Example – 1.1

Consider the most trivial array processor (beamformer) or (Spatial filter), for which $W_1 = W_2 = --- = W_M = 1$ i.e. $W_1 = W_2 = --- = W_M = 1$

Assume, that a constant value signal $\tilde{m}(t) = 1$ for every t arrives to our antenna array with $DoA = \phi$.

And let $d = \underline{\lambda}c$.

Do: In MATLAB, plot $|y(1)|^2$ in plain scale and dB as a function of ϕ . $|y(1)|^2 \uparrow y(\phi;1)$

 $\phi \in \left[\frac{1}{a}, \frac{1}{a} \right]$

Discuss your findings? Take M=2,3,-...

Sol. Given: m(t) = 1; $\forall t$

Taking M=6 -> number of antenna elements

$$g(t) = \overline{w}^{H}. \overline{x}$$

and $\bar{\alpha} = \tilde{m}(t) \cdot \bar{s}(\phi)$ $= 1 \cdot \bar{s}(\phi)$

$$\mathcal{E}_{s} \quad y(t) = \overline{w}^{\mathsf{H}}.\overline{s}(\phi)$$

Now;
$$\bar{S}(\phi) = \begin{bmatrix} 1 \\ e^{-j2n} \cdot \frac{d}{\lambda_c} \cdot \sin(\phi) \\ \vdots \\ e^{-j2n} \cdot (M-1) \frac{d}{\lambda_c} \cdot \sin(\phi) \end{bmatrix}$$

Given;
$$d = \frac{\lambda_c}{2}$$
;
 $\overline{S}(\phi) = \begin{bmatrix} 1 \\ e^{-j\pi \cdot \sin(\phi)} \\ \vdots \\ e^{-j\pi \cdot (M-1) \cdot \sin(\phi)} \end{bmatrix}$

$$\int_{0}^{\infty} y(t) = 1 + e^{-j\pi\sin\phi} + e^{-j2\pi\sin\phi} + e^{-j3\pi\sin\phi} + e^{-j4\pi\sin\phi} + e^{-j5\pi\sin\phi} + e^{-j5\pi\sin\phi}$$

- OBSERVATIONS:
 1) At $\phi=0$, we have maximum energy, specifically equal to that of M^2 .
 - i.e $M^2 = 6^2 = 36$.
- 2> As the number of antenna elements increases, the number of side lobes also increases. They are noticed to be (M-2) side lobes.
- σ For the given filter weights i.e. $\overline{w}=1$ M, we observe that the received bignal is able to differentiate at $\phi=0$, better them at any other D_0A/A_0A .