Minería de Datos IIC2433

KNN Vicente Domínguez

¿Qué veremos las clases pasadas?

- Regresión logística

¿Qué veremos esta clase?

Otra forma de clasificar: KNN

KNN

k Nearest Neighbors (k vecinos cercanos)

- k es un número natural
 - $k = 1, 2, 3, 4, \dots$ etc
- Si k = 1, hablamos de 1NN (1 vecino cercano)
- Si k = 2, hablamos de 1NN (2 vecinos cercano)

etc...

Métricas de distancia

Distancia Euclidiana (la más conocida)

"La distancia euclidiana entre dos puntos es longitud del segmento que los une"

$$egin{split} \mathrm{d}(\mathbf{p},\mathbf{q}) &= \mathrm{d}(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2} \ &= \sqrt{\sum_{i=1}^n (q_i-p_i)^2}. \end{split}$$

Distancia Euclidiana *Ejemplos*

Calcular la distancia euclidiana entre los puntos (1, 1) y (2, 3)

Distancia Euclidiana

Ejemplos

Calcular la distancia euclidiana entre los puntos (0, 1, 2) y (5,3,3)

Distancia Euclidiana

Ejemplos

Calcular la distancia euclidiana entre los puntos (0, 1, 1, 1) y (1, 2, 2, 2)

Métricas de distancia Distancia Manhattan

"La distancia manhattan entre dos puntos es longitud del camino entre ellos dando pasos estrictamente verticales u horizontales"

Otras métricas de distancia

Mahalanobis

$$D_M(ec{x}) = \sqrt{(ec{x} - ec{\mu})^T S^{-1} (ec{x} - ec{\mu})}.$$

Minkowski

$$\left(\sum_{i=1}^n \left|x_i-y_i
ight|^p
ight)^{1/p}$$

1NN (1 vecino más cercano)

K = 1

¿Cuál el la clase del punto (2, 1) ? ¿Rojo o azul?

Le asignaremos la clase de su vecino más cercano.

Para saber cuál es el vecino más cercano el computador debe calcular su distancia frente a todos los puntos del dataset.

3NN (3 vecinos más cercanos)

$$K = 3$$

¿Cuál el la clase del punto (2, 1) ? ¿Rojo o azul?

Tomaremos la clase de sus tres vecinos más cercanos y le asignaremos la clase más

Para saber cuál es el vecino más cercano el computador debe calcular su distancia frente a todos los puntos del dataset.

KNN

¿Qué es mejor un valor de k alto o bajo?

KNN

¿Qué es mejor un valor de k alto o bajo?

FIGURE 2.17. The KNN training error rate (blue, 200 observations) and test error rate (orange, 5,000 observations) on the data from Figure 2.13, as the level of flexibility (assessed using 1/K) increases, or equivalently as the number of neighbors K decreases. The black dashed line indicates the Bayes error rate. The jumpiness of the curves is due to the small size of the training data set.

Regresiones usando KNN

K = 1

¿Cuál es el valor de y, dado un valor de x?

Usamos el valor de y del punto más cercano en x

Regresiones usando KNN

$$K = 9$$

¿Cuál es el valor de y, dado un valor de x?

Usamos el el promedio de los valores y, de los 9 puntos con x más cercano.

(Podemos usar promedio simple o ponderado)

KD-Tree

Permite encontrar los k-vecinos cercanos sin calcular las distancias hacia todos los datos.

Trabajar con atributos nominales

Es necesario transformar los datos nominales a numéricos

			Nominal a entero		Nominal a One-hot Encoding			
Id	Pais	Id	Pais	Id	Alemania	Argentina	Chile	Rusia
0	Rusia	0	1	0	0	0	0	1
1	Alemania	1	2	1	1	0	0	0
2	Chile	2	3	2	0	0	1	0
3	Argentina	3	4	3	0	1	0	0
4	Chile	4	3	4	0	0	1	0