Разнобой

- **1.** Два четырехугольника ABCD и $A_1B_1C_1D_1$ симметричны друг другу относительно точки P. Известно, что четырехугольники A_1BCD , AB_1CD и ABC_1D вписанные. Докажите, что $ABCD_1$ тоже вписанный.
- **2.** В неравнобедренном треугольнике ABC провели биссектрисы угла ABC и угла, смежного с ним. Они пересекли прямую AC в точках B_1 и B_2 соответственно. Из точек B_1 и B_2 провели касательные к окружности, вписанной в треугольник ABC, отличные от прямой AC. Они касаются этой окружности в точках K_1 и K_2 соответственно. Докажите, что точки B, K_1 и K_2 лежат на одной прямой.
- **3.** В равнобедренном треугольнике ABC(AB = AC) выбрана точка P такая, что PB > PC и $\angle PBA = \angle PCB$. Точка M середина стороны BC, точка O центр окружности (APM). Докажите, что $\angle OAC = 2\angle BPM$.
- **4.** Внутри остроугольного треугольника ABC отмечена точка P. Обозначим через P_A , P_B , P_C проекции точки P на стороны BC, CA, AB. Прямые BC и P_BP_C пересекаются в точке S. Окружность ($P_AP_BP_C$) второй раз пересекает прямую BC в точке T. Докажите, что $SP \perp AT$.
- **5.** В описанном пятиугольнике $ABCDE\ AB = BC, CD = DE$. Отрезки AD и BE пересекаются в точке P, отрезок BD пересекает CA и CE в точках Q и T соответственно. Докажите, что треугольник PQT равнобедренный.
- **6.** Из точки A к окружности ω проведена касательная AD и произвольная секущая, пересекающая окружность в точках B и C (B лежит между точками A и C). Докажите, что окружность, проходящая через точки C и D и касающаяся прямой BD, проходит через фиксированную точку (отличную от D).
- **8.** В выпуклом пятиугольнике *ABCDE* оказалось, что *BC* \parallel *AE*, *AB* = *BC* + *AE*, и \angle *ABC* = \angle *CDE*. Пусть *M* середина стороны *CE*, а точка *O* центр описанной окружности треугольника *BCD*. Оказалось, что \angle *DMO* = 90°, докажите, что $2\angle$ *BDA* = \angle *CDE*.