We know that Output = (a)'s output = $\vec{a}^{(3)} = W^{(3)} \vec{a}^{(2)} + \vec{b}^{(3)}$

2.2. Input: $\vec{\alpha}^{(0)}$ (a) $\vec{\alpha}^{(1)} = W^{(1)} \vec{\alpha}^{(0)} + \vec{b}^{(1)}$ $\vec{\alpha}^{(2)} = W^{(2)} \vec{\alpha}^{(1)} + \vec{b}^{(2)}$ (b) Input: $\vec{\alpha}^{(0)}$ We know that $\vec{0}$ utput = $\vec{\alpha}^{(3)}$ output = $\vec{\alpha}^{(3)} = W^{(3)} \vec{a}$ (b) We know that $\vec{0}$ utput = $\vec{\alpha}^{(3)} = W^{(3)} \vec{a}$ $\vec{\alpha}^{(2)} = W^{(3)} \vec{\alpha}^{(1)} + \vec{b}^{(2)}$ $\vec{\alpha}^{(3)} = W^{(3)} \vec{\alpha}^{(2)} + \vec{b}^{(3)}$ $\vec{\alpha}^{(3)} = W^{(3)} \vec{\alpha}^{(2)} + \vec{b}^{(3)} = W^{(3)} (W^{(2)} \vec{\alpha}^{(1)} + \vec{b}^{(2)})^{\frac{1}{2}} = W^{(3)} (W^{(2)} \vec{\alpha}^{(2)} + \vec{b}^{(2)})^{\frac{1}{2}} = W^{(3)} (W^{(2)} \vec{\alpha}^{(2)} + \vec{b}^{(2)})^{\frac{1}{2}} = W^{(3)} (W^{(2)} \vec{\alpha}^{(2)} + \vec{b}^{(2)})^{\frac$ $\frac{1}{a^{(3)}} = W^{(3)} \dot{a}^{(2)} + \dot{b}^{(3)} = W^{(3)} (W^{(2)} \dot{a}^{(1)} + \dot{b}^{(2)}) \dot{b}^{(3)} + \dot{b}^{(2)} + \dot{b}^{(3)} + \dot$

... based on the details above, tet \widetilde{W} $\widetilde{a}^{(0)}$ + $\widetilde{b}^{(2)}$ + $\widetilde{b}^{$ $=W^{(3)}(W^{(2)}W^{(1)}\dot{a}^{(0)}+W^{(2)}\dot{b}^{(0)}+\dot{b}^{(3)})+\dot{b}^{(3)})$ $=W^{(3)}(W^{(2)}W^{(1)}\dot{a}^{(0)}+W^{(3)}W^{(2)}\dot{b}^{(1)}+W^{(3)}\dot{b}^{(2)}+\dot{b}^{(3)})$ $=(W^{(3)}W^{(2)}W^{(1)})\dot{a}^{(0)}+(W^{(3)}W^{(2)})\dot{b}^{(1)}+W^{(3)}\dot{b}^{(2)}+\dot{b}^{(3)})$ $=(W^{(3)}W^{(2)}W^{(1)})\dot{a}^{(0)}+(W^{(3)}W^{(2)})\dot{b}^{(1)}+W^{(3)}\dot{b}^{(2)}+\dot{b}^{(3)})$

 $\widetilde{K} = W^{(3)}W^{(2)}W^{(1)} + W^{(3)}\overline{b}^{(2)} + \overline{b}^{(3)}$ $\widetilde{K} = W^{(3)}W^{(2)}\overline{b}^{(1)} + W^{(3)}\overline{b}^{(2)} + \overline{b}^{(3)}$