

Prof. Dr. Zimmermann

Klausur

Diskrete Mathematik 2 I168

2. Quartal 2021

Name d	es Prüflings:]	Matrike	lnumme	r:	Zenturio	e :	
Dauer: 9	90 min Seiten ohne De					eckblatt 3			Datum: 23. Juni 202		
Hilfsmit	t tel: Nordaka	demie Ta	aschenre	echner, S	Stifte (ni	cht rot).					
Bemerk	ungen:										
 No Go Bi fü Pr Do be Di 	ummerieren Seben Sie immette beachten Shrung und für üfungsspracheas Klausurauf	ie alle ver an zu Sie die gedie Abge ist Deugabenheiständiglenthält 7	erwende welcher gesonder gabe der utsch. eft umfas keit!	eten Blä r Aufgah rt zur Ve Prüfung sst exkl.	tter! De eine I Derfügung Sileistur Deckbl	ösung a gestellt ag. att 3 Sei	uf einem en Hinwe ten. Bitte	Blatt geise für überp	gehört! rdie Prüfungserüfen Sie Ihr Arden. Zum Be Prozent: 100	durch Aufga	
Datum:	Note:					Ergänzungsprüfung:					
Untersch	nrift:				Un	terschrif	t:				

NORDAKADEMIE NOCHSCHULE DER WIRTSCHAFT

Aufgabe 1 (18 Punkte)

In den folgenden Multiple Choice Aufgaben sind je 3 Aussagen richtig. Nennen Sie diese.

Bewertungshinweis: Es gibt maximal sechs Punkte pro Teilaufgabe.

- Wenn Sie mehr als drei Aussagen pro Teilaufgabe angeben, erhalten Sie keine Punkte.
- Finden Sie nur zwei richtige Aussagen pro Teilaufgabe, erhalten Sie drei Punkte.
- Finden Sie weniger als zwei richtige Aussagen pro Teilaufgabe, erhalten Sie keinen Punkt.
- (1.1) (6 Punkte) Geben Sie die drei richtigen Aussagen an:
 - A) Sei M eine beliebige nichtleere Menge und $R \subseteq M \times M$. Dann gilt: $R \circ Id_M = Id_M$.
 - B) Seien M, N endliche Mengen. Es gilt: $|M \times N| = |M| \cdot |N|$.
 - C) Sei *M* eine Menge. Es gilt: $Id_M^{-1} = Id_M$.
 - D) Seien eine M eine Menge und $R \subseteq M \times M$. Es gilt: R symmetrisch $\Rightarrow R$ reflexiv.
 - E) $\{(1,2),(3,2)\}\subseteq\{1,2,3\}\times\{1,2,3\}$ ist transitiv.
 - F) Die Teilbarkeits-Relation $\subseteq \mathbb{Z} \times \mathbb{Z}$ ist antisymmetrisch.
- (1.2) (6 Punkte) Geben Sie die drei richtigen Aussagen an:
 - A) Sei \sqsubseteq eine Ordnungsrelation auf einer Menge M. Dann ist die Nachbarschaftsrelation \sqsubseteq^N die kleinste transitive Relation, die in \sqsubseteq enthalten ist.
 - B) Sei \sqsubseteq eine Ordnungsrelation auf einer nichtleeren Menge M, dann sind alle Elemente von M obere Schranken von \emptyset .
 - C) Sei $M = \{1, 2, 3\}$. Es gilt: $\{(1, 2), (1, 3)\} \subseteq M \times M$ ist linkseindeutig.
 - D) Seien M, N endliche Mengen und $f: M \to N$ eine Abbildung. Es gilt: f surjektiv $\Rightarrow f$ injektiv.
 - E) Sei M eine endliche Menge und $f: M \to M$ eine Abbildung. Es gilt: f surjektiv $\Rightarrow f$ injektiv.
 - F) Seien M und N endliche Mengen mit |M| = |N|. Dann ist jede Abbildung $f: M \to N$ bijektiv.
- (1.3) (6 Punkte) Geben Sie die drei richtigen Antworten an:
 - A) Die (additive!) Gruppe (\mathbb{Z}_{17}, \oplus) hat ein Element der Ordnung 2.
 - B) $\left(\mathbb{Z}_{561} \setminus \{[0]_{561}\}, \otimes\right)$ ist eine Gruppe.
 - C) $(\mathbb{N}_0, +)$ ist keine Gruppe, aber eine algebraische Struktur.
 - D) Die Gleichung $a \otimes x = b$ ist für beliebige $a, b \in \mathbb{Z}_6 \setminus \{[0]_6\}$ lösbar.
 - E) Es gilt: $2019^{2021} \equiv_{2020} 2019$.
 - F) Es gilt: $[5]_5^{2021} = [5]_5$.

Aufgabe 2 (11 Punkte)

- (2.1) (5 Punkte) Geben Sie auf der Menge $M := \{1, 2, 3\}$ Relationen R und S an so, dass
 - (a) R reflexiv, aber weder symmetrisch noch transitiv,
 - (b) S transitiv und nicht asymmetrisch ist.
- (2.2) (6 Punkte) Seien M eine beliebige Menge und $R \subseteq M \times M$ und $S \subseteq M \times M$ beliebige transitive Relationen in M. Beweisen oder widerlegen Sie:
 - 1. $R \cup S$ ist transitiv.
 - 2. $R \cap S$ ist transitiv.

Aufgabe 3 (13 Punkte)

- (3.1) (6 Punkte) Sei $M := \{1, 2, 3\}$. Geben Sie alle strikten, totalen Ordnungsrelationen auf M an.
- (3.2) (7 Punkte) Es sei \sqsubseteq eine Ordnungsrelation auf der M sowie $A \subseteq M$ und $s \in A$. Zeigen Sie: Ist s obere Schranke von A, so gilt $s = \sup(A)$. Geben Sie dazu die Definition von oberer Schranke und Supremum unter Verwendung von Quantoren an.

Aufgabe 4 (22 Punkte)

(4.1) (4 Punkte) Notieren Sie die Definition einer Äquivalenzrelation ≡ auf einer Menge *M* mithilfe von Mengeninklusionen sowie die Definition der zugehörigen Äquivalenzklassen.

Sei die Relation \equiv in \mathbb{Z} definiert durch

$$\forall n,m \in \mathbb{Z}: n \equiv m \Leftrightarrow_{Def} n^2 + m = n + m^2 \ .$$

- (4.2) (9 Punkte) Zeigen Sie, dass \equiv eine Äquivalenzrelation auf \mathbb{Z} ist.
- (4.3) (3 Punkte) Zeigen Sie, dass für alle $n \in \mathbb{Z}$: $n \equiv -n + 1$.
- (4.4) (3 Punkte) Geben Sie die Äquivalenzklassen [0]_≡, [1]_≡ und [2]_≡ explizit in aufzählender Darstellung an.
- (4.5) (3 Punkte) Ist die Verknüpfung $[n]_{\equiv} \oplus [m]_{\equiv} := [n+m]_{\equiv}$ für $n, m \in \mathbb{Z}$ auf \mathbb{Z}/\equiv wohldefiniert?

Hinweis: Es reicht, zur Verknüpfung die Äquivalenzklasse [0]_≡ mit verschiedenen Repräsentanten zu betrachten.

Aufgabe 5 (10 Punkte)

Welche der Gleichungen

- 1. $[9]_{24} \otimes x = [12]_{24}$
- 2. $[8]_{24} \otimes x = [12]_{24}$

besitzt eine Lösung x in \mathbb{Z}_{24} ? Falls Lösungen existieren, berechnen Sie alle Lösungen **mit dem** in den Vorlesung verwendeten Verfahren. Falls keine Lösungen existieren, begründen Sie dies.

Aufgabe 6 (13 Punkte)

- (6.1) (4 Punkte) Finden Sie in $(\mathbb{Z}_7 \setminus \{[0]_7\}, \otimes)$ ein Element mit maximaler Ordnung.
- (6.2) (2 Punkte) Geben Sie eine nichttriviale Untergrupppe von $(\mathbb{Z}_7 \setminus \{[0]_7\}, \otimes)$ an.
- (6.3) (7 Punkte) Geben Sie für n = 2149 und n = 337 jeweils die zu n **nicht** teilerfremden natürlichen Zahlen an, die kleiner als n sind. Berechnen Sie die Anzahl dieser Zahlen. Begründen sie ihre Berechnung.

Aufgabe 7 (13 Punkte)

Für das RSA-Verfahren werden folgende Werte gewählt: p = 17, q = 19 und e = 11. Geben Sie in den folgenden Teilaufgaben stets einen nachvollziehbaren Rechenweg an:

- (7.1) (6 Punkte) Bestimmen Sie den öffentlichen und den privaten Schlüssel.
- (7.2) (2 Punkte) Verschlüsseln Sie die Nachricht m = 38.
- (7.3) (5 Punkte) Entschlüsseln Sie die Nachricht c=21 mithilfe des Square-and-Multiply-Algorithmus.