

Optimization

1 Why

Given a correspondence between objects in a set with objects in an ordered set, we are interested in the objects which correspond to extremal elements of the ordered set.

2 Definition

Let A be a non-empty set and let (C, \prec) be chain. Let $f: A \to C$.

The minimization problem over A associated with f is to find an element $a \in A$ so that $f(a) \leq f(b)$ for all $b \in A$. The maximization problem over A associated with f is to find an element $a \in A$ so that $f(a) \geq f(b)$ for all $b \in A$. We call either of these an optimization problem.

We call f the **ordering** function. We call A the **feasible** set and we call $a \in A$ a **feasible elemnet**. We call an element $a \in A$ so that $f(a) \leq f(b)$ for all $b \in A$ a **minimizer** of f over A. Similarly, we call $a \in A$ so that $f(a) \geq f(b)$ for all $b \in A$ a **maximizer** of f over A. There may be none, one, or several minimizers (or maximizers).

3 Notation

Let (C, \prec) be a chain. We denote the minimization problem to find an element $a \in A$ to minimize $f: A \to C$ by

 $\label{eq:alpha} \text{find} \quad a \in A$ to minimize f(a)

We denote the minimizers by

 ${\bf minimizers}(f).$