Lycée Buffon TD 15 bis MPSI Année 2020-2021

Continuité et dérivation

Exercice 1 : Soit f continue sur \mathbb{R} telle que $\lim_{-\infty} f = -3$ et $\lim_{+\infty} f = 2$. Prouver que f s'annule.

Exercice 2 : Soit f continue et décroissante sur \mathbb{R} . On veut montrer que f possède un unique point fixe.

- 1. Prouver que si x_1 et x_2 sont deux points fixes de f, alors $x_1 = x_2$.
- 2. Prouver que f possède une limite en $+\infty$ puis en déduire $\lim_{x\to +\infty} f(x) x$.
- 3. Conclure.

Exercice 3:

Soit f dérivable sur $\mathbb R$ telle que $\lim_{-\infty} f = \lim_{-\infty} f = \ell$.

On veut montrer qu'il existe $c \in \mathbb{R}$ tel que f'(c) = 0.

- 1. On suppose que $\ell \in \mathbb{R}$.
 - (a) Faire un schéma de la situation
 - (b) Première méthode:
 - i. On suppose que f n'est pas constante. Montrer que f possède un maximum ou un minimum.
 - ii. Conclure.
 - (c) Deuxième méthode :
 - i. On suppose que f n'est pas constante. En déduire qu'il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) \neq \ell$.
 - ii. Soit $\gamma = \frac{\ell + f(x_0)}{2}$. Montrer qu'il existe $(a, b) \in \mathbb{R}^2$ tel que a < b et $f(a) = f(b) = \gamma$.
 - iii. Conclure.
- 2. Démontrer le résultat par deux méthodes lorsque $\ell=+\infty.$

Exercice 4 : Soit f dérivable sur [0,1]. On suppose que f(0)=0 et f(1)f'(1)<0. On veut prouver que f' s'annule.

- 1. Faire un schéma de la situation.
- 2. Expliquer pourquoi, on peut supposer f(1) > 0.
- 3. Première méthode:
 - (a) Montrer que f possède un maximum sur [0,1].
 - (b) Prouver que ce maximum est atteint en un point intérieur.
 - (c) Conclure.
- 4. Deuxième méthode:
 - (a) Prouver qu'il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) > f(1)$.
 - (b) Soit $\gamma = \frac{f(1) + f(x_0)}{2}$. Montrer qu'il existe $(a, b) \in [0, 1]^2$ tel que a < b et $f(a) = f(b) = \gamma$.
 - (c) Conclure.