Project Development Phase Model Performance Test

Date	24 June 2025	
Team ID	LTVIP2025TMID36697	
Project Name	Smart Sorting: Identifying rotten fruits and	
	vegetables using transfer learning	
Maximum Marks	10 Marks	

Model Performance Testing:

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Transfer Learning with MobileNetV2	₩ Model Summary: Model: "sequential"
		Input Size: 224x224	Layer (type) Output Shape Param # mobilenetr2_1.00_224 (Func (None, 7, 7, 1280) 2257984 tional)
		Pre-trained on ImageNet	global_average_pooling2d ((None, 1280) 0 GlobalAveragePooling2D)
		Optimizer: Adam	dense (Dense) (None, 64) 81584 dropout (Dropout) (None, 64) 0
		Loss: Categorical Cross entropy	dense_1 (Dense) (None, 10) 650
			Total params: 2340618 (8.53 MB) Trainable params: 82634 (322.79 KB) Non-trainable params: 2257984 (8.61 MB)
2.	Accuracy	Training Accuracy: 95.6%	Training and Validation Accuracy Training Accuracy Validation Accura
		Validation Accuracy: 94.5%	5 10 15 10 15 20 Epochs
3.	Fine Tunning Result(if Done)	Validation Accuracy: 95.8%	1,000 Training and Validation Accuracy 0,939 0,959 0,9