

JAB SAARA INDIA VEDANTU PE ONLINE PADHEGA

Vedantu Scholarship Admission Test

- ⊘ Take the Online Test from the comfort of your home

Register **NOW**

Limited Seats!

BEST RESULTS FROM ONLINE CLASSES

Vedantu Scholarship Admission Test

- ⊗ WIN an assured Scholarship upto 100%
- Take the Online Test from the comfort of your home
- ⊗ It's Absolutely FREE

Register **NOW**

Limited Seats!

Ouestion 1:

Prove that following by using the principle of mathematical induction for all $n \in N$:

$$1+3+3^2+\dots+3^{n-1}=\frac{\left(3^n-1\right)}{2}$$

Solution 1:

Let the given statement be P(n), i.e.,

$$P(n):1+3+3^2+....+3^{n-1}=\frac{\left(3^n-1\right)}{2}$$

For n=1, we have

$$P(1) := \frac{(3^1 - 1)}{2} = \frac{3 - 1}{2} = \frac{2}{2} = 1$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1+3+3^2+....+3^{k-1}=\frac{\left(3^k-1\right)}{2}$$
(i)

We shall now prove that P(k+1) is true.

Consider

$$1+3+3^{2}+....+3^{k-1}+3^{(k+1)-1}$$

$$=(1+3+3^{2}+....+3^{k-1})+3^{k}$$

$$=\frac{(3^{k}-1)}{2}+3^{k} \qquad [Using(i)]$$

$$=\frac{(3^{k}-1)+2.3^{k}}{2}$$

$$=\frac{(1+2)3^{k}-1}{2}$$

$$=\frac{3.3^{k}-1}{2}$$

$$=\frac{3^{k+1}-1}{2}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 2:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Solution 2:

Let the given statement be P(n), i.e.,

$$P(n):1^3+2^3+3^3+\ldots+n^3=\left(\frac{n(n+1)}{2}\right)^2$$

For n = 1, we have

$$P(1):1^3=1=\left(\frac{1(1+1)^2}{2}\right)=\left(\frac{1.2}{2}\right)^2=1^2=1$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1^3 + 2^3 + 3^3 + \dots + k^3 = \left(\frac{k(k+1)}{2}\right)^2$$
(i)

We shall now prove that P(k+1) is true.

Consider

Consider
$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3}$$

$$= (1^{3} + 2^{3} + 3^{3} + \dots + k^{3}) + (k+1)^{3}$$

$$= \left(\frac{k(k+1)}{2}\right)^{2} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2} + 4(k+1)^{3}}{4}$$

$$= \frac{(k+1)^{2} \{k^{2} + 4(k+1)\}}{4}$$

$$= \frac{(k+1)^{2} \{k^{2} + 4k + 4\}}{4}$$

$$= \frac{(k+1)^{2} (k+2)^{2}}{4}$$

$$= \frac{(k+1)^{2} (k+1+1)^{2}}{4}$$

$$= \left(\frac{(k+1)(k+1+1)}{2}\right)^{2}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 3:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1 + \frac{1}{(1+2)} + \frac{1}{(1+2+3)} + \dots + \frac{1}{(1+2+3+\dots n)} = \frac{2n}{(n+1)}$$

Solution 3:

Let the given statement be P(n), i.e.,

$$P(n):1+\frac{1}{1+2}+\frac{1}{1+2+3}+\dots+\frac{1}{1+2+3+\dots n}=\frac{2n}{n+1}$$

For n = 1, we have

$$P(1):1=\frac{2.1}{1+1}=\frac{2}{2}=1$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1 + \frac{1}{1+2} + \dots + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+k} = \frac{2k}{k+1} \dots (i)$$

We shall now prove that P(k+1) is true.

Consider

$$1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+k} + \frac{1}{1+2+3+\dots+k+(k+1)}$$

$$= \left(1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+k}\right) + \frac{1}{1+2+3+\dots+k+(k+1)}$$

$$= \frac{2k}{k+1} + \frac{1}{1+2+3+\dots+k+(k+1)} \qquad [Using (i)]$$

$$= \frac{2k}{k+1} + \frac{1}{\left(\frac{(k+1)(k+1+1)}{2}\right)} \qquad \left[1 + 2 + 3 \dots + n = \frac{n(n+1)}{2}\right]$$

$$= \frac{2k}{(k+1)} + \frac{2}{(k+1)(k+2)}$$

$$= \frac{2}{(k+1)} \left(k + \frac{1}{k+2}\right)$$

$$= \frac{2}{(k+1)} \left(\frac{k^2 + 2k + 1}{k+2}\right)$$

$$= \frac{2}{(k+1)} \left(\frac{(k+1)^2}{k+2}\right)$$

$$= \frac{2(k+1)}{(k+2)}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 4:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1.2.3 + 2.3.4 + \dots + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

Solution 4:

Let the given statement be P(n), i.e.,

$$P(n):1.2.3+2.3.4+....+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$$

For n=1, we have

$$P(1):1.2.3 = 6 = \frac{1(1+1)(1+2)(1+3)}{4} = \frac{1.2.3.4}{4} = 6$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1.2.3 + 2.3.4 + \dots + k(k+1)(k+2) = \frac{k(k+1)(k+2)(k+3)}{4} \dots (i)$$

We shall now prove that P(k+1) is true.

Consider

$$1.2.3 + 2.3.4 + \dots + k(k+1)(k+2) + (k+1)(k+2)(k+3)$$

$$= \{1.2.3 + 2.3.4 + \dots + k(k+1)(k+2)\} + (k+1)(k+2) + (k+3)$$

$$= \frac{k(k+1)(k+2)(k+3)}{4} + (k+1)(k+2)(k+3) \qquad [Using(i)]$$

$$= (k+1)(k+2)(k+3)\left(\frac{k}{4}+1\right)$$

$$= \frac{(k+1)(k+2)(k+3)(k+4)}{4}$$

$$= \frac{(k+1)(k+1+1)(k+1+2)(k+1+3)}{4}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 5:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1.3 + 2.3^{2} + 3.3^{3} + \dots + n.3^{n} = \frac{(2n-1)3^{n+1} + 3}{4}$$

Solution 5:

Let the given statement be P(n), i.e.,

$$P(n):1.3+2.3^2+3.3^3+....+n3^n=\frac{(2n-1)3^{n+1}+3}{4}$$

For n=1, we have

$$P(1):1.3=3=\frac{(2.1-1)3^{1+1}+3}{4}=\frac{3^2+3}{4}=\frac{12}{4}=3$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1.3 + 2.3^{2} + 3.3^{3} + \dots + k3^{k} = \frac{(2k-1)3^{k+1} + 3}{4} \dots (i)$$

We shall now prove that P(k+1) is true.

Consider

$$1.3 + 2.3^{2} + 3.3^{3} + \dots + k.3^{k} + (k+1).3^{k+1}$$

$$= (1.3 + 2.3^{2} + 3.3^{3} + \dots + k.3^{k}) + (k+1).3^{k+1}$$

$$= \frac{(2k-1)3^{k+1} + 3}{4} + (k+1)3^{k-1} \qquad [Using(i)]$$

$$= \frac{(2k-1)3^{k+1} + 3 + 4(k+1)3^{k+1}}{4}$$

$$= \frac{3^{k+1} \{2k-1+4(k+1)\} + 3}{4}$$

$$= \frac{3^{k+1} \{6k+3\} + 3}{4}$$

$$= \frac{3^{k+1} \{6k+3\} + 3}{4}$$

$$= \frac{3^{(k+1)+1} \{2k+1\} + 3}{4}$$

$$= \frac{\{2(k+1)-1\}3^{(k+1)+1} + 3}{4}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 6:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1.2 + 2.3 + 3.4 + \dots + n.(n+1) = \left\lceil \frac{n(n+1)(n+2)}{3} \right\rceil$$

Solution 6:

Let the given statement be P(n), i.e.,

$$P(n): 1.2+2.3+3.4+....+n.(n+1) = \left\lceil \frac{n(n+1)(n+2)}{3} \right\rceil$$

For n = 1, we have

$$P(1):1.2=2=\frac{1(1+1)(1+2)}{3}=\frac{1.2.3}{3}=2$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1.2 + 2.3 + 3.4 + \dots + k.(k+1) = \frac{k(k+1)(k+2)}{3} \dots (i)$$

We shall now prove that P(k+1) is true.

Consider

$$1.2 + 2.3 + 3.4 + \dots + k.(k+1) + (k+1).(k+2)$$

$$= \left[1.2 + 2.3 + 3.4 + \dots + k.(k+1)\right] + (k+1).(k+2)$$

$$= \frac{k(k+1)(k+2)}{3} + (k+1)(k+2) \qquad \left[\text{Using}(i)\right]$$

$$= (k+1)(k+2)\left(\frac{k}{3}+1\right)$$

$$= \frac{(k+1)(k+2)(k+3)}{3}$$

$$= \frac{(k+1)(k+1)(k+1+2)}{3}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 7:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1.3+3.5+5.7+....+(2n-1)(2n+1)=\frac{n(4n^2+6n-1)}{3}$$

Solution 7:

Let the given statement be P(n), i.e.,

$$P(n):1.3+3.5+5.7+....+(2n-1)(2n+1)=\frac{n(4n^2+6n-1)}{3}$$

For n = 1, we have

$$P(1):1.3=3=\frac{1(4.1^2+6.1-1)}{3}=\frac{4+6-1}{3}=\frac{9}{3}=3$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1.3+3.5+5.7+....+(2k-1)(2k+1)=\frac{k(4k^2+6k-1)}{3}.....(i)$$

We shall now prove that P(k+1) is true.

Consider

$$(1.3+3.5+5.7+.....+(2k-1)(2k+1))+\{(k+1)-1\}\{2(k+1)+1\}$$

$$=\frac{k(4k^2+6k-1)}{3}+(2k+2-1)(2k+2+1) \quad \text{[Using (i)]}$$

$$=\frac{k(4k^2+6k-1)}{3}+(2k+1)(2k+3)$$

$$=\frac{k(4k^2+6k-1)}{3}+(4k^2+8k+3)$$

$$=\frac{k(4k^2+6k-1)+3(4k^2+8k+3)}{3}$$

$$=\frac{4k^3+6k^2-k+12k^2+24k+9}{3}$$

$$=\frac{4k^3+18k^2+23k+9}{3}$$

$$=\frac{4k^3+14k^2+9k+4k^2+14k+9}{3}$$

$$=\frac{k(4k^2+14k+9)+1(4k^2+14k+9)}{3}$$

$$=\frac{(k+1)(4k^2+14k+9)}{3}$$

$$=\frac{(k+1)\{4(k^2+2k+1)+6(k+1)-1\}}{3}$$

$$=\frac{(k+1)\{4(k^2+2k+1)+6(k+1)-1\}}{3}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Ouestion 8:

Prove the following by using the principle of mathematical induction for all $n \in N$: $1.2 + 2.2^2 + 3.2^2 + ... + n.2^n = (n-1)2^{n+1} + 2$

Solution 8:

Let the given statement be P(n), i.e.,

$$P(n):1.2+2.2^2+3.2^2+....+n.2^n=(n-1)2^{n+1}+2$$

For n = 1, we have

$$P(1):1.2=2=(1-1)2^{1+1}+2=0+2=2$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1.2 + 2.2^2 + 3.2^2 + \dots + k.2^k = (k-1)2^{k+1} + 2\dots(i)$$

We shall now prove that P(k+1) is true.

Consider

$$\begin{cases}
1.2 + 2.2^{2} + 3.2^{2} + \dots + k.2^{k} + (k+1).2^{k+1} \\
= (k-1)2^{k+1} + 2 + (k+1)2^{k+1} \\
= 2^{k+1} \left\{ (k-1) + (k+1) \right\} + 2 \\
= 2^{k+1}.2k + 2 \\
= k.2^{(k+1)+1} + 2
\end{cases}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 9:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$

 $=\{(k+1)-1\}2^{(k+1)+1}+2$

Solution 9:

Let the given statement be P(n), i.e.,

$$P(n): \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$

For n=1, we have

$$P(1): \frac{1}{2} = 1 - \frac{1}{2^1} = \frac{1}{2}$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^k} = 1 - \frac{1}{2^k} \dots (i)$$

We shall now prove that P(k+1) is true.

$$\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{k}}\right) + \frac{1}{2^{k+1}}$$

$$= \left(1 - \frac{1}{2^{k}}\right) + \frac{1}{2^{k+1}} \qquad \left[\text{Using}(i)\right]$$

$$1 - \frac{1}{2^{k}} \left(1 - \frac{1}{2} \right)$$

$$= 1 - \frac{1}{2^{k}} \left(\frac{1}{2} \right)$$

$$= 1 - \frac{1}{2^{k+1}}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 10:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{(6n+4)}$$

Solution 10:

Let the given statement be P(n), i.e.,

$$P(n): \frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{(6n+4)}$$

For n=1, we have

$$P(1) = \frac{1}{2.5} = \frac{1}{10} = \frac{1}{6.1 + 4} = \frac{1}{10}$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3k+1)(3k+2)} = \frac{k}{6k+4} \dots (i)$$

We shall now prove that P(k+1) is true.

$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3k+1)(3k+2)} + \frac{1}{\{3(k+1)-1\}\{3(k+1)+2\}}$$

$$= \frac{k}{6k+4} + \frac{1}{(3k+3-1)(3k+3+2)} \qquad [Using(i)]$$

$$= \frac{k}{6k+4} + \frac{1}{(3k+2)(3k+5)}$$

$$= \frac{k}{2(3k+2)} + \frac{1}{(3k+2)(3k+5)}$$

$$= \frac{1}{(3k+2)} \left(\frac{k}{2} + \frac{1}{3k+5}\right)$$

$$= \frac{1}{(3k+2)} \left(\frac{k(3k+5)+2}{2(3k+5)}\right)$$

$$= \frac{1}{(3k+2)} \left(\frac{3k^2 + 5k + 2}{2(3k+5)} \right)$$

$$= \frac{1}{(3k+2)} \left(\frac{(3k+2)(k+1)}{2(3k+5)} \right)$$

$$= \frac{(k+1)}{6k+10}$$

$$= \frac{(k+1)}{6(k+1)+4}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e, N.

Question 11:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$$

Solution 11:

Let the given statement be P(n), i.e.,

$$P(n): \frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$$

For n = 1, we have

$$P(1): \frac{1}{1 \cdot 2 \cdot 3} = \frac{1 \cdot (1+3)}{4(1+1)(1+2)} = \frac{1 \cdot 4}{4 \cdot 2 \cdot 3} = \frac{1}{1 \cdot 2 \cdot 3}$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{k(k+1)(k+2)} = \frac{k(k+3)}{4(k+1)(k+2)} \quad \dots \quad (i)$$

We shall now prove that P(k+1) is true.

$$\left[\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots + \frac{1}{k(k+1)(k+2)}\right] + \frac{1}{(k+1)(k+2)(k+3)}$$

$$= \frac{k(k+3)}{4(k+1)(k+2)} + \frac{1}{(k+1)(k+2)(k+3)}$$
[Using (i)]
$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k+3)}{4} + \frac{1}{k+3} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k+3)^2 + 4}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k^2 + 6k + 9) + 4}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k^3 + 6k^2 + 9k + 4}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k^3 + 2k^2 + k + 4k^2 + 8k + 4}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k^2 + 2k + 1) + 4(k^2 + 2k + 1)}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k+1)^2 + 4(k+1)^2}{4(k+3)} \right\}$$

$$= \frac{(k+1)^2 (k+4)}{4(k+1)(k+2)(k+3)}$$

$$= \frac{(k+1)\{(k+1) + 3\}}{4\{(k+1) + 1\}\{(k+1) + 2\}}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 12:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$a + ar + ar^{2} + \dots + ar^{n-1} = \frac{a(r^{n} - 1)}{r - 1}$$

Solution 12:

Let the given statement be P(n), i.e.,

$$P(n): a + ar + ar^{2} + \dots + ar^{n-1} = \frac{a(r^{n} - 1)}{r - 1}$$

For n = 1, we have

$$P(1): a = \frac{a(r^1 - 1)}{(r - 1)} = a$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$a + ar + ar^{2} + \dots + ar^{k-1} = \frac{a(r^{k} - 1)}{r - 1} \dots (i)$$

We shall now prove that P(k+1) is true.

Consider

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 13:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)....\left(1+\frac{(2n+1)}{n^2}\right)=\left(n+1\right)^2$$

Solution 13:

Let the given statement be P(n), i.e.,

$$P(n): \left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)....\left(1+\frac{(2n+1)}{n^2}\right) = (n+1)^2$$

For n = 1, we have

$$P(1): \left(1+\frac{3}{1}\right)=4=\left(1+1\right)^2=2^2=4$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)....\left(1+\frac{(2k+1)}{k^2}\right)=(k+1)^2.....(1)$$

We shall now prove that P(k+1) is true.

$$\left[\left(1 + \frac{3}{1} \right) \left(1 + \frac{5}{4} \right) \left(1 + \frac{7}{9} \right) \dots \left(1 + \frac{(2k+1)}{k^2} \right) \right] \left\{ 1 + \frac{\left\{ 2(k+1) + 1 \right\}}{(k+1)^2} \right\} \\
= (k+1)^2 \left(1 + \frac{2(k+1) + 1}{(k+1)^2} \right) \qquad \left[\text{Using}(1) \right]$$

$$= (k+1)^{2} \left[\frac{(k+1)^{2} + 2(k+1) + 1}{(k+1)^{2}} \right]$$
$$= (k+1)^{2} + 2(k+1) + 1$$
$$= \{(k+1) + 1\}^{2}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 14:

Prove the following by using principle of mathematical induction for all $n \in N$:

$$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)....\left(1+\frac{1}{n}\right)=(n+1)$$

Solution 14:

Let the given statement be P(n), i.e.,

$$P(n): \left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)....\left(1+\frac{1}{n}\right) = (n+1)$$

For n = 1, we have

$$P(1): \left(1+\frac{1}{1}\right)=2=(1+1)$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$P(k): \left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{k}\right) = (k+1)....(1)$$

We shall now prove that P(k+1) is true.

Consider

$$\left[\left(1 + \frac{1}{1} \right) \left(1 + \frac{1}{2} \right) \left(1 + \frac{1}{3} \right) \dots \left(1 + \frac{1}{k} \right) \right] \left(1 + \frac{1}{k+1} \right) \\
= (k+1) \left(1 + \frac{1}{k+1} \right) \\
= (k+1) \left[\frac{(k+1)+1}{(k+1)} \right] \\
= (k+1) + 1$$
[Using (1)]

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 15:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}$$

Solution 15:

Let the given statement be P(n), i.e.,

$$P(n): 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$

For n = 1, we have

$$P(1)=1^2=1=\frac{1(2.1-1)(2.1+1)}{3}=\frac{1.1.3}{3}=1$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$P(k) = 1^2 + 3^2 + 5^2 + \dots + (2k-1)^2 = \frac{k(2k-1)(2k+1)}{3} \dots (1)$$

We shall now prove that P(k+1) is true.

Consider

$$\begin{cases}
1^2 + 3^2 + 5^2 + \dots + (2k-1)^2 \\
 = \frac{k(2k-1)(2k+1)}{3} + (2k+2-1)^2
\end{cases} = \frac{k(2k-1)(2k+1)}{3} + (2k+1)^2$$

$$= \frac{k(2k-1)(2k+1)}{3} + (2k+1)^2$$

$$= \frac{2(2k-1)(2k+1) + 3(2k+1)^2}{3}$$

$$= \frac{(2k+1)\{k(2k-1) + 3(2k+1)\}}{3}$$

$$= \frac{(2k+1)\{2k^2 - k + 6k + 3\}}{3}$$

$$= \frac{(2k+1)\{2k^2 + 5k + 3\}}{3}$$

$$= \frac{(2k+1)\{2k^2 + 2k + 3k + 3\}}{3}$$

$$= \frac{(2k+1)\{2k(k+1) + 3(k+1)\}}{3}$$

$$= \frac{(2k+1)\{2(k+1) + 3(k+1)\}}{3}$$

$$= \frac{(2k+1)\{2(k+1) - 1\}\{2(k+1) + 1\}}{3}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 16:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{(3n+1)}$$

Solution 16:

Let the given statement be P(n), i.e.,

$$P(n): \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{(3n+1)}$$

For n = 1, we have

$$P(1) = \frac{1}{1.4} = \frac{1}{3.1+1} = \frac{1}{4} + \frac{1}{1.4}$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$P(k) = \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3k-2)(3k+1)} = \frac{k}{3k+1} \dots (1)$$

We shall now prove that P(k+1) is true.

Consider

$$\left\{ \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3k-2)(3k+1)} \right\} + \frac{1}{\{3(k+1)-2\}\{3(k+1)+1\}}$$

$$= \frac{k}{3k+1} + \frac{1}{(3k+1)(3k+4)} \qquad [Using (1)]$$

$$= \frac{1}{(3k+1)} \left\{ k + \frac{1}{(3k+4)} \right\}$$

$$= \frac{1}{(3k+1)} \left\{ \frac{k(3k+4)+1}{(3k+4)} \right\}$$

$$= \frac{1}{(3k+1)} \left\{ \frac{3k^2 + 4k + 1}{(3k+4)} \right\}$$

$$= \frac{1}{(3k+1)} \left\{ \frac{3k^2 + 3k + k + 1}{(3k+4)} \right\}$$

$$= \frac{(3k+1)(k+1)}{(3k+1)(3k+4)}$$

$$= \frac{(k+1)}{3(k+1)+1}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 17:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$$

Solution 17:

Let the given statement be P(n), i.e.,

$$P(n): \frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$$

For n = 1, we have

$$P(1): \frac{1}{3.5} = \frac{1}{3(2.1+3)} = \frac{1}{3.5}$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$P(k): \frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2k+1)(2k+3)} = \frac{k}{3(2k+3)} \dots (1)$$

We shall now prove that P(k+1) is true. Consider

$$\left[\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2k+1)(2k+3)}\right] + \frac{1}{\{2(k+1)+1\}\{2(k+1)+3\}}$$

$$= \frac{k}{3(2k+3)} + \frac{1}{(2k+3)(2k+5)} \qquad [Using (1)]$$

$$= \frac{1}{(2k+3)} \left[\frac{k}{3} + \frac{1}{(2k+5)}\right]$$

$$= \frac{1}{(2k+3)} \left[\frac{k(2k+5)+3}{3(2k+5)}\right]$$

$$= \frac{1}{(2k+3)} \left[\frac{2k^2+5k+3}{3(2k+5)}\right]$$

$$= \frac{1}{(2k+3)} \left[\frac{2k^2+2k+3k+3}{3(2k+5)}\right]$$

$$= \frac{1}{(2k+3)} \left[\frac{2k(k+1)+3(k+1)}{3(2k+5)}\right]$$

$$= \frac{(k+1)(2k+3)}{3(2k+3)(2k+5)}$$

$$= \frac{(k+1)}{3\{2(k+1)+3\}}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 18:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1+2+3+....+n<\frac{1}{8}(2n+1)^2$$

Solution 18:

Let the given statement be P(n), i.e.,

$$P(n):1+2+3+....+n<\frac{1}{8}(2n+1)^2$$

It can be noted that P(n) is true for n = 1 since

$$1 < \frac{1}{8} (2.1+1)^2 = \frac{9}{8}$$

Let P(k) be true for some positive integer k, i.e.,

$$1+2+....+k < \frac{1}{8}(2k+1)^2.....(1)$$

We shall now prove that P(k+1) is true whenever P(k) is true.

Consider

$$(1+2+....+k)+(k+1)<\frac{1}{8}(2k+1)^{2}+(k+1)$$

$$<\frac{1}{8}\{(2k+1)^{2}+8(k+1)\}$$

$$<\frac{1}{8}\{4k^{2}+4k+1+8k+8\}$$

$$<\frac{1}{8}\{4k^{2}+12k+9\}$$

$$<\frac{1}{8}(2k+3)^{2}$$

$$<\frac{1}{8}\{2(k+1)+1\}^{2}$$

Hence,
$$(1+2+3+....+k)+(k+1)<\frac{1}{8}(2k+1)^2+(k+1)$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 19:

Prove the following by using the principle of mathematical induction for all $n \in N$: n(n+1)(n+5) is a multiple of 3.

Solution 19:

Let the given statement be P(n), i.e.,

$$P(n): n(n+1)(n+5)$$
, which is a multiple of 3.

It can be noted that P(n) is true for n=1 since 1(1+1)(1+5)=12, which is a multiple of 3.

Let P(k) be true for some positive integer k, i.e.,

$$k(k+1)(k+5)$$
 is a multiple of 3.

$$\therefore k(k+1)(k+5) = 3m$$
, where $m \in \mathbb{N} \dots (1)$

We shall now prove that P(k+1) is true whenever P(k) is true.

Consider

$$(k+1)\{(k+1)+1\}\{(k+1)+5\}$$

$$=(k+1)(k+2)\{(k+5)+1\}$$

$$=(k+1)(k+2)(k+5)+(k+1)(k+2)$$

$$=\{k(k+1)(k+5)+2(k+1)(k+5)\}+(k+1)(k+2)$$

$$=3m+(k+1)\{2(k+5)+(k+2)\}$$

$$=3m+(k+1)\{2k+10+k+2\}$$

$$=3m+(k+1)\{3k+12\}$$

$$=3m+(k+1)\{k+4\}$$

$$=3\{m+(k+1)(k+4)\}=3\times q, \text{ where } q=\{m+(k+1)(k+4)\} \text{ is some natural number.}$$
Therefore, $(k+1)\{(k+1)+1\}\{(k+1)+5\}$ is a multiple of 3.

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 20:

Prove the following by using the principle of mathematical induction for all $n \in N$: $10^{2n-1} + 1$ is divisible by 11.

Solution 20:

Let the given statement be P(n), i.e.,

$$P(n):10^{2n-1}+1$$
 is divisible by 11.

It can be observed that P(n) is true for n = 1

Since
$$P(1) = 10^{2.1-1} + 1 = 11$$
, which is divisible by 11.

Let P(k) be true for some positive integer k,

i.e.,
$$10^{2k-1} + 1$$
 is divisible by 11.

$$10^{2k-1} + 1 = 11m$$
, where

$$m \in \mathbb{N}(1)$$

We shall now prove that P(k+1) is true whenever P(k) is true.

$$10^{2(k+1)-1} + 1$$
$$= 10^{2k+2-1} + 1$$

$$= 10^{2k+1} + 1$$

$$= 10^{2} (10^{2k-1} + 1 - 1) + 1$$

$$= 10^{2} (10^{2k-1} + 1) - 10^{2} + 1$$

$$=10^2.11m-100+1$$

[Using (1)]

$$=100 \times 11m - 99$$

$$=11(100m-9)$$

=11r, where r = (100m - 9) is some natural number

Therefore, $10^{2(k+1)-1} + 1$ is divisible by 11.

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 21:

Prove the following by using the principle of mathematical induction for all $n \in N$: $x^{2n} - y^{2n}$ is divisible by x + y.

Solution 21:

Let the given statement be P(n), i.e.,

$$P(n): x^{2n} - y^{2n}$$
 is divisible by $x + y$.

It can be observed that P(n) is true for n = 1.

This is so because $x^{2\times 1} - y^{2\times 1} = x^2 - y^2 = (x+y)(x-y)$ is divisible by (x+y).

Let P(k) be true for some positive integer k, i.e.,

$$x^{2k} - y^{2k}$$
 is divisible by $x + y$.

:. Let
$$x^{2k} - y^{2k} = m(x+y)$$
, where $m \in \mathbb{N}$ (1)

We shall now prove that P(k+1) is true whenever P(k) is true.

Consider

$$x^{2(k+1)-y^{2(k+1)}}$$

$$= x^{2k} \cdot x^2 - y^{2k} \cdot y^2$$

$$= x^2 \left(x^{2k} - y^{2k} + y^{2k} \right) - y^{2k} \cdot y^2$$

$$= x^2 \left\{ m(x+y) + y^{2k} \right\} - y^{2k} \cdot y^2$$

$$= m(x+y)x^2 + y^{2k} \cdot x^2 - y^{2k} \cdot y^2$$

$$= m(x+y)x^2 + y^{2k} \cdot (x^2 - y^2)$$

$$= m(x+y)x^2 + y^{2k} \cdot (x+y)(x-y)$$

$$= (x+y) \left\{ mx^2 + y^{2k} \cdot (x-y) \right\}, \text{ which is a factor of } (x+y).$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 22:

Prove the following by using the principle of mathematical induction for all $n \in N$: $3^{2n+2} - 8n - 9$ is divisible by 8.

Solution 22:

Let the given statement be P(n), i.e.,

$$P(n):3^{2n+2}-8n-9$$
 is divisible by 8.

It can be observed that P(n) is true for n = 1

Since
$$3^{2\times 1+2} - 8\times 1 - 9 = 64$$
, which is divisible by 8.

Let P(k) be true for some positive integer

$$k$$
, i.e., $3^{2k+2} - 8k - 9$ is divisible by 8.

$$\therefore 3^{2k+2} - 8k - 9 = 8m$$
; where $m \in \mathbb{N}$(1)

We shall now prove that P(k+1) is true whenever P(k) is true.

Consider

$$3^{2(k+1)+2}-8(k+1)-9$$

$$3^{2k+2} \cdot 3^2 - 8k - 8 - 9$$

$$=3^{2} \left(3^{2k+2} - 8k - 9 + 8k + 9\right) - 8k - 17$$

$$=3^{2} (3^{2k+2} - 8k - 9) + 3^{2} (8k + 9) - 8k - 17$$

$$=9.8m+9(8k+9)-8k-17$$

$$=9.8m+72k+81-8k-17$$

$$=9.8m+64k+64$$

$$=8(9m+8k+8)$$

$$=8r$$
, where $r = (9m + 8k + 8)$ is a natural number

Therefore,
$$3^{2(k+1)+2} - 8(k+1) - 9$$
 is divisible by 8.

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all numbers i.e., N

www vedantu com

Ouestion 23:

Prove the following by using the principle of mathematical induction for all $n \in N$: $41^n - 14^n$ is a multiple of 27.

Solution 23:

Let the given statement be P(n), i.e.,

$$P(n):41^{n}-14^{n}$$
 is a multiple of 27.

It can be observed that P(n) is true for n = 1

Since $41^1 - 14^1 = 27$, which is a multiple of 27.

Let P(k) be true for some positive integer k, i.e.,

 $41^k - 14^k$ is a multiple of 27

$$\therefore 41^k - 14^k = 27 \, m, \ m \in \mathbb{N} \dots (1)$$

We shall now prove that P(k+1) is true whenever P(k) is true.

Consider

$$41^{k+1} - 14^{k+1}$$

$$=41^{k}.41-14^{k}.14$$

$$=41(41^{k}-14^{k}+14^{k})-14^{k}\cdot 14$$

$$=41.27 m+14^{k} (41-14)$$

$$=41.27m+27.14^{k}$$

$$=27(41m-14^{k})$$

=
$$27 \times r$$
, where $r = (41m - 14^k)$ is a natural number.

Therefore, $41^{k+1} - 14^{k+1}$ is a multiple of 27.

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Ouestion 24:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$(2n+7)<(n+3)^2$$

Solution 24:

Let the given statement be P(n), i.e.,

$$P(n): (2n+7) < (n+3)^2$$

It can be observed that P(n) is true for n = 1

Since
$$2.1+7=9<(1+3)^2=16$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$(2k+7)<(k+3)^2$$
.....(1)

We shall now prove that P(k+1) is true whenever P(k) is true.

$${2(k+1)+7}=(2k+7)+2$$

$$\therefore \{2(k+1)+7\} = (2k+7)+2 < (k+3)^2+2$$
 [Using (1)]

$$2(k+1)+7 < k^2+6k+9+2$$

$$2(k+1)+7 < k^2+6k+11$$

Now,
$$k^2 + 6k + 11 < k^2 + 8k + 16$$

$$\therefore 2(k+1) + 7 < (k+4)^2$$

$$2(k+1) + 7 < \{(k+1) + 3\}^2$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

www.vedantu.com

Vedantu PROME

Access of Full Syllabus Course

Crash Course to Revise Entire Syllabus

Test Series and Assignment

Chapter Wise Course to help you master One chapter

Notes & Recordings of every class

Unlimited In-class Doubt Solving

Use VPROP & Get Extra 20% OFF

Subscribe Now

https://vdnt.in/VPROPDF

GRADES 6-12 | CBSE | ICSE | JEE | NEET

Download Vedantu Learning APP

Unlimited Access to Study Materials

Specially Designed Tests

Physics
10courses

Attend LIVE classes FREE

Anand
Prakash
B Tech, IIT Roorkee
Physics expert

Management of Naturan ResourcesBiology
Master Class Series
Powered by WAVE

Featured LIVE courses

VIEW ALL

Featured LIVE courses

VIEW ALL

Courses

VIEW ALL

Google Play

Best of 2019 Winner

USER'S CHOICE APP AWARD 2019

Thank You

for downloading the PDF

Vedantu

FREE MASTER CLASS SERIES

- Learn from India's Best Master Teachers

Register for **FREE**

Limited Seats