Teoría de Hodge I

por Pierre Deligne

1. Nos proponemos dar un diccionario heurístico entre enunciados en cohomología ℓ -ádica y enunciados en teoría de Hodge. Este diccionario tiene notablemente como fuentes [3] y la teoría conjetural de motivos de Grothendieck [2]. Hasta ahora, ha servido sobre todo para formular, en teoría de Hodge, conjeturas, y para las cuales a menudo ha sugerido una demostración.

Definición 1. Una estructura de Hodge mixta H consiste en

- (a) Un \mathbb{Z} -módulo de tipo finito $H_{\mathbb{Z}}$ (la red entera);
- (b) Una filtración creciente finita W sobre $H_{\mathbb{Q}} = H_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q}$ (la filtración por el peso);
- (c) Una filtración decreciente finita F sobre $H_{\mathbb{C}} = H_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C}$ (la filtración de Hodge).

Estos datos están sometidos al axioma:

Existe sobre $Gr_W(H_{\mathbb{C}})$ una (única) bigraduación por subespacios $H^{p,q}$ tal que

- (i) $\operatorname{Gr}_W^n(H_{\mathbb{C}}) = \bigoplus_{p+q=n} H^{p,q}$
- (ii) la filtración F induce sobre $Gr_W(H_{\mathbb{C}})$ la filtración

$$\operatorname{Gr}_W(F)^p = \bigoplus_{p' \ge p} H^{p',q'}$$

• (iii) $\overline{H^{pq}} = H^{qp}$.

Un morfismo $f: H \to H'$ es un homomorfismo $f_{\mathbb{Z}}: H_{\mathbb{Z}} \to H'_{\mathbb{Z}}$ tal que $f_{\mathbb{Q}}: H_{\mathbb{Q}} \to H'_{\mathbb{Q}}$ y $f_{\mathbb{C}}: H_{\mathbb{C}} \to H'_{\mathbb{C}}$ sean respectivamente compatibles con las filtraciones W y F.

Los números de Hodge de H son los enteros

$$h^{pq} = \dim H^{pq} = h^{qp}$$
.

Se dice que H es puro de peso n si $h^{pq}=0$ para $p+q\neq n$ (es decir, si $Gr_W^i(H)=0$ para $i\neq n$). Se dice entonces que H es una estructura de Hodge de peso n.

La estructura de Hodge de Tate $\mathbb{Z}(1)$ es la estructura de Hodge de peso -2, puramente de tipo (-1,-1), para la cual $\mathbb{Z}(1)_{\mathbb{C}}=\mathbb{C}$ y $\mathbb{Z}(1)_{\mathbb{Z}}=2\pi i\mathbb{Z}=\ker(\exp:\mathbb{C}\to\mathbb{C}^*)\subset\mathbb{C}$. Escribiremos $\mathbb{Z}(n)=\mathbb{Z}(1)^{\otimes n}$.

Se puede demostrar que las estructuras de Hodge mixtas forman una categoría abeliana. Si $f: H \to H'$ es un morfismo, entonces $f_{\mathbb{Q}}$ y $f_{\mathbb{C}}$ son estrictamente compatibles con las filtraciones W y F ([1], 2.3.5).

Ι

2. Sean A un anillo normal íntegro de tipo finito sobre \mathbb{Z} , K su cuerpo de fracciones y \overline{K} un cierre algebraico de K. Sea K_{nr} la mayor subextensión de \overline{K} no ramificada en ningún ideal primo de A. Se sabe que, o se pone

$$\pi_1(\operatorname{Spec}(A), \overline{K}) = \operatorname{Gal}(K_{nr}/K).$$

Para cada punto cerrado x de $\operatorname{Spec}(A)$, definido por un ideal maximal \mathfrak{m}_x de A, el cuerpo residual $k_x = A/\mathfrak{m}_x$ es finito; el punto x define una clase de conjugación de "sustituciones de Frobenius" $\varphi_x \in \pi_1(\operatorname{Spec}(A), \overline{K})$. Se escribe $q_x = \#k_x$ y $F_x = \varphi_x^{-1}$.

Sean K un cuerpo de tipo finito sobre el cuerpo primo de característica p, \overline{K} un cierre algebraico de K, ℓ un número primo $\neq p$ y H un \mathbb{Z}_{ℓ} — (o un \mathbb{Q}_{ℓ} —) módulo de tipo finito dotado de una acción continua ρ de $\operatorname{Gal}(\overline{K}/K)$. Se supondrá siempre en lo sucesivo que existe A como arriba, con ℓ invertible en A, tal que ρ se factoriza por $\pi_1(\operatorname{Spec}(A), \overline{K}) = \operatorname{Gal}(K_{nr}/K)$. Se dirá que H es puro de peso n si para cada punto cerrado x de un abierto no vacío de $\operatorname{Spec}(A)$, los valores propios α de F_x actuando sobre H son enteros algebraicos cuyos conjugados complejos son todos de valor absoluto $|\alpha| = q_x^{n/2}$.

Principio 1. Si el módulo galoisiano H "proviene de la geometría algebraica", existe sobre $H_{\mathbb{Q}_{\ell}} = H \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$ una (única) filtración creciente W (la filtración por el peso), invariante por Galois, tal qe $\operatorname{Gr}_n^W(H)$ sea puro de peso n.

Podemos pensar que $\operatorname{Gr}_n^W(H)$ es además semisimple.

Cuando se dispone de la resolución de singularidades, se puede a menudo dar de W una definición conjetural, cuya corrección resulta de las conjeturas de Weil [5] (ver 6).

Sea μ el subgrupo de \overline{K}^* formado por las raíces de la unidad. El módulo de Tate $\mathbb{Z}_{\ell}(1)$, definido por

$$\mathbb{Z}_{\ell}(1) = \operatorname{Hom}(\mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}, \mu)$$

es puro de peso -2. Pondremos $\mathbb{Z}_{\ell}(n) = \mathbb{Z}_{\ell}(1)^{\otimes n}$.

Es trivial que todo morfismo $f: H \to H'$ es estrictamente compatible con la filtración por el peso.

El principio 1 concuerda con el hecho de que toda extensión de \mathbb{G}_m ("peso -2") por una variedad abeliana ("peso -1;-2") es trivial.

3. Traducción. - Los módulos galoisianos que aparecen en cohomología ℓ -ádica tienen como análogo, sobre \mathbb{C} , las estructuras de Hodge mixtas. Se tiene además el diccionario

módulo puro de peso n filtración por el peso homomorfismo compatible con Galois módulo de Tate $\mathbb{Z}_{\ell}(1)$

estructura de Hodge de peso n filtración por el peso morfismo estructura de Hodge de Tate $\mathbb{Z}(1)$

4. Sea X una variedad algebraica compleja (= esquema de tipo finito sobre \mathbb{C} , que se supondrá separado). Existe un subcuerpo K de \mathbb{C} , de tipo finito sobre \mathbb{Q} , tal que X se puede definir sobre K (es decir, proviene por extensión de escalares de K a \mathbb{C} de un K-esquema X'). Sea \overline{K} el cierre algebraico de K en \mathbb{C} . El grupo de Galois $\operatorname{Gal}(\overline{K}/K)$ actúa entonces sobre los grupos de cohomología ℓ -ádica $H^*(X, \mathbb{Z}_{\ell})$; se tiene

$$H^*(X(\mathbb{C}), \mathbb{Z}) \otimes \mathbb{Z}_{\ell} = H^*(X, \mathbb{Z}_{\ell}) = H^*(X'_{\overline{K}}, \mathbb{Z}_{\ell}).$$

Según 3, hay lugar de esperar que los grupos de cohomología $H^n(X(\mathbb{C}), \mathbb{Z})$ portan estructuras de Hodge mixtas naturales. Es lo que se puede probar (ver [1], 3.2.5, para el caso donde X es lisa; la demostración es algebraica, a partir de la teoría de Hodge clásica [6]). Para X proyectiva y lisa, las conjeturas de Weil implican que $H^n(X, \mathbb{Z}_\ell)$ es puro de peso n, mientras que la teoría de Hodge clásica dota a $H^n(X, \mathbb{Z})$ de una estructura de Hodge de peso n. Para todo morfismo $f: X \to Y$ y para K suficientemente grande, $f^*: H^*(Y, \mathbb{Z}_\ell) \to H^*(X, \mathbb{Z}_\ell)$ conmuta con Galois (por transporte de estructuras); igualmente $f^*: H^*(Y, \mathbb{Z}) \to H^*(X, \mathbb{Z})$ es un morfismo de estructuras de Hodge mixtas. Para X lisa, la clase de cohomología en $H^{2n}(X, \mathbb{Z}_\ell(n))$ de un ciclo algebraico de codimensión n, Z, definido sobre K, es invariante por Galois, es decir define

$$c(Z) \in \operatorname{Hom}_{\operatorname{Gal}}(\mathbb{Z}_{\ell}(-n), H^{2n}(X, \mathbb{Z}_{\ell})).$$

Igualmente, la clase de cohomología $c(Z) \in H^{2n}(X(\mathbb{C}), \mathbb{Z})$ es puramente de tipo (n, n), es decir corresponde a

$$c(Z) \in \operatorname{Hom}_{H.M.}(\mathbb{Z}(-n), H^{2n}(X(\mathbb{C}), \mathbb{Z})).$$

5. Si $f: H \to H'$ es un morfismo, compatible con Galois, entre \mathbb{Q}_{ℓ} -vectoriales de pesos diferentes, se tiene f=0. Igualmente, si $f: H \to H'$ es un morfismo de estructuras de Hodge puras de pesos diferentes, entonces f es de torsión. Una observación más útil es el

ESCOLIO 1. Sean H y H' estructuras de Hodge de pesos n y n', con n > n'. Sea $f: H_{\mathbb{Q}} \to H'_{\mathbb{Q}}$ un homomorfismo tal que $f: H_{\mathbb{C}} \to H'_{\mathbb{C}}$ respeta F. Entonces f = 0.

6. Sean X una variedad proyectiva y lisa sobre \mathbb{C} , $D = \sum_{i=1}^{n} D_i$ un divisor cuyas componentes con cruces normales en X, suma de divisores lisos, y j la inclusión en X de U = X - D. Para $Q \subset [1, n]$, se pone $D_Q = \bigcap_{i \in Q} D_i$.

En cohomología ℓ -ádica, se tiene canónicamente

$$R^q j_* \mathbb{Z}_\ell = \bigoplus_{\#Q=q} \mathbb{Z}_\ell(-q)_{D_Q},$$

y la sucesión espectral de Leray para j se escribe

$$E_2^{pq} = \bigoplus_{\#Q=q} H^p(D_Q, \mathbb{Q}_\ell) \otimes \mathbb{Z}_\ell(-q) \Rightarrow H^{p+q}(U, \mathbb{Q}_\ell).$$

Según las conjeturas de Weil [5], $H^p(D_Q, \mathbb{Q}_\ell)$ es puro de peso p, de modo que E_2^{pq} es puro de peso p+2q. En tanto que cociente de un subobjeto de E_2^{pq} , E_r^{pq} también es puro de peso p+2q. Según 5, $d_r=0$ para $r\geq 3$, pues los pesos p+2q y p+2q-r+2 de E_r^{pq} y $E_r^{p+r,q-r+1}$ son diferentes. Se tiene entonces $E_3^{pq}=E_\infty^{2k-n,n-k}$. Salvo una renumeración, la filtración por el peso de $H^*(U,\mathbb{Q}_\ell)$ es la resultante de (6.2)

$$\operatorname{Gr}_n^W(H^k(U,\mathbb{Q}_\ell)) = E_3^{2k-n,n-k}$$

7. En cohomología entera, para la topología usual, la sucesión espectral de Leray para j se escribe

$$E_2'^{pq} = \bigoplus_{\#Q=q} H^p(D_Q, \mathbb{Z}) \Rightarrow H^{p+q}(U, \mathbb{Z}).$$

Como cada D_Q es una variedad proyectiva no singular, E_2^{pq} está dotado de una estructura de Hodge de peso p. Ponemos $E_2^{pq} = E_2'^{pq} \otimes \mathbb{Z}(-q)$ (estructura de Hodge de peso p+2q). Como grupo abeliano, $E_2^{pq} = E_2'^{pq}$; es interesante considerar la anterior como una sucesión espectral de término inicial E_2^{pq} . Según 3, se debe esperar que $d_2: E_2^{pq} \to E_2^{p+2,q-1}$ sea un morfismo de estructuras de Hodge. Se prueba interpretando d_2 como un morfismo de Gysin. De ahí que E_3^{pq} está dotado de una estructura de Hodge de peso p+2q. Según 3, se espera que, m'odulo torsi'on, la sucesi\'on espectral degenera en el término E_3 ($E_3 = E_\infty$), y con esto que la nulidad de los d_r ($r \geq 3$) sea una aplicación de 5.1. Este programa se lleva a cabo en [1] 3.2. Se define la filtración por el peso de $H^*(U,\mathbb{Q})$ como resultante de la sucesión espectral, salvo renumeración.

En efecto, para dotar los grupos de cohomología H^* de una estructura de Hodge mixta, el punto clave ha sido encontrar una sucesión espectral E que resulte en H^* cuyo análogo ℓ -ádico sea conjeturalmente puro (de peso p+2q); E_2^{pq} debe entonces portar una estructura de Hodge natural (de peso p+2q) y la filtración W es la resultante de E.

8. Sea $\operatorname{Spec}(V)$ el espectro de un anillo de valoración discreta henseliano (un trazo henseliano) de cuerpo de fracciones K y cuerpo residual k de tipo finito sobre el cuerpo primo de característica p. Sean \overline{K} un cierre algebraico de K y H un vectorial de dimensión finita sobre \mathbb{Q}_{ℓ} ($\ell \neq p$), sobre el cual $\operatorname{Gal}(\overline{K}/K)$ opera de modo continuo. Según Grothendieck, se sabe ([4], apéndice) que un subgrupo de índice finito del grupo de inercia I actúa de modo unipotente. Reemplazando V por una extensión finita, se reduce al caso en que la acción de I entera es unipotente (caso semiestable); ella se factoriza entonces por el mayor pro- ℓ -grupo I_{ℓ} , cociente de I, canónicamente isomorfo a $\mathbb{Z}_{\ell}(1)$.

Principio 2. En el caso semiestable, si el módulo galoisiano H "proviene de la geometría algebraica", existe una (única) filtración creciente W de H (la filtración por el peso), tal que I actúa trivialmente sobre $\operatorname{Gr}_n^W(H)$ y que $\operatorname{Gr}_n^W(H)$, en tanto que módulo galoisiano bajo $\operatorname{Gal}(\bar{k}/k) \simeq \operatorname{Gal}(\bar{K}/K)/I$, sea puro de peso n.

Se comparará con el Principio 1 y con el apéndice de [4].

Cuando se dispone de la resolución de singularidades, se puede a menudo dar de W una definición conjetural, cuya validez resulta de las conjeturas de Weil. Con ayuda de la resolución y de Weil, es a menudo fácil demostrar que en todo caso H se desmonta en módulos galoisianos (bajo $Gal(\bar{k}/k)$) puros.

Supongamos H semiestable. Para $T \in I_{\ell}$, se define $\log T$ como la suma $finita - \sum_{n>0} (\mathrm{Id} - T)^n/n$. La aplicación $(T, x) \mapsto \log T(x)$ se identifica con un homomorfismo

$$M: \mathbb{Z}_{\ell}(1) \otimes H \to H.$$

Como $\mathbb{Z}_{\ell}(1)$ es de peso -2, se tiene necesariamente (ver 5)

$$M(\mathbb{Z}_{\ell}(1) \otimes W_n(H)) \subset W_{n-2}(H)$$

y M induce

$$Gr(M): \mathbb{Z}_{\ell}(1) \otimes Gr_n^W(H) \to Gr_{n-2}^W(H).$$

Si X es una variedad proyectiva no singular sobre un cuerpo algebraicamente cerrado k_0 , se define

$$L: \mathbb{Z}_{\ell}(-1) \otimes H^*(X, \mathbb{Z}_{\ell}) \to H^*(X, \mathbb{Z}_{\ell})$$

como el producto cup con la clase de cohomología de una sección hiperplana. Se notará una analogía formal entre L y M; igual que M está definida por una acción de $\mathbb{Z}_{\ell}(1)$, se puede considerar L como definido por una acción de $\mathbb{Z}_{\ell}(1)$; L aumenta el grado en 2, y Gr(M) lo disminuye en 2.

9. Sean D el disco unidad, $D^* = D - \{0\}$ y X

una familia de variedades proyectivas parametrizada por D, con f propio y $f|D^*$ liso. Mantenemos las notaciones de 8, y recordamos que en la analogía entre trazo henseliano y pequeño entorno de 0 en la recta compleja se tiene el diccionario siguiente (obsérvese que

el espectro del anillo de gérmenes de funciones holomorfas en 0 es un trazo henseliano):

$$\begin{array}{c|c} D \\ D^* \\ \text{un revestimiento universal } \tilde{D}^* \text{ de } D^* \\ \text{grupo fundamental } \pi_1(D^*) \\ (\text{con } \pi_1(D^*) = \mathbb{Z} \simeq \mathbb{Z}(1)_{\mathbb{Z}}) \\ X \\ X^* = f^{-1}(D^*) \\ \tilde{X} \\ \text{sistema local } R^i f_* \mathbb{Z} | D^* \\ H^i(\tilde{X}, \mathbb{Z}) \end{array} \qquad \begin{array}{c} \operatorname{Spec}(V) \\ \operatorname{Spec}(K) \\ \operatorname{grupo de inercia } I \\ (\text{con } I_\ell = \mathbb{Z}_\ell(1)) \\ \operatorname{esquema proyectivo } X \text{ sobre } \operatorname{Spec}(V) \\ X_K \\ X_{\overline{K}} \\ \operatorname{m\'odulo galoisiano } H^i(X_{\overline{K}}, \mathbb{Z}_\ell) \\ H^i(X_{\overline{K}}, \mathbb{Z}_\ell) \end{array}$$

Se notará que \tilde{X} es homotópicamente equivalente a cada una de las fibras $X_t = f^{-1}(t)$ $(t \in D^*): H^i(X_{\overline{K}}, \mathbb{Z}_\ell)$ tiene todavía como análogo $H^i(X_t, \mathbb{Z})$ y a la acción de I corresponde la transformación de monodromía T.

Aquí también, se sabe que un subgrupo de índice finito de $\pi_1(D^*)$ actúa de modo unipotente sobre $H^i(\tilde{X}, \mathbb{Q}) = H^i(X_t, \mathbb{Q})$. Pongámonos en el caso semiestable donde $\pi_1(D^*)$ entero actúa de modo unipotente (esto se conlleva reemplazar D por un revestimiento finito), y sea T la acción del generador canónico de $\pi_1(D^*)$.

Por 3 y 8, se espera que $H^i(\tilde{X},\mathbb{Q}) \simeq H^i(X_t,\mathbb{Q})$ esté dotado de una filtración creciente W, que $\mathrm{Gr}_n^W(H^i(\tilde{X},\mathbb{Q}))$ esté dotado de una estructura de Hodge de peso n, que $\log T(W_n) \subset W_{n-2}$ y que $\log T$ induce un morfismo de estructuras de Hodge

$$M_n: \mathbb{Z}(-1) \otimes \operatorname{Gr}_n^W(H^i) \to \operatorname{Gr}_{n-2}^W(H^i).$$

Nos gustaría además que M tuviese un análogo.

Se llega en efecto a definir, para cada vector u del espacio tangente a D en $\{0\}$, una estructura de Hodge mixta \mathcal{H}_u sobre $H^i(\tilde{X},\mathbb{Z})$. La filtración W y las estructuras de Hodge sobre los $\operatorname{Gr}_n^W(H^i)$ son independientes de u, y la dependencia en u de \mathcal{H}_u se expresa simplemente en términos de T. En analogía con lo anteiror, se encuentra que, para cualquier u, log T induce un morfismo de estructuras de Hodge mixtas

$$M: \mathbb{Z}(1) \otimes H^i(\tilde{X}, \mathbb{Z}) \to H^i(\tilde{X}, \mathbb{Z}).$$

Finalmente, la analogía anterior no es tramposa (pero aquí, el hecho de que $f|D^*$ se supone propio y liso es sin duda esencial). Se demuestra que

$$(\log T)^k : \operatorname{Gr}_{n+k}^W(H^n(\tilde{X}, \mathbb{Q})) \to \operatorname{Gr}_{n-k}^W(H^n(\tilde{X}, \mathbb{Q}))$$

es un isomorfismo para todo k (cf. [6], IV 6, cor. al th. 5). Esto caracteriza la filtración W. Hasta ahora, no se dispone de un análogo al teorema de positividad de Hodge más que en casos muy particulares. Esperamos que las estructuras mixtas \mathcal{H}_u determinen el comportamiento asintótico, para $t \to 0$, de la familia de estructuras puras $H^i(X_t, \mathbb{Z})$ $(t \in D^*)$.

Bibliografía

- [1] P. Deligne: Teoría de Hodge. (Por publicar)
- [2] M. Demazure: Motivos de variedades algebraicas (1969).
- [3] J.-P. Serre: Análogos Kählerianos de ciertas conjeturas de Weil. (1960).
- [4] J.-P. Serre y J. Tate: Buena reducción de variedades abelianas. (1968)
- [5] A. Weil: Número de soluciones de ecuaciones en cuerpos finitos. 1949.
- [6] A. Weil: Introducción al estudio de las variedades kählerianas. 1958.