Table 1: The GEP formulation of some SDR methods

Method	A	В
SIR	$cov[E\{\mathbf{x} - E(\mathbf{x})\} \mid y]$	$\Sigma_{\mathbf{x}}$
PFC	Σ_{fit}	$\Sigma_{\mathbf{x}}$
SAVE	$\Sigma_{\mathbf{x}}^{1/2} E\left[\left\{I - \operatorname{cov}(\mathbf{z} \mid y)\right\}^{2}\right] \Sigma_{\mathbf{x}}^{1/2}, \text{ where } \mathbf{z} = \Sigma_{\mathbf{x}}^{-1/2} \left\{\mathbf{x} - E(\mathbf{x})\right\}$	$\Sigma_{\mathbf{x}}$
PHD(y-based)	$\Sigma_{\mathbf{x}}^{1/2} \Sigma_{y\mathbf{z}\mathbf{z}} \Sigma_{y\mathbf{z}\mathbf{z}} \Sigma_{\mathbf{x}}^{1/2}$, where $\Sigma_{y\mathbf{z}\mathbf{z}} = E\left[\{y - E(y)\}\mathbf{z}\mathbf{z}^{\top}\right]$	$\Sigma_{\mathbf{x}}$
PHD(r-basied)	$\Sigma_{\mathbf{x}}^{1/2} \Sigma_{\mathbf{rzz}} \Sigma_{\mathbf{rzz}}^{1/2} \Sigma_{\mathbf{x}}^{1/2}, \text{ where } \Sigma_{\mathbf{rzz}} = E\left[\left\{y - E(y) - E\left(y\mathbf{z}^{\intercal}\right)\mathbf{z}\right\}\mathbf{z}\mathbf{z}^{\intercal}\right]$	$\Sigma_{\mathbf{x}}$
DR	$\Sigma_{\mathbf{x}}^{1/2} \left\{ 2E \left[E^2 \left(\mathbf{z} \mathbf{z}^\intercal \mid y \right) \right] + 2E^2 \left[E(\mathbf{z} \mid y) E \left(\mathbf{z}^\intercal \mid y \right) \right] \right.$	
	$+2E[E(\mathbf{z}\mid y)E(\mathbf{z}\mid y)]E[E(\mathbf{z}\mid y)E(\mathbf{z}^{\intercal}\mid y)]-2\mathbf{I}_{p}\} \Sigma_{\mathbf{x}}^{1/2}$	$\Sigma_{\mathbf{x}}$

<simulation 결과 1>

y = sign(b1'X)*log(|b2'X+5|)+0.2*e

p=20

- Case (i): true beta의 0개수: 32

(i)
$$\beta_1 = (1, 1, 1, 1, 0, \dots, 0)^T$$
 and $\beta_2 = (0, \dots, 0, 1, 1, 1, 1)^T$;

method	р	corr1	corr2	mse1	mse2
dr	0.000	0.7698654	0.7831131	3.212332	2.104733
sparse dr	22.735	0.9446084	0.9686214	3.518986	2.545846

- Case(ii): true beta의 0개수: 32

(ii)
$$\beta_1 = (1, 1, 0.1, 0.1, 0.1, 0, \dots, 0)^T$$
 and $\beta_2 = (0, \dots, 0, 0.1, 0.1, 1, 1)^T$

method	р	corr1	corr2	mse1	mse2
dr	0.0	0.8280320	0.7915093	3.198981	0.8406891
sparse dr	23.9	0.9728796	0.9764424	3.562182	0.5640522

- Case(iii): true beta의 0개수: 20

(iii)
$$\beta_1 = (1, \dots, 1, 0, \dots, 0)^T$$
 and $\beta_2 = (0, \dots, 0, 1, \dots, 1)^T$,

method	р	corr1	corr2	mse1	mse2
dr	0.000	0.7963774	0.8138976	3.567960	1.715391
sparse dr	16.115	0.9581149	0.9099131	3.986382	2.114001

모든 case에서 Correlation 결과가 그냥 dr일때보다 sparse dr일 때 많이 좋아졌음

<논문 s-sir simulation result>

			$\hat{\boldsymbol{\beta}}_1$			$\hat{oldsymbol{eta}}_2$		$(\hat{\beta}_1, \hat{\beta}_2)$
		NUM	COR	MSE	NUM	COR	MSE	VCC
Case (i)	SIR	0.000	0.926	1.604	0.000	0.911	1·245	0.934
	S-SIR	15.16	0.975	1.352	15.38	0.974	1·026	0.946
Case (ii)	SIR	0.000	0.884	0.551	0.000	0·856	0·544	0.932
	S-SIR	17.67	0.984	0.245	17.68	0·986	0·205	0.968
Case (iii)	SIR	0.000	0.916	4·793	0.000	0·942	4·168	0·917
	S-SIR	9.220	0.877	5·006	9.630	0·908	4·329	0·816

그러나, 모든 case에서 sir과 s-sir 결과가 zero의 개수가 true값에 더 가깝다. Case3의 경우, dr과 sparse dr의 결과가 더 좋다.

<simulation 결과 2>

y = cos(2*b1'X)-cos(b2'X)+0.5*e

p=10, true beta의 0 개수: 18

$$\beta_1 = (1, 0, \dots, 0)^T \text{ and } \beta_2 = (0, 1, 0, \dots, 0)^T.$$

- n=100

method	р	corr1	corr2	mse1	mse2
dr	0.00	0.7783505	0.8714745	0.5937655	2.571295
sparse dr	8.65	0.8215246	0.9570768	0.5305380	3.022709

- n=200

method	р	corr1	corr2	mse1	mse2
dr	0.00	0.8224365	0.8978549	0.4947189	2.070118
sparse dr	10.52	0.9102280	0.9532808	0.2818287	1.984507

n=200일 때 결과가 더 좋음, dr보다 sparse dr의 결과가 훨씬 좋아짐

		$\hat{oldsymbol{eta}}_1$			$\hat{oldsymbol{eta}}_2$			$(\hat{\beta}_1, \hat{\beta}_2)$
		NUM	COR	MSE	NUM	COR	MSE	VCC
n = 100	PHD S-PHD	0·000 8·280	0·793 0·911	0·437 0·194		0·726 0·902		0·651 0·837
n = 200	PHD S-PHD	0·000 8·360	0·894 0·970	0·184 0·055	0·000 8·230		0·150 0·020	0.848 0.963

그러나 s-phd 결과가 훨씬 좋음