$Planck\ 2015$ Results: Cosmological Parameter Name Tags

January 16, 2015

This table summarises cosmological parameters used in the Planck chains. For a full description see the parameters paper.

Parameter	Tag	baseline	Definitions
$\Omega_b h^2$	omegabh2	-	Baryon density today
$\Omega_c h^2$	omegach2	-	Cold dark matter density today
$100\theta_{\mathrm{MC}}$	theta	-	$100 \times \text{ approximation to } r_s/D_A \text{ (CosmoMC)}$
au	tau	-	Thomson scattering optical depth due to reionization
Ω_K	omegak	0	$\Omega_{ m tot} = 1 - \Omega_K$
$\Sigma m_ u$	mnu	0.06	The sum of active neutrino masses in eV
$m_{ u, { m sterile}}^{ m eff}$	meffsterile	0	Effective mass in sterile neutrinos in eV
w_0	w	-1	Dark energy equation of state, $w(a) = w_0 + (1 - a)w_a$
w_a	wa	0	as above (perturbations modelled using PPF)
$N_{ m eff}$	nnu	3.046	Total number of massive and massless neutrinos (see text)
Y_P	yhe	BBN	Fraction of baryonic mass in Helium (only if varied independently of BBN)
α_{-1}	alpha1	0	Fully correlated isocurvature amplitude parameter
$A_{ m L}$	Alens	1	Amplitude of the lensing power relative to the physical value
$A_{ m L}^{\phi\phi}$	Aphiphi	1	Amplitude of the lensing reconstruction power relative to the physical value
$A_{ m L}^{ m fid}$	Alensf	-	Amplitude of the lensing power relative to a fixed fiducial spectrum
n_s	ns	-	Scalar spectrum power-law index $(k_0 = 0.05 \mathrm{Mpc}^{-1})$
n_t	nt	Inflation	Tensor spectrum power-law index $(k_0 = 0.05 \text{Mpc}^{-1})$
$\mathrm{d} \ln n_s / \mathrm{d} \ln k$	nrun	0	Running of the spectral index
$\log[10^{10}A_s]$	logA	-	log power of the primordial curvature perturbations $(k_0 = 0.05 \mathrm{Mpc^{-1}})$
$r_{0.05}$	r	0	Tensor power spectrum amplitude ($k_0 = 0.05 \mathrm{Mpc}^{-1}$)
Ω_{Λ}	omegal	-	Dark energy density divided by the critical density today
Age/Gyr	age	-	Time since the start of the hot big bang
Ω_m	omegam	-	Matter density (incl. massive neutrinos) today divided by the critical density
σ_8	sigma8	-	RMS matter fluctuations today in linear theory
$\langle d^2 \rangle^{1/2}$	rmsdeflect	-	RMS CMB lensing deflection angle in arcmin (approx using $2 \le L \le 2000$)
$z_{ m re}$	zrei	-	Redshift at which universe is half reionized
H_0	Н0	-	Current expansion rate in $\mathrm{km}\mathrm{s}^{-1}\mathrm{Mpc}^{-1}$
$10^{9}A_{s}$	A	_	Power of the primordial curvature perturbations $(k_0 = 0.05 \text{Mpc}^{-1})$
$10^9 A_s e^{-2\tau}$	clamp	_	Parameter determining the small-scale CMB power)
$\Omega_m h^2$	omegamh2	_	Total matter density today (incl. massive neutrinos)
$\Omega_m h^3$	omegamh3	_	$h \times \text{total matter density today}$
Y_P	yheused	bbn	Fraction of baryonic mass in Helium
$Y_P^{ m BBN}$	YpBBN	bbn	Nucleon fraction in Helium
$10^{5}D/H$	DHBBN	bbn	10^5 Deuterium-Helium ratio from BBN prediction

Parameter	Tag	baseline	Definitions
z_*	zstar	-	Redshift for which the optical depth equals unity
$r_* = r_s(z_*)$	rstar	-	Comoving size of the sound horizon at $z = z_*$
$100\theta_*$	thetastar	-	$100\times$ Angular size of the sound horizon at last scattering
$D_{ m A}/{ m Gpc}$	DAstar	-	Comoving angular diameter distance to last scattering
$z_{ m drag}$	zdrag	-	Redshift at which baryon-drag optical depth equals unity
$r_{\rm drag} = r_s(z_{\rm drag})$	rdrag	-	Comoving size of the sound horizon at $z=z_{\rm drag}$
k_D	kd	-	Characteristic damping comoving wavenumber $(\mathrm{Mpc^{-1}})$
$100\theta_D$	thetad	-	$100 \times$ angular extent of photon diffusion at last scattering
$z_{ m eq}$	zeq	-	Redshift of matter-radiation equality (massless neutrinos)
$k_{ m eq}$	keq	-	$[a(z_{ m eq})H(z_{ m eq}]^{-1}$
$100\theta_{\mathrm{eq}}$	thetaeq	-	$100\times$ angular size of the comoving Horizon at matter-radiation equality
$100\theta_{s,eq}$	thetarseq	-	$100\times$ angular size of the comoving sound Horizon at matter-radiation equality
D_{40}	D40	-	$l(l+1)C_l^{TT}/2\pi$ at $l=40$ in $\mu \mathrm{K}^2$
D_{220}	D40	-	$l(l+1)C_l^{TT}/2\pi$ at $l=220$ in $\mu\mathrm{K}^2$
D_{810}	D40	-	$l(l+1)C_l^{TT}/2\pi$ at $l=810$ in $\mu\mathrm{K}^2$
D_{1420}	D40	-	$l(l+1)C_l^{TT}/2\pi$ at $l=1420$ in $\mu\mathrm{K}^2$
D_{2000}	D40	-	$l(l+1)C_l^{TT}/2\pi$ at $l=2000$ in $\mu\mathrm{K}^2$
$n_{s,0.002}$	ns02	-	scalar spectral index at $k = 0.002 \text{Mpc}^{-1}$
$r_{0.002}$	r02	0	tensor/scalar ratio at $k = 0.002 \mathrm{Mpc}^{-1}$
$r_{0.01}$	rBB	0	tensor/scalar ratio at $k = 0.01 \text{Mpc}^{-1}$ (roughly BB peak)
r_{10}	r10	0	tensor-scalar temperature C_l amplitude at $l=10$
A_T	AT	0	$10^9 A_t \ (k_0 = 0.05 \text{Mpc}^{-1})$
$10^9 A_t e^{-2\tau}$	ctlamp	0	parameter determining $l \sim 100$ tensor C_l amplitude
$f\sigma_8(0.57)$	fsigma8z057	-	growth parameter $f\sigma_8$ at $z=0.57$
$\sigma_8(0.57)$	sigma8z057	-	σ_8 at $z=0.57$
$r_{\rm drag}/D_V(0.57)$	rsDv057	-	Isotropised BAO ratio at $z = 0.57$
H(0.57)	Hubble057	-	Hubble at $z = 0.57 \; (\text{km s}^{-1} \text{Mpc}^{-1})$
$D_A(0.57)$	DA057	-	Comoving $D_{\rm A}$ at $z=0.57~{\rm (Mpc)}$
$F_{\rm AP}(0.57)$	FAP057	_	Alcock-Paczynski parameter $F_{\rm AP}$ at $z=0.57$
f_{2000}^{143}	f2000_143	-	Total temperature foreground power at $l=2000$ in 143Ghz C_l
$f_{2000}^{143 \times 217}$	f2000_x	-	Total temperature foreground power at $l=2000$ in 217Ghz × 143Ghz C_l
f_{2000}^{217}	f2000_217	-	Total temperature foreground power at $l=2000$ in 217Ghz C_l