Tailoring Differentially Private Bayesian Inference to Distance Between Distributions

Mark Bun[†], Gian Pietro Farina*, Marco Gaboardi*, Jiawen Liu* †Princeton University, *University at Buffalo, SUNY

Objectives

Design a mechanism that achieve differential privacy by scaling to a metric between distribution.

- 1. A differentially private bayesian mechanism,
- 2. Calibrating mechanism noise by the same probabilistic distance we want to measure accuracy with.
- 3. Applying smooth sensitivity in mechanism to achieve better accuracy.

Figure 1: Hellinger Sensitivity

Bayesian Inference Background

Conjugate prior distribution, **beta**(α , β), with hyper parameters α , $\beta \in \mathbb{R}^+$;

Observed data set \mathbf{x} : $\mathbf{x} = (x_1, \dots x_n), x_i \in \{0, 1\}, n \in \mathbb{N}$;

Bernoulli likelihood function: $\Pr(\mathbf{x}|\theta) \equiv \theta^{\Delta\alpha} (1-\theta)^{n-\Delta\alpha}$, where $\Delta\alpha = \sum x_i$;

Posterior distribution derived: $Pr(\theta|x) = beta(\alpha + \Delta\alpha, \beta + n - \Delta\alpha)$.

Differentially private Bayesian inference

Release a private version of posterior distribution $(\tilde{\alpha}, \tilde{\beta}) = (\alpha + \Delta \alpha, \beta + n - \Delta \alpha)$. In a baseline approach, we sample noise from $Lap(\mu,\nu)$ mechanism, i.e., $\Delta \alpha \sim Lap(\Delta \alpha, \frac{2}{\epsilon})$,

Smoothed Hellinger Distance based Exponential Mechanism

Our approach defines the mechanism $\mathcal{M}_{\mathcal{H}}^{B}$:

Producing an element r in $\mathcal{R}_{\text{post}}$ with: $\frac{\Pr}{z \sim \mathcal{M}_{\mathcal{H}}^{B}}[z = r] = \frac{exp\left(\frac{-\epsilon \cdot \mathcal{H}(BI(x), r)}{2 \cdot S(x)}\right)}{\sum exp\left(\frac{-\epsilon \cdot \mathcal{H}(BI(x), r)}{2 \cdot S(x)}\right)}$

(given in input an observations \mathbf{x} , parameters $\epsilon > \mathbf{0}$ and $\delta > \mathbf{0}$).

 \mathcal{R}_{post} is the candidates set defined as

 $\mathcal{R}_{\text{post}} \equiv \{ \text{beta}(\alpha', \beta') \mid \alpha' = \alpha + \Delta \alpha, \beta' = \beta + n - \Delta \alpha \}, \text{ given the prior distribution } \}$ $\beta_{\text{prior}} = \text{beta}(\alpha, \beta)$ and observed data set size n.

The scoring function is instantiated by Hellinegr distance between two beta distributions, and

 $S(\mathbf{x})$ is the smooth sensitivity computed as: $S(\mathbf{x}) = \max_{\mathbf{x}' \in \{0,1\}^n} \left\{ LS(\mathbf{x}') \cdot e^{-\gamma \cdot d(\mathbf{x},\mathbf{x}')} \right\}$ where d: Hamming distance between two datasets,

LS(x') denotes the local sensitivity at BI(x'):

 $LS(\mathbf{x}) = \max_{\mathbf{x}' \in \mathcal{X}^n : \mathrm{adj}(\mathbf{x}, \mathbf{x}'), r \in \mathcal{R}} |\mathcal{H}(\mathsf{BI}(\mathbf{x}'), r) - \mathcal{H}(\mathsf{BI}(\mathbf{x}'), r)| \text{ and } \gamma = \ln(1 - \frac{\epsilon}{2\ln(\frac{\delta}{2(n+1)})})$ to ensure the (ϵ, δ) -differentially private.

Some Experimental Results

- (a) 2-dimensional, data size \in [100, 500]
- (b) 3-dimensional, data size $\in [100, 500]$ (c) 4-dimensional, data size $\in [100, 600]$

Figure 2: Increasing data size with unit prior beta(1,1), beta(1,1,1) and beta(1,1,1,1), balanced datasets and parameters $\epsilon = 0.8$ and $\delta = 10^{-8}$

(a) 2-dimensional

(b) 3-dimensional

(c) 4-dimensional

Figure 3: The concrete outputting probabilities under different dimensions with data set of size 600, unit prior beta(1,1), beta(1,1,1) and beta(1,1,1,1), balanced datasets and parameters $\epsilon=0.8$ and $\delta=10^{-8}$

Conclusion

- \triangleright Our the probabiliy measure approach outperforms the ℓ_1 -norm approach when the Laplace noise cannot recognize the data to be protected is histogram and data size grow large.

References