Dinámica de sistemas físicos

Introducción a la dinámica de sistemas lineales

Dr. Jesús Emmanuel Solís Pérez

jsolisp@unam.mx

Conceptos básicos

Concepto de señal. Fís. Variación de una corriente eléctrica u otra magnitud que se utiliza para transmitir información.

Tipos de señales eléctricas

- Señal analógica. Tiene una variación continua en el tiempo con un número infinito de valores.
- Señal digital. Tiene una variación discreta de valores en el tiempo con un número finito de valores.
- Señal digital binaria. Tiene sólo dos niveles de tensión V+ o 0, en valores binarios 1 y 0.

Concepto de sistema.

Conjunto de componentes físicos relacionados que actúan como una unidad completa.

Concepto de modelo.

m. Esquema teórico, generalmente en forma matemática, de un sistema o de una realidad compleja, como la evolución económica de un país, que se elabora para facilitar su comprensión y el estudio de su comportamiento.

Sistemas seguidores

- La entrada de referencia cambia de valor frecuentemente.
- Ejemplo: servomecanismos; la salida es alguna posición, velocidad o aceleración mecánica.

Sistemas de regulación automática

- La entrada de referencia es o bien constante o bien varía lentamente con el tiempo, y donde la tarea fundamental consiste en mantener la salida en el valor deseado a pensar de las perturbaciones presentes.
- Ejemplos: el sistema de calefacción de una casa, un regulador de voltaje, un regulador de presión de suministro de agua.

Índices de error

Criterios integrales

Integral del error absoluto (IAE)

$$IAE = \int_0^\infty |e(t)| dt,$$

donde

$$e(t) = y(t) - \hat{y}(t).$$

- · Fácil aplicación
- No se pueden optimizar sistemas altamente sub ni altamente sobre amortiguados
- Difícil de evaluar analíticamente

```
function iae = IAE(y,yg,dt)
    iae = trapz(abs(y-yg))*dt;
end
```

Integral del tiempo por el error absoluto (ITAE)

$$ITAE = \int_0^\infty t |e(t)| dt,$$

- · Los errores tardíos son más castigados
- Buena selectividad
- Difícil de evaluar analíticamente

```
function itae = ITAE(y,yg,t,dt)
    iae = trapz(t.*abs(y-yg))*dt;
end
```

Integral del error cuadrático (ISE)

$$ISE = \int_0^\infty e^2(t) dt,$$

- Da mayor importancia a los errores grandes
- No es un criterio muy selectivo
- Respuesta rápida pero oscilatoria, estabilidad pobre

Integral del tiempo por el error cuadrático (ITSE)

$$ITSE = \int_0^\infty t e^2(t) dt,$$

- Los grandes errores iniciales tienen poco peso pero los que se producen más tarde son fuertemente penados
- Mejor selectividad con respecto al ISE

Criterios estadísticos

Mean Square Error

$$MSE = \frac{1}{N} \sum_{k=0}^{N} e_k^2$$

- No recomendable para estudiar modelos de predicción
- No tiene escala original el error porque está elevado al cuadrado
- No se mide en unidades de los datos experimentales

```
function mse = MSE(y,yg)
    e = y - yg;
    % N = length(y);

% mse = (1/N)*sum(e.^2);
    mse = mean(e.^2);
end
```

Root Mean Square Error

$$RMSE = \sqrt{\frac{1}{N} \sum_{k=0}^{N} e_k^2}$$

- Sensible a valores atípicos
- No se ajusta a la demanda (¿qué es demanda?)
- Se mide en unidades de los datos experimentales

```
function rmse = RMSE(y,yg)
  rmse = sqrt(MSE(y,yg));
end
```

Mean Absolute Error

$$MAE = \frac{1}{N} \sum_{k=0}^{N} |e_k|$$

- Mide la precisión de los datos simulados
- Se mide en unidades de los datos experimentales
- No es sensible a valores atípicos
- Utilizado para analizar series temporales

```
function mae = MAE(y,yg)
  mae = mean(abs(y-yg));
end
```

Mean Absolute Percentage Error

MAPE =
$$\frac{100\%}{N} \sum_{k=0}^{N} \frac{e_k}{y_k}$$

- Mide el error en porcentajes
- Indicador de desempeño
- Fácil interpretación
- Ampliamente utilizado para evaluar modelos de predicción

Tabla de MAPE

- Si MAPE < 10, entonces el modelo es altamente preciso
- Si 10 < MAPE < 20, entonces el modelo es bueno
- Si 20 < MAPE < 50, entonces el modelo es razonable
- Si MAPE > 50, entonces el modelo es impreciso

FIT

Obtiene el porcentaje de variación de salida que es explicado por un modelo

$$FIT = 100 \left(1 - \frac{\|y - \widehat{y}\|}{\|y - \overline{y}\|} \right)$$

Modelos de simulación y modelos analíticos

Modelo empírico

Se obtiene a partir de las leyes físicas del sistema. Por ejemplo, las siguientes ecuaciones describen la zona líquida del flujo bifásico en un intercambiador de calor de doble tubo helicoidal

Ecuación de continuidad

$$\dot{m}_{i+1} = \dot{m}_i,$$

$$v_{l_i} = \left[\frac{\dot{m_i}}{\rho_{l_i} A}\right],$$

$$v_{l_{i+1}} = \left[\frac{\dot{m}_{i+1}}{\rho_{l_{i+1}}A}\right].$$

Ecuación de cantidad de movimiento

$$p_{i+1} = p_i - \frac{\Delta z}{A} \left(\frac{\Phi \overline{f} \dot{m} p}{8 \overline{\rho} A^2} + \overline{\rho} A g \sin(\theta) + \left[\frac{\dot{m} (x_g v_g + (1 - x_g) v_l)}{\Delta z} \right]_i^{i+1} \right)$$

Modelo analítico

Es la representación matemática de un problema. Por ejemplo, la siguiente ecuación diferencial representa a un modelo para describir el crecimiento poblacional de ciertos organismos

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = K \cdot N(t) \cdot \ln \left(\frac{A}{N(t)}\right),$$