· So far:

- We have considered stationary charges
- Stationary charges produce electric fields, which exert a force on other stationary charges
- Now we want to consider the case of moving charges

 $\left(\frac{C_{s}}{1}\right)$

Increase with both 9 + V

Vector Cross product

$$\vec{B} = \text{const} \left(\frac{2 \vec{v} \times \hat{r}}{r^2} \right)$$

$$\vec{r} = \vec{r}_{obs} - \vec{r}_{src}$$

$$\vec{v} = \vec{v}_{src}$$

Cross Product

| A x B | = | A | | B | Sin @

Direction: L to both rectors

Right hand rule

Direction of $\overrightarrow{A} \times \overrightarrow{B} = \bigcirc$ "out of the page"

Direction of $\overrightarrow{B} \times \overrightarrow{A} = \otimes$ into the page "

Ex:
$$\vec{r}_1 = \langle 1, 1 \rangle$$

$$\vec{r}_2 = \langle 0, 2 \rangle$$
what is $\vec{r}_1 \times \vec{r}_2$?

Magnitude:

$$|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| |\sin \theta|$$

$$|\vec{r}_1 \times \vec{r}_2| = |\vec{r}_1| |\vec{r}_2| |\sin \theta|$$

$$|\vec{r}_1| = |\vec{z}_2| |\vec{r}_2| = \lambda$$

$$|\vec{r}_1| = |\vec{z}_2| |\vec{r}_2| = \lambda$$

$$|\vec{r}_1| = |\vec{z}_2| |\vec{r}_2| = \lambda$$

$$|\vec{r}_1| = |\vec{r}_2| \lambda$$

$$|\vec{r}_2| = \lambda$$

$$|\vec{r}_3| = \lambda$$

$$|\vec{r}_1| = \lambda$$

$$|\vec{r}_2| = \lambda$$

$$|\vec{r}_3| = \lambda$$

What is
$$\hat{x} \times \hat{y}$$
?

Mag =1, dir = \hat{O} (\hat{z})

 $\hat{x} \times \hat{x}$?

 $\hat{y} \times \hat{z}$?

 $\hat{z} \times \hat{y} = -\hat{x}$

Counter-clockwise: pos clockwise: neg