Examenul de bacalaureat național 2014 Proba E. c)

Matematică *M_pedagogic* Simulare pentru elevii clasei a XII-a

Barem de evaluare și de notare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(2^5 - 1)(2^5 + 1) = 2^{10} - 1 =$	2 p
	=1024-1=1023	3 p
2.	$f(x) = x \Rightarrow 3x + 2 = x$	3 p
	$x_A = -1, \ y_A = -1$	2 p
3.	$x > 0$; $4\log_2 x = 12 \Rightarrow \log_2 x = 3$	3p
	x=8 care verifică ecuația	2 p
4.	$x + 24\% \cdot x = 186$, unde x este prețul imprimantei înainte de aplicarea TVA-ului	2p
	x = 150 de lei	3 p
5.	N este mijlocul segmentului $MP \Rightarrow 2 = \frac{3+a}{2}$ și $1 = \frac{4+b}{2}$	3p
	a=1 și $b=-2$	2 p
6.	AB = 3, $BC = 4$, $AC = 5$	3p
	$\cos A = \frac{3}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$2014 \circ 3 = (2014 - 3)(3 - 3) + 3 =$	3p
	= 3	2p
2.	$(x \circ y) \circ z = ((x-3)(y-3)+3) \circ z = (x-3)(y-3)(z-3)+3$	2p
	$x \circ (y \circ z) = x \circ ((y-3)(z-3)+3) = (x-3)(y-3)(z-3)+3 = (x \circ y) \circ z$, pentru orice numere	
	reale x , y şi z	3 p
3.	$x \circ e = (x-3)(e-3) + 3 = (e-3)(x-3) + 3 = e \circ x$, pentru orice număr real x	2p
	$x \circ e = x \Leftrightarrow (x-3)(e-4) = 0$ pentru orice număr real x, deci $e = 4$	3 p
4.	$x \circ 3 = (x-3)(3-3)+3=3$	2p
	$3 \circ x = (3-3)(x-3) + 3 = 3 = x \circ 3$ pentru orice număr real x	3 p
5.	$(x-3)((x+1)-3)+3=3 \Rightarrow (x-3)(x-2)=0$	3p
	$x_1 = 2, x_2 = 3$	2p
6.	$a \circ b = 4 \Rightarrow (a-3)(b-3) = 1$ şi $a,b \in \mathbb{Z} \Rightarrow a-3 = b-3 = 1$ sau $a-3 = b-3 = -1$	3p
	a = 4, $b = 4$ sau $a = 2$, $b = 2$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.	$\det(A(x,y)) = \begin{vmatrix} x & y \\ -y & x \end{vmatrix} =$	3 p	
	$=x^2+y^2=1$	2p	

2.	De exemplu, $A(1,0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	3p
	$1^2 + 0^2 = 1$	2p
3.	$A\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) + A\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} =$	2p
	$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	3 p
4.	$A(x,y) \cdot A(x,-y) = \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \begin{pmatrix} x & -y \\ y & x \end{pmatrix} =$	2p
	$= \begin{pmatrix} x^2 + y^2 & 0 \\ 0 & x^2 + y^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = A(1,0)$	3p
5.	$x^2 = 1$, $y^2 = 0 \Rightarrow x = 1$, $y = 0$ sau $x = -1$, $y = 0$	2p
	$x^2 = 0$, $y^2 = 1 \Rightarrow x = 0$, $y = 1$ sau $x = 0$, $y = -1$	2 p
	Mulțimea M conține 4 matrice care au toate elementele numere întregi	1p
6.	$p^2 + q^2 = 1 \Rightarrow -1 \le p \le 1 \Rightarrow (p-2)^2 \ge 1$ şi $-1 \le q \le 1 \Rightarrow (q+2)^2 \ge 1$	3 p
	$(p-2)^{2} + (q+2)^{2} \ge 2 \Rightarrow \begin{pmatrix} p-2 & q+2 \\ -(q+2) & p-2 \end{pmatrix} \notin M$	2p