TP3 Compression MPEG

Romain Raveaux

Objectif

Sensibiliser les étudiants aux algorithmes de compression/décompression de vidéos utiliser dans les systèmes multimédia.

Coût algorithmique.

Qualité d'image

Compression vidéo

Lecture d'une vidéo

Réaliser un programme permettant de lire la vidéo videotestverylow.mp4 qui est stocké dans votre espace de travail (~/pythonwork/).

Convertissez chaque image en niveau de gris.

Afficher chaque image.

Affichage du nombre de frame par seconde

Modifier votre programme pour afficher dans l'image le nombre frame par seconde.

Compression simpliste

Afficher l'image résidu résultant de la différence entre $I_t - I_{t-1}$. Attention l'image résidu contient des valeurs entre -255 et 255. Afin de l'afficher créer une image tempraire visuresidu en normalisant les valeurs entre 0 et 255. A partir de I_t-1 et du résidu reconstituez I_t

Dans une compression MPEG, une image I est intercalée dans le flux vidéo toutes les 10 à 15 images. Cette valeur est appelée groupe of frames (gof) dans la norme MPEG2. Nous allons poussez ce concept en gardant en mémoire 12 frames.

Afficher l'image résidu résultant de la différence entre $I_{t-12}-I_t$. Reconstruisez l'image I_t.

Que constatez vous ? Quel est l'impact sur l'image résidu ? Changer la valeur de gof à 100 que constatez vous.

Compression MPEG

Décomposer chaque image en macro blocks 32x32.

Pour chaque macro block M de l'image I_t , chercher dans l'image I_{t-1} le meilleur macro block correspondant.

Distance entre blocs:

$$d(b_1,b_2) = \left(\frac{1}{N^2}\right) \sum_{\{m=1\}}^{N} \sum_{\{n=1\}}^{N} |b_1(m,n) - b_2(m,n)| \ b_1 \in I_t, b_2 \in I_{t-1}$$

Trouver le meilleur bloc :

$$\mathbf{b}_{\mathbf{i}}^* = \arg\min_{b_i \in I_{\{t-1\}}} d(b_j, b_i) \ \forall \, j \in I_t$$

Équation 1 : Recherche du meilleur bloc

Equation 1 est couteuse en temps de calcul, elle sera donc approchée en limitant la zone de recherche aux 9 blocs connexes du bloc b_j.

Créer une image composite de I_t ou chaque bloc b_j de I_t est remplacé par son meilleur bloc b_i de I_{t-1} si d(b_i,b_j) > seuilcompat sinon conserver le bloc b_j.

Calculer l'image résidu comme dans le programme précédent « compression simpliste ». Afficher l'image composite, l'image résidu et l'image décompressée.

Faites varier le seuil de compatibilité (seuilcompat). Quel est l'impact de ce seuil ? Faites varier la variable gof (12 et 120).