Haolan Xu

Urbana, IL 61801, USA

 $+1-352-721-1438 \cdot jamesdemon923@gmail.com \cdot jamesdemon923.github.io$

EDUCATION

University of Florida
Master of Science in Computer Science; GPA: 3.83/4.00

Sichuan University
Bachelor of Engineering in Chemical Engineering and Technology; GPA: 3.74/4.00

Gainesville, FL, USA
Sept. 2022 - May 2024

Chengdu, SC, China
Sept. 2018 - Jun. 2022

RESEARCH EXPERIENCE

Physics-based rigging for 4D generation

Sep. 2024 - Present

- Developing a physics-based rigging framework using Material Point Method simulations to learn driving velocity and material properties (e.g., Young's modulus, Poisson's ratio) from videos, enabling physically accurate motion of 3D objects
- Building a 4D non-parametric animatable model that by passes the limitations of traditional linear blend skinning, supporting the creation of diverse, physically accurate 4D virtual assets

Inverse rendering meets GANs for 3D object reconstruction

Aug. 2023 - Jan. 2024

- Generated SVBRDF maps (Albedo, Roughness, Normal) and Depth map using StyleGAN2-Ada from RGB images captured in real scenes, then introduced a physics-based differentiable renderer named Mitsuba 3 as the rendering layer to recover geometry, material, and illumination of objects
- Finetuned the unified framework through designing loss functions based on the rendering loss, resulting in the high-quality reconstruction of 3D objects

Smooth contour rendering using point normal triangles

May. 2023 - Aug. 2023

- Employed curved point normal patches for smooth approximation of surfaces to bypass more complex methods like Powell-Sabin construction
- Developed a contour detection algorithm by evaluating the orthogonality between shading normals and viewing directions, and implemented cubic Bernstein-Bézier interpolation for rendering smooth curves
- The method's computational efficiency and adaptability allow for seamless integration into any outline rendering pipeline

PROJECT EXPERIENCE

O Denoise in real-time ray tracing

Aug. 2023 - Sept. 2023

- Denoised per frame using the joint bilateral filter with A-Trous wavelet for acceleration
- Implemented temporal accumulation with motion vector projection for smoother transitions

• Precompute radiance transfer with spherical harmonics rotation

Jul. 2023 - Aug. 2023

- Implement precomputed radiance transfer (PRT) by calculating spherical harmonics (SH) in the Nori framework
- Achieved real-time rendering of the Stanford bunny across various scenes by PRT
- Further enabled dynamic light rotation leveraging the rotationally invariant properties of SH

• Implement soft shadow using PCF & PCSS

Jun. 2023 - Jul. 2023

- ullet Used the adaptive shadow bias algorithm to solve shadow acne to implement a robust hard shadow system
- Developed soft shadow using percentage closer filtering (PCF) and percentage closer soft shadows (PCSS)
- Extended to the multiple dynamic light sources scene

A tiny software path tracer

May 2023 - Jun. 2023

2022

- Built a path tracer using Russian Roulette and light source sampling, optimized by multi-threaded acceleration
- Explored various microfacet materials with different bidirectional reflectance distribution functions like mirror reflection

SKILLS SUMMARY

Programming: Python, C/C++

Tools: PyTorch(3D), NeRFStudio, Mitsuba, Blender, LATEX, GIT

Language: English (fluent), Mandarin (native)

HONORS AND AWARDS

Achievement Award Scholarship in University of Florida (4500\$)

Outstanding Graduate of Sichuan University 2022

Annual Scholarship in Sichuan University 2019, 2020, 2021