PAT-NO:

JP406045476A

DOCUMENT-IDENTIFIER:

JP 06045476 A

TITLE:

FABRICATION OF HYBRID INTEGRATED CIRCUIT

PUBN-DATE:

February 18, 1994

INVENTOR-INFORMATION:

NAME

MUTSUKAWA, YOSHINOBU HARUHARA, HIDEYASU NAKAGAWA, YUICHI

FUJISAWA, KAZUHISA

ASSIGNEE-INFORMATION:

COUNTRY N/A

APPL-NO:

JP04194072

APPL-DATE:

FUJITSU LTD

July 21, 1992

INT-CL (IPC): H01L023/28, H01L023/12, H01L025/04, H01L025/18,

H01L025/065

, H01L025/07

US-CL-CURRENT: 257/787

ABSTRACT:

PURPOSE: To fabricate a large molded package of a hybrid integrated circuit

at high yield whose functions can easily be checked.

CONSTITUTION: A desired pattern of a hybrid integrated circuit is divided

into subpatterns. Each subpattern is thick or thin film on a ceramic substrate

12. Components 18, such as semiconductor chips, capacitors and resistors, are

mounted on each ceramic substrate 12. The ceramic substrates 12 are mounted on

a single lead frame 14. The individual substrates 12 are connected

to each other by wires and each substrate 12 and leads 17 of the Lead frame 14 are connected by wires. The substrates 12 and the Lead frame 14 are molded with a resin 21.

COPYRIGHT: (C) 1994, JPO&Japio

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-45476

(43)公開日 平成6年(1994)2月18日

(51)IntCL⁵

識別記号

庁内整理番号

技術表示箇所

H01L 23/28

E 8617-4M

FΙ

23/12

25/04

9355-4M

H01L 23/12

H

25/04

Z

審査請求 未請求 請求項の数2(全 5 頁) 最終頁に続く

(21)出願番号

特願平4-194072

(22)出願日

平成4年(1992)7月21日

(71)出願人 000005223

富士通株式会社

神奈川県川崎市中原区上小田中1015番地

(72)発明者 六川 嘉信

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(72)発明者 春原 秀康

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(72) 発明者 中川 祐一

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(74)代理人 弁理士 青木 朗 (外3名)

最終頁に続く

(54) 【発明の名称 】 混成集積回路の製造方法

(57)【要約】

【目的】 本発明は混成集積回路の製造方法に関し、大 型モールドパッケージの混成集積回路を歩留り良く、且 つ機能チェックが容易な混成集積回路の製造方法を実現 することを目的とする。

【構成】 所要の混成集積回路パターンを複数に分割 し、その分割した各回路パターンをそれぞれセラミック 基板12に厚膜または薄膜で形成する工程と、上記各セ ラミック基板12に半導体チップ、コンデンサ、抵抗な どの部品18を搭載する工程と、上記複数個のセラミッ ク基板12を1個のリードフレーム14に搭載する工程 と、上記各基板間及び各基板12とリードフレームのリ ード17間をワイヤボンディングする工程と、上記各基 板12及びリードフレーム14を樹脂21にてモールド する工程とより成るように構成する。

1

【特許請求の範囲】

【請求項1】 所要の混成集積回路パターンを複数に分 割し、その分割した各回路パターン(11)をそれぞれ セラミック基板(12)に厚膜または薄膜で形成する工 程と、

上記各セラミック基板(12)に半導体チップ、コンデ ンサ、抵抗などの部品(18)を搭載する工程と、

上記複数個のセラミック基板(12)を1個のリードフ レーム(14)に搭載する工程と、

上記各基板間及び各基板(12)とリードフレームのリ 10 集積回路の製造方法を実現しようとする。 ード(17)間をワイヤボンディングする工程と、

上記各基板(12)及びリードフレーム(14)を樹脂 (21) にてモールドする工程、

とより成ることを特徴とする混成集積回路の製造方法。 【請求項2】 請求項1の混成集積回路の製造方法によ り製造されたことを特徴とする混成集積回路。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は混成集積回路の製造方法 に関する。詳しくは、高機能化、大規模化した表面実装 20 型の混成集積回路を歩留り良く製造する製造方法に関す る。

[0002]

【従来の技術】近年、表面実装タイプの混成集積回路に おいては、高機能化、大規模化の要求に伴い、モールド パッケージの大型化が要求されている。このため基板の 大型化、高密度実装、モールドパッケージの大型化など 種々の提案がなされている。 図4は従来のモールドタイ プの混成集積回路を示す図である。これは、厚膜又は薄 膜でパターン形成されたセラミック等の絶縁基板2に1 30 Cチップ等の部品3を搭載し、これをリードフレーム4 に搭載し、基板2とリード5との間をワイヤ6でワイヤ ボンディングした後、樹脂7でモールド封止したもので ある。

[0003]

【発明が解決しようとする課題】上記従来のモールドタ イプの混成集積回路においては、モールドパッケージの 大型化の一方、所望の電子回路を分割して複数のパッケ ージにする方法が採られていた。ところが機能の拡大と 小型化への要求が大きいため、パッケージを複数にする 40 とデッドスペースが大きくなるという問題があった。

【0004】また、大型モールドパッケージに高密度実 装した基板をパッケージする場合は、基板を大型化する と、その基板がセラミックであると、図5に示すように グリーンシート時に予めスルーホール孔8があけられて いるため、焼成時のシュリンケージのバラツキによりス ルーホール孔8の孔位置が設計位置から外れ、パターン 9の作成時の歩留りが低下する。

【0005】また、大型基板は半導体のボンディングエ

500~1000本) する場合、 ボンディング時間が長 くなり、膜が高熱にさらされる時間が長くなるのでボン ディング性への悪影響がある。また、基板膜形成後のパ ターンチェックや部品搭載後での機能チェックは大規模 の回路になり、チェックポイントの増加と回路の複雑化 によりチェックポイントの探索や、試験回路作成を困難 にする等の問題を生じていた。

2

【0006】本発明は、大型モールドパッケージの混成 集積回路を歩留り良く、且つ機能チェックが容易な混成

[0007]

【課題を解決するための手段】本発明の混成集稽回路の 製造方法に於いては、所要の混成集積回路パターンを複 数に分割し、その分割した各回路パターン11をそれぞ れセラミック基板12に厚膜または薄膜で形成する工程 と、上記各セラミック基板に半導体チップ、コンデン サ、抵抗などの部品18を搭載する工程と、上記複数個 のセラミック基板12を1個のリードフレーム14に搭 載する工程と、上記各基板間及び各基板12とリードフ レームのリード17間をワイヤボンディングする工程 と、上記各基板12及びリードフレーム14を樹脂21 にてモールドする工程とより成ることを特徴とする。こ の構成を採ることにより、製造歩留りの良い大型のモー ルドパッケージ混成集積回路の製造方法が得られる。 [0008]

【作用】本発明では、図1の原理説明図に示すように、 先ず(a)図の如き大型の混成集積回路10の回路パタ ーン11を(b), (c)図の如く複数(図は2個)に 分割し、それぞれを小型基板 12-1, 12-2に形成す る。そして、この複数個の基板12-1, 12-2に耐圧チ ェックを行ない、部品を搭載及びワイヤボンディング し、さらに各基板毎に機能チェックを行った後、これら の基板を図示なき1個のリードフレームに搭載する。 【0009】その後回路パターンの切断部分及びリード へのワイヤボンディングを行った後、基板12-1,12 -2及びリードフレームを樹脂にてモールドする。本発明 はこの様に基板12-1,12-2を小型化することにより 寸法精度を向上でき、パターン形成時の歩留りを向上で き、且つ各基板の部品搭載後のワイヤボンディングが減 少することにより膜の熱による劣化を防止でき、さらに 各基板毎に機能チェック、耐圧チェックができるため、 その試験は容易となる。

[0010]

【実施例】図2は本発明の実施例を示す図であり、

(a)はリードフレームに基板を搭載した状態、(b) は完成品の断面を示す図である。また図3は本発明の実 施例に用いるリードフレームを示す図である。 このリー ドフレーム14は同図に示すように枠状のタイバー15 に複数の(図は4個)の基板を搭載できるように配置さ 程に於いて、多数のICにワイヤボンディング(例えば 50 れた基板支持部16と、多数のリード17とが形成され

ている。

【0011】本発明の実施例の混成集積回路の製造方法 は、先ず所要の混成集積回路の回路パターンを複数に分 割し、その分割した各回路パターン(図示省略)をそれ ぞれセラミック基板12-1~12-4に厚膜又は薄膜で形 成した後、耐圧チェックを完全に行い、不良品は排除す る。次いで該基板12-1~12-4に半導体チップ、コン デンサ、抵抗などのディスクリート部品18を搭載し、 さらに該部品18と回路パターン間をワイヤボンディン グにより接続した後、各基板毎に機能チェックを行う。 【0012】次に機能チェックを行なった基板12-1~ 12-4を図3に示したリードフレーム14に、図2の如 く搭載し、さらに各基板間をワイヤ19で、また基板1 2-1~12-4とリードフレームのリード17間をワイヤ 20でそれぞれワイヤボンディングする。次いで、この 基板12-1~12-4をリードフレーム14の一部と共に 樹脂21でモールドする。最後にリードフレームのタイ バー15を切断除去し、リード17を折曲成形して図2 (b)の如く混成集積回路を完成する。

【0013】以上の本実施例によれば、①基板サイズが 20 小さくなり、シュリンケージによるスルーホール位置精 度の低下を防止することができるため、厚膜又は薄膜に よる回路パターン形成時の歩留りが向上する。2回路分 割により、膜形成後の耐圧チェック及び閉回路のチェッ クポイント探しが容易となる。 31つの基板への部品搭 載数が減少するため、ワイヤボンディングによる熱の印 加時間が短かくなり、ボンディング強度の劣化を防止す できるため、試験歩留りの向上、リプレース性の向上が でき、さらに試験回路が簡単となり、その作成が容易と 30 21…樹脂

なる。

[0014]

【発明の効果】本発明に依れば、所望の大規模電子回路 を大型モールドパッケージに納めることができ、製造歩 留りの向上、機能試験の容易化による性能向上等に寄与 することができる。

4

【図面の簡単な説明】

【図1】本発明の原理説明図である。

【図2】本発明の混成集積回路の製造方法の実施例を説 10 明するための図で、(a)はリードフレームに基板を搭 載した状態を示す図、(b)は完成品の断面図である。 【図3】 本発明の実施例に用いるリードフレームを示す

平面図である。

【図4】従来の混成集積回路を示す図で、(a)は平面 図、(b)は(a)図のb-b線における断面図であ る。

【図5】 発明が解決しようとする課題を説明するための 図である。

【符号の説明】

- 10…混成集積回路
 - 11,11、…混成集積回路パターン
 - 12, 12-1~12-4…基板
 - 13…スルーホール
 - 14…リードフレーム
 - 15…タイバー
 - 16…基板支持部
 - 17…リード
 - 18…部品
 - 19, 20…ワイヤ

【図3】

本発明の実施例に用いるリードフレームを示す図

14ーリードフレーム 16--基板支持部

【図5】

発明が解決しようとする課題を説明するための図

【図1】

本発明の厳理義明図

10…温成集機関路 11・11'…温成集機四路パターン 12-・・12-sーセラミック基板 13…スルーホール

【図4】

従来の張成業積回路を示す図

【図2】

フロントページの続き

(51) Int. Cl.⁵

識別記号 庁内整理番号

FΙ

技術表示箇所

HO1L 25/18

25/065

25/07

HO1L 25/08

Z

(72)発明者 藤沢 和久

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内