

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2 по курсу «Математическая статистика»

«Интервальные оценки»

Студент	Маслова Марина Дмитриевна	
Группа	ИУ7-63Б	
Оценка (баллы)		
Преподаватель	Власов Павел Александрович	

1 Задание

Цель работы: построение доверительных интервалов для математического ожидания и дисперсии нормальной случайной величины.

Содержание работы

- 1. Для выборки объема n из генеральной совокупности X реализовать в виде программы на ЭВМ
 - а) вычисление точечных оценок $\hat{\mu}(\vec{x}_n)$ и $S^2(\vec{x}_n)$ математического ожидания MX и дисперсии DX соответственно;
 - б) вычисление нижней и верхней границ $\underline{\mu}(\vec{x}_n)$, $\overline{\mu}(\vec{x}_n)$ для γ -доверительного интервала для математического ожидания MX;
 - в) вычисление нижней и верхней границ $\underline{\sigma}^2(\vec{x}_n)$, $\overline{\sigma}^2(\vec{x}_n)$ для γ -доверительного интервала для дисперсии $\mathrm{D}X$.
- 2. вычислить $\hat{\mu}(\vec{x}_n)$ и $S^2(\vec{x}_n)$ для выборки из индивидуального варианта;
- 3. для заданного пользователем уровня доверия γ и N объема выборки индивидуального варианта:
 - а) на координатной плоскости Oyn построить прямую $y=\hat{\mu}(\vec{x}_N)$, также графики функций $y=\hat{\mu}(\vec{x}_n),\ y=\underline{\mu}(\vec{x}_n)$ и $y=\overline{\mu}(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N.
 - б) на другой координатной плоскости Ozn построить прямую $z=S^2(\vec{x}_N)$, также графики функций $z=S^2(\vec{x}_n)$, $z=\underline{\sigma}^2(\vec{x}_n)$ и $z=\overline{\sigma}^2(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N.

Содержание отчета

- 1. определение γ -доверительного интервала для значения параметра распределения случайной величины;
- 2. формулы для вычисления границ γ -доверительного интервала для математического ожидания и дисперсии нормальной случайной величины;
- 3. текст программы;
- 4. результаты расчетов и графики для выборки из индивидуального варианта (при построении графиков принять $\gamma=0.9$).

2 Теоретическая часть

2.1 Определение γ -доверительного итервала для значения параметра распределения случайной величины

Пусть X — случайная величина, закон распределения которой известен с точностью до неизвестного параметра θ .

Определение. Интервальной оценкой параметра θ уровня γ называется пара статистик $\underline{\theta}(\vec{X})$ и $\overline{\theta}(\vec{X})$ таких, что

$$P\{\theta \in (\underline{\theta}(\vec{X}), \overline{\theta}(\vec{X}))\} = \gamma.$$

Определение. γ -доверительным интервалом для параметра θ называется реализация (выборочное значение) интервальной оценки уровня γ для этого параметра, то есть интервал $(\underline{\theta}(\vec{x}), \overline{\theta}(\vec{x}))$ с детерминированными границами.

2.2 Формулы для вычисления границ γ -доверительного интервала для математического ожидания и дисперсии нормальной случайно величины

Пусть $X \sim N(\mu, \sigma^2)$, где μ и σ^2 — неизвестны.

Тогда для построения γ -доверительного интервала для μ используется центральная статистика

$$g(\vec{X}, \mu) = \frac{\mu - \overline{X}}{S(\vec{X})} \sqrt{n} \sim St(n-1),$$

и границы γ -доверительного интервала для μ вычисляются по формулам:

$$\underline{\mu}(\vec{X}) = \overline{X} - \frac{S(\vec{X})t_{\frac{1+\gamma}{2}}^{(n-1)}}{\sqrt{n}},$$

$$\overline{\mu}(\vec{X}) = \overline{X} + \frac{S(\vec{X})t_{\frac{1+\gamma}{2}}^{(n-1)}}{\sqrt{n}},$$

где
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
,

$$S(\vec{X}) = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2},$$

 $t_{rac{1+\gamma}{2}}^{(n-1)}$ — квантиль уровня $rac{1+\gamma}{2}$ распределения Стьюдента с n-1 степенями свободы,

n — объем выборки.

Для построения γ -доверительного интервала для σ^2 используется центральная статистика

$$g(\vec{X}, \sigma^2) = \frac{(n-1)S^2(\vec{X})}{\sigma^2} \sim \chi^2(n-1),$$

и границы γ -доверительного интервала для σ^2 вычисляются по формулам:

$$\underline{\sigma}^{2}(\vec{X}) = \frac{(n-1)S^{2}(\vec{X})}{h_{\frac{1+\gamma}{2}}^{(n-1)}},$$

$$\overline{\sigma}^2(\vec{X}) = \frac{(n-1)S^2(\vec{X})}{h_{\frac{1-\gamma}{2}}^{(n-1)}},$$

где n — объем выборки,

$$S^{2}(\vec{X}) = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2},$$

 $h_{\frac{1+\gamma}{2}}^{(n-1)}$ и $h_{\frac{1-\gamma}{2}}^{(n-1)}$ — квантили уровня $\frac{1+\gamma}{2}$ и $\frac{1-\gamma}{2}$ соответственно распределения хи-квадрат с n-1 степенями свободы.

3 Практическая часть