數值線性代數 HW3

b05502087 王竑睿

1 Consider the basic iterative method

$$Mx_{k+1} = Nx_k + b$$

1.1 (a) Show that the spectral radius of $G = M^{-1}N$ approximately satisfies

$$\rho(G) \approx \frac{x_{k+1} - x_k}{x_k - x_{k-1}}$$

藉由 power method,

知道 y_{k-1} 會趨近於dominant eigenvector y

$$\Rightarrow y_k = Gy_{k-1} \approx Gy = \lambda y \approx \lambda y_{k-1}$$

$$\Rightarrow \frac{\|y_k\|}{\|y_{k-1}\|} \approx |\lambda| = \rho(G)$$

$$\Rightarrow \rho(G) \approx \frac{\|x_{k+1} - x_k\|}{\|x_k - x_{k-1}\|}$$

1.2 (b) Show that if $\rho(M^{-1}N)$ is known, an estimate for the error is given by

$$||x_k - x||_2 \le \frac{\rho(G)}{1 - \rho(G)} ||x_k - x_{k-1}||_2$$

先證明 $||e_{k+1}||_2 \le \rho(G)||e_k||_2$

$$\begin{aligned} x_{k+1} &= M^{-1}(b + Nx_k) \\ \Rightarrow x_{k+1} &= x_k + M^{-1}(b - Ax_k) \quad (A = M - N) \\ \Rightarrow e_{k+1} &= x - x_{k+1} = (x - x_k) - M^{-1}(b - Ax_k) \\ \Rightarrow e_{k+1} &= (x - x_k) - M^{-1}A(x - x_k) \\ \Rightarrow e_{k+1} &= (I - M^{-1}A)(x - x_k) \\ \Rightarrow e_{k+1} &= (I - M^{-1}(M - N))e_k \\ \Rightarrow e_{k+1} &= M^{-1}Ne_k \\ \Rightarrow \|e_{k+1}\|_2 &= \|M^{-1}Ne_k\|_2 \le \|M^{-1}N\|_2 \|e_k\|_2 \\ \Rightarrow \|e_{k+1}\|_2 \le \rho(M^{-1}N) \|e_k\|_2 \quad \text{(matrix spectral radius is less than norm)} \end{aligned}$$

$$\begin{aligned} &\|e_k\|_2 \le \rho(G) \|e_{k-1}\|_2 \\ \Rightarrow &\|x - x_k\|_2 \le \rho(G) \|x - x_{k-1}\|_2 \\ \Rightarrow &\|x - x_k\|_2 \le \rho(G) (\|x - x_k\|_2 + \|x_k - x_{k-1}\|_2) \quad (三角不等式) \\ \Rightarrow &\|x - x_k\|_2 \le \frac{\rho(G)}{1 - \rho(G)} (\|x_k - x_{k-1}\|_2) \\ \Rightarrow &\|x_k - x\|_2 \le \frac{\rho(G)}{1 - \rho(G)} (\|x_k - x_{k-1}\|_2) \end{aligned}$$

2 Consider a 500 x 500 sparse matrix A constructed as described in Trefethen and Bau's book on P. 300.

利用以下code,産生A,b

```
function [A,b] = genA(m,n,t)
    % 1 at diagonal
    % random [-1,1] at each off-diagonal (symmtric)
    \% each off-diagonal if abs()>t become zero
    A = zeros(m, n);
    for i = 1:m
        for j = 1:i
             if ( i==j )
                 A(i, j) = 1;
             else
                 putIn = (-1+2*rand(1,1));
                 if(abs(putIn)>t)
                     A(i,j) = 0;
                     A(j, i) = 0;
                 else
                     A(i,j) = putIn;
                     A(j,i) = putIn;
                 end
             end
        end
    b = -1 + 2*rand(m, 1);
    \%b = rand(m, 1);
end
```

2.1 (a) Reproduce Fig.38.1 (the CG convergence curves for this matrix) shown at P.

利用以下code,進行conjugate gradient method

```
function [X,Y,x,r]=CG(A,b,N)

[m,n] = size(A);

Alpha = zeros(1,N+1); \%20 iteration

Beta = zeros(1,N+1); \%20 iteration

r = zeros(m,N+1); \%20 iteration residual
```

```
p = zeros(m, N+1); \%20 iteration
x = zeros(n, N+1); \%20 iteration
x(:,1) = zeros(n,1);
r(:,1) = b; \%m
p(:,1) = r(:,1);
X = [1:N+1];
Y = zeros(1,N+1);
Y(1,1) = norm(r(:,1),2);
for i = 2:N+1
    Aup = r(:, i-1)**r(:, i-1);
    Adown = p(:, i-1)**A*p(:, i-1);
    Alpha(1,i) = Aup/Adown;
    x(:, i) = x(:, i-1) + Alpha(1, i) *p(:, i-1);
    r(:, i) = r(:, i-1) - Alpha(1, i) *A*p(:, i-1);
    Bup = r(:, i) * r(:, i);
    Bdown = r(:, i-1)**r(:, i-1);
    Beta(1, i) = Bup/Bdown;
    p(:, i) = r(:, i) + Beta(1, i) * p(:, i-1);
    norm(r(:,i),2)
    Y(1, i) = norm(A*x(:, i)-b, 2);
end
\%norm(r(:,N+1),2)
```

end

2.2 (b) Produce a plot for $\tau = 0.01, 0.05, 0.1$ indicating how closely the above estimates match the actual convergence rate

利用以下code, 計算 convergence rate 以及 error estimate

```
function [X,Y,Y2] = condition (A,b,N,xCG)

[m,n] = size(A);

%kappa = norm(inv(A),2)*norm(A,2);

%using eigenvalue to get kappa

[V,D] = eig(A);

lambda_max = max(max(diag(D)));

lambda_min = min(min(diag(D)));

kappa = lambda_max/lambda_min;

xT = A \setminus b;

%norm(A*xT-b,2)

e = zeros(m,N+1);

e(:,1) = xT-xCG(:,1);

e1A = sqrt(e(:,1) *A*e(:,1))

X = [1:N+1];
```


● 由圖可知,在收斂前,conjugate-gradient method的convergence rate確實會以此estimate為upper bound 且兩者的值相當接近

2.3 (c) Use the method of steepest descent to solve this linear system again and compare results with those obtained using CG.

利用以下code, 進行steepest descent method

```
function [X,Y,x,r] = steepest(A,b,N)
    [m,n] = size(A);
    Alpha = zeros(1,N+1); \%20 iteration
    r = zeros(m,N+1); \%20 iteration residual
    x = zeros(n,N+1); \%20 iteration
    x(:,1) = zeros(n,1);
    r(:,1) = b; \%m
    X = [1:N+1];
    Y = zeros(1,N+1);
    Y(1,1) = norm(r(:,1),2);
    for i = 2:N+1
        Aup = r(:, i-1) * r(:, i-1);
        Adown = r(:, i-1)*A*r(:, i-1);
        Alpha(1, i) = Aup/Adown;
        x(:,i) = x(:,i-1) + Alpha(1,i) * r(:,i-1);
        r(:,i) = r(:,i-1) - Alpha(1,i) * (A*r(:,i-1)); %steepest
        Y(1, i) = norm(A*x(:, i)-b, 2);
    end
end
```


• 由圖可知steepest descent method的收斂速度較conjugate gradient method慢

2.4 (d) Redo this problem also using the preconditioned conjugate-gradient method with the gauss-Seidel preconditioner M = D+L. Comments on your results.

利用以下code, 進行 preconditioned conjugate-gradient method with gauss-Seidel preconditioner

```
\begin{tabular}{ll} \beg
```


- 由圖可知, preconditioned conjugate-gradient method的收斂速度較快
- $\tau = 0.01$ 時,可利用preconditioned matrix提前2個iteration收斂
- $\tau = 0.05$ 時,可利用preconditioned matrix提前4個iteration收斂