МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ по лабораторной работе №4 по дисциплине «Искусственные нейронные сети» Тема: Распознавание рукописных символов

Студент гр. 7382 ______ Ленковский В.В. Преподаватель _____ Жукова Н.А.

> Санкт-Петербург 2020

Цель работы.

Реализовать классификацию черно-белых изображений рукописных цифр (28x28) по 10 категориям (от 0 до 9).

Порядок выполнения работы.

- Ознакомиться с представлением графических данных.
- Ознакомиться с простейшим способом передачи графических данных нейронной сети.
- Создать модель.
- Настроить параметры обучения.
- Написать функцию, позволяющая загружать изображение пользователи и классифицировать его.

Требования к выполнению задания.

- Найти архитектуру сети, при которой точность классификации будет не менее 95%.
- Исследовать влияние различных оптимизаторов, а также их параметров, на процесс обучения.
- Написать функцию, которая позволит загружать пользовательское изображение не из датасета.

Ход работы.

Была создана и обучена модель искусственной нейронной сети. Код предоставлен в приложении А.

1. **Оптимизатор adam.**

Архитектура:

- Скорость обучения = 0.001.
- Инициализация весов normal.
- Epochs = 3, batch_size = 100, loss = categorical_crossentropy

Данная архитектура дает точность ~ 97%. Графики точности и ошибки предоставлены на рис. 1 и рис. 2 соответственно.

Рисунок 1 – График точности для оптимизатора adam

Рисунок 2 – График потерь для оптимизатора adam

2. Оптимизатор SGD.

Архитектура:

- Скорость обучения = 0.001, momentum = 0.
- Инициализация весов normal.
- Epochs = 3, batch_size = 100, loss = categorical_crossentropy

Данная архитектура дает точность ~ 84%. Графики точности и ошибки предоставлены на рис. 3 и рис. 4 соответственно.

Рисунок 3 – График точности для оптимизатора SGD

Рисунок 4 – График потерь для оптимизатора SGD

3. Оптимизатор RMSprop.

Архитектура:

- Скорость обучения = 0.001.
- Инициализация весов normal.
- Epochs = 3, batch_size = 100, loss = categorical_crossentropy

Данная архитектура дает точность $\sim 97\%$. Графики точности и ошибки предоставлены на рис. 5 и рис. 6 соответственно.

Рисунок 5 – График точности для оптимизатора RMSprop

Рисунок 6 – График потерь для оптимизатора RMSprop

Выводы.

В ходе работы была изучена задача классификации рукописных цифр с помощью азы данных MINIST. Подобраны архитектуры, дающие точность свыше 95%, таковыми оказали adam и RMSprop. Также была написана функция загрузки изображения в память программы.