TECHNICAL LIBRARY

AD 7-104410

MEMORANDUM REPORT ARBRL-MR-03109

AN IMPROVED EXPEDIENT PROPELLANT CHARGE TO OBTAIN HIGH MUZZLE VELOCITY IN A 20-MM EXPERIMENTAL GUN

Thomas R. Trafton Antonio Ricchiazzi Eugene Roecker John Riedener

June 1981

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
MEMORANDUM REPORT ARBRL-MR-03109	
N. TITLE (and Subtitle) AN IMPROVED EXPEDIENT PROPELLANT CHARGE TO OBTAIN HIGH MUZZLE VELOCITY IN A 20-MM	5. TYPE OF REPORT & PERIOD COVERED Final
EXPERIMENTAL GUN	5. PERFORMING ORG. REPORT NUMBER
7. AUTHOR() Thomas R. Trafton, IBD, BRL Antonio Ricchiazzi and Eugene Roecker, TBD, BRL	8. CONTRACT OR GRANT NUMBER(*)
John Riedener, Test Svcs Div, TSD-SCTB-SCDTS	RDT&E 1L162618AH80
US Army Ballistic Research Laboratory ATTN: DRDAR-BLT Aberdeen Proving Ground, MD 21005	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
1. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research & Development Command	JUNE 1981
US Army Armament Research & Development Command US Army Ballistic Research Laboratory ATTN: DRDAR-BL Aberdeen Proving Ground, MD 21005	13. NUMBER OF PAGES 40
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report)	

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Terminal ballistics Propelling charge DU long rod penetrator High velocity (1520 m/s)

20. ABSTRACT (Continue on reverse side if necessary and identify by block number) (mph)

The Ballistic Research Laboratory funded the TSD-SCTB-SCDTS, ARRADCOM to conduct terminal ballistic test at velocities of 1520 m/s (5000 ft/s). The gun system, a 20-mm smooth bore/30-mm breech and IMR 4996 propellant, launched tungsten alloy penetrators successfully. However, the depleted uranium rods experienced severe deformation and fracture during launch.

This report describes a suitable propelling charge that can be used to successfully launch DU long rod penetrators at 1520 m/s.

DD FORM 1473

EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

TABLE OF CONTENTS

		·	Page
1.	INTR	ODUCTION	9
	1.1	Background	9
	1.2	Initial Experiment	9
		1.2.1 Projectile	9
		1.2.2 Launcher	9
		1.2.3 Sabot	10
		1.2.4 Instrumentation	10
		1.2.5 Firings with IMR 4996 Propellant	10
2.	OBJE	CTIVE	11
3.	APPR	OACH	11
4.	RESU	LTS	11
	4.1	Sabot Modification	11
	4.2	Propellant Charge	12
		4.2.1 Measuring Pressure During Launch	12
		4.2.2 Interior Ballistic Computer Simulations and Exploratory Firings	12
	4.3	Summary of Results	25
5.	RECO	MMENDATIONS	33
	REFE	RENCES	34
	DIST	RIBUTION LIST	35

LIST OF ILLUSTRATIONS

Figure		Pa	age
1	Sabot Assembly	•	10
2	Pressure vs Time-IMR 4996	•	13
3	Pressure vs Travel-IMR 4996		14
4	Velocity-Travel-Acceleration vs Time-IMR 4996		15
5	Propellant Description Sheet - RAD-E-12-72		17
6	Propellant Description Sheet - CIL-67338		18
7	Propellant Description Sheet - BAJ-67782		19
8	Propellant Description Sheet - RAD-69315		20
9	Pressure vs Time - M30		22
10	Pressure vs Travel - M30		23
11	Velocity-Travel-Acceleration vs Time - M30		24
12	Propellant Description Sheet - RAD-E-30		26
13	Radiograph of a Penetrator Launched at 1534 m/s using IMR 4996 Propellant		27
14	Radiograph of a Penetrator Launched at 1530 m/s using Improved Propellant Charge		28

LIST OF TABLES

Table	Page
1	Selected Thermochemical Characteristics (LD = 0.2) 16
2	Sequence of Events and Test Results 29

1. INTRODUCTION

1.1 Background

The use of in-house Terminal Ballistic Range facilities for testing depleted uranium (DU) penetrators has been curtailed because of necessary clean-up and range modifications to comply with Nuclear Regulatory Commission requirements. Meanwhile targets designed and fabricated by Aeronautical Research Associates of Princeton (ARAP) were ready to be tested. The Ballistic Research Laboratory was tasked with the responsibility to obtain the terminal ballistic data.

The Test and Instrumentation Division, Technical Support Directorate, ARRADCOM, had operative at Dover, NJ, a facility for testing DU, and had demonstrated the capability of launching 65-gram tungsten alloy long rod penetrators at muzzle velocities of 1524 m/s (5000 ft/s).

The Ballistic Research Laboratory funded the Dover test site to conduct the necessary firings to provide terminal ballistic data from DU long rod penetrators attacking the ARAP targets at velocities to 1524 m/s.

However, unlike tungsten alloy penetrators, the DU rods experienced severe plastic deformation during launch.

1.2 Initial Experiment

1.2.1 Projectile. The projectile was fabricated from DU alloyed with 0.75 weight % of titanium. The yield strength of the penetrator was approximately 0.776 x 10⁹ Pa (112,500 psi). The hardness of the penetrator was Rockwell "C" 40. The DU billets were purchased from Dow Chemical Company, Rocky Flats Division, Golden, CO.

The projectiles were fabricated from 3.56-cm diameter rods that were extruded from 10.16-cm billets. The billets were alpha phase extruded at 600° C. The 3.56-cm diameter rods were then gamma phase solution treated at 800° C in a static vacuum. After directional quenching, the bars were aged for 16 hours at 350° C in molten lead. The rods were cut longitudinally into quadrants, and the penetrators were machined from these quadrants. The penetrators were 0.762 cm in diameter, 7.62 cm in length, and 65 grams in weight. The projectiles were fabricated at Battelle Pacific Northwest Laboratories, Richland, Washington.

1.2.2 Launcher. The launcher consisted of a 4.27-m (14-ft), 20-mm smooth bore barrel, and a 30-mm breech, having a length of 18. cm (7 in.). Straight wall cases of the 30-mm Frankford Arsenal type 15-El variety were used. The rounds were separately loaded. Electric Primers, M52A3B1, were used.

1.2.3. Sabot. The sabot design consisted of a molded, rag filled phenolic fiber with a square milled hole, followed by a thin, 0.2 cm (.08 in.) steel disc. An aluminum "hat" followed the steel disc which was followed by a plastic polypropelex obturator. Figure 1 shows the steel disc and schematic of the sabot assembly. The total weight of the sabot assembly was 35 grams.

Figure 1. Sabot Assembly

- 1.2.4. Instrumentation. X-ray instrumentation 1 was used to record the event. The x-ray film images were used to determine the striking velocity and striking yaw.
- 1.2.5. Firings with IMR 4996 Propellant. The use of IMR 4996 propellant caused rapid acceleration of the launch package resulting in a setback force that exceeded the yield strength of the penetrator material. These conditions caused deformation and fracture of the penetrator material.

¹C. Grabarek and L. Herr, "X-Ray Multi-Flash System for Measurement of Projectile Performance at the Target". Ballistic Research Laboratories Technical Note No. 1634, September 1966 (AD No. 807619).

2. OBJECTIVE

The objective was to find a launcher/sabot/propellant combination for launching the specified DU projectiles at the desired velocity, 1524 m/s, without permanent projectile deformation due to setback forces.

3. APPROACH

The following approach was taken to achieve this objective:

- 1. Modify sabot design but use the same propellant and launcher.
- If (1) proves unsuccessful, request the Interior Ballistics Division (IBD) of BRL to assist in providing a suitable propelling charge.
 - 2. Change propelling charge but use same chamber.
 - 3. Change propelling charge and increase size of chamber.

4. RESULTS

4.1. Sabot Modification

The sabot was modified to provide "cushioning" and to prevent the penetrator from penetrating or perforating the steel pusher disc during setback. The modification included the following:

- a. Increased the number of steel pusher plates to two.
- b. Increased the length of the aluminum "hat" from 0.76 cm to 1.86 cm.
- c. Increased the length of plastic obturator from 1.02 cm to 1.84 cm.

Even with these sabot modifications, permanent deformation of the penetrator owing to setback forces still occurred. The rapid acceleration of the launch package produced by the propellant IMR 4996 was more than could be handled by state-of-the-art sabot modifications; and, consequently, a search for a different propelling charge was in order.

4.2 Propellant Charge

- 4.2.1. Measuring Pressure During Launch. A copper crusher gage was used to measure the maximum pressure during launch. The copper crusher gage was placed midway into the cartridge. The distance between the gage and the base of the sabot was 24.8 cm. Table 2 lists the chamber pressures and resulting muzzle velocities. Preliminary tests indicate that to achieve a muzzle velocity of 1524 m/s, a chamber pressure of about 454.4 MPa (66,000 psi) is required (test number 5). Maximum pressures may be up to 10% higher than those calculated from the deformation of the copper gages. A 5% increase in pressure would result in chamber pressure of about 482.7 MPa (70,000 psi). Using the estimated value, the pressure on the base of the penetrator, due to setback forces, was estimated to be 1358 MPa, which obviously exceeds the yield strength of DU-3/4 Ti, which is 776. MPa. It was decided to proceed to Step 2 of the approach, namely, search for an improved propelling charge.
- 4.2.2. Interior Ballistic Computer Simulations and Exploratory Firings. The procedure to obtain the proper propellant charge was handicapped by lack of continuous pressure-time history measurements of the interior ballistic trajectory, such as would be obtained from piezoelectric or resistive type gages and recording equipment. Instead, copper crusher gages were used throughout, and the maximum pressures these devices recorded were coupled with the muzzle velocities to serve as input to the BRL Small Arms Interior Ballistic computer program (SAIB)². The output from this program simulated the interior ballistic trajectories (IBT).

The first simulation computed was that using the IMR 4996 propellant. The maximum gage pressure attained during the simulated high velocity launch was 524 MPa (76,000 psi). The simulation took into account the deterrent coating on the surface of the IMR 4996 propellant. Plots of the simulation are shown in Figures 2, 3, and 4: pressure vs time, pressure vs travel, and velocity-travel-acceleration vs time. The simulation indicated that the peak acceleration exceeded 1.04 x 10^6 m/s², and the average acceleration with time was about 0.37 x 10^6 m/s².

The obvious solution to the problem was to substitute for the IMR 4996 a different propellant which would reduce the peak acceleration, but still deliver the desired velocity. The reduction in the peak acceleration would produce a lower setback force which should not exceed the yield strength of the penetrator. Because the test-firing

² T. R. Trafton, "An Improved Interior Ballistic Model for Small Arms using Deterred Propellants", Ballistic Research Laboratory Report No. 1624, November 1972 (AD 907962L).

AqM

PRESSURE,

Figure 2. Pressure vs Time - IMR 4996

Figure 3. Pressure vs Travel - IMR 4996

S

Figure 4. Velocity-Travel-Acceleration vs Time - IMR 4996

program was already in progress with the test equipment in place, the substitute propellant had to be readily available for immediate use. A Hercules propellant, HC-25-FS, had already been tried as a substitute, and had yielded similarly unsatisfactory results. Examination of a list of IMR-type propellants disclosed two possible candidate propellants, each with a lower relative quickness than IMR 4996. These are compared with IMR 4996 and the reference propellant IMR 4350 as follows:

Propellant Propellant	Relative Quickness
IMR 4350 (reference)	100
IMR 4996	51
IMR 8446M	45
IMR 8486M	44

Attempts to locate a quickly available source for these two propellants were unproductive. Therefore, although these two propellants appeared to be promising, further effort for their immediate application was discontinued.

An alternate approach to the choice of a substitute propellant was to examine large caliber propellant compositions and depend on the granulation to deliver the desired performance. Two alternate compositions, M-1 and M-30, were evaluated with the IMR 4996 for their thermochemical characteristics as shown in Table 1. Three readily available lots of the M-1 composition and one lot of M-30 composition were simulated as charges substituting for the IMR 4996 to obtain their predicted interior ballistic performances. Propellant description sheets for these lots were given in Figure 5, 6, 7, and 8. The simulations for the M-1 composition lots gave discouraging results.

Table 1. Selected Thermochemical Characteristics (Loading Density = 0.2)

Composition Type	Flame Temp (K)	Specific Force (joules/gram)	Ratio of Specific Heats (Y)	Pressure* (MPA)
IMR 4996	2843	994.	1.2452	250.8
M-1	2448	920.	1.2669	236.4
M-30	3007	1075.	1.2414	272.3

^{*}Pressure obtained in a closed bomb determination of a loading density of 0.2.

entract N	RADFORI	09-	71-C-	0329	6-30	Q <u>-</u> 71	_ Specificati	on N	, MIL-SID	-652 <u>B</u>	'āùi	1 RAAP	PD 20	110	
					NITE	ROCI	LLULOS	Ē							
	ACCEPTE	BLEND	NUMBI	RS		•			Militugen Ce	2122	K1 51	ren (65 5°	C1 S1	• bil.tw	(134 5
B-14,	431Y, 14	435Y	14	436Y, 1	4.453Y	14,	454Y,		Hannum 13.	17 - 70		u	irs		
	1 14,455Y							\dashv	Minimum 13.	12 %		15# ~ ×	ine	30	<u></u> -
4004			1646	11 1			•	\dashv	Average 13.	<u></u>		1 <u>5</u> T M	ina -		
00318	nates woo	og sa	TITE		NUFACTU			PEI	LANT				E i g lo	\$10A _	
0.62	Founds Spirent	per Pound	XX/Dr	y Weight Ingred	ients Consisting	of	35 P		Sicohal and	65	Poundi	Ethe	r_per	100 A	oweds %
Percenters	Ramis to Whole	10													IME
Figm	TO TO				SS-SOLVE		RECOV	ERY	AND DE	RYING				078	Ho.
					overy Tar Recovery										 -
35	55				overy Ter			ure				*	_		30
				Cycle											24 t
	55	Air	Dry (Cycle									\Box		3 (
						- 25.									<u></u> -
PROP	ELLANT COMPO	SITION	*	TES	TS OF FI		Percent		LLANT	STABILIT	Y AN	D PHYSIC	AL TES	13	
• .	Constituent		_	85.00	2.00		84.95	đ	Heat Test? S	P 134	500	Y NO C	mula C (10)	60	\$:19 <u>9</u> 1
	ellulose otoluene			10.00	$+\frac{-2.00}{+2.00}$		10.27		No Expl			5 Hrs.			Hrs
	lphthalat			5.00	-1.00	-	4.78		Form of Prop				ain 1	_	
T	otal			100.00			100.00		No. of	Perfo	at	ions		7	
iphen	ylamine (Added)	1.00	+0.20,-0 +0.30		$\frac{1.04}{1.08}$		Compres	sibili	tv	30	Min.	+,	7
	ium Sulfa Volatiles	re (ve	iaea)	1.00	,	\dashv	1.63		perce		,			+4	/
oistu				0.60	+0.20	\exists	0.65		, para-		-				
	al Solven	ts		1.05	Max.		0.98								
					1	-	•		 			-		┼	
					1	+						 		+	
	CL	OSED	BOi			P	ROPELL	AN	T DIMEN	SIONS (inci	38)			
	Lot Numbe	,	Tamp *F	Quicaness,	Force , %	1_					_		01 M	Parie	menaics
•	 			ļ	-	-		\$	pecification."	0.330	0	3209	5 2 5 M	ax	
	RAD-E-12	-72	+90	101	100	1	th (L)			0.207		1428			
rcord	RAD-E-4-		+90	100	100		Dia (a)			0.021	_	.0149	<u> </u>	CAT	
I DE IN	IN ACCORD	ANCE	तरक्य	MIL-STD	1 -7868	WE			*.	0.000		0005	≥3cted	1 /	26/7
	801.1, I					-	NNERUTER			0.038			Sampus		
	EOMB.			 	1	-	VERAGE			0.036			Tast Fin		
						31d	Difference/ Dev. In % reb Average	15	Max.	1	7	. 4	Offered	2/0	1/. /2
				<u> </u>	1	L 0	A PARICE A	_	0 to 2.50	1		. 25	Descript	len Sh	14.015
	L			l		04) to 15		9	. 6	2	722	/73
A 41 0	king Container	Fibe	r Dr	ıms per	MIL-STD-	652	В.								
maras	*Compute	d on	tota	l volati	les, dip	hen	ylamine	, 2	nd potas	sium	sul	tate i	ree	sas:	is.
	rL2- 1		-11		men = 7	4-1	0 0==1?	0 = 1	10 0000	F 1 0 = E					
	This lot	meets	all	require	ments of	Ľn.	e appii	car	ore speci	LI 1CAC	·	•			
									•						
ntractes's	Representative	7	4				CC-					-		=	
	/	2/	11		2 111.7	12	7.1.2	13	BLAND	12/	,	g	_		
P. W.	STEELE	14	11	de	2-14-7	ے			Sheet - F		-		-		

AMC PROPELLANT DESCRIPTION SHEET

					(74),641 71				•		· !
DOXXX Lot:	0 CTL-6	7338 or	ກກດກ	- C O!	וסודוזכשו	110. M	.034 14	P_(SU	LF. FOR MIA	2_Prop	pelling
MANU. M. CYUMED	. v. Canad	dian Indust	mee '	Limi	/ hati	—-V.=: Jo]]evrf	101d P (7) <u>.</u>			7 000 11
MANU. MEYUMED	711 A 4 V	aran manan	17.00	عاد کا در جانبید	treat	(क्1114 <u>67</u> 1	TOTA'L'	ارونا د د د د	DAUGE ACKED WEI	GM1 _44	T,UUU. Iba
C	-0313				,		(UM)		VISIO11 CF. 15.S	-	L965
ACCEPTED BLEK	es (Mos.)	C(1) 186 t	0 221	in	1. 2	to 2	33 incl	235	to 247 incl	usive	
RITROG	ER CONTER	× .	R.	L. ST	ARCH TE	ST (55.50	C)		STABILITY TE	sr (135°	c,
махимии		* 13.19	махими	1:4			MINS.	MAXIN	30 Mil	· · —	Minis.
MUMINUM		* -13.10	MINIMUL	.1	36	\$ +	Affile	AVER	JIM		MIRS
AVERAGE		- 13.14	AVERA	<u>G E</u>			Ni215	EXPL	GE		Miles.
		/				F PROPE					4
TOTAL WEIGHT C									_ POUNDS ACOHO	LAND.	65
POUNDS DIHE		POUND FOLVER									
FROM	<u>с.</u> , то	PF	OCESS-	SOL	VENT RE	.COVERY	AND DRY	NG .	DAYS	TIME	HOURE
25	65	Solve	nt Re	COVE	ery .					80	Hrs.&Coo
65	65	Water	Dry		.1,						8 Hours
55	55	C.C.									Hours
	 				·						
	·		TEST	T5 O	FINISH	ED PROP	ELLANT				
	CO!	POSITION					STA	BILITY	AND PHYSICAL T	ESTS	
	TITUELT	Formula			INSPR.					MFR.	INSPR.
trocellul		85.00 ± 2.			. 4	135 ° C HE	EAT TEST.			_55	50
vinitrotolu		$10.00 \pm 2.$ $5.00 \pm 1.$		9.9				LOSION	•	5±_	5+
Dibutylphth Diphenylami				5.69 0.98		FORM OF	ERFORATIO			M,P.	
Pot Sulfate				1,04			MAINS PER			7 1576	
Residual So		1.26 (Ma		0.37		~			UND (sq. inches)		
TOTAL VOLATION	N	2.05 (Ma		1.07		GRAV. D	ENSITY, OR	POUND	S PER CU. FT.		
MOISTURE		0.60 + 0.	20 (0.70	ļ		GRAVITY	/=			
7.511		N/A			 	HYGROSC	SION TEST	(1.35	Max.)	1.13	
	· · · · · · · · · · · · · · · · · · ·	<u> </u>			L			(207	STD. DEVIA	32.8	M DED CELL
GRAIN	DIMENSIC	วพร	DIE (Inche	- 1		FINISHED (Inch			OF MEAN		
•			0.4	-		341	INSPEC	TOR	2,05	Inse	ECTOR
DIAMETER (D)			0.2	1		886			1.80		
DIANGTER OF PE	RFORATIO	NS (ώ)	0.0			176		-:	1,00		
INHER			0.0	1		338					
WEB OUTER			0.0	+55		340					
AVERAGE	<u> </u>	·			0.0)339	<u></u>			_	
DIFFERENCE BE						·					
WEB IN PER CE					TO.5	9					
LiD (Y)					2.3						
· (x) b:a				i	10.7	2					
DATE PACKED_			TE OFF			23, 196			PLED May 2		
TE TEST FINIS	ned_Ju	12. 1969 Tibre drum	s ICC	Spe	cifica	tion 2	LETS FORV	NAKDED	June .	2,-196	9
									of Specification	ation un pro	of
SUPERMITENCES					· !				-=1/	SO MI	
	2010110	4 Lecry	QU RE	4	(G.T	oupin)	٠.	. CH	(G.F. Hallet		
LETTERS BY THE	- Di-	ima 6 Dmar	11	+ D	accrin:	tion Sh	oot CT	1 677	70 1		, · -

7.718

U & AHMY LQT	BAJ-6778	2 or		.77.6	on Cpr	POSITIO	N_NO 1 = F	M-1	** 7		on 155	mn,	Howi	tzer
Cannon Pr	ropellant C	narge	ا ز- ۱۸	41((ל למני	r use	10 155	mm, <u>113</u>	ALL HO	owitze	r Canno	n (300 73-3	0619)
MANUFACTURE	DAAAO9- E	ager <i>i</i>	4rmy	+ +	1968	.10n P	iant	MII -P		P/	FOPA	GHT_	300, 035-	090 1bs S
CONTRACT NO.	69-C-0014	DATE .	SEP	L.	1300	SPECIFIC	ATION NO	60416	(MU)	EVISION	OF LUIF	1 7/	033-	·
ACCEPTED BUT	660, °663,	ULP)B	10,3	01	, 310 [^]	CIO	11.ULOSE				-44A&B	_64	5-64	9, 652-
657, 659,	660, 663,	664 <u>,</u> _1	566-	671	1, 6/2	5.5°b	, 5/6		1		DU 177 756			
		13.18	1.			5.5°¢ I		MINS.	MAXII	MUM	BILITY TES	. 13	35	MINS.
MINIMUM	*	13.12	_ `	4 A X I	MUM		45	MINS	MININ	IUM			30 30	MINS.
AVERAGE	*	13.14			RAGE _		45	MINS	EXPL	OSION_			==-	MINS
				MAN	NUFACT	URER O	F PROPE	LLANT						
C:	OF SOLVENT PE						_	TING OF	36	POUR	DS ACOHO	LAN	Q	64
	ER PER 100 POU	ND SOL	VENT.	PE	RCENTA	AGE OF R	EMIX TO	AHOLE						
TEMPS FROM	то	1	PRO	CE.	SS-SOL\	ENT RE	.COVERY	AND DRY	ING		DAYS	TIME		IOURS
40	55	Solv	ent	Re	ecover	·v					1			8
- 40	60	Wate				<i>J</i>					7/2 -	1		
	55		Dry										0	-5
	•													
	•													
			,	· TI	ESTS OF	FINISH	ED PROF							
	COMPOS	SITION				Lucas		BILITY AN						
Nitrocellu					*XXX:	INSPR.	1			(Min	. ,	MF		INSPR.
Dinitrotol						84.86 HEAT TEST / 120°C □ 134.5°C ☑ 40 10.12 NO EXPLOSION HOURS (Min.) 5							5+	
ibutylpht					±1.00		FORM OF			TYPE		C.	, 1.	Cyl.
1000115110	TOTAL							ERFORATION					<u>'i </u>	37
Diphenylam	ine (Added)) .			±0.10	1.00		RAINS PER		D				
Potassium	Sulfate (Ad	lded)	1.0	00	±0.30	0.94	BURNING	SURFACE	PER PO	DUND (Se	q. inches)			
TOTAL VOLATIL	.ES			GRAV. DENSITY, OR POUNDS PER CU. FT.										
MOISTURE			0.0	60	±0.20	0.68		GRAVITY						
Residual S	olvent		0	5	Max.	0.50	HYGROS	SSION TEST						
Nesidual 3	OTVEIL .		10.0	00	Max.					T				
GRA	IN DIMENSIONS				DIE ches)	SPECS.	FINISHED (Inch	GRAIN	S	1	N VARIAT OF MEAN			
						*******	XXXXXX				XXXXXXX	1	NSPEC	
LENGTH (L)	· · · · · · · · · · · · · · · · · · ·			_	2220			0.222			.25	-	3.	
DIAMETER (D)	PERFORATIONS	(d)			300			0.0518		- 0	1.25	+	5.	00
/ INNER		<u> </u>	1	٠, د	,500			0.010		1		+-		
OUTER												1		
AVERAG				0.0	0200			0.017	5			1		
WKEYXXXXX	lârd Deviat	ion xxxxx	KKK											
WEB IN PER C	CENT OF WEB AV					20% N		12.12				_ _		
L:D (Y)			_			3.0 -		4.30		1		-		
DIG (X)	7/17	70			FFERED	Appro	ox. 3	1 3.07		<u>l</u>		717	70	
DATE TEST FIN		7/8/70		E O			IPTION SE	EETS FOR		MPLEQ_ D	- /	787		
TYPE OF PACK	nouted on T	.V.,	Diph	en	vlamir	Drums ne and	Potass	ium Sul	fate	free	başıs.			
his Lot r	neets all t	he chi	emic	al	and	ONYSTC	ar requ	irement	5 01	the a	ppincat			
MXXXXIABORA	heids IPER	INTEN	JEIN!	&XX.	A CHI	VICAL T	JIKECTO	K (ALT)	EHTEF.S	KHISKO	COME X MARKET	(NXX	U.S	. CHEMIS
SMU FORM 104	17 MAR 1968	REPLA	CES	AMC	FORM IC	047, WHI	CH IS TO	BE USED U	INTIL	SUPPLIE	S ARE EXH	AUST	ED	
	~~/·/					•			~					

Figure 7. Propellant Description Sheet - BAJ-67782

		PR	OP!	LLAN	TO	SCRIP	TION	SKEE	r w7	2/F	1 f/1	Ω.5M	м м68
U.S Army L	No. RAD-	6931	5	et i	. 75 c.	mposilien Ne. <u>M</u>	30, f/Ctg.,	1705-	1, 11/	Z4E	1 1/1	0.5.1	31,100
	RADEORI) ARM	AY AIA	AUNITION PI	LANT, RAI	OFORD: VA.	Pocked Amoun	310	0,545	Po	unds		
Cantract No.	DAAA	09-	71-Ç-	0329	De1. 6-30	-71 Specificati	Pocked Amoun	L-P-48.	154				
			<u> </u>										<u> </u>
	ACCEPTED	BLEN	D NUMBE	RS	NITR	oce'l'lulos	E						
							Nitrogen Cen		Storch (6			III1 y (1	34 5°C)
A	-35,475;	<u>35</u> ,	476	35,477,	35,478,	35,482							Min
					·		Minimum 12	.54		Min Min		30	Min
											1		W.e
···· · ·				MA	IUFACTU	RE OF PRO	PELLANT	10	A .				
0.22	Pounds Solvent	per Pour	g XX / 01)	Weight Ingredie	nte Cansisting	ofP	PELLANT	4U Pou	inda	eLu	per 10	O Pa	rde Solver
ercentage P	URES F	1	0				5504 4310 00	VINC				9 17	· L
TEMPERAT From	URES F			PROCESS	S-SOLVE	NT RECOV	ERY AND DR	TING			De	7.	Hours
	1	Loa	d For	ced Air I	ry at a	mbient te	mperature				-		
Ambien	140			temperati		per hour							36
140	140	uol	u dl	remperari	11 C	1,							
PROPE	LLANT COMPO	SITION	1.1			VISHED PRO		STABILITY	AND PH	HYSICA	L TEST		
•	Constituent			Percent Fermula	41.30	Percent				Form	3 40'		5OT
	llulose			28.00	+1.00			,120-0	N	o CC	, 40		60'
	lycerin			22.50 47.70	+1.00		_						yld.
itrogu	ianidine Centralit			1.30	+0.10	The second secon		erfora	tion	s ·		7	1,5
ryolit	e	``		0.30	+0.10	0.3	4						
OTAL			1	00.00		100.0			-			-	_
	Volatiles		_	0.50	Max.	Lieuwen			-+-		-	-	
Graphit	te Glaze		-	0.2	Max.	0.1	0		-				-
_			-	-		-							
						77						_	
													-
	CL	OSE	D BO		Heisties	PROPELL	ANT DIMENS	SIONS (in	nchos)	1	Mean	Voriet.	on in %
	Let Numbe		Tems *F	0 (1-01)	Force				Fires	_	Sens.		Actual
*				-		Ler-th (L)	Specification	0.395	0.39	977	5.25 Na	x.	2.40
	RAD-6931	5	+90	96.08	100.00						5.25 M	IX.	1.83
nderd	E-32		+90			Perf Die (d)		0.020	0.0	153	-	DATE	3
morte					2065	Web		0.035	50.0	294	Packed	2/1	175
TRED 1	IN ACCORD	ANCE	WITH	MIL-STD	-286B,	Inner		0.030	50.0	340	Sompled		
TOCER	801.1.1 BOMB. T	IN A	FOR T	NEORMATT	ONAL.	Outer	0.033 Nom.	0.0330			Test Fini	-	2/75
	S ONLY.	LoI	TUK I	I VIGANTI		Sid Dev in %	15 Max.		14.		0116194		
UNFUSI	J UNILL						2.10 to 2.50	-	2.3	-	Dascripti	5h	475
,						0.0	5.0 to 15		11.	2	701 9816	2-	21-7
		i hor	Dru	ne per MT	L-STD-6	Name and Address of the Owner, when the Owner, which	Notice 1.						
ype of Peci	t Container This in	TOEL	ets a	l requir	ements	of the ap	plicable sp	ecifica	ation	ıs.			
amerks	11112 100	- ince	a										
										_ 4			
							•					<u>:</u>	
entractor's	Representative		0	72111	0/!	Copremi	Outly Assurance	Significant	100)			

However, the simulations for the M-30 composition lot were more promising. Purposefully the smallest readily available web for an M-30 lot was chosen; this was lot RAD 69315 which was produced for the M724E1 round to be fired from the 105mm, M68, tank gun. The propellant description sheet is given in Figure 8. The average web was 0.805 mm (0.0317 inch) with a seven-perforation cylindrical geometry. The initial propellant gas production, pressure, and projectile acceleration were less than those of the IMR 4996 because the initial total surface area of the charge was less than that of the IMR propellant. The desired velocity level of 1524 m/s was expected at a maximum pressure of about 400 MPa (58,000 psi). The simulation predicted a maximum acceleration of 0.747 x 10^6 m/s², with an average accleration of about 0.312 x This performance was to be expected from the progressive burning resulting from the multi-perforated geometry instead of from a deterrent coating on a single-perforated geometry. In addition, the M-30 propellant is a more energetic composition. As an ignition aid for the M-30 propellant charge, 1.3 - 2.0 grams of Class V black powder was selected. Plots of the M-30 simulation are shown in Figures 9, 10, and 11: pressure vs time, pressure vs travel, and velocity-travel-acceleration vs time. Further calculations by Terminal Ballistics Division personnel indicated that the penetrators should withstand these launch conditions.

A quantity of this M-30 composition, lot RAD-69315, was obtained and tested. The results were encouraging, but not completely successful. The desired velocity was not attained; however, for similiar charge weights, the M-30 propellant showed a higher velocity/pressure ratio than the IMR 4996 or the HC-25-FS. The calculated ballistic efficiencies of the M-30 tests were much lower than that of the simulation, 0.17 as opposed to 0.23. In order to improve the ignition and combustion of the charge in the real system and thereby obtain a higher efficiency, a reduction in the web size of the propellant was required. Three small lots of experimental multi-perforated M-30 propellant were readily available. They had been manufactured for a reduced scale gun and had webs respectively of 0.33 mm (0.0128 in.), 0.37 mm (0.0147 in.), and 0.40 mm (0.0156 in.) 2 . If any of these lots were used alone as the substitute charge, it would result in extremely high pressure and acceleration. However, if one were mixed in suitable proportions with the larger web M-30, the resulting charge should result in improved ignition, combustion, and ballistic efficiency. Mr. Grollman and Mr. Baer3 of the Ballistic Research Laboratory recommended that a single propellant with a single web size be used for efficient burning. This type of propellant was not available, however, the desired results could be achieved but with less efficiency with propellant mixtures having different web sizes.

²G. Samos, B. Grollman, and J. Schmidt, "Initial Firing Test Results of the 35mm Scaled Model of the 105mm M68 Tank Gun", Ballistic Research Laboratory Memorandum Report No. ARBRL-MR-02804, January 1978 (ADA051050).

³B. Grollman and P. Baer, "Theoretical Studies of the Use of Multi-Propellants in High Velocity Guns", Ballistic Research Laboratories Report No. 1411, August 1968 (AD839855).

Figure 9. Pressure vs Time - M30

Figure 10. Pressure vs Travel - M30

Figure 11. Velocity-Travel-Acceleration vs Time - M30

A quantity of the 0.37-mm (0.0147-in.) web M-30 propellant, lot RAD-E-30, was obtained for this purpose. The propellant description sheet is attached as Figure 12.

A charge establishment firing series was conducted with increasing charges of increasing ratios of small to large web propellants. This resulted in a charge establishment of M-30 composition with multiperforated granulation which gives the desired velocity levels without penetrator damage.

A charge weight of 129.7 grams (0.286 lb) with the following proportions produced a muzzle velocity of 1525 m/s (5003 ft/s) with a maximum copper-crusher gage pressure of 433 MPa (62,800 psi).

	Percent
M-30, Lot RAD-E-30, 0.37-mm web	38.
M-30, Lot RAD-E-69315, 0.81-mm web	61.
Black Powder Class V	1.

Figures 13 and 14 are radiographs of the launchings resulting from using propellant IMR 4996 and the improved propellant charge, respectively. The latter charge does no damage to the penetrator. Additional test firings of similar charges have produced satisfactory results.

4.3 Summary of Results

- a. Sabot modification alone was incapable of protecting the penetrator from plastic deformation during launch.
- b. The search for a propelling charge to solve this problem was successful.
- c. The third step in the APPROACH, a modified launcher, was not undertaken because other gun systems were not readily available. The acquisition time would have severely delayed ARAP in its contractual effort. However, the 26-mm smooth bore barrel and 37-mm breech gun system at BRL's Terminal Ballistics Division regularly launches these DU penetrators successfully at 1524 m/s. Thus, had time permitted, the launch problem could have been solved by installation of such a gun system.
- d. Table 2 gives the sequence of events and the test results. Firings 1 thru 26 failed to provide a solution, that is, the penetrator was: (1) not deformed but too low a muzzle velocity, (2) slightly deformed at higher muzzle velocities, or (3) grossly deformed at muzzle velocities approaching 1524 m/s. Figure 13 shows a grossly deformed and fractured penetrator launched at a velocity of 1534 m/s (5032 ft/s). Figure 14 shows an undeformed penetrator launched at a velocity of 1530 m/s (5020 ft/s). Firings 27 thru 31 are successful launches.
 - e. The 20 firings for record for ARAP were all successful launches.

		PR()?[ILLAN	T DE	SCRIP	TION	956	7		
U my Let	RAD-	E-30		et i	, <u>73</u>	position No	M30, MP f/:	105mm M	68, 35m	m Scale	:d
Lincolnellated a Commet No .	RADFORD) ARM	Y AH	MUNITION PL	ANT. RAD	FORD. YA.	COR Le	tter SM	69 Poun URO-IE	ds dated	
	ACCEPTES		MINA		NITRO	CELLULOS	2 Marc	17/3			
		, 501-0					Ninzegen Cor	il met	Swet 163 8*C	§-mainty	(134 8°C)
A-35,33	12						Mercaya			201	M-s
							Ary 090 12.	54	45+	301	Mag
0.22	Pounds Solvant	par Pour	4 1gg / D	AM Hiberari Males v	UFACTUR	E OF PRO	PELLANT	0 ~	Aceto	<u>n</u>	gride Seivers
TEMPERATE	URCS F	10	}	PROCES	S-SOLVE	NT RECOVE	RY AND DR	YING		Pari	Heyrs
Fram	19	Load	l For	ced Air I	ry at A	mbient Te	mperature				
Ambient		Inc	rease	Tempera	ture 5°F	Per Hour				+	24
140	140	Hold	at	Temperati	ire						
						1,					
		<u> </u>		TEST	S OF FIN	ISHED PRO	PELLANT			75070	
PROPE	LLANT COMPO	SITION		Percent de	Apregnt Talaranca			SIRBILITY	AND PHYSIC	myle #	Agtygl
Vittoce	ellulose			28,00	±1.30	28.48		P,120°C	No CC		יי
	lycerin			22.50	±1.00	22.81		5)'
1207	uanidine			47,70	±1,00	46.90					/ld.
Ethyl (Centrali	te		1.50	+0.10	0.28		Perfore	tions		
Cryoli	te			0.30	+0,10	100.00					
TOTAL	Volatile			0,50	Max.	0.27					
	te Glaze			0,2	Max.	0.08	3				
						+					
						1 2202511	ANT DIMEN	sions tie	chosl		
	Lat humi	LOSE	Tame .	F Questive	Relative Force	PROFELL	ANT DISERS	310113 (11		Meen Vari	
1934	55. 45.						Specification	Pre	Freshie	IP35	Actynt
						Longitul		D. 2070	0.2065	10.25Max	2.60
	1			100 000	100.00%	Diameter (D)			0.0123		163
longord				100.00%	100.00%	Web Inner	·	0.0205	0.0096		
1104151	<u>:</u> 1					Web Oute		0.0085	0.0198	Ported 10	/5/73
						Web Avg.			0.0147	semple 10	/5/73
						Nom. Avg.	Veb 0.0152			Topi family	/17/73
					<u> </u>	Sid Day in To at Was Average	15 Max.*		70	Diteres 10	/18//3
					1	LD	2.10 to 2.50		2.19	Permerded S	10010
					l	b·•	5.0 to 15	1	7.6	10	/25/73
Type at Paci	zing Containor_	Fi	lber	Drums per	MIL-ST	D-652B.					
B-merks		VII S	TD_4	52B 11/FO	PA-5607	0-2 and E	O PA-57189-	-2 show	n for i	nformat	ion
1011	Drong.	11 <i>0</i> 21	DTC	duced on	a best	effort ba	sis in acc	ordance	with r	eferenc	ed
	letter	******		SANAM AN							
						_ 20					
Contractor's	Representative	1.3/	22 /	3.11	1:0	Comments TAMES	DIALER CAR	K. L. L. L.	/		

Figure 13. Radiograph Of A Penetrator Launched At 1534 m/s using IMR 4996 Propellant.

Figure 14. Radiograph Of A Penetrator Launched At 1530 m/s using Improved Propellant Charge

Table 2. Sequence of Events and Test Results

Remarks	WA Rod - ND	WA Rod-VSDAE	WA Rod - ND	WA Rod - ND	DU Rod - RF	DU Rod - ND	DU Rod - VSDAE							
Sabot Type	Original	Original	Original	Original	Original	Original	Original	Original	Original	Original	Original	Original	Original 2 plastic	discs
Muzzle Velocity m/s	ı	1	1386	ı	1534	1366	1443	1496	1224	1264	1408	1450	1479	
nber Pressure MPA	142.0	232,4	399.2	488.2	454.4	524.7	439.9	456.4	180.6	l	279.2	367.5	482.7	
Chamber Length Pr	17.78	17.78	17.78	17.78	20.32	20.32	20.32	20.32	20.32	22.86	22.86	22.86	22.86	on End
lant Weight g	74.5	81.0	7.06	97.2	106.9	113.4	100.4	107.6	7.06	103.7	116.6	123.1	132.8	ND - No Deformation Deformation - AFT En
Propellant Type Weig	IMR 4996	IMR 4996	IMR 4996	IMR 4996	IMR 4996	IMR 4996	IMR 4996	HC-25-FS	HC-25-FS	HC-25 FS	HC-25-FS	HC-25-FS	HC-25-FS	
Launch Weight g	99,5	7.66	8.66	9.66	99.2	99.4	8.66	99.5	9.66	8.66	99.4	100.7	108.1	D - Deformation VSDAE - Very Slight R.F Rod Fractured
Shot Number	H	2	8	4	ហ	9	7	ø	6	10	11	12	13	D - Def VSDAE - R.F

Table 2. Sequence of Events and Test Results (Cont'd)

	Remarks	+ DU Rod - VSDAE	RF, DU Rod	ND, DU Rod	Du Rod - ND	ND, DU Rod	ND, DU Rod	ND, DU Rod
	Sabot	Original 4 2 steel discs	Long hat 2 steel discs	Long hat + 2 steel discs	Long hat 2 steel discs	Long hat 2 steel discs	Long hat 2 steel discs	Long hat 2 steel discs
Muzzle	Velocity m/s	1470	1390	1205	1259	1308	1289	1303
ber	Pressure MPA	483.3	i,	180.0	174.4	242,7	192.4	182.0
Chamber	Length	22.86	22.86	22.86	22,86	22.86	22.86	22.86
nt	Weight g	132.8	139.3	110.2	114.0	119.2	117.9	118.7
Propellant	Type W	HC-25-FS	HC-25-FS	Blk pwdr 1.3g,lot CIL-7-5; MP 30, .805mm web lot RAD 69315	same as 16, blk pwdr wgt held constant	Same as 16, blk pwdr wgt held constant	Same as 16, blk pwdr wgt held constant	1.94g blk pwdr, same M30 wgt as #19
Launch	Weight	109.1	109.2	108.2	107.8	107.9	107.5	107.8
	Shot	14	15	16	17	18	19	20

Remarks ND, DU Rod ND, DU Rod ND, DU Rod ND, DU Rod RF, DU Rod ND, DU Rod 2 steel discs Long Hat 2 steel discs 2 steel discs Long Hat 2 steel discs 2 steel discs 2 steel discs Sabot Long Hat Long Hat Long Hat Long Hat Туре Table 2. Sequence of Events and Test Results (Cont'd) Muzzle Velocity s/m 1484 1220 1217 1366 1370 1470 Pressure 227.5 428.9 153.1 217.9 237.2 337.9 MPA Chamber Length 22.86 22.86 22.86 22.86 22.86 22.86 EJ CH 117.9 117.9 124.4 123.1 .114.7 119.6 Weight Propellant Type Weigl 1.3g Blk Pwdr 102.1g Web, 11.34g M30, .386mm Web 1.3g Blk
Pwdr
105g M30,
.805mm Web
11.66g M30,
.386mm .805mm 103.7g M30, 806mm web 14.6g M30 .386mm web .806mm web 23.3g M30 1.3g B1k Pwdr 86 2g M30 806fm 36 9g M30 .386fm web 4996 58.3g 64.8g IMR 1.3g Blk Pwdr 93.3g M30 1.3g Blk Pwdr M30, M30 Weight Launch 107.0 108.2 107.9 107.9 108.0 107.8 50 Shot Number 21 22 23 24 25 26

Remarks Q S R 2 2 Long Hat 2 steel discs 2 steel discs Long Hat 2 steel discs Long Hat 2 steel discs Sabot Long Hat Туре Original Table 2. Sequence of Events and Test Results (Cont'd) Velocity Muzzle m/s 1527 1559 1509 1525 1530 Pressure MPA 444.7 474.4 404.0 443.3 433.0 Chamber Length 22.86 22.86 22.86 22.86 22.86 E S 128.9 128.9 133.5 129.6 129.6 Weight Propellant | web 49.2g M30, .286mm web 1.3g Blk 1. Pwdr 79.1g M30, .806mm 49.2g.386mm 49.2g.386mm 1.3g Blk Pwdr 78.4g M30, .806mm .806mm 1.3g Blk Pwdr 82.9g M30, .386mm 1.3g Blk Pwdr 78.4g .806mm M30, .806mm web 49.3g Same as 30 M30, M30, web, M30, web M30, web web Launch Weight 107.6 107.6 108.1 107.7 100.8 50 Number Shot 27 28 29 30 31

5. RECOMMENDATIONS

- 1. A single propellant with a uniform grain size and web should be designed and produced for future firing tests of an extended nature.
- 2. The propellant search undertaken here should be extended to the TBD 26-mm barrel/37-mm breech gun system to provide even higher launch velocities at tolerable pressure levels.
- 3. The Test and Instrumentation Division, Technical Support Directorate, ARRADCOM range with its new capability should be employed by BRL to reduce backlogged firing programs.

REFERENCES

- 1. C. Grabarek and L. Herr, "X-Ray Multi-Flash System for Measurement of Projectile Performance at the Target", Ballistic Research Laboratories Technical Note No. 1634, September 1966 (AD No. 807619).
- 2. T. R. Trafton, "An Improved Interior Ballistic Model for Small Arms Using Deterred Propellants", Ballistic Research Laboratory Report No. 1624, November 1972 (AD No. 907962L).
- 3. G. Samos, B. Grollman, and J. Schmidt, "Initial Firing Test Results of the 35-mm Scaled Model of the 105-mm M68 Tank Gun", Ballistic Research Laboratory Memorandum Report No. ARBRL-MR-02804, January 1978 (AD No. A051050).
- 4. B. Grollman and P. Baer, "Theoretical Studies of the use of Multi-Propellants in High Velocity Guns", Ballistic Research Laboroatory Report No. 1411, August 1968 (AD No. 839855).

No. of	_	No. of	
Copies	Organization	Copies	Organization
12	Commander Defense Technical Info Center ATTN: DDC-DDA Cameron Station Alexandria, VA 22314	2	Commander US Army Materiel Development and Readiness Command ATTN: DRCRD-W, J. Corrigan 5001 Eisenhower Avenue Alexandria, VA 22333
1	Director		
	Defense Advanced Research Projects Agency ATTN: Tech Info 1400 Wilson Boulevard Arlington, VA 22209	3	Commander US Army Armament Research and Development Command ATTN: DRDAR-LC, Dr. J. Frasier DRDAR-LCF, G. Demitrack DRDAR-LCA,
1	Deputy Assistant Secretary of the Army (R&D) Department of the Army Washington, DC 20310	2	G. Randers-Pehrson Dover, NJ 07801 Commander
1	HQDA (DAMA-ARP) Washington, DC 20310		US Army Armament Research and Development Command ATTN: DRDAR-SC
1	HQDA (DAMA-MS) Washington, DC 20310		Dr. D. A. Gyorog Dr. E. Bloore Dover, NJ 07801
	Commander US Army BMD Advanced Technology Center ATTN: BMDATC-M, P. Boyd P. O. Box 1500 Huntsville, AL 35807		Commander US Army Armament Research and Development Command ATTN: DRDAR-TSD-TS COL D. F. Wright Mr. R. Vecchio Mr. C. Fulton
2	Commander US Army Engineer Waterways Experiment Station ATTN: Dr. P. Hadala		Mr. D. Boyle DRDAR-TSS (2 cys) Dover, NJ 07801
	Dr. B. Rohani P. O. Box 631 Vicksburg, MS 39180	1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib
	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST		Rock Island, IL 61299 Director US Army ARRADCOM
	5001 Eisenhower Avenue Alexandria, VA 22333		Benet Weapons Laboratory ATTN: DRDAR-LCB-TL Watervliet, NY 12189

	DIGIRID	011011	
No. o	f	No. of	f
Copie		Copies	
1	Commander US Army Aviation Research and Development Command ATTN: DRSAV-E P. O. Box 209 St. Louis, MO 63166		Commander US Army Materials and Mechanics Research Center ATTN: DRXMR-T Dr. A. F. Wilde Dr. J. Mescall
. 1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035		DRXMR-ATL Watertown, MA 02172 Commander US Army Research Office ATTN: Dr. E. Saibel P. O. Box 12211
1	Commander US Army Communications Rsch and Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703	1	Research Triangle Park NC 27709
1	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L	1	ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002 Office of Naval Research
	Fort Monmouth, NJ 07703		ATTN: Code ONR:439, N. Perrone Department of the Navy
1	Commander US Army Missile Command ATTN: DRSMI-R		800 North Quincy Street Arlington, VA 22217
	Redstone Arsenal, AL 35809	3	Commander Naval Air Systems Command
1	Commander US Army Missile Command ATTN: DRSMI-YDL		ATTN: AIR-604 Washington, DC 20360
1	Redstone Arsenal, AL 35809 Commander	3	Commander Naval Ordnance Systems Command
1	US Army Tank Automotive Research & Development Cmd ATTN: DRDTA-UL Warren, MI 48090	2	ATTN: ORD-9132 Washington, DC 20360 Commander Naval Air Development Center, Johnsville Warminster, PA 18974
,			

No. o	f	No. of	
Copie		Copies	Organization
1	Commander Naval Missile Center	1	ASD (XROT, Gerald Bennett;
	Point Mugu, CA 93041		ENFTV, Martin Lentz)
	Fornt Maga, CA 93041		Wright-Patterson AFB, OH 45433
1	Commander and Director	3	Director
	David W. Taylor Naval Ship		Lawrence Livermore Laboratory
	Research & Development Ctr		ATTN: Dr. R.H. Toland, L-424
	Bethesda, MD 20084		Dr. M. L. Wilkins
1	Commander		Dr. R. Werne Livermore, CA 94550
•	Naval Surface Weapons Center		Livermore, CA 94330
	ATTN: Code TX, Dr. W.G.Soper	1	Headquarters
	Dahlgren, VA 22448	_	National Aeronautics and
			Space Administration
2	Commander		Washington, DC 20545
	Naval Surface Weapons Center	_	
	Silver Spring, MD 20910	1	Director
3	Commander		Jet Propulsion Laboratory
3	Naval Weapons Center		ATTN: Lib (TD) 4800 Oak Grove Drive
	ATTN: Code 3835		Pasadena, CA 91103
	Code 5114, Dr. E.		rasadona, GA, 51105
	Lundstrom	4	Director
	Code 3813, Mr. M.		National Aeronautics and
	Backman		Space Administration
	China Lake, CA 93555		Langley Research Center
3	Cammondon		Langley Station
3	Commander		Hampton, VA 23365
	Naval Research Laboratory ATTN: Mr. W. J. Ferguson	1	Director
	Dr. C. Sanday	*	National Aeronautics and
	Dr. H. Pusey		Space Administration
	Washington, DC 20375		Manned Spacecraft Center
			ATTN: Lib
1	Superintendent		Houston, TX 77058
	Naval Postgraduate School	7	
	ATTN: Dir of Lib Monterey, CA 93940	1	Aeronautical Research Assoc.
	Montestey, GA 93940		of Princeton, Inc.
2	ADTC/DLJW (Mr. W. Cook;		50 Washington Road Princeton, NJ 08540
_	Ms. C. Westmoreland)		TITHECOM, NO U034U
	Eglin AFB, FL 32542		

1 AFML/LLN (Dr. T. Nicholas) Wright-Patterson AFB, OH 45433

No. of Copies		No. of Copies	Organization
doparo	<u>organization</u>	dopied	0180.110.1
2	Aerospace Corporation ATTN: Mr. L. Rubin Mr. L. G. King 2350 E. El Segundo Blvd. El Segundo, CA 90009	3	Honeywell, Inc. Government & Aerospace Products Division ATTN: Mr. J. Blackburn Dr. G. Johnson Mr. R. Simpson
. 1	Boeing Aerospace Company ATTN: Mr. R. G. Blaisdell (M.S. 40-25)		600 Second Street, NE Hopkins, MN 55343
	Seattle, WA 98124	1	Kaman Sciences Corporation ATTN: Dr. P. Snow
1	Effects Technology Inc. 5383 Hollister Avenue P. O. Box 30400		1500 Garden of the Gods Rd Colorado Springs, CO 80933
	Santa Barbara, CA 93105	1	Lockheed Corporation ATTN: Dr. C.E. Vivian
1	Falcon R&D ATTN: Mr. R. Miller 109 Inverness Drive, E.		Department 8114 Sunnyvale, CA 94087
	Englewood, CO 80112	1	Materials Research Lab, Inc. 1 Science Road
1	FMC Corporation Ordnance Engineering Div.		Glenwood, IL 60427
	San Jose, CA 95114	1	McDonnell-Douglas Astronautics Co.
1	General Electric Company Armament Systems Dept. Burlington, VT 05401		ATTN: Mail Station 21-2 Dr. J. Wall 5301 Bolsa Avenue
.1	President		Huntington Beach, CA 92647
	General Research Corporation ATTN: Lib McLean, VA 22101	1	Pacific Technical Corp. ATTN: Dr. F.K. Feldmann 460 Ward Drive Santa Barbara, CA 93105
1	Goodyear Aerospace Corporatio 1210 Massillon Road Akron, OH 44315	n 2	Physics International Company
1	H. P. White Laboratory Bel Air, MD 21014		ATTN: Dr. D. Orphal Dr. E. T. Moore San Leandro, CA 94577

DISTRIBUTION LIST					
No. or Copie		No. o Copie			
1	Rockwell International Autonetics Missile Sys Div ATTN: Dr. W.T. Armburst 4300 E. 5th Avenue Columbus, OH 43216	1	Forrestal Research Center Aeronautical Engineering Lab Princeton University ATTN: Dr. A. Eringen Princeton, NJ 08540		
	Sandia Laboratories ATTN: Dr. W. Herrmann Dr. L. Bertholf Dr. J.W. Nunziato Albuquerque, NM 87115	3	Southwest Research Institute Dept of Mechanical Sciences ATTN: Dr. U. Lindholm Dr. W. Baker Dr. P. H. Francis 8500 Culebra Road		
1	Science Applications, Inc. 101 Continental Boulevard Suite 310 El Segundo, CA 90245	3	San Antonio, TX 78228 SRI International ATTN: Dr. L. Seaman Dr. D. Curran		
1	Science Applications, Inc. ATTN: G. Burghart 201 W. Dyer Road (Unit B) Santa Ana, CA 92707		Dr. D. Shockey 333 Ravenswood Avenue Menlo Park, CA 94025		
2	Systems, Science, and Software, Inc. ATTN: Dr. R. Sedgwick Ms. L. Hageman P. O. Box 1620	2	University of Arizona Civil Engineering Dept. ATTN: Dr. D. A. DaDeppo Dr. R. Richard Tucson, AZ 85721		
1	La Jolla, CA 90238 US Steel Corporation Research Center 125 Jamison Lane Monroeville, PA 15146	4	University of California ATTN: Dr. R. Karpp Dr. J. Dienes Dr. L. Germain Dr. B. Germain Los Alamos, NM 87545		
1	Drexel University Dept of Mech Engineering ATTN: Dr. P. C. Chou 32nd and Chestnut Streets Philadelphia, PA 19104		University of Dayton Dayton Research Institute ATTN: Mr. H. F. Swift Dayton, OH 45405		
1	New Mexico Institute of Mining and Technology ATTN: TERA Group Socorro, NM 87801	2	University of Delaware Dept of Mechanical Engineering ATTN: Prof. J. Vinson Dean I. Greenfield Newark, DE 19711		

No. of Copies

Organization

1 University of Denver
Denver Research Institute
ATTN: Mr. R. F. Recht
2390 S. University Boulevard
Denver, CO 80210

Aberdeen Proving Ground

Dir, USAMSAA

ATTN: DRXSY-D

DRXSY-MP, H. Cohen

Cdr, USATECOM

ATTN: DRSTE-TO-F

Mr. S. Keithley

Dir, USACSL, Bldg. E3516, EA

ATTN: DRDAR-CLB-PA

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out

this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports. 1. BRL Report Number 2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.) 3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)____ 4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate. 5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.) 6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information. Name: Telephone Number: Organization Address: