

Scanned by CamScanner

Scanned by CamScanner

$\frac{dF}{dx} = \frac{F(xy+1) - F(xy)}{h} \frac{dF}{dx} = f(x)$
$E_{j+1} = E_j + \Delta h f_{n+1}$
$\frac{d^{2} + \frac{d^{2} \psi}{dx^{2}}(x^{2})^{2} - \psi(x_{3}-1) + 2\psi(x_{3}^{2}) - \psi(x_{3}-1)}{4^{2}}$
- dx (x) ~ h2 - 4, -1 + 2 us - uj-1 = h2 1's
$Tu = h^2 f'$
$T = \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ 0 & -1 & 2 & -1 \end{bmatrix}$
-12
$\Psi = T R^2 f$
Steps
→ Derive du corresponding porson equation
→ Initialize charge distribution [From analytical Linkelow → Make T matrix $y=1+\sqrt{1\pm 9}$ ———————————————————————————————————
-> Make T matrix $f = + + + + + + + + + + + + + + + + + + $
- Make het matrix by applying boundary conditions
→ Find #.