15기 정규세션 ToBig's 14기 강의자 강재영

Regression Analysis

회귀분석

n t S

Unit 01 | 선형 회귀분석

Unit 02 | 회귀 진단

Unit 03 | 로지스틱 회귀분석

Unit 04 | 최대우도추정

머신러닝 알고리즘 종류

- 1. 지도학습 (Supervised Learning)
 - 입력과 결과값 (label : 정답) 이용한 학습
 - 회귀 (Regression), 분류 (Classification)
 - ex. 선형 / 로지스틱 회귀, KNN, SVM, Decision Tree
- 2. 비지도학습 (Unsupervised Learning)
 - 입력만을 이용한 학습
 - 군집화 (Clustering)
 - ex. K-means Clustering

- 3. 강화학습 (Reinforcement Learning)
 - Agent가 주어진 State에서 Action을 취했을 때, 이로부터 얻는 Reward를 최대화하는 방향으로 학습

선형 회귀분석

- Input과 Output 사이의 선형관계를 도출하고자 하는 기법
- Example) 집의 가격(Output)과 집의 크기(Input)의 관계

Size (x)	Price (y)
2104	460
1416	232
1534	315
852	178
:	

■ How? Input과 Output 사이의 선형<mark>관계</mark>를 어떻게 알아낼 수 있을까?

* 용어정리

x (Input): 영향을 주는 변수 - 독립변수, 설명변수 y (Output): 영향을 받는 변수 - 종속변수, 반응변수

Input (x)	Output (y)	Estimate (ŷ)
0	3	?
1	6	?
2	7	?
3	9	?

Parameter (모수)

Formulation :
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Hypothesis (가설)

e.g.,
$$\theta_0 = 1$$
, and $\theta_1 = 2 \implies h_{\theta}(x) = 1 + 2x$

* 용어정리

Parameter (모수) : 우리가 추정해야 할 수 - 회귀계수 Y_{hat} (\hat{y}) : 예측값 θ_0 θ_1

Input (x)	Output (y)	Estimate (ŷ)
0	3	?
1	6	_3_
2	7	?
3	9	?

Formulation :
$$h_{\theta}(x) = \underline{\theta_0} + \underline{\theta_1}x$$

Hypothesis (가설)

e.g.,
$$\theta_0 = 1$$
, and $\theta_1 = 2 \rightarrow h_{\theta}(x) = 1 + 2x$

Think about the case x = 1 (Loss = 6 – 3 = 3)

* 용어정리

Parameter (모수) : 우리가 추정해야 할 수 - 회귀계수 Y_{hat} (\hat{y}) : 예측값 θ_0 θ_1

Input (x)	Output (y)	Estimate (ŷ)
0	3	?
1	6	3
2	7	?
3	9	?

Formulation :
$$h_{\theta}(x) = \underline{\theta_0} + \underline{\theta_1}x$$

Hypothesis (가설)

e.g.,
$$\theta_0 = 1$$
, and $\theta_1 = 2 \rightarrow h_{\theta}(x) = 1 + 2x$

Think about the case x = 1 (Loss = 6 – 3 = 3)

■How? Input과 Output 사이의 <mark>최적의 선형관계</mark>를 어떻게 알아낼 수 있을까?

* 용어정리

Parameter (모수) : 우리가 추정해야 할 수 - 회귀계수 Y_{hat} (\hat{y}) : 예측값 θ_0 θ_1

■How? Input과 Output 사이의 <mark>최적의 선형관계</mark>를 어떻게 알아낼 수 있을까? 최소제곱법 (LSE)

회귀식이 예측한 값과 실제 값의 차이 최소화

회귀식이 예측한 \hat{y} 값과 실제 y값의 차이의 제곱합을 최소화하는 알고리즘

$$L = \sum_{\substack{\text{Loss} \\ \text{Function}}}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

최소제곱법 (LSE)

$$L=\sum_{i=1}^n (y_i-(eta_0+eta_1x_i))^2$$
 $<$ 최소제곱 추정치> $\widehat{\beta_1}=\frac{\sum(x_i-x_i)}{\sum(x_i-x_i)}$

$$\frac{\partial L}{\partial \beta_0} = -2\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial L}{\partial \beta_1} = -2 \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) x_i = 0$$

<정규방정식 : Normal Equation>

$$\widehat{\beta_1} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{S_{xy}}{S_{xx}}$$

$$\widehat{\beta_0} = \overline{y} - \widehat{\beta_1} \overline{x}$$

■최소제곱법 (LSE)의 기하학적 관점

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

선형방정식을 행렬표현

■최소제곱법 (LSE)의 기하학적 관점

예측한 값과 실제 값의 차이 최소화

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

■최소제곱법 (LSE)의 기하학적 관점

< Projection >

예측한 값과 실제 값의 차이 최소화

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

*용어정리

Projection :한 벡터에서 다른차원의 공간으로 가장 최 단거리가 되도록 선을 내리는 것

■최소제곱법 (LSE)의 기하학적 관점

< Projection >

선형방정식을 행렬표현

다중회귀의 행렬표현

*용어정리

Projection :한 벡터에서 다른차원의 공간으로 가장 최 단거리가 되도록 선을 내리는 것

제곱합 분해

$$\sum_{i=1}^{n} (y_i - ar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - ar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

SST: 총제곱합

SSR : 회귀제곱합 (전체 제곱합 중 회귀식으로 <mark>설명 Yes</mark>) SSE : 잔차제곱합 (전체 제곱합 중 회귀식으로 <mark>설명 No</mark>)

- 회귀식이 데이터를 잘 설명할수록 SSR 증가 (SSE감소)

회귀분석 표 해석

	자유도 (df)	제곱합 (SS)	제곱평균 (MS)	F	
회귀 (Regression) SSR	р	SSR	MSR = SSR / p	F = MSR / MSE	$H0: \beta_1 = \beta_2 = = \beta_p = 0$ F > F(α , p, n-p-1) 이면 H0 기각
잔차 (Residual) SSE 총	n-(p+1)	SSE	MSE = SSE / (n-p-1) -		MSE = 회귀식이 설명하지 못하는 부분 -> MSE 값이 작을수록 좋음
(Total) SST	n-1	SST = SSR+SSE			(cf) 단순회귀 제약조건 2개 = 1+1
					1. $\sum $

n t S

Unit 01 | 선형 회귀분석

Unit 02 | 회귀 진단

Unit 03 | 로지스틱 회귀분석

Unit 04 | 최대우도추정

회귀진단

완전하고 유용한 데이터 분석을 수행하기 위해 **기본가정들과 모형에 대한 문제점을 검출하고 수정**하는 것

회귀분석 기본 가정

1. 선형성 : 설명변수(X)와 반응변수(Y)가 선형 관계에 있다

2. 정규성 : $\varepsilon_i \sim N(0, \sigma^2)$, 오차(error) ε_i 는 정규분포를 따른다

3. 등분산성 : 오차 (error) ε_i 의 분산은 σ^2 로 항상 동일하다

4. 독립성 : 오차 (error) ε_i 는 서로 독립이다 (iid)

그래프적 방법들

1) 선형성 판단

그래프적 방법들

2) 정규성 판단

<잔차의 히스토그램>

* **용어정리** 오차 (모수) = 잔차 (표본)

그래프적 방법들

3) 등분산성 판단

		OLS Reg	gressi	on Resi	ults 		
Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance T	Tud ions: :	OPS OLS Least Squares Tue, 28 Jul 2020 02:03:49 1633 1624 9			red: -squared: istic: F-statistic Kelihood:):	0.915 0.914 1931. 0.00 254.44 -490.9 -442.3
=======	ype: =======	nonrobt	:=====	=====		========	=======
	coef	std err		t	P> t	[0.025	0.975]
year BB HBP SO height age_year HR SB	0.3380 0.3019 0.1914 0.0439 0.2135 0.2850 0.0194 0.0052 0.0293	0.018 0.059 0.043 0.051 0.032 0.024 0.009 0.007 0.013	5. 4. 0. 6. 11. 2.	524 151 411 854 701 762 064 749 217	0.000 0.000 0.000 0.393 0.000 0.000 0.039 0.454 0.027	0.302 0.187 0.106 -0.057 0.151 0.237 0.001 -0.008 0.003	0.374 0.417 0.277 0.145 0.276 0.333 0.038 0.019 0.055
Omnibus: 580.341 Prob(Omnibus): 0.000 Skew: 1.255 Kurtosis: 13.780			900 255		•		1.987 8336.581 0.00 17.3

OLS: ordinary least square

- R-squared / Adj. R-squared
- F-statistics
- Coefficients p값
- Durbin-Watson (오차의 자기상관)

0.915

0.914

Unit 02 | 회귀 진단

<u>모형 선택 기준</u>: R-squared(결정계수) R-squared: Adj. R-squared:

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

전체 제곱합 중 회귀식으로 설명 가능한 부분 -> 결정계수가 크면 클수록 좋음!

SST : 총제곱합

SSR: 회귀제곱합

SSE: 잔차제곱합

$$adj R^2 = 1 - \frac{SSE/(n-p)}{SST/(n-1)}$$

<u>Adjusted R square(조정된 결정계수)</u>

설명변수를 추가하면 SSR 이 항상 커져 결정계수가 증가 따라서 설명변수의 개수가 다른 모델과 비교 어려움 -> 설명변수의 개수를 고려하여,

설명변수가 증가하면 값이 감소하도록 패널티를 줌

교호작용 (interaction)

- 단일 변수만으로는 알 수 없는 변수들간의 상호작용 고려
- 보통 범주형*범주형, 범주형*연속형 변수의 관계만 고려 -> 연속형*연속형의 경우 해석의 모호함이 생길 수 있기 때문에!
- ex) 흡연을 하면 건강 -3, 음주를 하면 건강 -2 ⇔ 흡연과 음주를 동시에 하는 사람은 ? 흡연과 음주를 동시에 한 효과 더 많은 악영향 (-10)이 끼친다면, 교호작용 변수를 고려해야 함!
- 건강(Y) ~ 흡연 + 음주 → 건강(Y) ~ 흡연 + 음주 + 흡연*음주

https://m.blog.naver.com/vnf3751/220830413960

* p-value? 귀무가설? 유의확률?

p값이 0.05보다 작으므로 95% 유의수준 하에서 귀무가설을 기각한다

<u>가설검정</u> 모집단의 특징에 대한 통계적 가설을 추출된 표본을 통하여 검토하는 추론 방법

귀무가설 (H0): 기각하고자 하는 사실

대립가설 (H1) : 일반적으로 주장하고자 하는 사실

> H0를 기각함으로써, H1을 입증한다!

성적 기능
$$y = \beta_0 + \beta_1 x$$
 $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$

만약 여러분이 성적과 지능은 유의미한 상관관계가 있다고 주 장한다면, 가설은 다음과 같이 세워질 수 있습니다.

https://m.blog.naver.com/vnf3751/220830413960

* p-value? 귀무가설? 유의확률?

$$y = \beta_0 + \beta_1 x$$

$$H_0$$
: $\beta_1 = 0$

$$H_1$$
: $\beta_1 \neq 0$

검정통계량 : 귀무가설이 옳다는 가정 하에서 구하게

된 통계량

P-value : 귀무가설이 옳다는 가정 하에, 검정통계량이

계산될 확률

■ 제1종오류 : 귀무가설이 참인데 기각하는 경우

■ 제2종오류 : 귀무가설이 거짓인데 채택하는 경우

귀무가설이 옳은데 실수로 기각될 확률,
 즉, 1종 오류를 범하게 될 확률 최소화

■ 1종 오류의 상한선 (=유의수준) 미리 설정 (일반적으로 0.05)

F – Statistics & t- Statistics

	OLS Regress	sion Results	
============			
Dep. Variable:	OPS	R-squared:	0.915
Model:	OLS	Adj. R-squared:	0.914
Method:	Least Squares	F-statistic:	1931.
Date:	Tue, 28 Jul 2020	Prob (F-statistic):	0.00
Time:	02:03:49	Log-Likelihood:	254.44
			I
			1
			i
	$H_0: \beta_1 = \beta_2 =$	$= \cdots = \beta_k = 0$	

 $H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$ $H_1: \beta_j \neq 0, \quad for \ some \ j$

F- 통계량은 모형의 유의미함을 판단하는 기준으로 모든 독립 I 변수의 계수가 0인지 혹은 하나라도 0이 아닌지를 판별합니다. I

	coef	std err	t	P> t	[0.025	0.975]
year	0.3380	0.018	18.524	0.000	0.302	0.374
BB	0.3019	0.059	5.151	0.000	0.187	0.417

$$H_0$$
: $\beta_1 = 0$
 H_1 : $\beta_1 \neq 0$

t-통계량은 <mark>변수의 유의미함</mark>을 판단하는 기준으로 해당 변수의 계수 가 0인지 아닌지를 판별합니다.

Durbin-Watson (오차의 자기상관)

		OLS Reg	gression Res	sults		
D V:			DC B	:======:: J .	=======	0.015
Dep. Variable:			OPS R-squa			0.915
Model:			_	R-squared:		0.914
Method:		Least Squar				1931.
Date:	Tue	e, 28 Jul 20		(F-statistic):	0.00
Time:		02:03	_	ikelihood:		254.44
No. Observation	ons:		533 AIC:			-490.9
Df Residuals:		16	524 BIC:			-442.3
Df Model:			9			
Covariance Typ	e:	nonrobu	ıst 			
	coef	std err	t	P> t	[0.025	0.975]
year	0.3380	0.018	18.524	0.000	0.302	0.374
BB	0.3019	0.059	5.151	0.000	0.187	0.417
HBP	0.1914	0.043	4.411	0.000	0.106	0.277
SO	0.0439	0.051	0.854	0.393	-0.057	0.145
height	0.2135	0.032	6.701	0.000	0.151	0.276
age year	0.2850	0.024	11.762	0.000	0.237	0.333
HR	0.0194	0.009	2.064	0.039	0.001	0.038
SB	0.0052	0.007	0.749	0.454	-0.008	0.019
Н	0.0293	0.013	2.217	0.027	0.003	0.055
Omnibus:		 580.3		n-Watson:		1.987
Prob(Omnibus):		0.0	000 Jarque	e-Bera (JB):		8336.581
Skew:		1.2	255 Prob(3			0.00
Kurtosis:		13.7		*		17.3

더빈 왓슨(Durbin Watson) 검정

: 오차항이 독립성을 만족하는지를 검정하기 위해 사용

- 더빈 왓슨 통계량은 0~4사이의 값을 갖을 수 있음

0에 가까울수록 → 양의 상관관계

4에 가까울수록 → 음의 상관관계

2에 가까울수록 → 오차항의 자기상관이 없음 (독립성만족)

*자기상관(Autocorrelation) : 오차항이 서로 상관관계가 존재하는 경우

변수 변환

https://every-day-life.tistory.com/16

- 1) 비선형적인 함수 관계를 선형으로 바꿔 다룰 수 있다
- 2) 분포모양을 정규분포와 유사하도록 만들 수 있다
- 3) 변환을 통해 자기상관 문제를 해결 할 수 있다 ex) $\log(x)$, \sqrt{x} , x^2 , ...

========	=======	========	=====	ion Res	========		
Dep. Variable	:		OPS	R-squa	red:		0.915
Model:			OLS	Adj. R	-squared:		0.914
Method:		Least Squa	res	F-stat	istic:		1931.
Date:	Tu	e, 28 Jul 20	920	Prob (F-statistic):	0.00
Time:		02:03	:49	Log-Li	kelihood:	•	254.44
No. Observati	ons:	1	633	AIC:			-490.9
Df Residuals:		1	524	BIC:			-442.3
Df Model:			9				
Covariance Ty	pe:	nonrob	ust				
========	coef	std err		t	P> t	[0.025	 0.9751
						[0.025	0.9/5]
year	0.3380	0.018	18	.524	0.000	0.302	0.374
BB	0.3019	0.059	5	.151	0.000	0.187	0.417
HBP	0.1914	0.043	4	.411	0.000	0.106	0.277
SO	0.0439	0.051	0	.854	0.393	-0.057	0.145
height	0.2135	0.032	6	.701	0.000	0.151	0.276
age_year	0.2850	0.024	11	.762	0.000	0.237	0.333
HR	0.0194	0.009	2	.064	0.039	0.001	0.038
SB	0.0052	0.007	0	.749	0.454	-0.008	0.019
Н	0.0293	0.013	2	.217	0.027	0.003	0.055
Omnibus:	=======	 . 580	3 41	Durbin	-Watson:		1.987
Prob(Omnibus)				Jarque	-Bera (JB):		8336.581
Skew:			255	Prob(JB):			0.00
Kurtosis:		13.	780	Cond.	No.		17.3

다중공선성 (Multicollinearity)

■ 설명변수 간 상관관계가 강해 설명변수의 일부를 다른 설명변수의 선형결합으로 표현가능한 것

■ 상관계수, scatter plot, heatmap 등 확인

- i 번째 설명변수를 다른 설명변수들로 회귀한 성능
- 다른 설명변수들과 상관관계가 강할수록 VIF 값이 큼
- VIF > 10 이면 다중공선성 존재한다고 판단!

 $VIF_i = \frac{\sigma^2}{(n-1)Var[X_i]} \cdot \frac{1}{1 - R^2}$

다중공선성을 제거하는 이유?

- 설명변수 간 독립적이지 않으면 회귀계수의 추정이 <mark>불안정</mark>하게 됨!
- 추정값이 존재하지 않거나, 추정값의 분산이 매우 매우 커지거나 ...

설명변수끼리 완벽한 선형관계가 존재하면 이 부분이 Full rank가 아니어서 역행렬 존재하지 않음

완벽한 선형관계가 아니더라도, 강한 다중공선성이 존재하면 이 부분이 작아서 역행렬을 취하면 값이 매우 커짐

-> <mark>회귀 계수의 분산</mark>이 매우 커지게 되어 불안정한 추 정이 됨

Ex) 학업성취도(Y) ~ 일평균 음주량(X1), 일평균 혈중 알코올농도(X2)

 $B1_hat = -0.5$, $B2_hat = -24$

다중공선성 제거 방법

- 1. 더 많은 데이터 수집
- 2. 상관관계 가장 높은 변수 제거
- 3. PCA: 차원 축소 (dimension reduction) -> 향후 강의 있을 예정 ..
- 4. Ridge / Lasso Regression

과적합(Overfitting)

■ 모형이 Train data에만 너무 딱 맞게 적합되어서, 실제 data에는 성능이 낮게 나오는 경우

정규화 (Regularization)

■ 모델이 복잡해질수록 penalty를 크게 주도록, 목적 함수에 항을 하나 더 추가

$$\min_{\theta} J(\theta), \text{ where } J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2 + 1000\theta_3^2 + 1000\theta_4^2$$

정규화 (Regularization)

1. Ridge Regression

정규화 (Regularization)

2. Lasso Regression

$$J(\theta) = \text{MSE}(\theta) + \alpha \sum_{i=1}^{n} |\theta_i|$$
 (α : 정규화 계수)

Unit 02 | 회귀 진단

정규화 (Regularization)

2. Lasso Regression

$$J(\theta) = \text{MSE}(\theta) + \alpha \sum_{i=1}^{n} |\theta_i|$$
 (α : 정규화 계수)

(+Elastic Net Regression)
https://brunch.co.kr/@itschloe1/11

Unit 02 | 회귀 진단

< 마무리 > 선형회귀분석

- 1. 회귀 모형 설정 : 반응변수 및 주요 설명변수 파악
- 2. 선형성 검토 : 산점도를 통해 상관관계 파악
- 3. 설명변수 검토 : 각 변수들의 분포 확인 + 다중공선성 파악
- 4. 모델 적합: 모형의 회귀계수 추정 및 모형의 적절성 검토
- 5. 변수 선택 : 중요 설명변수 선택
- 6. 적합된 모형 검토 : 오차 가정 체크
- 7. 최종 모형 선택

n t S

Unit 01 | 선형 회귀분석

Unit 02 | 회귀 진단

Unit 03 | 로지스틱 회귀분석

Unit 04 | 최대우도추정

로지스틱 회귀분석

새로운 관측치가 있을 때, 이를 기존 범주 중 하나로 예측 (범주 예측)

로지스틱 회귀모델의 예시: "분류"

- 제품이 불량인지 정상인지
- 고객이 이탈고객인지 잔류고객인지
- 카드 거래가 정상인지 사기인지
- 내원 고객이 질병이 있는지 없는지

범주형 변수를 선형회귀로 예측한다면 ...?

범위가 일치하지 않음!

- 1. 선형회귀 (-inf, +inf)
- 2. 로지스틱 0 / 1

중간 범주가 없고, 숫자가 아무런 의미를 지니지 않게 됨

-> Y가 범주형(categorical) 변수일 때는 다중선형회귀 모델을 그대로 적용할 수 없다!

Logistic function (Sigmoid function)

Output 범위 : (0, 1) Input 값에 대해 단조증가 (or 단조감소)

$$f(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

Odds(승산)

$$E(y) = \pi(X = x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$
 β_1 의 해석 직관적이지 못함!

$$Odds = \frac{p}{1-p} = rac{ 성공확률}{ 실패확률}$$

Odds (승산)

성공 확률을 p로 정의할 때, 실패 대비 성공 확률의 비율

로짓 변환 (Logit Transformation)

Logit function
$$\log(Odds) = \log\left(\frac{\pi(X=x)}{1-\pi(X=x)}\right) = \log\left(\frac{\frac{1}{1+e^{-(\beta_0+\beta_1x)}}}{1-\frac{1}{1+e^{-(\beta_0+\beta_1x)}}}\right) = \beta_0 + \beta_1x$$

$$P(Y_i = 1) = \pi_i$$

$$P(Y_i = 0) = 1 - \pi_i$$

 β_1 의 의미 : x가 한 단위 증가했을 때, $\log(\text{Odds})$ 의 증가량

Odds Ratio(승산비)

$$\widehat{O_R} = \frac{Odds_{x+1}}{Odds_x} = e^{\widehat{\beta_1}}$$

OR > 1 : 독립변수가 종속변수에 양의 방향으로 영향

을 미침

OR < 1 : 독립변수가 종속변수에 음의 방향으로 영향

을 미침

OR = 1: 독립변수가 종속변수에 영향을 미치지 않음

대출여부(0 or 1)에 관한 로지스틱 회귀분석

Logit Regression Results

Dep. Variable: Personal Loan		an No. (No. Observations:		1750	
Model:	Model: Logit		Df Residuals:		1738	
Method:	Method: MLE		Df Model:		11	
Date:	Fri, 23 Aug 20	19 Ps	Pseudo R-squ.:		0.6030	
Time:	14:55:	31 Lo	Log-Likelihood:		-229.35	
converged:	Tr	ue	LL-I	Null:	-577.63	
	LLR p-value: 2.927e-142					
	coef	std err	z	P> z	[0.025	0.975]
А	ge 0.0245	0.102	0.240	0.810	-0.175	0.224
CCA	vg 0.0985	0.063	1.562	0.118	-0.025	0.222
CD Accou	int 4.3726	0.568	7.703	0.000	3.260	5.485
CreditCa	rd -1.2374	0.337	-3.667	0.000	-1.899	-0.576
Educati	on 1.5203	0.190	7.999	0.000	1.148	1.893
Experien	ce -0.0070	0.102	-0.069	0.945	-0.206	0.192
Fam	ily 0.7579	0.128	5.914	0.000	0.507	1.009
Incor	ne 0.0547	0.004	12.659	0.000	0.046	0.063
Mortga	ge -0.0001	0.001	-0.144	0.885	-0.002	0.002
Onli	ne -0.4407	0.263	-1.674	0.094	-0.957	0.075
Securities Accou	int -1.8520	0.561	-3.299	0.001	-2.952	-0.752
cor	ist -13.9203	2.773	-5.021	0.000	-19.354	-8.486

Age의 Coefficient = 0.0245

Age의 Coefficient = $ln(\frac{odds_{x+1}(\downarrow l) \uparrow odds_{x}(\downarrow l)}{odds_{x}(\downarrow l) \downarrow odds_{x}(\downarrow l)})$

따라서, e 변환으로 \ln 제거 -> 오즈비만 남게됨 $e^{0.0245}=1.024$,

다른 효과 동일, Age가 한 단위 증가할 때 대출(Y=1)할 확률이 1.024배 증가한다.

다른 효과 동일, Age가 한 단위 증가할 때 대출(Y=1)할 확률이 2.4% 증가한다.

회귀 계수의 해석

■ <u>Linear Regression</u>: 설명변수가 1만큼 증가함에 따른 반응변수의 변화량

$$\widehat{y} = \widehat{\beta_0} + \widehat{\beta_1} x_1 + \dots + \widehat{\beta_p} x_p$$

■ Logistic Regression : 설명변수가 1만큼 증가함에 따른 로그 오즈의 변화량

$$\log(Odds) = \widehat{\beta_0} + \widehat{\beta_1}x_1 + \dots + \widehat{\beta_p}x_p$$

n t S

Unit 01 | 선형 회귀분석

Unit 02 | 회귀 진단

Unit 03 | 로지스틱 회귀분석

Unit 04 | 최대우도추정

최적의 가설 (Optimal Hypothesis)

- ■How? Input과 Output 사이의 <mark>최적의 가설</mark> 어떻게 알아낼 수 있을까?
- Linear Regression : $\hat{y} = \widehat{\beta_0} + \widehat{\beta_1} x_1 + \dots + \widehat{\beta_p} x_p$ $LSE(최소제곱법) \qquad J(\theta) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) y^{(i)} \right)^2$
- Logistic Regression: $f(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$
- ■How? Input과 Output 사이의 <mark>최적의 가설</mark> 어떻게 알아낼 수 있을까?

LSE(최소제곱법) ???

최적의 가설 (Optimal Hypothesis)

- ■How? Input과 Output 사이의 <mark>최적의 가설</mark> 어떻게 알아낼 수 있을까?
- Linear Regression : $\hat{y} = \widehat{\beta_0} + \widehat{\beta_1} x_1 + \dots + \widehat{\beta_p} x_p$ $LSE(최소제곱법) \qquad J(\theta) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) y^{(i)} \right)^2$
- Logistic Regression: $f(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$
- ■**How?** Input과 Output 사이의 <mark>최적의 가설 어떻게</mark> 알아낼 수 있을까? LSE(최소제곱법) (X)

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 = \frac{1}{2m} \sum_{i=1}^{m} \left(\frac{1}{1 + e^{\theta^T x^{(i)}}} - y^{(i)} \right)^2$$

Not quadratic ! (i.e., non-convex)

MLE (Maximum Likelihood Estimtion) : 최대 우도 추정법

선형회귀분석(최소제곱법)과 달리, MLE로 계수를 추정한다!

$$\pi(X) = \frac{1}{1 + e^{-(\widehat{\beta_0} + \widehat{\beta_1} x_1 + \dots + \widehat{\beta_k} x_k)}}$$

최대 우도 추정 (Maximum Likelihood Estimation)

$$\hat{\theta} = \underset{\theta}{argmax} L(\theta)$$

우도를 최대화하는 parameter 추정!

Likelihood(우도, 가능도)

- Probability 주어진 확률분포에서 해당 관측값이 나올 확률
- Likelihood 어떤 값이 관측되었을 때, 이것이 어떤 확률분포에서 왔을지에 대한 가능성

<u>확률(Probability)</u>

pr(weight between 32 and 34 grams | mean = 32 and standard deviation = 2.5)

가능도(Likelihood)

 $L(\text{mean} = 32 \text{ and standard deviation} = 2.5 \mid \text{mouse weighs } 34 \text{ grams})$

가능도(Likelihood)

L(mean = 32 and standard deviation = 2.5 | mouse weighs 34 grams)

Limean = 34 and standard deviation = 2.5 mouse weighs 34 grams)

최종 로지스틱 모델

최적 파라미터를 적합시킨 모델

$$\pi(X) = f(X) = \frac{1}{1 + e^{-(\widehat{\beta_0} + \widehat{\beta_1}x_1 + \dots + \widehat{\beta_k}x_k)}}$$

$$=\frac{1}{1+e^{-\widehat{\beta}X}}$$

Model Evaluation

,			Actual		
Confusion			실제 정답		
	Matrix		Р	N	
P	redicted 분류	Р	True Positive	False Positive	
	결과	N	False Negative	True Negative	

- 1. True / False: 예측이 정확한가(T) 아닌가(F)?
- 2. Positive / Negative : 1로 예측하면 Positive, 0으로 예측하면 Negative

Accuracy : 정확도

- 예측 결과가 실제와 얼마나 동일한지 측정
- 실제 분포가 편향(skewed) 되어 있는 경우 적합 하지 않음

Accuracy =
$$\frac{TP+TN}{TP+FN+FP+TN}$$

ex. Y = 질병 유무

질병이 없는 경우(Y=0)가 질병이 있는 경우(Y=1)보다 훨씬 많을 것!

이 때 분류 모형을 학습시키게 되면 Y=0일 때를 더 많이 학습 하게 됨

-> 실제 데이터와 무관하게 Y=0이라고 예측할 확률이 커짐

즉, Accuracy는 TN, TP를 한번에 고려하므로, TN은 높지만 TP가 낮은 경우는 고려하지 못하게 됨!

Precision and Recall

		Actual		
Confusion Matrix		실제 정답		
		Р	N	
Predicted 분류	Р	True Positive	False Positive	
결과	N	False Negative	True Negative	

Precision : 정밀도

- True라고 분류한 것 중에서 실제 True인 것의 비율

Precision =
$$\frac{TP}{TP+FP}$$

Recall (= sensitivity) : 재현율

- 실제 True인 것 중에서 True라고 예측한 것의 비율

Recall =
$$\frac{TP}{TP+FN}$$

(cf) Precision과 Recall은 Trade-off 관계

-> 두 개의 값을 동시에 높일 수 없다!

Precision =
$$\frac{b}{b+c}$$
 , Recall = $\frac{b}{a+b}$ a 부분이 c로 다 흡수된다면..?

•				
		True	False	
분류 결과	True	TP(20)	FP(40)	
	False	FN(30)	TN(10)	

Precision =
$$\frac{20}{60}$$
 = 33.3%
Recall = $\frac{20}{50}$ = 40%

실제 정답

		실제 정답		
		True	False	
분류 결과	True	TP(20)	FP(80)	

Precision =
$$\frac{20}{100}$$
 = 20%
Recall = $\frac{20}{20}$ = 100%

F1 score Precision과 Recall의 조화평균

F1 score

$$= 2 \times \frac{1}{\frac{1}{Precision} + \frac{1}{Recall}}$$

=
$$2 \times \frac{Precision \times Recall}{Precision + Recall}$$

< 마무리 > 로지스틱 회귀분석

- 1. 범주형 변수 Y 분류
- 2. f(x) = 1 / (1+exp(-X*beta)) : 확률값 예측
- 3. Logit = log(Odds) = log(p/(1-p))
- 4. Beta1 = log(Odds)의 변화량
- 5. 최적의 가설 (beta) 구하기, MLE 이용
- 6. Recall, Precision, F1- Score 기준 Classification 성능개선

Assignment

- <과제1> 행렬 구현
- LSE normal equation, MSE 구현 (Assignment1 파일에서 함수 구현하기)
- MLE 서술형 문제
- <과제2> 회귀분석: Used Car Price Prediction
- 배운 내용을 토대로 자유롭게 회귀분석과 회귀진단을 해주세요
- **해석을 상세하게 달아주세요!**
- <과제3> 로지스틱 회귀분석 : Credit Card Fraud Detection
- 1. sklearn 패키지를 사용해 로지스틱 회귀모형으로 데이터를 분석해 주세요
- 2. 성능지표를 계산하고 이에 대해 해석해 주세요
 - sklearn : mean accuracy, f1 score 등 다양한 성능지표 계산
 - confusion matrix : tp, fp, fn, tn 값을 통해 성능지표 계산
- 3. 어떤 성능지표를 기준으로 성능을 개선을 시도했고, 선택의 이유를 적어주세요.
- **해석을 상세하게 달아주세요 !**

Reference

```
<회귀분석>
```

투빅스 12기 이홍정님 강의자료, 투빅스 11기 심은선님 강의자료 / 투빅스 2기 김상진님 강의자료

이화여자대학교 통계학과 임용빈 교수님 강의

건국대학교 응용통계학과 유규상 교수님 강의 <회귀분석>

건국대학교 전자전기공학부 김원준 교수님 강의

Regression Analysis by Example edition 5, Samprit Chatterjee/ Ali S. Hadi

<로지스틱 회귀분석>

투빅스 12기 이유진님 강의자료, 투빅스 11기 이영전님 강의자료

건국대학교 응용통계학과 유규상 교수님 강의 <경제자료분석>

건국대학교 전자전기공학부 김원준 교수님 강의

로지스틱 회귀분석에서 통계량의 이해 : https://nittaku.tistory.com/478

<최대우도 추정>

https://rk1993.tistory.com/entry/%EC%B5%9C%EB%8C%80%EC%9A%B0%EB%8F%84%EC%B6%94%EC%A0%95%EB%B2%95

https://jjangjjong.tistory.com/41

Q & A

들어주셔서 감사합니다.

Unit 01 | 선형 회귀분석

최소제곱법 with 행렬

$$Y = X\beta + \varepsilon$$

n : data 개수

p : feature 개수 (column / variable)

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \beta_0 & \beta_1 x_{11} & \dots \beta_p x_{1p} \\ \beta_0 & \beta_1 x_{21} & \beta_p x_{2p} \\ \vdots & \vdots & \dots \vdots \\ \beta_0 & \beta_1 x_{n1} & \dots \beta_p x_{np} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$$

Unit 01 | 선형 회귀분석

최소제곱법 with 행렬

< Normal Equation > 정규방정식

$$\hat{\beta} = (X'X)^{-1}X'y$$

Cross Entropy

- 분류에서의 학습을 위한 손실함수 = 입력값과 출력분포의 차이를 최소화
- Likelihood : $L(\mathbf{y}, \boldsymbol{\beta}) = \prod_{i=1}^{n} f_i(y_i) = \prod_{i=1}^{n} \pi_i^{y_i} (1 \pi_i)^{1 y_i}$
- log-likelihood : $\log(L(p)) = \sum_{i=1}^{n} [y_i \log(p) + (1 y_i) \log(1 p)]$
- Cross-Entropy Loss : $-\log(L) = -\sum_{i=1}^{n} [y_i \log(p) + (1 y_i) \log(1 p)]$
- Cross-Entropy Loss <u>Minimize</u> = log-likelihood Function <u>Maximize</u>

Multiclass 범주에서의 로지스틱 회귀

https://ratsgo.github.io/machine%20learning/2017/04/02/logistic/

- Binary Classification : log(Odds)
- Multiclass Classification : Baseline logit model

$$\log \frac{P(Y=1|X=\overrightarrow{x})}{P(Y=3|X=\overrightarrow{x})} = \beta_1^T \overrightarrow{x}$$
$$\log \frac{P(Y=2|X=\overrightarrow{x})}{P(Y=3|X=\overrightarrow{x})} = \beta_2^T \overrightarrow{x}$$

Y=3을 기준으로 하는 baseline logit model P(Y=3) = 1 - P(Y=1) - P(Y=2) -> 두 개의 계수 추정만 이루어지게 됨! 앞에서 했던 것처럼 로그 확률비를 확률의 형태로 변환 하고, 일반화된 형태를 취하면, 다음과 같은 형태를 보임

$$P(Y=c) = \frac{e^{\beta_c \xrightarrow{T}} \overrightarrow{x}}{\sum_{k=1}^{K} e^{\beta_k \xrightarrow{T}} \overrightarrow{x}}$$

c번째 범주에 속할 확률

⇔

Neural Network의 활성화 함수로 쓰이는

Softmax 함수와 동일한 형태!

MLE in 로지스틱 회귀

• 관측값 y_i 에서의 확률 분포 : $f_i(y_i) = \pi_i^{y_i} (1-\pi_i)^{1-y_i}, i=1,2,...,n$

■ Likelihood Function : $L(\mathbf{y}, \boldsymbol{\beta}) = \prod_{i=1}^{n} f_i(y_i) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$

■ log-likelihood :
$$\ln L(\mathbf{y}, \boldsymbol{\beta}) = \ln \prod_{i=1}^{n} f_i(y_i) = \sum_{i=1}^{n} \left| y_i \ln \left(\frac{\pi_i}{1 - \pi_i} \right) \right| + \sum_{i=1}^{n} \ln(1 - \pi_i)$$

MLE in 로지스틱 회귀

$$\ln L = \sum y_i (\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k) - \sum \ln(1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k})$$

(cf)
$$\log(Odds) = \log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k \ \& \ \pi_i = \frac{1}{1+e^{-(\beta_0+\beta_1 X_1+\dots+\beta_k X_k)}}$$

- \longrightarrow log-likelihood function이 최대가 되는 파라미터 β 결정 !
 - log-likelihood 함수는 비선형 함수이므로, 선형회귀 모델처럼 명시적인 해가 존재하지 않음
 - 따라서 Gradient Descent 등의 수치 최적화 알고리즘을 이용해 해를 구합니다!

Cutoff (=Threshold)

- Classification 을 위한 기준값
- 로지스틱 함수로부터 구한 성공확률이 <u>cutoff 이상이면 1 / cutoff 이하이면 0</u>으로 분류

- ✓ 사전 확률을 고려한 cutoff
- ✓ 검증 데이터의 성능을 최대화하는 cutoff

ROC Curve

여러 cutoff value 값을 기준으로

- -> confusion matrix에서 sensitivity, specificity 계산
- -> 값을 기준으로 그림을 그린 것

AUC (=Area Under Curve)

- = ROC curve의 넓이 (0.5≤AUC≤1)
- = 값이 클수록 모델의 성능이 좋다

Sensitivity =
$$\frac{TP}{TP+FN}$$
 , Specificity = $\frac{TN}{FP+TN}$