MIT OpenCourseWare http://ocw.mit.edu

18.01 Single Variable Calculus Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.01 Peadice Questions for Exam 2 Solutions. Fall 2006

1)
$$f(x) = 3x^{5} - 5x^{3} + 1$$
 $f'(x) = 0$ $x = 0, \pm 1$
 $f'(x) = 15x^{4} - 15x^{2}$ $f''(x) = 0$ $x = 0, \pm 5\frac{7}{2}$
 $f''(x) = 60x^{3} - 30x$ $f(x) \rightarrow -6 x \rightarrow -6$
 $f(x) \rightarrow +60x \rightarrow +6$

×	f(x)	f(x)	f (x)	
-2	- 550		_	
-1	370	0	-30	la. max.
-52/2	H752	1	0	inflection
0	11	0	0	inflaction
52/2	1-75		0	inflection
1	1-1	10	30	la.min.
2 5770 \				

There is an X, -2<x<-1, since f(-2) <0 and f(-1)>0. There is an X, 16x62, in a f(1) co, f(2) >0. There is ax, O(x(1, Nince f(0)), fako.

2)
$$f(x) = 4x^2 - \frac{1}{x}$$
 $f(x) = 0$, $x = \frac{1}{2}9$
 $f'(x) = 8x + \frac{1}{2}x^2$ $f'(x) = 0$, $x = \frac{1}{2}9$
 $f''(x) = 8 - \frac{2}{x^3}$ $f''(x) = 0$, $x = \frac{1}{3}9$
 $ab \times \rightarrow \infty$, $f(x) \rightarrow \infty$ asymptotical as $x \rightarrow -\infty$, $f(x) \rightarrow \infty$ $x = 0$

4"(4h)70

Yint = 2-m

A = \frac{1}{2} \text{Xixt' Yixt} = 2 - \frac{2}{m} - \frac{m}{2} \frac{dA}{dm} = -\frac{1}{2} + \frac{2}{m^2}

dA=0 at m=-2 der | = -4/3 | = 1/270 dm | = 1

m=-2, A=4 is the global win.

Ato as mto nasmto. So

 $L = 2l + 4-x = 2\sqrt{9+x^2} + 4-x$ 40 < x < 4 dL = 2x - 1 L(0) = 10 dx = 19+x2

L(4)=10 dl =0 ax x= 53 L(J3)=3J3+4 = 9.2

L153) 29.2<10 Since Lat the endpoints is lugar than at the unique inderior crit. pt., this unique crit. pt. is a min.

