 0: Understand the Problem

Consider the problem of mapping these points to a line so that close points stay as together as possible.

▶ Define a distance function: first nearest neighbor.

- Define a distance function: first nearest neighbor.
- ► For each node, attach an edge for close points.

(2)

1

4

(3)

- Define a distance function: first nearest neighbor.
- For each node, attach an edge for close points.

- Define a distance function: first nearest neighbor.
- For each node, attach an edge for close points.

- Define a distance function: first nearest neighbor.
- For each node, attach an edge for close points.

Step 2: Construct the Adjacency and Degree Matrices

$$W = \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right) \quad D = \left(\begin{array}{cccc} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

► Construct the operator *L* defined by

$$L := D - W = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

Consider the generalized eigenvalue problem

$$Lf = \lambda Df$$
.

Equivalently, $D^{-1}Lf = \lambda f$.

► Construct the operator *L* defined by

$$L := D - W = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

Consider the generalized eigenvalue problem

$$Lf = \lambda Df$$
.

Equivalently, $D^{-1}Lf = \lambda f$.

▶ Eigenvalues: $\lambda_0 = 0, \lambda_1 = 1, \lambda_2 = 1, \lambda_3 = 2.$

Construct the operator L defined by

$$L := D - W = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

Consider the generalized eigenvalue problem

$$Lf = \lambda Df$$
.

Equivalently, $D^{-1}Lf = \lambda f$.

- ▶ Eigenvalues: $\lambda_0 = 0, \lambda_1 = 1, \lambda_2 = 1, \lambda_3 = 2.$
- ▶ An eigenvector for $\lambda_1 = 1$ is $y := f_1 = (0, -3, 1, 2)$.

► Construct the operator *L* defined by

$$L := D - W = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

Consider the generalized eigenvalue problem

$$Lf = \lambda Df$$
.

Equivalently, $D^{-1}Lf = \lambda f$.

- ▶ Eigenvalues: $\lambda_0 = 0, \lambda_1 = 1, \lambda_2 = 1, \lambda_3 = 2.$
- ▶ An eigenvector for $\lambda_1 = 1$ is $y := f_1 = (0, -3, 1, 2)$.
- ▶ The vector $y: V \longrightarrow \mathbb{R}$ defines and embedding.

- 1. Construct a weighted graph G = (V, E) with k nodes, one for each point, and a set of edges connecting neighboring points. Select a distance function:
 - (Euclidean Distance) Let $\varepsilon > 0$. We connect and edge between i and j if $||x_i x_j||^2 < \varepsilon$.
 - n nearest neighbors.

- 1. Construct a weighted graph G = (V, E) with k nodes, one for each point, and a set of edges connecting neighboring points. Select a distance function:
 - (Euclidean Distance) Let $\varepsilon > 0$. We connect and edge between i and j if $||x_i x_j||^2 < \varepsilon$.
 - n nearest neighbors.
- 2. **Choose Weights**. If nodes *i* and *j* are connected, put
 - ► $W_{ij} = 1$.
 - (Heat Kernel) $W_{ij} := e^{-\frac{||x_i x_j||^2}{t}}$ for some t > 0.

- 1. Construct a weighted graph G = (V, E) with k nodes, one for each point, and a set of edges connecting neighboring points. Select a distance function:
 - (Euclidean Distance) Let $\varepsilon > 0$. We connect and edge between i and j if $||x_i x_j||^2 < \varepsilon$.
 - n nearest neighbors.
- 2. Choose Weights. If nodes *i* and *j* are connected, put
 - ► $W_{ij} = 1$.
 - ► (Heat Kernel) $W_{ij} := e^{-\frac{||x_i x_j||^2}{t}}$ for some t > 0.
- 3. Assume *G* is connected. **Compute the eigenvalues** of the generalized eigenvector problem $Lf = \lambda Df$, where
 - ▶ *D* is the diagonal weight matrix, $D_{ii} = \sum_{i=1}^{k} W_{ij}$.
 - ► L := D W is the graph Laplacian.

- 1. Construct a weighted graph G = (V, E) with k nodes, one for each point, and a set of edges connecting neighboring points. Select a distance function:
 - ▶ (Euclidean Distance) Let $\varepsilon > 0$. We connect and edge between i and j if $||x_i x_j||^2 < \varepsilon$.
 - n nearest neighbors.
- Choose Weights. If nodes i and j are connected, put
 W_{ii} = 1.
 - (Heat Kernel) $W_{ii} := e^{-\frac{||x_i x_j||^2}{t}}$ for some t > 0.
- 3. Assume *G* is connected. **Compute the eigenvalues** of the generalized eigenvector problem $Lf = \lambda Df$, where
 - ▶ *D* is the diagonal weight matrix, $D_{ii} = \sum_{i=1}^{k} W_{ij}$.
 - ightharpoonup L := D W is the graph Laplacian.
- 4. **Construct Embedding**. Let f_0, f_1, \dots, f_{k-1} be the corresponding eigenvectors ordered according to their eigenvalues ($\lambda_0 = 0$). For m < N, set

$$F(i) := (f_1(i), \cdots, f_m(i)).$$

m = 1

Assume you have constructed the weighted graph G = (V, E). We want to construct an embedding $F : V \longrightarrow \mathbb{R}$.

Hint: Minimize

$$J(y) := \sum_{i,j=1}^{k} (y_i - y_j)^2 W_{ij} \stackrel{*}{=} y^{\dagger} L y.$$

m=1

Assume you have constructed the weighted graph G = (V, E). We want to construct an embedding $F : V \longrightarrow \mathbb{R}$.

Hint: Minimize

$$J(y) := \sum_{i,j=1}^{k} (y_i - y_j)^2 W_{ij} \stackrel{*}{=} y^{\dagger} L y.$$

Thus, the problem reduces to find

$$\underset{y^{\dagger}Ly=1}{\text{arg min }} y^{\dagger}Ly = \underset{y^{\dagger}Ly=1}{\text{arg min}} \langle Ly, y \rangle$$

$$y^{\dagger}Ly=1$$

$$y^{\dagger}D1=0$$

$$y^{\dagger}D1=0$$

- $ightharpoonup y^{\dagger}Ly = 1$ fixes the scale.
- $ightharpoonup y^{\dagger} D1 = 0$ eliminates the trivial solution y = 1.

m=1

Assume you have constructed the weighted graph G = (V, E). We want to construct an embedding $F : V \longrightarrow \mathbb{R}$.

Hint: Minimize

$$J(y) := \sum_{i,j=1}^{k} (y_i - y_j)^2 W_{ij} \stackrel{*}{=} y^{\dagger} L y.$$

Thus, the problem reduces to find

$$\underset{\substack{y^{\dagger}Ly=1\\y^{\dagger}D1=0}}{\text{arg min }} \underbrace{y^{\dagger}Ly} = \underset{\substack{y^{\dagger}Ly=1\\y^{\dagger}D1=0}}{\text{arg min }} \underbrace{\langle Ly, y \rangle}$$

- \triangleright $y^{\dagger}Ly = 1$ fixes the scale.
- $y^{\dagger}D1 = 0$ eliminates the trivial solution y = 1.

This translates to finding the minimum non-zero eigenvalue and eigenvector of

$$Ly = \lambda Dy$$
.

m > 1 (Vectorize)

Assume you have constructed the weighted graph G = (V, E). We want to construct an embedding $F : V \longrightarrow \mathbb{R}^m$.

<u>Hint:</u> Minimize, for $Y = (y_1 \cdots y_m) \in M_{k \times m}(\mathbb{R})$,

$$J(Y) := \sum_{i,j=1}^{k} ||Y_i - Y_j||^2 W_{ij} = \operatorname{tr}(Y^{\dagger} LY).$$

Thus, the problem reduces to find

arg min
$$tr(Y^{\dagger}LY)$$

 $tr(Y^{\dagger}DY=I)$

This translates to finding the minimum non-zero eigenvalues and eigenvectors of

$$Lf = \lambda Dv$$
.

Examples: Scikit-Learn

Let us go to a Jupyter notebook to see some examples.

The Laplacian

Second order differential operator $L: C_c^{\infty}(M) \longrightarrow C_c^{\infty}(M)$.

▶ For $M = \mathbb{R}^n$,

$$L = -\sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$$

For (M, g) Riemannian manifold,

$$L = -\sum_{i=1}^{n} \sum_{j=1}^{n} g^{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \text{lower order terms.}$$

The Laplacian

Second order differential operator $L: C_{c}^{\infty}(M) \longrightarrow C_{c}^{\infty}(M)$.

ightharpoonup For $M=\mathbb{R}^n$,

$$L = -\sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$$

► For (M, g) Riemannian manifold,

$$L = -\sum_{i=1}^{n} \sum_{j=1}^{n} g^{ij} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} + \text{lower order terms.}$$

Spectral Theorem ([Ros97])

L is symmetric with respect to the inner product in $C_{\sim}^{\infty}(M)$,

$$(f,g)_{L^2}=\int_M f(x)g(x)dx.$$

If M is compact, there exists an orthonormal basis of $L^2(M)$ consisting of eigenvectors of L. Each eigenvalue is real.

Embedding trough Eigenmaps

Let (M, g) be a compact Riemannian manifold and $f: M \longrightarrow \mathbb{R}$.

▶ If $x, z \in M$ are close, then

$$|f(x)-f(z)| \leq \operatorname{dist}_M(x,z)||\nabla f|| + o(\operatorname{dist}_M(x,z)).$$

Embedding trough Eigenmaps

Let (M, g) be a compact Riemannian manifold and $f: M \longrightarrow \mathbb{R}$.

▶ If $x, z \in M$ are close, then

$$|f(x)-f(z)| \leq \operatorname{dist}_M(x,z)||\nabla f|| + o(\operatorname{dist}_M(x,z)).$$

We want a map that best preserves locality on average,

$$\underset{||f||_{L^{2}(M)}=1}{\arg\min} \int_{M} ||\nabla f||^{2} dx. \tag{1}$$

Embedding trough Eigenmaps

Let (M, g) be a compact Riemannian manifold and $f: M \longrightarrow \mathbb{R}$.

▶ If $x, z \in M$ are close, then

$$|f(x)-f(z)| \leq \operatorname{dist}_M(x,z)||\nabla f|| + o(\operatorname{dist}_M(x,z)).$$

We want a map that best preserves locality on average,

$$\underset{||f||_{L^{2}(M)}=1}{\arg\min} \int_{M} ||\nabla f||^{2} dx. \tag{1}$$

By Stokes' Theorem

$$\int_{M} ||\nabla f||^2 dx = \int_{M} (Lf) f dx = (Lf, f)_{L^2}.$$

► (1) must be an eigenvalue of the Laplacian.

The Graph Laplacian as a Differential Operator

$$abla = \left(egin{array}{ccccc} -1 & 1 & 0 & 0 \ -1 & 0 & 1 & 0 \ -1 & 0 & 0 & 1 \end{array}
ight) \quad \Rightarrow \quad
abla^\dagger
abla = \left(egin{array}{ccccc} 3 & -1 & -1 & -1 \ -1 & 1 & 0 & 0 \ -1 & 0 & 1 & 0 \ -1 & 0 & 0 & 1 \end{array}
ight)$$

So we see,

$$L = \nabla^{\dagger} \nabla$$
.

The Heat Kernel

Let $f: M \longrightarrow \mathbb{R}$. Consider the **Heat Equation** on M,

$$(\partial_t + L) u(x, t) = 0$$
 with intitial condition $u(x, 0) = f(x)$.

The Heat Kernel

Let $f: M \longrightarrow \mathbb{R}$. Consider the **Heat Equation** on M,

$$(\partial_t + L) u(x, t) = 0$$
 with intitial condition $u(x, 0) = f(x)$.

► The solution is given by ([Ros97])

$$u(x,t)=\int_{M}H_{t}(x,y)f(y)dy,$$

where the Heat Kernel has the form

$$H_t(x,y) = (4\pi t)^{-\dim(M)/2} e^{-\frac{\dim_M(x,y)^2}{4t}} (\phi(x,y) + O(t)),$$

for certain ϕ is a smooth function with $\phi(x, x) = 1$.

The Heat Kernel

Let $f: M \longrightarrow \mathbb{R}$. Consider the **Heat Equation** on M,

$$(\partial_t + L) u(x, t) = 0$$
 with intitial condition $u(x, 0) = f(x)$.

► The solution is given by ([Ros97])

$$u(x,t)=\int_{M}H_{t}(x,y)f(y)dy,$$

where the **Heat Kernel** has the form

$$H_t(x,y) = (4\pi t)^{-\dim(M)/2} e^{-\frac{\dim_M(x,y)^2}{4t}} (\phi(x,y) + O(t)),$$

for certain ϕ is a smooth function with $\phi(x, x) = 1$.

lt can be shown that, for $x_1, \dots, x_k \in M$ and t > 0 small,

$$Lf(x_i) \approx \frac{1}{t} \left(f(x_i) - \frac{\sum_{0 < ||x_i - x_j||^2 < \varepsilon} e^{-\frac{||x_i - x_j||^2}{4t}} f(x_j)}{\sum_{0 < ||x_i - x_i||^2 < \varepsilon} e^{-\frac{||x_i - x_j||^2}{4t}}} \right)$$

References

Slides and notebook available at juanitorduz.github.io

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.

Neural Computation, 15(6):1373–1396, 2003.

Mark Kac.
Can one hear the shape of a drum?
The American Mathematical Monthly, 73(4):1–23, 1966.

Steven Rosenberg.

The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds.

London Mathematical Society Student Texts. Cambridge University Press, 1997.

