Lecture 7

Obstacle Avoidance Sensor, Battery Power Supply, and Debugging

By Dr. Min He
Updated by David Mahakian

Overview

- Debug Techniques
- IR Obstacle Avoidance Sensor
- Batter Power Supply Circuit

Debugging

- Use incremental development approach: test as you go – Don't write all code before testing!
- Hardware debug: use multimeter to verify voltage levels at switches/buttons/LEDs
- Debug with simulator and onboard:
 - Add Breakpoints, use watch window and memory window to keep track of variable values and memory location contents.

Basic Debug Skills

- Step over code in Keil debugger if jumps unexpectedly to error handler then investigate further.
- Determine if code works correctly up to a certain point(breakpoint).
- Determine if a functionality works correctly –
 GPIO Ports, SysTick, Interrupts, State Machine.
- Verify interrupts are firing by setting breakpoints in interrupt handler and triggering the appropriate interrupt.

Basic Debug Skills

- Run code that is known to work and verify it still works.
- Swap out switches/buttons/LEDs.
- Remove switches/buttons from circuit connect directly to GND or VCC.
 - Technically need resistor to limit current.
- Rewrite chunks of code without looking at currently written code.
 - Look at sample code from slides, textbook, etc. instead.

Basic Debug Skills

- Edit variable values in Watch window while at breakpoint.
- Change initialization code to start in a different initial state.
- Hard code input values to test state transitions.

IR Obstacle Avoidance Sensor

Pin, Control Indicator	Description	
Vcc	3.3 to 5 Vdc Supply Input Can use the 5 V	
Gnd	Ground Input supply from La	uliciiPau
Out	Output that goes low when obstacle is in range	
Power LED	Illuminates when power is applied	
Obstacle LED	Illuminates when obstacle is detected	
Distance Adjust	Adjust detection distance. CCW decreases distance. CW increases distance.	Effective distance range 2 ~ 30cm; detection
IR Emitter	Infrared emitter LED	angle <mark>35</mark> °.
IR Receiver	Infrared receiver that receives signal transmitted by Infrared emitter.	

Taking Care of Power Supply

- ☐ A power supply circuit may be rendered useless without a filter capacitor.
- ☐ The voltage of a power supply may be full of ripples.
- ☐ Capacitors are **energy-storing** devices. We can use them for smoothing the voltage in circuits. See youtube <u>video</u>.(0:50 to 1:56)

How Capacitor Provide Clean Power

A filter capacitor smooth down ripples and fills up the voltage "notches" or gaps by discharging its internal stored energy. Thus, the circuit connected to it can receive a clean DC supply voltage.

CECS347 7-9

Battery Power Supply

Building Your Own Power Supply Circuit

- ☐ If the 5V regulator output is not stable, we can increase the capacitance at the input/output of the regulator. Ex: increase C3 in the following figure to a higher capacitance.
- ☐ Why two capacitors in parallel?

 Big capacitors handles low frequency ripple and main noise and major output load changes.

Small capacitors handle high frequency noise and

fast transients.

Reference

IR Obstacle avoidance sensor: https://www.youtube.com/watch?v=gRtdcx
 OXojo