Домашняя работа №5 Доказательство изоморфности двух графов Вариант: 177

Выполнил: Ясаков Артем Андреевич

	Граф С1												
V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12	рe
e1	0	1	1		1	1				1	1		6
e2	1	0	1	1	1					1	1	1	7
e3	1	1	0	1	1		1	1	1	1	1		9
e4		1	1	0					1	1		1	5
e5	1	1	1		0		1	1	1		1	1	8
e6	1					0							1
e7			1		1		0		1		1	1	5
e8			1		1			0		1		1	4
e9			1	1	1		1		0		1	1	6
e10	1	1	1	1				1		0			5
e11	1	1	1		1		1		1		0		6
e12		1		1	1		1	1	1			0	6

	Граф С2												
V/V	y1	y 2	у3	y4	y 5	у6	y 7	y8	y9	y10	y11	y12	ру
y1	0	1	1	1	1		1		1		1	1	8
y 2	1	0	1			1			1				4
y 3	1	1	0	1	1	1	1	1			1	1	9
y4	1		1	0	1		1				1	1	6
y 5	1		1	1	0	1				1		1	6
y6		1	1		1	0		1				1	5
y 7	1		1	1			0		1		1		5
y8			1			1		0	1		1	1	5
y9	1	1					1	1	0		1	1	6
y10					1					0			1
y11	1		1	1			1	1	1		0		6
y12	1		1	1	1	1		1	1			0	7

Для графа
$$G_1 \Sigma(p_e(x)) = 68$$
. Список $P(e) = \{6, 7, 9, 5, 8, 1, 5, 4, 6, 5, 6, 6\}$ Для графа $G_2 \Sigma(p_y(x)) = 68$. Список $P(e) = \{8, 4, 9, 6, 6, 5, 5, 5, 6, 1, 6, 7\}$

	p(e)=p(y) =9	p(e)=p(y) =8	p(e)=p(y) =7	p(e)=p(y) =6	p(e)=p(y) =5	p(e)=p(y) =4	p(e)=p(y) =1
E	e_3	e ₅	e_2	e ₁ ,e ₉ ,e ₁₁ ,e 12	e_4, e_7, e_{10}	e ₈	e_6
Y	У3	y 1	y 12	y5,y11,y4,y 9	у8,у7,у6	y ₂	y 10

Из таблицы можно сразу заметить соответствие вершин графов:

E	Y
e ₃	y 3
e ₅	\mathbf{y}_1
e_2	y ₁₂
e ₈	y ₂
e ₆	y 10

Для определения соответствия вершин с p(e)=p(y)=6 попробуем связать с установленными вершинами из p(e)=p(y)=9, 8, 7, 4, 1

Можем сделать вывод, что $e_1-y_5,\,e_9-y_{11},\,e_{11}-y_4,\,e_{12}-y_9$

E	Y
e_3	y 3
e ₅	y 1
e_2	y 12
e_8	\mathbf{y}_2
e_6	y 10
e_1	y 5
e 9	y 11
e ₁₁	y 4
e ₁₂	y 9

Для определения соответствия вершин с p(e)=p(y)=5 попробуем связать с установленными вершинами из p(e)=p(y)=9, 8, 7, 6, 4, 1

Можем сделать вывод, что $e_4-y_8,\,e_7-y_7,\,e_{10}-y_6$

Итого получаем:

E	Y
e_1	y 5
e_2	y ₁₂
e_3	y ₃
e_4	y 8
e_5	y ₁
e_6	y 10
e_7	y ₇
e_8	y_2
e 9	y 11
e ₁₀	y 6
e ₁₁	y 4
e_{12}	y 9

	e ₁											
G_2	y 5	y 12	y 3	y 8	y 1	y 10	y 7	y 2	y 11	y 6	y 4	y 9

По итоговой таблице связей, можно сделать вывод, что каждой вершине графа G_1 соответствует одна вершина из графа G_2 , что доказывает изоморфизм данных графов.