UNCLASSIFIED

AD NUMBER AD244093 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; Nov 1959. Other requests shall be referred to Commander, Ordnance Tank-Automotive Command, Attn: ORRMC-RRL, Center Line, MI. **AUTHORITY** USATARDCOM ltr, 11 Mar 1982

Security Classification: UNCLASSIFIED

REPORT NO. 57

TITLE OF REPORT: Determination of k_c, k_{\phi}, n-Values by Means of Circular Footings, Modified Procedure

by

B. Hanamoto & Z. Janosi

This is a working paper presenting the considered results of a study by the staff of the Land Locomotion Laboratory, Research Division, Research and Engineering Directorate, Ordnance Tank-Automotive Command.

November 1959

REFERENCE COPY

DEPARTMENT OF THE ARMY
ORDNANCE TANK-AUTOMOTIVE COMMAND
RESEARCH DIVISION
LAND LOCOMOTION LABORATORY

Security Classification: UNCLASSIFIED

20020820022

AN 28566

Security Classification: UNCLASSIFIED

REPORT NO. 57

TITLE OF REPORT: Determination of k_c , k_ϕ , n-Values by Means of Circular Footings, Modified Procedure

by

B. Hanamoto & Z. Janosi

This is a working paper presenting the considered results of a study by the staff of the Land Locomotion Laboratory, Research Division, Research and Engineering Directorate, Ordnance Tank-Automotive Command.

The findings and analysis are subject to revision, or may be required by new facts or modification of basic assumptions. Comments and criticisms should be addressed to:

Commander
Ordnance Tank-Automotive Command
Center Line, Michigan
ATTENTION: ORDMC-RRL
Land Locomotion Laboratory

DEPARTMENT OF THE ARMY
ORDNANCE TANK-AUTOMOTIVE COMMAND
RESEARCH DIVISION
LAND LOCOMOTION LABORATORY

Security Classification: UNCLASSIFIED

ACKNOWLEDGEMENT

Mr. Server Tasdemiroglu, Mr. James Landoll and Lt. Gordon Bassett helped with the tests and evaluation.

ABSTRACT

It has been shown by means of theoretical and experimental methods that the size effect of a circular footing penetrating vertically into soil has to be considered by applying to equation $p = (\frac{k_c}{b} + k_\phi)z^n$ the radius of the plate instead of the diameter. Slight discrepancies formerly noted between soil values established by means of rectangular and circular plates can be thus eliminated.

Determination of k_c , k_{ϕ} , n-Values by Means of Circular Footings, Modified Procedure

Problem

Since soil values k_c , k_ϕ and n obtained by means of circular and rectangular plates show some discrepancies, investigate the existing method of soil value evaluations and suggest necessary modifications in order to obtain agreements with practical limits.

Background

The Land Locomotion Laboratory introduced and successfully used a semi-empirical stress-strain relationship for vertical soil deformation (1).

$$p = (k_c/b + k_o)z^n$$

where

p is the vertical unit load (psi)

k_c is the "cohesive modulus" of soil deformation (lb/inⁿ⁺¹) k_p is the "frictional modulus" of soil deformation (lb/inⁿ⁺²)

z is the vertical sinkage corresponding to p (in)

b is the width of the rectangular footing (in)

When obtaining soil values by means of a circular footing, the diameter (D) has been used in the denominator of k_c/b .

The method for the evaluation of soil value k_c , k_ϕ , and n has been described in detail in numerous papers published by this organization (2).

Essentially it consists of the following steps:

1. Obtain experimental p vs z curves by at least two plates of different dimensions say; b_1 and b_2 or D_1 and D_2 .

Then:

$$p = \frac{k_c}{b_1} + k_{\phi} z^n \qquad p = \left(\frac{k_c}{b_2} + k_{\phi}\right) z^n$$

2. Plot the empirical curves on logrithmic paper.

$$\ln p = \ln \left(\frac{k_c}{b_1} + k_{\phi} \right) + n \ln z$$

$$\ln p = \ln \left(\frac{k_c}{b_2} + k_{\phi} \right) + n \ln z$$

which yield two parallel straight lines.

3. Determine the slope of the two lines, (this slope defines the value n) and ordinates a and a (at z = 1). Accordingly:

As mentioned before, the use of D for b when using circular plates does not produce quite the same soil values as obtained by rectangular plate tests with large aspect ratio. However, since $k_{\rm C}$ /b is considerably smaller than k_{ϕ} in most cases, these differences have not been significant in the early stages of the application of the discussed soil value system, and remained unnoticed.

In the course of another research project (3), however, it became evident that the situation could be improved by using R instead of D and that such a procedure would be in a better agreement with theoretical concept of the discussed values. Theoretical background of this conclusion is outlined below.

Discussion of the Theory

As shown in an earlier report (3) the force needed to penetrate a cone into the soil can be expressed by the following equation:

$$W = \frac{\pi D}{2H} \left[\frac{k_{c}}{n+1} \left\{ (z+H)^{n+1} - z^{n+1} \right\} + \frac{k_{\phi} D}{H} \left\{ \frac{(z+H)^{n+2}}{(n+1)(n+2)} + \frac{z^{n+2}}{n+2} - \frac{z^{n+1}(z+H)}{n+1} \right\} \right]$$

Where D (in) is the diameter of the cone-base; H (in) is height (in) of the cone; z is the sinkage (in) measured between the ground surface and the cone base (Figure 1). When H \rightarrow 0 Equation 4 furnishes the force needed to penetrate a circular plate into the ground. Since one would encounter the indeterminate form of 0 during the mathematical procedure L Hospitalds rule, has to be applied.

Accordingly

$$\lim_{H \to 0} \frac{f(H)}{\phi(H)} = \frac{f'(H_0)}{\phi'(H_0)}$$

and if

$$\frac{f'(H_0)}{\phi'(H_0)}$$
 is still indeterminate

then $\lim_{H \to 0} \frac{f(H)}{\phi(H)} = \frac{f''(H_0)}{\phi''(H_0)}$

Let us divide Equation 4 into two parts

$$W_1 = \frac{\pi D k_c}{2(n+1)} \left[\frac{(z+H)^{n+1} - z^{n+1}}{H} \right]$$

and

$$W_2 = \frac{\pi D^2}{2} k_{\phi} \left[\frac{(z+H)^{n+2}}{(n+1)(n+2)H^2} + \frac{z^{n+2}}{(n+2)H^2} - \frac{z^{n+1}(z+H)}{(n+1)H^2} \right]$$

The numerators of W₁ and W₂ are denoted $f_1(H)$ and $f_2(H)$ respectively, whereas the denominators are called $\phi_1(H)$ and $\phi_2(H)$.

So:

$$f_1(H) = \pi Dk_c \left[(z+H)^{n+1} - z^{n+1} \right]$$

$$\phi_1(H) = 2(n+1)H$$

$$f_2(H) = \pi D^2 k_{\phi} \left[(z+H)^{n+2} + (n+1)z^{n+2} - (n+2)z^{n+1}(z+H) \right]$$

$$\phi_2(H) = 2(n+1)(n+2)H^2$$

The first derivatives are:

$$f_1'(H) = \pi Dk_c(n+1)(z+H)^n$$

and for H = 0,

$$f_1'(H_0) = \pi Dk_c(n+1)z^n$$

$$\phi_1'(H) = 2(n+1) = \phi_1'(H_0)$$

So

$$W_{1o} = \frac{f_1'(H_0)}{\phi_1'(H_0)} = \frac{\pi Dk_c z^n}{2}$$

On the other hand:

$$f_2''(H) = \pi D^2 k_\phi (n+2)(n+1)(z+H)^n$$

 $\phi_2''(H) = 4(n+1)(n+2)$

and

$$W_{2o} = \frac{\lim_{H \to 0} \frac{f''(H)}{\phi''(H)}}{\frac{\partial^{n}(H)}{\partial^{n}(H)}} = \frac{\pi D^{2}k_{\phi}}{4} z^{n}$$

The total force, when $H \rightarrow 0$ equals:

$$W_0 = W_{10} + W_{20} = \frac{\pi Dk_c}{2} z^n + \frac{\pi D^2 k_{\phi}}{4} z^n$$

or

$$W_0 = \frac{\pi D^2}{4} (\frac{2k_c}{D} + k_{\phi}) z^n$$
 -----5

The unit load or pressure is then:

$$p = \frac{W_o}{\frac{\pi D^2}{4}} = (\frac{2k_c}{D} + k_\phi)z^n$$

Or if
$$R = \frac{D}{2}$$

$$p = (\frac{k_c}{R} + k_d)z^n - --- 6$$

Thus if Equation 4 is accepted as valid for a cone shaped footing then the use of R (radius) is verified by theoretical considerations.

Tests

Experimental verification of using the radius of a circular plate for b in Equation 1 was carried out by performing sinkage tests using both rectangular and circular plates.

Sinkage experiments in the laboratory were performed in an artificial soil mixture (4) of bentonite and ethylene glycol anti-freeze at four different liquid contents. The plate sizes for laboratory tests using a Bevameter Mark IV (2) were rectangular plates: 5×0.75 ; 5×1.5 ; 3×0.75 ; 3×1 and circular plates of diameters 0.8; 1.6; 2.0 and 3.0 (all dimensions in inches).

Tabulated below are the results of tests performed in the Laboratory.

Date	Wht %	Plate	k ø	n	k _c Rect	<u>k</u> c b= <u>R</u>	k _c b= D
27 Aug 58	60	Circ	2, 95	0.27		13.1	26.2
		Circ	23.1	0.36		13.0	26.0
		Rect	22.0	0.33	13.5		
		Rect	22.8	0.24	14.1		
28 Aug 58	60	Rect	26.0	0.16	12.3		
		Rect	29.6	0.29	9.6		
29 Aug 58	60	Circ	28.2	0.1		16.8	33.6
		Circ	28.2	0.17		14.4	28.8
		Rect	26.8	0.1	15.9		•
2 Sep 58	65	Rect	14.0	0.14	16.8		
		Rect	11.6	0.18	22.8		
		Circ	15.0	0.16		20	20
		Circ	16.8	0.11	15.9		
3 Sep 58	65	Rect	20	0.26	12.0		
		Circ	19	0.1		18.4	36.8
		Rect	18	0.22	12.9		
10 Sep 58	67	Circ	8.6	0.17		3.3	6.6
		Rect	10.7	0.18	3.6		
		Rect	9.9	0.17	2, 4		
		Rect	10.3	0.17	4.0		
		Rect	8.6	0.21	3.9		
		Rect	10.0	0.21	1.8		
		Rect	9.3	0.21	3, 2		
		Circ	8.8	0.25		3.5	7.0
		Circ	7.4	0.25		5.0	10.0

Notice the reasonable agreement between the values in columns 6 and 7 and the disagreement in columns 6 and 8.

Aberdeen Proving Ground

Field tests at APG, Md., Churchville Test Area were conducted using the Mark V Bevameter (2). Even under field conditions the circular plate size factor or b= R is apparent. The plate sizes were rectangular plates 8x1, 8x1.5, 8x1.0, 6x0.75, 6x1, 6x1.5, and circular plates of diameters equal to 4.0, 5.0, 7.0 inches. The results are tabulated below:

Date	MC%*	Plate	k _ø	n	k c Rect	k _c b= R	k c b= D
3 Nov 58		Rect	1.2	0.49	0.66		
4 Nov 58	32	Circ	1.2	0.42		0.72	1.44
	31	Rect	1.3	0.32	0.8		
	33	Rect	1.7	0.33	0.9		
	32	Rect	1.4	0.44	0.66		
5 Nov 58	29	Rect	1.3	0.36	3.2		
6 Nov 58	29	Rect	2.7	0.63	1.6		
	28	Circ	1.8	0.4		4.8	9.6
7 Nov 58	2 5	Circ	3.0	0.6	P	1.12	2.24
	26	Rect	2.8	0.58	1.6		

^{*}Moisture Content %

Discussion of Results

It is felt that the agreement between tested k_c values both by rectangular and circular plates when using b= R in Equations 2 and 3 leads to the conclusion that k_c is independent of the form of the footing used.

Recommendation

It is recommended that the vertical stress-strain relationship be used according to Equation 6 for circular plates.

References

- Bekker, M. G. "A Proposed System of Physical and Geometrical Terrain Values for the Determination of Vehicle Performance and Soil Trafficability." Research Report No. 4. Land Locomotion Research Laboratory, Detroit, 1956.
- 2. Pavlics, F. "Instrument for the Measurement of Physical Soil Values." Research Report No. 5, Land Locomotion Research Laboratory, OTAC, Detroit, 1958.
- 3. Janosi, Z. "Prediction of WES Cone Index by Means of a Stress-Strain Function of Soils." Report No. 46. Land Locomotion Laboratory, OTAC, Detroit, 1959,
- 4. Hanamoto, B. "Artificial Soils for Laboratory Studies." Report No. 20. Land Locomotion Research Branch, OTAC, Detroit, 1958.

LIST OF PUBLICATIONS OF THE LAND LOCOMOTION LABORATORY, RESEARCH DIVISION, OTAC, DETROIT ARSENAL, CENTER LINE, MICHIGAN

NOTE: Reports marked with an asterist (*) are working papers, published in a small number of copies for limited distribution.

A. REPORTS

NO.	TITLE
1	Minutes of the First Meeting of the Scientific Advisory Committee (Tech Memo M-01)
2	Preliminary Study of Snow Values Related to Vehicle Performance (Tech Memo M-02)
3	An Investigation of Spades for Recovery Vehicles (Tech Memo M-03)
4	Techniques for the Evaluation of Track and Road-Wheel Design (Tech Memo M-04)
5*	A Definition of the Engineering Concept of Mobility (Tech Memo M-05)
6*	Present State of Off-the-Road Locomotion and Its Future (Tech Note M-06)
7*	Variable Pitch Hydrofoil Wheel (Tech Note M-07)
8*	A Study of Air Flow Effect on the Holding Power of Vacuum Devices (Tech Note M-08)
9*	Goals, Methods and Activities of the Land Locomotion Research Laboratory (Tech Note M-09)
10*	Shear and Sinkage Tests in Local Snows (Tech Note M-10)
11*	Soil Measurement at the Ordnance Depot, Port Clinton, Ohio (Tech Note M-11)
12*	Preliminary Study of Synthetic Soils for Vehicle Mobility Investigation (Tech Note M-12
13	Terrain Evaluation in Automotive Off-the-Road Operations
14	Application of a Variable Pitch Propeller as a Booster of Lift and Thrust for Amphibian Vehicles

NO.	<u>TITLE</u>
15	Mobility on Land; Challenge and Invitation
16	Minutes of the Second Meeting of the Scientific Advisory Committee
17*	Preliminary Evaluation of Mobility Aspects of the GOER Concept.
18	An Analysis of New Techniques for the Estimation of Footing Sinkage in Soils
19	An Investigation of Gun Anchoring Spades Under the Action of Impact Loads
20	Artificial Soils for Laboratory Studies in Land Locomotion
21*	Power Spectrum of Terrain
22	An Introduction to Research on Vehicle Mobility
23	Study of Snow Values Related to Vehicle Performance
24*	A Practical Application of the Theoretical Mechanics of Land Locomotion: The Prediction of Vehicle Performance
25	Drag Coefficients in Locomotion over Viscous Soils
26	Evaluation of Tires for the XM410 8x8, 2-1/2 Ton Truck
27*	Effect of Water Content on "B" Values of Soil
28	Effect of Impennetrable Obstacles on Vehicle Operational Speed
29	Obstacle Performance of Wheeled Vehicles
30*	Role of Land Locomotion Research in the Development of Motor Vehicles
31	Performance and Design of Crawler Tractors
32	A New Booster of Lift and Thrust for Amphibian Vehicles
33	Determination of Soil Sinkage Parameters by Means of Rigid Wheels, Part I
34*	A Concept of an Open Track, and the Evaluation of Its Performance
35	Estimation of Sinkage in Off-the-Road Locomotion

NO.	TITLE
36=	Methods of Obtaining LL Soil Values
37*	Compression of a Plastic Soil Between Two Plates
38*	Comparison of Low and High Profile Tire Performance
39*	Soil Testing at Ft. Knox
40	Operational Definition of Mechanical Mobility of Motor Vehicles
41	A Definition of Soil Trafficability
42*	Stress-Strain Analysis of the Rim of a New Wheel Type
43	Study on Cross Country Locomotion
44*	Evaluation of Tracked Vehicle $^{11}\mathrm{X}^{11}$ as Compared with the Standard M48 Tank
45*	A Brief Introduction to the Scale Model Testing of Vehicles by Means of the New Soil-Water Basin
46	Prediction of "WES Cone Index" by Means of a Stress-Strain Function of Soils
47*	Mobility Study for ASD (R&E) Group on Ground Handling Equipment for Guided Missiles
48	Behavior of a Linear One Degree of Freedom Vehicle Moving with Constant Velocity on a Stationary Gaussian Random Track.
49*	Scale Model Testing for the Soil-Water Basin in Land Locomotion Laboratory
50	Stress-Strain Analysis in Soil Under the Action of Multi-Loads
51*	The Inadequacy of Proving Grounds and Test Methods
52*	Mobility Study for Drone Carriers
53*	Mud Mobility Tests of Tanks, APG 3-7 November 1958
54	Drag Coefficients of Locomotion over Viscous Soils, Part II
55	Operational Definition of Mechanical Mobility

NO.	TITLE
56	On the Behavior of a Linear Two Degree of Freedom Vehicle Moving with Constant Velocity on a Track Whose Contour Is a Stationary Random Process
57	Determination of k_c , k_ϕ , n-Values by Means of Circular Footings, Modified Procedure

B. GENERAL PUBLICATIONS

a.	Research	Report No.	1
----	----------	------------	---

- b. Research Report No. 2
- c. Research Report No. 3
- d. Research Report No. 4
- e. Research Report No. 5
- f. A Practical Outline of the Mechanics of Automotive Land Locomotion (Seminar notes presently out of print)
- g. Interservice Vehicle Mobility Symposium, held at Stevens Institute of Technology, Hoboken, New Jersey, 18-20 April 1955

Volume I Minutes, Abstracts and Discussions Volume II Papers

DISTRIBUTION LIST

Commanding General		United States Navy	
Aberdeen Proving Gd., Md.		Industrial College of the	
ATTN: Tech Library	4	Armed Forces	
,		Washington, D. C.	
Commandant		ATTN: Vice Deputy Commandan	it 1
Ordnance School			
Aberdeen Proving Gd, Md	1	Dept. of National Defense	
G		Dr. N. W. Morton	
British Joint Service Mission		Scientific Advisor	
Ministry of Supply		Chief of General Staff	
P. O. Box 680		Army Headquarters	
Benjamin Franklin Station		Ottawa, Ontario, Canada	1
Washington, D. C.			
ATTN: Reports Officer	2	Chief of Ordnance	
*		Department of the Army	
Canadian Army Staff	•	Washington 25, D. C.	
2450 Massachusetts Avenue		ATTN: ORDTM	2
Washington, D. C.	4		
, , , , , , , , , , , , , , , , , , , ,		Commanding Officer	
British Joint Service Mission		Office of Ordnance Research	
Ministry of Supply Staff		Box CM, Duke Station	
1800 K Street, N. W.		Durham, North Carolina	3
Washington, D. C.	6		
		Chief	
Director		Office of Naval Research	
Waterways Experiment Station		Washington, D. C.	1
Vicksburg, Mississippi	3		:
		Headquarters	
Unit X		Ordnance Weapons Command	
Documents Expediting Project		Research & Development Div	
Library of Congress		Rock Island, Illinois	
Washington, D. C.		ATTN: ORDOW-TB	2
Stop 303	4		
•		Commanding Officer	
Exchange and Gift Div		Diamond Ordnance Fuze Lab	
Library of Congress		Washington 25, D. C.	
Washington 25, D. C.	1	ATTN: ORDTL 012	2
Detroit Arsenal		Superintendent	
AFF Liaison Office, CONARC	12	U. S. Military Academy	
		West Point, New York	_
Detroit Arsenal		ATTN: Prof of Ordnance	1
Canadian Liaison Office	4		
		Superintendent	
Detroit Arsenal		U. S. Naval Academy	
Technical Library	2	Annapolis, Md	1

Army Research Office Arlington Hall Station Arlington 12, Virginia	1	Planning Research Corporation Los Angeles, California Midwest Applied Science Corp
Commander Armed Services Technical Information Agency Arlington Hall Station Arlington 12, Virginia		Lafayette Loan & Trust Bldg Lafayette, Indiana ATTN: Dr. J. L. Bogdanoff
ATTN: TIPDR Professor F. J. Converse	12	
Professor of Soil Mechanics California Inst. of Tech Pasadena 4, California	1	
Professor D. C. Drucker Brown University Providence, Rhode Island	1	
Dr. F. E. Grubbs Ch, Weapons Systems Lab Ballistic Research Lab Aberdeen Proving Gd, Md	1	
Dr. Peter Kyropoulos Exec in Charge Tech Div General Motors Styling Technical Center Warren, Michigan	1	
Mr. W. T. Milliken, Jr. Cornell Aeronautical Lab, Buffalo 21, New York	Inc. 1	
Professor E. T. Vincent Dept of Mechanical Eng ^t r University of Michigan Ann Arbor, Michigan	1	
Wilson, Nuttall and Raimon Engineers Inc.	d	
Chestertown, Maryland	1	
Southwest Research Institut 8500 Culebra Road San Antonio 6, Texas	. e 1	
Colleges & Universities	100	
_		