Next-Next-Gen Notes Object-Oriented Maths

JP Guzman

September 26, 2017

Format: $characteristic((subjects), (dependencies)) \iff (conditions(dependencies)) \land (conditions(subjects))$ TODO should really define union intersection complement etc TESTMEEEEEEEEEEEEEEEE

1 Mathematical Analysis

1.0.1 Formal Logic

```
statement(s, ()) \iff well\text{-}formedString(s, ())
                                                                                                                                 (1)
                                                                 proposition((p,t),()) \iff (statement(p,())) \land
                                                                                                         (t = eval(p)) \wedge
                                                                                                (t = true \ \ \ \ t = false)
                                                                                                                                 (2)
                                                          operator(o, ((p)_{n \in \mathbb{N}})) \iff proposition(o((p)_{n \in \mathbb{N}}), ())
                                                                                                                                 (3)
                                operator(\neg, (p_1)) \iff (proposition((p_1, true), ())) \implies ((\neg p_1, false), ())) \land
                                                               (proposition((p_1, false), ()) \implies ((\neg p_1, true), ()))
                                                # an operator takes in propositions and returns a proposition
                                                                                                                                 (4)
operator(\neg) \iff NOT ; operator(\lor) \iff OR ; operator(\land) \iff AND ; operator(\lor) \iff XOR
                       operator(\implies) \iff IF ; operator(\iff) \iff OIF ; operator(\iff) \iff IFF
                                                                                                                                 (5)
                        proposition((false \implies true), true, ()) \land proposition((false \implies false), true, ())
                                            # truths based on a false premise is not false (ex falso quodlibet)
                                                                                                                                 (6)
                                            (a \Longrightarrow b \Longrightarrow c) \Longleftrightarrow (a \Longrightarrow (b \Longrightarrow c)) \Longleftrightarrow ((a \land b) \Longrightarrow c)
                                                                                                                                 (7)
                                                       predicate(P,(V)) \iff \forall_{v \in V}(proposition((P(v),t),()))
                                                                                                                                 (8)
                                                               0thOrderLogic(P,()) \iff proposition((P,t),())
                                                                                            # individual proposition
                                                                                                                                 (9)
                                                  1stOrderLogic(P, (V)) \iff (\forall_{v \in V}(0thOrderLogic(v, ()))) \land
                                                                                  (\forall_{v \in V}(proposition((P(v), t), ())))
                                      # propositions defined over a set of (1-1=0)th-order logical statements
                                                                                                                                (10)
                                                                 quantifier(q,(p,V)) \iff (predicate(p,(V))) \land
                                                                                           (proposition((q(p),t),()))
                                                  \# a quantifier takes in a predicate and returns a proposition
                                                                                                                                (11)
```

 $quantifier(\forall, (p, V)) \iff proposition((\land_{v \in V}(p(v)), t), ())$ # universal quantifier (12) $quantifier(\exists, (p, V)) \iff proposition((\lor_{v \in V}(p(v)), t), ())$ # existential quantifier (13) $quantifier(\exists!,(p,V)) \iff \exists_{x\in V}(P(x) \land \neg(\exists_{y\in V\setminus\{x\}}(P(y))))$ # uniqueness quantifier (14) $\forall_x p(x) \iff \neg \exists_x \neg p(x)$ # De Morgan's law (15) $\forall_x \exists_y p(x,y) = \forall_x \neg \forall_y \neg p(x,y) \neq \exists_y \forall_x p(x,y) = \neg \forall_y \neg (\forall_x p(x,y)) = \neg \forall_y \exists_x \neg p(x,y)$ # different quantifiers are not interchangeable (16)************** (17)proof = truths derived from a finite number of axioms and deductions (tautologies) (18)elementary arithmetics = system with substitutions, and some notion of addition, multiplication, and prime nuumbers for encoding metamathematics (19)Gödel theorem \implies axiomatic systems equivalent in power to elementary mathematics are either incomplete (has unprovables) or inconsistent (has contradictions) (20)*************** (21)

1.1 Axiomatic Set Theory

***********	(22
${\bf Zermelo\text{-}Fraenkel\text{-}Choice} ({\bf ZFC}) {\bf set} {\bf theory} = {\bf standard} {\bf form} {\bf of} {\bf axiomatic} {\bf set} {\bf theory}$	(23
ZFC axioms = Existence (EE), Construction (PURP), ECAdv (IC), Nonexistent (F)	(2
$A \subseteq B = \forall_x x \in A \implies x \in B$	(2
$(A = B) = A \subseteq B \land B \subseteq A$	(2)
$\in \mathbf{basis} \implies \{x,y\} = \{y,x\} \land \{x\} = \{x,x\}$	(2)
\in -relation and sets $(\{\dots\})$ works as follows (9 ZFC axioms):	(2
$\forall_x \forall_y (x \in y \veebar \neg (x \in y)) \ \# \ \mathbf{E} : \in \text{is only a proposition on sets}$	(2)

 $\exists_{\emptyset} \forall_{y} \neg y \in \emptyset \# E$: existence of empty set (30) $\forall_x \forall_y \exists_m \forall_u u \in m \iff u = x \lor u = y \# C$: pair set construction (31) $\forall_s \exists_u \forall_x \forall_y (x \in s \land y \in x \implies y \in u) \# C$: union set construction (32) $x = \{\{a\}, \{b\}\}\$ # from the pair set axiom (33) $u = \bigcup x = \bigcup \{\{a\}, \{b\}\} = \{a, b\}$ (34) $\forall_x \exists !_y R(x,y) \# \text{ functional relation } R$ (35) $\exists_i \forall_x \exists !_u R(x,y) \implies y \in i \# C$: image i of set m under a relation R is assumed to be a set $\implies \{y \in m | P(y)\} \# \text{ Restricted Comprehension } \implies \{y | P(y)\} \# \text{ Universal Comprehension}$ (36) $\forall_{x \in m} P(x) = \forall_x (x \in m \implies P(x)) \# \text{ ignores out of scope} \neq \forall_x (x \in m \land P(x)) \# \text{ restricts entirety}$ (37) $\forall_m \forall_n \exists_{\mathcal{P}(m)} (n \subseteq m \implies n \subseteq \mathcal{P}(m)) \# C$: existence of power set (38) $\exists_I(\emptyset \in I \land \forall_{x \in I}(\{x\} \in I)) \ \# \ \text{I: axiom of infinity} \ ; \ I = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \ldots\}; I \cong \mathbb{N} \implies \mathbb{N} \ \text{is a set}$ (39) $\forall_x ((\emptyset \notin x \land x \cap x' = \emptyset) \implies \exists_y (\mathbf{set} \ \mathbf{of} \ \mathbf{each} \ \mathbf{e} \in x)) \ \# \ \mathbf{C}$: axiom of choice LOLOL (40) $\forall_x x \neq \emptyset \implies x \notin x \# F$: axiom of foundation covers further paradoxes (41)(42)**************

1.2 Classification of sets

 $space((set, structure), ()) \iff structure(set)$ # a space a set equipped with some structure
various spaces can be studied through structure preserving maps between those spaces (43) $map(\phi, (A, B)) \iff (\forall_{a \in A} \exists!_{b \in B} (\phi(a, b))) \lor (\forall_{a \in A} \exists!_{b \in B} (b = \phi(a)))$ # maps elements of a set to elements of another set (44) $domain(A, (\phi, A, B)) \iff (map(\phi, (A, B))) \qquad (45)$ $codomain(B, (\phi, A, B)) \iff (map(\phi, (A, B))) \qquad (46)$ $image(B, (A, q, M, N)) \iff (map(q, (M, N)) \land A \subseteq M) \land (B = \{n \in N | \exists_{a \in A} (q(a) = n)\}) \qquad (47)$

```
preimage(A, (B, q, M, N)) \iff (map(q, (M, N)) \land B \subseteq N) \land
                                                                 (A = \{m \in M | \exists_{b \in B} (b = q(m))\})
                                                                                                                    (48)
                                                injection(q,(M,N)) \iff (map(q,(M,N))) \land
                                                                 \forall_{u,v \in M} (q(u) = q(v) \implies u = v)
                                                                  \# every m has at most 1 image
                                                                                                                    (49)
                                              surjection(q,(M,N)) \iff (map(q,(M,N))) \land
                                                                             \forall_{n \in N} \exists_{m \in M} (n = q(m))
                                                               \# every n has at least 1 preimage
                                                                                                                    (50)
                                          bijection(q,(M,N)) \iff (injection(q,(M,N))) \land
                                                                            (surjection(q,(M,N)))
                                                  \# every unique m corresponds to a unique n
                                                                                                                    (51)
                                  isomorphicSets((A, B), ()) \iff \exists_{\phi}(bijection(\phi, (A, B)))
                                                                                                                    (52)
                                 infiniteSet(S,()) \iff \exists_{T \subset S}(isomorphicSets((T,S),()))
                                                                                                                    (53)
                                     finiteSet(S, ()) \iff (\neg infiniteSet(S, ())) \lor (|S| \in \mathbb{N})
                                                                                                                    (54)
     countablyInfinite(S, ()) \iff (infiniteSet(S, ())) \land (isomorphicSets((S, \mathbb{N}), ()))
                                                                                                                    (55)
uncountablyInfinite(S,()) \iff (infiniteSet(S,())) \land (\neg isomorphicSets((S,\mathbb{N}),()))
                                                                                                                    (56)
                                 inverseMap(q^{-1}, (q, M, N)) \iff (bijection(q, (M, N))) \land
                                                                              (map(q^{-1},(N,M))) \wedge
                                                    (\forall_{n \in N} \exists !_{m \in M} (q(m) = n \implies q^{-1}(n) = m))
                                                                                                                    (57)
      mapComposition(\phi \circ \psi, (\phi, \psi, A, B, C)) \iff map(\psi, (A, B)) \land map(\phi, (B, C)) \land
                                                                         \forall_{a \in A} (\phi \circ \psi(a) = \phi(\psi(a)))
                                                                                                                    (58)
                                      equivalenceRelation(\sim, (M)) \iff (\forall_{m \in M} (m \sim m)) \land
                                                                 (\forall_{m,n\in M}(m\sim n\implies n\sim m))\wedge
                                                        (\forall_{m,n,p\in M}(m \sim n \land n \sim p \implies m \sim p))
                                                                       # behaves like equivalences
                                                                                                                    (59)
                           equivalenceClass([m], (m, M, \sim)) \iff [m] = \{n \in M | n \sim m\}
                               \# set of elements satisfying the equivalence relation with m
                                                                                                                    (60)
                                             a \in [m] \implies [a] = [m] ; [m] = [n] \vee [m] \cap [n] = \emptyset
                                                                    # equivalence class properties
                                                                                                                    (61)
                         quotientSet(M/\sim,(M,\sim)) \iff M/\sim = \{[m] \in \mathcal{P}(M) | m \in M\}
                                                                   \# set of all equivalence classes
                                                                                                                    (62)
```

axiom of choice $\implies \forall_{[m] \in M/\sim} \exists_r (r \in [m])$ # well-defined maps may be defined in terms of chosen representative elements r

(63)

1.3 Construction of number sets

************** (64)**axiom of infinity** \Longrightarrow $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \ldots\} \cong \mathbb{N}$ (65) $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ (66)addition = successor map: $\mathbb{N} \to \mathbb{N} = S(n) = \{n\} \# \text{ adds a layer of brackets}$ (67)subtraction = predecessor map: $\mathbb{N}^* \to \mathbb{N} = P(n) = m | m \in n \# \text{ removes a layer of brackets}$ (68) $S^0 = id : n \in \mathbb{N}^{\star} \implies S^n = S \circ S^{P(n)}$ (69)addition = $+ : \mathbb{N} \times \mathbb{N} \to \mathbb{N} = +(m, n) = m + n = S^n(m)$ (70) $S^x = id = S^0 \implies x = \text{additive identity} = 0$ (71) $S^n(x) = 0 \implies x = \text{additive inverse} \notin \mathbb{N} \# \text{ git gud smh -}_-$ (72) $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$, s.t.: $(m,n) \sim (p,q) \iff m+q=p+n \ \# \text{ span } \mathbb{Z} \text{ using differences then group equal differences}$ (73) $\mathbb{N} \hookrightarrow \mathbb{Z} : \forall_{n \in \mathbb{N}} n \to [(n,0)] \# \mathbb{N} \text{ embedded in } \mathbb{Z}$ (74) $+_{\mathbb{Z}} = [(m +_{\mathbb{N}} p, n +_{\mathbb{N}} q)] \# \text{ well-defined and consistent}$ (75) $multiplication ... M^x = id \implies x = multiplicative identity = 1... multiplicative inverse \notin \mathbb{N}$ (76) $\mathbb{Q}=(\mathbb{Z}\times\mathbb{Z}^{\star})/\sim$, s.t.: $(x,y)\sim(u,v)\iff x\cdot v=u\cdot y$ (77) $\mathbb{Z} \hookrightarrow \mathbb{Q} \forall_{q \in \mathbb{O}} q \to [(q, 1)] ; \dots \{x | x^2 = 2\} \notin \mathbb{Q}$ (78) $\mathbb{R} = \text{almost homomorphisms on } \mathbb{Z}/\sim \text{ } \# \text{ } \text{http://blog.sigfpe.com/2006/05/defining-reals.html}$ (79)************** (80)

1.4 Topology and induced topology

```
topology(\mathcal{O}, (M)) \iff (\mathcal{O} \subseteq \mathcal{P}(M)) \land
                                                                                                                                            (\emptyset, M \in \mathcal{O}) \wedge
                                                                                                        ((F \in \mathcal{O} \land |F| < |\mathbb{N}|) \implies \cap F \in \mathcal{O}) \land
                                                                                                                              (C \subseteq \mathcal{O} \implies \cup C \in \mathcal{O})
# topology is defined by a set of open sets which provide the characteristics needed to define continuity, etc.
                                                                       # arbitrary unions of open sets always result in an open set
          # open sets do not contain their boundaries and infinite intersections of open sets may approach and
                                                                                             # induce boundaries resulting in a closed set (81)
                                                                                  topologicalSpace((M, \mathcal{O}), ()) \iff topology(\mathcal{O}, (M)) (82)
                                                                               open(S, (M, \mathcal{O})) \iff (topologicalSpace((M, \mathcal{O}), ())) \land
                                                                                                                                  (S \subseteq M) \land (S \in \mathcal{O})
                                                                                      # an open set do not contains its own boundaries (83)
                                                                             closed(S, (M, \mathcal{O})) \iff (topologicalSpace((M, \mathcal{O}), ())) \land
                                                                                                                       (S \subseteq M) \land (S \in \mathcal{P}(M) \setminus \mathcal{O})
                                                                                    # a closed set contains the boundaries an open set (84)
                                                                 clopen(S, (M, \mathcal{O})) \iff (closed(S, (M, \mathcal{O}))) \land (open(S, (M, \mathcal{O})))  (85)
                                                                                                neighborhood(U,(a,\mathcal{O})) \iff (a \in U \in \mathcal{O})  (86)
                                                                     M = \{a, b, c, d\} \land \mathcal{O} = \{\emptyset, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, M\} \implies
                                                                 (open(X, (M, \mathcal{O})) \iff X = \{\emptyset, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, M\}) \land
                                                               (\operatorname{closed}(Y, (M, \mathcal{O})) \iff Y = \{\emptyset, \{a, b, d\}, \{c, d\}, \{a, b\}, \{d\}, M\}) \land
                                                                                    (clopen(Z, (M, \mathcal{O})) \iff Z = \{\emptyset, \{a, b\}, \{c, d\}, M\}) \tag{87}
                                                                                                        \mathcal{O}_{chaotic} = \{0, M\} \; ; \; \mathcal{O}_{discrete} = \mathcal{P}(M) \; \; (88)
                                                                                                       distance(d,(M)) \iff (x,y,z \in M) \land
                                                                                                                                        (d(x,y) \in \mathbb{R}^+) \wedge
                                                                                                                        (d(x,y) = 0 \iff x = y) \land
                                                                                                                                  (d(x,y) = d(y,x)) \wedge
                                                                                                                       (d(x,z) \le d(x,y) + d(y,z)) (89)
                                                                                                                                         TEST\mathcal{O}_{chaotic} (90)
                                                                                       openBall(B, (r, p, M, d)) \iff (r \in \mathbb{R}^+, p \in M) \land
                                                                                                                        (B = \{ q \in M | d(p, q) < r \}) (91)
                                           metricTopology(\mathcal{O}, (M, d)) \iff \mathcal{O} = \{U \subseteq M | \forall_{p \in U} \exists_{r \in \mathbb{R}^+} (B(r, p, M, d) \subseteq U)\}  (92)
                                                                                               limitPoint(p, (S, M, \mathcal{O}, d)) \iff (S \subseteq M) \land
                                                                                                                         \forall_{r \in \mathbb{R}^+} (openBall \cap S \neq \emptyset)
```

```
# every open ball contains some intersection (93)
                                                                                    interiorPoint(p, (S, M, \mathcal{O}, d)) \iff (S \subseteq M)
                                                                                                                            \exists_{r \in \mathbb{R}^+} (openBall \subseteq S)
                                                                                     # there is an open ball that is fully enclosed (94)
                                                                                                              n \in \mathcal{O} \iff interiorPoint(n) (95)
                                                                     closure(\bar{S}, (S, M, \mathcal{O}, d)) \iff \bar{S} = S \cup limitPoints(S) (96)
                                                                                                   dense(S, (M, \mathcal{O}, d)) \iff (S \subseteq M) \land
                                                                                                                            \forall_{p \in M} (p \in closure(S))
                                                                       \# every of point in X is a point or a limit point of S (97)
                                                                                                             eucD(d,(\mathbb{R}^n)) \iff (x_i \in \mathbb{R}) \land
                                                                                                                                     (d = \sqrt{\sum_{i=1}^{n} x_i^2}) \quad (98)
                                                                                                                      \mathcal{O}_{standard} = \mathcal{O}(\mathbb{R}^n, eucD)
         L1:) \forall_{p \in U = \emptyset}(...) \implies \forall_p((p \in \emptyset) \implies ...) \implies \forall_p((\mathbf{False}) \implies ...) \implies \emptyset \in \mathcal{O}_{standard}
                                                                   L2:) \forall_{p \in \mathbb{R}^n} B(r, p, \mathbb{R}^n, eucD) \subseteq \mathbb{R}^n \implies M \in \mathcal{O}_{standard}
                                                     L3: U, V \in \mathcal{O}_{standard} \implies p \in U \cap V \implies p \in U \land p \in V \implies
                                                                      \exists_{r \in \mathbb{R}^+} B(r, p, \mathbb{R}^n, eucD) \land \exists_{s \in \mathbb{R}^+} B(s, p, \mathbb{R}^n, eucD) \implies
                                               B(min(r,s), p, \mathbb{R}^n, eucD) \subseteq U \land B(min(r,s), q, \mathbb{R}^n, eucD) \subseteq V \implies
                                                              B(min(r,s), p, \mathbb{R}^n, eucD) \in U \cap V \implies U \cap V \in \mathcal{O}_{standard}
                                                                   # could fail on infinite sets since min could approach 0
                      L4: C \subseteq \mathcal{O}_{standard} \implies \forall_{U \in C} \forall_{p \in U} \exists_{r \in \mathbb{R}^+} (B_r(p) \subseteq U \subseteq \cup C) \implies \cup C \in \mathcal{O}_{standard} (99)
                                                                            subsetTopology(\mathcal{O}|_{N}, (M, \mathcal{O}, N)) \iff (N \subseteq M) \land
                                                                                                                       (\mathcal{O}|_{N} = \{U \cap N | U \in \mathcal{O}\})
                                                                                                                                                                 (100)
                                                                                                     topology(\mathcal{O}|_{N}(M,\mathcal{O},N),(N)) \Leftarrow
                                                                       L1: \emptyset \in \mathcal{O} \implies U = \emptyset \implies \emptyset \cap N = \emptyset \implies \emptyset \in \mathcal{O}|_N
                                                            L2: M \in \mathcal{O} \implies U = M \implies M \cap N = N \implies N \in \mathcal{O}|_N
L3: S, T \in \mathcal{O}|_{N} \implies \exists_{U \in \mathcal{O}}(S = U \cap N) \land \exists_{V \in \mathcal{O}}(T = V \cap N) \implies S \cap T = (U \cap N) \cap (V \cap N)
                                                                                 = (U \cap V) \cap N \wedge U \cap V \in \mathcal{O} \implies S \cap T \in \mathcal{O}|_{N}
                                                                                                                 L4: TODO : EXERCISE
                                                                                                                                                                 (101)
                                                                               (\mathbb{R}, \mathcal{O}_s); N = \{x \in \mathbb{R} | -1 \le x \le 1\}; (0, 1] \notin \mathcal{O}_s
                                                                                                                                                                 (102)
                 (0,1] = (0,2) \cap N \wedge (0,2) \in (O)_s \implies (0,1] \in \mathcal{O}_s|_N \# \text{ openness depends on topology}
                                                                                                                                                                 (103)
                                                                                     productTopology(\mathcal{O}_{A\times B}, ((A, \mathcal{O}_A), (B, \mathcal{O}_B)))
```

$$\iff \mathcal{O}_{A\times B} = \{(a,b) \in A \times B | \exists_S (a \in S \in \mathcal{O}_A) \exists_T (b \in T \in \mathcal{O}_B)\} \text{ $\#$ open in cross iff open in each}$$
(104)

1.5 Convergence

$$sequence(q,(M)) \iff q: \mathbb{N} \to M \qquad (105)$$

$$convergeAgainst((q,a),(M,\mathcal{O})) \iff (sequence(q,(M))) \land \qquad (\forall_{U|a \in U \in \mathcal{O}} \exists_{N \in \mathbb{N}} \forall_{n > N} (q(n) \in U))$$
 # each neighborhood of a has a tail-end sequence that does not map to outside points (106)
$$\forall_a \forall_q (convergeAgainst((q,a),(M,\mathcal{O}_{chaotic}))) \iff \forall n(q(n) \in M) \qquad (107)$$

$$convergeAgainst((q,a),(M,\mathcal{P}(M))) \iff \exists_{N \in \mathbb{N}} \forall_{k > N} (q(N) = q(k))$$
 # single element neighborhood can only converge if q is almost constant (108)
$$convergence \text{ generalizes to: the sequence } q: \mathbb{N} \to \mathbb{R}^d \text{ converges against } a \in \mathbb{R}^d \text{ if:}$$

$$\forall_{r > 0} \exists_{N \in \mathbb{N}} \forall_{n > N} (||q(n) - a|| < \epsilon) \text{ # distance based convergence} \qquad (109)$$

$$q(n) = 1 - \frac{1}{n+1} \implies$$
 q is not almost constant $\implies q$ does not converge in $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$; q satisfies distance based convergence $\implies q$ does converge in $(\mathbb{R}, \mathcal{O}_s)$ (110)

1.6 Continuity

$$continuous(\phi, ((M, \mathcal{O}_M), (N, \mathcal{O}_N))) \iff (\phi : M \to N) \land \\ (\forall_{V \in \mathcal{O}_N}(preimage(V, \phi) \in \mathcal{O}_M)) \ \# \ preimage \ of \ open \ sets \ are \ open \ (111)$$

$$homeomorphism(\phi, ((M, \mathcal{O}_M), (N, \mathcal{O}_N))) \iff (bijection(\phi, (M, N))) \land \\ (continuous(\phi, ((M, \mathcal{O}_M), (N, \mathcal{O}_N)))) \land \\ (continuous(\phi^{-1}, ((N, \mathcal{O}_N), (M, \mathcal{O}_M)))) \\ (continuous(\phi^{-1}, ((N, \mathcal{O}_N), (M, \mathcal{O}_M)))) \\ \# \ structure \ preserving \ maps \ in \ topology, \ one-to-one \ pairing \ of \ open \ sets \\ \# \ homeomorphic \ spaces \ share \ topological \ properties \ (112)$$

$$isomorphic(\cong, ((M, \mathcal{O}_M), (N, \mathcal{O}_N))) \iff \exists_{\phi}(homeomorphism(\phi, ((M, \mathcal{O}_M), (N, \mathcal{O}_N)))) \ (113)$$

$$(M, \mathcal{O}_M) \cong (N, \mathcal{O}_N) \implies \exists_{\phi}(bijection(\phi, (M, N))) \implies M \cong N \ (114)$$

1.7 Separation

$$T0Separate((M, \mathcal{O}), ()) \iff \forall_{x,y \in M \land x \neq y} \exists_{U \in \mathcal{O}} ((x \in U \land y \notin U) \lor (y \in U \land x \notin U))$$
each pair of points has a neighborhood s.t. one is inside and the other is outside (115)

```
T1Separate((M,\mathcal{O}),()) \iff \forall_{x,y\in M \land x\neq y} \exists_{U,V\in\mathcal{O} \land U\neq V} ((x\in U \land y\notin U) \land (y\in V \land x\notin V))
# every point has a neighborhood that does not contain another point (116)
T2Separate((M,\mathcal{O}),()) \iff \forall_{x,y\in M \land x\neq y} \exists_{U,V\in\mathcal{O} \land U\neq V} (U\cap V=\emptyset)
# every point has a neighborhood that does not intersect with a neighborhood of another point
# also known as Hausdorff space (117)
T2Separate \implies T1Separate \implies T0Separate
```

1.8 Compactness and Paracompactness

$openCover(C,(M,\mathcal{O})) \iff (C \subseteq \mathcal{O}) \land$ $(\cup C = M)$ # collection of open sets whose elements cover the entire space	
$(\cup C = M)$ # collection of open sets whose elements cover the entire space	
	(119
$finiteSubcover(\widetilde{C},(C,M,\mathcal{O})) \iff (\widetilde{C} \subseteq C) \land$	
$(openCover(C,(M,\mathcal{O}))) \land (c \subseteq C) \land (openCover(C,(M,\mathcal{O}))) \land (openC$	
$(\widetilde{C} < \mathbb{N})\wedge$	
$(openCover(\widetilde{C},(M,\mathcal{O})))$	
# finite subset of a cover that is also a cover	(120
$compact((M,\mathcal{O}),()) \iff \forall_{C \subseteq \mathcal{O} \land openCover(C,(M,\mathcal{O}))} \exists_{\widetilde{C} \subseteq C} (finiteSubcover(\widetilde{C},(C,M,\mathcal{O})))$	
# every possible cover has a finite representation	
# "the entire space can be surveyed by a finite number of guards patrolling neighborhoods"	(12)
$compact(N,(M,\mathcal{O})) \iff (N \subseteq M) \land$	
$(compact((N,\mathcal{O} _N),()))$	(122
$bounded(N,(M,d)) \iff (\exists_{p \in M} \exists_{r \in \mathbb{R}^+} (N \subseteq openBall(B,(r,p,M,d)))) \lor$	
$(\forall_{p,q \in n} \exists_{r \in \mathbb{R}^+} (d(p,q) < r))$	(123
$HeineBorel(S, (M, metricTopology(\mathcal{O}_d, (M, d)))) \implies$	
$\forall_{S \in \mathcal{P}(M)}((closed(S,(M,\mathcal{O}_d)) \land bounded(S,(M,\mathcal{O}_d))) \iff compact(S,(M,\mathcal{O}_d)))$	
# in some situations, compactness is equivalent to being closed and bounded	(124
$compact((M, \mathcal{O}_M), ()) \wedge compact((N, \mathcal{O}_N), ()) \implies compact(\mathcal{O}_{A \times B}((A, \mathcal{O}_A), (B, \mathcal{O}_B)), ())$	(125
$openRefinement(\widetilde{C},(C,M,\mathcal{O})) \iff (openCover(C,(M,\mathcal{O}))) \land$	
$(openCover(\widetilde{C},(M,\mathcal{O}))) \wedge$	
$(\forall_{U \in C} \exists_{\widetilde{U} \in \widetilde{G}} (\widetilde{U} \subseteq U))$	
# open sets in the open refinement only needs to be a subset of some in the open cover	(40)
# one could refine the cover by removing the excess open set elements that lie outside the space	(126

 $locallyFinite(C, (M, \mathcal{O})) \iff (openCover(C, (M, \mathcal{O}))) \land$ $\forall_{p \in M} \exists_{U \in \mathcal{O}|p \in U} (finiteSet(\{U_c \in C | U \cap U_c \neq \emptyset\}, ()))$ # each point has a neighborhood that intersects with only finitely many sets in the cover (128) $paracompact((M, \mathcal{O}), ()) \iff$ $\forall_C(openCover(C,(M,\mathcal{O})) \implies \exists_{\widetilde{C}}(locallyFinite(openRefinement(C,(C,M,\mathcal{O})),(M,\mathcal{O}))))$ # every open cover has a locally finite open refinement # each point has a neighborhood that is in contact with only finitely many open refinement elements (129)thm: every metrizable space is paracompact (130)thm: product of a paracompact and finitely many compact topologies is paracompact (131) $partitionOfUnitySOTCover(\mathcal{F}, (C, M, \mathcal{O})) \iff (openCover(C, (M, \mathcal{O}))) \land$ $(locallyFinite(C, M, \mathcal{O})) \land$ $(f \in \mathcal{F}) \wedge$ $(continuous(f,((M,\mathcal{O}),([0,1],\mathcal{O}_{standard}|_{[0,1]}))))\wedge$ $(\exists_{U_C \in C} \forall_{p \in M} (f(p) \neq 0 \implies p \in U_C)) \land$ $(\forall_{p \in M} \exists_{U \in \mathcal{O}|p \in U} ((f_U)_n = \{ f \in \mathcal{F} | p \in M \land f(p) \neq 0 \})) \land$ $(locallyFinite(C, M, \mathcal{O}) \implies finiteSet((f_U)_n, ())) \land$ $(\forall_{p \in M} \exists_{U \in \mathcal{O}|p \in U} \left(\sum_{i=1}^{|(f_U)_n|} (f_U)_i(p) = 1 \right))$ # useful for defining integrals between overlapping neighborhoods (132) $T2Separate((M, \mathcal{O}), ()) \implies (paracompact((M, \mathcal{O}), ()) \iff$ $\forall_C(openCover(C,(M,\mathcal{O})) \implies partitionOfUnitySOTCover(\mathcal{F},(C,M,\mathcal{O}))))$ (133)

1.9 Connectedness and path-connectedness

$$connected((M, \mathcal{O}), ()) \iff \neg(\exists_{A,B \in \mathcal{O} \setminus \emptyset} (A \cap B \neq \emptyset \land A \cup B = M))$$

$$\neg connected((\mathbb{R} \setminus \{0\}, \mathcal{O}_{standard}|_{\mathbb{R} \setminus \{0\}}), ()) \iff (A = (-\infty, 0) \in \mathcal{O}_{standard}|_{\mathbb{R} \setminus \{0\}}) \land (B = (0, \infty) \in \mathcal{O}_{standard}|_{\mathbb{R} \setminus \{0\}}) \land (A \cap B = \emptyset) \land (A \cup B = \mathbb{R} \setminus \{0\})$$

$$(A \cup B = \mathbb{R} \setminus \{0\})$$

$$connected((M, \mathcal{O}), ()) \iff \forall_{S \in \mathcal{O}} ((S = \emptyset \lor S = M) \implies clopen(S, (M, \mathcal{O})))$$

$$\forall_{p,q \in M} \exists_{\gamma} (continuous(\gamma, (([0, 1], \mathcal{O}_{standard}|_{[0, 1]}), (M, \mathcal{O}))) \land \gamma(0) = p \land \gamma(1) = q)$$

$$pathConnected \implies connected$$

$$(138)$$

1.10 Homotopic curve and the fundamental group

```
homotopic(\sim, (\gamma, \delta, M, \mathcal{O})) \iff (map(\gamma, ([0, 1], M)) \land map(\delta, ([0, 1], M))) \land
                                                                                                                              (\gamma(0) = \delta(0) \land \gamma(1) = \delta(1)) \land
(\exists_{H}\forall_{\lambda\in[0,1]}(continuous(H,(([0,1]\times[0,1],\mathcal{O}_{standard^{2}}|_{[0,1]\times[0,1]}),(M,\mathcal{O}))\wedge H(0,\lambda)=\gamma(\lambda)\wedge H(1,\lambda)=\delta(\lambda))))
                                                                              \# H is a continuous deformation of one curve into another (139)
                                                                                                     homotopic(\sim) \implies equivalenceRelation(\sim) (140)
                                loopSpace(\mathcal{L}_p, (p, M, \mathcal{O})) \iff \mathcal{L}_p = \{map(\gamma, ([0, 1], M)) | continuous(\gamma) \land \gamma(0) = \gamma(1)\})  (141)
                                                                                  concatination(\star, (p, \gamma, \delta)) \iff (\gamma, \delta \in loopSpace(\mathcal{L}_p)) \land
                                                                                              (\forall_{\lambda \in [0,1]}((\gamma \star \delta)(\lambda)) = \begin{cases} \gamma(2\lambda) & 0 \le \lambda < 0.5\\ \delta(2\lambda - 1) & 0.5 \le \lambda \le 1 \end{cases}) (142)
                                                                                                   group((G, \bullet), ()) \iff (map(\bullet, (G \times G, G))) \land
                                                                                                                                              (\forall_{a,b\in G}(a\bullet b\in G))
                                                                                                                      (\forall_{a,b,c \in G} ((a \bullet b) \bullet C = a \bullet (b \bullet c)))
                                                                                                                             (\exists_{\boldsymbol{e}} \forall_{a \in G} (\boldsymbol{e} \bullet a = a = a \bullet \boldsymbol{e})) \wedge
                                                                                                                    (\forall_{a \in G} \exists_{a^{-1}} (a \bullet a^{-1} = e = a^{-1} \bullet a))
                                                                                                      # characterizes symmetry of a set structure (143)
                        isomorphic(\cong, (X, \odot), (Y, \ominus))) \iff \exists_f \forall_{a,b \in X} (bijection(f, (X, Y)) \land f(a \odot b) = f(a) \ominus f(b))  (144)
                                                                       fundamentalGroup((\pi_{1,p}, \bullet), (p, M, \mathcal{O})) \iff (\pi_{1,p} = \mathcal{L}_p / \sim) \land
                                                                                                                              (map(\bullet,(\pi_{1,p}\times\pi_{1,p},\pi_{1,p})))\wedge
                                                                                                                        (\forall_{A,B\in\pi_{1,p}}([A]\bullet[B]=[A\star B]))\wedge
                                                                                                                                            (group((\pi_{1,p}, \bullet), ()))
                                      # an equivalence class of all loops induced from the homotopic equivalence relation (145)
                            fundamentalGroup_1 \ncong fundamentalGroup_2 \Longrightarrow topologicalSpace_1 \ncong topologicalSpace_2 (146)
                 there exists no known list of topological properties that can imply homeomorphisms (147)
```

MISSING SOME IFF SETUP CONDITIONS CHANGE QUANTIFIER LAND TO S.T. \odot \oplus \otimes \ominus

1.11 Lecture 6 manifolds

$$manifold((M, \mathcal{O}), ()) \iff (paracompact \land T2separable) \land$$

$$(\exists_{d \in \mathbb{N}^+} \forall_{p \in M} \exists_{U \in \mathcal{O}|p \in U} \exists_{F \in \mathbb{R}^d} ((U, \mathcal{O}|_U) \cong (F, \mathcal{O}_{standard^d}))) \text{ $\#$ topology that is locally flat}$$

$$0 \qquad (149)$$

2 Statistics

2.1 Overview

$randomExperiment(X,(\Omega)) \iff \forall_{\omega \in \Omega}(outcome(\omega,(X)))$	(150)
$sampleSpace(\Omega,(X)) \iff \Omega = \{\omega outcome(\omega,(X))\}$	(151)
$event(A,(\Omega)) \implies A \subseteq \Omega \ \# \ \text{that is of interest}$	(152)
$eventOccured(A,(\omega,\Omega)) \iff \omega \in A, \Omega \land event(A,(\Omega))$	(153)
$algebra(\mathcal{F}_0,(\Omega)) \iff (\mathcal{F}_0 \subseteq \mathcal{P}(\Omega)) \land \\ (\Omega \in \mathcal{F}_0) \land \\ (\forall_{A \in \mathcal{F}_0} (A^C \in \mathcal{F}_0)) \land \\ (\forall_{A,B \in \mathcal{F}_0} (A \cup B \in \mathcal{F}_0))$ # but this is unable to capture some countable events	(154)
$\sigma\text{-}algebra(\mathcal{F},(\Omega)) \iff (\mathcal{F}_0 \subseteq \mathcal{P}(\Omega)) \land \\ (\Omega \in \mathcal{F}) \land \\ (\forall_{A \in \mathcal{F}} (A^C \in \mathcal{F})) \land \\ (\forall_{F \subset \mathcal{F}} (\neg uncountablyInfinite(F,()) \implies \cup F \in \mathcal{F}))$	(155)
	(199)
NONINDIANSHIT	(156)
$\sigma\text{-}algebra(\sigma,(M)) \iff (\sigma \subseteq \mathcal{P}(M)) \land (M \in \sigma) \land (\forall_{A \in \sigma}(M \setminus A \in \sigma)) \land ((A)_{\mathbb{N}} \subseteq \sigma \implies \cup ((A)_{\mathbb{N}}) \in \sigma)$	(157)
$measurableSpace((M, \sigma), ()) \iff \sigma\text{-}algebra(\sigma, (M))$	(158)
$measurableSet(A,(M,\sigma)) \iff A \in \sigma)$	(159)
$measure(\mu, (M, \sigma)) \iff (map(\mu, (\sigma, \overline{\mathbb{R}}_0^+))) \land $ $(\mu(\emptyset) = 0) \land $ $((A)_{\mathbb{N}} \subseteq \sigma \land \forall_{i \in \mathbb{N}} \forall_{j \in \mathbb{N} \setminus \{i\}} (A_i \cap A_j = \emptyset) \implies \mu(\cup_{i \in \mathbb{N}} (A_i)) = \sum_{i \in \mathbb{N}} (\mu(A_i)))$	(160)
$measureSpace((M,\sigma,\mu),())$	(161)
$measure \implies$ $\forall_{A,B\in\sigma}(A\subseteq B\implies \mu(A)\leq \mu(B))$ $(A)_{\mathbb{N}}\subseteq\sigma\implies \mu\cup\leq\sum\mu$ $A_1\subseteq A_2=A\implies \lim_{n\to\infty}(\mu(A_n))=\mu(\cup A_n)=\mu(A)$ $A_2\subseteq A_1=A$	(162)

3 Statistical Learning Theory

3.1 Overview

	(163)
$curve-fitting/explaining \neq prediction$	(164)
$ill-defined problem + solution space constraints \implies well-defined problem$	(165)
$x~\#~{ m input}~;~y~\#~{ m output}$	(166)
$S_n = \{(x_1, y_1), \dots, (x_n, y_n)\} \ \# \ \mathrm{training \ set}$	(167)
$f_S(x) \sim y \; \# \; { m solution}$	(168)
$each(x,y) \in p(x,y) \ \# \ { m training \ data} \ x,y \ { m is \ a \ sample \ from \ an \ unknown \ distribution} \ p$	(169)
$V(f(x),y) = d(f(x),y) \; \# \; ext{loss function}$	(170)
$I[f] = \int_{X \times Y} V(f(x), y) p(x, y) dx dy \# $ expected error	(171)
$I_n[f] = rac{1}{n} \sum_{i=1}^n V(f(x_i), y_i) \; \# \; ext{empirical error}$	(172)
$probabilisticConvergence(X,()) \iff \forall_{\epsilon>0} \lim_{n\to\infty} Pxn - x \leq \epsilon = 0$	(173)
I-Ingeneralization error	(174)
well-posed := exists, unique, stable; elseill-posed	(175)

3.2 Background maths

$$vectorSpace(V,(+,*)) \iff (u,v,w\in V), (c,d\in\mathbb{R}\in F) \land (u+v,c*u=c(u)=cu\in V) \land (u+v=v+u) \land ((u+v)+w=u+(v+w)) \land (\exists_{\boldsymbol{\theta}}(u+\boldsymbol{\theta}=u)) \land (\exists_{-u}(u+(-u)=\boldsymbol{\theta})) \land ((1)u=u) \land ((cd)u=c(du)) \land ((c+d)u=cu+du) \land \# \text{ linearity}$$

```
(c(u+v)=cu+cv) \land \# \text{ linearity}
                                                                                                                                                   (176)
                                                                                                  # behaves similar to vectors
                                                        innerProduct(\langle \cdot, \cdot \rangle, (V)) \iff (u, v, w \in V), (c \in \mathbb{R} \in F) \land
                                                                                                                 (\langle v, w \rangle = \langle w, v \rangle) \land
                                                                                                              (\langle cv, w \rangle = c \langle v, w \rangle) \wedge
                                                                             (\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle) \wedge \# \text{ linearity}
                                                                                   (\langle u, u \rangle \geq 0 \in \mathbb{R}_0^+) \wedge \# \text{ metric inducing}
                                                                                                        (\langle u, u \rangle = 0 \iff u = \mathbf{0})
                                                                                                                                                   (177)
                                                        innerProductNorm(||\cdot||,(V)) \iff (v,w\in V),(r\in R)\land
                                                                                                         (||v|| = \sqrt{\langle v, v \rangle} \in \mathbb{R}_0^+) \wedge
                                                                                                         (||v|| = 0 \iff v = \mathbf{0}) \wedge
                                                                                                                  (||rv|| = |r|||v||) \wedge
                                                                          (||v+w|| \le ||v|| + ||w||) # triangle inequality
                                                                                                                                                   (178)
                                               normConvergences(v, (V, (v_n)_{n \in \mathbb{N}})) \iff (\{v\} \cup (v_n)_{n \in \mathbb{N}} \subseteq V) \land
                                                                                                              \left(\lim_{n\to\infty}||v-v_n||=0\right)
                                                                                                                                                   (179)
                                                                                      cauchySequence((v_n)_{n\in\mathbb{N}},(V)) \iff
                                                                                          (\forall_{\epsilon>0}\exists_{n\in\mathbb{N}}\forall_{x,y>n}(||v_x-v_y||<\epsilon))
                                                                                                                                                   (180)
                           normConvergences \implies cauchySequence \# there might be holes in the space
                                                                                                                                                   (181)
       completeSpace(V, (innerProductNorm)) \iff (cauchySequence \iff normConvergences)
                                                                                                                                                   (182)
                                                                completion(R, (Q)) \iff R = QUcauchyUs = Qbar
                                                                                                                                                   (183)
                                                    hilbertSpace(H, (+, *, \langle \cdot, \cdot \rangle)) \iff (vectorSpace(H, (+, *))) \land
                                                                                                   (innerProduct(\langle \cdot, \cdot \rangle, (H))) \land
                                                                               completeSpace(H, (innerProductNorm))
                                                                                                                                                   (184)
                      separable(H, ()) \iff \exists_{S \subset V}(countable(S, ()) \land Sbar = V) \# \text{ has a countable basis}
                                                                                                                                                   (185)
hilbertSpace \land seperable \iff \exists countable or tho(gonal) normal basis for space, all norm = 1, IP = 0
                                                                                                                                                   (186)
                                                                   x = \sum \langle x, v \rangle v \# countable projection times v
                                                                                                                                                   (187)
                                                                                                                          000000000
                                                                                                                                                   (188)
                                                                linearOperator(L, (V)) \iff (u, v \in V), (c, d \in \mathbb{R}) \land
                                                                                                (L(cu + dv) = cL(u) + dL(v))
                                                                                                                                                   (189)
                                                   adjoint(L^{\dagger}, (L, V)) \iff (\forall_{u,v \in V} < L(u), v > = < u, L^{\dagger}(v) >_{\dagger})
                                                                                                                                                   (190)
```

(191)	$selfAdjoint(L,()) \iff L = L^{\dagger}$
(192)	$eigenvector(V) \iff Lv = kv$
(193)	30mins

4 Machine Learning

4.0.1 Overview

X # input ; Y # output ; $S(X,Y)$ # dataset	(194)
learned parameters = parameters to be fixed by training with the dataset	(195)
$\mathbf{hyperparameters} = \mathbf{parameters} \ \mathbf{that} \ \mathbf{depends} \ \mathbf{on} \ \mathbf{a} \ \mathbf{dataset}$	(196)
validation = partitions dataset into training and testing partitions, then evaluates the accuracy of the parameters learned from the training partition in predicting the outputs of the testing partition $\#$ useful for fixing hyperparameters	(197)
${f cross-validation} = {f average} \ {f accuracy} \ {f of} \ {f validation} \ {f for} \ {f different} \ {f choices} \ {f of} \ {f testing} \ {f partition}$	(198)
${f L1} = {f scales \; linearly \; ; \; L2} = {f scales \; quadratically \; }$	(199)
$d={f distance}={f quantifies}$ the the similarity between data points	(200)
$d_{L1}(A,B) = \sum_{p} A_p - B_p \; \# \; ext{Manhattan distance}$	(201)
$d_{L2}(A,B) = \sqrt{\sum_p \left(A_p - B_p ight)^2} \;\# \; ext{Euclidean distance}$	(202)
\mathbf{kNN} classifier $=\mathbf{classifier}$ based on k nearest data points	(203)
$s = {f class} \ {f score} = {f quantifies} \ {f bias} \ {f towards} \ {f a} \ {f particular} \ {f class}$	(204)
$s_{linear} = f_{c \times 1}(x_{n \times 1}, W_{c \times n}, b_{c \times 1}) = W_{c \times n}x_{n \times 1} + b_{c \times 1} \# \text{ linear score function}$	(205)
$l = {f loss} = {f quantifies}$ the errors by the learned parameters	(206)
$l = rac{1}{ c_i } \sum_{c_i} l_i \; \# \; ext{average loss for all classes}$	(207)
$l_{SVM_i} = \sum_{y_i \neq c_i} \max(0, s_{y_i} - s_{c_i} + 1) \; \# \; ext{SVM hinge class loss function:}$	

# ignores incorrect classes with lower scores including a non-zero margin	(208)
$l_{MLR_i} = -\log \left(rac{e^{s_{c_i}}}{\sum_{y_i} e^{y_i}} ight) \; \# \; ext{Softmax class loss function}$	
# lower scores correspond to lower exponentiated-normalized probabilities	(209)
$R = \mathbf{regularization} = \mathbf{optimizes}$ the choice of learned parameters to minimize test error	(210)
λ # regularization strength hyperparameter	(211)
$R_{L1}(W) = \sum_{W_i} W_i \; \# \; ext{L1 regularization}$	(212)
$R_{L2}(W) = \sum_{W_i} {W_i}^2 \; \# \; ext{L2 regularization}$	(213)
$L' = L + \lambda R(W) \; \# \; ext{weight regularization}$	(214)
$ abla_W L = \overrightarrow{rac{\partial}{\partial W_i}} L = extbf{loss gradient w.r.t. weights}$	(215)
$\frac{\partial L_E}{\partial W_I} = \frac{\partial L_L}{\partial W_I} \frac{\partial L_E}{\partial L_L} \# $ loss gradient w.r.t. input weight in terms of external and local gradients	(216)
$s = {f forward\ API} \; ; \; rac{\partial L_L}{\partial W_I} = {f backward\ API}$	(217)
$W_{t+1} = W_t - abla_{W_t} L \; \# \; ext{weight update loss minimization}$	(218)
TODO:Research on Activation functions, Weight Initialization, Batch Normalization	(219)
review 5 mean var discussion/hyperparameter optimization/baby sitting learning	(220)

TODO loss L or l??