#### Week 8

**Task 1** Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep the gap thickenss to be 13 mm)

To calculate U value of a window

$$U = U_{centerA_{center} + U_{edgeA_{edge}} + U_{framA_{fram}}}$$

$$window = A window$$

If its double glazed window, the thermal resistance of the glass layer can be disregared,

$$\frac{1}{\textit{U double panel(center region)}} \approx \frac{1}{h1} + \frac{1}{hspace} + \frac{1}{h0}$$

H space = h rad, space + h conv, space

The h space depends on the type of gas that fills the gap

### From the diagram:

- When the gape is 13mm, and altering the gas that fills the gaps from air into argon, the U-value of the glass centre decreases from 2.8 to 2.65w/m²k, which is about 6.43%
- When the gape is 13mm, and altering the gas that fills the gaps from air into Krypton, the U-value of the glass center decreases from 2.8 to 2.6w/m²k, which is about 7.14%



In addition, the h space in U centre depends also on the amount of panel.

# From the diagram:

- When the gape is 13mm, the gas in the gap is air, by adding an extra panel, the U-value of the center decreases from 2.8to 1.8 w/m²k, hence that U-value decreased with 55.6%.

Another way to alternate the U centre, is to coat the glass with surfaces that has a low emissivity.

### From the diagram:

When the gape is 13mm, and the gap is filled with air,

By coating the glass surface with a material with emissivity of 0.1, the u value of the centre of glass decreases from 2.8 to 1.8, hence, the its decreased with 55.6%.

**Task 2** Consider the house that we analysed in the alst two examples, calculate the heating and cooling load of the other windows which are fixed 14.4 m2 on the west, fixed 3.6 m2 on the south and an operable 3.6 m2 on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminium?

|                    |                   |             |              |             |               | P          | IACENZ    | A, Italy |            |             |             |        |            |         |          |          | WMO             | #: <b>16</b> | 0840      |            |
|--------------------|-------------------|-------------|--------------|-------------|---------------|------------|-----------|----------|------------|-------------|-------------|--------|------------|---------|----------|----------|-----------------|--------------|-----------|------------|
| Lat:               | 44.92N            | Long:       | 9.73E        | Elev:       | 138           | StdP:      | 99.68     |          | Time Zone  | 1.00 (EU    | W)          |        | Pe         | riod: 8 | 9-10     |          | WBAI            | v: 99        | 9999      |            |
| Annual He          | eating and H      | umidificati | on Design C  | onditions   |               |            |           |          |            |             |             |        |            |         |          |          |                 |              |           |            |
| Coldest            | Heatin            | o DR        |              | Hum         | idification D | P/MCDB and | HR        |          | 1 (        | Coldest mon | th W        | S/MCDI | В          |         | MC       | WS/P     | CWD             | 7            |           |            |
| Month              | 99.6%             | 99%         | DP           | 99.6%<br>HR | MCDB          | DP         | 99%<br>HR | MCDB     | WS 0.      | 4%<br>MCDB  | 1           | VS 19  | %<br>MCI   | DB.     | MCW      | 99.6%    | DB<br>PCWD      | -            |           |            |
| (a)                | (b)               | (c)         | (d)          | (0)         | (f)           | (g)        | (h)       | (i)      | (j)        | (k)         |             | 1)     | (m         | _       | (n)      | <u> </u> | (0)             | _            |           |            |
| 1                  | -6.2              | -4.8        | -11.6        | 1.4         | 3.1           | -8.8       | 1.8       | 1.8      | 8.8        | 5.6         | 7           | 7.7    | 6.         | 2       | 2.1      |          | 250             |              |           | (1)        |
| Annual Co          | ooling, Dehu      | midificatio | n, and Entha | alpy Design | Condition     | S          |           |          |            |             |             |        |            |         |          |          |                 |              |           |            |
| Hottest            | Hottest           |             | •            |             | DB/MCWB       |            |           |          |            | Evaporation |             | MCDB   |            |         |          |          |                 | S/PCV        |           | 7          |
| Month              | Month<br>DB Range | DB I        | 4%<br>MCWB   | DB 1        | %<br>MCWB     | 2%<br>DB   | MCWB      | WB       | MCDB       | WB 1        | %<br>M      | CDB    | WE         | 2%<br>B | MCD      | B        | to 0            | .4% DI       | CWD       | -          |
| (a)                | (b)               | (c)         | (d)          | (e)         | (f)           | (g)        | (h)       | (i)      | (j)        | (k)         |             | 1)     | (m         | _       | (n)      | _        | (0)             |              | (p)       | _          |
| 8                  | 11.9              | 33.1        | 22.7         | 31.9        | 22.4          | 30.3       | 21.8      | 24.6     | 30.2       | 23.7        | 2           | 9.2    | 22.        | .9      | 28.3     | 3        | 2.4             |              | 90        | (2)        |
| D.                 |                   |             |              |             |               |            |           |          |            |             |             |        |            |         |          |          |                 |              |           |            |
| Piace              |                   |             |              |             |               |            |           |          |            | Tal         | ble 1       | 0 P    | Peak !     | Irrac   | lianc    | e, W     | /m <sup>2</sup> |              |           |            |
| Lat: 4             | 4,92 n            | ı           |              |             |               |            |           |          |            |             |             |        |            |         | La       | atitud   | le              |              |           |            |
| Long:              | 9,73              | e           |              |             |               |            |           |          | Exposure   |             |             |        |            |         |          |          | 45°             |              |           | 60°        |
| elev:              | 138               |             |              |             |               |            |           |          | North      |             | $E_D$ $E_d$ |        | 106<br>115 |         | 84<br>93 | 81<br>84 | 85<br>76        | 96<br>69     | 112<br>62 | 136<br>55  |
| Tsum               | mer: 2            | 24°         |              |             |               |            |           |          |            |             | $E_t$       | 253    | 221        | 195     | 177      | 166      | 162             | 164          | 174       | 191        |
| Twint              | ter: 20           | 0           |              |             |               |            |           |          | Northeast/ | Northwest   |             |        |            |         |          |          | 399             |              |           | 361<br>137 |
| heatin             | ig db 9           | 99%:        | - 4.8        |             |               |            |           |          |            |             | $E_d$ $E_t$ |        |            |         |          |          | 147<br>546      |              |           | 498        |
|                    | ng db/i           |             |              | 31.0        |               |            |           |          | East/West  |             | $E_D$       | 530    | 543        | 552     | 558      | 560      | 559             | 555          | 547       | 537        |
|                    | _                 |             |              | ,           | 00            |            |           |          |            |             | $E_d$       |        |            |         |          |          | 188             |              | 187       |            |
|                    | oling =           |             |              |             |               |            |           |          |            |             | $E_t$       |        |            |         |          |          | 747             |              | 734       | 724        |
| $\delta T$ hea     | iting=            | 20 –        | (-4,8)       | = 24        | ,8 °C         |            |           |          | Southeast/ | Southwest   | $E_D$       |        |            |         |          |          | 463<br>207      |              |           | 517<br>215 |
| buildi             | ng eas            | st side     | is           |             |               |            |           |          |            |             | $E_t$       |        |            |         |          |          | 670             |              | 715       |            |
| 45° la             | titude            |             |              |             |               |            |           |          | South      |             | $E_D$       | 0      |            |         |          |          | 348             |              | 464       |            |
| no int             | ernal             | shadii      | ng – ai      | ic = 1      |               |            |           |          |            |             | $E_d$ $E_t$ |        |            |         |          |          | 209<br>557      |              |           | 225<br>740 |
|                    |                   |             |              |             |               |            |           |          |            |             | ı           |        |            |         |          |          |                 |              |           |            |
| $Dr = \frac{1}{2}$ |                   |             |              |             |               |            |           |          | Horizontal | l           | $E_D$       | 845    | 840        | 827     | 806      | 776      | 738             | 691          | 637       | 574        |
| Dr = 1             |                   |             |              |             |               |            |           |          | Horizontal | I           | $E_d$       |        | 170        | 170     | 170      | 170      | 170             | 170          | 170       | 170        |

Table 13 Fenestration Solar Load Factors FF<sub>s</sub>

| Exposure   | Single Family Detached | Multifamily |  |  |
|------------|------------------------|-------------|--|--|
| North      | 0.44                   | 0.27        |  |  |
| Northeast  | 0.21                   | 0.43        |  |  |
| East       | 0.31                   | 0.56        |  |  |
| Southeast  | 0.37                   | 0.54        |  |  |
| South      | 0.47                   | 0.53        |  |  |
| Southwest  | 0.58                   | 0.61        |  |  |
| West       | 0.56                   | 0.65        |  |  |
| Northwest  | 0.46                   | 0.57        |  |  |
| Horizontal | 0.58                   | 0.73        |  |  |

# Calculating the cooling load of the fixed west window:

q window west = A X CFwindow west

 $A=14.4m^2$ 

CF window west(heat transfer part) = U window west( $\Delta T$ cooling-0.46DR)

The window is double glazed fixed with wooden frame

∴ U window west=2.84 w/m<sup>2</sup>k

CF window west(heat transfer part) = 2.84w/m<sup>2</sup>Kx(7.9k-0.46x11.9K) $\approx 6.89$ w/m<sup>2</sup>

PXI window west =ED+Ed=559+188=747

SHGC=0.54

No internal shading, so IAC=1

FFs=0.56

CF window west(irradiation part) =  $PXI \ X \ SHGC \ X \ IAC \ X \ FFS$ 

 $qwindow\ west = A\ X\ (CF window\ west (heat\ transfer\ part) + CF window\ west (irradiation\ part)\ )$ 

$$\approx 14.4 \text{m}^2 \text{x} (6.89 + 747 \text{x} 0.54 \text{x} 1 \text{x} 0.56) \text{w/m}^2$$

≈3352.07W

Calculating the heating load of the fixed west window:

q window west = A x HFwindow west

 $= A \times U$  window west  $\times \Delta T$  heating

 $= 14.4x \ 2.84x \ 24.8 \approx 1014.22W$ 

Changing the frame from wood to aluminium,

U window west= 3.61 w/m<sup>2</sup>K, HSGC=0.56

CF' window west(heat transfer part)=U' window west( $\Delta T cooling - 0.46DR$ )

$$= 3.61x(7.9-0.46x11.9) \approx 8.76w/m^2$$

Cooling load q' window west = AxCF' window west

= AX(CF' window west(heat transfer part) + CF' window west(irradiation part))

$$=14.4x(8.76+747x0.56x1x0.56) \approx 3499.48w$$

Heating load q' window west = A x HFwindow west

 $= A \times U$  window west  $\times \Delta T$  heating

 $= 14.4x \ 3.61x \ 24.8 \approx 1289.20W$ 

### Calculating the cooling load of the fixed south window:

q window south = A X CFwindow south

 $A=3.6m^{2}$ 

CF window south(heat transfer part) = U window south ( $\Delta T$ cooling-0.46DR)

The window is double glazed fixed with wooden frame

 $\therefore$  U window south = 2.84 w/m<sup>2</sup>k

CF window south (heat transfer part) =  $2.84 \text{ x}(7.9-0.46\text{x}11.9) \approx 6.89\text{w/m}^2$ 

PXI window south =ED+Ed=348+209=557

SHGC=0.55

No internal shading, so IAC=1

FFs=0.47

CF window south (irradiation part) =  $PXI \ X \ SHGC \ X \ IAC \ X \ FFS$ 

qwindow south  $=A \times (CF$  window south (heat transfer part) + CF window south (irradiation part))

$$\approx 3.6 m^2 x (6.89 + 557 x 0.54 x 1 x 0.47) w/m^2$$

≈553.72W

Calculating the heating load of the fixed south window:

q window south = A x HFwindow south

 $= A \times U$  window south  $\times \Delta T$  heating

 $= 3.6 \times 2.84 \times 24.8 \approx 253.56 \text{W}$ 

Changing the frame from wood to aluminium,

U window south = 3.61 w/m<sup>2</sup>K, HSGC=0.56

CF' window south (heat transfer part)=U' window south ( $\Delta Tcooling - 0.46DR$ )

$$= 3.61x(7.9-0.46x11.9) \approx 8.76w/m^2$$

Cooling load q' window south = AxCF' window south

 $= Ax(CF' \ {\rm window \ south \ (heat \ transfer \ part)} + CF' {\rm window \ south \ (irradiation \ part)})$ 

 $=3.6x(8.76+557x0.56x1x0.47) \approx 559.30w$ 

Heating load q' window south = A x HFwindow south

 $= A \times U$  window south  $\times \Delta T$  heating

 $= 3.6 \times 3.61 \times 24.8 \approx 322.30 \text{w}$ 

# Calculating the cooling load of the operable south window:

q window south = A X CFwindow south

 $A = 3.6 \text{m}^2$ 

CF window south(heat transfer part) = U window south ( $\Delta Tcooling-0.46DR$ )

The window is double glazed fixed with wooden frame

 $\therefore$  U window south = 2.87 w/m<sup>2</sup>k

CF window south (heat transfer part) =  $2.87 \text{ x}(7.9-0.46\text{x}11.9) \approx 6.96\text{w/m}^2$ 

PXI window south =ED+Ed=348+209=557

SHGC=0.46

No internal shading, so IAC=1

FFs=0.47

CF window south (irradiation part) =  $PXI \times SHGC \times IAC \times FFS$ 

qwindow south  $=A \times (CF$  window south (heat transfer part) + CF window south (irradiation part) )

$$\approx 3.6 \text{m}^2 \text{x} (6.96 + 557 \text{x} 0.54 \text{x} 1 \text{x} 0.47) \text{w/m}^2$$

≈553.98W

Calculating the heating load of the fixed south window:

q window south =  $A \times HF$  window south

 $= A \times U$  window south  $\times \Delta T$  heating

 $= 3.6x \ 2.87x \ 24.8 \approx 256.23W$ 

Changing the frame from wood to aluminium,

U window south =  $4.62w/m^2K$ , HSGC=0.55

CF' window south (heat transfer part)=U' window south ( $\Delta Tcooling - 0.46DR$ )

$$=4.62x(7.9-0.46x11.9)\approx 11.21w/m^2$$

Cooling load q' window south = AxCF' window south

= Ax(CF' window south (heat transfer part) + CF' window south (irradiation part))

$$=3.6x(11.21+557x0.55x1x0.47) \approx 558.70w$$

Heating load q' window south =A x HFwindow south

 $= A \times U$  window south  $\times \Delta T$  heating

 $= 3.6x \ 4.62x \ 24.8 \approx 412.47w$