Load all needed libraries

```
In [1]: import numpy
    from scidbpy import connect, SciDBQueryError, SciDBArray
    import matplotlib.pyplot as plt
%matplotlib inline
```

Conenct to database

```
In [2]: sdb = connect('http://localhost:8080')
afl = sdb.afl
```

Load GOES time-array (1D)

```
In [3]: goes1 = sdb.wrap_array("GOES_1D")
    print goes1.datashape.schema

<low:float,high:float> [time=0:*,250000,0]
```

Calculate min.max, avg of blocks of 100'000 and 10'000 for both channels with the regrid opprator.

Out[4]: SciDBArray('py1101455645108_00002<MinLow:float NULL DEFAULT null, MaxLow:float NULL DEFAULT null, MaxHow:float NULL DEFAULT null, MinHigh:float NULL DEFAULT null, MaxHigh:float NULL DEFAULT null, AvgHigh:double NULL DEFAULT null> [time=0:1024,250000,0]')

Print the accumulated data in two plots for each aggregate/regrid.

```
In [5]: plt.figure(1,figsize=(17, 10))
        plt.subplot(221)
        plt.title('short channel')
        plt.plot(regrid array['MinLow'].toarray(),label="Min")
        plt.plot(regrid array['AvgLow'].toarray(),label="Avg")
        plt.plot(regrid_array['MaxLow'].toarray(),label="Max")
        plt.legend(['Min','Avg', 'Max'], loc='upper right')
        plt.yscale('log')
        plt.ylabel('XRS short channel')
        plt.xlabel('Pseudo-Time')
        plt.subplot(222)
        plt.title('long channel')
        plt.plot(regrid array['MinHigh'].toarray(),label="Min")
        plt.plot(regrid_array['AvgHigh'].toarray(),label="Avg")
        plt.plot(regrid array['MaxHigh'].toarray(),label="Max")
        plt.legend(['Min','Avg', 'Max'], loc='upper right')
        plt.yscale('log')
        plt.ylabel('XRS long channel')
        plt.xlabel('Pseudo-Time')
        plt.subplot(223)
        plt.title('short channel')
        plt.plot(regrid array small['MinLow'].toarray(),label="Min")
        plt.plot(regrid_array_small['AvgLow'].toarray(),label="Avg")
        plt.plot(regrid_array_small['MaxLow'].toarray(),label="Max")
        plt.legend(['Min','Avg', 'Max'], loc='upper right')
        plt.yscale('log')
        plt.ylabel('XRS short channel')
        plt.xlabel('Pseudo-Time')
        plt.subplot(224)
        plt.title('long channel')
        plt.plot(regrid_array_small['MinHigh'].toarray(),label="Min")
        plt.plot(regrid array small['AvgHigh'].toarray(),label="Avg")
        plt.plot(regrid array small['MaxHigh'].toarray(),label="Max")
        plt.legend(['Min','Avg', 'Max'], loc='upper right')
        plt.yscale('log')
        plt.ylabel('XRS long channel')
        plt.xlabel('Pseudo-Time')
        plt.show()
```


Show the data in a table with .todataframe() or .toarray() (everything) or with .head() for a quicklook at the first 5 elements

In [6]: regrid_array.head()

Out[6]:

	MinLow	MaxLow	AvgLow	MinHigh	MaxHigh	AvgHigh
time						
0	0.000000e+00	5.053200e-08	1.556387e-08	0.000000e+00	6.912800e-08	1.254149e-09
1	1.373600e-09	3.260400e-08	1.596485e-08	1.000000e-09	8.965700e-08	2.422489e-09
2	1.000000e-09	3.144700e-08	1.595151e-08	1.000000e-09	5.373000e-08	1.507428e-09
3	1.951900e-09	7.540800e-07	1.657825e-08	1.000000e-09	4.149400e-06	1.634411e-08
4	1.000000e-09	3.029000e-08	8.453168e-09	1.000000e-09	4.474800e-08	6.630697e-09

Disconnect from SciDB

In [7]: sdb.reap()