SRM Institute of Science and Technology Department of Mathematics 18MAB102T-Advanced Calculus and Complex Analysis 2021-2022 Even

Module – I: Multiple Integrals Tutorial Sheet - I

Tutoriai Sueet - 1		
S.No	Questions	Answers
Part – A [4 Marks]		
1	32	30
	Evaluate $\iint_0 xy(x+y)dxdy$	
2	Evaluate $\iint_{1}^{42} \frac{dxdy}{dx}$	$(\log 2)^2$
	21 Xy	
3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\pi}{}$
		8
4	$\pi \ a(1+\cos\theta)$	$3\pi a^2$
	Evaluate $\int_{0}^{\infty} \int_{0}^{r} r dr d\theta$	4
5	$3\sqrt{4-y}$	2 4-x2
	Change the order of integration $\int_0^\infty \int_1^\infty (x+y)dxdy$	$\int_{0}^{\infty} \int_{0}^{\infty} (x+y)dydx$
Part – B [6 Marks]		
6	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dxdy}{1+x^2+y^2}$	$\frac{\pi}{4}\log(1+\sqrt{2})$
7	$\frac{\pi}{2}$ a	a^3
	Evaluate $\int_{\theta} \int_{a(1-\cos\theta)} r^2 dr d\theta$	
8	Change the order of integration $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^2 + y^2} dx dy$ and hence	$\frac{\pi}{4}a$
	evaluate it	
9	$b \frac{a}{b} \sqrt{b^2 - y^2}$	$\frac{a^2b^2}{8}$
	Change the order of integration $\int_0^{\infty} \int_0^{\infty} xydxdy$ and hence evaluate	8
	it	
10	Change the order of integration and hence find the value of	$\frac{1}{2}\log 2$
	$\int_{0}^{1} \int_{x}^{1} \frac{x}{x^2 + y^2} dx dy$	2