In The Name of God. The Merciful, The Compassionate.

Basis, 4 Fundamental Subspaces

notes on Gilbert Strang videos, Lecture 09,10,11

1 Linear independence, Spanning a space, Basis, and Dimension

- independence is obvious!
- Vectors $\{v_1, \ldots v_n\}$ span a space means: The space consists all combinations of those vectors.
- Basis: Basis for a space is a sequence of vectors $\{v_1, \ldots, v_d\}$ that has two properties:
 - 1. They are independent
 - 2. They span a space
- Given a space, every basis for the space has the same number of vectors: This number is the dimension of the space. (proof, see Carlo Tomasi's note)
- Rank(A) = #pivot columns = dimension of the column space
- dim(C(A)) = r, dim(N(A)) = #free variables = n r

2 The 4 fundamental subspaces

- 4 subspaces:
 - Ais am \times n Matrix
 - $C(A), N(A), N(A^T)$ or left $N(A), R(A) = C(A^T)$
- $\mathbb{R}^n : R(A) \perp N(A)$
- $\mathbb{R}^m : C(A) \perp N(A^T)$
- $C(rref(A)) \neq C(A)$

- R(rref(A)) = R(A), row operations $\Longrightarrow dim(R(A)) = r$
- $y^T A = \mathbf{0}^T$, y is in left nullspace of A,

$$rref([A_{m \times n} \quad \mathcal{I}]) \longrightarrow [R_{m \times n} \quad E_{m \times m}] := E[A \quad I] = [R \quad E]$$

 $\Longrightarrow EA = R,$

if A was square and invertible: $R = I \Rightarrow E = A^{-1}$, rows of E corresponding to zero rows of R are basis for N(A.T), because they are row vectors producing zero when multiplied by A.

- New vector spaces: $M = \text{all } m \, by \, m$ matrices.
- Subspaces of M:
 - All upper triangular matrices (U)
 - All symmetric matrices (S)
 - Diagonal matrices: $D = S \cap U$: dim(D) = m
 - S+U : any element in S+ any element in $U\colon$ all $m\,by\,m$ matrices: $\mathrm{dim}{=}m^2$
 - $\dim(S) + \dim(U) \dim(S \cap U) = \dim(S \cup U)$

	C(A)	N(A)	R(A)	$N(A^T)$
Basis:	Pivot Cols	Special Sol'n	First r rows of	rows of E corre-
			R := rref(A)	sponding to zero
				rows of R
DIM:	r	n-r	r	m-r