[86.03/66.25] Dispositivos Semiconductores 1er Cuatrimestre de 2020

Transistor TBJ

En el TP3 se pedía medir varias características de un transistor TBJ, entre ellas su **curva de salida** (I_C vs V_{CE}). Además se contaba únicamente con una fuente de alimentación y dos multímetros.

En el TP3 se pedía medir varias características de un transistor TBJ, entre ellas su **curva de salida** (I_C vs V_{CE}). Además se contaba únicamente con una fuente de alimentación y dos multímetros.

 \longrightarrow Con R_B fija $\rightarrow I_B$ fija \rightarrow Curva de salida fija para un $I_{C_{MAD}}$

Mediante R_{var} cambio V_{CE} y me "muevo" sobre la curva de salida.

¿Como? La recta de carga es una forma de pensarlo

¿Podemos medir toda la curva de salida de esta manera?

No, necesitaríamos una resistencia infinita para logara medir toda la zona de saturación.

En el TP se les pedía que releven solo una parte de la curva, para lo cual es necesario realizar algunas cuentas para saber que valores de resistencias hay que comprar.

Dado el siguiente circuito para la medición de la curva de salida del transistor:

- a. Hallar el valor de R_B tal que la corriente en MAD sea $I_{C_{MAD}}=1.5\ mA$
- b. Obtener los valores de R_C y R_{var} que permiten relevar la curva de salida entre el punto donde $V_{CE}=3~V$ y el punto donde $I_C=50\%~I_{C_{MAD}}$

Datos del dispositivo: $\beta_F = 150 \text{ y } V_A \rightarrow \infty$

Dado el siguiente circuito para la medición de la curva de salida del transistor:

- a. Hallar el valor de R_B tal que la corriente en MAD sea $I_{C_{MAD}}=1.5\ mA$
- b. Obtener los valores de R_C y R_{var} que permiten relevar la curva de salida entre el punto donde $V_{CE}=3~V$ y el punto donde $I_C=50\%~I_{C_{MAD}}$

Datos del dispositivo: $\beta_F = 150 \text{ y } V_A \rightarrow \infty$

a) Hallar el valor de R_B tal que la corriente en MAD sea $I_{C_{MAD}} = 1.5 \ mA$

Comencemos indicando referencias de tensión y corriente.

Dado el siguiente circuito para la medición de la curva de salida del transistor:

- a. Hallar el valor de R_B tal que la corriente en MAD sea $I_{C_{MAD}}=1.5\ mA$
- b. Obtener los valores de R_C y R_{var} que permiten relevar la curva de salida entre el punto donde $V_{CE}=3~V$ y el punto donde $I_C=50\%~I_{C_{MAD}}$

Datos del dispositivo: $\beta_F = 150 \text{ y } V_A \rightarrow \infty$

a) Hallar el valor de R_B tal que la corriente en MAD sea $I_{C_{MAD}}=1.5\ mA$

Comencemos indicando referencias de tensión y corriente.

Recorriendo la malla de entrada obtenemos:

$$V_{CC} - I_B R_B - V_{BE} = 0 \quad (I)$$

→ Recorriendo la malla de entrada obtenemos:

$$V_{CC} - I_B R_B - V_{BE} = 0 \quad (I)$$

 \longrightarrow Queremos que la corriente en MAD sea $I_C=1.5~mA$

MAD:
$$\begin{cases} V_{BE} = V_{BE(ON)} = 0.7 V \\ V_{CE} > V_{CE_{SAT}} = 0.2 V \\ I_{C} = \beta_{F} I_{B} \end{cases}$$

Recorriendo la malla de entrada obtenemos:

$$V_{CC} - I_B R_B - V_{BE} = 0 \quad (I)$$

 \longrightarrow Queremos que la corriente en MAD sea $I_C=1.5\ mA$

MAD:
$$\begin{cases} V_{BE} = V_{BE(ON)} = 0.7 \ V \\ V_{CE} > V_{CE_{SAT}} = 0.2 \ V \\ I_{C} = \beta_{F} \ I_{B} \end{cases} \rightarrow I_{B} = \frac{I_{C}}{\beta_{F}} = \frac{1.5 \ mA}{150} = 10 \ \mu A$$

Recorriendo la malla de entrada obtenemos:

$$V_{CC} - I_B R_B - V_{BE} = 0 \quad (I)$$

—— Queremos que la corriente en MAD sea $I_C = 1.5 \ mA$

MAD:
$$\begin{cases} V_{BE} = V_{BE(ON)} = 0.7 \ V \\ V_{CE} > V_{CE_{SAT}} = 0.2 \ V \\ I_{C} = \beta_{F} \ I_{B} \end{cases} \rightarrow I_{B} = \frac{I_{C}}{\beta_{F}} = \frac{1.5 \ mA}{150} = 10 \ \mu A$$

 \longrightarrow Volviendo a (I) despejamos R_B como:

$$R_{B} = \frac{V_{CC} - V_{BE(ON)}}{I_{B}} = \frac{5 V - 0.7 V}{10 \mu A} = 430 k\Omega$$

En este caso no es necesario verificar MAD ya que es "dato" del enunciado.

b) Obtener los valores de R_C y R_{var} que permiten relevar la curva de salida entre el punto donde $V_{CE}=3~V~(1)$ y el punto donde $I_C=50\%~I_{C_{MAD}}~(2)$

b) Obtener los valores de R_C y R_{var} que permiten relevar la curva de salida entre el punto donde $V_{CE}=3~V~(1)$ y el punto donde $I_C=50\%~I_{C_{MAD}}~(2)$

→ Resolvamos usando la recta de carga.

b) Obtener los valores de R_C y R_{var} que permiten relevar la curva de salida entre el punto donde $V_{CE}=3~V~(1)$ y el punto donde $I_C=50\%~I_{C_{MAD}}~(2)$.

• ¿Cómo conozco mi transistor?

¿Cómo conozco mi transistor?

Hoja de datos

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

Characteristic		Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS						
DC Current Gain (I _C = 10 μA, V _{CE} = 5.0 V)	BC547A/548A BC546B/547B/548B BC548C	hFE	_ _ _	90 150 270	_ _ _	_
$(I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$ $(I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC546 BC547 BC548 BC547A/548A BC546B/547B/548B BC547C/BC548C BC547A/548A BC546B/547B/548B BC548C		110 110 110 110 200 420 — —	 180 290 520 120 180 300	450 800 800 220 450 800	
Collector-Emitter Saturation Voltage (I _C = 10 mA, I _B = 0.5 mA) (I _C = 100 mA, I _B = 5.0 mA) (I _C = 10 mA, I _B = See Note 1)		VCE(sat)	_ _ _	0.09 0.2 0.3	0.25 0.6 0.6	V
Base-Emitter Saturation Voltage (I _C = 10 mA, I _B = 0.5 mA)		V _{BE(sat)}	_	0.7	_	V
Base–Emitter On Voltage (I _C = 2.0 mA, V _{CE} = 5.0 V) (I _C = 10 mA, V _{CE} = 5.0 V)		V _{BE(on)}	0.55 —		0.7 0.77	V

¿Cómo conozco mi transistor?

Lo puedo medir (si tengo el dispositivo). En el manual del dispositivo indica las condiciones de medición.

• ¿Y las resistencias?

• ¿Y las resistencias?

Valores normalizados de potenciómetros

Valores normalizados de resistencias

No.de Parte:	Resistencia	Potencia		
135-100	100 Ohms	0.5 Watts		
135-500	500 Ohms	0.5 Watts		
135-1K	1 KOhms	0.5 Watts		
135-5K	5 KOhms	0.5 Watts		
135-10K	10 KOhms	0.5 Watts		
135-20K	20 KOhms	0.5 Watts		
135-50K	50 KOhms	0.5 Watts		
135-100K	100 KOhms	0.5 Watts		
135-250K	250 KOhms	0.5 Watts		
135-500K	500 KOhms	0.5 Watts		
135-1M	1 MOhms	0.5 Watts		

Valores Comerciales de Resistencias en Ohm (Ω)									
1	10	100	1,000	10,000	100,000	1,000,000	10,000,000		
1.2	12	120	1,200	12,000	120,000	1,200,000			
1.5	15	150	1,500	15,000	150,000	1,500,000			
1.8	18	180	1,800	18,000	180,000	1,800,000			
2.2	22	220	2,200	22,000	220,000	2,200,000			
2.7	27	270	2,700	27,000	270,000	2,700,000			
3.3	33	330	3,300	33,000	330,000	3,300,000			
3.9	39	390	3,900	39,000	390,000	3,900,000			
4.7	47	470	4,700	47,000	470,000	4,700,000			
5.6	56	560	5,600	56,000	560,000	5,600,000			
6.8	68	680	6,800	68,000	680,000	6,800,000			
8.2	82	820	8,200	82,000	820,000	8,200,000			

Y las resistencias?

Recalcular I_{BQ} , $I_{C_{MAD}}$ y el rango que puedo medir de la curva de salida (el punto de V_{CE_Q} máxima y el valor de I_{CQ} mínima) si las resistencias tiene valores comerciales de $R_B=390~k\Omega$, $R_C=1.2~k\Omega$ y R_{var} es un potenciómetro de 5 $k\Omega$.