University of California, Los Angeles Department of Statistics

Statistics C183/C283

Lower and upper bounds for the price of a European calls and puts

Instructor: Nicolas Christou

A. Lower bound for the price of a European call:

	Time $t = 0$	Payoff a	t time $t = 1$
		$S_1 > E$	$S_1 \leq E$
Portfolio A :			
Buy 1 call	-C	$S_1 - E$	0
Cash (lend)	$-\frac{E}{1+r}$	+E	+E
Total		S_1	E
Portfolio B :			
Buy 1 share	$-S_0$	S_1	S_1

B. Lower bound for the price of a European put:

	Time $t = 0$	Payoff at time $t = 1$	
		$S_1 \ge E$	$S_1 < E$
Portfolio A :			
Buy 1 put	-P	0	$E-S_1$
Buy 1 share	$-S_0$	S_1	S_1
Total		S_1	\overline{E}
Portfolio B :			
Cash (lend)	$-\frac{E}{1+r}$	+E	+E

C. Upper bound for the price of a European call:

No matter what happens, $C \leq S_0$

If not, there will be an opportunity for a riskless profit by buying the stock and selling the call option. How? Suppose $C>S_0$.

	Time $t = 0$	Payoff at	time $t = 1$
		$S_1 > E$	$S_1 \leq E$
Sell 1 call	C	$E-S_1$	0
Buy 1 stock	$-S_0$	S_1	S_1
Total	$C-S_0$	E	$\overline{S_1}$

D. Upper bound for the price of a European put:

No matter what happens, $P \leq \frac{E}{1+r}$. If not, there will be an opportunity for a riskless profit by selling the put and investing the proceeds at the risk free interest rate. How? Suppose $P > \frac{E}{1+r}$.

	Time $t = 0$	Payoff at t	time $t = 1$
		$S_1 \ge E$	$S_1 < E$
Sell 1 put	$P > \frac{E}{1+r}$	0	$S_1 - E$

Put-Call Parity

This is an important relationship between the price of a put and the price of the call. A put and the underlying stock can be combined in such a way that they have the same payoff as a call at expiration. Consider the following two portfolios:

Portfolio A: Buy the call and lend an amount of cash equal to $\frac{E}{1+r}$.

Portfolio B: Buy the stock, buy the put.

This is shown on the table below:

	Time $t = 0$	Payoff at time $t = 1$	
		$S_1 > E$	$S_1 \leq E$
Portfolio A:			
Buy 1 call	-C	$S_1 - E$	0
Lend cash	$-\frac{E}{1+r}$	E	E
Total	$-C - \frac{E}{1+r}$	S_1	\overline{E}
	11,		
		$S_1 \ge E$	$S_1 < E$
Portfolio B :			
Buy 1 put	-P	0	$E-S_1$
Buy 1 stock	$-S_0$	S_1	S_1
Total	$-P-S_0$	S_1	\overline{E}