3 Algebraische Körpererweiterungen

3.1 Algebraische und transzendente Elemente

Definition 3.1.1

Sei L ein Körper, $K \subset L$ Teilkörper.

- (a) Dann heißt L Körpererweiterung von K. Schreibweise: L/K Körpererweiterung.
- (b) $[L:K] = \dim_K L$ heißt **Grad** von L über K
- (c) L/K heißt **endlich**, wenn $[L:K] < \infty$
- (d) $\alpha \in L$ heißt **algebraisch** über K, wenn es ein $0 \neq f \in K[X]$ gibt mit $f(\alpha) = 0$
- (e) $\alpha \in L$ heißt **transzendent** über K, wenn α nicht algebraisch über K ist.
- (f) L/K heißt **algebraische Körpererweiterung**, wenn jedes $\alpha \in L$ algebraisch über K ist.

Beispiel:

(1) Für $a \in \mathbb{Q}$ und $n \ge 2$ ist $\sqrt[n]{a}$ algebraisch über \mathbb{Q} , da Nullstelle von $X^n - a$ Summe und Produkt von solchen Wurzeln sind auch algebraisch über \mathbb{Q} z.B.: $\sqrt{2} + \sqrt{3}$ ist Nullstelle von $X^4 - 10X^2 + 1$, i ist Nullstelle von $X^2 + 1$.

Klassische Frage: Hat jedes $f \in \mathbb{Q}[X]$ eine Nullstelle, die ein "Wurzelausdruck" ist?.

- (2) Sei L = K(X) = Quot(K[X]). Dann ist X transzendent über K. Das gleiche gilt für jedes $f \in K(X) \setminus K$
- (3) In $\mathbb R$ gibt es sehr viele über $\mathbb Q$ transzendente Elemente. Da $\mathbb Q$ abzählbar ist, ist auch $\mathbb Q[X]$ abzählbar, da jedes $f \in \mathbb Q[X]$ endlich viele Nullstellen hat. Das heißt, es gibt nur abzählbar viele Elemente in $\mathbb R$, die algebraisch über $\mathbb Q$ sind. $\mathbb R$ ist aber nicht abzählbar.

Definition + Bemerkung 3.1.2

Sei L/K Körpererweiterung, $\alpha \in L$,

 $\varphi_{\alpha}: K[X] \to L, \ f \mapsto f(\alpha)$ Einsetzungshomomorphismus.

(a) Kern (φ_{α}) ist Primideal in K[X]

Beweis: Kern (φ_{α}) ist Ideal, da φ_{α} Homomorphismus ist. Seien nun $f, g \in \mathcal{K}[X]$ mit $fg \in \text{Kern}(\varphi_{\alpha}) \Rightarrow (fg)(\alpha) = f(\alpha)g(\alpha) = 0$ $\stackrel{L \text{ K\"{o}rper}}{\Rightarrow} f(\alpha) = 0$ oder $g(\alpha) = 0$

- (b) α algebraisch genau dannn, wenn φ_{α} nicht injektiv ist.
- (c) Ist α algebraisch über K, so gibt es ein eindeutig bestimmtes, irreduzibles und normiertes Polynom $f_{\alpha} \in K[X]$ mit $f_{\alpha}(\alpha) = 0$ und $\mathrm{Kern}(\varphi_{\alpha}) = (f_{\alpha})$. f_{α} heißt **Minimalpolynom** von α .

Beweis: K[X] ist Hauptidealring $\Rightarrow \exists \widetilde{f_{\alpha}} \text{ mit Kern}(\varphi_{\alpha}) = (\widetilde{f_{\alpha}})$. Wegen (a) ist $\widetilde{f_{\alpha}}$ irreduzibel, eindeutig bis auf Einheit in K[X], also ein Element aus $K^{\times} \Rightarrow \exists ! \lambda \in K^{\times}$, so dass $\lambda \widetilde{f_{\alpha}} = f_{\alpha}$ normiert ist.

- (d) $K[\alpha] := Bild(\varphi_{\alpha}) = \{f(\alpha) : f \in K[X]\} \subset L$ ist der kleinste Unterring von L, der K und α enthält.
- (e) α ist transzendent $\Leftrightarrow K[\alpha] \cong K[X]$

Beweis: α ist transzendent \Rightarrow Kern $(\varphi_{\alpha}) = \{0\} \Rightarrow \varphi_{\alpha}$ injektiv

(f) Ist α algebraisch über K, so ist $K[\alpha]$ ein Körper und $[K[\alpha]:K]=\deg(f_{\alpha})$

Beweis: Nach Homomorphiesatz ist $K[\alpha] \cong K[X]/\mathrm{Kern}(\varphi_{\alpha})$. $\mathrm{Kern}(\varphi_{\alpha})$ ist maximales Ideal, da Primideal $\neq (0)$ in K[X] (siehe Bew. Satz 8, Beh. 2) $\Rightarrow K[\alpha]$ ist Körper. $f_{\alpha}(\alpha) = 0$, also $\alpha^n + c_{n-1}\alpha^{n-1} + \cdots + c_1\alpha + c_0 = 0$ mit $c_i \in K$, $c_0 \neq 0$ (da f_{α} irreduzibel), $\alpha(\alpha^{n-1} + \cdots + c_1) = -c_0$. Ebenso: $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ ist K-Basis von $K[\alpha]$, denn ist $\sum_{i=0}^{n-1} c_i \alpha^i = 0$ mit $c_i \in K$, so ist $\sum_{i=0}^n c_i X^i \in \mathrm{Kern}\,\varphi_{\alpha}$, also sind alle $c_i = 0$, also sind $1, \alpha, \ldots, \alpha^{n-1}$ linear unabhängig. Sei $g(\alpha) \in K[\alpha]$ für ein $g \in K[X]$, und schreibe $g = q \cdot f_{\alpha} + r$ mit $\mathrm{Grad}(r) < n$. Also ist $g(\alpha) = r(\alpha)$ und $r = \sum_{i=0}^{n-1} c_i X^i$, also erzeugen $1, \alpha, \ldots, \alpha^{n-1}$ ganz $R[\alpha]$.

Definition 3.1.3

Sei *L/K* Körpererweiterung.

(a) Für $A \subset L$ sei K(A) der kleinste Teilkörper von L, der A und K umfaßt; K(A) heißt der **von A erzeugte Teilkörper** von L. Es ist

$$K(A) = \left\{ \frac{f(\alpha_1, \dots, \alpha_n)}{g(\alpha_1, \dots, \alpha_n)} : n \ge 1, \alpha_i \in A, f, g \in K[X_1, \dots, X_n], g \ne 0 \right\}$$

- (b) L/K heißt **einfach**, wenn es $\alpha \in L$ gibt mit $L = K(\alpha)$
- (c) L/K heißt **endlich erzeugt**, wenn es eine endliche Menge $\{\alpha_1, \ldots, \alpha_n\} \subset L$ gibt mit $L = K(\alpha_1, \ldots, \alpha_n)$

Bemerkung 3.1.4

Sind M/L und L/K endlich, so auch M/K und es gilt $[M:K] = [M:L] \cdot [L:K]$

Beweis: Sei b_1, \ldots, b_m K-Basis von L und e_1, \ldots, e_n L-Basis von $M \Rightarrow B = \{e_i b_j : i = 1, \ldots, n; j = 1, \ldots, m\}$ ist K-Basis von M.

denn: B erzeugt M: Sei $\alpha \in M$, $\alpha = \sum_{i=1}^{n} \lambda_i e_i$ mit $\lambda_i \in L$, $\lambda_i = \sum_{j=1}^{m} \mu_j b_j$ einsetzen \Rightarrow Behauptung.

B linear unabhängig:

Ist $\sum \mu_{ij}e_ib_j=0$, so ist für jedes feste $i:\sum_{j=1}^n\mu_{ij}b_j=0$, da e_i über L linear unabhängig sind. Da die b_j linear unabhängig sind, sind die $\mu_{ij}=0$

Notation: L/K Körpererweiterung, $\alpha \in L$, $K[\alpha] = \text{Bild}(\varphi_{\alpha}) = \dots$ $K(\alpha) = \text{Quot}(K[\alpha]) = K[\alpha]$, falls α algebraisch.

Bemerkung 3.1.5

Für eine Körpererweiterung L/K sind äquivalent:

- (i) L/K ist endlich.
- (ii) L/K ist endlich erzeugt und algebraisch.
- (iii) L wird von endlich vielen über K algebraischen Elementen erzeugt.

Beweis:

- (i) \Rightarrow (ii) Jede K-Basis in L ist auch Erzeugendensystem von L/K. Ist $\alpha \in L$ transzendent über K, so ist $K[\alpha] \cong K[X]$ ein unendlichdimensionaler K-Vektorraum in L, Widerspruch. Also sind alle Elemente in L algebraisch.
- (ii) ⇒ (iii) ✓
- (iii) \Rightarrow (i) Induktion über die Anzahl n der Erzeuger:

$$n = 1$$
: $[K(\alpha) : K] = Grad(f_{\alpha})$ nach 3.1.2 (f).

n>1: $K(\alpha_1,\ldots,\alpha_n)=K(\alpha_1,\ldots,\alpha_{n-1})(\alpha_n)$, $K':=K(\alpha_1,\ldots,\alpha_{n-1})/K$ ist endlich nach Induktionsvorraussetzung und L/K' ist endlich nach Fall 1, also folgt aus $3.1.4\ L/K$ ist endlich.

Beispiel: $\cos \frac{2\pi}{n}$ ist für jedes $n \in \mathbb{Z} \setminus \{0\}$ algebraisch über \mathbb{Q} .

denn:

$$\cos\frac{2\pi}{n} = \Re\left(e^{\frac{2\pi i}{n}}\right) = \frac{1}{2}\left(e^{\frac{2\pi i}{n}} + \overline{e^{\frac{2\pi i}{n}}}\right) = \frac{1}{2}\left(e^{\frac{2\pi i}{n}} + e^{-\frac{2\pi i}{n}}\right)$$

 $e^{rac{2\pi i}{n}}$ ist Nullstelle von X^n-1 , also algebraisch (über $\mathbb Q$) $\Rightarrow \mathcal K=\mathbb Q\left(e^{rac{2\pi i}{n}}
ight)$ ist endliche Körpererweiterung von $\mathbb Q$, $\cos rac{2\pi}{n}\in \mathcal K\stackrel{3.5(i) o (ii)}{\Rightarrow}\cos rac{2\pi}{n}$ ist algebraisch.

$$\mathbb{Q} \subset \mathbb{Q}\left(\cos\frac{2\pi}{n}\right) \subsetneq K\ (n \geq 3)$$

Bemerkung 3.1.6

Seien $K \subset L \subset M$ Körper. Sind M/L und L/K algebraisch, so auch M/K

Beweis: Sei $\alpha \in M$, $f_{\alpha} = \sum_{i=0}^{n} c_{i}X^{i} \in L[X]$ mit $f_{\alpha}(\alpha) = 0$. Dann ist α algebraisch über $K(c_{0}, \ldots, c_{n}) =: L' \subset L, L'$ ist endlich erzeugt über $K \stackrel{3.1.5}{\Rightarrow} L'/K$ endlich. Außerdem ist $L'(\alpha)/L'$ endlich. $\stackrel{(b)}{\Rightarrow} L'(\alpha)/K$ endlich $\Rightarrow \alpha$ algebraisch über K.

3.2 Algebraischer Abschluss

Proposition 3.2.1 (Kronecker)

Sei K Körper, $f \in K[X]$, f nicht konstant.

Es gibt eine endliche Körpererweiterung L/K, so dass f in L eine Nullstelle hat. Genauer: $[L:K] \leq \operatorname{Grad} f$.

Beweis: $\times f$ irreduzibel. Setze L := K[X]/(f). L ist Körper, da (f) maximales Ideal ist. $\alpha = \bar{X} = \text{Klasse von } X$ in L ist Nullstelle von f. Genauer: f ist das Minimalpolynom von α .

Bemerkung 3.2.2

Ist $f \in K[X] \setminus \{0\}$ und $\alpha \in K$ mit $f(\alpha) = 0$, dann ist $X - \alpha$ ein Teiler von f.

Beweis: $\{f \in K[X] : f(\alpha) = 0\}$ ist ein Ideal im Hauptidealring K[X] und $X - \alpha$ sein Erzeuger.

Bemerkung + Definition 3.2.3

Sei K Körper, $f \in K[X] \setminus K$

(a) Es gibt eine endliche Körpererweiterung L/K, so dass f über L in Linearfaktoren zerfällt.

Beweis: Induktion über $n = \deg(f)$:

$$n=1$$
 \checkmark

 $n \geq 1$ L_1 wie in Proposition 3.2.1. Dann ist $f(X) = (X - \alpha) \cdot f_1(X)$ in $L_1[X]$, $\deg(f_1) = n - 1$. Also gibt es L_2/L_1 , so dass $f_1(X) = \prod_{i=1}^{n-1} (X - \alpha_i)$ mit $\alpha_i \in L_2$. Dabei ist L_2/L_1 endlich, L_1/K endlich, also L_2/K endlich.

- (b) L/K heißt **Zerfällungskörper** von f, wenn f über L in Linearfaktoren zerfällt, und L über K von den Nullstellen von f erzeugt wird.
- (c) Es gibt einen Zerfällungskörper Z(f).

Beweis: Induktion über den Grad und die Anzahl über die irreduziblen Faktoren:

ŒSei f irreduzibel. Sei $L_1 := K[X]/(f)$ und $\alpha := \bar{X} \in L$. Dann ist $L_1 = K(\alpha)$ und $f = (X - \alpha) \cdot g$ in $L_1[X]$. Nach Induktionsvorraussetzung gibt es einen Zerfällungskörper Z(g) von g über L_1 , also wird Z(g) über K von α und den Nullstellen von g erzeugt.

(d) Ist f irreduzibel und $n = \deg(f)$, so ist $[Z(f) : K] \le n!$

Beweis: In Proposition 3.2.1 ist $[L : K] = n = \deg(f)$ und $f = (X - \alpha) \cdot f_1$ mit $\deg(f_1) = n - 1$. Mit Induktion folgt die Behauptung.

Beispiel:

- (1) $f \in K[X]$ irreduzibel vom Grad 2. Dann ist L = K[X]/(f) der Zerfällungskörper von f. $f(X) = (X \alpha)(X \beta)$, $\alpha, \beta \in L$. Ist $f(X) = X^2 + pX + q$, so ist $\alpha + \beta = -p$
- (2) $f(X) = X^3 2 \in \mathbb{Q}[X]$. Sei $\alpha = \sqrt[3]{2} \in \mathbb{R}$ Nullstelle von f. In $\mathbb{Q}(\alpha)$ liegt keine weitere Nullstelle von f, da $\mathbb{Q}(\alpha) \subset \mathbb{R}$

$$X^3 - 2 = (X - \alpha)\underbrace{(X^2 + \alpha X + \alpha^2)}_{\text{irreduzibel über } \mathbb{Q}(\alpha)} \Rightarrow [Z(f) : \mathbb{Q}] = 6$$

(3)
$$K = \mathbb{Q}$$
, p Primzahl, $f(X) = X^p - 1 = (X - 1)\underbrace{(X^{p-1} + X^{p-2} + \dots + X + 1)}_{f_1}$
 f_1 irreduzibel (siehe 2.6.3).
 $L := \mathbb{Q}[X]/(f_1) =: \mathbb{Q}(\zeta_p); \ (\zeta_p^k)^p = \zeta_p^{pk} = 1; \ k = 1, \dots, p-1$
 $\Rightarrow \mathbb{Q}(\zeta_p) = Z(f)$

Definition + Bemerkung 3.2.4

Sei K ein Körper.

- (a) K heißt **algebraisch abgeschlossen**, wenn jedes nichtkonstante Polynom $f \in K[X]$ in K eine Nullstelle hat.
- (b) Die folgenden Aussagen sind äquivalent:
 - (i) K ist algebraisch abgeschlossen
 - (ii) Jedes $f \in K[X] \setminus K$ zerfällt über K in Linearfaktoren
 - (iii) K besitzt keine echte algebraische Körpererweiterung.

Beweis:

- (i)⇒(ii) Induktion über den Grad von f.
- (ii) \Rightarrow (iii) Angenommen L/K algebraisch, $\alpha \in L \setminus K$. Dann sei $f_{\alpha} \in K[X]$ das Minimalpolynom von α ; f_{α} ist irreduzibel und zerfällt in Linearfaktoren \Rightarrow deg(f) = 1 $\mbox{$f$}$
- (iii) \Rightarrow (ii) Sei $f \in K[X]$ irreduzibel, L := K[X]/(f), dann folgt aus der Voraussetzung L = K und damit Grad f = 1.

Satz 11

Zu jedem Körper K gibt es eine algebraische Körpererweiterung \bar{K}/K , so dass \bar{K} algebraisch abgeschlossen ist. \bar{K} heißt **algebraischer Abschluss** von K.

Beweis:

Hauptschritt: Es gibt algebraische Körpererweiterung K'/K, so dass jedes nichtkonstante $f \in K[X]$ in K' eine Nullstelle hat.

Dann: sei K'' := (K')' und weiter $K^i := (K^{i-1})'$, $i \ge 3$; Es ist $K^i \subset K^{i+1}$.

$$L := \bigcup_{i \ge 1} K^i$$
. Es gilt:

- (i) L ist Körper: $a + b \in L$ für $a \in K^i$, $b \in K^j$, da Œ: $i \le j \Rightarrow a$ auch in K^j
- (ii) L ist algebraisch über K: jedes $\alpha \in L$ liegt in einem K^i , K^i ist algebraisch über K.
- (iii) L ist algebraisch abgeschlossen.

denn: Sei $f \in L[X]$, $f = \sum_{i=0}^{n} c_i X^i$, $c_i \in L$. Also gibt es j mit $c_i \in K^j$ für $i = 0, ..., n \Rightarrow f$ hat Nullstelle in $(K^j)' = K^{j+1} \subset L \Rightarrow$ Behauptung

Bew.(Hautpschritt): Für jedes $f \in K[X] \setminus K$ sei X_f ein Symbol. $\mathcal{X} := \{X_f : f \in K[X] \setminus K\}, R := K[\mathcal{X}], I$ sei das von allen $f(X_f)$ in R erzeugte Ideal.

Behauptung: $I \neq R$.

Dann gibt es ein maximales Ideal $\mathfrak{m} \subset R$ mit $I \subset \mathfrak{m}$, $K' := R/\mathfrak{m}$, K' ist Körper, K'/K ist algebraisch,

denn: K' wird über K erzeugt von den $\bar{X}_f \in \mathcal{X}$ und $f(\bar{X}_f) = 0$ in K', weil $f(\bar{X}_f) \in I \subset \mathfrak{m}$. f hat in K' die Nullstellen (Klasse von) \bar{X}_f .

Beweis der Behauptung Angenommen I=R, also $1\in I$. Dann gibt es $n\geq 1, f_1, \ldots, f_n\in K[X]\setminus K$ und $g_1, \ldots, g_n\in R$ mit $1=\sum_{i=1}^n g_i f_i(X_{f_i})$. Sei L/K Körpererweiterung, in der jedes $f_i, i=1,\ldots,n$ Nullstelle α_i hat (z.B. der Zerfällungskörper von $f_1\cdot\ldots\cdot f_n$).

Setze nun α_i für X_{f_i} ein (i = 1, ..., n) (und 42 für alle anderen X_f). Dann ist $1 = \sum_{i=1}^n g_i(\alpha_1, ..., \alpha_n, 42, ...) \cdot \underbrace{f_i(\alpha_i)}_{=0} = 0$

3.3 Fortsetzung von Körperhomomorphismen

Sei $f(x)=x^2-2$, $K=\mathbb{Q}$, $L=\mathbb{Q}[X]/(f)$ und $\alpha=\bar{X}$, also $f(\alpha)=0$. Es gibt zwei Einbettungen von L in \mathbb{R} : Schreibe $x\in L$ als $x=a+b\alpha$ mit $a,b\in\mathbb{Q}$ (dies ist eindeutig), dann sind $\varphi_1(x):=a+b\sqrt{2}$ und $\varphi_2(x):=a-b\sqrt{2}$ Homomorphismen $L\to\mathbb{R}$.

Proposition 3.3.1

Sei $L=K(\alpha)$, K Körper (also einfache Körpererweiterung). Sei α algebraisch über K, $f=f_{\alpha}\in K[X]$ das Minimalpolynom. Sei K' Körper und $\sigma:K\to K'$ ein Körperhomomorphismus. Sei f^{σ} das Bild von f in K'[X] unter dem Homomorphismus $K[X]\to K'[X]$, $\sum a_iX^i\mapsto \sum \sigma(a_i)X^i$. Dann gilt:

(a) Ein Homomorphismus $\tilde{\sigma}: L \to K'$ heißt **Fortsetzung** von σ , wenn $\tilde{\sigma}(a) = \sigma(a)$ für alle $a \in K$ gilt.

- (b) Ist $\widetilde{\sigma}: L \to K'$ Fortsetzung von σ , so ist $\widetilde{\sigma}(\alpha)$ Nullstelle von f^{σ} .
- (c) Zu jeder Nullstelle β von f^{σ} in K' gibt es genau eine Fortsetzung $\widetilde{\sigma}: L \to K'$ von σ mit $\widetilde{\sigma}(\alpha) = \beta$.

Beweis:

- (b) $f^{\sigma}(\widetilde{\sigma}(\alpha)) = f^{\widetilde{\sigma}}(\widetilde{\sigma}(\alpha)) = \widetilde{\sigma}(f(\alpha)) = 0$
- (c) Eindeutigkeit: $\sqrt{\tilde{\sigma}}$ ist auf den Erzeugern von L festgelegt.

Existenz:

$$\varphi: \mathcal{K}[X] \to \mathcal{K}', \quad X \mapsto \beta$$

$$\sum_{=g} a_i X^i \mapsto \sum_{i} \sigma(a_i) \beta^i = g^{\sigma}(\beta)$$

$$\Rightarrow \varphi(f) = f^{\sigma}(\beta) \overset{\mathsf{Hom},\mathsf{satz}}{\Rightarrow} \varphi \text{ induziert } \widetilde{\sigma} : \mathcal{K}[X]/(f) \to \mathcal{K}'$$

Folgerung 3.3.2

Sei $f \in K[X] \setminus K$. Dann ist der Zerfällungskörper Z(f) bis auf Isomorphie eindeutig.

Beweis: Seien L, L' Zerfällungskörper, $L = K(\alpha_1, \ldots, \alpha_n)$, α_i die Nullstelle von f. Sei weiter $\beta_1 \in L'$ Nullstelle von f. Nach 3.3.1 gibt es $\sigma : K(\alpha_1) \to L'$ mit $\sigma_{|K} = \mathrm{id}_K$ und $\sigma(\alpha_1) = \beta_1$ und $\tau : K(\beta_1) \to L$ mit $\tau(\beta_1) = \alpha_1$ und $\tau_{|K} = \mathrm{id}_K$.

$$\tau \circ \sigma = \mathrm{id}_{K(\alpha_1)}, \ \sigma \circ \tau = \mathrm{id}_{K(\beta_1)} \Rightarrow K(\alpha_1) \cong K(\beta_1)$$

Mit Induktion über *n* folgt die Behauptung.

Bemerkung 3.3.3

Sei L/K algebraische Körpererweiterung, \bar{K} ein algebraisch abgeschlossener Körper. $\sigma: K \to \bar{K}$ ein Homomorphismus. Dann gibt es eine Fortsetzung $\tilde{\sigma}: L \to \bar{K}$.

Beweis: Ist L/K endlich, so folgt die Aussage aus 3.3.1. Für den allgemeinen Fall sei $\mathcal{M}:=\{(L',\tau):L'/K \text{ K\"orpererw.}, L'\subseteq L,\tau:L'\to \bar{K} \text{ Fortsetzung von }\sigma\}, \,\mathcal{M}\neq\emptyset:(K,\sigma)\in\mathcal{M}$

 \mathcal{M} ist geordnet durch $(L_1, \tau_1) \subseteq (L_2, \tau_2) :\Leftrightarrow L_1 \subseteq L_2$ und τ_2 Fortsetzung von τ_1 . Sei $\mathcal{N} \subset \mathcal{M}$ totalgeordnet $\widetilde{L} := \bigcup_{(L', \tau) \in \mathcal{N}} L'$.

 \widetilde{L} ist Körper, $\widetilde{L} \subseteq L$, $\widetilde{\tau} : \widetilde{L} \to \overline{K}$, $\widetilde{\tau}(x) = \tau(x)$, falls $x \in L'$ und $(L', \tau) \in \mathcal{N}$.

Wohldefiniertheit: ist $x \in L''$, so ist $\times (L', \tau) \subseteq (L'', \tau'')$ und damit $\tau''(x) = \tau(x)$. $\Rightarrow (\widetilde{L}, \widetilde{\tau})$ ist obere Schranke $\overset{Zorn}{\Rightarrow} \mathcal{M}$ hat maximales Element $(\widetilde{L}, \widetilde{\sigma})$

Zu zeigen: $\widetilde{L} = L$. Sonst sei $\alpha \in L \setminus \widetilde{L}$ und σ' Fortsetzung von $\widetilde{\sigma}$ auf $\widetilde{L}(\alpha)$ (nach 3.3.1)

$$\Rightarrow (\widetilde{L}(\alpha), \sigma') \in \mathcal{M} \text{ und } (\widetilde{L}, \widetilde{\sigma}) \subsetneq (\widetilde{L}(\alpha), \sigma') \notin$$

Folgerung 3.3.4

Für jeden Körper K ist der algebraische Abschluss \bar{K} bis auf Isomorphie eindeutig bestimmt.

Beweis: Seien \bar{K} und C algebraische Abschlüsse von K. Nach Proposition 3.3.3 gibt es

Körperhomomorphismus $\sigma: \bar{K} \to C$, der id $_K$ fortsetzt. Dann ist $\sigma(\bar{K})$ auch algebraisch abgeschlossen: ist $f \in \sigma(\bar{K})[X] \Rightarrow f^{\sigma^{-1}} \in \bar{K}[X]$ hat Nullstelle $\alpha \in \bar{K}$. $f^{\sigma^{-1}} \in \sigma(\alpha)$ ist Nullstelle von f:

$$\Rightarrow \sigma(\alpha) \text{ ist Nullstelle von } f:$$

$$\sum \sigma^{-1}(a_i)\alpha^i = 0 \Rightarrow 0 = \sigma(\sum \sigma^{-1}(a_i)\alpha^i) = \sum a_i\sigma(\alpha^i) = \sum a_i\sigma(\alpha)^i$$

C ist algebraisch über K, also erst recht über $\sigma(\bar{K}) \stackrel{3.2.4}{\Rightarrow} \sigma(\bar{K}) = C$

Definition + Bemerkung 3.3.5

Seien L/K, L'/K Körpererweiterungen von K.

(a)
$$\mathsf{Hom}_{\mathcal{K}}(L,L') := \{\sigma: L \to L' \ \mathsf{K\"{o}rperhomomorphismus}, \ \sigma_{|\mathcal{K}} = \mathsf{id}_{\mathcal{K}} \}$$

$$Aut_{\mathcal{K}}(L) := \{ \sigma : L \to L \text{ K\"orperautomorphismus, } \sigma|_{\mathcal{K}} = id_{\mathcal{K}} \}$$

(b) Ist L/K endlich, \bar{K} algebraischer Abschluss von K, so ist $|\text{Hom}_K(L,\bar{K})| \leq [L:K]$.

Beweis: Sei $L = K(\alpha_1, ..., \alpha_n)$, α_i algebraisch über K. Induktion über n:

- n=1 Sei $f\in K[X]$ das Minimalpolynom von α_1 . Für jedes $\sigma\in \operatorname{Hom}_K(L,\bar{K})$ ist $\sigma(\alpha_1)$ Nullstelle von $f^\sigma\in \bar{K}[X]$. Durch $\sigma_{|K}=\operatorname{id}_K$ und $\sigma(\alpha_1)$ ist σ eindeutig bestimmt. $\Rightarrow |\operatorname{Hom}_K(L,\bar{K})|=|\operatorname{Nullstellen}$ von $f^\sigma|\leq \deg(f^\sigma)=[L:K]$
- n>1 Sei $L_1=K(\alpha_1,\ldots,\alpha_{n-1}), f\in L_1[X]$ das Minimalpolynom von α_n über L_1 . Für $\sigma\in \operatorname{Hom}_K(L,\bar{K})$ ist $\sigma(\alpha_n)$ Nullstelle von $f^{\sigma_1}\in \bar{K}[X]$ mit $\sigma_1=\sigma_{|L_1}\Rightarrow |\operatorname{Hom}_K(L,\bar{K})|\leq |\operatorname{Hom}_K(L_1,\bar{K})|\cdot \deg(f)\stackrel{\text{IV}}{\leq} [L_1:K]\cdot [L:L_1]\stackrel{3.1.6(b)}{=} [L:K]$

3.4 Separable Körpererweiterungen

Definition + Bemerkung 3.4.1

Sei L/K algebraische Körpererweiterung und \bar{K} algebraischer Abschluss von K.

- (a) $f \in K[X]$ heißt **separabel**, wenn f in \bar{K} keine mehrfache Nullstelle hat (also $\deg(f)$ verschiedene Nullstellen).
- (b) $\alpha \in L$ heißt separabel, wenn das Minimalpolynom von α über K separabel ist.
- (c) L/K heißt separabel, wenn jedes $\alpha \in L$ separabel ist.
- (d) $f \in K[X] \setminus K$ ist genau dann separabel, wenn ggT(f, f') = 1. Dabei ist für f = 1 $\sum_{i=1}^{n} a_i X^i$ die **Ableitung** definiert durch $f' := \sum_{i=1}^{n} i a_i X^{i-1}$

Beweis: Sei
$$f(X) = \prod_{i=1}^{n} (X - \alpha_i)$$
, $\alpha_i \in \bar{K} \Rightarrow f'(X) = \sum_{i=1}^{n} \prod_{j \neq i} (X - \alpha_j)$ nach Definition ist f separabel $\Leftrightarrow \alpha_i \neq \alpha_j$ für $i \neq j$.

Beh.:
$$\alpha_1 = \alpha_i$$
 für ein $i \ge 2 \Leftrightarrow (X - \alpha_1) \mid f'$

Aus der Behauptung folgt: f separabel $\Leftrightarrow f$ und f' teilerfremd in $\bar{K}[X]$. Ist das so, dann ist ggT(f, f') = 1 (teilerfremd in K[X]). Ist umgekehrt ggT(f, f') = 1, so gibt es $g, h \in K[X]$ mit 1 = gf + hf'.

Das stimmt dann auch in $\bar{K}[X]$, also sind f und f' in $\bar{K}[X]$ teilerfremd.

Bew. der Beh.:
$$(X - \alpha_1)$$
 teilt $\prod_{j \neq i} (X - \alpha_j)$, falls $i \neq 1$. Also gilt $X - \alpha_1$ teilt $f' \Leftrightarrow X - \alpha_1$ Teiler von $\prod_{i \neq 1} (X - \alpha_j) \Leftrightarrow \alpha_1 = \alpha_j$ für ein $j \neq 1$.

(e) Ist $f \in K[X]$ irreduzibel, so ist f separabel genau dann, wenn $f' \neq 0$ (Nullpolynom)

Beweis: Ist
$$f' = 0$$
, so ist $qqT(f, f') = f \neq 1$

Ist $f' \neq 0$, so ist deg $f' < \deg f$; ist f irreduzibel und $\alpha \in \overline{K}$ Nullstelle von f, so ist f das Minimalpolynom von $\alpha \stackrel{f' \neq 0}{\Rightarrow} \alpha$ nicht Nullstelle von $f' \Rightarrow$ ggT(f, f') = 1

Folgerung 3.4.2

Ist char(K) = 0, so ist jede algebraische Körpererweiterung separabel.

Beispiele 3.4.3

Sei p Primzahl, $K = \mathbb{F}_p(t) = \operatorname{Quot}(\mathbb{F}_p[t])$. Sei $f(X) = X^p - t \in K[X]$. $f'(X) = pX^{p-1} = 0$, $t \in \mathbb{F}_p[t]$ ist Primelement Eisenstein f irreduzibel in $(\mathbb{F}_p[t])[X] \stackrel{??}{\Rightarrow} f$ irreduzibel in K[X]

 $f(X)=X^p-a\in\mathbb{F}_p\Rightarrow f'=0$, f ist nicht irreduzibel, da f Nullstelle in \mathbb{F}_p hat, dh. es gibt ein $b\in\mathbb{F}_p$ mit $b^p=a$.

Denn: $\varphi: \mathbb{F}_p \to \mathbb{F}_p$, $b \mapsto b^p$ ist Körperhomomorphismus! (denn $(a+b)^p = a^p + b^p$)

Proposition 3.4.4

Sei char(K) = p > 0, $f \in K[X]$ irreduzibel, \overline{K} ein algebraischer Abschluss von K.

- (a) Es gibt ein separables irreduzibles Polynom $g \in K[X]$, so dass $f(X) = g(X^{p^r})$ für ein r > 0.
- (b) Jede Nullstelle von f in \bar{K} hat Vielfachheit p^r .

Beweis: Sei f nicht separabel, $f = \sum_{i=0}^{n} a_i X^i$, $f' = \sum_{i=1}^{n} i a_i X^{i-1} = 0 \Rightarrow i a_i = 0$ für $i = 1, \ldots, n \Rightarrow a_i = 0$, falls i nicht durch p teilbar $\Rightarrow f$ ist Polynom in X^p , dh. $f = g_1(X^p)$. Mit Induktion folgt die Behauptung.

Proposition + Definition 3.4.5

Sei L/K endliche Körpererweiterung, \bar{K} algebraischer Abschluss von L.

- (a) $[L:K]_s := |\text{Hom}_K(L,\bar{K})|$ heißt **Separabilitätsgrad** von L über K.
- (b) Ist L' Zwischenkörper von L/K, so ist $[L:K]_s = [L:L']_s \cdot [L':K]_s$
- (c) L/K ist separabel $\Leftrightarrow [L:K] = [L:K]_s$
- (d) Ist char(K) = p > 0, so gibt es ein $r \in \mathbb{N}$ mit $[L : K] = p^r \cdot [L : K]_s$

Beweis:

(b) Sei $\operatorname{Hom}_{K}(L', \overline{K}) = \{\sigma_{1}, \ldots, \sigma_{n}\}$, $\operatorname{Hom}_{L'}(L, \overline{K}) = \{\tau_{1}, \ldots, \tau_{m}\}$. Sei $\widetilde{\sigma_{i}} : \overline{K} \to \overline{K}$ Fortsetzung von σ_{i} , $i = 1, \ldots, n$. Dann ist $\widetilde{\sigma_{i}} \in \operatorname{Aut}_{K}(\overline{K})$.

Beh.:

- **(1)** $\text{Hom}_K(L, \bar{K}) = \{ \widetilde{\sigma_i} \circ \tau_j : i = 1, ..., n, j = 1, ..., m \}$
- (2) $\widetilde{\sigma}_i \circ \tau_j = \widetilde{\sigma_{i'}} \circ \tau_{j'} \Leftrightarrow i = i' \text{ und } j = j'.$

Aus (1) und (2) folgt (b).

Bew.(1): "\(\text{"} \subseteq \text{"} \subseteq \text{"} \subseteq \text{init } \sigma_{|L'} = \sigma_i \in \text{Think} \). Dann gibt es ein i mit $\sigma_{|L'} = \sigma_i \Rightarrow \widetilde{\sigma_i}^{-1} \circ \sigma_{|L'} = \mathrm{id}_{L'} \Rightarrow \exists j \text{ mit } \widetilde{\sigma_i}^{-1} \circ \sigma = \tau_j \Rightarrow \sigma = \widetilde{\sigma_i} \circ \tau_j.$

Bew.(2): Sei
$$\widetilde{\sigma_i} \circ \tau_j = \widetilde{\sigma_{i'}} \circ \tau_{j'} \Rightarrow \underbrace{\widetilde{\sigma_i}_{|L'}}_{=\sigma_i} = \underbrace{\widetilde{\sigma_{i'}}_{|L'}}_{\sigma_{i'}} \Rightarrow i = i' \Rightarrow \tau_j = \tau_{j'} \Rightarrow j = j'.$$

- (c) " \Rightarrow ": Sei $L = K(\alpha_1, \ldots, \alpha_n)$. Induktion über n:
 - **n=1** $L = K(\alpha)$, $f = f_{\alpha} \in K[X]$ das Minimalpolynom von α über $K \Rightarrow [L : K]_s \stackrel{3.3.5}{=} [Nullstellen von <math>f$ in $\bar{K}\} = \deg f = [L : K]$.
 - **n>1** $L_1:=K(\alpha_1,\ldots,\alpha_{n-1}),\ f\in L_1[X]$ das Minimalpolynom von α_n . Zu jedem $\sigma_1\in \operatorname{Hom}_K(L_1,\bar{K})$ und jeder Nullstelle von f in \bar{K} gibt es genau eine Fortsetzung $\widetilde{\sigma_1}:L\to \bar{K}$.

```
 \stackrel{f \text{ separabel}}{\Rightarrow} [L:K]_s = |\mathsf{Hom}_K(L,\bar{K})| = \deg(f) \cdot |\mathsf{Hom}_K(L_1,\bar{K})| = [L:L_1] \cdot [L_1:K]_s \stackrel{\mathsf{IV}}{=} [L:L_1] \cdot [L_1:K] = [L:K].
```

"\(= \)": Ist $\operatorname{char}(K) = 0$, so ist L/K separabel. Sei also $\operatorname{char}(K) = p > 0$ und $\alpha \in L$; $f \in K[X]$ das Minimalpolynom von α . Nach 3.4.4 gibt es $r \geq 0$ und ein separables, irreduzibles Polynom $g \in K[X]$ mit $f(X) = g(X^{p^r}) \Rightarrow [K(\alpha) : K]_s = |\{\text{Nullstellen von } g \text{ in } \overline{K}\}| \stackrel{g \text{ separabel}}{=} \deg(g) \ (*) \Rightarrow [K(\alpha) : K] = \deg(f) = p^r \cdot \deg(g) = p^r \cdot [K(\alpha) : K]_s \Rightarrow [L : K] = [L : K(\alpha)] \cdot [K(\alpha) : K] \geq [L : K(\alpha)]_s \cdot p^r [K(\alpha) : K]_s \stackrel{(b)}{=} [L : K]_s \stackrel{\text{Voraussetzung}}{\Rightarrow} p^r = 1 \Rightarrow g = f \Rightarrow \alpha \text{ separabel}.$

Satz 12 (Satz vom primitiven Element)

Jede endliche separable Körpererweiterung L/K ist einfach, also gibt es $\alpha \in L$ mit $L = K(\alpha)$. α heißt **primitives Element**.

Beweis: Ist K endlich, so folgt aus 3.5.1, dass L^{\times} zyklische Gruppe ist. Ist $L^{\times} = \langle \alpha \rangle$, so ist $L = K[\alpha]$.

Sei also K unendlich, $L = K(\alpha_1, ..., \alpha_r)$. $\times r = 2$, also $L = K(\alpha, \beta)$. Sei \bar{K} algebraischer Abschluss von L, [L : K] = n. Sei $\text{Hom}_K(L, \bar{K}) = \{\sigma_1, ..., \sigma_n\}$ (3.4.5(c)).

Sei $g(X) := \prod_{1 \le i < j \le n} (\sigma_i(\alpha) - \sigma_j(\alpha)) + (\sigma_i(\beta) - \sigma_j(\beta))X) \in \bar{K}[X], g \ne 0$, denn aus $\sigma_i(\alpha) = \sigma_j(\alpha)$ und $\sigma_i(\beta) = \sigma_j(\beta)$ folgt $\sigma_i = \sigma_j$. Da K unendlich ist, gibt es $\lambda \in K$ mit $g(\lambda) \ne 0$.

Beh.: $\gamma := \alpha + \lambda \beta \in L$ erzeugt L über K.

denn: Sei $f \in K[X]$ das Minimalpolynom von γ über K. Für jedes i ist $f(\sigma_i(\gamma)) \stackrel{\sigma_{i|K}=id_K}{=} \sigma_i(f(\gamma))$. Angenommen, $\sigma_i(\gamma) = \sigma_j(\gamma)$ für ein $i \neq j$. Dann wäre $(\sigma_i(\alpha) + \sigma_i(\beta)\lambda) - (\sigma_j(\alpha) + \sigma_j(\beta)\lambda) = 0 \Rightarrow g(\lambda) = 0 \nleq \Rightarrow f$ hat mindestens n Nullstellen $\Rightarrow \deg(f) = [K(\gamma):K] \geq n = [L:K]$, da $\gamma \in L$, folgt $K(\gamma) = L$.

3.5 Endliche Körper

Proposition 3.5.1

Ist K ein Körper, so ist jede endliche Untergruppe von (K^x, \cdot) zyklisch.

Beweis: Sei $G \subseteq K^{\times}$ endliche Untergruppe, $a \in G$ ein Element maximaler Ordnung. Sei $n = \operatorname{ord}(a)$, $G_n := \{b \in G : \operatorname{ord}(b) \mid n\}$.

Beh.: $G_n = \langle a \rangle$

denn: jedes $b \in G_n$ ist Nullstelle von $X^n - 1$. Diese sind $1, a, a^2, \ldots, a^{n-1} \Rightarrow |G_n| = |\langle a \rangle| = n$.

Nach Folgerung 1.4.5 ist $G \cong \bigoplus_{i=1}^r \mathbb{Z}/a_i\mathbb{Z}$ mit $a_i|a_{i+1} \Rightarrow \text{Für jedes } b \in G$ ist ord(b) Teiler von $a_r = n$.

Definition + Bemerkung 3.5.2

Sei K Körper mit Charakteristik p > 0.

- (a) Dann ist die Abbildung $\varphi: K \to K$, $x \mapsto x^p$ ein Homomorphismus. Er heißt **Frobenius**-Homomorphismus.
- (b) Es ist $\varphi(x) = x \iff x \in \mathbb{F}_p$ (als Primkörper in K).

Satz 13

Sei p Primzahl, $n \ge 1$, $q = p^n$. Sei \mathbb{F}_q der Zerfällungskörper von $X^q - X \in \mathbb{F}_p[X]$. Dann gilt:

- (a) \mathbb{F}_q hat q Elemente.
- (b) Zu jedem endlichen Körper K gibt es ein $q=p^n$ mit $K\cong \mathbb{F}_q$

Beweis:

(a) $f(X) = X^q - X$ ist separabel, da $f'(X) = -1 \Rightarrow ggT(f, f') = 1 \Rightarrow f$ hat q verschiedene Nullstellen in $\mathbb{F}_q \Rightarrow |\mathbb{F}_q| \geq q$.

Umgekehrt: Jedes $a \in \mathbb{F}_q$ ist Nullstelle von f.

denn: \mathbb{F}_q wird erzeugt von den Nullstellen von f. Sind also a, b Nullstellen von f, so ist $a^q = a$, $b^q = b$, also auch $(ab)^q = ab$, $(a+b)^q = a^q + b^q = a + b$.

(b) (K^x, \cdot) ist Gruppe der Ordnung $q-1 \Rightarrow$ Für jedes $a \in K$ gilt $a^q = a \Rightarrow$ Jedes $a \in K$ ist Nullstelle von $X^q - X \Rightarrow K$ liegt im Zerfällungskörper von $X^q - X \Rightarrow K$ enthält \mathbb{F}_q (bis auf Isomorphie).

$$\stackrel{|\mathcal{K}|=|\mathbb{F}_q|=q}{\Rightarrow} \mathcal{K} \cong \mathbb{F}_q$$

Folgerung 3.5.3

Jede algebraische Erweiterung eines endlichen Körpers ist separabel.

Beweis: $\mathbb{F}_q/\mathbb{F}_p$ separabel, da X^q-X separables Polynom ist. Ist K endlich, also $K=\mathbb{F}_q$, L/K algebraisch, $\alpha\in L$, so ist $K(\alpha)/K$ endlich, also separabel (da $K(\alpha)=\mathbb{F}_{q^r}$ für ein $r\geq 1$)

Definition: Ein Körper K heißt **vollkommen** (oder perfekt), wenn jede algebraische Körpererweiterung L/K separabel ist.

3.6 Konstruktion mit Zirkel und Lineal

Aufgabe: Sei $M \subset \mathbb{C} = \mathbb{R}^2$, z.B.: $M = \{0, 1\}$.

Linien: $\mathcal{L}(M) := \{ L \subset \mathbb{R}^2 \text{ Gerade: } |L \cap M| \ge 2 \} \cup \{ K_{z_1 - z_2}(z_3) : z_1, z_2, z_3 \in M \}$

$$(K_r(z) = \{ y \in \mathbb{R}^2 : |z - y| = r \})$$

 $K_1(M) := \{ z \in \mathbb{C} : z \text{ liegt auf zwei verschiedenen Linien in } \mathcal{L}(M) \}$

 $K_n(M) := K_1(K_{n-1}(M)) \text{ für } n \ge 2$

 $K(M) := \bigcup_{n=1}^{\infty} K_n(M)$

Satz 14

Sei $M \subseteq \mathbb{R}^2$ mit $0, 1 \in M$ und K(M) die Menge der mit Zirkel und Lineal konstruierbaren Punkte.

- (a) K(M) ist ein Teilkörper von \mathbb{C} .
- (b) $K(M)/\mathbb{Q}(M)$ ist eine algebraische Körpererweiterung, dabei sei $\mathbb{Q}(M)$ der kleinste Teilkörper von \mathbb{C} , der \mathbb{Q} und M umfasst und mit a auch \bar{a} enthält.
- (c) Eine komplexe Zahl $a \in \mathbb{C}$ liegt genau dann in K(M), wenn es eine Kette

$$\mathbb{Q}(M) = L_0 \subset L_1 \subset \cdots \subset L_n$$

gibt mit $a \in L_n$ und $[L_i : L_{i-1}] = 2$ für $i = 1, \ldots, n$.

Beweis:

(a) Seien $a, b \in K(M)$. Zu zeigen: $a + b, -a, a \cdot b, \frac{1}{a} \in K(M)$. $a + b \in K(M)$:

3.6 Konstruktion mit Zirkel und Lineal

 $-a \in K(M)$:

 $a \cdot b \in K(M)$: Strahlensatz: $\frac{1}{a} = \frac{b}{x}$, also $x = a \cdot b$. Winkel addieren $\checkmark \Rightarrow a \cdot b$ allgemein \checkmark

3 Algebraische Körpererweiterungen

 $\frac{1}{a} \in K(M) : \times a \in \mathbb{R}$

- (b) folgt aus (a)
- (c) Zeige mit Induktion über n: Jedes $a \in K_n(M)$ ist algebraisch über $\mathbb{Q}(M)$. Wegen $K_n(M) = K_1(\mathcal{L}_n(M))$ genügt es, die Behauptung für n=1 zu zeigen. Sei also $z \in K_1(M)$.

Vorüberlegung: Für $z \in M$ ist $\Re(z) = \frac{1}{2}(z + \bar{z}) \in \mathbb{Q}(M)$ und $\Im(z) = \frac{1}{2}(z - \bar{z}) \in \mathbb{Q}(M)$.

- a) z ist Schnittpunkt zweier Geraden in $\mathcal{L}(M)\Rightarrow z$ ist Lösung zweier linearer Gleichungen $z_1+\lambda z_2=z_1'+\mu z_2'$
- b) z ist Schnittpunkt einer Geraden und eines Kreises: \Rightarrow quadratische Gleichung mit Koeffizienten in $\mathbb{Q}(M)$

c) z ist Schnittpunkt zweier Kreise $K_{r_1}(m_1)$ und $K_{r_2}(m_2)$ mit Mittelpunkten $m_1, m_2 \in M$. Radien: $r_1 = |z_1 - z_1'|, r_2 = \ldots$ also $r_1^2 = (z_1 - z_1')(\overline{z_1 - z_1'}) \in \mathbb{Q}(M)$.

Dann ist $|z - m_1|^2 = r_1^2$.

$$\Rightarrow z\bar{z} - (z\bar{m}_1 + \bar{z}m_1) = r_1^2 - m_1\bar{m}_1 \text{ und } z\bar{z} - (z\bar{m}_2 + \bar{z}m_2) = r_2^2 - m_2\bar{m}_2 \Rightarrow 2\Re[z(\bar{m}_1 - \bar{m}_2)] = r_1^2 - r_2^2 - (m_1\bar{m}_1 - m_2\bar{m}_2)$$

Das ist eine lineare Gleichung, die $\Re(z)$ und $\Im(z)$ enthält. Einsetzen in (1) ergibt quadratische Gleichung für $\Re(z)$ (mit Koeffizienten in $\mathbb{Q}(M)$).

Noch zu zeigen: Ist $a \in \mathbb{C}$ und gibt es eine Kette

$$\mathbb{Q}(M) = L_0 \subset L_1 \subset \cdots \subset L_n$$

von Körpererweiterungen mit $[L_i:L_{i-1}]=2$ und $a\in L_n$, so ist $a\in K(M)$.

Sei also L/K quadratische Erweiterung von Körpern (mit Charakteristik ungleich 2). Dann gibt es $\alpha \in L$ und $a \in K$, so dass $L = K(\alpha)$ und $\alpha^2 = a$, das heißt $L = K(\sqrt{a})$. Zu zeigen ist also: Ist $K \subset K(M)$, so ist $\sqrt{a} \in K(M)$:

Wurzelziehen: $a \in \mathbb{R}$

Thales \Rightarrow Winkel ist rechtwinklig \Rightarrow \Rightarrow $b^2 = |-a| \cdot 1 = a$

Beispiel: Das regelmäßige Fünfeck ist aus 0 und 1 konstruierbar. Ziel: Konstruiere Nullstellen von $X^5-1=(X-1)\cdot f$, $f:=X^4+X^3+X^2+X+1$. Trick von Lagrange: $f(X)=X^2(X^2+\frac{1}{X^2}+X+\frac{1}{X}+1)$. Mit $Y:=X+\frac{1}{X}$ ist dann $\frac{1}{X^2}\cdot f(X)=Y^2+Y-1=:g(Y)$. Ist g Nullstelle von g und g Nullstelle von g volumes g volumes g volumes g nullstelle von g volumes g nullstelle von g volumes g nullstelle von g volumes g volume