۱ جلسه نهم، ادامهی معناشناسی

در جلسهی گذشته به معناشناسیِمنطق مرتبهی اول پرداختیم. گفتیم که ترمهای زبان در ساختارها و با استفاده از نگاشتهایی که متغیرها را تعبیر میکنند، معنا میشوند. نیز گفتیم که هر نگاشت تعبیر، تابعی مانند

$$\beta: \{v_{\bullet}, v_{1}, \ldots\} \to A$$

است که دامنه آن مجموعهی متغیرهاست و برد آن جهان یک L ساختار $\mathfrak A$ است. در این جلسه میخواهیم مفهوم «درست بودن یک فرمول» دریک ساختار را تعریف کنیم.

فرض کنید φ یک $\mathcal L$ فرمول، $\mathcal R$ یک $\mathcal L$ ساختار، β و یک نگاشت تعبیرِ متغیرها در $\mathcal A$ ، جهانِ ساختارِ $\mathcal R$ ، باشد. منظور از عبارت $\mathcal R$ این است که فرمول $\mathcal R$ با ارزیابی $\mathcal R$ از متغیرها در ساختار $\mathcal R$ درست است. در زیر همین تعریف را دقیق کردهایم.

تعریف ۱ (درست بودن یک فرمول در یک ساختار). عبارت $\mathfrak{A}\models \varphi[eta]$ (که خوانده می شود: فرمول φ با ارزیابی β در ساختار \mathfrak{A} درست است) به صورت استقرایی زیر تعریف می شود:

٠,١

$$\mathfrak{A}\models t_{\mathsf{Y}}=t_{\mathsf{Y}}[\beta]\Leftrightarrow t_{\mathsf{Y}}^{\mathfrak{A}}[\beta]=t_{\mathsf{Y}}^{\mathfrak{A}}[\beta]$$

یعنی فرمول $t_1=t_1$ وقتی در ساختار $\mathfrak A$ درست است که تعبیرهای ترمهای t_1,t_2 در این ساختار با هم برابر باشند؛

٠٢.

$$\mathfrak{A} \models R(t_1, \cdots, t_n)[\beta] \Leftrightarrow R^{\mathfrak{A}}(t_1^{\mathfrak{A}}[\beta], \cdots, t_n^{\mathfrak{A}}[\beta])$$

یعنی فرمولِ $R(t_1,\dots,t_n)$ وقتی در ساختارِ R درست است که تعبیرهای ترمهای t_i در این ساختار با یکدیگر رابطهی $R^\mathfrak{A}$ را داشته باشند؛

 $\mathfrak{A}
ot\models \varphi[eta]$ هرگاه $\mathfrak{A}\models \neg\varphi[eta]$.۳

٠۴

$$\mathfrak{A} \models (\psi_1 \land \psi_1)[\beta] \Leftrightarrow \mathfrak{A} \models \psi_1[\beta] \ \mathfrak{A} \models \psi_1[\beta]$$

ه. $\mathfrak{A}\models\exists x\psi[eta]$ که در آن $\mathfrak{A}=a\in A$ موجود باشد به طوری که $\mathfrak{A}\models\exists x\psi[eta]$ که در آن $\mathfrak{A}=a\in A$ یک نگاشت تعبیر متغیرهاست که به صورت زیر تعریف می شود:

$$\beta \frac{a}{x}(v) = \begin{cases} \beta(v) & v \neq x \\ a & v = x \end{cases}$$

 $\mathfrak{A}\models (\psi_1 o \psi_7)[eta]$ تعریف بالا را میتوان برای سایر ادوات کمکی نیز به صورت زیر تعمیم داد: تعریف میکنیم $\mathfrak{A}\models \psi_7[eta]$ داشته باشیم هرگاه اگر $\mathfrak{A}\models \psi_7[eta]$ آنگاه $\mathfrak{A}\models \psi_7[eta]$ همچنین تعریف میکنیم $\mathfrak{A}\models \psi_7[eta]$ هرگاه برای هر $\mathfrak{A}\models \psi_7[eta]$ داشته باشیم $\mathfrak{A}\models \psi_7[eta]$.

در ادامه به تعریف متغیرهای آزاد و پایبند پرداخته ایم. می گوییم متغیر x در فرمول φ آزاد است هرگاه x تحت تأثیرِ هیچ سوری قرار نگرفته باشد. بیایید این تعریف را به صورت دقیق و استقرائی بیان کنیم.

تعریف ۲ (متغیرآزاد). آزاد بودن حضور متغیر x در فرمول φ به صورت استقرائی زیر تعریف می شود:

- ۱. اگر $\varphi = (t_1 = t_1)$ در این صورت x برای φ آزاد است هرگاه $x \in var(t_1)$ یا $x \in var(t_1)$ (یعنی در صورتی که $x \in var(t_1)$ یکی از متغیرهای به کار رفته در یکی از x ها باشد).
 - ۱. اگر x متغیرهای های یکی از x ها باشد. x اگر x آزاد است هرگاه x جزوِ متغیرهای های یکی از x ها باشد.
 - ۳. اگر $\psi = \neg \psi$ آنگاه x در φ آزاد است هرگاه در ψ آزاد باشد.
 - با در ψ و ازاد است هرگاه x در ψ آزاد است ϕ آزاد باشد. ϕ آزاد باشد. ϕ
 - ه. اگر $\psi = \exists y \psi$ آزاد است هرگاه $x \neq y$ و $x \neq y$ آزاد باشد.

متغیرهایی را که آزاد نباشند، پایبند مینامیم.

توجه φ . تعداد متغیر های آزاد یک فرمول φ همواره متناهی است.

مثال ۴. متغیر های آزاد و پایبند را در فرمولهای زیر مشخص کنید.

$$\forall v. \quad \left(\exists v, R(\overset{\text{i.i.}}{v}, \overset{\text{j.i.}}{v},) \land p(\overset{\text{j.i.}}{v},)\right)$$

$$\forall x, y \quad R_{1}(\overset{\downarrow}{x},\overset{\downarrow}{y}) \wedge R_{1}(\overset{\downarrow}{x},\overset{\downarrow}{y})$$

$$\forall x, y \quad \left(p(\overset{\text{light}}{x}) \land q(\overset{\text{f}}{y})\right)$$

توجه ۵. برای دیدن مثالهای بیشتر از متغیر های آزاد و پایبند به جزوه مبانی ریاضی مدرس در تارنمای درسها مراجعه کنید.

لم ۶. اگر ارزیابی های A کنند آنگاه $\gamma, \beta: \{v., v_1, \ldots\} o A$ یکسان عمل کنند آنگاه

$$\mathfrak{A} \models \varphi[\beta] \Leftrightarrow \mathfrak{A} \models \varphi[\gamma]$$

مثال ۷. فرض کنید $\mathfrak{R} = (\mathbb{R}, +, \cdot)$ ارزیابیهای زیر را در نظر بگیرید:

$$\beta: v. \mapsto 1$$

$$v_1 \mapsto \mathbf{Y}$$

$$v_i \mapsto i \quad i \neq 1, \Upsilon$$

$$y \mapsto \mathcal{F}$$

$$\gamma:v_{\bullet}\mapsto 1$$

$$v_1 \mapsto \Upsilon$$

$$v_i \mapsto \mathbf{1} \cdot i \quad i \neq \mathbf{1}, \mathbf{7}$$

 $y \mapsto \mathbf{1} \cdot \mathbf{...}$

حال فرمولهای v، v و v و v را در v و v را در نظر بگیرید. واضح است که v

$$R \models v \cdot + v_1 = v_{\mathsf{T}}[\beta] \Leftrightarrow R \models v \cdot + v_1 = v_{\mathsf{T}}[\gamma]$$

$$R \models \exists y \quad (y^{\mathsf{T}} + \mathsf{T} y = {}^{\bullet}) \wedge (v. + v_{\mathsf{T}} = \mathsf{T})[\beta] \Leftrightarrow R \models \exists y \quad (y^{\mathsf{T}} + \mathsf{T} y = {}^{\bullet}) \wedge (v. + v_{\mathsf{T}} = \mathsf{T})[\gamma]$$

در مورد دوم دقت کنید که متغیرهای پایبند نقشی بازی نکردهاند.

اثبات لم حكم را با استقراء روى ساخت فرمولها ثابت مىكنيم.

• اگر φ به صورت $t_1 = t_1$ باشد و β ، γ روی متغیرهای به کار رفته در t_1 و t_2 هم ارزش باشند، آنگاه واضح است (و اگر واضح نیست تحقیق کنید) که

$$t_{\lambda}^{\mathfrak{A}}[\beta] = t_{\lambda}^{\mathfrak{A}}[\gamma].$$

- اگر φ به صورت t_i ها یکسان باشند، آنگاه و ارزشهای β ، γ روی متغیرهای به کار رفته در t_i ها یکسان باشند، آنگاه $R^{\mathfrak{A}}(t_1^{\mathfrak{A}}[\gamma],\cdots,t_n^{\mathfrak{A}}[\gamma])\Leftrightarrow R^{\mathfrak{A}}(t_1^{\mathfrak{A}}[\beta],\cdots,t_n^{\mathfrak{A}}[\beta])$ و در نتیجه $t_i^{\mathfrak{A}}[\beta]$ و در نتیجه $t_i^{\mathfrak{A}}[\beta]$
 - بررسی حالتهائی را که $\varphi = -\psi$ و $\psi_1 \wedge \psi_2 = \varphi$ به عنوان تمرین رها میکنم.
- $|\mathcal{A}| = \exists x \psi[\beta]$ به صورت $\mathcal{A} \models \exists x \psi[\beta]$ باشد و β و γ روی متغیر های آزاد φ یکسان عمل کنند، آنگاه $|\mathcal{A}| \models \exists x \psi[\beta]$ هرگاه $\mathcal{A} \models \psi[\gamma]$ باشد به طوری که $|\mathcal{A}| \models \psi[\gamma]$ همچنین $|\mathcal{A}| \models \psi[\gamma]$ هرگاه $|\mathcal{A}| \models \psi[\beta]$ موجود باشد به طوری که $|\mathcal{A}| \models \psi[\gamma]$ همچنین $|\mathcal{A}| \models \psi[\gamma]$ هرگاه $|\mathcal{A}| \models \psi[\gamma]$ متغیرهای آزاد $|\mathcal{A}| \models \psi[\gamma]$ متغیرهای آزاد $|\mathcal{A}| \neq \psi[\gamma]$ متغیرهای هر دو مقدار $|\mathcal{A}| \neq \psi[\gamma]$ دارند. پس بنابر فرض استقراء

$$\mathfrak{A}\models\psi[\beta\frac{a}{x}]\Leftrightarrow\mathfrak{A}\models\psi[\gamma\frac{a}{x}].$$

 $\mathfrak{A} \models \exists x \psi[\beta] \Leftrightarrow \mathfrak{A} \models \exists x \psi[\gamma]$ بنابراین

دقت کنید که معمولاً در نمایش یک فرمول به صورت $\varphi(x_1,\ldots,x_n)$ متغیرهای پایبند آن را نمینویسیم. به طور کلی: $\varphi(x_1,\ldots,x_n)$ این است که منظور از نماد $\varphi(x_1,\ldots,x_n)$ این است که

- متغیرهای x_i متمایز هستند.
- ۲. متغیر های آزاد فرمول φ در میان $\{x_1,\cdots,x_n\}$ هستند.

مثال ۹. در فرمول y=y=y دقت کنید که با این که متغیر z در فرمول نیامده است، آن را در پرانتز نوشته ایم.

تعریف ۱۰. به فرمولی که متغیر آزاد نداشته باشد، جمله میگوئیم.

مثال ۱۱. فرمول زیر یک جمله در زبان حلقه هاست.

$$\forall a, b, c \exists x \quad ax^{\mathsf{Y}} + bx + c = \mathsf{Y}$$

بنابر لم قبلی اگر φ یک جمله باشد و β ، γ دو تابع تعبیر برای متغیر ها باشند آنگاه

$$\mathfrak{A} \models \varphi[\beta] \Leftrightarrow \mathfrak{A} \models \varphi[\gamma].$$

بنابراین اگر φ یک جمله باشد، مینویسیم $\varphi \models \mathfrak{A}$ هرگاه برای یک (به بیان معادل به ازای هر) ارزیابی β داشته باشیم $\mathfrak{A} \models \varphi[\beta]$.

توجه ۱۲. اگر φ یک جمله و $\mathfrak A$ یک $\mathcal L$ ساختار باشد آنگاه $\varphi \not = \mathfrak A$ یا $\varphi = \mathfrak A$ و هر دو اینها با هم نمیتواند رخ دهد (در داخل یک $\mathcal L$ ساختار تناقضی نمیتواند رخ دهد).

تعریف ۱۳. فرض کنید x یک متغیر و s,t دو ترم باشند، منظور از نماد $t antilde{s}$ این است که به جای متغیر x در ترم t، ترم t را جایگذاری کنیم.

برای مثال

$$t(y) = \mathbf{Y}y + \mathbf{Y} = \mathbf{Y}$$

$$s = y^{\mathbf{Y}} + y + x$$

$$t\frac{s}{y} = \mathbf{Y}(y^{\mathbf{Y}} + y + x) + \mathbf{Y} = \mathbf{Y}$$

از آقای امیر نیکآبادی بابت تایپ جزوهی این جلسه سپاسگزاری میکنم.