

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult.
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used.

Analysis of Algorithm

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- ◆Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Example: find the max Pseudocode integer in an array High-level description of function arrayMax(A, n)an algorithm Less detailed than a Input: int A[n]program Output: maximum element of A Preferred notation for **int** currentMax = A[0];describing algorithms **for** $(i = 1; i < n; i++){}$ Hides program design issues if (A[i] > currentMax) { A language that is <u>made</u> <u>up</u> for expressing currentMax = A[i]algorithms. Looks like English return currentMax combined with C, Pascal, whatever suites you. Analysis of Algorithm

Primitive Operations Basic computations performed by an algorithm Identifiable in pseudocode Largely independent of the programming language Analysis of Algorithm Examples: Evaluating an expression Assigning a value to a variable Comparison Calling a method


```
Analysis of nonrecursive algorithms

Identify the input size n
Identify the primitive operation
Set up a sum for the number of the times the primitive operation is executed
Simplify the sum to generate a function of n
```

```
Example: Set up a sum

Primitive operation: comparison

The sum: \sum_{i=1}^{n-1} 1, lower limit: initial loop condition upper limit: terminating condition one comparison each iteration

function arrayMax(A, n)
currentMax = A[0];
for (i = 1; i < n - 1; i + +){
        if (A[i] > currentMax) {
            currentMax = A[i];
        }
        return currentMax;
```

Example: Simplify a sum $\sum_{l=1}^{u} 1 = 1 + 1 + 1 + 1 + \dots + 1 = u - l + 1$ $\sum_{l=1}^{n-1} 1 = n - 1 - 1 + 1 = n - 1$ + We thus have the number of comparison: n - 1 $\begin{bmatrix} \textbf{function } & \textbf{arrayMax}(A, n) \\ & \textbf{currentMax} = A[0]; \\ & \textbf{for } (i = 1; i < = n - 1; i + +) \} \\ & \textbf{if } (A[i] > \textbf{currentMax}) \} \\ & \textbf{currentMax} = A[i]; \\ & \} \\ & \} \\ & \textbf{return } & \textbf{currentMax}; \end{bmatrix}$

Useful summation formulas and rules

```
\sum_{1 \le i \le n} 1 = 1 + 1 + \dots + 1 = u - i + 1
In particular, \sum_{1 \le I \le n} 1 = n - 1 + 1 = n
\sum_{1 \le I \le n} i = 1 + 2 + \dots + n = n (n + 1)/2 \approx n^2/2
\sum_{1 \le i \le n} i^2 = 1^2 + 2^2 + \dots + n^2 = n (n + 1)(2n + 1)/6 \approx n^3/3
\sum_{0 \le i \le n} a^{-i} = 1 + a + \dots + a^{-n} = (a^{-n+1} - 1)/(a - 1) \text{ for } a \ne 1
In particular, \sum_{0 \le i \le n} 2^i = 2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1
\sum_{0 \le i \le n} a^i = \sum_{1 \le i \le n} a^i = \sum_{1 \le i \le n} a^i = \sum_{1 \le i \le n} a^i
\sum_{1 \le n \ne 1} a^i = \sum_{1 \le i \le n} a^i = \sum_{1 \le i \le n} a^i
```

Example:

- ◆ Primitive operation: comparison
- \bullet Set up the sum: $f(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1$

This is a nested sum. The outer (left) sum is for the outer loop, the inner (right) sum is for the inner loop. They should be simplified from inner to outer.

```
 \begin{array}{l} \textbf{function } \textit{uniqueElement}(A, \textit{n}) \\ \textbf{for } (i = 0; i <= n-2; i++) \{ \\ \textbf{for } (j = i+1; j <= n-1; j++) \{ \\ \textbf{if } (A[i] = A[j]) \{ \\ return \ false; \\ \} \\ \} \\ \textbf{return } \textit{true}; \end{array}
```

Analysis of Algorithm

Example: simplify the sum

```
\begin{split} & \text{f}(\mathbf{n}) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} \mathbf{1} \\ & = \sum_{i=0}^{n-2} (n-1-i-1+1) = \sum_{i=0}^{n-2} (n-1-i) \\ & = \sum_{i=0}^{n-2} (n-1) - \sum_{i=0}^{n-2} \mathbf{i} \\ & = (\mathbf{n}-1) \sum_{i=0}^{n-2} \mathbf{1} - (\mathbf{n}-2)(n-1)/2 \\ & = (n-1)^2 - (n-2)(n-1)/2 = (n-1)n/2 \approx n^2/2 \\ & \\ & \text{function } \underbrace{uniqueElement(A, n)}_{\text{for } (i = 0; i < \mathbf{n}-2; i++) \{}_{\text{for } (j = i+1; j < -\mathbf{n}-1; j++) \{}_{\text{if } (A[i] = A[j]) \{}_{\text{return } false;}_{\text{} \}}_{\text{} \}}_{\text{} \}}_{\text{} \\ & \text{} \\ & \text{return } true;} \end{split}
```


Big-Oh Rules

- If f(n) is a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - 1. Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Analysis of Algorithm

19

Big-Oh Algorithm Analysis

- The analysis of an algorithm determines the running time in big-Oh notation
- To perform the analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We determine that algorithm *arrayMax* executes at most n-1 primitive operations
- We say that algorithm arrayMax "runs in O(n) time"
 Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Analysis of Algorithm

20

Traversals

- Traversals involve visiting every node in a collection of size n.
- Because we must visit every node, a traversal must be O(n) for any data
 - ullet If we visit less than n elements, then it is not a traversal.
 - If we have to process every node during traversal, then O(process)*O(n)

Analysis of Algorithm

21

Searching for an Element

Searching involves determining if an element is a member of the collection.

- ♦ Simple/Linear Search:
 - If there is no ordering in the data structure
 - If the ordering is not applicable
- Binary Search:
 - If the data is ordered or sorted
 - Requires non-linear access to the elements

Analysis of Algorithm

22

Simple Search

- Worst case: the element to be found is the n th element examined, or an unsuccessful search
- Simple search must be used for:
 - Sorted or unsorted linked lists
 - Unsorted array
 - Binary tree (to be discussed)

Big-O of Simple Search The algorithm has to examine every element in the collection ■ To return a false ■ If the element to be found is the n th element Thus, simple search is O(n).

Binary Search Big-O

- An element can be found by comparing and cutting the work in half.
 - We cut work in ½ each time
 - How many times can we cut in half?
 - Log₂n
- Thus binary search is O(Log n).

Analysis of Algorithm

```
Recall
\log_2 n = k \cdot \log_{10} n
k = 0.30103...
So: O(\lg n) = O(\log n)
In general:
O(C*f(n)) = O(f(n))
if C is a constant
Analysis of Algorithm 32
```

Insertion

- Inserting an element requires two steps:
 - Find the right location
 - Perform the instructions to insert
- If the data structure in question is unsorted, then it is O(1)
 - Simply insert to the front in the case of a linked liet
 - Simply insert to end in the case of an array
 - There is no work to find the right spot and only constant work to actually insert.

Analysis of Algorithm

33

Insert into a Sorted Linked List

Finding the right spot is O(n)

Recurse/iterate until found

Performing the insertion is O(1)

Total work is O(n + 1) = O(n)

Analysis of Algorithm

34

Inserting into a Sorted Array

Finding the right spot is O(Log *n*)

■ Binary search on the element to insert

Performing the insertion

 Shuffle the existing elements to make room for the new item

Analysis of Bubblesort Step 1. ? Step 2. ? Step 3. ? Step 4. ? Analysis of Algorithm 43

O(n²) Runtime Example Assume you are sorting 250,000,000 items: n = 250,000,000 $n^2 = 6.25 \times 10^{16}$ If you can do one operation per nanosecond (10⁻⁹ sec) It will take 6.25 x 10⁷ seconds So 6.25×10^7 $60 \times 60 \times 24 \times 365$ = 1.98 years

Analysis of Mergesort

Phase I

- Divide the list of n numbers into two lists of n/2 numbers
- Divide those lists in half until each list is size 1
 Log n steps for this stage.

Phase II

- Build sorted lists from the decomposed lists
- Merge pairs of lists, doubling the size of the sorted lists each time

Log *n* steps for this stage.

Analysis of Algorithm 47

Mergesort Complexity

Each of the *n* numerical values is compared or copied during each pass

- The total work for each pass is O(n).
- There are a total of Log *n* passes

Therefore the complexity is:

 $O(\underbrace{\log n + n * \log n}) = O(n * \log n)$ Break apart Merging

O(n Logn) Runtime Example Assume same 250,000,000 items n*Log(n) = 250,000,000 x 8.3 = 2, 099, 485, 002 With the same processor as before 2 seconds

Analysis of Algorithm

Reasonable vs. Unreasonable Reasonable algorithms have polynomial factors O (Log n) O (n) O (n') Where K is a constant Unreasonable algorithms have exponential factors O (2") O (n!) O (n")

Algorithmic Performance Thus Far Some examples thus far: O(1) Insert to front of linked list O(n) Simple/Linear Search O(n Log n) MergeSort O(n²) BubbleSort But it could get worse: O(n³5), O(n²000), etc.

Where Does this Leave Us? ◆ Clearly algorithms have varying runtimes. ◆ We'd like a way to categorize them: ■ Reasonable, so it may be useful ■ Unreasonable, so why bother running

Perf	ormance Cate	egories of Algorithms
<u>.</u> (Sub-linear	O(Log n)
E	Linear	O(n)
Polynomia	Nearly linear	$O(n \log n)$
<u>.</u>	Quadratic	O(n ²)
	Exponential	0(2")
		O(n!)
		$O(n^n)$

Reasonable vs. Unreasonable		
Reasonable algorithms have polynomial factor O (Log n) O (n) O (n') where K is a constant	S	
Unreasonable algorithms have exponential factors • O (2") • O (n!) • O (n")		
Analysis of Algorithm	63	

Properties of the O notation

- - If f is O(g) and g is O(h) then f is O(h)
- Product of upper bounds is upper bound for the product
 - If f is O(g) and h is O(r) then f*h is O(g*r)
- All logarithms grow at the same rate
 - $\log_b n$ is $O(\log_d n) \ \forall \ b, d > 1$

Analysis of Algorithm

Simple Examples: Simple statement sequence \$i_1; 5_2; ...; 5_k • O(1) as long as k is constant Simple loops \$for(i=0;i<n;i++) { s; } where s is O(1) • Time complexity is \$n*O(1)\$ or \$O(n)\$ Nested loops \$for(i=0;i<n;i++) { s; } • Complexity is \$O(n^2)\$ Analysis of Algorithm 68