

Llama-DNA: Functionally Annotating Unknown Genomic Sequences

Syed Ashal Ali1

Department of Computer Science, Stanford University

Stanford Computer Science

Problem

• Challenge:

Traditional reference-based models struggle to annotate novel, highly divergent, or repetitive genomic sequences.

• Why It Matters:

Incomplete reference genomes limit biomedical discovery and obscure insights into genetic diversity and disease mechanisms.

Aim:

To develop a scalable, cross-modal framework that leverages genomic embeddings alongside natural language generation for accurate functional annotation.

Background

- Genomic sequence annotation is essential yet hindered by the reliance on incomplete reference genomes.
- Prior models (e.g., DNABERT-2 [1]) have advanced sequence modeling but fall short when handling novel or rare sequences. SPLASH [2] provides statistical information about a sequence without a reference.

Data

Sequence	Dataset	SPLASH_Effect	SPLASH_pval	SPLASH_entropy	Annotation
GTCA	ClinVar	0.6075	0.1207	0.595	This sequence is

Figure 1: Sample observation from the curated dataset. Genomic sequences from 6 human chromosomes were extracted from FASTA files and mapped to Ensembl Gene IDs. Gene annotations from RefSeq/Ensembl were integrated with mutation data from the UCSC Genome Browser using chromosomal coordinates. Finally, SPLASH was applied to enrich the dataset with statistical scores (effect size, p-values, and entropy).

Methods

Figure 2: Overview of the Llama-DNA architecture. Sequence first embedded by DNABERT-2, then projected into textual embedding space of Llama-2-7 using a projection layer. Simultaneously, textual annotations, prompts, and SPLASH-derived statistical scores are embedded directly using Llama-2-7b-hf's embedding layer. The concatenated embeddings are processed through LoRA-based attention layers in attention layers of Llama-2-7b-hf to generate the final predicted annotation and database classification.

Experiments and Results (I)

Metric	Baseline	Llama-DNA
Accuracy (Dataset Classification)	0.8065	0.8719
F1 (Dataset Classification)	0.4464	0.6422
Avg. BLEU (Annotation)	0.5685	0.6118
Avg. ROUGE-L (Annotation)	0.7172	0.7591
Avg. METEOR (Annotation)	0.7833	0.8413

Figure 3: Quantitative Results table. This table reports the quantitative scores I achieved after running my experiment with Llama-DNA and testing it on the test set. It compares the scores that Llama-DNA achieved on the test set with the baseline values.

Experiments and Results (II)

Ground Truth

This sequence is part of chr1 chromosome part of TUFT1 gene. This gene is described as tuftelin 1 and a protein coding transcript type. It is of skin fragility and woolly hair syndrome phenotype. It is part of the ClinVar dataset.

Predicted Annotation

This sequence is found in **chr1** chromosome part of **TUFT1** gene. This gene is described as **tuftelin 1** and a **protein coding** transcript type. It is associated with **skin fragility** and **woolly hair syndrome**. It is part of the **ClinVar** dataset.

Figure 4: Qualitative Results table. This table compares the ground truth annotation and the annotation predicted by Llama-DNA for a particular DNA sequence. All the functional parts of the annotation are correct but there are deviations from the ground truth in terms of exact n-gram.

Conclusion

- Llama-DNA demonstrates that cross-modal integration can significantly enhance genomic sequence annotation, offering a robust, interpretable, and scalable solution.
- Future directions could involve scaling dataset to include greater genomes and gaining access to more annotations.

References:

[1] Zhihan Zhou et al. "DNABERT-2: Efficient foundation model and benchmark for multi-species genomes." *ICLR*, 2024.

[2] Chaung et al. "Splash: A statistical, reference-free genomic algorithm unifies biological discovery." *Cell*, 2023.