Arithmétique - Partie 1 : pgcd

Exercice 1.

- 1. Chercher le plus petit entier positif divisible par 11 et dont le reste de la division par 13 est 1.
- 2. Chercher le plus petit entier positif dont le reste de la division par 8 est 5 et le reste de la division par 9 est 6.

Indications 1.

Commencer par écrire tous les multiples de 11 et effectuer ensuite la division euclidienne par 13.

Correction 1.

1. Les entiers divisibles par 11 sont les multiples de 11:0, 11, 22, ... Ils sont de la forme 11k pour un certain entier k.

k	11 <i>k</i>	reste par 13
1	11	11
2	22	9
3	33	7
4	44	5
5	55	3
6	66	1

On note sur la dernière colonne que le reste de 11k divisé par 13 diminue ici de deux en deux et pour k = 6 on obtiendra le reste 1. Ainsi le nombre cherché est n = 66: c'est un multiple de 11 et le reste de la division par 13 est bien 1 car $66 = 13 \times 5 + 1$.

2. Les entiers dont le reste de la division par 8 est 5 sont de la forme 8k + 5 pour un certain entier k. Reprenons la même méthode, on calcule tous les entiers de la forme 8k + 5 et le reste de division par 9 :

k	8k + 5	reste par 9
0	5	5
1	13	4
2	21	3
2 3 4 5 6	29	2
4	37	1
5	45	0
6	53	8
7	61	7
8	69	6

On note sur la dernière colonne que le reste "diminue de 1" à chaque ligne et pour k=8 on obtiendra le reste 6. Ainsi le nombre cherché est $n=8\times 8+5=69$ qui s'écrit aussi $69=6\times 9+6$.

Exercice 2.

- 1. Soit $n = p^2$ le carré d'un entier. Quel peut être le reste de la division de n par 4 selon que p est pair ou impair?
- 2. Montrer que si *n* est un entier naturel somme de deux carrés d'entiers alors le reste de la division de *n* par 4 n'est jamais égal à 3.

Indications 2.

Si p est pair, alors p = 2k donc $p^2 = \dots$ Si p est impair, alors $p = 2k + 1\dots$

Correction 2.

- 1. Soit $n = p^2$.
 - Si p est pair, alors p = 2k (pour un certain entier k) donc $n = p^2 = (2k)^2 = 4k^2$ est un multiple de 4. Dans ce cas le reste de la division de n par 4 est 0.
 - Si p est impair, alors p = 2k + 1 donc $n = p^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$, c'est l'écriture de la division euclidienne de n par 4. Donc le reste de la division de n par 4 est 1.
 - Conclusion : pour $n = p^2$ alors le reste de la division de n par 4 est soit 0, soit 1 (mais ne peut pas être 2, ni 3).
- 2. Soit $n = p^2 + q^2$. On discute selon que p et q sont pairs ou impairs. Il y a donc 4 cas possibles.
 - Si p est pair et q est pair. Alors par la question précédente le reste de la division de p^2 par 4 est 0, de même que celui de la division de q^2 par 4. Ainsi le reste de la division de $n = p^2 + q^2$ est 0 + 0, il vaut donc 0.
 - Si p est pair et q est impair, alors le reste de la division de $n = p^2 + q^2$ est 0 + 1, il vaut donc 1.
 - Si p est impair et q est pair, alors le reste de la division de $n = p^2 + q^2$ est 1 + 0, il vaut donc 1.
 - Si p est impair et q est impair, alors le reste de la division de $n = p^2 + q^2$ est 1 + 1, il vaut donc 2.

Dans tous les cas le reste de n divisé par 4 ne peut pas être 3.

Exercice 3.

Déterminer pgcd(254, 26), pgcd(654, 115) à l'aide de l'algorithme d'Euclide.

Indications 3.

Calculer une succession de divisions euclidiennes.

Correction 3.

1. Calculons pgcd(254, 26).

$$254 = 26 \times 9 + 20
26 = 20 \times 1 + 6
20 = 6 \times 3 + 2
6 = 2 \times 3 + 0$$

Ainsi pgcd(254, 26) = 2.

2. Calculons pgcd(654, 115).

$$654 = 115 \times 5 + 79$$

$$115 = 79 \times 1 + 36$$

$$79 = 36 \times 2 + 7$$

$$36 = 7 \times 5 + \boxed{1}$$

$$7 = 1 \times 7 + 0$$

Ainsi pgcd(654, 115) = 1.

Exercice 4.

Déterminer ppcm(255, 204).

Indications 4.

Utiliser le lien entre pgcd et ppcm...

Correction 4.

On va utiliser la relation $255 \times 204 = pgcd(255, 204) \times ppcm(255, 204)$ Calculons donc pgcd(255, 204).

$$\begin{array}{rcl}
255 & = & 204 & \times & 1 & + & \boxed{51} \\
204 & = & 51 & \times & 4 & + & 0
\end{array}$$

Ainsi pgcd(255, 204) = 51. On en déduit donc :

$$ppcm(255, 204) = \frac{255 \times 204}{pgcd(255, 204)} = \frac{255 \times 204}{51} = \boxed{1020}$$