BTLT 4 – SYNCHRONIZATION AND DEADLOCK

1. Semaphore s12 = 0, s23 = 0, s34 = 0, s45 = 0

```
Client {
                                      Shopping {
1-makeOrder();
                                        Down(s12);
Up(s12);
                                        2-receiveOrder();
                                        2-requireAdditionalInformation();
Down(s23);
3-provideRequiredInformation();
                                        Up(23);
Up(s34);
                                        Down(s34);
Down(s45);
                                        4-verifyReceivedInformation();
                                        4-deliverProduct();
5-receiveProduct();
                                        Up(s45);
```

2. Semaphore sH=2, sO=1, s=0;

```
P1 {
                         P2 {
                                                   P3 {
Down(sO);
                           Down(sH);
                                                     Down(s);
create1Oxygen();
                           create1Hydrogen();
                                                     Down(s);
                                                     Down(s);
Up(s);
                           Up(s);
                                                     create1H2o();
                                                     Up(sO);
                                                     Up(sH);
                                                     Up(sH);
```

- 3. Trường họp xấu nhất mỗi tiến trình sở hữu 2 resource: 2(resource) x 2(processes) =
 4 → Deadlock
- 4. 3 x 1 = m → có deadlock → m tối thiểu 3 + 1 = 4 → ko deadlock
- 5. a. $n = 6 \rightarrow deadlock$; b. $n 1 = 5 \rightarrow ko deadlock$
- 6. $2(P_1) + o(P_2) + 1(P_3) + 1(P_4) = 4 + 1 = n$ \Rightarrow ko deadlock
- 7. Consider the following snapshot of a system.

	Allocation				Max					Need					
	A	В	C	D	E	A	В	C	D	E	A	В	C	D	E
P1	1	3	1	3	2	4	5	2	3	2	3	2	1	0	0
P2	2	0	0	3	1	3	2	3	4	2	1	2	3	1	1
P3	4	1	0	0	0	4	1	1	1	2	0	0	1	1	2
P4	0	O	0	1	1	1	2	1	2	2	1	2	1	1	1
P5	1	2	3	0	0	2	2	3	1	1	1	0	0	1	1

Operating System Course

	A	vailab	le		
A	В	C	D	E	
<mark>1</mark>	2	2	2	<mark>1</mark>	
2	4	5	3	2	P4, P5: ok
8	5	5	6	3	P2, P3: ok
					P4, P5, P3, P2, P1
<mark>O</mark>	O	1	<mark>2</mark>	1	d.==> no-safe

- a. Fill in the matrix Need.
- b. Is the system in a safe state Safe? Explain your answer. P4, P5, P2, P3, P1
- c. If P1 requests for (1, 2, 3, 4, 5), can the request be granted? Explain your answer. Ko vì tài nguyên hiện tại ko đủ.
- d. If P1 requests for (1, 2, 1, 0, 0), can the request be granted? Explain your answer. Tài nguyên thoả mãn → Thử cấp phát nếu tìm thấy một chuỗi an toàn thì OK.