5- Equivalence of Finite Automata and Regular Expressions

5.1 Converting Regular Expression to Finite Automata

Kleene's Theorem:

For any Regular Expression R that represents Language L(R), there is a Finite Automata that accepts same language.

PROOF: Suppose L = L(R) for some regular expression R, we show that L = L (E) for some ε - NFA E with:

- 1. Exactly one accepting state.
- 2. No arcs (transitions) into the initial or start state.
- 3. No arcs (transitions) out of the final or accepting state.

The proof is by structural induction on R.

Basis:

1. ε Is a regular expression. ε - NFA for ε is

2. \emptyset Is a regular expression. ε - NFA for \emptyset is

3. \mathbf{a} is a regular expression. ε - NFA for \mathbf{a} is

Induction:

R and S are regular expressions.

The automata for R and S are

1. The automata for **R** + **S** is

2. The automata for RS is

3. The automata for \mathbf{R}^* is

4. The automata for **R** and **(R)** are same.

Ex: Convert the Regular Expression (0 + 1)*011 to its equivalent Finite Automaton.

a. The automaton for **0** is:

b. The automaton for **1** is:

c. The automaton for (0 + 1) is:

d. The automaton for $(0 + 1)^*$ is:

e. The automaton for (0 + 1)*011 is:

5.2 DFA to Regular Expression

5.2.1 To build expressions that label paths in the DFA.

General Description

- Start with elementary expressions i.e., expressions for paths not passing through any state.
- Build expressions for the paths going through larger sets of states (Incrementally).
- Finally paths may go through any state.

The Method:

- Let the states of the DFA be numbered from 1 to n (n is the number of states).
- Let R_{ij}^k = Regular Expression for the path from state i to state j. Intermediate states on this path must be <= k.

Inductive Definition:

Basis: **k** = **0** i.e., no intermediate states on the path.

Case 1: if i ≠ j

- If there is no transition from state i to state j then $R_{ij}^0 = \emptyset$.
- If there is a transition from state i to state j on a, then $R_{ij}^0 = a$.
- If there are transitions from state i to state j on a₁, a_{2,...,} a_k then

$$R_{ij}^0 = a_1 + a_2 + \dots a_k$$
.

Case 2: if i = j

- If there is no transition from state i to state j then $R_{ij}^0 = \varepsilon$.
- If there is a transition from state i to state j on a, then $R_{ij}^0 = \varepsilon + a$.
- If there are transitions from state i to state j on $a_1, a_2, ..., a_k$ then $R_{ij}^0 = \varepsilon + a_1 + a_2 + ... a_k$.

Induction: k > 0

Case 1: The path from state i to state j does not go through k, then $R_{ij}^k = R_{ij}^{k-1}$.

Case 2: The path from state i to state j goes through k, then $R_{ij}^k = R_{ij}^{k-1} + R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1}$

- 1. We need to construct these expressions in the increasing order of k.
- 2. Finally we get R_{ij}^n for all i and j.
- 3. The Regular Expression equivalent to the DFA is union of R_{1j}^n for all $\mathbf{j} \in \mathbf{F}$.

Ex: Convert the below DFA to its equivalent Regular Expression.

For k = 0

R ₁₁ ⁰	ε +1
R_{12}^{0}	0
R ₂₁ ⁰	Ø
R_{22}^{0}	ε +1

For k = 1

	By Direct Substitution	Simplified
R ₁₁ ¹	$\varepsilon + 1 + (\varepsilon + 1) (\varepsilon + 1)^* (\varepsilon + 1)$	1*
R_{12}^{1}	$0 + (\epsilon + 1) (\epsilon + 1)*0$	1*0
R ₂₁ ¹	$\emptyset + \emptyset (\varepsilon + 1)^* (\varepsilon + 1)$	Ø
R_{22}^{0}	$\epsilon + 0 + 1 + \emptyset(\epsilon + 1)*0$	ε + 0 + 1

For k = 2

	By Direct Substitution	Simplified
R_{11}^{2}	$1^* + 1^*0 + (\epsilon + 0 + 1) \emptyset$	1*
R_{12}^2	$1^* + 1^*0 + (\epsilon + 0 + 1)^*(\epsilon + 0 + 1)$	1*0(0+1)*
R_{21}^{2}	\emptyset + (ϵ + 0 + 1) (ϵ + 0 + 1)* \emptyset	Ø
R_{22}^{2}	$\epsilon + 0 + 1 + (\epsilon + 0 + 1)^*(\epsilon + 0 + 1)(\epsilon + 0 + 1)$	ε + 0 + 1

In this DFA 1 is the start state and 2 is the final state and the DFA has only two states.

Therefore the Regular Expression for the DFA is $R_{12}^2 = 1*0(0+1)*$

5.2.2 DFA to Regular Expression (State Elimination Method)

- This method involves eliminating intermediate states on the paths.
- Let s be an intermediate state on the path from state q to state p.
- To eliminate states s the transition from state q to state p must include the regular expression for the path from state q to state s and state s to state p.

State **s** to be eliminated.

- $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k$ predecessors of \mathbf{s} .
- p_1, p_2, \ldots, p_m successors of s.
- Q_i is the RE for the path from q_i to s.
- P_j is the RE for the path from s to p_j.
- R_{ij} is the RE for the path from q_i to p_j

After Eliminating state **s**

The Method:

- If a state p is not on the path from the start state to final state ignore it.
- For each $q \in F$, eliminate all the states s on the path from the start state to q.
- Label the transitions with Regular Expressions.
- The resulting DFA has only the start state q₀ and the accepting state q.
- If $q \neq q_0$ then the DFA looks like

Regular Expression for the above two state DFA is (R + SU*T)*SU*.

■ If q = q₀ then the DFA looks like

- Regular Expression for the above DFA is R*.
- The Regular Expression for the DFA is the union of Regular expressions obtained for each final state q.

Ex: Convert the below DFA to its equivalent Regular Expression.

Relabelling the transitions with Regular Expressions

Eliminating the intermediate states on the path from A to D.

Eliminate B, the machine looks like

Eliminate C, the machine looks like

Only two states are left, the start and the final states.

$$R = 0 + 1$$
 $S = 1(0+1)(0+1)$ $U = \varepsilon$ $T = \emptyset$

The Regular Expression (R + SU*T)*SU* after substitution is

$$((0+1) + 1(0+1)(0+1))^* 1(0+1)(0+1) \epsilon^*$$

After simplification

$$R_1 = (0 + 1)*1(0 + 1)(0 + 1)$$

Eliminating the intermediate states on the path from A to C.

Ignore D and Eliminate B, the machine looks like

Only two states are left, the start and the final states.

$$R = 0 + 1$$
 $S = 1(0+1)$ $U = \varepsilon$ $T = \emptyset$

The Regular Expression (R + SU*T)*SU* after substitution is $((0+1)+1(0+1))^*\ 1(0+1)\epsilon^*$

After simplification

$$R_2 = (0 + 1)*1(0 + 1)$$

