Лабораторная работа 1 Методы одномерной оптимизации

Используя методы половинного деления, золотого сечения и Фибоначчи найти минимум функции f(x) на отрезке [a,b] с точностью $\varepsilon=10^{-2}$.

№	f(x)	[a,b]	№	f(x)	[a,b]
1	$y = \frac{x}{x^2 + 1} \to \min$	$\left[-\frac{3}{2};0\right]$	16	$y = e^{2x - x^2} \to \max$	[0;2]
2	$y = \frac{\ln x - 1}{x} \rightarrow \min$	$\left[e;e^3\right]$	17	$y = \sqrt{x} + \sqrt{4 - x} \to \max$	[0;4]
3	$y = x + \frac{2}{x} \to \min$	$\left[\frac{1}{2};3\right]$	18	$y = x + \sqrt{3 - x} \to \max$	[0;3]
4	$y = x + e^{-x} \rightarrow \min$	[-2;2]	19	$y = x^4 - 4x^3 + 6x^2 - 4x \rightarrow \min$	[-2;2]
5	$y = x + e^{-x/2} \to \max$	[1;3]	20	$y = \frac{(x-1)^2}{x} \to \min$	$\left[\frac{1}{2};2\right]$
6	$y = x + \frac{4}{x^2} \to \min$	[1;4]	21	$y = \frac{x^2}{x+1} \to \min$	$\left[-\frac{1}{2};1\right]$
7	$y = \frac{x}{(x+1)^2} \to \min$	[0;2]	22	$y = \frac{x^2 - 1}{x^2 - 4} \to \max$	[-1;1]
8	$y = \frac{x^2 + 1}{x} \to \max$	$\left[-2; -\frac{1}{2}\right]$	23	$y = \frac{(x-1)^2}{x} \to \max$	$\left[-3; -\frac{1}{2}\right]$
9	$y = \frac{x^4}{(x+1)^3} \to \min$	$\left[-\frac{1}{2};1\right]$	24	$y = xe^x \rightarrow \min$	[-3;3]
10	$y = x + (x - 1)^2 \to \min$	[-1;1]	25	$y = (x+2) \exp\left(\frac{1}{x}\right) \rightarrow \min$	[1;3]
11	$y = (x-3)\sqrt{x} \to \min$	[0;2]	26	$y = \frac{x^2 - 3x - 1}{x + 2} \to \max$	[-6;-4]
12	$y = \frac{\ln x}{\sqrt{x}} \to \max$	$\left[e;e^3\right]$	27	$y = (x-1)e^x \rightarrow \min$	[-1;1]
13	$y = \frac{e^x}{x+1} \to \min$	$\left[-\frac{1}{2};1\right]$	28	$y = x^2 + e^x \to \min$	[-1;0]
14	$y = x + 2x^2 \to \min$	$\left[-\frac{1}{2};2\right]$	29	$y = \frac{x^3 + 4}{x^2} \to \min$	[1;3]
15	$y = x^2 e^{-x} \to \max$	[1;3]	30	$y = \frac{2x+1}{(x+3)(x-1)} \to \max$	[2;5]

Алгоритм метода деления пополам (метода дихотомии)

Начальный этап

Пусть $[a_1,b_1]$ — отрезок, на котором находится минимум функции f(x). Выбираем $\delta>0$ и задаем точность $\varepsilon>0$, причем $\varepsilon>\delta$. Полагаем k=1 и переходим к основному этапу.

Основной этап

Шаг 1. Если $b_k - a_k < \varepsilon$, останавливаемся, точка минимума \hat{x} принадлежит интервалу $[a_k,b_k]$. В качестве \hat{x} можно принять $\frac{a_k+b_k}{2}$. В противном случае вычисляем

$$x_{2k-1} = \frac{a_k + b_k - \delta}{2}$$
 in $x_{2k} = \frac{a_k + b_k + \delta}{2} = a_k + b_k - x_{2k-1}$,

и переходим к шагу 2.

Шаг 2. Вычисляем значения целевой функции в точках x_{2k-1}, x_{2k} . Если

- 1) $f(x_{2k-1}) \le f(x_{2k})$, полагаем $a_{k+1} = a_k$; $b_{k+1} = x_{2k}$;
- 2) $f(x_{2k-1}) > f(x_{2k})$, полагаем $a_{k+1} = x_{2k-1}$; $b_{k+1} = b_k$.

Заменяем k на k+1 и переходим к mazy 1.

Описание алгоритма окончено.

Пример. Методом *дихотомии* найти минимум функции f(x) на отрезке [a,b]

$$f(x) = x^3 - 3x$$
 на отрезке [0,3].

Peшeнue. Пусть arepsilon=0,1 и $\delta=0,05$. Положим $a_1=a=0,b_1=b=3$. Определяем

точки
$$x_1 = \frac{a_1 + b_1 - \delta}{2} = \frac{0 + 3 - 0.05}{2} = 1,475$$
 и $x_2 = \frac{a_1 + b_1 + \delta}{2} = \frac{0 + 3 + 0.05}{2} = 1,525$.

Находим значения функции в полученных точках

$$f(x_1) = f(1,475) = -1,216$$
 $f(x_2) = f(1,525) = -1,028$

Так как $f(x_1) \le f(x_2)$, тогда $a_2 = a_1 = 0, b_2 = x_2 = 1,525$ и получаем отрезок $[a_2,b_2] = [0;1,525]$. Так как $b_2 - a_2 > \varepsilon$ продолжаем вычисления.

$$x_3 = \frac{a_2 + b_2 - \delta}{2} = \frac{0 + 1,525 - 0,05}{2} = 0,737$$
 и $x_4 = \frac{a_2 + b_2 + \delta}{2} = \frac{0 + 1,525 + 0,05}{2} = 0,788$. $f(x_3) = f(0,737) = -1,811$ $f(x_4) = f(0,788) = -1,874$.

Так как $f(x_3) > f(x_4)$, тогда $a_3 = x_3 = 0,737$ $b_3 = b_2 = 1,525$ и получаем отрезок $\begin{bmatrix} a_3,b_3 \end{bmatrix} = \begin{bmatrix} 0,737;1,525 \end{bmatrix}$. Так как $b_3 - a_3 > \varepsilon$ продолжаем вычисления. Последующие вычисления занесены в таблицу 1.

Таблица 1.

k	a_k	x_{2k-1}	x_{2k}	b_k	$f(x_{2k-1})$	$f(x_{2k})$	$b_k - a_k$
1	0	1,475	1,525	3	-1,216	-1,028	3
2	0	0,737	0,788	1,525	-1,811	-1,874	1,525
3	0,737	1,106	1,156	1,525	- 1,965	-1,923	0,788
4	0,737	0,921	0,971	1,156	- 1,982	- 1,998	0,419
5	0,921	1,014	1,063	1,156	-1,999	-1,988	0,235
6	0,921	0,967	1,017	1,063	- 1,997	- 1,999	0,142
7	0,967			1,063			0,096

Для нахождения точки минимума с точностью нам пришлось 12 раз вычислять значения функции. В качестве приближения к точке минимума можно взять точку $\overline{x}_n = x_{12} = 1{,}017$ и $f(\overline{x}_n) = -1{,}999$ (так как $f(x_{11}) > f(x_{12})$) или точку

$$z_7 = \frac{a_7 + b_7}{2} = \frac{0,967 + 1,063}{2} = 1,015.$$

Используя классический подход:

$$f'(x) = 3x^2 - 3$$
; $f'(x) = 0 \Leftrightarrow x_{1,2} = \pm 1$; $f''(x) = 6x$; $f''(-1) < 0$, значит, $x_1 = -1$ — точка максимума $f''(1) > 0$, значит, $x_1 = 1$ — **точка минимума** и $f_{\min} = f(1) = -2$.

Алгоритм метода золотого сечения

Начальный этап

Пусть $[a_1,b_1]$ — отрезок, на котором находится минимум функции f(x). Задаем точность $\varepsilon > 0$. Строим точки

$$x_1 = a_1 + \frac{3 - \sqrt{5}}{2}(b_1 - a_1)$$
 и $x_2 = a_1 + \frac{\sqrt{5} - 1}{2}(b_1 - a_1)$

и вычисляем значения целевой функции $f(x_1), f(x_2)$, полагаем n = 1 и переходим к основному этапу.

Основной этап

Шаг 1. Если $b_n-a_n<\varepsilon$, останавливаемся, точка минимума \hat{x} принадлежит интервалу $\begin{bmatrix} a_n,b_n \end{bmatrix}$. В качестве \hat{x} можно принять $z_n=\frac{a_n+b_n}{2}$.

В противном случае, если отрезок $[a_n,b_n]$ построении и известна точка \overline{x}_n , тогда, если $a_n=a_{n-1}$, то переходим к шагу 2, если же $b_n=b_{n-1}$, то переходим к шагу 3.

Шаг 2. Строим точку $x_{n+1}=a_n+\frac{3-\sqrt{5}}{2}(b_n-a_n)$ и вычисляем $f(x_{n+1})$: если $f(x_{n+1})\leq f(\overline{x}_n)$, то полагаем $a_{n+1}=a_n$, $b_{n+1}=\overline{x}_n$, $\overline{x}_{n+1}=x_{n+1}$; если $f(x_{n+1})>f(\overline{x}_n)$, то полагаем $a_{n+1}=x_{n+1}$, $b_{n+1}=b_n$, $\overline{x}_{n+1}=\overline{x}_n$. Переходим к maxy 4.

Шаг 3. Строим точку $x_{n+1}=a_n+\frac{\sqrt{5}-1}{2}(b_n-a_n)$ и и вычисляем $f(x_{n+1})$: если $f(\overline{x}_n)\leq f(x_{n+1})$, то полагаем $a_{n+1}=a_n$, $b_{n+1}=x_{n+1}$, $\overline{x}_{n+1}=\overline{x}_n$; если $f(\overline{x}_n)>f(x_{n+1})$, то полагаем $a_{n+1}=\overline{x}_n$, $b_{n+1}=b_n$, $\overline{x}_{n+1}=x_{n+1}$. Переходим к maxy 4.

Шаг 4. Заменяем n на n+1 и переходим к *шагу 1*.

Пример. Методом *золотого сечения* найти минимум функции f(x) на отрезке

$$[a,b]$$
: $f(x) = x^3 - 3x$ на отрезке $[0,3]$.

Pешение. Пусть $\varepsilon=0,1$. Положим $a_1=a=0,b_1=b=3$. Определяем точки

$$x_1 = a_1 + \frac{3 - \sqrt{5}}{2}(b_1 - a_1) = 0 + \frac{3 - \sqrt{5}}{2}(3 - 0) \approx 1,146$$

$$x_2 = a_1 + \frac{\sqrt{5} - 1}{2}(b_1 - a_1) = 0 + \frac{\sqrt{5} - 1}{2}(3 - 0) \approx 1,854$$
.

Находим значения функции в полученных точках

$$f(x_1) = f(1,146) = -1,933$$
 $f(x_2) = f(1,854) = 0,812$.

Так как $f(x_1) \le f(x_2)$, тогда $a_2 = a_1 = 0$, $b_2 = x_2 = 1,854$, $\overline{x}_2 = x_1 = 1,146$ и получаем отрезок $[a_2,b_2] = [0;1,854]$ содержащий точку $\overline{x}_2 = 1,146$, которая осуществляет золотое сечение отрезка $[a_2,b_2]$ и является приближенным значением точки минимума. Так как $b_2 - a_2 > \varepsilon$ продолжаем вычисления.

На отрезке $[a_2,b_2]$ строим точку x_3 по формуле

$$x_3 = a_2 + \frac{3 - \sqrt{5}}{2}(b_2 - a_2) = 0 + \frac{3 - \sqrt{5}}{2}(1,854 - 0) = 0,708$$

(отрезок $[a_2,b_2]$ смещен в сторону левого конца $[a_1,b_1]$).

Находим значение $f(x_3)=-1,769$. Сравниваем значения целевой функции в точках x_3 и \overline{x}_2 : $f(x_3)=f(0,708)=-1,769>f(\overline{x}_2)=f(1,146)=-1,933$.

Строим отрезок $[a_3,b_3]$. В силу того, что $f(x_3) > f(\overline{x}_2)$ полагаем

$$a_3 = x_3 = 0,708$$
, $b_3 = b_2 = 1,854$, $\overline{x}_3 = \overline{x}_2 = 1,146$,

причем $f(\overline{x}_3) = \min(f(x_3); f(\overline{x}_2)) = \min(-1,769;-1,933) = -1,933$. Так как $b_3 - a_3 > \varepsilon$ продолжаем вычисления.

Строим точку x_4 по формуле:

$$x_4 = a_3 + \frac{\sqrt{5} - 1}{2}(b_3 - a_3) = 0,708 + \frac{\sqrt{5} - 1}{2}(1,854 - 0,708) = 1,416$$

(так как $f(x_3) > f(\overline{x}_2)$ и отрезок $[a_3,b_3]$ смещен в сторону правого конца $[a_2,b_2]$). Находим $f(x_4) = -1,408$ и т.д.

Все последующие вычисления занесены в таблицу 2.

Таблица 2.

k	a_k	x_{k+1}	\overline{x}_k	b_k	$f(x_{k+1})$	$f(\overline{x}_k)$	$b_k - a_k$
1	0	1,854	1,146	3	0,812	-1,933	3
2	0	0,708	1,146	1,854	- 1,769	-1,933	1,854
3	0,708	1,416	1,146	1,854	- 1,408	-1,933	1,146
4	0,708	0,979	1,146	1,416	- 1,999	-1,933	0,708
5	0,708	0,875	0,979	1,146	- 1,955	- 1,999	0,438
6	0,875	1,043	0,979	1,146	- 1,994	- 1,999	0,271
7	0,875	0,939	0,979	1,043	- 1,989	- 1,999	0,167
8	0,939	1,003	0,979	1,043	- 2,00	- 1,999	0,103
9	0,979	1,018	1,003	1,043	- 1,999	- 2,00	0,064

В качестве приближенного решения берем либо точку $\overline{x}_9 = 1,003$, либо точку $z_9 = \frac{a_9 + b_9}{2} = 1,011.$

Алгоритм метода Фибоначчи

Начальный этап

Шаг 1. Задать точность $\varepsilon > 0$ вычисления минимума целевой функции f(x) на отрезке $[a,b] = [a_1,b_1]$, положить $F_1 = F_2 = 1$.

Шаг 2. Положить k = 1.

Шаг 3. Вычислить $F_{k+2} = F_{k+1} + F_k$.

Шаг 4. Если $F_{k+1} \le \frac{b-a}{\varepsilon} \le F_{k+2}$, то полагаем n=k и переходим к *шагу* 5, в противном случае полагаем k=k+1 и переходим к *шагу* 3.

Шаг 5. Находим точки

$$u_1 = a_1 + \frac{F_n}{F_{n+2}}(b_1 - a_1); \quad v_1 = a_1 + \frac{F_{n+1}}{F_{n+2}}(b_1 - a_1).$$

Шаг 6. Вычислить значения целевой функции $f(u_1)$ и $f(v_1)$.

Если $f(u_1) \le f(v_1)$, то $a_2 = a_1, b_2 = v_1$. Переходим к *шагу* 7.

Если $f(u_1) > f(v_1)$, то $a_2 = u_1, b_2 = b_1$. Переходим к *шагу* 7.

Шаг 7. Полагаем k = 2.

Основной этап

Шаг 8.

- 1) Если $f(u_{k-1}) \le f(v_{k-1})$, вычисляем точку $u_k = a_k + \frac{F_{n-k+1}}{F_{n+2}}(b-a)$, вычисляем значение целевой функции $f(u_k)$ и переходим к maxy 9.
- 2) Если $f(u_{k-1}) > f(v_{k-1})$, то полагаем $u_k = v_{k-1}$, $f(u_k) = f(v_{k-1})$, $a_k = u_{k-1}$ и переходим к uu a v a

Шаг 9. Полагаем $v_k = u_{k-1}$, $f(v_k) = f(u_{k-1})$ и переходим к *шагу 11*.

Шаг 10. Вычисляем точку $v_k = a_k + \frac{F_{n-k+2}}{F_{n+2}}(b-a)$, вычисляем значение целевой функции $f(v_k)$ и переходим к *шагу 11*.

Шог 11 Еспи $f(v_k)$ и переходим к *шису* 11.

Шаг 11. Если $f(u_k) \le f(v_k)$, то полагаем $a_{k+1} = a_k$, $b_{k+1} = v_k$, переходим к *шагу* 12, в противном случае, $a_{k+1} = u_k$, $b_{k+1} = b_k$ и переходим к *шагу* 12.

Шаг 12. Если k < n , то полагаем k = k + 1 и переходим к шагу 8, в противном случае, полагаем $z_n = \frac{a_n + b_n}{2}$ и заканчиваем вычисления.

Алгоритм описан.

Пример. Методом **Фибоначчи** найти минимум функции f(x) на отрезке [a,b]:

$$f(x) = x^3 - 3x$$
 на отрезке [0,3].

$$F_{n+1} \le \frac{3}{0,1} \le F_{n+2} \iff F_{n+1} \le 30 \le F_{n+2}$$
.

Так как $F_8 = 21, F_9 = 34$, тогда $n+1=8 \Rightarrow n=7$.

Определяем точки

$$u_1 = 0 + \frac{F_7}{F_9}(3 - 0) = \frac{13}{34} \cdot 3 = 1{,}1471; \quad v_1 = 0 + \frac{F_8}{F_9}(3 - 0) = \frac{21}{34} \cdot 3 = 1{,}8529.$$

Находим $f(u_1) = -1,9319$; $f(v_1) = 0,803$. Так как $f(u_1) \le f(v_1)$, тогда полагаем $a_2 = a = 0, b_2 = v_1 = 1,8529$. Вычисляем

$$u_2 = a_2 + \frac{F_{7-2+1}}{F_{7+2}}(b-a) = 0 + \frac{F_6}{F_9}(3-0) = 0 + \frac{8}{34} \cdot 3 = 0,7059$$
 и $f(u_2) = -1,7659$.

Полагаем $v_2 = u_1 = 1,1471$, тогда $f(v_2) = f(u_1) = f(1,1471) = -1,9319$.

Так как $f(u_2) > f(v_2)$, полагаем $a_3 = u_2 = 0,7059$ и $b_3 = b_2 = 1,8529$. Далее полагаем $u_3 = v_2 = 1,1471$ и $f(u_3) = -1,9319$. Находим точку v_3

$$v_3 = a_3 + \frac{F_{7-3+2}}{F_{7+2}}(b-a) = 0,7059 + \frac{F_6}{F_9} \cdot 3 = 1,4118,$$

и вычисляем значение $f(v_3) = -1,4215$.

Так как $f(u_3) \le f(v_3)$, полагаем $a_4 = a_3, b_4 = v_3, v_4 = u_3$ и вычисляем точку

$$u_4 = a_4 + \frac{F_{7-4+1}}{F_0}(b-a) = 0,7059 + \frac{F_4}{F_0} \cdot 3 = 0,9706$$

и вычисляем значение $f(u_4) = -1,9974$.

Сравниваем значения $f(u_4)$ и $f(v_4)$ и т.д. Результаты вычислений занесены в таблицу 3.

Таблица 3

k	a_k	b_k	u_k	v_k	$f(u_k)$	$f(v_k)$
1	0	3	1,1471	1,8529	- 1,9319	0,803
2	0	1,8529	0,7059	1,1471	- 1,7659	- 1,9319
3	0,7059	1,8529	1,1471	1,4118	- 1,9319	- 1,4215
4	0,7059	1,4118	0,9706	1,1471	- 1,9974	- 1,9319
5	0,7059	1,1471	0,8824	0,9706	- 1,9601	- 1,9974
6	0,8824	1,1471	0,9706	1,0588	- 1,9974	- 1,9894
7	0,8824	1,0588	0,9706	0,9706	- 1,9974	- 1,9974

В качестве точки минимума может быть взята середина последнего отрезка

$$z_7 = \frac{a_7 + b_7}{2} = \frac{0,8824 + 1,0588}{2} = 0,9706 \approx 0,971$$
.