

Compilation Principle 编译原理

第8讲: 语法分析(5)

张献伟

xianweiz.github.io

DCS290, 3/17/2022

Review Questions (1)

- Q1: why do we prefer to use Predictive Parser?
 Requires no backtracking, more efficient.
- Q2: how to predict the next production to use?
 Current nonterminal being processed, next input symbol(s).
- Q3: can predictive parser handle E → E+T | int | int*T?

NO. Left recursion, common prefix.

Q4: what does LL(k) mean?

L: scans the input from left to right

L: produces a leftmost derivation

K: using k input symbols of lookahead

Input: input tokens followed by \$

Stack: start symbol followed by \$

b \$

Output

+

Predictive Parsing

Program

Parsing Table

Stack

Use the Parse Table

To Construct Parse Table[构建解析表]

- The parsing table stores the actions the parser should take based on the <u>input token</u> and the <u>stack top</u>
- The parsing table can be constructed using two sets
 - FIRST(α): set of terminals that begin strings derived from α
 - □ E.g., c ∈ FIRST(A) or FIRST(Aaβ)
 - □ If A ⇒* ε, then ε is also in FIRST(A)
 - FOLLOW(A): set of terminals that can appear following A
 - □ E.g., a ∈ FOLLOW(A)
 - If A is rightmost symbol of a sentential form, \$\\$ is also in FOLLOW(A)

Use FIRST and FOLLOW

- Why do we need FIRST and FOLLOW in parsing?
 - FIRST and FOLLOW allow to choose which production to apply, based on the next input symbol
- FIRST[开始集]
 - FIRST(α): set of terminals that start strings derived from α
 - \square α : any string of grammar symbols
 - Consider $A \rightarrow \alpha \mid \beta$, where FIRST(α) and FIRST(β) are disjoint sets
 - We can then choose by looking at the next input symbol a
 - since a can be in at most FIRST(α) or FIRST(β), not both lookahead

- FOLLOW[后继集]
 - FOLLOW(A): set of terminals that can appear right after A
 - □ A: nonterminal
 - If there's a derivation of A that results in ε
 - □ In this case, A could be replaced by nothing and the next token would be the first token of the symbol following A in the sentence being parsed
 - \Box Thus, parser needs to consider to choose the path A \Rightarrow * ϵ

Non-terminal A disappears, without consuming any input symbol.

Example

```
Input: ada
                                                                                     Input: ade
Grammar:
S \rightarrow aBC
                                                \Rightarrow aBC
B \rightarrow bC b \in FIRST(B)
                                                                                     \Rightarrow aBC
                                                \Rightarrow adBC
B \rightarrow dB d \in FIRST(B)
                                                                                     \Rightarrow adB\bigcirc/
                                                                                    \Rightarrow adC/
                                                \Rightarrow adC
B \rightarrow \epsilon
                                                \Rightarrow ada
C \rightarrow c \quad c \in FOLLOW(B)
C \rightarrow a \quad a \in FOLLOW(B)
D \rightarrow e
```

Both FIRST and FOLLOW should be used to construct the parsing table

FIRST

- Compute FIRST(X) for <u>all grammar symbols</u> X, apply the following rules until no terminal or ε can be added to any FIRST set
 - If X ∈ T, then FIRST(X)={X}[终结符]
 - If X ∈ N and X→ ε exists, then add ε to FIRST(X)[非终结符, 空式]
 - If X ∈ N and X → $Y_1Y_2Y_3...Y_k$, then[非终结符, 非空式]
 - □ Add α to FIRST(X), if for some i, α is in FIRST(Y_i), and ϵ is in all of FIRST(Y₁), ..., FIRST(Y_{i-1}), i.e., Y₁...Y_{i-1} ⇒* ϵ . E.g.,
 - Everything in FIRST(Y₁) is surely in FIRST(X)
 - If Y_1 doesn't derive ε , then we add nothing more
 - But if $Y_1 \Rightarrow^* \varepsilon$, then we add FIRST(Y_2), and so on
 - □ Add ε to FIRST(X), if ε is in FIRST(Y_j) for all j=1,2,...k

如果X是非终结符,且有产生式形如 X \rightarrow ABCdEF... (A,B,C均为非终结符且包含ε,d为终结符),则需要把FIRST(A), FIRST(B), FIRST(C), d加入到FIRST(X)中

FIRST(cont.)

- Compute FIRST(X) for all grammar symbols X[符号]
- Next, we can compute FIRST for <u>any string</u> $\alpha = X_1X_2...X_n$ [符 号串]
 - Add FIRST(X₁) all non-ε symbols to FIRST(α)[当然!]
 - Add FIRST(X_i) ε, 2≤i≤k, to FIRST(α), if FIRST(X₁), ..., FIRST(X_{k-1}) all contain ε[前k-1个都透明]
 - \square Add non-ε symbols of FIRST(X₂), if ε is in FIRST(X₁)
 - \square Add non-ε symbols of FIRST(X₃), if ε is in FIRST(X₁) and FIRST(X₂)
 - **-** ...
 - Add ε to FIRST(α), if FIRST(X₁), ..., FIRST(X_k) all contain ε[α自身可 以透明]

FOLLOW

- To compute FOLLOW(A) to <u>all non-terminals</u> A, apply following rules until no terminal or ε can be added to any FOLLOW set
 - Place \$ in FOLLOW(S), where S is the start symbol
 - If there is a production A $\rightarrow \alpha B \beta$, then everything in FIRST(β) except ε is in FOLLOW(B)
 - If there is a production $A \rightarrow \alpha B$, or a production $A \rightarrow \alpha B \beta$, where FIRST(β) contains ε, then everything in FOLLOW(A) is in FOLLOW(B)
 - Namely, follow sets are defined in terms of follow sets
 - This step has to be repeated until follow sets converge

Example: FIRST and FOLLOW

- FIRST(T) = FIRST(E) = {int, (}
 - E has only one production, and its body starts with T
 - T doesn't derive ε, E is same with T
- FIRST(E') = $\{+, \epsilon\}$
- FIRST(T') = $\{*, \varepsilon\}$

- $E \rightarrow TE'$
- $E' \rightarrow +E \mid \varepsilon$
- $T \rightarrow intT' \mid (E)$
- $T' \rightarrow *T \mid \epsilon$

- FOLLOW(E) = FOLLOW(E') = {), \$}
 - E is start symbol, thus \$ must be contained; production body (E)
 - E' appears at the ends of E-productions, same as FOLLOW(E)
- FOLLOW(T) = FOLLOW(T') = {+,), \$}
 - +: T appears in bodies only followed by E', thus FIRST(E')- ε
 -), \$: FIRST(E') contains ε, and E' is the entire str following T, so
 FOLLOW(E') is in FOLLOW(T)
 - T' is only at ends of T-productions, FOLLOW(T')=FOLLOW(T)

Example: FIRST and FOLLOW (cont.)

Symbol	FIRST	FOLLOW
E	int, (), \$
E'	+, ε), \$
Т	int, (+,), \$
T'	*, E	+,), \$

$E \rightarrow TE'$	
$E' \rightarrow + E \mid \epsilon$	
$T \rightarrow intT'$	(E)
T'→*T ε	

A ightarrow lpha (RHS)	FIRST
E o TE'	int, (
$E' \rightarrow +E$	+
T o int T'	int
T → (+E)	(
$T' \rightarrow *T$	*

Construct LL(1) Parse Table[构建解析表]

Goal: to put each production into the table entry

- To construct, rule $A \rightarrow \alpha$ is added to M[A, a] if either:
 - For each terminal a in FIRST(α)[首先考虑RHS的FIRST集]
 - If ε is in FIRST(α), or α=ε, a is in FOLLOW(A) (ε-production)[有空产生式,同时考虑LHS的FOLLOW集]
 - □ If ε is in FIRST(α) and \$ is in FOLLOW(A), add A \rightarrow α to M[A, \$] as well
- If after performing the above, there is no production at all in M[A, a], then set M[A, a] to error
 - Which is normally represented by an empty entry in the table

Construct LL(1) Parse Table (cont.)

A ightarrow lpha (RHS)	FIRST
E o TE'	int, (
$E' \rightarrow +E$	+
extstyle o int $ extstyle o$	int
$T \rightarrow (E)$	(
$T' \rightarrow *T$	*
$E' ightarrow \epsilon$	FOLLOW
$T' ightarrow \epsilon$	FOLLOW

Symbol	FIRST	FOLLOW
E	int, (),\$
E'	+, ε),\$
Т	int, (+,), \$
T'	*, ε	+,), \$

$E' \rightarrow + E \mid \epsilon$	
$T \rightarrow intT'$	(E)
T′→*T ε	

 $E \rightarrow TE'$

table	int	*	+	()	\$
E	E → TE′			E → TE′		
E'			E' → +E		E' → ε	E' → ε
Т	$T \rightarrow int T'$			T → (E)		
T'		T′ → *T	T′ → ε		T′ → ε	T′ → ε

Use the Table [already examined]

Determine If Grammar is LL(1)[判断]

- Observation[直观依据]
 - If a grammar is LL(1), then each of its LL(1) table entry contains

at most one rule

- Otherwise, it is not LL(1)

table	int	*	+	()	\$
E	E → TE′			E → TE′		
E'			E' → +E		E′ → ε	E' → ε
Т	T → int T'			T → (E)		
T'		T′ → *T	T′ → ε		T′ → ε	T′ → ε

- Two methods to determine if a grammar is LL(1) or not
 - Construct LL(1) table, and check if there is a multi-rule entry
 - Check each rule as if the table is getting constructed G is LL(1) iff for a rule A $\rightarrow \alpha \mid \beta$
 - □ FIRST(α) \cap FIRST(β) = Φ
 - $\mbox{ }_{\square}$ At most one of α and β can derive ϵ
 - □ If β derives ε, then FIRST(α) \cap FOLLOW(A) = φ

保证预测的唯一性

Non-LL(1) Grammars[非LL(1)文法]

- Suppose a grammar is not LL(1). What then?
- Case-1: the language may still be LL(1)
 - Try to rewrite grammar to LL(1) grammar:
 - Apply left-factoring
 - Apply left-recursion removal
 - Try to remove ambiguity in grammar:
 - Encode precedence into rules
 - Encode associativity into rules
- Case-2: If Case-1 fails, language may not be LL(1)
 - Impossible to resolve conflict at the grammar level
 - Programmer chooses which rule to use for conflicting entry (if choosing that rule is always semantically correct)
 - Otherwise, use a more powerful parser (e.g. LL(k), LR(1))

LL(1) Time and Space Complexity[复杂度]

- Linear time and space relative to length of input[线性]
- Time: each input symbol is consumed within a constant number of steps
 - If symbol at top of stack is a terminal:
 - Matched immediately in one step
 - If symbol at top of stack is a non-terminal:
 - \blacksquare Matched in at most N steps, where N = number of rules
 - Since no left-recursion, cannot apply same rule twice without consuming input
- Space: smaller than input (after removing $X \rightarrow \varepsilon$)
 - RHS is always longer or equal to LHS
 - Derivation string expands monotonically
 - Derivation string is always shorter than final input string
 - Stack is a subset of derivation string (unmatched portion)

Some Thoughts ...

- LL(1) table-driven parser is basically DFA + Stack
 - Capable to count ⇒ CFG is more powerful than RE

- We have studied LL(1), what about LL(0), LL(2) or LL(k)?
- Is LL(0) useful at all?
 - Grammar where rules can be predicted with no lookahead
 - $-\Rightarrow$ That means, there can only be one rule per non-terminal
 - \Rightarrow That means, this language can have only one string
- What would prevent LL(2) ... LL(k) from wide usage?
 - Size of parse table = $O(|N|*|T|^k)$
 - \blacksquare where N = set of non-terminals, T = set of terminals

Summary: Predictive Parser[小结]

 FIRST and FOLLOW sets are used to construct predictive parsing tables

- Intuitively, FIRST and FOLLOW sets guide the choice of rules
 - For non-terminal A and lookahead t, use the production rule A
 → α where t ∈ FIRST(α)
 OR
 - For non-terminal A and lookahead t, use the production rule A $\rightarrow \alpha$ where $\epsilon \in FIRST(\alpha)$ and $t \in FOLLOW(A)$
 - There can only be ONE such rule
 - Otherwise, the grammar is not LL(1)

Bottom-up Parsing[自底向上]

- Begins at leaves and works to the top[叶子到根]
 - Bottom-up: reduces[归约] input string to start symbol
 - In the opposite direction from top-down
 - Top-down: expands start symbol to input string
 - In <u>reverse order of rightmost derivation</u> (In effect, builds tree from left to right, just like top-down)

Top-down parser

More powerful than top down

RD-backtrack

Don't need left factored grammars parser parser

- Can handle left recursion
- Can express a larger set of languages
- And just as efficient

Bottom-up parser

Example

Grammar

$$E \rightarrow T+E|T$$

T \rightarrow int*T | int | (E)

• String: int * int + int

- The rightmost derivation of the parse tree
 - $-E \Rightarrow T + E \Rightarrow T + T \Rightarrow T + int \Rightarrow int * T + int \Rightarrow int * int + int$

- To recognize the string via bottom-up parsing
 - int * int + int \Rightarrow int * T + int \Rightarrow T + int \Rightarrow T + T \Rightarrow T + E \Rightarrow E

Bottom-up: Overview

- An important fact:
 - Let $\alpha\beta\omega$ be a step of a bottom-up parse
 - Assume the next reduction is by $X \rightarrow \beta$
 - Then ω is a string of terminals [i.e., 句子]
- Why? $\alpha X \omega \rightarrow \alpha \beta \omega$ is a step in a rightmost derivation
- Idea: split string into two substrings
 - Right substring is as yet unexamined by parsing (a string of terminals)[右侧尚未处理]
 - Left substring has terminals and non-terminals[左侧已有处理]
- The dividing point is marked by a #
 - The # is not part of the string
 - Initially, all input is unexamined $\#x_1x_2 \dots x_n$

Bottom-up: Shift-Reduce[移入-归约]

- Bottom-up parsing is also known as Shift-Reduce parsing
 - Involves two types of operations: shift and reduce
- Shift[移入]: move # one place to the right
 - Shifts a terminal to the left string[向左侧移入终结符]
 ABC#xyz ⇒ ABCx#yz

- **Reduce**[归约]: apply an inverse production at the right end of the left string[左侧的右端进行规约]
 - If E → Cx is a production, then
 ABCx#yz ⇒ ABE#yz

The Example

• Grammar

$$E \rightarrow T+E|T$$

 $T \rightarrow int*T | int | (E)$

• String

Step	Operation
#int * int + int	Shift
int# * int + int	Shift
int * #int + int	Shift
int * int # + int	Reduce T → int
int * T # + int	Reduce T → int*T
T # + int	Shift
T + # int	Shift
T + int #	Shift
T + T #	Reduce T → int
T + E #	Reduce E → T
E#	Reduce E → T+E

Stack[栈]

- Left string can be stored into a stack
 - Top of the stack is the #

Shift pushes a terminal on the stack

- Reduce does the following:
 - pops zero or more symbols off of the stackproduction rhs[pop出了产生式RHS]
 - pushes a non-terminal on the stackproduction lhs[push进了产生式LHS]
 - just reverts production (LHS ← RHS)

Step
#int * int + int
int# * int + int
int * #int + int
int * int # + int
int * T # + int
T#+int
T + # int
T + int #
T + T #
T + E #
E #

Key Issue[一个关键问题]

- How to decide when to shift or reduce?
 - Example grammar:

$$E \rightarrow T+E|T$$

T \rightarrow int*T | int | (E)

#int * int + int	Shift
int# * int + int	Shift
int * #int + int	Shift

#int * int + int	Shift
int# * int + int	Reduce $T \rightarrow int$
T # * int + int	Shift

- Consider the step int # * int + int
- We could reduce by T → int giving T#*int + int
 - A fatal mistake: no way to reduce to the start symbol E
- Intuition: want to reduce only if the result can still be reduced to the start symbol[必须在对的方向上]

