BINOMIAL EXPANSION For expanding brackets with high exponents From the form: (a+b)h Introduction: One common method of expanding brackets is using PASCAL'S TRIANGLE 1+1=2 : Start on (x+y) * Pascals triangle works by adding the above two number together each time. * the rows go with the exponents of the brackets you want to expand, starting with (x+y). * Pascal's triangle tells us about the coefficients of each term in the expanded form

Expand using pascal's triangle:

ANSWER:

The exponent is 3; therefore we use row (Lof the triangle (row 1 is 0)

row 4: 1 3 3

STEPS:

(oefficients =?

a of each term =? I from form
b of each term =? (a+b)^n
final expantion =?

ANSWER (using steps)

(coefficients =?

our coefficients are 1331

(2) a of each term =?

the powers of a go in descending order, starting with n from the brocket (a+b)n in this example n = 3

 $q: X^3 \times X^2 \times X$

The powers of b go in ascending order and end on a from the bracket (a+b)

b: :(2y) (2y) (2y) (2y) (2y) 3

final expansion =?

for the final expantion, each term has a constant roefficient, and an a value, and a b value.

We times these together each time.

then the terms are added in the final expansion.

Term 1 Term 2 Term 4

 $(1)(x)^{3}(2y)^{2}+(3)(x)^{2}(2y)^{2}+(3)(x)^{3}(2y)^{2}+(1)(x)^{6}(2y)^{3}$

 $(x+2y)^3$

 $= x^{3} + 3x^{2}(2y) + 3x(4y^{2}) + (2y)^{3}$

 $= x^3 + 6x^2y + 12xy^2 + 8y^3$

NOTE: this may seem complicated at first but it gets easy really quickly with practice.

A QUICKER METHOD FOR FINDING THE COEFFICIENT

Cr 15 read as 'n choose r.

You your coefficient without Pascal's amazing

about ncr: D this formula will work if your calculator does not have ncr option

Dn! is n factorial

eq 3! = 3×2×1

using her in binomial expansion:

EXAMPLE 2: What is the coefficient of the 3rd term when you expand (a+b)4?

ANSWER: ncr 4 the position of the term minus 1 (given) : 3-1 : r=2

 $\frac{1}{2} \cdot \frac{4c_2}{2!(4-2)!} = \frac{4!}{\text{stick } 4c_2 \text{ into}}$ your calculator. = 6

À QUICK METHOD FOR FINDING EACH TERM IN THE BINOMIAL EXPANSION

To find a term, use this: (I call this the
Any Termformula)

Binomial exponsion Any Termformula

ncran-rbn

Dtaken from
(a+b)h

also known as the general term

of the term minus 1

So: if we use the Any Termformula and apply it to the entire expansion, we have a formula for the Binomial expansion in full, which looks like this:

(9+b) = ncran-rbr+ ncran-rbr+...+ ncran-rbr

where the number of terms will be n+1

on is a positive whole

most textbooks use this long thing:

Number

 $(x+b)^n = q^n + {n \choose r} q^{n-1}b + {n \choose r} q^{n-2}b^2 + ... + b^n$

both work.

but

NOTE THAT (n) = ncr

	BINOMIAL EXPANSION: TYPES OF QUESTIONS
	BINOMIAL EXPANSION: TYPES OF QUESTIONS the coefficient of finding a Specific termin the expansion (see Example 2 above) Finding the term independent of x (constant term)
U) (a) tinding a specific reimin the expansion
	(SEL EXAMPLE 2 above)
	tinding the term independent of oc (constant
	1 1 1/1/1
	expanding the binomial
	,
-	a) finding the coefficient of a Specific X Janvier
<u></u>	(see example 3 below)
	finding the coefficient of a specific schungian (see example 3 below) finding a random unknown in the original
	2
	binomial, eg: (x+qx) Dq is an unknown.
/	C: 1 a cul lai amaigl
(Find n of the binomial
	This lovachet austines
	5) Two bracket questions.
	a) when ris not given
	<u> </u>
	b) finding an unknown q/P etc
	Diagnoid cali ati
6	Binomial estimation questions
	Binomial estimation questions (applying the expansion to approximate stuff)
	Stuff)

finding a Specific termin the expansion (see EXAMPLE 2 above)

EXAMPLE 3 -D (When ris not given)

tind the coefficient of x3 in the following

 $(25c+4)^{8}$ expansion.

ANSWER:

STEPS: (1) n=? r=? a=? b=?

Sub in what you have to AnyTermFormula

T = ?

Lo notice we don't have r yet,

findr

4 sub rinto Any TeimFormula

solve and answer the question.

N = 8 r = ? a = 2x b = 4

8cr x (2x)8-rx (4)r

(3) h = ?

fromquetion 8cr × 28 × 2-r × x 8 × x-r × 4r

 $\chi^{3} = \chi^{8} \cdot \chi^{-1}$

this is what we need

to find r

D this says ' what rgives the coefficient of x^3

$$98c_{5}\times(2x)^{3}\times(4)^{5}$$

: 458752 is the coefficient

EXAMPLE 4

Give the constant term for the following binomial:
$$(2x+3)^3$$

ANSWER:

$$0 = 3 = 2xb = 3$$

$$3c_{n} \times (2x)^{3-r} \times (3)^{r}$$

$$2 \chi^{\circ} = \chi^{3} \times \chi^{-r}$$

$$0 = 3 - r$$

$$c = 3$$

$$(3)^{3}$$
 $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{2}$ $_{3}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{7}$ $_$

(2)	expandin	ng the	binomia	, (9	
	•	σ					
	•						
	EXAMPLE	S					
				3.1			
	Expand the following: (x+5)						
		•	0				
	ANSWER:						
	STEP	S: (I)	find coe	fficients	with Mcr		
						t de creases	
			Find all	b's (a's exponent	nt increases	
		4 V	11116 com	pleted ex	pansion and	SIMPLITY	
	1 T ₁	TZ	T ₃	T ₄	Ts		
	40	40	И С	4 6	4ce	those	
	0	1	2	3	7	/ 3 steps	
) .	1	1	١		/ can be	
(2)	x4	X	X	Ĭ.	χ /	done at	
	E 0	<u>-1</u>	<i>(</i>)	2	- U	once.	
(3)	5	2,	5	5	S		
			2 , 1,	_	. 2		
(4)	40x450	+ 4C1X	5 + 40	2 X2 S2 +	4c3x153+	441x654	
						9	
	1x41+	4x35	+ 6x225	+ 420 12	S + 1 × 1	× 625	

 $x^4 + 20x^3 + 150x^2 + 500x + 625$

1 Jinding the coefficient of a Specific x

(See EXAMPLE 3 above)

15 not given

finding a random unknown in the original

binomial, eg: (x+qx) = Dq, is an unknown.

EXAMPLE 6

The coefficient of z3 is equal to 15 in the binomial expansion of

(1+kx)10 where kisa constant.

Find the value of k.

ANSWER:

STEPS: 1) q=? b=?r=?n=?

2) Sub known values into Any Termformula

3) use x's to find r

4) $15x^3 = x^3$ term and solve.

9=1 b = kx r=? n=10

10c x (1) 10-rx (kx)

 $r = x^3$

 $\frac{10c_3 \times (1)^7 \times (kx)^3}{10c_3 \times k^3 \times x^3 = 15x^3} = 15x^3$ $10c_3 \times k^3 \times x^3 = 15$

 $k = \frac{1}{10003}$

(5) Two bracket questions.

(a) when ris not given

(reneval note for two bracket questions:

* Expand both brackets

(if the exponent is 1, n=1, then the

bracket is already expanded)

** For the final onswer, multiply the answers

from each bracket together

* Only find terms that are needed if it does not ask you to fully expand the binomial.

EXAMPLE 7

tind the independent term of the expansion of the following: $(2x+7)^8(4x+3)^3$

STEPS: for both brackets:

Write what you know into AnyTermformula

or for independent term xo = x term to solve for r

3) sub r's

times the two answers together for final answer.

ANSWER: (2x+7)8

$$n = 8 \ a = 2xb = 7$$

$$(4x+3)^3$$

n=3 a = 4x b=7

$$2 x^{8-r} = x^{0}$$

$$\chi^3 - r = \chi^6$$

$$x^8 \times x^{-r} = x^0$$

$$x - r = 0$$

$$r = 3$$

$$3$$
 $(1x)^{3-3}$ $\times 3^3$

$$= 3^{3}$$

$$7^8 \times 3^3 = 155649627$$

EXAMPLE 8

Find the term in x and x2 in the following expansion:

$$(4-x)(2-4x)^6$$

STEPS! (1) Check which bracket(s) need to be expanded

For two bracket questions, the final answer will be multiplied, therefore to be safe, checkfor all terms in x up to the highest power asked for eg. x°, x', x² for x².

x' = x tums

z= xterms

to solve for r in each case

(or by inspection if possible)

5) S4b r's to get terms

6) multiply for final answer.

ANSWER:

$$0$$
 $(4-x)$

 $(2-42)^{6}$

nueds to be expanded

already expanded

2) for x2 need x0, x1, x2

$$\gamma^{\circ} = \gamma^{r}$$

$$\therefore \chi' = \chi'$$

$$\therefore \chi^2 = \chi^{\gamma}$$

$$2 = r$$

$$\chi^{\circ}: {}^{\circ}_{CO} \times (2)^{6-\circ} \times (-4\times)^{\circ}$$

$$= | \times 2^{6} \times |$$

$$x^{1}$$
: $(2)^{6-1} \times (-4x)^{1}$

$$= -768x$$

$$S_{C_1} \times (x)^{S-1} \times \left(-\frac{2}{x}\right)^1$$

 $T_2: r=1$

$$=5\times x^4\times -\frac{2}{x}$$

$$= -10x^3$$

$$S_{c_2} \times (x)^{s-2} \times \left(-\frac{2}{x}\right)^2$$

$$= 10 \times \chi^3 \times \frac{4}{\chi^2}$$

$$\frac{10 \times 4 x^3}{x^2}$$

$$1.1 \times 10^{5} - 10x^{3} + 40x$$

- 5 STEPS: 1) use the previous expansion (check it works)
 2 multiply the brackets to find terms in x

$$(x^{5} - 10x^{3} + 40z) (4+\frac{1}{2c^{2}})$$

$$(x^{5}-10x^{3}+40x)(4+x^{-2})$$

$$2 - 10x^3 \times x^{-2} + 40xx4$$

$$= -10x + 160x$$

5) Two bracket questions. b) finding an unknown q/P etc

EXAMPLE 10

tind the value of k for which there is no term in x2 in the expansion of

 $(1+kx)(2-x)^6$

ANSWER:

STEPS: for 'notern in x2', find the x2, then equal to zero

- (1) Expand first 3 terms of second bracket
- 1 times brackets to find x2 terms
- 3) let x^2 terms = $0x^2$ and solve for k

$$T_1: {}^{6}C_0 \times (2)^{6-0} \times (-\infty)^0 = 1 \times 2^6 \times 1 = 64$$

$$T_2$$
: $6c_1 \times (2)^{6-1} \times (-2)^1 = 6 \times 2^5 \times -x = -192 \times$

$$T_3: {}^{6}C_2 \times (2)^{6-2} \times (-x)^2 = 15 \times 2^4 \times 2^2 = 240x^2$$

$$(64 - 192x + 240x^2)$$

$$\frac{240x^2 \times 1 + (-192x \times kx)}{240x^2 - 192kx^2} = 0x^2}{240 - 192k} = 0$$

$$240 - 192k$$

 $k = 1.25$

(

Binomial estimation questions (applying the expansion to approximate Stuff)

EXAMPLE 11

Find the first four terms of the binomial expansion $(1-\frac{x}{4})^{10}$

1 Use your expansion to estimate the value of 0.9750, giving your answer to 4 decimal places.

ANSWER:

(a) $T_1: | \partial_c \times 1 \times (-\frac{\chi}{4})^c = 1$ $T_2: | \partial_c \times 1 \times (-\frac{\chi}{4})^c = -\frac{\chi}{4} \times 10 = -\frac{16}{4} \times 10$ $T_3: | \partial_c \times 1 \times (-\frac{\chi}{4})^2 = 45 \times 1 \times \frac{\chi^2}{16} = \frac{45}{16} \times 10$ $T_4: | \partial_c \times 1 \times (-\frac{\chi}{4})^3 = | 20 \times 1 \times -\frac{\chi^3}{64} = -\frac{120}{64} \times 10$ $T_4: | \partial_c \times 1 \times (-\frac{\chi}{4})^3 = | 20 \times 1 \times -\frac{\chi^3}{64} = -\frac{120}{64} \times 10$ $T_4: | \partial_c \times 1 \times (-\frac{\chi}{4})^3 = | 20 \times 1 \times -\frac{\chi^3}{64} = -\frac{120}{64} \times 10$

STEPS: 1) for estimation, let the original given bracket equal the given value and solve for x

2) sub the answer of x into the expanded binomial from question (a)

(1) let
$$(1-\frac{x}{4})^{10} = 0.975^{10}$$

$$3c = -(0.975 - 1) \times 4$$

$$3C = 10 = 0.1$$

$$1 - 2.5x + 2.8|25x^2 - |.875x^3$$