

SMLab Weekly Presentation 15th Jan 2025

Spiking Neural Network

An Introduction

Sagar Prakash Barad

Neuromorphic Computing

Bio-plausiblility

Spiking Neural Networks

Neuromorphic Computing

Bio-plausiblility

Spiking Neural Networks

We take cues from how brain works?

A simple model: the leaky integrate-and-fire (LIF) neuron

1.0

8.0

0.4

0.2

0.0

10

20

Time (ms)

40

30

Membrane potential V evolves according to a differential equation

$$\tau \frac{\mathrm{d}V}{\mathrm{d}t} = -V$$
 Leak

When a neuron receives a spike, V increases by _ 0.6 synaptic weight w:

$$V \leftarrow V + w$$
Integrate

When $V > V_t$ the neuron "fires a spike" and resets:

$$V \leftarrow 0$$

Nonlinear, discontinuous dynamics!

Spiking Neural Networks

Spiking Neural Networks

How to train it though? Backpropagation?

Spike timing dependent plasticity (Local) Learning

LIF Equation:

Strength of the synapse should increase (decrease) as post and pre neurons appear to be temporally correlated (uncorrelated)

Can we train deep SNNs efficiently?

STDP Learning

Pros: Unsupervised local learning

Cons: Limited accuracy and shallow networks

Reference	MNIST Accuracy
Cook <i>et al.</i> Frontiers 2015 (ETH Zurich)	95.00%
Masquelier <i>et</i> <i>al</i> . Neural Networks 2017	98.40%
Lee et al. TCDS 2018	91.10%

ANN-SNN Conv

Pros: Takes advantage of standard ANN training

Cons: Conversion limited by constraints

Reference	MNIST Accuracy
Pfeiffer <i>et al</i> . IJCNN 2015 (ETH Zurich)	99.10%
Eliasmith <i>et al</i> . arXiv 2016 (U Waterloo)	99.12%
Liu <i>et al</i> . Frontiers 2017 (ETH Zurich)	99.44%

Backprop in SNN

Pros: Higher accuracy

Cons: Limited scalability, Discontinuous spike activities

Reference	MNIST Accuracy
Pfeiffer <i>et al</i> . Frontiers 2016 (ETH Zurich)	99.31%
Shi <i>et al</i> . Frontiers 2018 (Tsinghua)	99.42%
Zhang et al. arXiv 2018 (TAMU)	99.49%

Stochastic STDP

Pros: Unsupervised local learning with binary synaptic weights

Cons: Limited accuracy

Reference	MNIST Accuracy
Gamrat <i>et al</i> . Proceedings of the IEEE '15	60.00%
Yousefzadeh et al. Frontiers 2018	95.70%
Roy <i>et al</i> . (Frontiers, 2019)	98.54%