Backprophet

A deep learning-based tool for stocks prediction

Presented by: Ivo Glück, Stephan Fremerey

General idea

Build a deep learning-based procedure to predict the close value of an asset for the next day (regression). As an example, we took the META share.

Scenario:

Once the tradefaire has closed and data are available (about 0:00 CET), train model using all available data including the last trading day.

Act based on the prediction once the tradfaire has reopened:

if an increase is predicted buy, if a decrease is predicted sell the asset.

Prerequisite:

At best, training needs to be finished within the 1 hour in which indices like the S&P 500 or the DJI are not tradeable.

Our input data (multivariate analysis)

Data was crawled from finance.yahoo.com using Python yfinance package (18.09.2020 – 17.09.2025)

List of features:

DATE

• SPX_CLOSE

SPX_VOLUME

• DJI_CLOSE

DJI_VOLUME

META_CLOSE

META_VOLUME

• GPRD

FEARANDGREED

SPX: S&P 500

DJI: Dow Jones Industrial

GPRD: Geopolitical Risk Index (GPR) Daily

FEARANDGREED: measures general mood at the stock exchange

Optionally our code also contains:

Moving average of values: 5 (week), 21 (month), 50 (traditionally)

and 200 (long-term)

General architecture

Datacrawler – Data preprocessing

- Drop duplicate rows
- Missing values were filled with previous trading days
- Remove data points including NaN values

Applied models – Data preparation

- First step: scale data using MinMaxScaler
- Second step: lookback
- Third step: train/test split (80/20)
 - Rather for evaluation
 - In production, probably train on more data

Applied models – Data preparation – lookback

Lookback period: 60 days

```
# "Given the past 60 days, predict tomorrow's target value."

def create_dataset_multivariate(df, target_col, look_back=60): & Stephan Fremerey

X = []

Y = []

feature_cols = [c for c in df.columns if c != "DATE"] # DATE anyway is index

for i in range(len(df) - look_back):

X.append(df[feature_cols].iloc[i:i+look_back].values) # (look_back, n_feat)

Y.append(df[target_col].iloc[i+look_back]) # value for next day

return np.array(X), np.array(Y)
```

X (lookback period:

Iterate over whole scaled data

	^SPX_CLOSE	^SPX_VOLUME	^DJI_CLOSE	^DJI_VOLUME	META_CLOSE	META_VOLUME	GPRD	FEARANDGREED
2020-11-02	0.02160	0.43248	0.02156	0.20291	0.24597	0.09860	0.06608	0.03024
2020-11-03	0.03895	0.42514	0.04982	0.18052	0.25159	0.05816	0.26993	0.03992
2020-11-04	0.06083	0.48017	0.06853	0.25528	0.28309	0.13462	0.20634	0.60118
2020-11-05	0.08057	0.48696	0.09616	0.21074	0.29350	0.08391	0.09112	0.60118
2020-11-06	0.08027	0.48539	0.09276	0.16179	0.29169	0.04027	0.07819	0.60118
2020-11-09	0.09236	0.85907	0.13525	0.42925	0.27081	0.08960	0.15987	0.60118
2(201-0	0.09090	0.60517	0.14864	0.31633	0.26176	0.10695	0.06986	0.60118
2020-11-11	0.09889	0.46465	0.14745	0.20037	0.26754	0.04495	0.14551	0.60118
2020-11-12	0.08839	0.49212	0.13129	0.19467	0.26554	0.03591	0.05884	0.60118
2020-11-13	0.10257	0.47307	0.15163	0.17885	0.26821	0.02489	0.09024	0.60118
2020-11-16	0.11487	0.53080	0.17560	0.23246	0.27108	0.03622	0.09294	0.60118
2020-11-17	0.10975	0.48235	0.16709	0.19703	0.26543	0.04532	0.04530	0.60118
2020-11-18	0.09746	0.52972	0.14953	0.20511	0.26111	0.03263	0.16822	0.60118
2020-11-19	0.10160	0.43736	0.15181	0.16536	0.26249	0.03619	0.05150	0.60118
2020-11-20	0.09444	0.42463	0.14062	0.14531	0.25787	0.05883	0.13825	0.60118
2020-11-23	0.10034	0.50695	0.15731	0.20847	0.25606	0.07146	0.02787	0.60118
2020-11-24	0.11737	0.62951	0.18047	0.24363	0.26817	0.05362	0.15774	0.60118
2020-11-25	0.11568	0.49220	0.17163	0.15895	0.26627	0.03401	0.00211	0.60118
2020-11-27	0.11824	0.27849	0.17356	0.04630	0.26944	0.01354	0.09252	0.60118
2020-11-30	0.11332	0.63233	0.15972	0.33514	0.26824	0.05258	0.04719	0.60118
2020-12-01	0.12534	0.54312	0.16915	0.24112	0.28190	0.07036	0.20652	0.60118
2020-12-02	0.12727	0.50531	0.17220	0.20699	0.28329	0.05552	0.13463	0.60118
2020-12-03	0.12660	0.50773	0.17657	0.22273	0.27520	0.03601	0.08754	0.60118
2020-12-04	0.13614	0.51116	0.18923	0.18485	0.27213	0.02704	0.03155	0.60118
2020-12-07	0.13403	0.48158	0.18167	0.19196	0.28052	0.03639	0.06304	0.60118
2020-12-08	0.13706	0.45952	0.18697	0.14982	0.27741	0.02646	0.10906	0.60118
2020-12-09	0.12839	0.52451	0.18162	0.20332	0.26959	0.08991	0.07783	0.60118
2020-12-10	0.12700	0.46694	0.17808	0.16090	0.26845	0.06740	0.14069	0.60118
2020-12-11	0.12564	0.43858	0.18048	0.21362	0.26336	0.04247	0.03960	0.60118
2020-12-14	0.12093	0.46347	0.17107	0.19673	0.26427	0.05119	0.01449	0.60118
2020-12-15	0.13481	0.43974	0. 1 8827ta	røæt) [0.26621	0.08460	0.12935	0.60118
2020-12-16	0.13674	0.40766	0.18599	0.97559	0.26639	0.04903	0.05817	0.60118

- Multilayered Perceptron (MLP)
- Simple basic version of model, especially if less time for training

```
model = nn.Sequential(
    nn.Linear(input_dim, hidden_size, bias=True),
    nn.LeakyReLU(),
    nn.Dropout(p=dropout_rate),
    nn.Linear(hidden_size, out_features: 1, bias=True),
).to(device)
```

Recurrent Neural Network (RNN)

```
class RNNModel(nn.Module): 2 usages **ivogl

    def __init__(self, input_size, hidden_size, num_layers, num_classes): **ivogl

        super(RNNModel, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True, nonlinearity="relu")
        self.fc = nn.Linear(hidden_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, num_classes)
```

Long short-term memory (LSTM)

Gated Recurrent Unit (GRU)

```
class GRUModel(nn.Module): 2 usages  *ivogl+1
    def __init__(self, input_size, hidden_size, num_layers, num_classes): *ivogl+1
        super(GRUModel, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
        # self.gru2 = nn.GRU(hidden_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, hidden_size)
        self.act = nn.LeakyReLU(0.01)
        self.fc2 = nn.Linear(hidden_size, num_classes)
```

Convolutional Neural Network (CNN)

• Ensemble Model based on RNN, GRU and LSTM (3 top-performing models)

```
m1 = torch.load( f: f"models/{end_date}_rnn_4layers.pth", weights_only=False).to(device)
m2 = torch.load( f: f"models/{end_date}_gru_3layers.pth", weights_only=False).to(device)
m3 = torch.load( f: f"models/{end_date}_lstm_4layers.pth", weights_only=False).to(device)
ensemble = AvgEnsemble([m1, m2, m3]).to(device)
```

Results after training on the entire data set MLP

Results after training on the entire data set RNN

Results after training on the entire data set RNN

Incl. dropout

Results after training on the entire data set GRU

Results after training on the entire data set CNN

Date

Results after training on the entire data set Ensemble (RNN + GRU + LSTM)

Would a shorter training time period for training also be sufficient?

Evaluation with 1 year historical data MLP

Evaluation with 1 year historical data GRU

Evaluation with 1 year historical data CNN

Evaluation with 1 year historical data Ensemble (RNN + GRU + LSTM)

Evaluation

• Evaluation of model performance on META_CLOSE for a few days

Date	Model	Prediction [USD]	Actual [USD]	
2025-09-17	RNN	718.32		
2025-09-17	GRU	<u>768.19</u>	775.72	
2025-09-17	LSTM	755.71	775.72	
2025-09-17	Ensemble	747.41		
2025-09-18	RNN	724.68		
2025-09-18	GRU	<u>766.21</u>	780.25	
2025-09-18	LSTM	751.32		
2025-09-18	Ensemble	747.40		
2025-09-19	RNN	741.17		
2025-09-19	GRU	770.34	???	
2025-09-19	LSTM	739.54		
2025-09-19	Ensemble	750.35		

Extra: Sentiment analysis

- Access APIs of two LLMs to do sentiment analysis on daily basis
 - Google Gemini ("allrounder")
 - Perplexity (focused on real-time information)
- Prompt: "Please give me an assessment of Meta shares (ISIN: US30303M1027) based on current news within the past 7 days, using at least 6 reputable financial sources. Use sentiment analysis and any major events impacting the stock. Rate on a scale of 1-100 (1 very poor, 100 very good). Return only a single int as the answer."
- Returns .csv file
- DATE, PERPLEXITY_SCORE, GEMINI_SCORE
 2 2025-09-18,83,85
 3 2025-09-19,89,92
- Could be integrated for future modelling, if enough data is available

Conclusion

- Which model would we take?
 - Based on current results: GRU
 - Simulations based on past data necessary, but not enough time
- Was the project successful?
 - More evaluations and simulations (!) necessary
 - Trading costs important factor not yet considered
 - The future will show

Outlook

- Code optimization → Move parts of code used more frequently into class
- Generate a confidence measure for prediction:
 - Apply trained model (inference) with dropout → results differ slightly
 - Use different results to create confidence interval of model
- Evaluate with existing models/algorithms (prophet, ETS, ARIMA)
- Try shorter training periods, e.g. 180 days, 90 days or even less
- Crawl data with increased time resolution, e.g. on hourly base
- Evaluate performance of Transformers on data