

Backpropagation

(Introduction)

The Artificial Neuron

Proposed by McCulloch and Pitts [1943] M-P neurons

How to train a Perceptron?

Proposed by Rosenblatt [1962]

- Perceptron Algorithm Iterative algorithm to learn the weight vector
- Basic Idea
 - Update weights in proportion to the error contributed by inputs

Randomly initialize weight vector $\overrightarrow{\boldsymbol{w}}_0$

Repeat until *error is less than a threshold* γ or max_iterations M:

For each training example $(\vec{x_i}, t_i)$:

Predict output y_i using current network weights $\overrightarrow{\boldsymbol{w}_n}$ Update weight vector as follows:

$$\overrightarrow{w}_{n+1} = \overrightarrow{w}_n + \eta * (t_i - y_i) * \overrightarrow{x}_i$$

Learning Rate

Error

Multi-Layered Perceptrons (MLPs)

The Back Propagation Algorithm

Back Propagation Demo

Convolution Layer

(Introduction)

ImageNet

22K categories and 14M images

- Animals
 - Bird
 - Fish

 - Invertebrate
 Materials

- - Tree
- Flower
 Tools

- Plants
 Structures
 - Artifact
- Mammal
 Food
 Appliances
 - Structures

www.image-net.org

- Person
- Scenes
 - Indoor
 - Geological Formations
- Sport Activities

ConvNet with Pooling and FC Layers

What is convolution of an image with a filter?

1	1	1	0	0
0	1	1	1	0
0	0	1,	1 _{×0}	1,
0	0	1,0	1,	0,0
0	1	1,	0,0	0,

Image

4	3	4
2	4	3
2	3	4

Convolved Feature

Thanks!!

Questions?