|            |   |            | STUDENT ID NO |
|------------|---|------------|---------------|
| MULTIMEDIA | 5 | UNIVERSITY |               |

# MULTIMEDIA UNIVERSITY

## FINAL EXAMINATION

**TRIMESTER 1, 2019/2020** 

### PMT0201 - MATHEMATICS II

(Foundation in Information Technology)

14 OCTOBER 2019 2.30 p.m. – 4.30 p.m. (2 Hours)

#### INSTRUCTIONS TO STUDENT

- 1. This question paper consists of 6 pages, excluding the cover page and formula list.
- 2. Attempt ALL FIVE questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the **answer booklet** provided. All necessary working steps **MUST** be shown.
- 4. You are required to write proper steps to obtain MAXIMUM marks.

#### FORMULAE LIST - PMT0201

$$\cos^2 A + \sin^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\cos 2A = 2\cos^2 A - 1 = 1 - 2\sin^2 A = \cos^2 A - \sin^2 A$$

$$\sin 2A = 2\sin A\cos A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A - B) - \cos(A + B)$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2} \qquad , \quad \sin A - \sin B = 2\cos \frac{A+B}{2}\sin \frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2} \quad , \quad \cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\sin\frac{A}{2} = \pm\sqrt{\frac{1-\cos A}{2}}$$

$$\cos\frac{A}{2} = \pm\sqrt{\frac{1+\cos A}{2}}$$

$$\tan\frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{1+\cos A}} = \frac{1-\cos A}{\sin A} = \frac{\sin A}{1+\cos A}$$

$$s = r\theta \qquad A = \frac{1}{2}r^2\theta$$

$$\frac{\sin A}{a} = \frac{\sin B}{b}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$A = \frac{1}{2}ab\sin C$$

$$A = \sqrt{s(s-a)(s-b)(s-c)} \quad , \quad s = \frac{1}{2}(a+b+c)$$

#### **QUESTION 1 [10 MARKS]**

a) Figure 1 shows a sector ABC of a circle, with center A and radius 6 cm.



Figure 1

i) Find the angle ADB in degree.

[1 mark]

ii) Find the length of AD.

[1 mark]

iii) Find the area of shaded region R.

[3 marks]

b) Find the exact value of 
$$\cot \left[ \sin^{-1} \left( \frac{2}{\sqrt{5}} \right) \right]$$
. Show all steps. [2.5 marks]

c) Determine the amplitude, period, phase shift and vertical shift of the following function:

$$f(x) = -\frac{2}{5}\cos\left(2x + \frac{\pi}{4}\right) + 3$$
 [2.5 marks]

#### **QUESTION 2 [10 MARKS]**

a) Solve  $2\sin^2\theta - 3\sin\theta - 2 = 0$  for  $0^0 \le \theta \le 360^0$ .

[3 marks]

b) Express  $2\sin\theta + 3\cos\theta$  in the form  $R\sin(\theta + \alpha)$ , where  $0^{\circ} \le \theta \le 360^{\circ}$ .

[2 marks]

- c) Given  $w = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ .
  - i) Find the polar form of w.

[2.5 marks]

ii) Given  $z = \sqrt{3} (\cos 300^{\circ} + i \sin 300^{\circ})$ , find the polar form of  $\frac{z}{w}$ .

[1 mark]

iii) Use De Moivre's Theorem to find  $w^2$ . Leave your answer in the form a+bi where  $a,b \in \Re$ . Express a and b in exact values.

[1.5 marks]

Continued...

JMJ

#### **QUESTION 3 [10 MARKS]**

a) Evaluate the following limits:

$$\lim_{x \to -2} \frac{4x+6}{5-2x}$$

[1 mark]

$$\lim_{x \to 1} \frac{x^2 - 6x + 5}{x - 1}$$

[2 marks]

iii) 
$$\lim_{x \to 6} \frac{\sqrt{x-2} - 2}{x-6}$$

[3 marks]

b) Use the graph of f below to find the following:



3/6

- i)  $\lim_{x \to -2} f(x)$
- ii)  $\lim_{x\to 0} f(x)$
- iii)  $\lim_{x \to -\infty} f(x)$

[1.5 marks]

c) Given  $f(x) = \begin{cases} x + 2k & , & x \le 1 \\ kx^2 + x + 1 & , & x > 1 \end{cases}$ .

Find:

- i)  $\lim_{x\to 1^-} f(x)$
- ii)  $\lim_{x\to 1^+} f(x)$

**Hence**, find the value of k if  $\lim_{x\to 1} f(x)$  exist.

[2.5 marks]

#### **QUESTION 4 [10 MARKS]**

a) Use formal definition of derivative to differentiate the function  $f(x) = x^2$  with respect to x.

Hint: 
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

[2.5 marks]

b) Find the first derivative of the following functions:

i) 
$$y = \frac{4x + 5x^4}{x^2}$$
 [1.5 marks]

ii) 
$$y = (x^2 + 5x)^5$$
 [1 mark]

iii) 
$$y = x^5 e^x$$
. Factorize your final answer. [2 marks]

- c) Given  $f(x) = x^3 12x$  for  $-2 \le x \le 3$ .
  - i) Find the critical values.
  - ii) Determine the absolute minimum and maximum values.

[3 marks]

#### **QUESTION 5 [10 MARKS]**

a) Compute the integral  $\int_{1}^{2} \left( \frac{5}{x} + 2e^{x} \right) dx$ .

Leave your final answer correct to two decimal places.

[2 marks]

b) Use integration by parts to find  $\int (xe^{x+5}) dx$ .

[2 marks]

c) Given  $\int_{1}^{5} f(x) dx = 6$ .

Find the value of p if  $\int_{1}^{5} [f(x) + p] dx = 30$ .

[2 marks]

d) The figure below shows a region R bounded by  $y = \frac{36}{x}$ , y = 9x - 27 and x = 3.



- i) The curves  $y = \frac{36}{x}$  and y = 9x 27 intersect at P, show that the coordinates of P is (4,9).
- ii) Find the area of shaded region R.

[4 marks]

End of Page.