Temas Específicos de Electrónica Digital I Comunicación USB 2.0 para aplicaciones cientificas basadas en FPGA

Edwin Barragán edwin.barragan@cab.cnea.gov.ar

Universidad Nacional de San Juan Facultad de Ingeniería

14 de mayo de 2019

Una comunicación USB para aplicaciones científicas basadas en FPGA Preámbulo

Introducción

Implementación

Evaluación y validación

Resultados y conclusiones

Introducción

Motivación

Objetivos

Bus Serial Universal

Implementación

Arquitectura del sistema

Configuración del puente

Circuito sintetizado

Circuito de interconexión

Evaluación y validación

Test benchs de VHDL

Depuración de firmware del puente

Biblioteca de PC

Programas de prueba

Elementos de VHDL utilizados para depuración

Resultados y conclusiones

Robustez

Tasa máxima de Transferencia

Trabajo futuro

Introducción

Motivación

Objetivos

Bus Serial Universal

La producción de información científica

- ► Los avances en las escalas de integración de circuitos permiten desarrollar sensores que recolectan mayor volumen de datos.
- Los nuevos sensores necesitan nuevos circuitos adicionales que les permitan adquirir datos y controlar su funcionamiento.
- La utilización de FPGA es muy útil para sintetizar circuitos digitales.
- Los datos deben ser procesados para transformase en información.
- ► Los datos se deben transmitir desde los sistemas generadores a los sistemas procesadores.

La necesidad de una comunicación entre un FPGA y una PC

- Las computadoras son herramientas muy útiles para procesar datos.
- Los FGPAs pueden operar a altas velocidades y utilizar puertos paralelos.
- Es de utilidad una comunicación entre las PCs y las aplicaciones que utilizan FPGA para la implementación de circuitos.
- USB es una opción robusta, con ancho de banda suficiente para transmitir imágenes e incorporada en cualquier PC moderna.

Introducción

Motivación

Objetivos

Bus Serial Universal

Objetivos

- Objetivo General
 - Realizar una comunicación entre un FPGA y una PC mediante USB 2.0
- Objetivos Particulares
 - Comprender el funcionamiento del kit de desarrollo CY3684 y el framework provisto por Cypress.
 - Configurar el chip CY7C68014A, incorporado en el kit de desarrollo anterior.
 - Sintetizar un circuito en VHDL que sea capaz de interactuar con las memorias FIFO de la interfaz.
 - Sintetizar circuitos de prueba para Test Bench.
 - Validar el funcionamiento.

Introducción

Motivación

Objetivos

Bus Serial Universal

USB - Bus Serial Universal

El Bus Serial Universal o USB es un sistema de comunicación pensado, en su concepción original, para conectar periféricos a una PC.

Los objetivos perseguidos por norma son:

- Conexión de telefonos a la PC.
- Facilidad de uso.
- Proveer un puerto de expansión para periféricos.

USB - Bus Serial Universal

El Bus Serial Universal o USB es un sistema de comunicación pensado, en su concepción original, para conectar periféricos a una PC.

Los objetivos perseguidos por norma son:

- Conexión de telefonos a la PC.
- Facilidad de uso.
- Proveer un puerto de expansión para periféricos.
- Mayor rendimiento
- Mayor ancho de banda

La respuesta a esta demanda fue agregar una nueva velocidad de $480~\mathrm{Mbit/s}.$

USB - Topología

Física

USB - Topología

Lógica

USB - Conexión mecánica

USB - Conexión mecánica

Detail C - C (Typical USB Shielded Cable)

All dimensions are in millimeters (**mm**) unless otherwise noted.

Dimensions are **TYPICAL** and are for general reference purposes only.

USB - Especificaciones eléctricas

- Existen 3 velocidades de señalización posibles:480 Mbit/s denominada high-speed, 12 Mbit/s para full-speed y 1.5 Mbit/s con low-speed.
- Se utiliza señal diferencial con un esquema de codificación NRZI (inversión de no retorno a zero).
- Los conductores de energía, V_{BUS} y GROUND poseen 5 V y 0 V respectivamente.
- Los conductores de datos son diferenciales y están polarizados de forma tal que pueda ser identificada la velocidad de operación y la conexión/desconexión de dispositivos.

USB - Codificación NRZI

USB - Bus Serial Universal

- Lógicamente, cada dispositivo es visto desde el Host como un extremo.
- Cada extremo posee un "tubo" de comunicación unidireccional y una dirección única.
- ► Cada "tubo" tiene asignado en el Host un buffer específico.
- Cada extremo tiene una única forma de comunicación con el Host, con su forma de acceso al bus y su determinada cuota de ancho de banda permitida.

USB - Tipo de Transferencias

Existen 4 tipos de transferencia los cuales difieren en cómo es transmitida la información, la dirección que posee, el tamaño máximo, acceso al bus, tiempos de latencia, manejo de errores y la secuencia de requerimiento de datos

- Transferencias de Control
- ► Transferencias de Interrupción
- Transferencias de Bultos
- Transferencias Isocrónicas

Implementación

Arquitectura del sistema

Configuración del puente

Circuito de interconexiór

Arquitectura del sistema propuesto

Implementación

Arquitectura del sistema

Configuración del puente

Circuito sintetizado

Circuito de interconexiór

Firmware de configuración de la interfaz

Implementación

Arquitectura del sistema Configuración del puente

Circuito sintetizado

Circuito de interconexión

Interfaz puente - FPGA

Implementación

Arquitectura del sistema Configuración del puente Circuito sintetizado

Circuito de interconexión

Circuito de interconexión

- ▶ Versión 1
- ► Versión 2
- ▶ Version 3

Evaluación y validación

Test benchs de VHDL

Depuración de firmware del puente

Biblioteca de PC

Programas de prueba

Elementos de VHDL utilizados para depuración

Test Bench

Evaluación y validación

Test benchs de VHDL

Depuración de firmware del puente

Biblioteca de PC

Programas de prueba

Elementos de VHDL utilizados para depuración

Debug Cypress

Evaluación y validación

Test benchs de VHDL

Depuración de firmware del puente

Biblioteca de PC

Programas de prueba

Elementos de VHDL utilizados para depuración

libusb-1.0

Evaluación y validación

Test benchs de VHDL Depuración de firmware del puente Biblioteca de PC

Programas de prueba

Elementos de VHDL utilizados para depuración

Esquemas de prueba

Evaluación y validación

Test benchs de VHDL Depuración de firmware del Bibliotoca do PC

Programas de prueba

Elementos de VHDL utilizados para depuración

Flip-Flop para eco

ROM con patrón de repetición infinita

Resultados y conclusiones

Robustez

Tasa máxima de Transferencia Trabajo futuro

Resultados de la prueba de robustez de la comunicación

Resultados y conclusiones

Robustez

Tasa máxima de Transferencia

Trabajo futuro

Resultados de la prueba de máxima transferéncia de datos

TODO

Resultados y conclusiones

Robustez

Tasa máxima de Transferencia

Trabajo futuro

Lo que falta...

Consultas

Muchas gracias

Material Adicional

Respaldo y cosas que no entren