Multivariate Linear Regression

Max Turgeon

STAT 7200-Multivariate Statistics

Objectives

- Introduce the linear regression model for a multivariate outcome
- · Discuss inference for the regression parameters
- · Discuss model selection
- · Discuss influence measures

Multivariate Linear Regression model

- · We are interested in the relationship between p outcomes Y_1, \ldots, Y_p and q covariates X_1, \ldots, X_q .
 - · We will write $\mathbf{Y}=(Y_1,\ldots,Y_p)$ and $\mathbf{X}=(1,X_1,\ldots,X_q)$.
- · We will assume a linear relationship:
 - $E(\mathbf{Y} \mid \mathbf{X}) = B^T \mathbf{X}$, where B is a $(q+1) \times p$ matrix of regression coefficients.
- We will also assume homoscedasticity:
 - $\cdot \operatorname{Cov}(\mathbf{Y} \mid \mathbf{X}) = \Sigma$, where Σ is positive-definite.
 - · In other words, the (conditional) covariance of ${\bf Y}$ does not depend on ${\bf X}$.

3

Relationship with Univariate regression i

- · Let σ_i^2 be the *i*-th diagonal element of Σ .
- Let β_i be the *i*-th column of B.
- \cdot From the model above, we get p univariate regressions:
 - $\cdot E(Y_i \mid \mathbf{X}) = \mathbf{X}^T \beta_i;$
 - · $Var(Y_i \mid \mathbf{X}) = \sigma_i^2$.
- However, we will use the correlation between outcomes for hypothesis testing
- This follows from the assumption that each component Y_i is linearly associated with the same covariates ${\bf X}$.

/.

Relationship with Univariate regression ii

- If we assumed a different set of covariates \mathbf{X}_i for each outcome Y_i and still wanted to use the correlation between the outcomes, we would get the Seemingly Unrelated Regressions (SUR) model.
 - · This model is sometimes used by econometricians.

Least-Squares Estimation i

- · Let $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ be a random sample of size n, and let $\mathbf{X}_1, \dots, \mathbf{X}_n$ be the corresponding sample of covariates.
- We will write $\mathbb Y$ and $\mathbb X$ for the matrices whose i-th row is $\mathbf Y_i$ and $\mathbf X_i$, respectively.
 - · We can then write $E(\mathbb{Y} \mid \mathbb{X}) = \mathbb{X}B$.
- For Least-Squares Estimation, we will be looking for the estimator \hat{B} of B that minimises a least-squares criterion:
 - $LS(B) = \operatorname{tr} \left[(\mathbb{Y} \mathbb{X}B)^T (\mathbb{Y} \mathbb{X}B) \right]$
 - Note: This criterion is also known as the (squared) Frobenius norm; i.e. $LS(B)=\|\mathbb{Y}-\mathbb{X}B\|_F^2$.

6

Least-Squares Estimation ii

- Note 2: If you expand the matrix product and look at the diagonal, you can see that the Frobenius norm is equivalent to the sum of the squared entries.
- \cdot To minimise LS(B), we could use matrix derivatives...
- Or, we can expand the matrix product along the diagonal and compute the trace.
- · Let $\mathbf{Y}_{(j)}$ be the j-th column of $\mathbb{Y}.$

Least-Squares Estimation iii

· In other words, $\mathbf{Y}_{(j)} = (Y_{1j}, \dots, Y_{nj})$ contains the n values for the outcome Y_j . We then have

$$LS(B) = \operatorname{tr} \left[(\mathbb{Y} - \mathbb{X}B)^T (\mathbb{Y} - \mathbb{X}B) \right]$$
$$= \sum_{j=1}^p (\mathbf{Y}_{(j)} - \mathbb{X}\beta_j)^T (\mathbf{Y}_{(j)} - \mathbb{X}\beta_j)$$
$$= \sum_{j=1}^p \sum_{i=1}^n (Y_{ij} - \beta_j^T \mathbf{X}_i)^2.$$

• For each j, the sum $\sum_{i=1}^n (Y_{ij} - \beta_j^T \mathbf{X}_i)^2$ is simply the least-squares criterion for the corresponding univariate linear regression.

8

Least-Squares Estimation iv

$$\cdot \hat{\beta}_j = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbf{Y}_{(j)}$$

• But since LS(B) is a sum of p positive terms, each minimised at $\hat{\beta}_j$, the whole is sum is minimised at

$$\hat{B} = \begin{pmatrix} \hat{\beta}_1 & \cdots & \hat{\beta}_p \end{pmatrix}.$$

Or put another way:

$$\hat{B} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y}.$$

q

Comments i

- \cdot We still have not made any distributional assumptions on Y.
 - We do not need to assume normality to derive the least-squares estimator.
- The least-squares estimator is unbiased:

$$E(\hat{B} \mid \mathbb{X}) = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X} E(\mathbb{Y} \mid \mathbb{X})$$
$$= (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{X} B$$
$$= B.$$

Comments ii

• We did not use the covariance matrix Σ anywhere in the estimation process. But note that:

$$\operatorname{Cov}(\hat{\beta}_{i}, \hat{\beta}_{j}) = \operatorname{Cov}\left((\mathbb{X}^{T}\mathbb{X})^{-1}\mathbb{X}^{T}\mathbf{Y}_{(i)}, (\mathbb{X}^{T}\mathbb{X})^{-1}\mathbb{X}^{T}\mathbf{Y}_{(j)}\right)$$

$$= (\mathbb{X}^{T}\mathbb{X})^{-1}\mathbb{X}^{T}\operatorname{Cov}\left(\mathbf{Y}_{(i)}, \mathbf{Y}_{(j)}\right)\left((\mathbb{X}^{T}\mathbb{X})^{-1}\mathbb{X}^{T}\right)^{T}$$

$$= (\mathbb{X}^{T}\mathbb{X})^{-1}\mathbb{X}^{T}\left(\sigma_{ij}I_{n}\right)\mathbb{X}(\mathbb{X}^{T}\mathbb{X})^{-1}$$

$$= \sigma_{ij}(\mathbb{X}^{T}\mathbb{X})^{-1},$$

where σ_{ij} is the (i,j)-th entry of Σ .

Example i

```
# Let's revisit the plastic film data
library(heplots)
library(tidyverse)
Y <- Plastic %>%
  select(tear, gloss, opacity) %>%
  as.matrix
X <- model.matrix(~ rate, data = Plastic)</pre>
head(X)
```

Example ii

```
(B_hat <- solve(crossprod(X)) %*% t(X) %*% Y)
```

Example iii

##

```
##
              tear gloss opacity
## (Intercept) 6.49 9.57 3.79
## rateHigh 0.59 -0.51 0.29
# Compare with lm output
fit <- lm(cbind(tear, gloss, opacity) ~ rate,
         data = Plastic)
coef(fit)
```

tear gloss opacity

(Intercept) 6.49 9.57 3.79 ## rateHigh 0.59 -0.51 0.29

Geometry of LS i

- · Let $P = \mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T$.
- $\cdot P$ is symmetric and idempotent:

$$P^2 = \mathbb{X}(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{X}(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T = \mathbb{X}(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T = P.$$

- · Let $\hat{\mathbb{Y}}=\mathbb{X}\hat{B}$ be the fitted values, and $\hat{\mathbb{E}}=\mathbb{Y}-\hat{\mathbb{Y}}$, the residuals.
 - · We have $\hat{\mathbb{Y}} = P\mathbb{Y}$.
 - · We also have $\hat{\mathbb{E}} = (I P)\mathbb{Y}$.

Geometry of LS ii

· Putting all this together, we get

$$\hat{\mathbb{Y}}^T \hat{\mathbb{E}} = (P \mathbb{Y})^T (I - P) \mathbb{Y}$$

$$= \mathbb{Y}^T P (I - P) \mathbb{Y}$$

$$= \mathbb{Y}^T (P - P^2) \mathbb{Y}$$

$$= 0.$$

- In other words, the fitted values and the residuals are orthogonal.
- · Similarly, we can see that $\mathbb{X}^T \hat{\mathbb{E}} = 0$ and $P\mathbb{X} = \mathbb{X}$.
- Interpretation: $\hat{\mathbb{Y}}$ is the orthogonal projection of \mathbb{Y} onto the column space of $\mathbb{X}.$

Example (cont'd) i

```
Y_hat <- fitted(fit)
residuals <- residuals(fit)

crossprod(Y_hat, residuals)</pre>
```

```
## tear gloss opacity
## tear 1.776357e-15 -1.998401e-15 1.776357e-15
## gloss -8.881784e-16 -1.998401e-15 -1.065814e-14
## opacity -4.440892e-16 -1.887379e-15 1.776357e-15
```

```
crossprod(X, residuals)
```

Example (cont'd) ii

```
gloss opacity
##
                      tear
## (Intercept) 1.110223e-16 -3.330669e-16 -4.440892e-16
## rateHigh 3.330669e-16 -3.330669e-16 -4.440892e-16
# Is this really zero?
isZero <- function(mat) {
 all.equal(mat, matrix(0, ncol = ncol(mat),
                       nrow = nrow(mat)),
           check.attributes = FALSE)
isZero(crossprod(Y_hat, residuals))
```

Example (cont'd) iii

```
## [1] TRUE

isZero(crossprod(X, residuals))

## [1] TRUE
```

Maximum Likelihood Estimation i

 \cdot We now introduce distributional assumptions on Y:

$$\mathbf{Y} \mid \mathbf{X} \sim N_p(B^T\mathbf{X}, \Sigma).$$

- This is the same conditions on the mean and covariance as above. The only difference is that we now assume the residuals are normally distributed.
- \cdot Note: The distribution above is conditional on X. It could happen that the marginal distribution of Y is not normal.

Maximum Likelihood Estimation ii

- Theorem: Suppose $\mathbb X$ has full rank q+1, and assume that $n\geq q+p+1$. Then the least-squares estimator $\hat B=(\mathbb X^T\mathbb X)^{-1}\mathbb X^T\mathbb Y$ of B is also the maximum likelihood estimator. Moreover, we have
 - 1. \hat{B} is normally distributed.
 - 2. The maximum likelihood estimator for Σ is $\hat{\Sigma} = \frac{1}{n}\hat{\mathbb{E}}^T\hat{\mathbb{E}}$.
 - 3. $n\hat{\Sigma}$ follows a Wishart distribution $W_p(n-q-1,\Sigma)$ on n-q-1 degrees of freedom.
 - 4. The maximised likelihood is $L(\hat{B},\hat{\Sigma})=(2\pi)^{-np/2}|\hat{\Sigma}|^{-n/2}\exp(-pn/2).$

Maximum Likelihood Estimation iii

• Note: Looking at the degrees of freedom of the Wishart distribution, we can infer that $\hat{\Sigma}$ is a biased estimator of Σ . An unbiased estimator is

$$S = \frac{1}{n - q - 1} \hat{\mathbb{E}}^T \hat{\mathbb{E}}.$$

Example i

library(heplots)

head(NLSY)

```
math read antisoc hyperact income educ
##
## 1 50.00 45.24
                       4
                                           14
                                3 52.518
## 2 28.57 28.57
                                0 42,600 12
                       0
## 3 50.00 53.57
                                2 50.000 12
                                           12
## 4 32.14 34.52
                       0
                                2 6.082
## 5 21.43 22.62
                       0
                                2 7.410
                                           14
## 6 15,48 40,48
                                0 12,988
                                           12
```

Example ii

```
## math read
## (Intercept) 8.7828704 15.88479888
## income 0.0893217 0.01366238
## educ 1.2755492 0.94949980
```

Example iii

```
range(NLSY$income)
## [1] 0.000 146.942
range(NLSY$educ)
## [1] 6 20
```

Confidence and Prediction Regions i

- Suppose we have a new observation \mathbf{X}_0 . We are interested in making predictions and inference about the corresponding outcome vector \mathbf{Y}_0 .
- \cdot First, since \hat{B} is an unbiased estimator of B, we see that

$$E(\mathbf{X}_0^T \hat{B}) = \mathbf{X}_0^T E(\hat{B}) = \mathbf{X}_0^T B = E(\mathbf{Y}_0).$$

Therefore, it makes sense to estimate \mathbf{Y}_0 using $\mathbf{X}_0^T \hat{B}$.

· What is the estimation error? Let's look at the covariance of $\mathbf{X}_0^T \hat{\beta}_i$ and $\mathbf{X}_0^T \hat{\beta}_j$

$$\operatorname{Cov}\left(\mathbf{X}_{0}^{T}\hat{\beta}_{i}, \mathbf{X}_{0}^{T}\hat{\beta}_{j}\right) = \mathbf{X}_{0}^{T}\operatorname{Cov}\left(\hat{\beta}_{i}, \hat{\beta}_{j}\right)\mathbf{X}_{0}$$
$$= \sigma_{ij}\mathbf{X}_{0}^{T}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}_{0}.$$

Confidence and Prediction Regions ii

- What is the forecasting error? In that case, we also need to take into account the extra variation coming from the residuals.
- · In other words, we also need to sample a new "error" term $\mathbf{E}_0 = (E_{01}, \dots, E_{0p})$ independently of \mathbf{X}_0 . · Let $\tilde{\mathbf{Y}}_0 = \mathbf{X}_0^T B + \mathbf{E}_0$ be the new value.
- · The forecast error is given by

$$\tilde{\mathbf{Y}}_0 - \mathbf{X}_0^T \hat{B} = \mathbf{E}_0 - \mathbf{X}_0^T (\hat{B} - B).$$

· Since $E(\tilde{\mathbf{Y}}_0 - \mathbf{X}_0^T \hat{B}) = 0$, we can still deduce that $\mathbf{X}_0^T \hat{B}$ is an unbiased predictor of \mathbf{Y}_0 .

Confidence and Prediction Regions iii

 Now let's look at the covariance of the forecast errors in each component:

$$E\left[\left(\tilde{Y}_{0i} - \mathbf{X}_{0}^{T}\hat{\beta}_{i}\right)\left(\tilde{Y}_{0j} - \mathbf{X}_{0}^{T}\hat{\beta}_{j}\right)\right]$$

$$= E\left[\left(E_{0i} - \mathbf{X}_{0}^{T}(\hat{\beta}_{i} - \beta_{i})\right)\left(E_{0j} - \mathbf{X}_{0}^{T}(\hat{\beta}_{j} - \beta_{j})\right)\right]$$

$$= E(E_{0i}E_{0j}) + \mathbf{X}_{0}^{T}E\left[\left(\hat{\beta}_{i} - \beta_{i}\right)\left(\hat{\beta}_{j} - \beta_{j}\right)\right]\mathbf{X}_{0}$$

$$= \sigma_{ij} + \sigma_{ij}\mathbf{X}_{0}^{T}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}_{0}$$

$$= \sigma_{ij}\left(1 + \mathbf{X}_{0}^{T}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}_{0}\right).$$

• Therefore, we can see that the difference between the estimation error and the forecasting error is σ_{ij} .

Example i

```
# Recall our model for Plastic
fit <- lm(cbind(tear, gloss, opacity) ~ rate,
          data = Plastic)
new_x <- data.frame(rate = factor("High",</pre>
                                   levels = c("Low",
                                               "High")))
(prediction <- predict(fit, newdata = new x))</pre>
## tear gloss opacity
## 1 7.08 9.06 4.08
```

Example ii

```
X <- model.matrix(fit)</pre>
S <- crossprod(resid(fit))/(nrow(Plastic) - ncol(X))</pre>
new x <- model.matrix(~rate, new x)</pre>
quad_form <- drop(new_x %*% solve(crossprod(X)) %*%</pre>
                      t(new x)
# Estimation covariance
(est cov <- S * quad form)
```

Example iii

```
## tear gloss opacity
## tear 0.014027778 0.003994444 -0.006083333
## gloss 0.003994444 0.021027778 0.014716667
## opacity -0.006083333 0.014716667 0.409916667
```

```
# Forecasting covariance
(fct_cov <- S *(1 + quad_form))</pre>
```

```
## tear gloss opacity
## tear 0.15430556 0.04393889 -0.06691667
## gloss 0.04393889 0.23130556 0.16188333
## opacity -0.06691667 0.16188333 4.50908333
```

Example iv

```
# Estimation CIs
cbind(drop(prediction) - 1.96*sqrt(diag(est cov)),
      drop(prediction) + 1.96*sqrt(diag(est cov)))
##
                \lceil ,1 \rceil \qquad \lceil ,2 \rceil
## tear 6.847860 7.312140
## gloss 8.775781 9.344219
## opacity 2.825115 5.334885
# Forecasting CIs
```

cbind(drop(prediction) - 1.96*sqrt(diag(fct_cov)),

drop(prediction) + 1.96*sqrt(diag(fct cov)))

Example v

```
## [,1] [,2]
## tear 6.31007778 7.849922
## gloss 8.11735297 10.002647
## opacity -0.08198204 8.241982
```

Likelihood Ratio Tests i

- We can use a Likelihood Ratio test to assess the evidence in support of two nested models.
- · Write

$$B = \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}, \quad \mathbb{X} = \begin{pmatrix} \mathbb{X}_1 & \mathbb{X}_2 \end{pmatrix},$$

where B_1 is $(r+1) \times p$, B_2 is $(q-r) \times p$, \mathbb{X}_1 is $n \times (r+1)$, \mathbb{X}_2 is $n \times (q-r)$, and $r \geq 0$ is a non-negative integer.

Likelihood Ratio Tests ii

We want to compare the following models:

Full model :
$$E(\mathbf{Y} \mid \mathbf{X}) = B^T \mathbf{X}$$

Nested model : $E(\mathbf{Y} \mid \mathbf{X}_1) = B_1^T \mathbf{X}_1$

 According to our previous theorem, the corresponding maximised likelihoods are

$$\begin{aligned} & \text{Full model} : L(\hat{B}, \hat{\Sigma}) = (2\pi)^{-np/2} |\hat{\Sigma}|^{-n/2} \exp(-pn/2) \\ & \text{Nested model} : L(\hat{B}_1, \hat{\Sigma}_1) = (2\pi)^{-np/2} |\hat{\Sigma}_1|^{-n/2} \exp(-pn/2) \end{aligned}$$

Likelihood Ratio Tests iii

 Therefore, taking the ratio of the likelihoods of the nested model to the full model, we get

$$\Lambda = \frac{L(\hat{B}_1, \hat{\Sigma}_1)}{L(\hat{B}, \hat{\Sigma})} = \left(\frac{|\hat{\Sigma}|}{|\hat{\Sigma}_1|}\right)^{n/2}.$$

· Or equivalently, we get Wilks' lambda statistic:

$$\Lambda^{2/n} = \frac{|\hat{\Sigma}|}{|\hat{\Sigma}_1|}.$$

• As discussed in the lecture on MANOVA, there is no closed-form solution for the distribution of this statistic under the null hypothesis $H_0:B_2=0$, but there are many approximations.

Likelihood Ratio Tests iv

· Two important special cases:

- When r=0, we are testing the full model against the empty model (i.e. only the intercept).
- When \mathbb{X}_2 only contains one covariate, we are testing the full model against a simpler model without that covariate. In other words, we are testing for the *significance* of that covariate.

Other Multivariate Test Statistics i

- The Wilks' lambda statistic can actually be expressed in terms of the (generalized) eigenvalues of a pair of matrices (H,E):
 - $E=n\hat{\Sigma}$ is the **error** matrix.
 - $\cdot \ H = n(\hat{\Sigma}_1 \hat{\Sigma})$ is the **hypothesis** matrix.
- Under our assumptions about the rank of $\mathbb X$ and the sample size, E is (almost surely) invertible, and therefore we can look at the nonzero eigenvalues of HE^{-1} :
 - · Let $\eta_1 \ge \cdots \ge \eta_s$ be those nonzero eigenvalues, where $s = \min(p, q r)$.
 - Equivalently, these eigenvalues are the nonzero roots of the determinantal equation $\det\left((\hat{\Sigma}_1-\hat{\Sigma})-\eta\hat{\Sigma}\right)=0.$

Other Multivariate Test Statistics ii

Recall the four classical multivariate test statistics:

$$\begin{aligned} \text{Wilks' lambda} : \prod_{i=1}^s \frac{1}{1+\eta_i} &= \frac{|E|}{|E+H|} \\ \text{Pillai's trace} : \sum_{i=1}^s \frac{\eta_i}{1+\eta_i} &= \operatorname{tr}\left(H(H+E)^{-1}\right) \\ \text{Hotelling-Lawley trace} : \sum_{i=1}^s \eta_i &= \operatorname{tr}\left(HE^{-1}\right) \\ \text{Roy's largest root} : \frac{\eta_1}{1+\eta_1} \end{aligned}$$

• Under the null hypothesis $H_0: B_2=0$, all four statistics can be well-approximated using the F distribution.

Other Multivariate Test Statistics iii

- Note: When r = q 1, all four tests are equivalent.
- In general, as the sample size increases, all four tests give similar results. For finite sample size, Roy's largest root has good power only if there the leading eigenvalue η_1 is significantly larger than the other ones.

Example i

Example ii

			approx	num		
	Df	Wilks	F	Df	den Df	Pr(>F)
(Intercept)	1	0.09	1243.04	2	237	0.00
income	1	0.93	9.19	2	237	0.00
educ	1	0.95	6.57	2	237	0.00
antisoc	1	0.99	1.16	2	237	0.31
hyperact	1	0.99	1.74	2	237	0.18
Residuals	238	NA	NA	NA	NA	NA

Example iii

pander(anova(full_model, test = "Roy"))

			approx	num		
	Df	Roy	F	Df	den Df	Pr(>F)
(Intercept)	1	10.49	1243.04	2	237	0.00
income	1	0.08	9.19	2	237	0.00
educ	1	0.06	6.57	2	237	0.00
antisoc	1	0.01	1.16	2	237	0.31
hyperact	1	0.01	1.74	2	237	0.18
Residuals	238	NA	NA	NA	NA	NA

Example iv

```
# Visualize the error and hypothesis ellipses
heplot(full_model)
```

Example v

Example vi

				approx	num		
Res.Df	Df	Gen.var.	Wilks	F	Df	den Df	Pr(>F)
238	NA	82.87	NA	NA	NA	NA	NA
240	2	83.18	0.98	1.44	4	474	0.22

Example vii

				approx	num		
Res.Df	Df	Gen.var.	Roy	F	Df	den Df	Pr(>F)
238	NA	82.87	NA	NA	NA	NA	NA
240	2	83.18	0.02	2.64	2	238	0.07

Example viii

[1] 0.022196515 0.002277582

Information Criteria i

- We can use hypothesis testing for model building:
 - Add covariates that significantly improve the model (forward selection);
 - · Remove non-significant covariates (backward elimination).
- · Another approach is to use *Information Criteria*.
- The general form of Akaike's information criterion:

$$-2\log L(\hat{B}, \hat{\Sigma}) + 2d,$$

where d is the number of parameters to estimate.

• In multivariate regression, this would be d=(q+1)p+p(p+1)/2.

Information Criteria ii

• Therefore, we get (up to a constant):

$$AIC = n \log |\hat{\Sigma}| + 2(q+1)p + p(p+1).$$

- The intuition behind AIC is that it estimates the Kullback-Leibler divergence between the posited model and the true data-generating mechanism.
 - · So smaller is better.
- Model selection using information criteria proceeds as follows:
 - 1. Select models of interest $\{M_1,\ldots,M_K\}$. They do not need to be nested, and they do not need to involve the same variables.
 - 2. Compute the AIC for each model.
 - 3. Select the model with the smallest AIC.

Information Criteria iii

- The set of interesting models should be selected using domain-specific knowledge when possible.
 - If it is not feasible, you can look at all possible models between the empty model and the full model.
- There are many variants of AIC, each with their own trade-offs.
 - For more details, see Timm (2002) Section 4.2.d.

Example (cont'd) i

```
## AIC(full_model)
# Error in logLik.lm(full_model):
# 'logLik.lm' does not support multiple responses
class(full_model)
## [1] "mlm" "lm"
```

Example (cont'd) ii

```
logLik.mlm <- function(object, ...) {</pre>
  resids <- residuals(object)</pre>
  Sigma ML <- crossprod(resids)/nrow(resids)</pre>
  ans <- sum(mvtnorm::dmvnorm(resids, log = TRUE,
                                  sigma = Sigma ML))
  df <- prod(dim(coef(object))) +</pre>
    choose(ncol(Sigma ML) + 1, 2)
  attr(ans, "df") <- df</pre>
  class(ans) <- "logLik"</pre>
  return(ans)
```

Example (cont'd) iii

```
logLik(full_model)
## 'log Lik.' -1757.947 (df=13)
AIC(full_model)
## [1] 3541.894
AIC(rest_model)
## [1] 3539.781
```

Example of model selection i

```
# Model selection for Plastic data
lhs <- "cbind(tear, gloss, opacity) ~"</pre>
rhs_form <- c("1", "rate", "additive".</pre>
               "rate+additive", "rate*additive")
purrr::map df(rhs form, function(rhs) {
  form <- formula(paste(lhs, rhs))</pre>
  fit <- lm(form, data = Plastic)</pre>
  return(data.frame(model = rhs, aic = AIC(fit),
                     stringsAsFactors = FALSE))
})
```

Example of model selection ii

Multivariate Influence Measures i

· Earlier we introduced the projection matrix

$$P = \mathbb{X}(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T$$

and we noted that $\hat{\mathbb{Y}} = P\mathbb{Y}$.

Looking at one row at a time, we can see that

$$\hat{\mathbf{Y}}_i = \sum_{j=1}^n P_{ij} \mathbf{Y}_j$$
$$= P_{ii} \mathbf{Y}_i + \sum_{j \neq i} P_{ij} \mathbf{Y}_i,$$

where P_{ij} is the (i, j)-th entry of P.

Multivariate Influence Measures ii

- In other words, the diagonal element P_{ii} represents the leverage (or influence) of observation \mathbf{Y}_i on the fitted value $\hat{\mathbf{Y}}_i$.
 - Observation \mathbf{Y}_i is said to have a **high leverage** if P_{ii} is large compared to the other element on the diagonal.
- · Let $S=\frac{1}{n-q-1}\hat{\mathbb{E}}^T\hat{\mathbb{E}}$ be the unbiased estimator of Σ , and let $\hat{\mathbf{E}}_i$ be the i-th row of $\hat{\mathbb{E}}$.
- We define the multivariate internally Studentized residuals as follows:

$$r_i = \frac{\hat{\mathbf{E}}_i^T S^{-1} \hat{\mathbf{E}}_i}{1 - P_{ii}}.$$

Multivariate Influence Measures iii

• If we let $S_{(i)}$ be the estimator of Σ where we have removed row i from the residual matrix $\hat{\mathbb{E}}$, we define the multivariate externally Studentized residuals as follows:

$$T_i^2 = \frac{\hat{\mathbf{E}}_i^T S_{(i)}^{-1} \hat{\mathbf{E}}_i}{1 - P_{ii}}.$$

· An observation \mathbf{Y}_i may be considered a potential outlier if

$$\left(\frac{n-q-p-1}{p(n-q-2)}\right)T_i^2 > F_{\alpha}(p, n-q-2).$$

Multivariate Influence Measures iv

 Yet another measure of influence is the multivariate Cook's distance.

$$C_i = \frac{P_{ii}}{(1 - P_{ii})^2} \hat{\mathbf{E}}_i^T S^{-1} \hat{\mathbf{E}}_i / (q + 1).$$

· An observation \mathbf{Y}_i may be considered a potential outlier if C_i is larger than the median of a chi square distribution with $\nu=p(n-q-1)$ degrees of freedom.

Example i

```
library(openintro)
model <- lm(cbind(startPr, totalPr) ~</pre>
               nBids + cond + sellerRate +
               wheels + stockPhoto,
             data = marioKart)
X <- model.matrix(model)</pre>
P <- X %*% solve(crossprod(X)) %*% t(X)
lev values <- diag(P)</pre>
hist(lev_values, 50)
```

Example ii

Histogram of lev_values

Example iii

```
n <- nrow(marioKart)</pre>
resids <- residuals(model)
S <- crossprod(resids)/(n - ncol(X))
S inv <- solve(S)
const <- lev_values/((1 - lev_values)^2*ncol(X))</pre>
cook_values <- const * diag(resids %*% S inv</pre>
                              %*% t(resids))
hist(cook values, 50)
```

Example iv

Example v

```
# Cut-off value
(cutoff <- qchisq(0.5, ncol(S)*(n - ncol(X))))</pre>
## [1] 273.3336
which(cook_values > cutoff)
## named integer(0)
```

Strategy for Multivariate Model Building

- 1. Try to identify outliers.
 - · This should be done graphically at first.
 - Once the model is fitted, you can also look at influence measures.
- 2. Perform a multivariate test of hypothesis.
- 3. If there is evidence of a multivariate difference, calculate Bonferroni confidence intervals and investigate component-wise differences.
 - The projection of the confidence region onto each variable generally leads to confidence intervals that are too large.

Multivariate Regression and MANOVA i

 \cdot Recall from our lecture on MANOVA: assume the data comes from g populations:

$$\mathbf{Y}_{11}, \ldots, \mathbf{Y}_{1n_1}$$
 $\vdots \quad \ddots \quad \vdots \quad ,$
 $\mathbf{Y}_{g1}, \ldots, \mathbf{Y}_{gn_g}$

where
$$\mathbf{Y}_{\ell 1}, \dots, \mathbf{Y}_{\ell n_{\ell}} \sim N_p(\mu_{\ell}, \Sigma)$$
.

Multivariate Regression and MANOVA ii

· We obtain an equivalent model if we set

$$\mathbb{Y} = \begin{pmatrix} \mathbf{Y}_{11} \\ \vdots \\ \mathbf{Y}_{1n_1} \\ \vdots \\ \mathbf{Y}_{g1} \\ \vdots \\ \mathbf{Y}_{gn_g} \end{pmatrix}, \quad \mathbb{X} = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 1 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

Multivariate Regression and MANOVA iii

- · Here, $\mathbb Y$ is $n \times p$ and $\mathbb X$ is $n \times g$.
 - The first column of X is all ones.
 - The $(i,\ell+1)$ entry of $\mathbb X$ is 1 iff the i-th row belongs to the ℓ -th group.
 - Note: It is common to have a different constraint on the parameters au_ℓ in regression; here, we assume that $au_g=0$.
- In other words, we model group membership using a single categorial covariate and therefore g-1 dummy variables.

 More complicated designs for MANOVA can also be expressed in terms of linear regression:

Multivariate Regression and MANOVA iv

- For example, for two-way MANOVA, we would have two categorical variables. We would also need to include an interaction term to get all combinations of the two treatments.
- In general, fractional factorial designs can be expressed as a linear regression with a carefully selected series of dummy variables.