

PRELIMINARY INVESTIGATION OF FLOW MODELING DURING SOLID PROPELLANT PROCESSING

H. M. Dornanus W. T. Sha Analytical Thermal Hydraulic Research Program Argonne National Laboratory Argonne, Illinois 60439

and

S. L. Soo Department of Mechanical and Industrial Engineering University of Illinois-Urbana Urbana, Illinois 61801

Prepared for:

Propulsion Directorate Research, Development, and Engineering Center

FEBRUARY 1988

U.S. ARMY MISSILE COMMAND

Redstone Arsenal, Alabama 35898-5000

Cleared for public release; distributi in is unlimited.

UNC	LASSIFIED		
SECURITY	CLASSIFICATION	OF THIS	PAGE

AD-A 196 168	AM	A	192	142
--------------	----	---	-----	-----

REPORT D	OCUMENTATION	N PAGE			Form Approved OMB No. 0704-0188 Exp. Date: Jun 30, 1986
1a REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE	MARKINGS		
UNCLASSIFIED		None			
2a. SECURITY CLASSIFICATION AUTHORITY	-	3. DISTRIBUTION	AVAILABILITY OF	REPORT	
2b. DECLASSIFICATION/DOWNGRADING SCHEDU	LE	Approved f	_	elease	, distribution is
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION RE	PORT NU	IMBER(S)
		CR-RD-F			
'6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL	7a. NAME OF MO	ONITORING ORGAN	IZATION	
Argonne National Laboratory	(If applicable)	II C Arms	Missile Con	-mand	
Components Technology Div		Propulsion	n Directoral	te	
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Cit	y, State, and ZIP C	ode)	
9700 South Cass Avenue		AMSMI-RD-	PR-E		
Argonne, IL 60439		Redstone	Arsenal, AL	3589	8-524 9
		2000:1000	101540	N. TIFICA T	100 AU 100 C
8a. NAME OF FUNDING / SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)]	TINSTRUMENT IDE		
US Army Missile Command	AMSMI-RD-PR		No. W-31-109		8
8c. ADDRESS (City, State, and ZIP Code)			UNDING NUMBER		DAYONA LINUT
- 1		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.
Redstone Arsenal, AL 35898		61101A	1L161101A91		
11. TITLE (Include Security Classification)		OTIOIA	HEIOTIOIA91		
Preliminary Investigation of F 12: PERSONAL AUTHOR(S) H. M. Domanus, W. T. Sha, S. L 13a. TYPE OF REPORT 13b. TIME C	. Soo	14, DATE OF REPO	ORT (Year, Month,		
Interim FROM_5/	86 to _9/87_	1988/Feb/	19		36
16. SUPPLEMENTARY NOTATION	18. SUBJECT TERMS (1 1 1 2 2 1 1 1 1	hu Mark quarker
17. COSATI CODES FIELD GROUP SUR-GROUP	Propellant Pro		se il liecessary and	i identity	by block number,
	Flow Modeling	•			
21 08	Liquid/Solid	Flows			
19. ABSTRACT (Continue on reverse if necessary	and identify by block	number)			
The results of preliminary modeling of a solid propellant flow as would occur during propellant casting is presented. Both single and multiple velocity field models were investigated. Results with the single velocity field model produced solid particle segregation that was in qualitative agreement with experience. It is the objective of this work to understand and ultimately predict the composition gradients that result during solid propellant processing.					
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT VUNCLASSIFIED/UNLIMITED SAME AS	RPT. DTIC USERS	INCLASSI	ECURITY CLASSIFIC		
22a. NAME OF RESPONSIBLE INDIVIDUAL		226 TELEPHONE	(Include Area Code	e) 22c. C	OFFICE SYMBOL MI-RD-PR
A. R. Maykut	APR edition may be used u			_	CATION OF THIS PAGE
DD FORM 1473, 84 MAR 83 A	All other editions are			ASSIFI	

i/(ii Blank)

TECHNICAL REPORT CR-RD-PR-88-1

PRELIMINARY INVESTIGATION OF FLOW MODELING DURING

SOLID PROPELLANT PROCESSING

bу

H. M. Domanus W. T. Sha Thermal Hydraulic Resea

Analytical Thermal Hydraulic Research Program Materials and Components Technology Division Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439

and

S. L. Soo

Department of Mechanical and Industrial Engineering
University of Illinois-Urbana
Urbana, Illinois 61801

Prepared for

Propulsion Directorate
Research, Development, and Engineering Center

FEBRUARY 1988

Cleared for public release; distribution is unlimited.

iii/(iv Blank)

<u>EN REPORTE DE CONTRACTOR DE LA PARTICIONA DE LA PERSONA DE COMPANDA DE CONTRACTOR DE LA PERSONA DE LA PESSONA DE LA PERSONA DE LA PERSONA DE LA PERSONA DE LA PERSONA DE </u>

CONTENTS

		Page
1.	Objective	1
2.	Introduction	1
3.	Mathematical Modeling	
	3.1 Multiple Velocity Field Model or Multifluid Model	3
	3.2 Single Velocity Field Model	5
4.	Exploratory Calculations	8
	4.1 Numerical Model	9
	4.2 Flow Between Parallel Plates	9
	4.3 Annular Flow	11
5.	Discussion of Experimental Measurements for Transport Pro-	
	perties	16
	5.1 Viscosity Measurements	16
	5.2 Diffusivity Measurements	17
	5.3 Field Forces f_2 and f_3	
	5.4 Inverse Relaxation Time	18
6.	Discussions and Conclusions	19
Refe	erences	21

Acces	sion For	
NTIS	GRA&I	10
DTIC '	TAB	Ŏ
Unann	omiceg	
Just1	fication	
	ibution/	
P	Avail an	
Dist	Specia	1
1		
b,		

1. OBJECTIVE

The objective of the proposed work is to develop a computer model capable of predicting the distribution of solid particle constituents during the processing of solid propellants.

2. INTRODUCTION

In order to control the propellant burning rate and, hence, the propulsive performance of a solid rocket motor, it is essential to create a desired particle distribution throughout a solid propellant. It is therefore desirable to determine, via computation, the distribution of particulates during casting of solid rocket fuel. The present program, fundamental in nature, seared toward initiating, understanding, and modeling the mechanisms that control the distribution of solid particle constituents during the processing of a solid propellant.

The propellant casting can be considered as a multiphase flow process with a dense suspension fluid in creeping motion. In such a case, the shear resistance (shear lift phenomenon), relaxation pheromenon due to particle-particle interaction, particle-fluid interaction, and particle-wall interaction predominate even though the fluid phase (binders) may be serving the main function of transporting. Even if we start with a uniform mix of particles of various sizes, non-uniformity may result from:

- (1) particle-fluid interactions alone small particles due to shear lift force tend to move away from the wall faster than large particles.
- (2) particle-particle interactions alone small particles tend to act as a fluid, exerting a shear lift force on the large particles. The large particles tend to move away from the wall faster than the small particles.

(3) the boundary condition at the wall where the fluid velocity must be zero, but the particle velocity may have a finite value (slip motion). Thus, particles tend to migrate toward the center of the passage or away from the wall.

These expected facts[1] are in agreement with observation by Bradfield[2] of WRE (Weapons Research Establishment).

In treating the present problem of transient flow with solids of various particle sizes in a liquid suspension, we need to consider:

- (1) shear lift phenomenon,
- (2) particle-particle interaction,
- (3) particle-fluid interactions, and
- (4) particle-wall interactions.

The shear lift phenomenon of solid particles in a fluid was formulated by Saffman[3], studied experimentally by Segré and Silberberg[4], and concelated by Soo[5], including the resultant concentration in steady or depositing flow[6]. The effect of particle diffusivity was found to be important. Segré and Silberberg[4] particularly identified that in laminar pipe flow of a suspension of neutral buoyancy, the maximum concentration of particles tends to occur at 2/3 radius from the pipe axis, that is, toward the wall, than toward the center. Many of these basic relations concerning the distribution of particulates in a fluid need to be synthesized and formulated for the present system.

It should be noted that very little work has been done, both experimentally and theoretically, $\sim n$ dense suspension systems.

3. MATHEMATICAL MODELING

3.1 Multiple Velocity Field Model or Multifluid Model

Use of a multiple velocity field model calls for a set of formulations including continuity and momentum equations of phases, or in the present case,

components. The continuity equations are

$$\frac{\partial \theta}{\partial t} + \nabla \cdot (\theta_1 \rho_1 \underline{u}_1) = 0 \tag{1}$$

$$\frac{\partial \theta}{\partial t} = \nabla \cdot (\theta_2 \rho_2 \underline{u}_2) = 0$$
 (2)

$$\frac{\partial \theta}{\partial t} \frac{3}{2} + \nabla \cdot (\theta_3 \rho_3 \underline{u}_3) = 0 \tag{3}$$

where θ_1 , ρ_1 , \underline{U}_1 refer to the volume fraction, the material density, and the velocity of the binder; subscripts 2 refer to the aluminum powder and 3 refers to the ammonium perchlorate powder. For the example of θ_1 = 0.2352, θ_2 = 0.1269, and θ_3 = 0.6379, noting that $\theta_1 + \theta_2 + \theta_3$ = 1. The momentum equations are

$$\frac{\partial \theta_{1} \rho_{1} \underline{\mathbf{U}}_{1}}{\partial \mathbf{t}} + \nabla \cdot (\theta_{1} \rho_{1} \underline{\mathbf{U}}_{1} \underline{\mathbf{U}}_{1}) = -\theta_{1} \nabla P + \nabla \cdot \underline{\mathbf{I}}_{1m} + \theta_{1} \rho_{1} \underline{\mathbf{I}}_{1} - \kappa_{12} (\underline{\mathbf{U}}_{1} - \underline{\mathbf{U}}_{2}) \\ - \kappa_{13} (\underline{\mathbf{U}}_{1} - \underline{\mathbf{U}}_{3})$$

$$(4)$$

$$\frac{\partial \theta_{2} \rho_{2} \underline{\mathbf{U}}_{2}}{\partial \mathbf{t}} + \nabla \cdot (\theta_{2} \rho_{2} \underline{\mathbf{U}}_{2} \underline{\mathbf{U}}_{2}) = -\theta_{2} \nabla P + \nabla \cdot \underline{\mathbf{I}}_{2m} + \theta_{2} \rho_{2} \underline{\mathbf{f}}_{2} - \kappa_{21} (\underline{\mathbf{U}}_{2} - \underline{\mathbf{U}}_{1})$$

$$- \kappa_{23} (\underline{\mathbf{U}}_{2} - \underline{\mathbf{U}}_{3})$$
(5)

$$\frac{\partial \theta_{3} \rho_{3} \underline{U}_{3}}{\partial t} + \nabla \cdot (\theta_{3} \rho_{3} \underline{U}_{3} \underline{U}_{3}) = -\theta_{3} \nabla P + \nabla \cdot \underline{I}_{3m} + \theta_{3} \rho_{3} \underline{f}_{3} - K_{31} (\underline{U}_{3} - \underline{U}_{1})$$

$$- K_{32} (\underline{U}_{3} - \underline{U}_{2})$$

$$(6)$$

where P is the pressure, τ_{1m} is the shear stress of component 1 in the mixture, $\underline{\hat{r}}_1$ is the field force per unit mass on component 1 and may include that due to the shear lift effect*. K_{12} is the interfacial momentum transfer coefficient including drag between phase 2 and phase 1, etc., where

^{*}The magnitude of shear lift here is seen not to be influenced by the rotation of the particles[3].

$$K_{12} = \theta_{1}\rho_{1}F_{12}$$
, etc.

 \mathbf{F}_{12} is the inverse relaxation time for momentum transfer from phase 2 to phase 1, etc., and

$$\theta_{1}\rho_{1}F_{12} = \theta_{2}\rho_{2}F_{21}$$
 or $K_{12} = K_{21}$

etc. from action and reaction. With correct boundary conditions, Eqs. 1 to 6 are solved for an isothermal system to determine the volume fraction and velocity distribution of phases. Transport properties are needed to determine τ_{1m} etc. and F_{12} etc. F_{12} , F_{21} , F_{13} , and F_{31} arise from fluid-particle interaction. F_{23} or F_{32} arises from particle-particle interaction. These quantities depend on the properties of materials and operating conditions; non-Newtonian behaviors are expected for the present system.

For given initial conditions, pertinent boundary conditions for the above equation for flow through a pipe of radius R include

$$r = R$$
, $v_{1z} = 0$

$$U_{2z} = -L_{21} \frac{\partial U_{2z}}{\partial r} \bigg|_{R}$$

$$v_{3z} = - L_{31} \frac{\partial v_{3z}}{\partial r} \bigg|_{R}$$

for the axial velocities, where L_{21} is the interaction length of particle to fluid, leading to slip motion and $L_{21} = \left< (\Delta u)_{21}^2 \right>^{1/2} F_{21}$ where $\left< \Delta u_{21}^2 \right>^{1/2}$ is the relative intensity of motion of phase 2 in 1, and F_{21} can be large for small particles in a viscous fluid. A limiting case will be

$$\partial u_{2z}/\partial r = \partial u_{3z}/\partial r = 0$$
.

Since the particulate material finally set in their place by solidification rather than by deposition, the boundary condition for the volume fraction of

particles at the wall is given by [6] (k = 2, 3)

$$D_{km} \frac{\partial \theta_k}{\partial r} \bigg|_{R} = \theta_k f_k / f_{k1}$$

While τ_{1m} is defined according to the multiphase formulation, its determination for the present system is complicated because of a dense suspension. Based on the theory of dense suspensions[7], τ_{1m} is expected to be greater than τ_1 (pure binder). In general τ_m of the mixture is strongly influenced by the perchlorate powder (63% by volume). Unlike the case of a dilute suspension, τ_{1m} , τ_{2m} , τ_{3m} are not readily determined at this time. (In the case of dilute suspensions of 2 and 3, $\tau_{1m} \sim \tau_1$, $\tau_{2m} = D_{2m}\theta 2\rho_2$, $\tau_{3m} = D_{3m}\theta_3\rho_3$; D_{2n} is the diffusivity of particles 2 in the mixture. Likewise, D_{3m} is the diffusivity of particles 3 in the mixture.) In the present case, it suffices to say that $\tau_{2m} \equiv \mu_{2m}\Delta_2$, where μ_{2m} is the viscosity of phase 2 in the mixture, Δ_2 is the deformation tensor of the motion of phase 2, and μ_{2m} is related to D_{2m} according to the relation of a dense suspension[7].

Computations based on the multifluid model calls for simultaneous solution of Eqs. 1 to 6 with pertinent boundary conditions and accurate transport properties F_{21} , F_{31} , F_{32} and μ_{1m} , μ_{2m} , and μ_{3m} . The latter are not readily computed or measured; often the best we can manage is the viscosity of the mixture. The closeness, though different, of the phase velocities also suggests that the mixture velocity may be sufficiently representative. Thus, it leads us to use the relatively simple single velocity field model as described in the following section.

3.2 Single Velocity Field Model

Summing Eqs. 4, 5, and 6 gives the momentum equation of the mixture as

$$\frac{\partial \rho \, \underline{\mathbf{U}}}{\partial t} + \nabla \cdot (\rho \, \underline{\mathbf{U}} \, \underline{\mathbf{U}}) + \nabla \cdot \sum_{\substack{1,2,3}} \theta_{\mathbf{k}} \rho_{\mathbf{k}} (\underline{\mathbf{U}}_{\mathbf{k}} - \underline{\mathbf{U}}_{\mathbf{m}}) (\underline{\mathbf{U}}_{\mathbf{k}} - \underline{\mathbf{U}}_{\mathbf{m}})$$

$$= -\nabla P + \nabla \cdot \underline{\tau}_{m} + \rho \underline{f}_{m} \tag{7}$$

 $\tau_m = \mu_m \lambda$ while internal action and reaction for momentum transfer cancel each other. The mixture density and velocity are defined by

$$\rho_m = \sum_{1,2,3} \theta_k \rho_k$$

and

$$\rho_{\underline{\underline{U}}} = \sum_{1,2,3} \theta_{\underline{k}} \rho_{\underline{k}} \underline{U}_{\underline{k}}$$
 (8)

while the field force is given by

$$\rho_{\underline{\mathbf{m}}\underline{\mathbf{m}}} = \sum_{1,2,3} \theta_{\underline{\mathbf{k}}} \rho_{\underline{\mathbf{k}}\underline{\mathbf{f}}_{\underline{\mathbf{k}}}}$$

for k = 1, 2, 3 as in Section 3.1. For a dense mixture, the velocity difference $(\underline{U}_k - \underline{U}_m)$ is small and the third term on the left side of Eq. 7 can be neglected.

Equations. 2 and 3 can be modified by considering the continuity equation of the mixture obtained from summing Eqs. 1, 2, and 3, or

$$\frac{\partial \rho_{m}}{\partial r} + \nabla \cdot \rho_{m} U = 0 . \tag{9}$$

The continuity equation of species k (k = 2, 3) can be rewritten as

$$\frac{\partial \rho_{k} \theta_{k}}{\partial t} + \nabla \cdot (\rho_{k} \theta_{k} \underline{\underline{\underline{\underline{U}}}}) = \nabla \cdot \rho_{k} \theta_{k} (\underline{\underline{\underline{U}}} - \underline{\underline{\underline{U}}}_{k}). \tag{10}$$

Since $\rho_k \theta_k (\underline{J_k} - \underline{U_m}) = \underline{J_k}$, the general flux of phase k, we have

$$\frac{\partial \rho_k \theta_k}{\partial t} + \nabla \cdot \left(\rho_k \theta_k \underline{U} \right) = -\nabla \cdot \underline{J}_k . \tag{11}$$

or

60000000

EXECUTE EXECUTE

$$\frac{\partial \rho_{k} \theta_{k}}{\partial t} + \underline{U}_{m} \cdot \nabla \rho_{k} \theta_{k} = -\rho_{k} \theta_{k} \nabla \cdot \underline{U}_{m} - \nabla \cdot \underline{J}_{k} = \frac{d \rho_{k} \theta_{k}}{d t_{m}}$$
 (12)

In terms of mass fraction $c_k = \theta_k \rho_k / \rho_m$, Eq. 11 becomes

$$\frac{\partial \rho_{\mathbf{m}} \mathbf{c}_{\mathbf{k}}}{\partial t} + \nabla \cdot (\mathbf{c}_{\mathbf{k}} \rho_{\mathbf{u}} \mathbf{u}) = -\nabla \cdot \mathbf{J}_{\mathbf{k}}. \tag{13}$$

Subtracting the product of ck and Eq. 9 from Eq. 13, and rearranging, we get

$$\rho_{\mathbf{n}} \frac{\partial c_{\mathbf{k}}}{\partial t} + \rho_{\mathbf{n} - \mathbf{n}} \cdot \nabla c_{\mathbf{k}} = -\nabla \cdot \underline{J}_{\mathbf{k}}$$
 (14)

or

$$\rho_{\mathbf{m}} \frac{\mathbf{d} c_{\mathbf{k}}}{\mathbf{d} t_{\mathbf{m}}} = -\nabla \cdot \mathbf{J}_{\mathbf{k}} . \tag{15}$$

For nearly constant $\rho_{\,\mathbf{m}}$, the component continuity equation takes the form

$$\frac{\mathrm{d} \rho_{k} \theta_{k}}{\mathrm{d} t_{m}} = \frac{\partial \rho_{k} \theta_{k}}{\partial t} + \underline{\mathbf{u}}_{m} \cdot \nabla \left(\rho_{k} \theta_{k} \right) = -\nabla \cdot \underline{\mathbf{J}}_{k} . \tag{16}$$

Either Eqs. 5 or 6, neglecting inertial forces, pressure gradient, and assuming equal particle velocities and binder velocity approximately equal to the mixture velocity, gives

$$\underline{J}_{k} = \frac{\theta_{k} \rho_{k} \underline{f}_{k}}{F_{k1}} + \nabla \cdot \left(\frac{\mu_{km}}{F_{k1}} \nabla \underline{u}_{k} \right)$$

$$\approx \frac{\theta_{k} \rho_{k} \underline{f}_{k}}{F_{k1}} - D_{km} \nabla \left(\rho_{k} \theta_{k} \right) \tag{17}$$

for drift by field forces and diffusion by concentration gradient. This is because shear resistance in a suspension arises from resistance to transport of momentum by diffusion. The kinematic viscosity and diffusivity D_{km} , are related by

$$\frac{\mu_{\mathbf{k}\mathbf{m}}}{\mathbf{F}_{\mathbf{k}\mathbf{l}}} \nabla \underline{\mathbf{U}}_{\mathbf{k}} \simeq \frac{\theta_{\mathbf{k}}\rho_{\mathbf{k}}}{\mathbf{F}_{\mathbf{k}\mathbf{l}}} \vee_{\mathbf{k}\mathbf{m}} \nabla \underline{\mathbf{U}}_{\mathbf{l}} \simeq -\rho_{\mathbf{k}}\theta_{\mathbf{k}} \mathcal{D}_{\mathbf{k}\mathbf{m}}$$
(18)

with the correspondence of $(v_{km}/F_{kl}) \nabla \underline{U}_k \sim -D_{km}$. This correspondence serves to explain the relation between the diffusion model and the multifluid model. It is noted that the diffusion flux is usually derived in a different manner[8]. Equation 16 now reduces for nearly constant ρ_m to

$$\frac{\partial \rho_k \theta_k}{\partial t} + \underline{v}_m \cdot \nabla \left(\rho_k \theta_k \right) = \nabla \cdot \left[D_{km} \nabla \left(\theta_k \rho_k \right) - \underline{f}_k \theta_k \rho_k / F_{kl} \right]$$
which is the diffusion equation.

The diffusion equation renders the continuity equation of phase k independent of its momentum equation. However, once θ_k is determined, \underline{U}_k can still be calculated from its momentum equation if it is needed. Often a knowledge of the distribution of θ_k is sufficient. Equations 7, 9, and 19 (k = 2, 3) can be solved for P, θ_1 , θ_2 , θ_3 and \underline{U}_m for the following boundary conditions:

$$\mathbf{r} = \mathbf{R}, \qquad \underline{\mathbf{U}}_{\mathbf{m}} = \mathbf{0}$$

$$- D_{km} \frac{\partial \rho_k \theta_k}{\partial r} \bigg|_{R} = - \rho_k \theta_k \frac{f_k}{F_{k1}}$$

for given initial conditions.

It is recognized that F_{21} , F_{31} , F_{32} , D_{km} and μ_m still have to be determined experimentally for accurate prediction.

4. EXPLORATORY CALCULATIONS

In the process of forming a solid propellant motor, several different particulate materials are mixed together with a polymer binder. The batch is mixed until the mixture becomes uniform and homogeneous. The homogeneous mixture is then passed through a network of pipes and ducts to a mold. As the mixture flows, the components of the mixture begin to displace relative to one another by shear motion. This gives rise to non-uniform propellant properties in the mold and hence the final cured motor.

The ability to calculate partial component separation from a homogeneous mixture is a crucial feature which must be present in the mathematical model. In order to investigate and demonstrate that the proposed mathematical model is capable of simulating this separation phenomena, some exploratory calcula-

tions were made for representative situations. The numerical results presented here were obtained with the COMMIX code[9,10], which was modified to carry out these calculations.

4.1 Numerical Model

Flow into a 6.35E-3 m (0.25 in) gap between two parallel plates and into an annulus is considered. A two-velocity field model is used to describe the flow and component distributions. (Component #1 represents the polymer binder and component #2 represents the particles. The governing equations are discretized by the finite volume technique. The two-dimensional computational domain is partitioned into 8 equal partitions across the gap and 20 along the flow direction. The overall length modeled (0.0254 m) was long enough so that the flow would become fully developed. At the entrance, the mixture is assumed to be homogeneous and have a uniform velocity of 0.01 m/s. The binder (component #1) is assumed to stick to the wall $(v_1|_{\mathbf{w}} = 0)$, while the particles (component #2) are assumed to have a free slip boundary condition $(\frac{\partial v_2}{\partial \mathbf{x}}|_{\mathbf{w}}) = 0$.

A semi-implicit time-marching algorithm was used to solve the system of equations. By marching in time until all quantities (velocity components and volume fraction) converged to one part in 100,000, a steady-state solution was reached.

4.2 Flow Between Parallel Plates

The first problem considered is flow between two parallel plates separated by 6.35E-3 m (0.25 in). A homogeneous 50-50 mixture (by volume) enters the gap uniformly with a velocity of 0.01 m/s. Other characteristics are shown in Table 1. By the time the flow reaches the exit, a fully developed situation exists.

Figure 1 shows the fully developed velocity profiles for the binder (v_1) and the particles (v_2) . The differences in the velocity distribution must be

Fig. 1. Fully Developed Flow Between Parallel Plates

TABLE 1. Flow Between Parallel Plates

Gap	6.35E-3 m (0.25 in)
Inlet velocity $v_1 = v_2$	0.01 m/s
Inlet θ ₁ (binder)	0.5
θ ₂ (particles)	0.5
μ ₁ = μ ₂	200 Pa-s
$\rho_1 = \rho_2$	1000 kg/m ³
к ₁₂	1.0E8 Pa-s/m ²
Re	3.17 5E-4

entirely due to the different boundary conditions imposed on the 2 components because the material properties used are the same. This was verified by running a problem where both components had no slip boundaries and this yielded the fully developed velocity profile v_{ℓ} shown in Fig. 1 for both components. For reference, the well known parabolic velocity profile is also shown and labeled v_{a} in Fig. 1. Note that the velocity distributions of both the binder and the particles are flatter than the reference case. The particle velocity is consistently higher than the binder velocity throughout the cross-section.

Figure 2 shows the volume fraction distribution of binder (θ_1) and particles (θ_2) . It is readily apparent that a partial separation of components has occurred. The particles have a relative maximum concentration in the center of the gap while the binder is more concentrated near the wall.

It is worth noting that this separation phenomena is due entirely to the difference in velocity boundary conditions at the wall for the two components.

4.3 Annular Flow

The second problem considered is two-dimensional axisymmetric flow between two concentric cylindrical surfaces forming an annular region. The problem characteristics are summarized in Table 2. The inner radius is

Fig. 2. Fully Developed Volume Fraction Distribution for Flow Between Parallel Plates

TABLE 2. Flow Into Annulus

R _{in}	0.01905 m (0.75 in)
Rout	0.0254 m (1.0 in)
Gap	6.35E-3 m (0.25 in)
Inlet velocity v ₁ = v ₂	0.01 m/s
θ ₁ (binder)	0.2242
θ ₂ (particles)	0.7758
μ ₁ = μ ₂	200 Pa-s
ρ ₁ (binder)	920 kg/m ³
ρ ₂ (particles)	1950 kg/m ³
к ₁₂	1.0E8 Pa-s/m ²

0.01905 m (0.75 in) and the outer radius is 0.0254 (1.0 in). This results in a 6.35E-3 m (0.25 in) annular gap. Here, we have used a homogeneous mixture with a higher particle volume fraction (.77) and a material density difference between the binder (920 kg/m³) and particles (1950 kg/m³).

Figure 3 shows the fully developed relocity profiles. The velocity distribution when both components have no slip boundary conditions is labeled \mathbf{v}_{ℓ} . This solution is similar to the parallel plates solution except the central peak velocity occurs nearer the inner surface. The particle velocity (\mathbf{v}_{2}) is consistently higher than the binder velocity (\mathbf{v}_{1}) throughout the cross-section. Due to the higher particle concentration and material density, the velocity profiles are flatter and maximum velocities less than the corresponding results for the parallel plates.

The volume fraction distributions are shown in Fig. 4. The particle volume fractions (θ_2) show the highest value near the middle and lower near

Fig. 3. Velocity Distribution in Fully Developed Annular Flow

Fig. 4. Volume Fraction Distribution in Fully Developed Annular Flow

the walls. The interfacial drag coefficient $(K_{12} = 1.0E8 \text{ Pa-s/m}^2)$ is the same as used in the parallel plates case. In addition, two other runs were made with K = 1.0E9 and K = 7.0E10. The results are shown in Fig. 4 where for K greater than 1.0E10 the separation becomes very small.

5. DISCUSSION OF EXPERIMENTAL MEASUREMENTS FOR TRANSPORT PROPERTIES

The following transport properties are needed for the system with a binder and 2 different sizes of particles under consideration so that the set of governing equations with appropriate initial and boundary conditions can be solved.

- (1) $\mu_{\,\text{m}}$ needs to be measured vs shear rate and time at the processing temperature.*
- (2) D_{2m} and D_{3m} to be measured if possible.
- (3) $\underline{f_2}$ and $\underline{f_3}$ shear lift force and gravity force, can be computed (please see Section 5.3).
- (4) F_{21} and F_{31} can be estimated (please see Section 5.4).

It is recognized that the transport properties are a function of composition of materials and time history. We recommend that the time history and temperature dependence may be included in some measurements if this can be conveniently done.

5.1 Viscosity Measurements

It is recommended that viscosity be measured with the following compositions, with respect to time and shear rate:

- (1) Binder only
- (2) Binder + particle 2 (p2) with p2 at 1/3 nominal value.

 Binder + p2 with p2 at 2/3 nominal value.

^{*}It is assumed that τ is a function of velocity gradient and mixture viscosity--Non-Newtonian fluid.

Binder + p2 with p2 at full nominal value.

- (3) Binder + particle 3 (p3) with p3 at 1/3 nominal value.
 Binder + p3 with p3 at 2/3 nominal value.
 Binder + p3 with p3 at full nominal value.
- (4) Binder + p2 + p3, both p2 and p3 at nominal value.

The viscosity μ of a fluid, in general, exhibits shear rate dependence and can be characterized as follows

$$\mu_{\mathbf{m}} = K \left| \frac{\partial \mathbf{W}}{\partial \mathbf{r}} \right|^{\mathbf{n}}$$

where K is an empirical constant and $|\partial W/\partial r|$ is the shear rate. The exponent n accounts for various rheological behaviors of the fluid. n = 0 for a Newtonian fluid; n > 0 for a shear thickening fluid, that is, a viscosity which increases with shear rate; the reverse is the case of n < 0, a shear thinning fluid. Depending on the shear rates and the particle size, internal friction or collision, a given fluid may exhibit both ranges of behavior[11]. For the case of a shear thickening fluid (n = 1)

$$K = C_{\mu} \theta_{p}^{2} a^{2} \theta_{p}$$

where C_{μ} is a constant (= 1 for spheres having elastic collision), θ_p is the volume fraction of particles with radius a[1].

5.2 Diffusivity Measurements

It is recognized that diffusivity cannot be obtained by direct measurement. Therefore, this information may be obtained indirectly through densitional tometry of particle distributions and photoelasticity of stress measurement of slices from solid propellant specimens. We recommend that these measurements be made at the compositions as outlined in (1) of viscosity measurements. Experimental data is needed, but for a shear thickening fluid (n = 1), the particle diffusivity is given by

$$D_{km} = C_d \left(\frac{\rho_m}{\rho_k}\right) \left(\frac{a^2}{\theta_k^3}\right) \left|\frac{\partial w}{\partial r}\right|, \qquad k = 2, 3$$

where Cd is a coefficient of the order of 10[7].

5.3 Field Forces fo and fa

These include gravity g, and shear lift forces. The former is negligible for the present case, and the latter has been given analytically for spheres. It will be determined with semi-empiricism in the course of computation by validation from particle density distributions and shear stress distributions in the solid propellant if available. It is given for a spherical particle[3,7] by

$$f_{k} = C_{1}[3(6.46)/4\pi](\rho_{m}/\rho_{k})\left[\nu\left(\frac{\Delta W}{a}\right)^{2}\left|\frac{\partial W}{\partial r}\right|\right]^{1/2}$$

where W is the velocity outside the boundary layer, $\Delta W = W - W_k$, the velocity difference between the fluid and the particle, a is the particle radius, and $(\partial W/\partial r)$ is the shear rate of the layer. The coefficient C_1 accounts for non-sphericity. Lifting of larger particles by shear motion of small particles will be dealt with in a later report.

5.4 Inverse Relaxation Time

Inverse relaxation times are predictable for spherical particles. For the present application, iteration with empirical coefficients and validation by final particle density distributions can yield semi-empirical modifications for predictive purposes. For particle 2, F₂₁ is given by

$$F_{21} = C_F \frac{75 \theta_2 \mu}{2e^2[\rho_2 + (\rho_m/2)]}$$

where C_F is an empirical coefficient, θ_2 is the volume fraction of particles 2, μ is the fluid viscosity, and a is the radius or characteristic dimension on the particle[1].

If all the items in Sections 5.1 and 5.2 can be furnished, they will be most helpful. The order of priority should be

- (1) Viscosity measurements.
- (2) Densitometry of particle distribution of sliced solid specimens.
- (3) Photoelasticity of sliced solid specimens.

The minimum measurement would be flow through a tube and measure the flowrate and pressure drop, from which the viscosity and non-Newtonian parameters can be deduced. We can proceed with results from Item (1) alone. The effort toward achieving a realistic computer program will be facilitated or reduced by having Items (1) and (2), and more so if Item (3) is available.

6. DISCUSSIONS AND CONCLUSIONS

A continuum approach to the modeling of a dense suspension has been taken as opposed to discrete particle tracking. Within the continuum approach, two formulations have been identified: the multifluid model, and the diffusion model. While the multifluid model is more complete, there are more unknown coefficients associated with the model and these coefficients need to be determined. The single velocity diffusion model is computationally more economical and it involves relatively fewer unknown coefficients than the multifluid model. Correspondence between the two models has been pointed out.

A crucial feature needed in the mathematical model is the ability to predict partial component separation from a homogeneous mixture. The only way the single velocity diffusion model can predict partial separation is from the shear lift field force term. The magnitude of this term must be determined experimentally. Due to the current lack of detailed and reliable experimental data, approximations were made for the interaction terms in the multifluid model. Even in the absence of a shear lift field force, the multifluid model can predict partial component separation by having different component velocity boundary conditions at the wall.

In summary, our preliminary investigation of flow modeling during solid propellant processing has yielded the following conclusions:

- Meaningful prediction of concentration distribution of components can be obtained from computations with a minimal acquisition of transport properties at the initiating phase. These preliminary predictions can be used to guide experiments which are urgently needed to quantify the transport properties and to validate the mathematical models.
- 2. Currently, the multifluid model and the single velocity diffusion model are viewed as being complementary. While the multifluid model can be used to gain insight into the underlying individual physical mechanisms, the diffusion model gives global phenomenological behavior of the system. The interrelations between the two mathematical models have been clarified. It is anticipated that at a later date, depending on availability of the needed experimental data and understanding of physical mechanisms, we shall select one of the two models as the reference predictive tool.
- 3. Validation of computed concentrations can be made by sections of solidified models or checked by burning rates for uniformity of pressure.
- 4. Exploratory calculations have shown the ability of the multifluid model to compute partial separation of components by boundary condition differences. More parametric study can be done to give insight into the sensitivity of the various empirical coefficients.
- The problem under investigation is important, but very difficult.

 The preliminary results from the present study lays the foundation for the future work and it appears that useful results can be obtained.

REFERENCES

- 1. Soo, S. L., Fluid Dynamics of Multiphase Systems, Blaisdell (1967).
- 2. Eradfield, W. A., Paper No. 35C/69, T.T.C.P. Panels D5 and O3, Joint Meeting, Australia (1969).
- 3. Saffman, P. G., J. Fluid Mech., Vol. 22, p. 385 (1965).
- 4. Segré, G., and Silberberg, A., <u>J. Fluid Mech.</u>, Vol. 14, pp. 115-136 (1962).
- 5. Soo, S. L., Appl. Sci. Rev., Vol. 21, p. 68 (1969).
- 6. Soo, S. L., and Tung, S. K., J. Powder Tech., Vol. 6, p. 283 (1972).
- 7. Soo, S. L., "Pipe Flow of a Dense Suspension," <u>J. Pipelines</u>, Vol. 6, pp. 193-203 (1987).
- 8. Jost, W., <u>Diffusion in Solids, Liquids, and Gases</u>, Academic Press, N.Y. (1960).
- 9. Sha, W. T., Domanus, H. M., Schmitt, R. C., Oras, J. J., and Lin, E.I.H.

 "COMMIX-1: A Three-Dimensional Transient Single-Phase Component Computer

 Program for Thermal-Hydraulic Analysis," NUREG/CR-0785, ANL-77-96,

 Argonne National Laboratory (September 1978).
- 10. Analytical Thermal Hydraulic Research Program, "COMMIX-1B: A Three-Dimensional Transient Single-Phase Computer Program for Thermal Hydraulic Analysis of Single and Multicomponent Systems. Volume I: Equations and Numerics; Vol. II: User's Manual," NUREG/CR-4348, ANL-85-42, Argonne National Laboratory (September 1985).
- 11. Brodkey, R., The Phenomena of Fluid Motions, Addison-Wesley (1967).

DISTRIBUTION

	No. of Copies
Commander	
Naval Weapons Center	
Code 3272	1
China Lake, CA 93555-6001	
Air Force Astronautics Laboratory	_
AFAL/MKPA	1
Edwards Air Force Base, CA 93523-5000	
Director	
Ballistic Research Laboratory LABCOM (ATTN: AMDAR-BL)	1
Aberdeen Proving Ground, MD 21005	_
Director	
U.S. Army Research Office	
ATTN: DRXRO-IP	1
P.O. Box 12211	
Research Triangle Park, NC 27709-2211	
Naval Surface Weapons Center	_
Code R11	1
Indian Head, MD 20640	
Argonne National Laboratory	
Components Technology Division	••
ATTN: Dr. W. T. Sha	10
9700 South Cass Avenue	
Argonne, IL 60439	
US Army Materiel System Analysis Activity	,
ATTN: AMXSY-MP	1
Aberdeen Proving Ground, MD 21005	
IIT Research Institute	
ATTN: GACIAC	1
10W. 35th Street	
Chicago, IL 60616	

Commander	
AD (XRC)	
ATTN: T. O'Grady	1
Eglin AFB, FL 32542	_
-8	
Aerojet Tactical Systems	
ATTN: R. Mironenko	1
P.O. Box 13400	
Sacramento, CA 95813	
Aerospace Corporation	
ATTN: Library Acquisition GP M1-199	1
	1
P.O. Box 92957	
Los Angeles, CA 90009	
Commander	
AFATL	
ATTN: CPT Darla M. Roberts	1
	•
Eglin AFB, FL 32542	
Commander	
AFRPL (DYP)	
ATTN: David P. Weaver	1
Edwards AFB, CA 93523	•
Edwards Arb, CA 93323	
Commander	
AFRPL (LK)	
Liquid Rocket Division	
ATTN: LK, Stop 24	1
Edwards AFB, CA 93523	•
Edwards Arb, on 75525	
Commander	
AFRPL (MKAS)	
ATTN: John H. Clark	1
Edwards AFB, CA 93523	
Communication	
Commander	
AFRPL (Tech Lib)	
ATTN: Tech Lib	1
Edwards AFB, CA 93523	
Commander	
AFRPL (TSPR)	
	•
ATTN: (TSPR) Stop 24	1
Edwards AFB, CA	
Commander	
AFSC	
ATTN: DLFP	1
Andrews AFB	
WAARIBARAR IN' 71144A	

AFWAL (MLTN) ATTN: Charles S. Anderson Wright-Patterson AFB, OH 45433	1
Commander Armament Rsch & Dev Command ATTN: AMSMC-LC (D), (Dr. Jean-Paul Picard) Dover, NJ 07801	1
Commander Armament R&D Command ATTN: AMSMC-LCA-G(D), (Dr. Anthony J. Beardell) Dover, NJ 07801	2
Commander Armament R&D Command ATTN: AMSMC-SCA-T (D), (Mr. Ludwig Stiefel) BG 455 Dover, NJ 07801	1
Commander Armament R&D Comand Scientific & Tech Div ATTN: AMSMC-TSS(D) BG 59 Dover, NJ 07801	1
Director Army Ballistic Research Labs ATTN: AMSMC-BLA-S(A), (R. Paul Ryan) Aberdeen Proving Ground, MD 21005	1
Director Army Ballistic Research Labs ATTN: AMSMC-BLI(A), (John M. Hurban) Aberdeen Proving Ground, MD 21005	1
Director Army Ballistic Research Labs ATTN: AMSMC-BLV(A), (Richard Vitali) Aberdeen Proving Ground, MD 21005	1
Commander US Army Materiel Command ATTN: AMCDE-DW 5001 Eisenhower Ave Alexandria, VA 22333	1

Commander	
Army Materiel System Analysis Activity	
ATTN: AMXSY-PS-SCTY Spec.	1
Abedeen Proving Ground, MD 21005	
Chief	
Army Research Office	
Information Proc Ofc	
ATTN: AMXRO-PP-LIB	
P.O. Box 12211	
Research Triangle Park, NC 27709	
Atlantic Research Corp.	
ATTN: Technical Info. Ctr	2
7511 Wellington Rd.	
Gainesville, VA 22065	
Caldfamaia Inchianta of Machaelann	
California Institute of Technology	
Jet Propulsion Laboratory	
ATTN: Lib. Acqs/Standing Orders	1
Floyd A. Anderson	1
4800 Oak Grove Drive	
Pasadena, CA 91103	
Administrator	
Defense Cechnical Information Center	
ATTN: DTIC-DDA	2
Cameron Station BG 5	2
Alexandria, VA 22314	
Commander	
ESMC(PM/STINFO)	
ATTN: L. M. Adams	1
Patrick AFB, FL 32925	•
FMC Corp., Northern Ord. Div	
ATTN: Library, (E. Schultz)	1
4800 East River Rd	
Minneapolis, MN 55421	
Ford Aerospace & Comm. Corp.	
Aeronutronic L. ision	
ATTN: Tech Inf. Svc/DDC Acqs.	1
Ford & Jamobree Roads	
Newport Beach, CA 92663	
Commander	
FTD(TQTA)	_
ATTN: Arnold Crowder	1
Wright-Patterson AFB, OH 45433	

Commander FTD(SDBP) ATTN: SDBP Wright-Patterson AFG, OH 45433	1
Gould Defense Sys. Inc. Ocean Systems Div. ATTN: Info. Ctr, Dept. 749 PLT 2 R. J. Rittenhouse 18901 Euclid Ave. Cleveland, OH 44117	1
Hercules Inc. Aerospace Div, Allegany Ballistics Lab. ATTN: Library P.O. Box 210 Cumberland, MD 21502	1
Hercules, Inc. Bacchus Works ATTN: 100-H-2-LIB (W. G. Young) P.O. Box 98 Magna, UT 84044	1
Hercules, Inc. ATTN: Pub. Coord (D. A. Browne) P.O. Box 548 McGregor, TX 76657	1
Hughes Aircraft Co. Electro Optical & Data Sys. Group A'TTN: Tech Doc Ctr, BG E1E110) B. W. Campbell P.O. Box 902 El Segundo, CA 90245	1
Johns Hopkins University Applied Physics Lab, Chem. Prop. Inf. Agy. ATTN: Code ML, R. D. Brown Johns Hopkins Road Laurel, MD 20707	2
LTV Aerospace & Def. Co. ATTN LIB 2-58010 P.O. Box 225907 Dallas, TX 75265	1
Marquardt Company ATTN: LIB P.O. Box 2013 Van Nuys, CA 91409	1

Martin Marietta Corp. ATTN: MP-30-TIC P.O. Box 5837 Orlando, FL 32855	1
National Aeronautics & Space Admin. George C. Marshall Space Flt Ctr. ATTN: AS24L Marshall Space Flight Center, AL 35812	1
National Aeronautics & Space Admin. George C. Marshall Space Flight Center ATTN: EP-25, Mr. John Q., Miller Marshall Space Flight Center, AL 35812	1
National Aeronautics & Space Admin Langley Research Center ATTN: MS-185 Tech. Lib. Hampton, VA 23665	1
National Aeronautics & Space Admin. Lewis Research Center ATTN: Lib(D. Morris) 21000 Brookpark Rd. Cleveland, OH 44135	1
National Aeronautics & Space Admin. Lewis Research Center ATTN: MS-501-5, D. A. Petrash 21000 Brookpark Rd. Cleveland, OH 44135	1
National Aeronautics & Space Admin. Lyndon B. Johnson Space Center ATTN: JM2/Tech. Lib. Houston, TX 77058	1
National Aeronautics & Space Admin. Scientific Technical Info. Fac. ATTN: Accessioning Dept. P.O. Box 8757 Baltimore Washington Intl Airport, MD 21240	1
Commander Naval Air Dev. Ctr. ATTN: Ccde 8131 Warminster, PA 18974	1
Commander Naval Air Sys. Comd. ATTN: NAIR-00D4-Tech Lib. Washington, DC 20361	1

Commander Naval Air Sys Comd ATTN: NAIR-320G, Mr. Bertram P. Sobers Washington, DC 20361	1
Commander Officer Naval Intel Spt Ctr Information Svc Div ATTN: Doc Lib 4301 Suitland Rd. Washington, DC 20390	1
Commanding Officer Naval Ord Sta-Indian Head ATTN: Tech Lib, Code 4243C, Henrietta Gross Indian Head, MD 20640	1
Superintendent Naval Postgraduate Sch. ATTN: Code 1424-Libs Dir Monterey, CA 93943	1
Chief Naval Research ATTN: Dr. Richard S. Miller, Code 432 Arlington, VA 22217	1
Chief Naval Research ATTN: R. Junker, Code 412 Arlington, VA 22217	1
Commanding Officer Naval Research Lab ATTN: Code 6100 Washington, DC 20375	1
Director Naval Arsearch West Pasadena ATTN: R. J. Marcus 1030 E Green St Pasadena, CA 91106	1
Commander Naval Sea Sys Comd ATTN: SEA-09B312, Tech Lib Natl Ctr BG 3 Washington, DC 20362	1
Commander Naval Sea Sys Comd ATTN: Mr. Elgin Werback, SEA-62Z31B Natl Ctr BG 3 Washington, DC 20362	1

Naval Surface Wpns Ctr ATTN: Acquisitions, Code E431 Dahlgren, VA 22448	1
Commander Naval Surface Wpns Ctr ATTN: Code E432, S. Happel, Room 1-321 Silver Spring, MD 20910	2
Commanding Officer Naval Underwater Sys Ctr ATTN: Tech Lib 021312 Newport, RI 02840	1
Commander Naval Weapon Center ATTN: Code 343 China Lake, Ca 93555	2
Director Navy Strat Sys Proj Ofc ATTN: Tech Lib Br Hd Washington, DC 20376	1
Commander Ogden ALC (MANPA) ATTN: Mr. Anthony J. Inverso BG 1941 Hill AFB, UT 84056	1
Commander Radford Army Ammo Plant ATTN: SMCRA-QA Radford, VA 24141	1
Rockwell Int'l Corp. Rocketdyne Div ATTN: Tech Info Ctr 6633 Canoga Ave	1
Canoga Park, CA 91304 Rohm & Haas Co. ATTN: Scty Off, (Dr. H. M. Shuey) 723-A Arcadia Circle Huntsville, AL 35801	
Commander SAALC (SFTT) ATTN: W. E. Vandeventer Kelly AFB, TX 78241	1

ATTN: Classified Doc Svc, (Dr. Clifford D. Bedford) 333 Ravenswood Ave Menlo Park, CA 94025	1
Talley Industries ATTN: Eng. Tech Lib, (Kim St. Clair) P.O. Box 849 Mesa, AZ 85201	1
Teledyne Ryan Aeronautical ATTN: Tech Info Svcs (W. E. Ebner) 2701 Harbor Drive San Diego, CA 92101	1
Thiokol Chem Corp Wasatch Div ATTN: Tech Lib (J. E. Hansen) Brigham City, UT 84302	2
Thiokol Corp. ATTN: Scty Off, (D. J. McDaniel) P.O. Box 241 Elkton, MD 21921	1
Thiokol Corp. ATTN: Tech Lib (H. H. Sellers) Huntsville, AL 35807	1
TRW Inc. Electronics & Defense Sector ATTN: Tech Inf Ctr, Doc Svcs for S/1930 One Space Park Redondo Beach, CA 90278	2
TRW Inc. Electronics & Defense Sector ATTN: Tech Inf Ctr, Doc Svcs for R. C. Reeve, San Bernardino he Space Park Redondo Beach, CA 90278	1
USDRE (PCA) ATTN: OUSDRE&E (R&AT/MST), (Dr. Robert J. Heaston) The Pentagon, Room 3D1089 Washington, DC 20301	1
United Technologies Corp Chemical Systems Div ATTN: Tech Lib P.O. Box 358 Supplys Le. CA 94088	1

United Technologies Corp.	
Research Center ATTN: Acq Lib (M. E. Donelly) 400 Main Street	
	1
East Hartford, CT 06108	
Commander	
White Sands Missile Range	
ATTN: Tech Lib	1
White Sands Missile Range, NM 88002	
AMSMI-RD, Dr. McCorkle	1
Dr. Rhoades	1
AMSMI-RD-RE, Dr. Hartman	1
Dr. Bennett	1 1 1
AMSMI-RD-PR, Dr. Stephens	1
Dr. Wharton	1
AMSMI-RD-PR-T, Dr. Alley	1
Mr. Allen	1
AMSMI-RD-PR-P, Mr. Schultz	1 1 1 1 1 5
AMSMI-RD-PR-M, Mr. Ifshin	1
AMSMI-RD-PR-E, Mr. Maykut	
AMSMI-RD-CS-R	15
AMSMI-RD-CS-T	1
AMSMI-GC-IP, Mr. Bush	1