

Kirtipur, Kathmandu

Assignment no: - 5 of Digital logics

Submitted by :-

Submitted to :-

1st semester

Himal Raj Gental

Amir Maharjan

-Assignment - 5

construction of ROM x) Design a combinational circuit using a ROM. The circuit accepts a 3-bit number & generates an autpot binary number equal to the square of

	×	4	Z	F,	FZ	F3	F4	FS	FE	1
		0	0	0	0	0	0	0	0	ŧ.
	0	0	1	0	0	0	0	0	1	
	0	1	0	0	0	0	1	0	0	
	0	1	1	0	0	1	0	0	1	
	1	0	0	0	1	0	0	0	3	
	1	0	1	0	1	-	0	0	1	
	1	1	0	1	0	0	1	0	0	
	1	1	1	1	6	0	0	0	1	

4 Here, in the above touth table the comb-Inational circust has 3 inputs & 6 output So, the boolean function is:

no of inputs (n) = 3no of outputs (n) = 6

we know that decodes is 25

50, 27 = 23 = 48

8 to 8 decoder.

Booleon Function

 $F_1 = \Sigma(6,7)$

F2 = & (4,5,6)

F3 = \(\(\(\) (3,5)

F2, = 2 (2.6)

Now, we construct a 8 x 6 BOM with the holp of 8 to 8 decoder. A B 2 0 FI