

Programação em Python

https://advancedinstitute.ai

Programação Python

Operações Matriciais com o *Numpy* - Continuação

Referências

Referências e Fontes das Imagens

- □ NumPy Illustrated: The Visual Guide to NumPy
- □ Parallel and High Performance Computing (Book)
- □ Learning Numpy Array (Book)

Vetores-coluna vs Vetores-linha

- □ No contexto 2D, os vetores de linha e coluna são tratados de forma diferente
- □ Normalmente o NumPy armazena matrizes 1D sempre que possível
- Por padrão, as matrizes 1D são tratadas como vetores de linha em operações 2D shape
 (n,) ou (1,n)
- □ Para construir vetores coluna: np.reshape(-1,1), a[:, np.newaxis]

Vetores-coluna vs Vetores-linha

Aritmética de Matrizes

- □ Operadores *element-wise*: +,-,*,/,/ e **
- ☐ Multiplicação de Matrizes:

Broadcasting

- □ NumPy tenta realizar uma operação mesmo que os operandos não tenham a mesma forma;
 - Número são promovidos a vetores:

Broadcasting Cont.

- □ Broadcasting de Matrizes
 - NumPy permite operações mistas entre um vetor e uma matriz, e até mesmo entre dois vetores:

Broadcasting Cont.

outer product

inner (or dot) product

Unificação de Matrizes - hstack() e vstack()

- ☐ Unificação na horizontal ou na vertical
- □ Cuidado com o shape em vetores coluna

Separação de Matrizes - hsplit() e vsplit()

Replicação de Matrizes - tile()

Remoção de linhas e colunas - delete()

Inserção de linhas e colunas - insert()

Inserção de linhas e colunas - append()

Inserção de linhas e colunas - pad()

Estatística em Matrizes

□ Funções estatísticas básicas: min/max, argmin/argmax, mean/median/percentile, std/var

Estatística em Matrizes

□ Retornando as posições:

Quantificadores - all() e any()

Ordenação de Matrizes

☐ Utilização do parâmetro axis para especificar linha/coluna

Matrizes no mundo 3D

□ Quando você cria uma matriz 3D a partir do vetor 1D (usando reshape() ou convertendo uma lista Python aninhada, o significado dos índices é (z, y, x)

Indexação em 3D

- \square Ao trabalhar com imagens RGB, a ordem (y, x, z) é mais utilizada:
 - Duas coordenadas de pixel e a última é a coordenada de cor
 - a[i,j] dá uma tupla (r,g,b) tupla do pixel (i,j)

Indexação em 3D - Cont.

- Utilizando a função moveaxis()
 - Operação simples (computacionalmente barata) que gera uma visão dos dados

Dúvidas?