FCC TEST REPORT

FCC ID : U6SJW3021

Applicant: SHENZHEN J.W. INDUSTRIES CO., LTD

Address of Applicant: The 3-7 Floor, No. 20, Alley No. 1 No. 2 Liu Xian Road, District 71,

Baoan Shenzhen China

Equipment Under Test (EUT):

Product description : Phone- Handsfree Device-MS

Model No. : JW3021

Standards : FCC 15 Paragraph 15.247

Date of Test : June 28, 2009

Test Engineer : Olic huang

Reviewed By: Thelo 2hous

PERPARED BY:

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, China

Tel:+86-755-27553488

Fax:+86-755-27553868

2 Contents

			Page
1		AGE	
2	CONTENT	rs	2
3	TEST SUN	MMARY	4
4	GENERAI	L INFORMATION	5
	4.1 CLIENT I	NFORMATION	5
	4.2 GENERA	L DESCRIPTION OF E.U.T	5
		OF E.U.T	
		TION OF SUPPORT UNITS	
		RDS APPLICABLE FOR TESTING	
		CILITY	
		CATION	
5	EQUIPME	ENT USED DURING TEST	7
6	CONDUC'	TED EMISSION TEST	10
	6.1 TEST EQ	UIPMENT	10
	6.2 TEST PR	OCEDURE	10
	6.3 CONDUC	TED TEST SETUP	11
	6.4 EUT OP	ERATING CONDITION	11
		TED EMISSION LIMITS	
	6.6 CONDUC	TED EMISSION TEST DATA	12
7	RADIATIO	ON EMISSION TEST	13
	7.1 TEST EQ	UIPMENT	13
		REMENT UNCERTAINTY	
		OCEDURE	
		ED TEST SETUP	
		JM ANALYZER SETUP	
		TED AMPLITUDE & MARGIN CALCULATION	
		RY OF TEST RESULTSERATING CONDITION	
		ED EMISSIONS LIMIT ON PARAGRAPH 15.209	
			17
	,	ATED EMISSION DATA	
8		M PEAK OUTPUT POWER	
9		A REQUIREMENT	
10		CHANNEL NUMBER	
		JCV SEDADATED	23
		NI V SHEAVALAII	

12 DW	/ELL TIME	26
13 20-	DB BANDWIDTH	33
14 RA	DIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED BAND	35
15 RF	EXPOSURE TEST	37
16 PH	OTOGRAPHS OF TESTING	39
17 PH	OTOGRAPHS - CONSTRUCTIONAL DETAILS	40
17.1	EUT - Front View	40
17.2	EUT - BACK VIEW	40
17.3	EUT-OPEN VIEW	41
17.4	PCB - Front View	41
17.5	PCB - BACK VIEW	42
19 F.C	C ID I AREI	43

3 Test Summary

Test Items	Test Requirement	Test Method	Limit / Severity	Result
Maximum peak output power	FCC Part 15:2007	ANSI C63.4: 2003	30dBm	PASS
Restricted Band	FCC Part 15:2007	ANSI C63.4: 2003	Note	PASS
Dwell time	FCC Part 15:2007	ANSI C63.4: 2003	Maximum:0.4 s	PASS
Channel separation	FCC Part 15:2007	ANSI C63.4: 2003	Channel separation at least 1MHz	PASS
Hopping channel No.	FCC Part 15:2007	ANSI C63.4: 2003	Total 79 channels	PASS
20-dB Bandwidth	FCC Part 15:2007	ANSI C63.4: 2003	Note	PASS
RF Exposure Test	FCC Part 15:2007	ANSI C63.4: 2003	Note	PASS
Mains Terminal Disturbance Voltage, 150kHz to 30MHz	FCC Part 15:2007	ANSI C63.4: 2003	N/A	N/A
Radiation Emission, 30MHz to 25GHz	FCC Part 15:2007	ANSI C63.4: 2003	N/A	PASS

FCC ID: U6SJW3021

Note: denote that for more details of the EUT, please refer to the relating test items as below.

Remark : the methods of measurement in all the test items were according to the FCC Public Notice DA 00-705.

4 General Information

4.1Client Information

Applicant: SHENZHEN J.W. INDUSTRIES CO., LTD

Address of Applicant: The 3-7 Floor, No. 20, Alley No. 1 No. 2 Liu Xian Road,

District 71, Baoan Shenzhen China

FCC ID: U6SJW3021

Manufacturer: SHENZHEN J.W. INDUSTRIES CO., LTD

Address of Manufacturer: The 3-7 Floor, No. 20, Alley No. 1 No. 2 Liu Xian Road,

District 71, Baoan Shenzhen China

4.2General Description of E.U.T.

Product description: Phone- Handsfree Device-MS

Model No.: JW3021

4.3Details of E.U.T.

Power Supply: DC 12.0V

4.4Description of Support Units

The EUT has been tested as an independent unit.

4.5Standards Applicable for Testing

The customer requested FCC tests for a Phone- Handsfree Device-MS. The standards used were FCC 15 Paragraph 15.247, Paragraph 15.205, Paragraph 15.207, Paragraph 15.209, Paragraph 15.31, Paragraph 15.33, Paragraph 15.35.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, June 24, 2008.

FCC ID: U6SJW3021

• IC - Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A,July 24, 2008.

4.7 Test Location

All Emissions testswere performed at:-1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, Guangdong, China.

5 Equipment Used during Test

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specificati on	Cal. Date	Due Date	Cert. No	Uncertainty
EMC Analyzer	Agilent/ E7405A	MY45114 943	W2008001	9k- 26.5GHz	Aug-08	Aug-09	Wws200 81596	±1dB
Trilog Broadband Antenne 30- 3000 MHz	SCHWARZ BECK MESS- ELEKTROM / VULB9163	336	W2008002	30-3000 MHz	Aug-08	Aug-09		±1dB
Broad-band Horn Antenna 1-18 GHz	SCHWARZ BECK MESS- ELEKTROM / VULB9163	667	W2008003	1-18GHz	Aug-08	Aug-09		f<10 GHz: ±1dB 10GHz <f <18 GHz: ±1.5dB</f
Broadband Preamplifier 0.5-18 GHz	SCHWARZ BECK MESS- ELEKTROM / BBV 9718	9718-148	W2008004	0.5-18GHz	Aug-08	Aug-09		±1.2dB
10m Coaxial Cable with N- male Connectors usable up to 18GHz,	SCHWARZ BECK MESS- ELEKTROM / AK 9515 H	-	-	-	Aug-08	Aug-09		-
10m 50 Ohm Coaxial Cable with N- plug,individual length,usable up to 3(5)GHz, Connector	SCHWARZ BECK MESS- ELEKTROM / AK 9513				Aug-08	Aug-09		
Positioning Controller	C&C LAB/ CC-C-IF				N/A	N/A		
Color Monitor	SUNSPO/ SP-14C				N/A	N/A		
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k- 3GHz	Aug-08	Aug-09	Wws200 80942	±1dB
EMI Receiver	Beijingkehua n	KH3931		9k-1GHz	Aug-08	Aug-09		
Two-Line V- Network	ROHDE&SC HWARZ/ ENV216	100115	W2005002	50Ω/50μ Η	Aug-08	Aug-09	Wws200 80941	±10%
V-LISN	SCHWARZ BECK MESS— ELEKTRON IK	NSLK 8128	8128-259	9k-30MHz	Aug-08	Aug-09		

FCC ID: U6SJW3021

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specificati on	Cal. Date	Due Date	Cert. No	Uncertainty
Absorbing Clamp	ROHDE&SC HWARZ/ MDS-21	100205	W2005003	impandanc e50Ω loss : 17 dB	Aug-08	Aug-09	Wws200 80943	±1dB
10m 50 Ohm Coaxial Cable with N- plug,individual length,usable up to 3(5)GHz, Connectors	SCHWARZ BECK MESS- ELEKTROM / AK 9514				Aug-08	Aug-09		
Digital Power Analyzer	Em Test AG/Switzerla nd/ DPA 500	V07451 03095	W2008012	Power: 2000VA Vol- range: 0- 300V Freq_range : 10-80Hz	Aug-08	Aug-09	Wwd200 81185	Voltage distinguish: 0.025% Power_freq distinguish: 0.02Hz
Power Source	Em Test AG/Switzerla nd/ ACS 500	V07451 03096	W2008013	Vol- range: 0- 300V Power_freq : 10-80Hz				
Electrostatic Discharge Simulator	Em Test AG/Switzerla nd/DITO	V07451 03094	W2008005	Contact discharge : 500V- 10KV Air diacharge : 500V- 16.5KV	Aug-08	Aug-09	Wwc200 82400	7.5A current will be changed in V _m =1.5V
RF Generator	TESEQ GmbH/ NSG4070	25781	W2008008	Fraq- range: 9K-1GHz RF voltage: - 60 dBm- +10dBm	Aug-08	Aug-09	Wws200 81890	Power_freq distinguish0 .1Hz RFeletricity distinguish 0.1 B
CDN M-Type	TESEQ GmbH/ CDN M016	25112	W2008009	Voltage correct factor 9.5 dB	Aug-08	Aug-09	Wwc200 82396	150K- 80MHz: ±1dB 80- 230MHz:- 2-+3dB
EM-Clamp	TESEQ GmbH/ KEMZ 801	25453	W2008010	Freq_range : 0.15- 1000 MHz	Aug-08	Aug-09	Wwc200 82397	0.3-400 MHz: ±4dB Other freq: ±5dB

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specificati on	Cal. Date	Due Date	Cert. No	Uncertainty
Attenuator 6dB	TESEQ GmbH/ ATN6050	25365			Aug-08	Aug-09	Wws200 81597	
All Modules Generator	SCHAFFNE R/6150	34579	W2008006	voltage:20 0V-4.4KV Pulse current: 100A- 2.2KA	Aug-08	Aug-09	Wwc200 82401	voltage: ±10% Pulse current: ±10%
Capacitive Coupling Clamp	SCHAFFNE R/ CDN 8014	25311			Aug-08	Aug-09	Wwc200 82398	-
Signal and Data Line Coupling Network	SCHAFFNE R/CDN 117	25627	W2008011	1.2/50μS	Aug-08	Aug-09	Wwc200 82399	-
AC Power Supply	TONGYUN/ DTDGC-4				Aug-08	Aug-09	Wws200 80944	-
Exposure Level Tester ELT-400	Narda Safety TEST Solutions/23 04/03	M-0155	w2008022	Test freq range: 1 —400kHz				Test uncertainly: 1 — 120kHz:±1. 83%, 120 kHz- 400 kHz: ±4.06%
Magnetic Field Probe 100cm ²	Narda Safety TEST Solutions/23 00/90.10	M-1070	w2008021	Test freq range: 1 -400kHz	Aug-08	Aug-09	Wwd200 81191	Test uncertainly: 1Hz-10Hz: ±16.2%, 10Hz - 120kHz:±2. 2%, 120 kHz- 400 kHz: ±4.7%
Active Loop Antenna Charger 10kHz-30MHz	Beijing Dazhi / ZN30900A	-	-	10kHz- 30MHz	Aug-08	Aug-09		±1dB

6 Conducted Emission Test

Test Requirement: FCC Part15 Paragraph 15.207
Test Method: Based on ANSI C63.4:2003

Test Date:

Frequency Range: 150kHz to 30MHz

Class B

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

Quasi-Peak & Average if maximised peak within 6dB of

FCC ID: U6SJW3021

Average Limit

6.1Test Equipment

Please refer to Section 5 this report.

6.2Test Procedure

- 1. The EUT was connected with signal generator and placed on a table.
- 2. The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.
- 3. The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.3Conducted Test Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15 Paragraph 15.207 limits.

6.4EUT Operating Condition

Operating condition is according to ANSI C63.4:2003.

- A. Setup the EUT and simulators as shown on follow.
- B. Enable RF signal and confirm EUT active.
- C. Modulate output capacity of EUT up to specification.

6.5Conducted Emission Limits

 $66\text{-}56~dB\mu V$ between 0.15MHz & 0.5MHz $56~dB\mu V$ between 0.5MHz & 5MHz 60 $dB\mu V$ between 5MHz & 30MHz

FCC ID: U6SJW3021

Note: In the above limits, the tighter limit applies at the band edges.

6.6 Conducted Emission Test Data

Owing to the EUT using battery, so this test was not performed.

7 Radiation Emission Test

Test Requirement: FCC Part15 Paragraph 15.247
Test Method: Based on ANSI 63.4:2003

Test Date: June 28, 2009 Frequency Range: 30MHz to 25GHz

Measurement Distance: 3m

Detector: Peak for pre-scan (120kHz resolution bandwidth)

Quasi-Peak if maximised peak within 6dB of limit

FCC ID: U6SJW3021

7.1Test Equipment

Please refer to Section 5 this report.

7.2Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on ANSI C63.4:2003, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at WALTEK SERVICES EMC Lab is +2 9 dB

7.3Test Procedure

- 1. New battery was used in the equipment under test for radiated emissions test.
- 2. This is a car charge device, The radiation emission was tested the normal position as fixed in the car. So the data shown was the position only.
- 3. Maximizing procedure was performed on the six (6) highest emissions to ensure EUT is compliant with all installation combinations.
- 4. All data was recorded in the peak and average detection mode.
- 5. The EUT was under working mode during the final qualification test and the configuration was used to represent the worst case results.

7.4Radiated Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15 Paragraph 15.209 limits and Paragraph 15.247 limits.

7.5Spectrum Analyzer Setup

According to FCC Part15 Paragraph 15.247 Rules, the system was tested to 25000 MHz. Below 1GHz

Start Frequency	30 MHz
Stop Frequency	1000 MHz
Sweep Speed Auto	
IF Bandwidth	120 kHz
Video Bandwidth	100KHz
Peak Adapter Bandwidth	120 kHz
Peak Adapter Mode	Normal
Resolution Bandwidth	100KHz

Above 1GHz

Start Frequency	1000 MHz
Stop Frequency	25000MHz
Sweep Speed Auto	
IF Bandwidth	120 kHz
Video Bandwidth	1MHz
Peak Adapter Bandwidth	120 kHz
Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

7.6Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

FCC ID: U6SJW3021

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

7.7 Summary of Test Results

According to the data in section 7.11, the EUT complied with the FCC Part15 Paragraph 15.247 standards.

7.8 EUT Operating Condition

The same as section 6.4 of this report.

Let the EUT work in test mode and test it.

7.9 Radiated Emissions Limit on Paragraph 15.209

Frequency(MHZ)	Distance(m)	Field strength(dBuV/m)
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

Note:

- (1) RF Voltage(dBuV)=20 log RF Voltage(uV)
- (2) In the Above Table, the tighter limit applies at the band edges.
- (3) Distance refers to the distance in meters between the measuring instrument antenna.
- (4)The emission limit in this paragraph is based on measurement instrumentation employing an average detector. Measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.

FCC ID: U6SJW3021

(5)Above 1GHz, mark a Peak and average measurements for all emissions,Limit for peak is 74dBuvV/m,According to Part15.35(b) and average is 54BuvV/m.

7.10 Radiated Emissions Test Result

Formula of conversion factors:the field strength at 3m was egtablished by adding The meter reading of the spectrum analyzer (which is set to read in units of dBuV/m) To the antenna correction factor supplied by the antenna manufacturer. The antenna Correction factors are stared in terms of dB. The gain of the pressletor was accounted For in the spectrum analyser meter reading.

FCC ID: U6SJW3021

Example:

Freq(MHz) Meter Reading +ACF=FS

33 20dBuV+10.36dB=30.36dBuV/m @3m

7.11 Radiated Emission Data

A. Test Item: Radiated Emission Data

Test Voltage: DC 12.0V
Test Mode: TX On
Temperature: 25.5 °C
Humidity: 51%RH
Test Result: PASS

Remarks: 30-1000MHz radiation test no significant emissions above the equipment noise floor were detected.

And the below is the Fundamental and Harmonic.

Frequenc	Detect	Antenna	Emission	FCC Part15	Margin	Antenna	Turntable
У	or	Polarizat	Level	Subpart C Limit	(dB)	Height	Angle
(MHz)	OI	ion	(dBuV/m)	(dBuV/m)	(uD)	(m)	(°)
			L	ow frequency			
2402.00	AV	Vertical	96.52		(Fund.)	1.2	150
4804.00	AV	Vertical	41.02	54.00	13.98	1.2	0
7206.00	AV	Vertical	35.23	54.00	19.73	1.5	120
9608.00	AV	Vertical	32.52	54.00	21.48	1.8	60
12010.00	AV	Vertical	31.25	54.00	22.75	1.6	90
14412.00	AV	Vertical	31.01	54.00	22.99	1.4	120
16814.00	AV	Vertical	30.02	54.00	23.98	1.7	100
19216.00	AV	Vertical	30.67	54.00	23.33	1.5	180
21618.00	AV	Vertical	29.63	54.00	24.34	1.6	120
24020.00	AV	Vertical	29.01	54.00	24.99	1.2	135
2402.00	AV	Horizontal	92.23		(Fund.)	1.2	120
4804.00	AV	Horizontal	41.12	54.00	12.88	1.2	150
7206.00	AV	Horizontal	36.21	54.00	17.79	1.5	120

9608.00	AV	Horizontal	34.25	54.00	19.75	1.2	180
12010.00	AV	Horizontal	33.21	54.00	20.79	1.5	135
14412.00	AV	Horizonta	31.25	54.00	22.75	1.2	120
16814.00	AV	Horizontal	30.74	54.00	23.26	1.5	180
19216.00	AV	Horizontal	32.01	54.00	21.99	1.8	60
21618.00	AV	Horizontal	31.53	54.00	22.47	1.2	90
24020.00	AV	Horizontal	30.01	54.00	23.99	1.5	90
2402.00	PK	Vertical	106.41		(Fund.)	1.5	180
4804.00	PK	Vertical	45.21	74.00	29.64	1.8	30
7206.00	PK	Vertical	40.01	74.00	33.99	1.6	110
9608.00	PK	Vertical	37.42	74.00	36.58	1.4	100
12010.00	PK	Vertical	36.21	74.00	37.79	1.2	90
14412.00	PK	Vertical	32.01	74.00	41.99	1.2	60
16814.00	PK	Vertical	33.21	74.00	40.79	1.4	90
19216.00	PK	Vertical	30.10	74.00	43.90	1.2	120
21618.00	PK	Vertical	29.01	74.00	44.99	1.7	120
24020.00	PK	Vertical	29.01	74.00	44.99	1.4	135
2402.00	PK	Horizontal	102.32		(Fund.)	1.8	180
4804.00	PK	Horizontal	41.24	74.00	32.76	1.8	60
7206.00	PK	Horizontal	38.25	74.00	35.75	1.8	120
9608.00	PK	Horizontal	36.98	74.00	37.02	1.2	180
12010.00	PK	Horizontal	35.69	74.00	38.31	1.2	90
14412.00	PK	Horizontal	35.62	74.00	38.38	1.5	90
16814.00	PK	Horizontal	33.35	74.00	40.65	1.8	150
19216.00	PK	Horizontal	33.01	74.00	40.99	1.5	150
21618.00	PK	Horizontal	30.21	74.00	43.79	1.2	120
24020.00	PK	Horizontal	30.01	74.00	43.99	1.2	180
		·	Mi	ddle frequency			
2441.00	AV	Vertical	92.21		(Fund.)	1.5	0
4882.00	AV	Vertical	39.02	54.00	14.98	1.2	90
7323.00	AV	Vertical	35.21	54.00	18.71	1.0	90
9764.00	AV	Vertical	33.33	54.00	20.67	1.2	0
12205.00	AV	Vertical	32.02	54.00	21.98	1.2	0
14646.00	AV	Vertical	32.01	54.00	21.99	1.2	150
17087.00	AV	Vertical	30.26	54.00	23.74	1.5	0
19528.00	AV	Vertical	30.01	54.00	23.99	1.5	0
21969.00	AV	Vertical	29.02	54.00	24.98	1.8	180
24410.00	AV	Vertical	28.23	54.00	25.77	1.2	90
2441.00	AV	Horizontal	92.96		(Fund.)	1.0	120
4882.00	AV	Horizontal	35.69	54.00	18.31	1.0	90
7323.00	AV	Horizontal	34.25	54.00	19.75	1.5	270
9764.00	AV	Horizontal	33.52	54.00	20.48	1.2	120
12205.00	AV	Horizontal	31.21	54.00	22.79	1.2	150
	·	· · · · · · · · · · · · · · · · · · ·	·		·	·	·

14646.00	AV	Horizontal	30.25	54.00	23.75	1.4	180
17087.00	AV	Horizontal	29.25	54.00	24.75	1.6	135
19528.00	AV	Horizontal	28.36	54.00	25.64	1.4	90
21969.00	AV	Horizontal	28.02	54.00	25.98	1.2	150
24410.00	AV	Horizontal	28.02	54.00	25.98	1.7	120
2441.00	PK	Vertical	107.52	34.00	(Fund.)	1.0	0
4882.00	PK	Vertical	44.21	74.00	29.79	1.1	90
7323.00	PK	Vertical	38.25	74.00	35.75	1.4	100
9764.00	PK	Vertical	37.94	74.00	36.06	1.3	120
12205.00	PK	Vertical	37.87	74.00	36.13	1.7	180
14646.00	PK	Vertical	36.10	74.00	38.90	1.2	0
17087.00	PK	Vertical	32.03	74.00	41.97	1.4	0
19528.00	PK	Vertical	30.21	74.00	43.79	1.5	120
21969.00	PK	Vertical	28.30	74.00	45.70	1.5	135
24410.00	PK	Vertical	28.30	74.00	45.70	1.2	120
2441.00	PK	Horizontal	103.45		(Fund.)	1.0	0
4882.00	PK	Horizontal	43.56	74.00	30.44	1.7	45
7323.00	PK	Horizontal	41.51	74.00	32.49	1.6	90
9764.00	PK	Horizontal	40.14	74.00	33.86	1.5	60
12205.00	PK	Horizontal	39.36	74.00	34.64	1.4	150
14646.00	PK	Horizontal	37.44	74.00	36.56	1.2	150
17087.00	PK	Horizontal	34.21	74.00	39.79	1.1	120
19528.00	PK	Horizontal	38.86	74.00	35.14	1.5	150
21969.00	PK	Horizontal	34.21	74.00	39.79	1.1	0
24410.00	PK	Horizontal	33.33	74.00	40.67	1.6	135
				ligh frequency	1		<u> </u>
2480.00	AV	Vertical	93.42		(Fund.)	1.0	0
4960.00	AV	Vertical	36.25	54.00	17.75	1.2	45
7440.00	AV	Vertical	32.25	54.00	21.75	1.2	120
9920.00	AV	Vertical	30.26	54.00	23.74	1.4	60
12400.00	AV	Vertical	30.55	54.00	23.45	1.5	135
14880.00	AV	Vertical	30.34	54.00	23.66	1.8	120
17360.00	AV	Vertical	30.62	54.00	23.38	1.1	100
19840.00 22320.00	AV AV	Vertical Vertical	30.13 30.27	54.00 54.00	23.87 23.73	1.1 1.4	60
24800.00			28.25	54.00	25.75	1.4	60
	AV	Vertical		34.00	1		0
2480.00 4960.00	AV AV	Horizontal Horizontal	92.51 34.56	54.00	(Fund.) 19.44	1.0	120
7440.00	AV	Horizontal	30.35	54.00	23.65	1.8	60
9920.00	AV	Horizontal	31.47	54.00	22.53	1.5	100
12400.00	AV	Horizontal	31.47	54.00	22.33	1.2	60
14880.00		Horizontal	32.42	54.00	 	1.2	
-	AV	+			21.58		120
17360.00	AV	Horizontal	31.17	54.00	22.83	1.4	100

10040 00	A 3.7	II amim am tal	22.55	54.00	21.45	1.0	100
19840.00	AV	Horizontal	32.55	54.00	21.45	1.8	100
22320.00	AV	Horizontal	32.86	54.00	21.14	1.3	100
24800.00	AV	Horizontal	30.25	54.00	22.75	1.6	10
2480.00	PK	Vertical	107.53		(Fund.)	1.0	0
4960.00	PK	Vertical	44.21	74.00	29.79	1.2	60
7440.00	PK	Vertical	35.62	74.00	38.38	1.8	90
9920.00	PK	Vertical	35.35	74.00	38.65	1.5	180
12400.00	PK	Vertical	35.56	74.00	38.44	1.4	60
14880.00	PK	Vertical	34.21	74.00	39.79	1.2	60
17360.00	PK	Vertical	33.54	74.00	40.46	1.2	135
19840.00	PK	Vertical	36.26	74.00	37.74	1.2	120
22320.00	PK	Vertical	36.73	74.00	37.27	1.6	60
24800.00	PK	Vertical	30.21	74.00	43.99	1.4	90
2480.00	PK	Horizontal	93.64		(Fund.)	1.1	60
4960.00	PK	Horizontal	42.58	74.00	31.42	1.4	90
7440.00	PK	Horizontal	38.64	74.00	35.36	1.5	60
9920.00	PK	Horizontal	35.37	74.00	38.63	1.3	0
12400.00	PK	Horizontal	35.52	74.00	38.48	1.2	135
14880.00	PK	Horizontal	35.26	74.00	38.74	1.7	0
17360.00	PK	Horizontal	36.41	74.00	37.59	1.8	180
19840.00	PK	Horizontal	32.41	74.00	41.59	1.5	60
22320.00	PK	Horizontal	31.11	74.00	42.89	1.8	120
24800.00	PK	Horizontal	28.21	74.00	45.79	1.0	60

8 Maximum Peak Output Power

Test Requirement: FCC Part15 Paragraph 15.247
Test Method: Based on ANSI 63.4:2003

Test Date: June 28, 2009

Test mode: Compliance test in the worse case: Tx Lower/Tx Middle/Tx

Upper

Requirements: Regulation 15.247(b) The limit of Maximum Peak Output

Power Measurement is 1W(30dBm)

FCC ID: U6SJW3021

Test procedure:

The following test procedure as below:

The transmitter output (antenna port) was connected to the spectrum analyzer.EUT and its simulators are placed on a table, let EUT working in test mode, then test it.

The bandwidth of the fundamental frequency was measured with the spectrum analyser using 1MHz RBW and 1MHz VBW.

Test Result: The unit does meet the FCC requirements.

Test Channel	Fundamental Frequency(MHz)	Output Power (mW)	Limit (W)	Power output level
Lower	2402	1.32	1	conducted
Middle	2441	1.32	1	conducted
Upper	2480	1.30	1	conducted

9 Antenna Requirement

According to FCC PART 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

9.1 Antenna Gain and Type

Table for Filed Antenn

Filed Antenn	Antenna Type	Connector	Gain (dBi)
	Printed Antenna	N/A	-2.36 (Max.)

10 Hopping Channel Number

Test Requirement: FCC Part15 C

Test Method: Based on FCC Part15 Paragraph 15.247

Test Date: June 28, 2009

Test mode: The EUT work in test mode(Tx) and test it

Requirements: Regulation 15.247(b) For frequency hopping systems operating

In the 2400-2483.5MHz band employing at least 15 hopping

FCC ID: U6SJW3021

channels.

Test result: The total number of channels would be 79 channels.

The unit does meet the FCC requirements.

Please refer the graph as below:

11 Frequency Separated

The requirements in this clause are only applicable to equipment using frequency hopping spread spectrum (FHSS) modulation.

FCC ID: U6SJW3021

Channel Separated

Definition:

A hopping channel is any of the centre frequencies defined within the hopping sequence of a FHSS system.

Limit:

Non-adaptive frequency hopping system shall make use of non-overlapping channels separated by the channel bandwidth as measured at 20dB below peak power.

The hopping channels defined within a hopping sequence shall be at least 1MHz apart(channel separation)

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Barometric Pressure: 1012 mbar

EUT Operation Condition:

The EUT was programmed to be in continuously transmitting mode.

Test Result: PASS

Test Channel	Channel Separation	PASS/FAIL
Lower Channels	1MHz	Pass
(channel 00 and channel 01)	TIVITIZ	F 488
Middle Channels	11/01	D
(channel 39 and channel 40)	1MHz	Pass
Upper Channels	11/01	T.
(channel 77 and channel 78)	1MHz	Pass

Please refer to the below photos for more details

Lower Channel 2402MHz

Middle Channel 2441MHz

Upper Channel 2480MHz

12 Dwell time

11.1 Definition:

The dwell time is the time spent at a particular frequency during any single hop.

FCC ID: U6SJW3021

Limit: the maximum dwell time shall be less than 0.4s.

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Barometric Pressure: 1012 mbar

EUT Operation Condition:

The EUT was programmed to be in continuously transmitting mode.

11.2 Test Procedure

The EUT output antenna port was connected to the spectrum analyzer. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz, and the frequency span to 0 Hz, measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting.

DH5 Packet permit maximum 1600/79/6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So,the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)
DH5	1600/79/6*31.6*(MkrDelta)/1000
DH3	1600/79/4*31.6*(MkrDelta)/1000
DH1	1600/79/2*31.6*(MkrDelta)/1000

Note: Mkr Delta is once pulse time.

11.3 Test Result: PASS

Please refer to the below photos for more details.

Channel 00 2402MHz

Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)
DH5	2402 MHz	3.075	0.326	0.400
DH3	2402 MHz	1.845	0.295	0.400
DH1	2402 MHz	0.535	0.195	0.400

FCC ID: U6SJW3021

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Channel 00 2402 MHz DH5

Channel 00 2402 MHz DH3

Channel 00 2402 MHz DH1

Channel 39 2441MHz

Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)
DH5	2441 MHz	3.075	0.326	0.400
DH3	2441 MHz	1.855	0.298	0.400
DH1	2441 MHz	0.530	0.192	0.400

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Channel 39 2441 MHz DH5

Channel 39 2441 MHz DH3

Channel 39 2441 MHz DH1

Channel 78 2480MHz

Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)
DH5	2480 MHz	3.135	0.334	0.400
DH3	2480 MHz	1.855	0.298	0.400
DH1	2480 MHz	0.535	0.195	0.400

FCC ID: U6SJW3021

Test Result: PASS

The Results are not be greater than 0.4 seconds.

Channel 78 2480 MHz DH5

Channel 78 2480 MHz DH3

Channel 78 2480 MHz DH1

13 20-dB Bandwidth

Test Requirement: FCC Part15 C

Test Method: Based on FCC Part15 Paragraph 15.247

Test Date: Nov. 22, 2008

Test mode: The EUT work in test mode(Tx) and test it

Test Procedure

1. The transmitter output (antenna port) was connected to the spectrum analyzer.

2. The bandwidth of the fundamental frequency was measure by spectrum analyser with 100KHz RBW and 100KHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power 20dB.

FCC ID: U6SJW3021

Test Result

Please refer the graph as below:

Lower Channel 2402MHz

Middle Channel 2441MHz

Upper Channel 2480MHz

14 Radiated Spurious Emissions Into Adjacent Restricted Band

FCC ID: U6SJW3021

Test Requirement: FCC Part15 Paragraph 15.205

Test Method: Based on FCC Part 15 Paragraph 15.247

Test Date: June 28, 2009

Requirements: The EUT work in test mode(Tx) and test it

Requiments:

emissions that fall in the restricted bands(15.205). Above 1000MHz, compliance with the emissions limits in section 15.209 shall be demonstrated based on the average value of the measured emissions, The provisions in section 15.35 apply to these measurements.

Test procedure:

An in band field strength measurement of the fundamental emission using the RBW and detector function required by C63.4-2003 and FCC Rules. The procedure was repeated with an average detector and a plot made. The calculated field strength in the adjacent restricted band is presented below.

Lower Bandedge/ Restricted Band (Peak Value)

Upper Bandedge/ Restricted Band (Peak Value)

15 RF Exposure Test

Test Requirement: FCC Part 2 Subpart J

Test Method: Based on FCC Part 15 Paragraph 15.247

Test Date: June 28, 2009

Requirements: The EUT work in test mode(Tx) and test it

Requiments:

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

FCC ID: U6SJW3021

The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

 $\mathbf{d} = \text{Separation distance between radiator and human body (m)}$

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

FCC ID: U6SJW3021

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm2)	Limit of Power Density (S) (mW/cm2)	Test Result
-2.36	0.581	1.21	1.32	0.000153	1	Complies
-2.36	0.581	1.21	1.32	0.000153	1	Complies
-2.36	0.581	1.15	1.30	0.000151	1	Complies

Remark: the formula of mW change to dBm is: dBm=10Lg(mW).

16 Photographs of Testing

Radiation Emission Test View For 30MHz-1000MHz

Radiation Emission Test View For 1GHz-25GHz

17 Photographs - Constructional Details

17.1 EUT - Front View

17.2 EUT - Back View

FCC ID: U6SJW3021

17.3 EUT-Open View

17.4 PCB - Front View

FCC ID: U6SJW3021

17.5 PCB - Back View

18 FCC ID Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference,and (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC ID: U6SJW3021

The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

