

## Condensadores e dieléctricos.

- **1.** Vários condensadores são carregados com a mesma bateria. Qual o efeito dos seguintes factores na quantidade de carga armazenada nos condensadores?
  - a) A distância entre as placas de um condensador plano de placas paralelas.
  - b) A área das placas
  - c) A diferença de potencial aos terminais da bateria.
- **2.** Qual deve ser a área das placas de um condensador de placas planas e paralelas, com 0.15 mm de separação entre elas, para que tenha capacidade de 1F?
- 3. Um condensador é constituído por duas placas circulares, paralelas, afastadas 2mm. Quando a carga das placas é 10µC o campo eléctrico entre as placas é de 3×10<sup>5</sup>V/m.
  - a) Calcule a diferença de potencial entre as placas.
  - b) Calcule o raio das placas.
- **4.** Uma bateria de 6V é utilizada para carregar dois condensadores de capacidades  $C_1=10\mu F$  e  $C_2=15\mu F$ . Calcule a carga armazenada em cada um dos condensadores quando:
  - a) Cada condensador é carregado, separadamente, ligado diretamente à bateria.
  - b) Os dois condensadores são ligados à bateria em paralelo.
  - c) Os dois condensadores são ligados à bateria em série.

condensadores quando, após se fechar o interruptor, o

5. Um condensador com capacidade  $C_1$ =3.55 $\mu$ F é ligado a uma bateria e carregado até que a diferença de potencial aos seus terminais seja de  $V_0$ =6.30 V. Então desliga-se o condensador da bateria e liga-se este a um segundo condensador,  $C_2$ =8.95 $\mu$ F, que se encontra descarregado (ver figura). Calcule a carga em cada um dos

equilíbrio é atingido.

2013/2014



**6.** Calcule a capacidade equivalente da combinação de condensadores da figura ( $C_1$ =12.0 $\mu$ F,  $C_2$ =5.3 $\mu$ F e  $C_3$ =4.5 $\mu$ F). Calcule a carga armazenada em cada um dos condensadores quando a diferença de potencial aplicada, V, é 12.5V.



**7.** Os condensadores do circuito esquematizado na figura estão inicialmente descarregados. Suponha que se estabelece a ligação 0-1. Calcule a carga e o potencial de cada condensador depois de atingido o equilíbrio.



- **8.** Suponha agora que, no circuito do problema anterior, se desfaz a ligação 0-1 e se estabelece a ligação 0-2. Determine a carga de cada condensador uma vez atingido o novo estado de equilíbrio.
- 9. Um condensador de placas paralelas é constituído por uma folha de polietileno de 0.3mm de espessura ( $\varepsilon_r$ =2.3) revestida, de ambos os lados, por folha de alumínio. A área de cada folha é  $400\text{cm}^2$ . Calcular a capacidade do condensador.
- **10.** Determine a capacidade de um condensador de placas paralelas com uma área de 0.5 mm<sup>2</sup> separadas por uma distância de 0.01 m, e um dieléctrico de papel com uma constante dieléctrica de 3.5.
- **11.** Dois condensadores em paralelo estão ligados a uma linha de 120 V. Um deles tem uma carga de 0.00006 C e o outro tem uma carga de 0.000048 C. Determine a capacidade de cada condensador e a capacidade total do conjunto.

2013/2014



- **12.** Duas placas paralelas têm as cargas +Q e –Q. Quando o espaço entre as placas está vazio, o campo eléctrico entre elas é  $2.5 \times 10^5 \text{V/m}$ . Quando o espaço está preenchido com um dado dieléctrico, o campo fica reduzido a  $1.2 \times 10^5 \text{V/m}$ .
  - a) Calcule a constante dieléctrica do dieléctrico.
  - b) Se a carga do condensador for de 10nC, qual é a área das placas?
  - c) Qual é a carga induzida sobre qualquer das faces da camada de dieléctrico?
- **13.** Liga-se um condensador, constituído por duas placas quadradas de 14 cm de lado, a uma bateria de 12 V, até este ficar carregado. Nessa altura desliga-se o condensador da bateria e aumenta-se a distancia entre placas de 2.0mm para 3.5mm.
  - a) Qual é a carga do condensador?
  - b) Que energia foi armazenada no condensador?
  - c) calcule a energia armazenada no condensador, após o afastamento das placas
- 14. A figura ilustra um condensador de placas paralelas com uma área  $A = 5.56 \text{ cm}^2$  e uma

separação d=5.56 mm. O espaço entre as placas do condensador é preenchido com materiais dieléctricos de constante dieléctrica  $\epsilon_{r1}$ =7.0 e  $\epsilon_{r2}$ =12.0. Calcule a capacidade do condensador.



15. A figura ilustra um condensador de placas paralelas com uma área  $A = 10.5 \text{ cm}^2$  e uma

separação 2d=7.12 mm. O espaço entre as placas do condensador é preenchido com materiais dieléctricos de constante dieléctrica  $\epsilon_{r1}$  =21.0,  $\epsilon_{r2}$ =42.0 e  $\epsilon_{r3}$  =58.0. Calcule a capacidade do condensador.



2013/2014