Multivariate Methods

- Multivariate Data
- Missing Values
- Parameter Estimation
- Multivariate Normal Distribution
- Multivariate Classification
- Discrete Features
- Multivariate Regression

Chiou-Ting Hsu, NTHU CS

Pattern Recognition (Ch5) 1

Multivariate Data (1)

- The l -dimensional feature vector
 - $-\mathbf{x} = [x_1, \dots, x_I]^T$
- Mean vector
 - $\boldsymbol{\mu} = E\{\mathbf{x}\} = [\mu_1, \dots, \mu_l]^T$ • $\mu_i = E\{x_i\}$
- Covariance
 - Between two random variables X_i and X_j
 - $\sigma_{ij} = \operatorname{Cov}[X_i, X_j] = E\{(X_i E(X_i))(X_j E(X_j))\}$ = $E(X_i X_j) - E(X_i) E(X_j)$
 - Measures the degree to which the two variables are related
 - In the range $[-\infty, \infty]$
 - · In the same units as the features

Multivariate Data (2)

- Uncorrelated
 - Two variables X_i and X_i are uncorrelated if their covariance is 0
- If two variables are independent
 - Their covariance is zero

•
$$: \sigma_{ij} = E\left\{ \left(X_i - E(X_i) \right) \left(X_j - E(X_j) \right) \right\}$$

$$= \iint \left(X_i - E(X_i) \right) \left(X_j - E(X_j) \right) p(X_i, X_j) dX_i dX_j$$

$$= \int \left(X_i - E(X_i) \right) p(X_i) dX_i \int \left(X_j - E(X_j) \right) p(X_j) dX_j = 0$$

- But the converse is not true
 - Uncorrelated does NOT imply independent!!
 - X_i and X_j may be dependent even if $\sigma_{ij} = 0$

Chiou-Ting Hsu, NTHU CS

Pattern Recognition (Ch5) 3

Multivariate Data (3)

- Correlation
 - A normalized form of covariance
 - $Corr[X_i, X_j] = \rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$
 - Ranges between -1 and +1
 - The measure responds only to linearity between features
 - One increases (or decreases), the other increases or decreases by a corresponding amount
 - If $X_j = aX_i + b$, a > 0

-
$$\operatorname{Corr}[X_i, X_j] = \operatorname{Corr}[X_i, aX_i + b] = \frac{a\sigma_i^2}{\sigma_i \times a\sigma_i} = 1$$

- If $X_j = aX_i + b$, a < 0
 - $\operatorname{Corr}[X_i, X_j] = -1$
- $Corr[X_i, X_j]$ does NOT correspond to non-linear relationships between features

Multivariate Data (4)

Figure 2.12 Several sets of (x,y) points, with the correlation coefficient of x and y for each set. Note that the correlation reflects the noisiness and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the center has a slope of 0 but in that case the correlation coefficient is undefined because the variance of Y is zero. Source: http://en.wikipedia.org/wiki/File:Correlation_examples.png

The 4 pairs of features all have the same correlation 0.816

Fig. 2.12 [Murphy]

Chiou-Ting Hsu, NTHU CS

Pattern Recognition (Ch5) 5

Multivariate Data (5)

Covariance matrix

$$- \Sigma = \text{Cov}[\mathbf{x}] = E\{(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T\} = E(\mathbf{x}\mathbf{x}^T) - \boldsymbol{\mu}\boldsymbol{\mu}^T$$

$$= \begin{bmatrix} \sigma_1^2 & \sigma_{12} \dots & \sigma_{1l} \\ \sigma_{21} & \sigma_2^2 \dots & \sigma_{2l} \\ \vdots & \ddots & \vdots \\ \sigma_{l1} & \sigma_{l2} \dots & \sigma_{l}^2 \end{bmatrix}$$

Correlation matrix

-
$$\operatorname{Corr}[\mathbf{x}] = \left(\operatorname{diag}(\mathbf{\Sigma})\right)^{-\frac{1}{2}} \mathbf{\Sigma} \left(\operatorname{diag}(\mathbf{\Sigma})\right)^{-\frac{1}{2}} = \begin{bmatrix} 1 & \rho_{12} \dots & \rho_{1l} \\ \rho_{21} & 1 \dots & \rho_{2l} \\ \vdots & \ddots & \vdots \\ \rho_{l1} & \rho_{l2} \dots & 1 \end{bmatrix}$$

Multivariate Data (6)

Examples

Chiou-Ting Hsu, NTHU CS

Pattern Recognition (Ch5) 7

Missing Values (1)

- Missing values
 - The number of available data is not the same for all features
 - Some samples have incomplete feature vectors
 - Partial responses in surveys of social sciences
 - In remote sensing, certain regions are covered by a subset of sensors
 - Omitting all incomplete feature vectors?
 - Not acceptable if there are many patterns with missing values
 - Completing the missing values (data imputation)?
 - · By replacing with
 - Zeros
 - Class mean or median (mode, for discrete features) in the training set
 - Sample mean in the test set

Missing Values (2)

- Example [Duda 01]
 - The feature x_1 is missing for a test pattern

FIGURE 2.22. Four categories have equal priors and the class-conditional distributions shown. If a test point is presented in which one feature is missing (here, x_1) and the other is measured to have value \hat{x}_2 (red dashed line), we want our classifier to classify the pattern as category ω_2 , because $p(\hat{x}_2|\omega_2)$ is the largest of the four likelihoods. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Fig. 2.22 [Duda 01]

Chiou-Ting Hsu, NTHU CS

Pattern Recognition (Ch5) 9

Missing Values (3)

- Example 11.8 [Theodoridis 09, p. 615]
 - Consider the set with missing features

•
$$X = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_5} = {\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ ? \end{bmatrix}, \begin{bmatrix} 0 \\ ? \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \end{bmatrix}}$$

If, substituting the missing values with the mean of the feature

•
$$\mathbf{x'}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $\mathbf{x'}_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- If, measuring the distance using only the available features
 - · The absolute distance

-
$$d(\mathbf{x}_1, \mathbf{x}_2) = \frac{l}{l - (\text{#missing features})} \sum_{\text{available features}} \text{distance} = \frac{2}{2 - 1} \mathbf{1} = 2$$

$$- d(\mathbf{x}_2, \mathbf{x}_3) = \frac{2}{2-1} \mathbf{1} = 2$$

$$- d(\mathbf{x}_1, \mathbf{x}_4) = \frac{2}{2 - 0} 4 = 4$$

Parameter Estimation Revisited

- Parametric model $p(\mathbf{x}|C_i) \equiv p(\mathbf{x}|C_i;\boldsymbol{\theta}_i)$
 - Maximum-likelihood estimation (MLE)
 - Maximizing the probability of obtaining the samples X observed
 - $\hat{\boldsymbol{\theta}}_{ML} = argmax \, p(X|\boldsymbol{\theta}) = argmax \prod_{k=1}^{N} p(\mathbf{x}_k|\boldsymbol{\theta})$ - $L(\boldsymbol{\theta}) \equiv \ln p(X|\boldsymbol{\theta}) = \sum_{k=1}^{N} \ln p(\mathbf{x}_k|\boldsymbol{\theta})$
 - Let $\nabla_{\theta} L \equiv \frac{\partial L(\theta)}{\partial \theta} = 0$
 - Maximum A Posteriori (MAP) estimation
 - $\hat{\boldsymbol{\theta}}_{MAP} = \underset{\boldsymbol{\theta}}{argmax} p(\boldsymbol{\theta}|X) = \underset{\boldsymbol{\theta}}{argmax} p(X|\boldsymbol{\theta})p(\boldsymbol{\theta})$

Chiou-Ting Hsu, NTHU CS

Pattern Recognition (Ch5) 11

Multivariate Normal Distribution (1)

 $\mathbf{x} \sim N(\mathbf{\mu}, \mathbf{\Sigma}), \ \mathbf{x} = [x_1, ..., x_l]^T$

$$- p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{l}{2}}\sqrt{|\Sigma|}} \exp\left(-\frac{(\mathbf{x}-\mathbf{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\mathbf{\mu})}{2}\right)$$

Fig. 5.2 [Alpaydin, 2020]

Multivariate Normal Distribution (2)

- The Gaussian Case 1: unknown μ
 - Suppose the samples are drawn from $N(\mu, \Sigma)$

•
$$L(\boldsymbol{\mu}) = \sum_{i=1}^{N} \ln p(\mathbf{x}_{i}|\boldsymbol{\mu})$$

 $= \sum_{i=1}^{N} \left\{ -\frac{1}{2} \ln \left((2\pi)^{l} |\Sigma| \right) - \frac{1}{2} (\mathbf{x}_{i} - \boldsymbol{\mu})^{T} \Sigma^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}) \right\}$
 $= -\frac{Nl}{2} \ln(2\pi) - \frac{N}{2} \ln|\Sigma| - \sum_{i=1}^{N} \left\{ \frac{1}{2} (\mathbf{x}_{i} - \boldsymbol{\mu})^{T} \Sigma^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}) \right\}$

From

$$\bullet \frac{\partial}{\partial \mu} \{ (\mathbf{x}_i - \mu)^T \Sigma^{-1} (\mathbf{x}_i - \mu) \} = \frac{\partial}{\partial y_i} \{ \mathbf{y}_i^T \Sigma^{-1} \mathbf{y}_i \} \frac{\partial y_i}{\partial \mu} = -(\Sigma^{-1} + \Sigma^{-T}) \mathbf{y}_i$$

$$= -2\Sigma^{-1} (\mathbf{x}_i - \mu)$$

We have

•
$$\nabla_{\mu}L = -\frac{1}{2}\sum_{i=1}^{N} \{-2\Sigma^{-1}(\mathbf{x}_i - \mu)\} = \Sigma^{-1}\sum_{i=1}^{N}(\mathbf{x}_i - \mu) = \mathbf{0}$$

ML estimate

$$\bullet \ \widehat{\mathbf{\mu}}_{ML} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i$$

Chiou-Ting Hsu, NTHU CS

Pattern Recognition (Ch5) 13

Multivariate Normal Distribution (3)

- The Gaussian Case 1: unknown μ
 - Suppose the unknown μ is known to be normally distributed
 - $p(\mathbf{\theta}) = p(\mathbf{\mu}) \sim N(\mathbf{\mu}_0, \mathbf{\Sigma}_0)$
 - The posterior probability

•
$$p(\mathbf{\theta}|X) = p(\mathbf{\mu}|X) = \cdots = N(\mathbf{\mu}_N, \mathbf{\Sigma}_N)$$

• $\mathbf{\mu}_N = \mathbf{\Sigma}_0 \left(\mathbf{\Sigma}_0 + \frac{1}{N}\mathbf{\Sigma}\right)^{-1} \widehat{\mathbf{\mu}}_{ML} + \frac{1}{N}\mathbf{\Sigma} \left(\mathbf{\Sigma}_0 + \frac{1}{N}\mathbf{\Sigma}\right)^{-1} \mathbf{\mu}_0$
• $\mathbf{\Sigma}_N = \mathbf{\Sigma}_0 \left(\mathbf{\Sigma}_0 + \frac{1}{N}\mathbf{\Sigma}\right)^{-1} \frac{1}{N}\mathbf{\Sigma}$
A linear combination of ML mean and the prior mean $\mathbf{\mu}_0$

MAP estimation

•
$$\widehat{\boldsymbol{\mu}}_{MAP} = \boldsymbol{\mu}_N = \boldsymbol{\Sigma}_0 \left(\boldsymbol{\Sigma}_0 + \frac{1}{N} \boldsymbol{\Sigma} \right)^{-1} \widehat{\boldsymbol{\mu}}_{ML} + \frac{1}{N} \boldsymbol{\Sigma} \left(\boldsymbol{\Sigma}_0 + \frac{1}{N} \boldsymbol{\Sigma} \right)^{-1} \boldsymbol{\mu}_0$$

- The Bayes' estimation

•
$$p(\mathbf{x}|X) = \int p(\mathbf{x}|\mathbf{\mu})p(\mathbf{\mu}|X)d\mathbf{\mu} = \cdots = N(\mathbf{\mu}_N, \mathbf{\Sigma} + \mathbf{\Sigma}_N)$$

The increased variance results from our lack of exact knowledge of μ

Multivariate Normal Distribution (4)

The Gaussian Case 1: unknown μ

The posterior $p(\mathbf{\mu}|X) = N(\mathbf{\mu}_N, \mathbf{\Sigma}_N)$ with different numbers of training samples

$$p(\mathbf{x}_i|\boldsymbol{\mu}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$\boldsymbol{\mu} = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$
$$\boldsymbol{\Sigma} = \begin{bmatrix} 0.2 & 0.1 \\ 0.1 & 0.1 \end{bmatrix}$$

 $p(\mu) \sim N(0, 0.1I)$

Figure 4.13 Illustration of Bayesian inference for the mean of a 2d Gaussian. (a) The data is generated from $\mathbf{y}_i \sim \mathcal{N}(\mathbf{x}, \mathbf{\Sigma}_y)$, where $\mathbf{x} = [0.5, 0.5]^T$ and $\mathbf{\Sigma}_y = 0.1[2, 1; 1, 1])$. We assume the sensor noise covariance $\mathbf{\Sigma}_y$ is known but \mathbf{x} is unknown. The black cross represents \mathbf{x} . (b) The prior is $p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\mathbf{0}, 0.1\mathbf{I}_2)$. (c) We show the posterior after 10 data points have been observed. Figure generated by gauss InferParamsMean2d.

Fig. 4.13 [Murphy 2012]

Chiou-Ting Hsu, NTHU CS

Pattern Recognition (Ch5) 15

 $p(\mathbf{\mu}|X)$

Multivariate Normal Distribution (5)

• The Gaussian Case 2: unknown μ and Σ

$$-L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{i=1}^{N} \ln p(\mathbf{x}_i | \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= -\frac{Nl}{2} \ln(2\pi) - \frac{N}{2} \ln|\boldsymbol{\Sigma}| - \sum_{i=1}^{N} \left\{ \frac{1}{2} (\mathbf{x}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu}) \right\}$$

- Let
$$\nabla_{\mu}L = 0$$

•
$$\Longrightarrow \widehat{\mu}_{ML} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i$$

- Let
$$\nabla_{\Sigma}L = 0$$

• Rewrite the log-likelihood term (let $\Lambda = \Sigma^{-1}$)

$$-L = const + \frac{N}{2}\ln|\Lambda| - \frac{1}{2}\sum_{i=1}^{N} tr\{\Lambda(\mathbf{x}_i - \boldsymbol{\mu})^T(\mathbf{x}_i - \boldsymbol{\mu})\}\$$

$$- \nabla_{\Lambda} L = \frac{N}{2} \Lambda^{-T} - \frac{1}{2} \sum_{i=1}^{N} (\mathbf{x}_{i} - \mathbf{\mu}) (\mathbf{x}_{i} - \mathbf{\mu})^{T} = \mathbf{0}$$

$$- \Lambda^{-T} = \Lambda^{-1} = \Sigma = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \mathbf{\mu}) (\mathbf{x}_i - \mathbf{\mu})^T$$

•
$$\Longrightarrow \hat{\Sigma}_{ML} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \widehat{\boldsymbol{\mu}}) (\mathbf{x}_i - \widehat{\boldsymbol{\mu}})^T$$

$$tr(c) = c$$

$$tr(\mathbf{A}\mathbf{B}) = tr(\mathbf{B}\mathbf{A})$$

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} = tr(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}) = tr(\mathbf{A}\mathbf{x}\mathbf{x}^{\mathsf{T}})$$

$$\frac{\partial}{\partial \mathbf{X}}\ln|\mathbf{X}| = (\mathbf{X}^{-1})^{T}$$

$$\frac{\partial}{\partial \mathbf{X}}tr(\mathbf{X}^{\mathsf{T}}\mathbf{A}) = \mathbf{A}$$

Multivariate Normal Distribution (6)

- The Gaussian Case 2: unknown μ and Σ
 - The full covariance matrix is singular if N < l
 - $\hat{\Sigma}_{ML} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i \widehat{\boldsymbol{\mu}}) (\mathbf{x}_i \widehat{\boldsymbol{\mu}})^T$
 - Strategies for preventing overfitting
 - · Use a diagonal covariance matrix for each class
 - Features are assumed conditionally independent
 - Naïve Bayes classifier
 - Force the full covariance matrix to be the same for all classes
 - Linear discriminant analysis (i.e., Case 3 in Ch3)
 - Project the data into a low dimensional subspace and fit the Gaussians there

Chiou-Ting Hsu, NTHU CS

Pattern Recognition (Ch5) 17

Multivariate Classification (1)

- Assume $p(\mathbf{x}|C_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$
 - Given the training data set $\{X_1, X_2, ..., X_K\}$
 - $g_i(\mathbf{x}) = \ln p(\mathbf{x}|C_i) + \ln P(C_i)$ $= -\frac{(\mathbf{x} \mathbf{\mu}_i)^T \mathbf{\Sigma}_i^{-1} (\mathbf{x} \mathbf{\mu}_i)}{2} \frac{1}{2} \ln |\mathbf{\Sigma}_i| + \ln P(C_i)$
 - We estimate the unknown parameters for each class separately
 - $\bullet \ \widehat{\mathbf{\mu}}_i = \frac{1}{N} \sum_{j=1}^N \mathbf{x}_j$
 - $\hat{\Sigma}_i = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i \widehat{\boldsymbol{\mu}}) (\mathbf{x}_i \widehat{\boldsymbol{\mu}})^T$
 - $\bullet \ \widehat{P}(C_i) = \frac{N_i}{N_1 + \dots + N_K}$
 - The discriminant function becomes
 - $g_i(\mathbf{x}) = -\frac{(\mathbf{x} \hat{\mathbf{\mu}}_i)^T \hat{\Sigma}_i^{-1} (\mathbf{x} \hat{\mathbf{\mu}}_i)}{2} \frac{1}{2} \ln |\hat{\Sigma}_i| + \ln \hat{P}(C_i)$

Multivariate Classification (2)

- Review of Ch3
 - Case 4 (quadratic discriminant): Σ_i = arbitrary

•
$$g_i(\mathbf{x}) = -\frac{(\mathbf{x} - \hat{\mathbf{\mu}}_i)^T \hat{\Sigma}_i^{-1} (\mathbf{x} - \hat{\mathbf{\mu}}_i)}{2} - \frac{1}{2} \ln |\hat{\Sigma}_i| + \ln \hat{P}(C_i) = \mathbf{x}^T \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^T \mathbf{x} + w_{i0}$$

Chiou-Ting Hsu, NTHU CS

Pattern Recognition (Ch5) 19

Multivariate Classification (3)

- Review of Ch3
 - Case 3 (linear discriminant): $\Sigma_i = \Sigma$

•
$$g_i(\mathbf{x}) = -\frac{(\mathbf{x} - \hat{\mathbf{\mu}}_i)^T \hat{\Sigma}^{-1} (\mathbf{x} - \hat{\mathbf{\mu}}_i)}{2} + \ln \hat{P}(C_i) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$

- Case 2 (linear discriminant): $\Sigma_i = \Sigma = diag(\sigma_1^2, \sigma_2^2, ..., \sigma_l^2)$

•
$$g_i(\mathbf{x}) = -\frac{1}{2} \sum_{j=1}^l \left(\frac{x_j - \hat{\mu}_{i,j}}{\hat{\sigma}_i} \right)^2 + \ln \hat{P}(C_i) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$

- Case 1 (linear discriminant): $\Sigma_i = \Sigma = \sigma^2 \mathbf{I}$
 - $g_i(\mathbf{x}) = -\frac{\|\mathbf{x} \widehat{\mathbf{\mu}}_i\|^2}{2\widehat{\sigma}^2} + \ln \widehat{P}(C_i) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$

Figs. 5.4-5.6 [Alpaydin, 2020]

Multivariate Classification (4)

Bayesian classification for normal distribution

Assumption	Covariance matrix	#parameters
Shared, Hyperspheric (case 1)	$\mathbf{\Sigma}_i = \mathbf{\Sigma} = \sigma^2 \mathbf{I}$	1
Shared, Axis-aligned (case 2)	$\mathbf{\Sigma}_i = \mathbf{\Sigma} \text{ with } \sigma_{ij} = 0$	l
Shared, Hyperellipsoidal (case 3)	$\Sigma_i = \Sigma$	l(l+1)/2
Different, Hyperellipsoidal (case 4)	$oldsymbol{\Sigma}_i$	Kl(l+1)/2

Table 5.1 [Alpaydin, 2020]

- Bias/variance dilemma
 - When increasing complexity (less restricted Σ)
 - Bias ↓
 - Variance ↑
 - · When assuming simple models
 - Bias ↑
 - Variance ↓

Chiou-Ting Hsu, NTHU CS

Pattern Recognition (Ch5) 21

Multivariate Classification (5)

Fig. 5.7 [Alpaydin, 2020]

- Tuning complexity
 - Depends on
 - · The data at hand
 - · The amount of data
 - Small dataset
 - Even if Σ_i are different
 - Better assume a shared Σ
 - Fewer parameters to be estimated from data of all classes

Population likelihoods and posteriors

Multivariate Classification (6)

- Regularized discriminant analysis (RDA)
 - A weighted average of three special cases (cases 1, 3, and 4)
 - $\widehat{\mathbf{\Sigma}}'_i = \alpha \sigma^2 \mathbf{I} + \beta \widehat{\mathbf{\Sigma}} + (1 \alpha \beta) \widehat{\mathbf{\Sigma}}_i$
 - α: a shrinkage parameter
 - Covariance matrix updates
 - β: a complexity parameter
 - An intermediate between linear and quadratic discriminant
 - α , β are chosen by cross-validation
 - When $\alpha = \beta = 0$
 - (case 4) quadratic classifier
 - When $\alpha = 0$, $\beta = 1$
 - (case 3) linear classifier
 - When $\alpha = 1$, $\beta = 0$
 - (case 1) linear classifier

Chiou-Ting Hsu, NTHU CS

Pattern Recognition (Ch5) 23

Discrete Features (1)

- Discrete features binary case
 - The feature vector $\mathbf{x} = [x_1, ..., x_l]^T$ and its indicator $\mathbf{y} = [y_1, ..., y_K]^T$
 - Each $x_j \in \{0,1\}$ is a Bernoulli random variable with

-
$$p_{ij} \equiv p(x_j = 1 | C_i)$$
, $y_i = \begin{cases} 1, \mathbf{x} \in C_i \\ 0, \mathbf{x} \notin C_i \end{cases}$

•
$$p(\mathbf{x}|C_i) = p(x_1, x_2, ..., x_l|C_i) = \prod_{j=1}^l p_{ij}^{x_j} (1 - p_{ij})^{(1-x_j)}$$

- Given an iid sample $X = \{(x_1, y_1), ..., (x_N, y_N)\}$
 - The ML estimate (Ch4)

$$- \hat{p}_{ij} = \frac{\sum_{m} x_{m,j} y_{m,i}}{\sum_{m} y_{m,i}}$$

- The discriminant function is linear
 - $g_i(\mathbf{x}) = \ln P(\mathbf{x}|C_i) + \ln P(C_i)$ = $\sum_{j=1}^{l} [x_j \ln \hat{p}_{ij} + (1 - x_j) \ln(1 - \hat{p}_{ij})] + \ln P(C_i)$ = $\mathbf{w}_i^T \mathbf{x} + w_{i0}$

Discrete Features (2)

- Example 2.10 (p.60 [Theodoridis 09])
 - Discrete binary feature & two-category case
 - The feature vector $\mathbf{x} = [x_1, ..., x_l]^T$ with binary attributes $x_i \in \{0,1\}$

$$- p_{1i} \equiv p(x_i = 1|C_1)$$
 and $p_{2i} \equiv p(x_i = 1|C_2)$

• Adopting Naïve Bayesian assumption (i.e., conditional independent)

-
$$p(\mathbf{x}|C_i) = \prod_{j=1}^l p_{ij}^{x_j} (1 - p_{ij})^{(1-x_j)}$$
, $i = 1,2$

- The number of required estimates is 2l (i.e. \hat{p}_{1j} and \hat{p}_{2j} , $j=1,\ldots,l$)
- · The discriminant function

$$- g(\mathbf{x}) = g_{1}(\mathbf{x}) - g_{2}(\mathbf{x}) = \sum_{j=1}^{l} \left[x_{j} \ln \frac{\hat{p}_{1j}}{\hat{p}_{2j}} + (1 - x_{j}) \ln \frac{1 - \hat{p}_{1j}}{1 - \hat{p}_{2j}} \right] + \ln \frac{P(C_{1})}{P(C_{2})}$$

$$= \mathbf{w}^{T} \mathbf{x} + w_{0}$$

$$\mathbf{w} = \left[\ln \frac{\hat{p}_{11}(1 - \hat{p}_{11})}{\hat{p}_{21}(1 - \hat{p}_{21})}, \dots, \frac{\hat{p}_{1l}(1 - \hat{p}_{1l})}{\hat{p}_{2l}(1 - \hat{p}_{2l})} \right]^{T}$$

$$\mathbf{w} = \sum_{j=1}^{l} \left[\ln \frac{1 - \hat{p}_{1j}}{1 - \hat{p}_{2j}} \right] + \ln \frac{P(C_{1})}{P(C_{2})}$$

$$\mathbf{ff} \ p_{1j} > p_{2j}, \ \text{then} \ w_{j} > 0$$

$$\Rightarrow x_{j} \ \text{contributes votes to} \ C_{1}$$

Chiou-Ting Hsu, NTHU CS

Pattern Recognition (Ch5) 25

Discrete Features (3)

- Discrete features general case
 - The feature vector $\mathbf{x} = [x_1, ..., x_l]^T$ and its indicator $\mathbf{y} = [y_1, ..., y_K]^T$
 - Each $x_j \in \{v_1, ..., v_{n_j}\}$ has n_j states
 - Define 0/1 dummy variables as

$$- z_{jk} \equiv \begin{cases} 1, & \text{if } x_j = v_k \\ 0, & \text{otherwise} \end{cases} \text{ and } \sum_{k=1}^{n_j} z_{jk} = 1$$

- Let $p_{ijk} \equiv P(z_{jk} = 1 | C_i) = P(x_i = v_k | C_i)$
- $p(\mathbf{x}|C_i) = p(x_1, x_2, ..., x_l|C_i) = \prod_{j=1}^l \prod_{k=1}^{n_j} p_{ijk}^{z_{jk}}$
- The ML estimate (Ch4)

$$- \hat{p}_{ijk} = \frac{\sum_{m} z_{m,jk} y_{m,i}}{\sum_{m} y_{m,i}}$$

- The discriminant function is
 - $g_i(\mathbf{x}) = \sum_{j=1}^{l} \sum_{k} [z_{jk} \ln \hat{p}_{ijk}] + \ln P(C_i)$

Multivariate Regression (1)

- · Multivariate regression
 - $X = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)\}, \mathbf{x}_i \in \mathbb{R}^l$
 - $\mathbf{y} = f(\mathbf{x}) + \varepsilon, \varepsilon \sim N(0, \sigma^2)$
 - To approximate the unknown $f(\mathbf{x})$ by the estimator $g(\mathbf{x}|\boldsymbol{\theta})$
 - $p(y|\mathbf{x}, \mathbf{\theta}) \sim N(y|g(\mathbf{x}|\mathbf{\theta}), \sigma^2)$
 - $L(\boldsymbol{\theta}) \equiv \ln p(X|\boldsymbol{\theta}) = \sum_{i=1}^{N} \ln p(y_i|\mathbf{x}_i, \boldsymbol{\theta})$

$$= \sum_{i=1}^{N} \ln \left(\frac{1}{(2\pi\sigma^2)^{\frac{1}{2}}} \exp \left(-\frac{\left(y_i - g(\mathbf{x}_i | \boldsymbol{\theta}) \right)^2}{2\sigma^2} \right) \right)$$
$$= -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} \left(y_i - g(\mathbf{x}_i | \boldsymbol{\theta}) \right)^2$$

- Maximizing $L(\theta)$ = minimizing the sum of squared error
 - $E(\boldsymbol{\theta}|X) = \frac{1}{2} \sum_{i=1}^{N} (y_i g(\mathbf{x}_i|\boldsymbol{\theta}))^2$

Chiou-Ting Hsu, NTHU CS

Pattern Recognition (Ch5) 27

Multivariate Regression (2)

- Multivariate linear regression
 - Assuming that $g(\mathbf{x}|\mathbf{\theta})$ is linear

•
$$g(\mathbf{x}|w_0, w_1, ..., w_l) = w_0 + w_1 x_1 + \dots + w_l x_l = \mathbf{w}^T \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}$$

- $\mathbf{x} = [x_1, x_2, ..., x_l]$

- The sum of squared error
 - $E(w_0, w_1, ..., w_l | X) = \frac{1}{2} \sum_{i=1}^{N} (y_i w_0 w_1 x_1 + \dots w_l x_l)^2$
- Let

•
$$X = \begin{bmatrix} 1 & \mathbf{x}_1^T \\ \vdots \\ 1 & \mathbf{x}_N^T \end{bmatrix}$$
 $y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$ $w = \begin{bmatrix} w_0 \\ \vdots \\ w_l \end{bmatrix}$

•
$$\frac{\partial E(w)}{\partial w} = -X^T(y - Xw) = 0$$

-
$$X^T X w = X^T y$$
 (normal equation)

$$- \widehat{w} = (X^T X)^{-1} X^T y$$

Same as in polynomial regression if we define $\mathbf{x} = [x, x^2, ..., x^l]$

We can define any nonlinear function using basis functions, e.g., $\mathbf{x} = [x, \sin(x), \exp(x^2)]$