

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

$$c'(t) = k_{c} e(t) + \int_{0}^{t} e(t) dt + G$$

$$c'(t) = k_{c} e'(t) + \int_{0}^{t} e'(t) dt + G$$

$$c'(t) = k_{c} e'(t) + \int_{0}^{t} e'(t) dt + G$$

$$c'(t) = k_{c} e'(t) + \int_{0}^{t} e'(t) dt + G$$

$$c'(t) = k_{c} e(t) + \int_{0}^{t} c(\tau) d\tau + G + T_{0} k_{c} dt$$

$$c(t) = k_{c} e(t) + \int_{0}^{t} c(\tau) d\tau + G + T_{0} k_{c} dt$$

$$c'(t) = k_{c} e'(t) + \int_{0}^{t} c(\tau) d\tau + G + T_{0} k_{c} dt$$

$$c'(t) = k_{c} e'(t)$$

Scanned by TapScanner

Scanned by TapScanner

$$\frac{dT' + aT'}{dt} = \frac{1}{c} T_1'(s) = \frac{1}{c} T_1'(s) + k T_{sc}'(s)$$

$$T'(s) = \frac{1}{c(s+a)} T_1'(s) + \frac{k}{s+a} T_{sc}'(s)$$

$$T'(s) = \frac{1}{c} T_1'(s) + \frac{k}{s+a} T_{sc}'(s)$$

$$T'(s) = \frac{1}{c} T_1'(s) + \frac{k}{s+a} T_{sc}'(s)$$

$$T'(s) = \frac{k_2}{a + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_{sc}'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_1'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_1'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_1'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_1'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_1'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_1'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_1'(s)$$

$$T_{sc}'(s) = \frac{k_2}{c + s + 1} T_1'(s) + \frac{k}{s} T_1'(s)$$

$$T$$

Scanned by TapScanner

Scanned by TapScanner

$$y(c) = (a_1 \overline{a}(s) + c_1 p(\overline{a}(s)))$$

$$y(c) = (a_1 \overline{a}(s) + c_1 p(\overline{a}(s)))$$

$$y(c) = (a_1 \overline{a}(s) + c_1 p(\overline{a}(s)))$$

$$\overline{y}(s) = (a_2 \overline{a}(s) + c_1 p(\overline{a}(s)))$$

$$\overline{y}(s) = (a_2 \overline{a}(s) + c_1 p(\overline{a}(s)))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_1 p(\overline{a}(s)) + c_2 p(\overline{a}(s)) + c_3 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a}(s)) + c_4 p(\overline{a}(s))$$

$$\overline{y}(s) = (a_3 \overline{a}(s) + c_4 p(\overline{a$$

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Zigler Micole controller setting ke = ku/2 - only proportional PI -> Ku/2.2 , Pu/1.2 = 72 PID - +u/1.7 , Pu/2= ZI, Zp=Pu/8 1) Controller selection 2) Pajornance measure 3) Tuning of controller for the case where the analytical model (transfer function) is not available. Controlle selection (restrictions; - second order, overtamped, and deley in me assissement) PI controller : druge socillation - Duidletion is being of controller - tuning is necessary - PI controlle eléminates offset but there is large no: of oscillat - PID - That +0 - P controller - a fewer nor, og oscillations. - PID is best is all the parameters are tured. - if offset is tolerable go with proportional controller - i y oscillation so permissible - PI controlli

Scanned by TapScanner

Scanned by TapScanner

