L'Hôpital's rule Proof (with $\frac{0}{0}$ only)

Jeremy Chow

12/18/18

L'Hôpital's rule stated that if $\lim_{x\to a} \frac{f(x)}{g(x)}$ is indeterminate, and both functions can be differentiated at x=a, then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$. In this proof we are only going to explore the case where the limit becomes $\frac{0}{0}$. Given that the limit will turn into $\frac{0}{0}$, it can be implied that $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$, and since differentiability implied continuity, f(a) = g(a) = 0. Therefore $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f(x)-f(a)}{g(x)-g(a)} = \lim_{x\to a} \frac{f(x)-f(a)}{\frac{x-a}{g(x)-g(a)}} = \lim_{x\to a} \frac{f'(x)}{\frac{x-a}{g(x)-g(a)}} = \lim_{x\to a} \frac{f'(x)}{\frac{x-a}{g(x)-g(a)}$