## COMP 3270 Homework Assignment 4 Seth Denney

Feel free to discuss this assignment with others; however, all work should reflect your own understanding and you should never copy another's work. One useful rule of thumb is, "would I be able to explain my answer to someone else?"

## **Problems**

Chap 22

Exercise 22.1-1 . Given an adjacency-list representation of a directed graph, how long does it take to compute the out-degree of every vertex? How long does it take to compute the in-degrees? The computation of the out-degree of a vertex of a directed graph in an adjacency list representation would consist of measuring the length of the linked list at that particular vertex's array index. This could be a linear search along the linked list, or, if there is a "size" field stored, it could be constant time for each index, resulting in O(V) time for all vertices. The time to compute the in-degree of each vertex will require a search of ALL linked lists in the adjacency list, which means that computing the in-degree of all vertices would take O(V\*E) time.

Exercise 22.2-1 Show the d and pi values that result from running breadth-first search on the directed graph of Fig 22.2(a) using vertex 3 as the source.



Exercise 22-4-1 Show the ordering of vertices produced by TOPOLOGICAL-SORT when it is run on the dag of Figure 22.8 under the assumption of Exercise 22,3,2, ie vertices are considered in alphabetical order.

|   | START FINISH |    |  |  |
|---|--------------|----|--|--|
| M | 1            | 20 |  |  |
| N | 21           | 26 |  |  |
| O | 22           | 25 |  |  |
| P | 27           | 28 |  |  |
| Q | 18           | 19 |  |  |
| R | 2            | 17 |  |  |
| S | 23           | 24 |  |  |
| T | 4            | 5  |  |  |
| U | 3            | 6  |  |  |
| V | 8            | 15 |  |  |
| W | 9            | 12 |  |  |
| X | 13           | 14 |  |  |
| Y | 7            | 16 |  |  |
| Z | 10           | 11 |  |  |

28 26 25 24 20 19 17 16 15 14 12 11 6 5 **P N O S M Q R Y V X W Z T U** 



1. Show the minimum spanning tree generated by Kruskal's algorithm on the graph above. Label each tree edge with a number indicating when it was added to the tree.



2. Show the minimum spanning tree generated by Prim's algorithm on the graph above. Label each tree edge with a number indicating when it was added to the tree.



Chap 24

Exercise 24.1-1 Run the Bellman-Ford algorithm on the directed graph of Figure 24.2, using vertex z as the source. In each pass, relax edges in the same order as in the figure and show the d and pi values after each pass. Now, change the weight of edge (z,x) to 4 and run the algorithm again using s as the source.



Exercise 24.2-1 Run DAG\_SHORTEST\_PATHS on the directed graph of Figure 24.5 using vertex r as the source.



Exercise 24.3-1 Run Dijkstra's algorithm on the digraph of Figure 24.2, using vertex s as the source and then using vertex z as the source. In the style of Figure 24.6, show the d and pi values an the vertices in the Set S after each iteration of the while loop.



Chap 25

Exercise 25.1-1 Run SLOW-ALL-PAIRS-SHORTEST-PATH on the weighted, directed graph of Figure 25.2, showing the matrices that result for each iteration of the loop. Then do the same for FASTER-ALL-PAIRS-SHORTEST-PATH.



| $\mathbf{L}^{1}$              | SLOW-A | LL-PAI | RS-SHC | RTEST- | PATH |
|-------------------------------|--------|--------|--------|--------|------|
| 0                             | inf    | inf    | inf    | -1     | inf  |
| 1                             | 0      | inf    | 2      | inf    | inf  |
| inf                           | 2      | 0      | inf    | inf    | -8   |
| -4                            | inf    | inf    | 0      | 3      | inf  |
| inf                           | 7      | inf    | inf    | 0      | inf  |
| inf                           | 5      | 10     | inf    | inf    | 0    |
| $L^2$                         |        |        |        |        |      |
| 0                             | 6      | inf    | inf    | -1     | inf  |
| -2                            | 0      | inf    | 2      | 0      | inf  |
| 3                             | -3     | 0      | 4      | inf    | -8   |
| -4                            | 10     | inf    | 0      | -5     | inf  |
| 8                             | 7      | inf    | 9      | 0      | inf  |
| 6                             | 5      | 10     | 7      | inf    | 0    |
| $L^3$                         | _      |        | _      |        |      |
| 0                             | 6      | inf    | 8      | -1     | inf  |
| -2                            | 0      | inf    | 2      | -3     | inf  |
| -2                            | -3     | 0      | -2     | 2      | -8   |
| -2<br>-4<br>5                 | 2      | inf    | 0      | -5     | inf  |
| 5                             | 7      | inf    | 9      | 0      | inf  |
| 3                             | 5      | 10     | 7      | 10     | 0    |
| $\mathbf{L}^4 = \mathbf{L}^5$ | 6      |        | 0      |        |      |
| 0                             | 6      | inf    | 8      | -1     | inf  |
| -2                            | 0      | inf    | 2      | -3     | inf  |
| -5                            | -3     | 0      | -1     | -3     | -8   |
| -5<br>-4<br>5                 | 2      | inf    | 0      | -5     | inf  |
|                               | 7      | inf    | 9      | 0      | inf  |
| 3                             | 5      | 10     | 7      | 2      | 0    |



| $L^1$       | FASTER | -ALL-P | AIRS-SH | IORTES | Т-РАТН |
|-------------|--------|--------|---------|--------|--------|
| 0           | inf    | inf    | inf     | -1     | inf    |
| 1           | 0      | inf    | 2       | inf    | inf    |
| inf         | 2      | 0      | inf     | inf    | -8     |
| -4          | inf    | inf    | 0       | 3      | inf    |
| inf         | 7      | inf    | inf     | 0      | inf    |
| inf         | 5      | 10     | inf     | inf    | 0      |
| $L^2$       |        |        |         |        |        |
| 0           | 6      | inf    | inf     | -1     | inf    |
| -2          | 0      | inf    | 2       | 0      | inf    |
| 3           | -3     | 0      | 4       | inf    | -8     |
| -4          | 10     | inf    | 0       | -5     | inf    |
| 8           | 7      | inf    | 9       | 0      | inf    |
| 6           | 5      | 10     | 7       | inf    | 0      |
| $L^4 = L^5$ |        |        |         |        |        |
| 0           | 6      | inf    | 8       | -1     | inf    |
| -2          | 0      | inf    | 2       | -3     | inf    |
| -5          | -3     | 0      | -1      | -3     | -8     |
| -4          | 2      | inf    | 0       | -5     | inf    |
| 5           | 7      | inf    | 9       | 0      | inf    |
| 3           | 5      | 10     | 7       | 2      | 0      |

Chap 26

Exercise 26.2-2 In Figure 26.1(b) what is the flow across the cut ( $\{s,v2,v4\}, \{v1,v3,t\}$ )? What is the capacity of this cut?

The flow across the cut, f = 11 + 1 + 7 + 4 - 4 = 19. The capacity of the cut, c = 16 + 4 + 7 + 4 = 31.

## Chap 34

Exercise 34.4-6 Suppose someone gives you a polynomial-time algorithm to decide formula satisfiability. Describe how to use this algorithm to find satisfying assignments in polynomial time.

A formula is satisfiable if it can be shown that there exists some combination of assignments to the boolean arguments  $x_1, \ldots, x_m$  for which the boolean formula evaluates to *true*. If a polynomial-time algorithm to decide formula satisfiability is given, then said algorithm must provide a mechanism for finding such a combination of assignments in polynomial time. If the output of the algorithm is modified so that the algorithm no longer acts as a decision algorithm (simply returning *true* or *false*), and instead returns the satisfying assignment that was found for the given boolean formula (if any), then the algorithm can be used to find satisfying assignments in polynomial time.