Probability of Surviving Russian Roulette

What is the Probability of Surviving a Game of Russian Roulette When Two Players Are Taking Turns? Russian roulette is a game of chance, but have you ever wondered what the actual probability is that a player will survive if they take turns with another player? The game uses a $\bf 6$ chamber revolver, with one chamber containing a bullet, and each spin of the revolver is independent. This means that each player has a 1/6. chance of being shot with each pull of the trigger. Now, consider Player A as the first shooter and Player B as the second. What is the probability that Player A or Player B will survive the game if both take turns?

Probability of Survival in a One-Bullet Revolver Game

Definitions:

 $P_A = \text{Probability that Player A survives (wins)}, \quad P_B = \text{Probability that Player B survives (wins)}.$

Since there is exactly one bullet in a 6-chamber revolver, each trigger pull has a $\frac{1}{6}$ chance of firing the bullet and a $\frac{5}{6}$ chance of *not* firing the bullet. Each spin is independent, so the probability of being shot each turn remains $\frac{1}{6}$.

Step 1: Identify the First-Round Outcomes

1. Player A is shot immediately.

Probability: $\frac{1}{6}$. If this happens, A is out and B wins (survives).

2. Player A is not shot, then Player B is shot.

Probability that A is not shot: $\frac{5}{6}$. Probability that B is then shot: $\frac{1}{6}$. Overall probability for this scenario: $\frac{5}{6} \times \frac{1}{6} = \frac{5}{36}$. In this case, A survives (wins).

3. Neither is shot in the first round.

Probability that A is not shot: $\frac{5}{6}$. Probability that B is not shot: $\frac{5}{6}$. Overall probability for this scenario: $\frac{5}{6} \times \frac{5}{6} = \frac{25}{36}$. If both survive the first round, the situation effectively *resets* to the original conditions.

Step 2: Set Up a Recursive Equation

We let P_A be the probability that A ultimately survives. Then

$$P_A = \underbrace{\left(\frac{5}{6} \times \frac{1}{6}\right)}_{\text{A survives if B is shot in the first round}} + \underbrace{\left(\frac{5}{6} \times \frac{5}{6}\right)}_{\text{both survive the first round}} \times P_A.$$

Why? Because:

- \bullet The first scenario (probability $\frac{5}{36})$ is when A is not shot and then B is shot in the same round, so A wins outright.
- The second scenario (probability $\frac{25}{36}$) is when *both* survive the first round. The game resets, so A's chance of winning from that point on is still P_A .

Hence:

$$P_A = \frac{5}{36} + \frac{25}{36} P_A.$$

Step 3: Solve for P_A

$$P_A - \frac{25}{36}P_A = \frac{5}{36},$$

$$P_A \left(1 - \frac{25}{36}\right) = \frac{5}{36},$$

$$P_A \times \frac{11}{36} = \frac{5}{36},$$

$$P_A = \frac{\frac{5}{36}}{\frac{11}{36}} = \frac{5}{11}.$$

Therefore,

$$P_A = \frac{5}{11}$$
 (approximately 45.45%).

Since exactly one person must eventually be shot,

$$P_B = 1 - P_A = 1 - \frac{5}{11} = \frac{6}{11}$$
 (approximately 54.55%).

Final Summary:

Player A's probability of survival: $\frac{5}{11}$. Player B's probability of survival: $\frac{6}{11}$.