

Biotecnologia e Suas Aplicações na Genética e Melhoramento de Plantas

Sequenciamento de RNA e Expressão Diferencial

Cristiane Taniguti Fernando Correr Letícia Lara Marianella Quezada

Sumário

- RNA
- Transcriptoma
- Sequenciamento de RNA
- Extração do RNA
- Construção da Biblioteca
- 6 Expressão Diferencial
- Bibliografia

RNA

O que é o RNA?

Definição Geral

- Cadeia Unifilamentar de nucleotídeos
- Ribose: Hidroxila no carbono 2'
- Uracil

O que é o RNA?

Fonte: RNA History

RNA

Classes de RNA

Codificadores

mRNA: Intermediários

Não codificadores

- tRNA
- rRNA
- snRNA
- microRNA
- siRNA

Classes de RNA

Fonte: RNA History

Considerando um estádio específico de desenvolvimento ou uma determinada condição fisiológica, o transcriptoma representa o conjunto dos transcritos de uma célula, quais são e quantos são.

• Elementos funcionais do Genoma

- Elementos funcionais do Genoma
- Constituintes de células e tecidos

- Elementos funcionais do Genoma
- Constituintes de células e tecidos
- Compreensão de estresses

- Elementos funcionais do Genoma
- Constituintes de células e tecidos
- Compreensão de estresses

Objetivos

Catálogo;

- Elementos funcionais do Genoma
- Constituintes de células e tecidos
- Compreensão de estresses

Objetivos

```
Catálogo;
Estrutura;
```

- Elementos funcionais do Genoma
- Constituintes de células e tecidos
- Compreensão de estresses

Objetivos

```
Catálogo;
Estrutura;
Isoformas:
```

- Elementos funcionais do Genoma
- Constituintes de células e tecidos
- Compreensão de estresses

```
Objetivos
```

```
Catálogo;
Estrutura;
Isoformas;
Modificações pós-transcricionais;
```

- Elementos funcionais do Genoma
- Constituintes de células e tecidos
- Compreensão de estresses

Objetivos

```
Catálogo;
Estrutura;
Isoformas;
Modificações pós-transcricionais;
Mudanças nos níveis de expressão;
```

Transcriptoma - Tecnologias

Técnicas de Hibridização:

cDNAs marcados fluoréscentemente e dependência da sequência genômica.

Transcriptoma - Tecnologias

A abordagem baseada em sequência utiliza-se diretamente do cDNA

Table 1 Advantages of RNA-Seq compared with other transcriptomics methods		
Technology	Tiling microarray	cDNA or EST sequencing
Technology specifications		
Principle	Hybridization	Sanger sequencing
Resolution	From several to 100 bp	Single base
Throughput	High	Low
Reliance on genomic sequence	Yes	No
Background noise	High	Low
Application		
Simultaneouslymaptranscribedregionsandgeneexpression	Yes	Limited for gene expression
Dynamic range to quantify gene expression level	Up to a few-hundredfold	Not practical
Ability to distinguish different isoforms	Limited	Yes
Ability to distinguish allelic expression	Limited	Yes
Practical issues		
Required amount of RNA	High	High
Cost for mapping transcriptomes of large genomes	High	High

Transcriptoma - Tecnologias

Serial Analysis of Gene Expression (SAGE)

RNA-Seq

As novas plataformas de alto rendimento de DNA permitem uma nova metodologia para mapear e quantificar o transcriptoma.

Utiliza-se de um método de alto rendimento para obter:

Utiliza-se de um método de alto rendimento para obter:

• Sequências curtas single-end ou paired-end;

Utiliza-se de um método de alto rendimento para obter:

- Sequências curtas single-end ou paired-end;
- Tamanho de 30pb a 400pb;

Utiliza-se de um método de alto rendimento para obter:

- Sequências curtas single-end ou paired-end;
- Tamanho de 30pb a 400pb;

Para os objetivos principais:

Utiliza-se de um método de alto rendimento para obter:

- Sequências curtas single-end ou paired-end;
- Tamanho de 30pb a 400pb;

Para os objetivos principais:

 Alinhamento com um genoma de referência ou montagem de novo;

Utiliza-se de um método de alto rendimento para obter:

- Sequências curtas single-end ou paired-end;
- Tamanho de 30pb a 400pb;

Para os objetivos principais:

- Alinhamento com um genoma de referência ou montagem de novo;
- Compreensão dos limites dos transcritos;

Utiliza-se de um método de alto rendimento para obter:

- Sequências curtas single-end ou paired-end;
- Tamanho de 30pb a 400pb;

Para os objetivos principais:

- Alinhamento com um genoma de referência ou montagem de novo;
- Compreensão dos limites dos transcritos;
- Níveis de Expressão;

Extração do RNA

Os principais protocolos para a extração do RNA são:

TRIzol

Extração do RNA

Os principais protocolos para a extração do RNA são:

- TRIzol
- Cloreto de Lítio

Extração do RNA

Os principais protocolos para a extração do RNA são:

- TRIzol
- Cloreto de Lítio
- Kits
 - Ex: RNeasy

Depleção do RNA Ribossomal

A classe majoritária dos RNAs de uma célula é a do rRNA. Há duas maneiras para que eles não sejam utilizados nas análises:

Depleção do rRNA

Depleção do RNA Ribossomal

A classe majoritária dos RNAs de uma célula é a do rRNA. Há duas maneiras para que eles não sejam utilizados nas análises:

- Depleção do rRNA
- Enriquecimento do mRNA

Fragmentação do RNA e síntese do cDNA

A fragmentação primária do RNA pode ser feita pela ação da RNAse III ou pela hidrólise induzida por zinco (Illumina).

- Protocolo dUTP
- TruSeq Stranded mRNA Sample Prep Kit

Hibridização com primers aleatórios

Uso de primers aleatórios para o início da síntese do cDNA. Porém, essa maneira induz a viés.

Ligação dos adaptadores

Adaptadores 3' (Rnl2) e 5'(Rnl1). Posteriormente, ocorre a transcrição reversa, quando não se utiliza o cDNA.

HiSeq 2000

Sequencing by Synthesis

TGCA

Desafios da Bioinformática

Desafios da Informática:

- Armazenar
- Recuperar
- Processar

Compreender:

- Alinhamento de leituras em locais múltiplos
- Junções éxon-éxon

O RNA-Seq é quantitativo, pois são geradas leituras mapeáveis ao genoma.

Há grande acurácia, permitindo resultados comparáveis. É vantajoso capturar a dinâmica do transcriptoma entre diferentes condições.

O RNA-Seq é quantitativo, pois são geradas leituras mapeáveis ao genoma.

Há grande acurácia, permitindo resultados comparáveis. É vantajoso capturar a dinâmica do transcriptoma entre diferentes condições.

Diferentes Tecidos

O RNA-Seq é quantitativo, pois são geradas leituras mapeáveis ao genoma.

Há grande acurácia, permitindo resultados comparáveis. É vantajoso capturar a dinâmica do transcriptoma entre diferentes condições.

- Diferentes Tecidos
- Desenvolvimento

O RNA-Seq é quantitativo, pois são geradas leituras mapeáveis ao genoma.

Há grande acurácia, permitindo resultados comparáveis. É vantajoso capturar a dinâmica do transcriptoma entre diferentes condições.

- Diferentes Tecidos
- Desenvolvimento
- Estresses

Réplica técnica e réplica biológica

Erwin van Dijk & Yan Jaszczyszyn & Claude Thermes(2014)
Library preparation methods for next-generation sequencing: Tone
down the bias
Experimental Cell Research 322, 12 – 20.

Obrigado!!!

Vamos para a prática!

