

David Schmidig
Supervised by
Patrik Schmuck
Marco Karrer
Margarita Chli

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping **Trajectory** Sensor State Input **Estimation** Map IMU **Triangulation** Camera Optimization Landmarks

Simultaneous Localization and Mapping

Trajectory

Map

SLAM for Dynamic Environments Challenges

What is reliable for state estimation

SLAM for Dynamic Environments Challenges

- What is reliable for state estimation
- Consistent movement of dynamic objects (no outlier removal)

SLAM for Dynamic Environments Challenges

- What is reliable for state estimation
- Consistent movement of dynamic objects (no outlier removal)

SLAM for Dynamic Environments Challenges

- What is reliable for state estimation
- Consistent movement of dynamic objects (no outlier removal)
- Inconsistent object type

SLAM for Dynamic Environments Challenges

- What is reliable for state estimation
- Consistent movement of dynamic objects (no outlier removal)
- Inconsistent object type
- System initialization

SLAM for Dynamic Environments Challenges

- What is reliable for state estimation
- Consistent movement of dynamic objects (no outlier removal)
- Inconsistent object type
- System initialization
- Realtime

SLAM for Dynamic Environments Possibilities

- More robust SLAM systems

SLAM for Dynamic Environments Possibilities

- More robust SLAM systems
- Autonomous robots in dynamic environments

Existing Work

- CoSLAM,
- D. Zou and P.Tan, 2013
 - Multiple cameras needed
- Mobile Robot SLAM in Dynamic Environments,
- D. Wolf and G. S. Sukhatme, 2005
 - 2D Scene
- Robust vSLAM in Dynamic Scenes,
- P. F. Alcantarilla et al., 2011
 - AR setup, No Quantitative Evaluation
- Robust Monocular SLAM in Dynamic Environemnts, Wei Tan et al., 2013
 - AR setup, No Quantitative Evaluation

Approach General Idea

Approach General Idea

Approach General Idea

Approach

General Idea non-binary classifier

Approach Datasets

Mixed Reality, EUROC

Vicon-Room, ETHZ

Bahnhofstrasse, Zurich

Approach Algorithm Design

Approach Algorithm Design

frames

frames

Approach Algorithm Design

Approach Algorithm Design

Approach Algorithm Design

Approach Algorithm Design

$$W_t(W_{t-1}, e_t) = \frac{1}{2}W_{t-1} + \frac{1}{2}F(e_t)$$

$$W_t(W_{t-1}, e_t) = \frac{1}{2}W_{t-1} + \frac{1}{2}F(e_t)$$

$$W_t(W_{t-1}, e_t) = \frac{1}{2}W_{t-1} + \frac{1}{2}F(e_t)$$

$$0 \le F(e_t) \le 1$$

$$e_t = \frac{\hat{e}_t}{e_{max}}$$
 Threshold

Tracking Based Feature Matching

- VINS-Mono

Descriptor Based Feature Matching

- OKVIS

Experiments & Results VINS-Mono

Experiments & Results VINS-Mono

Experiments & Results VINS-Mono

VINS-Mono

VINS-Mono

VINS-Mono

Experiments & Results OKVIS

Experiments & Results OKVIS

Experiments & Results OKVIS

Experiments & Results Benchmarks

Conclusion

This Projects proposes a simple solution to deal with dynamic objects in a SLAM system that...

- ... also works under high occlusion by dynamic objects
- ... is computational cheap
- ... works especially well in a "following scenario" and with texture-rich objects

There are also other methods to prevent dynamic objects to influence the state estimation, like OKVIS does.

Further Work

- Reprojection Error Threshold
 - Initialization with dynamic objects
 - Adaptive threshold based on IMU
 - Adaptive threshold based on number of features available

- OKVIS / Descriptor Based Feature Matching Systems
 - Robust cluster movement prediction

SLAM for Dynamic Environments

Thank You

SLAM for Dynamic Environments

Questions?

