

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

..' B.Sc. in Applied Sciences Third Year - Semester I Examination – July / August 2023

CHE 3207 - ELECTROCHEMISTRY

9	CHE 320/ - ELECTROCHEMISTRY	
		Time: Two (02) hours
Answer all questions.		
Use of a non-programmable	calculator is permitted.	
		d disperi e
1. a) Explain the following:	•	* <u>* * * · · · · · · · · · · · · · · · ·</u>
i.Overpotential	ii. Mass-transfer controlled reaction	on (20 marks)
b) Draw a labeled free ac under the following co	tivation energy diagram for a metal in a so	olution with its own ions
i. At equilibrium	ii. More negative overpotential	(20 marks)
	of iron by dilute mineral acids with necessile potential-current curves. Define corrosi	
	n of corrosion of iron with completely lab	peled corrosion current-potential (30 marks)

- 2. a) Draw a completely labeled Pourbaix diagram involving oxygen and hydrogen evolution for a zinc-water system. Show the effect of potential for increasing the concentration of Zn²⁺ from 0.1mol dm⁻³ to 1.0 mol dm⁻³ in the diagram. E⁰ (Zn²⁺/Zn) =-0.76 V. (50 marks)
 - b) What is the principle of cathodic protection? Explain the protection given to underground pipeline by impressed current method using a potential-current diagram (50 marks)
- 3. a) The electrochemical pathway is advantageous in many ways over the traditional pathway in organic synthesis. Comment.
 - b) Discuss the electrochemical cell design and modes of operation in electroorganic synthesis.
 - c) Outline the electrochemical synthesis of NCCH₂COOH using CO₂ and CH₃CN as substrates.
 - d) Ionic liquids have merits over traditional organic solvents. Explain.

(Each part caries equal marks of 25)

- 4. a) Give a comparative account of the operational mechanism of a fuel cell, a battery and a super capacitor with suitable diagrams.
 - b) Why electrocoagulation has become a promising technology in water treatment? Discuss the mechanism involved in the removal of hardness in water.

(Each part caries equal marks of 50)