Loss function is a method of evaluating how well your algorithm is modelling your dataset.

- High means Poor Model
- Low means great Model



Why is Loss function important?

[You can't improve what you can't measure.]

Peter Drucker,











|      |      | ^            | V                |               |
|------|------|--------------|------------------|---------------|
| Loss | Func | tion Vs      | Cost Function    | gpa \$0-0- ji |
| cgpa | 1919 | (yi) package | Ŷi<br>Prediction | iq O          |
| 6.3  | 100  | 6.3          | 6. 1             |               |
| 7.1  | 91   | 4.1          | 4                |               |
| 8.5  | 83   | 3.5          | 3.7              |               |
| 9.2  | 102  | 7.2          | 7                |               |
|      |      |              |                  |               |





cgpa | 19 | package | Prediction 1. Mean squared Error (MSE) L2 Loss  $(y_1 - \hat{y_1})^2 \quad \text{Advan} \quad \text{Disads}$   $(+84e - \text{predict})^2 \text{E}$   $(6.3-6.1)^2 = -$ 100 8.5 83 102 7.2  $(y_i - \hat{y}_i)^2$ 











3. Huber Loss V

$$L = \begin{cases} \frac{1}{2} (y - \hat{y})^2 & \text{for } |y - \hat{y}| \leq \delta \\ \delta |y - \hat{y}| - \frac{1}{2} \delta^2 & \text{otherwise} \end{cases}$$

mse - outliers ~ mae - normal print ~





4. Binary Cross Entropy cgpaliq | placement

310

4. Binary Cross Entropy cgpaliq | placement

8 \$0 |

7 70 0

6 60 0

Loss function = -y log (\$\hat{y}\$) - (1-y) log (1-\$\hat{y}\$)

y- actual value /target

\$\hat{y}\$ - xN prediction















