Семинар 11

• Свободные механические колебания

Точка совершает колебания по закону x=A cos ωt , где A=5 cm; $\omega = 2$ c-1. Определить ускорение |a| точки в момент времени, когда ее скорость v=8 cm/c.

Omeem: $a = 0.12 \text{ m/c}^2$

Точка совершает колебания по закону $x(t)=A\cos(\omega t+\varphi)$, где A=2 см. Определить начальную фазу φ , если $x(0)=-\sqrt{3}$ см u x'(0)<0. Построить векторную диаграмму для момента t=0.

Ombem: $\varphi = 5\pi/6$

Точка равномерно движется по окружности против часовой стрелки с периодом T=6 с. Диаметр д окружности равен 20 см. Написать уравнение движения проекции точки на ось x, проходящую через центр окружности, если в момент времени, принятый за начальный, проекция на ось x равна нулю. Найти смещение x, скорость x' и ускорение x'' проекции точки в момент t=1 с.

 $6.7.~x=A\cos(\omega t+\varphi),$ где A=d/2=10 см, $\omega=\pi/3$ рад/с, Omsem: $\varphi=\pi/2$ рад; x=-8,66 см; $\dot{x}=-5,24$ см/с, $\ddot{x}=9,50$ см/с 2 .

Материальная точка массой m=5 г совершает гармонические колебания с частотой v=0,5 Γ ψ . Амплитуда колебаний A=3 см.

Определить:

- 1) скорость v точки в момент времени, когда смещение x=1,5 см;
- 2) максимальную силу F_{max} действующую на точку;
- 3) полную энергию W колеблющейся точки.

Ответ: $v = \pm 8,2$ см/с; $F_{max} = 1,49$ мН; W = 22,1 мкДж

Складываются два колебания одинакового направления, выражаемых уравнениями $x_1 = A_1 \cos \omega(t + \tau_1); x_2 = A_2 \cos \omega(t + \tau_2),$ где $A = 1 \text{ см}, A_2 = 2 \text{ см},$ $\tau_1 = 1/6 \text{ c},$ $\tau_2 = 1/2 \text{ c},$ $\omega = \pi \text{ c}^{-1}.$

- 1. Определить начальные фазы φ_1 и φ_2 составляющих колебаний.
- 2. Найти амплитуду A и начальную фазу φ результирующего колебания. Написать уравнение результирующего колебания.

Ответ: $\varphi_1 = \pi/6$ рад и $\varphi_2 = \pi/2$ рад;

x= $A\cos\omega(t+\varphi)$, где A=2,65 см, $\omega=\pi$ c^{-1} , $\varphi=0,394$ π рад

Рис. 1

Физический маятник представляет собой стержень длиной l=1 м и массой $3m_1$ с прикрепленным к одному из его концов обручем диаметром $d=1/2\ l\ u\ массой\ m_1$. Горизонтальная ось Оz маятника проходит через середину стержня перпендикулярно ему (рис. 1). Определить период Т колебаний такого маятника.

Ответ: T = 2,17 c