МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА № 6

по дисциплине 'Вычислительная математика' "Решение ОДУ"

Вариант №9

Выполнил: Студент группы Р3208 Камянецький Никита Владимирович Преподаватель: Машина Е. А.

Санкт-Петербург, 2024

Оглавление

Цель работы:	3
· · · Рабочие формулы используемых методов	
Метод Эйлера	
Метод Эйлера Усовершенствованный	
Метод Милна	3
Примеры и результаты работы программы:	
Вывод:3	

Цель работы:

Найти решение обыкновенных дифференциальных уравнений с помощью численных методов.

Рабочие формулы используемых методов

Нам дано уравнение y' = f(x, y), тогда мы можем получить следующее значение у используя известное предыдущее. На этом основаны использованные численный методы.

Метод Эйлера

$$y_{i+1} = y_i + hf(x_i, y_i)$$

Метод Эйлера Усовершенствованный

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_i + hf(x_i, y_i))], i = 0, 1 \dots$$

Метод Милна

$$y_i^{\text{прогн}} = y_{i-4} + \frac{4h}{3}(2f_{i-3} - f_{i-2} + 2f_{i-1})$$

$$y_i^{\text{корр}} = y_{i-2} + \frac{h}{3}(f_{i-2} + 4f_{i-1} + f_i^{\text{прогн}})$$

 $f_i^{\text{прогн}} = f(x_i, y_i^{\text{прогн}})$

Примеры и результаты работы программы:

Вывод:

В результате выполнения лабораторной работы я изучил различные методы численного решения задачи Коши и реализовал их программно. Как итог,

можно решать обыкновенные дифференциальные уравнения с достаточно высокой скоростью.