《高等数学 I(2)》考试卷(A)

使用专业、班级_____ 学号 姓名

题号	 11	11.1	四	五.	六	七	总分
得分							

一、填空题(每小题 4 分, 共 20 分) 得分

- (1) 向量 $\mathbf{a} = (4, -3, 4)$ 在向量 $\mathbf{b} = (2, 2, 1)$ 上的投影 $\text{prj}_{\mathbf{b}}\mathbf{a} =$
- (2) 设 z = z(x, y) 是由 $xyz + \sqrt{x^2 + y^2 + z^2} = \sqrt{2}$ 所确定的隐函数,则 $dz|_{(10)} =$
- (3) 交换积分次序: $\int_0^2 dy \int_{y^2}^{2y} f(x, y) dx =$ ______
- (4) 设 L 为圆周 $x^2 + y^2 = a^2$, 则曲线积分 $\iint_L (x+y)^2 ds =$
- (5) 幂级数 $\sum_{n=2}^{\infty} \frac{n}{2^n} x^n$ 的收敛区间是

二、单项选择题(每小题 4 分, 共 20 分)

- (1)曲线 $\left\{ \frac{x^2}{4} \frac{z^2}{5} = 1 \right\}$ 综 z 轴旋转而成的旋转曲面的方程为
- (A) $\frac{x^2 + y^2}{4} \frac{z^2}{5} = 1$. (B) $\frac{x^2}{4} \frac{y^2 + z^2}{5} = 1$. (C) $\frac{(x y)^2}{4} \frac{z^2}{5} = 1$. (D) $\frac{x^2}{4} \frac{(y + z)^2}{5} = 1$.

- (2) 已知点 A(1,0,1), B(3,-2,2), 则函数 $u = \ln\left(x + \sqrt{y^2 + z^2}\right)$ 在点 A 处沿方向 \overrightarrow{AB} 的方向导数为 (A) $\frac{3}{2}$. (B) 1. (C) $\frac{1}{2}$. (D) 0.

- (3) 设 Σ 是圆锥体 $\sqrt{x^2+y^2} \le z \le 1$ 整个表面的外侧, 则 $\iint xy^2 dydz + 3yz^2 dzdx + (zx^2-z^3)dxdy$ 等于

- (A) $\frac{\pi}{2}$. (B) $\frac{\pi}{3}$. (C) $\frac{\pi}{6}$. (D) $\frac{\pi}{10}$.

- (4) 设 Ω 是半球体 $x^2 + y^2 + z^2 \le 1$, $x \ge 0$, Ω 是 Ω 在第一卦限的部分,则必有

 - (A) $\iiint_{\Omega} x dv = 4 \iiint_{\Omega_{l}} x dv.$ (B) $\iiint_{\Omega} y dv = 4 \iiint_{\Omega_{l}} y dv.$

 - (C) $\iiint_{\Omega} z dv = 4 \iiint_{\Omega_{i}} z dv.$ (D) $\iiint_{\Omega} xyz dv = 4 \iiint_{\Omega_{i}} xyz dv.$
- 1

1

- (5) 设常数 k > 0, 则级数 $\sum_{n=1}^{\infty} (-1)^n \frac{n+k}{n^2}$
 - (A)绝对收敛.

(C) 发散.

- (B) 条件收敛.
- (D) 收敛性与 k 有关.

三、计算下列各题(每小题7分,共28分)

(1) 设 $z = f(2x - y, y \sin x)$, 其中 f 具有连续的二阶偏导数, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

(2) 计算二重积分 $\iint_{\Sigma} (x^2 + y^2 + 3y + 4) d\sigma$, 其中 D 是单位圆 $x^2 + y^2 \le 1$.

考试形式开卷()、闭卷(√)开课教研室 大学数学部 命题教师 命题组 命题时间 2012-5-28 使用学期 11-12-2 总张数 3 教研室主任审核签字

(3) 求抛物面壳 $z = \frac{1}{2}(x^2 + y^2)$ (0 $\leq z \leq 1$) 的质量, 此壳的面密度为 $\mu = z$.

本题得分

四、(本题 9 分) 将函数 $f(x) = \ln(6-x-x^2)$ 展开成 x 的幂级数.

(4) 求过点 A(1,2,1) 且与两直线 $\begin{cases} x+2y-z+1=0\\ x-y+z-1=0 \end{cases}$ 和 $\frac{x-2}{3} = \frac{y+1}{1} = \frac{z}{-2}$ 都平行的平面方程.

本题 得分 五、(本题 9 分) 将正数 a 分成三个正数 x,y,z 之和, 使得 $x^m y^n z^p$ 最大, 其中 m,n,p 为正常数.