Hidden Markov Models I

Learning Bayes Net Structure

Data Mining

Many of these slides are derived from Seyong Kim, Tom Mitchell, Ziv Bar-Joseph. Thanks!

What's wrong with Bayesian networks

- Bayesian networks are very useful for modeling joint distributions
 - But they have their limitations:
- Cannot account for temporal / sequence models
- DAG's (no self or any other loops)

Hidden Markov models

- Model a set of observation with a set of hidden states
 - Robot movement

Observations: range sensor, visual sensor

Hidden states: location (on a map)

Speech processing

Observations: sound signals

Hidden states: parts of speech, words

Observations: amino acid sequence

Hidden states: 3d structure of protein

Example: Gambling on dice outcome

- Two dices, both skewed (output model).
- Can either stay with the same dice or switch to the second dice (transition mode).

	0.8	B	
0.2		О	0.2

Problem setup

- 0.1 0.2 Dice B .5 3. 5. 9 4. 0.3 0.2 0.2 0.1 0.1 Dice A 4 5. 9
- Stay on Dice A: 0.8
- Switch to Dice A: 0.2 Stay on Dice B: 0.8 Switch to Dice B: 0.2

Start on dice A with probability 0.3, B with probability 0.7

Observed rolls: 113414414561253

Prediction problem: Which rolls were created by which die?

A Hidden Markov model

- A set of states {s₁ ... s_n}
- In each time point we are in exactly one of these states denoted by $\ensuremath{\phi_{+}}$
- $\Pi_{i'}$ the probability that we start at state s_i (start die)
- A transition probability model, $P(q_t = s_i \mid q_{t-1} = s_j)$ (switch die)
 - A set of possible outputs Σ (die roll outcomes)
- At time t we emit a symbol $\sigma \in \Sigma$ (e.g. at time t we emit a "1")
- An emission probability model, $p(o_t = \sigma \mid s_i)$
- (probability of the observed output given the hidden state)

What can we ask when using a HMM?

A few examples:

- "What dice is currently being used?"
- "What is the probability of a 6 in the next role?"
- "What is the probability of 6 in any of the next 3 roles?"

Which die is currently being used?

- We played t rounds so far
- We want to determine $P(q_t = A)$
- Lets assume for now that we cannot observe any outputs (we are blind folded)
- How can we compute this?

HMMs have the Markov Property

An important aspect of this definitions is the Markov property: $q_{\rm t+1}$ is conditionally independent of $q_{\rm t-1}$ (and any earlier time points) given $q_{\rm t}$

More formally $P(q_{t+1} = s_i \mid q_t = s_j) = P(q_{t+1} = s_i \mid q_t = s_j, q_{t-1} = s_j)$

Inference in HMMs

- Computing P(Q) and $P(q_t = s_i)$
- If we cannot look at observations
- Computing P(Q | O) and P(q_t = s_i | O)
- When we have observation and care about the last state only
- Computing argmax_QP(Q | O)
- When we care about the entire path

$P(q_t = A)$?

Simple answer:

Lets determine P(Q) where Q is any path that ends in A

$$Q = q_1, ... q_{t-1}, A$$

$$P(Q) = P(q_1, ... q_{t-1}, A)$$

$$= P(A \mid q_1, \dots q_{t-1}) P(q_1, \dots q_{t-1})$$
 Markov property!

= P(A |
$$q_{t-1}^{(+)}$$
) P(q_1 , ... q_{t-1})

=
$$P(A \mid q_{t-1}) \dots P(q_2 \mid q_1) P(q_1)$$

$P(q_t = A)$?

- Simple answer:
- 1. Lets determine P(Q) where Q is any path that ends in A

$$Q=q_1,\,...\,q_{t\text{-}1},\,A$$

$$P(Q) = P(q_1, ... q_{t-1}, A)$$

$$= P(A \mid q_1, ..., q_{t-1}) \; P(q_1, ..., q_{t-1})$$

$$= P(A \mid q_{t-1}) \; P(q_1, ..., q_{t-1})$$

=
$$P(A \mid q_{t-1}) ... P(q_2 \mid q_1) P(q_1)$$

2.
$$P(q_t = A) = \Sigma P(Q)$$
 where the sum is over all sets of t states that end in A

$P(q_t = A)$, the smart way

- Lets define $p_t(i)$ as the probability of being in state \emph{i} at time $t\colon p_t(i)$
- We can determine $p_{t}(i)$ by induction
- 1. $p_1(i)=\Pi_i$ (the probability that we start at state $s_i)$
 - 2. $p_t(i) = ?$

$P(q_t = A)$, the smart way

- Lets define p_t(i) = probability state i at time t = p(q_t = s_i)
 - We can determine $p_t(i)$ by induction
 - 1. $p_1(i) = \Pi_i$
- 2. $p_t(i) = \sum_j p(q_t = s_i \mid q_{t-1} = s_j) p_{t-1}(j)$

This type of computation is called dynamic programming

Complexity: O(n2*t)

Number of states in our HMM

$P(q_t = A)$?

- Simple answer:
- 1. Lets determine P(Q) where Q is any path that ends in A

$$Q = q_1, ..., q_{t-1}, A$$

$$\begin{split} P(Q) &= P(q_{1}, \ ... \ q_{t-1}, \ A) = P(A \ | \ q_{1}, \ ... \ q_{t-1}) \ P(q_{1}, \ ... \ q_{t-1}) = P(A \ | \ q_{t+1}) \\ P(q_{1}, \ ... \ q_{t+1}) &= ... = P(A \ | \ q_{t+1}) \ ... \ P(q_{2} \ | \ q_{1}) \ P(q_{1}) \end{split}$$

2.
$$P(q_t = A) = \Sigma P(Q)$$

where the sum is over all sets of t sates that end in A

Q: How many sets Q are there?

A: A lot! (2^{t-1})

Not a feasible solution

$P(q_t = A)$, the smart way

- Lets define $p_t(i) = probability$ state i at time $t = p(q_t = s_i)$
 - We can determine $p_{t}(i)$ by induction
- 1. $p_1(i) = \Pi_i$
- 2. $p_t(i) = \sum_j p(q_t = s_i \mid q_{t-1} = s_j) p_{t-1}(j)$

Assignment Announcements

- Assignment 1
- I will accept assignments up until Monday night.
- 20% off per day on the WHOLE MARK
- assignment you hand in on We can only see the final
- Assignment 2
- Out later today
- No programming
- NO LATE DAYS! Because we want to release the key to help you study for the mid term

Inference in HMMs

- Computing P(Q) and $P(q_t = s_i)$
- Computing P(Q | O) and P(q_t = s_i | O)
- Computing argmax_QP(Q)

But what if we observe outputs?

- So far, we assumed that we could not observe the outputs
 - In reality, we almost always can.

But what if we observe outputs?

- So far, we assumed that we could not observe the outputs
- In reality, we almost always can.

Does observing the sequence

5, 6, 4, 5, 6, 6

P(v |B) - . 0 0 m P(v A) ω Ŋ 7 က 4 r

Change our belief about the state?

$P(q_t = A)$ when outputs are observed

- We want to compute $P(q_t = A \mid O_1 \dots O_t)$
- For ease of writing we will use the following notations (commonly used in the literature)
- $a_{j,i} = P(q_t = s_i \mid q_{t-1} = s_j)$
 - $b_{i}(o_{t}) = P(o_{t} + s_{t})$

$P(q_t = A)$ when outputs are observed

- We want to compute $P(q_t = A \mid O_1 ... O_t)$
- Lets start with a simpler question. Given a sequence of states Q, what is P(Q | O_1 ... O_t) = P(Q | O)?
 - It is pretty simple to move from P(Q) to $P(q_t = A)$
- In some cases P(Q) is the more important question
 - Speech processing
 - NLP

P(Q | 0)

We can use Bayes rule:

$$P(QO) = \frac{P(Q \mid Q)P(Q)}{P(O)}$$

Easy, $P(O \mid Q) = P(o_1 \mid q_1) P(o_2 \mid q_2) ... P(o_t \mid q_t)$

P(Q | 0)

We can use Bayes rule:

$$P(QO) = \frac{P(O|Q)P(Q)}{P(O)}$$
Hard!

Computing $\alpha_t(i)$

• $\alpha_1(i) = P(o_1 \land q_1 = i) = P(o_1 \mid q_1 = s_i)\Pi_i$

$$\begin{aligned} &\alpha_{i+1}(i) = P(O_1 \dots O_{i+1} \land q_{i+1} = s_i) = & \text{ we must be at a state in time t} \\ &\sum_{j} P(O_1 \dots O_i \land q_i = s_j \land O_{i+1} \land q_{i+1} = \tilde{s}_1) = & \text{ the must be at a state in time t} \\ &\sum_{j} P(O_{i+1} \land q_{i+1} = s_i \mid O_1 \dots O_i \land q_i = s_j) P(O_1 \dots O_i \land q_i = s_j) = \\ &\sum_{j} P(O_{i+1} \land q_{i+1} = s_i \mid O_1 \dots O_i \land q_i = s_j) \alpha_i(j) = \\ &\sum_{j} P(O_{i+1} \mid q_{i+1} = \tilde{s}_i) P(q_{i+1} = s_i \mid q_i = s_j) \alpha_i(j) = \\ &\sum_{j} P(O_{i+1} \mid q_{i+1} = \tilde{s}_i) P(q_{i+1} = s_i \mid q_i = s_j) \alpha_i(j) = \\ \end{aligned}$$

P(Q | 0)

We can use Bayes rule:

$$P(Q|Q) = \frac{P(Q|Q)P(Q)}{P(Q)}$$
Easy, P(Q) = P(q₁) P(q₂ | q₁) ... P(q₁ | q₁₋₁)

P(0)

- What is the probability of seeing a set of observations: An important question in it own rights, for example classification using two HMMs
- Define $\alpha_t(i)$ = P(o₁, o₂ ..., o_t \wedge q_t = S_t) $\alpha_t(i)$ is the probability that we:

 - 1. Observe o_1 , o_2 ..., o_t
 - 2. End up at state i

How do we compute $\alpha_{\rm t}$ (i)?

Example: Computing $lpha_3(B)$

We observed 2,3,6

 $\alpha_2(\mathsf{A}) = \Sigma_{j=\mathsf{A}_i,\mathsf{B}} \mathsf{b}_{\mathsf{A}}(3) \mathsf{a}_{j,\mathsf{A}} \, \alpha_1(j) = .2^*.8^*.14 + .2^*.2^*.03 = 0.0236, \, \alpha_2(\mathsf{B}) = 0.0052$ $\alpha_1(A) = P(2 \ \land \ q_1 = A) = P(2 \ | \ q_1 = A) \Pi_A = .2*.7 = .14, \ \alpha_1(B) = .1*.3 = .03$ $\alpha_3(\mathsf{B}) = \sum_{j=A_o,\mathsf{B}} b_\mathsf{B}(6) \mathsf{a}_{j,\mathsf{B}} \; \alpha_2(\;j) = .3^*.2^*.0236 + .3^*.8^*.0052 = 0.00264$

8.0 B								
	0.8			✓	<u>、</u> :	0.5		
P(v IB)	.1	۲.	۲.	.2	2	.3		
P(v A) P(v B)	ε.	.2	2.	1.	Τ.	۲.		
>	-	2	3	4	2	9		
	_	II ₄ =0.7						

Where we are

- We want to compute P(Q | O) For this, we only need to compute P(O) We know how to compute $\alpha_t(i)$

From now its easy

 $\alpha_t(i) = P(o_1, o_2 ..., o_t \land q_t = s_i)$

 $P(O) = P(o_1, \, o_2 ..., \, o_t) = \Sigma_i P(o_1, \, o_2 ..., \, o_t \, \, \wedge \, \, q_t = s_i) = \Sigma_i \, \alpha_t(i)$ note that

 $\frac{\alpha_{\iota}(i)}{\sum_{\alpha_{\iota}(j)} \alpha_{\iota}(j)}$ $p(q_t=s_i \mid o_1, o_2..., o_t) =$

 $P(A \mid B) = P(A \land B) / P(B)$

Most probable path

- We are almost done ...
- One final question remains

How do we find the most probable path, that is \mathbf{Q}^{*} such that $P(Q^* \mid O) = argmax_Q P(Q \mid O)$?

- This is an important path
- The words in speech processing
 - The set of genes in the genome

Most probable path

 $\arg\max_{\mathcal{Q}}P(\mathcal{Q}\mid O) = \arg\max_{\mathcal{Q}}\frac{P(O\mid \mathcal{Q})P(\mathcal{Q})}{P(O)}$ = $\arg \max_{Q} P(O \mid Q)P(Q)$

We will use the following definition:

$$\delta_t(i) = \max_{q_1 \dots q_{t-1}} p(q_1 \dots q_{t-1} \wedge q_t = s_i \wedge O_1 \dots O_t)$$

In other words we are interested in the most likely path from 1 to t that:

- 1. Ends in $S_{\rm i}$
- 2. Produces outputs $O_1 ... O_t$

Inference in HMMs

- Computing P(Q) and $P(q_t = s_i)$
- Computing P(Q | O) and P($q_t = s_i | O$)
- Computing $argmax_{Q}P(Q)$

Example

 What is the most probable set of states leading to the sednence:

1,2,2,5,6,5,1,2,3 ?

Computing $\delta_t(i)$

$$\begin{split} \delta_i(i) &= p(q_1 = s_i \wedge O_i) \\ &= p(q_1 = s_i) p(O_i \mid q_1 = s_i) \\ &= \pi \phi_i(O_i) \end{split}$$

Q: Given $\delta_t(i),$ how can we compute $\delta_{t+1}(i)?$

A: To get from $\delta_t(i)$ to $\delta_{t+1}(i)$ we need to

- 1. Add an emission for time t+1 ($O_{\rm t+1}$)
- 2. Transition to state s_i

$$\begin{split} & \delta_{i,i}(t) = \max_{q_i \dots q_i} p(q_1 \dots q_i \wedge q_{i+1} = s_i \wedge O_1 \dots O_{i+1}) \\ &= \max_{q_i \dots q_i} \delta_i(j) p(q_{i+1} = s_i \mid q_i = s_j) p(O_{i+1} \mid q_{i+1} = s_i) \\ &= \max_{q_i \dots q_i} \delta_i(j) a_j b_i(O_{i+1}) \end{split}$$

The Viterbi algorithm

$$\begin{split} & \delta_{+1}(i) = \max_{q_i \in Q_i} p(q_i \mathbb{K} \ q_i \ A \ q_{i+1} = s_i \ A \ O_i ... O_{i+1}) \\ &= \max_{j} \delta_{i}(j) p(q_{i+1} = s_i \ | \ q_i = s_j) p(O_{i+1} \ | \ q_{i+1} = s_i) \\ &= \max_{j} \delta_{i}(j) a_{j,b}(O_{i+1}) \end{split}$$

- \bullet Once again we use dynamic programming for solving $\delta_t(i)$
- \bullet Once we have $\delta_t(i),$ we can solve for our $P(Q^* \, | \, O)$

By:

 $P(Q^* \mid O) = argmax_Q P(Q \mid O) =$

path defined by argmax $_{\rm j} \, \delta_{\rm t}$ (j),

Inference in HMMs

- Computing P(Q) and P($q_t = s_i$)
- Computing P(Q | O) and P($q_t = s_i \mid O$)
- Computing argmax_QP(Q)

Wikipedia Page for Viterbi is Great

- https://en.wikipedia.org/wiki/Viterbi_algorithm
 - A nice animation
- https://en.wikipedia.org/wiki/Viterbi algorithm /media/ File.Viterbi animated_demo.gif

What you should know

- Why HMMs? Which applications are suitable?
 - Inference in HMMs
- No observations
- Probability of next state w. observations
 - Maximum scoring path (Viterbi)