DESCRIPTION

ISOINDOLINE DERIVATIVES

FIELD OF THE INVENTION

The present invention relates to novel isoindoline derivatives. The derivatives of the invention are useful for manufacturing pharmaceutical compositions, especially anesthetics.

RELATED ART

10

20

25

Many compounds having isoindoline structure have been reported to have effects on central nerves system. Most of those reports aimed for developing tranquilizers, antispasmodics or anxiolytics (Japanese Patent Application Laid Open Nos. 47-12322 and 58-189163). Heretofore, no isoindoline derivative having anesthetic property has been reported.

As for agents affecting on the CNS, especially intravenous anesthetics, rapid induction and recovery from anesthesia are desired. In order to prepare an injectable dosage form, the anesthetic compounds are also desired to be water-soluble. However, clinically used anesthetic compounds, for example propofol (2,6-diisopropylphenol), are slightly water-soluble and thus, the clinically used intravenous anesthetics are provided in the form of emulsion with soy-oil, glycerin and purified egg phospholipid. Due to the formulation, the clinical

intravenous products have side effects such as venous pain during injection and lipid deposition as well as high susceptibility to microbial infection.

Heretofore, no CNS active agent that is enough soluble or miscible in water as well as induces no or little side effect has been reported.

SUMMARY OF THE INVENTION

5

10

One object of the present invention is to provide a water-soluble or water-miscible novel compound useful for manufacturing an anesthetic, especially intravenous anesthetic.

The present invention provides a compound represented by formula (I):

$$R_1$$
 $N-R_2$
 (I)

wherein R₁s are the same or different 1-3 groups, each of them is selected from the group consisting of C1-3 alkyl and C1-3 alkoxy, or when R₁s are two adjacent groups, the two R₁s taken together may form a saturated or unsaturated 5- or 6- membered cyclic group which may have 1 or 2 hetero atoms selected from the group consisting of sulfur, nitrogen and oxygen:

X is oxygen or sulfur:

 R_2 is selected from the group consisting of phenyl, benzyl, pyridyl, pyridylmethyl, pyrimidinyl, cyclohexyl, methylpiperazinyl, indanyl and naphthyl, all of which may optionally be substituted; provided that when R_2 is phenyl, the 3- and 4- positions of the phenyl moiety are not substituted by alkoxy groups at the same time:

represents a single bond or double bond: and

L is

$$-(CH_2)_n -H$$

5

15

wherein n is an integer of 1-8;

$$-(CH_2)_n$$
 $-N$ $N-R_3$

wherein R_3 is selected from the group consisting of hydrogen, linear or branched C1-8 alkyl, C1-3 alkyl substituted by at least one fluorine atoms, cyclopentyl, cyclohexyl, cyclohexyl, cyclohexylmethyl, benzyl, 2-pyridyl and 2-pyrimidinyl groups, n' is an integer of 1-3;

wherein W is oxygen or sulfur atom, A is selected from the
group consisting of linear or branched C1-5 alkyl, 2dimethylaminoethylamino, 2-thiazolylamino, 4methylhomopiperazinyl, 4-piperidinopiperidino,
dimethylaminoanilino, pyridylamino, piperidino, 4-

ethoxycarbonyl piperidino, 4-carboxypiperidino and a group represented by formula (J)

$$-N$$
 $N-R_3$ (J)

wherein R_3 is as defined above,

5 n" is an integer of 0-3;

10

15

$$-(CH_2)_{n''}-C-OE$$

wherein E is selected from the group consisting of hydrogen, linear or branched C1-6 alkyl or alkenyl, C1-3 alkyl substituted by at least one fluorine atoms, 2-methoxyethyl, 2-methylthioethyl, 2-dimethylaminoethyl, phenyl, pyridyl, benzyl, pyridylmethyl, cyclopentyl, cyclohexyl, tetrahydro- $2\underline{H}$ -pyranyl, cyclohexylmethyl, 1-methyl-4-piperidyl , indanyl, 1,3-benzodioxolyl and $1\underline{H}$ -indolyl, wherein phenyl and pyridyl may optionally be substituted by the group consisting of halogen, methyl, methoxy, isopropyl and allyl, provided that when R_1 is 7-methoxy and R_2 is phenyl, E is not alkyl, n" is an integer of 0-3;

$$---(CH2)n'---T-G$$

wherein T is oxygen, sulfur or NH, G is selected from the
group consisting of hydrogen, linear or branched C1-5 alkyl,
C1-3 alkyl substituted by at least one fluorine atoms, 2methoxyethyl and alkylcarbonyl, n' is an integer of 1-3;

wherein R₃ is as defined above;

$$-$$
OCH₂ $-$ C $-$ N $-$ R₃

wherein R₃ is as defined above;

$$-\text{OCH}_2$$
-C-OE

5

15

20

wherein E is as defined above;

$$= CH - C - N - R_3$$

wherein R₃ is as defined above; or

10 wherein E is as defined above or a salt thereof.

The compound of the present invention can induce an excellent sedative action in a mammalian subject and therefore, is preferably used for manufacturing an anesthesia.

The present invention further provides anesthetic composition for inducing sedative effect and anesthesia in a mammal comprising the compound of formula (I) or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable vehicle. The anesthetic

composition of the invention is especially useful as an intravenous anesthesia.

Still further, the present invention provides use of the compound of formula (I) or a pharmaceutical salt thereof for manufacturing a pharmaceutical composition for inducing sedative effect and anesthesia in a mammal.

Furthermore, the present invention provides a method for providing anesthesia in a mammalian subject in need of anesthesia, comprising administering an effective amount of compound formula (I) or a pharmaceutically acceptable salt thereof to the subject.

In the present specification and claims, the compound is described using the numbering system of the isoindoline skeleton (I) shown below unless there is specific indication.

$$R_{1} = \begin{bmatrix} 7 & X \\ 1 & 2 \\ 4 & 3 \\ 1 & 1 \end{bmatrix}$$

5

10

15

20

In the present specification and claims, the definitions of L are described with or without the bonding between the isoindoline skeleton. The definition with the bonding defines " $\stackrel{----}{=}$ L", and that without the bonding defines "L".

Detailed Déscription of the Invention.

In a preferred embodiment of the instant invention, R_1s of formula (I) may be one or two groups, which may be same or different, and selected from the group consisting of methyl, ethyl and methoxy. The number of R_1 is preferably 2. Especially 5,6-dimethyl compound, i.e. compound of formula (I) wherein both of the 5 and 6 positions are substituted by methyl. In another preferable embodiment of the invention, two R_1s on 5,6 positions of the isoindoline structure taken together form 5-membered cyclic group which may have one or two oxygen atoms.

5

10

15

20

25

X represents oxygen or sulfur, and oxygen is preferable.

 R_2 is selected from the group consisting of phenyl, benzyl, pyridyl, pyridylmethyl, pyrimidinyl, cyclohexyl, methylpiperazinyl, indanyl and naphthyl, all of which may optionally be substituted. When R_2 is phenyl, the 3- and 4- positions of the phenyl are not substituted by alkoxy groups at the same time. For R_2 , optionally substituted phenyl and optionally substituted pyridyl are especially preferable.

 R_2 may optionally have 1-3, more preferably 1 or 2 substituents. Examples of the substituents may include halogen such as fluorine, chlorine, bromine and iodine, hydroxy, C1-4 alkyl such as methyl, ethyl, propyl, isopropyl, butyl and isobutyl, C1-4 alkoxy such as methoxy,

ethoxy, propoxy, isopropoxy and butoxy, trifluoromethyl, C1-3 alkyl substituted by at least one fluorine atoms, such as trifluoromethoxy, trifluoroethoxy and trifluoropropoxy, amide, carboxy, cyano, C1-4 alkylthio such as methylthio, ethylthio, propylthio and butylthio, nitro, amino, methylamino, dimethylamino, dimethylaminomethyl, dipropylaminomethyl, methylenedioxy, phenoxy, benzyloxy, C2-5 alkanoyloxy such as acetoxy, propionyloxy butyryloxy, C1-3 ω -hydroxyalkyl such as hydroxymethyl and hydroxyethyl, C2-5 alkanoyloxy-C1-3 alkyl such as acetyloxymethyl, acetyloxyethyl and propionyloxymethyl; C2-5 alkanoylamino such as acetylamino and propionylamino; alkoxycarbonyl such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl and butoxycarbonyl, phenoxycarbonyl and benzyloxycarbonyl.

When R_2 has a substituent, the substituent may be at any position of R_2 . When R_2 is phenyl, the phenyl moiety preferably has no substituent or has a substituent of fluorine at 3- or 4- position, of C1-4 alkoxy at 4-position, of alkoxycarbonyl, methylamino or dimethylamino at 3-position. When R_2 is pyridine, no substituent is preferable.

According to the present invention, when L is

5

10

15

20

W represents oxygen or sulfur and oxygen is preferable.

A is selected from the group consisting of linear or branched C1-5 alkyl, 2-dimethylaminoethylamino, 2-thiazolylamino, 4-methylhomopiperazinyl, 4-piperidinopiperidino, dimethylaminoanilino, pyridylamino, piperidino, 4-ethoxycarbonyl piperidino, 4-carboxypiperidino and a group of formula (J)

5

When A is (J), examples of R₃ may include hydrogen,

linear or branched C1-8 alkyl, C1-3 alkyl substituted by at

least one fluorine atoms such as 3,3,3-trifluoropropyl,

cyclopentyl, cyclohexyl, cycloheptyl, cyclohexylmethyl,

benzyl, 2-pyridyl and 2-pyrimidinyl. Preferred A is C1-5

alkyl, especially, linear alkyl, or the group of formula

(J), especially the group (J) wherein R₃ is methyl or

isopropyl. n" is preferably 1 or 2, and especially 1.

According to the instant invention, when L is

$$--(CH_2)_{n''}-C-OE$$

E is selected from the group consisting of hydrogen,

linear or branched C1-6 alkyl or alkenyl, C1-3 alkyl

substituted by at least one fluorine atoms such as 3,3,3
trifluoropropyl, 2-methoxyethyl, 2-methylthioethyl, 2
dimethylaminoethyl, phenyl, pyridyl, benzyl, pyridylmethyl,

cyclopentyl, cyclohexyl, tetrahydro- $2\underline{H}$ -pyranyl, cyclohexylmethyl, 1-methyl-4-piperidyl, indanyl, 1,3-benzodioxolyl and $1\underline{H}$ -indolyl. When R_1 is methoxy at 7-position of the isoindoline structure(7-methoxy) and R_2 is phenyl, E is not an alkyl.

5

10

15

20

When E is phenyl or pyridyl, it may be substituted by halogen, methyl, methoxy, isopropyl or allyl. When E is an alkyl, propyl and isobutyl are preferable. Preferable E also includes phenyl substituted by methyl and/or methoxy.

n" represents an integer of 0-3 and especially 1 or 0.

When L is $-(CH_2)_n$ -T-G, n' is an integer of 1-3 and 2 is preferable. T is oxygen, sulfur or NH, especially oxygen or sulfur is preferable.

G is selected from the group consisting of hydrogen, linear or branched C1-5 alkyl, C1-3 alkyl substituted by at least one fluorine atoms, 2-methoxyethyl and alkylcarbonyl. Ethyl and propyl are especially preferable.

According to the instant invention, especially preferable compounds are as follows:

$$H_3C$$
 $N-R_2$
and
$$L$$

wherein R_2 and L are selected from the combinations shown below:

	R ₂	L
	→	CH ₂ C-N N-CH ₃
	——————————————————————————————————————	CH ₂ C-N N-CH ₃
	-F	CH ₂ C-N N-CH ₃
	─	$CH_2\overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}}$
	——————————————————————————————————————	CH_2 C-N N
	-F	CH_2C-N N
	OCH ₂ CH ₃	CH ₂ C-N N-CH ₃

R ₂	L .
	CH₂C-OCH₂CH₂CH₃ Ö
-{_N	CH ₂ C-OCH ₂ CH(CH ₃) ₂
-{_N	CH ₂ CH ₂ OCH ₂ CH ₃
-(CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃
-($CH_2C-N N-C$

In addition to the above, the compound of either of the above formulae wherein $\ensuremath{R_2}$ is

wherein R_4 is selected from the group consisting of C1-5 alkyl, optionally substituted phenyl and optionally substituted benzyl, and L is

is also preferably used.

Examples of substituents on the phenyl or benzyl of R_4 may include halogen, methyl, methoxy, isopropyl and allyl. Preferable R_4 is alkyl or phenyl.

Synthesis of the compound

Methods for synthesizing the compound of the invention are illustrated below. The methods below are only example and the compound of the invention may be prepared by any of the known methods.

① Compound of formula (I) wherein L is

$$-(CH_2)_{n}$$
-C-OE

10

wherein n" and E are as defined above may be prepared by, for example, hydrolyzing the compound (II)

$$R_1$$
 $N-R_2$ (II) $(CH_2)n"Z$

wherein the R_1 , R_2 and n" are as defined above, Z is $COOCH_2CH_3$ or CN

and then, if desired, esterifying the carboxylic acid obtained. More precisely:

(1) Compound of formula (II) wherein Z is carboxyl group,
20 such as formula (II-1)

$$R_1$$
 $N-R_2$
 $(II-1)$
 $(CH_2)n$ "—COOH

wherein R_1 , R_2 and n" are as defined above

may be prepared according to the method described below:

i) The compound wherein n =1 may be prepared according to the scheme shown below.

 $(R_1 \text{ and } R_2 \text{ are as defined above})$

5

10

15

Method for preparing the starting material of formula (III):

- 3,5-Dimethylphthalic anhydride (III-1) may be prepared by heating the mixture of 4,6-dimethyl-2-pyrone and chloro maleic anhydride.
- 4,5-Dimethylphthalic anhydride (III-2) may be prepared by heating the acid anhydride, which is obtained by reacting 2,3-dimethyl-1,3-butadiene and maleic anhydride,

in acetic acid together with bromine.

5

10

15

- 3,4-Dimethylphthalic anhydride may be obtained from 3-methyl-1,3-pentadiene and maleic anhydride in the same manner as compound (III-2).
- 3,6-Dimethylphthalic anhydride may be obtained according to J. Amer. Chem. Soc., 66, 733 (1944).
- 4,5-Diethylphthalic anhydride (III-3) may be prepared by converting the dicyano compound obtained according to J. Heterocyclic Chem., 22, 575 (1985) into the corresponding dicarboxylic acid with sulfuric acid followed by dehydrating (cyclizing) with acetic anhydride.
- 4,5-Dimethoxyphthalic anhydride (III-4) may be prepared by heating 3,4-dimethoxybenzoic acid in formalin saturated with hydrogen chloride gas to give the corresponding lactone, converting the lactone to dicarboxylic acid with sodium hydroxide and potassium permanganate followed by dehydrating (cyclizing) with acetic anhydride.
- 5,6-Indandicarboxylic anhydride (III-5)may 20 reacting 1,6-heptadiyne prepared by and diethyl acetylenedicarboxylate to give the diester compound, converting the diester compound into dicarboxylic acid compound with hydrochloric acid followed by dehydrating (cyclizing) with acetic anhydride.
- 25 5,6,7,8-Tetrahydro-2,3-naphthalenedicarboxylic

anhydride and 1,3-dihydro-2-benzofuran-5,6-dicarboxylic anhydride may be prepared from 1,7-octadiyne and propargyl ether respectively in the same manner as compound (III-5).

1,3-Benzodioxole-5,6-dicarboxylic anhydride can be obtained from 1,2-dibromo-4,5-(methylenedioxy)benzene in the same manner as compound (III-3).

5

10

Thus obtained appropriate starting compound (III) is heated in acetic acid or dimethylformamide with an amine compound of formula: R_2-NH_2 (wherein R_2 is as defined above) to give the compound (IV).

According to the method described in Japanese Patent Application Laid Open No. 58-189163, the compound (IV) is

reduced with sodium borohydride in a mixed solution of methanol and tetrahydrofuran to give compound (V), and the compound (V) in toluene is heated with $Ph_3 P=CHCOOCH_2CH_3$ to give compound (II-a) and then, the compound (II-a) is hydrolyzed to give compound (II-la).

ii) Compound of formula (II-1b) (Compound of Formula (II-1) wherein n =2)

5

10

15

The compound (II-1b) may be obtained according to the scheme as below by using the compound (II-a) (n''=1) as a starting material.

$$(II - a) \longrightarrow R_1 \longrightarrow R_2 \longrightarrow R_2 \longrightarrow R_1 \longrightarrow R_2 \longrightarrow R_2 \longrightarrow R_1 \longrightarrow R_2 \longrightarrow$$

[In the above scheme, R_1 and R_2 are as defined above, Ms represents a methanesulfonyl group]

(II-1b)

ĊH₂CH₂COOH

ĊH2CH2CN

(II-b)

According to the method described in Japanese Patent Application Laid Open No. 58-189163, the compound (II-a) in tetrahydrofuran is reduced with lithium borohydride to give the compound (VI), then reacted with methanesulfonyl chloride to give the mesylated compound (VII). The compound is then heated with potassium cyanide in aqueous

ethanol to give the compound (II-b) and hydrolyzed with an acid to give the compound (II-1b) wherein n" is 2.

When R_2 is pyridyl group, the compound (II-a) can be reduced by heating the compound in methanol with excess sodium borohydride.

iii) n"=0

5

10

15

The compound (II-1c), or the compound (II-1) wherein n"=0, can be obtained according to the scheme shown below using the compound (III) shown above as a starting material.

(III)
$$R_1 \longrightarrow R_1 \longrightarrow R_1 \longrightarrow CO_2CH_3$$

$$(III - a)$$

$$R_1 \longrightarrow CO_2CH_3$$

$$R_1 \longrightarrow R_1 \longrightarrow R_2 \longrightarrow R_1 \longrightarrow R_1 \longrightarrow R_2$$

$$(III - c)$$

$$(III - c)$$

$$(III - c)$$

$$(III - c)$$

 $[R_1 \text{ and } R_2 \text{ are as defined above}]$

The compound (III) is reduced with lithium tri-tert-butoxyaluminohydride according to Tetrahedron, $\underline{24}$, 2443 (1968) to give compound (III-a), and then converted to (III-b) according to Aust. J. Chem., $\underline{34}$, 151 (1981). The compound (III-b) is reacted with an amine compound R_2 -NH₂ [wherein R_2 is as defined above] to give compound (III-c). Thus obtained compound (III-c) is reacted with cyanotrimethylsilane according to J. Org. Chem., $\underline{54}$, 2417

(1989) to effect the cyclization and the compound (II-c) is obtained. Then, the compound (II-lc) is obtained by hydrolyzing the compound (II-c) with an acid.

(2) Compound (II-2)

5

10

$$R_1$$
 $N-R_2$
 $(II-2)$
 $(CH_2)n$ "—COOE

 $[R_1 \ \text{and} \ R_2 \ \text{are as defined above, E is as defined above with}$ the exception that E is not hydrogen]

The compound (II-2) can be obtained by reacting a carboxylic acid compound (II-1) with a corresponding alcohol, phenol or hydroxyl compound in the presence of WSC [1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride] and DMAP (4-dimethylaminopyridine).

② Compound of formula (I) wherein L is

or compound (II-3):

$$R_1$$
 $N-R_2$
 $(CH_2)n$
 $C-A$
 O

wherein R_1 , R_2 , A and n" are as defined above

is prepared by the following methods:

Compound (II-3) wherein A is not an alkyl group may be prepared by reacting the carboxylic acid compound (II-1) with a corresponding amine compound in the presence of WSC [1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride] and HOBT (1-hydroxybenzotriazole hydrate) in dimethylformamide or tetrahydrofuran.

The amine compound of the formula:

5

wherein R₈ is selected from the group consisting of linear or branched C3-8 alkyl, C1-3 alkyl substituted by at least one fluorine atoms, cyclopentyl, cycloheptyl and cyclohexylmethyl,

may be obtained according to J. Med. Chem., 42, 2870(1999).

Compound (I), wherein L has an alkylketone moiety on its terminal, or compound (II-3) wherein A is C1-5 alkyl, can be obtained by reacting the above described compound (V) with compound (VIII):

 $Ph_3 P=CHCO-R_7$ (VIII) wherein, R_7 is C1-5 alkyl.

The compound (VIII) can be obtained according to Synthesis, 1055 (1987).

③ Compound (I), wherein L is $-(CH_2)_n-H$ may be obtained according to the scheme shown below by using the compound (IV) as the starting material.

(IV)
$$R_1$$
 $N-R_2$ R_1 $N-R_2$ R_1 $N-R_2$ R_2 R_3 (IV-a) (IV-c)

[wherein, R_1 and R_2 are as above defined, R_5 is alkyl]

Compound (IV) is reacted with a Grignard reagent of R_6 -MgBr (wherein R_6 is alkyl) to give compound(IV-a), and further reacted in the presence of triethylsilane and trifluoroacetic acid in dichloromethane to give compound(IV-b), and then, reduced with palladium on carbon catalyst to give the compound (IV-c).

4 Compound (I), wherein L is

$$---(CH2)n'---T-G$$

5

10

15

wherein T, G and n' are as defined above with the exception that G is not hydrogen or alkylcarbonyl may be prepared by reacting the compound (VII) with an alcohol, thiol or amine represented by: G-T-H (wherein G and T are as defined above, with the exception that G is not hydrogen or alkylcarbonyl).

(1) The compound wherein T is oxygen or sulfur, or the compound shown below:

$$R_1$$
 $N-R_2$
 $(CH_2)n'-T-G$

wherein, R_1 and R_2 are as defined above, T is oxygen or sulfur, G is linear or branched C1-5 alkyl, C1-3 alkyl substituted by at least one fluorine or 2-methoxyethyl, n' is an integer of 1-3

- 5 may be obtained by reacting the compound (VII) with corresponding alcoholate or thiolate on heating. The alcoholate or thiolate can be prepared from the corresponding alcohol or thiol and metallic sodium.
- (2) The compound wherein T is NH or the compound shown below:

$$R_1$$
 $N-R_2$
 $(CH_2)n' NH-G$

wherein R_1 , R_2 and n^{\prime} are as defined above, G is lower alkyl

may be obtained by the compound (VII) with the corresponding amine.

⑤ The compound of formula (I) wherein L is $-(CH_2)n'-T-G$

wherein T is oxygen and G is alkylcarbonyl or the compound shown below:

$$R_1 = \begin{array}{c} O \\ N-R_2 \\ (CH_2)n' OC-R_9 \\ O \end{array}$$

wherein R_1 , R_2 and n^\prime are as defined above, R_9 is lower alkyl

may be obtained by reacting the compound (VI) with an acid chloride compound of : $C1-C0-R_9$ wherein R_9 is as defined above.

6 The compound of formula (I) wherein L is

$$-(CH_2)_{n'}-N$$
 $N-R_3$

5

wherein n' and R_3 are as defined above for example, the compound shown below:

$$\begin{array}{c|c} O \\ N-R_2 \\ CH_2CH_2-N \\ N-R_3 \end{array}$$

wherein R_1 , R_2 and R_3 are as defined above may be prepared by reacting the compound of formula (IX):

15 (IX) wherein R_3 is as defined above with the compound (VII) in the presence of triethylamine.

⑦ Compound of formula (I) wherein X is sulfur or the compound shown below:

$$R_1$$
 $N-R_2$

wherein R_1 , R_2 and L are as defined above.

5 may be obtained by reacting a compound of

$$R_1$$
 $N-R_2$

wherein R_1 , R_2 and L are as defined above

with 2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide(Lawesson's reagent)in toluene on heating.

10 8 Compound of formula (I), wherein L is

wherein R_3 is as defined above

may be obtained by reacting the compound (V) with the compound

$$CI-C-N$$
 $N-R_3$

15

wherein R_3 is as defined above

according to Japanese Patent Application Laid Open No. 47-

12322.

$$-$$
OCH₂ $-$ C $-$ N $-$ R₃

or

5

10

wherein, R₃ and E are as defined above

may be obtained by reacting the compound (V) with sodium hydride and then reacted with ethyl bromoacetate to give the compound (X), and then hydrolyzing the compound (X) with an alkali to give the carboxylic acid compound(II-1d) and followed by esterification or amidation.

$$(V) \longrightarrow R_1 \longrightarrow N-R_2 \longrightarrow R_1 \longrightarrow N-R_2$$

$$OCH_2CO_2CH_2CH_3 \longrightarrow OCH_2COOH$$

$$(X) \qquad (II-1d)$$

① The compound of formula (I), wherein L is

15 wherein R₃ is as defined above,

or

wherein E is as defined above

may be obtained by converting the compound (III) to the compound (XI) below according to Aust. J. Chem., $\underline{35}$, 2077 (1982), and reacting the compound with an amine of :R₂-NH₂ (wherein R₂ is as defined above) on heating to give the compound (XII). Then, the compound is hydrolyzed with an alkali and then, esterify or amidate to give the desired compound.

5

10

15

20

(III)
$$\longrightarrow$$
 R_1 \longrightarrow R_1 \longrightarrow R_1 \longrightarrow $N-R_2$ \longrightarrow $CHCO_2CH_2CH_3$ \longrightarrow $(X II)$

Compounds of formula (I), wherein the end of L is carboxyl group, such as that of (II-1), may be provided as a metal salt with sodium, potassium or calcium.

When the compound of formula (I) is basic, the compound may be provided as an acid addition salt, especially pharmaceutically acceptable salt with an acid. Examples of the salt may include inorganic salts such as hydrochloride, sulfate, nitrate, phosphate and hydrobromide, and organic salt such as acetate, propionate, fumarate, maleate, tartrate, citrate, malate, oxalate, benzoate, methanesulfonate and benzenesulfonate.

The compound of the invention may have optical isomers and the scope of the invention covers both optical isomers and the racemic compound. Usually, the compound of the

present invention is obtained as racemic and may be divided into the optical isomers in a conventional manner known to the art.

The compound of the invention is useful for anesthesia by inducing sedation in mammal.

5

10

15

20

25

The three components of anesthesia are sedation (unconsciousness), analgesia (blocking receipt and transmittance of pain sensation) and muscular relaxation (blocking unwanted body move or harmful reflex response). Upon clinical anesthesia, compounds having respective activities are used in combination upon anesthesia based on the necessity. The isoindoline derivatives of the present invention have excellent sedative properties on mammalian such as human beings and therefore, effectively used as an anesthetic for mammal.

The compound of the present invention has a wider safety margin than commercially available intravenous anesthetics such as propofol or thiopental sodium as well as rapid introduction and recovery from anesthesia.

The compound of the present invention can easily be made being water-soluble or water-miscible by forming a pharmaceutically acceptable salt thereof, or preparing a solution with a solubilizer. Accordingly, the compound of the present invention is useful for manufacturing an ideal intravenous anesthetic composition. Examples of

pharmaceutically acceptable salts may include those disclosed above.

The anesthetic composition of the present invention may be formulated for administering orally or parenterally such as intravenously, epidurally, spinally, subcutaneously or intramuscularly to a mammal such as a human. Examples of the dosage form of the composition may include tablet, granule, capsule, injectable solution, ophthalmic solution, ocular ointment and suppository. Preferably, the composition of the invention is intravenous anesthetic composition prepared by dissolving the compound with or without a solubilizer in a pharmaceutically acceptable vehicle.

5

10

15

20

25

Examples of the pharmaceutically acceptable vehicles used in the composition of the present invention may include purified water, saline, injection solvent and Ringer's solution, and saline is preferable.

Most of pharmaceutically acceptable salts of compound (I) are water-soluble and some water-insoluble compounds may be dissolved in water with a solubilizer. Examples of solubilizer may include cyclodextrin, glycerin, ethanol, propylene glycol and polyethylene glycol.

The anesthetic composition of the invention may be formulated as powdery composition to be dissolved in an appropriate vehicle such as water or saline before use.

The anesthetic composition of the invention may further comprise other ingredients, which are used in a conventional anesthetic composition. The other ingredients may include, but not limited to, isotonic agent such as sodium chloride and glucose; buffering agent such as calcium citrate, sodium citrate, potassium acetate, sodium acetate, sodium hydrogen phosphate and potassium dihydrogen phosphate; antiseptic such as benzylalcohol and phenol; antioxidant such as sodium pyrosulfite, sodium hydrogen sulfite and ascorbic acid : preservative such benzethonium chloride, benzalkonium chloride, phenol, cresol, chlorobutanol and benzylalcohol; and chelating reagent such as EDTA, thioglycolic acid, thiolactic acid and thioglycerin.

5

10

15

20

25

The anesthetic composition of the invention may contain other pharmacologically active ingredients, as far as they are not contrary to the objects of the present invention.

The anesthetic composition of the invention can be administrated intravenously to induce general anesthesia. The composition is effective for induction and maintenance anesthesia state upon surgical operation as well as postoperative sedation control, and for sedation control in a ventilated patient undergoing intensive treatment. The anesthetic composition of the invention may be used in any

stage of anesthesia in combination of a suitable analgesic and/or muscular relaxant if desired.

The anesthetic effective amount of the compound (I) or a salt thereof is not limited and may vary depending on the age, sex, body weight and physical condition of the subject be treated, desired depth or retention time of anesthesia and the like. For induction of anesthesia, typically about 0.1-10mg/kg, preferably 1.0-5.0mg/kg bolus of the compound of the present invention is administrated intravenously. For maintenance, 0.5-25 mg/kg/hourpreferably 1.0-15mg/kg/hour of the compound may continuously administrated intravenously. For maintenance of sedation in a patient undergoing intensive treatment or for postoperative sedation, 0.05-10mg/kg/hour, preferably 0.1-5.0mg/kg/hour of the composition may be continuously administrated intravenously. These amounts are only examples and do not limit the scope of the invention.

The present invention will be further illustrated by the following Test Examples, Reference Examples and Examples; however, the present invention is not limited to these examples.

Reference Example 1

5

10

15

20

- 4,5-Diethylphthalic anhydride
- (a) 4,5-Diethylphthalic acid
- 25 1,2-dicyano-4,5-diethylbenzene (2.3g, 12mmol) was

stirred with heating in 75% sulfuric acid (30 ml) at 150°C for 3.5 hrs. The reaction solution was poured into ice-cold water. The precipitated crystals were collected by filtration, washed with water, and dissolved in 10% aqueous sodium hydroxide solution. The insoluble materials were separated by filtration, and the resulting filtrate was made acid with concentrated hydrochloric acid. The precipitated crystals were collected by filtration, washed with water, and dried to give 1.5 g of 4,5-diethylphthalic acid.

(b) 4,5-diethylphthalic anhydride

The product of above-mentioned (a) (1.5 g, 6.7 mmol) was heated under reflux in acetic anhydride (10 ml) for 1 hr. The reaction solution was concentrated under reduced pressure, and the resulting residue was dissolved in 10% aqueous sodium hydroxide solution. The insoluble materials were collected by filtration, washed with water, and dried to give 0.31 g of the title compound.

Reference Example 2

5

10

15

25

20 3,5-dimethylphthalic anhydride

4,6-dimethyl-2-pyrone (1.0 g, 8.1 mmol) and 2-chloromaleic anhydride (1.5 g, 11 mmol) were stirred with heating at 160°C for 3 hrs, and the precipitated crystals were purified by silica gel chromatography (chloroform) to give 0.91 g of the title compound.

Reference Example 3

- 4,5-dimethylphthalic anhydride
- (a) 5,6-dimethyl-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione
- To a solution of maleic anhydride (5.4 g, 55 mmol) in benzene (50 ml) was added dropwise 2,3-dimethyl-1,3-butadiene (6.3 ml, 55 mmol), and stirred overnight at 25°C. After separating the insoluble materials by filtration, the filtrate was concentrated under reduced pressure to give 9.5 g of 5,6-dimethyl-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione.
 - (b) 4,5-dimethylphthalic anhydride

To a solution of above-mentioned (a) (9.5 g, 53 mmol) in acetic acid (28 ml) was added dropwise a solution of bromine (6.1 ml, 0.12 mol) in acetic acid (28 ml) at 115°C over a period of 45 minutes, and heated under reflux for 1 hr. The reaction solution was left overnight, and the precipitated crystals were collected by filtration, washed with diethyl ether, followed by drying to give 3.5 g of the title compound.

Reference Example 4

15

20

- 4,5-dimethoxyphthalic anhydride
- (a) 4,5-dimethoxyphthalide
- 3,4-dimethoxybenzoic acid (5.0 g, 27 mmol) was added to Formalin (36 ml) saturated with hydrogen chloride gas,

and stirred with bubbling hydrogen chloride gas at 65°C for 2 hrs. The reaction solution was concentrated under reduced pressure, and to the residue was added water (16 ml), followed by neutralizing with dilute aqueous ammonia (concentrated aqueous ammonia: water = 2 : 3). The precipitated crystals were collected by filtration, washed with water, followed by drying to give 4.0 g of 4,5-dimethoxyphthalide.

(b) 4,5-dimethoxyphthalic acid

5

25

10 An aqueous 2N sodium hydroxide solution of the product of above-mentioned (a) (3.0 g, 15 mmol) was added dropwise with stirring to a 6 % aqueous solution of potassium permanganate (50 ml) under ice cooling, and the reaction solution was stirred overnight with gradually raising the 15 temperature to 25°C. To the reaction solution was added ethanol and the precipitated manganese dioxide was filtered off. The filtrate was acidified with concentrated hydrochloric acid and concentrated under reduced pressure. To the residue was added methanol and stirred for 10 20 minutes. After the insoluble materials were filtered off, the filtrate was concentrated under reduced pressure to give 4.1 g of 4,5-dimethoxyphthalic acid.

(c) 4,5-dimethoxyphthalic anhydride

The product of above-mentioned (b) (4.1 g, 18 mmol) was heated under reflux in acetic anhydride (14 ml) for 10

minutes. The reaction solution was poured into ice-cold water, and extracted with chloroform. The organic layer was washed with an aqueous saturated sodium bicarbonate solution and then water, dried and concentrated under reduced pressure to give 1.8 g of the title compound.

Reference Example 5

5

10

15

25

5,6-indandicarboxylic anhydride

(a) Diethyl 5,6-indandicarboxylate

Diethyl acetylenedicarboxylate (1.0 ml, 6.3 mmol) and dicarbonylcyclopentadienylcobalt (0.1 ml, 0.62 mmol) were added dropwise to a solution of 1,6-heptadiyne (0.72 ml, 6.3 mmol) in xylene (5 ml), and stirred at 80°C for 5 days. To the reaction solution was added dilute hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried and concentrated under reduced pressure, followed by purifying the residue by silica gel chromatography (chloroform, successively hexane: ethyl acetate = 10:1) to give 0.36 g of diethyl 5,6-indandicarboxylate.

20 (b) 5,6-indandicarboxylic acid

To a solution of the product of above-mentioned (a) (0.36 g, 1.4 mmol) in acetic acid (0.8 ml) was added concentrated hydrochloric acid (0.4 ml) and stirred at 80°C overnight. To the reaction solution was added ice-cold water, and the precipitated crystals were collected by

filtration, washed with water, followed by drying to give 0.28 g of 5,6-indandicarboxylic acid.

(c) 5,6-indandicarboxylic anhydride

The product of above-mentioned (b) (0.28 g, 1.4 mmol) was heated under reflux in acetic anhydride (6.7 ml) overnight. The reaction solution was poured into ice-cold water, and the precipitated crystals were collected by filtration, washed with water, followed by drying to give 0.25 g of the title compound.

10 Reference Example 6

5

5, 6, 7, 8-tetrahydro-2, 3-naphthalenedicarboxylic anhydride

By using 1,7-octadiyne as starting material, the title compound was obtained according to Reference Example 5.

Reference Example 7

15 1,3-dihydro-2-benzofuran-5,6-dicarboxylic anhydride

By using propargyl ether as starting material, the title compound was obtained according to Reference Example 5.

Reference Example 8

20 1,3-benzodioxole-5,6-dicarboxylic anhydride

By using 1,2-dibromo-4,5-(methylenedioxy)benzene, the title compound was obtained according to the synthesis of 4,5-diethylphthalic anhydride.

Example 1

5,6-dimethyl-2-(4-fluorophenyl)-3-carboxymethylisoindolin-

1-one [IUPAC name: 2-[2-(4-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-yl]acetic acid]

(1-a) 5,6-dimethyl-2-(4-fluorophenyl)isoindolin-1,3-dione

5

10

20

25

4,5-dimethylphthalic anhydride (1.7 g, 9.6 mmol) and 4-fluoroaniline (1.1 g, 9.6 mmol) were stirred with heating in dimethylformamide at 150°C for 1 hr. After cooling, water was added to the reaction mixture, and the precipitated crystals were collected by filtration, washed with water, and dried. The resulting crystals were purified by silica gel chromatography (chloroform) to give 2.0 g of 5,6-dimethyl-2-(4-fluorophenyl)isoindolin-1,3-dione.

¹ H-NMR (CDCl₃) δ: 2.44 (6H, s, CH₃), 7.15-7.22 (2H, m, PhH), 7.38-7.45 (2H, m, PhH), 7.71 (2H, s, C_{4,7}-H)

15 (1-b) 5,6-dimethyl-2-(4-fluorophenyl)-3-hydroxyisoindolin-1-one

The product of above-mentioned (1-a) (1.0 g, 3.7 mmol) was suspended in methanol (9 ml) and tetrahydrofuran (9 ml), and sodium borohydride (0.15 g, 3.9 mmol) was added by portions thereto with stirring under ice cooling, followed by stirring at the same temperature for 30 minutes. To the reaction solution was added water, and the precipitated crystals were collected by filtration, washed with water, followed by drying to give 0.95 g of 5,6-dimethyl-2-(4-fluorophenyl)-3-hydroxyisoindolin-1-one.

- (1-c) 5,6-dimethyl-2-(4-fluorophenyl)-3-ethoxycarbonyl-methylisoindolin-1-one [IUPAC name: ethyl 2-[2-(4-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-yl]acetate]
- The product of above-mentioned (1-b) (0.90 g, 3.3 mmol) and (carboethoxymethylene)triphenylphosphorane (1.4 g, 3.9 mmol) was heated under reflux in toluene (15 ml) under an argon atmosphere for 3.5 hrs. The reaction solution was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (chloroform: methanol = 50 : 1) to give 0.37 g of 5,6-dimethyl-2-(4-fluorophenyl)-3-ethoxycarbonylmethylisoindolin-1-one [IUPAC name: ethyl 2-[2-(4-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-yl]acetate].
- 15 1 H-NMR (CDCl₃) δ: 1.18 (3H, t, CH₂CH₃), 2.36 (3H, s, CH₃), 2.38 (3H, s, CH₃), 2.50 (1H, dd, CH₂), 2.85 (1H, dd, CH₂), 4.02-4.15 (2H, m, CH₂CH₃), 5.46 (1H, dd, CH), 7.10-7.18 (2H, m, PhH), 7.27 (1H, s, C₇-H), 7.48-7.54 (2H, m, PhH), 7.68 (1H, s, C₄-H)
- 20 (1-d) 5,6-dimethyl-2-(4-fluorophenyl)-3-carboxymethyl-isoindolin-1-one [IUPAC name: 2-[2-(4-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-yl]acetic acid]

25

The product of above-mentioned (1-c) (0.20 g, 0.59 mmol) was stirred with heating in methanol (1.5 ml) and 15% aqueous solution of potassium carbonate (0.46 ml) at 75° C

for 4 hrs. The reaction solution was concentrated under reduced pressure, and water was added to the residue followed by extracting with diethyl ether. The water layer was made acid with concentrated hydrochloric acid, and the precipitated crystals were collected by filtration, washed with water, followed by drying to give 0.12 g of the title compound.

¹ H-NMR (DMSO-d₆) δ: 2.32 (3H, s, CH₃), 2.34 (3H, s, CH₃), 2.52 (1H, dd, CH₂), 2.80 (1H, dd, CH₂), 5.55 (1H, dd, CH), 7.26-7.30 (2H, m, PhH), 7.44 (1H, s, C₇-H), 7.54 (1H, s, C₄-H), 7.57-7.61 (2H, m, PhH)

Example 2

5

10

15

By using 5,6-dimethyl-2-substituted-isoindolin-1,3-dione as starting material, 5,6-dimethyl-3-carboxymethyl-2-substituted-isoindolin-1-one was obtained according to Example 1.

Example 3

5,6-dimethyl-2-(3-fluorophenyl)-3-(4-methyl-1-piperazinyl)carbonylmethylisoindolin-1-one

5,6-dimethyl-2-(3-fluorophenyl)-3-carboxymethylisoindolin-1-one [IUPAC name: 2-[2-(4-fluorophenyl)-5,6dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-yl]acetic acid]
(0.50 g,1.6 mmol), 1-methylpiperazine (0.16 g, 1.6 mmol),
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride
(0.31 g, 1.6 mmol) and 1-hydroxybenzotriazole hydrate (0.25

g, 1.6 mmol) were stirred in tetrahydrofuran (40 ml) at 25°C for 16 hrs. The reaction solution was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (chloroform: methanol = 20:1) to give 0.56 g of the title compound.

¹ H-NMR (CDCl₃) δ: 2.16-2.26 (2H, m, piperazine), 2.27 (3H, s, NCH₃), 2.36 (3H, s, CH₃), 2.37 (3H, s, CH₃), 2.34-2.42 (2H, m, piperazine), 2.41 (1H, dd, CH₂), 2.91 (1H, dd, CH₂), 3.20-3.31 (2H, m, piperazine), 3.64-3.72 (2H, m, piperazine), 5.77 (1H, dd, CH), 6.88-6.93 (1H, m, PhH), 7.38 (1H, s, C₄-H), 7.35-7.42 (2H, m, PhH), 7.58-7.62 (1H, m, PhH), 7.68 (1H, s, C₇-H)

Example 4

5

10

15

5,6-dimethyl-2-(4-fluorophenyl)-3-carboxyethylisoindolin-1one [IUPAC name: 3-[2-(4-fluorophenyl)-5,6-dimethyl-3-oxo2,3-dihydro-1H-isoindol-1-yl]propionic acid]

(4-a) 5,6-dimethyl-2-(4-fluorophenyl)-3-(2-hydroxyethyl)isoindolin-1-one

To a solution of lithium borohydride (80 mg, 3.7 mmol)

in tetrahydrofuran was added with stirring 5,6-dimethyl-2
(4-fluorophenyl)-3-ethoxycarbonylmethylisoindolin-1-one

[IUPAC name: ethyl 2-[2-(4-fluorophenyl)-5,6-dimethyl-3
oxo-2,3-dihydro-1H-isoindol-1-yl]acetate] (0.63 g, 1.9

mmol) under ice cooling and stirred at 25°C for 39 hrs. To

the reaction solution was added water, and the precipitated

crystals were collected by filtration, washed with water, followed by drying to give 0.51 g of 5,6-dimethyl-2-(4-fluorophenyl)-3-(2-hydroxyethyl)isoindolin-1-one.

¹ H-NMR (CDCl₃) δ: 2.01-2.25 (2H, m, CH₂CH₂O), 2.37 (3H, s, CH₃), 2.40 (3H, s, CH₃), 3.50 (2H, dd, CH₂CH₂O), 5.28 (1H, dd, CH), 7.12-7.16 (2H, m, PhH), 7.32 (1H, s, C₄-H), 7.52-7.55 (2H, m, PhH), 7.68 (1H, s, C₇-H)

(4-b) 5,6-dimethyl-2-(4-fluorophenyl)-3-mesyloxyethyl-isoindolin-1-one

5

20

25

To a solution of the product of above-mentioned (4-a) (0.20 g, 0.67 mmol) and triethylamine (0.14 ml, 1.0 mmol) in dichloromethane was added mesyl chloride (0.06 ml, 0.78 mmol) and stirred at 25°C for 30 minutes. The reaction solution was washed with water, dried, and the solvent was distilled away under reduced pressure to give 0.23 g of 5,6-dimethyl-2-(4-fluorophenyl)-3-mesyloxyethylisoindolin-1-one.

¹ H-NMR (CDCl₃) δ: 2.26-2.45 (2H, m, CH₂CH₂O), 2.38 (3H, s, CH₃), 2.41 (3H, s, CH₃), 2.79 (3H, s, CH₃SO₂), 3.90-4.04 (2H, m, CH₂CH₂O), 5.29 (1H, dd, CH), 7.14-7.18 (2H, m, PhH), 7.31 (1H, s, C₄-H), 7.51-7.54 (2H, m, PhH), 7.70 (1H, s, C₇-H)

(4-c) 5,6-dimethyl-2-(4-fluorophenyl)-3-cyanoethylisoindolin-1-one [IUPAC name: 3-[2-(4-fluorophenyl)-5,6dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-yl]propanenitrile]

To a 80% ethanol solution of the product of above-mentioned (4-b) (0.23 g, 0.63 mmol) was added potassium cyanide (0.12 g, 1.9 mmol) and heated under reflux for 4 hrs. To the reaction solution was added water, and extracted with ethyl acetate. The extract was washed with water, dried and the solvent was distilled away under reduced pressure to give 0.19 g of 5,6-dimethyl-2-(4-fluorophenyl)-3-cyanoethylisoindolin-1-one [IUPAC name: 3-[2-(4-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-

10 isoindol-1-yl]propanenitrile].

5

15

20

¹ H-NMR (CDCl₃) δ: 1.77-1.99 (2H, m, CH₂CH₂CN), 2.28-2.41 (2H, m, CH₂CH₂CN), 2.38 (3H, s, CH₃), 2.42 (3H, s, CH₃), 5.29 (1H, dd, CH), 7.15-7.20 (2H, m, PhH), 7.26 (1H, s, C₇-H), 7.50-7.53 (2H, m, PhH), 7.70 (1H, s, C₄-H)

(4-d) 5,6-dimethyl-2-(4-fluorophenyl)-3-carboxyethyl-isoindolin-1-one [IUPAC name: 3-[2-(4-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-yl]propionic acid]

The product of above-mentioned (4-c) (0.18 g, 0.58 mmol) was heated under reflux in concentrated hydrochloric acid (10 ml) overnight. To the reaction solution was added water, and the precipitated crystals were collected by filtration, washed with water, and dried to give 0.15 g of the title compound.

Example 5

25 5,6-dimethyl-2-(4-fluorophenyl)-3-(4-methyl-1-piperazinyl)-

carbonylethylisoindolin-1-one

By using 5,6-dimethyl-2-(4-fluorophenyl)-3-carboxy-ethylisoindolin-1-one [IUPAC name: 3-[2-(4-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-yl]propionic acid], the title compound was obtained according to Example 3.

¹ H-NMR (CDCl₃) δ: 1.64-1.98 (2H, m, CH₂CH₂C=O), 2.10-2.21 (2H, m, piperazine), 2.24 (3H, s, NCH₃), 2.24-2.27 (2H, m, piperazine), 2.27-2.37 (2H, m, CH₂CH₂C=O), 2.37 (3H, s, CH₃), 2.39 (3H, s, CH₃), 3.04-3.07 (2H, m, piperazine), 3.41-3.56 (2H, m, piperazine), 5.32 (1H, dd, CH), 7.12-7.16 (2H, m, PhH), 7.26 (1H, s, C₄-H), 7.55-7.58 (2H, m, PhH), 7.68 (1H, s, C₇-H)

Example 6

5

10

Compounds shown in Table 1 and 2, were obtained in a manner similar to those described in Example 3 and 5.

Table 1

Table 1

$$R_1$$
 5
 4
 CH_2C-N
 $N-CH_3$

No.	R ₁	R ₂	melting point (℃)
1	5-CH ₃	_ F	white crystals
2	4,5-di-CH3	——————————————————————————————————————	153-162 (1-hydrochloride salt)
3	4,6-di-CH3		161-168 (1-hydrochloride salt)
4	4,7—di—CH3		160.5-170
5	5,7—di—CH3	-	155-163 (1-hydrochloride salt)
6	6,7—di—CH3		154-162 (1-hydrochloride salt)
7	5,6-di-CH3CH2	——F	white crystals
8	5,6-di-CH ₃ O	- F	white crystals

The NMR data of each compound in Table 1 are shown below:

No.1 1 H-NMR (CDCl₃) δ : 2.17-2.25 (2H, m, piperazine), 2.27 (3H, s, NCH₃), 2.34-2.40 (2H, m, piperazine), 2.44 (1H,

dd, CH_2), 2.47 (3H, s, CH_3), 2.83 (1H, dd, CH_2), 3.18-3.33 (2H, m, piperazine), 3.58-3.76 (2H, m, piperazine), 5.78 (1H, dd, CH), 7.10-7.18 (2H, m, PhH), 7.33 (1H, br d, C_6 -H), 7.41 (1H, br s, C_4 -H), 7.56-7.63 (2H, m, PhH), 7.79 (1H, d, C_7 -H)

5

10

15

20

No.2 1 H-NMR (CDCl₃) δ : 1.92-2.23 (4H, m, piperazine), 2.22 (3H, s, NCH₃), 2.33 (3H, s, CH₃), 2.39 (3H, s, CH₃), 2.64 (1H, dd, CH₂), 2.82 (1H, dd, CH₂), 3.03-3.25 (2H, m, piperazine), 3.50-3.58 (2H, m, piperazine), 6.02 (1H, dd, CH), 6.87-6.91 (1H, m, PhH), 7.30-7.46 (3H, m, PhH and C₆-H), 7.60-7.66 (2H, m, PhH and C₇-H)

No.3 1 H-NMR (CDCl₃) δ : 2.01-2.33 (4H, m, piperazine), 2.23 (3H, s, NCH₃), 2.39 (3H, s, CH₃), 2.43 (3H, s, CH₃), 2.65 (1H, dd, CH₂), 2.82 (1H, dd, CH₂), 3.07-3.27 (2H, m, piperazine), 3.49-3.60 (2H, m, piperazine), 5.98 (1H, dd, CH), 6.87-6.92 (1H, m, PhH), 7.22 (1H, s, C₅-H), 7.34-7.45 (2H, m, PhH), 7.56 (1H, s, C₇-H), 7.62-7.66 (1H, m, PhH)

No.4 1 H-NMR (CDCl₃) δ : 1.98-2.05 (1H, m, piperazine), 2.16-2.35 (3H, m, piperazine), 2.22 (3H, s, NCH₃), 2.39 (3H, s, CH₃), 2.63 (1H, dd, CH₂), 2.71 (3H, s, CH₃), 2.83 (1H, dd, CH₂), 3.07-3.27 (2H, m, piperazine), 3.46-3.60 (2H, m, piperazine), 5.97 (1H, dd, CH), 6.87-6.92 (1H, m, PhH), 7.16 (1H, d, C₆-H), 7.26 (1H, d, C₅-H), 7.33-7.45 (2H, m, PhH), 7.63-7.66 (1H, m, PhH)

No.5 1 H-NMR (CDCl₃) δ : 2.20-2.25 (2H, m, piperazine),

2.27 (3H, s, NCH₃), 2.37-2.41 (2H, m, piperazine), 2.42 (3H, s, CH₃), 2.44 (1H, dd, CH₂), 2.71 (3H, s, CH₃), 2.88 (1H, dd, CH₂), 3.21-3.31 (2H, m, piperazine), 3.64-3.76 (2H, m, piperazine), 5.75 (1H, dd, CH), 6.88-6.92 (1H, m, PhH), 7.07 (1H, s, C₆-H), 7.21 (1H, s, C₄-H), 7.34-7.41 (2H, m, PhH), 7.59-7.62 (1H, m, PhH)

5

No.6 ¹H-NMR (CDCl₃) δ: 2.20-2.23 (2H, m, piperazine), 2.26 (3H, s, NCH₃), 2.36-2.38 (2H, m, piperazine), 2.36 (3H, s, CH₃), 2.41 (1H, dd, CH₂), 2.72 (3H, s, CH₃), 2.87 (1H, dd, CH₂), 3.19-3.30 (2H, m, piperazine), 3.63-3.72 (2H, m, piperazine), 5.74 (1H, dd, CH), 6.89-6.94 (1H, m, PhH), 7.31-7.42 (4H, m, PhH and C₄, 5-H), 7.57-7.61 (1H, m, PhH) No.7 ¹H-NMR (CDCl₃) δ: 1.25 (3H, t, CH₂CH₃), 1.29 (3H, t, CH₂CH₃), 2.20-2.22 (2H, m, piperazine), 2.26 (3H, s, NCH₃), 2.35-2.37 (2H, m, piperazine), 2.43 (1H, dd, CH₂), 2.72-2.77 (4H, m, CH₂CH₃), 2.81 (1H, dd, CH₂), 3.19-3.31 (2H, m, piperazine), 3.60-3.74 (2H, m, piperazine), 5.77 (1H, dd, CH), 7.11-7.15 (2H, m, PhH), 7.38 (1H, s, C₄-H), 7.58-7.61 (2H, m, PhH), 7.73 (1H, s, C₇-H)

No.8 1 H-NMR (CDCl₃) δ : 2.22-2.41 (4H, m, piperazine), 2.26 (3H, s, NCH₃), 2.38 (1H, dd, CH₂), 2.85 (1H, dd, CH₂), 3.24-3.34 (2H, m, piperazine), 3.65-3.73 (2H, m, piperazine), 3.95 (3H, s, OCH₃), 3.97 (3H, s, OCH₃), 5.71 (1H, dd, CH), 7.12-7.16 (2H, m, PhH), 7.15 (1H, s, C₄-H), 7.36 (1H, s, C₇-H), 7.56-7.60 (2H, m, PhH)

$$H_3C$$
 $N-R_2$

No.	R ₂	L	melting point (℃)
1	—	CH₂C-N N-CH₃ Ö	124-132 (1-hydrochioride salt)
2	$\overline{}$	CH ₂ C-NN-CH ₂ CH ₂ CH ₃	137-138 (1-hydrochloride salt)
3		CH ₂ C-N N-	79-84
4	~ <u> </u>	CH ₂ C-N N-	white crystals
5	√	CH_2C-N N	170-170.5 (1-hydrochloride salt)
6		CH ₂ C-NN-CH ₃	white crystals
7		CH ₂ C-N N-CH ₃	141-141.5 (1-hydrochloride salt)
8	~	$CH_2C-N N- \langle N$	white crystals
9	√	CH ₂ C-NN-CH ₂ CH ₂ CF ₃	100.5-128 (1-hydrochloride salt)
10	√	CH ₂ C-N N-n-C ₆ H ₁₃	115.5-123.5 (1-hydrochloride salt)
11		CH_2 C-N N- CH_2	112.5-119 (1-hydrochloride salt)
12	——————————————————————————————————————	. CH ₂ C-N N-	white crystals
13	→	CH ₂ C-N N-	142.5-144 (1-hydrochloride salt)

No.	R ₂	L	melting point (℃)
14	- F	CH ₂ C-NNN	121-139 (1-hydrochloride salt)
15	——————————————————————————————————————	CH_2C-N $N-CH_2$	108.5-116.5 (1-hydrochloride salt)
16	$ F_{-}$	CH ₂ C-N NH	174.5-180 (1-hydrochloride salt)
17	-F	CH ₂ C-N N-CH ₃	146-151 (1-hydrochloride salt)
18	-F	CH ₂ CH ₂ C-NN-CH ₃	185-193 (1-hydrochloride salt)
19	-F	CH ₂ C-NN-CH ₃	white crystals
20	-F	CH ₂ C-N N-CH ₂ CH ₃	158-158.5
21	-F	$CH_2 C - N \longrightarrow N - \bigcirc$	159.5-164.5 (1-hydrochloride salt)
22	-F	CH_2C-N $N N=$	189-192
23	F	$CH_2C-N N N N$	207-207.5
24	F	$CH_2C-N N-CH_2 $	156.5-160 (1-hydrochloride salt)
25	F	$CH_2C-N \longrightarrow N$	152-157.5 (1-hydrochloride salt)
26	— F	CH ₂ C-NHCH ₂ CH ₂ N(CH ₃) ₂ O	white crystals
27	———F	CH ₂ C-NH-S	247.5-250
28		CH ₂ C-N N-CH ₃	145-146 (1-hydrochloride salt)
29		CH ₂ C-N N-CH₃	138-144.5 (1-hydrochloride salt)

No.	R ₂	L lable 2 (cont.)	melting point (℃)
30	- ⟨>-a	CH₂C-N N-CH₃	201.5-208.5 (1-hydrochloride salt)
31	Br	CH ₂ C-N N-CH ₃	105-105.5 (1-hydrochloride salt)
32	H ₃ C	CH₂C-N N-CH₃	174.5-183 (1-hydrochloride salt)
33	CH ₃	CH ₂ C-N N-CH ₃	136-141.5 (1-hydrochloride salt)
34	CF ₃	CH ₂ C-N N-CH ₃	164.5-166.5 (1-hydrochloride salt)
35	CF ₃		156-161
36 ·	————CH ₃	CH ₂ C-N N-CH ₃	163.5-167 (1-hydrochloride salt)
37	——————————————————————————————————————	CH ₂ C-N N-CH ₃	259.5-261.5 (1-hydrochloride salt)
38	CH ₃	CH ₂ C-N N-CH ₃	163.5-164 (1-hydrochloride salt)
39	CH ₃	CH ₂ C-N N-CH ₃	169.5-170
40	OCH ₃	CH₂C-N N-CH₃	140-146 (1-hydrochloride salt)
41	OCH ₃	$CH_2C-N \longrightarrow N \longrightarrow$	146-151 (1-hydrochloride salt)
42	$-$ CCH $_3$	CH ₂ C-N N-CH ₃	226.5 (decomposed) (1-hydrochloride salt)
43	OCH ₃		150-151 (1-hydrochloride salt)
44	———OCH₂CH₃	CH ₂ C-N N-CH ₃	141-146.5 (1-hydrochloride salt)
45 (-)	——Ch₂Ch₃		90.5-98 (1-hydrochloride salt)

No.	R ₂	L	melting point (℃)
46	$-$ OCF $_3$	CH ₂ C-N N-CH ₃	257-258.5
47	——SCH ₃	CH₂C-N N-CH₃	219-226 (1-hydrochloride salt)
48	$ \langle \sum_{NO_2}$	CH ₂ C-N N-CH ₃	172-175.5 (1-hydrochloride salt)
49	\longrightarrow NO_2	CH_2C-N N	175-181 (1-hydrochloride salt)
50		CH ₂ C-N N-CH ₃	194.5-195.5 (1-hydrochloride salt)
51	-NO ₂	$CH_2C-N \longrightarrow N \longrightarrow$	183.5-184 (1-hydrochloride salt)
52	N(CH ₃) ₂	CH ₂ C-N N-CH ₃	158.5-162.5 (1-hydrochloride salt)
53	N(CH ₃) ₂		157-158 (1-hydrochloride salt)
54	$-\sqrt{}$ N(CH ₃) ₂	CH ₂ C-N N-	197.5-203 (1-hydrochloride salt)
55	OCH ₂ CH ₃	CH ₂ C-N N−CH ₃	126-126.5 (1-hydrochloride salt)
56 (—)	OCH ₂ CH ₃		74.5-82 (1-hydrochloride salt)
57	OCH ₂ CH ₃	CH ₂ C−N N−CH ₃	156.5-168 (1-hydrochloride salt)
58	OCH2CH3	$CH_{2} C - N N - C$	145-146 (1-hydrochloride salt)
59		CH ₂ C-N N-CH ₃	138-145
60	—⟨_ _N ,	$CH_{2}C-N \longrightarrow N-n-C_{6}H_{13}$	150-161 (1-hydrochloride salt)

No.	R ₂	L L	melting point (℃)
61	-⟨_ _N	CH ₂ C-N N-n-C ₈ H ₁₇	148.5-149 (1-hydrochloride salt)
62	− ⟨¯_N	$CH_2C-N \longrightarrow N \longrightarrow N$	white crystals
63	(CH_2C-N N N	170.5-179 (1-hydrochloride salt)
64	H ₃ C	CH_2C-N N	white crystals
65	$ \sim$ OCH ₃	CH_2C-N N	198-210.5 (1-hydrochloride salt)
66		CH_2C-N NN	180.5-185 (1-hydrochloride salt)
67	-{	$CH_2C-N N-CH_2 - $	161-165.5 (1-hydrochloride salt)
68	— <u>~</u>	$CH_2C-N N-CH_2 - C$	180-184.5 (1-hydrochloride salt)
69	-{_N	$\begin{array}{c} CH_2C-NH \longrightarrow NMe_2 \\ O \end{array}$	decomposed 85 (1-hydrochloride salt)
70		$CH_2C-NH- $	white crystals
71	——	CH ₂ C-N N-CH ₃	183.5-191.5 (1-hydrochloride salt)
72	М		178-180.5 (1-hydrochloride salt)
73	—⟨_N	CH ₂ C-N N-CH ₃	217.5-221.5
74		CH_2 $\stackrel{\circ}{\mathbb{U}}$ \mathbb{N} \longrightarrow \mathbb{N}	174.5-176 (1-hydrochloride salt)
75	_	СН ₂ С-ОН О	white crystals
76	-	CH ₂ C-N N-CH ₃	white crystals

No.	R ₂	· L	melting point [℃]
77		CH₂C−N N−CH₃	197-201 (1-hydrochloride salt)
78	F	CH₂С-ОН Ö	116-118
79	———F	CH ₂ C-N	174-177
80	- F	CH ₂ C-NOCH ₂ CH ₃	64-68
81	-F	.CH ₂ C-N——СООН	118.5-122.5
82	$-CH_2$ F	CH ₂ C-NN-CH ₃	134-137
83	OH OH	CH ₂ C-N N-CH ₃	213-218
84	-СОН	CH ₂ C-N N-CH ₃	210.5-212.5
85	СООН	CH ₂ C-N N-CH ₃	182-190 ·
86		CH ₂ C-N N-CH ₃	172-175
87	~~~~	CH ₂ C-N N-CH ₃	157.5-160.5
88	−√ CO₂CH₃	CH₂C-N N-CH₃	138-141
89	CO ₂ CH(CH ₃)	CH ₂ C-N N-CH ₃	81-84
90	$ \bigcirc$ \bigcirc	CH ₂ C-NN-CH ₃	81-84
91	CO ₂ CH ₂ —	CH ₂ C-N N-CH ₃	64-67

Example 7

5

10

15

20

5,6-dimethyl-3-carboxymethyl-2-(3-pyridyl)isoindolin-1-one
[IUPAC name: 2-[5,6-dimethyl-3-oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetic acid]

(7-a) 5,6-dimethyl-2-(3-pyridyl)isoindolin-1,3-dione

4,5-dimethylphthalic anhydride (2.0 g, 11 mmol) and 3-aminopyridine (1.0 g, 11 mmol) were heated under reflux in acetic acid (30 ml) for 1.5 hrs. After standing to cool, water was added thereto, the precipitated crystals were collected by filtration, washed with water, followed by drying to give 2.3 g of 5,6-dimethyl-2-(3-pyridyl)isoindolin-1,3-dione.

¹ H-NMR (CDCl₃) δ : 2.46 (6H, s, CH₃), 7.44 (1H, dd, PyH), 7.73 (2H, s, C_{4,7}-H), 7.83 (1H, ddd, PyH), 8.62 (1H, dd, PyH), 8.78 (1H, d, PyH)

(7-b) 5,6-dimethyl-3-hydroxy-2-(3-pyridyl)isoindolin-1-one

The product of above-mentioned (7-a) (0.50 g, 2.0 mmol) was suspended in methanol (10 ml) and tetrahydrofuran (10 ml), and sodium borohydride (75 mg, 2.0 mmol) was added by portions thereto with stirring under ice cooling, followed by stirring at the same temperature for 30 minutes. To the reaction solution was added water, and the precipitated crystals were collected by filtration, washed with water, followed by drying to give 0.40 g of 5,6-

dimethyl-3-hydroxy-2-(3-pyridyl)isoindolin-1-one.

(7-c) 5,6-dimethyl-3-ethoxycarbonylmethyl-2-(3-pyridyl)isoindolin-1-one [IUPAC name: ethyl 2-[5,6-dimethyl-3-oxo2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetate]

5

10

25

The product obtained in the above-mentioned (7-b) (0.40 g, 1.6 mmol) and (carboethoxymethylene)triphenyl-phosphorane (0.66 g, 1.9 mmol) was heated under reflux in toluene (10 ml) under an argon atmosphere for 4.0 hrs. The reaction solution was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (chloroform: acetone = 5:1) to give 0.37 g of 5,6-dimethyl-3-ethoxycarbonylmethyl-2-(3-pyridyl)isoindolin-1-one [IUPAC name: ethyl 2-[5,6-dimethyl-3-oxo-2-(3-pyridinyl)-2,3-dihydro-lH-isoindol-1-yl]acetate].

1 H-NMR (CDCl₃) δ: 1.19 (3H, t, CH₂CH₃), 2.37 (3H, s, CH₃),
 2.39 (3H, s, CH₃), 2.54 (1H, dd, CH₂), 2.91 (1H, dd, CH₂),
 4.03-4.15 (2H, m, CH₂CH₃), 5.58 (1H, dd, CH), 7.30 (1H, s, C₇-H), 7.40 (1H, dd, PyH), 7.69 (1H, s, C₄-H), 8.10 (1H, dd, PyH), 8.48 (1H, dd, PyH), 8.79 (1H, d, PyH)
 (7-d) 5,6-dimethyl-3-carboxymethyl-2-(3-pyridyl)isoindolin 1-one [IUPAC name: 2-[5,6-dimethyl-3-oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetic acid]

The product obtained in the above-mentioned (7-c) (0.20 g, 0.59 mmol) was stirred with heating in methanol (1.5 ml) and 15% aqueous solution of potassium carbonate (0.46 ml) at 75%C for 4 hrs. The reaction solution was

concentrated under reduced pressure, and water was added to the residue followed by extracting with diethyl ether. The water layer was made acid with concentrated hydrochloric acid, and the precipitated crystals were collected by filtration, washed with water, followed by drying to give 0.12 g of the title compound.

¹ H-NMR (CDCl₃) δ: 2.34 (3H, s, CH₃), 2.36 (3H, s, CH₃), 2.61 (1H, dd, CH₂), 2.87 (1H, dd, CH₂), 5.69 (1H, dd, CH), 7.49 (1H, s, C₇-H), 7.50 (1H, dd, PyH), 7.58 (1H, s, C₄-H), 8.02 (1H, br dd, PyH), 8.44 (1H, br d, PyH), 8.84 (1H, d, PyH), 12.31 (1H, br s, COOH)

Example 8

5

10

15

20

25

5,6-dimethyl-3-propoxycarbonylmethyl-2-(3-pyridyl)isoindolin-1-one [IUPAC name: propyl 2-[5,6-dimethyl-3-oxo2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetate]

To a solution of 5,6-dimethyl-3-carboxymethyl-2-(3-pyridyl)isoindolin-1-one [IUPAC name: 2-[5,6-dimethyl-3-oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetic acid] (74 mg, 0.25 mmol), n-propyl alcohol (16 mg, 0.27 mmol) and 4-dimethylaminopyridine (3 mg, 0.025 mmol) in dichloromethane was added 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide hydrochloride (53 mg, 0.27 mmol) at 5°C and the temperature was raised to 25°C over a period of 1.5 hrs. The reaction solution was concentrated under reduced pressure, and water was added to the residue, followed by

extracting with ethyl acetate. The organic layer was washed with saturated aqueous sodium bicarbonate solution, successively water, dried, and concentrated under reduced pressure to give 34 mg of the title compound.

Example 9

The compounds shown in Table 3 were obtained according to Example 8.

Table 3

$$H_3C$$
 $N-R_2$

No.	R ₂	L	melting point [°C]
1	→	CH ₂ C-OCH ₂ CH ₂ N(CH ₃) ₂ O	230-232 (1-hydrochloride salt)
2	→	CH_2 C $-O$ $-CH_3$	173.5-174
3	-F	CH ₂ C-O-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	81-81.5 (1-hydrochloride salt)
4	NH ₂	CH ₂ C−OCH ₂ CH ₃ Ö	white crystals
5	NH ₂	CH ₂ C-OCH ₂ CH₃ Ö	170-171.5
6	NHCH ₃	CH ₂ C−OCH ₂ CH ₃ . Ö	209-210.5 (1-hydrochloride salt)
7	N(CH ₃) ₂	CH ₂ C-OCH ₂ CH ₃	white crystals
8	N(CH ₃) ₂	CH ₂ C−OCH ₂ CH ₃ Ö	154.5-158
9	CH ₂ N(CH ₃) ₂	CH ₂ C−OCH ₂ CH ₃ O	white crystals
10	$CH_2N(CH_3)_2$ $CH_2N(n-C_3H_7)_2$	CH₂C-OCH₂CH₃ Ö	white crystals
11	——————————————————————————————————————	CH ₂ C-OCH ₂ CH ₃ Ö	93.5-101
12	-\(\bigc_{-N}\)	CH ₂ C-OH O	white crystals

No.	R ₂	L	melting point [°C]
13	- ⟨_N	CH ₂ C-OCH ₃ Ö	162.5-169.5 (1-hydrochloride salt)
14	$-\langle \rangle$	CH ₂ C-OCH ₂ CH₃ Ö	125.5-126.5
15	H ₃ C —N	CH₂C-OCH₂CH₃ Ö	141.5-145
16	$ \langle -N \rangle$ OCH ₃	CH ₂ C−OCH ₂ CH ₃ Ö	124-124.5
17	-CI	CH₂C-OCH₂CH₃ Ö	140-142
18	$-CH_2 - \langle - \rangle$	CH₂C-OCH₂CH₃ Ö	white crystals
19	—⟨_N	CH ₂ C-OCH ₂ CH ₂ CH ₃ Ö	white crystals
20 (一)		CH ₂ C-OCH ₂ CH ₂ CF ₃ O	140.5-143
21 (一)		CH ₂ C-OCH ₂ CH=CH ₂	129.5-133.5
22		CH ₂ C-OCH(CH ₃) ₂ O	141-143
23	— ~ _N	CH₂C-OCH₂CH₂CH₃ Ö	116.5-117.5
24 (一)	- ₹_N	CH ₂ C-OCH ₂ CH ₂ CH=CH ₂ O	134.5-135.5
25 (一)	— ₹ _N	CH ₂ C-OCH ₂ CH ₂ OCH ₃	128.5-130.5
26 (一)		CH ₂ C−OCH ₂ CH ₂ SCH ₃ O	124-124.5
27	− ⟨¯_N	CH₂C-OCH₂CH(CH₃)₂ Ö	130-131

No.	R ₂	L	melting point [°C]
28 (-)	—⟨_ _N	CH ₂ C-OCH ₂ C-CH ₃ O CH ₂	138.5-140
29 (-)		CH ₂ C=O(CH ₂) ₄ CH ₃ O	111-115
30 (-)		CH ₂ C-OCH ₂ CH ₂ CH(CH ₃) ₂ O	129.5-130
31		CH ₂ C-OCH ₂ CH ₂ N(CH ₃) ₂ O	113-114
32 (-)	$-\langle _{N} \rangle$	CH ₂ C-OCH ₂ CHCH ₂ CH ₃ O CH ₃	126-127.5
33 (-)	-{_N	CH ₂ C-OCH ₂ C(CH ₃) ₃ O	148.5-149
34 (-)	-{_N	CH ₂ C-O(CH ₂) ₅ CH ₃ Ö	108-110
35 (一)	-{_N	CH ₂ C-O(CH ₂) ₃ CH(CH ₃) ₂	134.5-135.5
36 (-)		CH ₂ C-OCH ₂ CH(CH ₂ CH ₃) ₂	114.5-116.5
37		CH ₂ CH ₂ C-OCH ₂ CH ₃ O	118-121
38		CH ₂ CH ₂ C-OCH ₂ CH ₂ CH ₃ O	114.5-116
39	-(CH ₂ CH ₂ C-OCH ₂ CH ₂ CH ₂ CH ₃ O	85-87.5
40 (-)		CH ₂ C-O-	187.5-191
41 (-)		CH ₂ C-O	169-169.5
42 (-)	$-\langle \rangle$	CH ₂ C-O-CO	159.5-160

No.	R ₂	L (cont.)	melting point [°C]
43 (-)	— <u>√</u> _N	CH_2C-OCH_2 —	141-141.5
44 (-)			165.5-166
45		CH_2C-OCH_2	119.5-122
46 (-)	-{_N	CH ₂ C-O-CH ₃	162.5-163.5
47 (—)		CH ₂ C-O-CH ₃	143-144
48 (-)	(CH ₂ C-O-	201.5-202
49 (—)	- ⟨ _N	CH_2CO H_3CO H_3CO	160-160.5
50 (一)	—⟨ <u>~</u> N	CH ₂ C-O-	200.5-202
51 (-)		CH_2C-O CH_3 CH_3CO	141.5-148.5
52 (-)	-{_N	$CH_{2}C-O \longrightarrow CH_{2}CH=CH_{2}$ O $H_{3}CO$	140.5-141.5
53 (一)		$CH_2C-O-CH_3$ CH_3 CH_3	128-141.5
54 (-)		CH_2C-O CH_3 CH_3	155-155.5
55 (一)		CH_2 C $-O$ $ F$ F	142.5-145.5

No.	R ₂	L (cont.)	melting point [°C]
56 (—)	— <u>~</u>	CH_2C-O CH_3CO CH_3CO	162.5-167.5
57 (-)	—⟨	CH_2C-O H_3C CH_3	172-172.5
58 (一)		CH ₂ C-O-C	157.5-159
59 (-)	-√_ N .	CH ₂ C-O-C	139-143
60 (-)		CH ₂ C-O-NH	180-184
61 (一)		CH_2C-O CH_3 CH_3	142.5-143
62 (—)		CH_2C-OCH_2	150-151.5
63	$-\sqrt{\sum}_N$	CH₂C-OCH₂CH₃ Ö	140-144.5
64	$ \sim$ \sim \sim \sim \sim \sim \sim \sim \sim \sim	CH₂C-OCH₂CH₃ Ö	120.5-125
65	- _N	CH ₂ C-OCH ₂ CH ₃	143-143.5
66	—i√N−CH₃	CH₂C-OCH₂CH₃ O	195.5-196.5 (1-hydrochloride salt)
67	- F	CH₂C-OCH₂CH₂CH₃ Ö	123-124

Example 10

20

25

5,6-dimethyl-3-hexyl-2-(3-pyridyl)isoindolin-1-one
(10-a) 5,6-dimethyl-3-hexyl-3-hydroxy-2-(3-pyridyl)isoindolin-1-one

5 Metal magnesium (0.14 g, 5.6 mmol) and 1-bromohexane (0.78 ml, 5.6 mmol) were stirred with heating at 65°C in anhydrous tetrahydrofuran (24 ml) under an argon atmosphere for 2 hrs, and 5,6-dimethyl-2-(3-pyridyl)isoindolin-1,3dione (0.40 g, 1.6 mmol) was added thereto, followed by 10 stirring at 25°C for 15 minutes. The reaction solution was poured into saturated aqueous NH4Cl solution, and extracted with ethyl acetate. The organic layer was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (chloroform : acetone = 5 : 1) to 15 0.23 q of 5,6-dimethyl-3-hexyl-3-hydroxy-2-(3pyridyl)isoindolin-1-one.

¹ H-NMR (CDCl₃) δ: 0.56-1.09 (8H, m, $CH_2C\underline{H}_2C\underline{H}_2C\underline{H}_2C\underline{H}_2C\underline{H}_2C\underline{H}_3$), 0.73 (3H, t, $CH_2C\underline{H}_3$), 1.85-2.07 (2H, m, $C\underline{H}_2CH_2CH_2CH_2CH_2CH_3$), 2.27 (3H, s, CH_3), 2.38 (3H, s, CH_3), 5.20 (1H, br s, OH), 7.22 (1H, dd, PyH), 7.31 (1H, s, C_4 -H), 7.34 (1H, s, C_7 -H), 7.96 (1H, ddd, PyH), 8.29 (1H, dd, PyH), 8.78 (1H, d, PyH) (10-b) 5,6-dimethyl-3-hexylidene-2-(3-pyridyl)isoindolin-1-one

The product of above-mentioned (10-a) (0.23 g, 0.69 mmol) was added into a mixed solvent of methylene chloride

- (3.5 ml) and trifluoroacetic acid (1.4 ml), and triethylsilane (0.15 ml, 0.96 mmol) was added dropwise thereto, followed by stirring at 25°C for 2 hrs. The reaction solution was added into 1N aqueous K₂CO₃ solution, and extracted with ethyl acetate. The organic layer was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (chloroform: acetone = 5:1) to give 91 mg of 5,6-dimethyl-3-hexylidene-2-(3-pyridyl)isoindolin-1-one.
- 15 (10-c) 5,6-dimethyl-3-hexyl-2-(3-pyridyl)isoindolin-1-one

 To a solution of the product of above-mentioned (10-b)

 (88 mg, 0.27 mmol) in ethanol (10 ml) was added 18 mg of

 10% palladium on carbon, and stirred vigorously under a

 hydrogen atmosphere at 25°C for 2 hrs. The reaction

 20 solution was filtered, and the filtrate was concentrated

 under reduced pressure, and the residue was purified by

 silica gel chromatography (chloroform: acetone = 5:1) to

 give 20 mg of the title compound.
- ¹ H-NMR (CDCl₃) δ: 0.77 (3H, t, $CH_2C\underline{H}_3$), 0.77-1.20 (8H, m, $CH_2C\underline{H}_2C\underline{H}_2C\underline{H}_2C\underline{H}_2C\underline{H}_2C\underline{H}_2C\underline{H}_3$), 1.85-2.02 (2H, m, $C\underline{H}_2C\underline{H}_2C\underline{H}_2C\underline{H}_2C\underline{H}_2C\underline{H}_3$),

2.37 (3H, s, CH₃), 2.41 (3H, s, CH₃), 5.26 (1H, dd, CH),
7.26 (1H, s, C₄-H), 7.39 (1H, dd, PyH), 7.68 (1H, s, C₇-H),
8.15 (1H, br dd, PyH), 8.45 (1H, br d, PyH), 8.77 (1H, br s, PyH)

5 Example 11

10

5,6-dimethyl-2-(3-pyridyl)-3-(2-oxopentyl)isoindolin-1-one
5,6-dimethyl-3-hydroxy-2-(3-pyridyl)isoindolin-1-one
(0.30 g, 1.2 mmol) and 2-oxo-1-triphenylphosphoranylidenepentane (0.61 g, 1.8 mmol) was heated under reflux in
toluene (20 ml) under an argon atmosphere for 20 hrs. The
reaction solution was concentrated under reduced pressure,
and the residue was purified by silica gel chromatography
(chloroform: acetone = 10:1) to give 0.14 g of the title
compound.

20 br s, PyH)

Example 12

The compounds shown in Table 4 were obtained according to Example 10 and 11.

Table 4

$$H_3C$$
 $N-R_2$

No.	R2	L	melting point(°C)
1	─ ₹	CH ₂ CH ₃	141-150.5 (1-hydrochloride salt)
2		CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	137.5-139.5
3		CH₂C~CH₃ Ö	141.5-144
.· 4		CH ₂ C-CH ₂ CH ₃ Ö	135-137
5		CH ₂ C-CH ₂ CH ₂ CH ₃ O	118-120
6	——F	CH ₂ C-CH ₂ CH ₂ CH ₃	128-131

Example 13.

5,6-dimethyl-2-(3-pyridyl)-3-mesyloxyethylisoindolin-1-one (13-a) 5,6-dimethyl-2-(3-pyridyl)-3-(2-hydroxyethyl)-

5 isoindolin-1-one

10

To a solution of 5,6-dimethyl-3-ethoxycarbonylmethyl-2-(3-pyridyl)isoindolin-1-one [IUPAC name: ethyl 2-[5,6-dimethyl-3-oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetate] (8.4 g, 26 mmol) in methanol (250 ml) was added by portions sodium borohydride (11 g, 0.52 mmol), and the reaction mixture was stirred with heating at 80°C for 3 hrs. To the reaction solution was added ice-cold water, and the

precipitated crystals were collected by filtration, washed with water, and dried to give 6.0 g of 5,6-dimethyl-2-(3-pyridyl)-3-(2-hydroxyethyl)isoindolin-1-one.

¹ H-NMR (CDCl₃) δ: 2.05-2.13 (1H, m, CH₂CH₂OH), 2.22-2.30 (1H, m, CH₂CH₂OH), 2.38 (3H, s, CH₃), 2.41 (3H, s, CH₃), 3.53 (2H, t, CH₂CH₂OH), 5.42 (1H, dd, CH), 7.35 (1H, s, C₄-H), 7.40 (1H, dd, PyH), 7.70 (1H, s, C₇-H), 8.16 (1H, ddd, PyH), 8.45 (1H, dd, PyH), 8.81 (1H, d, PyH) (13-b) 5,6-dimethyl-2-(3-pyridyl)-3-mesyloxyethyl-

10 isoindolin-1-one

5

15

To a solution of the product of above-mentioned (13-a) (5.5 g, 20 mmol) in methylene chloride (140 ml) was added triethylamine (5.4 ml, 29 mmol) and methanesulfonyl chloride (2.4 ml, 21 mmol), and stirred at 25°C for 2 hrs. The reaction solution was concentrated under reduced pressure, and the residue was purified by silica gel-chromatography (chloroform: methanol = 20:1) to give 5.5 g of the title compound.

¹ H-NMR (CDCl₃) δ: 2.32-2.50 (2H, m, CH₂CH₂O), 2.39 (3H, s, CH₃), 2.42 (3H, s, CH₃), 2.81 (3H, s, CH₃SO₂), 3.39-3.94 (1H, m, CH₂CH₂O), 4.03-4.09 (1H, m, CH₂CH₂O), 5.43 (1H, dd, CH), 7.34 (1H, s, C₄-H), 7.42 (1H, dd, PyH), 7.71 (1H, s, C₇-H), 8.15 (1H, br dd, PyH), 8.49 (1H, br d, PyH), 8.82 (1H, d, PyH)

25 Example 14

5,6-dimethyl-2-(3-pyridyl)-3-(2-propoxyethyl)isoindolin-1one

Metal sodium (6.4 mg, 0.28mmol) was stirred with heating in propanol (2 ml) at 110°C for 1 hr, and 5,6-dimethyl-2-(3-pyridyl)-3-mesyloxyethylisoindolin-1-one (50 mg, 0.14 mmol) was added thereto, followed by stirring with heating at 90°C for 3 hrs. To the reaction solution was added water, and extracted with chloroform. The organic layer was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (chloroform: ethyl acetate = 1 : 1) to give 12 mg of the title compound.

5

10

15

25

¹ H-NMR (CDCl₃) δ: 0.85 (3H, t, OCH₂CH₂CH₃), 1.50 (2H, sextet, OCH₂CH₂CH₃), 2.03-2.09 (1H, m, CH₂CH₂O), 2.20-2.26 (1H, m, CH₂CH₂O), 2.37 (3H, s, CH₃), 2.40 (3H, s, CH₃), 3.17-3.33 (4H, m, CH₂CH₂OCH₂CH₂CH₂CH₃), 5.39 (1H, dd, CH), 7.33 (1H, s, C₄-H), 7.39 (1H, dd, PyH), 7.69 (1H, s, C₇-H), 8.13 (1H, dd, PyH), 8.46 (1H, dd, PyH), 8.84 (1H, d, PyH)

Example 15

5,6-dimethyl-2(3-pyridyl)-3[2-(propylamino)ethyl]isoindolin
-1-one

5,6-Dimethyl-2-(3-pyridyl)-3-mesyloxyethylisoindolin- 1-one (0.11 g, 0.31 mmol) was stirred in n-propylamine (3 ml) at $25^{\circ}C$ for 6 hrs. The reaction solution was concentrated under reduced pressure, and the residue was

purified by silica gel chromatography (chloroform : methanol = 15 : 1) to give 85 mg of the title compound.

¹ H-NMR (CDCl₃) δ: 0.81 (3H, t, NHCH₂CH₂CH₃), 1.38 (2H, sextet, NHCH₂CH₂CH₃), 2.07-2.33 (6H, m, CH₂CH₂NHCH₂CH₂CH₃),

5 2.37 (3H, s, CH₃), 2.40 (3H, s, CH₃), 5.39 (1H, dd, CH), 7.31 (1H, s, C₄-H), 7.39 (1H, dd, PyH), 7.68 (1H, s, C₇-H), 8.14 (1H, ddd, PyH), 8.44 (1H, dd, PyH), 8.82 (1H, d, PyH) Example 16

5,6-dimethyl-2-(4-fluorophenyl)-3-(4-methyl-1-piperazinyl)-ethylisoindolin-1-one

10

15

A solution of 5,6-dimethyl-2-(4-fluorophenyl)-3-mesyloxyethylisoindolin-1-one (0.27 g, 0.74 mmol), N-methylpiperazine (74 mg, 0.74 mmol) and triethylamine (74 mg, 0.74 mmol) in dichlorometane was stirred at 25°C for 60 hrs. The reaction solution was washed with water, dried, and the solvent was distilled away under reduced pressure. The residue was purified by silica gel chromatography (chloroform: methanol = 15:1) to give 33 mg of the title compound.

¹ H-NMR (CD₃OD) δ: 1.93-2.34 (12H, m, piperazine and CH_2CH_2), 2.20 (3H, s, NCH₃), 2.39 (3H, s, CH₃), 2.43 (3H, s, CH₃), 5.41 (1H, dd, CH), 7.18-7.23 (2H, m, PhH), 7.42 (1H, s, C₄-H), 7.57-7.61 (2H, m, PhH), 7.59 (1H, s, C₇-H) Example 17

5,6-dimethyl-3-ethylcarbonyloxyethyl-2-(3-pyridyl)-

isoindolin-1-one [IUPAC name: 2-[5,6-dimethyl-3-oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]ethyl propionate]

A solution of 5,6-dimethyl-2-(3-pyridyl)-3-(2-hydroxyethyl)isoindolin-1-one (50 mg, 0.18 mmol), propionyl chloride (16 mg, 0.18 mmol) and triethylamine (18 mg, 0.18 mmol) in dichlorometane was stirred at 25°C for 3 hrs. The reaction solution was washed with water, dried, and the solvent was distilled away under reduced pressure. The residue was purified by silica gel chromatography (chloroform: methanol = 20:1) to give 43 mg of the title compound.

5

10

15

¹ H-NMR (CDCl₃) δ: 1.00 (3H, t, CH₂CH₃), 2.11 (2H, q, CH₂CH₃), 2.20-2.41 (2H, m, CH₂CH₂O), 2.38 (3H, s, CH₃), 2.41 (3H, s, CH₃), 3.76-3.96 (2H, m, CH₂CH₂O) 5.37 (1H, dd, CH), 7.30 (1H, s, C₇-H), 7.41 (1H, dd, PyH), 7.69 (1H, s, C₄-H), 8.18 (1H, br d, PyH), 8.47 (1H, br d, PyH), 8.79 (1H, br s, PyH) Example 18

The compounds shown in Table 5 were obtained according to Example 14, 15, 16 and 17.

Table 5

$$H_3C$$
 $N-R_2$

	2					
No.	R2	L	melting point (°C)			
1	-{_N	CH ₂ CH ₂ OH	153-155			
2	-\(\bigc_{N}\)	CH ₂ CH ₂ OCH ₃	200-202 (1-hydrochloride salt)			
3	— <u>⟨</u> _N	CH ₂ CH ₂ OCH ₂ CH ₃	157-176 (1-hydrochloride salt)			
4	—⟨N	CH2CH2OCH2CH2CH3	121.5-123.5			
5	-(_N	CH ₂ CH ₂ OCH ₂ CH ₂ CH ₂ CH ₃	95-97.5			
6	—⟨_N	CH ₂ CH ₂ OCH(CH ₃) ₂	127-130			
7	-(_N	CH ₂ CH ₂ OCH ₂ CH(CH ₃) ₂	110-111.5			
8		CH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	94-96			
9		CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃	119-122			
10	—⟨_N	CH ₂ CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃	108-111.5			
11	~	CH ₂ CH ₂ CH ₂ OCH ₂ CH ₂ CH ₂ CH ₃	white crystals			
12	—⟨N	CH ₂ CH ₂ NHCH ₂ CH ₂ CH ₃	117.5-122.5			
13	- F	CH ₂ CH ₂ -NN-CH ₃	265.4-269.5 (1-hydrochloride salt)			
14	—⟨ <u>¬</u> »	CH2CH2O-CCH2CH3 O	126.5-128.5			
15	-F	CH ₂ CH ₂ OCH ₂ CH ₂ CH ₃	138-140			

Example 19

5

10

15

20

5,6-dimethyl-2-(4-fluorophenyl)-3-(4-methyl-1-piperazinyl)carbonylmethylisoindolin-1-thione and 5,6-dimethyl-2-(4fluorophenyl)-3-(4-methyl-1-piperazinyl)thiocarbonylmethylisoindolin-1-thione

5,6-dimethyl-2-(4-fluorophenyl)-3-(4-methyl-1piperazinyl)carbonylmethylisoindolin-1-one (60 mg, 0.15 mmol) and 2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4diphosphetane-2,4-disulfide (67 mg, 0.17 mmol) were heated under reflux in toluene (0.5 ml) under an argon atmosphere for 30 minutes. The reaction solution was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (chloroform : methanol = 30 : 1) to give 14 mg and 25 mg of the title compound, respectively. 5,6-dimethyl-2-(4-fluorophenyl)-3-(4-methyl-1-piperazinyl)carbonylmethylisoindolin-1-thione 1 H-NMR (CDCl₃) δ : 2.16-2.42 (4H, m, piperazine), 2.27 (3H, s, NCH₃), 2.37 (3H, s, CH₃), 2.38 (3H, s, CH₃), 2.48 (1H, dd, CH_2), 2.73 (1H, dd, CH_2), 3.18-3.36 (2H, m, piperazine), 3.49-3.76 (2H, m, piperazine), 5.80 (1H, dd, CH), 7.14-7.24 (2H, m, PhH), 7.33 $(1H, s, C_4-H)$, 7.47-7.56 (2H, m, PhH), 7.89 (1H, s, C_7 -H)

5,6-dimethyl-2-(4-fluorophenyl)-3-(4-methyl-1-piperazinyl)thiocarbonylmethylisoindolin-1-thione

25 1 H-NMR (CDCl₃) δ : 2.09-2.60 (4H, m, piperazine), 2.28 (3H,

s, NCH₃), 2.37 (3H, s, CH₃), 2.38 (3H, s, CH₃), 2.87 (1H, dd, CH₂), 3.08 (1H, dd, CH₂), 3.39-3.55 (2H, m, piperazine), 4.15-4.61 (2H, m, piperazine), 6.31 (1H, dd, CH), 7.15-7.24 (2H, m, PhH), 7.34 (1H, s, C₄-H), 7.56-7.66 (2H, m, PhH), 7.90 (1H, s, C₇-H)

Example 20

5

25

5,6-dimethyl-3-ethoxycarbonylmethyl-2-(3-pyridyl)isoindolin-1-thione [IUPAC name: ethyl 2-[5,6-dimethyl-2(3-pyridinyl)-3-thioxo-2,3-dihydro-1H-isoindol-1-

10 yl]acetate]

5,6-Dimethyl-3-ethoxycarbonylmethyl-2-(3-pyridyl)isoindolin-1-one [IUPAC name: ethyl 2-[5,6-dimethyl-3-oxo2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetate] (0.10
g, 0.31 mmol) and 2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4diphosphetane-2,4-disulfide (69 mg, 0.17 mmol) were heated
under reflux in toluene (1.5 ml) under an argon atmosphere
for 1 hr. The reaction solution was concentrated under
reduced pressure, and the residue was purified by silica
gel chromatography (chloroform: acetone = 10:1) to give
97 mg of the title compound.

¹ H-NMR (CDCl₃) δ: 1.15 (3H, t, CH_2CH_3), 2.39 (6H, br s, CH_3), 2.65 (1H, dd, CH_2), 2.79 (1H, dd, CH_2), 3.98-4.05 (2H, m, CH_2CH_3), 5.63 (1H, dd, CH), 7.28 (1H, s, C_7 -H), 7.47 (1H, dd, PyH), 7.91 (1H, s, C_4 -H), 7.97 (1H, ddd, PyH), 8.65 (1H, dd, PyH), 8.75 (1H, d, PyH)

Example 21

The compounds shown in Table 6 were obtained according to Example 19 and 20.

Table 6

$$H_3C$$
 $N-R_2$

No.	R2	L	melting point(°C)
1		CH ₂ C-NN-CH ₃	217.5~218.5 (1-hydrochloride salt)
2	$-\!$	CH ₂ C-NN-CH ₃	179.5~180 (1-hydrochloride salt)
3	-F	CH ₂ C-N N-CH ₃	199.5~202.5
4	─ F	CH ₂ C-NN-CH ₃	169.5~175
5	-{_N	CH₂C-OCH₂CH₃ Ö	124 ~ 127
6 (-)	\	CH ₂ C-OCH ₂ CH ₂ CH ₃ Ö	118~122.5

5 Example 22

5,6-dimethyl-2-(4-fluorophenyl)-3-[(E)-2-(4-methyl-1-piperazinyl)-2-oxoethylidene]isoindolin-1-one

(22-a) 5,6-dimethyl-3-[(E)-2-ethoxy-2-oxoethylidene]-2-(4-fluorophenyl)isoindolin-1-one [IUPAC name: ethyl 2-[2-(4-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-ylidene]acetate]

Ethyl (E)-5,6-dimethyl-3-oxo-1,3-dihydroisobenzofuran-1-ylideneacetate (0.20 g, 0.81 mmol) and 4-fluoroaniline (0.10 g, 0.89 mmol) were stirred with heating in acetic acid at 110°C for 7 hrs. The reaction solution was concentrated under reduced pressure, and methanol was added to the residue. The resulting crystals were collected by filtration, and dried to give 0.24 g of 5,6-dimethyl-3-[(E)-2-ethoxy-2-oxoethylidene]-2-(4-fluoro-

5

10

15

phenyl)isoindolin-1-one [IUPAC name: ethyl 2-[2-(4-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-ylidene]acetate].

¹ H-NMR (CDCl₃) δ: 1.30 (3H, t, CH₂CH₃), 2.42 (3H, s, CH₃), 2.46 (3H, s, CH₃), 4.23 (2H, q, CH₂CH₃), 5.41 (1H, s, CH), 7.21-7.30 (4H, m, PhH), 7.70 (1H, s, C₇-H), 8.89 (1H, s, C₄-H)

(22-b) 5,6-dimethyl-3-[(E)-2-hydroxy-2-oxoethylidene]-2-(4-fluorophenyl)isoindolin-1-one [IUPAC name: 2-[2-(4-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-ylidene]acetic acid]

5,6-dimethyl-3-[(E)-2-hydroxy-2-oxoethylidene]-2-(4-fluorophenyl)isoindolin-1-one [IUPAC name: 2-[2-(4-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-ylidene]acetic acid] was obtained from the product of above-mentioned (22-a) according to (1-d) of Example 1.

25 1 H-NMR (DMSO-d₆) δ : 2.40 (6H, s, CH₃), 5.23 (1H, s, CH),

7.40-7.49 (4H, m, PhH), 7.69 (1H, s, C_7 -H), 8.84 (1H, s, C_4 -H)

(22-c) 5,6-dimethyl-2-(4-fluorophenyl)-3-[(E)-2-(4-methyl-1-piperazinyl)-2-oxoethylidene]isoindolin-1-one

5 The title compound was obtained from the product of above-mentioned (22-b) according to Example 3.

¹ H-NMR (CDCl₃) δ: 2.28-2.35 (2H, m, piperazine), 2.30 (3H, s, NCH₃), 2.39 (3H, s, CH₃), 2.40 (3H, s, CH₃), 2.46-2.48 (2H, m, piperazine), 3.44-3.46 (2H, m, piperazine), 3.79-3.81 (2H, m, piperazine), 5.54 (1H, s, CH), 7.20-7.25 (2H, m, PhH), 7.31-7.36 (2H, m, PhH), 7.68 (1H, s, C₇-H), 7.89 (1H, s, C₄-H)

Example 23

and the second of the second o

10

The compounds shown in Table 7 were obtained according to Example 22.

Table 7

$$H_3C$$
 $N-R_2$

No.	R2	L	melting point(°C)
1		CHC-OCH ₂ CH ₃ 0	135-139
2	F	CHC-N N-CH ₃	78-82
3	——F	CHC-N N-CH ₃	151-155

Example 24

The compounds shown in Table 8 were obtained according to Example 1 and 3.

Table 8

$$M = N - R_2$$

No.	М	R2	L	melting point(°C)
1	CH ₂ CH ₂ CH ₂		CH ₂ C-N N-CH ₃	182-184
2	CH ₂ CH ₂ CH ₂ CH ₂	-	CH ₂ C-NN-CH ₃	172-175
3	CH ₂ OCH ₂	-	CH ₂ C-NN-CH ₃	185-187
4	OCH₂O	- F	CH ₂ C-N N-CH ₃	185.5-187.5
5 (-)	CH ₂ CH ₂ CH ₂	—(CH ₂ C-N N-	63-66
6	CH=CH-CH=CH	− √F	CH ₂ C-N N-CH ₃	203-205.5

Example 25

5

10

5,6-dimethyl-2-(3-fluorophenyl)-3-carboxyisoindolin-1-one
[IUPAC name: 2-(3-fluorophenyl)-5,6-dimethyl-3-oxo-1isoindolinecarboxylic acid]

(25-a) methyl 4,5-dimethyl-2-formylbenzoate

To a solution of 4,5-dimethylphthalic anhydride (1.5.g, 8.5 mmol) in anhydrous tetrahydrofuran (25ml) was added a 1.0 mol/L solution of tri-tert-butoxy aluminohydride in anhydrous tetrahydrofuran (8.5ml) under ice cooling and

argon atmosphere, and stirred for 1 hr under ice cooling. To the reaction solution was added ice-cold water, and the insoluble materials was filtered off. The filtrate was concentrated under reduced pressure to give crude 5,6-dimethyl-3-hydroxyphthalide. To this was added methyl iodide (12 g, 85 mmol) and K_2CO_3 (9.4 g, 68 mmol), and heated under reflux in acetone solvent for 5 hrs. The reaction solution was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (chloroform) to give 0.64 g of methyl 4,5-dimethyl-2-formylbenzoate.

5

10

15

20

25

¹ H-NMR (CDCl₃) δ : 2.35 (6H, s, CH₃), 3.95 (3H, s, CH₃), 7.72 (1H, s, PhH), 7.74 (1H, s, PhH), 10.59 (1H, s, C(=O)H) (25-b) methyl 4,5-dimethyl-2-{[(3-fluorophenyl)imino]-methyl}benzoate

To a solution of the product of above-mentioned (25-a) (0.64 g, 3.3 mmol) in absolute ethanol (16 ml) was added 3-fluoroaniline (0.37 g, 3.3 mmol), and stirred at 25°C for 2 hrs. The reaction solution was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (chloroform) to give 0.45 g of methyl 4,5-dimethyl-2-{[(3-fluorophenyl)imino]methyl}benzoate.

¹ H-NMR (CDCl₃) δ: 2.35 (3H, s, CH₃), 2.37 (3H, s, CH₃), 3.93 (3H, s, CH₃), 6.90-7.05 (3H, m, PhH), 7.31-7.36 (1H, m, PhH), 7.78 (1H, s, PhH), 8.00 (1H, s, PhH), 9.20 (1H, s,

C(=N)H

(25-c) 5,6-dimethyl-2-(3-fluorophenyl)-3-cyanoisoindolin-1one [IUPAC name: 2-(3-fluorophenyl)-5,6-dimethyl-3-oxo-1isoindolinecarbonitrile]

The product of above-mentioned (25-b) (0.45 g, 1.6 mmol), cyanotrimethylsilane (0.40 ml, 3.2 mmol) and aluminum chloride (13 mg) were stirred in anhydrous benzene (5.5 ml) at 25°C for 20 hrs under an argon atmosphere. The reaction solution was concentrated under reduced pressure, and the residue was washed with petroleum ether to give 0.35 g of 5,6-dimethyl-2-(3-fluorophenyl)-3-cyano-isoindolin-1-one [IUPAC name: 2-(3-fluorophenyl)-5,6-dimethyl-3-oxo-1-isoindolinecarbonitrile].

¹ H-NMR (CDCl₃) δ: 2.41 (3H, s, CH₃), 2.44 (3H, s, CH₃), 5.79 (1H, s, CH), 6.96-7.02 (1H, m, PhH), 7.40-7.47 (2H, m, PhH), 7.48 (1H, s, PhH), 7.65-7.70 (1H, m, PhH), 7.73 (1H, s, PhH)

(25-d) 5,6-dimethyl-2-(3-fluorophenyl)-3-carboxyisoindolin1-one [IUPAC name: 2-(3-fluorophenyl)-5,6-dimethyl-3-oxo-1isoindolinecarboxylic acid]

The title compound (24 mg) was obtained from the product (0.34 g, 1.2 mmol) of above-mentioned (25-c) according to (4-d) of Example 4.

Example 26

15

20

5,6-dimethyl-2-(3-fluorophenyl)-3-(4-methyl-1-piperazinyl)-

carbonylisoindolin-1-one

By using 24 mg of 5,6-dimethyl-2-(3-fluorophenyl)-3-carboxyisoindolin-1-one [IUPAC name: 2-(3-fluorophenyl)-5,6-dimethyl-3-oxo-1-isoindolinecarboxylic acid], 10 mg of the title compound was obtained according to Example 3.

melting point: 200-202°C

¹ H-NMR (CDCl₃) δ: 2.00-2.38 (4H, m, piperazine), 2.20 (3H, s, NCH₃), 2.37 (3H, s, CH₃), 2.38 (3H, s, CH₃), 3.15-3.75 (4H, br m, piperazine), 5.93 (1H, s, CH), 6.85-6.91 (1H, m, PhH), 7.27-7.43 (3H, m, PhH and C₄-H), 7.69 (1H, s, C₇-H), 7.70-7.75 (1H, m, PhH)

Example 27

5

10

5,6-dimethyl-2-(3-fluorophenyl)-3-(4-methyl-1-piperazinyl)-carbonyloxyisoindolin-1-one

15 5,6-dimethyl-2-(3-fluorophenyl)-3solution of hydroxyisoindolin-1-one (83 mg, 0.31 mmol) in anhydrous dimethylformamide (3 ml) was added to a suspension of 65% sodium hydride (13 mg, 0.34 mmol) in anhydrous dimethylformamide (3 ml), and stirred at 25°C for 35 20 minutes. Then, a solution of 1-chlorocarbonyl-4methylpiperazine (50 mg, 0.31 mmol) in anhydrous dimethylformamide was added thereto, and stirred with heating at 70°C for 5 hrs. The reaction solution was concentrated under reduced pressure, and water was added to 25 the residue, followed by extracting with chloroform. The

extract was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (chloroform: methanol = 20:1). The resulting crystals were washed with petroleum ether to give 21 mg of the title compound. melting point: 146-148°C

¹ H-NMR (CDCl₃) δ: 2.38 (3H, s, CH₃), 2.40 (3H, s, CH₃), 2.73 (3H, s, NCH₃), 3.01-3.14 (6H, m, piperazine), 3.18-3.24 (1H, m, piperazine), 3.32-3.38 (1H, m, piperazine), 6.43 (1H, s, CH), 6.85-6.91 (1H, m, PhH), 7.33-7.39 (1H, m, PhH), 7.36 (1H, s, C₄-H), 7.66 (1H, s, C₇-H), 7.66-7.76 (2H, m, PhH)

Example 28

5

10

15

20

25

5,6-dimethyl-2-(3-fluorophenyl)-3-carboxymethyloxyisoindolin-1-one [IUPAC name: 2-{[2-(3-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-yl]oxy}acetic
acid]

(28-a) 5,6-dimethyl-2-(3-fluorophenyl)-3-ethoxycarbonyl-methyloxyisoindolin-1-one [IUPAC name: ethyl 2-{[2-(3-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-yl]oxy}acetate]

To a solution of 5,6-dimethyl-2-(3-fluorophenyl)-3-hydroxyisoindolin-1-one (0.15 g, 0.55 mmol) in anhydrous tetrahydrofuran (5ml) was added 60% sodium hydride (24 mg, 0.60 mmol), and stirred on ice for 10 minutes. Then, ethyl bromoacetate (67 ml, 0.60 mmol) was added thereto, and

stirred at 25°C overnight. The reaction solution was concentrated under reduced pressure, and water was added to the residue, followed by extracting with ethyl acetate. The extract was washed with saturated brine, dried, and concentrated under reduced pressure to give 0.19 g of 5,6-dimethyl-2-(3-fluorophenyl)-3-ethoxycarbonylmethyloxy-isoindolin-1-one [IUPAC name: ethyl 2-{[2-(3-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-yl]oxy}-acetate].

5

- 10 1 H-NMR (CDCl₃) δ: 1.17 (3H, t, CH₂CH₃), 2.38 (3H, s, CH₃), 2.40 (3H, s, CH₃), 3.56 (1H, dd, CH₂), 3.73 (1H, dd, CH₂), 4.05-4.11 (2H, m, CH₂CH₃), 6.52 (1H, s, CH), 6.87-6.95 (1H, m, PhH), 7.33-7.42 (1H, m, PhH), 7.43 (1H, s, C₄-H), 7.63-7.82 (2H, m, PhH), 7.66 (1H, s, C₇-H)
- 15 (28-b) 5,6-dimethyl-2-(3-fluorophenyl)-3- carboxymethyloxyisoindolin-1-one [IUPAC name: 2-{[2-(3-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-yl]oxy}acetic acid]

The product (0.19 g, 0.53 mmol) of above-mentioned (28-a) and 1N NaOH (0.59 ml) was stirred with heating in methanol (5 ml) at 100°C. The reaction solution was concentrated under reduced pressure, and water was added to the residue, followed by extracting with ethyl acetate. The water layer was acidified with concentrated hydrochloric acid, extracted with ethyl acetate. The

extract was washed with water, followed by saturated NaCl solution, dried, and concentrated under reduced pressure to give 0.15 g of the title compound.

Example 29

10

15

5 5,6-dimethyl-2-(3-fluorophenyl)-3-[2-(4-methyl-1-piperazinyl)-2-oxoethoxy]isoindolin-1-one

By using 0.15 g of 5,6-dimethyl-2-(3-fluorophenyl)-3-carboxymethyloxyisoindolin-1-one [IUPAC name:[2-{[2-(3-fluorophenyl)-5,6-dimethyl-3-oxo-2,3-dihydro-1H-isoindol-1-yl]oxy}acetic acid], 0.16 g of the title compound was obtained according to Example 3. melting point: 196-197°C ¹H-NMR (CDCl₃) δ: 2.15-2.37 (4H, m, piperazine), 2.25 (3H, s, NCH₃), 2.38 (3H, s, CH₃), 2.40 (3H, s, CH₃), 3.01-3.15 (2H, m, piperazine), 3.36-3.46 (1H, m, piperazine), 3.54-3.64 (2H, m, piperazine and CH₂), 3.80 (1H, dd, CH₂), 6.58 (1H, s, CH), 6.88-6.93 (1H, m, PhH), 7.35-7.41 (1H, m, PhH), 7.43 (1H, s, C₄-H), 7.63-7.77 (2H, m, PhH), 7.67 (1H, s, C₇-H)

Example 30

(+)-5,6-dimethyl-3-propoxycarbonylmethyl-2-(3-pyridyl)isoindolin-1-one [IUPAC name: propyl (+)-2-[5,6-dimethyl-3oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetate]
and (-)-5,6-dimethyl-3-propoxycarbonylmethyl-2-(3-pyridyl)isoindolin-1-one [IUPAC name: propyl (-)-2-[5,6-dimethyl-3oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetate]

```
(30-a) (+)-5,6-dimethyl-3-carboxymethyl-2-(3-pyridyl)-isoindolin-1-one [IUPAC name: (+)-2-[5,6-dimethyl-3-oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetic acid] and (-)-5,6-dimethyl-3-carboxymethyl-2-(3-pyridyl)isoindolin-1-one [IUPAC name: (-)-2-[5,6-dimethyl-3-oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetic acid]
```

5

10

15

20

25

Racemic 5,6-dimethyl-3-carboxymethyl-2-(3-pyridyl)-isoindolin-1-one [IUPAC name: 2-[5,6-dimethyl-3-oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetic acid] was reacted with (-)-phenylethylamine to form a salt, and the salt was subjected to fractional recrystallization using ethanol. The resulting salt was treated with 1N hydrochloric acid to give (+)-5,6-dimethyl-3-carboxymethyl-2-(3-pyridyl)isoindolin-1-one [IUPAC name: (+)-2-[5,6-dimethyl-3-oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetic acid].

specific optical rotation $[\alpha]^{29}_{D} = +108.6^{\circ}$ (c=1.0, chloroform : methanol = 1 : 1)

By using (+)-phenylethylamine, (-)-5,6-dimethyl-3-carboxymethyl-2-(3-pyridyl)isoindolin-1-one [IUPAC name: (-)-2-[5,6-dimethyl-3-oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetic acid] was obtained according to the above-mentioned method.

specific optical rotation $[\alpha]^{29}_D = -106.4^{\circ}$ (c=1.0, chloroform: methanol = 1 : 1)

(30-b) (+)-5,6-dimethyl-3-propoxycarbonylmethyl-2-(3-pyridyl)isoindolin-1-one [IUPAC name: propyl (+)-2-[5,6-dimethyl-3-oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetate] and (-)-5,6-dimethyl-3-propoxycarbonylmethyl-2-(3-pyridyl)isoindolin-1-one [IUPAC name: propyl (-)-2-[5,6-dimethyl-3-oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetate]

By using above-mentioned products of (+) isomer and

(-) isomer respectively, optically active title compounds

were obtained according to Example 8.

(+)-5,6-dimethyl-3-propoxycarbonylmethyl-2-(3-pyridyl)- isoindolin-1-one [IUPAC name: propyl (+)-2-[5,6-dimethyl-3-oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetate] specific optical rotation $[\alpha]^{28}_{D} = +106.3^{\circ}$ (c=1.0, chloroform)

(-)-5,6-dimethyl-3-propoxycarbonylmethyl-2-(3-pyridyl)-isoindolin-1-one [IUPAC name: propyl (-)-2-[5,6-dimethyl-3-oxo-2-(3-pyridinyl)-2,3-dihydro-1H-isoindol-1-yl]acetate] specific optical rotation $[\alpha]^{29}_D = -101.9^\circ$ (c=1.0, chloroform)

Example 31

5

10

15

20

25

Preparation for injection

(31-a) Hydrochloride (15 mg) of (-) isomer of the compound in Example 3 and sodium chloride (45.0 mg) were dissolved in distilled water for injection, and the total volume was

made up to 5.0 ml. The aqueous solution was filtered under sterile conditions to give a transparent injectable solution.

(31-b) Hydrochloride (15 mg) of (-) isomer of the compound in Example 3 and glucose (250.0 mg) were dissolved in distilled water for injection, and the total volume was made up to 5.0 ml. The aqueous solution was filtered under sterile conditions to give a transparent injectable solution.

10 Pharmacological Test Example

5

15

The anesthetic effects of the compounds of the present invention were evaluated.

The compounds obtained in the above examples were used. Hydrochloride salt of the compound was dissolved in saline to give the test composition. Some compounds, of which hydrochloride salts were not water-soluble, were dissolved in water in the presence of solubilizer, hydroxypropyl- β -cyclodextrin.

The respective test composition was administrated to 20 mice via the tail vein and the anesthetic effect was evaluated by occurrence and duration of loss of righting reflex. Results are shown in Table 9.

Table 9

Compou	ınd No.	Anesthetic activity	Compou	nd No.	Anesthetic activity
Table 1	No.2	+	Table 2	No.35	+
Table 1	No.5	++	Table 2	No.36	+++
Table 2	No.1	+++	Table 2	No.37	+
Table 2	No.2	+++	Table 2	No.38	++
Table 2	No.3	++	Table 2	No.39	++
Table 2	No.4	++	Table 2	No.40	+++
Table 2	No.5	++	Table 2	No.41	++
Table 2	No.6	+	Table 2	No.42	+++
Table 2	No.7	+++	Table 2	No.44	+++
Table 2	No.8	+++	Table 2	No.45(-)	++ .
Table 2	No.12	++	Table 2	No.48	++
Table 2	No.13	++	Table 2	No.52	+++
Table 2	No.15	+	Table 2	No.53	++
Table 2	No.17	+++	Table 2	No.55	++
Table 2	No.20	+++	Table 2	No.56(-)	++
Table 2	No.21	++	Table 2	No.60	+ ·
Table 2	No.24	+	Table 2	No.62	+
Table 2.	No.28	+++	Table 2	No.63	+
Table 2	No.29	+++	Table 2	No.66	+
Table 2	No.31	++	Table 2	No.67	+
Table 2	No.33	+++	Table 2	No.68	+
Table 2	No.34	++ .	Table 2	No.87	+++

Table 9 (cont.)

Compound No. Anesthetic activity Compound No. Anesthetic activity					Anesthetic activity
Table 3	No.4	+	Table 4	No.5	++
Table 3	No.6	+++	Table 5	No.2	+
Table 3	No.7	++	Table 5	No.3	++
Table 3	No.14	+	Table 5	No.4	+++
Table 3	No.15	· +	Table 5	No.5	+++
Table 3	No.19	++	Table 5	No.6	+
Table 3	No.23	++	Table 5	No.7	+++
Table 3	No.27	++	Table 5	No.10	++ · ·
Table 3	No.28(—)	++	Table 6	No.1	++
Table 3	No.29(-)	++	Table 6	No.2	++ :
Table 3	No.38	+	Table 6	No.4	+
Table 3	No.39	++	Table 7	No.1	+++
Table 3	No.49(-)	+++	Table 8	No.1	+++
Table 3	No.52(-)	++	Table 8	No.3	+++
Table 3	No.54(—)	++	Table 8	No.4	+++
Table 3	No.56(—)	+++	Table 8	No.5(—)	+++
Table 3	No.57(—)	++	Propofol		+++
Table 4	No.2	++	Thiopent	al Sodium	++ .

Therapeutic index (T.I.) of the compound determined. The HD_{50} value, the minimum dose at which at least 30 seconds loss of righting reflex were observed in 50% of the injected mice, and the LD_{50} value, the 50% lethal dose were determined. Then the T.I. of LD_{50}/HD_{50} was obtained. Results are shown in Table 10. For the comparison purpose, the T.I. of clinically used intravenous anesthetics, propofol and thiopental sodium, which were disclosed in Japanese Patent Application Laid Open No. 50-

5

10

154410, are shown in the table.

Table 10

$$H_3C$$
 $N-R_2$

	R ₂	L.	HD50(mg/kg)	LD50(mg/kg)	T. I.(mouse)
racemic	~_\	CH₂C-N N-CH₃	6.92	92.00	13.29
(+)	•		25.13	>120	>4.78
(-)			1.90	64.69	34.05
(-)	——CCH ₂ CH ₃	CH ₂ C-N N-CH ₃	10.00	>120	>12.00
(-)	OCH ₂ CH ₃	CH ₂ C-N N-CH ₃	12.61	>120	>9.52
racemic	─	CH2C-OCH2CH2CH3	27.10	>100	>3.69
(+)			75.35	>120	>1.59
(-)			20.47	>120	>5.86
(-)		CH2C-OCH2CH(CH3)2 Ö	23.07	>120	>5.20
(-)	(CH ₂ CH ₂ OCH ₂ CH ₃	14.51	>120	>8.27
()	- ⟨_N	CH2CH2OCH2CH2CH3	14.33	>120	>8.37
(-)	N N	N-CH ₃	2.17	120	55.30
Propofol			13.5	56	4.14
Thiopental	Sodium		23.5	100	4.26

As shown in table 10, the 50% lethal dose (LD_{50}) of the test compound is much higher than the HD_{50} , which is an indicator of the anesthetic action, and the highest LD_{50} among the test compounds was more than 120 mg/kg (i.v.). This means that the anesthetic composition of the invention has a very wide safety margin. Propofol and thiopental sodium, most popular anesthetics, have significantly narrower safety margins.

5

Anesthesia induction time, the time from the complete injection of the compound $(2 \times HD_{50})$ to loss of righting reflex, and after wake-up recovery time, the time from righting reflex was back to normal to the animal started to move spontaneously were determined. The results are shown in Table 11.

Table 11

$$H_3C$$
 $N-R_2$

	R ₂	L	Anaesthetic induction time	after wake-up recovery time
(-)	$\rightarrow \bigcirc$	CH ₂ C-N N-	0'00"	6'44"
(-)	OCH ₂ CH ₃	CH ₂ C-N N-CH ₃	0'23"	4'24"
racemic		CH ₂ C-N N-	0'13"	3'32"
(-)	-\(\bigcirc_N\)	CH ₂ C-OCH ₂ CH ₂ CH ₃ O	0'02"	1'08"
Propofol			0'08"	4'02"

As shown in table 11, the isoindoline derivatives of the invention can provide rapid induction and recovery from anesthesia.