

CONTENTS

	Problem 1A3
1.	State the null and the alternate hypothesis for conducting one-way ANOVA for both Education and Occupation individually
2.	Perform a one-way ANOVA on Salary with respect to Education. State whether the null hypothesis is accepted or rejected based on the ANOVA results3
3.	Perform a one-way ANOVA on Salary with respect to Occupation. State whether the null hypothesis is accepted or rejected based on the ANOVA results 3
4.	If the null hypothesis is rejected in either (2) or in (3), find out which class means are significantly different. Interpret the result4
	Problem 1B
1.	What is the interaction between two treatments? Analyse the effects of one variable on the other (Education and Occupation) with the help of an interaction plot.[hint: use the 'point plot' function from the 'seaborn' function]4
2.	Perform a two-way ANOVA based on Salary with respect to both Education and Occupation (along with their interaction Education*Occupation). State the null and alternative hypotheses and state your results. How will you interpret this result?4-5
3.	Explain the business implications of performing ANOVA for this particular case study
	Problem 25
•	Perform Exploratory Data Analysis [both univariate and multivariate analysis to be performed]. What insight do you draw from the EDA?
•	Is scaling necessary for PCA in this case? Give justification and perform scaling
•	Check the dataset for outliers before and after scaling. What insight do you derive here? [Please do not treat Outliers unless specifically asked to do so]
•	Extract the eigenvalues and eigenvectors. [Using Sklearn PCA Print Both]
•	Write down the explicit form of the first PC (in terms of the eigenvectors. Use values with two places of decimals only). [hint: write the linear equation of PC in terms of eigenvectors and corresponding features]
•	Consider the cumulative values of the eigenvalues. How does it help you to decide on the optimum number of principal components? What do the eigenvectors indicate?
•	Explain the business implication of using the Principal Component Analysis for this case study. How may PCs help in the further analysis?

List of Figures

Figures	Page No.
 Figure 1. Multiple Comparison of Means - Tukey HSD 	5
2. Figure 2: Interaction Plot	5
3. Figure 3: Distribution and Box Plot of Apps	7
4. Figure 4: Distribution and Box Plot of Accept	8
5. Figure 5: Distribution and Box Plot of Enroll	8
6. Figure 6: Distribution and Box Plot of Top10perc	9
7. Figure 7: Distribution and Box Plot of Top25perc	9
8. Figure 8: Distribution and Box Plot of F.Undergrad	10
9. Figure 9: Distribution and Box Plot of P.Undergrad	10
10. Figure 10: Distribution and Box Plot of Outstate	11
11. Figure 11: Distribution and Box Plot of Room.Board	12
12. Figure 12: Distribution and Box Plot of Books	12
13. Figure 13: Distribution and Box Plot of Personal	13
14. Figure 14: Distribution and Box Plot of PhD	13
15. Figure 15: Distribution and Box Plot of Terminal	14
16. Figure 16: Distribution and Box Plot of S.F.Ratio	15
17. Figure 17: Distribution and Box Plot of perc.alumni	15
18. Figure 18: Distribution and Box Plot of Expend	16
19. Figure 19: Distribution and Box Plot of Grad.Rate	16
20. Figure 20– Pair plot of all the variables	17
21. Figure 21- Heat map or correlation map between all the variables	18
22. Figure 22– Box plot of unscaled data	19
23. Figure 23- Box plot of scaled data	20
24. Figure 24-Heat Map	24

List of Tables

Tables	Page No
1. Table1-one-way Anova on Education	3
2. Table 2-one-way Anova on Occupation	3
3. Table 3-Two-way Anova	5
4. Table 4 -Description of Dataset	6
5. Table 5- Data Frame of PC component Eigenvectors with Original Features	22

Problem 1

Salary is hypothesized to depend on educational qualification and occupation. To understand the dependency, the salaries of 40 individuals are collected and each person's educational qualification and occupation are noted. Educational qualification is at three levels, High school graduate, Bachelor, and Doctorate. Occupation is at four levels, Administrative and clerical, Sales, Professional or specialty, and Executive or managerial. A different number of observations are in each level of education – occupation combination.

Problem 1A:

1. <u>State the null and the alternate hypothesis for conducting one-way ANOVA for both Education and Occupation individually</u>

The Hypothesis for the One Way ANOVA are:

H0: The mean salary is the same at 3 levels of Education

Ha: For at least one level of Education , the mean salary is different

H0:The mean salary is the same at 4 levels of occupation.

Ha:For at least one level of occupation, the mean salary is different.

2. <u>Perform a one-way ANOVA on Salary with respect to Education. State whether the null hypothesis is accepted or rejected based on the ANOVA results.</u>

	df	sum_sq	mean_sq	F	PR(>F)
C(Education)	2	1.027E+11	5.13E+10	30.95628009	1.26E-08
Residual	37	6.1373E+10	1.66E+09		

Table1-one way Anova on Education

Since the P value is very small and lesser than 0.05, we reject the null hypothesis and state that there is for at least one level of Education, the mean salary is different.

3. <u>Perform a one-way ANOVA on Salary with respect to Occupation. State whether the null hypothesis is accepted or rejected based on the ANOVA results.</u>

	df	sum_sq	mean_sq	F	PR(>F)
C(Occupation)	3	1.1259E+10	3.75E+09	0.884144129	0.4585078
Residual	36	1.5281E+11	4.24E+09		

Table 2-one way Anova on Occupation

Since the P value is greater than 0.05, we fail to reject the null hypothesis and state that the mean salary is same at all levels of occupation.

4. <u>If the null hypothesis is rejected in either (2) or in (3), find out which class means are significantly different. Interpret the result</u>

\n======						======\n
group1	group2	meandiff	p-adj	lower	upper	reject\n-
						\n
Bachelors	Doctorate	43274.0667	0.0146	7541.1439	79006.9894	True\n
Bachelors	s HS-grad	-90114.1556	0.001	-132035.1958	-48193.1153	True\n
Doctorate	HS-grad	-133388.2222	0.001 -	-174815.0876 -	91961.3569	True\n

Figure 1. Multiple Comparison of Means - Tukey HSD

From the above figure after conducting the Tukey HSD test we can see that the means for all the three combinations are significantly different because the p value is less than 0.05.

Problem 1B:

1. What is the interaction between two treatments? Analyze the effects of one variable on the other (Education and Occupation) with the help of an interaction plot.

Fig 2: Interaction Plot

From the above plot we can clearly infer that there is significant interaction between Education and Occupation. We can clearly infer that population with doctorate level are on the higher level of occupation like prof-specialty/Managerial with higher income, while the low level Education population like HS-Grad in the above graph are on the low level of occupation such as Adm/Clerical also earning lesser than others.

2. <u>Perform a two-way ANOVA based on Salary with respect to both Education and Occupation (along with their interaction Education*Occupation). State the null and alternative hypotheses and state your results. How will you interpret this result?</u>

H0: Interaction affect between Education and Occupation does not exist.

Ha: Interaction affect between Education and Occupation exists.

	df	sum_sq	mean_sq	F	PR(>F)
C(Education)	2	1.027E+11	5.13E+10	72.21195806	5.47E-12
C(Occupation)	3	5519946053	1.84E+09	2.587625501	0.0721158
C(Education):C(Occupation)	6	3.6349E+10	6.06E+09	8.51981467	2.23E-05
Residual	29	2.0621E+10	7.11E+08		

Table 3-Two way Anova

After performing the Two way Anova with respect to Education and Occupation along with their Interaction, we can state that there is significant interaction between Education and Occupation by rejecting the null hypothesis since the P-value is much lower than 0.05.

3. Explain the business implications of performing ANOVA for this particular case study.

A two-way Anova was run on a sample of 40 people to examine the effect of Education and Occupation on Salary. There was a significant interaction between the effects of Education and Occupation on salary. Simple main affect analysis showed that Occupation level has no significant effect on the salary, but the Education level has significant impact on the salary.

Problem 2

The dataset <u>Education - Post 12th Standard.csv</u> contains information on various colleges. You are expected to do a Principal Component Analysis for this case study according to the instructions given.

1. <u>Perform Exploratory Data Analysis [both univariate and multivariate analysis to be performed]</u>. What insight do you draw from the EDA?

In the given data there are total of 777 entries with 18 columns, out of which 16 variables are int64 type, one variable float64 type and one variable of Object type. There are no null values in the dataset.

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
			Colby								
Names	777	777	College	1							
Apps	777				3001.638	3870.201	81	776	1558	3624	48094
Accept	777				2018.804	2451.114	72	604	1110	2424	26330
Enroll	777				779.973	929.1762	35	242	434	902	6392
Top10perc	777				27.55856	17.64036	1	15	23	35	96
Top25perc	777				55.79665	19.80478	9	41	54	69	100
F.Undergrad	777				3699.907	4850.421	139	992	1707	4005	31643
P.Undergrad	777				855.2986	1522.432	1	95	353	967	21836
Outstate	777				10440.67	4023.016	2340	7320	9990	12925	21700
Room.Board	777				4357.526	1096.696	1780	3597	4200	5050	8124
Books	777				549.381	165.1054	96	470	500	600	2340
Personal	777				1340.642	677.0715	250	850	1200	1700	6800
PhD	777				72.66023	16.32815	8	62	75	85	103
Terminal	777				79.7027	14.72236	24	71	82	92	100
S.F.Ratio	777				14.0897	3.958349	2.5	11.5	13.6	16.5	39.8
perc.alumni	777				22.74389	12.3918	0	13	21	31	64

Expend	777		9660.171	5221.768	3186	6751	8377	10830	56233
Grad.Rate	777		65.46332	17.17771	10	53	65	78	118

Table 4 - Description of Dataset

Let's now perform Univariate analysis on all the variables :

Description of Apps - Number of applications received

-count 777.000000
mean 3001.638353
std 3870.201484
min 81.000000
25% 776.000000
50% 1558.000000
75% 3624.000000
max 48094.000000
Name: Apps, dtype: float64
Distribution of Apps Box Plot of Apps

$\frac{\textit{Figure 3}}{\textit{Description of Accept- Number of applications accepted}}$

count	777.000000
mean	2018.804376
std	2451.113971
min	72.000000
25%	604.000000
50%	1110.000000
75%	2424.000000
max	26330.000000

Box Plot of Accept

Figure 4

Description of Enroll - Number of new students enrolled

777.000000 count 779.972973 mean 929.176190 std min 35.000000 25% 242.000000 50% 434.000000 75% 902.000000 6392.000000 max

Distribution of Enroll

Box Plot of Enroll

Figure 5

Description of Top10perc-% of new students from top 10% of H.Secondary class

count	777.000000		
mean	27.558559		

mean 27.558559 std 17.640364

min	1.000000
25%	15.000000
50%	23.000000
75%	35.000000
max	96.000000

Distribution of Top10perc

Box Plot of Top10perc

Figure 6

Description of Top25perc-%of new students from top 25%of H.Secondary class

coun	t 777.00	0000									
mean	55.79	6654									
std	19.80	4778									
min	9.00	0000									
25%	41.00	0000									
50%	54.00	0000									
75%	69.00	0000									
max	100.00	0000									
Dist	ribution of	Top25p	erc			Box P.	lot Of	Top25p	perc		
100 -		_			Γ						
80 -		ı.									
60 -	-				-						
40 -			м	_							
20 -											
_ ر	20 40	-		100	L	20	40		80		
	20 40	60 Top25perc	80	100		20	40 Tot	60 025perc	80	100	

Figure 7

Description of F. Undergrad- Number of full-time undergraduate students

______ count 777.000000 3699.907336 mean 4850.420531 std 139.000000 min 25% 992.000000 50% 1707.000000 75% 4005.000000 max 31643.000000

Distribution of F.Undergrad

Box Plot of F.Undergrad

Figure 8 Description of P.Undergrad-Number of part-time undergraduate students

777.000000 count 855.298584 mean 1522.431887 std min 1.000000 25% 95.000000 50% 353.000000 75% 967.000000 21836.000000 max

Distribution of P.Undergrad

Figure 9

Box Plot of P.Undergrad

max

Description of Outstate- outstation students

count	777.000000
mean	10440.669241
std	4023.016484
min	2340.000000
25%	7320.000000
50%	9990.000000
75%	12925 000000

Distribution of Outstate

21700.000000

Box Plot of Outstate

Figure 10

Description of Room.Board -Cost of Room and board

count	777.000000
mean	4357.526384
std	1096.696416
min	1780.000000
25%	3597.000000
50%	4200.000000
75%	5050.000000
max	8124.000000

Distribution of Room.Board Box Plot of Room Board

Description of Books--Estimated book costs for a student

777.000000 count 549.380952 mean 165.105360 std 96.000000 min 25% 470.000000 500.000000 50% 75% 600.000000 max 2340.000000

Figure 12

Description of Personal--Estimated personal spending for a student

count	777.000000
mean	1340.642214
std	677.071454
min	250.000000
25%	850.000000

50%	1200.000000
75%	1700.000000
max	6800.000000

Distribution of Personal

Box Plot of Personal

 $\frac{\textit{Figure 13}}{\textit{Description of PhD -Percentage of faculties with Ph.D.'s}}$

count	777.000000	
mean	72.660232	
std	16.328155	
min	8.000000	
25%	62.000000	
50%	75.000000	
75%	85.000000	
max	103.000000	
	Distribution of PhD	Box Plot of PhD

Figure 14

Description of Terminal - Percentage of faculties with terminal degree

coun	777.000000			
nean	79.702703			
td	14.722359			
Ĺn	24.000000			
5응	71.000000			
18	82.000000			
응	92.000000			
.X	100.000000			
	Distribution of Term	inal	Box Plot Of Termina	a T

Distribution of ferminal Box flot of ferminal

Figure 15

Description of S.F.Ratio -- Student/faculty ratio

count	777.000000			
mean	14.089704			
std	3.958349			
min	2.500000			
25%	11.500000			
50%	13.600000			
75%	16.500000			
max	39.800000			

Distribution of S.F.Ratio

Box Plot of S.F Ratio

 $\frac{\textit{Figure 16}}{\textit{Description of perc.alumni--Percentage of alumni who donate}}$

count	777.000000	
mean	22.743887	
std	12.391801	
min	0.000000	
25%	13.000000	
50%	21.000000	
75%	31.000000	
max	64.000000	
D2 -421-		Dan Diah af Alamai

Distribution of perc.alumni Box Plot of Alumni

Figure 17

75%

max

Description of Expend -- The Instructional expenditure per student

Distribution of Expend

10830.000000

56233.000000

Box Plot of Expend

Description of Grad.Rate --Graduation rate

-count 777.00000
mean 65.46332
std 17.17771
min 10.00000
25% 53.00000
50% 65.00000
75% 78.00000
max 118.00000

Distribution of Grad.Rate

Box Plot of Grad.Rate

<u>Let's now perform Multivariate Analysis on all the variables:</u>

Figure 20– Pair plot of all the variables

Figure 21- Heat map or correlation map between all the variables

From the Univariate analysis through distribution plot, we have seen that there is skewness in all the data that the distribution is not normal, that is it may be right or left skewed.

This interpretation was further clarified by the box plot as almost all the variables showed significant am ount of outliers, except 'Top 25 Percentage' which showed no outlier at all .

From the Multivariate analysis through Pair Plot we could see that there are evidence of relationship bet ween certain variables, which was further clarified through the Heat Map where we could see strong rel ationship between 'Accepted application and number of application received', 'Fulltime undergraduates & number of new students enrolled' etc.

2. Is scaling necessary for PCA in this case? Give justification and perform scaling.

Scaling is necessary for PCA in this case as the data is not normally distributed. When we work with averages its better to have the data normally distributed since in this data we have seen through the univariate analysis we performed above that there are huge outliers present in the data which would have a negative impact in our analysis .

Refer scaled data in the python file.

3.Comment on the comparison between the covariance and the correlation matrices from this data [on scaled data].

The covariance matrix is mathematical representation of the total variance of the individual dimensions and across dimension. This data shows lot of data present in the mathematical space which could be un derstood through the covariance matrix.

Covariance and correlation are very closely related to each other. Covariance tell us how much is the variance in the data and correlation helps us understand in which direction is the variance present.

We can see lot of data which are highly corelated in the given data.

4. Check the dataset for outliers before and after scaling. What insight do you derive her?

The Figure below shows the outliers before performing the scaling . 40000

Figure 22– Box plot of unscaled data

The below Figure shows the outliers in a scaled data

From both the figures of box plot before and after scaling , we can see that the means of all variables are near to each other after scaling and are normally distributed , in comparison with the unscaled data whe re means are significantly fluctuating .

5. Extract the eigenvalues and eigenvectors.

Eigen vectors extracted as below:

```
array([[ 2.48765602e-01, 2.07601502e-01, 1.76303592e-01,
         3.54273947e-01,
                         3.44001279e-01,
                                          1.54640962e-01,
                        2.94736419e-01, 2.49030449e-01,
         2.64425045e-02,
         6.47575181e-02, -4.25285386e-02, 3.18312875e-01,
         3.17056016e-01, -1.76957895e-01, 2.05082369e-01,
         3.18908750e-01, 2.52315654e-01],
       [ 3.31598227e-01, 3.72116750e-01, 4.03724252e-01,
        -8.24118211e-02, -4.47786551e-02, 4.17673774e-01,
         3.15087830e-01, -2.49643522e-01, -1.37808883e-01,
         5.63418434e-02, 2.19929218e-01, 5.83113174e-02,
        4.64294477e-02, 2.46665277e-01, -2.46595274e-01,
       -1.31689865e-01, -1.69240532e-01],
       [-6.30921033e-02, -1.01249056e-01, -8.29855709e-02,
         3.50555339e-02, -2.41479376e-02, -6.13929764e-02,
         1.39681716e-01, 4.65988731e-02, 1.48967389e-01,
         6.77411649e-01, 4.99721120e-01, -1.27028371e-01,
       -6.60375454e-02, -2.89848401e-01, -1.46989274e-01,
         2.26743985e-01, -2.08064649e-01],
       [ 2.81310530e-01, 2.67817346e-01, 1.61826771e-01,
        -5.15472524e-02, -1.09766541e-01, 1.00412335e-01,
       -1.58558487e-01, 1.31291364e-01, 1.84995991e-01,
         8.70892205e-02, -2.30710568e-01, -5.34724832e-01,
       -5.19443019e-01, -1.61189487e-01, 1.73142230e-02,
         7.92734946e-02, 2.69129066e-01],
       [ 5.74140964e-03, 5.57860920e-02, -5.56936353e-02,
        -3.95434345e-01, -4.26533594e-01, -4.34543659e-02,
        3.02385408e-01, 2.22532003e-01, 5.60919470e-01,
       -1.27288825e-01, -2.22311021e-01, 1.40166326e-01,
         2.04719730e-01, -7.93882496e-02, -2.16297411e-01,
         7.59581203e-02, -1.09267913e-01],
       [-1.62374420e-02, 7.53468452e-03, -4.25579803e-02,
       -5.26927980e-02, 3.30915896e-02, -4.34542349e-02,
       -1.91198583e-01, -3.00003910e-02, 1.62755446e-01,
         6.41054950e-01, -3.31398003e-01, 9.12555212e-02,
        1.54927646e-01, 4.87045875e-01, -4.73400144e-02,
       -2.98118619e-01, 2.16163313e-01],
       [-4.24863486e-02, -1.29497196e-02, -2.76928937e-02,
       -1.61332069e-01, -1.18485556e-01, -2.50763629e-02,
         6.10423460e-02, 1.08528966e-01, 2.09744235e-01,
       -1.49692034e-01, 6.33790064e-01, -1.09641298e-03,
       -2.84770105e-02, 2.19259358e-01, 2.43321156e-01,
       -2.26584481e-01,
                         5.59943937e-01],
       [-1.03090398e-01, -5.62709623e-02, 5.86623552e-02,
       -1.22678028e-01, -1.02491967e-01, 7.88896442e-02,
         5.70783816e-01, 9.84599754e-03, -2.21453442e-01,
         2.13293009e-01, -2.32660840e-01, -7.70400002e-02,
       -1.21613297e-02, -8.36048735e-02, 6.78523654e-01,
       -5.41593771e-02, -5.33553891e-03],
       [-9.02270802e-02, -1.77864814e-01, -1.28560713e-01,
```

```
3.41099863e-01, 4.03711989e-01, -5.94419181e-02,
 5.60672902e-01, -4.57332880e-03, 2.75022548e-01,
-1.33663353e-01, -9.44688900e-02, -1.85181525e-01,
-2.54938198e-01, 2.74544380e-01, -2.55334907e-01,
-4.91388809e-02, 4.19043052e-02],
[ 5.25098025e-02, 4.11400844e-02, 3.44879147e-02,
 6.40257785e-02, 1.45492289e-02, 2.08471834e-02,
-2.23105808e-01, 1.86675363e-01, 2.98324237e-01,
-8.20292186e-02, 1.36027616e-01, -1.23452200e-01,
-8.85784627e-02, 4.72045249e-01, 4.22999706e-01,
 1.32286331e-01, -5.90271067e-01],
[ 4.30462074e-02, -5.84055850e-02, -6.93988831e-02,
-8.10481404e-03, -2.73128469e-01, -8.11578181e-02,
 1.00693324e-01, 1.43220673e-01, -3.59321731e-01,
 3.19400370e-02, -1.85784733e-02, 4.03723253e-02,
-5.89734026e-02, 4.45000727e-01, -1.30727978e-01,
 6.92088870e-01, 2.19839000e-01],
[ 2.40709086e-02, -1.45102446e-01, 1.11431545e-02,
 3.85543001e-02, -8.93515563e-02, 5.61767721e-02,
-6.35360730e-02, -8.23443779e-01, 3.54559731e-01,
-2.81593679e-02, -3.92640266e-02, 2.32224316e-02,
 1.64850420e-02, -1.10262122e-02, 1.82660654e-01,
 3.25982295e-01, 1.22106697e-01],
[ 5.95830975e-01, 2.92642398e-01, -4.44638207e-01,
 1.02303616e-03, 2.18838802e-02, -5.23622267e-01,
 1.25997650e-01, -1.41856014e-01, -6.97485854e-02,
 1.14379958e-02, 3.94547417e-02, 1.27696382e-01,
-5.83134662e-02, -1.77152700e-02, 1.04088088e-01,
-9.37464497e-02, -6.91969778e-02],
[ 8.06328039e-02, 3.34674281e-02, -8.56967180e-02,
-1.07828189e-01, 1.51742110e-01, -5.63728817e-02,
 1.92857500e-02, -3.40115407e-02, -5.84289756e-02,
-6.68494643e-02, 2.75286207e-02, -6.91126145e-01,
 6.71008607e-01, 4.13740967e-02, -2.71542091e-02,
 7.31225166e-02, 3.64767385e-02],
[ 1.33405806e-01, -1.45497511e-01, 2.95896092e-02,
 6.97722522e-01, -6.17274818e-01, 9.91640992e-03,
 2.09515982e-02, 3.83544794e-02, 3.40197083e-03,
-9.43887925e-03, -3.09001353e-03, -1.12055599e-01,
 1.58909651e-01, -2.08991284e-02, -8.41789410e-03,
-2.27742017e-01, -3.39433604e-03],
[ 4.59139498e-01, -5.18568789e-01, -4.04318439e-01,
-1.48738723e-01, 5.18683400e-02, 5.60363054e-01,
-5.27313042e-02, 1.01594830e-01, -2.59293381e-02,
 2.88282896e-03, -1.28904022e-02, 2.98075465e-02,
-2.70759809e-02, -2.12476294e-02, 3.33406243e-03,
-4.38803230e-02, -5.00844705e-03],
[ 3.58970400e-01, -5.43427250e-01, 6.09651110e-01,
-1.44986329e-01, 8.03478445e-02, -4.14705279e-01,
 9.01788964e-03, 5.08995918e-02, 1.14639620e-03,
 7.72631963e-04, -1.11433396e-03, 1.38133366e-02,
 6.20932749e-03, -2.22215182e-03, -1.91869743e-02,
-3.53098218e-02, -1.30710024e-02]])
```

Eigen Values extracted as below:

```
array([5.45052162, 4.48360686, 1.17466761, 1.00820573, 0.93423123, 0.84849117, 0.6057878, 0.58787222, 0.53061262, 0.4043029, 0.31344588, 0.22061096, 0.16779415, 0.1439785, 0.08802464, 0.03672545, 0.02302787])
```

6.<u>Perform PCA and export the data of the Principal Component (eigenvectors) into a data frame with t</u> he original features

	PC1	PC2	PC3	PC4	PC5	PC6	PC7
Apps	0.248766	0.331598	-0.06309	0.281311	0.005741	-0.01624	-0.04249
Accept	0.207602	0.372117	-0.10125	0.267817	0.055786	0.007535	-0.01295
Enroll	0.176304	0.403724	-0.08299	0.161827	-0.05569	-0.04256	-0.02769
Top10perc	0.354274	-0.08241	0.035056	-0.05155	-0.39543	-0.05269	-0.16133
Top25perc	0.344001	-0.04478	-0.02415	-0.10977	-0.42653	0.033092	-0.11849
F.Undergrad	0.154641	0.417674	-0.06139	0.100412	-0.04345	-0.04345	-0.02508
P.Undergrad	0.026443	0.315088	0.139682	-0.15856	0.302385	-0.1912	0.061042
Outstate	0.294736	-0.24964	0.046599	0.131291	0.222532	-0.03	0.108529
Room.Board	0.24903	-0.13781	0.148967	0.184996	0.560919	0.162755	0.209744
Books	0.064758	0.056342	0.677412	0.087089	-0.12729	0.641055	-0.14969
Personal	-0.04253	0.219929	0.499721	-0.23071	-0.22231	-0.3314	0.63379
PhD	0.318313	0.058311	-0.12703	-0.53472	0.140166	0.091256	-0.0011
Terminal	0.317056	0.046429	-0.06604	-0.51944	0.20472	0.154928	-0.02848
S.F.Ratio	-0.17696	0.246665	-0.28985	-0.16119	-0.07939	0.487046	0.219259
perc.alumni	0.205082	-0.2466	-0.14699	0.017314	-0.2163	-0.04734	0.243321
Expend	0.318909	-0.13169	0.226744	0.079273	0.075958	-0.29812	-0.22658
Grad.Rate	0.252316	-0.16924	-0.20806	0.269129	-0.10927	0.216163	0.559944

Table 5- DATAFRAME OF PC COMPONENT EIGENVECTORS WITH ORIGINAL FEATURES

7. Write down the explicit form of the first PC (in terms of the eigenvectors. Use values with two places of decimals only).

The Explicit form of the first PC in terms of the eigenvectors are:

PC1=a1x1+a1x2+...anxn

	PC1
0	-1.59
1	-2.19
2	-1.43
3	2.86
4	-2.21
5	-0.57
6	0.24

8. <u>Consider the cumulative values of the eigenvalues. How does it help you to decide on the optimum number of principal components? What do the eigenvectors indicate?</u>

```
array([0.32020628, 0.58360843, 0.65261759, 0.71184748, 0.76673154, 0.81657854, 0.85216726, 0.88670347, 0.91787581, 0.94162773, 0.96004199, 0.9730024, 0.98285994, 0.99131837, 0.99648962, 0.99864716, 1. ])
```

As we can above value are the cumulative form of eigen values , which helps us determine how many principal components to filter for further analysis. Each value represent PC's extracted from PC1 TO PC17 equivalent to the number of features .As we can see the first PC shows 32% of the data content in it , and cumulatively PC2 contains 58% of the data and so on until PC17 where we can get 100% of the data if we choose to work on all the PC's. But it contradicts our choice of performing PCA , because the main reason was to reduce the dimensionality Hence for this case study I choose to take 85% of the data for my analysis and go ahead with 7 dimensions PC1,PC2,PC3,PC4,PC5,PC6 & PC7,hene reducing 10 dimension and working with only 7 to ease our analysis .

Eigen vectors indicates the direction of the principal component, which helps in understanding the linear transformation .

9. <u>Explain the business implication of using the Principal Component Analysis for this case study. How may PCs help in the further analysis?</u>

After performing Principal component analysis we can conclude that , there is significant corelation in the given data set , and to analyse it further we performed scaling in the data and went ahead with PCA w hich helped us in reducing the dimensions to 7 PC from 17 PCs, having 85% of the information still availb -ale to us in the 7 PC's.

Below are some further information on the 7 PC's extracted as to which feature has more information in which PC.

Figure 24-Heat Map

Form the above figure 24 we can infer that

- PC1 contains more information on 'Top10perc'- Percentage of new students from top 10% of H igher Secondary class, 'Top25perc', PhD which is giving more insights on the toppers admitted in colleges and highly qualified faculty in colleges.
- PC2 contains more Information on application received, application accepted and new students enrolled, hence providing insights on the applied rate and acceptance rate of colleges.
- PC3 is providing us with an data related to costs and funding as we can see from the figure more
 information is from Books cost and personal spending of student.
- In PC4 we can more information on the faculty staff qualification .
- PC5 provides information on Room Boarding expenses and so on .

Hence the reduced dimension can be further used and analysed with ease to gain significant insights.

