Topic 13:

Animation

Animation Timeline

1908: Emile Cohl (1857-1938) France, makes his first film, FANTASMAGORIE, arguably the first animated film.

1911: Winsor McCay (1867-1934) makes his first film, LITTLE NEMO. McCay, already famous for comic strips, used the film in his vaudeville act. His advice on animation:

Any idiot that wants to make a couple of thousand drawings for a hundred feet of film is welcome to join the club.

1928: Walter Disney (1901-1966) working at the Kansas City Slide Company creates Mickey Mouse.

1974: First Computer animated film "Faim" from NFB nominated for an Oscar.

Animation Principles

Squash & Stretch

Timing

Ease-In & Ease-Out

Arcs

Anticipation

Follow-through & Secondary Motion

Overlapping Action & Asymmetry

Exaggeration

Staging

Appeal

Straight-Ahead vs. Pose-to-Pose

Squash and Stretch

Rigid objects look robotic: deformations make motion natural Accounts for physics of deformation

- Think squishy ball...
- Communicates to viewer what the object is made of, how heavy it is, ...
- Usually large deformations conserve volume: if you squash one dimension, stretch in another to keep mass constant

Also accounts for persistence of vision

Fast moving objects leave an elongated streak on our retinas

Anticipation

The preparation before a motion

- E.g. crouching before jumping, pitcher winding up to throw a ball
- Often physically necessary, and indicates how much effort a character is making
- Also essential for controlling the audience's attention, to make sure they don't miss the action
 - Signals something is about to happen, and where it is going to happen.

Animation Principles

Squash & Stretch

Staging

Exaggeration

Ease-In & Ease-Out

Appeal

Arcs

Straight-Ahead vs. Pose-to-Pose

Anticipation

Timing

Follow-through & Secondary Motion

Overlapping Action & Asymmetry

What can be animated?

Lights

Camera

Jointed figures

Deformable objects

Clothing

Skin/muscles

Wind/water/fire/smoke

Hair

...any variable, Given the right time scale, almost anything...

Elements of CG (animation)

How does one make digital models move?

Motion capture

Physical simulation

Behavior rules

Keyframes

Keyframes, also called extremes, define important poses of a character: Jump example:

```
the start
the lowest crouch
the lift-off
the highest part
the touch-down
the lowest follow-through
```

- Frames in between ("inbetweens") introduce nothing new to the motion.
- May add additional keyframes to add some interest, better control the interpolated motion.

Keyframe Animation

- The task boils down to setting animated variables (e.g. positions, angles, sizes, ...) at each frame.
- **Straight-ahead:** set variables in frame 0, then frame 1, frame 2, ... forward in time.
- **Pose-to-pose:** set the variables at keyframes, let the computer smoothly interpolate values for frames in between.

Physical Simulation (moovl)

Particles

Position x

Velocity v = dx/dt

Acceleration $a = dv/dt = d^2x/dt^2$

Forces

Gravity f=mg

Spring-damper f=-kx-cv

• • •

Simulation: x,v,a used to compute forces yeilding total force F.

F=ma used to update a, a used to update v, to update x...