H - 21 - 2021

납의 생물학적 노출지표물질 분석에 관한 기술지침

2021. 10.

한국산업안전보건공단

안전보건기술지침의 개요

- ㅇ 작성자 : 한국산업안전보건공단 산업안전보건연구원 김규상
- 1차 개정자 : 한국산업안전보건공단 산업안전보건연구원 원용림
- ㅇ 2차 개정자 : 한국산업안전보건공단 산업안전보건연구원 박정근

○ 제·개정경과

- 1998년 10월 KOSHA Code 산업의학분야 기준제정위원회 심의(제정)
- 2011년 6월 KOSHA Guide 산업의학분야 제정위원회 심의(개정)
- 2021년 8월 산업의학분야 표준제정위원회 심의(법령 및 규격 최신화)

ㅇ 관련규격 및 자료

- WHO/HPR/OCH, Biological monitoring of chemical exposure in the workplace Guidelines Vol 1. 1996
- American Conference of Governmental Industrial Hygienists(ACGIH): Documentation of the Threshold Limit Values and Biological Exposure Indices. 7th Ed
- 한국산업안전보건공단 산업안전보건연구원. 생물학적 노출평가 기준 및 분석방법 연구 Ⅲ: 납 등 중금속 10종. 연구원 2010-66-882. 2010
- 한국산업안전보건공단 산업안전보건연구원. 근로자 건강진단 실무지침: 제1권 특수건강진단의 개요. 2020-산업안전보건연구원-349

o 관련법규·규칙·고시 등

- 산업안전보건법 시행규칙 [별표 24] 특수건강진단·배치전건강진단·수시건강진 단의 검사항목(제206조 관련)
- 고용노동부고시 제2020-61호(특수건강진단기관의 정도관리에 관한 고시)
- 고용노동부고시 제2020-60호(근로자 건강진단 실시기준)
- 한국산업안전보건공단 산업안전보건연구원. 「근로자건강진단 실무지침」제1권 특수 건강진단 개요. 2020-산업안전보건연구원-349

ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (http://kosha.or.kr) 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2021년 10월

제 정 자 : 한국산업안전보건공단 이사장

납의 생물학적 노출지표물질 분석에 관한 기술지침

1. 목적

이 지침은 산업안전보건법(이하 "법"이라고 한다) 제130조(특수건강진단) 및 같은 법시행규칙(이하 "시행규칙"이라고 한다) 제206조(특수건강진단 등의 검사항목 및 실시방법 등) 별표 24, 고용노동부고시 제2020-61호(특수건강진단기관의 정도관리에 관한 고시) 및 고용노동부고시 제2020-60호(근로자 건강진단 실시기준)에 따라 납에 노출된 근로자의 생물학적 노출평가와 관련된 생물학적 노출지표물질 분석 방법의 제시를 목적으로 한다.

2. 적용범위

이 지침은 법, 시행규칙 및 고용노동부고시에 따라 실시하는 근로자 건강진단 중 납에 노출되는 근로자의 생물학적 노출평가에 적용한다.

3. 정의

- (1) 이 지침에서 사용하는 용어의 뜻은 다음과 같다.
- (가) "생물학적 노출평가"란 혈액, 소변 등 생체시료 중 유해물질 자체 또는 유해물 질의 대사산물이나 생화학적 변화산물 분석값을 이용한, 유해물질 노출에 의한 체내 흡수정도나 건강영향 가능성 등의 평가를 의미한다.
- (나) "생물학적 노출지표물질"이란 생물학적 노출평가를 실시함에 있어 생체 흡수정도를 반영하는 물질로 유해물질 자체나 그 대사산물, 생화학적 변화물 등을 말한다.
- (다) "생물학적 노출기준값"이란 일주일에 40시간 작업하는 근로자가 고용노동부고시에서 제시하는 작업환경 노출기준 정도의 수준에 노출될 때 혈액 및 소변 중에서 검출되는 생물학적 노출지표물질의 값이다.
- (라) "정밀도(Precision)"란 일정한 물질에 대하여 반복측정·분석을 했을 때 나타나는 자료분석치의 변동의 크기를 나타낸다. 이 경우 같은 조건에서 측정했을 때 일어나는 우연오차(Random error)에 의한 분산(Dispersion)의 정도를 측정값의 변이

H - 21 - 2021

계수(Coefficient of variation)로 표시한다.

- (마) "정확도(Accuracy)"란 분석치가 참값에 접근한 정도를 의미한다. 다만, 인증표 준물질이 있는 경우는 상대오차로 표시하고, 인증표준물질이 없는 경우는 시료 에 첨가한 값으로부터 구한 평균회수율로 표시한다.
- (바) "검출한계(Limit of detection: LOD)"란 공시료 신호값(Blank signal, background signal)과 통계적으로 유의하게 다른 신호값(Signal)을 나타낼 수 있는 최소의 농도를 의미한다. 이 경우 가장 널리 사용하는 공시료 신호값과의 차이가 공시료 신호값 표준편차의 3배인 경우로 한다.
- (2) 그밖에 용어의 뜻은 이 지침에서 특별히 규정하는 경우를 제외하고는 법, 같은 법 시행령, 같은 법 시행규칙 및 「산업안전보건기준에 관한 규칙」에서 정하는 바에 따른다.

4. 분석개요

전혈과 소변 중 납, 소변 중 델타아미노레불린산, 전혈 중 아연 프로토포르피린을 분석하며, 분석장비는 흑연로 원자흡광광도계(Graphite furnace atomic absorption spectrometer, GF-AAS), 고성능 액체크로마토그라프-형광검출기(High performance liquid chromatograph-fluorescence detector, HPLC-FD), 분광형광광도계(Spectrofluorophotometer)를 사용한다.

5. 분석방법

5.1 혈액 중 납

5.1.1 분석원리 및 시료채취

(1) 분석워리

납은 체내로 흡수된 후 혈액을 통하여 이동하여 대동맥, 간, 신장, 뼈에 축적되며, 전체 체내 축적량의 약 2% 정도가 혈액 속에 존재한다. 혈액 중 납은 최근에 흡수된 납의 양을 나타내며, 95% 이상이 적혈구의 단백질에 결합하여 있어, 이를 납의 특정 흡수 파장

H - 21 - 2021

에서 흑연로(Graphite furnace) 원자흡광광도계로 분석한다. 혈액은 대단히 복잡한 매질이므로 원자흡광광도계의 바탕보정이 필요할 뿐 아니라, 공시료에도 일정 농도의 납이 함유되어 있으므로 표준물첨가법(Standard addition method)에 의해 검량선을 작성하여 혈액 중의 납을 분석한다.

(2) 시료의 채취

(가) 시료채취 시기 시료채취 시기는 특별히 제한하지 않는다.

(나) 시료채취 요령

- ① 근로자의 정맥혈을 납이 포함되지 않은 ethylenediaminetetraacetic acid(EDTA) 또는 헤파린 처리된 튜브와 일회용 주사기 또는 진공채혈관을 이용하여 채취한다.
- ② 채취한 시료 용기를 밀봉하고 채취 후 5일 이전에 분석하며 4 ℃(2~8 ℃)에서 보관 한다. 단, 분석까지 보관 기간이 5일 이상 걸리면 시료를 냉동보관용 저온바이 알에 옮겨 영하 20 ℃이하에서 보관한다.

5.1.2 흑연로 원자흡광광도계법

(1) 기구 및 시약

(가) 기구

- ① 자동피펫 100 1000 µL, 2000 5000 µL, 100 µL
- ② 용량플라스크 10 mL 5개, 1000 mL 1개
- ③ 분취기(Dispenser): 0.4 2.0 mL
- ④ 시험관(Dilution tube)
- ⑤ 혈액혼합기
- ⑥ 초음파세척기

(나) 시약

① 납(1000 mg/L)

H - 21 - 2021

- ② 인산이암모늄((NH₄)₂HPO₄)
- ③ 트리톤 X-100(TRITON X-100)
- ④ 질산 : 특급시약(검사관련 중금속의 함량이 적은 것)
- ⑤ 거품억제제(Antifoaming agent)
- ⑥ 탈이온수(18 MΩ/cm 이상)

(다) 주의 사항

- ① 사용하는 모든 초자기구는 20% 질산에 4시간 이상 담가두었다가 탈이온수로 5회 헹구어 사용한다.
- ② 원자흡광광도계는 흑연로 장치가 부착된 중수소(D_2) 램프 보정방식의 기기 또는 지만(Zeeman)보정 방식의 기기를 사용한다. 흑연튜브는 열분해 분획관 ($Pvrolvtic\ coated\ partitioned\ tube$)을 사용한다.
- ③ 탈이온수는 초순수제조장치로 제조한 비저항 18 MΩ/cm 이상의 것을 사용하 거나 원자흡광광도계용 탈이온수를 구입하여 사용한다.
- ④ 트리톤 X-100, 암모늄인산염((NH₄)₂HPO₄), 1000 mg/L Pb 표준용액과 질산은 특급시약을 사용하되 최초 개봉일로부터 3년 이내의 것을 사용하도록 하며, 초과 시는 새로운 시약과 비교실험을 실시하여 오차가 10% 이내일 경우 1년간 연장 사용할 수 있다.
- ⑤ 산을 취급할 때는 보호안경, 장갑, 마스크를 착용 후 후드에서 작업한다.

(2) 시약 조제

(가) 검량선용 표준용액 조제

- ① 납 1000 mg/L 표준시약 100 μL를 10 mL 용량플라스크에 옮기고 탈이온수로 희석하여 납 1000 μg/dL 표준용액 원액(Stock solution)을 만든다.
- ② 납 1000 μg/dL 표준용액 원액을 <표 1>과 같이 탈이온수로 희석하여 납 10, 30, 50, 70 μg/dL의 검량선용 표준용액을 만든다.

<표 1> 검량선용 표준용액 조제방법

	Pb 표준용액 농도		
표준용액 번호	μg/dL	표준용액 원액(mL)	탈이온수
0	0	0	탈이온수
1	10	0.1	10 mL 표선 채움
2	30	0.3	"
3	50	0.5	"
4	70	0.7	"

(검량선에 사용되는 표준물질의 농도는 검체 결과가 검량선 범위에 들어가도록 자유롭게 정할 수 있다)

- (나) 원자흡광광도계 자동시료주입부 튜브 세척액(Autosampler rinse solution) 1000 mL 용량플라스크에 질산 0.2 mL를 넣고 탈이온수로 표선을 채운다(장비 제조사의 표준 지침에 따라 세척액을 제조한다).
- (다) 매질변형시약(Matrix modifier reagent)의 조제
- ① 1000 mL 용량플라스크에 트리톤 X-100 2 mL, 인산이암모늄 2 g을 넣은 후 탈이온수로 표선을 채운다.
- ② 트리톤 X-100은 계면활성제로 거품을 일으키므로 초음파세척기를 사용하여 용해시키거나 거품억제제를 첨가한다.

(3) 시료 및 표준용액 전처리

- (가) 혈액은 혈액혼합기(Blood mixer)로 3분 정도 잘 섞어준 후 취한다. 혈액혼합기 가 없는 경우는 거품이 나지 않게 주의하면서 천천히 튜브를 거꾸로 바로 번갈 아 세워가며 내용물이 섞이게 한다.
- (나) 검량선용 시료 전처리[표준물 첨가법] 매질변형시약 1.8 mL에 Pb 표준용액 0.1 mL, 정상인 혈액 0.1 mL를 가하여 잘 섞어 표준물 첨가법에 의한 검량선용 시료로 한다(표 2).

<표 2> 표준물 첨가법에 의한 검량선 작성

H - 21 - 2021

시료번호	희석액	혈 액	Pb 표준	용액	혈액 중 납 농도
	(mL)	(mL)	(용액번호)	(mL)	$(\mu g/dL)$
 첨가 0	1.8	0.1	0	0.1	x + 0
첨가 1	1.8	0.1	1	0.1	x + 10
첨가 2	1.8	0.1	2	0.1	x + 30
첨가 3	1.8	0.1	3	0.1	x + 50
첨가 4	1.8	0.1	4	0.1	x + 70

(x는 공시료 혈액에 이미 포함되어있는 납의 양으로, 검량선의 x절편 값에 해당한다.)

(다) 시료 전처리

매질변형시약 1.8 mL에 탈이온수 0.1 mL, 시료 혈액 0.1 mL를 가하여 잘 섞어 분석용 검체로 한다.

(4) 흑연로 원자흡광광도계 분석 조건

(가) 방법 선택

- ① 기기모드(Instrument mode) : 흡광도(Absorbance)
- ② 검량선작성모드(Calibration mode): 표준첨가물(Standard addition)
- ③ 측정모드(Measurement mode) : 피크 높이(Peak height)

(나) 기기 인자(Instrument parameters)

- ① 램프전류(Lamp current): 5 mA
- ② 슬릿너비(Slit width): 0.5 nm
- ③ 슬릿높이(Slit height): Normal
- ④ 파장(Wavelength) : 283.3 nm
- ⑤ 시료주입(Sample introduction): 시료사전혼합모드(Sampler premixed)
- ⑥ 바탕보정(Background correction) : 켬(ON)

중수소(D2) 또는 지만(Zeeman) 보정

(다) 주입부 인자(Sampler parameter)

시료주입량(Sample volume): 15 μL

H - 21 - 2021

(라) 바탕 보정

매질변형시약(Matrix modifier solution)으로 기기 영점(Instrument zero)을 잡고 측정한다.

(마) 흑연로 조건

흑연로 조건은 사용하고 있는 기기의 매뉴얼을 참고하여 최적 조건을 찾아야 한다(표 3).

<표 3> 혈액 중 납 분석을 위한 원자흡광광도계 흑연로 조건(예시)

온도(℃)	시간(s)	아르곤 가스유속(mL/min)
180	25	250
450	7	250
600	10	250
2200	2	0
2700	3	250
	180 450 600 2200	180 25 450 7 600 10 2200 2

(예시조건 해당 장비 : Perkin Elmer AAnalyst 800)

(5) 농도계산

검량선용 표준용액의 농도를 가로(x)축으로 하고 시료의 피크 면적을 세로(y)축으로 하여 검량선을 작성하고, y=ax+b의 회귀방정식에 시료의 피크 면적을 대입하여 시료 중 포함된 납의 농도(μg/dL)를 구한다.

(6) 생물학적 노출기준

- 기준값 : 30 μg/dL

(7) 정밀도(예)

	농도(μg/dL)	변이계수(%)*
남	10.0	3.5

20.0 3.1 40.0 2.3

* 같은 농도의 시료를 6개 분석한 결과로부터 구함.

(8) 정확도(예)

	농도(μg/dL)	회수율(%)*
	10.2	117.2
납	28.0	106.0
	53.0	92.3

(9) 검출한계

(가) 검출한계

예) 혈액 중 납 0.85 µg/dL(S/N 비 3)1)

(나) 산출방법

검량선에 의한 표준용액의 농도와 면적간의 회귀식을 구하고 이 회귀식의 표준 오차와 기울기를 이용하여 검출하계를 산출한다.

$$LOD = 3 \times \frac{\sqrt{\frac{\sum (Y_{ei} - Y_i)^2}{N - 2}}}{b}$$

 Y_{ei} : 회귀식에 의해 구한 각 시료량에 대한 반응값

 Y_i : 각 시료량에 대한 반응값

N: 표준용액 시료 수

b: 회귀방정식의 x계수

5.2 소변 중 납

¹⁾ 배경 반응값(noise, N)의 3배인 시료 반응값(signal, S)을 나타내는 농도를 검출한계로 함.

H - 21 - 2021

5.2.1 분석원리 및 시료채취

(1) 분석원리

납은 체내로 흡수된 후 흡수된 납의 75~80%가 소변으로 배출되며, 소변 중 납은 혈액 중 납과 마찬가지로 최근의 납 노출을 반영하지만, 직업적 노출이 시작된 후 2개월 이후부터 안정적인 값을 나타낸다. 소변 중 납은 납의 특정 흡수 파장에서 흑연로 원자흡광광도계로 분석한다. 소변은 복잡한 매질이므로 원자흡광광도계의 바탕보정이 필요할 뿐 아니라, 공시료에도 일정 농도의 납이 함유되어 있으므로 표준물첨가법 (Standard addition method)에 의해 검량선을 작성하여 소변 중의 납을 분석한다.

(2) 시료의 채취

(가) 시료채취 시기

시료채취 시기는 특별히 제한하지 않는다.

(나) 시료채취 요령

- ① 채취 용기는 밀봉이 가능한 용기를 사용하고, 시료는 10 mL 이상 채취한다.
- ② 채취한 시료 용기를 밀봉하고 채취 후 5일 이전에 분석하며 4 ℃(2~8 ℃)에서 보관 한다. 단, 분석까지 보관 기간이 5일 이상 걸리면 시료를 냉동보관용 저온바이 알에 옮겨 영하 20 ℃이하에서 보관한다.

(다) 주의 사항

- ① 시료채취 시의 오염을 막기 위하여 작업 전 또는 작업 후에 작업복을 갈아입은 다음에 시료를 채취하도록 한다.
- ② 시료채취시는 비누로 손을 세척하도록 하며 시료를 채취한 바로 뚜껑을 막아서 가져오도록 한다.
- ③ 소변채취용 용기는 미리 20% 질산에 4시간 이상 담가두었다가 탈이온수로 5회 행구어 사용한다.

H - 21 - 2021

5.2.2 흑연로 원자흡광광도계법

(1) 기구 및 시약

(가) 기구

- ① 자동피펫 100 1000 µL
- ② 용량플라스크: 500 mL 2개, 100 mL 1개, 10 mL 4개, 5 mL 10개
- ③ 분취기(Dispenser): 0.4 2.0 mL
- ④ 시험관
- ⑤ 혈액 혼합기

(나) 시약

- ① 납(표준시약, 1000 mg/L)
- ② 인산일암모늄(NH₄H₂PO₄)
- ③ 트리톤 X-100(TRITON X-100)
- ④ 질산 : 특급시약(검사관련 중금속의 함량이 적은 것)
- ⑤ 탈이온수(18 MΩ/cm 이상)

(다) 주의 사항

- ① 사용하는 모든 초자기구는 20% 질산에 4시간 이상 담가두었다가 탈이온수로 5회 행구어 사용한다.
- ② 원자흡광광도계는 흑연로 장치가 부착된 중수소(D_2) 램프 보정방식의 기기 또는 지만(Zeeman)보정 방식의 기기를 사용한다. 흑연튜브는 열분해 분획관 ($Pvrolvtic\ coated\ partitioned\ tube$)을 사용한다.
- ③ 탈이온수는 초순수제조장치로 제조한 비저항 18 MΩ/cm이상의 것을 사용하거 나 원자흡광광도계용 탈이온수를 구입하여 사용한다.
- ④ 트리톤 X-100, 인산일암모늄, 1000 mg/L Pb 표준시약과 질산은 특급시약을 사용하되 최초 개봉일로부터 3년 이내의 것을 사용하도록 하며, 초과 시는 새로운 시약과 비교실험을 실시하여 오차가 10% 이내일 경우, 1년간 연장 사용할수 있다.
- ⑤ 산을 취급할 때는 보호안경, 장갑, 마스크를 착용 후 후드에서 작업한다.

(2) 시약 조제

(가) 검량선용 표준용액 조제

- ① 납 1000 mg/L 표준시약 1 mL를 2% 질산용액으로 100 mL로 희석하여 납 10000 μg/L 표준용액 원액(Stock solution)을 만든다.
- ② 납 10000 μg/L 표준용액 원액을 <표 4>와 같이 2% 질산용액으로 희석하여 납 100, 200, 300, 400 μg/L의 표준용액을 만든다.

	Pb 표준용액 농도	조치	비법
표준용액 번호	$(\mu g/L)$	표준용액 원액 (mL)	2% 질산용액
0	0	0	2% 질산용액
1	100	0.1	10 mL 표선 채움
2	200	0.2	<i>II</i>
3	300	0.3	<i>n</i>
4	400	0.4	<i>II</i>

<표 4> 검량선용 표준용액 조제방법

(검량선에 사용되는 표준물질의 농도는 검체 결과가 검량선 범위에 들어가도록 자유롭게 정할 수 있다)

(나) 매질변형시약의 조제

500 mL의 용량플라스크에 약 400 mL의 탈이온수를 넣고 20% 인산일암모늄 25 mL와 진한 질산 1 mL를 가한 후 탈이온수로 표선을 맞춘다.

(3) 시료 및 표준용액 전처리

(가) 검량선용 소변 전처리[표준물 첨가법]

<표 5>와 같이 매질변형시약 0.8 mL에 Pb 표준용액 0.1 mL, 정상인 소변 0.1 mL를 가하여 잘 섞어 표준물 첨가법에 의한 검량선 작성용 시료로 한다.

<표 5> 표준물 첨가법에 의한 검량선 작성

H - 21 - 2021

시료번호	희석액	소변	Pb 표준	용액	소변 중 납 농도
	(mL)	(mL)	(용액번호)	(mL)	$(\mu g/L)$
첨가 0	0.8	0.1	0	0.1	x + 0
첨가 1	0.8	0.1	1	0.1	x + 100
첨가 2	0.8	0.1	2	0.1	x + 200
첨가 3	0.8	0.1	3	0.1	x + 300
첨가 4	0.8	0.1	4	0.1	x + 400

(x는 공시료 소변에 이미 포함되어있는 납의 양으로, 검량선의 x절편 값에 해당한다.)

(나) 시료 전처리

- ① 소변은 상온에서 녹이고 혈액혼합기(Blood mixer)로 3분 정도 잘 섞어준 후 취한다. 혈액혼합기가 없는 경우는 거품이 나지 않게 주의하면서 천천히 튜브를 거꾸로 바로 번갈아 세워가며 내용물이 섞이게 한다.
- ② 소변을 <표 5>의 첨가 0과 같이 희석하고, 이 용액을 15 μ L 취하여 원자흡광 광도계의 흑연로에 주입한다.

(4) 흑연로 원자흡광광도계 분석 조건

(가) 방법 선택

- ① 기기모드(Instrument mode) : 흡광도(Absorbance)
- ② 검량선작성모드(Calibration mode): 표준첨가물(Standard addition)
- ③ 측정모드(Measurement mode) : 피크 높이(Peak height)

(나) 기기 인자(Instrument parameters)

- ① 램프전류(Lamp current): 5 mA
- ② 슬릿너비(Slit width): 0.5 nm
- ③ 슬릿높이(Slit height): Normal
- ④ 파장(Wavelength) : 283.3 nm
- ⑤ 시료주입(Sample introduction): 시료사전혼합모드(Sampler premixed)
- ⑥ 바탕보정(Background correction) : 켬(ON)

중수소(D₂) 또는 지만(Zeeman) 보정

H - 21 - 2021

(다) 주입부 인자(Sampler parameter) 시료주입량(Sample volume): 15 μL

(라) 바탕 보정

매질변형시약(Matrix modifier solution)으로 기기 영점(Instrument zero)을 잡고 측정한다.

(마) 흑연로 조건

흑연로 조건의 예는 <표 6>과 같다. 사용하는 기기의 매뉴얼을 참고하여 최적 조건을 찾는다.

<표 6> 소변 중 중 납 분석을 위한 원자흡광광도계 흑연로 조건(예)

처리과정	온도(℃)	시간(s)	아르곤 가스유속(mL/min)
건조	120	30	250
회화1	500	40	250
회화2	600	10	250
원자화	2300	3	0
튜브 열세척	2700	3	250

(예시조건 해당 장비 : Perkin Elmer AAnalyst 800)

(5) 농도계산

검량선용 표준용액의 농도를 가로(x)축으로 하고 시료의 피크 면적을 세로(y)축으로 하여 검량선을 작성하고, y=ax+b의 회귀방정식에 시료의 피크 면적을 대입하여 시료 중 포함된 납의 농도 $(\mu g/dL)$ 를 구한다.

(6) 생물학적 노출기준

- 기준값 : 150 μg/L

(7) 정밀도(예)

농도(µg/dL)	상대표준편차(%)
 150	15
 450	10

(8) 정확도(예)

	농도(μg/dL)	회수율(%)
	150	108
<u> </u>	450	93

(9) 검출한계

(가) 검출한계

예) 소변 중 납 15 µg/dL(S/N 비 3)2)

(나) 산출방법

검량선에 의한 표준용액의 농도와 면적간의 회귀식을 구하고 이 회귀식의 표준 오차와 기울기를 이용하여 검출한계를 산출한다.

$$LOD = 3 \times \frac{\sqrt{\frac{\sum (Y_{ei} - Y_i)^2}{N - 2}}}{b}$$

 Y_{ei} : 회귀식에 의해 구한 각 시료량에 대한 반응값

 Y_i : 각 시료량에 대한 반응값

N: 표준용액 시료 수

b: 회귀방정식의 x계수

²⁾ 배경 반응값(noise, N)의 3배인 시료 반응값(signal, S)을 나타내는 농도를 검출한계로 함.

H - 21 - 2021

5.3 소변 중 델타아미노레불린산(δ-aminolevulinic acid) 5.3.1 분석원리 및 시료채취

(1) 분석원리

납은 체내로 흡수된 후 델타아미노레불린산 탈수효소를 저해하여 혈액 중 델타아미노레불린산이 증가하고, 이는 소변으로 배출된다. 소변 중의 단백질을 20% 삼염화초산으로 침전시켜 제거하고, 델타아미노레불린산을 포름알데히드와 반응시켜형광발색단을 띤 화합물을 형성시킨 후 액체크로마토그라프에서 델타아미노레불린산 유도체화물을 분리하여 형광검출기로 검출한다.

(2) 시료의 채취

(가) 시료채취 시기 시료채취 시기는 특별히 제한하지 않는다.

(나) 시료채취 요령

- ① 채취 용기는 밀봉이 가능한 용기를 사용하고, 시료는 10 mL 이상 채취한다.
- ② 채취한 시료 용기를 밀봉하고 채취 후 5일 이전에 분석하며 4 ℃(2~8 ℃)에서 보관 한다. 단, 분석까지 보관 기간이 5일 이상 걸리면 시료를 냉동보관용 저온바이 알에 옮겨 영하 20 ℃이하에서 보관한다.

5.3.2 고성능 액체크로마토그라피 형광검출법

(1) 기구 및 시약

(가) 기구

- ① 자동피펫 10 100 µL, 200 1000 µL, 500 2500 µL
- ② 용량플라스크 100 mL 6개, 10 mL 6개
- ③ 원심분리용 폴리프로필렌 용기 1 mL
- ④ 마개달린 시험관 10 mL
- ⑤ 갈색병 50 mL

H - 21 - 2021

(나) 시약

- ① 델타아미노레불린산(δ-Aminolevulinic acid, δ-ALA)
- ② 삼염화초산(Trichloroacetic acid, TCA)
- ③ 아세틸아세톤
- ④ 에탄올
- ⑤ 포름알데히드
- ⑥ 메탄올(HPLC급)
- ⑦ 아세트산 나트륨(Sodium acetate)
- ⑧ 초산 : 특급시약
- ⑨ 탈이온수(18 MΩ/cm 이상)

(2) 시약 조제

(가) 검량선용 표준용액 조제

- ① 델타아미노레불린산 10 mg을 100 mL 용량플라스크에 옮기고 탈이온수로 표선을 채워 100 mg/L의 표준용액을 만든다.
- ② 100 mg/L의 표준용액을 20 mL 취하여 100 mL 용량플라스크에 옮기고 탈이온 수로 표선을 채워 20 mg/L의 표준용액을 만든다. 이를 표준용액 원액으로 한다.
- ③ 표준용액 원액 2.5, 5.0, 7.5 mL를 취하여 10 mL 용량플라스크에서 탈이온수로 희석하여 델타아미노레불린산 5, 10, 15 mg/L의 검량선용 표준용액을 제조한다 (검량선에 사용되는 표준물질의 농도는 검체 결과가 검량선 범위에 들어가도록 자유롭게 정할 수 있다).

(나) 반응시약 조제

- ① 삼염화초산 20 g을 취하여 100 mL 용량플라스크에서 탈이온수로 희석하여 20% 용액을 만든다.
- ② 아세트산나트륨 1.641 g을 10 mL 용량플라스크에 옮기고 탈이온수로 표선을 채워 2 M 표준용액을 만든다. 초산 1.2 g(1.14 mL)을 10 mL 용량플라스크에 옮기고 탈이온수로 표선을 채워 2 M 표준용액을 만든다. 2 M 아세트산 나트륨 용액 1.25 mL와 2 M 초산용액 8.25 mL를 취하여 100 mL 용량플라스크에

H - 21 - 2021

옮기고 탈이온수로 표선을 채워 pH 3.8의 0.2 M 초산완충용액을 만든다.

- ③ 아세틸아세톤 30 mL, 에탄올 20 mL, 탈이온수 108 mL를 취하여 갈색병에 넣고 층이 갈라지지 않을 때까지 잘 섞는다. 이 용액을 시약 A로 한다.
- ④ 포름알데히드 8.5 g을 취하여 100 mL 용량플라스크에 옮기고 탈이온수로 표선을 채워 8.5%의 포름알데히드 수용액을 만든다. 이 용액을 시약 B로 한다.

(3) 시료 및 표준용액 전처리

- (가) 소변 100 μL를 취하여 원심분리용 폴리프로필렌용기에 넣고 와류혼합기에서 혼합하면서 50 μL의 20% 삼염화초산 용액을 가한다. 내용물을 원심분리기에서 15,000 rpm의 속도로 10분간 원심분리한다.
- (나) 검량선용 표준용액 각 10 μL를 취하여 시험관에 옮기고 탈이온수 240 μL, 0.2M 초산완충용액 250 μL, 시약 A 1.25 mL, 시약 B 250 μL를 가한 후 잘 섞는다.
- (다) 원심분리후 침전이 분리된 용액중 10 μL를 취하여 시험관에 옮기고 탈이온수 240 μL, 0.2 M 초산완충용액 250 μL, 시약 A 1.25 mL, 시약 B 250 μL를 가한 후 잘 섞는다.
- (라) 100 ℃에서 15분간 반응시킨 후 식히고 나서 HPLC용 검액으로 한다.

(4) 액체 크로마토그라프 분석 조건

(가) 컬럼 : C₁₈ 컬럼(150 mm x 2.1 mm, 입경 5 μm) 또는 이와 동등한 수준으로 분리가 가능한 컬럼.

(나) 이동상 : 탈이온수, 메탄올, 초산 50:50:0.1(v/v/v)

(다) 유속: 0.3 mL/분

(라) 시료 주입량 : 10 µL

(마) 검출기: 형광검출기

① 여기파장(Excitation wavelength): 373 nm

② 방출파장(Emission wavelength): 463 nm

(5) 분석 결과 크로마토그램 예

[그림 1] 델타아미노레불린산의 HPLC-FLD 크로마토그램

(6) 농도계산

검량선용 표준용액의 농도를 가로(x)축으로 하고 시료의 피크 면적을 세로(y)축으로 하여 검량선을 작성하고, y=ax+b의 회귀방정식에 시료의 피크 면적을 대입하여 시료 중 포함된 델타아미노레불린산의 농도(mg/L)를 구한다.

(7) 생물학적 노출기준

- 기준값 : 5 mg/L

(8) 정밀도(예)

	농도(mg/L)	변이계수(%)
델타아미노레불린산	0.01	7.0
필다막리고네풀인인 	0.5	5.0

(9) 정확도(예)

	농도(mg/L)	회수율(%)
리미시미1 레브키기	0.01	87
델타아미노레불린산	0.5	95

(10) 검출한계

(가) 검출한계

예) 소변 중 델타아미노레불린산 3 µg/L (S/N 비 3)³⁾

(나) 산출 방법

검량선에 의한 표준용액의 농도와 면적간의 회귀식을 구하고 이 회귀식의 표준 오차와 기울기를 이용하여 검출한계를 산출한다.

$$LOD = 3 \times \frac{\sqrt{\frac{\sum (Y_{ei} - Y_i)^2}{N-2}}}{b}$$

 Y_{ei} : 회귀식에 의해 구한 각 시료량에 대한 반응값

 Y_i : 각 시료량에 대한 반응값

N: 표준용액 시료 수

b: 회귀방정식의 x계수

5.4 혈액 중 아연 프로토포르피린(Zinc protoporphyrin)

5.4.1 분석원리 및 시료채취

(1) 분석원리

H - 21 - 2021

(protoporphyrin)을 축적시켜, 혈액 중 적혈구 프로토포르피린(erythrocyte protoporphyrin)과 아연 프로토포르피린(zinc protoporphyrin)을 증가시킨다. 아연 프로토포르피린은 혈액 중 납보다 느리게 변화하므로 납의 만성 영향 및 과거 노출 여부를 평가하는 지표로 사용할 수 있다. 아연 프로토포르피린은 특정 파장에서 형광을 내므로, 고유한 파장의 광을 조사하고 이 물질이 발하는 형광의 강도를 분광형광광도계로 측정하여 분석한다.

(2) 시료의 채취

(가) 시료채취 시기 시료채취 시기는 특별히 제한하지 않는다.

(나) 시료채취 요령

- ① 근로자의 정맥혈을 납이 포함되지 않은 ethylenediaminetetraacetic acid(EDTA) 또는 헤파린이 처리된 튜브와 일회용 주사기 또는 진공채혈관을 이용하여 채취하다.
- ② 채취한 시료 용기를 밀봉하고 채취 후 5일 이전에 분석하며 4 ℃(2~8 ℃)에서 보관한다. 단, 분석까지 보관 기간이 5일 이상 걸리면 시료를 냉동보관용 저온바이 알에 옮겨 영하 20 ℃이하에서 보관한다.

5.4.2 분광형광광도계법

(1) 기구 및 시약

- (가) 기구
 - ① 자동피펫 10 100 µL
 - ② 용량 플라스크 500 mL, 100 mL, 50 mL, 10 mL
 - ③ 마개달린 시험관
 - ④ 혈액 혼합기
 - ⑤ 와류 혼합기
- ⑥ 원심분리기

H - 21 - 2021

(나) 시약

- ① 아연 프로토포르피린(Protoporphyrin IX Zinc(Ⅱ))
- ② 질산 : 특급 시약(검사 관련 중금속의 함량이 적은 것)
- ③ 에탄올 : 특급시약
- ④ 탈이온수(18 MΩ/cm 이상)

(다) 주의 사항

- ① 사용하는 모든 초자기구는 20% 질산에 4시간 이상 담가두었다가 탈이온수로 5회 헹구어 사용한다.
- ② 원자흡광광도계는 흑연로 장치가 부착된 중수소(D_2) 램프 보정방식의 기기 또는 지만(Zeeman)보정 방식의 기기를 사용한다. 흑연튜브는 열분해 분획관 ($Pyrolytic\ coated\ partitioned\ tube$)을 사용한다.
- ③ 탈이온수는 초순수제조장치로 제조한 비저항 18 MΩ/cm이상의 것을 사용하거나 원자흡광광도계용 탈이온수를 구입하여 사용한다.
- ④ 트리톤 X-100, 인산일암모늄, 1000 mg/L Pb 표준시약과 질산은 특급시약을 사용하되 최초 개봉일로부터 3년 이내의 것을 사용하도록 하며, 초과 시는 새로운 시약과 비교실험을 실시하여 오차가 10% 이내일 경우, 1년간 연장 사용할수 있다.
- ⑤ 산을 취급할 때는 보호안경, 장갑, 마스크를 착용 후 후드에서 작업한다.

(2) 시약 조제

(가) 검량선용 표준용액 조제

- ① 아연 프로토포르피린 표준시약 0.2 mg을 100 mL 용량 플라스크에 넣고 100% 에탄올로 표선을 맞추어 200 μg/dL 에탄올 용액을 조제한다. 이것을 표준용액 원액(Stock solution)으로 한다.
- ② 아연 프로토포르피린 200 µg/dL 표준용액 원액을 <표 7>과 같이 100% 에탄올로 희석하여 25, 50, 100, 200 µg/dL의 검량선용 표준용액을 만든다.

<표 7> 검량선용 표준용액 조제방법

표준용액	ZPP 표준용액	희석배율	용매
번호	농도(μg/dL)	의구메핀	ठण
STD 1	25	1/8	100%
STD 2	50	1/4	에탄올
STD 3	100	1/2	
STD 4	200	1/1	

(검량선에 사용되는 표준물질의 농도는 검체 결과가 검량선 범위에 들어가는 범위에서 임의로 조정할 수 있다.)

(3) 시료 및 표준용액 전처리

(가) 혈액은 혈액혼합기(Blood mixer)로 3분 정도 잘 섞어준 후 취한다. 혈액혼합기 가 없는 경우는 거품이 나지 않게 주의하면서 천천히 튜브를 거꾸로 바로 번갈 아 세워가며 내용물이 섞이게 한다.

(나) 시료 전처리

- ① 산처리를 마친 15 mL 뾰족관(Conical tube)을 준비하여 <표 8>과 같이 시료와 표준물질을 넣는다.
- ② 30초 동안 시료를 혼합한다.
- ③ 3000 rpm 에서 5분간 원심분리한다.
- ④ 상층액만 석영셀에 넣어 흡광도를 측정한다.

<표 8> 시료주입 방법

(단위: mL)

순서	물질	공시료	표준물질	시료
1	혈액	-	0.1	0.1
2	탈이온수	0.6	0.5	0.5
3	진한 염산	5.0	5.0	5.0
	총 부피	5.6	5.6	5.6

(다) 분석 과정

① 석영셀에 탈이온수를 넣어 S/N Ratio를 확인하고 바탕선과 파장을 확인한다.

- ② 석영셀에 100% 에탄올을 넣은 후 Auto zero로 하여 바탕선을 안정화시킨다.
- ③ 탈이온수, 100% 에탄올, 표준물질, 시료 순으로 석영셀에 넣어 흡광도를 측정한다.
- (4) 분광형광광도계 분석 조건
 - ① 여기파장(Excitation wavelength): 415 nm
 - ② 방출파장(Emission wavelength): 590 nm
- (5) 농도 계산
 - (가) 표준물질 조제시 희석배수를 입력하므로 출력값에 희석배율이 반영되어 나오 며, 이 값에서 공시료값을 빼어 보정한다.
 - 예) 시료 분석값 : 25.4 µg/dL

공시료 값 : 1.4 µg/dL → 최종 결과 : 25.4 - 1.4 = 24.0 µg/dL

- (나) 단, 별도로 추가 희석을 하였다면 이를 계산과정에 반영한다.
- (6) 생물학적 노출기준
 - 기준값 : 50 μg/dL
- (7) 정밀도(예)

	농도(μg/dL)	변이계수(%)*
	29	4.4
아연 프로토포르피린	65	3.2
	172	1.7

* 같은 농도의 시료를 6개 분석한 결과로부터 구함.

(8) 정확도(예)

	농도(μg/dL)	회수율(%)*
	29	93
아연 프로토포르피린	65	94
	172	99

^{*} 같은 농도의 시료를 6개 분석한 결과로부터 구함.

(9) 검출한계

(가) 검출한계

예) 혈액 중 아연 프로토포르피린 0.15 μg/dL (S/N 비 3)⁴⁾

(나) 산출 방법

검량선에 의한 표준용액의 농도와 면적간의 회귀식을 구하고 이 회귀식의 표준 오차와 기울기를 이용하여 검출한계를 산출한다.

$$LOD = 3 \times \frac{\sqrt{\frac{\sum (Y_{ei} - Y_i)^2}{N-2}}}{b}$$

 Y_{ei} : 회귀식에 의해 구한 각 시료량에 대한 반응값

 Y_i : 각 시료량에 대한 반응값

N: 표준용액 시료 수

b: 회귀방정식의 x계수

⁴⁾ 배경 반응값(noise, N)의 3배인 시료 반응값(signal, S)을 나타내는 농도를 검출한계로 함.