BESIII Oxford Group Meeting

Martin Tat

Oxford LHCb

10th June 2021

Introduction

- $K_{S,L}KK$ double tag yields for $\delta_D^{K\pi}$ measurement
- Finalized partially reconstructed double tags
 - K_SKK vs Keν
 - K_LKK vs $K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$
- Peaking background subtraction
- K_SKK vs $Ke\nu$ yields a bit off...

Partially reconstructed double tags

- More sophisticated sideband subtraction (from K_SKK MEMO):
- S: Signal region, L: Lower sideband, H: Upper sideband

$$Y_{S} = \frac{(N_{S} - N_{S}^{P}) - \delta(N_{L} - N_{L}^{P}) - \gamma(N_{H} - N_{H}^{P})}{1 - \delta\alpha - \gamma\beta}$$

$$\delta, \gamma = \frac{\text{Flat background in S}}{\text{Flat background in L, H}}, \quad \alpha, \beta = \frac{\text{Signal in S}}{\text{Signal in L, H}}$$

- α , β , γ , δ shared between all bins
- α , β from signal MC, γ , δ from inclusive MC

Updated K_L reconstruction

- Previously:
 - No additional good tracks
 - Either: Shower at $cos(\alpha) > 0.98$ from K_L
 - \bullet Or: Shower energy $E_{\text{shower}} < 0.29 \, \text{GeV}$
- New K_L selection (Study by Anita)
 - No additional tracks (good and bad)
 - Much less peaking background from $K_S o \pi^+\pi^-$
 - Lower efficiency but higher purity
 - Matches MC much better

Peaking backgrounds

- K_SKK backgrounds in K_LKK:
 - Get fraction of K_LKK to K_SKK from signal MC
 - Scale the corresponding double tag yield of K_SKK in each bin
- Other peaking backgrounds in each bin fixed from inclusive MC
 - Correct outdated branching fractions

Mode	Branching fraction correction			
$K_{S,L}KK$	1.44			
$KK\pi\pi$	1.14			
$K\pi\pi\pi$	1.03			
$K_S K \pi$	0.68			
$K\pi\pi^0$	1.04			

K_SKK vs Keν

Figure 1: U_{miss} for K_SKK vs $Ke\nu$

K_LKK vs $K\pi$

Figure 2: M_{miss}^2 for $K_L K K$ vs $K \pi$

$K_L K K$ vs $K \pi \pi^0$

Figure 3: $M_{\rm miss}^2$ for K_LKK vs $K\pi\pi^0$

K_LKK vs $K\pi\pi\pi$

Figure 4: M_{miss}^2 for $K_L K K$ vs $K \pi \pi \pi$

K_SKK double tag yields

Bin	1	2	-1	-2
K_SKK vs $K\pi$ raw yield	89	72	94	69
K_SKK vs $K\pi$ corrected yield	642.5	646.1	688.2	634.5
K_SKK vs $K\pi$ normalized yield	0.246	0.247	0.264	0.243
K_SKK vs $K\pi\pi^0$ raw yield	156	101	201	140
K_SKK vs $K\pi\pi^0$ corrected yield	2862.5	2175.1	3589.9	3165.1
K_SKK vs $K\pi\pi^0$ normalized yield	0.243	0.184	0.304	0.268
K_SKK vs $K\pi\pi\pi$ raw yield	117	68	135	88
K_SKK vs $K\pi\pi\pi$ corrected yield	1696.8	1089.0	1846.6	1473.5
K_SKK vs $K\pi\pi\pi$ normalized yield	0.278	0.178	0.302	0.241
K_SKK vs $Ke\nu$ raw yield	49	46	63	50
K_SKK vs $Ke\nu$ corrected yield	434.9	553.0	552.3	615.2
K_SKK vs $Ke u$ normalized yield	0.202	0.257	0.256	0.285

K_SKK double tag yields

Bin	1	2	-1	-2
K_LKK vs $K\pi$ raw yield	148	102	144	130
K_LKK vs $K\pi$ corrected yield	962.9	821.3	1001.5	1203.0
K_LKK vs $K\pi$ normalized yield	0.241	0.206	0.251	0.302
$K_L K K$ vs $K \pi \pi^0$ raw yield	302	234	319	264
$K_L K K$ vs $K \pi \pi^0$ corrected yield	3558.7	3650.8	3593.9	4469.6
$K_L K K$ vs $K \pi \pi^0$ normalized yield	0.233	0.239	0.235	0.293
$K_L K K$ vs $K \pi \pi \pi$ raw yield	182	134	175	136
$K_L K K$ vs $K \pi \pi \pi$ corrected yield	2545.6	2368.8	2431.5	2577.0
K_LKK vs $K\pi\pi\pi$ normalized yield	0.257	0.239	0.245	0.260

Normalized yields

Figure 5: Double tag yields

- Errors:
 - Raw yields: Poisson (\sqrt{N})
 - Peaking backgrounds: Poisson ($\sqrt{N}/21.8$)
 - Efficiencies: Binomial

Keν Dalitz distributions

Figure 6: Dalitz distributions of K_SKK vs $Ke\nu$

Keν Dalitz distributions

Figure 7: Dalitz distributions of K_SKK vs $Ke\nu$

Next steps

- Flavour tag correction
- Amplitude model for $D \to K_{S,L} h^+ h^-$?

$$f_{i} = \frac{\int_{i} |f(m_{+}^{2}, m_{-}^{2})|^{2} dm_{+}^{2} dm_{-}^{2}}{\int_{i} (|f(m_{+}^{2}, m_{-}^{2})|^{2} + (r_{D}^{F})^{2} |f(m_{-}^{2}, m_{+}^{2})|^{2} - 2r_{D}^{F} R_{F} \mathcal{R}[e^{i\phi_{D}^{F}} f(m_{+}^{2}, m_{-}^{2}) f^{*}(m_{-}^{2}, m_{+}^{2})]) dm_{+}^{2} m_{-}^{2}}, \tag{20}$$

$$f_i' = \frac{\int_{\mathbb{I}} [f'(m_+^2, m_-^2)]^2 dm_+^2 dm_-^2}{\int_{\mathbb{I}} ([f'(m_+^2, m_-^2)]^2 + (r_D^F)^2 [f'(m_-^2, m_+^2)]^2 + 2r_D^F R_F \Re[e^{i\delta_D^F} f'(m_+^2, m_-^2) f'^*(m_-^2, m_J^2)] dm_+^2 m_-^2},$$
 (21)