Calculus 1

Olivér Kiss

Mathematics and Informatics Pre-session for Business Analytics

2018

Topics

- ► Sequences
- ► Limits
- ► Differentiation

Sequences

- ► A sequence is an enumerated collection of numbers
- ▶ The usual notation for the nth element of sequence a is a_n
- ► Example: The sequence of prime numbers.

$$a_1 = 2$$
 $a_2 = 3$
 $a_3 = 5$

▶ We often define sequences by the rule a certain element is calculated. Example:

$$a_n = n/2$$

List the first 5 elements of this sequence!

Types of sequences

Finite and infinite

- ► A finite sequence has a finite number of elements
- ► An infinite sequence has infinitely many elements

Increasing or decreasing

- ▶ A sequence is monotonically increasing if $a_{n+1} \ge a_n \quad \forall n$
- ▶ A sequence is monotonically decreasing if $a_{n+1} \le a_n \quad \forall n$

Boundedness

- ▶ If \exists N such that $a_n < N \quad \forall n$ the sequence is bounded from above
- ▶ If \exists M such that $a_n > M$ $\forall n$ the sequence is bounded from below

Give an example for each type!

Limit of a sequence

The limit of a sequence is a number that the terms of a sequence "tend to". The notation is

$$a_n \rightarrow A$$

or

$$\lim_{n\to\infty} a_n = A$$

Examples:

$$ightharpoonup a_n = 5 \implies a_n \to 5$$

►
$$a_n = 5$$
 \implies $a_n \to 5$
► $a_n = \frac{1}{n}$ \implies $\lim_{n \to \infty} a_n = 0$

Convergence

If a sequence has a limit, it is called convergent. If it does not, it is divergent.

Formal definition of convergence

A sequence a_n converges to A if $\forall \varepsilon > 0$ $\exists N$ such that $\forall n > N$ it holds that $|a_n - A| < \varepsilon$.

Examples:

- $ightharpoonup a_n = n$ is divergent
- $ightharpoonup a_n = rac{(-1)^n}{n}$ is convergent, $\lim_{n o \infty} a_n = 0$

Properties of limits

- $\blacktriangleright \lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n \quad \forall c$
- $\blacktriangleright \lim_{n\to\infty} (a_n b_n) = \left(\lim_{n\to\infty} a_n\right) \left(\lim_{n\to\infty} b_n\right)$
- $\blacktriangleright \lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}, \text{ provided that } \lim_{n\to\infty} b_n \not= 0$
- $\blacktriangleright \lim_{n\to\infty} a_n^p = \left(\lim_{n\to\infty} a_n\right)^p \quad \forall p>0$

Let's look at some examples!

$$\lim_{n \to \infty} \frac{n^2 - 3}{n^3 - 2} = \lim_{n \to \infty} \frac{\frac{1}{n^3}(n^2 - 3)}{\frac{1}{n^3}(n^3 - 2)}$$

$$\lim_{n \to \infty} \frac{\frac{1}{n^3}(n^2 - 3)}{\frac{1}{n^3}(n^3 - 2)} = \lim_{n \to \infty} \frac{\left(\frac{1}{n} - \frac{3}{n^3}\right)}{\left(1 - \frac{2}{n^3}\right)}$$

$$\lim_{n \to \infty} \frac{\left(\frac{1}{n} - \frac{3}{n^3}\right)}{\left(1 - \frac{2}{n^3}\right)} = \frac{\lim_{n \to \infty} \left(\frac{1}{n} - \frac{3}{n^3}\right)}{\lim_{n \to \infty} \left(1 - \frac{2}{n^3}\right)}$$

$$\lim_{n \to \infty} \left(\frac{1}{n} - \frac{3}{n^3}\right) = \lim_{n \to \infty} \left(\frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{3}{n^3}\right)$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{3}{n^3}\right)$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{3}{n^3}\right)$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{3}{n^3}\right)$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{3}{n^3}\right)$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{3}{n^3}\right)$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{3}{n^3}\right)$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{3}{n^3}\right)$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{3}{n^3}\right)$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{3}{n^3}\right)$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{3}{n^3}\right)$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{3}{n^3}\right)$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{3}{n^3}\right)$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) - \lim_{n \to \infty} \left(\frac{3}{n^3}\right)$$

$$\lim_{n \to \infty} n^3 - 2 = \lim_{n \to \infty} \frac{\frac{1}{n^2}(n^3 - 2)}{\frac{1}{n^2}(n^2 - 3)}$$

$$\lim_{n \to \infty} \frac{\frac{1}{n^2}(n^3 - 2)}{\frac{1}{n^2}(n^2 - 3)} = \lim_{n \to \infty} \frac{(n - \frac{2}{n^2})}{(1 - \frac{3}{n^2})}$$

$$\lim_{n \to \infty} \frac{(n - \frac{2}{n^2})}{(1 - \frac{3}{n^2})} = \frac{\lim_{n \to \infty} (n - \frac{2}{n^2})}{\lim_{n \to \infty} (1 - \frac{3}{n^2})}$$

$$\frac{\lim_{n \to \infty} (n - \frac{2}{n^2})}{\lim_{n \to \infty} (1 - \frac{3}{n^2})} = \frac{\lim_{n \to \infty} (n) - \lim_{n \to \infty} (\frac{2}{n^2})}{\lim_{n \to \infty} (1) - \lim_{n \to \infty} (\frac{3}{n^2})}$$

$$\frac{\lim_{n \to \infty} (n) - \lim_{n \to \infty} (\frac{2}{n^2})}{\lim_{n \to \infty} (1) - \lim_{n \to \infty} (\frac{3}{n^2})} = \frac{\infty - 0}{1 - 0} = \infty$$

Thus this sequence is divergent.

$$\lim_{n\to\infty}\frac{1+(-1)^n}{2}$$

Notice that there are two alternating terms: 0 and 1. Thus this sequence doesn't have a limit.

Also good to know

It is not always obvious how to calculate the limit of a sequence. E.g.

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$$

There are some more advanced ways to calculate limits that we don't cover, but they are also good to know:

- ► Stolz-Cesàro theorem
- ► L'Hôpital's rule

Solve the following problems

1.
$$\lim_{n \to \infty} \frac{n^4 + 5n^3 + 3n^2 - 2}{3n^4 - 6}$$

2.
$$\lim_{n \to \infty} \frac{5}{n+1} + \frac{n}{n+1}$$

- 3. $\lim_{n\to\infty} b^n$ depending on the value of b.
- 4. $\lim_{n\to\infty}\frac{1}{n(\sqrt{n^2-1}-n)}$
- 5. $\lim_{n\to\infty} \sqrt[n]{5}$
- 6. $\lim_{n\to\infty} \ln\left(\frac{1}{n}\right)$
- 7. $\lim_{n\to\infty} e^{-n}$

Sidenote: Series

Roughly speaking a series is the sum of the elements of a sequence.

$$\sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + \dots$$

There is one series that you should remember: the geometric series. The sum of a sequence defined by

$$a_n = a \cdot b^n$$

where b < 1 is given by

$$\sum_{i=1}^{\infty} a_i = \frac{ab}{1-b}$$

What is the sum of the following sequences?

- ► $a_n = \frac{3}{5^n}$
- $a_n = 0.5^n$

Limits of functions

Just like for sequences, we can define the limits for functions.

Definition

A function f(x) has a limit L when x approaches to p IF for all $\varepsilon > 0$ there exists a $\delta > 0$ such that for all x that satisfies $|x-p| < \delta$ it holds that $|f(x)-L| < \varepsilon$. The notation is

$$\lim_{x\to p} f(x) = L$$

Example: f(x) = 3x. Calculate $\lim_{x \to 3} f(x)$. Let's guess this limit first!

Limits of functions

Example: f(x) = 3x. Calculate $\lim_{x \to 3} f(x)$. Now let's understand the definition.

- We claim that $\lim_{x\to 3} f(x) = 9$
- \blacktriangleright Let's have any positive number ε
- ▶ There should exist a δ for any ε that if we are in the δ neighborhood of 3, the function value is always closer to 9 than ε
- We can compute this δ depending on ε .

$$|f(x) - 9| < \varepsilon \implies -\varepsilon < f(x) - 9 < \varepsilon \implies -\varepsilon + 9 < f(x) < \varepsilon + 9 \implies$$

 $-\varepsilon + 9 < 3x < \varepsilon + 9 \implies -\frac{\varepsilon}{3} + 3 < x < \frac{\varepsilon}{3} + 3 \implies |x - 3| < \frac{\varepsilon}{3} = \delta$

Let's say $\varepsilon = 6$. It implies that $\delta = \frac{6}{3} = 2$, that is, if we are in the (3-2, 3+2) interval, the function value should always be closer to 9 than 6.

Limits of functions

- ▶ We don't really want to use the formal definition in most cases to find the limits.
- ► The graphical approach often helps.
- ► An important property: For continuous functions the limit is the same as the value of the function.
- ▶ We can also use the following properties:

$$\lim_{x \to p} (f(x) + g(x)) = \lim_{x \to p} f(x) + \lim_{x \to p} g(x)$$

$$\lim_{x \to p} (f(x) - g(x)) = \lim_{x \to p} f(x) - \lim_{x \to p} g(x)$$

$$\lim_{x \to p} (f(x) \cdot g(x)) = \lim_{x \to p} f(x) \cdot \lim_{x \to p} g(x)$$

$$\lim_{x \to p} (f(x)/g(x)) = \lim_{x \to p} f(x) / \lim_{x \to p} g(x)$$

Examples

Find $\lim_{x\to 5} e^{x-3}$. Notice that this is a standard exponential function, which is continuous. Thus

$$\lim_{x \to 5} e^{x-3} = e^{5-3} = e^2$$

Find $\lim_{x\to 0} \ln(x)$. Now notice, that $\ln(0)$ is not defined. However the $\ln(x)$ function is monotonically increasing, thus as we get closer and closer to zero, it's value gets closer and closer to minus infinity. Thus

$$\lim_{x\to 0}\ln(x)=-\infty$$

Examples

Find
$$\lim_{x\to\infty} \frac{x^4-2x^3+x-3}{x^5-2x}$$

$$\lim_{x \to \infty} \frac{x^4 - 2x^3 + x - 3}{x^5 - 2x} = \lim_{x \to \infty} \frac{\frac{1}{x^5} (x^4 - 2x^3 + x - 3)}{\frac{1}{x^5} (x^5 - 2x)}$$

$$\lim_{x \to \infty} \frac{\frac{1}{x^5} (x^4 - 2x^3 + x - 3)}{\frac{1}{x^5} (x^5 - 2x)} = \lim_{x \to \infty} \frac{\frac{1}{x} - \frac{2}{x^2} + \frac{1}{x^4} - \frac{3}{x^5}}{1 - \frac{2}{x^4}}$$

$$\lim_{x \to \infty} \frac{\frac{1}{x} - \frac{2}{x^2} + \frac{1}{x^4} - \frac{3}{x^5}}{1 - \frac{2}{x^4}} = \frac{\lim_{x \to \infty} \frac{1}{x} - \lim_{x \to \infty} \frac{2}{x^2} + \lim_{x \to \infty} \frac{1}{x^4} - \lim_{x \to \infty} \frac{3}{x^5}}{\lim_{x \to \infty} 1 - \lim_{x \to \infty} \frac{2}{x^4}}$$

$$\lim_{x \to \infty} 1 - \lim_{x \to \infty} \frac{2}{x^4} + \lim_{x \to \infty} \frac{1}{x^4} - \lim_{x \to \infty} \frac{3}{x^5}$$

$$\lim_{x \to \infty} 1 - \lim_{x \to \infty} \frac{2}{x^4} + \lim_{x \to \infty} \frac{1}{x^4} - \lim_{x \to \infty} \frac{3}{x^5}$$

$$\lim_{x \to \infty} 1 - \lim_{x \to \infty} \frac{2}{x^4} + \lim_{x \to \infty} \frac{1}{x^4} - \lim_{x \to \infty} \frac{3}{x^5}$$

$$\lim_{x \to \infty} 1 - \lim_{x \to \infty} \frac{2}{x^4} + \lim_{x \to \infty} \frac{1}{x^4} - \lim_{x \to \infty} \frac{3}{x^5}$$

Examples

Find
$$\lim_{x\to 2} \frac{3x^2+3x-18}{x-2}$$

$$\lim_{x \to 2} \frac{3x^2 + 3x - 18}{x - 2} = \lim_{x \to 2} \frac{3(x^2 + x - 6)}{x - 2}$$

$$\lim_{x \to 2} \frac{3(x^2 + x - 6)}{x - 2} = \lim_{x \to 2} \frac{3(x + 3)(x - 2)}{x - 2}$$

$$\lim_{x \to 2} \frac{3(x + 3)(x - 2)}{x - 2} = \lim_{x \to 2} 3(x + 3) = 3 \cdot 5 = 15$$

Solve the following problems

- 1. $\lim_{x\to 0} (3+2x^2)$
- 2. $\lim_{x \to -1} \frac{3+2x}{x-1}$
- 3. $\lim_{x \to 1} \frac{x^2 + 7x 8}{x 1}$
- 4. $\lim_{x \to \infty} \frac{x^3 3x^2 + x 5}{3x^3 + 5x^2 2}$
- 5. $\lim_{x \to 1} \frac{x^2 1}{x 1}$
- 6. $\lim_{h \to 0} \frac{\sqrt{h+1}-1}{h}$
- 7. $\lim_{x \to 5} \frac{3x^2 9x 30}{x 5}$

- ▶ We are often interested in the slope of the tangent line of a curve at a given point.
- ► To get this, we use differentiation.
- ▶ It is especially useful in case of optimization problems.
- ▶ Why? Consider for example the case when you are looking for the maximum of $f(x) = 3 x^2$.
- ▶ What is the slope of the tangent line at the maximum point?

▶ The first differential $f'(x_0)$ of a function f(x) at a given point x_0 is given by the limit:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

- ▶ Notice that $\frac{f(a)-f(b)}{a-b}$ is the slope of the section connecting the function at a and b.
- ▶ What we do here, is we get these two points closer and closer.
- Once they are infinitesimally close, it gives the slope of the tangent line.

Our workhorse function will be $f(x) = x^2$. Let's find f'(1). By definition:

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$$

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1}$$

$$\lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1} = \lim_{x \to 1} x + 1 = 2$$

Still working with $f(x) = x^2$, let's find f'(2). By definition:

$$f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$$

$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2}$$

$$\lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2} = \lim_{x \to 2} x + 2 = 4$$

Solve the following problems

Still working with $f(x) = x^2$ find

- 1. f'(5)
- 2. For any general x_0 find $f'(x_0)$

A bit more difficult problem: Consider now $g(x) = x^3$.

- 1. First find g'(2)
- 2. Now find g'(-2)
- 3. For any general x_0 try to find $g'(x_0)$

The derivative function

- ▶ We have shown that $f'(x_0) = 2x_0$ if $f(x) = x^2$
- ▶ We have also shown that $g'(x_0) = 3x_0^2$ if $g(x) = x^3$
- ► These are the first derivative functions, that give the derivative of a function at any point.
- ▶ The usual notation is either f'(x) or

$$\frac{\mathrm{d}\,f(x)}{\mathrm{d}\,x}$$

▶ Let's find it for the general power function $f(x) = x^n$

Properties of derivative functions

$$(\alpha f + \beta g)' = \alpha f' + \beta g'$$

$$\blacktriangleright (fg)' = f'g + fg'$$

Solve the following problems

Find the derivative of the following functions:

$$f(x) = x^3 + 2x^2 - x$$

•
$$g(x) = (x^2 + 2)(x - 4)$$

►
$$h(x) = \frac{x^{12} - 15x^2}{x - 5}$$

Some additional useful derivatives

$$ightharpoonup \frac{d}{dx}e^x = e^x$$

$$\blacktriangleright \ \frac{d}{dx} \ln(x) = \frac{1}{x}, \quad \forall \, x > 0$$

$$\blacktriangleright \ \frac{d}{dx} \log_a(x) = \frac{1}{x \ln(a)}$$

Solve the following problems

Find the derivative of the following functions:

- $f(x) = \frac{x^2}{\ln x}$
- $g(x) = e^x(x^3 x^2)$
- ► $h(x) = \frac{5^x}{x^2 2}$

Calculus 1