ML with numerical optimization brief introduction

Gilles Richard

IRIT-CNRS, Toulouse University, France

What is this?

example 1:

	sépal		pétal		
	long.	larg.	long.	larg.	type
ľ	5.1	3.5	1.4	0.2	setosa
W	4.9	3.0	1.4	0.2	setosa
	4.7	3.2	1.3	0.2	setosa
	4.6	3.1	1.5	0.2	setosa
_					
	7.0	3.2	4.7	1.4	versic.
	6.4	3.2	4.5	1.5	versic.
	6.3	3.3	6.0	2.5	virgin.
	5.8	2.7	5.1	1.9	virgin.

Aim: find a simple numerical function *f* such that:

- computing f(x) provides the class of x
- x is a vector of numerical values (i.e. a row in the table)
- the class is just 0 or 1 (or 1 and -1)
- for instance:

$$f(x) = \alpha sepal.long + \beta speal.larg + \dots$$

Classifier

Another example: letters and pixels

Example 2:

- a matrix of pixel, each pixel is a grey level (black and white image)
- each image is a letter
- find c such that $f(x_1, \ldots, x_n) \in \{1, -1\}$ tells us if the image is letter a: too hard
- find h such that $h(x_1, ..., x_n) \in \mathbb{R}$ and $\forall z = (x, y) \in TS, h(x) \times y > 0$

How to compute f ?

What do we have?

- as usual, a finite set of examples $TS = \{z_1, \dots, z_m\}$ with their class
- class : $\mathbb{R}^n \to \{1, -1\}$
- if no noise, z = (x, class(x)), if noise we can have z = (x, y) with $y \neq class(x)$

How to compute f ?

What do we have?

- as usual, a finite set of examples $TS = \{z_1, \dots, z_m\}$ with their class
- class : $\mathbb{R}^n \to \{1, -1\}$
- if no noise, z = (x, class(x)), if noise we can have z = (x, y) with $y \neq class(x)$

Separable versus linearly separable

Just give an example with \mathbb{R}^2 and explain separable: we can find a suitable f linearly separable: among all the suitable f, there is an hyperplan (a line in \mathbb{R}^2)

Give a circle and a line as examples

Example of a rectangle as separator (i.e. the normal patients for medical data)

A first simple algorithm (perceptron)

to start...

- Look for $h(a,b)(x) = a.x + b = a_1x_1 + a_2x_2 + ... + a_nx_n + b$
- init: $a \leftarrow (0, \dots, 0)$; $b \leftarrow 0$; done \leftarrow false; while not done done \leftarrow true; for each $(x, y) \in TS$, if $(a.x + b).y \leq 0$ //disagreement then $a \leftarrow a + \tau.y.x$ $b \leftarrow b + \tau.y$; done \leftarrow false return (a, b) $\tau > 0$ (convergence speed tuning)

A first simple algorithm (perceptron)

to start...

- Look for $h(a,b)(x) = a.x + b = a_1x_1 + a_2x_2 + ... + a_nx_n + b$
- init: $a \leftarrow (0, \dots, 0)$; $b \leftarrow 0$; done \leftarrow false; while not done done \leftarrow true; for each $(x, y) \in TS$, if $(a.x + b).y \leq 0$ //disagreement then $a \leftarrow a + \tau.y.x$ $b \leftarrow b + \tau.y$; done \leftarrow false return (a, b) $\tau > 0$ (convergence speed tuning)

properties

- 1 simple...
- incremental
- 3 convergence iff linearly separable

Using Gradient Descent: a better algorithm

to start again

- Again $h(a,b)(x) = a.x + b = a_1x_1 + a_2x_2 + ... + a_nx_n + b$
- Minimize empirical error on TS: $e_{emp} = \frac{1}{n} \sum |(h(a,b)(x) y)|$
- Simpler to minimize on TS, $E(a,b)(TS) = \frac{1}{2} \sum_{(x,y) \in TS} (h(a,b)(x) - y)^2$
- init: $a \leftarrow (0, ..., 0)$; $b \leftarrow 0$; ϵ (precision) τ (step size) while $\Delta e_{emp} > \epsilon$ (or $\Delta E > \epsilon$) for each $(x, y) \in TS$,

$$a \leftarrow a + \tau.(y - (a.x + b)).x \ (i.e. \frac{\delta E(a,b)(TS)}{\delta a})$$

 $b \leftarrow b + \tau.(y - (a.x + b)) \ (i.e. \frac{\delta E(a,b)(x)}{\delta b});$
end while return (a,b)

Using Gradient Descent: a better algorithm

to start again

- Again $h(a,b)(x) = a.x + b = a_1x_1 + a_2x_2 + ... + a_nx_n + b$
- Minimize empirical error on TS: $e_{emp} = \frac{1}{n} \sum |(h(a,b)(x) y)|$
- Simpler to minimize on TS, $E(a,b)(TS) = \frac{1}{2}\sum_{(x,y)\in TS}(h(a,b)(x)-y)^2$
- init: $a \leftarrow (0, ..., 0)$; $b \leftarrow 0$; ϵ (precision) τ (step size) while $\Delta e_{emp} > \epsilon$ (or $\Delta E > \epsilon$) for each $(x, y) \in TS$,

$$a \leftarrow a + \tau.(y - (a.x + b)).x \ (i.e. \frac{\delta E(a,b)(TS)}{\delta a})$$

 $b \leftarrow b + \tau.(y - (a.x + b)) \ (i.e. \frac{\delta E(a,b)(x)}{\delta b});$
end while return (a,b)

properties

- convergence whatever the situation
- 2 convergence can be very very slow!
- other minimization functions (log. etc.)

Neural Networks howto

The big idea...

Neural Networks ... propagate

One node per function

- ullet a finite set ${\cal N}$ of nodes
- n variables then n input nodes: they do not classify 1 output node h
- Each internal node m provides a classifier
- Combining the classifiers provides the resulting hypothesis h
- $\forall I \in \mathcal{N}$, (except input nodes recursive definition)

$$I(x) = sign(\Sigma \alpha_{mI} m(x) + \beta_{I})$$

where β_I is the weight of node I and α_{ml} the weight of the edge from node m to node I (i.e. m is a parent of I)

- Propagate the answer (the class) from input to output h
- Retro-propagate the error y h(x) from output h to input

Neural Networks ... retro-propagate

Learning the weight!

- for all $(x, y) \in TS$
- for all $l \in \mathcal{N}$, compute l(x) (then h(x) is computed)
- $\delta h \leftarrow \tau(y h(x))$
- //retro-propagate the final error For each hidden node I, (recursive definition) $\delta I = \sum \alpha_{lm} \delta m$ for m child of I where β_I is the weight of node I and α_{ml} the weight of the edge from node m to node I
- //update the weight coefficients $\forall I \in \mathcal{N}, \alpha I \leftarrow \alpha_I + \delta_I$ $\beta_I \leftarrow \beta_I + \delta_I$

•

Neural Networks pro/cons

Pro

- Very successfull for diverse tasks
- Can use other "neuronal" functions (i.e. non linear classifiers) Ex.: sigmoid $sigm(a)=\frac{1}{1+e^{-\lambda a}}$ and replace sign with sigm
- On the shelves product (weka for instance!)
- Revival with "deep learning"

Cons

- Empirical init of the nodes and structure (done by human experts...)
- Empirical init of the weights and very long training time
- Tuning very difficult
- Halting condition

Support Vector Machines (V. Vapnik - 1979, etc.)

Another clever idea!

If linearly separable, there is a kind of "separating PIPE"

Support Vector Machines (V. Vapnik - 1979, etc.)

Another clever idea!

If linearly separable, there is a kind of "separating PIPE"

Let us think about it

- Infinite number of separating hyperplans
- The "best" one could be the one maximizing the margin!
- Support vectors = the examples on the pipe limits!
- We don't care about the other examples...

SVM: some facts

The problem...

- Notion of margin associated to a separating hyperplan H
- Ultimately find the hyperplan with the biggest margin...
- Hyperplan H with equation a.x + b = 0 with normalized normal vector $w = \frac{a}{||a||}$
- Given $z \in TS$, distance d(z, H) to be computed
- Let $y \in H$ such that d(z, H) = d(z, y) i.e. y = z d(z, H). $\frac{a}{||a||}$
- Then a.y + b = 0 i.e. $a.(z d(z, H). \frac{a}{||a||}) + b = 0$ i.e. $d(z, H) = \frac{a.z + b}{||a||}$
- geometric margin for $z : marg(z, H) = cl(z) \cdot (\frac{a \cdot z + b}{||a||})$ geometric margin for $H : min\{marg(z, H) | z \in TS\}$
- Maximizing marg(H) equivalent to maximize $\frac{1}{||a||}$ i.e. minimize $\frac{1}{2}||a||^2$

SVM: the algorithm

The problem...

- Initial pb.: unknown a and b (n+1 variables) then minimize $||a||^2$
- Constraints: $\forall (x,y) \in TS, y \times (a.x+b) \geq 1$
- Classical math exercise... can be solve in $\mathcal{O}(n^3)$ and unique solution
- On the shelve software to do the job!
- Convergence if linearly separable... STUNNING PERFORMANCES...
- and ... IF NOT ??????????????????????

SVM for non linerarly separable data: how to ?

The problem...

- $TS = \{1, +1\}, (2, +1), (4, -1), (5, -1), (8, +1), (9, +1)\}$
- Projection in \mathbb{R} with $\phi(x) = (x, x^2)...$ linearly separable
- The main idea...

New optimization problem to be solved!

- Find $\phi: \mathbb{R}^n \to \mathbb{R}^m$ such that
 - $-\exists (a,b) \in \mathbb{R}^m \times \mathbb{R}$ with
 - $\forall (x,y) \in TS, y.(a.\phi(x) + b) \geq 1$
- But only $K(x, x') = \phi(x).\phi(x')$ needed (. is the scalar product also denoted $\phi(x)^T \phi(x')$)
- K kernel function (kernel trick)

SVM on the shelves

Usual kernels

- Gaussian kernel $K(x,y) = \frac{e^{-||x-y||^2}}{2\sigma^2}$
- Polynomial kernel $K(x,y) = (x.y+1)^p$
- Combination of kernels $K + K', K \times K', exp(K(x, x')), \dots$
- "Magic" extension of SVM...

Applications

- Weka has SVM included (LibSVM weka)
- K kernel function representing "similarity" between examples...
- Example outside \mathbb{R}^n : A a subset of a finite universe $A: K(A,B) = 2^{|A \cap A'|}$

Concluding remarks

- A lot of other options and methods (SMO, Ridge regression, etc.)
- Generally black box approach
- Parameter tuning: highly difficult and empirical task
- A lot of commercial implementations as well