Uniwersytet Warszawski

Wydział Fizyki

Tomasz Fąs

Nr albumu: 382348

Tunelowanie między studniami kwantowymi umieszczonymi w mikrownęce optycznej.

Praca licencjacka na kierunku FIZYKA

> Praca wykonana pod kierunkiem **dr hab. Jan Suffczyński** Zakład Fizyki Ciała Stałego

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora pracy

Streszczenie

W pracy przedstawiono zależność intensywności tunelowania między studniami kwantowymi w od przyłożonego pola magnetycznego. Wykorzystana próbka składała się ze studni kwantowych umieszczonych w mikrownęce. Pozwalało to na sprzężenie studni poprzez mod optyczny tejże wnęki. Otrzymane wyniki pozwoliły poszerzyć wiedzę w dziedzinie tunelowania średniodystansowego.

Słowa kluczowe

mikrownęki, tunelowanie, polaryton

Dziedzina pracy (kody wg programu Socrates-Erasmus)

13.2 Fizyka

Klasyfikacja tematyczna

D. Software

D.127. Blabalgorithms

D.127.6. Numerical blabalysis

Spis treści

W	prowadzenie	Ę
1.	Próbki	7
2.	Metody eksperymentalne	ξ
3.	Wynkiki3.1. Wyniki surowe3.2. Dopasowanie do modelu	11
4.	Podsumowanie	13
Α.	. Może będzie potrzebne	15

Wprowadzenie

Jednym z ważniejszych efektów w mechanice kwantowej jest tunelowanie, czyli przejście cząstki z jednej studni potencjału do innej, pomimo braku odpowiedniej energii, by przekroczyć barierę między nimi. Prawdopodobieństwo takiego przejścia maleje eksponencjalnie wraz z odległością między studniami. Z tego powodu pierwsze doświadczenia związane z tym zjawiskiem były przeprowadzane na próbkach o małej przerwie między studniami. W pracy B. Deveauda et. al [1] badano tunelowanie na odległościach od 30 Å do 75 Å.

Próbki

Metody eksperymentalne

Wynkiki

- 3.1. Wyniki surowe
- 3.2. Dopasowanie do modelu

Podsumowanie

Dodatek A Może będzie potrzebne

Bibliografia

[1] Benoit Deveaud, Fabrice Clerot, A Chomette, A Regreny, R Ferreira, Gérald Bastard, and Bernard Sermage. Tunneling and relaxation in coupled quantum wells. *EPL (Europhysics Letters)*, 11:367, 02 1990.