BEST AVAILABLE COPY

Antisense Research and Applications

Edited by

Stanley T. Crooke, M.D., Ph.D. ISIS Pharmaceuticals

Carlsbad, California
Bernard Lebleu, Ph.D.

Laboratoire Biochimie des Proteines Universite Montpellier II Montpellier, France

CRC Press
Boca Raton Ann Arbor London Tokyo

Library of Congress Cataloging-in-Publication Data

Antisense research and applications/edited by Stanley T. Crooke,

Bernard Lebleu.

p. cm. Includes bibliographical references and index.

ISBN 0-8493-4705-X

1. Antisense nucleie acids-Therapeutic use. I. Crooke,

Stanley T. II. Lebleu, Bernard.

RM666.A564A58 1993

615'.31--dc20

92-35004

CIP

This book represents information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Every reasonable effort has been made to give reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific clients, is granted by CRC Press, Inc., provided that \$.50 per page photocopied is paid directly to Copyright Clearance Center, 27 Congress Street, Salem. MA 01970 USA. The fee code for users of the Transactional Reporting Service is ISBN 0-8493-4705-X/93 \$0.00 + \$.50. The fee is subject to change without notice. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been aranged.

The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained from CRC Press for such copying.

Direct all inquiries to CRC Press, Inc., 2000 Corporate Blvd., N.W., Boca Raton, Florida 33431.

© 1993 by CRC Press, Inc.

International Standard Book Number 0-8493-4705-X

Library of Congress Card Number 92-35004

Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

lications

Designer Antisense Oligonucleotides

317

SCHEME 9. The ISIS 2'-aminolinker.

III. SUGAR MODIFICATIONS

As discussed in Section II, in post-oligonucleotide synthesis, a nucleophile such as an amino group with an appropriate linker can be introduced at the 3' or 5' end of the oligonucleotide, at the 5-position of uracil, N⁴ position of cytosine, and N⁶, N² positions of purine, as well as in the phosphodiester backbone. Each of these approaches, however, has limitations. The terminal linkers place the functional groups at the ends and thus limit recognition of a given site within the double helix. Linkers attached to the bases may interfere with base pairing and/or stacking interactions, and linkers attached to the backbone present chirality problems. At ISIS Pharmaceuticals we have developed conjugation chemistry suitable for both DNA and RNA modifications that is based on an aminolinker (2'-O-pentylamine) attached to the 2'-O-position of the sugar.

A. CONJUGATION AT THE 2' POSITION

1. Chemistry

The chemistry for constructing a phosphoramidite monomer with a 2'-aminolinker is based on alkylation reactions of adenosine developed by Guinosso and Cook. 91 The monomer, which is designed for automated DNA synthesis, is produced by alkylation of the anion resulting from NaH/DMF treatment of adenosine at 0 to 5°C with N-(5-bromopentyl) phthalimide base protection with benzoyl chloride employing transient protection of 5'- and 3'-hydroxyls followed by tritylation and phosphitylation to obtain the desired phosphoramidite.

Using this 2'-aminolinker, we have conjugated various molecules⁹² to oligonucleotides: (1) cholic acid, for uptake enhancement; (2) digoxigenin, a steroidal molecule that has hydrophobic properties that enhance uptake, and it is also a reporter molecule in a commercially available detection system; (3) biotin; (4) fluorescein, which are reported molecules to study uptake; (5) pyrene; (6) acridine intercalators; (7) aryl azides which are photoactivatable crosslinking agents; and (8) polyamines such as spermine and pentaethylenehexamine for uptake studies and also as potential cleaving molecules.

Shown below are the oligodeoxynucleotides I and II, which incorporate the 2'-O-modified adenosine (indicated as A*). The sequence belongs to the E2 region of the bovine papilloma virus-1 (BPV-1) and has demonstrated an antisense effect. The nucleoside compositions of I and II were established by HPLC analysis after the oligonucleosides had been cleaved by snake venom phosphodiesterase and calf-thymus alkaline phosphatase.

I: 5'CTGTCTCCA*TCCTCTTCACT3'
BPV sequence, single-site labeling

II: 5'CTGTCTCCA*TCCTCTTCA*CT3'
BPV, double-site labeling

eoxynecoligoa abasic
at the
Oligo);
that has
cleotide

l-O-po-2.0 to 1 group

i phoswever, int was

duplex erature results ate that agation 318

Antisense Research and Applications

SCHEME 10. Conjugations at the 2' position.

Oligonucleotides I and II were reacted with the compounds summarized in Scheme 10, each of which had a functional group reactive to an amino group. Each of the functionalities mentioned above was conjugated to the oligomers. The conjugation reactions were carried out in an aqueous buffer at pH 8 to 9 under standard conditions. The conjugation yields varied between 70 and 90%. This approach facilitates multiple conjugation; a product with multiple labels could be synthesized and purified by HPLC. In addition, we have synthesized oligonucleotides containing a phosphorothioate backbone and RNA analogs with 2'-OMe groups that incorporate our 2'-aminolinker at a specific site. These derivatives are already known to have either nuclease stability (thioates) or enhanced hybridization properties (2'-OMe derivatives). Conjugations to the 2'-aminolinker were carried out from thioates and RNA mimics as well. The 2'-aminolinker provides an additional handle for conjugating other functionalities, such as lipophilic groups to improve membrane transport properties or nucleic acid cleaving agents.

2. Biophysical Studies

a. Thermal Melt Analysis

First, the effect of the 2'-aminolinker alone was studied;⁹³ a 17-mer oligonucleotide (GGA*CCGGA*A*GGTA*CGA*G) incorporating five 2'-O-aminopentoxy modifications was synthesized and purified. On melting against DNA, a net destabilization of 6.1°C was observed which averages to -1.2°C/modification. Against RNA, at the same time, a net stabilization of 1.1°C was noted which translates to 0.22°C stabilization/modification. Similarly the ISIS 1570 oligonucleotide phosphorothioate (TGGGA*GCCA*TA*CGA*GGC)

! Applications

Designer Antisense Oligonucleotides

319

TABLE 2 Duplex Melting Temperature of the 2'Conjugates of the BPV Oligonucleotide (Against DNA)

I: 5'-CTG TCT CCA*TCC TCT TCA CT-3'
II: 5'-CTG TCT CCA*TCC TCT TCA*CT-3'
III: 5'-CTG TCT CCA TCC TCT TCA CT-3'

Oligo	Modification	T. °C	ΔT_/mod
m	Wild type	60.5	
1	2'-O-Pentyl-NH ₂ (1 mod)	58.1	-
IB	Biotin conjugate	56.4	-1.7
IC	Cholic acid conjugate	55.5	-2.6
ID	Digoxigenin conjugate	55.8	-2.3
IF	Fluorescein conjugate	55.1	-3.0
IP	Pyrone conjugate	62.6	+4.5
ſA	Actidine conjugate	58.6	+0.5
II	2'-O-Pentyl-NH ₂ (2 mod)	56.9	
IIB	Biotin conjugate	54.4	-1.3
IIC	Cholic acid conjugate	54.3	-1.3
IID	Digoxigenin conjugate	53.8	-1.6
IJF	Fluorescein conjugate	53.4	-1.8
ΠP	Pyrene conjugate	65.1	+4.1
II A	Acridine conjugate	58.1	+1.2

 T_m buffer used = 100 mM NaCl, 10 mM Na₃PO₄₁ 0.1 mM EDTA, pH 7.0.

was synthesized replacing all four adenosines with the aminolinker containing adenosine. The resultant 18-mer oligonucleotide had the same T_m as the parent thioate against the RNA complementary strand. Thus, in antisense applications, a 2'-aminolinker does not affect duplex hybridization and even offers some small stabilization.

Second, the conjugates from oligonucleotides I and II were studied (Table 2). In thermal melting studies against complementary DNA, we have observed nearly 2 to 3°C destabilization for substituents like biotin, fluorescein, digoxigenin, and cholic acid. Even large steroidal molecules exhibit only modest destabilization. The destabilization observed is less pronounced than for the base and backbone modifications mentioned earlier. Furthermore, the destabilizing effects are not additive: $\Delta T_{cc}/modification$ is less for doubly conjugated oligonucleotides than for singly modified oligonucleotides.

In the case of pyrene and acridine conjugates, enhanced duplex stability has been observed. The stabilization was significant in pyrene conjugates (4°C/modification) and marginal in the case of acridine conjugates (0.5 to 1°C/modification), although this difference may be due to different lengths of the groups involved between acridine and the aminolinker used vs. pyrene and the aminolinker (longer linker in the second case). We are pursuing NMR and other spectroscopic (fluorescence quenching) studies to confirm intercalation of these ligands in duplexes.

In the cases of pyrene and fluorescein modifications in single strand oligodeoxynucleotides, fluorescence properties were found to be additive; in single strand conjugates like the one derived from oligonucleotide II shown above, there was no fluorescence quenching of one chromophore by the other.

cheme 10, each
functionalities
ms were carried
njugation yields
jugation yields
a product with
nave synthesized
gs with 2'-OMe
nives are already
ation properties
rom thioates and
for conjugating
nort properties or

r oligonucleotide xy modifications ion of 6.1°C was same time, a net odification. Sim-TA*CGA*GGC)

^{*} Compared to the modified Oligo I or II as appropriate.

Antisense Drug Technology

Principles, Strategies, and Applications

edited by
Stanley T. Crooke
Isis Pharmaceuticals, Inc.
Carlsbad, California

MARCEL DEKKER, INC.

New York · Basel

ISBN: 0-8247-0566-1

This book is printed on acid-free paper.

Headquarters

Marcel Dekker, Inc.

270 Madison Avenue, New York, NY 10016

tel: 212-696-9000; fax: 212-685-4540

Eastern Hemisphere Distribution

Marcel Dekker AG

Hutgasse 4, Postfach 812, CH-4001 Basel, Switzerland

tel: 41-61-261-8482; fax: 41-61-261-8896

World Wide Web

hap://www.dekker.com

The publisher offers discounts on this book when ordered in bulk quantities. For more information, write to Special Sales/Professional Marketing at the headquarters address above.

Copyright © 2001 by Marcel Dekker. Inc. All Rights Reserved.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

Current printing (last digit): 10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA

Oligenucleotide Conjugates

bone of the drug reduces ceilular permeation. Conjugation of lipophilic molecules philicity dominates due to the extensive hydrogen bonding possible with the phosphate and sugar residues. This intrinsic hydrophilicity is augmented by the anionic nature of the backbone. The hydrophilic character and the anionic backis the obvious way to solve the cellular permeation problem.

(12,13). The majority of this section will concentrate on the considerable data tides to lipoproteins and, thereby, enhance cellular association and transport terol is perhaps the best characterized. It has been studied by various groups for available on cholesterol-conjugated oligonucleotides. Data available on other lithe past 11 years (11) and has been reported to enhance binding of oligonucleo-Various lipophilic molecules have been conjugated to antisense oligonucleotides and Fig. 3 shows the structures of the compounds. Among them, cholespophilic ligands will also be summarized.

Uridine-Conjugated Lipophillc Phosphoramidites and Solid Supports

ancleosides containing linkages. The nucleoside conjugates, after purification on erol was converted to the corresponding carbonate using disuccinimidyl carbonmidites and then incorporated into oligomers. Each nucleoside was then conate. The carbonate was condensed with the amines to yield the modified a silica gel column, were phosphitylated to yield the corresponding phosphora-Mancharan et al. (14,15). Derivitization of these amines (Fig. 4) with cholesteryl chloroformale yielded cholesterol carbamate derivatives. Adamantane acetic acid, eicosenoic acid, and pyrene butyric acid were converted to their pentafluormer, 5'-O-dimethoxytrityl-3'-O-(6-aminohexyl)uridine, has been described by Synthesis of 5'-O-dimethoxytrityl-2'-O-(6-aminohexyl)uridine and the 3'-isoophenol esters and condensed with these amines. 1,2-Di-O-hexadecyl-rac-glycdensed with long-chain alkylamino controlled pore glass (CPG).

Cholesterol-Conjugated ICAM-1 Antisense Oligonucleotides

phonoibioate oligonucleotide, shows antisense inhibition in cell culture with an side synthons containing cholesterol at the 2' or 3' position were synthesized and incorporated at the 5' end of the ISIS-3082 resulting in the oligonucleotidephilic conjugates. ISIS-3082 (see Table 1 for oligonucleotide sequences), a phos-IC, of 100 nM when formulated with a cationic lipid for delivery. Unidine nucleo-An antisense oligonucleoulde targeting the 3' untranslated region of mouse intercellular adhesion molecule-1 (ICAM-1) was used for characterization of lipocholesterol conjugate ISIS-8005 (14).

ISIS-8005 on ICAM-1 expression without any cationic lipid. ISIS-8005 inhibited Cell culture experiments were used to evaluate the effect of ISIS-3082 and ICAM-1 in a dose-dependent manner with an IC30 of 2.5 µM. while ISIS-3082

First-generation and second-generation chemistries to which ligands have been conjugated Figure 2

'-deoxyoligonuclectide methylphosphonale

PNA: Peptide Nucleic Acid

PAGE 16/20 * RCVD AT 7/11/2005 11:10:27 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-1/1 * DNIS:8729306 * CSID:7606033820 * DURATION (mm-ss):06-16

Manoharan

388

Figure 4 2'- and 3'-O-(6-aminohexyl) uridine derivatives.

did not show any activity, even when high concentrations of oligonucleotide were used. Furthermore, the inhibition of protein expression appears to be target specific. Neither molecule showed significant inhibition of VCAM-1 expression.

To understand the role of cholesterol in improving the function of ISIS-3082, we asked whether this molecule works merely because it is more bydrophobic than an unconjugated oligonucleotide or through specific protein-mediated (e.g., apo-e) binding and entry into cells. The answer was obtained by synthesizing and analyzing other lipophilic conjugates of ISIS-3082. Adamantane, pyrene, eicosenoic acid, and C₁₆-glyceride lipid nucleoside conjugates were synthesized and incorporated into ISIS-3082 in the same fashion as cholesterol. Similar lipophilic molecules have been conjugated to oligonucleotide and studied in an HIV system (16).

A reverse phase HPLC assay was used to measure the relative lipophilicities of these conjugates as a model for the interaction between the cell membrane and the antisense oligonucleotide. The retention time of the oligonucleotide (and

Table 1 ICAM-1 Oligonucleotides with Lipophilic Modifications

Compound	Composition
ISIS-3082	S'-Ts G s C s A s T s s C s C s C s C s A s G s G s C s C s A s C s C s A s
ISIS-9047	5'T*s G s C s A s T s C s C s C s C s A s G s G s C s C s A s C s C s A s C s C s A s T
ISIS-8005	(T* = 5'-octadecylaminothymidine) 5'-U* * G * C * A * T * C * C * C * C * A * G * G * C * C * A * C * C * A * T
88E6-SIS1	(U* = 5'-(2'-O-hexylamino-carbonyl-oxycholesterol)-uridine 5'.TsGsCsAsTsCsCsCsCsCsAsGsCsAs CsCsAsII•
	(U* = 5'-(3'-O-heatyfamino-carbonyl-oxycholesterol)-vridine

Oligonucleatide Conjugates

presumably the lipophilicity) increases with the number of carbon atoms in the pendant group. There is a linear correlation between the percentage of acclomitile needed for elution and the total number of carbons. The two compounds having the same number of carbons (pyrene and eicosenoic acid) elute at the same time, while the group having the greatest number of carbons (glyceride lipid) has the longest retention time. Thus a wide spectrum of lipophilicites was observed from the least lipophilic, unconjugated ISIS 3082, to the glyceride lipid conjugate, 1SIS 11826. In the antisense efficacy assays, without any added cationic lipid formulation, relative order of lipophilicity was not reflected in efficacy. While the cholesterol conjugate does inhibit ICAM-1 expression, other conjugates failed to inhibit ICAM-1 expression within the concentration range of 1-10 µM of oligonucleotides. The cholesterol-conjugated oligonucleotide shows a linear dose-dependent response in controlling the ICAM-1 expression. This experiment suggests that a receptor-mediated process may be operating in the case of cholesterol-conjugated oligonucleotides.

Pharmacokinetics of Cholesterol Conjugates and Other Lipophilic Conjugates

Biophysical and pharmacokinelic properties of lipophilic analogs of ISIS-3082 listed in Table I have been evaluated and reported (17). Compared to the parent compound, ISIS-3082, the three analogs (Fig. 5) with lipophilic conjugates, ISIS-9047 (5'-octadecylarnine), ISIS-8005(5'-(2'-O-hexylarnino-carbonyl-oxycholesterol)), and ISIS-9388 [3'-(3'-O-hexylarnino-carbonyl-oxycholesterol)) were used lipophilic than ISIS-3082 (three- and sevenfold, respectively, for the first two compounds as measured by reverse-phase HPLC retention times) but had similar binding affinity for complementary RNA (measured by thermal melting analysis, T_n).

Tissue distribution and half-life in mice were analyzed using radioalively labeled phosphorothioate ISIS-3082 and cholesterol and C₁₄ amine analogs. After bolus intravencous injection, the initial volumes of distribution of these more lipophilic phosphorothioate analogs, ISIS-9047 and ISIS-8005, were less and the initial clearance from plasma was slower than was that of ISIS-3082. ISIS-3082 distributes mainly to liver and kidney. Conjugation to cholesterol (ISIS-8005) or to C₁₈ amine (ISIS-9047) increased substantially the fraction of the dose accumulated by the liver. Both also had a somewhat longer retention in plasma than ISIS-3082. However, neither lipophilic conjugate had an effect on metabolite patterns in plasma, liver, or kidney compared to ISIS-3082.

As a model to relative protein binding to human serum albumin, binding constants to bovin serum albumin (BSA) were measured. Binding to serum proteins plays a key role in the pharmacokinetics of oligonucleotides and, in view of the effects of phosphorothioates on clotting and complement activation, their

\$

9047, and ISIS-8005 were coincubated confirmed the lack of salt dependency of ity, either throughout the molecule or at the 5'-terminus, increased binding at centrations, the K, was approximately 140 µM. The affinities of the lipophlic physiological salt concentrations. Thus, more lipophilic phosphorothioate-conbinding of the two analogs and the salt dependency of binding ISIS-3082 to BSA. These data and other data suggest that phosphorothioate linkages are necessary for binding to BSA under physological conditions. and that increased lipophilictaining analogs may bind to more than one type of site in BSA or more tightly toxicological properties as well. As a model for protein binding to human serum deoxynucleotides (17). Binding was salt-dependent and, at physiological salt conconjugates, ISIS-8005 and ISIS-9047, were greater at physiological salt concentrations than the affinity of ISIS-3082. Experiments in which ISIS-3082, ISISalbumin in plasma, binding constants to BSA were measued. Binding of ISIS-3082 to BSA was comparable to that observed for other phosphorothioate oligoto the phosphorothioate site.

1815 8005 (P=S)

Cholesterol at the 5'-end

of the lipophilic conjugates into the liver or whether the effects observed were pared to ISIS-3082. It is not clear whether this change is due to an active transport simply due to the changes in lipophilicity. However, there was no improvement netics of the analogs. The 5'-cholesterol adduct (ISIS-8005) and the C1s amine 302. Both also increased the proportion of dose in the liver substantially com-The differences in serum protein binding are reflected in the pharmacokiconjugate (ISIS-9047) both showed increased retention in plasma relative to ISISin distribution to central nervous system.

to metabolism significantly compared to ISIS-3082 when oligonucleotide was analyzed after extraction from liver of treated mice. However, the 3'-cholesterol Neither the 5'-cholesterol nor C13 amine modification enhanced resistance cent phosphate bond when the exonuclease enzyme makes a complex with the conjugate of ISIS 3082 (ISIS-9388) was much more stable than the 5'-conjugate. The 3'-hydroxyl group, which is involved in the nucleaphilic attack of the adjanucleic acid, is unavailable in ISIS-9388.

had an altered metabolic fate compared with the nonconjugated phosphorothioate tissues as the underivatized oligonucleotide. As a result, ISIS-9388 circulates proteins and its biodistribution (18). ISIS-9388 associated with lipoproteins and obigonucleotide ISIS-3082. The lipoprotein-associated oligonucleotide is not rapidly filtered by the kidneys and probably does not leak as rapidly in peripheral The 3'-cholesterol analog (ISIS-9388) was evaluated for its binding to lipolonger, which allows a longer exposure to its target.

In Vivo Therapeutic Efficacy of Cholesterol-Conjugated ICAM-1 Oligonucleotides Ŋ,

The greater concentration in liver was correlated with the therapeutic effect of the ISIS-8005 as measured by ICAM-1 mRNA levels in mouse liver in vivo. In

ISIS 8047 (P=S) Oligonucleoff Octodecylamine at the 5'-end

described in Table Isis lipophilic conjugates Figure 5

462

Manoharan ment of the mouse with ISIS 8005 at a dose of 10 mg/kg 24 h and 2 h prior to lipopolysaccharide-induced expression of ICAM-1 mRNA by intravenous treatpolysaccharide treatment, improved efficacy of the drug was observed presumably due to cholesterol conjugation, as indicated by mouse ICAM-1 RNA levels in the liver. At this concentration, the unmodified oligonucleotide ISIS-3082 does

Evaluation of Cholesterol-Conjugated Antisense Oligonucleotides in Other Biological Targets ø.

not have any effect.

gates (15,19), the chemistry was extended to other nucleosides (adenosine and cytosine) and antisense oligonucleotide conjugates for several disease targets Following the methods used to synthesize 2'- and 3'-cholesterol-uridine conjuwere synthesized. Synthesis of these cholesterol nucleosides was carried out by condensing cholesterol chloroformate with 2'-O-alkylamine or 3'-O-alkylamine of the appropriate nucleoside. The 2'-O-alkylamines were derived from direct alkylation procedure (20).

The 3'-cholesterol conjugated cytosine CPG was incorporated into an Ha-ras antisense oligonucleotide ISIS-13748 (the conjugate is the analog of 2'ated to determine the effect of cholesterol conjugation on RNase H activity in a cell-free assay. The cholesterol conjugate did not affect the RNase H cleavage deoxy-oligonucleotide phosphorothioate ISIS-2570). This compound was evalurates or the extent of cleavage of the target RNA (Lima and Crooke, unpublished results, Isis Pharmaceuticals).

phorothioate oligonucleotides targeted against PKC-o. and C-raf mRNAs has been reported (21). ISIS-8006, the cholesterol conjugate, was as active as the phosphorothioate oligonucleotide, ISIS-5132, in the presence of cationic lipids. Activity of cholesterol-conjugated 2'-deoxy and 2'-O-MOE gapmer phos-In cultured T24 cells, in the absence of cationic lipids, ISIS-8006 was able to inhibit C-raf kinase mRNA expression while ISIS-5132 was inactive at 5-µM concentration. In the same experiment, cholesterol-conjugated ICAM-1 antisense oligonucleotide was inactive in inhibiting C-raf kinase, supporting an antisense mechanism of action.

Table 2 were tested in A549 cells and in T24 cells at 10-µM concentration without Cholestern! analogs of an antisense oligonucleotide targeting PKC-ox have also been evaluated. ISIS-3521 is a potent, selective inhibitor of PKC-a gene expression in cell culture, has been shown to inhibit turnor growth in mice (22), and is currently in Phase III clinical triafs. Three cholesterol analogs listed in cationic lipids. The cholesterol analogs were able to reduce PKC-a mRNA levels in both cell lines while ISIS-3521 was inactive.

gonucleotide Conjugates		
gonucleotide Cor	Jugates	
	igonucleotide Cor	

\$

Human C-raf, PKC-a and H-ras Oligonucleotides and Gapmers and Their Cholesterol Conjugates **Table 2**

	Contience	Taron	Chemistry
Compound	Solucinos	1 48 801	facultano.
1515-2570	CCACACGGCGCCC	Human H-ras	2'-H/P=S
1S1S-13748	CCACACGGCGCCCC*	Human H-ras	2'-HJP=S with 3'. choles-
ISIS-5132	TCCCGCCTGTGACATGCATT	Human	$2^{-H/P}=S$
1STS-8006	·U•CCCGCCTGTGACATGCATT	Human c-raf	2'-H/P=S and 5'- choles-
ISIS-3521	GTT CTC GCT GGT DAG TIT CA	Human	Z'-H/P=S
1SIS-8007	GU*T CTC GCT GGT GAG TTT CA	Human	2'-HJP=S
1515-9520	U*GTT CTC GCT GGT GAG TTT CA	Human PKC-G	2'-HJP=S and 5'- Choles-
ISIS-12373	GTT CTC GCT GGT GAG TTT CA U*	Нитап РКС-с	z-H/P=S and 3'- Choles-
1818-9531	GUU CUC GCT GGT GA GUU UCA U	Нитал РКС-о	P=S gapmer: 2'-F in
ISIS-9533	פטט כטכ ככד קפד הא פטט טכא ט•	Human PKC-α	Bapmer, 2'.F in wings and 3'. choles-

\$

 Effect of Cholesterol Conjugation: Reports from Other Laboratories

gonucleotides has been reported (23). Multiple drug resistance (MDR) is a result phosphorothicate and 5' cholesterol-conjugated phosphorothicate antisense oliof overexpression of the P-glycoprotein drug transporter, a product of the MDR1 gene, and is a significant problem in cancer therapeutics. It was shown that 2'sage, inhibit expression of P-glycoprotein, and affect drug uptake in MDR mouse lapping the AUG start codon was effective in reducing MDR1 transcript and protein levels when used at submicromolar concentrations in conjunction with cationic lipids, whereas a scrambled control oligonucleotide (ISIS-10221) was ineffective. Substantial and specific antisense effects could also be attained with Inhibition of expression of the multidrug resistance-associated P-glycoprotein by 3T3 fibroblasts. An oligonucleotide (ISIS-5995) directed against a sequence overa 5' cholesterol conjugate of the ISIS-5995 sequence without the need for cationic deoxy phosphorothioate antisense oligonucleotides reduce levels of MDR1 mesduced MDR1 message and P-glycoprotein levels by 50-60% when used at 1-µM concentrations. In parallel, treatment with 5' cholestero! ISIS-5995 also enhanced lipids. The 5' cholesterol ISIS-5995, but the not 5' cholesterol ISIS-10221, reprotein transporter. The effectiveness of the cholesterol-conjugated ISIS-5995 appears to be due to its rapid and increased cellular uptake as compared to unconjugated oligonucleotide, as indicated in flow cytometry and confocal microscopy cellular accumulation of rhodamine 123, a welt-known substrate of the P-glycostudies.

The pharmacokinetics of cholesterol conjugated oligonucleotides with unconjugated phosphorothicate oligonucleotides in female mice has been reported also by the researchers at Genta. They also observed that conjugation of cholesterol to phosphorothicate oligonucleotides increased the plasma half-life (24). Sixty minutes after injection, the levels of 3'-cholesterol conjugates are 3.8 times higher than those of unconjugated oligonucleotide, while the levels of 5'- and 5',3'-cholesterol conjugated oligonucleotides are 7.4 times higher.

Cholesterol conjugation has also been studied by Iverson et al. (25). 5'-Cholesteryl-conjugated phosphorothioate oligodeoxymycleotides with sequence complementary to the rat CYP2B1 mRNA were evaluated in adult male Sprague-Dawley rats for their pharmacokinetic properties and ability to modulate CYP2B1 expression in vivo. After intraperitoneal administration of "S-labeled oligodeoxynucleotides, volume of distribution for the phosphorothioate was reduced to 33% for the 5'-cholesteryl-conjugate oligodeoxynucleotide and the elimination half-life was reduced 50% for the cholesteryl-modified oligodeoxynucleotide relative to unconjugated controls. Hexobarbital sleep times, a measure of CYP2B1 enzyme activity in vivo, increased nearly 30% in cholesterol oligodeoxynucleotide—treated animals.

Oligonuclectide Conjugates

Mancharan

Alefelder et al. reported the introduction of 3'- and 5'-terminal phosphoro-thioates into oligonucleotides and their postsynthetic modification with α-fbromoacetamido)-3-cholesterol and 2-(5'-nitropyridyl)-3-cholesterol disulfide to give cholesterol conjugales (26). A similar approach was used by Zhang et al. based on a phosphoramidite intermediate (27). The phosphorothioate derivatives with cholesterol at the 3'-end exhibit potent anti-HCMV activity, enhanced nuclease resistance and cellular association. An H-phosphonothioate solid-phase synthesis method facilitated the synthesis of oligonucleotide conjugates, as demonstrated by the example of attachment of 5'-cholesterol oligonucleotides to phophorodithioates (28). Acetal-mediated cholesterol conjugation has been reported by Pfleiderer's group (29). The 5'-O- or 2'-O-position of appropriately protected thymidine or uridine was subjected to acid-catalyzed reaction with cholesterylvinylether (29). The corresponding cholesteryl-acetals were derivatized to the phosphoramidites or succinates attached to polystyrene as solid support.

The effects of conjugating cholesterol to either or both ends of a phosphorothioate oligonucleotide were analyzed in terms of cellular uptake and antisense efficacy against the p75 nerve growth factor receptor (p75) in differentiated PC12 cells, which express high levels of this protein (30). The addition of a single cholesteryl group to the 5' end significantly increased cellular uptake and improved p75 mRNA down-regulation compared with the unmodified oligonucleotide. The 3'-cholesterol analog was more active still. Bis-cholesteryl (5'- and 3'-) conjugated oligonucleotide was even more potent and at 1 µM as effective as high concentrations of cycloheximide at decreasing synthesis of p75. Inhibitory effects on the multiplication of mouse hepatitis virus by cholesterol-modified oligonucleotides complementary to the leader RNA have also been reported (31).

amined with a real-time confocal laser microscopy (32). Cytosolic uptake of cholesterol conjugate was five times as rapid as that of phosphorothioate oligonucleotides and nuclear uptake of cholesterol conjugate was twice as fast as that of unmodified oligonucleotide. In this study, oligonucleotides were also labeled with 5'-fluorescein and the effect of fluorescein on uptake has not been separated from the effect of cholesterol.

Inhibition of transactivation of human immunodeficiency virus type-1 (HIV-1)-LTR by cholesterol-conjugated antisense oligonucleotides was compared to that of their unconjugated analogs in vitro (33) to study the efficiency of antisense oligonucleotides in inhibiting LTR-(HIV-1)-directed CAT expression catalyzed by tat protein. Antisense oligonucleotides modified by conjugation of cholesterol at the 3' end have a severalfold higher inhibitory response, and the inhibition by antisense oligonucleotides is sequence-specific.

In addition to effects on cellular uptake, cholesterol modulates oligonucleotide-mRNA hybrid stability via hydrophobic interactions (34). Two series of 3'-cholesterol-and/or 5'-cholesterol-conjugated oligonucleotides have been synthe-

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

refects in the images include but are not limited to the items checked:
□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.