₽

```
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
import seaborn as sns
import scipy.stats as stats
import matplotlib.pyplot as plt
%matplotlib inline
```

data=pd.read_csv("heart.csv")
data.head()

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2

data.info()
data.describe()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):

Data	columns	(total	14 columns	:):
#	Column	Non-N	Null Count	Dtype
0	age	1025	non-null	int64
1	sex	1025	non-null	int64
2	ср	1025	non-null	int64
3	trestbps	1025	non-null	int64
4	chol	1025	non-null	int64
5	fbs	1025	non-null	int64
6	restecg	1025	non-null	int64
7	thalach	1025	non-null	int64
8	exang	1025	non-null	int64
9	oldpeak	1025	non-null	float64
10	slope	1025	non-null	int64
11	ca	1025	non-null	int64
12	thal	1025	non-null	int64
13	target	1025	non-null	int64

dtypes: float64(1), int64(13) memory usage: 112.2 KB

	age	sex	ср	trestbps	chol	fbs	res
count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.00
mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.52
std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.52
min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.00
25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.00
50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.00
75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.00
max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.00
7.	11.						

Identify missing values
print(data.isnull().sum())

age 0 sex 0 trestbps 0 chol 0 fbs 0

```
restecg
                 0
     thalach
                 0
     exang
     oldpeak
                 0
                 0
     slope
     ca
     thal
                 0
     target
                 0
     dtype: int64
# Plot a histogram for numeric variables
sns.histplot(data['age'], bins=10)
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.title('Distribution of Age')
plt.show()
# Create bar plots for categorical variables
sns.countplot(data['sex'])
plt.xlabel('Sex')
plt.ylabel('Count')
plt.title('Distribution of Sex')
plt.show()
```


Plot a correlation matrix
sns.heatmap(data.corr(), annot=True, cmap='coolwarm')

```
plt.title('Correlation Matrix')
plt.show()

# Plot scatter plots to examine relationships between variables
sns.scatterplot(data=data, x='age', y='chol')
plt.xlabel('Age')
plt.ylabel('Cholesterol')
plt.title('Age vs Cholesterol')
plt.show()
```



```
# Create box plots to visualize outliers in numeric variables
sns.boxplot(data=data[['age', 'chol', 'trestbps']])
plt.xlabel('Variables')
plt.ylabel('Values')
plt.title('Outliers Detection')
plt.show()
```


Cholesterol Levels by Heart Disease

#Summary of Findings:

Hypothesis Test:

#Hypothesis: There is no significant difference in cholesterol levels between patients with and without heart disease.

#Confidence Intervals:

- # Confidence intervals were calculated for the cholesterol levels of patients with and without heart disease.
- # A narrower interval indicates greater precision.which was confidence level without heart desease

✓ 0s completed at 21:26