WLAN 技术白皮书

802.11n Draft2.0

修订记录

日期	修订版本	修改章节	修改描述	作者
	0.9		Draft	黄赞

目 录

1.	概述		4
	1.1. 技术	背景	4
	1.2. 技术	特点	4
	1.3. 本书	阅读说明	5
2.	名词解释		5
3.	技术分析		6
	3.1. 帧格	式变更	6
	3.1.1.	MPDU 帧格式变更	6
	3.1.2.	PPDU 帧格式变更	7
	3.2. MAC	C 效率提升	9
	3.2.1.	帧聚合(Aggregation)	10
	3.2.2.	块确认(Block Acknowledgement)	12
	3.2.3.	RIFS (Reduced InterFrame Space)	13
	3.3. MIM	[O 技术	14
	3.3.1.	MIMO 基本概念	14
	3.3.2.	MIMO 系统组成	15
	3.3.3.	空间复用	17
	3.3.4.	信道探测评估	18
	3.3.5.	波束成形(BeamForming)	19
	3.4. OFD	M 改进	22
	3.4.1.	副载波增加	22
	3.4.2.	FEC 编码速率提高	23
	3.4.3.	短防护间隔(SGI)	23
	3.5. 带宽	扩充	24
	3.6. PHY	保护机制	25
4.	附录		26
	4.1. 各种	技术对速率提升的贡献	26
	4.2. 802.1	l In MCS 一览表	27

1. 概述

1.1. 技术背景

802.11n 是 IEEE802.11 协议族中的一部分,提供了 MAC 子层的部分修改和全新的 PHY 子层。目的是在 802.11 旧有技术基础上改进射频稳定性、传输速率和覆盖范围。

在802.11g 标准化之后,IEEE 802.11 成立了任务 n 工作组——TGn。在过去几年时间里,TGn 的提案一直未能完成标准化,主要原因是以芯片厂家主导的 TGnSync 阵营和以设备制造厂家主导的 WWiSE 阵营的争端无法达成一致。TGn 先后发布了 Draft 1.0 和 Draft 2.0,根据 IEEE 的路线图,预计在 2009 年的 3 月份完成标准化。目前最新的版本为 D2.0,各种技术要求基本定型,最终的标准预计不会有太大变更,因此,各芯片厂商和设备厂商均推出了基于 D2.0 的产品。

除 IEEE 以外,802.11 领域最重要的组织为 Wi-Fi 联盟。Wi-Fi 联盟是一个工业组织,负责对802.11 设备的互通性进行认证。从 2007 年 6 月份起,Wi-Fi 联盟开始对 802.11n D2.0 产品进行认证。由于 802.11n 未最终标准化,联盟和其成员的另一个任务是确保现有符合 D2.0 的设备仅通过升级软件便可以支持正式的标准。当 802.11n 正式标准化之后,联盟的认证将基于正式标准。

1.2. 技术特点

802.11n 的主要特点如下:

更高的速率: 802.11n D2.0 最大可支持 600Mbps 的传输速率。这得益于多项技术的应用: MIMO 技术提供了空间复用能力; OFDM 的改进允许采用更大的频宽和更高的频谱利用率; MAC 层协议的修改减少了开销。

更强的环境适应性:与旧有标准相比,802.11n 射频覆盖范围更广;在环境复杂的场合,应用稳定性更高。这得益于 MIMO 技术的导入,提高了接收灵敏度,并显著改善了信道的多径损耗。

兼容旧有标准: 是否向下兼容是决定一项新技术能否推广的关键因素。802.11n 支持 2.4G 频段 或 5G 频段工作,并提供相应频段下对旧有 802.11 标准设备的兼容。即工作于 2.4G 频段的 11n 设备可兼容 11b/g 设备,工作于 5G 频段的 11n 设备可兼容 11a 设备。这得益于新的 PHY 保护机制。

1.3. 本书阅读说明

802.11n D2.0 文档本身按照分层的方式对各项技术要求进行定义,详细、严谨,但也比较抽象;某项技术的定义可能分布在各个层中,不够系统化;本书以802.11n 提供的技术点为索引,介绍该技术的各项具体要求和实现方式。

802.11n 的技术提纲如下:

MAC 效率提升

MIMO 技术

OFDM 改进

带宽扩充

PHY 保护机制

本白皮书将按照上述技术提纲展开。

本白皮书作为 802.11n D2.0 的解读性、学习性文档,实际的设计和测试需要参照原文档。 本白皮书的阅读者需要具备网络基础知识,802.11 无线网基础知识,基础的信息论与编码 知识,基础的无线电知识。

2. 名词解释

MSDU: MAC Service Data Unit。可以理解为传输的有效数据, MAC帧的data部分。

MPDU: MAC Protocol Data Unit。可以理解为经过MAC协议封装的帧,包括MAC帧头。

PLCP: Physical Layer Convergence Procedure。可以理解为PHY层的编码和封包过程。

PPDU: PLCP Protocol Data Unit。可以理解为PHY层封装的帧,包括PHY帧头和MAC帧。

A-MSDU: Aggregate MSDU。MSDU帧聚合。

A-MPDU: Aggregate MPDU。MPDU 帧聚合。

MIMO: multiple input, multiple output。一种采用多根天线进行传输的技术。

STBC: Space-Time Block Code。空时分组编码,一种可以提高传输质量的编码方式。

MCS: Modulation Coding Scheme。11n中规定空间流数目、编码、调制方式和传输速率的一组方案。

CSI: Channel State Information 用于波束成形的一个信息域。

SGI: Short Guard Interval。11n 引入的短防护间隔,该间隔为 400ns。

RIFS: Reduced Interframe Spacing。11n引入的短帧间隙,减少传输开销。

CCA: Clear Channel Assessment。PHY层用于探测信道占用情况的一个功能模块。

HT: High Throughput。即采用11n引入的调制编码方式传输,提高了传输速率。

LTF: Long Training Field。PHY帧头中一个域,用于对接收端进行训练。

Beamformer/Beamformee: beamformer 是准备进行波束成形调整的一方, beamformee 是辅助对方进行波束成形的一方。

福建星网锐捷网络有限公司

3. 技术分析

3.1. 帧格式变更

3.1.1. MPDU 帧格式变更

802.11n扩展了802.11 mac帧,增加4个字节的HT Control域,其余域的意义与802.11主标准相同。

HT 控制域细节:

对 HT 控制域中各个部分的介绍如下

Link Adaptation Control: 该域用于对一系列链路适配操作进行控制。

В0	B1	B2	B5	B6	В8	B9	B15
reserved	TRQ	N	1AI	М	FSI	MFB/	ASELC
1	1		4		3		7

TRQ(Sounding Request): 探测请求,该位置1请求接收者发送探测帧(sounding PPDU),探测帧主要用于波束整形(beamforming)。

MAI(MCS request or Antenna Selection Indication),用于mcs(调制解调方案,modulation and coding scheme)请求或者天线选择。

MFSI(MFB Sequence Identifier),用于调制解调方案的反馈(MFB: modulation and coding scheme feedback,调制解调方案反馈)。

MFB/ASELC (MCS Feedback and Antenna Selection Command/Data),如果MAI是进行天线选择,这个域说明天线选择命令和数据。其他情况这个域包含了推荐的MCS反馈。

Calibration Position和Calibration Sequence用于校准控制(用于波束整形)。

福建星网锐捷网络有限公司

CSI/Steering用来表示波束整形的反馈(feedback)情况。

NDP Announcement用于通告后续是否有NDP(Null Data Packet 零数据报文)。1为有,0为没有。NDP作为波束整形的探测帧。

AC Constraint表示反方向帧(即回应帧)是否约束在同一个TID内。1表示有约束。

RDG/More PPDU用来指示,是否预留了反向帧的Duration/ID。

3.1.2. PPDU 帧格式变更

802.11n 定义了 3 种 PHY 层帧格式——Non HT 格式, HT mixed 格式, HT Greenfield 格式。 Non HT格式:根据工作频段,该格式整个帧均符合802.11a格式或802.11g格式。对该格式的 支持是强制的。

HT mixed格式: 该格式的帧头包括Non HT域和HT域, Non HT域能够被802.11a或802.11g的 STA识别, HT域和数据域则无法被其所识别。对该格式的支持是强制的。

HT Greenfield 格式: 该格式的帧不包含 Non HT 域,只能被支持 HT 的 PHY 识别,不能兼容 11a 和 11g。对该格式的支持是可选的。

三种帧格式示意图如下:

- L-SIG: Non-HT SIGNAL Field
- HT-SIG: HT SIGNAL Field
- HT-STF: HT Short Training Field
- HT-GF-STF: HT greenfield Short Training Field
- HT-LTF1: First HT Long Training Field (Data HT-LTF)
- HT-LTFs: Additional HT Long Training Fields (Data HT-LTFs and Extension HT-LTFs)
- Data: The data field includes the PSDU

对于HT mixed格式和HT greenfield格式帧,有两类HT-LTF: Data HT-LTF和Extension HT-LTF。 DLTF是HT帧中必有的域,用于接收端进行信道评估,以准确地对数据区进行解调,DLTF的数量可

福建星网锐捷网络有限公司

能为1,2或4,取决于发送端的空时流数目,如下表;ELTF用于探测帧,适用于发送链路数目大于空时流数目的场合,以对信道更多分量进行评估,ELTF的数量可能为1,2或4,取决于额外的发送链路数目,如下表。

N_{STS}	$N_{\rm DLTF}$
1	1
2	2
3	4
4	4

DLTF 数目与空时流数目关系

$N_{\it ESS}$	$N_{\it ELTFs}$
0	0
1	1
2	2
3	4

ELTF 数目与额外发送链路数目关系

HT帧头的Signal域包含了关键的编码和调制参数,用于解读后面的HT数据区。该Signal域包括2个部分,HT-SIG1和HT-SIG2,格式如下图所示:

各 bit 的意义如下表所示

Field Name	Number of bits	Explanation and coding
Modulation and Coding Scheme	7	Index into the MCS table, See NOTE 1.
CBW 20/40	1	Set to 0 for 20 MHz or 40 MHz upper/lower Set to 1 for 40 MHz
Length	16	The number of octets of data in the PSDU in the range 0-65535 See NOTE 1 and NOTE 2.
Smoothing	1	Set to 1 indicates that channel estimate smoothing is allowed Set to 0 indicates that only per-carrier independent (unsmoothed) channel esti- mate is recommended
Not Sounding	1	Set to 0 indicates that PPDU is a Sounding PPDU Set to 1 indicates that the PPDU is not a sounding PPDU
Reserved	1	Set to 1
Aggregation	1	Set to 1 to indicate that the PPDU in the data portion of the packet contains an A-MPDU; otherwise, set to 0.
STBC	2	Set to a non-zero number, to indicate the difference between the number of space time streams (N_{STS}) and the number of spatial streams (N_{SS}) indicated by the MCS. Set to 00 to indicate no STBC ($N_{STS}=N_{SS}$)
LDPC coding	1	Set to 1 for LDPC Set to 0 for BCC
Short GI	1	Set to 1 to indicate that the short GI is used after the HT training. Set to 0 otherwise
Number of exten- sion spatial streams	2	Indicates the Number of extension spatial streams (N_{ESS}). Set to 0 for no extension spatial stream Set to 1 for 1 extension spatial stream Set to 2 for 2 extension spatial streams Set to 3 for 3 extension spatial streams Set NOTE 1
CRC	8	CRC of bits 0-23 in HT-SIG1 and bits 0-9 in HT-SIG2—see 20.3.9.4.4 (CRC calculation for the HT SIGNAL field). The first bit to be transmitted is bit C7 as explained in 20.3.9.4.4 (CRC calculation for the HT SIGNAL field).
Tail Bits	6	Used to terminate the trellis of the convolution coder. Set to 0.

NOTE 1-Integer fields are transmitted in unsigned binary format, least significant bit first.

NOTE 2—A value of 0 in the Length field indicates a PPDU that does not include a data field. The packets ends after the last HT-LTF or the HT-SIG.

3.2. MAC 效率提升

802.11 主标准所规定的 MAC 协议有很大的固定开销(overhead),包括帧格式本身、帧间隙和确认机制。在最高的传输速率下,开销时间甚至超过了有效数据的传输时间。另外,

福建星网锐捷网络有限公司

无线信道的竞争和冲突,也显著降低了传输性能。 旧有标准的一个典型传输如下:

802.11n 试图通过改善上述开销来提高 MAC 的传输效率,包括帧聚合、块确认和缩短帧间隙。

3.2.1. 帧聚合 (Aggregation)

802.11n 包括 2 种方式的帧聚合: MSDU 聚合和 MPDU 聚合,这 2 种方式都是将多个帧聚合到一个帧中传输,从而减少了帧头和帧间隙的数量。另外,由于帧数量的减少,也在总体上降低了冲突的几率。为了引入帧聚合机制,802.11n 将最大帧长从 4KB 增加到 64KB。

Radio Preamble	Radio Header	MAC Header	Data	FCS
-------------------	-----------------	---------------	------	-----

MSDU 聚合(A-MSDU)

802.11 协议栈收集一定数量的上层报文, 先将其聚合, 再转化为 802.11 MAC 帧, 即为 MSDU 聚合。MPDU 聚合帧中的每个子帧不具有完整 802.11MAC 帧头, 只具有 14 字节的子帧帧头和数据区。

以下是经过 MSDU 聚合后的完整的 802.11 物理层帧。

RP	RH	МН	A-MSDU Subframe 1	A-MSDU Subframe 2		FCS
----	----	----	-------------------	-------------------	--	-----

RP=Radio Preamble; RH=Radio Header; MH=MAC Header;

每个 MSDU 子帧包括子帧帧头、数据区、 $0\sim3$ 字节的填充区。帧头格式包括 DA、SA、Length,SA、DA 即为子帧的源端地址和目的端地址,length 为子帧的长度;数据区域为完整的 MSDU 数据;子帧要求要求 4 字节对齐,不足部分由填充域完成。

Octets: 6	6	2	0-2304	0-3
DA	SA	Length	MSDU	Padding

由于 MSDU 聚合后无独立的 802.11 MAC 帧头,要求所聚合帧的 SA 和 DA 所映射的 TA 和 RA 是相同的,也即所聚合的帧由同一个无线端和由同一个无线端接收。聚合后,所有的子帧都会采用统一的加密方式,而且经聚合的帧将只能具备一种 QoS 属性,不允许将不同 QoS 属性的帧聚合。

福建星网锐捷网络有限公司

MPDU 聚合(A-MPDU)

MPDU 帧聚合是更低层次的聚合,802.11 协议栈首先收集一定数量的802.11 MAC 帧,再将其进行聚合后打上PHY 标头进行传输。MPDU 聚合帧中的每个子帧均具有完整的802.11 MAC 帧头。

以下是经过 MPDU 聚合后的完整的 802.11 物理层帧。

RP	RH	МН	A-MPDU Subframe 1	A-MPDU Subframe 2	••••	FCS
----	----	----	-------------------	-------------------	------	-----

RP=Radio Preamble; RH=Radio Header; MH=MAC Header;

每个 MPDU 子帧包括 4 字节分界符、完整的 MPDU 区域和填充区域。格式如下:

BO B3 B4 B15 B16 B23 B24 B31

Reserved MPDU length CRC Delimiter Signature MPDU Pad

4字节分界符的意义如下:

Reserved: all 0s

MPDU length: MPDU区域的长度,字节数

CRC: 前面16bit数据的8-bit CRC校验结果

Delimiter Signature: 分界符的特征区域,目前为字母'N'的ASCII编码。

子帧要求要求4字节对齐,不足部分由填充域完成。

虽然 A-MPDU 中的子帧包含独立的 802.11 MAC 帧头,但 A-MPDU 仍然要求进行聚合的 802.11 帧具备相同的 TA、RA——这是因为经聚合的帧仍然是"一个帧",一个单播帧只能由一个发送端发送、被一个接收端接收,对具备不同接收端地址的帧进行聚合是没有意义的。MPDU 聚合方式允许对各个不同的子帧采取独立的加密方式,但也没有实际上的意义。与 MSDU 聚合相同,MPDU 聚合要求各子帧将只能具备一种 QoS 属性,不允许将不同 QoS 属性的 802.11 帧聚合。

A-MSDU 和 A-MPDU 对比

MSDU 聚合的效率更高,原因在于各子帧省略了 802.11MAC 帧头;而 MPDU 聚合各子帧具备独立的 802.11 MAC 帧头,这一点在加密后的帧中更加明显——因为加密需要额外增加 802.11MAC 帧头的长度。

MPDU 的优点在于直接将 802.11 帧进行聚合,而无需将其转换为上层协议包,对于无线网桥和 Mesh 的应用,不需对 802.11 帧进行转换,应该比较有优势。

MPDU 聚合是比 MSDU 更低层的聚合,可以对已经进行了 MSDU 聚合的帧进行**再聚合**,但要求所聚合的 A-MSDU 帧长度不超过 4KB。

帧聚合的限制

- 1) 进行聚合的帧必须具备相同的接收端地址,即只有在同一个 AP 和 STA 之间传输的帧 才能进行聚合。
- 2) 在发送端,必须准备一定数量的待发送帧进行聚合,因此会对某些帧带来延迟。
- 3) 不能将不同 OoS 等级的帧进行聚合。
- 4) 帧聚合增大了帧的长度,在信道恶劣的情况下,更容易发生错误。

福建星网锐捷网络有限公司

3.2.2. 块确认(Block Acknowledgement)

802.11 主标准规定,为了增加传输可靠性,对于任何单播帧,接收端在接收成功后均需进行确认。对于 A-MSDU,其确认机制与普通的单播帧相同,在完成整个帧的接收后进行确认;但是对于 A-MPDU 不是这样,A-MPDU 要求每个子帧单独得到确认,满足该项要求的机制即为块确认。

Block Acknowledgement通过使用一个ACK帧来完成对多个MPDU的应答,以降低这种情况下ACK帧的数量。

- 1、N—Immediate BA(立即块确认)
 - N—Immediate BA方式简化了与聚合MPDU对应的传统立即BA方式,主要内容包括: a)在QoS数据帧中使用"Normal ACK机制",对应于非聚合PPDU请求发送ACK,对应于聚合PPDU请求发送BA:
 - b)使用BAR请求立即BA帧;
 - c)使用压缩BAbitmap(BA位图)格式,BA bitmap域中每个比特位表示对应的一个MPDU是否正确接收;
 - d)BA发送站点的发送缓冲控制功能模块(Tx Buffer control)设置参数WinStart, WinSize递交要传输的MPDU包,并释放存有来自BA接收站点相关BA的发送缓冲器。参数WinStart是传输窗口的起始位置(序列号), WinSize是BA协定的使用缓冲器个数;
 - e)聚合控制功能模块(Aggregation control)产生聚合的帧,根据BA的需要来确定各个MPDU的应答方式;
 - f)BA接收站点的接收重排序缓冲控制功能(Rx Reordering Buffer)模块根据接收序列号(SN)向上层顺序通报接收到的MPDU包。此模块的重排工作与记录上下文控制功能模块相对独立;
 - g)对于N—Immediate BA,BA接收站点可以选择标准模式或部分模式。记录上下文控制功能模块(Socreboard Context Control)在标准模式或部分模式下存储不同内容。并提供发送给BA发送站点的BA应答的起始序列号(SSN)等信息;
 - h)拆分控制功能模块(de-aggregation control)将聚合的帧拆分成单个MPDU。

i)立即块确认架构图如下:

2、N—delay BA(延迟块确认)

N-delay BA是可选功能。站点在HT capabilities消息字段标识其是否支持N—delay BA功能。站点只有在其通信对象同样支持N-delay BA功能时才能使用N-delay BA的BA应答帧。

N-delay BA机制在不需要立即答复的BA/BAR中使用"no-ack"方式,表示这些控制帧不需要应答帧,即BA/BAR帧的发送方在一定时间后即默认接收方已收到,不再等待对方对此控制帧的应答。如果不采用这种应答方式,则在N-delay BA机制下发送的BA/BAR帧需要应答,期望在一个规定时间间隔后收到应答帧。可以动态规定是否采用这种方式,各个PPDU的应答方式也可以互不相同,在对应的一组BAR和BA帧间亦可以随意设定。

对应于N-delay BAR的BA帧在一个未指定时间延迟后发送,即可以在BA接收站点获得的下一个TXOP内或传输发起站点反向传输获取的当前或下一个TXOP内发送。

3、MTBA(多TID BA)规则

MTBA规则是伴随PSMP(功率节省多用户轮询)方案产生的一种应答规则。提案规定,在PSMP序列组的DTT(downlink transmission time,下行传输,AP发送数据)和UTT(uplink transmission time,上行传输,STA发送数据)范围内发送的数据使用MTBA帧进行应答。可以通过数据MPDU中ACK policy消息字段或MTBAR帧请求MTBA响应。非AP的站点在当前PSMP序列组的UTT中发送一个MTBA帧应答在DTT中收到的数据。AP在下一个PSMP序列组的DTT中发送MTBA,应答当前UTT中收到的数据。

AP在UTT中接收站点发送的MTBA帧,如果该帧表明有数据丢失,AP安排并在 当前或下一个服务间隔中重传这些帧。如果AP没有收到预期的MTBA,它会重传所 有未加应答的帧。

3.2.3. RIFS (Reduced InterFrame Space)

802.11e 定义了 Burst 操作,发送端在获取到一个发送机会后(TXOP),可以持续地发送一串帧,其帧间隔为标准规定的最短的 SIFS,而不必进入随机退避时间。Burst 操作在

福建星网锐捷网络有限公司

一定程度上提高了传输效率。

802.11n 改进了该项机制,进一步提高了传输效率,措施包括:定义了更短的帧间隔——RIFS,同时进一步延长了 TXOP 时间。将帧间隙由 SIFS 典型值 16us 缩短为 RIFS 典型值 2us,减少了信道空闲时间;而延长 TXOP,则允许一次进行更多的突发传输。

RIFS 的应用有一定限制,进行传输的帧必须具备 GreenField HT 帧头,也就是说,必须保证网络覆盖范围内的所有 STA 均支持 GreenField HT 时才能生效,不能包含如 802.11g 等旧有 WLAN 设备。

3.3. MIMO 技术

MIMO (Multiple-input multiple-output) 是802.11n的核心技术。

3.3.1. MIMO 基本概念

C=Bglog: (1+SNR) b/s

描述信道容量的不朽的Shannon公式:

C: 信道容量, 即一个信道能传输信息的最大速率。

B: 信道的带宽。

SNR: 信噪比,即接收到的有效信号与噪声能量之比,噪声来源于发信机、信道和接收机。对于一个WLAN网络,信道带宽是固定的,根据Shannon公式,信息传输速率的上限决定于SNR。MIMO技术的引入即通过增加发送和接收天线的数量,提高SNR,从而提高信息的传输速率。

802.11旧有标准仅使用一根天线,虽然有些产品采用2根天线作为天线分集,但只是选择信号最好一根天线作为接收,同一时刻只能用到一根天线,只具备一个发送链路和一个接收链路。MIMO系统则将多个链路分配给多根天线,每个时刻多根天线同时使用,大大改善了接收信号的质量。

MIMO系统以发射天线和接收天线的数量来描述,M×N MIMO,是指由M个发射天线,N个接收天线组成的MIMO系统。根据前人的理论研究(复杂且深奥,略),MIMO信道容量的扩充与K=min(M,N)相关,信道容量近似为普通单收单发信道的K倍。

并不是简单的将收、发天线重复增加就可以提高信道容量了,此举将会因为干扰反而使信道容量降低。MIMO要求各发射天线所发射的信号需要经过复杂的编码、调制,各接收天线需要经过复杂的信号处理,同时发送和接收参数需要根据信道的质量进行调整,才能接近理论的信道容量。

草案中MIMO涉及参数列表,之后的章节经常用到。

参数	描述	
Ncbps	Number of coded bits per symbol	
N _{CBPSS} (i)	Number of coded bits per symbol per the <i>i</i> -th spatial stream	

福建星网锐捷网络有限公司

Ndbps	Number of data bits per symbol
NBPSC	Number of coded bits per single carrier
N _{BPSCS} (i)	Number of coded bits per single carrier per the <i>i</i> -th spatial stream
Nsd	Number of data subcarriers
Nsp	Number of pilot subcarriers
Nsts	Number of space time streams
Nss	Number of spatial streams
Ness	Number of extension spatial streams
Ntx	Number of transmit chains
Nes	Number of FEC encoders
NLTF	Number of HT long training fields
Noltf	Number of Data HT long training fields
Neltf	Number of Extension HT long training fields
R	Code rate

3.3.2. MIMO 系统组成

MIMO 发送模块从 PHY 的上层模块得到原始的、串行的、基带形式的物理层帧,最终转化为无线信道中传输的无线电波;而接收模块相当于发送模块的相反过程。草案中详细描述了发送模块,本节也就发送模块进行解读。

MIMO 发送模块的框图如下:

发送器由以下子模块组成:

- 1. 扰码器:将数据扰码,以防止出现长时间的连'0'或连'1',影响后级的编码性能。
- 2. **编码分配器:** 将经过扰码的串行数据流分解为 Nes 个数据流,输出到 Nes 个FEC编码器中。 分配的算法为Round Robin算法。
- 3. **FEC编码器:** 对数据流进行前向纠错编码,包括一个典型的二进制卷积编码器和一个压缩器,压缩器按一定比率删除纠错码,根据删除比率不同,使得FEC的编码速率都多种选择。
- 4. **流分配器**: 收集FEC编码器的输出分解为 Nss 个数据流,进入 Nss 个位交错器。输入位交错器的数据流即被称为"空间流"。
- 5. **位交错器**: 位交错器的功能是按照一定的算法将数据流中的位打乱, 避免由于噪声引发的错误bit过于集中; 而分散的错误bit, 将可以由FEC解码器纠正。
- 6. **星座图映射器**:将经过位交错的空间流,按照指定的调制方式(QAM-64等)映射为星座图上的点。点采用复数表示,即将一个空间流转换为I、Q两路基带信号。
- 7. **STBC编码器**: 各映射器输出的星座点由STBC编码器编码,将空间流SS转化为空时流 STS,是一种增强传输稳定性的编码方式。
- 8. 空间流映射器: 将空时流映射到发送链路。
- 9 离散傅立叶逆变换: 将经过映射的星座点变换为时域波形。
- 10. 循环移位扩展:目的是防止信号频谱中出现意料之外的频率。
- 11. **防护间隔插入:**符号间插入防护间隔。这一点是OFDM必须的。

福建星网锐捷网络有限公司

12. **加窗**:通过特定的滤波器,使符号的边沿变得平滑,从而使信号的频谱集中于规定的范围内。

关于发送模块的几点解读:

- 1) 只有 HT mixed 帧中的 HT 域和 HT greenfield 帧才采用 MIMO 模块进行发送, Non HT 帧和 HT mixed 帧中的 Non HT 域将仍采用 11a、11g 中的 OFDM 模块进行发送。
- 2) 发送模块所需的各种参数,包括 Nes, Nss, Nsrs, Nrx,调制方式,占用带宽等,均是由上层模块提供,包含在 TXVECTOR 中,和数据一道传递到 MIMO 发送模块。
- 3) FEC 编码器实际上是通过增加额外的纠错码提高了传输的健壮性,冗余位看似降低了编码效率,但是由于可用速率提高,整体的有效传输速率仍然得到提高。

3.3.3. 空间复用

MIMO 发送模块中涉及 3 个流,空间流 SS,空时流 STS,发送链路 TX,3 个流的数目不一定相等,一般 Nss \leq Nsrs \leq Nrx。SS 是基础,直接决定了传输的速率;TX 是真正发送到自由空间中的流,是根本意义上的空间复用。STS 和 TX 都是将 SS 进一步散布到更多的通道上,提高传输的 SNR,降低误码率。

STBC 编码模块是一个可选组件,可以直接旁路,此时 Nss = Nsrs; 空间流映射器可以采用直接映射方式,此时 Nsrs = Nrx。

Stream Parser

流分配器收集 FEC 编码器的输出,将其分解为 Nss 个数据流,称为"空间流"。空间流的数量由调制编码方案(MCS)决定,并直接影响传输速率。参见附录 MCS 一览表。

Stream Parser 首先将每个 FEC 的输出流进行分组,每组包含的编码位数由 N_{BPSCS} (i)决定,实际最终由 MCS 决定。每组编码位数:

$$s(i) = \max(1, N_{BPSCS}(i)/2)$$

完成分组后,Stream Parser 将各分组按照 Round Robin 算法轮流分配到 Nss 个空间流中;对于存在 2 个 FEC 编码器的场合,各编码器的输出将依次映射:即 FEC 1 的输出流完成 $1\sim$ Nss 个空间流的映射,然后 FEC 2 的输出流完成 $1\sim$ Nss 个空间流的映射,依次类推。

STBC

空时分组编码,是一种增强传输稳定性的编码方式;该编码器位于星座图映射器和空间流映射器之间,将 Nss 个空间流转化为 Nsrs 个空时分组码流,一般 Nsrs > Nss 。 STBC 模块是一个增强组件,可以直接旁路。 STBC 具体包括 2 种可选的编码方式, STBC 编码和 STBC/SM 混合编码,后者不常用,不介绍。

STBC 大致流程:

采用符号 $d_{k,i,2m}$ 表示星座图映射器输出的符号(复数),下标表示空间流 i,副载波 k 的第 2m 个 OFDM 符号; 采用符号 $d_{k,i,2m+1}$ 表示空间流 i,副载波 k 的第 2m+1 个 OFDM 符号。

福建星网锐捷网络有限公司

则经过 STBC 编码后的符号如下表所示,*表示复数的共轭:

N _{STS}	HT-SIG MCS field (bits 0-6 in HT-SIG1)	N _{SS}	HT-SIG STBC field (bits 4–5 in HT-SIG2)	ists	Space time stream in OFDM symbol (2m)	Space time stream in OFDM symbol (2m+1)
2	0-7	1	1	1	d _{k, 1, 2m}	$d_{k, 1, 2m+1}$
				2	-d*, 1, 2m+1	$d_{k, 1, 2m}^*$
3	8-15, 33-38	2	1	1	d _{k, 1, 2m}	$d_{k, 1, 2m+1}$
				2	-d*, 1, 2m+1	d*, 1, 2m
				3	$d_{k, 2, 2m}$	$d_{k, 2, 2m+1}$
4	8-15 2 2		2	1	$d_{k, 1, 2m}$	d _{k, 1, 2m+1}
				2	-d** -d** -1, 2m+1	$d_{k, 1, 2m}^*$
				3	$d_{k, 2, 2m}$	$d_{k, 2, 2m+1}$
				4	$-d_{k,2,2m+1}^*$	d*, 2, 2m
4	16-23, 39, 41, 43, 46, 48, 50	3	1	1	$d_{k, 1, 2m}$	$d_{k, 1, 2m+1}$
				2	$-d_{k,1,2m+1}^*$	d*, 1, 2m
				3	d _{k, 2, 2m}	$d_{k, 2, 2m+1}$
				4	d _{k, 3, 2m}	d _{k, 3, 2m+1}

Spatial Mapper

将空时流映射到发送链路。映射方法包括:

直接映射:将 Nsts 个空时流直接、一对一的映射到发送链路。 Nsts = Ntx

空间扩展: N_{STS} 个空时流输出的星座点构成一个 N_{STS} 维向量,将该向量与一个固定矩阵相乘后,扩展为 N_{TX} 维向量,输出到各发送链路。此时 $N_{STS} \neq N_{TX}$ 。

波束成形:与空间扩展方法类似, N_{STS} 维向量需要与一个控制矩阵(该矩阵是可调的)相乘,输出到各发送链路。此时 $N_{STS} \neq N_{TX}$ 。波束成形在后面详细介绍。

3.3.4. 信道探测评估

训练序列

PPDU 的帧头中包含 HT-STF 域和 HT-LTF 域。HT-STF 域用于接收端进行自动增益控制 (AGC) 和时钟锁定,HT-LTF 域用于接收端评估信道,该信道包括从发送端 spatial mapper

福建星网锐捷网络有限公司

的输入到接收端 spatial mapper 的输出。

有两类 HT-LTF: Data HT-LTF 和 Extension HT-LTF。DLTF 是 HT 帧中必有的域,用于接收端进行信道评估,以准确地对数据区进行解调,DLTF 的数量可能为 1,2 或 4,取决于发送端的空时流数目;ELTF 适用于发送链路数目大于空时流数目的场合,以对信道更多分量进行评估,ELTF 的数量可能为 1,2 或 4,取决于额外的发送链路数目。如果 $N_{TX} = N_{STS}$,则 HT-LTF 的数目等于 N_{STS} (当 N_{STS} = 3 时例外,此时有 4 个 LTF);如果 $N_{TX} > N_{STS}$,则 HT-LTF 数目大于 N_{STS} ,则需要 ELTF 进行额外的评估。

探测帧 (Sounding) 评估

采用训练序列进行信道评估包含在每个普通帧中,而探测帧评估则是收发双方通过发送专用的帧完成信道评估。从这个意义上说,探测帧评估一定程度上增加了传输开销;但在 NTx>Nsrs 的情况下,探测帧评估可以更全面的对信道进行探测,提高传输质量。

探测帧通过将 SIG 字段中的 Not Sounding 域置 0 来表征,一个探测帧的帧头中可以有足够多的 HT-LTF 域(\ge N_{TX});一般说来,探测帧将采用 Extension HT-LTF 域来传输足够多的 HT-LTF,但在采用 NDP(Null Data Packet)形式的探测帧时除外。

NDP 探测帧通过将 Not Sounding 域置 0 和将 Length 域置 0 来表征,NDP 没有数据域,以最大程度上缩减帧长度,收发双发可以互相交换若干个 NDP 帧以充分完成信道评估。

3.3.5. 波束成形 (BeamForming)

波束成形是指:发送端利用其获取的信道数据调整其发射控制矩阵,以使在接收端获得最优的接收性能。波束成形可以改善信道的多径衰落,提高一定距离下的传输速率。

典型的MIMO信道如下所示,具备 NTX 个发送链路, NRX 个接收链路。

Figure n75—The beamforming MIMO channel model

对于第k个副载波:

定义发送向量: $X_k = [x_1, x_2, \dots, x_{Ntx}]^T$,定义接收向量: $Y_k = [y_1, y_2, \dots, y_{Nrx}]^T$,则信号传输过程可以用下式表示:

 $Y_k = H_k X_k + n$

福建星网锐捷网络有限公司

其中 Hk 为信道特性矩阵, n为高斯白噪声。

当采用波束成形技术时,STBC 编码器的输出首先会与一个控制矩阵 Q_k 相乘,体现在传输方程中如下:

$$Y_k = H_k Q_k X_k + n$$

发送端通过获取 H_k 来调整 Q_k ,使得接收端的信号最优化,即为波束成形。波束成形有多种方法,根据获取 H_k 的方法不同,以及计算 Q_k 的方法不同。

接收端必须向发送端反馈其所测量到的信号参数,以便发送端计算 H_k 。反馈的方式有两种: 隐式反馈和显式反馈。

隐式反馈

隐式反馈的波束成形基于时分双工(TDD)信道的互易性,2个方向的信道特性完全互易。一个站通过对接收信号的评估,决定自己的发送设置。根据上图,站A需要对A to B的发送进行波束成形,隐式反馈的过程由A(beamformer)发起,通过将HT帧头中的TRQ域置1来告知B (beamformee)发送探测帧; B向A发送探测帧,从而A对B to A的信道进行评估,得到针对每个副载波k的信道传输矩阵 $H_{BA,k}$ 。根据TDD信道的互易性,A to B信道的传输矩阵是B to A信道传输矩阵的转置,即:

$$H_{AB, k} = H^T_{BA, k}$$

站A以此获得A to B的传输特性,进而可以计算控制矩阵 Q_k ,完成波束成形。

隐式反馈包括2种类型:单向隐式反馈和双向隐式反馈。其区别在于前者只有beamformer 发送经过波束成形的帧,一次隐式反馈过程只能完成beamformer的调整;而后者beamformer 和beamformee均发送经过波束成形的帧,一次隐式反馈过程可以同时完成beamformer和 beamformee的调整。具体流程参见下图。

福建星网锐捷网络有限公司

双向隐式反馈过程

值得注意的是,即使2个站之间的空间信道是互易的,但是2者基带收发器之间的信道却不一定满足互易,射频收发链路特性的不一致破坏了信道的互易性,使得隐式反馈的效果不令人满意。over-the-air校准过程可以恢复互易性,它提供了一个机制,使得发送端可以计算出一组校正矩阵,修正发送链路的幅度和相位特性与对端的接收链路一致,当两端的发送链路均进行矫正之后,基带收发器之间的信道便恢复了互易性。

下图是2个站基带收发器之间的通讯示意图

- 1) A向B发送探测帧,B计算整个链路的特性矩阵
- 2) B向A发送探测帧,A计算整个链路的特性矩阵
- 3) B将特性矩阵编码后传送给A
- 4) A将从B获取的特性矩阵和自身计算的特性矩阵比较,计算出矫正矩阵。
- 5) B如法炮制,计算出自己的矫正矩阵。

显式反馈:

显式反馈过程,beamformer根据从beamformee收到的反馈信息来计算控制矩阵。之所以叫显式反馈,是由于草案定义了专门的帧(管理类型帧)来传输反馈数据。反馈信息分为三种格式:信道状态信息(Channel State Information),非压缩波束成形矩阵(Non-compressed beamforming matrices),压缩波束成形矩阵(Compressed beamforming matrices)

具体过程是:发送端向接收端发送探测帧,接收端根据收到的信号对信道进行评估,形成信道状态数据或波束成形反馈矩阵,将其反馈给发送端,发送端以此计算控制矩阵完成波束成形。

福建星网锐捷网络有限公司

反馈帧有3种类型,如下:

CSI 矩阵反馈

Beamformee 向 beamformer 反馈信道传输特性矩阵 H_{eff} ,beamformer 以此计算控制矩阵,具体计算方法参见标准。 H_{eff} 包括从发送端 Spacial Mapper 的输入,到接收端 FFT 的输出之间通道的传输特性。

非压缩矩阵反馈

Beamformee首先将接收信号中的循环移位扩展去掉,然后计算出一个波束成形矩阵,将 此矩阵传输到beamformer。

压缩矩阵反馈

与非压缩矩阵反馈的区别是,在传输前先将波束成形矩阵压缩以节省传输时间。

3.4.OFDM 改进

802.11 原始标准的 DSSS 扩频方式采用 11 位扩频码组成一个符号,每个符号时间为 1us,每个符号携带 1bit 或 2bit 数据,对应调制方式为 BPSK 或 QPSK,对应 1Mbps 和 2Mbps 的速率。802.11b 改进了 DSSS,提供 CCK 调制方式,8 位扩频码组成一个符号,每个符号时间为 8/11 us,每个符号携带 4bit 或 8bit 数据,调制方式仍然为 BPSK 或 QPSK,对应 5.5Mbps 和 11Mbps 速率。

802.11a 和 802.11g 采用 OFDM 扩频方式,采用 48 个副载波传输数据,每个符号时间为 4us,其中包括 3.2us 的 FFT 积分时间和 0.8us 的防护时间。对于 54Mbps 的速率,每个符号 需要携带 216bit 有效数据,加上额外 72bit 的 FEC (前向纠错码,3/4 码速),平均分配到 8 个副载波上,每个副载波需要携带 8bit 数据,采用 64-QAM 调制方式。

802.11n 仍采用 OFDM 扩频方式, 其基本操作仍采用 4us 符号时间, 最高调制方式仍采用 64-QAM, 引入了 2 项提高传输速率的措施: 将 20MHz 信道的副载波数量由 48 个提高到 52 个; FEC 的编码速率提供了 5/6 选项, 比原最高速率 3/4 有一定提高。

另外,802.11n 提供了缩短防护时间的机制,即将防护时间由 0.8us 降低为 0.4us——SGI (Short Guard Interval)。

3.4.1. 副载波增加

与802.11a 和11g 相同,11n 的副载波频率间隔也为0.3125MHz,20MHz的频带内共有60个副载波,但是并不是所有的副载波均可以传输数据——1、两个相邻的频带需要频率间隔;2、OFDM需要若干个副载波作为导频用于时钟同步;3、副载波0在解调后会产生直流分量也不适于传递数据。

11a/g 在 20MHz 的带宽内划分为 52 个副载波, 其中 4 个作为导频, 48 个传递数据; 11n 进一步缩减了频带间隔, 划分为 56 个副载波, 其中 4 个作为导频, 52 个传递数据。因此, 与 11a/g 相比, 11n 增加了 4 个用于传递数据的副载波。

福建星网锐捷网络有限公司

3.4.2. FEC 编码速率提高

FEC(Forward Error Correction)是在11a中引入的纠错编码机制,防止信道的快衰落导致误码,当发生错位的数量不多、并且比较分散的情况下,译码器可以进行纠错。11g和11n继承了这种编码机制。

FEC采用的是2进制卷积码,基本编码速率为1/2,即增加1倍的冗余位用于纠错;可以通过编码收缩(puncturing)提高编码速率,即按照一定的规律舍弃一些冗余位,但带来的是纠错能力的降低,因此需要根据信道的质量选择合适的编码速率。11a和11g提供1/2,2/3和3/4三种编码速率;11n中MIMO技术的引入大大提高了抗衰落能力,FEC提供最高5/6的编码速率。

3.4.3. 短防护间隔(SGI)

防护间隔是OFDM调制方式所必需的,是指在相邻的2个符号之间增加一段时间的间隔,防止出现符号间干扰。符号间干扰的原因是多径效应带来的时延扩展——前一个符号的延迟导致与后一个符号的重叠,如下图。防护间隔是一段信号静默期,间隔的长度与时延扩展的长度有关,实际环境的时延扩展约40~70ns,某些极端环境下可达200ns。通常选择防护间隔为时延扩展的2~4倍,802.11a和g选择800ns的防护间隔。

802.11n要求必须支持的防护间隔也为800ns,但是提供了更小防护间隔的选项——400ns,此时OFDM符号时间由4ns缩减为3.6ns,提高了传输效率。

3.5. 带宽扩充

802.11 原始标准和 802.11b 标准均规定采用 22MHz 带宽信道,802.11a 和 802.11g 标准规定采用 20MHz 信道,但 802.11g 是 802.11 和 802.11b 的扩展,故仍按照 22MHz 的带宽划分信道。由于频谱属于稀缺资源,提高频谱的利用率是各项技术改进的目标。衡量频谱利用率采用每 Hz 传输的 bit 数,据此,802.11b 的频谱利用率最大为 0.5bit/Hz,802.11a 和 802.11g 的频谱利用率最大为 27bit/Hz。某些 11g 产品声称具备 108Mbps 的带宽,实际上是采用了 2个信道聚合传输,占用 40MHz 的带宽,其频谱利用率并没有提高,仍然为 27bit/Hz。

802.11n 基本操作带宽仍为 20MHz,但提供 40MHz 聚合传输的机制。与 802.11g 的 40MHz 传输独立采用 2 个 20MHz 信道不同,802.11n 的 40MHz 带宽操作将 2 个 20MHz 合并,提高了频谱利用率。

802.11n 将 2 个相邻的 20MHz 信道合并后,充分利用了两个信道之间的频谱资源,这部分原来是闲置的、为防止信道干扰设置的隔离频带,802.11n 将这部分频谱用来传输信息,与 20MHz 带宽采用 52 个子载波相比,40MHz 带宽具备 108 个子载波,从而将传输速度提高一倍以上。

频道合并示意图如下:

40MHz 带宽要求

40MHz 带宽信道由 2 个相邻的 20MHz 带宽信道组成,分别叫主信道(Primary)和副信道(Secondary)。一个 STA 与 AP 联接时,会互相通告所支持的带宽,在一个支持 40MHz 带宽的 BSS 中,STA 可以同时占用主信道和副信道进行 40MHz 传输,也可以只占用主信道进行 20MHz 的传输,但不能只占用副信道进行 20MHz 的传输。

主信道和副信道有各自的 CCA,但副信道的 CCA 受主信道状态的影响:要求当主信道被占用时,副信道的 CCA 也必须保持忙状态;当副信道被占用时,副信道的 CCA 也必须保持忙状态,而主信道 CCA 不必保持忙状态。当 STA 的主信道 CCA 报告信道空闲,则该 STA 可以开始一个发送机会(TXOP),如果此时副信道 CCA 也报告信道空闲并持续了至少一个 PIFS 时间,则该 STA 可以发起 40MHz 传输;如果此时副信道忙活着空闲时间不足一个 PIFS,则只能在主信道进行 20MHz 传输。

关于虚拟载波侦听,要求40MHz设备无论在主信道上接收到20MHz传输的帧,还是接收到40MHz传输的帧,均需根据帧的Duration/ID域更新自己的NAV。

3.6. PHY 保护机制

对 802.11a/b/g 设备的兼容是 802.11n 草案的强制要求。与 802.11g 标准对 802.11b 标准的兼容一样,802.11n 也提供了一系列保护机制,以保证旧有标准的设备在 802.11n 网络中可以正常运行。

802.11n 保护机制采用 HT-mixed 格式的物理层帧,具备 HT-mixed 帧头和 802.11n 格式的数据域,HT-mixed 帧头包括 non-HT 域和 HT 域,前者可以被旧有标准的设备识别,得知信道上有帧在传输以及传输将持续的时间;而 HT 域则是用于 11n 数据域接收的帧头。

除mixed帧头以外,11n也采用CTS-to-self的方式实现保护,该方式是沿用了11g标准中的规定,详细参见11g相关白皮书。

新加入的STA从AP的Beacon帧或probe response帧中的HT信息域中得知该网络中是

福建星网锐捷网络有限公司

否存在非HT的STA,以此决定是否采用保护机制。

当 11n 的网络中加入了旧有标准的设备,一方面 PHY 保护机制(mixed 帧头和反身 CTS) 会增加传输开销,另一方面传输相同的帧,旧有标准设备所耗时间大于 11n 设备,因此大大降低了 11n 网络的性能;鉴于目前旧有标准设备主要是 11b 和 11g 客户端,因此可以将 2.4G的 11n 网络和 5G的 11n 网络重叠覆盖,5G 频段的网络可以充分发挥 11n的带宽优势。

4. 附录

4.1. 各种技术对速率提升的贡献

各项技术对提高传输速率的贡献如下:

子载波数目增加: 802.11g 采用的 OFDM 机制采用 48 个子载波传输数据, 4 个子载波作为导频; 而 802.11n 将 52 个子载波全部用来传输数据。从而将速率提高了 8.33%。

FEC 效率提升: 802.11g 采用的 FEC 最大编码速率为 3/4. 802.11n 进一步剔除了冗余位,将编码速率提升为 5/6,从而将速率提高了 11.11%。

防护时间缩短: 802.11g 在 OFDM 码元之间采用 800ns 的防护时间。802.11n 将该防护时间缩短为 400ns。此举将符号时间从 4us 降低为 3.6us,从而将速率提高了 11.11%.

MIMO: MIMO 技术实现了空间复用,从而数倍地提高了传输速率。802. 11n 可以支持 $2\sim4$ 个流的空间复用,最大将速率提高 300%!

40 MHz 频道宽度: 之前的 802. 11 标准均采用 20MHz 的频道宽度。 802. 11n 可以支持 40MHz 的频道宽度,频道宽度加倍所带来的速率提升不止加倍。这是因为 40MHz 信道将原来用于隔离 2 个 20MHz 信道的频率间隔也利用起来,从而额外增加了 4 个子载波。与 20MHz 带宽采用 52 个子载波相比,40MHz 带宽具备 108 个子载波。此举将速率提高 107. 7%!

如果上述措施均充分采用,最终带来的速率是:

Rate max=54Mbps*1.0833*1.1111*1.1111*4.0000*2.069=597.68 Mbps !

需要注意的是:

上述各种措施在一个系统中不一定全部采纳,而且根据传输距离的不同和信道质量的变化,信号的编码和调制方式也会变化,802.11n系统提供了比之前技术多得多的速率选项。

上述计算仅涉及了物理层比特率的提升,考虑到 802.11n MAC 层协议的改进,实际的有效数据率可进一步提升。

福建星网锐捷网络有限公司

4.2.802.11n MCS 一览表

- 1) 802.11n 的 MCS 共 77 组,索引从 MCS0 \sim MCS76,区分 MCS 的参数有空间流数目、调制方式和编码速率。
- 2) MCS0~MCS31 是基本 MCS, 其各空间流采用相同的调制方式; MCS33~MCS76 是一种混合的 MCS, 各空间流采用不同的调制方式; MCS32 是一个特殊的 MCS, 用于 40MHz 带宽时的全双工传输。目前常用的是 MCS0~MCS31, 而主流芯片供应商提供的是 MCS0~MCS15.
- 3)每个 MCS 还存在 800ns GI 或 400ns SGI 的应用,以及 20MHz 或 40MHz 带宽的应用。应用方式不同,其支持的速率也不同。

本附录列出 MCS0~MCS31 各种应用下的参数表,其余 MCS 不列出,如有需要可参考草案文本。

Table n82—Rate dependent parameters for mandatory 20 MHz, N_{SS} =1 MCSs, N_{ES} = 1

Mos			N _{BPSCS} (i _{SS})					Data ra	te (<u>Mb/</u> s)
MCS Index	Modulation	R		N _{SD}	N _{SP}	N _{CBPS}	N _{DBPS}	800 ns GI	400 ns GI see NOTE
0	BPSK	1/2	1	52	4	52	26	6.5	7.2
1	QPSK	1/2	2	52	4	104	52	13.0	14.4
2	QPSK	3/4	2	52	4	104	78	19.5	21.7
3	16-QAM	1/2	4	52	4	208	104	26.0	28.9
4	16-QAM	3/4	4	52	4	208	156	39.0	43.3
5	64-QAM	2/3	6	52	4	312	208	52.0	57.8
6	64-QAM	3/4	6	52	4	312	234	58.5	65.0
7	64-QAM	5/6	6	52	4	312	260	65.0	72.2
NOTE—S	upport of 400 ns g	guard in	iterval is options	l on tra	nsmit ar	nd receive			

Table n83—Rate-dependent parameters for optional 20 MHz, N_{SS} = 2 MCSs, N_{ES} = 1

2500	Modulation		N _{BPSCS} (i _{SS})					Data rat	te (Mb/s)
MCS Index		R		N _{SD}	N _{SP}	N _{CBPS}	N _{DBPS}	800 ns GI	400 ns GI See NOTE
8	BPSK	1/2	1	52	4	104	52	13.0	14.4
9	QPSK	1/2	2	52	4	208	104	26.0	28.9
10	QPSK	3/4	2	52	4	208	156	39.0	43.3
11	16-QAM	1/2	4	52	4	416	208	52.0	57.8
12	16-QAM	3/4	4	52	4	416	312	78.0	86.7
13	64-QAM	2/3	6	52	4	624	416	104.0	115.6
14	64-QAM	3/4	6	52	4	624	468	117.0	130.0
15	64-QAM	5/6	6	52	4	624	520	130.0	144.4
NOTE-T	he 400 ns GI rate	values :	are rounded to 1	decima	l place				

Table n84—Rate-dependent parameters for optional 20 MHz, N_{SS} = 3 MCSs, N_{ES} = 1

MCS	Madulation	R	N a	N	N.	N.	ν.	Data rate (<u>Mb/</u> s)	
Index	Modulation	K	N _{BPSCS} (i _{SS})	N _{SD}	N _{SP}	N _{CBPS}	N _{DBPS}	800 ns GI	400 ns GI
16	BPSK	1/2	1	52	4	156	78	19.5	21.7
17	QPSK	1/2	2	52	4	312	156	39.0	43.3
18	QPSK	3/4	2	52	4	312	234	58.5	65.0
19	16-QAM	1/2	4	52	4	624	312	78.0	86.7
20	16-QAM	3/4	4	52	4	624	468	117.0	130.0
21	64-QAM	2/3	6	52	4	936	624	156.0	173.3
22	64-QAM	3/4	6	52	4	936	702	175.5	195.0
23	64-QAM	5/6	6	52	4	936	780	195.0	216.7

Table n85—Rate-dependent parameters for optional 20 MHz, N_{SS} = 4 MCSs, N_{ES} = 1

MCS		_	N _{BPSCS} (i _{SS})			.,	ι,	Data rat	te (Mb/s)
Index	Modulation	R		N _{SD}	N _{SP}	N _{CBPS}	N _{DBPS}	800 ns GI	400 ns GI ¹
24	BPSK	1/2	1	52	4	208	104	26.0	28.9
25	QPSK	1/2	2	52	4	416	208	52.0	57.8
26	QPSK	3/4	2	52	4	416	312	78.0	86.7
27	16-QAM	1/2	4	52	4	832	416	104.0	115.6
28	16-QAM	3/4	4	52	4	832	624	156.0	173.3
29	64-QAM	2/3	6	52	4	1248	832	208.0	231.1
30	64-QAM	3/4	6	52	4	1248	936	234.0	260.0
31	64-QAM	5/6	6	52	4	1248	1040	260.0	288.9

Table n86—Rate-dependent parameters for optional 40 MHz, N_{SS} = 1 MCSs, N_{ES} = 1

MCS	35.3.3.4	_	N _{BPSCS} (i _{SS})	N:	N	Nonne		Data rate (Mb/s)	
Index	Modulation	R		N _{SD}	N _{SP}	N _{CBPS}	N _{DBPS}	800 ns GI	400 ns GI
0	BPSK	1/2	1	108	6	108	54	13.5	15.0
1	QPSK	1/2	2	108	6	216	108	27.0	30.0
2	QPSK	3/4	2	108	6	216	162	40.5	45.0
3	16-QAM	1/2	4	108	6	432	216	54.0	60.0
4	16-QAM	3/4	4	108	6	432	324	81.0	90.0
5	64-QAM	2/3	6	108	6	648	432	108.0	120.0
6	64-QAM	3/4	6	108	6	648	486	121.5	135.0
7	64-QAM	5/6	6	108	6	648	540	135.0	150.0

Table n87—Rate-dependent parameters for optional 40 MHz, N_{SS} = 2 MCSs, N_{ES} = 1

MCS	Modulation	R	v	N.	N.	.,		Data rat	e (Mb/s)
Index			N _{BPSCS} (i _{SS})	N _{SD}	N _{SP}	N _{CBPS}	N _{DBPS}	800 ns GI	400 ns GI
8	BPSK	1/2	1	108	6	216	108	27.0	30.0
9	QPSK	1/2	2	108	6	432	216	54.0	60.0
10	QPSK	3/4	2	108	6	432	324	81.0	90.0
11	16-QAM	1/2	4	108	6	864	432	108.0	120.0
12	16-QAM	3/4	4	108	6	864	648	162.0	180.0
13	64-QAM	2/3	6	108	6	1296	864	216.0	240.0
14	64-QAM	3/4	6	108	6	1296	972	243.0	270.0
15	64-QAM	5/6	6	108	6	1296	1080	270.0	300.0

Table n88—Rate-dependent parameters for optional 40 MHz, N_{SS} = 3 MCSs

MCS	M. L.L.	,	N _{BPSCS} (i _{SS})		ζ.	ν.	.,	.,	Data rat	e (<u>Mb/</u> s)
Index Mod	Modulation	R		N _{SD}	N _{SP}	N _{CBPS}	N _{DBPS}	NES	800 ns GI	400 ns GI
16	BPSK	1/2	1	108	6	324	162	1	40.5	45.0
17	QPSK	1/2	2	108	6	648	324	1	81.0	90.0
18	QPSK	3/4	2	108	6	648	486	1	121.5	135.0
19	16-QAM	1/2	4	108	6	1296	648	1	162.0	180.0
20	16-QAM	3/4	4	108	6	1296	972	1	243.0	270.0
21	64-QAM	2/3	6	108	6	1944	1296	2	324.0	360.0
22	64-QAM	3/4	6	108	6	1944	1458	2	364.5	405.0
23	64-QAM	5/6	6	108	6	1944	1620	2	405.0	450.0

Table n89—Rate-dependent parameters for optional 40 MHz, N_{SS} = 4 MCSs

MCS	W. J. J. J.			ζ.	.				Data rat	e (Mb/s)
Index No	Modulation	R	N _{BPSCS} (i _{SS})	N _{SD}	N _{SP}	N _{CBPS}	N _{DBPS}	NES	800 ns GI	400 ns GI
24	BPSK	1/2	1	108	6	432	216	1	54.0	60.0
25	QPSK	1/2	2	108	6	864	432	1	108.0	120.0
26	QPSK	3/4	2	108	6	864	648	1	162.0	180.0
27	16-QAM	1/2	4	108	6	1728	864	1	216.0	240.0
28	16-QAM	3/4	4	108	6	1728	1296	2	324.0	360.0
29	64-QAM	2/3	6	108	6	2592	1728	2	432.0	480.0
30	64-QAM	3/4	6	108	6	2592	1944	2	486.0	540.0
31	64-QAM	5/6	6	108	6	2592	2160	2	540.0	600.0