-Artificial Neural Network-Counter Propagation Network

朝陽科技大學 資訊管理系 李麗華 教授

Introduction (1/4)

Counter Propagation Network(CPN)

- Defined by Robert Hecht-Nielsen in 1986, CPN is a network that learns a bidirectional mapping in hyperdimensional space.
- CPN learns both forward mapping (from n-space to m-space) and, if it exists, the inverse mapping (from m-space to n-space) for a set of pattern vectors.

Introduction (2/4)

- —Counter Propagation Network (CPN) is a an unsupervised winner-take-all competitive learning network.
- The learning process consists 2 phases:
 The kohonen learning (unsupervised) phase & the Grossberg learning(supervised) phase.

Introduction (3/4)

— The Architecture :

Introduction (4/4)

Input layer : $X=[X_1, X_2, \dots, X_n]$

Hidden layer: also called Cluster layer, $H=[H_1, H_2, \dots, H_n]$

Output layer: $Y=[Y_1, Y_2, \dots, Y_m]$

Weights : From Input \rightarrow Hidden: W_{ih} ,

From Hidden→Output: W_{hi}

Transfer function: uses linear type

$$f(net_j) = net_j$$

The learning Process(1/2)

The learning Process:

Phase I: (Kohonen unsupervised learning)

- (1)Computes the Euclidean distance between input vector & the weights of each hidden node.
- (2) Find the winner node with the shortest distance.
- (3) Adjust the weights that connected to the winner node in hidden layer with $\triangle W_{ih^*} = \eta_1(X_i W_{ih^*})$

Phase II: (Grossberg supervised learning)

- Some as (1)& (2)of phase I
- Let the link connected to the winner node to output node is set as 1 and the other are set to 0.
- Adjust the weights using $\triangle W_{ij} = \eta_2 \cdot \delta \cdot H_h$

The learning Process(2/2)

The recall process:

- Set up the network
- Read the trained weights.
- Input the test vector, X.
- Computes the Euclidean distance & finds the winner where the winner hidden node output 1 and the other output 0.
- Compute the weighted sum for output nodes to derive the prediction (mapping output).

The computation of CPN (1/4)

Phase I: (Kohonen unsupervised learning)

- 1. Set up the network.
- 2. Randomly assign weights, W_{ih}
- 3. Input training vector, $X=[X_1, X_2, \dots, X_n]$
- 4. Compute the Euclidean Distance to find the winner node, *H**

$$net_h = \sum_{i} (x_i - w_{ih})^2$$
 or $net_h = \sqrt{\sum_{i} (x_i - w_{ih})^2}$

$$net_{h^*} = \min_{h} [net_h]$$

$$\begin{array}{c}
1 & h = h^* \\
101 & \text{if} \\
100100 & \text{otherwise} \\
10101 &$$

The computation of CPN (2/4)

- 6. Update weights $\triangle W_{ih}^* = \eta_1 (X_1 W_{ih}^*)$ $W_{ih}^* = W_{ih}^* + \triangle W_{ih}^*$.
- 7. Repeats 3 ~ 6 until the error value is small & stable or the number of training cycle is reached.

The computation of CPN (3/4)

- Phase II: (Grossberg supervised learning)
 - 1. Input training vector
 - 2. Computes 4 & 5 of Phase I

$$net_h = \sum_{i} (x_i - w_{ih})^2$$

$$net_{h^*} = \min[net_h]$$

$$\mathsf{net}_{\mathsf{i}} = \sum \mathsf{W}_{\mathsf{h}\mathsf{i}} \cdot \mathsf{H}_{\mathsf{h}}$$

$$Y_j = net_j$$

The computation of CPN (3/4)

- 3. Computes error : $\delta_j = (T_j Y_j)$
- 4. Updates weights : \triangle W * $_{\rm hj}=~\eta_{\rm ~2}$ $\delta_{\rm ~j}$ H $_{\rm h*}$ W $_{\rm h*~j}=$ W $_{\rm h*~j}+\triangle$ W $_{\rm h*~j}$
- 5. Repeats 1 to 4 of Phase II until the error is very small & stable or the number of training cycle is reached.

The recall computation

- 1. Set up the network.
- 2. Read the trained weights, W_{ih}
- 3. Input testing vector (pattern), X=[X₁, X₂,X_n]
- Compute the Euclidean Distance to find the winner node, H*

$$net_h = \sum_i (x_i - w_{ih})^2 \longrightarrow net_{h^*} = \min_h [net_h]$$

$$H_h = \begin{cases} 1 & \text{h=h}^* \\ 0 & \text{otherwis} \end{cases}$$

$$\frac{+ \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$$

The example of CPN (1/2)

Ex: Use CPN to solve XOR problem

Randomly set up the weights of W_{ih} & W_{hj}

X_1	X_2	T_1	T_2
-1	-1	0	1
-1	1	1	0
1	-1	1	0
1,4	1	0	1

The example of CPN (2/2)

Sol: 以下僅介紹如何計算Phase I (Phase II 計算上課說明)

(1)
$$\frak{ iny X} = [-1, -1] \ T = [0, 1]$$

 $net_1 = [-1 - (-0.5)]^2 + [-1 - (-0.5)]^2 = (-0.5^2) + (-0.5^2) = 0.5$
 $net_2 = [-1 - (-0.5)]^2 + [1 - (-0.5)]^2 = (-0.5^2) + (1.5^2) = 2.5$
 $net_3 = 2.5$
 $net_4 = 4.5$

- \therefore net 1 has minimum distance and the winner is $h^* = 1$
- (2) Update weights of W_{ih*}

$$\triangle W_{11} = (0.5) [-1-(-0.5)] = -0.25$$

 $\triangle W_{21} = (0.5) [-1-(-0.5)] = -0.25$

$$W_{11} = \triangle W_{11} + W_{11} = -0.75, W_{21} = \triangle W_{21} + W_{21} = -0.75$$

10101010010110111010110