List of Symbols

The bold number(s) at the end of each line refer(s) to the page where the symbol is introduced or used in an alternative way.

```
\mathbb{N} = \{0, 1, 2, \ldots\} the set of natural numbers, 14
```

 \mathbb{R} the set of real numbers, 13

 $[A]_{ij}$ element (i, j) of matrix A; also denoted by a_{ij} , 17

 A^{\top} the transpose of matrix A; that is, $[A^{\top}]_{ij} = a_{ji}$, 19

⊕ the operation max, or maximization, 13

 \oplus' the operation min, or minimization, 16

⊗ plus, or addition, 13

 ε the zero element in max-plus algebra; numerical value is $\varepsilon = -\infty$, 13, 39

 ε' the zero element in min-plus algebra; numerical value is $\varepsilon' = +\infty$, 16

 $\mathcal{E}(n,m)$ the $n \times m$ matrix with all elements equal to ε , 18

 $\mathcal{E}'(n,m)$ the $n \times m$ matrix with all elements equal to ε' , 180

E(n,m) the $n \times m$ matrix with element e on the diagonal and ε elsewhere, 18

 \mathbf{u} the unit vector; numerical value is $\mathbf{u} = (0, \dots, 0)^{\top}$, 19

 $\mathbf{u}[\mu] = \mu \otimes \mathbf{u}$ the vector with elements equal to $\mu \in \mathbb{R}_{\max}$, 59

e the unit in max-plus and min-plus algebra; numerical value is e=0, 13, 16

 e_j the jth base vector of $\mathbb{R}^n_{\varepsilon}$ with jth element zero and all other elements equal to ε , 19

[a] the smallest integer greater than or equal to $a \in \mathbb{R}$, 131

 A_{τ} the matrix A with τ subtracted from every element: $[A_{\tau}]_{ij} = a_{ij} - \tau$, 39, 61

 A^* the formal power series $A^* = \bigoplus_{k>0} A^{\otimes k}$, 42

 A^+ the formal power series $A^+ = \bigoplus_{k>1} A^{\otimes k}$, 31

 $[B]_{\cdot k}$ the kth column of matrix B, 39, 74

 $V(A, \mu)$ the eigenspace of matrix A for the eigenvalue μ , 36

V(A) the eigenspace of matrix A in the case where the eigenvalue is known and unique, 36

 $\lambda = \lambda(A)$ the eigenvalue of matrix A, and in the stochastic setup, the Lyapunov exponent of $\{A(k): k \in \mathbb{N}\}$, 36, 173

 λ^{top} the top Lyapunov exponent of $\{A(k): k \in \mathbb{N}\}$, 170

 λ^{bot} the bottom Lyapunov exponent of $\{A(k): k \in \mathbb{N}\}$, 170

LIST OF SYMBOLS 207

 $\sigma = \sigma(A)$ the cyclicity of matrix A, 50

 $\sigma_{\mathcal{G}} = \sigma_{\mathcal{G}(A)}$ the cyclicity of $\mathcal{G}(A)$, 33

t(A) the transient time of matrix A, 55

 \mathbb{R}_{\max} the set $\mathbb{R} \cup \{-\infty\}$, 13

 \mathbb{R}_{\min} the set $\mathbb{R} \cup \{+\infty\}$, 16

 \mathcal{R}_{\max} the structure $(\mathbb{R}_{\max}, \oplus, \otimes, \varepsilon, e)$, 13

 \mathcal{R}_{\min} the structure $(\mathbb{R}_{\min}, \oplus', \otimes, \varepsilon', e)$, 16

 \underline{n} the set $\{1,\ldots,n\}$ for $n\in\mathbb{N}\setminus\{0\}$, 17

G(A) the communication graph of matrix A, 28

 $\mathcal{N}(A)$ the set of nodes of $\mathcal{G}(A)$, 28

 $\mathcal{D}(A)$ the set of arcs of $\mathcal{G}(A)$, 28

 $\mathcal{G}^c(A)$ the critical graph of matrix A, 38

 $\mathcal{N}^c(A)$ the set of nodes of $\mathcal{G}^c(A)$, 38

 $\mathcal{D}^c(A)$ the set of arcs of $\mathcal{G}^c(A)$, 38

 $\pi(i)$ the set of direct predecessors of node i, 33

 $\pi^+(i)$ the set of all predecessors of node i, 33

 $\pi^*(i)$ the set $\pi^+(i) \cup \{i\}$, 33

 $\sigma(i)$ the set of direct successors of node i, 33

 $\sigma^+(i)$ the set of all successors of node i, 33

 $\sigma^*(i)$ the set $\sigma^+(i) \cup \{i\}$, 34

C(A) the set of all elementary circuits in C(A), 38

 $|p|_1$ the length of path p, 28

 $|p|_{\rm w}$ the weight of path p, 29

 $i\mathcal{R}j$ node j is reachable from node i, 31

iCj node j communicates with node i: iRj as well as jRi, with iCi always true, 31

 \overline{x} the equivalence class of vectors that are colinear to x, 24

 $\|\cdot\|_{\mathbb{P}}$ the projective norm, 80

 (η, v) a generalized eigenmode, 58

 γ^{top} the maximal entry of vector γ , 60

 $||v||_{\infty}$ the supremum norm of vector v, 56

 $||A||_{\text{max}}$ the maximal finite element of matrix A, 168

 $||A||_{\min}$ the minimal finite element of matrix A, 168