

DATABASE MANAGEMENT SYSTEM (CS310)

PROJECT TITLE -

Database design on Car vehicle insurance company

Under the Guidance of -

Dr.Uma s Ms. Supriya Nadiger

GROUP MEMBERS

ADVAY AGGARWAL (18BCS002)
AKASH KUMAR (18BCS003)
ANIRUDDHA MUJUMDAR (18BCS005)
BHARGAVA H.S (18BCS018)
JAGRUT NEMADE (18BCS034)
KSHITIZ MICHAEL (18BCS042)
AKARSH MAURYA (18BCS051)
MITHIL GANESH ANCHAN (18BCS054)
UDIT PAL (18BCS107)

PROJECT TITLE

A database for a Vehicle Insurance Company.

PURPOSE

This module provides a comprehensive discussion of, and practical experience in, advanced entity modelling; normalisation; transactional relational database design; SQL coding; and generation of data backed management reports.

PROJECT BENEFITS

To make a good DB, that could be used with analytical tools and faster in delivering the right data at the right time for better decision making.

ABSTRACT

The Insurance management system is a complete solution for organizations, which need to manage insurance for their vehicles, equipment, buildings, and other resources. Organizes and tracks insurance vendors and the policies provided under different coverage.

Insurance policy administration system consists of a mathematical notation that captures the relationship between policies and objects and the entities that manage policies for those objects.

Hence there is a need for an automated system, which can efficiently manage the company, records, provides instant access and one that improves productivity. As a result of this automated system, the activities of the company are performed within the stipulated time and the reliable and efficient service is ensured to its users.

The insurance company needs to keep track of details of its target companies, agents, policyholders, their premium payments and the various products that are available with it. Hence it is under tremendous pressure maintaining their day-to-day activities, which is currently being done manually.

Entire records have to be updated timely, even a slight mistake could complicate things.. It is time consuming to summarize these details to produce the reports.

INTRODUCTION

Relational databases are logical collections of inter-related data in tabular form relational databases have always been core to any management system. Its relevance is profound and hence the need to incorporate new functionalities, utilities becomes important. These are currently the predominant choice in storing financial records manufacturing and logistical information, personnel data and much more.

Relational databases are used in huge management systems like Post Office, Banking, Railway, Defence Logistics. Databases pertaining to Educational Institutions and other large collection of related data.

Relational databases have largely replaced hierarchical databases and network databases because they are easy to understand and use even though they are much less efficient.

The software components used in our project are as under:

MY SQL WORKBENCH

Conceptual Data Model (CDM)

The conceptual data model is a structured business view of the data required to support business processes, record business events, and track related performance measures. This model focuses on identifying the data used in the business but not its processing flow or physical characteristics. This model's perspective is independent of any underlying business applications.

The above diagram describes how each table is conceptually related to each other.

Customer owns **Vehicles**

Customer files for Claim

Customer applies for the **Application**

Customer holds the Membership

Customer having any **Incident report**

Incident details stored in **Incident report**

Claim approved claim settlement Been settled

Premium Payment has details shown in Receipt

Insurance Company has different number of **Products**

Insurance Company covers Coverage

Insurance Company has **Staff**

Insurance Company has different **Departments**

Department is in **Office**

Application has Quote

Insurance Policy shows details Insurance policy coverage

Application customer applied **Insurance policy**

Application applies **Customer**

Logical Data Model (LDM)

Relationship of entities for car insurance database

Customer one to many Claim
Customer one to many Vehicle
Customer one to many Premium payment
Customer many to many Membership
Customer many to many Incident
Customer one to many Incident report
Customer one to many Application

Application one to many Quote
Application one to many Insurance policy

Insurance policy one to many Insurance policy coverage Insurance policy one to many Policy renewable Insurance policy one to many Nok

Premium_payment one to many Receipt

Claim one to many Claim settlement

Insurance company one to many Staff
Insurance company one to many Coverage
Insurance company one to many Product
Insurance company one to many Department

Department one to many **Vehicle service**

Office many to many **Department**

Coverage one to many Insurance policy coverage

Physical Data Model (PDM)

The above diagram shows the physical data model of the vehicle insurance company DBMS.


```
select *
from T8_VEHICLE v inner join T8_CUSTOMER c on v.Cust_id = c.Cust_id
where c.Cust_id in (
          select c1.Cust_id
          from T8_CUSTOMER c1, T8_CLAIM x, T8_INCIDENT_REPORT i
          where i.Cust_id = c1.Cust_id and c1.Cust_id = x.Cust_id and
          x.Claim Status='Pending');
```


select *
from T8_CUSTOMER c1
where c1.Cust_id in
(select c.Cust_id from T8_CUSTOMER c, T8_PREMIUM_PAYMENT p
where (p.Cust_id = c.Cust_id and p.Premium_Payment_Amount > (select
sum(CAST(Cust_id as unsigned)) from T8_CUSTOMER)));

select *
from T8_INSURANCE_COMPANY
where Company_Name in
(select T8_OFFICE.Company_Name
from T8_OFFICE
group by Company_Name
having count(distinct(Address))>1 and Company_Name in
(select T8_DEPARTMENT.Company_Name
from T8_PRODUCT inner join T8_DEPARTMENT
on T8_DEPARTMENT.Company_Name = T8_PRODUCT.Company_Name
group by T8_DEPARTMENT.Company_Name
having count(distinct(Product_Number)) > count(distinct(Department_Name))));

select * from T8_CUSTOMER where Cust_id in (select Cust_id from T8_INCIDENT_REPORT where Cust_id in (select Cust_id from T8_VEHICLE group by Cust_id having count(Cust_id) > 1) and Cust_id not in (Select Cust_id from T8_PREMIUM_PAYMENT));

select * from T8_VEHICLE as v, T8_PREMIUM_PAYMNET as p where v.Cust_id = p.Cust_id and p.Premium_Payment_Amount > v.Vehicle_Number;

select*
from T8_CUSTOMER
where Cust_id
in (select distinct(c1.Cust_id)
from T8_CLAIM as c1, T8_CLAIM_SETTLEMENT as cs, T8_COVERAGE as c0
where c1.Claim_Amount > cs.Claim_Settlement_id + cs.Vehicle_id + c1.Claim_id
+ c1.Cust_id and c1.Claim_Amount < Coverage_Amount);

PROCEDURES and VIEWS

