1995 年计算机数学基础

 \equiv ,

1.

- (1) $\kappa = 2$;
- (2) $\lambda = 3$;
- (3) $\chi = 4$;
- (4) 生成树中有9条树枝和10条弦。
- 2. 2个(由于任何非平凡的树至少有 2片树叶, 而 G 的生成树上的树叶显然都不是割点, 所以至少有 2个非割点。考虑 G 恰为一条初级通路的情况, 可知这个下界是 tight 的)。
- 3. 6个。
- 4. 3个(原式等价于 $(\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor r)$)。
- 5. $\langle 1, 0 \rangle$.

6.

- $(1) P_n^m = \frac{n!}{(n-m)!} \uparrow \circ$
- (2) $n! \binom{m}{n}$ 个,其中 $\binom{m}{n}$ 为第二类 Stirling 数。

四、

2

证明:由于 $R_1 = R \cap B \times B \subseteq B \times B$,所以 R_1 是 B 上的二元关系。下面证明 R_1 是偏序关系。自反性。对任意 $b \in B$,有 $\langle b, b \rangle \in R$ 和 $\langle b, b \rangle \in B \times B$,从而有 $\langle b, b \rangle \in R_1$ 。因此, R_1 是自反的。

传递性。对任意 $\langle a,b \rangle, \langle b,c \rangle \in R_1$,有 $\langle a,b \rangle, \langle b,c \rangle \in R$,从而由 R 的传递性有 $\langle a,c \rangle \in R$,又由 $\langle a,b \rangle, \langle b,c \rangle \in R_1 \subseteq B \times B$ 知 $a,b,c \in B$,从而 $\langle a,c \rangle \in B \times B$ 。从而有 $\langle a,c \rangle \in R_1$ 。因此, R_1 是传递的。

反对称性。对任意 $a,b\in A$,若 $\langle a,b\rangle\in R_1\subseteq R$ 且 $\langle b,a\rangle\in R_1\subseteq R$,则由 R 的反对称性知,a=b。因此, R_1 是反对称的。

这就证明了 R_1 是 B 上的偏序关系。

3

证明: 首先证明存在 $a \in G$,使得 $a^{-1} \neq a$ 。若不然,则对任意 $a,b \in G$,都有 $a = a^{-1},b = b^{-1}$,从而:

$$aabb = aa^{-1}bb^{-1}$$
 $(a^{-1} = a, b^{-1} = b)$