

FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA LICENCIATURA EM ENGENHARIA INFORMÁTICA REDES DE COMPUTADORES II

TEMA: Virtual Local Area Network - VLAN

Grupo Docente:

- Eng°. Felizardo Munguambe (MsC.)
- •Eng°. Délcio Chadreca (MsC.)

Tópicos da Aula

- > Introdução
- Benefícios da criação de vlans
- > Intervalos de id de vlans
- Vlans Configuraveis
- > Tipos de VLANS
- > Tipos de Trafego
- Dominios de Broadcast com VLANS
- Configurações e Exercicios

VLANS (Sim ou nao)?

Introdução

Por defeito, todos os *switchs* de uma rede pertencem aos mesmo domínio de *broadcast*. Isto significa que um *broadcast* é enviado para todos os dispositivos da rede através de todos os *switchs*.

Se o numero de *broadcast* fosse reduzido com certeza esse não seria o problema. A realidade actual, mostra que muitas aplicações com destaque aplicações multimédia, usam o *broadcasts* e *multcasts* intesivamente.

Para reduzir o impacto dos *broadcasts* sobre o desempenho da rede, temos que separar o domínio de *broadcast*. Uma das soluções é separar a rede em vários domínios domínios de *broadcasts* com um roteador, uma vez que o roteador, por defeito não encaminha *broadcasts*.

Uma rede com Três domínios de *broadcast* definidos por um router

Como solução foi utilizado um *switch* por cada departamento e por domínio de *broadcast*, isto é, cada departamento tem um domínio de *broadcast*.

Se os departamentos necessitarem comunicar-se entre si, a solução devera incluir um *router* para fazer o encaminhamento dos pacotes entre vários domínios de *broadcast*, uma vez que cada domínio de broadcast é uma rede LAN diferente com um endereçamento diferente.

Esta solução apresentada resolve o problema de domínio de *broadcast*, contudo apresenta algumas limitações a saber:

- Segurança;
- Flexibilidade e
- Escalabilidade

Fundamentos de Redes LAN Virtuais

Para ultrapassar os problemas de segurança , flexibilidade e escalabilidade associados a segmentação baseada em routers, surgiu o conceito de LAN virtual (VLAN- Virtual LAN).

Uma VLAN é um domínio de broadcast criado com um ou mais switchs. Quando se criam VLAN num switches, estao-se a criar varias redes, uma por VLAN, cada com seu domínio de broadcast

Uma LAN com Três dominós de *Broadcast* definidos com VLAN

Beneficios da criacao de vlans

Broadcasts: Por defeito, os *broadcasts* de diferentes VLAN são filtrados pelo switch, e consequentemente reduzem os efeitos negativos dos *broadcasts*

Segurança: No processo de criação de VLAN o administrador da rede especifica que portos pertencem a que VLAN e que recursos esse porto pode aceder. Os switchs podem ser configurados de forma que emitem alertas para o Admin.

Flexibilidade: Um utilizador pode ser adicionada uma determinada VLAN independentemente da sua localização física.

Escalabilidade: O administrador da rede pode incluir facilmente um novo departamento bastando adicionar uma nova VLAN ao switch (Eficiecia do dos TI)

Redução de Custos: Como???????

Dominios de Broadcast com VLANS

Broadcast de Redes sem segmentacao por VLAN

• Um switch recebe um quadro de broadcast em uma das portas, ele encaminha o quadro por todas as demais portas no switch.

Broadcast de Redes com segmentação por VLAN

• O quadro de broadcast chaga ao único computador na rada

Intervalos de id de vlans

Intervalo normal

- Redes de pequeno e medio porte
- Tem um identificador que varia de 1 a 1005
- Os IDs 1002 ate 1005 sao reservados para VLANs Token Ring e FDDI
- As IDs 1, 1002 a 1005 sap criadas automaticamente, nao podem ser removidas.
- As configurações são armazedas em um arquivo de banco de dados (Vlan.dat)
- VTP e o protocolo de entrocamento, e auxilia na gestao das configuracoes.

Intervalo estendido

- Permite operadoras extender sua infra estrutura para um maior numero de clientes (empresas globais)
- Os IDs de VLAN entre 1006 a 4094
- Suportam menos recursos que as VLAN do intervalo normal
- Sao salvas no arquivo de configuração de execusão
- VTP nao aprende VLNs de intervalo estendido

Vlans Configuraveis

Swicths podem suportar ate 255 VLANs de intervalos normal.

Configurar numeros exagerados de VLANs pode afectar o desempenho do equipamento.

Switchs cooportativos podem agrupar ou empilhar um total de 9 switchs criando desta forma uma unica unidade de comutação.

Tipos de VLANS

VLAN de Dados: Transporta apenas trafego gerado pelo utilziador

VLAN Padrao: todas porportas do switch por defeito sao membros da VLAN padrao

VLAN Nativa: são para garantir a compatibilidade com protocolos e dispositivos mais antigos

VLAN de Gestao: configurada para acessar os recursos de gestao de um switch

VLAN de Voz

- Largura de banda
- Prioridade de transmissao
- Capacidade de roteamento em areas congestionadas na rede

Tipos de Trafego

Trafego de Gestão

Trafego de Voz

Multcast IP

Dados Normais

Modos de associacao de porta de switch

VLAN Estáticas: O admin atribui os portos do switch a cada uma das VLAN.

- São fácies de configurar e de memorizar
- Em redes de dimensão considerável ou em redes em que os utilizadores tem uma grande mobilidade torna-se um processo bastante penoso para o administrador de redes

VLAN Dinâmicas: são definidas por software de gestão de acordo com uma base de dados de utilizadores. Quando um utilizador se liga a um *switch*, é adicionado dinamicamente a uma determinada VLAN. A atribuição dinâmica pode ser feita com base no:

- Endereço Físico
- Protocolos
- Aplicações
- Com VLAN dinâmicas a gestão é bastante mais simples mas a configuração inicial do ambiente dinâmico é mais complexa em relação ao caso de VLAN estáticas
- VLAN de VOZ: Uma porta é configurada para estar no modo de voz para que seja capaz de suportar um telefone IP acoplado

TIPOLOGIAS DE VLAN

Foram definidos vários tipos de VLAN, de acordo com o critério de comutação e o nível em que se efectua:

Uma VLAN de nível 1 (também chamada VLAN por porta, em inglês Port-Based VLAN) define uma rede virtual em função das portas de conexão no comutador;

Uma VLAN de nível 2 (igualmente chamada VLAN MAC, em inglês MAC Address-Based VLAN) consiste em definir uma rede virtual em função dos endereços MAC das estações. Este tipo de VLAN é muito mais flexível que a VLAN por porta, porque a rede é independente da localização da estação;

Uma VLAN de nível 3: distinguem-se vários tipos de VLAN de nível 3 : A VLAN por subrede (em inglês Network Address-Based VLAN) associa subredes de acordo com o endereço IP fonte dos datagramas. Este tipo de solução confere uma grande flexibilidade, na medida em que a configuração dos comutadores se altera automaticamente no caso de deslocação de uma estação. Por outro lado, uma ligeira degradação de desempenho pode fazer-se sentir, dado que as informações contidas nos pacotes devem ser analisadas mais finamente.

O VLAN por protocolo (em inglês Protocol-Based VLAN) permite criar uma rede virtual por tipo de protocolo (por exemplo TCP/IP, IPX, AppleTalk, etc.), agrupando assim todas as máquinas que utilizam o mesmo protocolo numa mesma rede.

Tipos de Ligação em Redes de Switches

Ligação de Acesso: as interfaces respetivas fazem parte de uma única VALN designada VLAN nativa do porto. Os tramas transmitidos por esta ligação não tem informação da VLAN a que pertencem.

Ligações Compartilhadas (*Trunk*): as interfaces respetivas podem fazer parte de varias VLAN, podem transportar, simultaneamente, trafego de qualquer grupo de VLAN. Onde se pode usar as ligações compartilhadas?

- Ligação entre Switch e um Servidor
- Ligação entre dois Switches
- Ligação entre um *Swicth* e um *router*

Métodos de Rotulagem de Tramas

Ligação Inter- Switch: Protocolo proprietário, desenvolvido pela CISCO, usado em interfaces Fa e Gig. Pode ser usado na ligação entre *switches*, *switch* e routers e *switch* e servidor

IEEE 801.1Q: protocolo standard criado pela IEEE, é usado em interface Fa e Gig. Deve ser usado quando se pretende interligar equipamentos de fabricantes diferentes

IEEE 802.10: Usado em interfaces FDDI

Emulação LANE (LAN-Emulation): Método de encapsulamento usado para interligar switches através de rede ATM (método de emulação do protocolo Ethernet numa rede ATM). Neste método usa-se uma uma ligaço virtual entre os switches por cada VLAN. A identificação da VLAN esta implícita na ligação virtual.

Encapsulamento 802.1Q VS Ethernet normal

Protocolo de Configuração de VLAN-VTP

A configuração e manutenção de VLAN múltiplas em redes com mais de um switch pode se tornar bastante trabalhosa. Para ajudar os administradores de redes a gerir a configuração de VLAN na sua rede de switches, a cisco adoptou um protocolo não proprietário designado Protocolo de configuração de VLAN (VTP-VLAN Trunking Protocol)

O protocolo VTP controla dinamicamente a adição, remoção e alteração de VLAN em todos os switches da rede. O administrador consegue, desta forma reduzir a inconsistência na configuração como duplicação de nomes de VLAN.

Com o VTP, o administrador de rede apenas tem de configurar um único switch designado servidor VTP que depois propaga as informação de configuração, através das ligações partilhadas a todos os switches que pertencem ao mesmo domínio.

Funcionamento do VTP

Para activar a gestão dinâmica de VLAN baseada no protocolo VTP, o administrador deve começar por criar um domínio VTP e determinar quais os swicthes que pertencem ao domínio. Os switches so partilham informação de VLAN que pertencem ao mesmo domínio. Um switch só pode pertencer a um único domino VTP.

Após definir o domínio, o administrador escolhe um switch para ser servidor VTP do domínio. Os restantes switches são configurados em modo cliente VTP ou modo Transparente.

- **Servidor**: Servidor VTP pode criar, modificar e apagar VLAN. Toda informação relacionada com estas operações são anunciadas através dos links partilhados (Trunk).
- Cliente: em modo cliente, um switch recebe e envia anúncios VTP, pelas linhas partilhadas, mas não pode criar, modificar ou apagar VLAN, como um servidor;
- Transparente: o switch não obedece os anúncios de configuração de VLAN do servidor VTP, mas propaga anúncios VTP do seu domínio. Um switch em modo transparente pode criar, modificar e apagar a sua informação de VLAN,mas como não é um servidor VTP, a informação não é propaganda aos outros switches.

Configuração de Portos no Switch

Portos de Acesso

- Switch(config)#interface fastEthernet 0/1
- Switch(config)#interface range fa0/20-24
- Switch(config)#interface range fa0/20-fa0/24
- Switch(config)#interface range fa0/1, fa0/4, fa0/9
- Switch(config-if)#switchport mode access
- Switch(config-if)#switchport access vlan 5

Links Partilhados (Trunk)

- Switch(config)#interface fastEthernet 0/24
- Switch(config-if)#switchport mode trunk
- Switch(config-if)#switchport trunk allowed vlan all

Exercicio

Tabela de enderecamento

Dispositivo	Interface	Endereco IP	Mask	Gateway
S1	VLAN99	172.16.99.11	255.255.255.0	N/A
S2	VLAN99	172.16.99.12	255.255.255.0	N/A
S3	VLAN99	172.16.99.13	255.255.255.0	N/A
PC1	Ethernet	172.16.10.21	255.255.255.0	172.16.10.1
PC2	Ethernet	172.16.20.22	255.255.255.0	172.16.20.1
PC3	Ethernet	172.16.30.23	255.255.255.0	172.16.30.1
PC4	Ethernet	172.16.10.24	255.255.255.0	172.16.10.1
PC5	Ethernet	172.16.20.25	255.255.255.0	172.16.20.1
PC6	Ethernet	172.16.30.26	255.255.255.0	172.16.30.1

Deseignacao de portas iniciais (SW2 e SW3

Portas	Atribuicao	Rede
Gig0/0 - 0/1	VLAN 99 802.1Q Tronco Vlan Nativa	172.16.99.0/24
Fa0/1-0/5	VLAN 30 – Convidado	172.16.30.0/24
Fa0/6-0/10	VLAN 10 – Docentes/CTA	172.16.10.0/24
Fa0/11-0/15	VLAN 20 – Estudantes	172.16.20.0/24

Tarefas

- 1. Cabear uma rede de maneira semelhante a do presente diagrama de topologia
- 2. Limpar todas as configurações existente nos switches e inicializar todas as portas
 - Switch#config term
 - Switch(config)#interface range fa0/1-24
 - Switch(config-if-range)#shutdown
 - Switch(config-if-range)#interface range gi0/1-2
 - Switch(config-if-range)#shutdown

Configurar os swicthes de acordo com as diretrizes a abaixo:

- Configure o nome de host do switch.
- Desabilite a pesquisa DNS.
- Configure uma senha feuem no modo EXEC.
- Configure uma senha feuem para as conexões de console
- Configure uma senha feuem para as conexões vty.

Tarefas (Cont.)

Reabilitar as portas de usuário em S2 e S3.

- SW2(config)#interface range fa0/5, fa0/10, fa0/15
- SW2(config-if-range)#switchport mode access
- SW2(config-if-range)#no shutdown
- SW3(config)#interface range fa0/5, fa0/10, fa0/15
- SW3(config-if-range)#switchport mode access
- SW3(config-if-range)#no shutdown

Configurar VLANs no switch

Configuração de VLANS

- SW1(config)#vlan 10
- SW1(config-vlan)#name corpo docente/CTA
- SW1(config-vlan)#vlan 20
- SW1(config-vlan)#name estudante
- SW1(config-vlan)#vlan 30
- SW1(config-vlan)#name convidado
- SW1(config-vlan)#vlan 99
- SW1(config-vlan)#name gestao
- SW1(config-vlan)#end
- SW1#

Verificar se as VLANs foram criadas em SW1.

- Use o comando show vlan brief para verificar se as VLANs foram criadas.
 - S1#show vlan brief

Configurar e nomear VLANs nos switches SW2 e SW3.

Atribuir portas de switch a VLANs

SW3(config)#interface range fa0/1-5 SW3(config-if-range)#switchport access vlan 30 SW3(config-if)#switchport mode access

SW3(config-if-range)#interface range fa0/6-10 SW3(config-if-range)#switchport access vlan 10 SW3(config-if)#switchport mode access

SW3(config-if-range)#interface range fa0/11-15 SW3(config-if-range)#switchport access vlan 20 SW3(config-if)#switchport mode access

Atribuir a VLAN de geSTAO.

SW1(config)#interface vlan 99 SW1(config-if)#ip address 172.17.99.11 255.255.255.0 SW1(config-if)#no shutdown

SW2(config)#interface vlan 99 SW2(config-if)#ip address 172.17.99.12 255.255.255.0 SW2(config-if)#no shutdown

SW3(config)#interface vlan 99 SW3(config-if)#ip address 172.17.99.13 255.255.255.0 SW3(config-if)#no shutdown

Configurar o entroncamento e a VLAN nativa para as portas de entroncamento em todos os switches.

```
SW1(config)#interface range Gig0/0-1
SW1(config-if-range)#switchport mode trunk
SW1(config-if-range)#switchport trunk native vlan 99
SW1(config-if-range)#no shutdown
SW1(config-if-range)#end
```

Obs: Execute o mesmo nos switchs 2 e 3

Verificar se os troncos foram configurados com o comando show interface trunk.

• S1#show interface trunk

Verificar se os switches podem se comunicar.

• Use o comando Ping (Ex: SW1#Ping 172.16.99.12

Testes

Execute o ping entre varios hosts

- Do PC2 para PC1
- Do PC2 para o endereco 172.16.99.12
- Do PC2 para o PC5

Documente a configuração do Switch

Bibliografia consultada

- ► Larry L. Peterson and Bruce S. Davie Computer Network a system approach 5th Edition
- ► Tanenbaum A. S. and Wetherall D. J. Computer networks 5th Edition.
- ► Mário Vestias Redes Cisco para profissionais 6ª Edição
- ► Adaptado do Professor Doutor Lourino Chemane

07/05/2024

OBRIGADO!!!