Перед многоборьем
$$-3$$

Задача 1 (Теорема Менелая). Дан треугольник ABC. Пусть точка C_1 лежит на стороне AB, точка B_1 — на стороне AC, а точка A_1 — на продолжении стороны BC (либо все три на продолжени), тогда точки ABC лежат на одной прямой тогда и только тогда, когда

$$\frac{AB_1}{B_1C} \cdot \frac{CA_1}{A_1B} \cdot \frac{BC_1}{C_1A} = 1.$$

Задача 2. M_1, M_2, \ldots, M_6 — середины сторон выпуклого шестиугольника. Докажите, что существует треугольник, стороны которого равны и параллельны отрезкам M_1M_2, M_3M_4, M_5M_6 .

Задача 3. В треугольнике ABC медиана, проведённая из вершины A к стороне BC, в четыре раза меньше стороны AB и образует с ней угол 60° . Найдите угол $\angle BAC$.

Задача 4. На прямой в указанном порядке отмечены точки A, B, C и D такие, что $AB \neq CD$. По одну сторону от этой прямой построены равносторонние треугольники ABX, BCY и CDZ. Оказалось, что XY = YZ. Найдите углы треугольника XYZ.

Задача 5. На сторонах AB и AC равностороннего треугольника ABC выбраны точки P и R так, что AP=CR. Пусть M — середина PR. Докажите, что BR=2AM.

Задача 6. В выпуклом четырёхугольнике ABCD AB=2, BC=1, DA=3, $\angle BAD=60^\circ$ и $\angle BCD=120^\circ$. Докажите, что этот четырёхугольник — трапеция.