Syntax: Context-free Grammars

Ling 571
Deep Processing Techniques for NLP
January 9, 2017

Roadmap

- Motivation: Applications
- Context-free grammars (CFGs)
 - Formalism
 - Grammars for English
 - Treebanks and CFGs
 - Speech and Text
 - Parsing

Applications

- Shallow techniques useful, but limited
- Deeper analysis supports:
 - → Grammar-checking and teaching
 - Question-answering
 - Information extraction
 - Dialogue understanding

Representing Syntax

- Context-free grammars
- CFGs: 4-tuple
 - \dashv A set of terminal symbols: Σ
 - → A set of non-terminal symbols: N
 - \dashv A set of productions P: of the form A $\rightarrow \rightarrow \alpha$
 - \dashv Where A is a non-terminal and α in (Σ U N)*
 - → A designated start symbol S

CFG Components

→ Terminals:

- Only appear as leaves of parse tree
- → Right-hand side of productions (rules) (RHS)
- → Words of the language
 - Cat, dog, is, the, bark, chase

Non-terminals

- Do not appear as leaves of parsetree
- Appear on left or right side of productions (rules)
- Constituents of language
 - → NP, VP, Sentence, etc.

CFG Components

- Productions
 - Rules with one non-terminal on LHS and any number of terminals and non-terminals on RHS
 - $\neg S \rightarrow \rightarrow NP VP$
 - \neg VP \rightarrow V NP PP | VNP
 - Nominal →→ Noun | Nominal Noun
 - \dashv Noun $\rightarrow \rightarrow$ dog | cat | rat
 - \rightarrow Det \rightarrow the

Grammar Rules	Examples
$S \rightarrow NP VP$	I + want a morning flight
NP → Pronoun Proper-Noun Det Nominal Nominal → Nominal Noun	I Los Angeles a + flight morning + flight
Noun	flights
VP → Verb Verb NP Verb NP PP Verb PP	do want + a flight leave + Boston + in the morning leaving + on Thursday
PP → Preposition NP	from + Los Angeles

Parse Tree

```
S
NP
         VP
Pro
   Verb
             NP
   prefer Det Nom
              No1n Nou1]
          a
              No11n flight
             mornzng
```

Some English Grammar

- Sentences: Full sentence or clause; a complete thought
 - \rightarrow Declarative: S \rightarrow NP VP
 - ─ I want a flight from Sea-Tac to Denver.
 - \dashv Imperative: S $\rightarrow \rightarrow$ VP
 - Show me the cheapest flight from New York to Los Angeles.
 - $\neg S \rightarrow \rightarrow Aux NP VP$
 - Can you give me the non-stop flights to Boston?
 - $\neg S \rightarrow Wh-NP VP$
 - → Which flights arrive in Pittsburgh before 10pm?
 - \rightarrow S \rightarrow Wh-NP Aux NP VP
 - What flights do you have from Seattle to Orlando?

The Noun Phrase

- → NP →→ Pronoun | Proper Noun (NNP) | Det Nominal
 - → Head noun + pre-/post-modifiers
- Determiners:
 - Det $\rightarrow \rightarrow$ DT
 - → the, this, a, those
 - Det $\rightarrow \rightarrow$ NP 's
 - United's flight, Chicago's airport

In and around the Noun

- → Nominal → Noun
 - → PTB POS: NN, NNS, NNP, NNPS
 - → flight, dinner, airport
- \rightarrow NP \rightarrow (Det) (Card) (Ord) (Quant) (AP) Nominal
 - → The least expensive fare, one flight, the first route
- \rightarrow Nominal PP
 - → The flight from Chicago

Verb Phrase and Subcategorization

- Verb phrase includes Verb, other constituents
 - Subcategorization frame: what constituent arguments the verb requires

 \neg VP \rightarrow Verb

 \neg VP \rightarrow Verb NP

 \neg VP \rightarrow Verb PP PP

 \neg VP \rightarrow Verb S

 \rightarrow VP \rightarrow Verb VP

disappear

book a flight

fly from Chicago to Seattle

think I want that flight

want to arrange three flights

CFGs and Subcategorization

- Issues?
 - → I prefer United has a flight.
- How can we solve this problem?
 - Create explicit subclasses of verb
 - Verb-with-NP
 - → Verb-with-S-complement, etc...
- Is this a good solution?
 - ── No, explosive increase in number of rules
 - Similar problem with agreement

Treebanks

Treebank:

- Large corpus of sentences all of which are annotated syntactically with a parse
 - Built semi-automatically
 - Automatic parse with manual correction
- Examples:
 - Penn Treebank (largest)
 - English: Brown (balanced); Switchboard (conversational speech); ATIS (human-computer dialogue); Wall Street Journal; Chinese; Arabic
 - ── Korean, Hindi,...
 - DeepBank, Prague dependency,...

Treebanks

- Include wealth of language information
 - ── Traces, grammatical function (subject, topic, etc), semantic function (temporal, location)
- Implicitly constitutes grammar of language
 - Can read off rewrite rules from bracketing
 - → Not only presence of rules, but frequency
 - Will be crucial in building statistical parsers

Treebank WSJ Example

```
( (S (" ")
    (S-TPC-2)
      (NP-SBJ-1 (PRP We))
      (VP (MD would)
        (VP (VB have)
          (S
            (NP-SBJ (-NONE-*-1))
            (VP (TO to)
              (VP (VB wait)
                (SBAR-TMP (IN until)
                  (S
                    (NP-SBJ (PRP we) )
                    (VP (VBP have)
                      (VP (VBN collected)
                        (PP-CLR (IN on)
                          (NP (DT those) (NNS assets)))))))))))))
    (, ,) (" ")
    (NP-SBJ (PRP he))
    (VP (VBD said)
    (S (-NONE- *T*-2)))
    (. .) )) _____
```

Treebanks & Corpora

- Many corpora on patas
- patas\$ Is /corpora

```
— birkbeck enron_email_dataset grammars LEAP TREC
```

- Coconut europarl ICAME med-data treebanks
- ── Conll europarl-old JRC-Acquis.3.0 nltk
- DUC framenet LDC proj-gutenberg
- Also, corpus search function on CLMS wiki
- Many large corpora from LDC
- Many corpus samples in nltk

Treebank Issues

- Large, expensive to produce
- Complex
 - Agreement among labelers can be an issue
- Labeling implicitly captures theoretical bias
 - → Penn Treebank is 'bushy', long productions
- Enormous numbers of rules
 - → 4,500 rules in PTB for VP
 - VP→ V PP PP PP
 - → 1M rule tokens; 17,500 distinct types and counting!

Spoken & Written

- Can we just use models for written language directly?
- No!
- Challenges of spoken language
 - Disfluency
 - ─ Can I um uh can I g- get a flight to Boston on the 15th?
 - → 37% of Switchboard utts > 2 wds
 - → Short, fragmentary
 - Uh one way
 - → More pronouns, ellipsis
 - That one

Computational Parsing

- Given a grammar, how can we derive the analysis of an input sentence?
 - Parsing as search
 - CKY parsing

- Given a body of (annotated) text, how can we derive the grammar rules of a language, and employ them in automatic parsing?
 - Treebanks & PCFGs

Algorithmic Parsing

Ling 571
Deep Processing Techniques for NLP
January 9, 2017

Roadmap

- Motivation:
 - Recognition and Analysis
- Parsing as Search
 - → Search algorithms
 - → Top-down parsing
 - → Bottom-up parsing
 - Issues: Ambiguity, recursion, garden paths
 - Dynamic Programming
- Chomsky Normal Form

Parsing

- CFG parsing is the task of assigning proper trees to input strings
 - → For any input A and a grammar G, assign (zero or more) parse-trees T that represent its syntactic structure, and
 - Cover all and only the elements of A
 - Have, as root, the start symbol S of G
 - → Do not necessarily pick one (or correct) analysis

Recognition:

- Subtask of parsing
- Given input A and grammar G, is A in the language defined by G or not

Motivation

- Parsing goals:
 - ── Is this sentence in the language is it grammatical?

 I prefer United has the earliest flight.
 - FSAs accept the regular languages defined by automaton
 - Parsers accept language defined by CFG
 - What is the syntactic structure of this sentence?
 - ── What airline has the cheapest flight?
 - ── What airport does Southwest fly from near Boston?
 - Syntactic parse provides framework for semantic analysis
 - → What is the subject?

Parsing as Search

- Syntactic parsing searches through possible parse trees to find one or more trees that derive input
- Formally, search problems are defined by:
 - → A start state S,
 - → A goal state G,
 - A set of actions, that transition from one state to another
 - Successor function
 - A path cost function

Parsing as Search

- The parsing search problem (one model):
 - → Start State S: Start Symbol
 - Goal test:
 - Does parse tree cover all and only input?
 - Successor function:
 - Expand a non-terminal using production in grammar where non-terminal is LHS of grammar
 - Path cost:
 - We'll ignore here

Parsing as Search

- Node:
 - → Partial solution to search problem:
 - Partial parse
- Search start node:
 - Initial state:
 - → Input string
 - Start symbol of CFG
- Goal node:
 - → Full parse tree: covering all and only input, rooted at S

Search Algorithms

- Many search algorithms
 - → Depth first
 - Keep expanding non-terminal until reach words
 - → If no more expansions, back up
 - Breadth first
 - Consider all parses with a single non-terminal expanded
 - → Then all with two expanded and so
 - Other alternatives if have associated path costs

Parse Search Strategies

- Two constraints on parsing:
 - Must start with the start symbol
 - Must cover exactly the input string
- Correspond to main parsing search strategies
 - → Top-down search (Goal-directed search)
 - → Bottom-up search (Data-driven search)

A Grammar

Grammar Lexicon

```
S ---+ I'IP VP
```

$$S ---+ Aux NP VP$$

$$S - VP$$

Nornina! ----+ Nominal Noun

\Tornina! ----+ Norninal PP

VP ----+ *Verb NP PP*

VP ---+ *Verb PP*

VP ---+ VP PP

PP ----+ Prepos ition NP

Det ----+ that | this | a

Noun ----+ book | flight | rneal | rnoney

Verb ----+ *book* | *include* | *prefer*

 $Pronoun - I \mid she \mid rne$

Proper-Noun -----+ *Hou ston* | *NWA*

Aux ----+ *does*

Preposition ------ ft onz I to I on I near I tlu ough

Book that f light.

Top-down Search

- All valid parse trees must start with start symbol
 - → Begin search with productions with S on LHS
 - \dashv E.g., S $\rightarrow \rightarrow$ NP VP
 - Successively expand non-terminals
 - \dashv E.g., NP $\rightarrow \rightarrow$ Det Nominal; VP $\rightarrow \rightarrow$ V NP
 - Terminate when all leaves are terminals
 - Book that flight

Top-down Search

S Aux NP NP VP VP NP NP Aux NP NP VP VP VP Aux VP VP Det Nom **PropN** Nom PropN NP Det

Depth-first Search

Depth-first Search

Depth-first Search

Pros and Cons of Top-down Parsing

Pros:

- Doesn't explore trees not rooted at S
- Doesn't explore subtrees that don't fit valid trees

Cons:

- Produces trees that may not match input
- May not terminate in presence of recursive rules
- May rederive subtrees as part of search