Introduction to Database Management Systems

Dr. Enosha Hettiarachchi

Structure

- □ Three-level database architecture.
- □ Contents of external, conceptual, and internal levels.
- Purpose of external/conceptual and conceptual/internal mappings.
- Meaning of logical and physical data independence.
- Distinction between DDL and DML.

Structure

- □ Purpose/importance of conceptual modeling.
- Typical functions and services a DBMS should provide.
- □ Software components of a DB manager.

Three-level ANSI/SPARC architecture

4

3 Level ANSI/SPARC Architecture

External level

User's view of the database.

Conceptual level

 Describes what data is stored in the database and the relationships among the data.

Internal level

Describes how the data is stored in the database.

Internal Level

- □ The physical representation of the database on the computer to achieve optimal runtime performance and storage space utilization.
 - Covers data structures and file organisations used to store data on the storage device.
 - Storage space allocation for data and indexes.

Conceptual Level

- □ This level contains the logical structure of the entire database. Provides a complete view of the data requirements of the organisation that is independent of any storage considerations.
- ☐ The conceptual level represents:
 - All entities, their attributes and their relationships
 - The constraints on the data
 - Security and integrity information

External Level

- Describes the part of the database that is relevant to the user.
- □ The external view includes only the entities, attributes or relationships in the 'real world' that the user is interested in.
- □ Different views have different representations of the same data.

External Level

■ External Views Allow to

- hide unauthorised data
 - e.g. salary, dob
- provide user view
 - e.g. view employee *name*, *designation*, *department* data taken from *employee* and *department* files
- derive new attributes
 - e.g. age derived from dob or nid

External Level

■ External Views Allow to

- change unit of measurement
 - e.g. show age in years or months
- define security levels
 - e.g. update access to *employee* file read-only to *department* file

Three-Level Architecture

- □ All users should be able to access same data but have a customized view of the data.
- □ A user's view is immune to changes made in other views.
- □ Users should not need to know physical database storage details (e.g. indexing or hashing).

Objectives of Three-Level Architecture

- □ DBA should be able to change database storage structures without affecting the users' views.
- □ DBA should be able to change conceptual structure of database without affecting all users.

Physical Level

• Managed by the operating system under the direction of the DBMS.

Consist of items only the OS knows.

Differences between Three Levels of ANSI-SPARC Architecture

Database Schema

- Overall description of the database is called the database schema.
- ☐ There are three different types of schema
 - External (Sub) Schema
 - defines the external view of data
 - as seen by a user or program
 - Conceptual Schema
 - defines the logical view of data
 - as seen by all users and programs
 - Internal Schema
 - defines the physical view of data
 - as seen by a DBMS

Mapping between Levels

- □ DBMS map or translate from one level to another.
 - External ⇔ Conceptual

External schema is related to the conceptual schema

Conceptual ⇔ Internal

Conceptual schema is related to the internal schema.

Data Independence

Logical Data Independence

- Refers to immunity of external schemas to changes in conceptual schema.
- Conceptual schema changes(e.g. addition/removal of entities).
- Should not require changes to external schema or rewrites of application programs.

Data Independence

Physical Data Independence

- Refers to immunity of conceptual schema to changes in the internal schema.
- Internal schema changes (e.g. using different file organizations, storage structures/devices).
- Should not require change to conceptual or external schemas.

Data Independence and the ANSI-SPARC Three-Level Architecture

Database Languages

□ Data Definition Language (DDL)

- Allows the DBA or user to describe and name entities, attributes, and relationships required for the application
- Plus any associated integrity and security constraints.

Database Languages

Data Manipulation Language (DML)

 Provides basic data manipulation operations on data held in the database.

■ Non-Procedural DML

 Allows user to state what data is needed rather than how it is to be retrieved.

Procedural DML

Allows user to tell system exactly how to manipulate data.

Functions of a DBMS

- Data Storage, Retrieval, and Update.
- □ A User-Accessible Catalog.
- □ Transaction Support.
- Concurrency Control Services.
- □ Recovery Services.

Functions of a DBMS

- Authorization Services.
- □ Integrity Services.
- □ Utility Services.

Components of Database Management System

Catalog Manager

The catalog manager manages access to and maintain the system catalog.

System Catalog

- □ Repository of information (metadata) describing the data in the database.
- ☐ Typically stores:
 - Names of authorized users;
 - Names, types, and sizes of data items in the database;
 - Names of relationships
 - Constraints on each data item;

System Catalog

- □ Data items accessible by a user and the type of access allowed (e.g. insert, delete, update or read access).
- □ External, conceptual and internal schemas and the mappings between the schemas.
- Used by modules such as Authorization Control and Integrity Checker.

System Catalog - Advantages

- Maintains control over the data as a resource.
- ☐ Helps other users understand the purpose of the data.
- □ Communication is simplified.
- □ Identifies the user/s who own or access the data.
- Security can be enforced.
- Integrity can be ensured

Components of DB Manager

Authorization Control

This module checks that the user has the necessary authorization to carry out the required operation.

Integrity Checker

For an operation that changes the database, the integrity checker checks that the requested operation satisfies all necessary integrity constraints.

Components of DB Manager

Scheduler

Responsible for ensuring that concurrent operations on the database proceed without conflicting with one another. It controls the relative order in which the transaction operations are executed.

□ Recovery Manager

Ensures that the database remains in a consistent state in the presence of failure.