Amplificateur Linéaire Intégré / Principe et montages de base

MODE NON-LINÉAIRE

COMPARATEUR SIMPLE

Caractéristique Vs = $f(\epsilon)$ avec $\epsilon = V + - V - V$

COLLECTEUR OUVERT / ÉMETTEUR OUVERT

Comparateur associé à un transitor

T:

I_B: courant entrant dans la base

 I_C : courant entrant dans le collecteur \rightarrow si $I_R > 0$ alors $I_C > 0$, T = interrupteur fermé

 \rightarrow sinon I_c = 0, T = interrupteur ouvert

Si $V_{E2} > V_{E1}$ $\rightarrow I_{R} > 0$

$$V_S = E_M$$

$$Si V_{E1} > V_{E2}$$

$$\rightarrow I_{B} = 0$$

$$V_{S} = E_{0}$$

COMPOSANTS

• LM311: asymétrique, CO, EO

• LM339: asymétrique, CO, 4 comparateurs

NON

CONTRE-RÉACTION NÉGATIVE ??

OUI

FONCTION DE TRANSFERT

$$V_S = A \cdot (V + - V -)$$

avec $10^5 < A < 10^7$ Saturation à Vs = V_{cc} +

CARACTÉRISTIQUES

- Slew Rate (SR) en $V/\mu s$
- Produit **Gain Bande Passante** en MHz G . BP = constante
- Puissance dissipable en W
- Courant maximal en sortie en A

ALIMENTATION

- Symétrique : V_{CC} + = +U et V_{CC} = -U
- Asymétrique : V_{CC} + = +U et V_{CC} = 0V
 - avec 3 V < U < 18 V

CHECK-LIST PRATIQUE

- Vérifier les alimentations
- Vérifier le signal d'entrée V_{CC} $< V_E < V_{CC}$ +
- Vérifier que V+ = V- si mode linéaire
- Vérifier la tension de sortie, si $Vs = V_{cc} + ou V_{cc}$
 - modifier la tension d'entrée
 - modifier le gain du montage

MODE LINÉAIRE

$$V - = V +$$

INVERSEUR

TRANSIMPEDANCE

COMPOSANTS

- TL071 / TL081 : symétrique, GBP = 3 MHz
- $TL082 / TL084 = 2 \times TL081 / 4 \times TL081$
- TLE2072 : symétrique, GBP = 9 MHz
- LM358: asymétrique, GBP = 1 MHz