Lecture 14 Design Models 2 – GOMS and State Transition

Prof Jim Warren

with reference to sections 7.3 and 7.5 of

The Resonant Interface

HCI Foundations for Interaction Design

First Edition

by Steven Heim

Chapter 7 Interaction Design Models

- Model Human Processor (MHP)
- Keyboard Level Model (KLM)
- GOMS
- Modeling Structure
- Modeling Dynamics
- Physical Models

GOMS

MAXIM

Goal/task models can be used to explore the methods people use to accomplish their goals

- Card et al. suggested that user interaction could be described by defining the sequential actions a person undertakes to accomplish a task.
- The GOMS model has four components:
 - goals
 - operators
 - methods
 - selection rules

GOMS

- Goals Tasks are deconstructed as a set of goals and subgoals.
- Operators Tasks can only be carried out by undertaking specific actions.
- Methods Represent ways of achieving a goal
 - Comprised of operators that facilitate method completion
- Selection Rules The method that the user chooses is determined by selection rules

GOMS - CMN-GOMS

MAXIM

CMN-GOMS can predict behavior and assess memory requirements

- CMN-GOMS (named after Card, Moran, and Newell) -a detailed expansion of the general GOMS model
 - Includes specific analysis procedures and notation descriptions
- Can judge memory requirements (the depth of the nested goal structures)
- Provides insight into user performance measures

CNM-GOMS example

So here we have one Goal with either of two Methods, one of which requires a sequence of three

Operators, the other requires just one Operator; for U1 we have 2 Selection rules

GOMS - Other GOMS Models

 NGOMSL (Natural GOMS Language), developed by Kieras, provides a structured natural-language notation for GOMS analysis and describes the procedures for accomplishing that analysis

– NGOMSL Provides:

- A method for measuring the time it will take to learn specific method of operation
- A way to determine the consistency of a design's methods of operation
- **Bonus learning** see ftp://www.eecs.umich.edu/people/kieras/GOMS/NGOMSL_Guide.pdf

GOMS - Other GOMS Models

- CPM-GOMS represents
 - Cognitive
 - Perceptual
 - Motor operators
- **CPM-GOMS** uses Program Evaluation Review Technique (PERT) charts
 - Maps task durations using the critical path method (CPM).
- **CPM-GOMS** is based directly on the Model Human Processor
 - Assumes that perceptual, cognitive, and motor processors function in parallel

GOMS - Other GOMS Models

 Program Evaluation Review Technique (PERT) chart Resource Flows

Modeling Dynamics

MAXIM

Understanding the temporal aspects of interaction design is essential to the design of usable and useful systems

- Interaction designs involve dynamic feedback loops between the user and the system
 - User actions alter the state of the system, which in turn influences the user's subsequent actions
- Interaction designers need tools to explore how a system undergoes transitions from one state to the next

Modeling Dynamics – State Transition Networks

- State Transition Networks can be used to explore:
 - Menus
 - Icons
 - Tools

• State Transition Networks can show the operation of peripheral devices

Modeling Dynamics – State Transition Networks

State Transition Network

• STNs are appropriate for showing sequential operations that may involve choice on the part of the user, as well as for expressing iteration.

State transition networks (STN) – example

- circles states
- arcs actions/events

State transition networks - events

- arc labels a bit cramped because:
 - notation is `state heavy'

State transition networks - states

- labels in circles a bit uninformative:
 - states are hard to name
 - but easier to visualise

Modeling Dynamics – Three-State Model

MAXIM

The Three-State Model can help designers to determine appropriate I/O devices for specific interaction designs

- The TSM can reveal intrinsic device states and their subsequent transitions
 - The interaction designer can use these to make determinations about the correlation between task and device
 - Certain devices can be ruled out early in the design process if they do not possess the appropriate states for the specified task

Modeling Dynamics – Three-State Model

- The Three-State Model (TSM) is capable of describing three different types of pointer movements
 - Tracked: A mouse device is tracked by the system and represented by the cursor position
 - Dragged: A mouse also can be used to manipulate screen elements using drag-and-drop operations
 - Disengaged movement: Some pointing devices can be moved without being tracked by the system, such as light pens or fingers on a touchscreen, and then reengage the system at random screen locations

Modeling Dynamics – Three-State Model

Mouse Three-State Model.

Trackpad Three-State Model.

Alternate mouse Three-State Model.

Multibutton pointing device Three-State Model.

Modeling Dynamics – *Glimpse Model*

- Forlines et al. (2005):
 - Because the pen and finger give clear feedback about their location when they touch the screen and enter state 2, it is redundant for the cursor to track this movement
 - Pressure-sensitive devices can take advantage of the s1 redundancy and map pressure to other features
 - Undo commands coupled with a preview function (Glimpse)
 can be mapped to a pressure-sensitive direct input device

Modeling Dynamics – *Glimpse Model*

Previewing potentially useful to scroll momentarily to another part of a document (but then return to where you were), or to look around in a virtual environment

Modeling Dynamics – *Glimpse Model*

- Some applications
 - Pan and zoom interfaces—Preview different magnification levels
 - Navigation in a 3D world—Quick inspection of an object from different perspectives
 - Color selection in a paint program—Preview the effects of color manipulation
 - **Volume control**—Preview different volume levels
 - Window control—Moving or resizing windows to view occluded objects
 - Scrollbar manipulation—Preview other sections of a document

Uses of State-Transition Networks

- Not well-suited to complete models of modern GUIs
 - Too many options (transitions) from any given state combinatorial explosion (in fact, that's just the flexibility a good GUI is *supposed* to give)
- Better for limited/embedded user interfaces
 - Automated teller machine
 - Digital watch
 - Car key/alarm device
- Excellent for checking completeness of design
 - Be sure that all transitions are represented (and hence will get coded and tested in implementation)