Parsing as Search

- Search through possible parse trees
- Want one (or more) that derive input
- # Formally, search problems are defined by:
 - Start state S,

 - Successor Function:
 Transitions between states,
 - * Path cost function

Parsing w/Dynamic Programming

- Makes parsing algorithms (relatively) efficient
 - Polynomial time in input length
 - ※ Typically cubic (n³) or less
- Several different implementations
 - Cocke-Kasami-Younger (CKY) algorithm
 - Earley algorithm
 - Chart parsing

Chomsky Normal Form (CNF)

- **CKY** parsing requires grammars in CNF
- ****** All productions of the form:
 - $\# A \rightarrow B C, or$
 - $\# A \rightarrow a$
- Most of our grammars are not of this form E.g., S -> Wh-NP Aux NPVP
- * Need a general conversion procedue

CKY Example

Learning Probabilities

- Simplest: Treebank of parsed sentences
 - **To compute probability of a rule, count:**
 - Times LHS is expanded
 - ****** Times LHS expands to RHS

$$P(\alpha \to \beta \mid \alpha) = \frac{Count(\alpha \to \beta)}{\sum_{\gamma} Count(\alpha \to \gamma)} = \frac{Count(\alpha \to \beta)}{Count(\alpha)}$$

Example PCFG

Grammar		Lexicon
$S \rightarrow NP VP$	[.80]	$Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$
$S \rightarrow Aux NP VP$	[.15]	$Noun \rightarrow book [.10] \mid flight [.30]$
$S \rightarrow VP$	[.05]	meal [.15] money [.05]
$NP \rightarrow Pronoun$	[.35]	flights [.40] dinner [.10]
$NP \rightarrow Proper-Noun$	[.30]	$Verb \rightarrow book [.30] \mid include [.30]$
$NP \rightarrow Det Nominal$	[.20]	<i>prefer</i> ; [.40]
$NP \rightarrow Nominal$	[.15]	$Pronoun \rightarrow I[.40] \mid she[.05]$
$Nominal \rightarrow Noun$	[.75]	me [.15] you [.40]
$Nominal \rightarrow Nominal Noun$	[.20]	$Proper-Noun \rightarrow Houston [.60]$
$Nominal \rightarrow Nominal PP$	[.05]	<i>NWA</i> [.40]
$VP \rightarrow Verb$	[.35]	$Aux \rightarrow does [.60] \mid can [40]$
$VP \rightarrow Verb NP$	[.20]	$Preposition \rightarrow from [.30] \mid to [.30]$
$VP \rightarrow Verb NP PP$	[.10]	on [.20] near [.15]
$VP \rightarrow Verb PP$	[.15]	through [.05]
$VP \rightarrow Verb NP NP$	[.05]	
$VP \rightarrow VP PP$	[.15]	
$PP \rightarrow Preposition NP$	[1.0]	

Parser Issues

- PCFGs make many (unwarranted) independence assumptions
 - Structural Dependency
 - NP -> Pronoun: much more likely in subject position
 - Lexical Dependency
 - Werb subcategorization
 - Coordination ambiguity

PCFGs & Independence

	Pronoun	Non-Pronoun
Subject	91%	9%
Object	34%	66%

- In Treebank: roughly equi-probable
- # How can we handle this?
- Condition on Subj/Obj with parent annotation

Parent Annotation

Parent Annotation

- Advantages:
 - Captures structural dependency in grammars
- Disadvantages:
 - ****** Increases number of rules in grammar
 - Decreases amount of training per rule
 - Need to search for optimal # of rules

Lexical Conditioning

Different verbs, prepositions have different attachment preferences

Improving PCFGs: Lexicalized Rules

Conceptually, add I rule per head value

```
VP(dumped) → VBD(dumped)NP(sacks)PP(into)
```

VP(dumped) → VBD(dumped)NP(cats)PP(into)

Lexicalized PCFGs

- Also add head tag to non-terminals
 - ** Head tag: Part-of-speech tag of head word

```
VP(dumped) → VBD(dumped)NP(sacks)PP(into)
```

VP(dumped, VBD) → VBD(dumped, VBD)NP(sacks, NNS)PP(into, IN)

Internal Rules	Lexical Rules					
TOP	\rightarrow	S(dumped, VBD)		NNS(workers,NNS)	\rightarrow	workers
S(dumped, VBD)	\rightarrow	NP(workers,NNS)	VP(dumped,VBD)	VBD(dumped, VBD)	\rightarrow	dumped
NP(workers,NNS)	\rightarrow	NNS(workers,NNS)		NNS(sacks,NNS)	\rightarrow	sacks
VP(dumped, VBD)	\rightarrow	VBD(dumped, VBD)	NP(sacks,NNS) PP(into,P)	P(into,P)	\rightarrow	into
PP(into,P)	\rightarrow	P(into,P)	NP(bin,NN)	DT(a,DT)	\rightarrow	a
NP(bin,NN)	\rightarrow	DT(a,DT)	NN(bin,NN)	NN(bin,NN)	\rightarrow	bin

Improving PCFGs: Tradeoffs

- **※ Tensions:**
 - Increase accuracy from increased specificity
 - **E.g.** Lexicalizing, Parent annotation
 - Increased grammar size
 - Increases processing times
 - Increases training data requirements
- # How can we balance?

Why features?

- Need compact, general constraints
- Decompose into elementary features
 - ** Agreement, subcat: consistency requirements on those features (E.g. number, person, gender)
- Augment CF rules with feature constraints
 - Develop mechanism to enforce consistency
 - **Elegant, compact, rich representation**

Unification

- **# Given features for different constituents,**
 - When can we combine two feature sets?
 - **# How can we combine two feature sets?**

Reading a Research Paper

- » Who is the audience?
- » Our questions:
 - » What is the main goal?
 - » What data did the authors use?
 - » How hard was the problem?
 - » Were they able to solve it?