22 janvier 2016 Durée : 2 heures

<u>PROGRAMMATION FONCTIONNELLE</u>

Exercice:

Une liste de nombres $(p_1, ..., p_n)$ constitue une distribution antiuniforme si et seulement si les deux conditions suivantes sont satisfaites :

1°)
$$\sum_{i=1}^{n} p_i = 1$$
;

2°)
$$n \le 3$$
 ou $(n > 3$ et $\forall i \in [[1, n-3]], p_i \ge p_{i+2} + p_{i+3} + ... + p_n)$.

Ecrire une fonction Scheme antiUnif ayant comme arguments une liste de nombres L et telle que l'évaluation de l'expression (antiUnif L) retourne #t si la liste L représente une distribution antiuniforme et #f sinon.

Problème:

Rappel: On appelle schéma d'application itératif les schémas de type map ou append-map.

Le but de ce problème est d'écrire, en Scheme, une fonction ayant comme argument une famille de k vecteurs $(V_1, ..., V_k)$ de \mathbb{R}^n et qui retourne une famille de k vecteurs $(W_1, ..., W_k)$ de \mathbb{R}^n telle que l'espace engendré par $(W_1, ..., W_k)$ (i.e. l'ensemble de tous les vecteurs que l'on peut obtenir par combinaison linéaire de $W_1, ..., W_k$ soit le même que celui engendré par $V_1, ..., V_k$, et telle que les vecteurs $W_1, ..., W_k$ soient orthogonaux entre eux et de norme égale à 1 (famille orthonormée).

Un vecteur de \mathbb{R}^n peut être représenté par une liste de n nombres du type $(x_1 \dots x_n)$.

- /1°) Ecrire, en utilisant un schéma d'application itératif, une fonction AddVect ayant comme arguments deux vecteurs X et Y respectivement du type $(x_1 \dots x_n)$ et $(y_1 \dots y_n)$ et telle que l'évaluation de l'expression (AddVect X Y) retourne l'addition de X et Y, c'est-à-dire un vecteur du type $(x_1 + y_1 \dots x_n + y_n)$.
- (2°) Ecrire, en utilisant un schéma d'application itératif, une fonction Multext ayant comme arguments un nombre réel k et un vecteur X du type $(x_1 \dots x_n)$ et telle que l'évaluation de l'expression (Multext k X) retourne la multiplication externe de k par X, c'est-à-dire un vecteur du type $(k x_1 \dots k x_n)$.
- β °) Ecrire, en utilisant un schéma d'application itératif, une fonction Producal ayant comme arguments deux vecteurs X et Y respectivement du type $(x_1 \dots x_n)$ et $(y_1 \dots y_n)$ et telle que

l'évaluation de l'expression (Prodscal X Y) retourne le produit scalaire de X et Y, c'est-à-dire un nombre réel qui s'exprime sous la forme $\sum_{i=1}^{n} x_i y_i$

/4°) Ecrire une fonction Norme ayant comme argument un vecteur X du type $(x_1 ... x_n)$ et telle que l'évaluation de l'expression (Norme X) retourne la norme euclidienne de X, c'est-à-dire un nombre réel qui s'exprime sous la forme $\sqrt{\sum_{i=1}^{n} x_i^2}$.

On pourra utiliser la fonction prédéfinie sqrt qui retourne la racine carrée de son argument.

- $\sqrt{5}$ °) Ecrire une fonction SomListVect ayant comme argument une liste LV de vecteurs du type $(V_1 \dots V_n)$ et telle que l'évaluation de l'expression (SomListVect LV) retourne la somme de tous les vecteurs de la liste LV, c'est-à-dire un vecteur du type $V_1 + \dots + V_n$, où le symbole "+" désigne ici l'addition vectorielle (AddVect).
- $(X_i)^n$ Si on note F l'espace engendré par n vecteurs V_i , ..., V_n , on appelle projeté orthogonal d'un vecteur X sur F le vecteur Y défini par $Y = \sum_{i=1}^n (X_i, V_i) \cdot V_i$, où la notation (X_i, V_i) désigne le produit scalaire entre X et V_i (Prodscal), le symbole "." désigne la multiplication externe (Multext) et le symbole " Σ " l'addition vectorielle.

Ecrire, en utilisant un schéma d'application itératif, une fonction Projection ayant comme arguments un vecteur V et une liste de vecteurs B du type $(V_1 \dots V_n)$ et telle que l'évaluation de l'expression (Projection V B) retourne le projeté orthogonal de V sur l'espace engendré par les vecteurs de B.

Exemple:

7°) Pour tout entier i, on note H_i l'espace engendré par $(V_1, ..., V_i)$ et p_i la projection orthogonale sur H_i .

Un algorithme pour construire une famille orthonormée $(W_1, ..., W_k)$ qui engendre le même espace que $(V_1, ..., V_k)$ est le suivant :

- 1°) $W_1 \leftarrow V_1 / ||V_1||$;
- 2°) Pour *i* variant de 2 à *n* faire

$$X \leftarrow V_i - p_{i-1}(V_i)$$
; // p_{i-1} est la projection orthogonale sur H_{i-1} $W_i \leftarrow X / ||X||$.

Ecrire une fonction Ortho ayant comme argument une liste LV de vecteurs du type $(V_1 \dots V_k)$ et telle que l'évaluation de l'expression (Ortho LV) retourne une liste de vecteurs du type $(W_1, ..., W_k)$ telle que les vecteurs $W_1, ..., W_k$ soient orthogonaux entre eux, de norme égale à 1 et tels que l'ensemble de tous les vecteurs que l'on peut obtenir par combinaison linéaire de $W_1, ..., W_k$ soit le même que celui engendré par $V_1, ..., V_k$.

Remarque: l'ordre dans lequel on traite les vecteurs n'a pas d'importance.