

Figura 5.2 En cada caso $\mathbf{w} = \alpha \mathbf{u} + \beta \mathbf{v}$ para valores adecuados de α y β .

Observación. En las definiciones 5.3.2 y 5.3.3 se utilizaron dos términos diferentes: "genera" y "espacio generado". Se hace hincapié en que

verbo

Un conjunto de vectores $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ genera a V si todo vector en V se puede escribir como una combinación lineal de $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$; pero

sustantivo

El *espacio generado* por los *n* vectores $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ es el conjunto de combinaciones lineales de estos vectores.

Estos dos conceptos son diferentes -aun cuando los términos se parezcan-.

Se cierra esta sección con la mención de un resultado útil. Su demostración no es difícil y se deja como ejercicio (vea el problema 5.3.24).

Teorema 5.3.2

Sean $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n, \mathbf{v}_{n+1}, n+1$ vectores que están en un espacio vectorial V. Si $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ genera a V, entonces $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n, \mathbf{v}_{n+1}$ también genera a V. Es decir, si se agregan uno o más vectores a un conjunto generador se obtiene otro conjunto generador.