SOC Design Laboratory, 2023 Fall

Lab4-2 Report

Group 8 R11943167 謝維勝 R11942159 呂嘉元 R11942072 陳俊宇 R11921a24 劉育誠

Overview

此次 Lab 要求我們將 Lab3 的 fir 設計電路整合進 Caravel SOC 系統的中,並透過編寫 firmware 的方式取代原先的 testbench,將 firmware 編譯成 hex 檔後放入 flash 中以及我們額外編寫的 Wishbone to AXI decoder,來使 Caravel SOC 控制 fir.v 的運算。

Block diagram

Configuration Register Address Map

User Project Memory Starting: 3800_0000 User Project FIR Base Address: 3000_0000

0x00 - [0] ap_start

- [1] ap_done
- [2] ap_idle
- [3] Reserved zero
- [4] X[n] ready
- [5] Y[n] ready
- [6] x[n] last

 $0x10-data\ length$

 $0x40-Tap\ parameters$

0x80 - X[n] input

0x84 - Y[n] output

Simulation Waveform

Program data length

data length 根據定義,wbs_adr_i 為 0x30000010,我們測試所使用的 firmware 設定 data length 長度為 10,因此 wbs_dat_i 為 10,透過 WB decoder,可將 WB cycle 轉成對應的 AXI4-Lite write protocol。

Write tap coefficients

透過 wbs_adr_i = $0x30000020\sim0x30000048$,在 wbs_ack_o = 1 時,將第 4 個 tap coefficient 23 透過 firmware program 進 fir 的 tap bram 中。

Write ap start = 1

在 fir 開始計算之前,透過 WB 將 reg config[0] 設為 1。

Input stream


```
// write x[i]
if ((reg_config & read_mask) == read_exp) {
    if (i == 9) {
        reg_config = reg_config | 0x00000040;
      }
      reg_X = arr_X[i];
}
```

對應我們 firmware 的寫法,在實際寫入前會先確認 input ready,對應 wb address = 0x30000000 data 的第 5 個 bit 為 1 後,再寫入 X[4] = 5。

Output stream


```
wb clk i=1
     wb rst i=0
    wbs ack o=1
wbs adr i[31:0] =30000084
                                                                                         8053065+
wbs dat i[31:0]=0
                                                                                      35 0 32871
wbs_dat_o[31:0] =35
     wbs we i=0
     axis clk=1
   axis rst n=1
sm_tdata[31:0] =00000023
     sm tlast=0
    sm tready=1
    sm tvalid=1
 sm tvalid reg=1
         if ((reg_config & write_mask) == write_exp) {
               Y = reg_Y;
```

對應我們 firmware 的寫法,在實際寫入前會先確認 output ready,對應 wb address = 0x30000000 data 的第 6 個 bit 為 1 後,再讀出 Y[4] = 35,符合 golden 的結果。

在 fir 做完 10 筆資料後,確認 config reg 的第 2、3 個 bit 為 1。

Synthesis result

我們的 design 所用合成的 cycle 為 12ns,遠高於原先 fir.v 的 cycle 6ns,推測是因為 WB decoder 將所有 critical path 都變得更長所導致

Synthesis report					
31 + 32 Site Type	Used	Fixed	+	Available	++ Util%
34 Slice LUTs*	353	0	. 0	53200	0.66
35 LUT as Logic	289	j o	0	53200	0.54
36 LUT as Memory	64	0	0	17400	0.37
37 LUT as Distributed RAM	64	0	İ		i i
38 LUT as Shift Register	0	0			1 1
39 Slice Registers	130	0	0	106400	0.12
40 Register as Flip Flop	124	0	0	106400	0.12
41 Register as Latch	6	0	0	106400	<0.01
42 F7 Muxes	0	0	0	26600	0.00
43 F8 Muxes	0	0	0	13300	0.00
44 +	+	+	+	+	++

上圖是我們用 top module = user_proj_example.counter.v 合成的結果。