Topology

K

May 12, 2022

Contents

1	Topological Space	5
	1.1 Definitions and Theorems	5
	1.2 Proofs, Remarks, and Examples	7
2	Connected Spaces and Sets	ē
	2.1 Definition and Theorems	Ĉ
	2.2 Proofs, Remarks, and Examples	10
	2.3 Exercises and Notes	12
3	Separation Axioms	13
4	Compact Spaces	15
	4.1 Proofs, Remarks, and Examples	16

4 CONTENTS

Topological Space

1.1 Definitions and Theorems

Definition 1 (Topological Space). A topological space is an ordered pair (X, τ) , where X is a set and τ is a collection of subsets that satisfies the following axioms.

- 1. The empty set \varnothing and the entire set X belongs to τ .
- 2. Any **arbitary** union of members of τ belongs to τ .
- 3. The intersection of finite number of members of τ belongs to τ .

The collection τ is called a topology on X and the elements of τ are called open sets. A subset $A \subset X$ is said to be closed if its complement $X \setminus A$ is open.

Definition 2 (Continuous Maps). Let (X, τ_X) and (Y, τ_Y) be topological spaces. A map $f: X \longrightarrow Y$ is said to be continuous if the preimage of an open subset is again open, i.e.

for all
$$U \in \tau_Y$$
 it is $f^{-1}(U) \in \tau_X$. (1.1)

Lemma 3. The different definitions of continuity in a topological space and a metric space are equivalent, i.e. if X and Y are metric spaces, then $f: X \longrightarrow Y$ is ϵ - δ -continuous if and only if f is continuous.

Definition 4 (Homeomorphism). Let X and Y be topological spaces.

- 1. A map $f: X \longrightarrow Y$ is a homeomorphism if it has the following properties.
 - (a) f is bijective.
 - (b) f and the inverse map f^{-1} is continuous.
- 2. Two topological spaces X and Y are said to be homeomorphic if a homeomorphism exists.
- 3. We denote the set of all homeomorphisms from X to Y by $\operatorname{Homeo}(X,Y)$. If Y=X we also write $\operatorname{Homeo}(X)$.

Definition 5 (Homeomorphism). Let (X, τ) a topological space.

- 1. $\mathcal{B} \subset \mathcal{O}$ is a basis of the topology, if any member of \mathcal{O} is the union of subsets from \mathcal{B} .
- 2. $S \subset \mathcal{O}$ is a subbasis of the topology, if any member of \mathcal{O} is the union of finite intersections of subsets from S.

We say that \mathcal{B} and \mathcal{S} generates \mathcal{O} and write $\overline{\mathcal{S}} = \overline{\mathcal{B}} = \mathcal{O}$.

Lemma 6. Let $S \subset \mathcal{P}(X)$ be a collection of subsets, then there exists exactly one topology $\tau \subset \mathcal{P}(X)$ of X such that

- 1. $S \subset \tau$
- 2. If $\tau' \subset \mathcal{P}(X)$ a topology with $S \subset \tau'$, then $\tau \subset \tau'$.

Definition 7. 1. Given (X, τ) be a topological space, $S \subset X$ a subset, the subspace topology (also the induced topology or the relative topology) on S is defined by

$$\tau_S = \{ S \cap U \mid U \in \tau \}.$$

2. Let (X, τ_X) and (Y, τ_Y) be two topological spaces. The product topology of X and Y is defined by

$$\tau_{X\times Y} := \{ U \times V \mid U \in \tau_X \text{ and } V \in \tau_Y \}.$$

3. Let (X, τ_X) and (Y, τ_Y) be two topological spaces. The topological sum of X and Y is defined by

$$\tau_{X \sqcup Y} := \{ U \sqcup V \mid U \in \tau_X \text{ and } V \in \tau_Y \}.$$

Definition 8. Let (X, τ) be a topological space.

- 1. Given a point $p \in X$, a subset $U \subset X$ is a neighborhood of p if there is an open subset $V \in U$ such that $p \in V$. If such a neighborhood exists, p is called a interior point of U.
- 2. Let $S \subset X$ be a subset. The interior of S, denoted by \mathring{S} or $\mathrm{int}(S)$, is the set of all interior points of S.
- 3. Let $S \subset X$ be a subset. The closure of S, denoted by \overline{S} or cl(S), is defined by

$$\operatorname{cl}(S) := X \setminus \operatorname{int}(X \setminus S).$$

1.2 Proofs, Remarks, and Examples

Example 8.1. Let X be a set.

- 1. $\tau = \mathcal{P}(X)$ is called the discrete topology. In this case, (X, τ) is called the discrete space. It is the finest topology that can be defined on a set. (The set of all possible topologies on a given set forms a partially ordered set.)
- 2. $\tau = \{\emptyset, \mathcal{P}(X)\}\$ is called the trivial topology.
- 3. Let (X, d) be a metric space. Set

$$\tau_d := \{ U \in X \mid U \text{ is a open subset in the metric space } (X, d) \}. \tag{1.2}$$

Recall that U being an open subset in the metric space (X, d) means that for all $x \in U$ there is an r > 0 such that $B_d(x, r)$ is contained in U.

Here, τ is a topology. In other words, a metric induces a topology.

(Proof as homework.)

4. The Zariski-topology.

Example 8.2. List of natural topologies.

1. On \mathbb{R}^n the canonical topology, called the Euclidean topology, is generated by the basis that is formed by open balls, i.e. open subsets of \mathbb{R}^n are arbitary unions of open balls. In other words, if $A \in \mathcal{O}_{\mathbb{R}^n}$ and I is an index set, then

$$A = \bigcup_{i \in I} B_r(p) = \bigcup_{i \in I} \left\{ x \in \mathbb{R}^n \mid d(p, x) < r \right\}.$$

This definition agrees with the topology endowed on arbitary metric spaces.

Remark. The set of all homeomorphisms of X to itself Homeo(X) is a group with composition as its operation.

Remark. This lemma does not hold for basis.

Remark. 1. $\tau_{X\times Y}$ is the most coarse topology for which both of the projections are continuous.

2. $\tau_{X \sqcup Y}$ is the finest topology for which both the inclusions are continuous.

Note about product topology: $\{U \times V \mid U \in \mathcal{O}_X, V \in \mathcal{O}_Y\}$; often $W \subset X \times Y \iff \forall (x,y) \in W \exists U_X \in \mathcal{O}_X, V_Y \in \mathcal{O}_Y, x \in U_X, y \in V_Y$

Remark. ¹ Let (X, \mathcal{O}) be a topological space. A subset that is **both** open and closed is called clopen. Moreover, a subset is clopen if and only if its boundary is empty.

Proof. Let $A \subset X$ be clopen. Because A is closed, we have $\operatorname{cl}(A) = A$, but on the other hand, A is open, so we also have $\operatorname{int}(A) = A$. Then, the boundary of A is $\partial A = \operatorname{cl}(A) \setminus \operatorname{int}(A) = A \setminus A = \emptyset$. All steps we have taken are not just implications, but equivalencies, therefore we have proven the statement.

¹The following is a definition and a small proposition.

Connected Spaces and Sets

2.1 Definition and Theorems

Definition 9. A topological space (X, \mathcal{O}) is said to be connected, if one of the following equivalent conditions is met.

- 1. X is **not** a union of two nonempty, disjoint, and open subsets, i.e. there are no open subsets $A, B \in \mathcal{O}$ with $A, B \neq \emptyset$ and $A \cap B = \emptyset$ such that $A \sqcup B = X$.
- 2. The **only** subsets of X that are **both** open and closed (clopen) are the empty set \varnothing and the entire set X, i.e. if $A \subset X$ is a subset with $A \in \mathscr{O}$ and $X \setminus A \in \mathscr{O}$, then $A = \varnothing$ or A = X.
- 3. The **only** subsets of X with empty boundary are the emptyset \varnothing and the entire set X.
- 4. All continuous maps from X to the two point space $\{0,1\}$ endowed with the discrete topology is constant.

A subset of X is connected if it is a connected space when viewed as a subspace of X.

Lemma 10. Any interval $I \subset \mathbb{R}$ is connected.

Definition 11. A connected component of a topological space is a maximally connected subset $X_0 \subseteq X$, i.e. X_0 connected and for all $X_0 \subsetneq X_1$ then X_1 is not connected.

Proposition 12. Connected components are closed subsets.

Lemma 13 (Lemma 11). Let X be connected and $f: X \longrightarrow Y$ and locally constant, i.e. for all $x \in X$ there exists a $U_x \in \mathcal{O}_X$, $x \in U_x$ such that f restricted on U_x is identical to f(x), then f is constant.

Definition 14. X is said to be path connected, if for every pair of points x and x_0 in X there is a continuous map (called path) $\gamma: [0,1] \longrightarrow X$ with $\gamma(0) = x_0$ and $\gamma(1) = x$.

Lemma 15. If X is path connected, then it is also connected.

2.2 Proofs, Remarks, and Examples

Definition 16. A topological space (X, \mathcal{O}) is said to be connected, if one of the following equivalent conditions is met.

- 1. X is **not** a union of two nonempty, disjoint, and open subsets, i.e. there are no open subsets $A, B \in \mathcal{O}$ with $A, B \neq \emptyset$ and $A \cap B = \emptyset$ such that $A \sqcup B = X$.
- 2. The **only** subsets of X that are **both** open and closed (clopen) are the empty set \varnothing and the entire set X, i.e. if $A \subset X$ is a subset with $A \in \mathscr{O}$ and $X \setminus A \in \mathscr{O}$, then $A = \varnothing$ or A = X.
- 3. The **only** subsets of X with empty boundary are the emptyset \varnothing and the entire set X.
- 4. All continuous maps from X to the two point space $\{0,1\}$ endowed with the discrete topology is constant.

A subset of X is connected if it is a connected space when viewed as a subspace of X.

Proof. We verify the equivalence of the different definitions. So, let (X, \mathcal{O}) be a topological space.

- "1. \Rightarrow 2.": Assume that X is not a union of two nonempty, disjoint, and open subsets. Fix a subset $A \in X$ that is clopen. If A is neither the empty set nor X, then $X \setminus A$ is also not the empty set nor X. Clearly, A and $X \setminus A$ are disjoint and they are also open because A is clopen. But $A \sqcup B = X$, so our assumption was absurd. It must be that $A = \emptyset$ or A = X.
- "2. \Rightarrow 1.": Now let the only clopen set contained in X be the empty set or X itself. Assume there are $A, B \in \mathcal{O}$ with $A, B \neq \emptyset$ and $A \cap B = \emptyset$ such that $A \sqcup B = X$. Then, A is open, but also closed because $X \setminus A = B$ is open. Furthermore, A is not empty and since B is also not empty, $A \neq X$. Hence our assumption was wrong and there no nonempty, disjoint, and open subsets A and B such that $A \sqcup B = X$.
- "2. \iff 3.": This is one of the properties of clopen subsets and was proven in remark XXX.
- "1. \Rightarrow 4.": Let X not be a union of two nonempty, disjoint, and open subsets. Assume there exists a continuous function $f: X \longrightarrow \{0,1\}$ with regards to the discrete topology that is not constant. Then, $f^{-1}(\{0\})$ and $f^{-1}(\{1\})$ are nonempty sets that are also disjoint. Since f is continuous, these are also open subsets. But we also have $f^{-1}(\{0\}) \sqcup f^{-1}(\{1\}) = X$.
- "4. \Rightarrow 1.": Let all continuous functions with regards to the discrete topology be constant. Assume there are two nonempty, disjoint, and open subsets $A, B \in \mathcal{O}$ such that $A \sqcup B = X$. Define $f: X \longrightarrow \{0,1\}$ as f(A) = 0 and f(B) = 1. This definition is well-defined because $A, B \in \mathcal{O}$ are nonempty, disjoint, and $A \sqcup B = X$. f is also continuous as the preimage of $\{0\}$ and $\{1\}$ are A and B respectively which are open subsets. Hence our assumption was wrong.

Lemma 17. Any interval $I \subset \mathbb{R}$ is connected.

Proof. Fix an interval $I \subset \mathbb{R}$, and let $A, B \subset \mathbb{R}$ be two nonempty, open and disjoint subsets such that $A \sqcup B = I$. Moreover, let $a \in A$ and $b \in B$ and assume without loss of generality that a < b. If we set

$$s := \inf \{ x \in B \mid a < x \},$$
 (2.1)

then $s \in I$ because s is between a and b and we have $[a, b] \subset I$.

Now, on one side, we have $s \in cl(B)$ and since the complement of B is an open subset A, so B = cl(B). It is therefore $x \in B$.

But we also have $s \in A$ because the infimum cannot be contained in an open set, but $s \in I = A \sqcup B$.

Example 17.1. The general linear group $\mathrm{GL}_n(K)$ for a field K and $n \in \mathbb{N}$ is not connected for $K = \mathbb{R}$ and $K = \mathbb{C}$.

Remark. Let $f: X \longrightarrow Y$ be continuous and X be connected, then $f(X) \subset Y$ is connected.

Proof. Let $f(X) = A \sqcup B$ with A and B being two open disjoint sets. $f^{-1}(A)$ and $f^{-1}(B)$ are open since f is continuous. We also have $f^{-1}(A) \cap f^{-1}B = f^{-1}(A \cap B) = \emptyset$ so $f^{-1}(A) = \emptyset$ or $f^{-1}(B) = \emptyset$, so $A = \emptyset$ or $B = \emptyset$ and we are done.

 \square

Example 17.2. For $\mathbb{Q} \subset \mathbb{R}$ the connected components are points and those are not open.

Proof. Locally constant implies continuous with regards to the discrete topology on Y. Let $x \in X$, $X = f^{-1}(f(x)) \cup f^{-1}(Y \setminus \{f(x)\})$ is a disjoint union and since X is connected $f^{-1}(Y \setminus \{f(x)\}) = \emptyset$. Conclude f is identical to f(x).

Application: $f: X \longrightarrow \{0,1\}$, X is connected, f locally constant, there is a $x \in X$ such that f(x) = 1, then f is identical to 1.

Proof. Let A and B two disjoint open sets such that $A \sqcup B = X$, and let $a \in A$ and $b \in B$. Let $\gamma : [0,1] \longrightarrow X$ be continuous path with $\gamma(0) = x_0$ and $\gamma(1) = x_1$. We have that γ^{-1}

Remark. The converse statement is not true in general.

Example 17.3. $X = \{(x, \sin(\frac{1}{x})) \mid x > 0\} \cup \{0\} \times [-1, 1] \subset \mathbb{R}^2 \text{ is connected but not path connected.}$

Proof. Homework

Remark. missing

2.3 Exercises and Notes

Remark. If $(X, \mathcal{O}_{\mathcal{X}})$ and (Y, \mathcal{O}_{Y}) are two connected topological spaces, then their product $X \times Y$ with the product topology $\mathcal{O}_{X \times Y}$ is also connected.

Proof. We will use the definition that all continuous maps from $X \times Y$ to $\{0,1\}$ endowed with the discrete topology must be constant. Fix a continuous $f: X \longrightarrow \{0,1\}$.

First, consider the image $f(\{x\} \times Y)$ with $x \in X$. Assume f is not constant on $\{x\} \times Y$, then $f(\{x\} \times Y) = \{0,1\}$. So we have the preimages $f^{-1}(\{0\}) = \{x\} \times U$ and $f^{-1}(\{1\}) = \{x\} \times V$ with $U, V \subset Y, U, V \neq \emptyset$, and $U \cap V = \emptyset$. Because f is continuous, U and V must also be open. This would however mean that $U \sqcup V = Y$ and Y would not be connected, therefore, f is constant on $\{x\} \times Y$. Similarly, we get that f is constant on $X \times \{y\}$ for all $y \in Y$.

Let $(x,y) \in X \times Y$ and $(x',y') \in X \times Y$ be two arbitary points. We have f(x,y) = f(x,y') because f is constant on $\{x\} \times Y$ and similary f(x,y') = f(x',y') because f is constant on $X \times \{y\}$. Putting everything together, it is f(x,y) = f(x',y'), therefore all continuous $f: X \times Y \longrightarrow \{0,1\}$ are constant.

Example 17.4. Clearly, the union of two connected sets need not be connected. Take for example $[0,1] \subset \mathbb{R}$ and $[2,3] \subset \mathbb{R}$. Their union $[0,1] \cup [2,3]$ is not connected.

Set difference of connected sets are also not necessarily connected, e.g. $[0,2] \subset \mathbb{R}$ and $\{1\} \subset \mathbb{R}$ are connected, but $[0,2] \setminus \{1\} = [0,1) \cup (1,2]$ is not.

More interestingly, the intersection of two connected sets also need not be connected. Consider the unit circle around the origin $S^1 = \{(x,y) \mid x^2 + y^2 = 1\}$ and another unit circle around (1,0) $A := \{(x,y) \mid (x-1)^2 + y^2 = 1\}$. They are both connected, but their intersection is a two point set

$$\left\{ \left(\frac{1}{2}, \frac{1}{2}\sqrt{3}\right), \left(\frac{1}{2}, -\frac{1}{2}\sqrt{3}\right) \right\}$$

which is not connected.

Example 17.5. Connectedness does not imply path-connectedness. Let \mathbb{R}^2 be endowed with the Euclidean topology and consider

$$X = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) \mid x > 0 \right\} \cup \left(\left\{ 0 \right\} \times [-1, 1] \right) \subset \mathbb{R}^2.$$

and see figure XXX. X is connected, but it is not path-connected.

Proof. 1.

Separation Axioms

Literature: Groessere Liste in Sten, Seibeck

Definition 18 (T_1 Space). Let X be a topological space.

- 1. We say that two points x and y can be separated if each lies in a neighborhood that does **not** contain the other point.
- 2. A topological space X is a T_1 space if any two distinct points in X are separated.

Proposition 19. Let X be a topological space. Then, the following are equivalent.

- 1. X is a T_1 space.
- 2. Points are closed in X, i.e. given any $x \in X$, the singleton set $\{x\}$ is a closed set.

Definition 20 (T_2 Space). Let X be a topological space.

- 1. Points x and y in X can be separated by neighborhood if there exists a neighborhood U of x and a neighborhood V of y such that U and V are disjoint, i.e. $U \cap V = \emptyset$.
- 2. A topological space X is a T_2 space if any two distinct points in X are separated by neighborhood.

Proposition 21. Let X be a topological space. Then, the following are equivalent.

- 1. X is a T_2 space.
- 2. Any singleton set $\{x\}$ is the intersection of all closed neighborhoods of x.
- 3. The diagonal $\Delta = \{(x, x) \mid x \in X\}$ is closed as a subset of the product space $X \times X$.

Proposition 22. T_2 spaces are also T_1 spaces.

Compact Spaces

Definition 23. 1. A topological space X is called **compact** if each of its open cover has a **finite** subcover.

2. A topological space X is called sequentially compact if every sequence in X has a convergent subsequence whose limit is in X.

Theorem 24. Satz 17

Theorem 25. Let $A \subset \mathbb{R}^n$ be a subset. A is compact if and only if it is closed and bounded.

Theorem 26. Let X be a T_2 space. If a subset $K \subset X$ is compact, then it is closed.

Theorem 27. Let X and Y be topological spaces, X compact, and Y be a T_2 space. If $f: X \longrightarrow Y$ is bijective and continuous, then the inverse function f^{-1} is continuous.

4.1 Proofs, Remarks, and Examples

Lemma 28. $[0,1] \subset \mathbb{R}$ is compact.