

Probability and Stochastic Processes

Discrete Random Variables, Continuous Random Variables, Multiple Random Variables

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

26/29 August 2024

Recap: Random Variable and CDF

Random Variable

$$orall B\in \mathscr{B}(\mathbb{R}), \quad X^{-1}(B)\in \mathscr{F}$$

Figure: A pictorial representation of the definition of a random variable X

Equivalent Definition of Random Variable

Figure: Simplified, yet equivalent, definition of random variable

Probability Law

$$\mathbb{P}_{X}(B) = \mathbb{P} \circ X^{-1}(B) = \mathbb{P}(X^{-1}(B)) \quad orall B \in \mathscr{B}(\mathbb{R})$$

Figure: Pictorial representation of probability law

Cumulative Distribution Function (CDF)

$$F_X(x) = \mathbb{P}_X((-\infty,x]) = \mathbb{P}(X^{-1}((-\infty,x])), \quad x \in \mathbb{R}$$

CDF ←→ **Probability Law**

• If we know $\mathbb{P}_X = \{ \mathbb{P}_X(B) : B \in \mathscr{B}(\mathbb{R}) \}$, then we can extract the CDF $F_X : \mathbb{R} \to [0,1]$ by using the formula

$$F_X(x) = \mathbb{P}_X((-\infty, x]), \qquad x \in \mathbb{R}.$$

• Given the CDF $F_X : \mathbb{R} \to [0, 1]$, let

$$\mathbb{P}_X((-\infty,x]) = F_X(x), \qquad x \in \mathbb{R}.$$

Then, by Caratheodory's extension theorem, \mathbb{P}_X can be extended to all $B \in \mathbb{R}$

Properties of CDF

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Let $X:\Omega\to\mathbb{R}$ be a random variable with respect to \mathscr{F} with CDF F_X

• $\lim_{x\to-\infty} F_X(x) = 0$, $\lim_{x\to+\infty} F_X(x) = 1$

• (Monotonicity) If $x \le y$, then $F_X(x) \le F_X(y)$

• (Right-Continuity) F_X is right-continuous, i.e., for all $x \in \mathbb{R}$,

$$\lim_{\varepsilon \downarrow 0} F_X(x + \varepsilon) = F_X(x).$$

Continuity of CDF \longleftrightarrow Zero Mass

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Let $X : \Omega \to \mathbb{R}$ be a random variable with respect to \mathscr{F} with CDF F_X

• For any $x \in \mathbb{R}$,

$$\lim_{\varepsilon \downarrow 0} F_X(x - \varepsilon) = \mathbb{P}(\{X < x\}).$$

• F_X is continuous at a point $x \in \mathbb{R}$ if and only if $\mathbb{P}(\{X = x\}) = 0$

Properties of CDF

Lemma

Suppose that $F:\mathbb{R} \to [0,1]$ satisfies

- $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to+\infty} F(x) = 1$.
- $x \le y \implies F(x) \le F(y)$.
- $\lim_{\varepsilon \downarrow 0} F(x + \varepsilon) = F(x)$ for all $x \in \mathbb{R}$.

Then, there exists a probability space $(\Omega, \mathscr{F}, \mathbb{P})$ and an \mathscr{F} -measurable random variable $X: \Omega \to \mathbb{R}$ such that $F = F_X$.

Set
$$\Omega = \mathbb{R}$$
, $\mathscr{F} = \mathscr{B}(\mathbb{R})$, $X(\omega) = \omega$, $\mathbb{P}_X((-\infty, x]) = F(x)$, $\mathbb{P} = \mathbb{P}_X$

Starting with a function $F: \mathbb{R} \to [0,1]$ satisfying the above properties, one can generate any probability measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$

Discrete Random Variables

Discrete Random Variables

Definition (Discrete Random Variable)

A random variable $X : \Omega \to \mathbb{R}$ is said to be discrete if there exists a countable set $E \subset \mathbb{R}$, say $E = \{e_1, e_2, \ldots\}$, such that $\mathbb{P}_X(E) = 1$.

$$1 = \mathbb{P}_X(E) = \sum_{i=1}^{\infty} \mathbb{P}_X(\lbrace e_i \rbrace) = \sum_{i=1}^{\infty} \mathbb{P}(\lbrace X = e_i \rbrace); \qquad \qquad \mathbb{P}_X(B) = \sum_{i: e_i \in B} \mathbb{P}_X(\lbrace e_i \rbrace).$$

Discrete Random Variable

 $\mathbb{P}\left(igcup_{i=1}^{\infty}\Omega_i
ight)=\mathbb{P}_X(E)=1$

Probability Mass Function (PMF)

Definition (Probability Mass Function)

Given a random variable $X:\Omega\to\mathbb{R}$, the function $p_X:\mathbb{R}\to[0,1]$ defined as

$$p_X(x) = \mathbb{P}_X(\{x\}) = \mathbb{P}(\{X = x\}), \qquad x \in \mathbb{R},$$

is called the probability mass function (PMF) of X.

Remark

For a discrete random variable X taking values in a countable set $E = \{e_1, e_2, \ldots\}$, the PMF p_X gives the full probabilistic description of X (i.e., $p_X \longleftrightarrow F_X$), and

$$\sum_{i=1}^{\infty} p_X(e_i) = 1.$$

CDF in Terms of PMF

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Probability Mass Function)

Let $X : \Omega \to \mathbb{R}$ be a discrete random variable taking values in a countable set $E = \{e_1, e_2, \ldots\} \subset \mathbb{R}$. Then,

$$F_X(x) = \sum_{i: e_i \leq x} \mathbb{P}(\{X = e_i\}) = \sum_{i: e_i \leq x} p_X(e_i), \qquad x \in \mathbb{R}.$$

Examples of Discrete Random Variables

Definition (Discrete Random Variable)

A random variable $X: \Omega \to \mathbb{R}$ is said to be discrete if there exists a countable set $E \subset \mathbb{R}$, say $E = \{e_1, e_2, \ldots\}$, such that $\mathbb{P}_X(E) = 1$.

- $oldsymbol{\circ} oldsymbol{X} \sim \operatorname{Bernoulli}(p), \quad p \in [0,1] \ E = \{0,1\}, \qquad p_X(x) = egin{cases} p, & x = 1, \ 1-p, & x = 0, \ 0, & ext{otherwise}. \end{cases}$
- $X \sim \operatorname{unif}(\{1,\ldots,n\})$ for some fixed $n \in \mathbb{N}$ $E = \{1,\ldots,n\}, \quad p_X(x) = \begin{cases} \frac{1}{n}, & x \in \{1,\ldots,n\}, \\ 0, & \text{otherwise.} \end{cases}$

Examples of Discrete Random Variables

Definition (Discrete Random Variable)

A random variable $X: \Omega \to \mathbb{R}$ is said to be discrete if there exists a countable set $E \subset \mathbb{R}$, say $E = \{e_1, e_2, \ldots\}$, such that $\mathbb{P}_X(E) = 1$.

$$egin{aligned} ullet & X \sim \operatorname{Geometric}(p), & p \in (0,1] \ & E = \mathbb{N}, & p_X(x) = egin{cases} p(1-p)^{x-1}, & x \in \mathbb{N}, \ 0, & ext{otherwise}. \end{cases} \end{aligned}$$

• $X \sim \operatorname{Binomial}(n, p)$ for some fixed $n \in \mathbb{N} \cup \{0\}$ and $p \in [0, 1]$ $E = \{0, \dots, n\}, \quad p_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x}, & x \in \{0, \dots, n\}, \\ 0, & \text{otherwise.} \end{cases}$

Examples of Discrete Random Variables

Definition (Discrete Random Variable)

A random variable $X: \Omega \to \mathbb{R}$ is said to be discrete if there exists a countable set $E \subset \mathbb{R}$, say $E = \{e_1, e_2, \ldots\}$, such that $\mathbb{P}_X(E) = 1$.

•
$$X \sim \text{Poisson}(\lambda)$$
, $\lambda > 0$

$$E = \{0, 1, 2, \ldots\}, \qquad p_X(x) = \begin{cases} e^{-\lambda} \frac{\lambda^x}{x!}, & x \in \{0, 1, 2, \ldots\}, \\ 0, & \text{otherwise.} \end{cases}$$

•
$$E = \{1, 2, \ldots\}, \qquad p_X(x) = \begin{cases} \frac{6}{\pi^2} \frac{1}{x^2}, & x \in \{1, 2, \ldots\}, \\ 0, & \text{otherwise.} \end{cases}$$

Continuous Random Variables

Continuous Random Variables

Definition (Continuous Random Variable)

A random variable $X:\Omega\to\mathbb{R}$ is said to be continuous if there exists a function $f_X:\mathbb{R}\to[0,\infty)$ such that

$$F_X(x) = \mathbb{P}_X((-\infty, x]) = \int_{-\infty}^x f_X(t) dt, \quad \forall x \in \mathbb{R}.$$

Continuous Random Variables

Definition (Continuous Random Variable)

A random variable $X: \Omega \to \mathbb{R}$ is said to be continuous if there exists a function $f_X: \mathbb{R} \to [0, \infty)$ such that

$$F_X(x) = \mathbb{P}_X((-\infty, x]) = \int_{-\infty}^x f_X(t) dt, \quad \forall x \in \mathbb{R}.$$

Remarks:

- If $X : \Omega \to \mathbb{R}$ is a continuous random variable, its CDF F_X is absolutely continuous (hence continuous)
- The function f_X in the definition is called the probability density function (PDF) of the random variable X
- For a continuous random variable X, its PDF f_X provides the full probabilistic description of X (i.e., $f_X \longleftrightarrow F_X$)

Examples

- $X \sim \text{Uniform}([a, b]), \qquad f_X(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b], \\ 0, & \text{otherwise.} \end{cases}$
- $X \sim \text{Exponential}(\lambda)$ for some fixed $\lambda > 0$, $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geq 0, \\ 0, & \text{otherwise.} \end{cases}$
- $X \sim \text{Gaussian}(\mu, \sigma^2)$ for some fixed $\mu \in \mathbb{R}$, $\sigma > 0$,

$$f_X(x) = rac{1}{\sigma\sqrt{2\pi}} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight), \quad x \in \mathbb{R}.$$

• $X \sim \text{Normal} = \text{Gaussian}(0, 1)$

$$f_X(x) = rac{1}{\sqrt{2\pi}} \exp\left(-rac{x^2}{2}
ight), \quad x \in \mathbb{R}.$$

Some Remarks

• PDF \neq probabilities; PDF can take values greater than 1 integrals of PDF = probability; total area under PDF = 1

• If X is a continuous random variable, then $\mathbb{P}_X(\{x\}) = 0$ for all $x \in \mathbb{R}$ Furthermore, if $E \subset \mathbb{R}$ is any countable set, then $\mathbb{P}_X(E) = 0$ Contrast this with discrete random variable!

Multiple Random Variables

Two Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Two Random Variables)

Given two \mathscr{F} -measurable random variables $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$, we say $(X,Y):\Omega\to\mathbb{R}^2$ is a random variable with respect to \mathscr{F} if

$$(X,Y)^{-1}(B) = \{\omega \in \Omega : (X(\omega),Y(\omega)) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}^2).$$

Joint Probability Law of Two Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Joint Probability Law of Two Random Variables)

Given two random variables $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ defined with respect to \mathscr{F} , their joint probability law $\mathbb{P}_{X,Y}:\mathscr{B}(\mathbb{R}^2)\to[0,1]$, is the probability measure defined as

$$\mathbb{P}_{X,Y}(B) = \mathbb{P}(\{\omega \in \Omega : (X(\omega), Y(\omega)) \in B\}), \qquad B \in \mathscr{B}(\mathbb{R}^2).$$

Remarks:

- $\mathbb{P}_{X,Y}$ is called the pushforward of \mathbb{P} under the random variable (X,Y)
- $\mathbb{P}_{X,Y}$ is the probability law of the random variable (X,Y)
- $\mathbb{P}_{X,Y}$ gives the full probabilistic description of (X,Y)

The Picture to Have in Mind

$$\mathbb{P}_{\pmb{X},\pmb{Y}}(B) = \mathbb{P}((\pmb{X},\pmb{Y})^{-1}(B)) \quad orall B \in \mathscr{B}(\mathbb{R}^2)$$

Remarks

• A special class of sets in $\mathscr{B}(\mathbb{R}^2)$ are semi-infinite rectangles of the form

$$(-\infty, x] \times (-\infty, y], \qquad x, y \in \mathbb{R}.$$

•
$$\mathscr{B}(\mathbb{R}^2) = \sigma(\{(-\infty, x] \times (-\infty, y] : x, y \in \mathbb{R}\})$$

Joint CDF of Two Random Variables

$$\textbf{\textit{F}}_{X,Y}(x,y) = \mathbb{P}_{X,Y}((-\infty,x]\times(-\infty,y]) = \mathbb{P}(\{X\leq x\}\cap\{Y\leq y\}),\quad x,y\in\mathbb{R}$$

Definition (Joint CDF)

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Given random variables $X: \Omega \to \mathbb{R}$ and $Y: \Omega \to \mathbb{R}$ with respect to \mathscr{F} , their joint CDF $F_{X|Y}: \mathbb{R}^2 \to [0, 1]$ is defined as

$$F_{X,Y}(x,y) = \mathbb{P}_{X,Y}((-\infty,x] \times (-\infty,y]) = \mathbb{P}(\{X \leq x\} \cap \{Y \leq y\}), \qquad x,y \in \mathbb{R}.$$

Notation

- $\bullet \ \{X \le x\} \cap \{Y \le y\} = \{X \le x, \ Y \le y\}$
- $\mathbb{P}(\{X \le x\} \cap \{Y \le y\}) = \mathbb{P}(X \le x, Y \le y)$

Joint CDF ←→ **Joint Probability Law**

• If we know $\mathbb{P}_{X,Y} = {\mathbb{P}_{X,Y}(B) : B \in \mathscr{B}(\mathbb{R}^2)}$, then we can extract the CDF $F_{X,Y} : \mathbb{R}^2 \to [0,1]$ by using the formula

$$F_{X,Y}(x,y) = \mathbb{P}_{X,Y}((-\infty,x]\times(-\infty,y]), \qquad x,y\in\mathbb{R}.$$

• Given the joint CDF $F_{X,Y}: \mathbb{R}^2 \to [0,1]$, let

$$\mathbb{P}_{X,Y}((-\infty,x]\times(-\infty,y])=F_{X,Y}(x,y), \qquad x,y\in\mathbb{R}.$$

Then, by Caratheodory's extension theorem, there exists a unique extension of $\mathbb{P}_{X,Y}$ to all Borel subsets of \mathbb{R}^2