上海交通大学

过定点最短路并行编程 实验报告

学 院: 电子信息与电气工程学院

学生姓名: 杨景凯

学 号: _____520021910550____

2022年5月13日

目录

1	背景	介绍	3
	1.1	实验背景	3
	1.2	实验环境	3
2	方案	设计	3
	2.1	并行理由	3
	2.2	并行思路	4
	2.3	代码细节	4
	2.4	数据集	5
	2.5	测试方式	6
3	实验	结果	6
	3.1	全部数据结果	6
	3.2	运行时间与总数据量关系	7
	3.3	运行时间与并发程度(线程数目)关系	8
	3.4	运行时间与中间节点数目关系	9
4	分析	· · 与结论	.0
	4.1	运行时间与总数据量关系1	10
	4.2	运行时间与并发程度(线程数目)关系	10
	4.3	运行时间与中间节点数目关系	12
5	总结	与致谢 1	2
6	附录		.3
	6.1	全部数据结果表格 1	13
	6.2	全部数据图像	15
	6.3	运行时间与总数据量关系表格	17

1 背景介绍 3

1 背景介绍

1.1 实验背景

最短路问题是图论理论的一个经典问题,就是在指定图网络中找一条从起点到终点间权重最小的一条路径,解决这类问题的经典算法有 Dijkstra、Floyd 等。

最短路问题在实际生活中有非常广泛的应用。考虑这样一个具体的实际场景:幸运的上海交通大学学生源源在某天同时抢到了麦当劳、超市、小眷村等的购买机会,于是他需要从宿舍出发去购买对应的食物,如果只考虑路上的距离,哪条路径可以从宿舍出发,经过以上所有地点后再回到宿舍,且需要走的路最短呢?[1]

本次实验是在使用 Dijkstra 算法完成上述最短路任务后,结合多线程 优化时间,并比较分析多线程的优化效率。

1.2 实验环境

本次实验环境如下:

项目	参数
CPU 型号	AMD Ryzen 5 4600H
CPU 核心数	6
CPU 线程数	12
CPU L1 缓存容量	8192KB
系统	WSL2-Ubuntu20.04

表 1: 实验环境

注:该 CPU 采用了超线程技术 (HT),使得线程数多于核心数。

2 方案设计

2.1 并行理由

本次实验我主要针对 Dijkstra 算法进行多线程优化。原因如下:

2 方案设计 4

• 我首先对所有在 part1 中的数据进行时间统计,分别统计了使用 Dijkstra 算法计算最短路的时间以及遍历所有全排列找最短距离的时间。 发现在大多数情况下,均为 Dijkstra 算法需要时间更久。

- Dijkstra 算法更适合并行,因为它适合拆分成许多块,且各个块之间数据互不干扰。
- 对于每一个中间节点,计算最短路的时间是大致相同的,只要给每个 线程分配的中间节点数目相近,那么就会使得每个线程时间大致相同。
 因此本次实验我主要针对 Dijkstra 算法进行多线程优化。

2.2 并行思路

假设中间节点有 N 个, 多线程数目为 M, 我有以下两种并行思路:

- 每个线程使用的中间节点在中间节点集合中位置为非连续的。
- 每个线程使用的中间节点在中间节点集合中位置为连续的。

在第一种情况下,每个线程所搜索的数目是不固定的,每个线程搜索的 起点为 i, i 为线程序号。在这种情况下,存在两个问题:

- 各线程长度不一定相同,由于木桶效应,最终速度取决于最长的时间, 造成结果不准确。
- 由于不连续,使得增加了不必要的 CPU 缓存 MISS,使得性能下降。

而第二种情况下,每个线程所搜索的数目是固定的,为 $N_{blocknum} = \lfloor N/M \rfloor$ 。在另外一个子线程中运行剩余的部分,而剩余的部分长度小于其他子线程中长度,因此不会对结果造成影响同时保证了实验的准确性。同时,连续的片段也减少了 CPU 缓存的 MISS 几率。

综上,本次实验中,我采用了第二种并行思路。

2.3 代码细节

假设中间节点有 N 个, 多线程数目为 M。代码详细步骤如下:

- 1. 使用 std::vector<std::thread> 来记录所有线程。
- 2. 计算得到每个线程搜索的数目。 $N_{blocknum} = |N/M|$ 。

2 方案设计 5

3. 使用 thread 创建 M 个线程, 并将线程存于 std::vector<std::thread>中(引用的变量使用 std::ref() 函数得到)。

- 4. 线程函数接受 6 个参数, 分别如下:
- int begin: 表示开始的位置。开始位置为 $i \cdot N_{blocknum}$, i 为线程序号。
- int end: 表示结束的位置。结束位置为 $i \cdot N_{blocknum} + N_{blocknum} 1$, i 为线程序号。
- vector<int> &intermediates: 引用的参考工具 vector,不需要占用额外内存,表示中间节点集合。
- vector<vector<int>>&length: 引用的 vector,不需要占用额外内存,表示需要计算出的所有的最短路径长度。
- vector<vector<vector<int>>>& allpath: 引用的 vector,不需要占用额外内存,表示需要计算出的所有的最短路径。
- FixedSP* fixedsp: 表示调用该函数的对象指针,方便调用其内部的图。
- 5. 每个线程中,从 begin 至 end 逐个遍历,调用 Dijkstra 算法计算最 短路。
 - 6. Dijkstra 函数接受 4 个参数, 分别如下:
 - int source:源点。Dijkstra 函数将计算从源点出发至其他点处的最短路。
 - vector<int> &length: 引用的 vector,不需要占用额外内存,表示需要计算出的从源点出发的最短路径长度。
 - vector<vector<int>> &path: 引用的 vector,不需要占用额外内存, 表示需要计算出的从源点出发的最短路径。
 - FixedSP* fixedsp: 表示调用该函数的对象指针,方便调用其内部的图。

2.4 数据集

本次实验我采用 python 生成数据集。测试集中,包含有不同图的大小 (节点数目)和不同的中间节点数目。

图的大小采用以下四组: 50、100、200、400。

对于每个图,若该图节点数目为 n,分别采用以下三种测试中间节点数目: $n \cdot \lfloor \frac{n}{3} \rfloor \cdot \lfloor \frac{n}{5} \rfloor$ 。同时采用以下特殊中间节点数目: $50 \cdot 100 \cdot 200 \cdot 400$ (如果总节点数大于中间节点数的话)。

对于每种测试图与测试中间节点,分别采用以下线程数目: 1、2、4、6、10、12、14、16、20。

每个图均为无向正权路图,且不存在自环。每条路径权值为 $0 \sim 1000$ 的随机整数。

每个中间节点数组均为 $0 \sim size(array) - 1$ 的数,且开始节点均为 size(array) - 1。

2.5 测试方式

由于为多线程时间测试,不能使用 clock() 函数,只能朴素地通过本地时间来计算,由于为 Linux 平台,故使用 gettimeofday() 函数。

对于每种测试组合,我进行 50 次测试,计算平均时间。该目的是减少 其他进程对时间计算造成的影响。

3 实验结果

3.1 全部数据结果

全部数据结果表格与详细图像由于过多,故放在了附录位置。以下是全部数据结果的缩略图像。

图 1: 总数据量为 50 时运行时间图 2: 总数据量为 100 时运行时间 (ms) 与线程数 (个) 图 (ms) 与线程数 (个) 图

图 3: 总数据量为 200 时运行时间图 4: 总数据量为 400 时运行时间 (ms) 与线程数 (个) 图 (ms) 与线程数 (个) 图

3.2 运行时间与总数据量关系

为方便直观地观测效果,我们采用线程数为 12,分别对不同中间节点数目统计了运行时间和总数据量的关系。结果如图所示:

图 5: 不同中间节点个数下运行时间 (ms) 与总数据量 (个) 关系图

通过图像我们可以直观地发现,随着总数据量增加,运行平均时间增加,且近似为多项式型。

3.3 运行时间与并发程度(线程数目)关系

为方便直观地观测效果,我们采用总数据量为 400 和 50 的数据表格与图像,进行分析。

数据量为 400 时,数据量偏大,对具有较大数据量的测试具有一定的代表性:

图 6: 总数据量为 400 时运行时间 (ms) 与线程数 (个) 图

通过图像我们可以清楚地看到,随着线程数的增加,运行平均时间减少。

- 在线程数位于 0~6 阶段时,随着线程数目增加,运行时间快速减少。
- 在线程数位于6~12阶段时,随着线程数目增加,运行时间缓慢减少。
- 在线程数位于 $12 \sim 20$ 阶段时,随着线程数目增加,运行时间处于稳定。
- 在线程数为 16 时,运行时间均出现了小幅度下降。

数据量为 50 时,数据量偏小,对具有较小数据量的测试具有一定的代表性:

图 7: 总数据量为 50 时运行时间 (ms) 与线程数 (个) 图

通过图像我们可以清楚地看到,随着线程数的增加,运行平均时间总体 先减少,后增加。

- 在线程数位于 $0 \sim 6$ 阶段时,随着线程数目增加,运行时间总体呈减少趋势。
- 在线程数位于 $6\sim 20$ 阶段时,随着线程数目增加,运行时间波动,甚至上升。

3.4 运行时间与中间节点数目关系

为方便直观地观测效果,我们采用总数据量为 400,分别对不同线程统计了运行时间和中间节点数目的关系。结果如图所示:

4 分析与结论 10

图 8: 不同中间节点个数下运行时间 (ms) 与中间节点数 (个) 关系图

通过图像我们可以直观地发现,随着中间节点数增加,运行平均时间增加,且近似为线性。

4 分析与结论

4.1 运行时间与总数据量关系

对于 Dijkstra 算法来说,总数据量增加,图中路径增加。两者关系近似满足 $N_{path} = N_{node}^2$ 。因此,当总数据量增加,对于每个源点,搜索路径呈平方式增加。故对于相同线程数、相同中间节点来说,随着总数据量增加,运行平均时间增加,且增加幅度随着总数据量增加而增加。

以上分析与实验结果相同、故实验成功。

4.2 运行时间与并发程度(线程数目)关系

对于 Dijkstra 算法来说, 线程数目增加, 会带来以下后果:

- 当线程数增加时,每个线程内部运行时间缩短,且近似呈反比例关系。
- 当线程数位于 $1 \sim N_{MAXthreadNum}$ (其中 $N_{MAXthreadNum}$ 表示 CPU 支持最大线程数) 时,CPU 并行的线程数目等于此时线程数目。

4 分析与结论 11

• 当线程数多于 $N_{MAXthreadNum}$ (其中 $N_{MAXthreadNum}$ 表示 CPU 支持 最大线程数) 时,CPU 并行的线程数目等于 $N_{MAXthreadNum}$ 。

• 每个线程的产生和结束均会产生开销,总开销 CPU 时间随线程数目 呈线性增加。

综合以上可以认为, 当线程内部运行时间较长时, 满足以下两条规律:

- 当线程数位于 $1 \sim N_{MAXthreadNum}$ (其中 $N_{MAXthreadNum}$ 表示 CPU 支持最大线程数)时,若每个线程运行时间大致相近,那么总运行时间与线程数目近似呈反比例关系。
- 当线程数多于 $N_{MAXthreadNum}$ (其中 $N_{MAXthreadNum}$ 表示 CPU 支持 最大线程数) 时,若每个线程运行时间大致相近,运行时间处于稳定。 当线程内部运行时间较短时,满足以下三条规律:
- 当线程数位于 $1 \sim N_{MAXthreadNum}$ (其中 $N_{MAXthreadNum}$ 表示 CPU 支持最大线程数) 时,若每个线程运行时间大致相近,那么总运行时间 与线程数目近似呈反比例关系。但是由于线程产生和结束的开销,造成波动或不完全满足反比例关系。
- 当线程数多于 $N_{MAXthreadNum}$ (其中 $N_{MAXthreadNum}$ 表示 CPU 支持 最大线程数) 时,若每个线程运行时间大致相近,运行时间并不会减少,甚至可能由于线程产生和结束的开销而增加。
- 由于运行时间较短,造成随机误差偏大,曲线应该处于波动状态。

实验中,总数据量为 400 的每个线程运行时间较长,因此可以对应第一种情况。由于 CPU 最多线程数为 12,我们发现,当线程数处于 1~12 时,平均运行时间减少,当线程数多于 12 时,平均运行时间处于稳定状态。以上分析与实验结果相同,故实验成功。值得注意的是,当线程数为 16 时,运行平均时间减少,猜测可能是由于 16 刚好为 2 的整数次幂,因此使得操作系统更容易安排上下文交换 (context switch)。

实验中,总数据量为50的每个线程运行时间较短,因此可以对应第二种情况。由于CPU最多线程数为12,我们发现,当线程数处于1~6时,平均运行时间减少,当线程数多于6时,平均运行时间增加。以上分析在线程数位于6~12时与实验结果不符,我认为原因可能是由于操作系统并不

5 总结与致谢 12

会使得全部线程被短时间就可以进行完的程序占用,而是只调用了全部核心来执行,但是不会启用超线程技术 (HT),考虑到核心数为 6,因此实验结果合理,实验成功。

4.3 运行时间与中间节点数目关系

对于 Dijkstra 算法来说,中间节点数增加,搜索源点数目增加。两者关系近似满足 $N_{source} = N_{internode}$ 。因此,当中间节点数增加,搜索源点数目呈线性增加,但是对于每个源点来说,搜索路径长度近似保持不变。故对于相同总数据量、相同线程数来说,随着中间节点数增加,运行平均时间呈线性增加,且增加幅度与中间节点数目无关,保持不变。

以上分析与实验结果相同,故实验成功。

5 总结与致谢

在进行实验时,我刚开始使用了 clock() 函数来计时,但是发现随着线程数增加,运行时间均增加。这是不合理的。查询资料得知 clock() 函数是会统计所有占用 CPU 的时间,那么自然随着线程数增加,由于线程产生和结束的开销,造成了 CPU 总占用时间增加。

后来改用了本地时间的方式,使得实验得以成功进行。在此感谢各论坛和博客,尤其是 CSDN 提供的帮助。

6 附录

6.1 全部数据结果表格

总数据量: 50	50	17	10
1	2.55128	0.92944	0.63586
2	1.28348	0.5053	0.3514
4	0.78454	0.51782	0.51522
6	0.7439	0.35856	0.3495
10	1.05462	0.88836	0.52924
12	1.02832	0.95664	1.28538
14	1.37744	1.03206	1.44342
16	1.25166	1.08028	1.48722
20	1.91874	2.03546	1.76262

表 2: 总数据量为 50 时运行时间 (ms) 与线程数 (个) 表格

总数据量: 100	100	33	20
1	14.62634	5.1304	3.28492
2	7.81046	2.94988	1.81178
4	4.38446	1.4956	1.03344
6	3.77682	1.23872	0.8215
10	2.87432	1.25954	0.82548
12	2.70992	1.03765	0.53496
14	3.27218	1.6687	1.8573
16	3.3439	1.3369	1.74632
20	4.79652	3.53796	1.36686

表 3: 总数据量为 100 时运行时间 (ms) 与线程数 (个) 表格

总数据量: 200	200	67	40
1	100.69814	34.15362	21.05566
2	52.86528	18.0946	11.4164
4	29.98734	9.65932	6.27204
6	23.37806	8.36064	4.86346
10	16.62768	5.58432	3.41018
12	17.84762	6.52134	4.07352
14	19.89596	8.8878	8.5548
16	18.04038	6.31804	6.44198
20	19.40142	6.42434	2.7674

表 4: 总数据量为 200 时运行时间 (ms) 与线程数 (个) 表格

总数据量: 400	400	133	80
1	676.52572	226.98724	136.7455
2	364.98054	122.0321	74.71334
4	207.29286	68.36666	41.54984
6	150.56206	53.43846	32.96632
10	108.5518	35.67364	22.9499
12	105.00562	33.96196	19.5449
14	118.88824	41.71642	28.64534
16	108.54252	37.4595	22.62028
20	106.32808	43.38704	25.19194

表 5: 总数据量为 400 时运行时间 (ms) 与线程数 (个) 表格

6.2 全部数据图像

图 9: 总数据量为 50 时运行时间 (ms) 与线程数 (个) 图

图 10: 总数据量为 100 时运行时间 (ms) 与线程数 (个) 图

图 11: 总数据量为 200 时运行时间 (ms) 与线程数 (个) 图

图 12: 总数据量为 400 时运行时间 (ms) 与线程数 (个) 图

6.3 运行时间与总数据量关系表格

	50	100	200	400
50	1.02832			
100	1.98312	2.70992		
200	4.32472	8.62868	17.84762	
400	12.91156	29.2357	56.96842	105.00562

表 6: 不同中间节点个数下运行时间 (ms) 与总数据量 (个) 关系表格

参考文献 18

参考文献

[1] Lab2. 过定点最短路.pdf