МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Лабораторная работа №8

По курсу «Вычислительные методы алгебры»

Степенной метод решения частичной проблемы собственных значений.

Вариант №5

Работу выполнил: студент 3 курса 7 группы **Шатерник Артём** Преподаватель: **Будник А. М**.

1. Постановка задачи.

Дана матрица следующего вида

		Α		
0.5757	-0.0758	0.0152	0.0303	0.1061
0.0788	0.9014	0.0000	-0.0606	0.0606
0.0455	0.0000	0.7242	-0.2121	0.1212
-0.0909	0.1909	0.0000	0.7121	-0.0303
0.3788	0.0000	0.1364	0.0152	0.8484

Требуется степенным методом найти максимальное собственное значение и соответствующий ему собственный вектор для матрицы A^TA . Вычислить невязку $r = A^TAx - \lambda x$, оценить её значение. Точность $\varepsilon = 10^{-5}$.

2. Алгоритм решения.

Метод является итерационным с заданной наперёд точностью. Берётся некоторый начальный вектор y^0 . Был взят $y^0 = (0,0,0,0,1)$. Далее на каждой итерации вычисляется

$$y^k = A^k y^0.$$

То есть получается система вида

$$y^1 = Ay^0$$
, $y^2 = A^2y^0$, ..., $y^k = A^ky^0$, ...

Так как матрица

 A^TA является симметричной, то можем применять следующий метод для нахождения λ_1 — максимального собственного значения при каждой итерации

$$\lambda_1 \approx \frac{(y^{k+1}, y^k)}{(y^k, y^k)}.$$

Критерием остановки итерационного процесса будет

$$\left|\lambda_1^{k+1} - \lambda_1^k\right| \le \varepsilon.$$

В качестве собственного вектора, соответствующего данному собственному значению, берём y_k .

```
3. Листинг программы.
import numpy as np
import math
size = 5
a matrix = []
with open('input.txt') as file:
    i = 0
    for line in file:
        a matrix.append([float(x) for x in line.split(' ')])
        i += 1
a matrix = np.array(a matrix)
epsilon = 1e-5
# Симметричный вид
a matrix = np.matmul(a matrix.T, a matrix)
# Начальное приближение
y old = [0 for i in range(size - 1)]
y old.append(1)
print("Начальное приближение:")
print(y_old)
y new = np.matmul(a matrix, y old)
lambda_new = np.dot(y_new, y_old) / np.dot(y_old, y old)
n = 0
while True:
    n += 1
    y \text{ old} = y \text{ new}
    lambda old = lambda new
    y new = np.matmul(a matrix, y new)
    lambda new = np.dot(y new, y old) / np.dot(y old, y old)
    if abs(lambda_new - lambda_old) <= epsilon:</pre>
        break
print("Число итераций: " + str(n))
print('Максимальное собственное значение:')
print(lambda new)
print('Собственный вектор, соответствующий этому собственному
значению: ')
print(y old)
# Невязка для собственного значения
# Из метода Данилевского
p = [3.1966884499999972, -3.7968475734971836, 2.0678062361750578, -
0.5082483413019262, 0.044096040836178144]
sum = pow(lambda new, size)
for j in reversed(range(size)):
    sum -= pow(lambda new, j) * p[size - j - 1]
print(format(sum, '.4e'))
# Невязка для собственного значения и собственного вектора
res = np.matmul(a matrix, y old) - lambda new * y old
print(res)
print('Hopмa невязки: ', end='')
print(format(np.linalq.norm(res, 2), '.4e'))
```

4. Результат и его анализ.

Число итераций: 9

Максимальное собственное значение:

1.1447499595770831

Невязка $\phi_i(\lambda_i) = P_n(\lambda_i)$ для максимального собственного значения. Собственный многочлен был взят из метода Данилевского

-6.5667e-07.

Невязка $r = A^T A x - \lambda x$

 $[-0.00034888 - 0.00244649 \ 0.00111387 - 0.00198575 - 0.00055321]$

Норма невязки: 3.4054е-03

Если вместо собственного значения, вычисленного степенным методом взять собственное значение с точность 10^{-16} , то получим

[-0.00035698 -0.00244767 0.00110798 -0.00198296 -0.00056478]

Норма невязки: 3.4055е-03

Экономичность:

Число операций при одной итерации порядка O(n).

Из-за использования скалярных произведений при вычислении собственных значений увеличилось число операций, но на порядок увеличилась скорость сходимости метода.

Точность:

Метод является итерационным и даёт наперёд заданную точность.

Из невязки $\varphi_i(\lambda_i) = P_n(\lambda_i)$ видно, что собственное значение λ было вычислено с точностью даже выше заданной.

По невязкам $r = A^T A x - \lambda x$ видно, что и при собственном значении порядка 10^{-5} подсчитанного степенным методом и при использовании собственного значения порядка 10^{-16} точность вычисления собственного вектора получилась порядка 10^{-3} , что ниже, чем наперёд заданная точность.