Alexandrov-Krümmung, Hadamard-Räume und der Satz von Cartan-Hadamard

Tim Baumann

Seminar Metrische Geometrie

17. Juni 2014

Lemma (BH, II.4.3)

Sei (X,d) ein vollständiger CAT(0)-Raum und $c:[0,1] \to X$ eine Geodäte von x:=c(0) nach y:=c(1). Sei $\epsilon>0$ so klein, dass $\overline{B_{2\epsilon}(c(t))}$ für alle $t\in[0,1]$ ein CAT(0)-Gebiet ist. Dann gilt:

- ② Für alle $\overline{x} \in B_{\epsilon}(x)$ und $\overline{y} \in B_{\epsilon}(y)$ gibt es genau eine Geodäte $\overline{c}: [0,1] \to X$ von \overline{x} nach \overline{y} , sodass

$$t\mapsto d(c(t),\overline{c}(t))$$

konvex ist.

3 Außerdem gilt: $L(\overline{c}) \le d(x, \overline{x}) + L(c) + d(\overline{y}, y)$

Bemerkung

Solch ein $\epsilon > 0$ existiert aufgrund der Kompaktheit von c([0,1]).

Lemma (BH, II.4.3)

Sei (X,d) ein vollständiger CAT(0)-Raum und $c:[0,1] \to X$ eine Geodäte von x:=c(0) nach y:=c(1). Sei $\epsilon>0$ so klein, dass $\overline{B_{2\epsilon}(c(t))}$ für alle $t\in[0,1]$ ein CAT(0)-Gebiet ist. Dann gilt:

- Seien $\alpha, \beta: [0,1] \to X$ linear parametrisierte Geodäten mit $d(\alpha(t),c(t)) < \epsilon$ und $d(\beta(t),c(t)) < \epsilon$ $\forall t \in [0,1]$. Dann ist die Abstandsfunktion $\delta(t) \coloneqq d(\alpha(t),\beta(t))$ konvex.
- ② Für alle $\overline{x} \in B_{\epsilon}(x)$ und $\overline{y} \in B_{\epsilon}(y)$ gibt es genau eine Geodäte $\overline{c} : [0,1] \to X$ von \overline{x} nach \overline{y} , sodass

$$t\mapsto d(c(t),\overline{c}(t))$$

konvex ist.

3 Außerdem gilt: $L(\overline{c}) \leq d(x, \overline{x}) + L(c) + d(\overline{y}, y)$

Bemerkung

Solch ein $\epsilon > 0$ existiert aufgrund der Kompaktheit von c([0,1]).

Sei X ein metrischer Raum und $p \in X$. Dann wird

$$\tilde{X}_p := \{ \mathsf{Geod\"{a}ten} \ \gamma : [0,1] \to X \ \mathsf{mit} \ \gamma(0) = p$$
 und γ linear parametrisiert $\}$

Raum der Geodäten mit Startpunkt p genannt. Mit der Metrik

$$d(\alpha,\beta) := \max_{t \in [0,1]} |\alpha(t) - \beta(t)|$$

wird (\tilde{X}_p, d) zu einem metrischen Raum.

Der Punkt $\tilde{p} \in X_p$ sei die konstante Geodäte $t \mapsto p$.

Definition

Die Exponentialabbildung ist die Abbildung

$$\exp_p: \tilde{X}_p \to X, \quad \gamma \mapsto \gamma(1)$$

welche jede Geodäte auf ihren Endpunkt abbildet

Sei X ein metrischer Raum und $p \in X$. Dann wird

$$\tilde{X}_p := \{ \mathsf{Geod\"{a}ten} \ \gamma : [0,1] \to X \ \mathsf{mit} \ \gamma(0) = p$$
 und γ linear parametrisiert $\}$

Raum der Geodäten mit Startpunkt p genannt. Mit der Metrik

$$d(\alpha,\beta) := \max_{t \in [0,1]} |\alpha(t) - \beta(t)|$$

wird (\tilde{X}_p, d) zu einem metrischen Raum.

Der Punkt $\tilde{p} \in \tilde{X}_p$ sei die konstante Geodäte $t \mapsto p$.

Definition

Die Exponentialabbildung ist die Abbildung

$$\exp_p: \tilde{X}_p \to X, \quad \gamma \mapsto \gamma(1),$$

welche jede Geodäte auf ihren Endpunkt abbildet.

Lemma (BH, II.4.6)

Sei X ein vollständiger CAT(0)-Raum und $p \in X$. Dann ist auch \tilde{X}_p vollständig.

Lemma (BH, II.4.5)

Sei X ein vollständiger CAT(0)-Raum und $p \in X$. Dann gilt:

- ① \tilde{X}_p ist zusammenziehbar.
- ② Für alle $\tilde{x} \in \tilde{X}_p$ existiert ein r > 0, sodass $\exp_p(B_r(\tilde{x})) = B_r(\exp_p(\tilde{x}))$ und $\exp_p|_{B_r(\tilde{x})} : B_r(\tilde{x}) \to B_r(\exp_p|_{B_r(\tilde{x})})$

eine Isometrie ist. Insbesondere ist $\exp_p: \tilde{X}_p \to X$ ist eine Iokale Isometrie

Korollar

 \tilde{X}_{p} ist einfach zusammenhängend

Lemma (BH, II.4.6)

Sei X ein vollständiger CAT(0)-Raum und $p \in X$. Dann ist auch \tilde{X}_p vollständig.

Lemma (BH, II.4.5)

Sei X ein vollständiger CAT(0)-Raum und $p \in X$. Dann gilt:

- \tilde{X}_p ist zusammenziehbar.
- ② Für alle $\tilde{x} \in \tilde{X}_p$ existiert ein r > 0, sodass $\exp_p(B_r(\tilde{x})) = B_r(\exp_p(\tilde{x}))$ und $\exp_p|_{B_r(\tilde{x})} : B_r(\tilde{x}) \to B_r(\exp_p(\tilde{x}))$

eine Isometrie ist. Insbesondere ist $\exp_p: \tilde{X}_p \to X$ ist eine Iokale Isometrie.

Korollai

 \tilde{X}_{P} ist einfach zusammenhängend

Lemma (BH, II.4.6)

Sei X ein vollständiger CAT(0)-Raum und $p \in X$. Dann ist auch \tilde{X}_p vollständig.

Lemma (BH, II.4.5)

Sei X ein vollständiger CAT(0)-Raum und $p \in X$. Dann gilt:

- \tilde{X}_p ist zusammenziehbar.
- ② Für alle $\tilde{x} \in \tilde{X}_p$ existiert ein r > 0, sodass $\exp_p(B_r(\tilde{x})) = B_r(\exp_p(\tilde{x}))$ und $\exp_p|_{B_r(\tilde{x})} : B_r(\tilde{x}) \to B_r(\exp_p(\tilde{x}))$

eine Isometrie ist. Insbesondere ist $\exp_p: \tilde{X}_p \to X$ ist eine Iokale Isometrie.

Korollar

 \tilde{X}_n ist einfach zusammenhängend.

Seien X, Y topologische Räume und $p:X\to Y$ stetig. Eine Teilmenge $U\subset Y$ wird von p gleichmäßig überlagert, falls es einen diskreten topologischen Raum D und einen Homöomorphismus $\phi:p^{-1}(U)\to U\times D$ gibt, sodass kommutiert:

Die Abbildung p ist eine Überlagerung, falls jeder Punkt in y eine gleichmäßig überlagerte Umgebung besitzt.

Beispie

Jeder Homöomorphismus ist auch eine Überlagerung.

Seien X, Y topologische Räume und $p:X\to Y$ stetig. Eine Teilmenge $U\subset Y$ wird von p gleichmäßig überlagert, falls es einen diskreten topologischen Raum D und einen Homöomorphismus $\phi:p^{-1}(U)\to U\times D$ gibt, sodass kommutiert:

Die Abbildung p ist eine Überlagerung, falls jeder Punkt in y eine gleichmäßig überlagerte Umgebung besitzt.

Beispiel

Jeder Homöomorphismus ist auch eine Überlagerung.

Überlagerungsabbildungen $p: \tilde{X} \to X$ besitzen folgende wichtige Hochhebungseigenschaften:

Lemma (Hochheben von Wegen)

Sei $\gamma:[0,1] \to X$ ein stetiger Weg und $\tilde{x}_0 \in \tilde{X}$ mit $p(\tilde{x}_0) = \gamma(0)$. Dann gibt es genau einen Weg $\tilde{\gamma}:[0,1] \to \tilde{X}$ mit $\tilde{\gamma}(0) = \tilde{x}_0$ und $p \circ \tilde{\gamma} = \gamma$.

Lemma (Hochheben von Weghomotopien)

Seien $\gamma_1,\gamma_2:[0,1]\to X$ zwei stetige Wege mit $x_0:=\gamma_1(0)=\gamma_2(0)$ und $\gamma_1(1)=\gamma_2(1)$ zusammen mit einer Homotopie $H:[0,1]\times[0,1]\to X$ zwischen γ_1 und γ_2 relativ der Endpunkte. Sei $\tilde{x}_0\in \tilde{X}$ mit $p(\tilde{x}_0)=x_0$ und $\tilde{\gamma}_1,\tilde{\gamma}_2:[0,1]\to \tilde{X}$ die Hochhebungen von γ_1 bzw. γ_2 wie in obigem Lemma. Dann gibt es genau eine Homotopie

$$\tilde{H}:[0,1]\times[0,1]\to\tilde{X}$$

von $\tilde{\gamma_1}$ und $\tilde{\gamma_2}$ relativ der Endpunkte

Überlagerungsabbildungen $p: \tilde{X} \to X$ besitzen folgende wichtige Hochhebungseigenschaften:

Lemma (Hochheben von Wegen)

Sei $\gamma:[0,1]\to X$ ein stetiger Weg und $\tilde{x}_0\in \tilde{X}$ mit $p(\tilde{x}_0)=\gamma(0)$. Dann gibt es genau einen Weg $\tilde{\gamma}:[0,1]\to \tilde{X}$ mit

$$\tilde{\gamma}(0) = \tilde{x}_0$$
 und $p \circ \tilde{\gamma} = \gamma$.

Lemma (Hochheben von Weghomotopien)

Seien $\gamma_1, \gamma_2: [0,1] \to X$ zwei stetige Wege mit $x_0:=\gamma_1(0)=\gamma_2(0)$ und $\gamma_1(1)=\gamma_2(1)$ zusammen mit einer Homotopie $H:[0,1]\times [0,1]\to X$ zwischen γ_1 und γ_2 relativ der Endpunkte. Sei $\tilde{x}_0\in \tilde{X}$ mit $p(\tilde{x}_0)=x_0$ und $\tilde{\gamma_1},\tilde{\gamma_2}:[0,1]\to \tilde{X}$ die Hochhebungen von γ_1 bzw. γ_2 wie in obigem Lemma. Dann gibt es genau eine Homotopie

$$ilde{H}:[0,1] imes[0,1] o ilde{X}$$

von $\tilde{\gamma_1}$ und $\tilde{\gamma_2}$ relativ der Endpunkte.

Lemma (BH, I.3.28.)

Sei X ein wegzusammenhängender metrischer Raum, \tilde{X} ein vollständiger metrischer Raum und $p: \tilde{X} \to X$ ein lokaler Homöomorphismus. Angenommen,

- $L(\tilde{\alpha}) \leq L(p \circ \tilde{\alpha})$ für alle Wege $\alpha : [0,1] \to \tilde{X}$
- für alle $x \in X$ gibt es ein r > 0, sodass jedes $y \in B_r(x)$ mit x durch eine eindeutige linear parametrisierte Geodäte $\gamma_y : [0,1] \to B_r(x)$ verbunden ist und γ_y stetig von y abhängt.

Dann ist p eine Überlagerung.

Folgerung

Sei X ein Hadamard-Raum (vollständig, einfach zshgd, CAT(0)) und $p \in X$. Dann ist $\exp_p : \tilde{X}_p \to X$ eine Überlagerung.

Ein vollständiger, einfach zusammenhängender Längenraum mit Alexandrov-Krümmung ≤ 0 heißt Hadamard-Raum.

Lemma

Sei $p: \tilde{X} \to X$ eine Überlagerungsabbildung, $\tilde{X} \neq \emptyset$, X einfach zusammenhängend und \tilde{X} wegzusammenhängend. Dann ist p ein Homöomorphismus.

Folgerung

 $exp_p: \tilde{X}_p \to X$ ist ein Homöomorphismus, wenn X ein Hadamard-Raum ist.

Satz (Cartan-Hadamard)

- ① Für alle Paare p, q von Punkte in einem Hadamard-Raum gibt es genau eine verbindende Geodäte σ_{pq} .
- All diese Geodäten sind kürzeste Wege.

Ein vollständiger, einfach zusammenhängender Längenraum mit Alexandrov-Krümmung ≤ 0 heißt Hadamard-Raum.

Lemma

Sei $p: \tilde{X} \to X$ eine Überlagerungsabbildung, $\tilde{X} \neq \emptyset$, X einfach zusammenhängend und \tilde{X} wegzusammenhängend. Dann ist p ein Homöomorphismus.

Folgerung

 $exp_p: \tilde{X}_p \to X$ ist ein Homöomorphismus, wenn X ein Hadamard-Raum ist.

Satz (Cartan-Hadamard)

- Für alle Paare p, q von Punkte in einem Hadamard-Raum gibt es genau eine verbindende Geodäte σ_{pq} .
- 2 All diese Geodäten sind kürzeste Wege.

Satz

Sei X ein Hadamard-Raum. Dann gilt für alle $x,y,z\in X$ mit verbindenden Kürzesten $\sigma_{xy},\sigma_{yz},\sigma_{xz}$: Die Winkelsumme des Dreiecks $\Delta(x,y,z)$ ist $\leq \pi$.

Bemerkung

Dies ist äquivalent dazu, dass das Dreieck die Vergleichseigenschaft erfüllt. Somit sind in Hadamard-Räumen Dreiecke beliebiger Größe "dünn".

Beweis

"Alexandrovs Flickwerk"

