

	TATION PAGE	BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
Appendix VV	- and a second	_
Hydrographic	and ecological effec	ts TTE OF REPORT & PERIOD COVERED
of enlargement of the Chesa	peake and Delaware Ca	na Appendix IV.
Benthos of Delegates De	laware Waters	App. 1971-72
in and Near Cans	D Caral.	6. PERFORMING ORG. REPORT NUMBER
Author(*) Taylor, Malcom	7	8. CONTRACT OR GRANT NUMBER(*)
Hall. William	(15	5
Smith, Ronal	<u> </u>	DACW61-71-C-8662
PERFORMING ORGANIZATION NAME AND		TO. PROGRAM ELEMENT, PROJECT, TASK
Dept. of Biological Sciences	s	AKEN & WORK UNIT NUMBERS
College of Marine Studies Lewes, Del. 19958	/	
. CONTROLLING OFFICE NAME AND ADD	DRESS	12- REPORT DATE
		// Sep####73
U.S. Army Corps of Engineers Customs House, 2nd & Chestno Philadelphia, Pa, 19106	s Philadelphia Distri ut Sts,	Ct JAMBER OF PAGES
4. MONITORING AGENCY NAME & ADDRES	S(II different from Controlling Offic	
	12/52	
	17) 276.	Unclassified
		15a. DECLASSIFICATION/DOWNGRADING
B. DISTRIBUTION STATEMENT (of this Rep	port)	
For public release; distrib	ution unlimited	
	1/ Final rep	t. 1971-1972
7. DISTRIBUTION STATEMENT (of the abat	act entered in Black 20, if differen	from Report)
		· 25mulai
(/O Malcolm H./Taylo	or, William R./Hall,	TRELLEN
Ronal W./Smith,	Lanny M./Katz	12 1979
8. SUPPLEME Franklin C./Daik		14 550
	The same and the s	MEGELL
9. KEY WORDS (Continue on reverse side if r	necessary and identify by block and	nber)
Chesapeake and DelawareCanal		
cnesapeake and Delawarecana. Benthic communities		
Fishes		
0. ABSTRACT (Continue on reverse side if n		
This report presented the re 25 stations in the Del, port Patterns of distribution wit effects of the enlargement o	tion of the C & D Can thin the study area w	ere identified. Possible
		/ \
		407 036 Hay

DD 1 JAN 73 1473 EDITION OF FROV 65 IS OBSOLETE

	REPORT DOCUMENTATION PAGE
A TOMOR THE USE OF DOOR WHITE THE P	The state of the s
	7.8. Army Corps of Engineers Whilede Sphin District occour lones, 2nd & Chescont Sts.
	CHILD STUDY OF STUDY OF STREET THE PROPERTY OF STREET AND STREET A
	eartor years and a second of the second of t
	ANTER YEATHER AND A SERVICE OF AN ARTER TO SERVICE AND ARTER AND A
	PARTOR YEATHBARE THE VALUE OF A SHEET OF THE STATE OF THE
	AND THE STATE OF A SECRETARY NOTES AND A SECRETARY NOTES AND AND A SECRETARY NOTES AND A
	AND THE STATE OF A STATE OF THE SECOND STATE OF THE STATE
	CHANGE AND A COLUMN TO COMMING THE AND AND ADDRESS OF THE ADDRESS
	earen yearnige de comment de comm
	ALL THE SERVICE OF A SERVICE THAT HE HAS BEEN AND AN AREA OF THE PROPERTY OF T
	Commission of the second of th
	ALL THE STATE OF A SERVICE STATE AND ASSESS OF THE SERVICE STATE OF A SERVICE OF A SERVICE STATE OF A SERVICE OF A
	A SECTION OF A SERVICE SAME ASSESS OF THE SERVICE SAME SAME SAME SAME SAME SAME SAME SAM
	ALL THE STATE OF A SERVICE STATE AND ASSESS OF THE SERVICE STATE OF A SERVICE OF A SERVICE STATE OF A SERVICE OF A

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

C & D CANAL ECOLOGICAL SURVEY

Biological Survey of the Canal and its Approaches

- Quarterly Benthic Survey -

Final Report

Appendix IV - Delaware Benthos

Malcolm H. Taylor William R. Hall Ronal W. Smith Lanny M. Katz Franklin C. Daiber Victor Lotrich

Department of Biological Sciences

University of Delaware
Newark, Delaware 19711

College of Marine Studies
University of Delaware
Lewes, Delaware 19958

Delaware re 19958

September 1973

Approved for public release; distribution unlimited

Table of Contents

Pa	ge
ist of illustrations	11
cknowledgementi	ii
bstract	iv
ethods	.1.
esults & Discussion	. 3
ummary	11
eferences Cited	13
igure	14
ables	15

Accessi	on For		Z
NTIS G DDC TAB Uncomou Justifi		1	
By	bution/		
	-bility	Codes	_
Dist	Avail au specia	al	
a			
1			

List of Illustrations

Illust. No.	<u>Title</u> Pa	ge
Figure 1	Benthos sampling stations in Delaware	14
Table I	Benthic study field operations personnel	15
Table II	Comparison of 0.1 m ² Petersen and Van-Veen grabs (December 1972)	16
Table III	Invertebrates sampled in Delaware end of C & D Canal system	17
Table IV	Quarterly totals for grab samples	18
Table V	Quarterly totals in detritus-sledge collection (1972)	19
Table VI	Total benthic invertebrates per year in grabs at representative stations	20
Table VII	Description of sediment types at benthic stations in the Delaware study area	21.
Table VIII	Dry weight biomass at selected stations in the Delaware part of the C & D Canal system	22
Table IX - XVI	Summary benthic data - March 1971 - December 1972	23
Table XVII -XIX	Summary benthic data - June - December 1972- dredge	
Table XX	Summary benthic data - December 1972 - grab comparison	42
Table XXI	Benthic Station description for C & D Canal Survey .	43

ACKNOWLEDGEMENT

This field study and the Fish Survey described in Appendix J required the support of many individuals other than the personnel directly involved in the collection of data. The authors gratefully acknowledge the efforts of the administrative staff of the College of Marine Studies, particularly Cheryll Hopkins and Art Hanby of the Lewes Field Station. Special recognition is also due the members of the Wolverine crew who, by participating beyond the requirements of their jobs, became integral members of the research team. Mr. Wilbert Hocker built or supervised construction of much of the specialized equipment used in this study.

Preparation of this report and the preceding status reports was made easier by the efforts of Ann Taylor who did the illustrations, and the following CMS secretaries: Patty Bradford, Anna LeCates, Doris Mitchell and Marybeth Sparpaglione.

Significant contributions in data processing and statistical analysis were made by Art Olsen of the Biology Department, University of Delaware.

Mr. Joseph Phillips of the Philadelphia District, Corps of Engineers, provided essential liaison and background information.

Abstract

Twenty-five stations in the Delaware portion of the C & D Canal system were sampled between March 1971 and December 1972. Both grab and dredge samples were collected for four stations during 1972.

More than 50,000 invertebrates of 23 species were collected and identified. The dominant organism in grab and dredge samples, as well as in fish stomachs, was <u>Gammarus daiberi</u>, <u>Garveia franciscana</u>, <u>Limnodrilus sp.</u>, <u>Neomysis americana</u>, <u>Crangon septemspinosa</u>, <u>Cyathura polita</u> and <u>Chiridotea almyra</u> were also abundant.

Patterns of distribution within the study area seemed to be associated with water chemistry parameters and substrate.

Possible effects of enlargement of the C & D Canal are discussed.

Methods

Benthic invertebrates were sampled quarterly between March 1971 and December 1972 at 15 stations in the Delaware River approaches and the eastern half of the C & D Canal proper (Figure 1). An additional 10 stations were sampled in the first year of the study. Canal stations were located near the center of the channel, while river stations were usually on the 18 ft. contour at the edge of the channel and located by triangulation from shore land marks plus radar fixes (Table XXI).

The individuals involved in field operations are listed in Table I. Three replicate samples were taken at each station from the University of Delaware's R.V. Wolverine, a 52 ft. research vessel. A subsample for sediment size analysis was usually taken from one of the replicates. The sediment analyses will be described in Part B of this appendix.

Sampling was carried out with a $0.1m^2$ Van Veen type grab for the last five quarters of the study. A $0.1m^2$ Petersen grab was used for the first three collections because a Van Veen grab was not available. When this instrument was obtained, it was found necessary to modify it by the addition of 50 lbs. of lead to the top of the grab bucket. A large door was cut in the top to facilitate sediment sampling and reduce shock-wave scattering of animals (Wigley, 1967).

Epifaunal organisms were sampled with biological dredges on several occasions. A Menzies trawl (100cm X 10cm opening, X 300cm long) was tested in September and December 1971. A smaller rectangular biological dredge (42.5 X 24.5 X 43cm) was also used in December 1971.

In June 1972 a Detritus-Sledge built to the design of Ockelmann (1964) was tested. This device was about twice the size of Ockelmann's and carried a 50cm X 20cm X 100cm bag. The wide runners on this sledge reduced digging in soft substrates and gave a satisfactory sampling of the epifauna. The sledge was used at 4 stations in the last three sampling periods of this project to supplement the regular infaunal sampling schedule.

Salinity, dissolved oxygen, water temperature, and turbidity were measured at each station. The techniques used are described in Appendix VII.

Dry weight biomass was calculated for samples from Stations 2, 7, 11, and 19 for all eight quarters of the study. Samples preserved in alcohol were dried in an oven at 70°C to constant weight. Weights were checked at 12 and 24 hours. Covered aluminum dishes were used for drying the samples.

Identification of organisms was based on a number of sources (Smith, 1964; Edmondson, 1959; Pennak, 1953; Watling and Maurer, 1973).

Results & Discussion

Eight quarterly collections were made in the Delaware portion of the C & D Canal study area between March 1971 and December 1972. The combined catch in grabs and epifaunal dredges total 23 species which are listed in Table III. About half of these organisms were caught very infrequently, averaging less than two per quarterly collection.

The dominant organism in these samples, in numbers, frequency of occurrence, and biomass, was the amphipod <u>Gammarus daiberi</u>
(Table III). This species was only recently described (Bousfield, 1969), as separate from <u>Gammarus fasciatus</u>, a common fresh water form. Gammarids are epifaunal organisms living in organic debris and vegetation over a variety of substrates.

Fish stomach analyses were carried out on 340 fish of various species. Grab totals are the summation of eight quarters of collections with a total of 459 samples of $0.1m^2$ each. The sledge samples represent three collections at each of four stations totaling $1,000m^2$. If both samples were quantitative, a twenty-fold difference would be expected. Since the dredge was frequently filled with sediment when retrieved, it may have sampled only a fraction of the area covered. Interpretation of data collected in this fashion is limited to qualitative comparisons, and the grab samples are, therefore, better estimators of population density.

The second most abundant invertebrate was the hydroid Garveia franciscana. This organism was found in colonies attached to rock or other hard substrate. It would, therefore, be inefficiently

sampled with a bottom grab, and estimates of its abundance are qualitative at best. Substrate materials on which <u>Garveia</u> was found were densely covered, usually with five to ten colonies per cm². It is to be noted that this organism was not found in fish stomachs, as were the other common invertebrates. <u>Gammarus</u> and <u>Garveia</u> dominated both grab and dredge samples, together comprising 65% and 88.9% of the respective totals.

The third-ranking species in terms of abundance was the tubificid oligochaete <u>Limnodrilus</u> sp. This organism occurred in large
numbers at stations 9-11 (Tables IV & V). Tubificid oliogochaetes
are indicators of suboptimal water quality when they are dominant
and other species are eliminated (Aston, 1973). <u>Limnodrilus</u> accounted for approximately 9% of organisms taken in grab samples,
but only 2.9% of dredge totals. This discrepancy may be explained
by the fact that this worm is primarily a burrower and probably
would be picked up in a dredge only when bottom material was
scooped up. Its poor representation in fish stomachs may also be
due to its burrowing behavior.

The two isopods, Cyathura and Chiridotea, accounted respectively for 6.0% and 8.2% of grab samples and appeared in dredge samples and fish stomachs as well. Scolecolepides viridis, a polychaete worm, made up another 5.7% of the total grab collection, but was not a significant contributor to dredge or fish stomach samples. These three species together with Gammarus, Garveia, and Limnodrilus account for more than 90% of the organisms taken in grabs during the study. These can be considered the dominant members of the benthic

community of the Delaware portion of the Canal system. Addition of the two, shrimp-like crustaceans, <u>Crangon</u> and <u>Neomysis</u>, from the dredge rankings and the blue crab which was abundant in fish trawls, completes the list of numerically important macroscopic invertebrates.

Two demersal crustaceans were more frequently found in fish stomachs than abundant infaunal organisms such as Limnodrilus. Neomysis americana, a mysid shrimp, and Crangon septemspinosa, a decapod, were respectively second and third in abundance in fish stomachs. Neomysis was third in abundance in dredge samples, but neither shrimp was common in grabs. Since both are efficient swimmers, they would be expected to escape the grab. Crangon is found in the water column as well as near the bottom and was sampled more efficiently by the fish than by either sampling device. Neomysis is also a strong swimmer but is less active in daylight hours than Crangon. Both of these animals occurred in large numbers only in the September samples. This pronounced seasonal cycle is supported by the incidental capture of Crangon in fish trawls only during the fall. It is worthy of note that these relatively mobile invertebrate species show seasonal changes in abundance similar to those seen in most of the fish species studied.

Seasonal cycles in numbers of benthic organisms were less well defined. Numbers of animals in grab samples were lower in March than in other quarters, but otherwise highly variable. Gammarus, Chiridotea almyra, Corophium lacustre, and Limnodrilus were most abundant in the summer, while Cyathura polita showed peak populations during colder months. The environmental periodicities to which these fluctuations

were entrained were similar to those shown in the Delaware fish survey (Appendix VII). Temperatures ranged from near zero in winter to 27°C in mid-summer. Salinity was quite variable but tended to be highest in late summer (range 0.1 - 10°/00). Dissolved oxygen, being an inverse function of both salinity and temperature, dropped in summer. Concentrations in the 2-3 mg/l range were not unusual. The physical data collected in conjunction with the benthic survey are shown in Tables IX - XVI, which summarizes the individual quarterly collections.

Rangia cuneata shells comprised another 2% of the grab collection, but only six living clams were captured in the entire study. Since most of the shells were collected in the Canal proper, it is hypothesized that the shells are washing through from the upper Chesapeake Bay, where a viable population exists (Appendix III). The amphipod, Corophium lacustre, also accounted for about 2% of individuals in grab samples and might be considered of marginal significance in the ecology of the area.

Comparison of grab totals for 1971 and 1972 (Table IV), suggests a significant increase in numbers of organisms in the second year of the study. The average number of organisms per station in 1972 was 137.6 as compared to 69.2 in 1971 (Table IV), but the difference is attributable to the large number of <u>Garveia</u> in the June 1972 collection. It was mentioned previously that these hydroids are distributed irregularly, because they require hard substrate. Of the 3072 collected in June 1972, 2885 were on rocks in the sample from a single station, number 15, which is in a rocky area east of Pea Patch Island. This

sample also contained over 1000 <u>Gammarus</u>, many of which were in association with the hydroids. If, as frequently happens, the grab had failed to pick up the rocks, the collection would have been reduced by about 4000 animals, and the average per station in June would have been about 150 instead of 369.2. Extending this hypothetical calculation to the yearly total, yielded an average for 1972 of 70.9 animals per station as compared to 69.2 in 1971. Since our observations of the distribution of <u>Garveia</u> support the chance occurrence of isolated populations of high density, it seems reasonable to conclude that this extremely large sample was not representative of the overall population. Thus, the apparent increase in number of benthic invertebrates in the Canal area was a sampling artifact produced by the non-random distribution of Garveia.

Grouping of stations by geographic location brought out some differences in the species makeup of benthic populations in representative parts of the study area (Table VI). Stations 1-3 were in the Canal proper; stations 9, 11, 12 north of the Canal near the Pea Patch Island jetty; and 17, 19, 21 south of the Canal near Reedy Island. There were no significant differences in the total numbers of organisms, but individual species were distributed in consistent patterns throughout the two-year study.

Garveia franciscana appeared to be less abundant in the Canal proper than in the Delaware River approaches, presumably because the necessary hard substrate was scarce in the Canal proper. The isopod Cyathura polita was also relatively rare in the Canal, but common at representative stations both north and south of the Canal. This is a

burrowing organism which might be expected to be most successful in fine sediments. Distribution of sediment types in the study area was considered as a potential source of variability in benthic populations. Description of sediment types at bottom sampling stations is presented in Table VII, and additional detail will be found in Part B of this appendix. In general, the Delaware portion of the Canal had a well sorted medium to fine sand substrate prior to dredging. This has been altered by siltation at station 2 and 3, with the change correlating well with the times of dredging.

The dominant benthic species in the Canal proper were the polychaete Scolecolepidus viridis, the isopod Chiridotea almyra and the amphipod Gammarus daiberi. All are characteristic of sandy crustaceans and in this study was more limited in distribution. Gammarus, on the other hand being an epifaunal organism is probably less limited by substrate. Chiridotea was also common at sandy stations in the river such as stations 12 and 17 in June 1971 (Table X). The empty valves of Rangia cuneata which are thought to wash through the Canal from its western end, were concentrated in the Canal proper and also to the south of the Canal. This is presumably a function of current movement rather than substrate. Relatively few Rangia shells were found in the area west of Pea Patch Island which dye studies have shown to receive flow from the Canal when flood tides coincide in the two bodies of water.

The area north of the Canal was distinctive in being dominated by the oligochaete, <u>Limnodrilus</u> sp. This worm can thrive in heavy sulfurous silts with low oxygen concentrations. Much of the bottom

west of Pea Patch Island was of this type. Grab samples contained oily black silt which had a strong hydrogen sulfide odor. Clay and sand were relatively minor constituents. <u>Limnodrilus</u> occurred only rarely south of the Canal although suitable substrate was available. Possibly the slightly higher average salinity limited its invasion of this area.

Stations to the south of the Canal were dominated by silty substrate with the exception of #17 and #21 which were characterized by moderately well sorted fine to medium sand. Both of these were included in the group of stations representing the area south of the Canal, and may bias the results in favor of organisms associated with sandy substrates.

The organisms associated with this area (Table VI) were Corophium lacustre and Rhithropanopeus harrisi. Corophium is a tube-dwelling amphipod found in brackish waters (Brown, 1971) and Rhithropanopeus is a euryhaline decapod. It is likely that salinity rather than substrate is the most important factor in the localization of these two species south of the Canal.

Biomass values were obtained for four selected stations throughout the two year study (Table VIII). Variation between weights amounted to several orders of magnitude as was the case for the numbers of animals per sample. Replicate grabs totaling $0.3 \text{m}^2/\text{station}$ were extrapolated to 1.0m^2 for purposes of comparison with data from other sources. These values ranged from 0.023 to 1.265 g/m^2 .

Station #7 west of Pea Patch Island was most productive based on a quarterly average. Gammarus and Limnodrilus were the dominant

organisms in these samples as in most of those collected north of the Canal. The Canal biomass average was only 0.038 g/m² which could be an underestimate since stations #2 produced fewer organisms than others in the Canal. Lack of biomass in the Canal proper is also probably due to lack of substrate variation and high current velocities.

Summary

The invertebrate populations in the Delaware part of the Canal system were dominated by the same eight species throughout the two year study. Gammarus daiberi, Garveia franciscana, Limnodrilus sp., Chiridotea almyra, Cyathura polita and Scolecolepides viridis each accounted for more than 5% of the organisms collected in grab samples. Neomysis americana and Crangon septemspinosa were rare in grabs, but abundant in dredge collections. All of the above, with the exception of Garveia, were significant in the diets of local fish, as evidenced by their presence in stomachs examined during the study.

Although variation between samples was large, it was possible to document patterns in the distribution of the more abundant species.

Garveia was always associated with hard substrate such as wood or stones and seemed to be less abundant in the Canal proper than at River stations, possibly because frequent dredging prevents accumulation of suitable substrate.

If the siltation observed at Canal stations (Part B of this appendix) persists, it is possible that the present benthic species will be replaced by a community of animals which is better adapted to fine substrates. Cyathura polita and Limnodrilus are potential invaders. It is reasonable to assume that any permanent change in the water quality of the area resulting from the Canal enlargement, would be limited to a slight drop in salinity. Since most of the species now present are able to tolerate fresh water, one would expect only a few brackish forms such as Rhithropanopeus and Corophium to be affected, and overall impact of the salinity drop would be minor.

Examination of fish stomach contents and invertebrate biomass data supports the conclusion that the Delaware end of the Canal is at present relatively unproductive and serves primarily as a highway for transfer of mobile fish species, and their eggs and larvae between the Chesapeake Bay and the Delaware River. Of the species which utilize the Canal, the white perch and catfish should be most sensitive to changes in the invertebrate populations, since they depend on invertebrates as a source of food, and remain within the Canal system year round. It is uncertain what changes in sedimentation will occur in the first few years after completion of the enlargement, but reduced dredging frequency might permit expansion of the Canal's benthic community. This would increase the probability of the Canal supporting a significant resident fish population.

References Cited

- Aston, R. J. 1973. Tubificids and water quality: A review. Environ. Pollut. 5:1-10.
- Birkett, L. 1958. A basis for comparing grabs. J. Cons. Int. Explor. Mer. 22:289-92.
- Bousfied, E. L. 1969. New records of Gammarus (Crustacea: Amphipoda) from the Middle Atlantic Region. Chesapeake Science 10:1-17.
- Brown, Alison. 1971. Ecology of fresh water. Harvard University Press, Cambridge, Mass.
- Edmondson, W. T. Ed. 1959. Fresh-water biology, 2 Ed. Wiley, New York.
- Ockelmann, K. W. 1964. An improved detritus sledge for collecting meiobenthos. Ophelia 1 (2):217-22.
- Pennak, R. W. 1953. Fresh-water invertebrates of the United States. Ronald Press Co., New York.
- Smith, R. I. 1964. Keys to marine invertebrates of the Woods Hole Region. Marine Biological Laboratory, Woods Hole, Mass.
- Watling, L. and D. Maurer. 1973. Guide to macroscopic estuarine and marine invertebrates of the Delaware Bay Region. College of Marine Studies, University of Delaware, Newark, Delaware.
- Wigley, R. L. 1967. Comparative efficiencies of the Van Veen and Smith-McIntyre grab samplers as revealed by motion pictures. Ecology 48(1):168-9.

Table I - Benthic Study Field Operations Personnel

1

NAME	TITLE	Responsibility
Malcolm H. Taylor, Ph.D.	Research Associate	Field Coordinator
William R. Hall, M.S.	Biologist	Identification and Enumeration of Organisms
Ronal W. Smith, M.S.	Resident Biologist	Field Operations
Lenny M. Katz	Graduate Assistant	Field Operations
Neal Parker	Graduate Assistant	Field Operations
Milton W. Cooper	Boat Captain	Vessel Operations
W. F. Carlsten	Utilities Mechanic	Vessel Operations
David Matthews	Boat Engineer	Vessel Operations

Table II - Comparison of 0.1 m Petersen and Van-Veen Grabs (Dec. 1972)

Station #		2		7		12	To	tal
Grab Type Bottom Material Grab (% Full) Species	Pet. Sand 100	Van V. Silt 100	Pet. Silt 70%	Van V. Sil¥	Pet. sand 100%	Van V. sandy silty 85	Pet.	Van V
Garveia franciscana					10		10	0
Scolecolepides viridis		2		20	6	13	6	35
Rangia cuneata						1	0	1
Chiridotea almyra		2		8	3	2	3	12
Cyathura polita			4		4	5	8	5
Corophium lacustre			4				4	0
Gammarus daiberi	1 .	6	11	8			1.2	14
Rhithropanopeus harrisi			2				2	0
Limnédrilus sp.	9	1		2			9	3
Callinectes sapidus			1				1	0
Total	10	11	22	38	23	21	55	70

Table III - Invertebrates Sampled in Delaware End of C & D Canal System.

	Totl ^I in Grabs	Rank- Grab Sampl.	Cym.	Totl. Sledge	Rank- Sledge Sampl	Cum %	Tetl. Fish Stom.	Rank- Stom. Samp.	Cum.
Hydrozoa									
Garveia franciscana	4591	2	65.0	9159	2	88.9			
Nematoda	4391	-	03.0	9139	2	00.9			
	8			•			12	9	
Unidentified	0			0			12	9	
Hirudinea	,								
Helobdella stagnalis	6			2					
Oligochaeta									
Limedrilus sp.	1314	3	73.9	1099	4	95.8	14	8	
Polychaeta									
Scolecolepides viridis	835	6	93.8	20				1	
Nereis succinea	8			3				At the	
Cirripedia									
Balanus balanoides	37			1	1000		5	10	MALL TO
Chthamalus fragilis	1			0					
Isopoda									
Cyathura polita	888	5	88.1	222	8	99.0	26	6	
Chiridotea almyra	1210	4	82.1	404	5	96.9	22	7	
Amphipoda									
Monoculodes edwardsi	4			221	9	99.6			
Gammarus daiberi	4969	1	33.8	25,00			3477	1	88.7
Corophium lacustre	272	8	33.0	80	10	99.8	27	5	00.7
Mysidacea Tacustre	2/2	0		00	1.0	33.0	-	,	
	71	10	97.4	1530	3	93.0	165	2	92.9
Neomysis americana	/1	10	97.4	1530	3	93.0	103	2	32.5
Decapoda	8			267		97.8	00	3	95.4
Crangon septemspinosa				367	6	97.8	98	3	95.4
Palaemonetes sp.	1			7					
Rhithropanopeus harrisi	171	9	97.0	225	7	98.5	3		
Callinectes sapidus				1					
Insecta (Larvae)									
Cryptochironomus sp.	5			0			69	4	
Chaoborus sp.	1								
Pelecypoda									
Rangia cuneata (valves)	286	7	95.8	7 +					
Anadara ovalis	3			30 Tivi	ng				
Modiolus sp.	2			0					
Ectoprocta									
Amathia vidovici	17	12		0					
TOTAL NO. 14	,707			38,384			3919		
No. of Samples	153			12			340		
Avg. No./Samples	96.1			3198.7			11.5		

 Grab totals are for 15-25 stations sampled in 1971 and 1972 as summarized in Table V.

2. Sledge totals are for 4 stations sampled three times in 1972 as summarized in Table V.

3. Fish stomach totals are for 340 stomachs of 6 species as summarized in Table IX - XVII of Appendix J."

Table IV - Quarterly Totals for Grab Samples

		1971		certy io			1972				Grand
	Mar	June	Sept	Dec	Total	Mar	June	Sept	Dec	Total	Total
G. franciscana	10	26	102	736	874	120	3072	11	514	3717	4591
Nematode	6				6					0	6
H. stagnalis	1			1	2	2	2			4	6
Limnodrilus sp.	139	189	182	86	596	78	506	95	39	718	1314
S. viridis	197	55	25	41	318	17.	177	198	125	517	235
N. succinea	2	4	1	1	8	0	0	0		0	8 .
B. balanoides		4			4		1		32	33	37
C. fragilis		1			1					0	1
C. polita	207	147	62	200	616	78	90	35	69	272	888
C. almyra	44	236	388	51	791	4	185	266	36	491	1210
M. edwardsi					0	2	2			4	4
G. daiberi	12	728	887	1229	2856	12	140	79	619	2113	4969
C. lacustre	9	9	91	61	126	13	7	81	1	102	272
N. americana	5	5	5	1	16		1	42	2	45	71
C. septemspinosa	2		1		3			5		5	8
Palaemonetes sp.			0		0		1			1	1
R. harrisi	16	17	18	39	90	17	26	21	17	81	171
Insect larvae	4			1	5		2			2	7
R. cuneata (valves)	37	34	32	34	1,37	47	61	33	8	149	286
A. ovalis	2	0	0	0	2	0	0	0	1	1	3
Modiolus sp.				1	1		1			1	2
A. vidovici	5	7	1	3	16	0	1	0	0	1	17
Total Organisms	698	1462	1795	2485	6440	390	5538	856	1463	8257	
No. Stations	23	24	24	22	93	15	15	15	15	60	1376
avg/station(0.3m2)	30.3	60.9	74.8	113.0	69.2	26.0	369.	57.7	97:5	137.6	1
est. organisms/m ²	101.	203.	249.3	376.7		86.7	1230	7 192	3 32	.0	
		1									
								7			
	1	1	1			•	1	1			

Table V - Quarterly Totals in Detritus - Sledge Collections 1972

				100			India v - dustrerly torsis in Defrices - Steams Cottechions		3	1	•	71 67				
	01	tath	n #2,			Statie	1 4 uc	station #11 Station #, 19	CO -	tath	14 0	1	-	State	# wo	19
Species	June	Sept	Sec	June Sept Dec Total June Sept Dec	June	Sept	Dec	Tote	June	Sept	Dec	Tote	III.	Sept	9	ote
G. franciscana						20		20	25	80	000	4000 4083	12	2000	35	5056
H. stagnalis									~			7				
Limodrilus sp.	9			6			6	3	15	1000	1	1022		r		11.
A. viridis		-	92	=					-	1	_	7	7	_	4	7
N. succinea													3			3
B. belanoides											_	_				
	9	7		7	53		6	38	57	23	97	126	39	9	9	51
C. almyra	4	s	2	24	324		2	329	^	19	7	28	1	-	15	23
M. edwardsi									н	220		221				
G. daiberi	531	56	93	650	3300		175 363	3838 16100 1166 107 17373170 363	1610	116	10	173	3170		607	3140
C. lacustre					7			-1			16	16	62		_	63
N. americana		328		328		100		100		101		701		107		107
C. septemspinosa						20		20		255		255		62		62
Palaemonetes SP.													7			7
R. harrisi					6	-	8	13	4	8	2	17	185 28		12	225
C. sapidus										_		_		•		
R. cuneata											12	12				
Total/Station/quarter	\$43	362	118		3663	346 383	383		1625 4196	405	196		2496	2496 5935	089	
Total/Station				1013				4392				2386				6016
										_						

-20-

Table VI - TOTAL BENTHIC INVERTEBRATES PER YEAR IN GRABS AT REPRESENTATIVE STATIONS

										,
Station Numbers	(1-3)	9.11.12	17.19.21	(1-3)	1972	17.19.21	Mean of All	Ind	Individual Me	Means 117 10 21
Location	Canal	North	South	Cana 1	North	South	Station + S.D.	Canal	North	South
	•	,			:					,
Garvera Iranciscana	,	5	149	21	111	105	72.0+60.8	29.0	0.08	127.0
Nereis succinea	-	6	4	0	0	0		0.5	1.5	2.0
Scolecolepidos vividis	123	97	54	243	K	134	99.6+85.7	183	22	76
Rangia cumeata	25	•	38	62	01	53	37.2+23.9	28	80	45.5
Chirodotea almyra	173	82	111	235	144	נו	137.0+61.0	504	113	76
Cyathura polita	9	93	93	&	ድ	54	55.5740.2	7.0	86.0	73.5
Corophium lacustre	•	0	47	7	1	77	21.0+30.5	3.5	0.5	59
Gammarus daibert	3	378	195	176	79	215	182.0+116.0	120	221	205
Rhithropanopeus harrisi	0		14	7	-1	30	8.0+12.0	1.0	1.0	17.0
	0	74	-	2	0	0	1	1.0	1.0	0.5
Anadara ovalis	0	-	0	0	7	0		0.	1.0	0
Limodrilus sp.	4	265	80	2	624	7	127.2+201.4	4.5	372	5.0
Neomysis americana	0	7	7	0	0	0	•	0	11.0	1.0
Crangon septempinosa	0	0	-	0	0	7		0	0	1.5
Helobdella stagnalis	•	0	0	0	7	0		0	1.0	•
Balanus sp.	0	0	0	-	0	0		0.5	0	•
Total	427	847	724	811	932	741				
							+			-

Mean of three groups of stations over two years + Standard Deviation. Means of two yearly totals for each group of stations. - 4

Table VII - DESCRIPTION OF SEDIMENT TYPES AT BENTHIC STATIONS IN THE DELAWARE STUDY AREA

STATION		
1	Well sorted fine sand	(generally)
2	Well sorted medium sand	(before dredging)
	Poorly sorted silt	(after dredging)
3	Well sorted medium sand	(before dredging)
	Poorly sorted silt	(after dredging)
4	Well sorted medium sand	
6	Moderately well sorted fine silt	
7	Poorly sorted fine silt and clay	
8	Poorly sorted fine sand and silt	
9	Moderately well sorted silt	
10	Well sorted very fine sand with t	race of silt
11	Poorly sorted silt	
12	Well sorted medium to coarse sand	i
13	Well sorted fine silt	
14	Poorly sorted silt and very fine	sand
15	Extremely variable	
	Predominantly poorly sorted silt	
16	Moderately well sorted coarse sil	t
17	Moderately well sorted fine to me	dium sand
18	Very poorly sorted fine silt and	clay
19	Poorly sorted silt	
20	Poorly sorted fine silt and clay	
21	Moderately well sorted medium sar	nd

Table VIII - DRY WEIGHT BIOMASS AT SELECTED STATIONS IN THE DELAWARE PART OF THE C & D CANAL SYSTEM.

	Biomass	/Station (g/0.3m	²)	
STATION #	2 (Canal)	7 (3 M1.North)	11 (5 Mf.North)	19 (3 M1. South)
March 1971	0.021	0.326	0.003	0.138
1972	0.002	0.027	0.002	0.233
Average (1)	0.012	0.177	0.013	0.185
Average/m ²	0.040	0.590	0.043	0.616
June 1971	0.016	0.065	0.119	0.046
1972	0.002	0.347	0.062	0.425
Average	0.009 ·	0.206	0.091	0.236
Average/m ²	0.023	0.686	0.303	0.789
Sept.1971	0.027	0.173	0.100	0.067
1972	0.001	0.587	0.025	0.144
Average	0.014	0.380	0.066	0.106
Average/m	0.047	1.265	0.220	0.353
Dec. 1971	0.004	0.639	0.055	0.215
1972	0.022	0.029	0.033	0.012
Average	0.013	0.334	0.044	0.114
Average/m ²	0.043	1.112	0.147	0.380
(2) 2 Average/quarter/m	0.038	0.913	0.178	0.535

^(1.) Averages per m^2 were extrapolated from $0.3m^2$ data. (2.) Mean of average per m^2 for each station

				1		1		1						
	21	4/1	13:45	flood	6.9	0.266	5.79		26cm	100%	detritus		, 244 H	0.7
	12	3/30	15:25	slack		0.911	6.50			%06	sand sebbles		1 7 7 11	21
1	=					0.385	6.14				Jack gudrit		1 2 i 1 2 1 4 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	29
971	10	3/30	13:40		6.7	0.603	6.43			100%	black black in mud & it		2 2 33 33	6
- Summary Benthic Data - March & April 1971	6	3/30	12:55	flood	9.9	0.420	6.585			100%	S. detr			2
terch &	80	3/30	11:25	flood	6.5	0.5035 0.420	6.585			15%	1ack mud		Ю	971
te -	1	3/30	10:20		6.5	0.327	4.87			97%	Black b		1 133	4
thic Da	9	4/1	11:15	ebb	9.9	0.527	5.70		22cm	30%	black cfay		66	5
ary Ben	4	4/1	08:50	flood	6.5	1.134	3.86		16cm	62%	coarse		. 26 2	17
1	3	3/31	14:30	flood						67%	sand gravel y clay		H 4	vn
Table IX	2	3/31	16:18	ebb	6.3	1.352	6.34		24cm	23%	Cel		1 15 2	19
12		3/31	16:35	ebb	6.4	1.351	5.325		17.cm	23%	-		id 16 57 16 16 16 16 16 16 16 16 16 16 16 16 16	62
	Station No.	Date	Time	Tide	Water Temp(°C)	Salinity(⁰ /00)	Dissolved 0, (m3/2)	•	Succht Disc (cm.)	Grab (%Full)	Soft Com	Species	Correta franciscada Nereis (ceanthes) Scolecolepides viridis Rangia cuneata Chiridotea almyra Corophiumlacustre Gammarus daiberi Leptochefrus pinguis Rhithropanopeus harris Amathia vidovici Anadara ovalis Limnodrilus sp. Chaoborus Sp. Chaoborus Sp. Chaoborus Sp. Chaoborus Chryptochironomus	Total animals Per Station

Date Tine Tide Water Temp (°C)	1/7		10	11	10	13	20	21	22	6.7	1	22	Animals
	- 1	4/1	4/1	3/31	3/31	3/31	3/31	3/31	3/31				
	12:43	15:48	14:50	14:50 12:00	13:55	0: 910	10.00	10:43	3				
	flood	flood	flood	flood	flood	Ebb	Ebb	Ebb					
	6.9		6.7	9.9	6.2	6.1	6.3	0.9	:				
	0.232	0.981	0.795	0.795 0.729	1.274	0.933	0.783	0.886					
13/2)	4.13	6.077	5.93	6.285	6.850	6.21	-	5.875	2				
PH ,													
Secchi Disc(cm.)	24cm		17cm		20cm		24cm	26cm	-				
		572	43%	69%	287	33%	10%	57%	100%				
	Diack mud & Fine	grevel grevel	Bray cla	By and	lay mud	Mud Ck	grave	sand sand revel	puss 3				
Garveia franciscana Nereis (neapthes)	1					-	-						2 10
Scolecolepides viridis 5	11.0 5	6	-	7	4	7		0	34	67			197
Rangia cuneata					7			4	80				37
Charlotea almyra	2 5		11 %	- 4	6 2	41		7	2 %	e 1			207
Corophiumlacustre													0
Cammarus daiberi	۲,	- ~						1	7	7			12
Rhithropanopeus harrissi	1881					- · ·	-						16
Amathia vidovici	-												200
Limnodrilus sp.	3	78	•						6				139
Chaoborus sp.	1	,											۸,
Chryptochironomus	() .	7 							-	7			12,
Total Animals Per Station	18	95	25	12	11	99	2	12	19	99			
Helobdella stagnallis Neomysis americana			-							8			

I

T

[].

I

				P		1		1												
	2	5/4	11.27	f flood						43%	Tayan			2	12				17	
	12	878	13:50	arey see	22.5°c	1.281			57cm	-	a.	sand		55	. 56				2d2 86	
1	=	8/9	ង	ebb e						70%	mud someclay	,		6 24	88		ò	ŧ	22	
	22	6/10	11:00	flood						100%	sand clay gily			m			Š	1	57	
-	6	01/9	10:30	flood	22.5	0.628			57cm	76%	mud cle			<u>. 6 H</u>	80		,	4	16	
Table X - Summary Benthic Data - JUNE 1971	8	6/10	09:50	44						299	clay &mud		7	7.7	20				E	
ita -	,	01/9	09:20	flood	22.30°	0.833			38 ст.	42%	clay			32		1 7			33	
thic De	٥	6/7	15:50	ebb						47%	clay &mud		-	۰	7	4			17	
ary Ben	4	6/7		ebb	21.30°	2.314		6.85		40%	detritus gravel	Dom	-	3.1	16	-	4		22	
Summer -	9	279	16:30	(2k)	0	2.0965 2.314		7.1		47%	deterita		1 2	V 9 I	6				29	
ble x	2	8/9	16:45	east	22.00 21.90°	1.087 1.3865			58 cm.	62%	black find fine	San	2 7	8 114 2	13				94	
, i	1	8/9	17:25 16:45	east	22.00	1.087				37%	some,	Tine san	d1s 15	35	-	rist		-	2	
	Station No.	Date	Time	Tide	Water Temp(OC)	Salinity(0/00)	Dissolved 0, (m3/2)	, Ha	Secchi Disc(cm.)	Grab (%Full)		Species	Garvela franciscana Nerejs neanthes Scolecolepides viridis 15	Rengia cuneata Chiridatea almyra Cyathura polita	Corophium lacustre	Rejthropanopeus haurist	Anadara ovalis	Limnodrilus sp.	Total Animals Per Station	

Total Animals		1	1	1	1	T	T	1			T	7 7	55	236	147	728	7	17	0	5 5	7	1462
25	6/9	12:47 14:15	£100d		1.168				209	detitus Eclay		8			43	32			:	3		110
77	6/9	12:47	f100d	22.4	0.475			32cm	707	det Ytu			4	٠	•	43			`	t		23
23	5/5									pues send			80	12	. 12	17	7.7					54
22	5/5	5								pare sand					8	27		=				14
21	8/9	14:35	ebb	21.6	3.304			35cm	209	finesand fine		71	80	4 -	9	36	2		•	,	44	r z
20	8/9	14:15	ebb						73%	finesat mud clay		-	-			ç	3			-		09
te - In	879	13.10	ebb	20.8	4.686				60%	clay		-1			5	- 0	`					18
thic Da	8/9	12:45	Strong	21.1	3,4165				32%	clay and clay				15	3	9	}_					62
Summary Benthic Date - June 1971			floodsfrong	21.1	3.339				%99	Sand lem		-	4	4 0 7	}	ų						8
Summa 16		09.57	flood						27%	1 2	(a)	7				٥			,	^		2
Table X	6/9	20.60	flood	22.4	0,312			55cm	53%	Strave and ve		11			7			6		٠ 		22
14	0/9	10.45	flood	22.4	0.479			26ст.	53%	448	מברדיה	7,	8 3	1,00	2	375	2/7	ياھ		+		306
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Date	Time	Tide	Water Temp(CC)	Salinity (0/00)	Dissolved 0 ₉ (m ³ /2)	PH	Secchi Disc(cm.)	Grab (%Full)		Species	Garveia franciscana Nereis (Neanthes)	Scolecolepides viridis	Rangia cuneata	Cyathura polita	Corophium lacustre	Leptocheirus pinguis		Anadara ovalis	Oligochaet-Tubifex	Chthamalus fragilis Balanus balanoides	Total animals Per Station

2 9/9 9/9		9,10	6/6	8 8	6 6/6	10	11 8/8	12 9/8	13
1540 0930 1015 west slack	2		1415 f100d	1430 flood	1340 flood	1305 £1,00d	1510 flood	1430 f100d	1220 flood
+			25.6			25.5	25.2		
			2.04			1.28	2.06		
4.96 3.84			3.54			3.26	3.49		
7.1 7.0			6.9			8.9	6.9		
22 22			30			:	07		
30 50 50	20		45	65		06	70	35	25
т-я s&s m-с	Ė		D-E	3-E	61ack	black mud	8-m	m-8	m-8
		П							
1 5 50	20		1					-	
								9	,
19 6 1	-4			1				4	71
			3.5				7	4	7
20 22 40	7 9		2 2	47	2	en	213	38	187
			9 8						
•			,					ı	-
					8	9	76		
•					3	6			
							•		
•							•		
69 38 63	90	6	83	87	82	72	247	55	761

		1	,			1	Tentemper 137		1	1:	;		Total
Station No.	2	2	اء		82 	5.	22	2	2	2	4	2	Animais
Date	8/6	8/6	8/6	9/10	9/10	6/6	6/6	6/6	9/30	9/30	8/6	8/6	
Time	1125	060	1040	1045	1120	1055	1003	1035	1045	1000	1325	1400	
Tide	flood	flood ebb	S BCK	ebb0.5 ebb	ebb	Pesi	ebb 11	ebb 1k spack	epp	ebb0.5	flood	flood flood	
Water Temp(C)	25.0	25.0	- P	25.6		25.4						25.1	
Salinity(0/00)	0.90	0.82		1.51		1.83						0.67	
Dissolved 0, (m3/2)		1.74		3.74		3.07						1.07	
Hd		8.9		6.7		6.9						9.9	
Secchi Disc(cm.)	33	07		07		. 07						30.0	
Grab (%Full)	75	07	30	75	30	07	25	30			50	07	
	of1	B-C-	clay	E-8	G-8	3-E	skatones	S-m-C	8-m-c	8 .	stones m-s	110 a	
Species		STODE											
Garvia franciscana		30		2		•		7	2		2		102
Scolecolepides viridis	818					•	σ.		7				25
Rangia cureata Chiridotea almora	- 11		-	57	2		101	7 50	-	72	9		388
Cyathura polita		9	7			&			15			2	62
Companie daibert	•	77	18	9	28	18	15	=	٥,	•	.69	26	887
eptocheirus pinguis	, si		:			6	•					1	23
Rhithropanopeus harrist	n in	9				7							18
Anadara ovalis					.,								0
Limnodrilus sp.				2					7			7	182
Total Animals Per Station	ü	8	77	79	30	62	121	27	35	78	80	65	
* Palaemonetes													٥۔
Neomystraneus						1		•	-				

												1		
	13	12/8/71	11:53	slack	-	:				76	oilyd & clay	1		•
	12			flood 2k		:				5.2	mud	1		®
1	:	17/18/21/12/12/12/12/19/21/12/19/21/21/19/21/21/19/21/12/19/21/12/19/21/12/19/21/12/19/21/12/19/21/12/19/21/2/	14:35	f100d 2k	6.2	0 212	3.90	2.0	30.	100	mud		1	87
	10	17/8/21	13:55	Flood	:			-		76	mud		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 71
1261	6	12/8/21	15:30	Flood	6.1	0.504	4.84	7.1	40.	88.	Pr		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2
December 1971	8	12/6/21	14:20		:		:	:		12	organi			55
te - D	7	12/9/72	13:30	Flood 2k	5.3	0.208	3.95	8.6	30.		organi silt		20 20	79
XII. Summary Benthic Data -	٠	12/9/71	15:07	Flood	7.5	0.563	4.25	6.95	30.	80.	Ban 1		1 1122 2 1 1 1 1 1 1	s
ary Ber	4	12/1/1	11:45	East 1.5k	5.5	1.055	5.48	7.1	20.	77.	Ditritu sand		8 1	ο '
I. Sum	3	12/1/21	10:25	East 1k	5.5	1.060	4.81	6.8	20.	80.	Sand		2	21
Table XI	2	112/7/7	08:50	East .5k	5.5	1.054	5.19	7.1	30.0	90.	Silty- Sand		1 7 1	•
Ä	1	12/7/7	15:10	West	5.0	1.116	0.9	6.8	20.0	77.	Silty- Sand		5 5 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	=
	Station No.	Date	Time	Tide	Water Temp(^O C)	Salinity (0/00)	Dissolved 0, (m3/2) 6.0	Hq.	Secchi Disc(cm.)	Grab (%Full)	61	Species	Garveis franciscana Nereis (Weanthes) Scolecolepides Scolecolepides Viridis Rangia cuneata Chiridotea almyra Chiridotea almyra Cyathura polita Corophium lacustre Garmarus daiberi Leptocheirus pinguis Rhithropanopeus harrisi Amathia vidovici Anadara ovalis Neomysis ::p. Limnodrilus sp. Chryptochirohomus Helobdella stagmalis	Total animals per station

I

						5	20	77	7.7	7	77	25	
	12/8/7	12/8/71	12/8/71	12/9/71	12/9/71	12/8/7112/8/7112/8/7112/9/7112/9/7112/9/7112/9/7112/9/71	17/6/21	12/6/21			12/8/71	12/8/7112/8/71	
	11:15	09:27	10:15	9:15	10:00	87:60	11:20	10:34	1		12:30	13:15	
	Neglack	Late	Late	qça	Ebb.5k	Ebb. 5k	Ebb 1k	3b 1k	-		1991	flood	
Water Temp(C)	6.3	6.1		6.2			0.9		-	-		6.0	
Salinity (0/00) 0	0.184	0.351		0,740			0.624		1	1	-	0.139	
Dissolved 0, (m3/2)	4.65	4.18	-	5.01			4.45					4,72	
	6.9	8.9		8.9					-			6.9	
Secchi Disc(cm.)	30	30		20			30					50	
	80	87	63	93	83	73	.21	50			53	80	
	OTANA Clay	mud &	mud &	black mud	silt& gravel	Siftanic stat	sand & gravel	рпш	1	-	Ciay 6	hdack clay	
Species													
Garvela franciscana	1	365		н	ব		38	140		-		175	
Nereis (Neanthes)	1	1	1		1		П	1					
Scolecolepides		7	1	7	-	н	8	16	1		1		
Rangia cuneata	-	-	1	7	}	1	-	17				I	
Chiridotea almyra Cyathura polita	7	18	ei s	7	5	1:	"	4 5		11	6	9 5	
Corophium lacustre	-	-1 e	* 5	•	1	121	1:	12;	11		!	3	
Leptochetrus pinguis	٠.	:	102	7	13	^	53	97	1		-	2	
Rhithropanopeus	1	4	9	-	1	~	I	1			1		
Amathia vidoyici	-	-	-					4					
21	-		1										
Neomysis sp.		1	1 -						1	1			
<u> </u>		1	٠						1	-		_	
Chryptochi rohomus		1	1										
Helobdella stagnalis	1	-				_		-	1	-		_	
Total animals per	2	414	10 34	97	22	07	27	298	1	1	:		
station					ŀ	!	:	:	1		.12	246	

	H	able XII	I - Sum	nary Ber	Table XIII - Summary Benthic Data -	ta -	March 1972	1972		1			
Station No.	-	2	3	7	9		8	6	10	11	12	13	
Date	3/6	3/6	3/8	3/8	3/8	3/8	3/8	3/7		3/7	3/7		
Time	10:15	11:50	13:40	1015	09:40	11:20		12:20		1415	1250		
Tide	1.3k	flood	Sest	qďJ	ep _p	epp P	Ppb	flood		£100d	flood		
Water Temp(°C)	4.4°c	4.4	3.7		5.5		9	6.1		5.9			
Salinity(0/00)	0.288	0.283	0.136		0.244		0.156	0.235		0.165	0.152		
Dissolved 0, (m3/2)			No d	No dxygen Data	ata								
- Hd			No H	No FH Data									
Secchi Disc(cm.)	40cm	т>07	20cm		30cm		35ст	30сш		30cm	:		
Grab (%Full)	100%	20%	277	757	52%	52%	45%	84		62	85		
Bottom type	Sapey	gravel	pues	sands	Sand& sand	Sapey	black silt	sandy silt		sandy silt	sandy		
Species													
Garveia franciscana Nereis (Neanthes) s Scolecolepides viridis 6 Rangia cuncata Chiridotea almyra Cyathura polita Cyathura polita Garmarus daiberi Leptocheitus pinguis Rhithropanopeus harisi Anathia videvici Anadara ovalis Limodrilus sp. Monoculides edwardsi Helobdella stagnalia	dis 6 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 Juy clam	18 18	4 1 1 2	9 8 4	11 1	m m ^t	4 4		36	6 2 2		
Total Animals	٥		9	1:	!	1 :		1:			1		
	}	,	;	:	3	3	0	<u>+</u>			3		

1											21			7										1 12 1				
TOTAL	Animals	T									Y 2		120	1.7	47	7	78	13	7.7	17		78	200	2			390	
1972																												
March 19																						-						
,'	İ																											
Summary Benthic Data	21	3/6	1430	flood	07	0.326			30		Silty		 		1 4		2										23	
ary Bent	19	3/6	1330	flood					:	54	\$115y						23	07	m	~				-			25	
	17	3/6	15:15	£198d	8.4	0.567			30	100	Beeridus sand			,	, -				-				-				'n	
Table XIII	15	3/7	11:30	f.ggd	5.7	0.155			40cm	77	Beerin		57		+		7	-									ŝ;	
Tal	14	3/7	12.12	£329g	5.7	0.164			35cm	62	silt &								-	,			٠.	-11	0]		13	
	Station No.	Date	Time	Tide	Water Temp(^O C)	Salinity(0/09)	Dissolved 0, (m3/2)	. Hd	Secchi Disc(cm.)	Grab (7Full)		Species	Garveia franciscana	Succines.	Scolecolepides Viridis	Nangia cuneata	Cvarhura polita	Corophium lacustre	Gammarus daiberi	Leptocheirus pinguis	Amathia vidovici	Anadara ovalis		∞ I	Helondella stagnall	Total Animals	Per Station	

H

		the XI	- Summ	Table XIV - Summary Benthic Data -	thic Da	ita - J	June 1972			1	:	:		
Station No.	-	7	-	4	9	-	8	•	10	=	2	23		944
Date	9/9	9/9	6/5	6/5	6/5	9/9	9/9	9/9		9/9	9/9			-
Time	15:50	1500	15:50	10:56	11:35	09:10	10.05	10:45	11:20	11:20	12:00		•	-
Tide	FRSt	Fast	F. SE	epp				. 5kb		. Skb	ebb			
Water Temp(³ C)		21.8	21.7	21.1		21.6	1	21.9						
Salinity (0/00)					- Art									
Dissolved 0, (m3/2)														
Hd														-
Secchi Disc(cm.)		07	90	40		20		09			1			
Grab (%Full)	80	100	68	68		75	06	100			84			
	detritus		sand	sand sand detritus gravel		hard Stay	silty	soft	V	silt	silty			
Species									-					_
Garveia franciscan Nereis (Neanthes) Succinea	1	20		S	-						105			
Scolecolepides Viridis II.	418 117		4 6	7 0							2			
Chiridotea almyra Cyathura polita	*8	-	4 4	4		72	m			24	154			
Corophium lacustre						1								
Gammarus daiberi Leptocheirus pinguis	8 42	•	7.5	7.		28	33	_		8 2	3			
Rhithropanopeus harrisi	risi					a								
Anathia vidovici														
Barnacle (Balanus)													1	
Modiolus sp.											-			
Chryptochironomus	.0.													
•	4							79		297	10			
Total Animals														
Per Station	243	57	11.5	77		61	36	65		265	167			
				-										_

Station No.	14	15	17	61	21	4	Animals	
Date	9/9	9/9	6/5	6/5	6/5			
Time	13:08	3 13:35	15:10	13:25	1210			
Tide	5k	98.	£38¢d	d egk	ęb <u>p</u>			
Water Temp(°C)		22.0	21.8		24.1			
Salinity(0/00)								
Dissolved 0, (m3/2)								
PH .								
Secchi Disc(cm.)		20			47			
Grab (%Full)	88		80	73	. 27			
Bottom type	\$ { }}	silty sandy gravel	Sandy Stay Stavelsandy	stlty ctay	& sand			
Species								
Garveia franciscana Nereis (Neanthes)	-1	2885	4		21	0101	3172	
Scolecolepides viridis	1018	18	9		19	-	181	
Rangia cuneata			5,7		23	• •	63	
Cyathura polita		32		9	5 2		220	
Corophium lacustre	•	1006	·	200	3	7.0	70	
eptocheirus pingui	9		,	`	?		101	
Rhithropanopeus harrist Amathia vidovici	TI ST	ψ	-	:		~~	1	
Anadara ovalis								
Modiolus sp.								
Neomysis americana Chrystochtronomus	6	- 0				4 4	44	
Limnodrilus sp.	165	32				- u n	909	
Total Animals Per Station	166	4073	69	87	128		29,280	
		1	:			-	-	

	13																									
	77	9/12	1345						:	76	silty			2	135	4	-				7				148	
1	=	9/12	12:35	11000	23.2	2.119	3.9707		55	06	black bilyit						,				79				67	
	10																									
September 1972	6	9/12	11:10	early	21.0	2.607	3.794		50	100	Softy clay					c	oc	,	-		59				13	
Septem	8	9/12	0960	epp	22.8	3.481	5.7434		50	87	black gift			7		-	•					٦,	-		13	
ta .	,	9/12	10:05		:	5				70	silty clay.			50		13	5.0		14				,		74	
thic Da	9	9/12	15:10	£100q	22.5	6.8315				:	clay 6 silt				-		., .	,	-		_	14			20	•
- Summary Benthic Data -	4	9/11	14:50	flood	22.8	6.881	4.9109		07	80	silt & sand suffide				7 23							-			32	
	6	9/11	1100	east	22.9	5.874	5.8844		07	79	sand			9	8 6		v					4			123	
Table XV	2	9/11	1550	west	23.2	5.739	4.68185.2736		70	100	soft											S			9	
Ia	-	9/11	1000	east	23.1	5.5925 5.739	4.6818		35	84	sand			d18 94	N 4		9-		11194			80 9			116	
	Station No.	Date	Time	Tide	Water Temp(°C)		Dissolved 0, (m3/2)	Hq	Secchi Disc(cm.)	Grab (%Full)	Bottom type	Species	Garveia franciscana Nereis (neanthes)	Scolecolepides viridis	Rangia cuneata Chiridotea almyra	Cyathura polita	Corophium lacustre	Leptocheirus pinguis	Rhithropanopeus harrist	Amathia vidovici	Limnodrilus sp.	Neomysis americana	Crangon septemspiness	Total Animels	Per Station	

			,					+																		ı		
September 1972	Animals												11	<u> </u>	198	33	266	25	79	-	21		95	42	\$		867	
1									1						_								-			-		 -
Summary Benthic Date -	21	9/11	1345	£200d	:					7	silty elay			:	27	11			;	:						-	77	 -
ary Bent	19	9/11	1300	£1,00d	21.0	7.421	5.0827		40	7,5	hard siftay		11	-	-			25	172	-	9			4			106	
٠,	17	11/6	1155	2kood	22.9	5.276	5.789		07	80	Sand				07	7	ლ .	-		1					-		47	
Table XV	15	9/12	1420	5kood		4.35454.7405	.6028		25	66	stlty sandy			!	1	!	-		7 79	1				4			32	
ñ	14	9/12	1935	f.god	22.6	4.3549	3.7607		07	70	si itay			!	dis	1	!	:		s	harris				88		1	_
	Station No.	Date	Time	Tide	Water Temp(°C)	Salinity (0/00)	Dissolved 0, (m3/2)	Hd	Secchi Disc(cm.)	Grab (%Full)	Bottom type	Species	Garveia franciscan	Nereis (Neanthes)	Scolecolepides viridis	Rangia cuneata	Chiridotea almyra	Cyathura polita	Garmarus daiberi	Leptocheirus pinguls	Rhithropanopeus has	Anathia vidovici		Neomysis gericana	Crangon septemspindsa	Total Animals	Per Station	

	12	ble A	Table XV L Summary Benthic Data -	ary Ben	thic Da	ta -	Decemb	December 1972		1			
Station No.	-	2		1	9	1	8	6	10	11	12	13	
	12/72	12/72	2	13/12	121/72	121/22	121/72	12/72		12/72	12/72		
	1015	0850 1105		0060	-	1205	1445	1415			1140		
	2.5 €	F 1000 M		West K			Flood 0.5K	FR ood		Flood	6.99k		
Water Temp(°C)											6.2		
Salinity(0/00)	.310	. 2353	.3065	.1655	.1755	.283				.1235			
Dissolved 0, (m3/2) 13.520 9.0699 13.514710. 2488h0.2876 9.6558	13.520	6690.6	13.5147	10. 2488	0.2876	9.6558				10.816313.0979	13.0979		
Hd													
cchi Disc(cm.)	25	25	30	35	35	-		:		35	;		
		100	(- To - To -	20				95			84		
			Sand &	Sand & Hard	Hard	Bit 3ck	Hard Sign &	Black		Biek	Sand Sand		
Species	11	11		OF BACT			11						
Garveia franciscana Nereis (Neanthes)	1		:	;	1	1	;	:		7	:		
succinea	:		1	:	!	;	1	:		:	:		
viridis	'n	2	10	-1	'n	20	!	:		1	13		
Rangia cuneata	: .	,	١.	; .		: 0	:			1 -	-1 6		
Cyathura polita	V -1	4	٠,-	, !	01	• i	1 14	۵ ا		17	4 10		
Corophium lacustre	1	1.	:			:	1,	,		;	;		
Gammarus daiberi Leptocheirus pinguis	73	•	11	ا م	315	no !	o !	m !			::		
Rhithropanopeus					,								
harrist	:	:	:	:	,	:	:	:		:	:		
Amathia vidovici	: :	: :	: :	: :	: :	:	: :	۱ -		: :	: :		
Citadata Chair		-	-	1			-	. :		33	:		-
Limnodrilus sp.	: :	, ;		: :	: :	, }	: :	: ;		; :	:		
Balanus balanoides	1	1	. :	1	31	:	1	:		:	:		
Total Animals	81	=	2	0	365	38	7	ı		52	ส		
Per Station													_

December 1972											•										,								
ıta -													TOTAL 514	151	œ	36	69	1 19			4	-	39	7	32	•	POT AT	1	1463
thic Di	21	13/72	1050	Fbb _K		:	-		:	47	Silty		œ	36	;	S	7	2	;				7						136
Summary Benthic Data -	61	13/72	1132	Slack			13.873		35	65	Silt & Clay			۱	:	-1	7	¦ «	. :		: :	:	:	:	:				7
	17	13/72	1015	Fbk	6.3		10.1121		;	97	Silty Sand		;	31 1	•	12	7	: 2	; 1		: :	:	:	:			1		63
Table XVI	15		1015 1	Ebb F	6.1 6			-	:	74	Sravel Some Scones		504	 !	;	:	50	: 8	: 1	- ;	1	:	-	:		dent.)	1	-	049
Ţ	14	27/2	1100	Slack	6.0		10.9402 10.205		:	100	Hack But ritu			::	:	:	:	10	. :		: :	:	;	:	:		T		7
	Station No.				Water Temp(°C)	Salinity(0/00)	3/2)	Hd	Secchi Disc(cm.)	Grab (%Full)		Species	Garvela franciscana Nereis (Neanthes)	Scolecolepides	Viridis Ranzia cuneata	Chiridotea almyra	Cyathura polita	Corophium lacustre	Leptocheirus pinguis	Rhithropanopeus	Amarhia vidovici	Anadara ovalis	-	Neomysis americana	Balanus balanoides			Total Animals	Per Station

M

Station No.	2	3	7	=	19	2,711,19		Total
Date	9/9	6/5	9/9	9/9	6/5	Total		
Time	15:10	16:15	.0925	11:30	13:40			
Tide	E.1.5k E.	E. 1.5k	. Ebb	Epb.	s Fight		-	
Water Temp(CC)								
Salinity (0/00)								
Dissolved 0, (m3/2)								
pH .				•				
Secchi Disc(cm.)								
Grab (%Full)	(2)09							
				Rocky				
Bottom type Species				Detricus	s cray	+	1	
Garveia franciscan		4		75	21	96		100
Nere1s(Neanthes)						8		9
	viridis	1		-	7	8		4
Rangia cuneata		2 6	į	,		0		25
Chiridotea almyra	4 "	2	324	- 5	- 6	245		2/2
Coronting polita	n		47	70	62.6	63		63
Gammarus daiberi	531	767	3300	16,100	21	22,101	12	22,868
Leptocheirus pingu	8							
	harrisi		6	4	185	198		198
Amathia vidovici								
	sn.				7	7		7
Monoculodes edwardsi	11			-		-		,
	(Alu							~ .
Limnodrilus sp.	<u></u>			12		18		18
Total Animals					+	1	1	1
Per Station	543	807	3663	16,254 2496	2496	22956	- 2	23,763
				-		-		

	, ,	7	11	19	7 11 19 Animals	V	nimals	
Date	9/11	9/12	9/12	9/11				
	1615	10:20	10:20 12:10	13:30				
Tide	west	₽₽ ^b	\$180d	5kood				
Water Temp(°C)			23.4	-				
Salinity(0/00)								
Dissolved 0, (m3/2)								
Hd ,								
Secchi Disc(cm.)								
Grab (AFull)	50	25	;	50				
		silty		silt		-	-	-
Bottom type Species	silt	cley	:	clay	+	+		+
Garvela franciscana		20	80	2000			5028	
Nere18 (Neanthes)		:				_		
Scolecolepides viridis	dis 1	;		-				
Rangia cuneata		;						-
Chiridotea almyra	5		19			_	2	_
Cyathura polita	7	:	23	9 -			31	
Gammarus daiberi	56	175	1166	363			1730	
2		:						
2	1181		80	28			37	
Amathia vidovici	:	:						
Limnodrilus sp.	!	:	1000	11		_	1071	
Neomysis americana	328	100	107	107		_	1530	
	89	20	255	62			367	
3	:	:	-1			_		
Monoculo des edwardsi	8i	:	220				221	_
Total Animals	24.2	3%5	37.02	3693	-	+	76	-
Per Station	362	345	3402	5935		_	10.045	

Time	Station No.	2	-	=	129			Animals
ter Temp(°C) ter Temp(°C) finad fload fl	Jate	12/11	12/11	12/12	12/12			
Cer Temp(°C)	fime	0060	1345	1345	1230			
Section CC	fide	U.SK flood	2K f100đ	2k flood	4			
Seolved O_2(m3/2)	Water Temp (C)							
Section Colored O_c(m ³ /2) Section Se	Salinity(⁰ /00)							
ten Disc(cm.) bb (%Full) bb (%Full) strong type silt silt detrikus scies veis franciscan veis franciscan veis franciscan veis franciscan veis franciscan succinea su	dissolved 0, (m3/2)							
ttom type	эн -							
80% 70% 70% 70% 11t & silt & silt & silt & detricus	secchi Disc(cm.)							
Silt & silt Silt & detribus Silt & Silt & Silt Silt & Silt & Silt Silt & Silt Silt & Silt Silt & Silt & Silt & Silt Silt & Silt	3rab (%Full)	80%	70%	70%	70%			
ciscand 400 35 400 44 ciscand 400 35 400 44 es viridis 10 4 limy rs 15 5 2 15 limy rs 15 5 12					silt &			
ciscand hes) hes) lea es viridis 10 livra 15 liv	Bottom type	etlt	811t	silt	detri	tus		
ricidis 10 4 12 15 5 2 15 13 363 107 607 118 383 4196 680	pecies			907	3,5			2007
riridis 10 4 Is 15 5 2 15 2 15 6 6 Is 93 363 107 607 118 383 4196 680	iereis (Neanthes)	!	1	3 ;	3 !			600
### 15 5 15 15 15 15 15 15	succinea							
### 15 5 2 15 ###################################	Scolecolepides viri			:	4			14
myra 15 5 2 15 ustre 9 46 6 ustre 93 363 107 607 tingula 3 5 12 total 3 7 ent.)	langia cuneata	:		12				12
ustre 7 40 0 ref. 93 363 107 607 pingula 3 5 12 left 1 3 7 ent.) 118 383 4196 680	Chiridotes simy ra	2	^	~ `	2,			37
teri 93 363 107 607 <u>pingula 3 5 12</u> <u>set 1 </u>	varhura polita	1	•	9 4	۰.	•		: 61
phartiesi: 3 5 12 104 harriesi: 3 5 12 105 harriesi: 3 7 106 harriesi: 3 7 118 383 4196 680	Commercie dethers	6	26.3	201	100			11.70
us herriesi: 3 5 12 icd 3 7 ent.) 118 383 4196 680	eptochetrus pingui		3	101	100			2/11
ent.) 3 7 ent.) 118 383 4196 680	Withropanopeus has	rist	9	2	12			20
ent.) 118 383 4196 680	Lmathia vidovici	-:-		!				
ent.) 118 383 4196 680	Anadara ovalis	;		:				
118 383 4196 680	.imnodrilus sp.		<u>س</u>	7				9
118 383 4196 680	(Beleace)							
118 383 4196 680	(balanus)			-				-
118 383 4196 680	Total Animals							
	er Station	118	383	4196	989		,	5377

	4				_															-		
Total	-	-									01 -			_						-	55	
12P Animals	-								•			9		n &0	4-		- 2	_			<u></u>	
128	12/12	1245	0.13R	:				1007	Band		9	9	! .	n 4	1	1	!				23	
P 77	12/11	1325	2£1000	1				707	silt			:	-	4	4:		7				72	
2P	12/12	0823	slack	X				1007	sand			dis	!		!-	8	rist -		σ.		01	
Station No.	Date	Time	Tide	Water Temp(C)	Salinity (0/00)	Dissolved 0, (m3/2)	Secchi Disc(cm.)	Grab (%Full)	ttom type	Species	Garveia franciscan Nereis (Neanthes) succinea	Scolecolepides viridis	Rangia cuneata	Cyathura polita	Corophium lacustre	Leptocheirus pinguis	Rhithropanopeus harrisi	Anadara ovalis	Limnodrilus sp.	Total Animals	Per Station	

Table XXI

BENTHIC STATION DESCRIPTION FOR C & D CANAL SURVEY

Stations in the Canal are located at mid-channel and those in the River predominately on 18 ft. contour. Use C & G.S chart #570 in Canal and 294 in the Delaware River.

- Second light east of overhead pipeline; approximately .75 mile east of Summit bridge in canal.
- 2. West of St. Georges Bridge approximately .75 of a mile, second light past pier in canal.
- 3. Approximately .5 miles west of Delaware City Branch Channel, 1st light in water after rock pile starts south side (off Ice House Point) in Canal.
- 4. A beam, quick flashing R "2" at Canal entrance.
- 6. C & D Canal entrance Range-Move east to 28 ft. depth beyond shipping Channel.
- 7. Place most southerly storage tank at Getty terminal in line with front range light of Delaware City range. Sample at western edge of channel.
- 8. Located on same east-west range as 7, at intersection with range formed by Spar bouy R "8" and buoy "1" at entrance to Branch Canal.
- 9. East-west range F1 "B" on bulkhead bar (Pea Patch) and "F14 sec 30 ft. 7M" on western point of Killicohook National Wildlife Refuge, N.J. Move west across deep slough to western edge, use 18 ft. depth.
- 10. Same East-west range as "9". At intersection with north south range formed by beacon "A" on Bulkhead Bar Jetty and buoy "1" at entrance to Delaware City branch canal.
- 11. Bulkhead bar range at intersection with range formed by beacon "E" on Bulkhead Bar and bouy "40" (Deep water point Range)
- 12. Approximately 75-100 ft. southeast of beacon "E" on Bulkhead Bar.
- 13. North-south range, buoy "2B" on Bulkhead Bar Range and "F1 G 2\frac{1}{2} sec" on Pea Patch Island. Sample at intersection with range formed by beacon "B" on Bulkhead Bar and "1D" on Deepwater point range.
- 14. Range formed by beacon on Killicohook Refuge, N.J. and buoy "lD" on Deepwater Point range, 75-100 ft. northwest of beacon.

- 15. Range formed by monument on Killicohook Refuge and tank to east-northeast (65°), approximately 100 ft. from small sand island located 1500 yards north west of "F1 G" on Pea Patch Island.
- 16. Same range as "15" at intersection with range formed by "2B" on Bulkhead Bar and "F1 2 sec B" at spoil pumping site.
- 17. North-south range formed by "C 27" in anchorage 3 and "R 2" on Canal jetty. Sample 0.3 mile south of "C 27".
- 18. Northwest-southeast range formed by "C 27" and fork 0.3 miles east of Delaware City Branch Canal. North-south range, "IN" (QK F1) and "8R".
- 19. East-west range "5R" and spire at Port Penn. approximately 100 feet from Dolphins on East side of Reedy Island.
- 20. East-west range formed by "5R" and spire at Port Penn. and North-south, "WR10R" Reedy Island Range and "2R" (QK F1)
- 21. Same range as "20" at intersection with range formed by North-south "WR10R" and anchorage white nun "B"
- 22. East West range "C27" and "IN" (QK F1). Sample at .5 mile, 265° "C27"
- 23. Same range as "22" intersection "1" (Qk F1) south jetty C & D anal and "3" Delaware City ship canal.
- 24. North-south range "C29" and "IC" (Qk F1) and intersection formed by East-west standpipe and tank .5 mile north of New Castle.
- 25. North-south range, army maintained structure (F1. 2 sec) .5 mile south Delaware Memorial Bridge and front range light deep water range and intersection of standpipe and tank .5 mile North of New Castle.

C&D CANAL ECOLOGICAL SURVEY

Biological Survey of the Canal
and its Approaches

Appendix IV - Delaware Benthos

Part B - Sediment Analyses

Christian A. Wethe
Malcolm H. Taylor

College of Marine Studies
University of Delaware
Newark and Lewes, Delaware
September, 1973

Table of Contents

	Page
Methods	1
Results	3
Figures	

METHODS

Grain size analysis was performed on a representative portion of the sediment obtained at each benthic sampling station. Sieve analysis was used on the coarse grained, sand and gravel portion and pipette analysis was used on the fine grained, silt and clay material. The results of these analyses were examined for both geographic and seasonal variations in the sediment composition.

The coarse and fine grained portions of the sediment were separated by wet sieving the entire sample through a 62 micron sieve. The sand-gravel fraction was then oven dried and weighed. Using a sample splitter, a thirty to seventy gram sample was obtained. This sample was poured into a stack of sieves graded in 1/2 intervals, in order, coarsest sieve at the top, pan at the bottom. The sieves were placed in a Ro-Tap machine and shaken for fifteen minutes. The sand trapped by each sieve was then weighed on a Mettler top-loading balance to 0.01 gm.

The silt-clay portion of the sample was poured into a liter cylinder. One gram of dispersant was added along with enough distilled water to fill the cylinder to exactly 1000 ml. The cylinder was then vigorously shaken to distribute the sediment uniformly throughout the column. When the shaking was stopped, a timer was started; and after fifteen seconds on pipette was inserted into the suspension to a depth of twenty centimeters and exactly twenty milliliters of suspension was withdrawn. Additional pipette

withdrawals (20 ml each) were made at specified time intervals and depths. The suspension removed was expelled into a pre-weighed fifty milliliter beaker. The pipette was then rinsed with distilled water, and the rinse water expelled into the same beaker. The beakers were placed in an oven and evaporated to dryness. They were then removed from the oven, cooled and weighed to 0.001 gm. The weight of the sediment in each twenty milliliter withdrawal was determined, then multiplied by fifty and the weight of the dispersant subtracted.

Knowing the weight of the sediment removed from the suspension at each withdrawal time, the grain size distribution of the sediment can be determined. Since the silt-clay material was uniformly distributed throughout the 1000 ml cylinder, the twenty milliliter withdrawal represents 1/50 of the total amount of sediment remaining in suspension at the time and at the depth of withdrawal. All particles larger than a given diameter have settled past the point of withdrawal after a given time, according to Stokes Law. With each successive withdrawal, the diameter of the largest particle removed by the pipette becomes smaller and smaller. Based on time and withdrawal depth, the maximum particle size present in each withdrawal can be calculated. Therefore, the difference in weight of two successive withdrawals represents the weight of a particular size fraction. By making pipette withdrawals at the proper times and depths, a complete grain size distribution is obtained. These distributions combined with the data from the sieve analysis were obtained for all the sampling stations.

RESULTS

Reviewing the grain size distribution data for the sampling stations within the Canal, some interesting differences before and after dredging are revealed. In June 1971, Station 2, just west of St. Georges Bridge, was a well-sorted, medium sand. After dredging, in December 1971, a fine, moderately-sorted sand was obtained at that location. By March 1972, a coarse, poorly-sorted silt was discovered and subsequent sampling revealed the same material (December 1972 is typical).

At Station 3, in the area where the Delaware City Branch Channel intersects the Canal, a similar shift in bottom sediment type occurred. September 1972 is typical of the pre-dredging grain size distribution, revealing a well-sorted, medium sand. Just after dredging, in October 1972, a slightly finer but still well-sorted sand was observed. By July 1973, with dredging completed in the area, the appearance of a coarse silt was noted at this station also.

The introduction of the coarsesilt at both Stations 2 and 3 is probably the result of silt washing out of the dredged bottom material, becoming suspended in the canal waters, and finally settling out in the quieter waters of the deeper canal sections. It is quite possible that this coarse silt will be washed away when the canal deepening has been completed. The bottom sediment will probably return to being a well-sorted sand.

Comparisons are possible with the canal sediments and with bottom deposits found in the Delaware River adjacent to the canal. Station 12, east of the Pea Patch Island Jetty, and Station 17, in mid-channel south of Reedy Point, are both well-sorted, coarse sands similar to the pre-dredging canal samples. All the Stations west of Pea Patch Island (Station 11 provides the best match) and Station 19, south of Reedy Point, are similar to the poorly-sorted silt sediments observed in the canal after dredging.

FIGURE 1

FIGURE 2

Sediment Size Analysis - Benthic Station #3

FIGURE 3

Sediment Size Analysis - Benthic Stations 12, 11, 19

