Statistical Analyses with Missing Data Day 1

Cindy Chen and Bryan Shepherd

Vanderbilt-Nigeria Biostatistics Workshop

June 2-6, 2025

Overview

 ${\sf Missing\ data}$

Missing data

- Missing data are very common in biomedical research
- They can be a major setback to analyses (bias estimates, reduce sample size)
- It is important to understand approaches to address missing data

Course Topics

Introduction to Missing Data

- Potential problems with missing data
- Different types of missingness

Strategies for dealing with missing data

- Simple approaches
- Inverse probability weighted estimators
- Multiple imputation
- More advanced approaches

Our goal is for you to understand theory, methods, and application

• Lectures, simulation exercises, and real data analysis

Outline for Course

Day 1: Introduction to Missing Data

- Potential problems with missing data
- Different types of missingness
- Simple approaches for dealing with missing data

Day 2: Inverse probability weighted estimators

Days 3-4: Multiple imputation

Introduction to Missing Data

Some Reasons for Missing Data

- Refusal to respond to a survey
- Failure to take measurement (low funding, provider feels not necessary)
- Failure to record a measurement
- Drop out of a study (patient decision)
- Removal from a study (researcher / doctor decision)
- Death

Notation

- Y = Outcome variable
- R = Response indicator
 - R = 1 if Y is observed
 - R = 0 if Y is missing
- X =Covariates of direct interest
- V = Auxiliary covariates (available, not of direct interest)

Defining the estimation target with incomplete data

Possible targets of estimation

• Full-data parameter: Mean outcome among all individuals intended to be in the sample, whether or not they are observed

$$\mu = E(Y)$$

 Observed-data parameter: Mean response among all individuals whose outcome was observed

$$\mu_1 = E(Y|R=1)$$

When does $\mu = \mu_1$?

Defining the estimation target with incomplete data

Possible targets of estimation

• Full-data parameter: Regression parameters among all individuals intended to be in the sample

$$E(Y|X) = X^T \beta$$

Observed-data parameter: Regression parameters among individuals with observed outcome

$$E(Y|X,R=1) = X^T \beta_1$$

When does $\beta = \beta_1$?

The need for assumptions to estimate full-data parameters

- Cannot estimate parameters for parts of data that are missing
- Hence need assumptions about the missing data
 - ▶ These are called missing data mechanisms
- Under most circumstances, these assumptions cannot be tested
- This motivates the need to:
 - State the assumptions unambiguously so others can critique them
 - Carry out sensitivity analysis when possible

Missing data mechanisms

Classification of association between R and Y

MCAR: Missing completely at random

MAR: Missing at random

MNAR: Missing not at random

These are sometimes defined conditionally on covariates.

Statistical independence

The notation $R \perp Y$ means that the random variable R is independent of the random variable Y.

Implications: - Joint distribution can be factored

$$f(r,y)=f(r)f(y)$$

- Conditional distributions and expectations

$$f(y|r)=f(y)$$

$$E(Y|R) = E(Y)$$

Knowing R does not influence the distribution or expectation of Y

Missing data mechanism for univariate sampling

Missing values of Y are missing completely at random (MCAR) if $R \perp Y$, or equivalently, if

$$f(r|y) = f(r).$$

For univariate samples, this is also classified as *missing at random (MAR)*. More on this distinction later.

Missing data mechanism for univariate sampling

Missing values of Y are missing not at random (MNAR) if there exists at least one value of y such that

$$f(r|y) \neq f(r)$$
.

Or in words, the probability of response is systematically higher/lower for particular values of y.

Missing data mechanism for univariate sampling

- Under MCAR/MAR, methods applied to the observed data only will generally yield valid inferences about the population.
 - Estimates will be consistent
 - Standard errors will generally be larger than if you had the full data
- Under MNAR, methods applied to the observed data only generally will NOT yield valid inferences

Example of missing data mechanism for univariate sampling

Generating MCAR data

Y ⊥ R

```
set.seed(2)
y<-rnorm(25)
r<-rbinom(25,1,.8)
mean(y)
## [1] 0.3339737
mean(y[r==1])
## [1] 0.3411507</pre>
```

In this simulation, by chance, $\hat{E}(Y|R=1) \approx \hat{E}(Y)$. But as the sample size increases, this is guaranteed to hold, i.e.,

$$\hat{E}(Y|R=1) \rightarrow E(Y)$$
.

```
-2.21469989 1
      -1.98935170 1
      -0.83562861 1
      -0.82046838 1
      -0.62645381.1
      -0.62124058 1
      -0.30538839 1
      -0.04493361 1
      -0.01619026 1
      0.07456498 1
      0.18364332.0
      0.32950777 1
      0.38984324 1
      0.48742905 1
      0.57578135 1
      0.59390132 0
      0.61982575 1
      0.73832471 1
      0.78213630 0
## 20
      0.82122120 1
       0.91897737.1
       0.94383621 1
      1.12493092 1
      1.51178117 0
## 25
     1.59528080 1
```

Example of missing data mechanism for univariate sampling

Generating MNAR data

R depends on Y

```
set.seed(2)
y<-rnorm(25)
p<-ifelse(y<0.9,1,0.4)
r<-rbinom(25,1,p)
mean(y)
## [1] 0.3339737
mean(y[r==1])
## [1] 0.1710997</pre>
```

 $\hat{E}(Y|R=1) \neq \hat{E}(Y)$, and as the sample size increases, this inequality is guaranteed, i.e.,

$$\hat{E}(Y|R=1) \rightarrow \gamma \neq E(Y).$$

```
-2.21469989 1
-1.98935170 1
-0.83562861 1
-0.82046838 1
-0.62645381.1
-0.62124058 1
-0.30538839 1
-0.04493361 1
-0.01619026 1
0.07456498 1
0.18364332.1
0.32950777 1
0.38984324 1
0.48742905 1
0.57578135 1
0.59390132 1
0.61982575 1
0.73832471 1
0.78213630 1
0.82122120 1
0.91897737.0
0 94383621 0
1.12493092 0
1.51178117 1
1.59528080 0
```

Missing data mechanism for multivariate sampling – regression

• Consider the setting where we are interested in the regression of Y on X. Let

$$\mu(X) = E(Y|X).$$

- Assume there are no other covariates available
- Our model is

$$g(\mu(X)) = \beta_0 + \beta_1 X.$$

The function $g(\cdot)$ tells us the type of regression model we are fitting (linear, logistic, etc.)

• The full data are

$$(Y_1, X_1, R_1), (Y_2, X_2, R_2), \ldots, (Y_n, X_n, R_n).$$

Missing data mechanism for multivariate sampling - regression

The Y's are missing completely at random (MCAR) if

$$Y \perp R$$
.

The Y's are missing at random (MAR) if

$$Y \perp R|X$$
.

- MCAR implies that there is random missingness.
- MAR implies that there is random missingness within distinct levels of X.

Written alternatively:

- MCAR: f(y|r) = f(y)
- MAR: f(y|r,x) = f(y|x)

Example of missing data mechanism for multivariate sampling

Generating MCAR data

Y ⊥ R

```
set.seed(4)
    x < -rnorm(25); y < -rnorm(25, x, 1)
    r < -rbinom(25,1,.8)
    lm(v-x)
##
## Call:
## lm(formula = v \sim x)
## Coefficients:
   (Intercept)
       0.02285
                     0.89926
    lm(v~x.subset=r==1)
##
## Call.
## lm(formula = v \sim x, subset = r == 1)
## Coefficients:
   (Intercept)
        0.1302
                      0.9033
```

```
-1 28124663 -0 22931405 1
      -0.54249257
                   0.71339145 1
      -0.28344457 -1.10443815 1
      -0.21314452 -0.96735573 1
      -0.10036844 -1.78841702 0
      -0.04513712 -0.51103300 1
      -0.04420400 1.24830834 1
       0.01571945 -0.21168596 1
## 9
      0.03435191 -0.60319159 1
      0.16516902
                  0.26401271 1
      0.16902677 1.51273540 1
      0.21675486 -0.06618882 1
      0.38305734 1.31715351 1
      0.56660450
                  0.16208467 1
       0.59289694 -1.20448508 1
       0.59598058 -0.33204753 1
       0.68927544
                   0.84273962 1
       0.89114465
                   1.80098380 1
       1.16502684
                   1.34656222 1
       1.28825688
                   2.01216103 1
       1 30762236
                   0.93196722 0
       1.54081498
                   0.67866884 1
      1.63561800
                   2.87579884 1
      1.77686321
                   2.63799509 0
      1.89653987
                   0.41435075 0
```

In this simulation, by chance, $\hat{\beta}_1 \approx \hat{\beta}$. But as the sample size increases, this is guaranteed to hold, i.e., $\hat{\beta}_1 \to \beta$.

Example of missing data mechanism for multivariate sampling Generating MNAR data

R depends on Y

```
set.seed(4)
    x < -rnorm(25); y < -rnorm(25, x, 1)
    p \le -ifelse(v \le 1.5.1.0.4)
    r < -rbinom(25,1,p)
    lm(v-x)
##
## Call:
## lm(formula = v \sim x)
## Coefficients:
   (Intercept)
       0.02285
                      0.89926
    lm(v~x.subset=r==1)
##
## Call:
## lm(formula = v \sim x. subset = r == 1)
##
## Coefficients:
   (Intercept)
       -0.1002
                       0.7089
```

```
-1.28124663 -0.22931405 1
            0.71339145 1
-0.54249257
-0.28344457 -1.10443815 1
-0.21314452 -0.96735573 1
-0.10036844 -1.78841702 1
-0.04513712 -0.51103300 1
-0.04420400 1.24830834 1
0.01571945 -0.21168596 1
0.03435191 -0.60319159 1
0.16516902 0.26401271 1
0.16902677 1.51273540 0
0.21675486 -0.06618882 1
0.38305734 1.31715351 1
0.56660450
            0.16208467 1
0.59289694 -1.20448508 1
0.59598058 -0.33204753 1
0.68927544
            0.84273962 1
0.89114465
            1.80098380 0
1.16502684
            1.34656222 1
1.28825688
            2.01216103 0
1.30762236
            0.93196722 1
1.54081498
            0.67866884 1
1 63561800
            2.87579884 1
1.77686321
            2.63799509 0
1.89653987
            0.41435075 1
```

In this simulation, $\hat{\beta}_1 \neq \hat{\beta}$. As the sample size increases, this inequality is guaranteed, i.e., $\hat{\beta}_1 \rightarrow \gamma \neq \beta$.

22 / 46

Example of missing data mechanism for multivariate sampling Generating MAR data

Y ⊥ R|X

```
set.seed(4)
    x < -rnorm(25); y < -rnorm(25, x, 1)
    p < -ifelse(x < 1.5, 1, 0.4)
    r<-rbinom(25,1,p)
    lm(y~x)
##
## Call:
## lm(formula = v \sim x)
## Coefficients:
   (Intercept)
       0.02285
                     0.89926
    lm(v~x.subset=r==1)
##
## Call:
## lm(formula = v \sim x, subset = r == 1)
## Coefficients:
   (Intercept)
       0.02445
                     0.67098
```

```
-1.28124663 -0.22931405 1
-0.54249257
            0.71339145 1
-0.28344457 -1.10443815 1
-0.21314452 -0.96735573 1
-0.10036844 -1.78841702 1
-0.04513712 -0.51103300 1
-0.04420400 1.24830834 1
 0.01571945 -0.21168596 1
 0.03435191 -0.60319159 1
0.16516902 0.26401271 1
0.16902677 1.51273540 1
0.21675486 -0.06618882 1
0.38305734 1.31715351 1
0.56660450
            0.16208467 1
0.59289694 -1.20448508 1
 0.59598058 -0.33204753 1
 0.68927544 0.84273962 1
 0.89114465
            1.80098380 1
1.16502684
             1.34656222 1
 1.28825688
            2.01216103 1
1.30762236
            0.93196722 1
1.54081498
             0.67866884 0
1.63561800
             2.87579884 0
1.77686321
             2.63799509 0
1.89653987
             0.41435075 1
```

In this simulation, $\hat{\beta}_1 \neq \hat{\beta}$. However, as the sample size increases, $\hat{\beta}_1 \rightarrow \beta$.

Example of missing data mechanism for multivariate sampling

Generating MAR data

```
    Y ⊥ R|X
```

```
set.seed(4)
    x < -rnorm(2500); y < -rnorm(2500, x, 1)
    p < -ifelse(x < 1.5, 1.0.4)
    r < -rbinom(2500,1,p)
    lm(v~x)
##
## Call:
## lm(formula = v \sim x)
##
## Coefficients:
## (Intercept)
     -0.003017
                    1 022946
    lm(v~x.subset=r==1)
##
## Call.
## lm(formula = v \sim x, subset = r == 1)
##
## Coefficients:
## (Intercept)
     -0.003317
                    1.021907
```

```
-1.28124663 -0.22931405 1
      -0.54249257
                  0.71339145 1
      -0.28344457 -1.10443815 1
      -0.21314452 -0.96735573 1
      -0.10036844 -1.78841702 1
      -0.04513712 -0.51103300 1
      -0.04420400 1.24830834 1
      0.01571945 -0.21168596 1
## 9
      0.03435191 -0.60319159 1
      0.16516902 0.26401271 1
      0 16902677 1 51273540 1
      0.21675486 -0.06618882 1
      0.38305734 1.31715351 1
      0.56660450 0.16208467 1
       0.59289694 -1.20448508 1
      0.59598058 -0.33204753 1
       0.68927544
                  0.84273962 1
       0.89114465
                  1 80098380 1
## 19
      1.16502684 1.34656222 1
       1.28825688
                  2.01216103 1
       1 30762236
                  0.93196722.1
       1.54081498
                  0.67866884 0
      1.63561800
                  2.87579884 0
     1 77686321
                  2 63799509 0
     1.89653987
                  0.41435075 1
```

With a large sample size, $\hat{\beta}_1 \approx \hat{\beta}$.

MAR in regression – some practical issues

• MAR: $Y \perp R | X$

$$\Rightarrow E(Y|X,R=1) = E(Y|X)$$

- Under MAR, inferences can still be valid even if
 - ▶ The X distribution is different between those with missing and observed Y's
- Questions to subjectively assess MAR:
 - ▶ Is the missing data mechanism a random deletion of *Y*'s among people who have the same *X* values?
 - ▶ Is the relationship between *X* and *Y* the same among those with missing and observed *Y* values?

More Generally

In the above examples, we only considered missingness in Y.

Of course,

- X could be missing
- either X or Y missing
- both X and Y missing

There may also be many variables

• $Y, X_1, X_2, X_3, \dots, X_p$

There could be many missing data indicators

• $R_0, R_1, R_2, R_3, \ldots, R_p$

More Generally

Let Y^m denote missing Y, Y^o denote observed Y.

Similarly, let X_1^m denote missing X_1 , X_1^o denote observed X_1 ,

MCAR:

- $(Y, X_1, \ldots, X_p) \perp (R_0, R_1, \ldots, R_p)$
- $(Y^m, X_1^m, \ldots, X_p^m) \perp (R_0, R_1, \ldots, R_p)$

MAR:

- $Y \perp R_0 | (X_1, \ldots, X_p); X_1 \perp R_1 | (Y, X_2, \ldots, X_p); \ldots; X_p \perp R_p | (Y, X_1, \ldots, X_{p-1})$
- $(Y^m, X_1^m, \dots, X_p^m) \perp (R_0, R_1, \dots, R_p) | (Y^o, X_1^o, \dots, X_p^o)$
- The probability of being missing is the same within groups defined by the observed data.

MNAR:

Missing data that are not MCAR or MAR.

Simulations Exercise 1A

- 1. Generate n = 1000 i.i.d. realizations of (Y, X, V) from a known joint distribution:
 - $ightharpoonup V \sim N(0,1)$, then $X|V \sim N(V,1)$, and then $Y|X,V \sim N(X-V,1)$
- 2. Estimate the following:
 - ▶ Regression coefficients for the model $E(Y|X) = \beta_0 + \beta_1 X + \beta_2 V$
 - Regression coefficients for the model $E(Y|X) = \gamma_0 + \gamma_1 X$
 - ▶ The mean of *X*

Estimate $(\beta_1, \beta_2), \gamma_1$, and E(X) among those without missing data in the following scenarios:

- 3. Create MCAR data in X with approximately 50% missing (i.e., P(R|X, Y, V) = P(R)).
- 4. Create $\sim 50\%$ missing data in X such that P(R|X,Y,V) = P(R|V).
- 5. Create $\sim 50\%$ missing data in X such that P(R|X,Y,V) = P(R|X).
- 6. Create $\sim 50\%$ missing data in X such that P(R|X,Y,V) = P(R|Y).

Compare estimates in each setting with those under the full data model (question 2). Are they close? How do their standard errors compare?

Some simple (naive) solutions with missing data

- Complete case analysis
- Single imputation
- Missing data indicators

Complete case analysis

- This approach performs analyses only on those with complete data.
- This is probably the most common approach with missing data.
- But it is not a good approach; it tries to ignore the problem.
- We have seen that this leads to bias unless the data are MCAR (or in certain settings MAR).
- We have also seen that this leads to lower power and wider confidence intervals.
 - ▶ Especially the case when there are lots of variables subject to missingness.

MCAR with many variables

Generating MCAR data

• $X_1, X_2, X_3 \perp R_1, R_2, R_3$

```
set_seed(5)
 n<-25
    x1 \le rnorm(n): x2 \le rnorm(n, x, 1): x3 \le rnorm(n, x, 1)
    r1 < -rbinom(n, 1, 3/4); r2 < -rbinom(n, 1, 0.5); r3 < -rbinom(n.1, 0.5)
    r < -r1 * r2 * r3
    lm(v-x)
##
## Call:
## lm(formula = v \sim x)
##
  Coefficients:
   (Intercept)
        0.02285
                       0.89926
    lm(v-x.subset=r==1)
##
## Call:
## lm(formula = v \sim x, subset = r == 1)
##
## Coefficients:
   (Intercept)
##
       -0.20096
                       0.06505
```

```
v 1
                                                      v r1 r2 r3 r
      -2.18396676 -0.11878292 -0.345906279
                                            1.24830834
      -1.25549186
                   2.38991847
                               1.913167506
                                             1.80098380
      -1 08039260 -1 61741540
                              -0.195313080
                                            1.31715351
      -1.07176004 -0.10825622 -0.725706023
                                           -0.60319159
      -0.84085548 -0.07672699
                               1.680003426
                                           -0.06618882
      -0.80177945 -0.99381319
                               0.870549877 -0.21168596
      -0.63537131
                   2.00231605
                              -0.325753589
                                           -0.96735573
      -0.60290798
                   1.00519048 -0.235677644
                                            0.84273962
      -0.59731309
                   0.36260366 -0.937302281
                                            1.34656222
     -0.47216639 -0.17155246 -0.527941832 -0.22931405
## 11 -0.28577363
                   3.11364351
                               1.832448944
                                            0.41435075
                                                               0 0
  12 -0 25935541 -0 74001351 -0 563110679
                                           -1 10443815
                                                               0 0
     -0.15753436 -1.80732299
                               0.451224423
                                           -0.51103300
                                                               0 0
  14 -0.13898614
                   1.71908714 -0.172359496
                                            1.51273540
                                                               0 0
       0.07014277 -0.06110152
                               0.004145744
                                           -0.33204753
      0.13810822
                   3.25608500
                               2.010138507
                                            2 63799509
                                                               0 0
       0.24081726
                   1.79529951
                              -1.372751885
                                           -1.78841702
       0.70676109
                   0.56392839
                               1.320624721
                                             2.01216103
## 19
      0.81900893
                   0.52368578
                               1 006428230
                                           -1.20448508
## 20
      0.90051195
                   2.10303834
                               1.336717660
                                            0.67866884
                                                               0 0
       0.94186939 -0.72183949
                                             0.26401271
                              -0.060445166
                                                               0 0
## 22
       1.22763034
                   1.51817833
                              -0.569978305
                                             0.16208467
       1.38435934
                   0.87609650
                              -0.354766475
                                            0.71339145
                                                               0 0
      1.46796190
                   0.84737778
                               1.654650812
                                             0.93196722
      1 71144087
                   0 78282256
                               1 523417346
                                            2 87579884
```

Single Imputation

- Fill in the missing values with some other value.
- Lots of different choices for the imputation:
 - ► Mean / median / mode
 - ► Conditional mean
 - Conditional mean plus noise / random draw from fitted distribution
 - ▶ The same value as a similar observation in the dataset with complete data
- All of these approaches have limitations

Example Dataset

```
#install.packages("mice")
library("mice")
summary(airquality) # 153 observations
```

```
##
       Ozone
                        Solar.R
                                          Wind
                                                           Temp
##
   Min.
           : 1.00
                     Min. : 7.0
                                     Min.
                                            : 1.700
                                                             :56.00
                                                      Min.
##
   1st Qu.: 18.00
                     1st Qu.:115.8
                                     1st Qu.: 7.400
                                                      1st Qu.:72.00
##
   Median : 31.50
                     Median :205.0
                                     Median : 9.700
                                                      Median :79.00
##
   Mean
          : 42.13
                     Mean
                            :185.9
                                     Mean
                                            : 9.958
                                                      Mean
                                                             :77.88
##
   3rd Qu.: 63.25
                     3rd Qu.:258.8
                                     3rd Qu.:11.500
                                                      3rd Qu.:85.00
##
   Max.
         :168.00
                     Max. :334.0
                                     Max.
                                            :20.700
                                                      Max.
                                                             :97.00
##
   NA's
         :37
                     NA's :7
##
       Month
                         Day
           :5.000
                    Min. : 1.0
##
   Min.
##
   1st Qu.:6.000
                    1st Qu.: 8.0
   Median :7.000
                    Median:16.0
           :6.993
                    Mean
                           :15.8
##
   Mean
##
   3rd Qu.:8.000
                    3rd Qu.:23.0
   Max. :9.000
##
                    Max.
                           :31.0
##
```

Mean imputation

Replace missing values with their means

```
imp <- mice(airquality, method = "mean", m = 1, maxit = 1)
##
## iter imp variable
## 1 1 Ozone Solar.R</pre>
```

Complete case analysis:

- Standard deviation of Y = 33.0
- E(Y|X) = 18.6 + 0.127X

Analysis with mean imputation:

- Standard deviation of Y = 28.7
- E(Y|X) = 23.7 + 0.099X

Problems with Mean Imputation

- Distorts the distribution
- Under-estimates variation
- Results in bias in almost all situations
 - Unbiased if estimating mean and data are MCAR
- Changes (typically weakens) associations
- Although it's quick and easy, mean imputation should be avoided unless only a handful of values are missing.

Imputation with conditional expectation

Replace missing values with their conditional expectation

Complete case analysis:

- Standard deviation of Y = 33.0
- E(Y|X) = 18.6 + 0.127X
- Standard error of $\hat{\beta}_{x} = 0.033$

Analysis with mean imputation:

- Standard deviation of Y = 29.4
- E(Y|X) = 18.6 + 0.127X
- Standard error of $\hat{\beta}_x = 0.025$

(This analysis only imputed Y)

Problems with Conditional Mean Imputation

- Distorts the distribution
- Under-estimates variation
- Results in bias in most situations
 - Unbiased if estimating conditional expectation and data are MAR or MCAR
- Unrealistically strengthens associations
- Imputations are too good to be true
- Although it's quick and easy, conditional mean imputation should be avoided unless only a handful of values are missing.

Single imputation from the fitted distribution

Replace missing values with their conditional expectation plus some residual

 The residual can be estimated from the non-missing data

Complete case analysis:

- Standard deviation of Y = 33.0
- E(Y|X) = 18.6 + 0.127X
- Standard error of $\hat{\beta}_x = 0.033$

Analysis with imputation from fitted distribution:

- Standard deviation of Y = 32.3
- E(Y|X) = 19.2 + 0.121X
- Standard error of $\hat{\beta}_x = 0.028$

(This analysis only imputed Y)

Single imputation from the fitted distribution (a new random draw)

Replace missing values with their conditional expectation plus some residual

 The residual can be estimated from the non-missing data

Complete case analysis:

- Standard deviation of Y = 33.0
- E(Y|X) = 18.6 + 0.127X
- Standard error of $\hat{\beta}_x = 0.033$

Analysis with imputation from fitted distribution:

- Standard deviation of Y = 34.0
- E(Y|X) = 17.9 + 0.129X
- Standard error of $\hat{\beta}_x = 0.030$

(This analysis only imputed Y)

Single imputation from the fitted distribution

- Not too bad
- Shape of distribution is generally similar
 - Although need to be sure imputations are within range of data
- Variation is about right
- Unbiased estimation if data are MAR and the fitted distribution is properly specified
 - ▶ In this example, the fitted distribution is properly specified if the conditional mean model is correct and the residuals are normally distributed with constant variance
 - ▶ Not exactly correct in our analysis, but not a bad approximation
- Problem is that we will get different estimates depending on the chosen sample
- Maybe we could repeat this multiple times and take averages?
 - ▶ This is the basic idea behind multiple imputation (lectures 3 and 4)

Hot deck imputation

Replace missing values with the observed value from a similar unit

Complete case analysis:

- Standard deviation of Y = 33.0
- E(Y|X) = 18.6 + 0.127X
- Standard error of $\hat{\beta}_{x} = 0.033$

Analysis with hot deck imputation:

- Standard deviation of Y = 32.6
- E(Y|X) = 15.9 + 0.135X
- Standard error of $\hat{\beta}_x = 0.028$

(This analysis only imputed Y)

Hot deck imputation

- Not too bad
- Shape of distribution is generally similar
- Variation appears about right
 - Although unclear how to incorporate uncertainty into inference
- Avoids parametric assumptions
- Requires good donor matches
- Unbiased estimation if data are MCAR
 - Unclear for MAR
- Interesting idea that is popular among survey statisticians, but less well understood than some other approaches

Missing Data Indicators

In regression model, include R_x .

- Include interaction between R_x and X.
- Include missing data indicator, $(1 R_x)$.
- This only accounts for missing X.

```
## Call:
## lm(formula = v5 \sim I(x5 * r) + I(1 - r))
## Residuals:
      Min
               10 Median
   -48.292 -21.113 -8.332 18.062 119.136
  Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.59873
                          6.72998
                                   2.764
                                          0.00668 **
## I(x5 * r)
             0.12717
                          0.03269
                                   3.890 0.00017 ***
              24.20127
                         15.51199
                                  1.560 0.12152
## T(1 - r)
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 31.25 on 113 degrees of freedom
## Multiple R-squared: 0.1181, Adjusted R-squared: 0.1025
## F-statistic: 7.568 on 2 and 113 DF. p-value: 0.0008234
```


Missing Data Indicators

- Simple and retains all those with non-missing outcomes
 - Addresses missing covariates
- Cannot be used for missing outcomes
- Changes interpretation
 - Slope among those with complete data
 - Change in mean among those with missing X
 - Not clear that these interpretations are of interest
- Estimation can be biased even with MCAR data
- Generally not recommended except in special cases

Simulations Exercise 1B

Using the 4 simulated datasets that you generated earlier today, obtain regression coefficient estimates for the model $E(Y|X) = \beta_0 + \beta_1 X + \beta_2 V$ using the following methods:

- 1. Mean imputation
- 2. Conditional expectation imputation
- 3. Single imputation from the fitted distribution
- 4. Missing indicator approach
- 5. Bonus: Hot deck imputation

Compare and contrast estimates with estimates based on the original data and based on complete case analyses.

Summary

Today we have

- Defined missing data mechanisms
 - MCAR, MAR, NMAR
- Discussed simple (typically naive) analysis approaches
 - Complete case analysis
 - Single imputation
 - Mean imputation, conditional expectation imputation, single imputation from fitted distribution, hot deck imputation
 - Missing data indicators