ActividadPoisson

Federico Medina

2023-10-03

Problema 1

El tiempo de llegada a una ventanilla de toma de órdenes desde un automóvil de un cierto comercio de hamburguesas sigue un proceso de Poisson con un promedio de 12 llegadas por hora.

 $\lambda_0 = 12 \text{ X: número de órdenes}$

¿Cuál será la probabilidad de que el tiempo de espera de tres personas sea a lo más de 20 minutos?

Pregunta: P(t < 20 minutos) = P(t < 1/3 horas) Variable aleatoria (x): tiempo de espera Distribución: Gamma (porque la variable aleatoria es el tiempo de espera y se busca mas de un éxito (3 personas)) X = 3

 $\alpha = 3$ (3 exitos (numero de personas)) $\beta = \frac{1}{12} \left(\frac{1}{\lambda_0} \right)$

```
x = 3
alpha = 3
beta = 1/12
pgamma(1/3, alpha, 1/beta)
## [1] 0.7618967
```

¿Cuál es la probabilidad de que el tiempo de espera de una persona esté entre 5 y 10 segundos?

Pregunta: P(5 segundos < t < 10 segundos) = P(5/3600 horas < t < 10/3600 horas) Variable aleatoria (x): tiempo de espera Distribución: Exponencial (también se puede con la dist. gamma con $\alpha = 1$)

```
lambda_0 = 12
p1 = pexp(10/3600, lambda_0) - pexp(5/3600, lambda_0)
cat('P(5/3600 horas < t < 10/3600 horas) = ', p1)
## P(5/3600 horas < t < 10/3600 horas) = 0.01625535</pre>
```

¿Cuál será la probabilidad de que en 15 minutos lleguen a lo más tres personas?

Pregunta: P(X \leq 3) Variable aleatoria (x): cantidad de personas Distribución: Poisson (variable aleatoria es discreta) $\lambda = \lambda_0 * t = 12 * \frac{1}{4} = 3$

```
x = 3
lambda = 3
p2 = ppois(x, lambda)
cat('P(X <= 3) = ', p2)
## P(X <= 3) = 0.6472319</pre>
```

¿Cuál es la probabilidad de que el tiempo de espera de tres personas esté entre 5 y 10 segundos?

Pregunta: P(5 segundos < t < 10 segundos) = P(5/3600 horas < t < 10/3600 horas)Variable aleatoria (x): tiempo de espera Distribución: Gamma (porque la variable aleatoria es el tiempo de espera y se busca mas de un éxito (3 personas)) X = 3

```
\alpha = 3 (3 exitos (numero de personas)) \beta = \frac{1}{12} \left(\frac{1}{\lambda_0}\right)
```

```
alpha = 3
beta = 1/12
p3 = pgamma(10/3600, alpha, 1/beta) - pgamma(5/3600, alpha, 1/beta)
cat('P(5/3600 horas < t < 10/3600 horas) = ', p3)
## P(5/3600 horas < t < 10/3600 horas) = 5.258533e-06</pre>
```

Determine la media y varianza del tiempo de espera de tres personas.

```
Media: \mu = \alpha * \beta = \frac{3}{12} Varianza: \sigma^2 = \alpha * \beta^2 = \frac{3}{144}
```

¿Cuál será la probabilidad de que el tiempo de espera de tres personas exceda una desviación estándar arriba de la media?

```
Desviación estándar: \sigma = \sqrt{\sigma^2} = \sqrt{\frac{3}{144}} = \frac{\sqrt{3}}{12}
```

Pregunta: $P(t > \mu + \sigma)$

```
alpha = 3
beta = 1/12
mu = alpha * beta
p4 = 1-pgamma(mu+sqrt(3/144), alpha, 1/beta)
cat('P(t>mu+sigma) = ', p4)
## P(t>mu+sigma) = 0.1491102
```

Pregunta 2

Una masa radioactiva emite partículas de acuerdo con un proceso de Poisson con una razón promedio de 15 partículas por minuto. En algún punto inicia el reloj.

¿Cuál es la probabilidad de que en los siguientes 3 minutos la masa radioactiva emita 30 partículas?

Variable Aleatoria (X): particulas emitidas Distribución: Poisson

Pregunta: P(X = 30)

 λ_0 = 15 particulas por minuto $\lambda = \lambda_0 t = 15 * 3 = 45$

```
lambda = 45
x = 30
p5 = dpois(x, lambda)
cat('P(X = 30) = ', p5)
## P(X = 30) = 0.00426053
```

¿Cuál es la probabilidad de que transcurran cinco segundos a lo más antes de la siguiente emisión?

Variable Aleatoria (X): tiempo transcurrido Distribución: Exponencial (1 exito con variable aleatoria continua)

Pregunta: $P(t \le 5/60)$

```
lambda_0 = 15
p6 = pexp(5/60, lambda_0)
cat('P(t < 5/60 minutos) = ', p6)
### P(t < 5/60 minutos) = 0.7134952</pre>
```

¿Cuánto es la mediana del tiempo de espera de la siguiente emisión?

```
lambda_0 = 15
p7 = qexp(0.5, lambda_0)
cat('P(t = ?) = 0.5, entonces t = ', p7)
## P(t = ?) = 0.5, entonces t = 0.04620981
```

¿Cuál es la probabilidad de que transcurran a lo más cinco segundos antes de la segunda emisión?

Variable Aleatoria (X): tiempo transcurrido Distribución: Gamma (2 éxitos con variable aleatoria continua)

```
Pregunta: P(t \le 5/60) \ \alpha = 2 \ (2 \text{ exitos}) \ \beta = \frac{1}{\lambda_0} = \frac{1}{15}
```

```
alpha = 2
beta = 1/15

p8 = pgamma(5/60, alpha, 1/beta)
cat('P(t < 5/60 minutos) = ', p8)

## P(t < 5/60 minutos) = 0.3553642</pre>
```

¿En que rango se encuentra el 50% del tiempo central que transcurre antes de la segunda emisión?

Variable Aleatoria (X): tiempo transcurrido Distribución: Gamma (2 éxitos con variable aleatoria continua)

Pregunta 1: P(t <?) = 0.75 Pregunta 2: P(t >?) = 0.25 $\alpha = 2$ (2 exitos) $\beta = \frac{1}{\lambda_0} = \frac{1}{15}$

```
alpha = 2
beta = 1/15

p9 = qgamma(0.75, alpha, 1/beta)
p10 = qgamma(0.25, alpha, 1/beta)
cat('valor donde P(t < ?) = 0.75 es ', p9)

## valor donde P(t < ?) = 0.75 es 0.179509

cat("\n")

cat('valor donde P(t > ?) = 0.25 es', p10)

## valor donde P(t > ?) = 0.25 es 0.06408525
```