Deep-unrolled Successive Convex Approximation for nonconvex sparse learning

Supervisor: prof. Paolo Di Lorenzo Examinee: Leonardo Di Nino (1919479)

Academic Year 2023/2024

Sparsity aware learning

1 The problem

$$\min_{\mathbf{x}} V(\mathbf{x}) = \frac{1}{2} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 + \lambda G(\mathbf{x}), \tag{1}$$

$$G(x) = \sum_{i} g_i(x) \text{ s.t. } \begin{cases} g(0) = 0 \\ g(x) \text{ is non decreasing in } [0, +\infty) \\ \frac{g(x)}{x} \text{ is non increasing in } [0, +\infty) \end{cases} \tag{2}$$

- Core of many learning problems in signal processing (compressive sensing, source separation, deblurring and super-resolution), machine learning (neural network training and pruning, low-rank matrix models) and digital communication (compressive random access, massive-MIMO channel estimation):
- Because of its relevance, many solving strategies have been proposed:
 - Iterative solvers (proximal methods, alternated optimization...);
 - Deep sparse coders via deep-unrolling

The classic approach: LASSO formulation

1 The problem

LASSO	Difference-of-convex Learning	
Proximal gradient descent	Successive Convex Approximation	
$G(\mathbf{x}) = \mathbf{x} _1$	$G(\mathbf{x}) = \sum_{i=1}^{m} g(x_i), g(x_i) = \eta(\theta) x_i - g^{-}(x_i)$	
$\mathbf{x}^{k+1} = \mathcal{S}_{rac{\lambda}{L}}\left[\mathbf{x}^k - rac{1}{L}\left(\mathbf{A}^T\mathbf{A}\mathbf{x}^k - \mathbf{A}^T\mathbf{y} ight) ight]$	$\mathbf{x}^{k+1} = \mathcal{S}_{\frac{\lambda \eta(\theta)}{L}} \left[\mathbf{x}^k - \frac{1}{L} \left(\mathbf{A}^T \mathbf{A} \mathbf{x}^k - \mathbf{A}^T \mathbf{y} + \lambda \Gamma_{\theta, \gamma}(\mathbf{x}^k) \right) \right]$	
$\mathbf{x}^{t+1} = \mathcal{S}_{eta^t}\{\mathbf{W}_1^t\mathbf{x}^t + \mathbf{W}_2^t\mathbf{y}\}$?	

Figure: Structure of an unrolled LISTA network

Nonconvex Sparsity Inducing Penalties: Difference-of-convex Learning

2 Methodological background

Figure: DC relaxations of ℓ_0 norm

Penalty function	g(x)	$\eta(\theta)$
Exp	$1 - e^{- heta \mathbf{x} }$	θ
$\ell_p(p<0)$	$1 - (\theta x + 1)^p$	$-p\theta$
SCAD	$ \begin{vmatrix} \frac{2\theta}{a+1} \mathbf{x} , & 0 \leq \mathbf{x} \leq \frac{1}{\theta} \\ -\frac{\theta^2 \mathbf{x} ^2 + 2a\theta \mathbf{x} - 1}{a^2 - 1}, & \frac{1}{\theta} < \mathbf{x} \leq \frac{a}{\theta} \\ 1, & \mathbf{x} > \frac{a}{\theta} \end{vmatrix} $	$\frac{2\theta}{a+1}$
Log	$\frac{\log(1+\theta x)}{\log(1+\theta)}$	$\frac{\theta}{\log(1+\theta)}$

Table: Functional forms for nonconvex relaxations of ℓ_0 norm enjoying a DC structure

The tool: Successive Convex Approximation

2 Methodological background

SCA aims at solving an optimization problem

$$\min_{\mathbf{x} \in \mathcal{X}} V(\mathbf{x}) \tag{3}$$

in an iterative way, defining at each iterate a strongly convex surrogate of the function whose parametrization depends on the design choices we make.

$$\mathbf{x}^{k+1} = \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmin}} \widetilde{V}(\mathbf{x}|\mathbf{x}^k, \theta^k)$$
 (4)

Nonconvex Sparsity Inducing Penalties: Difference-of-convex Learning

Figure: DC relaxations of ℓ_0 norm

Figure: Reconstruction error for different sparse learning algorithms

Towards nonconvex sparse learning

LASSO	Difference-of-convex Learning	
Proximal gradient descent	Successive Convex Approximation	
$G(\mathbf{x}) = \mathbf{x} _1$	$G(\mathbf{x}) = \sum_{i=1}^{m} g(x_i), g(x_i) = \eta(\theta) x_i - g^{-}(x_i)$	
L	$\mathbf{x}^{k+1} = \mathcal{S}_{\frac{\lambda\eta(\theta)}{L}}\left[\mathbf{x}^k - \frac{1}{L}\left(\mathbf{A}^T\mathbf{A}\mathbf{x}^k - \mathbf{A}^T\mathbf{y} + \lambda\Gamma_{\theta,\gamma}(\mathbf{x}^k)\right)\right]$	
$\mathbf{x}^{t+1} = \mathcal{S}_{eta^t}\{\mathbf{W}_1^t\mathbf{x}^t + \mathbf{W}_2^t\mathbf{y}\}$?	

From LISTA to ALISTA

Model	Recursion	Complexity	Key enabler
LISTA ¹	$\mathbf{x}^{t+1} = \mathcal{S}_{eta^t}\{\mathbf{W}_1^t\mathbf{x}^t + \mathbf{W}_2^t\mathbf{y}\}$	$\mathcal{O}(TM^2 + TNM + T)$	-
LISTA-CPSS ²	$\mathbf{x}^{t+1} = \mathcal{S}_{eta^t}\{\mathbf{x}^t + (\mathbf{W}^t)^T(\mathbf{y} - \mathbf{A}\mathbf{x}^t)\}$	$\mathcal{O}(\mathit{TNM} + \mathit{T})$	Necessary conditions of convergence
TiLISTA ³	$\mathbf{x}^{t+1} = \mathcal{S}_{eta^t}\{\mathbf{x}^t + \gamma^t \mathbf{W}^T (\mathbf{y} - \mathbf{A}\mathbf{x}^t)\}$	$\mathcal{O}(NM+T)$	Optimal upper bound
ALISTA ³	$ \begin{aligned} \mathbf{x}^{t+1} &= \mathcal{S}_{\beta^t} \{ \mathbf{x}^t + \gamma^t \overline{\mathbf{W}}^T (\mathbf{y} - \mathbf{A} \mathbf{x}^t) \}, \\ \overline{\mathbf{W}} &= \underset{\mathbf{W}}{\operatorname{argmin}} \mathbf{W}^T \mathbf{A} _F^2, \text{ s.t.} [\mathbf{W}]_{:,j}^T [\mathbf{A}]_{:,j} = 1, \forall j \end{aligned} $	$\mathcal{O}(T)$	on reconstruction error

¹Karol Gregor and Yann LeCun, Learning fast approximations of sparse coding, 2010.

²Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin, Theoretical linear convergence of unfolded ISTA and its practical weights and thresholds, 2018.

³ Jialin Liu, Xiaohan Chen, Zhangyang Wang, and Wotao Yin, ALISTA: Analytic weights are as good as learned weights in LISTA, 2019.

Training the models

2 Methodological background

- The synthetic experiments are designed to work in a **supervised way**. In particular we design training and test set $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^{S}$ in this way:
 - We sample and normalize a gaussian sensing matrix $\mathbf{A} \in \mathbb{R}^{M \times N}$, and fix it;
 - We sample gaussian underlying signals $x \in \mathbb{R}^N$ with an assumed fixed underlying sparsity;
 - We generate underdetermined linear observations y = Ax + w, being w gaussian noise according to a certain SNR.
- The learning task is formulated as $\min_{\Theta} \mathbb{E}\left[||\mathbf{x} \Phi_{\Theta}(\mathbf{y})||_2^2\right]$;
- Models are trained with a stratified approach on each layer:
 - 1. We solve for Θ^{τ} :

$$\min_{\boldsymbol{\Theta}^{\tau}} \mathbb{E}[||\mathbf{x} - \Phi_{\{\boldsymbol{\Theta}^{t}\}_{t=1}^{\tau}}(\mathbf{y})||]_{2}^{2}$$
 (5)

2. We fine-tune the network up to the layer τ by solving

$$\min_{\{\Theta^t\}_{t=1}^{\tau}} \mathbb{E}\left[||\mathbf{x} - \Phi_{\{\Theta^t\}_{t=1}^{\tau}}(\mathbf{y})||_2^2\right]$$
 (6)

From LISTA to ALISTA

Figure: SNR = ∞

Figure: SNR = 30 db

Figure: SNR = 40 db

Figure: SNR = 20 db

Learnable Difference of Convex ISTA

3 Proposed models

$$\mathbf{x}^{t+1} = \mathcal{S}_{rac{\lambda \eta(heta)}{L}} \left\{ \mathbf{x}^t - rac{1}{L} \mathbf{A}^T (\mathbf{A} \mathbf{x}^t - \mathbf{y}) + rac{\lambda}{L} \Gamma_{ heta^t, \gamma^t} (\mathbf{x}^t)
ight\}$$

- Ablation study for the parametrization
 Proved differentiability of the newly built layers

$$\mathbf{x}^{t+1} = \mathcal{S}_{\lambda^t \eta(heta^t)} \left\{ \mathbf{W}_1^t \mathbf{y} + \mathbf{W}_2^t \mathbf{x}^t + \lambda^t \Gamma_{ heta^t, \gamma^t}(\mathbf{x}^t)
ight\}$$

$$||x^t-x^*||_2 \leq sB\exp\left(-\sum_{k=0}^{t-1}c^k
ight),\ t=1,2,\dots$$

$$\mathbf{x}^{t+1} = \mathcal{S}_{\lambda^t \eta(heta^t)} \left\{ \mathbf{x}^t + \zeta^t \overline{\mathbf{W}}^T (\mathbf{y} - \mathbf{A} \mathbf{x}^t) + \lambda^t \Gamma_{ heta^t, \gamma^t} (\mathbf{x}^t)
ight\}$$

$$\overline{\mathbf{W}} = \operatorname*{argmin}_{--} ||\mathbf{W}^T \mathbf{A}||_F^2, \text{ s. t. } [\mathbf{W}]_{:,j}^T [\mathbf{A}]_{:,j} = 1, \forall \ j$$

Synthetic data results: reconstruction error

4 Results

-5 -10 NMSE (dB) -15-25 - ALISTA AL-DC-ISTA-EXP AL-DC-ISTA-PNEG AL-DC-ISTA-SCAD --- Training noise 15 20 25 30 35 SNR

Noiseless training, noisy test

Noisy training, noisy test

Synthetic data results: precision in support detection

4 Results

Real data results: reconstruction error in image denoising

- BSD500 (grayscaled, normalized, (16 x 16) patched and vectorized);
- Image denoising (patch-wise);
- $\mathbf{A} = (\mathcal{H}_{256} | \mathbb{I}_{256});$
- Models Φ_{Θ} are trained defining the following loss $\min_{\Theta} \mathbb{E}\left[||\mathbf{y} \mathbf{A}\Phi_{\Theta}(\tilde{\mathbf{y}})||_2^2\right]$, given a clean patch \mathbf{y} and its noisy version $\tilde{\mathbf{y}}$:

Figure: PSNR when varying SNR in test set

- We defined a new class of sparse coders hinging on difference-of-convex relaxations of ℓ_0 norm;
- We connected these models to the state-of-the-art proving theoretical results;
- We provided a model, AL-DC-ISTA, which is capable of outperforming ALISTA for what concerns certain metrics;
- We provided a primer on model-based deep learning architectures leveraging Successive Convex Approximation framework.

- Enlarge the framework to **convolutional sparse coding** to natively support structured data (images, sequences, graphs);
- Make the architecture robust to statistical model perturbations or even whole entangled dynamics;
- Define neural-building-blocks architecture hinging on modularity to enable block decompositions and support high-dimensional learning, possibly in distributed fashion.

Thank you for listening!
Any questions?