POSSESSION OF MOBILES IN EXAM IS UFM PRACTICE

Name of student

Enrolment No.____

BENNETT UNIVERSITY, GREATER NOIDA B.TECH/ TEST – Supplementary Examination: FALL SEMESTER A.Y. 2018-2019						
COURSE NAME : E COURSE CREDIT: 3			ectromagnetics		MAX . MARKS: 100	
	3		1			
	ALL (QUESTIONS ARI	E COMPULSORY			
	1. Giv	ve brief answers wi	rith appropriate reasons to t	he following questi	ons: (8x4=32)	
	a) A positive charge of 1 μC is placed at the center of a cavity formed inside a <i>spherical</i> conducting shell having an inner radius 0.5 m and an outer radius 1 m. What is the					
electric field at a distance of 2 m from the center?					$\sim (1 - r^2/D^2)$ What is	
	b)	A sphere of radius R carries a charge density given by $\rho(r) = \rho_0(1 - r^2/R^2)$. What is the value of $\nabla \cdot \vec{E}$ at a point at a distance $R/4$ from the center?				
	c)		ced at the center of a dielection		s R and uniform dielectric	
constant K. Use Gauss's law and obtain \vec{D} within the sphere. d) Determine whether the vector function $\vec{G} = x^2 \hat{x} - 2xy \hat{y}$ can represent a magnetic function						
					epresent a magnetic field.	
	e) A cylindrical wire of radius R is carrying a current I which is uniformly distributed across its cross section. What is the value of $\nabla \times \vec{B}$ at a distance $2R$ from the axis?					
	f)					
	magnetized with magnetization $\overrightarrow{M} = M_0 \hat{z}$ parallel to the axis of the cylinder. Obtain the corresponding bound surface current density on the cylindrical surface.					
	a)	1 0	und surface current density etic field corresponding to	-		
	g)	_	inates) $\vec{A} = k\hat{\phi}$ where k is		1 potential (written in	
	h)	•	straight solenoid having n		th with circular cross	
	/		R and carrying a current I by			
		coaxially with the	e solenoid. Obtain the magi	netic field \overrightarrow{B} within	the rod.	
			of dielectric constant <i>K</i> and for separated by a distance			

(8)

(6)

(2)

c. What will be the bound surface charge density on the surface of the dielectric?

a. Find the electric field \vec{E} in the space between the plates, both within and outside the

is $+\sigma_f$ and that on the lower plate is $-\sigma_f$.

b. Obtain the electric polarization \vec{P} in the dielectric slab.

dielectric.

3. An infinitely long straight cylindrical wire of radius R made of a material with magnetic permeability μ carries a current I which is uniformly distributed across its cross section. a) Using Ampere's law, obtain the fields \vec{H} and \vec{B} in the regions r < R and r > R. **(8)** b) Obtain the surface bound current and volume bound current in the wire. **(6)** c) What is the value of $\nabla \times \vec{B}$ at a distance R/2 from the axis of the cylinder? **(2)** 4. A uniform magnetic field $\vec{B} = B(t)\hat{z}$ exists in a cylindrical region of radius R with a time varying magnetic field given by $B(t) = B_0 \sin \omega t$. Assuming that the induced electric field due to the time varying magnetic field is along $\widehat{\phi}$ direction (in cylindrical coordinates). a) Obtain the induced electric field \vec{E} at a distance r < R from the axis. **(6)** b) What will be the values of $\nabla \cdot \vec{E}$ and $\nabla \times \vec{E}$ for r < R and r > R? **(6)** 5. The voltage applied on a parallel plate capacitor with circular plates with radius R separated by a distance d and free space between the capacitor plates varies with time as V(t) = $V_0 \sin \omega t$. a) Obtain the displacement current density flowing between the plates of the capacitor. (6) b) Obtain the magnetic field between the plates of the capacitor at a distance R/2 from the Given that the displacement current density is $\vec{J}_D = \epsilon_0 \frac{\partial \vec{E}}{\partial t}$ where symbols have their usual meaning. 6. An electromagnetic wave propagating in free space (velocity of the wave is 3 x 108 m/s) is described by the following expression for the electric field (x is measured in meters): $\vec{E} = E_0 \hat{y} \cos[2\pi (10^6 x + vt)]$ a) What are the values of frequency and wavelength of the wave? **(4)** b) What is the direction of propagation of the wave? **(4)** c) Given that the corresponding magnetic field of the wave is $\vec{B} = \vec{B}_0 \cos[2\pi(10^6 x + vt)]$,

using Maxwell's equations obtain the magnitude and direction of \vec{B}_0 .

Some useful formulas

• In Cartesian coordinates:

$$\nabla f = \frac{\partial f}{\partial x} \hat{\imath} + \frac{\partial f}{\partial y} \hat{\jmath} + \frac{\partial f}{\partial z} \hat{k}$$

$$\nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

$$\nabla \times \vec{F} = \left[\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right] \hat{\imath} + \left[\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right] \hat{\jmath} + \left[\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right] \hat{k}$$

In spherical polar coordinates:

$$\nabla f = \frac{\partial f}{\partial r} \hat{\boldsymbol{r}} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\boldsymbol{\theta}} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{\boldsymbol{\phi}}$$

$$\nabla \cdot \vec{\boldsymbol{F}} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta F_\theta) + \frac{1}{r \sin \theta} \frac{\partial F_\phi}{\partial \phi}$$

$$\nabla \times \vec{\boldsymbol{F}} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta F_\phi) - \frac{\partial F_\theta}{\partial \phi} \right] \hat{\boldsymbol{r}} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial F_r}{\partial \phi} - \frac{\partial}{\partial r} (r F_\phi) \right] \hat{\boldsymbol{\theta}} + \frac{1}{r} \left[\frac{\partial}{\partial r} (r F_\theta) - \frac{\partial F_r}{\partial \theta} \right] \hat{\boldsymbol{\phi}}$$

• In cylindrical coordinates:

$$\begin{split} \nabla f &= \frac{\partial f}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial f}{\partial \phi} \hat{\phi} + \frac{\partial f}{\partial z} \hat{z} \\ \nabla \cdot \vec{F} &= \frac{1}{r} \frac{\partial}{\partial r} (rF_r) + \frac{1}{r} \frac{\partial F_\phi}{\partial \phi} + \frac{\partial F_z}{\partial z} \\ \nabla \times \vec{F} &= \left[\frac{1}{r} \frac{\partial F_z}{\partial \phi} - \frac{\partial F_\phi}{\partial z} \right] \hat{r} + \left[\frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r} \right] \hat{\phi} + \frac{1}{r} \left[\frac{\partial}{\partial r} (rF_\phi) - \frac{\partial F_r}{\partial \phi} \right] \hat{z} \end{split}$$

- $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N-m}^2$
- Maxwell's equations:

$$\nabla . \vec{E} = \frac{\rho}{\epsilon_0}$$

$$\nabla . \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$$

