MAT 310 HW 10, Carl Liu

8.A.2

Let $T \in \mathcal{L}(\mathbf{C}^2)$ be defined as T(w.z) = (-z, w). To find the eigenvalues, we have $T(w,z) = \lambda(w,z)$ and so $(-z,w) = (\lambda w, \lambda z)$. This means $-z = \lambda w$ and $w = \lambda z$. This results in $-z = \lambda^2 z$ and so $-1 = \lambda^2$. We then have $\lambda = \pm i$ as eigenvalues. We then have for $\lambda = i$, $(T-iI)^2(x,y) = (T^2-2iT-I)(x,y) = (-x,-y)+(2iy,-2ix)-(x,y) = (-2x+2iy,-2y-2ix)$. We want the null space and so (-2x+2iy,-2y-2ix) = (0.0) resulting in iy = x. Thus we have $G(i,T) = \{(iy,y) : y \in \mathbf{C}\}$. For $\lambda = -i$, $(T+iI)^2(x,y) = (T^2+2iT-I)(x,y) = (-2x-2iy,-2y+2ix)$. Finding the null space we have (-2x-2iy,-2y+2ix) = (0,0) and so ix = y. Thus we have $G(-i,T) = \{(x,ix) : x \in \mathbf{C}\}$

8.A.3

Suppose $T \in \mathcal{L}(V)$ is invertible. Let $\lambda \in \mathbf{F}$ such that $\lambda \neq 0$. Using induction on n we will prove that $null(T-\lambda I)^n = null(T^{-1} - \frac{1}{\lambda}I)^n$ for all n. In the base case of n=1, let $v \in null(T-\lambda I)$. Then $(T-\lambda I)v=0$ so $Tv=\lambda v$. Then $v=\lambda T^{-1}v$. So $0=(T^{-1}-\frac{1}{\lambda}I)v$ proving that $v \in null(T^{-1}-\lambda I)$ and so $null(T-\lambda I)\subseteq null(T^{-1}-\frac{1}{\lambda}I)$. Now let $v \in null(T^{-1} - \frac{1}{\lambda}I)$. Then $(T^{-1} - \frac{1}{\lambda}I)v=0$ resulting in $T^{-1}v=\frac{1}{\lambda}v$. Then $v=\frac{1}{\lambda}Tv$ resulting in $v=\frac{1}{\lambda}Tv$ resulti

8.A.8

Consider the nilpotent operators

$$N(x,y) = (y,0)$$

and

$$K(x,y) = (0,x)$$

on dimV=2. These are indeed nilpotent because $N^2(x,y)=N(y,0)=0$ and $K^2(x,y)=K(0,x)=0$. But we have

$$(N+K)^{2}(x,y) = (N+K)((y,0) + (0,x)) = (N+K)(y,x) = (x,0) + (0,y) = (x,y)$$

Thus $(N+K)^2 \neq 0$ and so N+K is not nilpotent. Since the sum of two nilpotent operators on V is not nilpotent in this case, we can conclude that it is false that the set of nilpotent operators on V is a subspace of $\mathcal{L}(V)$ for any V.

8.B.1

Suppose V is a complex vector space, $N \in \mathcal{L}(V)$, and 0 is the only eigenvalue of N. Then V = G(0, N) by 8.21. But $G(0, N) = null(N - 0I)^n = null(N^n)$ where n = dim(V). So we have $V = null(N^n)$. Now let $v \in V$. Then $N^n v = 0$ for all v and thus we can conclude that $N^n = 0$ meaning N is nilpotent as required

8.B.2

Consider T(x, y, z) = (-y, x, 0). We look for eigenvalues, $T(x, y, z) = \lambda(x, y, z)$. This results in $(-y, x, 0) = (\lambda x, \lambda y, \lambda z)$. So $-y = \lambda x$, $x = \lambda y$, and $0 = \lambda z$. This results in $x = -\lambda^2 x$ and $\lambda = 0$. So $-1 = \lambda^2$ but that means $\lambda = \pm i$. These cannot be eigenvalues given a real vector space. Thus we only have $\lambda = 0$. Now suppose N is nilpotent. Then $T^3 = 0$. But we have $T^3(x, y, z) = T^2(-y, x, 0) = T(-x, -y, 0) = (y, -x, 0)$ implying $T^3 \neq 0$, a contradiction. Therefore T is not nilpotent.