MIL

High Level

- Input data is grouped into labeled bags containing multiple instances
 - Labels are assigned at bag level
 - An entire bag is labeled as high-grade if it has 1 or more high-grade instances
 - Typical approaches:
 - Instance-level: classify each instance and aggregate to get bag-level classification
 - Embedding-level (preferred): map instances to low-level embeddings, aggregate the embeddings into a single, bag-level representation, and apply a classifier
- Terminology
 - Instances: individual data points (in our case, patches)
 - Bags: collection of data points
 - Labels: tagline for the bag (high-grade or benign)
- Why should we care?
 - Useful when labeling each instance is impractical/expensive
 - Especially useful for classifying medical image data

Key-chain analogy

Trying find the exact key that is common for all the "positive" keychains (green key)

Mathematical Foundation (1)

• Problem formulation

- Bag of instances $X = \{x_1, x_2, ..., x_k\}$, each x has a label $y \in \{0,1\}$
- $\circ \quad \text{Bag label } Y = \max\{y_k\}$
 - 1 if at least one instance is positive, else 0
- During training, you don't know instance labels y_k
- Use a permutation-invariant function:
 - Need to keep bag representation the same irrespective of order of instances within the bags
 - Punchline: can use average, max, or attention-based pooling

• Attention-based pooling

- Use a weighted average of the low-level embeddings created during feature extraction
 - Max pooling only picks the most extreme patch, ignoring useful info from other patches
 - Average pooling treats every patch equally which includes irrelevant or incomplete patches

Mathematical Foundation (2)

- Attention-based pooling
 - \circ Given embeddings $H = \{h_1, ..., h_k\}$, the bag embedding is the sum

$$\mathbf{z} = \sum_{k=1}^K a_k \mathbf{h}_k,$$

where a_k is expressed as

$$a_k = rac{\exp\{\mathbf{w}^{ op} anh\left(\mathbf{V}\mathbf{h}_k^{ op}
ight)\}}{\sum\limits_{j=1}^K \exp\{\mathbf{w}^{ op} anh\left(\mathbf{V}\mathbf{h}_j^{ op}
ight)\}},$$

Mathematical Foundation (3)

$$a_k = \frac{\exp\{\mathbf{w}^{\top}\tanh\left(\mathbf{V}\mathbf{h}_k^{\top}\right)\}}{\sum_{j=1}^{K}\exp\{\mathbf{w}^{\top}\tanh\left(\mathbf{V}\mathbf{h}_j^{\top}\right)\}},$$

- Attention-based pooling
 - Each embedding transformed by a small neural network
 - V is a learned linear transformation, w is a learned weight
 - $V \in R^{LxM}, w \in R^{Lx1}$
 - L is size of the hidden layer and M is the size of the embedding (usually 512)
 - Tanh used so the model can capture nonlinear relationships
 - Rest is the softmax function

Explaining Attention (and Loss)

$$a_k = rac{\exp\{\mathbf{w}^{ op} anh\left(\mathbf{V}\mathbf{h}_k^{ op}
ight)\}}{\sum\limits_{j=1}^K \exp\{\mathbf{w}^{ op} anh\left(\mathbf{V}\mathbf{h}_j^{ op}
ight)\}},$$

Attention weights aren't trained directly, but learned indirectly through minimizing overall classification loss

- Use attention weights to aggregate into a single bag level prediction
- Then cross-entropy loss is computed between prediction and true bag label
- The loss is backpropagated through the classifier to calculate the gradients and update V, w, CNN, and the final classifier weights

 h_k – the patch embedding for k-th instance of bag (output from patch classifier – a 1D vector of shape [512])

V – weight matrix in attention MLP, learnable parameter – a matrix of shape [128, 512]

w – weight vector in attention MLP, learnable parameter – a 1D vector of shape [128]

Tanh – nonlinear activation function, to capture nonlinearity into the model

a_k – Attention score for patch k (scalar value)

 $\exp()$ – softmax function so that all attention weights $a_{_{L}} \in (0,1)$

Mathematical Foundation (4)

• Gated attention mechanism

$$a_k = \frac{\exp\{\mathbf{w}^\top \left(\tanh\left(\mathbf{V}\mathbf{h}_k^\top\right) \odot \operatorname{sigm}\left(\mathbf{U}\mathbf{h}_k^\top\right)\right)\}}{\sum_{j=1}^K \exp\{\mathbf{w}^\top \left(\tanh\left(\mathbf{V}\mathbf{h}_j^\top\right) \odot \operatorname{sigm}\left(\mathbf{U}\mathbf{h}_j^\top\right)\right)\}},$$

- Motivation: tanh is linear over [-1,1]
 - Gated attention adds the sigmoid function to introduce an additional learnable nonlinearity
 - lacktriangledown U $\in \mathbb{R}^{LxM}$ is an additional learned parameter, \odot is element-wise multiplication
- In theory, adds more flexibility to MIL