Predict Survival on The Titanic (Kaggle)

Two step prediction

- 1. Predict Ages for Nan Values using XGBoost Regressor
- 2. Predict Survival using XGBoost Classifier

Titanic Route

```
In [1]: from IPython.core.display import Image
          Image('./Titanic_Route.png')
Out[1]:
                                          RMS TITANIC
                                                                                      31/3/1909-2/4/1912
                                                                                                           Kingdom
Liverpool
                                           VOYAGE AND SINKING
                                                                                                         2/4/1912
10/4/1912
                                            MARCH 31 1909-APRIL 15 1912
                                                                                       Queenstown
                                                                                       11/4/1912
                                                                                                       Southampton
                                                                                                       and Cherbourg
                                                 14/4/1912
                                                 11:40 PM
                               Wreck location
                                                 collsion with
                              41.7325° N, 49.9469° W iceberg
                                                                                                        Spain
                 New York City
                                                  15/4/1912
                 planned destination
                                                   2:20 AM
                                                                             Statistics
                                                   Titanic<sub>i</sub>siaks<sub>h</sub>
                                                                       Total passengers and Crew-2,224
                                                      Atlantic
                                                                       Survivors-710 (31.9%)
                                                                       Deaths-1514 (68.1%)
```

Import Libraries

```
In [2]: import os
    import seaborn as sns
    import numpy as np
    import pandas as pd
    import IPython.display as display
    from sklearn.preprocessing import LabelBinarizer,StandardScaler,LabelEncoder
    from sklearn.metrics import classification_report,confusion_matrix,accuracy_score
    from sklearn.metrics import mean_squared_error as mse, r2_score
    from sklearn.model_selection import train_test_split
    from sklearn.impute import SimpleImputer
    from xgboost import XGBRegressor,XGBClassifier
    import xgboost as xgb
    import matplotlib.pyplot as plt
    from keras import layers,models,optimizers,regularizers
```

Using TensorFlow backend.

Data Loading

```
In [3]: path_home = os.getcwd()
    path_train = path_home + '/Dataset/train.csv'
    path_test = path_home + '/Dataset/test.csv'
    path_gensub = path_home + '/Dataset/gender_submission.csv'

    train = pd.read_csv(path_train)
    test = pd.read_csv(path_test)
    sub_sample = pd.read_csv(path_gensub)
```

In [4]: display.display(train.tail(5))

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75	NaN	Q

Feature Engineering

```
In [5]: func scaler util = lambda method, data: method(data.reshape(-1,1)).flatten()
In [6]: def feature_engineering(dataset):
             ''' Feature Engineering ''
             dataset_prepro = dataset.copy()
             # Label Binarizer for gender class
             lb = LabelBinarizer()
             dataset_prepro['Sex'] = lb.fit_transform(dataset_prepro['Sex'].values)
             # Label Encoder for Categorical values for embarkation
             # S: Southampton in England, C: Cherbourg in France, Q: Queentown in Ireland
             le = LabelEncoder()
             le.fit(['S','C','Q','nan'])
             dataset_prepro['Embarked'] = le.transform(dataset_prepro['Embarked'].values)
             # Cabin Class
             le cabin = LabelEncoder()
             le_cabin.fit(['N','A','B','C','D','E','F','G','T'])
             dataset_prepro['Cabin'] = le_cabin.transform(dataset_prepro['Cabin'].astype(str).str[0].values)
             # Titles
             dataset_prepro['Title'] = dataset_prepro.Name.str.extract(' ([A-Za-z]+)\.', expand=False)
             RareTitles = ['Lady','Countess','Capt','Col','Don','Dr','Major','Rev','Sir','Jonkheer','Dona']
             dataset_prepro['Title'] = dataset_prepro['Title'].replace(RareTitles, 'Rare')
             dataset_prepro['Title'] = dataset_prepro['Title'].replace('Mlle', 'Miss')
             dataset_prepro['Title'] = dataset_prepro['Title'].replace('Ms', 'Miss')
             dataset_prepro['Title'] = dataset_prepro['Title'].replace('Mme', 'Mrs')
title_mapping = {'Mr':1,'Miss':2,'Mrs':3,'Master':4,'Rare':5}
             dataset_prepro['Title'] = dataset_prepro['Title'].map(title_mapping)
             # Whether One is Alone
             dataset_prepro['FamilySize'] = dataset_prepro['SibSp'] + dataset_prepro['Parch'] + 1
             dataset_prepro['Family'] = 0
             dataset_prepro.loc[dataset_prepro['FamilySize'] > 1, 'Family'] = 1
             return dataset prepro
```

Create Training Dataset to Predict Ages for Nan Values

```
In [7]: | # Feature Engineering for Categorical values
        dataset_pred_age = pd.concat([train,test],sort=True)
        dataset_pred_age.drop(['Survived','Ticket'],axis=1,inplace=True)
        dataset_pred_age.dropna(how='any',axis=0,inplace=True)
        dataset pred age = feature engineering(dataset pred age)
        col_list = ['Sex','Age','Fare','Family','Embarked','Pclass','Cabin','Title']
        train_pred_age = dataset_pred_age[col_list].values
        # Standardize fare after Logarithmic conversion
        fare_log = np.log1p(train_pred_age[:,2])*50 # Convert Fare values in Logarithm
        scaler_fare = StandardScaler()
        scaler_fare.fit(fare_log.reshape(-1,1))
        train_pred_age[:,2] = func_scaler_util(scaler_fare.transform,fare_log)
        # Split whole dataset (test & training) into training & validation for age prediction
        idx_age_pred = [0,2,3,4,5,6,7]
        x, y = train_pred_age[:,idx_age_pred], train_pred_age[:,1]
        x_train,x_val,y_train,y_val = train_test_split(x,y,test_size=0.15,random_state=42)
```

	Age	Cabin	Embarked	Fare	Parch	Passengerld	Pclass	Sex	SibSp	Title	FamilySize	
count	270.000000	270.000000	270.000000	270.000000	270.000000	270.000000	270.000000	270.000000	270.000000	270.000000	270.000000	270.0
mean	36.825630	2.366667	1.159259	84.942193	0.477778	663.955556	1.174074	0.511111	0.507407	2.044444	1.985185	0.5
std	15.569971	1.459108	0.983416	80.698651	0.788784	371.875891	0.490878	0.500805	0.643773	1.143052	1.137304	0.4
min	0.920000	0.000000	0.000000	0.000000	0.000000	2.000000	1.000000	0.000000	0.000000	1.000000	1.000000	0.0
25%	25.000000	1.000000	0.000000	30.000000	0.000000	337.250000	1.000000	0.000000	0.000000	1.000000	1.000000	0.0
50%	36.000000	2.000000	2.000000	60.587500	0.000000	661.500000	1.000000	1.000000	0.000000	2.000000	2.000000	1.(
75%	48.000000	3.000000	2.000000	103.193750	1.000000	968.500000	1.000000	1.000000	1.000000	3.000000	2.000000	1.(
max	80.000000	8.000000	2.000000	512.329200	4.000000	1306.000000	3.000000	1.000000	3.000000	5.000000	6.000000	1.(
4												-

Age Prediction for NaN values

```
In [9]: def AxConfig(ax,prmax):
    ''' Configure Axis '''
    ax.set_xlim([prmax['xmin'],prmax['xmax']])
    ax.set_ylim([prmax['ymin'],prmax['ymax']])
    ax.set_xticks(np.arange(prmax['xmin'],prmax['xmax'] + 1e-6,prmax['xmajor']))
    ax.set_yticks(np.arange(prmax['ymin'],prmax['ymax'] + 1e-6,prmax['ymajor']))
    ax.set_xticks(np.arange(prmax['xmin'],prmax['xmax'] + 1e-6,prmax['xminor']),minor=True)
    ax.set_yticks(np.arange(prmax['ymin'],prmax['ymax'] + 1e-6,prmax['yminor']),minor=True)
    plt.grid(b=True,which='minor',color='w',linestyle='--',linewidth=0.2,zorder=-1)
    plt.grid(b=True,which='major',color='w',linestyle='--',linewidth=0.5,zorder=-1)
    ax.patch.set_facecolor('#B5B5B55')
```

```
In [11]: xgb_reg_age = XGBRegressor(objective='reg:squarederror')
    xgb_reg_age.fit(x_train,y_train)
    age_actual = train_pred_age[:,1]
    age_pred = xgb_reg_age.predict(train_pred_age[:,idx_age_pred])
    plot_age_pred(age_actual,age_pred)
```



```
In [12]: def feature_importance(model,columns):
              ''' Feature Engineering '
             importance = model.feature importances
             rankftr = np.argsort(importance)[::-1]
             importance = [importance[i] for i in rankftr]
             columns = [columns[i] for i in rankftr]
             for feature in zip(columns,importance):
                 print(feature[0].ljust(9)+': '+'{:.2f}'.format(100*feature[1]).rjust(5)+'%')
             print('\n')
In [13]: columns = [col_list[i] for i in idx_age_pred]
         print('\nFeatures importance for age prediction')
         feature_importance(xgb_reg_age,columns)
         Features importance for age prediction
         Pclass : 44.32%
         Title
                  : 16.40%
         Family : 12.50%
         Cabin
                : 10.36%
         Fare
                 : 6.90%
         Embarked : 5.48%
              : 4.04%
```

Preprocessing and Overview

```
In [14]: def PreProcessing(dataset,col_list,xgb_reg_age,imp_median=None,training=True):
             dataset = dataset.copy()
             if training:
                 target = np.array(dataset['Survived'])
                 imp_median = SimpleImputer(missing_values=np.nan, strategy='median')
                 target = None
             # Imputer for fare
             imp_median.fit(dataset[['Fare']])
             dataset['Fare'] = imp_median.transform(dataset[['Fare']])
             dataset['Fare'] = np.log1p(dataset['Fare'])*50
             dataset.loc[dataset['Embarked'].isnull(),'Embarked'] = 'nan'
             dataset.loc[dataset['Cabin'].isnull(),'Cabin'] = 'N'
             dataset['Fare'] = func_scaler_util(scaler_fare.transform,dataset['Fare'].values)
             feature = feature engineering(dataset)[col list].values
             # Predict age and scale it
             for i in range(len(feature)):
                 feature_age = feature[i][idx_age_pred]
                 feature[i,1] = xgb_reg_age.predict(np.reshape(feature_age,[1,7]))
             scaler_age = StandardScaler()
             scaler_age.fit(feature[:,1].reshape(-1,1))
             feature[:,1] = func_scaler_util(scaler_age.transform,feature[:,1])
             return feature,target,imp_median
```

In [15]: feature_train,target_train,imp_median = PreProcessing(train,col_list,xgb_reg_age)

Insights

Sex, Title: More female passengers survived than male.

Age: Thosed who didn't suvive aged at around the average.

Family: Passengers with family likely survived.

Pclass,Fare,Cabin: The higher the ticket class the more likely people survived.

Embarked: People who embarked at Cherbourg in France more likely survived.

```
In [17]: df_pair_plot.describe()
```

Out[17]:

	Sex	Age	Fare	Family	Embarked	Pclass	Cabin	Title	Survival
count	891.000000	8.910000e+02	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	0.647587	-1.847101e-16	-1.135509	0.397306	1.538721	2.308642	5.946128	1.728395	0.383838
std	0.477990	1.000562e+00	1.002317	0.489615	0.794231	0.836071	2.062347	1.030039	0.486592
min	0.000000	-2.532771e+00	-4.199453	0.000000	0.000000	1.000000	0.000000	1.000000	0.000000
25%	0.000000	-4.354854e-01	-1.937144	0.000000	1.000000	2.000000	7.000000	1.000000	0.000000
50%	1.000000	5.594664e-02	-1.367576	0.000000	2.000000	3.000000	7.000000	1.000000	0.000000
75%	1.000000	2.554337e-01	-0.614733	1.000000	2.000000	3.000000	7.000000	2.000000	1.000000
max	1.000000	3.203570e+00	2.255725	1.000000	3.000000	3.000000	8.000000	5.000000	1.000000

Survival prediction for each passenger using XGBoost Classifier

```
In [18]: xgb_cls = XGBClassifier(objective='reg:squarederror')
         xgb_cls.fit(feature_train,target_train)
Out[18]: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
                       colsample_bynode=1, colsample_bytree=1, gamma=0,
                       learning_rate=0.1, max_delta_step=0, max_depth=3,
                       min_child_weight=1, missing=None, n_estimators=100, n_jobs=1,
                       nthread=None, objective='reg:squarederror', random_state=0,
                       reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
                       silent=None, subsample=1, verbosity=1)
In [19]: def result_summary(feature_train, target_train, model, columns):
             # Accuracy, Confusion Matrix, Classification Report
             pred train = model.predict(feature train)
             print('Accuracy: '+'{:.3f}'.format(accuracy_score(target_train,pred_train)))
             print('\nConfusion Matrix')
             print(confusion_matrix(target_train, pred_train))
             print('\nClassification Report')
             print(classification_report(target_train, pred_train))
             print('\nFeatures importance for survival prediction')
             feature importance(model,columns)
In [20]: result_summary(feature_train, target_train, xgb_cls, col_list)
         Accuracy: 0.881
         Confusion Matrix
         [[519 30]
          [ 76 266]]
         Classification Report
                       precision
                                    recall f1-score support
                    0
                            0.87
                                      0.95
                                                0.91
                                                           549
                                                           342
                    1
                            0.90
                                      0.78
                                                0.83
                                                0.88
                                                           891
             accuracy
                            0.89
                                      0.86
                                                0.87
                                                           891
            macro avg
         weighted avg
                            0.88
                                      0.88
                                                0.88
                                                           891
         Features importance for survival prediction
         Title : 62.17%
         Pclass : 17.54%
         Embarked : 5.53%
                 : 4.63%
         Fare
         Cabin
                 : 4.59%
                 : 3.69%
         Age
         Sex
                  : 1.86%
         Family : 0.00%
In [21]: def visualize tree(xgb cls,n tree=0):
              '' Visualize Gradient Boosting Decision Trees '''
             xgb.plot_tree(xgb_cls,num_trees=n_tree, rankdir='LR')
             fig = plt.gcf()
             fig.set_size_inches(200,100)
             plt.show()
```


f1: Sex, f2: Age, f3: Fare, f4: Family, f5: Embarked, f6: Pclass, f7: Cabin, f8: Title

Output for submission

```
In [23]: feature_test,_,_ = PreProcessing(test,col_list,xgb_reg_age,imp_median,training=False)
    sub_sample['Survived'] = xgb_cls.predict(feature_test)
    sub_sample.to_csv(path_home + '/Dataset/submit_RFC_GS.csv',index=False)
```