HW6 (CSCI-C241)

Lillie Donato

6 February 2024

1. Question One

(a) Claim: 2x < 2y if x + 5 < y

Proof.

- 1. Choose two real numbers x and y such that x + 5 < y
- 2. Since x + 5 < y, we know 2x + 10 < 2y
- 3. Because 2y > 2x + 10, we know 2y > 2x, for the reason that 10 + 2x > 2x

(b) Claim: $\{x \mid \frac{x+1}{2} \ge 4\} \subseteq \{x \mid 2x-2 > 10\}$

Proof.

- 1. Choose a real number x such that $\frac{x+1}{2} \ge 4$
- 2. Since $\frac{x+1}{2} \ge 4$, we know $x+1 \ge 8$
- 3. Since $x + 1 \ge 8$, we know $x \ge 7$
- 4. Since $x \ge 7$, we know x > 6
- 5. Since x > 6, we know 2x > 12
- 6. Since 2x > 12, we know 2x 2 > 10
- 7. Since 2x 2 > 10, we know $x \in \{x \mid 2x 2 > 10\}$
- 8. Since all the members of $\{x \mid \frac{x+1}{2} \ge 4\}$ are members of $\{x \mid 2x-2 > 10\}$, we know $\{x \mid \frac{x+1}{2} \ge 4\} \subseteq \{x \mid 2x-2 > 10\}$

(c) Claim: $A \cap B \subseteq (A \cup C) \cap D$

Proof.

- 1. Choose the sets A, B, C, D
- 2. Since $B \cup C \subseteq D$, we know $B \subseteq D$
- 3. Since A, we know $A \subseteq A$
- 4. Since $A \subseteq A$, we know $A \subseteq (A \cup C)$
- 4. Since $B \cup C \subseteq D$, we know $C \subseteq D$
- 5. Since $A \subseteq (A \cup C)$ and $B \subseteq D$, we know $A \cap B \subseteq (A \cup C) \cap D$

(d) Claim: $X \subseteq \overline{Y \cap Z}$

Proof.

- 1. Choose the sets X, Y, Z
- 2. Choose towards a contradiction $X \subseteq Y \cap Z$
- 3. Since $(X \cap Y) \subseteq \overline{Z}$, we know $X \subseteq \overline{Z}$
- 4. Since $X \subseteq \overline{Z}$, we know $X \nsubseteq Z$
- 5. Since $X \nsubseteq Z$, we know $X \nsubseteq Y \cap Z$
- 6. Since $X \nsubseteq Y \cap Z$, we know $X \subseteq \overline{Y \cap Z}$

(e) Claim: $H \cup (J \cap K) \subseteq (H \cup K) \setminus M$

Proof.

Choose the sets
$$H, J, K, L, M$$
 (1)

Case 1:
$$H$$
 (2)

Since
$$H \subseteq \overline{M}$$
, we know $H \nsubseteq M$ (3)

Since
$$H \subseteq H$$
, we know $H \subseteq (H \cup K)$ (4)

Since
$$H \nsubseteq M$$
 and $H \subseteq (H \cup K)$, we know $H \subseteq (H \cup K) \setminus M$ (5)

Case 2:
$$J \cap K$$
 (6)

Since
$$J \subseteq L \setminus M$$
, we know $J \subseteq \overline{M}$ (7)

Since
$$J \subseteq \overline{M}$$
, we know $J \nsubseteq M$ (8)

Since
$$K \subseteq K$$
, we know $J \cap K \subseteq K$ (9)

Since
$$J \cap K \subseteq K$$
, we know $J \cap K \subseteq (H \cup K)$ (10)

Since
$$J \cap K \subseteq (H \cup K)$$
 and $J \nsubseteq M$, we know $J \cap K \subseteq (H \cup K) \setminus M$ (11)

In either case of $H \cup (J \cap K)$, we proved that they were a subset of $(H \cup K) \setminus M$, (12)

so
$$H \cup (J \cap K) \subseteq (H \cup K) \setminus M$$
 (13)

2. Claim: $A \cup B \subseteq B \cap C$ if $A \subseteq C$

The Claim is proven false, with the following counter example:

$$A = \{1, 2, 3\}$$

 $B = \{4, 5, 6\}$

$$C = \{-3, -2, -1, 0, 1, 2, 3\}$$

- 3. Question Three
 - (a) $S_n = \{ nx \mid x \in \mathbb{Z} \}$

Claim: if $a, b \in S_n$ then $5a - b \in S_n$

Proof.

- 1. Choose $a, b \in S_n$
- 2. Since $a \in S_n$, we know a = nx, for some $x \in \mathbb{Z}$
- 3. Since $b \in S_n$, we know b = ny, for some $y \in \mathbb{Z}$
- 4. Since 5a b = 5(nx) ny, we know 5nx ny
- 5. Since 5nx ny, we know n(5x y)
- 6. Let z = 5x y
- 7. Since x, y are both integers, we know z must be an integer as well
- 8 Since x, z are both integers, we can write it as nz
- 9. Because of this, we know $5a b \in S_n$

(b) Claim: The sum of any two rational numbers is rational

Proof.

- 1. Choose two rational numbers x, y
- 2. Since x is rational, there exist integers p_1, q_1 where $x = \frac{p_1}{q_1}$ and $q_1 \neq 0$
- 3. Since y is rational, there exist integers p_2, q_2 where $x = \frac{p_2}{q_2}$ and $q_2 \neq 0$
- 4. Since $x + y = \frac{p_1}{q_1} + \frac{p_2}{q_2}$, we know $x + y = \frac{p_1 q_2 + p_2 q_1}{q_1 q_2}$
- 5. Let $R = p_1q_2 + p_2q_1$ and $S = q_1q_2$
- 6. Since p_1 and p_2 are integers, and q_1 and q_2 are non-zero integers, we know that R is an integer and S is a non-zero integer
- 7. Since R is an integer and S is a non-zero integer, we know that x + y is rational

(c) $T = \{x + y\sqrt{2} \mid x \in \mathbb{Q} \land y \in \mathbb{Q}\}\$ $S = \{st \mid s \in T \land t \in T\}\$ Claim: S = T

Proof.

Choose
$$s \in T$$
 and $t \in T$ (1)

Since
$$s \in T$$
, we know $s = x_1 + y_1\sqrt{2}$, where $x_1, y_1 \in \mathbb{Q}$ (2)

Since
$$t \in T$$
, we know $t = x_2 + y_2\sqrt{2}$, where $x_2, y_2 \in \mathbb{Q}$ (3)

Since
$$st = (x_1 + y_1\sqrt{2})(x_2 + y_2\sqrt{2})$$
, we know $st = x_1x_2 + x_1y_2\sqrt{2} + x_2y_1\sqrt{2} + 2y_1y_2$ (4)

Since
$$st$$
, we know $st = (x_1x_2 + 2y_1y_2) + \sqrt{2}(x_1y_2 + x_2y_1)$ (5)

Let
$$a = x_1x_2 + 2y_1y_2$$
 and $b = x_1y_2 + x_2y_1$ (6)

Since
$$x_1, x_2, y_1, y_2 \in \mathbb{Q}$$
, we know $a, b \in \mathbb{Q}$ (7)

Since
$$st = a + b\sqrt{2}$$
 and $a, b \in \mathbb{Q}$, we know $S \subseteq T$ (8)

Choose
$$t \in T$$
 where $t = x + y\sqrt{2}$, and $x, y \in \mathbb{Q}$ (9)

Since
$$t \in T$$
, we know $t = 1 \cdot t$, where $1 \in \mathbb{Q}$ (10)

Since
$$t = 1 \cdot t$$
, we know $t \in S$, so $T \subseteq S$ (11)
Since $S \subseteq T$ and $T \subseteq S$, we know $S = T$ (12)

(d) The sum of an irrational number and a rational number is irrational.

Proof.

Since x is irrational, we know $x \neq \frac{p}{q}$, where $p, q \in \mathbb{Z}$	(2)
Since y is rational, we know $y = \frac{p_1}{q_1}$, where $p_1, q_1 \in \mathbb{Z}$	(3)
Let $z = x + y$	(4)
Assume towards a contradiction that z is rational	(5)
Since z is rational, we know $z = \frac{p_2}{q_2}$, where $p_2, q_2 \in \mathbb{Z}$	(6)
We can rewrite $x + y = z$ as $x + \frac{p_1}{q_1} = \frac{p_2}{q_2}$	(7)
Since $x + \frac{p_1}{q_1} = \frac{p_2}{q_2}$, we know $x = \frac{p_2}{q_2} - \frac{p_1}{q_1}$	(8)
Since $x = \frac{p_2q_1 - p_1q_2}{q_1q_2}$, we know $x = \frac{p_1q_2 - p_2q_1}{q_1q_2}$	(9)
Since $x = \frac{p_1q_2 - p_2q_1}{q_1q_2}$, we know x is rational	(10)
This is a contradiction to our earlier claim, so z must be irrational	(11)
(e) $S_n = \{nx \mid x \in \mathbb{Z}\}$ Claim: if $ab \notin S_n$ then $a, b \notin S_n$	
Proof.	
Choose $a, b, n \in S_n$ and ab where $ab \notin S_n$	(1)
Assume towards a contradiction that $a \in S_n$	(2)
Since $a \in S_n$, we know $a = nx$, where $x \in \mathbb{Z}$	(3)
Since $a = nx$, we know $x = \frac{a}{n}$	(4)
Since $x \in \mathbb{Z}$, we know $\frac{a}{n} \in \mathbb{Z}$	(5)

Choose an irrational number x and a rational number y

Since $\frac{a}{n} \in \mathbb{Z}$ and $b \in \mathbb{Z}$, we know $\frac{ab}{n} \in \mathbb{Z}$ (6)

Since $\frac{ab}{n} \in \mathbb{Z}$, we know $\frac{ab}{n} \cdot n \in S_n$ (7)

Since $\frac{ab}{n} \cdot n \in S_n$, we know $ab \in S_n$ (8)

This is a contradiction to our earlier claim, so $a \notin S_n$ (9)

Assume towards a contradiction that $b \in S_n$ (10)

Since $b \in S_n$, we know b = nx, where $x \in \mathbb{Z}$ (11)

Since b = nx, we know $x = \frac{b}{n}$ (12)

Since $x \in \mathbb{Z}$, we know $\frac{b}{n} \in \mathbb{Z}$ (13)

Since $\frac{b}{n} \in \mathbb{Z}$ and $b \in \mathbb{Z}$, we know $\frac{ab}{n} \in \mathbb{Z}$ (14)

Since $\frac{ab}{n} \in \mathbb{Z}$, we know $\frac{ab}{n} \cdot n \in S_n$ (15)

Since $\frac{ab}{n} \cdot n \in S_n$, we know $ab \in S_n$ (16)

This is a contradiction to our earlier claim, so $b \notin S_n$ (17)

(1)