

 $|\vec{L}_{\kappa}| = |\vec{L}_{\kappa}| = |\vec{L}_{\kappa}|$ ka · m²/s

At a particular instant the location of an object relative to location A is given by the vector $\vec{r}_A = \langle 7, 8, 0 \rangle$ m. At this instant the momentum of the object is $\vec{p} = \langle -12, 12, 0 \rangle$ kg·m/s. What is the angular momentum of the object about location A? (Express your answer in vector form.)

$$\vec{L}_A = | kg \cdot m^2/s$$

L tvorus k	= \(\vec{r} \) \(\times \) \(\vec{r} \)				
Use H	he vector cress	product	full equ	ation	
	= 40,0,1807				

The figure below shows seven particles, each with the same magnitude of momentum $|\vec{p}| = 26 \text{ kg} \cdot \text{m/s}$ but with different directions of momentum and different positions relative to location A. The distances shown in the diagram have these values: w = 15 m, h = 30 m, and d = 25 m.

Calculate the z component of angular momentum L_{Az} for each particle (x to the right, y up, z out of the page). Make sure you give the correct sign.

 $L_{Az,1} =$ kg · m²/s $L_{Az,2} =$ kg · m²/s

 $L_{Az,3} =$ kg · m²/s

 $L_{Az,4} =$ kg · m²/s

 $L_{Az,5} =$ kg · m²/s

Az,6 = kg · m²/s

 $L_{AZ,7} = kg \cdot m^2/s$

A common amusement park ride is a Ferris wheel (see figure below, which is not drawn to scale). Riders sit in chairs that are on pivots so they remain level as the wheel turns at a constant rate. A particular Ferris wheel has a radius of 26 meters, and it makes one complete revolution around its axle (at location A) in 21 s. In all of the following questions, consider location A (at the center of the axle) as the location around which we will calculate the angular momentum. At the instant shown in the diagram, a child of mass 32 kg, sitting at location F, is traveling with velocity $\langle 7.9, 0, 0 \rangle$ m/s. (Assume that the +x axis is to the right, the +y axis is up along the page, and the +z axis is out of the page.)

(a) What is the linear momentum of the child? (Express your answer in vector form.)

 $\overrightarrow{p} = | kg \cdot m/s$

(b) In the definition $\vec{L} = \vec{r} \times \vec{p}$, what is the vector \vec{r} ? (Express your answer in vector form.)

 $\vec{r} =$ m

(c) What is $\overset{\rightarrow}{r_1}$? (Express your answer in vector form.)

 $r_1 = m$

(d) What is the magnitude of the angular momentum of the child about location A?

kg · m²/s

(f) Use the right-hand rule to determine th	e z component of the angular momentum	of the child about location A.		
(g) You used the right-hand rule to determ Therefore, what is the z component of the $xp_y = kg \cdot m^2/s$ $yp_x = kg \cdot m^2/s$ $L_z = kg \cdot m^2/s$			e in terms of position and moi	mentum: What is xp_y ? What is yp_x ?
(h) The Ferris wheel keeps turning, and at $(5.586, 5.586, 0)$ m/s. Now what is the m kg \cdot m ² /s		The state of the s	-18.385, 0) m relative to loca	tion A, moving with velocity
Part A				
$\rho = m \overrightarrow{V}$				
=<252.8	$,0,0)$ kg $\frac{m}{5}$			
Part B				
V = 40, -20	5,07m			
Part C				
r = <0,-2	6,07m			
Part D				
11 1 - 1 - 11 - 12				
[] = [p] [p]	Isin (0)			
= pr				
= 1,07	7 8 L m ²			

(e) What is the plane defined by \vec{r} and \vec{p} (that is, the plane containing both of these vectors)? \bigcirc the yz plane

 \bigcirc the xz plane \bigcirc the xy plane

Part F				
	3 24 M2			
L2=65/	2.8 kg 5			
Part C1				
$\chi \rho_{y} = 0$				
•	572. 8 kg m2 5			
L ₂ = 6>1	$72.9 kg \frac{m^2}{s}$			
Part H				
L1 = 65	$72.8 kg \frac{m^2}{s}$			