

planetmath.org

Math for the people, by the people.

σ -algebra

Canonical name sigmaalgebra

Date of creation 2013-03-22 12:00:28 Last modified on 2013-03-22 12:00:28

Owner yark (2760) Last modified by yark (2760)

Numerical id 16

Authoryark (2760)Entry typeDefinitionClassificationmsc 28A60Synonymsigma-algebraSynonymsigma algebraSynonym σ algebraSynonymBorel structure

 $\begin{array}{ccc} \text{Synonym} & \sigma\text{-field} \\ \text{Synonym} & \text{sigma-field} \\ \text{Synonym} & \text{sigma field} \\ \text{Synonym} & \sigma \text{ field} \\ \text{Related topic} & \text{Algebra2} \end{array}$

Related topic BorelSigmaAlgebra

Related topic MathcalFMeasurableFunction

Related topic RingOfSets
Defines generated by

Introduction

When defining a measure for a set E we usually cannot hope to make every subset of E measurable. Instead we must usually restrict our attention to a specific collection of subsets of E, requiring that this collection be closed under operations that we would expect to preserve measurability. A σ -algebra is such a collection.

Definition

Given a set E, a σ -algebra in E is a collection \mathcal{F} of subsets of E such that:

- $\varnothing \in \mathcal{F}$.
- Any union of countably many elements of \mathcal{F} is an element of \mathcal{F} .
- The complement of any element of \mathcal{F} in E is an element of \mathcal{F} .

Notes

It follows from the definition that any σ -algebra \mathcal{F} in E also satisfies the properties:

- $E \in \mathcal{F}$.
- Any intersection of countably many elements of \mathcal{F} is an element of \mathcal{F} .

Note that a σ -algebra is a field of sets that is closed under countable unions and countable intersections (rather than just finite unions and finite intersections).

Given any collection C of subsets of E, the σ -algebra $\sigma(C)$ generated by C is defined to be the smallest σ -algebra in E such that $C \subseteq \sigma(C)$. This is well-defined, as the intersection of any non-empty collection of σ -algebras in E is also a σ -algebra in E.

Examples

For any set E, the power set $\mathcal{P}(E)$ is a σ -algebra in E, as is the set $\{\emptyset, E\}$.

A more interesting example is the http://planetmath.org/BorelSigmaAlgebraBorel σ -algebra in \mathbb{R} , which is the σ -algebra generated by the open subsets of \mathbb{R} , or, equivalently, the σ -algebra generated by the compact subsets of \mathbb{R} .