Software project: Developing a decision-making assistant

Morozova Milena

July 26, 2022

Table of Contents

- 1 Introduction
- 2 Working with a training sample
- 3 Building and training the model
- 4 List of Sources

Basic Tasks

- Creating a training sample
- Preprocessing training sample
- Building and training the model
- Testing the Model

Additional Tasks

- Rating calculation
- Creating GUI
- Testing the App on different platforms
- Setting the application icon

Preprocessing the sample

Any text data in its raw material form cannot be analyzed by NLP libraries. This data must be cleaned using various data processing techniques.

```
Beog [1]: import numpy as np
          from tensorflow.keras.layers import Dense, LSTM, Input, Dropout, Embedding
          from tensorflow.keras.models import Sequential
          from tensorflow, keras, optimizers import Adam
          from tensorflow.keras.preprocessing.text import Tokenizer, text_to_word_sequence
          from tensorflow.keras.preprocessing.sequence import pad sequences
         f = open("C:\\Users\\Haranus\\Ytachine learning\\train data true.txt", 'r', encoding='utf-8')
         texts true = f,readlines()
         texts_true[0] = texts_true[0].replace('\ufeff','')
         f = open("C:\\Users\\Haramam\\Vachine learning\\train data false.txt", 'r', encoding='utf-8')
         texts_false = f.readlines()
         texts_false[0] = texts_false[0].replace("\ufeff',")
         texts = texts true + texts false
         count_true = len(texts_true)
         count false = len(texts false)
         total lines = count true + count false
         data = tokenizer.texts to sequences(texts)
          max text len = 10
         data pad = pad sequences(data, maxlen-max text len)
         print(data pad)
```

Figure: Preprocessing the training sample

Building and training the model

Our neural network will have 2 neurons at the output - the upper neuron will be responsible for the positive text, the lower - for the negative. For positive statements at the output, we will require the vector [1.0], respectively for negative - [0.1].

```
X = data_pad
Y = np.array([[1, 0]]*count_true + [[0, 1]]*count_false)
print(X.shape, Y.shape)
```

Figure: Training

```
t = "Не доверяй никому".lower()
data = tokenizer.texts_to_sequences([t])
data_pad = pad_sequences(data, maxlen=max_text_len)
print( sequence_to_text(data[@]) )
res = model.predict(inp)
print(res, np.argmax(res), sep='\n')
```

Figure: Testing

Figure: Working with a mathematical model

Bibliography

- Machine Learning, Neural and Statistical Classification https://www1.maths.leeds.ac.uk/~charles/statlog/
- Cleaning Preprocessing Text Data for Sentiment Analysis https://towardsdatascience.com/
- Generating WordClouds in Python Tutorial https://www.datacamp.com/tutorial/wordcloud-python
- TripAdvisor https://www.tripadvisor.ru/
- Sentiment Analysis of Review Datasets https://www.researchgate.net/publication
- Keras Documentation https://ru-keras.com/recurrent-layers/