Índice general

1.	Vectores en \mathbb{R}^2 y \mathbb{R}^3	2
	1.6. Planos en \mathbb{R}^3	2
	1.7. Caso particular: rectas y planos que contienen al origen	4

Capítulo 1

Vectores en \mathbb{R}^2 y \mathbb{R}^3

1.6. Planos en \mathbb{R}^3 .

¿Qué ocurre si, en lugar de buscar todos los vectores en \mathbb{R}^n que, partiendo de un punto A son paralelos a cierto vector \vec{r} dado, buscamos todos los vectores que, partiendo de A son combinación lineal de dos vectores dados \vec{r} , \vec{s} no nulos y no paralelos? Es decir, ¿podemos determinar cuáles son los puntos $P \in \mathbb{R}^n$ para los que existen $\alpha, \beta \in \mathbb{R}$ tales que

$$\overrightarrow{AP} = \alpha \, \overrightarrow{r} + \beta \, \overrightarrow{s} \, ?$$

Más adelante veremos que:

- si A es un punto de \mathbb{R}^2 <u>y</u> \vec{r} y \vec{s} son vectores no nulos y no paralelos de \mathbb{R}^2 , entonces para cualquier $P \in \mathbb{R}^2$ se cumple que el vector \overrightarrow{AP} puede escribirse como combinación lineal de \vec{r} y \vec{s} .
- En \mathbb{R}^3 la situación es distinta: si A es un punto en \mathbb{R}^3 y \vec{r} y \vec{s} son no nulos y no paralelos, los puntos P de \mathbb{R}^3 para los que se cumple que el vector \overrightarrow{AP} puede escribirse como combinación lineal de \vec{r} y \vec{s} es un subconjunto propio de \mathbb{R}^3 . Este subconjunto recibe el nombre de plano que contiene a A, con vectores directores \vec{r} y \vec{s} . Uno de los conceptos de la próxima sección hará más fácil escribir una ecuación para describir a los puntos en un plano.

Ejemplo 1.1. Veamos dos ejemplos que ilustran lo escrito antes.

Tomemos \vec{r} y \vec{s} iguales a los dos vectores canónicos de \mathbb{R}^2 , que son no nulos y no paralelos, y A=(1,1). Entonces P=(x,y) es tal que \vec{AP} es combinación lineal de \vec{r} y \vec{s} si y solo si existen $\alpha, \beta \in \mathbb{R}$ de modo que

$$\vec{AP} = \begin{pmatrix} x - 1 \\ y - 1 \end{pmatrix} = \alpha \vec{i} + \beta \vec{j}.$$

Si hacemos $\alpha = x - 1$, $\beta = y - 1$, entonces

$$\binom{x-1}{y-1} = (x-1)\vec{i} + (y-1)\vec{j}.$$

$$Si P = (2, 1),$$

$$\vec{AP} = (2-1)\vec{i} + (1-1)\vec{j}$$
.

$$Si\ P = (5, -2),$$

$$\vec{AP} = (5-1)\vec{i} + (-2-1)\vec{j}.$$

Para cualquier punto P de \mathbb{R}^2 se cumple que el vector \vec{AP} es combinación lineal de \vec{i} y \vec{j} .

En cambio, si tomamos \vec{r} igual al primer vector canónico de \mathbb{R}^3 ; \vec{s} , al segundo y A = (1,0,1), entonces un punto P = (x,y,z) de \mathbb{R}^3 pertenece al plano que contiene a A y tiene a estos vectores como directores si y solo si el vector

$$\vec{AP} = \begin{pmatrix} x - 1 \\ y \\ z - 1 \end{pmatrix}$$

es combinación lineal de \vec{i} y \vec{j} y esto ocurre si y solo si es posible encontrar escalares α y β de modo que

$$\begin{pmatrix} x-1 \\ y \\ z-1 \end{pmatrix} = \alpha \vec{i} + \beta \vec{j} = \begin{pmatrix} \alpha \\ \beta \\ 0 \end{pmatrix}.$$

Dado que la igualdad anterior entre vectores es equivalente a

$$x - 1 = \alpha,$$

$$y = \beta,$$

$$z - 1 = 0,$$

los puntos P=(x,y,z) para los que se cumple que \overrightarrow{AP} es combinación lineal de los dos primeros vectores canónicos de \mathbb{R}^3 son los que satisfacen z=1. Es decir, si P es un punto de \mathbb{R}^3 con tercera coordenada distinta de 1, el vector \overrightarrow{AP} no puede escribirse como combinación lineal de \overrightarrow{i} y \overrightarrow{j} . Si P es un punto de \mathbb{R}^3 con tercera coordenada igual a

1, entonces \vec{AP} s´ı puede escribirse como combinación lineal de \vec{i} y \vec{j} . Por ejemplo, si P=(1,2,3), $\vec{AP}=\begin{pmatrix} 0\\2\\2 \end{pmatrix}$ no

puede escribirse como $\alpha \vec{i} + \beta \vec{j}$, pero si P = (1, 3, 1), entonces

$$\vec{AP} = \begin{pmatrix} 0\\3\\0 \end{pmatrix} = 0\vec{i} + 3\vec{j}.$$

En la figura 1.1 observan dos vistas de este plano.

Figura 1.1: El plano que contiene a (1,0,1) con vectores directores \vec{i} y \vec{j} es la región de color celeste en estas imágenes. En el plano cartesiano el eje X es rojo, el eje Y, verde y el eje Z, azul.

1.7. Caso particular: rectas y planos que contienen al origen

En el caso particular en que el origen de coordenadas sea un punto en una recta con vector director $\vec{r} \in \mathbb{R}^2$, ésta está formada por los puntos Q = (x, y) de \mathbb{R}^2 tales que el vector $\begin{pmatrix} x \\ y \end{pmatrix}$ sea paralelo a \vec{r} y su ecuación es

$$\begin{pmatrix} x \\ y \end{pmatrix} = t\vec{r}, \quad t \in \mathbb{R}.$$

En el caso particular en que el origen de coordenadas sea un punto en una recta con vector director $\vec{r} \in \mathbb{R}^3$, ésta está formada por los puntos P = (x, y, z) de \mathbb{R}^3 tales que el vector $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ sea paralelo a \vec{r} y su ecuación es

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = t\vec{r}, \quad t \in \mathbb{R}.$$

En el caso particular en que el origen de coordenadas sea un punto en un plano con vectores directores \vec{r} y \vec{s} , éste está formada por los puntos P=(x,y,z) de \mathbb{R}^3 tales que el vector $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ sea combinación lineal de \vec{r} y \vec{s} y su ecuación es

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \vec{r} + \beta \vec{s}, \quad \alpha, \beta \in \mathbb{R}.$$

Ejemplo 1.2. Determinemos las ecuaciones paramétrica y vectorial de la recta que pasa por los puntos (0,0,0) y (1,-2,1).

La recta está formada por los puntos (x, y, z) en \mathbb{R}^3 que pueden escribirse como

$$(0,0,0) + \lambda(1,-2,1), \quad \lambda \in \mathbb{R}$$

Ésta es su ecuación paramétrica. El vector entre cualquier par de puntos en la recta es paralelo al vector desde (0,0,0) a (1,-2,1), esto puede expresarse mediante: (x,y,z) pertenece a la recta si y solo si

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \qquad \lambda \in \mathbb{R}.$$

Esta recta es la mostrada en la figura 1.2.

Ejemplo 1.3. Determinemos al plano que contiene al origen de coordenadas y del que $(1,2,1)^T$ y $(1,0,1)^T$ son vectores directores.

Este plano está formado por los puntos P = (x, y, z) tales que el vector desde el origen de coordenadas a P es combinación lineal de $(1, 2, 1)^T$ y $(1, 0, 1)^T$. De este modo, (x, y, z) pertenece a este plano si y solo si existen $\alpha, \beta \in \mathbb{R}$ de modo que

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

La igualdad anterior se cumple si y solo si se satisface

$$x = \alpha + \beta,$$

$$y = 2\alpha,$$

$$z = \alpha + \beta.$$

Figura 1.2: Recta que contiene al origen de coordenadas y uno de sus vectores directores.

Figura 1.3: Plano que contiene al origen de coordenadas. El eje X es el mostrado en color rojo, el eje Y, en verde y el eje Z, en azul.

Sin importar el valor de y, de la segunda ecuación podemos calcular $\alpha = \frac{y}{2}$. Reemplazando este valor en la primera ecuación obtenemos

$$\beta = x - \frac{y}{2}$$

y reemplazando los valores de α y β en la tercera ecuación tenemos que

$$z = \frac{y}{2} + x - \frac{y}{2} = x.$$

Con esto podemos concluir que si el punto (x, y, z) es tal que $x \neq z$, (x, y, z) no pertenece al plano que estamos analizando, mientras que si (x, y, z) es tal que x = z, sí pertenece.

Los puntos (x, y, z) que pertenecen al plano que pasa por el origen con vectores directores $(1, 2, 1)^T$ y $(1, 0, 1)^T$ son los que satisfacen que su primera y tercera coordenadas son iguales. Esta plano es el mostrado en la figura 1.3.