Consider the following example.

Let f_a a = 1, ..., n be a set of functions on (0, 1) and let

- 1) Λ be an algebra of smooth functions on R
- 2) Λ_0 an algebra of smooth functions f such that $supp\ f\subseteq [0,1]$

Consider a module $P(P_0)$ generated by f_a with coefficients in $\Lambda(\Lambda_0)$

Then P and P_0 are projective modules and P is free.

Sophisticated explanation why P is free is following: $P(P_0)$ corresponds to module of global sections of fibre bundle that is subbundle of trivial fibre bundle $[0,1] \times R^n$ ($S^1 \times R^n$). All bundles over discs are trivial.

It is really funny exercise to construct embedding ι of module $P(P_0)$ in free module E^n with generators $\{e_a\}$ such that this embedding splits module E^n on projective modules:

$$\iota P \sum \ker \Pi = E$$

where $\Pi f_a = e_a$

In general case projective module P_0 is not free.

For example if f_a (a=1,2) are two functions such that $f_a(0)+f_a(1)=0$ and these functions are independent (e.g. $f_1=\cos \pi x$ $f_2=\sin \pi x$) then P_0 is projective not free module of global sections of Mobius strip.