

Autho	or (You) Tree D.	Signature: Tour P.	
I declar assesso to anoti	re that this assignment is original and has not been or of this assignment may, for the purpose of assessi	submitted for assessment elsewhere, and acknowledge that the ng this assignment: (1) reproduce this assignment and provide opy of this assignment to a plagiarism checking service (which	е а сору
Lab F	Partner(s) Kathema Chen		
Date	Performed 21/02/2024	Date Submitted 28/02/w24	
Lab (such as #1: UNC) \ \ 3: LME		
	Philip		
		our TA) See your TA for detailed feedback. you need to improve this aspect of your work.	
Pape	er Subtotals (points)	() Discussion & Conclusions (6))
()) General (6)	Numerical comparison of results Logical conclusions	
	Sig. figs. Units	Discussion of pos. errors	
	Clarity of Presentation	Suggestions to reduce errors	
	Format		
		() Paper Total (60 points)	
()	Abstract (4)	(30 points for CME or EPF)	
	Quantity or principle	() Notebook (10 points)	
	How measurement was made	Format (proper style, following dire	
	Numerical Results Conclusion	Apparatus (brief description of equi	pment,
		including sketches)	~ ~ ~ d
()) Intro & Theory (9)	Data (including computer file name: manually recorded data)	s unu
	Basic principle	Experimental Technique (describing	g vour
=	Main equations to be used	procedures; stating & justifying und	
	Apparatus	Analysis (results and errors)	
	What will be plotted Fitting parameters related		
		() Worksheet(s)/Fill-in-the-Blan	ık-
() Exp. Procedures (15)	Report (30 points) if applicable	
	Description (12)		
	Stating and justifying uncertainties	() Adjustments – late submissions,	,
	Data Record Quality of Lab Work	improper procedures, etc. – or bonu- for exceptional work.	s points
()) Analysis & Error Analysis (20)		
	Discussion	() Total Grade	
	Equations & Calculations	, ,	
	Presentation inc. Graphs, Tables Results Reported & Reasonable	Graded by (TA's ini	itial)
	Underlined items addressed	Traded by(1A s mi	iiii)

Abstract

The purpose for this lab is to establish whether energy is truly conserved when stored and transferred between springs, gravity (height), and motion.

Expected energy loss in GPE:
$$\frac{\Delta E}{\Delta y} = -0.033 \pm 0.003 \; \frac{J}{m}$$

Actual energy loss in GPE:
$$\frac{\Delta E}{\Delta y} = -0.056 \pm 0.002 \; \frac{J}{m}$$

Expected friction loss in spring movement:
$$\Delta E = -0.017 \pm 0.002~J$$

Actual friction loss in spring movement: $\Delta E = -0.029 \pm 0.001~J$

Total energy lost:
$$\Delta E = -0.081 \pm 0.01~J$$

Total energy lost:
$$\epsilon = -16 \pm 2\%$$

Our expected values for energy loss and actual values slightly differed, with the system losing more energy than we expected. We ultimately attributed this to additional unmeasured friction and spring dampening, thus not disproving the theory of energy conservation.

Gravitational Potential Energy

Finding Friction

Method

- Ensure Plane is level
- Gradually add weight until the cart has constant velocity
- Measure the mass needed to offset the friction

Data

Trial	$m_c\left(g ight)$	$m_p\left(g ight)$
1	988.0	3.4
2	987.4	3.4
3	987.3	3.3
4	987.6	3.4
5	987.8	3.3
6	988.0	3.4
7	987.6	3.4
8	987.6	3.3
9	987.7	3.4
10	987.9	3.4

Trial	$m_c\left(g ight)$	$m_p\left(g ight)$
Mean	987.74	3.37
STD.	10.1	0.3

Analysis

Finding W

$$egin{aligned} F_f &pprox m_p g \ W &pprox W_f = F_f \cdot d \ &= -m_p g d \ W &= -0.0330597 d \ \delta_W &= \delta_{Wm_p} = \delta_{m_p} g d = 0.002943 d \ W &= d (-0.0330597 \pm 0.002943) \end{aligned}$$

Analytical Conclusion

We estimate the energy lost to friction will be equal to $\frac{\Delta E}{\Delta y}=-0.033\pm0.003\,rac{J}{m}$

Where Δy is the distance traveled

Checking energy loss

Method

- Add 50g of weight to a system that is already in balance
- Record position, velocity, acceleration
- Calculate energies and energy loss

Data

Time	Distance	Velocity	Acceleration	Kinetic Energy	Potential Energy	Total Energy
0.1517	0					
0.23995	0.015	0.19139	0.48532	0.01907	-0.00785	0.01121
0.31179	0.03	0.22557	0.46638	0.02649	-0.01571	0.01078
0.37425	0.045	0.25461	0.46362	0.03375	-0.02356	0.01019
0.4303	0.06	0.28013	0.44698	0.04085	-0.03141	0.00944
0.48174	0.075	0.30293	0.43929	0.04777	-0.03927	0.0085
0.52959	0.09	0.32366	0.42702	0.05453	-0.04712	0.00741

Time	Distance	Velocity	Acceleration	Kinetic Energy	Potential Energy	Total Energy
0.5746	0.105	0.34269	0.41856	0.06113	-0.05497	0.00616
0.61726	0.12	0.36069	0.42563	0.06772	-0.06283	0.0049
0.65788	0.135	0.37853	0.45298	0.07459	-0.07068	0.00391
0.69661	0.15	0.39723	0.5125	0.08214	-0.07853	0.00361
0.73349	0.165	0.41593	0.5012	0.09005	-0.08639	0.00367
0.7688	0.18	0.43341	0.4893	0.09779	-0.09424	0.00354
0.80276	0.195	0.45011	0.49413	0.10546	-0.10209	0.00337
0.8355	0.21	0.46477	0.40156	0.11245	-0.10995	0.0025
0.86733	0.225	0.4768	0.35424	0.11834	-0.1178	0.000543
0.89843	0.24	0.48828	0.38362	0.12411	-0.12565	-0.00155
0.92879	0.255	0.50038	0.41339	0.13033	-0.13351	-0.00317
0.95841	0.27	0.5127	0.41874	0.13683	-0.14136	-0.00453
0.98732	0.285	0.52495	0.42854	0.14345	-0.14921	-0.00577
1.01557	0.3	0.53901	0.56704	0.15124	-0.15707	-0.00583
1.043	0.315	0.55435	0.55176	0.15997	-0.16492	-0.00495
1.06971	0.33	0.56816	0.48226	0.16804	-0.17277	-0.00474
1.09582	0.345	0.58104	0.50449	0.17575	-0.18063	-0.00488

Analysis

Fig 1: Kinetic, Gravitational Potential, and Total Energy vs. distance traveled

Finding W

W = -0.0330597d

W = -0.0330597(0.345)

 $W = -0.0114055965 \; J$

 $\delta_W=0.002943d$

 $\delta_W = 0.002943(0.345)$

 $\delta_W = 0.001~J$

 $W = -0.011 \pm 0.001 \; J$

Estimating energy loss

From the graph, our slope is

$$rac{dE}{dy} = -0.056 \pm 0.002$$

$$\Delta E = rac{d\Delta E}{dy}d$$

=-0.056(0.345)

= -0.01932 J

$$egin{aligned} \delta_{\Delta E} &= \delta_{rac{d\Delta E}{dy}} d \ &= 0.002 (0.345) \ &= 0.00069 \ J \end{aligned}$$

$$\Delta E = -0.01932 \pm 0.0007 J$$

Analytical Conclusion

From our prior estimate of energy lost to friction, we estimate that

$$\Delta E = -0.011 \pm 0.001~J$$

Experimentally, we have instead determined that we lost

$$\Delta E = -0.01932 \pm 0.0007 \ J$$

We deduced that there is likely significantly more friction in the system due to the nonnegligible increase of force on the pulley, as well as significantly more air-resistance due to the larger weight.

Spring Potential Energy

Finding the Spring Constant

Method

- Put a meter stick next to the string, parallel, with numbering visible from the side through the string
- Measure the tip of the hook of the spring at different weights

Data

Weight (g)	Position (cm)
50.0	82.25
55.0	80.90
60.0	79.15
65.0	77.35
70.0	75.75
75.0	74.35
80.0	72.85
85.0	71.70
90.0	69.65
95.0	68.25
100.0	66.50

Analysis

Fig 2: Position of the end of the spring vs. mass hung upon it

Finding k

The force on the spring can be calculated by the amount of mass hanging on it.

$$F_s = F_g = mg$$
 $F_s = k\Delta x$

The slope represents: $\frac{d\Delta x}{dm}$

$$mg=k\Delta x$$
 $g=krac{d\Delta x}{dm}$ $k=rac{g}{rac{d\Delta x}{dm}}$ $k=rac{9.81}{3.13}$ $k=3.134~rac{N}{m}$

$$k=rac{g}{rac{d\Delta x}{dm}}$$

The variance in g is negligible compared to that of $\frac{d\Delta x}{dm}$

Let
$$s=rac{d\Delta x}{dm}$$

$$\delta_k = \delta_{ks} = \delta_s \frac{g}{s^2}$$

$$= 0.04 \left(\frac{9.81}{3.13^2}\right)$$

$$= 0.04 \frac{N}{m}$$

$$k=3.13\pm0.04\,rac{N}{m}$$

Analytical Conclusion

Experimentally, we can deduce that the spring constant for our given spring is $k=3.13\pm0.04\,rac{N}{m}$

Finding Energy loss in the Spring

Data

At 100g of weight:

Trial	Max Excursion	Resting Position
1	42.80	66.55
2	42.25	66.55
3	40.35	66.55
4	41.10	66.55
Mean	41.8	
STD.	0.6	

Unstretched Spring = 93.90 cm

Analysis

Finding Energy Values

In all cases, the uncertainty of the hanging mass is negligible at around $0.00001\ kg$ as the other uncertainties are multiple orders of magnitude larger

$$U_{ki}$$

$$U_{ki}=rac{1}{2}kx^2=0~J$$

$$egin{aligned} \delta_{U_{ki}} &= \delta_{U_{ki}k} = \delta_k rac{1}{2} x^2 \ &= 0 \end{aligned}$$

$$U_{ki}=0\pm 0~J$$

$$U_{kf}$$

$$U_{kf} = \frac{1}{2}kx^2$$

= $\frac{1}{2}3.134(0.9390 - 0.418)^2$
= $0.4253 J$

$$egin{aligned} \delta_{U_{kf}} &= \sqrt{\delta_{U_{kf}k}^2 + \delta_{U_{kf}x}^2} = \sqrt{(\delta_k rac{1}{2} x^2)^2 + (\delta_x k x)^2} \ &= \sqrt{(0.04(0.5)(0.9390 - 0.418)^2)^2 + (0.006(3.134)(0.9390 - 0.418))^2} \ &= 0.01\ J \end{aligned}$$

$$U_{kf}=0.43\pm0.01~J$$

 U_{gi}

$$U_{gi}=mgh=0\ J$$

$$\delta_{U_{gi}} = \delta_{U_{gi}h} = \delta_h mg$$

$$U_{gi}=0\pm 0~J$$

 U_{gf}

$$egin{aligned} U_{fg} &= mgh \ &= -0.1(9.81)(0.9390 - 0.418) \ &= -0.5111\ J \end{aligned}$$

$$egin{aligned} \delta_{U_{gf}} &= \delta_{U_{gf}h} = \delta_h mg \ &= 0.006(0.1)(9.81) \ &= 0.006 \end{aligned}$$

$$U_{gf} = -0.511 \pm 0.006~J$$

ΔE

$$\Delta E = U_{gf} + U_{kf} - U_{gi} - U_{ki}$$

= 0.43 - 0.511 = -0.081 J

$$egin{aligned} \delta_{\Delta_E} &= \sqrt{\delta_{U_{gf}}^2 + \delta_{U_{kf}}^2} \ &= \sqrt{0.01^2 + 0.006^2} \ &= 0.01\ J \end{aligned}$$

$$\Delta E = -0.081 \pm 0.01~J$$

W_f Estimated

$$W_f = d(-0.0330597 \pm 0.002943) \ W_f = (0.9390 - 0.418)(-0.0330597 \pm 0.002943)$$

$$W_f = -0.0172241037 \pm 0.001533303$$
 $W_f = -0.017 \pm 0.002~J$ $rac{dW_f}{d\Delta E} pprox 20.99\%$

W_f Experimental

$$egin{aligned} W_f &= d(-0.056 \pm 0.002) \ W_f &= (0.9390 - 0.418)(-0.056 \pm 0.002) \ W_f &= -0.029176 \pm 0.001042 \ W_f &= -0.029 \pm 0.001 \ & rac{dW_f}{d\Delta E} pprox 35.80\% \end{aligned}$$

Finding ϵ

$$\epsilon = rac{\Delta U_k + \Delta U_g}{|\Delta U_g|} \ = rac{0.43 - 0.511}{0.511} \ = -0.1585$$

$$egin{align} \delta_{\epsilon} &= \sqrt{\delta_{\epsilon U_{kf}}^2 + \delta_{\epsilon U_{gf}}^2} = \sqrt{\left(rac{\delta_{U_{kf}}}{|U_{gf}|}
ight)^2 + \left(-rac{\delta_{U_{gf}}U_{kf}}{U_{gf}^2}
ight)^2} \ &= \sqrt{\left(rac{0.01}{0.511}
ight)^2 + \left(rac{0.006(0.43)}{0.511^2}
ight)^2} \ &= 0.02 \end{array}$$

$$\epsilon = -0.16 \pm 0.02$$
 $\epsilon = -16 \pm 2\%$

Analytical Conclusion

We experimentally determined that in this system, we lose about $\epsilon=-16\pm2\%$ of the energy when transferred from Gravitational potential to kinetic and finally to spring potential energy. We also attribute the loss in energy mainly to the dampening of the spring, as our expected friction due to the system calculated in the first part of the lab only accounts for a loss of $W_f=-0.017\pm0.002~J$ while our total energy loss is $\Delta E=-0.081\pm0.01~J$

Conclusion

We conclude that energy is conserved as our estimated values for friction and actual energy loss in the first section of this lab line up pretty closely. Although they are not within the statistical limits to be likely equal, we determined that the additional energy loss in the first lab was due to additional friction due to the substantial increase in weight, and thus normal force upon the pulley. In the second half of the lab, we determined we lose about $16 \pm 2\%$ of the energy when the energy is transferring from gravitational potential to kinetic and finally to spring potential. Although roughly 21% of the energy lost could be explained by the same

frictional constant we determined in the first part of the lab, we deduce that the remaining energy loss is due to dampening in the spring and other additional frictions due to and even more substantially increased weight from the first lab and a higher tension due to the spring as well. If we use the experimental value for friction from the first lab, we can estimate energy lost to friction to be about 36% of all energy lost. This leaves us with approximately 10% of energy transferred lost due to spring dampening, which is a very rational loss for a spring.

Although we do lose more energy compared to what theoretically should be happening, we deduce that the additional energy loss is due to our imperfect system and measurement techniques, leading to marginally more energy lost overall. Since the number is not drastically inequivalent, we conclude that energy is indeed conserved.

Expected energy loss in GPE:
$$\frac{\Delta E}{\Delta y} = -0.033 \pm 0.003 \; rac{J}{m}$$

Actual energy loss in GPE:
$$\frac{\Delta E}{\Delta y} = -0.056 \pm 0.002 \; \frac{J}{m}$$

Expected friction loss in spring movement:
$$\Delta E = -0.017 \pm 0.002~J$$

Actual friction loss in spring movement:
$$\Delta E = -0.029 \pm 0.001~J$$

Total energy lost:
$$\Delta E = -0.081 \pm 0.01 \ J$$

Total energy lost:
$$\epsilon = -16 \pm 2\%$$

Acknowledgements and info

Lab #3

21/02/2024

Station 14 Rockefeller 404

PHYS 121

Lab Partner: Katherine Chen

Lab Manual: Lab 3 CME PHYS 121

Sary	Potential engo	Tre	vor & Katherine	124YS 121 LAB 3	CME Status 14
Wash	Corolin	We all	a reference	e next to the s	tury sould
	82.25	- 1		to both the sp.	
	80.90			of the end o	
60.0	79.15			V	
65.0	77.35				
	75.75				
	74.35				
	72.85				
	71.70				
	68.25				
	66.50				
0.00	00.30				
Unstale	hel 5, ~: 93.0	Dem		X + Mg + Xc	,
	vusion: 52		Eas		
	100.09			X = g mtx	· Fom
Potm	: 66.55em			3 = -3.13±1	2 ay Orgin
m=(00.	og Unstrotald	= 93.90cm		X = 0.979 =	The state of the s
Trial	Max I	Pest > 20	natan	χο = 0.4/12	
1	47.80 66	55		K = -3.13	-3.134185 N/m
2	42.95 66 5	5		8 = 8 = 85 · 52	
3	40.35 (6	?2		0.003 - 951	0.003 N/M
4	41.10 66	55		k = 3.134 ± 0.0	03 Mm
New	41.8				
Std.En. print-graph-pa	O.6 \per.com	Annie d	- 97.90 - 4	11.8=[52.] ±0.6cm	
	(40	(Innocural			

Sary	Potestial engo								
Work	Posotron	We	م أدم	netostale	Nost	to fl	stor	4 2	(0)
50.0	82.25			erzentieler.					
55.0	80.90			a gostan					
60.0	79.15								
65.0									
	75.75								
	74.35								
	72.85								
85.0	71.70								
90.0	69.65							***	
95.0	68.25								
100.0	66.50								
Max. En mass: Notm: M= (00.1 Trial)	100.05 100.05 66.55cm 05 Unitarily 12.80 66 42.95 66 42.95 66 41.10 66	= 93.9 29 Res	Oun		$\begin{array}{c} \times \\ \frac{5}{k} \\ \times \\ 0.00 \end{array}$	= 0.9	3±0.0 79±0 = 3 . 9 . 2 = 0.0	.134	185 N/m
print-graph-plo	per.com	. 000	Wast -	93.90 - 41	1.8=152	1±0.6	cm		
	(40	yo Iva	- lumin		Tot		7		

1/2 lex2 mgh Position (an) Spring Energy (J) Grav. Energy (J) E = Ux + Uge = [0.1670] 0 51058 0.4253 SE= 18EUL + SEUSE SEUL1 = SUX1 [Ug1] X = 0 X = \$2.1 ± 0.6 SE- (Sune Tuge) + (Sun Tuge) $U_{kl} = 0$ $U_{kf} = \frac{1}{2} k x^2 = 0.4253$ Ug:=0 - Mgx = -0.51068 Sugar = Sugar = Sn mg (muss & g errors are SURF = TOURFK + SURFX Suit = 8x 1/2 x2 Surex = 8x. Kx Se=1 (8, 1/212)2+ (8, kx)2 + (8, mg Uxt)2 80 pt = [(8, /2x2)2 + (8, kv) = = 9/10 0.02 9=0.18=0.02