

| Escuela de Ingeniería          | Tarea 4. Alg. Euclidiano |
|--------------------------------|--------------------------|
| Área: Matemáticas              | Fecha:                   |
| Materia: Matemáticas Discretas | Ciclo:1208               |
| Profesor: Dr. Adrián Cerda     | CALIFICACIÓN             |
| Carrera:                       |                          |
| Alumno(a):                     |                          |

INSTRUCCIONES: Resuelve cada uno de los siguientes ejercicios. Cuida por favor el orden, la limpieza y la ortografía en cada uno de tus argumentos, asimismo pon especial cuidado en la sintaxis matemática de tu procedimiento.

- Ejercicio 1. Use el algoritmo Euclidiano para encontrar el máximo común divisor de cada par de enteros dados acontinuación: 60, 90; 220, 1400; 20, 40; 2091, 4807; 2475, 32670; 67942, 4209; 490256, 337 y 15, 15<sup>9</sup>.
- Ejercicio 2. Para cada par de números a, b del ejercicio anterior, encuentre enteros s y t tales que

$$sa + tb = mcd(a, b).$$

- Ejercicio 3. Si a y b son enteros positivos, demuestre que mcd(a, b) = mcd(a, a + b).
- Ejercicio 4. ¿Exactamente cuántas operaciones de módulo requiere el algoritmo euclidiano en el peor caso para números entre 0 y 1000000?
- Ejercicio 5. En los siguientes incisos de n y  $\phi$ , demuestre que el  $mcd(n, \phi) = 1$  y encuentre el inverso s de n módulo  $\phi$  que satisface  $0 < s < \phi$ .

i. 
$$n = 2, \phi = 3$$

**ii.** 
$$n = 7, \, \phi = 20$$

iii. 
$$n = 50, \phi = 231$$

- Ejercicio 6. Demuestre que 6 no tiene inverso módulo 15. ¿Contradice esto el resultado que precede al ejemplo 5.3.9 de la página 212 ? Explique su respuesta.
  - Bonus 1. Demuestre que si p es un número primo, a y b son enteros positivos y p|ab, entonces p|a o p|b.
  - Bonus 2. Dé un ejemplo de enteros positivos p, a y b donde p|ab,  $p \nmid a$  y  $p \nmid b$ .
  - Bonus 3. Demuestre que n > 0 tiene un inverso módulo  $\phi > 1$  si, y sólo si,  $mcd(n, \phi) = 1$ .