## Class -XII PHYSICS SQP Marking Scheme 2019-20

|     | Section – A                                                                   |   |  |
|-----|-------------------------------------------------------------------------------|---|--|
| 1.  | a, $\phi = \frac{q}{6\pi \Omega}$ (for one face)                              | 1 |  |
|     |                                                                               |   |  |
| 2.  | b, Conductor                                                                  | 1 |  |
| -   |                                                                               |   |  |
| 3.  | a, $1\Omega$ .                                                                | 1 |  |
|     |                                                                               |   |  |
| 4.  | c ,12.0kJ                                                                     | 1 |  |
| -   | a mand                                                                        | 1 |  |
| 5.  | a , speed                                                                     | 1 |  |
| 6.  | d, virtual and inverted                                                       | 1 |  |
|     |                                                                               |   |  |
| 7.  | a, straight line                                                              | 1 |  |
| 8.  | d, 60 °                                                                       | 1 |  |
| 8.  | u, 60°                                                                        | 1 |  |
| 9.  | b, work function                                                              | 1 |  |
|     |                                                                               |   |  |
| 10. | b, third orbit                                                                | 1 |  |
| 11  | 45° or vertical                                                               | 1 |  |
| 11. | 45° or vertical                                                               | 1 |  |
| 12. | 2 H                                                                           | 1 |  |
|     |                                                                               |   |  |
| 13. | double                                                                        | 1 |  |
| 4.4 | 4 005 4                                                                       |   |  |
| 14. | 1.227 A <sup>o</sup>                                                          | 1 |  |
| 15. | 60°                                                                           | 1 |  |
| 101 |                                                                               |   |  |
| 16. | Difference in initial mass energy and energy associated with mass of products | 1 |  |
|     | Or Total Kinetic energy gained in the process                                 |   |  |
|     | Total Killetic ellergy gained in the process                                  |   |  |
| 17. | Increases                                                                     | 1 |  |
|     |                                                                               |   |  |
| 18. | $N_{o}/8$                                                                     | 1 |  |
| 19. | 0.79 eV                                                                       | 1 |  |
| 17. | 0.79 CV                                                                       | 1 |  |
| 20. | Diodes with band gap energy in the visible spectrum range can function as LED | 1 |  |

|     | OR                                                                                              |   |
|-----|-------------------------------------------------------------------------------------------------|---|
|     | Any one use Section – B                                                                         |   |
|     | Section - B                                                                                     |   |
| 21. | When electric field E is applied on conductor force acting on free electrons                    |   |
|     | $ec{m{F}}=-\mathrm{e}~ec{m{E}}$                                                                 |   |
|     | $\mathbf{m}\mathbf{\vec{a}}=-\mathbf{e}\mathbf{\vec{E}}$                                        |   |
|     | $\vec{\alpha} = \frac{-e\vec{E}}{2}$                                                            |   |
|     | M Average thermal velocity of electron in conductor is zero                                     | 1 |
|     | $(u_t)_{av} = 0$                                                                                |   |
|     | Average velocity of electron in conductors in $\tau$ (relaxation time) = $v_d$ (drift velocity) |   |
|     | $v_{d} = (u_{t})_{av} + a \tau$ $v_{d} = 0 + \frac{-\sigma E \tau}{222}$                        |   |
|     | V <sub>d</sub> = U + <del></del>                                                                | 1 |
|     | $\overrightarrow{\mathbf{v}_{\mathbf{d}}} = \frac{-\mathbf{e}\mathbf{E}\mathbf{\tau}}{m}$       | _ |
|     |                                                                                                 |   |
|     | G avP                                                                                           |   |
| 22. | $C_2 = 2\mu F$                                                                                  |   |
|     |                                                                                                 |   |
|     | $6V \frac{1}{T} C_{1} = 1\mu F \frac{1}{T}$                                                     |   |
|     |                                                                                                 |   |
|     | $_{2\mu}F = C_3$                                                                                |   |
|     | C 2NF                                                                                           |   |
|     | $C_{5} = 2\mu F$                                                                                |   |
|     |                                                                                                 |   |
|     | $C_2$ and $C_3$ are in series                                                                   |   |
|     | $\frac{1}{c'} = \frac{1}{2} + \frac{1}{2} = 1$                                                  |   |
|     | $c' = 1 \mu f$                                                                                  | 1 |
|     | c'& C₄ are in ∥                                                                                 |   |
|     | $C'' = 1 + 1 = 2\mu f$                                                                          |   |
|     | C" & c <sub>5</sub> are in series                                                               |   |
|     | $\frac{1}{c^{III}} = \frac{1}{2} + \frac{1}{2} \Longrightarrow c^{III} = 1\mu f$                |   |
|     | em 2 2 .<br>em& c₁ are in                                                                       |   |
|     | $C_{eq} = 1 + 1 = 2\mu f$                                                                       |   |
|     | $C_{eq} = 1 + 1 = 2\mu i$<br>Energy stored                                                      | 1 |
|     | $U = \frac{1}{2} cv^2 = \frac{1}{2} \times 2 \times 10^{-6} \times 6^2$                         |   |
|     |                                                                                                 |   |
|     | $= 36 \times 10^{-6} \text{J}$                                                                  |   |
|     |                                                                                                 |   |

| 23. | Gain in KE of particle = Qv                                                                                                                                                                                                                                                                                                      |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | $\frac{1}{2}\mathbf{m}_{\mathbf{p}}\mathbf{v}_{\mathbf{p}}^{2} = K_{P} = q_{p}V_{p} - \cdots - (i)V_{p} = V_{\infty} = V$ $\frac{1}{2}\mathbf{m}_{\infty}\mathbf{v}_{\alpha}^{2} = K_{\infty} = q_{\infty}V_{\infty} - \cdots - (ii)$                                                                                            | 1 |
|     | (ii)/(i) $\frac{m_{\alpha}v_{\infty}^{2}}{m_{p}v_{p}^{2}} = \frac{q_{\infty}}{q_{p}} = \frac{2}{1}$ $\frac{v_{\infty}^{2}}{v_{p}^{2}} = \frac{m_{p} \times 2}{m_{\alpha} \times 1} = \frac{2m_{p}}{4m_{p} \times 1} = \frac{1}{2}$ $v_{\alpha} : v_{p} = 1:\sqrt{2}$                                                             | 1 |
|     | να. vp — 1. φ n                                                                                                                                                                                                                                                                                                                  |   |
| 24. | "The angle of incidence at which the reflected light is completely plane polarized, is called as Brewster's angle (i <sub>B</sub> )  Rare  Denser  Refracted light  Refracted light                                                                                                                                              | 1 |
|     | At $i = i_B$ , reflected beam 1 to refracted beam $ \begin{array}{c} : i_B + r = 90 \Longrightarrow r = 90 \text{-}i_B \\ \text{Using snell's law} \\ \hline \frac{Sin \ i}{Sin \ r} = \mu \\ \hline \frac{Sin \ i_B}{Sin \ (90 - i_B)} = \mu \Longrightarrow \frac{Sin \ i_B}{Cos \ i_B} = \mu \\ \mu = tan \ i_B \end{array} $ | 1 |
| 25. | wave function $\omega = 2.14 eV$ (a) Threshold frequency $\omega = hv_0$ $v_0 = \frac{\omega}{h} = \frac{2.14 \times 1.6 \times 10^{-19}}{6.62 \times 10^{-34}}$                                                                                                                                                                 | 1 |

|     | $= 5.17 \times 10^{14} H_z$ (b) As $k_{max} = eV_0 = 0.6eV$ Energy of photon $E = k_{max} + \omega = 0.6eV + 2.14eV$ $= 2.74eV$ Wave length of photon $\lambda = \frac{\hbar c}{E} = \frac{6.62 \times 10^{-34} \times 3 \times 10^{-8}}{2.74 \times 1.5 \times 10^{-13}}$ $= 4530 \text{Å}$ | 1 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 26. | $V_n$ electron                                                                                                                                                                                                                                                                               |   |
|     | centripetal force = electrostatic attraction $\frac{mv_n^2}{r_n} = \frac{1}{4\pi\epsilon 0} \frac{\epsilon^2}{r_n^2}$ $mv_n^2 = \frac{1}{4\pi\epsilon 0} \frac{\epsilon^2}{r_n} - \cdots - (i)$ $asmv_n r_n = n \cdot \frac{\hbar}{2n}$                                                      | 1 |
|     | $\mathbf{v}_{n} = \frac{nh}{2\pi m r_{n}} \text{ put in (i)}$ $\mathbf{m} \cdot \frac{n^{2}h^{2}}{4\pi^{2}m^{2}r_{n}^{2}} = \frac{1}{4\pi\epsilon 0} \frac{\epsilon^{2}}{r_{n}}$ $\mathbf{r}_{n} = \frac{\epsilon 0n^{2}h^{2}}{\pi m\epsilon^{2}}$                                           | 1 |
|     | <u>OR</u>                                                                                                                                                                                                                                                                                    |   |
|     | Energy of electron in n = 2 is -3.4eV $ \therefore \text{ energy in ground state} = -13.6eV \qquad \qquad E_n = \frac{\infty}{10^2} \Rightarrow -3.4eV = \frac{\infty}{2^2} \Rightarrow \\ \text{kE} = -\text{TE} = +13.6eV \qquad \qquad \text{energy in ground state } x = -13.6eV. $      | 1 |

|     | $PE = 2TE = -2 \times 13.6eV = -27.2eV$                                                                                                                                                             | 1          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     |                                                                                                                                                                                                     |            |
| 27. |                                                                                                                                                                                                     | Any 2x1 =1 |
|     | P-type semiconductor n-type semiconductor                                                                                                                                                           |            |
|     | 1. Density of holes >> density of electron                                                                                                                                                          |            |
|     | 2. Formed by doping trivalent impurity  2. formed by doping pentavalent impurity                                                                                                                    |            |
|     | Energy band diagram for p-type  Energy band diagram of n-type semiconductor                                                                                                                         |            |
|     | CB  Acceptor  energy level  CB  CB  CB  CB  CB  CB  CB  CB  CB  C                                                                                                                                   |            |
|     | VB VB                                                                                                                                                                                               |            |
|     | <u>OR</u>                                                                                                                                                                                           |            |
|     | Energy of photon E = $\frac{\hbar c}{\lambda} = \frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{6000 \times 10^{-9} \times 1.6 \times 10^{-19}} \text{eV} = 2.06 \text{eV}$                      | 1          |
|     | As E <e<math>_{\rm g} (2.8eV), so photodiode cannot detect this photon.</e<math>                                                                                                                    | 1          |
|     | <u>Section - C</u>                                                                                                                                                                                  |            |
| 28. | Principle of potentiometer, when a constant current flows through a wire of uniform area of cross-section, the potential drop across any length of the wire is directly proportional to the length. |            |
|     | Let resistance of wire AB be R <sub>1</sub> and its length be 'l' then current drawn from driving cell – $I = \frac{V}{R+R1} \text{ and hence}$                                                     | 1          |
|     | P.D. across the wire AB will be                                                                                                                                                                     |            |
|     | $V_{AB} = IR_1 = \frac{V}{R+R_1} \times \frac{\varrho I\theta}{\alpha}$                                                                                                                             |            |
|     | Where 'a' is area of cross-section of wire AB $\therefore \frac{VAB}{I} = \frac{VQ}{(R+R1)_{CB}} = \text{constant} = k$                                                                             | 1          |
|     | Where R increases, current and potential difference across wire AB will be                                                                                                                          | 1          |
|     |                                                                                                                                                                                                     | 5          |

| decreased and hence potential gradient 'k' will also be decreased. Thus the null point or balance point will shift to right (towards, B) side.                                                                                                                                                                                                                                                                                                                |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| Idl  N d By  dBx  dBx  M  d By  N  d By  M                                                                                                                                                                                                                                                                                                                                                                                                                    | 1   |
| According to Biot-Savart's law, magnetic field due to a current element is given by $\overrightarrow{dB} = \frac{\mu 0}{4\pi} \frac{I \overrightarrow{dl} \times \overrightarrow{r}}{r^2}  \text{where } r = \sqrt{x^2 + a^2}$ $\therefore dB = \frac{\mu 0}{4\pi} \frac{I dl \sin 30^{\circ}}{x^2 + a^2}$ And direction of $\overrightarrow{dB}$ is $\bot$ to the plane containing $\overrightarrow{Idl}$ and $\overrightarrow{r}$ .                         | 1/2 |
| Resolving $\overline{dB}$ along the x – axis and y – axis.                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| dB <sub>x</sub> = dB sin <b>⊕</b>                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| $dB_y = dB \cos \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| taking the contribution of whole current loop we get                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| $B_{x} = \oint dB_{x} = \oint dB \sin \theta = \int \frac{\mu \theta}{4\pi} \frac{Idl}{x^{2} + \alpha^{2}} \frac{\alpha}{\sqrt{x^{2} + \alpha^{2}}}.$ $B_{x} = \frac{\mu \theta}{4\pi} \frac{I_{n}}{(x^{2} + \alpha^{2})^{3/2}} \oint dl = \frac{\mu \theta}{4\pi} \frac{I_{n} \times 2\pi\alpha}{(x^{2} + \alpha^{2})^{3/2}}$ $And \qquad B_{y} = \oint dB_{y} = \oint dB \cos \theta = 0$                                                                   | 1/2 |
| $\therefore B_{P} = \sqrt{B_{x}^{2} + B_{y}^{2}} = B_{x} = \frac{\mu 0}{4\pi} \frac{2IA}{(x^{2} + a^{2})^{3/2}}$ $\therefore \overrightarrow{B_{P}} = \frac{\mu 0}{4\pi} \frac{2mi}{(x^{2} + a^{2})^{3/2}} (\because \overrightarrow{m}' = I\overrightarrow{A})$ For centre $x = 0$ $\therefore  \overrightarrow{B_{O}}  = \frac{\mu 0}{4\pi} \frac{2i\pi a^{2}}{a^{3}} = \mu_{0} \left(\frac{I}{2a}\right) \text{ in the direction of } \overrightarrow{m}'$ | 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |

| 30. | • resonant frequency for LCR circuit is given by $v_0 = \frac{1}{2\pi\sqrt{LC}}$                                                                                                                                                                                                                                                           | 1 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | $= \frac{1}{2 \times 3.14 \sqrt{3} \times 27 \times 10^{-8}}$ $= 17.69 \text{Hz}$ Or $\omega_0 = 2\pi v_0 = 111 \text{rad/s}$ . $\therefore \text{ quality factor of resonance}$ $Q = \frac{\omega_0}{2\Delta w} = \frac{\omega_0 L}{R} = \frac{1}{R} \sqrt{\frac{L}{C}}$                                                                  | 1 |
|     | $\therefore Q = \frac{1}{7.4} \sqrt{\frac{3}{27 \times 10^{-6}}} = 45.0$ To improve sharpness of resonance circuit by a factor 2, without reducing $\omega_0$ ; reduce R to half of its value i.e. $R = 3.7\Omega$                                                                                                                         | 1 |
| 31. | $G$ $B$ $r = 39.4^{\circ}$ $A$                                                                                                                                                                                                                                                                         | 1 |
|     | Two conditions for T IR –  (a) Light must travel from denser to rarer medium  (b) $i > i_c$ $ Sin i_c = \frac{1}{\mu}$ $ (i_c)_{Red} = Sin^{-1} \left( \frac{1}{1.39} \right) = 46^{\circ}$ $ (i_c)_{Green} = Sin^{-1} \left( \frac{1}{1.42} \right) = 44.8^{\circ}$ $ (i_c)_{Blue} = Sin^{-1} \left( \frac{1}{1.48} \right) = 43^{\circ}$ | 1 |
|     | ∴ Angle of incidence at face AC is 45° which is more than the critical angle for Blue and Green colours therefore they will show TIR but Red colour will refract to other medium.                                                                                                                                                          | 1 |
| 32. | Resolving power (R.P) of an astronomical telescope is its ability to form separate images of two neighboring astronomical objects like stars etc.  R.P. = $\frac{1}{dR} = \frac{D}{1.22\lambda}$ where D is diameter of objective lens and $\lambda$ is wave length                                                                        | 1 |

of light used.

$$D = 100$$
inch =  $2.54 \times 100$ cm =  $254$ cm =  $2.54$ m

Limit of resolution  $d\theta = \frac{1.22\lambda}{D}$ 

1

 $= 2.9 \times 10^{-10}$ 

<u>OR</u>

Basic assumptions in derivation of Lens-maker's formula:

- (i) Aperture of lens should be small
- (ii) Lenses should be thin
- (iii) Object should be point sized and placed on principal axis.

1



1



Suppose we have a thin lens of material of refractive index n<sub>2</sub>, placed in a medium of refractive index  $n_1$ , let 0 be  $u_{P}$ :
at surface ABC we get image at  $I_1$ ,  $\therefore \frac{n_2}{v^2} - \frac{n_1}{u} = \frac{n_2 - n_1}{R_1} - \dots (1)$ refractive index  $n_1$ , let o be a point object placed on principle axis then for refraction

$$\therefore \frac{n_2}{v^2} - \frac{n_1}{v} = \frac{n_2 - n_1}{R_1} - \dots (1)$$

But the refracted ray before goes to meet at I<sub>1</sub> falls on surface ADC and refracts at I<sub>2</sub>

|     | finally; hence I <sub>1</sub> works as a virtual object 2 <sup>nd</sup> refracting surface                                                                                                                                                                                                                                                               |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | $\therefore \frac{n_1}{V} - \frac{n_2}{V^1} = \frac{n_1 - n_2}{R_2} - \dots (2)$                                                                                                                                                                                                                                                                         |   |
|     | Equation (1) + (2)                                                                                                                                                                                                                                                                                                                                       |   |
|     | $\frac{n_1}{V} - \frac{n_2}{u} = (n_2 - n_1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)$ $\therefore \frac{1}{V} - \frac{1}{u} = (n_{21} - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) - \dots (3)$ If $u = \infty$ , $v = f$ $\frac{1}{f} = (n_{21} - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) - \dots (4)$ Which is lens maker's formula. | 1 |
| 33. | $^{228}_{92}U \rightarrow ^{237}_{91}Pa + ^{1}_{1}H + Q$                                                                                                                                                                                                                                                                                                 |   |
|     | $\mathbf{PQ} = [\mathbf{M}_{\mathrm{U}} - \mathbf{M}_{\mathrm{Pa}} - \mathbf{M}_{\mathrm{H}}] \mathbf{c}^{2}$                                                                                                                                                                                                                                            | 1 |
|     | = $[238.05079 - 237.05121 - 1.00783] u \times c^2$<br>= $-0.00825u \times 931.5 \frac{MeV}{r}$                                                                                                                                                                                                                                                           | 1 |
|     | = - 7.68MeV                                                                                                                                                                                                                                                                                                                                              | 1 |
|     | Arr Q <0; therefore it can't proceed spontaneously. We will have to supply energy of 7.68MeV to $ Arr$ Unucleus to make it emit proton.                                                                                                                                                                                                                  |   |
| 34. | Circuit Diagram                                                                                                                                                                                                                                                                                                                                          |   |
|     | A D <sub>1</sub> Vo X R X D <sub>2</sub>                                                                                                                                                                                                                                                                                                                 | 1 |
|     | One possible answer: Change the connection of R from point C to point B.                                                                                                                                                                                                                                                                                 | 2 |
|     | Now No Current flowing through $D_2$ in the second half.                                                                                                                                                                                                                                                                                                 |   |
|     | 1 mark for any correct diagram 2 marks for correct explanation                                                                                                                                                                                                                                                                                           |   |
|     |                                                                                                                                                                                                                                                                                                                                                          |   |
|     |                                                                                                                                                                                                                                                                                                                                                          |   |
|     |                                                                                                                                                                                                                                                                                                                                                          |   |
|     |                                                                                                                                                                                                                                                                                                                                                          |   |

## Section - D 35. (a) 1 According the Gauss's law - $\oint_{\mathbf{N}} d\vec{s} = \frac{1}{\epsilon_0} \{q\}$ $\int \overrightarrow{E} \, \overrightarrow{ds_1} + \int \overrightarrow{E} \, \overrightarrow{ds_2} + \int \overrightarrow{E} \, \overrightarrow{ds_3} = \frac{1}{\epsilon_0} (\lambda L)$ $\int Eds_1Cos0 + \int Eds_2Cos90^\circ + \int Eds_3Cos90^\circ = \frac{\lambda L}{\epsilon \eta}$ 1 $E \int ds_1 = \frac{\lambda L}{\epsilon 0}$ $E \times 2\pi r L = \frac{\lambda L}{\epsilon 0}$ 1 35. (b) $: E_x = \propto x = 400x$ $E_y = E_z = 0$ Hence flux will exist only on left and right faces of cube as $E_x \neq 0$ $\therefore \overrightarrow{E_L} \cdot a^2(n_2) + \overrightarrow{E_R} \cdot a^2 \widehat{n_R} = \frac{1}{\epsilon_0} \{qin\} = \phi$ 1 $-E_{L} \cdot a^{2}(n_{2}) + a^{2}E_{R} = \phi_{Net}$ $\phi_{N_{FF}} = -(400a)a^2 + a^2 (400 \times 2a)$ $= -400a^3 + 800a^3$ $= 400a^3$ $=400 \times (.1)^3$ $\phi_{\text{Net}} = 0.4 \text{ Nm}^2 \text{c}^{-1}$

|     |                                                                                                        | 1 |
|-----|--------------------------------------------------------------------------------------------------------|---|
|     | <u>OR</u>                                                                                              |   |
| (a) | Definition of electrostatic potential – SI unit J/c of Volt.                                           | 1 |
|     | Deduction of expression of electrostatic potential energy of given system of charges –                 | 2 |
|     | $U = \frac{1}{4\pi \in 0} \left[ \frac{q1  q2}{r12} + \frac{q1  q3}{r13} + \frac{q2  q3}{r23} \right]$ |   |
|     |                                                                                                        |   |
| (b) |                                                                                                        |   |
|     |                                                                                                        | 1 |
|     |                                                                                                        | 1 |
|     | (1)                                                                                                    |   |
|     |                                                                                                        |   |
|     |                                                                                                        | 1 |
|     |                                                                                                        |   |
|     |                                                                                                        |   |
|     |                                                                                                        |   |
| 36. | For forward motion from $x = 0$ to $x = 2b$ .<br>The flux $\phi_B$ linked with circuit SPQR is         |   |
|     | i i i i i i i i i i i i i i i i i i i                                                                  |   |
|     | · · S · · · · · · · · · · · · · · · · ·                                                                |   |
|     |                                                                                                        |   |
|     |                                                                                                        |   |
|     | · · · · · · · · · · · · · · · · · · ·                                                                  |   |
|     |                                                                                                        |   |
|     | x = 0 $x = b$                                                                                          |   |

$$\phi_B = Blx \qquad 0 \le x < b$$

$$Blb \qquad b \le x < 2b$$

The induced emf is,

$$e = \frac{-d\phi E}{dt}$$

$$e = -Blv$$

$$= 0$$

$$0 \le x < b$$

$$= 0$$

$$b \le x < 2b$$

When induced emf is non-zero, the current İ in the magnitude;

$$I = \frac{e}{r} = \frac{Elv}{r}$$

The force required to keep arm PQ in constant motion is F =IlB. Its direction is to the left. In magnitude

$$F = I/B = \frac{B^{\alpha} I^{\alpha} V}{T} ; \qquad 0 \le x < b$$
$$= 0 ; \qquad b \le x < 2b$$

The Joule heating loss is

$$\begin{split} P_J &= I^2 \, \gamma \\ &= \frac{B^2 t^2 v^2}{\gamma} \\ &= 0 \\ \end{split} \qquad 0 \leq x < b \\ b \leq x < 2b \end{split}$$

One obtains similar expressions for the inward motion from x = 2b to x = 0



1

1

1

1

|            | <u>OR</u>                                                                                                                           |     |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|-----|
|            | Working principle of cyclotron Diagram                                                                                              | 1 1 |
|            | Working of cyclotron with explanation Any two appliations                                                                           | 2 1 |
| 37.        |                                                                                                                                     |     |
| ı          |                                                                                                                                     |     |
| l          | E-M                                                                                                                                 | 1   |
|            | B B' A' F C                                                                                                                         |     |
|            | TELE N                                                                                                                              |     |
|            | Deduction of mirror formula $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$                                                               | 2   |
|            | For a convex mirror f is always +ve.                                                                                                |     |
|            | ∴ f > c                                                                                                                             | 1   |
|            | Object is always placed in front of mirror hence $u < 0$ (for real object) $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$                |     |
|            | $\Rightarrow \qquad \frac{1}{v} = \frac{1}{f} \cdot \frac{1}{u}$                                                                    |     |
|            | As u < 0 u -ve hence                                                                                                                | 1   |
| 1          | $\frac{1}{v} > 0$                                                                                                                   | 1   |
|            | $\Rightarrow$ v> 0 i.e. +ve for all values of u. Image will be formed behind the mirror and it will be virtual for all values of u. |     |
|            | OR                                                                                                                                  |     |
| 37.<br>(a) | Ray Diagram : (with proper labeling)                                                                                                | 1   |
|            |                                                                                                                                     |     |
|            |                                                                                                                                     |     |
|            |                                                                                                                                     |     |



$$\begin{array}{l} \therefore \ m_o = \frac{+Vo}{uo} = \frac{-30}{6} = -5 \\ \\ \therefore \ V = -5u_o \\ \\ \frac{1}{Vo} - \frac{1}{uo} = \frac{1}{fo} \\ \\ \frac{1}{-5uo} - \frac{1}{uo} = \frac{1}{1.25} \end{array}$$

$$\frac{-6}{5uo} = \frac{1}{125}$$

$$uo = -1.5cm \Longrightarrow v_0 = 7.5cm$$

$$Tube \ length = V_o + |u_e| = 7.5cm + 4.17cm$$

$$L = 11.67cm$$

$$Object \ should \ be \ placed \ at 1.5cm \ distance \ from \ the \ objective \ lens.$$