

Autómatas finitos no deterministas (AFN)

- Un autómata finito "no determinista" (AFN) tiene la capacidad de estar en varios estados a la vez.
- Los AFN aceptan los lenguajes regulares, al igual que los AFD. Sin embargo, existen razones para estudiar los AFN, a menudo son más compactos y fáciles de diseñar que los AFD.

<u>Teoría Computacional</u> Prof. Luis Enrique Hernández Olvera

1

1

Autómatas finitos no deterministas (AFN)

- Al igual que el AFD, un AFN tiene:
- Un conjunto finito de estados.
 - Un conjunto finito de símbolos de entrada.
 - Un estado inicial
 - Un conjunto de estados de aceptación.
 - También dispone de una función de transición, que denominaremos normalmente Δ .
- La diferencia entre los AFD y los AFN se encuentra en el tipo de función Δ. En los AFN, Δ es una función que toma un estado y símbolos de entrada como argumentos (al igual que la función de transición del AFD), pero devuelve un conjunto de cero, uno o más estados (en lugar de devolver exactamente un estado, como lo hacen los AFD).

<u>Teoría Computacional</u> Prof. Luis Enrique Hernández Olvera

M	Ejercicio 2: AFN				
	Estado/Entrada	a	b		
	->q ₀	{q ₀ , q ₃ }	$\{q_0, q_1\}$		
	q_1	Ø	q_2		
	*q ₂	q ₂	q_2		
	*q ₃	q ₄	Ø		
	*q ₄	q_4	q_4		

Ejerc	icio 3:	AFN	
Estado/Entrada	С	f	d
->q ₀	{q ₁ , q ₄ }	{q ₆ , q ₂ }	Ø
q_1	q_{1}	q ₃	q_4
q_2	q_0	Ø	Ø
q ₃	q ₃	q ₃	Ø
q_4	q_4	q ₅	$q_{\scriptscriptstyle{5}}$
q_{5}	q ₅	q ₅	Ø
*q ₆	Ø	Ø	Ø

