# **Contents**

| 1           | Groups                                         | 2  |
|-------------|------------------------------------------------|----|
|             | 1.1 Notation                                   | 2  |
|             | 1.2 Groups                                     | 2  |
|             | 1.3 Symmetric Groups                           | 7  |
|             | 1.4 Cayley Tables                              | 10 |
| 2           | Subgroups                                      | 12 |
| 2<br>3<br>4 | 2.1 Subgroups                                  | 12 |
|             | 2.2 Alternating Groups                         | 14 |
|             | 2.3 Orders of Elements                         | 15 |
|             | 2.4 Cyclic Groups                              | 17 |
|             | 2.5 Non-cyclic Groups                          | 19 |
| 3           | 3 Normal Subgroups                             | 20 |
|             | 3.1 Homomorphisms and Isomorphisms             | 20 |
|             | 3.2 Cosets and Lagrange's Theorem              | 21 |
|             | 3.3 Normal Subgroups                           | 24 |
| 4           | Isomorphism Theorems                           | 28 |
|             | 4.1 Quotient Groups                            | 28 |
|             | 4.2 Isomorphism Theorems                       | 29 |
| 5           | 5 Group Actions                                | 32 |
|             | 5.1 Cayley's Theorem                           | 32 |
|             | 5.2 Group Actions                              | 33 |
| 6           | 5 Sylow Theorems                               | 37 |
|             | 6.1 <i>p</i> -groups                           | 37 |
|             | 6.2 Three Sylow Theorems                       | 38 |
| 7           | Finite Abelian Groups                          | 41 |
|             | 7.1 Primary Decomposition                      | 41 |
|             | 7.2 Structure Theorem of Finite Abelian Groups |    |

# 1 Groups

## 1.1 Notation

- 1.  $\mathbb{N} = \{1, 2, ...\}$
- 2.  $\mathbb{Z} = \{..., -1, 0, 1, ...\}$
- 3.  $\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{N} \right\}$
- 4.  $\mathbb{R}$  = real numbers
- 5.  $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}, i^2 = -1\}$

For  $n\in\mathbb{N}$ ,  $\mathbb{Z}_n=$  integers modulo  $n=\{[0],...,[n-1]\}$  where  $[r]=\{z\in\mathbb{Z}:Z\equiv r \ \mathrm{mod}\ n\}$  We note that the set  $S=\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C},\mathbb{Z}_n$  has 2 operations  $+,\cdot$ .

For  $n \in \mathbb{N}$ , an  $n \times n$  matrix over  $\mathbb{R}$  (or  $\mathbb{Q}$  or  $\mathbb{C}$ ) is an  $n \times n$  array

$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$

with  $a_{ij} \in \mathbb{R}$ .

Note we can also do  $+, \cdot$ . For  $A, B \in M_n(\mathbb{R})$ 

$$A + B := \begin{bmatrix} a_{ij} + b_{ij} \end{bmatrix} \quad A \cdot B := \begin{bmatrix} \sum_{k=1}^{n} a_{ik} b_{kj} \end{bmatrix}$$

## 1.2 Groups

#### **Definition 1.2.1**

Let G be a set and  $*: G \times G \to G$ . We say G is a group if the following are satisfied:

- 1. Associativity: if  $a, b, c \in G$ , then a \* (b \* c) = (a \* b) \* c
- 2. Identity: there is  $e \in G$  such that a \* e = e \* a = a for all  $a \in G$
- 3. Inverses: for all  $a \in G$ , there is  $a^{-1} \in G$  such that  $a * a^{-1} = a^{-1} * a = e$

#### **Definition 1.2.2**

A group is called *abelian* if a \* b = b \* a for all  $a, b \in G$ 

#### Exercise 1.2.1

Prove in the definition of a group, 1-sided identity and inverses are enough to have 2-sided identity and inverses

### **Proposition 1.1**

### previous exercise

Suppose G is a set,  $*: G \times G \to G$  is associative. Suppose there is  $e \in G$  such that e \* a = a for all  $a \in G$ . Further suppose that for every  $a \in G$ , there is  $a^{-1} \in G$  such that  $a^{-1} * a = e$ . Then for all  $a \in G$ ,

1. 
$$a * e = a$$

2. 
$$a * a^{-1} = e$$

## **Proof of 1:** Let $a \in G$ , then

$$a^{-1} * a * e = e * e = e = a^{-1} * a$$

Multiplying on the left by  $a^{-1}$  gives

$$a^{-1^{-1}} * a^{-1} * a * e = a^{-1^{-1}} * a^{-1} * a$$

$$\implies e * a * e = e * a$$

$$\implies a * e = a$$

**Proof of 2:** Let  $a \in G$ , then

$$a^{-1}*a*a^{-1}=e*a^{-1}=a^{-1}$$

Again multiplying on the left by  $a^{-1}$  gives

$$a * a^{-1} = e$$

## **Proposition 1.2**

Let G be a group, let  $a \in G$ . Then

- 1. The group identity is unique
- 2. The inverse of a is unique

**Proof of 1:** Suppose  $e_1, e_2$  are both identities. Then

$$e_1 = e_1 * e_2 = e_2$$

**Proof of 2:** Suppose  $b_1, b_2$  are inverses of a. Then

$$b_1 = b_1 * e = b_1 * (a * b_2) = (b_1 * a) * b_2 = e * b_2 = b_2$$

## Example 1.2.1

 $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$  are all abelian groups

### Example 1.2.2

 $(\mathbb{Z},\cdot),(\mathbb{Q},\cdot),(\mathbb{R},\cdot),(\mathbb{C},\cdot)$  are not groups as 0 has no inverse

## Example 1.2.3

but  $(\mathbb{Q} \setminus \{0\}, \cdot), (\mathbb{R} \setminus \{0\}, \cdot), (\mathbb{C} \setminus \{0\}, \cdot)$  are abelian groups

#### **Definition 1.2.3**

For a set  $(S, \cdot)$  let  $S^* \subseteq S$  denote the set of all elements with inverses.

#### Exercise 1.2.2

what is  $\mathbb{Z}_n^*$ ?

## Example 1.2.4

 $(M_n(\mathbb{R}),+)$  is an abelian group.

## Example 1.2.5

 $\begin{array}{l} \text{Consider } \left(M_{n(\mathbb{R})},\cdot\right) \text{ The identity matrix is } \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} \in M_n(\mathbb{R}) \\ \text{However, since not all } \\ M \in M_n(\mathbb{R}) \text{ have multiplicative inverses, } \left(M_n(\mathbb{R}),\cdot\right) \text{ is not a group.} \end{array}$ 

## **Notation**

$$\operatorname{GL}_n(\mathbb{R}) = \{ M \in M_n(\mathbb{R}) : \det(M) \neq 0 \}$$

#### Note

If  $A,B\in \mathrm{GL}_n(\mathbb{R})$ , then  $\det(AB)=\det(A)\det(B)\neq 0$  Thus  $AB\in \mathrm{GL}_n(\mathbb{R})$ . The associativity of  $\mathrm{GL}_n(\mathbb{R})$  inherits from  $M_n(\mathbb{R})$ . Also the identity matrix satisfies  $\det(I)=1\neq 0$  and thus  $I\in \mathrm{GL}_n(\mathbb{R})$ . Finally, for  $M\in \mathrm{GL}_n(\mathbb{R})$ , there exists  $M^{-1}\in M_n(\mathbb{R})$  such that  $MM^{-1}=I=M^{-1}M$  since  $\det(M^{-1})=\frac{1}{\det(M)}\neq 0$ , we have  $M^{-1}\in \mathrm{GL}_n(\mathbb{R})$ . Thus  $(\mathrm{GL}_n(\mathbb{R}),\cdot)$  is a group, called the general linear group of degree n over  $\mathbb{R}$ 

#### Note

if  $n \geq 2$ , then  $\operatorname{GL}_n(\mathbb{R})$  is not abelian.

#### Exercise 1.2.3

What is  $(GL_1(\mathbb{R}), \cdot)$ ?

**PMATH 347 Fall 2025** JAKE EDMONSTONE

### Example 1.2.6

Let G, H be groups. The *direct product* is the set  $G \times H$  with the component wise operation defined by

$$(g_1,h_1)*(g_2,h_2)=(g_1*_Gg_2,h_1*_Hh_2)$$

One can check that  $G \times H$  is a group with identity  $(e_G, e_H)$  and the inverse of (g, h) is  $(g^{-1}, h^{-1})$ 

### Note

One can show by induction that if  $G_1, ..., G_n$  are groups, then  $G_1 \times \cdots \times G_n$  is also a group.

#### **Notation**

Given a group G and  $g_1, g_2 \in G$ , we often denote  $g_1 * g_2$  by  $g_1g_2$  and its identity by 1. Also the unique inverse of an element  $g \in G$  is denoted by  $g^{-1}$ . Also for  $n \in \mathbb{N}$ , we define  $g^n = g * g * \cdots * g$  (n-times) and  $g^{-n} = (g^{-1})^n$ . Finally, we denote  $g^0 = 1$ .

#### **Proposition 1.3**

Let G be a group and  $g, h \in G$  we have

1. 
$$q^{-1-1} = q$$

2. 
$$(qh)^{-1} = h^{-1}q^{-1}$$

1. 
$$g^{-1-1} = g$$
  
2.  $(gh)^{-1} = h^{-1}g^{-1}$   
3.  $g^ng^m = g^{n+m}$  for all  $n, m \in \mathbb{Z}$ 

4. 
$$(g^n)^m = g^{nm}$$
 for all  $n, m \in \mathbb{Z}$ 

## **Proof of 1:** Since

$$g^{-1}g = 1 = gg^{-1}$$

so  $g^{-1^{-1}} = g$ 

Proof of 2:

$$(gh)\big(h^{-1}g^{-1}\big)=g\big(hh^{-1}\big)g^{-1}=g1g^{-1}=1$$

Similarly,

$$\left(h^{-1}g^{-1}\right)(gh)=1$$

Thus  $(gh)^{-1} = h^{-1}g^{-1}$ 

**Proof of 3:** We proceed by considering cases:

1. if n = 0 then

$$q^n q^m = q^0 q^m = 1q^m = q^m = q^{0+m} = q^{n+m}$$

2. if n > 0, we will proceed by induction on n. Case 1 establishes the base case. Let  $m \in \mathbb{Z}$ ,  $n \in \mathbb{Z}_{>0}$ . Suppose that  $g^n g^m = g^{n+m}$  Then

$$g^{n+1}g^m = gg^ng^m = gg^{n+m} = g^{n+m+1}$$

3. if n < 0, then n = -k for some  $k \in \mathbb{N}$ . We have

$$g^k g^n g^m = g^{k+n} g^m = g^0 g^m = g^m$$

also

$$g^k g^{n+m} = g^{k+m+n} = g^m$$

Thus

$$g^k g^n g^m = g^k g^{n+m}$$

So

$$g^n g^m = g^{n+m}$$

as desired.

**Proof of 4:** We proceed by considering cases:

- 1. if m = 0, then  $(g^n)^m = (g^n)^0 = 1 = g^0 = g^{n0} = g^{nm}$
- 2. if m > 0, then

$$(g^n)^m = \underbrace{g^n g^n \cdots g^n}_{m \text{ times}} = g^{nm}$$

3. if m < 0, then m = -k for some  $k \in \mathbb{N}$ . We will induct on k. For k = 1 we see that  $(g^n)^{-1} = g^{-n}$  since

$$g^n g^{-n} = g^{n-n} = g^0 = 1$$

Suppose  $(g^n)^{-\ell} = g^{-n\ell}$  for all  $1 \le \ell \le k$  Then

$$\left(g^{n}\right)^{-k-1}=\left(g^{n}\right)^{-k}\!\left(g^{n}\right)^{-1}=g^{-nk}g^{-n}=g^{-nk-n}=g^{-n(k+1)}$$

## Exercise 1.2.4

prove 3,4

#### Warning

In general, it is not the case that if  $g,h\in G$  then  $(gh)^n=g^nh^n$ , this is not true unless G is abelian

### **Proposition 1.4**

Let G be a group and  $g, h, f \in G$  Then

- 1. They satisfy the left and right cancellation. More precisely,
  - a. if gh = gf then h = f
  - b. if hg = fg then h = f
- 2. Given  $a, b \in G$  the equations ax = b and ya = b have unique solutions for  $x, y \in G$

**Proof of 1-a:** By left-multiplying by  $q^{-1}$ , we have

$$gh = gf \iff g^{-1}gh = g^{-1}gf \iff h = f$$

**Proof of 1-b:** similar to 1-a **Proof of 2:** Let  $x = a^{-1}b$  then

$$ax = aa^{-1}b = b$$

If u is another solution, then au=b=ax. By 1-a, u=x. Similarly,  $y=ba^{-1}$  is the unique solution of ya=b

## 1.3 Symmetric Groups

#### **Definition 1.3.1**

Given a non-empty set L, a permutation of L is a bijection from L to L. The set of all permutations of L is denoted by  $S_L$ 

## Example 1.3.1

Consider the set  $L = \{1, 2, 3\}$  which has the following different permutations

$$\binom{123}{123}, \binom{123}{132}, \binom{123}{213}, \binom{123}{231}, \binom{123}{312}, \binom{123}{321}$$

Where  $\binom{123}{123}$  denotes the bijection

$$\sigma:\{1,2,3\}\longrightarrow\{1,2,3\}$$

$$\sigma(1)=1, \sigma(2)=2, \sigma(3)=3$$

#### **Notation**

For  $n\in\mathbb{N}$  we denote by  $S_n=S_{\{1,2,\dots,n\}}$  the set of all permutations of  $\{1,2,\dots,n\}$ . We have seen that the order of  $S_3=3!=6$ . To consider the general  $S_n$ , we note that for a permutation  $\sigma\in S_n$ , there are n choices for  $\sigma(1),\,n-1$  choices for  $\sigma(2),\dots$ , 1 choice for  $\sigma(n)$  Thus

### **Proposition 1.5**

$$|S_n| = n!$$

Symmetric Groups 7

#### Note

For Möbius quizzes, use "9 dots" for permutations.

#### Remark

Given  $\sigma, \tau \in S_n$  we can compose them to get a new element  $\sigma\tau$ , where  $\sigma\tau = \{1,2,...,n\} \to \{1,2,...,n\}$  given by  $x \mapsto \sigma(\tau(x))$  Since both  $\sigma,\tau$  are bijections,  $\sigma\tau \in S_n$ 

## Example 1.3.2

Compute  $\sigma \tau$  and  $\tau \sigma$  if

$$\sigma = \begin{pmatrix} 1234 \\ 3412 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1234 \\ 2431 \end{pmatrix}$$

Then  $\sigma \tau(1)=\sigma(2)=4,...$  Then  $\sigma \tau=\binom{1234}{4213},$  and  $\tau \sigma=\binom{1234}{3124}$  We note that  $\sigma \tau \neq \tau \sigma$ 

#### Note

For any  $\sigma, \tau \in S_n$  we have that  $\tau\sigma, \sigma\tau \in S_n$  but  $\sigma\tau \neq \tau\sigma$  in general on the other hand, for any  $\sigma, \tau, \mu$  we have  $\sigma(\tau\mu) = (\sigma\tau)\mu$ . Also note the *identity permutation*  $\varepsilon \in S_n$  is defined as

$$\varepsilon = \begin{pmatrix} 12 \cdots n \\ 12 \cdots n \end{pmatrix}$$

Thus for any  $\sigma \in S_n$ , we have  $\sigma \varepsilon = \varepsilon \sigma = \sigma$ 

Finally, for  $\sigma \in S_n$ , since it is a bijection, there is a unique bijection  $\sigma^{-1} \in S_n$  called the *inverse permutation* of  $\sigma$  such that for all  $x, y \in \{1, 2, ..., n\}$ 

$$\sigma^{-1}(x) = y \Longleftrightarrow \sigma(y) = x$$

It follows that

$$\sigma(\sigma^{-1}(x)) = \sigma(y) = x$$

and

$$\sigma^{-1}(\sigma(y)) = y$$

i.e we have

$$\sigma\sigma^{-1}=\sigma^{-1}\sigma=\varepsilon$$

Symmetric Groups 8

### Example 1.3.3

$$\sigma = \binom{12345}{45123}$$

Then

$$\sigma^{-1} = \binom{12345}{34512}$$

From the above we have

#### **Proposition 1.6**

 $(S_n, \circ)$  is a group, called the *symmetric group of degree* n

#### Exercise 1.3.1

Write down all rotations and reflections that fix an equilateral triangle. Then check why it is the "same" as  $S_3$ 

#### Example 1.3.4

Consider

$$\sigma = \begin{pmatrix} 123456789(10) \\ 317694258(10) \end{pmatrix} \in S_{10}$$

We note that  $1 \to 3 \to 7 \to 2 \to 1$  and  $4 \to 6 \to 4$  and  $5 \to 9 \to 8$  and  $10 \to 10$  Thus  $\sigma$  can be *decomposed* into one 4-cycle (1372), one 2-cycle (46), and one 3-cycle (598) and one 1-cycle (10) (we usually do not write 1-cycles) Note that these cycles are *pairwise disjoint* and we have

$$\sigma = (1372)(46)(598)$$

We can also write  $\sigma = (46)(598)(1372)$ , or  $\sigma = (64)(985)(7213)$ 

#### Theorem 1.7

## **Cycle Decomposition**

If Given  $\sigma \in S_n$  with  $\sigma \neq \varepsilon$ , then  $\sigma$  is a product of (one or more) disjoint cycles of length at least 2. This factorization is unique up to the order of the factors.

**Proof:** See bonus 1.

#### Convention

Every permutation of  $S_n$  can be regarded as a permutation in  $S_{n+1}$  by fixing the number n+1, thus

$$S_1 \subseteq S_2 \subseteq \dots \subseteq S_n \subseteq S_{n+1}$$

Symmetric Groups 9

## 1.4 Cayley Tables

## **Definition 1.4.1**

For a finite group G, defining its operation by means of a table is sometimes convenient. Given  $x, y \in G$ , the product xy is the entry of the table in the row corresponding to x and the column corresponding to y, such a table is a *Cayley table*.

#### Remark

By cancellation, the entries in each row or column of a Cayley table are all distinct

## Example 1.4.1

Consider  $(\mathbb{Z}_2, +)$  its Cayley table is

$$\begin{array}{c|cccc} \mathbb{Z}_2 & [0] & [1] \\ \hline [0] & [0] & [1] \\ \hline [1] & [1] & [0] \\ \end{array}$$

## Example 1.4.2

Consider the group  $\mathbb{Z}^* = \{1, -1\}$ . Its Cayley table is

$$\begin{array}{c|cccc} \mathbb{Z}^* & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{array}$$

#### Note

If we replace 1 by [0] and -1 by [1] the Cayley tables of  $\mathbb{Z}^*$  and  $\mathbb{Z}_2$  become the same. In this case, we say  $\mathbb{Z}^*$  and  $\mathbb{Z}_2$  are *isomorphic* denoted by

$$\mathbb{Z}^* \cong \mathbb{Z}_2$$

Cayley Tables 10

## Example 1.4.3

For  $n \in \mathbb{N}$ , the *cyclic group of order* n is defined by

$$C_n = \left\{1, a, a^2, ..., a^{n-1}\right\}$$
 with  $a^n = 1$  and  $1, a, ..., a^{n-1}$  are distinct

The Cayley table of  $C_n$  is as follows

| $C_n$          | 1         | a         | $a^2$ |     | $a^{n-2}$ | $a^{n-1}$ |
|----------------|-----------|-----------|-------|-----|-----------|-----------|
| 1              | 1         | a         | $a^2$ | ••• | $a^{n-2}$ | $a^{n-1}$ |
| $\overline{a}$ | a         | $a^2$     | $a^3$ |     | $a^{n-1}$ | 1         |
| $a^2$          | $a^2$     | $a^3$     | $a^4$ |     | 1         | a         |
| :              | :         | :         | :     | ٠.  | :         | :         |
| $a^{n-2}$      | $a^{n-2}$ | $a^{n-1}$ | 1     |     | $a^{n-4}$ | $a^{n-3}$ |
| $a^{n-1}$      | $a^{n-1}$ | 1         | a     |     | $a^{n-3}$ | $a^{n-2}$ |

## **Proposition 1.8**

Let G be a group. Up to isomorphism, we have

- 1. If |G| = 1, then  $G \cong \{1\}$
- 2. If |G| = 2, then  $G \cong C_2$
- 3. If |G| = 3, then  $G \cong C_3$
- 4. If |G|=4, then  $G\cong C_4$  or  $G\cong K_4\cong C_2\times C_2$

**Proof of 1:** obviously

**Proof of 2:** If |G|=2 then  $G=\{1,g\}$  with  $g\neq 1$  Then  $g^2=g$  or  $g^2=1$ . We note that if  $g^2=g$ , then g=1 contradiction.thus  $g^2=1$ . Thus the Cayley table is as follows

$$egin{array}{c|c|c|c} G & 1 & g \\ \hline 1 & 1 & g \\ \hline g & g & 1 \\ \hline \end{array}$$

which is the same as  $C_2$ 

**Proof of 3:** If |G|=3, then  $G=\{1,g,h\}$  with  $g\neq 1, h\neq 1, g\neq h$  By cancellation, we have  $gh\neq g, gh\neq h$ , thus gh=1. Similarly, we have hg=1. Also, on the row for g, we have g1=g, gh=1. Since all entries in this row are distinct, we have  $g^2=h$ . Similarly, we have  $h^2=g$ . Thus we obtain the following Cayley table

| G              | 1 | g | h |
|----------------|---|---|---|
| 1              | 1 | g | h |
| g              | g | h | 1 |
| $\overline{h}$ | h | 1 | g |

Which is the same as  $C_3$ .

**Proof of 4:** See assignment 1

Cayley Tables 11

### Exercise 1.4.1

Consider the symmetry group of a non-square rectangle. How is it related to  $K_4$ ?

# 2 Subgroups

# 2.1 Subgroups

#### **Definition 2.1.1**

Let G be a group and  $H \subseteq G$ . If H itself is a group, then we say H is a *subgroup* of G.

#### Note

We note that since G is a group, for  $h_1, h_2, h_3 \in H \subseteq G$ , we have

$$h_1(h_2h_3) = (h_1h_2)h_3$$

Thus

## **Proposition 2.1**

**Subgroup Test** 

Let G be a group,  $H \subseteq G$ . Then H is a subgroup of G if

- 1. If  $h_1, h_2 \in H$ , then  $h_1 h_2 \in H$
- 2.  $1_H \in H$
- 3. If  $h \in H$ , then  $h^{-1} \in H$

#### Exercise 2.1.1

Prove that  $1_H = 1_G$ 

## Example 2.1.1

Given a group G, then  $\{1\}$ , G are subgroups of G

## Example 2.1.2

We have a chain of groups

$$(\mathbb{Z},+)\subseteq (\mathbb{Q},+)\subseteq (\mathbb{R},+)\subseteq (\mathbb{C},+)$$

Subgroups 12

#### Example 2.1.3

Define

$$\operatorname{SL}_n(\mathbb{R}) = (\operatorname{SL}_n(\mathbb{R}), \cdot) \coloneqq \{M \in M_n(\mathbb{R}), \det(M) = 1\} \subseteq \operatorname{GL}_n(\mathbb{R})$$

Note that the identity matrix  $I \in \mathrm{SL}_n(\mathbb{R})$ . Let  $A, B \in \mathrm{SL}_n(\mathbb{R})$ , then

$$\det(AB) = \det(A)\det(B) = 1 \cdot 1 = 1$$

and

$$\det(A^{-1}) = \frac{1}{\det(A)} = \frac{1}{1} = 1$$

i.e.  $AB, A^{-1} \in \mathrm{SL}_n(\mathbb{R})$ . By the subgroup test (Proposition 2.1),  $\mathrm{SL}_n(\mathbb{R})$  is a subgroup of  $\mathrm{GL}_n(\mathbb{R})$ . We call  $\mathrm{SL}_n(\mathbb{R})$  the special linear group of order n over  $\mathbb{R}$ 

#### **Definition 2.1.2**

Given a group G, we define the *center of* G to be

$$Z(G) \coloneqq \{z \in G \,|\, zg = gz \,\,\forall g \in G\}$$

#### Remark

Z(G) = G iff G is abelian.

#### **Proposition 2.2**

Z(G) is an abelian subgroup of G.

**Proof:** Note that  $1 \in Z(G)$ . Let  $y, z \in Z(G)$  Then for all  $g \in G$ , we have

$$(yz)g = y(zg) = y(gz) = (yg)z = (gy)z = g(yz)$$

Thus  $yz \in Z(G)$ . Also, for  $z \in Z(G)$ ,  $g \in G$  we have

$$zg = gz \iff z^{-1}(zg)z^{-1} = z^{-1}(gz)z^{-1}$$
$$\iff gz^{-1} = z^{-1}g$$

Thus  $z^{-1} \in Z(G)$ . By the subgroup test (Proposition 2.1), Z(G) is a subgroup of G. Also, by the definition of Z(G), we see that it is abelian.

## **Proposition 2.3**

Let H, K be subgroups of a group G. Then  $H \cap G$  is also a subgroup.

**Proof:** Exercise

Subgroups 13

#### **Proposition 2.4**

**Finite Subgroup Test** 

If  $H \neq \emptyset$  is a finite subset of a group G, then H is a subgroup of G iff H is closed under its operation.

#### **Proof:**

 $(\Longrightarrow)$  obvious

( $\Leftarrow$ ) For  $H \neq \emptyset$ , let  $h \in H$ . Since H is closed under its operation, we have  $h, h^2, h^3, ... \in H$ . Since H is finite, these elements are not all distinct. Thus  $h^n = h^{n+m}$  for some  $n, m \in \mathbb{N}$ . By cancellation,  $h^m = 1$  and thus  $1 \in H$ . Also,  $1 = h^{m-1}h$  implies that  $h^{-1} = h^{m-1}$  and thus  $h^{-1} \in H$ . By the subgroup test, H is a subgroup of G.

## 2.2 Alternating Groups

### **Definition 2.2.1**

A transposition  $\sigma \in S_n$  is a cycle of length 2. i.e.  $\sigma = (ab)$  with  $a, b \in \{1, 2, ..., n\}$  and  $a \neq b$ .

### Example 2.2.1

Consider  $(1245) \in S_5$ . Also the composition (12)(24)(45) can be computed as

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 5 & 4 \\
1 & 4 & 3 & 5 & 2 \\
2 & 4 & 3 & 5 & 1
\end{pmatrix}$$

Thus we have (1245) = (12)(24)(45) Also we can show that

$$(1245) = (23)(12)(25)(13)(24)$$

We see from this example that the factorization into transpositions are NOT unique. However, one can prove (see Bonus 2)

Theorem 2.5 Parity Theorem

If a permutation  $\sigma$  has two factorizations

$$\sigma = \gamma_1 \gamma_2 \cdots \gamma_r = \mu_1 \mu_2 \cdots \mu_s$$

Where each  $\gamma_i$  and  $\mu_j$  is a transposition, then  $r \equiv s \pmod{2}$ 

#### **Definition 2.2.2**

A permutation  $\sigma$  is *even* (or *odd*) if it can be written as a product of an even (or odd) number of transpositions. By the previous theorem, a permutation is either even or odd, but not both.

Alternating Groups 14

PMATH 347 Fall 2025 JAKE EDMONSTONE

### Theorem 2.6

For  $n \geq 2$ , let  $A_n$  denote the set of all even permutations in  $S_n$ 

- 1.  $\varepsilon\in A_n$ 2. If  $\sigma,\tau\in A_n$ , then  $\sigma\tau\in A_n$  and  $\sigma^{-1}\in A_n$ 3.  $|A_n|=\frac{1}{2}n!$

From (1) and (2), we see  $(A_n)$  is a subgroup of  $S_n$  called the alternating group of degree n.

**Proof of 1:** We can write  $\varepsilon = (12)(12)$ . Thus  $\varepsilon$  is even.

**Proof of 2:** if  $\sigma, \tau \in A_n$  we can write  $\sigma = \sigma_1 \cdots \sigma_r$  and  $\tau = \tau_1 \cdots \tau_s$  where  $\sigma_i, \tau_j$  are transpositions and r, s are even integers. Then

$$\sigma \tau = \sigma_1 \cdots \sigma_r \tau_1 \cdots \tau_s$$

is a product of (r+s) transpositions and thus  $\sigma \tau \in A_n$ . Also, we note that  $\sigma_i$  is a transposition, we have  $\sigma_i^2 = \varepsilon$  and thus  $\sigma_i^{-1} = \sigma_i$ . It follows that

$$\sigma^{-1} = \left(\sigma_1 \cdots \sigma_r\right)^{-1} = \sigma_r^{-1} \cdots \sigma_1^{-1} = \sigma_r \cdots \sigma_1$$

which is an even permutation.

**Proof of 3:** Let  $O_n$  denote the set of odd permutations in  $S_n$ . Thus  $S_n = A_n \cup O_n$  and the parity theorem implies that  $A_n \cap O_n = \emptyset$ . Since  $|S_n| = n!$ , to prove  $|A_n| = \frac{1}{2}n!$ , it suffices to show that  $|A_n|=|O_n|$ . Let  $\gamma=(12)$  and let  $f:A_n\to O_n$  be defined by  $f(\sigma)=\gamma\sigma$ . Since  $\sigma$  is even, we have  $\gamma\sigma$ is odd. Thus the map is well-defined. Also, if we have  $\gamma \sigma_1 = \gamma \sigma_2$ , then by cancellation, we get  $\sigma_1 = \sigma_2$ , thus f is injective. Finally, if  $\tau \in O_n$ , then  $\sigma = \gamma \tau \in A_n$  and  $f(\sigma) = \gamma \sigma = \gamma(\gamma \tau) = \gamma^2 \tau = \tau$ . Thus f is surjective. It follows that f is a bijection, thus  $|A_n| = |O_n|$ . It follows that  $|A_n| = \frac{1}{2}n! = |O_n|$ 

## 2.3 Orders of Elements

#### **Notation**

If G is a group and  $g \in G$ , we denote

$$\langle g \rangle = \left\{ g^k \,\middle|\, k \in \mathbb{Z} \right\} = \left\{ ..., g^{-1}, g^0 = 1, g, g^2, ... \right\}$$

Note that  $1 = g^0 \in \langle g \rangle$ . Also, if  $x = g^m, y = g^n \in \langle g \rangle$  With  $m, n \in \mathbb{Z}$ , then  $xy = g^n g^m = g^{n+m} \in \langle g \rangle$  and  $x^{-1} = g^{-m} \in \langle g \rangle$ . By the subgroup test, we have

#### **Proposition 2.7**

If *G* is a group and  $g \in G$ , then  $\langle g \rangle$  is a subgroup of *G*.

#### **Definition 2.3.1**

Let G be a group with  $g \in G$ . We call  $\langle g \rangle$  the cyclic subgroup of G generated by g. If  $G = \langle g \rangle$  for some  $g \in G$ , then we say G is cyclic and g a generator of G.

Orders of Elements 15 **PMATH 347 Fall 2025** JAKE EDMONSTONE

### Example 2.3.1

Consider  $(\mathbb{Z}, +)$  Note that for all  $k \in \mathbb{Z}$ , we can write  $k = k \cdot 1$ . Thus we can see  $(\mathbb{Z}, +) = \langle 1 \rangle$ . Similarly,  $(\mathbb{Z}, +) = \langle -1 \rangle$ . We observe, for any integer  $n \in \mathbb{Z}$  with  $n \neq \pm 1$  there exist no  $k \in \mathbb{Z}$ such that  $k \cdot n = 1$ . Thus  $\pm 1$  are the only generators of  $(\mathbb{Z}, +)$ .

#### Remark

Let G be a group and  $g \in G$ . Suppose there is  $k \in \mathbb{Z}$   $k \neq 0$  such that  $g^k = 1$  then  $g^{-k} = (g^k)^{-1} = 1$ . Thus we can assume  $k \ge 1$ . Then by the well-ordering principle, there exists the smallest positive integer n such that  $g^n = 1$ 

#### **Definition 2.3.2**

Let G be a group and  $g \in G$ . If n is the smallest positive integer such that  $g^n = 1$ , then we say the order of g is n, denoted o(g) = n. If no such n exists, we say g has infinite order and write  $o(g) = \infty$ 

## **Proposition 2.8**

Let G be a group and  $g \in G$  with  $o(g) = n \in \mathbb{N}$ . For  $k \in \mathbb{Z}$  we have

- 2.  $g^k=g^m$  iff  $k\equiv m\pmod n$ 3.  $\langle g\rangle=\{1,g,g^2,...,g^{n-1}\}$  where  $1,g,...,g^{n-1}$  are all distinct. In particular, we have

#### Proof of 1:

 $(\Leftarrow)$  if  $n \mid k$ , then k = nq for some  $q \in \mathbb{Z}$ . Thus

$$g^k = g^{nq} = (g^n)^q = 1^q = 1$$

 $(\Longrightarrow)$  By the division algorithm, we can write k = nq + r with  $q, r \in \mathbb{Z}$  and  $0 \le r < n$ . Since  $g^k = 1$ and  $q^n = 1$ , we have

$$g^r = g^{k-nq} = g^k(g^n)^{-q} = 1 \cdot 1^{-q} = 1$$

Since  $0 \le r < n$  and o(g) = n, we have r = 0 and hence  $n \mid k$ .

**Proof of 2:** Note that  $q^k = q^m$  iff  $q^{km} = 1$ . By (1), we have  $n \mid (km)$  i.e.  $k \equiv m \pmod{n}$ 

**Proof of 3:** It follows from (2) that  $1, g, ..., g^{n-1}$  are all distinct. Clearly, we have  $\{1, g, ..., g^{n-1}\} \subseteq \langle g \rangle$ . To prove the other inclusion, let  $g^k \in \langle g \rangle$  for some  $k \in \mathbb{Z}$ . Write k = nq + r with  $n, r \in \mathbb{Z}$  and  $0 \le r < n$ . Then

$$g^k = g^{nq+r} = g^{nq}g^r = (g^n)^q g^r = 1^q g^r = g^r \in \{1, g, ..., g^{n-1}\}$$

Thus 
$$\langle g \rangle = \{1, g, ..., g^{n-1}\}$$

Orders of Elements 16

### **Proposition 2.9**

Let G be a group and  $g \in G$  with  $o(g) = \infty$ . For  $k \in \mathbb{Z}$  we have

- 1.  $g^k = 1$  iff k = 0
- $2. \ g^k = g^m \text{ iff } k = m$
- 3.  $\langle g \rangle = \left\{..., g^{-1}, g^0 = 1, g, ...\right\}$  where  $g^i$  are all distinct

## **Proposition 2.10**

Let G be a group and  $g \in G$  with  $o(g) = n \in \mathbb{N}$ . If  $d \in \mathbb{N}$ , then  $o(g^d) = \frac{n}{\gcd(n,d)}$ . In particular, if  $d \mid n$ , then  $\gcd(n,d) = d$  and  $o(g^d) = \frac{n}{d}$ 

**Proof:** Let  $n_1=\frac{n}{\gcd(n,d)}$  and  $d_1=\frac{d}{\gcd(n,d)}$ . By a result from Math 135, we have  $\gcd(n_1,d_1)=1$ . Note that

$$\left(g^{d}\right)^{n_{1}} = \left(g^{d}\right)^{\frac{n}{\gcd(n,d)}} = \left(g^{n}\right)^{\frac{d}{\gcd(n,d)}} = 1$$

Thus it remains to show that  $n_1$  is the smallest such positive integer. Suppose  $\left(g^d\right)^r=1$  with  $r\in\mathbb{N}$ . Since o(g)=n, by proposition, we have  $n\mid dr$ . Thus there is  $q\in\mathbb{Z}$  such that dr=nq. Dividing both sides by  $\gcd(n,d)$  we get

$$d_1r = \frac{d}{\gcd(n,d)}r = \frac{n}{\gcd(n,d)}q = n_1q$$

Since  $n_1 \mid d_1 r$  and  $\gcd(n_1, d_1) = 1$ , by a result from Math 135, we get  $n_1 \mid r$  i.e.  $r = n_1 \ell$  for some  $\ell \in \mathbb{Z}$ . Since  $r_1, n_1 \in \mathbb{N}$ , it follows that  $\ell \in \mathbb{N}$ . Since  $\ell \geq 1$ , we get  $r \geq n_1$ 

## 2.4 Cyclic Groups

#### Remark

For a group G, if  $G = \langle g \rangle$  for some  $g \in G$ , then G is a cyclic group. For  $a, b \in G$ , we have  $a = g^n, b = g^m$  for some  $m, n \in \mathbb{Z}$ . We have

$$ab=g^ng^m=g^{n+m}=g^{m+n}=g^mg^n=ba$$

## **Proposition 2.11**

Every cyclic group is abelian

## Warning

The converse of the above proposition is not true. For example the Klein 4 group is abelian, but not cyclic.

#### **Proposition 2.12**

Every subgroup of a cyclic group is cyclic.

Cyclic Groups 17

**Proof:** Let  $G = \langle g \rangle$  be cyclic and  $H \subseteq G$  a subgroup. If  $H = \{1\}$ , then H is cyclic. Otherwise, there is  $g^k \in H$  with  $k \in \mathbb{Z} \setminus \{0\}$ . Since H is a group, we have  $g^{-k} \in H$ . Thus we can assume that  $k \in \mathbb{N}$ . Let m be the smallest positive integer such that  $g^m \in H$ .

<u>Claim</u>:  $H = \langle g^m \rangle$ 

Proof is exercise, by division algorithm.

## **Proposition 2.13**

Let  $G = \langle g \rangle$  be a cyclic group with o(g) = n. Then  $G = \langle g^k \rangle$  iff  $\gcd(k, n) = 1$ .

**Proof:** By proposition,

$$o\big(g^k\big) = \frac{n}{\gcd(n,k)} = n$$

#### Theorem 2.14

### **Fundamental Theorem of Finite Cyclic Groups**

Let  $G = \langle g \rangle$  be a cyclic group with  $o(g) = n \in \mathbb{N}$ .

- 1. If H is a subgroup of G, then  $G = \langle g^d \rangle$  for some  $d \mid n$ . It follows that  $|H| \mid |G|$ .
  - 2. Conversely, if  $k \mid n$ , then  $\langle g^{\frac{n}{k}} \rangle$  is the unique subgroup of G with order k.

**Proof of 1:** By proposition, H is cyclic. Write  $H = \langle g^n \rangle$  for some  $m \in \mathbb{N} \cup \{0\}$ . Let  $d = \gcd(m, n)$ . Claim:  $H = \langle g^d \rangle$ 

Since  $d \mid m$  we have m = dk for some  $k \in \mathbb{Z}$ . Then

$$g^m = g^{dk} = \left(g^d\right)^k \in \langle g^d \rangle$$

Thus  $H=\langle g^m\rangle\subseteq\langle g^d\rangle$ . To prove the other inclusion, since  $d=\gcd(m,n)$ , there is  $x,y\in\mathbb{Z}$  such that d=mx+ny. Then

$$g^d = g^{mx+ny} = (g^m)^x (g^n)^y = (g^m)^x 1^y = (g^m)^x \in \langle g^m \rangle$$

Thus  $\langle g^d \rangle \subseteq \langle g^m \rangle = H$ . It follows that  $H = \langle g^d \rangle$ . Note that since  $d = \gcd(m, n)$ , we have  $d \mid n$ . By proposition, we have

$$|H| = o\big(g^d\big) = \frac{n}{\gcd(n,d)} = \frac{n}{d}$$

Thus  $|H| \mid |G|$  **Proof of 2:** By proposition, the cyclic subgroup  $\langle g^{\frac{n}{k}} \rangle$  is of order

$$\frac{n}{\gcd(n,\frac{n}{k})} = \frac{n}{n/k} = k$$

To show uniqueness, let K be a subgroup of G with order  $k \mid n$ . By 1, let  $K = \langle g^d \rangle$  where  $d \mid n$ . Then by props, we have,

$$k = |K| = o(g^d) = \frac{n}{\gcd(n, d)} = \frac{n}{d}$$

Cyclic Groups 18

It follows that  $d = \frac{n}{k}$  and thus  $K = \langle g^{\frac{n}{k}} \rangle$ 

## 2.5 Non-cyclic Groups

#### **Definition 2.5.1**

Let X be a non-empty subset of a group G, and let

$$\langle X \rangle \coloneqq \left\{ x_1^{k_1} \cdots x_m^{k_m} \ \middle| \ x_i \in X, k_i \in \mathbb{Z}, m \geq 1 \right\}$$

denote the set of all products of powers of (not necessarily distinct) elements of X. Note that this is clearly a group.  $\langle X \rangle$  is called the *subgroup of G generated by X*.

## Example 2.5.1

The Klein-4 group  $K_4 = \{1, a, b, c\}$  with  $a^2 = b^2 = c^2 = 1$  and ab = c. Thus

$$K_4 = \langle a, b \mid a^2 = 1 = b^2 \text{ and } ab = ba \rangle$$

### Example 2.5.2

The symmetric group of order 3  $S_3=\left\{\varepsilon,\sigma,\sigma^2,\tau,\tau\sigma,\tau\sigma^2\right\}$  where  $\sigma^3=\varepsilon=\tau^2$  and  $\sigma\tau=\tau\sigma^2$  (one can take  $\tau=(12)$  and  $\sigma=(123)$ ) Thus

$$\langle \sigma, \tau \mid \sigma^3 = \varepsilon = \tau^2 \text{ and } \sigma\tau = \tau\sigma^2 \rangle$$

We can also replace  $\sigma, \tau$  with  $\sigma, \tau \sigma$  or  $\sigma, \tau \sigma^2, ...,$  etc

#### **Definition 2.5.2**

For  $n \geq 2$  the dihedral group of order 2n is defined by

$$D_{2n} = \{1, a, ..., a^{n-1}, b, ba, ..., ba^{n-1}\}$$

Where  $a^n = 1 = b^2$  and aba = b. Thus

$$D_{2n} = \langle a, b \mid a^n = 1 = b^2 \text{ and } aba = b \rangle$$

#### Note

For n = 2 or 3 we have

$$D_4\cong K_4\quad \text{and}\quad D_6\cong S_3$$

#### Exercise 2.5.1

For  $n \geq 3$ , consider a regular n-gon and its group of symmetries. How does it relate to  $D_{2n}$ ?

Non-cyclic Groups 19

# 3 Normal Subgroups

## 3.1 Homomorphisms and Isomorphisms

#### **Definition 3.1.1**

Let G, H be groups. A mapping  $\alpha: G \to H$  is a homomorphism if

$$\alpha(a *_G b) = \alpha(a) *_H \alpha(b) \quad \forall a, b \in G$$

To simplify notation, we often write

$$\alpha(ab) = \alpha(a)\alpha(b) \quad \forall a, b \in G$$

## Example 3.1.1

Consider the determinant map

$$\det: \operatorname{GL}_n(\mathbb{R}) \longrightarrow \mathbb{R}^*$$
$$A \longmapsto \det A$$

Since  $\det AB = \det A \det B$ , the mapping  $\det$  is a homomorphism.

## **Proposition 3.1**

Let  $\alpha: g \to H$  be a group homomorphism. Then

- 1.  $\alpha(1_G) = 1_H$
- 2.  $\alpha(g^{-1}) = \alpha(g)^{-1} \quad \forall g \in G$
- 3.  $\alpha(g^k) = \alpha(g)^k \quad \forall k \in \mathbb{Z}$

#### **Definition 3.1.2**

Let  $\alpha: G \to H$  be a mapping between groups. If  $\alpha$  is a homomorphism and  $\alpha$  is bijective, we say  $\alpha$  is an *isomorphism*. In this case, we say G, H are *isomorphic* and write  $G \cong H$ .

#### **Proposition 3.2**

We have

- 1. The identity map  $id: G \to G$  is an isomorphism.
- 2. If  $\sigma:G\to H$  is an isomorphism, then the inverse map  $\sigma^{-1}:h\to G$  is also an isomorphism.
- 3. If  $\sigma:G\to H$  and  $\tau:H\to K$  is an isomorphism, the composite map  $\tau\sigma:G\to K$  is also an isomorphism.

So  $\cong$  is (sort-of) an equivalence relation

*Proof:* Exercise.

#### Example 3.1.2

Let  $\mathbb{R}^+ = \{r \in \mathbb{R} \mid r > 0\}$ . Then  $(\mathbb{R}, +) \cong (\mathbb{R}^+, \cdot)$  since we see that

$$\sigma: \mathbb{R} \to \mathbb{R}^+$$
$$x \longmapsto e^x$$

is a bijection. Moreover,  $\sigma(x+y)=e^{x+y}=e^x\cdot e^y=\sigma(x)\sigma(y)$  thus  $\sigma$  is an isomorphism.

## Example 3.1.3

<u>Claim:</u>  $(\mathbb{Q}, +) \ncong (\mathbb{Q}^*, \cdot)$  Suppose  $\tau : (\mathbb{Q}, +) \to (\mathbb{Q}^*, \cdot)$  is an isomorphism. Thus  $\tau$  is surjective. So there is some  $q \in \mathbb{Q}$  such that  $\tau(q) = 2$ . Then

$$\tau \left(\frac{q}{2}\right)^2 = \tau \left(\frac{q}{2}\right) \tau \left(\frac{q}{2}\right) = \tau \left(\frac{q}{2} + \frac{q}{2}\right) = \tau(q) = 2$$

Thus  $\tau(\frac{q}{2})$  is a rational number whose square is 2, a contradiction.

## 3.2 Cosets and Lagrange's Theorem

#### **Definition 3.2.1**

Let H be a subgroup of a group G. If  $a \in G$ , we define

$$Ha = \{ha \mid h \in H\}$$

to be the *right coset of H generated by a*. We define the left coset similarly.

#### Remark

Since  $1 \in H$ , we have H1 = H = 1H. Also  $a \in Ha$  and  $a \in aH$ . Note that in general Ha and aH are not subgroups of G, and  $aH \neq Ha$ . However, if G is abelian, then Ha = aH.

## Example 3.2.1

Let  $K_4 = \{1, a, b, ab\}$ . Let  $H = \{1, a\}$  which is a subgroup of  $K_4$ . Note that since  $K_4$  is abelian, we have gH = Hg for all  $g \in K_4$ . Then the (right or left) cosets of H are

$$H1=\{1,a\}=1H$$

and

$$Hb = \{b, ab\} = Hab$$

Thus there are exactly two cosets of H in  $K_4$ 

### Example 3.2.2

Let  $S_3=\left\{ arepsilon,\sigma,\sigma^2,\tau,\tau\sigma,\tau\sigma^2 \right\}$  with  $\sigma^3=arepsilon=\tau^2$  and  $\sigma\tau\sigma=\tau$ . Let  $H=\left\{ arepsilon,\tau \right\}$  which is a subgroup of  $S_3$ . Since  $\sigma\tau=\tau\sigma^{-1}=\tau\sigma^2$ , the right cosets of H are

$$\begin{split} H\varepsilon &= \{\varepsilon,\tau\} &= H\tau \\ H\sigma &= \{\sigma,\tau\sigma\} &= H\tau\sigma \\ H\sigma^2 &= \left\{\sigma^2,\tau\sigma^2\right\} &= H\tau\sigma^2 \end{split}$$

And the left cosets of H are

$$\varepsilon H = \{\varepsilon, \tau\} = \tau H$$
$$\sigma H = \{\sigma, \tau \sigma^2\} = \tau \sigma^2 H$$
$$\sigma^2 H = \{\sigma^2, \tau \sigma\} = \tau \sigma H$$

Notice that  $H\sigma \neq \sigma H$  and  $H\sigma^2 \neq \sigma^2 H$ 

### **Proposition 3.3**

Let H be a subgroup of a group G and let  $a, b \in G$ .

- 1. Ha = Hb if and only if  $ab^{-1} \in H$ . In particular, we have Ha = H if and only if  $a \in H$ .
- 2. If  $a \in Hb$ , then Ha = Hb
- 3. Either Ha = Hb or  $Ha \cap Hb = \emptyset$ . Thus, the distinct right cosets of H forms a partition of G.

#### **Proof of 1:**

 $(\Longrightarrow)$  If Ha=Hb, then  $a=1a\in Ha=Hb$ . Thus a=hb for some  $h\in H$  and we have  $ab^{-1}=h\in H$ .  $(\Longleftrightarrow)$  Suppose  $ab^{-1}\in H$  for all  $h\in H$ . Then for all  $h\in H$ ,

$$ha = hab^{-1}b = h(ab^{-1})b \in Hb$$

Thus  $Ha \subseteq Hb$ . Note that if  $ab^{-1} \in H$ , since H is a subgroup, then

$$(ab^{-1})^{-1} = ba^{-1} \in H$$

Thus for all  $h \in H$ ,

$$hb=h\big(ba^{-1}\big)a\in Ha$$

Thus  $Hb \subseteq Ha$ . It follows that Ha = Hb.

**Proof of 2:** If  $a \in Hb$ , then  $ab^{-1} \in H$ . Thus, by (1), we have Ha = Hb.

**Proof of 3:** Two cases:

- 1. If  $Ha \cap Hb = \emptyset$ , then we are done.
- 2. If  $Ha \cap Hb \neq \emptyset$ , then there exists  $x \in Ha \cap Hb$ . Since  $x \in Hb$ , by (2), we have Hb = Hx. Thus

$$Ha = Hx = Hb$$

#### Remark

The analogues of the previous proposition also holds for left cosets

1. aH = bH if and only if  $b^{-1}a \in H$ 

#### Exercise 3.2.1

Let G be a group and H a subset of G. For  $a, b \in G$ , do we still have Ha = Hb, or  $Ha \cap Hb = \emptyset$  if H is not a subgroup of G.

#### **Definition 3.2.2**

By the previous proposition, we see that G can be written as a disjoint union of right cosets of H. We define the index [G:H] to be the number of disjoint right (or left) cosets of H in G. (Note that [G:H] could be infinite).

Theorem 3.4 Lagrange's Theorem

Let H be a subgroup of a finite group G. We have  $|H| \mid |G|$  and

$$[G:H] = \frac{|G|}{|H|}$$

**Proof:** Write k = [G:H] and let  $Ha_1, ..., Ha_k$  be the distinct right cosets of H in G. By prop

$$G = Ha_1 \sqcup \cdots \sqcup Ha_k$$

is a disjoint union. Since  $|Ha_i| = |H|$  for each i, we have

$$|G| = |Ha_1| + \dots + |Ha_k| = k|H|$$

It follows that  $|H| \mid |G|$  and  $[G:H] = k = \frac{|G|}{|H|}$ .

#### **Corollary 3.5**

- 1. If G is a finite group and  $g \in G$  then  $o(g) \mid |G|$
- 2. If G is a finite group with |G|=n, then for all  $g\in G$ , we have  $g^n=1$

**Proof of 1:** Take  $H = \langle g \rangle$  in the theorem. Note that |H| = o(g) **Proof of 2:** Let o(g) = m then by (1), we have  $m \mid n$ . Thus

$$g^n = (g^m)^{\frac{n}{m}} = 1^{\frac{n}{m}} = 1$$

### Example 3.2.3

For  $n \in \mathbb{N}$  with  $n \geq 2$ , let  $\mathbb{Z}_n^*$  be the set of (multiplicative) invertible elements in  $\mathbb{Z}_n$ . Let the Euler's  $\varphi$ -function  $\varphi(n)$ , denote the order of  $\mathbb{Z}_n^*$ . i.e.

$$\varphi(n) = |\{[k] \in \mathbb{Z}_n \mid k \in \{0, 1, ..., n-1\} \text{ and } \gcd(k, n) = 1\}|$$

As a direct consequence of the corollary, we see that if  $a \in \mathbb{Z}$  with  $\gcd(a,n) = 1$ , then  $a^{\varphi(n)} \equiv 1 \pmod{n}$ . This is Euler's Theorem. If n = p, a prime number, then Euler's Theorem implies that  $a^{p-1} \equiv 1 \pmod{p}$ , which is Fermat's little theorem.

## Recall

If |G|=2 then  $G\cong C_2$ , and |G|=3 then  $G\cong C_3$ .

#### **Corollary 3.6**

If G is a group with |G| = p a prime, then  $G \cong C_p$ , the cyclic group of order p.

**Proof:** Let  $g \in G$  with  $g \neq 1$ . Then by corollary, we have  $o(g) \mid p$ . Since  $g \neq 1$  and p is a prime, we have o(g) = p. By proposition, we have

$$|\langle g \rangle| = o(g) = p$$

It follows that  $G \cong \langle g \rangle \cong C_p$ 

#### **Corollary 3.7**

Let *H* and *K* be finite subgroups of a group *G*. If gcd(|H|, |K|) = 1, then  $H \cap K = \{1\}$ .

**Proof:** Note  $H \cap K$  is a subgroup of H and K. So by Lagrange's Theorem, we have  $|H \cap K| \mid |H|$  and  $|H \cap K| \mid |K|$ . It follows that  $|H \cap K| \mid |\gcd(|H|, |K|)$ , i.e.  $|H \cap K| = 1$  Thus  $H \cap K = \{1\}$ .

## 3.3 Normal Subgroups

#### **Definition 3.3.1**

Let H be a subgroup of a group G. If gH = Hg for all  $g \in G$ , we say H is *normal*, denoted by  $H \triangleleft G$ .

## Example 3.3.1

We have  $\{1\} \triangleleft G$  and  $G \triangleleft G$ .

#### Example 3.3.2

The center Z(G) of G is an abelian subgroup of G. By its definition,  $Z(G) \triangleleft G$ . Thus every subgroup of Z(G) is normal in G.

Normal Subgroups 24

### Example 3.3.3

If G is an abelian group, then every subgroup of G is normal in G. Note the converse is false (see assignment 3)

## Proposition 3.8 Normality Test

Let H be a subgroup of a group G. The following are equivalent:

- 1.  $H \triangleleft G$
- 2.  $gHg^{-1} \subseteq H$  for all  $g \in G$ . We call  $gHg^{-1}$  a conjugate of H
- 3.  $gHg^{-1} = H$  for all  $g \in G$ . (Thus  $H \triangleleft G$  if and only if H is the only conjugate of H)

 $\begin{array}{l} \textit{Proof of } (1) \Longrightarrow (2) \text{: Let } ghg^{-1} \in gHg^{-1} \text{ for some } h \in H. \text{ Then by (1), } gh \in gH = Hg, \text{ say } gh = h_1g \\ \text{for some } h_1 \in H. \text{ Then } ghg^{-1} = h_1gg^{-1} = h_1 \in H. \\ \textbf{Proof of } (2) \Longrightarrow (3) \text{: If } g \in G, \text{ then by (2), } gHg^{-1} \subseteq H. \text{ Taking } g^{-1} \text{ in place of } g \text{ in (2), we get} \\ g^{-1}Hg \subseteq H. \text{ Thus implies that } H \subseteq gHg^{-1} \text{ Thus } H = gHg^{-1}. \\ \textbf{Proof of (3)} \Longrightarrow (1) \text{: If } gHg^{-1} = H, \text{ then } gH = Hg. \\ \end{array}$ 

## Example 3.3.4

Let  $G=\mathrm{GL}_n(\mathbb{R})$  and  $H=\mathrm{SL}_n(\mathbb{R})$ . For  $A\in G$  and  $B\in H$ , we have  $\det(ABA^{-1})=\det A\det B\det A^{-1}=\det B=1$ 

Thus  $ABA^{-1} \in H$  and it follows that  $AHA^{-1} \subseteq H$  for all  $A \in G$ , so by the normality test,  $\mathrm{SL}_n(\mathbb{R}) \lhd \mathrm{GL}_n(\mathbb{R})$ .

## **Proposition 3.9**

If H is a subgroup of a group G with [G:H]=2, then  $H \lhd G$ .

**Proof:** Let  $g \in G$ , If  $g \in H$ , then Hg = H = gH. If  $g \notin H$ , since [G : H] = 2, then  $G = H \sqcup Hg$ , a disjoint union. Then  $Hg = G \setminus H$ . Similarly,  $gH = G \setminus H$ . Thus gH = Hg for all  $g \in G$  i.e.  $H \lhd G$ .  $\square$ 

## Example 3.3.5

Let  $A_n$  be the alternating group contained in  $S_n$ . Since  $[S_n:A_n]=2$ . By proposition, we have  $A_n\lhd S_n$ .

## Example 3.3.6

Let  $D_{2n}=\langle a,b \mid a^n=1=b^2 \text{ and } aba=b \rangle$  be the dihedral group of order 2n. Since  $[D_{2n}:\langle a \rangle]=2$ , by proposition,  $\langle a \rangle \lhd D_{2n}$ 

Let H and K be subgroups of a group G. Then the intersection  $H \cap K$  is the largest subgroup of G that contained in both H and K.

Question: What is the smallest subgroup containing H and K? Note that  $H \cup K$  is the smallest subset

Normal Subgroups 25

containing H and K, but  $H \cup K$  is a subgroup if and only if  $H \subseteq K$  or  $H \supseteq K$ . A more useful subset to consider is the *product* HK of H and K defined as follows

#### **Definition 3.3.2**

 $HK = \{hk \mid h \in H, k \in K\}$ 

#### Remark

The product of 2 subgroups is not always a subgroup.

#### **Lemma 3.10**

Let H and K be subgroups of a group G, then the following are equivalent:

- 1. HK is a subgroup of G
- 2. HK = KH
- 3. KH is a subgroup of G.

**Proof of**  $(1 \Leftrightarrow 2)$ : Note that  $(2 \Leftrightarrow 3)$  will follow after exchanging H and K. Suppose (2) holds, we have  $1 = 1 \cdot 1 \in HK$ . Also if  $hk \in HK$ , then  $(hk)^{-1} = k^{-1}h^{-1} \in KH = HK$ . Also for  $hk, h_1, k_1 \in HK$ , we have  $kh_1 \in KH = HK$ , say  $kh_1 = h_2k_2$ , it follows that

$$(hk)(h_1k_1)=h(kh_1)k_1=h(h_2k_2)k_1=(hh_2)(k_2k_1)\in HK$$

By the subgroup test, HK is a subgroup of G. Suppose conversely that (1) holds. Let  $kh \in KH$  with  $k \in K$ ,  $h \in H$ . Since H and K are subgroups of G, we have  $h^{-1} \in H$ , and  $k^{-1} \in K$ . Since HK is a subgroup of G, we have

$$kh = (h^{-1}k^{-1})^{-1} \in HK$$

Thus  $KH \subseteq HK$ , similarly, one can show  $HK \subseteq KH$ . Thus HK = KH.

## **Proposition 3.11**

Let H and K be subgroups of a group G. Then

- 1. If  $H \triangleleft G$  or  $K \triangleleft G$ , then HK = KH is a subgroup of G
- 2. If  $H \triangleleft G$  and  $K \triangleleft G$ , then  $KH \triangleleft G$

**Proof of 1:** Suppose  $H \triangleleft G$  then

$$HK = \bigcup_{k \in K} Hk = \bigcup_{k \in K} kH = KH$$

By lemma, HK = KH is a subgroup of G.

**Proof of 2:** If  $g \in G$  and  $hk \in HK$ , since  $H \triangleleft G$  and  $K \triangleleft G$  we have

$$g^{-1}(hk)g=\big(g^{-1}hg\big)\big(g^{-1}kg\big)\in HK$$

Thus  $g^{-1}HKg \subseteq HK$  and  $HK \triangleleft G$ .

Normal Subgroups 26

#### **Definition 3.3.3**

Let H be a subgroup of a group G. The normalizer of H, denoted by  $N_G(H)$  is defined to be

$$N_G(H) = \{g \in G \,|\, gH = Hg\}$$

We see that  $H \triangleleft G$  if and only if  $N_G(H) = G$ 

#### Note

In the proof of the previous proposition, we do not need the full assumption that  $H \triangleleft G$ . We only need kH = Hk for all  $k \in K$ , i.e.  $k \in N_G(H)$  Thus

#### Corollary 3.12

Let H and K be subgroups of a group G. If  $K \subseteq N_G(H)$  (or  $H \subseteq N_G(K)$ ) then HK = KH is a subgroup of G.

#### Theorem 3.13

If  $H \triangleleft G$  and  $K \triangleleft G$  satisfy  $H \cap K = \{1\}$ , then  $HK \cong H \times K$ .

## **Proof:**

<u>Claim:</u> If  $H \triangleleft G$  and  $K \triangleleft G$  satisfy  $H \cap K = \{1\}$  then hk = kh for all  $h \in H$  and  $k \in K$ . Consider  $x = hk(kh)^{-1} = hkh^{-1}k^{-1}$ . Note that  $kh^{-1}k^{-1} \in kHk^{-1} = H$  (since  $H \triangleleft G$ ). Thus  $x \in H$ . Similarly, since  $hkh^{-1} \in hKh^{-1} = K$ , we have  $x \in K$ . Since  $x \in H \cap K = \{1\}$ , we have  $hkh^{-1}k^{-1} = 1$  i.e. hk = kh.

Since  $H \triangleleft G$ , by proposition, HK is a subgroup of G. Define  $\sigma: H \times K \to HK$  by  $\sigma(h, k) = hk$ . Claim:  $\sigma$  is an isomorphism.

Let  $(h, k), (h_1, k_1) \in H \times K$  By claim 1, we have  $h_1 k = k h_1$ . Thus

$$\sigma((h,k) \cdot (h_1,k_1)) = \sigma(hh_1,kk_1) = hh_1kk_1 = hkh_1k_1 = \sigma(h,k) \cdot \sigma(h_1,k_1)$$

Thus  $\sigma$  is a homomorphism. Note that by the definition of HK,  $\sigma$  is surjective. Also, if  $\sigma(h,k)=\sigma(h_1,k_1)$ , we have  $hk=h_1k_1$ . Thus  $h_1^{-1}h=k_1k^{-1}\in H\cap K=\{1\}$  Thus  $h_1^{-1}h=1=k_1k^{-1}$  i.e.  $h_1=h$  and  $k_1=k$ . Thus  $\sigma$  is injective. So  $\sigma$  is an isomorphism and we have  $HK\cong H\times K$ .

### Corollary 3.14

Let G be a finite group, and let H and K be normal subgroups such that  $H \cap K = \{1\}$  and |H||K| = |G|. Then  $G \cong H \times K$ .

#### **Proof:**

$$|HK| = \frac{|H||K|}{|H \cap K|} = |H||K| = |G|$$

Thus HK = G, and so a direct application of the theorem gives  $G = HK \cong H \times K$ .

Normal Subgroups 27

## Example 3.3.7

Let  $m,n\in\mathbb{N}$  with  $\gcd(m,n)=1$ . Let G be a cyclic group of order mn. Write  $G=\langle a\rangle$  with o(a)=mn. Let  $H=\langle a^n\rangle$  and  $K=\langle a^m\rangle$ . Thus  $|H|=o(a^n)=m$  and  $|K|=o(a^m)=n$ . It follows that |H||K|=mn=|G|. Since  $\gcd(m,n)=1$ , by corollary, we have  $H\cap K=\{1\}$ . Also, since G is cyclic and thus abelian, we have  $H\lhd G$  and  $K\lhd G$ . Then by corollary, we have  $G\cong H\times K$ , i.e.  $C_{mn}\cong C_m\times C_n$ . Hence, to consider finite cyclic groups, it suffices to consider cyclic groups of prime power order.

# 4 Isomorphism Theorems

## 4.1 Quotient Groups

#### Remark

Let K be a subgroup of G. Consider the set of right cosets of K, i.e.  $\{Ka \mid a \in G\}$ . To make it a group, a natural way is to define

$$Ka \cdot Kb = Kab \quad \forall a, b \in G \quad (*)$$

Note that we could have  $Ka = Ka_1$  and  $Kb = Kb_1$  with  $a \neq a_1$  and  $b \neq b_1$ , Thus in order for (\*) to make sense, a necessary condition is

$$Ka = Ka_1$$
 and  $Kb = Kb_1 \Longrightarrow Kab = Ka_1b_1$ 

In this case, we say that the multiplication is well-defined.

#### Lemma 4.1

Let K be a subgroup of a group G, the following are equivalent:

- 1.  $K \triangleleft G$
- 2. For  $a, b \in G$ , the multiplication  $Ka \cdot Kb = Kab$  is well-defined.

**Proof of**  $(1\Rightarrow 2)$ : Let  $Ka=Ka_1$  and  $Kb=Kb_1$ . Thus  $aa_1^{-1}\in K$  and  $bb_1^{-1}\in K$ . To get  $Kab=Ka_1b_1$ , we need  $ab(a_1b_1)^{-1}\in K$ . Note that since  $K\lhd G$ , we have  $aKa^{-1}=K$ . Thus

$$ab(a_1b_1)^{-1}=abb_1^{-1}a_1^{-1}=\big(abb_1^{-1}a^{-1}\big)\big(aa_1^{-1}\big)\in K$$

Thus  $Kab = Ka_1b_1$ .

**Proof of**  $(2 \Rightarrow 1)$ : If  $a \in G$ , to show  $K \triangleleft G$ , we need  $aka^{-1} \in K$  for all  $k \in K$ . Since Ka = Ka and Kk = K1, by (2), we have Kak = Ka1 i.e. Kak = Ka. It follows that  $aka^{-1} \in K$ . Thus  $K \triangleleft G$ .

### **Proposition 4.2**

Let  $K \triangleleft G$  and write  $G/K = \{Ka \mid a \in G\}$  for the set of all cosets of K. Then

- 1. G/K is a group under the operation Ka \* Kb = Kab.
- 2. The mapping  $\varphi: G \to G/K$  given by  $\varphi(a) = Ka$  is a surjective homomorphism.
- 3. If [G:K] is finite, then |G/K| = [G:K]. In particular, if |G| is finite, then  $|G/K| = \frac{|G|}{|K|}$

Quotient Groups 28

**Proof of 1:** By other proposition, the operation is well defined and G/K is closed under operation. The identity of G/K is  $K \cdot 1 = K$ . Also, the inverse of Ka is  $Ka^{-1}$ . Finally, by the associativity of G, we have

$$Ka(KbKc) = (KaKb)Kc.$$

It follows that G/K is a group.

**Proof of 2:**  $\varphi$  is clearly surjective. Also, for  $a, b \in G$ , we have

$$\varphi(a)\varphi(b) = KaKb = Kab = \varphi(ab)$$

so  $\varphi$  is a homomorphism.

**Proof of 3:** If [G:K] is finite, by the definition of index, |G/K| = [G:K]. Also, if |G| is finite, by Lagrange's Theorem,  $|G/K| = [G:K] = \frac{|G|}{|K|}$ 

#### **Definition 4.1.1**

Let  $K \triangleleft G$ . The group G/K of all cosets of K in G is called the *quotient group of* G *by* K. Also, the mapping  $\varphi: G \rightarrow G/K$  given by  $\varphi(a) = Ka$  is called the *coset map*.

#### Exercise 4.1.1

List all normal subgroups of  $D_{10}$  and all quotient groups of  $D_{10}/K$ .

## 4.2 Isomorphism Theorems

#### **Definition 4.2.1**

Let  $\alpha:G\to H$  be a group homomorphism. The *kernel of*  $\alpha$  is defined by

$$\ker \alpha = \{g \in G \mid \alpha(g) = 1_H\} \subseteq G$$

and the *image* of  $\alpha$  is defined by

$$\operatorname{im} \alpha = \alpha(G) = \{\alpha(g) \mid g \in G\} \subseteq H$$

#### **Proposition 4.3**

Let  $\alpha: G \to H$  be a group homomorphism

- 1.  $\operatorname{im} \alpha$  is a subgroup of H
- 2.  $\ker \alpha$  is a normal subgroup of G

**Proof of 1:** Note that  $1_H = \alpha(1_G) \in \operatorname{im} \alpha$ . Also, for  $h_1 = \alpha(g_1), h_2 = \alpha(g_2) \in \operatorname{im} \alpha$ , we have

$$h_1h_2 = \alpha(g_1)\alpha(g_2) = \alpha(g_1g_2) \in \operatorname{im} \alpha$$

Also, by proposition,  $\alpha(g)^{-1} = \alpha(g^{-1}) \in \operatorname{im} \alpha$ . By the subgroup test,  $\operatorname{im} \alpha$  is a subgroup of H.  $\square$  **Proof of 2:** For  $\ker \alpha$ , note that  $\alpha(1_G) = 1_H$ . Also, for  $k_1, k_2 \in \ker \alpha$ , then

$$\alpha(k_1 k_2) = \alpha(k_1)\alpha(k_2) = 1 \cdot 1 = 1$$

and

$$\alpha(k_1^{-1}) = \alpha(k_1)^{-1} = 1^{-1} = 1$$

By the subgroup test,  $\ker \alpha$  is a subgroup of G. Note that if  $g \in H$  and  $k \in \ker \alpha$ , then

$$\alpha(gkg^{-1})=\alpha(g)\alpha(k)\alpha(g^{-1})=\alpha(g)1\alpha(g)^{-1}=1$$

Thus  $g(\ker \alpha)g^{-1} \subseteq \ker \alpha$ . By the normality test,  $\ker \alpha \triangleleft G$ .

## Example 4.2.1

Consider the determinant map  $\det: \mathrm{GL}_n(\mathbb{R}) \to \mathbb{R}^*$  defined by  $A \mapsto \det A$ . Then  $\ker(\det) = \mathrm{SL}_n(\mathbb{R})$ . Thus, we get another proof that  $\mathrm{SL}_n(\mathbb{R}) \lhd \mathrm{GL}_n(\mathbb{R})$ .

## Example 4.2.2

Define the sign of a permutation  $\sigma \in S_n$  by

$$\operatorname{sgn}(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is even} \\ -1 & \text{if } \sigma \text{ is odd} \end{cases}$$

Note that  ${\rm sgn}: S_n \to (\pm 1, \cdot)$  defined by  $\sigma \mapsto {\rm sgn}(\sigma)$  is a homomorphism. Also,  ${\rm ker}({\rm sgn}) = A_n$ . Thus we have another proof that  $A_n \lhd S_n$ .

## Theorem 4.4

First Isomorphism Theorem

Let  $\alpha:G\to H$  be a group homomorphism. Then

$$G/\ker\alpha\cong\operatorname{im}\alpha$$

**Proof:** Let  $K = \ker \alpha$ . Since  $K \triangleleft G$ , G/K is a group. Define the map

$$\overline{\alpha}: G/K \longrightarrow \operatorname{im} \alpha$$
 $Kg \longmapsto \alpha(g)$ 

Note that

$$Kg=Kg_1 \Longleftrightarrow gg_1^{-1} \in K \Longleftrightarrow \alpha\big(gg_1^{-1}\big)=1 \Longleftrightarrow \alpha(g)=\alpha(g_1)$$

Thus,  $\overline{\alpha}$  is well-defined and injective. Also  $\overline{\alpha}$  is clearly surjective. For  $g, h \in G$ , we have

$$\overline{\alpha}(KgKh) = \overline{\alpha}(Kgh) = \alpha(gh) = \alpha(g)\alpha(h) = \overline{\alpha}(Kg)\overline{\alpha}(Kh)$$

Thus  $\overline{\alpha}$  is a group isomorphism and we have  $G/\ker \alpha \cong \operatorname{im} \alpha$ .

#### Remark

Let  $\alpha: G \to H$  be a group homomorphism and  $K = \ker \alpha$ . Let  $\varphi: G \to G/K$  be the coset map and let  $\overline{\alpha}$  be defined as in the previous proof. We have the following diagram:



Note that for  $g \in G$ , we have

$$\overline{\alpha}\varphi(g) = \overline{\alpha}(\varphi(g)) = \overline{\alpha}(Kg) = \alpha(g)$$

Thus  $\alpha = \overline{\alpha}\varphi$  on the other hand, if we have  $\alpha = \overline{\alpha}\varphi$ , then the action of  $\overline{\alpha}$  is determined by  $\alpha$  and  $\varphi$  as

$$\overline{\alpha}(Kg) = \overline{\alpha}(\varphi(g)) = \overline{\alpha}\varphi(g) = \alpha(g)$$

Thus  $\overline{\alpha}$  is the only homomorphism  $G/K \to H$  satisfying  $\overline{\alpha}\varphi = \alpha$ .

## **Proposition 4.5**

Let  $\alpha: G \to H$  be group homomorphism and  $K = \ker \alpha$ . Then  $\alpha$  factors uniquely as  $\alpha = \overline{\alpha}\varphi$  where  $\varphi: g \to G/K$  is the coset map and  $\overline{\alpha}: G/K \to H$  is defined by  $\overline{\alpha}(Kg) = \alpha(g)$ . Note that  $\varphi$  is surjective and  $\overline{\alpha}$  is injective.

#### Example 4.2.3

We have seen that  $(\mathbb{Z}, +) = \langle \pm 1 \rangle$  and for  $n \in \mathbb{N}$ ,  $(\mathbb{Z}_n, +) = \langle [1] \rangle$  are cyclic groups. In the following, we will show that these are the only cyclic groups.

Let  $G=\langle g\rangle$  be a cyclic group. Consider  $\alpha:(\mathbb{Z},+)\to G$  defined by  $\alpha(k)=g^k$  for all  $k\in\mathbb{Z}$ , which is a group homomorphism. By the definition of  $\langle g\rangle$ ,  $\alpha$  is surjective. Note that  $\ker\alpha=\{k\in\mathbb{Z}\mid g^k=1\}$ , we have two cases:

1. If  $o(g) = \infty$ , then  $\ker \alpha = \{0\}$ . By the first isomorphism theorem, we have

$$G\cong \mathbb{Z}/\{0\}\cong \mathbb{Z}$$

2. If o(g) = n, by proposition,  $\ker \alpha = n\mathbb{Z}$ . By the first isomorphism theorem,

$$G\cong \mathbb{Z}/n\mathbb{Z}\cong \mathbb{Z}_n$$

By (1) and (2), we can conclude that if G is cyclic, then  $G\cong \mathbb{Z}$  or  $G\cong \mathbb{Z}_n$ .

### Theorem 4.6

## **Second Isomorphism Theorem**

Let H and K be subgroups of a group G with  $K \triangleleft G$ . Then HK is a subgroup of G,  $K \triangleleft HK$ ,  $H \cap K \triangleleft H$  and  $HK/K \cong H/H \cap K$ .

**Proof:** Since  $K \lhd G$ , by proposition, HK is a subgroup, HK = KH and  $K \lhd HK$ . Consider  $\alpha: H \to HK/K$  defined by  $\alpha(h) = Kh$ . (note that  $h \in H \subseteq HK$ ). Then  $\alpha$  is a homomorphism (exercise). Also, if  $x \in HK = KH$ , say x = kh, then

$$Kx = K(kh) = Kh = \alpha(h)$$

Thus  $\alpha$  is surjective. Finally, by proposition,

$$\ker \alpha = \{ h \in H \mid Kh = K \} = \{ h \in H \mid h \in K \} = H \cap K$$

By the first isomorphism theorem,

$$H/H \cap K \cong HK/K$$

#### Theorem 4.7

## Third Isomorphism Theorem

Let  $K \subseteq H \subseteq G$  be groups with  $K \lhd G$  and  $H \lhd G$ . Then  $H/K \lhd G/K$  and

$$(G/K)/(H/K) \cong G/H$$

**Proof:** Define  $\alpha: G/K \to G/H$  by  $\alpha(Kg) = Hg$  for all  $g \in G$ . Note that if  $Kg = Kg_1$ , then  $gg_1^{-1} \in K \subseteq H$ . Thus  $Hg = Hg_1$  and  $\alpha$  is well defined. Clearly,  $\alpha$  is surjective. Note that

$$\ker \alpha = \{Kg \, | \, Hg = H\} = \{Kg \, | \, g \in H\} = H/K$$

By the first isomorphism theorem,

$$(G/K)/(H/K) \cong G/H$$

# 5 Group Actions

# 5.1 Cayley's Theorem

#### Theorem 5.1

Cayley's Theorem

If G is a finite group of order n, then G is isomorphic to a subgroup of  $S_n$ .

**Proof:** Let  $G=\langle g_1,...,g_n\rangle$  and let  $S_G$  be the permutation group of G. By identifying  $g_i$  with i, we see that  $S_G\cong S_n$ . Thus it suffices to find a injective homomorphism  $\sigma:G\to S_G$ . For  $a\in G$ , define  $\mu_a:G\to G$  by  $\mu_a(g)=ag$  for all  $g\in G$ . Note that  $ag=ag_1$  implies  $g=g_1$  and  $a(a^{-1}g)=g$ . Hence  $\mu_a$  is a bijection and  $\mu_a\in S_G$ . Define  $\sigma:G\to S_G$  by  $\sigma(a)=\mu_a$ . For  $a,b\in G$ , we have  $\mu_a\mu_b=\mu_{ab}$  and  $\sigma$  is a homomorphism. Also, if  $\mu_a=\mu_b$ , then  $a=\mu_a(1)=\mu_b(1)=b$ . Thus, by the first isomorphism theorem, we have  $G\cong \operatorname{im} \sigma$ , a subgroup of  $S_G\cong S_n$ .

Cayley's Theorem 32

## Example 5.1.1

Let H be a subgroup of a group G with  $[G:H]=m<\infty$ . Let  $X=\{g_1H,g_2H,...,g_mH\}$  be the set of all distinct left cosets of H in G. For  $a\in G$ , define  $\lambda_a:X\to X$  by  $\lambda_a(gH)=agH$  for all  $gH\in X$ . Note that  $agH=ag_1H$  implies that  $gH=g_1H$  and  $a(a^{-1}gH)=gH$ . Hence  $\lambda_a$  is a bijection and thus  $\lambda_a\in S_X$ . Consider  $\tau:G\to S_X$  defined by  $\tau(a)=\lambda_a$ . For  $a,b\in G$ , we have  $\lambda_{ab}=\lambda_a\lambda_b$  and thus  $\tau$  is a homomorphism. Note that if  $a\in\ker\tau$ , then  $\lambda_a$  is the identity permutation. In particular,  $aH=\lambda_a(H)=H$ . In particular,  $a\in H$ . Thus  $\ker\tau\subseteq H$ .

#### Theorem 5.2

### **Extended Cayley's Theorem**

Let H be a subgroup of a group G with  $[G:H]=m<\infty$ . If G has no normal subgroup contained in H except for  $\{1\}$ , then G is isomorphic to a subgroup of  $S_m$ .

**Proof:** Let X be the set of all distinct left cosets of H in G. We have |X|=m and  $S_X\cong S_m$ . We have seen from the above example that there exist a group homomorphism  $\tau:G\to S_X$  with  $K=\ker\tau\subseteq H$ . By the first isomorphism theorem, we have  $G/K\cong\operatorname{im}\tau$ . Since  $K\subseteq H$  and  $K\lhd G$ , by the assumption, we have  $K=\{1\}$ . It follows that  $G\cong\operatorname{im}\tau$ , a subgroup of  $S_X\cong S_m$ .

### **Corollary 5.3**

Let G be a finite group and p the smallest prime dividing |G|. If H is a subgroup of G with [G:H]=p then  $H \lhd G$ .

**Proof:** Let X be the set of all distinct left cosets of H in G. We have |X|=p and  $S_X\cong S_p$ . Let  $\tau:G\to S_X\cong S_p$  be the group homomorphism defined in the above example with  $K:=\ker\tau\subseteq H$ . By the first isomorphism theorem, we have  $G/K\cong\operatorname{im}\tau\subseteq S_p$ . Thus G/K is isomorphic to a subgroup of  $S_p$ . By Lagrange's Theorem, we have  $|G/K|\mid p!$ . Also, since  $K\subseteq H$ , if [H:K]=k, then

$$|G/K| = \frac{|G|}{|K|} = \frac{|G|}{|H|} \frac{|H|}{|K|} = pk.$$

Thus  $pk \mid p!$  and hence  $k \mid (p-1)!$ . Since  $k \mid |H|$ , which divides |G| and p is the smallest prime dividing |G|, we see every prime divisor of k must be  $\geq p$  unless k=1. Combining this with  $k \mid (p-1)!$ , this forces k=1, which implies K=H, thus K=H.

## 5.2 Group Actions

#### **Definition 5.2.1**

Let G be a group and X a non-empty set. A (left) group action of G on X is a mapping  $G \times X \to X$  denoted  $(a,x) \mapsto a \cdot x$  such that

- 1.  $1 \cdot x = x$  for all  $x \in X$
- 2.  $a \cdot (b \cdot x) = (ab) \cdot x$  for all  $a, b \in G$  and  $x \in X$

In this case, we say G acts on X.

Group Actions 33

#### Remark

Let G be a group acting on a set  $X \neq \emptyset$ . For  $a, b \in G$  and  $x, y \in X$ , by (1) and (2), we have

$$a\cdot x = b\cdot y \Longleftrightarrow (b^{-1}a)\cdot x = y$$

In particular, we have  $a \cdot x = a \cdot y$  if and only if x = y.

#### Example 5.2.1

If G is group, let G act on itself by conjugation. i.e. X = G, by  $a \cdot x = axa^{-1}$  for all  $a, x \in G$ . Note that

$$1 \cdot x = 1x1^{-1} = x$$

and

$$a \cdot (b \cdot x) = a(bxb^{-1})a^{-1} = (ab)x(ab)^{-1} = (ab) \cdot x$$

So it is indeed a group action.

#### Remark

For  $a \in G$ , define  $\sigma_a : X \to X$  by  $\sigma_a(x) = a \cdot x$  for all  $x \in X$ . Then one can show

- 1.  $\sigma_a \in S_X$ , the permutation group of X
- 2. The function  $\theta:G\to S_X$  give  $\theta(a)=\sigma_a$  is a group homomorphism with  $\ker\theta=\{a\in G\,|\,ax=x\;\forall x\in X\}$

Note that the group homomorphism  $\theta:G\to S_X$  gives an equivalent definition of group action of G on X. If X=G with |G|=n and  $\ker\theta=\{1\}$ , the map  $\theta:G\to S_n$  shows that G is isomorphic to a subgroup of  $S_n$ , which is Cayley's Theorem. Thus, the notion of group action can be viewed as a generalization of the proof of Cayley's Theorem.

#### **Definition 5.2.2**

Let G be a group acting on  $X \neq \emptyset$ . Let  $x \in X$ . We call

- 1.  $G \cdot x = \{g \cdot x \mid g \in G\} \subseteq X$  The orbit of x
- 2.  $S(x) = \{g \in G \mid g \cdot x = x\} \subseteq G$  The stabilizer of x

#### **Proposition 5.4**

Let G be a group acting on a set  $X \neq \emptyset$  and let  $x \in X$ . Then

- 1. S(x) is a subgroup of G.
- 2. There exists a bijection from  $G \cdot x$  to  $\{gS(x) \mid g \in G\}$  and thus  $|G \cdot x| = [G : S(x)]$

**Proof of 1:** Since  $1 \cdot x = x$ , we have  $1 \in S(x)$ . Also, if  $g, h \in S(x)$ , then

$$gh \cdot (x) = g \cdot (h \cdot x) = g \cdot x = x$$

and

Group Actions 34

$$g^{-1} \cdot x = g^{-1} \cdot (g \cdot x) = (g^{-1}g) \cdot x = 1 \cdot x = x$$

Thus  $gh, g^{-1} \in S(x)$ . By the subgroup test, S(x) is a subgroup of G.

**Proof of 2:** Consider the map  $\varphi: G \to \{gS(x) \mid g \in G\}$  defined by  $\varphi(g \cdot x) = gS(x)$ . Note that

$$g \cdot x = h \cdot x \Longleftrightarrow (h^{-1}g) \cdot x = x \Longleftrightarrow h^{-1}g \in S(x) \Longleftrightarrow hS(x) = gS(x)$$

Thus  $\varphi$  is well-defined and injective. Since  $\varphi$  is clearly surjective,  $\varphi$  is a bijection. It follows that

$$|G \cdot x| = |\{gS(x) \mid g \in G\}| = [G : S(x)]$$

#### Theorem 5.5

## **Orbit Decomposition Theorem**

Let G be a group acting on a finite set  $X \neq \emptyset$ . Let

$$X_f = \{ x \in X \, | \, a \cdot x = x \, \, \forall a \in G \}$$

(Note that  $x\in X_f$  iff  $|G\cdot x|=1$ ) Let  $G\cdot x_1,G\cdot x_2,...,G\cdot x_n$  denote the distinct non-singleton orbits (i.e.  $|G\cdot x_i|>1$ ) Then

$$|X| = \left|X_f\right| + \sum_{i=1}^n [G:S(x_i)]$$

**Proof:** Note that for  $a, b \in G$  and  $x, y \in X$ ,

$$a\cdot x=b\cdot y \Longleftrightarrow (b^{-1}a)\cdot x=y \Longleftrightarrow y\in G\cdot x \Longleftrightarrow G\cdot y=G\cdot x$$

Thus two orbits are either disjoint, or the same. It follows that the orbits form a disjoint union of X. Since  $x \in X_f$  iff  $|G \cdot x| = 1$ , the set  $X \setminus X_f$  contains all non-singleton orbits, which are disjoint. Thus by proposition 5.4, we have

$$\begin{split} |X| &= \left| X_f \right| + \sum_{i=1}^n |G \cdot x_i| \\ &= \left| X_f \right| + \sum_{i=1}^n [G : S(x_i)] \end{split}$$

Group Actions 35

#### Example 5.2.2

Let G be a group acting on itself by conjugation i.e.  $g \cdot x = gxg^{-1}$ . Then

$$\begin{split} G_f &= \left\{ x \in G \,\middle|\, gxg^{-1} = x \,\,\forall g \in G \right\} \\ &= \left\{ x \in G \,\middle|\, gx = xg \,\,\forall g \in G \right\} \\ &= Z(G) \end{split}$$

Also, for  $x \in G$ ,

$$S(x) = \left\{g \in G \,\middle|\, gxg^{-1} = x\right\} = \left\{g \in G \,\middle|\, gx = xg\right\}$$

This set is called the *centralizer* of x and is denoted by  $S(x) = C_G(x)$ . Finally in this case, the orbit

$$G \cdot x = \left\{ gxg^{-1} \mid g \in G \right\}$$

is called the *conjugacy class of* x.

By Theorem 5.5,

Corollary 5.6 Class Equation

Let G be a finite group and let  $\{gx_1g^{-1} \mid g \in G\},...,\{gx_ng^{-1} \mid g \in G\}$  denote the distinct non-singleton conjugacy classes, then

$$|G| = |Z(G)| + \sum_{i=1}^{n} [G: C_G(x_i)]$$

#### Lemma 5.7

Let p be a prime and  $m \in \mathbb{N}$ . Let G be a group of order  $p^m$  acting on a finite set  $X \neq \emptyset$ . Let  $X_f$  be defined as in Theorem 5.5. Then we have

$$|X| \equiv \left|X_f\right| \pmod{p}$$

**Proof:** By Theorem 5.5, we have

$$|X| = |X_f| + \sum_{i=1}^n [G:S(x_i)] \text{ with } [g:S(x_i)] > 1$$

Since  $[G:S(x_i)]$  divides  $|G|=p^m$  and  $[G:S(x_i)]>1$ . We have  $p\mid [G:S(x_i)]$  for all i. It follows that  $|X|\equiv \left|X_f\right|\pmod p$ 

Group Actions 36

#### Theorem 5.8

Cauchy's Theorem

Let p be a prime and G a finite group. If  $p \mid |G|$ , then G contains an element of order p.

**Proof:** Define  $X=\left\{\left(a_1,...,a_p\right) \mid a_i \in G \text{ and } a_1\cdots a_p=1\right\}$ . Since  $a_p$  is uniquely determined by  $a_1,...,a_{p-1}$ , if |G|=n, we have  $|X|=n^{p-1}$ . Since  $p\mid n$ , we have  $|X|\equiv 0\pmod p$ . Let the group  $\mathbb{Z}_p=\left(\mathbb{Z}_p,+\right)$  acts on X by "cycling", i.e. for  $k\in\mathbb{Z}_p$ ,

$$k \cdot (a_1, ..., a_p) = (a_{k+1}, ..., a_p, a_1, ..., a_k)$$

One can verify that this action is well defined. Let  $X_f$  be defined as in theorem 5.5. Then  $\left(a_1,...,a_p\right)\in X_f$  iff  $a_1=a_2=\cdots=a_p$ . Clearly  $(1,1,...,1)\in X_f$  and hence  $\left|X_f\right|\geq 1$ . Since  $\left|\mathbb{Z}_p\right|=p$ , by lemma 5.7, we have

$$|X_f| \equiv |X| \equiv 0 \pmod{p}$$

Since  $|X_f| \equiv 0 \pmod{p}$  and  $|X_f| \ge 1$ . It follows that  $|X_f| \ge p$ . Therefore, there exists  $a \ne 1$  st  $(a,..,a) \in X_f$  which implies that  $a^p = 1$ . Since p is prime and  $a \ne 1$ , the order of a is p.

# **6 Sylow Theorems**

## 6.1 p-groups

#### **Definition 6.1.1**

Let p be a prime. A group in which every element has order of a non-negative power of p is called a p-group

### Remark

As a direct consequence of Cauchy's Theorem we have

#### Corollary 6.1

A finite group G is a p-group if and only if |G| is a power of p

### Lemma 6.2

The center Z(G) of a non-trivial finite p-group G contains more than one element.

**Proof:** The class equation of G (Cor 5.6) states that

$$|G| = |Z(G)| + \sum_{i=1}^{m} [G : C_G(x_i)]$$

where  $[G:C_G(x_i)]>1$ . Since G is a p-group, by Cor 6.1,  $p\mid |G|$ . By lemma 5.7,  $|Z(G)|\equiv |G|\equiv 0\pmod p$ . It follows that  $p\mid |Z(G)|$ . Since  $1\in Z(G)$  and  $|Z(G)|\geq 1$ , Z(G) has at least p elements.

*p-groups* 37

## Recall

If H is a subgroup of a group G, then  $N_G(H)=\left\{g\in G\,\big|\,gHg^{-1}=H\right\}$  is the *normalizer* of H in G. In particular,  $H\vartriangleleft N_G(H)$ .

#### Lemma 6.3

If H is a p-subgroup of a finite group G, then

$$[N_G(H):H] \equiv [G:H] \pmod{p}$$

**Proof:** Let X be the set of all left cosets of H in G. Hence |X| = [G:H]. Let H act on X by left multiplication. Then for  $x \in G$ , we have

$$xH \in X_f \Longleftrightarrow hxH = xH \ \forall h \in H$$
 
$$\iff x^{-1}hxH = H \ \forall h \in H$$
 
$$\iff x^{-1}Hx = H$$
 
$$\iff x \in N_G(H)$$

Thus  $\left|X_f\right|$  is the number of costs xH with  $x\in N_G(H)$  and hence  $\left|X_f\right|=\left[N_G(H):H\right]$ . By lemma 5.7,

$$[N_G(H):H]=\left|X_f\right|\equiv |X|=[G:H]\pmod p$$

### Corollary 6.4

Let H be a p-subgroup of a finite group G. If  $p \mid [G:H]$  then  $p \mid [N_G(H):H]$  and  $N_G(H) \neq H$ .

**Proof:** Since  $p \mid [G:H]$ , by lemma 6.3, we have

$$[N_G(H):H] \equiv [G:H] \equiv 0 \pmod{p}$$

Since  $p \mid [N_G(H):H]$  and  $[N_G(H):H] \geq 1$ , we have  $[N_G(H):H] \geq p$ . Thus  $N_G(H) \neq H$ .  $\square$ 

## **6.2 Three Sylow Theorems**

#### Recall

Cauchy's theorem states that if  $p \mid |G|$ , then G contains an element of order p. Thus  $|\langle a \rangle| = p$ . The following first Sylow Theorem can be viewed as a generalization of Cauchy's Theorem.

#### Theorem 6.5

#### First Sylow Theorem

Let G be a group of order  $p^nm$  where p is a prime,  $n \ge 1$  and  $\gcd(p,m) = 1$ . Then G contains a subgroup of order  $p^i$  for all  $1 \le i \le n$ . Moreover, every subgroup of G of order  $p^i$  (i < n) is normal in some subgroup of order  $p^{i+1}$ .

**Proof:** We prove this theorem by induction on i. For i=1, since  $p \mid |G|$ , by Cauchy's theorem, G contains an element a of order p, i.e.  $|\langle a \rangle| = p$ . Suppose that the statement holds for some  $1 \le i < n$ .

Three Sylow Theorems

Say H is a subgroup of G of order  $p^i$ . Then  $p \mid [G:H]$ , by Cor 6.4,  $p \mid [N_G(H):H]$  and  $[N_G(H):H] \geq p, \ p \mid [G:H]$ . Then by Cauchy's theorem,  $N_G(H)/H$  contains a subgroup of order p. Such a group is of the form  $H_1/H$ , where  $H_1$  is a subgroup of  $N_G(H)$  containing H. Since  $H \triangleleft N_G(H)$ , we have  $H \triangleleft H_1$ . Finally,  $|H_1| = |H| |H_1/H| = p^i \cdot p = p^{i+1}$ .

### **Definition 6.2.1**

A subgroup P of a group G is said to be a *Sylow p-subgroup* of G if P is a maximal p-group of G i.e. if  $P \subseteq H \subseteq G$  with H a p-group, then P = H.

As a direct consequence of theorem 6.5,

### Corollary 6.6

Let G be a group of order  $p^nm$  where p is a prime,  $n \ge 1$  and  $\gcd(p,m) = 1$ . Let H be a p-subgroup of G.

- 1. *H* is a Sylow *p*-subgroup iff  $|H| = p^n$
- 2. Every conjugate of a Sylow *p*-subgroup is a Sylow *p*-subgroup.
- 3. If there is only one Sylow *p*-subgroup *P*, then  $P \triangleleft G$ .

#### Theorem 6.7

### **Second Sylow Theorem**

If H is a p-subgroup of a finite group G, and P is any Sylow p-subgroup of G, then there exists  $g \in G$  such that  $H \subseteq gPg^{-1}$ . In particular, any two Sylow p-subgroups are conjugate.

**Proof:** Let X be the set of all left cosets of P in G, and let H act on X by left multiplication. By lemma 5.7, we have  $\left|X_f\right| \equiv |X| = [G:P] \pmod{p}$ . Since  $p \nmid [G:P]$ , we have  $\left|X_f\right| \neq 0$ . Thus there exists  $gP \in X_f$  for some  $g \in G$ . Note that

$$\begin{split} gP \in X_f &\iff hgP = gP \quad \forall h \in H \\ &\iff g^{-1}hgP = P \quad \forall h \in H \\ &\iff g^{-1}Hg \subseteq P \\ &\iff H \subseteq gPg^{-1} \end{split}$$

If H is Sylow p-subgroup, then  $|H| = |P| = |gHg^{-1}|$ , thus  $H = gPg^{-1}$ .

#### Theorem 6.8

### Third Sylow Theorem

If G is a finite group and p a prime with  $p \mid |G|$ , then the number of Sylow p-subgroups of G divides |G| and is of the form kp + 1 for some  $k \in \mathbb{N} \cup \{0\}$ .

**Proof:** By theorem 6.7, the number of Sylow p-subgroups of G is the number of conjugates of any of them, say P. This number is  $[G:N_G(P)]$ . Which is a divisor of |G|. Let X be the set of all Sylow p-subgroups of G and let P act on X by conjugation. Then  $Q \in X_f$  iff  $gQg^{-1} = Q$  for all  $g \in P$ . The latter condition holds iff  $P \subseteq N_G(Q)$ . Both P and Q are Sylow p-subgroups of G and hence  $N_G(Q)$ . Thus by Cor 6.6, they are conjugate in  $N_G(Q)$ . Since  $Q \triangleleft N_G(Q)$ , this can only occur if Q = P and  $X_f = \{P\}$ . By lemma 5.7,  $|X| \equiv |X_f| \equiv 1 \pmod{p}$ . Thus |X| = kp + 1 for some  $k \in \mathbb{N} \cup \{0\}$ .

Three Sylow Theorems

### Remark

Suppose that G is a group with  $|G|=p^nm$  and  $\gcd(p,m)=1$ . Let  $n_p$  be the number of p-subgroups of G. By the third Sylow theorem, we have  $n_p\mid p^nm$  and  $n_p\equiv 1(\bmod\,p)$ . Since  $p\nmid n_p$ , we have  $n_p\mid m$ .

## Example 6.2.1

*Claim:* every group of order 15 is cyclic.

Let  $n_p$  be the number of Sylow p-subgroups of G. By the third Sylow theorem, we have  $n_3 \mid 5$  and  $n_3 \equiv 1 \pmod{3}$ . Thus  $n_3 = 1$ . Similarly, we have  $n_5 \mid 3$  and  $n_5 \equiv 1 \pmod{5}$ , Thus  $n_5 = 1$ . It follows that there is only one Sylow 3-subgroup and Sylow 5-subgroup, say  $P_3$  and  $P_5$  respectively. Thus  $P_3, P_5 \triangleleft G$ . Consider  $|P_3 \cap P_5|$ , which divides 3 and 5. Thus  $|P_3 \cap P_5| = 1$  and  $P_3 \cap P_5 = \{1\}$ . Also  $|P_3 P_5| = 15 = |G|$  Thus

$$G \cong P_3 \times P_5 \cong \mathbb{Z}_3 \times \mathbb{Z}_5 \cong Z_{15}$$

## Example 6.2.2

*Claim:* there are two isomorphism classes of groups of order 21.

Let G be a group of order  $21=3\cdot 7$ . Let  $n_p$  be the number of Sylow p-subgroups of G. By the third Sylow theorem, we have  $n_3\mid 7$  and  $n_3\equiv 1 \pmod 3$ . Thus  $n_3=1$  or 7. Also we have  $n_7\mid 3$  and  $n_7\equiv 1 \pmod 7$ . Thus  $n_7=1$ . It follows that G has a unique Sylow 7-subgroup, say  $P_7$ . Note that  $P_7\vartriangleleft G$  and  $P_7$  is cyclic, say  $P_7=\langle x:x^7=1\rangle$ . Let H be a Sylow 3-subgroup. Since |H|=3, H is cyclic and  $H=\langle y:y^3=1\rangle$ . Since  $P_7\vartriangleleft G$ , we have  $yxy^{-1}=x^i$  for some 0< i< 6. It follows that

$$x = y^3 x y^{-3} = y^2 (y x y^{-1}) y^{-2} = y^2 x^i y^{-2} = y (y x^i y^{-1}) y^{-1} = y x^{i^2} y^{-1} = x^{i^3}$$

Since  $x^{i^3} = x$  and  $x^7 = 1$ , we have  $i^3 - 1 \equiv 0 \pmod{7}$ . Since  $0 \le i \le 6$ , we have i = 1, 2, 4.

1. If i=1, then  $yxy^{-1}=x$ , i.e. yx=xy. Thus G is an abelian group. Since  $P_3 \triangleleft G$ ,  $P_7 \triangleleft G$ ,  $P_3 \cap P_7 = \{1\}$  and  $|G|=|P_3P_7|$ , we have

$$G \cong P_3 \times P_7 \cong \mathbb{Z}_3 \times \mathbb{Z}_7 \cong \mathbb{Z}_{21}$$

2. If i = 2, then  $yxy^{-1} = x^2$ . Thus

$$G = \{x^i y^j : 0 \le i \le 6, 0 \le j \le 2, yxy^{-1} = x^2\}$$

3. If i = 4, then  $yxy^{-1} = x^4$ . Note that

$$y^{2}xy^{-2} = y(yxy^{-1})y^{-1}$$
  
=  $yx^{4}y^{-1}$   
=  $x^{16} = x^{2}$ 

Note that  $y^2$  is also a generator of H. Thus by replacing y by  $y^2$ , we get back to case 2. It follows that there are two isomorphism classes of groups of order 21.

# 7 Finite Abelian Groups

## 7.1 Primary Decomposition

#### **Notation**

Let G be a group and  $m \in \mathbb{Z}$  we define

$$G^{(m)} = \{ g \in G \, | \, g^m = 1 \}$$

## **Proposition 7.1**

Let G be an abelian group. Then  $G^{(m)}$  is a subgroup of G.

**Proof:** We have  $1 = 1^m \in G^{(m)}$ . Also if  $g, h \in G^{(m)}$ , since G is abelian, we have  $(gh)^m = g^m h^m = 1$  and thus  $gh \in G^{(m)}$ . Finally, if  $g \in G^{(m)}$ , we have

$$(g^{-1})^m = g^{-m} = (g^m)^{-1} = 1$$

and thus  $g^{-1} \in G^{(m)}$ . By the subgroup test,  $G^{(m)}$  is a subgroup of G.

### **Proposition 7.2**

Let G be a finite abelian group with |G| = mk with gcd(m, k) = 1. Then

- 1.  $G\cong G^{(m)}\times G^{(k)}$
- 2.  $\left|G^{(m)}\right|=m$  and  $\left|G^{(k)}\right|=k$

**Proof of 1:** Since G is abelian, we have  $G^{(m)} \lhd (G)$  and  $G^{(k)} \lhd G$ . Also, since  $\gcd(m,k)=1$ , there exist  $x,y\in \mathbb{Z}$  such that 1=mx+ky

<u>Claim</u>:  $G^{(m)} \cap G^{(k)} = \{1\}$ 

If  $g \in G^{(m)} \cap G^{(k)}$ , then  $g^m = 1 = g^k$ . We have

$$g = g^{mx+ky} = (g^m)^x (g^k)^7 = 1$$

 $\underline{\mathit{Claim}} : G = G^{(m)} G^{(k)}$ 

If  $g \in G$ , then

$$1 = g^{mk} = (g^m)^k = (g^k)^m$$

It follows that  $g^k \in G^{(m)}$  and  $g^m \in G^{(k)}$ . Thus

$$g=g^{mx+ky}=\left(g^k\right)^y(g^m)^x\in G^{(m)}G^{(k)}$$

Combining both claims, by Theorem 3.13, we have

$$G\cong G^{(m)}G^{(k)}$$

**Proof of 2:** Write  $\left|G^{(m)}\right|=m'$  and  $\left|G^{(k)}\right|=k'$ . By (1), we have mk=|G|=m'k'

<u>Claim:</u> gcd(m, k') = 1

Suppose that  $gcd(m, k') \neq 1$ . Then there exists a prime p such that  $p \mid m$  and  $p \mid k'$ . By Cauchy's

Primary Decomposition

PMATH 347 Fall 2025 JAKE EDMONSTONE

theorem, there exists  $g \in G^{(k)}$  with o(g) = p. Since  $p \mid m$ , we have  $g^m = (g^p)^{\frac{m}{p}} = 1$ , i.e.  $g \in G^{(m)}$ . By (1), we have  $g \in G^{(m)} \cap G^{(k)} = \{1\}$ , which gives a contradiction since o(g) = p. Thus we have gcd(m, k') = 1. Note that since  $m \mid m'k'$  and gcd(m, k') = 1, we have  $m \mid m'$ . Similarly, we have  $k \mid k'$ . Since mk = m'k', it follows that m = m' and k = k'. As a direct consequence of proposition 7.2, we have

#### Theorem 7.3

## **Primary Decomposition Theorem**

Let G be a finite abelian group with  $|G| = p_1^{n_1} \cdots p_k^{n_k}$  where  $p_1, \dots, p_k$  are distinct primes and  $\begin{array}{l} n_1,...,n_k\in\mathbb{N}. \text{ Then we have}\\ 1.\ G\cong G^{\left(p_1^{n_1}\right)}\times\cdots\times G^{\left(p_k^{n_k}\right)}\\ 2.\ \left|G^{\left(p_i^{n_i}\right)}\right|=p_i^{n_i}\quad (1\leq i\leq k). \end{array}$ 

1. 
$$G \cong G^{\binom{p^{n_1}}{1}} \times \cdots \times G^{\binom{p^{n_k}}{k}}$$

$$2. \left| G^{\left(p_i^{n_i}\right)} \right| = p_i^{n_i} \quad (1 \le i \le k)$$

## Example 7.1.1

Let  $G = \mathbb{Z}_{13}^*$ . Then  $|G| = 12 = 2^2 3$ . Note that

$$G^{(3)} = \{ a \in \mathbb{Z}_{13}^* \mid a^3 = 1 \} = \{1, 3, 9\}$$

$$G^{(4)} = \left\{ a \in \mathbb{Z}_{13}^* \,\middle|\, a^4 = 1 \right\} = \left\{ 1, 5, 8, 12 \right\}$$

By theorem 7.3, we have

$$\mathbb{Z}_{13}^* \cong \{1, 5, 8, 12\} \times \{1, 3, 9\}$$

# 7.2 Structure Theorem of Finite Abelian Groups

We have seen that if |G|=p (a prime), then  $G\cong C_p$ . Also, if  $|G|=p^2$ , then  $G\cong C_{p^2}$  or  $G\cong C_p\times C_p$ . Question How about abelian groups of order  $p^3$ ,  $p^4$  and  $p^n$  for general  $n \in \mathbb{N}$ .

#### **Proposition 7.4**

Let G be a finite abelian p-group that contains only one subgroup of order p, then G is cyclic. In other words, if a finite abelian p-group G is not cyclic, then G has at least two subgroups of order p.

**Proof:** Let  $y \in G$  be of maximum order, i.e.  $o(y) \ge o(x) \ \forall x \in G$ . Claim:  $G = \langle y \rangle$ .

Suppose that  $G \neq \langle y \rangle$ . Then the quotient group  $G/\langle y \rangle$  is a nontrivial p-group, which contains an element z of order p by Cauchy's theorem. In particular  $z \neq 1$ . Consider the coset map  $\pi: G \to G/\langle y \rangle$ . Let  $x \in G$  such that  $\pi(x) = z$ . Since  $\pi(x^p) = \pi(x)^p = z^p = 1$ , we see that  $x^p \in \langle y \rangle$ . Thus  $x^p = y^m$  for some  $m \in \mathbb{Z}$ . Two cases:

- 1. If  $p \nmid m$  since  $o(y) = p^r$  for some  $r \in \mathbb{N}$ , by prop 2.11,  $o(y^m) = o(y)$ . Since y is of maximum order, we have  $o(x^p) < o(x) \le o(y) = o(y^m) = o(x^p)$  which is a contradiction.
- 2. If  $p \mid m$ , then m = pk for some  $k \in \mathbb{Z}$ . Thus we have  $x^p = y^m = y^{pk}$ . Since G is abelian, we have  $(xy^{-k})^p = 1$ . Thus  $xy^{-k}$  belongs to the one and only subgroup of order p, say H. On the other hand, the cyclic group  $\langle y \rangle$  contains a subgroup of order p, which must be the one and only H. Thus  $xy^{-k} \in \langle y \rangle$ , which implies that  $x \in \langle y \rangle$ . It follows that  $z = \pi(x) = 1$ , a contradiction.

By combining the above two cases, we see that  $G = \langle y \rangle$ .

## **Proposition 7.5**

Let  $G \neq \{1\}$  be a finite abelian p-group. Let C be a cyclic subgroup of maximum order. Then G contains a subgroup B such that

$$G = CB$$
 and  $C \cap B = \{1\}$ 

#### Theorem 7.6

Let  $G \neq 1$  be a finite abelian p-group. Then G is isomorphic to a direct product of cyclic groups.

**Proof:** By prop 7.5, there exists a cyclic group  $C_1$  and a subgroup  $B_1$  of G such that  $G \cong C_1 \times B_1$ . Since  $|B_1| \mid |G|$  by Lagrange's theorem, the group  $B_1$  is also a p-group. Thus if  $B_1 \neq \{1\}$ , by prop 7.5, there exists a cyclic group  $C_2$  and a subgroup  $B_2$  such that  $B_1 \cong C_2 \times B_2$ . Continue in this way to get cyclic groups  $C_1, ..., C_k$  until we get  $B_k = \{1\}$  for some  $k \in \mathbb{N}$ . Then  $G \cong C_1 \times \cdots \times C_k$ .

#### Remark

One can show that the decomposition of a finite abelian p-group into a direct product of cyclic groups is unique up to its order.

Combining the remark, theorem 7.6 and theorem 7.3, we have

#### Theorem 7.7

## **Structure Theorem of Finite Abelian Groups**

If G is a finite abelian group, then

$$G\cong \mathbb{Z}_{p_1^{n_1}}\times \cdots \times \mathbb{Z}_{p_k^{n_k}}$$

Where  $\mathbb{Z}_{p_i^{n_i}} = \left(\mathbb{Z}_{p_i^{n_i}}, +\right) \cong C_{p_i^{n_i}}$  are cyclic groups of order  $p_i^{n_i}$   $(1 \leq i \leq k)$ . Note that  $p_i$  are not necessarily distinct. The numbers  $p_i^{n_i}$  are uniquely determined up to their order.

Note that if  $p_1$  and  $p_2$  are distinct primes, then  $C_{p_1^{n_1}} \times C_{p_2^{n_2}} \cong C_{p_1^{n_1}p_2^{n_2}}$ . Thus by combining suitable coprime factors together,

#### Theorem 7.8

#### **Invariant Factor Decomposition of Finite Abelian Groups**

Let G be a finite abelian group. Then

$$G\cong \mathbb{Z}_{n_1}\times \cdots \times \mathbb{Z}_{n_r}$$

where  $n_i \in \mathbb{N}, n_1 > 1$  and  $n_1 \mid n_2 \mid \dots \mid n_r$ .

## Example 7.2.1

Let g be an abelian group of order 48. Since  $48=2^4\cdot 3$ , by theorem 7.3,  $G\cong H\times \mathbb{Z}_3$ , where H is an abelian group of order  $2^4$ . The options for H are  $\mathbb{Z}_{2^4},\mathbb{Z}_{2^3}\times \mathbb{Z}_2,\mathbb{Z}_{2^2}\times \mathbb{Z}_{2^2}\times \mathbb{Z}_2\times \mathbb{Z}_2$  and  $\mathbb{Z}_2\times \mathbb{Z}_2\times \mathbb{Z}_2\times \mathbb{Z}_2$ . Thus we have

$$\begin{split} G &\cong \mathbb{Z}_{2^4} \times \mathbb{Z}_3 \cong \mathbb{Z}_{48} \\ G &\cong \mathbb{Z}_{2^3} \times \mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_2 \times \mathbb{Z}_{24} \\ G &\cong \mathbb{Z}_{2^2} \times \mathbb{Z}_{2^2} \times \mathbb{Z}_3 \cong \mathbb{Z}_{2^2} \times \mathbb{Z}_{12} \\ G &\cong \mathbb{Z}_{2^2} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{12} \\ G &\cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \end{split}$$

There are 5 non-isomorphic groups in total.