Sample 6b

In the mass-spring system shown above, the masses m_1 , m_2 and m_3 are .8, .6 and .5, the spring constants k_1 , k_2 , k_3 and k_4 are 4.3, 5.1, 4.6 and 5.4, and x_1 , x_2 and x_3 are the displacements of m_1 , m_2 and m_3 from their equilibrium positions.

Write a MATLAB program as follows:

- 1) t will go from 0 to 8 sec in steps of .001 sec.
- 2) Calculate the displacements and velocities of the masses for each value of t. Use 1e-7 as the accuracy factors, .7, .2 and .4 as the initial values of \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 , and 0 as the initial values of the velocities.
- 3) Plot x_1 , x_2 and x_3 versus t using the colors blue, red and green and the t axis in black.
- 4) In a separate figure, plot the velocities v_1 , v_2 and v_3 versus t using the colors blue, red and green and the t axis in black.

The graphs should look like the ones on the attached sheets.

Equations

$$m_{1} \frac{d^{2}x_{1}}{dt^{2}} = -k_{1}x_{1} + k_{2}(x_{2}-x_{1})$$

$$m_{2} \frac{d^{2}x_{2}}{dt^{2}} = -k_{2}(x_{2}-x_{1}) + k_{3}(x_{3}-x_{2})$$

$$m_{3} \frac{d^{2}x_{3}}{dt^{2}} = -k_{3}(x_{3}-x_{2}) - k_{4}x_{3}$$