#### Computer Logic Design Fundamentals

# Chapter 4 – Sequential Circuits

## Part 1 – Storage Elements and Sequential Circuit Analysis

Prof. Yueming Wang
ymingwang@zju.edu.cn
College of Computer Science and Technology,
Zhejiang University

#### **Overview**

- **Part 1 Storage Elements and Analysis** 
  - Introduction to sequential circuits
  - **Types of sequential circuits**
  - **Storage elements** 
    - Latches
    - Flip-flops
  - Sequential circuit analysis
    - State tables
    - State diagrams
    - **Equivalent states**
    - **Moore and Mealy Models**
- **Part 2 Sequential Circuit Design**
- **Part 3 State Machine Design**

#### **Introduction to Sequential Circuits**

A Sequential circuit contains:

Storage elements:
 Latches or Flip-Flops

Combinational Logic:

- Implements a multiple-output switching function
- **Inputs** are signals from the outside.
- Outputs are signals to the outside.
- Other inputs, <u>State</u> or <u>Present State</u>, are signals from storage elements.
- The remaining outputs, <u>Next State</u> are inputs to storage elements.



#### **Introduction to Sequential Circuits**



- Output function (Moore)Outputs = h(State)
- Output function type depends on specification and affects the design significantly

#### **Types of Sequential Circuits**

#### Depends on the <u>times</u> at which:

- storage elements observe their inputs, and
- storage elements change their state

#### Synchronous

- Behavior defined from knowledge of its signals at <u>discrete</u> instances of time
- Storage elements observe inputs and can change state only in relation to a timing signal (clock pulses from a clock)

#### **Asynchronous**

- Behavior defined from knowledge of inputs an any instant of time and the order in continuous time in which inputs change
- If clock just regarded as another input, all circuits are asynchronous!
- Nevertheless, the synchronous abstraction makes complex designs tractable!

#### **Discrete Event Simulation**

In order to understand the time behavior of a sequential circuit we use <u>discrete event</u> simulation.

#### Rules:

- Gates modeled by an <u>ideal</u> (instantaneous) function and a fixed gate delay
- Any change in input values is evaluated to see if it causes a change in output value
- Changes in output values are scheduled for the fixed gate delay after the input change
- At the time for a scheduled output change, the output value is changed along with any inputs it drives

#### **Simulated NAND Gate**

**Example:** A 2-Input NAND gate with a 0.5 ns. delay:



- Assume A and B have been 1 for a long time
- At time t=0, A changes to a 0 at t= 0.8 ns, back to 1.

| t (ns)    | A    | В | F(I) | F    | Comment                             |  |
|-----------|------|---|------|------|-------------------------------------|--|
| $-\infty$ | 1    | 1 | 0    | 0    | A=B=1 for a long time               |  |
| 0         | 1⇒ 0 | 1 | 1←0  | 0    | F(I) changes to 1                   |  |
| 0.5       | 0    | 1 | 1    | 1← 0 | F changes to 1 after a 0.5 ns delay |  |
| 0.8       | 1←0  | 1 | 1⇒ 0 | 1    | F(Instantaneous) changes to 0       |  |
| 1.3       | 1    | 1 | 0    | 1⇒ 0 | F changes to 0 after a 0.5 ns delay |  |

### **Gate Delay Models**

Suppose gates with delay n ns are represented for n = 0.2 ns, n = 0.4 ns, n = 0.5 ns, respectively:







### **Circuit Delay Model**

"Glitch" is due to delay of inverter

Consider a simple  $\underline{A}$ 2-input multiplexer: 0.4 With function: 0.5 • Y = A for S = 1• Y = B for S = 00.4

## **Storing State**

- What if A connected to Y?
- Circuit becomes:
- With function:
  - Y = B for S = 1, and
     Y(t) dependent on
     Y(t 0.9) for S = 0



The simple <u>combinational circuit</u> has now become a <u>sequential circuit</u> because its output is a function of a time sequence of input signals!

Y is stored value in shaded area

### **Storing State (Continued)**

Simulation example as input signals change with time. Changes occur every 100 ns, so that the tenths of ns delays are negligible.

| Time     | В | S | Y | Comment                                     |  |  |  |
|----------|---|---|---|---------------------------------------------|--|--|--|
|          | 1 | 0 | 0 | Y "remembers" 0                             |  |  |  |
|          | 1 | 1 | 1 | $= \mathbf{B} \text{ when } \mathbf{S} = 1$ |  |  |  |
|          | 1 | 0 | 1 | low Y "remembers" $B = 1$ for $S = 0$       |  |  |  |
|          | 0 | 0 | 1 | No change in Y when B changes               |  |  |  |
|          | 0 | 1 | 0 | Y = B when $S = 1$                          |  |  |  |
|          | 0 | 0 | 0 | Y "remembers" $B = 0$ for $S = 0$           |  |  |  |
| <b>↓</b> | 1 | 0 | 0 | No change in Y when B changes               |  |  |  |

Y represent the <u>state</u> of the circuit, not just an output.

## **Storing State (Continued)**

Suppose we place an inverter in the "feedback path."



The following behavior results:

- The circuit is said to be unstable.
- For S = 0, the circuit has become what is called an oscillator. Can be used as crude clock.

| В | S   | Y | Comment             |
|---|-----|---|---------------------|
| 0 | 1   | 0 | Y = B when $S = 1$  |
| 1 | 1   | 1 |                     |
| 1 | 0   | 1 | Now Y "remembers" A |
| 1 | 0   | 0 | Y, 1.1 ns later     |
| 1 | 0   | 1 | Y, 1.1 ns later     |
| 1 | 0 . | 0 | Y, 1.1 ns later     |

## Basic (NAND) $\overline{S} - \overline{R}$ Latch

Time

- "Cross-Coupling" two NAND gates gives the \$\bar{S}\$ -\$\bar{R}\$ Latch:
- Which has the time sequence behavior:

S = 0, R = 0 is forbidden as input pattern



| R | S | Q | $ar{\mathbf{Q}}$ | Comment              |
|---|---|---|------------------|----------------------|
| 1 | 1 | ? | ?                | Stored state unknown |
| 1 | 0 | 1 | 0                | "Set" Q to 1         |
| 1 | 1 | 1 | 0                | Now Q "remembers" 1  |
| 0 | 1 | 0 | 1                | "Reset" Q to 0       |
| 1 | 1 | 0 | 1                | Now Q "remembers" 0  |
| 0 | 0 | 1 | 1                | Both go high         |
| 1 | 1 | ? | ?                | Unstable!            |

#### Basic (NOR) S - R Latch

Cross-coupling twoNOR gates gives theS – R Latch:

R (reset)



Which has the time

sequence

behavior:

S (set)

| e[ | R | S | Q | $\overline{\mathbf{Q}}$ | Comment              |
|----|---|---|---|-------------------------|----------------------|
|    | 0 | 0 | ? | ?                       | Stored state unknown |
|    | 0 | 1 | 1 | 0                       | "Set" Q to 1         |
|    | 0 | 0 | 1 | 0                       | Now Q "remembers" 1  |
|    | 1 | 0 | 0 | 1                       | "Reset" Q to 0       |
|    | 0 | 0 | 0 | 1                       | Now Q "remembers" 0  |
|    | 1 | 1 | 0 | 0                       | Both go low          |
|    | 0 | 0 | ? | ?                       | Unstable!            |

#### Clocked S - R Latch

Adding two NAND gates to the basic
 S - R NAND latch gives the clocked
 S - R latch:



- Has a time sequence behavior similar to the basic S-R latch except that the S and R inputs are only observed when the line C is high.
- C means "control" or "clock".

#### **Clocked S - R Latch (continued)**

The Clocked S-R Latch can be described by a table:



The table describes what happens after the clock [at time (t+1)] based on:

| C | S | R | $\mathbf{Q}(\mathbf{t}+1)$ |
|---|---|---|----------------------------|
| 0 | X | X | No change                  |
| 1 | 0 | 0 | No change                  |
| 1 | 0 | 1 | 0: Clear Q                 |
| 1 | 1 | 0 | 1: Set <b>Q</b>            |
| 1 | 1 | 1 | Indeterminate              |

- current inputs (S,R,C) and
- current state Q(t).

#### **D** Latch

- Adding an inverter to the S-R Latch, gives the D Latch:
- Note that there are no "indeterminate" states!

| C | D | $\mathbf{Q}(\mathbf{t}+1)$ |  |  |  |
|---|---|----------------------------|--|--|--|
| 0 | X | No change                  |  |  |  |
| 1 | 0 | 0: Clear Q                 |  |  |  |
| 1 | 1 | 1: Set <b>Q</b>            |  |  |  |



The graphic symbol for a

D Latch is:



#### Flip-Flops

- The latch timing problem
- Master-slave flip-flop
- Edge-triggered flip-flop
- Standard symbols for storage elements
- Direct inputs to flip-flops

### The Latch Timing Problem

- In a sequential circuit, paths may exist through combinational logic:
  - From one storage element to another
  - From a storage element back to the same storage element
- The combinational logic between a latch output and a latch input may be as simple as an interconnect
- For a clocked D-latch, the output Q depends on the input D whenever the clock input C has value 1

#### The Latch Timing Problem (continued)

Consider the following circuit:



• Suppose that initially Y = 0.

- As long as C = 1, the value of Y continues to change!
- The changes are based on the delay present on the loop through the connection from Y back to Y.
- This behavior is clearly unacceptable.
- Desired behavior: Y changes only once per clock pulse

#### The Latch Timing Problem (continued)

- A solution to the latch timing problem is to break the closed path from Y to Y within the storage element
- The commonly-used, path-breaking solutions replace the clocked D-latch with:
  - a master-slave flip-flop
  - an edge-triggered flip-flop

#### S-R Master-Slave Flip-Flop

 Consists of two clocked S-R latches in series with the clock on the second latch inverted



- The input is observed by the first latch with C = 1
- The output is changed by the second latch with C = 0
- The path from input to output is broken by the difference in clocking values (C = 1 and C = 0).
- The behavior demonstrated by the example with D driven by Y given previously is prevented since the clock must change from 1 to 0 before a change in Y based on D can occur.

#### Flip-Flop Problem

- The change in the flip-flop output is delayed by the pulse width which makes the circuit slower or
- S and/or R are permitted to change while C = 1
  - Suppose Q = 0 and S goes to 1 and then back to 0 with R remaining at 0
    - The master latch sets to 1
    - A 1 is transferred to the slave
  - Suppose Q = 0 and S goes to 1 and back to 0 and R goes to 1 and back to 0
    - The master latch sets and then resets
    - A 0 is transferred to the slave
  - This behavior is called *1s catching*

### Flip-Flop Solution

- Use edge-triggering instead of master-slave
- An edge-triggered flip-flop ignores the pulse while it is at a constant level and triggers only during a transition of the clock signal
- Edge-triggered flip-flops can be built directly at the electronic circuit level, or
- A master-slave D flip-flop which also exhibits edge-triggered behavior can be used.

#### Edge-Triggered D Flip-Flop

The function of edge-triggered D flip-flop is same as the masterslave D flip-flop



- It can be formed by:
  - Replacing the first clocked S-R latch with a clocked D latch or
  - Adding a D input and inverter to a master-slave S-R flip-flop
- The delay of the S-R master-slave flip-flop can be avoided since the 1s-catching behavior is not present with D replacing S and R inputs
- The change of the D flip-flop output is associated with the negative edge at the end of the pulse
- It is called a negative-edge triggered flip-flop

#### Positive-Edge Triggered D Flip-Flop

Formed by adding inverter to clock input



- Q changes to the value on D applied at the positive clock edge within timing constraints to be specified
- Our choice as the <u>standard flip-flop</u> for most sequential circuits

## **Actual Circuit of Edge-Triggered D Flip-Flop**



Complicated to be analyzed

## **Standard Symbols for Storage Elements**



#### **Direct Inputs**

- At power up or at reset, all or part of a sequential circuit usually is initialized to a known state before it begins operation
- This initialization is often done outside of the clocked behavior of the circuit, i.e., asynchronously.



- Direct R and/or S inputs that control the state of the latches within the flip-flops are used for this initialization.
- For the example flip-flop shown
  - 0 applied to  $\overline{R}$  resets the flip-flop to the 0 state
  - 0 applied to  $\overline{S}$  sets the flip-flop to the 1 state

## Sequential Circuit Analysis

- General Model **Inputs Outputs**  Current State Combinaat time (t) is tional **Storage** stored in an Logic **Elements** array of Next flip-flops. State State Next State at time (t+1) is a Boolean function of CLK State and Inputs.
  - Outputs at time (t) are a Boolean function of State (t) and (sometimes) Inputs (t).

## Example 1 (from Fig. 4-13)

- Input:  $\mathbf{x}(\mathbf{t})$
- Output: y(t)
- (A(t), B(t))**State:**
- What is the <u>Output</u> **Function?**

What is the Next State **Function?** 



## Example 1 (from Fig. 4-13) (continued)

#### Boolean equations for the functions:

- $\mathbf{D}_{\mathbf{A}}(\mathbf{t}) = \mathbf{A}(\mathbf{t})\mathbf{x}(\mathbf{t}) + \mathbf{B}(\mathbf{t})\mathbf{x}(\mathbf{t})$
- A(t+1)=A(t)x(t)+B(t)x(t)
- $\mathbf{D}_{\mathbf{B}}(\mathbf{t}) = \mathbf{A}(\mathbf{t})\mathbf{x}(\mathbf{t})$
- $B(t+1) = \overline{A}(t)x(t)$
- $y(t) = \overline{x}(t)(B(t) + A(t))$



### Example 1(from Fig. 4-13) (continued)

Where in time are inputs, outputs and states defined?



#### State Table Characteristics

- State table a multiple variable table with the following four sections:
  - Present State the values of the state variables for each allowed state.
  - Input the input combinations allowed.
  - Next-state the value of the state at time (t+1) based on the <u>present state</u> and the <u>input</u>.
  - Output the value of the output as a function of the present state and (sometimes) the input.
- From the viewpoint of a truth table:
  - the inputs are Input, Present State
  - and the outputs are Output, Next State

## Example 1: State Table (from Fig. 4-13)

- The state table can be filled in using the next state and output equations: A(t+1) = A(t)x(t) + B(t)x(t)
- B(t+1) =  $\overline{A}$  (t)x(t) y(t) =  $\overline{x}$  (t)(B(t) + A(t))

| <b>Present State</b> | Input | Next   | State  | Output |
|----------------------|-------|--------|--------|--------|
| A(t) B(t)            | x(t)  | A(t+1) | B(t+1) | y(t)   |
| 0 0                  | 0     | 0      | 0      | 0      |
| 0 0                  | 1     | 0      | 1      | 0      |
| 0 1                  | 0     | 0      | 0      | 1      |
| 0 1                  | 1     | 1      | 1      | 0      |
| 1 0                  | 0     | 0      | 0      | 1      |
| 1 0                  | 1     | 1      | 0      | 0      |
| 1 1                  | 0     | 0      | 0      | 1      |
| 1 1                  | 1     | 1      | 0      | 0      |

#### **Example 1: Alternate State Table**

2-dimensional table that matches well to a K-map.
 Present state rows and input columns in <u>Gray code</u> order.

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

• 
$$B(t+1) = \overline{A}(t)x(t)$$

• 
$$y(t) = \overline{x}(t)(B(t) + A(t))$$

| Present   | Next                       | Output                     |                            |        |
|-----------|----------------------------|----------------------------|----------------------------|--------|
| State     | $\mathbf{x}(\mathbf{t})=0$ | $\mathbf{x}(\mathbf{t})=1$ | $\mathbf{x}(\mathbf{t})=0$ | x(t)=1 |
| A(t) B(t) | A(t+1)B(t+1)               | A(t+1)B(t+1)               | y(t)                       | y(t)   |
| 0 0       | 0 0                        | 0 1                        | 0                          | 0      |
| 0 1       | 0 0                        | 1 1                        | 1                          | 0      |
| 1 0       | 0 0                        | 1 0                        | 1                          | 0      |
| 1 1       | 0 0                        | 1 0                        | 1                          | 0      |

# **State Diagrams**

- The sequential circuit function can be represented in graphical form as a state diagram with the following components:
  - A circle with the state name in it for each state
  - A directed arc from the <u>Present State</u> to the <u>Next</u> State for each state transition
  - A label on each <u>directed arc</u> with the <u>Input</u> values which causes the state transition, and
  - A label:
    - On each <u>circle</u> with the <u>output</u> value produced, or
    - On each <u>directed arc</u> with the <u>output</u> value produced.

# **State Diagrams**

- Label form:
  - On circle with output included:
    - state/output
    - Moore type output depends only on state
  - On directed arc with the output included:
    - input/output
    - Mealy type output depends on state and input

# **Example 1: State Diagram**

- Which type?
- Diagram gets confusing for large circuits

For small circuits, usually easier to understand than the state table



# **Equivalent State Definitions**

- Two states are *equivalent* if their response for each possible input sequence is an identical output sequence.
- Alternatively, two states are equivalent if their outputs produced for each input symbol is identical and their next states for each input symbol are the same or equivalent.

# **Equivalent State Example**

- Text Figure 4-15(a):
- For states S3 and S2,
  - the output for input 0 is 1 and input 1 is 0, 0/1 and
  - the next state for input
    0 is S0 and for input
    1 is S2.
  - By the alternative definition, states S3 and S2 are equivalent.

**SO** 

**S2** 

1/0

0/1

1/0

**S1** 

1/0

# **Equivalent State Example**

Replacing S3 and S2 by a single state gives state diagram:

Examining the new diagram, states S1 and S2 are equivalent since

- their outputs for input 0 is 1 and input 1 is 0, and
- their next state for input
  0 is S0 and for input
  1 is S2,
- Replacing S1 and S2 by a single state gives state diagram:



# Moore and Mealy Models

- Sequential Circuits or Sequential Machines are also called *Finite State Machines* (FSMs). Two formal models exist:
  - Moore Model
    - Named after E.F. Moore
    - Outputs are a function ONLY of <u>states</u>
    - Usually specified on the states.

- Mealy Model
  - Named after G. Mealy
  - Outputs are a function of <u>inputs</u> AND <u>states</u>
  - Usually specified on the state transition arcs.

#### Moore and Mealy Example Diagrams

 Mealy Model State Diagram maps <u>inputs and state</u> to <u>outputs</u>

to <u>outputs</u>

x=1/y=0

1

 Moore Model State Diagram maps <u>states</u> to <u>outputs</u>



# Moore and Mealy Example Tables

Moore Model state table maps state to

outputs

| Present      | Next             | State        | Output |
|--------------|------------------|--------------|--------|
| State        | $\mathbf{x} = 0$ | x=1          |        |
| A            | $\mathbf{A}$     | B            | 0      |
| В            | $\mathbf{A}$     | $\mathbf{C}$ | 0      |
| $\mathbf{C}$ | $\mathbf{A}$     | $\mathbf{C}$ | 1      |

Mealy Model state table maps inputs and

state to outputs

| Present | Next State |     | Output |     |
|---------|------------|-----|--------|-----|
| State   | x=0        | x=1 | x=0    | x=1 |
| 0       | 0          | 1   | 0      | 0   |
| 1       | 0          | 1   | 0      | 1   |

# Mixed Moore and Mealy Outputs

In real designs, some outputs may be Moore type and other outputs may be Mealy type.

**Example:** Figure 4-15(a) can be modified to

illustrate this

• State 00: Moore

• States 01, 10, and 11: Mealy

Simplifies output specification



# **Example 2: Sequential Circuit Analysis**



# **Example 2: Flip-Flop Input Equations**

- Variables
  - Inputs: None
  - Outputs: Z
  - State Variables: A, B, C
- Initialization: Reset to (0,0,0)
- Equations
  - $\bullet A(t+1) =$

$$\mathbf{Z} =$$

- B(t+1) =
- C(t+1) =

# **Example 2: State Table**

X' = X(t+1)

| ABC   | A'B'C' | Z |
|-------|--------|---|
| 0 0 0 |        |   |
| 0 0 1 |        |   |
| 0 1 0 |        |   |
| 0 1 1 |        |   |
| 1 0 0 |        |   |
| 1 0 1 |        |   |
| 1 1 0 |        |   |
| 1 1 1 |        |   |

# **Example 2: State Table**

X' = X(t+1)

| ABC   | A'B'C' | Z |
|-------|--------|---|
| 0 0 0 | 0 0 1  | 0 |
| 0 0 1 | 0 1 0  | 0 |
| 0 1 0 | 0 1 1  | 0 |
| 0 1 1 | 1 0 0  | 0 |
| 1 0 0 | 0 0 0  | 1 |
| 1 0 1 | 0 1 0  | 1 |
| 1 1 0 | 0 1 0  | 1 |
| 1 1 1 | 1 0 0  | 1 |

# **Example 2: State Diagram**



# Flip-Flop Timing Parameters

- t<sub>s</sub> setup time
- t<sub>h</sub> hold time
- t<sub>w</sub> clock pulse width
- t<sub>px</sub> propagation delay
  - t<sub>PHL</sub> High-to-Low
  - t<sub>PLH</sub> Low-to-High
  - $t_{pd}$  max ( $t_{PHL}$ ,  $t_{PLH}$ )



#### Flip-Flop Timing Parameters

- t<sub>s</sub> setup time
  - Master-slave Equal to the width of the triggering pulse
  - Edge-triggered Equal to a time interval that is generally much less than the width of the the triggering pulse
- t<sub>h</sub> hold time Often equal to zero
- t<sub>px</sub> propagation delay
  - Same parameters as for gates except
  - Measured from clock edge that triggers the output change to the output change

- Consider a system comprised of ranks of flip-flops connected by logic:
- If the clock period is too short, some data changes will not propagate through the circuit to flip-flop inputs before the setup time interval begins



#### New Timing Components

- t<sub>p</sub> clock period The interval between occurrences of a specific clock edge in a periodic clock
- t<sub>pd,COMB</sub> total delay of combinational logic along the path from flip-flop output to flip-flop input
- t<sub>slack</sub> extra time in the clock period in addition to the sum of the delays and setup time on a path
  - Can be either positive or negative
  - Must be greater than or equal to zero on all paths for correct operation

Timing components along a path from flip-flop to flip-flop



(b) Pulse-triggered (negative pulse)

Timing Equations

$$t_{p} = t_{\text{slack}} + (t_{\text{pd,FF}} + t_{\text{pd,COMB}} + t_{\text{s}})$$

• For t<sub>slack</sub> greater than or equal to zero,

$$t_p \ge max \ (t_{pd,FF} + t_{pd,COMB} + t_s)$$
 for all paths from flip-flop output to flip-flop input

Can be calculated more precisely by using t<sub>PHL</sub> and t<sub>PLH</sub> values instead of t<sub>pd</sub> values, but requires consideration of inversions on paths

# Calculation of Allowable t<sub>pd,COMB</sub>

- Compare the allowable combinational delay for a specific circuit:
  - a) Using edge-triggered flip-flops
  - b) Using master-slave flip-flops
- Parameters
  - $t_{\text{pd.FF}}(\text{max}) = 1.0 \text{ ns}$
  - $t_s(max) = 0.3$  ns for edge-triggered flip-flops
  - $t_s = t_{wH} = 2.0$  ns for master-slave flip-flops
  - Clock frequency = 250 MHz

# Calculation of Allowable t<sub>pd,COMB</sub>

- Calculations:  $t_p = 1/\text{clock frequency} = 4.0 \text{ ns}$ 
  - Edge-triggered:  $4.0 \ge 1.0 + t_{pd,COMB} + 0.3$ ,  $t_{pd,COMB} \le 2.7$  ns
  - Master-slave:  $4.0 \ge 1.0 + t_{pd,COMB} + 2.0, t_{pd,COMB} \le 1.0 \text{ ns}$
- Comparison: Suppose that for a gate, average  $t_{pd}$  = 0.3 ns
  - Edge-triggered: Approximately 9 gates allowed on a path
  - Master-slave: Approximately 3 gates allowed on a path

#### **Assignments**

**4-2**, 4-4, 4-6, 4-7, 4-8, 4-9, 4-11, 4-13, 4-58, 4-59