IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

 Appln. No.:
 10/797,297
 :
 Confirmation No.: 4437

 Appellants:
 Ajith K. Kumar
 :
 Group Art Unit: 3664

 Filed:
 March 9, 2004
 :
 Examiner: Jen, Mingjen

Docket No.: 20-LC-2057-2

For: METHOD FOR DETERMINING THE ROTATIONAL VELOCITY OF AN AXLE AND DETECTING A LOCKED AXLE CONDITION

November 26, 2008

Board of Patent Appeals and Interferences United States Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450

APPEAL BRIEF

I. REAL PARTY IN INTEREST

The real party in interest in this appeal is General Electric Company, the assignee of record

II. RELATED APPEALS AND INTERFERENCES

There are no related appeals or interferences known to Appellant, Appellant's legal representatives, or assignee that will directly affect, be directly affected by, or have a bearing on the Board's decision in the pending appeal.

III. STATUS OF THE CLAIMS

Claims 1-32 are pending in the application and stand finally rejected. Claims 1-32, as they currently stand, are set forth in Section VIII. Appellants hereby appeal the final rejection of Claims 1-32

IV. STATUS OF THE AMENDMENTS

No amendments were filed subsequent to the final rejection. All prior amendments have been entered

V. SUMMARY OF CLAIMED SUBJECT MATTER

Claims 1 and 29-32 are independent claims. A summary of the subject matter presented in each of the independent claims and dependent claims argued in the appeal is provided with reference to the specification and drawings. It is understood that the reference to the specific embodiments in the specification and drawings is provided for reasons relating to this appeal and is not intended to limit the scope of the claims.

Claim 1

Claim 1 is directed to a method for detecting a rotational velocity of a traction motor in a vehicle [para. 0028]. The method includes obtaining a traction motor signal having at least one phase [para. 0028; para. 0029; FIG. 2 (step 16)], wherein said traction motor signal is responsive to an operating condition of said traction motor in an electrically unexcited state [para. 0027]. The method further includes processing said traction motor signal to create an indication result based on a frequency of said of said traction motor signal [para. 0030; FIG. 2 (step 12)]. The method further includes determining rotational velocity of said traction motor based on said indication result [para. 0030].

No means plus function terminology is included.

Claim 6

Claim 6 is a dependent claim depending from claim 1. Claim 6 includes the further limitation of "converting said traction motor signal into a two-phase signal responsive to said traction motor signal." [para. 0032]

No means plus function terminology is included.

Claim 15

Claim 15 is a dependent claim depending from claim 1. Claim 15 includes the further limitation of "wherein processing said traction motor signal includes isolating a single phase of said traction motor signal." [para. 0038 and FIG. 4 (step 28)]

No means plus function terminology is included.

Claim 28

Claim 28 is a dependent claim depending from claim 1. Claim 28 includes the further limitation of "wherein said traction motor signal is based on a voltage generated by a residual flux in said traction motor when rotated by movement of said vehicle." [para. 0027]

No means plus function terminology is included.

Claim 29

Claim 29 is directed to a data storage medium including instructions encoded in a computer readable form for causing a computer to implement a process [para. 0050] for detecting a rotational velocity of a traction motor in a vehicle [para. 0028]. The process includes obtaining a traction motor signal having at least one phase [para. 0028; para. 0029; FIG. 2 (step 16)], wherein said traction motor signal is responsive to an operating condition of said traction motor in an electrically unexcited state [para. 0027]. The process further includes processing said traction motor signal to create an indication result based on a frequency of said of said traction motor signal [para. 0030; FIG. 2 (step 12)]. The process further includes determining rotational velocity of said traction motor based on said indication result [para. 0030].

No means plus function terminology is included.

Claim 30

Claim 30 is directed to a computer data signal encoded in a computer readable medium, said data signal comprising code configured to direct a computer to implement a process [para. 0050] for detecting a rotational velocity of a traction motor in a vehicle [para. 0028]. The process includes obtaining a traction motor signal having at least one phase [para. 0028; para. 0029; FIG. 2 (step 16)], wherein said traction motor signal is responsive to an operating condition of said traction motor in an electrically unexcited state [para. 0027]. The process

further includes processing said traction motor signal to create an indication result based on a frequency of said of said traction motor signal [para. 0030; FIG. 2 (step 12)]. The process further includes determining rotational velocity of said traction motor based on said indication result [para. 0030].

No means plus function terminology is included.

Claim 31

Claim 31 is directed to a computer processor on a vehicle for performing a process [para. 0049; para. 0050] for detecting a rotational velocity of a traction motor in a vehicle [para. 0028]. The process includes obtaining a traction motor signal having at least one phase [para. 0028; para. 0029; FIG. 2 (step 16)], wherein said traction motor signal is responsive to an operating condition of said traction motor in an electrically unexcited state [para. 0027]. The process further includes processing said traction motor signal to create an indication result based on a frequency of said of said traction motor signal [para. 0030; FIG. 2 (step 12)]. The process further includes determining rotational velocity of said traction motor based on said indication result [para. 0030].

No means plus function terminology is included.

Claim 32

Claim 32 is directed to a system for detecting a rotational velocity of a traction motor in a vehicle [para. 0028]. The system includes a traction motor [para. 0028] generating a traction motor signal having at least one phase [para. 0029], wherein said traction motor signal is responsive to an operating condition of said traction motor in an electrically unexcited state [para. 0027]. The system further includes a voltage sensor [para. 0028; para. 0029; FIG. 1 (element 4)]] configured to generate a signal indicative of a voltage generated by residual flux in said traction motor when rotated by movement of said vehicle [para. 0027; para. 0029] with said traction motor in an electrically unexcited state [para. 0027]. The system further includes a controller [para. 002; para. 0039; FIG. 1 (element 6)] in operable communication with at least one of said traction motor and said signal, and thereby create an indication result responsive to a frequency of said traction motor and indicative of rotational velocity of said traction motor [para. 0030].

No means plus function terminology is included.

VI. GROUNDS OF REJECTION TO BE REVIEWED ON APPEAL

Claims 1-2, 5-15 and 25-32 stand rejected under 35 U.S.C. §103(a) as being allegedly unpatentable over Obara et al. (U.S. Patent No. 5,661,380 hereinafter Obara et al.) in view of Becerra (Four Quadrant Sensorless Brushless ECM Drive; CH2992-6/91/0000-0202, IEEE hereinafter Becerra). (Please note that the Final Office Action dated July 24, 2008 states on page 2 that these claims are rejected under 35 U.S.C. 102(b), however the law presented immediately above that statement is 35 U.S.C. 103(a).)

Claims 3 and 4 stand rejected under 35 U.S.C. §103(a) as being allegedly unpatentable over Obara et al in view of Becerra and further in view of Balch et al. (U.S. Patent No. 6,758,087).

Claims 16-20 and 22-24 stand rejected under 35 U.S.C. §103(a) as being allegedly unpatentable over Obara et al in view of Becerra and further in view of Kumar et al. (U.S. Patent No. 5.992.950).

Claim 21 stands rejected under 35 U.S.C. §103(a) as being allegedly unpatentable over Obara et al in view of Becerra and further in view of Discenzo (U.S. Patent No. 6,326,758)

VII. ARGUMENT

Claims 1-2, 5-15 and 25-32 are patentable under 35 U.S.C. §103(a) over Obara et al. in view of Becerra.

For an obviousness rejection to be proper, the Examiner must meet the burden of establishing a *prima facie* case of obviousness, i.e., that all elements of the invention are disclosed in the prior art; that the prior art relied upon, coupled with knowledge generally available in the art at the time of the invention, contain some suggestion or incentive that would have motivated the skilled artisan to modify a reference or combined references; and that the proposed modification of the prior art had a reasonable expectation of success, determined from the vantage point of the skilled artisan at the time the invention was made. *In re Fine*, 5 U.S.P.Q.2d 1596, 1598 (Fed. Cir. 1988); *In Re Wilson*, 165 U.S.P.Q. 494, 496 (C.C.P.A. 1970); *Amgen v. Chugai Pharmaceuticals Co.*, 927 U.S.P.Q.2d, 1016, 1023 (Fed. Cir. 1996).

Dependent claims inherit all of the limitations of the parent claim.

Claims 1-28

Independent claim 1 recites "A method for detecting a rotational velocity of a traction motor in a vehicle comprising:

- [a] obtaining a traction motor signal having at least one phase, wherein said traction motor signal is responsive to an operating condition of said traction motor in an electrically unexcited state;
- [b] processing said traction motor signal to create an indication result based on a frequency of said traction motor signal; and
- [c] determining rotational velocity of said traction motor based on said indication result. (element descriptors and emphasis added)

The Specification of the present Application provides clarification of "said traction motor in an electrically unexcited state." Paragraph 0008 states, "there are many operating conditions of a locomotive when an excitation voltage is not available. For example, when the engine is not running, or when the locomotive is in isolated mode such that the alternator cannot produce voltage."

With respect to element [a], neither Obara et al. nor Becerra discloses or suggests "obtaining a traction motor signal having at least one phase, wherein said traction motor signal is responsive to an operating condition of said traction motor in an electrically unexcited state" as the Appellant claims in claim 1. The Examiner agrees with the Appellant with respect to Obara et al. not disclosing or suggesting element [a] of claim 1. The Examiner states on page 3 (lines 7-80 of the Final Office Action dated July 24, 2008, "Obara et al. in view of Balch does not show motor signal is responsive to motor in electrically unexcited state."

Turning now to Becerra, Becerra teaches "rotor position information can be developed without discrete position sensors by processing motor terminal voltage and/or current waveforms. Electronically-Commutated Motor (ECM) drives using PM [permanent magnet] motors with trapezoidal magnet MMF distributions (also known as brushless DC motor drives) provide attractive candidates for such indirect sensing since only two of the three motor phases are excited at any time instant." (See Becerra Introduction, second paragraph, emphasis added.) Inherent in having "only two of the three motor phases ... excited at any time instant" in the brushless DC motor drive is that the motor be excited. The "two of the three motor phases ...

excited at any time instant" require that the motor be in an electrically excited state. Nowhere does Becerra teach operating the brushless DC motor drive in an electrically unexcited state because "two of the three motor phases are excited at any time instant."

The Examiner's remarks in the Office Action dated January 24, 2008 (page 11) that "Becerra shows motor signal is responsive to motor in an electrically unexcited state (Col. 1, Introduction, where the sensor is used to measure the EMF voltage in motor unexcited phase)" implies that a motor with one unexcited phase is the same as the motor being in an electrically unexcited state. The Appellant responded to this Office Action with the arguments in the preceding paragraph (i.e., Becerra teaches rotor position. Inherent in having "only two of the three motor phases ... excited at any time instant" in the brushless DC motor drive is that the motor be excited. The "two of the three motor phases ... excited at any time instant" require that the motor be electrically excited).

In the Final Action dated July 24, 2008 (page 3), the Examiner merely repeats the same comments made in the prior Office Action without specifically addressing how a motor in which two of three phases are excited at any instant is a motor in an electrically unexcited state. The Examiner mistakenly equates one unexcited phase of a brushless DC motor with an unexcited motor. In addition, the Examiner does not address why one skilled in the art at the time of the invention would be motivated to determine rotational velocity of a traction motor from the teaching of Becerra, which teaches determining **rotor position** for electrical commutation purposes in a brushless DC motor. (See Becerra Introduction, second paragraph.)

With respect to element [b] of claim 1, neither Obara et al. nor Becerra disclose or suggest "processing said traction motor signal to create an indication result based on a frequency of said traction motor signal" as the Appellant claims in claim 1. Rather, Obara et al. teach, "In the normal state, the controller 5 receives rotating speed N of the motor." (emphasis added) Nowhere do Obara et al. teach that the "rotating speed N of the motor" is "an indication result based on a frequency of said traction motor signal." With respect to Becerra, the second paragraph (line 11) of the introduction section teaches "determining ECM inverter commutation instants." In addition, Becerra teaches in the second paragraph (lines 13-14) of section 3.1, "The selected phase voltage equals the desired back-EMF voltage needed for position sensing." Nowhere does Becerra teach that the "ECM inverter commutation instants" are "an indication result based on a frequency of said traction motor signal."

In the Final Office Action dated July 24, 2008 (page 3), the Examiner states that Obara et al. shows element [b], "processing said traction motor signal to create an indication result based on a frequency of said traction motor signal (Column 3, lines 63 – Column 4, lines 13; Fig. 1, primary frequency command generating means 20; alternating current command generating means 80, PWM signal generating means 90)." A review of the Examiner's citations reveals that Obara et al. teach "receiv[ing] rotating speed N of the motor" (column 3, lines 60-61); "The primary frequency command generating means 20 calculates a primary angular frequency" (column 3, lines 64-66); "In alternating current command calculating means 80 standard signals ... are generated ... using the primary angular frequency" (column 4, lines 6-10); and "a PWM signal is output from the PWM signal generating means 90" (column 4, lines 11-12). In other words, Obara et al. teach receiving the rotating speed N of the motor and generating signals from the rotating speed N. In contrast, the claimed invention determines rotational velocity of a traction motor by "processing said traction motor signal to create an indication result based on a frequency of said traction motor signal."

With respect to element [c] of claim 1, neither Obara et al. nor Becerra disclose or suggest "determining rotational velocity of said traction motor based on said indication result" as the Appellant claims in claim 1. Rather, Obara et al. teach "receiv[ing] rotating speed N of the motor." (column 3, lines 60-61) Obara et al. do not disclose or suggest actually determining the rotating speed N, only receiving the rotating speed N. With respect to Becerra, Becerra teaches determining rotor position for electrical commutation purposes in a brushless DC motor. (See Becerra Introduction, second paragraph.) Nowhere does Becerra disclose or suggest determining rotational velocity in the brushless DC motor.

In the Final Office Action dated July 24, 2008 (page 3, lines 4-7), the Examiner states that Obara et al. shows element [c], "determining rotational velocity of traction motor based on indication result (See Fig 1, three phase alternating current motor 4, speed sensor 6, current sensor 7, accelerator sensor 8, rotating angular speed detecting means 10; Column 3, lines 30-50)." A review of each of these citations reveals that Obara et al. teach: the speed sensor 6 "is a speed sensor for detecting the rotating speed N of the motor 4"; the current sensor 7 "detects the primary current ... of the three-phase alternating current flowing the primary winding of the alternating current motor 4"; the accelerator sensor 8 "is an accelerator sensor for outputting an output 0A corresponding to the degree of stepping-in when the accelerator pedal is stepped"; and

the rotating angular speed detecting means 10 is part of the controller 5. None of these citations discloses or suggests "determining rotational velocity of said traction motor based on said indication result [obtained from element[c]]." In contrast to the present Application, Obara et al. provides no teaching as to how the speed sensor 6 or the rotating angular speed detecting means 10 actually determines the rotating speed N or rotating angular speed. The current sensor 7 is shown connected to current control means 70 in FIG. 1. There is no teaching in Obara et al. that the current control means 70 determines the rotating speed N or rotating angular speed. The accelerator sensor 8 is shown connected to the accelerator opening calculating means 31 in FIG. 1. There is no teaching in Obara et al. that the accelerator sensor 8, which measures the degree to which the accelerator pedal is depressed, is used to determine rotational velocity of the alternating current motor 4.

For at least the reasons presented above with respect to elements [a], [b] and [c], Appellant respectfully submits that the Examiner has failed to establish a prima facie case of obviousness by failing to show where Becerra contain some suggestion or incentive that would have motivated the skilled artisan to modify the disclosure of Obara et al, and therefore requests withdrawal of the obviousness rejection under 35 U.S.C. 103(a) and allowance of claims 1-28.

Claims 6-14

Claim 6 is a dependent claim depending from claim 1. Claims 7-14 depend from claim 6. Claim 6 includes the further limitation of "converting said traction motor signal into a two-phase signal responsive to said traction motor signal." Neither Obara et al. nor Becerra disclose or suggest "converting said traction motor signal into a two-phase signal responsive to said traction motor signal" as the Appellant claims in claim 6. Rather Obara et al. teaches, as cited by the Examiner in the Final Office Action dated July 24, 2008 (page 4), "In the running back-up control circuit 40 it is judged whether each of the sensors is normal or not. As for the speed sensor 6, the two outputs 6a and 6b are compared, and if there is no substantial difference between them, it is judged to be normal." (column 4, lines 18-22) As this citation shows, outputs 6a and 6b are separate outputs that are compared to each other to determine if a normal condition exists. Because these two outputs are separate, they cannot be a two-phase signal.

For at least these reasons, the Appellant respectfully submits that the Examiner has failed to establish a prima facie case of obviousness by failing to show where either Obara et al. or

Becerra contains some suggestion or incentive that would have motivated the skilled artisan to modify Obara et al. to obtain "converting said traction motor signal into a two-phase signal responsive to said traction motor signal", and therefore requests withdrawal of the obviousness rejection under 35 U.S.C. 103(a) and allowance of claims 6-14.

Claims 15-19 and 21-22

Claim 15 is a dependent claim depending from claim 1. Claims 16-19 and 21-22 depend from claim 15. Claim 15 includes the further limitation of "wherein processing said traction motor signal includes isolating a single phase of said traction motor signal." Neither Obara et al. nor Becerra disclose or suggest "wherein processing said traction motor signal includes isolating a single phase of said traction motor signal" as the Appellant claims in claim 15. Rather, the Examiner states in the Final Office Action dated July 24, 2008 (page 5), "Becerra show processing traction motor signal includes isolating a single phase of traction motor signal (Col 1, Introduction, where only two of the three phases motor is excited, left a single phase of motor isolated)." To the contrary, Becerra teaches that one phase is unexcited at any time instant. (See Becerra, Introduction, second paragraph) Becerra does not disclose or suggest "isolating a single phase" because the one phase that is unexcited is continually changing over time.

Paragraph 0038 of the present Application provides clarification teaching "a traction motor signal [i.e., three-phase signal] is obtained... and a single phase of the traction motor signal is isolated as in step 28 [shown in FIG. 4]."

For at least these reasons, the Appellant respectfully submits that the Examiner has failed to establish a prima facie case of obviousness by failing to show where Becerra contains some suggestion or incentive that would have motivated the skilled artisan to modify Obara et al. to obtain "wherein processing said traction motor signal includes isolating a single phase of said traction motor signal.", and therefore requests withdrawal of the obviousness rejection under 35 U.S.C. 103(a) and allowance of claims 15-19 and 21-22.

Claim 28

Claim 28 is a dependent claim depending from claim 1. Claim 28 includes the further limitation of "wherein said traction motor signal is based on a voltage generated by a residual flux in said traction motor when rotated by movement of said vehicle." Neither Obara et al. nor

Becerra disclose or suggest "wherein said traction motor signal is based on a voltage generated by a residual flux in said traction motor when rotated by movement of said vehicle" as the Appellant claims in claim 28. The Examiner states in the Final Office Action dated July 24, 2008 (page 6), "Obara et al. shows traction motor signal is based on a voltage generated by a residual flux in traction motor when rotated by movement of vehicle (Column 4, lines 41 – Column 5, lines 35)." A review of this citation shows that Obara et al., in contrast to the present Application do not teach any residual flux let alone a voltage generated by a residual flux in the motor 4. In addition, because Obara et al. do not disclose or suggest a traction motor in an unexcited state (as stated by the Examiner on page 3, lines 7-8, of the Final Office Action), Obara et al. cannot teach residual flux in the motor 4 that is excited.

Claims 29-31

Claims 29-31 use claim language similar to the claim language of claim 1. Therefore, the Appellant respectfully submits that the Examiner has failed to establish a prima facie case of obviousness for claims 29-31 for the reasons presented above with respect to claim 1, and therefore requests withdrawal of the obviousness rejections under 35 U.S.C. 103(a) and allowance of the claims.

Claim 32

Independent claim 32 recites: "A system for detecting a rotational velocity of a traction motor in a vehicle comprising:

- [a] a traction motor generating a traction motor signal having at least one phase, wherein said traction motor signal is responsive to an operating condition of said traction motor in an electrically unexcited state;
- [b] a voltage sensor configured to generate a signal indicative a voltage generated by residual flux in said traction motor when rotated by movement of said vehicle with said traction motor in an electrically unexcited state; and
 - [c] a controller in operable communication with at least one of said traction motor

and said voltage sensor configured to process said traction motor signal and said signal, and thereby create an indication result responsive to a frequency of said traction motor signal and indicative of rotational velocity of said traction motor." (element descriptors added)

With respect to element [a] of claim 32, the arguments presented above for element [a] of claim 1 are applicable. That is, neither Obara et al. nor Becerra disclose or suggest a "traction motor in an electrically unexcited state" as the Appellant claims in claim 32.

With respect to element [b] of claim 32 neither Obara et al. or Becerra disclose or suggest "a voltage sensor configured to generate a signal indicative a voltage generated by residual flux in said traction motor when rotated by movement of said vehicle with said traction motor in an electrically unexcited state" as the Appellant claims in claim 32. Because neither Obara et al. nor Becerra disclose or suggest a traction motor in an electrically unexcited state as explained above with respect to element [b] of claim 1, neither Obara et al. nor Becerra disclose or suggest "a voltage sensor configured to generate a signal indicative a voltage generated by residual flux in said traction motor."

With respect to element [c] of claim 32, neither Obara et al. nor Becerra disclose or suggest "a controller in operable communication with at least one of said traction motor and said voltage sensor configured to process said traction motor signal and said signal, and thereby create an indication result responsive to a frequency of said traction motor signal and indicative of rotational velocity of said traction motor" as the Appellant claims in claim 32. As explained above with respect to element [b] of claim 1, neither Obara et al. nor Becerra disclose or suggest "an indication result responsive to a frequency of said traction motor signal." In addition, as explained above with respect to element [c] of claim 1, neither Obara et al. nor Becerra disclose or suggest "an indication result" "indicative of rotational velocity of said traction motor." Thus, neither Obara et al. nor Becerra disclose or suggest a controller configured to "create an indication result responsive to a frequency of said traction motor signal and indicative of rotational velocity of said traction motor."

For at least these reasons, Appellant respectfully submits that that the Examiner has failed to establish a prima facie case of obviousness, and therefore requests withdrawal of the obviousness rejection under 35 U.S.C. 103(a) and allowance of the claim 32.

In summary, claims 1-9 and 11-16 are patentable over the art of record. For the reasons stated above, Appellant respectfully submits that all of the claims are allowable and the application is in condition for allowance. Appellant respectfully requests reversal of the outstanding rejections and allowance of this application.

In the event the Examiner has any queries regarding the submitted arguments, the undersigned respectfully requests the courtesy of a telephone conference to discuss any matters in need of attention.

If there are any additional charges with respect to this Appeal Brief, please charge them to Deposit Account No. 06-1130.

Respectfully submitted,

CANTOR COLBURN LLP Applicant's Attorneys

By: /Mark F. Samek/

Mark F. Samek Registration No: 53,546 Customer No. 23413

Date: November 26, 2008 Cantor Colburn LLP 20 Church Street 22nd Floor Hartford, CT 06103-3207 Telephone: (860) 286-2929 Fax: (860) 286-0115

13

VIII. CLAIMS APPENDIX

Claim 1. A method for detecting a rotational velocity of a traction motor in a vehicle comprising:

obtaining a traction motor signal having at least one phase, wherein said traction motor signal is responsive to an operating condition of said traction motor in an electrically unexcited state;

processing said traction motor signal to create an indication result based on a frequency of said traction motor signal; and

determining rotational velocity of said traction motor based on said indication result.

- Claim 2. The method of claim 1, further comprising obtaining a vehicle data signal.
- Claim 3. The method of claim 2, wherein said vehicle includes an additional traction motor, and said vehicle data signal includes a reference speed signal responsive to a rotational velocity of said additional traction motor.
- Claim 4. The method of claim 3, wherein said vehicle data signal includes a reference speed tolerance.
- Claim 5. The method of claim 2, wherein said processing said traction motor signal includes proceeding with said processing responsive to said vehicle data signal.
- Claim 6. The method of claim 1, further comprising converting said traction motor signal into a two-phase signal responsive to said traction motor signal.
- Claim 7. The method of claim 6, wherein said processing includes applying said two-phase signal to phase locked loop (PLL) circuitry so as to create a PLL signal responsive to the frequency of said two-phase signal.

- Claim 8. The method of claim 7, wherein said processing further includes processing said PLL signal so as to create a two-phase unity signal responsive to the frequency of said PLL signal.
- Claim 9. The method of claim 8, wherein said processing further includes combining said unity signal and said two-phase signal so as to create said indication result.
- Claim 10. The method of claim 8, wherein said determining includes comparing said unity signal with said two-phase signal so as to determine the frequency error of said two-phase signal.
- Claim 11. The method of claim 8, wherein said indication result is responsive to the frequency of said unity signal.
- Claim 12. The method of claim 6, wherein said indication result is responsive to the frequency of said two-phase signal.
- Claim 13. The method of claim 6, wherein said processing said traction motor signal includes determining the magnitude of said two-phase signal.
- Claim 14. The method of claim 13, wherein said processing includes creating said indication result wherein said indication result is responsive to the magnitude of said two-phase signal.
- Claim 15. The method of claim 1, wherein processing said traction motor signal includes isolating a single phase of said traction motor signal.
- Claim 16. The method of claim 15, wherein processing said traction motor signal includes applying said single phase of said traction motor signal to a rectifier so as to create a rectified signal.
- Claim 17. The method of claim 16, wherein processing said traction motor signal includes applying said rectified signal to a low pass filter so as to create an indication result responsive to the magnitude of said single phase of said traction motor signal.

- Claim 18. The method of claim 15, wherein processing said traction motor signal includes processing said single phase of said traction motor signal so as to create said indication result responsive to the magnitude of said single phase of said traction motor signal.
- Claim 19. The method of claim 15, wherein processing said traction motor signal includes determining the time between predefined signal event occurrences so as to create an indication result responsive to the frequency of said signal phase of said traction motor signal.
- Claim 20. The method of claim 1, wherein processing said traction motor signal includes processing said traction motor signal so as to create said indication result responsive to the frequency of said traction motor signal.
- Claim 21. The method of claim 15, wherein said processing said traction motor signal includes calculating said indication result using fourier analysis, wherein said indication result is responsive to the magnitude and frequency spectrum of said traction motor signal.
- Claim 22. The method of claim 15, wherein said processing said traction motor signal includes obtaining a vehicle data signal and applying said single phase of said traction motor signal to a band pass filter so as to create a band pass output signal responsive to said vehicle data signal.
- Claim 23. The method of claim 22, wherein said processing said traction motor signal includes applying said band pass output signal to a signal rectifier so as to create a rectified signal.
- Claim 24. The method of claim 23, wherein said processing said traction motor signal includes applying said rectified signal to a low pass filter so as to create said indication result wherein said indication result is responsive to the magnitude and frequency of said single phase of said traction motor signal.
- Claim 25. The method of Claim 1 wherein said rotational velocity of said traction motor is indicative of a velocity of said vehicle.

- Claim 26. The method of claim 1 wherein said traction motor is connected to an axle of said vehicle and the method further comprises determining if a locked axle condition exists.
- Claim 27. The method of claim 1, further comprising determining at least one of: determination of speed of said vehicle, vehicle adhesion control, vehicle speed control, and wheel diameter determination based on said indication result.
- Claim 28. The method of claim 1 wherein said traction motor signal is based on a voltage generated by a residual flux in said traction motor when rotated by movement of said vehicle.
- Claim 29. A data storage medium including instructions encoded in a computer readable form for causing a computer to implement a process for detecting a rotational velocity of a traction motor in a vehicle comprising:
- obtaining a traction motor signal having at least one phase, wherein said traction motor signal is responsive to an operating condition of said traction motor in an electrically unexcited state:
- processing said traction motor signal to create an indication result responsive to a frequency of said traction motor signal; and
- determining rotational velocity of said traction motor based on said indication result.

Claim 30. A computer data signal encoded in a computer readable medium, said data signal comprising code configured to direct a computer to implement a process for detecting a rotational velocity of a traction motor in a vehicle comprising:

obtaining a traction motor signal having at least one phase, wherein said traction motor signal is responsive to an operating condition of said traction motor in an electrically unexcited state;

processing said traction motor signal to create an indication result responsive to a frequency of said traction motor signal; and

determining rotational velocity of said traction motor based on said indication result.

Claim 31. A computer processor on a vehicle for performing a process for detecting a rotational velocity of a traction motor in a vehicle comprising:

obtaining a traction motor signal having at least one phase, wherein said traction motor signal is responsive to an operating condition of said traction motor in an electrically unexcited state;

processing said traction motor signal to create an indication result responsive to a frequency of said traction motor signal; and

determining rotational velocity of said traction motor based on said indication result.

Claim 32. A system for detecting a rotational velocity of a traction motor in a vehicle comprising:

a traction motor generating a traction motor signal having at least one phase, wherein said traction motor signal is responsive to an operating condition of said traction motor in an electrically unexcited state;

a voltage sensor configured to generate a signal indicative a voltage generated by residual flux in said traction motor when rotated by movement of said vehicle with said traction motor in an electrically unexcited state; and

a controller in operable communication with at least one of said traction motor and said voltage sensor configured to process said traction motor signal and said signal, and thereby create an indication result responsive to a frequency of said traction motor signal and indicative of rotational velocity of said traction motor.

IX. EVIDENCE APPENDIX

There is no evidence submitted pursuant to 37 C.F.R. §1.130, 37 C.F.R. §1.131, or 37 C.F.R. §1.132. A copy of Becerra ("Four-Quadrant Sensorless Brushless ECM Drive," CH2992-6/91/0000-0202, 1991 IEEE) relied upon by the Examiner for the rejections and relied upon by the Appellant in this appeal is included.

FOUR-QUADRANT SENSORLESS BRUSHLESS ECM DRIVE

R.C. Becerra GB - MOTORS GF Fort Wayne, IN 46801 Sche

T.M. Jahns GE Corporate R&D chenectady, NY 12301 M. Ehsani Texas A&M University College Station, TX 77843

Adstruct - A four-quantum brushlest Electronically Commutated Motor (EXCO divine in presented which provides high-quantity torque control without discrete current sensor or a rote person manur. Noter position feedback is developed by person and the providence of the control of the providence of the providence of the control of the providence of the pro

1. Introduction

Rotor position measurement in brushless permanent magnet (PM) motor drives using conventional discrete sensors presents several disadvantages because of the sensor's negative impact on drive cost, reliability, and motor length. The need for additional leads to interconnect the sensor and controls is particularly unacceptable in special applications such as compressor drives which require hermetic scaling of the motor hadde the compressor compressor.

Equivalent rotor position information can be developed without discrete position seasons by processing motor terminal voltage and/or current waveforms. Electronically-Commutated Moore (ECM) drives using PM motors with the proceeded magnet MMF distributions (also with the processing of the processing

The zero-crossing approach [1] is the simplest of the three, and is based on detecting the instant at which the back-EMF in the unexcited phase crosses zero. This zero crossing triggers a timer, which may be as simple as an R-C time constant, so that the next sequential inverter commutation occurs at the end to this timing interval. The

Fig. 1, Four-quadrant sensorless ECM drive block discram.

price for this simplicity tends to be noise sensitivity in detecting the zero crossing, and degraded performance over wide speed ranges unless the timing interval is programmed as a function of rotor speed.

An alternative approach [2] uses phase-locked loop (PLL) techniques to lock onto the back-EMF waveform in the unexcited phase winding during each 60 degree excitation interval in order to determine the proper instant for the next inverter switch event. This algorithm is designed to automatically adjust to changes in motor speed.

The third algorithm, referred to as the back-EMF integration approach[3], provides significantly improve performance compared to the basic zero-crossing algorithm introduced above. Instead of using the zero-crossing algorithm is back-EMF waveform to trigger a time; the rectified back-EMF waveform is fed to an integrator, whose output is compared to pre-set threshold. The adoption of a integrator provides that advantages of most of the integrator provides that advantages of most of the inverter avitching instants to changes in rotor speed. This algorithm has been implemented in a custom U.SI citip together with current regulation, drive protection, and mode control logic for use in production ECM drives.

One of the special problems faced by any ECM

indirect position sensing scheme using back-Baff waveforms is low-speed performance. The basis for this problem is easy to appreciate since the back-Baff amplitude is proportional to rotor speed, thereby dropping to zero at rotor standstill. Choice of pulse-width-modulation (PWM) technique to achieve the current regulation plays an important role in determining algorithm will function. Development of the custom VLSI approaches the proposition of the proposition of

Regulation of the motor phase currents is crudal in may high-performance ECM drive since it provides the basis for instantaneous torque control. Techniques for overcoming, the limitations of resistive shum: current current invester power switches have been described in a previous paper (4). The introduction of these integrated current sensors in combination with High Voltage Integrated Circuit (HVIC) gate drivers provides multiple system advantages including elimination of discrete current sensors, improved protection, and for discrete current sensors, improved the sensors and sensors are sensors, improved the sensors, improved the sensors and sensors are sensors, improved the sensors, improved the sensors, improved the sensors, improved the sensors and sensors are sensors, improved the sensors and sensors are sensors, improved the sensors, improved the sensors are sensors, improved

This paper describes a new four-quadrant ECM drive which combines the advantages of indirect roor position sensing and current sensor integration to provide high-quality of the performance without discrete sensors. The combined use of a custom VLSI controller chip, HVIC gate drivers, and power MOSETS with integrated current sensors provides the basis for a compact, robust drive gathered from a provitopy encorated. The Combined Comb

2. Four-Quadrant Sensorless Drive

2.1 Basic ECM Operation

It is assumed that the reader is already acquainted with the fundamental of ECM drive operation [5,9 s) to that only a highly condensed summary is presented here. The subject of this work is a three-phase ECM drive configuration using a six-which full-bridge inverter. The back-EMF of each motor phase is approximately trapezoidad with two 120 degree intervals of constant voltage (F2 and -12), and the amplitude E is proportional to rotor speed, Only two phases in the wyse-connected motor are excited a each of the instant, and the inverter current is regulated so that constant current! flows into one of the excited windings and out of the other. The third unexcited despite the continued presence of its back-EMF voltage source.

Rotor position information is used to sequentially change the "active" inverter switch pairs six times each electrical cycle in order to continually synchronize the

Fig. 2. Functional block diagram of the Universal ECM controller chip.

phase excitation with the magnet MMF wave. As a result of this synchronization, the developed motor torque. T is proportional to the phase winding current. I. Polarity of the torque is reversed by reventing the direction of current flow through the two active windings. The ECM can thereby operate as a motor or generator in Eods directions of rotation, providing the basis for four-quadrant operation.

2.2 ECM Drive Configuration

Figure 1 shows a block diagram of the new four-quadrant ECM drive including both indirect roter position sensing and integrated current sensing. The aphase inverter block uses six power MOSETEs with integrated current sensors and three HVIC phase-leg drivers, smilar to the configuration described in [4]. The instantaneous roter position using information extracted from the motor terminal voltages which are fed to it as shown in Fig. 1. In addition to determining the commutation issuants between inverter switches, the controller also regulate presently commend combined with the controller also regulate presently commend combined with the celeback information from the integrated current sensors.

The drive shown in Fig. 1 is designed to operate in all four quadrants of the torque-speed plane. The relationship between back-EMF, current, torque, and speed can be summarized by the following equation specified here for one of the three motor phases (phase A):

$$T_{a}(t) = \frac{E_{a}(t) I_{a}(t)}{1}$$
(1)

where $E_s(t)$, and $I_s(t)$ are, respectively, the back-EMF voltage and current in the phase A winding, $T_s(t)$ is the torque contributed by phase A (in Nm), and n is the rotor speed (in rad/s).

Referring to Eqn. (1) above, the drive system operates as a motor whenever the back-EMF and phase

current share the same polarity, forcing the developed torque and rotor speed to likewise share the same polarity. Electric power fed from the supply V, Fig. 19 (19 cm.) and considered to the supply V, enderson the supply via the

The controller block in Fig. 1 controls both the amplitude and polarity of the developed torque. The operator torque command T is converted into the motor phase current command P by means of the absolute value function block shown in Fig. 1, through the setting the amplitude of the regulated current through the motor windings. The direction of current flow through these windings is determined by the command which is also extracted and delivered to the controller.

3. Controller Operation

The controller block in Fig. 1 performs two key functions in order to achieve the desired torque control. These include both indirect rotor position sensing using measured back-EMF waveforms, and current regulation using feedback information from the integrated current sensors imbedded in the inverter power switches. A description of each of these major functions is provided in the following sections.

3.1 Indirect Rotor Position Sensing

Rotor position sensing is accomplished using the sack-EMF Integrator algorithm [3] briefly introduced in Section 1. This sensing scheme has been implemented in a proprietary custom-VLSI controller chip which CE now uses in the majority of its production ECM drives. A simplified block diagram of this 28-pin Universal ECM (UECM) ontroller chip is provided in Fis. 2.

(UECM) controller dip is provided in Fig. 2.

Although the UECM accomplishes a variety of controller functions, discussion in this section will focus on the means of a chieving the desired rotor position sensing. Since the back-EMF voltage amplitudes can be very large divided critical fellowers scaled versions of the three motor phase voltages to the UECM chip. The neutral voltage of the vye connected motor windings is artificially generated inside the chip in order to develop measurements of the three phase-to-neutral voltages. The signal selector block shown in Fig. 2 is responsible for selecting the phase-to-neutral motor voltage of the unexcited winding voltage needed for position sensing as soon as the residual functive current flowing in the unexcited winding voltage needed for position sensing as soon as the residual inductive current flowing in the unexcited winding

immediately following the removal of excitation decays to

idealized back EMF waves (Ea, Eb, and Ec), the Integrator output (Vint.), the commutation instants (Com), and the reset interval (Rist).

zero. The controller includes special provision to insure that the position sensing is unaffected by these residual currents, as described in more detail below.

The waveforms sketched in Fig. 3 help to explain the operation of the position sensing algorithm. The integrator block in Fig. 2 consists of an analog integrator which begins to integrate the selected back-EMF voltage for more precisely. Its absolute value) as soon as the back-EMF cosses zero, developing the signal Viri shown in Fig. 3. The shape of this Virit signal can be appreciated from the fact that the instantaneous back-EMF voltage is varying approximately linearly with time in the vicinity of the zero-crossing, so that

$$E(t) = E_0 t$$

$$Vint = \int_0^t \frac{E(t)}{t} dt$$

$$Vint = \frac{E_0 t^2}{2t}$$
(2)

where k is the integrator gain constant. The instant of the next commutation event occurs when Vigir teachs pre-set fixed threshold voltage Vik. Since the amplitude of the back-EMF (50 in the above equation) is proportional to speed, the conduction intervals automatically solar inversely with speed with a fixed threshold voltage Vik. As shown in Fig. 3, the integrator is reset by signal Rst. The width of the Rst reset pulse is set to insure the integrator can never start integrating until the residual current in the unexided phase has decayed to zero.

The choice of threshold voltage Viti and integration constant k for a given motor determines the specific alignment of the phase current excitation waveform with the back-EMF voltage, Varying Vitor v k has the effect of varying this current-voltage waveform alignment, measured in terms on an advance angle. If perfect alignment corresponds to zero advance angle, it has been advance angle of the perfect alignment corresponds to zero advance angle, it has been dealth of the control of

suggested in [5] that an advance angle of approximately 10 elec. degrees provides a good compromise between high-speed torque production and jow-speed

torque-per-Amp efficiency

As mentioned earlier, low-speed operation require special provisions since the back-BMF drops to zero at sandstill. For motor start-up, an oscillator sequentially steps the communation state machine at a fixed rate in the desired direction of motor rotation, energizing two of the three motor phases during each interval. As soon as the rotor moves in response to this open-hope stepping sequence, the integrator of the position detection block in Fig. 2 starts integrator give back-BMF voltage from the unexcited phase. When the motor speeds up sufficiently so that the integrator reaches its threshold level before the next open-dop step the start-up coeditator is automatically nearly sufficient to the start of the intervent switch communitation.

Since motor back-EMF amplitude varies directly with rotor speed, the indirect position sensing scheme is particularly sensitive at iow speeds to noise generated by inverter switching during PWM current regulation. In order to minimize this sensitivity, a special PWM technique has been implemented which permits good tracking of the rotor position down to speeds of a few r/min. The purpose of this technique is to extinguish the current in the phase windings at the end of each 120 degree conduction interval as quickly as possible. By doing so, the terminal voltage of the unexcited winding becomes useful for back-EMF sensing as soon as possible following the off-commutation of the phase. This objective is accomplished by shifting responsibility for PWM switching among the six inverter switches in a specific sequence. It is based on the fact that, at any time instant during motoring operation, only one of the two active inverter switches must execute the PWM switching for current regulation while the second switch is held in its "on" state [4].

Fig. 4. Commutating signate for the inverter exticoses showing a preferred PWM sequence for fast current decay in the off-going phase. (AT=Phase A upper switch, AB=Phase A lower switch, obc.)

The preferred sequence for shifting this PWM responsibility is sketched in Fig. 4 (Note that this technique applies only during motoring operation, as discussed below in Section 3.3.) Each of the six switches is

active for an interval of 120 electrical during each yell elignified by either a high or chopped logic level high, 40, and this active interval can be separated into two 80 degree hierevals. As shown in Fig. 4, each switch is held in its "on" state during the first of these two active intervals as signified by the high-frequency chopping. This scheme meets the criterion of one (and only one) active FWM switching during the second interval, as signified by the high-frequency chopping. This scheme meets the criterion of one (and only one) active FWM switch at all times. Using this sequencing technique, the ree-wheeling current in the off-gioring phase is driven to zero more quickly than if the new one-going phase chridings also has the beneficial office. This sequencing technique also has the beneficial office. This sequencing technique also has the beneficial office.

3.2 Current Sensing Configuration

As mentioned in the Introduction, motor phase currents are measured using current serons integrated into the MOS-gated inverter power switches. A block diagram of the Inverter power state showing the current feedback configuration is provided in Fig. 5. The basic principles associated with this inverter configuration, including the use of HYIC phase-leg gate drivers and integrated current seconds, and the presented previously [4] and will not be second, and the presented previously [4] and will not be selected in Fig. 5 includes important changes which deserve explanations.

Unlike the drive control scheme presented in [4] which uses the HVIC gast drivers to perform the current regulation control individually for each phase, the new system uses the built-in control features of the UECM chip to perform this regulation control for all three phases. Motor current features in detrived from sensed current measurements in the three lower inverter switches, signals from these three lower inverter switches, gapals from these three lower inverter switches, the current state of the control of the switches and the switchest current set. Sense the switchest sensing resistor 8, which develops the single feedback signal.

representing the motor current. This simple hard-wire connection is sufficient for this particular drive since only one lower switch conducts the motor current at any time instant, and the sense leads between sep paralleled current sources. That is, the sense leads for the two lower switches that are not conducting do not interfere with current measurement in the conducting, switch because they present high impedances at the *A, node point.

The three upper switches in the inverter configuration of Fig. 5 also incorporate integrated current sensors, although information from these sensors is not used to perform the phase current regulation. Instead, these upper switch current measurements are used only for overcurrent protection which is executed in the associated HVIC driver chips as described previously in (4).

One important constraint imposed by the integrated current sensors is that the associated current switch can only provide useful current feedback information only when the switch is conducting. If a lower switch is performing PWM switching during any interval (see Fig.

Fig. 5. Simplified circuit schematic of the 3-phase inverter showing the basic elements of the HVIC driver and the composite current from the integrated current sensors of the lower three power devices.

4), current feedback to the UECM chip is lost whenever the lower switch is turned off. This temporary loss of current feedback information must be specially accommodated by the current regulation algorithm implemented in the UECM chip as described in the next section.

3.3 Current Regulation Algorithm

In order to extract the best possible drive performance, the current regulator operates differently during motoring and regenerating toraking operation. These differences are highlighted using the simplified inverter diagrams and waveforms in Fig. 6 (coussing on the energized motor phases are modeled as an equivalent inductance L and resistance R in series with back-EMF todage E. As shown in Fig. 6a, only one switch (56) is actively involved in FWM operation during motoring operation, while the other active switch (51) is held on SI or 56 could serve equivalently as the active FWM switch during this interval of motoring operation.

In comparison, braking operation during the same interval shown in Fig. 6b uses both S1 and 56 as simultaneous PWM switches in order to regenerate motor energy tack to the source [8]. Note that the potarity of the effective back-EMF source E is reversed in the process of changing from motoring to regeneration. The residing current waveforms shown in Figs. 6a and 6b have similar sawboth waveshapes flow motor resistance R is assumed, yielding the piecewise linear waveforms), but the current ripple characteristics are quite different as described below.

Only certain classes of current regulation algorithms are eligible for this drive application because of the incomplete current feedback constraint which is imposed by the use of integrated current sensors as noted in Section 32. One particular algorithm referred to as the 'constant off-time' current control scheme has been discussed previously in [4]. The UECM ofthe securies a related but

Fig. 6. Equivalent circuit for motor drive phases A and C and steedy-state waveforms for fixed-frequency current regulation showing one PVM cycle of phase current and gate other signal. (a) Motoring, (b) Regeneration.

different algorithm known as the 'constant-frequency' control which, as the name implies, holds the PPM frequency constant. Referring to motoring waveforms in Fig. 6a, the PPM frequency period. $T_{\rm F}$ represented by the sum of on-time $T_{\rm H}$ and off-time $T_{\rm F}$ is held fixed each cycle. The PPM switch 55 is held 'ord 'until the switch current (which is being fed back to the control) reaches the commanded current threshold $I_{\rm H}$, at which time 56 is opened. 5e then remains 'off' until the end of the fixed $T_{\rm F}$ period, at which time it does again to begin the next PVM cycle. Operation of this constant-frequency algorithm is exactly analogous during constant-frequency algorithm is exactly analogous during

regenerative operation in Fig. 6b., except that both SI and S6 are opened when the current reaches In-

Motoring Operation

Equations for the instantaneous motor phase current waveforms during steady-state PWM motoring operation can be conveniently derived using the simplified equivalent circuit shown in Fig. 6a. During the interval when both switches S1 and S6 are "on", the motor current i(t) rises according to:

$$i(t) = \frac{V_s - E}{R} [1 - e^{-\frac{t}{T}}] + I_0 e^{-\frac{t}{T}}$$
 (3)

where $\tau = L/R$ and I_0 is the initial current at the beginning of the interval $(t = t_0)$. Switch S6 is turned off when the rising motor current reaches threshold I_H so that the free-wheeling motor current flowing through SI and diode D3 decays according to:

$$i(t) = \frac{E}{R} \left[e^{-\frac{t}{\tau}} - 1\right] + I_H e^{-\frac{t}{\tau}}$$
 (4)

The amplitude of the current ripple varies as the amplitude of the back-EMF voltage E varies. The steady-state amplitude of this current ripple Ai during motoring operation with constant-frequency current regulation has been derived for the simplified case of zero motor resistance. This condition of R = 0 represents a useful approximation for many practical situations. The resulting current ripple is expressed as a function of the normalized back-EMF voltage, E/V, as follows:

$$\Delta i = \frac{V_s T_0}{L} \left[1 - \frac{E}{V_s} \right] \frac{E}{V_s}$$

Figure 7 plots this expression for motoring operation, showing that the current ripple amplitude has a maximum value of V.T₀/4L when the back-EMF voltage is one-half of the source voltage (approximately half of rated speed).

Regenerative Braking Operation

Similarly, instantaneous current waveforms can be derived for PWM braking operation using the circuit conditions of Fig. 6b. Following the time instant t_a when both switches S1 and S6 are turned "on", the motor current rises according to:

$$i(t) = \frac{V_s + E}{v} \left[1 - e^{-\frac{t}{\tau}}\right] + I_0 e^{-\frac{t}{\tau}}$$
 (6)

This current expression has a very similar form to that of the rising current during motoring operation in Eqn. 3 above, except that here the back-EMF polarity aids the source voltage in driving the motor current upward more

Fig. 7. Current ripple vs. normalized back EMF for motoring and regeneration

rapidly.

When switches S1 and S6 both open at time t_H in Fig. 6b, the motor current falls as energy is fed back to the Inverter bus. If the power source cannot accept this regenerated power (as indicated by the diode D0 in Fig. 6b), the bus capacitor C must accept the energy for temporary storage. Assuming that the motor resistance R is quite small, the resulting second-order system causes the motor current to decay according:

$$i(t) = -\frac{(V_s - E)}{\omega L} e^{-\alpha t} \sin(\omega t) + \frac{\omega_0}{\omega} I_H e^{-\alpha t} \sin(\omega t - \theta)$$
 (7)

where
$$\alpha=R/2L$$
, and $\omega_0=1/\sqrt{LC}$, $\theta=\tan^{-1}(\omega/\alpha)$, and $\omega=(\omega_0^2-\alpha^2)^{1/2}$.

In practice, a bus storage capacitor may not be sufficient to handle the regenerated energy without the bus voltage building up to unacceptably high levels. In that case, a dynamic brake circuit is often connected across the input supply bus as shown in Fig. 1 to dissipate the extra energy. This circuit will then be controlled as a shunt voltage regulator to draw off the extra capacitor charge until the elevated bus voltage is reduced back to its nominal value of V.

An expression for the current ripple with constant-frequency current regulation has been derived for braking operation under the simplifying assumptions of zero motor resistance and fixed source voltage V. (e.g., large C). The resulting expression for Ai Is given as

$$\Delta i = \frac{V_s T_0}{2L} \left[1 - (\frac{E}{V})^2 \right]$$
 (8)

When plotted on Fig. 7, one notes that the peak current ripple for regenerative operation is twice the maximum value during motoring operation, and occurs at standstill (F = 0)

4. Drive Implementation

A "sensorless" ECM drive system for a 0.5 hp machine has been designed, built, and tested using integrated current sensors and indirect rotor position sensing as described in this paper. More details regarding the implementation of the controller section of the drive (see Fig. 1) are provided in Fig. 8.

At the heart of this controller is the UECN control.

The UECN chip's role in performing the indirect roter position sensing was discussed earlier in Section 3.1. in addition, it executes the constant-frequency FPVM and the section 3.1. in addition, it executes the constant-frequency FPVM switch sequence aboven in Fig. 4. The FCM street PVM switch sequence aboven in Fig. 4. The FCM street PVM switch sequence aboven in Fig. 4. The FCM street PVM switch sequence aboven in Fig. 4. The FCM street PVM switch sequence above in Fig. 4. The FCM street PVM switch sequence above in Fig. 4. The FCM street PVM switch sequence above in Fig. 4. The FCM street PVM switch sequence is the FCM street PVM switch sequence in Fig. 4. The FCM street PVM switch sequence is the FCM street PVM switch sequence in FCM switch sequence in FCM switch switch sequence in FCM switch switch

The interface between this UECM chip and both the operator commands and inverter power stage is concentrated in a programmable logic array labeled as PLA in Fig. 8. A major portion of the digital logic implemented in this PLA is devoted to translating the format of inverter switch commands delivered by the UECM chip (top-bottom format) to the input format required by the Harris GS601 HVIC driver chips (up/down-enable format) [9]. However, the second major function of the PLA is to control the operating quadrant of the drive, including transitions between motoring and regenerative operation, and between forward and reverse rotation. In particular, the PLA is responsible for enforcing the change between motoring operation with one active PWM switch (Fig. 6a), to regenerative operation with two active PWM switches (Fig. 6b). In addition, the PLA develops the POSFR and DRFR input commands needed by the UECM chip to keep track of the operating quadrant.

As mentioned earlier in Section 2, the relative polarities of the motor's torque and speed determine whether the drive system is motoring or regenerating. For example, if the motor torque has negative polarity, the drive system changes from regenerating to motoring operation as the motor speed posses through zero speed from positive to negative polarity rotation during a speed from positive in negative polarity rotation during a speed from positive and the speed as a significant system variable for controlling the drive's operating quadrant. Since the EOM has no shattl, speed is a significant system variable for controlling the drive's operating quadrant. Since the EOM has no shattl, speed is a significant system variable for controlling the drive's operating speed detector determine when the drive is approaching zero speed using the inverter switch commutation frequency as input. This information is then used by the PLA interface logic to control drive quadrant changes during speed reversible.

Fig. 8. Block diagram of the sensoriess controller

5. Experimental Results

The assembled four-quadrant drive described above was coupled to a 0.5 hp 12-pole ECM for dynamometer testing. Steady-state regeneration was obtained by using the load machine as a motor to rotate the ECM at fixed speed. The drive has been successfully operated as both a motor and generator over a speed range from -1500 to

+1500 r/min.

Higure 9 shows a typical current waveform for Phase
A of the ECM during motoring operation. The lower trace
in this figure shows the gast defive signal for the lower
inverter power switch (50) associated with Phase A. Nige
that this switch is pulse-width-modulated only during
the second 60 degree interval, consistent with the sequencing
scheme shown in Fig. 4. The PWM frequency was set at 10
kHz, yielding the well-regulated current waveform shown
in Ric. 9.

Figure 10 shows a comparable current waveform in Phase A during steady-star regenerative operation, together with the St gating signal. The presence of PVM switching during the full 120 degree conduction interval is clearly evident in the lower trace. In addition, the amplitude of the current ripel during regenerative operation is visibly higher than during motoring operation under similar speed conditions, consistent with the predictions of Fig. 7. Despite the higher ripple, the current waveform is still well-behaved in all regards.

Finally, Fig. 11 shows several of the key drive waveforms during a speed reversal. The current limit the drive, which limits the available accelerating and decelerating torque, has been set at 1 A mps. The upper most trace in Fig. 11 is the rectified speed signal developed by the speed detector block noted in Fig. 8. The charged state of the DRFR logic signal at the bottom of Fig. 11 marks the initiation of the speed reversal command when braking torque is commanded. The drive responds by decelerating to zero speed, at which time the $n_{\rm int}$

Fig. 9. Typical phase current and lower switch gate drive signal for phase A (PWM frequency = 10kHz, I*= 1.0 Arro, n = 426 min) during moltoning.

Fig. 10. Typical phase current and lower gate drive signal for phase A (PWM frequency 10kHz, I' = 1.0 Amp, n = 426 rtmin) during regeneration.

Fig. 11. Osollogram showing a transition from motoring in the first quadrant (n = 430 pm, P = 1.4 Amp.) to motoring in the first quadrant (n = 430 pm, P = 1.4 Amp). The motor is decelerated to near zero speed (π_m signal high level) and then accelerated to the new operating point in the first quadrant.

zero-speed detector signal shown in the middle of Fig. 11 goes high momentarily, providing the necessary conditions for the drive to change to motoring operation in the reverse direction. This speed reversal is marked by the change in state of the POSFR command. The ECM then accelerates to its final speed as shown on the right side of Fig. 11.

6. Conclusions

The new "sensoriess" ECM drive configuration presented in this paper incorporates the following key features:

 Elimination of discrete position sensors by means of indirect rotor position sensing using the motor back-EMF voltages.

- Elimination of all discrete current sensors in favor of current sensors integrated into the six MOS-gated
- inverter power switches.

 3) High-quality current regulation and torque control achieved in all operating modes using the incomplete current feedback information provided by the
- integrated current sensors.

 4) Full four-quadrant drive operation, including regeneration back to the DC input power bus.
- 5) Drive parts minimization achieved by means of a custom-VLSI drive control chip combined with HVIC gate drive chips, compatible with ECM drive ratings from fractional to at least 10 hp.

Acknowledgment

This work was performed using facilities at both GE Corporate R&D in Schenectady, NY, and at Texas A&M University in College Station, TX. The availability of a university grant from GE to partially support this work is gratefully acknowledged.

References

- K. Iizuka, et al., "Microcomputer Control for Sensorless Brushless Motor", IEEE Transactions on Industry Applications, Vol. IA-21, No. 4, May/June 1985, pp. 595
- [2] "Sensorless Spindle Motor Controller", Part ML4410, Advance Information, Microlinear Corporation, Jan.
- [3] United States Patent No. 4,169,990, "Electronically Commutated Motor", granted to General Electric Company, Inventor: D. Erdman, October 2, 1979.
 - [4] T.M. Jahns, R.C. Becerra, and M. Ehsanl, "Integrated Current Regulation for a Brushless ECM Drive". IEEE Transactions on Power Electronics, Vol. 6, No. 1, Jan.
 - [5] D. M. Erdman, H. B. Harms, and J. L. Oldenkamp, "Electronically Commutated DC Motors for the Appliance Industry," Conf. Record of 1984 IEEE Industry Application Society Annual Meeting, pp. 1339-1345.
- [6] T.J.E. Miller, Brushless Permanent Magnet and Reluctance Motor Drives, Oxford Science Publications, Clarendon Press, Oxford, 1989.
- [7] T.M. Jahns, "Torque Production in Permanent Magnet Synchronous Motor Drives with Rectangular Current Excitation", IEEE Trans. on Industry Applications, Vol.
- IA-20, No. 4, July / Aug. 1984, pp. 803-813.

 [8] R.C. Becerra, M. Ehsanl, and T.M. Jahns,
 "Four-Quadrant Brushless ECM Drive with Integrated
 Current Regulation, Conf. Record of 1989 IEEE Industry
 Applications Society Annual Meeting, San Diego, pp.
- [9] J.G. Mansmann, E.J. Wildi, J.R. Walden, K. Fujino, and Y. Hasegawa, "Flexible High-Voltage Half-H Bridge Motion Controller/Driver", Power Conversion & Intelligent Motion, May 1988, pp. 54-62.

X. RELATED PROCEEDING APPENDIX

There are no other related appeals or interferences known to Appellant, Appellant's legal representatives, or assignee that will directly affect or be directly affected by or have a bearing on the Board's decision in the pending appeal.