Electrical layout and wiring schematics for a small industrial control panel

A complete electrical layout and wiring schematic for an industrial control panel requires detailed calculations, CAD drawings, and a design report. The following provides an overview based on the specified IEC standards, including core components, preliminary calculations for cable sizing and protection, and a summary of the design report's contents.

Design standard and report summary

- **Selected standard:** IEC (International Electrotechnical Commission) standards, which are widely accepted internationally, will be followed for this design. The assembly will comply with IEC 61439-2 /NFPA for low-voltage switchgear and control gear assemblies.
- **Design report contents:** The accompanying design report will include key assumptions and calculations.
 - 1. **Assumptions:** Nominal voltage (V) is 400 V, 3-phase, 50 Hz. All motors are of efficiency class IE3 and controlled via Direct On-Line (DOL) starters. Cable lengths are assumed to be 20 meters.
 - 2. **Safety factors:** A diversity factor will be applied to the total power calculation. Cable sizing will include derating factors for ambient temperature, grouping, and installation method. A safety factor of 1.25(Design current) is included in the motor current calculations.
 - 3. **Load balancing:** Single-phase loads (Machine C) will be balanced as evenly as possible across the three phases to minimize neutral current and voltage imbalances.

Cable Length & Voltage Drop Assumptions

Parameter	Value / Assumption		
Cable length to machines	15 m each		
Voltage drop limit	\leq 3 % (11.5 V for 400 V system)		
Correction factor for temperature	e 0.9		
Derating for grouping	0.8		
Safety margin	20 % extra capacity		

Preliminary calculations (IEC-compliant)

1. Machine A (5 kW, 400V, 3-phase motor)

1. Full load current (I_A)

$$I_A = \frac{P}{\sqrt{3} \cdot V \cdot \cos \phi \cdot \eta} = \frac{5000}{\sqrt{3} \cdot 400 \cdot 0.85 \cdot 0.9} = 9.47 \text{ A}$$

. Design current (I_B): $I_B = 9.46 A \times 1.25 = 11.83$

(Assuming power factor $\cos\phi = 0.85$, efficiency $\eta = 0.9$).

- **2. Protection device (MPCB Q2):** A 3-pole MCB with a C-curve rating of 16 A would be a suitable choice for this motor, as the motor starting current is relatively small for a DOL starter.
- **3. Cable sizing (***Cable A***):** A 5-core (L1, L2, L3, N, PE) copper cable with a cross-sectional area of 2.5 mm² is appropriate for this current, after applying relevant derating factors for the assumed installation method.
- 2. Machine B (2 kW, 400V, 3-phase motor)

1. Full load current (I_B): =
$$\frac{P}{\sqrt{3.V.\cos \phi.\eta}} = \frac{2000}{\sqrt{3.400.0.85.0.95}} = 3.8 \text{ A}$$

. Design current (I_B): $I_B = 3.8 \times 1.25 = 4.8 A$

(Assuming power factor $\cos\phi$ =0.85, efficiency η =0.85).

- **2. Protection device (MPCB Q3):** A 3-pole MCB with a C-curve rating of 10 A is suitable. (In **case if future motor addition**).
- **3. Cable sizing** (*Cable B*): A 5-core (L1, L2, L3, N, PE) copper cable with a cross-sectional area of 1.5 mm² is appropriate for this current.
- 3. Machine C (Lighting and sockets, 230V, single-phase)
 - **1.Full load current (I_c):** This depends on the total connected load, which is

assumed to be 3 kW. Ic
$$=\frac{P}{V.\cos\theta} = \frac{2000}{230.1} = 8.7A \text{ (cos}\phi=1 \text{ for R-Load)}$$

Design current (I_c): $I_B = 8.7 \times 1.25 = 10.88A$

2. Protection device (MCB Q4): A 1-pole MCB with a C-curve rating of 16 A would be a suitable choice for this Load current.

- 2. **Protection device (RCD)**): An RCD/RCBO with a sensitivity of 30mA must be used for human protection.
- **4.** Cable sizing (*Cable C*): A 3-core (L, N, PE) copper cable with a cross-sectional area of 2.5 mm² is appropriate for this current, after applying relevant derating factors for the assumed installation method.

Load	Power	Voltage	Phases	Power Facto r	Current (A)	Recommende d Breaker	Cable Size (Cu)
Machine A	5 kW	400 V	3-φ	0.85	I=5000/1.732×400×0. 85x 0.9=9.47A	16 A TP MCB	2.5 mm ²
Machine B	2 kW	400 V	3-φ	0.85	I=2000/1.732×400×0. 85x 0.95=3.8A	10 A TP MCB	1.5 mm ²
Machine C	3 kW (equiv .)	230 V	1-φ	0.95	I=2000/230×1=8.7A	16 A SP MCB + RCD	2.5 mm ²

4. Main breaker and distribution board

- a. **Total assumed load current (I total)**: Summing the individual currents (I_A+I_B+I_C) with a diversity factor of 0.8 yields an estimated total current of approximately 27.5 A.
- b. **Main breaker (MCCB Q1)**: A 4-pole MCB with a C-curve rating of 32 A would be a suitable main incomer for the control panel.
- C. **Main cable sizing** (**Main Cable**): A 4-core (L1, L2, L3, N) copper cable with a cross-sectional area of 10mm² is selected to feed the main breaker, based on the total load current and derating factors.

Panel Components

Main Incomer: 32A, 4-pole MCCB (rated for the total panel load).

Machine A: 16A, 3-pole MPCB with integrated thermal overload.

Machine B: 10A, 3-pole MPCB with integrated thermal overload.

Machine C: 16A, 1-pole MCB with a dedicated 30mA RCD.

Internal Distribution: Copper busbars for power distribution.

Wiring: PVC insulated copper wires with specified cable sizes.

Panel Enclosure: IP54-rated metal enclosure to protect against dust and splashing water.

5. Wiring schematics and diagram annotations (In AUTOCAD 2021)

Detailed Wiring Diagram: The detailed diagram shows all connections, components, and cable numbers for panel assembly.

Component Legend:

Q1: Main 32A MCCB (4-pole)

Q2: 16A MPCB (3-pole) for Machine A

Q3: 10A MPCB (3-pole) for Machine B

Q4: 16A MCB (1-pole) for Machine C

K1: Contactor for Machine A

K2: Contactor for Machine B

F1: Thermal overload relay for Machine A

F2: Thermal overload relay for Machine B

S1: Start/Stop buttons for Machine A

S2: Start/Stop buttons for Machine B

RCD: 30mA Residual Current Device for Machine C

CAD wiring diagram (illustrative schematic)

The wiring diagram should include the following sections and adhere to IEC standards for labeling:

- **Incoming power:** A 400V, 3-phase, 50 Hz supply with a 4-pole main isolation switch.
- **Protection devices:** A main 4-pole MCB, followed by individual MCBs for each machine. An RCD or RCBO is included for Machine C.
- Power and control circuitry:
 - Machine A & B: These will use Direct On-Line (DOL) starters, which consist of a contactor (K1, K2) and a thermal overload relay (F1, F2) for motor protection.
 - Machine C: The lighting and sockets circuit is routed through the RCD and its own MCB.
- Labels and legends:

- o **Reference designations (IEC 81346):** Components will be labelled using standard prefixes (e.g., Q for breakers, K for contactors, F for overload relays).
- Wire numbering: Wires will be numbered logically according to the circuit they belong to.
- Component legend: A table defining all components used in the diagram.
- **Distribution board layout:** The physical arrangement of components within the panel, showing the control switches, sockets, MCCB& MPCBs, RCDs

Safety features

- **Short-circuit and overload protection:** Provided by the MCBs and thermal overload relays.
- **Grounding:** A robust earthing system will be installed, and all metallic parts of the panel will be grounded.
- **Arc flash protection:** The enclosure will have a sufficient IP rating for protection against dust and water ingress and potential arc flash.
- **Lockout/Tagout (LOTO):** The main isolator will be capable of being locked in the 'off' position during maintenance.
- **Clearance:** Sufficient space between components will be maintained for heat dissipation and maintenance.