Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Original) A quantum dot light-emitting diode comprising a pair of top and bottom electrodes and a quantum dot light-emitting layer provided between the electrodes wherein an inorganic electron transport layer is formed between the quantum dot light-emitting layer and the top electrode.
- 2. (Original) The quantum dot light-emitting diode according to claim 1, wherein the diode comprises an anode, a hole transport layer, a quantum dot light-emitting layer, an inorganic electron transport layer and a cathode formed in this order on a substrate.
- 3. (Currently Amended) The quantum dot light-emitting diode according to elaim 1-or 2, claim 1, wherein the inorganic electron transport layer is made of an oxide selected from the group consisting of TiO₂, ZnO, SiO₂, SnO₂, WO₃, Ta₂O₃, BaTiO₃, BaZrO₃, ZrO₂, HfO₂, Al₂O₃, Y₂O₃ and ZrSiO₄; the nitride Si₃N₄; or a semiconductor compound selected from the group consisting of CdS, ZnSe and ZnS.
- 4. (Currently Amended) The quantum dot light-emitting diode according to elaim 1 or 2, claim 1, wherein the quantum dot light-emitting layer is made of a material selected from the group consisting of: Group II-VI compound semiconductor nanocrystals, including CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe and HgTe; Group III-V compound semiconductor nanocrystals, including GaN, GaP, GaAs, InP and InAs; PbS; PbSe; PbTe; CdSe/ZnS; CdS/ZnSe; and InP/ZnS.
- 5. (Currently Amended) The quantum dot light-emitting diode according to claim 1-or-2, claim 1, wherein the inorganic electron transport layer is formed by a solution coating process selected from the group consisting of sol-gel coating, spin coating, printing, casting and spraying, or a vapor coating process selected from the group

PHO-0024 2

consisting of chemical vapor deposition (CVD), sputtering, e-beam evaporation and vacuum deposition.

- 6. (Original) The quantum dot light-emitting diode according to claim 2, wherein the hole transport layer is made of a material selected from the group consisting of poly(3,4-ethylenedioxythiophene) (PEDOT)/polystyrene para-sulfonate (PSS) derivatives, poly-N-vinylcarbazole derivatives, polyphenylenevinylene derivatives, polyparaphenylene derivatives, polymethacrylate derivatives, poly(9,9-octylfluorene) derivatives, poly(spiro-fluorene) derivatives, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD), N,N'-di(naphthalene-1-yl)-N,N'diphenyl-benzidine (NPB), tris(3-methylphenylphenylamino)-triphenylamine (m-MTDATA), and poly(9,9'-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine (TFB).
- 7. (New) The quantum dot light-emitting diode according to claim 2, wherein the inorganic electron transport layer is made of an oxide selected from the group consisting of TiO₂, ZnO, SiO₂, SnO₂, WO₃, Ta₂O₃, BaTiO₃, BaZrO₃, ZrO₂, HfO₂, Al₂O₃, Y₂O₃ and ZrSiO₄; the nitride Si₃N₄; or a semiconductor compound selected from the group consisting of CdS, ZnSe and ZnS.
- 8. (New) The quantum dot light-emitting diode according to claim 2, wherein the quantum dot light-emitting layer is made of a material selected from the group consisting of: Group II-VI compound semiconductor nanocrystals, including CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe and HgTe; Group III-V compound semiconductor nanocrystals, including GaN, GaP, GaAs, InP and InAs; PbS; PbSe; PbTe; CdSe/ZnS; CdS/ZnSe; and InP/ZnS.
- 9. (New) The quantum dot light-emitting diode according to claim 2, wherein the inorganic electron transport layer is formed by a solution coating process selected from the group consisting of sol-gel coating, spin coating, printing, casting and spraying, or a vapor coating process selected from the group consisting of chemical vapor deposition (CVD), sputtering, e-beam evaporation and vacuum deposition.

PHO-0024 3