# Linux System Administration 455









#lspci

ou

#lspci -v | more

Dica:

Para você saber mais informações sobre todo o seu hardware, você pode instalar um pacote chamado lshw.

# aptitude install lshw

Para usá-lo:

# 1shw

Como eu descubro qual a versão do kernel que está usando?

# uname -r



# lsmod

ou

# cat /proc/modules

# modprobe nome\_módulo

Ele é o responsável por ativar/levantar um módulo.

É através dele que habilitamos um determinado dispositivo, como por exemplo a placa de rede.

Para ver quais os módulos estão compilados (disponíveis para uso):

# modprobe -1

O parâmetro é "l" de limão, e não é o número um.

Os módulos ficam no seguinte diretório:

# cd /lib/modules/\$(uname -r)

Você pode descobrir quais módulos tem disponíveis da seguinte forma:

# find /lib/modules/\$(uname -r) -name '\*.ko'

Para determinar o número de módulos carregados:

# lsmod | grep -v ^"Module" | wc -l

Para determinar o número de módulos disponíveis:

# modprobe -1 | wc -1



Para isso, usamos o comando:

# insmod módulo



Agora, falando o inverso, se eu quero derrubar um módulo, ou seja, desativá-lo:

#modprobe -r nome\_do\_módulo

E para remover um módulo sem Dependência?

#rmmod módulo

Determine quais módulos são utilizados pelo dispositivo de cdrom:

# lsmod | grep cdrom cdrom 32544 1 sr mod

Essa mensagem significa que o módulo cdrom é usado pelo módulo sr\_mod.

32544 é o tamanho do módulo.

1 é quantidade de módulos que usam o módulo listado.

Tente remover o módulo cdrom utilizando o rmmod:

# rmmod cdrom

ERROR: Module cdrom is in use by sr\_mod



Remova o módulo sr\_mod com rmmod já que ele está utilizando o módulo cdrom:

# rmmod sr\_mod

O comando não vai retornar nenhuma mensagem, significa que ele tirou o módulo da memória.

Verifique que o módulo sr\_mod foi removido mas o cdrom ainda está carregado:

# lsmod | grep sr\_mod

Não retornou nada, significa que não está mais na memória.

# lsmod | grep cdrom

cdrom 32544 0

Retornou a linha do módulo cdrom, ele ainda continua na memória.

Já que o módulo cdrom não está mais sendo utilizado podemos removê-lo:

# rmmod cdrom

# lsmod lgrep cdrom

Abra a bandeja do cdrom e verifique que o suporte ao CDROM foi carregado novamente:

# eject

# lsmod lgrep cdrom



cdrom 32544 1 sr\_mod

### **Aula 13 - 455**

```
Você pode fazer assim:
# modprobe -l cdrom
/lib/modules/2.6.18-5-686/kernel/drivers/cdrom/cdrom.ko
Ou:
# insmod $(modprobe -l cdrom)
E depois:
# insmod $(modprobe -l sr_mod)
Verificando se os módulos levantaram:
# lsmod lgrep cdrom
```



# eject

Puxar o cdrom:

# eject -t

# modprobe -r sr\_mod

Tente ejetar o cd agora, você não conseguir.

Levante os módulos agora:

# modprobe sr\_mod

Veja que ele levantou o cdrom também:

# lsmod | grep cdrom cdrom 32544 1 sr\_mod

# cd /lib/modules/\$(uname -r)

# 1s -1

# vi modules.dep

Esse arquivo é construído com o comando depmod (cobrado na LPI):

# depmod -a



Primeiro listaremos para ver o modelo:

# Ispci | grep -i audio 00:05.0 Multimedia audio controller: C-Media Electronics Inc CM8738 (rev 10)

No meu caso é uma C-Media!!

Então, vou até o diretório dos drivers e procuro o módulo para a minha placa:

# cd /lib/modules/2.6.18-3-686/kernel/sound/pci



Um comando que ajuda um pouco, mas ainda sim exige prática é o modinfo, veja um exemplo:

# modinfo cmpci

filename: cmpci.o

description: "CM8x38 Audio Driver"

author: "ChenLi Tien, cltien@cmedia.com.tw"

license: "GPL"

Podem perceber que o módulo diz: CM8x38. Onde x será qualquer número nessa série!

Então, CM8738 é o meu modelo que se encaixa nesse módulo!



#modprobe cmpci

E vale lembrar que não colocamos a extensão " .ko " quando vamos levantar o módulo com o comando!



Para ver o se módulo carregou corretamente:

#lsmod

Module Size Used by

cmpci 26040 0 (unused) soundcore 3236 2 [cmpci]



No Red Hat, podemos usar um aplicativo chamado

#sndconfig

Que vem na instalação padrão e é pergunta da LPI!



#cat /bin/ls >> /dev/dsp

Esse comando irá fazer um barulho estranho na caixa de som! Se o mesmo sair Parabéns, sua placa de som está funcionando!!!



\$ alsamixer

Novamente executo o Ispci para ver o modelo:

#lspci | grep -i eth 00:0e.0 Ethernet controller: 3Com Corporation 3c905B 100BaseTX

Opa!! Sei que minha placa é uma 3com !!!

Vou no diretório:

# cd /lib/modules/2.6.18-4-686/kernel/drivers/net



#modinfo 3c59x

filename: 3c59x.ko

author: Donald Becker <becker@scyld.com>

description: 3Com 3c59x/3c9xx ethernet driver

license: GPL

Meu modelo é 3c905 e a resposta do modinfo diz que esse módulo é para todos os modelos 3c9XX

No meu caso sei que é o módulo: 3c59x, vou levantar o módulo:

#modprobe 3c59x

Para finalizar, vejo se o mesmo está no ar:

#lsmod

Module Size Used by

cmpci 26040 0 (unused) soundcore 3236 2 [cmpci] 3c59x 24648 1



Agora, basta testar usando o comando:

#ifconfig -a

Caso aparecer a eth0 está OK!



Para que esse módulos sejam carregados sempre na inicialização da máquina faça (Debian):

O de som:

# echo "cmpci" >> /etc/modules

O de rede:

# echo "3c59x" >> /etc/modules



Se sua placa de rede suportar, defina que ela deve operar em full duplex

# vi /etc/modules.conf

alias eth0 8139too options 8139too full\_duplex=1



Para ver se sua placa de rede estará operando em modo full-duplex faça:

# mii-tool

eth0: negotiated 100baseTx-FD flow-control, link ok

Se isso "100baseTx-FD" aparecer, sua placa de rede está operando no modo full-duplex.

FD é uma abreviação para Full-Duplex. HD é uma abreviação para Half-Duplex.



Você pode usar o mii-tool para fazer com que placa de rede opere no modo FD ou HD:

No modo FD:

# mii-tool -F 100baseTx-FD

No modo HD:

# mii-tool -F 100baseTx-HD

Na prática:

#loadkeys -d br-abnt2

Loading /usr/share/keymaps/i386/qwerty/defkeymap.kmap.gz Loading /usr/share/keymaps/i386/qwerty/br-abnt2.kmap.gz

Onde a opção -d é para setar o que será nosso modelo por default.



Debian

#cd /usr/share/keymaps/i386/qwerty

Red Hat

#cd /usr/lib/kbd/keymaps/i386/qwerty

Slackware

# cd /usr/share/kbd/keymaps/i386/qwerty



No caso de teclados sem o " ç ":

# loadkeys -d us



#### #locale

LANG=POSIX LC\_CTYPE="POSIX" LC NUMERIC="POSIX" LC TIME="POSIX" LC\_COLLATE="POSIX" LC\_MONETARY="POSIX" LC MESSAGES="POSIX" LC\_PAPER="POSIX" LC NAME="POSIX" LC\_ADDRESS="POSIX" LC\_TELEPHONE="POSIX" LC MEASUREMENT="POSIX" LC\_IDENTIFICATION="POSIX" LC\_ALL=



#### #ifconfig

Link encap:Ethernet HWaddr 00:09:6B:DF:94:FF

inet addr: 192.168.0.87 Bcast: 192.168.0.255 Mask: 255.255.255.0

inet6 addr: fe80::209:6bff:fedf:94ff/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:16007 errors:0 dropped:0 overruns:0 frame:0

TX packets:15433 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:12143652 (11.5 MiB) TX bytes:2511041 (2.3 MiB)



# dpkg -1 | grep locales

ii locales 2.3.6.ds1-13 GNU C Library: National Language (locale)

Depois que ele foi instalado, usamos o dpkg reconfigure, no Debian, para definirmos para pt\_BR:

#dpkg-reconfigure locales



E esse é o arquivo importante:

#cat /etc/environment LANG=pt\_BR

Red Hat e Slack tratam a localidade em variáveis a serem exportadas. Assim sendo, no Red Hat e no Slackware, temos que colocar essa variável no /etc/profile para a mesma ser exportada a cada boot do sistema:

#cat /etc/profile export LANG=pt\_BR export LC\_ALL=pt\_BR



#### #locale

LANG=pt\_BR LC\_CTYPE="pt\_BR" LC\_NUMERIC="pt\_BR" LC\_TIME="pt\_BR" LC\_COLLATE="pt\_BR" LC\_MONETARY="pt\_BR" LC\_MESSAGES="pt\_BR" LC\_PAPER="pt\_BR" LC\_NAME="pt\_BR" LC\_ADDRESS="pt\_BR" LC\_TELEPHONE="pt\_BR" LC\_MEASUREMENT="pt\_BR" LC\_IDENTIFICATION="pt\_BR"

LC\_ALL=pt\_BR



Agora vejam a diferença no meu comando ifconfig:

# ifconfig

Encapsulamento do Link: Ethernet Endereço de HW 00:09:6B:DF:94:FF

inet end.: 192.168.0.87 Bcast:192.168.0.255 Masc:255.255.255.0

endereço inet6: fe80::209:6bff:fedf:94ff/64 Escopo:Link

UP BROADCASTRUNNING MULTICAST MTU:1500 Métrica:1

RX packets:16275 errors:0 dropped:0 overruns:0 frame:0

TX packets:15698 errors:0 dropped:0 overruns:0 carrier:0

colisões:0 txqueuelen:1000

RX bytes:12207543 (11.6 MiB) TX bytes:2534017 (2.4 MiB)



#### #ifconfig

Link encap:Ethernet HWaddr 00:09:6B:DF:94:FF

inet addr:192.168.0.87 Bcast:192.168.0.255 Mask:255.255.255.0

inet6 addr: fe80::209:6bff:fedf:94ff/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:16007 errors:0 dropped:0 overruns:0 frame:0

TX packets:15433 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:12143652 (11.5 MiB) TX bytes:2511041 (2.3 MiB)



Debian:

#aptitude install gpm

Para configurar:

# dpkg-reconfigure gpm

Red Hat e Slackware:

Também temos que ter o gpm, mas a configuração é feita pelo comando:

# mouseconfig



Mouse Serial:

Device - /dev/ttyS0 Modelo - MouseMan ou Microsoft

Mouse PS/2:

Device - /dev/psaux Modelo - PS/2

Mouse USB:

Device - /dev/input/mice Modelo - PS/2