

Cálculo 1 - HONORS - CM311

Inexistência de Limites

Diego Otero otero.ufpr@gmail.com / otero@ufpr.br

• Seja $f: I \subset \mathbb{R} \to \mathbb{R}$ e com I intervalo aberto tal que $(a, a + r) \subset I$ para algum r > 0.

Sendo $L \in \mathbb{R}$, dizemos que o limite de f quando x se aproxima de a pela direita é igual à L (em símbolos $\lim_{x \to a^+} f(x) = L$) se

$$\forall \varepsilon > 0 \, \exists \delta > 0$$
, tal que se $0 < |x-a| < \delta, x > a$

$$|f(x)-L|<\varepsilon.$$

- A função não precisa estar definida em a, basta estar definida em um intervalo aberto à direita de a.
- Se estiver definida em a, o limite não liga para o valor f(a).
- Também é um conceito local.
- Todas as propriedades e considerações do limite "bilateral" valem para o limite à direita.
- Analogamente podemos considerar $\lim_{x \to a^{-}} f(x) = L$.

• Seja $f: I \subset \mathbb{R} \to \mathbb{R}$ e com I intervalo aberto tal que $(a, a + r) \subset I$ para algum r > 0.

Sendo $L \in \mathbb{R}$, dizemos que o limite de f quando x se aproxima de a pela direita é igual à L (em símbolos $\lim_{x \to a^+} f(x) = L$) se

$$\forall \varepsilon > 0 \, \exists \delta > 0$$
, tal que se $0 < |x - a| < \delta, x > a$

$$|f(x)-L|<\varepsilon.$$

- A função não precisa estar definida em a, basta estar definida em um intervalo aberto à direita de a.
- Se estiver definida em a, o limite não liga para o valor f(a).
- Também é um conceito local.
- Todas as propriedades e considerações do limite "bilateral" valem para o limite à direita.
- Analogamente podemos considerar $\lim_{x \to a^{-}} f(x) = L$.

• Seja $f: I \subset \mathbb{R} \to \mathbb{R}$ e com I intervalo aberto tal que $(a, a + r) \subset I$ para algum r > 0.

Sendo $L \in \mathbb{R}$, dizemos que o limite de f quando x se aproxima de a pela direita é igual à L (em símbolos $\lim_{x \to a^+} f(x) = L$) se

$$\forall \varepsilon > 0 \,\exists \delta > 0$$
, tal que se $0 < |x - a| < \delta, x > a$

$$|f(x)-L|<\varepsilon.$$

- A função não precisa estar definida em a, basta estar definida em um intervalo aberto à direita de a.
- Se estiver definida em a, o limite não liga para o valor f(a).
- Também é um conceito local.
- Todas as propriedades e considerações do limite "bilateral" valem para o limite à direita.
- Analogamente podemos considerar $\lim_{x \to a^{-}} f(x) = L$.

• Seja $f: I \subset \mathbb{R} \to \mathbb{R}$ e com I intervalo aberto tal que $(a, a + r) \subset I$ para algum r > 0.

Sendo $L \in \mathbb{R}$, dizemos que o limite de f quando x se aproxima de a pela direita é igual à L (em símbolos $\lim_{x \to a^+} f(x) = L$) se

$$\forall \varepsilon > 0 \, \exists \delta > 0$$
, tal que se $0 < |x-a| < \delta, x > a$

$$|f(x)-L|<\varepsilon.$$

- A função não precisa estar definida em a, basta estar definida em um intervalo aberto à direita de a.
- Se estiver definida em a, o limite não liga para o valor f(a).
- Também é um conceito local.
- Todas as propriedades e considerações do limite "bilateral" valem para o limite à direita.
- Analogamente podemos considerar $\lim_{x \to a^{-}} f(x) = L$.

• Seja $f: I \subset \mathbb{R} \to \mathbb{R}$ e com I intervalo aberto tal que $(a, a + r) \subset I$ para algum r > 0.

Sendo $L \in \mathbb{R}$, dizemos que o limite de f quando x se aproxima de a pela direita é igual à L (em símbolos $\lim_{x \to a^+} f(x) = L$) se

$$\forall \varepsilon > 0 \,\exists \delta > 0$$
, tal que se $0 < |x - a| < \delta, x > a$

$$|f(x)-L|<\varepsilon.$$

- A função não precisa estar definida em a, basta estar definida em um intervalo aberto à direita de a.
- Se estiver definida em a, o limite não liga para o valor f(a).
- Também é um conceito local.
- Todas as propriedades e considerações do limite "bilateral" valem para o limite à direita.
- Analogamente podemos considerar $\lim_{x \to a^{-}} f(x) = L$.

• Seja $f: I \subset \mathbb{R} \to \mathbb{R}$ e com I intervalo aberto tal que $(a, a + r) \subset I$ para algum r > 0.

Sendo $L \in \mathbb{R}$, dizemos que o limite de f quando x se aproxima de a pela direita é igual à L (em símbolos $\lim_{x \to a^+} f(x) = L$) se

$$\forall \varepsilon > 0 \, \exists \delta > 0$$
, tal que se $0 < |x - a| < \delta, x > a$

$$|f(x)-L|<\varepsilon.$$

- A função não precisa estar definida em a, basta estar definida em um intervalo aberto à direita de a.
- Se estiver definida em a, o limite não liga para o valor f(a).
- Também é um conceito local.
- Todas as propriedades e considerações do limite "bilateral" valem para o limite à direita.
- Analogamente podemos considerar $\lim_{x \to a^-} f(x) = L$.

Proposição 1.1.

Seja $f:I\subset\mathbb{R}\to\mathbb{R}$ com I intervalo aberto com $a\in I$. Teremos que $\lim_{x\to a}f(x)$ existe se, e somente se, os limites laterais $\lim_{x\to a^+}f(x)$ e $\lim_{x\to a^-}f(x)$ existirem e forem iguais.

Exemplo 1.2.

Determine todos o valores de a tais que $\lim_{x\to a} f(x)$ existe

$$f(x) = \begin{cases} 2 - x, & \text{se } x < -1 \\ x, & \text{se } -1 \le x < 1 \\ (x - 1)^2, & \text{se } x \ge 1 \end{cases}$$

- Em quais outros casos o limite não existe?
- Pode acontecer que a função fique "muito grande", ou "muito pequena" ao se aproximar de um ponto.

Proposição 1.1.

Seja $f:I\subset\mathbb{R}\to\mathbb{R}$ com I intervalo aberto com $a\in I$. Teremos que $\lim_{x\to a}f(x)$ existe se, e somente se, os limites laterais $\lim_{x\to a^+}f(x)$ e $\lim_{x\to a^-}f(x)$ existirem e forem iguais.

Exemplo 1.2.

Determine todos o valores de a tais que $\lim_{x\to a} f(x)$ existe:

$$f(x) = \begin{cases} 2 - x, & \text{se } x < -1 \\ x, & \text{se } -1 \le x < 1 \\ (x - 1)^2, & \text{se } x \ge 1 \end{cases}$$

- Em quais outros casos o limite não existe?
- Pode acontecer que a função fique "muito grande", ou "muito pequena" ao se aproximar de um ponto.

Proposição 1.1.

Seja $f:I\subset\mathbb{R}\to\mathbb{R}$ com I intervalo aberto com $a\in I$. Teremos que $\lim_{x\to a}f(x)$ existe se, e somente se, os limites laterais $\lim_{x\to a^+}f(x)$ e $\lim_{x\to a^-}f(x)$ existirem e forem iguais.

Exemplo 1.2.

Determine todos o valores de a tais que $\lim_{x\to a} f(x)$ existe:

$$f(x) = \begin{cases} 2 - x, & \text{se } x < -1 \\ x, & \text{se } -1 \le x < 1 \\ (x - 1)^2, & \text{se } x \ge 1 \end{cases}$$

- Em quais outros casos o limite não existe?
- Pode acontecer que a função fique "muito grande", ou "muito pequena" ao se aproximar de um ponto.

Proposição 1.1.

Seja $f:I\subset\mathbb{R}\to\mathbb{R}$ com I intervalo aberto com $a\in I$. Teremos que $\lim_{x\to a}f(x)$ existe se, e somente se, os limites laterais $\lim_{x\to a^+}f(x)$ e $\lim_{x\to a^-}f(x)$ existirem e forem iguais.

Exemplo 1.2.

Determine todos o valores de a tais que $\lim_{x\to a} f(x)$ existe:

$$f(x) = \begin{cases} 2 - x, & \text{se } x < -1 \\ x, & \text{se } -1 \le x < 1 \\ (x - 1)^2, & \text{se } x \ge 1 \end{cases}$$

- Em quais outros casos o limite não existe?
- Pode acontecer que a função fique "muito grande", ou "muito pequena" ao se aproximar de um ponto.

Exemplo 1.3.

Seja
$$f(x) = \frac{1}{x}$$
.

- Temos que f(x) assume valores tão **grandes** quanto quisermos se tomarmos x>0 suficiente perto de 0.
- Analogamente f(x) assume valores tão **pequenos** quanto quisermos se tomarmos x < 0 suficiente perto de 0.
- Como formalizar estes conceitos?

Definição 1.4.

Seja f uma função definida em um intervalo aberto ao redor do ponto $a \in \mathbb{R}$ exceto, possivelmente, no ponto a. Dizemos que o limite que f quando x se aproxima de a é igual à **infinito** se

$$\forall N>0 \,\exists \delta>0 \,\, {\rm tal} \,\, {\rm que} \,\, {\rm se} \,\, 0<|x-a|<\delta \,\, {\rm ent} \, {\rm fo} \,\, f(x)>N.$$
 Notação: $\lim_{x\to a} f(x)=+\infty.$

Exemplo 1.3.

Seja
$$f(x) = \frac{1}{x}$$
.

- Temos que f(x) assume valores tão **grandes** quanto quisermos se tomarmos x > 0 suficiente perto de 0.
- Analogamente f(x) assume valores tão **pequenos** quanto quisermos se tomarmos x < 0 suficiente perto de 0.
- Como formalizar estes conceitos?

Definição 1.4

Seja f uma função definida em um intervalo aberto ao redor do ponto $a \in \mathbb{R}$ exceto, possivelmente, no ponto a. Dizemos que o limite que f quando x se aproxima de a é igual à **infinito** se

$$\forall N>0\ \exists \delta>0\ {\rm tal}\ {\rm que}\ {\rm se}\ 0<|x-a|<\delta\ {\rm então}\ f(x)>N.$$
 Notação: $\lim_{x\to a}f(x)=+\infty.$

Exemplo 1.3.

Seja
$$f(x) = \frac{1}{x}$$
.

- Temos que f(x) assume valores tão **grandes** quanto quisermos se tomarmos x > 0 suficiente perto de 0.
- Analogamente f(x) assume valores tão **pequenos** quanto quisermos se tomarmos x < 0 suficiente perto de 0.
- Como formalizar estes conceitos?

Definição 1.4

Seja f uma função definida em um intervalo aberto ao redor do ponto $a \in \mathbb{R}$ exceto, possivelmente, no ponto a. Dizemos que o limite que f quando x se aproxima de a é igual à **infinito** se

$$\forall N>0\ \exists \delta>0$$
 tal que se $0<|x-a|<\delta$ então $f(x)>N$. Notação: $\lim_{x\to a}f(x)=+\infty$.

Exemplo 1.3.

Seja
$$f(x) = \frac{1}{x}$$
.

- Temos que f(x) assume valores tão **grandes** quanto quisermos se tomarmos x > 0 suficiente perto de 0.
- Analogamente f(x) assume valores tão **pequenos** quanto quisermos se tomarmos x < 0 suficiente perto de 0.
- Como formalizar estes conceitos?

Definição 1.4.

Seja f uma função definida em um intervalo aberto ao redor do ponto $a \in \mathbb{R}$ exceto, possivelmente, no ponto a. Dizemos que o limite que f quando x se aproxima de a é igual à **infinito** se

$$\forall N > 0 \,\exists \delta > 0 \,$$
 tal que se $0 < |x - a| < \delta \,$ então $f(x) > N$.

Notação: $\lim_{x \to \infty} f(x) = +\infty$.

• Analogamente podemos definir $\lim_{x\to a} f(x) = -\infty$, $\lim_{x\to a^+} f(x) = \pm\infty$ e $\lim_{x\to a^-} f(x) = \pm\infty$

Observação 1.5.

Observe que
$$\lim_{x\to 0}\frac{1}{x}$$
 não existe. Mas $\lim_{x\to 0^+}\frac{1}{x}=+\infty$ e $\lim_{x\to 0^-}\frac{1}{x}=-\infty$

Exemplo 1.6

Mostre pela definição que valem os limites abaixo

a)
$$\lim_{x \to 2^+} \frac{1}{x - 2} = \infty$$
.

b)
$$\lim_{x \to 3^{-}} \frac{x^2 + 2}{x - 3} = -\infty$$

• Analogamente podemos definir $\lim_{x\to a}f(x)=-\infty$, $\lim_{x\to a^+}f(x)=\pm\infty$ e $\lim_{x\to a^-}f(x)=\pm\infty$

Observação 1.5.

Observe que
$$\lim_{x\to 0} \frac{1}{x}$$
 não existe. Mas $\lim_{x\to 0^+} \frac{1}{x} = +\infty$ e $\lim_{x\to 0^-} \frac{1}{x} = -\infty$.

Exemplo 1.6

Mostre pela definição que valem os limites abaixo

a)
$$\lim_{x \to 2^+} \frac{1}{x - 2} = \infty$$
.

b)
$$\lim_{x \to 3^{-}} \frac{x^2 + 2}{x - 3} = -\infty$$

5/8

• Analogamente podemos definir $\lim_{x\to a}f(x)=-\infty$, $\lim_{x\to a^+}f(x)=\pm\infty$ e $\lim_{x\to a^-}f(x)=\pm\infty$

Observação 1.5.

Observe que $\lim_{x\to 0} \frac{1}{x}$ não existe. Mas $\lim_{x\to 0^+} \frac{1}{x} = +\infty$ e $\lim_{x\to 0^-} \frac{1}{x} = -\infty$.

Exemplo 1.6.

Mostre pela definição que valem os limites abaixo

a)
$$\lim_{x \to 2^+} \frac{1}{x - 2} = \infty$$
.

b)
$$\lim_{x \to 3^{-}} \frac{x^2 + 2}{x - 3} = -\infty$$
.

Proposição 1.7.

Seja f(x) definida em um intervalo aberto I ao redor do ponto $a \in \mathbb{R}$ exceto, possivelmente, em a. Se f(x) > 0 para todo $x \in I - \{a\}$ e $\lim_{x \to a} f(x) = 0$, então

$$\lim_{x\to a}\frac{1}{f(x)}=+\infty.$$

- Resultados similares valem trocando f(x) > 0 por f(x) < 0, e trocando $x \to a$ por $x \to a^+$ ou $x \to a^-$.
- Para lembrar costumo utilizar os símbolos

$$\frac{1}{0^+} = +\infty \quad e \quad \frac{1}{0^-} = -\infty$$

Proposição 1.7.

Seja f(x) definida em um intervalo aberto I ao redor do ponto $a \in \mathbb{R}$ exceto, possivelmente, em a. Se f(x) > 0 para todo $x \in I - \{a\}$ e $\lim_{x \to a} f(x) = 0$, então

$$\lim_{x\to a}\frac{1}{f(x)}=+\infty.$$

- Resultados similares valem trocando f(x) > 0 por f(x) < 0, e trocando $x \to a$ por $x \to a^+$ ou $x \to a^-$.
- Para lembrar costumo utilizar os símbolos

$$\frac{1}{0^+} = +\infty \quad \text{e} \quad \frac{1}{0^-} = -\infty$$

Proposição 1.7.

Seja f(x) definida em um intervalo aberto I ao redor do ponto $a \in \mathbb{R}$ exceto, possivelmente, em a. Se f(x) > 0 para todo $x \in I - \{a\}$ e $\lim_{x \to a} f(x) = 0$, então

$$\lim_{x\to a}\frac{1}{f(x)}=+\infty.$$

- Resultados similares valem trocando f(x) > 0 por f(x) < 0, e trocando $x \to a$ por $x \to a^+$ ou $x \to a^-$.
- Para lembrar costumo utilizar os símbolos

$$\frac{1}{0^+} = +\infty \quad \text{e} \quad \frac{1}{0^-} = -\infty.$$

Proposição 1.8.

Sejam f e g com $\lim_{x\to a} f(x) = +\infty$ e $\lim_{x\to a} g(x) = L$, $L\in\mathbb{R}$. Vale

- a) $\lim_{x\to a} f(x) + g(x) = +\infty$.
- b) $\lim_{x\to a} f(x).g(x) = +\infty$, se L > 0.
- c) $\lim_{x\to a} f(x).g(x) = -\infty$, se L < 0.
 - Resultados análogos valem substituindo $\lim_{x\to a} f(x) = +\infty$ por $\lim_{x\to a} f(x) = -\infty$, e também substituindo $x\to a$ por $x\to a^+$ ou por $x\to a^-$.
- Para lembrar costumo utilizar os símbolos $\pm \infty + L = L \pm \infty = \pm \infty$ e $(\pm \infty)L = L(\pm \infty) = \pm \infty$, se $L \neq 0$.
- ullet O símbolo $0.(\pm\infty)$ não está bem definido.

Proposição 1.8.

Sejam f e g com $\lim_{x\to a} f(x) = +\infty$ e $\lim_{x\to a} g(x) = L$, $L\in\mathbb{R}$. Vale

- a) $\lim_{x\to a} f(x) + g(x) = +\infty$.
- b) $\lim_{x \to 3} f(x).g(x) = +\infty$, se L > 0.
- c) $\lim_{x\to a} f(x).g(x) = -\infty$, se L < 0.
 - Resultados análogos valem substituindo $\lim_{x\to a} f(x) = +\infty$ por $\lim_{x\to a} f(x) = -\infty$, e também substituindo $x\to a$ por $x\to a^+$ ou por $x\to a^-$.
 - Para lembrar costumo utilizar os símbolos $\pm \infty + L = L \pm \infty = \pm \infty \quad \text{e} \quad (\pm \infty) L = L(\pm \infty) = \pm \infty, \text{ se } L \neq 0.$
 - ullet O símbolo $0.(\pm\infty)$ não está bem definido.

Proposição 1.8.

Sejam f e g com $\lim_{x\to a} f(x) = +\infty$ e $\lim_{x\to a} g(x) = L$, $L\in\mathbb{R}$. Vale

- a) $\lim_{x \to a} f(x) + g(x) = +\infty$.
- b) $\lim_{x \to 3} f(x).g(x) = +\infty$, se L > 0.
- c) $\lim_{x \to 2} f(x).g(x) = -\infty$, se L < 0.
 - Resultados análogos valem substituindo $\lim_{x\to a} f(x) = +\infty$ por $\lim_{x\to a} f(x) = -\infty$, e também substituindo $x\to a$ por $x\to a^+$ ou por $x\to a^-$.
 - Para lembrar costumo utilizar os símbolos

$$\pm \infty + L = L \pm \infty = \pm \infty$$
 e $(\pm \infty)L = L(\pm \infty) = \pm \infty$, se $L \neq 0$.

ullet O símbolo $0.(\pm\infty)$ não está bem definido.

Proposição 1.8.

Sejam f e g com $\lim_{x\to a} f(x) = +\infty$ e $\lim_{x\to a} g(x) = L$, $L\in\mathbb{R}$. Vale

- a) $\lim_{x \to a} f(x) + g(x) = +\infty$.
- b) $\lim_{x \to 3} f(x).g(x) = +\infty$, se L > 0.
- c) $\lim_{x \to 2} f(x).g(x) = -\infty$, se L < 0.
 - Resultados análogos valem substituindo $\lim_{x\to a} f(x) = +\infty$ por $\lim_{x\to a} f(x) = -\infty$, e também substituindo $x\to a$ por $x\to a^+$ ou por $x\to a^-$.
- Para lembrar costumo utilizar os símbolos $\pm \infty + L = L \pm \infty = \pm \infty$ e $(\pm \infty)L = L(\pm \infty) = \pm \infty$, se $L \neq 0$.
- O símbolo $0.(\pm\infty)$ não está bem definido.

• Outros casos onde podemos determinar limites quando temos $\pm\infty$:

$$\triangleright \infty + \infty = \infty.$$

$$(-\infty) + (-\infty) = -\infty.$$

Exercício

Mostre algumas das afirmações acima de maneira formal.

• Expressões não definidas/indeterminadas:

$$\frac{0}{0}, \frac{\pm \infty}{\pm \infty}, 0.(\pm \infty), \infty + (-\infty), 0^{0}, 1^{\infty}, \infty^{0}$$

Exemplo 1.9.

$$\lim_{x \to 0^+} x^0 = 1.$$

•
$$\lim_{x \to 0^+} 0^x = 0$$
.

•
$$\lim_{x \to 1^+} x^{\frac{1}{x-1}} = e$$
.

•
$$\lim_{x \to 0^+} (e^{\frac{1}{x}} + \frac{1}{x})^x = e.$$

$$\bullet \lim_{x\to 0^+} (\frac{1}{x})^x = 1.$$

• Outros casos onde podemos determinar limites quando temos $\pm\infty$:

$$\triangleright \infty + \infty = \infty.$$

$$(-\infty) + (-\infty) = -\infty.$$

Exercício.

Mostre algumas das afirmações acima de maneira formal.

• Expressões não definidas/indeterminadas:

$$\frac{0}{0}, \frac{\pm \infty}{\pm \infty}, 0.(\pm \infty), \infty + (-\infty), 0^0, 1^\infty, \infty^0$$

Exemplo 1.9

$$\lim_{x \to 0^+} x^0 = 1.$$

$$\bullet \lim_{x \to 0^+} 0^x = 0.$$

•
$$\lim_{x \to 1^+} x^{\frac{1}{x-1}} = e$$
.

•
$$\lim_{x \to 0^+} (e^{\frac{1}{x}} + \frac{1}{x})^x = e$$
.

$$\bullet \lim_{x\to 0^+} (\frac{1}{x})^x = 1.$$

8/8

• Outros casos onde podemos determinar limites quando temos $\pm\infty$:

$$\triangleright \infty + \infty = \infty.$$

$$(-\infty) + (-\infty) = -\infty.$$

Exercício.

Mostre algumas das afirmações acima de maneira formal.

• Expressões não definidas/indeterminadas:

$$\frac{0}{0},\,\frac{\pm\infty}{\pm\infty},\,0.(\pm\infty),\,\infty+(-\infty),\,0^0,\,1^\infty,\,\infty^0.$$

Exemplo 1.9

$$\lim_{x \to 0^+} x^0 = 1.$$

•
$$\lim_{x\to 0^+} 0^x = 0$$
.

$$\lim_{x \to 1^+} x^{\frac{1}{x-1}} = e.$$

•
$$\lim_{x \to 0^+} (e^{\frac{1}{x}} + \frac{1}{x})^x = e.$$

$$\bullet \lim_{x\to 0^+} (\frac{1}{x})^x = 1.$$

• Outros casos onde podemos determinar limites quando temos $\pm\infty$:

$$(-\infty) + (-\infty) = -\infty.$$

Exercício.

Mostre algumas das afirmações acima de maneira formal.

• Expressões não definidas/indeterminadas:

$$\frac{0}{0}, \frac{\pm \infty}{+\infty}, 0.(\pm \infty), \infty + (-\infty), 0^0, 1^{\infty}, \infty^0.$$

Exemplo 1.9.

•
$$\lim_{x \to 0^+} x^0 = 1$$
.

$$\bullet \lim_{x \to 0^+} 0^x = 0.$$

$$\bullet \lim_{x \to 1^+} x^{\frac{1}{x-1}} = e.$$

$$\bullet \lim_{x\to 0^+} (e^{\frac{1}{x}} + \frac{1}{x})^x = e.$$

$$\bullet \lim_{x\to 0^+} (\frac{1}{x})^x = 1.$$