# Progress Presentation-I

e-Yantra Summer Internship-2018 LowCostSensorNode/SensorNetworkDevelopmentPlatform

> Sachin Jadhav Nithin Thilakappan Nishit Patel Mentors: Parin Chheda Kalind Karia

> > IIT Bombay

June 6, 2018



# Overview of Project

#### Progress Presentation-I

Sachin Jadhav Nithin Thilakappan Nishit Patel Mentors: Parin Chheda Kalind Karia

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced

Future Plans

Thank You

 Project Name :- Low Cost Sensor Node / Sensor Network Development Platform

### Objective

- A custom built power supply for optimized for low power sensor node applications
- Ability to program via Arduino IDE/ Atmel Studio
- Use NRF2401 for RF communication
- Completely open source design and sample codes to make it useful for WSNs
- Can be used as general purpose microcontroller board for learning interfacing and C programming

### Deliverables

- A sensor node platform along with sample codes for rapid prototyping
- A firmware for low power modes and nRF24L01 networking
- Documenation on Hardware and Software

### Overview of Task

Progress Presentation-I

Sachin Jadha Nithin Thilakappan Nishit Patel Mentors: Parin Chhed:

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced

Future Plans

| Task No. | Tasks                                                                                                                      | Deadline |
|----------|----------------------------------------------------------------------------------------------------------------------------|----------|
| 1        | Study about different sensor nodes platform available and their USP.                                                       | 1 day    |
|          | Take desirable aspects of each                                                                                             |          |
| 2        | Review low power modes in Atmega328p, NRF2401 literature review                                                            | 1 day    |
| 3        | Build prototype using arduino pro mini + NRF2401, test<br>range theoretically and experimentally in outdoor<br>environment | 2 day    |
| 4        | Research components available and select to fit price vs performance metric                                                | 2 days   |
| 5        | Build pcb design, source components, evaluation in proteus (if necessary)                                                  | 5 days   |
| 6        | Prototype soldering and testing                                                                                            | 2 days   |
| 7        | Building a network of 3 nodes, relaying info, power con-<br>sumption<br>analysis                                           | 5 days   |
| 8        | Making reusable firmware for NRF2401, interfacing soil moisture, temperature/humidity sensors                              | 4-5 days |
| 9        | Loading tiny OS, initial experiments                                                                                       | 2 days   |
| 10       | Trying out the features available in tiny OS, feasibility check                                                            | 3 days   |
| 11       | Firmware documentation, hardware manual and reporting results                                                              | 3 days   |

#### Progress Presentation-I

Sachin Jadhav Nithin Thilakappan Nishit Patel Mentors: Parin Chheda Kalind Karia

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced

Future Plans

- Study of Atmega328p datasheet
- Wireless module
  - XBee (250 Kbps, 1.2 km, Rs. 1158)
  - Bluetooth (1 Mbps, 10 m,Rs. 250)
  - nRF24L01 (2Mbps, 100 m, Rs. 100 )
- Study of RF24 library with useful APIs
- Successfully uploaded bootloader on Arduino Pro Mini
- Selected components for circuit design
  - LDO (MIC5219)
  - Boost converter (FP6291)
  - Mosfet (PMV65XP)

#### Progress Presentation-I

Sachin Jadhav Nithin Thilakappan Nishit Patel Mentors: Parin Chheda Kalind Karia

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced

Future Plans

Thank You

■ Prototype hardware for range testing



Figure: 1. Prototype Hardware

Progress Presentation-I

Sachin Jadhav Nithin Thilakappan Nishit Patel Mentors: Parin Chheda Kalind Karia

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced

Future Plans

Thank You

■ PCB design of final circuit



Figure: 2. Schematic design of board

#### Progress Presentation-I

Sachin Jadhav Nithin Thilakappan Nishit Patel Mentors: Parin Chheda Kalind Karia

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced

Future Plans

- Completed testing of star network by using two transmitter and one receiver.
- Measure current of Arduino Pro Mini
  - Normal mode current = 11.5 mA
  - Sleep mode current =0.6 mA
- Measure current of nRF24L01
  - Normal mode current = 1.2 mA
  - stand by mode current = 40 uA
  - Sleep mode current = 900 nA
- Test the range of nRF24L01 in outdoor environment with different data rate.
  - MIN (-18dBm) power = **0** to **6** m
  - LOW (-12dBm) power = **0** to **8** m
  - HIGH (-6dBm) power =  $\mathbf{0}$  to  $\mathbf{12}$  m
  - MAX (0dBm) power = **0** to **16** m

Progress Presentation-I Overview of Project Overview of Task

Task

Accomplished

Challenges Faced

Future Plans



Figure: 3. Current of Arduino Pro Mini (Sleep mode, Idle mode)

Progress Presentation-I

Sachin Jadhav Nithin Thilakappan Nishit Patel Mentors: Parin Chheda

Overview of Project

Overview of Task

Task Accomplished

Challenges Faced

Future Plans



Figure: 4. Current of nRF24L01 (Active mode, Sleep mode)

#### Progress Presentation-I

Sachin Jadhav Nithin Thilakappan Nishit Patel Mentors: Parin Chheda Kalind Karia

Overview of Project Overview of Task

Task

Accomplished

Challenges Fac

Future Plans

Thank You

### Table: Range testing of nRF24L01(At different data rate)

| Transmission     | MIN   | LOW   | HIGH     | MAX     |
|------------------|-------|-------|----------|---------|
| Power level      | power | power | power    | power   |
|                  | (-18  | (-12  | (-6 dBm) | (0 dBm) |
|                  | dBm)  | dBm)  |          |         |
| Distance (meter) |       |       |          |         |
|                  |       |       |          |         |
| 3.8              | 100%  | 100%  | 100%     | 100%    |
| 4.9              | 100%  | 100%  | 100%     | 100%    |
| 5.9              | 100%  | 100%  | 100%     | 100%    |
| 6.9              | 47%   | 100%  | 100%     | 100%    |
| 8                | 0%    | 100%  | 100%     | 100%    |
| 8.2              | 0%    | 100%  | 100%     | 100%    |
| 10               | 0%    | 74%   | 100%     | 100%    |
| 12.4             | 0%    | 0%    | 100%     | 100%    |
| 15.6             | 0%    | 0%    | 86%      | 100%    |

## Challenges Faced

#### Progress Presentation-II

Sachin Jadha Nithin Thilakappan Nishit Patel Mentors: Parin Chhedi Kalind Karia

Overview of Project

Overview of Task

Task Accomplished

Accomplished

Future Plans

- Prototype testing of nRF24L01.
- Range testing of nRF24L01 in outdoor environment.
- Setting of fuse bits (Low, High, Extended) using AVRDude.
- Importing RF24 library in Atmel Studio.
- Differentiating data of two transmitter at one receiver.

### **Future Plans**

#### Progress Presentation-I

Sachin Jadhav Nithin Thilakappan Nishit Patel Mentors: Parin Chheda Kalind Karia

Overview of Project

Overview of Task

Accomplished

Task

Challenges Faced

Future Plans

- PCB printing, soldering and testing
- Solve the problem of RF24 library in Atmel. So, that we can make example codes for prototype
- Duty cycling of Atmega328p
- Study about RF24mesh library
- Setup of 5 nodes WSN star network
- Use Raspberry-pi as gateway connected to master
- Operating life prediction of WSN
- Add soil moisture, light intensity sensor, humidity sensor on board as examples sensors

### Thank You

Progress Presentation-I

Sachin Jadha Nithin Thilakappan Nishit Patel Mentors: Parin Chheda

Overview of Project

Overview of Task

Task

Accomplished

Challenges Faced

Future Plans

Thank You

THANK YOU !!!