ORGANIZAN cedia · ucuenca

EXPLORING THE PERFORMANCE OF DEEP LEARNING IN HIGH-ENERGY PHYSICS

José Ochoa, Daniela Merizalde, Xavier Tintin, Edgar Carrera, Diana Martínez, David Mena

TC2023 EC] TH

10-18-2023

- 1. Introduction
- 2. Methodology
- 3. Results
- 4. Conclusions

Introduction

The universe we see and how to "break" it

Standard Model of Elementary Particles

LHC and CMS

Fig 1: Distribution of the different detectors at LHC and the CMS detector[1]

A physics process

The DHJW scenario

DTW scenario

General Approach

- Extract relevant information from CERN Open Data Portal
- 2. Use that information to generate images (two scenarios)
- 3. Use the images to train various CNN's architectures
- 4. The trained neural network with the best performance metric is employed to classify real collision data

Methodology

Data collection and information extraction

- The datasets used correspond to the simulation and real data obtained in 2015 during CMS Run II at 13 TeV. Open Data
- Muons, jets, MET

Image Generation

$$p_T = \sqrt{p_x^2 + p_y^2} \quad R = \alpha \cdot \ln p_T$$

Dataset	Number of Jets	Number of Images
D	1	83097
E	2	83097
F	3	83097
G	4	83097

Dataset	Number of Jets	Number of Images
A	0	110796
В	1	110796
С	2	64028

Table 1: Number of jets and number of images presented on Datasets A, B and

Table 2: Number of jets and number of images presented on Datasets D, E, F and G

DTW

- No MET or Muon charge information
- Constant Jets across the images

- MET and Muon charge information
- Variable number of Jets across the images

DHJW Images

Fig 3: Example of images belonging to dataset C

DTW Images

Fig 3: Example of images belonging to dataset G

Types of Neural Network

TICEC

- ResNet 50
- DenseNet
- InceptionV3
- MobileNet V2

Evaluating each model's accuracy, loss and F1 score sets foreword the most suitable model when classifying high-energy particle collision outcomes.

Training process and Evaluation Metrics

- 40 epochs with early stopping.
- Adam optimization algorithm and Softmax Loss
- The training and testing of the CNN models were conducted on Google Colaboratory using A100 GPU hardware accelerators.
- All the code can be found in https://github.com/jose8af/cnnhep-thesis [4]

Results

DTW

Dataset	Test Acc	Test Loss
A	0.7209	0.7463
В	0.7322	0.6944
C	0.7956	0.5148

Table 3: Accuracy and loss value of the DHJW datasets

Dataset	Test Acc	Test Loss
D	0.8012	0.4508
E	0.8208	0.4185
F	0.8355	0.3875
G	0.8416	0.3681

Table 4: Accuracy and loss value of the DTW datasets

Fig 4: Confusion matrices of the best model

DTW

DTW

Fig 5: Confusion matrices of the best model

Application of the model in real collision data

Fig 6: Dimuon invariant mass of real collision data

Fig 7: Dimuon invariant mass of the respective predictions

Conclusions

- Promising results were obtained for both DHJW and DTW scenarios with accuracies greater than 80 % in both cases
- ResNet50 has demonstrated to be the best CNN model among all the other popular options
- The DTW model could differentiate the Z boson resonance from a collection of real collision data

Muchas gracias! /
Thank you very much!

- [1] CERN LHC images gallery. (2023, March 23). Disponible en : https://home.cern/resources/image/accelerators/lhc-images-gallery
- [2] Izaak Neutelings.

Cms coordinate system. disponible en: https://tikz.net/axis3d cms/

- [3] C. F. Madrazo, I. H. Cacha, L. L. Iglesias, and J. M. de Lucas, "Application of a convolutional neural network for image classification to the analysis of collisions in high energy physics," CoRR, vol. abs/1708.07034, 2017.
- [4] "Ochoa, J. D. CNN-hep-thesis: Undergrad Thesis. using a CNN to classify different HEP processes. GitHub. Retrieved May 5, 2023, from https://github.com/jose8af/cnn-hep-thesis,"