Chapter 29 Audio Codec

29.1 Overview

The Audio Codec is a capless, low power, high resolution, stereo CODEC solution that employs Sigma-Delta noise-shaping technique. The ADC with 24bit resolution, DAC with 24bit resolution and power amplifier are integrated.

Key Features

- 24 bit DAC with 95dB SNR
- Support DC-coupled capless headphone output
- Support 16Ω to 32Ω headphone output and speaker output
- 24 bit ADC with 92dB SNR
- Support single-ended and differential microphone input and line input
- Automatic Level Control (ALC) for smooth audio recording
- Support Mono, Stereo, 5.1 and 7.1 HiFi channel performance
- Programmable input and output analog gains
- Digital interpolation and decimation filter integrated
- Sampling rate of 8/12/16/24/32/44.1/48/96kHz

29.2 Block Diagram

Fig.29-1 Audio Codec Block Diagram

29.3 Electrical Specification

Test conditions: AVDD = 3.3V, DVDD = 1.1V, T_A = 25°C, 1KHz Sine Input, Fs = 48KHz.

Parameter	Symb ol	Condition	Min	Тур	Max	Unit
Operating Condition				l	·I	I
Analog Supply	AVDD		2.97	3.3	3.63	V
Digital Supply	DVDD		0.99	1.1	1.21	V
Junction Temperature	T ₁		-40		125	$^{\circ}$ C
Microphone Bias	.,				120	
			0.5*		0.85*	
Bias Voltage	V_{MICB}		AVDD		AVDD	V
Bias Current	I _{MICB}		7		3	mA
Microphone Gain Boost				1		1117
Programmable Gain	G _{BST}		0		_20	dB
Gain Step Size	O B31			20	720	dB
Guill Step Size		G _{BST} =0dB		83	\wedge	ΚΩ
Input Resistance	R_{IN}	$G_{BST}=20dB$		15		ΚΩ
Input Capacitance	C _{IN}	OBSI-ZOUD		10		pF
ALC PGA	CIN			10		l bi
Programmable Gain	G_{ALC}		-18		28.5	dB
Gain Step Size	UALC		. 10	1.5	20.5	dB
ADC Input Path (Micro	shone or	line input to	VDC)	1.5		ub
Signal to Noise Ratio	SNR	A-weighted	ADC)	95		dB
Total Harmonic	SIVIX			93		ub
Distortion	THD	-3dBFS input	Y	-83		dB
Power Supply Rejection	PSRR	1KHz		80		dB
ADC	FORK	INIZ		00		ub
Signal to Noise Ratio	SNR	A-weighted		92		dB
Total Harmonic	SINK	A-weighted		92		uБ
Distortion	THD	-3dBFS input		-81		dB
Channel Separation				80		dB
DAC				80		ub
	SNR	A weighted		95		dB
Signal to Noise Ratio	SIVIC	A-weighted -3dBFS		95		иь
Total Harmonic	THD			-84		dB
Distortion	לחו	output 10KΩ load		-04		иь
Channel Constation		10/25 1090		85		dB
Channel Separation				65		иь
Output Driver Programmable Gain	C		-39		6	dB
	G_{DRV}		-39	1.5	0	
Gain Step Size	D					dB
Output Resistance	R _{OUT}			1		KΩ
Output Capacitance	C _{OUT}	41/11-		20		pF
Power Supply Rejection	PSRR	1KHz		70		dB
Line Output	CND					- 15
Signal to Noise Ratio	SNR	A-weighted		93		dB
Total Harmonic	FUE	-3dBFS		0.4		-15
Distortion	THD	output		-84		dB
		10KΩ load]	j		
Headphone Output	CNID		1	00	T	
Signal to Noise Ratio	SNR	A-weighted		92		dB
+		16Ω load		-70		dB
Total Harmonic	THD	P ₀ =20mW		-		
Distortion		32Ω load		-75		dB
		$P_0=20$ mW				

Power Consumption			
Standby		0.05	mA
Stereo Recording		6.5	mA
Stereo Playback	Quiescent	11	mA

29.4 Function description

29.4.1 Digital Interface

The Codec has the I2S PCM interface of audio data stream in for DAC and out for ADC, both of which can be configured in master or slave mode. Different audio data formats are available for different operating modes, which are demonstrated in below table.

Table 29-1 Supported Data Formats in Different Modes

1451C 27 1 54p	•	OC .	DAC	
Data Formats	Master	Slave	Master	Slave
Left Justified	\checkmark	×	V	$\sqrt{}$
Right Justified	\checkmark	V	\checkmark	$\sqrt{}$
I ² S	V		\checkmark	$\sqrt{}$
DSP/PCM mode A	√	√	\checkmark	$\sqrt{}$
DSP/PCM mode B	V	×	\checkmark	$\sqrt{}$

I2S_PCM interface supports five audio data formats: Left Justified mode, Right Justified mode, I²S mode, DSP/PCM mode A and mode B. They are valid when the device operates as a master or slave.

For Left Justified mode, the data format is illustrated in Fig. 29-2. The MSB is valid at the first rising edge of sck after ws transition is done. The other valid bits up to the LSB are transmitted sequentially. Due to varied word length, different sck frequency and sample rate, some unused sck cycles may appear before every ws transition, which means the data in this period is invalid.

Fig.29-2 Left Justified Mode (assuming n-bit word length)

For Right Justified mode, the data format is shown in Fig. 29-3. The LSB becomes valid at the last rising edge of sck before ws transition is done. As the MSB is transmitted first, the other valid bits up to the MSB are followed in order. Due to varied word length, different sck frequency and sample rate, some unused sck cycles may exist after every ws transition, which means the data in this period is invalid.

Fig.29-3 Right Justified Mode (assuming n-bit word length)

For I²S mode, the data format is depicted in Fig. 29-4. The MSB becomes available at the second rising edge of sck when ws transition is done. The other valid bits up to the LSB are transmitted in order. Due to varied word length, different sck frequency and sample rate, some unused sck cycles may appear between the LSB of the current sample and the MSB of the next one, which means the data in this period can be ignored.

Fig.29-4 I2S Mode (assuming n-bit word length)

For DSP/PCM mode, the left channel data is transmitted first, followed by right channel data. For DSP/PCM mode A/B, the MSB is available at the second and first rising edge of sck after the rising edge of ws respectively, as shown in Fig. 29-5 and Fig.29-6. Based on word length, sck frequency and sample rate, there may be some invalid data between the LSB of the right channel data and the next sample.

Fig.29-5 DSP/PCM Mode A (assuming n-bit word length)

Fig.29-6 DSP/PCM Mode B (assuming n-bit word length)

29.4.2 Analog Interface

Fig.29-7MicroPhone Input

There are two microphone input channels, left and right channel. In left channel, there are two differential inputs, and they can be configured as either single-ended input or differential inputs by the microphone PGA (BST_L). In right channel, there is only one input, and it is configured as single-ended input by the microphone PGA (BST_R).

In left channel, microphone inputs are MICL and MICR. When working in single-ended configuration, the input signal should be input through MICL. In right channel, microphone input is MICR.

Microphone PGA has two gains to amplify the input signal, that is, 0dB and +20dB.

There are two line input channels, INL and INR. They are input to left and right channel MUX (MUXIN_L and MUXIN_R), respectively. In each channel, the input MUX can choose line input or microphone PGA output as the input of ALC PGA. Automatic Level Control (ALC) function is included to adjust the signal level, which is input into ADC. ALC will measure the signal magnitude and compare it to defined threshold. Then it will adjust the ALC controlled PAG (ALC_L and ALC_R) gain according to the comparison result.

The programmable gain range of ALC controlled PAG is from -18dB to +28.5dB. The tuning step is 1.5dB.

Fig.29-8output mixer

DAC output and ADC input can be mixed by output mixer. There are two output channel mixers, HPMIXL and HPMIXR.

In HPMIXL mixer, output of left channel DAC, output of left channel ALC PGA and output of right channel ALC PGA can be mixed. In HPMIXR mixer, output of right channel DAC, output of left channel ALC PGA and output of right channel ALC PGA can be mixed.

This Codec supports two headphone output configurations. The headphone output can drive 16Ω or 32Ω headphone load either through DC-blocking capacitor or DC-coupled capless configuration.

In the configuration using DC-blocking capacitor, shown in following figure, the headphone ground is connected to the real ground. The capacitance and the load resistance determine the lower cut-off frequency. For instance, if 16Ω headphone and 100uF DC-blocking capacitor are used, the lower cut-off frequency is:

$$f = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 16 \times 100 \times 10^{-6}} = 99.5Hz$$

The DC-blocking capacitor can be increased to lower the cut-off frequency for better bass response.

Fig.29-9DC-blocking capacitor

In the DC-coupled capless configuration, shown in following figure, the headphone ground is connected to a virtual ground, AOM. AOM is a DC output driver with a DC voltage of AVDD/2, that is, half of the analog supply. The requirement for DC-blocking capacitor is removed, which can save the cost.

Fig.29-10DC-coupled capless

The headphone driver can choose mixer output or DAC output as input. It has a gain range from -39dB to +6dB with a tuning step of 1.5dB.

Microphone bias output is used to bias external microphones. The bias voltage can varies from 0.5*AVDD to 0.85* AVDD with a step of 0.05*AVDD.

29.4.3 Interface Relationship

In broadcasting application, the I2S/PCM1/2 controller is used as a transmitter and audio CODEC is used as a receiver. In recording application, the I2S/PCM1/2 controller is used as a receiver and audio CODEC is used as a transmitter. Either the I2S/PCM1/2 controller or the audio CODEC can act as a master or a slave, but if one is master, the other must be slave.

Fig.29-11 and Fig.29-12 illustrate the relationship between I2S interface and the parallel audio data in ADC and DAC channels.

29.5 Register description

29.5.1 Register Summary

Name	Offset	Size	Reset Value	Description
Codec_REG0	0x0000	W	0x0000003	Codec register 0
Codec_REG2	0x0008	W	0x0000050	Codec register 2
Codec_REG3	0x000c	W	0x0000000e	Codec register 3
Codec_REG4	0x0010	W	0x0000050	Codec register 4
Codec_REG5	0x0014	W	0x0000000e	Codec register 5
Codec_REG34	0x0088	W	0x00000000	Codec register 34
Codec_REG35	0x008c	W	0x00000000	Codec register 35
Codec_REG36	0x0090	W	0x00000044	Codec register 36

Name	Offset	Size	Reset Value	Description
Codec_REG37	0x0094	W	0x000000c	Codec register 37
Codec_REG38	0x0098	W	0x000000c	Codec register 38
Codec_REG39	0x009c	W	0x00000000	Codec register 39
Codec_REG40	0x00a0	W	0x00000000	Codec register 40
Codec_REG41	0x00a4	W	0x00000000	Codec register 41
Codec_REG42	0x00a8	W	0x00000000	Codec register 42
Codec_REG43	0x00ac	W	0x00000000	Codec register 43
Codec_REG44	0x00b0	W	0x00000000	Codec register 44
Codec_REG45	0x00b4	W		Codec register 45
Codec_REG46	0x00b8	W	0x00000000	Codec register 46
Codec_REG47	0x00bc	W	0x0000001e	Codec register 47
Codec_REG64	0x00c0	W	0x00000000	Codec register 64
Codec_REG65	0x00c4	W	0x00000046	Codec register 65
Codec_REG66	0x00c8	W	0x00000041	Codec register 66
Codec_REG67	0x00cc	W	0x0000002c	Codec register 67
Codec_REG68	0x00d0	W	0x00000000	Codec register 68
Codec_REG69	0x00d4	W	0x00000026	Codec register 69
Codec_REG70	0x00d8	W	0x00000040	Codec register 70
Codec_REG71	0x00dc	W	0x00000036	Codec register 71
Codec_REG72	0x00e0	W	0x00000020	Codec register 72
Codec_REG73	0x00e4	W	0x00000038	Codec register 73

Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W-WORD (32 bits) access

29.5.2 Detail Register Description

Codec_REG0

Address: Operational Base + offset (0x0000)

Codec register 0

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6	RW	0x0	Power reset bypass 0: not 1: bypass
5:2	RO (0x0	reserved
1	RW	0×1	Codec digital core reset This reset only reset the codec data path. 0: reset 1: work
0	RW	0x1	Codec system reset This signal will reset the registers which control all the digital and analog part. 0: reset 1: work

Codec_REG2

Address: Operational Base + offset (0x0008)

	-9.000		
Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			ADC LRC Polarity
7	RW	0x0	0: normal
			0: reversal
			ADC Valid Word Length in one 1/2Frame
			11: 32 bits
6:5	RW	0x2	10: 24 bits
			01: 20 bits
			00: 16 bits
			ADC mode
			11: PCM Mode
			10: I2S Mode
			01: Left Justified Mode
4:3	RW	0 0	00: Right Justified Mode
4:3	KVV	0x2	Note. Same word length in 1/2frame and valid
			data is not supported in Right Justified Mode.
			For example, 32/24 or 24/20 is supported, but
			32/32 or 24/24 is not supported. (1/2frame
			length/valid data length)
2	RO	0x0	reserved
			ADC Left-Right SWAP
1	RW	0x0	0: normal
			1: swap
			ADC type
0	RW	0x0	1: Mono
			0: Stereo

Address: Operational Base + offset (0x000c)

Codec register 3

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
4	RW	0x0	ADC and DAC I2S Mode Select 0: slave mode 1: master mode
3:2	RW	0x3	ADC 1/2Frame Word Length 11: 32 bits 10: 24 bits 01: 20 bits 00: 16 bits
1	RW	0x1	ADC Reset 0: reset 1: work
0	RW	0x0	ADC Bit Clock Polarity 0: normal 1: reversal

Codec_REG4

Address: Operational Base + offset (0x0010)

Bit Attr Reset Val	ne Description
--------------------	----------------

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			DAC LRC Polarity
7	RW	0x0	0: normal
			1: reversal
			DAC Valid Word Length in one 1/2Frame
			11: 32 bits
6:5	RW	0x2	10: 24 bits
			01: 20 bits
			00: 16 bits
			DAC mode
			11: PCM Mode
			10: I2S Mode
			01: Left Justified Mode 00: Right Justified Mode
4:3	RW	0x2	00: Right Justified Mode Note. Same word length in 1/2frame and valid
			data is not supported in Right Justified Mode.
			For example, 32/24 or 24/20 is supported, but
			32/32 or 24/24 is not supported. (1/2frame
			length/valid data length)
			DAC Left-Right SWAP
2	RW	0x0	0: normal
			1: swap
1:0	RO	0x0	reserved

Address: Operational Base + offset (0x0014)

Codec register 5

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
			DAC 1/2Frame Word Length
			11: 32 bits
3:2	RW	0x3	10: 24 bits
			01: 20 bits
			00: 16 bits
			DAC reset
1	RW	0x1	0: reset
			1: work
			DAC Bit Clock polarity
0	RW	0x0	0: normal
			1: reversal

Codec_REG34

Address: Operational Base + offset (0x0088)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7	RW	0x0	The enable signal of current source for ADC 0: Stop Working 1: Work

Rockchip ^{瑞芯微电子}	RK3128
------------------------------	--------

Bit	Attr	Reset Value	Description
6	RW	0x0	The enable signal of MIC bias voltage (MICBIAS) buffer 0: Stop Working 1: Work
5	RW	0x0	The enable signal of the ADCL input zero-crossing detection module: 0: Stop Working ,output 0 electrical level 1: Work
4	RW	0×0	The enable signal of the ADCR input zero-crossing detection module: 0: Stop Working ,output 0 electrical level 1: Work
3	RO	0x0	reserved
2:0	RW	0×0	The level range control signal of MIC bias voltage (MICBIAS) 000 .0*VREF 111 .7*VREF Step .1*VREF VREF = AVDD/2

Address: Operational Base + offset (0x008c)

Codec register 35

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6	RW	0x0	The enable signal of BST_L module 0: Stop Working
			1: Work
5	RW	0x0	The gain control of BST_L module 1: 20dB 0: 0dB
4	RW	0x0	The mute signal of BST_L module 0: Mute 1: Work
3	RO 🦳	0x0	reserved
2	RW	0x0	The enable signal of BST_R module 0: Stop Working 1: Work
1	RW	0x0	The gain control of BST_R module 1: 20dB 0: 0dB
0	RW	0x0	The mute signal of BST_R module 0: Mute 1: Work

Codec_REG36

Address: Operational Base + offset (0x0090)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved

1: Work

Codec_REG37

Address: Operational Base + offset (0x0094)

Codec register 37

	<u> </u>		
Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5	RW	0x0	The signal to select the input mode of BST_L module 1: Single-ended input 0: Full differential input
4:0	RW	0x0c	The gain control of ALC_L module 00000: -18dB 01100: 0dB 11111 : 28.5dB Step: 1.5dB

Codec REG38

Address: Operational Base + offset (0x0098)

Codec register 38

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
4:0	RW	0x0c	The gain control of ALC_R module 00000: -18dB 01100: 0dB 11111: 28.5dB Step: 1.5dB

Codec_REG39

Address: Operational Base + offset (0x009c)

Codec register 39

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7	RW	0×0	The enable signal of reference Voltage buffer for left ADC PATH 0: Stop working 1: Work
6	RW	0x0	The enable signal of CLOCK for ADCL module 0: Set to logic "1" 1: Work
5	RW	0x0	The enable signal of Amplifier in ADCL module 0: Stop working all amplifier 1: Work
4	RW	0x0	The reset signal of different levels integrator in ADCL module 0: Work 1: Clear
3	RW	0x0	The enable signal of reference Voltage buffer for right ADC PATH 0: Stop working 1: Work
2	RW	0x0	The enable signal of CLOCK for ADCR module 0: Set to logic "1" 1: Work
1	RW	0x0	The enable signal of Amplifier in ADCR module 0: Stop working all amplifier 1: Work
0	RW	0x0	The reset signal of different levels integrator in ADCR module 0: Work 1: Clear

Codec_REG40

Address: Operational Base + offset (0x00a0)

Codec 1			
Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6	RW	0×0	The enable signal of current source for CODEC DAC 0: Stop Working 1: Work
5	RW	0×0	The enable signal of reference Voltage buffer for left DAC PATH 0: Stop Working 1: Work
4	RW	0x0	The enable signal of zero-crossing detection module for VOUTL: 0: Stop Working ,output 0 electrical level 1: Work

Rockchip ^{瑞芯微电子} RK3128

Bit	Attr	Reset Value	Description
3	RW	0x0	The enable signal of module to detect earphone 0: Don't detect, output logic "0" 1: Detect
2	RO	0x0	reserved
1	RW	0×0	The enable signal of reference Voltage buffer for right DAC PATH 0: Stop working 1: Work
0	RW	0x0	The enable signal of zero-crossing detection module for VOUTR: 0: Stop Working ,output 0 electrical level 1: Work

Address: Operational Base + offset (0x00a4)

Codec register 41

Dit Attr Deat Value			_ ^.(/)'
Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7	RW	0×0	The enable signal of high and low reference Voltage buffer for DACL module 0: stop working 1: Work
6	RW	0x0	The enable signal of CLOCK module for DACL 0: Set CLOCK to logic "1" 1: Work
5	RW	0x0	The enable signal of DACL module 0: Stop work 1: Work
4	RW	0x0	The Initial signal of DACL module 0: Initialization 1: Work
3	RW	0×0	The enable signal of high and low reference Voltage buffer for DACL module 0: Stop working 1: Work
2	RW	0x0	The power down signal of the ADCR input zero-crossing detection: 1: Power down ,output 0 electrical level 0: Work
1	RW	0x0	The enable signal of DACR module 0: Stop work 1: Work
0	RW	0x0	The Initial signal of DACR module 0: Initialization 1: Work

Codec_REG42

Address: Operational Base + offset (0x00a8)

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
			The enable signal of HPMIXL module
6	RW	0x0	0: Stop work
			1: Work
			The Initial1 signal of HPMIXL module
5	RW	0x0	0: Initialization
			1: Work
			The Initial2 signal of HPMIXL module
4	RW	0x0	0: Initialization
			1: Work
3	RO	0x0	reserved
			The enable signal of HPMIXR module
2	RW	0x0	0: Stop work
			1: Work
			The Initial1 signal of HPMIXR module
1	RW	0x0	0: Initialization
			1: Work
			The Initial2 signal of HPMIXR module
0	RW	0x0	0: Initialization
			1: Work

Address: Operational Base + offset (0x00ac)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7	RW	0x0	The bypass signal of HPMIXL module 1: Bypass HPMIXL 0: Don't bypass
6:4	RW	0×0	The signal to select input of HPMIXL module: [6]: select output of ALCL module 0: Don't select 1: Select [5]: select output of ALCR module 0: Don't select 1: Select [4]: select output of DACL module 0: Don't select 1: Select
3	RW	0x0	The bypass signal of HPMIXR module 1: Bypass HPMIXR 0: Don't bypass

Bit	Attr	Reset Value	Description
2:0	RW	0x0	The signal to select input of HPMIXR module: [2]: select output of ALCL module 0: Don't select 1: Select [1]: select output of ALCR module 0: Don't select 1: Select [0]: select output of DACR module 0: Don't select 1: Select

Address: Operational Base + offset (0x00b0)

Codec register 44

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			The enable signal of HPOUTL module
7	RW	0x0	0: Stop working
			1: Work
			The Initial signal of HPOUTL module
6	RW	0x0	0: Initialization
			1: Work
			The mute signal of HPOUTL module
5	RW	0x0	0: Mute
			1: Work
			The enable signal of HPOUTR module
4	RW	0x0	0: Stop working
			1: Work
		, A	The Initial signal of HPOUTR module
3	RW	0x0	0: Initialization
			1: Work
			The mute signal of HPOUTR module
2	RW	0x0	0: MUTE
			1: Work
			The enable signal of HPVREF module
1	RW	0x0	0: Stop working
			1: Work
			The Initial signal of HPVREF module
0	RW	0x0	0: Initialization
	/		1: Work

Codec_REG45

Address: Operational Base + offset (0x00b4)

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			The signal to select gain of HPOUTL module:
			00000: -39dB
4:0	RW	0x00	11010: 6dB
			11111: 0dB
			Step: 1.5dB

Address: Operational Base + offset (0x00b8)

Codec register 46

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
4:0	RW	0x00	The signal to select gain of HPOUTR module: 00000: -39dB 11010: 6dB 11111: 0dB Step: 1.5dB

Codec_REG47

Address: Operational Base + offset (0x00bc)

Codec register 47

Couec re	egister 4	/	
Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5	RW	0×0	The signal to select current to Precharge/Discharge [4]: Select 10uA 0: Select 1: Don't select [3]: Select current I0 0: Select 1: Don't select [2]: Select current 2* I0 0: Select 1: Don't select [1]: Select current 4*I0 0: Select 1: Don't select [0]: Select 1: Don't select
4:0	RW	0x1e	Field0000 Abstract Field0000 Description

Codec_REG64

Address: Operational Base + offset (0x00c0)

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved

Address: Operational Base + offset (0x00c4)

Codec register 65

Bit	Attr	Reset	Value	Description
31:8	RO	0x0)	reserved
7:4	RW	0x4		Decay (gain ramp-up) time Normal MODE(reg_agc_mde =0) 0000:500us 0001:1ms 0010:2ms 0011:4ms 0100:8ms 0101:16ms 0110:32ms 0111:64ms 1000:128ms 1001:256ms 1010:512ms 1001~1111:512ms

1010: 1 s 1011~1111:0ms

Bit	Attr	Reset Value	Description
			Attack (gain ramp-down) Time
			Noraml MODE(reg_agc_mde =0)
			0000:125us
			0001:250us
			0010:500us
			0011:1ms
			0100:2ms
			0101:4ms
			0110:8ms
			0111:16ms
			1000:32ms
			1001:64ms
			1010:128ms
3:0	RW	0x6	1011~1111:125us
			Noraml MODE(reg_agc_mde =1)
			0000:32us
			0001:64us
			0010:125us
			0011:250us
			0100:500us
			0101:1ms
			0110:2ms
			0111:4ms
			1000:8ms
			1001:16ms
			1010:32ms
			1011~1111:32us

Address: Operational Base + offset (0x00c8)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7	RW	0x0	Determines the AGC mode of operation 0:AGC mode(normal mode) 1:Limiter mode
6	RW	0×1	AGC users zero cross enable 0:Disabled 1:Enabled, the AGC gain will update at zero cross enable
5	RW	0x0	When in the limiter mode, the low amplitude signal will recovery in two modes: 0:The gain will recovery to the value of the reg_pga_lvol 1:The gain will recovery to the gain at the moment that the mode changes from AGC to Limiter.
4	RW	0×0	When the amplitude of the signal is more than 87.5% of the Full scale, use this signal to control the fast decrement: 0:Disabled 1:Enabled

Bit	Attr	Reset Value	Description	
			AGC noise gate function enable	
3	RW	0x0	0:Disabled	
			1:Enabled	
			AGC noise gate threhold	
			000:-39dB	
			001:-45dB	
			010:-51dB	
2:0	RW	0x1	011:-57dB	
			100:-63dB	
			101:-69dB	
			110:-75dB	A
			111:-81dB	

Address: Operational Base + offset (0x00cc)

Codec register 67

Codec register 67			
Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5	RW	0x1	Left channel input PGA zero cross enable 0:Update gain when gain register changes. 1:Update gain on 1st zero cross after gain register write.
4:0	RW	0x0c	Left channel input PGA gain 00000:-18dB 00001:-16.5dB 00010:-15dB n: (1.5xn-18)dB 01100:0dB 01101:+1.5dB 01110:+3dB 11111:+28.5dB

Codec_REG68

Address: Operational Base + offset (0x00d0)

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
2	3 RW	[[]Y[]	Slow clock enabled
3			used for the zero cross timeout.

Bit	Attr	Reset Value	Description
2:0	RW	0×0	Approximate sample rate 000:96kHz 001:48kHz 010:44.1kHz 011:32kHz 100:24kHz 101:16kHz 110:12kHz 111: 8kHz

110~111:reserved

Codec_REG69

Address: Operational Base + offset (0x00d4)

Codec register 69

	outes : egiste: es			
Bit	Attr	Reset Value	Description	
31:8	RO	0x0	reserved	
7:0	RW	0x26	agc_max_l The low 8 bits of the AGC maximum level	

Codec_REG70

Address: Operational Base + offset (0x00d8)

Codec register 70

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0x40	agc_max_h The high 8 bits of the AGC maximum level

Codec_REG71

Address: Operational Base + offset (0x00dc)

Codec register 71

	sedee register / I				
Bit	Attr	Reset Value	Description		
31:8	RO	0x0	reserved		
7:0	RW	0x36	agc_min_l The low 8 bits of the AGC minimum level		

Codec_REG72

Address: Operational Base + offset (0x00e0)

Codec register 72

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0x20	agc_min_h The high 8 bits of the AGC minimum lelel

Codec_REG73

Address: Operational Base + offset (0x00e4)

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6	RW	0×0	agcf AGC function select 0: AGC function off 1: AGC function enable
5:3	RW	0×7	pga_maxg Set maximum gain of PGA 000:-13.5dB 001:- 7.5dB 010:- 1.5dB 011:+ 4.5dB 100:+10.5dB 101:+16.5dB 111:+28.5dB
2:0	RW	0×0	pga_ming Set minimum gain of PGA 000:-18dB 001:-12dB 010:- 6dB 011: 0dB 100:+ 6dB 101:+12dB 110:+18dB 111:+24dB

29.6 Application Note