R for Data Analysis

Session Content

ARITHMETIC

COMPARISONS

TRUTH CONDITIONS

BRANCHING

LOOPS

LIBRARIES & PLOTS

Arithmetic

Operator	Operation
+	Addition
-	Subtraction
*	Multiplication
1	Division
%/%	Integer Division
٨	Exponentiation
%%	Modulus

num1 <- 10 num2<- 4

print (paste("Addition:", Large +
Small))

All operators return the result if written in this way

Try a calculation for each operator

Comparisons

Operator	Comparison
==	Equality
!=	Inequality
>	Greater than
>=	Greater than, or equal to
<	Less than
<=	Less than, or equal to

These have the same meanings as we are used to in other languages.

nil <- 0

num <-0

max <-1

print(paste ("0==0 Equality:", nil== num))

Truth Conditions

Much like other languages you can use the conditional statement if.

if (test-expression) { code-to-be-executed-when-true}

```
if ( 5>1)
{
  print ("five is greater than one")
  print (" test Succeeded")
}
```


Branching Alternatives

We can use else with the if to provide alternative branches

```
if(test-expression)
{
      code-to-be-executed-when-true
} else
      {
      code-to-be executed-when-false
      }
```


Looping – While Loop

A while loop allows for a statement to be executed while a statement is true.

```
While ( test-expression)
{
Statement-to-be-executed-on-each-iteration-
updater
}
```


Loop – For Loop

```
for (variable in sequence)
Statements-to-be-executed-on-each-
iteration
Try this:
seq < -c(100, 200, 200)
for (variable in sequence)
print( paste("loop Variable=", var))
```

You can use a for loop to repeat an event for a certain number of times

Breaking Loops

You can use the word **break** to terminate a loop when specified condition is met.

What is a matrix?

2x2 matrix	column 1	column 2	
row 1	1	2]
row 2	3	4	
3x3 matrix	column 1	column 2	Column 3
row 1	1	2	3
row 2	4	5	6
row 3	7	8	9
5x2 matrix	column 1	column 2	
row 1	1	2]
row 2	3	4]
row 3	5	6]
	_	_	1

Data frames

- Like matrix, data frames have a 2-dimensional table of rows and columns
- However, these can have different types of data unlike matrices
- Data frames can have strings and integers

dataframe matrix

х	У
12.3	ace
3	tea
5.01	oil
2.3	tree

12.3	0.1
3.0	5.2
5.01	3.0
2.3	0.1

Libraries

There are many inbuilt libraries.

We are going to look at GGPLOT2

– which plots graphs

Histogram

Histogram: is a graphical display of data using bars of different heights. It is similar to a Bar Chart, but a histogram groups numbers into ranges. The height of each bar shows how many fall into each range.

Home Learning Tasks

Home Learning

- 1. Write an R program to create three vectors a, b, c with 5 integers. Combine the three vectors to become a 3×5 matrix where each column represents a vector. Print the content of the matrix. Plot a graph and label correctly.
- 2. Write a R program to create a Data frames which contain details of 5 employees and display the details. (Name, Age, Gender, Role and Length of service).
- 3. Import the GGPLOT 2 library and plot a graph using the qplot function. X axis is the sequence of 1:20 and the y axis is the x ^ 2. Label the graph appropriately. install.packages("ggplot2", dependencies = TRUE)
- 4. Create a simple bar plot of five subjects

Challenge

1. Write a R program to get the first 10 Fibonacci numbers.

2. Write a R program to print the numbers from 1 to 100 and print "Fizz" for multiples of 3, print "Buzz" for multiples of 5, and print "FizzBuzz" for multiples of both.

WOMEN IN DATA ACADEMY

TECH TALENT ACADEMY