

Amplification of phage genes from lysates and environmental samples

Matthew Sullivan

Abstract

From Sullivan M., Lindell D., Lee J., Thompson L., Bielawski J., Chisholm S. <u>Prevalence and Evolution of Core Photosystem II Genes in Marine Cyanobacterial Viruses and Their Hosts.</u> *PLOS Biology*, 2006 4(8):e234.

Please see the published manuscript for additional information.

Citation: Matthew Sullivan Amplification of phage genes from lysates and environmental samples. protocols.io

dx.doi.org/10.17504/protocols.io.djn4md

Published: 12 Jan 2016

Guidelines

PCR reactions were performed with Taq DNA polymerase and dNTPs from New England Biolabs (Beverly, MA) or Invitrogen (Carlsbad, CA) and carried out with a PTC-100 or PTC-200 DNA Engine (MJ Research, Waltham, MA) or a Robocycler Gradient 96 (Stratagene, La Jolla, CA). Template amounts were: 10 ng genomic DNA for *Prochlorococcus* and *Synechococcus*, 1 μ L filtrate for cyanophages, and 2 μ L filtrate for environmental samples. PCR primers and amplification reaction conditions are shown in Suppl. Tables 3 and 4.

The *psbA* gene from all sources was amplified using primer pair *psbA*-F/R [62] and PCR protocol A (see Suppl. Tables 3 and 4). Four reactions were conducted with each template, and the products were pooled and analyzed by agarose gel electrophoresis. Primer *psbA*-R falls on the intron region in S-PM2 (see ref. [29]). Therefore for efficient amplification of phage *psbA* genes that may contain introns, and for increased sensitivity, we used the Pro-*psbA*-F/R primer set and protocol B in nested PCR reactions when no PCR product was visible from cyanophage lysates and environmental filtrates. To reduce the incidence of heteroduplex formation, amplification products from environmental samples were subjected to reconditioning PCR [63]: initial PCR products were diluted 1:10, then amplified using protocol A but for only 3 cycles.

The *psbD* gene from *Prochlorococcus*, *Synechococcus*, and cyanophages was amplified using primer pair *psbD*-54F/*psbD*-308R and protocol D. However when product yield was low or absent seminested PCR was carried out as follows. Amplification was first conducted using primer pair *psbD*-26F/*psbD*-308R and protocol C. Four reactions were conducted with each template, the products were pooled, diluted 1:10, and used as templates for a second round of amplification using primer pair *psbD*-54F/*psbD*-308R and protocol D. *psbD* from environmental samples was amplified using primer pair *psbD*-26F/*psbD*-308R and protocol C and subjected to reconditioning PCR as for *psbA* (see above).

In preparation for sequencing, PCR products were either purified directly using the QIAquick PCR

Purification Kit (Qiagen) or separated on an agarose gel and then purified using the QIAquick Gel Extraction Kit (Qiagen).

To confirm that the absence of psbA or psbD PCR products from phage was not simply due to a lack of amplifiable phage DNA, we screened phage lysates for known phage genes: g20 (for myoviruses) and DNApol (for podoviruses). g20 was amplified using primer pair g20-F/R and protocol E, and DNApol using primer pair DNApol-F/R and protocol F, both with 1μ L filtrate from cyanophage isolates.

Supplementary Table 3. PCR conditions

PCR Protoco	Forward I Primer	Reverse Primer	Primei Conc. (µM)	Conc.	MgCl2 Conc. (mM)	Units of Taq	Reaction Volume (µL)	Initial	# of Cycles	Cycled Denaturation	Cycled Annealing	Cycled Extension	Final Extension
Α	psbA-F	psbA-R	0.25	200	2.5	2.0	20.0	94°C, 5 min	35	94°C, 1 min	52°C, 1 min	72°C, 1.5 min	72°C, 10 min
В	Pro- psbA-F	Pro- psbA-R	0.25	80	5.0	2.5	50.0	92°C, 4 min	35	92°C, 1 min	50°C, 1 min	68°C, 1 min	68°C, 10 min
С	psbD- 26F	psbD- 308R	1.00	200	1.5	1.0	20.0	94°C, 5 min	35	94°C, 1 min	51°C, 1 min	72°C, 1 min	72°C, 10 min
D	psbD- 54F	<i>psbD-</i> 308R	1.00	200	1.5	1.0	20.0	94°C, 5 min	35	94°C, 1 min	51°C, 1 min	72°C, 1 min	72°C, 10 min
E	g20-F	g20-R	1.25	250	1.5	1.0	20.0	94°C, 3 min	35	94°C, 15 s	35°C, 1 min	73°C, 1 min	73°C, 10 min
F	DNApol-90	F DNApol-355I	R 4	200	0.5 mM for lysates 1.5 mM for extracted DNA	1.0	20.0	94°C, 4 min	35	94°C, 1 min	35°C, 1 min	72°C, 1 min	72°C, 10 min

Supplementary Table 4. PCR primers

	Short Name	Full Name	Sequence	Source	Purpose	
	psbA-F	58-VDIDGIREP-66	5'-GTNGAYATHGAYGGNATHMGNGARCC-3'	Zeidner et al. 2003	psbA screening	
	psbA-R	331-MHERNAHNFP-340	5'-GGRAARTTRTGNGCRTTNCKYTCRTGCAT-3'	Zeidner et al. 2003	psbA screening	
	Pro- <i>psbA</i> -F	Pro-psbA-1F	5'-AACATCATYTCWGGTGCWGT-3'	Z. Johnson	psbA screening	
	Pro-psbA-R	Pro- <i>psbA</i> -1R	5'-TCGTGCATTACTTCCATACC-3'	Z. Johnson	psbA screening	
	nsh1)-26F	psbD-26Fa	5'-TTYGTNTTYRTNGGNTGGAGYGG-3'	J. A. Lee and	psbD screening	
		psbD-26Fb	5'-TTYGTNTTYRTNGGNTGGTCNGG-3'	D. Lindell		
	psbD-54F	psbD-54Fa	5'-GTNACNAGYTGGTAYACNCAYGG-3'	J. A. Lee andD. Lindell	nchD corooning	
		psbD-54Fb	5'-GTNACNTCNTGGTAYACNCAYGG-3'		psbD screening	
ı	nsni)-308R	psbD-308Ra	5'-YTCYTGNGANACRAARTCRTANGC-3'	J. A. Lee and	psbD screening	
		psbD-308Rb	5'-YTCYTGRCTNACRAARTCRTANGC-3'	D. Lindell		
	g20-F	CPS1.1	5'-GTAGWATWTTYTAYATTGAYGTWGG-3'	M.B. Sullivan	g20 screening*	
	g20-R	CPS8.1	5'-ARTAYTTDCCDAYRWAWGGWTC-3'	M.B. Sullivan	g20 screening**	
	DNApol-F	DNApol-90Fa	5'-GAYACIYTIRYIYTITCIMG-3'	D. Lindell	DNApol screening	
		DNApol-90Fb	5'-GAYACIYTIRYIYTIAGYMG-3'	D. Lilideli	DIVAPOI Screening	
	DNApol-R	DNApol-355Ra	5'-GGIAYYTGIGCIARRTTIGG-3'	D. Lindell	DNApol screening	
		DNApol-355Rb	5'-GGIAYRTTIGCIARRTTIGG-3'	D. Lilidell	DIVAPOI SCIECTING	
		1 ' D CC144				

^{*}Not found in P-SSM4

W = A or T

^{**}Nt 115325 --> 115304 in P-SSM4

Y = C or T R = A or G D = not C M = A or C I = inosine (from adenosine, pairs with A, T, or C)

g20 amplicon ~594 bp (as found in proof "Results and Discussion" Environmental Microbiology 2008, Portal Protein Diversity and Phage Ecology).

Protocol