JOIN

Telegram @PuneEngineers

Study Media.in

Total	l No. o	f Questions : 6] SEAT No. :			
P50	92	[Total No. of Pages :3			
	TE/Insem641				
T.E. (IT) (Semester-I)					
THEORY OF COMPUTATION					
(2015 Pattern)					
Time	: 1 H	our] [Maximum Marks : 30			
Instructions to the candidates:					
 Figures to the right indicate full marks. Attempt questions Q.1 or Q.2 Q.3 or Q.4 Q.5 or Q.6. 					
	3) Neat diagrams must be drawn wherever necessary.				
		4) Assume suitable data if necessary.			
Q 1)	a)	Construct FA for the following Language L [8]			
	8	W W is a binary word of length			
		$L = \begin{cases} 4i, i >= 1 \text{ such that each consecutive} \\ \text{Block 4 bits contains at least 2 0's} \end{cases}$			
		Block 4 bits contains at least 20's			
	1 \	D' d' ' ' 1 1 d NEA 9 DEA			
	b)	Distinguish between NFA & DFA [2]			
		6			
0.0	,	OR CHAIN	2		
Q^{2}	a)	Construct Mealy machine for the following Language [6]	>		
		[for input from Σ^* where $\Sigma = \{0, 1\}$]			
	L=	if the input ends in 101 output is x,			
		if the input ends in 101 output is x, if the input ends in 110 output is y,			
		otherwise output z}			
	b)	Define [4]			
	0)	i) Alphabet			
		ii) String			
		iii) Language			
		Construct Mealy machine for the following Language [6] for input from Σ^* where $\Sigma = \{0, 1\}$ if the input ends in 101 output is x, if the input ends in 110 output is y, otherwise output z} Define i) Alphabet ii) String iii) Language iv) Formal Language			
		6.			

P.T.O

Construct regular expression for the following FA using Arden's Theorem b)

OR

Write regular expression for

[4]

[4]

- Strings consisting of a's and b's without any combination of double i) letters over $\Sigma = \{a, b\}$
- Strings that either contain all b's or else, there is an 'a' followed by ii) some b's; the set also contain \in over $\sum = \{a, b\}$
- Construct DFA for following r.e. b) $r = (1(00)^* 1+010^*)^*$ using direct method
- Consider the following CFG: **Q5**) a)

[4]

$$G = \{(S, A), (a, b), P, S\}$$

Where P consists of:

 $S \rightarrow aAs|a$

 $A \rightarrow SbA|ss|ba$

Derive string 'aabbaa' using leftmost & right most derivation

TE/Insem. -641

b) Convert given CFG into GNF

 $S \rightarrow Bs|Aa$

 $A \rightarrow Bc$

 $B \rightarrow Ac$ where,

 $V = \{S, A, B\} & T = \{a, c\}$

OR

Q6) a) Eliminate the \in - productions from the Grammar G which is defined as:

[6]

 $S \rightarrow ABA$

 $A \rightarrow aA \in$

 $B \rightarrow bB \in$

b) Write CFG for the following Languages

[4

- i) $L = \left\{ a^j b^j c^k / i j + k \right\}$
- ii) $L = \left\{ a^{2n} \text{ bc/ } n \ge 1 \right\}$