

Name: Kyle Ness

Student number: 46/0/6

Computer Science 260: Quiz 2	
descendant	
X. The transitive closure of the child relation is the Sibling	$relation. \mathcal{J}$
Let $f(x) = 2x$ and let $g(x) = x^2$. Hence, $f \circ g(x) = \mathcal{J} \mathcal{J}$ mathematical expression).]. (Insert \(\lambda\)
A relation that is reflexive, symmetric and transitive is called an Equivalence relation.	€/
Consider the following program fragment	
$[X = a+b=q] \qquad s := a; \qquad [X = a+b-s]$	J
	· U
Use the assignment rule and the concatenation rule to fill in the boxes. Do not other rules. Simplify the final result to get $2 \times 2 \times 3$.	t use any $\sqrt{}$
If $\{P\}C\{Q\}$ is proven, then $\{P_1\}C\{Q\}$ is also proven provided P_1 is $\bigcup_{i=1}^{n} C(Q_i) = C(Q_i)$ than P .	4
Weaker than P. Stronger	-
	5/7
	ز
$\times R_{\times}$	
XRy <-> YRX	
XRy YRZ ~ X D-7	