동적계획법 (Dynamic Programming)

- 개요
- 피보나치수열
- 이항계수

동적계획법 개요

- 분할과 정복(Divide and Conquer) 방법은 Top-Down Design으로서 문제를 부분문제(subproblem)들로 나누고 이들 부분문제(subproblem)들의 해를 recursive하게 구하여 이들 해들로부터 원래의 문제의 해를 구한다.
 - 작은 문제들은 독립적이다
- 동적계획법(Dynamic Programming)도 주어진 문제의 해를 부분문제(subproblem)들의 해를 이용하여 구한다.
 - 분할과 정복과는 달리, 주어진 문제의 해를 구하는데 필요한 부분문제들은 서로 독립적이지 않다 (부분문제들이 overlap하는 경우)

동적계획법 개요

- 두가지 접근방법
 - Memoization (Top-down)

21131

Can be formulated both via recursion and saving results in a table (memoization). After computing the solution to a subproblem, store in a table. Subsequent calls just do a table lookup.

Bottom-Up

반퇴

작은 부분문제들부터 시작하여 큰 부분문제들까지 해를 차례대로 구한다. 부분문제들에 대한 해를 구하면 이를 테이블에 저장한다. 부분 문제에 대한 해를 구할 때 필요한 작은 부분 문제들의 해는 다시 계산하지 않고 테이블을 참조하면 된다.

1. 피보나치 수열

● f_n: n번째 피보나치 수

$$f_0 = 0, f_1 = 1$$
 $f_n = f_{n-1} + f_{n-2}, n \ge 2$

탈한가 정보으로 풀면 보보 목재에 해를 어떠면 구해 데르얼 적이다. 시한 박장도 (↑↑ n) (1/4) ○ (n²)

피보나치 수열

● f_n: n번째 피보나치 수

$$f_0 = 0, f_1 = 1$$

$$f_{n} = f_{n-1} + f_{n-2}$$
, $n \ge 2$

Find the golden ratio when we divide a line into two parts a and b such that

$$(a+b)/a = a/b = \Phi$$

a

b

Golden ratio $\Phi = (1 + \sqrt{5})/2 = 1.61803398...$

Golden rectangle

a/b

$$8/5 = 1.6$$

$$13/8 = 1.625...$$

$$21/13 = 1.615...$$

$$34/21 = 1.619...$$

$$55/34 = 1.617...$$

For successive Fibonacci numbers a, b, a/b is close to Φ but not quite it Φ . 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

피보나치 수열

● f_n: n번째 피보나치 수

$$f_0 = 0, f_1 = 1$$

 $f_n = f_{n-1} + f_{n-2}, n \ge 2$

$$\lim_{n\to\infty} f_n / f_{n-1} = golden ratio = 1.61803398...$$

피보나치 수열

● f_n: n번째 피보나치 수

$$f_0 = 0, f_1 = 1$$

 $f_n = f_{n-1} + f_{n-2}, n \ge 2$

• 방법 1 (비효율적 방법)

Algorithm fib(int n) if(n == 0 || n == 1)return n

- ✓ 방법 1이 비효율적인 이유: 동일한 부분문제에 대한 해를 여러 번 (반복하여) 구한다.
- ✓ fib1(n-1)과 fib(n-2)가 overlap한다: 동일한 부분문제를 가진다.
- ✓ 시간복잡도: 수행시간 T(n) = T(n-1) + T(n-2) + c (상수)

 $\bigcirc(2^n)$

피보나치 수열 - 방법 1

● f_n: n번째 피보나치 수

$$f_0 = 0, f_1 = 1$$

 $f_n = f_{n-1} + f_{n-2}, n \ge 2$

● 방법 1 (비효율적 방법)

```
// C
int fib1(int n)
{
    if(n == 0 || n == 1)
        return n;
    else
        return fib1(n-1) + fib1(n-2);
}
```

```
# Python
def fib(n):
    if n == 0 or n == 1:
        return n
    else:
        return fib(n-1) + fib(n-2)

def main():
    n = int(input())
    print(fib(n))

if __name__ == '__main__':
    main()
```

피보나치 수열 - 방법 2 (동적계획법: memorization)

```
동적계획법
    방법 2 - Memoization
Algorithm initialize(n, lookupTable)
  for i = 0 to n
     lookupTable[i] = -1 // 초기화
Algorithm fib(n, lookupTable)
  if lookupTable[n] != -1
     return lookupTable[n]
  else
    if n \le 1
       lookupTable[n] = n
     else
       lookupTable[n] = fib(n-1, lookupTable) + fib(n-2, lookupTable)
```

return lookupTable[n]

```
# Python
def initialize(n):
  lookupTable = [-1 for i in range(n+1)]
  return lookupTable
def fib(n, lookupTable):
  if lookupTable[n] != -1:
     return lookupTable[n]
  else:
    if n <= 1:
       lookupTable[n] = n
     else:
       lookupTable[n] = fib(n-1, lookupTable) + fib(n-2, lookupTable)
     return lookupTable[n]
def main():
  n = int(input())
  lookupTable = initialize(n)
  print(fib(n, lookupTable))
if name == ' main ':
  main()
```

시간복잡도: O(n)

피보나치 수열 – 방법 2 (동적계획법: memorization)

동적계획법 방법 2 - Memoization // C int main() #include <stdio.h> #include <stdlib.h> int n; void initialize(int n, int *lookupTable) int *lookupTable; scanf("%d", &n); for (int i = 0; $i \le n$; i++) lookupTable = (int*) malloc(sizeof(int)*(n+1)); lookupTable[i] = -1; initialize(n, lookupTable); printf("%d\n", fib(n, lookupTable)); int fib(int n, int *lookupTable) return 0; if (lookupTable[n] != -1) return lookupTable[n]; else { if (n <= 1)return n; else { lookupTable[n] = fib(n-1, lookupTable) + fib(n-2, lookupTable); return lookupTable[n];

피보나치 수열 - 방법 3: bottom up

동적 계획법 방법 3 - bottom-up 强 加起中型是

यूर मिया स्थाप

```
방법 2 (Python)

def fib(n):

if n <= 1:

return n

F = [0 for i in range(n+1)]

F[0] = 0

F[1] = 1

for i in range(2,n+1):

where Prev prev prev F[i] = F[i - 1] + F[i - 2]

return F[n]
```

```
시간복잡도: O(n)
```

```
방법 2 (C)
#include <stdlib.h>
int fib1( int n )
// int F[MAX];
 int *F = (int *)malloc(sizeof(int)*(n+1));
 F[0] = 0; F[1] = 1;
 for( int i = 2; i <= n; i++)
    F[i] = F[i - 1] + F[i - 2];
 return F[n];
```

피보나치 수열 - 방법 4: O(1) 메모리 공간 사용 반복을 이용

```
방법 4
    효율적인 메모리 공간 (추가적인 메모리 공간: O(1))
                                                                 prov_prov = f[i-2]
    반복을 이용
                                                                  prev = Ft i-17
                                     # Python
// C
                                     def fib(n):
                                                                 current = F[i]
int fib(int n)
                                        if n == 0 or n == 1:
                                          return n
{ int prev prev, prev, current;
                                        prev_prev = 0
 int i.
                                        prev = 1
  if (n <= 1)
                                        for i in range(2,n+1):
   return 1;
              prov_prev=o; prev=(;
                                          current = prev_prev + prev
  prev prev = prev = 1;
                                          prev_prev = prev
                                          prev = current
 for(i = 2; i \le n; i++)
  { current = prev prev + prev;
                                        prev = 0
                                        current = 1
   prev prev = prev;
                                        for i in range(2,n+1):
   prev = current;
                                          current, prev= current + prev, current
                                        return current
  return current;
                                     def main():
                                        n = int(input())
                                        print(fib(n))
시간복잡도: O(n)
                                     if name == ' main ':
                                        main()
```

2. 이항계수 (Binomial Coefficient)

• 정의 1: $_{n}C_{k}$: n개 원소에서 k개를 선택하는 경우의 수 $_{n}C_{k}$ = n! / (k! (n-k)!) $\binom{n}{k}$

정의 2:

n개 원소 번호: 1, 2, 3, 4, ..., n

 \mathbf{n} 개 원소에서 \mathbf{k} 개를 선택하는 경우의 수: \mathbf{n} $\mathbf{C}_{\mathbf{k}}$, $\binom{n}{k}$

원소 n을 선택하는 경우들과 선택하지 않는 경우들로 나눌 수 있다.

예:

$$n = 4, k = 3$$

{1, 2, 4}, {1, 3, 4}, {2, 3, 4} : 4를 선택하는 경우들

{1, 2, 3}

: 4를 선택하지 않는 경우들

이항계수

정의 2:

```
n개 원소 번호: 1, 2, 3, 4, ..., n
n개 원소에서 k개를 선택하는 경우의 수: {}_{n}C_{k}
  원소 n을 선택하는 경우들과 선택하지 않는 경우들로 나눌 수 있다
예:
 n = 5, k = 3일 때
 n(=5)을 선택하는 경우들: <sub>n-1</sub>C<sub>k-1</sub>
   \{1, 2, 5\}, \{1, 3, 5\}, \{1, 4, 5\}, \{2, 3, 5\}, \{2, 4, 5\}, \{3, 4, 5\}:
 n(=5)를 선택하지 않는 경우들: <sub>n-1</sub>C<sub>k</sub>
   {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}
```

이항계수

• 정의 2 (재귀적 정의): $_{n}C_{k} = _{n-1}C_{k-1} + _{n-1}C_{k}$, 0 < k < n,k = 0 혹은 k = n √방법 1 (비효율적 방법) def C(n,k): int C(int n, int k) if k == 0 or k == n: if (k == 0 || n == k)return 1 return 1; else: return C(n-1,k-1)+C(n-1,k)else return C(n-1, k-1) + C(n-1, k);

이항계수 (계속)

```
▼ 방법 2 (효율적 방법) - 동적 계획법을 이용한 방법
     ¡C¡를 배열 원소 C[i][j]에 저장
     C[i][i] = 1
                                     , i = 0 혹은 i = i
            = C[i-1][i-1] + C[i-1][i], 0 < i < 1
                                                      # Python
                                                      def dpBinomial(n,k):
// C++
                                                         C = [[0 \text{ for } i \text{ in } range(n+1)]] for i in range(n+1)]
// const int MAX = 10:
                                                        for i in range(1,n+1):
int dpBinomial(int n, int k)
                                                           for j in range(min(i,k)+1):
{ int i, j;
                                                              if i == 0 or i == i:
  int **C = new int*[n+1]; // int C[MAX][MAX];
                                                                C[i][i] = 1
  for(i = 0; i \le n; i++)
                                                              else:
    C[i] = new int[n+1];
                                                                C[i][i] = C[i-1][i-1] + C[i-1][i]
  for(i = 0; i \le n; i++)
                                                         return C[n][k]
    for(j = 0; j \le min(i, k); j++)
       if(i == 0 || i == i)
                                                      def main():
         C[i][i] = 1:
                                                        n, k = input().split()
       else
                                                        n, k = int(n), int(k)
         C[i][j] = C[i-1][j-1] + C[i-1][i];
                                                        print(dpBinomial(n,k))
  for(i = 0; i \le n; i++)
    delete [] C[i];
                                                      if name == ' main ':
  int result = C[n][k];
                                                         main()
  delete [] C;
  return rsult];
                                시간복잡도: O(nk)
```

동적계획법

- 동적계획법은 주로 최적화 (optimization) 문제를 해결하는 데 주로 사용한다. 최적화 문제: 목적함수 값을 최대 혹은 최소로 하는 해를 구하는 문제
- 동적계획법은 다음의 최적화 원칙이 적용되는 문제의 해를 구하는데 사용된다.
 - <u>최적화 원칙(Principle of Optimality)</u>

The principle of optimality applies if the optimal solution to a problem always contains optimal solutions to all subproblems

문제의 최적해는 모든 부분 문제의 최적해를 포함한다

혹은

Whatever the initial state is, the remaining decisions must be optimal with regard the state following from the first decision

문제의 최적해를 구하는 일련의 선택들을 D_1 , D_2 , …, D_{n-1} , D_n 라 하자. 첫 번째 선택 D_1 을 한 후의 상태에서 D_2 , …, D_{n-1} , D_n 는 최적해가 된다.

동적계획법 (계속)

• 동적계획법은 주로 최적화 (optimization) 문제를 해결하는 데 주로 사용한다. 동적계획법을 이용한 문제 해결은 아래의 4 단계를 거친다.

단계 1. 최적 해의 구조를 파악한다.

단계 2. 최적 해의 (목적함수) 값을 재귀적으로 (recursively) 정의한다.

단계 3. 단계 2의 재귀적 정의로부터 최적 해의 (목적함)수 값을 bottom-up(혹은 memoization)으로 구하면서 테이블에 저장한다.

(bottom-up: 작은 부분문제에서 시작하여 큰 부분문제들까지 최적 해의 목적함수 값을 차례대로 구한다)

단계 4. 단계 3에서 구한 정보를 이용하여 최적 해를 찾는다.

※ 단계 1-3은 동적계획법으로 해를 구할 때 필수적인 과정임 단계 4는 최적 해의 목적함수 값만 구하는 경우는 필요 없고, 최적 해를 찾고자 하는 경우에 필요.