The Application of Deep learning algorithms to Computational Problems - Group 1

► STUDENTS / UNIVERSITIES
ilker GÜL / Sabancı University
Metehan KOÇ / Sabancı University
Tahir TURGUT / Sabancı University

SUPERVISOR(S)Dr. Mehmet KESKİNÖZ

ABSTRACT

- ✓ This research focuses on which method would provide more successful book recommendations to the people.
- ✓ Initially, research examines cosine similarity, KNN, matrix factorization(MF) methods' background and implementation and explains other methods with those.
- ✓ Afterwards, these methods are compared by their error rate.
- ✓ Finally, successful methods of comparison are represented and further developments about that methods and possible future work is explained.

First 5 lines of the Goodbooks-10k data with significant attributes

	user_id	book_id	rating	best_book_id	work_id	books_count	authors	original_publication_year	title	language_code	tag_name
0	1	258	5	1232	3209783	279	Carlos Ruiz Zafón, Lucia Graves	2001.0	The Shadow of the Wind (The Cemetery of Forgot	eng	to-read fantasy favorites currently- reading fi
1	11	258	3	1232	3209783	279	Carlos Ruiz Zafón, Lucia Graves	2001.0	The Shadow of the Wind (The Cemetery of Forgot	eng	to-read fantasy favorites currently- reading fi
2	143	258	4	1232	3209783	279	Carlos Ruiz Zafón, Lucia Graves	2001.0	The Shadow of the Wind (The Cemetery of Forgot	eng	to-read fantasy favorites currently- reading fi
3	242	258	5	1232	3209783	279	Carlos Ruiz Zafón, Lucia Graves	2001.0	The Shadow of the Wind (The Cemetery of Forgot	eng	to-read fantasy favorites currently- reading fi

OBJECTIVES

- ➤ The research is made on a dataset called Goodbooks-10k
- > Various algorithms are applied in **Python** to have a recommender system
- > These models are evaluated by Root mean square error and similarity scores

CONTENT-BASED FILTERING

There are several methods to build content-based filtering systems. In this study, cosine similarity is used on vector space of book's title and tags which is created by TF-IDF and Count vectorizer to find similarities between items and recommend them with cosine similarity accordingly.

General Formula of TF-IDF

$w_{i,j} = t f_{i,j} \times \log\left(\frac{10}{df_i}\right)$

 $> f_{i,j} =$ number of occurrences of i in j

 $> df_i$ = number of documents containing i

> N = total number of documents

CountVectorizer (Edpresso Editor, 2020)

TF-IDF based recommendation with similarity scores

Recommending 5 products similar to Harry Potter and the Sorcerer's Stone (Harry Potter, #1)

Recommended: Harry Potter and the Prisoner of Azkaban (Harry Potter, #3) (score:0.9840073445393256)

Recommended: Harry Potter and the Chamber of Secrets (Harry Potter, #2) (score:0.9820423548270265)

Recommended: Harry Potter and the Deathly Hallows (Harry Potter, #7) (score:0.9657235269252039)

Recommended: Harry Potter and the Half-Blood Prince (Harry Potter, #6) (score:0.9650833898658011)

Recommended: Harry Potter and the Goblet of Fire (Harry Potter, #4) (score:0.9488388043776768)

CountVectorizer based recommendation with similarity scores

	book_title	sim_books	scores	tags
0	Allegiant (Divergent, #3)	Insurgent (Divergent, #2)	1.0	[adult , adult fiction , fiction , young , you
1	Allegiant (Divergent, #3)	Harry Potter and the Chamber of Secrets (Harry	1.0	[adult , adult fiction , fiction , young , you
2	Allegiant (Divergent, #3)	The Lightning Thief (Percy Jackson and the Oly	1.0	[adult , adult fiction , fiction , young , you
3	Allegiant (Divergent, #3)	Paper Towns	1.0	[adult , adult fiction , fiction , young , you
4	Allegiant (Divergent, #3)	City of Ashes (The Mortal Instruments, #2)	1.0	[adult , adult fiction , fiction , young , you
5	Allegiant (Divergent, #3)	The Maze Runner (Maze Runner, #1)	1.0	[adult , adult fiction , fiction , young , you

COLLABORATIVE FILTERING and CLUSTERING

- > Collaborative filtering methods use the ratings in the form of a matrix called the rating matrix.
- The K-nearest Neighbors (KNN) algorithm is a simple, easy-to-implement algorithm to solve both classification and regression problems (Harrison, 2019).
- Matrix factorization (MF) is found to be effective in reducing the sparsity problem.
- Clustering is a common procedure that is done while having an exploratory data analysis.

KNN Algorithms Results

Matrix Factorization Example

A loonithman	DMCE Damite	Item												
Algorithms	RMSE Results		W	Χ	Υ	Z					W	Χ	Υ	Z
		Α		4.5	2.0			Α	1.2 0.8		1.5	1.2	1.0	0.8
KNNBaseline	0.805	Б	4.0		3.5		_	В	1.4 0.9	V	1.7	0.6	1.1	0.4
		User		5.0		2.0	_	С	1.5 1.0	^				
KNNBasic	0.832	D		3.5	4.0	1.0		D	1.2 0.8					
KNNWithMeans	0.807	Rating Matrix							User Matrix	Item Matrix				

KNN Recommendation

[64] recommendBook(book_id=13) □ Top recommendations for 1984 are:

Darkness at Noon

Essays and Poems

Animal Farm
Animal Farm / 1984
Brave New World
Fahrenheit 451
Brave New World / Brave New World Revisited
Lord of the Flies
A Clockwork Orange
Slaughterhouse-Five

K-Means Clustering

CONCLUSION and FUTURE WORK

- ✓ Both cosine similarity approaches produced a proper recommendation list. However, CountVectorizer offered books that are not as much related as the tf-idf vectorizer.
- ✓ Moreover, KNN based algorithms' RMSE scores are very close and have the best RMSE scores. RMSE scores are between 0.83 and 0.86.
- ✓ It should be noted that ratings are between 1 and 5. Hence, it is needed to decrease RMSE scores between 0.3 and 0.5 to get more accurate recommendations
- ✓ Deep learning techniques, language processing and filtering techniques will help recommender systems to better capture the user's needs and user's satisfaction
- ✓ Hybrid filtering composed of content-based and collaborative filtering will enable developers to reach people more in real life applications.

REFERENCES

- Edpresso Editor. (2020, February 28). *CountVectorizer in Python*. Educative: Interactive Courses for Software Developers.

 https://www.educative.io/edpresso/countvectorizer-in-python
- ➤ Harrison, O. (2019, July 14). *Machine Learning Basics with the K-Nearest Neighbors Algorithm*. Medium. https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761