Thulestraße 13 13189 Berlin Tel: 030 / 69 40 19 94

Fax: 030 / 69 40 19 98 eMail: dirlack@t-online.de

## Statische Berechnung

Bauvorhaben: Antennentragkonstruktionen

Standort-Nr.: 1 23 99 0708 Netzelement-Nr.: 1 01 30 0464.A Netzelement-Name: Wardersee

23821 Roblstorf Adresse: Gut Rohlstorf

O<sub>2</sub> Germany Bauherr:

Projektbüro Hamburg Hohenzollernring 127-129

22763 Hamburg

Planungsbüro: infra.tel GmbH

Münchener Str. 43-44

10779 Berlin

Berlin, den 21.09.2006

Für die Seiten 1-20:

.- 3



| Standortname:       | Wardersee      | Statik vom  |
|---------------------|----------------|-------------|
| Standortnummer:     | 1 23 99 0708   | 21.09.2006  |
| Netzelement-Nummer: | 1 01 30 0464.A | <del></del> |

| Netzelement-Nummer:                                                                                                                      | 1 01 30 0464.A                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                                                                                          | AT 1 - 3                                                               |
| Gebrauchstauglichkeit                                                                                                                    |                                                                        |
| Berechnung und Nachweis mit:<br>- mit vollem Staudruck (Neubau)                                                                          | ja                                                                     |
| Richtfunk (UK) - Anzahl Richtfunk laut AP - statisch berücksichtigt - Max. zul. Verdrehwinkel - Max. vorh. Verdrehwinkel / Knoten        | 22,90 m<br>1 x 0,6 m<br>1 x 0,6 m<br>1,00 Grad<br>0,09 Grad / Knoten 2 |
| Sektorantennen (Unterkante) - Anzahl Sektorantennen/Typ laut AP - Max. zul Verdrehwinkel - Max. vorh. Verdrehwinkel / Knoten             | 25,00 m<br>1 x CTSDG-0615-XD<br>2,00 Grad<br>0,65 Grad / Knoten 6      |
| Tragsicherheit                                                                                                                           |                                                                        |
| Nachweis des Antennenträgers - Max. Auslastung Schuß 1 (D x t) - Max. Auslastung Schuß 2 (D x t) - Max. Auslastung Querträger            | 42 % / 114,3x5 mm<br>46 % / 88,9x5 mm<br>56 % / U 160                  |
| Nachweis der Flanschstöße<br>- Max. Auslastung bei Schuß 1 / 2                                                                           | 76%                                                                    |
| Lasteinleitung / -weiterleitung                                                                                                          |                                                                        |
| Gebäudedaten<br>- Stahlträger:<br>- Wellblech:                                                                                           | U 50<br>StE 350 -3Z 350, Profil 76x18                                  |
| - Max. Auflagerkräfte<br>Horizontal H =<br>Vertikal V =                                                                                  | 1,1 kN                                                                 |
| <ul> <li>Lasteinleitung / -weiterleitung</li> <li>Nachweis erbracht durch</li> <li>Befestigung durch</li> <li>Max. Auslastung</li> </ul> | Ja<br>Direkte Lasteinleitung<br>4 GewiSt. M12, 8.8, FV = 50%<br>37%    |



| Inhaltsverzeichnis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (1) 하는 사용 (1) 사용 (1) 사용 (1) 전 (1) |       |
| 보는 이번 사람이 되었다. 그 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 마이트 - 프로젝트 - 프로젝트                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 마르크 (1965년 1971년 1일) 전 1일 전 1980년 1일 전 1982년 1일 전 1982년<br>- 1982년 1982년 1일 전 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Seite |
| Deckblatt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| Zusammenfassung der Ergebnisse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| Inhaltsverzeichnis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3     |
| Verwendete Literatur und Normen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4     |
| Vorgaben der Berechnung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4     |
| Verwendete Materialien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| Vorbemerkungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5     |
| Lastabtrag im Bauwerk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| Übersicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6     |
| Querschnitte und Anschlüsse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| Lastannahmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8-9   |
| 마스 사용 이 경험 선생님 생각 보다.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Antennenträger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Lasteingaben, Auflagerkräfte, Schnittgrößen, Spannungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10-18 |
| Nachweis der Gebrauchstauglichkeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16    |
| Spannungsnachweise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18    |
| Nachweis der Verbindungen und Anschlüsse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19-20 |

## Verwendete Literatur und Normen

- Schneider "Bautabellen", 12. Auflage, 1996, Werner-Verlag, Düsseldorf

Gültige Normen, insbesondere

- DIN 18800: Stahlbauten

Teil 1: Bemessung und Konstruktion 11/90

DIN 1055: Lastannahmen für BautenDIN 4131: Antennentragwerke aus Stahl

## Vorgaben der Berechnung

- Entwurfsplanung
- Antennendatenblätter
- Planungsrichtlinien O<sub>2</sub>
- Bestandsunterlagen:

/1/ Prüfbescheid vom 22.07.1987, 10 Seiten + Anlagen zum Typenentwurf: Wellblechsilo mit Wandstützen

## Verwendete Materialien

- Stahl: S 235 (JRH / JRG2), feuerverzinkt
- Schrauben DIN 6914

1.

- Gewindestangen Güte 8.8

## Vorbemerkungen

An den Silostützen werden 3 baugleiche Antennentragkonstruktionen angeordnet. Die Anschlüsse an das Bauwerk erfolgen über Anschlussplatten mit an der Innenseite gekonterten Gewindestangen.

Es wird davon ausgegangen, dass das vorhandene Bauwerk nach den anerkannten Normen und Regeln des Bauwesens errichtet wurde und dass die uns übergebenen Unterlagen und Angaben den gegenwärtigen Zustand des Bauwerkes getreu wiedergeben.

Die Anschlusspunkte der Antennen sowie der anderen Anbauten an die Tragkonstruktionen sind entsprechend den Herstelleranforderungen auszuführen.

Die Systemtechnik wird separat neben dem Gebäude aufgestellt. Rechnerische Nachweise sind dazu nicht erforderlich.

## Lastabtrag im Bauwerk

Die Vertikallasten werden direkt in die Stützen eingeleitet.

Die Wellblechwände des Rundsilos gewährleisten ohne weitere Nachweise den Lastabtrag der Horizontalkräfte.

Die einzuleitenden Lasten pro Antennenträger sind bezogen auf das Gesamtlastniveau des Bauwerkes gering. Wegen des Standortes des Silos (teilweise windabgeschattet von ringsum angeordneten weiteren Silos) kann die Lastableitung der zusätzlichen Windlasten aus den Antennenanbauten im Bauwerk als problemlos eingeschätzt werden.

Der Lastabtrag ist damit ohne weitere Nachweise gewährleistet.

# Chericut



1

# Querschnitte und Anschlüsse



## Lastannahmen für den Antennenträger

#### LF 1: Eigenlasten

- Antennentragrohre

vom Rechenprogramm

- Kabel

g =

= 0.10 kN/m

- 1 x Sektorantenne CTSDG-06515-XDM

G =

= 0.14 kN

- 1 x Dual MHA

G≔

= 0.06 kN

- 1 x RiFu-Antenne Ø 0,6

G =

= 0.10 kN

M = 0.10\*0.30

= 0.03 kNm

LF 2: Eislasten

- )

(Dicke der allseitigen Aneisung: d = 3 cm; Eisgewicht: 7,0 kN/m³)

- Antennenträger:

Rohr 114,3:

 $g_{Eis} = \Pi/4*7,0*(0,1743^2-0,1143^2)$ 

= 0.10 kN/m

- Antennenträger:

Rohr 88,9:

 $g_{Eis} = \Pi/4*7.0*(0.1489^2-0.0889^2)$ 

= 0.08 kN/m

- Kabel

g<sub>Eis</sub> =

= 0.05 kN/m

- 1 x Sektorantenne CTSDG-06515-XDM

 $G_{Eis} = 7.0*(0.327*0.187-0.267*0.127)*1.990$ 

= 0.38 kN

 $-1 \times Dual MHA (A_{Eis} = 0.05 \text{ m}^2)$ 

 $G_{Eis} = 7.0*0.06*0.05$ 

= 0.02 kN

- 1 x RiFu-Antenne Ø 0,6

 $G_{Eis} =$ 

= 0.15 kN

 $M_{Eis} = 0.15*0.30$ 

= 0.05 kN

#### Windlasten

Windzone:

 $\Pi$ 

Antennenhöhe über Gelände:

H = 28 m

Böenreaktionsfaktor:

 $\varphi = 1.05$ 

Abminderung bei gleichzeitigem Ansatz

von Wind und Eis:

0,75

(DIN 4131; A.1.5.)

Grundkraftbeiwerte:

 $c_{10} = 0.85$ 

(Rohre, bei vorhandenen Anbauten)

 $c_{10} = 1.6$ 

(Anbauten)

Nachweise der Gebrauchstauglichkeit:

Staudruck ohne Böenreaktionsfaktor:

q = 1.05 + 0.003\*28

 $= 1.13 \text{ kN/m}^2$ 

Nachweise der Tragfähigkeit:

Staudruck mit Böenreaktionsfaktor:

 $q = 1.05*(1.05 + 0.003*28) = 1.19 \text{ kN/m}^2$ 

Pos.-Nr.

,25 kN/m2)

Gemäß Petersen "Stahlbau" (3. Auflage, Abschn. 23.3.4.7 a, S. 1024) ist eine Gefährdung durch Querschwingung erst ab ca. 20 m Masthöhe zu erwarten. Anbauten an die Rohre (Leitern, Antennen) führen zu Dämpfung, so dass der Einfluss der Querschwingung (Betriebsfestigkeitsnachweis) nicht erbracht werden muss.

#### LF 3: Wind ohne Eis

- Antennenträger: Rohr 114,3:  $w_{oE} = 0.85*1.13*0.1143$ 

= 0.11 kN/m

- Antennenträger:

Rohr 88,9:

 $w_{oE} = 0.85*1.13*0.0889$ 

= 0.09 kN/m

- Kabel:

 $L_{\sim}$ 

 $b \approx 0.08 \text{ m}$ :

 $w_{oE} = 1,6*1,13*0,08$ 

= 0.14 kN/m

| CTSDG-06 | 6515-XDN | A T |     | · · · · |       |       |       |                   |
|----------|----------|-----|-----|---------|-------|-------|-------|-------------------|
| ohne Eis | Ì        | b   | h   | A       | F*    | c     | c*A   | *v=161 km/h (q=1, |
|          | mm       | mm  | mm  | m2      | N     | -     | m2    |                   |
| frontal  | 1930     | 267 | 127 | 0,515   | 978,5 | 1,519 | 0,783 |                   |
| mit Eis* | j        | b   | h   | A       | F     | С     | c*A   | *allseitig 3 cm   |
|          | mm       | mm  | mm  | m2      | N     | -     | m2    | _                 |
| frontal  | 1990     | 327 | 187 | 0,651   |       | 1,519 | 0,989 |                   |

- 1 x Sektorantenne CTSDG-06515-XDM:

 $W_{oE} = 1.13*0,783$ 

= 0.88 kN

- 1 x Dual MHA ( $A_{ohne Eis} = 0.03 \text{ m}^2$ )

 $W_{oE} = 1.6*1.13*0.03$ 

= 0.05 kN

- 1 x RiFu-Antenne Ø 0,6:

Umrechnung von  $q=1,93 \text{ kN/m}^2 \text{ (v = 56 m/s)}$ 

auf  $q=1,13 \text{ kN/m}^2$ 

 $W_{oE} = 1,005*1,13 / 1,93$ 

= 0.59 kN

 $M_{oE} = 0.358*1.13 / 1.93$ 

= 0.21 kNm

#### LF 4: Wind mit Eis

- Antennenträger:

Rohr 114,3:

 $w_{mE} = 0.75*0.85*1.19*0.1743$ 

= 0.13 kN/m

- Antennenträger:

Rohr 88,9:

 $w_{mE} = 0.75*0.85*1.19*0.1489$ 

= 0.11 kN/m

- Kabel:

 $b \approx 0.08 \text{ m}$ :

 $w_{mE} = 0.75*1.6*1.19*(0.08+0.06)$ 

= 0.20 kN/m

- 1 x Sektorantenne CTSDG-06515-XDM:  $W_{mE} = 0.75*1.19*0.989$ 

= 0.88 kN

 $-1 \times Dual MHA (A_{mit Eis} = 0.05 \text{ m}^2)$ 

 $W_{mE} = 0.75*1.6*1.19*0.05$ 

= 0.07 kN

- 1 x RiFu-Antenne Ø 0,6

 $A_{mE} / A_{oE} = 0.66^2 / 0.60^2 = 1.21$ 

 $W_{mE} = 0.75*1.21*0.59*1.19 / 1.13$ 

= 0.56 kN

 $M_{mE} = 0.75*1.21*0.21*1.19 / 1.13$ 

= 0.20 kNm

### Lastfall-Überlagerungen

Gebrauchstauglichkeit

LFK 1:

1,00\*(LF1 + LF3)

Tragfähigkeit:

LFK 2:

1,35\*LF1 + 1,50\*(LF2 + LF4)

Dipl -- Ing. Björn Dirlack - Thulestr. 13 - 13189 Berlin - Tel: 030 / 694019-94 - Fax: -98

RAUMLICHES STABWERK RS1 01/2003 Win XP

PROJEKT: 06-156

POS: 06-156-1



Dipl.-Ing. Björn Dirlack - Thulestr. 13 - 13189 Berlin - Tel: 030 / 694019-94 - Fax: -98

RÄUMLICHES STABWERK RS1 01/2003 Win XF

PROJEKT: 06-156 POS: 06-156-1

QUERSCHNITTSWERTE : für die Schnittgrössenermittlung

J = Trägheitsmoment (cm4), A = Fläche (cm2)

|      |             |       |       |         |        | ٦ |
|------|-------------|-------|-------|---------|--------|---|
| Quer | schnitt     | Віе   | gung  | Torsion | normal |   |
| Nr.  | Mat         | J-I   | J-II  | J-T     | A      |   |
| 1    | 1 RO114.3X5 | 257.0 | 257.0 | 514.0   | 17.2   |   |
| 2    | 1 RO88.9X5  | 116.0 | 116.0 | 233.0   | 1.3.2  |   |
| 3    | 1 U160      | 925.0 | 85.0  | 7.55    | 24.0   |   |

QUERSCHNITTSWERTE: weitere Werte für die Spannungsermittlung

W = Widerstandsmoment (cm3) , A = Fläche (cm2)

| Que | rschnitt    | Bieg  | gung | Torsion | normal | S c  | hub   |
|-----|-------------|-------|------|---------|--------|------|-------|
| Nr. | Mat         | W-I   | W-II | W-T     | Α      | Aq-I | Aq-II |
| 1   | 1 RO114.3X5 | 45.0  | 45.0 | 89.9    | 17.2   | 8.60 | 8.60  |
| 2   | 1 RO88.9X5  | 26.2  | 26.2 | 52.4    | 13.2   | 6.61 | 6.61  |
| 3   | 1 U160      | 116.0 | 46.2 | ***     | 24.0   | 10.1 | 10.2  |

\*\*\* WHT wird bei der Spannungsermittlung lokal gerechnet.

#### PLASTISCHE SCHNITTGRÖßEN

| Nr | Mat | NP1   | Mply  | Qplz  | Mplz  | Qply  |  |
|----|-----|-------|-------|-------|-------|-------|--|
|    |     | (kN)  | (kNm) | (kN)  | (kNm) | (kN)  |  |
| 1  | 1 . | 412.8 | 14.4  | 151.8 | 14.4  | 151.8 |  |
| 2  | 1   | 316.8 | 8.4   | 116.5 | 8.4   | 116.5 |  |
| 3  | 1   | 576.0 | 33.0  | 155.4 | 9.3   | 189.1 |  |

| SYSTEM: | Proje | ktionen | Querschnitt Knoten |
|---------|-------|---------|--------------------|
|---------|-------|---------|--------------------|

| Stab | Lx (m) | Ly (m) | Lz (m) | Q1 | Q2 | Ende 1 | Ende 2 |
|------|--------|--------|--------|----|----|--------|--------|
| 1    | 0.000  | 0.000  | 1.300  | 1  | 1  | 1      | 2      |
| 2    | 0.000  | 0.000  | 0.500  | 1  | 1  | 2      | 3      |
| 3    | 0.000  | 0.000  | 0.700  | 1  | 1  | 3      | 4      |
| 4    | 0.000  | 0.000  | 0.200  | 2  | 2  | 4      | 5      |
| 5    | 0.000  | 0.000  | 1.300  | 2  | 2  | 5      | 6      |
| 6    | 0.000  | 0.000  | 1.200  | 2  | 2  | 6      | 7      |
| 7    | 0.000  | 0.750  | 0.000  | 3  | 3  | 8      | 1      |
| 8    | 0.000  | 0.750  | 0.000  | 3  | 3  | 1      | 9      |
| 9    | 0.000  | 0.750  | 0.000  | 3  | 3  | 10     | 3      |
| 10   | 0.000  | 0.750  | 0.000  | 3  | 3  | 3      | 11     |

AUFLAGER : -1 = starr, 0 = frei, > 0 = elastisch (kN/cm , kNcm)

| Knoten | i n | Richt | ung | u m | Achse | <b>e</b> |
|--------|-----|-------|-----|-----|-------|----------|
| Nr.    | x   | У     | 2   | X   | У     | z        |
| 8      | -1  | -1    | - 1 | 0   | 0     | 0        |
| 9      | -1  | -1    | -1  | 0   | 0     | 0        |
| 10     | -1  | -1    | - 1 | 0   | 0     | 0        |
| 11     | -1  | - 1.  | -1  | 0   | 0     | 0        |
|        |     |       |     |     |       |          |

Gewicht der Konstruktion G = 118 kg

Dipl.-Ing Björn Dirlack - Thulestr. 13 - 13189 Berlin - Tel: 030 / 694019-94 - Fax: -98

RAUMLICHES STABWERK RS1 01/2003 Win XP

PROJEKT: 06-156 POS: 06-156-1

B E L A S T U N G Nr. 1 Lastfall : Eigenlasten

Stablasten

Art : l=Einzellast (kN) 2=Einzelmoment(kNm)

3=Voll-Trapezlast (kN/m) 5=Streckentorsion(kNm/m) 4=Teil-Tapezlast(kN/m)

Richtung : 1=x , 2=y , 3=z , 4=langs ,  $5=quer\ I$  ,  $6=quer\ II$  Richtung 3 : positiv in Richtung positiver z-Achse

| Stab Art Richtung | . p1   | p2     | Abstand a | Länge b |
|-------------------|--------|--------|-----------|---------|
| 1 3 3             | -0.100 | -0.100 |           |         |
| 2 3 3             | -0.100 | -0.100 |           |         |
| 3 3 3             | -0.100 | -0.100 |           |         |
| 4 3 3             | -0.100 | -0.100 |           |         |

#### Knotenlasten (Fz positiv in Richtung positiver z-Achse)

| Knoten Fx Fy  | Fz     | Мx    | My    | Mz    |  |
|---------------|--------|-------|-------|-------|--|
| (kN) (kN)     | (kN)   | (kNm) | (kNm) | (kNm) |  |
| 2 0.000 0.000 | -0.100 | 0.000 | 0.030 | 0.000 |  |
| 5 0.000 0.000 | -0.060 | 0.000 | 0.000 | 0.000 |  |
| 6 0.000 0.000 | -0.140 | 0.000 | 0.000 | 0.000 |  |

Eigenlastfaktor in z-Richtung Fak\_g\_z = -1.00

| Summe aller äu | ßeren Last | ten (kN) |  |
|----------------|------------|----------|--|
| Gesamt Ėx      | FУ         | Fz       |  |
| 0.000          | 0.000      | -1.753   |  |

| AUFLAGERKRÄFTE | Th. l.Ord. | Lastfall | .l : Eiger | nlasten |       |
|----------------|------------|----------|------------|---------|-------|
| Knoten A Fx    | A Fy       | A Fz     | A Mx       | A My    | A Mz  |
| Nr. (kN)       | (kN)       | (kN)     | (kNm)      | (kNm)   | (kNm) |
| 8 -0.00        | 0.000      | -0.427   |            |         |       |
| 9 -000         | 0.000      | -0.427   |            |         |       |
| 10 0.00        | 0.000      | -0.450   |            |         |       |
| 11 0.00        | 0.000      | -0.450   |            |         |       |
| Summe: 0.00    | 0.000      | -1.753   |            |         |       |

Dipl.-Ing. Björn Dirlack - Thulestr. 13 - 13189 Berlin - Tel: 030 / 694019-94 - Fax:

RAUMLICHES STABWERK RS1 01/2003 Win XP

PROJEKT: 06-156

POS: 06-156-1

B E L A S T U N G Nr. 2 Lastfall : Eislasten

Stablasten.

Art : 1=Einzellast (kN)

2=Einzelmoment(kNm) 4=Teil-Tapezlast(kN/m)

Richtung 3 : positiv in Richtung positiver z-Achse

| Stab Art Richtung | p1     | p2     | Abstand a | Länge b |  |
|-------------------|--------|--------|-----------|---------|--|
| 1 3 3             | -0.100 | -0.100 |           | -       |  |
| 2 3 3             | -0.100 | -0.100 |           |         |  |
| 3 3 3             | -0.100 | -0.100 |           |         |  |
| 4 3 3             | -0.080 | -0.080 |           |         |  |
| 5 3 3             | -0.080 | -0.080 |           |         |  |
| 6 3 3             | -0.080 | -0.080 |           |         |  |
| 1 3 3             | -0.050 | -0.050 |           |         |  |
| 2 3 3             | -0.050 | -0.050 |           |         |  |
| 3 3 3             | -0.050 | -0.050 |           |         |  |
| 4 3 3             | -0.050 | -0.050 |           |         |  |
|                   |        |        |           |         |  |

#### Knotenlasten (Fz positiv in Richtung positiver z-Achse)

| Knoten Fx Fy  | Fz     | Mx    | My    | Mz    |  |
|---------------|--------|-------|-------|-------|--|
| (kN) (kN)     | (kN)   | (kNm) | (kNm) | (kNm) |  |
| 2 0.000 0.000 | -0.150 | 0.000 | 0.050 | 0.000 |  |
| 5 0.000 0.000 | -0.020 | 0.000 | 0.000 | 0.000 |  |
| 6 0.000 0.000 | -0.380 | 0.000 | 0.000 | 0.000 |  |

| Summe | aller               | außeren | Lasten | (kN)                  |  |
|-------|---------------------|---------|--------|-----------------------|--|
|       | u difidenci elea ec | +4      |        | and the second second |  |

Fx Gesamt Fу 0.000 -1.151

AUFLAGERKRÄFTE Th. 1.Ord. Lastfall 2 : Eislasten

| Knoten A Fx  | A Fy  | A Fz   | A Mx  | А Му  | A Mz  |
|--------------|-------|--------|-------|-------|-------|
| Nr. (kn)     | (kN)  | (kN)   | (kNm) | (kNm) | (kNm) |
| 8 -0.014     | 0.000 | -0.275 |       |       |       |
| 9 -0.014     | 0.000 | -0.275 |       |       |       |
| 10 0.014     | 0.000 | -0.301 |       |       |       |
| 11 0.014     | 0.000 | -0.301 |       |       |       |
| Summe: 0.000 | 0.000 | -1.151 |       |       |       |
|              |       |        |       |       |       |
|              |       | ÷      |       |       |       |

Dipl.-Ing. Björn Dirlack - Thulestr. i3 - 13189 Berlin - Tel: 030 / 694019-94 - Fax: -98

RÄUMLICHES STABWERK RS1 01/2003 Win XP

PROJEKT: 06-156 POS: 06-156-1

BELASTUNG Nr. 3 Lastfall : Wind ohne Eis

Stablasten

Art : 1=Einzellast (kN) 2=Einzelmoment(kNm) 3=Voll-Trapezlast (kN/m) 4=Teil-Tapezlast(kN/m)

5=Streckentorsion(kNm/m)

Richtung : 1=x , 2=y , 3=z ,  $4=l{\rm angs}$  , 5=quer~I , 6=quer~II Richtung 3 : positiv in Richtung positiver z-Achse

| Stab | Art | Richtung | pl    | p2    | Abstand a | Länge b |
|------|-----|----------|-------|-------|-----------|---------|
| 1    | 3   | 1        | 0.110 | 0.110 |           | •       |
| 2    | 3   | 1        | 0.110 | 0.110 |           |         |
| 3    | 3   | 1        | 0.110 | 0.110 |           |         |
| 4    | 3   | 1        | 0.090 | 0.090 |           |         |
| 5    | 3   | 1        | 0.090 | 0.090 |           |         |
| 6    | 3   | 1        | 0.090 | 0.090 |           |         |
| 1    | . 3 | 1        | 0.140 | 0.140 |           |         |
| 2    | 3   | 1        | 0.140 | 0.140 |           |         |
| 3    | 3   | 1        | 0.140 | 0.140 |           |         |
| 4    | 3   | 1        | 0.140 | 0.140 |           |         |

### Knotenlasten ( Fz positiv in Richtung positiver z-Achse )

| Knoten | Fx    | Fу    | Fz    | Mx    | My    | Mz    |  |
|--------|-------|-------|-------|-------|-------|-------|--|
|        | (kN)  | (kN)  | (kN)  | (kNm) | (kNm) | (kNm) |  |
| 2      | 0.590 | 0.000 | 0.000 | 0.000 | 0.000 | 0.210 |  |
| 5      | 0.050 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |  |
| б      | 0.880 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |  |

aller äußeren Lasten (kN) Gesamt Fx 0.000 0.000 2.416

Maximale Verschiebung im Stab 6 bei x = 1.00 \* L Max f = 3.31 cm

AUFLAGERKRÄFTE Th. 1.Ord. Lastfall 3 : Wind ohne Eis

| Knoten<br>Nr. | A Fx        | A Fy  | A Fz<br>(kN) | A Mx<br>(kNm) | A My<br>(kNm) | A Mz<br>(kNm) |
|---------------|-------------|-------|--------------|---------------|---------------|---------------|
| -8            | -0.471      | 0.000 | 0.000        | (KMIII)       | ( KIVIII)     | ( KIVIII )    |
|               | <del></del> |       |              |               |               |               |
| 9             | -0.564      | 0.000 | 0.000        |               |               |               |
| 10            | 1.819       | 0.000 | 0.000        |               |               |               |
| 11            | 1.632       | 0.000 | 0.000        |               |               |               |
| Summe :       | 2.416       | 0.000 | 0.000        |               |               |               |

Dipl.-Ing. Bjorn Dirlack - Thulestr. 13 - 13189 Berlin - Tel: 030 / 694019-94 - Fax: -98

RÄUMLICHES STABWERK RS1 01/2003 Win XP

PROJEKT: 06-156 POS: 06-156-1

BELASTUNG Nr. 4 Lastfall : Wind mit Eis

Stablasten.

2=Einzelmoment(kNm)

Art l=Einzellast (kN) 3=Voll-Trapezlast (kN/m)

4=Teil-Tapezlast(kN/m)

5=Streckentorsion(kNm/m)

Richtung 1=x , 2=y , 3=z , 4=langs , 5=quer~I , 6=quer~II Richtung 3: positiv in Richtung positiver z-Achse

| - <u> </u>        |       |       |           |         |   |
|-------------------|-------|-------|-----------|---------|---|
| Stab Art Richtung | pl    | p2    | Abstand a | Länge b | _ |
| 1 3 1             | 0.130 | 0.130 |           | -       |   |
| 2 3 1             | 0.130 | 0.130 |           |         |   |
| 3 3 1             | 0.130 | 0.130 |           |         |   |
| 4 3 1             | 0.110 | 0.110 |           |         |   |
| 5 3 1 1.          | 0.110 | 0.110 |           |         |   |
| 6 3 1             | 0.110 | 0.110 |           |         |   |
| 1 3 1             | 0.200 | 0.200 |           |         |   |
| 2 3 1             | 0.200 | 0.200 |           |         |   |
| 3 3 3             | 0.200 | 0.200 |           |         |   |
| 4 3 1             | 0.200 | 0.200 |           |         |   |

#### Knotenlasten (Fz positiv in Richtung positiver z-Achse)

| Knoten Fx | Fy    | Fz.   | Mx    | Му    | Mz    |  |
|-----------|-------|-------|-------|-------|-------|--|
| (kN)      | (kN)  | (kN)  | (kNm) | (kNm) | (kNm) |  |
| 2 0.560   | 0.000 | 0.000 | 0.000 | 0.000 | 0.200 |  |
| 5 0.070   | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |  |
| 6 0.880   | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |  |
|           |       |       |       |       |       |  |

Summe aller außeren Lasten (kN)

Gesamt Fx Fz

Fу 0.000 2.672 0.000

Maximale Verschiebung im Stab 6 bei x = 1.00 \* L Max f = 3.50 cm

AUFLAGERKRÄFTE Th. 1.Ord. Lastfall 4 : Wind mit Eis

| Knoten<br>Nr. | A FX            | A Fy  | A Fz  | A Mx (kNm) | A My      | A Mz<br>(kNm)                           |
|---------------|-----------------|-------|-------|------------|-----------|-----------------------------------------|
| 8             | -0.485          | 0.000 | 0.000 | . ()       | ( Killin) | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| 9<br>10       | -0.574<br>1.955 | 0.000 | 0.000 |            |           |                                         |
| 11            | 1.776           | 0.000 | 0.000 |            |           |                                         |
| Summe :       | 2.672           | 0.000 | 0.000 |            |           |                                         |

Dipl.-Ing. Björn Dirlack - Thulestr. 13 - 13189 Berlin - Tel: 030 / 694019-94 - Fax: -98

RAUMLICHES STABWERK RS1 01/2003 Win XP

PROJEKT: 06-156 POS: 06-156-1

#### LASTFALL - UEBERLAGERUNG Nr. 1

ÜBERLAGERUNG Nr. 1 : Gebrauchstauglichk.

Lastfall Nr. 1 : \* 1.00 Eigenlasten Nr. 3 : \* 1.00 Wind ohne Eis

Maximale Verschiebung im Stab 5 bei x = 1.00 \* L Max f = 3.32 cm

AUFLAGERKRÄFTE: Th. 1.Ord. ÜBERLAGERUNG Nr. 1: Gebrauchstauglichk.

| Knoten<br>Nr. | A Fx (kN) | A Fy<br>(EN) | A Fz<br>(kN) | A M×<br>(ENm) | A My<br>(kNm) | A Mz<br>(kNm) |
|---------------|-----------|--------------|--------------|---------------|---------------|---------------|
| 8             | -0.479    | 0.000        | -0.427       |               |               |               |
| 9             | -0.572    | 0.000        | -0.427       |               |               |               |
| 10            | 1.827     | 0.000        | -0.450       |               |               |               |
| 11            | 1.640     | 0.000        | -0.450       |               |               |               |
| Summe :       | 2.416     | 0.000        | -1.753       |               |               |               |

VERSCHIEBUNGEN : Th. 1.0rd. ÜBERLAGERUNG Nr. 1 : Gebrauchstauglichk

| Knoten | fx     | fy    | ſΖ     | Phix     | Phiy     | Phiz     |               |
|--------|--------|-------|--------|----------|----------|----------|---------------|
| Nr.    | (cm)   | (cm)  | (cm)   |          |          |          |               |
| 1      | -0.041 | 0.000 | -0.003 | 0.00000  | -0.00018 | 0.00005  |               |
| 2      | 0.011  | 0.000 | -0.003 | 0.00000  | 0.00163  | 0.00027  | RiFu-Antenne  |
| 3      | 0.137  | 0.000 | -0.003 | 0.00000  | 0.00353  | 0.00010  |               |
| 4      | 0.486  | 0.000 | -0.003 | 0.00000  | 0.00626  | 0.00010  |               |
| 5      | 0.624  | 0.000 | -0.003 | 0.00000  | 0.00752  | 0.00010  |               |
| 6      | 1.935  | 0.000 | -0.003 | 0.00000  | 0.01143  | 0.00010  | Sektorantenne |
| 7      | 3.316  | 0.000 | -0.003 | 0.00000  | 0.01154  | 0.00010  |               |
| 8      | 0.000  | 0.000 | 0.000  | -0.00005 | -0.00018 | 0.00080  |               |
| 9      | 0.000  | 0.000 | 0.000  | 0.00005  | -0.00018 | -0.00085 |               |
| 10     | 0.000  | 0.000 | 0.000  | -0.00006 | 0.00353  | -0.00278 |               |
| 11     | 0.000  | 0.000 | 0.000  | 0.00006  | 0.00353  | 0.00268  |               |

Nachweis der Gebrauchstauflichheit (Verdrehungen

J= 150/JC. V0.001632 + 0.000772/ p=0,09° / Telp=1,0°

Celitoranterine 4 = 180/I. 11 0.0442 + 0.000102 9 = 0,65° < zel p = 2,0°

Dipl:-Ing. Björn Dirlack - Thulestr. 13 - 13189 Berlin - Tel: 030 / 694019-94 - Fax: -98

RÄUMLICHES STABWERK RS1 01/2003 Win XP

PROJEKT: 06-156 POS: 06-156-1

MAX , MIN ÜBERLAGERUNG aus 4 Lastfällen : Tragfähigkeit

Lastfall Nr. 1 : LF g \* 1.35 : Eigenlasten

Nr. 2 : LF g \* 1.50 : Eislasten

Nr. 3 : nicht benutzt : Wind ohne Eis

Nr. 4 : +/- \* 1.50 : Wind mit Eis

In der oberen Zeile stehen die max-Werte. In der unteren Zeile stehen die min-Werte.

| AUFLAGERKRÄFTE          | . * = ma     | ax/min Wert  | i e           |               |               |
|-------------------------|--------------|--------------|---------------|---------------|---------------|
| Knoten A Fx<br>Nr. (kN) | A Fy<br>(kN) | A Fz<br>(kN) | A Mx<br>(kNm) | A My<br>(kNm) | A Mz<br>(kNm) |
| 8 0.70*                 | 0.00         | -0.99        |               |               |               |
| -0.76*                  | 0.00         | -0.99        |               |               |               |
| 9 0.83*                 | 0.00         | -0.99        | **            |               |               |
| =0.89*                  | 0.00         | -0.99        |               |               |               |
| 10 2.96*                | 000          | -1.06        |               |               |               |
| -2.90*                  | 0.00         | -1.06        |               |               |               |
| 11 2.70*                | 000          | -1.06        |               |               |               |
| <b>-2</b> 63*.          | 0.00         | -1.06        |               |               |               |

| SCHNITTGRÖSSEN | * : ## | max/min | Werte |  |
|----------------|--------|---------|-------|--|

| Stab<br>Nr. | Knoten<br>Nr. | (kn)           | T<br>(kNm)    | Q II<br>(kN)  | M I<br>(kNm)    | Q I<br>(kN)  | M II<br>(kNm) |
|-------------|---------------|----------------|---------------|---------------|-----------------|--------------|---------------|
| 1.          |               | -1.60<br>-1.60 | 0.10<br>-0.10 | 1 65<br>-1 52 | 0.00*<br>0.00*  | 0.00<br>0.00 | 0.00<br>0.00  |
| 1           | .2<br>2       | -0.89<br>-0.89 | 0.10<br>-0.10 | 2.30<br>-2.17 | 2.57*<br>-2.40* | 0.00<br>0.00 | 0.00<br>0.00  |
| 2           | 2<br>2        | -0.53<br>-0.53 | -0.20<br>0.20 | 3.14<br>-3.01 | 2.45*<br>-2.52* | 0.00<br>0.00 | 0.00<br>0.00  |
| 2           | 3<br>3        | -0.26<br>-0.26 | -0.20<br>0.20 | 3.38<br>-3.26 | 4.08*<br>-4.08* | 0.00         | 0.00<br>0.00  |
| 3           | 3<br>3        | -1.99<br>-1.99 | 0.00          | -2.28<br>2.28 | 4.08*<br>-4.08* | 0.00<br>0.00 | 0.00<br>0.00  |
| 3           | 4             | -1.61<br>-1.61 | 0.00          | -1.93<br>1.93 | 2.61*<br>-2.61* | 0.00<br>0.00 | 0.00<br>0.00  |
| 4           | 4             | -1.61<br>-1.61 | 0.00<br>0.00  | -1.93<br>1.93 | 2.61*<br>-2.61* | 0.00<br>0.00 | 0.00<br>0.00  |
| 4           | 5.<br>5.      | -1.52<br>-1.52 | 0.00          | -1.84<br>1.84 | 2.23*<br>-2.23* | 0.00<br>0.00 | 0.00<br>0.00  |
| 5           | 5<br>5        | -1.41<br>-1.41 | 0.00          | -1.73<br>1.73 | 2.23*<br>-2.23* | 0.00<br>0.00 | 0.00<br>0.00  |
| 5           | 6<br>6        | -1.07<br>-1.07 | 0.00<br>0.00  | -1.52<br>1.52 | 0.12*<br>-0.12* | 0.00<br>0.00 | 0.00<br>0.00  |
| 6           | 6<br>6        | -0.31<br>-0.31 | 0.00          | -0.20<br>0.20 | 0.12*<br>-0.12* | 0.00<br>0.00 | 0.00<br>0.00  |
| 6           | 7<br>7        | 0.00<br>0.00   | 0.00          | 0.00          | 0.00*<br>0.00*  | 0.00<br>0.00 | 0.00<br>0.00  |

Dipl.-Ing. Björn-Dirlack - Thulestr. 13 - 13189 Berlin - Tel: 030 / 694019-94 - Fax: -98
RÄUMLICHES STABWERK RS1 01/2003 Win XP

PROJEKT: 06-156 POS: 06-156-1

| The state of the s |                       |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---|
| SCHNITTGRÖSSEN!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>* = max/min Werte | , |

| M II<br>(kNm) | Q I (kN) | M I<br>(kNm) | Q II<br>(kN) | T<br>(kNm) | oten N<br>Nr. (kN) |       | Stab<br>Nr |
|---------------|----------|--------------|--------------|------------|--------------------|-------|------------|
| 0.00          | 0.03     | 0.00*        | -0.99        | 0.00       | 8 0.00             | 7     | 7          |
| 0.00          | 0.03     | 0.00*        | -0.99        | 0.00       | 8 0.00             |       |            |
| 0.02          | 0.03     | -0.67*       | -0.80        | 0.00       | 0.00               | 7     | 7          |
| 0.02          | 0.03     | -0.67*       | -0.80        | 0.00       | 0.00               | 41    |            |
| 0.02          | -0.03    | -0.67*       | 0.80         | 0.00       | 1 0.00             | 8     | 8          |
| 0.02          | -0.03    | -0.67*       | 0.80         | 0.00       | 1 0.00             | 10.1  |            |
| 0.00          | -0.03    | 0.00*        | 0.99         | 0.00       | 9 0.00<br>9 0.00   | 8     | . 8        |
| 0.00          | -0.03    | 0.00*        | 0.99         | 0.00       | 9 0.00             |       |            |
| 0.00          | -0.03    | 0.00*        | -1.06        | 0.00       | 10 0.00            | 9 : . | 9          |
| 0.00          | -0.03    | 0.00*        | -1.06        | 0.00       | 10 0.00            | 1     |            |
| -0.02         | -0.03    | -0.72*       | -0.87        | 0.00       | 3 0.00             | 9     | 9          |
| -0.02         | -0.03    | -0.72*       | -0.87        | 0.00       | 3 0.00             |       |            |
| -0.02         | 0.03     | -0.72*       | 087          | 0.00       | 3 0.00             | 0     | 10         |
| -0.02         | 0.03     | -0.72*       | 0.87         | 0.00       | 3 0.00             |       | -          |
| 0.00          | 0.03     | 0.00*        | 1.06         | 0.00       | 000                | Ó     | 10         |
| 0.00          | 0.03     | 0.00*        | 1.06         | 0.00       | 0.00               | 31.   | 31         |
|               | 0.03     | 0.00*        | 0.87         | 0.00       | 3 0.00<br>11 0.00  |       | 10         |

max/min SPANNUNGEN und zug Profilpunkte ( Stelle ) von Z,D,T,V

Sigma  $Z_*D = Zug_*$ , Druckspannungen , Sigma  $V = SQR(Sigma^2+3*Tau^2)$ 

|       |              |                                               | Sigma D                               |                   | Sigma V        |             |                      | max                  |
|-------|--------------|-----------------------------------------------|---------------------------------------|-------------------|----------------|-------------|----------------------|----------------------|
| Nr.   | Nr.          | (N/mm2)                                       | (N/mm2)                               | (N/mm2)           | (N/mm2)        | Nr.         | Nr. Au:              | snutz.               |
|       |              | JWW 1635-113                                  |                                       |                   |                |             |                      |                      |
| zuläs | ssig         | 218.0                                         | 218.0                                 | 126.0             | 218.0          | S 235       |                      |                      |
|       |              |                                               |                                       |                   | * * 1 * *      |             |                      |                      |
| 1.    | 1            | 0.0                                           | -0.9                                  | 3.0               | 5.3            | 1           | 0 11 1 1             | 0.02                 |
|       | 2            | 56.6                                          | -57.6                                 | 3.8               | 57.6           | 1           | 5 13 1 13            | 0.26                 |
| 2     | 2            | 55.6                                          | -56.2                                 | 5.9               | 56.4           | 1           | 13 5 9 5             | 0.26                 |
|       | 3            | 90.6                                          | -90.9                                 | 6.2               | 91.0           | 1           | 13 5 9 5             | 0.42                 |
| 3     | 3            |                                               | -91.9                                 | 2.6               | 91.9           | 1           | 13 5 1 5             | 0.42                 |
| _     | 4            | 57.1                                          |                                       | 2.2               | 58.9           | 1           | 13 5 1 5             | 0.27                 |
| 4     | A            | 98.7                                          |                                       | 2.9               | 101.2          | 2           |                      | 0.46                 |
| 3     |              | 84.4                                          | and the first of the second second    |                   |                | 2           |                      |                      |
| -     | 3.           |                                               | -86.7                                 | 2 - 8             | 86.7           | 2           | 5 13 1 13            | -                    |
| 5     | 5            | 84.4                                          |                                       | 2.6               | 86.6           | 2           |                      | 0.40                 |
|       | 6            | 3.7                                           | * .                                   | 2.3               | 5.4            | 2           |                      | 0.02                 |
| 6     | 6            | 4.3                                           | -4.8                                  | 0.3               | 4.8            | 2           | 5 13 1 13            | 0.02                 |
|       | 7            | 0.0                                           | 0.0                                   | 0.0               | 0.0            | 2           | 0000                 | 0.00                 |
| 7     | 8            | 0.0                                           | 0.0                                   | 1.2               | 2.1            | 3           | 0 0 5 5 (            | 0.01                 |
|       | 1            | 35.3                                          | -32.8                                 | 1.1               | 35.3           | 3           | 4 1 5 4              | 0.16                 |
| 8     | 1            | 40.4                                          | -37.9                                 | 1.3               | 40.4           | 3           |                      | 0.19                 |
|       | 9            | 0.0                                           | 0.0                                   | 1.4               | 2.4            | 3           |                      | 0.01                 |
| 9     | 10           | 0.0                                           | 0.0                                   | 3.7               | 6.5            | 3           |                      | 0.03                 |
| -     |              | <ul> <li>2 1 2 3 3 3 3 3 5 6 7 5 6</li> </ul> |                                       |                   |                | 3           |                      |                      |
| 10    | , ă          |                                               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                   |                |             |                      |                      |
| 1.0   | 17           |                                               |                                       |                   |                |             |                      |                      |
| 10    | 3<br>3<br>11 | 118.7<br>108.3                                | -121.2<br>-110.8                      | 3.7<br>3.4<br>3.4 | 121.2<br>110.8 | 3<br>3<br>3 | 4 1 2 1 6<br>4 1 2 1 | 0.03<br>0.56<br>0.51 |

## Nachweis der Rohrstöße

#### Flansch Ro 114,3x5 / 88,9x5

Außendurchmesser:

240 mm

Teilkreisdurchmesser:

180 mm

Blechdicke:

20 mm

8 Schrauben:

M 16, 10.9,  $F_V = 100 \text{ kN}$ 

Bohrungen:

 $\varnothing 18$ 

Schnittgrößen:

 $Q_d = 1,93 \text{ kN}$ 

(Kn. 4)

 $M_d = 261 \text{ kNcm}$ 

Biegespannung:

 $\sigma_d = 261 / 26,2$ 

 $= 9.96 \text{ kN/cm}^2$ 

Mittlerer Rohrradius:

 $r_{\rm in} = (8,89-0,5)/2$ 

= 4,195 cm

Mittlerer Rohrumfang:

 $u_m = 2*\prod*4,195$ 

= 26,36 cm

Anteil pro Schraube:

 $u_S = 26,36 / 8$ 

= 3,29 cm

Zugkraft pro Rohrabschnitt:

 $N_{d,R} = 9,96*3,29*0,5$ 

= 16,39 kN

Abstand Druckpunkt - Schraubenachse:

= (24-181)/2

= 3.0 cm

Abstand Schraubenachse - Rohrwandung (Mittellinie):

= 18/2 - 4,195

= 4,805 cm

Druckkraft am Flanschrand:

 $D_d = 16,39*4,805/3,0$ 

= 26,2 kN

Schraubenzug:

 $N_d = 16,39*(4,805+3,0)/3,0$ 

= 42,6 kN

Abscherkraft:

 $V_{a,d} = 1,93 / 8$ 

= 0.24 kN

Nachweis Zug:

42,6 / 114

= 0.37 < 1

Nachweis Abscheren:

0,24 / 62,8

= 0.01 < 1

Flanschbreite in Schraubenachse:  $u_F = 18*\Pi/8$ 

= 7.07 cm

Biegemoment in Schraubenachse:  $M_d = 16,39*4,805$ 

=78,7 kNcm

Erf. Plattendicke:

 $d_P = \text{sqrt} [6*78,7*1,1/(24*7,07)]$ 

 $= 1,75 \text{ cm} < \text{vorh. } d_P = 2,0 \text{ cm}$ 

0

Aus dilusse Antennentregrohr - Quertrajer V 160 4 Schracken H 16, 10.9 + ausgestärfte hopfplatten Bl. 15 drue weiteren Nachweis auskichend vope, des perinjen Lastnivaus

Auschlisse an das Golonde

lu. 10: Fxd = 7,96 LN ( Vertilal)

4 Gewindestaupe H 12, 8.8, FV = 50% = 35 KN

Enforderliche Vorspanning

Frd = (7,5t/4) + 1,06/4) / 0,15 - 67 LN < 184N

houstmutiv: Unterlajsblech für Welldahfassade Zur Laktverteilung

Verdrehsicherung der Silostutze durch Verlindung der Voleren und unteran Haltepunkte mit 98/20 x2