

Programação Estruturada e Orientada a Objetos

REVISÃO

2013

O que veremos hoje?

- Introdução
- Revisão Estruturas de Controle de Fluxo
- Exercícios

Transparências baseadas no material do Prof. Gilbert Azevedo

Estruturas de Controle de Fluxo

- Estruturas de controle de fluxo
 - São estruturas utilizadas para controlar o fluxo de execução dos comandos em um algoritmo ou programa
- Estruturas condicionais
 - Permitem controlar a execução ou não de um comando ou bloco de comandos
- Estruturas de repetição
 - Permitem controlar a repetição de um comando ou bloco de comandos

Estruturas Condicionais

- Alternativa Simples (se)
 - Executa ou não um comando (ou bloco de comandos) de acordo com um teste realizado
- Alternativa Dupla (se senão)
 - Executa um ou outro comando (ou bloco de comandos) de acordo com um teste realizado
- Alternativa Múltipla (caso)
 - Executa um comando (ou bloco de comandos) de acordo com um valor específico de uma variável

Operadores Relacionais e Lógicos

- As estruturas condicionais são normalmente utilizadas em conjunto com os operadores relacionais e lógicos
- Operadores relacionais e lógicos utilizam os seguintes valores
 - Verdadeiro: true (bool)
 - Falso: false (bool)

Operadores Relacionais

Operação	Algoritmo	C#	Tipos
Igual	=	==	I,R,C,L,S
Diferente	<>	!=	I,R,C,L,S
Maior ou igual	>=	>=	I,R,C
Maior	>	>	I,R,C
Menor ou igual	<=	<=	I,R,C
Menor	<	<	I,R,C

Operadores Lógicos

Operação	Algoritmo	C#	Tipos
Conjunção	е	&&	L
Disjunção	ou	П	L
Negação	não	!	L

Х	Υ	XeY
F	F	F
F	V	F
V	F	F
V	V	V

X	Υ	X ou Y
F	F	F
F	V	V
V	F	V
V	>	V

X	não X
F	V
V	F

Alternativa Simples (se)

 Executa ou não um comando (ou bloco de comandos) se o teste (expressão booleana) for verdadeiro

Algoritmo	C#
se teste então comando;	if (teste) comando;
se teste então	if (teste)
início	{
comandos;	comandos;
fim;	}

Exemplo: Alternativa Simples

- Algoritmo para ler um número inteiro e verificar se maior que 0, menor que 0 ou igual a 0
 - Declaração de Variáveis
 - x:inteiro;
 - Início
 - Escreva("Digite um valor inteiro");
 - Leia(x);
 - se x > 0 então Escreva("Maior que zero");
 - se x < 0 então Escreva("Menor que zero");
 - se x = 0 então Escreva("Igual a zero");
 - Fim.

Ex03: Alternativa Simples em C#

```
static void Main(string[] args)
  int x;
  Console.WriteLine("Digite um valor inteiro");
  x = int.Parse(Console.ReadLine());
  if (x > 0) Console.WriteLine("Maior que zero");
  if (x < 0) Console.WriteLine("Menor que zero");
  if (x == 0) Console.WriteLine("Igual a zero");
```

Alternativa Dupla (se-senão)

 Executa um comando (ou bloco de comandos) se o teste for verdadeiro ou outro comando (ou bloco de comandos) se o teste for falso

Algoritmo	C#
se teste então comando1;	if (teste) comando1;
senão comando2;	else comando2;
se teste então início	if (teste) {
comandos1;	comandos1;
fim;	}
senão início	else {
comandos2;	comandos2;
fim;	}

Exemplo: Alternativa Dupla

- Algoritmo para ler um número inteiro e verificar se é par ou impar
 - Declaração de Variáveis
 - x : inteiro;
 - Início
 - Escreva("Digite um valor inteiro");
 - Leia(x);
 - se x mod 2 = 0 então Escreva("Par");
 - senão Escreva("Ímpar");
 - Fim.

Ex04: Alternativa Dupla em C#

```
static void Main(string[] args)
  int x;
  Console.WriteLine("Digite um valor inteiro");
  x = int.Parse(Console.ReadLine());
  if (x \% 2 == 0) Console.WriteLine("Par");
  else Console.WriteLine("Ímpar");
  Console.ReadKey();
```

If-Else Aninhados

Método que compara duas datas, retornando -1 (data1 menor), 1 (data1 maior) ou 0 (datas iguais) int dateCompare(DateTime data1, DateTime data2) { int result; if (data1.Year < data2.Year) result = -1; else if (data1.Year > data2.Year) result = 1; else if (data1.Month < data2.Month) result = -1; else if (data1.Month > data2.Month) result = 1; else if (data1.Day < data2.Day) result = -1; else if (data1.Day > data2.Day) result = 1; else result = 0; return result;

Alternativa Múltipla (caso)

 Executa um comando (ou bloco de comandos) de acordo com um valor específico de uma variável, que deve ser inteira, caractere ou string

Algoritmo	C#
caso Variável seja	switch (Variável)
<pre><valor1> : comandos1; <valor2> : comandos2;</valor2></valor1></pre>	<pre>{ case <valor1> : comandos1; break; case <valor2> : comandos2; break;</valor2></valor1></pre>
<pre> <valorn> : comandosN; senão: comandosX; fim;</valorn></pre>	case <valorn> : comandosN; break; default : comandosX; break; }</valorn>

Regras do Switch no C#

- Os rótulos case devem ser expressões constantes
- Os rótulos devem ser únicos
- Rótulos vazios são permitidos, mas rótulos não vazios devem encerrar com um break
- O rótulo default é opcional

```
    switch(Naipe) {
    case "Copas" :
    case "Ouros" : Cor = "Vermelho"; break;
    case "Paus" : Cor = "Preto"; // Erro - sem break;
    case "Espadas" : Cor = "Preto"; break;
    }
```

Exemplo: Alternativa Múltipla

- Algoritmo para ler um código DDD e mostrar a cidade correspondente
 - Declaração de Variáveis
 - x : string;
 - Início
 - Escreva("Digite um código DDD");
 - Leia(x);
 - caso x seja
 - "11" : Escreva("São Paulo");
 - "21": Escreva("Rio de Janeiro");
 - "84" : Escreva("Natal");
 - senão Escreva("Cidade não cadastrada");
 - fim;
 - Fim.

Ex05: Alternativa Múltipla em C#

```
static void Main(string[] args)
  string x;
  Console.WriteLine("Digite um código DDD");
  x = Console.ReadLine();
  switch (x)
    case "11": Console.WriteLine("São Paulo"); break;
    case "21": Console.WriteLine("Rio de Janeiro"); break;
    case "84": Console.WriteLine("Natal"); break;
    default: Console.WriteLine("Cidade não cadastrada");
      break;
```

Operador Condicional Ternário

 O operador condicional ternário ? retorna um valor ou outro de acordo com uma expressão booleana

```
result = booleanExpression ? valor-1 : valor-2;
int x = int.Parse(Console.readLine);
Console.writeline(x % 2 == 0 ? "Par" : "Ímpar");
```

Exercícios

- 1. Ler dois números reais e imprimir o maior deles, ou a mensagem "Números iguais", se forem iguais.
- 2. Ler dois números inteiros do teclado. Se o segundo for diferente de zero, calcular e imprimir o quociente do primeiro pelo segundo. Caso contrário, imprimir a mensagem: "Divisão por zero".
- 3. Ler quatro números inteiros, calcular a soma dos números pares e a soma dos números ímpares.
- 4. Calcular as raízes reais da equação $aX^2 + bX + c = 0$, dados a, b e c.
- 5. Ler três valores e dizer se eles formam um triângulo. Caso afirmativo, dizer seu tipo (equilátero, isósceles ou escaleno).
- 6. Ler três valores e apresentá-los em ordem crescente.
- 7. Ler o último número da placa de um veículo e identificar o mês de pagamento do IPVA de acordo com a lista a seguir: 1 janeiro; 2 fevereiro; 3 março; 4 abril; ...; 9 setembro; 0 outubro.
- 8. Ler o número do mês (1 janeiro; 2 fevereiro; ...; 12 dezembro) e identificar em que trimestre o mês está incluído.

Dúvidas

