FUNDAMENTALS OF DIGITAL IMAGE FORMATION

Image Acquisition Process

a b c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Introduction

What is Digital Image Processing?

Digital Image

— a two-dimensional function f(x, y) x and y are spatial coordinates The amplitude of f is called **intensity** or **gray level** at the point (x, y)

Digital Image Processing

process digital images by means of computer, it covers low-, mid-, and high-level processes

low-level: inputs and outputs are images

mid-level: outputs are attributes extracted from input images high-level: an ensemble of recognition of individual objects

Pixel

the elements of a digital image

A Simple Image Formation Model

$$f(x, y) = i(x, y) \square r(x, y)$$

f(x, y): intensity at the point (x, y)

i(x, y): illumination at the point (x, y)

(the amount of source illumination incident on the scene)

r(x, y): reflectance/transmissivity at the point (x, y)

(the amount of illumination reflected/transmitted by the object)

where $0 \le i(x, y) \le \infty$ and $0 \le r(x, y) \le 1$

What is a Digital Image? (cont...)

- Common image formats include:
 - 1 sample per point (B&W or Grayscale)
 - 3 samples per point (Red, Green, and Blue)
 - 4 samples per point (Red, Green, Blue, and "Alpha",

For most of this course we will focus on grey-scale images

Image processing

- ▶ An image processing operation typically defines a new image g in terms of an existing image f.
- We can transform either the range of f.

$$g(x,y) = t(f(x,y))$$

Or the domain of f:

$$g(x,y) = f(t_x(x,y), t_y(x,y))$$

What kinds of operations can each perform?

What is DIP? (cont...)

►The continuum from image processing to computer vision can be broken up into low-, mid- and high-level processes :

Low Level Process	Mid Level Process	li.	High Level Process
Input: Image Output: Image	Input: Image Output: Attributes	1	Input: Attributes Output:
Examples: Noise removal, image sharpening	Examples: Object recognition, segmentation		Understanding Examples: Scene understanding, autonomous navigation

In this course we will stop here

Key Stages in Digital Image Processing

Key Stages in Digital Image Processing: Image Aquisition

Key Stages in Digital Image Processing: Image Enhancement

Key Stages in Digital Image Processing: Image Restoration

Key Stages in Digital Image Processing: Morphological Processing

Key Stages in Digital Image Processing: Segmentation

Key Stages in Digital Image Processing: Object Recognition

Key Stages in Digital Image Processing: Representation & Description

Key Stages in Digital Image Processing: Image Compression

Key Stages in Digital Image Processing: Colour Image Processing

THANK YOU