#### Aula 6

- Representação de números inteiros com sinal: complemento para dois. Exemplos de operações aritméticas
- Overflow e mecanismos para a sua deteção
- Bloco funcional e operações de uma ALU de 32 bits
- Endereçamento imediato e uso de constantes
- Multiplicação de inteiros no MIPS
- Divisão de inteiros no MIPS. Divisão de inteiros com sinal

Bernardo Cunha, José Luís Azevedo

# Representação de inteiros

- Os computadores usam sistema binário; inteiros são representados em base 2 (0 e 1)
- Cada inteiro ocupa um número de bits igual à dimensão de um registo interno do CPU
- A gama de inteiros representáveis é finita: N<sub>inteiros</sub> = 2<sup>n</sup>, sendo "n" o número de bits do registo; em MIPS, 32 bits:

$$2^{32} = 4.294.967.296, [0, 4.294.967.295]$$

 As operações aritméticas também são limitadas a este número de bits, funcionando em aritmética modular (mod 2<sup>n</sup>), com representação circular: após o valor máximo (2<sup>n</sup>-1) volta-se ao zero

#### Representação de inteiros

 Num CPU com uma ALU de 8 bits, por exemplo, o resultado da soma dos números 11001011 e 00110111 seria:



- No caso em que os operandos são do tipo unsigned, o bit carry, se igual a '1', sinaliza que o resultado não cabe num registo de 8 bits, ou seja sinaliza a ocorrência de overflow
- No caso em que os operandos são do tipo signed (codificados em complemento para 2) o bit de carry, por si só, não tem qualquer significado, e não faz parte do resultado

## Representação em complemento para dois

- O método usado em sistemas computacionais para a codificação de quantidades inteiras com sinal (signed) é "complemento para dois"
- Definição: Se K é um número positivo, então K\* é o seu complemento para 2 (complemento verdadeiro) e é dado por:

$$K^* = 2^n - K$$

em que "n" é o número de bits da representação

• Exemplo: determinar a representação de -5, com 4 bits

```
N = 5_{10} = 0101_2

2^n = 2^4 = 10000

2^n - N = 10000 - 0101 = 1011 = N*
```

- Método prático: inverter todos os bits do valor original e somar 1 (0101 => 1010; 1010 + 1 = 1011)
  - Este método é reversível:  $C_1(1011) = 0100$ ; 0100 + 1 = 0101

## Representação em complemento para dois



O bit mais significativo também pode ser interpretado como sinal:

0 = valor positivo,

1 = valor negativo

- Uma única representação para 0
- Codificação assimétrica (mais um negativo do que positivos)
- A subtração é realizada através de uma operação de soma com o complemento para 2 do 2.º operando: (a-b) = (a+ (-b))
- Uma quantidade de N bits codificada em complemento para 2 pode ser representada pelo seguinte polinómio:

$$-(a_{N-1}.2^{N-1})+(a_{N-2}.2^{N-2})+...+(a_1.2^1)+(a_0.2^0)$$

#### Representação em complemento para dois

 Uma quantidade de N bits codificada em complemento para 2 pode então ser representada pelo seguinte polinómio:

$$-(a_{N-1}.2^{N-1})+(a_{N-2}.2^{N-2})+...+(a_1.2^1)+(a_0.2^0)$$

Onde o bit indicador de sinal  $(a_{N-1})$  é multiplicado por  $-2^{N-1}$  e os restantes pela versão positiva do respetivo peso

- Exemplo: Qual o valor representado em base 10 pela quantidade 10100101<sub>2</sub>, supondo uma representação em complemento para 2 com 8 bits?
  - R1:  $10100101_2 = -(1x2^7) + (1x2^5) + (1x2^2) + (1x2^0)$ = -128 + 32 + 4 + 1 = -91<sub>10</sub>
  - R2: O valor é negativo, calcular o módulo (simétrico de 10100101):  $01011010 + 1 = 01011011_2 = 5B_{16} = 91_{10}$  o módulo da quantidade é 91; logo o valor representado é -91<sub>10</sub>

# Operações em complemento para dois

• Exemplos de operações, com 4 bits

$$(4 + 3)$$
 4 0100  $(-4 - 3)$  -4 1100  $+ (-3)$  1101  $-7$  11001  $(4 - 3)$  4 0100  $(-4 + 3)$  -4 1100  $+ (-3)$  1101  $+ (-3)$  1101  $+ (-3)$  1101  $+ (-3)$  1101  $+ (-3)$  1101  $+ (-3)$  1101  $+ (-3)$  1111

 Este esquema simples de adição com sinal torna o complemento para 2 o preferido para representação de inteiros em arquitetura de computadores

# Overflow em complemento para 2



- Ocorre overflow quando é ultrapassada a gama de representação. Isso acontece quando:
  - se somam dois positivos e o resultado obtido é negativo
  - se somam dois negativos e o resultado obtido é positivo

# Overflow em complemento para 2



## Overflow em operações aritméticas

- Operandos interpretados em complemento para 2 (i.e. com sinal):
  - Quando  $A + B > 2^{n-1}-1 \text{ OU } A + B < -2^{n-1}$ • OVF =  $(C_{n-1}.C_n) + (\overline{C_{n-1}}.C_n) = C_{n-1} \oplus C_n$
  - Alternativamente, não tendo acesso aos bits intermédios de carry, (R = A + B):

$$\bullet$$
 OVF =  $R_{n-1}.A_{n-1}.B_{n-1} + R_{n-1}.A_{n-1}.B_{n-1}$ 

- Operandos interpretados sem sinal:
  - Quando  $A+B > 2^n-1$  ou A-B c/B>A
  - O bit de carry C<sub>n</sub> = 1 sinaliza a ocorrência de overflow
- O MIPS apenas deteta overflow nas operações de adição com sinal (ADD, SUB, ADDI) e, quando isso acontece, gera uma exceção. ADDU, SUBU e ADDIU não detetam overflow

# ALU de 32 bits - exemplo de bloco funcional

- A ALU deverá realizar as operações:
  - ADD, SUB
  - AND, OR
  - SLT (set if less than)
- Deverá ainda:
  - Detetar e sinalizar overflow (operandos em complemento para 2)
  - Sinalizar resultado igual a zero

| Operation        | ALU Action       |  |
|------------------|------------------|--|
| <b>000</b> And   |                  |  |
| 0 0 1            | Or               |  |
| <b>0 1 0</b> Add |                  |  |
| 110              | Subtract         |  |
| 111              | Set if less than |  |



Bloco funcional correspondente a uma ALU de 32 bits

#### Manipulação de constantes inteiras

- Constante é um valor determinado com antecedência (quando o programa é escrito) e que não se pretende que seja ou possa ser mudado durante a execução do programa
- As constantes poderiam ser armazenadas na memória externa.
   Nesse caso, a sua utilização implicaria sempre o recurso a duas instruções:
  - leitura do valor residente em memória para um registo interno
  - operação com essa constante
- Para aumentar a eficiência, as arquiteturas disponibilizam um conjunto de instruções em que as constantes se encontram armazenadas na própria instrução
- Desta forma, com a leitura da instrução, o acesso à constante é "imediato", sem necessidade de recorrer a uma operação prévia de leitura da memória: "endereçamento imediato"

#### Manipulação de constantes no MIPS

 As instruções aritméticas e lógicas que manipulam constantes (do tipo imediato) são identificadas pelo sufixo "i":

```
addi $3,$5,4  # $3 = $5 + 0x0004

andi $17,$18,0x3AF5  # $17 = $18 & 0x3AF5

ori $12,$10,0x0FA2  # $12 = $10 | 0x0FA2

slti $2,$12,16  # $2 = 1 se $12 < 16

# ($2 = 0 se $12 \geq 16)
```

- Estas instruções são codificados usando o formato I. Logo apenas
   16 bits podem ser usados para codificar a constante
- Este espaço é geralmente suficiente para armazenar as constantes mais frequentemente utilizadas (geralmente valores pequenos)
- Se há apenas 16 bits dedicados ao armazenamento da constante, qual será a gama de representação dessa constante?
  - Depende da instrução...

#### Manipulação de constantes no MIPS

 No caso mais geral, a constante representa uma quantidade inteira, positiva ou negativa, codificada em complemento para dois. É o caso das instruções:

```
addi $3, $5, -4 # equivalente a 0xFFFC addi $4, $2, 0x15 # 21_{10} slti $6, $7, 0xFFFF # -1_{10}
```

- Gama de representação da constante: [-32768, +32767]
- A constante de 16 bits é estendida para 32 bits, preservando o sinal (ex: para -4, 0xfffc é estendido para 0xfffffc)
- Existem também instruções em que a constante deve ser entendida como uma quantidade inteira sem sinal. Estão neste grupo todas as instruções lógicas:

```
andi $3, $5, OxFFFF
```

- Gama de representação da constante: [0, 65535]
- A constante de 16 bits é estendida para 32 bits, sendo os 16 mais significativos 0x0000 (para o exemplo: 0x0000FFFF)

# Codificação das instruções que usam constantes



## Manipulação de constantes de 32 bits - LUI

- Em alguns casos pode ser necessário manipular constantes que necessitem de um espaço de armazenamento com mais do que 16 bits (e.g., a referência explícita a um endereço)
- Como lidar com esses casos?
- Para permitir a manipulação de constantes com mais de 16 bits, o ISA do MIPS inclui a seguinte instrução, também codificada com o formato I:

#### lui \$reg, immediate

- A instrução lui ("Load Upper Immediate"), coloca a constante "immediate" nos 16 bits mais significativos do registo destino (\$reg)
- Os 16 bits menos significativos ficam com 0x0000

## Manipulação de constantes de 32 bits - LUI



#### Manipulação de constantes de 32 bits - LA / LI

#### A instrução virtual "load address"

```
la $16, MyData #Ex. MyData = 0x10010034 
 #(segmento de dados em 0x1001000)
```

é executada no MIPS pela sequência de instruções nativas:

```
lui $1,0\times1001  # $1 = 0\times10010000
ori $16,$1,0\times0034  # $16 = 0\times10010000  | 0\times00000034
```

#### **Notas:**

- O registo \$1 (\$at) é reservado para o Assembler, para permitir este tipo de decomposição de instruções virtuais em instruções nativas.
- A instrução "li" (*load immediate*) é decomposta em instruções nativas de forma análoga à instrução "la"

```
      0x 1001 0000
      $1

      | 0x 0000 0034
      Imediato

      0x 1001 0034
      $16
```

# Multiplicação de inteiros

- Devido ao aumento de complexidade que daí resulta, nem todas as arquiteturas suportam, ao nível do *hardware*, a capacidade para efetuar operações aritméticas de multiplicação e divisão de inteiros
- Multiplicação de quantidades sem sinal: algoritmo clássico que é usado na multiplicação em decimal
- Multiplicação de quantidades com sinal (representadas em complemento para dois): algoritmo de Booth
- Uma multiplicação que envolva dois operandos de N bits carece de um espaço de armazenamento, para o resultado, de 2\*N bits

# A Multiplicação de inteiros no MIPS

- No MIPS, a multiplicação e a divisão são asseguradas por um módulo independente da ALU
- Os operandos são registos de 32 bits. Na multiplicação, tal implica que o resultado tem de ser armazenado com 64 bits
- Os resultados são armazenados num par de registos especiais designados por HI e LO, cada um com 32 bits
- Estes registos são de uso específico da unidade de multiplicação e divisão de inteiros





## A Multiplicação de inteiros no MIPS

- O registo HI armazena os 32 bits mais significativos do resultado
- O registo LO armazena os 32 bits menos significativos do resultado
- A transferência de informação entre os registos HI e LO e os restantes registos de uso geral faz-se através das instruções mfhi e mflo:

```
mfhi Rdst # move from hi: copia HI para Rdst mflo Rdst # move from lo: copia LO para Rdst
```

- A unidade de multiplicação pode operar considerando os operandos com sinal (multiplicação signed) ou sem sinal (multiplicação unsigned); a distinção é feita através da mnemónica da instrução:
  - mult multiplicação "signed"
  - multu multiplicação "unsigned"

# A Multiplicação de inteiros no MIPS

• Em Assembly, a multiplicação é então efetuada pelas instruções

```
mult Rsrc1, Rsrc2 # Multiply (signed)multu Rscr1, Rsrc2 # Multiply unsigned
```

em que **Rsrc1** e **Rsrc2** são os dois registos a multiplicar

O resultado fica armazenado nos registos HI e LO

• **Exemplo:** Multiplicar os registos \$t0 e \$t1 e colocar o resultado nos registos \$a1 (32 bits mais significativos) e \$a0 (32 bits menos significativos); os operandos devem ser interpretados com sinal

```
mult $t0, $t1 # resultado em hi e lo
mfhi $a1 # copia hi para registo $a1
mflo $a0 # copia lo para registo $a0
```

# Instruções virtuais de multiplicação

#### Multiplicação signed

| mul | Rdst, Rsrc1, Rsrc2 |      |  |  |
|-----|--------------------|------|--|--|
|     | mult Rsrc1, Rscr2  |      |  |  |
|     | mflo               | Rdst |  |  |

#### Multiplicação unsigned

| mulu | Rdst, Rsrc1, Rsrc2 |      |  |  |
|------|--------------------|------|--|--|
|      | multu Rsrc1, Rscr2 |      |  |  |
|      | mflo               | Rdst |  |  |

# Multiplicação *unsigned* com deteção de overflow

| mulou | Rdst, l | Rsrc1, Rsrc2   |
|-------|---------|----------------|
|       | multu   | Rsrc1, Rscr2   |
|       | mfhi    | \$1            |
|       | beq     | \$1, \$0, cont |
|       | break   |                |
| cont: | mflo    | Rdst           |

# Multiplicação *signed* com deteção de overflow

| mulo  | Rdst, Rsrc1, Rsrc2 |                 |  |
|-------|--------------------|-----------------|--|
|       | mult               | Rsrc1, Rscr2    |  |
|       | mfhi               | \$1             |  |
|       | mflo               | Rdst            |  |
|       | sra                | Rdst, Rdst, 31  |  |
|       | beq                | \$1, Rdst, cont |  |
|       | break              |                 |  |
| cont: | mflo               | Rdst            |  |

#### Divisão de inteiros com sinal

- A divisão de inteiros com sinal faz-se, do ponto de vista algorítmico, em sinal e módulo
- Nas divisões com sinal aplicam-se as seguintes regras:
  - Divide-se dividendo por divisor, em módulo
  - O quociente tem sinal negativo se os sinais do dividendo e do divisor forem diferentes
  - O resto tem o mesmo sinal do dividendo
- Exemplo 1 (dividendo = -7, divisor = 3):

$$-7 / 3 = -2$$
 resto =  $-1$ 

• Exemplo 2 (dividendo = 7, divisor = -3):

$$7 / -3 = -2$$
 resto = 1

Note que: Dividendo = Divisor \* Quociente + Resto

#### A Divisão de inteiros no MIPS

- Tal como na multiplicação, continua a existir a necessidade de um registo de 64 bits para armazenar o resultado final na forma de um quociente e de um resto
- Os mesmos registos, HI e LO, que tinham já sido usados para a multiplicação, são igualmente utilizados para a divisão:
  - o registo HI armazena o resto da divisão inteira
  - o registo LO armazena o quociente da divisão inteira

|       |       | resto<br>(remainder) | quociente |
|-------|-------|----------------------|-----------|
|       | · •   | ] = [                |           |
| Rsrc1 | Rsrc2 | hi                   | lo        |

#### A Divisão de inteiros no MIPS

• No MIPS, as instruções *Assembly* de divisão são:

```
div Rsrc1, Rsrc2 # Divide (signed)divu Rsrc1, Rsrc2 # Divide unsigned
```

• em que Rsrc1 é o dividendo e Rsrc2 o divisor. O resultado fica armazenado nos registos HI (resto) e LO (quociente).

|       |       | remainder | quotient |
|-------|-------|-----------|----------|
|       | ] ÷ [ | ] = [     |          |
| Rsrc1 | Rsrc2 | hi        | lo       |

• **Exemplo**: obter o resto da divisão inteira entre os valores armazenados em \$t0 e \$t5, colocando o resultado em \$a0

```
div $t0, $t5 # hi = $t0 % $t5
# lo = $t0 / $t5
mfhi $a0 # $a0 = hi
```

# Instruções virtuais de divisão

#### Divisão signed

# div Rdst, Rsrc1, Rsrc2 div Rsrc1, Rscr2 mflo Rdst

#### Divisão unsigned

| divu | Rdst, Rsrc1, Rsrc2 |              |  |
|------|--------------------|--------------|--|
|      | divu               | Rsrc1, Rscr2 |  |
|      | mflo               | Rdst         |  |

#### Resto da divisão signed

| rem | Rdst, Rsrc1, Rsrc2 |      |  |  |
|-----|--------------------|------|--|--|
|     | div Rsrc1, Rscr2   |      |  |  |
|     | mfhi               | Rdst |  |  |

#### Resto da divisão unsigned

| remu | Rdst, Rsrc1, Rsrc2 |              |  |
|------|--------------------|--------------|--|
|      | divu               | Rsrc1, Rscr2 |  |
|      | mfhi               | Rdst         |  |

- Para uma codificação em complemento para 2, apresente a gama de representação que é possível obter com 3, 4, 5, 8 e 16 bits (indique os valores-limite da representação em binário, hexadecimal e em decimal com sinal e módulo).
- Determine a representação em complemento para 2 com 16 bits das seguintes quantidades:
  - **■** 5, -3, -128, -32768, 31, -8, 256, -32
- Determine o valor em decimal representado por cada uma das quantidades seguintes, supondo que estão codificadas em complemento para 2 com 8 bits:
  - 00101011<sub>2</sub>, 0xA5, 10101101<sub>2</sub>, 0x6B, 0xFA, 0x80
- Determine a representação das quantidades do exercício anterior em hexadecimal com 16 bits (também codificadas em complemento para 2).

- Como é realizada a deteção de *overflow* em operações de adição com quantidades sem sinal? E com quantidades com sinal (codificadas em complemento para 2)?
- Para a multiplicação de dois operandos de "m" e "n" bits, respetivamente, qual o número de bits necessário para o armazenamento do resultado?
- Apresente a decomposição em instruções nativas da instrução virtual mul \$5,\$6,\$7
- Determine o resultado da instrução anterior, quando \$6=0xFFFFFFE e \$7=0x0000005.
- Apresente a decomposição em instruções nativas das instruções virtuais div \$5,\$6,\$7 e rem \$5,\$6,\$7
- Determine o resultado das instruções anteriores, quando
   \$6=0xFFFFFFFO e \$7=0x0000003

 As duas sub-rotinas do slide seguinte permitem detetar overflow nas operações de adição com e sem sinal, no MIPS. Analise o código apresentado e determine o resultado produzido, pelas duas sub-rotinas, nas seguintes situações:

```
$a0=0x7FFFFFF1, $a1=0x0000000E;
$a0=0x7FFFFFF1, $a1=0x0000000F;
$a0=0xFFFFFFF1, $a1=0xFFFFFFFF;
$a0=0x80000000, $a1=0x80000000;
```

 Ainda no código das sub-rotinas, qual a razão para não haver salvaguarda de qualquer registo na stack?

```
# Overflow detection, signed
# int isovf_signed(int a, int b);
isovf_signed: ori $v0,$0,0
               xor $1,$a0,$a1
               slt $1,$1,$0
               bne $1,$0,notovf_s
               addu $1,$a0,$a1
               xor $1,$1,$a0
               slt $1,$1,$0
               beq $1,$0,notovf_s
              ori $v0,$0,1
notovf_s:
              jr $ra
# Overflow detection, unsigned
# int isovf_unsigned(unsigned int a, unsigned int b);
isovf_unsigned:ori $v0,$0,0
               nor $1,$a1,$0
               sltu $1,$1,$a0
               beq $1,$0,notovf_u
               ori $v0,$0,1
notovf u:
               jr $ra
```