DPPs BOOKLET-2

TARGET : JEE (Main + Advanced) 2018

Course: VIKAAS (JA)

- Course of the week as per plan: Concept of density, % Composition of a given compound by mass, % by 1. mole, Minimum molecular mass determination, Empirical & Molecular Formula, Introduction of stoichiometry
- 2. Course covered till previous week: Atomic structure complete
- 3. Target of the current week: Concept of density, % Composition of a given compound by mass, % by mole, Minimum molecular mass determination, Empirical & Molecular Formula, Introduction of stoichiometry.
- **DPP Syllabus: ITC**, ATS and Mole concept 4

This DPP is to be discussed in the week (27-06-2016 to 02-07-2016)

DPP No. # 12 (JEE-MAIN)

Max. Time: 40 min. Total Marks: 60

Single choice Objective ('-1' negative marking) Q.1 to Q.20

(3 marks, 2 min.) [60, 40]

[Ref. YSJ Sir, June 2014]

Ques. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Total
Mark obtained																					

ANSWER KEY

1.	(D)	2.	(A)	3.	(A)	4.	(C)	5.	(A)	6.	(B)	7.	(B)
8.	(C)	9.	(C)	10.	(C)	11.	(D)	12.	(B)	13.	(A)	14.	(D)
15.	(C)	16.	(C)	17.	(A)	18.	(D)	19.	(D)	20.	(B)		

1. 10 moles of CO₂ do not contain:

(A) 120 g of C

(B) 20 gram-atoms of O

(C) 30 N_a atoms

(D*) 160 g of O

CO, के 10 मोल रखते है।

(A) C के 120 g को

(B) O के 20 ग्राम-परमाणुओं को

(C) 30 N, परमाणुओं को

- (D*) O के 160 q को
- Rearrange the following (I to IV) in the order of increasing masses: 2.
 - (I) 0.5 mole of O_3

(II) 0.5 gm atom of oxygen

- (III) 3.011 × 10²³ molecules of O₂
- (IV) 5.6 litre of CO₂ at STP
- निम्न द्रव्यमान के आरोही क्रम में (I से IV को) व्यवस्थित कीजिए :

(B) II < I < IV < III

(I) O₃ के 0.5 मोल

 $(A^*) | I < IV < III < I$

(II) ऑक्सीजन के 0.5 ग्राम परमाणु

(III) Oू का 3.011 × 10²³ अणू

- (IV) STP पर CO, के 5.6 लीटर (C) IV < II < III < I
 - (D) I < II < III < IV

- $0.5 \text{ mole } O_3 = 24 \text{ g } O_3;$ Sol.
- 0.5 g atom of oxygen = 8 g

- $\frac{3.011 \times 10^{23}}{6.022 \times 10^{23}} \times 32 = 16 \text{ g O}_2;$ (III)
- (IV)
 - $\frac{5.6}{22.4}$ × 44 g CO₂ = 11 g CO₂

- 0.5 मोल O₃ = 24 g O₃ ; हल. (I)
- (II)
- ऑक्सीजन का 0.5 ग्राम परमाण् = 8 g
- $\frac{3.011 \times 10^{23}}{6.022 \times 10^{23}} \times 32 = 16 \text{ g O}_2;$ (III)
- (IV)
- $\frac{5.6}{22.4}$ × 44 g CO₂ = 11 g CO₂

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

If a sample of Ferric sulphate Fe,(SO,), contains 7.2 moles of O-atoms, then the number of S-atoms in the given sample are:

यदि फैरिक सत्फेट Fe,(SO,), का एक प्रादर्श 7.2 मोल O-परमाणु रखता है, तो दिये गये प्रादर्श में S-परमाणुओं की संख्या निम्न

- $(A^*) 1.8 N_{\Delta}$
- (B) $0.9 \, N_{\Lambda}$
- $(C) 3.6 N_{\Lambda}$
- (D) $3.1 \, N_{\Delta}$

Sol. In Fe₂(SO₄)₃:

Moles of O- atoms : Moles of S- atoms = 12 : 3

Moles of S– atoms =
$$\frac{3}{12} \times 7.2 = 1.8$$

No. of S– atoms = $1.8 N_{\Delta}$

- हल. Fe₂(SO₄)₃ में
 - O- परमाणुओं के मोल : S- परमाणुओं के मोल = 12 : 3
 - S- परमाणुओं के मोल = $\frac{3}{12} \times 7.2 = 1.8$
 - S- परमाणुओं की संख्या = 1.8 N
- 4. A gas XH, has molar mass 34 g/mol. What is the molar mass of XO, (nearly)?
- (B) 82 g/mol
- (C*) 80 g/mol
- (D) cannot be found

XH, गैस का मोलर द्रव्यमान 34 g/mol है। XO, का मोलर द्रव्यमान कितना होगा (लगभग)?

- (A) 64 g/mol
- (B) 82 g/mol
- (C*) 80 g/mol
- (D) ज्ञात नहीं किया जा सकता है।

- $\begin{array}{lll} 34 = M_\chi + 2 & \Rightarrow & M_\chi = 32 \text{ g/mol} \\ \Rightarrow M_{\chi 03} = 32 + 3 \times 16 = 32 + 48 = 80 \text{ g/mol}. \end{array}$ Sol.
- If the uncertainty in velocity and position is same, then the uncertainty in momentum will be: 5.29 यदि वेग तथा स्थिति में अनिश्चितता समान है, तो संवेग में अनिश्चितता होगी।
- (A*) $\sqrt{\frac{hm}{4\pi}}$ (B) $m\sqrt{\frac{h}{4\pi}}$ (C) $\sqrt{\frac{h}{4\pi m}}$
- (D) $\frac{1}{m}\sqrt{\frac{h}{4\pi}}$

 $\Delta x = \sqrt{\frac{h}{4\pi m}}$; $\Delta x \Delta p = \frac{h}{4\pi}$ Sol.

$$\sqrt{\frac{h}{4\pi m}}$$
; $\Delta p = \frac{h}{4\pi}$; $\Delta p = \sqrt{\frac{mh}{4\pi}}$

- **S**₁: Photoelectric effect can be explained on the basis of wave nature of electromagnetic radiations. 6.3
 - \mathbf{S}_2 : An orbital represented by n = 2, $\ell = 1$ is dumb-bell shaped.
 - S_3 : d_{xy} orbital has zero probability of finding electrons along X-axis and Y-axis.
 - S₁: प्रकाशवैद्युत प्रभाव को वैद्युतचुम्बकीय विकिरणों की तरंग प्रकृति के आधार पर समझाया जा सकता है।
 - S_2 : n = 2, ℓ = 1 द्वारा निरूपित कक्षक की आकृति डम्बेल (dumb-bell) होती है।
 - ${\bf S_3}: X$ -अक्ष तथा Y-अक्ष पर ${\bf d_{xv}}$ कक्षक में इलेक्ट्रॉनों के पाये जाने की प्रायिकता शून्य होती है।
 - (A) FTF
- (B*) FTT
- (C) TFT
- Sol. **S**₁: Photoelectric effect can be explained on the basis of particle nature of electromagnetic radiations.
 - $\mathbf{S_2}$: n = 2, ℓ = 1 \therefore 2p-orbital \therefore dumb-bell shaped.
 - S_3 : d_{xy} orbital has its lobes directed at an angle of 45° from X-axis and Y-axis. So, it has zero probability of finding electrons along X-axis and Y-axis.
- S1: प्रकाशवैद्युत प्रभाव को वैद्युतचुम्बकीय विकिरणों की कण प्रकृति के आधार पर समझाया जा सकता है। हल.
 - $\mathbf{S_2}$: n = 2, ℓ = 1 \therefore 2p-कक्षक \therefore आकृति = डम्बेल (dumb-bell)
 - ${f S_3}:{f d}_{xy}$ कक्षक की पालियाँ X-अक्ष तथा Y-अक्ष से ${f 45}^{\circ}$ कोण पर होती हैं। इसलिए, X-अक्ष तथा Y-अक्ष पर ${f d}_{xv}$ कक्षक में इलेक्ट्रॉनों के पाये जाने की प्रायिकता शून्य होती है।

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

7. For which of the following orbitals, the probability of finding the electrons along both X-axis and Y-axis is non-zero.

निम्नलिखित कक्षकों में से किस कक्षक के लिए X—अक्ष तथा Y-अक्ष दोनों के अनुदिश इलैक्ट्रॉनों के पाये जाने की प्रायिकता (probability) अशून्य होती है।

- $(A) d_{xy}$
- (B*) $d_{x^2-v^2}$
- $(C) p_{z}$
- (D) d₋
- **Sol.** $d_{x^2-v^2}$ orbital has its 4 lobes directed along X-axis and Y-axis.

 $d_{\chi^2-\gamma^2}$ कक्षक, 4 पालीयाँ रखता है जो की X-अक्ष तथा Y-अक्ष के अनुदिश विन्यासित होते है।

8. Which of the following sets of quantum numbers can be correct for an electron in 4f-orbital:

4f-कक्षक के एक इलेक्ट्रॉन के लिए चारों क्वांटम संख्याओं का कौनसा समूह सही हो सकता है : [Atomic structure]

- (A) n = 4, $\ell = 3$, m = -2, s = 0
- (B) n = 4, $\ell = 3$, m = +4, $s = -\frac{1}{2}$
- (C*) n = 4, ℓ = 3, m = +1, s = + $\frac{1}{2}$
- (D) n = 4, ℓ = 2, m = -1, s = $\pm \frac{1}{2}$
- **Sol.** For n = 4, $\ell \neq 4$, for $\ell = 3$, $m \neq 4$
- हल. n=4 के लिए, $\ell \neq 4$, for $\ell=3$, $m\neq 4$
- 9. If electronic configuration of B is written as 1s³2s². Which principle is violated during filling electrons?
 - (A) Aufbau principle
 - (B) Hund's maximum multiplicity rule
 - (C*) Pauli's exclusion principle
 - (D) Hund's maximum multiplicity rule and Pauli's exclusion principle

यदि B का इलैक्ट्रॉनिक विन्यास 1s³2s² लिखा जाये तो निम्न में से कौनसे सिद्धान्त का उल्लंघन हुआ है ?

- (A) ऑफबाऊ सिद्धान्त
- (B) हुण्ड की अधिकतम बहुकता का नियम
- (C*) पाऊली का अपवर्तन नियम
- (D) हुण्ड की अधिकतम बहुकता का नियम और पाऊली का अपवर्तन नियम
- **10.** The respective ratio of weight of oxygen in samples of pure CuO and Cu₂O, if both samples contain the same mass of copper, is :
 - (A) 1:2
- (B) 1:1
- (C*) 2:1
- (D) none of these

्राद्ध CuO व Cu,O के प्रादर्श में ऑक्सीजन के भार का अनुपात क्या होगा, यदि दोनों प्रादर्श, कॉपर के समान द्रव्यमान युक्त हों:

- (A) 1:2
- (B) 1:1
- (C*) 2:1
- (D) इनमें से कोई नहीं
- 11. Find the relative density of SO₂ gas with respect to methane:

मिथेन के सापेक्ष, SO, का आपेक्षिक घनत्व ज्ञात कीजिए:

(A) 8

- (B) 3.5
- (C) 2.5
- (D*)5

- **Sol.** R.D. = $\frac{M_{SO_3}}{M_{CH_4}} = \frac{80}{16} = 5...$
- **12.** The density of air at STP is 0.0013 g mL⁻¹. Its vapour density is :
 - (A) 0.01456

- (B*) 14.56
- (C) 1.456
- (D) Data insufficient

STP पर वायु का घनत्व 0.0013 g mL-1 है। वायु का वाष्प घनत्व निम्न होगा :

- (A) 0.01456
- (B*) 14.56
- (C) 1.456
- (D) अपर्याप्त आँकडे
- **Sol.** Molar mass of air at STP = $0.0013 \text{ g mL}^{-1} \times 22400 \text{ mL} = 29.12 \text{ g}$

so V.D. = 29.12 / 2 = 14.56 • STP ਪੁਰ ਗੁੜ ਨੂੰ ਸੀਕਤ ਫ਼ੁਲਾਸੂਜ਼ = 0.0013 g ml = 22400 ml = 29.1

हल : STP पर वायु का मोलर द्रव्यमान = 0.0013 g mL⁻¹ × 22400 mL = 29.12 अत : V.D. = 29.12 / 2 = 14.56

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

- 13. The atomic mass of a metal is 27 u. If its valency is 3, the vapour density of the volatile metal chloride will be: एक धातु का परमाणु भार 27 u है तथा संयोजकता 3 है। इस धातु के वाष्पशील क्लोराइड का वाष्प घनत्व निम्न होगा:
 (A*) 66.75 (B) 321 (C) 267 (D) 80.25
- **Sol.** Element must be Al

Hence, volatile chloride will be AICl₃ so V.D. = $\frac{M_{AICl_3}}{2} = \frac{133.5}{2} = 66.75$

हल : Al तत्व होना चाहिए

 $AICI_3$ वाष्पशील क्लोराइड होना चाहिए इसिलिए V.D. = $\frac{M_{AICI_3}}{2} = \frac{133.5}{2} = 66.75$

14. Analysis of chlorophyll shows that it contains 2.64 percent magnesium. How many atoms of magnesium does 1.00 gm of chlorophyll contains ?

क्लोरोफिल का विशलेषण यह दर्शाता है कि इसमें 2.64 प्रतिशत मैग्नीशियम होता है। क्लोरोफिल के 1.00 ग्राम में मैग्नीशियम के कितने परमाणु होगे?

- (A) 6.62×10^{23}
- (B) 6.62×10^{21}
- (C) 6.62×10^{24}
- (D*) 6.62×10^{20}

Sol. Mass of Mg = 1 × $\frac{2.64}{100}$

Atoms of Mg = $\frac{2.64}{100} \times N_A = 11 \times 10^{-4} \times N_A = 6.62 \times 10^{20}$

Sol. Mg का द्रव्यमान = $1 \times \frac{2.64}{100}$

Mg के परमाणु = $\frac{2.64}{100} \times N_A = 11 \times 10^{-4} \times N_A = 6.62 \times 10^{20}$

15. What mass percentage of oxygen is present in the compound $CaCO_3$. $3Ca_3(PO_4)_2$?

यौगिक CaCO₃.3Ca₃(PO₄)₂ में ऑक्सीजन का द्रव्यमान प्रतिशत क्या है ?

- (A) 23.3%
- (B) 45.36%
- (C*) 41.94%
- (D) 17.08%

- **Sol.** % of O (O \oplus 70 %)= $\frac{16 \times 27}{(100 + 3 \times 310)} \times 100 = 41.94\%$
- **16.** Compound have 1.15% sodium. What is the minimum molar weight (g/mol) of the compound? यौगिक में 1.15% सोडियम रखता है। यौगिक का न्यूनतम मोलर भार (g/mol) क्या होगा ?

(A) 4200

(B) 3750

- (C*) 2000
- (D) 3000
- 17. 0.1 mole of a carbohydrate with empirical formula CH₂O contains 1 g of hydrogen. What can be its molecular formula?

मूलानुपाती सूत्र CH_2O के साथ एक 0.1 मोल कार्बोहाइड्रेट, 1 g हाइड्रोजन युक्त है। इसका अणुसूत्र क्या हो सकता है? $(A^*) C_F H_{10}O_F$ $(B) C_6 H_{12}O_R$ $(C) C_2 H_6O_3$ $(D) C_4 H_{10}O_4$

- (Å*) $C_5H_{10}O_5$ (B) $C_6H_{12}O_6$ (C) $C_3H_6O_3$ Sol. 0.1 mole of carbohydrate with E.F. CH_2O contains 1 g of hydrogen.
 - 1 mole of carbohydrate will contain hydrogen

= 10 g = 10 g atoms

In CH_2O , g atomic ratio of C: H: O = 1: 2: 1.

 \therefore With 10 g atoms of H, g atoms of C combined = 5 and g atoms of O combined = 5. Hence, actual formula (molecular formula) will be $C_5H_{10}O_5$.

हल. मुलानुपाती सूत्र CH₂O के साथ 0.1 मोल कार्बोहाइड्रेट, 1 g हाइड्रोजन युक्त हों। 1 मोल कार्बोहाइड्रेट 10 g हाइड्रोजन = 10 ग्राम परमाणु हाइड्रोजन युक्त है

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

CH2O में, C: H: O का ग्राम परमाण्वीय अनुपात = 1:2:1.

∴ H के 10 ग्राम परमाणु के साथ संयोजित C के ग्राम परमाणु = 5 व O के संयोजित ग्राम परमाणु = 5 अतः वास्तविक सुत्र (अणुसुत्र)

18.5 A compound contain equal masses of the elements X, Y and Z. If the atomic weights of X, Y and Z are 10, 20 and 30 respectively. The minimum molecular mass of compound is: [Ref. PA_2012] एक यौगिक, तत्व X, Y व Z का बराबर द्रव्यमान रखता है। यदि X, Y व Z का परमाण भार क्रमशः 10, 20 व 30 है तब यौगिक

का न्यनतम अणभार क्या होगा ? [Ref. PA Sir 2012]

		C		L
(/	A) 80	(B) 360	(C) 200	(D*) 180

(,	A) 80	(B) 360	(C) 200	(D*)
Sol.	X	Y	Z	
	W	W	W	
	W	W	W	
	10	20	30	
	W	W	<u>W</u>	
	30	30	30	
	3	1.5	1	
	•	•	0	

Empirical formula मूलानुपाती सूत्र X ू Y ू Z

Minimum molecular mass of compound = $1[(10 \times 6) + (3 \times 20) + (2 \times 30)] = 180$ Ans.

यौगिक का न्यूनतम अणुभार = 1[(10 × 6) + (3 × 20) + (2 × 30)] = 180 Ans.

Determine the empirical formula of Kelvar, used in making bullet proof vests, is 70.6% C, 4.2% H, 11.8% N 19. and 13.4% O by mass.

कैल्वार, जो बुलेट प्रूफ वेस्टस् (Bullet proof vests) बनाने में प्रयुक्त किया जाता हैं, का मुलानुपाती सूत्र ज्ञात कीजिए तथा इसमें 70.6% C, 4.2% H, 11.8% N व 13.4% O (द्रव्यमान प्रतिशत) हैं।

$$(A) C_7 H_5 NO_2$$

(B)
$$C_7H_5N_2O$$

- $(D^*) C_7 H_E NO$
- 20. 1 mole of an organic compound containing C, H and O on complete combustion produces 134.4 L of CO₂ gas at STP and 108 g H₂O. Then, the molecular formula of organic compound could be : एक कार्बनिक यौगिक का 1 मोल, जो C, H तथा O रखता है, पूर्ण रूप से दहन पर STP पर 134.4 L CO, व 108 g H, O

$$(A) C_e H_e O_e$$

उत्पादित करता है। तब कार्बनिक यौगिक का अणुसूत्र निम्न हो सकता है :
$$(A) C_{k}H_{k}O_{k}$$
 $(B^{*}) C_{k}H_{k}O_{k}$ $(C) C_{k}H_{k}O_{k}$

$$(C) C_0 H_0 C$$

Sol.
$$C_x H_y O_z + \left(x + \frac{y}{4} - \frac{z}{2}\right) O_2 \longrightarrow xCO_z + \frac{y}{2} H_2 O_z$$

1 mole

From stoichiometry, x = 6 and y = 12

So, formula of organic compound = $C_6H_{12}O_7$

However, the value of z cannot be predicted. So, possible formulae is C₆H₁₂O₆.

Sol.
$$C_x H_y O_z + \left(x + \frac{y}{4} - \frac{z}{2}\right) O_2 \longrightarrow xCO_z + \frac{y}{2} H_2 O_z$$

1 मोल

रससमीकरणिमती से, x = 6 तथा y = 12

इसलिए, कार्बनिक यौगिक का सूत्र = C₆H₁₂O₂.

यद्यपि, z का मान नहीं बताया जा सकता है, इसलिए सम्भावित सूत्र C H₁₂O हैं।

