Local feature: Corners

Lu Peng
School of Computer Science,
Beijing University of Posts and Telecommunications

Machine Vision Technology							
Semantic information				Metric 3D information			
Pixels	Segments	Images	Videos	Camera		Multi-view Geometry	
Convolutions Edges & Fitting Local features Texture	Segmentation Clustering	Recognition Detection	Motion Tracking	Camera Model	Camera Calibration	Epipolar Geometry	SFM
10	4	4	2	2	2	2	2

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

2

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features
Step 2: match features

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features
Step 2: match features

Step 3: align images

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

1

л

Characteristics of good features

- Repeatability
 - The same feature can be found in several images despite geometric and photometric transformations
- Saliency
 - Each feature is distinctive
- · Compactness and efficiency
 - Many fewer features than image pixels
- Locality
 - A feature occupies a relatively small area of the image; robust to clutter and occlusion

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

Applications

Feature points are used for:

- Image alignment
- 3D reconstruction
- Motion tracking
- Robot navigation
- Indexing and database retrieval
- Object recognition

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

_

6

Finding Corners

- Key property: in the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147--151.

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in *any direction* should give *a large change* in intensity

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Source: A. Efros

2020/3/22

Beijing University of Posts and Telecommunications

o

8

Corner Detection: Mathematics

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

I(x, y)

E(u, v)

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

Corner Detection: Mathematics

Change in appearance of window w(x,y) for the shift [u,v]:

2020/3/22

Beijing University of Posts and Telecommunications

Source: R. Szeliski 10

10

Corner Detection: Mathematics

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

We want to find out how this function behaves for small shifts

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

Corner Detection: Mathematics

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

We want to find out how this function behaves for small shifts

Local quadratic approximation of E(u,v) in the neighborhood of (0,0) is given by the second-order Taylor expansion:

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{vv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

12

12

Corner Detection: Mathematics

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0):

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E_{u}(u,v) = \sum_{x,y} 2w(x,y) \left[I(x+u,y+v) - I(x,y) \right] I_{x}(x+u,y+v)$$

$$E_{uu}(u,v) = \sum_{x,y} 2w(x,y) I_{x}(x+u,y+v) I_{x}(x+u,y+v) + \sum_{x,y} 2w(x,y) \left[I(x+u,y+v) - I(x,y) \right] I_{xx}(x+u,y+v)$$

$$E_{uv}(u,v) = \sum_{x,y} 2w(x,y) I_{y}(x+u,y+v) I_{x}(x+u,y+v) + \sum_{x,y} 2w(x,y) \left[I(x+u,y+v) - I(x,y) \right] I_{xy}(x+u,y+v)$$

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

Corner Detection: Mathematics

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0):

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E(0,0) = 0$$

$$E_{uu}(0,0) = \sum_{x,y} 2w(x,y) I_x(x,y) I_x(x,y)$$

$$E_u(0,0) = 0$$

$$E_{vv}(0,0) = \sum_{x,y} 2w(x,y) I_y(x,y) I_y(x,y)$$

$$E_{uv}(0,0) = \sum_{x,y} 2w(x,y) I_x(x,y) I_y(x,y)$$
Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

14

14

Corner Detection: Mathematics

The quadratic approximation simplifies to

$$E(u,v) \approx [u \ v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a second moment matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = \begin{bmatrix} \sum_{i=1}^{I_x I_x} & \sum_{i=1}^{I_x I_y} \\ \sum_{i=1}^{I_x I_y} & \sum_{i=1}^{I_x I_y} \end{bmatrix} = \sum_{i=1}^{I_x} \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y] = \sum_{i=1}^{I_x I_y} \nabla I(\nabla I)^T$$

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

Interpreting the second moment matrix

The surface E(u,v) is locally approximated by a quadratic form. Let's try to understand its shape.

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

16

16

Interpreting the second moment matrix

First, consider the axis-aligned case (gradients are either horizontal or vertical)

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

If either λ is close to 0, then this is **not** a corner, so look for locations where both are large.

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v):

This is the equation of an ellipse.

2020/3/22

Beijing University of Posts and Telecommunications

Source: S. Lazebnik 18

18

Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v):

This is the equation of an ellipse.

Diagonalization of M:

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R

fastest change

 $(\lambda_{\min})^{-1}$

direction of the slowest change

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

Visualization of second moment matrices

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

20

Corner response function

$$R = \det(M) - \alpha \operatorname{trace}(M)^{2} = \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

 α : constant (0.04 to 0.06)

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

22

22

Harris detector: Steps

- 1. Compute Gaussian derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function R
- 4. Threshold R
- 5. Find local maxima of response function (nonmaximum suppression)

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u>

Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

Harris Detector: Steps

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

24

Harris Detector: Steps

Find points with large corner response: R>threshold

2020/3/22

Beijing University of Posts and Telecommunications

Source: S. Lazebnik

26

Harris Detector: Steps

Take only the points of local maxima of R

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

Harris Detector: Steps

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

28

28

Invariance and covariance

- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - **Covariance:** if we have two transformed versions of the same image, features should be detected in corresponding locations

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

Affine intensity change

 $I \rightarrow a I + b$

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow a I$

Partially invariant to affine intensity change

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

30

30

Image translation

· Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Source: S. Lazebnik

2020/3/22

Beijing University of Posts and Telecommunications

. .

