

example of functor of points of a scheme

 ${\bf Canonical\ name} \quad {\bf Example Of Functor Of Points Of AScheme}$

Date of creation 2013-03-22 14:11:07 Last modified on 2013-03-22 14:11:07 Owner archibal (4430) Last modified by archibal (4430)

Numerical id 4

Author archibal (4430)

Entry type Example Classification msc 14A15 Let X be an affine scheme of finite type over a field k. Then we must have

$$X = \operatorname{Spec} k[X_1, \dots, X_n] / \langle f_1, \dots, f_m \rangle$$

with the structure morphism $X \to \operatorname{Spec} k$ induced from the natural embedding $k \to k[X_1, \dots, X_n]$.

Let k' be some field extension of k. What are the k'-points of X? Recall that a k'-point of X is by definition a morphism $\operatorname{Spec} k' \to X$ (observe that since we have an embedding $k \to k'$ we have a morphism $\operatorname{Spec} k' \to \operatorname{Spec} k$, so $\operatorname{Spec} k'$ is naturally a k-scheme). Since X is affine, this must come from a ring homomorphism

$$k[X_1,\ldots,X_n]/\langle f_1,\ldots,f_m\rangle\to k'$$

which takes elements of k to themselves inside k'. Such a homomorphism is completely specified by specifying the images of X_1, \ldots, X_n ; for it to be a homomorphism, these images must satisfy f_1, \ldots, f_m . In other words, a k'-point on X is identified with an element of $(k')^n$ satisfying all the polynomials f_i .

If k' is an algebraically closed field, a point on X corresponds uniquely to a point on an affine variety defined by the same equations as X. If k' is just any extension of k, then we have simply found which new points belong on X when we extend the base field. T

For an example of why schemes contain much more information than the list of points over their base field, take $X = \operatorname{Spec} \mathbb{R}[X]/\langle X^2 + 1 \rangle$. Then X has no points over \mathbb{R} , its natural base field. Over \mathbb{C} , it has two points, corresponding to i and -i.

This suggests that schemes may be the appropriate adaptation of varieties to deal with non-algebraically closed fields.

Observe that we never used the fact that k' (or in fact k) was a field. One often chooses k' as something other than a field in order to solve a problem. For example, one can take $k' = k[\epsilon]/\langle \epsilon^2 \rangle$. Then specifying a k'-point on X amounts to choosing an image $\kappa_i + \lambda_i \epsilon$ for each X_i . It is clear that the κ_i must satisfy the f_j . But upon reflection, we see that the λ_i must specify a tangent vector to X at the point specified by the κ_i . So the $k[\epsilon]/\langle \epsilon^2 \rangle$ -points tell us about the tangent bundle to X. Observe that we made no assumption about the field k—we can extract these "tangent vectors" in positive characteristic or over a non-complete field.

The ring $k[\epsilon]/\langle \epsilon^2 \rangle$ and rings like it (often any Artinian ring) can be used to define and study infinitesimal deformations of schemes, as a simple case of the study of families of schemes.