OBSERVACIONES DE LA PRACTICA

Carlos Arturo Holguín Cardenás, 202012385 Daniel Hernández Pineda, 202013995

Preguntas de análisis

a) ¿Qué instrucción se usa para cambiar el límite de recursión de Python?

Para cambiar el limite de recurson se usa la siguiente instrucción:

sys.setrecursionlimit(2 ** 20)

Ademas, notemos que esta instrucción se encuentra en la vista (view.py), pues es el archivo que se ejecuta en la terminal.

b) ¿Por qué considera que se debe hacer este cambio?

Ese cambio se debe hacer, debido a que los grafos son estructuras recursivas, por tanto, cuando se supera el limite de recursión establecido por Python, este genera el siguiente error RecursionError: maximum recursion depth exceeded in comparison

c) ¿Cuál es el valor inicial que tiene Python cómo límite de recursión?

El limite establecido por Python es de 1000 llamadas recursivas.

d) ¿Qué relación creen que existe entre el número de vértices, arcos y el tiempo que toma la operación 4?

Archivo	Tiempo (ms)	No. de vértices	No. de arcos
Bus_routes_50	15.625	74	73
Bus_routes_150	31.25	146	146
Bus_routes_300	62.5	295	382
Bus_routes_1000	265.625	984	1633
Bus_routes_2000	937.5	1954	3560
Bus_routes_3000	1781.25	2922	5773
Bus_routes_7000	3468.75	6829	15334
Bus_routes_10000	14687.5	9767	22758
Bus_routes_14000	25828.125	13535	32270

Se logra observar que a mayor número de vértices va a haber un mayor número de arcos, por tanto, a mayor número de vértices el requerimiento va a tender a gastar más tiempo.

Para las siguientes preguntas, se muestra, a continuación, el fragmento de código en el que se crea el grafo:

```
analyzer['connections'] = gr.newGraph(datastructure='ADJ_LIST',
directed=True,
size=14000,
comparefunction=compareStopIds)
```

e) ¿El grafo definido es denso o disperso?, ¿El grafo es dirigido o no dirigido?, ¿El grafo está fuertemente conectado?

El grafo es dirigido (línea 67 del código), denso, y además está fuertemente conectado.

f) ¿Cuál es el tamaño inicial del grafo?

El tamaño inicial es de 14000, como se aprecia en la línea 68 del código.

g) ¿Cuál es la Estructura de datos utilizada?

La estructura de datos utilizada es la lista de adyacencia, como se aprecia en la línea 66 del código.

h) ¿Cuál es la función de comparación utilizada?

La función de comparación es compareStopIds, como se aprecia en la línea 69 del código.