PROJET JEU DE GO

Axel LABARRE & Vincent VILFEU

LES RÈGLES DU JEU DE GO

Le plateau de jeu est appelé le Goban, une grille de 19x19 en général

TRAVAIL DEMANDÉ

Répondre aux questions posés

Mettre en place un système de résolution de problème de Go sur un goban de 6x6

Quelle est la meilleure structure de données pour ce travail ?

DÉCOMPOSITION DU PROGRAMME

prog.c

composé de la fonction principale du projet

go.c

composé de toutes les fonctions du programme

go.h

composé des prototypes des fonctions

QUESTIONS DE L'ÉNONCÉ DU PROJET

Les questions de l'énoncé englobent les règles fondamentales du jeu de Go et nous permettent d'**initier** la programmation du système.

Voici les premières étapes de votre travail :

- 1. Très facile :
 - quel est le nombre de libertés de la pierre isolée (x,y) ?
 - quel est le nombre de libertés de la paire de pierres (x,y), (x', y') ?
 - quel est le nombre de libertés du triplet de pierres (x,y), (x', y'), (x", y") ?
 - la pierre (x,y) est-elle isolée ?
 - quel est le nombre de libertés de la pierre non isolée (x,y) ?

LES LIBERTÉS DES PIERRES

La complexité des libertés des pierres dans un tableau à deux dimensions

SAISIR DES PROBLÈMES DE GO

RÉSOUDRE DES PROBLÈMES DE GO

Problème 1

Problème 2

Problème 3

Prendre une pierre ou un groupe de pierre en Atari

Algorithme de résolution d'un problème simple de Go

Fonction de marquage Algorithme de remplissage

Marquage groupe adjacent

Marquage de liberté

Somme de Liberté == 1

Placer pierre

Somme de Liberté == 0

Elimination du groupe

```
Pierre capturée en (2,1)
Pierre capturée en (3,1)
WHITE(2) joue et prend le groupe BLACK(1) en un coup!
Problème résolu!
```

CONCLUSION