Answers Tut 7

7.1

a)
$$278.45x10^3 \frac{J}{mol_B}$$

b)
$$T = 320 K$$

c)
$$\eta = 0.0659, D_e = 5.45 \times 10^{-9} \frac{m^2}{s}$$

d)
$$k_c = 7.42x10^{-5} \frac{m}{s}$$

d)
$$k_c = 7.42x10^{-5} \frac{m}{s}$$

e) $k_c = 1.93x10^{-4} \frac{m}{s}$

7.2

a)
$$W = 1.217 kg$$

b) x=0.19 (Hint: Two unknowns need to be solved, T_{out} , and x_{out} of PBR. Such that $\phi=0.1$ at reactor outlet)

d)
$$x = 0.46$$

7.3

a)
$$\eta = 0.613$$

d)
$$\eta = 0.14$$

e) Lower η : Levenspiel of CSTR and PBR shows max in rate, according to PBR profile given – not yet at max rate with given amount of catalyst, CSTR will therefore give higher conversion than PBR (Levenspiel), which will result in a higher temperature and lower effectiveness factor. Prove this to yourself by doing the calculations for the CSTR. Two unknowns, T and x but two equations (MB and EB)

7.4 (Note: No mass transfer effects!)

a)
$$x = 0.956$$

b)
$$C_{cat} = 0.1225 \frac{g}{I}$$

c) Plot of simultaneous MB and EB shows the existence of multiple steady states in the CSTR with the new catalyst type

7.5

c)
$$k_c a_m \gg k_i{'}$$
 and $C_b \approx C_s$

d)
$$k_c \propto \frac{1}{d_p}$$

e)
$$x = 0.692$$

7.6

d _p (mm)	Ideal Conversion %	$k_{c} (m.s^{-1})$
3	32.6	6 x 10 ⁻²
0.99	51.4	1.05 x 10 ⁻¹
0.1	80.6	3.2 x 10 ⁻¹

e)
$$k_c \propto \left(\frac{1}{d_p}\right)^{\frac{1}{2}}$$