MAT 473: Intermediate Real Analysis II

Trey Manuszak Arizona State University April 24, 2020 **Problem 45.** Recall that a function $f: \mathbb{R} \to \overline{\mathbb{R}}$ is measurable (or Lebesgue measurable if for every Borel set E in $\overline{\mathbb{R}}$, we have that $f^{-1}(E)$ is a (Lebesgue) measurable set (in \mathbb{R}).) We say that f is Borel measurable if for every Borel set $E \subseteq \overline{\mathbb{R}}$, $f^{-1}(E)$ is a Borel set.

Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \overline{\mathbb{R}}$. Prove the following.

(a) If f and g are both Borel measurable, then $g \circ f$ is Borel measurable.

Proof. Suppose $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \overline{\mathbb{R}}$ are both Borel measurable. Note, that for every $E \subseteq \overline{\mathbb{R}}$ Borel,

$$(g \circ f)^{-1}(E) = f^{-1}(g^{-1}(E)).$$

Since E is borel and g is Borel measurable, then $g^{-1}(E)$ is Borel. Since f is Borel measurable and $g^{-1}(E)$ is Borel, then $f^{-1}(g^{-1}(E))$ is Borel, which implies $(g \circ f)^{-1}(E)$ is Borel. Therefore, $g \circ f$ is Borel measurable.

(b) If f is measurable and g is Borel measurable, then $g \circ f$ is measurable.

Proof. Suppose $f: \mathbb{R} \to \mathbb{R}$ is measurable and $g: \mathbb{R} \to \overline{\mathbb{R}}$ is Borel measurable. Similarly, for every $E \subseteq \overline{\mathbb{R}}$ Borel,

$$(g \circ f)^{-1}(E) = f^{-1}(g^{-1}(E)).$$

Since g is Borel measurable and E is Borel, then $g^{-1}(E)$ is Borel. Since f is measurable and $g^{-1}(E)$ is Borel, then $f^{-1}(g^{-1}(E))$ is measurable, which implies $(g \circ f)^{-1}(E)$ is measurable. Therefore, $g \circ f$ is measurable.

(It is a fact that there exists examples of measurable functions f and g such that $g \circ f$ is not measurable.)

Problem 46. Let f be a nonnegative simple function. Define a function $\mu: \mathcal{L} \to [0, \infty]$ by $\mu(E) = \int (f \cdot \chi_E)$. Prove that μ is *countably additive*: if E_1, E_2, \ldots are pairwise disjoint measurable sets, then $\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$.

Proof. For each N > 0, $\bigcup_{i=1}^N E_i \subset \bigcup_{i=1}^\infty E_i$, which implies $\mu\left(\bigcup_{j=1}^N E_i\right) \leq \mu\left(\bigcup_{i=1}^\infty E_i\right)$. So, since each E_i is disjoint and by finite subadditivity, we have $\sum_{i=1}^N \mu(E_i) \leq \mu\left(\bigcup_{i=1}^\infty E_i\right)$. Then, since N does not determine the inequality, we have $\lim_{N\to\infty} \sum_{i=1}^N \mu(E_i) = \sum_{i=1}^\infty \mu(E_i) \leq \mu\left(\bigcup_{i=1}^\infty E_i\right)$. Since countable subadditivity give the other direction of the inequality, we must have $\sum_{i=1}^\infty \mu(E_i) = \mu\left(\bigcup_{i=1}^\infty E_i\right)$, which implies μ is countably additive. \square

Problem 47. Let f be a nonnegative simple function. Prove that the following conditions are equivalent:

- (a) $\int f = 0$
- (b) f = 0 a.e.

(c) Let $f = \sum_{i=1}^{n} a_i \chi_{A_i}$ be any representation of f with $a_i \geq 0$ for all i. For each i, if $a_i > 0$, then $m(A_i) = 0$.

Proof. (a) \Longrightarrow (b): Suppose for some $X \in \text{dom}(f)$, $\int_X f = 0$. Let $\{x \in X : f(x) > 0\} = \bigcup_{n \in \mathbb{N}} \{x \in X : f(x) > \frac{1}{n}\}$. Then,

$$m(\{x \in X : f(x) > \frac{1}{n}\}) = \int_{\{x \in X : f(x) > \frac{1}{n}\}} 1$$

$$= n \int_{\{x \in X : f(x) > \frac{1}{n}\}} \frac{1}{n}$$

$$\leq n \int_{\{x \in X : f(x) > \frac{1}{n}\}} f$$

$$\leq n \int_{X} f$$

$$= 0.$$

Therefore, $m(\lbrace x \in X : f(x) > \frac{1}{n}\rbrace) = 0$, which implies f = 0 a.e.

(b) \Longrightarrow (a): Let $A = \{x : f(x) = 0\}$ and $m(A^c) = 0$. Then, for $X \in \text{dom}(f)$,

$$\int_{X} f = \int_{X} f \cdot (\chi_{A} + \chi_{A^{c}})$$

$$= \int_{X} f \cdot \chi_{A} + \int_{X} f \cdot \chi_{A^{c}}$$

$$= \int_{A} f + \int_{A^{c}} f$$

$$= 0.$$
(Since $A \cap A^{c} = \emptyset$)

(a) \Longrightarrow (c): Suppose that $\int_A f = 0$ where A is a collection of disjoint sets. Thus, since $\int_E f = \int a_1 \chi_{A_1} + \cdots = 0$, then each term must be zero. That means that if $a_i > 0$ for some i, then $\chi_{A_i} = 0$, which implies $m(A_i) = 0$.

(c) \Longrightarrow (a): Suppose $f = \sum_{i=1}^{n} a_i \chi_{A_i}$ be any representation of f with $a_i \geq 0$ for all i. For each i, if $a_i > 0$, then $m(A_i) = 0$. Then, each term $a_i \chi_{A_i} = 0$ in the expansion of f, which implies $\int f = 0$.

Problem 48. For $f, g : \mathbb{R} \to \mathbb{R}$ the *join* of f and g is the function $f \vee g : \mathbb{R} \to \mathbb{R}$ defined by

$$(f\vee g)(x)=\max\{f(x),g(x)\}$$

(i.e. the pointwise maximum of the two functions). The meet is defined by

$$(f \wedge g)(x) = \min\{f(x), g(x)\}.$$

The positive and negative parts of f are defined by

$$f_{+} = f \vee 0, \quad f_{-} = -(f \wedge 0).$$

Prove the following.

(i) If f and g are measurable then so are $f \vee g$ and $f \wedge g$.

Proof. Note, $\{x: (f \vee g)(x) > c\} = \{x: f(x) > c\} \cup \{x: g(x) > c\}$ and $\{x: (f \wedge g)(x) > c\} = \{x: f(x) > c\} \cap \{x: g(x) > c\}$. So, since the join and meet are a countable collection of union and intersected measurable sets, then the join and meet must also be measurable functions.

(ii) $f_+ \ge 0$, $f_- \ge 0$, and $f_+ f_- = 0$.

Proof. There are the three following cases,

$$f > 0 \longrightarrow f_{+} > 0$$
 and $f_{-} = 0 \Longrightarrow f_{+}f_{-} = 0$,
 $f < 0 \Longrightarrow f_{+} = 0$ and $f_{-} > 0 \Longrightarrow f_{+}f_{-} = 0$,
 $f = 0 \Longrightarrow f_{+} = 0$ and $f_{-} = 0 \Longrightarrow f_{+}f_{-} = 0$.

Therefore, in all cases, $f_{+} \geq 0$, $f_{-} \geq 0$, and $f_{+}f_{-} = 0$.

(iii) $f = f_+ - f_-$ and $|f| = f_+ + f_-$.

Proof. Focusing on the first part, if f > 0, then $f_+ - f_- = f - 0 = f$. If f < 0, then $f_+ - f_- = 0 - (-f) = f$. If f = 0, then $f_+ - f_- = 0 - 0 = 0 = f$. Therefore, $f = f_+ - f_-$.

Now, on the second part, if f > 0, then $f_+ + f_- = f + 0 = f = |f|$. If f < 0, then $f_+ + f_- = 0 - f = |f|$. If f = 0, then $f_+ + f_- = 0 + 0 = 0$. Therefore, $|f| = f_+ + f_-$.

(iv) If $g, h \ge 0$ and f = g - h, then $g \ge f_+$ and $h \ge f_-$. Also, $g = f_+$ if and only if $h = f_-$, and this happens if and only if gh = 0.

Proof. From (iii), we know $f = f_+ - f_-$. Suppose f = g - h and $g, h \ge 0$. So, $g - h = f_+ - f_-$. There are three cases.

One, if f > 0, then either g > h, which implies the difference g - h and $f_+ - f_-$ must be the same, which implies $g > f_+$ and $h > f_-$ and gh > 0, or the differences are the same, which implies $g = f_+$ and $h = f_-$ and gh = 0.

Two, if f < 0 implies either g < h, which implies $g > f_+$ and $h > f_-$ to make up for the difference, which implies gh > 0, or, as in the last case, the differences are the same, which implies $g = f_+$ and $h = f_-$ and gh = 0.

Lastly, if f = 0, then g = h = 0 and $f_+ = f_- = 0$, which implies $g = f_+$ and $h = f_-$, which implies gh = 0.

Therefore, we have if $g, h \ge 0$ and f = g - h, then $g \ge f_+$ and $h \ge f_-$. Also, $g = f_+$ if and only if $h = f_-$, and this happens if and only if gh = 0.