cisco live!

Understanding Multicluster Kubernetes Connectivity Options

Shannon McFarland - CCIE #5245 Distinguished Engineer @eyepv6 BRKETI-2003

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 17, 2022.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKETI-2003

Agenda

- Multicluster Connectivity Pain points
- Kubernetes Services, Ingress, Load Balancer
- Cilium Cluster Mesh
- Service Mesh
 - Linkerd
 - Istio

Multicluster Connectivity – What is all the fuss about?

- There are several reasons for establishing connectivity between Kubernetes clusters to include:
 - · Service load balancing
 - · Data replication
 - Service dependencies
 - · Partner-provided service connectivity
 - etc..
- Today, many assumptions are made about the underlying infrastructure that exists underneath and in between these clusters:
 - Use ingress/load balancers and let basic networking and name resolution sort it out
 - Intra-VPC/Intra-network Deploy the clusters in the same VPCs/networks to facilitate easier connectivity
 - Inter-VPC/Inter-network Networking is already built and managed (Hybrid cloud, VPC peering, etc.)
- Regardless of the assumptions or justification, something and someone has to deal with service-to-service connectivity – let's explore some options

Multicluster Connectivity - Options Galore!

- There are many solutions for linking workloads that are hosted on different Kubernetes clusters – let's look at a few of them
- CNI-based
 - Cilium Cluster Mesh Global load balancing is great Service-to-service can be dicey
- · Gateway-based
 - Submariner A Layer 3/4 centric approach Service-to-service is a strength Not the smoothest implementation
- Application Service Mesh-based Layer 4/7 networking, robust security and observability
 - Linkerd
 - Istio

A Couple of Use Cases

Service-to-Service/Pod-to-Pod

A Note About Shared Service Naming

	Cilium Cluster Mesh	Submariner	Linkerd	Istio	Cisco Calisti (Istio)
Service Name	Unchanged - Global LB Custom service - Create phantom/ghost service for service-to-service use case	<svc>.default.svc.clu sterset.local</svc>	<svc-cluster>- .default.svc.cluster.local</svc-cluster>	Unchanged - Global LB Custom service - Create phantom/ghost service for service-to-service use case	Same as Istio
Example	my-custom-service- name.default.svc.cluster.local	redis- cart.default.svc.clusters et.local	redis-cart- cluster1.default.svc.cluster.lo cal	my-custom-service- name.default.svc.cluster.local	Same as Istio
Special Config	kind: Service metadata: name: redis-cart annotations: io.cilium/global-service: "true"				

Kubernetes Services, Ingresses, Load Balancers

K8s Multicluster Connectivity – Using Ingress, Services, LBs

Cilium CNI + Cilium Cluster Mesh

Cilium Cluster Mesh

- eBPF-based Networking, Observability and Security:
 - https://cilium.io/
 - A CNCF project
- Cilium Cluster Mesh: https://docs.cilium.io/en/stable/gettingstarted/#cluster-mesh
 - https://cilium.io/blog/2019/03/12/clustermesh
 - It isn't a traditional Application Service Mesh ☺
 - Define globally load balanced services that span Kubernetes clusters
 - etcd state shared via load-balancers / Nodes communicate over VXLAN / Encryption over IPSec
 - Selective load balancing to remote clusters is possible but difficult depending on the scenario
 - Connect to external workloads (e.g., VMs)
- Outcome: It just worked, but it may not be what you need

Microservices Demo Topology

https://github.com/GoogleCloudPlatform/microservices-demo

K8s Multicluster Connectivity - Global Service LB

K8s Multicluster Connectivity - Global Service LB **VXLAN**

K8s Multicluster Connectivity - Global Service LB Global I B

K8s Multicluster Connectivity - Service-to-Service

K8s Multicluster Connectivity - Service-to-Service

K8s Multicluster Connectivity - Service-to-Service

Submariner

Submariner

- Gateway-based multicluster connectivity for Kubernetes services: https://submariner.io/
- A CNCF project
- What is it?
 - Gateway-based with support for IPSec (libreswan), WireGuard and VXLAN
 - Connect 'exported' services between clusters
 - Can be used as a transport for other stuff like lstio: https://cloud.redhat.com/blog/set-up-istio-multicluster-with-submariner-in-red-hat-advanced-cluster-management-for-kubernetes
- Outcome: It is a very bumpy deployment. Fairly 'smooth' on OpenShift, but bumpy on most other platforms due to out-of-date docs and buggy dependency scripts
- Things to watch out:
 - MTU on pods Must account for overhead of IPSec/Wireguard/VXLAN
 - Security groups pay close attention to the SG dependencies per encap type

Microservices Demo Topology

https://github.com/GoogleCloudPlatform/microservices-demo

K8s Multicluster Connectivity - Submariner Service Export

Setup

subctl show all
GATEWAY CLUSTER REMOTE IP NAT CABLE DRIVER SUBNETS STATUS RTT avg.
cluster2-worker cluster2 172.18.0.5 no libreswan 100.2.0.0/16, 10.2.0.0/16 connected 152.062µs

K8s Multicluster Connectivity – Submariner Service Export Make the Service Known

K8s Multicluster Connectivity – Submariner Service Export Redis Replication

Linkerd

An open source **service mesh** and **CNCF** project.

- 4 years in production
- **5,000+** Slack channel members
- **10,000+** GitHub stars
- (2) 100+ contributors

BRKETI-2003 27

What does it do?

- Observability: Service-level golden metrics: success rates, latencies, throughput. Service topologies.
- Reliability: Retries, timeouts, load balancing, circuit breaking
- Security: Transparent mTLS, cert management and rotation, policy

In an ultralight package focused on operational simplicity first and foremost.

Linkerd Design

- In short, "do less, not more"
- Just works: Zero config, out of the box, for any Kubernetes app
- Ultralight: Introduce the bare minimum perf and resource cost
- Simple: Reduce operational complexity in every possible way
- Minimal overhead:
 - Control plane: Go. ~200mb RSS (excluding metrics data). (Repo: linkerd/linkerd2).
 - Data plane: Rust. <10mb RSS (Resident Set Size), <1ms p99 (Repo: <u>linkerd/linkerd2-proxy</u>)

Linkerd 2.x Architecture

Linkerd: How Do I Get It?

- Where to get it:
 - https://linkerd.io/2/getting-started/
 - Releases: https://github.com/linkerd/linkerd2/releases/
- Deploy a Kubernetes Cluster
- Deploy Linkerd
- Deploy (or add) Linkerd to your microservice(s)

Get involved!

- · Linkerd has a friendly, welcoming community! Join us!
- Development is all on https://github.com/linkerd
- Thriving community in the https://slack.linkerd.io/
- Formal announcements on the CNCF https://lists.cncf.io/g/cncf-linkerd-users
- Linkerd is 100% Apache v2 licensed, owned by a neutral foundation (https://www.cncf.io/), and is https://linkerd.io/2019/10/03/linkerds-commitment-to-open-governance/.

Microservices Demo Topology

https://github.com/GoogleCloudPlatform/microservices-demo

BRKFTI-2003

Linkerd Multicluster Setup - Pre-setup Stuff

https://linkerd.io/2.11/getting-started/ https://linkerd.io/2.11/features/multicluster/

Create certs

```
# step certificate create root.linkerd.cluster.local root.crt root.key \
    --profile root-ca --no-password --insecure

# step certificate create identity.linkerd.cluster.local issuer.crt issuer.key \
    --profile intermediate-ca --not-after 8760h --no-password --insecure \
    --ca root.crt --ca-key root.key
```

Install Linkerd and create an anchor of trust between the clusters

Follow the documented steps for addons such as Linkerd 'viz' (UI) installation

K8s Multicluster Connectivity - Linkerd Multicluster

K8s Multicluster Connectivity - Linkerd Multicluster

Linkerd Multicluster - Service Export

Rule: 'Link' on cluster you want to share to

BRKETI-2003

Reference

```
apiVersion: multicluster.linkerd.io/v1alpha1
kind: Link
metadata:
  name: linkerd-mc-1
 namespace: linkerd-multicluster
spec:
  clusterCredentialsSecret: cluster-credentials-linkerd-mc-1
  gatewayAddress: a9d97fc75ed1d43b19e2a3344ad734cc-1322698043.us-west-2.elb.amazonaws.com
  gatewayIdentity: linkerd-gateway.linkerd-multicluster.serviceaccount.identity.linkerd.cluster.local
 gatewayPort: "4143"
 probeSpec:
    path: /ready
    period: 3s
    port: "4191"
  selector:
    matchExpressions:
    - key: mirror.linkerd.io/exported
      operator: Exists
  targetClusterDomain: cluster.local
  targetClusterLinkerdNamespace: linkerd
  targetClusterName: linkerd-mc-1
apiVersion: v1
kind: Service
metadata:
  name: probe-gateway-linkerd-mc-1
  namespace: linkerd-multicluster
  labels:
    mirror.linkerd.io/mirrored-gateway: "true"
    mirror.linkerd.io/cluster-name: linkerd-mc-1
spec:
  ports:
  - name: mc-probe
    port: 4191
```

Linkerd Multicluster - Redis Replication

127.0.0.1:6379> replicaof redis-cart-linkerd-mc-1.default.svc.cluster.local 6379 127.0.0.1:6379> keys *

1) "72c6d371-812f-4778-80c8-c41366d956a6"

Istio

Istio Overview

- An open-source project started by Google and IBM with help from the Envoy team at Lyft
 - https://istio.io/
 - https://github.com/istio
 - https://www.envoyproxy.io/
- https://istio.io/docs/concepts/what-is-istio/
 - Automatic load balancing for HTTP, gRPC, WebSocket, and TCP traffic
 - Robust multicluster connectivity
 - Fine-grained control of traffic behavior with rich routing rules, retries, failovers, and fault injection
 - A pluggable policy layer and configuration API supporting access controls, rate limits and quotas
 - Automatic metrics, logs, and traces for all traffic within a cluster, including cluster ingress and egress
 - Secure service-to-service authentication with strong identity assertions between services in a cluster

Istio Architecture

https://istio.io/latest/docs/ops/deployment/architecture/

istiod

- · Pilot
 - · Handles service discovery and config data
 - Provides the Envoy proxies with the mesh topology and route rules

Galley

- Validates user authored Istio API configuration on behalf of other control plane components
- Top-level config ingestion, processing and distribution

Citadel

 Provides certificates to the Envoy proxies for authentication and authorization

Envoy

- · A proxy attached to every microservice
- The connection point for a microservice to attach to the mesh

BRKFTI-2003

Envoy

https://www.envoyproxy.io

- Implemented by Lyft
- A C++ based L4/L7 proxy
- Can be used independently of any service
 Transparent proxying mesh (Istio)

CoreDNS

Service Discovery

OpenTracing

Distributed Tracing API

0 4 2 3

Fluentd

V f sa

linkerd

Service Mesh

\$ □ PU

GRPG aRPC

Remote Procedure Call

OMAY

□ ||| || ||

- API driven
- Traffic routing and splitting
- Health checks, circuit breakers, etc.

USED BY

https://github.com/envoyproxy/envoy

BRKETI-2003

Istio: How Do I Get It?

- Where to get it:
 - Istio currently is available directly from the Istio community at: https://istio.io/about/community/join/
 - It can also be built directly: https://github.com/istio/istio
 - It can be enabled as an infrastructure option in GKE
- How to install it (Kubernetes):
 - https://istio.io/docs/setup/getting-started/
 - Kubernetes installation is a prerequisite
 - Directly from the manifests included in the release
 - Using Helm charts included in the release

BRKETI-2003

Contribution

- Contribution Readme: https://github.com/istio/community/blob/master/CONTRIBUTING.md
- Contributing to the Docs: https://istio.io/about/contribute/
- Istio Discussion: https://discuss.istio.io/

Istio Multicluster

- https://istio.io/latest/docs/ops/deployment/deployment-models/
 - Primary-Remote single network
 - Primary-Remote multiple networks
 - Multi-Primary single network
 - Multi-Primary multiple networks
- "single network" ->> "flat networking", "shared networking" = full reachability between workloads without an Istio gateway
- "multiple network" Workloads reach each other via an Istio gateway
- Pre-planning:
 - Service naming
 - Istio DNS proxy
 - Service sharing/exposure Control at the gateway or via Istio Authorization: https://istio.io/latest/docs/reference/config/security/authorization-policy/

Microservices Demo Topology

https://github.com/GoogleCloudPlatform/microservices-demo

Istio Multicluster Setup - Pre-setup Stuff

https://istio.io/latest/docs/setup/install/multicluster/before-you-begin/

Create certs and secrets on first cluster and 2nd clusters

Export context info for future use with 'kubectl' and 'istioctl'

```
# export CTX_CLUSTER1=istio-mc-1
# export CTX CLUSTER2=istio-mc-2
```


K8s Multicluster Connectivity - Istio Multicluster

K8s Multicluster Connectivity - Istio Multicluster

Warning: It is ALWAYS DNS that kills you ©

- By default, Istio does not enable DNS proxy for services that are exposed to another cluster
- https://istio.io/latest/docs/ops/configuratio n/traffic-management/dnsproxy/#getting-started
- Without enabling DNS proxy, "redis-cartcls1.default.svc.cluster.local" will not be resolvable on the 2nd cluster

Add to the Istio Operator Config

```
apiVersion: install.istio.io/vlalphal
kind: IstioOperator
spec:
  meshConfig:
    defaultConfig:
    proxyMetadata:
    # Enable basic DNS proxying
    ISTIO_META_DNS_CAPTURE: "true"
```

OR edit the config post-deployment

```
# kubectl edit istiocontrolplanes -n istio-system
meshConfig:
    defaultConfig:
        . . .<output_summarized>
        proxyMetadata:
        ISTIO_META_ALS_ENABLED: "true"
        ISTIO_META_DNS_CAPTURE: "true"
        PROXY_CONFIG_XDS_AGENT: "true"
```


K8s Multicluster Connectivity - Istio Multicluster

Expose Services - "istio-mc-1"

- "<SVC>.default.svc.cluster.local"

Istio Multicluster Setup - Endpoint Discovery

 Install remote secrets in both clusters so that each cluster has API server access to the other cluster

```
# istioctl x create-remote-secret \
    --context="${CTX_CLUSTER1}" \
    --name=istio-mc-1 | \
    kubectl apply -f - --context="${CTX_CLUSTER2}"

# istioctl x create-remote-secret \
    --context="${CTX_CLUSTER2}" \
    --name=istio-mc-2 | \
    kubectl apply -f - --context="${CTX_CLUSTER1}"
```


BRKETI-2003

Istio Multicluster - Redis Replication

Service Mirror - Phantom/Ghost Services

```
name: cross-network-gateway
                eastwest-aw
                                                  spec:
                                                    selector:
                     Balancer AWS LB: 52.11.49.96
                                                      istio: eastwestgateway
                                                    servers:
                                                       - port:
                                                           number: 15443
                                                          name: tls
                                                          protocol: TLS
                            172.17.43.144
                              redis-cart-
                                                          mode: AUTO PASSTHROUGH
                                                                                              service: redis-cart
                                 cls1
                        service:
redis-cart
                                                                                 pod: redis-
                                                                                    cart
                                                                                   replica
pod: redis-
                                                   127.0.0.1:6379> replicaof redis-cart-cls1.default.svc.cluster.local 6379
   cart
```

```
# istioctl proxy-config endpoints --context $CTX_CLUSTER2 redis-cart-5b569cd47-6ppzm --cluster
"outbound|6379||redis-cart-cls1.default.svc.cluster.local"
ENDPOINT STATUS OUTLIER CHECK CLUSTER
52.11.49.96:15443 HEALTHY OK outbound|6379||redis-cart-cls1.default.svc.cluster.local
```


Example of redis-cart-cls1 service

```
kubectl apply -f - <<EOF
apiVersion: v1
kind: Service
metadata:
   name: redis-cart-cls1
spec:
   type: ClusterIP
   selector:
    app: redis-cart
ports:
    - name: tcp-redis
    protocol: TCP
   port: 6379
   targetPort: 6379</pre>
```


Cisco Calisti - A Service Mesh Manager

Cisco Calisti

https://calisti.app/

Introducing extensions for Intersight Kubernetes Service

Operationalize the service mesh

Multi-cloud, multi-cluster connectivity and observability

Connect any on-prem and public cloud together

Simplifies service mesh management Single pane of glass, in depth metrics

Policy-based app networking & security Policy management for DevOps teams

Traffic management ensures smooth app updates

Complete application and health **observability**

Security at all layers between clusters and clouds

Cisco Calisti Benefits

Multi-Cluster Observability

- ✓ Proactive issue resolution using SLO¹, error budgeting, actionable alerting when SLO's are endangered
- ✓ Faster root cause resolution using timeline view, outlier detection, traffic tapping/tracing
- ✓ Better visibility into serviceto-service performance through Traffic Analytics

2

Simplified mesh & traffic management

- ✓ Complete Istio lifecycle mgmt.
- ✓ Ensure High Availability via automated tooling, metrics
- ✓ Rich, comprehensive operations focused dashboard
- ✓ Enterprise-grade security hardening & lifecycle
- ✓ Reduced risk of day 2 deployments via canary upgrades
- ✓ Reduce human error via config validation
- ✓ VM-extensions for brownfield and external service linkage

3

Policy based n/w & Security

- Simplified application deployment via security, observability and platform traffic management
- Respond quickly to security vulnerabilities via policy enforcement
- ✓ Avoid issues via canary deployments, circuit breakers
- ✓ DevOps friendly traffic debugging

Microservices Demo Topology

https://github.com/GoogleCloudPlatform/microservices-demo

BRKFTI-2003

Cisco Calisti Setup – From 19 steps to 3 © https://calisti.app/

- 1) Install Cisco Calisti and identify the first cluster name:
- # smm install -a --cluster-name smm-mc-1
- 2) Install Cisco Calisti with a full Istio control plane and attach the 2nd cluster to the 1st cluster:
- # smm istio cluster attach smm-mc-2.yaml --active-istio-control-plane
- 3) Enable Istio sidecar injection on a namespace:
- # smm sidecar-proxy auto-inject on default

```
# smm istio cluster status
Clusters
                            Regions
                                                                        Distribution
          Type
                  Provider
                                           Version
                                                                                       Status
                                                                                                Message
Name
                             [us-east-2] v1.21.2-13+d2965f0db10712
smm-mc-1
          Local
                                                                                       Ready
                  amazon
                                                                        EKS
smm-mc-2 Peer
                             [us-east-2] v1.21.2-13+d2965f0db10712
                                                                        EKS
                                                                                       Ready
                  amazon
ControlPlanes
Cluster
                                   Version Trust Domain
                                                               Pods
          Name
Proxies
smm-mc-1
         cp-v111x.istio-system 1.11.4
                                       [cluster.local]
                                                       [istiod-cp-v111x-75b7ccbb76-6szk9.istio-system]
                                                                                                    32/32
smm-mc-2
         cp-v111x.istio-system 1.11.4
                                       [cluster.local]
                                                       [istiod-cp-v111x-6f5d85c56f-vw2k7.istio-system]
                                                                                                    5/5
```


K8s Multicluster Connectivity - Cisco Calisti Multicluster

2nd Warning: It is ALWAYS DNS that kills you ©

- By default, Istio does not enable DNS proxy for services that are exposed to another cluster
- https://istio.io/latest/docs/ops/configuratio n/traffic-management/dnsproxy/#getting-started
- Without enabling DNS proxy, "redis-cartcls1.default.svc.cluster.local" will not be resolvable on the 2nd cluster

Add to the Istio Operator Config

```
apiVersion: install.istio.io/vlalphal
kind: IstioOperator
spec:
   meshConfig:
    defaultConfig:
       proxyMetadata:
       # Enable basic DNS proxying
       ISTIO_META_DNS_CAPTURE: "true"
```

OR edit the config post-deployment

```
# kubectl edit istiocontrolplanes -n istio-system
meshConfig:
    defaultConfig:
        . . .<output_summarized>
        proxyMetadata:
        ISTIO META_ALS_ENABLED: "true"
        ISTIO META_DNS_CAPTURE: "true"
        PROXY_CONFIG_XDS_AGENT: "true"
```


K8s Multicluster Connectivity - Cisco Calisti Multicluster

 Brute force – Control which services are exposed/shared at the gateway

```
# kubectl edit -n istio-system gw istio-cross-network-cp-vlllx
apiVersion: networking.istio.io/vlalpha3
kind: Gateway
metadata:
   name: istio-cross-network-cp-vlllx
spec:
   servers:
   - hosts:
   - "*.local"
```

Service-specific Example:

```
hosts:
     - "<SVC>.default.svc.cluster.local"
```

- Istio Authorization Policy: https://istio.io/latest/docs/reference/config/security/authorization-policy/
 - · Microscopic control of which things talk to which other things and how

BRKETI-2003

Cisco Calisti Multicluster - Redis Replication

Service Mirror - Phantom/Ghost Services

```
meshexpansion
                    Balancer AWS LB: 52.14.79.204
                           10.100.55.204
                            redis-cart-
                                                                                        service: redis-cart
                               cls1
                       4
service:
redis-cart
                                                                            pod: redis-
                                                                               cart
                                                                              replica
pod: redis-
                                                127.0.0.1:6379> replicaof redis-cart-cls1.default.svc.cluster.local
   cart
      # istioctl proxy-config endpoints redis-cart-5b569cd47-brxgr --cluster "outbound|6379||redis-cart-
      cls1.default.svc.cluster.local"
      ENDPOINT
                                                                   CLUSTER
                                  STATUS
                                                OUTLIER CHECK
      52.14.79.204:15443
                                                                     outbound | 6379 | | redis-cart-cls1.default.svc.cluster.local
                                   HEALTHY
                                                 OK
```

```
# istioctl proxy-config listeners redis-cart-5b569cd47-brxgr --port 6379 -o json
...

"name": "10.100.55.204_6379",
...

"type.googleapis.com/envoy.extensions.filters.network.tcp_proxy.v3.TcpProxy",
"statPrefix": "outbound|6379||redis-cart-cls1.default.svc.cluster.local",
"cluster": "outbound|6379||redis-cart-cls1.default.svc.cluster.local"
```

Cisco Calisti - Multicluster - Multi-Control Plane

E disco SMM MESH						
CONTROL PLANES	CLUSTERS 2		ISTIO PROXIES MEMORY USAGE 2.33GB	ISTIO PROXIES CPU USAGE 0.29vCPU	ISTIO PROXIES NOT RUNNING	
Clusters						
NAME	TYPE	PRO	VIDER	VERSION	STATUS	
smm-mc-1	Local	amazon (us-east-2)		v1.21.2-13+d2965f0db10712 (EKS)	Ready	
smm-mc-2	Peer	amazon (us-east-2)		v1.21.2-13+d2965f0db10712 (EKS)	Ready	
Control planes						
NAME	CLUSTER	VERSION	TRUST DOMAIN @	PODS	PROXIES ①	CONFIG
cp-v111x.istio-system	smm-mc-1	1.11.4	cluster.local	istiod-cp-v111x-75b7ccbb76-6szk9.istio-system	32 / 32	D
cp-v111x.istio-system	smm-mc-2	1.11.4	cluster.local	istiod-cp-v111x-6f5d85c56f-vw2k7.istio-system	5 / 5	

Cisco Calisti - Topology

Summary

- Check out Cisco Calisti Get started for free (Up to 10 nodes and 2 clusters): https://calisti.app/
- There are many options for connecting workloads in multiple Kubernetes clusters – we just touched on a few
 - Network Service Mesh https://networkservicemesh.io/
- Many users leverage multicluster connectivity for cross-cluster loadbalancing of services
- For specialized per-service cross-cluster connectivity, special care must be taken to select a solution that provides a balance of use-case flexibility and operational supportability

Technical Session Surveys

- Attendees who fill out a minimum of four session surveys and the overall event survey will get Cisco Live branded socks!
- Attendees will also earn 100 points in the Cisco Live Game for every survey completed.
- These points help you get on the leaderboard and increase your chances of winning daily and grand prizes.

Cisco Learning and Certifications

From technology training and team development to Cisco certifications and learning plans, let us help you empower your business and career. www.cisco.com/go/certs

(CLCs) are prepaid training vouchers redeemed directly with Cisco.

Learn

Train

Certify

Cisco U.

IT learning hub that guides teams and learners toward their goals

Cisco Digital Learning

Subscription-based product, technology. and certification training

Cisco Modeling Labs

Network simulation platform for design, testing, and troubleshooting

Cisco Learning Network

Resource community portal for certifications and learning

Cisco Training Bootcamps

Intensive team & individual automation and technology training programs

Cisco Learning Partner Program

Authorized training partners supporting Cisco technology and career certifications

Cisco Instructor-led and Virtual Instructor-led training

Accelerated curriculum of product, technology, and certification courses

Cisco Certifications and **Specialist Certifications**

Award-winning certification program empowers students and IT Professionals to advance their technical careers

Cisco Guided Study Groups

180-day certification prep program with learning and support

Cisco Continuina **Education Program**

Recertification training options for Cisco certified individuals

Here at the event? Visit us at The Learning and Certifications lounge at the World of Solutions

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

cisco Live!

