ИФИМ КВИН

3 СЕМЕСТР ФАКУЛЬТЕТ КИБ

Математический анализ

Автор: Тропин А.Г.

 ${\it Лектор:}$ Теляковский Д.С.

e-mail: andrewtropin@gmail.com

github: abcdw/mephi

Оглавление

Ι	Фу	нкциональный последовательности и ряды	
1	Числовые ряды		
	1.1	Определение	
	1.2	Действия с рядами	
	1.3	Ряды с неотрицательными членами	

Часть І

Функциональный последовательности и ряды

Глава 1

Числовые ряды

1.1 Определение

Определение 1. $U_1 + U_2 + U_3 + \cdots = \sum_{k=0}^{\infty} U_k$

Определение 2. $S_n = -$ Частичная сумма

Определение 3. Ряд сходится, если $\exists \lim_{n\to\infty} \sum_{0}^{\infty} U_k$

Определение 4. $\{a_n\}a_n = a_0 + \sum_{1}^{n} (a_k - a_{k-1})$

Теорема 1.1.1 (Критерий Коши). Ряд сходится $\Leftrightarrow \forall \varepsilon \exists N = N(\varepsilon) \forall n \geq N, \forall p | \sum_{k=n+1}^{n+p} n_k | = |U_{n+1} + \dots + U_{n+p} = |S_{n+p} + S_n| < \varepsilon$

Доказательство.
$$\forall \varepsilon > 0 \exists N : \forall n \geq N, \forall p |S_{n+p} + S_n| < \varepsilon$$

Определение 5. Краевые условия Если ряд

$$\Pi$$
ример 1. $\sum\limits_{0}^{\infty}z^{n}\ S_{n}(z)=\sum\limits_{0}^{n}z_{n}=rac{1-z^{n+1}}{1-z}$ При

1.2 Действия с рядами

Теорема 1.2.1. Ряды $\sum U_k$ и $\sum V_k$ сходятся, тогда $\sum \alpha U_k = \alpha \sum U_k$ $\sum U_k \pm V_k = \sum U_k \pm \sum V_k$

Доказательство.
$$\sum_{k=0}^{\infty} \alpha U_k = \lim_{n \to \infty} \sum_{k=0}^{n} \alpha U_k = \alpha \lim_{n \to \infty} \sum_{k=0}^{n} U_k = \alpha \sum_{k=0}^{\infty} U_k$$

Доказательство. Аналогично второе.

Замечание 1. Сумма сходится \rightarrow по отдельности.

Еще свойство Нельзя раскрывать скобки и переставлять.

1.3 Ряды с неотрицательными членами

 S_n - не строго возрастающая Сходимость ряда эквивалентна ограниченности S_n

Теорема 1.3.1. 1 $U_k \ge 0, V_k \ge 0 \forall k$ Если $0 \le U_k \le V_k$, то $\sum V_k$ сходится $\Rightarrow \sum U_k$ сходится $\sum U_k$ расходится $\Rightarrow pacxodumcs \sum V_k$

2 Если $\lim_{n\to\infty}\frac{U_k}{V_k}=A>0$, то ряды сходятся или расходятся. Доказательство. Тут доказательство Замечание 2. Вместо существования предела достаточно предположить, что существуют такие числа р и q > 0 такие что $0 < q < \frac{\dot{U_k}}{V_k} < p \forall k$ Теорема 1.3.2 (Признак Даламбера). Признаки 1 Если $\exists q \forall k \frac{U_{k+1}}{U_k} < q < 1$ сходится 2 Если предел Доказательство. 1 Идея докозательства - сравнение с геометрической прогрессией. 2 Для предельного случая **Теорема 1.3.3** (Признак Коши). $\sum U_k, U_k \geq 0$ 1 Если $\exists q < 1, mo \ \forall k \sqrt[k]{U}_k \leq q < 1$ 2 Если $\exists \lim_{k\to\infty} \sqrt[k]{U_k} = q(>0)$ q < 1 - cxoдumcяq > 1 - pacxoдumcяq=1 - нужны дополнительные исследования $3амечание 3. \overline{\lim}$ вместо \lim Доказательство. Сравнение с геометрической прогрессией Если $\forall k \sqrt[k]{U}_k \le q < 1 \Leftrightarrow U_k \le q^k$ Определение 6. $\{a_n\}$

 $\lim_{n\to\infty} a_n$

Признак Коши с верзним пределом. $\overline{\lim}_{k\to\infty} \sqrt[k]{U}_k = q < 1$

Замечание 4. Признак Даламбера слабее признака Коши