Digitaltechnik

Andrej Scheuer ascheuer@student.ethz.ch 14. Oktober 2020

Gate

AND

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

NAND

AND aus NOR

OR

В	Y
0	0
1	1
0	1
1	1
	0

NOR

OR aus NAND

NOT

NOT aus NOR

XOR

 $F=A\oplus B$

Weitere Gates

NAND	NOR		XNO	OR	
$C=\overline{A\wedge B}$	$D = \overline{A}$	$\overline{\vee B}$	E =	$=\overline{A\oplus}$	\overline{B}
A & C	$A \downarrow \geq 1$ $B \downarrow $	>- D	A 7 B J	=1	- E
		NAND	NOR	XNOR	XOR

		NANI	NOR	F E	вох F
A	В	С	D	E	F
0	0	1	1	1	0
0	1	1	0	0	1
1	0	1	0	0	1
1	1	0	0	1	0

XOR aus NAND

XOR aus NOR: Gleiches Schema wie NAND + 1 Inverter

XNOR aus NAND: Gleiches Schema wie XOR aus NOR

XNOR aus NOR: Gleiches Schema wie XOR aus NAND

zu

offen

Es versteht sich natürlich, dass wenn von "Gleichem Schema wie…" gesprochen wird, die Gates trotzdem getauscht werden müssen.

CMOS

NMOS

PMOS

G	Schalter	Y	G
0	offen	1	0
1	zu	0	1

Konstruktion von CMOS-Gates

Regeln für CMOS-Schaltungen

- $\begin{array}{c} {\rm 1. \ \ CMOS\text{-}Gates \ bestehen \ aus \ gleich \ vielen \ NMOS \ und \ PMOS.} \end{array}$
- 2. m Eingänge: m NMOS und m PMOS.
- 3. NMOS in Serie \rightarrow PMOS parallel
- 4. NMOS parallel \rightarrow PMOS Serie

Allg. Aufbau CMOS

Pull-up: PMOS
Pull-down: NMOS

Pfade sind komplementär (Serie \Leftrightarrow Parallel)

Umwandlung Pull-up zu Pull-down

- 1. Teilbereiche (Blöcke) identifizieren.
- 2. Schritt 1 wiederholen, bis nur noch einzelne Transistoren vorkommen.
- 3. Falls Pull-down:
 - $\bullet\,\,$ Von GND aus mit äusserstem Block beginnen.
 - $PMOS \rightarrow NMOS$
- 4. Falls Pull-up:
 - Von V_{DD} aus mit äusserstem Block beginnen.
 - NMOS \rightarrow PMOS.

Funktionsgleichung

PMOS	$Parallel \rightarrow NAND$	$Serie \rightarrow NOR$
NMOS	$Parallel \rightarrow NOR$	$Serie \to NAND$

Boolsche Algebra

Grundregeln

Kommutativität

$$A \wedge B = B \wedge A$$
$$A \vee B = B \vee A$$

Assoziativität

$$A \wedge (B \wedge C) = A \wedge (B \wedge C)$$
$$A \vee (B \vee C) = A \vee (B \vee C)$$

Distributivität

$$(A \land B) \lor (A \land C) = A \land (B \lor C)$$
$$(A \lor B) \land (A \lor C) = A \lor (B \land C)$$

Nicht	$\overline{\overline{A}} = A$		
Null-Th.	$A\vee 0=A$	$A \wedge 0 = 0$	
Eins-Th.	$A\vee 1=1$	$A \wedge 1 = A$	
Idempotenz	$A \lor A = A$	$A \wedge A = A$	
V. Komp.	$A \vee \overline{A} = 1$	$A \wedge \overline{A} = 0$	
Adsorp.	$A \vee (\overline{A} \wedge B) = A \vee B$		
	$A \wedge (\overline{A} \vee B) = A \wedge B$		
Adsorp.	$A \vee (A \wedge B) = A$		
	$A \wedge (A \vee B) = A$		
Nachbar.G.	$(A \wedge B) \vee (\overline{A} \wedge B) = B$		
	$(A \vee B) \wedge (\overline{A} \vee B) = B$		

De Morgan

- 1. Regel $\overline{A \wedge B} = \overline{A} \vee \overline{B}$
- 2. Regel $\overline{A \vee B} = \overline{A} \wedge \overline{B}$

Regel
n gelten auch für \boldsymbol{n} verknüpfte Terme.

Normalformen

Minterm	Maxterm
AND-Ausdruck	OR-Ausdruck
Output: 1	Output: 0
n Schaltvar. $\rightarrow 2^n$ mögl. Minterme.	n Schaltvar. $\rightarrow 2^n$ mög Maxterme.
nicht-invertierte Var: 1	nicht-invertierte Var: 0
invertierte Var: 0	invertierte Var: 0

Disjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 1
- 2. Minterme für diese Zeilen aufstellen
- 3. Minterme mit \mathbf{OR} verknüpfen

Konjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 0
- 2. Maxterme für diese Zeilen aufstellen
- 3. Maxterme mit \mathbf{AND} verknüpfen

A	В	Y	Minterme	Maxterme
0	0	1	$\overline{A} \wedge \overline{B}$	
0	1	0		$A \vee \overline{B}$
1	0	0		$\overline{A} \vee B$
1	1	1	$A \wedge B$	

DNF $Y = (\overline{A} \wedge \overline{B}) \vee (A \wedge B)$ 1 Mint. erf. \rightarrow 1

KNF $Y = (A \vee \overline{B}) \wedge (\overline{A} \vee B)$ 1 Maxt. erf. \rightarrow 0

Schaltung nur aus:

- NOR: KNF \rightarrow De Morgan
- NAND: DNF \rightarrow De Morgan