STUDENT ID NO										
			1							

MULTIMEDIA UNIVERSITY

1

FINAL EXAMINATION

TRIMESTER 2, 2019/2020

TMA1401 – MATHEMATICS FOR INFORMATION SYSTEMS I

(All sections / Groups)

4 MARCH 2020 2.30 PM - 4.30 PM (2 Hours)

INSTRUCTION TO STUDENT

- 1. This question paper consists of 5 printed pages (inclusive of the front page) with 4 questions only. Page 5 is the appendix for the logical equivalence laws.
- 2. Attempt ALL FOUR questions. The distribution of the marks for each question is given.
- 3. Please print all your answers in the Answer Booklet provided.
- 4. Show ALL of your working steps clearly.

QUESTION 1 [TOTAL: 10 MARKS]

- a) Let the universal set $U = \{x \in Z^+ | 1 \le x \le 12\}$, set $A = \{2,3,6,7,9,12\}$ and set $B = \{x | x \text{ is an odd positive integer less than } 10\}$.
 - i) List all the elements of B.

[1 mark]

ii) Find $A \cap B$.

[1 mark]

iii) Find $(A \cup B) - (A \cap B)$.

[1 mark]

iv) Draw sets U, A and B using a Venn diagram. Place the elements of the sets in correct regions and shade the region(s) that belong to $(A \cup B) - (A \cap B)$.

[2 marks]

- b) Suppose $S = \{(a, a), (a, b), (b, a), (b, c), (c, a), (c, b), (c, c), (d, d)\}$ is a relation on the set $A = \{a, b, c, d\}$.
 - i) Is S reflexive? Justify your answer.

[1 mark]

ii) Is S symmetric? Justify your answer.

[1 mark]

iii) Is S transitive? Justify your answer.

[1 mark]

- c) Let f(x)=|2x|+3 be the function from $\{x \in Z | -2 \le x \le 2\}$ to $\{x \in Z\}$.
 - i) Is f one-to-one? Justify your answer.

[1 mark]

ii) Is f onto? Justify your answer.

[1 mark]

QUESTION 2 [TOTAL: 10 MARKS]

- a) Suppose that a vector \boldsymbol{a} in the xy-plane has a length of 10 units and points in a direction that is 150° counter clockwise from the positive x-axis, and a vector \boldsymbol{b} in that plane has a length of 5 units and points in the positive y-direction. Find the dot product $\boldsymbol{a} \cdot \boldsymbol{b}$. [1.5 marks]
- b) Suppose that a line passing through point A = (-2,9,3) and parallel to vector a = i 3j + 4k.
 - i) Find the parametric equations for the line.

[1.5 marks]

ii) Find the coordinates of the intersection point of the line and the xz-plane.

[2 marks]

- c) Consider matrix $A = \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$.
 - i) Show that $\lambda = -1$ is one of the eigenvalues for matrix **A**. [2 marks]
 - ii) Find the eigenvector for the matrix A corresponding to the eigenvalue $\lambda = -1$. [3 marks]

Continued ...

QUESTION 3 [TOTAL: 10 MARKS]

- a) Construct a truth table to determine whether the compound proposition $r \to p \vee (\neg p \wedge q)$ is a tautology, contradiction or contingency. [4.5 marks]
- b) Use the mathematical induction to show the following statement is true for all integers $n \ge 1$:

$$1+6+11+...+(5n-4)=\frac{n}{2}(5n-3).$$
 [4.5 marks]

c) Given the recursion: $a_0 = 1$, $a_1 = 4$ and $a_n = 2a_{n-1} - a_{n-2}$ for integers $n \ge 2$. Find a_3 . [1 mark]

QUESTION 4 [TOTAL: 10 MARKS]

a) Figure 1 illustrates how 5 cities (A, B, C, D, and E) are linked by roads. For each case below, would you find an Euler circuit or a Hamilton Circuit as a solution? State an example of the circuit for each case.

Figure 1

- i) Case 1: A staff from department of public work must inspects all the roads to remove dangerous debris. The inspection must start and end with a same city.
 [1 mark]
- ii) Case 2: A volunteer team is to supply relief food to emergency shelters located at each city. The trip for the food supply must start and end with a same city. [1 mark]

Continued ...

QUESTION 4 (continued)

b) Use the **breath first search algorithm** to find a spanning tree of the graph in *Figure 2*. Assume vertex *B* is the root and the vertices are ordered alphabetically. Show clearly each step of how the algorithm is performed.

Figure 2

[5 marks]

[Important: For Question 4c, you must show proper steps on how to compute the answers.]

- c) Suppose that an IT club consists of 9 students majoring in Data Sciences and 11 students majoring in Information Systems. The club is to form a team of 6 students to participate in an e-sport tournament.
 - i) How many ways are there to form the team? [1 mark]
 - ii) How many ways are there to form the team if it must have at least 5 students majoring in Information Systems? [2 marks]

Continued ...

Appendix

List of Logical Equivalence Laws

Conversion of Implication: $p \rightarrow q \Leftrightarrow \neg p \lor q$

Conversion of Equivalence: $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$

Double Negation: $\neg \neg p \Leftrightarrow p$

DeMorgan : (i) $\neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$

(ii) $\neg (p \lor q) \Leftrightarrow (\neg p \land \neg q)$

Domination : (i) $p \wedge F \Leftrightarrow F$ (ii) $p \vee T \Leftrightarrow T$

Negation : (i) $p \land \neg p \Leftrightarrow F$ (ii) $p \lor \neg p \Leftrightarrow T$

Identity : (i) $p \wedge T \Leftrightarrow p$ (ii) $p \vee F \Leftrightarrow p$

Commutative : (i) $p \land q \Leftrightarrow q \land p$ (ii) $p \lor q \Leftrightarrow q \lor p$

Idempotent : (i) $p \lor p \Leftrightarrow p$ (ii) $p \land p \Leftrightarrow p$

Distributive : (i) $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$

(ii) $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$

Associative : (i) $p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r \Leftrightarrow p \lor q \lor r$

(ii) $p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r \Leftrightarrow p \wedge q \wedge r$

Absorption : (i) $p \lor (p \land q) \Leftrightarrow p$

(ii) $p \land (p \lor q) \Leftrightarrow p$

End of Page.