Quantitative Auditing of Al Fairness with Differentially Private Synthetic Data

袁至誠 王柏堯

Chih-cheng Rex Yuan Bow-yaw Wang

Institute of Information Science, Academia Sinica

Tuesday 3rd June, 2025

Why Fairness Audits Matter

- Al systems are influencing justice, health, finance.
- Bias in Al means real-world discrimination.
- Example: COMPAS audit by ProPublica.

2 / 18

COMPAS

recidivism noun

the tendency of a convicted criminal to reoffend.

- Prior Offenses: 2 armed robberies, 1 attempted armed robbery
- Subsequent Offenses: 1 grand theft
- Risk Score: 3

- Prior Offenses: 4 juvenile misdemeanors
- Subsequent Offenses: None
- Risk Score: 8

COMPAS

- COMPAS is an algorithm used by U.S. courts for predicting recidivism based on a questionaire.
- In 2016, ProPublica found that the algorithm is biased.
 Black defendants were often predicted to be at a higher risk of recidivism than they actually were. White defendants were often predicted to be less risky than they were.
- The false-positive rates vary significantly across black people and white people, violating *equalized odds*.

 2 (Link) Vsauce2 - The Dangerous Math Used To Predict Criminals $_{2}$ $_{2}$ $_{3}$ $_{4}$

Rex (IIS,AS) Fairness Tuesday 3rd June, 2025 4/18

¹(Link) ProPublica - How We Analyzed the COMPAS Recidivism Algorithm

Fairness Metrics: Equalized Odds

- Equalized odds measures whether a model's error rates are balanced across groups.
- In other words, it asks: Does the model make mistakes equally, regardless of group membership?
- Formally, it requires that

$$|P[\hat{Y} = 1|S = 1, Y = 0] - P[\hat{Y} = 1|S \neq 1, Y = 0]| \le \epsilon$$

 $|P[\hat{Y} = 1|S = 1, Y = 1] - P[\hat{Y} = 1|S \neq 1, Y = 1]| \le \epsilon$

where \hat{Y} is the predicted outcome, Y is the ground truth, and S is the sensitive attribute.

• It ensures that both false positive and true positive rates are similar across groups.

4□ > 4₫ > 4 Ē > 4 Ē > ₹ ▼ 9 Q G

Auditing Framework

6 / 18

The Privacy Problem

The COMPAS audit was possible only because the U.S. law made the data publicly accessible. Otherwise, such audits would be infeasible.

- Auditors need sensitive data to test fairness.
- But holding this data introduces security and privacy risks.
- Security risk: hackers could steal the data.
 Example: (Link) 23andMe data breach.
- Privacy risk: published stats could expose insights.
 Example: (Link) All of Us inference attack.

Solution: Privacy-Preserving Audits

- Use synthetic data generated from real data.
- Apply differentially private synthetic data generation techniques to ensure individual info stays hidden.
- Auditors only keep the synthetic data and not the real data.

Data Marginals

Original Data

ID	Sex	Race	
1	Male	White	
2	Female	White	
3	Female	Black	
4	Male	Black	
5	Female	Black	
6	Female	White	

(Sex, Race) Marginal

Sex	Race	Count
Male	White	1
Female	White	2
Male	Black	1
Female	Black	2

Differentially Private Synthetic Data

- Fake data that mimic the real data's patterns.
- Generated with differential privacy, which adds noise to marginals to protect privacy.
- Lets auditors analyze fairness without exposing personal data.

Noising Marginal

Original Marginal

Sex	Race	Count
Male	White	1
Female	White	2
Male	Black	1
Female	Black	2

Noised Marginal

Sex	Race	Count	
Male	White	0.8	
Female	White	2.1	
Male	Black	0.4	
Female	Black	1.9	

How The Synthetic Data Are Generated

- We use a proven method that won a U.S. government competition: (Link) NIST 2018.
- It adds noise to protect privacy while preserving overall patterns.
- The result: data that looks real but contains no real individuals.

Synthetic Data

Original Data

ı	<u> </u>			
	ID	ID Sex Race		
	1	Male	White	
	2	Female	White	
	3	Female	Black	
	4	Male	Black	
	5	Female	Black	
	6	Female	White	

Synthetic Data

Synthetic Data			
ID	Sex	Race	
1	Male	White	
2	Female	Black	
3	Female	Black	
4	Male	White	
5	Female White		
6	Female	Black	

Does It Work?

- We experimented on real datsets: Adult, COMPAS, Diabetes.
- We compared fairness metrics of original and synthetic data.
- Most metrics are within negligible difference.

Equalized Odds on COMPAS: Original vs. Synthetic

Metric	Original	Synthetic	Difference
Equalized Odds (False Positive)	0.0249	0.0802	0.0553
Equalized Odds (True Positive)	0.0177	0.0825	0.0648

Limitations

- Results are not guaranteed to be accurate.
- Complex patterns may be missed.
- Privacy vs precision trade-off.

Policy Implications

- Enables safer third-party audits under privacy guarantees.
- Avoids liability for storing sensitive datasets.

Conclusion

- Synthetic data can support fairness audits with privacy.
- Our framework is practical and provably private.
- Opens new pathways for legal oversight of Al systems.

Slides: https://github.com/RexYuan/Eunectes.