Assignment

Assignment 02

- Build linear regression model
 - Among numeric variables, select input variables
 - Describe reasons for variable selection
 - You can apply variable transformation
 - Describe reasons of variable transformation
 - You can discard some rows satisfying specific conditions
 - Specify conditions
- Summarize the process and result using Power Point
 - Some students have to create video clip to explain their results

Submit both slide and python code

Linear Regression

Trained Model

OLS Regression Results

Model

```
Dep. Variable:
                                price
                                        R-squared:
                                                                          0.598
                                  0LS
Model:
                                        Adj. R-squared:
                                                                          0.598
Method:
                        Least Squares
                                         F-statistic:
                                                                          2923.
Date:
                     Tue, 08 Sep 2020
                                        Prob (F-statistic):
                                                                           0.00
Time:
                                        Log-Likelihood:
                             08:46:44
                                                                    -2.9775e+05
No. Observations:
                                                                      5.955e+05
                                21613
                                        AIC:
Df Residuals:
                                21601
                                        BIC:
                                                                      5.956e+05
Df Model:
                                   11
Covariance Type:
                            nonrobust
```

Coefficients

	coef	std err	t	P>¦t¦	[0.025	0.975]
const	6.418e+06	1.38e+05	46.627	0.000	6.15e+06	6.69e+06
bedrooms	-5.813e+04	2150.015	-27.038	0.000	-6.23e+04	-5.39e+04
bathrooms	6.615e+04	3737.401	17.701	0.000	5.88e+04	7.35e+04
sqft_lot	0.0371	0.055	0.671	0.502	-0.071	0.145
floors	5.498e+04	4020.903	13.673	0.000	4.71e+04	6.29e+04
waterfront	7.247e+05	1.86e+04	39.027	0.000	6.88e+05	7.61e+05
sqft_above	239.6824	3.895	61.538	0.000	232.048	247.317
sqft_basement	243.7353	4.812	50.654	0.000	234.304	253.167
yr_built	-3338.9292	71.492	-46.703	0.000	-3479.059	-3198.799
yr_renovated	11.9013	4.156	2.864	0.004	3.756	20.047
sqft_living15	90.4224	3.679	24.581	0.000	83.212	97.633
sqft lot15	-0.7360	0.084	-8.731	0.000	-0.901	-0.571

Residuals

Omnibus: Prob(Omnibus):		Durbin-Watson: Jarque-Bera (JB):	1.981 606691.177
Skew:	2.579	Prob(JB):	0.00
Kurtosis:	28.438	Cond. No.	4.40e+06

Trained Model

OLS Regression Results

Model

```
Dep. Variable:
                               price
                                       R-squared:
                                                                        0.598
Model:
                                 0LS
                                       Adj. R-squared:
                                                                        0.598
                       Least Squares
Method:
                                       F-statistic:
                                                                        2923.
Date:
                    Tue, 08 Sep 2020
                                       Prob (F-statistic):
                                                                         0.00
Time:
                                       Log-Likelihood:
                            08:46:44
                                                                  -2.9775e+05
No. Observations:
                                       AIC:
                                                                    5.955e+05
                               21613
Df Residuals:
                               21601
                                       BIC:
                                                                    5.956e+05
Df Model:
                                  11
Covariance Type:
                            nonrobust
```

	coef	std err	t	P>¦t¦	[0.025	0.975]
const	6.418e+06	1.38e+05	46.627	0.000	6.15e+06	6.69e+06
bedrooms	-5.813e+04	2150.015	-27.038	0.000	-6.23e+04	-5.39e+04
bathrooms	6.615e+04	3737.401	17.701	0.000	5.88e+04	7.35e+04
sqft_lot	0.0371	0.055	0.671	0.502	-0.071	0.145
floors	5.498e+04	4020.903	13.673	0.000	4.71e+04	6.29e+04
waterfront	7.247e+05	1.86e+04	39.027	0.000	6.88e+05	7.61e+05
sqft_above	239.6824	3.895	61.538	0.000	232.048	247.317
sqft_basement	243.7353	4.812	50.654	0.000	234.304	253.167
yr_built	-3338.9292	71.492	-46.703	0.000	-3479.059	-3198.799
yr_renovated	11.9013	4.156	2.864	0.004	3.756	20.047
sqft_living15	90.4224	3.679	24.581	0.000	83.212	97.633
sqft_lot15	-0.7360	0.084	-8.731	0.000	-0.901	-0.571
Omnibus:		14160.528	Durbin-W	atson:		1.981
Prob(Omnibus):		0.000	Jarque-B	era (JB):	60	6691.177
Skew:		2.579	Prob(JB)	:		0.00
Kurtosis:		28.438	Cond. No			4.40e+06

F-test

- F-test for general regression models
 - Check overall significance of regression models
 - Whether the regression model is significant for predicting a target
 - Hypothesis

$$H_0$$
: $\beta_1=\beta_2=\cdots=\beta_p=0$
 H_1 : not all $\beta_i(i=1,2,\cdots,p)$ equal zero

Test statistic

$$F^* = MSR/MSE$$

- F follows F-distribution with (p, n p 1) degree of freedom
- Decision rule

If
$$F^* \leq F(1-\alpha; p, n-p-1)$$
, conclude H_0
If $F^* > F(1-\alpha; p, n-p-1)$, conclude H_1

α: significance level

Sum of Square

Total variance: the total sum of squares

$$SST = \sum_{i} (y_i - \bar{y})^2$$

 Explained variance: the regression sum of squares, also called the explained sum of squares

$$SSR = \sum_{i} (\hat{y}_i - \bar{y})^2$$

 Residual variance: the sum of squares errors, also called the residual sum of squares

$$SSE = \sum_{i} (y_i - \hat{y}_i)^2$$

Relationship among three values

$$SST = SSR + SSE$$

Test of Model Significance

 \square ANOVA table for multiple regression model with p input variables

Factor	Sum of square	Degree of freedom	Mean square	F-value	p-value
Model	SSR	p	MSR = SSR/p	$F_0 = MSR/MSE$	$P\{F_{p,n-p-1} > F_0\}$
Residual	SSE	n-p-1	MSE = SSE/(n-p-1)		
Total	SST	n-1			

Analysis of Variance (ANOVA)

- Statistical measures for goodness-of-fit
 - $R^2 (0 \le R^2 \le 1)$

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Adjusted R²

$$R^{2}_{adj} = 1 - \frac{\frac{SSE}{n - p - 1}}{\frac{SST}{n - 1}} = 1 - \left(\frac{n - 1}{n - p - 1}\right)(1 - R^{2})$$

Depend on the number of input variables

- $lue{}$ Penalty on the number of input variable by n-p-1
- $lue{}$ Adjusted R^2 may actually become smaller when another input variable is introduced into the model

Likelihood of Linear Regression Model

Consider linear regression model

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon, \ \epsilon \sim N(0, \sigma^2)$$

Joint density of the independent random responses $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n$ evaluated at observations(true), $\mathbf{y} = (y_1, ..., y_n)^T$ $f(\mathbf{y}; \boldsymbol{\beta})$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_1 - \beta_0 - \beta_1 x_{11} - \dots - \beta_p x_{p1})^2}{2\sigma^2}} \times \dots \times \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{1i} - \dots - \beta_p x_{pi})^2}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_n - \beta_0 - \beta_1 x_{1n} - \dots - \beta_p x_{pn})^2}{2\sigma^2}$$

$$\hat{\beta}_0, \hat{\beta}_1, \cdots, \hat{\beta}_p$$

AIC, BIC

- Akaike information criterion (AIC) and Bayesian Information Criterion (BIC)
 - Estimators of in-sample prediction error and thereby relative quality of statistical models for a given set of data
 - The model with the lowest AIC or BIC is preferred

$$AIC = -2 \log \mathcal{L} + 2p$$

$$BIC = -2 \log \mathcal{L} + \log(n) \cdot p$$

- £: likelihood of the model
- p: the number of estimated parameters in the model

Trained Model - Coefficients

OLS Regression Results

			============
Dep. Variable:	price	R-squared:	0.598
Model:	0LS	Adj. R-squared:	0.598
Method:	Least Squares	F-statistic:	2923.
Date:	Tue, 08 Sep 2020	Prob (F-statistic):	0.00
Time:	08:46:44	Log-Likelihood:	-2.9775e+05
No. Observations:	21613	AIC:	5.955e+05
Df Residuals:	21601	BIC:	5.956e+05
Df Model:	11		
Covariance Type:	nonrohust		

Coefficients

	coef	std err	t	P>¦t¦	[0.025	0.975]
const	6.418e+06	1.38e+05	46.627	0.000	6.15e+06	6.69e+06
bedrooms	-5.813e+04	2150.015	-27.038	0.000	-6.23e+04	-5.39e+04
bathrooms	6.615e+04	3737.401	17.701	0.000	5.88e+04	7.35e+04
sqft_lot	0.0371	0.055	0.671	0.502	-0.071	0.145
floors	5.498e+04	4020.903	13.673	0.000	4.71e+04	6.29e+04
waterfront	7.247e+05	1.86e+04	39.027	0.000	6.88e+05	7.61e+05
sqft_above	239.6824	3.895	61.538	0.000	232.048	247.317
sqft_basement	243.7353	4.812	50.654	0.000	234.304	253.167
yr_built	-3338.9292	71.492	-46.703	0.000	-3479.059	-3198.799
yr_renovated	11.9013	4.156	2.864	0.004	3.756	20.047
sqft_living15	90.4224	3.679	24.581	0.000	83.212	97.633
sqft lot15	-0.7360	0.084	-8.731	0.000	-0.901	-0.571

Omnibus:	14160.528	Durbin-Watson:	1.981
Prob(Omnibus):	0.000	Jarque-Bera (JB):	606691.177
Skew:	2.579	Prob(JB):	0.00
Kurtosis:	28.438	Cond. No.	4.40e+06

Test Concerning Regression Coefficients

- □ Test for β_j ($j = 0,1,2,\dots,p$)
 - Hypothesis

$$H_0: \beta_j = 0$$

$$H_1: \beta_i \neq 0$$

Test statistic

$$t_j = \frac{\widehat{\beta}_j}{se(\widehat{\beta}_j)}$$

- $se^{2}(\widehat{\boldsymbol{\beta}}) = MSE(\mathbf{X}^{T}\mathbf{X})^{-1} \rightarrow se^{2}(\widehat{\beta}_{j}) = [MSE(\mathbf{X}^{T}\mathbf{X})^{-1}]_{j,j}$
- Decision rule

If
$$|t_j| \le t \left(1 - \frac{\alpha}{2}; n - p - 1\right)$$
, conclude H_0
If $|t_j| > t \left(1 - \frac{\alpha}{2}; n - p - 1\right)$, conclude H_1

Trained Model

OLS Regression Results

						======
Dep. Variable:	:	price	R-squared			0.598
Model:		0LS	Adj. R-sq			0.598
		east Squares	F-statist			2923.
Date:	Tue,	08 Sep 2020	Prob (F-s	tatistic):		0.00
Time:		08:46:44	Log-Likel	ihood:	-2.	9775e+05
No. Observation	ons:	21613	AIC:		5	.955e+05
Df Residuals:		21601	BIC:		5	.956e+05
Df Model:		11				
Covariance Typ		nonrobust				
==========	coef	std err	t	P> t	[0.025	0.975]
const	6.418e+06	1.38e+05	46.627	0.000	6.15e+06	6.69e+06
bedrooms	-5.813e+04	2150.015	-27.038	0.000	-6.23e+04	-5.39e+04
bathrooms	6.615e+04	3737.401	17.701	0.000	5.88e+04	7.35e+04
sqft_lot	0.0371	0.055	0.671	0.502	-0.071	0.145
floors	5.498e+04	4020.903	13.673	0.000	4.71e+04	6.29e+04
waterfront	7.247e+05	1.86e+04	39.027	0.000	6.88e+05	7.61e+05
sqft_above	239.6824	3.895	61.538	0.000	232.048	247.317
sqft_basement	243.7353	4.812	50.654	0.000	234.304	253.167
yr_built	-3338.9292	71.492	-46.703	0.000	-3479.059	-3198.799
yr_renovated	11.9013	4.156	2.864	0.004	3.756	20.047
sqft_living15	90.4224	3.679	24.581	0.000	83.212	97.633
sqft_lot15	-0.7360	0.084	-8.731	0.000	-0.901	-0.571
Omnibus:		14160.528	Durbin-Wa	tson:		1.981
Prob(Omnibus):	:	0.000	Jarque-Be	ra (JB):	60	6691.177
Skew:		2.579	Prob(JB):			0.00
Kurtosis:		28.438	Cond. No.			4.40e+06

Residuals

- Jarque-Bera test is a goodness-of-fit test of whether sample data have the skewness and kurtosis matching a normal distribution
 - Test statistic

$$JB = \frac{n-k}{6} \left(S^2 + \frac{1}{4} (C-3)^2 \right)$$

- $S = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^3}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2\right)^{\frac{3}{2}}} : \text{sample skewness}$
- $C = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^4}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2\right)^{\frac{4}{2}}} : \text{sample kurtosis}$
- *k*: the number of input variables
- If the data comes from a normal distribution, JB statistic asymptotically has a chi-squared distribution with two degrees of freedom

$$H_0$$
: $S = C - 3 = 0$

- Durbin-Watson statistic is a test statistic used to detect the presence of autocorrelation at lag 1 in the residuals (prediction errors) from a regression analysis
 - It is used for time series data
 - If e_t is the residual given by $e_t = \rho e_{t-1} + \nu_t$
 - t is a timestamp
 - Hypothesis

$$H_0$$
: $\rho = 0$
 H_a : $\rho \neq 0$

Test statistic

$$d = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2}$$

- Result
 - When d = 2, no autocorrelation
 - When d < 2, positive serial correlation
 - When d > 2, negative serial correlation

Omnibus test is a statistical test for normality

$$Z = Z(S)^2 + Z(C)^2 \sim \chi(2)$$

- \blacksquare Z(S) is z-score by test of skewness and Z(C) is z-score by test of kurtosis
- Tests of Skewness (S)

$$Y = S \sqrt{\frac{(n+1)(n+3)}{6(n-2)}}$$

$$\beta_2(S) = \frac{3(n^2 + 27n - 70)(n+1)(n+3)}{(n-2)(n+5)(n+7)(n+9)}$$

$$W^2 = -1 + \sqrt{2\beta_2(S) - 2}$$

$$\delta = \frac{1}{\sqrt{\ln W}}$$

$$\alpha = \sqrt{\frac{2}{W^2 - 1}}$$

$$\to Z(S) = \delta \ln \left(\frac{\gamma}{\alpha} + \sqrt{\left(\frac{\gamma}{\alpha}\right)^2 + 1}\right)$$

Omnibus test is a statistical test for normality

$$Z = Z(S)^2 + Z(C)^2 \sim \chi(2)$$

- Z(S) is z-score by test of skewness and Z(C) is z-score by test of kurtosis
- Tests of kurtosis (C)

$$E(C) = \frac{3(n-1)}{n+1}$$

$$var(C) = \frac{24n(n-2)(n-3)}{(n+1)^2(n+3)(n+5)}$$

$$x = (C - E(C))/\sqrt{var(C)}$$

$$\sqrt{\beta_1(C)} = \frac{6(n^2 - 5n + 2)}{(n+7)(n+9)} \sqrt{\frac{6(n+3)(n+5)}{n(n-2)(n-3)}}$$

$$A = 6 + \frac{8}{\sqrt{\beta_1(C)}} \left[\frac{2}{\sqrt{\beta_1(C)}} + \sqrt{\left(1 + \frac{4}{\sqrt{\beta_1(C)}}\right)} \right]$$

$$\rightarrow Z(C) = \frac{\left(1 - \frac{2}{9A}\right) - \left[\frac{1 - \frac{2}{A}}{1 + x\sqrt{\frac{2}{A-4}}}\right]^{\frac{1}{3}}}{\sqrt{2/(9A)}}$$

Handling Categorical Variables

Handle Categorical Variables

- Categorical variables of the dataset, House Sales Prices in King County
 - waterfront is binary variable
 - 'view', 'condition', 'grade' are ordinal variables (categorical variables)
 - 'zipcode' is a nominal variable

Regression with Categorical Variables

- Dummy variable
 - Also known as an indicator variable or binary variable
 - Take the value 0 or 1 to indicate the absence or presence of some categorical effect that may be expected to shift the outcome
- □ Categorical variables with k categories \rightarrow convert to vector represented by k binary variables using one-hot encoding
 - For binary variable

Original variable		$dummy_1$	dummy ₂
Female	\rightarrow	1	0
Male		0	1

Actually $\sum_i x_i = 1$ should be satisfied $\rightarrow k - 1$ binary variables are necessary

Original variable		$dummy_1$	$dummy_2$
Female	\rightarrow	1	0
Male		0	1

Regression with Categorical Variables

- Instead of categorical variables, dummy variables are used in regression function
 - The problem to predict wage by education and sex(female/male) $wage = \alpha_0 + \alpha_1 \cdot educ + \alpha_2 \cdot sex$
 - Because sex is categorical variable create a dummy variable $dummy_f$ (female is 1 and male is 0)

$$wage = \alpha_0 + \alpha_1 \cdot educ + \delta_0 \cdot dummy_f$$

Regression with Categorical Variables

- Example
 - There are two categorical variables

	x_1	x_2
# of categories	3	4

	dummy ₁₁	dummy ₁₂	$dummy_{13}$
$x_1 = 1$	1	0	0
$x_1 = 2$	0	1	0
$x_1 = 3$	0	0	1

	dummy ₂₁	dummy ₂₂	dummy ₂₃	dummy ₂₄
$x_1 = 1$	1	0	0	0
$x_2 = 2$	0	1	0	0
$x_3 = 3$	0	0	1	0
$x_4 = 4$	0	0	0	1

Programming Exercise

Create Dummy Variable

- Pandas package provides function to create dummy variable
 - Use "get_dummies"

```
import pandas as pd
dummy1=pd.get_dummies(data['var'],prefix='var')
```

- It creates k binary variables if the categorical variable has k categories
- To reduce the number of variables in final train set, you can take the first k-1 dummy variables using drop_first option

Create Dummy Variable

Load example data

import pandas as pd

salary=pd.read_csv('https://drive.google.com/uc?export=download&id=1kkAZzL8uRSak8gM-0iqMMAFQJTfnyGuh')

- rank, discipline, and sex are categorical variables
- Question
 - Calculate mean values of salary according to rank, discipline and sex

Build a Regression Model

- Question
 - Check relevancy or significance of categorical variables for predicting salary

One-way ANOVA

- One-way analysis of variance(ANOVA)
 - It is used to determine whether there are any statistically significant differences between the means of two or more independent (unrelated) groups

One-way ANOVA

Hypothesis

$$H_0$$
: $\mu_1 = \mu_2 = \cdots = \mu_k$
 H_a : The mean of at least group is different

- Assumptions
 - Normality That each sample is taken from a normally distributed population
 - Sample independence that each sample has been drawn independently of the other samples
 - Variance Equality That the variance of data in the different groups should be the same

One-way ANOVA

Source	Sums of squares	Degrees of freedom	Mean square	F
Between Samples	$\sum_{i=1}^k n_i (\bar{x}_i - \bar{x})^2$	k-1	$\frac{SSB}{k-1}$	MSB MSW
Within Samples	$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2$	n-k	$\frac{SSW}{n-k}$	
Total	$\sum_{i,j} (x_{ij} - \bar{x})^2$	n-1		

Use the Statsmodels package

```
import statsmodels.api as sm
model=sm.OLS(y, X)
result=model.fit()
result.summary()
```

Estimated parameters

```
result.params
```

Prediction

```
y_pred=result.predict(X)
```

Residual of training set

```
result.resid
```

OLS Regression Results

	========					
Dep. Variable: salary		R-squared:		0.455		
Model:	OLS		Adj. R-sq	uared:	0.446	
Method:	Method: Least Squares		F-statistic:		54.20	
Date:			Prob (F-statistic):		1.79e-48	
Time:			Log-Likelihood:		-4538.9	
No. Observatio	ns:	397	AIC:		9092.	
Df Residuals:		390	BIC:			9120.
Df Model:		6				
Covariance Typ	e:	nonrobust				
=======================================	coef	std err	t	P>¦t¦	[0.025	0.975]
const	7.886e+04	4990.326	15.803	0.000	6.91e+04	8.87e+04
yrs.since.phd	535.0583	240.994	2.220	0.027	61.248	1008.869
vrs.service	-489.5157	211.938	-2.310	0.021	-906.199	-72,833
rank_AsstProf	-1.291e+04	4145.278	-3.114	0.002	-2.11e+04	-4757.700
rank_Prof	3.216e+04	3540.647	9.083	0.000	2.52e+04	3.91e+04
discipline_B	1.442e+04	2342.875	6.154	0.000	9811.380	1.9e+04
sex_Male	4783.4928	3858.668	1.240	0.216	-2802.901	
0	=======	46 205	Durchin Wa			1 010
Omnibus:			Durbin-Wa			1.919
Prob(Omnibus):		0.000	Jarque-Be			82.047
Skew:		0.699				1.53e-18
Kurtosis:		4.733	Cond. No.			183.

- House Sales Prices in King County
 - Explanatory variables
 - Use numeric variables including 'waterfront'
 - Check multicollinearity using VIF

OLS Regression Results

						=======
Dep. Variable: price		R-squared:		0.598		
Model:	Model: OLS		Adj. R-squared:		0.598	
Method:	Method: Least Squares		F-statistic:		2923.	
Date:	Mon,	27 Jul 2020		statistic):		0.00
Time:		12:16:59	Log-Likelihood:		-2.9775e+05	
No. Observatio	ons:	21613	AIC:		5.955e+05	
Df Residuals:		21601	BIC:		5	.956e+05
Df Model:		11				
Covariance Typ	e:	nonrobust				
	coef	std err	t	P>¦t¦	[0.025	0.975]
const	6.418e+06	1.38e+05	46.627	0.000	6.15e+06	6.69e+06
bedrooms	-5.813e+04	2150.015	-27.038	0.000	-6.23e+04	-5.39e+04
bathrooms	6.615e+04	3737.401	17.701	0.000	5.88e+04	7.35e+04
sqft_lot	0.0371	0.055	0.671	0.502	-0.071	0.145
floors	5.498e+04	4020.903	13.673	0.000	4.71e+04	6.29e+04
waterfront	7.247e+05	1.86e+04	39.027	0.000	6.88e+05	7.61e+05
sqft_above	239.6824	3.895	61.538	0.000	232.048	247.317
sqft_basement	243.7353	4.812	50.654	0.000	234.304	253.167
yr_built	-3338.9292	71.492	-46.703	0.000	-3479.059	-3198.799
yr_renovated	11.9013	4.156	2.864	0.004	3.756	20.047
sqft_living15	90.4224	3.679	24.581	0.000	83.212	97.633
sqft_lot15	-0.7360	0.084	-8.731	0.000	-0.901	-0.571
Omnibus:		14160.528	 Durbin-W	atson:	=======	1.981
Prob(Omnibus): 0.000		Jarque-Bera (JB):		606691.177		
Skew:		2.579	Prob(JB)			0.00
Kurtosis:		28.438	Cond. No			4.40e+06
=========		========		=======	=======	======

Residual distribution

Residual Analysis for Linear Regression

Residual Analysis for Linear Regression

Q-Q Plot

Residual Analysis for Linear Regression

- Breusch-Pagan test using statsmodels
 - Use "het_breuschpagan"

from statsmodels.stats import diagnostic diagnostic.het_breuschpagan(resid, X)

Excluding Outliers

Excluding Outliers

Build a Model: Linear Regression

OLS Regression Results

					========	=======	
Dep. Variable: price		R-squared:		0.474			
Model:	odel: OLS		Adj. R-S	Adj. R-squared:		0.474	
Method:	Method: Least Squares		F-statis	F-statistic:		1647.	
Date:	·		Prob (F-	Prob (F-statistic):		0.00	
		11:38:29	Log-Likelihood:		-2.6723e+05		
No. Observations:		20121	AIC:		5.345e+05		
Df Residuals:		20109	BIC:		5.346e+05		
Df Model:		11					
Covariance Typ	e:	nonrobust					
=========	=======		=======		========	========	
	coef	std err	t	P>¦t¦	[0.025	0.975]	
const	4.407e+06	9.05e+04	48.715	0.000	4.23e+06	4.58e+06	
bedrooms	-2.231e+04	1399.096	-15.947	0.000	-2.51e+04	-1.96e+04	
bathrooms	3.796e+04	2451.675	15.482	0.000	3.32e+04	4.28e+04	
sqft_lot	0.1554	0.035	4.387	0.000	0.086	0.225	
floors	7.09e+04	2594.964	27.320	0.000	6.58e+04	7.6e+04	
waterfront	1.261e+05	1.87e+04	6.736	0.000	8.94e+04	1.63e+05	
sqft_above	98.7145	2.823	34.972	0.000	93.182	104.247	
sqft_basement	123.8863	3.364	36.826	0.000	117.292	130.480	
yr_built	-2251.0211	47.115	-47.778	0.000	-2343.369	-2158.673	
yr_renovated	2.7533	2.801	0.983	0.326	-2.737	8.244	
sqft_living15	99.7699	2.582	38.641	0.000	94.709	104.831	
sqft_lot15	-0.3191	0.054	-5.913	0.000	-0.425	-0.213	
Omnibus:		437.916	 Durbin-V	:======== Vatson:		1.961	
Prob(Omnibus):		0.000	Jarque-Bera (JB):		470.963		
Skew:		0.355			.39e-103		
Kurtosis:		3.238			4.41e+06		
	=======				=======		

Compare Models

Model 1

OLS Regression Results

Dep. Variable: price R-squared: 0.598 OLS Adj. R-squared: Model: 0.598 Least Squares F-statistic: Method: 2923. Mon, 27 Jul 2020 Prob (F-statistic): Date: 0.00 Time: 12:16:59 Log-Likelihood: -2.9775e+05 No. Observations: 21613 AIC: 5.955e+05 Df Residuals: 21601 BIC: 5.956e+05 Df Model: 11

Covariance Type: nonrobust

covariance Type:							
	coef	std err	t	P> t	[0.025	0.975]	
const	6.418e+06	1.38e+05	46.627	0.000	6.15e+06	6.69e+06	
bedrooms	-5.813e+04	2150.015	-27.038	0.000	-6.23e+04	-5.39e+04	
bathrooms	6.615e+04	3737.401	17.701	0.000	5.88e+04	7.35e+04	
sqft_lot	0.0371	0.055	0.671	0.502	-0.071	0.145	
floors	5.498e+04	4020.903	13.673	0.000	4.71e+04	6.29e+04	
waterfront	7.247e+05	1.86e+04	39.027	0.000	6.88e+05	7.61e+05	
sqft_above	239.6824	3.895	61.538	0.000	232.048	247.317	
sqft_basement	243.7353	4.812	50.654	0.000	234.304	253.167	
yr_built	-3338.9292	71.492	-46.703	0.000	-3479.059	-3198.799	
yr_renovated	11.9013	4.156	2.864	0.004	3.756	20.047	
sqft_living15	90.4224	3.679	24.581	0.000	83.212	97.633	
sqft_lot15	-0.7360	0.084	-8.731	0.000	-0.901	-0.571	
Omnibus:	141		Durbin-Watson:		1.981		
Prob(Omnibus):	:	0.000	Jarque-Bera (JB): 606691.1		6691.177		
Skew:		2.579	Prob(JB)	:	0.00		
Kurtosis:		28.438	Cond. No		4	4.40e+06	

Model 2

OLS Regression Results

		price OLS east Squares 27 Jul 2020 11:38:29 20121 20109 11 nonrobust	Adj. R-squared: F-statistic: Prob (F-statistic):		0.474 0.474 1647. 0.00 -2.6723e+05 5.345e+05 5.346e+05	
	coef	std err	t	P>¦t¦	[0.025	0.975]
sqft_lot floors waterfront sqft_above sqft_basement yr_built yr_renovated sqft_living15 sqft_lot15	-2251.0211 2.7533 99.7699 -0.3191	1399.096 2451.675 0.035 2594.964 1.87e+04 2.823 3.364 47.115 2.801 2.582 0.054	48.715 -15.947 15.482 4.387 27.320 6.736 34.972 36.826 -47.778 0.983 38.641 -5.913	0.000 0.000 0.000 0.000 0.326 0.000 0.000	-2.51e+04 3.32e+04 0.086 6.58e+04 8.94e+04 93.182 117.292 -2343.369 -2.737 94.709 -0.425	4.28e+04 0.225 7.6e+04 1.63e+05 104.247 130.480 -2158.673 8.244 104.831 -0.213
Omnibus: Prob(Omnibus): Skew: Kurtosis:		437.916 0.000 0.355 3.238	Jarque-Bera (JB): 470.9 5 Prob(JB): 5.39e-1		1.961 470.963 .39e-103 4.41e+06	

Compare Models

Question

□ Why R^2 of the new model is lower than the previous model?

Total variance: the total sum of squares

$$SST = \sum_{i} (y_i - \bar{y})^2$$

 Explained variance: the regression sum of squares, also called the explained sum of squares

$$SSR = \sum_{i} (\hat{y}_i - \bar{y})^2$$

 Residual variance: the sum of squares of residuals, also called the residual sum of squares

$$SSE = \sum_{i} (\hat{y}_i - y_i)^2$$

 \square R^2

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Model Evaluation: Regression

- Mean squared error
 - Risk metric corresponding to the expected value of the squared (quadratic) error loss or loss

$$MSE(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- Mean squared logarithmic error
 - Best to use when targets having exponential growth

$$MSLE = \frac{1}{n} \sum_{i=1}^{n} (\log_2(1 + y_i) - \log_e(1 + \hat{y}_i))^2$$

Model Evaluation: Regression

- Mean absolute error
 - $lue{}$ Risk metric corresponding to the expected value of the absolute error loss or l_1 -norm loss

$$MAE(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

- Median absolute error
 - Calculated by taking the median of all absolute differences between the target and the prediction
 - Robust to outliers

$$MedAE(y, \hat{y}) = median(|y_0 - \hat{y}_0|, ..., |y_n - \hat{y}_n|)$$

Assignment

Assignment 03

- Add categorical variables to variable set
 - 'view', 'condition', 'grade'
 - Interpret the results
- Ideas to utilize zipcode, lat, and long
 - Without other resources
 - Data manipulation approach based on these three variables
 - With other resources
 - Additional useful information for these three variables

- Illustrate your ideas using Power Point
 - Some students have to create a video clip to explain their results and ideas