Lab 01: Biểu diễn Đồ thị trên máy tính

I. Ma trận kề

Định nghĩa:

Giả sử G = (V, E) là một đơn đồ thị có số đỉnh là n. *Ma trận kề* là ma trận vuông $A = (a_{ij})$ cấp n x n với n là số đỉnh của đồ thị. Trong đó: $a_{ij} = \{1 \ n \in u \ (i,j) \in E \ 0 \ n \in u \ (i,j) \notin E \}$

Một số tính chất:

- Đồ thị vô hướng $a_{ij} = a_{ji}$ (ma trận đối xứng qua đường chéo chính)
- Đường chéo chính a_{ii}= 0 (do không có khuyên).

Ví dụ:

Đồ thị có hướng

Ma trận kề tương ứng 2 đồ thị trên:

	1	2	3	4
1	0	()	1	2
2	2	()	-3	()
3	0	()	0	4
4	()	()	()	()

	1	2	3	4	5
1	()	2	()	4	()
2	2	0	-3	1	2
3	()	-3	0	2	2
4	4	1	2	()	()
5	()	2	2	()	()

Tài liệu thực hành: Lý thuyết đồ thị

Cài đặt:

Thông thường ma trận kề được lưu trữ trên tập tin và được chương trình đọc lên để thực hiện các thuật toán trên đồ thị tương ứng.

- Dòng đầu tiên chứa số đỉnh của đồ thị
- n dòng tiếp theo, mỗi dòng chứa n số nguyên (0 hoặc 1) tương ứng với giá trị của các phân tử trong ma trận kề.

Ví dụ: đồ thị có hướng ở trên sẽ được lưu trong tập tin DOTHI.TXT như sau:

II. Một số gọi ý

Khai báo cấu trúc dữ liệu

```
const int MAX = 100; //so dinh toi da cua do thi
//Do thi gom co so dinh va ma tran ke.
struct GRAPH
{
        int sodinh;//so dinh do thi
        int a[MAX][MAX];//ma tran ke
};
Hàm đọc dữ liệu lên từ file
void readGRAPH (string fn, GRAPH &g)
        ifstream f;
        f.open(fn);
        if(f.is_open())
                f>>g.sodinh;
                for(int i = 0;i < g.sodinh; i++)
                        for(int j = 0; j < g.sodinh; j++)
                                f>>g.a[i][j];
                f.close();
        else
                cout<<"Khong mo duoc file!!!";</pre>
}
```

Tài liệu thực hành: Lý thuyết đồ thị

Hàm xuất ma trận kề

III. Bài tập

Viết chương trình đọc ma trận kề của đồ thị. Xác định và in ra:

a) Kiểm tra tính hợp lệ của đồ thị (giá trị trên đường chéo chính bằng 0).

```
int KiemTraMaTranKeHopLe(GRAPH &g)
    // kiểm tra các giá trị a[0][0], a[1][1], ... xem có giá trị khác 0 hay không
    // nếu có, nghĩa là ma trận kề không hợp lệ
    int i;
    for (i=0; i<g.sodinh; i++)
    if (g.a[i][i] != 0)
            return 0;
    return 1;
}
// cách sử dụng trong hàm main như sau
// if (!KiemTraMaTranKeHopLe(g)
// {
//
            printf("Ma tran ke khong hop le");
//
            exit(0);
// }
```

b) Cho biết đồ thị có hướng hay vô hướng?

Tài liệu thực hành: Lý thuyết đồ thị

return 1;

} //thuat toan nua tam giac tren cheo chinh.

- a) Số cạnh, số đỉnh của đồ thị? (Phân biệt 2 trường hợp đồ thị có hướng và vô hướng)
- b) Xuất bậc của tất cả các đỉnh

Hướng dẫn:

- Bậc của 1 đỉnh trong đồ thị vô hướng là tổng số các cạnh kề với đỉnh đó. Khuyên được tính 2 lần.
- Bậc nửa ngoài/trong của 1 đỉnh trong trong đồ thị hữu hướng là số cạnh đi ra/vào đính đó. Tổng nửa bậc ngoài và trong của đỉnh là bậc của đỉnh.
- c) Các đỉnh có số bậc lớn nhất/nhỏ nhất, đỉnh bậc chẵn, đỉnh bậc lẻ?
- d) Các định cô lập, đỉnh treo?
 Đỉnh treo là đỉnh có bậc bằng 1, Đỉnh cô lập là đỉnh có bậc bằng 0.

IV. Tài liệu tham khảo

[1]. Bài tập thực hành Lý thuyết đồ thị, Khoa CNTT, ĐH Khoa học Tự Nhiên, ĐHQG TpHCM.