日期 班级 姓名 学号

2022 年 11 月 4 日 泛函分析 强基数学 002 吴天阳 2204210460

第七次作业

题目 1. (2.3.1) 设 X 为 B 空间, X_0 是 X 的闭子空间. 映射 $\varphi: X \to X/X_0$ 定义为 $\varphi: x \mapsto [x], (\forall x \in X)$,其中 [X] 表示 x 的商类. 证明 φ 是开映射.

证明. 由开映射定理可知,只需证 X/X_0 是完备的. 令 $\{[x_n]\}\subset X/X_0$ 是 Cauchy 列,则存在子列 $\{[x_{n_k}]\}$ 使得 $||[x_{n_{k+1}}]-[x_{n_k}]||=||[x_{n_{k+1}}-x_{n_k}]||\leqslant 1/2^k$,由商空间范数定义可知, $\forall \varepsilon>0$, $\exists y_k\in X_0$ 使得 $||x_{n_{k+1}}-x_{n_k}+y_k||<||[x_{n_{k+1}}-x_{n_k}]||+\varepsilon\leqslant 1/2^k+\varepsilon$,则 $||x_{n_{k+1}}-x_{n_k}+y_k||<1/2^k$,于是 $\sum_{k=1}^{\infty}||x_{n_{k+1}}-x_{n_k}+y_k||<\sum_{k=1}^{\infty}\frac{1}{2^k}=1$ 绝对收敛,由于 X 是完备的,则 $\sum_{k=1}^{\infty}x_{n_{k+1}}-x_{n_k}+y_k$

收敛,令部分和 $\{x_{n_{k+1}}+\sum_{i=1}^{\kappa}y_i\}$ 收敛到 $x+y,\ x\in X,y\in X_0$,由 φ 的连续性可得 $\lim_{n\to\infty}[x_n]=$

$$\lim_{n \to \infty} \left[x_{n_k} + \sum_{i=1}^{k-1} y_i \right] = [x+y] = [x] \in X/X_0, \text{ 所以 } X/X_0 \text{ 是商空间.}$$

题目 2. (2.3.2) 设 X, Y 是 B 空间,又设方程 Ux = y 对 $\forall y \in Y$ 有解 $x \in X$,其中 $U \in L(X, Y)$,并且 $\exists m > 0$,使得 $||Ux|| \geqslant m||x||$,($\forall x \in X$),求证:U 有连续逆 U^{-1} ,并且 $||U^{-1}|| \leqslant 1/m$.

证明. 由条件可知 U 是满射,假设 $\exists x_1, x_2 \in X$ 使得 $Ux_1 = Ux_2$,则 $U(x_1 - x_2) = \theta \Rightarrow x_1 = x_2$,于是 U 是单射,故 U 是双射.

由逆算子定理可知 $U^{-1}\in L(Y,X)$,由于 $||Ux||\geqslant m||x||$,令 $x=U^{-1}y$ 得 $||y||\geqslant m||U^{-1}y||$,则 $||U^{-1}y||\leqslant ||y||/m$,($\forall y\in Y$),则 $||U^{-1}||\leqslant 1/m$.

题目 3. (2.3.3) 设 H 为 Hilbert 空间, $A \in L(H)$,且 $\exists m > 0$,使得 $|(Ax, x)| \geqslant m||x||^2$,($\forall x \in H$). 求证: $\exists A^{-1} \in L(H)$.

证明. 由逆算子定理知, 只需证 A 为双射. 假设 $\exists y_1, y_2 \in X$ 使得 $Ay_1 = Ay_2$ 则

$$m||y_1 - y_2||^2 \le |(A(y_1 - y_2), y_1 - y_2)| = |(\theta, (y_1 - y_2))| = 0 \Rightarrow y_1 = y_2$$

故 A 是单射.

下证 R(A) = Y,只需证 R(A) 是闭的且 $R(A)^{\perp} = \{\theta\}$. 设 $\{Ax_n\} \subset H$ 收敛于 $y \in H$,由于 $m||x||^2 \leq |(Ax,x)| \leq ||Ax|| \cdot ||x|| \Rightarrow m||x|| \leq ||Ax||$

于是 $||x_{n+p} - x_n|| \le ||Ax_{n+p} - Ax_n|| \to 0$, $(n \to \infty, \forall p > 0)$ 则 $\{x_n\}$ 为 Cauchy 列,由于 H 完备,令其收敛于 x,由 A 的连续性可得 $Ax = y \in R(A)$,所以 A 是闭的.令 $x_0 \in R(A)^{\perp}$ 则 $||x_0||^2 \le ||(Ax_0, x_0)||/m = 0 \Rightarrow x_0 = \theta$ 则 $\mathbb{R}(A)^{\perp} = \{\theta\}$,于是 $\overline{R(A)} = R(A) = Y$. 所以 A 是满射.

综上, A 是双射.

- 题目 4. (2.3.4) 设 $X, Y \in B^*$ 空间, $D \in X$ 的线性子空间,且 $A: D \to Y$ 是线性映射. 求证:
 - (1). 若 A 连续且 D 是闭的,则 A 是闭算子.
 - (2). 若 A 连续且是闭算子,则 Y 完备蕴含 D 是闭的.
 - (3). 若 A 是单射的闭算子,则 A^{-1} 也是闭算子.
 - (4). 若 X 完备,A 是单射的闭算子,R(A) 在 Y 中稠密,且 A^{-1} 连续,那么 R(A) = Y.

证明. (1). $\forall \{x_n\} \subset D$ 满足 $x_n \to x$, $Ax_n \to y$, 由于 D 是闭的可得 $x \in D$, 由 A 连续性可得 $Ax_n \to Ax = y$, 所以 A 是闭算子.

(2). 反设 D 是开的,则 $\exists x_0 \in X \setminus D$, $\{x_n\} \subset D$ 使得 $x_n \to x_0$,由于

$$||Ax_{n+p} - Ax_n|| \le ||A|| \cdot ||x_{n+p} - x_n|| \to 0, (n \to \infty, \forall p > 0)$$

则 $\{Ax_n\}$ 是 Y 中的 Cauchy 列,令 $\lim_{n\to\infty}Ax_n=y$,由于 A 为闭算子,则 $x\in D$,这与 $x\in X\setminus D$ 矛盾. 故 D 是闭的.

- (3). 由于 A 是单射,则 A^{-1} 有意义, $\forall \{y_n\} \subset R(A)$ 满足 $y_n \to y$, $A^{-1}y_n \to x$,由 A 是闭算子,则 $A^{-1}y_n \to A^{-1}y$, $y_n \to Ax$ 可得到 $A^{-1}y \in D$ 且 $A(A^{-1}y) = y = Ax$,于是 $y \in R(A)$ 且 $A^{-1}y \in X$.
- (4). 由 (3) 可知, A^{-1} 是闭算子,由 (2) 可知 X 完备且 A^{-1} 连续,则 R(A) 是闭的,又由于 R(A) 在 Y 中稠密,则 $R(A) = \overline{R(A)} = Y$.