

PROJETO 2

CLASSIFICADOR NAIVE BAYES

CLASSIFICADOR NAIVE BAYES PARA CLASSIFICAR MENSAGEM SPAM OU HAM

1. PROBLEMA

O Classificador Naive-Bayes, o qual se baseia no uso do teorema de Bayes, é largamente utilizado em filtros anti-spam de e-mails. O classificador permite calcular qual a probabilidade de uma mensagem ser SPAM considerando as palavras em seu conteúdo e, de forma complementar, permite calcular a probabilidade de uma mensagem ser HAM dada as palavras descritas na mensagem.

Para realizar o MVP (minimum viable product) do projeto, você precisa programar uma versão do classificador que "aprende" o que é uma mensagem SPAM considerando uma base de treinamento e comparar o desempenho dos resultados com uma base de testes.

2. Separação da base de dados em Treinamento e Teste

A base de dados deve ser separada em duas partes, aleatoriamente, considerando:

- 75% dos dados para a parte Treinamento. Essa parte será considerada para criar um classificador que aprenda quais são as palavras pertencentes às mensagens SPAM e quais são as pertencentes às mensagens HAM.
- 25% dos dados para a parte Teste. Essa parte será considerada para classificar as mensagens como SPAM ou HAM utilizando o classificador criado no item anterior.

Obs.: <u>Apenas</u> aqui sua dupla pode usar alguma biblioteca que possua um comando já pronto que realiza essa separação na base de dados.

3. Classificador Naive-Bayes

Para desenvolver o Classificador, faça:

- 1. Com a base de treinamento montada:
 - a. Limpe as mensagens removendo caracteres que não afetam a classificação: :; "; '; (,), etc.
 - b. Corrija a separação de espaços entre palavras e/ou emojis.
 - c. Proponha outras limpezas/transformações que não afetem a qualidade da informação.
- 2. Calcule as probabilidades marginais e condicionais necessárias para classificar uma nova mensagem. Ou seja, calcule:

P(SPAM): probabilidade de uma mensagem ser SPAM;

 $P(HAM) = P(SPAM^{C})$: probabilidade de uma mensagem ser HAM;

 $P(word \mid SPAM)$: probabilidade de uma palavra (word) acontecer se a mensagem na base treinamento é considerada SPAM;

 $P(word \mid HAM)$: probabilidade de uma palavra acontecer se a mensagem na base treinamento é considerada HAM.

3. Agora, para classificar uma mensagem da base de teste, terá que saber calcular as probabilidades:

$$P(SPAM \mid mensagem) = ?$$
 (1)
 $P(HAM \mid mensagem) = ?$ (2)

Nesse caso, estude atentamente como fazer isso utilizando o link: https://monkeylearn.com/blog/practical-explanation-naive-bayes-classifier/

4. Para testar o seu Classificador, considere a base de teste. Para tanto, sua dupla deve extrair as seguintes medidas:

% de falsos positivos (mensagens marcadas como SPAM mas não são SPAM);

% de positivos verdadeiros (mensagens marcadas como SPAM e são SPAM);

% de falsos negativos (mensagens marcadas como não SPAM mas são SPAM);

% de negativos verdadeiros (mensagens marcadas como não SPAM e não são SPAM).

5. Discuta a qualidade do seu Classificador!

4. Curva ROC

Para definir se uma mensagem será classificada como SPAM ou HAM, é necessário escolher uma regra de predição utilizando as probabilidades descritas nas equações (1) e (2). Certamente sua dupla escolheu alguma regra no Classificador criado anteriormente.

De qualquer forma, é intuitivo pensar que:

- \checkmark se o valor de $P(SPAM \mid mensagem)$ for grande (perto de 1), a mensagem deva ser classificada como SPAM; e
- ✓ se *P(SPAM | mensagem)* for pequeno (perto de 0), a mensagem deva ser classificada como não SPAM (ou HAM).

Mas como determinar o ponto que para os valores dessa probabilidade próximos de 0,5, por exemplo. Esse ponto é conhecido como ponto de corte. A curva ROC pode ser uma alternativa para determinar o melhor ponto de corte.

Considerando a base de treinamento e a base de teste definidas no tópico acima **Classificador**Naive-Bayes, construa a curva ROC alternando, no seu Classificador, o ponto de corte entre valores de 0 e 1. Essa alteração deverá refletir mudanças nos itens 3 e 4 apenas.

Antes, porém, faça a leitura atenta dos links abaixo:

http://www.portalaction.com.br/analise-de-regressao/45-predicao

http://crsouza.com/2009/07/13/analise-de-poder-discriminativo-atraves-de-curvas-roc/

5. Qualidade do Classificador alterando a base de treinamento

Um importante passo no aprendizado de máquina é trabalhar com uma boa base de dados para o treinamento e teste do seu classificador. Entretanto, é razoável pensar que a divisão de dados utilizada no seu Classificador representa uma entre muitas possíveis combinações em dividir a base de dados total em ¾ para treinamento e ¼ para teste.

Assim sendo, aqui o objetivo é avaliar como a base de dados treinamento pode interferir numa melhor ou não tão boa classificação das mensagens contidas na base de teste.

Nesse caso, faça:

- 1. Repita 10.000 vezes o tópico **Separação da base de dados em Treinamento e Teste**;
- Para cada base separada, faça os itens de 1 a 4 descritos no tópico Classificador Naive-Bayes
 e guarde os percentuais de acertos (= % de positivos verdadeiros + % de negativos verdadeiros);
- 3. Construa um histograma com esses percentuais de acertos;
- 4. Discuta o resultado do histograma refletindo sobre possíveis vantagens ou desvantagens sobre construir um Classificador considerando uma única vez a divisão da base de dados em treinamento e em teste.

REGRAS:

- 1. O Projeto 2 é estritamente INDIVIDUAL ou em DUPLA;
- 2. Use o arquivo layout disponibilizado na pasta Projeto2 do GitHub ou Blackboard;
- 3. O projeto deve ser claro e organizado respeitando o que foi pedido com interpretações e/ou conclusões quando solicitadas.

A estrutura do documento deve ser clara e de fácil compreensão da linha de raciocínio. Nesse caso, o notebook não deve haver excesso de impressões não discutidas ou de códigos não utilizados.

Após finalização do projeto, aconselhamos que sua dupla faça uma análise geral e salve com outro nome, limpe seu IPython Notebook apenas com os resultados relevantes e melhore seu texto.

- 4. Seu projeto deve ser adicionado no seu GitHub dentro de uma pasta chamada Projeto2.
- 5. O arquivo DEVE ser com extensão .ipynb

CRONOGRAMA:

DATA	Finalização:
21/03	APS3: Check descrito na Aula 08 Agende seu horário no link https://doodle.com/poll/cpf4hct47af25nwt
22/03	Aula Estúdio É importante que o projeto já esteja quase concluído
23/03	PROJETO 2 FINALIZADO Fazer git push em seu Github até 23:59 do Projeto 2 finalizado.

RUBRICS DE AVALIAÇÃO DO OBJETIVO DE APRENDIZADO

Objetivo de aprendizado	Insatisfatório (I)	Em desenvolvimento (D)	Essencial (C)	Proficiente (B)	Avançado (A)
Aplicar teoria de probabilidade adequadamente. (Especificar as distribuições de probabilidades adequadas para as variáveis quantitativas discretas e/ou contínuas)	Não consegue trabalhar com bases de dados de forma proficiente. Apresenta problemas com arquivos, formatos de arquivos ou não tem habilidades básicas de separação dos dados.	praticamente uma coleção de comandos	Descreve com riqueza de detalhes o tópico Classificador Naive Bayes descrito no Projeto 2. É capaz de separar a base de dados e programar um algoritmo de classificação que considera o teorema de Bayes.	Ou Descreve com riqueza de	Executa os comportamentos da rubrica B de maneira excepcional. Descreve com riqueza de detalhes tanto o tópico Curva ROC como o tópico Qualidade do Classificador alterando a base de treinamento descrito no Projeto 2. Expõe os resultados obtidos de maneira excepcional.