DMA — Ugeopgave 4

Helga Rykov Ibsen < mcv462 >

14. oktober 2021

Del A

1.

Algorithm 1 $Insert(S,x)$	
1: $c = S.head$	> Sets the cursor to the first element in the list
2: if $x.key \le c.key$ then	\triangleright Should x be 1.element?
x.next = c	\triangleright Let x point at former first
4: $S.head = x$	\triangleright x now 1.element
5: return	\triangleright stop
6: while c.next \neq NIL and x	$.$ key $>$ c.next.key do \triangleright While current item is
larger than x	
7: $c \leftarrow c.next$	▷ move cursor to the next element
8: $x.next \leftarrow c.next$	\triangleright Let x point at the next item
9: $c.next \leftarrow x$	\triangleright Let c point at x

2.

Hvis vi skriver antal gange algoritmen laver hvert skridt, så får vi følgende:

Algorithm 2 Insert(S,x)	
1: $c = S.head$	▶ 1
2: if $x.key \le c.key$ then	⊳ 1
3: x.next = c	⊳ 1
4: $S.head = x$	⊳ 1
5: return	⊳ 1
6: while $c.next \neq NIL$ and $x.key > c.next.key$ do	$\triangleright n$
7: $c \leftarrow c.next$	$\triangleright n$
8: $x.next \leftarrow c.next$	⊳ 1
9: $c.next \leftarrow x$	⊳ 1

Hvis vi antager, at det tager en konstant tid c_n at gennemløbe hvert skridt, så

kan vi beregne køretiden T(n) som:

$$T(n) = c_1 + c_2 + c_3 + c_4 + c_5 + c_6 \cdot n + c_7 \cdot n + c_8 + c_9$$

Vi ignorerer alle konstanter og får:

$$T(n) = n + n = 2n = n$$

Vi får altså at $T(n) = \Theta(n)$, hvilket også giver god mening da vi maksimalt besøger hvert element i listen én gang.

3.

Vi fandt ud af at Insert har kompleksitet $\Theta(n)$. Hvis vi kalder funktionen Insert n gange, hvor n er antal elementer i listen, så er den øvre grænse for hvor mange gange algoritmen kan køre svarer til $T(n) = \frac{n \cdot (n-1)}{2} = \mathcal{O}(n^2)$.

4.

Funktionen Insert svarer til funktion Insertion-Sort, fordi den gør nogenlunde det samme som Insertion-Sort gør ved at tage et element ad gangen fra en usorteret liste og sætte det ind i en anden liste, som er sorteret. Deres worst-case kompleksitet er den samme, hvis Insertion-Sort anvendes på en liste sorteret i faldende rækkefølge, nemlig $\mathcal{O}(n^2)$.

5.

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
\boldsymbol{x}		17	14		9	1			2	4	93	NIL			40	16	53	10		

Del B

1.

 $B = listen \ af \ lister.$

B.head = første element i B.

B.head.key = S_1 .

B.head.key.head = det første element i S_1 .

B.head.key.head.key = 1.

2.

Præmissen siger, at der er \sqrt{n} lister, dvs. der er lige så mange lister, som der er elementer i hver liste. Her e.g. er der tre elementer i hver S-liste og der er

tre S-litser — det giver i alt 3^2 eller 9 elementer. Der er ligeledes tre noder i B-listen — en node per S-liste.

Når vi undersøger med INSERT-FROM-B, hvor x skal ind hen, kan vi derfor skære problemet op i \sqrt{n} .

Vi kan derfor højest komme til at travesere hele B-listen \sqrt{n} gange, og så alle noder i den pågældende underliggende S-liste, som også indeholder \sqrt{n} elementer — det giver altså $2\sqrt{n}$. Men vi kan ignorere 2, da det er en konstant, så det bliver bare \sqrt{n} .

Algorithm 3 Insert-From-B(B,x)

- 1: c = B.head
- 2: while c.next \neq NIL and c.next.key.head.key < x.key do \triangleright As long as the current number is larger than the next list's first number
- 3: $c \leftarrow c.next$

▷ move cursor to the next element in B

4: Insert(c.key, x)

▷ Insert x into the list cursor points at

3.

Svaret til dette spørgsmål er identisk med svaret til sprøgsmål 3. i del A. Hvis vi har en ikke sorteret liste med n elementer og skal indsætte dem alle i en række sorterede lister $S_1...S_k$, så skal funktion Insert kaldes præcis så mange gange som der er elementer n, som skal indsættes. Med andre ord skal vi bare sætte n foran i udregningen, nemlig $T(n) = \mathcal{O}(n\sqrt{n})$.