

Capítulo 1 Representação da Informação Códigos Binários e de Dados

M

1. Representação da Informação

- 1.4 Códigos Binários
 - 1.4.1 Código BCD
 - 1.4.2 Código de Gray
 - 1.4.3 Códigos *k*-de-*n*
 - 1.4.4 Códigos de paridade
 - 1.4.5 Códigos de Hamming

1.4 Códigos Binários

- Qualquer informação no computador é representada por códigos binários: caracteres, números, símbolos, etc.
- Existem diversas alternativas para codificar elementos dependendo das características desejadas.
- Um código pode ser otimizado para reduzir espaço de armazenamento necessário, ou para representar informações de forma unívoca, ou ainda explorar redundâncias para deteção e correção de erros.

- Associam os 10 algarismos decimais (0 a 9) a códigos de 4 bits (16 combinações possíveis)
- Diversas associações são utilizadas, com predominância da representação BCD natural
- Na tabela apresentada a seguir, os pesos associados a cada um dos quatro dígitos binários aparecem entre parenteses

Mais utilizado -

			•	
Dígito	BC	D ı	ıatı	ural
Dígito	(8	4	2	1)
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

BCD Natural é igual ao código binário até oValor 9. Os valores entre 10 e 15 não são válidos.

Dígito	ВС	Dт	at	ural	Aiken				
Dígito	(8	4	2	1)	(2	4	2	1)	
0	0	0	0	0	0	0	0	0	
1	0	0	0	1	0	0	0	1	
2	0	0	1	0	0	0	1	0	
3	0	0	1	1	0	0	1	1	
4	0	1	0	0	0	1	0	0	
5	0	1	0	1	1	0	1	1	
6	0	1	1	0	1	1	0	0	
7	0	1	1	1	1	1	0	1	
8	1	0	0	0	1	1	1	0	
9	1	0	0	1	1	1	1	1	

Aiken é igual ao código binário até oValor 4. Os valores 5 a 9 são formados Pela inversão dos bits dos Valores 4 a 0.

Excesso-de-três: simplifica a aritmética BCD

Dígito	BCD natural				Ail	ker	1	Stibitz				
Dígito	(8	4	2	1)	(2	4	2	1)	(8	4	2	1) -
0	0	0	0	0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	0	1	0	0	1	0	1
3	0	0	1	1	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	1	1	1	0	0	0
6	0	1	1	0	1	1	0	0	1	0	0	1
7	0	1	1	1	1	1	0	1	1	0	1	0
8	1	0	0	0	1	1	1	0	1	0	1	1
9	1	0	0	1	1	1	1	1	1	1	0	0
	•								•			

Stibitz é igual ao BCD – 3. (Complemento 9)

 Excesso-de-três: simplifica a aritmética BCD

											\downarrow									
Dígito	BC	D 1	ıatı	ural		Ail	ker	1		Sti	bit	Z								
Dígito	(8	4	2	1)	(2	4	2	1)	(8	4	2	1) -3	(7	4	2	1)	(6	4	2	-1)
0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	1	0	0	1	1
2	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1	0	1	1	0	0	0	1	1	0	1	0	1
4	0	1	0	0	0	1	0	0	0	1	1	1	0	1	0	0	0	1	0	0
5	0	1	0	1	1	0	1	1	1	0	0	0	0	1	0	1	0	1	1	1
6	0	1	1	0	1	1	0	0	1	0	0	1	0	1	1	0	1	0	0	0
7	0	1	1	1	1	1	0	1	1	0	1	0	0	1	1	1	1	0	1	1
8	1	0	0	0	1	1	1	0	1	0	1	1	1	0	0	1	1	0	1	0
9	1	0	0	1	1	1	1	1	1	1	0	0	1	0	1	0	1	1	0	1

Márcio Brandão – CIC/UnB

- Algoritmo para soma de números BCD
 - Efetuar a soma binária convencional dos dois números
 - 2. Adicionar 6 a cada *nibble* (grupo de 4 bits) que não seja um valor BCD válido
 - 3. Repetir o passo 2 até que todos os *nibbles* do resultado correspondam a valores BCD válidos

Ŋ.

1.4.1 Códigos BCD (Binary Coded Decimal)

Exemplo de soma de números BCD

Exemplo de soma de números BCD

M

1.4.2 Código de Gray

- É um código numérico binário onde dois valores sucessivos diferem em somente um bit
- Também conhecido como *código binário refletido*, pois o código de Gray para *n* bits pode ser obtido a partir da reflexão do código de Gray para (*n*-1) bits em torno de um eixo situado ao término do código
 - □ Adiciona-se "0" como bit mais significativo (MSB
 - Most Significant Bit) acima do eixo
 - □ Adiciona-se "1" como MSB abaixo do eixo.

1 bit 2 bits 0 0 Refletir

0

Márcio Brandão - CIC/UnB

- Conversão Gray binário
 - $\Box g_i = i$ -ésimo bit do código de Gray
 - $\blacksquare g_0 = MSB$
 - $\Box b_i = i$ -ésimo bit do código binário
 - $lackbox{}{}^{\bullet}b_0=MSB$

$$g_0 = b_0$$

$$g_i = b_i \oplus b_{i-1}$$

Gı	ay		l I	Biná	rio
g_0		g_2	b_0	b_1	b_2
0	0	0	0	0	0
0	0	1	0	0	1
0	1	1	0	1	0
0	1	0	0	1	1
1	1	0	1	0	0
1	1	1	1	0	1
1	0	1	1	1	0
1	0	0	1	1	1

- Conversão Gray binário
 - $\Box g_i = i$ -ésimo bit do código de Gray
 - $\blacksquare g_0 = MSB$
 - $\Box b_i = i$ -ésimo bit do código binário
 - $lackbox{}{}^{\bullet}b_0=MSB$

$$b_0 = g_0$$

$$b_i = g_i \oplus b_{i-1}$$

Bi	nári	io	Gray					
b_0	b_1	b_2		g_1				
0	0	0	0	0	0			
0	0	1	0	0	1			
0	1	0	0	1	1			
0	1	1	0	1	0			
1	0	0	1	1	0			
1	0	1	1	1	1			
1	1	0	1	0	1			
1	1	1	1	0	0			

M

1.4.2 Código de Gray

- Principais utilizações
 - □ Codificadores mecânicos
 - Pequenas mudanças de posição afetam apenas um único bit, diferentemente de certas situações que ocorrem com o código binário tradicional
 - □Mapas de Karnaugh
 - O ordenamento das células é feito segundo o código de Gray, para possibilitar as simplificações booleanas
 - Explorados no Capítulo 2

M

1.4.2 Código de Gray

- Ex: Codificador binário para um sistema mecânico rotacional
 - □ Codificação binária: 45°

- Ex: Codificador binário para um sistema mecânico rotacional
 - □ Caso haja desbalanceamento nas agulhas o erro produzido pode ser grande:

Codificador mecânico rotacional

0	0	0	0	0
1	0	0	0	1
2	0	0	1	1
3	0	0	1	0
4	0	1	1	0
5	0	1	1	1
6	0	1	0	1
7	0	1	0	0
8	1	1	0	0
9	1	1	0	1
10	1	1	1	1
11	1	1	1	0
12	1	0	1	0
13	1	0	1	1
14	1	0	0	1
15	1	0	0	0

Código

Posição

Circuitos Digitais

1 4 2 Cádigos k d

- 1.4.3 Códigos *k* de *n*
- São códigos ponderados constituídos por n bits
 - $\square k$ bits são "1"
 - \square *n-k* bits são "0"
- Normalmente utilizados em detecção de erros transmissões de dados
- Número de combinações possíveis

$$\frac{n!}{k!(n-k)!}$$

1.4.3 Códigos *k* de *n*

- Exemplo: código *74210*, ou *2* de *5*
 - ☐ A detecção de erros pode ser feita simplesmente conferindo se o número de "1"s for diferente de 2

Dígito decimal	(7	4	2	1	0)	
0	1	1	0	0	Caso especial	
1	0	0	0	1	1	
2	0	0	1	0	1	
3	0	0	1	1	0	
4	0	1	0	0	1	
5	0	1	0	1	0	
6	0	1	1	0	0	
7	1	0	0	0	1	
8	1	0	0	1	0	
9	1	0	1	0	0	

Márcio Brandão - CIC/UnB

1.4.3 Códigos *k* de *n*

- Exemplo: código 2 de 7 bits ponderado
 - □ (50 43210), ou biquinário

Dígito decimal	(5	0	4	3	2	1	0)
0	0	1	0	0	0	0	1
1	0	1	0	0	0	1	0
2	0	1	0	0	1	0	0
3	0	1	0	1	0	0	0
4	0	1	1	0	0	0	0
5	1	0	0	0	0	0	1
6	1	0	0	0	0	1	0
7	1	0	0	0	1	0	0
8	1	0	0	1	0	0	0
9	1	0	1	0	0	0	0

1.4.3 Códigos de Paridade

- Em códigos de *paridade simples* acrescenta-se um bit à palavra de tal forma que a paridade seja *par* ou *ímpar*
- O objetivo é a detecção de erros simples na transmissão de dados

1.4.3 Códigos de Paridade

Paridade	Paridade —									
Código	Par	Nº de "1"s								
0 0 0	0	0								
0 0 1	1	2								
0 1 0	1	2								
0 1 1	0	2								
1 0 0	1	2								
1 0 1	0	2								
1 1 0	0	2								
1 1 1	1	4								

1.4.3 Códigos de Paridade

Paridade —								
Código	Ímpar	Nº de "1"s						
0 0 0	1	1						
0 0 1	0	1						
0 1 0	0	1						
0 1 1	1	3						
1 0 0	0	1						
1 0 1	1	3						
1 1 0	1	3						
1 1 1	0	3						

M

1.4.3 Códigos de Paridade

Paridade em transmissão de dados

1.4.3 Código de Hamming

- Códigos de Hamming utilizam vários bits de paridade para
 - a detecção e correção de erros simples (em apenas um bit da palavra)
 - □ a *detecção* (mas não a *correção*) de erros duplos
- E possivel demonstrar matematicamente que, para cada inteiro m>2, existe um código de Hamming com *m* bits de paridade e com

 $2^m - m - 1$ bits de dados

1.4.3 Código de Hamming

- Ilustramos aqui o código de Hamming (7,4) para palavras de 7 bits com 4 bits de dados
 - □ Existem 7 erros simples possíveis
 - □ Os 3 bits de paridade utilizados são dispostos de tal forma a permitir a identificação (e correção) de erro simples

7	6	5	4	3	2	1	Paridade
D	-	D	-	D	-	P	Par
D	D	-	-	D	P	1	Par
D	D	D	P	-	-	-	Par

Márcio Brandão – CIC/UnB

- Note que uma *palavra válida* difere de outra em, no mínimo, 3 bits (*distância mínima*).
- Pode-se demonstrar que, em uma família de palavras com *distância* mínima=3, qualquer *erro simples* pode ser detectado e corrigido.

٤١١١١١	5 ↓	\downarrow	\downarrow		\downarrow			
Dado	7	6	5	4	3	2	1	_
0	0	0	0	0	0	0	0	
1	0	0	0	0	1	1	1	
2	0	0	1	1	0	0	1	
3	0	0	1	1	1	1	0	
4 5	0	1	0	1	0	1	0	
5	0	1	0	1	1	0	1	
6	0	1	1	0	0	1	1	
7	0	1	1	0	1	0	0	
8	1	0	0	1	0	1	1	
9	1	0	0	1	1	0	0	
A	1	0	1	0	0	1	0	
A B C	1	0	1	0	1	0	1	
C	1	1	0	0	0	0	1	
D	1	1	0	0	1	1	0	
E F	1	1	1	1	0	0	0	
F	1	1	1	1	1	1	1	

- Exemplo de distância mínima = 3
 - □valor "000" válido
 - □valor "111" válido

w

1.4.3 Código de Hamming

- Na recepção da palavra, os três bits de paridade são recalculados e comparados com os valores recebidos. Se ocorrer um erro simples (divergência em apenas um bit da palavra) a posição do bit errado pode ser determinada como abaixo:
 - □ A função *erro_de_paridade*, cujo valor é "0" se não há erro de paridade e "1" se há erro de paridade, é calculada para cada um dos três bits de paridade;
 - □ A palavra *Erro_de_Paridade*, formada pelos bits erro_de_paridade(Bit 4), erro_de_paridade(Bit 2) e erro_de_paridade(Bit 1), aponta para o bit errado da palavra.

1.4.3 Código de Hamming

Erro_de_Paridade aponta para o bit com erro, que pode então ser corrigido:

	Ţ						
Bit	7	6	5	4	3	2	1
Palavra	1	0	0	0	0	0	0
Erro de Paridade				1		1	1

					V		
Bit	7	6	5	4	3	2	1
Palavra	1	1	1	1	1	0	0
Erro de Paridade				0		1	1

M

1.4.3 Código de Hamming

Um dos Bits de paridade pode também estar com erro, e ser devidamente corrigido.

1.4.3 Código de Hamming Codificador/decodificador para o Código de Hamming

Márcio Brandão - CIC/UnB

Circuitos Digitais

Referências

- Código de Hamming
 - http://www.ics.uci.edu/~magda/Courses/netsys270/ch10_2_v1.ppt
- Pedroni, Volnei A. (2010), *Eletrônica Digital Moderna e VHDL*, Elsevier