

Extracting Subtle Anomalies from Distributed Temperature Sensing data for Dam Seepage Investigations

Emanuel de Gante, MASc Candidate, Geophysics – UNB Karl Butler, PhD, PEng, PGeo. Professor, Geophysics – UNB Kerry Macquarrie, PhD, PEng. Professor, Civil Engineering - UNB

DTS Fibre optic cable

DTS Fibre optic cable

Evolution of the shallow anomaly $\sim 38.5 \text{ m} - 35 \text{ m}$ elevation

Confirmation-Water coming out of the north wall of the SEP

Shallow anomaly magnitude* since 2014

* Difference between temperatures at 35.8 m and 34.1 m (i.e., within and immediately below the anomaly)

Appeared to be increasing before 2017 grouting.

Seemingly stable since 2018, varying with air temperature

Time

Deep anomaly zone of investigation

- 34.4 m to 21.4 m elevation
- 91 pseudonodes (every 14 cm)
- 11 years of data (some downtime)
- Unlike the shallow anomaly, the deep anomaly is much weaker than temperature variations caused by conductive heat transport from the concrete surfaces
- Methods required to emphasize and extract seepage anomalies associated with advective heat transport

Method 1 Gradient Method

- Rate of change of temperature with depth (vertical gradient).
- One anomaly located at 29 m.
- Anomaly located at 26 m.

DTS temperature data

Vertical gradient temperature data

Method 2 Estimation and removal of surface seasonality

- Calculate estimate of temperature variations due to conductive heat transport
- Subtract estimate from DTS data.
- Residual should contain advective heat transport component (concentrated seepage anomalies)

Method 2 – DBM Synthetic data set

Developed based on the one-dimensional vertical simultaneous flow of fluid and heat in the Earth (Stallman, 1965; with corrections by O'Neill, 2023), emulating conductive heat from surface defined by a seasonal sinusoid simulating earth

Method 2 - DBM Synthetic data set:

TD profiles- No anomalies Inserted

Time Series – Three anomalies Inserted

TD profiles- Three anomalies Inserted

Development of DBM - 1

Step 1
Align time series by
Cross - correlation

Development of DBM - 2

Step 2, Compute Principal Components using KL - Transform

Extract most common signal (1st PC) by KL-Transform

Development of DBM - 3

Step 3, Subtract principal components reconstructed using smoothed Scaling factor function from DTS time series with new alignment

DTS Temperature vs DBM Temperature

Synthetic Data set with three anomalies inserted

DBM data with surface seasonal component removed and anomalies preserved

Pre-Grouting (2015 – 2017)

- a) TD profiles from August 19,2015 to July 24, 2017. with a cumulative offset of 0.1 °C at 14-days intervals
- b) Represents DTS temperature TD profiles
- c) DBM processed temperature TD profiles
- d) Red (raw DTS) and Blue (DBM processed) for c) February 15, 2017 and d) September 15, 2016

Pre-Grouting (2015 – 2017)

- a) TD profiles from August 19,2015 to July 24, 2017. with a cumulative offset of 0.1 °C at 14-days intervals
- b) Represents DTS temperature TD profiles
- c) DBM processed temperature TD profiles
- d) Red (raw DTS) and Blue (DBM processed) for c) February 15, 2017 and d) September 15, 2016

Pre-Grouting (2015 – 2017)

- a) TD profiles from August 19,2015 to July 24, 2017. with a cumulative offset of 0.1 °C at 14-days intervals
- b) Represents DTS temperature TD profiles
- c) DBM processed temperature TD profiles
- d) Red (raw DTS) and Blue (DBM processed) for c) February 15, 2017 and d) September 15, 2016

Post-Grouting (2020 – 2023)

- a) TD profiles from July 8,2020 to August 8, 2023. with a cumulative offset of 0.1 °C at 14-days intervals
- b) Represents DTS temperature TD profiles
- c) DBM processed temperature TD profiles from DTS
- d) Red (raw DTS) and Blue (DBM processed) for c) April 15, 2012 and d) October 15, 2022

Post-Grouting (2020 – 2023)

- a) TD profiles from July 8,2020 to August 8, 2023. with a cumulative offset of 0.1 °C at 14-days intervals
- b) Represents DTS temperature TD profiles
- c) DBM processed temperature TD profiles from DTS
- d) Red (raw DTS) and Blue (DBM processed) for c) April 15, 2022 and d) October 15, 2022

Post-Grouting (2020 – 2023)

- a) TD profiles from July 8,2020 to August 8, 2023. with a cumulative offset of 0.1 °C at 14-days intervals
- b) Represents DTS temperature TD profiles
- c) DBM processed temperature TD profiles from DTS
- d) Red (raw DTS) and Blue (DBM processed) for c) April 15, 2022 and d) October 15, 2022

DTS headpond wall & DTS Borehole

Pink: September – December. Anomalously warm at 26 -29 m (13-16 m depth)

Blue: March – June. Anomalously cool at 26 -29 m (13-16 m depth).

It takes a significant time for headpond water temperature to impact borehole temperature. It Implies a relatively slow seepage path

Conclusions

Shallow anomaly

- 1) Anomaly present since start of monitoring in 2014
- 2) Only present from November to April
- 3) Bottom consistently at 35.1 m elevation
- 4) Top has varied over time as low as 36 m and as high as 39.5 m elevation (temporarily lowered by 2017 grouting, no long term trend evident)
- 5) Anomaly strength was reduced by 2017 grouting
- 6) Seemingly stable since 2018, varying with seasonal air temperature (with a lag)

Conclusions

Deep anomaly

Gradient Method

1) Gradient method was able to detect two anomalies at 29.3 m and 26.4 m

DBM Method

- 1) DBM algorithm removes the surface seasonality component
- 2) Able to detect the dissipation of heat injection during summer of 2015
- 3) Anomaly strength at 29.3 m
 - Dominant before grouting
 - Reduced by grouting 2017/2019 (as noted by Yun (2018))
- 4) Anomaly strength at 26.4 m
 - Very weak before grouting
 - Prominent after grouting 2017/2019
- 5) Instead of two anomalies a 3 m wide anomaly is identified

Thank you

