Introducing QtSpim

Based on quiz examples

Dr. Kokalj-Filipovic kokaljfilipovic@rowan.edu CompOrg 2022

Section 2 Quiz Question

- Write the MIPS assembly code for the C statement:
- A[10] = g + A[i]
- The base address of the array A is stored in \$s0. Variable i is stored in \$s1. Variable g is stored in \$s2.

```
sll $s1, $s1,2 # multiply i by 4
add $t0, $s1, $s0 # calculate current address
lw $t1, 0($t0) # load from the current address A[i]
add $t0, $t1, $s2 # A[i]+g
sw $t0, 40($s0) #store the sum to A[10]
```

Creating a file interpretable by QtSim

- Use a simple text editor (Notebook in Windows, vi in Linux, mipster)
- Write pseudo instructions to declare the data (A, i, g)
- Add pseudo instructions to denote the start of the program
- Write pseudo instructions to load the registers given in the question:
 - The base address of the array A is stored in \$s0. Variable i is stored in \$s1. Variable g is stored in \$s2.
- Paste the assembly instructions from the solution I posted
- Add a syscall to exit from the program

How MIPS communicates with peripherals

syscall (trap)

- A number of system services, mainly for input and output, are available for use by your MIPS program.
- MIPS register contents are not affected by a system call, except for result registers as specified in the link below.
- How to use SYSCALL system services
- Step 1. Load the service number in register \$v0.
 - Step 2. Load argument values, if any, in \$a0, \$a1, \$a2, or \$f12 as specified.
 - Step 3. Issue the SYSCALL instruction.
 - Step 4. Retrieve return values, if any, from result registers as specified.
- http://courses.missouristate.edu/KenVollmar/Mars/Help/SyscallHelp.html
- https://student.cs.uwaterloo.ca/~isg/res/mips/traps

Our example in a file

.data

A: .word 10 11 12 13 14 15 16 17 18 20

21 22 23 24

ii: .word 2

g: .word 5

.text

.globl main

main:

la \$s0, A

lw \$s1, ii

lw \$s2, g

sll \$s1, \$s1,2

add \$t0, \$s1, \$s0

lw \$t1, 0(\$t0) add \$t0, \$t1, \$s2

sw \$t0, 40(\$s0)

ori \$v0, \$zero, 10 #exit syscall

Modified file

```
.data
A: .word 10 11 12 13 14 15 16 17 18 20 21 22 23
24
ii: .word 2
g: .word 5
msg: .asciiz "Section 2 result:"
        .asciiz "\n"
nLine:
.text
.globl main
main:
         $s0, A
la
         $s1, ii
lw
         $s2, g
lw
```

```
sll $s1, $s1,2
add $t0, $s1, $s0
     $t1, 0($t0)
lw
     $t0, $t1, $s2
add
     $t0, 40($s0)
SW
li $v0, 4
la $a0, msg # argument: string
syscall # print the string
la $a0, nLine # argument: string
syscall # print the string
# Print integer
li $v0, 1
add $a0, $t0, $zero
syscall
ori $v0, $zero, 10
                            #exit
syscall
```

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	100	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	/	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	у
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	Z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

Section 3 Quiz

- Write the MIPS assembly code for the C statement:
- A[i] = g A[5]
- The base address of the array A is stored in \$s0. Variable i is stored in \$s1. Variable g is stored in \$s2.

```
lw $t1, 20($s0) # load from the address A[5]
sub $t0, $s2, $t1 # g-A[5]

sll $s1, $s1,2 # multiple i by 4
add $t1, $s1, $s0 # calculate current address

sw $t0, 0($t1) #store the sum to A[i]
```

Our example in a file

.data

A: .word 10 11 12 13 14 15 16 17 18 20

21 22 23 24

ii: .word 2

g: .word 5

.text

.globl main

main:

la \$s0, A

lw \$s1, ii

lw \$s2, g

lw \$t1, 20(\$s0)

sub \$t0, \$s2, \$t1

sll \$s1, \$s1,2 add \$t1, \$s1, \$s0

sw \$t0, 0(\$t1)

ori \$v0, \$zero, 10 #exit syscall

MIPS Reference Sheet

• https://mathcs.holycross.edu/~csci226/MIPS/MIPSReferenceHO.pdf