	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018

 $Q(\beta^-)$ =-8378 27; S(n)=10444 20; S(p)=4290 30; $Q(\alpha)$ =4140 30 2017Wa10 S(2n)=18540 19; S(2p)=6508 31; $Q(\varepsilon p)$ =137 31 (2017Wa10).

¹⁷⁰W Levels

Cross Reference (XREF) Flags

```
A ^{170}Re ε decay
B ^{174}Os α decay
C ^{186}W(n,17nγ), ^{122}Sn(^{52}Cr,4nγ)
```

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
0.0@	0+	2.42 min <i>4</i>	ABC	%ε+%β ⁺ =100 %ε+%β ⁺ : %α<1 from systematics of partial $T_{1/2}(\alpha)$ vs $Q(\alpha)$. $T_{1/2}$: from 1990Me12. Others: 4 min I (1971Na28); 2.4 min I (1987Es08), 2.47 min I 0 (1990Me12), 2.8 min I (1992HeZV).
156.72 [@] <i>13</i>	2+	497 ps 10	A C	J^{π} : E2 γ to 0^+ .
462.33 [@] 16	4+	19.6 ps <i>19</i>	A C	J^{π} : stretched E2 γ to 2 ⁺ ; g.s. band member.
875.53 [@] 18	6+	4.3 ps <i>3</i>	A CD	J^{π} : stretched E2 γ to 4 ⁺ ; g.s. band member.
937.06 ^e 16	(2^{+})	1	A	, , , ,
952.50 ^d 21	(2^{+})		Α	
1073.57 ^e 19	(3^{+})		A	
1153.03 20	$(2^+,3,4^+)$		A	J^{π} : 690.7 γ to 4 ⁺ , 996.3 γ to 2 ⁺ .
1202.18 ^d 21	4+		A	J^{π} : E0+E2(+M1) 740 γ to 4 ⁺ .
1220.00 ^e 19	(4^{+})		A	J^{π} : 344.6 γ to 6 ⁺ , 1063.2 γ to 2 ⁺ .
1314.43° 20	(3 ⁻)		Α	
1327.53 ^b 24	(2^{-})		A	
1363.40 [@] 22	8+	1.9 ps 5	A CD	J^{π} : stretched E2 γ to 6 ⁺ ; g.s. band member.
1492.55 ^b 22	(4^{-})		A	
1517.27 ^c 21	5-		A C	J^{π} : stretched E2 275 γ from 7 ⁻ , 1055 γ to 4 ⁺ .
1578.30 ^d 23	6+		Α	J^{π} : E0+E2(+M1) 703 γ to 6 ⁺ .
1718.83 22	$(4^+,5,6^+)$		Α	J^{π} : 843.4 γ to 6 ⁺ , 1256.4 γ to 4 ⁺ .
1791.71 ^c 22	7-	30 ps 7	A C	J^{π} : E1 916.0 γ to 6 ⁺ ; D 428.4 γ to 8 ⁺ .
1811.0 ^b 3 1875.6 3	(6-)		A C A	
1901.5 [@] 3	10 ⁺	1.30 ps 24	CD	J^{π} : stretched E2 γ to 8^{+} ; g.s. band member.
1974.7 <i>3</i>		1	A	, , , ,
2080.0 3			Α	
2153.6 ^c 3	9-	4.9 ps 10	C	J^{π} : E1 790 γ to 8 ⁺ ; D 252 γ to 10 ⁺ .
2203.5 ^b 3	(8-)		C	
2344.8 3			Α	
2442.8 3			Α	
2464.3 [@] 4	12+	1.11 ps <i>21</i>	CD	J^{π} : stretched E2 γ to 10 ⁺ ; g.s. band member.
2481.1 3	(10=)		A	
2551.8 ^a 4	(10^{-})		C	
2552.8 <i>3</i> 2577.5 ^c <i>4</i>	11-	3.0 ps 8	A C	J^{π} : stretched E2 424 γ to 9 ⁻ , D 676 γ to 10 ⁺ .

¹⁷⁰W Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
2610.1 ^b 5	(10^{-})		С	
2650.3 <i>3</i>	()		A	
2898.4 ^a 5	(12^{-})	15 ps <i>3</i>	C	
2910.9 <mark>&</mark>	$(14)^{+}$	3.6 ps 7	С	J^{π} : stretched E2 447 γ to 12 ⁺ .
3036.1 ^c 5	$(13)^{-}$	2.0 ps 5	C	J^{π} : stretched E2 459 γ to 11 ⁻ .
3094.5 ^b 6	(12^{-})		C	
3118.0 [@] 5	14 ⁺		C	
3343.8 <mark>&</mark> 5	$(16)^{+}$	2.6 ps 3	С	J^{π} : stretched E2 433 γ to (14) ⁺ .
3354.6 ^a 6	(14^{-})		C	
3537.6 ^c 6	(15^{-})		C	
3652.3 ^b 8	(14^{-})		C	
3815.9 [@] 6	16 ⁺		C	
3874.0 ^{&} 5	$(18)^{+}$	1.29 ps 24	C	J^{π} : stretched E2 530 γ to (16) ⁺ .
3886.9 ^a 7	(16 ⁻)		C	
4094.7 ^c 8	(17^{-})		С	
4230.6 ^b 9	(16^{-})		C	
4460.4 ^a 7	(18 ⁻)		C	77 (40)
4490.5 ^{&} 8	(20)+	0.37 ps 5	С	J^{π} : stretched E2 617 γ to (18) ⁺ . $T_{1/2}$: from Doppler-broadened line shape and Doppler-shift recoil analyses in (52 Cr,4n γ).
4684.6 ^c 10	(19^{-})		C	
5056.8 ^a 8	(20^{-})		C	
5176.1 <mark>&</mark> 9	(22^{+})	0.17 ps 4	C	$T_{1/2}$: from Doppler-broadened line shape analysis in (52 Cr, 4 n γ).
5276.3 ^c 12	(21^{-})		C	
5671.5 ^a 10 5894.7 ^c 14	(22^{-}) (23^{-})		C C	
5918.1 ^{&} 9	(23^{+})	0.26 ps +6-4		$T_{1/2}$: from Doppler-broadened line shape analysis in (52 Cr, 4 n y).
6334.2 ^a 10	(24^{-})	0.26 ps +0-4	C C	11/2: Irom Doppier-broadened line snape analysis in (* Cr,4ny).
6587.7 ^c 14	(25^{-})		Č	
6713.8 <mark>&</mark> 10	(26^{+})		C	
7086.2? ^a 15	(26^{-})		Ċ	
7359.3 ^c 14	(27^{-})		C	
7568.9 <mark>&</mark> 10	(28^+)		C	
8202.3? ^C 17	(29^{-})		C	
8487.8 & 11	(30^+)		С	
9431.3 <mark>&</mark> <i>12</i>	(32^{+})		C	
10390.0?& <i>16</i>	(34^{+})		C	
11369.6? ^{&} 19	(36^{+})		С	

[†] From least-squares fit to adopted Eγ. [‡] Based on $\gamma(\theta)$, γ linear polarization in (20 Ne,xn γ) and band structure, unless noted otherwise. # From Doppler-shift recoil distance analysis in (52 Cr,4n γ) and/or (20 Ne,5n γ), except as noted. [@] Band(A): g.s. band (1985Re06). And mult=E2 for 157.9 γ J=2 to 0⁺. & Band(B): (γ i $^{2}_{13/2}$), α =0 s band (1985Re06). two quasi-particle AB band, crossed by ((γ i $^{2}_{13/2}$)) band at $\hbar\omega$ =0.45

^a Band(C): π =−, α =0 band (1985Re06). predominantly a two quasi-particle BF band for $\hbar\omega$ ≥ 0.2 MeV, but possibly includes

¹⁷⁰W Levels (continued)

strong octupole vibration component at lower rotational frequencies (1985Re06).

- ^b Band(D): π =−, α =0 band (1985Re06,2001Ki10). Probably predominantly (π 9/2[514])⊗(π 5/2[402]), for which K^{π}=2[−] is favored, but 2-quasineutron admixtures may also contribute. Also, a strong octupole vibration is present at low rotational frequencies, and Coriolis mixing of different K components of this vibration may render K a poor quantum number.
- ^c Band(d): $\pi = -$, $\alpha = 1$ band (1985Re06,2001Ki10). Signature partner of $\pi = -$, $\alpha = 0$ band; see comments on that band.
- ^d Band(E): K^{π} =0⁺ β band (2001Ki10). Assignment supported by γ decay pattern, particularly the strong E0 component in the 740γ and 703γ to the 4⁺ and 6⁺ states, respectively, of the g.s. band. From systematics, the J=0 member is expected at≈750 keV, but it has not been observed yet.
- ^e Band(F): K^{π} =2⁺ γ band (2001Ki10). The energies of the J=2 and 4 members differ only by≈20 keV from their counterparts in the β band, so significant β band and γ band mixing is expected.

E_i (level)	J_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f J_f^{π}	Mult.‡	δ	α^c	Comments
156.72	2+	156.73 [#] <i>14</i>	100	0.0 0+	E2		0.717	B(E2)(W.u.)=124 <i>3</i> Additional information 1.
462.33	4+	305.65 [#] 14	100	156.72 2+	E2		0.0804	B(E2)(W.u.)=179 <i>18</i> Additional information 2.
875.53	6+	413.18 [#] <i>14</i>	100	462.33 4+	E2		0.0343	B(E2)(W.u.)=189 <i>14</i> Additional information 3.
937.06	(2^{+})	780.6 [@] 2	8.0 [@] 24	156.72 2+				
	,	936.8 [@] 2	100 [@] 7	$0.0 0^{+}$				
952.50	(2^{+})	796.0 [@] 2	100 [@]	156.72 2 ⁺				
1073.57	(3 ⁺)	611.3 [@] 2	23 [@] 6	462.33 4+				
	,	916.7 [@] 2	100 [@] 9	156.72 2+	(M1+E2)	≤+15		Mult., δ : $\delta(D,Q)=+10 +5-\infty$ from ε decay; $\Delta \pi = (no)$ from level scheme.
1153.03	$(2^+,3,4^+)$	690.7 [@] 2	43 [@] 11	462.33 4+				
	, , , ,	996.3 [@] 2	100 [@] 22	156.72 2 ⁺				
1202.18	4+	249.9 [@] 2	11 [@] 4	952.50 (2 ⁺)	[E2]		0.1491	
		739.8 [@] 2	100 [@] 11	462.33 4+	E0+E2(+M1)	≤+1.7	≈0.061	Mult., δ : from $\alpha(K)$ exp and $\gamma(\theta)$ in ¹⁷⁰ Re ε decay.
1220.00	(4^{+})	344.6 2	31 10	875.53 6 ⁺	[E2]		0.0567	decay.
		757.6 [@] 2	100 [@] 24	462.33 4+				
		1063.2 [@] 2	59 [@] 17	156.72 2 ⁺				
1314.43	(3^{-})	852.3 [@] 2	83 [@] 26	462.33 4+				
		1157.5 [@] 2	100 [@] 26	156.72 2 ⁺				
1327.53	(2^{-})	1170.8 [@] 2	100 [@]	156.72 2+				
1363.40	8+	487.95 [#] <i>14</i>	100	875.53 6 ⁺	E2		0.0223	B(E2)(W.u.)=190 <i>50</i> Additional information 4.
1492.55	(4^{-})	418.9 [@] 2	25 [@] 4	1073.57 (3+)				
		1030.3 [@] 2	100 [@] 12	462.33 4+	(E1+M2)	-1.7 +11-39	0.017 10	Mult., δ : D+Q from $\gamma(\theta)$ in ¹⁷⁰ Re ε decay; $\Delta \pi$ =yes from level scheme.
1517.27	5-	641.7 [@] 2	100 [@] 19	875.53 6 ⁺				-
		1055.0 [@] 2	16 [@] 6	462.33 4+				
1578.30	6+	376.3 [@] 2	22 [@] 4	1202.18 4+	[E2]		0.0443	
		702.6 [@] 2	100 [@] 10	875.53 6 ⁺	E0+E2+M1	-1.7 +8-25	≈0.089	Mult., δ : from $\alpha(K)$ exp and $\gamma(\theta)$ in ¹⁷⁰ Re ε decay.
1718.83	$(4^+,5,6^+)$	843.4 [@] 2	41 [@] 9	875.53 6 ⁺				•
	. , , ,	1256.4 [@] 2	100 [@] 9	462.33 4+				
1791.71	7-	274.5 3	23 7	1517.27 5	E2 b		0.1113	B(E2)(W.u.)=29 13

$\gamma(^{170}\text{W})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	α^{c}	Comments
								I_{γ} : from (²⁰ Ne,4n γ). Other: I(275 γ)/I(916 γ)=0.76 in (⁵² Cr,4n γ). Not observed in ε decay.
1791.71	7-	428.40 [#] 17	48 15	1363.40	8+	(E1)&		B(E1)(W.u.)= 2.6×10^{-5} 12 Additional information 5.
								I_{γ} : from (²⁰ Ne,4nγ). Other: I(428γ)/I(916γ)=0.76 in (⁵² Cr,4nγ), 2.5 9 in ε decay.
		916.03 [#] <i>17</i>	100 27	875.53	6+	E1		B(E1)(W.u.)= 5.5×10^{-6} 22 Additional information 6.
1811.0	(6-)	935.45 [#] 23	100	875.53				Additional information 7.
1875.6		1413.3 [@] 2	100 [@]	462.33				
1901.5	10 ⁺	538.1 2	100	1363.40		E2	0.01753	B(E2)(W.u.)=170 40
1974.7		1099.2 [@] 2	100 @	875.53				
2080.0		1204.5 [@] 2	100 [@]	875.53	6+			
2153.6	9-	252.1 <i>3</i>	19 6	1901.5	10 ⁺	(E1) &	0.0350	$B(E1)(W.u.)=2.6\times10^{-4} II$
								I_{γ} : from (²⁰ Ne,4n γ). Other: I(252 γ)/I(362 γ)=0.13 in (⁵² Cr,4n γ).
		361.8 <i>3</i>	100 29	1791.71	7-	$E2^{b}$	0.0494	B(E2)(W.u.)=160 70
		790.2 <i>3</i>	79 <i>21</i>	1363.40	8+	E1		$B(E1)(W.u.)=3.5\times10^{-5} 14$
						_		I_{γ} : from (²⁰ Ne,4n γ). Other: I(790 γ)/I(362 γ)=0.32 in (⁵² Cr,4n γ).
2203.5	(8-)	392.6 <i>3</i>	100 29	1811.0	(6-)	(E2) ^a	0.0394	
		840.1 3	100 29	1363.40				
2344.8		1469.3 [@] 2	100 @	875.53				
2442.8	12±	1567.3 [@] 2	100@	875.53		F-2	0.01556	D/D2//W \ 1/0.20
2464.3	12+	562.8 2	100	1901.5		E2	0.01573	B(E2)(W.u.)=160 30
2481.1	(10=)	1605.6 [@] 2	100 20	875.53		(E2) ^a	0.0550	
2551.8	(10^{-})	348.4 3	100 29	2203.5	(8-)		0.0550	
		398.2 3	43 14	2153.6	9-	(M1)&	0.1027	
2552.8		1677.3 [@] 2	100@	875.53		b		
2577.5	11-	423.9 3	100 <i>31</i>	2153.6	9-	$E2^{b}$	0.0321	B(E2)(W.u.)=180 90
		676.0 <i>3</i>	31 9	1901.5	10 ⁺	(E1)&		B(E1)(W.u.)= 5×10^{-5} 3
2610.1	(10=)	106.6.3	100	2202 5	(0-)			I_{γ} : from (²⁰ Ne,4n γ). Other: I(676 γ)/I(424 γ)=0.11 in (⁵² Cr,4n γ).
2610.1	(10^{-})	406.6 3	100	2203.5	(8-)			
2650.3		1774.8 [@] 2	100@	875.53		h	0.0550	D. (72) (71)
2898.4	(12^{-})	346.6 3	100	2551.8	(10^{-})	E2 ^b E2	0.0558	B(E2)(W.u.)=130 30 B(E2)(W.u.)=150 30
2910.9	$(14)^{+}$	446.6 2	100	2464.3	12+	E2 E2 ^b	0.0280	B(E2)(W.u.)=150 30
3036.1 3094.5	$(13)^{-}$ (12^{-})	458.6 <i>3</i> 484.4 <i>3</i>	100 100	2577.5 2610.1	11 ⁻ (10 ⁻)	E2 ^b (E2) ^a	0.0261 0.0227	B(E2)(W.u.)=240 60
3118.0	(12) 14 ⁺	484.4 3 653.7 <i>3</i>	100	2464.3	12+	$(E2)^{a}$ $(E2)^{a}$	0.0227	
3343.8	$(16)^{+}$	432.9 2	100	2910.9	$(14)^{+}$	E2	0.0303	B(E2)(W.u.)=250 30
3354.6	(14^{-})	456.1 <i>3</i>	100	2898.4	(12^{-})	$(E2)^a$	0.0265	()(· · · · · · · · · · · · · · · · · ·

S

$\gamma(^{170}\text{W})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	α^{c}	Comments
3537.6	(15^{-})	501.5 3	100	3036.1	$(13)^{-}$	(E2) ^a	0.0208	
3652.3	(14^{-})	557.8 6	100	3094.5	(12^{-})	. ,		
3815.9	16 ⁺	697.9 <i>3</i>	100	3118.0	14 ⁺	(E2) ^a	0.00960	
3874.0	$(18)^{+}$	530.2 2	100	3343.8	$(16)^{+}$	E2	0.0182	B(E2)(W.u.)=180 40
3886.9	(16^{-})	532.3 <i>3</i>	100	3354.6	(14^{-})	(E2) ^a	0.0180	
4094.7	(17^{-})	557.1 6	100	3537.6	(15^{-})	$(E2)^a$	0.01612	
4230.6	(16^{-})	578.3 <i>3</i>	100	3652.3	(14^{-})	$(E2)^a$	0.01475	
4460.4	(18^{-})	573.5 <i>3</i>	100	3886.9	(16^{-})	$(E2)^a$	0.01505	
4490.5	$(20)^{+}$	616.5 <i>6</i>	100	3874.0	$(18)^{+}$	E2	0.01271	B(E2)(W.u.)=300 40
4684.6	(19^{-})	589.9 <i>6</i>	100	4094.7	(17^{-})			
5056.8	(20^{-})	596.4 <i>3</i>	100	4460.4	(18^{-})	$(E2)^a$	0.01372	
5176.1	(22^{+})	685.6 <i>3</i>	100	4490.5	$(20)^{+}$	$(E2)^a$	0.00999	B(E2)(W.u.)=390 100
5276.3	(21^{-})	591.7 6	100	4684.6	(19^{-})			
5671.5	(22^{-})	614.7 6	100	5056.8	(20^{-})			
5894.7	(23^{-})	618.4 6	100	5276.3	(21^{-})			
5918.1	(24^{+})	742.0 3	100	5176.1	(22^{+})	$(E2)^{a}$		B(E2)(W.u.)=170 40
6334.2	(24^{-})	662.7 3	100	5671.5	(22^{-})	(E2) ^a	0.01078	
6587.7	(25^{-})	693.0 3	100	5894.7	(23^{-})	$(E2)^{a}$		
6713.8	(26^{+})	795.7 <i>3</i>	100	5918.1	(24^{+})	(E2) ^a		
7086.2?	(26^{-})	752 ^d 1	100	6334.2	(24^{-})	$(E2)^a$		
7359.3	(27^{-})	771.6 <i>3</i>	100	6587.7	(25^{-})	(E2)		Mult.: (Q) from $\gamma(\theta)$ in (20 Ne,xn γ); $\Delta \pi$ =no from band structure.
7568.9	(28^{+})	855.1 <i>3</i>	100	6713.8	(26^+)	$(E2)^a$		
8202.3?	(29^{-})	843 ^d 1	100	7359.3	(27^{-})			
8487.8	(30^{+})	918.9 <i>3</i>	100	7568.9	(28^{+})	(E2)		Mult.: (Q) from $\gamma(\theta)$ in (20 Ne,xn γ); $\Delta \pi$ =no from band structure.
9431.3	(32^{+})	943.5 6	100	8487.8	(30^{+})	` /		
10390.0?	(34^{+})	958.7 ^d 10	100	9431.3	(32^{+})			
11369.6?	(36^+)	979.6 ^d 10	100	10390.0?				
11309.01	(30)	212.0 10	100	10390.01	(37)			

[†] From (²⁰Ne,xn γ), except as noted. For several transitions, branching from (⁵²Cr,4n γ) differs significantly from adopted value, and these cases are noted in comments on the relevant transitions. Those values would, of course, lead to significantly different reduced transition probabilities.

6

 $^{^{\}ddagger}$ From $\gamma(\theta)$ and/or γ linear polarization in (20 Ne,xn γ), except as noted. $^{\#}$ Weighted average of data from 170 Re ε decay and from (20 Ne,xn γ).

 $^{^{@}}$ From 170 Re ε decay.

[&]amp; From mult=D (from $\gamma(\theta)$ in (20 Ne,xn γ)), and adopted $\Delta \pi$.

^a Q from $\gamma(\theta)$ in (20 Ne,xn γ); $\Delta\pi$ =no from band structure. ^b Q from $\gamma(\theta)$ in (20 Ne,xn γ); not M2 from RUL.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{170}_{74}W_{96}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Band(F): $K^{\pi}=2^{+}$ γ band (2001Ki10)

(4⁺) 1220.00

(3⁺) 1073.57

(2+) 937.06

 $^{170}_{74}\mathrm{W}_{96}$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 107,791 (2006)	15-Sep-2005

 $Q(\beta^-) = -5.58 \times 10^3 \ 4$; $S(n) = 9.08 \times 10^3 \ 4$; $S(p) = 5.52 \times 10^3 \ 4$; $Q(\alpha) = 3.34 \times 10^3 \ 4$ 2012Wa38 Note: Current evaluation has used the following Q record -5580 409080 405520 403340 40 2003Au03.

¹⁷⁶W Levels

Cross Reference (XREF) Flags

E(level) [†]	J^{π}	$T_{1/2}$	XREF	Comments
0.0 <mark>a</mark>	0+	2.5 h <i>1</i>	ABCDE G	%ε=100
		2.0 1		T _{1/2} : weighted average of 2.3 h <i>I</i> (1963Va20), 2.5 h <i>4</i> (1962Gr27), 2.5 h <i>5</i> (1963Ma48), and 2.7 h <i>I</i> (1963Ra14).
108.3 <mark>a</mark> 7	2+		ABCDEFG	J^{π} : 108.5 γ stretch E2 to 0 ⁺ state. g.s. band member.
348.2 ^a 8	4 ⁺		ABCDEFG	J^{π} : 239.9 γ stretch E2 to 2 ⁺ state. g.s. band member.
699.4 <mark>a</mark> 8	6+		ABCDEFG	J^{π} : 351 γ stretch E2 to 4 ⁺ state. g.s. band member.
843.3 [@] 13	0_{+}		A	J^{π} : Supported by the γ - γ angular correlation of the 735 keV transition and consistent with the 0^+ to 2^+ state transition.
930.0 [@] 10	2+		A	J^{π} : 582.0 γ E2 to 4 ⁺ state.
1040.2 ⁱ 9	2+		A	J^{π} : 932.4 γ E0+E2+M1 to 2 ⁺ state.
1117.0 <mark>@</mark> 9	4 ⁺		A	J^{π} : 768.7 γ E0+E2+M1 to 4 ⁺ state.
1127.7 ^c 9	(2^{-})		A	J^{π} : 1019.9 γ E1 to 2 ⁺ state. $K^{\pi}=(2^{-})$ band assignment.
1139.7 ^a 8	8+		BCDEFG	J^{π} : 440.55 γ E2 to 6 ⁺ state. g.s. band member.
1179.2 ⁱ 10	(3^+)		A	J^{π} : Band assignment.
1197.1 ^c 9	(3^{-})		A	J^{π} : 849.1 γ E1 to the 4 ⁺ state at 349.3 keV level. Band assignment.
1302.0° 8	(4^{-})		ABC	J^{π} : Band assignment: configuration $\pi 1/2[541]\otimes\pi7/2[404]$ in (30 Si, $4n\gamma$).
1321.3 ⁱ 10	(4^{+})		A	J^{π} : Band assignment.
1396.2 [@] 8	6+		AB	J^{π} : 697.0y E0+E2+M1 to the 6 ⁺ state at 698.3 keV level. Band assignment.
1400.7 ^c 8	(5^{-})		ABC F	J^{π} : Band assignment.
1437.4 <i>13</i>	, ,		A	
1496.2 <i>10</i>			A	
1518.0 ⁱ 11	(5^+)		Α	J^{π} : Band assignment.
1525.5 <i>13</i>			A	
1537.9 <i>13</i>			A	
1575.7° 8	(6-)		BC	J^{π} : Band assignment.
1585.2 14			A	
1586.7 <i>10</i> 1589.7 <i>14</i>			A A	
1594.0 11			A	
1648.5 ^a 8	10 ⁺		BCDEFG	J^{π} : g.s. band member.
1657.3 ⁸ 8	6 ⁽⁺⁾		ABC	J^{π} : Band assignment: configuration $v5/2[512] \otimes v7/2[514]$.
1659.9 11	$(3,4,5)^{-}$		A	J^{π} : 1311.8 γ E1 to 4 ⁺ state at 349.5 keV level.
1673.2 ^c 8	(7^{-})		BC	,
1682.5 <i>13</i>	•		A	
1685.4 <i>11</i>			A	
1700.2 <i>13</i>			A	
1708.5 <i>11</i>			A	

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
1735.5 14		A	
1744.4 <i>14</i>		A	
1759.0 [@] 8	(8^{+})	В	
1858.2 ^e 8	(7)	В	J ^{π} : Band assignment, configuration Π9/2[514] \otimes Π5/2[402].
1886.0 <i>10</i>		A	
1922.4 13	2(+)	A	
1924.9 ⁸ 8	8(+)	BC	J^{π} : Band assignment.
1925.4 ^c 8	(8-)	BC	
1939.9 ^f 8	(7)	В	
1973.1 ^d 8	8(-)	В	
1995.4 ^f 8		В	
2007.7 ^c 8	(9 ⁻)	BC	
2149.9 ^e 8 2160.7? 8	(9)	B B	
2189.7 [@] 8	(10^{+})	В	
2206.3 ^a 8	12+	BCDEF	J^{π} : g.s. band member.
2263.9+x	12	В	Additional information 1.
2264.8 <mark>8</mark> 8	$10^{(+)}$	В	J^{π} : Band assignment.
2308.1 ^c 8	(10^{-})	BC	
2345.2 ^f 9	(9)	В	
2409.3 ^c 8	(11^{-})	BC	
2414.3 ^d 8	$10^{(-)}$	В	
2466.0+x ^h 10	(13)	В	
2524.7 ^e 8	(11)	В	
2624.3 ^{&} 8	12 ⁺	В	
2652.3+x ^h 11	(14)	В	
2708.7 <mark>8</mark> 8	$12^{(+)}$	В	J^{π} : Band assignment.
2753.8° 9	(12^{-})	BC	
2776.9 ^f 9	(11)	В	
2802.6 ^a 8	14+	BCDEF	J^{π} : g.s. band member.
2830.6 [@] 8	(12^{+})	В	
2862.7? 8		В	
2870.6+x ^h 11	(15)	В	
2881.5 ^c 8 2887.4 ^d 8	(13^{-})	BC	
2887.4 ^a 8 2971.2 ^e 8	$12^{(-)}$	В	
3032.9 8	(13) 14 ⁺	В	
		В	
3118.3+x ^h 11 3228.6? 8	(16)	B B	
3239.2 ⁸ 9	14(+)	В	J^{π} : Band assignment.
3256.0 8	1.	В	3. Duild assignment.
3271.5 ^f 10	(13)	В	
3276.0° 9	(14^{-})	BC	
3302.3? 8		В	
3393.3+x ^h 11	(17)	В	
3399.5 ^d 9	$14^{(-)}$	В	
3421.8° 8	(15^{-})	BC	
3427.6 ^a 8	16 ⁺	BCDE	J^{π} : g.s. band member.
3484.6 ^e 8	(15)	В	

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
3493.7 <mark>&</mark> 8	16 ⁺		В	
$3694.6 + x^h$ 12 $3747.0^\#$ 8	(18)	41 7	В	((5.21.0
3/4/.0" 8	14+	41 ns <i>I</i>	В	μ =+6.65 21; Q=+5.99 +66-82 J ^{π} : K^{π} =14 ⁺ band assignment, possible configuration π 7/2[404] \otimes π 9/2[514]
				$\otimes v7/2[633] \otimes v5/2[512]$. T _{1/2} : From (¹⁶ O,4n γ) (2000Io03). Other value: 35 ns 10, please see (³⁰ Si,4n γ)
				dataset (1996Cr02).
				μ : From g factor=+0.475 15, observing γ precession in external magnetic field in (^{16}O ,4n γ) (2000Io03). The diamagnetic and Knight shift corrections were not
				applied, as those were small (about 1%).
				Q: Observing the time-dependent quadrupole interaction pattern of the decay radiation from the isomer in (16 O,4n γ) (2002Io01).
				The isomer at 3747.0-keV ($J^{\pi}=14^{+}$, K=14) decays with an unusual pattern to
				levels with K=0, bypassing available levels with intermediate values of K. This isomer has been interpreted as a four-quasiparticle state, and its decay
				explained in terms of triaxial-shape vibrations, referred as γ -tunneling
				(1996Cr02). A J^{π} =14 ⁺ isomer at 3312 keV in ¹⁷⁴ Hf has a similar decay pattern (1995Gj01).
3817.2 ^f 10	(15)		В	pattern (1775-6]01).
3845.9 ^c 9	(16^{-})		ВС	
3952.8 ^d 10 3970.0 [#] 8	16 ⁽⁻⁾ 15 ⁺		B B	
4002.5 <mark>&</mark> 8	18 ⁺		BC E	
4020.6+x ^h 12	(19)		В	
4022.6 ^c 8 4061.3 ^e 8	(17^{-}) (17)		BC B	
4101.7 8	, ,		В	
4121.4 ^a 9 4208.5 [#] 8	18 ⁺ 16 ⁺		В	J^{π} : g.s. band member.
4368.4 8	10		B B	
4417.9 ^f 11	(17)		В	
4453.5 ^c 9 4464.9 [#] 8	(18 ⁻) 17 ⁺		B B	J^{π} : g.s. band member.
4579.0 8	17		В	J. g.s. baild member.
4613.5 ^{&} 8 4670.8 ^c 8	20 ⁺ (19 ⁻)		BC E B	
4695.2 ^e 8	(19)		В	
4740.9 [#] 8 4839.6 ^a 9	18 ⁺		В	1π hdh
4839.6 ^a 9 4894.7 ^b 8	20+	≈10 ns	B B	J^{π} : g.s. band member. $T_{1/2}$: From ¹⁵⁰ Nd(³⁰ Si,4n γ) (1996Cr02).
5034.5 [#] 8	19 ⁺		В	1/2-1
5083.2 ^c 9 5192.5 ^b 8	(20^{-})		В	
5192.5° 8 5298.9 & 9	22 ⁺		B BC E	
5343.2 [#] 8	20+		В	
5356.4 ^c 9 5369.9 ^e 9	(21 ⁻) (21)		B B	
5506.2 ^b 8	(21)		В	
5607.0 ^a 10	22+		В	J^{π} : g.s. band member.

¹⁷⁶W Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
5665.8 [#] 8			6051.1 & 9					В
5733.2 ^c 10			6186.1 ^b 9			6858.8 <mark>&</mark> 9	26+	В
5838.2 ^b 8			6348.5 [#] 9	23 ⁺	В	6921.7 ^b 9		В
6000.5 [#] 9	22 ⁺	В	6548.0 ^b 9		В			

 $[\]dagger$ Deduced by evaluator using a least-squares fit to adopted γ -ray energies.

 $^{^{\}ddagger}$ J^{π} assignments are based on γ -ray multipolarities, deduced from angular distributions in 164 Dy(16 O,4n γ) (1978Dr04) and conversion electron data in 169 Tm(11 B,4n γ) (1965St03), on directional correlation from oriented states (DCO) ratios in 150 Nd(30 Si,4n γ) and on rotational structure (1996Cr02).

[#] Band(A): $K^{\pi}=14^{+}$ band: possible configuration $\pi 7/2[404]\otimes \pi 9/2[514]\otimes \nu 7/2[633]\otimes \nu 5/2[512]$.

[@] Band(B): $K^{\pi}=(0^+_2)$ band: first excited state band, quasi β -vibrational band.

[&]amp; Band(C): $K^{\pi} = (0^{+})$ band: Two rotation-aligned neutrons.

^a Band(D): $K^{\pi}=0^{+}$ g.s. band.

^b Band(E): rotational band: built on≈10 ns state.

^c Band(F): $K^{\pi}=(2^{-})$ band: evaluator added levels of two $K^{\pi}=(4^{-})$ bands in high spin dataset [(30 Si,4nγ), 1996Cr02] with (2⁻) band in 176 Re ε decay [2001Ki10] on the basis of observed common states $^{(-)}$ and $^{(-)}$ at 1303.3 keV and 1402.1 keV levels within this band in 2001Ki10.

^d Band(G): $K^{\pi}=(8^{-})$ band: configuration $\pi 9/2[514]\otimes \pi 7/2[404]$.

^e Band(H): K=7 band: configuration $\Pi 9/2[514] \otimes \Pi 5/2[402]$.

f Band(I): K=(7) band.

^g Band(J): $K^{\pi}=(6^+)$ band: configuration $v5/2[512] \otimes v7/2[514]$.

^h Band(K): K=(13) band.

ⁱ Band(L): $K^{\pi}=2^{+}$ quasi γ -vibrational band.

γ (176W)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [@]	δ^a	$\alpha^{\mathbf{b}}$	Comments
108.3	2+	108.5 [#] 7	100	0.0 0+	E2		2.87	
348.2	4+	239.95 [#] 25	100	108.3 2+	E2		0.172	
699.4	6+	351.00 [#] 20	100	348.2 4+	E2		0.0542	
843.3	0_{+}	735.0	100 11	108.3 2+				
		844.0 ^d	1.7 4	$0.0 \ 0^{+}$	E0 [‡]			I_{γ} : K conversion electron intensity.
930.0	2+	582.0 [‡]	52 [‡] 3	348.2 4+	E2		0.0147	
		822.2 [‡]	100 [‡] 4	108.3 2+	E0+E2+M1 [‡]	-2.7		δ : uncertainty +0.4 -0.5.
1040.2	2+	692.1 [‡]	5.8 [‡] 22	348.2 4+				
		932.4 [‡]	100 [‡] 5	108.3 2+	E0+E2+M1 [‡]	+3.0		Mult.: from $\alpha(K)$ exp=0.0083 <i>16</i> . M1 is 11.1%. δ : uncertainty +1.0 -0.7.
		1041.6 [‡] d	82 [‡] 6	$0.0 0^{+}$				
1117.0	4+	186.5 [‡]	2.2 [‡] 4	930.0 2+				
		417.3 [‡]	11.0 [‡] <i>16</i>	699.4 6+				
		768.7 [‡]	100‡ 4	348.2 4+	E0+E2+M1	-2.2		Mult.: from $\alpha(K)$ exp=0.066 7, $\alpha(L)$ exp=0.0122 16, $\alpha(M)$ exp=0.0033 8 in 176 Re ε decay. M1 is 21%. δ : uncertainty +0.6 -1.2.
		1009.0°‡	52 c ‡ 3	108.3 2 ⁺	E2			I_{γ} : 86 20 in 1977Be72 (176Re ε decay).
								Mult.: from $\alpha(K)$ exp=0.45 10 in ¹⁷⁶ Re ε decay.
		1117.0 [‡] <i>d</i> 5	80 [‡] 20	$0.0 \ 0^{+}$				I_{γ} : From 1977Be72 (¹⁷⁶ Re ε decay).
1127.7	(2^{-})	87.1 [‡]	5.4 [‡] <i>13</i>	1040.2 2+				
		1019.9 [‡]	100 [‡] 5	108.3 2+	E1			Mult.: From $\alpha(K)$ exp<0.001 in 176 Re ε decay.
1139.7	8+	440.55 [#] <i>15</i>	100	699.4 6+	E2		0.0292	
1179.2	(3^{+})	830.9 [‡]	22.6 [‡] 20	348.2 4+				
		1071.0 [‡]	100‡ 4	108.3 2+				Mult.: 1071 γ E2 assignment from $\alpha(K)$ exp=0.0032 7 in ¹⁷⁶ Re ε decay is not consistent with the J^{π} assignment of the depopulating level.
1197.1	(3^{-})	156.9 [‡]	12.0 [‡] <i>17</i>	1040.2 2+				
		849.1 [‡]	100 [‡] 5	348.2 4+	E1			Mult.: from $\alpha(K)$ exp=0.0026 8 in ¹⁷⁶ Re ε decay.
1302.0	(4^{-})	122.8 [‡]	7.0 [‡] 25	1179.2 (3+)				
		174.3 [‡]	9.9 [‡] 25	1127.7 (2-)				
		953.78 [#] <i>16</i>	100 [‡] 6	348.2 4+				
1321.3	(4^{+})	973.0 [‡]	100 [‡] 5	348.2 4+	E2+M1 [‡]	>30		
		1213.2 [‡]	65 [‡] 10	108.3 2 ⁺				
1396.2	6+	697.0 2	100 14	699.4 6 ⁺	E0+E2+M1 [‡]			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.@	Comments
1396.2	6 ⁺	1047.0 ^d 1	43 21	348.2 4+		
1400.7	(5^{-})	203.9 [‡]	9 [‡] 4	1197.1 (3-)		
		701.41 ^{‡#} 9	100 [‡] 11	699.4 6+		
		1052.3 [‡]	36 [‡] 7	348.2 4+		
1437.4		1329.1 [‡]	100‡	108.3 2+		
1496.2		368.5 [‡]	66 [‡] 12	1127.7 (2-)		
		1148.1 [‡]	35 [‡] 8	348.2 4+		
		1388.3 [‡]	100 [‡] 12	108.3 2+		
1518.0	(5^+)	818.4 [‡]	40 [‡] 5	699.4 6+		
		1169.8 [‡]	100‡ 9	348.2 4+		
1525.5		1417.3 [‡]	100 [‡]	108.3 2 ⁺		
1537.9		1189.8 [‡]	100 [‡]	348.2 4+		
1575.7	(6-)	174.2 3	12 2	1400.7 (5-)		
		274.00 [#] 10	60 4	1302.0 (4-)		
		876.48 [#] <i>16</i>	100 40	699.4 6 ⁺		
1585.2		388.1‡	100‡	1197.1 (3-)		
1586.7		1238.2‡	100‡ 14	348.2 4+		
		1478.8 [‡]	63 [‡] 12	108.3 2 ⁺		
1589.7		659.6 [‡]	100‡	930.0 2+		
1594.0		292.1‡	54 [‡] 11	1302.0 (4-)		
		397.2 [‡]	100‡ 22	1197.1 (3-)		
1648.5	10+	508.60 [#] 20	100	1139.7 8+		
1657.3	6 ⁽⁺⁾	957.70 [#] 20	100	699.4 6 ⁺		
1659.9	$(3,4,5)^{-}$	542.7 [‡]	14 [‡] 3	1117.0 4+		177
		1311.8‡	100 [‡] 6	348.2 4+	E1	Mult.: From $\alpha(K)$ exp=0.0012 2 in ¹⁷⁶ Re ε decay.
1673.2	(7^{-})	272.5 [#] 20	23 4	1400.7 (5-)		
		533.16 [#] 12	100 15	1139.7 8+	(D)	
		973.6 [#] 3	85 <i>15</i>	699.4 6+	D	
1682.5		1334.5‡	100‡	348.2 4+		
1685.4		488.2 [‡]	54 [‡] 17	1197.1 (3-)		
		557.5 [‡]	100 [‡] 19	1127.7 (2-)		
1700.2		1352.2 [‡]	100‡	348.2 4+		
1708.5		1009.0 ^{c‡}	100 ^{c‡} 21	699.4 6 ⁺		

6

$\gamma(^{176}W)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^π	Mult.@	α^{b}
1708.5		1360.2 [‡]	29 [‡] 10	348.2	4+		
1735.5		695.1 [‡]	100‡	1040.2	2+		
1744.4		627.3 [‡]	100 [‡]	1117.0	4 ⁺		
1759.0	(8^{+})	363.0 2	36 7	1396.2	6+		
		618.8 2	100 29	1139.7	8+		
1858.2	(7)	717.4 <i>4</i>	100 20	1139.7	8+		
		1159.5 <i>4</i>	60 20	699.4	6+		
1886.0		1537.8 [‡]	46 [‡] 18	348.2	4+		
		1777.9 [‡]	100 [‡] 22	108.3	2+		
1922.4		1223.3 [‡]	100‡	699.4	6+		
1924.9	8(+)	267.92 [#] <i>16</i>	25 <i>3</i>	1657.3	6(+)		
		1225.94 [#] <i>12</i>	100 19	699.4	6 ⁺	&	
1925.4	(8^{-})	251.9 <i>3</i>	9.1 <i>18</i>	1673.2	(7^{-})		
		348.90 [#] 20	100 6	1575.7	(6-)		
		785.4 [#] 1	20.0 18	1139.7	8+		
1939.9	(7)	1240.6 3	100	699.4	6+		
1973.1	8(-)	397.0 <i>3</i>	100	1575.7	(6^{-})		
1995.4		1296.4 <i>3</i>	100	699.4	6+		
2007.7	(9^{-})	334.66 [#] <i>12</i>	100 6	1673.2	(7^{-})	E2	0.0621
		359.0 <i>3</i>	21 3	1648.5	10+		
		867.86 [#] <i>12</i>	88 12	1139.7	8+	D	
2149.9	(9)	292.0 <i>1</i>	100 8	1858.2	(7)		
		1010.0 <i>3</i>	92 8	1139.7	8+		
2160.7?		512.2 <i>3</i>	100	1648.5	10+		
2189.7	(10^+)	430.8 2	90 20	1759.0	(8 ⁺)		
		541.1 <i>I</i>	100 20	1648.5	10 ⁺		
2206.3	12+	557.86 [#] 12	100	1648.5	10+	E2	0.0163
2264.8	10(+)	339.8 2	100	1924.9	8(+)		
2308.1	(10^{-})	300.6 3	9.8 24	2007.7	(9-)		
2215.2	(0)	382.88 [#] 16	100 7	1925.4	(8-)	E2	0.0425
2345.2	(9)	350	100	1995.4	(7)		
2400.2		405.4 3	100	1939.9	(7)		
2409.3	(11^{-})	401.68 [#] <i>16</i>	100 6	2007.7	(9-)	E2	0.0373
	()	760.96 [#] 18	29 6	1648.5	10+		
2414.3	$10^{(-)}$	441.0 3	100 22	1973.1	8(-)		
2466.01	(12)	489.0 <i>3</i>	61 17	1925.4	(8-)		
2466.0+x	(13)	202.1	100	2263.9+x			

$\gamma(^{176}W)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.@	α^{b}
2524.7	(11)	374.6 <i>1</i>	100	2149.9	(9)		
2624.3	12+	418.0 <i>I</i>	87 26	2206.3	12+		
		434.7 <i>1</i>	100 9	2189.7	(10^{+})		
2652.3+x	(14)	186.3 2	100	2466.0+x	(13)		
2708.7	$12^{(+)}$	443.7 1	100	2264.8	$10^{(+)}$		
2753.8	(12^{-})	445.6 [#] 3	100	2308.1	(10^{-})		
2776.9	(11)	431.6 <i>3</i>	100	2345.2	(9)		
2802.6	14 ⁺	595.96 [#] 12	100	2206.3	12 ⁺	E2	0.0139
2830.6	(12^{+})	624.0 <i>4</i>	100 40	2206.3	12 ⁺		
		641.2 2	50 20	2189.7	(10^{+})		
2862.7?		656.3 2	100	2206.3	12 ⁺		
2870.6+x	(15)	218.0 4	100 40	2652.3+x	(14)		
		405.0 ^d 3	<20	2466.0+x	(13)		
2881.5	(13^{-})	472.16 [#] <i>12</i>	100	2409.3	(11^{-})	E2	0.0244
2887.4	$12^{(-)}$	473.1 <i>3</i>	100 19	2414.3	$10^{(-)}$		
		579.1 5	25 6	2308.1	(10^{-})		
2971.2	(13)	446.7 <i>1</i>	100	2524.7	(11)		
3032.9	14 ⁺	230.7 1	36 7	2802.6	14 ⁺		
		408.4 <i>I</i>	100 7	2624.3	12+		
		826.6 <i>1</i>	29 4	2206.3	12+		
3118.3+x	(16)	247.7 2	100 33	2870.6+x			
		466.5 5	33 33	2652.3+x	(14)		
3228.6?	(1)	1067.9 <i>3</i>	100	2160.7?	(1)		
3239.2	$14^{(+)}$	530.5 2	100	2708.7	12 ⁽⁺⁾		
3256.0		632 1	33 19	2624.3	12+		
2271 5	(10)	1049.8 <i>3</i>	100 29	2206.3	12+		
3271.5	(13)	494.8 3	100	2776.9	(11)		
3276.0	(14^{-})	522.22 [#] 24	100	2753.8	(12^{-})		
3302.3?	(17)	1096.0 <i>I</i>	100	2206.3	12+		
3393.3+x	(17)	275.0 2	100 33	3118.3+x			
2200 5	1.4(-)	522.5 5	50 33	2870.6+x	(15)		
3399.5	14 ⁽⁻⁾	512.2 3	100	2887.4	$12^{(-)}$		
3421.8	(15^{-})	540.43 [#] 9	100	2881.5	(13^{-})	E2	0.0176
3427.6	16 ⁺	625.32 [#] 9	100	2802.6	14 ⁺	E2	0.0125
3484.6	(15)	513.4 <i>I</i>	100	2971.2	(13)		
3493.7	16+	460.9 <i>1</i>	100	3032.9	14+		
3694.6+x	(18)	301.3 <i>3</i>	100	3393.3+x	(17)		
3747.0	14+	445.0 <i>I</i>	31 8	3302.3?			
		490.9 2	50 13	3256.0			
		518.6 <i>3</i>	36 8	3228.6?			

 ∞

$\gamma(^{176}W)$ (continued)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$E_i(level)$	Ţπ	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	Ţπ	Mult.@	$\alpha^{m{b}}$
884.5 2 31 8 2862.7? 916.8 3 39 5 2830.6 (12+) 945.0 2 19 5 2802.6 14+ 3817.2 (15) 545.7 3 100 3271.5 (13) 3845.9 (16-) 569.87# 21 100 3276.0 (14-) 3952.8 16(-) 553.3 3 100 3399.5 14(-) 3970.0 15+ 222.8 1 100 3747.0 14+ 4002.5 18+ 508.8 45 13 3493.7 16+ 574.75# 12 100 15 3427.6 16+ 4020.6+x (19) 326.0 4 100 3694.6+x (18) 4022.6 (17-) 600.82# 9 100 3421.8 (15-) E2 0.0137 4061.3 (17) 576.7 1 100 3484.6 (15) 4101.7 354.6 1 100 3747.0 14+ 4121.4 18+ 628.0 5 59 11 3493.7 16+ 693.7 3 100 11 3427.6 16+ 4208.5 16+ 238.2 1 100 22 3970.0 15+ 461.7 2 30 6 3747.0 14+ 4417.9 (17) 600.7 5 100 3845.9 (16-) 4453.5 (18-) 607.7 1 100 3845.9 (16-) 4464.9 17+ 256.2 1 100 17 4208.5 16+ 4464.9 17+ 256.2 1 100 17 4208.5 16+ 4579.0 210.5 1 100 4368.4 461.5 20+ 611.0 1 100 4002.5 18+ 4670.8 (19-) 648.0 2 100 4022.6 (17-) 4695.2 (19) 633.9 1 100 20 4464.9 17+ 579.0 18+ 275.9 1 100 20 4464.9 17+ 532.5 1 92 12 4208.5 16+ 4894.7 315.8 1 100 20 4464.9 17+ 532.5 1 92 12 4208.5 16+ 4894.7 315.8 1 100 4579.0 5034.5 19+ 293.5 1 79 26 4740.9 18+ 569.8 2 100 13 4464.9 17+ 5083.2 (20-) 629.7 2 100 463.5 (18-) 5192.5 297.8 1 100 4894.7 5298.9 22+ 685.5 2 100 4613.5 20+ 5366.4 (21-) 685.7 3 100 4695.2 (19)							with.	<u>u</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3747.0	14 ⁺				14 ⁺		
945.0 2 19 5 2802.6 14+ 3817.2 (15) 545.7 3 100 3271.5 (13) 3845.9 (16-) 569.87# 21 100 3276.0 (14-) 3970.0 15+ 222.8 1 100 3747.0 14+ 4002.5 18+ 508.8 45 13 3493.7 16+ 574.75# 12 100 15 3427.6 16+ 4020.6+x (19) 326.0 4 100 3694.6+x (18) 402.6 (17-) 600.82# 9 100 3421.8 (15-) E2 0.0137 4061.3 (17) 576.7 1 100 3484.6 (15) 4101.7 354.6 1 100 3747.0 14+ 4121.4 18+ 628.0 5 59 11 3493.7 16+ 693.7 3 100 11 3427.6 16+ 4208.5 16+ 238.2 1 100 22 3970.0 15+ 461.7 2 30 6 3747.0 14+ 4368.4 266.6 1 100 4101.7 4453.5 (18-) 607.7 1 100 3845.9 (16-) 4464.9 17+ 256.2 1 100 17 4208.5 16+ 494.9 1 65 8 3970.0 15+ 4670.8 (19-) 648.0 2 100 4022.6 (17-) 4695.2 (19) 633.9 1 100 4061.3 (17) 4740.9 18+ 275.9 1 100 20 4464.9 17+ 532.5 1 92 12 4208.5 16+ 489.6 20+ 718.3 3 100 4121.4 18+ 489.6 20+ 718.3 3 100 421.4 18+ 569.8 2 100 13 4464.9 17+ 5083.2 (20-) 629.7 2 100 4453.5 (18-) 5343.2 20+ 685.5 2 100 4613.5 20+ 5369.9 (21) 674.7 1 100 4894.7 5369.9 (21) 674.7 1 100 4894.7 5369.9 (21) 674.7 1 100 4895.2 (19)								
3817.2 (15) 545.7 3 100 3271.5 (13) 3845.9 (16 ⁻) 569.87 [#] 21 100 3276.0 (14 ⁻) 3952.8 16 ⁽⁻⁾ 553.3 3 100 3399.5 14 ⁽⁻⁾ 3970.0 15 ⁺ 222.8 1 100 3747.0 14 ⁺ 4002.5 18 ⁺ 508.8 45 13 3493.7 16 ⁺ 574.75 [#] 12 100 15 3427.6 16 ⁺ 4020.6+x (19) 326.0 4 100 3694.6+x (18) 4022.6 (17 ⁻) 600.82 [#] 9 100 3421.8 (15 ⁻) E2 0.0137 4061.3 (17) 576.7 1 100 3747.0 14 ⁺ 4101.7 354.6 1 100 3747.0 14 ⁺ 4121.4 18 ⁺ 628.0 5 59 11 3493.7 16 ⁺ 693.7 3 100 11 3427.6 16 ⁺ 4208.5 16 ⁺ 238.2 1 100 22 3970.0 15 ⁺ 4368.4 266.6 1 100 4101.7 4417.9 (17) 600.7 5 100 3817.2 (15) 4453.5 (18 ⁻) 607.7 1 100 3845.9 (16 ⁻) 4464.9 17 ⁺ 256.2 1 100 17 4208.5 16 ⁺ 4579.0 210.5 1 100 4368.4 4613.5 20 ⁺ 611.0 1 100 4002.5 18 ⁺ 4670.8 (19 ⁻) 648.0 2 100 4022.6 (17 ⁻) 4695.2 (19) 633.9 1 100 4061.3 (17) 4740.9 18 ⁺ 275.9 1 100 20 4464.9 17 ⁺ 532.5 1 92 12 4208.5 16 ⁺ 489.6 20 ⁺ 718.3 3 100 4379.0 5034.5 19 ⁺ 293.5 1 79 26 4740.9 18 ⁺ 569.8 2 100 13 4464.9 17 ⁺ 5032.5 (20 ⁻) 629.7 2 100 4453.5 (18 ⁻) 5083.2 (20 ⁻) 629.7 2 100 4453.5 (18 ⁻) 5083.2 (20 ⁺) 685.5 2 100 4670.8 (19 ⁻) 5369.9 (21) 674.7 I 100 4695.2 (19)								
3845.9 (16-) 569.87# 21 100 3276.0 (14-) 3952.8 16(-) 553.3 3 100 3399.5 14(-) 3970.0 15+ 222.8 I 100 3747.0 14+ 4002.5 18+ 508.8 45 13 3493.7 16+ 574.75# 12 100 15 3427.6 16+ 4020.6+x (19) 326.0 4 100 3694.6+x (18) 4022.6 (17-) 600.82# 9 100 3421.8 (15-) E2 0.0137 4061.3 (17) 576.7 I 100 3484.6 (15) 4101.7 354.6 I 100 3747.0 14+ 4121.4 18+ 628.0 5 59 II 3493.7 16+ 693.7 3 100 II 3427.6 16+ 4208.5 16+ 238.2 I 100 22 3970.0 15+ 461.7 2 30 6 3747.0 14+ 4368.4 266.6 I 100 4101.7 4417.9 (17) 600.7 5 100 3817.2 (15) 4464.9 17+ 256.2 I 100 I7 4208.5 16+ 4494.9 I 65 8 3970.0 15+ 44670.8 (19-) 648.0 2 100 4002.5 18+ 4670.8 (19-) 648.0 2 100 4002.5 (17-) 4695.2 (19) 633.9 I 100 4061.3 (17) 4740.9 18+ 275.9 I 100 20 4464.9 17+ 532.5 I 92 12 4208.5 16+ 4894.7 315.8 I 100 4579.0 5034.5 19+ 293.5 I 79 26 4740.9 18+ 5698.2 100 I3 4464.9 17+ 5083.2 (20-) 629.7 2 100 4453.5 (18-) 5084.2 100 4894.7 5298.9 22+ 685.5 2 100 4613.5 20+ 5343.2 20+ 308.6 I 81 27 5034.5 19+ 5369.9 (21) 674.7 I 100 4695.2 (19)	2017.2	(1.5)						
3952.8 16(-) 553.3 3 100 3399.5 14(-) 3970.0 15+ 222.8 I 100 3747.0 14+ 4002.5 18+ 508.8 45 I3 3493.7 16+ 574.75# I2 100 I5 3427.6 16+ 4020.6+x (19) 326.0 4 100 3694.6+x (18) 4022.6 (17-) 600.82# 9 100 3421.8 (15-) E2 0.0137 4061.3 (17) 576.7 I 100 3484.6 (15) 4101.7 354.6 I 100 3747.0 14+ 4121.4 18+ 628.0 5 59 II 3493.7 16+ 693.7 3 100 II 3427.6 16+ 693.7 3 100 II 3427.6 16+ 461.7 2 30 6 3747.0 14+ 4417.9 (17) 600.7 5 100 3817.2 (15) 4453.5 (18-) 607.7 I 100 3845.9 (16-) 4464.9 17+ 256.2 I 100 I7 4208.5 16+ 494.9 I 65 8 3970.0 15+ 4670.8 (19-) 648.0 2 100 4022.6 (17-) 4695.2 (19) 633.9 I 100 4002.5 18+ 4670.8 (19-) 648.0 2 100 4022.6 (17-) 4695.2 (19) 633.9 I 100 4061.3 (17) 4740.9 18+ 275.9 I 100 20 4464.9 17+ 532.5 I 92 I2 4208.5 16+ 4894.7 315.8 I 100 4579.0 5034.5 19+ 293.5 I 79 26 4740.9 18+ 569.8 2 100 I3 4464.9 17+ 5034.5 19+ 293.5 I 79 26 4740.9 18+ 569.8 2 100 I3 4464.9 17+ 5034.5 19+ 293.5 I 79 26 4740.9 18+ 569.8 2 100 I3 4464.9 17+ 5034.5 19+ 293.5 I 79 26 4740.9 18+ 569.8 2 100 I3 4464.9 17+ 5034.5 19+ 50								
3970.0 15+ 222.8 <i>l</i> 100 3747.0 14+ 4002.5 18+ 508.8 45 <i>l</i> 3 3493.7 16+								
4002.5 18+ 508.8 45 13 3493.7 16+ 4020.6+x (19) 326.0 4 100 3694.6+x (18) 4022.6 (17-) 600.82# 9 100 3421.8 (15-) E2 0.0137 4061.3 (17) 576.7 I 100 3484.6 (15) E2 0.0137 4061.3 (17) 576.7 I 100 3484.6 (15) E2 0.0137 4101.7 354.6 I 100 3747.0 14+ 4121.4 18+ 628.0 5 59 11 3493.7 16+ 4208.5 16+ 238.2 I 100 22 3970.0 15+ 4208.5 16+ 238.2 I 100 22 3970.0 15+ 4368.4 266.6 I 100 4101.7 4417.9 (17) 600.7 5 100 3817.2 (15) 4453.5 (18-) 607.7 I 100 3845.9 (16-) 4464.9 17+ 256.2 I 100 I7 4208.5 16+ 4579.0 210.5 I 100 4368.4								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
4020.6+x (19) 326.0 4 100 3694.6+x (18) 4022.6 (17-) 600.82# 9 100 3421.8 (15-) E2 0.0137 4061.3 (17) 576.7 1 100 3484.6 (15) 4101.7 354.6 1 100 3747.0 14+ 4121.4 18+ 628.0 5 59 11 3493.7 16+ 693.7 3 100 11 3427.6 16+ 4208.5 16+ 238.2 1 100 22 3970.0 15+ 4208.5 16+ 238.2 1 100 22 3970.0 15+ 4368.4 266.6 1 100 4101.7 4417.9 (17) 600.7 5 100 3817.2 (15) 4453.5 (18-) 607.7 1 100 3845.9 (16-) 4464.9 17+ 256.2 1 100 17 4208.5 16+ 4579.0 210.5 1 100 4368.4 4670.8 (19-) 648.0 2 100 4022.6 (17-) 4695.2 (19) 633.9 1 100 <td>4002.5</td> <td>18⁺</td> <td></td> <td>45 13</td> <td>3493.7</td> <td>16⁺</td> <td></td> <td></td>	4002.5	18 ⁺		45 13	3493.7	16 ⁺		
4022.6 (17 ⁻) 600.82 [#] 9 100 3421.8 (15 ⁻) E2 0.0137 4061.3 (17) 576.7 I 100 3484.6 (15) 4101.7 354.6 I 100 3747.0 14 ⁺ 4121.4 18 ⁺ 628.0 5 59 II 3493.7 16 ⁺ 4208.5 16 ⁺ 238.2 I 100 22 3970.0 15 ⁺ 4208.5 16 ⁺ 238.2 I 100 22 3970.0 15 ⁺ 4368.4 266.6 I 100 4101.7 4417.9 (17) 600.7 5 100 3817.2 (15) 4453.5 (18 ⁻) 607.7 I 100 3845.9 (16 ⁻) 4464.9 17 ⁺ 256.2 I 100 I7 4208.5 16 ⁺ 4579.0 210.5 I 100 4368.4 4613.5 20 ⁺ 611.0 I 100 402.5 18 ⁺ 4670.8 (19 ⁻) 648.0 2 100 402.5 (17 ⁻) 4695.2 (19) 633.9 I 100 4061.3 (17) 474			574.75 [#] 12	100 15	3427.6	16 ⁺		
4061.3 (17) 576.7 I 100 3484.6 (15) 4101.7 354.6 I 100 3747.0 14+ 4121.4 18+ 628.0 5 59 II 3493.7 16+ 4208.5 16+ 238.2 I 100 22 3970.0 15+ 4368.4 266.6 I 100 4101.7 4417.9 (17) 600.7 5 100 3817.2 (15) 4453.5 (18-) 607.7 I 100 3845.9 (16-) 4464.9 17+ 256.2 I 100 I7 4208.5 16+ 4579.0 210.5 I 100 3345.9 (16-) 4470.8 (19-) 648.0 2 100 I7 4208.5 16+ 4670.8 (19-) 648.0 2 100 4061.3 (17-) 4695.2 (19) 633.9 I 100 4061.3 (17) 474.9 18+ 275.9 I 100 20 4464.9 17+ 532.5 I 92 I2 4208.5 16+ 4894.7 315.8 I 100 4579.0 5034.5<	4020.6+x	(19)	326.0 4	100	3694.6+x	(18)		
4061.3 (17) 576.7 I 100 3484.6 (15) 4101.7 354.6 I 100 3747.0 14+ 4121.4 18+ 628.0 5 59 II 3493.7 16+ 4208.5 16+ 238.2 I 100 22 3970.0 15+ 4368.4 266.6 I 100 4101.7 4417.9 (17) 600.7 5 100 3817.2 (15) 4453.5 (18-) 607.7 I 100 3845.9 (16-) 4464.9 17+ 256.2 I 100 I7 4208.5 16+ 4579.0 210.5 I 100 3345.9 (16-) 4470.8 (19-) 648.0 2 100 I7 4208.5 16+ 4670.8 (19-) 648.0 2 100 4061.3 (17-) 4695.2 (19) 633.9 I 100 4061.3 (17) 474.9 18+ 275.9 I 100 20 4464.9 17+ 532.5 I 92 I2 4208.5 16+ 4894.7 315.8 I 100 4579.0 5034.5<	4022.6	(17^{-})	600.82 [#] 9	100	3421.8	(15^{-})	E2	0.0137
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	354.6 <i>1</i>					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		18 ⁺			3493.7	16 ⁺		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			693.7 <i>3</i>	100 11	3427.6	16 ⁺		
4368.4 266.6 I 100 4101.7 4417.9 (17) 600.7 5 100 3817.2 (15) 4453.5 (18 ⁻) 607.7 I 100 3845.9 (16 ⁻) 4464.9 17 ⁺ 256.2 I 100 I7 4208.5 16 ⁺ 4579.0 210.5 I 100 4368.4 4613.5 20 ⁺ 611.0 I 100 4002.5 18 ⁺ 4670.8 (19 ⁻) 648.0 2 100 4022.6 (17 ⁻) 4695.2 (19) 633.9 I 100 4061.3 (17) 4740.9 18 ⁺ 275.9 I 100 20 4464.9 17 ⁺ 532.5 I 92 I2 4208.5 16 ⁺ 4839.6 20 ⁺ 718.3 3 100 4121.4 18 ⁺ 4894.7 315.8 I 100 4579.0 18 ⁺ 5034.5 19 ⁺ 293.5 I 79 26 4740.9 18 ⁺ 5083.2 (20 ⁻) 629.7 2 100 4453.5 (18 ⁻) 5192.5 297.8 I 100 4613.5 2	4208.5	16 ⁺	238.2 1	100 22	3970.0	15 ⁺		
4417.9 (17) 600.7 5 100 3817.2 (15) 4453.5 (18 ⁻) 607.7 I 100 3845.9 (16 ⁻) 4464.9 17 ⁺ 256.2 I 100 I7 4208.5 16 ⁺ 4579.0 210.5 I 100 4368.4 4613.5 20 ⁺ 611.0 I 100 4002.5 18 ⁺ 4670.8 (19 ⁻) 648.0 2 100 4022.6 (17 ⁻) 4695.2 (19) 633.9 I 100 4061.3 (17) 4740.9 18 ⁺ 275.9 I 100 20 4464.9 17 ⁺ 532.5 I 92 I2 4208.5 16 ⁺ 4839.6 20 ⁺ 718.3 3 100 4121.4 18 ⁺ 4894.7 315.8 I 100 4579.0 18 ⁺ 5034.5 19 ⁺ 293.5 I 79 26 4740.9 18 ⁺ 5083.2 (20 ⁻) 629.7 2 100 4453.5 (18 ⁻) 5192.5 297.8 I 100 4613.5 20 ⁺ 5343.2 20 ⁺ 308.6 I			461.7 2	30 6	3747.0	14 ⁺		
4453.5 (18 ⁻) 607.7 I 100 3845.9 (16 ⁻) 4464.9 17 ⁺ 256.2 I 100 I7 4208.5 16 ⁺ 494.9 I 65 8 3970.0 15 ⁺ 4579.0 210.5 I 100 4368.4 4613.5 20 ⁺ 611.0 I 100 4002.5 18 ⁺ 4670.8 (19 ⁻) 648.0 2 100 4022.6 (17 ⁻) 4695.2 (19) 633.9 I 100 4061.3 (17) 4740.9 18 ⁺ 275.9 I 100 20 4464.9 17 ⁺ 532.5 I 92 I2 4208.5 16 ⁺ 4839.6 20 ⁺ 718.3 3 100 4121.4 18 ⁺ 4894.7 315.8 I 100 4579.0 18 ⁺ 5034.5 19 ⁺ 293.5 I 79 26 4740.9 18 ⁺ 5083.2 (20 ⁻) 629.7 2 100 4453.5 (18 ⁻) 5192.5 297.8 I 100 4894.7 5298.9 22 ⁺ 685.5 2 100 4613.5 20 ⁺								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(17)				(15)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4464.9	17+						
4613.5 20 ⁺ 611.0 I 100 4002.5 18 ⁺ 4670.8 (19 ⁻) 648.0 2 100 4022.6 (17 ⁻) 4695.2 (19) 633.9 I 100 4061.3 (17) 4740.9 18 ⁺ 275.9 I 100 20 4464.9 17 ⁺ 532.5 I 92 I2 4208.5 16 ⁺ 4839.6 20 ⁺ 718.3 3 100 4121.4 18 ⁺ 4894.7 315.8 I 100 4579.0 5034.5 19 ⁺ 293.5 I 79 26 4740.9 18 ⁺ 5083.2 (20 ⁻) 629.7 2 100 4453.5 (18 ⁻) 5192.5 297.8 I 100 4894.7 5298.9 22 ⁺ 685.5 2 100 4613.5 20 ⁺ 5343.2 20 ⁺ 308.6 I 81 27 5034.5 19 ⁺ 603.0 2 100 16 4740.9 18 ⁺ 536.4 (21 ⁻) 685.7 3 100 4670.8 (19 ⁻) 5369.9 (21) 674.7 I 100 4695.2						15 ⁺		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
4695.2 (19) 633.9 I 100 4061.3 (17) 4740.9 18+ 275.9 I 100 20 4464.9 17+ 532.5 I 92 I2 4208.5 16+ 4839.6 20+ 718.3 3 100 4121.4 18+ 4894.7 315.8 I 100 4579.0 5034.5 19+ 293.5 I 79 26 4740.9 18+ 569.8 2 100 I3 4464.9 17+ 5083.2 (20-) 629.7 2 100 4453.5 (18-) 5192.5 297.8 I 100 4894.7 5298.9 22+ 685.5 2 100 4613.5 20+ 5343.2 20+ 308.6 I 81 27 5034.5 19+ 603.0 2 100 I6 4740.9 18+ 536.4 (21-) 685.7 3 100 4670.8 (19-) 5369.9 (21) 674.7 I 100 4695.2 (19)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
4839.6 20 ⁺ 718.3 3 100 4121.4 18 ⁺ 4894.7 315.8 I 100 4579.0 5034.5 19 ⁺ 293.5 I 79 26 4740.9 18 ⁺ 569.8 2 100 I3 4464.9 17 ⁺ 5083.2 (20 ⁻) 629.7 2 100 4453.5 (18 ⁻) 5192.5 297.8 I 100 4894.7 5298.9 22 ⁺ 685.5 2 100 4613.5 20 ⁺ 5343.2 20 ⁺ 308.6 I 81 27 5034.5 19 ⁺ 603.0 2 100 I6 4740.9 18 ⁺ 5356.4 (21 ⁻) 685.7 3 100 4670.8 (19 ⁻) 5369.9 (21) 674.7 I 100 4695.2 (19)	4740.9	18'						
4894.7 315.8 I 100 4579.0 5034.5 19+ 293.5 I 79 26 4740.9 18+ 569.8 2 100 I3 4464.9 17+ 5083.2 (20-) 629.7 2 100 4453.5 (18-) 5192.5 297.8 I 100 4894.7 5298.9 22+ 685.5 2 100 4613.5 20+ 5343.2 20+ 308.6 I 81 27 5034.5 19+ 603.0 2 100 I6 4740.9 18+ 5356.4 (21-) 685.7 3 100 4670.8 (19-) 5369.9 (21) 674.7 I 100 4695.2 (19)	1920 (20+						
5034.5 19+ 293.5 I 79 26 4740.9 18+ 569.8 2 100 13 4464.9 17+ 5083.2 (20-) 629.7 2 100 4453.5 (18-) 5192.5 297.8 I 100 4894.7 5298.9 22+ 685.5 2 100 4613.5 20+ 5343.2 20+ 308.6 I 81 27 5034.5 19+ 603.0 2 100 16 4740.9 18+ 5356.4 (21-) 685.7 3 100 4670.8 (19-) 5369.9 (21) 674.7 I 100 4695.2 (19)		20.				18		
569.8 2 100 13 4464.9 17 ⁺ 5083.2 (20 ⁻) 629.7 2 100 4453.5 (18 ⁻) 5192.5 297.8 1 100 4894.7 5298.9 22 ⁺ 685.5 2 100 4613.5 20 ⁺ 5343.2 20 ⁺ 308.6 1 81 27 5034.5 19 ⁺ 603.0 2 100 16 4740.9 18 ⁺ 5356.4 (21 ⁻) 685.7 3 100 4670.8 (19 ⁻) 5369.9 (21) 674.7 1 100 4695.2 (19)		10±				10+		
5083.2 (20 ⁻) 629.7 2 100 4453.5 (18 ⁻) 5192.5 297.8 I 100 4894.7 5298.9 22 ⁺ 685.5 2 100 4613.5 20 ⁺ 5343.2 20 ⁺ 308.6 I 81 27 5034.5 19 ⁺ 603.0 2 100 16 4740.9 18 ⁺ 5356.4 (21 ⁻) 685.7 3 100 4670.8 (19 ⁻) 5369.9 (21) 674.7 I 100 4695.2 (19)	3034.3	19						
5192.5 297.8 I 100 4894.7 5298.9 22+ 685.5 2 100 4613.5 20+ 5343.2 20+ 308.6 I 81 27 5034.5 19+ 603.0 2 100 16 4740.9 18+ 5356.4 (21-) 685.7 3 100 4670.8 (19-) 5369.9 (21) 674.7 I 100 4695.2 (19)	5083.2	(20-)						
5298.9 22+ 685.5 2 100 4613.5 20+ 5343.2 20+ 308.6 I 81 27 5034.5 19+ 603.0 2 100 16 4740.9 18+ 5356.4 (21-) 685.7 3 100 4670.8 (19-) 5369.9 (21) 674.7 I 100 4695.2 (19)		(20)				(10)		
5343.2 20 ⁺ 308.6 <i>I</i> 81 27 5034.5 19 ⁺ 603.0 2 100 <i>I6</i> 4740.9 18 ⁺ 5356.4 (21 ⁻) 685.7 <i>3</i> 100 4670.8 (19 ⁻) 5369.9 (21) 674.7 <i>I</i> 100 4695.2 (19)		22+				20+		
603.0 2 100 16 4740.9 18 ⁺ 5356.4 (21 ⁻) 685.7 3 100 4670.8 (19 ⁻) 5369.9 (21) 674.7 1 100 4695.2 (19)								
5356.4 (21 ⁻) 685.7 <i>3</i> 100 4670.8 (19 ⁻) 5369.9 (21) 674.7 <i>I</i> 100 4695.2 (19)	55 15.2	20						
5369.9 (21) 674.7 <i>I</i> 100 4695.2 (19)	5356.4	(21^{-})						
		` '				` /		

$\gamma(^{176}W)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
5506.2		612.0 4	100 19	4894.7	6186.1		347.6 <i>3</i>		5838.2
5607.0	22+	767.3 4	100	4839.6 20 ⁺			680.2 <i>4</i>		5506.2
5665.8	21+	322.4 2		5343.2 20 ⁺	6348.5	23 ⁺	348.2 2		6000.5 22 ⁺
		631.1 2	100	5034.5 19+			682.0 <i>4</i>		5665.8 21+
5733.2	(22^{-})	650.0 <i>1</i>	100	5083.2 (20-)	6548.0		362.1 <i>3</i>		6186.1
5838.2		331.7 <i>1</i>	100 19	5506.2			709.5 <i>4</i>		5838.2
		647.9 <i>4</i>	67 15	5192.5	6709.1	24^{+}	708.6 <i>4</i>	100	6000.5 22+
6000.5	22 ⁺	334.8 <i>4</i>	30 11	5665.8 21 ⁺	6858.8	26^{+}	808.0 <i>1</i>	100	6051.1 24+
		657.6 <i>3</i>	100 23	5343.2 20+	6921.7		374.0 <i>3</i>		6548.0
6051.1	24 ⁺	752.1 2	100	5298.9 22 ⁺			735.0 5		6186.1

 $^{^{\}dagger}$ From 150 Nd(30 Si,4n γ), unless otherwise specified.

[†] From $^{176}\text{Re }\varepsilon$ decay.

Weighted average of $^{150}\text{Nd}(^{30}\text{Si},4n\gamma)$ and $^{164}\text{Dy}(^{16}\text{O},4n\gamma)$.

@ From $^{16}\text{O}-\gamma(\theta)$ in $^{164}\text{Dy}(^{16}\text{O},4n\gamma)$, and ce data in $^{169}\text{Tm}(^{11}\text{B},4n\gamma)$.

& Measured dipole multipolarity. Level scheme requires E2.

^a From ¹⁷⁶Re ε decay.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Multiply placed with intensity suitably divided.

^d Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $^{176}_{\,74}W_{102}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{176}_{\,74}W_{102}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{176}_{\ 74}W_{102}$

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

 $^{176}_{\ 74}W_{102}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $^{176}_{\,74}W_{102}$

Band(F): $\mathbf{K}^{\pi} = (2^-)$ band: evaluator added levels of two $K^{\pi} = (4^-)$ bands in high spin dataset $[(^{30}\mathrm{Si},4n\gamma), 1996\mathrm{Cr}02]$ with (2^-) band in $^{176}\mathrm{Re}~\varepsilon$ decay [2001Ki10] on the basis of observed common states $4^{(-)}$ and $5^{(-)}$ at 1303.3 keV and 1402.1 keV levels within this band in

204

1197.1

 (3^{-})

 (2^{-})

 $^{176}_{74}W_{102}$

Band(L): \mathbf{K}^{π} =2 $^+$ quasi γ -vibrational band

(5⁺) 1518.0

(4⁺) 1321.3

(3+) 1179.2

2+ 1040.2

 $^{176}_{\ 74}W_{102}$

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Achterberg, O. A. Capurro, G. V. Marti	NDS 110,1473 (2009)	31-May-2008

 $Q(\beta^-)=-4.76\times 10^3~4; \ S(n)=8.78\times 10^3~4; \ S(p)=5981~16; \ Q(\alpha)=3012~16$ 2012Wa38 Note: Current evaluation has used the following Q record -4760 308790 305981 153006 15 2003Au03.

¹⁷⁸W Levels

Cross Reference (XREF) Flags

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
0.0	0^{+}	21.6 d <i>3</i>	ABCDEFG	%ε=100
				T _{1/2} : weighted average of 21.5 d 5 (1950Wi67), 21.4 d 5 (1964Sa16), and 22.0 d 5 (1963Ra14). Other: 1956Bi73.
105.90 [@] 9	2+		ABCDEFG	J^{π} : 106 γ E2 to 0 ⁺ .
342.74 [@] 10	4+		ABCDEFG	J^{π} : 237 γ E2 to 2 ⁺ .
694.16 [@] 11	6+		ABCDEFG	J^{π} : 352 γ E2 to 4 ⁺ .
997 5	0_{+}		FG	J^{π} : L=0 in (p,t).
1044.60 ^d 11	2^{-}		A DE G	J^{π} : 939 γ E1 to 2 ⁺ .
1082.44 ^b 15	2+		A FG	J^{π} : 977 γ E0+M1+E2 to 2 ⁺ .
1110.43 ^c 20	2+		A G	J^{π} : 1110 γ E2 to 0 ⁺ .
1120.13 ^e 11	3-		A DEFG	J^{π} : 778 γ E1 to 4 ⁺ .
1141.50 [@] 12	8+		BCDE G	J^{π} : 448 γ E2 to 6 ⁺ .
1225.24 ^d 11	4-		A DE G	J^{π} : 883 γ E1 to 4 ⁺ .
1236.50 ^c 15	3 ⁺		A	
1275.09 ^b 15	4+		A FG	J^{π} : 933 γ E0+M1+E2 to 4 ⁺ .
1294.51 <mark>&</mark> <i>15</i>	0_{+}		A	
1344.62 ^e 11	5-		A DE G	J^{π} : 650 γ (E1) to 6 ⁺ , 1002 γ (E1) to 4 ⁺ .
1356 5	0+		F	J^{π} : L=0 in (p,t).
1380.14 ^c 11	4+		A DE G	J^{π} : 1274 γ E2 to 2 ⁺ .
1417.68 ^{&} <i>14</i>	2+		Α	J^{π} : 1417 γ E2 to 0 ⁺ .
1435 5	2+		F	17 1100 1242 11440 F2 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1449.6 4	2+		A F	J^{π} : 1106, 1343, and 1449 γ E2 to 4 ⁺ , 2 ⁺ , and 0 ⁺ , respectively.
1508.62 ^d 13	6-		DE G	J^{π} : 284 γ (E2) to (4) ⁻ , 164 γ (E2,M1) to 5 ⁻ .
1545.2 <i>4</i>	(3-)		A D	77 060 TO M. TO C.
1555.96 ^b 13	6 ⁺		A CDE G	J^{π} : 862 γ E0+M1+E2 to 6 ⁺ .
1572.41 ^c 18	5 ⁺		A	W 1400 F0 . 0 ⁺
1597.83 ^{&} 17	4 ⁺		A	J^{π} : 1492 γ E2 to 2 ⁺ .
1641.34 <i>18</i> 1656.29 ^e <i>12</i>	0 ⁺ 7 ⁻		A F DE G	J^{π} : L=0 in (p,t). J^{π} : 962 γ E1 to 6 ⁺ , 312 γ E2 to 5 ⁻ .
1656.29 12 1664.94 ⁱ 11		2.0 4		
	6+	3.0 ns 4	BCDE G	J^{π} : 285 γ (E2) to 4 ⁺ , 971 γ (M1+E2) to 6 ⁺ , 1322 γ (E2) to 4 ⁺ . $T_{1/2}$: From ¹⁸¹ Ta(p,4n γ) (3 ns <i>I</i> in (¹⁷⁰ Er(¹³ C,5n γ)).
1665.35 [@] 12	10+		BCDE G	J^{π} : 523 γ E2 to 8 ⁺ .
1703.67 <i>15</i>	4+		A	J^{π} : 1009 γ E2 to 6 ⁺ , 1361 γ M1 to 4 ⁺ .
1718.06 <i>15</i>	4+		A	
1728.40 23			A	

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
1738.70 ^k 12	7-	9.6 ns 5	BCDE G	J ^π : 74 γ E1 to 6 ⁺ . T _{1/2} : From ¹⁷⁷ Hf(α ,3n γ) (8 ns <i>I</i> in (¹⁷⁰ Er(¹³ C,5n γ)).
1764.10 ^f 14	(5^{-})		A D	1/2
1827.41 ¹ 12	8-		BCDE	J^{π} : 88 γ to 7 ⁻ .
1835.39 ^j 13	7+		CDE G	J^{π} : 171 γ (M1,E2) to 6 ⁺ .
1863.9 <i>4</i> 1875.7 <i>6</i>	(4+)		A G	
1888.42 ^d 17	(8^{-})		DE G	J^{π} : 380 γ (E2) to 6 ⁻ .
1915.80 ^b 13	8+		CDE G	J^{π} : 774 γ E0+M1+E2 to 8 ⁺ .
1939.15 <i>23</i> 1962.53 <i>23</i>			A A	
1964.46 ^k 12 1997.23 17	9-		BCDE A	J^{π} : 137 γ (M1,E2) to 8 ⁻ , 226 γ (E2) to 7 ⁻ .
2023.38 ⁱ 13 2030 5	8+		CDE G F	
2041.81 ^e 13 2043.7 4	9-		DE G G	J^{π} : 386 γ (E2) to 7 ⁻ , 900 γ (E1) to 8 ⁺ .
2054.14 ⁸ 14 2060 5	(7)		D F	
2076.17^{f} 15	(7^{-})		D	
2078.27 ^h 16	8-		D	
2091 5			F	
2116 <i>5</i> 2121.05 <i>23</i>			F A F	
2133.03 ^l 13	10-		BCDE	J^{π} : 168 γ (M1,E2) to 9 ⁻ , 306 γ (E2) to 8 ⁻ .
2136.05 14	8+		D	
2226.77 ^{<i>j</i>} 13 2239.4 6	(9 ⁺)		CDE G G	J^{π} : 204 γ (E2,M1) to 8 ⁺ , 392 γ (E2) to 7 ⁺ .
2244.45 [@] 13	12+		CDE G	J^{π} : 579 γ (E2) to 10 ⁺ .
2322.62 ^h 13	9-		D	
2327.51 ^k 13	11-		BCDE	J^{π} : 195 γ (M1,E2) to 10 ⁻ , 363 γ (E2) to 9 ⁻ .
2339.74 ^b 13	10+		CDE G	
2347.93 ⁸ 13	(9)		D	
2355.82 ^d 20	10-		DE G	J^{π} : 468 γ (E2) to (8 ⁻).
2444.42 ⁱ 13 2468.34 ^f 14	10+		CDE	
2468.34 ⁷ 14 2489.84 ^e 14	(9 ⁻) 11 ⁻		D DE	J^{π} : 448 γ (E2) to 9 ⁻ .
2546.07 ^l 14	12-		CDE	J^{π} : 219 γ (E2,M1) to 11 ⁻ , 413 γ E2 to 10 ⁻ .
2577.56^{h} 13	10-		D	0. 21/ ₁ (22,111) to 11 , 113/ 12 to 10 .
2671.79 ^j 14	11 ⁺		CDE	
2682.79 <i>13</i>	10+		D	J^{π} : 546 γ E2 to 8 ⁺ .
2718.14 ^g 14	(11)		D	
2784.30 ^k 15	13-		CDE	J^{π} : 457 γ (E2) to 11 ⁻ .
2803.99 ^b 13	(12^+)		CDE	J^{π} : 464 γ E2 to 10 ⁺ , 559 γ M1(+E2) to 12 ⁺ .
2841.97 ^h 17	11-		D	
2845.65 ^a 16 2858.71 [@] 15	12 ⁺ 14 ⁺		DE	W. 61/2 E2 to 12 ⁺
2858.71 - 15 $2901.42 - 22$			DE	J^{π} : 614 γ E2 to 12 ⁺ . J^{π} : 546 γ (E2) to 10 ⁻ .
2901.42 ^{<i>i</i>} 22 2911.62 ^{<i>i</i>} 13	12 ⁻ 12 ⁺		DE D	J . J407 (E2) 10 10 .
2911.02 13	14		D	

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
2933.45 ^f 17	(11^{-})		D	
2994.86 ^e 17	13-		DE	
3044.19 ^l 15	14-		CDE	
3053.81 <i>13</i>	11-	<2 ns	BCDE	J ^{π} : From γ -ray DCO ratios in 164 Dy(18 O,4n γ).
				J^{π} : 921 γ M1+E2 to 10 ⁻ , 1090 γ E2 to 9 ⁻ .
2422 52 1 42	40+			$K^{\pi} = 11^{-}$. Configuration= $v(1/2[521]5/2[512]7/2[514]9/2[624])$.
3138.62^{j} 17	13+		CDE	J^{π} : 467 γ (E2) to 11 ⁺ .
3144.1 <i>6</i> 3161.94 ⁸ <i>17</i>	(13)		D D	
3209.25^a 15	14+		D	
3235.34 12	12+	<1 ns	BCDE	J^{π} : From γ -ray DCO ratios in 164 Dy(18 O,4n γ).
				J^{π} : 552 γ E2 to 10 ⁺ , 991 γ M1(+E2) to 12 ⁺ . K^{π} =12 ⁺ . Configuration= ν (1/2[521]7/2[633]7/2[514]9/2[624]) or ν (5/2[512]7/2[514]) π (5/2[402]7/2[404]).
3282.20 <i>16</i> 3301.2 <i>4</i>	(12^{-})		D A	Probable band member of $K^{\pi}=11^{-}$ band at 3053.
3317.40^{k} 16	15-		DE	J^{π} : 533 γ (E2) to 13 ⁻ .
3318.73 ^b 15	(14^{+})		DE	J^{π} : 460 γ M1(+E2) to 14 ⁺ .
3368.9 <i>3</i>	(2+)		Α	
3383.3 5			A	
3385.35 18	(13^{+})		D	Probable band member of $K^{\pi}=12^{+}$ band at 3235.
3420.39 ⁱ 14	14+		D	
3455.57 ^f 19	(13^{-})		D	
3459.75 19	(13 ⁻)		D	
3488.42 [@] 16	16 ⁺		DE	J^{π} : 630 γ E2 to 14 ⁺ .
3499.3 <i>4</i> 3505.8 <i>5</i>			A A	
3511.9 <i>4</i>	(2^{+})		A	
3514.82 ^d 24	14-		D	
3515.0 5			A	
3525.53 ^m 15	(13-)	<1 ns	BCDE	J^{π} : a tentative J^{π} =(14) has been proposed in 164 Dy(18 O,4n γ). J^{π} : 290 γ E1 to 12 ⁺ .
3550.9 <i>4</i>			A	,
3558.28 ^e 19	15-		D	
3580.2 <i>5</i>			A	
3585.5 <i>5</i> 3593.63 <i>18</i>	14-	3 ns <i>1</i>	A D	J^{π} : 68 γ (M1) to 13 ⁻ .
3373.03 10	11	3 113 1		$K^{\pi}=14^{-}$. Configuration= $\nu(5/2[512]7/2[514])\pi(7/2[404]9/2[514])$.
3594.8 5			A	CONTRACTOR STATES SAFETY
3612.22 ^j 19	15 ⁺		D	
3612.91 <i>18</i>	16-		DE	
3634.4 5			Α _	
3654.93° 19	15 ⁺	30 ns 1	D	J^{π} : 61 γ (E1) to 14 ⁻ .
3661.14 ^a 15 3673.94 ^g 20	16 ⁺ (15)		D D	
3686.63 ⁿ 16	(13) (14^+)		D	
3689.21 ^m 18	14-		D	J^{π} : 164 γ M1 to 13 ⁻ .
3695.06 <i>16</i>			D	
3706.2 5			A	
3807.0 4			A	
3810.5 <i>5</i> 3837.0 ^{<i>n</i>} <i>6</i>	(15^{+})		A D	
3037.0 0	(13)		ע	

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
3862.33 ^p 22	16 ⁺		D	J^{π} : 207 γ M1 to 15 ⁺ .
3871.00 ^b 16	16 ⁺		D	,
3876.03 21	(15^{-})		D	Probable member of $K^{\pi}=14^{-}$ band at 3593.
3912.51 ^k 19	17-		D	
3930.62 ^m 19	15-		D	
4009.29 ⁱ 17	16 ⁺		D	
4084.4 ⁿ 6	(16^{+})		D	
4100.17 [@] <i>17</i>	18 ⁺		D	J^{π} : 612 γ E2 to 16 ⁺ .
4129.93° 23	17 ⁺		D	,
4157.92 ^j 20	17 ⁺		D	
4171.5 ^d 6	16-		D	
4182.98 ^e 22	17-		D	
4208.88 ^m 19	16-		D	J^{π} : 278 γ M1 to 15 ⁻ , 520 γ E2 to 14 ⁻ .
4238.21 ¹ 21	18-		D	
4238.94 ⁸ 23	(17)		D	
4248.20 ^a 16	18+		D	J^{π} : 760 γ E2 to 16 ⁺ .
4368.8 ⁿ 6	(17^{+})		D	
4429.73 ^P 23	18+		D	
4498.31 ^b 19	18+		D	
4516.28 ^m 19	17-		D	
4555.92 ^k 21	19-		D	
4663.39 ⁱ 20	18+		D	
4678.7 ⁿ 6	(18^{+})		D	
4711.83 20	(17^{+})		D	J^{π} : 1057 γ E2 to 15 ⁺ .
4720.26@.20	20+		_	Additional information 1.
4730.36 [@] 20 4753.63 ^o 24	20+		D	
	19 ⁺		D	
4797.12^{j} 23	19+		D	
4833.7 ^d 8	(18 ⁻)		D	
4835.44 ⁸ 25 4863.88 ^e 24	(19) 19 ⁻		D D	
4879.72 ^q 19	18	<3 ns	D D	J^{π} : 363 γ M1 to 17 ⁻ , 671 γ E2 to 16 ⁻ .
4905.71 ^l 23	20-	<3 HS	D	J . 303 y WII to 17 , 071 y E2 to 10 .
4903.71 23 4941.84 ^a 18	20 ⁺		D D	
5006.7 ⁿ 6	(19^+)		D	
5063.22 ^r 22	19-		D	J^{π} : 183 γ M1 to 18 $^{-}$.
5096.83 ^p 24	20^{+}		D	,
5188.31 ^b 21	20^{+}		D	
5234.12 ^k 24	21-		D	
5269.84 <mark>9</mark> 24	20^{-}		D	
5313.7 ^s 3	21^{-}	64 ns 2	D	J^{π} : 44 γ (M1) to 20 ⁻ .
5428.96 [@] 22	22+		D	
5455.74° 24	21+		D	
5460.8 ^g 3	(21)		D	
5522.1 ^r 3	21-		D	
5525.93 ^j 25	21+		D	
5537.6 ^d 13	(20^{-})		D	
5577.5 ^e 3	(21^{-})		D	

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
5603.21 ^l 25	22-		D	
5627.1 ^u 3	22^{-}		D	
5675.2 ^t 3	22-		D	
5688.75 ^a 20	22 ⁺		D	
5814.2 ^q 3	22-		D	
5827.22 ^p 25	22+		D	
5906.61 ^b 24	22+		D	
5939.9 ^k 3	23-		D	
6000.6^{V} 3	23-		D	
6052.9 ^s 3	23-		D	
6136.8 ^g 3	(23)		D	
6140.0 ^r 3 6194.47 [@] 25	23-		D	
6194.47 25 6207.8° 3	24 ⁺ 23 ⁺		D	
6299.4 ^e 6	(23^{-})		D D	
$6329.1^{j}6$	23+			
6329.1^{3} 0 6332.7^{l} 3			D	
6332.7° 3 6389.8 ^u 3	24 ⁻ 24 ⁻		D D	J^{π} : 389 γ M1+E2 to 23 ⁻ , 763 γ E2 to 22 ⁻ .
6447.7 ^t 4	24 ⁻		D D	J . 3897 MITEZ to 25 , 7037 EZ to 22 .
6483.85 ^a 23	24 ⁺		D D	
6494.4 9 3	24 ⁻		D	
6572.7 ^w 3	25 ⁺	220 ns 10	D	J^{π} : 183 γ (E1) to 24 ⁻ , 946 γ (E3) to 22 ⁻ .
6593.8 ^p 3	24 ⁺		D	
6685.3 ^k 3	25-		D	
6795.7 ^v 3	25-		D	
6859.1 ^s 5	25^{-}		D	
6860.4 ^x 3	26 ⁺		D	J^{π} : 288 γ M1 to 25 ⁺ .
6872.9 ^r 4	25-		D	
6886.5 ⁸ 3	(25)		D	
6971.6 <i>° 4</i> 6984.2 <i>6</i>	(25 ⁺) 25 ⁺		D	
7006.0 5	25 ⁺		D D	
7017.2 [@] 3	(26^+)		D	
$7017.2 3$ $7113.2^{l} 3$	26-			
7113.2° 3 7217.5 ^w 4	20 27+		D D	J^{π} : 357 γ M1 to 26 ⁺ , 645 γ E2 to 25 ⁺ .
7217.5° 7218.6° 5	26-		D	3 . 337 y 1411 to 20 , 043 y 122 to 23 .
7272.4 <mark>9</mark> 5	26 ⁻		D	
7288.2 ^t 6	26-		D	
7330.2 ^a 6	26 ⁺		D	
7337.0 ^P 4	26 ⁺		D	
7392.2 4	26 ⁺		D	
7489.9 ^k 3	27-		D	
7611.7 ^x 4	28+		D	J^{π} : 394 γ M1 to 27 ⁺ , 751 γ E2 to 26 ⁺ .
7657.6 ^v 5	27-		D	
7690.1 ^r 5	27-		D	
7709.4° 4 7719.3 ⁸ 6	27+		D	
7719.3° 6 7732.2 ⁸ 8	(27) 27 ⁻		D D	
7798.8 5	27+		D D	
, 0.0 0			_	

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
7897.5 [@] 6	(28^+)		D	
7961.9 ^l 3	(28^{-})		D	
8034.6 ^w 4	29+		D	J^{π} : 423 γ M1 to 28 ⁺ , 818 γ E2 to 27 ⁺ .
8096.4 ^p 4	28+		D	
8111.6 ^u 8	28-		D	
8122.1 ^q 8 8148.4 ^y 4	28 ⁻ 28 ⁽⁻⁾	<5 ns	D D	J^{π} : 931 γ E1 to 27 ⁺ .
8189.1 ^t 9	28-	<3 IIS	D D	J . 9517 E1 to 27 .
8228.2 6	28 ⁺		D	
8365.3 ^k 6	(29-)		D	
8476.0 ^z 4	29(-)		D	J^{π} : 327 γ M1 to 28 ⁽⁻⁾ , 864 γ E1 to 28 ⁺ .
8484.5 ^x 5	30 ⁺		D	J^{π} : 450 γ M1 to 29 ⁺ , 873 γ E2 to 28 ⁺ .
8499.7° 4	29+		D	
8564.3 ^r 9	29-		D	
8578.6 ^v 9 8655.3 ^s 10	29 ⁻ 29 ⁻		D D	
8665.6 <i>7</i>	29 ⁺		D D	
8800.3 ³ 4	30 ⁺	<1 ns	D	J^{π} : 324 γ E1 to 29 ⁽⁻⁾ , 766 γ M1 to 29 ⁺ , 1187 γ E2 to 28 ⁺ .
8897.3 ^y 4	30 ⁽⁻⁾	1111	D	J^{π} : 422 γ M1 to 29 ⁽⁻⁾ , 749 γ E2 to 28 ⁽⁻⁾ .
8905.61 4	(29^+)	<1 ns	D	J^{π} : 757 γ (E1) to 28 ⁽⁻⁾ .
8919.5 <i>P</i> 4	30 ⁺		D	
8957.9 ^w 7	31+		D	J^{π} : 474 γ M1 to 30 ⁺ , 924 γ E2 to 29 ⁺ .
9016.6 ^q 10	30-		D	
9051.6 ^u 10	30-		D	
9124.7 ^t 12 9342.7 ² 4	30 ⁻		D	III 427 (M1) (20†)
9342.7- 4 9356.4 ⁰ 4	(30^+) 31^+		D D	J^{π} : 437 γ (M1) to (29 ⁺).
9359.5 ⁴ 4	(31^{+})		D	J^{π} : 559 γ M1 to 30 ⁺ .
9360.9 ^z 4	31		D	J^{π} : 464 γ M1 to 30°. J^{π} : 464 γ M1 to 30°-, 885 γ E2 to 29°
9453.8 ^x 8	32 ⁺		D	J^{π} : 494 γ M1 to 30 ⁺ .
9475.5 ^r 11	31-		D	
9532.6 ^v 11	31-		D	
9806.7 ¹ 4	(31^{+})		D	J^{π} : 464 γ (M1) to (30 ⁺).
9810.6 ^p 4	32 ⁺		D	IT 404 M1 (21- 050 F2 (20(-)
9854.9 ^y 5 9931.9 ³ 4	32-		D	J^{π} : 494 γ M1 to 31 ⁻ , 958 γ E2 to 30 ⁽⁻⁾ .
9931.9° 4 9947.6 <mark>9</mark> 12	(32^+) 32^-		D D	J^{π} : 572 γ M1 to (31 ⁺), 1132 γ (E2) to 30 ⁺ .
9971.9 ^w 7	33 ⁺		D	J^{π} : 518 γ M1 to 32 ⁺ , 1014 γ E2 to 31 ⁺ .
10280.3° 5	33 ⁺		D	
10299.6 ² 5	(32^+)		D	J^{π} : 493 γ (M1) to (31 ⁺).
10378.8 ^z 5	33-		D	J^{π} : 524 γ M1 to 32 ⁻ , 1018 γ E2 to 31 ⁻ .
$10509.2^{x} 8$	34+		D	J^{π} : 537 γ M1 to 33 ⁺ , 1055 γ E2 to 32 ⁺ .
10514.6^{V} 15	33-		D -	
$10525.9^{4} 4$	(33^+)		D	J^{π} : 594 γ M1 to (32 ⁺), 1166 γ (E2) to (31 ⁺).
10766.4 ^p 8 10916.4 ^y 5	34 ⁺ 34 ⁻		D D	J^{π} : 538 γ M1 to 33 ⁻ , 1060 γ E2 to 32 ⁻ .
11066.0 ^w 8	35 ⁺		D	J^{π} : 556 γ M1 to 34 ⁺ , 1095 γ E2 to 33 ⁺ .
11075.5 ⁵ 5	(34 ⁺)	<1 ns	D	J^{π} : 550 γ (M1) to (33 ⁺).
11265.4° 9	35+		D	
11697.2 ⁵ 5	(35^+)		D	J^{π} : 622 γ (M1) to (34 ⁺).

¹⁷⁸W Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF
11780.4 ^p 10	36 ⁺	D
12306.4° 13	37 ⁺	D
12844.9 <i>P 15</i>	(38^+)	D
13393.8° 17	(39^+)	D

- [†] From a least-squares fit to adopted γ -ray energies.
- ‡ Assignments are based on rotational band structure, and on γ -ray multipolarities and decay patterns. Specific arguments are given with individual levels
- # From 170 Er(13 C,5n γ), unless otherwise specified.
- [@] Band(A): $K^{\pi}=0^+$, Yrast band.
- & Band(a): 2nd $K^{\pi}=0^{+}$ band.
- ^a Band(B): $K^{\pi}=12^{+}$, Yrare band.
- ^b Band(C): β-vibrational band.
- ^c Band(D): γ-vibrational band.
- ^d Band(E): $K^{\pi}=2^{-}$ band, $\alpha=0$.
- ^e Band(e): $K^{\pi}=2^{-}$ band, $\alpha=1$.
- Danu(e). K=2 Danu, $\alpha=$
- ^f Band(F): J^{π} =(3⁻) band.
- g Band(G): J=(7) band.
- ^h Band(H): $\Delta J=1$ on 8⁻.
- ⁱ Band(I): $K^{\pi}=6^{+}$, $\alpha=0$. Configuration= $\nu 5/2[512]\nu 7/2[514]$.
- ^j Band(i): $K^{\pi}=6^{+}$, $\alpha=1$. Configuration=v5/2[512]v7/2[514].
- ^k Band(j): $K^{\pi}=7^{-}$, $\alpha=0$. Configuration= $\nu7/2[633]\nu7/2[514]$.
- ¹ Band(J): $K^{\pi}=7^{-}$, $\alpha=1$. Configuration=v7/2[633]v7/2[514].
- ^m Band(K): $K^{\pi}=13^{-}$. Configuration= $\nu(7/2[633]7/2[514])\pi(5/2[402]7/2[404]$.
- ⁿ Band(L): $K^{\pi}=14^{+}$. Configuration= $v(7/2[633]7/2[514])\pi(5/2[402]9/2[514]$.
- ^o Band(m): $K^{\pi}=15^{+}$, $\alpha=0$. Configuration= $\nu(7/2[633]7/2[514])\pi(7/2[404]9/2[514])$.
- ^p Band(M): $K^{\pi}=15^+$, $\alpha=1$. Configuration= $\nu(7/2[633]7/2[514])\pi(7/2[404]9/2[514])$.
- ^q Band(N): $K^{\pi}=18^{-}$, $\alpha=0$. Configuration= $\nu(7/2[633]7/2[514])\pi(1/2[541]5/2[402]7/2[404]9/2[514])$.
- ^r Band(n): $K^{\pi}=18^{-}$, $\alpha=1$. Configuration= $\nu(7/2[633]7/2[514])\pi(1/2[541]5/2[402]7/2[404]9/2[514])$.
- ^s Band(o): $K^{\pi}=21^{-}$, $\alpha=0$. Configuration= $\nu(5/2[512]7/2[633]7/2[514]9/2[624])\pi(5/2[402]9/2[514])$.
- ^t Band(O): $K^{\pi}=21^{-}$, $\alpha=1$. Configuration= $\nu(5/2[512]7/2[633]7/2[514]9/2[624])\pi(5/2[402]9/2[514])$.
- "Band(P): $K^{\pi}=22^{-}$, $\alpha=0$. Configuration= $\nu(5/2[512]7/2[633]7/2[514]9/2[624])\pi(7/2[404]9/2[514])$.
- ^v Band(p): $K^{\pi}=22^{-}$, $\alpha=1$. Configuration= $v(5/2[512]7/2[633]7/2[514]9/2[624])\pi(7/2[404]9/2[514])$.
- ^w Band(q): $K^{\pi}=25^{+}$, $\alpha=0$. Configuration= $\nu(5/2[512]7/2[633]7/2[514]9/2[624])$ $\pi(1/2[541]5/2[402]7/2[404]9/2[514])$.
- ^x Band(Q): $K^{\pi}=25^{+}$, $\alpha=1$. Configuration= $\nu(5/2[512]7/2[633]7/2[514]9/2[624])$ $\pi(1/2[541]5/2[402]7/2[404]9/2[514])$.
- ^y Band(r): $K^{\pi}=28^{-}$, $\alpha=0$. Configuration= $\nu(5/2[512]7/2[633]7/2[514]9/2[624])$ $\pi(1/2[541]7/2[404]9/2[514]11/2[505])$.
- ^z Band(R): $K^{\pi}=28^{-}$, $\alpha=1$. Configuration= $\nu(5/2[512]7/2[633]7/2[514]9/2[624])$ $\pi(1/2[541]7/2[404]9/2[514]11/2[505])$.
- ¹ Band(S): K^{π} =(29⁺) band, α =0. Configuration= ν (5/2[512]7/2[633]7/2[514]9/2[624]1/2[521]7/2[503]) π (1/2[541]5/2[402]7/2[404]9/2[514]).
- ² Band(s): K^{π} =(29⁺) band, α =1. Configuration= ν (5/2[512]7/2[633]7/2[514]9/2[624]1/2[521]7/2[503]) π (1/2[541]5/2[402]7/2[404]9/2[514]).
- ³ Band(t): K^{π} =30⁺ band, α =0. Configuration= ν (5/2[512]7/2[633]7/2[514]9/2[624]) π (5/2[402]7/2[404]9/2[514]11/2[505]).
- ⁴ Band(T): $K^{\pi}=30^{+}$ band, $\alpha=1$. Configuration= $\nu(5/2[512]7/2[633]7/2[514]9/2[624])$ $\pi(5/2[402]7/2[404]9/2[514]11/2[505])$.
- ⁵ Band(U): K^{π} =(34⁺) band. Configuration=v(5/2[512]7/2[633]7/2[514]9/2[624]1/2[521]7/2[503]) $\pi(5/2[402]7/2[404]9/2[514]11/2[505])$.

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	δ	α [@]	$I_{(\gamma+ce)}$
105.90	2+	105.8 <i>1</i>	100	0.0	0+	E2		3.12	
342.74	4+	236.7 1	100	105.90		E2		0.1772	
694.16	6+	351.4 <i>I</i>	100	342.74		E2		0.0536	
1044.60	2-	938.6 <i>1</i>	100	105.90	2+	E1		0.00201	
1082.44	2+	740.0 [‡] 6	10 [‡] 3	342.74					
		976.6 [‡] <i>5</i>	100 [‡] 6	105.90	2+	E0+M1+E2		0.007 3	
1110.43	2+	767.7 [‡] <i>5</i>	31 [‡] 7	342.74	4+				
		1004.4 [‡] 6	32 [‡] 7	105.90					
		1110.8 [‡] 4	100 [‡] 5		0_{+}	E2		0.00366	
1120.13	3-	75.5 <i>1</i>	28 14	1044.60					
		777.3 1	100 7	342.74		E1		0.00287	
		1014.5 5	10 3	105.90					
1141.50	8+	447.4 <i>I</i>	100	694.16		E2		0.0278	
1225.24	4-	105.2 1	35 9	1120.13					
		180.6 1	48 4	1044.60		E1		0.00225	
	- 1	882.4 1	100 4	342.74		E1		0.00225	
1236.50	3+	893.6 [‡] 2 1130.7 [‡] 2	49 [‡] 5 100 [‡] 7	342.74		E2	. (0 . 77 . 24	0.00566	
				105.90		E2+M1	+6.9 +77-24	0.00361 11	
1275.09	4+	192.5‡ 2	5.2 [‡] 12	1082.44		E2		0.351	
		580.8‡ 2	22 [‡] 4	694.16		E2		0.01460	
		932.7‡ 5	100‡ 6	342.74		E0+M1+E2		0.008 4	
		1169.5 [‡] 5	4.2 [‡] 9	105.90					
1294.51	0_{+}	1188.7 [‡] 2	100 [‡]	105.90					
		1294.4 [‡] 2			0_{+}	E0			0.052 5
1344.62	5-	119.2 5	15 5	1225.24					
		224.3 1	70 7	1120.13		(E2)		0.211	
		650.40 6	100 7	694.16		(E1)		0.00409	
1200 14		1001.9 <i>I</i>	44 <i>4</i>	342.74		(E1)		1.78×10^{-3}	
1380.14	4+	686.1 <i>I</i>	50 8	694.16 342.74		M1(+E2)		0.0065.24	
		1037.4 <i>I</i> 1274.2 <i>I</i>	100 8 63 8	105.90		M1(+E2) E2		0.0065 <i>24</i> 0.00282	
1.417.70	2+	335.3 [‡] 2	8.6 [‡] 21			E2		0.00282	
1417.68	2+	335.3 [‡] 2 1311.5 [‡] 2	8.6* 21 100 [‡] 14	1082.44		E0 - M1 - E2		0.0028.12	
		1311.5 [‡] 2 1417.9 [‡] 2	100* <i>14</i> 42 [‡] <i>7</i>	105.90		E0+M1+E2		0.0038 12	
					0+	E2		0.00233	
1449.6	2+	1106.5‡ 6	52 [‡] 7	342.74		E2		0.00369	
		1342.5 [‡] <i>15</i>	49 [‡] 10	105.90	2+	E2		0.00256	

$\gamma(^{178}W)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	α@	Comments
1449.6	2+	1450.0 [‡] 5	100‡ 6	0.0 0+	E2	0.00225	
1508.62	6-	163.8 5	10.8 22	1344.62 5-	(E2,M1)	0.9 3	
		283.4 <i>1</i>	100 8	1225.24 4	(E2)	0.1009	
1545.2	(3^{-})	500.3 5	100	1044.60 2			
1555.96	6+	$280.7^{\ddagger} 2$	33 [‡] 8	1275.09 4+	E2	0.1039	
		861.9 <i>1</i>	100 17	694.16 6 ⁺	E0+M1+E2	0.010 4	
1572.41	5+	878.2 [‡] 2	35 [‡] 6	694.16 6 ⁺			
		1229.7 [‡] 2	100 [‡] 11	342.74 4+			
1597.83	4+	1255.1‡ 2	100‡ 9	342.74 4+	E0+M1+E2	0.0042 14	
		1491.9 [‡] 2	64 [‡] 11	105.90 2+	E2	0.00214	
1641.34	0_{+}	521.2 2	100 22	1120.13 3			
		1298.6 2	28 8	342.74 4+			
1656.29	7-	311.7 <i>I</i>	100 7	1344.62 5	E2	0.0759	
		514.6 <i>1</i>	31.7 24	1141.50 8+			
	-1	962.1 <i>I</i>	46.3 24	694.16 6+	E1	0.00192	
1664.94	6+	284.9 <i>1</i>	9.2 7	1380.14 4+	(E2)	0.0993	B(E2)(W.u.)=0.091 14
		970.7 1	60.5 22	694.16 6+	(M1+E2)	0.008 3	D/E3\/W\ 0.00046-7
1665.35	10 ⁺	1322.4 <i>I</i> 523.6 <i>I</i>	100 <i>3</i> 100	342.74 4 ⁺ 1141.50 8 ⁺	(E2) E2	0.00263 0.0187	B(E2)(W.u.)=0.00046 7
1703.67	4 ⁺	1009.4 2	32 4	694.16 6 ⁺	E2 E2	0.0187	
1703.07	7	1361.0 2	73 10	342.74 4 ⁺	M1	0.00455	
		1597.8 2	100 9	105.90 2 ⁺	1111	0.00.00	
1718.06	4+	481.5 2	100 15	1236.50 3 ⁺			
		607.7 2	47 10	1110.43 2+			
		635.7 2	65 15	1082.44 2+			
		1375.2 2	42 8	342.74 4+			
1728.40	_	683.8 2	100	1044.60 2			
1738.70	7-	73.6 1	100 4	1664.94 6 ⁺	E1	0.816	B(E1)(W.u.)= $2.95 \times 10^{-5} 23$
1764.10	(5^{-})	393.7 <i>1</i> 218.6 <i>5</i>	7.7 8 17 8	1344.62 5 ⁻ 1545.2 (3 ⁻)			
1704.10	(3)	538.8 <i>I</i>	100 8	1343.2 (3) 1225.24 4 ⁻			
1827.41	8-	88.3 1	100 8	1738.70 7			
1027.11	O	318.8 <i>I</i>	14 <i>I</i>	1508.62 6			
1835.39	7+	170.5 <i>I</i>	100	1664.94 6 ⁺	(M1,E2)	0.8 3	
1863.9	(4 ⁺)	1169.5 [‡] 5	57 [‡] 50	694.16 6 ⁺	, , ,		
1003.7	(,)	1521.4 [‡] 10	57 [‡] 30	342.74 4+			
		$1758.2^{\ddagger} 6$	100 [‡] 30				
1875.7		1/58.2* 6	100* 30	105.90 2 ⁺ 1738.70 7 ⁻			
1888.42	(8-)	379.8 <i>1</i>	100	1508.62 6	(E2)	0.0432	
1000.72	(0)	319.01	100	1500.02 0	(L4)	0.0732	

9

$\gamma(^{178}\text{W})$ (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	α @
1915.80	8+	359.9 <i>1</i>	67 5	1555.96 6+		
		774.1 <i>1</i>	100 11	1141.50 8+	E0+M1+E2	0.013 6
1939.15		1596.4 2	100	342.74 4+		
1962.53		842.4 2	100	1120.13 3-		
1964.46	9-	136.9 <i>I</i>	100 7	1827.41 8-	(M1,E2)	1.6 4
		225.6 <i>1</i>	76 <i>4</i>	1738.70 7-	(E2)	0.207
		307.9 <i>1</i>	17 <i>3</i>	1656.29 7-		
		823.6 <i>1</i>	9 3	1141.50 8+		
1997.23		1654.1 2	100 14	$342.74 4^{+}$		
		1891.7 2	30 9	105.90 2 ⁺		
2023.38	8+	187.8 <i>I</i>	56 <i>6</i>	1835.39 7+		
		358.6 <i>1</i>	100 6	1664.94 6 ⁺		
2041.81	9-	385.6 <i>1</i>	100 5	1656.29 7-	(E2)	0.0414
		900.1 <i>I</i>	36.6 24	1141.50 8+	(E1)	0.00217
2043.7		305.0 <i>3</i>	100	1738.70 7-		
2054.14	(7)	912.1 5	38 <i>13</i>	1141.50 8+		
		1360.0 <i>I</i>	100 <i>13</i>	694.16 6+		
2076.17	(7^{-})	312.0 <i>1</i>	100 <i>10</i>	1764.10 (5-))	
		1382.1 5	40 7	694.16 6 ⁺		
2078.27	8-	339.6 <i>1</i>	100	1738.70 7		
2121.05		1778.3 2	100	$342.74 4^{+}$		
2133.03	10-	168.3 <i>1</i>	46.4 21	1964.46 9-	(M1,E2)	0.8 3
		305.7 <i>1</i>	100 4	1827.41 8	(E2)	0.0804
2136.05	8+	994.2 <i>1</i>	100 17	1141.50 8+		
		1442.4 5	67 <i>17</i>	694.16 6 ⁺		
2226.77	(9^{+})	203.5 1	35.7 24	2023.38 8+	(E2,M1)	0.46 18
		391.6 <i>I</i>	100 7	1835.39 7 ⁺	(E2)	0.0397
2239.4		363.7 <i>3</i>	100	1875.7		
2244.45	12+	578.9 <i>1</i>	100	1665.35 10 ⁺	(E2)	0.01472
2322.62	9-	245.0 <i>5</i>	25 8	$2078.27 8^{-}$		
		358.4 <i>1</i>	88 <i>13</i>	1964.46 9-		
		494.9 <i>1</i>	100 <i>13</i>	1827.41 8-		
2327.51	11-	194.4 <i>I</i>	20.6 9	2133.03 10	(M1,E2)	0.53 20
		363.1 <i>I</i>	100 4	1964.46 9-	(E2)	0.0489
2339.74	10^{+}	423.8 <i>1</i>	44 6	1915.80 8+		
		674.7 <i>1</i>	100 6	1665.35 10 ⁺		
2347.93	(9)	293.8 1	55 7	2054.14 (7)		
		1206.4 <i>1</i>	100 9	1141.50 8+		
2355.82	10-	467.4 1	100	1888.42 (8-)		0.0249
2444.42	10^{+}	217.5 <i>I</i>	25 4	2226.77 (9+))	
		420.9 <i>1</i>	100 4	2023.38 8+		
2468.34	(9^{-})	392.1 <i>1</i>	100 8	2076.17 (7-))	

10

	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	α [@]	Comments
	2468.34	(9-)	1326.9 <i>1</i>	54 5	1141.50 8+			
	2489.84	11-	447.9 <i>1</i>	100 <i>3</i>	2041.81 9-	(E2)	0.0278	
			824.6 <i>1</i>	26.5 21	1665.35 10 ⁺			
	2546.07	12-	218.5 <i>1</i>	16.8 <i>10</i>	2327.51 11-	(E2,M1)	0.38 15	
			412.9 <i>1</i>	100 4	2133.03 10	E2	0.0344	
	2577.56	10-	254.9 <i>1</i>	89 11	2322.62 9-			
			444.1 5	22 11	2133.03 10-			
			612.9 <i>1</i>	100 22	1964.46 9-			
	2671.79	11+	228.2 5	13.9 <i>14</i>	2444.42 10 ⁺			I_{γ} : 100 7 from ¹⁷⁷ Hf(α ,3n γ).
			445.5 <i>1</i>	100 6	$2226.77 (9^+)$			I_{γ} : 73 6 from ¹⁷⁷ Hf(α ,3n γ).
	2682.79	10 ⁺	546.4 <i>1</i>	0.9 2	2136.05 8+	E2	0.01689	
			1016.9 <i>1</i>	100 20	1665.35 10 ⁺			
			1541.9 <i>1</i>	60 10	1141.50 8+			
	2718.14	(11)	370.2 <i>1</i>	100 7	2347.93 (9)			
			1052.8 <i>1</i>	67 <i>7</i>	1665.35 10 ⁺			
	2784.30	13-	238.2 1	10.7 24	2546.07 12-			I_{γ} : 100 7 from 177 Hf(α ,3n γ).
			456.8 <i>1</i>	100 4	2327.51 11	(E2)	0.0264	I_{γ} : 76 5 from ¹⁷⁷ Hf(α ,3n γ).
	2803.99	(12^{+})	464.3 <i>1</i>	35 6	2339.74 10 ⁺	E2	0.0253	
۱ ا			559.3 <i>1</i>	100 9	2244.45 12 ⁺	M1(+E2)	0.029 14	
	2841.97	11-	264.4 <i>1</i>	100	2577.56 10-			
	2845.65	12+	1180.3 <i>1</i>	100	1665.35 10 ⁺			
	2858.71	14+	614.2 <i>I</i>	100	2244.45 12+	E2	0.01282	
	2901.42	12-	545.6 <i>1</i>	100	2355.82 10	(E2)	0.01695	
	2911.62	12 ⁺	466.9 <i>1</i>	67 13	2444.42 10 ⁺			
			572.0 <i>I</i>	100 22	2339.74 10+			
	2022 45	(11-)	1246.3 <i>I</i>	89 11	1665.35 10 ⁺			
	2933.45	(11-)	465.1 <i>I</i>	100	2468.34 (9 ⁻)			
	2994.86	13-	505.0 <i>1</i>	100 3	2489.84 11			
	3044.19	14-	750.6 <i>5</i> 260.0 <i>1</i>	15 <i>3</i> 8.9 25	2244.45 12 ⁺ 2784.30 13 ⁻			
	JU 44 .19	14	498.1 <i>I</i>	8.9 23 100 4	2546.07 12 ⁻			
	3053.81	11-	211.6 5	7.0 23	2841.97 11 ⁻			
	3033.01	11	269.1 5	9 3	2784.30 13			
			476.0 <i>I</i>	27.9 23	2577.56 10 ⁻			
			507.6 1	26 5	2546.07 12 ⁻			
			563.9 5	9.8 16	2489.84 11			
			726.6 5	7.0 23	2327.51 11			
			920.8 <i>1</i>	79 5	2133.03 10	M1+E2	0.009 4	
			1012.1 5	5.6 14	2041.81 9	:		
			1089.6 <i>I</i>	100 7	1964.46 9	E2	0.00380	B(E2)(W.u.)>0.0011
			1388.5 5	9 5	1665.35 10 ⁺			

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${ m I}_{\gamma}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π} N	Iult.#	$\alpha^{\textcircled{@}}$	Comments
3499.3		3156.8 [‡] 5	100‡ 33	342.74 4+	+ -			
5177.5		3392.9 [‡] 6	30 [‡] 10	105.90 2+				
3505.8		3399.4 [‡] 6	100 [‡] 26	105.90 2 ⁺				
3303.0		3506.7 [‡] 8	$12^{\ddagger} 6$	$0.0 0^{+}$				
3511.9	(2^{+})	$2287.0^{\ddagger} 6$	33 [‡] 11	1225.24 4				
3311.9	(2)	3168.6^{\ddagger} 5	$100^{\ddagger} 22$	342.74 4 ⁺				
		3406.1 [‡] 6	53 [‡] 13	105.90 2 ⁺				
		3406.1^{+} 8 3512.0^{\ddagger} 8	11 [‡] 3	0.0 0+				
3514.82	14-	613.4 <i>I</i>	100	2901.42 12				
3515.0	14	3172.2 [‡] 6	100 [‡] 36	342.74 4 ⁺				
5515.0		3409.0 [‡] 8	55 [‡] 18	105.90 2 ⁺				
3525.53	(13-)	140.2 <i>1</i>	4.4 5	3385.35 (1				
5525.55	(10)	290.2 1	100 3	3235.34 12		.1	0.0248	$B(E1)(W.u.) > 8.2 \times 10^{-6}$
		-> 0.2 1	1000	5200.01 12		-	0.0210	E_{ν} : From 164 Dy(18 O,4n γ), 177 Hf(α ,3n γ).
3550.9		2324.6 [‡] 8	21 [‡] 11	1225.24 4	_			
		2468.0 [‡] 20	21 [‡] 11	1082.44 2+				
		3208.5 [‡] 5	78 [‡] 21	342.74 4+				
		3445.2 [‡] 6	100‡ 11	105.90 2+				
3558.28	15-	563.4 1	100 3	2994.86 13				
		699.9 <i>5</i>	10 3	2858.71 14				
3580.2		3237.6 [‡] 6	100 [‡] 32	342.74 4+	+			
		3474.0 [‡] 8	32 [‡] 10	105.90 2+	+			
3585.5		3242.9 [‡] 6	100 [‡] 36	342.74 4+	+			
		3479.3 [‡] 8	36 [‡] 11	105.90 2+				
3593.63	14-	68.2 <i>1</i>	100	3525.53 (1		M1)	2.47	B(M1)(W.u.)=0.0067 23
3594.8		3251.6 [‡] 5	100 [‡] <i>34</i>	342.74 4+	+			
		3489.9 [‡] 8	20 [‡] 5	105.90 2+				
3612.22	15+	473.5 1	100	3138.62 13				
3612.91	16-	295.6 5	2.7 14	3317.40 15				
2624.4		568.7 <i>1</i>	100 4	3044.19 14				
3634.4		2036.5 8	100 [‡] 33	1597.83 4+				
		3291.6 [‡] 6	77 [‡] 27	342.74 4+				
2654.33	1 5 ±	3528.7 [‡] 8	70 [‡] 23	105.90 2+		74)	0.265	D(T1)(T1) \ 2.42.40=5.0
3654.93 3661.14	15 ⁺ 16 ⁺	61.4 <i>I</i> 451.8 <i>I</i>	100 27 <i>5</i>	3593.63 14 3209.25 14		E1)	0.265	$B(E1)(W.u.)=2.43\times10^{-5} 9$
	ID:	43187	// 1					

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	α [@]	Comments
3661.14	16 ⁺	802.6 1	100 9	2858.71 14+			
3673.94	(15)	512.0 <i>I</i>	100	3161.94 (13)			
3686.63	(14^{+})	226.9 5	38 5	3459.75 (13 ⁻)			
	,	230.8 5	50 4	3455.57 (13-)			
		451.3 <i>1</i>	100 13	3235.34 12+			
3689.21	14-	163.6 <i>I</i>	100	3525.53 (13-)	M1	1.170	
3695.06		1450.6 <i>1</i>	100	2244.45 12 ⁺			
3706.2		3011.8 [‡] 6	75 [‡] 25	694.16 6 ⁺			
		3363.6 [‡] 6	100‡ 30	342.74 4+			
2007.0			$100^{\ddagger} 33$				
3807.0		3112.3 ‡ 5		694.16 6+			
		3464.9 [‡] 6	30 [‡] 7	342.74 4+			
3810.5		3116.3 [‡] <i>5</i>	100 [‡] <i>33</i>	694.16 6 ⁺			
		3467.7 [‡] 8	30 [‡] 7	342.74 4+			
3837.0	(15^+)	150.4 5	100	3686.63 (14 ⁺)			
3862.33	16+	207.4 1	100	3654.93 15 ⁺	M1	0.603	
3871.00	16 ⁺	382.5 <i>1</i>	41 5	3488.42 16 ⁺			
		552.4 <i>1</i>	100 12	3318.73 (14+)			
3876.03	(15^{-})	282.4 1	100	3593.63 14-			
3912.51	17^{-}	595.1 <i>1</i>	100	3317.40 15			
3930.62	15-	241.0 <i>I</i>	100 <i>3</i>	3689.21 14-			
	1	405.0 5	3.3 2	3525.53 (13 ⁻)			
4009.29	16 ⁺	588.9 <i>1</i>	100 6	3420.39 14+			
40044	(1.64)	1150.6 5	29 5	2858.71 14+			
4084.4	(16^{+})	247.4 1	100	3837.0 (15 ⁺)	F-0	0.01202	
4100.17	18 ⁺	611.8 <i>I</i>	100	3488.42 16 ⁺	E2	0.01293	
4129.93	17+	267.5 1	100 5	3862.33 16 ⁺			
4157.92	17 ⁺	475.1 5	7 4	3654.93 15 ⁺			
4137.92	1 /	288.5 <i>5</i> 497.7 <i>5</i>	39 8 39 9	3871.00 16 ⁺ 3661.14 16 ⁺			
		545.6 <i>1</i>	100 8	3612.22 15 ⁺			
4171.5	16-	656.7 5	100 8	3514.82 14 ⁻			
4182.98	17 ⁻	624.7 <i>1</i>	100	3558.28 15			
4208.88	16-	277.9 1	100 4	3930.62 15	M1	0.270	Mult.: $A_2 = -0.12 \ 10$, $\alpha(K) \exp = 0.244 \ 15$.
		520.0 <i>I</i>	21 4	3689.21 14	E2	0.0191	Mult.: $\alpha(K)\exp(0.017)$ 5.
4238.21	18-	625.3 <i>1</i>	100	3612.91 16	E2	0.01230	Mult.: A ₂ =+0.52 8.
4238.94	(17)	565.0 <i>1</i>	100	3673.94 (15)			-
4248.20	18+	587.1 <i>1</i>	50 4	3661.14 16 ⁺			
		759.7 <i>1</i>	100 7	3488.42 16 ⁺	E2	0.00798	Mult.: $A_2 = +0.24 \ 20$.
4368.8	(17^{+})	284.4 <i>1</i>	100	$4084.4 (16^+)$			
4429.73	18+	299.7 <i>1</i>	100 5	4129.93 17+	(M1,E2)	0.15 7	Mult.: A ₂ =+0.10 4, DCO=1.10 4.

$\gamma(^{178}W)$ (continued)

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\alpha^{\textcircled{@}}$	Comments
4429.73	18+	567.5 1	16 3	3862.33 16+	(E2)	0.01543	Mult.: DCO=0.92 12.
4498.31	18 ⁺	398.4 <i>5</i>	1.9 5	4100.17 18 ⁺	,		
		627.3 1	100 13	3871.00 16 ⁺			
4516.28	17^{-}	307.3 <i>1</i>	100 6	4208.88 16-			
		585.6 <i>1</i>	41 3	3930.62 15-			
4555.92	19-	643.4 <i>1</i>	100	3912.51 17-	(E2)	0.01152	Mult.: $A_2 = +0.42 \ 12$.
4663.39	18 ⁺	654.1 <i>I</i>	100	4009.29 16 ⁺			
4678.7	(18^{+})	309.9 <i>1</i>	100	4368.8 (17+)			
4711.83	(17 ⁺)	1057.0 <i>I</i>	100	3654.93 15 ⁺	E2	0.00403	$\alpha(K) \exp = 0.0026 \ 9.$
4730.36	20+	630.2 1	100	4100.17 18+	() (1 E2)	0.10	M I. DOO 115 /
4753.63	19 ⁺	323.9 1	100 7	4429.73 18+	(M1,E2)	0.12 6	Mult.: DCO=1.15 4.
4707 12	10+	623.7 1	21 3	4129.93 17+	(E2)	0.01237	Mult.: DCO=1.26 10.
4797.12 4833.7	19 ⁺ (18 ⁻)	639.2 <i>1</i> 662.2 <i>5</i>	100 100	4157.92 17 ⁺ 4171.5 16 ⁻			
4835.44	(16)	596.5 <i>1</i>	100	4238.94 (17)			
4863.88	19	680.9 <i>1</i>	100	4182.98 17			
4879.72	18-	168.0 <i>I</i>	23.5 20	4711.83 (17 ⁺)	(E1)	0.0978	B(E1)(W.u.)>1.9×10 ⁻⁶
4019.12	10	100.0 1	23.3 20	4/11.05 (17)	(L1)	0.0976	Mult.: $A_2 = -0.67$.
		363.3 1	100 8	4516.28 17-	M1	0.1310	$B(M1)(W.u.) > 8.1 \times 10^{-5}$
							Mult.: $A_2 = +0.28 4$, $\alpha(K) \exp = 0.094 9$.
		670.9 <i>1</i>	39.2 20	4208.88 16-	E2	0.01048	B(E2)(W.u.)>0.0049
							Mult.: $\alpha(K) \exp = 0.0094 \ 21$.
		966 <i>1</i>	5.9 18	3912.51 17-			
		1266 <i>I</i>	3.9 16	3612.91 16 ⁻			
4905.71	20-	667.5 1	100	4238.21 18			
4941.84	20+	693.6 1	100 8	4248.20 18+			
5006 5	(10+)	841.7 <i>1</i>	42 4	4100.17 18+			
5006.7	(19^+)	328.0 <i>1</i>	100 13	4678.7 (18 ⁺)			
5062.22	10-	637.7 5	21 6	4368.8 (17 ⁺)	(M1)	0.040	Mark . A 0.12.2
5063.22 5096.83	19 ⁻ 20 ⁺	183.5 <i>I</i> 343.1 <i>I</i>	100 100 <i>18</i>	4879.72 18 ⁻ 4753.63 19 ⁺	(M1) (M1,E2)	0.848 0.11 <i>5</i>	Mult.: A ₂ =-0.13 2. Mult.: DCO=1.11 4.
3090.83	20	667.1 <i>I</i>	27 5	4429.73 18 ⁺	(E2)	0.11 3	Mult.: DCO=1.11 4. Mult.: DCO=1.10 11.
5188.31	20 ⁺	690.0 <i>I</i>	100	4429.73 18 4498.31 18 ⁺	(E2)	0.01002	Muit DCO=1.10 11.
5234.12	21-	678.2 <i>1</i>	100	4555.92 19 ⁻			
5269.84	20-	206.6 <i>I</i>	100	5063.22 19	M1(+E2)	0.44 17	Mult.: $A_2 = +0.01 \ 7$.
5313.7	21-	43.8 1	100 11	5269.84 20	(M1)	9.04 14	B(M1)(W.u.)=0.00039 7
2313.7		251.0 5	33 11	5063.22 19	(2721)	2.0111	2(112)(11111) 010000//
5428.96	22 ⁺	698.6 <i>1</i>	100	4730.36 20 ⁺			
5455.74	21 ⁺	358.7 1	100 5	5096.83 20 ⁺			Mult.: DCO=1.16 5.
		702.2 1	55 10	4753.63 19 ⁺			Mult.: DCO=1.18 7.
5460.8	(21)	625.4 <i>1</i>	100	4835.44 (19)			

15

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\alpha^{\textcircled{@}}$	Comments
5522.1	21-	252.2 1	100 5	5269.84 20-	·		Mult.: A ₂ =+0.03 6.
		458.8 <i>5</i>	20 15	5063.22 19-			
5525.93	21 ⁺	728.8 <i>1</i>	100	4797.12 19 ⁺			
5537.6	(20^{-})	704 <mark>&</mark> 1	100	4833.7 (18-)			
5577.5	(21^{-})	713.6 <i>I</i>	100	4863.88 19			
5603.21	22-	697.5 1	100	4905.71 20			
5627.1	22-	313.5 <i>I</i>	100	5313.7 21			
5675.2	22-	361.5 <i>I</i>	100	5313.7 21			
5688.75	22 ⁺	746.9 <i>1</i>	100 13	4941.84 20 ⁺			
3000.73	22	958.6 <i>5</i>	12.5 25	4730.36 20 ⁺			
5814.2	22-	292.1 <i>I</i>	100 6	5522.1 21			
3011.2	22	544.9 5	28 7	5269.84 20			
5827.22	22+	371.3 <i>I</i>	100 7	5455.74 21+			Mult.: DCO=1.28 6.
3027.22		730.5 1	53 7	5096.83 20 ⁺			Mult.: DCO=1.14 7.
5906.61	22+	718.3 <i>I</i>	100	5188.31 20 ⁺			Made. 1966–1117.
5939.9	23-	705.8 1	100	5234.12 21			
6000.6	23-	325.3 1	30.4 22	5675.2 22			
0000.0	23	373.3 1	100 4	5627.1 22			
		686.8 5	10.9 22	5313.7 21			
6052.9	23-	377.7 1	100	5675.2 22			
6136.8	(23)	676.0 <i>1</i>	100	5460.8 (21)			
6140.0	23-	325.8 1	100 8	5814.2 22			
0110.0	23	617.9 5	41 7	5522.1 21			
6194.47	24+	765.5 1	100	5428.96 22+			
6207.8	23 ⁺	380.5 1	100 11	5827.22 22+			
0207.0		752.1 <i>I</i>	89 11	5455.74 21+			Mult.: DCO=1.16 8.
6299.4	(23^{-})	721.9 5	100	5577.5 (21 ⁻)			3.4.1 200 11.00.
6329.1	23+	803.2 5	100	5525.93 21+			
6332.7	24-	729.5 1	100	5603.21 22			
6389.8	24-	336.9 1	13 6	6052.9 23			
0207.0		389.1 <i>I</i>	100 6	6000.6 23	M1+E2	0.07 4	Mult.: $A_2 = +0.47 \ 15$, $\alpha(K) \exp = 0.058 \ 5$.
		762.9 1	44 4	5627.1 22	E2	0.00790	Mult.: $\alpha(K)\exp=0.0081$ 17.
6447.7	24^{-}	394.8 5	100 20	6052.9 23			
0,		772.4 5	50 25	5675.2 22			
6483.85	24 ⁺	795.1 <i>I</i>	100	5688.75 22+			
6494.4	24-	354.3 <i>1</i>	100 10	6140.0 23			
		680.7 5	30 10	5814.2 22			
6572.7	25 ⁺	182.9 <i>I</i>	100 3	6389.8 24	(E1)	0.0787	$B(E1)(W.u.)=1.44\times10^{-7}$ 9
03,2.,	20	102.7 1	100 5	0207.0 21	(21)	5.0707	Mult.: $A_2 = -0.13 \ 2$.
		572 <mark>&</mark> 1	<1.0	6000.6 23-			
		946 <i>1</i>	1.7 7	5627.1 22	(E3)	0.01144	B(E3)(W.u.)=0.07 3
1		7 4 0 1	1.//	3027.1 22	(E3)	0.01144	D(E3)(W.u.)-U.U/ 3
1							

$\gamma(^{178}W)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	$\alpha^{\textcircled{@}}$	Comments
6593.8	24+	386.0 <i>1</i>	100 13	6207.8	23+			
		767.0 <i>5</i>	63 10		22+			Mult.: DCO=1.18 10.
6685.3	25^{-}	745.4 <i>1</i>	100		23-			
6795.7	25-	405.8 <i>1</i>	100 15		24-			
		795.4 <i>5</i>	67 <i>17</i>	6000.6	23-			
6859.1	25^{-}	411.3 5	100 40	6447.7	24-			
		806.2 5	50 25	6052.9	23-			
6860.4	26^{+}	287.7 <i>1</i>	100	6572.7	25+	M1	0.246	Mult.: A ₂ =-1.15 20, DCO=0.17 1.
6872.9	25^{-}	378.5 <i>1</i>	100 9	6494.4	24-			
		734.1 5	38 <i>13</i>	6140.0	23-			
6886.5	(25)	749.7 <i>1</i>	100	6136.8	(23)			
6971.6	(25^{+})	377.4 5	100 20	6593.8	24+			
		763.9 <i>5</i>	80 20		23+			Mult.: DCO=1.13 13.
6984.2	25 ⁺	390.4 5	100		24+			
7006.0	25 ⁺	411.7 <i>4</i>	62 <i>15</i>		24+			
		799.7 <i>7</i>	100 54	6207.8	23 ⁺			
7017.2	(26^+)	822.7 <i>1</i>	100	6194.47	24+			
7113.2	26^{-}	780.5 <i>1</i>	100		24^{-}			
7217.5	27+	357.0 <i>1</i>	100 6		26 ⁺	M1	0.1373	Mult.: A ₂ =+0.04 20, DCO=1.05 3.
		645.0 5	23.5 24		25 ⁺	E2	0.01146	Mult.: DCO=1.21 5.
7218.6	26-	422.6 5	100 20		25-			
		828.8 <i>5</i>	100 25		24-			
7272.4	26-	399.1 <i>5</i>	100 <i>15</i>		25-			
		778.5 <i>5</i>	25 13		24-			
7288.2	26-	429.1 5	33 20		25-			
		840.5 5	100 33		24-			
7330.2	26 ⁺	846.3 5	100	6483.85				
7337.0	26 ⁺	365.5 <i>1</i>	100 4		(25^{+})			Mult.: DCO=1.15 6.
	1	743.0 2	50 6		24+			Mult.: DCO=0.83 13.
7392.2	26 ⁺	386.0 <i>10</i>	22 33		25 ⁺			
		420.3 <i>3</i>	100 11		(25^{+})			
		799.9 6	83 39		24+			
7489.9	27-	804.6 <i>1</i>	100		25-	3.61	0.1056	N. I
7611.7	28+	394.0 <i>1</i>	100 8		27+	M1	0.1056	Mult.: A ₂ =+0.49 20, DCO=1.52 6.
7657	25-	751.3 <i>1</i>	75 8		26+	E2	0.00817	Mult.: DCO=1.53 17.
7657.6	27-	438.7 5	33 17		26-			
7.000 1	25-	862.2 5	100 33		25-			
7690.1	27-	417.8 5	100 25		26-			
55 00 4	25+	817.0 5	<50		25-			M. I. D. D. O. 115.0
7709.4	27+	373.0 <i>1</i>	100 12		26+			Mult.: DCO=1.15 8.
		737.5 2	69 8	6971.6	(25^{+})			

17

	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	α @	Comments
	7719.3	(27)	833.3 ^{&} 5	100	6886.5 (25)			
	7732.2	27-	444		7288.2 26			
	7798.8	27+	873 406.6 2	100	6859.1 25 ⁻ 7392.2 26 ⁺			
	1198.8	21	793.1 <i>14</i>	100	7006.0 25 ⁺			
	7897.5	(28^+)	880.3 5	100	7017.2 (26 ⁺)			
	7961.9	(28^{-})	848.7 <i>I</i>	100	7113.2 26			
	8034.6	29+	423.1 5	100 15	7611.7 28 ⁺	M1	0.0875	Mult.: A ₂ =+0.42 26, DCO=2.16 16.
			817.8 5	100 20	7217.5 27 ⁺	E2	0.00681	Mult.: DCO=1.03 14.
	8096.4	28 ⁺	387.5 <i>1</i>	100 9	7709.4 27+			
			758.9 <i>1</i>	27 6	7337.0 26+			
	8111.6	28-	454		7657.6 27			
	0100.1	20-	893		7218.6 26-			
	8122.1	28-	432		7690.1 27 ⁻			
	01404	28(-)	850	100	7272.4 26 ⁻	Г1	0.00204	D/E1/(W.), 52, 10=8
	8148.4	28	930.9 1	100	7217.5 27 ⁺	E1	0.00204	B(E1)(W.u.)>5.3×10 ⁻⁸ Mult.: A ₂ =-0.45 20, DCO=0.62 3.
	8189.1	28-	457		7732.2 27-			Mult.: $A_2 = -0.43 \ 20$, DCO=0.02 3.
	0109.1	20	901		7288.2 26			
	8228.2	28 ⁺	427.0 ^{&} 2	43 14	7798.8 27 ⁺			
	0220.2	20	836.0 4	100 21	7392.2 26 ⁺			
	8365.3	(29^{-})	875.4 <i>5</i>	100 21	7489.9 27			
	8476.0	29(-)	327.5 5	100 33	8148.4 28 ⁽⁻⁾	M1	0.173	Mult.: DCO=0.20 5.
	017010		864.4 <i>I</i>	93 7	7611.7 28 ⁺	E1	0.00234	Mult.: DCO=0.68 13.
	8484.5	30 ⁺	450.0 5	33 17	8034.6 29+	M1	0.0744	Mult.: $A_2 = +0.34 \ 30$.
			872.6 5	100 33	7611.7 28 ⁺	E2	0.00595	Mult.: DCO=1.10 9.
	8499.7	29+	403.2 1	100 11	8096.4 28+			
1			791.1 <i>4</i>	84 16	7709.4 27+			
1	8564.3	29-	442		8122.1 28-			
	0570 6	20-	874		7690.1 27			
1	8578.6	29-	467		8111.6 28			
1	8655.3	29-	921 466		7657.6 27 ⁻ 8189.1 28 ⁻			
	0055.5	29	923		7732.2 27 ⁻			
1	8665.6	29 ⁺	439.5 ^{&} 4	100	8228.2 28 ⁺			
	8800.3	30 ⁺	439.5° 4 324.4 <i>1</i>	100 100 <i>6</i>	8228.2 28 8476.0 29 ⁽⁻⁾	E1	0.0190	$B(E1)(W.u.) > 4.6 \times 10^{-6}$
	0000.3	30.	324.4 1	100 0	04/0.0 29	EI	0.0190	Mult.: DCO=0.60 11.
			765.8 <i>1</i>	27 3	8034.6 29+	M1	0.0189	B(M1)(W.u.)>9.8×10 ⁻⁶
1			/03.8 1	213	0034.0 29	IVI 1	0.0189	Mult.: DCO=1.10 20.
			1187.3 4	5.9 6	7611.7 28 ⁺	E2	0.00322	B(E2)(W.u.)>0.00018

$\gamma(^{178}W)$ (continued)

١								
	E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	$\mathrm{I}_{\gamma}^{ \dagger}$	\mathbf{E}_f .	\mathbf{J}_f^{π} Mult.#	$\alpha^{@}$	Comments
١	8897.3	30 ⁽⁻⁾	421.8 5	100	8476.0 29	9 ⁽⁻⁾ M1	0.0882	
١			749		8148.4 28		0.00822	E_{γ} : see 170 Er(13 C,5n γ).
١	8905.6	(29^+)	757.2 2	100	8148.4 28		0.00302	$B(E1)(W.u.) > 4.9 \times 10^{-7}$
١								Mult.: DCO=0.75 24.
١	8919.5	30 ⁺	419.6 <i>6</i>		8499.7 29			
١			823.4 <i>4</i>		8096.4 28			
١	8957.9	31 ⁺	474 1	<50	8484.5 30		0.0649	Mult.: $A_2 = +0.38 \ 34$.
١			924 <i>1</i>	100 <i>50</i>	8034.6 29		0.00529	
١	9016.6	30-	452		8564.3 29			
١	0051	20-	895		8122.1 28			
١	9051.6	30-	473 940		8578.6 29 8111.6 28			
١	9124.7	30-	469		8655.3 29			
١	9124.7	30	936		8189.1 28			
١	9342.7	(30^+)	437.0 <i>1</i>	100	8905.6 (2		0.0803	
١	9356.4	31+	436.9 2	50 9	8919.5 30		0.0002	
١			856.7 2	100 9	8499.7 29			
١	9359.5	(31^+)	559.1 <i>1</i>	100	8800.3 30		0.0423	Mult.: DCO=1.07 17.
١	9360.9	31-	463.6 2	100 27	8897.3 30	$0^{(-)}$ M1	0.0688	
١			884.8 2	53 13	8476.0 29	9 ⁽⁻⁾ E2	0.00578	
١	9453.8	32 ⁺	494 <i>1</i>	< 50	8957.9 31		0.0583	Mult.: DCO=1.12 5.
١			968 <i>1</i>	<100	8484.5 30			
١	9475.5	31-	459		9016.6 30			
١			911		8564.3 29			
١	9532.6	31-	481		9051.6 30			
١	2225 =	(0.4.1)	954	100	8578.6 29		0.0505	
	9806.7	(31^{+})	464.0 <i>1</i>	100	9342.7 (3		0.0686	
	9810.6	32 ⁺	453.9 3	33 7	9356.4 31 8919.5 30			
J	9854.9	32-	891.2 2 493.7 8	100 7	9360.9 31		0.0584	
J	70.7	34	957.6 2		8897.3 30		0.0384	
	9931.9	(32^{+})	572.4 <i>1</i>	100 9	9359.5 (3		0.00492	Mult.: DCO=0.48 10.
	7731.7	(32)	1132.0 5	8.2 18	8800.3 30		0.00353	Marin 200-0.10 10.
	9947.6	32-	472	0.2 10	9475.5 31		0.00555	
		-	931		9016.6 30			
J	9971.9	33 ⁺	517.7 3	81 <i>19</i>	9453.8 32		0.0516	
			1014.1 <i>1</i>	100 <i>13</i>	8957.9 31	1 ⁺ E2	0.00438	
	10280.3	33 ⁺	469.5 <i>3</i>	63 13	9810.6 32			
			924.0 <i>3</i>	100 <i>13</i>	9356.4 31			
J	10299.6	(32^{+})	492.9 1	100	9806.7 (3	(M1)	0.0586	
	10378.8	33-	524.0 2		9854.9 32	2 ⁻ M1	0.0500	
-1								

19

$\gamma(^{178}\text{W})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f J	$\frac{\pi}{f}$ Mult.#	α@	Comments
10378.8	33-	1017.7 7		9360.9 31	- E2	0.00435	
10509.2	34 ⁺	536.9 <i>3</i>	29 12	9971.9 33	+ M1	0.0469	
		1055.5 <i>3</i>	100 12	9453.8 32	+ E2	0.00405	
10514.6	33-	982		9532.6 31	_		
10525.9	(33^{+})	594.1 2	100 17	9931.9 (32	2 ⁺) M1	0.0361	Mult.: DCO=1.11 5.
		1166.1 <i>4</i>	32 7	9359.5 (31		0.00333	
10766.4	34 ⁺	486		10280.3 33			
		956		9810.6 32			
10916.4	34-	537.6 <i>1</i>		10378.8 33		0.0468	
		1060.5 7		9854.9 32		0.00401	
11066.0	35 ⁺	556.5 <i>3</i>		10509.2 34		0.0428	
		1095.5 7	100	9971.9 33		0.00376	Mult.: DCO=1.28 36.
11075.5	(34^{+})	549.6 <i>1</i>	100	10525.9 (33		0.0442	B(M1)(W.u.)>0.00013
	2 = 1	1144		9931.9 (32			
11265.4	35 ⁺	499		10766.4 34			
11607.0	(25+)	985	100	10280.3 33		0.0221	
11697.2	(35^{+})	621.7 <i>I</i>	100	11075.5 (34		0.0321	
11780.4	36 ⁺	515		11265.4 35			
10206.4	27+	1014		10766.4 34			
12306.4	37+	1041		11265.4 35			
12844.9	(38^{+})	1065 &		11780.4 36	+		
13393.8	(39^+)	1088 <mark>&</mark>		12306.4 37	+		

[†] From 170 Er(13 C,5n γ), unless otherwise stated.

[†] From 178 Re ε decay.

From $^{\gamma-18}$ Re ε decay.

From $^{\gamma-18}$ Re ε decay and 181 Ta(p,4n γ); from $^{\gamma-18}$ PCO ratios in 164 Dy(18 O,4n γ) and 170 Er(13 C,5n γ), and 181 Ta(p,4n γ); from $^{\gamma-18}$ PCO ratios in 164 Dy(18 O,4n γ) and 170 Er(13 C,5n γ).

[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&]amp; Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{178}_{\,74}W_{104}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{178}_{74}\mathrm{W}_{104}$

 $^{178}_{74}\mathrm{W}_{104}$

17-

16-

15

 $^{178}_{74}\mathrm{W}_{104}$

 $^{178}_{\,74}\mathrm{W}_{104}$

		History		
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	E. A. Mccutchan	NDS 126, 151 (2015)	1-Feb-2015	

 $Q(\beta^{-})=-3801\ 21$; $S(n)=8412\ 15$; $S(p)=6567.8\ 5$; $Q(\alpha)=2515.0\ 10$ 2012Wa38

S(2n)=15372 15; S(2p)=11778.8 3 (2012Wa38).

 $Q(2\varepsilon)=143.20$ 27 from Penning Trap measurement (2012Dr01).

Other reactions: 2002Pf01: Be(208 Pb,X γ), E=1 GeV/nucleon. Measured $T_{1/2}$ of 3265, 14^- isomer.

1994Ji02: Atomic-beam laser spectroscopy, measured isotope shift relative to ¹⁸²W.

1980KoZK: ¹⁸⁰W(⁸⁶Kr, ⁸⁶Kr'), measured yrast band energies up to 10⁺ level.

1977Dr03: 181 Ta(d,3n), E=24 MeV. Measured delayed γ' s from 8 $^-$ isomer.

1976Ha46: $^{182}W(^{12}C,^{14}C)$, E=70 MeV. Measured $\sigma(\theta)$ to 0^+ and 2^+ (103 keV) levels.

 α : Additional information 1.

¹⁸⁰W Levels

Cross Reference (XREF) Flags

		B 180 Re C 180 W	8^- decay ε decay (5.47 ms 48 Ca, $^{4n}\gamma$)	E ${}^{176}\text{Yb}({}^{9}\text{Be,5n}\gamma)$ I ${}^{181}\text{Ta}(\text{p,2n}\gamma)$ F ${}^{182}\text{W}(\text{p,t})$ S) G ${}^{180}\text{W}(\gamma,\gamma')$: Mossbauer K ${}^{186}\text{W}(\text{n,7n}\gamma)$ H ${}^{180}\text{W}(\text{d,d'})$
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
0.0@	0+	1.8×10 ¹⁸ y 2 ABCDEFGHIJK		$%\alpha$ =100 $T_{1/2}$: from 2004Co26. Others: 1.0×10 ¹⁸ y +7-3 (2005Zd04) which supersedes the values from 2003Da05, 2003Bi13, 2002Bi16, and 1995Ge17, ≥2.7×10 ¹⁷ y (2003Ce01), >1.1×10 ¹⁵ y (1960Be13), >9×10 ¹⁴ y (1961Ma05).
				$T_{1/2}$: 2 ε decay not observed. $T_{1/2}(2\varepsilon0\nu)$ ≥1.3×10 ¹⁸ y, $T_{1/2}(2\varepsilon2\nu)$ ≥6.6×10 ¹⁷ y (2011Be39,2009Be27) which supersedes the values from 2003Da09 and 2003Da24.
103.561 [@] 16	2+	1.28 ns 5	ABCDEFGHIJK	μ =0.509 34 J ^π : E2 103.6 γ to 0 ⁺ . μ : from ¹⁸⁰ W(γ , γ'):Mossbauer. Recalculated for consistency with standard (1973Zi03,1989Ra17). T _{1/2} : from ¹⁸⁰ Ta β ⁻ decay.
337.559 [@] 24	4+		BCDEF HIJK	J^{π} : E2 234.0 γ to 2 ⁺ .
688.46 [@] 3	6 ⁺		CDEF HIJK	J^{π} : E2 350.9 γ to 4 ⁺ .
1006.381& 19	2-	7.4 ns <i>4</i>	B EF I	J^{π} : E1+M2 903γ to 2 ⁺ , 669γ to 4 ⁺ , 1006γ to 0 ⁺ . $T_{1/2}$: from γγ(t) in ¹⁸⁰ Re ε decay. Other: ≈ 5.5 ns from centroid-shift analysis in ¹⁷⁶ Yb(9 Be,5nγ).
1082.374 <mark>&</mark> 20	3-		B EF HIJ	J^{π} : 76.0 γ to 2 ⁻ , 744.8 γ to 4 ⁺ ; band assignment.
1117.31 ^a 3	2+		B HIJ	J^{π} : 1014 γ to 2 ⁺ , 1117 γ to 0 ⁺ , L(p,t)=(2).
1138.47 [@] 3	8+		CDEF I K	J^{π} : E2 450 γ to 6 ⁺ ; band assignment.
1184.893 20	4-		B EF IJ	J^{π} : 102.5 γ to 3 ⁻ , E2 178.5 γ to 2 ⁻ , 847.4 γ to 4 ⁺ ; band assignment.
1232.67 ^a 3	3+		B IJ	J^{π} : 895.3 γ to 4 ⁺ , 1129.1 γ to 2 ⁺ ; band assignment.
1307.575 ^{&} 23	5-		EF hI	XREF: h(1319).
1322.09 19	(2+)		hIJ	J^{π} : M1+E2 123 γ to 4 ⁻ , E2 225.2 γ to 3 ⁻ ; band assignment. XREF: h(1319). J^{π} : 984 γ to 4 ⁺ , 1218.8 γ to 2 ⁺ , 1322 γ to 0 ⁺ .

180W Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	${\rm T_{1/2}}^{\#}$	XREF	Comments
1360.51 ^a 4 1380.8 3	4 ⁺ 0 ⁺		IJ	J^{π} : (E2) 1257 γ to 2 ⁺ , 1023 γ to 4 ⁺ ; band assignment.
1380.8 3 1461.82 ^{&} 3	6-		J	J^{π} : L(p,t)=0.
1401.82 3 1472.1 <i>4</i>	(0^+)		EF I J	J^{π} : E2 277 γ to 4 ⁻ , 154 γ to 5 ⁻ ; band assignment. J^{π} : L(p,t)=(0).
1513.6 4	0+		j	J^{π} : L(p,t)=0.
1529.05 ^d 4	8-	5.47 ms 9	CDEF I	J^{π} : E1 390.6γ to 8 ⁺ , γ(θ) in Hf(α,xnγ). $T_{1/2}$: weighted average of 5.24 ms 19 from Hf(α,xnγ) and 5.53 ms 10 from 181 Ta(p,2nγ). configuration=(ν7/2[514])(ν9/2[624]).
1535.63 ^a 6	5 ⁺		I	J^{π} : 847 γ to 6 ⁺ , 1198 γ to 4 ⁺ , band assignment.
1568.17 11	3		Ī	5. 6177 to 6, 11767 to 1, band assignment.
1587.27 5	2+		B J	J^{π} : L(p,t)=2.
1624.23 ^{&} 3	7-		EF I	J^{π} : E2 317 γ to 5 ⁻ , 162 γ to 6 ⁻ ; band assignment.
1632.92 5	$(1^-,2)$		B hj	XREF: h(1637)j(1635).
1634.67 <i>4</i>	(3,4+)		hIj	J^{π} : 550.5γ to 3^{-} , log ft =6.7 in 180 Re ε decay from (1) ⁻ parent. XREF: h(1637)j(1635). J^{π} : 450γ to 4^{-} , 517γ to 2^{+} , 1297γ to 4^{+} .
1639.80 ^b 3	(5 ⁻)	19.2 ns 3	EF I	J^{π} : 179 γ to 6 ⁻ , 279 γ to 4 ⁺ , 455 γ to 4 ⁻ , 951 γ to 6 ⁺ .
	(6)	1712 110 0		$T_{1/2}$: from ¹⁸¹ Ta(p,2n γ). Other: 24 ns 7 from Hf(α ,xn γ). configuration=(ν 1/2[521])(ν 9/2[624]).
1664.18 [@] 4	10+		DEF I K	J^{π} : E2 526 γ to 8 ⁺ ; band assignment.
1689.4 5	0+		h J	XREF: $h(1692)$. J^{π} : $L(p,t)=0$.
1693.60 15	/ +		hI	XREF: h(1692).
1702.98 ^a 8	6+		I	J^{π} : 1014 γ to 6 ⁺ , 1365.5 γ to 4 ⁺ ; band assignment.
1725.59 ^d 5	9-		DEF hIj	XREF: h(1737)j(1740).
1729.85 7	$(4^+,5,6^+)$		hIj	J^{π} : 196.5 γ to 8 $^{-}$; band assignment. XREF: h(1737)j(1740). J^{π} : 1041 γ to 6 $^{+}$, 1392 γ to 4 $^{+}$.
1764.42 ^b 3	(6-)		EF I	J^{π} : 125 γ to (5 ⁻); band member.
1768.4 5	0_{+}		J	J^{π} : $L(p,t)=0$.
1784.96 7	$(4^+,5^+)$		I	J^{π} : 552 γ to 3 ⁺ , 1096 γ to 6 ⁺ .
1814.88 <i>12</i>	$(2^+,3)$		В Н	J^{π} : 809γ to 2 ⁻ , 1477γ to 4 ⁺ , 1711γ to 2 ⁺ . Log ft =7.5 in ¹⁸⁰ Re ε decay from (1) ⁻ parent favors J^{π} =2 ⁺ .
1830.85 & <i>4</i>	8-		EF hI	XREF: h(1824).
1831.70 <i>3</i>	2-		B h	J^{π} : E2 369 γ to 6 ⁻ , 207 γ to 7 ⁻ ; band assignment. XREF: h(1824).
				J^{π} : log ft =5.0 in ¹⁸⁰ Re ε decay from (1) ⁻ parent, 599 γ to 3 ⁺ .
1851.15 <i>6</i> 1855.20 <i>16</i>			I	
1911.58 ^b 4	(7^{-})		EF IJ	J^{π} : D+Q 147 γ to (6 ⁻), 272 γ to (5 ⁻); band assignment.
1918.13 <i>19</i>	$(4^+,5,6^+)$		I	J^{π} : 1230 γ to 6 ⁺ , 1581 γ to 4 ⁺ .
1926.44 16	$(6^+,7,8^+)$		I	J^{π} : 788 γ to 8 ⁺ , 1238 γ to 6 ⁺ .
1932.20 ^a 11	7 ⁺		I	J^{π} : 794 γ to 8 ⁺ , 12434 γ to 6 ⁺ ; band assignment.
1932.3 <i>6</i>	(0^+)		J	J^{π} : L(p,t)=(0).
1945.07 ^d 6 1954.53 <i>15</i>	10-		DEF IJ I	J^{π} : E2 416 γ to 8 ⁻ , M1 219.5 γ to 9 ⁻ ; band assignment.
2024.57 ^{&} 8	9-		EF I	J^{π} : E2 400 γ to 7 ⁻ ; band assignment.
2036.7 <i>6</i> 2059.35 <i>12</i>	0_{+}		J IJ	$J^{\pi} \colon L(p,t)=0.$
2082.55^{b} 6	(8-)		EF IJ	XREF: J(2095).
2002.33 0	(0)		Li IJ	J^{π} : E2 318 γ to (6 ⁻), M1+E2 171 γ to (7 ⁻); band assignment.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
2117.52 12			I	
2127.39 9			I	
2133.09 ^c 9	(8^{+})		E I	J^{π} : 995 γ to 8 ⁺ ; band head of Fermi-aligned $i_{13/2}^2$ band.
2164 10			J	
2176.80 <i>5</i> 2181.6 <i>6</i>	0^{+}		В	J^{π} : L(p,t)=0.
2187.00^{d} 11	11 ⁻		DEF I	J^{π} : E2 461 γ to 9 ⁻ , M1 242 γ to 10 ⁻ ; band assignment.
2203 10	11		J	J. EZ 1017 to 7 , 1411 Z1Z7 to 10 , build assignment.
2212 6			Н Ј	E(level): from (d,d'). Other: 2212 10 from (p,t).
2227.85 9			В	
2235.19 [@] 11	12+		DEF I K	J^{π} : E2 571 γ to 10 ⁺ ; band assignment.
2256.65? 6	(0-)		В ј	XREF: j(2265).
2273.70 ^b 7	(9-)		EF Ij	XREF: j(2265). J^{π} : E2 362 γ to (7 ⁻), D 191.5 γ to (8 ⁻); band assignment.
2274.0 ^c 5	(9^+)		E	J^{π} : 141 γ to (8 ⁺); band assignment.
2284.00 ^{&} 15	10-		EF I	J^{π} : E2 453 γ to 8 ⁻ ; band assignment.
2293 10			J	or 22 loop to o , can a assignment.
2326.8 7	0_{+}		J	
2348 6			НЈ	E(level): from (d,d') . Other: 2356 10 in (p,t) .
2400 <i>10</i> 2415.77 <i>4</i>	2-		J B	J^{π} : log ft=5.7 in ¹⁸⁰ Re ε decay from (1) ⁻ parent, 1183 γ to 3 ⁺ .
2423.9 ^c 4	(10^{+})		E	J^{π} : 150 γ to (9 ⁺), 1285 γ to 8 ⁺ ; band assignment.
2435.18 <i>3</i>	2-		В	J^{π} : log ft =5.8 in ¹⁸⁰ Re ε decay from (1) ⁻ parent, 1203 γ to 3 ⁺ .
2451.61 ^d 13	12-		DEF I	J^{π} : E2 507 γ to 10 ⁻ ; band assignment.
2494.5 ^b 7	(10^{-})		E	J^{π} : 221 γ to (9 ⁻), 412 γ to (8 ⁻); band assignment.
2501.17 & <i>13</i>	11-		EF I	J^{π} : E2 477 γ to 9 ⁻ ; band assignment.
2522.58 7			В	
2531.51 9			В	
2546.87 <i>9</i> 2589.1 ^{<i>c</i>} <i>5</i>	(11^{+})		B E	J^{π} : E2 315 γ to (9 ⁺); band assignment.
2722.9 ^b 10	(11^{-})		E	J^{π} : 449 γ to (9 ⁻); band assignment.
2736.8 ^d 4	13-		DEF	J^{π} : E2 549 γ to 11 ⁻ , M1 285 γ to 12 ⁻ ; band assignment.
2763.6° 5	(12^{+})		E	J^{π} : E2 340 γ to (10 ⁺), 175 γ to (11 ⁺); band assignment.
2813.4 <mark>&</mark> <i>10</i>	12-		EF	J^{π} : E2 529 γ to 10 ⁻ ; band assignment.
2822.9 [@] 7	14+		DEF	J^{π} : E2 588 γ to 12 ⁺ ; band assignment.
2884.12 5	2-		В	J^{π} : log $ft=5.6$ in ¹⁸⁰ Re ε decay from (1) ⁻ parent, 1651.5 γ to 3 ⁺ .
2910.02? 9	(12+)		В	III F0 077 ((114) 000 ((104) 1 1 1 1
2966.2 ^c 6 3000.5 ^b 12	(13^+)		E	J^{π} : E2 377 γ to (11 ⁺), 202 γ to (12 ⁺); band assignment.
	(12 ⁻)		E	J^{π} : 506 γ to (10 ⁻); band assignment.
3042.7^{d} 4 $3047.5^{\&}$ 10	14-		DEF	J^{π} : E2 591 γ to 12 ⁻ , M1 306 γ to 13 ⁻ ; band assignment.
3047.5° 10 3176.3° 6	13 ⁻ (14 ⁺)		EF E	J^{π} : E2 546 γ to 11 ⁻ ; band assignment. J^{π} : E2 413 γ to (12 ⁺); band assignment.
3248.4 ^b 14	(14°) (13^{-})		E	J^{π} : 526 γ to (12 ⁻); band assignment.
3248.4 <i>14</i> 3264.9 <i>3</i>	14-	$2.3 \ \mu s \ 2$	DEF	J^{π} : (M1) 222 γ to 14 ⁻ , 813 γ to 12 ⁻ .
		/		$T_{1/2}$: from 2.3 μ s 2 in Be(208 Pb,X) (2002Pf01) and 2.3 μ s 2 from
				$Hf(\alpha,xn\gamma)$.
2256 1 9			T.	configuration= $(v7/2[514]v9/2[624)(\pi 5/2[402]\pi 7/2[404])$.
3356.1 8 3368.3 ^d 7	1.5-		E	W. F2 (22), 4- 12-, b1
3368.3 ^a / 3389.8 7	15 ⁻ (15 ⁺)	8.6 ns <i>6</i>	E DEF	J^{π} : E2 632 γ to 13 ⁻ ; band assignment. J^{π} : (E1) 125 γ to 14 ⁻ .
3307.0 /	(13)	0.0 113 0	DLI	$T_{1/2}$: other: ≈ 3.5 ns from centroid-shift analysis in 176 Yb(9 Be, 5 n γ).
				configuration= $(v7/2[514]v9/2[624])(\pi5/2[402]\pi9/2[514])$.

E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	XREF	Comments
3411.2 ^{&} <i>14</i>	(14^{-})		EF	J^{π} : 598 γ to 12 ⁻ ; band assignment.
3412.7 [@] 10	16 ⁺		DEF	J^{π} : E2 590 γ to 14 ⁺ , band assignment.
3421.8° 8	(15^{+})		E	J^{π} : E2 455 γ to (13 ⁺), (M1+E2) 246 γ to (14 ⁺); band assignment.
3515.2 9	. ,		D	, , , , , , , , , , , , , , , , , , , ,
3529.1 7			E	
3547.9 ^g 12	(16^+)	20.3 ns 6	DEF	J^{π} : (M1) 158 γ to (15 ⁺). $T_{1/2}$: other: \approx 4.2 ns from centroid-shift analysis in 176 Yb(9 Be,5n γ).
3581.6 8			E	configuration= $(v7/2[514]v9/2[624])(\pi7/2[404]\pi9/2[514])$.
3605.8 9			E	
3656.7 <mark>&</mark> <i>14</i>	15^{-}		E	J^{π} : E2 609 γ to 13 ⁻ ; band assignment.
3695.5 ^c 8	(16^{+})		E	J^{π} : E2 519 γ to (14 ⁺); band assignment.
3697.8 7			E	
3713.0 ^d 8	16-		E	J^{π} : E2 671 γ to 14 ⁻ ; band assignment.
3745.0 9			DE	
3831.5 <i>9</i> 3845.4 ^b <i>17</i>	(1.5-)		D	IT 507 (12-) 1 1 1
3845.4° 17 3888.2 ⁸ 15	(15^{-}) (17^{+})		E EF	J^{π} : 597 γ to (13 ⁻); band assignment. J^{π} : 340 γ to (16 ⁺); band assignment.
3898.0 ^e 8	(17) (16^{-})		E	J^{π} : 250 γ from (17 ⁻); band assignment.
3967.2° 10	(17^{+})		E	J^{π} : E2 545 γ to (15 ⁺); band assignment.
4002.0 12	(')		DE	
4017.4 [@] <i>13</i>	(18^{+})		DEF	J^{π} : (E2) 604.5 γ to 16 ⁺ ; band assignment.
4066.2 ^{&} 17	(16^{-})		E	J^{π} : 655 γ to (14 ⁻); band assignment.
4074.9 ^d 12	(17^{-})		E	J^{π} : 707 γ to 15 ⁻ ; band assignment.
4147.8 <mark>°</mark> 6	(17^{-})		DE	J^{π} : 435 γ to 16 ⁻ , 780 γ to 15 ⁻ .
4248.9 ⁸ 15	(18^{+})		EF	J^{π} : 361 γ to (17 ⁺), 701 γ to (16 ⁺); band assignment.
4269.9 11			DE	
4320.4 17	(17^{-})		E	J^{π} : 664 γ to 15 ⁻ ; band assignment.
4339.4 ^c 11	(18^+)		E	J^{π} : E2 644 γ to (16 ⁺); band assignment.
4416.7 ^e 9 4455.9 ^d 13	(18-)		E	J^{π} : 519 γ to (16 ⁻); band assignment.
4455.9 ^a 13 4525.7 18	(18 ⁻)		E E	J^{π} : 743 γ to 16 ⁻ ; band assignment.
4554.2 12			DE	
4606.6 ^c 14	(19^+)		E	J^{π} : E2 639 γ to (17 ⁺); band assignment.
4628.8 <mark>8</mark> 16	(19^+)		EF	J^{π} : 380 γ to (18 ⁺), 741 γ to (17 ⁺); band assignment.
4673.1 [@] <i>14</i>	(20^+)		DE	J^{π} : E2 655.5 γ to (18 ⁺); band assignment.
4711.4 <mark>h</mark> 9	(19^{-})		DE	J^{π} : 295 γ to (18 ⁻), 564 γ to 17 ⁻ .
4761.2 <mark>&</mark> 20	(18^{-})		E	J^{π} : 695 γ to (16 ⁻); band assignment.
4845.9? <mark>d</mark> 16	(19^{-})		E	J^{π} : 771 γ to (17 ⁻); band assignment.
4852.9 ^h 11	(20^{-})		DE	J^{π} : 142 γ to (19 ⁻); band assignment.
4857.3 12			DE	
5024.8 ⁸ 16	(20^{+})		E	J^{π} : 396 γ to (19 ⁺), (E2) 776 γ to (18 ⁺); band assignment.
5027.4? 20	(19^{-})		E	J^{π} : 707 γ to (17 ⁻); band assignment.
5029.7? ^e 13 5095.3 ^c 15	(20^{-})		E	J^{π} : 613 γ to (18 ⁺); band assignment.
5095.3° 13 5128.7 ^h 12	(20^{+})		E	J^{π} : E2 756 γ to (18 ⁺); band assignment.
5128.7" 12 5178.5 12	(21^{-})		DE DE	J^{π} : 276 γ to (20 ⁻); band assignment.
5339.8° 17	(21^{+})		E	J^{π} : E2 733 γ to (19 ⁺).
5402.2 [@] 14	(22^{+})		DE	J^{π} : 729 γ to (20 ⁺); band assignment.
5434.88 17	(21^{+})		E	J^{π} : 410 γ to (20 ⁺), 806 γ to (19 ⁺); band assignment.

¹⁸⁰W Levels (continued)

E(level) [†]	J^{π} ‡	$T_{1/2}^{\#}$	XREF	Comments
5454.2 ^h 12	(22-)		DE	J^{π} : 326 γ to (21 ⁻), 601 γ to (20 ⁻); band assignment.
5518.8 <i>13</i>			DE	
5745.4? ^{&} 22	(21^{-})		E	J^{π} : 718 γ to (19 ⁻); band assignment.
5815.8 ^h 12	(23^{-})		DE	J^{π} : 362 γ to (22 ⁻), 687 γ to (21 ⁻); band assignment.
5859.3 ⁸ 17	(22^{+})		E	J^{π} : 424 γ to (21 ⁺), 835 γ to (20 ⁺); band assignment.
5877.5 12	(22^{-})		DE	J^{π} : 359 γ to (21 ⁻), 699 γ to (20 ⁻); band assignment.
5975.4 12	(23^{-})	<0.7 ns	DE	J^{π} : 521 γ to (22 ⁻), 847 γ to (21 ⁻).
				$T_{1/2}$: from centroid-shift analysis in 176 Yb(9 Be, 5 n γ).
6115.2 <i>12</i>	(23^{-})	≈1.4 ns	DE	J^{π} : 661 γ to (22 ⁻), 986 γ to (21 ⁻).
				$T_{1/2}$: from centroid-shift analysis in 176 Yb(9 Be, 5 n γ).
6162.8? ^C 20	(23^{+})		E	J^{π} : 823 γ to (21 ⁺); band assignment.
6207.9 ^h 13	(24^{-})		E	J^{π} : 392 γ to (23 ⁻), 735.5 γ to (22 ⁻); band assignment.
6211.9 [@] <i>14</i>	(24^{+})		DE	J^{π} : 809.5 γ to (22 ⁺); band assignment.
6292.6? ⁸ 18	(23^{+})		E	J^{π} : 433 γ to (22 ⁺), 858 γ to (21 ⁺); band assignment.
6304.2 ^f 13	(24^{+})	<0.7 ns	DE	J^{π} : 189 γ to (23 ⁻).
				$T_{1/2}$: from centroid-shift analysis in 176 Yb(9 Be, 5 n γ).
6626.6 ^h 14	(25^{-})		E	J^{π} : 418.5 γ to (24 ⁻), 811 γ to (23 ⁻); band assignment.
6734.1 ^f 15	(25^{+})		DE	J^{π} : 430 γ to (24 ⁺); band assignment.
7070.2 ^h 15	(26^{-})		E	J^{π} : 444 γ to (25 ⁻), 862 γ to (24 ⁻); band assignment.
7101.4 [@] <i>17</i>	(26^{+})		E	J^{π} : 889.5 γ to (24 ⁺); band assignment.
7177.4 ^f 15	(26^{+})		DE	J^{π} : 443 γ to (25 ⁺), 873 γ to (24 ⁺); band assignment.
7634.1 ^f 16	(27^+)		D	J^{π} : 456 γ to (26 ⁺), 900 γ to (25 ⁺); band assignment.
8067.4? [@] 20	(28^{+})		E	J^{π} : 966 γ to (26 ⁺); band assignment.

 $^{^{\}dagger}$ From a least-squares fit to E γ , by evaluator, for levels connected by γ -rays. The remaining level energies are from the indicated dataset.

 $^{^{\}ddagger}$ Assignments are based mainly on band structures and on γ -ray multipolarities and decay patterns. Additional arguments are included in the comments.

[#] From beam- γ (t) in Hf(α ,xn γ), except where noted.

[@] Band(A): g.s. band.

[&]amp; Band(B): $K^{\pi}=2^{-}$ octupole rotational band.

^a Band(C): $K^{\pi}=2^{+} \gamma$ vibrational band.

^b Band(D): $K^{\pi}=(5^{-})$ rotational band.

^c Band(E): K^{π} =(8⁺) band. Interpreted as a Fermi-aligned $i_{13/2}^2$, t-band.

^d Band(F): $K^{\pi}=8^{-}$ rotational band.

^e Band(G): $K^{\pi}=16^-$ band.

f Band(H): K=(24⁺) band.

^g Band(I): $K^{\pi} = (16^{+})$ band.

^h Band(J): $K^{\pi} = (19^{-})$ band.

$\gamma(^{180}W)$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}\dagger$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ	α	Comments
103.561	2+	103.568 18	100	0.0 0+	E2		3.40	$\alpha(K)$ =0.827 12; $\alpha(L)$ =1.95 3; $\alpha(M)$ =0.492 7; $\alpha(N)$ =0.1159 17; $\alpha(O)$ =0.01587 23 $\alpha(P)$ =6.54×10 ⁻⁵ 10 B(E2)(W.u.)=140 6
337.559	4+	233.99 3	100	103.561 2+	E2		0.184	Mult.: from ce ratios in 180 Re ε decay. $\alpha(K)$ =0.1106 $I6$; $\alpha(L)$ =0.0558 δ ; $\alpha(M)$ =0.01379 20 ; $\alpha(N)$ =0.00327 δ ; $\alpha(O)$ =0.000466 δ 7 $\alpha(P)$ =9.03×10 ⁻⁶ δ 13
688.46	6+	350.898 7	100	337.559 4+	E2		0.0538	Mult.: from ce(K)/ce(L) in Hf(α ,xn γ) and ¹⁸¹ Ta(p,2n γ). α (K)=0.0380 6 ; α (L)=0.01212 17 ; α (M)=0.00293 5 ; α (N)=0.000697 10 ; α (O)=0.0001028 15 α (P)=3.34×10 ⁻⁶ 5
1006.381	2-	668.84 10	0.45 3	337.559 4+	[M2]		0.0736	Mult.: from ce(K)/ce(L) in Hf(α ,xn γ) and ¹⁸¹ Ta(p,2n γ). α (K)=0.0599 9; α (L)=0.01053 15; α (M)=0.00243 4; α (N)=0.000588 9; α (O)=9.55×10 ⁻⁵ 14 α (P)=6.62×10 ⁻⁶ 10
		902.814 <i>13</i>	100 3	103.561 2+	E1+M2	-0.31 5	0.0048 8	B(M2)(W.u.)=0.0044 4 I_{γ} : from ¹⁸⁰ Re ε decay. Other: 1.14 from ¹⁸¹ Ta(p,2n γ). α (K)=0.0039 7; α (L)=0.00062 12; α (M)=0.00014 3; α (N)=3.4×10 ⁻⁵ 7; α (O)=5.5×10 ⁻⁶ 10 α (P)=3.9×10 ⁻⁷ 7
		1006.34 6	0.547 21	0.0 0+	[M2]		0.0236	B(E1)(W.u.)=3.5×10 ⁻⁸ 3; B(M2)(W.u.)=0.019 6 Mult.,δ: from $\gamma\gamma(\theta)$ and ce data in ¹⁸⁰ Re ε decay. δ: Other: -0.16 7 from ¹⁸¹ Ta(p,2n γ). α (K)=0.0195 3; α (L)=0.00321 5; α (M)=0.000736 11; α (N)=0.0001776 25; α (O)=2.89×10 ⁻⁵ 4 α (P)=2.05×10 ⁻⁶ 3 B(M2)(W.u.)=0.00069 5
1082.374	3-	75.987 <i>10</i> 744.79 <i>3</i>	68 <i>3</i> 100 <i>7</i>	1006.381 2 ⁻ 337.559 4 ⁺				I_{γ} : from ¹⁸⁰ Re ε decay. Other: 0.91 from ¹⁸¹ Ta(p,2n γ). I_{γ} : from ¹⁸⁰ Re ε decay. Other: 57 from ¹⁸¹ Ta(p,2n γ).
1117.31	2+	1013.71 <i>8</i> 1117.27 <i>4</i>	100 <i>4</i> 84 <i>3</i>	103.561 2 ⁺ 0.0 0 ⁺				
1138.47	8+	450.018 20	100	688.46 6+	E2		0.0274	$\alpha(K)$ =0.0206 3; $\alpha(L)$ =0.00527 8; $\alpha(M)$ =0.001257 18; $\alpha(N)$ =0.000300 5; $\alpha(O)$ =4.52×10 ⁻⁵ 7 $\alpha(P)$ =1.86×10 ⁻⁶ 3 Mult.: from $\alpha(K)$ exp and ce(K)/ce(L) in Hf(α ,xn γ) and 181 Ta(p,2n γ).
1184.893	4-	102.513 <i>10</i> 178.516 <i>10</i>	22 100 <i>10</i>	1082.374 3 ⁻ 1006.381 2 ⁻	E2#		0.454	$\alpha({\rm K}) = 0.229~4;~\alpha({\rm L}) = 0.1712~24;~\alpha({\rm M}) = 0.0427~6;~\alpha({\rm N}) = 0.01010~15;$

6

$\gamma(^{180}\text{W})$ (continued)

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	α	Comments
							α(O)=0.001415 20
							$\alpha(P)=1.771\times10^{-5} 25$
1184.893	4^{-}	847.35 <i>4</i>	39 13	337.559 4+			I_{γ} : from ¹⁸⁰ Re ε decay. Other: 25 from ¹⁸¹ Ta(p,2n γ).
		1081.52 <i>12</i>	7.0	103.561 2+			
1232.67	3 ⁺	895.26 10	16	337.559 4+			
		1129.12 <i>4</i>	100	103.561 2+			
1307.575	5-	122.688 20	24.4 17	1184.893 4	M1+E2	2.2 5	$\alpha(K)$ =1.4 8; $\alpha(L)$ =0.6 3; $\alpha(M)$ =0.15 8; $\alpha(N)$ =0.036 17; $\alpha(O)$ =0.0052 21; $\alpha(P)$ =0.00013 9
							I _γ : from Hf(α ,xnγ). Other: 25 3 from ¹⁷⁶ Yb(9 Be,5nγ), 9.3 from ¹⁸¹ Ta(p,2nγ). Mult.: D+Q from $\gamma(\theta)$ in ¹⁷⁶ Yb(9 Be,5nγ), $\Delta \pi$ =no from level scheme.
		225.189 20	100 6	1082.374 3-	E2#	0.208	$\alpha(K)$ =0.1226 18; $\alpha(L)$ =0.0651 10; $\alpha(M)$ =0.01612 23; $\alpha(N)$ =0.00382 6;
		223.10) 20	100 0	1002.374 3	LZ	0.200	$\alpha(O)=0.000543 \ 8$ $\alpha(P)=9.94\times10^{-6} \ 14$
		619.24 22	4.0	688.46 6 ⁺			
		969.83 18	6.0	337.559 4 ⁺			
1322.09	(2^{+})	984.2 <i>3</i>	60	337.559 4 ⁺			
	` /	1218.8 <i>3</i>	100	103.561 2+			
		1322.2 4	60	$0.0 0^{+}$			
1360.51	4+	1022.92 6	100	337.559 4+			
		1257.16 9	59	103.561 2+	(E2) [@]	0.00289	$\alpha(K)=0.00239$ 4; $\alpha(L)=0.000378$ 6; $\alpha(M)=8.61\times10^{-5}$ 12; $\alpha(N)=2.07\times10^{-5}$ 3; $\alpha(O)=3.33\times10^{-6}$ 5
	_						$\alpha(P)=2.21\times10^{-7}$ 3
1461.82	6-	154.23 4	2.3 8	1307.575 5	F-0	0.1602	I_{γ} : from 176 Yb(9 Be,5n $_{\gamma}$). Other: 4.5 from 181 Ta(p,2n $_{\gamma}$).
		276.941 20	100 8	1184.893 4	E2	0.1083	$\alpha(K)$ =0.0704 10; $\alpha(L)$ =0.0289 4; $\alpha(M)$ =0.00708 10; $\alpha(N)$ =0.001679 24;
							$\alpha(O) = 0.000242 \ 4$
							$\alpha(P)=5.95\times10^{-6} 9$
1529.05	8-	67		$1461.82 6^-$			E_{γ} : observed only in 176 Yb(9 Be,5n γ).
		390.581 <i>15</i>	100	1138.47 8+	E1	0.01230	$\alpha(K)$ =0.01030 15; $\alpha(L)$ =0.001554 22; $\alpha(M)$ =0.000351 5; $\alpha(N)$ =8.40×10 ⁻⁵ 12 $\alpha(O)$ =1.341×10 ⁻⁵ 19; $\alpha(P)$ =8.66×10 ⁻⁷ 13
							B(E1)(W.u.)<6.43×10 ⁻¹³ 11
							Mult.: from $\alpha(K)$ exp in Hf(α ,xn γ) and 181 Ta(p,2n γ).
1535.63	5+	847.0	12.0	688.46 6 ⁺			
		1198.07 6	100	337.559 4 ⁺			
1568.17		879.6 <mark>b</mark> 3	50	688.46 6 ⁺			
		1230.62 11	100	337.559 4 ⁺			
1587.27	2+	580.8 <i>1</i>	100 17	1006.381 2-			
		1483.69 <i>6</i>	92 8	103.561 2+			
		1587.2 <i>3</i>	16 <i>3</i>	$0.0 0^{+}$			
1624.23	7-	162.43 5	2.9	1461.82 6			
		316.63 <i>3</i>	100	1307.575 5	E2	0.0724	$\alpha(K)$ =0.0495 7; $\alpha(L)$ =0.01751 25; $\alpha(M)$ =0.00426 6; $\alpha(N)$ =0.001012 15; $\alpha(O)$ =0.0001479 21
							$\alpha(P)=4.28\times10^{-6} 6$

γ (180W) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [‡]	α	Comments
1632.92	$(1^-,2)$	550.52 6	100 8	1082.374 3-			
	, , ,	626.7 2	35 <i>13</i>	1006.381 2-			
		1529.30 <i>11</i>	47 3	103.561 2 ⁺			
1634.67	$(3,4^+)$	401.84 12	69	1232.67 3 ⁺			
	() /	450.0 <i>5</i>	27	1184.893 4-			
		517.37 <i>4</i>	100	1117.31 2+			
		552.0 <i>3</i>	15	1082.374 3-			
		1297.4 <i>3</i>	19	337.559 4+			
1639.80	(5^{-})	179.1	8.3	1461.82 6			
1007.00	(0)	279.31 4	33	1360.51 4+			
		332.24 3	100 8	1307.575 5			
		454.88 3	112 9	1184.893 4			I_{γ} : weighted average of 115 8 from Hf(α ,xn γ) and 86 23 from 176 Yb(9 Be,5n γ). Other: 73 from 181 Ta(p,2n γ).
		051 05 10	10	(00.46 6+			Y b (7 Be, 3 Dr). Other: 73 from 13 Ia(p, 2 Dry).
1664.10	10+	951.25 12	10	688.46 6 ⁺	Ε0	0.0105	(IV) 0.01400.20 (I) 0.00207.5 (M) 0.000772.11 (A) 0.000105.2
1664.18	10 ⁺	525.71 3	100	1138.47 8+	E2	0.0185	$\alpha(K)$ =0.01429 20; $\alpha(L)$ =0.00327 5; $\alpha(M)$ =0.000773 11; $\alpha(N)$ =0.000185 3 $\alpha(O)$ =2.82×10 ⁻⁵ 4
							$\alpha(P)=1.309\times10^{-6} 19$
1693.60		1356.04 <i>15</i>	100	337.559 4+			
1702.98	6 ⁺	1014.49 <i>10</i>	100	688.46 6 ⁺			
		1365.46 <i>13</i>	47	337.559 4+			
1725.59	9-	196.54 3	100	1529.05 8	M1+E2	0.51 19	$\alpha(K)$ =0.38 21; $\alpha(L)$ =0.103 12; $\alpha(M)$ =0.025 4; $\alpha(N)$ =0.0059 9; $\alpha(O)$ =0.00088 7
							$\alpha(P)=3.6\times10^{-5} \ 23$
							Mult.: D+Q from $\gamma(\theta)$ in 176 Yb(9 Be, 5 n γ), $\Delta\pi$ = no from assumed band structure.
1729.85	$(4^+,5,6^+)$	1041.40 7	100	688.46 6 ⁺			
		1392.22 16	42	337.559 4 ⁺			
1764.42	(6^{-})	124.63 2	100	1639.80 (5-)			
1784.96	$(4^+,5^+)$	424.50 8	100	1360.51 4+			
		552.4 2	50	1232.67 3 ⁺			
		1096.3 2	38	688.46 6 ⁺			
		1447.2 2	88	337.559 4+			
101100	$(2^+,3)$	808.9 <i>3</i>	100 19	1006.381 2			
1814.88	\— ,- <i>)</i>	1477.3 <i>3</i>	44 16	337.559 4+			
1814.88							
1814.88		1711.3.2	81 <i>13</i>	103.561 21			176 0 191 1
1814.88	Q-	1711.3 2	81 <i>13</i>	103.561 2 ⁺			1: from $^{1/9}Vh(^{2}Re\ 5n_{2})$ Other: 3.1 from $^{101}Te(n\ 2n_{2})$
1814.88	8-	1711.3 2 206.7 7 369.02 3	81 <i>13</i> 1.9 <i>9</i> 100 <i>6</i>	103.561 2 ⁻¹ 1624.23 7 ⁻¹ 1461.82 6 ⁻¹	E2	0.0467	I _γ : from ¹⁷⁶ Yb(⁹ Be,5nγ). Other: 3.1 from ¹⁸¹ Ta(p,2nγ). α (K)=0.0334 5; α (L)=0.01017 15; α (M)=0.00245 4; α (N)=0.000584 9; α (O)=8.64×10 ⁻⁵ 13 α (P)=2.96×10 ⁻⁶ 5
1830.85		206.7 7 369.02 3	1.9 <i>9</i> 100 <i>6</i>	1624.23 7 ⁻ 1461.82 6 ⁻	E2	0.0467	$\alpha(K)=0.0334\ 5;\ \alpha(L)=0.01017\ 15;\ \alpha(M)=0.00245\ 4;\ \alpha(N)=0.000584\ 9;$
	8 ⁻ 2 ⁻	206.7 7 369.02 3 599.0 2	1.9 <i>9</i> 100 <i>6</i> 1.50 <i>19</i>	1624.23 7 ⁻ 1461.82 6 ⁻ 1232.67 3 ⁺	E2	0.0467	$\alpha(K)$ =0.0334 5; $\alpha(L)$ =0.01017 15; $\alpha(M)$ =0.00245 4; $\alpha(N)$ =0.000584 9; $\alpha(O)$ =8.64×10 ⁻⁵ 13
1830.85		206.7 7 369.02 3	1.9 <i>9</i> 100 <i>6</i>	1624.23 7 ⁻ 1461.82 6 ⁻	E2	0.0467	$\alpha(K)$ =0.0334 5; $\alpha(L)$ =0.01017 15; $\alpha(M)$ =0.00245 4; $\alpha(N)$ =0.000584 9; $\alpha(O)$ =8.64×10 ⁻⁵ 13

 ∞

γ (180W) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	${\rm J}_f^\pi$	Mult.‡	α	Comments
								$\alpha(O)=1.768\times10^{-5} \ 25; \ \alpha(P)=1.282\times10^{-6} \ I8$
								Mult.: from $\alpha(K)$ exp in 180 Re ε decay.
1831.70	2-	1727.8 <i>1</i>	0.57 7	103.561	2+			•
1851.15		211.35 5	100	1639.80	(5^{-})			
1855.20		1166.74 <i>16</i>	100	688.46	6+			
1911.58	(7^{-})	147.16 2	100 8	1764.42	(6-)	M1+E2	1.2 4	$\alpha(K)=0.85$; $\alpha(L)=0.30$ 10; $\alpha(M)=0.07$ 3; $\alpha(N)=0.017$ 6; $\alpha(O)=0.0026$
								7; $\alpha(P)=8.E-5.6$
								Mult.: D+Q from $\gamma(\theta)$ in 176 Yb(9 Be,5n γ), $\Delta \pi$ = no from assumed band structure.
		271.75 5	98 <i>6</i>	1639.80	(5^{-})			band structure.
1918.13	$(4^+,5,6^+)$	1229.6 2	100	688.46	6+			
1710.13	(1,5,0)	1581.2 6	60	337.559				
1926.44	$(6^+, 7, 8^+)$	788.0 <i>3</i>	14	1138.47	8+			
-,,	(- ,.,-)	1237.96 18	100	688.46	6 ⁺			
1932.20	7+	794	13	1138.47	8+			
		1243.73 11	100	688.46	6 ⁺			
1945.07	10-	219.49 <i>4</i>	102 8	1725.59	9-	M1	0.515	$\alpha(K)$ =0.428 6; $\alpha(L)$ =0.0674 10; $\alpha(M)$ =0.01533 22; $\alpha(N)$ =0.00369 6; $\alpha(O)$ =0.000603 9
								$\alpha(P)=4.30\times10^{-5} 6$
								I _y : weighted average of 89 5 from Hf(α ,xn γ) and 107 3 from 176 Yb(9 Be,5n γ). Others: 100 20 in 136 Xe(48 Ca,4n γ) and 220 in 181 Ta(p,2n γ).
		415.94 10	100 5	1529.05	8-	E2	0.0337	Mult.: D from $\gamma(\theta)$ in Hf(α ,xn γ), $\Delta\pi$ =no from level scheme. $\alpha(K)$ =0.0249 4; $\alpha(L)$ =0.00680 10; $\alpha(M)$ =0.001629 23; $\alpha(N)$ =0.000388 6; $\alpha(O)$ =5.81×10 ⁻⁵ 9 $\alpha(P)$ =2.23×10 ⁻⁶ 4
1954.53		319.74 ^b 17	100	1634.67	$(3,4^+)$			u(1)-2.23/10
1934.33		1266.2 3	63	688.46				
		1617.6 5	25	337.559				
2024.57	9-	194.0	1.3 7	1830.85	8-			
2021.37		400.26 8	100 4	1624.23	7-	E2	0.0374	$\alpha(K)=0.0273 \ 4; \ \alpha(L)=0.00772 \ 11; \ \alpha(M)=0.00185 \ 3; \ \alpha(N)=0.000441 \ 7;$
								$\alpha(O)=6.58\times10^{-5}\ 10$
								$\alpha(P)=2.44\times10^{-6} 4$
		886.6 2	16	1138.47	8+			4(-)
2059.35		329.5 1	100	1729.85	$(4^+,5,6^+)$			
2082.55	(8-)	170.95 5	23 5	1911.58	(7^{-})	M1+E2	0.8 3	$\alpha(K)=0.6\ 3;\ \alpha(L)=0.17\ 4;\ \alpha(M)=0.041\ 11;\ \alpha(N)=0.0098\ 24;$
								$\alpha(O)=0.00146\ 25;\ \alpha(P)=5.E-5\ 4$
								Mult.: D+Q from $\gamma(\theta)$ in 176 Yb(9 Be,5n γ), $\Delta \pi$ = no from assumed
								band structure.
								I_{γ} : from 176 Yb(9 Be,5n γ). Others: 145 <i>10</i> from Hg(α ,xn γ) and 63
			100 - :				0.0=:::	from 181 Ta(p,2n γ).
		318.24 11	100 24	1764.42	(6-)	E2	0.0714	$\alpha(K)$ =0.0489 7; $\alpha(L)$ =0.01719 25; $\alpha(M)$ =0.00418 6; $\alpha(N)$ =0.000993

9

 $\gamma(^{180}W)$ (continued)

0.394

0.0257

0.01520

0.752

0.0493

1.4 4

0.0269

14; $\alpha(O)=0.0001452$ 21

 I_{γ} : from Hg(α ,xn γ). Other: 160 from ¹⁸¹Ta(p,2n γ).

Hf(α ,xn γ). Other: 170 from ¹⁸¹Ta(p,2n γ).

 $\alpha(K)=0.328$ 5; $\alpha(L)=0.0515$ 8; $\alpha(M)=0.01171$ 17; $\alpha(N)=0.00282$ 4;

 I_{γ} : weighted average of 79.7 24 from $^{176}Yb(^{9}Be,5n\gamma)$ and 60 4 from

 $\alpha(K)=0.0194$ 3; $\alpha(L)=0.00487$ 7; $\alpha(M)=0.001160$ 17; $\alpha(N)=0.000276$ 4;

 $\alpha(K)=0.01186\ 17;\ \alpha(L)=0.00257\ 4;\ \alpha(M)=0.000605\ 9;\ \alpha(N)=0.0001445\ 21;$

 $\alpha(K)=0.625$ 10; $\alpha(L)=0.0986$ 15; $\alpha(M)=0.0225$ 4; $\alpha(N)=0.00541$ 8;

 $\alpha(K)=0.0351$ 5; $\alpha(L)=0.01086$ 16; $\alpha(M)=0.00262$ 4; $\alpha(N)=0.000624$ 9;

 $\alpha(K)=0.96$; $\alpha(L)=0.3513$; $\alpha(M)=0.094$; $\alpha(N)=0.0218$; $\alpha(O)=0.003010$;

Mult.: D+Q from $\gamma(\theta)$ in 176 Yb(9 Be,5n γ), $\Delta\pi$ =no from level scheme.

 $\alpha(K)=0.0202$ 3; $\alpha(L)=0.00515$ 8; $\alpha(M)=0.001229$ 18; $\alpha(N)=0.000293$ 5;

Mult.: D from $\gamma(\theta)$ in Hf(α ,xn γ), $\Delta \pi$ =no from level scheme. I_{ν} : from ${}^{176}\text{Yb}({}^{9}\text{Be},5\text{n}\gamma)$. Others: 25 from ${}^{181}\text{Ta}(p,2\text{n}\gamma)$, 104 14 from

Mult.: D from $\gamma(\theta)$ in Hf(α ,xn γ), $\Delta \pi$ =no from level scheme.

 $\alpha(P)=4.23\times10^{-6}$ 6

 $\alpha(O) = 0.000460 7$ $\alpha(P)=3.28\times10^{-5}$ 5

 $\alpha(O)=4.18\times10^{-5}$ 6 $\alpha(P)=1.757\times10^{-6} 25$

 $\alpha(O)=2.22\times10^{-5}$ 4 $\alpha(P)=1.091\times10^{-6}$ 16

 $\alpha(O)=0.000882 \ 13$ $\alpha(P)=6.29\times10^{-5}\ 10$

 $\alpha(O) = 9.22 \times 10^{-5} 13$ $\alpha(P)=3.10\times10^{-6}$ 5

 $\alpha(P) = 9.E - 56$

 $Hf(\alpha,xn\gamma)$.

Comments

Mult.‡

 E_f

1138.47

1138.47

1529.05

1138.47

1117.31

0.0

1945.07

1725.59

1232.67

1117.31

1082.374 3-

1664.18 10⁺

1006.381 2-

103.561 2+

2082.55 (8⁻)

1911.58 (7⁻)

 (8^{+})

2133.09

1725.59 1830.85

103.561 2+

8+

2+

 0^{+}

10-

3+

2+

M1

E2

E2

M1

(M1+E2)

E2

 E_{γ}^{\dagger}

979.05 12

988.92 8

994.62 8

1059.42 6

2073.5 2

2176.9 *1*

241.91 *14*

461.43 13

995.14 9

1110.7 2

1145.4 4

571.0 *1*

1250.22^a 6

2153.24 11

362.10 6

141.2

548.7

453.15 *14*

191.5 *3*

603.4^b

 (8^{+})

11-

 12^{+}

 (9^+)

10-

100

100

100 5

20.3

28 3

74 9

100 6

100 10

78 9

14 8

100

<65<mark>a</mark>

100 6

37 11

100 22

100 8

16 8

100

 $E_i(level)$

2117.52

2127.39

2133.09

2176.80

2187.00

2227.85

2235.19

2256.65?

2273.70

2274.0

2284.00

$\gamma(^{180}\text{W})$ (continued)

E_i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	α	Comments
							α (O)=4.42×10 ⁻⁵ 7 α (P)=1.83×10 ⁻⁶ 3
2415.77	2^{-}	782.6 2	5.8 19	1632.92 (1-,2)			
		828.5 ^b 2	8 4	1587.27 2+			
		1183.11 7	24.0 19	1232.67 3+			
		1298.44 5	74.0 19	1117.31 2+			
		1333.4 2 1409.40 5	11.6 <i>12</i> 100 <i>4</i>	1082.374 3 ⁻ 1006.381 2 ⁻			
		2312.1 2	3.9 8	103.561 2+			
2423.9	(10^+)	150.0	47 6	2274.0 (9+)	(M1+E2)	1.2 4	$\alpha(K)$ =0.8 5; $\alpha(L)$ =0.28 9; $\alpha(M)$ =0.068 24; $\alpha(N)$ =0.016 6; $\alpha(O)$ =0.0024 7 $\alpha(P)$ =8.E-5 5
							Mult.: D+Q from $\gamma(\theta)$ in 176 Yb(9 Be, 5 n γ), $\Delta \pi$ =no from level scheme.
		698.2	23 3	1725.59 9-			•
		759.7	100 6	1664.18 10 ⁺			
2435.18	2-	1285.2 847.8 ^a 1	70 <i>12</i> <13 ^a	1138.47 8 ⁺ 1587.27 2 ⁺			
2433.10	2	1202.6 1	28.7 23	1387.27 2 1232.67 3 ⁺			
		1250.22 ^a 6	<23 ^a	1184.893 4			
		1317.85 6	63 <i>3</i>	1117.31 2+			
		1352.80 5	100 7	1082.374 3-			
		1428.8 <i>I</i>	13 3	1006.381 2			
0.451 (1	10-	2331.87 11	30.3 16	103.561 2+		0.22.10	I C IIC \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2451.61	12-	264.7 <i>6</i> 506.56 <i>12</i>	46 <i>3</i> 100 <i>5</i>	2187.00 11 ⁻ 1945.07 10 ⁻	E2	0.22 <i>10</i> 0.0203	I _γ : from Hf(α,xnγ). Other: ≤110 from ¹⁸¹ Ta(p,2nγ). α (K)=0.01556 22; α (L)=0.00365 6; α (M)=0.000866 13; α (N)=0.000207 3
		300.30 12	100 5	1943.07 10	L2	0.0203	$\alpha(O)=3.15\times10^{-5}$ 5 $\alpha(P)=1.422\times10^{-6}$ 20
2494.5	(10^{-})	221.0	11 4	2273.70 (9-)			u(1) 1.122/10 20
	. ,	411.8	100 <i>21</i>	2082.55 (8-)			
2501.17	11-	476.6 <i>1</i>	100	2024.57 9-	E2#	0.0237	α (K)=0.0179 3; α (L)=0.00440 7; α (M)=0.001047 15; α (N)=0.000250 4; α (O)=3.78×10 ⁻⁵ 6 α (P)=1.632×10 ⁻⁶ 23
2522.58		935.2 2	52 13	1587.27 2+			((1) 1.00±/1.10 ±0
		1290.0 <i>I</i>	62 9	1232.67 3+			
		1405.2 <i>I</i>	100 10	1117.31 2+			
		1516.0 5	75 <i>14</i>	1006.381 2-			
		699.7 ^b 2	100 30	1831.70 2			
2531.51			18 6	1082.374 3			
2531.51		1449.2 2					
		1525.14 <i>11</i>	84 5	1006.381 2			
2531.51 2546.87							

$\gamma(^{180}\text{W})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	<u>α</u>	Comments
2589.1	(11+)	315.4	15 5	2274.0	(9 ⁺)	E2#	0.0733	$\alpha(P)=6.E-5$ 4 Mult.: D+Q from $\gamma(\theta)$ in 176 Yb(9 Be,5n γ), $\Delta\pi=$ no from level scheme. $\alpha(K)=0.0500$ 7; $\alpha(L)=0.01776$ 25; $\alpha(M)=0.00432$ 6; $\alpha(N)=0.001027$ 15; $\alpha(O)=0.0001500$ 21 $\alpha(P)=4.32\times10^{-6}$ 6
		643.5	12 5	1945.07	10-			
2722.9	(11^{-})	449.2	100	2273.70	(9^{-})			
2736.8	13-	285.3	17 3	2451.61	12-	M1	0.251	$\alpha(K)=0.209 \ 3; \ \alpha(L)=0.0327 \ 5; \ \alpha(M)=0.00743 \ 11; \ \alpha(N)=0.00179 \ 3; \ \alpha(O)=0.000292 \ 4 \ \alpha(P)=2.09\times10^{-5} \ 3 \ \text{Mult.: D from } \gamma(\theta) \ \text{in Hf}(\alpha,xn\gamma), \ \Delta\pi=\text{no from level scheme.}$
		549.1	100 2	2187.00	11-	E2	0.01669	$\alpha(K)$ =0.01295 19; $\alpha(L)$ =0.00288 4; $\alpha(M)$ =0.000679 10; $\alpha(N)$ =0.0001621 23 $\alpha(O)$ =2.49×10 ⁻⁵ 4; $\alpha(P)$ =1.189×10 ⁻⁶ 17
2763.6	(12+)	174.5	9.0 17	2589.1	(11+)	M1+E2	0.73 25	$\alpha(K)$ =0.5 3; $\alpha(L)$ =0.16 3; $\alpha(M)$ =0.038 9; $\alpha(N)$ =0.0091 21; $\alpha(O)$ =0.00135 21; $\alpha(P)$ =5.E-5 4 Mult.: D+Q from $\gamma(\theta)$ in 176 Yb(9 Be,5n γ), $\Delta\pi$ =no from level scheme.
		339.6	17 3	2423.9	(10^+)	E2#	0.0591	$\alpha(K)$ =0.0413 6 ; $\alpha(L)$ =0.01360 19 ; $\alpha(M)$ =0.00330 5 ; $\alpha(N)$ =0.000784 11 ; $\alpha(O)$ =0.0001152 17 $\alpha(P)$ =3.61×10 ⁻⁶ 5
		528.3	100 7	2235.19	12 ⁺			(,
		1099.6	40 10	1664.18	10+	(E2)#	0.00373	$\alpha(K)$ =0.00308 5; $\alpha(L)$ =0.000504 7; $\alpha(M)$ =0.0001152 17; $\alpha(N)$ =2.76×10 ⁻⁵ 4; $\alpha(O)$ =4.43×10 ⁻⁶ 7 $\alpha(P)$ =2.86×10 ⁻⁷ 4
2813.4	12-	529.4	100	2284.00	10-	E2	0.0182	$\alpha(P)=2.86\times10^{-5} 4$ $\alpha(K)=0.01406 \ 20; \ \alpha(L)=0.00320 \ 5; \ \alpha(M)=0.000757 \ 11; \ \alpha(N)=0.000181 \ 3;$ $\alpha(O)=2.76\times10^{-5} \ 4$ $\alpha(P)=1.289\times10^{-6} \ 18$
2822.9	14 ⁺	587.6	100	2235.19	12+	E2	0.01421	$\alpha(K)$ =0.01113 <i>16</i> ; $\alpha(L)$ =0.00237 <i>4</i> ; $\alpha(M)$ =0.000557 <i>8</i> ; $\alpha(N)$ =0.0001331 <i>19</i> ; $\alpha(O)$ =2.05×10 ⁻⁵ <i>3</i>
2884.12 2910.02?	2-	1069.4 2 1651.45 11 1766.74 11 1801.75 11 1877.70 10 2780.6 2 1678.0 3 1792.3 3	15 3 31.6 22 41 4 65 4 100 4 6.2 9 72 19 59 16	1082.374 1006.381 103.561 1232.67	2-			$\alpha(P)=1.025\times10^{-6}\ I5$
		1792.5 3 1903.6 <i>1</i>	100 13	1117.31 1006.381				
2966.2	(13+)	202.4	27 4	2763.6	(12+)	(M1+E2)	0.47 18	$\alpha(K)=0.35 \ 19; \ \alpha(L)=0.093 \ 9; \ \alpha(M)=0.022 \ 3; \ \alpha(N)=0.0053 \ 7;$ $\alpha(O)=0.00080 \ 5; \ \alpha(P)=3.3\times10^{-5} \ 21$
			100 -			#		Mult.: D+Q from $\gamma(\theta)$ in 176 Yb(9 Be, 5 n γ), $\Delta\pi$ =no from level scheme.
		376.9	100 5	2589.1	(11^{+})	E2#	0.0441	$\alpha(K)$ =0.0317 5; $\alpha(L)$ =0.00946 14; $\alpha(M)$ =0.00228 4; $\alpha(N)$ =0.000542 8;

12

$\gamma(^{180}\text{W})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\rm I_{\gamma}}^{\dagger}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	α	Comments
								$\alpha(O)=8.05\times10^{-5} 12$ $\alpha(P)=2.82\times10^{-6} 4$
3000.5	(12 ⁻)	506.0	100	2494.5	(10-)			
3042.7	14-	306.1	18.7 <i>16</i>	2736.8	13-	M1	0.208	$\alpha(K)$ =0.1727 25; $\alpha(L)$ =0.0270 4; $\alpha(M)$ =0.00613 9; $\alpha(N)$ =0.001477 21; $\alpha(O)$ =0.000241 4
								$\alpha(P)=1.725\times10^{-5}$ 25 Mult.: D from $\gamma(\theta)$ in Hf(α ,xn γ), $\Delta\pi$ =no from level scheme.
		591.2	100 5	2451.61	12-	E2	0.01401	$\alpha(K)$ =0.01098 <i>16</i> ; $\alpha(L)$ =0.00233 <i>4</i> ; $\alpha(M)$ =0.000547 <i>8</i> ; $\alpha(N)$ =0.0001308 <i>19</i> ; $\alpha(O)$ =2.02×10 ⁻⁵ <i>3</i>
2015.5	12-	5460	100	2501.15		Ea	0.01600	$\alpha(P)=1.012\times10^{-6}$ 15
3047.5	13-	546.3	100	2501.17		E2	0.01690	$\alpha(K)$ =0.01310 19; $\alpha(L)$ =0.00292 4; $\alpha(M)$ =0.000689 10; $\alpha(N)$ =0.0001645 23 $\alpha(O)$ =2.52×10 ⁻⁵ 4; $\alpha(P)$ =1.202×10 ⁻⁶ 17
3176.3	(14^{+})	353.3 ^b		2822.9		#		
		413.0	40 6	2763.6	(12+)	E2 [#]	0.0344	$\alpha(K)$ =0.0253 4; $\alpha(L)$ =0.00696 10; $\alpha(M)$ =0.001668 24; $\alpha(N)$ =0.000397 6; $\alpha(O)$ =5.94×10 ⁻⁵ 9
		940.9	100 5	2235.19	12±	E2#	0.00510	$\alpha(P)=2.27\times10^{-6} 4$ $\alpha(K)=0.00417 6$; $\alpha(L)=0.000715 10$; $\alpha(M)=0.0001643 23$; $\alpha(N)=3.94\times10^{-5} 6$;
		940.9	100 3	2255.19	12	E2	0.00310	$\alpha(R)=0.004176$; $\alpha(L)=0.00071376$; $\alpha(M)=0.000104323$; $\alpha(N)=3.94\times10^{-6}6$; $\alpha(P)=3.87\times10^{-7}6$
3248.4	(13^{-})	525.5	100	2722.9	(11^{-})			<i>u</i> (1)=3.67×10 0
3264.9	14-	222.3 <i>3</i>	82 4	3042.7		(M1)	0.497	$\alpha(K)$ =0.413 6; $\alpha(L)$ =0.0651 10; $\alpha(M)$ =0.01480 22; $\alpha(N)$ =0.00357 6; $\alpha(O)$ =0.000582 9
								$\alpha(P)=4.15\times10^{-5} 6$
								$B(M1)(W.u.)=2.31\times10^{-7} 25$
		298.4		2966.2	(13+)	[E1]	0.0232	Mult.: from $\alpha(\exp)$ in Hf($\alpha, xn\gamma$). $\alpha(K)$ =0.0193 3; $\alpha(L)$ =0.00298 5; $\alpha(M)$ =0.000674 10; $\alpha(N)$ =0.0001610 23; $\alpha(O)$ =2.55×10 ⁻⁵ 4
								$\alpha(O)=2.53 \times 10^{-6}$ 23
		528.0 <i>3</i>	100 6	2736.8				
		813.4 <i>3</i>	87 4	2451.61	12-	[E2]	0.00689	$\alpha(K)$ =0.00558 8; $\alpha(L)$ =0.001010 15; $\alpha(M)$ =0.000234 4; $\alpha(N)$ =5.60×10 ⁻⁵ 8; $\alpha(O)$ =8.83×10 ⁻⁶ 13
								$\alpha(P)=5.19\times10^{-7} 8$ B(E2)(W.u.)=3.2×10 ⁻⁶ 4
3356.1		91.3	100		14-	D+Q#		
3368.3	15-	325.6	100.0 23	3042.7	14-	#		
		631.7	26.0 17	2736.8	13-	E2 [#]	0.01201	$\alpha(K)$ =0.00949 14; $\alpha(L)$ =0.00194 3; $\alpha(M)$ =0.000454 7; $\alpha(N)$ =0.0001085 16 $\alpha(O)$ =1.683×10 ⁻⁵ 24; $\alpha(P)$ =8.77×10 ⁻⁷ 13
3389.8	(15+)	125.0	100	3264.9	14-	(E1)	0.210	$\alpha(K)$ =0.1728 25; $\alpha(L)$ =0.0291 4; $\alpha(M)$ =0.00663 10; $\alpha(N)$ =0.001571 22; $\alpha(O)$ =0.000240 4 $\alpha(P)$ =1.271×10 ⁻⁵ 18

$\gamma(^{180}\text{W})$ (continued)

E (L. I)	τ.π	F †	. †	Б	τπ	36 1. [†]		
$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	α	Comments
								B(E1)(W.u.)=1.04×10 ⁻⁵ 8 Mult.: from α (exp) in Hf(α ,xn γ).
3411.2	(14^{-})	597.8	100	2813.4	12-			Mult Holli $\alpha(\exp)$ iii $\operatorname{HI}(\alpha, \operatorname{xir} \gamma)$.
3412.7	16 ⁺	589.6	100	2822.9	14+	E2	0.01410	$\alpha(K)$ =0.01104 16; $\alpha(L)$ =0.00235 4; $\alpha(M)$ =0.000552 8; $\alpha(N)$ =0.0001318 19;
								$\alpha(O)=2.03\times10^{-5} \ 3$
3421.8	(15^+)	245.7	6 3	3176.3	(1.4±)	(M1+E2)	0.27 11	$\alpha(P)=1.018\times10^{-6}$ 15 $\alpha(K)=0.21$ 11; $\alpha(L)=0.0476$ 18; $\alpha(M)=0.01127$ 17; $\alpha(N)=0.00269$ 4; $\alpha(O)=0.00041$ 3
3421.6	(13)	243.7	0.3	31/0.3	(14)	(M11+E2)	0.27 11	$\alpha(R)=0.21 \text{ 17}, \ \alpha(L)=0.0476 \text{ 18}, \ \alpha(M)=0.01127 \text{ 17}, \ \alpha(N)=0.00209 \text{ 4}, \ \alpha(O)=0.00041 \text{ 5}$ $\alpha(P)=2.0\times10^{-5} \text{ 12}$
								Mult.: D+Q from $\gamma(\theta)$ in ¹⁷⁶ Yb(⁹ Be,5n γ), $\Delta \pi$ =no from level scheme.
		455.4	100 11	2966.2	(13^{+})	E2#	0.0266	$\alpha(K)=0.0200\ 3;\ \alpha(L)=0.00507\ 8;\ \alpha(M)=0.001210\ 17;\ \alpha(N)=0.000288\ 4;$
					` /			$\alpha(O) = 4.35 \times 10^{-5} 6$
								$\alpha(P)=1.81\times10^{-6} \ 3$
3515.2 3529.1		250 173.2	100	3264.9 3356.1	14-	D+Q		
3329.1		264		3264.9	14-	D+Q		
3547.9	(16^{+})	158.1	100	3389.8		(M1)	1.288	$\alpha(K)=1.069\ 15;\ \alpha(L)=0.1693\ 24;\ \alpha(M)=0.0385\ 6;\ \alpha(N)=0.00928\ 13;\ \alpha(O)=0.001514$
								22 (D) 0.0001070 15
								α(P)=0.0001078 15 B(M1)(W.u.)=0.000120 5
3581.6		316.7 <mark>&</mark>	100	3264.9	14-			D(M1)(a.)=0.000120 3
3605.8		216.0	100	3389.8				
3656.7	15-	609.2	100	3047.5	13-	E2#	0.01306	$\alpha(K) = 0.01028 \ 15; \ \alpha(L) = 0.00214 \ 3; \ \alpha(M) = 0.000503 \ 7; \ \alpha(N) = 0.0001201 \ 17;$
								$\alpha(O)=1.86\times10^{-5} \ 3$
2.07.7		7 400	400.00	21=42		#	0.0404	$\alpha(P)=9.48\times10^{-7} 14$
3695.5	(16^{+})	519.0	100 20	3176.3	(14+)	E2#	0.0191	$\alpha(K)$ =0.01472 21; $\alpha(L)$ =0.00340 5; $\alpha(M)$ =0.000804 12; $\alpha(N)$ =0.000192 3; $\alpha(O)$ =2.93×10 ⁻⁵ 4
								$\alpha(O) = 2.93 \times 10^{-6} 4$ $\alpha(P) = 1.347 \times 10^{-6} 19$
		872.8	97 20	2822.9	14 ⁺			u(1)-1.57/\text{\text{10}}
3697.8		168.6	21 4	3529.1				
		308.0	12 5	3389.8	. ,			
3713.0	16-	433.0 670.5	100 <i>20</i> 100	3264.9 3042.7		E2#	0.01050	$\alpha(K)=0.00835$ 12; $\alpha(L)=0.001652$ 24; $\alpha(M)=0.000386$ 6; $\alpha(N)=9.22\times10^{-5}$ 13
3/13.0	10	070.5	100	3042.7	14	₽2"	0.01050	$\alpha(K)$ =0.00835 12; $\alpha(L)$ =0.001652 24; $\alpha(M)$ =0.000386 6; $\alpha(N)$ =9.22×10 ° 13 $\alpha(O)$ =1.436×10 ⁻⁵ 21; $\alpha(P)$ =7.73×10 ⁻⁷ 11
3745.0		139.1	34 <i>3</i>	3605.8				u(0) 1.130/10 21, u(1)=1.13/10 11
		355.3	100 8	3389.8	(15^{+})			
3831.5	(15-)	316 ^{&}	100	3515.2	(12-)			
3845.4 3888.2	(15^{-}) (17^{+})	597.0 340.4	100 100	3248.4 3547.9	. ,	M1+E2		Mult.: D+O from $\gamma(\theta)$ in Hf(α .xn γ), $\Delta \pi$ =no from level scheme.
3898.0	(17) (16^{-})	316.7 ^{&}	100	3581.6	(10)	WIITE2		Figure $\mathcal{D} \cap \mathcal{A}$ from $\gamma(0)$ in $\mathrm{In}(u,\mathrm{An}\gamma)$, $\Delta u = \mathrm{in}$ from sever seneme.
3967.2	(10°) (17^{+})	271.7 ^b	100	3695.5	(16 ⁺)	(M1+E2)	0.20 9	$\alpha(K)=0.16$ 9; $\alpha(L)=0.034$ 4; $\alpha(M)=0.0081$ 5; $\alpha(N)=0.00193$ 13; $\alpha(O)=0.00030$ 4
5701.2	(11)	2/1./		3073.3	(10)	(1711 112)	0.20 /	α(1) 0.10 >, α(Δ)-0.00 1 1, α(11)-0.0001 3, α(11)-0.00173 13, α(0)-0.00030 τ

$\gamma(^{180}\text{W})$ (continued)

$E_i(level)$	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	α	Comments
								$\alpha(P)=1.5\times10^{-5} 9$
2067.2	(15±)	~ 4 ~ 4		2421.0	/1 = ±\	(F2)#	0.01606	Mult.: (D+Q) from $\gamma(\theta)$ in 176 Yb(9 Be,5n γ), $\Delta\pi$ =no from level scheme.
3967.2	(17^+)	545.4		3421.8 ((15 ⁺)	(E2)#	0.01696	$\alpha(K)$ =0.01315 19; $\alpha(L)$ =0.00293 5; $\alpha(M)$ =0.000692 10; $\alpha(N)$ =0.0001653 24 $\alpha(O)$ =2.53×10 ⁻⁵ 4; $\alpha(P)$ =1.207×10 ⁻⁶ 17
4002.0		257.1	100	3745.0				$\alpha(O)=2.53\times10^{-5} 4; \ \alpha(P)=1.20/\times10^{-5} 1/$
4017.4	(18^+)	604.5	100	3412.7	16 ⁺	(E2)#	0.01330	$\alpha(K)=0.01045\ 15;\ \alpha(L)=0.00219\ 3;\ \alpha(M)=0.000514\ 8;\ \alpha(N)=0.0001228\ 18;$
4017.4	(10)	004.5	100	3412.7	10	(L2)	0.01330	$\alpha(O)=1.90\times10^{-5}$ 3 $\alpha(P)=9.64\times10^{-7}$ 14
4066.2	(16^{-})	655.0	100	3411.2 ((14^{-})			• •
4074.9	(17^{-})	706.6	100	3368.3				
4147.8	(17^{-})	249.9	41 25	3898.0 (3831.5	(16 ⁻)			
		316 435		3713.0	16-			
		450.0	100 10	3697.8	10			
		542 ^b		3605.8				
		565.9	29 9	3581.6				
		779.7	7.4 8	3368.3				
4248.9	(18^{+})	360.9	100 6	3888.2 (M1+E2		Mult.: D+Q from $\gamma(\theta)$ in Hf(α ,xn γ), $\Delta\pi$ =no from level scheme.
1260.0		700.9	19 5	3547.9 ((16^{+})			
4269.9		267.7 524.9	100 <i>13</i> 40 <i>6</i>	4002.0 3745.0				
4320.4	(17^{-})	663.7	100	3656.7	15-			
4339.4	(18^{+})	643.9	100	3695.5 (E2#	0.01150	$\alpha(K)=0.00911$ 13; $\alpha(L)=0.00184$ 3; $\alpha(M)=0.000431$ 6; $\alpha(N)=0.0001030$ 15
	(10)	0.015		((10)		0.01100	$\alpha(O)=1.599\times10^{-5}$ 23; $\alpha(P)=8.42\times10^{-7}$ 12
		926.8 <mark>b</mark>		3412.7	16 ⁺			
4416.7	(18^{-})	518.9	100 <i>21</i>	3898.0 (
		703.6	41 5	3713.0				
4455.9	(18^{-})	742.9	100	3713.0				
4525.7		276.8	100	4248.9 (4269.9	(18 ⁺)			
4554.2		284.3 552.5	100 <i>30</i> 13 <i>4</i>	4269.9				
4606.6	(19^+)	639.4	100	3967.2 ((17+)	E2#	0.01169	$\alpha(K)=0.00925$ 13; $\alpha(L)=0.00188$ 3; $\alpha(M)=0.000439$ 7; $\alpha(N)=0.0001050$ 15
1000.0	(1)	007.7	100	3701.2 ((11)	112	0.01109	$\alpha(O)=1.629\times10^{-5}$ 23; $\alpha(P)=8.55\times10^{-7}$ 12
4628.8	(19^+)	379.8	100 10	4248.9 ((18^{+})			(a) -10-1110
	. ,	740.5	73 7	3888.2 (
4673.1	(20^+)	655.5	100	4017.4 ((18^{+})	E2#	0.01104	$\alpha(K)=0.00877\ 13;\ \alpha(L)=0.001755\ 25;\ \alpha(M)=0.000410\ 6;\ \alpha(N)=9.81\times10^{-5}\ 14$
								$\alpha(O)=1.525\times10^{-5} 22; \ \alpha(P)=8.11\times10^{-7} 12$
4711.4	(19^{-})	294.8	19 3	4416.7 (
4761.0	(10=)	563.6	100 9	4147.8 (
4761.2	(18-)	695.0	100	4066.2 (
4845.9?	(19^{-})	771.0 <mark>6</mark>	100	4074.9 ((1/)			

15

$\gamma(^{180}\text{W})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	α	Comments
4852.9	$\frac{\iota}{(20^{-})}$	141.6	100	4711.4	$\frac{J}{(19^{-})}$			
4857.3	(20)	303.2	100 17	4554.2	(1)			
		587.3	30 12	4269.9				
5024.8	(20^{+})	396.3	100 10	4628.8	(19^+)	#		5
		776.0	78 17	4248.9	(18+)	(E2)#	0.00762	$\alpha(K)$ =0.00615 9; $\alpha(L)$ =0.001135 16; $\alpha(M)$ =0.000263 4; $\alpha(N)$ =6.30×10 ⁻⁵ 9; $\alpha(O)$ =9.90×10 ⁻⁶ 14 $\alpha(P)$ =5.71×10 ⁻⁷ 8
5027.4?	(19^{-})	707.0 ^b	100	4320.4	(17^{-})			
5029.7?	(20^{-})	613 ^b	100	4416.7	(18^{-})			
5095.3	(20^+)	755.9	100	4339.4	(18+)	E2#	0.00806	$\alpha(K)$ =0.00649 9; $\alpha(L)$ =0.001212 17; $\alpha(M)$ =0.000281 4; $\alpha(N)$ =6.73×10 ⁻⁵ 10 $\alpha(O)$ =1.057×10 ⁻⁵ 15; $\alpha(P)$ =6.02×10 ⁻⁷ 9
5128.7	(21^{-})	276.0	100	4852.9	(20^{-})			
5178.5		321.3 624.3	100 <i>17</i> 30 <i>13</i>	4857.3 4554.2				
5339.8	(21^{+})	733.2	100	4606.6	(19^+)	E2#	0.00861	$\alpha(K)=0.00692\ 10;\ \alpha(L)=0.001309\ 19;\ \alpha(M)=0.000304\ 5;\ \alpha(N)=7.28\times10^{-5}\ 11$
3337.0	(21)	133.2	100	4000.0	(1)	L2	0.00001	$\alpha(O)=1.141\times10^{-5}$ 16; $\alpha(P)=6.41\times10^{-7}$ 9
5402.2	(22^{+})	728.9	100	4673.1	(20^+)			
5434.8	(21^{+})	409.9	100 13	5024.8	(20^{+})			
5454.2	(22^{-})	805.6 325.5	87 <i>24</i> 100 <i>9</i>	4628.8 5128.7	(19^+) (21^-)			
3434.2	(22)	601.4	21 4	4852.9	(20^{-})			
5518.8		340.5	100 8	5178.5				
		661.4	7.8 25	4857.3				
5745.4? 5815.8	(21^{-})	718 ^b 361.5	100 100 <i>10</i>	5027.4? 5454.2	(19^{-}) (22^{-})			
3613.6	(23^{-})	687.0	37 5	5128.7	(22^{-}) (21^{-})			
5859.3	(22^{+})	423.9		5434.8	(21^{+})			
		835 ^b		5024.8	(20^+)			
5877.5	(22^{-})	358.8	100 17	5518.8				
5975.4	(23^{-})	699.1 159.7	72 11	5178.5 5815.8	(23^{-})			
0,7011	(20)	521 ^b		5454.2	(22^{-})			E_{γ} : observed only in 136 Xe(48 Ca, 4 n γ).
		846.8		5128.7	(21^{-})			_y
6115.2	(23^{-})	237.7		5877.5	(22^{-})			
		299.1 661.2		5815.8 5454.2	(23 ⁻) (22 ⁻)			
		986.4		5128.7	(22) (21^{-})			
6162.8?	(23^{+})	823.0 ^b	100	5339.8	(21^{+})			
6207.9	(24-)	392.0		5815.8	(23^{-})			
6211.9	(24 ⁺)	753.5 809.5	100	5454.2 5402.2	(22^{-}) (22^{+})			
0211.9	(24)	809.3	100	3402.2	(22.)			

γ (180W) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	$E_i(level)$	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
6292.6?	(23^{+})	433 <mark>b</mark>		5859.3 ((22+)	7070.2	(26^{-})	443.6		6626.6	(25^{-})
		858 <mark>b</mark>		5434.8 (21+)			862.3		6207.9	(24^{-})
6304.2	(24^{+})	(92)		6211.9 (24+)	7101.4	(26^{+})	889.5	100	6211.9	(24^{+})
		189.1		6115.2 (23-)	7177.4	(26^+)	443.0		6734.1	(25^+)
		328.9		5975.4 ((23-)			873.1		6304.2	(24^{+})
6626.6	(25^{-})	418.5		6207.9 (24-)	7634.1	(27^{+})	456.3		7177.4	(26^+)
		811.1		5815.8 ((23-)			900.4		6734.1	(25^{+})
6734.1	(25^{+})	430.0	100	6304.2 ((24 ⁺)	8067.4?	(28^{+})	966 <mark>b</mark>	100	7101.4	(26^{+})

[†] Weighted average of all available data, except where noted.

^{*} From $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in Hf(α ,xn γ), except where noted. # From $\gamma(\theta)$ in 176 Yb(9 Be,5n γ). Stretched Q transitions are assumed to be E2 in character. @ From p $\gamma(\theta)$ in 181 Ta(p,2n γ). Stretched Q transitions are assumed to be E2 in character.

[&]amp; Multiply placed.

^a Multiply placed with undivided intensity.

^b Placement of transition in the level scheme is uncertain.

 $^{180}_{74}\mathrm{W}_{106}$

 $^{180}_{74}\mathrm{W}_{106}$

Adopted Levels, Gammas Legend $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ Level Scheme (continued) Intensities: Type not specified γ Decay (Uncertain) 15 3368.3 3356.1 14⁻ (13⁻) 3264.9 $2.3~\mu s 2$ 3248.4 (14^{+}) 3176.3 13-3047.5 14⁻ (12⁻) 3042.7 3000.5 (13^{+}) 2966.2 $\frac{2^{-}}{14^{+}}$ $\frac{12^{-}}{(12^{+})}$ 2910.02 2884.12 2822.9 2813.4 2763.6 13⁻ (11⁻) 2736.8 2722.9 (11^{+}) 2589.1 2546.87 2531.51 11⁻ (10⁻) 2501.17 2494.5 12⁻ (10⁺) 2451.61 2423.9 10⁻ (9⁺) 2284.00 2274.0 (9-) 2273.70 12+ 2235.19 2187.00 1945.07 10-1831.70 $\frac{2^{-}}{(2^{+},3)}$ 1814.88 10+ 1664.18 1232.67 1117.31 1082.374 1006.381 7.4 ns 4 103.561 1.28 ns 5 0.0 1.8×10¹⁸ y 2

 $^{180}_{74}\mathrm{W}_{106}$

Level Scheme (continued)

Intensities: Type not specified & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Type not specified & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Type not specified & Multiply placed: undivided intensity given

Legend

 (23^{+})

 (22^{+})

 (21^{+})

 (20^{+})

 (19^{+})

 (18^{+})

 (17^{+})

 (16^{+})

433

410

396

380

361

4248.9

3888.2

3547.9

Band(J): K^{π} =(19 $^-$) band

Band(G): $K^{\pi}=16^-$ band

 $^{180}_{74}W_{106}$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 130, 21 (2015)	15-Jul-2015

 $Q(\beta^-)=-280\times10^1$ 10; S(n)=8066 5; S(p)=7095.1 17; $Q(\alpha)=1765.0$ 19 2012Wa38 S(2n)=14751.8 20, S(2p)=13043.9 10 (2012Wa38).

First identification of ¹⁸²W isotope by Aston: Nature 126, 913 (1930).

Other reactions:

⁹Be(²⁰⁸Pb,X) E=1 GeV/nucleon: 2002Pf01: Measured fragment yield, (fragment)γ coin, deduced isomer (at 2230 keV) half-life and isomer production ratio of 10% 2.

Additional information 1.

Mass measurements: 2012Li52, 1977Sh04, 1970Mc03, 1961De21, 1960Bh02.

Structure calculations (levels, moments, transition probabilities, high-K isomers, etc.): 2013Zh43, 2012Bu01, 2012Ze02, 2012Zh23, 2011Er04, 2008Sa21, 2003Jo10, 1998Sh01, 1996Na08, 1996Na12, 1994Be21, 1994Mo07, 1993Be25, 1991Gr14, 1990Ch50, 1990Ve01, 1989Sa19, 1989Ta06. Only selected references are given here, consult NSR database at www.nndc.bnl.gov website for more detailed bibliography for theoretical studies on ¹⁸²W nuclide.

¹⁸²W Levels

Details of the measurements of Half-life (in ns) of the 100.1, 2⁺ state:

- 1. Deduced from B(E2) values in Coulomb excitation: 1.44 7 (1961Ha21), 1.26 11 (1963Gr04), 1.340 30 (1968St13), 1.368 29 (1973Be40, earlier value from the same lab is 1.31 15, 1958Mc02), 1.15 12 (1989Ku04), 1.53 7 (1991Wu05, earlier value is 1.41 9 in 1989Wu04).
- 2. Delayed coincidence method in Coulomb excitation: 1.366 14 (1961Ke07), 1.43 4 (1962Bi05, earlier value from the same group is 1.55 14.1959Bi10).
- 3. Pulsed beam: $(p,p'\gamma)$: 1.372 14 (1964Sc21).
- 4. Deduced from B(E2) in Muonic atom: 1.343 40 (1970Hi03).
- 5. Deduced from B(E2) in (e,e'): 1.391 21 (1987PeZV,1988PeZW).
- 6. Delayed coincidence in 182 Ta β^- decay: 1.27 *10* (1955Su64,1954Su10), 1.55 *11* (1963Ba24), 1.26 *4* (1963Fo02), 1.41 *6* (1963Ko02), 1.47 *9* (1964Ro19), 1.4 *1* (1964Be36), 1.39 *3* (1965Do02), 1.37 *3* (1965Me08), 1.45 *4* (1966Bl08), 1.35 *7* (1966Fu03), 1.43 *5* (1966Ra04), 1.48 *3* (1970Ab14), 1.380 *20* (1971Ho14), 1.55 *5* (1973GrXX), 1.380 *30* (1983El02),

Cross Reference (XREF) Flags

E(level) [†]	J^{π} ‡	$\begin{array}{c} \textbf{A} \\ \textbf{B} \\ \textbf{C} \\ \textbf{D} \\ \textbf{E} \\ \textbf{F} \\ \textbf{G} \\ \end{array}$	¹⁸² Ta $β$ ⁻ decay (114.74 d) Muonic atom ¹⁸² Re $ε$ decay (64.2 h) ¹⁸² Re $ε$ decay (14.14 h) ¹⁸⁶ Os $α$ decay ¹⁷⁶ Yb(9 Be,3n $γ$) ¹⁷⁶ Yb(13 C, $α$ 3n $γ$)		$^{180}{ m Hf}(\alpha,2{ m n}\gamma)$ $^{180}{ m W}({ m t,p})$ $^{182}{ m W}(\gamma,\gamma){ m :Mossbauer}$ $^{182}{ m W}(\gamma,\gamma')$ $^{182}{ m W}({ m e,e'})$ $^{182}{ m W}({ m n,n'}\gamma)$ $^{182}{ m W}({ m n,n'}\gamma)$	O P Q R S T U	182 W(p,p'),(pol p,p'),(α , α') 182 W(d,d') Coulomb excitation 183 W(d,t) 183 W(3 He, α) 184 W(p,t) 186 W(n,5n γ) Comments					
0.0&	0+	stable	ABCDEFGHIJKLMNOPQR TU	21								

E(level) [†]	Jπ‡	$T_{1/2}$	XREF	Comments			
100.10598& 7	2+	1.381 ns <i>10</i>	ABCD FGHIJKLMNOPQRSTU	μ =+0.521 <i>16</i> (1968Pe06,2014StZZ) Q=-2.13 <i>35</i> (1977RuZV,2014StZZ,2013StZZ) B(E2)↑=4.17 <i>6</i> μ : Mossbauer effect (1968Pe06). Other: +0.528 <i>12</i> (CEAD,1972Ca12). Q: reorientation method in Coul. Ex. (1977RuZV). B(E2) from Coul. Ex. T _{1/2} : from several weighted averaging methods (weighted average, limitation of statistical weights method (LWM), normalized residuals method (NRM) and Rajeval's technique (RT)) using 26 independent measurements (from 1954 to 1991) of lifetimes from Coulomb excitation, delayed coincidence methods, pulsed beam, (e,e') and muonic atom. The value of χ^2 is ≈2.1 for different methods as compared to critical χ^2 of 1.7. All the values used in the averaging procedure are listed above in the header comments of this table 2001Ra27 evaluation (of 27 measurements from 1954 to 1988) gives nearly the same adopted B(E2)(↑)=4.20 8 and mean lifetime (τ)=1990 ps 20 (T _{1/2} =1.379 ns <i>14</i>). J ^{π} : E2 γ to 0 ⁺ .			
329.4268 ^{&} 6	4+	62 ps <i>3</i>	A CD FGHI LMNOPQRSTU	μ =+0.88 17 (1972Be94,2014StZZ) B(E4)=0.077 16 (1987PeZV) from (e,e'). μ : IPAC (1972Be94). T _{1/2} : from RDM in Coul. ex. J ^π : ΔJ=2, E2 γ to 2 ⁺ .			
680.42 ^{&} 5	6+	8.2 ps 9	A C FGH LMNOPQR TU	B(E6)=0.012 5 (1987PeZV) from (e,e'). $T_{1/2}$: from RDM in Coul. ex. J^{π} : stretched E2 γ to 4 ⁺ .			
1135.82 ^a 10	0^{+}		A I MN P R T	J^{π} : L(p,t)=0. Also L(t,p)=0 and E0 transition to 0 ⁺ .			
1144.32 ^{&} 12	8+	2.01 ps <i>17</i>	FGH LM Q U	B(E8)=0.00029 17 (1987PeZV) from (e,e'). $T_{1/2}$: from RDM in Coulomb excitation. J^{π} : ΔJ =2, E2 γ to 6 ⁺ ; band assignment.			
1221.4001 ^b 10	2+	0.434 ps <i>11</i>	A CD HI MNOPQR T	J^{π} : E2 γ to 0 ⁺ . $T_{1/2}$: from B(E2) in Coulomb excitation. B(E2)(IS)(↑)=0.146 11 ((pol p,p') 1987Ic04). This gives B(E2)(W.u.)=4.8 4 compared to 3.4 from Coul. ex.			
1257.4121 ^a 11	2+	1.71 ps <i>13</i>	A CD HI MN PQR T	J^{π} : E2 γ to 0 ⁺ . $T_{1/2}$: from B(E2) in Coulomb excitation and adopted branching ratios.			
1289.1498 ^c 10	2-	1.12 ns 4	A CD GH M QR	μ =+1.74 24 (1973Se14,2014StZZ) μ : IPAC (1973Se14). J^{π} : M2 γ to 0 ⁺ . $T_{1/2}$: from (β) (ce)(t) and $\beta\gamma$ (t) in ¹⁸² Ta β ⁻ decay. Weighted averaging method (normalized residuals) used.			
1331.1153 ^b 10	3+	<0.6 ns	A CD H MN QRS	XREF: N(1309). J^{π} : M1+E2 γ s to 2 ⁺ and 4 ⁺ .			
1373.8301 ^c 10	3-	78 ps <i>10</i>	A CD GH MNOPQ T	T _{1/2} : from $\gamma \gamma$ (t) in ¹⁸² Ta β ⁻ decay. μ =0.96 27 (1972He10,2014StZZ) XREF: N(1357). μ : IPAC (1972He10). Other: 2.21 34 (IPAC,1973Se14). J ^π : E3 γ to 0 ⁺ . T _{1/2} : from (ce)(ce)(t) in ¹⁸² Ta β ⁻ decay.			
1442.835 ^b 9	4+	0.32 ps <i>3</i>	A CD HI MNOPQR T	J^{π} : M1+E2 γ to 4 ⁺ ; E2 γ to 2 ⁺ ; (E1) γ from 5 ⁻ ; band			

E(level) [†]	Jπ‡	T _{1/2}	XREF		Comments			
					assignment. $T_{1/2}$: from B(E2) in Coul. ex. B(E4)(IS)(↑)=0.0122 25 ((pol p,p') 1987Ic04) which gives B(E4)(W.u.)=2.0 4.			
1487.5018 ^c 10	4-	<49 ps	A CD GH	MN	XREF: N(1492). J^{π} : M2+E3 γ to 2 ⁺ ; M1+E2 γ from 5 ⁻ .			
1510.22 ^a 4	4+		ас н	M R	$T_{1/2}$: from (ce)(ce)(t) in 182 Ta β^- decay. J^{π} : E2 γ to 2 ⁺ ; E2+M1 γ to 4 ⁺ ; γ from 5 ⁻ .			
1553.2240 ^g 10	4-	1.27 ns 4	A CD GH	MN R	$T_{1/2}$: from $\gamma\gamma$ (t) in 182 Ta β^- decay. J^{π} : M2+E3 γ to 2 ⁺ ; M1+E2 γ from 5 ⁻ .			
1621.284 ^c 21	5-		C GH	Mn p t	J^{π} : M1 γ from 6 ⁻ ; E1 γ to 4 ⁺ .			
1623.51 ^b 4	$(5)^{+}$		С Н	Mn pQR t	J^{π} : E1 γ from 6 ⁻ ; band assignment.			
1660.383 ^g 21	5-		C GH	MNPRT	XREF: N(1678). J^{π} : E1+M2 γ to 4 ⁺ ; M1+E2 γ to 5 ⁻ ; M1 γ from 6 ⁻ .			
1711.99 ^{&} <i>14</i>	10 ⁺	0.76 ps 7	FGH	Q U	$T_{1/2}$: from RDM in Coulomb excitation. J^{π} : ΔJ =2, E2 γ to 8 ⁺ ; band assignment.			
1756.75 ^h 4	6+		C GH	MN	XREF: N(1745).			
1765.53 12				M P T	J^{π} : log $ft=7.4$ from 7^{+} , E2 γ to 4^{+} .			
1768.943 ⁸ 23	6-		C GH	M RS	J^{π} : E1+M2 γ to 6 ⁺ ; E2 γ s to 4 ⁻ ; band assignment.			
1769.5? ^b 7	(6+)			Q	E(level): level is suspect since the two γ rays at 1089 and 1440 are associated with the decay of 1769, (6) ⁻¹ level. J ^{\pi} : γ to 6 ⁺ ; possible band assignment.			
1809.64 ⁱ 7	5-		C GH	n Rt	XREF: $n(1792)$. J^{π} : M1 γ to 4 ⁻ ; M1 γ from 6 ⁻ .			
1810.85 ^c 4	(6)-		C GH	n t	XREF: $n(1792)$. J^{π} : $\log ft = 8.7$ from 7^+ ; $M1+E2 \gamma$ to 5^- ; band assignment.			
1813.4 <i>3</i>				Mn rt	XREF: n(1792).			
1829.53 ^{<i>j</i>} 3	6-		C GH	RST	J^{π} : log ft =7.4 from 7 ⁺ ; E2 γ to 4 ⁻ .			
1833.1? 6	(0.1)			M				
1855.98 5	(2^{+})		D	Mnprt	XREF: M(1856.2). J^{π} : γ s to 0 ⁺ and 4 ⁺ .			
1856.9 <i>5</i>	1			Mnprt	XREF: M(1856.9).			
					J^{π} : γ s to 0^+ and 2^+ ; $\gamma(\theta)$ in $(n,n'\gamma)$.			
1871.17 <i>15</i>	1-		D	M	J^{π} : E1 γ to 0^+ .			
1887.84 <i>21</i> 1917.05 <i>8 5</i>	7-		C GH	M P T RS	XREF: R(1916).			
1918.6 4	$(2^+ \text{ to } 4^+)$		C dii	MN R	J^{π} : $\Delta J=2$, E2 γ to 5 ⁻ ; γ to (6) ⁻ ; band assignment. XREF: R(1923).			
1959.35 16	(2 ⁺)			M PRT	J^{π} : γ to 2^+ ; not 0 or 1 from $\gamma(\theta)$ in $(n,n'\gamma)$. XREF: T(1961). J^{π} : $\Delta J = (2) \gamma$ to 4^+ ; γ to 0^+ .			
1960.30 ^{<i>j</i>} 3	$(7)^{-}$		C GH		J^{π} : log $ft=7.1$ from 7^{+} ; $\Delta J=2$, E2 γ s to 5^{-} .			
1960.78 ⁱ 7	6-		C G	M RS	J ^{π} : M1 γ to 5 ⁻ ; log ft =8.0 from 7 ⁺ ; possible band assignment.			
1971.05 ^h 7	(7)+		C GH	R	XREF: R(1966). J^{π} : log ft =8.2 from 7^{+} ; M1+E2 γ to 6^{+} ; band assignment.			
1978.36 ^k 4	(7)-		C GH		J ^{π} : log ft =7.0 from 7 ⁺ ; M1+E2 γ to (6) ⁻ ; band assignment.			
1981.82 25				MN R	XREF: R(1985).			

E(level) [†]	$\mathtt{J}^{\pi \ddagger}$	$T_{1/2}$		XREF		Comments			
1993.68 ^c 10 2016.8 8	(7 ⁻) (2,3,4) ⁺		GH	M	R	J^{π} : $\Delta J=2 \ \gamma$ to 5 ⁻ ; band assignment. J^{π} : $L(d,t)=1,3$ from $1/2^-$; possible γ s to 2 ⁺ and 4 ⁺ . E(level): 2023 7 level in (d,t) is probably not 2023.57, 3 ⁻ level.			
2023.57 <i>3</i> 2057.39 <i>5</i> 2071	3 ⁻ 1 ⁺		D D	Mn Mn	R R	J^{π} : M1+E2 γ s to 2 ⁻ and 4 ⁻ . J^{π} : $\Delta J=1$ γ to 0 ⁺ ; L(d,t)=1,3 from 1/2 ⁻ target.			
2087.43 ⁸ 7 2094 10	8-		GH		R T	J^{π} : $\Delta J=2 \gamma$ to (6 ⁻); band assignment.			
2109.96 20	$(2^-,3^-)$		D	Mn	R t	XREF: t(2117). J^{π} : (E2) γ to 4 ⁻ ; (E1+M2) γ to 2 ⁺ .			
2114.35 ^j 5 2116.4 3	(8)-		C GH D	Mn	t	J ^π : E2 γ to (6) ⁻ ; log ft =8.2 from 7 ⁺ ; band assignment. XREF: t(2117). J ^π : 0 ⁺ to 4 ⁺ from γ to 2 ⁺ .			
2120.25 ¹ 7	(8-)		C GH			J^{π} : (M1) γ to (7) ⁻ ; probable bandhead of a 2-qp band.			
2131.3 ⁱ 3 2143.0 <i>10</i>	(7-)		GH		RS p R t	J^{π} : γ to (6) ⁻ ; possible band assignment.			
2147.95 <i>17</i> 2173.5 <i>3</i>	(3^{-}) $(0^{+} \text{ to } 4^{+})$		D D		p R t P R t	J^{π} : (E1) γ to 4 ⁺ ; (E1+M2) γ to 2 ⁺ . XREF: t(2175). J^{π} : γ to 2 ⁺ . If 2174 γ to 0 ⁺ exists, then J^{π} =1,2 ⁺ .			
2180.4 ^b 8 2184.04 4	(8 ⁺) (2 ⁻ ,3 ⁻)		D	Mn	Q p t	J^{π} : γ s to 8^+ and 6^+ ; band assignment. XREF: t(2175). J^{π} : (M1) γ s to 2^- and 3^- .			
2204.54 ^k 6 2207.21 <i>16</i> 2209.07 <i>17</i>	(8) ⁻ (3 ⁻) 3 ⁻		C GH D D	Mn	p R t p R t	J ^π : M1+E2 γ to (7) ⁻ , log ft =7.5 from 7 ⁺ . J ^π : (E3) γ to 0 ⁺ and (E1+M2) γ to 4 ⁺ . XREF: R(2217). J ^π : E1 γ to 4 ⁺ , log ft =8.3 from 2 ⁺ .			
2212.50 ^h 11 2225.35 ^c 11	(8 ⁺) (8 ⁻)		GH GH			J^{π} : $\Delta J = 1 \gamma$ to $(7)^+$; band assignment. J^{π} : $\Delta J = 2 \gamma$ to $(6)^-$, band assignment.			
2230.65 ^d 14	(10+)	1.3 μs <i>1</i>	FGH			%IT=100 J^{π} : (M1) γ to 10^{+} ; γ to 8^{+} ; probable bandhead of a 2-qp band.			
						$T_{1/2}$: from $\gamma(t)$; average of 1.2 μ s I in 9 Be(208 Pb,X) and 1.4 μ s I in (α ,2n γ).			
2240.83 <i>15</i> 2273.87 ⁸ 8	(3 ⁺) 9 ⁻		D	MN	R T	J^{π} : (M1) γ s to 2^+ and 4^+ . J^{π} : $\Delta J = 2 \gamma$ to (7) ⁻ ; γ to (8 ⁻); band assignment.			
2274.63 4	(3)		GH D	Mn	R t	$\Delta J = 2 \gamma$ to (7); γ to (8); band assignment. XREF: R(2270). J^{π} : E1 γ to 2 ⁺ ; (M1) γ to 4 ⁻ .			
2283.5 6	1			Mn	R t	XREF: R(2284). J^{π} : 2283 $\gamma(\theta)$ in (n,n' γ).			
2301.56 ^{<i>j</i>} 8 2316.1 22	(9 ⁻) (1,2 ⁺)		G D	n	T	J^{π} : γ s to $(7)^-$ and $(8)^-$; band assignment. XREF: T(2311). J^{π} : γ to 0^+ .			
2323.85 ⁱ 21	(8-)		GH			J^{π} : γ to (7) ⁻ ; possible band assignment.			
2327.91 ^l 10 2328	(9-)		Н		P	J^{π} : $\Delta J=1$, (M1+E2) γ to (8 ⁻); band assignment.			
2331 <i>10</i> 2334.26 <i>21</i> 2360 8			Н		P R T	J^{π} : (7,8,9) from γ to (7) ⁻ .			
2372.59& 17	12+	0.38 ps 2	FGH		Q U	J^{π} : ΔJ =2, E2 γ to 10 ⁺ ; band assignment. T _{1/2} : from B(E2) in Coulomb excitation from 10 ⁺ level.			
2376 2382.1 <i>7</i>	1	7.9 [#] fs <i>11</i>		K N	R R	J^{π} : from $\gamma\gamma(\theta)$.			

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments			
					$B(M1)(\uparrow)=0.46 \ 6. \ B(E1)(\uparrow)=5.0\times10^{-5} \ 7.$			
2395 8 2427 8				R R	Edwals multiplet			
2427 8 2445.98 ^c 15 2452.7 20	(9-)		GH	R R	E(level): multiplet. J^{π} : $\Delta J=2 \gamma$ to (7^{-}) , band assignment.			
2455.74 ^k 12	(9-)		GH		J^{π} : $\Delta J=1 \gamma$ to (8) ⁻ ; γ to (7) ⁻ ; band assignment.			
2474.1 <i>7</i>	1@	15 [#] fs 2	K N	R	J^{π} : from $\gamma\gamma(\theta)$.			
,					$B(M1)(\uparrow)=0.31 \ 5. \ B(E1)(\uparrow)=3.5\times10^{-5} \ 5.$			
2479.83 ^h 13	(9 ⁺)		GH		J^{π} : $\Delta J=1$ γ to (8+); γ to (7)+; band assignment.			
2486.89 ⁸ 10 2492 8	10-		GH	R	J^{π} : $\Delta J=2 \gamma$ to (8 ⁻); γ to (9 ⁻); band assignment.			
2492.78 ^d 17	(11^{+})		FGH	K	J^{π} : $\Delta J=1 \gamma$ to (10^+) ; band assignment.			
2507.48^{j} 9	(10^{-})		G		J^{π} : γ s to (8) ⁻ and (9 ⁻); band assignment.			
2520 10	0+		n	T	J^{π} : $L(p,t)=0$.			
2552 10	0_{+}		n	T	J^{π} : $L(p,t)=0$.			
2563.94 ^l 12	(10^{-})		GH		J^{π} : γ to (9 ⁻); band assignment.			
2610 <i>10</i> 2689 <i>10</i>			N :	P T T	XREF: T(2625).			
2710.93 ⁸ 11	11-		GH	•	J^{π} : $\Delta J=2 \gamma$ to (9 ⁻); γ to (10 ⁻); band assignment.			
2725 10	0_{+}		N :	P T	XREF: N(2690).			
I.					$J^{\pi}: L(p,t)=0.$			
2730.84 ^k 16 2739.15 ^c 15	(10^{-})		GH		J^{π} : $\Delta J = 1 \gamma$ to (9 ⁻); band assignment.			
2739.15° 13 2741.66^{j} 12	(10^{-})		GH G		J^{π} : $\Delta J=2 \ \gamma$ to (8 ⁻); band assignment. J^{π} : $\Delta J=2 \ \gamma$ to (9 ⁻); band assignment.			
2741.00^{3} 12 2769.27^{h} 16	(11^{-}) (10^{+})		GH		J^{π} : $\Delta J = 2 \gamma$ to (9°); band assignment. J^{π} : $\Delta J = 1 \gamma$ to (11 ⁺); γ to (10 ⁺); band assignment.			
2775 10	(10)		Gn N	Т	$J: \Delta J=1$ γ to (11), γ to (10), balld assignment.			
2775.65 ^d 18	(12^{+})		FGH		J^{π} : $\Delta J=2 \gamma$ to (10^+) ; $\Delta J=1 \gamma$ to (11^+) ; band assignment.			
2815 10				T				
2823.93 ^l 16	(11^{-})		GH		J^{π} : $\Delta J=1 \gamma$ to (10 ⁻); γ to (9 ⁻); band assignment.			
2884.1 7	1@	16 [#] fs 2	K		J^{π} : from $\gamma\gamma(\theta)$.			
					$B(M1)(\uparrow)=0.22 \ 3. \ B(E1)(\uparrow)=2.4\times10^{-5} \ 3.$			
2892.1 7	(1)	27 [#] fs <i>17</i>	K		J^{π} : from $\gamma\gamma(\theta)$.			
2941.0 20	$(1,2^+)$		K		B(M1)(\uparrow)=0.07 4. B(E1)(\uparrow)=0.8×10 ⁻⁵ 5. J ^{π} : γ to 0 ⁺ .			
2972.49 ⁸ 13	12-		G		J^{π} : $\Delta J = 2 \gamma$ to (10 ⁻); γ to (11 ⁻); band assignment.			
2980.58 ^c 18	(11^{-})		GH		J^{π} : $\Delta J=2 \gamma$ to (9 ⁻); band assignment.			
2981.33 ^j 12	(12^{-})		G		J^{π} : γ to (10 ⁻); band assignment.			
2996.1 7	1	6.7 [#] fs <i>13</i>	K		J^{π} : from $\gamma\gamma(\theta)$. Possible K=(0) assigned by 1993He15.			
3027.94 ^k 19	(11=)		CIT		$B(M1)(\uparrow) = 0.25 \ 5. \ B(E1)(\uparrow) = 2.7 \times 10^{-5} \ 5.$			
3027.94 ^t 19 3078.25 ^d 19	(11^{-}) (13^{+})		GH		J^{π} : $\Delta J = (1) \gamma$ to (10^{-}) ; γ to (9^{-}) ; band assignment.			
3078.23 19	10	17 [#] fs 3	FGH K		J^{π} : $\Delta J=1 \ \gamma$ to (12^+) ; $\Delta J=2 \ \gamma$ to (11^+) ; band assignment. J^{π} : from $\gamma \gamma(\theta)$.			
3000.1 /	1	17 18 3	K		B(M1)(\uparrow)=0.15 3. B(E1)(\uparrow)=1.6×10 ⁻⁵ 3.			
3106.72 ^l 18	(12^{-})		GH		J^{π} : $\Delta J = (1) \gamma$ to (11^-) ; γ to (10^-) ; band assignment.			
3112.89 & 20	14+	0.24 ps 4	FGH	Q	J^{π} : $\Delta J=2$, (E2) γ to 12^{+} ; band assignment.			
		-	- -		$T_{1/2}$: from B(E2) in Coul. ex. from 12^+ .			
3163.1 7	1@	10.3 [#] fs <i>14</i>	K		J^{π} : from $\gamma\gamma(\theta)$.			
	. @	#			$B(M1)(\uparrow)=0.24 \ 3. \ B(E1)(\uparrow)=2.6\times10^{-5} \ 4.$			
3198.1 7	$(1,2^+)^{\textcircled{0}}$	16 [#] fs 3	K		J^{π} : (γ, γ') excitation from 0^+ .			
					$B(M1)(\uparrow)=0.14 \ 3. \ B(E1)(\uparrow)=1.5\times10^{-5} \ 3.$			

E(level) [†]	Jπ‡	T _{1/2}	XRE	F	Comments
3224.53 ⁸ 15	13-		G		J^{π} : $\Delta J=2 \gamma$ to (11 ⁻); band assignment.
3269.56 ^j 16	(13^{-})		G		J^{π} : $\Delta J=2 \gamma$ to (11 ⁻); band assignment.
3319.7 ^c 5	(12^{-})		G		J^{π} : γ to (10 ⁻); band assignment.
3343.05 ^k 21	(12^{-})		G		J^{π} : $\Delta J=(1) \gamma$ to (11^{-}) ; γ to (10^{-}) ; band assignment.
3365.1 7	1 [@]	11.1 [#] fs 23	K		J^{π} : from $\gamma\gamma(\theta)$.
					$B(M1)(\uparrow)=0.17 \ 4. \ B(E1)(\uparrow)=1.9\times10^{-5} \ 4.$
3398.35 ^d 19	(14^{+})		FGH		J^{π} : $\Delta J=2 \gamma$ to (12 ⁺); $\Delta J=1 \gamma$ to (13 ⁺); band assignment.
3410.54 ^l 20	(13^{-})		G		J^{π} : γ s to (11 ⁻) and (12 ⁻); band assignment.
3415.92° 19	(12)	ш	G		J^{π} : $\Delta J=1 \gamma$ to (11^+) ; band assignment.
3422.1 7	$(1,2^+)^{@}$	10.3 [#] fs 20	K		J^{π} : (γ, γ') excitation from 0 ⁺ . B(M1)(\uparrow)=0.19 3. B(E1)(\uparrow)=2.1×10 ⁻⁵ 4.
3518.04 ^{<i>j</i>} 15	(14^{-})		G		J^{π} : γ to (12 ⁻); band assignment.
3549.99 <mark>8</mark> 17	14-		G		J^{π} : $\Delta J=2 \gamma$ to (12 ⁻); band assignment.
3567.8 ^c 4	(13^{-})		G		J^{π} : $\Delta J=(2) \gamma$ to (11^{-}) ; band assignment.
3601.1 7	1@	6.2 [#] fs <i>12</i>	K		J^{π} : from $\gamma\gamma(\theta)$.
					$B(M1)(\uparrow)=0.23 \ 4. \ B(E1)(\uparrow)=2.5\times10^{-5} \ 5.$
3640.0 20	$(1,2^+)$		K		J^{π} : γ to 0^+ .
3677.15° 21 3727.1 15	(13) $(1,2^+)$		G K		J^{π} : γ to (12 ⁺); band assignment. J^{π} : γ to 0 ⁺ .
3727.173 3733.85^{l} 23	$(1,2^{-})$ (14^{-})		G		J^{π} : γ s to (12^{-}) and (13^{-}) ; band assignment.
3736.40 ^d 20	(14°) (15^{+})		FGH		J^{π} : γ s to (12) and (13), band assignment.
3754.89 ^m 21	(15^+)	37 ns 2	FG		J^{π} : $\Delta J=2$, (E2) γ to (13 ⁺); $\Delta J=1$ γ to (14 ⁺); bandhead of
					configuration= $((v 9/2^{+}[624])(v 7/2^{-}[503])8^{-})+((\pi 9/2^{-}[514])(\pi 5/2^{+}[402])7^{-})$. Other possible configuration from coupling of $K^{\pi}=10^{+}$ neutrons to $K^{\pi}=5^{+}$ protons: $\pi 9/2[514]+\pi 1/2[541]$ is less likely. $T_{1/2}$: from $\gamma \gamma(t)$ in $(^{13}C, \alpha 3n\gamma)$. Other: 54 ns 10 in
					$(^{9}\mathrm{Be,3n}\gamma).$
3807.63 <i>g</i> 18	15-		G		J^{π} : $\Delta J=2 \gamma$ to (13 ⁻); band assignment.
3880.06 ^j 19	(15^{-})		G		J^{π} : $\Delta J=2 \gamma$ to (13 ⁻); band assignment.
3882.0 <i>20</i> 3893.69 ^e <i>23</i>	$(1,2^+)$ (16^+)	≤7 ns	EC K		J^{π} : γ to 0^+ . J^{π} : (M1) γ to (15 ⁺); probable bandhead of a 4-qp band.
3693.09* 23	(10)	≤/ IIS	FG		$T_{1/2}$: from $\gamma\gamma(t)$ in (9 Be, 3 n γ).
3910.09 <mark>&</mark> 22	16 ⁺	0.14 ps <i>3</i>	FG	Q	$T_{1/2}$: from B(E2) in Coul. ex. from 14 ⁺ .
	10	0.11. ps c			J^{π} : ΔJ =2, E2 γ to 14 ⁺ ; band assignment.
3920.0 20	1		K		J^{π} : from $\gamma\gamma(\theta)$.
3966.25° 23	(14)		G		J^{π} : γ s to (12) and (13); band assignment.
4040.6 ^f 3	(17 ⁻)	20 ns <i>1</i>	FG		J^{π} : (E1) γ to (16 ⁺); probable bandhead of a 4-qp band. $T_{1/2}$: from $\gamma\gamma(t)$ in ($^{13}C,\alpha^3n\gamma$). Other: 17 ns 7 in ($^{9}Be,3n\gamma$).
4074.8 ¹ 3	(15^{-})		G		J^{π} : γ s to (13 ⁻) and (14 ⁻); band assignment.
4078.89 ^m 23	(16^{+})		G		J^{π} : γ to (15 ⁺); band assignment.
4081.5 ^d 3	(16^{+})		G		J^{π} : γ s to (14 ⁺) and (15 ⁺); band assignment.
4116.9 ^{<i>j</i>} 3	(16^{-})		G		J^{π} : γ to (14 ⁻); band assignment.
4197.1 ^c 4	(15^{-})		G		$J_{}^{\pi}$: γ s to (13 $^{-}$); band assignment.
4211.1 ⁸ 3	16-		G		J^{π} : $\Delta J=2 \gamma$ to (14 ⁻); band assignment.
4218.1 <i>5</i> 4280.2 ⁰ <i>3</i>	(17^+)		F		J^{π} : γ to (16 ⁺). J^{π} : γ s to (13) and (14); band assignment.
4280.2° 3 4293.1° 3	(15) (17 ⁺)		G G		J^{π} : γ s to (13) and (14); band assignment. J^{π} : γ to (16 ⁺); band assignment.
$4293.1 \ 3$ $4421.5 f \ 3$	(18 ⁻)		FG		J^{π} : γ to (10°); band assignment.
4421.5° 3 4430.5 ^m 3	(16) (17 ⁺)		G		J^{π} : γ s to (15 ⁺) and (16 ⁺); band assignment.
	· /		_		, (- , (- , ,

¹⁸²W Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments
4453.3 ^d 8 4456.2 ^g 3 4569.7 6	(17 ⁺) 17 ⁻ (18 ⁺)		G G F		J^{π} : γ s to (15 ⁺) and (16 ⁺); band assignment. J^{π} : $\Delta J=2 \gamma$ to (15 ⁻); band assignment. J^{π} : γ s to (16 ⁺) and (17 ⁺); band assignment.
4570.9 ^j 4	(17^{-})		G		J^{π} : γ to (15 ⁻); band assignment.
4690.89 ^{&} 25 4711.9 ^e 3	18 ⁺ (18 ⁺)		G G		J^{π} : $\Delta J=2 \ \gamma$ to 16^+ ; band assignment. J^{π} : γ s to (16^+) and (17^+) ; band assignment.
4748.0 <i>10</i>	(18+)	0.088 ps +22-17	F	Q	E(level): this level also seems connected with g.s. band. $T_{1/2}$: from B(E2) in Coul. ex. J^{π} : γ to (16 ⁺); Coulomb excited.
4779.6 ^j 4	(18^{-})		G		J^{π} : γ to (16 ⁻); band assignment.
4780.4 ⁿ 4	(18)		FG		J ^{π} : γ to (17 ^{$-$}); possible configuration=((ν 9/2 ⁺ [624])(ν 11/2 ⁺ [615])10 ⁺)+ ((π 9/2 ⁻ [514])(π 7/2 ⁺ [404]))8 ⁻ .
4804.9 ^m 3	(18^{+})		G		J^{π} : γ s to (16 ⁺) and (17 ⁺); band assignment.
4820.1 ^f 3	(19^{-})		FG		J^{π} : γ s to (17 ⁻) and (18 ⁻); band assignment.
4847.4 ^d 8	(18^{+})		G		J^{π} : γ to 16 ⁺ ; band assignment.
4954.8 <mark>8</mark> 11	18-		G		J^{π} : γ to (16 ⁻); band assignment.
5148.6 ^e 5	(19^+)		G		J^{π} : γ s to (17 ⁺) and (18 ⁺); band assignment.
5170.8 4	19-		G	P	J^{π} : γ to (17 ⁻); band assignment.
5191.8 ⁿ 4	(19)		G		J^{π} : γ to (18); band assignment.
5199.6 ^m 4	(19^+)		G		J^{π} : γ to (18 ⁺); band assignment.
5225.4 ^d 13	(19^+)		G		J^{π} : γ to (17 ⁺); band assignment.
5235.8 ^f 4	(20^{-})		FG		J^{π} : γ s to (18 ⁻) and (19 ⁻); band assignment.
5338.6 ^j 11	(19^{-})		G		J^{π} : γ to (17 ⁻); band assignment.
5428.6 <mark>&</mark> 4	20 ⁺		G		J^{π} : γ to 18 ⁺ ; band assignment.
5618.6 ⁿ 4	(20)		G		J^{π} : γ s to (18) and (19); band assignment.
5666.9 ^f 8	(21-)		G		J^{π} : γ s to (19 ⁻) and (20 ⁻); band assignment.

[†] From least-squares fit to Ey data; normalized χ^2 =0.68.

[‡] For high-spin (J>6) states, ascending spins are assumed with the rise in excitation energy, as expected from yrast type of population of levels in in-beam, heavy-ion γ -ray studies. The transitions involving $\Delta J=2$ from angular distributions are generally treated as E2 from RUL and those with $\Delta J=1$ and significant D+Q admixtures as M1+E2.

[#] Deduced from $\Gamma_{\gamma 0}$ and branching ratio given by 1993He15.

[®] K=1 assigned by 1993He15 from comparison of reduced transition probabilities with Alaga's rules.

[&]amp; Band(A): $K^{\pi}=0^{+}$, g.s. band. Backbending at $\hbar\omega\approx0.38$ MeV.

^a Band(B): $K^{\pi}=0^{+}$ band. 2001Ga02, in analysis of β vibration and second 0^{+} states, suggest that excited 0^{+} band in ¹⁸²W is not a β-vibration.

^b Band(C): $K^{\pi}=2^+$, γ band.

^c Band(D): $K^{\pi}=2^{-}$, octupole band.

^d Band(E): $K^{\pi} = 10^{+}, v9/2[624] \otimes v11/2[615]$. (g_K-g_R)=0.34 4 (1994Re03), g_K(exp)=-0.15 2.

^e Band(F): K^{π} =(16⁺),4-qp band. v^2 (8⁻): $v9/2[624] \otimes v7/2[503]$; π^2 (8⁻): $\pi9/2[514] \otimes \pi7/2[404]$. (g_K-g_R)=0.21 *19* (1994Re03), g_K(exp)=+0.36 *6*. Configuration=($v9/2^+$ [624])($v11/2^+$ [615])10⁺)+($\pi7/2^+$ [404]) ($\pi5/2^+$ [402])6⁺ is also proposed by 1994Re03. For K^{π} =8⁻ neutron configuration, 7/2[514] orbital is excluded by the comparison of experimental g_K and corresponding theoretical value.

^f Band(G): K^{π} =(17[−]),4−qp band. v^2 (10⁺):v9/2[624] $\otimes v$ 11/2[615]; π^2 (7[−]): π 9/2[514] $\otimes \pi$ 5/2[402]. (g_K-g_R)=0.30 7, 0.18 7 (1994Re03), g_K(exp)=+0.46 3.

^g Band(H): $K^{\pi} = 4^{-}, v9/2[624] \otimes v1/2[510]$. $g_{K}(\exp) = +0.05$ 4.

^h Band(I): $K^{\pi}=6^+, \pi 5/2[402]\otimes \pi 7/2[404]$. $g_K(\exp)=+1.11.5$.

¹⁸²W Levels (continued)

- ⁱ Band(J): $K^{\pi}=5^{-}, v9/2[624] \otimes v1/2[510]$.
- ^j Band(K): $K^{\pi} = 6^{-}, v9/2[624] \otimes v3/2[512]$. $g_{K}(\exp) = +0.01 I$.
- ^k Band(L): $K^{\pi}=7^{-},\pi9/2[514]\otimes\pi5/2[402]$. $g_{K}(\exp)=+1.17$ 7.
- ¹ Band(M): $K^{\pi}=8^{-}$, $v9/2[624]\otimes v7/2[503]$. $g_{K}(\exp)=-0.21$ 5 excludes 7/2[514] neutron orbital when compared with theoretical value
- ^m Band(N): K^{π} =15⁺,4-qp band. $v^2(8^-)$: $v^9/2[624] \otimes v^7/2[503]$; $\pi^2(7^-)$: $\pi^9/2[514] \otimes \pi^5/2[402]$. $g_K(\exp)=+0.52$ 4. For K^{π} =8-neutron configuration, 7/2[514] orbital is excluded by the comparison of experimental g_K and corresponding theoretical value.
- ⁿ Band(O): $K^{\pi} = 18^{-}, v_{(10^{+})}^{2} \otimes \pi_{(8^{-})}^{2}$. $v^{2}(10^{+}): v^{9}/2[624] \otimes v^{11}/2[615]; \pi^{2}(8^{-}): \pi^{9}/2[514] \otimes \pi^{7}/2[404]. g_{K}(\exp) \approx +0.32.$
- ^o Band(P): K=(12) band.

 $q_K(E0/E2)$ =ratios of K-conversion intensities of E0 and E2 transitions.

9

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	J_f^{π}	Mult.‡	δ^{\ddagger}	α [@]	$I_{(\gamma+ce)}$	Comments
100.1059	8 2+	100.10595# 7	100	0.0	0+	E2		3.89		B(E2)(W.u.)=136.1 18 α (K)=0.878 13; α (L)=2.28 4; α (M)=0.576 8 α (N)=0.1358 19; α (O)=0.0186 3; α (P)=7.08×10 ⁻⁵ 10
329.4268	4+	229.3207# 6	100	100.10598	2+	E2		0.196		B(E2)(W.u.)=196 10 α (K)=0.1167 17; α (L)=0.0605 9; α (M)=0.01497 21 α (N)=0.00354 5; α (O)=0.000505 7;
680.42	6+	351.02 6	100	329.4268	4+	E2		0.0538		$\alpha(P)=9.50\times10^{-6}$ 14 B(E2)(W.u.)=201 22 $\alpha(K)=0.0380$ 6; $\alpha(L)=0.01210$ 17; $\alpha(M)=0.00293$ 5 $\alpha(N)=0.000696$ 10; $\alpha(O)=0.0001027$ 15;
1135.82	0+	1035.65 12	100 33	100.10598	2+	[E2]		0.00420		$\alpha(P)=3.34\times10^{-6} 5$ $\alpha(K)=0.00346 5$; $\alpha(L)=0.000575 8$; $\alpha(M)=0.0001317 19$ $\alpha(N)=3.16\times10^{-5} 5$; $\alpha(O)=5.05\times10^{-6} 7$; $\alpha(P)=3.21\times10^{-7} 5$
		1135.9 2		0.0	0+	E0			0.84 21	$q_{K}^{2}(E0/E2)=1.8$ 7, $X(E0/E2)=0.09$ 4 (2005Ki02 evaluation).
1144.32	8+	463.9 1	100	680.42	6+	E2		0.0254		evaluation). B(E2)(W.u.)=209 18 α (K)=0.0191 3; α (L)=0.00479 7; α (M)=0.001140 16 α (N)=0.000272 4; α (O)=4.11×10 ⁻⁵ 6; α (P)=1.735×10 ⁻⁶ 25
1221.4001	2+	891.77 10	0.163 7	329.4268	4+	E2		0.00569		B(E2)(W.u.)=0.0346 18 α (K)=0.00464 7; α (L)=0.000810 12; α (M)=0.000187 3 α (N)=4.47×10 ⁻⁵ 7; α (O)=7.09×10 ⁻⁶ 10; α (P)=4.31×10 ⁻⁷ 6
		1121.290 3	100.0	100.10598	2+	E2+M1+E0	+30 +6-4			$\alpha(F)=4.51\times10^{-6}$ B(E2)(W.u.)=6.74 17 Mult.: E0 component suggested by ce data in 182 Ta β^- (1990Ka35) and q_K (E0/E2)=0.19 6 (1975We22). δ : 17 +4-3 (1990Ka35).
		1221.395 3	77.27 22	0.0	0+	E2		0.00305		6: 17 +4-3 (1990Ra35). B(E2)(W.u.)=3.40 9 α (K)=0.00252 4; α (L)=0.000402 6; α (M)=9.15×10 ⁻⁵ 13

$\gamma(^{182}\text{W})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^π	Mult.‡	δ^{\ddagger}	α [@]	Comments
1257.4121	2+	(121.5 2)	0.16 4	1135.82	0+	[E2]		1.83	$\alpha(N)=2.20\times10^{-5}\ 3;\ \alpha(O)=3.53\times10^{-6}\ 5;\ \alpha(P)=2.34\times10^{-7}\ 4;\ \alpha(IPF)=6.75\times10^{-6}\ 10$ B(E2)(W.u.)=1.8×10 ² 5 $\alpha(K)=0.596\ 9;\ \alpha(L)=0.936\ 15;\ \alpha(M)=0.236\ 4$ $\alpha(N)=0.0556\ 9;\ \alpha(O)=0.00765\ 13;\ \alpha(P)=4.50\times10^{-5}\ 7$ E _{γ} : B(E2)(W.u.)=200 60 is considered as large and improbable by the evaluators in view of relatively small B(E2)(W.u.) for other transitions from the 1257 level. Thus the presence of this transition is treated as
		928.00 3	40.5 6	329.4268	4+	E2		0.00524	questionable. B(E2)(W.u.)=1.73 <i>15</i> α (K)=0.00429 <i>6</i> ; α (L)=0.000738 <i>11</i> ; α (M)=0.0001698 24 α (N)=4.07×10 ⁻⁵ <i>6</i> ; α (O)=6.47×10 ⁻⁶ <i>9</i> ; α (P)=3.98×10 ⁻⁷ <i>6</i> δ (M3/E2)=+0.04 <i>14</i> ($\gamma\gamma$ (θ) in ¹⁸² Ta β ⁻ , 1992Ch26).
		1157.3 <i>I</i>	42 6	100.10598	2+	E2+M1+E0	-9 +3-6	0.0092 5	B(E2)(W.u.)=0.59 10 E _γ : from ¹⁸² Re decay (64.0 h). In β^- decay, 1157+1158 doublet is not well resolved; with average energy of the doublet at 1157.510 15, it deviates from level-energy difference by 0.2 keV in β^- decay dataset. I _γ : unweighted average of 48.6 23 (β^- decay) and 35 4 in ε decay (64 h). Other: 72 5 in Coul. ex. is high by \approx 70%. Values from (α ,2nγ) and (n,n' γ) cannot be used as these studies did not account for 1157 being a doublet with the second component from 1487 level. Mult.: E0 component is estimated as 0.5% 1 by the evaluators from comparison of γ -ray intensities and K-shell electron conversion data in 1976He18. α: based on 0.5% 1 E0 component and δ (E2/M1)=-9 +3-6.
		1257.407 3	100.00 28	0.0	0+	E2		0.00289	B(E2)(W.u.)=0.93 8 α (K)=0.00239 4; α (L)=0.000378 6; α (M)=8.60×10 ⁻⁵ 12 α (N)=2.06×10 ⁻⁵ 3; α (O)=3.33×10 ⁻⁶ 5; α (P)=2.21×10 ⁻⁷ 3; α (IPF)=1.119×10 ⁻⁵ 16
1289.1498	2-	31.7377 5	5.30 <i>13</i>	1257.4121	2+	E1		1.628	B(E1)(W.u.)=7.1×10 ⁻⁵ 4 α (L)=1.259 18; α (M)=0.293 4 α (N)=0.0675 10; α (O)=0.00910 13; α (P)=0.000305 5 I $_{\gamma}$: all branchings relative to 1189 γ , since efficiency problems at low energies such as 67.7 keV can be problematic. Branching for 31.7 γ is from β^- decay. Other: 2.8 6 from ε decay is low by a factor of \approx 2.
		67.74970 [#] 10	260.4 21	1221.4001	2+	E1		0.202	B(E1)(W.u.)=0.000360 14 α (L)=0.1563 22; α (M)=0.0358 5 α (N)=0.00840 12; α (O)=0.001234 18; α (P)=5.51×10 ⁻⁵ 8

10

γ (182W) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	$\alpha^{\textcircled{@}}$	Comments
1289.1498	2-	959.73 3	2.120 24	329.4268	4 ⁺	E3+M2	-5.5 +19-10	0.0116 7	Mult., δ : RUL(M2)=1 implies δ <0.002, thus pure E1 is assigned. Experimental limit: δ <0.02. B(M2)(W.u.)=0.00016 11; B(E3)(W.u.)=3.44 16 α (K)=0.0090 δ ; α (L)=0.00196 δ ; α (M)=0.000463 17 α (N)=0.000111 δ ; α (O)=1.73×10 ⁻⁵ 7; α (P)=9.3×10 ⁻⁷ δ
		1189.040 <i>3</i>	100.00 24	100.10598	2+	E1+M2+E3		0.0047 3	δ: other: $-4.6 + 36 - \text{Inf} (\gamma \gamma(\theta) \text{ in } ^{182}\text{Ta } \beta^-, \frac{1992\text{Ch26}}{1992\text{Ch26}}$. δ(M2/E1)= $+0.48$ 3; δ(E3/E1)= -0.67 5 B(E1)(W.u.)= 1.58×10^{-8} 13; B(M2)(W.u.)= 0.012 2; B(E3)(W.u.)= 10.6 13
									δ: from weighted averages of δ (M2/E1)=+0.44 δ , δ (E3/E1)=-0.69 $I0$ (1983Ri05); δ (M2/E1)=+0.49 3 , δ (E3/E1)=-0.64 δ (1972Kr05); δ (M2/E1)=0.49 δ , δ (E3/E1)=0.72 δ 7 (1972He10). Mult., δ 2: 59% δ 4 E1, 14% δ 7 M2 and 27% δ 7 E3. Conversion coefficient deduced for this admixture
		1289.145 3	8.32 4	0.0	0+	M2		0.01231	from BrIcc code. B(M2)(W.u.)=0.00460 17 α (K)=0.01019 15; α (L)=0.001630 23; α (M)=0.000372 6
1331.1153	3 ⁺	1001.700 18	17.95 <i>21</i>	329.4268	4+	E2+M1	-8.9 +18-21	0.00455 8	$\alpha(N)=8.98\times10^{-5} \ 13; \ \alpha(O)=1.466\times10^{-5} \ 21;$ $\alpha(P)=1.047\times10^{-6} \ 15; \ \alpha(IPF)=5.96\times10^{-6} \ 9$ $B(M1)(W.u.)>4.1\times10^{-8}; \ B(E2)(W.u.)>0.0023$
									$\alpha(K)=0.00374 \ 6$; $\alpha(L)=0.000627 \ 10$; $\alpha(M)=0.0001438 \ 23$ $\alpha(N)=3.45\times10^{-5} \ 6$; $\alpha(O)=5.51\times10^{-6} \ 9$; $\alpha(P)=3.48\times10^{-7} \ 6$ δ : other: $-8.2 +22-42 \ (\gamma\gamma(\theta) \ in \ ^{182}\text{Ta} \ \beta^-$,
		1231.004 3	100.00 24	100.10598	2+	E2+M1	-33 +6-9	0.00301	1992Ch26). B(M1)(W.u.)>9.7×10 ⁻⁹ ; B(E2)(W.u.)>0.0046 α (K)=0.00249 4; α (L)=0.000395 6; α (M)=9.01×10 ⁻⁵
									13 $\alpha(N)=2.16\times10^{-5} \ 3; \ \alpha(O)=3.48\times10^{-6} \ 5;$ $\alpha(P)=2.31\times10^{-7} \ 4; \ \alpha(IPF)=7.86\times10^{-6} \ 11$ δ : others: +11 +6-3 ($\gamma\gamma(\theta)$ in ¹⁸² Ta β^- ,
1373.8301	3-	42.7148 <i>4</i>	3.82 8	1331.1153	3 ⁺	E1		0.720	1992Ch26); $-60 + 20 - 100$ (1972Kr05). B(E1)(W.u.)=0.00028 4 α (L)=0.557 8; α (M)=0.1286 18 α (N)=0.0299 5; α (O)=0.00419 6; α (P)=0.0001586 23
		84.6802 [#] 3	37.82 25	1289.1498	2-	M1+E2	+0.326 11	7.66	B(M1)(W.u.)=0.034 5; B(E2)(W.u.)= 2.1×10^2 3 α (K)= 5.84 9; α (L)= 1.40 3; α (M)= 0.331 8

E _i (level) J_i^{π} E_{γ}^{\dagger} I_{γ}^{\dagger} E_f J_f^{π} Mult. ‡ δ^{\ddagger} $\alpha^{@}$	Comments $\alpha(N)=0.0790\ 18;\ \alpha(O)=0.0121\ 3;\ \alpha(P)=0.000593\ 9$
	δ: weighted average of +0.32 3 (1983Ri05), +0.30 2 (1980Sp01), +0.31 5 (1975Qu01), +0.30 2 (1972Kr05), 0.352 3 (1972He10,ce data, uncertainty increased to 0.02 in averaging procedure), 0.40 7 (1971Ga37,ce data), 0.346 7 (1967Ni03, ce data, uncertainty increased to 0.02 in averaging procedure). Values with sign are from $\gamma(\theta)$ or $\gamma\gamma(\theta)$ data.
1373.8301 3 ⁻ 116.4179 [#] 6 6.33 5 1257.4121 2 ⁺ E1 0.253	B(E1)(W.u.)= 2.3×10^{-5} 3 α (K)= 0.207 3; α (L)= 0.0353 5; α (M)= 0.00805 12 α (N)= 0.00191 3; α (O)= 0.000290 4; α (P)= 1.510×10^{-5} 22
152.42991 [#] 26 100.0 5 1221.4001 2 ⁺ E1 0.1258	B(E1)(W.u.)=0.000162 21 α (K)=0.1038 15; α (L)=0.01703 24; α (M)=0.00387 6 α (N)=0.000919 13; α (O)=0.0001421 20; α (P)=7.85×10 ⁻⁶ 11 δ: -0.22 11 (1992Ch26), -0.023 4 (1983Ri05), 0.035 53 (1980Sp01 in ¹⁸² Re decay); +0.014 13 (1975Qu01); all from γ (θ) or $\gamma \gamma$ (θ). Subshell ratios in ce data (1967Ni03) give pure E1 consistent with RUL(M2)=1 suggests δ<0.006, thus the evaluators assign pure E1.
1044.42 5 3.41 6 329.4268 4 ⁺ E1+M2(+E3) 0.46 9 0.0051 12	B(E1)(W.u.)=1.42×10 ⁻⁸ 21; B(M2)(W.u.)=(0.013 5) α (K)=0.0042 10; α (L)=0.00067 16; α (M)=0.00015 4 α (N)=3.7×10 ⁻⁵ 9; α (O)=6.0×10 ⁻⁶ 14; α (P)=4.2×10 ⁻⁷ 10 δ (M2/E1)=+0.4 3, δ (E3/E1)=-0.3 2 (1972Kr05).
1273.719 <i>3</i> 9.40 <i>5</i> 100.10598 2 ⁺ E1+M2+E3 0.0029 <i>5</i>	δ(M2/E1)=+0.36 10; $δ$ (E3/E1)=-0.28 12 B(E1)(W.u.)=1.37×10 ⁻⁸ 20; B(M2)(W.u.)≈8×10 ⁻⁴ ; B(E3)(W.u.)=9 2 Mult., $α$: 81% 5 E1, 12% 4 M2 and 7% 2 E3. Conversion coefficient deduced for this admixture from BrIcc code. Mult., $δ$: from $γ$ ($θ$) and lin pol data of 1983Ri05,
1373.824 <i>3</i> 3.17 <i>3</i> 0.0 0 ⁺ E3 0.00496	agrees with ce data of 1992Ch26. B(E3)(W.u.)=5.8 8 α (K)=0.00400 6; α (L)=0.000728 11; α (M)=0.0001685 24 α (N)=4.05×10 ⁻⁵ 6; α (O)=6.44×10 ⁻⁶ 9; α (P)=3.97×10 ⁻⁷ 6; α (IPF)=1.252×10 ⁻⁵ 18
1442.835 4 ⁺ 1113.410 18 100.0 14 329.4268 4 ⁺ E2+M1(+E0) +5.6 +13-10 0.00376 8	B(E2)(W.u.)=10.3 10 Mult.,δ: from ce data in 182 Ta β^- , 1990Ka35

$\frac{\gamma^{(102\text{W})} \text{ (continued)}}{2}$								nued)			
	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult.‡	δ^{\ddagger}	$\alpha^{\textcircled{@}}$	Comments	
	1442.835	4+	1342.730 <i>15</i>	57.7 3	100.10598	2+	E2		0.00256	suggest M1+E2(+E0) with δ (E2/M1)=20 <i>13</i> . δ (E2/M1)=+1.1 2 from $\gamma\gamma(\theta)$ in 182 Ta β^- (1992Ch26). E0 component is suggested by 1975We22 with q_K (E0/E2)=0.41 9. B(E2)(W.u.)=2.41 23 α (K)=0.00211 3; α (L)=0.000329 5; α (M)=7.49×10 ⁻⁵ 11 α (N)=1.80×10 ⁻⁵ 3; α (O)=2.90×10 ⁻⁶ 4;	
										$\alpha(P)=1.95\times10^{-7}~3;~\alpha(IPF)=2.56\times10^{-5}~4$ I_{γ} : 93 7 in $(\alpha,2n\gamma)$ is high by $\approx60\%$. $\delta(M3/E2)=-0.11~+4-20$ from $\gamma(\theta)$ in 182 Ta β^- decay is inconsistent with RUL(M3)=10, which suggests that δ should be near zero. $\alpha(K)$ exp in 182 Re ε decay is consistent with $\delta(M3/E2)=0$ assigned by the evaluators.	
	1487.5018	4-	44.66 ^{&} 11	1.12 22	1442.835	4+	[E1]		0.637 10	B(E1)(W.u.)>0.00011 α (L)=0.493 8; α (M)=0.1136 18 α (N)=0.0264 5; α (O)=0.00373 6; α (P)=0.0001436 22	
			113.67170 [#] 22	70.0 3	1373.8301	3-	M1+E2	+0.36 1	3.18	B(M1)(W.u.)>0.038; B(E2)(W.u.)>1.5×10 ² α (K)=2.49 4; α (L)=0.530 9; α (M)=0.1242 22 α (N)=0.0297 5; α (O)=0.00462 8; α (P)=0.000250 4 α (L)=1.22 10 in (α ,2n γ) is high by ≈75%.	
			156.3864# 3	100.0 4	1331.1153	3+	E1		0.1177	B(E1)(W.u.)>0.00023 α (K)=0.0972 14; α (L)=0.01590 23; α (M)=0.00362 5 α (N)=0.000858 12; α (O)=0.0001328 19; α (P)=7.38×10 ⁻⁶ 11 δ (M2/E1)=-0.053 4 (1983Ri05, γ (θ) and lin pol); -0.08 5 (1992Ch26, $\gamma \gamma$ (θ)); +0.06 +3-6 (1981Ka22, $\gamma \gamma$ (θ)). But RUL=1 for M2 implies δ <0.005, thus the evaluators assign E1. δ (M2/E1)=-0.08 5 ($\gamma \gamma$ (θ) and ce in ¹⁸² Ta β ⁻ , 1992Ch26).	
			198.35187# 29	54.84 21	1289.1498	2-	E2		0.317	B(E2)(W.u.)>68 α(K)=0.1725 25; α(L)=0.1097 16; α(M)=0.0273 4 α(N)=0.00646 9; α(O)=0.000910 13; α(P)=1.364×10 ⁻⁵ 19 δ(M3/E2)=+0.067 10 from $\gamma(\theta)$ in ¹⁸² Ta β^- , but RUL(M3)=10 suggests δ(M3/E2) should be near zero. The evaluators assign pure E2.	
			1158.1 2	10.8 13	329.4268	4+	E1		1.38×10^{-3}	B(E1)(W.u.)>6.1×10 ⁻⁸ α (K)=0.001159 <i>I7</i> ; α (L)=0.0001632 <i>23</i> ; α (M)=3.66×10 ⁻⁵ 6	

y(w) (continued)							lueu)		
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	$\alpha^{\textcircled{@}}$	Comments
1487.5018	4-	1387.390 3	2.73 4	100.10598	2+	E3+M2	2.6 4	0.00554 24	$\alpha(N)=8.79\times10^{-6}\ 13;\ \alpha(O)=1.432\times10^{-6}\ 20;\ \alpha(P)=1.021\times10^{-7}\ 15;\ \alpha(IPF)=7.59\times10^{-6}\ 12$ $\delta(M2/E1)=-0.01\ +2-I\ (\gamma\gamma(\theta)\ in\ ^{182}Ta\ \beta^-,\ 1992Ch26).$ $I_{\gamma}:\ from\ ^{182}Re\ decay\ (64.0\ h).\ B(M2)(W.u.)>0.0020;\ B(E3)(W.u.)>5.9$ $\alpha(K)=0.00450\ 2I;\ \alpha(L)=0.00079\ 3;\ \alpha(M)=0.000183\ 7$ $\alpha(N)=4.39\times10^{-5}\ 16;\ \alpha(O)=7.0\times10^{-6}\ 3;\ \alpha(P)=4.50\times10^{-7}$
1510.22	4+	830.1 4	17 <i>3</i>	680.42	6+				21; $\alpha(\text{IPF})=1.426\times 10^{-5}$ 22 $\text{E}_{\gamma}, \text{I}_{\gamma}$: weighted averages taken of data from β^- , ε and
		1180.80 11	100 3	329.4268	4+	E2+M1	-2.8 10	0.0036 4	(n,n'γ) for all three γ rays from the 1510 level. $\alpha(K)$ =0.0030 4; $\alpha(L)$ =0.00047 5; $\alpha(M)$ =0.000108 11 $\alpha(N)$ =2.59×10 ⁻⁵ 25; $\alpha(O)$ =4.2×10 ⁻⁶ 5; $\alpha(P)$ =2.8×10 ⁻⁷ 4;
		1410.13 5	45.8 10	100.10598	2+	E2		0.00235	α (IPF)=3.11×10 ⁻⁶ 16 α (K)=0.00193 3; α (L)=0.000298 5; α (M)=6.76×10 ⁻⁵ 10 α (N)=1.624×10 ⁻⁵ 23; α (O)=2.62×10 ⁻⁶ 4; α (P)=1.783×10 ⁻⁷ 25; α (IPF)=4.20×10 ⁻⁵ 6
1553.2240	4-	65.72215 [#] <i>15</i>	39.8 4	1487.5018	4-	M1+E2	0.093 6	2.91 5	B(M1)(W.u.)=0.00624 24; B(E2)(W.u.)=5.2 7 α (L)=2.25 4; α (M)=0.517 9
		110.393 12	1.42 4	1442.835	4+	[E1]		0.290	$\alpha(N)=0.1242 \ 20; \ \alpha(O)=0.0200 \ 3; \ \alpha(P)=0.001340 \ 19$ $B(E1)(W.u.)=4.53\times10^{-7} \ 20$ $\alpha(K)=0.238 \ 4; \ \alpha(L)=0.0408 \ 6; \ \alpha(M)=0.00931 \ 13$ $\alpha(N)=0.00220 \ 3; \ \alpha(O)=0.000335 \ 5; \ \alpha(P)=1.717\times10^{-5} \ 24$
		179.39381# 25	41.22 19	1373.8301	3-	M1+E2	+1.3 2	0.62 4	B(M1)(W.u.)=0.000119 24; B(E2)(W.u.)=2.6 4 α (K)=0.42 5; α (L)=0.149 5; α (M)=0.0363 13 α (N)=0.0086 3; α (O)=0.00126 4; α (P)=3.9×10 ⁻⁵ 5 I_{γ} : 35.5 21 from ε decay is quite in agreement. δ : unweighted average of +2.2 2 (1992Ch26), +2.1 +3-2 (1983Ri05), +1.3 5 (1980Sp01), +0.9 4 (1975Qu01), +0.92 +13-7 (1972Kr05), +0.90m +40-23 (1972He10), 0.7 1 (1967Ni03). Weighted average is 1.0 2 but with reduced χ^2 =10. Except for 1967Ni03, all other methods are $\gamma(\theta)$ on oriented nuclei or $\gamma\gamma(\theta)$.
		222.1085# 3	100.0 3	1331.1153	3+	E1		0.0480	B(E1)(W.u.)= $3.92\times10^{-6}~13$ $\alpha(K)=0.0399~6$; $\alpha(L)=0.00630~9$; $\alpha(M)=0.001429~20$ $\alpha(N)=0.000340~5$; $\alpha(O)=5.34\times10^{-5}~8$; $\alpha(P)=3.17\times10^{-6}~5$ δ : +0.007 5 (1972Kr05), +0.027 7 (1992Ch26), -0.12 18 (1975Qu01), pure E1 from subshell data (1967Ni01), as also suggested by RUL for M2.
		264.0740 [#] 3	47.74 19	1289.1498	2-	E2		0.1254	B(E2)(W.u.)=0.700 23 α (K)=0.0799 12; α (L)=0.0347 5; α (M)=0.00852 12 α (N)=0.00202 3; α (O)=0.000291 4; α (P)=6.69×10 ⁻⁶ 10

$\gamma(^{182}W)$ (continued)

E_i ((level)	${\rm J}_i^\pi$	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	$\alpha^{\textcircled{@}}$	Comments
155	3.2240	4-	1223.73 11	3.1 4	329.4268	4+	E1+M2(+E3)	-0.15 + <i>10</i> -25	0.0016 15	B(E1)(W.u.)=7.1×10 ⁻¹⁰ 10; B(M2)(W.u.)=(5.E-5 +7-5) α(K)=0.0013 13; α(L)=1.9×10 ⁻⁴ 20; α(M)=4.2×10 ⁻⁵ 46 α(N)=1.0×10 ⁻⁵ 11; α(O)=1.6×10 ⁻⁶ 18; α(P)=1.2×10 ⁻⁷ 13; α(IPF)=2.7×10 ⁻⁵ 3 E _γ : weighted average from β ⁻ and ε decay. Mult.,δ: from ce data of 1976He18 and γγ(θ) data of of 1992Ch26 in 182 Ta β ⁻ . E3 admixture cannot be ruled out.
			1453.120 6	0.405 14	100.10598		E3(+M2)	>2.3	0.0048 4	B(E3)(W.u.)=0.017 2 α (K)=0.0039 4; α (L)=0.00068 5; α (M)=0.000156 11 α (N)=3.76×10 ⁻⁵ 25; α (O)=6.0×10 ⁻⁶ 4; α (P)=3.9×10 ⁻⁷ 4; α (IPF)=2.29×10 ⁻⁵ 4 I_{γ} : other: 27 3 in $(\alpha$,2n γ) is much higher, most likely an impurity or incorrect assignment.
162	1.284	5-	111.07 <i>5</i> 133.80 <i>5</i>	4.1 <i>3</i> 49 <i>3</i>	1510.22 1487.5018	4 ⁺ 4 ⁻	M1+E2	+0.39 +4-3	1.96 4	$\alpha(K)$ =1.55 4; $\alpha(L)$ =0.316 10; $\alpha(M)$ =0.0739 24
			178.47 5	45 <i>3</i>	1442.835	4+	E1		0.0838	$\alpha(N)=0.0177 \ 6; \ \alpha(O)=0.00277 \ 8; \ \alpha(P)=0.000155 \ 4$ $\alpha(K)=0.0693 \ 10; \ \alpha(L)=0.01118 \ 16; \ \alpha(M)=0.00254$ 4 $\alpha(N)=0.000604 \ 9; \ \alpha(O)=9.39\times10^{-5} \ 14;$ $\alpha(P)=5.36\times10^{-6} \ 8$
			247.46 5	100 7	1373.8301	3-	E2		0.1538	$\alpha(P)=5.36\times10^{-6} 8$ $\alpha(K)=0.0951 \ 14; \ \alpha(L)=0.0447 \ 7; \ \alpha(M)=0.01101 \ 16$ $\alpha(N)=0.00261 \ 4; \ \alpha(O)=0.000374 \ 6;$ $\alpha(P)=7.86\times10^{-6} \ 11$
			1291.8 <i>4</i>	4.6 5	329.4268	4+	E1+M2	0.4 2	0.0027 14	$\alpha(K)=0.0022 \ 12; \ \alpha(L)=3.4\times10^{-4} \ 19;$ $\alpha(M)=7.7\times10^{-5} \ 44$ $\alpha(N)=1.9\times10^{-5} \ 11; \ \alpha(O)=3.0\times10^{-6} \ 17;$
			1521.3 4	1.89 20	100.10598	2+	(E3)		0.00402	$\alpha(P)=2.2\times10^{-7}$ 13; $\alpha(IPF)=5.0\times10^{-5}$ 7 $\alpha(K)=0.00325$ 5; $\alpha(L)=0.000568$ 8; $\alpha(M)=0.0001309$ 19 $\alpha(N)=3.15\times10^{-5}$ 5; $\alpha(O)=5.03\times10^{-6}$ 7;
162	3.51	(5)+	943.1 3	14.0 22	680.42	6+	E2		0.00507	$\alpha(P)=3.20\times10^{-7} 5$; $\alpha(IPF)=3.37\times10^{-5} 5$ $\alpha(K)=0.00415 6$; $\alpha(L)=0.000711 10$; $\alpha(M)=0.0001634 23$ $\alpha(N)=3.92\times10^{-5} 6$; $\alpha(O)=6.23\times10^{-6} 9$; $\alpha(P)=3.86\times10^{-7} 6$
			1294.0 3	100.0 19	329.4268	4+	E2(+M1)	>30	0.00274	I _y : 35 5 in (n,n' γ) is discrepant. α (K)=0.00226 4; α (L)=0.000356 5; α (M)=8.10×10 ⁻⁵ 12

15

 $\alpha(N)$ =0.001043 *15*; $\alpha(O)$ =0.0001608 *23*; $\alpha(P)$ =8.80×10⁻⁶ *13* I_{γ}: 45 *10* in (α ,2n γ) is discrepant.

 $\gamma(^{182}W)$ (continued)

Adopted Levels, Gammas (continued)

							4		
$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	$\alpha^{@}$	Comments
1660.383	5-	39.1 <i>I</i> 107.13 <i>5</i>	3.7 <i>7</i> 20.1 <i>15</i>	1621.284 1553.2240	5 ⁻ 4 ⁻	M1+E2 M1+E2	0.061 <i>7</i> -0.8 2	13.6 <i>4</i> 3.54 <i>13</i>	$\alpha(N)=1.94\times10^{-5}$ 3; $\alpha(O)=3.13\times10^{-6}$ 5; $\alpha(P)=2.10\times10^{-7}$ 3; $\alpha(IPF)=1.654\times10^{-5}$ 24 $\alpha(L)=10.53$ 25; $\alpha(M)=2.42$ 6 $\alpha(N)=0.581$ 15; $\alpha(O)=0.0933$ 21; $\alpha(P)=0.00618$ 10 $\alpha(K)=2.3$ 4; $\alpha(L)=0.96$ 15; $\alpha(M)=0.24$ 4 $\alpha(N)=0.056$ 9; $\alpha(O)=0.0081$ 12; $\alpha(P)=0.00022$ 4 I_{γ} : 55 4 in $(\alpha,2n\gamma)$ is discrepant.
		150.25 ^{&} 5	7.3 7	1510.22	4+	(E1)		0.1305	$\alpha(K)$ =0.1077 16; $\alpha(L)$ =0.01770 25; $\alpha(M)$ =0.00403 6 $\alpha(N)$ =0.000956 14; $\alpha(O)$ =0.0001476 21; $\alpha(P)$ =8.13×10 ⁻⁶ 12
		172.87 5	51 3	1487.5018	4-	M1+E2	+0.26 1	0.971	I _γ : 51 10 in (α,2nγ) is discrepant. α(K)=0.795 12; α(L)=0.1356 20; α(M)=0.0312 5 α(N)=0.00749 11; α(O)=0.001205 17; α(P)=7.97×10 ⁻⁵ 12 I _γ : 137 14 in (α,2nγ) is discrepant.
		217.55 5	46 <i>3</i>	1442.835	4+	(E1)		0.0506	$\alpha(K)$ =0.0420 6; $\alpha(L)$ =0.00664 10; $\alpha(M)$ =0.001508 22 $\alpha(N)$ =0.000359 5; $\alpha(O)$ =5.63×10 ⁻⁵ 8; $\alpha(P)$ =3.33×10 ⁻⁶ 5 I_{γ} : 93 7 in $(\alpha, 2n\gamma)$ is discrepant.
		286.56 5	100 7	1373.8301	3-	E2		0.0976	$\alpha(K)=0.0643$ 9; $\alpha(L)=0.0254$ 4; $\alpha(M)=0.00621$ 9 $\alpha(N)=0.001472$ 21; $\alpha(O)=0.000213$ 3; $\alpha(P)=5.47\times10^{-6}$ 8
		1330.9 2	5.3 5	329.4268	4+	E1+M2	0.5 2	0.0032 14	$\alpha(K)=0.0026\ 11;\ \alpha(L)=4.0\times10^{-4}\ 18;\ \alpha(M)=9.1\times10^{-5}\ 41$ $\alpha(N)=2.19\times10^{-5}\ 98;\ \alpha(O)=3.6\times10^{-6}\ 16;\ \alpha(P)=2.6\times10^{-7}\ 12;$ $\alpha(IPF)=6.3\times10^{-5}\ 9$
		1560.4 4	1.02 11	100.10598	2+	(E3)		0.00382	$\alpha(K)$ =0.00309 5; $\alpha(L)$ =0.000534 8; $\alpha(M)$ =0.0001231 18 $\alpha(N)$ =2.96×10 ⁻⁵ 5; $\alpha(O)$ =4.74×10 ⁻⁶ 7; $\alpha(P)$ =3.03×10 ⁻⁷ 5; $\alpha(IPF)$ =4.10×10 ⁻⁵ 6
1711.99	10+	567.5 1	100	1144.32	8+	E2		0.01543	B(E2)(W.u.)=203 19 α (K)=0.01202 17; α (L)=0.00262 4; α (M)=0.000616 9 α (N)=0.0001472 21; α (O)=2.26×10 ⁻⁵ 4; α (P)=1.106×10 ⁻⁶ 16
1756.75	6+	313.94 12	7.5 5	1442.835	4+	E2		0.0743	$\alpha(N)=0.0001472\ 21;\ \alpha(O)=2.20\times10^{-4}\ 4;\ \alpha(P)=1.106\times10^{-1}\ 100\times10^{-1}\ 100\times$
		1076.4 <i>1</i>	100 3	680.42	6+	E2+M1	+2.56 +9-8	0.00444	$\alpha(K)$ =0.00368 6; $\alpha(L)$ =0.000592 9; $\alpha(M)$ =0.0001351 21 $\alpha(N)$ =3.24×10 ⁻⁵ 5; $\alpha(O)$ =5.22×10 ⁻⁶ 8; $\alpha(P)$ =3.45×10 ⁻⁷ 6 Mult.: no E0 admixture was found in $\gamma(ce)(\theta)$ and ce data of 1975We22.
		1427.2 <i>I</i>	92.1 <i>17</i>	329.4268	4+	E2		0.00231	$\alpha(K)$ =0.00188 3; $\alpha(L)$ =0.000291 4; $\alpha(M)$ =6.60×10 ⁻⁵ 10 $\alpha(N)$ =1.584×10 ⁻⁵ 23; $\alpha(O)$ =2.56×10 ⁻⁶ 4; $\alpha(P)$ =1.744×10 ⁻⁷ 25; $\alpha(IPF)$ =4.67×10 ⁻⁵ 7
1765.53		434.3 <i>2</i> 544.20 <i>15</i>	48 <i>12</i> 100 <i>15</i>	1331.1153 1221.4001	3 ⁺ 2 ⁺				
1768.943	6-	108.58 <i>5</i>	12.6 25	1660.383	5-	M1+E2	-0.6 2	3.50 <i>13</i>	$\alpha(K)=2.5 \ 3; \ \alpha(L)=0.78 \ 14; \ \alpha(M)=0.19 \ 4$ $\alpha(N)=0.045 \ 9; \ \alpha(O)=0.0066 \ 11; \ \alpha(P)=0.00025 \ 4$ I_{γ} : 78 6 in $(\alpha,2n\gamma)$ is discrepant.
		145.43 5	11.8 9	1623.51	(5) ⁺	(E1)		0.1420	$\alpha(K)=0.1171 \ I7; \ \alpha(L)=0.0193 \ 3; \ \alpha(M)=0.00440 \ 7$ $\alpha(N)=0.001043 \ J5; \ \alpha(O)=0.0001608 \ 23; \ \alpha(P)=8.80\times10^{-6} \ J3$

	Adopted	Levels,	Gammas	(continued)
--	---------	---------	--------	-------------

γ ⁽¹⁸²W) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α@	Comments
		147.71 5	16.2 14	1621.284	5-	M1+E2	+0.8 2	1.30 9	$\alpha(K)$ =0.94 12; $\alpha(L)$ =0.277 24; $\alpha(M)$ =0.067 7 $\alpha(N)$ =0.0159 15; $\alpha(O)$ =0.00237 18; $\alpha(P)$ =9.1×10 ⁻⁵ 13 I_{γ} : 49 10 in $(\alpha, 2n\gamma)$ is discrepant.
		215.72 5	12.3 24	1553.2240	4-	(E2)		0.240	$\alpha(K)=0.1376\ 20;\ \alpha(L)=0.0776\ 11;\ \alpha(M)=0.0192\ 3$

$\gamma(\frac{182\text{W}) \text{ (continued)}}{}$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	$\alpha^{@}$	Comments
1768.943	6-	281.43 5	100 7	1487.5018	4-	E2		0.1031	$\alpha(N)=0.00455\ 7;\ \alpha(O)=0.000645\ 9;\ \alpha(P)=1.106\times 10^{-5}$ 16 I_{γ} : 65 6 in $(\alpha,2n\gamma)$ is discrepant. $\alpha(K)=0.0675\ 10;\ \alpha(L)=0.0272\ 4;\ \alpha(M)=0.00665\ 10$
1700.743	O	201.43 3	100 /	1407.5010	7	LZ		0.1031	$\alpha(N)$ =0.001578 23; $\alpha(O)$ =0.000228 4; $\alpha(P)$ =5.72×10 ⁻⁶ 8
		1088.5 3	3.5 4	680.42	6+	E1+M2	0.4 2	0.0040 23	$\alpha(K)$ =0.0033 19; $\alpha(L)$ =5.1×10 ⁻⁴ 31; $\alpha(M)$ =1.17×10 ⁻⁴ 70 $\alpha(N)$ =2.8×10 ⁻⁵ 17; $\alpha(O)$ =4.6×10 ⁻⁶ 28;
									$\alpha(P)=3.3\times10^{-7}\ 20$
		1439.3 <i>3</i>	2.81 18	329.4268	4+	(M2)		0.00930	$\alpha(K)$ =0.00770 11; $\alpha(L)$ =0.001217 17; $\alpha(M)$ =0.000277
									$\alpha(N)=6.69\times10^{-5}\ 10;\ \alpha(O)=1.093\times10^{-5}\ 16;$ $\alpha(P)=7.84\times10^{-7}\ 11;\ \alpha(IPF)=2.33\times10^{-5}\ 4$ Mult.: E1+M2 from $\alpha(K)$ exp but ΔJ^{π} requires M2.
1769.5?	(6 ⁺)	1089.0 1440.1		680.42 329.4268	6 ⁺ 4 ⁺				
1809.64	5-	188.54 <mark>&</mark> <i>5</i>	1.38 14	1621.284					
		256.42 11	100 8	1553.2240	4-	M1+E2	+0.037 +6-7	0.336	$\alpha(K)$ =0.279 4; $\alpha(L)$ =0.0438 7; $\alpha(M)$ =0.00997 14 $\alpha(N)$ =0.00240 4; $\alpha(O)$ =0.00392 6; $\alpha(P)$ =2.80×10 ⁻⁵ 4
1810.85	$(6)^{-}$	42.0		1768.943	6-				a(e), and in it, a(e) and a it, a(e) = 100000000000000000000000000000000000
		187.34 <i>5</i>	18.4 <i>18</i>	1623.51	(5) ⁺	E1+M2	+0.25 +27-20	0.33 66	$\alpha(K)$ =0.25 50; $\alpha(L)$ =0.06 13; $\alpha(M)$ =0.014 30 $\alpha(N)$ =0.0033 73; $\alpha(O)$ =5.E-4 12; $\alpha(P)$ =3.3×10 ⁻⁵ 74
		189.60 7	21.8 18	1621.284	5-	M1+E2	+0.31 +15-12	0.74 4	$\alpha(K)$ =0.60 4; $\alpha(L)$ =0.104 3; $\alpha(M)$ =0.0240 10 $\alpha(N)$ =0.00576 22; $\alpha(O)$ =0.000924 21; $\alpha(P)$ =6.0×10 ⁻⁵ 5
		323.33 10	100 7	1487.5018	4-	E2		0.0681	$\alpha(K)$ =0.0469 7; $\alpha(L)$ =0.01623 23; $\alpha(M)$ =0.00395 6 $\alpha(N)$ =0.000937 14; $\alpha(O)$ =0.0001372 20; $\alpha(P)$ =4.07×10 ⁻⁶ 6
1813.4		524.2 3	100	1289.1498				2	
1829.53	6-	19.85 <i>10</i>	0.32 11	1809.64	5-	M1+E2	0.07 2	$1.3 \times 10^2 \ 3$	$\alpha(L)=102\ 20;\ \alpha(M)=24\ 5$ $\alpha(N)=5.7\ 12;\ \alpha(O)=0.88\ 15;\ \alpha(P)=0.0461\ 10$
		60.65 <i>10</i> 169.15 <i>10</i>	0.91 <i>23</i> 100 <i>7</i>	1768.943 1660.383	6 ⁻ 5 ⁻	M1+E2	+0.094 6	1.060	$\alpha(K)=0.879 \ 13; \ \alpha(L)=0.1405 \ 20; \ \alpha(M)=0.0320 \ 5$
		109.13 10	100 /	1000.363	3	WII+E2	+0.094 0	1.000	$\alpha(R)=0.879 \ 13; \ \alpha(L)=0.1403 \ 20; \ \alpha(M)=0.0320 \ 3$ $\alpha(N)=0.00771 \ 11; \ \alpha(O)=0.001256 \ 18; \ \alpha(P)=8.85\times10^{-5}$ 13
		206.00 5	4.5 5	1623.51	(5) ⁺	E1		0.0581	$\alpha(K)$ =0.0482 7; $\alpha(L)$ =0.00766 11; $\alpha(M)$ =0.001739 25 $\alpha(N)$ =0.000414 6; $\alpha(O)$ =6.48×10 ⁻⁵ 9; $\alpha(P)$ =3.80×10 ⁻⁶ 6
		208.26 5	5.5 5	1621.284	5-	M1+E2	-1.0 5	0.43 10	$\alpha(K)=0.32 \ 11; \ \alpha(L)=0.084 \ 4; \ \alpha(M)=0.0200 \ 14$ $\alpha(N)=0.0048 \ 3; \ \alpha(O)=0.000721 \ 18; \ \alpha(P)=3.1\times10^{-5} \ 12$
		276.31 5	77 5	1553.2240	4-	E2		0.1090	$\alpha(K) = 0.0048 \ 5; \ \alpha(O) = 0.000721 \ 76; \ \alpha(F) = 5.1 \times 10^{-5} \ 12$ $\alpha(K) = 0.0708 \ 10; \ \alpha(L) = 0.0291 \ 4; \ \alpha(M) = 0.00714 \ 10$

$\gamma(^{182}\text{W})$ (continued)

$E_i(level)$	\mathtt{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	$\alpha^{\textcircled{@}}$	Comments
1829.53	6-	342.03 10	9.3 7	1487.5018	4-	E2	0.0579	$\alpha(N)=0.001693\ 24;\ \alpha(O)=0.000245\ 4;\ \alpha(P)=5.98\times10^{-6}\ 9$ $\alpha(K)=0.0406\ 6;\ \alpha(L)=0.01326\ 19;\ \alpha(M)=0.00321\ 5$ $\alpha(N)=0.000764\ 11;\ \alpha(O)=0.0001124\ 16;\ \alpha(P)=3.55\times10^{-6}\ 5$ I_{γ} : 43 4 in $(\alpha,2n\gamma)$ is discrepant.
1833.1? 1855.98	(2 ⁺)	1733.0 ^{&} 6 598.56 5 1527.0 ^{&} 10	100 100 <i>11</i> 10 <i>5</i>	100.10598 1257.4121 329.4268	2 ⁺ 2 ⁺ 4 ⁺			,
		1756.0 2	15 3	100.10598				E_{γ} : from $(n,n'\gamma)$ only. I_{γ} : 167 40 in $(n,n'\gamma)$ is discrepant.
		1857.3 2	8.0 6	0.0	0+	(E2)	1.59×10^{-3}	$\alpha(K)$ =0.001162 17; $\alpha(L)$ =0.0001723 25; $\alpha(M)$ =3.89×10 ⁻⁵ 6 $\alpha(N)$ =9.35×10 ⁻⁶ 13; $\alpha(O)$ =1.522×10 ⁻⁶ 22; $\alpha(P)$ =1.073×10 ⁻⁷ 15; $\alpha(P)$ =0.000210 3
								E_{γ} : from ¹⁸² Re decay only, poor fit; γ not used in the level-scheme fitting procedure. Level-energy difference=1856.1.
1856.9	1	1757.0 <i>6</i> 1856.7 <i>6</i>	35 <i>12</i> 100 <i>23</i>	100.10598 0.0	2 ⁺ 0 ⁺			
1871.17	1-	1543 2	≈5	329.4268	4+	[E3]	0.00391	$\alpha(K)$ =0.00316 5; $\alpha(L)$ =0.000549 8; $\alpha(M)$ =0.0001265 19 $\alpha(N)$ =3.04×10 ⁻⁵ 5; $\alpha(O)$ =4.86×10 ⁻⁶ 7; $\alpha(P)$ =3.11×10 ⁻⁷ 5; $\alpha(PF)$ =3.77×10 ⁻⁵ 7
		1771.0 2	100 10	100.10598	2+	E1	1.04×10^{-3}	$\alpha(K)$ =0.000562 8; $\alpha(L)$ =7.77×10 ⁻⁵ 11; $\alpha(M)$ =1.740×10 ⁻⁵ 25 $\alpha(N)$ =4.18×10 ⁻⁶ 6; $\alpha(O)$ =6.84×10 ⁻⁷ 10; $\alpha(P)$ =4.98×10 ⁻⁸ 7; $\alpha(P)$ =0.000383 6
		1871.2 2	90 7	0.0	0+	E1	1.06×10^{-3}	$\alpha(K)=0.000513$ 8; $\alpha(L)=7.09\times10^{-5}$ 10; $\alpha(M)=1.587\times10^{-5}$ 23 $\alpha(N)=3.81\times10^{-6}$ 6; $\alpha(O)=6.24\times10^{-7}$ 9; $\alpha(P)=4.55\times10^{-8}$ 7; $\alpha(P)=0.000457$ 7
1887.84		556.7 <i>3</i>	83 25	1331.1153	3+			
		666.4 <i>4</i>	46 17	1221.4001	2+			
		1558.5 4	100 25	329.4268	4+			
1917.05	7-	106.3 <i>1</i> 148.2 <i>1</i>	8 2 10 2	1810.85 1768.943	(6) ⁻ 6 ⁻			
		160.20 ^{&} 5	10 2	1756.75	6+			E_{γ} : from ¹⁸² Re decay only. This γ is considered as suspect by the evaluators since its intensity of 116 7 relative to 100 for 295.7 γ is much too high to have missed detection in in-beam γ -ray study.
		256.5 1	28 4	1660.383	5 ⁻	Q	0.0000	
		295.63 10	100 14	1621.284	5-	E2	0.0888	$\alpha(K)$ =0.0592 9; $\alpha(L)$ =0.0226 4; $\alpha(M)$ =0.00551 8 $\alpha(N)$ =0.001308 19; $\alpha(O)$ =0.000190 3; $\alpha(P)$ =5.06×10 ⁻⁶ 8
1918.6 1959.35	(2 ⁺ to 4 ⁺) (2 ⁺)	1818.5 <i>4</i> 449.8 <i>3</i> 627.5 <i>4</i> 1629.8 2 1859.1 8	100 21 10 50 14 100 14 71 24	100.10598 1510.22 1331.1153 329.4268 100.10598	4 ⁺ 3 ⁺ 4 ⁺	(Q)		
		1959.2 ^{&} 10	14 5	0.0	0^+			

19

$\gamma(^{182}W)$ (continued)

							<u> </u>		
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$-I_{\gamma}{}^{\dagger}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α@	Comments
1960.30	(7)-	130.81 5	100 7	1829.53	6-	M1+E2	-0.51 +6-8	2.03 6	$\alpha(K)$ =1.55 8; $\alpha(L)$ =0.369 21; $\alpha(M)$ =0.087 6 $\alpha(N)$ =0.0208 13; $\alpha(O)$ =0.00319 16; $\alpha(P)$ =0.000154 8
		149.45 5	12.1 10	1810.85	(6)	M1+E2	-0.15 +15-18	1.50 6	$\alpha(K)$ =1.23 7; $\alpha(L)$ =0.202 14; $\alpha(M)$ =0.046 4 $\alpha(N)$ =0.0111 9; $\alpha(O)$ =0.00180 10; $\alpha(P)$ =0.000124 8
		191.39 5	90 7	1768.943	6-	M1+E2	-0.23 +6-8	0.734 18	$\alpha(K)$ =0.604 19; $\alpha(L)$ =0.1002 18; $\alpha(M)$ =0.0230 5 $\alpha(N)$ =0.00552 11; $\alpha(O)$ =0.00892 14; $\alpha(P)$ =6.05×10 ⁻⁵ 20
		203.55 5	6.6 7	1756.75	6+	(E1)		0.0599	$\alpha(K)$ =0.0497 7; $\alpha(L)$ =0.00790 11; $\alpha(M)$ =0.00179 3 $\alpha(N)$ =0.000427 6; $\alpha(O)$ =6.68×10 ⁻⁵ 10; $\alpha(P)$ =3.91×10 ⁻⁶ 6 From $\gamma(\theta)$ in ¹⁸² Re ε decay, 1980Sp01 give $\delta(Q/D)$ =-17 +10-24 or +0.06 +9-4; favoring the former value from δ based on ce data of 1971Ga37. But 1971Ga37 assigned tentative E2 from their ce data. $\delta(M2/E1)$ =-17 +10-24 is inconsistent with RUL(M2)=1 for T _{1/2} (1960.30 level)<1 ns or so. The evaluators assign tentative E1. I ₂ : 52 4 in $(\alpha, 2n\gamma)$ is discrepant.
		299.90 <i>10</i>	20 3	1660.383	5-	E2		0.0851	$\alpha(K)=0.0570 \ 8; \ \alpha(L)=0.0214 \ 3; \ \alpha(M)=0.00522 \ 8$ $\alpha(N)=0.001239 \ 18; \ \alpha(O)=0.000180 \ 3; \ \alpha(P)=4.89\times10^{-6} \ 7$ I_{γ} : 61 6 in $(\alpha,2n\gamma)$ is discrepant.
		339.04 10	72 10	1621.284	5-	E2		0.0594	$\alpha(K)$ =0.0415 6; $\alpha(L)$ =0.01368 20; $\alpha(M)$ =0.00332 5 $\alpha(N)$ =0.000789 11; $\alpha(O)$ =0.0001159 17; $\alpha(P)$ =3.63×10 ⁻⁶ 5
1960.78	6-	151.15 5	26 3	1809.64	5-	M1+E2	0.8 3	1.21 13	$\alpha(K)$ =0.88 17; $\alpha(L)$ =0.25 3; $\alpha(M)$ =0.061 9 $\alpha(N)$ =0.0146 20; $\alpha(O)$ =0.00218 23; $\alpha(P)$ =8.5×10 ⁻⁵ 19
		300.36 10	100 23	1660.383	5-	M1+E2	+0.048 26	0.218	$\alpha(K)$ =0.181 3; $\alpha(L)$ =0.0284 4; $\alpha(M)$ =0.00646 9 $\alpha(N)$ =0.001555 22; $\alpha(O)$ =0.000254 4; $\alpha(P)$ =1.81×10 ⁻⁵ 3
		1279.8 <mark>&</mark> 3	3.6 5	680.42	6+				a(c), a(c) closses = 2, a(c) closses = 1, a(c)
		1631.4 ^{&} 5	0.74 14	329.4268		M2+E3	≈2.5	≈0.00396	$\alpha(K)\approx0.00321$; $\alpha(L)\approx0.000536$; $\alpha(M)\approx0.0001230$ $\alpha(N)\approx2.96\times10^{-5}$; $\alpha(O)\approx4.77\times10^{-6}$; $\alpha(P)\approx3.17\times10^{-7}$; $\alpha(IPF)\approx5.70\times10^{-5}$
1971.05	(7) ⁺	214.31 5	100	1756.75	6+	M1+E2	+0.25 +8-7	0.532 15	$\alpha(K)$ =0.439 14; $\alpha(L)$ =0.0725 11; $\alpha(M)$ =0.0166 3 $\alpha(N)$ =0.00399 7; $\alpha(O)$ =0.000645 9; $\alpha(P)$ =4.39×10 ⁻⁵ 15
1978.36	(7)-	18.05 10	1.9 5	1960.30	(7)-	M1+E2	0.016 5	128 4	$\alpha(\text{L})=99\ 3;\ \alpha(\text{M})=22.7\ 7$ $\alpha(\text{N})=5.45\ 16;\ \alpha(\text{O})=0.883\ 24;\ \alpha(\text{P})=0.0612\ 14$
		148.86 5	27.2 20	1829.53	6-	M1+E2	+0.28 +8-6	1.48 4	$\alpha(N)=0.43 \text{ fo}, \ \alpha(O)=0.883 24, \ \alpha(F)=0.0012 14$ $\alpha(K)=1.20 5; \ \alpha(L)=0.214 8; \ \alpha(M)=0.0493 22$ $\alpha(N)=0.0118 5; \ \alpha(O)=0.00189 6; \ \alpha(P)=0.000121 5$
		209.40 5	7.6 8	1768.943	6-	M1+E2	-0.28 +23-15	0.56 3	$\alpha(N)=0.0118$ 3; $\alpha(O)=0.00189$ 0; $\alpha(P)=0.000121$ 3 $\alpha(K)=0.46$ 3; $\alpha(L)=0.0776$ 15; $\alpha(M)=0.0178$ 5 $\alpha(N)=0.00428$ 10; $\alpha(O)=0.000690$ 11; $\alpha(P)=4.6\times10^{-5}$ 4 I_{γ} : 33 3 in $(\alpha,2n\gamma)$ is discrepant.
		221.59 6	100 8	1756.75	6+	E1		0.0483	$\alpha(K)$ =0.0401 6; $\alpha(L)$ =0.00633 9; $\alpha(M)$ =0.001438 21 $\alpha(N)$ =0.000342 5; $\alpha(O)$ =5.37×10 ⁻⁵ 8; $\alpha(P)$ =3.19×10 ⁻⁶ 5
		357.04 10	8.4 8	1621.284	5-	E2		0.0513	$\alpha(K)=0.0364$ 5; $\alpha(L)=0.01140$ 16; $\alpha(M)=0.00276$ 4 $\alpha(N)=0.000656$ 10; $\alpha(O)=9.68\times10^{-5}$ 14; $\alpha(P)=3.20\times10^{-6}$ 5
1981.82		650.7 3	59 18	1331.1153	3+				a(1), 0.000000 10, a(0)=2.00010 11, a(1)=3.20010 3

20

								-	
E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	$\alpha^{\textcircled{@}}$	Comments
1981.82		723.8 7	26 9	1257.4121	2+				
		1653.1 8	82 24	329.4268	4 ⁺				
		1881.8 8	100 18	100.10598					
1993.68	(7^{-})	182.8 5	<11	1810.85	(6)				
1,,,,,,,,,	(,)	372.4 <i>1</i>	100 17	1621.284	5-	Q			
2016.8	$(2,3,4)^+$	1688.3 ^{&} 10	100 33	329.4268	4+	~			
2010.6	(2,3,4)	1915.3 ^{&} 12							
2022 55	2-		100 33	100.10598) (1 F2	0.6.1	0.055.2	(II) 0.0455.05 (I) 0.0055.2 (II) 0.00451.6
2023.57	3-	470.26 5	100 5	1553.2240	4	M1+E2	0.6 1	0.055 3	$\alpha(K)$ =0.0455 25; $\alpha(L)$ =0.0075 3; $\alpha(M)$ =0.00171 6 $\alpha(N)$ =0.000412 15; $\alpha(O)$ =6.6×10 ⁻⁵ 3; $\alpha(P)$ =4.5×10 ⁻⁶
		536.04 5	10.3 16	1487.5018	4-	M1+E2	0.7 2	0.037 4	$\alpha(K)=0.031 \ 4; \ \alpha(L)=0.0051 \ 4; \ \alpha(M)=0.00116 \ 9$
									$\alpha(N)=0.000279 \ 21; \ \alpha(O)=4.5\times10^{-5} \ 4; \ \alpha(P)=3.0\times10^{-6}$
		649.73 5	16.8 24	1373.8301	3-	M1+E2	0.8 2	0.0219 23	$\alpha(K)$ =0.0181 19; $\alpha(L)$ =0.00293 24; $\alpha(M)$ =0.00067 6
					-		-		$\alpha(N)=0.000161 \ 13; \ \alpha(O)=2.60\times10^{-5} \ 22;$
									$\alpha(P) = 1.76 \times 10^{-6} \ 20$
		734.53 <i>5</i>	18.7 22	1289.1498	2-	M1+E2	1.0 3	0.0148 22	$\alpha(K)=0.0122$ 19; $\alpha(L)=0.00199$ 24; $\alpha(M)=0.00045$ 6
		751.55 5	10.7 22	1207.1170	_	1411 122	1.0 5	0.0110 22	$\alpha(N)=0.00109 \ 13; \ \alpha(O)=1.76\times10^{-5} \ 22;$
									$\alpha(P)=1.18\times10^{-6}$ 19
2057.39	1+	800 <i>I</i>	16 <i>4</i>	1257.4121	2+				$\alpha(r)=1.16\times10^{-1}$
2037.39	1	835.98 <i>5</i>	50 5	1237.4121	2+	(M1+E2)	≈0.8	≈0.01177	$\alpha(K) \approx 0.00979$; $\alpha(L) \approx 0.001538$; $\alpha(M) \approx 0.000350$
		033.90 3	30 3	1221.4001	2	(WIT+L2)	~0.8	~0.01177	$\alpha(N) \approx 8.42 \times 10^{-5}$; $\alpha(O) \approx 1.366 \times 10^{-5}$; $\alpha(P) \approx 9.48 \times 10^{-7}$
		1957.4 2	49 3	100 10500	2+	(M1 + E2)	10.61	0.00186 17	$\alpha(K) \approx 8.42 \times 10^{-4}$; $\alpha(O) \approx 1.500 \times 10^{-4}$; $\alpha(F) \approx 9.48 \times 10^{-4}$; $\alpha(K) = 0.00131$ 13; $\alpha(L) = 0.000193$ 18; $\alpha(M) = 4.4 \times 10^{-5}$
		1937.4 2	49 3	100.10598	2.	(M1+E2)	1.0 +6-4	0.00180 17	$\alpha(N)=0.00131 \ 13; \ \alpha(L)=0.000193 \ 18; \ \alpha(M)=4.4\times10^{-6} \ \Omega(N)=1.05\times10^{-5} \ 10; \ \alpha(O)=1.72\times10^{-6} \ 17;$
		2057 4 3	100.0	0.0	0+	Б			$\alpha(P)=1.24\times10^{-7} \ 13; \ \alpha(IPF)=0.000303 \ 23$
2007.42	0-	2057.4 3	100 8	0.0	0+	D			
2087.43	8-	170.4 <i>I</i>	20 4	1917.05	7-	0		0.0716	
2100.06	(2= 2=)	318.5 <i>I</i>	100 15	1768.943	6-	Q (F2)			(IV) 0.01255 10 (I) 0.0027(4 (M) 0.000652 10
2109.96	$(2^-,3^-)$	556.7 3	100 28	1553.2240	4-	(E2)		0.01615	$\alpha(K)=0.01255$ 18; $\alpha(L)=0.00276$ 4; $\alpha(M)=0.000652$ 10
									$\alpha(N)=0.0001556$ 22; $\alpha(O)=2.39\times10^{-5}$ 4;
									$\alpha(P)=1.154\times10^{-6}\ 17$
		2010.1 3	86 12	100.10598	2+	(E1+M2)	0.9 + 7 - 4	0.00250 85	$\alpha(K)=0.00176 \ 80; \ \alpha(L)=2.7\times10^{-4} \ 13; \ \alpha(M)=6.0\times10^{-5}$
									28
									$\alpha(N)=1.45\times10^{-5}$ 68; $\alpha(O)=2.4\times10^{-6}$ 11;
									$\alpha(P)=1.73\times10^{-7} 81; \alpha(IPF)=3.9\times10^{-4} 10$
		2109.3 5	<235	0.0	0_{+}	[M2,E3]		0.00303 80	$\alpha(K)=0.00235\ 66;\ \alpha(L)=3.64\times10^{-4}\ 95;\ \alpha(M)=8.3\times10^{-4}$
									22
									$\alpha(N)=1.99\times10^{-5} 52$; $\alpha(O)=3.25\times10^{-6} 86$;
									$\alpha(P)=2.31\times10^{-7}$ 68; $\alpha(IPF)=0.000211$ 16
2114.35	$(8)^{-}$	154.10 5	58 <i>13</i>	1960.30	$(7)^{-}$	M1+E2	0.6 3	1.22 12	$\alpha(K)=0.93$ 15; $\alpha(L)=0.22$ 3; $\alpha(M)=0.052$ 8
					` ′				$\alpha(N)=0.0124 \ 17; \ \alpha(O)=0.00190 \ 19; \ \alpha(P)=9.2\times10^{-5} \ 17$
		197.4 2	23 7	1917.05	7-				1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
		285.1 10	46 8	1829.53	6-				
		345.29 15	100 15	1768.943	6-	E2		0.0564	$\alpha(K)=0.0396$ 6; $\alpha(L)=0.01283$ 18; $\alpha(M)=0.00311$ 5
					-				,

$\gamma(^{182}W)$ (continued)

						-			
E_i (level)	J_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	$\alpha^{@}$	Comments
									α (N)=0.000739 <i>11</i> ; α (O)=0.0001087 <i>16</i> ; α (P)=3.47×10 ⁻⁶ <i>5</i>
2116.4 2120.25	(8-)	2016.3 <i>3</i> 160.1 <i>I</i>	100 100 <i>18</i>	100.10598 1960.30	2 ⁺ (7) ⁻	(M1)		1.243	$\alpha(K)$ =1.032 <i>15</i> ; $\alpha(L)$ =0.1633 <i>23</i> ; $\alpha(M)$ =0.0372 <i>6</i> $\alpha(N)$ =0.00896 <i>13</i> ; $\alpha(O)$ =0.001461 <i>21</i> ; $\alpha(P)$ =0.0001040 <i>15</i>
2131.3	(7-)	290.5 <i>1</i> 362.4 <i>3</i>	35 <i>6</i> 100	1829.53 1768.943	6 ⁻				u(1) 0.0001010 13
2143.0 2147.95	(3 ⁻)	1813.6 ^{&} 10 817.0 10 1818.7 2	100 12 <i>4</i> 92 <i>8</i>	329.4268 1331.1153 329.4268	4 ⁺ 3 ⁺ 4 ⁺	(E1)		1.05×10^{-3}	E _{γ} : from (n,n' γ) only. α (K)=0.000538 δ ; α (L)=7.44×10 ⁻⁵ 11 ; α (M)=1.664×10 ⁻⁵ 24
		2047.4 3	100 8	100.10598	2+	(E1+M2)	1.0 +10-5	0.00258 89	$\alpha(N)=4.00\times10^{-6}$ 6; $\alpha(O)=6.54\times10^{-7}$ 10; $\alpha(P)=4.77\times10^{-8}$ 7; $\alpha(IPF)=0.000418$ 6 I_{γ} : 222 33 in $(n,n'\gamma)$ is discrepant. $\alpha(K)=0.00183$ 84; $\alpha(L)=2.8\times10^{-4}$ 13;
									$\alpha(M)=6.3\times10^{-5} 30$ $\alpha(N)=1.51\times10^{-5} 72; \ \alpha(O)=2.5\times10^{-6} 12;$ $\alpha(P)=1.80\times10^{-7} 85; \ \alpha(IPF)=3.9\times10^{-4} 12$
		2148 ^{&} 3	24 5	0.0	0+	[E3]		0.00218	$\alpha(K)=0.001633 \ 24; \ \alpha(L)=0.000259 \ 4;$ $\alpha(M)=5.90\times10^{-5} \ 9$ $\alpha(N)=1.419\times10^{-5} \ 21; \ \alpha(O)=2.30\times10^{-6} \ 4;$ $\alpha(P)=1.573\times10^{-7} \ 23; \ \alpha(IPF)=0.000209 \ 3$
2173.5	$(0^+ \text{ to } 4^+)$	952.3 <i>6</i> 2073.3 <i>3</i>	42 <i>12</i> 100 <i>23</i>	1221.4001 100.10598					a(c) 100000000
2180.4	(8 ⁺)	2174 ^{&} 1036.0 1500.0	<23	0.0 1144.32 680.42	0 ⁺ 8 ⁺ 6 ⁺				E_{γ} : from $(n,n'\gamma)$ only.
2184.04	(2-,3-)	810.24 5	18.2 <i>21</i>	1373.8301	3-	(M1)		0.01639	$\alpha(K)$ =0.01371 20; $\alpha(L)$ =0.00208 3; $\alpha(M)$ =0.000470 7 $\alpha(N)$ =0.0001132 16; $\alpha(O)$ =1.85×10 ⁻⁵ 3; $\alpha(P)$ =1.343×10 ⁻⁶ 19
		894.85 5	100 8		2-	(M1)		0.01276	$\alpha(K) = 0.01068 \ 15; \ \alpha(L) = 0.001613 \ 23;$ $\alpha(M) = 0.000365 \ 6$ $\alpha(N) = 8.79 \times 10^{-5} \ 13; \ \alpha(O) = 1.440 \times 10^{-5} \ 21;$ $\alpha(P) = 1.045 \times 10^{-6} \ 15$
2204.54	(8)-	2084.0 <i>3</i> 226.19 <i>5</i>	3.1 <i>3</i> 100	100.10598 1978.36	2 ⁺ (7) ⁻	M1+E2	+0.15 2	0.468	$\alpha(K)=0.388 \ 6; \ \alpha(L)=0.0620 \ 9; \\ \alpha(M)=0.01414 \ 20 \\ \alpha(N)=0.00341 \ 5; \ \alpha(O)=0.000554 \ 8; \\ \alpha(P)=3.89\times 10^{-5} \ 6$

22

(182W) (continued)

							$\gamma(^{182}W)$ (co	ontinued)	
E_i (level)	J_i^π	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult.‡	δ^{\ddagger}	$\alpha^{\textcircled{@}}$	Comments
2207.21	(3-)	1877.6 2	58 18	329.4268	4+	(E1+M2)	-0.28 6	0.00134 12	α (K)=0.00076 11; α (L)=0.000110 17; α (M)=2.5×10 ⁻⁵ 4 α (N)=6.0×10 ⁻⁶ 10; α (O)=9.7×10 ⁻⁷ 16; α (P)=7.1×10 ⁻⁸ 11; α (IPF)=0.000438 12
		2106.8 5	<250	100.10598		(F2)		0.00200	(T) 0.001540.00 (T) 0.000044 4 (D) 5.54 10-5
		2207.7 3	100 9	0.0	0+	(E3)		0.00209	$\alpha(K)=0.001548\ 22;\ \alpha(L)=0.000244\ 4;\ \alpha(M)=5.56\times10^{-5}\ 8$ $\alpha(N)=1.336\times10^{-5}\ 19;\ \alpha(O)=2.17\times10^{-6}\ 3;$ $\alpha(P)=1.488\times10^{-7}\ 2I;\ \alpha(IPF)=0.000229\ 4$
2209.07	3-	835.9 6	33 11	1373.8301	3-				E_{γ} : from $(n, n'\gamma)$ only.
		1879.6 2	21 6	329.4268	4+	E1		1.06×10^{-3}	$\alpha(K)=0.000509 \ 8; \ \alpha(L)=7.04\times10^{-5} \ 10;$ $\alpha(M)=1.575\times10^{-5} \ 22$ $\alpha(N)=3.78\times10^{-6} \ 6; \ \alpha(O)=6.19\times10^{-7} \ 9;$ $\alpha(P)=4.52\times10^{-8} \ 7; \ \alpha(IPF)=0.000463 \ 7$
		2108.9 4	100 17	100.10598	2+				., ., ., ., ., ., ., ., ., ., ., ., ., .
		2208.8 6	78 17	0.0	0+	[E3]		0.00209	$\alpha(K)$ =0.001546 22; $\alpha(L)$ =0.000244 4; $\alpha(M)$ =5.55×10 ⁻⁵ 8
									$\alpha(N)=1.335\times10^{-5}\ 19;\ \alpha(O)=2.16\times10^{-6}\ 3;$ $\alpha(P)=1.487\times10^{-7}\ 2I;\ \alpha(IPF)=0.000230\ 4$ E_{γ} : from $(n,n'\gamma)$ only.
2212.50	(8^{+})	241.5 <i>1</i>	100 15	1971.05	$(7)^{+}$	D+Q			
2225.25	(0=)	454.9 <i>4</i>	15 5	1756.75	6+	0			
2225.35	(8^{-}) (10^{+})	414.5 1	100 100 <i>13</i>	1810.85	$(6)^{-}$ 10^{+}	Q		0.0514	$B(M1)(W.u.)=7.0\times10^{-8}$ 13
2230.65	(10)	518.5 <i>I</i>	100 13	1711.99	10	(M1)		0.0314	$\alpha(K)=0.0429 \ 6; \ \alpha(L)=0.00659 \ 10; \ \alpha(M)=0.001495 \ 21$ $\alpha(N)=0.000360 \ 5; \ \alpha(O)=5.89\times10^{-5} \ 9; \ \alpha(P)=4.24\times10^{-6}$
		1086.5 1	69 7	1144.32	8+	[E2]		0.00382	B(E2)(W.u.)= $1.9 \times 10^{-6} \ 3$ α (K)= $0.00315 \ 5$; α (L)= $0.000517 \ 8$; α (M)= $0.0001183 \ 17$ α (N)= $2.84 \times 10^{-5} \ 4$; α (O)= $4.54 \times 10^{-6} \ 7$; α (P)= $2.93 \times 10^{-7} \ 4$ I_{γ} : 116 I_{3} in $(\alpha,2n\gamma)$ is discrepant.
2240.83	(3 ⁺)	1911.8 2	100 17	329.4268	4+	(M1)		0.00230	$\alpha(K)$ =0.001659 24; $\alpha(L)$ =0.000245 4; $\alpha(M)$ =5.52×10 ⁻⁵
									$\alpha(N)=1.330\times10^{-5}\ 19;\ \alpha(O)=2.18\times10^{-6}\ 3;$ $\alpha(P)=1.602\times10^{-7}\ 23;\ \alpha(IPF)=0.000322\ 5$
		2140.3 2	87 15	100.10598	2+	(M1)		0.00197	$\alpha(K)$ =0.001265 18; $\alpha(L)$ =0.000186 3; $\alpha(M)$ =4.19×10 ⁻⁵
									$\alpha(N)=1.010\times10^{-5} \ 15; \ \alpha(O)=1.658\times10^{-6} \ 24;$ $\alpha(P)=1.219\times10^{-7} \ 17; \ \alpha(IPF)=0.000464 \ 7$
2273.87	9-	186.5 <i>1</i> 356.8 <i>1</i>	16.7 <i>19</i> 100 <i>15</i>	2087.43 1917.05	8 ⁻ 7 ⁻	Q			

 $\gamma(^{182}W)$ (continued)

≈0.5

Mult.‡

(M1+E2)

(M1+E2)

E2

(D+O)

D+O

D+O

(M1)

E1

 E_{γ}^{\dagger}

787.11 5

900.80 5

2175.2 3

909.7 6

2283.5 10

181.3 10

187.6 *3*

214.2 10

341.3 *1*

384.4 1

406.8 2

207.4 2

213.6 *1*

355.9 2

660.6 1

2282 *1*

2382 1

2374 *1*

2474 *1*

267.3 1

508.8 2

213.0 I

399.5 2

262.1 *1*

205.8 2

233.8 10

387.1 2

393.4 2

452.3 1

251.2 *1*

477.1 10

2216 *3*

2316 *3*

 E_i (level)

2274.63

2283.5

2301.56

2316.1

2323.85

2327.91

2334.26

2372.59

2382.1

2445.98

2455.74

2474.1

2479.83

2486.89

2492.78

2507.48

 $(3)^{-}$

1

 (9^{-})

 $(1,2^+)$

 (8^{-})

 (9^{-})

 12^{+}

1

 (9^{-})

 (9^{-})

 (9^+)

10-

 (11^{+})

 (10^{-})

1

 I_{γ}^{\dagger}

86 16

100 17

13.2 19

64 29

100 29

18 9

36 9

109 46

100 18

100 20

73 15

100 16

142 20

100 14

66 14

100 18

29 6

25 *3*

100 19

30 10

120 60

60 10

100

< 20

100

100

<7

100

100

100

<27

≈275

100

 E_f

1487.5018 4-

1373.8301 3-

100.10598 2+

3-

 0^{+}

 (8^{-})

 $(8)^{-}$

8-

 $(7)^{-}$

7-

 0^{+}

7-

 (8^{-})

 $(8)^{-}$

 $(7)^{-}$

 10^{+}

 0^{+}

 (7^{-})

 $(8)^{-}$

 $(7)^{-}$

 0^{+}

 (8^{+})

 $(7)^{+}$

 (10^{+})

 (9^{-})

 (8^{-})

 $(8)^{-}$

9-

9-8-

1373.8301

0.0

2120.25

2114.35

2087.43

1960.30

1917.05

1917.05

2120.25

2114.35

1978.36

1711.99

0.0

100.10598 2+

100.10598 2+

100.10598 2+

0.0

1993.68

2204.54

1978.36

2212.50

1971.05

2273.87

2087.43

2230.65

2301.56

2273.87

2120.25

2114.35

0.0

 α^{\bigcirc}

0.01763

≈0.01116

 1.14×10^{-3}

0.44 17

0.01085

21

 I_{γ} : 15 8 in $(n,n'\gamma)$ is discrepant.

 α (IPF)=0.000671 10

B(E2)(W.u.)=191 10

12

Comments

 $\alpha(K)=0.01474\ 21;\ \alpha(L)=0.00224\ 4;\ \alpha(M)=0.000506\ 7$

 $\alpha(N) \approx 7.79 \times 10^{-5}$; $\alpha(O) \approx 1.271 \times 10^{-5}$; $\alpha(P) \approx 9.06 \times 10^{-7}$ $\alpha(K)=0.000402\ 6$; $\alpha(L)=5.53\times10^{-5}\ 8$; $\alpha(M)=1.238\times10^{-5}\ 18$

 $\alpha(K) \approx 0.00932$; $\alpha(L) \approx 0.001427$; $\alpha(M) \approx 0.000324$

 $\alpha(K)=0.33$ 18; $\alpha(L)=0.085$ 7; $\alpha(M)=0.0203$ 24

 $\alpha(N)=0.0048$ 6; $\alpha(O)=0.00073$ 3; $\alpha(P)=3.1\times10^{-5}$ 19

 $\alpha(K)=0.00862$ 12; $\alpha(L)=0.001719$ 24; $\alpha(M)=0.000401$ 6 $\alpha(N) = 9.60 \times 10^{-5} \ 14$; $\alpha(O) = 1.494 \times 10^{-5} \ 21$; $\alpha(P) = 7.98 \times 10^{-7}$

 $\alpha(N)=0.0001219 \ 17; \ \alpha(O)=2.00\times10^{-5} \ 3; \ \alpha(P)=1.446\times10^{-6}$

 $\alpha(N)=2.97\times10^{-6}$ 5; $\alpha(O)=4.87\times10^{-7}$ 7; $\alpha(P)=3.57\times10^{-8}$ 5;

$\gamma(^{182}\text{W})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult.‡	$\alpha^{@}$	Comments
2507.48	(10^{-})	420.0 <i>1</i>	100 20	2087.43	8-			
2563.94	(10^{-})	236.0 1	100 16	2327.91	(9^{-})			
		443.8 2	<8	2120.25	(8^{-})			
2710.93	11-	224.0 <i>I</i>	24 3	2486.89	10-			
		437.1 <i>1</i>	100 18	2273.87	9-	Q		
2730.84	(10^{-})	275.1 <i>1</i>	100 <i>14</i>	2455.74	(9^{-})	(D+Q)		
		526.2 10	<14	2204.54	$(8)^{-}$			
2739.15	(10^{-})	513.8 <i>1</i>	100	2225.35	(8-)	Q		
2741.66	(11^{-})	440.1 <i>I</i>	100 18	2301.56	(9-)	Q		
2=40.2=	(4.0-1)	467.7 5	35 6	2273.87	9-			
2769.27	(10^{+})	289.4 <i>1</i>	100	2479.83	(9 ⁺)	D+Q		
2775 (5	(12+)	557.6 5	39 4	2212.50	(8^+)	D.O		
2775.65	(12^+)	282.8 <i>I</i>	100	2492.78	(11^+)	D+Q		
2823.93	(11^{-})	545.1 2 260.0 <i>I</i>	18 <i>3</i> 100	2230.65 2563.94	(10^+) (10^-)	Q D+Q		
2023.93	(11)	496.0 5	48 5	2303.94	(9^{-})	D+Q		
2884.1	1	2784 <i>1</i>	40 11	100.10598				
2004.1	1	2884 1	100	0.0	0+			
2892.1	(1)	2792 <i>I</i>	150 90	100.10598				
2072.1	(1)	2892 <i>I</i>	100	0.0	0^{+}			
2941.0	$(1,2^+)$	2941 2	100	0.0	0^{+}			
2972.49	12-	261.6 2	20 5	2710.93	11-			
		485.6 <i>1</i>	100 20	2486.89	10-	Q		
2980.58	(11^{-})	534.6 <i>1</i>	100	2445.98	(9^{-})	Q		
2981.33	(12^{-})	473.8 <i>1</i>	100 <i>19</i>	2507.48	(10^{-})			
		494.6 2	38 6	2486.89	10-			
2996.1	1	2896 <i>1</i>	168 <i>35</i>	100.10598				
		2996 1	100	0.0	0+			
3027.94	(11^{-})	297.1 <i>I</i>	100	2730.84	(10^{-})	(D+Q)		
2070.27	(10±)	575.2 20	24 11	2455.74	(9-)	D 0		T (500) T (000) 1 (5 1 (0 0)
3078.25	(13^{+})	302.5 1	100	2775.65	(12^+)	D+Q		$I_{\gamma}(586\gamma)/I_{\gamma}(302)=1.6\ 7\ \text{in}\ (\alpha,2n\gamma).$
2000 1	1	585.8 2	47 9 61 19	2492.78	(11^+)	Q		
3080.1	1	2980 <i>I</i> 3080 <i>I</i>	61 <i>18</i> 100	100.10598 0.0	3 2 ⁺ 0 ⁺			
3106.72	(12=)	3080 <i>I</i> 282.8 <i>I</i>	100	2823.93		(D+Q)		
3100.72	(12^{-})	282.8 <i>1</i> 542.5 <i>5</i>	53 6	2823.93 2563.94	(11^{-}) (10^{-})	(D+Q)		
3112.89	14 ⁺	740.3 <i>1</i>	100	2372.59	12+	(E2)	0.00843	B(E2)(W.u.)= $1.7 \times 10^2 \ 3$
3112.09	14	740.3 T	100	4314.39	12	(E2)	0.00043	$\alpha(K)=0.00678 \ 10; \ \alpha(L)=0.001277 \ 18; \ \alpha(M)=0.000297 \ 5$
								$\alpha(N)=7.10\times10^{-5}\ 10;\ \alpha(O)=1.114\times10^{-5}\ 16;\ \alpha(P)=6.29\times10^{-7}\ 9$
3163.1	1	3063 <i>1</i>	54 12	100.10598				
		3163 <i>1</i>	100	0.0	0^{+}			

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	J_f^π	Mult.‡	$\alpha^{\textcircled{@}}$	Comments
3198.1	$(1,2^+)$	3098 1	59 21	100.10598	2+			
		3198 <i>1</i>	100	0.0	0^{+}			If E2, B(E2)(W.u.)= 0.67×10^{-5} 16.
3224.53	13-	513.6 <i>1</i>	100	2710.93	11-	Q		
3269.56	(13^{-})	527.9 <i>1</i>	100	2741.66	(11^{-})	Q		
3319.7	(12^{-})	580.6 <i>4</i>	100	2739.15	(10^{-})			
3343.05	(12^{-})	315.1 <i>1</i>	100 14	3027.94	(11^{-})	(D+Q)		
		612.6 <i>10</i>	43 29	2730.84	(10^{-})			
3365.1	1	3265 <i>1</i>	63 17	100.10598				
		3365 <i>1</i>	100	0.0	0_{+}			
3398.35	(14^{+})	320.0 <i>1</i>	100	3078.25	(13^{+})	D+Q		
		622.7 1	61 18	2775.65	(12^{+})	Q		
3410.54	(13^{-})	303.8 <i>1</i>	100 13	3106.72	(12^{-})			
244 7 0 -		586.8 5	88 13	2823.93	(11^{-})	D		
3415.92	(12)	923.1 <i>I</i>	100	2492.78	(11^{+})	D+Q		
3422.1	$(1,2^+)$	3322 1	53 15	100.10598				70 TO D (TO) (TV) \ \ \ 0.75 \ 10-5 \ 17
2510.04	(1.4-)	3422 <i>1</i>	100	0.0	0+			If E2, B(E2)(W.u.)= 0.76×10^{-5} 17.
3518.04	(14^{-})	536.7 <i>1</i>	100 20	2981.33	(12^{-})			
		545.7 5	40 10	2972.49	12-			
3549.99	14-	568.6 <mark>&</mark> 10	<22	2981.33	(12^{-})			
		577.5 1	100 22	2972.49	12-	Q		
3567.8	(13-)	587.2 3	100	2980.58	(11^{-})	(Q)		
3601.1	1	3501 <i>I</i>	77 19	100.10598				
2640.0	(1.0±)	3601 <i>I</i>	100	0.0	0+			
3640.0	$(1,2^+)$	3640 2	100 14	0.0	0+			
3677.15	(13)	261.2 <i>I</i> 901.8 <i>3</i>	100 <i>14</i> 21 <i>7</i>	3415.92 2775.65	(12)			
3727.1	$(1,2^+)$	3627 2	21 /	100.10598	(12^{+})			
3/2/.1	(1,2)	3727 2		0.0	0+			
3733.85	(14^{-})	323.3 1	71 10	3410.54	(13^{-})			
3733.03	(17)	627.4 5	100 14	3106.72	(12^{-})			
3736.40	(15^{+})	338.0 <i>I</i>	100 14	3398.35	(12^{+})			
2,20,10	(10)	658.2 <i>1</i>	94 20	3078.25	(13^{+})			
3754.89	(15^{+})	(19)	≈0.2	3736.40	(15^+)	[M1]	107.1	$B(M1)(W.u.)\approx 9.8\times 10^{-7}$
0,005	(10)	(17)		2,20.10	(10)	[]	10711	$\alpha(L)=82.8 \ 12; \ \alpha(M)=18.9 \ 3$
								$\alpha(N)=4.56$ 7; $\alpha(O)=0.741$ 11; $\alpha(P)=0.0526$ 8
								I_{γ} : from $\gamma \gamma$ data, $I(\gamma + ce)$ branching is $\approx 10\%$.
		356.5 <i>1</i>	100 17	3398.35	(14^{+})	(M1+E2)	0.095 44	$B(M1)(W.u.)=13.0\times10^{-6}$ 23
					. /	,		$\alpha(K)=0.076 \ 40; \ \alpha(L)=0.015 \ 4; \ \alpha(M)=0.0034 \ 7$
								$\alpha(N)=0.00082$ 16; $\alpha(O)=0.00013$ 4; $\alpha(P)=7.3\times10^{-6}$ 42
		676.8 2	57 13	3078.25	(13^{+})	(E2)	0.01028	B(E2)(W.u.)=0.00053 15
					. /			$\alpha(K)=0.00819$ 12; $\alpha(L)=0.001612$ 23; $\alpha(M)=0.000376$ 6
								$\alpha(N)=8.99\times10^{-5}$ 13; $\alpha(O)=1.402\times10^{-5}$ 20; $\alpha(P)=7.58\times10^{-7}$ 11
	15-	583.1 <i>1</i>	100	3224.53	13-	Q		

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathtt{J}_f^{π}	Mult.‡	α @	Comments
3880.06	(15^{-})	610.5 <i>1</i>	100	3269.56	(13-)	Q		
3882.0	$(1,2^+)$	3782 <mark>&</mark> 2		100.10598				
3002.0	(1,2)	3882 2		0.0	0^{+}			
3893.69	(16^+)	138.8 <i>I</i>	100	3754.89	(15^{+})	(M1)	1.86	B(M1)(W.u.)>0.00041
	(-)				(-)	()		$\alpha(K)=1.545\ 22;\ \alpha(L)=0.245\ 4;\ \alpha(M)=0.0558\ 8$
								$\alpha(N)=0.01344$ 19; $\alpha(O)=0.00219$ 4; $\alpha(P)=0.0001559$ 22
3910.09	16 ⁺	797.2 1	100	3112.89	14+	E2	0.00719	$B(E2)(W.u.)=2.0\times10^2 5$
								$\alpha(K)=0.00582 \ 9; \ \alpha(L)=0.001061 \ 15; \ \alpha(M)=0.000246 \ 4$
								$\alpha(N)=5.88\times10^{-5} 9$; $\alpha(O)=9.27\times10^{-6} 13$; $\alpha(P)=5.40\times10^{-7} 8$
3920.0	1	3920 2	100	0.0	0_{+}			
3966.25	(14)	289.1 <i>1</i>	100 50	3677.15	(13)			
		550.3 10	25 13	3415.92	(12)			
4040.6	(17^{-})	146.9 <i>1</i>	100	3893.69	(16^+)	(E1)	0.1384	$B(E1)(W.u.)=2.92\times10^{-6} 15$
								$\alpha(K)$ =0.1141 16; $\alpha(L)$ =0.0188 3; $\alpha(M)$ =0.00428 6
								$\alpha(N)=0.001015 \ 15; \ \alpha(O)=0.0001566 \ 23; \ \alpha(P)=8.59\times10^{-6} \ 13$
4074.8	(15^{-})	340.9 2	75 25	3733.85	(14^{-})			
		664.2 5	100 25	3410.54	(13^{-})			
4078.89	(16^{+})	324.0 <i>1</i>	100	3754.89	(15^{+})			
4081.5	(16^{+})	345.1 2	60 20	3736.40	(15^{+})			
		683.2 <i>3</i>	100 40	3398.35	(14^{+})			
4116.9	(16^{-})	598.9 2	100	3518.04	(14^{-})			
4197.1	(15^{-})	629.3 2	100	3567.8	(13^{-})			
4211.1	16-	661.1 2	100	3549.99	14-	Q		
4218.1	(17^+)	324.4 5	100	3893.69	(16^+)			
4280.2	(15)	314.0 <i>I</i>	100 67	3966.25	(14)			
1202.1	(177+)	603.1 10	33 17	3677.15	(13)			
4293.1	(17^{+})	399.4 1	100	3893.69	(16^+)			
4421.5 4430.5	(18^{-})	380.9 <i>I</i>	100 78	4040.6	(17^{-})			
4430.3	(17^{+})	351.6 <i>1</i> 675.5 <i>11</i>	100 <i>18</i> 18 <i>9</i>	4078.89 3754.89	(16^+) (15^+)			
4453.3	(17^{+})	371.3 10	<33	4081.5	(15^{+})			
-+ JJ.J	(17)	717.3 10	100 33	3736.40	(15^+)			
4456.2	17-	648.6 2	100 33	3807.63	15	Q		
4569.7	(18^{+})	351.6 5	100 32	4218.1	(17^+)	V		
1507.1	(10)	676.1 7	24 8	3893.69	(16^+)			
4570.9	(17^{-})	690.8 <i>3</i>	100	3880.06	(15^{-})			
4690.89	18+	780.8 <i>I</i>	100	3910.09	16+	Q		
4711.9	(18^{+})	418.8 <i>I</i>	100 18	4293.1	(17^{+})			
	` /	818.1 6	64 27	3893.69	(16^{+})			
4748.0	(18^+)	837.9 9	100	3910.09	16 ⁺	[E2]	0.00648	$B(E2)(W.u.)=2.5\times10^2 +5-7$
	` /							$\alpha(K)=0.00526 \ 8; \ \alpha(L)=0.000940 \ 14; \ \alpha(M)=0.000217 \ 3$
								$\alpha(N)=5.20\times10^{-5}$ 8; $\alpha(O)=8.22\times10^{-6}$ 12; $\alpha(P)=4.88\times10^{-7}$ 7
4779.6	(18^{-})	662.7 2	100	4116.9	(16^{-})			

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}
4780.4	(18)	739.8 2	100	4040.6	(17^{-})	5191.8	(19)	411.4 2	100	4780.4	(18)
4804.9	(18^{+})	374.5 2	100 25	4430.5	(17^{+})	5199.6	(19^+)	394.7 2	100	4804.9	(18^{+})
		725.7 5	50 25	4078.89	(16^{+})	5225.4	(19^+)	772.1 10	100	4453.3	(17^{+})
4820.1	(19^{-})	398.5 <i>1</i>	100	4421.5	(18^{-})	5235.8	(20^{-})	415.6 2	100 25	4820.1	(19^{-})
		779.9 <i>3</i>	24 11	4040.6	(17^{-})			814.8 <i>4</i>	75 25	4421.5	(18^{-})
4847.4	(18^{+})	765.9 10	100 33	4081.5	(16^{+})	5338.6	(19^{-})	767.7 10	100	4570.9	(17^{-})
		937.3 10	67 33	3910.09	16 ⁺	5428.6	20^{+}	737.7 2	100	4690.89	18 ⁺
4954.8	18-	743.7 10	100	4211.1	16-	5618.6	(20)	426.7 2	100	5191.8	(19)
5148.6	(19^+)	436.6 9	100 25	4711.9	(18^{+})			838.4 5	50	4780.4	(18)
		855.5 <i>4</i>	< 50	4293.1	(17^+)	5666.9	(21^{-})	431.2 10	100	5235.8	(20^{-})
5170.8	19-	714.6 <i>3</i>	100	4456.2	17^{-}			846.7 10	100	4820.1	(19^{-})

[†] The adopted values represent weighted averages from different studies. The intensities are known with high precision in 182 Ta β^- decay, thus values from this decay are preferred when available. In cases where large discrepancies are found, those values were not considered in deducing averages. In $(\alpha, 2n\gamma)$, many such cases are noted where the relative branching ratios are discrepant, generally being much higher than in other studies. For gammas from high-spin levels above 2500 keV, gamma-ray energies and intensities are almost entirely from 176 Yb(13 C, α 3n γ) dataset since this dataset provides the most complete set of values.

[‡] From ce and angular distribution/correlation studies in 182 Ta decay, 182 Re decay and in-beam γ -ray studies.

^{*} From evaluation by 2000He14.

[@] Theoretical values from BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" approximation. If mixing ratio δ is not given, it was assumed as 1.0 for E2/M1 and E3/M2 and 0.10 for others.

[&]amp; Placement of transition in the level scheme is uncertain.

Level Scheme

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{182}_{\,74}\mathrm{W}_{108}$

Legend

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

- - ▶ γ Decay (Uncertain)

 $^{182}_{\,74}\mathrm{W}_{108}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{182}_{74}\mathrm{W}_{108}$

Legend

Intensities: Relative photon branching from each level

Level Scheme (continued)

Level Scheme (continued)

107

4-

1660.383

1553.2240

Band(P): K=(12) band

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111,275 (2010)	1-Oct-2009

 $Q(\beta^{-})=-1483\ 5$; $S(n)=7411.66\ 25$; $S(p)=7700.4\ 18$; $Q(\alpha)=1649.3\ 20$ 2012Wa38

Note: Current evaluation has used the following Q record -1481 4 7411.6026 7700.2 17 1657.0 20 2003Au03,2009AuZZ.

Q(α): From 2009AuZZ; 1656.2 22 in 2003Au03.

Other Reactions:

For isotope shift and/or hfs data see, for example, 1985Bo33, 1988Au04 1994Ji02, 1994Ji07, 1995Au08.

¹⁸⁴W Levels

Cross Reference (XREF) Flags

```
^{184}Ta \beta^- decay
                                                            ^{184}W(d,d')
Α
                                                                                                                    Muonic atom
                                                                                                                    ^{198}Pt(^{136}Xe,X\gamma)
         ^{184}Re \varepsilon decay (35.4 d)
                                                  K
                                                            Coulomb excitation
                                                                                                           Т
                                                            ^{186}W(p,t)
                                                                                                                    ^{183}W(n,\gamma) E=thermal: \gamma\gamma coin
         <sup>184</sup>Re \varepsilon decay (169 d)
C
                                                  L
                                                                                                                    ^{183}W(n,\gamma) E=res
         ^{183}W(n,\gamma) E=thermal
                                                            ^{183}W(d,p)
D
                                                  M
                                                            ^{182}W(t,p)
                                                                                                                    ^{184}W(\alpha,\alpha')
         ^{183}W(n,\gamma) E=7.6 eV
Ē
                                                  N
                                                            ^{184}\mathrm{W}(\gamma,\gamma')
                                                                                                                    ^{186}W(N,3n\gamma)
         ^{183}W(n,\gamma) E=2 keV
                                                  0
                                                                                                           X
                                                                                                                    ^{184}\mathrm{W}(\gamma,\!X)
         ^{183}W(n,\gamma) E=300 eV
                                                            ^{184}W(\gamma,\gamma):Mossbauer
G
                                                                                                           Y
         <sup>184</sup>W(n,n')
                                                            ^{184}\mathrm{W}(p,p),(p,p'),(\mathrm{pol}\ p,p')
                                                                                                                    <sup>184</sup>W(<sup>12</sup>C, <sup>12</sup>C'), (<sup>18</sup>O, <sup>18</sup>O')
Η
         ^{184}W(n,n'\gamma)
                                                            <sup>186</sup>W(<sup>12</sup>C, <sup>14</sup>C)
```

E(level)	J^{π}	$T_{1/2}$	XREF		Comments		
0.0 ^e	0+f	stable	ABCDEFGHIJKLMNOPQ STUVW	Z	$\Delta < r^2 > (^{186}W,^{184}W) = 0.085 4,$ $\Delta < r^2 > (^{184}W,^{182}W) = 0.099 5 (1994Ji02).$		

 $\Delta < r^2 > (^{186}W,^{184}W) = 0.084\ 7\ (1988Au04).$ $< r^2 > ^{1/2}(charge) = 5.3670\ 17\ (2004An14).$ J^π : L(p,t) = 0. $T_{1/2}$: α decay searched for but not observed.

 $T_{1/2}$. u decay searched for but not observed. $T_{1/2} \ge 8.9 \times 10^{21} \text{ y } (2004\text{Co}26), T_{1/2} \ge 1.8 \times 10^{20} \text{ y } (2003\text{Da}05), T_{1/2} \ge 2.9 \times 10^{19} \text{ y } (2003\text{Ce}01), \\ T_{1/2} \ge 4.0 \times 10^{18} \text{ y } (1997\text{Ge}15), \text{ all at } 90\% \text{ confidence level. Others: } T_{1/2} > 2 \times 10^{17} \text{ y } (1960\text{Be}13), \\ T_{1/2} > 3 \times 10^{17} \text{ y } (1961\text{Gr}37).$

111.2174 e 4 2 ^+f 1.251 ns 12 ABCDEFGHIJKLMNOPQ STUVWX Z

μ=+0.578 *14* (1984Al06) Q=-1.87 *20* (1977RuZV)

μ: from g=+0.289 7 (1984A106; IPAC); corrected for Knight shift and diamagnetism. Other: +0.576 14 (1972Ca12; Coulomb excitation integral perturbed angular distribution). Other g-factor data: 1961Ha21, 1962Go17.

Q: From Coulomb excitation reorientation. Other data: Q/Q(¹⁸²W)=0.938 *15* (1968Pe06), 0.930 *16* (1969Ch23), 0.965 *8* (1971Ob02).

Isomer shift $\delta < r^2 > /< r^2 > = +0.19 \times 10^{-4} \ 12$ $(1971 \text{HaWV}), \approx +0.13 \times 10^{-4} \ (1971 \text{WaYS}).$ $\delta < r^2 > /\delta < r^2 > (182 \text{W}) = -0.8 \ 7 \ (1971 \text{HaWV}), -0.81 \ 22$ (1971 HaWV)

 J^{π} : E2 111 γ to 0⁺ g.s..

 $T_{1/2}$: from ¹⁸⁴Re ε decay (35.4 d) (1984Al06). Other values: 1.23 ns 4 (from B(E2)), 1.24 ns 3, 1.28 ns 2,

¹⁸⁴W(e,e) (1973Ka44): E=42, 60, 65 MeV; deduced charge distribution parameters.

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$	XREF		Comments
					1.22 ns 9, all from Coulomb excitation), 1.19 ns 4 (muonic atom), 1.29 ns 12 (Mossbauer). The weighted average of all these data is 1.253 ns 14.
364.069 ^e 8	4+ <i>f</i>	46.3 ^b ps +25-13	ABCDE HIJKLMN Q	TU WX Z	 μ=+1.17 9 μ: from g=+0.293 23 (1984Al06; IPAC). Other: 1970BlZT. J^π: E4 excitation from 0⁺.
	f	b			Other $T_{1/2}$: 40 ps 5 from RDM in Coulomb excitation.
748.320 ^e 12	6+1	5.75 ^b ps 18	A CDE HIJKL N Q	Γ WX	μ=+1.79 26 μ: from g=+0.299 43 (1984Al06; IPAC). Other:+1.85 20 (1985St18; transient field) if g(364 level)=+0.293 23. J ^{π} : E2 to 4 ⁺ , band assignment. Other $T_{1/2}$: 5.2 ps 6 from RDM in Coulomb excitation.
903.3078 9	2+ <i>h</i>	1.80 ^b ps 4	ABCDEFGHIJKLMN Q	UVW	μ =+0.25 8 (1985St18) Q=+0.1 +4-3 (1977Ob02,1977Ob01) From g/g(364 level)=0.42 14 if g(364 level)=0.293 23. Method: transient field. Q: from Coulomb-excitation reorientation. J ^{π} : E2 539 γ to 0 ⁺ . Other T _{1/2} : 2.3 ps 3 from RDM in Coulomb excitation.
1002.49 ^d 4	0+		DEFGHIJ L N Q	UV	J^{π} : L=0 in (p,t) and (t,p). Other E: 1003.3 4 in (p,t).
1005.971 ⁸ 10	3+ h		ABCDEF I K	U	J^{π} : M1+E2 894 γ to 2 ⁺ 111; M1+E2 642 γ to 4 ⁺ 364.
1121.440 ^d 14	2+	56 ps 7	B DEFGHIJKLMN	UVW	J ^π : E2 757 γ to 0 ⁺ . T _{1/2} : from B(E2)↑=0.00052 6 in Coulomb excitation and adopted γ properties. However, B(E2) and B(E2)(W.u.) values given in Coulomb excitation for 1121 γ are inconsistent by a factor of ≈2.
1130.045 ⁱ 9	(2)-		ABCDEFG I		J ^π : E1+M2+E3 227 γ to 2 ⁺ 903; reduced I γ for M1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV favors 0 ⁻ ,2 ⁻ ; (E1) 124 γ to 3 ⁺ 1005.
1133.850 ^g 10	4 ⁺ <i>h</i>	2.30 ^b ps <i>17</i>	ABCDE HIJKLM Q	Γ	J^{π} : E2 230 γ to 2 ⁺ 903; γ band member. Other $T_{1/2}$: 2.6 ps 3 from RDM in Coulomb excitation.
1221.308 ⁱ 8	3-	45 ^b ps 5	A CDE GHIJKL N	W	J^{π} : E1+M2 1110 γ to 2 ⁺ 111; E1 857 γ to 4 ⁺ 364.
1252.2 ^e 7	8+ <i>f</i>	1.49 ^{<i>b</i>} ps <i>3</i>	K	г х	μ =+2.9 6 (1985St18) μ : from g/g(364 level)=1.22 24 if g(364 level)=0.293 23; transient field. J^{π} : E2 504 γ to 6 ⁺ , band assignment. Other T _{1/2} : 1.37 ps 17 from RDM in Coulomb excitation.
1282.71 <i>10</i>	(1,2)		G IJ		J ^{π} : M1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV. Possible γ to 2 ⁺ .
1284.997 ⁿ 8	5-	8.33 μs 18	A CDE IJ		$T_{1/2}$: from (216 γ)(200< $E(\gamma)$ <1000)(t) (1969Gl04) in ε decay (169 d). Other $T_{1/2}$:

E(level) [†]	${ m J}^{\pi}$	T _{1/2}	XREF	Comments
				7.70 μ s 3 (1969FaZY) and 8.0 μ s 4 (1969Mo07) from delayed coin in 184 Ta β^- decay. J^{π} : E1+M2+E3 921 γ to 4 ⁺ 364; E1+M2+E3 537 γ to 6 ⁺ 748.
1294.94 <mark>8</mark> 10	5+ <i>ah</i>		A D IKMN	
1322.152 ^k 22	(0)+		DEFGHIJ V	XREF: V(1310). J^{π} : E1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV; band assignment.
1345.37 ⁱ 3	$(4^{-})^{a}$		A DE I	
1360.38 ^d 19	$(4^+)^a$		hIJ M	J^{π} : 239 γ to 2 ⁺ 1122; 996 γ to 4 ⁺ 364.
1386.296 ^l 13 1425.003 ^m 16	2 ⁺ (3) ⁺	1.08 ^b ps 10	B DEFGHIJK M UV AB DE HI M	J^{π} : E2 1386 γ to 0 ⁺ g.s J^{π} : E1 295 γ to 2 ⁻ 1330; E2 1061 γ to 4 ⁺ 364; band assignment.
1431.02 ^k 5 1446.266 ^p 13	2 ⁺ 6 ⁻	>5 ^b ps	B DEFGHIJK UV A C hI M	J^{π} : E2 1431 γ to 0 ⁺ g.s J^{π} : M1 from 7 ⁻ , M1 to 5 ⁻ .
1476.9 ^g 5	6+ <i>ah</i>	1.82 ps 9	JK MN T	J^{π} : E2 225 γ to 8 ⁺ 1252; E2 343 γ to 4 ⁺ 1134. $T_{1/2}$: from B(E2) in Coulomb excitation. Other: 2.0 ps 4 from DSA in Coulomb excitation (1991Wu05).
1492 ⁱ 4	$(5^{-})^{a}$		J	
1501.545° 13	7-	2.35 ns 10	A C	$T_{1/2}$: from (K x ray)(216γ)(t) (1969Gl04) in ¹⁸⁴ Re ε decay (169 d).
1				J^{π} : E2 217 γ to 5 ⁻ , log ft =7.8 from 8 ⁽⁺⁾ .
1523.27 ^l 8 1536.66 ^m 16	$(3^+)^a (4^+)^a$		DE hI M A D hIJ MN	
1570.2 3	(2^{+})		DE HIS FIN	J^{π} : γ' s to $0^+,(3)^+$.
1581.46 9 1613.512 20	(6 ⁻) (1 ⁺)		A I M D FG I UV	J^{π} : L(d,p)>3 for 1/2 ⁺ target; band assignment. J^{π} : strong 608 γ to 3 ⁺ 1006 inconsistent with J=0 so level differs from the 0 ⁺ 1614.3 5 level excited in (p,t); 1502 γ to 2 ⁺ 111; primary γ to 1613 level from 0 ⁻ in (n, γ) E=res; 1975Ca23 argue that levels at 1614 and 1615 are 1 ⁺ and 0 ⁺ , respectively, on the basis of more intense feeding of the 1614 level in (n, γ) E=7.6 eV.
1614.3 5	0+		g I L	J^{π} : L(p,t)=0 for E=1614.3 5 level. Consistent with J^{π} =0 ⁺ ,2 ⁺ recommended for a 1613.9 7 level fed
1614.90 6	(1,2)+		DE g I Uv	by E1 primary γ from 0^- , 1^- in (n,γ) E=300 eV. J^{π} : E1 primary γ 's from 0^- , 1^- in (n,γ) E=300 eV, with 0^+ , 2^+ favored for a 1613.9 7 level and 1^+ for a 1615.46 23 level; 1504 γ to 2^+ 111; possible 1615 γ to 0^+ g.s. in (n,γ) E=thermal: $\gamma\gamma$ coin inconsistent with J=0.
1627.71 <i>3</i>	(1)+		DEFG M UV	J ^{π} : E1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV with reduced I γ that favors 1 ⁺ ; 724 γ to 2 ⁺ 903.
1637 ⁿ 4 1661.09 <i>19</i>	(7 ⁻) ^a		M hI V	XREF: V(1651).
1676.42 ^m 12	(5 ⁺)		A hI M	J^{π} : 527 γ to 4 ⁺ 1134. J^{π} : 1312 γ to 4 ⁺ 364; 382 γ to (5 ⁺) 1295; 331 γ to (4 ⁻) 1345; band assignment suggested in (n,n' γ).
1683.4 <i>5</i> 1699.04 <i>4</i>	(5)+		A M	 J^π: gammas to 2⁺ and 4⁺. J^π: E1 414γ to 5⁻ 1285, 274γ to (3)⁺ 1425, 253γ to 6⁻ 1446. Possible configuration: (ν 7/2[503])+(ν 3/2[512]) (1984Bu37).

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$	XREF		Comments
1713.47 10	(0)+		D FG I	Ū	J ^π : E1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV with reduced I γ that favors 0 ⁺ ,2 ⁺ . 0 ⁺ proposed by 1975Ca23 on the basis of (n, γ) population systematics.
1722 4	(1+)		М	V	J ^{π} ,E(level): primary γ to 1722 level from 0 ⁻ resonance in (n, γ) E=res. Presumed to feed
1746.03 <i>4</i>	(6) ⁺		AI		this level instead of the $(0)^+$ 1713. J^{π} : E1 461 γ to 5 ⁻ 1285, γ to 7 ⁻ 1502. Possible configuration: $(\pi 5/2[402]) + (\pi 7/2[404])$ (1084B) 27
1755 3	(4 ⁺)		J MN		7/2[404]) (1984Bu37). E(level): weighted average of 1756 <i>5</i> from (d,d'), 1754 <i>5</i> from (d,p) and 1755 <i>5</i> from (t,p). J ^π : L(d,p)=3; assigned by 1973Kl06 as K=4 bandhead based on comparison of
1774.5 5	0+		L		experimental and theoretical cross sections. J^{π} : $L(p,t)=0$.
1775.34 <i>3</i>	$(2)^{+}$		DEFG I M		J ^{π} : E1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV; 1412 γ to 4 ⁺ 364.
1795.8 5	0+		LM	v	XREF: v(1803).
					E(level): from (p,t). E=1796 5 for composite peak in (d,p).
1808.27 6	(2 ⁺)		DEFG I MN	Uv	J^{π} : L(p,t)=0. XREF: v(1803).
	, ,				J ^{π} : 1809 γ to 0 ⁺ g.s.; 1445 γ to 4 ⁺ 364. (M1) primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV for E=1808.7 5 level is inconsistent with this and may indicate the existence of a separate close-lying level.
1846.6? <i>15</i>	0		E		close lying level.
1860.8 ^e 9	10 ⁺ <i>f</i>	0.570^{b} ps $+24-31$	K N		J^{π} : E2 to 8^+ , band assignment. $T_{1/2}$: other $T_{1/2}$: 0.66 ps 9 from DSA (1991Wu05) in Coulomb excitation.
1876.71 9	(2)+		D FG I	U	J^{π} : 1877 γ to 0 ⁺ g.s.; 655 γ to 3 ⁻ 1221; E1
1894.3 <i>4</i>	$(2^+,3)$		IJ M		primary γ from $0^-, 1^-$ in (n, γ) E=300 eV. XREF: M(1901). J^{π} : 764 γ to 2^- 1130; 1531 γ to 4^+ 364; 1784 γ
1921 5			M		to 2 ⁺ 111.
1925.4 ^g 7	8 ⁺ h		K	T	J^{π} : E2 intraband 449 γ to 6 ⁺ 1477; E2 Coulomb excitation from 10 ⁺ 1861.
1995.4 <i>3</i>	1(-)		D FG I O	U	J^{π} : D 1995 γ to 0 ⁺ g.s.; (M1) contaminated
2012.94 10	(2)+		D FG	U	primary γ from $0^-, 1^-$ in (n, γ) E=300 eV. J^{π} : 1007 γ to 3 ⁺ 1006; 883 γ to 2 ⁻ 1130; E1 primary γ from $0^-, 1^-$ in (n, γ) E=300 eV with reduced I γ that favors $0^+, 2^+$.
2029.83 6	$(5^-,6,7^-)$		A M		XREF: M(2022).
2031.3 4	0+		D FG L	U	J^{π} : γ to 7 ⁻ , $\log ft = 8.2$ from (5 ⁻). J^{π} : $L(p,t) = 0$ for 2030.7 6 level; E1 primary γ
2035.56 18	1+,2+		D FG I	U	from $0^-, 1^-$ in (n, γ) E=300 eV. J^{π} : E1 primary γ from $0^-, 1^-$ in (n, γ) E=300
2044 6			M	v	eV; strong γ to 0 ⁺ . XREF: v(2050).
2056.41 <i>17</i>	(1)-	26 ^{&} fs 5	D G I O	Uv	E(level): from (d,p). XREF: v(2050).

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF		Comments
					J ^π : M1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV; 2056 γ to 0 ⁺ g.s K=(0) based on branching in (γ , γ').
2060.8 3			DEF I m	UV	J^{π} : 636 γ to (3) ⁺ 1425; 1950 γ to 2 ⁺ 111, so J^{π} =(1 ⁺ ,2,3,4 ⁺). If this is the level fed by primary γ from 0 ⁻ in (n, γ) E=res, J^{π} =(1 ⁺) would Be favored.
2063.4 <i>3</i>	$(0,2)^+$		G m		J^{π} : E1 primary γ from 0^{-} , 1^{-} in (n,γ) E=300 eV with reduced I γ that favors J=0,2.
2074.0 6	$(0,2)^{-}$		G N		J^{π} : M1 primary γ from 0^{-} , 1^{-} in (n,γ) E=300 eV with reduced I γ that favors J=(0,2).
2084.8 5	$(0,2)^{-}$		G		J^{π} : M1 primary γ from $0^-, 1^-$ in (n, γ) E=300 eV with reduced I γ that favors J=0,2.
2089.5 5	(1)-		D G		J^{π} : M1 primary γ from $0^-, 1^-$ in (n, γ) E=300 eV with reduced I γ that favors J=1.
2097.7 3	(1)+	31& fs 4	D FG I O	UV	XREF: V(2090). J ^{π} : E1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV with reduced I γ that favors J=1; 2098 γ to 0 ⁺ g.s.; probably primary γ from 0 ⁻ in (n, γ) E=res.
2104.20 8	(2)+		D FG M	U	J ^{π} : E1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV with reduced I γ that favors J=0,2; 782 γ to (0) ⁺ 1322; 1098 γ to 3 ⁺ 1006.
2111.2 6	0+		g L		E(level): from (p,t). J^{π} : L(p,t)=0.
2112.49 <i>18</i> 2124.6 <i>7</i>	$(1,2^+)$		D Fg g m	Uv	J ^π : 982γ to (2) ⁻ 1130, so J≤(4). J ^π : 1121γ to 0 ⁺ 1002; 1222γ to 2 ⁺ 903. See also comment on 2126 level.
2126.07 5			DEFg IJ m	Uv	J ^{π} : 996 γ to 2 ⁻ 1130; 2015 γ to 2 ⁺ 1113. An E1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV with reduced I γ that favors J=0,2 populates 2126 and/or 2125 level
2168.19 5	(1)+		DEFG I M	UV	J^{π} : 2168 γ to 0 ⁺ g.s.; 743 γ to (3) ⁺ 1425; E1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV; primary γ from 0 ⁻ in (n, γ) E=res.
2182 <i>5</i> 2194.7 <i>10</i>	(0^+)		N F		J^{π} : L=(0) in (t,p).
2221.77 22	(≤4)		D fg mn	V	J ^{π} : 447 γ to 2 ⁺ 111, so J≤(4). E1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV may feed 2222 and/or 2223 levels. In (n, γ) E=res, primary γ from 0 ⁻ possibly feeds this level; if so, J^{π} =(1 ⁺) is favored.
2222.8 5	(2+,3,4+)		Efg mn		J ^{π} : 1859 γ to 4 ⁺ 364; possible 1320 γ to 2 ⁺ 903. E1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV may feed 2222 and/or 2223 levels; its reduced intensity favors J^{π} =0 ⁺ ,2 ⁺ .
2228.30? 7 2246.3 <i>3</i>	(2 ⁻ ,3,4 ⁻) (2) ⁺		D DEFG M	UV	J ^{π} : 883 γ to (4) ^{$-$} 1345; 1098 γ to 2 ^{$-$} 1130. J ^{π} : 2245 γ to 0 ^{$+$} g.s.; E1 primary γ from 0 ^{$-$} ,1 ^{$-$} in (n, γ) E=300 eV with reduced I γ that favors J=0,2. However, if primary γ from 0 ^{$-$} in (n, γ) E=res feeds this level,
2294.61 7	(2)+		D FG M	Uv	J^{π} =1 ⁺ would Be preferred. XREF: v(2293). J^{π} : 2295 γ to 0 ⁺ g.s.; 2184 γ to 2 ⁺ 111; E1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV with reduced I γ that favors J=0,2.
2309.6 7	0+		L	V	XREF: $v(2293)$. E(level): from (p,t) . J^{π} : $L(p,t)=0$.
2320.4‡ 3	(1-,2-)		D G m	U	J^{π} : 1417 γ to 2 ⁺ 930; (M1) primary γ from 0 ⁻ ,1 ⁻ in

E(level) [†]	J^π	$T_{1/2}$	XREI	7	Comments
					$(n,\gamma) E=300 \text{ eV}.$
2328.7? 5	$(1,2^+)$		E m		J^{π} : γ to 0^+ .
2349.9 [‡] 5 2352.2 2	(1)-		D FG m	U	J ^{π} : M1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV.
2370.1 3	(1)+		D FG M	UV	J^{π} : E1 primary from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV.
2389.14 12	$(4^-,5,6^-)$		A D m		J^{π} : gammas to 4^- and 6^- .
2390.3 [‡] 2	(1)+		G m	Uv	XREF: v(2400). J^{π} : E1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV has reduced intensity that favors J^{π} =1 ⁺ .
2392.3 <i>3</i>			F m	v	XREF: v(2400).
2395.8‡ 4	(1)+		D G J m	Uv	XREF: v(2400). J^{π} : E1 primary γ from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV.
2401.8 6			F m		
2404.2‡ 3	0+		D G L	Ū	J ^{π} : L(p,t)=0 for E=2404.7 7 level. Consistent with E1 primary from 0 ⁻ ,1 ⁻ in (n, γ) E=300 eV with reduced intensity that favors J^{π} =0 ⁺ ,2 ⁺ .
2421.5 7	(0^+)		F J MN		J^{π} : L=(0) in (t,p).
2429.6 11			D	٧	XREF: V(2420). J ^{π} : if this is the level populated by primary γ from 0 ⁻ in (n, γ) E=res, J^{π} =1 ⁺ is favored.
2439.8 [‡] 2			D F M	U	
2458.4 [‡] 2	1@	62 ^{&} fs 12	D F O	U	
2468.9 7	(0^+)		L	V	E(level): from (p,t). J^{π} : $L(p,t)=(0)$.
2471.7 <mark>8</mark> <i>12</i>	10 ⁺ h	0.82^{b} ps $+15-4$	K		
2479.3 ^j 9	(8-,9,10+)			T	J ^{π} : γ 's to 8 ⁺ levels but not to 6 ⁺ levels; calculated energies for possible two quasiparticle configurations at roughly this energy have $J^{\pi}=8^-$ or 9 ⁻ or 10 ⁺ , the latter, v^2 11/2[615]+9/2[624] configuration, being the closest (2004Wh02).
2485.3 12			D F		XREF: D(2486.7)F(2484.3). E(level): weighted average from (n,γ) E=thermal and (n,γ) E=2 keV.
2492.67 10	$(4^-,5,6)$		A F M		J^{π} : log ft =7.4 from (5 ⁻), γ to 6 ⁻ .
2509.4 [‡] 2	0.4		D F	Uv	XREF: v(2513).
2512.7 7	0+		L	V	XREF: v(2513). E(level): from (p,t). J^{π} : L(p,t)=0.
2518.9 <i>3</i> 2520.7 [‡] <i>3</i>			D F M	v U	XREF: v(2513).
2532.4 6		0	F M		
2546.1 7	1@	65 ^{&} fs 15	0)	K=1 based on branching in (γ, γ') (1993He15).
$2555.0^{\ddagger} 2$	C	7	D F J	U	
2557.0 ^e 14 2567.9 7	$12^{+}f$ (0^{+})	0.265^{b} ps $+2I-24$	K L		J^{π} : $L(p,t)=(0)$.

E(level) [†]	${ m J}^\pi$	T _{1/2}		XRE	F	Comments
2573.4 [‡] <i>3</i>			D F	m	U	
2582.0 23			F	m		
2592.5 6			D F	M		
2613.3 [‡] <i>3</i>			D F		U	
2618.8 [‡] <i>3</i>			D F		U	
2630.7 7			D F	M		
2649.0 [‡] 3			D		Uv	XREF: v(2653).
2652.1 5			F	J	v	XREF: v(2653).
2655.8 [‡] 4			_		Uv	XREF: v(2653).
2675.5 7			F	J M	V	XREF: V(2688). J^{π} : primary γ from 1 ⁻ resonance in (n,γ) E=res.
2694.4 [‡] 3	1 [@]		E.	,	0 11	
2704.5 9	1		F F	(0 Uv	XREF: F(2693.4)v(2688).
$2706.7^{\ddagger} 4$			D		U	
2713	≤3		D		V	J^{π} ,E(level): primary γ from 0^- , 1^- resonance in (n,γ) E=res.
2719.8 [‡] 2			D F		U	(), (), (), (), (), (), (), (),
2732.5 [‡] 6			D		Ū	XREF: D(2730.3).
2739.3 ^{cj} 14					T	Mill. 5(2730.3).
$2757.6^{\ddagger} 2$			D		Uv	XREF: v(2763).
$2763.2^{\ddagger} 2$	1 @	28 <mark>&</mark> fs 6	D	(O Uv	XREF: D(2764.0)v(2763).
$2767.6^{\ddagger} 6$	1	26 18 0	F	`	Uv	XREF: v(2763).
2707.0° 0 2798.2 [‡] 4					Uv	XREF: v(2703).
2802.7 [‡] 1			D	-		XREF: v(2803).
2813 <i>I</i>			D	J (v 0	AREF: V(2003).
2815.0 [‡] 2			D F	Ì	U	
2825.1 [‡] 3	0+		Ъ.	L	Ŭ	J^{π} : L(p,t)=0 for 2826.4 7 level. 2714 γ to 2 ⁺ 111.
2836.9 [‡] 4	U			L	Ŭ	J. L(p,t)=0 101 2020.4 / 16vei. 2/14y to 2 111.
2845.4 11			F	J	U	
2849.2? 8			D			
2853.6 6			F			
2855.6? 10			D	j		XREF: j(2863).
2870.5 [‡] 2	(0 ⁺)		D	j L	Ū	XREF: j(2863). J^{π} : L(p,t)=(0) for 2871.3 7 level; consistent with 1967 γ to 2^{+} 903.
2892.1 [‡] 2	1@	31 ^{&} fs 6	F	(O U	Other E: 2893 1 from (γ, γ') .
						K=1 based on branching in (γ, γ') .
2902.0 8			D			
2905.8‡ 7					U	
2919.5 [‡] 2	(n+)		D F		U	IT I (() (0)
2927.7 <i>7</i> 2939.6 <i>7</i>	(0^+)		F	L L		J^{π} : L(p,t)=(0). E(level): from (p,t). Other E: 2937.8 14 from (n, γ) E=2
2737.07	(0)			_		keV. J^{π} : L(p,t)=(0).
2946.8 [‡] 4					U	
2948.7 5	_		F			
2951.0 [‡] 5	1@	33 ^{&} fs 6	D	(O U	K=1 based on branching in (γ, γ') .
2968.7 [‡] 2	(1^{+})		D F		UV	XREF: V(2960).
2001 4	~		, -			J^{π} : primary γ from 0^- resonance in (n,γ) E=res.
2981.4	5		d F		V	XREF: v(2986).
						E(level): from (n,γ) E=2 keV.

E(level) [†]	J^{π}	T _{1/2}		XREF		Comments
2983.6 [‡] 4			d		Uv	XREF: v(2986). J ^{π} : primary γ from 0 ⁻ resonance in (n, γ) E=res favors J^{π} =1 ⁺ for 2982 and/or 2984 level.
3004.1 11			D			•
3017.1 [‡] <i>1</i>			D		U	
3022.9 [‡] <i>3</i>					U	
3026.8 5			D F			E(level): weighted average from (n,γ) E=thermal and (n,γ) E=2 keV.
3029.0 [‡] 1					U	
3037.1 [‡] 6	(1+)		D		UV	XREF: D(3035.5). J^{π} : primary γ from 0^- resonance in (n,γ) E=res.
3053.4‡ 2					U	
3060.3 ^{cj} 17					T	
3068.5 [‡] <i>3</i>			Df		U	XREF: f(3070.1).
3071.2 [‡] <i>3</i>	1@		f	0	U	XREF: f(3070.1).
3084.0 10	1@		F	0		
3088 1	1@			0		
3104.2 [‡] <i>3</i>			D F		U	
3108.8? ⁸ 16	$(12^+)^h$	0.35^{b} ps $+14-3$		K		
3112.1 8	@		D			
3124 <i>I</i>	1@			0		
3133 <i>I</i>	1@			0		
3134.6‡ 5			D F		U	
3136.8‡ 4					U	
3164.1 8					U	
3166.2 8					U	
3169.1 [‡] 2			D		U	
3177.9 [‡] 5					U	
3183.8‡ 1			D F		U	
3187.1‡ 3					U	
3193.3 [‡] 3			D		U	
3201.8 [‡] <i>6</i> 3215.5 <i>7</i>			D G F		UV	XREF: D(3200.3).
3220.6 9			D			
3224.6 [‡] 7					U	
3226.3 [‡] 5			D F		U	
3233.7 [‡] 8					U	
3244.6 8			D			
3248.8 [‡] <i>3</i>			D F		U	XREF: D(3251.1).
3262.6 8			F		v	XREF: v(3264).
3264.0 5			D		Uv	XREF: v(3264).
3266.4 [‡] 5					Uv	
3288.3 [‡] 6					U	
3290.0‡ 4			D F		U	
3293.5‡ 6					U	
3304.3‡ 4					U	

3304.4 6 5 6 1 6 5.0	E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$	Σ	KREF		Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3307.4 [‡] 5			D		U	
3318.5							
3319,9° /7 14*				D			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.4+f	0.140h . 25 . 10			U	
3341.4		14' 3	$0.140^{\circ} \text{ ps } +25-10$			**	
3345.1 † 2 3349.1 † 6 3347.20 3369.9 0 3372.9 † 5 3377.5 † 3 3377.5 † 3 3384.3 † 6				D			
3349.1 \$\frac{1}{2}6\$ 3352.6 \$\frac{1}{6}\$ 3364.7 20 3369.9 9 377.5 \$\frac{1}{3}\$ 3377.5 \$\frac{1}{3}\$ 3384.3 \$\frac{1}{6}\$ 377.5 \$\frac{1}{3}\$ 3384.3 \$\frac{1}{6}\$ 377.5 \$\frac{1}{3}\$ 3384.3 \$\frac{1}{6}\$ 377.5 \$\frac{1}{3}\$ 378.4 \$\frac{1}{3}\$ 378.4 \$\frac{1}{3}\$ 378.4 \$\frac{1}{3}\$ 389.9 \$\frac{1}{6}\$ 379.9 \$\frac{1}{6}\$ 389.9 \$\frac{1}{6}\$ 399.9 \$\frac{1}{6}\$ 399.9 \$\frac{1}{6}\$ 399.9 \$\frac{1}{6}\$ 3413.7 \$\frac{1}{6}\$ 3422.4 \$\frac{1}{6}\$ 4 5 6 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7							
3364.7 20 3369.9 9 D F							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				D			
3372.9 \$ 5 3377.5 \$ 3 3384.3 \$ 6 D U XREF: D(3386.1).						· ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				D F			XREF: D(3371.5).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
Other E: 3386.1 7 from (n, y) E=thermal. 3392.0 † 9 3413.7 † 5 3420.8 9 3422.4 † 16 k fs 10 3421.3 l							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				D		U	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						U	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						U	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0_	F			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			16 ^{cc} fs 10		0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				D			XREF: D(3428.5).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				E.		T	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						II	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							XREF: D(3454.3).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 [@]	5.0 ^{&} fs 12		0	U	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						U	
3507.1 7 (1) $12^{\&}$ fs 4 F 0 XREF: F(3507.9). J^{π} : (D) γ to 0^{+} g.s $K=(1)$ based on branching (1993He15). 3516.2 ‡ 6 D W XREF: D(3517.8). 3522.5 ‡ 4 U XREF: D(3517.8). 3546.9 6 D E(level): from (γ, γ') . J^{π} : (D) γ to 0^{+} g.s J^{π} : (D) based on branching (1993He15). 3618.1 ‡ 5 D W J^{π} : (D) J^{π} : (D	3488.2 [‡] 4			D		U	
	3500.7 [‡] 4			D		U	
3516. 2^{\ddagger} 6	3507.1 7	(1)	12 ^{&} fs 4	F	0		J^{π} : (D) γ to 0^+ g.s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3516.2 [‡] 6			D		IJ	
3546.9 6 3571.1 7 (1) 4.1 4.1 5 6 7 8 9 9 9 10 10 10 11 12 13 14 15 16 16 17 18 18 19 18 19 19 10				2			THEI. B(3317.0).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				D			
3618.1 ‡ 5	3571.1 7	(1)	4.1 ^{&} fs <i>17</i>	D	0		J^{π} : (D) γ to 0^+ g.s
3633.1 7 1 0 4.7 k fs 17 0 K=1 based on branching (1993He15). 3634.7 ‡ 3 D U XREF: d(3652). 649.2 ‡ 4 d U XREF: d(3652). 649.2 ‡ 3 E(level): may Be the same level as seen at E=3633 I in (γ, γ') , but γ branching differs. 3654.2 ‡ 3 d U XREF: d(3652).	3618.1 [‡] 5			D		U	(v) cases on craneming (199611010).
3634.7 ‡ 3 D U XREF: d(3652). E(level): may Be the same level as seen at E=3633 I in (γ, γ') , but γ branching differs. 3654.2 ‡ 3 d U XREF: d(3652).		1 @	4.7 ^{&} fs 17	-	0	ŭ	K=1 based on branching (1993He15).
E(level): may Be the same level as seen at E=3633 I in (γ, γ') , but γ branching differs. 3654.2 ‡ 3 d U XREF: d(3652).				D		U	8(11111)
E(level): may Be the same level as seen at E=3633 I in (γ, γ') , but γ branching differs. 3654.2 ‡ 3 d U XREF: d(3652).							XREF: d(3652).
$3654.2^{\ddagger} 3$ d U XREF: d(3652).							E(level): may Be the same level as seen at
3670.3 [‡] 5				d		U	-
	3670.3 [‡] 5					U	

¹⁸⁴W Levels (continued)

E(level) [†]	${f J}^\pi$	T _{1/2}		XI	REF			Comments
3682.1 7	(1)	8& fs 5			0			J^{π} : (D) γ to 0^+ g.s K=(1) based on branching (1993He15).
3684.5 [‡] 4			F			U		E(level): may Be the same level as seen at E=3682 I in (γ, γ') , but γ branching differs.
3686.3 <i>6</i> 3703.2 <i>7</i>			D D					
3706.6 [‡] 5			D			U		
3715.3 ^c 22						T		
3715.6 [‡] 4			D			U		
3743.9 <i>6</i> 3770.6 <i>5</i>			D D					
3782.3 7			D					
3807.0 5			D					100 100
3863.2 25	(14 ⁻ ,15,17 ⁻)	188 ns <i>38</i>				T		$T_{1/2}$: from ¹⁹⁸ Pt(¹³⁶ Xe,X γ) (2004Wh02). J ^{π} : probable 4-quasiparticle isomer; candidate configurations with calculated energies near this energy
3882.8 11			D					have $J^{\pi}=14^{-}$ or 15 or 17 ⁻ (2004Wh02).
3930.2 <i>13</i> 3962.4 [‡] 2			D			U		
3902.4° 2 3971.9 <i>6</i>			D D			U		
4061.6 <i>6</i>		•	D					
4116.9 ^e 20	16^{+f}	0.125^{b} ps $+32-13$		K				
4278.8‡ 3						U		
6543.5 [‡] 2 6556.1 <i>10</i>					0	U		
6580.8‡ 2						U		
6622.7 [‡] 4						U		
6760.1 <i>10</i>	1+#				0			
11.90×10 ³ 17		2.90 MeV <i>17</i>					Y	E(level), $T_{1/2}$: component of E1 GDR; total GDR Γ=6.8 2 MeV; from (γ,X) .
14.80×10 ³ 22		4.70 MeV 22					Y	E(level), $T_{1/2}$: component of E1 GDR; total GDR Γ =6.8 2 MeV; from (γ,X) .

[†] From least-squares fit to adopted E γ , except as noted, whenever γ 's are observed; from weighted average of values in reaction dataset(s) otherwise.

[‡] From (n,γ) E=thermal: $\gamma\gamma$ coin.

 $^{^{\#}}$ M1 γ to 0^{+} .

 $^{^{\}tiny @}$ D γ to 0⁺ g.s..

[&]amp; Deduced from measured $\Gamma_{\gamma 0}^2/\Gamma$ in (γ, γ') and adopted $\Gamma_{\gamma 1}/\Gamma_{\gamma 0}$, assuming $\Gamma = \Gamma_{\gamma 1} + \Gamma_{\gamma 0}$. Thus, deduced $T_{1/2}$ will Be an upper limit if branches exist to levels other than the g.s. and the 111-keV level.

^a From band assignment and arguments given.

^b From measured B(E2) in Coulomb excitation.

^c Energy may differ from value shown because it depends on unestablished order of γ cascade above the 2480 level in

¹⁸⁴W Levels (continued)

$(^{136}\text{Xe},\text{X}\gamma)$ (2004Wh02).

- ^d Band(A): $K^{\pi}=0^{+}$ β band. Band parameters: A=23.9, B=-296 (J=0,2,4,6 levels).
- ^e Band(B): $K^{\pi}=0^{+}$ ground state band. Band parameters: A=18.5, B=-17 (J=2,4,6 levels).
- ^f Definite J^{π} is assigned to members of g.s. band based on smooth progression of level spacings and independently established J^{π} for g.s. and E2 multipolarity for J=2 to 0 transition.
- ^g Band(C): $K^{\pi}=2^{+} \gamma$ band. Band parameters: A=17.7, B=-63 (J=2,3,4 levels).
- ^h Definite J^{π} is assigned to J≤10 members of γ band based on smooth progression of level spacings and independently established J^{π} for 2⁺ member (903 keV) and E2 multipolarity for J=4 to 2, 230 γ .
- ⁱ Band(D): $K^{\pi}=2^{-}$ octupole band.
- ^j Band(E): sequence based on 2479 (8⁻,9,10⁺) level.
- ^k Band(F): K=0 band.
- ¹ Band(G): $K^{\pi}=2^{+}$ (ν 3/2[512])+(ν 1/2[510]) band.
- ^m Band(H): $K^{\pi}=3^+$ (ν 7/2[503])-(ν 1/2[510]) band.
- ⁿ Band(I): $K^{\pi}=5^{-}$ (ν 11/2[615])-(ν 1/2[510]) band.
- ^o Band(J): $K^{\pi}=7^{-}$ (ν 11/2[615])+(ν 3/2[512]) band.
- ^p Band(K): $K^{\pi}=6^{-}$ (ν 11/2[615])+(ν 1/2[510]) band.

$v(^{184}$
ν (104

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f .	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^{c}	Comments
111.2174	2+	111.2174 ^{&} 4	100 ^{&}	0.0	0+	E2		2.57	B(E2)(W.u.)=119.8 <i>17</i> Additional information 1.
364.069	4+	252.845 [@] 10	100 [@]	111.2174 2	2+	E2		0.1437	B(E2)(W.u.)=166 +5-9
748.320	6+	384.250 [@] 12	100 [@]	364.069	4 ⁺	E2		0.0418	B(E2)(W.u.)=181 6
903.307	2+	539.220 25	0.83 <i>3</i>	364.069	4 ⁺	E2		0.01744	B(E2)(W.u.)=0.459 20
									E_{γ} : from ε decay. I_{γ} : weighted average of 0.80 4 in ε decay (169 d), 0.86 4 in ε decay (35.4 d), 0.77 10 in β^- decay. Other I_{γ} : 1.3 3 in (n, γ) E=thermal; 2.2 2 for possibly contaminated γ in Coulomb excitation.
		792.067 22	98.5 11	111.2174 2	2+	M1+E2	-16.85	0.00733	$B(M1)(W.u.)=4.3\times10^{-5} \ 3; \ B(E2)(W.u.)=7.94 \ 21$
									E_{γ} : from ε decay.
									I _{γ} : weighted average of 98.9 22 in ε decay (169 d), 98.9 16 in ε decay (35.4 d), 97.1 24 in β^- decay. Weighted average from ε decay. Other δ : -19 +6-21 and -18
		002 202 10	100 0 11	0.0	n+	F2		0.00554.0	+4-2 from Coulomb excitation.
		903.282 19	100.0 11	0.0	0+	E2		0.00554 8	B(E2)(W.u.)=4.19 <i>11</i>
									E_{γ} : from ε decay. I_{γ} : weighted average from β^- decay, ε decay (169 d) and ε decay (35.4 d).
1002.49	0_{+}	891.27 4	100	111.2174 2		[E2]		0.00575	
1005.971	3+	641.915 20	12.40 18	364.069 4	4+	M1+E2	-8.5 8	0.01183 18	E _γ : from ε decay (35.4 d). I _γ : weighted average of 12.1 5 in (n,γ) E=thermal, 10.8 20 in (n,n'γ), 12.42 22 in ε decay (35.4 d), 12.4 26 in (n,γ) E=7.6 eV, 12.5 4 in ε decay (169 d).
		894.760 19	100.0 14	111.2174 2	2+	M1+E2	-13.29	0.00569 8	E_{γ} : from ε decay (35.4 d).
1121.440	2+	757.328 24	70 4	364.069	4 ⁺	E2		0.00803	B(E2)(W.u.)=0.22 3
									E _{γ} : weighted average from ε decay and (n,γ) E=thermal. I _{γ} : weighted average of 76 4 in (n,γ) E=thermal, 52 9 in $(n,n'\gamma)$, 67 5 in ε decay (35.4 d), 66 14 in (n,γ) E=7.6 eV. B(E2)(W.u.): See comment on T _{1/2} (1121 level).
		1010.245 <i>21</i>	100 4	111.2174 2	2+	M1+E2+E0		0.0139 10	E_{γ} : weighted average from ε decay and (n,γ) E=thermal.
									$ δ(M1,E2)=+2.3 6. $ $ ρ^2(E0)=0.0026 5 (1999Wo07). $ $ α$: estimate based on $α(K)$ exp.
		1121.422 24	38.0 20	0.0	0+	E2		0.00359	B(E2)(W.u.)=0.0166 23
			20.0 20	3.3	-			3.00207	E_{γ} : weighted average from ε decay and (n,γ) E=thermal. I_{γ} : weighted average of 38.8 28 in (n,γ) E=thermal, 22 9 in

$\gamma(^{184}\text{W})$ (continued)

						/ \			
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^{c}	Comments
1130.045	(2)-	124.067 <i>12</i>	9.0 7	1005.971	3+	(E1)		0.214	$(n,n'\gamma)$, 38.5 28 in ε decay (35.4 d), 40 9 in (n,γ) E=7.6 eV. B(E2)(W.u.): See comment on $T_{1/2}(1121 \text{ level})$. E $_{\gamma}$: weighted average of 124.071 15 in (n,γ) E=thermal and 124.060 20 in ε decay. I $_{\gamma}$: weighted average of 9.7 10 in (n,γ) E=thermal, 10.1 5 in ε decay (169 d), 9.8 19 in ε decay (35.4 d), 7.6 5
		226.746 8	100.0 <i>21</i>	903.307	2+	E1+M2+E3		0.059 5	in β^- decay. E_{γ} : weighted average of 226.743 12 in (n,γ) E=thermal and 226.748 10 in ε decay.
		1018.83 9	5.6 3	111.2174	2+	(E1)			Mult.: $\delta(M2,E1)=0.0$ 4, $\delta(E3,E1)=+0.10$ 3 from ε decay. I _{γ} : weighted average of 4.9 5 in (n,γ) E=thermal, 6.4 7 in ε decay (169 d), 6.3 12 in ε decay (35.4 d), 5.7 5 in β^- decay, 5.5 11 in (n,γ) E=7.6 eV. E _{γ} : weighted average of 1018.75 9 in β^- decay, 1018.93 5 in ε decay and 1018.63 8 in (n,γ) E=thermal.
1133.850	4+	127.67 10	0.25 10	1005.971	3+	E2(+M1)	>2.8	1.57 6	B(M1)(W.u.)<0.0010; B(E2)(W.u.)>86 E_{γ} : from ε decay. I_{γ} : based on ce(L2) data in ε decay; photons not observed.
		230.45 [@] 6 385.5	2.2 [@] 3 <0.83	903.307 748.320		E2 [E2]		0.193 0.0414	B(E2)(W.u.)=75 12 B(E2)(W.u.)=1.1 11 E_{γ} : from level energy difference. I_{γ} : based on ce(K) data in ε decay; photons not observed.
		769.778 <i>17</i>	100 3	364.069	4+	M1+E2	-6.3 +20-32	0.0080 4	$\dot{B}(M1)(W.u.)=0.00029$ 18; $\dot{B}(E2)(W.u.)=8.0$ 7 \dot{E}_{γ} : from ε decay.
		1022.63 3	74 3	111.2174	2+	E2		0.00431 6	Other δ : $-12 + 5 - 20$ from Coulomb excitation. B(E2)(W.u.)=1.46 13 E _{γ} : from ε decay. I _{γ} : weighted average of 70 5 in β ⁻ decay and 77 4 in ε
1221.308	3-	87.452 10	4.15 19	1133.850	4+	E1		0.529	decay (35.4 d). B(E1)(W.u.)=0.000142 18 E _{γ} : from ε decay (169 d). I _{γ} : weighted average of 4.1 6 in β ⁻ decay and 4.15 20 in
		91.270 <i>10</i>	4.35 24	1130.045	(2)-	M1+E2	0.62 4	6.03	ε decay (169 d). B(M1)(W.u.)=0.0099 <i>13</i> ; B(E2)(W.u.)=190 <i>30</i> E _{γ} : from ε decay (169 d). I _{γ} : weighted average of 4.54 <i>28</i> in β ⁻ decay, 4.42 <i>20</i> in
		215.326 12	48.9 13	1005.971	3+	E1		0.0519	ε decay (169 d) and 3.3 5 in (n, γ) E=thermal. B(E1)(W.u.)=0.000112 <i>13</i> E _{γ} : from ε decay (169 d).

$\gamma(^{184}\text{W})$ (continued)

						-		_	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^{C}	Comments
1221.308	3-	318.008 10	100.0 12	903.307	2+	E1+M2	-0.020 10	0.0202 5	I _γ : weighted average of 52 4 in (n,γ) E=thermal, 48.3 14 in ε decay (169 d), 50 5 in β^- decay, 59 24 in (n,γ) E=7.6 eV. B(E1)(W.u.)=7.1×10 ⁻⁵ 8 E _γ : from ε decay (169 d). δ: from $\gamma(\theta, H, t)$ in ε decay; however, note that
		857.23 3	2.84 7	364.069	4+	E1		0.00238 4	δ <0.017 if B(M2)(W.u.)<1 as required by RUL. B(E1)(W.u.)=1.03×10 ⁻⁷ 12 E _{\gamma} : from ε decay (169 d). I _{\gamma} : weighted average of 2.93 19 in β ⁻ decay and 2.82
		1110.08 3	9.88 25	111.2174	2+	E1+M2	+0.08 3	0.00159 10	8 in ε decay (169 d). B(E1)(W.u.)=1.64×10 ⁻⁷ 19; B(M2)(W.u.)=0.004 3 E _{γ} : from ε decay (169 d).
		1221.29 4	0.36 3	0.0	0+	(E3)		0.00639 9	I _{\gamma} : weighted average of 9.0 12 in (n, γ) E=thermal, 10.1 5 in ε decay (169 d), 9.8 3 in β^- decay, 10.5 35 in $(n, n'\gamma)$, 15 3 in (n, γ) E=7.6 eV. B(E3)(W.u.)=5.9 9 E _{\gamma} : from ε decay (169 d). I _{\gamma} : weighted average of 0.41 6 in β^- decay and 0.35 3 in ε decay (169 d). B(E3)\(\frac{1}{2}\): From measured B(E3)\(\frac{1}{2}\)=0.082 6 in
1252.2	8+	503.6	100	748.320	6 ⁺	E2		0.0206	Coulomb excitation. B(E2)(W.u.)=185 5 Mult Extrem Coulomb excitation
1000 71	(1.2)=	161.27 <mark>ae</mark> 10	100 <mark>a</mark>	1121 440	2+				Mult., E_{γ} : from Coulomb excitation.
1282.71 1284.997	(1,2) ⁻ 5 ⁻	63.6890 14		1121.440	2 ⁺ 3 ⁻	E2		25.7	D/E2)/W \ 0.0100 11
1284.997	3	03.0890 14	5.47 25	1221.308	3	E2		23.7	B(E2)(W.u.)=0.0188 11
									E_{γ} : from ε decay (169 d).
		151 124 20	0.57.5	1122.050	4.4	FF 13		0.1207	I_{γ} : from β^- decay.
		151.134 20	0.57 5	1133.850	4+	[E1]		0.1286	$B(E1)(W.u.)=1.37\times10^{-11}$ 13
									E_{γ} : from ε decay (169 d). I_{γ} : weighted average of 0.50 9 in β^- decay and 0.60 6 in ε decay (169 d).
		(279.0)	< 0.010	1005.971	3+	[M2]		1.111	$B(M2)(W.u.)=1.1\times10^{-6}+12-11$
									I_{γ} : from ε decay (169 d).
		381.82 <i>14</i>	0.69 6	903.307	2+	[E3]		0.1579	B(E3)(W.u.)=0.139 <i>13</i>
									E_{γ} : from ε decay (169 d). I_{γ} : weighted average of 0.65 7 in β^- decay and 0.77
		#a < <= : -=	40		- 1			0.00	10 in ε decay (169 d).
		536.674 <i>15</i>	40.4 6	748.320	6+	E1+M2+E3		0.0068 1	E _γ : from ε decay (169 d).
									I_{γ} : weighted average of 29 7 in (n, γ) E=thermal, 40.6 6 in ε decay (169 d), 39.9 $I4$ in β^- decay, 49 II in

$\gamma(^{184}\text{W})$ (continued)

Adopted Levels, Gammas (continued)

J										
	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^{c}	Comments
		_								$(n,n'\gamma)$. δ: $\delta(M2,E1)=+0.070$ 6, $\delta(E3,E1)=-0.025$ 4, $\lambda=-2.1$
	1284.997	5-	920.933 [@] 21	100.0 [@] 14	364.069	4+	E1+M2+E3		0.0030 2	Mult.: $\delta(M2,E1) = -0.14 4$, $\delta(E3,E1) = -0.19 3$.
			1173.77 3	14.9 6	111.2174	2+	(E3)		0.00698 10	B(E3)(W.u.)=0.00116 δ E_{γ} : from ε decay (169 d). I_{γ} : weighted average of 14.9 8 in ε decay (169 d),
	1294.94	5 ⁺	930.87 ^a 10	100 ^a	364.069	4 ⁺				14.9 11 in β^- decay, 15 4 in $(n,n'\gamma)$. Other Ey: 932.2 in Coulomb excitation, 930.00 25
	1234.34	J	930.87 10	100	304.009	+				in (n, γ) E=thermal, 930.9 5 in β^- decay.
	1322.152	$(0)^{+}$	418.847 20	100 50		2 ⁺	[E2]		0.0331	I_{γ} : from $(n,n'\gamma)$.
	1345.37	(4^{-})	1211.0 ^a 10 211.63 5	<7.5 ^a 27 7	111.2174 1133.850	4 ⁺	[E1]		0.0542	
	13 13.37	(')	215.21 ^a 10	<232 ^a		(2)	[21]			
			339.34 <i>4</i>	100 20	1005.971	3 ⁺	[E1]		0.0170 <i>3</i>	
			981.1 5	15 5	364.069	4+				E _{γ} : from $(n,n'\gamma)$. I _{γ} : weighted average of 12 5 in $(n,n'\gamma)$, 23 8 in β^- decay.
1	1360.38	(4^{+})	238.8 ^a 6	100^{a} 28	1121.440	2+				
1			996.3 ^a 2 1249.8 ^a 10	<500 ^a <44 ^a	364.069 111.2174	4 ⁺				
	1386.296	2+	380.34 4	3.9 10	1005.971		M1+E2	1.3 +23-6	0.070 22	B(M1)(W.u.)=0.003 +6-3; B(E2)(W.u.)=13 +18-13
										E_{γ} : from ε decay (35.4 d).
			482.92 <i>3</i>	15.8 18	903.307	2+	M1+E2		0.042 20	Other I γ : 4.2 11 in ε decay (35.4 d). I $_{\gamma}$: weighted average of 13.9 28 in (n, γ) E=7.6 eV,
			402.72 3	13.0 10	703.301	2	WITTE		0.042 20	11.8 25 in Coulomb excitation, 15.4 28 in ε decay (35.4 d), 19.5 20 in (n, γ) E=thermal. Mult.: small E0 component suggested in ε decay.
			1275.11 & 3	100 <mark>&</mark> 5	111.2174	2+	M1+E2	≥+3		B(M1)(W.u.)<0.00054; B(E2)(W.u.)>0.98
			1273.11	100 3	111.21/4	2	WITE	213		δ ,Mult.: δ (M1,E2):-0.42 4 or >18, <-50 from $\gamma(\theta,H,t)$ (1973Kr01), 1.2 +10-5 from α (K)exp if no E0 in ε decay (35.4 d), but 1974Mc08 suggest the possible presence of an E0 component; δ =+6+6-3 from $\gamma(\theta)$ in Coulomb excitation
			1386.302 17	81 <i>3</i>	0.0	0+	E2		0.00242 4	(1971Mi08), where this larger solution is considered the more likely. The evaluator adopts δ≥+3. B(E2)(W.u.)=0.66 7 I _γ : weighted average of 83 17 in (n,γ) E=7.6 eV, 70 7 in (n,n'γ), 86 4 in ε decay (35.4 d), 80 4 in
										(n,γ) E=thermal. Other I γ : 84 in Coulomb excitation.

$\gamma(^{184}\text{W})$ (continued)

$E_i(level)$ J_i^j									
$E_l(\text{ICVCI})$ J_i	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^c	Comments
1425.003 (3)	3)+	203.56 10	13.1 24	1221.308	3-	[E1]		0.0599	Other I γ : 16 8 in (n, γ) E=7.6 eV, 6 3 in β^- decay, 11 3 in (n,n' γ).
		294.962 <i>15</i> 1060.85 <i>15</i>	100 <i>5</i> 11.4 <i>15</i>	1130.045 364.069	(2) ⁻ 4 ⁺	E1 E2		0.0238 0.00401 <i>6</i>	I _{γ} : weighted average of 13 3 in (n, γ) E=7.6 eV, 15 4 in β^- decay, 11.9 23 in ε decay (35.4 d), 7 3 in (n,n' γ). Other: 36 4 in (n, γ) E=thermal.
		1313.79 4	58 6	111.2174	2+	E2		0.00266 4	E _{γ} : from ε decay (35.4 d). I _{γ} : weighted average of 57 11 in (n, γ) E=7.6 eV, 69 10 in β^- decay, 51 4 in ε decay (35.4 d), 74 7 in (n, γ) E=thermal. Other I γ : <43 in (n, η ' γ).
1431.02 2+		424.36 ^e 15 1319.84 6	8.3 <i>19</i> 100 <i>6</i>	1005.971 111.2174	3 ⁺ 2 ⁺	M1+E2+E0			
		1430.97 6	79 6	0.0	0_{+}	E2		0.00230 4	B(E2)(W.u.)<0.13
1446.266 6 ⁻ 1476.9 6 ⁺		161.269 [@] 15 224.7	100 [@]	1284.997 1252.2	5 ⁻ 8 ⁺	M1+E2 E2	0.53 7	1.09 <i>3</i> 0.210	B(E2)(W.u.)= $2.5 + 18-4$ B(E2)(W.u.): From measured B(E2) \uparrow =0.0119 +85-21 in Coulomb excitation.
		343.1		1133.850	4+	E2		0.0574	 E_γ: from Coulomb excitation. B(E2)(W.u.)=179 +8-10 E_γ: from Coulomb excitation. B(E2)(W.u.): From measured B(E2)↑=1.60 +7-9 in Coulomb excitation.
		728.6		748.320	6+	M1+E2	-4 +1-15	0.0095 8	B(E2)(W.u.)=10.5 5 E _y : from Coulomb excitation. B(E2)(W.u.): From measured B(E2) \uparrow =0.065 3 in Coxoloitabion.
		1112.9		364.069	4+	E2		0.00364 6	Mult.,δ: from Coulomb excitation. B(E2)(W.u.)=1.13 7 E _γ : from Coulomb excitation. B(E2)(W.u.): From measured B(E2)↑=0.0101 +5−6 in Coulomb excitation.
1501.545 7	-	55.2790 [@] 8	24.5 [@] 25	1446.266	6-	M1+E2	0.051 17	4.68 12	B(M1)(W.u.)=0.0052 7; B(E2)(W.u.)=1.8 13
,	3 ⁺)	216.547 [@] 12 1412.05 8 112 ^e	100.0 [@] 21 100	1284.997 111.2174 1425.003		E2		0.237	B(E2)(W.u.)=3.09 23 E_{γ} : from β^- decay.
2220,000 (1		191.0 [#] 5 315.4 [#] 4 1172.1 [#] 5	12 [#] 5 100 [#] 24 83 [#] 24	1345.37 1221.308 364.069	(4 ⁻) 3 ⁻ 4 ⁺	[E1]		0.0704 11	,
1570.2 (2-	2 ⁺)	1425.54 [#] 20 145.6 ^e 8	56 [#] 5 2.6×10 ² 13	111.2174 1425.003	2^+ $(3)^+$				Other I γ : 77 19 from (n, γ) E=thermal. E $_{\gamma}$,I $_{\gamma}$: from (n, γ) E=7.6 eV. γ should have been seen

16

γ (184W) (continued)

ı			4	-1-			4		
	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	α^{c}	Comments
									in (n,γ) E=thermal also, but was not, rendering this placement
	1570.2	(2^{+})	1570.19 25	100 40	0.0	0+			questionable. I_{γ} : from (n,γ) E=7.6 eV.
	1570.2	(2) (6 ⁻)	296.46 [#] 10	100 40	1284.997	5 ⁻			1γ . Holli (II, γ) E=7.0 eV.
	1613.512	(0) (1^+)	607.620 25	100 6	1284.997	3 ⁺			
	1013.312	(1)	710.08 3	94 10	903.307	2+			
			1502.35 8	24 12	111.2174				
	1614.90	$(1,2)^+$	711.58 6	100 10	903.307	2+			
			1503.74 <i>15</i>	54 14	111.2174	2+			Other I γ : 77 18 from (n, γ) E=7.6 eV; 61 from (n, γ) E=thermal: $\gamma\gamma$ coin.
			1614.6 <mark>b</mark>	3.9 ^b 14	0.0	0^{+}			E_{γ} : γ reported only in (n,γ) E=thermal: $\gamma\gamma$ coin.
	1627.71	$(1)^{+}$	241.46 6	4.9 10	1386.296	2+	[M1]	0.396	
	1661.00		724.39 <i>3</i>	100 5	903.307	2+			
	1661.09		526.8 ^a 4	$100^{a} 31$	1133.850	4 ⁺			
			655.5 ^a 3 757.6 ^a 3	<300 ^a <1000 ^a	1005.971 903.307	3 ⁺ 2 ⁺			
			1550.4 ^a 10	<1000° <38°a	111.2174				
	1676.42	(5^{+})	331.06 [#] 12	74 [#] 17	1345.37	(4^{-})			
	10/0.72	(5)	381.6 [#] 5	100 [#] 52	1294.94	5 ⁺			
			1312.2 [#] 4	61 [#] 17	364.069	3 4 ⁺			
	1683.4		1312.2" 4 1319.6 <mark>a</mark> 5	<670 ^a	364.069	4+ 4+			
	1003.4		1571.5 ^a 8	100 ^a 50	111.2174				
	1699.04	(5) ⁺	≈162 [#]	2.3 [#] 10	1536.66	(4^{+})	[M1]	1.202	I_{γ} : possibly overestimated; see comment on this γ in β^- decay data
	10////	(5)				()	[1111]	1.202	set.
ĺ			≈253 [#]	6.8 [#] 20	1446.266	6-	[E1]	0.0347	
			274.07 [#] <i>7</i>	0.60 [#] 6	1425.003	$(3)^{+}$	[E2]	0.1118	
ĺ			354.0 [#] 2	0.20# 8	1345.37	(4^{-})	[E1]	0.01544	
			414.01 [#] 5	100 [#]	1284.997	5-	E1	0.01078	Mult.: from 184 Ta β^- decay.
			1334.9 <i>3</i>	0.07 2	364.069	4+			
	1713.47	$(0)^{+}$	810.16 10	100	903.307	2+			
	1746.03	$(6)^{+}$	244.44 <mark>#</mark> 6	33# 4	1501.545	7-	[E1]	0.0378	
			299.79 [#] 9	4.4 [#] 5	1446.266	6-	[E1]	0.0229	
			461.06 [#] 5	100 [#] 3	1284.997	5-	E1	0.00848 12	Mult.: from 184 Ta β^- decay.
	1775.34	$(2)^{+}$	769.44 <i>3</i>	51 24	1005.971	3 ⁺			Other Iy: 109 47 from (n,y) E=7.6 eV.
			871.56 8	100 <i>21</i>	903.307	2+			Evend also weather a (a also) for double also d
	1808.27	(2^{+})	1412.4 ^e 5 586.94 ^e 7	44 <i>4</i>	364.069 1221.308	4 ⁺ 3 ⁻			Eγ and placement from $(n,n'γ)$ for doubly-placed $γ$.
		17. 1	J0U.74 /	44 <i>4</i>	1441.308	3			

17

		a.				d.		•	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α^{c}	Comments
1808.27	(2+)	802.53 20	41 9	1005.971	3+				Other Iy: 26 6 from (n,y) E=7.6 eV.
		1444.5 <i>3</i>	79 <i>21</i>	364.069	4+				
		1697.5 <i>3</i>	91 <i>15</i>	111.2174					
1860.8	10 ⁺	1808.5 <i>4</i> 608.6	68 <i>15</i> 100	0.0 1252.2	0 ⁺	E2		0.01309	B(E2)(W.u.)=189 + 11-8
1800.8	10	008.0	100	1232.2	0	EZ		0.01309	E_{γ} , Mult.: from Coulomb excitation.
1876.71	$(2)^{+}$	655.38 12	26 5	1221.308	3-				by, water from Coulomb excitation.
		746.59 <i>15</i>	47 11	1130.045	$(2)^{-}$				
		1765.6 4	100 29	111.2174					
		1877.3 <i>4</i>	92 18	0.0	0_{+}				
1894.3	$(2^+,3)$	763.6 ^a 6	100 ^a 39	1130.045	$(2)^{-}$				
		1530.5 ^a 8	16 ^a 8	364.069	4 ⁺				
1025 4	8+	1783.6 ^a 6	37 ^a 11	111.2174		EO		24.0	$P(E2)/W_{12} = 2.2 + 22 - 12$
1925.4	6	64.6		1860.8	10 ⁺	E2		24.0	B(E2)(W.u.)= $2.2 + 22 - 13$ B(E2)(W.u.): From measured B(E2) \uparrow =0.011 +11-7 in
									Coulomb excitation.
									E_{γ} : from level energy difference.
		448.7		1476.9	6+	E2		0.0276	B(E2)(W.u.)=221 + 14-9
									E_{γ} : from Coulomb excitation.
									$B(E2)(W.u.)$: From measured $B(E2)\uparrow=1.79 +11-7$ in
		(72		1050.0	0+	141 50	2 2 42 4	0.0120.10	Conditation.
		673		1252.2	8+	M1+E2	-2.3 + 42 - 4	0.0129 10	B(E2)(W.u.)=11.0 +8-26
									E_{γ} : from ¹⁹⁸ Pt(¹³⁶ Xe,Xγ). B(E2)(W.u.): From measured B(E2)↑=0.069 +5−16 in
									Coulomb excitation.
									Mult., δ : from Coulomb excitation.
		1177.3		748.320	6+	E2		0.00327 5	B(E2)(W.u.)=0.63 +6-11
									E_{γ} : from Coulomb excitation.
									$B(E2)(W.u.)$: From measured $B(E2)\uparrow=0.0052 +5-9$ in
	.()								Coulomb excitation.
1995.4	1 ⁽⁻⁾	1995.35 25	100	0.0	0_{+}	D			Mult.: from γ anisotropy in (γ, γ') .
2012.94	$(2)^{+}$	882.75 ^d 15	<185 ^d	1130.045	$(2)^{-}$				
		1007.03 ^d 12	<235 ^d	1005.971	3+				
		1901.9 3	100 31	111.2174					
2029.83	$(5^-,6,7^-)$	528.28 [#] 6	100 [#]	1501.545					
	0^{+}	1920.1 <i>4</i>	100	111.2174					
2031.3				003 307	2+				
2031.3 2035.56	1+,2+	1132.36 20	17 3	903.307	0+				
2035.56	1+,2+	2035.1 4	100 20	0.0	0 ⁺	FE 11			P(E1)/W ₁₁)=0.00062_16
						[E1]			B(E1)(W.u.)=0.00062 16 L: from (x x')
2035.56	1+,2+	2035.1 4	100 20	0.0		[E1]			B(E1)(W.u.)=0.00062 16 I_{γ} : from (γ, γ') . B(E1)(W.u.)=0.00040 9

$\gamma(^{184}\text{W})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	Comments
2060.8		635.92 ^e 8	27 4	1425.003	$(3)^{+}$		Other Iy: 8.6 21 from (n,y) E=7.6 eV.
		1949.60 25	100 15	111.2174			, , , , , , , , , , , , , , , , , , , ,
2097.7	$(1)^{+}$	1986.6 <i>4</i>	81 <i>17</i>	111.2174			
		2097.6 4	100 14	0.0	0_{+}	[M1]	B(M1)(W.u.)=0.043 10
2104.20	$(2)^{+}$	782.2 ^d 3	26 <mark>d</mark> 9	1322.152	$(0)^{+}$		
	(-)	982.44 ^d 18	41 ^d 9	1121.440	2+		
		$1098.28^{d} 8$	$100^{d} 9$	1005.971	3 ⁺		
2112.49	(4 a 4)	982.44 ^d 18	100 ^d	1130.045	(2)		
2124.6	$(1,2^+)$	1121.4	47 18	1002.49	0^{+}		
2126.07		1222.0	100 9	903.307	2+		
2126.07		996.06 5	52 <i>5</i> 44 <i>5</i>	1130.045 1121.440	$(2)^{-}$ 2^{+}		Other Iy: 66 13 in (n,γ) E=7.6 eV. Other Iy: 41 8 in (n,γ) E=7.6 eV.
		1004.47 8 2015.32 20	100 10	111.2174			Other Iy: 41 8 III $(n,y) = 7.0 \text{ eV}$. Other Iy: 100 41 in $(n,y) = 7.6 \text{ eV}$.
2168.19	$(1)^{+}$	743.19 4	66 14	1425.003	$(3)^{+}$		I_{γ} : from (n, γ) E=7.6 eV.
2100.19	(1)	782.2 ^{de} 3	$<28\frac{d}{}$		2+		,
				1386.296	_		I_{γ} : if $I(1046\gamma)=34$.
		846.21 <i>25</i> 1046.4 <i>3</i>	34 <i>10</i> 34 <i>8</i>	1322.152 1121.440	$(0)^+$ 2^+		I_{γ} : if $I(1046\gamma)=34$.
		≈1264.7	20 <i>4</i>	903.307	2+ 2+		I_{γ} : from (n,γ) E=7.6 eV. E_{γ},I_{γ} : from (n,γ) E=7.6 eV. Other I_{γ} : 14 7 from (n,γ) E=thermal; 29 11 from
		≈1204.7	20 4	903.307	2		E_{γ} , i_{γ} . Holli $(i_{\gamma}, y) = 7.0$ eV. Other i_{γ} . i_{γ} Holli $(i_{\gamma}, y) = 1$ Holli $(i_{\gamma}, y) = $
		2056.5 5	100 4	111.2174	2+		E_{γ},I_{γ} : from (n,γ) E=7.6 eV.
		2168.0 5	10 4	0.0	0^{+}		E_{γ},I_{γ} : from (n,γ) E=7.6 eV. Other Iy: 62 10 from (n,γ) E=thermal: $\gamma\gamma$ coin.
2221.77	(≤4)	446.64 25	21 6	1775.34	$(2)^{+}$		$E_{\gamma,i\gamma}$. From (i,j) $E_{-i,0}$ $e_{i,0}$. Other $i_{j,0}$, $i_{j,0}$
	(= .)	2110.0 4	100 26	111.2174			
2222.8	$(2^+,3,4^+)$	≈1319.5 ^e		903.307	2 ⁺		E_{γ} : from ¹⁸³ W(n, γ) 7.6 eV; doubly-placed γ .
	(= ,0,.)	1858.7 5		364.069	4 ⁺		E_{γ} : from ¹⁸³ W(n, γ) 7.6 eV.
2228.30?	$(2^-,3,4^-)$	882.75 ^d 15	60 ^d 12	1345.37	· (4 ⁻)		Ly. Hom (1,7) 7.0 c 1.
2220.301	(2 ,3,4)		$82^{\frac{d}{9}}$				
		$1007.03\frac{d}{d}$ 12		1221.308	3-		
		1098.28 ^d 8	100 ^d 10	1130.045	$(2)^{-}$		
2246.3	$(2)^{+}$	2135.1 3	100 41	111.2174			I_{γ} : from (n,γ) E=7.6 eV.
		≈2245	38 16	0.0	0+		\dot{E}_{γ} , I_{γ} : from (n,γ) E=7.6 eV.
2294.61	$(2)^{+}$	1173.1 ^b	8.4 ^b 16	1121.440	2+		
		1391.23 8	46 5	903.307	2+		
		2183.62 15	100 15	111.2174			
		2294.5 ^b	4.9 ^b 22	0.0	0_{+}		
2320.4	$(1^-,2^-)$	1417.1 <mark>b</mark>	100 ^b	903.307	2+		
2328.7?	$(1,2^+)$	2328.7 5	100	0.0	0+		
2349.9		2349.9 <mark>b</mark>	100 <mark>b</mark>	0.0	0^{+}		
2370.1	$(1)^{+}$	2258.6 4	100 26	111.2174			
,	\ - <i>J</i>		-00 -0		_		

19

	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	α^{c}	Comments
	2370.1	$(1)^{+}$	2370.4 4	93 14	0.0	0_{+}			
	2389.14	$(4^-,5,6^-)$	359.2 [#] 3	22 <mark>#</mark> 6	2029.83	$(5^-,6,7^-)$			
			807.68 [#] 10	100# 12	1581.46	(6-)			
			942.9 <mark>#</mark> <i>4</i>	21# 4	1446.266	6-			
			1043.1# 8	≈1.5 [#]	1345.37	(4-)			
			1093.8# 10	4# 3	1294.94	5 ⁺			
			1104.4# 3	9 [#] 4	1284.997	5-			
١	2390.3	$(1)^{+}$	2279.1 ^b	27 <mark>b</mark> 9	111.2174				
١			2390.3 ^b	100 ^b 16	0.0	0_{+}			
١	2395.8	$(1)^{+}$	782.2 de 3	<14 ^d	1613.512	(1^{+})			
١			1274.3 ^b	20.6 ^b 18	1121.440	2+			
			2031.7 ^b	16 ^b 3	364.069	4+			
			2284.2 <i>4</i> 2395.9 <i>5</i>	100 <i>6</i> 48 <i>4</i>	111.2174 0.0	2 ⁺ 0 ⁺			I_{γ} : from (n,γ) E=thermal: $\gamma\gamma$ coin. I_{γ} : from (n,γ) E=thermal: $\gamma\gamma$ coin. Other: 37 14 in (n,γ)
١			2393.9 3	46 4	0.0	0.			I_{γ} : from (I_{i}, γ) E=thermal: $\gamma \gamma$ coin. Other: $37/14$ in (I_{i}, γ) E=thermal.
,	2404.2	0+	1500.9 ^b	100 <mark>b</mark> 13	903.307	2+			2
`	2.02		2292.9 ^b	49 ^b 12	111.2174				
	2439.8		2328.6 <mark>b</mark>	100 <mark>b</mark>	111.2174				
	2458.4	1	2347.1 ^b	19 <mark>b</mark> 4	111.2174				
		_	2458.4 ^b	100 <mark>b</mark> 9	0.0	0+	D		Mult.: from anisotropy in (γ, γ') .
	2471.7	10 ⁺	546.3	100	1925.4	8+	[E2]	0.0169	B(E2)(W.u.)=224 + 12 - 41
									E_{γ} : from Coulomb excitation.
	2479.3	$(8^-,9,10^+)$	554		1925.4	8+			E _y : from ${}^{198}\text{Pt}({}^{136}\text{Xe},\text{X}\gamma)$.
	2402.6		1227	# -	1252.2	8+			E_{γ} : from ¹⁹⁸ Pt(¹³⁶ Xe,X γ).
	2492.67	$(4^-,5,6)$	1046.4# 6	15 [#] 5	1446.266	6 ⁻			
			1207.67 [#] 10	100 [#] 10	1284.997	5-			
١	2509.4		1606.1^{b}	22 ^b 7	903.307	2+			
			2398.1^{b}	100 ^b 13	111.2174				
	2520.7	1	2409.5 ^b 2435	100 ^b	111.2174				E. I., from (s. d)
	2546.1	1	2546 <i>1</i>	44 <i>11</i> 100	111.2174 0.0	0 ⁺	D		$E_{\gamma}I_{\gamma}$: from (γ, γ') . $E_{\gamma}I_{\gamma}$,Mult.: from (γ, γ') .
	2555.0		2443.8 ^b	100 b	111.2174		D		2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	2557.0	12 ⁺	696.2	100	1860.8	10 ⁺	E2	0.00965 14	B(E2)(W.u.)=208 +19-17
									E_{γ} ,Mult.: from Coulomb excitation.
									B(E2)(W.u.): From measured B(E2) \uparrow =1.54 +14-12 in Coulomb
									excitation.
- 1									

γ (184W) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
2573.4		2462.2 ^b	100 ^b	111.2174	2+		
2613.3		1710.0 <mark></mark>	100 ^b 26	903.307	2+		
		2502.1 ^b	54 ^b 21	111.2174	2+		
2618.8		2618.8 ^b	100 ^b	0.0	0^{+}		
2630.7		2519.4 ^b	34 <mark>b</mark> 9	111.2174	2+		
		2630.7 ^b	100 ^b 17	0.0	0^{+}		
2649.0		2537.8 ^b	100 b	111.2174	2+		
2655.8		2544.5 ^b	39 <mark>b</mark> 16	111.2174	2+		
		2655.8 ^b	100 ^b 26	0.0	0^{+}		
2694.4	1	2694.4 ^b	100 ^b	0.0	0+	D	Other E γ : 2693 I from (γ, γ') . Mult.: from γ anisotropy in (γ, γ') .
2706.7		1803.4 <mark>b</mark>	100 ^b 14	903.307	2+		
		2595.5 ^b	32 ^b 11	111.2174	2+		
		2706.7 ^b	26 ^b 13	0.0	0^{+}		
2719.8		1816.5 ^b	100 ^b	903.307	2+		
2732.5		2621.3 ^b	100 b	111.2174	2+		
2739.3		260		2479.3	$(8^-, 9, 10^+)$		E_{γ} : from ¹⁹⁸ Pt(¹³⁶ Xe,X γ).
2757.6		2646.4 ^b	100 ^b	111.2174			
2763.2	1	2397.1 ^b	20^{b}_{1} 5		4 ⁺		
		2651.9 ^b	82 ^b 12	111.2174	2+		
		2763.2 ^b	100 ^b 12	0.0	0_{+}	D	Mult.: from γ anisotropy in (γ, γ') .
2767.6		2656.3 ^b	100 ^b 16	111.2174	2+		
		2767.6 ^b	25 <mark>b</mark> 9	0.0	0_{+}		
2798.2		2798.2 ^b	100 ^b	0.0	0_{+}		
2802.7		2691.5 ^b	100 ^b	111.2174			
2813		2813 <i>I</i>	100	0.0	0+		E_{γ} : from (γ, γ') .
2815.0		2450.9 ^b	$25^{b} 5$		4 ⁺		
2025.1	0.4	2703.7 ^b	$100^{b} 10$	111.2174			
2825.1	0+	1921.8 ^b	$63^{b} 25$	903.307			
		2713.9 ^b	$100^{b} 28$	111.2174			
2836.9	(0.1)	2725.7 ^b	100^{b}	111.2174			
2870.5	(0^+)	1967.2 ^b	100^{b}	903.307			E i from (n i) E-thomash iii sain
2892.1	1	2780.9	35 12	111.2174	<i>L</i>		E_{γ} : from (n, γ) E=thermal: $\gamma \gamma$ coin. I_{γ} : from (γ, γ') . Other: 25 13 from (n, γ) E=thermal: $\gamma \gamma$ coin.

21

γ (¹⁸⁴W) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	$\mathbf{J}^{m{\pi}}_f$	Mult.‡	α^{C}	Comments
2892.1	1	2892.1	100	0.0	0+	D		E_{γ} : from (n,γ) E=thermal: $\gamma\gamma$ coin. I_{γ} : from (γ,γ') . Mult.: from γ anisotropy in (γ,γ') .
2905.8		2000.8 ^b	100 ^b 25	903.307	2+			, 13 (7)
		2905.8 <mark>b</mark>	49 <mark>b</mark> 25	0.0	0^{+}			
2919.5		2808.3 ^b	100 ^b	111.2174	2+			
2946.8		2043.5 ^b	100 <mark>b</mark> 47	903.307				
		2835.5 ^b	91 ^b 47	111.2174				
2951.0	1	2839.7	56 11	111.2174	2+			E_{γ} : from (n,γ) E=thermal: $\gamma\gamma$ coin. I_{γ} : from (γ,γ') . Other: 34 21 from (n,γ) E=thermal: $\gamma\gamma$ coin.
		2951.0	100	0.0	0+	D		\dot{E}_{γ} : from (n,γ) E=thermal: $\gamma\gamma$ coin. I_{γ} : from (γ,γ') . Mult.: from γ anisotropy in (γ,γ') .
2968.7	(1^+)	2857.4 <mark>b</mark>	33 <mark>b</mark> 7	111.2174	2+			,
_,,	(+)	2968.7 ^b	$100^{b} 24$	0.0	0 ⁺			
2983.6		2983.6 ^b	100^{b}	0.0	0+			
3017.1		3017.1 ^b	100 ^b	0.0	0+			
3022.9		2911.6 ^b	71 ^b 29	111.2174				
		3022.9^{b}	$100^{b} 20$	0.0	0 ⁺			
3029.0		2917.8 ^b	100^{b}	111.2174				
3037.1	(1^+)	1915.7 ^b	100^{b} 22	1121.440	2 ⁺			
3037.1	(1)	2925.9 ^b	78^{b} 24	111.2174				
		3037.1 ^b	$90^{b} 31$	0.0	0+			
3053.4		2942.2^{b}	100^{b}	111.2174				
3060.3		321		2739.3	-			E_{γ} : from ¹⁹⁸ Pt(¹³⁶ Xe,X γ).
		581 e		2479.3	$(8^-, 9, 10^+)$			E_{γ} : from ¹⁹⁸ Pt(¹³⁶ Xe,X γ).
3068.5		2957.3 ^b	100 ^b	111.2174				
3071.2	1	3071.2 ^b	100 ^b	0.0	0^{+}	D		Mult.: from γ anisotropy in (γ, γ') .
3084.0	1	3084 <i>1</i>	100	0.0	0+	D		E_{γ},I_{γ} : from (γ,γ') . Mult.: from γ anisotropy in (γ,γ') .
3088	1	3088 1	100	0.0	0+	D		E_{γ}, I_{γ} : from (γ, γ') . Mult.: from γ anisotropy in (γ, γ') .
3104.2		2200.9 ^b	42 <mark>b</mark> 7	903.307	2+			
		2992.9 <mark>b</mark>	28 ^b 7	111.2174	2+			
		3104.2 ^b	100 ^b 12	0.0	0^{+}			
3108.8?	(12^{+})	637.1 ^e	100	2471.7	10 ⁺	[E2]	0.01178	B(E2)(W.u.)=245 +21-97

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	α^{c}	Comments
								E_{γ} : from Coulomb excitation. B(E2)(W.u.): From measured B(E2) \uparrow =1.79 +15-71 in Coulomb excitation.
3124	1	3124 <i>I</i>	100	0.0	0+	D		E_{γ} , I_{γ} : from (γ, γ') . Mult.: from γ anisotropy in (γ, γ') .
3133	1	3133 <i>I</i>	100	0.0	0_{+}	D		Mult., E_{γ} : from γ anisotropy in (γ, γ') .
3134.6		2231.3 ^b	100 ^b	903.307	2+			
3136.8		3136.8 ^b	100 ^b	0.0	0_{+}			
3164.1		3052.9 ^b	78 ^b 32	111.2174	2+			
		3164.1 ^b	100 ^b 28	0.0	0_{+}			
3166.2		3055.0 ^b	100 ^b	111.2174	2+			
3169.1		3057.9 ^b	100 ^b	111.2174				
3177.9		3177.9 ^b	100 ^b	0.0	0^{+}			
3183.8		3072.6 ^b	100 ^b	111.2174	2+			
3187.1		3075.9 ^b	100 ^b	111.2174	2+			
3193.3		3082.1 ^b	100 ^b	111.2174	2+			
3201.8		3090.6 ^b	100 ^b	111.2174	2+			
3224.6		3113.4 ^b	100 ^b	111.2174	2+			
3226.3		2323.0 ^b	100 ^b	903.307	2+			
3233.7		2330.4 ^b	78 ^b 40	903.307	2+			
		3122.4 ^b	100 ^b 36	111.2174	2+			
3248.8		3137.6 ^b	100 <mark>b</mark>	111.2174	2+			
3264.0		3264.0 ^b	100 ^b	0.0	0_{+}			
3266.4		3155.2 ^b	100 ^b	111.2174	2+			
3288.3		2385.0 ^b	100 ^b		2+			
3290.0		3290.0 ^b	100 ^b	0.0	0_{+}			
3293.5		3293.5 ^b	100 ^b		0_{+}			
3304.3		2401.4 ^b	100 ^b	903.307	2+			
3307.4		3196.2 ^b	100 ^b	111.2174	2+			
3318.5		3207.3 ^b	100 ^b	111.2174				
3319.9	14+	762.9	100	2557.0	12+	[E2]	0.0079	B(E2)(W.u.)=250 +18-44 E _y : from Coulomb excitation. B(E2)(W.u.): From measured B(E2) \uparrow =1.80 +13-32 in Coulomb excitation.
3329.2		3218.0 ^b	100 <mark>b</mark>	111.2174	2+			• • •
3341.4		3230.2 ^b	100 <mark>b</mark>	111.2174				

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
3345.1		2223.7 ^b	100 ^b	1121.440	2+		
3349.1		3237.9 ^b	100 ^b	111.2174	2+		
3352.6		3241.4 <mark>b</mark>	68 <mark>b</mark> 23	111.2174			
		3352.6 ^b	100 <mark>b</mark> 29	0.0	0^{+}		
3372.9		3261.7 ^b	100 <mark>b</mark>	111.2174	2+		
3377.5		3266.3 ^b	100 <mark>b</mark>	111.2174			
3384.3		3273.1 <mark>b</mark>	100 b	111.2174			
3392.0		3280.8 ^b	84 ^b 38	111.2174			
		3392.0 ^b	100 ^b 46	0.0	0^{+}		
3413.7		3302.5 ^b	100 ^b	111.2174			
3422.4		3311.2 ^b	100 ^b	111.2174			
		3422.4	81 28	0.0	0^{+}		E_{γ} : from (n,γ) E=thermal: $\gamma\gamma$ coin.
							I_{γ} : weighted average of 71 39 from (n,γ) E=thermal: $\gamma\gamma$ coin, 91 41 from (γ,γ') .
3427.2		3316.0 ^b	100 ^b	111.2174	2+		100 126
3441.3		381		3060.3			E_{γ} : from 198 Pt(136 Xe, X_{γ}).
		702 ^e	h	2739.3	- 1		E_{γ} : from ¹⁹⁸ Pt(¹³⁶ Xe,X γ).
3448.2		3337.0 ^b	100^{b}	111.2174			
3455.6		3344.4 ^b	$100^{b} \ 36$	111.2174			
2466.2	1	3455.6 ^b	98 ^b 38	0.0	0+		
3466.2	1	3355 3466.2 ^b	100 76 ^b 13	111.2174	0+	D	E_{γ} : from level energy difference.
		3466.2		0.0	0.	D	Other Ey: 3464 I in (γ, γ') . I_{γ} : from (γ, γ') .
3473.3		3362.1 <mark>b</mark>	94 <mark>b</mark> 42	111.2174	2+		
		3473.3 ^b	100 ^b 45	0.0	0_{+}		
3488.2		3377.0 ^b	100 ^b	111.2174	2+		
3500.7		3389.5 ^b	98 ^b 33	111.2174	2+		
		3500.7 ^b	100 ^b 38	0.0	0_{+}		
3507.1	(1)	3396	70 20	111.2174		(7)	I_{γ} : from (γ, γ') .
		3507 <i>1</i>	100	0.0	0+	(D)	Mult.: from γ anisotropy in (γ, γ') .
3516.2		3405.0 ^b	100^{b}	111.2174			
3522.5	(1)	3411.3 ^b	100 ^b	111.2174			
3571.1	(1)	3460 3571 <i>1</i>	100 56 <i>12</i>	111.2174 0.0	0+	(D)	I_{γ} : from (γ, γ') .
3618.1		3618.1 <mark>b</mark>	100 ^b	0.0	0+		Mult.: from γ anisotropy in (γ, γ') .

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	α^{c}	Comments
3633.1	1	3522	45 12	111.2174	2+			I_{γ} : from (γ, γ') .
		3633 1	100	0.0	0_{+}	D		Mult.: from γ anisotropy in (γ, γ') .
3634.7		3523.5 ^b	100 <mark>b</mark> 24	111.2174	2+			
		3634.7 ^b	80 <mark>b</mark> 24	0.0	0_{+}			
3649.2		3538.0 ^b	100 <mark>b</mark>	111.2174	2+			
3654.2		3543.0 ^b	100 <mark>b</mark>	111.2174	2+			
3670.3		3559.1 <mark>b</mark>	100 <mark>b</mark>	111.2174	2+			
3682.1	(1)	3571	46 14	111.2174				E_{γ},I_{γ} : from (γ,γ') .
		3682 <i>1</i>	100	0.0	0_{+}	(D)		E_{γ}, I_{γ} : from (γ, γ') .
		1.	1.					Mult.: from γ anisotropy in (γ, γ') .
3684.5		3573.3 ^b	100 ^b	111.2174				
3706.6		3595.4 ^b	100 <mark>b</mark>	111.2174	2+			100 126
3715.3		274	100	3441.3				E_{γ} : from ¹⁹⁸ Pt(¹³⁶ Xe,X γ) (2004Wh02.
3715.6		3604.4 ^b	100 <mark>b</mark>	111.2174	2+			_
3863.2	$(14^-, 15, 17^-)$	148	100	3715.3		(M1)	1.552	$B(M1)(W.u.)=1.4\times10^{-5}$ 3
								E_{γ} : from ¹⁹⁸ Pt(¹³⁶ Xe,X γ).
								Mult.: $\alpha(\exp)=4.3$ 24 in (136 Xe,X γ) favors M1, but uncertainty is large and authors do not rule out E2 and E1 which are within 2σ of deduced $\alpha(\exp)$.
3962.4		3851.2 ^b	37 <mark>b</mark> 13	111.2174	2+			
		3962.4 <mark>b</mark>	100 <mark>b</mark> 20	0.0	0^{+}			
4116.9	16 ⁺	797.0	100	3319.9	14 ⁺	[E2]	0.00720 10	B(E2)(W.u.)=225 +23-58
								E_{γ} : from Coulomb excitation.
		1	,					B(E2)(W.u.): From measured B(E2) \uparrow =1.59 +16-41 in Coulomb excitation.
4278.8		4167.5	51 ^b 18	111.2174	2+			
		4278.8 ^b	100^{b} 25	0.0	0_{+}			
6543.5		6543.5 ^b	100 <mark>b</mark>	0.0	0_{+}			
6556.1		5433	28 17	1121.440	2+			E_{γ}, I_{γ} : from (γ, γ') .
		6444	64 32	111.2174				E_{γ}, I_{γ} : from (γ, γ') .
(500.0		6555	100_{100}^{h}	0.0	0+			E_{γ}, I_{γ} : from (γ, γ') .
6580.8		6580.8 ^b	100^{b}	0.0	0+			
6622.7 6760.1	1+	6511.5 ^b 6648	100 ^b 71 25	111.2174 111.2174				E. I.: from (a/a/)
0700.1	1	6760	100	0.0	0+	M1		$E_{\gamma}I_{\gamma}$: from (γ, γ') . $E_{\gamma}I_{\gamma}$, Mult.: from (γ, γ') .
		0700	100	0.0	U	1111		L_{γ} , L

[†] From (n,γ) E=thermal, except as noted.

$\gamma(^{184}\text{W})$ (continued)

- ‡ From 184 Re ε decay, except as noted.
- # From β^- decay.
- [@] From ε decay (169 d).
- & From ε decay (35.4 d).
- ^a From $(n,n'\gamma)$.
- ^b From (n,γ) E=thermal: $\gamma\gamma$ coin.
- ^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^d Multiply placed with undivided intensity.
- ^e Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

γ Decay (Uncertain)

Band(B): $K^{\pi}=0^{+}$ ground state band 16⁺ 4116.9 797 Band(E): Sequence based on 2479 (8-, 9,10⁺) level 3441.3 Band(C): $K^{\pi}=2^{+} \gamma$ 14+ 3319.9 band 381 (12^{+}) 3108.8 702 3060.3 321 2739.3 **12**⁺ 2557.0 $(8^-,9,10^+)$ 2479.3 2471.7 10^{+} 1925.4 10^{+} 1860.8 Band(D): K^π=2⁻ octupole band Band(A): $K^{\pi}=0^{+}\beta$ band 1492 1476.9 (4^{+}) 1360.38 (4^{-}) 1345.37 1294.94 8+ 1252.2 3-1221.308 239 (2) ⁹¹ 1130.045 1133.850 $\mathbf{2}^{+}$ 1121.440 128 1005.971 1002.49 903.307 748.320 364.069 253 111.2174 111 0.0

Band(H): $K^{\pi}=3^+$ (ν 7/2[503])-(ν 1/2[510]) band

(5⁺) 1676.42

Band(I): K^{π} =5 $^-$ (v 11/2[615])-(v 1/2[510]) band

(7-) 1637

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	J. C. Batchelder and A. M. Hurst, M. S. Basunia	NDS 183, 1 (2022)	1-Mar-2022

 $Q(\beta^{-})=-581.3 \ 12; \ S(n)=7192.0 \ 12; \ S(p)=8403 \ 14; \ Q(\alpha)=1116 \ 6$ 2021Wa16

Other Reactions:

Isotope shift data: see, e.g., 1988Au04, 1994Ji02, 1995Au08.

¹⁸⁶W Levels

Cross Reference (XREF) Flags

	A B C D	¹⁸⁶ Ta $β$ ⁻ decay ¹⁸⁶ Re $ε$ decay (3 ¹⁸⁶ W($γ$, $γ'$)	E .7185 d) F G H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
E(level) [†]	J^{π}	$T_{1/2}$	XREF	Comments
0.0	0+	stable [@]	ABCDEFGHIJ	$\Delta < r^2 > (^{186}W^{-184}W) = 0.085 \text{ fm}^2 4 (1994\text{Ji}02).$
122.632 ^{&} 15	2+	1.040 ns <i>10</i>	ABCDEFGHIJ	μ =+0.621 <i>17</i> Q=-1.6 <i>3</i>
				 μ: from Mossbauer and recoil into gas or vacuum (2020StZV, based on data of 1976St23). Other: 0.62 3 from g-factor ratio in Coulomb excitation (1991St04). Q: from Coulomb excitation reorientation (2021StZZ, from 1977RuZV). Other data: Q/Q(2⁺ 182W)=0.882 17 (1968Pe06), 0.908 24 (1969Ch23), 0.906 18 (1971Ob02). Q<0 (1973Kl08). T_{1/2}: Weighted ave. of 1.036 ns 10 (1975Ka11 - 186Ta β⁻ decay), 1.08 ns 3 from B(E2)=3.42 5 (see Coulomb Exci. dataset), 1.12 ns 7 (p,p'γ)
				(1959Bi10), and 1.01 ns 4 ($\alpha,\alpha'\gamma$) (1962Bi05) – considered following the systematics of B(E2) $2^+ \rightarrow 0^+$ values of neighboring even-even W isotopes (see 2016Pr01). Others: 1.30 ns $2I$ (1967As03), 1.116 ns $2I$ pulsed beam (1967Ku07); 1.38 ns $I2$ (1970Me09, Mossbauer); 1.39 ns $I2$ (1971Ob02, Mossbauer); \geq 1.15 ns 6 (1972Hi14, Mossbauer) – all are listed in Coul. Exci. dataset. J ^{π} : direct E2 Coulomb excitation from 0^+ .
396.551 ^{&} 18	4+	36.4 ps 25	A DEFGHIJ	μ=+1.28 10; Q=-2.6 13 B(E4)↑=0.14 +15-10 μ: from transient field integral PAC (2020StZV – from 1985St07); relative to ¹⁸⁶ W(123 keV level).
				Q: from Coulomb excitation reorientation (2021StZZ – from 1970McZQ). B(E4)↑: from Coulomb excitation. T _{1/2} : from B(E2)=1.63 11 in Coulomb excitation. Other: 38 ps 3 (1986Bi13 – Coul. Exci.
737.960 ^a 20	2+	4.78 ps <i>16</i>	A CDEFGHIJ	J ^π : stretched E2 274γ to 2 ⁺ ; Coulomb excited member of g.s. band. μ=+0.39 8 Q=+1.3 3 μ: from transient field integral PAC (2020StZV, from 1985St07); relative to 186W(123 keV level).
				Q: from Coulomb excitation reorientation (2021StZZ, from 1977Ob02). Other: 1.3 3 (2014StZZ from revised value of 1.2 3 (1977Mc11). Opposite signs in 2016St14 compared to those in 1977Ob02 and 1977Mc11. 0.7 4 (1970McZQ). T _{1/2} : from B(E2)=0.140 4 in Coulomb excitation.

E(level) [†]	${\tt J}^\pi$	T _{1/2}		XREF	Comments
809.26 ^{&} 3	c+	4.0 3		EECHT 1	J^{π} : direct E2 Coulomb excitation from 0^+ .
809.26 ^{cc} 3	6+	4.0 ps <i>3</i>	A	EFGHIJ	μ =+1.9 4 μ : from transient field integral PAC (2020StZV, from 1985St07); relative to ¹⁸⁶ W(123 keV level). $T_{1/2}$: from B(E2)=1.70 <i>12</i> in Coulomb excitation. J^{π} : E2 412 γ to 4 ⁺ 396; Coulomb excited member of g.s. band.
862.286 ^b 21	3 ⁺		A	DEF IJ	J^{π} : E1 183 γ from 3 ⁻ 1045; D+Q gammas to 2 ⁺ and 4 ⁺ .
883.597 ^e 25	(0^+)	0.400	A	EFG I	J^{π} : from $\sigma(90^{\circ})/\sigma(125^{\circ})$ in (d,d').
952.745 ^c 24	(2)-	0.193 ns <i>15</i>	A	DEF IJ	J^{π} : E1 215 γ to 2 ⁺ 738; M1+E2 92.7 γ from 3 ⁻ 1045. $T_{1/2}$: from ¹⁸⁶ Ta β ⁻ decay (1975Ka11).
1006.734 ^a 20	4 ⁺		A	EFG IJ	J^{π} : stretched E2 884 γ to 2 ⁺ ; D+Q 610 γ to 4 ⁺ . 2 ⁺ is favored by σ ratio in (d,d'), however.
1014.97 [‡] <i>10</i>	$(2^+,3,4^+)$		A		J^{π} : gammas to 2^+ and 4^+ .
1030.234 ^e 16	2+		A	dEFG I	XREF: d(1035). J ^{π} : E2 1030 γ to g.s.; (M1+E2) 908 γ to 2 ⁺ ; Q 634 γ to 4 ⁺ . 4 ⁺ from $\sigma(90^{\circ})/\sigma(125^{\circ})$ in (d,d'); However, note that in (d,d'), β^{-} decay and one (n,n' γ) study, this level has been designated as the 4 ⁺ member of the γ band.
1045.401 ^d 20	3-		A	dEFGHIJ	B(E3) \uparrow =0.101 8 XREF: d(1035). J ^{π} : direct E3 Coulomb excitation from 0 ⁺ .
1150 ^f 2	(0^+)			G	J^{π} : from σ ratio in (d,d').
1171.63 ^c 4	(4)		Α	E IJ	J^{π} : 218.93 γ Q to (2) ⁻ ; D(+Q) 309 γ to 3 ⁺ ; band assignment.
1197.30 ^b 3	5+			EF I	J^{π} : Q γ to 3 ⁺ ; largely quadrupole D+Q 801 γ to 4 ⁺ ; band assignment in multiple Coulomb excitation.
1279.19 [‡] <i>23</i>	(1,2,3)		A		J^{π} : gammas to 2^+ and 2^- .
1285.419 ^f 21	2+	4.0 ps 4	A	EFG	J^{π} : direct E2 Coulomb excitation from 0^+ .
1298.93 ^e 3	4 ⁺		A	EGI	$T_{1/2}$: from B(E2) and branching in Coulomb excitation. J^{π} : D+Q 902 γ to 4 ⁺ ; stretched E2 1176 γ to 2 ⁺ . 1973Gu02 report (186 Ta β -decay) a 1298 keV γ -ray from this level. The placement is not consistent with the assigned J^{π} =4 ⁺ and not adopted. Reported peak may be due to summing.
1322.137 ^d 25	5-			E g IJ	J^{π} : 276.72 γ Q to 3 ⁻ ; band assignment.
1322.41 19	(2 ⁺)	1.00 7	Α	g	J^{π} : 1322 γ to 0 ⁺ ; 460 γ to 3 ⁺ ; possible 316 γ to 4 ⁺ 1006 level.
1349.0 ^{&} 4	8+	1.08 ps 7		EF I	$T_{1/2}$: from B(E2) in Coulomb excitation. J^{π} : E2 to 6 ⁺ ; Coulomb excited member of g.s. band.
1398.08 ^a 4 1453.449? 23	6+			EFG IJ E	J^{π} : stretched Q gammas to 4 ⁺ ; 589 γ to 6 ⁺ . J^{π} : gammas to 2 ⁺ and 3 ⁺ , so J^{π} =(1 ⁺ ,2,3,4 ⁺). 2 ⁺ favored by
1458.38? 4				E	1988GoZC in $(n,n'\gamma)$. J^{π} : gammas to 2^+ , so $J^{\pi} = (0^+,1,2,3,4^+)$. 3^+ favored by 1988GoZC in $(n,n'\gamma)$.
1463.42 15	(2+,3+)	<0.1 ns	A		J^{π} : gammas to 3 ⁻ ; (E1) 511 γ to 2 ⁻ 953 level. $T_{1/2}$: from ¹⁸⁶ Ta β ⁻ decay (1975Ka11). Presumed to differ from 1463.8 level in (n,n' γ) based on γ branching.
1463.77 3	(2-,3-,4-)			E	J^{π} : (M1+E2) 418γ to 3 ⁻ ; possible γ to (4 ⁻). presumed to differ from 1463.4 level in β^- decay based on γ branching.
1514.64 ^c 25 1517.2 ^g 6	(6) ⁻ (7 ⁻)	18 μs I		I J	J^{π} : 343 γ to (4) ⁻ , band assignment. J^{π} : gammas to 6 ⁺ and (5 ⁻); proposed as bandhead for K^{π} =7 ⁻ configuration based on $T_{1/2}$ and model calculation of level energy (1998Wh02). $T_{1/2}$: from (²³⁸ U, ²³⁸ U' γ): delayed γ 's.

E(level) [†]	J^π	$T_{1/2}$	XREF	Comments
1521.32 3	(4+)		A E G	J^{π} : stretched Q 783 γ to 2 ⁺ ; γ to 4 ⁺ .
1532.32 <i>3</i>	$2^{(+)},3^{(+)}$		E	J^{π} : (M1+E2) 1409.7 γ to 2 ⁺ ; D gammas to 2 ⁻ and 3 ⁻ .
1563.37 <i>3</i>	1		E	J^{π} : D 1563 γ to 0 ⁺ ; D+Q 1440.75 γ to 2 ⁺ .
1607.52 5	$(2^+,3,4^+)$		E gh	J^{π} : gammas to 4 ⁺ and 2 ⁺ .
1608.07 10	$(2^+,3)$		A gh	J^{π} : gammas to 2^+ and 2^- and 4^+ .
1628.27 5	$(3^-,5^-)$		E g	J^{π} : significantly mixed (M1+E2) 457 γ to 4 ⁻ ; possibly stretched Q γ to 3 ⁻ .
				E(level): see comment on 1628.4 level.
1628.40 <i>18</i>	$(2^+,3,4^+)$		A g	J^{π} : gammas to 2^+ and 4^+ .
				E(level): assumed to differ from 1628.3 level excited in $(n,n'\gamma)$ because three gammas which deexcite this level in β^- decay are absent in $(n,n'\gamma)$.
1642.46 5	(3,4)		E GH	XREF: E(?).
1				J^{π} : D+Q gammas to 3 ⁺ and 4 ⁺ , γ to 4 ⁺ .
1652.76 ^b 19	7+		I	107
1661.39 <i>17</i>	(2-,3-)	4.92 ns <i>10</i>	A	$T_{1/2}$: from ¹⁸⁶ Ta $β^-$ decay (1975Ka11). J^π : 339 $γ$ to (2 ⁺) 1322 level; 800 $γ$ to 3 ⁺ 862 level; E1 $γ$ to (2 ⁺ ,3 ⁺) 1463 level.
1672.4 ^e 3	6+		I	
1678 5			_ G	77 77 (0)
1709.74 3	3		E	J^{π} : D(+Q) gammas to 2^+ and 4^+ .
1713.5 ^d 4	(7^{-})		I	J^{π} : 391.4 γ to 5 ⁻ , band assignment.
1722 <i>4</i> 1737.5 ⁸ <i>10</i>	(8-)		GH	J^{π} : γ to (7^{-}) ; band assignment.
1829.4 4	$(2^+,3,4^+)$		Α	J^{π} : 1093 γ to 2 ⁺ ; 823 γ to 4 ⁺ 1006 level.
1903.95 ^a 22	8+		FI	J^{π} : band assignment in multiple Coulomb excitation.
1979.0 ^c 5	(8)		I	J^{π} : 464 γ to (6) ⁻ , band assignment.
1993 4			GH	
2001.9 5	10 ⁺	0.49 ps +14-5	FG I	$T_{1/2}$: from B(E2) in Coulomb excitation. J^{π} : E2 to 8 ⁺ ; Coulomb excited member of g.s. band.
2059 4			GH	
2116 5			Н	
2117.8 ^h 10	(9-)		_:	J^{π} : gammas to (8 ⁻) and (7 ⁻); band assignment.
2142.7 ^e 5	8+		I	14204- 2+ 720. 12124- (2)= 052 11
2166.5 7	(0=)		A	1429 γ to 2 ⁺ 738; 1213 γ to (2) ⁻ 952 level.
$2212.0^{d} 6$	(9-)		I	J^{π} : 498.5 γ to (7 ⁻), band assignment.
2220.1 ^b 4 2270.5 5	9+		A GH	
2285.8^{h} 15	(10-)			I_{n}^{T} , I_{n}^{T} to I_{n}^{T} , hand assignment
2339 4	(10)		GH :	J^{π} : γ to (9^{-}) ; band assignment.
2378 9			G	
2511.0 ^a 4	10 ⁺		F I	J^{π} : 607.1 Q to 8 ⁺ , band assignment.
2522.8 ^h 17	(11^{-})			J^{π} : γ to (10 ⁻); band assignment.
2555.8 ^c 7	$(10)^{-}$		I	J^{π} : 576.8 γ to (8) ⁻ , band assignment.
2556.8 7	1#		C	
2588 10			G	
2672.8? 20	10+		_:	J^{π} : (11 ⁺) in (²³⁸ U, ²³⁸ U' γ).
2707.1 ^e 7	10+	0.20	I	The Company of the Land
2750.4 ^{&} 7	(12^{+})	0.20 ps +6-2	FI	$T_{1/2}$: from B(E2) in Coulomb excitation. J^{π} : band assignment in multiple Coulomb excitation.
2806.5^{d} 7	(11^{-})		I	J^{π} : 594.5 γ to (9 ⁻), band assignment.
2837.8 ^h 17	(12^{-})		:	J^{π} : gammas to (11 ⁻) and (10 ⁻); band assignment.

¹⁸⁶W Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF		Comments
2863.8 7	1#		С		
2887.3 ^b 6	11 ⁺			I	
3035.8 <i>7</i>	1#		С		
3055.8 7	(1)#		С		
3067.8 <i>7</i>	(1) [#]		С		
3143.8 20				J	J^{π} : (13+) in (238U, 238U' γ).
3171.8 7	1#		С		
3188.2 ^a 5	12+		F	I	J^{π} : band assignment in multiple Coulomb excitation.
3237.8° 8	$(12)^{-}$			Ι	J^{π} : 682.0 γ to (10) ⁻ , band assignment.
3317.8 7	1#		C		222
3362.8 <i>21</i>	ш			J	J^{π} : (14 ⁺) in (²³⁸ U, ²³⁸ U' γ).
3363.8 7	1#		C		
3371.2 ^e 8	12+			Ι	
3378.8 <i>7</i>	1#		С		
3393.8 7	1#		С		
3428.0 <i>10</i>	1#		C		
3477.0 <i>10</i>	1 [#]		C		
3483.3 ^d 8	(13^{-})			I	J^{π} : 676.8 γ to (11 ⁻), band assignment.
3533.8 22				J	J^{π} : (14^{+}) in $(^{238}U,^{238}U'\gamma)$.
3542.8 <i>21</i>	(16^+)	7.5 s +48–35		J	E(level): Other: 3560 59 – from measured mass difference between isomer and ground state in 2012Re19.
					J^{π} : possible configuration: $(\pi 5/2[402])+(\pi 9/2[514])+(\nu 7/2[503])+(\nu 11/2[615])$ (1998Wh02).
					$T_{1/2}$: From 2012Re19 – 9 Be(197 Au,x). Other: 3 ms < $T_{1/2}$ < 30 s (1998Wh02).
3561.9 ^{&} 8	(14^{+})	0.183 ps 20	F	I	$T_{1/2}$: from B(E2) in Coulomb excitation. J^{π} : band assignment in multiple Coulomb excitation.
3913.3 ^a 7	14 ⁺			I	m maniple coulomb ensume
6417.3 6	1-	0.0075 eV 9	С		J^{π} : E1 6417 γ to 0 ⁺ g.s. $T_{1/2}$: from (γ, γ') .

[†] From least-squares adjustment of adopted E γ , allowing $\Delta E=1$ keV for E γ values to which authors did not assign an uncertainty.

[‡] Existence of level is inconsistent with $(n,n'\gamma)$ because the strongest gammas deexciting it were either absent or differently placed in an $(n,n'\gamma)$ study which was expected to excite all levels below E≈1200 for which J=1 to 4 (1978Av05). This level has been proposed in β[−] decay alone.

[#] From γ correlations in (γ, γ') .

[®] From search for double β decay: $2\nu2\beta$ - decay to g.s. of 186 Os: $\geq 2.3(2.8)\times10^{19}$ y at 90%(68%) confidence limit (C.L.) (2009Be27,2010Be41,2011Be39), $\geq 2.6(4.1)\times10^{18}$ y at 90%(68%) C.L. (2003Da09), $\geq 3.7(5.3)\times10^{18}$ y at 90%(68%) C.L. (2003Da24), $\geq 1.4(2.5)\times10^{18}$ y at 90%(68%) C.L. (2005Da47); $2\nu2\beta$ - decay to 1st excited state at 137 of 186 Os: $\geq 1.8(3.6)\times10^{20}$ y at 90%(68%) C.L. (2009Be27,2010Be41,2011Be39), $\geq 1.0(1.3)\times10^{19}$ y at 90%(68%) C.L. (2003Da09,2003Da24); $0\nu2\beta$ - decay to g.s. of 00 is 0186Os: 0

¹⁸⁶W Levels (continued)

- $\geq 1.1 \times 10^{19} \text{ y } (2011\text{Be}39);$ From search for α decay: $\geq 2.82 \times 10^{21} \text{ y } (2004\text{Co}26), \geq 1.7 \times 10^{20} \text{ y } (2003\text{Da}05,2003\text{Bi}13),$ $\geq 2.7 \times 10^{19} \text{ y } (2003\text{Ce}01), \geq 6.5 \times 10^{18} \text{ y } (1995\text{Ge}17,1997\text{Ge}15),$ each at 90% C.L., $\geq 2.3 \times 10^{17} \text{ y } (1960\text{Be}13).$ Other: $> 6 \times 10^{15} \text{ y } (1960\text{Ge}17,1997\text{Ge}15)$.
- & Band(A): $K^{\pi}=0^{+}$ g.s. band (1989Ku04). Rotational parameters: A=20.3, B=-0.03.
- ^a Band(B): $K^{\pi}=2^+$: $\alpha=0$. γ band (1989Ku04). Rotational parameters: A=20, B=-0.03. The 1006 level is adopted as the J=4 member here, contrary to some earlier designations of the 1030 level (now assigned 2^+) as that member.
- ^b Band(b): K=2⁺ band: α =1. γ band (2021Pr11).
- ^c Band(C): Possible $K^{\pi}=2^{-}$ band: $\alpha=0$. Octupole band (2021Pr11). Rotational parameters: A=15, B=0.02.
- ^d Band(c): K=2⁻ band: α =1. Octupole band (2021Pr11).
- ^e Band(D): Possible K=0 β band (1988GoZC). Rotational parameters: A=26, B=-0.03.
- ^f Band(E): Possible $K^{\pi}=0^{+}$ band (1988GoZC). Rotational parameter: A=22.6.
- ^g Band(F): $K^{\pi}=7^{-}$, (π 9/2[514])+(π 5/2[402]) (1998Wh02). Rotational parameter: A=13.8. An alternative (ν 3/2[512])+(ν 11/2[615]) configuration cannot be excluded (1998Wh02), but its calculated energy is somewhat high.
- ^h Band(G): π =(-), high-K band (1998Wh02). Rotational parameters: A=6.2, B=-0.05.

$\gamma(^{186}W)$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. f	δ^f	α^{h}	Comments
122.632	2+	122.64# 2	100	0.0 0+	E2		1.767	B(E2)(W.u.)=112.4 <i>15</i> α (K)=0.584 9; α (L)=0.897 <i>13</i> ; α (M)=0.226 4 α (N)=0.0533 8; α (O)=0.00734 <i>11</i> ; α (P)=4.40×10 ⁻⁵ 7 E _γ : Other Eγ: 122.3 <i>I</i> from β ⁻ decay. Mult.: from subshell ratios in ε decay.
396.551	4+	273.93 [#] 5	100	122.632 2+	E2		0.1120	B(E2)(W.u.)=144 +11-10 α (K)=0.0725 11; α (L)=0.0301 5; α (M)=0.00738 11 α (N)=0.001751 25; α (O)=0.000253 4; α (P)=6.11×10 ⁻⁶ 9
737.960	2+	341.0 <i>10</i>	≈0.9	396.551 4+	E2]		0.0584 10	$\alpha(K)$ =0.0409 7; $\alpha(L)$ =0.01341 24; $\alpha(M)$ =0.00325 6 $\alpha(N)$ =0.000772 14; $\alpha(O)$ =0.0001136 20; $\alpha(P)$ =3.58×10 ⁻⁶ 6 B(E2)(W.u.)=1.9 +12-10 Absent in (n,n' γ).
		615.31# 2	94 ^a 3	122.632 2+	M1+E2 ^g	-11 +3-4	0.01293 24	B(M1)(W.u.)=8×10 ⁻⁵ +8-4; B(E2)(W.u.)=10.1 7 α(K)=0.01020 19; α(L)=0.00210 4; α(M)=0.000492 8 α(N)=0.0001177 19; α(O)=1.82×10 ⁻⁵ 3; α(P)=9.43×10 ⁻⁷ 19 Mult.,δ: from Coulomb excitation. Other δ: -4.1 5 from (n,n'γ)
		737.97 [#] 8	100# 2	0.0 0+	E2		0.00849	B(E2)(W.u.)=4.35 +28-26 α (K)=0.00682 <i>10</i> ; α (L)=0.001288 <i>18</i> ; α (M)=0.000299 5 α (N)=7.16×10 ⁻⁵ <i>10</i> ; α (O)=1.123×10 ⁻⁵ <i>16</i> ; α (P)=6.33×10 ⁻⁷ 9
809.26	6+	412.69# 2	100	396.551 4 ⁺	E2		0.0344	B(E2)(W.u.)=181 +15-13 α (K)=0.0253 4; α (L)=0.00697 10; α (M)=0.001672 24 α (N)=0.000398 6; α (O)=5.96×10 ⁻⁵ 9; α (P)=2.27×10 ⁻⁶ 4 E _γ : Other Eγ: 412.0 2 in β ⁻ decay.
862.286	3 ⁺	465.70 [#] 2	9.0 [#] 7	396.551 4+	$D+Q^g$	-4.0 5		,
		739.73 [#] 8	100.0 [#] 23	122.632 2+	$D+Q^g$	-7 2	0.0087 3	
883.597	(0^+)	760.96 [#] 2	100	122.632 2+				E_{γ} : Other E_{γ} : 759.4 5 in β^- decay.
952.745	(2)	91.0 5	4.4 18	862.286 3+			0.478 10	B(E1)(W.u.)=5.5×10 ⁻⁵ +32-26 α (K)=0.388 8; α (L)=0.0694 15; α (M)=0.0158 4 α (N)=0.00374 8; α (O)=0.000561 12; α (P)=2.73×10 ⁻⁵ 6 Mult.: from intensity balance at the 952 level in ¹⁸⁶ Ta β ⁻ decay
		214.75# 4	100 4	737.960 2+	E1		0.0523	B(E1)(W.u.)=9.4×10 ⁻⁵ +11-10 α(K)=0.0434 6; α(L)=0.00687 10; α(M)=0.001560 22 α(N)=0.000371 6; α(O)=5.82×10 ⁻⁵ 9; α(P)=3.44×10 ⁻⁶ 5 Mult.: from α(K)exp, α(L)exp in 186 Ta β^- decay.
		830.11# 3	3.3# 3	122.632 2+	(E1+M2)	+0.23 10	0.0044 18	B(E1)(W.u.)=5.1×10 ⁻⁸ +15-13; B(M2)(W.u.)=0.018 +26-13 α (K)=0.0037 15; α (L)=0.0006 3; α (M)=0.00013 6 α (N)=3.1×10 ⁻⁵ 14; α (O)=5.1×10 ⁻⁶ 23; α (P)=3.5×10 ⁻⁷ 16 I _γ : =3.5 6 in β ⁻ decay, but 830 γ may include a sum γ contribution there. Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ); $\Delta \pi$ from decay scheme.

6

$\gamma(^{186}\text{W})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f J	$\frac{\pi}{f}$ Mult. f	δ^f	α^{h}	Comments
1006.734	4+	144.5 ^b 3	0.7 ^b 1	862.286 3+			·	
		268.85 [#] 5	14.4 <mark>#</mark> <i>10</i>	737.960 2+				I_{γ} : Other: 24 9 from β^- decay.
		610.22# 2	100.0 [#] 26	396.551 4+	-	$-1.21 \ 10$		
		884.08# 2	74 [#] 6	122.632 2+	E2		0.00579	$\alpha(K)$ =0.00472 7; $\alpha(L)$ =0.000827 12; $\alpha(M)$ =0.000191 3 $\alpha(N)$ =4.57×10 ⁻⁵ 7; $\alpha(O)$ =7.24×10 ⁻⁶ 11; $\alpha(P)$ =4.38×10 ⁻⁷ 7 Other I γ : <12 from Coulomb excitation; 57 7 from β ⁻ decay.
1014.97	$(2^+,3,4^+)$	277.0 1	100 20	737.960 2+				E_{γ} : A γ with similar energy is placed between the 1322.1 and 1045 levels in $(n,n'\gamma)$.
		618.3 <i>3</i>	40 20	396.551 4+				E_{γ} : Absent in $(n,n'\gamma)$.
		893.0 <i>10</i>	60 8	122.632 2+				E_{γ} : Absent in $(n,n'\gamma)$.
1030.234	2+	146.6 ^b 3	<3 <i>b</i>	883.597 (0				
		292.4 ^b 6	14.4 ^b 9	737.960 2+				E _γ : Other: 292.97 multiply placed in $(n,n'\gamma)$. I _γ : Other: 10.9 9 for triplet in $(n,n'\gamma)$. Other: <400 for doublet in ¹⁸⁶ Ta β^- decay.
		633.70 [#] 2	61 [#] 7	396.551 4+	Q			E_{γ} : Other: 635.0 5 in β^- decay.
		907.58# 2	100# 9	122.632 2+	(M1+E2)8	3 +7.1 3	0.00562	$\alpha(K)$ =0.00459 7; $\alpha(L)$ =0.000792 12; $\alpha(M)$ =0.000182 3 $\alpha(N)$ =4.37×10 ⁻⁵ 7; $\alpha(O)$ =6.95×10 ⁻⁶ 10; $\alpha(P)$ =4.28×10 ⁻⁷ 6 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; δ implausibly large for $\Delta\pi$ =yes.
		1030.23# 2	85 [#] 7	0.0 0+	E2		0.00425	$\alpha(K)$ =0.00349 5; $\alpha(L)$ =0.000582 9; $\alpha(M)$ =0.0001333 19 $\alpha(N)$ =3.20×10 ⁻⁵ 5; $\alpha(O)$ =5.11×10 ⁻⁶ 8; $\alpha(P)$ =3.24×10 ⁻⁷ 5 Absent in β^- decay.
1045.401	3-	92.7 3	14.5 26	952.745 (2) ⁻ M1+E2	1.3 5	5.52 18	$\alpha(K)$ =2.4 10; $\alpha(L)$ =2.3 6; $\alpha(M)$ =0.58 16 $\alpha(N)$ =0.14 4; $\alpha(O)$ =0.019 5; $\alpha(P)$ =0.00024 10 Mult., δ : from Coulomb excitation.
		183.08 [#] 2	31 5	862.286 3+	E1		0.0785	$\alpha(K)=0.0650 \ 9; \ \alpha(L)=0.01045 \ 15; \ \alpha(M)=0.00237 \ 4$ $\alpha(N)=0.000564 \ 8; \ \alpha(O)=8.79\times10^{-5} \ 13; \ \alpha(P)=5.04\times10^{-6} \ 7$ I_{γ} : Other: 48 3 in $(n,n'\gamma)$.
		,,						Mult.: from Coulomb excitation. $\delta(D+Q)=+0.02\ 2$ from $(n,n'\gamma)$.
		307.51# 6	100 5	737.960 2+	E1		0.0216	$\alpha(K)$ =0.0180 3; $\alpha(L)$ =0.00276 4; $\alpha(M)$ =0.000626 9 $\alpha(N)$ =0.0001494 21; $\alpha(O)$ =2.37×10 ⁻⁵ 4; $\alpha(P)$ =1.482×10 ⁻⁶ 21
		649.5 5	≈0.3	396.551 4 ⁺				Mult.: from Coulomb excitation. $\delta(D+Q)=+0.02\ 3$ from $(n,n'\gamma)$. I_{γ} : other: 100 $I5$ in $(n,n'\gamma)$. E_{γ} : A comparable and more precise 650.25 $I1\ \gamma$ unplaced in $(n,n'\gamma)$. If considered, yields significant difference of the χ^2 compared to that of the χ^2 critical in the least squares fit.

$\gamma(^{186}\text{W})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.f	δ^f	α^{h}	Comments
1045.401	3-	922.77 [#] 2 (1045)	12.5 [#] <i>13</i>	122.632		[E3]			I_{γ} : other: 11.9 26 (186 Ta β^- decay). Mult.: 1045 level directly populated by E3 Coulomb excitation.
1171.63	$(4)^{-}$	126.31 [#] 20	8.3 [#] 12	1045.401	3-				
		164.77 [#] 7	15.9 [#] <i>12</i>	1006.734	4 ⁺				
		218.93 [#] 6	41 [#] 3	952.745	$(2)^{-}$	Q			
		309.38 [#] 8	100 [#] 4	862.286	3 ⁺]	D(+Q)	+0.02 2		
1197.30	5+	190.6 ^b 3	<1 b	1006.734	4+				
		335.04 [#] 5	22.7 [#] <i>17</i>	862.286	3+	Q			
		388.17 [#] <i>13</i>	6.7 [#] 7	809.26	6+				
		800.74 [#] 2	100 [#] <i>10</i>	396.551		D+Q	-8.0 8		
1279.19	(1,2,3)	327.2 5	100 33	952.745	(2)				Absent in $(n,n'\gamma)$.
1005 410	2+	541.4 5	≈33 5.0#.0	737.960		FF.03			Absent in $(n,n'\gamma)$.
1285.419	2+	401.56 [#] <i>17</i> 547.41 [#] <i>3</i>	5.8 [#] 8 40 [#] 3	883.597		[E2]			B(E2)(W.u.)=5.2 +10-9
		547.41" 3	40" 3	737.960	2']	D+Q			E_{γ} : Other: 546.3 5 in β ⁻ decay. I_{γ} : Other: <24 in Coulomb excitation; ≈200 for poorly established 546.3γ in ¹⁸⁶ Ta β ⁻ decay (if the total I(547γ is placed from this level).
		1162.81# 2	95 [#] 9	122.632	2+]	M1+E2 ^g	+6 1	0.00344 7	B(M1)(W.u.)= $3.7\times10^{-5} + 29 - 15$; B(E2)(W.u.)= $0.40 + 10 - \alpha$ (K)= 0.00284 6; α (L)= 0.000457 8; α (M)= 0.0001042 18 α (N)= 2.50×10^{-5} 5; α (O)= 4.02×10^{-6} 7; α (P)= 2.64×10^{-7} α (IPF)= 1.88×10^{-6} 3 Mult.: from Coulomb excitation. δ : +13 +70- δ in Coulomb excitation, -0.25 5 or +6 1 in (n,n' γ). Other I γ : 96 20 or 128 10 in Coulomb excitation.
1209.02	4 ⁺	1285.40 [#] 5 268.5 ^b 4	100 [#] 10	1030.234		E2		0.00277	B(E2)(W.u.)=0.26 +6-5 α (K)=0.00229 4; α (L)=0.000361 5; α (M)=8.21×10 ⁻⁵ 12 α (N)=1.97×10 ⁻⁵ 3; α (O)=3.18×10 ⁻⁶ 5; α (P)=2.12×10 ⁻⁷ α (IPF)=1.520×10 ⁻⁵ 22
1298.93	4'	268.5^{b} 4 292.2^{b} 6	$72^{b} \frac{3}{6}$						
		292.2° 6 902.40 [#] 3	7.1° 6 51 [#] 5	1006.734		D . O	.172		E_{γ}, I_{γ} : Other: 292.97 and <44, respectively $(n, n'\gamma)$.
		902.40" 3 1176.27 [#] 3	51" 5 100 [#] 10	396.551		D+Q ^g	+1.7 2	0.00227	-(IX) 0.00071 4(IX) 0.000425 6(IAIX) 0.000410=5.14
		11/6.2/" 3	100" 10	122.632	<i>Z</i> · _]	E2		0.00327	$\alpha(K)$ =0.00271 4; $\alpha(L)$ =0.000435 6; $\alpha(M)$ =9.93×10 ⁻⁵ 14 $\alpha(N)$ =2.38×10 ⁻⁵ 4; $\alpha(O)$ =3.83×10 ⁻⁶ 6; $\alpha(P)$ =2.51×10 ⁻⁷ $\alpha(P)$ =2.66×10 ⁻⁶ 4
1322.137	5-	150.5 ^b 3	9.9 <mark>b</mark> 4	1171.63	$(4)^{-}$				E_{γ} : Other: 150 (^{238}U , $^{238}U'\gamma$), absent in (n,n' γ).
		276.72 [#] 2	100 [#] 6	1045.401	3-	Q			,

 ∞

γ (186W) (continued)

Adopted Levels, Gammas (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.f	δ^f	α^{h}	Comments
1322.137	5-	315.44 [#] 3	50 [#] 4	1006.734	4 ⁺	D(+Q)	-0.1 3	0.190 16	
1322.41	(2+)	315.6 2	100 17	1006.734	4 ⁺	[E2]		0.0731	$\alpha(N)=0.00136\ 5;\ \alpha(O)=0.000222\ 10;\ \alpha(P)=1.58\times10^{-5}\ 15$ $\alpha(K)=0.0499\ 7;\ \alpha(L)=0.0177\ 3;\ \alpha(M)=0.00431\ 7$ $\alpha(N)=0.001025\ 15;\ \alpha(O)=0.0001496\ 22;\ \alpha(P)=4.32\times10^{-6}\ 6$ I_Y : see comment on 315.44 γ from 1322.1 level.
		440.0 <mark>&</mark> <i>10</i>	53 10	883.597	(0^+)				,
		460.0 ^j 5	≈17	862.286	3+				Absent in $(n,n'\gamma)$.
		1199.5 <mark>&</mark> <i>10</i>	≈17	122.632	2+				•
1349.0	8+	1322.0 <i>15</i> 540.0 ^{<i>a</i>}	≈20 100	0.0 809.26	0 ⁺ 6 ⁺	E2		0.01738	Absent in $(n,n'\gamma)$. B(E2)(W.u.)=178 +13-12 $\alpha(K)$ =0.01344 19; $\alpha(L)$ =0.00302 5; $\alpha(M)$ =0.000713 10 $\alpha(N)$ =0.0001703 24; $\alpha(O)$ =2.61×10 ⁻⁵ 4; $\alpha(P)$ =1.234×10 ⁻⁶ 18
									Mult.: From Coulomb excitation.
1398.08	6+	200.7 ^b 3	5.2 ^b 2	1197.30					
		391.46 [#] 5	100# 8	1006.734		Q			
		588.70 [#] 5	54 [#] 9	809.26					
		1001.55 [#] 6	45 [#] 4	396.551		Q			
1453.449?		423.16 [#] <i>j</i> 9	11.5# 10	1030.234					
		591.18 [#] <i>j</i> 3	31 [#] 3	862.286					
		715.45 [#] <i>j</i> 3	100 [#] 9	737.960					
		1330.84 [#] <i>j</i> 3	43 [#] 5	122.632					
1458.38?		720.42 [#] <i>j</i> 9	11.9 [#] <i>16</i>	737.960					
		1335.74 [#] <i>j</i> 3	100 [#] 11	122.632					
1463.42	$(2^+,3^+)$	184.2 <i>3</i> 417.7 2	1.3 7 33 3	1279.19 1045.401		[D,E2]		0.5 4	Absent in $(n,n'\gamma)$. γ in $(n,n'\gamma)$ with similar $E\gamma$ (but inappropriate multipolarity for this placement) is placed from 1463.8 level.
		448.0 11	1.3 7		$(2^+,3,4^+)$				Absent in $(n,n'\gamma)$.
		457.0 11	5.7 7	1006.734		(Tab)		0.004=5	γ in $(n,n'\gamma)$ with similar energy is placed from 1628 level.
		510.6 5	100 7	952.745	(2)-	(E1)		0.00679	$\alpha(K)$ =0.00570 8; $\alpha(L)$ =0.000843 12; $\alpha(M)$ =0.000190 3 $\alpha(N)$ =4.55×10 ⁻⁵ 7; $\alpha(O)$ =7.32×10 ⁻⁶ 11; $\alpha(P)$ =4.88×10 ⁻⁷ 7 Mult.: from $\alpha(K)$ exp in ¹⁸⁶ Ta β ⁻ decay. Absent in $(n,n'\gamma)$.
		601.0 5	1.3 7	862.286	3 ⁺				Absent in $(n,n'\gamma)$.
		726.0 5	2.7 <mark>d</mark> 7	737.960					Absent in $(n,n'\gamma)$.
									• • • • • • • • • • • • • • • • • • • •

9

γ (186W) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult.f	δ^f	α^{h}	Comments
1463.77	(2-,3-,4-)	292.97 ^{i#} 418.37 [#] 2	<35 [#] 100 [#] 7	1171.63 1045.401	(4) ⁻ 3 ⁻	(M1+E2)	-4.7 3	0.0357 6	$\alpha(K)$ =0.0267 5; $\alpha(L)$ =0.00688 10; $\alpha(M)$ =0.001643 24 $\alpha(N)$ =0.000391 6; $\alpha(O)$ =5.90×10 ⁻⁵ 9; $\alpha(P)$ =2.43×10 ⁻⁶ 5 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; δ implausibly large for
1514.64	(6)-	192.5 ^b 3	<5 ^b	1222 127	<u>-</u>				$\Delta \pi$ =yes.
1514.64	(6)	192.5 ^b 3 343.0 ^b 4	$^{<5}_{100}^{b}$	1322.137 1171.63	5 (4) ⁻				
1517.2	(7^{-})	119 [‡]	100	1398.08	6 ⁺				
	. ,	195 [‡]	e	1322.137	5-	[E2]		0.336	$\alpha(K)$ =0.181 3; $\alpha(L)$ =0.1178 17; $\alpha(M)$ =0.0293 5 $\alpha(N)$ =0.00694 10; $\alpha(O)$ =0.000977 14; $\alpha(P)$ =1.423×10 ⁻⁵ 20 E_{γ} : possibly the unplaced 195.36 5 transition of $(n,n'\gamma)$.
		708 [‡]		809.26	6+				E _{γ} : possibly the unplaced 708.67 8 transition of (n,n' γ); I(709 γ):I(195 γ)=0.25 8:1.00 10 in (n,n' γ).
1521.32	(4 ⁺)	488.0 <i>15</i>		1030.234	2+				E_{γ} : Placed by 1973Gu02 from 1520 level. A comparable 486.93 4 γ in $(n,n'\gamma)$ is placed from a 1532 level.
		567.2 3		952.745	(2)-				E _{γ} : Placement from 1973Gu02 (186 Ta β - decay). A comparable and more precise 567.10 2 γ is unplaced in (n,n' γ). If considered, yields significant difference of the χ^2 compared to that of the χ^2 critical in the least squares fit.
		659.05 [#] 5	44 [#] 4	862.286	3 ⁺				
		783.34 [#] <i>3</i>	100 [#] <i>13</i>	737.960		Q			
		1124.53 [#] 16	17.9 [#] <i>18</i>	396.551					196
		1399.26 [#] <i>13</i>	≈0.8	122.632	2+				E_{γ} : Other: 1398 <i>I</i> and placement from 1973Gu02 (¹⁸⁶ Ta β- decay). Unplaced in $(n,n'\gamma)$.
1532.32	$2^{(+)},3^{(+)}$	486.93 [#] 4	33 [#] 3	1045.401	3-	D(+Q)	+0.04 6		p decay), cuplaced in (i.s.: 7),
		579.57 [#] 2	100 [#] 10	952.745		D(+Q)	+0.01 2		
		1409.71# 4	68 [#] 6	122.632	2+	(M1+E2)	+8.5 8	0.00238	$\alpha(K)$ =0.00195 3; $\alpha(L)$ =0.000301 5; $\alpha(M)$ =6.83×10 ⁻⁵ 10 $\alpha(N)$ =1.641×10 ⁻⁵ 24; $\alpha(O)$ =2.65×10 ⁻⁶ 4; $\alpha(P)$ =1.81×10 ⁻⁷ 3; $\alpha(IPF)$ =4.22×10 ⁻⁵ 6 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; δ implausibly large for $\Delta\pi$ =yes.
1563.37	1	1440.75 [#] 3	100 [#] 9	122.632	2+	D+Q			δ : +0.05 4 or -4.1 6 from (n,n' γ).
		1563.34 [#] 4	69 [#] 7	0.0	0^+	D			• • • • • • • • • • • • • • • • • • • •
1607.52	$(2^+,3,4^+)$	561.96 [#] 13	13.4# 21	1045.401		a:			
		1210.98 [#] <i>4</i> 1484.62 [#]	100 [#] 9 <65 [#]	396.551 122.632		Q(+D)			δ =+0.10 5 or 1/ δ =-0.01 5 from (n,n' γ). E _{γ} ,I _{γ} : for multiplet in (n,n' γ).
1608.07	$(2^+,3)$	309.2 <i>1</i> 654.9 <i>5</i>	100 <i>11</i> 67 22	122.632 1298.93 952.745	4+				$E_{\gamma,1\gamma}$. for multiplet in (ii,ii γ).

10

γ (186W) (continued)

E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	${\rm J}_f^\pi$	Mult. f	δ^f	α^{h}	Comments
1608.07	$(2^+,3)$	745.0 10	≈11	862.286	3+				
	(= ,=)	869.5 5	≈11	737.960					
		1210.0° 15	≈11 ^c	396.551					
		1485.0 ^c 15	≈11 ^c	122.632					
1628.27	(3-,5-)	456.63# 4	100 [#] 9	1171.63	(4)-	(M1+E2)	-8 1	0.0271 5	$\alpha(K)$ =0.0205 4; $\alpha(L)$ =0.00510 8; $\alpha(M)$ =0.001213 18 $\alpha(N)$ =0.000289 5; $\alpha(O)$ =4.38×10 ⁻⁵ 7; $\alpha(P)$ =1.86×10 ⁻⁶ 4 Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ); δ implausibly large for E1+M2.
		582.84 [#] 6	76 [#] 7	1045.401	3-	Q			
		621.71 [#] <i>10</i>	43 [#] 4	1006.734	4+				
1628.40	$(2^+,3,4^+)$	583.2 2	100 14	1045.401	3-				Line with similar E γ is placed from 1628.3 level in $(n,n'\gamma)$.
		596.5 5	≈23	1030.234					Absent in $(n,n'\gamma)$.
		622.0 5		1006.734					Line with similar E γ is placed from 1628.3 level in $(n,n'\gamma)$.
		1231.0 <i>15</i>	≈14	396.551					Absent in $(n,n'\gamma)$.
		1507.0 ^j 15	_	122.632	2+				Absent in $(n,n'\gamma)$.
1642.46	(3,4)	780.08 [#] 8	100 [#] 14	862.286	3 ⁺	D+Q	+0.25 2		
		1245.92 [#] 5	96 [#] 9	396.551	4+	D+Q	+0.40 10		
		1520.2 [#] 2	21 [#] 4	122.632	2+				
1652.76	7+	254.6 ^b 3	<1 b	1398.08	6 ⁺				
		455.6 ^b 4	100 <mark>b</mark>	1197.30	5 ⁺	Q^{b}			
		843.4 ^b 4	49.4 ^b 23	809.26	6 ⁺	D^{b}			
1661.39	(2-,3-)	197.9 <i>I</i>	100	1463.42	(2+,3+)	E1		0.0643	B(E1)(W.u.)= $4.71\times10^{-6} + 20-19$ α(K)= 0.0533 8; α(L)= 0.00851 12; α(M)= 0.00193 3 α(N)= 0.000460 7; α(O)= 7.18×10^{-5} 11; α(P)= 4.18×10^{-6} 6 Mult.: from α(K)exp, α(L)exp in 186 Ta β^- decay.
		338.5 10	1.0 5	1322.41	(2^{+})				which it is $\alpha(\mathbf{K})$ exp, $\alpha(\mathbf{L})$ exp iii $\alpha(\mathbf{R})$ and $\alpha(\mathbf{K})$ exp.
		383.2 5	1.0 5		(1,2,3)				
		646.6 10	≈0.3	1014.97	$(2^+,3,4^+)$				
		709.0 10	2.0^{d} 5	952.745	$(2)^{-}$				
		799.8 <i>5</i>	4.8 5	862.286					
1672.4	6+	373.6 <mark>b</mark> 4	100 <mark>b</mark>	1298.93	4+				
		1275.7 ^b 4	66 <mark>b</mark> 3	396.551	4 ⁺				
1709.74	3	1313.16 [#] <i>3</i>	87 [#] 8	396.551		D(+Q)	-0.02 3		
		1587.15 [#] 4	100 [#] 10	122.632		D(+Q)	-0.01 2		

γ (186W) (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. f	α^{h}	Comments
1737.5	(8-)	220 [‡]		1517.2	(7-)			
1829.4	$(2^+,3,4^+)$	814.0 5	≈50 ^d	1014.97	$(2^+,3,4^+)$			
		823.0 5	≈50	1006.734				
1002.05	8+	1092.5 <i>10</i> 251.2 <i>3</i>	≈100	737.960 1652.76				
1903.95	8'	251.2 <i>3</i> 506.1 <i>4</i>	<1 100	1652.76	7 ⁺ 6 ⁺	Q		E_{γ} : Other: 509 5 (Coulomb excitation).
		554.9 <i>4</i>	6.6 2	1349.0	8 ⁺	D		E_{γ} : Other: 559 5 (Coulomb excitation).
		1094.5 4	5.0 2	809.26	6+	Q		Zyr Guler 667 6 (Courone Giornalon)
1979.0	(8)	464.4 <i>4</i>	100	1514.64	(6)			
2001.9	10+	653.2 ^a	100	1349.0	8+	E2	0.01113	B(E2)(W.u.)=152 +18-34
								$\alpha(K) = 0.00883 \ 13; \ \alpha(L) = 0.001771 \ 25; \ \alpha(M) = 0.000414 \ 6$
								$\alpha(N)=9.90\times10^{-5}\ 14;\ \alpha(O)=1.539\times10^{-5}\ 22;\ \alpha(P)=8.17\times10^{-7}\ 12$ Mult.: from Coulomb excitation.
2117.8	(9-)	380 [‡]	e	1737.5	(8-)			Muit Holli Coulollio Excitation.
∠11/.O	(7)	601 [‡]		1737.3	(8) (7^{-})			
2142.7	8+	470.3 ^b 4	100 b	1517.2 1672.4	(<i>/</i>) 6 ⁺			
2142.7 2166.5	0.	703.0 10	100° ≈100	16/2.4 1463.42	$(2^+,3^+)$			
2100.5		1213.0 15	≈40	952.745	$(2^{-},3^{-})$			
		1429 <i>1</i>	≈50	737.960				
2212.0	(9-)	498.5 ^b 4	100 <mark>b</mark>	1713.5	(7^{-})			
2220.1	9+	567.3 ^b 4	100 <mark>b</mark>	1652.76	7+	Q^{b}		
		871.2 ^b 4	15 ^b 4	1349.0	8+			
2270.5		442.0 10	100 19	1829.4	$(2^+,3,4^+)$			
		641.6 10	≈44 21	1628.40	$(2^+,3,4^+)$			
		947.5 <i>10</i> 1238.0 <i>15</i>	≈31 ≈25	1322.41 1030.234	(2^{+})			
		1319.0 15	≈23 ≈31	952.745				
		1409 <i>1</i>	≈63	862.286	3+			
2285.8	(10^{-})	168 [‡]		2117.8	(9-)			
2511.0	10 ⁺	509.1 ^b 4	14.1 <mark>b</mark> 18	2001.9	10 ⁺	$D^{\boldsymbol{b}}$		
		607.1 ^b 4	100 <mark>b</mark>	1903.95	8+	Q^{b}		E_{γ} : Other: 608 5 (Coulomb excitation).
		1161.9 <mark>b</mark> 4	<4 b	1349.0	8+	-		
2522.8	(11^{-})	237 [‡]		2285.8	(10^{-})			
2555.8	(10)	576.8 ^b 4	100 <mark>b</mark>	1979.0	(8)			
2556.8	1	2434 [@]	37 [@] 9	122.632				
		2557 [@] 1	100 [@]	0.0	0^{+}			
2672.8?		387 [‡] <i>j</i>		2285.8	(10^{-})			
2707.1	10 ⁺	564.4 ^b 4	100 <mark>b</mark>	2142.7	8+			
2750.4	(12^{+})	748.5 <i>4</i>	100	2001.9	10 ⁺	E2		B(E2)(W.u.)=191 +22-45

74 W₁₁₂-1

Adopted Levels, Gammas (continued)

γ (186W) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Comments
						E_{γ} : Other: 748.5 (Coulomb excitation).
2006.5	(11=)	504.5h	100 ^b	2212.0	(0=)	Mult.: Q in $(^{136}\text{Xe}, ^{136}\text{Xe}'\gamma)$ and RUL.
2806.5	(11 ⁻)	594.5 ^b 4	1000	2212.0	(9-)	
2837.8	(12^{-})	165 [‡]		2672.8?		
		315 [‡]	0	2522.8	(11-)	
		552‡	e	2285.8	(10 ⁻)	
2863.8	1	2741 [@]	102 [@] 22	122.632		
		2864 [@] 1	100 [@]	0.0	0+	
2887.3	11+	667.2 ^b 4	100 ^b	2220.1	9+	
3035.8	1	2913 [@]	65 [@] 24	122.632		
		3036 [@] 1	100@	0.0	0+	
3055.8	(1)	2933 [@]	100 24	122.632		
		3056 [@] 1	54 [@]	0.0	0+	
3067.8	(1)	2945 [@]	100 43	122.632		
		3068 [@] 1	83 [@]	0.0	0_{+}	
3143.8		306 [‡]	@	2837.8	(12^{-})	
3171.8	1	3049 [@]	57 [@] 10	122.632		
		3172 [@] 1	100 @	0.0	0_{+}	
3188.2	12 ⁺	677.1 ^b 4	100 ^b	2511.0	10 ⁺	E_{γ} : Other: 677 5 (Coul. excitation).
		1186.3 ^b 4	<20 ^b	2001.9	10 ⁺	
3237.8	$(12)^{-}$	682.0 ^b 4	100 ^b	2555.8	$(10)^{-}$	
3317.8	1	3195 [@]	100 20	122.632		
		3318 [@] 1	79 [@]	0.0	0_{+}	
3362.8		219 [‡]	6	3143.8		
3363.8	1	3241 [@]	100 [@] 18	122.632		
		3364 [@] 1	60 [@]	0.0	0_{+}	
3371.2	12+	664.1 ^b 4	100 ^b	2707.1	10 ⁺	
3378.8	1	3256 [@]	47 [@] 8	122.632		
		3379 [@] 1	100 @	0.0	0_{+}	
3393.8	1	3271 [@]	55 [@] 24	122.632		
		3394 [@] 1	100 [@]	0.0	0+	
3428.0	1	3428 1		0.0	0+	E_{γ} : from (γ, γ') .
3477.0	1	3477 <i>I</i> 676.8 ^b 4	100 ^b	0.0	0+	E_{γ} : from (γ, γ') .
3483.3	(13-)	6/6.8 ^b 4 390 [‡]	1000	2806.5	(11^{-})	
3533.8		390 *		3143.8		

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^π	Mult.f	δ^f	Comments	
3542.8	(16+)	180 [‡] 399 [‡]	e	3362.8 3143.8					
3561.9	(14+)	811.5 ^b 4	100 ^b	2750.4	(12+)	E2 ^b		B(E2)(W.u.)=139 +18-14 E _{γ} : Other: 811.5 (Coul. Excitation) Mult.: Q in (136 Xe, 136 Xe' γ) and RUL.	R.
3913.3	14 ⁺	725.1 ^b 4	100 ^b	3188.2	12 ⁺			,	
6417.3	1-	5678 [@]	5 [@] 3	737.960	2+	E1		$B(E1)(W.u.)=6.0\times10^{-7} 36$	
		6295 [@]	100 [@] 19	122.632	2+	E1+M2	-0.095 23	B(E1)(W.u.)= 8.80×10^{-6} 11; B(M2)(W.u.)= 0.009 5 Mult., δ : from $\gamma(\theta)$ and linear polarization in (γ, γ') .	
		6418 [@]	49 [@]	0.0	0+	E1		B(E1)(W.u.)= 4.1×10^{-6} 5 Mult.: from $\gamma(\theta)$ and linear polarization in (γ, γ') .	

 $^{^{\}dagger}$ From $^{186}\mathrm{Ta}~\beta^{-}$ decay, unless noted otherwise.

[‡] From (238 U, 238 U' γ); uncertainty unstated by authors.

[#] From $(n,n'\gamma)$.

[@] From (γ, γ') .

[&]amp; An unplaced γ of similar energy exists in $(n,n'\gamma)$, but E γ does not fit this placement.

^a From Coulomb excitation. ^b From (¹³⁶Xe, ¹³⁶Xe'γ).

^c The 1210.98 4 and 1484.62 gammas with $I(1211\gamma)$: $I(1485\gamma)=0.97$ 9:0.57 6 reported in $(n,n'\gamma)$ are assumed by the evaluators to differ from the 1210.0 15 and 1485.0 15 gammas seen in 186 Ta β^- decay; the 745.0 and 869.5 gammas of comparable strength and the relatively strong 654.9 γ , placed from the same level as the 1210 γ and 1485 γ in decay, are absent in $(n,n'\gamma)$.

^d Iy may be overestimated; possible sum-y contribution.

^e Based on line widths in level scheme drawing (fig. 3 of 1998Wh02), this is the strongest γ deexciting the parent level.

^f From $(n,n'\gamma)$, unless noted otherwise.

g For a theoretical estimate of δ for this transition, see 1996Na08 and/or 1994Mo07. Note that 1994Mo07 indicate that the 884 γ is the [third 2⁺]-level to [first 2⁺]-level transition; however, the 907.6y constitutes that transition, as adopted here and assumed by 1996Na08.

^h Additional information 1.

ⁱ Multiply placed.

^j Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{186}_{74}\mathrm{W}_{112}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{186}_{\ 74}W_{112}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{186}_{\ 74}W_{112}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

19

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{186}_{\,74}\mathrm{W}_{112}$

 $^{186}_{74}\mathrm{W}_{112}$

Band(G): π=(-), high-K band (1998Wh02)

Band(E): Possible $K^{\pi}=0^{+}$ band (1988GoZC)

2+ 1285.419

 (0^+) 1150

 $^{186}_{\ 74}W_{112}$

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev, S. Juutinen, D. J. Hartley	NDS 150, 1 (2018)	1-Feb-2018

 $Q(\beta^-)=349\ 3$; $S(n)=6835\ 3$; $S(p)=9061\ 56$; $Q(\alpha)=407\ 40$ 2017Wa10 Additional information 1.

¹⁸⁸W Levels

Cross Reference (XREF) Flags

			В	188 Ta $β$ ⁻ decay D 192 Os(82 Se, X $γ$) 186 W(t,p) E 186 W(136 Xe, X $γ$) 186 W(18 O, 16 O $γ$) F 186 W(7Li, $α$ p $γ$)
E(level) [†]	${ m J}^{\pi}$	$T_{1/2}$	XREF	Comments
0#	0+	69.78 d <i>12</i>	ABCDEF	$%\beta^-$ =100 T _{1/2} : From 2014Un01, supersedes previously reported 69.77 d 5 (2012Fi12) and 69.78 d 5 (2002Zi01,2002Un02) by the same group. Others: 69.5 d 7 (2002Po17), 69.4 d 5 (1962Ro16) and 65 d 5 (1951Li07).
143.16# 8	2+	0.87 ns <i>12</i>	ABCDEF	J ^π : 142.9 γ E2 to 0 ⁺ . T _{1/2} : From 143 γ -250 γ -750 γ (t) in LaBr ₃ :Ce detectors, using a $\gamma\gamma$ (t) gated by the 296 γ , 432 γ and 485 γ in the HPGe detectors (2013Ma66) in ¹⁸⁶ W(⁷ Li, α p γ).
439.49 [#] <i>13</i>	4 ⁺		ABCDEF	XREF: B(442). J^{π} : 296.2 γ E2 to 2 ⁺ ; band assignment.
628.14 [@] 8	2+		BC F	XREF: B(630). J ^{π} : 628.4 γ (E2) to 0 ⁺ ; 484.7 γ (M1+E2) to 2 ⁺ ; systematics of K^{π} =2 ⁺ γ -vibrational bands in neighboring nuclei; band assignment.
780 [‡] 2			В	
854.13 <i>21</i>	$(0^+, 2, 4^+)$		C F	J ^π : 711 γ D (ΔJ=0) or E2 to 2 ⁺ ; non observation of a γ -ray transition to 0 ⁺ .
871.10 [#] <i>16</i>	6+		A CDEF	J^{π} : 431.6 γ E2 to 4 ⁺ ; band assignment.
886 [‡] 10	(0^+)		В	J^{π} : L(t,p)=(0).
939.23 [@] 21	4+		С	J^{π} : 796.5 γ E2 to 2 ⁺ , 499.7 γ to 4 ⁺ ; band assignment.
979.37 ^{&} 13	2 ⁽⁻⁾		C EF	J ^{π} : 351.2 γ (E1), ΔJ=0 to 2 ⁺ ; systematics of octupole bands in neighboring nuclei; absence of γ ray to 0 ⁺ would argue against J=1; band assignment.
1070.7 ^{&} 4	3(-)		BC E	XREF: B(1073). J^{π} : 928.0 γ (E1) to 2 ⁺ , 91 γ to 2 ⁽⁻⁾ , 630.2 γ to 4 ⁺ ; band assignment.
1193.77 <mark>&</mark> <i>16</i>	4(-)		СЕ	J^{π} : 214.4 γ E2 to $2^{(-)}$; band assignment.
1228.9 5	2+,3,4+		ВС	XREF: B(1233). J^{π} : 600.6 γ to 2 ⁺ , 788.8 γ to 4 ⁺ .
1341.7 <mark>&</mark> 5	5 ⁽⁻⁾		A C E	J^{π} : 903 γ (E1) to 4 ⁺ , 271.6 γ to 3 ⁽⁻⁾ , 469.4 γ to 6 ⁺ ; band assignment.
1425.15 [#] 25	8+		CE	J^{π} : 554.0 γ E2 to 6 ⁺ ; band assignment.
1437 [‡] 5			В	
1473 [‡] <i>10</i>			В	
1533.77 <mark>&</mark> <i>19</i>	$6^{(-)}$		CE	J^{π} : 340.0 γ (E2) to 4 ⁽⁻⁾ ; band assignment.
1538.2 4	(5 ⁺)		С	J ^{π} : 344.3 γ to 4 ⁽⁻⁾ , 1099.0 γ to 4 ⁺ and 667.5 γ to 6 ⁺ . The absence of transitions to 2 ⁺ and 3 ⁻ levels would argue against J=4 and 5 ⁻ . configuration: ν 1/2[510] $\otimes \nu$ 9/2[505] (K^{π} =5 ⁺) proposed in 2006Sh23. The assignment is tentative.
1544 [‡] 5			В	
1721 [‡] 5			В	

¹⁸⁸W Levels (continued)

E(level) [†]	${ m J}^\pi$	$T_{1/2}$	XF	REF	Comments
1728.7 ^{&} 5 1742.7 5	7 ⁽⁻⁾ 7 ⁽⁻⁾		A	E E	J^{π} : 387 γ to 5 ⁽⁻⁾ and 303 γ to 8 ⁺ ; band assignment. J^{π} : 401 γ to 5 ⁽⁻⁾ and 317 γ to 8 ⁺ allow for J^{π} =6 ⁺ or 7 ⁻ . An apparent mixing with the 7 ⁽⁻⁾ level at 1729.8 keV is consistent with 7 ⁽⁻⁾ for this level (2010La16). configuration: ν 3/2[512] $\otimes \nu$ 11/2[615] (K^{π} =7 ⁻) proposed in 2010La16. The assignment is tentative.
1816 [‡] <i>10</i>			В		E(level): possible doublet.
1897 [‡] <i>5</i>			В		
1915 [‡] 5			В		
1926.7 ^a 8	8-	109.5 ns <i>35</i>	A	E	J^{π} : 184 γ M1 to $7^{(-)}$; systematics of similar isomers in neighboring nuclei. $T_{1/2}$: From sum of 144, 297 and 432 γ (t) in 2010La16. configuration: π 7/2[404] $\otimes \pi$ 9/2[514] (K^{π} =8 $^{-}$) proposed in 2010La16. The assignment is supported by the measured g_{K} - g_{R} =0.76 4, where Q_{0} =6.5 eb, which is in good agreement with the expected value of 0.70 from the Nilsson model and by assuming g_{R} =0.3.
1960 [‡] <i>10</i>	(0^{+})		В		J^{π} : $L(t,p)=(0)$.
1994 [‡] <i>10</i>			В		
2028 [‡] 5			В		
2104 [‡] 5			В		
2175 [‡] 5			В		
2264 [‡] 5			В		
2274.4 ^a 12	(9-)			E	J^{π} : 348 γ to 8 ⁻ ; band assignment.
2314‡ 5			В		
2394 [‡] 5			В		
2427 [‡] 10	(10-)		В	_	E(level): possible doublet.
2665.9 ^a 12 3086.7 ^a 13	(10^{-}) (11^{-})			E E	J^{π} : 392 γ to (9 ⁻), 739 γ to 8 ⁻ ; band assignment. J^{π} : 421 γ to (10 ⁻), 812 γ to (9 ⁻); band assignment.
5000.7 15	(11)			E	3 . 7217 to (10), 0127 to (2), valid assignment.

[†] From a least-squares fit to $E\gamma'$ s, unless otherwise stated. ‡ From $^{186}W(t,p)$. # Band(A): K^{π} =0+, g.s. band. @ Band(B): K^{π} =2+, γ -vibrational band.

[&]amp; Band(C): $K^{\pi}=2^{-}$, octupole band. ^a Band(D): $K^{\pi}=8^{-}$, $\pi7/2[404]\otimes\pi9/2[514]$ band.

						γ (188W)	
$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \mathrm{J}_f^\pi$	Mult. [†]	$\alpha^{\#}$	Comments
143.16	2+	142.9 <i>I</i>	100	0 0+	E2	1.001	$\alpha(K)$ =0.406 6; $\alpha(L)$ =0.451 7; $\alpha(M)$ =0.1134 17 $\alpha(N)$ =0.0268 4; $\alpha(O)$ =0.00371 6; $\alpha(P)$ =3.05×10 ⁻⁵ 5 B(E2)(W.u.)=85 12
439.49	4+	296.3 1	100	143.16 2+	E2	0.0882	Mult.: R(asym)=1.13 <i>3</i> (2006Sh23). α (K)=0.0589 <i>9</i> ; α (L)=0.0224 <i>4</i> ; α (M)=0.00546 <i>8</i> α (N)=0.001297 <i>19</i> ; α (O)=0.000188 <i>3</i> ; α (P)=5.04×10 ⁻⁶
628.14	2+	484.7 <i>1</i>	84 12	143.16 2 ⁺	(M1+E2)	0.042 20	Mult.: R(asym)=1.67 3 (2006Sh23). α (K)=0.034 17; α (L)=0.0060 19; α (M)=0.0014 4 α (N)=0.00033 10; α (O)=5.3×10 ⁻⁵ 18; α (P)=3.3×10 ⁻⁶

γ ⁽¹⁸⁸W) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${\rm J}_f^\pi$	Mult. [†]	$\alpha^{\#}$	Comments
628.14	2+	628.4 1	100 28	0	0+	(E2)	0.01216	18 Mult.: R(asym)=0.70 3 (2006Sh23). α (K)=0.00960 14; α (L)=0.00197 3; α (M)=0.000461 7 α (N)=0.0001101 16; α (O)=1.707×10 ⁻⁵ 24; α (P)=8.87×10 ⁻⁷ 13
854.13	$(0^+, 2, 4^+)$	711.0 2	100	143.16	2+	D,E2		Mult.: R(asym)=1.00 5 (2006Sh23). Mult.: R(asym)=1.00 4 (2006Sh23),
871.10	6 ⁺	431.6 <i>I</i>	100	439.49		E2	0.0306	suggests D ($\Delta J=0$) or E2 transition. $\alpha(K)=0.0227$ 4; $\alpha(L)=0.00602$ 9;
								$\alpha(M)=0.001441\ 2I$ $\alpha(N)=0.000343\ 5;\ \alpha(O)=5.15\times10^{-5}\ 8;$ $\alpha(P)=2.05\times10^{-6}\ 3$ Mult.: R(asym)=1.91 8 (2006Sh23).
939.23	4 ⁺	311.3 <i>5</i> 499.7 2	43 <i>14</i> 100 <i>14</i>	628.14 439.49				
		796.5 10	57 28	143.16		E2	0.00721	$\alpha(K)$ =0.00583 9; $\alpha(L)$ =0.001064 16; $\alpha(M)$ =0.000246 4 $\alpha(N)$ =5.90×10 ⁻⁵ 9; $\alpha(O)$ =9.29×10 ⁻⁶ 14; $\alpha(P)$ =5.41×10 ⁻⁷ 8 Mult.: R(asym)=1.73 12 (2006Sh23).
979.37	2 ⁽⁻⁾	351.2 <i>1</i>	100	628.14	2+	(E1)	0.01573	$\alpha(K)$ =0.01315 19; $\alpha(L)$ =0.00200 3; $\alpha(M)$ =0.000453 7 $\alpha(N)$ =0.0001081 16; $\alpha(O)$ =1.722×10 ⁻⁵ 25; $\alpha(P)$ =1.096×10 ⁻⁶ 16 Mult.: R(asym)=1.21 8; ΔJ =0 transition (2006Sh23) and the adopted level scheme.
1070.7	3(-)	838 [‡] <i>I</i> 91 <i>I</i> 442.5 <i>10</i> 630.2 <i>10</i>	<14 43 <i>14</i> 29 <i>14</i>	143.16 979.37 628.14 439.49	2 ⁽⁻⁾ 2 ⁺			
		928.0 5	100 28	143.16		(E1)	0.00205	$\alpha(K)$ =0.001733 25; $\alpha(L)$ =0.000247 4; $\alpha(M)$ =5.54×10 ⁻⁵ 8 $\alpha(N)$ =1.330×10 ⁻⁵ 19; $\alpha(O)$ =2.16×10 ⁻⁶ 3; $\alpha(P)$ =1.519×10 ⁻⁷ 22 Mult.: R(asym)=0.64 3 (2006Sh23) and the adopted level scheme.
1193.77	4 ⁽⁻⁾	214.4 <i>I</i>	100	979.37	2 ⁽⁻⁾	E2	0.245	$\alpha(K)$ =0.1399 20; $\alpha(L)$ =0.0795 12; $\alpha(M)$ =0.0197 3 $\alpha(N)$ =0.00467 7; $\alpha(O)$ =0.000662 10; $\alpha(P)$ =1.123×10 ⁻⁵ 16 Mult.: R(asym)=1.27 18 (2006Sh23).
1228.9	2+,3,4+	375.0 <i>5</i> 600.6 <i>10</i> 788.8 <i>10</i>	100 20 40 20 ≈20	854.13 628.14 439.49				
1341.7	5 ⁽⁻⁾	148 [‡] <i>I</i> 271.6 <i>10</i> 469.4 <i>10</i>	67 <i>33</i> 67 <i>33</i>	1193.77 1070.7 871.10	4 ⁽⁻⁾ 3 ⁽⁻⁾			
		903.0 10	100 33	439.49		(E1)	0.00216	$\alpha(K) = 0.00182 \ 3; \ \alpha(L) = 0.000260 \ 4;$ $\alpha(M) = 5.84 \times 10^{-5} \ 9$ $\alpha(N) = 1.401 \times 10^{-5} \ 20; \ \alpha(O) = 2.28 \times 10^{-6} \ 4;$ $\alpha(P) = 1.597 \times 10^{-7} \ 23$ Mult.: R(asym) = 0.81 \ 5 \ (2006Sh23) \ and the adopted level scheme.
					_			

$\gamma(^{188}W)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.†	$\alpha^{\#}$	Comments
1425.15	8+	554.0 2	100	871.10	6+	E2	0.01634	$\alpha(K)$ =0.01269 18; $\alpha(L)$ =0.00280 4; $\alpha(M)$ =0.000661 10 $\alpha(N)$ =0.0001579 23; $\alpha(O)$ =2.42×10 ⁻⁵ 4; $\alpha(P)$ =1.166×10 ⁻⁶ 17 Mult.: R(asym)=2.05 20 (2006Sh23).
1533.77	6 ⁽⁻⁾	340.0 1	100 25	1193.77	4 ⁽⁻⁾	(E2)	0.0589	$\alpha(K)$ =0.0412 6; $\alpha(L)$ =0.01355 19; $\alpha(M)$ =0.00328 5 $\alpha(N)$ =0.000781 11; $\alpha(O)$ =0.0001148 17; $\alpha(P)$ =3.60×10 ⁻⁶ 5 Mult.: R(asym)=1.03 11.
		662.5 10	≈25	871.10	6+			
1538.2	(5^{+})	344.3 <i>4</i>	67 33	1193.77				
		599.3 10	67 <i>33</i>	939.23				
		667.5 10	≈33	871.10				
	()	1099.0 10	100 33	439.49				
1728.7	7 ⁽⁻⁾	195 [‡] <i>1</i>		1533.77				
		303‡ 1		1425.15				
		387 [‡] 1		1341.7				
		858 [‡] 1		871.10				
1742.7	7 ⁽⁻⁾	(14 [‡])		1728.7	7 ⁽⁻⁾			E_{γ} : Not observed but inferred from coincidence relationships (2010La16).
		209 [‡] 1		1533.77	$6^{(-)}$			
		317 [‡] <i>1</i>		1425.15	8+			
		401 [‡] <i>I</i>		1341.7	5 ⁽⁻⁾			E_{γ} : Also seen in ¹⁸⁸ Ta β- decay, but not placed in the level scheme.
		872 [‡] 1		871.10	6+			•
1926.7	8-	184 [‡] <i>I</i>	100 2	1742.7	7 ⁽⁻⁾	M1	0.841 18	$\alpha(K)$ =0.699 15; $\alpha(L)$ =0.1103 23; $\alpha(M)$ =0.0251 6 $\alpha(N)$ =0.00605 13; $\alpha(O)$ =0.000987 21;
								$\alpha(P)=7.03\times10^{-5} 15$ B(M1)(W.u.)=1.72×10 ⁻⁵ 7
								E_{γ} : Also seen in ¹⁸⁸ Ta β - decay, but not placed in the level scheme.
								I _y : From 186 W(136 Xe,Xy). Mult.: From α_T (exp)=0.77 6 in 2010La16.
		198 [‡] <i>1</i>	1.9 7	1728.7	7(-)	[M1]	0.686 14	$\alpha(K)$ =0.570 12; $\alpha(L)$ =0.0898 18; $\alpha(M)$ =0.0204 4
		1,00 1	1.,	1,201,	,	[1122]	0.000 17	α (N)=0.00492 <i>10</i> ; α (O)=0.000804 <i>16</i> ; α (P)=5.73×10 ⁻⁵ <i>12</i>
								B(M1)(W.u.)= 2.6×10^{-7} 10 I _{γ} : From ¹⁸⁶ W(¹³⁶ Xe,X γ).
2274.4	(9^{-})	348 [‡] <i>1</i>		1926.7	8-			
2665.9	(10^{-})	392 [‡] 1		2274.4	(9-)			
		739 [‡] <i>1</i>		1926.7	8-			
3086.7	(11^{-})	421 [‡] 1		2665.9	(10^{-})			
	` /	812 [‡] <i>1</i>		2274.4	(9-)			

[†] From $^{186}W(^{18}O,^{16}O\gamma)$, unless otherwise stated. Mult. are based on R(asym)= $I\gamma$ (in reaction plane)/ $I\gamma$ (out of reaction plane), measured in 2006Sh23, and the corresponding band assignments. R(asym)>1 is expected for $\Delta J=2$, quadrupole or $\Delta J=0$, dipole and R(asym)<1 for ΔJ =1, dipole. For in-band transitions D=M1 and Q=E2 was assumed. \ddagger From $^{186}W(^{136}Xe,X\gamma)$ (2010La16). E_{γ} uncertainty was assigned by the evaluator.

 γ (188W) (continued)

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

$$^{188}_{74}\mathrm{W}_{114}$$