Planning and control

A three-part story

Action plan

- Model predictive control
 - Backprop through kinematic equation
 - Minimisation wrt the "latent"
- Truck backer-upper
 - Learning an emulator of the kinematics from observations
 - Training a policy (this no one made it work)
- PPUU
 - Stochastic environment
 - Uncertainty minimisation
 - Latent decoupling

State transition equations

Evolution of the state

State transition equations

$$\dot{oldsymbol{x}} = f(oldsymbol{x}, oldsymbol{u}) \qquad r_c = L/ an\phi$$
 $\dfrac{\mathrm{d}oldsymbol{x}(t)}{\mathrm{d}t} = f(oldsymbol{x}(t), oldsymbol{u}(t))$

$$\begin{cases} \dot{x} = s \cos \theta \\ \dot{y} = s \sin \theta \\ \dot{\theta} = \frac{s}{L} \tan \phi \\ \dot{s} = a \end{cases}$$

$$\mathbf{x} = (x \ y \ \theta \ s) \quad \mathbf{u} = (\phi \ a)$$

State transition equations

differential equation

difference equation

$$\dot{\boldsymbol{x}} = f(\boldsymbol{x}, \boldsymbol{u})$$
 $\boldsymbol{x}[n] = \boldsymbol{x}[n-1] + f(\boldsymbol{x}[n-1], \boldsymbol{u}[n])$

$$\frac{\mathrm{d}\boldsymbol{x}(t)}{\mathrm{d}t} = f(\boldsymbol{x}(t), \boldsymbol{u}(t))$$
 $\boldsymbol{x}[n] \doteq \boldsymbol{x}(nT), \ \boldsymbol{u}[n] \doteq \boldsymbol{u}(nT)$

$$\begin{cases} \dot{x} = s\cos\theta \\ \dot{y} = s\sin\theta \\ \dot{\theta} = \frac{s}{L}\tan\phi \\ \dot{s} = a \end{cases}$$

$$\begin{cases} x[n] = x[n-1] + s\cos\theta[n-1] \\ y[n] = y[n-1] + s\sin\theta[n-1] \\ \theta[n] = \theta[n-1] + \frac{s}{L}\tan\phi[n] \\ s[n] = s[n-1] + a[n] \end{cases}$$

$$[\mathbf{u}] = (\operatorname{rad} \frac{\mathrm{m}}{\mathrm{s}^2})$$

$$[\boldsymbol{x}] = (\text{m m rad } \frac{\text{m}}{\text{s}})$$

$$\mathbf{u} = (\phi \ a)$$

$$\boldsymbol{x} = (x \ y \ \theta \ s)$$

$$x_0 \doteq (0\ 0\ 0\ 1)$$

$$[\mathbf{u}] = (\operatorname{rad} \frac{\mathrm{m}}{\mathrm{s}^2})$$

$$[\boldsymbol{x}] = (\text{m m rad } \frac{\text{m}}{\text{s}})$$

$$u = (\phi \ a)$$

$$\boldsymbol{x} = (x \ y \ \theta \ s)$$

$$x_0 \doteq (0\ 0\ 0\ 1)$$

$$[\mathbf{u}] = (\operatorname{rad} \frac{\mathrm{m}}{\mathrm{s}^2})$$

$$[x] = (m \text{ m rad } \frac{m}{s})$$

$$\mathbf{u} = (\phi \ a)$$

$$\boldsymbol{x} = (x \ y \ \theta \ s)$$

$$x_0 \doteq (0\ 0\ 0\ 1)$$

Kelley-Bryson algorithm

Backprop through time + gradient descent

RNN recap

RNN equations

$$h[0] \doteq 0$$

$$h[t] = \text{Pred}(h[t-1], x[t])$$

$$\tilde{\boldsymbol{y}}[t] = \operatorname{Dec}(\boldsymbol{h}[t])$$

RNN training

- backprop through time
- SGD wrt predictor's params to match x and y

Control

Optimal control (inference)

- backprop through time
- GD wrt z to go from x₀ to y

RNN equations

$$egin{aligned} m{h}[0] &\doteq \mathbf{0} \ m{h}[t] &= \operatorname{Pred}(m{h}[t-1], m{x}[t]) \ ilde{m{y}}[t] &= \operatorname{Dec}(m{h}[t]) \end{aligned}$$

RNN training

- backprop through time
- SGD wrt predictor's params to match x and y

Final position only

