RLCode와 A3C 쉽고 깊게 이해하기

RLCode 리더 이용원

파이썬과 케라스로 배우는 강화학습

http://wikibook.co.kr/reinforcement-learning/

아기울음소리 감지기의 예시

인공지능 기반 시계열 데이터 분석

-비음성 소리인식

청각장애인: 아기울음, 경적, 초인종 등

보안/안전: 비명, 충돌음, 폭발음 등

-고장 모니터링 자동차, 산업기계 진동 등

목차

- 1. New 베이스라인 A3C
- 2. A3C의 직관적 이해
- 3. Policy Gradient
- 4. REINFORCE
- 5. Actor-Critic
- 6. A3C

New 베이스라인 A3C

기본적인 강화학습 내용은 안다고 가정

가장 유명한 알고리즘: DQN

DeepMind > Atari > DQN

게임 화면으로 게임 플레이하는 법을 학습

DQN0I 0I룬 점과 부족한 점

1. DQN이 이룬 점

- 1) 게임 화면을 상태 입력으로 받아서 학습(CNN)
- 2) 사람보다 게임 플레이를 더 잘하는 에이전트
- 3) 샘플들 사이의 강한 상관관계를 리플레이 메모리로 해결

2. DQN이 부족한 점

- 1) 많은 메모리의 사용
- 2) 느린 학습 속도
- 3) 불안정한 학습 과정

(가치함수에 대한 greedy policy이므로)

A3C = Asynchronous Advantage Actor-Critic

- 1. 샘플 사이의 상관관계를 비동기 업데이트로 해결
- 2. 리플레이 메모리를 사용하지 않음
- 3. policy gradient 알고리즘 사용가능(Actor-Critic)
- 4. 상대적으로 빠른 학습 속도(여러 에이전트가 환경과 상호작용)

A3C = 비동기 + Actor-Critic

Actor-Critic = REINFORCE + 실시간 학습

REINFORCE = 몬테카를로 Policy gradient

A3C를 파헤치는 과정

- 1. Policy gradient의 수식 유도 과정에 대한 이해
- 2. REINFORCE 알고리즘 이해
- 3. Actor-Critic 알고리즘 이해
- 4. Actor-Critic 을 비통기식으로 업데이트하는 방법 이해

Policy gradient

REINFORCE

Actor-Critic

A3C

A3C의 직관적 이해

크로스 엔트로피

지도학습의 크로스 엔트로피(Cross entropy)

크로스 엔트로피

지도학습의 크로스 엔트로피(Cross entropy)

강화학습

강화학습의 크로스 엔트로피

강화학습

강화학습의 크로스 엔트로피

나의 예측을 실제 행동에 가깝게 만든다 → 어떤 의미??

업데이트의 방향성이 필요!

Actor-Critic

정답이 되는 각 행동이 실제로 좋은 지, 좋다면 얼마나 좋은 지를 알 수 있을까?

$$\rightarrow$$
 큐함수(Q-function) : $Q_{\pi}(s,a) = E_{\pi}[R_{t+1} + \gamma R_{t+2} + \cdots | S_t = s, A_t = a]$

여러 개의 에이전트를 만들어서 각각 gradient를 계산하면?

비동기적으로 global network를 업데이트

비동기적으로 global network를 업데이트

비동기적으로 global network를 업데이트: 에이전트 1이 글로벌 신경망을 업데이트

비동기적으로 global network를 업데이트 : 글로벌 신경망으로 에이전트 1을 업데이트

비동기적으로 global network를 업데이트 : agent n이 글로벌 신경망을 업데이트

이제 수학적으로 접근해봅시다!

Policy Gradient

정책과 강화학습

- 강화학습 → 보상을 받게 하는 행동의 확률 증가
- 즉, 현재 정책을 환경으로부터 받은 보상을 기준으로 업데이트를 해야 "강화학습"
- 2가지를 알아야 함
 - 1. 정책을 업데이트하는 기준
 - 2. 그 기준에 따라 정책의 업데이트 방법

Policy gradient

1. 정책을 업데이트 하는 기준: 목표함수

2. 목표함수에 따라 정책을 업데이트하는 방법:
Gradient ascent

Policy gradient

1. 정책(Policy)의 근사화

2. 목표함수에 대한 Gradient ascent

정책의 근사화

- Huge + High Dimension 상태 공간 → 각 상태에 대한 정책을 가지는 것은 힘들다
- 행동 = $f(\diamond H) \rightarrow f$ 가 정책

정책의 근사화

• 그리드월드의 경우

• 상태 : (x, y) 좌표

• 행동 : (상, 하, 좌, 우)

정책의 근사화

입력 = 상태의 특징벡터

정책
$$\pi_{\theta}(a|s) = P[A_t = a|S_t = s, \theta]$$

Policy gradient

1. 정책(Policy)의 근사화

2. 목표함수에 대한 Gradient ascent

목표함수

• 가치 기반 강화학습

매 스텝마다 에이전트가 행동을 선택하는 기준 → 가치함수(Value function)

• 정책 기반 강화학습

정책을 업데이트할 때마다 어떤 방향으로 업데이트할 지에 대한 기준

 \rightarrow 목표함수 (Objective function) or $J(\theta)$

목표함수

- 에이전트가 정책 $\pi_{ heta}$ 에 따라서 가게 되는 "경로"를 생각해보자!
- 경로(trajectory) = 에이전트와 환경이 상호작용한 흔적

$$\tau = s_0, a_0, r_1, s_1, a_1, r_2, \cdots, s_T$$

• $J(\theta)$ = 경로 동안 받을 것이라고 기대하는 보상의 합(경로가 매번 달라지므로)

$$J(\theta) = E\left[\sum_{t=0}^{T-1} r_{t+1} \mid \pi_{\theta}\right] = E[r_1 + r_2 + r_3 + \dots + r_T \mid \pi_{\theta}]$$

Gradient ascent

- $J(\theta)$ 를 기준으로 어떻게 θ (정책신경망)을 업데이트할 것인가?
 - $\rightarrow \theta$ 에 대한 $J(\theta)$ 의 경사를 따라 올라가다(Gradient ascent)

$$\theta' = \theta + \alpha \nabla_{\theta} J(\theta)$$

$$\nabla_{\theta}J(\theta) =$$
Policy gradient

Policy gradient

수식 주의!!

수식이 많이 나옵니다

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

• Policy gradient의 기본 알고리즘 REINFORCE 식 → 이제부터 유도

$$\nabla_{\theta} J(\theta) \sim \sum_{t=0}^{T-1} \nabla_{\theta} log \pi_{\theta}(a_t|s_t) G_t$$

목표함수의 정의

$$J(\theta) = E[\sum_{t=0}^{T-1} r_{t+1} \mid \pi_{\theta}]$$

기대값 = (x)일 확률 \times x일 때의 값)의 x에 대한 합

ex) 주사위 기대값

$$E[f(x)] = \sum_{x} p(x)f(x)$$

$$\tau = s_0, a_0, r_1, s_1, a_1, r_2, \cdots, s_T$$

목표함수의 정의

$$J(\theta) = E\left[\sum_{t=0}^{T-1} r_{t+1} \mid \pi_{\theta}
ight]^{T_{1}$$
에 대한 기대값 $= E_{ au}[r_{1} \mid \pi_{\theta}] + E_{ au}[r_{2} \mid \pi_{\theta}] + E_{ au}[r_{3} \mid \pi_{\theta}] + \cdots$

$$= \sum_{t=0}^{T-1} \mathbf{P}(s_t, a_t | \tau) R(s_t, a_t) = \sum_{t=0}^{T-1} \mathbf{P}(s_t, a_t | \tau) r_{t+1}$$

$$(s_t, a_t)$$
일 확률 (s_t, a_t) 일 때의 값

양변에 ∇_{θ} 를 취하기(미분하기)

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbf{E} \left[\sum_{t=0}^{T-1} r_{t+1} \mid \pi_{\theta} \right]$$
$$= \nabla_{\theta} \sum_{t=0}^{T-1} \mathbf{P}(s_t, a_t | \tau) r_{t+1}$$

$$= \sum_{t=0}^{T-1} \nabla_{\theta} \mathbf{P}(s_t, a_t | \tau) r_{t+1}$$

$$= \sum_{t=0}^{T-1} \mathbf{P}(s_t, a_t | \tau) \nabla_{\theta} \log \mathbf{P}(s_t, a_t | \tau) r_{t+1}$$

$$\nabla_{\theta} J(\theta) = \sum_{t=0}^{T-1} \nabla_{\theta} \mathbf{P}(s_t, a_t | \tau) r_{t+1}$$

$$= \sum_{t=0}^{T-1} \mathbf{P}(s_t, a_t | \tau) \frac{\nabla_{\theta} \mathbf{P}(s_t, a_t | \tau)}{\mathbf{P}(s_t, a_t | \tau)} r_{t+1}$$

$$= \sum_{t=0}^{T-1} \mathbf{P}(s_t, a_t | \tau) \nabla_{\theta} \log \mathbf{P}(s_t, a_t | \tau) r_{t+1}$$

$$\frac{dlogf(x)}{dx} = \frac{1}{x}$$

$$\frac{dlogf(x)}{dx} = \frac{df(x)/dx}{f(x)}$$

$$\nabla_{\theta} J(\theta) = \sum_{t=0}^{T-1} \mathbf{P}(s_t, a_t | \tau) \nabla_{\theta} \log \mathbf{P}(s_t, a_t | \tau) r_{t+1}$$

$$= \mathbf{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \mathbf{P}(s_t, a_t | \tau) r_{t+1} \right]$$

강화학습에서는 E[]를 계산 하지 않고 Sampling!!
$$\rightarrow \sum_{t=0}^{T-1} \nabla_{\theta} log P(s_t, a_t | \tau) r_{t+1}$$

여기서 더 나아가기 위해서는 $P(s_t, a_t | \tau)$ 를 파헤쳐야 한다!

$$P(s_t, a_t | \tau) = P(s_0, a_0, r_1, s_1, a_1, r_2, \dots, s_t, a_t | \theta)$$

에이전트(agent)와 환경(env)의 상호작용 흔적

=
$$P(s_0)\pi_{\theta}(a_0|s_0)P(s_1|s_0,a_0)\pi_{\theta}(a_1|s_1)P(s_2|s_1,a_1)\cdots$$

에이전트가 알 수 없는 정보

목표 $\sum_{t=0}^{T-1} r_{t+1} \nabla_{\theta} log \mathbf{P}(s_t, a_t | \tau)$

기대하시라 ...

$$log \mathbf{P}(s_t, a_t | \tau)$$

$$= log[\mathbf{P}(s_0)\pi_{\theta}(a_0|s_0)\mathbf{P}(s_1|s_0,a_0)\pi_{\theta}(a_1|s_1)\cdots\mathbf{P}(s_t|s_{t-1},a_{t-1})\pi_{\theta}(a_t|s_t)]$$

$$logAB = logA + logB$$

$$= log \mathbf{P}(s_0) + log \pi_{\theta}(a_0|s_0) + log \mathbf{P}(s_1|s_0, a_0) + log \pi_{\theta}(a_1|s_1) \cdots$$

$$+ log P(s_t|s_{t-1}, a_{t-1}) + log \pi_{\theta}(a_t|s_t)$$

목표 $\sum_{t=0}^{T-1} r_{t+1} \nabla_{\theta} \log \mathbf{P}(s_t, a_t | \tau)$

기대하시라 ...

$$\nabla_{\theta} \log \mathbf{P}(s_t, a_t | \tau)$$

$$= \nabla_{\theta} [log \mathbf{P}(s_0) + log \pi_{\theta}(a_0|s_0) + log \mathbf{P}(s_1|s_0, a_0) + log \pi_{\theta}(a_1|s_1) \cdots$$

$$+ log P(s_t|s_{t-1}, a_{t-1}) + log \pi_{\theta}(a_t|s_t)]$$

$$\nabla_{\theta} log \mathbf{P}(s_0), \nabla_{\theta} log \mathbf{P}(s_1|s_0, a_0), \dots = 0$$

몰라도 돼!!

$$= \nabla_{\theta} \log \pi_{\theta}(a_0|s_0) + \nabla_{\theta} \log \pi_{\theta}(a_1|s_1) + \dots + \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$$

목표 $\sum_{t=0}^{T-1} r_{t+1} \nabla_{\theta} log \mathbf{P}(s_t, a_t | \tau)$

$$\sum\nolimits_{t=0}^{T-1} r_{t+1} \nabla_{\theta} log \boldsymbol{P}(s_{t}, a_{t} | \tau)$$

$$= \sum_{t=0}^{T-1} r_{t+1} \left[\nabla_{\theta} log \pi_{\theta}(a_0|s_0) + \nabla_{\theta} log \pi_{\theta}(a_1|s_1) + \dots + \nabla_{\theta} log \pi_{\theta}(a_t|s_t) \right]$$

$$= \sum\nolimits_{t=0}^{T-1} r_{t+1} \left(\sum\nolimits_{t'=0}^{t} \nabla_{\theta} log \pi_{\theta}(a_{t'}|s_{t'}) \right)$$

$$= \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \sum_{t'=t+1}^{T} r_{t'}$$

$$\nabla_{\theta} J(\theta) = \mathbf{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} log \pi_{\theta}(a_t | s_t) \sum_{t'=t+1}^{T} r_{t'} \right]$$

$\sum_{t'=t}^{T-1} r_{t'}$ 와 같은 단순 보상의 합 \rightarrow 3가지 문제

감가율(discount factor) $0 \le \gamma \le 1$ 의 도입

$$\nabla_{\theta} J(\theta) = \mathbf{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} log \pi_{\theta}(a_t | s_t) \sum_{t'=t+1}^{T} r_{t'} \right]$$

$$\sim \mathbf{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} log \pi_{\theta}(a_t | s_t) \sum_{t'=t+1}^{T} \gamma^{t'-t-1} r_{t'} \right]$$

$$\sum_{t'=t+1}^{T} \gamma^{t'-t-1} r_{t'} = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots + \gamma^{T-t-1} r_T \to G_t$$

Discounted future reward = Return G

$$\nabla_{\theta} J(\theta) = \mathbf{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} log \pi_{\theta}(a_t | s_t) G_t \right]$$

Sampling으로 E[]을 대체 → 강화학습

한 에피소드 : 하나의 샘플

$$\nabla_{\theta} J(\theta) \sim \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) G_t$$

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta) = \theta + \alpha \sum_{t=0}^{T-1} \nabla_{\theta} log \pi_{\theta}(a_t | s_t) G_t$$

REINFORCE 알고리즘 업데이트 식

- 1. 한 에피소드를 현재 정책에 따라 실행
- 2. Trajectory를 기록
- 3. 에피소드가 끝난 뒤 G_t 계산
- 4. Policy gradient를 계산해서 정책 업데이트 Policy gradient $=\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) G_t$
- 5. (1~4) 반복

에피소드 마다 업데이트 > 몬테카를로 Policy gradient = REINFORCE

REINFORCE의 문제

- 1. Variance가 높다
- 2. 에피소드마다 업데이트가 가능하다(on-line X)

몬테카를로 → TD(Temporal-Difference)

REINFORCE → Actor-Critic

$$\nabla_{\theta} J(\theta) = \mathbf{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) G_t \right]$$

Expectation을 쪼개보자 $\rightarrow (s_0 \sim a_t) + (r_{t+1} \sim r_T)$

$$\sum_{t=0}^{T-1} E_{s_0,a_0,\cdots,s_t,a_t} [\nabla_{\theta} log \pi_{\theta}(a_t|s_t)] E_{r_{t+1},s_{t+1},\cdots,s_T,r_T} [G_t]$$

어디선가 봤던 이 수식은 바로 Q-function

$$\boldsymbol{E}_{\boldsymbol{r}_{t+1},\boldsymbol{s}_{t+1},\cdots,\boldsymbol{s}_{T},\boldsymbol{r}_{T}}[G_{t}] = Q(\boldsymbol{s}_{t},\boldsymbol{a}_{t})$$

$$\nabla_{\theta} J(\theta) = \mathbf{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) Q_{\pi_{\theta}}(s_t, a_t) \right]$$

$$\sim \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) Q_{\pi_{\theta}}(s_t, a_t)$$

만약 $Q_{\pi_{\theta}}(s_t, a_t)$ 를 알 수 있다면 매 time-step마다 업데이트하는 것이 가능!!

 $Q_{\pi_{\theta}}(s_t, a_t) \sim Q_w(s_t, a_t)$ Let's make Critic!!!!

$$\nabla_{\theta} J(\theta) \sim \nabla_{\theta} log \pi_{\theta}(a_t|s_t) Q_w(s_t, a_t)$$

Advantage 함수 = 큐함수 ─ 베이스라인 → Variance를 낮춰준다

큐함수 : 특정 상태, 특정 행동에 따른 값

가치함수 : 특정 상태, 전반적 행동에 따른 값 → 베이스라인

$$\nabla_{\theta} J(\theta) \sim \nabla_{\theta} log \pi_{\theta}(a_t | s_t) (Q_w(s_t, a_t) - V_v(s_t))$$

$$\nabla_{\theta} J(\theta) \sim \nabla_{\theta} log \pi_{\theta}(a_t|s_t) (Q_w(s_t, a_t) - V_v(s_t))$$

Q와 V를 둘 다 근사하는 건(ex 뉴럴넷) 비효율적

$$Q(s_t, a_t) = E[r_{t+1} + \gamma V(s_{t+1}) | s_t, a_t] \ge 0 | 8!$$

$$abla_{ heta}J(heta) \sim
abla_{ heta}log\pi_{ heta}(a_t|s_t)(r_{t+1} + \gamma V_v(s_{t+1}) - V_v(s_t))$$
 큐함수 베이스라인

1. Actor

1) 정책을 근사: θ

2)
$$V_{\theta}log\pi_{\theta}(a_{t}|s_{t})(r_{t+1}+\gamma V_{v}(s_{t+1})-V_{v}(s_{t}))$$
로 업데이트

2. Critic

1) 가치함수(Value function)을 근사: v

2)
$$(r_{t+1} + \gamma V_{\nu}(s_{t+1}) - V_{\nu}(s_t))^2$$
의 오차함수로 업데이트

1. Actor 2 loss function $\nabla_0 \log \pi_0(a_t|s_t)(r_{t+1} + \nu V_n(s_{t+1}) = 0$

2. Critic^ol loss function

$$\left(\underline{r_{t+1} + \gamma V_v(s_{t+1}) - V_v(s_t)}\right)^2$$
시간차 에러

A3C

Actor-Critic과 다른 점

Actor를 업데이트하는 과정에서

- 1. Multi-step loss function
 - 2. Entropy loss function

1. Multi-step loss function

$$-\nabla_{\theta}log\pi_{\theta}(a_{t}|s_{t})(r_{t+1}+\gamma V_{v}(s_{t+1})-V_{v}(s_{t}))$$

$$-\nabla_{\theta}log\pi_{\theta}(a_{t}|s_{t})(r_{t+1}+\gamma r_{t+2}+\gamma^{2}V_{v}(s_{t+2})-V_{v}(s_{t}))$$

$$\downarrow$$

$$-\nabla_{\theta}log\pi_{\theta}(a_{t}|s_{t})(r_{t+1}+\gamma r_{t+2}+\cdots+\gamma^{19}V_{v}(s_{t+20})-V_{v}(s_{t}))$$
multi-step

20 step을 가본 후에 loss function이 하나 나온다?

1. Multi-step

$$\begin{split} loss \ funtion &= \nabla_{\theta} log \pi_{\theta}(a_{t}|s_{t})(r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{19} V_{v}(s_{t+20}) - V_{v}(s_{t}) \,) \\ &+ \nabla_{\theta} log \pi_{\theta}(a_{t+1}|s_{t+1})(r_{t+2} + \gamma r_{t+3} + \dots + \gamma^{18} V_{v}(s_{t+20}) - V_{v}(s_{t+1}) \,) \\ &+ \nabla_{\theta} log \pi_{\theta}(a_{t+2}|s_{t+2})(r_{t+3} + \gamma r_{t+4} + \dots + \gamma^{17} V_{v}(s_{t+20}) - V_{v}(s_{t+2}) \,) \\ &+ \dots + \\ &\nabla_{\theta} log \pi_{\theta}(a_{t+19}|s_{t+19})(r_{t+19} + \gamma V_{v}(s_{t+20}) - V_{v}(s_{t+19}) \,) \end{split}$$

20 step 마다 20개의 loss function을 더한 것으로 업데이트

2. Entropy loss function

엔트로피의 정의: $-\sum_i p_i log p_i$

- \rightarrow "거꾸로" $\sum_i p_i log p_i$
- → gradient descent 하기 위해!

행동이 두 가지 일 때 행동 확률에 따른 엔트로피의 그래프

2. Entropy loss function

Actor-Critic[©] loss function

$$-\nabla_{\theta} \log \pi_{\theta}(a_t|s_t)(r_{t+1} + \gamma V_v(s_{t+1}) - V_v(s_t))$$

A3C[©]I loss function

$$-\nabla_{\theta} log \pi_{\theta}(a_{t+19}|s_{t+19})(r_{t+1} + \dots + \gamma^{19} V_{v}(s_{t+20}) - V_{v}(s_{t})) \dots + \sum_{t=0}^{19} \sum_{i} p_{i} log p_{i}$$

207H^QI cross entropy: exploitation

Entropy: exploration

Global Critic

Thread 1 > 여러 개의 Thread

이기까지 A3C를 직관적 + 수식적으로 이해해봤습니다

질문

감사합니다