

Agents and Multi-Agent Systems

Multi-Agent Decision Making
Negotiation
2023/2024

Ana Paula Rocha, Henrique Lopes Cardoso

1

Negotiation Settings

- Auctions are only concerned with the allocation of goods
- The purpose of negotiation is to reach an agreement on matters of common interest, in the presence of conflicting goals and preferences
- Negotiation components:
 - Negotiation set: space of possible proposals that agents can make
 - Protocol: defines the *legal* proposals, depending on prior negotiation history
 - Strategies: determine what proposals the agents will make, and are private
 - Deal rule: determines when a deal is agreed, and what it is
- Negotiation proceeds in a series of rounds, in which legal proposals from the negotiation set are made, as determined by the strategies used

Negotiation Attributes

- Single-issue (e.g. price)
 - Preferences are symmetric concession is straightforward (seller lowers price, buyer raises price)
- Multiple-issue: agents negotiate the values of multiple (possibly interrelated) attributes
 - Buying a car: price, length of guarantee, after-sales service, extras, ...
 - It is harder to identify concessions
 - Exponential growth in the space of possible deals: mⁿ, with n attributes and m possible
 values
 - Assuming attributes are evaluated independently (additive independence), agents typically employ a multi-attribute utility function:

$$u_i(x) = \sum_{j=1}^n w_{i,j} u_i(x_j)$$
, with $\sum_{j=1}^n w_{i,j} = 1$

3

Negotiating Agents

- One-to-one negotiation
 - Simplest case: symmetric preferences
 - Everyday example: buying a car
- One-to-many / Many-to-one negotiation
 - A single agent negotiates with a number of other agents
 - ContractNet protocol, procurement, one-sided auctions
 - Concurrent one-to-one negotiations
- Many-to-many negotiation
 - Many agents negotiate with many other agents simultaneously
 - Two-sided auctions

Time in Negotiation

 $u_i^k(x) = \gamma_i^k x$

- Time is valuable
 - Agents prefer any outcome x sooner than later
 - We can model agent i's patience using a discount factor $\gamma_i \in [0,1]$ $u_i^2(x) = \gamma_i^2 x$

$$u_i^0(x) = \gamma_i^0 x = x$$

$$u_i^1(x) = \gamma_i^1 x = \gamma_i x$$

- Larger γ_i (closer to 1) implies *more* patience (indifference to time)
- Smaller γ_i (closer to 0) implies *less* patience (time matters more)
- Time-dependent negotiation decision functions [Faratin et al., 1998]:

Behavior in Negotiation

- We can take the negotiation opponent's previous attitude into account
 - Tit-For-Tat: equivalent retaliation, reciprocal altruism
- Behavior-dependent tactics [Faratin et al., 1998]
 - <u>Relative Tit-For-Tat</u>: reproduce, in percentage terms, the behavior that the opponent performed some steps ago
 - E.g., buyer increases offer in 10%, seller decreases asked price in 10%
 - Random Absolute Tit-For-Tat: the same in absolute terms, with some randomization
 - E.g., buyer increases offer in €10, seller decreases asked price in €10 $\pm\epsilon$
 - Averaged Tit-For-Tat: average the percentages of changes in a window
 - If window size is 1, we have relative Tit-For-Tat

7

Task Allocation

- A task-oriented domain (TOD) is a triple $\langle T, Ag, c \rangle$
 - T is a set of tasks
 - -Ag is a set of agents
 - $-c:2^T \to \mathbb{R}_+$ is a function that defines the cost of executing a subset of tasks
 - $c(\emptyset) = 0$
 - if $T_1 \subseteq T_2 \subseteq T$, then $c(T_1) \le c(T_2)$, i.e., c is monotonic
- An encounter is a collection of subsets of tasks $\langle T_1, ..., T_n \rangle$, where $T_i \subseteq T$ is the set of tasks assigned to agent i
 - Each agent has an initial set of assigned tasks
 - Agents may reach a deal to reallocate the tasks among themselves

Deals and Utilities

- Given an encounter $\langle T_1, ..., T_n \rangle$, we define a pure deal as $\delta = \langle D_1, ..., D_n \rangle$, where $\bigcup_{i=1}^n D_i = \bigcup_{i=1}^n T_i$
 - Each agent i is committed to performing tasks D_i
- The cost of deal $\delta = \langle D_1, ..., D_n \rangle$ to agent i is $cost_i(\delta)$, or simply $c(D_i)$
- Utility is defined as a cost difference: $u_i(\delta) = c(T_i) cost_i(\delta)$
 - The utility represents how much the agent *gains* with the deal
 - If negative, then the agent is worse off than if performing the originally assigned tasks
- If agents fail to reach agreement, they fall back to the conflict deal $\Theta = \langle T_1, ..., T_n \rangle$

0

Dominance

Deal δ_1 dominates deal δ_2 (written $\delta_1 > \delta_2$) iff:

- 1. Deal δ_1 is at least as good as δ_2 for every agent: $\forall_{i \in Ag} \ u_i(\delta_1) \geq u_i(\delta_2)$
- 2. Deal δ_1 is better than δ_2 for some agent: $\exists_{i \in Ag} \ u_i(\delta_1) > u_i(\delta_2)$

Deal δ_1 is said to weakly dominate δ_2 ($\delta_1 \geq \delta_2$) if only the first condition holds

- A deal that is not dominated by any other deal is said to be Pareto optimal
 - If a deal is not Pareto optimal, then there is some other deal in which some agent gets a higher utility without making anyone worse off
- Deal δ is individually rational if it weakly dominates the conflict deal: $\delta \geqslant \Theta$
 - If a deal is not individually rational, then at least one agent can do better by performing its originally assigned tasks

Example: Taking kids to school

- Abe has got 3 children, each attending a different school: $A_i \rightarrow S_i$, $i \in [1..3]$
- Ben has got 2 children: $B_i \rightarrow S_i, j \in [1..2]$
- Abe and Ben are neighbors and work at home
- Every morning they need to take the kids to school

- $c_{Abe}(\Theta), c_{Ben}(\Theta)$
- Which are the individual rational deals?
 - Assume that kids attending the same school travel together: $A_1 + B_1 / A_2 + B_2$
 - $\quad \forall_{k \in \{Abe,Ben\}} \, u_k(\delta) \geq 0 \text{, i.e., } c_k(\delta) \leq c_k(\Theta)$
- Of those, which are Pareto optimal?

11

Negotiation Set

- The negotiation set consists of the set of deals that are
 - Individually rational and
 - Pareto optimal
- · Individually rational
 - There is no purpose in proposing a deal that is worse than the conflict deal for some agent
- Pareto optimal
 - There is no point in making a proposal for which there is a better alternative for some agent at nobody's expense

Negotiation Set

- Deals to the left of line B-D are not individual rational for agent j
- Deals below line A-C are not individual rational for agent i
- The negotiation set contains deals in the shaded area B-C-E
- But only those in the line B-C are *Pareto optimal*. This is the negotiation set.
- Typically, agent *i* starts by proposing the deal at point B, and agent *j* starts by proposing the deal at point C

12

Monotonic Concession Protocol

- Negotiation proceeds in a series of rounds
- On the first round, both agents simultaneously propose a deal from the negotiation set
- Agreement is reached if $u_1(\delta_2) \ge u_1(\delta_1)$ or $u_2(\delta_1) \ge u_2(\delta_2)$
 - Proposal received is at least as good as own proposal
 - Such proposal is the agreement deal (random if both)
- If no agreement is reached, proceed to a new round of simultaneous proposals, under the conditions that $u_1(\delta_2^{t+1}) \geq u_1(\delta_2^t)$ and $u_2(\delta_1^{t+1}) \geq u_2(\delta_1^t)$
 - Agents must concede
- If neither agent concedes, negotiation terminates with the conflict deal

Zeuthen Strategy

- What should be an agent's first proposal?
 - Its most preferred deal
- On a given round, who should concede?
 - The agent *least willing to risk conflict*: the one for which the difference between its current proposal and the conflict deal is highest
 - intuitively, such agent has conceded less so far
- How much should an agent concede?
 - Just enough to change the balance of risk
 - · If it does not concede enough, it will be the one to concede again
 - If it concedes too much, it may 'waste' some utility

1 -

Zeuthen Strategy

 $risk_i^t = \frac{utility\ i\ loses\ by\ conceding\ and\ accepting\ j's\ offer}{utility\ i\ loses\ by\ not\ conceding\ and\ causing\ conflict}$

$$risk_i^t = \begin{cases} 1 & \text{if } u_i(\delta_i^t) = 0\\ \frac{u_i(\delta_i^t) - u_i(\delta_j^t)}{u_i(\delta_i^t)} & \text{otherwise} \end{cases}$$

- Until an agreement is reached, $risk_i^t \in [0,1]$
 - Higher values indicate that i has less to lose from conflict, lower values indicate that i has more to lose
 - When $risk_i^t=1$, agent i is completely willing to risk conflict by not conceding (its proposal is as good as the conflict deal Θ)

Example: Pizza delivery

- A couple of pizza deliverers
 - P1 starts in O and must deliver at A and C
 - P2 starts in O and must deliver at B and D

• Consider these deals and show they are individually rational and Pareto optimal:

$$\delta_1 = \langle \{C, D\}, \{A, B\} \rangle$$

$$\delta_3 = \langle \{A,C,D\}, \{B\} \rangle$$

$$\delta_2 = \langle \{A, B\}, \{C, D\} \rangle$$

$$\delta_4 = \langle \{B\}, \{A, C, D\} \rangle$$

- Following the Zeuthen strategy, which is the first proposal of each agent?
- Which agent should concede in the following negotiation round, and which proposal should it make?
- What is the outcome of this negotiation?

17

Properties

- The monotonic concession protocol:
 - Does not guarantee success, but guarantees termination
 - Does not guarantee social welfare maximization
 - Guarantees that if agreement is reached, it is Pareto optimal and individually rational
- The Zeuthen strategy is in Nash equilibrium
 - If one agent uses it, the other can do no better than use it too
- Deception: agents may benefit from not being truthful
 - Phantom and decoy tasks: are announced tasks verifiable?
 - Hidden tasks: not mentioning some task may be beneficial

Resource (Re)Allocation

- · How can agents reallocate resources for mutual benefit?
- As with combinatorial auctions, we have:
 - A set of resources $Z = \{z_1, \dots, z_m\}$
 - Valuation functions $v_i: 2^Z \to \mathbb{R}$
 - An allocation is a partition $Z_1, ..., Z_n$ of Z
- Agents negotiate to move from an initial allocation to another that is collectively more beneficial, given their individual valuation functions
- Negotiating a change from an allocation P_i to Q_i

```
-v_i(P_i) < v_i(Q_i) i is better off after the exchange
```

- $-v_i(P_i)=v_i(Q_i)$ i is indifferent between P_i and Q_i
- $-v_i(P_i) > v_i(Q_i)$ i is worse off after the exchange

10

Side Payments

- Agent *i* has some good z_1 , $v_i(\{z_1\}) = 5$ and $v_i(\{z_1\}) = 10$
 - How can agent j persuade i to transfer the item?
 - Make a side payment, sufficient to compensate i's resulting loss in utility (≥5)
 - Any side payment must be funded by value received (≤10)
- A payment vector $\bar{p}=\langle p_1,\dots,p_n\rangle$ is a tuple of side payments, one for each agent, such that $\sum_{i=n}^n p_i=0$
 - If $p_i < 0$, agent i receives $-p_i$
 - If $p_i > 0$, agent i contributes p_i
- A deal is a triple $\delta = \langle (Z_1, ..., Z_n), (Z'_1, ..., Z'_n), \bar{p} \rangle$
 - Allocation (Z_1,\ldots,Z_n) is replaced by allocation (Z_1',\ldots,Z_n') and payments specified in \bar{p} are made

Side Payment Deal properties

• Deal δ is individually rational if

$$v_i(Z_i') - p_i \ge v_i(Z_i)$$
, for every agent i

- p_i can be 0 if $Z_i = Z'_i$
- even without payments, there may be deals where some agents are better off
- Deal δ is Pareto optimal if every other deal that makes some agent strictly better off makes some other agent strictly worse off

21

Further Reading

- Wooldridge, M. (2009). An Introduction to MultiAgent Systems, 2nd ed., John Wiley & Sons: Chap. 15
- Faratin, P., Sierra, C. and Jennings, N. R. (1998). Negotiation Decision Function for Autonomous Agents. Robotics and Autonomous Systems 24, 159-182.
- Rosenschein, J. S. and Zlotkin, G. (1994). Rules of Encounter: Designing Conventions for Automated Negotiation among Computers. MIT Press.