TD6: Introduction aux systèmes de transmission

A. Système linéaire

1. Définition de la transformée de Fourier :

$$X(f) = TF\{x(t)\} = \int_{\mathbb{R}} x(t)e^{-j2\pi ft}dt$$

$$x(t) = TF^{-1}{X(f)} = \int_{\mathbb{R}} X(f)e^{j2\pi ft}df$$

Pour $x(t) = A_x \cos(2\pi f_0 t)$, $x(t) = A_x \sin(2\pi f_0 t)$ ou $x(t) = A_x \cos(2\pi f_0 t + \phi)$, on a

$$|X(f)| = \frac{A_x}{2} (\delta(f - f_0) + \delta(f + f_0))$$

FIGURE 1 – Représentations bilatérale et monolatérale

Remarque: les expressions de X(f) sont en revanche différentes

$$x(t) = A_x \cos(2\pi f_0 t) \to X(f) = \frac{A_x}{2} (\delta(f - f_0) + \delta(f + f_0))$$

$$x(t) = A_x \sin(2\pi f_0 t) \to X(f) = -\frac{A_x}{2} j (\delta(f - f_0) - \delta(f + f_0))$$

$$x(t) = A_x \cos(2\pi f_0 t + \phi) \to X(f) = \frac{A_x}{2} (e^{j\phi} \delta(f - f_0) + e^{-j\phi} \delta(f + f_0))$$

On ne peut pas représenter facilement ces expressions de X(f), c'est pour cela qu'on utilise |X(f)| ou $|X(f)|^2$ (densité spectrale de puissance).

2.
$$y(t) = (h * x)(t)$$
 et $Y(f) = H(f)X(f)$.

B. Système non linéaire

1. On considère deux cas : u = A et u = -A.

1er cas : u = A

On a $V_A = \frac{A}{2}$ et $V_B = -\frac{A}{2}$. Les diodes D_1 et D_2 sont donc bloquées et on a 0V au point D.

On a alors v(t) = -2e(t).

2e cas : u = -A

Les diodes D_1 et D_3 sont bloquées.

On a alors v(t) = 2e(t).

On peut donc écrire $v(t) = -\frac{2}{A}u(t)e(t)$

Or, on peut décomposer le signal carré u(t):

$$u(t) = \sum_{k=-\infty}^{+\infty} \frac{4}{(2k+1)\pi} A \sin((2k+1)2\pi f_0 t)$$

Donc on a le spectre de u(t):

$$V(f) = \sum_{k=-\infty}^{+\infty} \frac{4}{(2k+1)\pi} A \frac{1}{2j} (\delta(f - (2k+1)f_0 - \delta(f + (2k+1)f_0)))$$

Comme $V(f) = -\frac{2}{A}(U * E)(f)$,

$$V(f) = -\sum_{k=-\infty}^{+\infty} \frac{4}{(2k+1)j\pi} \left(E(f - (2k+1)f_0 - E(f + (2k+1)f_0)) \right)$$

On recopie le spectre centré de |E(f)| à f_0 , $3f_0$, $5f_0$, ...

2. On choisit le filtre passe bande qui sélectionne une bande qui ne contient que le spectre autour de f_0 . Ainsi, on a transposé l'information autour de f_0 .