Time Series Prediction Stock Market Prices

Priyank Shah

Pratikkumar Patel

Anirvan Maiti

Time Series Data - Examples

- Customer Behavior
- Seasonal Patterns
 - o Ticket Sales
 - o Polar Ice Caps Data
 - o Weather Patterns
- Stock Prices

Problem Definition

- Factors Impacting Stock Market Prices
 - Company Performance (Quarterly Results)
 - Future of business
 - Momentum
 - News (Market, Company or Sector, Regulations)
 - 0 ...
- Prediction very difficult because of these factors
- Our focus of analysis is to identify trends using Neural Nets
 - Recurrent Neural Nets
 - LSTM
 - O WaveNet by DeepMind?
- Enables further extension to include other features like
 - Volume
 - Social Media Buzz
 - Breaking News

Data Set

AAPL

- Data from Nasdaq
- Time Period from Sept-2011 to Mar-2017
- Tick Prices

Pre-Processing to reduce number of price entries in a day

- Weighted Average using volume
 - 1 Min
 - o 5 Min
 - 15 Min
- Stock-Split Adjustments (06/06/2017: 1 to 7)

Models

What we have tried?

 Long Short Term Memory Networks(LSTM)

RNN (Recurrent Neural Network)

- Before we move on to LSTM,
- What is RNN?
- Problem with RNN

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM

- Why LSTM?
- A cell has ability to remove or add information to the cell state, carefully regulated by structures called gates.

Gates are composed out of a sigmoid neural net layer and a pointwise multiplication operation.

http://paper.composed.out.of.a.sigmoid neural net layer and a pointwise multiplication operation.

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM - Model

- MinMaxScaler (range 0 1)
- Look Back Parameter
 - Helps generate data
 - Moving window of length look_back
 - Decides input shape
- LSTM Layers
- Dense Layer
- Inverse Scaling
- Loss Mean Squared Error
- Epochs 30 to 50

LSTM - Training & Testing Results

	Model 1 1 LSTM Layer	Model 2 2 LSTM Layers	Model 3 3 LSTM Layers
Look Back 50 Epochs 30	Train Score: 0.53 RMSE Test Score: 0.63 RMSE Test Score: 14.91 RMSE	Train Score: 0.46 RMSE Test Score: 0.45 RMSE Test Score: 28.98 RMSE	Train Score: 0.45 RMSE Test Score: 0.56 RMSE Test Score: 57.02 RMSE
Look Back 100 Epochs 30	Train Score: 0.48 RMSE Test Score: 0.45 RMSE Test Score: 28.39 RMSE	Train Score: 0.41 RMSE Test Score: 0.92 RMSE Test Score: 15.30 RMSE	Train Score: 0.54 RMSE Test Score: 0.67 RMSE Test Score: 25.38 RMSE
Look Back 50 Epochs 50	Train Score: 0.39 RMSE Test Score: 0.36 RMSE Test Score: 31.22 RMSE	Train Score: 0.40 RMSE Test Score: 0.43 RMSE Test Score: 29.86 RMSE	Train Score: 0.35 RMSE Test Score: 0.39 RMSE Test Score: 56.66 RMSE

The Moment of Truth...

LSTM - Prediction

- RED Moving Window
- CYAN Prediction over Prediction
- BLUE Ground Truth

LSTM - Conclusions

Look Back Dependency

- Shorter the window
 - Better for short term prediction
- Longer window
 - Worse for short term
 - Better Long term prediction

Model Dependency

- No of LSTM Layers
 - More layers means better short-term performance
 - Long term performance is adversely impacted

Models

What we have tried?

• WaveNet by DeepMind

WaveNet

- Why WaveNet?
- Built for Audio where Prediction for every samples is influenced by all previous ones
- PixelNet applied to 1D data

WaveNet - Model

"dilations": [1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

1, 2, 4, 8, 16, 32, 64, 128, 256, 512],

#A list with the dilation factor for each layer.

"residual_channels": 64, #How many filters to learn for the residual.

"dilation_channels": 32, #How many filters to learn for the dilated convolution.

"quantization_channels": 1000, #How many amplitude values to use

WaveNet - Training & Results

- Difficulties
 - Data Preparation
 - Non convergence
 - Time Consuming
- Testing In Progress

Questions?