probabilidad conjunta, condicional

$$p(\theta, y) = p(\theta|y)p(y)$$

probabilidad conjunta, condicional

$$p(\theta, y) = p(\theta|y)p(y)$$

simétrica

$$p(\theta, y) = p(y|\theta)p(\theta)$$

probabilidad conjunta, condicional

$$p(\theta, y) = p(\theta|y)p(y)$$

simétrica

$$p(\theta, y) = p(y|\theta)p(\theta)$$

marginalización

$$p(y) = \int p(y,\theta)d\theta$$

probabilidad conjunta, condicional

$$p(\theta, y) = p(\theta|y)p(y)$$

simétrica

$$p(\theta, y) = p(y|\theta)p(\theta)$$

marginalización

$$p(y) = \int p(y,\theta)d\theta$$

simétrica

$$p(\theta) = \int p(y, \theta) dy$$

probabilidad conjunta, condicional

$$p(\theta, y) = p(\theta|y)p(y)$$

simétrica

$$p(\theta, y) = p(y|\theta)p(\theta)$$

marginalización

$$p(y) = \int p(y,\theta)d\theta$$

simétrica

$$p(\theta) = \int p(y, \theta) dy$$

 $\theta$  discreta

$$p(y) = \sum_{\theta} p(y, \theta)$$

probabilidad conjunta, condicional

$$p(\theta, y) = p(\theta|y)p(y)$$

simétrica

$$p(\theta, y) = p(y|\theta)p(\theta)$$

media, varianza

$$E(y) = \int yp(y)dy$$

marginalización

$$p(y) = \int p(y,\theta)d\theta$$

simétrica

$$p(\theta) = \int p(y, \theta) dy$$

 $\theta$  discreta

$$p(y) = \sum_{\theta} p(y, \theta)$$

probabilidad conjunta, condicional

$$p(\theta, y) = p(\theta|y)p(y)$$

simétrica

$$p(\theta, y) = p(y|\theta)p(\theta)$$

media, varianza

$$E(y) = \int yp(y)dy$$

$$var(y) = \int (y - E(y))^{2}p(y)dy$$

marginalización

$$p(y) = \int p(y,\theta)d\theta$$

simétrica

$$p(\theta) = \int p(y, \theta) dy$$

 $\theta$  discreta

$$p(y) = \sum_{\theta} p(y, \theta)$$

hipótesis

 $\theta$  parámetros y, D datos

ocasionalmente vectores, y si hace falta, en negrita

hipótesis  $\theta$  parámetros y, D datos

ocasionalmente vectores, y si hace falta, en negrita

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\sum_{\theta} p(y|\theta)p(\theta)}$$

hipótesis  $\theta$  parámetros y, D datos

ocasionalmente vectores, y si hace falta, en negrita

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\sum_{\theta} p(y|\theta)p(\theta)}$$

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$

hipótesis  $\theta$  parámetros y, D datos

ocasionalmente vectores, y si hace falta, en negrita

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\sum_{\theta} p(y|\theta)p(\theta)}$$

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$

$$\downarrow$$
likelihood

hipótesis  $\theta$  parámetros y, D datos

ocasionalmente vectores, y si hace falta, en negrita

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\sum_{\theta} p(y|\theta)p(\theta)}$$

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$
 
$$prior$$
 
$$likelihood$$

H hipótesis

 $\theta$  parámetros y, D

y , D datos

ocasionalmente vectores, y si hace falta, en negrita

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\sum_{\theta} p(y|\theta)p(\theta)}$$

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$
 prior likelihood





prior predictive

$$p(y) = \int p(y,\theta)d\theta = \int p(y|\theta)p(\theta)d\theta$$



prior predictive

$$p(y) = \int p(y,\theta)d\theta = \int p(y|\theta)p(\theta)d\theta$$

posterior predictive

$$p(\tilde{y}|y) = \int p(\tilde{y}, \theta|y) d\theta$$

$$= \int p(\tilde{y}|\theta, y) p(\theta|y) d\theta$$

$$= \int p(\tilde{y}|\theta) p(\theta|y) d\theta$$



prior predictive

$$p(y) = \int p(y,\theta)d\theta = \int p(y|\theta)p(\theta)d\theta$$

posterior predictive

$$\begin{split} p(\tilde{y}|y) &= \int p(\tilde{y},\theta|y)d\theta \\ &= \int p(\tilde{y}|\theta,y)p(\theta|y)d\theta \\ &= \int p(\tilde{y}|\theta)p(\theta|y)d\theta \quad \text{promedio con mi} \\ &= \int p(\tilde{y}|\theta)p(\theta|y)d\theta \quad \text{posterior!} \end{split}$$

#### ¡Volvemos a la moneda!

$$D=00000$$

$$D = 010010$$

¿Qué proceso produjo estas secuencias?

 Hipótesis H sobre los procesos que pueden haber generado los datos D

- Hipótesis H sobre los procesos que pueden haber generado los datos D
- Distribución de probabilidad sobre las hipótesis, dados los datos

- Hipótesis H sobre los procesos que pueden haber generado los datos D
- Distribución de probabilidad sobre las hipótesis, dados los datos
- p(DIH) probabilidad de que los datos D hayan sido generados por el proceso descrito por H

- Hipótesis H sobre los procesos que pueden haber generado los datos D
- Distribución de probabilidad sobre las hipótesis, dados los datos
- p(DIH) probabilidad de que los datos D hayan sido generados por el proceso descrito por H
- Hipótesis mutuamente excluyentes: sólo un proceso generó D

## Algunas hipótesis para la moneda

Procesos que pueden haber generado

$$D = 010010$$

## Algunas hipótesis para la moneda

Procesos que pueden haber generado

$$D = 010010$$

- Moneda común: p(0) = 0.5
- Moneda cargada:  $p(0) = \theta$
- Modelo de Markov
- Hidden Markov Model (HMM)

 Los nodos son variables, las aristas representan dependencia

- Los nodos son variables, las aristas representan dependencia
- Aristas dirigidas representan influencia causal

- Los nodos son variables, las aristas representan dependencia
- Aristas dirigidas representan influencia causal
- Nodos observables y latentes

- Los nodos son variables, las aristas representan dependencia
- Aristas dirigidas representan influencia causal
- Nodos observables y latentes
- Notación de placas: variables repetidas

- Los nodos son variables, las aristas representan dependencia
- Aristas dirigidas representan influencia causal
- Nodos observables y latentes
- Notación de placas: variables repetidas
- Convenciones frecuentes: gris: observable, blanco: latente. circular: continuo, cuadrado: discreto.

$$D = 010010$$

$$d_1 d_2 d_3 d_4 d_5 d_6$$

$$D = 010010$$

$$d_1 d_2 d_3 d_4 d_5 d_6$$

#### Moneda común

 $oxed{d_1} oxed{d_2} oxed{d_3} oxed{d_4}$ 

$$D = 010010$$

$$d_1 d_2 d_3 d_4 d_5 d_6$$

#### Moneda común

 $oxed{d_1} oxed{d_2} oxed{d_3} oxed{d_4}$ 

#### Moneda cargada



$$D = 010010$$

$$d_1 d_2 d_3 d_4 d_5 d_6$$

#### Moneda común

 $d_1$ 

 $d_2$ 

 $d_3$ 

 $d_4$ 

#### Modelo de *Markov*



#### Moneda cargada



$$D = 010010$$

$$d_1 d_2 d_3 d_4 d_5 d_6$$

#### Moneda común

 $d_1$ 

 $d_2$ 

 $d_3$ 

 $d_4$ 

#### Modelo de *Markov*



#### Moneda cargada



#### Hidden Markov Model



# Comparación de dos hipótesis simples

$$H_1$$
:  $p(0) = 0.5$  vs.  $H_2$ :  $p(0) = 1$ 

Moneda común Moneda "dos caras"

# Comparación de dos hipótesis simples

$$H_1$$
:  $p(0) = 0.5$  vs.  $H_2$ :  $p(0) = 1$ 

Moneda común Moneda "dos caras"

$$p(H|D) = \frac{p(D|H)p(H)}{p(D)}$$

## Comparación de dos hipótesis simples

$$H_1$$
:  $p(0) = 0.5$  vs.  $H_2$ :  $p(0) = 1$ 

Moneda común

Moneda "dos caras"

$$p(H|D) = \frac{p(D|H)p(H)}{p(D)}$$

Con dos hipótesis, comparamos las "chances" (odds ratio)

$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)}$$

$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)}$$

 $H_1$ : p(0) = 0.5

 $H_2$ : p(0) = 1

$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)}$$

$$H_1$$
:  $p(0) = 0.5$   $p(H_1) = 999/1000$ 

$$H_2$$
:  $p(0) = 1$   $p(H_2) = 1/1000$ 

$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)}$$

$$H_1$$
:  $p(0) = 0.5$ 

$$H_2$$
:  $p(0) = 1$ 

$$p(H_1) = 999/1000$$

$$p(H_2) = 1/1000$$

$$D = 010010$$

$$p(D|H_1) = 1/2^6$$
  
 $p(D|H_2) = 0$ 

$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)}$$

$$H_1$$
:  $p(0) = 0.5$ 

$$H_2$$
:  $p(0) = 1$ 

$$p(H_1) = 999/1000$$

$$p(H_2) = 1/1000$$

$$D = 010010$$

$$p(D|H_1) = 1/2^6$$

$$p(D|H_2) = 0$$

$$\downarrow \downarrow$$

$$\frac{p(H_1|D)}{p(H_2|D)} = \infty$$

$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)}$$

$$H_1$$
:  $p(0) = 0.5$   $p(H_1) = 999/1000$ 

$$H_2$$
:  $p(0) = 1$   $p(H_2) = 1/1000$ 

$$D = 010010$$
  $D = 000000$ 

$$p(D|H_1) = 1/2^6$$
  $p(D|H_1) = 1/2^6$   
 $p(D|H_2) = 0$   $p(D|H_2) = 1$ 

$$\frac{p(H_1|D)}{p(H_2|D)} = \infty$$

$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)}$$

$$H_1$$
:  $p(0) = 0.5$   $p(H_1) = 999/1000$   
 $H_2$ :  $p(0) = 1$   $p(H_2) = 1/1000$ 

$$D = 010010$$
  $D = 000000$ 

$$p(D|H_1) = 1/2^6$$
  $p(D|H_1) = 1/2^6$   
 $p(D|H_2) = 0$   $p(D|H_2) = 1$   
 $\downarrow \qquad \qquad \downarrow$   
 $\frac{p(H_1|D)}{p(H_2|D)} = \infty$   $\frac{p(H_1|D)}{p(H_2|D)} \simeq 16$ 

$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)}$$

$$H_1: p(0) = 0.5$$

$$H_2$$
:  $p(0) = 1$ 

$$p(H_1) = 999/1000$$

$$p(H_2) = 1/1000$$

$$D = 010010$$

$$D = 000000$$

$$D = 00000000000$$

$$p(D|H_1) = 1/2^6$$

$$p(D|H_2) = 0$$

$$\frac{p(H_1|D)}{p(H_2|D)} = \infty$$

$$p(D|H_1) = 1/2^6$$

$$p(D|H_2) = 1$$

$$\downarrow \downarrow$$

$$\frac{p(H_1|D)}{p(H_2|D)} \simeq 16$$

$$p(D|H_1) = 1/2^{10}$$

$$p(D|H_2) = 1$$

$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)}$$

$$H_1$$
:  $p(0) = 0.5$ 

$$H_2$$
:  $p(0) = 1$ 

$$p(H_1) = 999/1000$$

$$p(H_2) = 1/1000$$

$$D = 010010$$

$$D = 000000$$

$$D = 0000000000$$

$$p(D|H_1) = 1/2^6$$

$$p(D|H_2) = 0$$

$$\downarrow \downarrow$$

$$\frac{p(H_1|D)}{p(H_2|D)} = \infty$$

$$p(D|H_1) = 1/2^6$$

$$p(D|H_2) = 1$$

$$\downarrow \downarrow$$

$$\frac{p(H_1|D)}{p(H_2|D)} \simeq 16$$

$$p(D|H_1) = 1/2^{10}$$

$$p(D|H_2) = 1$$

$$\downarrow$$

$$\frac{p(H_1|D)}{p(H_2|D)} \simeq 1$$

$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)}$$

$$H_1$$
:  $p(0) = 0.5$   $p(H_1) = 999/1000$   
 $H_2$ :  $p(0) = 1$   $p(H_2) = 1/1000$ 

Combina conocimiento previo con evidencia

$$H_1$$
:  $p(0) = 0.5$  vs.  $H_2$ :  $p(0) = \theta$ 

$$H_1$$
:  $p(0) = 0.5$  vs.  $H_2$ :  $p(0) = \theta$ 

Moneda común

$$H_1$$
:  $p(0) = 0.5$  vs.  $H_2$ :  $p(0) = \theta$ 

Moneda común

 $oxed{d_1} oxed{d_2} oxed{d_3} oxed{d_4}$ 

Moneda cargada



$$H_1$$
:  $p(0) = 0.5$  vs.  $H_2$ :  $p(0) = \theta$ 

Moneda común

$$oxed{d_1} oxed{d_2} oxed{d_3} oxed{d_4}$$

Moneda cargada



H<sub>2</sub> es más compleja:

- $H_1$  es un caso particular de  $H_2$
- •Para cualquier secuencia D, podemos elegir  $\theta$  tal que D sea más probable bajo  $H_2$  que bajo  $H_1$

#### D = 00000



#### D = 01101



•Estadística frecuentista: tests de hipótesis

- •Estadística frecuentista: tests de hipótesis
- •Teoría de información: longitud de descripción mínima

- •Estadística frecuentista: tests de hipótesis
- Teoría de información: longitud de descripción mínima
- Inferencia Bayesiana: probabilidades

- •Estadística frecuentista: tests de hipótesis
- Teoría de información: longitud de descripción mínima
- Inferencia Bayesiana: probabilidades

$$H_1$$
:  $p(0) = 0.5$ 

$$H_2: p(0) = \theta$$

- •Estadística frecuentista: tests de hipótesis
- Teoría de información: longitud de descripción mínima
- Inferencia Bayesiana: probabilidades

$$H_1: p(0) = 0.5$$
 
$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)}$$

- •Estadística frecuentista: tests de hipótesis
- Teoría de información: longitud de descripción mínima
- Inferencia Bayesiana: probabilidades

$$H_1: p(0) = 0.5$$
 
$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)}$$

$$p(D|H_1) = 1/2^N$$

- •Estadística frecuentista: tests de hipótesis
- •Teoría de información: longitud de descripción mínima
- Inferencia Bayesiana: probabilidades

$$H_1$$
:  $p(0) = 0.5$ 

$$H_2$$
:  $p(0) = \theta$ 

$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)}$$

$$p(D|H_1) = 1/2^N$$

$$p(D|H_2) = \int_0^1 p(D|\theta)p(\theta|H_2)d\theta$$
 promediamos sobre  $\theta$ 

- •Estadística frecuentista: tests de hipótesis
- Teoría de información: longitud de descripción mínima
- •Inferencia Bayesiana: probabilidades

$$H_1: p(0) = 0.5$$
 
$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)}$$

$$p(D|H_1) = 1/2^N$$
 1 (uniforme)  $p(D|H_2) = \int_0^1 p(D|\theta)p(\theta|H_2)d\theta$  promediamos sobre  $\theta$ 

- •Estadística frecuentista: tests de hipótesis
- Teoría de información: longitud de descripción mínima
- Inferencia Bayesiana: probabilidades

$$H_1: p(0) = 0.5$$
 
$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)}$$

$$p(D|H_1) = 1/2^N$$

$$p(D|H_2) = \int_0^1 p(D|\theta)p(\theta|H_2)d\theta \qquad \text{promediamos sobre } \theta$$
 $\theta^k (1-\theta)^{N-k}$ 





Automáticamente, la complejidad resulta penalizada (Occam's Razor)

## Comparación de infinitas hipótesis



$$p(0) = \theta$$

nos preguntamos por el valor de  $\theta$ 

Cada valor de  $\theta$  es una hipótesis H

## Comparación de infinitas hipótesis



$$p(0) = \theta$$

nos preguntamos por el valor de  $\theta$ 

Cada valor de  $\theta$  es una hipótesis H

Volvemos al "experimento" inicial...



زر p(0) en la próxima tirada? ز3/6=0.5?



ز p(0) en la próxima tirada? ز3/6=0.5?



¿Y ahora? ¡¿1?!



زر p(0) en la próxima tirada? ز3/6=0.5?



¿Y ahora? ¡¿1?!

Inferencia Bayesiana, incorporamos conocimientos previos.

Primer paso: modelo.

### Modelo

likelihood:











$$p(01011|\theta) = \theta^2 (1 - \theta)^3$$











$$p(01011|\theta) = \theta^2 (1 - \theta)^3$$













$$p(01011|\theta) = \theta^2 (1 - \theta)^3$$

$$p(k|\theta) = \binom{n}{k} \theta^k (1-\theta)^{n-k}$$













$$p(01011|\theta) = \theta^2 (1 - \theta)^3$$

número de caras 
$$p(k|\theta) = \binom{n}{k} \theta^k (1-\theta)^{n-k}$$













$$p(01011|\theta) = \theta^2 (1 - \theta)^3$$

$$p(k|\theta) = \binom{n}{k} \theta^k (1-\theta)^{n-k}$$
 número de tiradas













$$p(01011|\theta) = \theta^2 (1 - \theta)^3$$

$$p(k|\theta) = \binom{n}{k} \theta^k (1-\theta)^{n-k}$$
 
$$p(k|\theta) = \binom{n}{k} \theta^k (1-\theta)^{n-k}$$



likelihood:











$$p(01011|\theta) = \theta^2 (1 - \theta)^3$$

$$p(k|\theta) = \binom{n}{k} \theta^k (1-\theta)^{n-k}$$
 
$$p(k|\theta) = \binom{n}{k} \theta^k (1-\theta)^{n-k}$$
 
$$\text{número de } tiradas$$
 
$$k \sim \text{Binomial}(\theta, n)$$

prior:

¿Cómo lo elegimos? Podemos pensar en experiencia previa *ficticia* 

Si pienso que tiré la moneda y obtuve 1000 *caras* y 1000 *cecas..* 

likelihood:  $p(D|\theta) \propto \theta^k (1-\theta)^{n-k}$ 

Si pienso que tiré la moneda y obtuve 1000 *caras* y 1000 *cecas..* 

likelihood: 
$$p(D|\theta) \propto \theta^k (1-\theta)^{n-k}$$

prior: 
$$p(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

Si pienso que tiré la moneda y obtuve 1000 *caras* y 1000 *cecas..* 

likelihood: 
$$p(D|\theta) \propto \theta^k (1-\theta)^{n-k}$$

prior: 
$$p(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

 $\alpha$  número ficticio de *caras* 

β número ficticio de *cecas* 

Si pienso que tiré la moneda y obtuve 1000 *caras* y 1000 *cecas..* 

likelihood: 
$$p(D|\theta) \propto \theta^k (1-\theta)^{n-k}$$

prior: 
$$p(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

 $\alpha$  número ficticio de *caras* 

β número ficticio de *cecas* 

Distribución  $Beta(\alpha, \beta)$ , conjugada de la Binomial

$$p(\theta|D) \propto p(D|\theta)p(\theta)$$

$$p(\theta|D) \propto \theta^k (1-\theta)^{n-k} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

$$p(\theta|D) \propto p(D|\theta)p(\theta)$$

$$\frac{p(\theta|D) \propto \theta^k (1-\theta)^{n-k} \theta^{\alpha-1} (1-\theta)^{\beta-1}}{\prod_{\substack{\text{likelihood}}}}$$

$$p(\theta|D) \propto p(D|\theta)p(\theta)$$

$$\frac{p(\theta|D) \propto \theta^k (1-\theta)^{n-k} \theta^{\alpha-1} (1-\theta)^{\beta-1}}{\downarrow}$$
 | likelihood | prior

$$p(\theta|D) \propto p(D|\theta)p(\theta)$$

$$\frac{p(\theta|D) \propto \theta^k (1-\theta)^{n-k} \theta^{\alpha-1} (1-\theta)^{\beta-1}}{\downarrow} \frac{1}{likelihood}$$

$$= \theta^{k+\alpha-1} (1-\theta)^{n-k+\beta-1}$$

$$p(\theta|D) \propto p(D|\theta)p(\theta)$$

$$\frac{p(\theta|D) \propto \theta^k (1-\theta)^{n-k} \theta^{\alpha-1} (1-\theta)^{\beta-1}}{\downarrow}$$
 
$$\frac{1}{\text{likelihood}} \frac{p(\theta|D) \propto \theta^k (1-\theta)^{n-k} \theta^{\alpha-1} (1-\theta)^{\beta-1}}{\downarrow}$$

$$= \theta^{k+\alpha-1} (1-\theta)^{n-k+\beta-1}$$

$$\Rightarrow \text{Beta}(k+\alpha, n-k+\beta)$$

$$p(\theta|D) \propto p(D|\theta)p(\theta)$$

$$\frac{p(\theta|D) \propto \theta^k (1-\theta)^{n-k} \theta^{\alpha-1} (1-\theta)^{\beta-1}}{\downarrow}$$
 
$$\frac{1}{\text{likelihood}} \frac{p(\theta|D) \propto \theta^k (1-\theta)^{n-k} \theta^{\alpha-1} (1-\theta)^{\beta-1}}{\downarrow}$$

$$= \theta^{k+\alpha-1}(1-\theta)^{n-k+\beta-1}$$
 Beta $(k+\alpha,n-k+\beta)$  real + ficticie

$$p(\theta|D) \propto p(D|\theta)p(\theta)$$

$$\frac{p(\theta|D) \propto \theta^k (1-\theta)^{n-k} \theta^{\alpha-1} (1-\theta)^{\beta-1}}{\downarrow} \frac{1}{likelihood}$$

$$= \theta^{k+\alpha-1}(1-\theta)^{n-k+\beta-1}$$
 Beta(k+\alpha,n-k+\beta)
$$= \theta^{k+\alpha-1}(1-\theta)^{n-k+\beta-1}$$
 Beta(k+\alpha,n-k+\beta)

$$p(\theta|D) \propto p(D|\theta)p(\theta)$$

$$\frac{p(\theta|D) \propto \theta^k (1-\theta)^{n-k} \theta^{\alpha-1} (1-\theta)^{\beta-1}}{\downarrow} \frac{1}{likelihood}$$
 prior

$$=\theta^{k+\alpha-1}(1-\theta)^{n-k+\beta-1}$$
 Beta(.)  $\propto$  Binomial(.)Beta(.)

Propiedad útil para el cómputo y la interpretación



 $Beta(\alpha, \alpha)$ 

 $\begin{array}{c} \alpha \\ \textbf{0.01} \\ \textbf{1} \\ \textbf{5} \end{array}$ 



$$\alpha, \beta = 1$$
 Distribución uniforme



$$\alpha, \beta = 1$$
 Distribución uniforme

$$\alpha,\beta=rac{1}{2}$$
 *Jeffrey's prior:* del principio de invariancia frente a transformaciones de variables



$$\alpha, \beta = 1$$
 Distribución uniforme

$$\alpha, \beta = rac{1}{2}$$
 *Jeffrey's prior:* del principio de invariancia frente a transformaciones de variables

$$\alpha, \beta = 0$$
 Haldane, impropia: pueden dar posteriors propias

#### likelihood:

$$p(k|\theta) = \binom{n}{k} \theta^k (1-\theta)^{n-k}$$

 $k \sim \text{Binomial}(\theta, n)$ 

## prior:

$$\theta \sim \text{Uniform}(0,1) = \text{Beta}(1,1)$$

$$\theta \sim \text{Beta}(100, 100)$$



#### likelihood:

$$p(k|\theta) = \binom{n}{k} \theta^k (1-\theta)^{n-k}$$

 $k \sim \text{Binomial}(\theta, n)$ 



$$\theta \sim \text{Uniform}(0,1) = \text{Beta}(1,1)$$

$$\theta \sim \text{Beta}(100, 100)$$

#### posterior:

$$p(\theta|D) = \text{Beta}(k+1, n-k+1)$$
  
 $p(\theta|D) = \text{Beta}(k+100, n-k+100)$ 





# prior

$$\theta \sim \text{Uniform}(0,1) = \text{Beta}(1,1)$$

$$\theta \sim \text{Beta}(100, 100)$$



# prior

$$\theta \sim \text{Uniform}(0,1) = \text{Beta}(1,1)$$

$$\theta \sim \text{Beta}(100, 100)$$



$$p(\theta|D) = \text{Beta}(k+1, n-k+1)$$

$$p(\theta|D) = \text{Beta}(k + 100, n - k + 100)$$



 $p(\theta|n,k) = \text{Beta}(k + \alpha, n - k + \beta)$ 

$$p(\theta|n,k) = \text{Beta}(k+\alpha, n-k+\beta)$$

Beta
$$(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$p(\theta|n,k) = \text{Beta}(k + \alpha, n - k + \beta)$$

Beta
$$(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$E[\theta|n,k] = \int_0^1 \theta p(\theta|n,k)d\theta = \frac{k+\alpha}{n+\alpha+\beta}$$

$$p(\theta|n,k) = \text{Beta}(k+\alpha, n-k+\beta)$$

Beta
$$(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$E[\theta|n,k] = \int_0^1 \theta p(\theta|n,k)d\theta = \frac{k+\alpha}{n+\alpha+\beta}$$

## Varianza a posteriori

$$var(\theta|n,k) = \frac{E(\theta|n,k)(1 - E(\theta|n,k))}{\alpha + \beta + n + 1}$$

$$p(\theta|n,k) = \text{Beta}(k+\alpha, n-k+\beta)$$

Beta
$$(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$E[\theta|n,k] = \int_0^1 \theta p(\theta|n,k)d\theta = \frac{k+\alpha}{n+\alpha+\beta}$$

## Varianza a posteriori

$$var(\theta|n,k) = \frac{E(\theta|n,k)(1 - E(\theta|n,k))}{\alpha + \beta + n + 1}$$

Cuando k y n-k crecen con  $\alpha$  y  $\beta$  fijos,

$$p(\theta|n,k) = \text{Beta}(k + \alpha, n - k + \beta)$$

Beta
$$(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$E[\theta|n,k] = \int_0^1 \theta p(\theta|n,k) d\theta = \frac{k+\alpha}{n+\alpha+\beta}$$

## Varianza a posteriori

$$var(\theta|n,k) = \frac{E(\theta|n,k)(1 - E(\theta|n,k))}{\alpha + \beta + n + 1}$$

Cuando k y n-k crecen con  $\alpha$  y  $\beta$  fijos,

$$E(\theta|k,n) \approx k/n$$

$$p(\theta|n,k) = \text{Beta}(k + \alpha, n - k + \beta)$$

$$Beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$E[\theta|n,k] = \int_0^1 \theta p(\theta|n,k)d\theta = \frac{k+\alpha}{n+\alpha+\beta}$$

## Varianza a posteriori

$$var(\theta|n,k) = \frac{E(\theta|n,k)(1 - E(\theta|n,k))}{\alpha + \beta + n + 1}$$

# Cuando k y n-k crecen con $\alpha$ y $\beta$ fijos,

$$E(\theta|k,n) \approx k/n$$
  $var(\theta|k,n) \approx \frac{1}{n} \frac{k}{n} \left(1 - \frac{k}{n}\right) \to 0$ 

Posterior predictiva 
$$p(\theta|n,k) = \text{Beta}(k + \alpha, n - k + \beta)$$

$$p(0|n,k) = \int_0^1 p(0|\theta)p(\theta|n,k)d\theta = \frac{k+\alpha}{n+\alpha+\beta}$$

Posterior predictiva 
$$p(\theta|n,k) = \text{Beta}(k + \alpha, n - k + \beta)$$

$$p(0|n,k) = \int_0^1 p(0|\theta)p(\theta|n,k)d\theta = \frac{k+\alpha}{n+\alpha+\beta}$$

(¿Por qué vale esto?)

Posterior predictiva 
$$p(\theta|n,k) = \text{Beta}(k + \alpha, n - k + \beta)$$

$$p(0|n,k) = \int_0^1 p(0|\theta)p(\theta|n,k)d\theta = \frac{k+\alpha}{n+\alpha+\beta}$$

(¿Por qué vale esto?) ₽

Posterior predictiva 
$$p(\theta|n,k) = \text{Beta}(k + \alpha, n - k + \beta)$$

$$p(0|n,k) = \int_0^1 p(0|\theta)p(\theta|n,k)d\theta = \frac{k+\alpha}{n+\alpha+\beta}$$

(¿Por qué vale esto?) ₽

$$k = n = 6$$

Posterior predictiva 
$$p(\theta|n,k) = \text{Beta}(k + \alpha, n - k + \beta)$$

$$p(0|n,k) = \int_0^1 p(0|\theta)p(\theta|n,k)d\theta = \frac{k+\alpha}{n+\alpha+\beta}$$

(¿Por qué vale esto?) ₽

$$k = n = 6$$

$$\alpha = 1, \beta = 1$$

$$p(0|6,6) = 7/8 = 0.875$$

Posterior predictiva 
$$p(\theta|n,k) = \text{Beta}(k + \alpha, n - k + \beta)$$

$$p(0|n,k) = \int_0^1 p(0|\theta)p(\theta|n,k)d\theta = \frac{k+\alpha}{n+\alpha+\beta}$$

(¿Por qué vale esto?) ₽

$$k = n = 6$$

$$\alpha = 1, \beta = 1$$
  $\alpha = 100, \beta = 100$   $p(0|6,6) = 7/8 = 0.875$   $p(0|6,6) = 106/206 \simeq 0.51$ 

de dónde viene: experiencia previa (asumimos que las monedas son parecidas, vimos otras monedas)

de dónde viene: experiencia previa (asumimos que las monedas son parecidas, vimos otras monedas)

de dónde viene: experiencia previa (asumimos que las monedas son parecidas, vimos otras monedas)

pero...

•no vimos 200 tiradas de moneda

de dónde viene: experiencia previa (asumimos que las monedas son parecidas, vimos otras monedas)

- no vimos 200 tiradas de moneda
  - -conocimiento previo más fuerte que la experiencia

de dónde viene: experiencia previa (asumimos que las monedas son parecidas, vimos otras monedas)

- no vimos 200 tiradas de moneda
   -conocimiento previo más *fuerte* que la experiencia
- •ni fueron 100 y 100

de dónde viene: experiencia previa (asumimos que las monedas son parecidas, vimos otras monedas)

- no vimos 200 tiradas de moneda
  - -conocimiento previo más fuerte que la experiencia
- •ni fueron 100 y 100
  - -conocimiento previo más *suave* que la experiencia

de dónde viene: experiencia previa (asumimos que las monedas son parecidas, vimos otras monedas)

- •no vimos 200 tiradas de moneda
  - -conocimiento previo más fuerte que la experiencia
- •ni fueron 100 y 100
  - -conocimiento previo más *suave* que la experiencia
- •no es lo mismo ver 200 de una moneda que 20 de 10 distintas

de dónde viene: experiencia previa (asumimos que las monedas son parecidas, vimos otras monedas)

- no vimos 200 tiradas de moneda
  - -conocimiento previo más fuerte que la experiencia
- •ni fueron 100 y 100
  - -conocimiento previo más *suave* que la experiencia
- •no es lo mismo ver 200 de una moneda que 20 de 10 distintas
  - -conocimiento previo más *estructurado* que la experiencia

de dónde viene: experiencia previa (asumimos que las monedas son parecidas, vimos otras monedas)

pero...

- •no vimos 200 tiradas de moneda
  - -conocimiento previo más fuerte que la experiencia
- ni fueron 100 y 100
  - -conocimiento previo más *suave* que la experiencia
- •no es lo mismo ver 200 de una moneda que 20 de 10 distintas
  - -conocimiento previo más *estructurado* que la experiencia

Teoría: monedas manufacturadas por un proceso estandarizado

-Justifica generalizar de otras monedas

- -Justifica generalizar de otras monedas
- -Justifica *priors* más fuertes y suaves

- -Justifica generalizar de otras monedas
- -Justifica priors más fuertes y suaves
- -Explica por qué 10 tiradas de 20 monedas es mejor que 200 de una sola

- -Justifica generalizar de otras monedas
- -Justifica priors más fuertes y suaves
- -Explica por qué 10 tiradas de 20 monedas es mejor que 200 de una sola

Limitaciones:

- -Justifica generalizar de otras monedas
- -Justifica priors más fuertes y suaves
- -Explica por qué 10 tiradas de 20 monedas es mejor que 200 de una sola

#### Limitaciones:

-¿Podemos representar cualquier tipo de conocimiento como un número de observaciones ficticias?

- -Justifica generalizar de otras monedas
- -Justifica priors más fuertes y suaves
- -Explica por qué 10 tiradas de 20 monedas es mejor que 200 de una sola

#### Limitaciones:

- -¿Podemos representar cualquier tipo de conocimiento como un número de observaciones ficticias?
- -Si tiramos 25 veces la moneda y sale 25 veces cara.. raro

- -Justifica generalizar de otras monedas
- -Justifica priors más fuertes y suaves
- -Explica por qué 10 tiradas de 20 monedas es mejor que 200 de una sola

#### Limitaciones:

- -¿Podemos representar cualquier tipo de conocimiento como un número de observaciones ficticias?
- -Si tiramos 25 veces la moneda y sale 25 veces cara.. raro
- -Pero con el prior de 100 y 100 que usamos obtenemos:

$$p(0|25,25) = 125/225 \simeq 0.56$$
 ino tan raro!

- -Justifica generalizar de otras monedas
- -Justifica priors más fuertes y suaves
- -Explica por qué 10 tiradas de 20 monedas es mejor que 200 de una sola

#### Limitaciones:

- -¿Podemos representar cualquier tipo de conocimiento como un número de observaciones ficticias?
- -Si tiramos 25 veces la moneda y sale 25 veces cara.. raro
- -Pero con el prior de 100 y 100 que usamos obtenemos:

```
p(0|25,25) = 125/225 \simeq 0.56 ino tan raro!
```

...¡Modelos jerárquicos!