SHA+a - input message is 160 bin in length.

step 1: Padding (- Add padding to end of original message in such a way that the length of message is 64 bit shorter of multiple of 512.

Step 2:- Append Length: Append 64-bit block to the message. Now manage becomes multiple of 512.

Step 3: - Divide the input into 512-bit Blocks:

Step 4: Initialize Chaining Variables:

- A to E variable are Initialized (A=32 bin 32 x 5 =160 bin)

Slep 5:- Procen Blocks.

step 5.1: copy A-E into vorionle a-e. The combination occuled abode as a single register for string temporary results and final results.

Step 5.2; Divide 512-bit block into 16-sub-block , each of 32 bits. (32 x 16 = 512)

Step 5.3: -- SHA has four rounds, each round of 20 step.

- Each round take inputs 512-bit block, regists abode, constant K[+] as three inputs

Round - output in abode reginer abode six bit block

- Update obcde regitter after each step.
- k[t] constant value, sha we four contrant values of k[t]

 . Round

 2 20 to 39 | 3 40 to 59 |

 4 60 to 79

operation in Each Round of SHA:

S5: - Circular shift by 5 bit position.

Process: - Logical AND ook operation that change each your,

w(+): - A 32-bit derived string from existing sub-block.

K(+) :- constant which charge each roun;

-input msg lens than 212 bin lenen 2 -output msg 512 bin in length

SHA-512

Step 1: - Padding: Add padding to end of original memore in such a way that length of memore is 128 bit show that multiple of 1024 bit.

Step 1: Append Length: Append 128 - bit block to the message. Now message becomes multiple of 1024 bit.

Step 3:- Divide Input into 10024 bit blocks.

Stey :- Initilize chaining vaions.

- A to H variable are Initialized (8 x 32 = 128 bir).

Step 5 :- Process Block

Step 5.1: - Copy A-H into variable AD+ a-h. The comb obcdefgh will be single register for stering results.

step 5.2: - Divide the lower bit black into 16-sub black each of 64 bin.

SHP 5.3: -- SHA has food round, each a sund to step.

- Each round has lozu-bit block, the regime obcdefgh and K[+] [+=0 to 9) has three inputs.

- B) It ten updates obcdefgh for each round.

Each round consist of following procedue:-

Temp 1 = $h + ch(e,f_0,g) + sum e + w_+ + k_+$ Temp 2 = sum a + maj(a,h,c)

a = Temp1 + Temp 2. b = 9 c = b d = c e = d + Temp + f = e, 9 = f, h = 9. maj, ch = process of AARd,

OR operation

Wt = derived from 512-bit
input hjock

kt = constant.

* compare mos and SHA-1.

message - digest

SHA.
160 bis
216 operation to break
more secre than mos.
Less Slow than MDS.
No attack one reported

& compose All SHAS:

	SHA 1	SHA-256	SHA-384	SHA-512
Messagy diggs+	160	256	384	512
messou size	L 264	c 264	C12124	۷ 2 1 29
Block size	512	512	1074	1024
steps in	80	80	80	Sa
Algo		State Service (Sec.		60
(in pr)	32	3 2	64	,

* HMAC:-

- Hash-bored Mesiage Authentication code.
- HMAC reuse the existing message digest algorithm (mos, SHAI) to produce the mac.
 - Used In IP securing and SSL protocol on Internet

working.

opad = 00110110 string repeated b/g times

opad = 01011010 repeated b/g times

b = bining each block.

k = Symmetric key.

Step 1: make length of kandb equal.

Step 2:- XOR K With ipad to produce SI:

Step 3:- Append m to SI.

SI) Original Menage

Step 4: mp algo are applied to output of step 3. original menosel m) message Digat (MD) Step 5 :- XOR K with opad to produce 52 Steps: Append H to 52 52 Step 7: - mD algo applied to step 6: m. D algo HOMAC Total Stepi-key - Transfermed key ! [i pad 1 XOR SL m D algo 1 HMAC

- * Digital Signature:
 - developed for performing digital signatures.
 - DS make we of SHA-L algorium for conculating manage digest and wes to perform digital signature.
 - Like RSA, DSA is asymmetric-key cryptographic technicae

 But RIA -> encorptum

 DSA -> digital signature.

working of Digital signatures!

Step 1: - A was SHA-1 algo to generale to manage diget of original massage,

original menaged diges (mp1)

step 2: Now 100-memage diget is encrypted with uses ("A")
private key. The output is digital signature

Step 3 :- Now sender A sends original menage (m) along with Digital signature (Ds) to receive B

step 4:- Receive B receives the original menage and digital signature. Now B was some menage and MD algo to generate its own manage digest (MD2)

steps:- Receive B derypt digital signature & with the A's public key and checks if (MDI = MDI).

8 Step6: If mD1 + mD2, tun it rejects tu mosage.

- principle of digital signature is sming, seem and reliable.

. wim DSS Apmach!-Variables in DSA:

p = prime number of length 2 birs.

L = no. mutiple of (4 bet 512 and 1024.

9 = A 160-bit prime facter of (p-1)

g = h(p-1)/q mod p.

2 = A numbe len thank q., private ket.

y = g nod p., corresponding public key.

H = me D algo.

For sending menage :-

1. The sender generals random number k, which is lon thong.

2. The senar calculats:

r=(gkmodp) mod pq.

5 = (K-1 (H(m) + xr)) mod q.

The values of r and s ore signature of sendo.

is verify signature, the receiver calculan

w= s -1 moda

41 = (H(m) * w) moder

42 = (Tw) mod q.

V= ((g" * y") modp) modq.

v= v, the signature is vertrea. Other rejectes.

* KERBEROS.

- It is a authenticution prutocol.
- Designed at mIT.
- Authentication for client/sense applications by using searet-ken applications by using searet-ken

* x 509 Authentication:

- X. 509 is digital certificall built by ITV. its which
- 7.509 digital to contificall is contificall -bared authentication security framework that is used for secure transactur processing.

- format:

vanon	munse
social r	finne
Algaimm	1
Isiver No	ane
validing	
subject 1	gare
subject pu	nic br
signary	re.
0	

- * Biometric Authentications
- Biometric device mying to prove who you one
- Biometric donce work on human engraction, such as fragegore, voice or lass of eye.
- The uses database contains sample of useds bionesic characterists
- user's biometric charact.
- This is matched with datahore sample, and if two sample one same ten was is considered to be valid or
- FAR (Four Accept Ratio) good enough I map away

 FPR (Fame Reject Porte) g not good enough) sample
- Biometric Techniques;

Physiological

- Face
- Tris
- Fingerprint
- Voice

Behavionel

- Keysmore

- signame