

Hyperparameter Optimization in Machine Learning

Bin Gu

bin.gu@mbzuai.ac.ae Machine Learning Department, MBZUAI

June 19, 2021

Outline

Background

Global optimal HO based on solution and error paths/surfaces One hyperparameter Two hyperparameters

Practical HO based on Zeroth-Order Hyper-Gradients

Conclusions

Hyperparameter Optimization (HO)

Hyperparamters: all the parameters which are not updated during the learning

- Problem-based hyperparameters:
 - Regularization parameter
 - Architectural hyperparameters in deep neural networks: depth and width of a deep neural network
- Algorithm-based hyperparameters:
 - Learning rate
 - Momentum
 - Dropout rate

Hyperparameter optimization

Hyperparameter optimization or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm.

Hyperparameter Optimization

Cross validation (CV)

K-fold

- Leave-one-out
- Repeated random sub-sampling procedures

Hyperparameter Optimization

Search strategy

Figure: Grid (left) and random (right) search.

Weakness of grid and random search strategies

Only considering finite candidates due to the limited computing resources

Hyperparameter Optimization (HO)

HO can be formulated as a bi-level optimization problem.

$$\min_{\lambda \in \mathbb{R}^p} \qquad f(\lambda) = E(w(\lambda), \lambda),
s.t. \qquad w(\lambda) \in \operatorname{argmin}_{w \in \mathbb{R}^d} L(w, \lambda)$$
(1)

- ullet $w \in \mathbb{R}^d$ are the model parameters.
- $\lambda \in \mathbb{R}^p$ are the hyperparameters.
- E represents a proxy of the generalization error w.r.t. the hyperparameters.
- L represents traditional learning objective.
- $w(\lambda)$ are the optimal model parameters of L for the fixed hyperparameters λ .

Hyperparameter Optimization (HO)

HO can be formulated as a bi-level optimization problem.

$$\min_{\lambda \in \mathbb{R}^p} \qquad f(\lambda) = E(w(\lambda), \lambda),
s.t. \qquad w(\lambda) \in \operatorname{argmin}_{w \in \mathbb{R}^d} L(w, \lambda)$$
(1)

- ullet $w \in \mathbb{R}^d$ are the model parameters.
- $\lambda \in \mathbb{R}^p$ are the hyperparameters.
- E represents a proxy of the generalization error w.r.t. the hyperparameters.
- L represents traditional learning objective.
- $w(\lambda)$ are the optimal model parameters of L for the fixed hyperparameters λ .

The ultimate goal of HO is to find the values of hyperparameters with the minimum CV error in the whole parameter space.

Our goals

HO with global searching —

- Nonconvex
- Find the hyperparameters with the minimum CV error in the whole parameter space

Practical HO

- Handle many hyperparameters
- Easy to use
- Flexible to various learning algorithms
- Efficient

Global Optimal Hyperparameter Optimization

Figure: Cross validation with global searching.

One hyperparameter

- Solution path
- Error path

Two hyperparameters

- Solution surface
- Error surface

Illustration of Solution path of Lasso

$$\min_{\beta_0, \beta} \sum_{i=1}^{N} (y_i - \beta_0 - x_i^T \beta)^2 \quad s.t. \sum_{j=1}^{p} |\beta_j| \le t.$$
 (2)

Figure: The solutions of Lasso with respect to the regularization parameter t.

 A finite number of representative solutions fit the entire solutions.¹

¹S. Rosset and J. Zhu, "Piecewise linear regularized solution paths," Ann. Statist., vol. 35, no. 3, pp. 1012-1030, 2007.

Demo of solution path for ν -SVC

Solution path algorithms

Table: Representative solution path algorithms.

Problem	Task	Reference	Parameter	Exact
C-SVC	BC	[Hastie et al.(2004)]	Regularization parameter C	Yes
2C-SVC	BC	[Bach et al.(2006)]	Regularization parameters C_+ , C	Yes
$\varepsilon\text{-SVR}$	R	[Gunter & Zhu(2007)]	Regularization parameter	Yes
$\varepsilon\text{-SVR}$	R	[Wang et al.(2008)]	Regularization parameter and $arepsilon$	Yes
Lasso	R	[Rosset & Zhu(2007)]	Regularization parameter	Yes
KQR	R	[Takeuchi et al.(2009)]	Quantile order $ au \in (0,1)$	Yes
$C ext{-SVC}$	BC	[Ong et al.(2010)]	Regularization parameter C	Yes
$C ext{-SVC}$	BC	[Karasuyama et al.(2011)]	Regularization parameter C	No
$\nu extsf{-SVC}$	BC	[Gu et al.(2012,2016)]	Regularization parameter $ u$	Yes
OSCAR	R	[Gu et al.(2017)]	Regularization parameters	No
General	BC+R	[Giesen et al.(2012)]	Regularization parameter	No
General	BC+R	[Gu & Sheng. (2018)]	Regularization parameter	Yes

- Bin Gu, et al. Regularization Path for ν-Support Vector Classification. IEEE Transactions on Neural Networks and Learning Systems, 23(5): 800-811,2012.
- Bin Gu, Victor S. Sheng. A Robust Regularization Path Algorithm for ν-Support Vector Classification.
 IEEE Transactions on Neural Networks and Learning Systems, 2016.
- Bin Gu, Guodong Liu, Heng Huang. Groups-Keeping Solution Path Algorithm for Sparse Regression with Automatic Feature Grouping. KDD 2017.
- Bin Gu, Victor S. Sheng. A Solution Path Algorithm for General Parametric Quadratic Programming Problem. IEEE Transactions on Neural Networks and Learning Systems, 2018.

MBZUAI

Solution path algorithms

Table: Representative solution path algorithms.

Problem	Task	Reference	Parameter	Exact
C-SVC	BC	[Hastie et al.(2004)]	Regularization parameter C	Yes
2C-SVC	BC	[Bach et al.(2006)]	Regularization parameters C_+ , C	Yes
$\varepsilon extsf{-SVR}$	R	[Gunter & Zhu(2007)]	Regularization parameter	Yes
$\varepsilon extsf{-SVR}$	R	[Wang et al.(2008)]	Regularization parameter and $arepsilon$	Yes
Lasso	R	[Rosset & Zhu(2007)]	Regularization parameter	Yes
KQR	R	[Takeuchi et al.(2009)]	Quantile order $ au \in (0,1)$	Yes
$C\operatorname{-SVC}$	BC	[Ong et al.(2010)]	Regularization parameter C	Yes
$C\operatorname{-SVC}$	BC	[Karasuyama et al.(2011)]	Regularization parameter C	No
ν-SVC	BC	[Gu et al.(2012.2016)]	Regularization parameter ν	Yes
OSCAR	R	[Gu et al.(2017)]	Regularization parameters	No
General	BC+R	[Giesen et al.(2012)]	Regularization parameter	No
General	BC+R	[Gu & Sheng.(2018)]	Regularization parameter	Yes

- Bin Gu, et al. Regularization Path for ν-Support Vector Classification. IEEE Transactions on Neural Networks and Learning Systems, 23(5): 800-811,2012.
- ullet Bin Gu, Victor S. Sheng. A Robust Regularization Path Algorithm for u-Support Vector Classification. IEEE Transactions on Neural Networks and Learning Systems, 2016.
- Bin Gu, Guodong Liu, Heng Huang. Groups-Keeping Solution Path Algorithm for Sparse Regression with Automatic Feature Grouping. KDD 2017.
- Bin Gu, Victor S. Sheng. A Solution Path Algorithm for General Parametric Quadratic Programming Problem. IEEE Transactions on Neural Networks and Learning Systems, 2018.

Octagonal shrinkage and clustering algorithm for regression (OSCAR)

- Given a training set $S = \{(x_i, y_i)\}_{i=1}^l$ with $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- y_i is centered, *i.e.*, $\sum_{i=1}^l y_i = 0$
- Each feature of the training set S is standardized, *i.e.*, $\sum_{i=1}^{l} x_{ij} = 0$ and $\sum_{i=1}^{l} x_{ij}^2 = 1$

$$\min_{\beta} \frac{1}{2} \sum_{i=1}^{t} (y_i - x_i^T \beta)^2$$
 (3)

$$+ \boxed{\lambda_1} \|\beta\|_1 + \boxed{\lambda_2} \sum \max\{|\beta_i|, |\beta_j|\}\,,$$

- $\lambda_2 = 0$: Lasso. i < j
- $\lambda_2 = \infty$: Clustering all features as a group.

Figure: Illustration of OSCAR

MBZUAI

Octagonal shrinkage and clustering algorithm for regression (OSCAR)

- Given a training set $S = \{(x_i, y_i)\}_{i=1}^l$ with $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- y_i is centered, *i.e.*, $\sum_{i=1}^l y_i = 0$
- Each feature of the training set S is standardized, i.e., $\sum_{i=1}^{l} x_{ij} = 0$ and $\sum_{i=1}^{l} x_{ij}^2 = 1$

$$\min_{\beta} \frac{1}{2} \sum_{i=1}^{i} (y_i - x_i^T \beta)^2$$
 (3)

$$+ \lambda_1 \|\beta\|_1 + \lambda_2 \sum \max\{|\beta_i|, |\beta_j|\},\,$$

- $\lambda_2 = 0$: Lasso. i < j
- $\lambda_2 = \infty$: Clustering all features as a group.

Figure: Illustration of OSCAR

Tuning the values of λ_1 and λ_2 plays an essential role for OSCAR!

Optimality Conditions of OSCAR Model

Definition (Feature group \mathcal{G}_g)

Given the orders o(j) of $|\beta_j|$. The set $\mathcal{G}_g \subseteq \{1, 2, \dots, d\}$ is called a group of features if the following conditions are satisfied.

- **1** $\forall j_1, j_2 \in \mathcal{G}_g$, and $j_1 \neq j_2$, we have $|\beta_{j_1}| = |\beta_{j_2}| \stackrel{\mathrm{def}}{=} \theta_g$.
- 2 If $j \in \{1, 2, \cdots, d\}$ and $j \notin \mathcal{G}_g$, we have that $|\beta_j| \neq \theta_g$.

New formulation of OSCAR free of the ℓ_1 -norm and the pair ℓ_∞ -norm

$$\min_{\theta} \frac{1}{2} \sum_{i=1}^{l} (y_i - \widetilde{x}_i^T \theta)^2 + \sum_{g=1}^{G} w_g \theta_g \quad s.t. \qquad 0 \le \theta_1 < \theta_2 < \dots < \theta_G,$$

- $\widetilde{x}_i = [\widetilde{x}_{i1} \ \widetilde{x}_{i2} \cdots \widetilde{x}_{iG}]$ and $\widetilde{x}_{ig} = \sum_{j \in \mathcal{G}_g} \operatorname{sign}(\beta_j) x_{ij}$.
- $w_g = \sum_{j \in \mathcal{G}_g} (\lambda_1 + (o(j) 1)\lambda_2)$

Groups-keeping Solution Path Algorithm

$\Delta\eta$ is a parameter to control the adjustment qualities of λ_1 and λ_2

- Define $\Delta \lambda = \left[\begin{array}{c} \Delta \lambda_1 \\ \Delta \lambda_2 \end{array} \right]$
- $\Delta\lambda=d\Delta\eta$, where $d=\left[\begin{array}{c} d_1\\ d_2 \end{array}\right]$.

Three main steps of OscarGKPath

- **1** Computing the directions of $\Delta\theta$;
 - **2** Computing the maximum adjustment of $\Delta \eta$;
- **3** And computing the duality gap $G(\theta, \lambda_1, \lambda_2)$.

Figure: The fundamental principle of OscarGKPath.

Global Optimal Hyperparameter Optimization

Figure: Cross validation with global searching.

One hyperparameter

- Solution path
- Error path

Two hyperparameters

- Solution surface
- Error surface

The piecewise linearity of the solution path

Definition

Suppose $\tilde{\alpha}(\lambda)$ is returned by a solution path. The solution $\tilde{\alpha}(\lambda)$ is called piecewise linear as a function of λ , if existing $a=a_0< a_1< a_2< \cdots < a_m=b$, and the corresponding vectors $\beta^{[1]},\beta^{[2]},\cdots,\beta^{[m]}$, such that the solution $\hat{\alpha}(\lambda)$ is given exactly or approximately, by $\tilde{\alpha}(a_{k-1})+\beta^{[k]}(\lambda-a_{k-1}),\, \forall \lambda\in[a_{k-1},a_k].$

Figure: The solutions with respect to the regularization parameter.

Generalized Error Path

 Bin Gu, Charles X. Ling. A New Generalized Error Path Algorithm for Model Selection. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15) (pp. 2549-2558)

Figure: Model function builds a bridge from solution path to error path.

Solution Path — Model Function

A model with a linear representation $f(x) = \langle G(x), \alpha \rangle$

- **1** For C-SVC, 2C-SVC, ν -SVC, the models are $f(x) = \sum_{i=1}^{l} \alpha_i y_i K(x, x_i) + \alpha_0$.
- **2** For ε -SVR, the model is $f(x) = \sum_{i=1}^{2l} \alpha_i z_i K(x, x_i) + \alpha_0$.
- **3** For Lasso, the model is $f(x) = x^T \alpha$.
- **4** For KQR, the model is $f(x) = \sum_{i=1}^{l} \alpha_i K(x, x_i) + \alpha_0$.

Solution Path — Model Function

Lemma

Given an interval $[a_{k-1}, a_k]$ in a solution path, and the corresponding vector $\beta^{[k]}$. If the model is with linear representation, there exists a scale $\gamma^{[k]}$ such that the model function $f_{\lambda}(x)$ can be represented as $f_{\lambda}(x) = f_{a_{k-1}}(x) + \gamma^{[k]}(\lambda - a_{k-1}), \ \forall \lambda \in [a_{k-1}, a_k].$

Solution Path — Model Function

Lemma

Given an interval $[a_{k-1}, a_k]$ in a solution path, and the corresponding vector $\beta^{[k]}$. If the model is with linear representation, there exists a scale $\gamma^{[k]}$ such that the model function $f_{\lambda}(x)$ can be represented as $f_{\lambda}(x) = f_{a_{k-1}}(x) + \gamma^{[k]}(\lambda - a_{k-1}), \ \forall \lambda \in [a_{k-1}, a_k].$

- **1** For C-SVC, 2C-SVC, and ν -SVC, $\gamma = \sum_{i=1}^{l} \beta_i y_i K(x, x_i) + \beta_0$.
- **2** For ε -SVR, $\gamma = \sum_{i}^{2l} \beta_i z_i K(x, x_i) + \beta_0$.
- **3** For Lasso, $\gamma = x^T \beta$.
- 4 For KQR, $\gamma = \sum_{i}^{l} \beta_i K(x, x_i) + \beta_0$.

Generalized Error Path

 Bin Gu, Charles X. Ling. A New Generalized Error Path Algorithm for Model Selection. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15) (pp. 2549-2558)

Figure: Model function builds a bridge from solution path to error path.

Model Function — Error Path

The error path on the entire interval [a,b] could be

- piecewise quadratic,
- 2 piecewise linear,
- 3 or piecewise constant

Computing Generalized Error Path

To fit various error paths, we define a 2-tuple (I, P)

1 For piecewise quadratic error path:

$$I = [a_{k-1}, a_k], P.c_2 = \frac{1}{\ell} \sum_{i=1}^{\ell} (\gamma_i^{[k]})^2,$$

$$P.c_1 = -\frac{1}{\ell} \sum_{i=1}^{\ell} 2 \times \gamma_i^{[k]} (\widetilde{y}_i - f_{a_{k-1}}(\widetilde{x}_i) + \gamma_i^{[k]} a_{k-1}),$$

$$P.c_0 = \frac{1}{\ell} \sum_{i=1}^{\ell} \left(\widetilde{y}_i - f_{a_{k-1}}(\widetilde{x}_i) + \gamma_i^{[k]} a_{k-1} \right)^2.$$

2 For piecewise linear error path:

$$\begin{split} I &= \mathcal{IR}(\lambda_0), \\ P.c_1 &= \frac{1}{\ell} \left(\sum_{i \in \mathcal{I}_{-}(\lambda_0)} \gamma_i^{[k]} - \sum_{i \in \mathcal{I}_{+}(\lambda_0)} \gamma_i^{[k]} \right), \\ P.c_0 &= \frac{1}{\ell} \left(\sum_{i \in \mathcal{I}_{-}(\lambda_0)} (\widetilde{y}_i - f_{\lambda_0}(\widetilde{x}_i) + \gamma_k \lambda_0) - \sum_{i \in \mathcal{I}_{+}(\lambda_0)} (\widetilde{y}_i - f_{\lambda_0}(\widetilde{x}_i) + \gamma_k \lambda_0) \right). \end{split}$$

3 For piecewise constant error path: $I = \widetilde{\mathcal{IR}}(\lambda_0), P.c_0 = E(\hat{\alpha}(\lambda_0), \mathcal{V}, L).$

GEP (Generalized error path algorithm)

Input: A solution path w.r.t. λ in an interval

$$[a,b] = \bigcup_{k=1}^m [a_{k-1},a_k]$$
, a validation set \mathcal{V} .

Output: An error path $\{(I_1, P_1), (I_2, P_2), (I_3, P_3), \cdots\}$.

- 1: Initialize $\lambda = a$, k = 0, j = 1.
- 2: while $\lambda < b$ do
- 3: Update k=k+1, read the k-th sub-interval $[a_{k-1},a_k]$ from the solution path.
- 4: while $\lambda < a_k$ do
- 5: Compute (I_j, P_j) for the leftmost in $[\lambda, a_k]$.
- 6: Update $\lambda = R(I_j)$, j = j + 1.
- 7: end while
- 8: end while

Table: The results of CV error obtained from GS, MS, RS, and our GEP.

Dataset		Е	R		Dataset	MAE				MSE			
Dataset	GS	MS	RS	GEP	Dataset	GS	MS	RS	GEP	GS	MS	RS	GEP
Ionosphere	0.062	0.068	0.068	0.060	Friedman	2.08	2.1	2.07	1.98	6.81	6.82	6.82	6.60
Diabetes	0.655	0.655	0.565	0.345	Housing	2.12	2.13	2.13	2.09	8.11	8.14	8.14	8.05
Hill-Valley	0.465	0.470	0.468	0.460	Forest Fires	17.9	18.3	18.2	17.2	3251	3258	3263	3238
Breast Cancer	0.528	0.528	0.474	0.342	Auto MPG	2.39	2.41	2.39	2.36	9.62	9.63	9.62	9.58
Spine	0.060	0.058	0.059	0.055	Triazines	2.39	2.40	2.40	2.37	9.66	9.67	9.66	9.63

Table: The results of CV error obtained from GS, MS, RS, and our GEP.

Dataset	ER				Dataset	MAE				MSE			
Dataset	GS	MS	RS	GEP	Dataset	GS	MS	RS	GEP	GS	MS	RS	GEP
Ionosphere	0.062	0.068	0.068	0.060	Friedman	2.08	2.1	2.07	1.98	6.81	6.82	6.82	6.60
Diabetes	0.655	0.655	0.565	0.345	Housing	2.12	2.13	2.13	2.09	8.11	8.14	8.14	8.05
Hill-Valley	0.465	0.470	0.468	0.460	Forest Fires	17.9	18.3	18.2	17.2	3251	3258	3263	3238
Breast Cancer	0.528	0.528	0.474	0.342	Auto MPG	2.39	2.41	2.39	2.36	9.62	9.63	9.62	9.58
Spine	0.060	0.058	0.059	0.055	Triazines	2.39	2.40	2.40	2.37	9.66	9.67	9.66	9.63

Table: The average errors on the test data, over 10 trails, obtained from GS, MS, RS, and our GEP.

Dataset		Е	R		Dataset	MAE				MSE			
Dataset	GS	MS	RS	GEP	Dataset	GS	MS	RS	GEP	GS	MS	RS	GEP
Ionosphere	0.066	0.066	0.065	0.063	Friedman	2.12	2.16	2.14	2.08	6.84	6.83	6.84	6.75
Diabetes	0.356	0.356	0.358	0.347	Housing	2.05	2.06	2.06	2.05	8.56	8.63	8.66	8.44
Hill-Valley	0.514	0.519	0.514	0.512	Forest Fires	18.4	19.1	18.9	17.9	5468	5475	5471	5446
Breast Cancer	0.528	0.528	0.474	0.342	Auto MPG	2.74	2.75	2.76	2.62	14.6	14.6	14.7	14.0
Spine	0.060	0.061	0.061	0.058	Triazines	2.76	2.77	2.77	2.54	14.7	14.8	14.6	14.2

Global Optimal Hyperparameter Optimization

Figure: Cross validation with global searching.

One hyperparameter

- Solution path
- Error path

Two hyperparameters

- Solution surface
- Error surface

Two Hyperparameters: Cost-Sensitive SVM (CS-SVM/2C-SVM)

Cost Sensitive Learning

- $S^+ = \{(x_i, y_i) : y_i = +1\}, S^- = \{(x_i, y_i) : y_i = -1\}$
- $C(-,+) \neq C(+,-)$

CS-SVM/2C-SVM

$$\min_{w,b,\xi} \quad \frac{1}{2} \langle w, w \rangle + C_{+} \sum_{i \in \mathcal{S}^{+}} \xi_{i} + C_{-} \sum_{i \in \mathcal{S}^{-}} \xi_{i}$$
 (4)

s.t.
$$y_i(\langle w, \phi(x_i) \rangle + b) \ge 1 - \xi_i, \quad \xi_i \ge 0, \quad i = 1, \dots, l$$

- C₊ denotes the cost of false negative
- C₋ denotes the cost of false positive

Two Hyperparameters: Cost-Sensitive SVM (CS-SVM/2C-SVM)

Cost Sensitive Learning

- $S^+ = \{(x_i, y_i) : y_i = +1\}, S^- = \{(x_i, y_i) : y_i = -1\}$
- $C(-,+) \neq C(+,-)$

CS-SVM/2C-SVM

$$\min_{w,b,\xi} \quad \frac{1}{2} \langle w, w \rangle + C_{+} \sum_{i \in \mathcal{S}^{+}} \xi_{i} + C_{-} \sum_{i \in \mathcal{S}^{-}} \xi_{i}$$
 (4)

s.t.
$$y_i(\langle w, \phi(x_i) \rangle + b) \ge 1 - \xi_i, \quad \xi_i \ge 0, \quad i = 1, \dots, l$$

- C₊ denotes the cost of false negative
- C₋ denotes the cost of false positive

Tuning (C_+, C_-) is a central problem of CS-SVM

Motivation

Weakness of Existing Methods

- Only considering one parameter
 - Solution path
 - Error path
- \bullet However, CS-SVM has two regularization parameters C_+ and C_-

Motivation

Weakness of Existing Methods

- Only considering one parameter
 - Solution path
 - Error path
- \bullet However, CS-SVM has two regularization parameters C_+ and C_-

Our work

- Bin Gu, Victor S. Sheng, Keng Yeow Tay, Walter Romano, and Shuo Li. Cross Validation Through Two-dimensional Solution Surface for Cost-Sensitive SVM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.(online, long version)
- Bin Gu, Victor S. Sheng, Shuo Li. Bi-parameter Space Partition for Cost-Sensitive SVM. IJCAI 2015 (short version).

2C-SVM $\leftrightarrow (\lambda, \eta)$ -SVM

•
$$\lambda = \frac{1}{C_+ + C_-}$$

•
$$\lambda = \frac{1}{C_{+} + C_{-}}$$

• $\eta = \frac{C_{+}}{C_{+} + C_{-}}$

Exploring in 1.5 square units

Critical Region

Theorem

The set $CR(\lambda_0, \eta_0)$ is a convex set and its closure is a convex polygon region.

Overlapped Critical Regions

Partitioning the Parameter Space

Theorem

Let $\mathcal{X} \subseteq \mathbb{R}^2$ be a convex polygon region, and $\mathcal{R}_0 = \{(\rho,\varrho) \in \mathcal{X} : A \begin{bmatrix} \rho & \varrho \end{bmatrix}^T \leq b \}$ be a convex polygon subregion of \mathcal{X} , where $A \in \mathbb{R}^{m \times 2}$, $b \in \mathbb{R}^{m \times 1}$, $\mathcal{R}_0 \neq \emptyset$. Also let

$$\mathcal{R}_{i} = \left\{ (\rho, \varrho) \in \mathcal{X} \middle| \begin{array}{l} A_{i} \left[\rho \quad \varrho \right]^{T} > b_{i} \\ A_{j} \left[\rho \quad \varrho \right]^{T} \leq b_{j}, \quad \forall j < i \end{array} \right\},$$

$$\forall i = 1, \cdots, m$$

then $\{\mathcal{R}_0, \mathcal{R}_1, \cdots, \mathcal{R}_m\}$ is a partition of \mathcal{X} , i.e., $\bigcup_{i=0}^m \mathcal{R}_i = \mathcal{X}$, and $\mathcal{R}_i \cap \mathcal{R}_j = \emptyset$, $\forall i \neq j$, $i, j \in \{0, 1, \cdots, m\}$.

Partitioning the Parameter Space based on CRs

Partitioning the Parameter Space

Figure: Left: Partitioning the lower triangle region of $[0,1] \times [0,1]$ for (C_+,C_-) through $\mathcal{CR}s$. Right: Partitioning $(0,1] \times [0,1]$ for (λ,η) through $\mathcal{CR}s$.

Invariant Region

Given a validation set $\mathcal{V} = \{(\widetilde{x}_1, \widetilde{y}_1), \cdots, (\widetilde{x}_n, \widetilde{y}_n)\}$

$$\widetilde{\pi}(\rho,\varrho) = \{\{i \in \mathcal{V} : f(\rho,\varrho)(\widetilde{x}_i)) \ge 0\}, \{i \in \mathcal{V} : f(\rho,\varrho)(\widetilde{x}_i)) < 0\}\}
\stackrel{\text{def}}{=} \{\mathcal{I}_+(\rho,\varrho), \mathcal{I}_-(\rho,\varrho)\}$$
(5)

$$\mathcal{IR}(\rho_0, \varrho_0) = \{(\rho, \varrho) \in \mathcal{CR}(\rho_0, \varrho_0) : \widetilde{\pi}(\rho, \varrho) = \widetilde{\pi}(\rho_0, \varrho_0)\}$$

Invariant Region

Given a validation set $\mathcal{V} = \{(\widetilde{x}_1, \widetilde{y}_1), \cdots, (\widetilde{x}_n, \widetilde{y}_n)\}$

$$\widetilde{\pi}(\rho,\varrho) = \{\{i \in \mathcal{V} : f(\rho,\varrho)(\widetilde{x}_i)) \ge 0\}, \{i \in \mathcal{V} : f(\rho,\varrho)(\widetilde{x}_i)) < 0\}\}$$

$$\stackrel{\text{def}}{=} \{\mathcal{I}_+(\rho,\varrho), \mathcal{I}_-(\rho,\varrho)\}$$
(5)

$$\mathcal{IR}(\rho_0, \varrho_0) = \{(\rho, \varrho) \in \mathcal{CR}(\rho_0, \varrho_0) : \widetilde{\pi}(\rho, \varrho) = \widetilde{\pi}(\rho_0, \varrho_0)\}$$

Theorem

The sets $\mathcal{IR}(\rho_0, \varrho_0)$ is a convex set and its closure is a convex polygon region.

Partitioning the Parameter Space using IRs

Figure: Validation error. Left: All parameter pairs of (C_+,C_-) in the lower triangle region of $[0,1]\times[0,1]$. Right: All parameter pairs of (λ,η) in $(0,1]\times[0,1]$.

The results of 5-fold CV.

		CC		CD + CC		CD +CC		BPSP	
C(+, -)	Dataset	GS CV error time		$SP_{\eta} + GS_{\lambda}$		$SP_{\lambda}+GS_{\eta}$		CV error time	
				CV error	time	CV error			
	Son	0.4667	43	0.282	7.7	0.271	7.3	0.2564	4.4
	lon	0.3623	73	0.0725	12.7	0.0857	13.3	0.0435	9.7
	Dia	0.6275	294	0.5948	9.5	0.606	10.2	0.5752	5.5
2	BC	0.6593	229	0.6	9	0.611	9.82	0.5642	7.1
	Hea	0.52	59	0.464	9.2	0.478	9.1	0.444	5.9
	HV	0.463	176	0.45	5.3	0.462	5.8	0.4417	4.9
	SI	0.5017	86	0.2754	7.4	0.278	8.2	0.2650	4.9
	Son	0.4872	51	0.3167	7	0.322	7.3	0.3167	4.6
	lon	0.3768	65	0.1159	14	0.1324	16.3	0.1159	10.3
	Dia	0.6536	302	0.632	9.6	0.638	10.1	0.632	5.9
5	BC	0.6741	227	0.6074	8	0.6222	8.3	0.6074	6.7
	Hea	0.537	57	0.463	6.8	0.485	8.5	0.463	5.5
	HV	0.6	164	0.55	5.6	0.493	7.2	0.4417	5.2
	SI	0.524	77	0.383	8.1	0.3795	8.5	0.3562	5.6
	Son	0.564	46	0.4615	6.4	0.473	6.8	0.4359	4.9
	lon	0.3823	77	0.2319	15.3	0.2425	16.1	0.2319	9.9
	Dia	0.6863	312	0.6601	9.2	0.672	9.8	0.6601	5.6
10	BC	0.6815	219	0.6741	7.3	0.6741	7.2	0.6626	6.9
	Hea	0.556	69	0.556	5.6	0.562	5.9	0.556	5.4
	HV	0.5	169	0.5	4.9	0.5	6.3	0.458	4.7
	SI	0.536	81	0.4783	7.8	0.464	8.3	0.4493	5.1
	Ecoli1	0.1722	65	0.117	12.2	0.124	13.1	0.0833	8.8
ratio	Ecoli3	0.1905	76	0.0909	11.6	0.1102	12.3	0.0595	9.3
	Vowel0	0.1586	195	0.101	103	0.095	89	0.0449	21
	Vehicle0	0.472	262	0.1834	16d5	0.2092	134	0.1024	26

Figure: The results of cost sensitive errors on the test sets. (a): C(-,+)=2. (b): C(-,+)=5. (c): C(-,+)=10. (d): $C(-,+)=\mathrm{ratio}$, for imbalanced learning.

5 Criteria to estimate HO methods

- "effective": good generalization performance.
- "efficient": running fast.
- "scalable": scalable in terms of the sizes of hyperparameters and model parameters.
- "simple": it can be implemented easily.
- "flexible": flexible to various learning algorithms.

Bayesian optimization algorithms

BO is an strategy to transform the problem

$$x_M = \arg\min_{x \in \mathcal{X}} \qquad f(x) \tag{6}$$

into a series of problems:

$$x_{n+1} = \arg\min_{x \in \mathcal{X}} \quad \alpha(x; \mathcal{D}_n, \mathcal{M}_n)$$
 (7)

where $\alpha(x; \mathcal{D}_n, \mathcal{M}_n)$ is inexpensive to evaluate.

- Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms. NIPS
- Falkner, Stefan, Aaron Klein, and Frank Hutter. "BOHB: Robust and efficient hyperparameter optimization at scale." ICML, 2018.
- K. Kandasamy, K. Vysyaraju, W. Neiswanger, B. Paria, C. Collins, J. Schneider, B. Poczos, and E. P. Xing. Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly., JMLR, 21 (81), 1-27, 2020

Commercial or open source systems: Microsoft Azure, Google Cloud AutoML solution, Dragonfly, auto-sklearn, ...

Gradient-based algorithms: Back-propagation

Replace the inner problem with a dynamical system:

$$\min_{\lambda} \quad E(s_T)
s.t. \quad s_t = \Phi_t(s_{t-1}, \lambda), \quad t \in \{1, \dots, T\}.$$
(8)

According to chain rule, and similarly to Back-propagation, we have

$$\frac{\partial E(s_T)}{\partial \lambda} = \nabla E(s_T) \sum_{t=1}^{T} (A_{t+1} \dots A_T) B_t$$

$$A_t = \frac{\partial \Phi_t(s_{t-1}, \lambda)}{\partial s_{t-1}}, \quad B_t = \frac{\partial \Phi_t(s_{t-1}, \lambda)}{\partial \lambda}$$
(9)

- Maclaurin, Dougal, David Duvenaud, and Ryan Adams. "Gradient-based hyperparameter optimization through reversible learning." ICML, 2015.
- Franceschi, Luca, et al. "Bilevel programming for hyperparameter optimization and meta-learning." ICML, 2018.

Gradient-based algorithms: Penalty method

 Replace the inner problem with its first order necessary condition.

$$\min_{u,v} f(u,v), \ s.t. \ c(u,v) = \nabla_v g(u,v) = 0$$
 (10)

The augmented Lagrangian function

$$\mathcal{L}(u, v, z; \mu_k) = f(u, v) + \frac{1}{d} \sum_{j=1}^{d} \left(z_j c_j(u, v) + \frac{\mu_k}{2} c_j^2(u, v) \right).$$

 Randomly sample a constraint and the validation data to calculate stochastic gradient of the augmented Lagrangian function.

$$\nabla_{v}\mathcal{L} = \left[\mu_{k}c_{j}(u, v^{t}) + z_{j}^{t}\right] \nabla_{v}c_{j}(u, v^{t}) + \tilde{\nabla}_{v}f(u, v^{t})$$
(11)
$$\nabla_{u}\mathcal{L} = \left[\mu_{k}c_{j}(u^{k}, v) + z_{j}^{k}\right] \nabla_{u}c_{j}(u^{k}, v) + \tilde{\nabla}_{u}f(u^{k}, v)$$

 Wanli Shi, Bin Gu, Heng Huang. Improved Penalty Method via Doubly Stochastic Gradients for Bilevel Hyperparameter Optimization. AAAI 2021.

Representative HO algorithms

Table: Representative black-box optimization and gradient based hyperparameter optimization algorithms.

Algorithm	Туре	Reference	Properties							
		Reference	Effective	Efficient	Scalable-H	Simple	Flexible	Scalable-P		
GPBO	BB	Snoek et al. (2012)	*	*	Х	√	√	√		
BOHB	BB	Falkner et al. (2018)			X	\checkmark	\checkmark	\checkmark		
HOAG	G	Pedregosa (2016)	√	√	√	Х	Х	Х		
RMD	G	Maclaurin et al. (2015)	✓	✓	✓	X	X	×		
RFHO	G	Franceschi et al. (2018)	✓	✓	✓	Х	Х	×		
HOZOG	BB+G	Our	√	✓	✓	√	√	✓		

Representative HO algorithms

Table: Representative black-box optimization and gradient based hyperparameter optimization algorithms.

Algorithm	Туре	Reference	Properties							
			Effective	Efficient	Scalable-H	Simple	Flexible	Scalable-P		
GPBO	BB	Snoek et al. (2012)	*	*	Х	√	√	√		
BOHB	BB	Falkner et al. (2018)	*		X	\checkmark	\checkmark	\checkmark		
HOAG	G	Pedregosa (2016)	✓	√	✓	Х	Х	Х		
RMD	G	Maclaurin et al. (2015)	✓	✓	✓	X	X	X		
RFHO	G	Franceschi et al. (2018)	\checkmark	✓	✓	X	×	X		
HOZOG	BB+G	Our	✓	✓	✓	✓	√	✓		

Our method: HOZOG

Enlightenment: We hope that the hyperparameter optimization method bases on zeroth-order hyper-gradients can inherit all benefits.

$$\hat{\nabla}f(\lambda) = \frac{p}{\mu q} \sum_{i=1}^{q} \left(f(\lambda + \mu u_i) - f(\lambda) \right) u_i \tag{12}$$

- $\mu > 0$ is the smoothing paramete.
- $\{u_i\}$ are the random query directions drawn from the standard Gaussian distribution.
- q is the number of sampled query directions.

Our method: HOZOG

Enlightenment: We hope that the hyperparameter optimization method bases on zeroth-order hyper-gradients can inherit all benefits.

$$\hat{\nabla}f(\lambda) = \frac{p}{\mu q} \sum_{i=1}^{q} \left(f(\lambda + \mu u_i) - f(\lambda) \right) u_i$$
 (12)

- $\mu > 0$ is the smoothing paramete.
- $\{u_i\}$ are the random query directions drawn from the standard Gaussian distribution.
- q is the number of sampled query directions.
- If $\mu \to 0$, $\frac{1}{\mu} \left(f(\lambda + \mu u) f(\lambda) \right) \to \boxed{f'(\lambda, u)}$, a directional derivative of function $f(\lambda)$ along u.

Our method: HOZOG

Enlightenment: We hope that the hyperparameter optimization method bases on zeroth-order hyper-gradients can inherit all benefits.

$$\hat{\nabla}f(\lambda) = \frac{p}{\mu q} \sum_{i=1}^{q} \left(f(\lambda + \mu u_i) - f(\lambda) \right) u_i \tag{12}$$

- $\mu > 0$ is the smoothing paramete.
- $\{u_i\}$ are the random query directions drawn from the standard Gaussian distribution.
- q is the number of sampled query directions.
- If $\mu \to 0$, $\left[\frac{1}{\mu}\left(f(\lambda + \mu u) f(\lambda)\right)\right] \to \left[f'(\lambda, u)\right]$, a directional derivative of function $f(\lambda)$ along u.
- If $f(\lambda)$ is smooth, $\nabla f(\lambda) = E_u(f'(\lambda, u)u)$

Hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)

Input: Learning rate γ , approximate parameter μ , size of directions q and black-box inner solver \mathcal{A} .

- 1: Initialize $\lambda_0 \in \mathbb{R}^p$.
- 2: **for** $t = 0, 1, 2, \dots, T 1$ **do**
- 3: Generate $u=[u_1,\ldots,u_q]$, where $u_i\sim N(0;I_p)$.
- 4: Compute the average zeroth-order hyper-gradient $\hat{\nabla} f(\lambda_t) = \frac{p}{\mu q} \sum_{i=1}^q \left(f(\lambda_t + \mu u_i) f(\lambda_t) \right) u_i$, where $f(\lambda_t)$ is estimated based on the solution returned by the black-box inner solver \mathcal{A} .
- 5: Update $\lambda_{t+1} \leftarrow \lambda_t \gamma \hat{\nabla} f(\lambda_t)$.
- 6: end for

Output: λ_T .

l₂-Regularized Logistic Regression: 1 Hyperparamter

$$\underset{\lambda \in [-10,10]}{\operatorname{arg \, min}} \quad \sum_{i \in \mathcal{D}_{val}} l(y_i x_i w(\lambda))$$

$$s.t. \quad w(\lambda) \in \underset{w \in \mathbb{R}^d}{\operatorname{arg \, min}} \sum_{i \in \mathcal{D}_{tr}} l(y_i x_i w(\lambda)) + e^{\lambda} ||w||^2$$

$$(13)$$

- \mathcal{D}_{tr} : training samples
- \mathcal{D}_{val} : validation samples
- $l(t) = \log(1 + e^{-t})$: logistic loss

l_2 -Regularized Logistic Regression: 1 Hyperparamter

Figure: Comparison of different hyperparameter optimization algorithms for l_2 -regularized logistic regression sharing the same legend. (a)-(c): Test error. (d)-(f): Suboptimality. (g)-(i): $\|\nabla f(\lambda)\|_2$.

Convolutional Neural Networks: 100 learning rates

Figure: Comparison of different hyperparameter optimization algorithms for 2-layer CNN sharing the same legend. (a) $\|\nabla f(\lambda)\|_2$. (b) Test error. (c) The training curve using corresponding hyperparameters. (d) Optimized learning rate by different methods.

Data Hyper-cleaning: Super Multiple Hyperparameters

$$\underset{\lambda \in \mathbb{R}^{N_h}}{\operatorname{arg \, min}} \qquad E_{val}(W(\lambda), b(\lambda)), \qquad (14)$$

$$s.t. \qquad [W(\lambda), b(\lambda)] \approx \underset{W,b}{\operatorname{arg \, min}} L(W, b)$$

$$L(W, b) \qquad = \qquad \frac{1}{N_{tr}} \sum_{q \in \mathcal{G}} \sum_{i \in q} \operatorname{sigmoid}(\lambda_g) l(W, b, (x_i, y_i)) \qquad (15)$$

- \mathcal{D}_{tr} : N_{tr} training samples
- \mathcal{D}_{val} : N_{val} validation samples
- $\mathcal G$ contain N_h groups random select from $\mathcal D_{tr}$

Data Hyper-cleaning: Super Multiple Hyperparameters

(d) 1250 hyperparamters (e) 1250 hyperparamters (f) 1250 hyperparamters

Figure: Comparison of different hyperparameter optimization algorithms for data hyper-cleaning. (a&d): $\|\nabla f(\lambda)\|_2$. (b&e): Suboptimality.

(c&f): Test error.

MBZUAI

Challenges of HOZOG

- Gu, Bin, et al. "Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm." arXiv preprint arXiv:2102.09026 (2021).
- Our code is available at https://github.com/jsgubin/HOZOG.

Challenges of HOZOG

- Gu, Bin, et al. "Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm." arXiv preprint arXiv:2102.09026 (2021).
- Our code is available at https://github.com/jsgubin/HOZOG.

- How to reduce the sampling complexity to obtain a ZO estimator
 - In HOZOG, we use q queries to obtain a good approximation of gradient
- Theoretical guarantee of HOZOG for the randomness of the inner algorithm $\mathcal{A}(\lambda)$.
 - We assume that the iterative procedure of $\mathcal{A}(\lambda)$ is deterministic.
- How to handle discontinuous hyperparameters, like the width/depth of NN
 - In HOZOG, we assume hyperparameters are continuous.

Existing works to reduce the sampling complexity

Learn Sampling Distribution

- **1** Evolutionary Strategies: Maheswaranathan et al. let the covariance matrix $\sum_k = \frac{\alpha}{n}I + \frac{1-\alpha}{k}UU^T$ be related with the recent history of ZO gradients during optimization.
- 2 Neural Networks: Ruan et al. dynamically predicted the covariance matrix $\Sigma_k = \operatorname{QueryRNN}([\hat{\nabla} f(x_k), \Delta x_{k-1}])$ with recurrent neural networks.
 - Y. Ruan, Y. Xiong, S. Reddi, S. Kumar, and C.-J. Hsieh, "Learning to learn by zeroth-order oracle," arXiv preprint arXiv:1910.09464, 2019.
 - N. Maheswaranathan, L. Metz, G. Tucker, D. Choi, and J. Sohl-Dickstein, "Guided evolutionary strategies: Augmenting random search with surrogate gradients," ICML, 2019, pp. 4264C4273.

Ongoing project

Figure: (a) Comparison of the ZO gradient directions obtained by sampling perturbed vectors from the standard Gaussian distribution and a learned Gaussian distribution. (b) Comparison of the ZO gradient directions obtained by a random sampling policy and a learned sampling policy. (c) The architecture of our ZO optimizer

Figure: Adversarial attack to black-box models in the SGD setting.

(c) mnist test 3

Figure: Adversarial attack to black-box models in the signSGD setting.

(a) mnist test 1

(b) mnist test 2

(d) mnist test 3

Conclusions

Conclusions

- Global optimal hyperparameter optimization based on solution and error paths/surfaces
 - Finding global optimum of CV error is valid for one/two hyperparamters.
- New hyperparameter optimization paradigm with zeroth-order hyper-gradients
 - HOZOG is a good HO method in terms of effectiveness, efficiency, scalability, simplicity and flexibility.

MBZUAI

References

- G. Cauwenberghs and T. Poggio, Incremental and decremental support vector machine learning, in Advances in Neural Information Processing Systems 13. Cambridge, MA, USA: MIT Press, 2001, pp. 409-415.
- M. Martin, On-line support vector machine regression, in Proc. 13th Eur. Conf. Mach. Learn. (ECML), London, U.K., 2002, pp. 282-294.
- P. Laskov, C. Gehl, S. Krger, and K. R. Mller, Incremental support vector learning: Analysis, implementation and applications, J. Mach. Learn. Res., vol. 7, pp. 1909-1936, Jan. 2006.
- B. Gu and V.S. Sheng. Feasibility and finite convergence analysis for accurate on-line ν- support vector machine. Neural Networks and Learning Systems, IEEE Transactions on, 24(8):1304-1315, 2013.
- Bin Gu, Victor S, Sheng, Keng Yeow Tay, Walter Romano, and Shuo Li. Cross Validation Through Two-dimensional Solution Surface for Cost-Sensitive SVM. IEEE Transactions on Pattern Analysis and Machine Intelligence. (accepted)
- Bin Gu, Victor S. Sheng, Zhijie Wang, Derek Ho, Said Osman, and Shuo Li.Incremental Learning for ν-Support Vector Regression. Neural Networks, 67 (2015): 140-150.
- Bin Gu, Jian-Dong Wang, Yue-Cheng Yu, Guan-Sheng Zheng, Yu-Fan Huang, and Tao Xu. Accurate on-line ν-support vector learning. Neural Networks, 27(0):51-59, 2012.
- Zaslavskiy M, Bach F, Vert J P. A path following algorithm for the graph matching problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2227-2242.

Thank You! Q&A