ITMO

Рассуждения об общей и дифференциальной топологии, а также о дифференциальной геометрии

Магазенков Е. Н. Попов А.М.

 ${
m Cankt-}\Pi$ етербург 2024

ОГЛАВЛЕНИЕ

Глава 1.	Общая топология	1
§ 1	Основные определения	2
	1 Топология и топологическое пространство	2
	2 База топологии	4
	Метрика и ее связь с топологией	5
	4 Топология на подпространстве	7
	5 Топология произведения	8
	6 Расположение точек относительно множества	8
	7 Последовательности	.0
§ 2	Непрерывные отображения	. 1
	1 Непрерывность	.1
	2 Гомеоморфизм	3
	(3) Примеры гомеоморфизмов	.4

Глава 1 **Общая топология**

Невозможна реальность, которая была бы полностью независима от ума, постигающего её.

Анри Пуанкаре французский математик, один из основоположников топологии

Данная глава посвящена некоторому введению в раздел математики, называющийся топологией. Говоря простыми словами, можно описать вопросы, на которые отвечают топологи, как некий анализ объектов на основе лишь их формы и свойств, без опоры на такие характеристики как длины, углы, площади и т.д. При этом оказывается, что такой взгляд на пространства (будем честны – именно вокруг понятия топологического пространства будут крутиться дальнейшие рассуждения) появляется повсеместно в кардинально различных сферах математики, в том числе и в курсах математического анализа, с которыми читатель уже наверняка знаком.

При этом в названии главы также есть слово *общая*. В понятие общей топологии мы будем включать то, что часто еще называют элементарной топологией; ту часть всей науки, которая практически стала большой частью общематематического языка; ту часть, которая является некоторой базой в изучении всей топологии и построена, в большинстве, на введении понятий и рассмотрении некоторых свойств. Можно сказать, что мы представляем здесь свод некоторых правил (состоящий из определений и связывающих их лемм, теорем, утверждений), регулирующих поведение внутри данных пространств. А такими пространствами является практически любое, известное вам пространство.

§ 1. Основные определения

1 Топология и топологическое пространство

Определение (Топология)

Рассмотрим произвольное множество X. Множество его подмножеств Ω называется топологией, если выполнен следующий набор свойств:

- 1. $\emptyset \in \Omega, X \in \Omega$;
- 2. $\forall U, V \in \Omega \implies U \cap V \in \Omega$;
- 3. $\forall \alpha \in \mathcal{A} \ U_{\alpha} \in \Omega \implies \bigcup_{\alpha \in \mathcal{A}} U_{\alpha} \in \Omega.$

Расшифровывая данное определение, можно просто запомнить, что пустое и всё множество лежат в топологии (1-ое свойство), конечное пересечение множеств топологии лежит в топологии (2-ое свойство) и любое объединение множеств топологии лежит в топологии (3-ье свойство).

Замечание

Такое определение появилось неслучайно. Дело в том, что топология как наука создавалась достаточно поздно (в истории развития математики). Поэтому в других частях математики (особенно в матанализе) уже были построены некоторые идеи, которые при развитии топологии хотелось оставить действующими и в ней ради целостности математики.

Скорее всего, именно поэтому лишь конечное пересечение лежит в топологии. Ведь в матанализе нетрудно найти пример, в котором достаточно хороший набор подможеств – интервалы – не содержит в себе какое-то бесконечное пересечение.

Упражнение

Попробуйте самостоятельно подобрать такой бесконечный набор интервалов, пересечение которого не будет являться интервалом.

Понятно, что топология Ω не существует отдельно от множества **X**. Поэтому правильнее будет рассматривать именно пару множество-топология, которая образует пространство.

Определение (Топологическое пространство)

Пара (X, Ω_X) множества X с введенной топологией Ω_X называется топологическое пространство.

Замечание

Так как большая часть последующих размышлений посвящена топологическим пространствам, то часто в дальнейшем мы будем опускать пару множествотопология и ограничимся лишь чуть более жирным написанием исходного множества $-\mathbf{X}$.

То есть под X стоит понимать как само множества, так и топологическое пространство (X, Ω_X) .

Приведем пример самых наивных топологий:

- 1. $(X, \{\varnothing, X\})$ антидискретная топология, состоящая из двух элементов
- 2. $(X,2^X)$ дискретная топология, из всех подмножества множества X

Пример

Рассмотрим пример, так называемой, стандартной топологии, постоянно использующейся в одномерном математическом анализе. Пусть в качестве множества X будет числовая прямая \mathbb{R} , а в качестве топологии Ω_{st} будет пустое множество и всевозможные объединения интервалов. Коротко это можно записать

$$(\mathbb{R}, \{ \cup (a, b) : a, b \in \mathbb{R} \})$$

Упражнение

Проверьте свойства топологии из определения для предложенных примеров.

На самом деле стандартную топологию можно также задать и для \mathbb{R}^n . Об этом поговорим позже в пункте про индуцированные метрикой топологии.

Следующие определения просто вводят новые названия уже существующим объектам. Тем не менее, это необходимо из-за постоянного обращения к этим объектам в будущем.

Определение (Открытые и замкнутые множества)

Пусть дано некоторое топологическое пространство (X, Ω_X) .

- 1. Элементы топологии Ω_X будем называть открытыми множествами,
- 2. Множества $X \setminus U$, где $U \in \Omega_X$, будем называть замкнутыми множествами.

Замечание

Заметьте, что открытые и замкнутые множества (как и в русском языке слова открытое и замкнутое) вовсе не являются противоположными. Так, множество может быть

- u открытым, u замкнутым, как пустое и X (но не всегда только они),
- $om\kappa p u m u M$, но не замкнутим, как интервал в $(\mathbb{R}, \Omega_{st})$,
- замкнутым, но не открытым, как отрезок в $(\mathbb{R}, \Omega_{st})$,
- ни замкнутым, ни открытым, как полуинтервал в $(\mathbb{R}, \Omega_{st})$.

Замечание

На самом деле открытые и замкнутые множества являются даже весьма схожими объектами. Так, топологию можно определять через замкнутые множества. Для этого нужно немного модернизировать определение:

Рассмотрим совокупность Ω подмножеств множества X, для которой

- 1. $\varnothing \in \tilde{\Omega}, X \in \tilde{\Omega}$ эти условия никак не меняются (ведь мы знаем, что эти множества одновременно открыты и замкнуты),
- $2. \ \forall F, G \in \tilde{\Omega} \implies F \cup G \in \tilde{\Omega}.$
- 3. $\forall \alpha \in \mathcal{A} F_{\alpha} \in \tilde{\Omega} \implies \bigcap_{\alpha \in \mathcal{A}} F_{\alpha} \in \tilde{\Omega}.$

Тогда $\tilde{\Omega}$ описывает всевозможные замкнутые множества X, а топологией можно назвать $\Omega = \left\{ A \subset X \ : \ X \setminus A \in \tilde{\Omega} \right\}.$

Замечание

В дальнейшем, мы будем использовать пару значков, чтобы сделать записи в доказательствах более удобными. Договоримся:

- $U \subseteq X$ будет означать, что U открыто в \mathbf{X} ,
- \bullet $F \subseteq X$ будет означать, что F замкнуто в ${\bf X}$

(2) База топологии

Мы примерно разобрались с тем, что такое топология. Однако у нас до сих пор нет никакого способа описания топологического пространства, не описывая всевозможные открытые множества. По этой причине предлагается следующий объект, позволяющий описать некоторую часть топологии, которой будет достаточно для восстановления всей структуры.

Определение (База топологии)

Назовем совокупность $\mathbb B$ открытых множеств $\mathbf X$ базой топологии $(X,\,\Omega_X)$, если всякое непустое открытое множество этой топологии можно представить в виде объединения элементов этой совокупности.

Пример

Так в качестве базы стандартной топологии можно рассмотреть множество всевозможных интервалов с вещественными концами.

$$\mathbb{B}_{st} = \{(a,b) : a,b \in \mathbb{R}\}.$$

Аналогично, можно рассмотреть только интервалы с рациональными концами. Такое множество тоже будет базой.

Упражнение

Подумайте, могут ли различные топологические структуры иметь базу?

Можно заметить, что какие-то базы могут порождать одни и те же топологии. Для различия баз определим, когда можно говорить про базы, как про одинаковые объекты.

Определение (Эквивалентные базы)

Базы называются эквивалентными, если они порождают одну и ту же топологию.

(3) Метрика и ее связь с топологией

Наверняка вы уже встречались ранее с понятием метрики на различных курсах по математике (а может и не только). Однако для строгости изложения и в целях напоминания приведем некоторые отрывки из теории метрических пространств.

Определение (Метрика)

Функция $\rho:X\times X\to\mathbb{R}$ называется метрикой, если выполнено

- 1. $\rho(x,y) = 0 \Leftrightarrow x = y$,
- 2. $\forall x, y \ \rho(x, y) = \rho(y, x),$
- 3. $\forall x, y, z \ \rho(x, y) + \rho(y, z) \geqslant \rho(x, z)$.

Определение (Метрическое пространство)

Множество X и метрика ρ на нём образуют метрическое пространство (X, ρ) .

Определение (Шары и сферы)

В метрическом пространстве (X, ρ) для точки $a \in X$ и произвольного положительного вещественного числа $r \in \mathbb{R}_+$ вводятся понятия:

1. Открытого шара $B_r(a)$

$$B_r(a) = \{ x \in X : \rho(a, x) < r \},$$

2. Замкнутого шара $\overline{B}_r(a)$

$$\overline{B}_r(a) = \{ x \in X : \rho(a, x) \leqslant r \},\,$$

3. Сферы $S_r(a)$

$$S_r(a) = \{x \in X : \rho(a, x) = r\}.$$

Замечание

Важно понимать, что термины «шар», «сфера» не всегда передают реальную форму шаров и сфер.

Так, как бы странно это не звучало, при разных введенных метриках в \mathbb{R}^2 шар может оказаться квадратом, ромбом (при этом в самом привычном нам случае он в действительности окажется шаром, только двумерным, то есть кругом).

Упражнение

Найдите примеры метрик в \mathbb{R}^2 с разными формами шаров.

Оказывается, что в метрическом пространстве всегда есть одна понятная топология, которую мы будем называть метрической топологией.

Определение (Метрическая топология)

Множество всевозможных шаров некоторого метрического пространства является базой некоторой топологии. Такая топология называется порожденной метрикой топологией или просто метрической топологией.

Простейшим примером такой топологии является стандартная топология. Только теперь мы можем описать ее не только для одномерного случая.

Стандартной топологией для \mathbb{R}^n будем называть топологию, индуцированную евклидовой метрикой.

В метрической топологии можно немного по-другому рассматривать открытость множества. Именно таким образом обычно обходят страшную *топологию* в курсах математического анализа.

Предложение

В порожденной метрикой топологии множество является открытым тогда и только тогда, когда оно содержит каждую свою точку вместе с некоторым шаром, центром которого она является.

Доказательство

 \Rightarrow Пусть множество A открыто. Тогда оно является объединением некоторых шаров $A=\bigcup_{r_{\alpha}}B_{r_{\alpha}}(y_{\alpha}).$

Для произвольной точки $x\in A$ найдем тот из этих шаров, которому она принадлежит. Пусть это просто $B_r(y)$. Тогда шар $B_{r-\rho(x,y)}(x)$, где ρ – метрика, является искомым.

 \Leftarrow Рассмотрим для каждой точки x шар $B_r(x)$ из условия. Тогда $\bigcup_{x \in A} B_r(x) = A$ и при этом, так как все шары открыты, то это объединение открытых множеств — а значит открытое.

Упражнение

Проверьте, что замкнутые шары являются замкнутыми множествами, а открытые шары – открытыми множествами.

Некоторые топологические пространства могут быть порождены метрикой, даже если мы этого не подозреваем (или просто определяем без отсылок к ней). Однако такие топологии образуют группу, которая имеет свои преимущества и упрощения перед остальными топологиями.

Определение (Метризуемые пространства)

Топологическое пространство называется метризуемым, если его топологическая структура порождается некоторой метрикой.

Замечание

Отметим, что далеко не все топологии являются метризуемыми. Простейшим (но не самым показательным) примером неметризуемого пространства является антидискретная топология, состоящая из более чем одной точки.

(4) Топология на подпространстве

Можно пробовать строить топологию на основе уже имеющихся. Простейшие варианты мы рассмотрим в ближайших двух пунктах, а более конструктивные способы будут представлены в 7 и 8 параграфах.

Определение (Индуцированная топология)

Рассмотрим некоторое подмножество $A\subset X$ пространства (X,Ω_X) . Совокупность $\Omega_A=\{A\cap U:U\in\Omega_X\}$ является топологией в множестве A. Такую топологию называют индуцированной в A топологией.

Упражнение

Проверьте, что индуцированная топология действительно является топологией по определению.

Предложение

Множество F является замкнутым в подпространстве $A\subset X$ тогда и только тогда, когда $F=A\cap E$, где E – замкнуто в X.

Доказательство

 \Rightarrow Пусть $F \subseteq A$. Тогда $A \setminus F \subseteq A$ и это множество представимо в виде $A \setminus F = A \cap U = A \cap (X \setminus E) = (A \cap X) \setminus (A \cap E) = A \setminus (A \cap E)$, где $U \subseteq X$, $E \subseteq X$. Избавляясь с двух сторон от A, получаем искомое.

 \Leftarrow Пусть $F = A \cap E$. Положим $U = X \setminus E \subsetneq X$. Тогда $A \cap U = A \cap (X \setminus E) = (A \cap X) \setminus (A \cap E) = A \setminus F$. Но $A \cap U \subsetneq A$, а значит и $A \setminus F$. А тогда $F \subsetneq A$.

Замечание

Заметим, что множества, являющиеся открытыми в подпространстве вовсе не всегда открыты в объемлющем пространстве.

Так, рассмотрим стандартную топологию на \mathbb{R} как индуцированную из топологии на \mathbb{R}^2 . Единственным открытым множеством из \mathbb{R} , которое открыто в \mathbb{R}^2 будет пустое множество.

Такое свойство часто называют относительностью открытости.

Однако иногда все же открытость в подпространстве равносильна открытости в объемлющем пространстве. Рассмотрим это в следующем предложении.

Предложение

Открытые множества открытого подпространства являются открытыми и во всем пространстве.

$$A \subseteq \mathbf{X} \implies \forall U \subseteq A \implies U \subseteq \mathbf{X}.$$

или еще проще

$$A \subseteq \mathbf{X} \implies \Omega_A \subset \Omega_X.$$

Доказательство

Пусть $U \subseteq A$. Тогда по определению $U = A \cap V$, где $V \subseteq X$. И получается, что, так как $A \subseteq X$, то U есть объединение двух открытых в X. А значит оно само открыто и $U \in \Omega_X$.

Топология произведения

Вспомните идею при построении декартова произведения множеств. Фактически мы предъявляем упорядоченную пару. Аналогично можно построить топологическое пространство по двум (или нескольким) топологиям.

Определение (Топология произведения)

Рассмотрим два топологических пространства (X, Ω_X) и (Y, Ω_Y) . Тогда на декартовом произведении $X \times Y$ можно рассмотреть топологию, порожденную базой

$$\mathbb{B} = \{ U \times V : U \subseteq X, V \subseteq Y \}$$

Пример

Заметим, что стандартная топология на \mathbb{R}^2 , к примеру, совпадает с топологией произведения стандартных топологий на \mathbb{R} .

(6) Расположение точек относительно множества

Пока у нас нет никакого способа определять открытые множества без разложения в объединение других открытых. Как один из таких вариантов, можно рассматривать различные точки и окрестности вокруг них. На основе этих окрестностей можно определить разные классы точек пространства.

Определение

Пусть (X, Ω_X) — топологическое пространство, $A \subset X$. Точка $b \in A$ называется:

1. внутренней для множества A, если есть окрестность этой точки, полностью лежащая в A

$$b$$
 – внутренняя, если $\exists U \ni b : U \subset A$.

2. внешней для множества A, если есть окрестность этой точки, не пересекающаяся с A

$$b$$
 – внешняя, если $\exists U \ni b : U \cap A = \emptyset$.

3. граничной для множества A, если любая окрестность этой точки, пересекается с A и с $X \setminus A$

$$b$$
 – граничная, если $\forall U \ni b \implies U \cap A \neq \emptyset$ и $U \cap (X \setminus A) \neq \emptyset$.

Понятно, что все внутренние точки образуют некоторое множество. Интересно, что это множество можно задавать и другим способом.

Определение

Пусть (X, Ω_X) — топологическое пространство, $A \subset X$. Внутренностью $\operatorname{Int}(A)$

множества A называется:

- 1. множество его внутренних точек,
- 2. объединение всех открытых множеств, лежащих в A.

Предложение

Определения внутренности эквивалентны.

Доказательство

 \Rightarrow Если точка лежит вместе с некоторой окрестностью, а окрестность в свою очередь лежит в A, то она лежит и в объединении всех открытых множеств, лежащих в A

 \Leftarrow Предположим, что точка x лежит в A с некоторой окрестностью, но не входит в объединение всех открытых множеств лежащих в A. Получаем явное противоречие.

Так как мы увидели, что внутренность является открытым множеством, то появляется способ определения открытых множеств.

Предложение

 $A \subseteq X$ тогда и только тогда, когда $\operatorname{Int}(A) = A$.

Доказательство

 \Rightarrow Обозначим $\mathcal{U}=\{U\in\Omega_X:U\subset A\}$. Так как множество открыто, то $\mathrm{Int}(A)=\bigcup_{U\in\mathcal{U}}U=A$, так как A само одно из этих множеств в объединении.

 \leftarrow Очевидно, так как $\operatorname{Int}(A)$ открыто как объединение открытых.

Аналогично можно ввести понятие внешности.

Говоря про классификацию точек, можно рассмотреть немного другой подход.

Определение

Пусть (X, Ω_X) — топологическое пространство, $A \subset X$. Точка $b \in A$ называется:

1. точкой прикосновения для A, если любая окрестность пересекается с A

$$\forall U \ni b \implies U \cap A \neq \emptyset.$$

2. предельной точкой, если любая проколотая окрестность пересекается с A

$$\forall U \ni b \implies U \cap (A \setminus \{a\}) \neq \emptyset.$$

С такими точками тоже можно ввести некие множества.

Определение

Замыканием $\mathrm{Cl}(A)$ множества $A\subset X$ называется множество его точек прикосновения.

Предложение

Замыкание равно пересечению всех замкнутых множеств, содержащих A.

Предложение

 $A \subseteq X$ тогда и только тогда, когда $\operatorname{Cl}(A) = A$.

Упражнение

Докажите данные утверждения аналогично утверждению про внутренность.

Мы знаем из курса матанализа, что множество рациональных чисел всюду плотно в множестве вещественных. Там это выражалось в смысле: между любыми двумя вещественными числами можно найти рациональное. Однако плотность можно вводить, используя замыкание, для любых пространств.

Определение

Пусть $A, B \subset X$. Говорят, что

- 1. A плотно в B, если $B \subset Cl(A)$
- 2. A всюду плотно в X, если Cl(A) = X.

Пример

Как уже говорилось, \mathbb{Q} всюду плотно в \mathbb{R} . Также \mathbb{I} всюду плотно в \mathbb{R} .

(7) Последовательности

Как и в матанализе, можно рассматривать последовательности из точек пространства. Определение последовательности и предела совершенно не отличается от привычного. Однако оказывается, что, в отличие от стандартной топологии, не всегда предел единственный.

Определение (Последовательность)

Последовательностью в пространстве X назовем отображение $q: \mathbb{N} \to X$.

Определение (Сходящаяся последовательность)

Говорят, что последовательность $\{x_n\}_{n=1}^\infty$ сходится к $a\in X$, если

$$\forall U(a) \subseteq X \implies \exists N \in \mathbb{N} : \forall n > N \implies x_n \in U(a).$$

Пример

Рассмотрим антидискретную топологию на \mathbb{R} и последовательность $\{1\}_{n=1}^{\infty}$. Любое натуральное число является пределом такой последовательности.

Данный пример показывает, что не всегда предел единственный. Мы еще увидим далее, какого свойства будет достаточно для единственности предела.

§ 2. Непрерывные отображения

1 Непрерывность

Замечание

Ниже приведены 4 определения непрерывности отображения. На самом деле наплодить определений можно еще много, тут приведены наиболее распространенные. Более того, отдельной задачей будет показать, что все определения эквиваленты, то есть определяют одно и то же понятие.

Определение

Пусть даны два топологических пространства (X, Ω_X) и (Y, Ω_Y) , а также теоретикомножественное отображение $f: \mathbf{X} \to \mathbf{Y}$.

1. f называется непрерывным в точке $x \in \mathbf{X}$, если

$$\forall\, U(f(x)) \,\, \subsetneq \, \mathbf{Y} \implies \exists\, V(x) \,\, \subsetneq \, \mathbf{X} \,\, : \,\, f(V(x)) \subset U(f(x)).$$

Будем говорить, что f непрерывное, если оно непрерывно в каждой точке \mathbf{X} .

2. Будем говорить, что f непрерывное, если прообраз любого открытого открыт, то есть

$$\forall U \subseteq \mathbf{Y} \implies f^{-1}(U) \subseteq \mathbf{X}.$$

3. Будем говорить, что f непрерывное, если прообраз любого замкнутого замкнут, то есть

$$\forall F \subseteq \mathbf{Y} \implies f^{-1}(U) \subseteq \mathbf{X}.$$

4. Будем говорить, что f непрерывное, если образ замыкания лежит в замыкании образа, то есть

$$\forall A \subset \mathbf{X} \implies f(\operatorname{Cl}(A)) \subset \operatorname{Cl}(f(A)).$$

Соответственно, ниже приведено обещанное утверждение, показывающее, что данные определения определяют одно и то же.

Лемма 1

Определения непрерывности 1-4 эквивалентны.

Доказательство

Докажем в порядке $1 \implies 4 \implies 3 \implies 2 \implies 1$.

 $1 \Rightarrow 4$ Пояснительный рисунок к доказательству смотри на Рис. 1.

Рассмотрим произвольную точку $x \in \operatorname{Cl}(A)$ и произвольную U(f(x)).

Тогда из 1: $\exists V(x) : f(V(x)) \subset U(f(x))$.

Так как x лежит в замыкании A, то $\exists a \in A \cap V(x)$.

A значит $f(a) \in f(A) \cap f(V(x)) \subset f(A) \cap U(f(x))$.

Учётом произвольности выбора окрестности U(f(x)) для любой точки $f(x) \in f(\operatorname{Cl}(A))$ верно, что $f(x) \in \operatorname{Cl}(f)(A)$.

 $Puc.\ 1.\ Пояснительная картинка к переходу <math>1 \implies 4$

 $4 \Rightarrow 3$

Пусть $F \subset Y$, но $f^{-1}(F)$ не замкнуто.

Рассмотрим точку $d \in \operatorname{Cl}(f^{-1}(F)) \setminus f^{-1}(F)$.

Тогда $f(d) \in f(\operatorname{Cl}(f^{-1}(F))) \subset \operatorname{Cl}(f(f^{-1}(F))) = \operatorname{Cl}(F) = F.$

Однако получается, что $d \in f^{-1}(f(d)) \subset f^{-1}(F)$, что противоречит предположению $d \in \operatorname{Cl}(f^{-1}(F)) \setminus f^{-1}(F)$.

А значит исходное предположение было неверно и $f^{-1}(F) \subset X$.

 $3 \Rightarrow 2$

Пусть $F \subseteq Y$. Тогда по 3: $f^{-1}(F) \subseteq X$.

Рассмотрим $U = Y \setminus F \subseteq Y$.

При этом $f^{-1}(U) = f^{-1}(Y \setminus F) = f^{-1}(Y) \setminus f^{-1}(F) = X \setminus f^{-1}(F) \subseteq X$.

To есть $f^{-1}(U) \subseteq X$.

 $2 \Rightarrow 1$

Рассмотрим произвольную точку $x \in X$ и соответствующую ей окрестность $U(f(x)) \subsetneq Y.$

 $\Pi \text{o } 2 \ f^{-1}(U(f(x))) \subseteq X.$

Так как $x \in f^{-1}(U(f(x)))$, то можем рассмотреть $V(x) = f^{-1}(U(f(x)))$.

Лемма 2

Пусть $f: \mathbf{X} \to \mathbf{Y}$ и $g: \mathbf{Y} \to \mathbf{Z}$ — непрерывные отображения.

Тогда отображение $g \circ f : \mathbf{X} \to \mathbf{Z}$ также является непрерывным.

Доказательство

Рассмотрим $U \subseteq \mathbf{Z}$.

Так как g – непрерывное отображение, то $V = g^{-1}(U) \subseteq \mathbf{Y}$.

Так как f – непрерывное отображение, то $O = f^{-1}(V) \subseteq \mathbf{X}$.

При этом получаем, что $O = f^{-1}(g^{-1}(U)) = f^{-1} \circ g^{-1} = (g \circ f)^{-1} \subseteq \mathbf{X}$.

А значит по 2 определению $q \circ f$ непрерывное.

Пример

Отображение id : $X \to X$, что $\forall x \quad id(x) = x$, является непрерывным.

Константное отображение $\mathrm{const}_c: X \to Y \; \mathrm{const}_c(x) = c$ является непрерывным.

Упражнение

Рассмотрим отображение $f:[0,2]\to [0,2],$ $f(x)=\begin{cases} x, & x\in [0,1)\\ 3-x, & x\in [1,2] \end{cases}$. Найди-

те открытое множество, прообраз которого не является открытым

Таким образом, данное отображение не является непрерывным.

Непрерывность – это хорошее свойство, однако оказывается, что, чтобы сравнивать между собой пространства, необходимо более сильное свойство, на которое мы и посмотрим в следующем пункте.

(2) Гомеоморфизм

Определение

Пусть даны два топологических пространства (X, Ω_X) и (Y, Ω_Y) .

- 1. Отображение $f: \mathbf{X} \to \mathbf{Y}$ называется гомеоморфизмом (homeomorphism), если оно биективное, а также f и f^{-1} непрерывные.
- 2. Если между пространствами ${\bf X}$ и ${\bf Y}$ можно построить гомеоморфизм, то такие пространства называют гомеоморфными.

Замечание

Будем обозначать гомеоморфные пространства символом $\stackrel{\text{nomeo}}{\cong}$.

Замечание

Интуитивно, можно воспринимать гомеоморфность двух пространств как возможность деформировать сжатием или растяжением одно пространство в другое (ну и, соответственно, обратно). Важно, что эта деформация происходит без разрезов и склеиваний.

Лемма 3

Отношение $\stackrel{\text{homeo}}{\cong}$ является отношением эквивалентности.

Доказательство

Рассмотрим произвольные топологические пространства $(X, \Omega_X), (Y, \Omega_Y)$ и (Z, Ω_Z) .

- Рефлексивность: $\mathbf{X} \stackrel{^{\mathrm{homeo}}}{\cong} \mathbf{X}$ следует из того, что тождественное отображение непрерывно.
- ullet Симметричность: $\mathbf{X} \overset{\text{homeo}}{\cong} \mathbf{Y} \Longrightarrow \mathbf{Y} \overset{\text{homeo}}{\cong} \mathbf{X}$ следует из того, что гомеоморфизм биективен.
- ullet Транзитивность: $\mathbf{X} \overset{\text{homeo}}{\cong} \mathbf{Y}, \mathbf{Y} \overset{\text{homeo}}{\cong} \mathbf{Z} \Longrightarrow \mathbf{X} \overset{\text{homeo}}{\cong} \mathbf{Z}$ следует из непрерывности композиции.

Таким образом, топологические классы разбиваются на классы эквивалентности.

Во многом, именно интерес в определении гомеоморфности двух пространств и развивал науку топологию.

А так как определение негомеоморфиости двух пространств требует доказательства несуществования гомеоморфизма, что является задачей, которую непонятно как решать, то начали рассматривать некоторые свойства, которые сохраняются при пропускании через любой гомеоморфизм. Это давало возможность находить различия в этих инвариантах и утверждать о негомеоморфности пространств.

Однако интереснейшим вопросом оказалась задача нахождения набора свойств, которым должны удовлетворять два множества, чтобы можно было утверждать, что пространства являются гомеоморфными. И, к сожалению (или, может, к счастью), оказалось, что такого набора инвариантов не существует.

На самые используемые инварианты мы посмотрим в следующих главах, а пока давайте рассмотрим несколько примеров гомеоморфизмов.

Примеры гомеоморфизмов

Пример

$$[0,1] \stackrel{\text{nomeo}}{\cong} [a,b]$$

Построим гомеоморфизм, который легко показать на рисунке (см. Рис. 2) и не менее просто записать явно.

Рис. 2. Пояснительная картинка к построению гомеоморфизма между отрезками

Так, прямое отображение

$$f: [0,1] \to [a,b]$$
$$x \mapsto (b-a)x + a.$$

И обратное

$$g: [a, b] \to [0, 1]$$
$$y \mapsto \frac{y - a}{b - a}.$$

Диск
$$\mathcal{D}^n = \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n x_i^2 \leqslant 1 \right\}$$
 гомеоморфен полусфере $\mathcal{S}^n_+ = \left\{ x \in \mathbb{R}^{n+1} : \sum_{i=1}^n x_i^2 = 1 \land x_{n+1} \geqslant 0 \right\}.$

Построим гомеоморфизм, который можно показать на рисунке (см. Рис. 3), легко понять: нужно просто натянуть диск на полусферу, как кусок резины на поверхность шарика, и не менее просто записать явно.

Puc. 3. Пояснительная картинка к построению гомеоморфизма между диском и полусферой

Так, прямое отображение

$$f: D^n \to S^n_+$$

$$(x_1, \dots, x_{n-1}) \mapsto \left(x_1, \dots, x_{n-1}, \sqrt{1 - \sum_{i=1}^{n-1} x_i^2}\right).$$

И обратное

$$g: S_+^n \to D^n$$

 $(x_1, \dots, x_{n-1}, x_n) \mapsto (x_1, \dots, x_{n-1}).$

Пример

Диск
$$\mathcal{D}^n = \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n x_i^2 \leqslant 1 \right\}$$
 гомеоморфен \mathbb{R}^n .

Рассмотрим сначала простой случай $(-1,1) \stackrel{\text{homeo}}{\cong} \mathbb{R}$. Заметим, что функция $f = \operatorname{tg}(\frac{\pi}{2}x)$ является гомеоморфизмом.

Тогда для общего случая можем использовать $f = \operatorname{tg}\left(\frac{\pi}{2}\|x\|\right) \frac{x}{\|x\|}$. Эта идея показана на Рис. 4.

 $Puc.\ 4.\ \Pi$ оясненительная картинка к построению гомеоморфизма между диском и полусферой

Сфера без точки $\mathcal{S}^n \setminus \{ \mathrm{pt} \}$ гомеоморфна пространству $\mathbb{R}^n.$

Построим гомеоморфизм, который можно показать на рисунке (см. Рис. 5). Такое отображение в литературе называют стереографической проекцией и задается как

Puc. 5

Прямое отображение

$$f: \mathcal{S}^n \setminus \{ \text{pt} \} \to \mathbb{R}^n$$

 $(x_1, \dots, x_{n+1}) \mapsto \left(\frac{x_1}{1 - x_{n+1}}, \dots, \frac{x_n}{1 - x_{n+1}} \right)$

И обратное

$$g: \mathbb{R}^n \to \mathcal{S}^n \setminus \{ \text{pt} \}$$

$$(y_1, \dots, y_n) \mapsto \left(\frac{2y_1}{1 + \sum_{i=1}^n y_i^2}, \dots, \frac{2y_n}{1 + \sum_{i=1}^n y_i^2}, \frac{-1 + \sum_{i=1}^n y_i^2}{1 + \sum_{i=1}^n y_i^2} \right)$$

Замечание

На самом деле, мы нигде явно не показали, что предложенные отображения непрерывны. На самом деле, так как все эти примеры построены в привычном нам пространстве \mathbb{R}^n , то можно ссылаться на непрерывности там. Где-то также могут понадобиться непрерывности нормы и проекции, что предлагается рассмотреть в качестве упражнения.

Упражнение

Докажите следующие утвреждения (топология стандартная):

- 1. Любая норма $\|\cdot\|$, введенная на \mathbb{R}^n , является непрерывным отображением.
- 2. Проекция $\pi: \mathbb{R}^n \supset A \to B \subset \mathbb{R}^k$ является непрерывным отображением.