§4.1 Theorem

Für jede Grammatik G existiert normierte TM M mit L(M) = L(G)

Beweisansatz mit 2-Band-TM

Sei $G = (N, \Sigma, S, P)$

- 1. Falls $S \to \varepsilon \in P$ und Eingabe ε , dann akzeptiere (d.h. Kopf steht auf \square)
- 2. Sonst schreibe Startnichtterminal 5 auf Band 2
- 3. Wende Produktionen P auf Band 2 an
- 4. Vergleiche Bänder und akzeptiere bei Gleichheit

Mächtigkeit Turingmaschine

$$P = \{p_1, \ldots, p_n\}$$

4/40 5/40

Mächtigkeit Turingmaschine

 $\textbf{2-Band-TM} \; \textit{M}_{\mathsf{start}} = \big(\{q_0, q_+, q_-\}, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_- \big)$

- $\Gamma = \{\Box\} \cup \Sigma \cup N$
- Übergänge

$$egin{aligned} \Delta &= ig\{ (q_0, \langle \square, \square
angle)
ightarrow (q_+, \langle (\square, \diamond), (\square, \diamond)
angle) \mid S
ightarrow arepsilon \in extit{P} ig\} \ ig\{ (q_0, \langle \sigma, \square
angle)
ightarrow (q_+, \langle (\sigma, \diamond), (S, \diamond)
angle) \mid \sigma \in \Sigma ig\} \end{aligned}$$

Mächtigkeit Turingmaschine

2-Band-TM M_p' für Übergang $p = \ell \rightarrow r \in P$

- \bullet Kopiere Symbole Band 1 \rightarrow 2 mit Halt auf bel. Symbol (außer $\Box)$
- ullet Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe r auf Band 2 (ohne Aktionen auf Band 1)
- ullet Kopiere verbleibende Symbole Band 1 o 2

Illustration für Produktion $AE \rightarrow EA$

7/40 9/40

Ableitungsschritt-TM Mp

- Umwandlung 2-Band-TM M_p' in TM M_p
- Realisiert Anwendung Übergang p auf Arbeitsband
- Angewandt auf Band 2 der Gesamt-TM

10 / 40

Mächtigkeit Turingmaschine

2-Band-TM $\mathit{M}_{=} = ig(\{q_0,q,q_+,q_-\}, \Gamma\setminus\{\Box\}, \Gamma, \Delta, \Box, q_0,q_+,q_-ig)$

- $\Gamma = \Sigma \cup N \cup \{\Box\}$
- Übergänge

$$egin{aligned} \Delta &= ig\{ (q_0, \langle \sigma, \sigma
angle)
ightarrow (q_0, \langle (\sigma,
hd), (\sigma,
hd)
angle) \mid \sigma \in \Sigma ig\} \ ig\{ (q_0, \langle \Box, \Box
angle)
ightarrow (q, \langle (\Box, \lhd), (\Box, \lhd)
angle) ig\} \ ig\{ (q, \langle \sigma, \sigma
angle)
ightarrow (q, \langle (\sigma, \lhd), (\sigma, \lhd)
angle) \mid \sigma \in \Sigma ig\} \ ig\{ (q, \langle \Box, \Box
angle)
ightarrow (q_+, \langle (\Box,
hd), (\Box,
hd)
angle) ig\} \end{aligned}$$

12/40

Mächtigkeit Turingmaschine

§4.2 Lemma

Sei M TM. Dann existiert TM M' mit $T(M') = id_{L(M)}$

Beweisansatz

Nutze 2-Band-TM

- Kopiere Eingabe auf Band 2 (und Rücklauf auf 1. Zeichen)
- Lasse M auf Band 1 laufen

Mächtigkeit Turingmaschine

§4.3 Theorem

Für jede TM M existiert Grammatik G mit L(G) = L(M)

[®]Beweisansatz

Es existiert TM M' mit $T(M') = \{(w, w) \mid w \in L(M)\}$ via Lemma §4.2

- 1. Erzeuge Ausgangssituation mit markierten Rändern (linker Rand überstrichen; rechter Rand unterstrichen)
- 2. Simuliere Schritte der TM M'
- 3. Lösche überzählige 🗆

Notizen

- Grammatik-Satzform entspricht TM-Satzform (Systemsituation)
- Symbol unter Lesekopf und TM-Zustand in Nichtterminal kodiert

14/40

Beweisskizze (1/3)

- 1. Erzeuge Ausgangssituation mit markierten Rändern
 - Eingabealphabet Σ und Arbeitsbandalphabet Γ
 - Nichtterminale $\Gamma' \cup (Q \times (\Gamma' \cup \Sigma))$ mit $\Gamma' = (\Gamma \setminus \Sigma) \cup \overline{\Gamma} \cup \Gamma \cup \overline{\Gamma}$
 - Produktionen

$$P_{1} = \{S \to S' \underline{\square}, \ S \to (q_{0}, \overline{\square})\} \cup \{S' \to S' a \mid a \in \Sigma\} \cup \{S' \to (q_{0}, \overline{a}) \mid a \in \Sigma\}$$

• Ableitungen der Form: $S \Rightarrow_G^* (q_0, \overline{a}) w \square$ (Ausgangssituation TM M')

Notizen

- Erzeugt geratene Eingabe aw mit markierten Rändern
- Beispielableitung (Startzustand q_0 und Eingabe *abaa*)

$$S \Rightarrow_G S' \square \Rightarrow_G S' a \square \Rightarrow_G S' a a \square \Rightarrow_G S' b a a \square \Rightarrow_G (q_0, \overline{a}) b a a \square$$

16/40

Mächtigkeit Turingmaschine

Grammatiksatzform

 $(q_0, \overline{a})baa$

TM-Systemsituation

17 / 40

Mächtigkeit Turingmaschine

Beweisskizze (2/3)

- 2. Simuliere Schritte TM M'
 - Produktionen

$$\begin{split} P_2 &= \left\{ a(q,b) \rightarrow (q',a)b' \mid (q,b) \rightarrow (q',b',\triangleleft) \in \Delta, \ a \in \Gamma \right\} \cup \\ &\left\{ (q,b) \rightarrow (q',b') \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,b)c \rightarrow b'(q',c) \mid (q,b) \rightarrow (q',b',\triangleright) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{\Box})b' \mid (q,b) \rightarrow (q',b',\triangleleft) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{b'}) \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b})c \rightarrow \overline{b'}(q',c) \mid (q,b) \rightarrow (q',b',\triangleright) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\cdots \qquad \text{(viele weitere Varianten)} \end{split}$$

Beispielableitung

 $(q_0, \overline{a})bbaabba \sqsubseteq \Rightarrow_G \overline{\Box}(q_a, b)baabba \sqsubseteq \Rightarrow_G \overline{\Box}b(q_a, b)aabba \sqsubseteq$

Mächtigkeit Turingmaschine

Notizen

- Produktionen P2 bilden Semantik Übergänge ab
- Varianten durch verschiedene Randsituationen
- ullet $(q_0,a) o (q_0,a, riangle)$ wird am linken Rand zu $(q_0,\overline{a})b o \overline{a}(q_0,b)$

 $(q_0, \overline{a})baa \square \Rightarrow_G \overline{a}(q_0, b)aa \square$ $\cdots \square \square a b a a \square \square \square \square \square \cdots$

Beweisskizze (3/3)

- 3. Lösche überzählige 🗆
 - Produktionen

```
P_{3} = \left\{ \Box(q_{+}, b) \rightarrow (q_{+}, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ \overline{\Box}(q_{+}, b) \rightarrow (\bot, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (q_{+}, \overline{b}) \rightarrow (\bot, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot, \underline{b}) \rightarrow b \mid b \in \Gamma \right\} \cup \\ \left\{ (\bot, b)c \rightarrow b(\bot, c) \mid b \in \Gamma, c \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot, \Box)c \rightarrow (\top, c) \mid c \in \{\Box, \underline{\Box}\} \right\} \cup \\ \left\{ (\top, \Box)c \rightarrow (\top, c) \mid c \in \{\Box, \underline{\Box}\} \right\} \cup \left\{ (\top, \underline{\Box}) \rightarrow \varepsilon \right\}
```

Beispielableitung

20/40

Deterministische Turingmaschinen

§4.6 Theorem

TM und deterministische TM gleichmächtig (für Sprachen)

Beweisskizze

1. Schreibe Initialzustand vor Eingabe w

 $q_0 w \square$

- 2. Erzeuge nächste Berechnung
- 3. Prüfe Gültigkeit Berechnung
- 4. Akzeptiere Eingabe bei Gültigkeit
- 5. Zurück zu 2.

Deterministische Turingmaschinen

§4.5 Definition (deterministische TM; deterministic TM)

```
 \begin{array}{l} \mathsf{TM} \; \big( Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_- \big) \; \frac{\mathsf{deterministisch}}{\mathsf{deterministisch}} \; (\textit{deterministic}) \\ \mathsf{falls} \; \mathsf{f\"{u}r} \; \mathsf{alle} \; \big( q, \gamma \big) \in (Q \setminus \{q_+, q_-\}) \times \Gamma \; \mathsf{genau} \; \mathsf{ein} \; \big( q', \gamma', d \big) \; \mathsf{existiert} \\ \mathsf{mit} \; \big( q, \gamma \big) \to \big( q', \gamma', d \big) \in \Delta \\ \mathsf{d.h.} \; \Delta \colon \Big( \big( Q \setminus \{q_+, q_-\} \big) \times \Gamma \Big) \to \Big( Q \times \Gamma \times \{ \sphericalangle, \vartriangleright, \lozenge \} \Big) \\ \end{array}
```

Notizen

- Jede Eingabe erzeugt 1 Lauf deterministischer TM
- Det. TM kann nur in q_+ und q_- halten (akzeptiert bzw. lehnt ab)
- Endlosschleifen weiterhin möglich
- Simulator https://turingmachinesimulator.com/

22/40

Deterministische Turingmaschinen

Geg. TM $M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ und Eingabe $w \in \Sigma^*$

Berechnung für w ist Zeichenkette

$$q_0 w \square \# \xi_1 \# \xi_2 \# \cdots \# \xi_n$$

mit $\xi_1, \ldots, \xi_n \in \Gamma^* Q \Gamma^*$

 $\# \notin \Gamma \cup Q$

Notizen

- Zeichenketten <u>deterministisch</u> erzeugbar z.B. in längenlexikographischer Ordnung
 - ε , Worte der Länge 1, Worte der Länge 2, etc.
 - Worte der Länge *k* lexikographisch aufgelistet (wie im Duden)

Deterministische Turingmaschinen

Geg. TM $M=(Q,\Sigma,\Gamma,\Delta,\Box,q_0,q_+,q_-)$ und Eingabe $w\in\Sigma^*$

Gültige Berechnung $q_0 w \square \# \xi_1 \# \cdots \# \xi_n$ für w falls

- $\xi_1, \ldots, \xi_n \in \Gamma^* Q \Gamma^*$
- $q_0 w \square \vdash_M \xi_1 \vdash_M \cdots \vdash_M \xi_n$
- $\xi_n \in \Gamma^* \{q_+\} \Gamma^*$

Überprüfung Gültigkeit Berechnung mit det. TM möglich

25/40

Loop-Programme

Konventionen

- Alle Variablen x_1, x_2, \ldots vom Typ $\mathbb N$ (beliebige Größe)
- Addition auf N begrenzt

$$n \oplus z = \max(0, n+z)$$
 $n \in \mathbb{N}, z \in \mathbb{Z}$

Wir schreiben einfach + statt ⊕

§4.9 Definition (Zuweisung; assignment)

Zuweisung ist Anweisung der Form $x_i = x_\ell + z$ mit $i, \ell \ge 1$ und $z \in \mathbb{Z}$

Turing-Berechenbarkeit

§4.7 Beobachtung

Für jede deterministische TM M ist T(M) partielle Funktion

§4.8 Definition (Turing-berechenbar; *Turing-computable*)

```
Partielle Funktion f: \Sigma^* \dashrightarrow \Gamma^* Turing-berechenbar falls deterministische TM M mit f = T(M) existiert
```

Notiz

ullet Turing-berechenbare Funktionen $f\colon \mathbb{N}^k o \mathbb{N}$ per Kodierung

Loop-Programme

§4.10 Definition (Loop-Programm; Loop program)

Loop-Programm *P* entweder

- Zuweisung $P = x_i = x_\ell + z$ für $i, \ell \ge 1$ und $z \in \mathbb{Z}$
- Sequenz $P = P_1$; P_2 für Loop-Programme P_1 und P_2
- Iteration $P = \text{LOOP}(x_i) \{ P' \}$ für Loop-Programm P' und $i \in \mathbb{N}$

Beispiele

```
• x_2 = x_1 + 2; LOOP(x_2) {x_3 = x_3 + 1}; x_1 = x_3 + 0

• x_2 = x_1 + 2 gleiches Programm, leichter lesbar LOOP(x_2) {

• x_3 = x_3 + 1

} x_1 = x_3 + 0
```

27/40 28/40

26/40

Loop-Programme

(Verzicht auf vollständige Quantifikation; $i, \ell \geq 1$, $z \in \mathbb{N}$, etc.)

§4.11 Definition (Variablen und maximaler Variablenindex)

Für Loop-Programm P seien $var(P) \subseteq \mathbb{N}$ und $max var(P) \in \mathbb{N}$ verwendeten Variablenindices und größter verwendeter Variablenindex

$$\operatorname{var}(x_i = x_\ell + z) = \{i, \ell\}$$

$$\operatorname{var}(P_1; P_2) = \operatorname{var}(P_1) \cup \operatorname{var}(P_2)$$

$$\operatorname{var}(\operatorname{LOOP}(x_i) \{P'\}) = \{i\} \cup \operatorname{var}(P')$$

 $var(P) = \{1, 2, 3\}$ und max var(P) = 3 für folgendes Programm P

$$x_2 = x_1 + 2$$

LOOP(x_2) { $x_3 = x_3 + 1$ }
 $x_1 = x_3 + 0$

29/40

Loop-Programme

Überblick

- k Eingaben in Variablen x_1, \ldots, x_k
- Erwartete Semantik für Zuweisung
- P_1 ; P_2 führt P_1 und danach P_2 aus
- LOOP(x_i) {P'} führt Programm P' so oft aus,
 wie Wert von x_i vor Beginn Schleife anzeigt
 (Änderungen an x_i in Schleife ändern Anzahl Durchläufe nicht)
- Funktionswert ist Wert von x₁ nach Ablauf Programm

30/40

Loop-Programme

§4.12 Definition (Programmsemantik; program semantics)

Für Loop-Programm P mit $\max \text{var}(P) \leq n$ ist **Semantik** von P partielle Funktion $\|P\|_n \colon \mathbb{N}^n \longrightarrow \mathbb{N}^n$

- $||x_i = x_\ell + z||_n(a_1, \ldots, a_n) = (a_1, \ldots, a_{i-1}, a_\ell + z, a_{i+1}, \ldots, a_n)$
- $||P_1; P_2||_n(a_1, \ldots, a_n) = ||P_2||_n(||P_1||_n(a_1, \ldots, a_n))$
- $\|\mathsf{LOOP}(x_i)\{P'\}\|_{n}(a_1,\ldots,a_n) = \|P'\|_{n}^{a_i}(a_1,\ldots,a_n)$

für alle $a_1, \ldots, a_n \in \mathbb{N}$

Notizen

- $||x_2 = x_1 + 2||_2(5,2) = (5,7)$
- $||x_2 = x_1 + 2|$; $|x_1 = x_1 5||_2(5, 2) = ||x_1 = x_1 5||_2(5, 7) = (0, 7)$
- $\|LOOP(x_1)\{x_1 = x_1 + 1\}\|_2(5, 2) = (10, 2)$

Loop-Programme

§4.13 Definition (Projektion; projection)

Für $n \in \mathbb{N}$ und $1 \le i \le n$ ist $\pi_i^{(n)} \colon \mathbb{N}^n \to \mathbb{N}$ n-stellige Projektion auf i-te Stelle

$$\pi_i^{(n)}(a_1,\ldots,a_n)=a_i$$

 $a_1,\ldots,a_n\in\mathbb{N}$

Notizen

- $\pi_1^{(2)}(10,2)=10$
- $\pi_2^{(2)}(10,2)=2$

31/40 32/40

Loop-Programme

§4.14 Definition (berechnete Funktion; computed function)

Loop-Programm P mit $\max \text{var}(P) = n$ berechnet k-stellige partielle Funktion $|P|_k \colon \mathbb{N}^k \dashrightarrow \mathbb{N}$ mit $k \le n$ gegeben für alle $a_1, \ldots, a_k \in \mathbb{N}$

$$|P|_k(a_1,\ldots,a_k) = \pi_1^{(n)}(\|P\|_n(a_1,\ldots,a_k,\underbrace{0,\ldots,0}_{(n-k) \text{ mal}}))$$

Notizen

- Eingaben a_1, \ldots, a_k in ersten k Variablen x_1, \ldots, x_k
- Weitere Variablen x_{k+1}, \ldots, x_n initial 0
- Auswertung Programm mit dieser initialen Variablenbelegung
- Ergebnis ist Inhalt erster Variable x1 nach Ablauf

Loop-Berechenbarkeit

§4.15 Definition (Loop-Berechenbarkeit; Loop-computable)

Partielle Funktion $f: \mathbb{N}^k \longrightarrow \mathbb{N}$ Loop-berechenbar falls Loop-Programm P mit $f = |P|_k$ existiert

33/40

Loop-Berechenbarkeit

Nullsetzen xi

$$LOOP(x_i) \{ x_i = x_i - 1 \}$$

Schreibweise: $x_i = 0$

Belegung x_i mit Konstante $n \in \mathbb{N}$

$$x_i = 0$$
; $x_i = x_i + n$

Schreibweise: $x_i = n$

Kopieren x_{ℓ} nach x_{i}

$$x_i = x_{\ell} + 0$$

Schreibweise: $x_i = x_\ell$

Loop-Berechenbarkeit

Addition von x_{k} und x_{ℓ} in x_{i}

 $(i \neq \ell)$

 $x_i = x_k$; LOOP (x_ℓ) $\{x_i = x_i + 1\}$

Schreibweise: $x_i = x_k + x_\ell$

Multiplikation von x_k und x_ℓ in x_i

 $(k \neq i \neq \ell)$

 $x_i = 0$; LOOP $(x_k) \{x_i = x_i + x_\ell\}$

Schreibweise: $x_i = x_k \cdot x_\ell$

Potenzieren von x_{ℓ} mit x_k in x_i

 $(k \neq i \neq \ell)$

 $x_i = 1$; LOOP $(x_k) \{x_i = x_i \cdot x_\ell\}$

Schreibweise: $x_i = x_i^{x_k}$

35/40 36/40

Loop-Berechenbarkeit

Multiplikation strenge Syntax

Zeile	Anweisung	Kommentar
1	$x_3 = x_1 + 0$	$x_3 = x_1$
2	$LOOP(x_1)$	$x_1 = 0$
3	$\{x_1 = x_1 - 1\}$	
4	$LOOP(x_2)$ {	$(x_2 \text{ mal})$
5	$LOOP(x_3)$	$x_1 = x_1 + x_3$
6	$\{x_1 = x_1 + 1\}$	

Berechnung Semantik

(Zeilennummern über Pfeil)

$$(2,3,0) \xrightarrow{1} (2,3,2) \xrightarrow{3} (1,3,2) \xrightarrow{3} (0,3,2) \xrightarrow{6} (1,3,2) \xrightarrow{6} (2,3,2)$$
Schleife in 2
Schleife in 5
Schleife in 5
Schleife in 5

37 / 40

Termination von Loop-Programmen

§4.16 Beobachtung

Jedes Loop-Programm P terminiert nach endlich vielen Schritten d.h. $|P|_k \colon \mathbb{N}^k \to \mathbb{N}$ (totale) Funktion für jedes $k \in \mathbb{N}$

Folgerung

Nicht jede Turing-berechenbare partielle Funktion Loop-berechenbar

Frage

Ist jede intuitiv berechenbare (totale) Funktion Loop-berechenbar?

Loop-Berechenbarkeit

Simulation "If-Then-Else"

 $(x_k, x_\ell \text{ unbenutzt})$

```
x_k = 1; x_\ell = 0

LOOP(x_i) \{x_k = 0 ; x_\ell = 1\}

LOOP(x_k) \{P_1\}

LOOP(x_\ell) \{P_2\} Schreibweise: IF(x_i = 0) \{P_1\} ELSE \{P_2\}
```

Notizen

- Falls $x_i > 0$
 - Zeile 2: $x_{\nu} = 0$ und $x_{\ell} = 1$
 - Zeile 3: P₁ nicht ausgeführt; Zeile 4: P₂ einmal ausgeführt
- Falls $x_i = 0$
 - Zeile 2: $x_k = 1$ und $x_\ell = 0$
 - Zeile 3: P₁ einmal ausgeführt; Zeile 4: P₂ nicht ausgeführt

38/40