Abstract Algebra I

Ji, Yong-hyeon

April 16, 2025

We cover the following topics in this note.

- Cyclic Group
- Classification of Cyclic Group
- Order of an Element
- Converge of Lagrange's Theorem
- Coset
- Lagrange's Theorem

Contents

Cy	ic Group and its Classification	2
Cy	ic Group and the Converge of Lagrange's Theorem	7
Ca	Coset and Lagrange's Theorem	
A	Number Theory	20
	A.1 Divisibility	20
	A.2 Modular Arithmetic	22
	A.3 Greatest Common Divisors	23
	A.4 Prime Number	24

Cyclic Group and its Classification

Note. Let (G,*) be a group with identity element e. Recall that the axioms of a group require:

- $(G0) \ \forall \, x,y \in G, \ x * y \in G;$
- (G1) $\forall x, y, z \in G$, (x * y) * z = x * (y * z);
- (G2) $\exists e \in G$, s.t. $\forall x \in G$, $e \cdot x = x \cdot e = x$;
- (G3) $\forall x \in G, \exists x^{-1} \in G \text{ s.t. } x \cdot x^{-1} = x^{-1} \cdot x = e.$

Cyclic Group

Definition. A group *G* is said to be **cyclic** if and only if

$$\exists a \in G \text{ such that } \left[\forall g \in G, \exists n \in \mathbb{Z} \text{ with } g = a^n \right].$$

The element *a* is called a **generator** of *G*.

Remark. The notation a^n (or na) is understood in the group-theoretic sense,

$$a^{n} := \begin{cases} \underbrace{\underbrace{a * \cdots * a}_{|n|=n \text{ factors}}} & : n > 0, \\ e_{G} & : n = 0, \\ \underbrace{(a^{-1}) * \cdots * (a^{-1})}_{|n|=-n \text{ factors}} = (a^{-1})^{-n} & : n < 0, \end{cases}$$

$$= \begin{cases} \underbrace{a * \cdots * a}_{|n|=n \text{ factors}} & : n > 0, \\ e_{G} & : n = 0, \\ \underbrace{(-a) * \cdots * a^{-1}}_{|n|=-n \text{ factors}} = (-n)(-a) & : n < 0. \end{cases}$$

Note that for all $m, n \in \mathbb{Z}$,

$$g^{m+n} = g^m * g^n \quad (\text{or } (m+n)g = mg*ng).$$

The Classification for Cyclic Groups

Theorem. *Let* (G, *) *be a cyclic group. Then*

$$(G,*) \simeq \begin{cases} (\mathbb{Z},+) & \text{if } G \text{ is infinite,} \\ (\mathbb{Z}/n\mathbb{Z},+_n) & \text{if } G \text{ is finite of order } n. \end{cases}$$

In other words, every cyclic group G is isomorphic to either \mathbb{Z} or $\mathbb{Z}/n\mathbb{Z}$ for some $n \in \mathbb{N}$.

Proof. Let $g \in G$ be a generator of the cyclic group G, and let e be the identity of G.

----- Multiplicative Notation -----

Case 1. (*G* is infinite) Assume that *G* is infinite. Define the mapping

$$\varphi: (\mathbb{Z}, +) \to (G, *), \quad n \mapsto \varphi(n) := g^n.$$

We claim that φ is bijective homomorphism:

(i) (Homomorphism) Let $a, b \in \mathbb{Z}$. Then, we have

$$\varphi(a+b) = g^{a+b} = g^a * g^b = \varphi(a) * \varphi(b).$$

(ii) (Injectivity) Let $k, \ell \in \mathbb{Z}$. Then

$$\varphi(k) = \varphi(\ell) \implies g^k = g^{\ell} \text{ by definition of } \varphi$$

$$\implies g^k * (g^{-1})^{\ell} = e$$

$$\implies g^k * g^{-\ell} = e$$

$$\implies g^{k+(-\ell)} = e$$

$$\implies k + (-\ell) = 0$$

$$\implies k = \ell.$$

(iii) (Surjectivity) Let $x \in G$. Then $\exists k \in \mathbb{Z}$ such that $x = g^k$, and so

$$\varphi(k)=g^k=x.$$

Therefore, φ is surjective.

By (i), (ii) and (iii), we concluded that φ is a isomorphism, i.e., $(G,*) \simeq (\mathbb{Z},+)$.

Case 2. (*G* is Finite of Order *n*) Now assume that *G* is finite, say, $|G| = n \in \mathbb{N}$. Define a set

$$S:=\left\{n\in\mathbb{Z}_{\geq 0}:g^n=e\right\}.$$

Clearly $0 \in S$; that is, $S \neq \emptyset$. By well-ordering principle, $\exists n_0 = \min S$.

We now show that for any $k, \ell \in \mathbb{Z}$,

$$g^k = g^\ell$$
 if and only if $k \equiv \ell \pmod{n}$.

- (⇒) Let $g^k = g^\ell$. Then $g^{k-\ell} = e$. By the minimality of n, we know that $n \mid k \ell$, which precisely means $k \equiv \ell \pmod{n}$.
- (\Leftarrow) Conversely, let $k \equiv \ell \pmod{n}$. Then $\exists t \in \mathbb{Z}$ such that $k = \ell + tn$, and so

$$g^k = g^{\ell+tn} = g^{\ell} * (g^n)^t = g^{\ell} * e^t = g^{\ell}.$$

Thus, the relation $g^k = g^\ell$ holds if and only if k and ℓ are congruent modulo n.

Define the mapping

$$\psi: \mathbb{Z}/n\mathbb{Z} \to G$$
, $[k] \mapsto \psi([k]) := g^k$,

where [k] is the equivalence class of k modulo n:

$$[k] := \{ \ell \in \mathbb{Z} : \ell \equiv k \pmod{n} \} = \{ \ell \in \mathbb{Z} : n \mid k - \ell \}$$

We NTS that ψ is a bijective homomorphism:

(i) (Homomorphism) Let [k], $[\ell] \in \mathbb{Z}/n\mathbb{Z}$. Then

$$\psi([k] + [\ell]) = \psi([k + \ell]) = g^{k + \ell} = g^k * g^\ell = \psi([k]) * \psi([\ell]).$$

(ii) (Injectivity) Let [k], $[\ell] \in \mathbb{Z}/n\mathbb{Z}$. Then

$$\psi([k]) = \psi([\ell]) \implies g^k = g^\ell \implies k \equiv \ell \; (\text{mod } n) \implies [k] = [\ell].$$

(iii) (Surjectivity) Let $x \in G$. Then $\exists k \in \mathbb{Z}$ such that $x = g^k$, and so

$$\psi([k]) = g^k = x.$$

Therefore, ψ is surjective.

By (i), (ii) and (iii), we concluded that φ is a isomorphism, i.e., $(G,*) \simeq (\mathbb{Z}/n\mathbb{Z},+)$.

----- Additive Notation -----

Case 1. (*G* is infinite) Assume that *G* is infinite. Define the mapping

$$\varphi: (\mathbb{Z}, +) \to (G, *), \quad n \mapsto \varphi(n) := ng.$$

We claim that φ is bijective homomorphism:

- (i) (Homomorphism) Let $a, b \in \mathbb{Z}$. Then, we have $\varphi(a+b) = (a+b)g = ag * bg = \varphi(a) * \varphi(b)$.
- (ii) (Injectivity) Let $k, \ell \in \mathbb{Z}$. Then

$$\varphi(k) = \varphi(\ell) \implies kg = \ell g \implies kg * \ell(-g) = e \implies kg * (-\ell)g = e$$

$$\implies (k + (-\ell))g = e$$

$$\implies k + (-\ell) = 0$$

$$\implies k = \ell.$$

(iii) (Surjectivity) Let $x \in G$. Then $\exists k \in \mathbb{Z}$ such that x = kg, and so $\varphi(k) = kg = x$.

By (i), (ii) and (iii), we concluded that φ is a isomorphism, i.e., $(G,*) \simeq (\mathbb{Z},+)$.

Case 2. (*G* is Finite of Order *n*) Now assume that *G* is finite, say, |G| = n. Define a set $S := \{n \in \mathbb{Z}_{\geq 0} : g^n = e\}$. Clearly $0 \in S$; that is, $S \neq \emptyset$. By WOP, $\exists n_0 = \min S$. Note that

$$kg = \ell g$$
 if and only if $n \mid k - \ell$.

Define the mapping

$$\psi: \mathbb{Z}/n\mathbb{Z} \to G$$
, $[k] \mapsto \psi([k]) := kg$,

where $[k] := \{ \ell \in \mathbb{Z} : n \mid k - \ell \}$. We NTS that ψ is a bijective homomorphism:

(i) (Homomorphism) Let [k], $[\ell] \in \mathbb{Z}/n\mathbb{Z}$. Then

$$\psi([k] + [\ell]) = \psi([k + \ell]) = (k + \ell)g = kg * \ell g = \psi([k]) * \psi([\ell]).$$

(ii) (Injectivity) Let [k], $[\ell] \in \mathbb{Z}/n\mathbb{Z}$. Then

$$\psi([k]) = \psi([\ell]) \implies kg = \ellg \implies n \mid k - \ell \implies [k] = [\ell].$$

(iii) (Surjectivity) Let $x \in G$. Then $\exists k \in \mathbb{Z}$ such that $x = g^k$, and so $\psi([k]) = g^k = x$.

By (i), (ii) and (iii), we concluded that φ is a isomorphism, i.e., $(G,*) \simeq (\mathbb{Z}/n\mathbb{Z},+)$.

Proposition. *The subgroup of cyclic group is also cyclic.*

Proof. Suppose *G* is a cyclic group. Then, by definition, $\exists g \in G$ such that

$$G = \langle g \rangle = \{ g^k : k \in \mathbb{Z} \}.$$

Let $H \leq G$. We consider two cases:

Case 1. Let *H* is the trivial subgroup; that is, $H = \{e\}$. Clearly $H = \{e\} = \langle e \rangle$.

Case 2. Let *H* is nontrivial subgroup; that is, $H \neq \{e\}$.

Since $H \leq G$ and G is cyclic, for each $h \in H$, $\exists k \in \mathbb{Z}$ s.t. $h = g^k$. Define the set

$$S = \{k \in \mathbb{Z}_{\geq 0} : g^k \in H\}.$$

Since *H* is nontrivial, $S \neq \emptyset$. By the well-ordering principle,

$$\exists m = \min\{k \in \mathbb{Z}_{\geq 0} : g^k \in H\}, \text{ so that } g^m \in H.$$

We claim that $H = \langle g^m \rangle$:

 $(H \supseteq \langle g^m \rangle)$ Let $a \in \langle g^m \rangle$. Then $\exists k \in \mathbb{Z}$ such that $a = (g^m)^k$. Since $g^m \in H$ and $H \subseteq G$,

$$a = (g^m)^k = \underbrace{g^m * \cdots * g^m}_{k \text{ factors}} \in H.$$

 $(H \subseteq \langle g^m \rangle)$ Let $h \in H$. By the Division Algorithm, $\exists ! q, r \in \mathbb{Z}$ such that

$$k = qm + r$$
, $0 \le r < m$.

Then $g^k = g^{qm+r} = g^{qm} * g^r = (g^m)^q * g^r$, and so

$$g^r = g^k * (g^m)^{-q} \in H \stackrel{m = \min S}{\Longrightarrow} r = 0 \implies h = g^{qm} = (g^m)^q \implies h \in \langle g^m \rangle.$$

In either case, *H* is cyclic. Hence it is proved.

Theorem. Every cyclic group is abelian.

The Converge of Lagrange's Theorem for Finite Cyclic Groups

Order of an Element

Definition. Let (G, *) be a group. For any $g \in G$, we define the set

$$\left\{n\in\mathbb{N}:g^n=e\right\},\,$$

The **order of** g, denoted by ord(g), is defined by

$$\operatorname{ord}(g) := \begin{cases} \min \left\{ n \in \mathbb{N} : g^n = e \right\} & : \emptyset \neq \left\{ n \in \mathbb{N} : g^n = e \right\} \\ \infty & : \emptyset = \left\{ n \in \mathbb{N} : g^n = e \right\} \end{cases}$$

That is, if there exists at least one positive integer $n \in \mathbb{N}$ such that g^n , then $\operatorname{ord}(g)$ is the smallest such n; otherwise, we say that g has infinite order and write $\operatorname{ord}(g) = \infty$.

Remark (Specialization to Cyclic Groups.). Let G is a cyclic group. Then $\exists g \in G$ such that

$$\langle g \rangle := \{ g^k : k \in \mathbb{Z} \} = G.$$

- If *G* is infinite, then no positive integer *n* satisfies $g^n = e$, so $\{n \in \mathbb{N} : g^n = e\} = \emptyset$ and consequently $\operatorname{ord}(g) = \infty$.
- If *G* is finite of order *n*, then by *Lagrange's Theorem*¹ the unique smallest positive integer *n* for which $g^n = e$ must divide |G|, and in the case where *g* is a generator, $\operatorname{ord}(g) = n = |G|$.

Remark. Let $x \in G$ be an element of a cyclic group G with finite order $n = \operatorname{ord}(x)$. Then

$$x^m = e \iff n \mid m \text{ for any } m \in \mathbb{Z}$$
.

(⇒) By the Division Algorithm, $\exists !q, r \text{ s.t. } m = nq + r \text{ and } 0 \le r < n.$ Then

$$x^m = x^{nq+r} = x^{nq} * x^r = (x^n)^q * x^r = e^q * x^r = x^r.$$

Since $x^m = e$, we have

$$x^r = e$$
 with $0 \le r < n$.

However, by the minimality of $n = \operatorname{ord}(x)$, r must be 0. Thus, m = nq, i.e., $n \mid m$.

$$(\Leftarrow) \ n \mid m \implies \exists q \in \mathbb{Z} : m = nq \implies x^m = x^{nq} = (x^n)^q = e^q = e.$$

If *G* be a finite group and $H \le G$, then |H| divides |G|. In this context, $|\langle g \rangle| = \operatorname{ord}(g)$ divides |G| = n.

Lagrange's Theorem

Theorem. Let G be a finite group and let $H \leq G$ be a subgroup. Then |H| divides |G|.

Proof. In this note, we prove it at the end.

Division Algorithm

Theorem. Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}_{>0}$. Then there exists unique integers q and r such taht

$$a = qb + r$$
 and $0 \le r < b$.

Proof. It is proved by well-ordering principle.

Lemma. Let G be a cyclic group and let $x \in G$ with $ord(x) = n \in \mathbb{N}$. Then, for each $a \in \mathbb{Z}$,

$$\operatorname{ord}(x^a) = \frac{n}{\gcd(n, a)}$$

Proof. Note that

$$\operatorname{ord}(x^{a}) := \min \{ k \in \mathbb{N} : (x^{a})^{k} = e \} = \min \{ k \in \mathbb{N} : n \mid ak \}.$$

Let ord(x^a) =: $t \in \mathbb{Z}$; that is, $(x^a)^t = e$. Consider $d := \gcd(n, a) \in \mathbb{N}$. Then $d \mid n$ and $d \mid a$, and so

$$\exists k_n, k_a \in \mathbb{Z}$$
 such that $n = dk_n$ and $a = dk_a$,

with $gcd(k_n, k_a) = gcd\left(\frac{n}{d}, \frac{a}{d}\right) = 1$. And then

$$(x^a)^t = e \implies n \mid at \implies dk_n \mid (dk_a)t \implies k_n \mid k_a t$$

 $\implies k_n \mid t \text{ by Euclid's Lemma.}$

Since

$$(x^a)^{k_n} = (x^{dk_a})^{k_n} = (x^{dk_n})^{k_a} = (x^n)^{k_a} = e$$

and the minimality of $t = \operatorname{ord}(x^a)$, k_n must t, i.e., $k_n = t$. Thus,

$$\operatorname{ord}(x^a) = t = k_n = \frac{n}{d} = \frac{n}{\gcd(n, a)}.$$

The Converse of Lagrange's Theorem for Finite Cyclic Groups

Theorem. Let G be a finite cyclic group with |G| = n. Then for each $d \in \mathbb{N}$ with $d \mid n$,

$$\exists ! H \leq G \text{ such that } |H| = d.$$

Proof. Since *G* is cyclic, $\exists x \in G$ such that

$$G = \langle x \rangle = \left\{ x^k : k \in \mathbb{Z} \right\}.$$

Since $n = |G| = |\langle x \rangle|$, we have

$$x^n = e$$
 and $n = \operatorname{ord}(x) = \min \{ k \in \mathbb{N} : x^k = e \}$.

Let $d \in \mathbb{N}$ be a divisor of n; that is $d \mid n$. Then $\exists m \in \mathbb{N}$ such that n = dm.

(Existence) Define the element

$$y:=x^m=x^{\frac{n}{d}}\in G$$

We claim that the subgroup generated by y, $H := \langle y \rangle$, has order d; that is ord(y) = d. Note that

$$H = \langle y \rangle = \{ y^k : k \in \mathbb{Z} \} = \{ (x^m)^k : k \in \mathbb{Z} \}.$$

Here, let *k* be the smallest positive integer *k* such that $y^k = e$. Then

$$y^k = e \implies x^{mk} = e \implies n \mid mk \implies dm \mid mk \implies d \mid k.$$

Since $y^d = (x^m)^d = x^{md} = x^n = e$ and k is the *smallest* positive integer with this property, thus,

$$ord(y) = k = d$$
.

(Uniqueness) Let

$$K \leq G = \langle x \rangle = \left\{ x^k : k \in \mathbb{Z} \right\}.$$

with |K| = d. That is, $\exists \ell \in \mathbb{Z}$ such that $K = \langle x^{\ell} \rangle$. Then

$$\operatorname{ord}(x^{\ell}) = \frac{n}{\gcd(n,\ell)} = d,$$

so that $gcd(n, \ell) = \frac{n}{d}$. By Bézout's identity,

$$\exists r, s \in \mathbb{Z}$$
 and $rn + s\ell = \gcd(n, \ell) = \frac{n}{d}$.

Then

$$x^{rn+s\ell} = x^{n/d},$$

$$(x^n)^r * x^{s\ell} = x^{n/d},$$

$$x^{s\ell} = x^{n/d},$$

$$(x^{\ell})^s = x^{n/d}.$$

Hence

$$K = \langle x^{\ell} \rangle = \langle x^{n/d} \rangle = H.$$

Euler's Phi Function

Definition. The **Euler's Phi Function** $\phi : \mathbb{Z} \to \mathbb{Z}$ is defined by

$$\varphi(n) := \begin{cases} \# \left\{ k \in \{1, 2, \dots, |n|\} : \gcd(k, |n|) = 1 \right\} &: n \neq 0, \\ 0 &: n = 0. \end{cases}$$

We set $\varphi(0) = 0$ by convention.

Remark. Consider a cyclic group $\mathbb{Z}/n\mathbb{Z}$ of order n (under $+_n$). Recall that, for $[a] \in \mathbb{Z}/n\mathbb{Z}$,

$$\operatorname{ord}([a]) = \frac{n}{\gcd(a, n)}.$$

Here, if gcd(a, n) = 1 then ord([a]) = n; that is, [a] be a generator of $\mathbb{Z}/n\mathbb{Z}$. Thus, the set of generators of $\mathbb{Z}/n\mathbb{Z}$ is

$$\{[a] \in \mathbb{Z}/n\mathbb{Z} : \gcd(a, n) = 1\},\$$

and so

$$\varphi(n) = \#\{a \in \{1, 2, \dots, n\} : \gcd(a, n) = 1\},\$$

which is precisely the number of generators of $\mathbb{Z}/n\mathbb{Z}$.

Properties of Euler-Phi Function

Proposition. Let $p \in \mathbb{N}_{>1}$ be a prime, and let $k, m, n \in \mathbb{Z}$. Then

- (1) $\varphi(p^k) = p^k p^{k-1}$.
- (2) $\varphi(mn) = \varphi(m)\varphi(n)$.

Proof. Consider a prime p and let $k, m, n \in \mathbb{N}$.

(1) The Euler's phi function counts the number of $a \in [1, p^k]$ that are coprime to p^k :

$$\varphi(p^k) = \#\{a \in \{1, 2, \dots, p^k\} : \gcd(a, p^k) = 1\}.$$

The multiples of p in $\{1, 2, \dots, p^k\}$ is

$$1 \cdot p$$
, $2 \cdot p$, ..., $p^{k-1} (= p^{k-2} \cdot p)$, $p^k (= p^{k-1} \cdot p)$,

and so its number is precisely p^{k-1} . Thus,

$$\varphi(p^k) = p^k - p^{k-1}.$$

(2) TBA

Coset and Lagrange's Theorem

Observation (Group \mathbb{Z} and subgroup $n\mathbb{Z}$). Consider an abelian group $(\mathbb{Z}, +)$. For a fixed $n \in \mathbb{Z} \setminus \{0\}$, we define

$$n\mathbb{Z} := \{\underbrace{n + \dots + n}_{k \text{ factors}} : k \in \mathbb{Z}\} = \{nk : k \in \mathbb{Z}\}.$$

Note that $0 \in n\mathbb{Z}$ since $0 = n \cdot 0$. Thus, $n\mathbb{Z}$ is nonempty. Let $a, b \in n\mathbb{Z}$ then

$$\exists k, \ell \in \mathbb{Z}$$
 such that $a = nk$ and $b = n\ell$.

Then

$$a + (-b) = nk + n(-\ell)$$
$$= n(k + (-\ell))$$
$$\in n\mathbb{Z} \quad \therefore k + (-\ell) \in \mathbb{Z}.$$

Thus, $(n\mathbb{Z}, +) \leq (\mathbb{Z}, +)$. Note that $n\mathbb{Z}$ is a "grid" inside \mathbb{Z} :

$$3\mathbb{Z} = \left\{ 3k \mid k \in \mathbb{Z} \right\} = \left\{ \underbrace{3 + \dots + 3}_{k \text{ factors}} \mid k \in \mathbb{Z} \right\}$$

Observation (Partition via the Division Algorithm). Let $n \in \mathbb{Z} \setminus \{0\}$. Given any $a \in \mathbb{Z}$, the Division Algorithm guarantees that $\exists ! q, r \in \mathbb{Z}$ such that

$$a = nq + r$$
, with $0 \le r < n$.

This leads to the relation a - r = nq, i.e., $a - r \in n\mathbb{Z}$. Consequently, we say that

$$a + (-r) \in n\mathbb{Z} \iff n \mid a + (-r) \iff a \equiv r \pmod{n}.$$

Hence, one may assign to each $a \in \mathbb{Z}$ the corresponding set

$$a + n\mathbb{Z} = (nq + r) + n\mathbb{Z}$$
$$= (r + nq) + n\mathbb{Z}$$
$$= r + n\mathbb{Z} = \{r + nk : k \in \mathbb{Z}\}.$$

The set of all integers is the disjoint union of these residue classes: $\mathbb{Z} = \bigsqcup_{r=0}^{n-1} (r + n\mathbb{Z}).$

Note.

Group
$$(\mathbb{Z}, +)$$
 $(G, *)$

Subroup $(n\mathbb{Z}, +) \leq (\mathbb{Z}, +)$ $(H, *) \leq (G, *)$

Relation $a \sim r \Leftrightarrow a + (-r) \in n\mathbb{Z}$ $g_1 \sim g_2 \Leftrightarrow g_1 * g_2^{-1} \in H$

Coset $a + n\mathbb{Z} = \{a + nk : k \in \mathbb{Z}\}$ $g * H := \{g * h : h \in H\}$

Quotient Group with Operation $(a + n\mathbb{Z}) \boxplus (b + n\mathbb{Z}) := (a + b) + n\mathbb{Z}$ $(g_1 * H) \boxtimes (g_2 * H) := (g_1 * g_2) * H$

Partition $\mathbb{Z} = \bigcup_{r=0}^{n-1} (r + n\mathbb{Z})$ $G = \bigcup_{g \in G} (g * H)$

Proposition. Let (G,*) be a group and $H \leq G$. Define a binary relation \sim_L and \sim_R on G by

$$g_1 \sim_L g_2 \iff g_1^{-1} * g_2 \in H,$$

$$g_1 \sim_R g_2 \iff g_1 * g_2^{-1} \in H.$$

Then \sim_L *and* \sim_R *are both equivalence relations on* G.

Proof. We NTS that a relation \sim_L on G is reflexive, symmetric and transitive:

- (i) (Reflexivity) Take $g \in G$. Note that $g^{-1} * g = e$ is the identity element of G. Since H is a subgroup, it must contain e. Thus, $g^{-1} * g = e \in H$, i.e., $g \sim_L g$.
- (ii) (Symmetry) Let $g_1, g_2 \in G$. Suppose that $g_1 \sim_L g_2$; that is, $g_1^{-1} * g_2 \in H$. Since H is a subgroup,

$$g_2^{-1} * g_1 = (g_1^{-1} * g_2)^{-1} \in H$$
, i.e., $g_2 \sim_L g_1$.

(iii) (Transitivity) Let $g_1, g_2, g_3 \in G$. Suppose that $g_1 \sim_L g_2$ and $g_2 \sim_L g_3$; that is, $g_1^{-1} * g_2, g_2^{-1} * g_3 \in H$. Since $H \leq G$,

$$g_1^{-1} * g_3 = g_1^{-1} * (g_2 * g_2^{-1}) * g_3 = (g_1^{-1} * g_2) * (g_2^{-1} * g_3) \in H$$
, i.e., $g_1 \sim_L g_3$.

Hence, \sim_L is equivalence relations on G and similarly \sim_R is also.

Coset

Definition. Let (G, *) be a group with identity element e, and let $H \le G$ be a subgroup of G. For any element $g \in G$, the **left coset** of H in G corresponding to g is defined by

$$g * H := \{ g * h : h \in H \} \subseteq G.$$

Similarly, the **right coset** of *H* in *G* corresponding to *g* is defined by $H * g := \{h * g : h \in H\}$.

Remark. Note that

$$x \in g * H \iff \exists h \in H$$
; such that $x = g * h$.

Thus, H = e * H = H * e since h = e * h = h * e for any $h \in H$.

Remark. Consider the equivalence relation \sim_L on G. For each $g \in G$, we obtain

$$[g] = \{x \in G : g \sim_L x\} = \{x \in G : g^{-1} * x \in H\} = \{g * h : h \in H\} = gH.$$

Coset Equality Criterion

Proposition. Let G be a group and let $H \leq G$ be a subgroup. Then, for all $g_1, g_2 \in G$, the following conditions are equivalent:

- (1) $g_1 * H = g_2 * H$
- $(2) \ g_1^{-1} * g_2 \in H$
- $(3) \ g_2^{-1} * g_1 \in H.$

Proof. Let $g_1, g_2 \in G$.

[(1) \Rightarrow (2)] Assume that $g_1 * H = g_2 * H$. Then

$$g_2 = g_2 * e \implies g_2 \in g_2 H = g_1 H \implies \exists h \in H \text{ s.t. } g_2 = g_1 * h$$

$$\implies g_1^{-1} * g_2 = h \in H.$$

[(2) \Rightarrow (1)] Assume that $g_1^{-1} * g_2 \in H = e * H$. Then

$$\exists h \in H \text{ such that } g_1^{-1} * g_2 = e * h = h, \text{ i.e., } g_2 = g_1 * h.$$

(a) $(g_1H \supseteq g_2H)$ Let $y \in g_2 * H$ then $\exists h' \in H$ such that $y = g_2 * h'$. Thus

$$y = g_2 * h' = (g_1 * h) * h' = g_1 * (h * h') \overset{h*h' \in H}{\in} g_1 H.$$

(b) $(g_1H \subseteq g_2H)$ Let $x \in g_1 * H$ then $\exists h'' \in H$ such that $x = g_1 * h''$. Thus

$$x = g_1 * h'' = (g_2 * h^{-1}) * h'' = g_2 * (h^{-1} * h'') \stackrel{h^{-1} * h' \in H}{\in} g_2 * H.$$

By (a) and (b), we obtain that $g_1 * H = g_2 * H$.

[(2) \Leftrightarrow (3)] Note that $(g_1^{-1}g_2)^{-1}=g_2^{-1}g_1$. Since H is a subgroup, we have

$$g_1^{-1}g_2 \in H \iff (g_1^{-1}g_2)^{-1} \in H \iff g_2^{-1}g_1 \in H.$$

Equal Cardinalities of Cosets

Proposition. Let (G, *) be a group, and let $H \leq G$. Then

$$|g * H| = |H|$$
, for all $g \in G$.

Proof. Let $g \in G$. Define a mapping

$$\varphi: H \to g * H$$
, $h \mapsto \varphi(h) := g * h$.

We NTS that φ is a bijection:

(i) (Injectivity) Let $h_1, h_2 \in H$. Then

$$\varphi(h_1) = \varphi(h_2) \implies g * h_1 = g * h_2$$

$$\implies g^{-1} * (g * h_1) = g^{-1} * (g * h_2)$$

$$\implies h_1 = h_2.$$

(ii) (Surjectivity) Let $x \in g * H$. Then $\exists h \in H$ such that x = g * h, and so

$$\varphi(h) = g * h = x.$$

Hence it is proved.

Quotient Group *G/H*

Definition. Let *G* be a group and let *H* be a normal subgroup of *G* (that is, $g * H * g^{-1} = H$ for all $g \in G$). The **quotient group** G/H is defined by

$$G/H := \left\{ g * H : g \in G \right\},\,$$

where for each $g \in G$, the *left coset* g * H is the set

$$g*H := \{g*h : h \in H\}.$$

The binary operation on G/H is defined by

$$(g_1 * H) \boxtimes (g_2 * H) := (g_1 * g_2) * H$$
, for all $g_1, g_2 \in G$.

Exercise. Prove that there exists a group isomorphism from $G/\{e\}$ to G.

Sol. The set of left cosets of $\{e\}$ in G is $G/\{e\} = \{g * \{e\} : g \in G\}$. Define a function

$$\varphi: G/\{e\} \to G$$
, $g*\{e\} \mapsto \varphi(g*\{e\}) := g$.

Then

(i) (Well-definedness) Let $g * \{e\} = h * \{e\}$ for some $g, h \in G$. Then

$$h^{-1} * g \in \{e\} \implies h^{-1} * g = e \implies g = h.$$

(ii) (Homomorphism) Let $g*\{e\}$, $h*\{e\} \in G/\{e\}$. Then

$$\varphi((g*\{e\})\boxtimes(h*\{e\}))=\varphi((g*h)*\{e\})=g*h=\varphi(g*\{e\})*\varphi(h*\{e\})$$

- (iii) (Injectivity) $\varphi(g*\{e\}) = \varphi(h*\{e\}) \implies g = h \implies g*\{e\} = h*\{e\}.$
- (iv) (Surjectivity) Let $g \in G$. Then $\exists g * \{e\} \in G/\{e\}$ such that $\varphi(g * \{e\}) = g$.

Lagrange's Theorem

Theorem. Let (G, *) be a finite group and let $H \le G$ be a subgroup. Then

$$|H|$$
 divides $|G|$.

Proof. Consider equivalence classes (left cosets) be denoted by

$$g_1H, g_2H, ..., g_kH,$$

where $k \in \mathbb{N}$. Since $G = \bigsqcup_{i=1}^{k} g_i H$, we have

$$|G| = \sum_{i=1}^{k} |g_i H|$$

$$= \sum_{i=1}^{k} |H| \quad \therefore |g_i H| = |H| \quad \text{for all } i = 1, 2, \dots, k.$$

$$= k \cdot |H|.$$

Hence, the order (cardinality) of *H* divides the order of *G*.

Corollary. Let p be a prime. Then $\mathbb{Z}/p\mathbb{Z}$ has no proper subgroup except $\{e\}$. In other words, if H is a subgroup of $\mathbb{Z}/p\mathbb{Z}$, then either

$$H = \big\{[0]\big\} \quad or \quad H = \mathbb{Z}/p\mathbb{Z}.$$

Proof. Consider the group $G = \mathbb{Z}/p\mathbb{Z}$. Since p is prime, we have |G| = p. Let $H \leq \mathbb{Z}/p\mathbb{Z}$. Then, by Lagrange's Theorem, |H| must divide p. By the definition of a prime,

$$|H| \in \{1, p\}.$$

Case 1. If |H| = 1, then $H = \{[0]\}$.

Case 2. If |H| = p, then $H = \mathbb{Z}/p\mathbb{Z}$.

Thus, there is no proper nontrivial subgroup of $\mathbb{Z}/p\mathbb{Z}$; the only subgroups are the trivial subgroup and the group itself.

Corollary. Every group of prime order is cyclic.

Proof. Let |G| = p, where p is prime. Then |G| > 1 and so $\exists g \in G$ with $g \neq e$. Consider $\langle g \rangle \leq G$. By Lagrange's Theorem, $|\langle g \rangle|$ divides |G| = p. Since p is prime, either

$$ord(g) = 1$$
 or $ord(g) = p$.

Case 1. If ord(g) = 1, then $G = \{e\}$. It is contradict to the |G| > 1.

Case 2. If ord(g) = p, then $|G| = p = |\langle g \rangle|$.

Therefore, $G = \langle g \rangle$.

References

- [1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 20. 추상대수학 (a) 순환군의 분류 Classification of cyclic group" YouTube Video, 22:01. Published October 18, 2019. URL: https://www.youtube.com/watch?v=1yQ520SB_Cc&t=708s.
- [2] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 21. 추상대수학 (b) 순환 군과 라그랑지 정리의 역방향 cyclic group and inverse of Lagrange theorem" YouTube Video, 32:03. Published October 19, 2019. URL: https://www.youtube.com/watch?v=_oY-2n6_xEg& t=1744s.
- [3] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 22. 추상대수학 (c) 잉여류와 라그랑지 정리 set of cosets and Lagrange's theorem" YouTube Video, 22:33. Published October 22, 2019. URL: https://www.youtube.com/watch?v=dsyssRBSqow&t=835s.

A Number Theory

A.1 Divisibility

Divisibility

Definition. Let $a, b \in \mathbb{Z}$ with $a \neq 0$. Then a divides b if

 $\exists c \in \mathbb{Z}$ such that b = ac.

Then *a* is *divisor* or *factor* of *b* and *b* is *multiple* of *a*.

Remark. We write $a \mid b$ if a divides b, and $a \nmid b$ otherwise.

Remark. Let $a, b \in \mathbb{N}$. Then $a \mid b \implies a \leq b$.

Proof. Let $a \mid b$. Then

 $\exists k \in \mathbb{N}$ such that $b = a \cdot k$.

Note that $k \ge 1$. Then

 $a \cdot k \ge a \cdot 1 \implies b \ge a \cdot 1 \implies b \ge a$.

Proposition. *Let* a, b, $c \in \mathbb{Z}$.

- (1) $a \mid b \text{ and } b \mid c \implies a \mid c$.
- (2) Let $c \neq 0$. Then $ca \mid cb \implies a \mid b$.

Proof. Let $a, b, c \in \mathbb{Z}$.

(1) Let $a \mid b$ and $b \mid c$. Then $\exists u, v \in \mathbb{Z}$ s.t. au = b and bv = c. Thus

$$c = bv = (au)v = a(uv),$$

and so $a \mid c$.

(2) Let $ca \mid cb$ with $c \neq 0$. Then $\exists u \in \mathbb{Z} \text{ s.t. } cb = cau$. Hence b = au, and so $a \mid b$.

Proposition. *Let* a, b, $c \in \mathbb{Z}$. *For any* m, $n \in \mathbb{Z}$,

$$c \mid a \text{ and } c \mid b \implies c \mid (ma + nb).$$

Proof. Let $m.n \in \mathbb{Z}$, and let $a \mid b$ and $b \mid c$. Then

 $\exists e, f \in \mathbb{Z} \text{ such that } a = ce \text{ and } b = cf.$

Hence

$$ma + nb = m(ce) + n(cf) = c(me + nf),$$

and so $c \mid (ma + nb)$.

Euclid's Lemma

Theorem. Let $a, b, c \in \mathbb{Z}$, and let $a \mid bc$. Then

$$gcd(a,b) = 1 \implies a \mid c$$
.

Proof. By Bézout's Identity, $\exists a, b \in \mathbb{Z}$ such that

$$ax + by = \gcd(a, b) = 1.$$

Consider

$$c \cdot 1 = c(ax + by) = cax + cby.$$

Since $a \mid ac$ and $a \mid bc$, we have

$$a \mid (cax + cby).$$

Hence, $a \mid c$.

A.2 Modular Arithmetic

Congruence (Number Theory)

Definition. Let n be a positive integer ($n \in \mathbb{N}$). Two integers a and b are said to be **congruent modulo** n, written as

$$a \equiv b \pmod{n}$$
,

if and only if

$$n \mid a - b$$
, i.e., $\exists k \in \mathbb{Z} \text{ such that } a - b = kn$.

Remark (Modulo Operation). According to the **division algorithm**, for any integer a and any positive integer n, there exist unique integers q (the quotient) and r (the remainder) such that

$$a = qn + r$$
 with $0 \le r < n$.

When we express this using the floor function and the mod operation, we identify:

$$q = \left| \frac{a}{n} \right|$$
 and $r = a \mod n$.

Thus, we can rewrite the division algorithm as:

$$a = n \left| \frac{a}{n} \right| + (a \mod n).$$

Thus, we have

$$a \bmod n := \begin{cases} a - n \left\lfloor \frac{a}{n} \right\rfloor & : n \neq 0 \\ 0 & : n = 0. \end{cases}$$

Note that

$$a \equiv b \pmod{n} \iff a \mod n = b \mod n.$$

A.3 Greatest Common Divisors

Greatest Common Divisor; GCD

Definition. Let $a, b \in \mathbb{Z}$. An nonnegative integer $d \in \mathbb{Z}_{\geq 0}$ is called a **greatest common divisor (gcd)** of a and b, denoted by $d = \gcd(a, b)$, if it satisfies the following two conditions:

- (i) (Divisibility) $d \mid a$ and $d \mid b$.
- (ii) (Maximality) For any $c \in \mathbb{Z}$,

$$c \mid a \text{ and } c \mid b \implies c \mid d.$$

Proposition. *Let* a, b, $c \in \mathbb{Z}$.

(1) gcd(a + cb, b) = gcd(a, b).

(2) $gcd(a,b) = d \implies gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1.$

Proof. TBA

Bezout's Identity

Theorem. Let $a, b \in \mathbb{Z}$. Then

 $\exists m, n \in \mathbb{Z}$ such that gcd(a, b) = ma + mb.

Remark. Note that there are infinitely many such m and n.

Proof. It is proved by well-ordering principle.

Corollary. *Let* a , $b \in \mathbb{Z}$.

 $gcd(a,b) = 1 \implies \exists m, n \in \mathbb{Z} \text{ such that } ma + nb = 1.$

A.4 Prime Number

Prime Number

Definition. A number $p \in \mathbb{N}_{>1}$ is **prime** if, for m > 0,

$$m \mid p \implies m = 1 \text{ or } m = p.$$

A number which is not prime is composite.

Remark. A number $p \in \mathbb{N}_{>1}$ is **prime** if, for m > 0, $m \mid p \implies m \in \{1, p\}$.