

## **Digital Logic**

## **Pocket Data Book**

2003 SLL

#### IMPORTANT NOTICE

lexas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, inhancements, improvements, and other changes to its products and services at any time and to discontinue my product or service without notice. Customers should obtain the latest relevant information before placing writers and should worstly that such information is current and complete. All products are sold subject to TI's terms and should worstly that such information is current and complete. All products are sold subject to TI's terms and conditions at sets currelled at the time of order archanologically.

## Digital Logic Pocket Data Book

I'l does not warrant or represent that any license, either express or implied, is granted under any TI patent man copyright, mask work right, or offrer TI intellectual property right relating to any combination, machine, or process in which TI products a reservices are used. Information published by TI regarding third—party products or services focus not constitute a license from TI to use such products or services or a warranty or endorsement thereo Jee of such information may require a license from a third party under the patents or other intellicatual proper of the Intellication of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is sufficient adjusted warranties, conditions, limitations, and notices. Reproduction alternation with affection is an unfair and deceptive business practice. This not responsible or liable to work affect documentation.

Reasle of TI products or services with statements different from or beyond the parameters stated by 11 or mai product or service voids all express and any implied warranties for the associated TI product or service and ta an unitair and deceptive business graditics. Ti is not responsible or liable for any such statements.

Vailing Address:

fexas Instruments Post Office Box 855303 Selles, Texas 75265

Servicion of 2002 Taxas Instruments Incomprehed



#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated



#### Little Logic

| Series          | Supply Voltage Vcc (V) | Operating Free-air Temperature Ta ( $^{\circ}$ C) |
|-----------------|------------------------|---------------------------------------------------|
| SN74AUC1G/2G/3G | 0.8~2.7                | -40~85                                            |
| SN74LVC1G/2G/3G | 1.65~5.5               | -40~85                                            |
| SN74AHC1G       | 2.0~5.5                | -40~85                                            |
| SN74AHC1GxxH    | 2.0~5.5                | -40~85                                            |
| SN74AHC2GxxH    | 2.0~5.5                | -40~85                                            |
| SN74AHCT1G      | 4.5~5.5                | -40~85                                            |

#### GATE/OCTAL/Widebus<sup>TM</sup>/Widebus+

| Series                                | Supply Voltage Vcc (V) | Operating Free-air<br>Temperature Ta (°C) |
|---------------------------------------|------------------------|-------------------------------------------|
| SN74ABT                               | 4.5~5.5                | -40~85                                    |
| SN74BCT<br>SN74F<br>SN74ALS<br>SN74AS | 4.5~5.5                | 0~70                                      |
| SN74LS<br>SN74S<br>SN74xx(STD)        | 4.75~5.25              | 0~70                                      |
| SN74AC<br>SN74AC11<br>SN74AHC         | 2.0~5.5                | -40~85                                    |
| SN74HC                                | 2.0~6.0                | -40~85                                    |
| SN74LV                                | 2.0~5.5                | -40~85                                    |
| SN74LVC                               | 2.0~3.6                | -40~85                                    |
| SN74LVT                               | 2.7~3.6                | -40~85                                    |
| SN74ALVC                              | 1.65~3.6               | -40~85                                    |
| SN74ALVT                              | 2.3~3.6                | -40~85                                    |
| SN74AVC                               | 1.4~3.6                | -40~85                                    |

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty.

Production processing does not necessarily include testing of all parameters. See www.ti.com/sc/logic for the most current data sheets.

#### Little Logic

#### GATE/OCTAL/Widebus<sup>TM</sup>/Widebus+

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the second for Texas Instruments standard warranty.

Production processing does not necessarily include testing of all parameters. See www.ii.com/sc/logic for the most current data sheets.

## **INDEX**



| LWV T | TTL                                                                      | 20 |
|-------|--------------------------------------------------------------------------|----|
| 1GU04 | SINGLE INVERTER GATE// TUSI/I-8 JAUG                                     | 28 |
| 1G06  | SINGLE BUFFER/DRIVER WITH OPEN-DRAIN OUTPUT                              | 29 |
| 1G07  | SINGLE BUFFER/DRIVER WITH OPEN-DRAIN OUTPUT                              | 29 |
| 1G08  | SINGLE 2-INPUT POSITIVE-AND GATE                                         | 30 |
| 1G14  | SINGLE SCHMITT-TRIGGER INVERTER                                          | 30 |
| 1G17  | SINGLE SCHMITT-TRIGGER BUFFER                                            | 31 |
| 1G18  | 1-OF-2 NONINVERTING DEMULTIPLEXER                                        | 31 |
| 298   | WITH 3-STATE DESELECTED OUTPUT                                           |    |
| 1G32  | SINGLE 2-INPUT POSITIVE-OR GATE                                          | 32 |
| 1G66  | SINGLE ABILATERAL ANALOG SWITCH                                          | 32 |
| 1G79  | SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP                          | 33 |
| 1G80  | SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP                          | 33 |
| 1G86  | SINGLE 2-INPUT EXCLUSIVE-OR GATE                                         | 34 |
| 1G125 | SINGLE BUS BUFFER GATE WITH 3-STATE OUTPUT                               | 34 |
| 1G126 | SINGLE BUS BUFFER GATE WITH 3-STATE OUTPUT                               | 35 |
| 1G240 | SINGLE BUFFER/DRIVER WITH 3-STATE OUTPUT                                 | 35 |
| 2G00  | DUAL 2-INPUT POSITIVE-NAND GATE                                          | 36 |
| 2G02  | DUAL 2-INPUT POSITIVE-NOR GATE                                           | 36 |
| 2G04  | DUAL INVERTER GATE                                                       | 37 |
| 2GU04 | DUAL INVERTER GATE                                                       | 37 |
| 2G06  | DUAL BUFFER/DRIVER WITH OPEN-DRAIN OUTPUTS                               | 38 |
| 2G07  | DUAL BUFFER/DRIVER WITH OPEN-DRAIN OUTPUTS                               | 38 |
| 2G08  | DUAL 2-INPUT POSITIVE-AND GATE                                           | 39 |
| 2G14  | DUAL SCHMITT-TRIGGER INVERTER                                            | 39 |
| 2G17  | DUAL SCHMITT-TRIGGER BUFFER                                              | 40 |
| 2G32  | DUAL 2-INPUT POSITIVE-OR GATE                                            | 40 |
| 2G34  | DUAL BUFFER GATE                                                         | 41 |
| 2G53  | DUAL ANALOG MULTIPLEXER/DEMULTIPLEXER                                    | 41 |
| 2G66  | DUAL BILATERAL ANALOG SWITCH                                             | 42 |
| 2G74  | SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE<br>FLIP-FLOP WITH CLEAR AND PRESET | 42 |
| 2G86  | DUAL 2-INPUT EXCLUSIVE-OR GATE                                           | 43 |
| 2G125 | DUAL BUS BUFFER GATE WITH 3-STATE OUTPUTS                                | 43 |
| 2G126 | DUAL BUS BUFFER GATE WITH 3-STATE OUTPUTS                                | 44 |
| 2G157 | SINGLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER                        | 44 |
| 2G240 | DUAL BUFFER/DRIVER WITH 3-STATE OUTPUTS                                  | 45 |
| 2G241 | DUAL BUFFER/DRIVER WITH 3-STATE OUTPUTS                                  | 45 |
| 3G04  | TRIPLE INVERTER GATE                                                     | 46 |
| 3G06  | TRIPLE INVERTER BUFFER/DRIVER WITH OPEN-DRAIN OUTPUTS                    | 46 |
| 3G07  | TRIPLE BUFFER/DRIVER WITH OPEN-DRAIN OUTPUTS                             | 47 |
| 3G14  | TRIPLE SCHMITT-TRIGGER INVERTER                                          | 47 |
| 3G17  | TRIPLE SCHMITT-TRIGGER BUFFER                                            | 48 |
| 3G34  | TRIPLE BUFFER GATE                                                       | 48 |

|     | TTL                                      |     |
|-----|------------------------------------------|-----|
| 03  | QUAD 2-INPUT NAND O.C.                   | 142 |
| 04  | HEX INVERTERS                            | 143 |
| U04 | HEX INVERTERS - 00000 3MJ = 0T-5 JAU0    | 144 |
| 05  | HEX INVERTERS O.C.                       | 144 |
| 06  | HEX INVERTER BUFFERS/DRIVERS O.C         | 145 |
| 07  | HEX BUFFERS/DRIVERS O.C                  | 145 |
| 08  | QUAD 2-INPUT AND                         | 146 |
| 09  | QUAD 2-INPUT AND O.C                     | 147 |
| 10  | TRIPLE 3-INPUT NAND                      | 148 |
| 11  | TRIPLE 3-INPUT AND                       | 149 |
| 14  | HEX SCHMITT-TRIGGER INVERTERS            | 150 |
| 16  | HEX INVERTER BUFFERS/DRIVERS O.C         | 151 |
| 17  | HEX BUFFERS/DRIVERS O.C                  | 151 |
| 19  | HEX SCHMITT-TRIGGER INVERTERS            | 152 |
|     |                                          | -   |
| 20  | DUAL 4-INPUT NAND ATAC BALL POT-S CAUC   | 153 |
| 21  | DUAL 4-INPUT AND GOOD BUILDINGS          | 154 |
| 25  | DUAL 4-INPUT NOR WITH STROBE             | 154 |
| 26  | QUAD 2-INPUT HIGH VOLTAGE INTERFACE NAND | 155 |
| 27  | TRIPLE 3-INPUT NOR TRIBLE THE TIES       | 155 |
| 30  | 8-INPUT NAND   2011 TELES   THE TIES     | 156 |
| 31  | DELAY ELEMENTS BERIDBA THIS TIB-8        | 156 |
| 32  | QUAD 2-INPUT OR ONG HOM 2 MWOG-9U        | 157 |
| 33  | QUAD 2-INPUT NOR BUFFERS O.C.            | 158 |
| 35  | HEX NON-INVERTERS WITH O.C.              | 158 |
| 37  | QUAD 2-INPUT NAND BUFFERS                | 159 |
| 38  | QUAD 2-INPUT NAND BUFFERS O.C.           | 159 |
| 42  | 4-LINE TO 10-LINE DECODER TO A TIEL      | 160 |
| 45  | BCD-TO-DECIMAL DECODER/DRIVER            | 162 |
| 47  | BCD-TO-SEVEN SEGMENT DECODERS/DRIVERS    | 164 |
| 51  | AND-OR-INVERTIOORU BUOMORHOMYS           | 166 |
| 64  | 4-2-3-2 INPUT AND-OR-INVERT              | 167 |
| 73  | DUAL J-K FLIP-FLOPS 2009 20040AH0MY2     | 168 |
| 74  | DUAL D-TYPE FLIP-FLOPS TO BRIGHT TIBAL   | 170 |
| 75  | 4-BIT BISTABLE LATCHES                   | 172 |
| 85  | 4-BIT COMPARATORS MATERIALISM AUG        | 173 |
| 86  | QUAD 2-INPUT EXCLUSIVE-OR                | 174 |
| 90  | DECADE COUNTER 100010 11/11/8-01         | 175 |
| 92  | DIVIDE-BY-12 COUNTERS OF BUILDING        | 176 |
| 93  | 4-BIT BINARY COUNTERS                    | 177 |
| 97  | SYNCHRONOUS 6-BIT BINARY RATE MULTIPLIER | 178 |
| 107 | DUAL J-K FLIP-FLOPS                      | 180 |
| 109 | DUAL J-K FLIP-FLOPS EVISIO BUB JATOO     | 182 |
| 112 | DUAL J-K FLIP-FLOPS                      | 184 |
| 121 | MONOSTABLE MULTIVIBRATORS                | 186 |
| 122 | MONOSTABLE MULTIVIBRATORS                | 187 |
| 123 | DUAL MONOSTABLE MULTIVIBARATORS          | 188 |
| 124 | DUAL VOLTAGE-CONTROLLED OSCILLATORS      | 189 |
| 125 | QUAD BUS BUFFER GATES 3-STATE            | 190 |
| 126 | QUAD BUS BUFFER GATES 3-STATE            | 191 |
| 128 | LINE DRIVER BYATE & SHBXBLISHT JUM       | 192 |
|     |                                          |     |

| Page   | TTL<br>CMOS SN74<br>BiCMOS                              | Page |
|--------|---------------------------------------------------------|------|
| Device | Function                                                |      |
| 132    | QUAD 2-INPUT NAND SCHMITT TRIGGERS                      | 192  |
| 133    | 13-INPUT NANDO O GMAM TUGIM-S GAUGO                     | 193  |
| 136    | QUAD EXCLUSIVE-OR O.C.                                  | 193  |
| 137    | 3-TO-8 LINE DECODERS/DEMULTIPLEXERS LATCH               | 194  |
| 138    | 3-TO-8 LINE DECODERS/DEMULTIPLEXERS                     | 196  |
| 139    | DUAL 2-TO-4 LINE DECODERS/DEMULTIPLEXERS                | 198  |
| 140    | DUAL 4-INPUT NAND LINE DRIVERS                          | 200  |
| 145    | BCD-TO-DECIMAL DECODERS/DRIVERS                         | 201  |
| 147    | 10-TO-4 LINE PRIORITY ENCODER                           | 202  |
| 148    | 8-TO-3 LINE PRIORITY ENCODERS                           | 204  |
| 150    | 1-OF-16 DATA SELECTOR USING GAUG                        | 206  |
| 151    | 8-TO-1 LINE DATA SELECTORS/MULTIPLEXERS                 | 208  |
| 153    | DUAL 4-TO-1 LINE DATA SELECTORS/MULTIPLEXERS            | 210  |
| 154    | 4-TO-16 LINE DECODERS/DEMULTIPLEXER                     | 212  |
| 155    | DUAL 2-TO-4 LINE DECODERS/DEMOLTIPLEXERS                | 214  |
| 156    | DUAL 2-TO-4 LINE DECODERS/DEMULTIPLEXERS                |      |
|        |                                                         | 216  |
| 157    | QUAD 2-TO-1 LINE DATA SELECTORS/MULTIPLEXERS            | 218  |
| 158    | QUAD 2-TO-1 LINE DATA SELECTORS/MULTIPLEXERS            | 220  |
| 159    | 4-TO-16 LINE DECODER/MULTIPLEXER                        | 222  |
| 161    | SYNCHRONOUS BINARY COUNTERS                             | 224  |
| 163    | SYNCHRONOUS BINARY COUNTERS                             | 226  |
| 164    | 8-BIT SHIFT REGISTERS (P-OUT SERIAL)                    | 228  |
| 165    | 8-BIT SHIFT REGISTERS (P-LOAD)                          | 230  |
| 166    | 8-BIT SHIFT REGISTERS (P-LOAD)                          | 232  |
| 169    | UP-DOWN SYNCHRONOUS BINARY COUNTERS                     | 234  |
| 170    | 4-BY-4 REGISTER FILES                                   | 236  |
| 173    | 4-BIT D-TYPE REGISTERS                                  | 238  |
| 174    | HEX D-TYPE FLIP-FLOPS TURNES DAUG                       | 240  |
| 175    | QUAD D-TYPE FLIP-FLOPS                                  | 241  |
| 181    | 4-BIT ALU/FUNCTION GENERATORS                           | 242  |
| 182    | LOOK-AHEAD CARRY GENERATORS                             | 244  |
| 190    | SYNCHRONOUS UP/DOWN DECADE COUNTER                      | 246  |
| 191    | SYNCHRONOUS UP/DOWN COUNTERS                            | 248  |
| 192    | PRESETTABLE SYNCHRONOUS 4-BIT UP/DOWN COUNTERS          | 250  |
| 193    | SYNCHRONOUS UP/DOWN DUAL CLOCK COUNTERS                 | 252  |
| 194    | 4-BIT BIDIRECTIONAL SHIFT REGISTERS                     | 254  |
| 195    | 4-BIT PARALLEL ACCESS SHIFT REGISTERS                   | 256  |
| 221    | DUAL MONOSTABLE MULTIVIBRATORS                          | 258  |
| 237    | 3-TO-8 LINE DECODER DEMULTIPLEXER                       | 260  |
| 238    | 3-TO-8-LINE DECODERS/DEMULTIPLEXERS                     | 262  |
| 240    | OCTAL BUS DRIVERS 3-STATE                               | 264  |
| 240-1  | OCTAL BUS DRIVERS /IOL=48mA 3-STATE                     | 26   |
| 241    | OCTAL BUS DRIVERS 3-STATE                               | 26   |
| 243    | QUADRUPLE BUS TRANSCEIVERS                              | 26   |
| 244    | OCTAL BUS DRIVERS 3-STATE                               | 27   |
| 244-1  | OCTAL BUS DRIVERS /IQL=48mA 3-STATE                     | 27   |
| 245    | OCTAL BUS TRANSCEIVERS 3-STATE                          | 27   |
| 245-1  | OCTAL BUS TRANSCEIVERS /IOL=48mA 3-STATE                | 27   |
| 247    | BCD-TO-SEVEN SEGMENT DECODERS/DRIVERS                   | 274  |
| 250    | 1-OF-16 GENERATORS/MULTIPLEXER 3-STATE                  | 276  |
| 251    | DATA SELECTORS/MULTIPLEXERS 3-STATE                     | 278  |
| 253    | DUAL 4-TO-1 LINE DATA SELECTOR/<br>MULTIPLEXERS 3-STATE | 280  |
|        |                                                         | _    |

| Page       | TTL<br>CMOS SN74<br>BICMOS                        | Page       |
|------------|---------------------------------------------------|------------|
| Device     | Function                                          | Devic      |
| 257        | QUAD 2-TO-1 DATA SELECTOR/MULTIPLEXERS 3-STATE    | 282        |
| 258        | QUAD 2-TO-1 DATA SELECTOR/MULTIPLEXERS 3-STATE    | 284        |
| 259        | 8-BIT ADDRESSABLE LATCHES                         | 286        |
| 260        | DUAL 5-INPUT NOR GATES                            | 288        |
| 265        | QUAD COMPLEMENTARY-OUTPUT ELEMENTS                | 289        |
| 266        | QUAD 2-INPUT EXCLUSIVE-NOR O.C.                   | 290        |
| 273        | OCTAL D-TYPE FLIP-FLOPS                           | 291        |
| 276        | QUAD J-K FLIP-FLOPS                               | 292        |
| 279        | QUAD S-R LATCHES                                  | 293        |
| 280        | 9-BIT PARITY GENERATORS/CHECKERS                  | 294        |
| 283        | 4-BIT FULL ADDERS                                 | 296        |
| 286        | 9-BIT PARITY GENERATORS/CHECKERS                  | 298        |
| 292        | PROGRAMMABLE FREQUENCY DIVIDER/DIGITAL TIMER      | 300        |
| 293        | 4-BIT BINARY COUNTERS                             | 302        |
| 294        | PROGRAMMABLE FREQUENCY DIVIDER/DIGITAL TIMER      | 304        |
| 297        | DIGITAL PLL FILTERS                               | 306        |
| 298        | QUAD 2-INPUT MULTIPLEXERS WITH STORAGE            | 308        |
| 299        | 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS           | 310        |
| 321        | CRYSTAL-CONTROLLED OSCILLATOR                     | 312        |
| 323        | 8-BIT BIDIRELTIONAL SHIFT/STORAGE REGISTERS       | 314        |
| 348        | 8-TO-3 LINE PRIORITY ENCODER                      | 316        |
| 354        | 8-INPUT MULTIPLEXERS/REGISTERS 3-STATE            | 318        |
| 356        | 8-INPUT MULTIPLEXERS/REGISTERS 3-STATE            | 320        |
| 365        | HEX BUS DRIVERS HEX BUFFERS/LINE DRIVERS 3-STATE  | 322        |
| 366        | HEX BUS DRIVERS HEX BUFFERS/LINE DRIVERS 3-STATE  | 323        |
| 367        | HEX BUS DRIVERS HEX BUFFERS/LINE DRIVERS 3-STATE  | 324        |
| 368        | HEX BUS DRIVERS HEX BUFFERS/LINE DRIVERS 3-STATE  | 324        |
| 373        | OCTAL D-TYPE LATCHES 3-STATE                      | 325        |
| 374        | OCTAL D-TYPE FLIP-FLOPS 3-STATE                   | 326        |
| 375        | QUAD LATCHES                                      | 327        |
| 377        | OCTAL D-TYPE FLIP-FLOPS CLOCK                     | 328        |
| 378        | HEX D-TYPE FLIP-FLOPS CLOCK                       | 329        |
| 390        | DUAL DECADE COUNTERS                              | 330        |
| 393        | DUAL BINARY COUNTERS                              | 331        |
| 395        | 4-BIT CASCADABLE SHIFT REGISTER 3-STATE           | 332        |
| 399        | QUAD 2-INPUT MULTIPLEXER WITH STORAGE             | 334        |
| 423        | MONO-STABLE MULTIVIBRATOR                         | 335        |
| 442        | QUADRUPLE TRIDIRECTIONAL BUS TRANSCEIVERS         | 336        |
| 465        | OCTAL BUFFERS 3-STATE                             | 338        |
| 518        | 8-BIT IDENTITY COMPARATOR                         | 340        |
| 520        | 8-BIT IDENTITY COMPARATOR                         | 342        |
| 521        | 8-BIT IDENTITY COMPARATOR                         | 344        |
| 533        | OCTAL D-TYPE LATCHES                              | 346        |
| 534        | OCTAL D-TYPE FLIP-FLOPS                           | 347        |
| 540        | OCTAL BUFFERS/DRIVERS 3-STATE                     | 348        |
| 540-1      | OCTAL BUFFERS/DRIVERS (IQL=48mA)                  | 348        |
| 541        | OCTAL BUFFERS/DRIVERS 3-STATES                    | 349        |
| 541-1      |                                                   | 349        |
| 543        | OCTAL REGISTERED TRANSCEIVERS                     | 350        |
| 561        | SYNCHRONOUS 4-BIT COUNTER                         | 352        |
|            |                                                   |            |
|            | OCTAL TRANSPARENT LATCHES                         | 354        |
| 563<br>564 | OCTAL TRANSPARENT LATCHES OCTAL D-TYPE FLIP-FLOPS | 354<br>355 |

| Page   | TTL<br>CMOS SN74<br>BICMOS                                 | Page |
|--------|------------------------------------------------------------|------|
| Device | Function                                                   |      |
| 573    | OCTAL D-TYPE LATCHES                                       | 358  |
| 574    | OCTAL D-TYPE FLIP-FLOPS                                    | 359  |
| 575    | OCTAL D-TYPE FLIP-FLOPS                                    | 360  |
| 576    | OCTAL D-TYPE FLIP-FLOPS                                    | 361  |
| 577    | OCTAL D-TYPE FLIP-FLOPS                                    | 362  |
| 580    | OCTAL D-TYPE LATCHES                                       | 363  |
| 590    | 8-BIT COUNTER/OUTPUT REGISTER 3-STATE                      | 364  |
| 592    | 8-BIT BINARY COUNTERES                                     | 366  |
| 593    | 8-BIT BINARY COUNTERES                                     | 368  |
| 594    | 8-BIT SHIFT REGISTERS                                      | 370  |
| 595    | 8-BIT SHIFT REGISTERS                                      | 372  |
| 596    | 8-BIT SHIFT REGISTERS                                      | 374  |
| 597    | 8-BIT SHIFT REGISTERS                                      | 376  |
| 598    | 8-BIT SHIFT REGISTERS                                      | 378  |
| 620    | OCTAL BUS TRANSCEIVERS 3-STATE                             | 380  |
| 621    | OCTAL BUS TRANSCEIVERS O.C.                                | 381  |
| 621-1  | OCTAL BUS TRANSCEIVERS/IOL=48mA                            | 381  |
| 623    | OCTAL BUS TRANSCEIVERS                                     | 382  |
| 624    | VOLTAGE CONTROLLED OSCILLATORS                             | 383  |
| 628    | VOLTAGE CONTROLLED OSCILLATORS                             | 384  |
| 629    | VOLTAGE CONTROLLED OSCILLATORS                             | 385  |
| 638    | OCTAL BUS TRANSCEIVERS                                     | 386  |
| 638-1  | OCTAL BUS TRANSCEIVERS/IOL=48mA                            | 386  |
| 639    | OCTAL BUS TRANSCEIVERS                                     | 387  |
| 639-1  | OCTAL BUS TRANSCEIVERS/IOL=48mA                            | 387  |
| 640    | OCTAL BUS TRANSCEIVERS 3-STATE                             | 388  |
| 640-1  | OCTAL BUS TRANSCEIVERS/IOL=48mA 3-STATE                    | 388  |
| 641    | OCTAL BUS TRANSCEIVERS O.C.                                | 389  |
| 641-1  | OCTAL BUS TRANSCEIVERS/IOL=48mA O.C.                       | 389  |
| 642    | OCTAL BUS TRANSCEIVERS O.C.                                | 390  |
| 642-1  | OCTAL BUS TRANSCEIVERS/IOL=48mA O.C.                       | 390  |
| 645    | OCTAL BUS TRANSCEIVERS 3-STATE                             | 391  |
| 645-1  | OCTAL BUS TRANSCEIVERS/IOL=48mA 3-STATE                    | 391  |
| 646    | OCTAL BUS TRANSCEIVERS AND REGISTERS                       | 392  |
| 646-1  | OCTAL BUS TRANSCEIVERS AND REGISTERS/IOL=48mA              | 392  |
| 647    | OCTAL BUS TRANSCEIVERS AND REGISTERS                       | 394  |
| 648    | OCTAL BUS TRANSCEIVERS AND REGISTERS                       | 396  |
| 651    | OCTAL BUS TRANSCEIVERS AND REGISTERS                       | 398  |
| 651-1  | OCTAL BUS TRANSCEIVERS AND REGISTERS/IOL=48mA              | 398  |
| 652    | OCTAL BUS TRANSCEIVERS AND REGISTERS                       | 400  |
| 653    | OCTAL BUS TRANSCEIVERS AND REGISTERS                       | 402  |
| 654    | OCTAL BUS TRANSCEIVERS AND REGISTERS                       | 404  |
| 657    | OCTAL TRANSCEIVERS WITH PARITY GENERATORS/CHECKERS 3-STATE | 406  |
| 666    | 8-BIT D-TYPE TRANSPARENT READ-BACK LATCHES                 | 408  |
| 667    | 8-BIT D-TYPE TRANSPARENT READ-BACK LATCHES                 | 410  |
| 669    | SYNCHRONOUS UP/DOWN BINARY COUNTER                         | 412  |
| 670    | 4 x 4 REGISTER FILE                                        | 414  |
| 673    | 16-BIT SHIFT REGISTER                                      | 416  |
| 674    | 16-BIT SHIFT REGISTER                                      | 418  |
| 679    | ADRESS COMPARATOR                                          | 420  |
| 682    | 8-BIT IDENTITY COMPARATOR                                  | 422  |
| 684    | 8-BIT IDENTITY COMPARATOR                                  | 424  |

|        | TTL<br>CMOS SN74<br>BICMOS                                         | Page |
|--------|--------------------------------------------------------------------|------|
| Device | Function                                                           | olve |
| 686    | 8-BIT IDENTITY COMPARATOR                                          | 428  |
| 688    | 8-BIT IDENTITY COMPARATOR                                          | 428  |
| 697    | SYNCHRONOUS UP-DOWN COUNTERS                                       | 430  |
| 699    | SYNCHRONOUS UP-DOWN COUNTERS                                       | 432  |
| 756    | OCTAL BUFFER/LINE DRIVER WITH O.C. OUTPUTS                         | 434  |
| 757    | OCTAL BUFFER/LINE DRIVER WITH O.C. OUTPUTS                         | 435  |
| 760    | OCTAL BUFFER/LINE DRIVER WITH O.C. OUTPUTS                         | 43   |
| 804    | HEX 2-INPUT NAND DRIVERS                                           | 43   |
| 805    | HEX 2-INPUT NOR DRIVERS                                            | 43   |
| 808    | HEX 2-INPUT AND DRIVERS                                            | 43   |
| 821    | 10-BIT BUS INTERFACE FLIP-FLOPS                                    | 43   |
| 823    | 9-BIT BUS INTERFACE FLIP-FLOP                                      | 44   |
| 825    | 8-BIT BUS INTERFACE FLIP-FLOP                                      | 44   |
| 827    | 10-BIT BUFFERS/BUS DRIVERS                                         | 44   |
| 828    | 10-BIT BUFFERS/BUS DRIVERS                                         | 44   |
| 832    | HEX 2-INPUT OR DRIVERS                                             | 44   |
| 833    | 10-BIT TO 9-BIT PARITY BUS TRANSCEIVERS                            | 44   |
| 841    | 10-BIT BUS INTERFACE LATCHES                                       | 44   |
| 843    | 9-BIT BUS INTERFACE LATCHES                                        | 45   |
| 853    | 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS                             | 45   |
| 2000   | HEX 2-TO-1 UNIVERSAL MULTIPLEXERS                                  | 0.00 |
| 857    | COVERTINE INC. COVER SEASON                                        | 45   |
| 861    | 10-BIT TRANSCEIVERS WITH 3-STATEOUTPUTS                            | 45   |
| 863    | 9-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS                         | 45   |
| 001    | 8-BIT SYNCHRONOUS COUNTER                                          | 45   |
| 869    | 8-BIT SYNCHRONOUS COUNTER                                          | 46   |
| 870    | DUAL 16-BY 4-BIT REGISTER FILES                                    | 46   |
| 873    | DUAL 4-BIT D-TYPE LATCHES                                          | 46   |
| 874    | DUAL 4-BIT D-TYPE FLIP-FLOPS                                       | 46   |
| 876    | DUAL 4-BIT D-TYPE FLIP-FLOPS WITH INVERTED OUTPUTS                 | 46   |
| 885    | 8-BIT MAGNITUDE COMPARATOR                                         | 46   |
| 990    | 8-BIT D-TYPE TRANSPARENT READ-BACK LATCHES                         | 47   |
| 992    | 9-BIT D-TYPE TRANSPARENT                                           |      |
| 002    | READ-BACKLATCHES 3-STATE                                           | 47   |
| 994    | 10-BIT D-TYPE TRANSPARENT READ-BACK LATCHES                        | 47   |
| 996    | 8-BIT D-TYPE EDGE-TRIGGERED READ-BACK LATCHES                      | 47   |
| 1000   | QUAD 2-INPUT NAND BUFFERS/DRIVERS                                  | 47   |
| 1004   | HEX INVERTER                                                       | 47   |
| 1005   | HEX INVERTER O.C.                                                  | 47   |
| 1008   | QUAD 2-INPUT AND BUFFERS/DRIVERS                                   | 47   |
| 1032   | QUAD 2-INPUT OR BUFFERS/DRIVERS                                    | 47   |
| 1034   | HEX DRIVERS                                                        | 47   |
| 1035   | HEX BUFFERS O.C.                                                   | 47   |
| 1240   | OCTAL BUS DRIVER                                                   | 47   |
| 1244   | OCTAL BUS DRIVER 3-STATE                                           | 48   |
| 1245   | OCTAL BIDIRECTIONAL BUS TRANSCEIVER 3-STATE                        | 48   |
| 1640   | OCTAL BIDIRECTIONAL BUS TRANSCEIVER 3-STATE                        | 48   |
| 1645   | OCTAL BIDIRECTIONAL BUS TRANSCEIVER 3-STATE                        | 48   |
| 2240   | OCTAL BUFFERS AND LINE DRIVERS MOS DRIVERS WITH 3-STATE OUTPUTS    | 48   |
| 2241   | OCTAL LINE MOS DRIVERS WITH SERIES DUMPING REGISTER, NON-INVERTING | 48   |

|      | TTL ITT                                                                  |     |
|------|--------------------------------------------------------------------------|-----|
| 2245 | WITH 3-STATE OUTPUTS                                                     | 485 |
| 2373 | 25-Ω OCTAL TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS                 | 486 |
| 2414 | MEMORY DECODER WITH ON-CHIP VCC MONITOR                                  | 488 |
| 2541 | OCTAL LINE DRIVERS/MOS DRIVERS WITH 3-STATE OUTPUTS                      | 490 |
| 2827 | 10-BIT BUS/MOS MEMORY DRIVERS                                            | 490 |
| 2828 | 10-BIT BUS/MOS MEMORY DRIVERS INVERTING                                  | 491 |
| 2952 | REGISTERED TRANSCEIVERS (2mA, 24mA, 48mA, 64mA)                          | 492 |
| 2953 | REGISTERED TRANSCEIVERS (2mA, 24mA, 48mA, 64mA)                          | 494 |
| 3245 | OCTAL BUS TRANSCEIVER 3-STATE                                            | 496 |
| 4002 | DUAL 4-INPUT POSITIVE-NOR GATES                                          | 497 |
| 4015 | DUAL 4-STAGE STATIC SHIFT REGISTER                                       | 498 |
| 4016 | QUAD BILATERAL SWITCH                                                    | 499 |
| 4017 | DECADE COUNTERS/DRIVERS                                                  | 500 |
| 4020 | 14-STAGE BINARY COUNTERS                                                 | 502 |
| 4024 | 7-STAGE BINARY COUNTERS                                                  | 503 |
| 4040 | 12-STAGE BINARY COUNTERS                                                 | 504 |
| 4046 | PHASE-LOCKED-LOOP WITH VCO                                               | 505 |
| 4049 | HEX INVERTING BUFFERS                                                    | 506 |
| 4050 | HEX NON-INVERTING BUFFERS                                                | 506 |
| 4051 | 8-CHANNEL ANALOG MULTIPLEXERS/DEMULTIPLEXERS                             | 507 |
| 4052 | DUAL 4-CHANNEL ANALOG                                                    | 507 |
| 482  | MULTIPLEXERS/DEMULTIPLEXERS                                              | 508 |
| 4053 | TRIPLE 2-CHANNEL ANALOG MULTIPLEXERS/DEMULTIPLEXERS                      | 509 |
| 4059 | CMOS PROGRAMMABLE DIVIDE-BY-N COUNTER                                    | 510 |
| 4060 | ASYNCHRONOUS 14-STAGE BINARY COUNTERS AND OSCILLATORS                    | 511 |
| 4066 | QUAD BILATERAL SWITCHES                                                  | 512 |
| 4067 | 16-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER                              | 513 |
| 4075 | TRIPLE 3-INPUT OR GATES                                                  | 514 |
| 4094 | 8-STAGE SHIFT AND STORE BUS REGISTER, THREE-STATE                        | 516 |
| 4245 | OCTAL BUS TRANSCEIVER AND 3.3-V TO 5-V SHIFTER WITH 3-STATE OUTPUTS      | 518 |
| 4316 | QUAD ANALOG SWITCH WITH LEVEL TRANSLATION                                | 519 |
| 4351 | ANALOG MULTIPLEXERS/DEMULTIPLEXERS WITH LATCH                            | 520 |
| 4352 | ANALOG MULTIPLEXERS/DEMULTIPLEXERS WITH LATCH                            | 521 |
| 4374 | OCTAL EDGE-TRIGGERED D-TYPE DUAL-<br>RANK FLIP-FLOP WITH 3-STATE OUTPUTS | 522 |
| 4511 | BCD-TO-7 SEGMENT LATCH/DECODER/DRIVERS                                   | 523 |
| 4514 | 4-LINE TO 16-LINE DECODERS/DEMULTIPLEXERS<br>WITH INPUT LATCHES          | 524 |
| 4515 | 4-LINE TO 16-LINE DECODERS/DEMULTIPLEXERS WITH INPUT LATCHES             | 526 |
| 4518 | DUAL SYNCHRONOUS COUNTERS                                                | 528 |
| 4520 | DUAL SYNCHRONOUS COUNTERS                                                | 529 |
| 4538 | DUAL RETRIGGERABLE PRECISION MONOSTABLE MULTIVIBRATOR                    | 530 |
| 4543 | BCD-TO-7 SEGMENT LATCH/DECODER/DRIVERS                                   | 532 |
| 5400 | 11-BIT LINE/MEMORY DRIVERS WITH 3-STATE OUTPUTS                          | 534 |

|        | TTL JTT                                                            |       |
|--------|--------------------------------------------------------------------|-------|
| 5403   | 11-BIT LINE/MEMORY DRIVERS WITH 3-STATE OUTPUTS                    | 538   |
| 7001   | QUAD POSITIVE-AND GATES                                            | 536   |
| 382    | WITH SCHMITT-TRIGGER INPUTS                                        | 1700  |
| 7002   | QUAD POSITIVE-NOR GATES                                            | 53    |
| 304    | WITH SCHMITT-TRIGGER INPUTS                                        | 7,000 |
| 7032   | QUAD 2-INPUT POSITIVE-OR GATES WITH SCHMITT-TRIGGER INPUTS         | 53    |
| 7046   | PHASE-LOCKED LOOP WITH VCO AND LOCK DETECTOR                       | 53    |
| 7266   | QUAD 2-INPUT EXCLUSIVE-NOR GATES                                   | 53    |
| 8003   | DUAL 2-INPUT NAND GATES                                            | 53    |
| 16240  | 16-BIT BUS BUFFERS/DRIVERS WITH 3-STATE OUTPUTS                    | 54    |
| 16241  | 16-BIT BUS BUFFERS/DRIVERS WITH 3-STATE OUTPUTS                    | 54    |
| 16244  | 16-BIT BUS BUFFERS/DRIVERS WITH 3-STATE OUTPUTS                    | 54    |
| 16245  | 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS                        | 54    |
| 16260  | 12-BIT TO 24-BIT MULTIPLEXES D-TYPE<br>LATCH WITH 3-STATE OUTPUTS  | 54    |
| 900    | 12-BIT TO 24-BIT REGISTERED BUS                                    | 65    |
| 16269  | TRANSCEIVER WITH 3-STATE OUTPUTS                                   | 55    |
| 100000 | 12-BIT TO 24-BIT REGISTERED BUS EXCHANGER                          | 0.11  |
| 16270  | WITH 3-STATE OUTPUTS OF THE OUTPUTS                                | 55    |
| 16271  | 12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER WITH 3-STATE OUTPUTS    | 55    |
| 16282  | 18-BIT TO 36-BIT REGISTERED BUS EXCHANGER WITH 3-STATE OUTPUTS     | 55    |
| 16334  | 16-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS                   | 55    |
| 16344  | 1-BIT TO 4-BIT ADDRESS DRIVER WITH 3-STATE OUTPUTS                 | 56    |
| 16373  | 16-BIT TRANSPARENT LATCHES WITH 3-STATE OUTPUTS                    | 56    |
| 16374  | 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS<br>WITH 3-STATE OUTPUTS    | 56    |
| 16409  | 9-BIT, 4-PORT UNIVERSAL BUS EXCHANGER WITH 3-STATE OUTPUTS         | 56    |
| 16460  | 4-TO-1 MULTIPLEXED/DEMULTIPLEXED TRANSCEIVERS WITH 3-STATE OUTPUTS | 56    |
| 16470  | 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS                | 57    |
| 16500  | 18-BIT UNIVERSAL BUS TRANSCEIVER<br>WITH 3-STATE OUTPUTS           | 57    |
| 16501  | 18-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS              | 57    |
| 16524  | 18-BIT REGISTERED BUS TRANSCEIVER WITH 3-STATE OUTPUTS             | 57    |
| 16525  | 18-BIT REGISTERED BUS TRANSCEIVER WITH 3-STATE OUTPUTS             | 57    |
| 6540   | 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS                        | 58    |
| 16541  | 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS                        | 58    |
| 16543  | 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS                | 58    |
| 6600   | 18-BIT UNIVERSAL BUS TRANSCEIVERS<br>WITH 3-STATE OUTPUTS          | 58    |
| 16601  | 18-BIT UNIVERSAL BUS TRANSCEIVERS<br>WITH 3-STATE OUTPUTS          | 58    |
| 16620  | 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS                       | 58    |
| 16623  | 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS                       | 59    |

| 16646 | 16-BIT BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS                     | 592 |
|-------|--------------------------------------------------------------------------------|-----|
| 16651 | 16-BIT BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS                     | 594 |
| 16652 | 16-BIT BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS                     | 596 |
| 16657 | 16-BIT TRANSCEIVERS WITH PARITY GENERATORS/<br>CHECKERS AND 3-STATE OUTPUTS    | 598 |
| 16721 | 20-BIT FLIP-FLOP WITH 3-STATE OUTPUTS                                          | 600 |
| 16722 | 22-BIT FLIP-FLOP WITH 3-STATE OUTPUTS                                          | 601 |
| 16820 | 10-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH DUAL OUTPUTS                      | 602 |
| 16821 | 20-BIT BUS INTERFACE FLIP-FLOPS<br>WITH 3-STATE OUTPUTS                        | 603 |
| 16823 | 18-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH DUAL OUTPUTS                      | 604 |
| 16825 | 18-BIT BUS BUFFERS/DRIVERS WITH 3-STATE OUTPUTS                                | 605 |
| 16827 | 20-BIT BUS BUFFERS/DRIVERS WITH 3-STATE OUTPUTS                                | 606 |
| 16831 | 1-TO-4 ADDRESS REGISTER/DRIVER<br>WITH 3-STATE OUTPUTS                         | 607 |
| 16832 | 1-TO-4 ADDRESS REGISTER/DRIVER<br>WITH 3-STATE OUTPUTS                         | 608 |
| 16833 | DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS                                    | 610 |
| 16834 | 16-BIT UNIVERSAL BUS DRIVER<br>WITH 3-STATE OUTPUTS                            | 612 |
| 16835 | 3.3-V ABT 18-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS                     | 613 |
| 16841 | 20-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS                       | 614 |
| 16843 | 18-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS                       | 615 |
| 16853 | DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS                                    | 616 |
| 16861 | 20-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS                                   | 618 |
| 16863 | 18-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS                                   | 619 |
| 16901 | 18-BIT UNIVERSAL BUS TRANSCEIVER<br>WITH PARITY GENERATORS/CHECKERS            | 620 |
| 16903 | 3.3-V 12-BIT UNIVERSAL BUS DRIVER WITH PARITY CHECKER AND DUAL 3-STATE OUTPUTS | 622 |
| 16952 | 16-BIT REGISTERED TRANSCEIVERS<br>WITH 3-STATE OUTPUTS                         | 624 |
| 25244 | 25Ω OCTAL BUS BUFFERS/DRIVERS<br>WITH 3-STATE OUTPUTS                          | 626 |
| 25245 | 25Ω OCTAL BUS TRANSCEIVERS<br>WITH 3-STATE OUTPUTS                             | 627 |
| 25642 | 25-Ω OCTAL BUS TRANSCEIVER                                                     | 628 |
| 29821 | 10-BIT BUS-INTERFACE FLIP-FLOPS<br>WITH 3-STATE OUTPUTS                        | 629 |
| 29825 | 8-BIT BUS-INTERFACE FLIP-FLOPS<br>WITH 3-STATE OUTPUTS                         | 630 |
| 29827 | 10-BIT BUFFERS AND BUS DRIVERS<br>WITH 3-STATE OUTPUTS                         | 631 |
| 29828 | 10-BIT BUFFERS AND BUS DRIVERS<br>WITH 3-STATE OUTPUTS                         | 632 |
| 29841 | 10-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS                       | 633 |
|       |                                                                                |     |

|        |                                                                               | 634 |
|--------|-------------------------------------------------------------------------------|-----|
| 29843  | WITH 3-STATE OUTPUTS                                                          | 034 |
| 29854  | 8-BIT TO 9-BIT PARITY BUS TRANSCEIVER                                         | 636 |
| 29863  | 9-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS                                   | 638 |
| 29864  | 9-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS                                   | 639 |
| 32240  | 32-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS                                     | 640 |
| 32244  | 36-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS                                     | 642 |
| 32245  | 36-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS                                   | 644 |
| 32316  | 16-BIT TRI-PORT UNIVERSAL BUS EXCHANGERS                                      | 646 |
| 32318  | 18-BIT TRI-PORT UNIVERSAL BUS EXCHANGERS                                      | 648 |
| 32373  | 32-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS                          | 650 |
| 32374  | 32-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP<br>WITH 3-STATE OUTPUTS                | 652 |
| 32501  | 36-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS                        | 654 |
| 32543  | 36-BIT REGISTERED BUS TRANSCEIVERS WITH 3-STATE OUTPUTS                       | 656 |
| 40103  | 8-STAGE SYNCHRONOUS DOWN COUNTERS                                             | 658 |
| 162240 | 3.3-V ABT 16-BIT BUFFERS/DRIVERS<br>WITH 3-STATE OUTPUTS                      | 659 |
| 162241 | 3.3-V ABT 16-BIT BUFFERS/DRIVERS<br>WITH 3-STATE OUTPUTS                      | 660 |
| 162244 | 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS                                   | 661 |
| 162245 | 16-BIT TRANSCEIVER WITH 3-STATE OUTPUTS                                       | 662 |
| 162260 | 12-BIT TO 24-BIT MULTIPLEXED D-TYPE LATCH WITH 3-STATE OUTPUTS                | 664 |
| 162268 | 12-BIT TO 24-BIT REGISTERED BUS EXCHANGER WITH 3-STATE OUTPUTS                | 666 |
| 162280 | 16-BIT TO 32-BIT REGISTERED BUS EXCHANGER WITH BYTE MASKS AND 3-STATE OUTPUTS | 668 |
| 162282 | 18-BIT TO 36-BIT REGISTERED BUS EXCHANGER WITH 3-STATE OUTPUTS                | 670 |
| 162334 | 16-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS                              | 672 |
| 162344 | 1-BIT TO 4-BIT ADDRESS DRIVER WITH 3-STATE OUTPUTS                            | 674 |
| 162373 | 3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS              | 676 |
| 162374 | 3.3-V ABT 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS        | 677 |
| 162460 | 4-TO-1 MULTIPLEXED/DEMULTIPLEXED REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS | 678 |
| 162500 | 18-BIT UNIVERSAL BUS TRANSCEIVER<br>WITH 3-STATE OUTPUTS                      | 680 |
| 162501 | 18-BIT UNIVERSAL BUS TRANSCEIVERS<br>WITH 3-STATE OUTPUTS                     | 682 |
| 162525 | 16-BIT REGISTERED BUS TRANSCEIVER<br>WITH 3-STATE OUTPUTS                     | 684 |
| 162541 | 3.3-V ABT 16-BIT BUFFERS/DRIVERS<br>WITH 3-STATE OUTPUTS                      | 686 |
| 162601 | 18-BIT UNIVERSAL BUS TRANSCEIVER<br>WITH 3-STATE OUTPUTS                      | 688 |
| 162721 | 3.3-V 20-BIT FLIP-FLOP WITH 3-STATE OUTPUTS                                   | 690 |
| 162820 | 3.3-V 10-BIT FLIP-FLOP WITH DUAL OUTPUTS AND 3-STATE OUTPUTS                  | 691 |
| 162823 | 18-BIT BUS-INTERFACE FLIP-FLOPS<br>WITH 3-STATE OUTPUTS                       | 692 |

| 6000   | TTL<br>CMOS SN74<br>BiCMOS                                               | Page |
|--------|--------------------------------------------------------------------------|------|
| Device | Function                                                                 |      |
| 162825 | 18-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS                              | 693  |
| 162827 | 20-BIT BUS BUFFERS/DRIVERS WITH 3-STATE OUTPUTS                          | 694  |
| 162830 | 1-BIT TO 2-BIT ADDRESS DRIVER WITH 3-STATE OUTPUTS                       | 695  |
| 162831 | 1-BIT TO 4-BIT ADDRESS REGISTER/DRIVER WITH 3-STATE OUTPUTS              | 696  |
| 162832 | 1-BIT TO 4-BIT ADDRESS REGISTER/DRIVER WITH 3-STATE OUTPUTS              | 697  |
| 162834 | 18-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS                         | 698  |
| 162835 | 18-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS                         | 699  |
| 162836 | 20-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS                         | 700  |
| 162841 | 20-BIT BUS-INTERFACE D-TYPE LATCH<br>WITH 3-STATE OUTPUTS                | 701  |
| 164245 | 16-BIT TRANSCEIVER AND 3.3-V TO 5-V SHIFTER WITH 3-STATE OUTPUTS         | 702  |
| 322374 | 3.3-V ABT 32-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP<br>WITH 3-STATE OUTPUTS | 703  |

#### TTL CMOS SN74 BICMOS

## **FUNCTION**

1G / 2G / 3G

### FUNCTION

1G / 2G / 3G

#### LITTLE LOGIC GATE (AND/NAND/OR/NOR/EX-OR)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |            |          |              |       |        |        | 5.15   | -      |      | T     | echnolo  | gy      |         |        | -   | -     |        |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|------------|----------|--------------|-------|--------|--------|--------|--------|------|-------|----------|---------|---------|--------|-----|-------|--------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1777            |           |            |          |              | CI    | MOS    |        | BiC    | MOS    |      |       |          |         | Adva    | nced ( | MOS |       |        |     |
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No. of<br>Input | Curcuit   | Input      | Output   | Туре         | HC    | НСТ    | BCT    | ABT    | LVI    | ALVT | AC    | ACT      | АНС     | AHCT    | 2      | LVC | ALVC  | AVC    | AUC |
| POSITIVE-AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2               | 1         | 8          |          | 1G08         | +     |        |        |        | - 100  | 1/   |       | 88       | 0       | 0       |        | 0   |       |        | 0   |
| POSITIVE-AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -               | 2         |            |          | 2G08         |       |        |        |        | 100    |      |       | 260      |         |         |        | 0   | насти | N-DEV  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l D             | 1 1       |            |          | 1G00         | +     |        |        |        | 1101   |      |       | 200      | 0       | 0       |        | 0   |       |        | To  |
| POSITIVE-NAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2               | 2         |            |          | 2G00         |       |        |        |        |        |      |       |          |         |         |        | 0   |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101             | 1 1       |            |          | 1G32         | -     |        |        |        | Ittig  | (t)  |       | 20       | 0       | 0       |        | 0   | DIST  | ranyu  | 10  |
| POSITIVE- OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2               | 2         | to O veito | Red-cond | 2G32         | latus | 98922  | n nee  | notelo | uri ee | 18   | iin.  | legist 0 | o tegal | ec e    | Itue   | 0   | paton | VIIOTE |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Bernitson | NI Ols     | berests  | il voolone   | (set) | Descri | ale fa | Denni. | nort.  |      | Stapi | and were | louds.  | el ni e | defley | 100 | : Pro |        |     |
| POSITIVE- NOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2               | 2         |            | -        | 1G02<br>2G02 | _     | -      | -      | -      |        |      |       |          | 0       | 0       |        | 0   |       |        | 0   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |            |          | -            |       | -      |        | -      |        | _    |       | -        |         |         |        |     |       |        |     |
| EXCLUSIVE-OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2               | 1         |            |          | 1G86         |       |        |        |        |        |      |       |          | 0       | 0       |        | 0   |       |        |     |
| and the second s |                 | 2         |            |          | 2G86         |       |        |        |        |        |      |       |          |         |         |        | 0   |       |        |     |

Explanatory notes [Input] SCH : Schmitt-Trigger Inputs [Output] BUF : Buffered Output OC : Open-Collector Output 3S : 3-State Output

[Output] BUF: Buffreed Output OC: Open-Collector Output 35: 3-state Output
Status (): Product available in technology indicated \*: New product planned in technology indicated X: Discontinued

|             |                 |                            |          |         |             |     |        |         |            |         |       | T       | chnolo   | gy         |       |            |       |        |        |     |
|-------------|-----------------|----------------------------|----------|---------|-------------|-----|--------|---------|------------|---------|-------|---------|----------|------------|-------|------------|-------|--------|--------|-----|
|             |                 |                            |          |         |             | CI  | MOS    | ppub    | BIC        | MOS     | DOM:  | 700     | 2411     | -          | Adva  | anced (    | MOS   | aprive | \$1517 |     |
| Description | No. of<br>Input | Curcuit                    | Input    | Output  | Туре        | HC  | HCT    | BCT     | ABT        | LVT     | ALVT  | AC      | ACT      | AHC        | AHCT  | ΓΛ         | TAC   | ALVC   | AVC    | AUC |
|             |                 | graph ( )                  | 1100,550 | OHMESIC | 1G04        |     | 100000 | HC 10   | 0000       | 1000    |       |         | CIL SCOR | 0          | 0     | C. Steiner | 0     | 2001.5 |        | (   |
|             |                 | - 1                        |          | UBF     | 1GU04       |     |        |         |            |         |       |         |          | 0          |       |            | 0     |        |        | -   |
|             |                 | 1 1                        |          | oc      | 1G06        |     |        |         |            |         |       |         |          |            |       |            | 0     |        |        |     |
|             |                 |                            | SCH      |         | 1G14        |     |        |         |            |         |       |         |          | 0          | 0     |            | 0     |        |        |     |
|             |                 |                            |          |         | 2G04        |     |        |         |            |         |       |         |          |            |       |            | 0     |        |        |     |
|             |                 | 2                          |          | UBF     | 2GU04       |     |        |         |            |         |       | 100     | incedes  | thult      | enofo | sled.      | 0     | 1260   | 2.1 2  |     |
| INVERTING   |                 | -                          | Y110000  | oc      | 2G06        |     |        |         | -          |         |       |         |          |            |       |            | 0     |        |        |     |
| Mer En Time | 1.1m2           | sonerhA.                   | SCH      |         | 2G14        |     |        |         | 1          |         |       |         |          |            |       |            | 0     |        |        |     |
|             |                 | 1 4                        |          |         | 2G04        |     |        |         |            |         |       | -       |          |            |       |            | 0     | 10     | Nin    | Г   |
|             | 9               | 100                        | 35       | 1 8 1   | 3G04        |     | 1 3    |         | 1 9        | 100     | 10.0  | - 11    | 0.00     |            | 7325  | 100        | 0     | high   | Öldug  | 1   |
|             |                 | 3                          |          | UBF     | 3GU04       |     |        |         |            |         |       |         |          |            |       |            |       |        |        |     |
|             | 1               | 3                          |          | OC      | 3G06        | -   |        |         |            |         |       |         |          |            |       |            | 0     |        |        |     |
|             | 100             | -                          | SCH      |         | 2G14        |     |        |         |            | - 117   |       |         |          |            |       | -          | 0     |        |        |     |
|             |                 |                            | SCH      |         | 3G14        |     |        |         |            |         | -     |         |          |            |       | 7          | 0     |        |        |     |
|             |                 | 1                          |          | . minte | F Junior 20 | 32  | 24.774 | 2 1111  | Certain in | Harry S | 19.00 | Acuthin | -        | Married D  | 1199  | 1000       | 24943 | Tree   | 1      |     |
|             |                 | ALTERNATION AND ADDRESS OF | The same | oc      | 1G07        | No. | Den    | and the | - N        | 170     |       | Conne   | an dillo | S. Million | 0.00  |            | 0     | 217    |        |     |
|             |                 | 1                          | SCH      |         | 1G17        |     |        |         |            |         |       |         |          |            |       |            | 0     |        |        | -   |
|             |                 |                            |          |         | 1G66        |     |        |         |            |         |       |         |          |            |       |            | 0     |        |        | 1   |
|             |                 |                            |          | OC      | 2G07        |     |        |         |            |         |       |         | -1       |            |       |            | 0     |        |        |     |
|             |                 |                            |          |         |             |     |        |         |            |         |       |         |          |            |       |            |       |        |        |     |

NON-INVERTING

Explanatory notes [Input] SCH: Schmitt-Trigger Inputs [Output] Oct Open-Collector Output 35:3-State Output Status O: Product available in technology indicated ': New product planned in technology in the technol

OC

SCH

2G34 2G66

3007

3G17 2G34 3G34

#### LITTLE LOGIC BUFFER/DRIVER

|               |              |        |       |    |     |     |     |                |      | T  | echnolo | gy  |      |        |     |      |        |     |
|---------------|--------------|--------|-------|----|-----|-----|-----|----------------|------|----|---------|-----|------|--------|-----|------|--------|-----|
| 100           | MET Bearings |        |       | CN | MOS |     | BIC | MOS            |      |    |         |     | Adva | nced C | MOS |      |        | ,   |
| Description   | Curcuit      | Output | Туре  | HC | нст | BCT | ABT | LVT            | ALVT | AC | ACT     | AHC | AHCT | , A    | LVC | ALVC | AVC    | AUC |
|               |              | 38     | 1G125 |    |     |     |     |                |      |    |         | 0   | 0    |        | 0   |      |        |     |
|               | 10           | 38     | 1G126 |    |     |     |     | Joseph Company |      |    |         | 0   | 0    |        | 0   | 1 20 | N BVID | 1   |
| NON-INVERTING |              | 38     | 2G125 |    |     |     |     | 1:00           |      |    |         |     | - 3  |        | 0   |      |        | 1   |
|               | 2            | 38     | 2G126 |    |     |     |     |                |      |    |         |     |      |        | 0   |      |        | 1   |
|               | D 1          | 38     | 2G241 |    |     |     |     | 13000          |      |    |         |     |      |        | -0  | 2330 |        | 1   |

Explanatory notes Output 3S:3-State Output R3S: Series Resistor and 3-State output OC: Open-Collector Output Status O: Product available in technology indicated \*: New product planned in technology indicated X: Discontinued

#### LITTLE LOGIC D-TYPE FLIP-FLOP

INVERTING

|         |         |            |        |        |          |    |     |     |     |     | 23110 | T  | echnolo | gy    | 1-7 (427) | 1111   | onli | aning | Wictims | -10 |
|---------|---------|------------|--------|--------|----------|----|-----|-----|-----|-----|-------|----|---------|-------|-----------|--------|------|-------|---------|-----|
|         |         |            |        | tograf | return-o | CN | MOS | 2   | BIC | MOS | -     |    |         | 10.10 | Adva      | nced C | MOS  |       |         |     |
| Trigger | Curcuit | PRE<br>CLR | Output | Q·/Q   | Туре     | HC | нот | BCT | ABT | LVT | ALVT  | AC | ACT     | AHC   | AHCT      | 2      | LVC  | ALVC  | AVC     | AUC |
|         |         |            | 28     | Q      | 1G79     |    |     |     |     |     |       |    |         |       |           |        | 0    |       |         |     |
| POS     | 1       |            | 28     | /Q     | 1G80     |    |     |     |     |     |       |    |         |       |           |        | 0    |       |         |     |
|         |         | В          | 25     | В      | 2G74     |    |     |     |     |     |       |    |         |       |           |        | 0    |       |         |     |

Explanatory notes [Trigger] POS : POSITIVE EDGE, NEG : NEGATIVE EDGE [PRE · CLR] B : Preset and Clear . C : Clear only

[O/Q] B: Q-/Q-Output Q: Q-Output /Q: /Q-Output Status : Product available in technology indicated : New product planned in technology indicated : Discontinued

#### LITTLE LOGIC Data Selectors/Multiplexers

|                     |        |         |       |    |     |     |     | 100 in | 1    | T  | echnolo | gy  | 177  |        |     |      |           |     |
|---------------------|--------|---------|-------|----|-----|-----|-----|--------|------|----|---------|-----|------|--------|-----|------|-----------|-----|
|                     |        |         |       | CN | /OS |     | BiC | MOS    | _    |    |         | 100 | Adva | nced C | MOS | -    | Will real |     |
| No. of Input/Output | Output | Curcuit | Туре  | HC | HCT | ВСТ | ABT | LVT    | ALVT | AG | ACT     | AHC | AHCT | rv     | LVC | ALVC | AVC       | AHC |
| 2/1                 | 28     | 1       | 2G157 |    | +   |     |     |        |      |    |         |     |      |        | 0   |      |           | -   |

Explanatory notes [Output] 2S: Totem Pole Output 3S: 3-State Output OC: Open-Collector Output Status : Product available in technology indicated \*: New product planned in technology indicated : Discontinued LITTLE LOGIC ANALOG SWITCH

|                                                                         | - 1  |    |     |     |     |     |      | T  | echnolo | gy  |      |         |     |      |     |     |
|-------------------------------------------------------------------------|------|----|-----|-----|-----|-----|------|----|---------|-----|------|---------|-----|------|-----|-----|
|                                                                         |      | CN | MOS |     | BiC | MOS |      |    |         |     | Adv  | anced C | MOS |      |     |     |
| Description                                                             | Туре | HC | НСТ | BCT | ABT | LVT | ALVT | AC | ACT     | AHC | AHCT | ΓΛ      | LVC | ALVC | AVC | AUC |
| SINGLE ANALOG SWITCH                                                    | 1G66 |    |     |     |     |     |      |    |         |     |      |         | 0   |      |     | 0   |
| One of Two Noninverting Demultiplexer with 3-State<br>Deselected Output | 1G18 |    |     |     |     |     |      |    |         |     |      |         | 0   |      |     |     |
| SINGLE 2-CHANNELANALOG<br>MULTIPLEXERS/DEMULTIPLEXERS                   | 2G53 |    |     |     |     |     |      |    |         |     |      |         | 0   |      |     |     |
| DUAL ANALOG SWITCH                                                      | 2G66 |    |     |     |     |     |      |    |         |     |      |         | 0   |      |     | *   |

Status O: Product available in technology indicated \*: New product planned in technology indicated X: Discontinued

\* How products to technology indicated \* How product plumed in technology indicated X: Discuminated

## **PIN ASSIGNMENTS**

1G/2G/3G

## PIN ASSIGNMENTS

1G/2G/3G

















# FUNCTION AND ELECTRICAL CHARACTERISTICS

1G / 2G / 3G

## FUNCTION AND ELECTRICAL CHARACTERISTICS

G / 2G / 3G

#### SINGLE 2-INPUT POSITIVE-NAND GATE

A 1 4 Y

 $\bullet$  Y =  $\overline{AB}$ 

#### **FUNCTION TABLE**

| RECOMMEND | ED OPERATING | CONI | DITIONS |           |             |             |             |             |             |      |
|-----------|--------------|------|---------|-----------|-------------|-------------|-------------|-------------|-------------|------|
| PARAMETER | MAX or MIN   | AHC  | AHCT    | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V | UNIT |
| lcc       | MAX          | 0.01 | 0.01    | 0.01      | 0.01        | 0.01        | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX          | -8   | -8      | -32       | -24         | -8          | -4          | -9          | -8          | mA   |
| In        | MAY          | 9    | 8       | 32        | 24          | . 8         | - 4         | q           | 8           | mΔ   |

| Α. | PUT | OUTPUT   |
|----|-----|----------|
| H  | н   | Man dane |
| L  | X   | H        |
| X  | L   | H        |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | AHC | AHCT | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V |
|-----------|--------|--------|------------|-----|------|-----------|-------------|-------------|-------------|-------------|-------------|
| tPLH      | A or B | V      | MAX        | 8.5 | 9    | - 4       | 4.7         | 5.5         | 8           | 2           | 2.2         |
| tphL .    | AUID   | 13     | B. IVIAA   | 8.5 | 9    | 4         | 4.7         | 5.5         | 8           | 2           | 2.2         |

UNIT:ns

#### 1G02

#### SINGLE 2-INPUT POSITIVE-NOR GATE

 $\bullet$  Y =  $\overline{A + B}$ 

#### Logic Diagram (positive logic)



RECOMMENDED OPERATING CONDITIONS

| TIEGOTVITALIADI | D OI LIBETING | , 00141 | 71110140 |           |             |             |             |             | ,           |      |
|-----------------|---------------|---------|----------|-----------|-------------|-------------|-------------|-------------|-------------|------|
| PARAMETER       | MAX or MIN    | AHC     | AHCT     | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V | UNIT |
| Icc             | MAX           | 0.01    | 0.01     | 0.01      | 0.01        | 0.01        | 0.01        | 0.01        | 0.01        | mA   |
| Іон             | MAX           | -8      | -8       | -32       | -24         | -8          | -4          | -9          | -8          | mA   |
| lor             | MAX           | 8       | 8        | 32        | 24          | 8           | 4           | 9           | 8           | mA   |

#### **FUNCTION TABLE**

|   | INF | TU | OUTPUT  |
|---|-----|----|---------|
| Γ | Α   | В  | Y       |
| I | Н   | X  | made as |
| Т | X   | H  | L       |
| 1 | L   | L  | H       |

SWITCHING CHARACTERISTICS

| PARAMETER   | INPUT  | OUTPUT | MAX or MIN | AHC | AHCT | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V |
|-------------|--------|--------|------------|-----|------|-----------|-------------|-------------|-------------|-------------|-------------|
| tPLH        | A or B | v      | MAX        | 8.5 | 8.5  | - 4       | 4.5         | 5.5         | 8           | 2.1         | 2.4         |
| <b>TPHL</b> | AUID   | ,      | WIAX       | 8.5 | 8.5  | 4         | 4.5         | 5.5         | 8           | 2.1         | 2.4         |

SINGLE INVERTER GATE

● Y = A

Logic Diagram



BECOMMENDED OPERATING CONDITIONS

| FUNCTION | TABLE |
|----------|-------|
| FUNCTION | IABL  |

| RECOMMENDI | ED OPERATING | CON  | DITIONS |           |             |             |             |             |             |      |
|------------|--------------|------|---------|-----------|-------------|-------------|-------------|-------------|-------------|------|
| PARAMETER  | MAX or MIN   | AHC  | AHCT    | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V | UNIT |
| lcc        | MAX          | 0.01 | 0.01    | 0.01      | 0.01        | 0.01        | 0.01        | 0.01        | 0.01        | mA   |
| Іон        | MAX          | -8   | -8      | -32       | -24         | -8          | -4          | -9          | -8          | mA   |
| lou        | MAX          | 8    | 8       | 32        | 24          | 8           | 4           | 9           | 8           | mA   |

| INPUT<br>A | OUTPUT |
|------------|--------|
| H          | L<br>H |
|            |        |
|            |        |
|            |        |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | AHC | AHCT | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V |     | AUC<br>2.5V |     |
|-----------|-------|--------|------------|-----|------|-----------|-------------|-------------|-----|-------------|-----|
| tPLH      | ۸     | v      | MAX        | 8.5 | 8.5  | 3.7       | 4.2         | 5.2         | 7.5 | 1.9         | 2.2 |
| TPHL      | Α     | 2.2    | IVIMA      | 8.5 | 8.5  | 3.7       | 4.2         | 5.2         | 7.5 | 1.9         | 2.2 |

UNIT:ns

1GU04 of evilland energial origin.

SINGLE INVERTER

Logic Diagram



- $\bullet$  Y =  $\overline{A}$
- Unbuffered Output
- ullet Supply Voltage Renge : 2V  $\sim$  5.5V

**FUNCTION TABLE** 

|  | 894010 | INPUT<br>A | OUTPUT |
|--|--------|------------|--------|
|  | TOR    | H<br>L     | L<br>H |
|  |        |            |        |
|  |        |            |        |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | AHC  | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V | UNIT |
|-----------|------------|------|-----------|-------------|-------------|-------------|-------------|-------------|------|
| Icc       | MAX        | 0.01 | 0.01      | 0.01        | 0.01        | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX        | -8   | -32       | -24         | -8          | -4          | -9          | -8          | mA   |
| lou       | MAX        | 8    | 32        | 24          | 8           | 4           | 9           | 8           | mA   |

SWITCHING CHARACTERISTICS

| SWITCHING CH | ANACIENIS | 165    |            |     |           |             |             |             |             |             |
|--------------|-----------|--------|------------|-----|-----------|-------------|-------------|-------------|-------------|-------------|
| PARAMETER    | INPUT     | OUTPUT | MAX or MIN | AHC | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V |
| tPLH .       | ۸         | v      | MAX        | 8   | 3         | 3.7         | 4           | 5           | 2.1         | 2.4         |
| TPHL         | A         | 1.5    | IVIAA      | 8   | 3         | 3.7         | 4           | 5           | 2.1         | 2.4         |

### SINGLE INVERTER BUFFER/DRIVER WITH OPEN-DRAIN OUTPUT

**Logic Diagram** 



ECOMMENDED OPERATING CONDITIONS

**FUNCTION TABLE** 

|           | ED UPERATING | -         |      | LVC  | LVC  | AUC  | AHC  | Parks I |  |      | INPUT<br>A | OUTPUT |
|-----------|--------------|-----------|------|------|------|------|------|---------|--|------|------------|--------|
| PARAMETER | MAX or MIN   | LVC<br>5V | 3.3V | 2.5V | 1.8V | 2.5V | 1.8V | UNIT    |  | TOR  | H          | L<br>H |
| Icc       | MAX          | 0.01      | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | mA      |  | 10.0 | 10.0       | XAM.   |
| Vo        | MAX          | 5.5       | 5.5  | 5.5  | 5.5  | 2.7  | 2.7  | V       |  |      |            |        |
| lor       | MAX          | 32        | 24   | 8    | 4    | 9    | 8    | mA      |  |      |            |        |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | ОИТРИТ | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V |
|-----------|-------|--------|------------|-----------|-------------|-------------|-------------|-------------|-------------|
| tPLH .    | ۸     | VIS    | MAX        | 3         | 4           | 4           | 5.6         | 1.8         | 2.5         |
| tpui      | A     | 4.0    | IVIAA      | 3         | 4           | 4           | 5.6         | 1.8         | 2.5         |

UNIT:ns

1G07

SINGLE BUFFER/DRIVER
WITH OPEN-DRAIN OUTPUT

Logic Diagram



#### **FUNCTION TABLE**

| RECOMMENDI | ED OPERATING | CONE      | DITIONS     |             |             |             |             |      |            |  | 2000 | INPUT  | OUTPUT |
|------------|--------------|-----------|-------------|-------------|-------------|-------------|-------------|------|------------|--|------|--------|--------|
| PARAMETER  | 7            | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V | UNIT | EVC<br>CBV |  | 1366 | H<br>L | H      |
| Icc        | MAX          | 0.01      | 0.01        | 0.01        | 0.01        | 0.01        | 0.01        | mA   | mo         |  |      |        |        |
| Іон        | MAX          | 5.5       | 5.5         | 5.5         | 5.5         | 2.7         | 2.7         | V    | 3-         |  |      |        |        |
| lou        | MAX          | 32        | 24          | 8           | 4           | 9           | 8           | mA   | 1          |  |      |        |        |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | оитрит | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V |
|-----------|-------|--------|------------|-----------|-------------|-------------|-------------|-------------|-------------|
| tPLH .    | ۸     | vis    | MAX        | 3.5       | 4.2         | 5.5         | 8.3         | 1.8         | 2.5         |
| tPHL .    | A     | 2.5    | IVIAA      | 3.5       | 4.2         | 5.5         | 8.3         | 1.8         | 2.5         |

#### SINGLE 2-INPUT POSITIVE-AND GATE

Y = AB



RECOMMENDED OPERATING CONDITIONS

| TILOUIVITALIADI | ED OF ENDATING | , 00141 | 31110140 |           |             |             |             |             |             |      |
|-----------------|----------------|---------|----------|-----------|-------------|-------------|-------------|-------------|-------------|------|
| PARAMETER       | MAX or MIN     | AHC     | AHCT     | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V | UNIT |
| Icc             | MAX            | 0.01    | 0.01     | 0.01      | 0.01        | 0.01        | 0.01        | 0.01        | 0.01        | mA   |
| Іон             | MAX            | -8      | -8       | -32       | -24         | -8          | -4          | -9          | -8          | mA   |
| lou             | MAX            | 8       | 8        | 32        | 24          | 8           | 4           | 9           | 8           | mA   |

**FUNCTION TABLE** 

| INF | PUT | OUTPUT |
|-----|-----|--------|
| A   | В   | Y      |
| Н   | Н   | H      |
| L   | X   | L      |
| X   | L   | L      |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | AHC | AHCT | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V |
|-----------|--------|--------|------------|-----|------|-----------|-------------|-------------|-------------|-------------|-------------|
| tPLH .    | A or B | V      | MAX        | 9   | 9    | 4         | 4.5         | 5.5         | 8           | 2           | 2.4         |
| tPHL .    | AUID   | ,      | IVIAA      | 9   | 9    | 4         | 4.5         | 5.5         | 8           | 2           | 2.4         |

UNIT:ns

#### 1G14 manuald aims

#### SINGLE SCHMITT-TRIGGER INVERTER GATE

 $\bullet$  Y =  $\overline{A}$ 



TURNO TURN

| RECOMMEND | ED OPERATING | CUNI | JIIIONS |           |             |             |             |             |             |      |
|-----------|--------------|------|---------|-----------|-------------|-------------|-------------|-------------|-------------|------|
| PARAMETER | MAX or MIN   | AHC  | AHCT    | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V | UNIT |
| Icc       | MAX          | 0.01 | 0.01    | 0.01      | 0.01        | 0.01        | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX          | -8   | -8      | -32       | -24         | -8          | -4          | -9          | -8          | mA   |
| lou       | MAX          | 8    | 8       | 32        | 24          | 8           | 4           | 9           | 8           | mA   |

**FUNCTION TABLE** 

| INPUT    | OUTPUT |
|----------|--------|
| Н        | L      |
| The same | H      |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | AHC | AHCT | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V |
|-----------|-------|--------|------------|-----|------|-----------|-------------|-------------|-------------|-------------|-------------|
| tPLH .    | ^     | V      | MAX        | 12  | 9    | 5         | 5.5         | 6.5         | 11          | 2.5         | 2.5         |
| tPHL .    | A     | 1      | IVIAA      | 12  | 9    | 5         | 5.5         | 6.5         | 11          | 2.5         | 2.5         |

#### SINGLE SCHMITT-TRIGGER BUFFER

#### **Logic Diagram**



RECOMMENDED OPERATING CONDITIONS

| FIIN | CTIO | NTA | RI | F |
|------|------|-----|----|---|

|           | D OPERATING | 717000    |      | LVC  | LVC  | AUC  | AUC  | 100.00 |  | arrise) | INPUT<br>A | OUTPUT      |
|-----------|-------------|-----------|------|------|------|------|------|--------|--|---------|------------|-------------|
| PARAMETER | MAX or MIN  | LVC<br>5V | 3.3V | 2.5V | 1.8V | 2.5V | 1.8V | UNIT   |  | 1316    | H          | Y<br>H<br>L |
| lcc -     | MAX         | 0.01      | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | mA     |  | 10.0    | 10.0       | XAM         |
| Іон       | MAX         | -32       | -24  | -8   | -4   | -9   | -8   | mA     |  |         |            |             |
| lou       | MAX         | 32        | 24   | 8    | 4    | 9    | 8    | mA     |  |         |            |             |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | ОИТРИТ | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V |
|-----------|-------|--------|------------|-----------|-------------|-------------|-------------|-------------|-------------|
| tPLH .    | ۸     | v      | MAX        | - 5       | 5.5         | 6.5         | 11          | 2.5         | 2.4         |
| tpui      | A     | 1.0    |            | 5         | 5.5         | 6.5         | 11          | 2.5         | 2.4         |

UNIT:ns

#### 1G18

## 1-OF-2 NONINVERTING DEMULTIPLEXER WITH 3-STATE DESELECTED OUTPUT





RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
|-----------|------------|-----------|-------------|-------------|-------------|------|
| lcc       | MAX        | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX        | -32       | -24         | -8          | -4          | mA   |
| lor.      | MAX        | 32        | 24          | 8           | 4           | mA   |

**FUNCTION TABLE** 

| INF | PUTS | OUT | PUT |  |
|-----|------|-----|-----|--|
| S   | A    | Y0  | Y1  |  |
| L   | L    | L   | Z   |  |
| L   | H    | H   | Z   |  |
| H   | L    | Z   | L   |  |
| H   | H    | Z   | H   |  |

SWITCHING CHARACTERISTICS

| SWITCHING CH | ANACIENIS | 1100   |            |           |             |             |             |
|--------------|-----------|--------|------------|-----------|-------------|-------------|-------------|
| PARAMETER    | INPUT     | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
| tPLH         | A         | Y      | MAX        | 3.2       | 4.2         | 5           | 9.3         |
| tPHL         | A         |        | WAA        | 3.2       | 4.2         | 5           | 9.3         |
| tPZL         | S         | V      | MAX        | 3.4       | 4.6         | 5.6         | 10.2        |
| tPZH         | 3         | '      | IVIAA      | 3.4       | 4.6         | 5.6         | 10.2        |
| tPLZ         | S         | Υ      | MAX        | 3.3       | 4.9         | 5.3         | 12.7        |
| tpu7         | 3         |        | IVIAA      | 3.3       | 4.9         | 5.3         | 12.7        |

### SINGLE 2-INPUT POSITIVE-OR GATE

 $\bullet$  Y = A + B



| Δ 1 |    | ICLE SCI |   |
|-----|----|----------|---|
| B 2 | >_ | 4        | Υ |

RECOMMENDED OPERATING CONDITIONS

| NECOMMEND | U UFENATING | CON  | SHIDINS |           |             |             |             |             |             |      |
|-----------|-------------|------|---------|-----------|-------------|-------------|-------------|-------------|-------------|------|
| PARAMETER | MAX or MIN  | AHC  | AHCT    | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V | UNIT |
| lcc       | MAX         | 0.01 | 0.01    | 0.01      | 0.01        | 0.01        | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX         | -8   | -8      | -32       | -24         | -8          | -4          | -9          | -8          | mA   |
| lou       | MAX         | 8    | 8       | 32        | 24          | 8           | 4           | 9           | 8           | mA   |

**FUNCTION TABLE** 

| INF | TU | OUTPUT |
|-----|----|--------|
| A   | В  | Υ      |
| Н   | X  | H      |
| X   | H  | H      |
| L   | L  | L      |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | AHC | AHCT | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V |
|-----------|--------|--------|------------|-----|------|-----------|-------------|-------------|-------------|-------------|-------------|
| tPLH .    | A or B | v      | MAX        | 8.5 | 9    | 4         | 4.5         | 5.5         | 8           | 2.1         | 2.4         |
| tPHL .    | AUID   | 1      | IVIAA      | 8.5 | 9    | 4         | 4.5         | 5.5         | 8           | 2.1         | 2.4         |

UNIT:ns

1G66

### SINGLE ABILATERAL ANALOG SWITCH



Logic Diagram



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVC  | AUC<br>1.8V | UNIT |
|-----------|------------|------|-------------|------|
| Icc       | MAX        | 0.01 | 0.01        | mA   |

**FUNCTION TABLE** 

| CONTROL<br>INPUT<br>(C) | SWITCHI |
|-------------------------|---------|
| L.                      | OFF     |
| H                       | ON      |

### SWITCHING CHARACTERISTICS

| 011110111110 011 | THI TO I EITHO | 100    |            |           |             |             |             |             |             |  |
|------------------|----------------|--------|------------|-----------|-------------|-------------|-------------|-------------|-------------|--|
| PARAMETER        | INPUT          | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V |  |
| tPLH.            | A or B         | B or A | MAX        | 0.6       | 0.8         | 1.2         | 2           | 0.1         | 0.2         |  |
| tPHL .           | AUID           | BUIA   | IVIAA      | 0.6       | 0.8         | 1.2         | 2           | 0.1         | 0.2         |  |
| tPZH             | С              | B or A | MAX        | 4.2       | 5           | 6.5         | 12          | 1           | 1.1         |  |
| tPZL             | U              | BUIA   | IVIAA      | 4.2       | 5           | 6.5         | 12          | 1           | 1.1         |  |
| tPHZ             | С              | B or A | MAX        | 5         | 6.5         | 6.9         | 10          | 2.2         | 2.9         |  |
| tPLZ             | C .            | BUIA   | IVIAA      | 5         | 6.5         | 6.9         | 10          | 2.2         | 2.9         |  |

# SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP



### **FUNCTION TABLE**

### RECOMMENDED OPERATING CONDITIONS

| TILOOMINICIAD! | LD OI LIDATING | , 00146   | ,,,,,,,,,,, |             |             | _    |
|----------------|----------------|-----------|-------------|-------------|-------------|------|
| PARAMETER      | MAX or MIN     | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| Icc            | MAX            | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон            | MAX            | -32       | -24         | -8          | -4          | mA   |
| lor            | MAX            | 32        | 24          | 8           | 4           | mA   |

|  |  | INP       | UT | OUTPUT         |
|--|--|-----------|----|----------------|
|  |  | CLK       | D  | Q              |
|  |  | TOHA TOHA | Н  | A to XHM       |
|  |  | 1         | L  | L              |
|  |  | no Line   | X  | Q <sub>0</sub> |
|  |  |           |    |                |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT          | ОИТРИТ      | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
|-----------|----------------|-------------|------------|-----------|-------------|-------------|-------------|
| fmax      |                |             | MIN        | 160       | 160         | 160         | 160         |
| tw        | CLK high or le | ow          | MIN        | 2.5       | 2.5         | 2.5         | 2.5         |
| tsu       | Before CLK 1   | , Data high | MIN        | 1.2       | 1.3         | 1.4         | 2.2         |
| tsu       | Before CLK 1   | , Data low  | IVIIIV     | 1.2       | 1.3         | 1.4         | 2.6         |
| th        | Data after CL  | K ↑         | MIN        | 0.5       | 1.0         | 0.4         | 0.3         |
| tPLH      | CLK            | 0           | MAX        | 4.5       | 5.2         | 7           | 9.9         |
| tPHL .    | ULK            | u           | IVIAA      | 4.5       | 5.2         | 7           | 9.9         |

UNIT fmax: MHz other: ns

### 1G80

SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP



RECOMMENDED OPERATING CONDITIONS

| HEGOIVIIVIEIVDI | D OI LIMITIAL | CON       | 711101113   |             |             |      |
|-----------------|---------------|-----------|-------------|-------------|-------------|------|
| PARAMETER       | MAX or MIN    | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| Icc             | MAX           | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон             | MAX           | -32       | -24         | -8          | -4          | mA   |
| lou             | MAX           | 32        | 24          | 8           | 4           | mA   |

### **FUNCTION TABLE**

| CLK | D | Q  |
|-----|---|----|
| 104 | Н | L  |
| 1   | L | H  |
| L   | X | Qn |

### SWITCHING CHARACTERISTICS

| SVVII GHIIVO G | HANAGIENIO    | 1103        |            |           |             |             |             |    |
|----------------|---------------|-------------|------------|-----------|-------------|-------------|-------------|----|
| PARAMETER      | INPUT         | OUTPUT      | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | 31 |
| fmax           |               | 2.5         | MIN        | 160       | 160         | 160         | 160         | 8  |
| tw             | CLK high or I | wo          | MIN        | 2.5       | 2.5         | 2.5         | 2.5         | a  |
| tsu            | Before CLK    | , Data high | MIN        | 1.1       | 1.3         | 1.5         | 2.3         | 1  |
| tsu            | Before CLK    | , Data low  | IVIIIV     | 1.1       | 1.3         | 1.5         | 2.5         | 1  |
| th             | Data after CL | K ↑         | MIN        | 0.4       | 0.9         | 0.2         | 0           | 0  |
| tPLH .         | CLK           | ō           | MAX        | 4.5       | 5.2         | 7           | 9.9         | G  |
| <b>TPHL</b>    | CLK           | u           | IVIAA      | 4.5       | 5.2         | 7           | 9.9         |    |

UNIT fmax: MHz other: ns



### RECOMMENDED OPERATING CONDITIONS

| THE O'CHINIST TO |            |      |      |           |             |             |             |      |
|------------------|------------|------|------|-----------|-------------|-------------|-------------|------|
| PARAMETER        | MAX or MIN | AHC  | AHCT | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| Icc              | MAX        | 0.01 | 0.01 | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон              | MAX        | -8   | -8   | -32       | -24         | -8          | -4          | mA   |
| for              | MAX        | 8    | 8    | 32        | 24          | 8           | 4           | mA   |

An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.

### **FUNCTION TABLE**

|     | INF | TU | OUTPUT        |
|-----|-----|----|---------------|
| -1  | Α   | В  | Y             |
| _   | L   | L  | L A           |
| - 1 | L   | Н  | H             |
| - 1 | H   | L  | H             |
| - 1 | H   | H  | animal contra |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | AHC | AHCT | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC  |  |
|-----------|--------|--------|------------|-----|------|-----------|-------------|-------------|------|--|
|           |        |        |            |     | 1131 | 5V        | 3.3V        | 0277        | 1.8V |  |
| tPLH .    | A or B | Y      | MAX        | 10  | 9    | 4         | 5           | 5.5         | 9.9  |  |
| tPHL      | AUID   |        | MAX        | 10  | 9    | 4         | 5           | 5.5         | 9.9  |  |
| UNIT:ns   |        |        |            |     |      |           |             |             |      |  |

1G125
SINGLE BUS BUFFER GATE
WITH 3-STATE OUTPUT

Y = A

Logic Diagram



### RECOMMENDED OPERATING CONDITIONS

| RECUMINENDI | ED UPERATING | CUNI | JIIIUNS |           |             |             |             |             |             |      |
|-------------|--------------|------|---------|-----------|-------------|-------------|-------------|-------------|-------------|------|
| PARAMETER   | MAX or MIN   | AHC  | AHCT    | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V | UNIT |
| Icc         | MAX          | 0.01 | 0.01    | 0.01      | 0.01        | 0.01        | 0.01        | 0.01        | 0.01        | mA   |
| Іон         | MAX          | -8   | -8      | -32       | -24         | -8          | -4          | -9          | -8          | mA   |
| lor         | MAX          | 8    | 8       | 32        | 24          | 8           | 4           | 9           | -8          | mA   |

### **FUNCTION TABLE**

| INP | UT | OUTPUT |
|-----|----|--------|
| OE  | A  | Y      |
| L   | H  | Н      |
| L   | L  | L      |
| Н   | X  | Z      |

### SWITCHING CHARACTERISTICS

| SWITCHING CH | ANACIENIS | 1163   | ,          |     |      |           |             |             | ,           |             |             |
|--------------|-----------|--------|------------|-----|------|-----------|-------------|-------------|-------------|-------------|-------------|
| PARAMETER    | INPUT     | OUTPUT | MAX or MIN | AHC | AHCT | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V |
| tPLH .       | A         | v      | MAX        | 8.5 | 8.5  | 4         | 4.5         | 5.5         | 8           | 1.7         | 2.5         |
| tPHL:        | A         | Y      | IVIAA      | 8.5 | 8.5  | 4         | 4.5         | 5.5         | 8           | 1.7         | 2.5         |
| tPZH         | ŌE        | v      | MAX        | 8   | 8    | 5         | 5.3         | 6.5         | 9.4         | 1.9         | 2.6         |
| tPZL         | UE        | 1      | IVIAA      | 8   | 8    | 5         | 5.3         | 6.5         | 9.4         | 1.9         | 2.6         |
| tPHZ         | ŌE        | v      | MAX        | 10  | 10   | 4.2       | 5           | 5           | 9.2         | 1.7         | 3.1         |
| tPLZ         | UL        |        | IVIAA      | 10  | 10   | 4.2       | 5           | 5           | 9.2         | 1.7         | 3.1         |

### Logic Diagram

### RECOMMENDED OPERATING CONDITIONS

MAX

8 32 24

### LVC 5V LVC 3.3V LVC 2.5V LVC AUC 2.5V AUC 1.8V PARAMETER MAX or MIN AHC AHCT 1.8V 0.01 mA MAX 0.01 0.01 0.01 0.01 0.01 0.01 0.01 -9 -8 MAX -8 -32 -24 -4 mA

### **FUNCTION TABLE**

| - | INP | UT | OUTPUT |
|---|-----|----|--------|
|   | OE  | A  | Υ      |
|   | H   | Н  | Н      |
|   | H   | L  | L      |
|   | L   | X  | Z      |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | AHC | AHCT | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V |
|-----------|-------|--------|------------|-----|------|-----------|-------------|-------------|-------------|-------------|-------------|
| tPLH      | A     | v      | MAX        | 8.5 | 8.5  | 4         | 4.5         | 5.5         | 8           | 1.7         | 2.5         |
| tPHL      | A     | Y      | IVIAA      | 8.5 | 8.5  | 4         | 4.5         | 5.5         | 8           | 1.7         | 2.5         |
| tPZH      | 05    | V      | MAX        | 8   | 8    | 5         | 5.3         | 6.6         | 9.4         | 1.9         | 2.5         |
| tPZL      | 0E    | 4      | IVIAX      | 8   | 8    | 5         | 5.3         | 6.6         | 9.4         | 1.9         | 2.5         |
| tPHZ      | 0E    | v      | MAX        | 10  | 10   | 4.2       | 5.5         | 5.5         | 9.8         | 1.7         | 3.1         |
| tPLZ      | UE    | 4      | IVIAX      | 10  | 10   | 4.2       | 5.5         | 5.5         | 9.8         | 1.7         | 3.1         |

UNIT:ns

### 1G240

# SINGLE BUFFER/DRIVER WITH 3-STATE OUTPUT

### **Logic Diagram**



| RECOMMEND | ED OPERATING | CONE      | DITIONS     |             |             |             |             |      |
|-----------|--------------|-----------|-------------|-------------|-------------|-------------|-------------|------|
| PARAMETER | MAX or MIN   | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V | UNIT |
| Icc       | MAX          | 0.01      | 0.01        | 0.01        | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX          | -32       | -24         | -8          | -4          | -9          | -8          | mA   |
| lou       | MAX          | 32        | 24          | 8           | 4           | 9           | 8           | mA   |

### **FUNCTION TABLE**

| INP | UT | OUTPUT |
|-----|----|--------|
| OE  | A  | Y      |
| L   | H  | L      |
| L   | L  | H      |
| H   | X  | Z      |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | AUC<br>2.5V | AUC<br>1.8V |
|-----------|-------|--------|------------|-----------|-------------|-------------|-------------|-------------|-------------|
| tPLH      | ۸     | v      | MAX        | 4         | 4.5         | 5.5         | 8           | 1.7         | 2.5         |
| tPHL      | A     |        | WAA        | 4         | 4.5         | 5.5         | 8           | 1.7         | 2.5         |
| tPZH      | ŌĒ    | v      | MAX        | 5.2       | 5.4         | 6.5         | 9.4         | 1.9         | 2.6         |
| tPZL      | OL.   | ,      | IVIAA      | 5.2       | 5.4         | 6.5         | 9.4         | 1.9         | 2.6         |
| tPHZ      | ŌĒ    | v      | MAX        | 4.1       | 5.2         | 4.9         | 9.4         | 1.7         | 3.1         |
| tPLZ      | UE    | 7      | WAX        | 4.1       | 5.2         | 4.9         | 9.4         | 1.7         | 3.1         |

### **DUAL 2-INPUT POSITIVE-NAND GATE**

### Logic Diagram





### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
|-----------|------------|-----------|-------------|-------------|-------------|------|
| lcc       | MAX        | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX        | -32       | -24         | -8          | -4          | mA   |
| lou       | MAX        | 32        | 24          | 8           | 4           | mA   |

FUNCTION TABLE (each gate)

| INF | TU | OUTPUT |
|-----|----|--------|
| A   | В  | Y      |
| H   | Н  | -L     |
| L   | X  | H      |
| X   | L  | H      |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
|-----------|--------|--------|------------|-----------|-------------|-------------|-------------|
| tPLH      | A or P | v as   | MAX        | 3.3       | 4.3         | 4.8         | 8.6         |
| tPHL      | A or B | 2.5    | IVIAA      | 3.3       | 4.3         | 4.8         | 8.6         |

UNIT:ns

Logic Diagram



### 2G02

### **DUAL 2-INPUT POSITIVE-NOR GATE**

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
|-----------|------------|-----------|-------------|-------------|-------------|------|
| Icc       | MAX        | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX        | -32       | -24         | -8          | -4          | mA   |
| lou       | MAX        | 32        | 24          | 8           | 4           | mA   |

### **FUNCTION TABLE**

|   |     | (each | gate)  |
|---|-----|-------|--------|
| Γ | INF | TUT   | OUTPUT |
| 1 | Α   | В     | Υ      |
| ı | H   | X     | XAPL   |
|   | X   | H     | Sal.   |
|   | L   | L     | H      |

### SWITCHING CHARACTERISTICS

| PARAMETER   | INPUT  | ОИТРИТ | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
|-------------|--------|--------|------------|-----------|-------------|-------------|-------------|
| tPLH        | A or D | v      | MAX        | 4.4       | 4.9         | 5.4         | 8.9         |
| <b>TPHL</b> | A or B | ,      | IVIAA      | 4.4       | 4.9         | 5.4         | 8.9         |

**DUAL INVERTER GATE** 





**FUNCTION TABLE** 

(each inverter)

| RECOMMEND | ED OPERATING | CONE      | ITIONS      |             |             | _    |
|-----------|--------------|-----------|-------------|-------------|-------------|------|
| PARAMETER | MAX or MIN   | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| Icc       | MAX          | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX          | -32       | -24         | -8          | -4          | mA   |
| In        | MAY          | 32        | 24          | 8           | Δ           | mΔ   |

| PARAMETER | MAX or MIN | LVC<br>5V | 3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
|-----------|------------|-----------|------|-------------|-------------|------|
| lcc       | MAX        | 0.01      | 0.01 | 0.01        | 0.01        | mA   |
| Іон       | MAX        | -32       | -24  | -8          | -4          | mA   |
| lou       | MAX        | 32        | 24   | 8           | 4           | mA   |

|  | -   | Н   | L   |
|--|-----|-----|-----|
|  | 2.5 | 8.5 | XAM |
|  |     |     |     |

| SVVII CHING CH | ANACIENISI | 163    |            |           |             | _           | -           |  |
|----------------|------------|--------|------------|-----------|-------------|-------------|-------------|--|
| PARAMETER      | INPUT      | ОИТРИТ | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |  |
| tPLH .         | Δ.         | v      | MAX        | 3.2       | 4.1         | 4.4         | 8           |  |
| PHL            | A          | 1      | IVIAA      | 3.2       | 4.1         | 4.4         | 8           |  |

UNIT:ns

2GU04

**DUAL INVERTER GATE** 





RECOMMENDED OPERATING CONDITIONS

| RECOMMEND | LD OF LINATING | COIVE     | 71110143    |             |             | ,    |
|-----------|----------------|-----------|-------------|-------------|-------------|------|
| PARAMETER | MAX or MIN     | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| Icc       | MAX            | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| 1он       | MAX            | -32       | -24         | -8          | -4          | mA   |
| lou       | MAX            | 32        | 24          | 8           | 4           | mA   |

FUNCTION TABLE (each inverter) INPUT OUTPUT

CWITCHING CHARACTERISTICS

| SVVITCIIIIVG CH | MIMOTERIO | 100    |            |           |             |             |             |
|-----------------|-----------|--------|------------|-----------|-------------|-------------|-------------|
| PARAMETER       | INPUT     | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
| tPLH .          | ۸         | v      | MAX        | 3         | 3.7         | 4           | 5.5         |
| tPHL .          | A         |        | IVIAA      | 3         | 3.7         | 4           | 5.5         |

2606

LaniarDiamon

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
|-----------|------------|-----------|-------------|-------------|-------------|------|
| lcc       | MAX        | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Vo        | MAX        | 5.5       | 5.5         | 5.5         | 5.5         | ٧    |
| lou       | MAX        | 32        | 24          | 8           | 4           | mA   |

**FUNCTION TABLE** (each inverter)

| INPUT   | OUTPUT |
|---------|--------|
| H       | L      |
| 200 EV. | H to   |
| AFE AC  |        |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
|-----------|-------|--------|------------|-----------|-------------|-------------|-------------|
| tPLH      | ۸     | v      | MAX        | 2.9       | 3.4         | 3.9         | 7.2         |
| tPHL .    | А     | 1      | IVIAA      | 2.9       | 3.4         | 3.9         | 7.2         |

UNIT:ns

2G07 margett signal

**DUAL BUFFER/DRIVER** 

WITH OPEN-DRAIN OUTPUTS

Logic Diagram



RECOMMENDED OPERATING CONDITIONS

| TILOUIVINILIADI | D OI LINATING | OOTEL     | 71110140    |             |             |      |
|-----------------|---------------|-----------|-------------|-------------|-------------|------|
| PARAMETER       | MAX or MIN    | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| Icc             | MAX           | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Vo              | MAX           | 5.5       | 5.5         | 5.5         | 5.5         | ٧    |
| 10L             | MAX           | 32        | 24          | 8           | 4           | mA   |

**FUNCTION TABLE** 

|  |     | each bui   | ner/delver) |
|--|-----|------------|-------------|
|  | SMB | INPUT<br>A | OUTPUT      |
|  | DVI | H          | H<br>L ya   |
|  |     |            |             |
|  |     |            |             |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | ОИТРИТ | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
|-----------|-------|--------|------------|-----------|-------------|-------------|-------------|
| tPLH      | Δ.    | v      | MAX        | 2.9       | 3.7         | 4.4         | 8.6         |
| tPHL .    | A     | 1      | IVIAA      | 2.9       | 3.7         | 4.4         | 8.6         |

### **DUAL 2-INPUT POSITIVE-AND GATE**



### RECOMMENDED OPERATING CONDITIONS

| HECOMMINICIAN | LD OF LINATING | COIAL     | 71110143    |             |             |      |  |
|---------------|----------------|-----------|-------------|-------------|-------------|------|--|
| PARAMETER     | MAX or MIN     | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |  |
| Icc           | MAX            | 0.01      | 0.01        | 0.01        | 0.01        | mA   |  |
| Іон           | MAX            | -32       | -24         | -8          | -4          | mA   |  |
| lor           | MAX            | 32        | 24          | 8           | 4           | mA   |  |

| <b>FUNCTION TABLE</b> |
|-----------------------|
| (each gate)           |

|     | (each gate) |        |  |  |  |  |  |
|-----|-------------|--------|--|--|--|--|--|
| INF | TUT         | OUTPUT |  |  |  |  |  |
| A   | В           | Y      |  |  |  |  |  |
| H   | Н           | Н      |  |  |  |  |  |
| L   | X           | XAY    |  |  |  |  |  |
| X   | SEL         | XAL    |  |  |  |  |  |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | LVC | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | 39.1 |  |  |
|-----------|--------|--------|------------|-----|-------------|-------------|-------------|------|--|--|
| 100.00    |        |        |            | 3.8 | 0.01        | 5.1         | 9           | 7.5  |  |  |
| TPHL TPHL | A or B | Y      | MAX        | 3.8 | 4.7         | 5.1         | 9           | 23   |  |  |
|           |        |        |            |     |             |             |             |      |  |  |

UNIT:ns

### 2G14

### **DUAL SCHMITT-TRIGGER INVERTER**



| RECOMMEND | ED OPERATING | LUINI     | THUNS       |             |             |      |
|-----------|--------------|-----------|-------------|-------------|-------------|------|
| PARAMETER | MAX or MIN   | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| Icc       | MAX          | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX          | -32       | -24         | -8          | -4          | mA   |
| lou       | MAX          | 32        | 24          | 8           | 4           | mA   |

|  | (each inverter) |        |  |  |  |  |
|--|-----------------|--------|--|--|--|--|
|  | INPUT<br>A      | OUTPUT |  |  |  |  |
|  | 100 Han         | L      |  |  |  |  |
|  | M. SE           | ZHIA   |  |  |  |  |
|  |                 |        |  |  |  |  |

| SWITCHING CH | ARACTERIS | IUS    |            |           | 281         | 70/4        | SVI         | í |
|--------------|-----------|--------|------------|-----------|-------------|-------------|-------------|---|
| PARAMETER    | INPUT     | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |   |
| tPLH .       | ۸         | v      | MAX        | 4.3       | 5.4         | 5.7         | 9.5         |   |
| tPHL .       | M         | ,      | IVIAA      | 4.3       | 5.4         | 5.7         | 9.5         | ı |

### **DUAL SCHMITT-TRIGGER BUFFER**





| TILO OTHER PER | D OI LINTING | 00111     | 71110110    |             |             |      |
|----------------|--------------|-----------|-------------|-------------|-------------|------|
| PARAMETER      | MAX or MIN   | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| Icc            | MAX          | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон            | MAX          | -32       | -24         | -8          | -4          | mA   |
| lou            | MAX          | 32        | 24          | 8           | 4           | mA   |

FUNCTION TABLE

| INPUT  | OUTPUT |
|--------|--------|
| Н      | Н      |
| to Lan | L      |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
|-----------|-------|--------|------------|-----------|-------------|-------------|-------------|
| tPLH .    | ۸     |        | MAX        | 4.3       | 5.4         | 5.7         | 9.3         |
| tPHL .    | M     | 1      | WIAA       | 4.3       | 5.4         | 5.7         | 9.3         |

UNIT:ns

2G32

### **DUAL 2-INPUT POSITIVE-OR GATE**





RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
|-----------|------------|-----------|-------------|-------------|-------------|------|
| Icc       | MAX        | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX        | -32       | -24         | -8          | -4          | mA   |
| lou       | MAX        | 32        | 24          | 8           | 4           | mA   |

FUNCTION TABLE

| INF | TU | OUTPUT |
|-----|----|--------|
| A   | В  | Y      |
| Н   | X  | Н      |
| X   | H  | H      |
| L   | L  | L      |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
|-----------|--------|--------|------------|-----------|-------------|-------------|-------------|
| tPLH      | A or B | v      | MAX        | 3.2       | 3.8         | 4.4         | 8           |
| tPHL .    | AUID   |        | IVIAA      | 3.2       | 3.8         | 4.4         | 8           |



### **DUAL BUFFER GATE**





### FUNCTION TABLE

**FUNCTION TABLE** 

| RECOMMEND | ED OPERATING | CONE      | ITIONS      |             |             |      |
|-----------|--------------|-----------|-------------|-------------|-------------|------|
| PARAMETER | MAX or MIN   | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| lcc       | MAX          | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX          | -32       | -24         | -8          | -4          | mA   |
| la.       | MANY         | 22        | 24          | 0           |             | m A  |

| (eac       | h gate) |
|------------|---------|
| INPUT<br>A | OUTPUT  |
| Н          | Н       |
| 1          | L       |

### SWITCHING CHARACTERISTICS

|           |       |        |            | _         | _           | _           | -           |
|-----------|-------|--------|------------|-----------|-------------|-------------|-------------|
| PARAMETER | INPUT | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
| tPLH .    | ۸     | Y      | MAX        | 3.2       | 4.1         | 4.4         | 8.6         |
| tPHL .    | A     |        | IVIAA      | 3.2       | 4.1         | 4.4         | 8.6         |

UNIT:ns

# 2G53

### DUAL ANALOG

### MULTIPLEXER/DEMULTIPLEXER

# Logic Diagram



### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVC<br>5V | UNIT |
|-----------|------------|-----------|------|
| Icc       | MAX        | 0.01      | mA   |

### **FUNCTION TABLE**

| CONTRO | L INPUT | ON     |
|--------|---------|--------|
| INH    | A       | CHANNE |
| L      | L       | Y1     |
| L      | H       | Y2     |
| H      | X       | None   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT    | OUTPUT   | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
|-----------|----------|----------|------------|-----------|-------------|-------------|-------------|
| tPLH      | COM or Y | Y or COM | MAX        | 0.6       | 0.8         | 1.2         | 2           |
| tPHL .    | CONTOLL  |          | IVIAA      | 0.6       | 0.8         | 1.2         | 2           |
| tPZH      |          | COM or Y | MAX        | 4.5       | 5.4         | 6.1         | 9           |
| tPZL      | INH      |          |            | 4.5       | 5.4         | 6.1         | 9           |
| tPHZ      |          |          |            | 8         | 8.1         | 8.3         | 10.9        |
| tPLZ      |          |          |            | 8         | 8.1         | 8.3         | 10.9        |
| tpzH      |          |          | MAX        | 5.4       | 5.8         | 7.2         | 10.3        |
| tPZL      | А        | COM or Y |            | 5.4       | 5.8         | 7.2         | 10.3        |
| tPHZ      | A        | CONTOL   | IVIAA      | 5         | 7.2         | 7.9         | 9.4         |
| TPLZ      |          |          |            | 5         | 7.2         | 7.9         | 9.4         |

### **DUAL BILATERAL ANALOG SWITCH**







| PARAMETER | MAX or MIN | LVC  | UNIT |
|-----------|------------|------|------|
| Icc       | MAX        | 0.01 | mA   |

# FUNCTION TABLE (each section)

| CONTROL<br>INPUT<br>(C) | SWITCHI |
|-------------------------|---------|
| L                       | OFF     |
| H                       | ON      |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
|-----------|--------|--------|------------|-----------|-------------|-------------|-------------|
| tPLH .    | A or B | B or A | MAX        | 0.6       | 0.8         | 1.2         | 2           |
| tPHL .    | AUID   | BOLA   | IVIAA      | 0.6       | 0.8         | 1.2         | 2           |
| tPZH      | С      | A or B | MAX        | 3.9       | 4.4         | 5.6         | 10          |
| tPZL      | · ·    | AUID   | IVIAX      | 3.9       | 4.4         | 5.6         | 10          |
| tPHZ      | С      | A or B | MAX        | 6.3       | 7.2         | 6.9         | 10.5        |
| tPLZ      | C      | AUID   | WAA        | 6.3       | 7.2         | 6.9         | 10.5        |

UNIT:ns

### 2G74

### SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH CLEAR AND PRESET

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
|-----------|------------|-----------|-------------|-------------|-------------|------|
| lcc       | MAX        | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX        | -32       | -16         | -8          | -4          | mA   |
| lou       | MAX        | 32        | 16          | 8           | 4           | mA   |

### Logic Diagram



### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT          | OUTPUT              | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
|-----------|----------------|---------------------|------------|-----------|-------------|-------------|-------------|
| fmax      |                |                     | MIN        | 200       | 175         | 175         | 80          |
| tw        | CLK            |                     |            | 2         | 2.7         | 2.7         | 6.2         |
| LVV       | PRE or CLR low |                     |            | 2         | 2.7         | 2.7         | 6.2         |
| tsu       | Data           |                     | MIN        | 1.1       | 1.3         | 1.7         | 2.9         |
| tsu       | PRE or CLR ina | PRE or CLR inactive |            | 1         | 1.2         | 1.4         | 1.9         |
| th        |                |                     | MIN        | 0.5       | 1.2         | 0.3         | 0           |
| tplH .    | CLK            | CLK Q               |            | 4.1       | 5.9         | 7.1         | 13.4        |
| tPHL.     | CLK            | u                   | MAX        | 4.1       | 5.9         | 7.1         | 13.4        |
| tplH      | CLK            | ā                   | MAX        | 4.4       | 6.2         | 7.7         | 14.4        |
| tPHL      | CLK            | u                   | IVIAA      | 4.4       | 6.2         | 7.7         | 14.4        |
| tplh      | PRE or CLR     | Q or $\overline{Q}$ | MAX        | 4.1       | 5.9         | 7           | 12.9        |
| tPHL .    | THE OF GER     | u or u              | IVIAA      | 4.1       | 5.9         | 7           | 12.9        |

### **FUNCTION TABLE**

|     | INPUT |     |   | OUT | PUT |
|-----|-------|-----|---|-----|-----|
| PRE | CLR   | CLK | D | Q   | Q   |
| L   | Н     | X   | X | Н   | L   |
| H   | L     | X   | X | L   | H   |
| L   | L     | X   | X | H†  | H   |
| H   | H     | 200 | H | H   | L   |
| H   | H     |     | L | L   | H   |
| H   | H     | L   | X | Qn  | Q   |

† This configuration is nonstable; that is, it does not persist when PRE or CLR returns to its inactive (high) level.

### 2686

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
|-----------|------------|-----------|-------------|-------------|-------------|------|
| Icc       | MAX        | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX        | -32       | -24         | -8          | -4          | mA   |
| lou       | MAX        | 32        | 24          | 8           | 4           | mA   |

### **Logic Diagram**

An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.

# FUNCTION TABLE

| Γ | INF | TU | OUTPUT      |
|---|-----|----|-------------|
| Ī | A   | В  | Y           |
| Γ | L   | L  | L           |
| ı | L   | H  | Н           |
| П | H   | L  | H           |
| П | H   | H  | brown Loope |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
|-----------|------------|-----------|-------------|-------------|-------------|------|
| Icc       | MAX        | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX        | -32       | -24         | -8          | -4          | mA   |
| lor       | MAX        | 32        | 24          | 8           | 4           | mA   |

# 2G125

# DUAL BUS BUFFER GATE WITH 3-STATE OUTPUTS

### Logic Diagram



### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
|-----------|------------|-----------|-------------|-------------|-------------|------|
| Icc       | MAX        | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX        | -32       | -24         | -8          | -4          | mA   |
| for.      | MAX        | 32        | 24          | 8           | 4           | mA   |

### **FUNCTION TABLE**

| INP | UT | OUTPUT |
|-----|----|--------|
| OE  | A  | Y      |
| L   | Н  | H      |
| L   | L  | L      |
| H   | X  | Z      |

### SWITCHING CHARACTERISTICS

| SWITCHING CH | ARACTERIS | 1105   |            |           |             |             |             |
|--------------|-----------|--------|------------|-----------|-------------|-------------|-------------|
| PARAMETER    | INPUT     | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
| tplH .       | A         | v      | MAX        | 3.7       | 4.3         | 4.8         | 9.1         |
| tPHL .       | A         | ,      | IVIAA      | 3.7       | 4.3         | 4.8         | 9.1         |
| tPZH         | ŌĒ        | v      | MAX        | 3.8       | 4.7         | 5.6         | 9.9         |
| tPZL         | UL        | '      | IVIAA      | 3.8       | 4.7         | 5.6         | 9.9         |
| tPHZ         | ŌĒ        | V      | MAX        | 3.4       | 4.6         | 5.8         | 11.6        |
| tPLZ         | UE        | ,      | IVIAA      | 3.4       | 4.6         | 5.8         | 11.6        |

### 2G126 immunit sign.l

### **DUAL BUS BUFFER GATE** WITH 3-STATE OUTPUTS



| RECUIVINIENDE | D OF ENATING | CONE      | THON        |             |             | _    |
|---------------|--------------|-----------|-------------|-------------|-------------|------|
| PARAMETER     | MAX or MIN   | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| Icc           | MAX          | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон           | MAX          | -32       | -24         | -8          | -4          | mA   |
| lor           | MAX          | 32        | 24          | 8           | 4           | mA   |



**FUNCTION TABLE** 

|    | 1   | each L | uner   |
|----|-----|--------|--------|
| Г  | INP | UT     | OUTPUT |
| I  | OE  | Α      | Y      |
| 1  | Н   | Н      | Н      |
| 1  | H   | L      | L      |
| -1 | 1.  | X      | 7      |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
|-----------|-------|--------|------------|-----------|-------------|-------------|-------------|
| tPLH      | Λ     | v      | MAX        | 3.2       | 4           | 4.9         | 9.8         |
| tphl .    | A     | 1      | IVIAA      | 3.2       | .2 4        | 4.9         | 9.8         |
| tPZH      | 0E    | v      | MAX        | 3.1       | 4.1         | 5           | 10          |
| tPZL      | UE    | 1      | IVIAA      | 3.1       | 4.1         | 5           | 10          |
| tPHZ      | OE OE |        | MAX        | 3.3       |             |             | 12.6        |
| tPLZ      | UE    | 1      | IVIAA      | 3.3       | 4.4         | 5.7         | 12.6        |

UNIT:ns

2G157

# SINGLE 2-LINE TO 1-LINE DATA SELECTOR/MULTIPLEXER



Logic Diagram

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | 11/0 | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
|-----------|------------|------|-------------|-------------|-------------|------|
| Icc       | MAX        | 0.01 | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX        | -32  | -24         | -8          | -4          | mA   |
| lou       | MAX        | 32   | 24          | 8           | 4           | mA   |

|   | INP | OUT | PUT |    |   |
|---|-----|-----|-----|----|---|
| G | A/B | Α   | В   | Y  | Y |
| Н | X   | X   | X   | L. | L |
| L | L   | L   | X   | L  | H |
| L | L   | H   | X   | Н  | L |
| L | H   | X   | L   | L  | H |
| 1 | H   | X   | H   | H  | 1 |

SWITCHING CHARACTERISTICS

| SWITCHING CH | HARACTERIST | rics                    |            |           |             |             |             |           |  |  |  |  |
|--------------|-------------|-------------------------|------------|-----------|-------------|-------------|-------------|-----------|--|--|--|--|
| PARAMETER    | INPUT       | OUTPUT                  | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | NA<br>DAT |  |  |  |  |
| tPLH         | A or B      | Y or \overline{Y}       | MAX        | 4         | 6           | 8           | 14          | 3.7       |  |  |  |  |
| tPHL .       | A UI D      | 1 01 1                  | WIAA       | 4         | 6           | 8           | 14          | 0.0       |  |  |  |  |
| tPLH         | Ā/B         | Y or \( \overline{Y} \) | MAX        | 4         | 6           | 9           | 16          | 1.8       |  |  |  |  |
| <b>TPHL</b>  | A/D         | 1 01 1                  | IVIAA      | 4         | 6           | 9           | 16          | B.E       |  |  |  |  |
| tPLH .       | G           | Y or \overline{Y}       | MAX        | 4         | 6           | 8           | 14          | 0.0       |  |  |  |  |
| tphl.        | 0           | 1 01 1                  | IVIAA      | 4         | 6           | 8           | 14          | 3.4       |  |  |  |  |

# **DUAL BUFFERS/DRIVERS**

# WITH 3-STATE OUTPUTS



| HEGOIVIIVIEIVO | LD OI LIMITIAL | 00141     | 71110140    |             | ,           |      |
|----------------|----------------|-----------|-------------|-------------|-------------|------|
| PARAMETER      | MAX or MIN     | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| Icc            | MAX            | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон            | MAX            | -32       | -24         | -8          | -4          | mA   |
| Inc            | MAX            | 32        | 24          | 8           | 4           | mA   |

### Logic Diagram



**FUNCTION TABLE** (each buffer)

| INP | UT | OUTPUT |
|-----|----|--------|
| OE  | Α  | Y      |
| L   | Н  | L      |
| L   | L  | H      |
| H   | X  | Z      |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
|-----------|-------|--------|------------|-----------|-------------|-------------|-------------|
| tplH      | A     | Y      | MAX        | 4         | 4.6         | 5.5.        | 11.3        |
| tPHL      | A     | ,      | IVIAA      | 4         | 4.6         | 5.5         | 11.3        |
| tPZH      | ŌĒ    | V      | MAX        | 5         | 5.4         | 6.6         | 11.7        |
| tPZL      | UE    | 1      | IVIAA      | 5         | 5.4         | 6.6         | 11.7        |
| tPLZ      | ŌĒ    | V      | MAX        | 4.2       | 5.5         | 5.7         | 12.8        |
| tPHZ      | UE    | 1      | IVIAA      | 4.2       | 5.5         | 5.7         | 12.8        |

### 2G241

### **DUAL BUFFER/DRIVER** WITH 3-STATE OUTPUTS

BECOMMENDED OPERATING CONDITIONS

| TILO O INTIVILIADI | LO OI LINATING | OOITE     | 71110140    |             |             |      |
|--------------------|----------------|-----------|-------------|-------------|-------------|------|
| PARAMETER          | MAX or MIN     | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| Icc                | MAX            | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон                | MAX            | -32       | -24         | -8          | -4          | mA   |
| lor                | MAX            | 32        | 24          | 8           | 4           | mA   |

### Logic Diagram





### **FUNCTION TABLE**

| INP | UT | OUTPUT |
|-----|----|--------|
| 10E | 1A | 1Y     |
| L   | H  | H      |
| L   | L  | L      |
| H   | X  | Z      |

| INP | UT  | OUTPUT |
|-----|-----|--------|
| 20E | 2A  | 2Y     |
| Н   | Н   | Н      |
| H   | O L | L      |
| L   | X   | Z      |

### SWITCHING CHARACTERISTICS

| SWITCHING CH | AIIACILIIIOI | 100    |            |           | _           |             | _           |     |
|--------------|--------------|--------|------------|-----------|-------------|-------------|-------------|-----|
| PARAMETER    | INPUT        | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |     |
| tPLH .       | А            | Y      | MAX        | 3.7       | 4.3         | 4.8         | 8.8         |     |
| tphl.        | ^            | 1      | IVIAA      | 3.7       | 4.3         | 4.8         | 8.8         |     |
| tPZL         | ŌĒ           | OF.    | Y          | MAX       | 3.8         | 4.7         | 5.6         | 9.9 |
| tPZH         |              |        | WAX        | 3.8       | 4.7         | 5.6         | 9.9         |     |
| tPLZ         | ŌĒ           | Y      | MAX        | 3.4       | 4.4         | 5.8         | 11.6        |     |
| tPHZ         | UE           |        |            | 3.4       | 4.4         | 5.8         | 11.6        |     |
| tPZL         | 0E           | Y      | MAX        | 3.3       | 4.1         | 4.7         | 8.8         |     |
| tPZH         | UE           | 1      | IVIAA      | 3.3       | 4.1         | 4.7         | 8.8         |     |
| tPLZ         | 0E           | Y      | MAX        | 3.3       | 4.2         | 5.2         | 12.5        |     |
| tPHZ         | UE           | 1      | IVIAA      | 3.3       | 4.2         | 5.2         | 12.5        |     |



RECOMMENDED OPERATING CONDITIONS

| RECUMINIENT | EU UPERATIN | G CUN     | DITIUN      | 3           | _           | _    |
|-------------|-------------|-----------|-------------|-------------|-------------|------|
| PARAMETER   | MAX or MIN  | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| Icc         | MAX         | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон         | MAX         | -32       | -24         | -8          | -4          | mA   |
| lou         | MAX         | 32        | 24          | 8           | 4           | mA   |



FUNCTION TABLE (each inverter)

| INPUT<br>A | ОИТРИТ |
|------------|--------|
| H          | L      |
| L          | H      |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | ОИТРИТ | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
|-----------|-------|--------|------------|-----------|-------------|-------------|-------------|
| tPLH .    | ۸     | v      | MAX        | 3.2       | 4.1         | 4.4         | 7.9         |
| tPHL .    | М     | 1      | IVIAX      | 3.2       | 4.1         | 4.4         | 7.9         |

UNIT:ns

### 3G06

TRIPLE INVERTER BUFFER/DRIVER
WITH OPEN-DRAIN OUTPUTS



### RECOMMENDED OPERATING CONDITIONS

|           |            |           |             | -           |             | -    |
|-----------|------------|-----------|-------------|-------------|-------------|------|
| PARAMETER | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| Icc       | MAX        | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Vo        | MAX        | 5.5       | 5.5         | 5.5         | 5.5         | ٧    |
| In        | MAX        | 32        | 24          | 8           | 4           | mΔ   |

### FUNCTION TABLE

| (each      | inverter) |
|------------|-----------|
| INPUT<br>A | OUTPUT    |
| H          | L         |

SWITCHING CHARACTERISTICS

| SWITCHING CI | HARACTERIS | 51165  |            |           | US I        | 22.6        |             |
|--------------|------------|--------|------------|-----------|-------------|-------------|-------------|
| PARAMETER    | INPUT      | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
| tPLH .       | Α          | v      | MAX        | 2.9       | 3.4         | 3.9         | 7.2         |
| TPHL .       |            | ,      | MAX        | 2.9       | 3.4         | 3.9         | 7.2         |

### 3G07 mangaid signal

## TRIPLE BUFFER/DRIVER

### WITH OPEN-DRAIN OUTPUTS



### RECOMMENDED OPERATING CONDITIONS

| PARAMETER       | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
|-----------------|------------|-----------|-------------|-------------|-------------|------|
| Icc             | MAX        | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Vo              | MAX        | 5.5       | 5.5         | 5.5         | 5.5         | ٧    |
| lo <sub>L</sub> | MAX        | 32        | 24          | 8           | 4           | mA   |

### **FUNCTION TABLE** (each buffer/driver)

| INPUT<br>A | OUTPUT |
|------------|--------|
| H          | H      |
| L          | L      |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | ОИТРИТ | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
|-----------|-------|--------|------------|-----------|-------------|-------------|-------------|
| tPLH .    | Λ     | v      | MAX        | 2.9       | 3.7         | 4.3         | 7.8         |
| tPHL A    | 1     | MAX    | 2.9        | 3.7       | 4.3         | 7.8         |             |

UNIT:ns

### 3G14

### TRIPLE SCHMITT-TRIGGER INVERTER





| RECOMMEND | ED OPERATING | COND      | ITIONS      |             |             |      |
|-----------|--------------|-----------|-------------|-------------|-------------|------|
| PARAMETER | MAX or MIN   | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| łcc       | MAX          | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX          | -32       | -24         | -8          | -4          | mA   |
| lou       | MAX          | 32        | 24          | 8           | 4           | mA   |

### **FUNCTION TABLE**

| INPUT | OUTPUT |
|-------|--------|
| Н     | L      |
| L     | H      |

SWITCHING CHARACTERISTICS

| SWITCHING C                 | HANACIENIS | 1163       |           |             |             |             |     |  |  |  |
|-----------------------------|------------|------------|-----------|-------------|-------------|-------------|-----|--|--|--|
| PARAMETER                   | A Y        | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |     |  |  |  |
| tPLH                        | Δ.         | v          | MAY       | 4.3         | 5.4         | 5.7         | 9.2 |  |  |  |
| tPHL .                      | A          | 1          | IVIAA     | 4.3         | 5.4         | 5.7         | 9.2 |  |  |  |
| ФИН A Y MAX 4.3 5.4 5.7 9.2 |            |            |           |             |             |             |     |  |  |  |

### TRIPLE SCHMITT-TRIGGER BUFFER



### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
|-----------|------------|-----------|-------------|-------------|-------------|------|
| lcc       | MAX        | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон       | MAX        | -32       | -24         | -8          | -4          | mA   |
| lor       | MAX        | 32        | 24          | 8           | 4           | mA   |

### **FUNCTION TABLE**

| INPUT<br>A | OUTPUT |
|------------|--------|
| H          | H      |
| L          | L      |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
|-----------|-------|--------|------------|-----------|-------------|-------------|-------------|
| tPLH .    | Λ     | v      | MAX        | TBD       | TBD         | TBD         | TBD         |
| tPHL .    | М     | 1      | IVIAA      | TBD       | TBD         | TBD         | TBD         |

UNIT:ns

### 3G34

TRIPLE BUFFER GATE



# RECOMMENDED OPERATING CONDITIONS

| TILOUTETTE | CO OI CHAINING | 00140     | 1110110     |             |             |      |
|------------|----------------|-----------|-------------|-------------|-------------|------|
| PARAMETER  | MAX or MIN     | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V | UNIT |
| Icc        | MAX            | 0.01      | 0.01        | 0.01        | 0.01        | mA   |
| Іон        | MAX            | -32       | -24         | -8          | -4          | mA   |
| lou        | MAX            | 32        | 24          | 8           | 4           | mA   |



### SWITCHING CHARACTERISTICS

|           |       |        | _          |           | -           |             | _           |
|-----------|-------|--------|------------|-----------|-------------|-------------|-------------|
| PARAMETER | INPUT | OUTPUT | MAX or MIN | LVC<br>5V | LVC<br>3.3V | LVC<br>2.5V | LVC<br>1.8V |
| tPLH .    | Λ     | v      | MAX        | 3.2       | 4.1         | 4.4         | 7.9         |
| tPHL .    | A     | 1      | IVIAA      | 3.2       | 4.1         | 4.4         | 7.9         |

# **FUNCTION**



### GATE (AND/NAND/OR/NOR)

|             | FIGURE NAME     |         |       |           | 251/216    |     |          | Bip | olar       |     |      | CN      | IOS    |     | BiC        | MOS      | ology |           | Adv      | ance | d CN | ios |       | _    |
|-------------|-----------------|---------|-------|-----------|------------|-----|----------|-----|------------|-----|------|---------|--------|-----|------------|----------|-------|-----------|----------|------|------|-----|-------|------|
| Description | No. of<br>Input | Curcuit | Input | Output    | Device     | TTL | 2        | co. | ALS        | AS  | u.   | P.      | НСТ    | BCT | ABT        | LVI      | ALVT  | AC        | ACT      | AHC  | AHCT | LV  | LVC   | ALVC |
| 18018       |                 | 17300   | 100   |           | 08         | X   | 0        | 0   | 0          | 0   | 0    | 0/0     | 0/0    | X   |            | 1        | -     | 0/0/0     | 0/0/0    | 0    | 0    | OA  | OA    | 0    |
|             |                 |         |       | oc        | 09         |     | 0        | 0   | 0          |     | X    | X/-     |        | ×   |            |          | 121   |           |          |      | 1    |     | 111   | -10  |
|             |                 | 4       |       | oc        | 15         |     | X        | X   | X          |     | 150  |         | 170    |     |            |          |       |           |          |      |      |     |       |      |
|             | 2               |         |       | BUF       | 1008       |     |          |     | $\times A$ | OA  |      |         |        |     |            | 100      |       |           |          |      |      |     |       |      |
| POS-AND     |                 |         | SCH   |           | 7001       |     |          |     |            |     |      | 0/-     |        |     |            |          | - 01  |           |          |      |      |     |       |      |
|             |                 | 6       | 1 42  | BUF       | 808        |     |          |     | X          | OB  | 1.70 | ×/-     |        |     |            | -        |       |           |          |      | -    |     | -     | -    |
|             |                 |         | -     | BUF       | 1808       |     | 0        | V   | X          | X   | 0    | 010     | 10     | -   |            | -        | - 05  | X/O/-     | X/O/-    | -    |      | OA  |       |      |
|             | 3               | 3       | -     | BUF       | 1011       | -   | 0        | ×   | OA<br>X    | 0   | 0    | 010     | -/0    | -   | 100        | -        | -     | AIOI-     | A/O/-    | -    | -    | OA  |       |      |
|             | 4               | 2       |       | BOF       | 21         |     | 0        |     | OA.        | 0   | 0    | 0/0     | X/O    |     | 100        |          |       | ×/-/-     | X/-/-    |      | 0    | OA  | 0.011 |      |
|             |                 |         |       |           |            |     |          |     |            |     |      | -0.0    |        |     |            |          |       |           |          |      |      |     |       |      |
| TO TACTO    | 101             | 2       |       |           | 8003       |     |          |     | X          |     |      |         |        |     | 0          |          |       |           |          |      |      |     |       |      |
|             |                 | ALC VE  |       | oc        | 00         |     | 0        | 0   | OA         | 0   | 0    | 0/0     | 0/0    | 2   |            | -        | -     | 0/0/0     | 0/0/0    | 0    | 0    | OA  | OA    | 0    |
|             |                 |         |       | OC        | 01         | X   | X        | - V | X<br>OB    |     |      | X/-     | -/0    |     | -          | -        | -     |           |          | -    |      | -   |       | -    |
|             | 0.0             | T TOO   | SCH   | 00        | 24         |     | X        | Α.  | OB         |     |      | CIC     | -//    |     | -          | -        |       | HOS       |          |      | -    |     |       |      |
|             |                 |         | JUH   | oc        | 26         | ×   | 6        |     |            |     | -    |         |        |     | 1          | -        | -     | 1,010     | 100      |      |      |     | 5000  |      |
|             |                 |         | -     | BUF       | 37         | ×   | ŏ        | 0   | OA         |     | ×    |         | 100    |     | 100        | -        | 100   | S I DUIS  | -        | -    |      | -   | 27711 |      |
|             | 2               | 4       |       | OC        | 38         |     | ŏ        | ŏ   | OB         |     | 0    |         |        |     | 100        |          | 150   | -         |          |      |      |     |       |      |
|             | -               |         | SCH   |           |            | X   | 0        | X   |            |     | Ť    | 0/0     | -/0    |     |            |          |       | X/-/-     | X/-/-    | 0    | 0    | OA  |       |      |
|             |                 | -       |       | BUF       | 1000       |     |          |     | XA         | OA  |      |         |        |     | 011        |          |       |           |          |      |      |     |       |      |
|             | 11111           |         |       | OC        | 1003       |     |          |     | $\times A$ |     |      |         | 1 14   |     |            |          |       | T MOS     | 0.0      |      |      |     |       |      |
|             |                 |         | SCH   | oc        | 7003       |     |          |     |            |     |      | X/-     |        |     |            |          |       |           |          |      |      |     |       |      |
|             |                 |         |       | OC<br>BUF | 39<br>804  |     |          |     | ~          | 200 |      |         |        |     | 100        | -        |       |           |          |      |      |     |       |      |
|             |                 | 6       |       | BUF       | 1804       |     |          |     |            | OB  |      | ×/-     |        | -   |            | -        |       |           |          |      | -    |     |       |      |
| POS-NAND    | -               |         |       | BUF       | 1804       |     | 0        | 0   | OA         |     | 0    | 0/0     | -/0    |     |            | -        | - 51  | VIOIO     | XIOIO    |      |      | OA  | OA    | 0    |
|             | 3               | 3       | -     | oc        |            | ×   |          | 0   | X          | 10  | 0    | Cro     | 40     |     | -          | $\vdash$ | 170   | NON       | AICIO    |      |      | UA  | UA    | -    |
|             |                 |         | -     | BUF       | 1010       |     | <u> </u> |     | X          |     |      |         |        |     | +          |          |       |           |          |      |      |     | 1000  |      |
|             |                 |         | SCH   | 1         |            | X   | ×        |     | -          |     |      |         |        |     |            |          |       | X/-/-     | -/X/-    |      |      |     |       |      |
|             |                 |         | SCH   |           | 18         |     | X        |     | -          |     | 9    |         |        |     | 100        |          | 10    |           |          |      |      |     |       |      |
|             |                 |         |       |           | 20         |     | 0        | X   | OA         | 0   | 0    | 010     | -10    |     | The second |          |       | X/X/O     | X/X/O    |      |      | OA  |       |      |
|             | 4               | 2       |       | OC        |            | X   | ×        | X   | ×          |     |      |         |        |     |            |          |       |           |          | -    |      |     |       | -    |
|             | 1               |         |       | BUF       | 40         | X   | X        |     | X          |     | X    |         |        |     |            |          |       |           |          |      | 1    |     |       |      |
|             |                 |         |       | BUF       | 140        |     |          | 0   |            |     |      |         |        |     |            |          |       |           |          |      | 10   |     |       |      |
|             |                 | 3       | SCH   | BUF       | 1020       |     |          |     | X          |     |      |         |        |     |            |          | -     |           |          | -    |      | -   |       |      |
|             | 8               | 1       | SUH   |           | 30         |     | X        | ×   | OA         | 0   | 0    | X/O     | -/0    | -   | +          |          |       | VIIV      | 0/-/×    | -    | -    |     | -     | -    |
|             | 12              | 1       |       | 38        | 134        |     | 1        | ×   | UA         | 1   | -    | 710     | -70    | -   |            | +        | -     | 7/-/ 7    | CITA     | -    |      |     | -     | -    |
|             | 13              | - 1     |       | -         | 133        |     |          | X   | 0          |     |      | ×/-     |        |     |            |          | 1     |           |          |      |      |     |       |      |
|             |                 |         |       |           |            |     |          |     |            |     |      |         |        |     |            |          |       |           |          |      |      |     |       | _    |
|             |                 |         |       | BUF       | 32<br>1032 |     | 0        | 0   | 0          |     | 0    | 0/0     | 010    |     |            |          |       | 01010     | 0/0/0    | 0    | .0   | OA  | OA    | 0    |
|             | 2               | 4       | SCH   | BUF       | 7032       |     |          |     | X          | OA  |      | 0/-     |        |     |            | -        |       |           |          |      | -    |     | -     | -    |
| POS- OR     | 2               | -       | SCH   | BUF       | 832        |     |          | -   | OA         | ОВ  | -    | ×/-     |        | -   |            | -        | -     |           |          | -    | -    | -   | -     | -    |
|             |                 | 6       | 100   | BUF       | 1832       |     |          | -   |            | X   |      | ^/-     |        | -   | 100        | -        | -     |           | 1 0      |      | 27   | -   |       | -    |
|             | 3               | 3       | 100   |           | 4075       |     |          |     |            | 1   |      | X/O     | -10    |     | 100        |          |       |           |          |      |      |     |       |      |
|             |                 |         |       |           |            |     |          |     |            |     |      |         |        |     |            |          |       |           |          |      |      |     |       |      |
|             |                 |         |       | BUF       |            | 0   | 0        | 0   |            | 0   | 0    | 0/0     | 0/0    |     | 10         |          | -     | X/-/O     | X/-/0    | 0    | 0    | OA  | OA    |      |
|             |                 |         |       | OC        | 28         | X   | X        |     | X<br>OA    |     |      |         |        | -   | -          | -        | -     |           | -        |      |      | -   | -     | -    |
|             |                 |         | -     | 00        | 36         |     | 10       |     | UA         | -   | ×    | ×/-     |        | -   | -          |          | -     |           | -        |      | -    | -   | -     | -    |
|             |                 | 4       |       | BUF       | 128        |     |          |     |            |     | 1    | VI.     |        | 1   | 1          | 1        |       |           |          |      |      |     |       | -    |
|             | 2               |         |       | BUF       | 1002       |     |          |     | XA         |     |      |         | _      | 1   | -          |          | 1     | owind -   | 100 0    | -    |      |     | 1     |      |
|             |                 |         | SCH   |           | 7002       | 2.4 | 18       |     |            | 0   | 120  | 01-     | 500    | 100 |            | 100      | leg e | 05/6:3    | HE DAY   | 100  |      |     |       |      |
| POS- NOR    |                 |         |       | BUF       | 1036       |     |          |     |            | XA  |      |         |        |     |            |          |       |           |          |      | 06   |     |       |      |
|             |                 | 6       |       | BUF       | 805        |     |          | 100 | OA         |     |      | X/-     | 755    |     | 1000       | 1        |       | and and   | -        | 9 10 | 177  |     |       | - 64 |
|             |                 |         |       | BUF       | 1805       |     |          |     | X          |     |      | ensile. | 2 1000 | 10  | bed.       | 0.0      |       | in July 1 | bit bit  | 1177 | 000  | 9.1 | 6     |      |
|             | 3               | 3       |       |           | 27         | X   | 0        |     | OA         | 0   | 0    | 0/0     | -/0    |     | 1          | -        | -     | X/-/X     | XI-IX    | -    | -    | OA  |       |      |
|             | 4               | 2       | -     | -         | 25         | X   | -        | -   |            | -   |      | -       | -      | -   | -          | -        | -     |           |          |      | 1    | -   |       | -    |
|             | -               | 2       | -     | -         | 4002       |     | -        |     | -          |     | -    | X/O     | -      | -   | +          | -        | -     | CYTOME    | DO 1.15  | 1    | 118  | 10  | -     | -    |
|             | 5               | 2       |       | -         | 260        |     | -        | 0   | -          | -   | 0    | 100     | -      | -   | +          | -        | -     | a Torono  | 10 7 225 | -    | 110  | 10  | 10    | -    |
|             |                 |         |       |           |            |     |          |     |            |     |      |         |        |     |            |          |       |           |          |      |      |     |       |      |

Explanatory notes [Input] SCH : Schmitt-Trigger Inputs

[Output] BUF: Buffered Output OC: Open-Collector Output 3S: 3-State Output

Status : Product available in technology indicated : New product planned in technology indicated

imes : Discontinued  $\ \blacksquare$  : Not recommended for new designs

HC: SN74HCxx / CD74HCxx

HCT : SN74HCxx / CD74HCTxx

BCT : SN74BCTxx / SN64BCTxx

AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx

|                   |                 |             |          | 1016      | HE PART      |     |     | 44.1 |       |      |       |            | ios    |      |      | echn  | ology |        |        |                | d CM | 00      |      |      | _     |
|-------------------|-----------------|-------------|----------|-----------|--------------|-----|-----|------|-------|------|-------|------------|--------|------|------|-------|-------|--------|--------|----------------|------|---------|------|------|-------|
| Description       | No. of<br>Input | Curcuit     | Input    | Output    | Device       | TTL | 9   | Bip  | ALS   | AS   | LL    | CN         | HCT    | BCT  | ABT  | TA L  | ALVT  | AC     | ACT    | AHC            | -    | LV CO   | LVC  | ALVC | AND   |
|                   | Imput           | 1 1         | . P      | 1 1       | EF           | 2   |     | U)   |       |      |       | 1.5        |        | B    | A    | 5     | AL    |        |        |                |      |         |      | AL   | 1     |
| EX-OR             | 2               | 4           | 100      | oc        | 86<br>136    | ×   | OA  | 0    | O     | OA   |       | 0/0        | -/0    | 0.1  | -    |       | 100   | 0/0/0  | X/0/0  | 0              | 0    | OA      | OA   | _    | -     |
| EX-OR             | -               | -           |          | 00        | 386          | ^   | X   |      | ^     | ^    |       | ×/-        | 130    |      | 1    |       | -     |        | 1 1    |                |      | Н       |      |      | t     |
|                   |                 |             |          |           |              |     |     | I    |       |      |       |            |        |      |      |       | 100   | 2      |        |                |      | $\perp$ |      |      | Ξ     |
|                   |                 |             | -        | OC        | 266<br>810   |     | 0   | -    | ×     | ×    | -     | 0/-        | -      |      | 100  |       | 90    | X/-/-  | ×/-/-  | -              |      | +       | 1944 | -    | t     |
| EX-NOR            | 2               | 4           |          | ОС        | 811          |     |     |      | X     | ×    |       | X          |        |      |      |       | -     | 70-1-  | 757-7- |                |      |         |      |      | t     |
| 1/1               |                 | -1570       | 1 9 7    |           | 7266         |     |     |      | 1     |      |       | X/O        |        |      |      |       |       |        |        |                | -    | _       |      |      | I     |
| EX-OR/NOR         | 2               | 4           | 100      |           | 135          |     | 1   | ×    |       |      |       |            |        |      |      |       |       |        |        |                | 2    |         |      |      | I     |
|                   |                 |             |          |           | 04           | 0   | 0   | 0    | ОВ    | 10   | 10    | 10/0       | 0/0    |      |      |       |       | 0/0/0  | 0/0/0  | 10             | 101  | OA      | OA   | 0    | Т     |
|                   |                 | LOWIN       |          | OC        | 05           |     | Ŏ   | 0    | OA    | Ĭ    | Ĭ     | 0/-        |        |      | 100  |       |       | -/-/0  | -1-10  | 0              |      | OA      |      |      | İ     |
|                   |                 |             | SCH      | oc        | 06<br>14     |     | 0   |      |       |      |       | 0.0        | 010    |      |      |       | -     | 27010  | 24010  |                |      | OA      | OA   | _    | Ŧ     |
|                   |                 |             | SUR      | oc        | 16           |     | 0   |      | -     |      |       | 0/0        | 0/0    |      |      |       |       | X/0/0  | X/O/O  | 10             | 0    | OA      | OA   | 0    | t     |
| INVERTING         | 1               | 6           | SCH      |           | 19           |     | OA  |      |       |      |       |            |        |      |      |       | -     |        |        |                |      |         |      |      | İ     |
|                   | -               |             | -        | BUF       | 1004         |     |     | -    | 0     | OA   | 1     |            | 1/4    | 18   | -    |       | - 15  |        | 4      |                | -    | -       |      |      | +     |
|                   | I O I           | 3.000       | 700      | - 00      | 4049         |     |     |      | 0     |      |       | -10        |        |      | 501  |       |       | 1.00   |        |                |      |         |      |      | +     |
|                   |                 |             |          |           | U04          |     |     |      |       |      | IA.   | 0/0        |        |      | 90   |       |       | 9      |        | 0              |      | OA      | OA   |      | 1     |
| -                 | -               | 8           | SCH      |           | 619          | _   | ×   | -    | -     | -    | +     | 100        | _      | _    |      | _     | -     | 1 1000 |        | 4              |      | 4       |      | _    | _     |
|                   |                 | 4           |          |           | 425          |     |     |      |       |      | T     |            |        |      |      |       |       |        |        |                |      |         |      |      | Т     |
|                   | -               |             |          | oc        | 426          |     |     |      |       |      |       | 10.0       |        |      |      |       |       |        | 1 0    |                |      |         | ~    |      | I     |
|                   |                 | 0.00        | +        | OC        | 17           | 0   | 0   |      | -     |      | -     |            |        |      | -    |       |       |        |        | -              |      | OA      | OA   |      | ł     |
| NON-<br>INVERTING | 1               |             |          |           | 34           |     |     |      | X     |      |       | 101        | 111    |      |      |       |       | ×/-/-  | ×/-/-  |                | -    |         |      |      | t     |
|                   | +11-            | 6           |          | OC<br>BUF | 35<br>1034   |     |     |      | OA    |      |       |            | 1      |      | -    |       |       |        |        | -              |      | 4       |      |      | Ŧ     |
|                   |                 |             |          | OC        | 1034         |     |     |      | 0     | OF   | 1     |            | 100    |      |      |       |       | 1      |        | -              |      | Н       |      |      | +     |
|                   |                 | Cox         |          |           | 4050         |     |     |      | -     |      |       | -/0        |        |      |      |       |       |        |        |                |      |         |      |      | 1     |
|                   | 1 1             | 6           |          |           | 63           |     | I×  |      |       | 1    | -     | 101        |        |      | -    |       | -     | F      |        | -              |      | -       |      |      | _     |
|                   | 2               | 6           |          |           | 31           |     | 0   |      |       |      |       |            |        |      |      |       |       |        |        |                |      |         |      |      | $\pm$ |
|                   | 4               | 2           |          |           |              | ×   |     | -    |       |      | -     | 201        |        |      |      |       |       | ×/-/-  | ×/-/-  |                |      |         |      |      | Ŧ     |
|                   | -               | -           |          |           | 60           | ×   | 0   | ×    |       |      | ×     | ×/-        |        |      |      |       |       | X/-/-  | X/-/-  |                | -    |         |      |      | +     |
|                   |                 |             |          |           | 53           | X   |     |      |       |      |       |            |        |      |      |       |       |        |        |                |      |         |      |      | 1     |
|                   | 8               | 1           | -        |           | 55<br>4078   |     | ×   |      |       |      | -     | ×/-        |        | -    |      |       | -     |        |        | -              |      |         |      |      | +     |
| OTHER             | 10              | 1           |          |           | 54           | X   | ×   |      |       |      |       |            |        |      |      |       |       |        |        |                |      |         |      |      | Ť     |
| OTHER             | 11              | 1           | -        | oc        | 64<br>65     |     |     | X    |       |      | ×     |            | -      |      |      |       | -     | X/-/-  | ×/-/-  | $\blacksquare$ |      |         |      |      | T     |
|                   |                 |             | -        | BUF       | 800          |     |     | ×    | -     |      | +     | 100        | -      | +    | +    |       | -     | ×/-/-  | ×/-/-  | +              |      | -       | BO   | -    | +     |
|                   | 12              | 3           |          | BUF       | 802          |     |     |      |       |      |       | 100        |        |      |      |       |       | X/-/-  | ×/-/-  |                |      |         |      |      | 1     |
|                   |                 |             |          |           | 7006<br>7008 |     |     |      |       | -    | -     | X/-<br>X/- | -      |      | -    | -     | +     |        | -      | -              | -    |         |      |      | +     |
|                   | 12              | 6           |          |           | 7074         |     |     |      |       |      |       | X/-        |        |      | 1    |       |       |        |        |                |      |         |      |      | Ť     |
|                   |                 |             |          |           | 7075         |     |     |      |       |      |       | X/-        | 10     |      |      |       |       |        |        |                |      |         |      |      | I     |
| -                 | -               | -           | 1        |           | 7076         |     |     | -    | -     | 1    | +     | ×/-        |        |      |      |       |       |        | -      | +              |      | -       |      | -    | _     |
| planatory n       | otes [I         | nput] S     | CH : Sc  | hmitt-Tr  | rigger Inp   | uts |     |      |       |      |       |            |        |      |      |       |       |        |        |                |      |         |      |      |       |
|                   | [0              | Output]     | BUF : E  | Buffered  | Output       | OC  | : 0 | pen  | -Co   | llec | tor ( | Output     | 38:    | 3-5  | tate | Outp  | out   |        |        |                |      |         |      |      |       |
| tatus O           | Produc          | t available | e in tec | hnology   | indicated    | 1   | *:  | Nev  | v pro | odu  | ct p  | lanned     | in tec | hnol | ogy  | indic | atec  |        |        |                |      |         |      |      |       |
| ×                 | Discon          | tinued      | ■: N     | ot recon  | mended       | for | new | de   | sign  | s    |       |            |        |      |      |       |       |        |        |                |      |         |      |      |       |
| но                | : SN74F         | HCxx / CI   | 074HC    | CX.       |              |     |     |      | 18    |      |       |            |        |      |      |       |       |        |        |                |      |         |      |      |       |
|                   |                 | 4HCxx / C   |          |           |              |     |     |      |       |      |       |            |        |      |      |       |       |        |        |                |      |         |      |      |       |
| HC                | T : SN74        |             |          |           |              |     |     |      |       |      |       |            |        |      |      |       |       |        |        |                |      |         |      |      |       |

AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx

### BUFFER/DRIVER(NON-INVERTING)

|             | 100              | C) bear  | VIII.  |     |    | В   | ipolar     |     |   | CN   | IOS  |               | BICM  | Technol<br>IOS           |      | 100       |        | Adv   | ance | d CMC | S                  |           |              |
|-------------|------------------|----------|--------|-----|----|-----|------------|-----|---|------|------|---------------|-------|--------------------------|------|-----------|--------|-------|------|-------|--------------------|-----------|--------------|
| Description | No. of<br>Output | Output   | Device | Ĕ   | 53 | 8   | ALS        | AS  | ш | HC   | НСТ  | BCT           | ABT   | LVT                      | ALVT | AC        | ACT    | AHC   | AHCT | 2     | LVC                | ALVC      | AVC          |
|             |                  | 1 2      | R      |     | -  |     | 4          | -   | - | -    |      |               |       |                          | 1    | 4         | <      | 4     | 4    |       |                    |           | A            |
|             | 4                | 38       | 125    |     | OA |     |            |     | 0 | 0/0  | 0/0  | OA/OA         | 0     | HO                       |      |           |        | 0     | 0    | OA    | OA                 | 0         |              |
|             | -                | 38       | 126    |     | OA |     |            |     | 0 |      | -/0  | XA/OA         | 0     | HO                       |      | 100       | 1      | 0     | 0    | OA    | OA                 | 0         |              |
|             | 6                | 38       | 365    |     | OA |     |            | -   |   | 010  | -/0  |               |       |                          |      |           | 1000   | -     |      |       |                    |           |              |
|             | 0                | 38       | 367    | X   | OA |     |            |     |   | 010  | -10  |               |       |                          | 1    |           | 1100   | 0     | 10   | OA    |                    |           |              |
|             |                  | 38       | 241    |     | 0  | .0  | OC         | OA  | 0 | 0/0  | X/O  | 0/-           | OA    | HO                       |      | X/O/-     | X/0/0  |       |      |       | -                  |           |              |
|             |                  | 38       | 244    | 100 | 0  | 0   | OC/<br>OC1 | OA  | 0 | 0/0  | 0/0  | 0/0           | OA    | OB/<br>TO/<br>HOA/<br>ZO | 180  | 0/0/0     | 0/0/0  | 0     | 0    | OA    | OA/<br>HOA/<br>ZOA | О/НО      |              |
|             | W7 1             | 38       | 455    | -   |    |     | -          | -   |   | 1    |      | X/a           |       |                          | -    | 1 10      | 1000   | -     |      | -     | _                  | -         | +            |
|             | 190-2011         | 38       | 465    |     | 0  |     | ×          |     |   |      | -    | A1-           | -     |                          | +    | -         | 1000   |       |      | -     |                    |           | +            |
|             |                  | 38       | 467    |     | ×  | 100 | ×          | -   |   |      |      |               |       |                          | -    |           |        |       |      |       |                    |           | -            |
|             |                  | 38       | 541    |     | ô  |     | 0/01       |     | 0 | 0/0  | 0/0  | OA/-          | ОВ    | HO                       | 1    | -/-/0     | -/-/0  | 0     | 0    | OA    | OA                 |           | +            |
|             |                  | 38       | 656    | -   | 10 |     | 0/01       |     | 0 | 0/0  | 010  | UA/-          | OB    | HU                       | -    | XI-I-     | X/-/-  | V     | 0    | UA.   | OA                 |           | +            |
|             |                  | 35       | 747    |     |    |     | ×          |     |   |      |      |               |       | 1                        | -    | V/-/-     | V/-/-  |       |      |       |                    |           | +            |
|             | 8                | 00       | 757    |     |    |     | . ^        | -   |   |      |      | 010           |       |                          |      | -         | 1000   |       | 2    | -     |                    | 200       | +            |
|             |                  | OC       |        |     |    |     |            | 0   |   |      |      | 0/0           |       |                          | 1    |           | (20.0) |       | 100  |       |                    |           | +            |
|             |                  | 38       | 760    |     |    |     | 0          | 0   |   |      |      | 0/-           |       |                          | -    |           | 7.00   |       |      |       |                    |           | -            |
|             |                  | 3S<br>3S | 1241   |     |    |     | -          |     |   |      |      |               |       |                          |      |           | 10.60  |       |      |       |                    |           | -            |
|             |                  |          |        |     |    |     | OA         |     |   |      |      |               |       |                          |      |           | 100    |       |      |       |                    |           | +            |
|             | 140              | R3S      | 2241   |     |    | 100 |            |     |   |      |      | 0/-           | 0     |                          |      |           |        |       |      |       |                    |           |              |
|             |                  | R3S      | 2244   |     |    |     |            |     | X | -    |      | 0/-           | OA    |                          |      |           |        |       |      |       | OA                 |           |              |
|             |                  | R3S      | 2541   |     |    |     | 0          |     |   |      |      | Lucia I       |       |                          |      |           |        | 2     |      |       |                    |           |              |
|             |                  | 35       | 25241  |     |    |     |            |     |   |      |      | X/-           |       |                          |      |           | 1100   |       | - 51 |       | 24                 |           |              |
|             |                  | 3S       | 25244  |     |    |     |            |     |   |      |      | 0/0           |       |                          |      |           | Long   |       | - 50 |       |                    |           | П            |
| NON-        | R 784            | oc       | 25757  |     |    |     | 1          |     |   | -    |      | X/-           |       |                          |      |           |        |       |      |       | 400                | 0         | Т            |
| INVERTING   | W W              | oc       | 25760  |     |    |     | 17:31      |     |   | 100  |      | ×/-           |       |                          |      |           | 19940  | 1     |      |       |                    |           |              |
|             | 17 140           | 38       | 827    |     |    |     |            |     |   | 1 47 |      |               | 0     |                          |      | X/-/-     | X/-/-  | -     | 3    |       | =OA                |           | $^{\dagger}$ |
|             | 10               | R3S      | 2827   |     |    |     |            |     |   |      |      | OC/-          | 0     |                          |      |           | Torse  | 100   |      |       |                    |           | +            |
|             | 1                | 38       | 29827  |     |    |     | 0          |     |   |      |      | OB/-          |       |                          |      |           | 1100   | 100   |      |       |                    |           | _            |
|             | 11               | R3S      | 5400   |     |    |     |            |     |   |      |      |               | OA    |                          |      |           |        |       |      |       | 756                |           | +            |
|             | 100              | 3S       | 5402   |     |    |     |            |     |   |      |      |               | OA    |                          |      |           | 71     |       |      | _     | 7.5                |           | +            |
|             | 12               | R3S      | 16903  |     |    |     |            |     |   |      |      |               | UH.   |                          | +    | _         |        |       |      | -     |                    | нО        | -            |
|             | -                | 38       | 16241  |     |    |     |            | _   |   |      |      |               | OA    | HO                       | +    |           | ×      |       |      | -     | H×A                | HO.       | +            |
|             |                  | 38       | 16244  |     |    |     |            | F   |   |      |      |               | OA/ H | 1                        | но   | 0         | 0      | 0     | 0    |       | OA/<br>HOA/<br>ZOA | OA/<br>HO | (            |
|             | 16               | 35       | 16541  |     |    |     |            |     |   |      |      |               | OA    | HO                       |      |           | 0      | 0     | 0    |       | HOA                | ×         |              |
|             |                  | R3S      | 162241 |     |    |     |            |     |   |      |      |               |       | HO                       |      |           | 1000   | 1     |      |       |                    |           |              |
|             |                  | R3S      | 162244 |     |    |     |            |     |   |      |      |               | 0     | OA/HO                    | но   |           | cos    | 251   | 80   |       | OA/<br>HOA         | нО        | Г            |
|             |                  | R3S      | 162541 |     |    |     |            |     |   |      |      |               |       | HO                       |      |           | Ped    | 1     |      |       |                    | ×         |              |
|             |                  | 38       | 16825  |     |    |     |            |     |   |      |      |               | 0     |                          |      |           | 0      | 1     |      |       |                    | HO        | 1            |
|             |                  | R3S      | 162825 |     |    |     |            |     |   |      |      |               | 0     |                          |      |           | 1000   |       |      |       | 100                |           | 1            |
|             | 18               | 38       | 16835  |     |    |     |            |     |   |      |      |               |       | но                       |      |           | 1000   |       | - 60 | H     |                    | HO HO     | (            |
|             |                  | R3S      | 162835 |     |    |     |            |     |   |      |      |               |       |                          |      |           | 5882   | N. C. | 63   |       |                    | 0/        | Г            |
|             |                  | 38       | 16827  |     |    |     |            |     |   |      |      |               |       |                          |      |           | -      |       |      |       |                    | HO        |              |
|             | 20               |          | 16827  | 400 | -  | 200 | 0          | -   | 1 | 200  | 1.00 | Character and | 0     |                          | HO   | Distance. | 0      | 2,0   | 2000 | 503   | and the            | HO        | 1.5          |
|             |                  | 38       |        | -   |    |     |            |     | - |      |      |               | OA    |                          | HO   |           |        |       |      |       |                    | HO        |              |
|             | 32               | 3\$      | 32244  |     |    | .0  |            | 111 |   | 1000 | 1000 | 1000          |       | O/HO                     | HO   | HOUR YOU  |        |       |      | 100   | O/HO               | HO        | 1            |

Explanatory notes [Output] 3S: 3-State Output R3S: Series Resistor and 3-State Output OC: Open-Collector Output Status O: Product available in technology indicated \*: New product planned in technology indicated

X: Discontinued : Not recommended for new designs

HC : SN74HCxx / CD74HCxx
HCT : SN74HCxx / CD74HCTxx
ECT : SN74HCxx / CD74HCTxx

AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx ACT: 74ACT11xxx (Product available in reduced-noise advanced CMOS: 11000 Series) / SN74ACTxx / CD74ACTxx

| 7 10              |          | 38   | 240    | 10 | 0    | OA1  | OA | 0   | 0/0  | 0/0  | 0/-    | OA | OA/HO |       | 0/0/0  | 0/0/0  | 0   | 0    | OA | OA/<br>ZOA  |      |
|-------------------|----------|------|--------|----|------|------|----|-----|------|------|--------|----|-------|-------|--------|--------|-----|------|----|-------------|------|
| Design            |          | 38   | 456    |    |      |      |    |     | 100  |      | X/-    |    | 100   | 353.0 | 10.0   | 10.00  |     | -    |    |             |      |
|                   |          | 38   | 466    | ×  |      | X    |    | 111 |      |      |        |    |       | 10    | 100    |        |     |      |    |             |      |
|                   |          | 38   | 468    | X  |      | X    |    | -   |      |      |        |    |       |       |        |        |     |      |    |             |      |
|                   |          | 38   | 540    | 0  |      | 0/01 |    | ×   | 0/0  | 0/0  | OA/-   | 0  | HO    |       | -1-10  | -1-10  | 0   | 0    | OA | OA          |      |
|                   |          | 38   | 655    | -  | -    |      |    |     |      | 0.0  |        | -  |       |       | X/-/-  | X/-/-  | -   | -    | -  |             |      |
|                   | 8        | 38   | 746    |    |      | ×    |    |     |      |      |        |    |       |       | 7/1-1- | VI-1-  |     |      |    |             |      |
|                   |          | OC   | 756    |    | -    | X    | 0  |     |      |      | 0/-    |    |       |       |        | 1175   |     |      |    |             |      |
|                   |          | OC   | 763    | -  | -    | ^    | X  |     |      |      | OV.    |    |       |       |        |        |     |      |    |             |      |
|                   |          | 38   | 1240   | -  | -    | ×    | ^  |     | _    |      | _      |    |       |       |        | -      |     |      |    |             |      |
| NVERTING          |          | R3S  | 2240   | -  | -    | ×    |    |     |      |      | 0/-    | OA |       | -     | -      | 191    |     | -    | -  | -           |      |
|                   |          | R3S  | 2540   | -  | -    | ×    | -  |     | -    |      | O/-    | UM | -     | -     |        | -      | -   |      | -  |             |      |
|                   |          | 3S   | 25240  | -  | -    | X    | -  |     |      |      | ×/-    |    |       | -     |        | 1110   |     |      | -  |             |      |
|                   |          | OC   | 25756  | -  | -    |      | -  | -   |      |      | ×/-    | -  |       | -     | -      | -      | -   | -    | -  | -           |      |
|                   |          | 38   | 828    |    | -    |      | -  |     | -    |      | ^/-    | -  |       | -     | X/-/-  | ×/-/-  |     | - 11 | -  | OA          |      |
|                   | 10       | R3S  | 2828   | -  | -    |      |    |     |      |      | ×/-    |    | -     |       | 2/-/-  | A/-/-  | -   | -    |    | UA          |      |
|                   | 10       | 3S   | 29828  | -  | -    | -    |    |     | -    |      |        |    |       | -     |        |        |     |      |    |             |      |
|                   | 11       |      | 5401   | -  | -    | -    |    |     |      |      | XB/-   | -  |       | -     |        |        |     |      |    |             |      |
|                   |          | R3S  |        |    | -    |      |    |     |      |      |        | 0  |       |       |        | 100    |     |      |    |             |      |
|                   | 12       | R3S  | 5403   | -  |      |      |    |     |      |      |        | 0  |       |       |        |        |     |      | -  |             | -    |
|                   |          | 38   | 16240  |    |      |      |    |     |      |      |        | OA | O/HO  | HO    | ×      | 0      | 0   | 0    |    | HOA/<br>ZOA | HO   |
|                   | 16       | 38   | 16540  |    | 13.6 |      |    |     | 8    |      |        | OA |       |       |        | ×      | 0   | 0    |    | HOA         | ×    |
|                   |          | R3S  | 162240 |    |      |      |    |     |      | 1000 | 954.11 |    | O/HO  |       |        | 17.535 |     | 110  |    | 122         |      |
|                   |          | R3S  | 162540 |    |      |      |    |     |      |      |        |    |       |       |        | 1779   |     |      |    |             | ×    |
|                   | 20       | 38   | 16828  |    |      |      |    |     | 1.00 |      |        |    |       |       |        | ×      |     | 1.5  |    | 11          | ×    |
|                   | 32       | 38   | 32240  |    |      |      |    |     | 1    |      |        |    | 0     |       |        | 11100  |     | 1    |    | 600         |      |
| 1.901             |          |      |        |    | _    |      |    | _   |      |      |        |    |       |       |        | 1000   |     |      |    |             |      |
| AND               | 8        | 38   | 230    |    |      | ×    | ×  |     |      |      |        |    |       |       |        |        |     |      |    |             |      |
| NON-<br>INVERTING | NCS.     | ос   | 762    |    |      | 1    | ×  | 2   |      |      |        |    |       |       |        | 1      |     |      |    |             |      |
| - B               | W. 786 I | 38 1 | 16830  |    | _    |      |    |     |      |      |        |    |       |       |        | 1 110  |     |      |    | -           | H*   |
|                   | 1-2      | -    |        |    |      |      |    |     |      |      |        |    |       |       |        |        |     |      |    |             | HO/  |
|                   | NO.      | R3S  | 162830 |    |      | 711  |    | 1.0 |      |      |        |    |       |       |        | 885    | 197 | 3    |    |             | HSO  |
|                   |          | 38   | 16344  |    |      |      |    |     |      |      |        |    |       |       |        | 1111   |     |      |    |             | HO   |
| ADDRESS           |          | 38   | 16831  |    |      |      |    |     |      |      |        |    |       |       |        |        |     |      |    |             | HO   |
| DHIVERS           | 1-4      | 38   | 16832  |    |      |      |    |     |      |      |        |    | -     |       |        | - Van  |     |      |    |             | HO   |
|                   | 1-4      | R3S  | 162344 |    |      |      |    |     |      |      |        |    |       |       |        |        |     |      |    |             | HO   |
|                   |          | R3S  | 162831 |    |      |      |    | -   |      |      |        |    |       |       |        | 1000   |     |      |    |             | O/HO |
|                   |          | R3S  | 162832 |    |      |      |    |     |      |      |        |    |       |       |        |        |     |      |    |             | HO   |

Explanatory notes [Output] 3S: 3-State Output R3S: Series Resistor and 3-State Output OC: Open-Collector Output Status : Product available in technology indicated :: New product planned in technology indicated

X: Discontinued III: Not recommended for new designs

HC:SN74HCxx / CD74HCxx
HCT:SN74HCxx / CD74HCTxx

BCT: SN74BCTxx / SN64BCTxx

AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx

ACT: 74ACT1xxx (Product available in reduced-noise advanced CMOS: 11000 Series) / SN74ACXx / CD74ACXx ACT : 74ACT1xxx (Product available in reduced-noise advanced CMOS: 11000 Series) / SN74ACXx / CD74ACXx

| Description No. Outpi |        |              |                | - |    | 10.1 | olar       |     | 1001 | - 01   | MOS   | -    | DIO       | Techno | ology | 1       |         | 6.4   |       | d CM | 00          |      | _   |
|-----------------------|--------|--------------|----------------|---|----|------|------------|-----|------|--------|-------|------|-----------|--------|-------|---------|---------|-------|-------|------|-------------|------|-----|
| Description           | No. of | Output       | Device         | - |    |      |            |     |      |        |       | -    |           |        | H     | 1       | . F     |       |       |      | 1000000     | l v  | 0   |
| Description           | Output | Output       | 5 5            | I | 3  | S    | ALS        | AS  | Œ.   | HG     | HCT   | BCT  | ABT       | F.     | ALVT  | AC      | ACT     | AHC   | AHC   | 3    | LVC         | ALVC | AVC |
|                       |        | 38           | 226            | - |    | ×    |            | -   |      |        |       | -    |           |        |       |         |         | 1000  |       |      |             |      |     |
|                       |        | 100          |                |   |    | -    |            |     |      |        |       |      |           |        |       |         |         |       |       | 0.0  |             |      |     |
|                       |        | 38           | 440            |   | X  |      |            | 1   |      |        |       |      |           |        |       |         |         |       |       |      | 18/34       |      |     |
|                       | -      | OC           | 441            |   | X  |      |            |     |      |        | -     |      |           |        |       |         |         | 1     |       |      |             |      |     |
|                       | 4      | 3S<br>3S     | 442<br>443     |   | 0  |      |            |     | -    |        |       |      |           |        | -     |         |         |       |       | -    |             |      |     |
|                       |        | 3S<br>3S     | 443            |   | X  | +-   |            |     | -    |        |       | -    |           |        | -     |         |         | -     |       |      | 9           |      |     |
|                       |        | OC           | 448            |   | X  |      | -          |     |      | -      | -     | -    | -         | -      |       |         |         | -     |       | -    | 4000        | -    | Н   |
|                       | 145.0  | 38           | 449            |   | ×  |      |            |     |      |        |       | -    |           |        |       |         |         |       |       |      |             |      |     |
|                       | WOH    | 38           | 243            |   | 0  |      | OA         | ×   | X    | -10    | -/0   |      |           |        |       |         |         | 1000  |       | 255  |             |      |     |
|                       | VA CHS | 38           | 1243           |   | Ĭ  |      | UN         |     |      | , ,    | 1     |      |           |        |       |         |         |       |       |      |             |      |     |
|                       |        | 38           | 245            |   | 0  |      | OA/<br>OA1 |     | 0    | 0/0    | 010   | 010  | OB/<br>HO | OB/ H  |       | 0/0/0   | 0/0/0   | 0     | 0     | OA   | OA/<br>HOA/ | О/НО |     |
|                       | 10     | 38           | 470            |   |    | 1    | -          |     |      |        |       |      | -         | 0      |       | ×/-/-   | X/-/-   | 1000  |       |      | ZOA         |      |     |
|                       | - F./H | 38           | 472            |   |    |      |            |     |      |        |       |      |           |        |       | X/-/-   | X/-/-   |       |       |      |             |      |     |
|                       | -      | 38           | 474            |   |    | 10   |            |     |      |        |       |      |           |        |       | X/-/-   | X/-/-   |       |       |      |             |      |     |
|                       | A THE  | 38           | 543            |   |    |      |            |     | 0    |        |       | 0/-  | OA        | HO     |       | X/-/-   | 0/-/-   |       |       | 100  | OA          |      |     |
|                       | 100    | oc           | 615            |   |    |      | ×          |     |      |        |       |      |           |        |       |         |         |       |       | 10   |             |      |     |
|                       | OB     | ос           | 621            |   | ×  |      | OA/<br>OA1 | ×   | ×    |        |       |      |           |        |       |         |         | 100   |       |      |             |      |     |
|                       |        | 38           | 623            |   | 0  |      | OA         | X   | X    | 0/-    | 0/-   | 0/-  | 0         |        |       | X/-/O   | 0/-/0   |       |       |      |             |      |     |
|                       |        | 3SOC         | 639            |   | X  |      | OA         | ×   |      |        |       |      |           |        |       |         |         | -     |       | 100  |             |      |     |
|                       |        | ос           | 641            |   | 0  |      | OA/<br>OA1 | 0   |      | -      |       |      |           |        |       |         |         |       |       | 100  | EXIL        |      |     |
|                       |        | 38           | 645            |   | 0/ |      | OA/<br>OA1 | 0   | -    | 0/-    | 0/-   |      |           |        |       |         |         |       |       | 111  | Code        |      |     |
|                       |        | 38           | 646            |   | 0  |      | OA         |     |      | 0/0    | 0/0   | 0/-  | O/<br>OA  | но     |       | X/-/O   | X/-/O   | 200   |       | 10   | OA          | 1010 | ic  |
|                       |        | oc           | 647            |   | ×  |      | ×          |     |      |        |       |      | UA        |        |       |         |         |       |       | 50   |             | -    | -   |
|                       |        | 38           | 652            |   | 0  |      | OA         |     |      | 0/0    | 0/0   | 0/-  | O/<br>OA  | HO     |       | X/-/O   | 01-10   | 1     |       |      | OA          |      |     |
| 111                   |        | 3SOC         | 654            |   | X  |      | 0          |     |      |        |       |      |           |        |       |         |         |       |       | 23   | 1           |      |     |
| NON-                  |        | 38           | 657            |   |    |      |            |     | 0    |        |       | ×/-  | OA        |        |       | X/-/-   | X/-/-   |       |       |      |             |      |     |
| HATHING               | 8      | 38           | 659            |   |    |      |            |     |      | X/-    | ×/-   |      |           |        |       |         |         |       |       |      | 1           |      |     |
|                       |        | 38           | 665            |   |    |      |            |     |      | X/-    | X/-   |      |           |        |       |         |         |       |       |      |             |      |     |
|                       | -      | 3S<br>3S     | 852<br>856     |   |    | -    | 10         | ×   |      |        |       |      |           |        |       | X/-/-   | X/-/-   | 1     |       | 88   |             |      |     |
|                       |        | 38           | 877            |   |    | -    |            | X   | -    |        |       |      | -         |        |       | X/-/-   | ×/-/-   | 0.00  |       | 40   | 1           |      |     |
|                       |        | 3S           | 899            | - | -  | -    | -          | ×   | -    | -      |       | ×/-  | -         |        |       | X/-/-   | X/-/-   | -     |       | -    | 1 9         |      |     |
|                       | CON.   | 3S           | 1245           |   |    | -    | OA         |     |      | -      | -     | X/-  | -         |        | -     | -       | -       | -     | -     | 35   |             | -    |     |
|                       |        | 38           | 1645           |   | -  | +-   | OA         | -   | -    | -      | -     | -    | -         |        | -     |         |         | -     |       | -    | il and      | -    | -   |
|                       |        | 38           | 2245           |   |    | +    | CA         |     | -    | 1      | -     | 0/-  | O/RO      | HO     |       |         |         | 1000  |       | 100  | ROA         |      |     |
|                       |        | 38           | 2623           |   |    |      | ×          |     |      |        |       | -    | Circo     | 110    | 100   |         |         | -     |       |      | -           |      |     |
|                       |        | 38           | 2645           |   |    |      |            | X   |      |        |       |      |           |        | 1     |         |         |       |       |      | 11          |      |     |
|                       |        | 38           | 2952           |   |    |      |            |     |      | J V    |       | ×/-  | OA        | HO     |       |         |         | 10010 |       | -    | OA          |      |     |
|                       |        | 38           | 25245          |   |    |      |            |     |      |        |       | 01-  | OH        |        |       |         |         |       |       | COR  |             |      |     |
|                       |        | 38           | 25543          |   |    |      |            |     |      |        |       | X/-  |           |        |       |         | 1-10-11 | 107   | 1     | no.  |             |      |     |
|                       |        | 38           | 25621          |   |    |      |            |     |      |        |       | X/-  |           |        |       |         |         | 100   |       |      | 00.401      |      |     |
|                       |        | 3S<br>3S     | 25623          |   |    | -    |            | -   | -    |        |       | X/-  |           |        |       |         |         | 100   |       |      |             |      |     |
|                       |        | 3S           | 25641<br>25646 |   |    | -    |            |     | -    |        |       | ×/-  | -         |        | -     |         |         | -     | -     | 100  | 0.          | -    | -   |
|                       |        | 38           | 25647          |   | -  | +    | -          | -   | -    | 1      | -     | X/-  | -         | -      | -     |         |         | -     | -     |      |             |      |     |
|                       |        | 38           | 25652          |   | -  | -    | -          | -   | +    |        | -     | X/-  | -         |        | -     |         |         | -     |       | 100  | -           | -    | -   |
|                       | W V    | 38           | 25654          |   |    |      |            | -   |      |        |       | ×/-  | -         |        |       | -       |         | -     |       | -    | -           |      |     |
|                       | 263    | 38           | 3245           |   |    |      |            |     |      |        |       | 1    |           | ×      |       |         |         | -     |       |      | COA         |      |     |
|                       |        | 38           | 4245           |   |    |      |            |     |      | 1      |       |      |           |        |       |         |         |       |       | 89   | OA/<br>COA  |      |     |
|                       | -      | 3SOC         | 833            |   |    |      |            |     |      |        |       |      | 0         |        |       | X/-/-   | X/-/-   |       |       |      |             |      |     |
|                       | 8+1P   | 3SOC         | 853            |   |    |      |            |     |      |        |       |      | 0         |        | -     | X/-/-   | X/-/-   | No.   | 0     |      |             | -    |     |
|                       | 07.15  | 3SOC<br>3SOC | 29833<br>29853 |   |    |      | ×          |     |      |        |       | X/-  |           |        |       |         |         |       |       |      |             |      |     |
|                       | -      | 3800         | 29853<br>863   |   | -  | -    | X          | -   | 1    | 15757  |       | X/-  | 0         |        |       | ×/-/-   | ×/-/-   | -     | 185   | 1    | OA          |      | -   |
|                       | 9      | 38           | 29863          |   |    | -    | 0          | -   | -    | -      | -     | OB/- | 0         | -      |       | VI-I-   | VI-I-   | 1     |       |      | CA          |      |     |
|                       | 9X4    | 38           | 16409          |   |    | bed  | SIL/       | 100 | 101  | cond o | Danie | 1150 | Dong V    | 134.77 | 130   | Rodon y | dents   | 10.4  | Habit | 0.0  | Product     | HO/  | 211 |

Explanatory notes [No. of Output] +P: With Parity Bit

[Output] 3S: 3-State Output R3S: Series Resistor and 3-State Output

OC : Open-Collector Output 3SOC : 3-State Output / Open-Collector Output

Status : Product available in technology indicated : New product planned in technology indicated

X: Discontinued : Not recommended for new designs

HC: SN74HCxx / CD74HCxx HCT: SN74HCxx / CD74HCTxx

BCT : SN74BCTxx / SN64BCTxx

AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx

|  | (NON-INVERTIN |  |
|--|---------------|--|
|  |               |  |

|             |        | 2007     | Garage Co.       | - |      | Bip  | olar |     |      | CN             | MOS |     | BiCI      | Techn      | orogy |      | _   | Ad   | vance | d CM           | os                   |             |        |
|-------------|--------|----------|------------------|---|------|------|------|-----|------|----------------|-----|-----|-----------|------------|-------|------|-----|------|-------|----------------|----------------------|-------------|--------|
| Depositeli  | No. of | Outnut   | Device           |   |      | Uip  |      | 1.  |      |                | 1   | -   | 1         |            | TE    | T. I | -   |      |       |                | 1 100 100            | 0           | 1      |
| Description | Output | Output   |                  | I | 53   | 03   | ALS  | AS  | L    | H <sub>C</sub> | HCT | BCT | ABT       | LVI        | ALVT  | AC   | ACT | AHC  | AHC   | LV             | LVC                  | ALVC        | AVC    |
|             |        | 38       | 16268            |   |      |      |      |     |      |                |     |     |           |            |       |      |     |      |       |                |                      | X           |        |
|             |        | 38       | 16269            |   |      |      |      |     |      |                |     |     |           |            |       | 1 2  |     |      |       | 25             |                      | HO/<br>HROA | (      |
|             | 12/24  | 38       | 16270            |   |      |      |      |     |      |                |     |     |           |            |       |      | 2   | 1    |       | 365            |                      | HO          |        |
|             | 12224  | 38       | 16271            |   |      |      |      |     |      |                |     |     |           |            |       |      |     |      |       | 36             |                      | HO          |        |
|             |        | 38       | 16272            |   |      |      |      |     |      |                |     |     |           |            |       |      |     | 100  |       | 2.5            |                      | X           |        |
|             |        | 38       | 162268           |   |      |      |      | -   |      |                |     |     |           |            |       |      |     | 1    |       | 90             |                      | HO          |        |
|             | 16/32  | 3S<br>3S | 162269<br>162280 |   |      | -    |      | -   | -    |                |     |     |           |            |       |      |     | -    | -     | -              | -                    | HGO         | -      |
|             | 10/32  | 33       | 102200           | - | -    |      | -    | -   |      |                |     |     |           |            |       |      |     | -    |       | -00            | OA/                  | HGO         | -      |
|             |        | 38       | 16245            |   |      |      |      |     |      |                |     |     | OA/<br>HO | OB/<br>HOA | но    | 0    | 0   |      | 0     | 25<br>0x<br>31 | HOA/<br>HROA/<br>ZOA | HO/<br>HRO  | 0      |
|             | W.     | 38       | 16334            |   |      |      |      |     |      |                |     |     |           |            | 100   |      |     |      |       |                | LON                  | O/HO        | 1      |
|             | 45.CH  | 38       | 16470            |   |      |      |      | 11  |      |                |     |     | 0         |            | 10    |      | ×   |      |       | 100            |                      |             |        |
|             | 8.5    | 38       | 16543            |   |      |      | -    |     |      | -              |     |     | 0         | но         |       | ×    | 0   | 4    |       | 1              | 0/                   | но          | $\Box$ |
|             | 100    |          |                  |   |      |      |      |     |      |                |     |     |           | - HO       |       |      |     |      |       | 100            | HOA                  | nO.         |        |
|             | 16     | 3S<br>3S | 16623<br>16646   |   |      |      |      |     |      |                |     |     | 0         | -          |       | ×    | .0  |      |       |                |                      |             |        |
|             | 875    |          |                  |   | -    | -    |      |     |      |                |     |     | 0         | HO         |       | ×    | 0   | 1    |       |                | HOA                  | HO.         | 1      |
|             | -      | 3S<br>3S | 16652            |   |      |      |      |     |      |                |     |     | 0         | HO         |       | 0    | 0   |      |       |                | HOA                  | ×           |        |
|             |        | -        | 16952            | - | -    | -    |      | -   |      |                | -   |     | 0         | HO         |       |      | 0   | -    |       |                | HOA                  | HO          |        |
|             |        | R3S      | 162245           | 5 |      |      |      |     |      |                |     |     | O/HO      | OA/<br>HO  | HO    |      | 1   |      |       | 00             | RO.                  |             |        |
|             |        | R3S      | 164245           |   |      | 100  |      |     |      |                | 1   | 1   | 1         | 100        | 12    |      |     | 100  |       | 1600           | -                    | 0           | H      |
|             |        | R3S      | 162334           |   |      |      |      |     |      |                |     |     |           |            | 1.74  |      |     |      |       | -              |                      | O/HO        | 1      |
|             | 16X3   | 38       | 32316            |   |      |      |      |     |      |                |     |     | HO        |            |       |      |     |      |       |                |                      |             |        |
|             | 18X3   | 38       | 32318            |   |      |      |      |     |      |                |     | T A | HO        |            | 1 19  |      |     | 1900 |       | 83             |                      |             |        |
|             |        | 38       | 16657            |   |      |      |      |     |      |                |     |     | 0         |            |       |      | 0   |      |       |                |                      |             |        |
| NON-        | 16+2P  | 38       | 16833            |   | 16.1 | 1    |      |     | 1.55 |                |     |     | 0         |            |       |      | X   | O US |       | 22             |                      |             |        |
| INVERTING   |        | 38       | 16853            |   |      |      |      |     |      |                |     | 22  | 0         |            |       |      | ×   |      |       |                |                      |             |        |
|             |        | 38       | 16472            |   |      |      |      |     |      |                |     |     |           |            |       | X    |     |      |       |                |                      |             |        |
|             | 40.1   | 38       | 16474            |   |      | 100  |      |     |      |                |     |     |           |            |       |      | ×   |      |       | .03            |                      |             |        |
|             |        | 38       | 16500            |   |      |      |      |     |      |                |     |     | OB        | HO         |       |      |     |      |       | OAB            |                      | HO          |        |
|             |        | 38       | 16501            |   |      |      |      |     |      |                | 1   |     | 0         | HO         |       |      |     |      |       | 50             |                      | HO          | 11     |
|             |        | 38       | 16525            |   |      |      |      |     |      |                |     |     |           |            |       |      |     | 1    |       |                |                      | HO          |        |
|             |        | 38       | 16600            | ) |      |      |      |     |      |                |     |     | 0         |            |       |      |     | 1    |       |                |                      | HO          |        |
|             |        | 38       | 16601            | 1 |      | 1-13 |      |     |      |                |     |     | 0         |            | HO    |      |     | den  |       | 130            | 1 -                  | HO/<br>HRO  |        |
|             | 18     | 38       | 16834            |   |      |      |      |     |      |                |     |     |           |            |       |      |     | 10   |       | 100            |                      | 0           | 1      |
|             | 10     | 38       | 16863            |   |      |      |      |     |      |                |     |     | 0         |            |       |      | 0   |      |       |                |                      | HO          |        |
|             |        | 38       | 16901            |   |      |      |      |     |      |                |     |     |           |            |       |      |     | The  |       |                | HO                   | HO          |        |
|             |        | R3S      | 162500           |   |      |      |      | 1.5 |      |                |     |     | 0         |            |       |      |     | 0    |       |                |                      |             |        |
|             | 1      | R3S      | 162501           |   |      |      |      |     |      |                | 100 |     | 0         | 100        |       |      |     |      |       |                |                      |             |        |
|             | 100    | R3S      | 162525           |   |      |      |      |     |      |                |     |     |           |            |       |      |     |      |       |                |                      | HO.         |        |
|             |        | R3S      | 162600           | ) |      |      |      |     |      |                |     |     |           |            |       |      |     |      |       |                |                      |             |        |
|             | AC)    | R3S      | 162601           |   |      |      |      |     | U    | 1.8            |     |     | 0         |            |       |      |     | 100  |       | 100            |                      | HO/<br>HRX  |        |
|             |        | R3S      | 162834           |   |      |      |      |     |      |                |     |     |           |            |       |      |     | 1    |       | 100            |                      | 0           |        |
|             | 18/36  | 38       | 16282            |   |      |      |      |     |      |                |     |     |           |            |       |      |     |      |       |                |                      | HO          |        |
|             | 10/30  | R3S      | 162282           | 2 |      |      |      |     |      |                |     |     |           |            |       |      |     |      |       | 1 5            |                      | HGO         |        |
|             | 1      | 35       | 16836            |   |      |      |      |     |      |                |     |     |           |            |       |      |     |      |       | 20             |                      | H.          |        |
|             | 20     | 38       | 16861            |   |      |      |      | 1   |      |                |     |     |           |            |       |      | 0   |      |       | 100            |                      |             |        |
|             |        | R3S      | 162836           |   |      |      |      |     |      |                |     |     |           |            |       |      |     |      |       |                |                      | O/HO        |        |
|             | 32     | 38       | 32543            |   |      |      |      |     |      |                |     |     | HO.       |            |       |      |     | -    |       | 100            |                      |             |        |
|             | -      | 38       | 32952            | + |      | +    |      | +   | -    |                |     | -   | ×         |            |       |      |     | -    |       | 100            | O/ H                 |             | -      |
|             | 36     | 38       | 32245            |   |      |      |      |     | 1    |                |     |     | HO        | HO         |       |      |     | 1    |       | 100            | OA                   | HO          |        |
|             | 30     | 38       | 32500            |   |      |      |      |     |      |                |     |     | ×         |            |       |      |     | 100  |       | 20             |                      |             |        |
|             | 1 2 0  | 38       | 32501            | П |      |      |      |     |      |                |     |     | HO.       |            |       |      |     |      |       |                |                      | HO          |        |

Explanatory notes [No. of Output] +P: With Parity Bit

[Output] 3S: 3-State Output R3S: Series Resistor and 3-State Output

OC : Open-Collector Output 3SOC : 3-State Output / Open-Collector Output

Status : Product available in technology indicated : New product planned in technology indicated

X: Discontinued : Not recommended for new designs

HC: SN74HCxx / CD74HCxx

HCT : SN74HCxx / CD74HCTxx

BCT: SN74BCTxx / SN64BCTxx

AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx

ACT : 74ACT11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACTxx / CD74ACTxx

и тольном и солинотия

: SMCRBOTX ( PREVENTE )

- SMCRBOTX ( Prededict swellable in reduced-online advanced CRAS | 17000 Servica) ( StratoCx ( CDT WCKs)

- SMCRRSSON Shoulder swellable in reduced-online advanced CRAS : 17000 Servica) ( DH-GROTX / CD-GAOTX

- SMCRRSSON Shoulder swellable in reduced-online advanced CRAS : 17000 Servica) ( DH-GROTX / CD-GAOTX

- SMCRRSSON Shoulder swellable in reduced-online desired crass services of CRAS CRASS ( CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS CRASS C

|             |              |        | 200        |   |       | Die | olar       |     | -   | CN    | 108   | -     | PICI | MOS    | nology |          | -     | Ad  | vance | d CM | 108    | _        | _   |
|-------------|--------------|--------|------------|---|-------|-----|------------|-----|-----|-------|-------|-------|------|--------|--------|----------|-------|-----|-------|------|--------|----------|-----|
| Description | No. of       | Output | Device     | E | -     |     |            | 10  | 72  |       | 1     | -     | 10.  |        | TE     | - 12     | -     |     |       |      | _      | 5        | AVC |
|             | Output       | 5      |            | F | 3     | 00  | ALS        | AS  | II. | HC    | HCT   | BCT   | ABT  | 7      | ALVT   | AC       | ACT   | AHC | AHC   | 3    | LVC    | ALVC     | 1   |
|             |              | 38     | 242        |   | ×     |     | X          | ×   | ×   | X/-   | X/-   |       |      |        |        | 107      |       |     |       |      |        |          |     |
|             |              | 3\$    | 446        |   | ×     |     |            |     |     |       |       |       |      |        |        | 0.191    |       |     |       |      |        |          |     |
|             | 4            | 3\$    | 1242       |   |       |     | X          |     |     |       | T.V.  | 78081 |      |        | -      | 0.1122   | 1 11  |     |       |      |        |          |     |
|             |              | R3S    | 2242       |   |       |     | X          |     |     |       | 100   | 10.11 | 200  | 2.3    | 200    | 1001     | 8     |     |       |      |        |          | 100 |
|             |              | 38     | 544        |   |       |     | -          |     | ×   |       |       | X/-   |      |        |        | X/-/-    | X/-/- |     |       |      |        |          | 1   |
|             |              | 38     | 471        |   |       | _   |            |     | -   |       |       | 1.0   |      |        | 1      | X/-/-    | X/-/- |     |       |      |        |          | +   |
|             |              | 38     | 473        |   |       | -   |            | -   |     |       |       |       |      |        | _      | X/-/-    | X/-/- | -   | _     |      |        | +        | +   |
|             |              | 38     | 475        | - |       | -   | _          | -   | -   |       |       | 200   |      |        | 100    | X/-/-    | X/-/- | -   |       |      |        | _        | +   |
|             |              | OC     | 614        |   |       | -   | ×          | -   | -   |       |       | 100   |      |        | -      | VI-1-    | Alter | -   |       |      |        | -        | +   |
|             |              | 3\$    | 620        | - | ×     | -   | OA         | ×   | ×   | X/-   | X/-   | X/-   | 0    |        | 1      | X/-/-    | X/-/- | -   | -     |      |        | _        | +   |
|             |              | OC     | 622        |   | ×     | -   | X          |     | Î   | VI-   | ~/-   | VI-   | -    | 27 127 | -      | VI-I-    | VI-1- | -   | -     |      | _      | +        | +   |
|             |              |        |            | - |       | -   |            | ^   | 1   |       |       | -     | -    |        | -      |          |       | -   | -     | -    | -      | -        | -   |
|             |              | 3SOC   | 638        |   | ×     | 1   | OA/<br>OA1 | OA  |     |       |       |       |      | 1000   |        | 1874     |       |     |       | - 6  |        |          |     |
|             |              |        |            | - | -01   | -   |            |     | -   | -     |       |       |      | -      | -      |          |       | -   | -     | -    | _      | _        | +   |
|             |              | 38     | 640        | - | 0/    | 1   | OB/<br>OB1 | 0   |     | 010   | X/O   | 01-   | -0   |        |        | ×/-/-    | ×/-/- | 1   |       | -    | -      | 1        | 1   |
|             |              |        |            |   | 01    |     | OA/        | -   |     | -     |       |       |      |        | 1      |          |       | -   | -     |      |        | -        | -   |
|             |              | oc     | 642        |   | 0/    |     | OA/        | ×   |     |       |       | ×/-   |      |        |        |          |       |     |       |      |        |          |     |
|             |              | 38     | 648        |   | 0     | -   | OA         | 0   | -   | X/-   | ×/-   | ×/-   |      |        | +      | ×/-/-    | X/-/- | +   | -     | -    | IO Jay | 19.19.10 | 100 |
|             |              | OC     | 649        |   | X     | -   | X          | 1   | -   | ~J*   | 11.   | 1.    |      | -      | -      | VI-1-    | 01-1- | -   | -     | -    | 100    |          | -   |
|             |              | 38     | 651        |   | X     | -   | OA         | V   |     | ×/-   | ×/-   | ×/-   | 0    |        | -      | ×/-/-    | X/-/O | -   | -     | -    | _      | -        | -   |
|             | 8            | 3SOC   | 653        |   | ×     | -   |            | X   | -   | \/-   | A/-   | VI-   | -0   |        | -      | VI-1-    | N-10  | -   | -     | -    | -      |          | -   |
|             |              | 38     | 658        |   | _ ^   | -   | 0          | -   | -   | 207   | 221   | -     |      |        | -      |          |       | -   | -     | -    | -      | -        | +   |
|             |              | 3S     | 664        |   | 15    | -   |            | -   |     | XJ-   | X/-   |       |      | F 1    | -      |          | - 0   | -   | -     | 15.0 |        | -        |     |
|             |              |        |            |   |       | -   | -          | -   |     | X/-   | X/-   | -     |      |        | -      | -        |       | -   | -     | -    |        |          | -   |
|             | 8+1P 9 10 16 | 38     | 1640       |   | 1     | -   | ×          |     | -   |       |       |       |      |        |        | 111      | - 2   |     | -     | -    |        |          | -   |
|             |              | 38     | 2620       |   |       |     | X          | -   |     |       |       |       |      |        |        | 1111     |       |     |       |      |        |          |     |
|             |              | 38     | 2640       |   |       |     |            | X   |     |       |       | X/-   |      |        |        | 2 184F   | 0     |     |       | -    |        |          |     |
| INVERTING   |              | 38     | 2953       |   | 1100  |     |            |     |     |       |       | X/-   | 81   |        | 0.1    | 1816     | 100   |     | 13    |      |        |          |     |
|             |              | 35     | 25620      |   | 200   |     |            |     |     |       | 100   | X/-   |      |        |        | (1011    | 0     |     |       |      |        |          |     |
|             |              | 38     | 25622      |   | - 100 |     |            |     |     |       |       | X/-   | 5    |        |        | 1000     | 1 51  |     |       |      |        |          |     |
|             | A.S          | 38     | 25640      |   | 11111 |     |            |     |     |       | 75.7  | X/-   |      |        |        | 6.1612   | 1 0   |     |       | - 9  |        |          |     |
|             |              | 38     | 25642      |   | 70.7  |     |            | 11  |     | 1.1   | 35.71 | 0/-   | 23.7 | N. T.  |        | 1016     | 9.    |     |       |      |        |          |     |
|             |              | 38     | 25648      |   | 990   |     |            |     |     |       | 20.21 | X/-   |      |        |        | 1372     | 1 57  |     |       |      |        |          |     |
|             |              | 35     | 25649      |   | 11.5  |     |            |     |     |       |       | X/-   |      |        |        | 1012     | 12    |     |       |      |        |          |     |
|             |              | 38     | 25651      |   | 200   |     |            |     |     | 115   | 351   | X/-   |      |        |        | 1160     | 100   |     |       |      |        |          |     |
|             |              | 35     | 25653      |   | 10.00 |     |            |     |     | 427   | 797   | X/-   |      |        |        | 1775     | 0.0   |     |       |      |        |          |     |
|             | III DA       | 3SOC   | 834        |   | 363   |     |            |     |     |       |       |       |      |        |        | X/-/-    | X/-/- |     | 10    |      |        |          |     |
|             | 0.40         | 3SOC   | 854        |   |       |     |            |     |     |       |       |       |      | Jan 1  |        | X/-/-    | X/-/- |     |       |      |        |          |     |
|             | 8+1P         | 3SOC   | 29834      |   |       |     | ×          |     |     |       |       | X/-   |      |        |        |          | 100   |     |       |      |        |          |     |
|             |              | 3SOC   | 29854      |   |       |     | 0          |     |     |       |       | 0/-   | 18   |        |        | 1710     | 100   |     |       |      |        |          |     |
|             |              | 3\$    | 864        |   | 447   |     |            |     |     |       |       |       | 120  |        |        | X/-/-    | X/-/- |     |       |      |        |          |     |
|             | 9            | 38     | 29864      |   | 75.00 |     | ×          |     |     |       |       | OB/-  |      |        |        | 1100     | 10    |     |       |      |        |          |     |
|             |              | 35     | 862        |   | 4-0   |     |            |     |     |       |       |       |      |        |        | ×/-/-    | X/-/- |     |       |      |        |          |     |
|             | 10           | 38     | 29862      |   |       |     | ×          |     |     |       |       | XB/-  |      | 100    |        | 100      |       |     | 100   |      |        |          |     |
|             |              | 35     | 16471      |   |       |     |            |     |     |       |       | -     | 1130 |        |        | 100      | -     |     |       |      |        |          |     |
|             |              | 38     | 16544      |   |       |     |            |     |     |       |       |       | 100  | AXI.   |        | 1870     | ×     |     |       |      |        |          |     |
|             |              | 38     | 16620      |   |       |     |            |     |     |       |       |       | 150  |        |        | ×        | X     |     |       |      |        |          |     |
|             |              | 38     | 16640      |   |       |     |            |     |     | -2.31 |       |       | 0    | 6.     |        | ×        | X     |     |       |      |        |          | +   |
|             | 16           | 35     | 16648      |   |       |     |            |     |     | 100   |       |       | -    | 121    | _      |          | ×     |     |       |      | _      | _        | 10  |
|             | 100          | 38     | 16651      |   | 4445  |     |            |     |     |       |       |       |      |        |        | 1000     | 0     |     |       |      |        |          | -   |
|             |              | 38     | 16862      |   |       |     |            |     |     |       |       |       |      |        |        |          | -     |     |       |      |        |          | +   |
|             |              | 38     | 16953      |   |       |     |            |     |     | 122   |       |       | 110  |        |        | THE SALE | ×     |     |       |      |        | 1        | -   |
|             |              | 38     | 16475      |   |       |     |            | -   |     |       |       |       |      |        | 1      | 10000    | ×     | -   |       | -    |        | +        | +   |
|             | 18           | 38     | 16524      |   | 353.7 | -   |            | -   |     |       |       |       |      |        |        | 1111     | ^     |     | 1     | -    |        | HO       | -   |
|             | .0           | 38     | 16864      |   |       | -   |            | -   | -   |       |       |       |      |        | 1      | 100      | ×     | -   | -     | -    |        | HO       | +   |
|             |              | 00     | 10004      | - | 1000  | -   | -          | -   | _   |       |       |       |      |        | -      | 111111   | _ ^   | _   | _     | _    | _      | -        | _   |
|             |              | 38     | 643        |   | ×     | -   | ×          | I×  | -   | X/-   | ×/-   |       |      |        | -      | ×/-/-    | 1 4// | -   |       | -    | _      |          | -   |
|             |              | OC OC  | 644        |   |       | -   |            |     |     | XI-   | X/-   |       | 10   |        |        | X/-/-    | X/-/- |     |       |      |        |          |     |
| NON-        |              | 00     | 758        |   | ×     | -   | ×          | X   |     | 1     |       |       |      |        | -      | 12000    | 100   |     |       |      |        |          |     |
| INVERTING   | 8            | OC     | 758<br>759 |   |       |     | X          | X   |     |       |       |       |      |        |        | 1000     | - 0   |     |       |      |        |          |     |
|             |              |        |            |   |       |     |            | 1 8 |     |       |       |       |      |        |        |          |       |     |       |      |        |          |     |

|            |   | 35 | 643  | X | X | X | X/-   | X/- | 1.0 |      | X/-/-   | X/-/- | 11.0 |  |  |  |
|------------|---|----|------|---|---|---|-------|-----|-----|------|---------|-------|------|--|--|--|
| NON-       |   | OC | 644  | X | X | X | THE S |     |     | ×1.1 | 1,000   | 101   |      |  |  |  |
| INVERTING  | 8 | OC | 758  |   | × | X |       |     |     |      | 10000   |       |      |  |  |  |
| /INVERTING |   | OC | 759  |   |   | X |       |     |     |      | 1000000 | - 53. |      |  |  |  |
|            |   | 3S | 7340 |   |   |   | X/-   |     |     |      |         |       |      |  |  |  |

Explanatory notes [No. of Output] +P: With Parity Bit

[Output] 3S: 3-State Output R3S: Series Resistor and 3-State Output

OC : Open-Collector Output 3SOC : 3-State Output / Open-Collector Output Status : Product available in technology indicated \*: New product planned in technology indicated

X : Discontinued : Not recommended for new designs

HC : SN74HCxx / CD74HCxx

HCT : SN74HCxx / CD74HCTxx

BCT: SN74BCTxx / SN64BCTxx

AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx

### J/K FLIP-FLOP

|     |   |     |    |   |     |   | mond | nib. | 11   |      |   |     |     |        | Tecl | nnolo | ogy   |       |      |      |      |    |  |
|-----|---|-----|----|---|-----|---|------|------|------|------|---|-----|-----|--------|------|-------|-------|-------|------|------|------|----|--|
|     |   | 200 |    | 0 | 10  |   | 10   | Bip  | olar | 1000 |   | CN  | los | BICM   | os   |       |       | land. | Adva | nced | CMOS |    |  |
|     |   | В   | 28 | В | 107 | 0 | OA   |      |      |      |   | X/O | -/0 | 1×13   |      |       | 1.54  | 17115 |      | 100  |      |    |  |
| NEG | 2 | В   | 28 | В | 112 |   | OA   | OA   | OA   |      | 0 | 0/0 | -/0 | 100 10 |      |       | X/-/O | X/-/O |      | 00   |      | OA |  |
|     |   | В   | 28 | В | 113 |   | X    | X    | X    |      | × | X/- |     |        | 1.50 |       |       |       |      |      |      |    |  |
|     |   | В   | 28 | В | 114 |   | X    | ×    | ×    |      | × | ×/- |     | 100    | 1.12 | 101   |       |       |      |      |      |    |  |
|     | 4 | B   | 28 | 0 | 276 | X |      |      |      |      |   |     |     |        | 110  |       |       |       |      |      |      |    |  |

### D-TYPE FLIP-FLOP

|         |         |     | -        | -  | _      | - |    |     | _    |    | _   |      |       | -    |      |      | hnolo | gy      |         |     | -     |      |            |      | _        |
|---------|---------|-----|----------|----|--------|---|----|-----|------|----|-----|------|-------|------|------|------|-------|---------|---------|-----|-------|------|------------|------|----------|
|         |         | PRE |          | Q  |        | _ |    | Bip | olar | _  |     | CN   | IOS   | -    | BICN | NOS  |       |         | _       |     | anced | CMOS |            |      | _        |
| Trigger | Curcuit | CLR | Output   | /Q | Device | E | 3  | 00  | ALS  | AS | th. | HC   | HCT   | BCT  | ABT  | 5    | ALVT  | AC      | ACT     | AHC | AHC   | 2    | LVC        | ALVC | AWA      |
|         | 2       | В   | 28       | В  | 74     | X | OA | 0   | OA   | OA | 0   | 0/0  | 0/0   |      |      |      |       | 0/0/0   | 0/0/0   | 0   |       | OA   | OA         | -    |          |
|         |         | C   | 28       | В  | 171    |   | X  |     |      |    |     |      |       |      |      | 1111 |       | -       | 1000    |     |       | -    |            |      |          |
|         | 4       | C   | 25       | В  | 175    | X | 0  | 0   | 0    | OB | 0   | 0/0  | -/0   |      |      |      |       | 0/-/0   | X/-/O   |     |       | OA   |            |      | +        |
|         |         |     | 28       | В  | 379    | - | X  | -   | -    | -  | X   | X/-  | -     |      |      |      |       | X/-/-   | X/-/-   |     |       | - CA |            |      | +        |
|         |         | C   | 28       | Q  | 174    |   |    | 0   | 0    | 0  |     |      | -/0   |      |      |      | -     | X/-/O   | X/-/O   | 0   | 0     | OA   |            | -    | +        |
|         | 6       |     | 28       | 0  | 378    |   | 10 | 1   | -    | ~  | X   | X/-  | 40    |      | -    | -    | -     | X/-/-   | X/-/-   | - V | -     | UN   |            |      | +        |
|         |         | C   | 28       | Q  | 273    |   | ŏ  | -   | 0    |    | X   | 0/0  | 0/0   | -    | 0    | но   | -     | X/-/O   | XI-10   | 0   | 0     | OA   |            |      | +        |
|         |         | -   | 38       | Q  | 374    |   | ŏ  | 0   | OA   | 0  | 0   | 0/0  | 0/0   | 0/-  | OA   | HO   | -     | X/0/0   | 0/0/0   | ŏ   |       | OA   | OA         | HO   | $\vdash$ |
|         |         | _   | 28       | Q  | 377    |   | lŏ | 1   | CA   | 0  | OA  |      | 0/0   | U/-  | OA   | nO.  | -     | X/-/-   | X/-/-   | 10  | 0     | CA   | UM         | no.  | +        |
|         | 1       | _   | 3S       | Q  | 478    |   | 10 | -   | -    | -  | UA  | OVC  | CVO   | -    | UA   | -    | -     | XI-I-   | X/-/-   | -   | -     | -    |            | -    | $\vdash$ |
|         |         |     | 3S       | /Q | 534    |   | -  | -   | 0.0  | 17 | 1   | 5775 | 37.65 | 200  | ~    | -    | -     |         |         | -   | -     | -    | -          |      | -        |
|         |         |     | 38       | /0 | 564    |   | -  | -   |      | X  | X   |      | X/O   | X/-  | OA   | -    | -     | X/0/0   | X/O/-   | -   | -     | -    | -          |      | -        |
|         |         | -   | 38       | Q  | 574    |   | -  | -   | OB   | -  | X   |      | X/O   | X/-  | -    |      |       | X/O/-   | X/O/-   | -   | -     | -    | -          |      | 4        |
|         |         |     | 3S<br>3S | 0  |        |   |    | _   | OB   | 0  | 0   | 0/0  | 0/0   | 0/-  | OA   | HO   |       | XIOIO   | XIOIO   | 0   | 0     | OA   | OA         |      | ╙        |
|         |         |     |          |    | 575    |   | -  |     | OA   |    |     |      |       |      |      |      |       |         |         |     |       |      |            |      |          |
|         |         |     | 38       | /Q | 576    |   |    |     | OB   |    |     |      |       |      |      |      |       |         | 110000  |     | 100   |      |            |      |          |
|         | 8       |     | 38       | /Q | 577    |   |    |     | OA   |    |     |      |       |      |      |      |       |         | DOCUME. |     | 200   |      |            |      |          |
|         |         |     | 38       | Q  | 825    |   |    |     |      | OA |     |      |       |      |      |      |       | X/-/-   | X/-/-   |     |       |      |            |      |          |
|         |         |     | 38       | Q  | 826    |   |    |     |      | X  |     | 100  |       |      |      |      |       | X/-/-   | X/-/-   |     | 100   |      |            |      |          |
|         |         | C   | 38       | Q  | 874    |   |    |     | OB   | 0  |     |      |       |      |      |      |       | X/-/-   | X/-/-   |     | 100   |      |            |      |          |
|         |         | P   | 38       | /Q | 876    |   |    |     | OA   | 0  |     |      |       |      |      |      |       |         |         |     |       |      |            |      | Г        |
|         |         | C   | 38       | Q  | 878    |   |    |     | X    | X  |     |      |       |      |      |      |       |         | 17291   |     | . 110 |      |            |      | т        |
|         |         | C   | 38       | /Q | 879    |   |    |     | XA   | X  |     |      |       |      |      |      |       |         | 195581  |     | 100   |      |            |      | 1        |
|         |         |     | 38       | Q  | 4374   |   |    |     | -    | OB |     |      |       |      |      |      |       |         | 10.701  |     | 100   |      |            |      | +        |
|         |         |     | 38       | Q  | 29825  |   |    |     | ×    | X  |     |      |       | 0/-  |      |      |       |         | 109-019 |     | 12    |      |            |      | _        |
| POS     |         |     | 38       | Q  | 29826  |   | +  |     | X    | X  |     |      |       | X/-  |      |      |       |         | 17.00   |     |       |      |            |      | +        |
|         |         | C   | 38       | Q  | 823    |   |    |     | -    | OA |     |      |       | 1    | 0    |      |       | X/-/-   | ×/-/-   | -   |       | 1    | OA         |      | +        |
|         |         | C   | 38       | /0 | 824    |   | -  | _   |      | XA |     |      |       |      | -    | 11   | -     | X/-/-   | X/-/-   | 1   | -     | -    | UA.        | -    | +        |
|         | 9       | C   | 38       | Q  | 29823  |   |    |     | ×    | X  |     |      |       | X/-  |      |      |       | 74-1-   | 751-1-  | _   |       | -    |            | -    | +        |
|         |         | C   | 38       | /Q | 29824  |   | _  |     | ×    | X  |     |      |       | X/-  | _    | 1    |       | _       | 10/1991 | _   | 300   | _    |            |      | +        |
|         |         |     | 38       | Q  | 821    |   | +  | -   | -    | OA |     |      |       | 100  | OA   | +    |       | X/-/-   | X/-/-   | 1   | 1     | 1    | OA         |      | +        |
|         |         |     | 38       | /0 | 822    |   | +  | +   | -    | X  |     |      |       | -    | UM   | -    | -     | X/-/-   | X/-/-   | -   | -     | -    | OM         | -    | +        |
|         | 10      |     | 38       | Q  | 1821   |   | -  | -   | -    | ×  | -   |      |       | -    |      | -    | -     | 747-1-  | 747-1-  | -   | -     | -    |            | -    | +        |
|         | 10      |     | 38       | Q  | 29821  |   | +- | -   | 0    | Ŷ  | -   |      | -     | 0/-  | -    | -    | -     | -       | 18310   | -   | -     | -    | -          | -    | +        |
|         |         | _   | 38       | /Q | 29822  |   | -  | -   | ×    | Ŷ  | -   | -    | -     | X/-  | -    | 1    | -     | -       | 1000    | -   | -     | -    | -          | -    | +        |
|         |         | -   | 38       | Q  | 16820  |   | +- | -   | 1    | -  | -   | -    |       | 100  | -    |      | -     | -       | -       | -   | -     | -    |            | HO   | +        |
|         | 10X2    |     | 38       | Q  | 162820 |   | -  | -   | -    |    | -   |      |       | -    | -    | -    | -     | -       | -       | -   | -     | -    |            | HO   | +        |
|         | -       |     |          | _  | -      | _ | +- | -   | -    | -  | -   | -    |       | -    |      | -    | -     |         |         | -   | -     | -    | 177.41     | -    | +        |
|         |         |     | 38       | Q  | 16374  |   | -  | -   | -    | -  |     |      | -     | 19.8 | OA   | HO   | HO    | 0       | 0       | 0   | 0     | 1    | OA/<br>HOA | HO   | 1        |
|         | 16      |     | 38       | /Q | 16534  | - | +  | -   | -    | -  | -   | -    | -     | -    |      | -    | -     | -       | l x     | -   | +     | -    | n A        | -    | +        |
|         |         |     | 3S       | Q  | 162374 |   | -  | -   | -    | -  | -   | -    | -     | -    | -    | HO   | -     | -       | ^       | 100 | -     | 1    | -          | HO   | +        |
|         |         | С   | 38       | Q  | 16823  |   | +  | -   | -    | -  | -   | -    | 1000  | -    | Over |      |       | ×       | 0.0     | -   | +     | -    |            |      | +        |
|         | 18      | C   | 38       | Q  | 162823 |   | +  | -   | 1    |    | -   |      | -     |      | OVOH | -    | -     | X       | 0       | 1   | -     | -    |            | HO   | +        |
|         |         | 0   | 3S       | Q  | 16721  |   | -  | -   | -    | -  | -   | -    | -     | 100  | OA   | -    |       | -       |         | -   | -     |      |            | 1100 | +        |
|         |         |     | 38       | Q  |        |   | -  | -   |      |    |     |      |       |      | - 0  |      | 1110  |         | - 14    | -   | -     | -    | -          | HO   | 1        |
|         | 20      |     | 38       |    | 16821  |   |    |     |      |    |     | 1111 |       | 1.00 | 10   | 136  | HO    | L spole | ×       |     | 7.7   |      |            | HO   | 1        |
|         | 1       |     |          | Q  | 162721 |   | -  | -   | -    | _  |     | -    |       | -    | _    | _    |       |         | 1200    | -   |       | -    |            | HO   | 1        |
|         |         |     | 38       | Q  | 162821 |   | _  |     |      | _  |     |      |       |      |      |      |       |         | 771     |     |       |      |            | ×    | 1        |
|         | 22      |     | 38       | Q  | 16722  |   |    |     |      |    |     |      |       |      |      |      |       |         | DOD BY  | 10  | 00    | 155  | 130        |      |          |
|         | 32      |     | 38       | Q  | 32374  |   |    |     |      |    |     |      |       |      |      |      | HO    |         |         |     |       |      | HOA        | HO   |          |
|         | -       |     | 38       | Q  | 322374 |   |    |     |      |    |     |      |       |      |      | HO   |       |         |         |     |       |      |            |      | 1        |

Explanatory notes [Trigger] POS: Positive edge NEG: Negative Edge

[PRE · CLR] B : Preset and Clear C : Clear Only
[Output] 2S : Totem pole Output 3S : 3-State Output

[Q-/Q] B:Q-/Q-Output Q:Q-Output /Q:/Q-Output

Status : Product available in technology indicated \*: New product planned in technology indicated

X: Discontinued : Not recommended for new designs

HC: SN74HCxx / CD74HCxx

HCT: SN74HCxx / CD74HCTxx

BCT : SN74BCTxx / SN64BCTxx

AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx

|                              |     |    |     | _  | 1 11                                    | igni |      | 01       | -1 |    | _   |           | 100       | _   | Dia  |      | chnole | ogy        |        |       |       | 21100 |       |              |   |
|------------------------------|-----|----|-----|----|-----------------------------------------|------|------|----------|----|----|-----|-----------|-----------|-----|------|------|--------|------------|--------|-------|-------|-------|-------|--------------|---|
|                              |     |    | PRE | Q  | 2 .                                     | -    |      | Bip      | 1  |    | -   |           |           |     | 1    | T    | 1      |            |        |       |       | CMOS  | 100   | (3           |   |
| Type   Curcuit   Output   C. |     |    |     |    |                                         |      |      |          |    |    |     |           |           |     |      |      |        |            |        |       |       |       |       |              |   |
| S-R                          | 4   | 28 |     | Q  | 279                                     | ×    | OA   |          |    |    |     |           |           |     |      |      |        |            |        | 1     |       |       |       |              | İ |
|                              | 1 8 | 28 |     | 0  | 259                                     | TV   | IOp. |          |    |    |     | 00        | 1-10      |     |      |      |        | Y/-/-      | YI-I-  |       |       |       |       |              | - |
| AD                           |     |    |     |    |                                         |      |      |          | Ĭ  |    |     |           | 1         |     |      |      |        | 7.07       | 201    |       |       |       |       |              | İ |
| -                            | T 4 | 28 |     | 0  | 75                                      | IV   | 10   |          |    |    |     | LV/O      | LVIO      |     |      |      |        | LOLL       |        |       | -     |       |       |              | - |
|                              |     |    |     |    |                                         | 1    | 10   |          |    |    |     |           | NO        |     | -    |      | -      | Ciris      |        |       | -     |       | -     |              | ٠ |
| BIS                          |     |    |     |    |                                         |      | 0    |          |    |    |     |           |           |     |      | -    | -      |            |        |       | 100   |       |       |              | + |
|                              |     |    |     |    |                                         |      | Ĭ    |          |    |    |     | Art       |           |     |      |      |        |            | 20     | -     | 15    |       |       |              | t |
|                              |     | 00 |     | 0  | 000                                     |      |      |          |    |    |     |           |           |     |      |      |        |            | ALC:   |       | 5     |       |       |              | _ |
|                              |     |    |     |    |                                         | -    |      | -        |    |    |     |           | 100       |     | -    | 50.1 | 100    |            | 36     |       | 3 1   | -     |       |              | + |
|                              |     |    | 0   |    |                                         |      | -    | -        |    |    |     |           |           | -   |      | -    | 5 100  |            |        |       | -     | -     |       |              | + |
|                              |     |    |     |    |                                         |      | -    | -        |    | -  |     | 1 1 1 1 1 |           | -   | -    |      | -      |            |        |       |       | -     |       | -            | + |
| B/B                          |     |    |     |    |                                         | -    |      | -        |    |    |     | -         |           | -   |      |      | - 6    |            |        |       |       | -     |       |              | + |
| 100                          |     |    |     |    |                                         | -    | -    | -        |    |    | -   | -         | -         | -   | -    |      |        | -          | -      |       | 100   | -     |       | -            | + |
|                              |     |    |     |    |                                         |      | -    | -        |    | -  |     | 1         | -         |     |      |      | 110    |            | 700    |       | 8 1   |       | 1 11  |              | + |
|                              |     |    |     |    |                                         |      | -    |          |    | -  |     | -         |           | -   |      |      | 1      |            | -      |       | 1     | -     |       |              | + |
|                              |     |    |     |    |                                         |      |      |          |    |    |     |           |           |     |      |      | 160    |            | 81. 1. |       | 61    | 700   | 9     |              |   |
|                              | 0   | 26 | 10  | 0  | 116                                     |      |      | -        |    |    |     |           |           |     |      |      | 1      |            |        |       | _     |       |       |              | _ |
|                              |     |    | -   |    |                                         |      | 0    | 10       | OA | 0  | 0   | 010       | 00        | OL  | 0    | MO   | 1      | VIOIO      | 0/0/0  | 0     | 0     | OA    | OA    | HO           | + |
|                              |     |    |     |    |                                         |      | 0    | -        | CA | 0  |     | CVC       | CIC       | 01- | 0    | no   | -      | NOIO       | CICIO  | 0     | -     | UA    | UA    | HO           | + |
|                              |     |    |     |    |                                         |      | -    | -        | OA | OA |     | VIO       | VIO       | V/  | OA   |      |        | VIOL       | VIOL   |       | -     | -     | -     |              | + |
|                              |     |    |     |    |                                         |      |      | -        |    |    |     |           |           |     |      | NO.  |        |            |        | 0     | 10    | OA    | OA    |              | + |
|                              |     |    |     |    |                                         | -    |      | $\vdash$ |    |    |     |           |           |     | OA   | no.  | -      |            |        | -     | 1     | UA    | CA    | -            | + |
|                              |     |    |     |    |                                         |      |      |          |    |    | -   | 010       | 140       | 241 |      |      |        | 74010      | 1401-  |       | +     |       |       |              | + |
|                              |     |    | C   |    |                                         |      |      |          |    |    |     |           |           |     |      |      |        | XIaIa      | XI.I.  |       |       | _     |       |              | ٠ |
|                              | 8   | 38 |     |    | 880                                     |      |      |          |    |    |     |           |           |     |      |      |        | 707        | 74.1   | 10.1  | 77.71 | 1 71  | TOTAL | 171 T        | + |
|                              |     |    |     |    |                                         |      |      |          |    |    |     |           |           |     |      |      |        | X/-/-      | X/-/-  |       |       |       |       |              | t |
|                              | 8   | 38 | В   | Q  | 29845                                   |      |      |          |    |    | - 0 | Mag       |           | X/- | 100  |      |        | -          |        |       |       |       |       |              | t |
|                              | 8   | 38 | В   | /Q | 846                                     |      |      |          | X  | X  | -   |           |           |     |      |      |        | X/-/-      | X/-/-  | lies. | 0.10  | 19-10 | 1.00  | 774.1        | t |
|                              | 8   |    | В   |    | 29846                                   | 100  |      |          | X  | X  | 15  |           | 1 -       | X/- |      |      |        |            |        |       |       | 7100  |       | 7            | Ť |
|                              |     |    |     |    |                                         |      |      |          | 0  | X  |     |           |           |     | 0    |      | 1      | X/-/-      | X/-/-  |       |       | -     |       |              | T |
|                              |     |    |     |    |                                         |      |      |          |    |    |     |           |           |     |      |      |        |            |        |       | 7     |       |       |              |   |
| D                            |     |    |     |    |                                         |      |      |          |    |    |     |           |           | 0/- |      |      | 175    |            |        |       | 2     |       |       |              | Ι |
|                              |     |    |     |    |                                         |      |      |          |    |    |     |           |           |     |      |      |        | X/-/-      | X/-/-  |       |       |       |       |              |   |
|                              |     |    | В   |    |                                         |      |      | -        |    |    | _   |           |           | X/- | -    |      |        |            |        |       |       |       |       |              | 1 |
|                              |     |    |     |    |                                         |      | -    |          |    |    |     |           |           |     | UA   |      | 100    | X/-/-      | X/-/-  |       | 1     |       | OA    | 1            | 1 |
|                              |     |    |     |    |                                         |      |      |          |    |    |     |           | -         | X/- |      | -    |        | 200        | 2011   |       |       |       |       |              | + |
|                              |     |    |     |    |                                         | -    | -    |          | ×  |    |     |           |           | VI. |      | -    | -      | X/-/-      | X/=/=  | -     |       | - 60  | 0.0   |              | + |
|                              |     |    |     |    |                                         |      | -    |          |    | _  |     | 1         |           | 1/- | MO   |      | 734    |            | 15     |       | -     |       |       | MO           | + |
|                              |     |    |     |    |                                         | -    | -    | -        | -  |    |     |           |           | -   |      |      | -      | -          | 200    |       | -     | 111   | -     |              | + |
|                              |     |    |     | -  |                                         |      |      |          |    |    | 7   | 7.50      |           |     | 1000 | MO   | HO     | 0          | 0      | 0     | 0     | -     |       | 7011 Sp. 500 | 1 |
|                              |     |    |     |    | 100000000000000000000000000000000000000 |      |      |          |    |    |     | -         |           |     | -CA  | no   | no     | 0          |        | 0     | 10    |       | HOA   | nO.          | 1 |
|                              |     |    |     |    |                                         |      | -    |          | -  | -  |     | 100       |           | -   | -    | HO   | -      | -0.0       | ^      | -     | -     |       |       | V            | + |
|                              | 18  |    | В   |    |                                         |      | -    |          |    |    |     | -         |           |     | 0    | no   |        | -          | ×      | -     | 1     |       |       |              | + |
| Type                         |     |    |     |    |                                         |      |      |          |    |    |     |           |           |     |      |      |        |            |        |       |       |       |       |              |   |
|                              |     |    |     |    |                                         |      |      |          |    |    |     |           | constitut | 100 |      | 111  | ugh    | O murror   | -      |       | 100   |       |       |              | + |
|                              |     |    |     |    |                                         |      | 100  | 900      | 1  |    |     | 200       | 1000      |     | -    | HO.  | 100    | Will works | 1000   |       |       | 10000 | no.   |              | + |

Explanatory notes [Type] S-R: S-R Latch AD: Addressable Latch BIS: Bistable Latch

R-B : Read-Back Latch D : D-Type Transparent Latch

[PRE · CLR] B : Preset and Clear C : Clear Only [Output] 2S: Totem-Pole Output 3S: 3-State Output

 $[Q\cdot/Q]\quad B:Q\cdot/Q\text{-Output}\quad Q:Q\text{-Output}\quad /Q:/Q\text{-Output}$ 

Status : Product available in technology indicated \*: New product planned in technology indicated

X: Discontinued : Not recommended for new designs

HC : SN74HCxx / CD74HCxx

HCT : SN74HCxx / CD74HCTxx

BCT: SN74BCTxx / SN64BCTxx

AC: 74AC11xxx (Product available in reduced-noise advanced CMOS: 11000 Series) / SN74ACxx / CD74ACxx

|               |                |               |     |       |        | 900000 |   | 1  |      |      |    |   |      |     |     |     |      | chnolo | gy                  |       |     |      |      |     |      |     |
|---------------|----------------|---------------|-----|-------|--------|--------|---|----|------|------|----|---|------|-----|-----|-----|------|--------|---------------------|-------|-----|------|------|-----|------|-----|
|               |                | Acres.        | 5   | 100   |        |        |   |    | Bipi | olar |    |   | CM   | os  |     | Bit | CMOS |        |                     |       | Adv | nced | CMOS |     |      |     |
| Input<br>Type | Output<br>Type | No. of<br>Bit | CLR | Shift | Output | Device | I | rs | S    | ALS  | AS | ш | HC   | нст | BCT | ABT | LVI  | ALVT   | AC                  | ACT   | AHC | AHC  | LV   | LVC | ALVC | AVC |
|               |                | 111           |     | R     | 2S     | 178    | X |    |      |      |    |   |      |     |     |     |      |        | ity.                | 0.1   |     | 100  |      |     |      |     |
|               |                |               | C   | R     | 25     | 179    | X |    |      |      |    |   |      |     |     |     |      |        |                     |       |     |      |      |     |      |     |
|               | -              |               |     | R     | 25     | 195    | X | X  | X    | 1    | X  |   | X/O  |     |     |     |      |        |                     | TAT   |     |      |      |     |      |     |
|               |                | 4             |     | В     | 25     | 95     | × | X  | -    |      | X  |   | TIME |     | 1   |     |      |        |                     | 16    |     |      |      |     |      | 100 |
|               |                |               |     | В     | 28     | 295    |   | ×c |      |      |    |   |      |     |     |     |      |        |                     |       |     |      |      |     |      |     |
|               | -              |               | C   | R     | 35     | 395    | - | XA | -    | -    |    | - |      |     | -   |     |      | 100    | 100                 | - A-T |     |      | -    |     |      |     |
| S/P           | S/P            |               | C   | В     | 2S     | 194    |   | OA | X    | -    | 0  |   | X/O  | -10 |     |     |      |        | X/-/-               | X/-/- | 1   | - 55 |      |     |      |     |
|               | -              | 5             | C   | R     | 2S     | 96     | X | ×  |      |      |    | - | 1    | 1   |     |     |      |        | Comment of the last |       | -   | 100  |      | - 5 |      | 100 |
|               |                |               | C   | R     | 35     | 322    |   | X  |      | 4    |    |   | X/-  |     |     |     |      |        |                     |       |     |      | -    |     |      |     |
|               |                |               | C   | В     | 28     | 198    |   |    |      |      | -  | - |      |     |     |     |      | -      | 151                 | 14    |     | -    |      |     |      |     |
|               |                | 8             | C   | В     | 38     | 299    |   | 0  | X    | 0    | X  | 0 | X/O  | -10 | X/- |     |      |        | X/-/O               | X/-/O |     |      |      |     |      |     |
|               |                |               | C   | В     | 38     | 323    |   | X  |      | 0    | X  | X |      |     | X/- |     | - 1  |        | X/-/O               | X/-/O |     | 100  |      |     |      |     |
|               |                |               | C   | В     | 2S     | 199    | X |    |      |      |    |   |      | 1.3 |     |     |      |        |                     | 107   |     | 34   |      | 15  |      |     |
|               |                |               |     | R     | 28     | 165    |   | OA |      | 10   | -  |   | 0/0  | -/0 |     |     | -    | -      |                     |       | -   | 1    | IOA  |     |      | -   |
| S/P           | S              | 8             | C   | R     | 2S     | 166    |   | OA |      | 0    |    | X | 0/0  | -/0 |     |     |      |        | 100                 | 107   |     | 100  | OA   |     |      | 100 |
|               |                |               |     |       |        |        |   |    |      |      |    |   | L    |     |     |     |      |        |                     | THAT  |     | 138  |      | 111 |      |     |
| S             | S/P            | 8             | C   | R     | 2S     | 164    | X | 0  |      | OA   |    |   | 0/0  | -/0 |     |     |      |        | -1-10               | -1-10 |     | 65   | OA   |     |      |     |
| S             | P              | 10            | С   |       | 25     | 898    |   |    |      |      |    |   |      |     |     |     |      |        | X/-/-               | X/-/- |     | 100  |      | 101 |      |     |
| S             | S              | 8             |     | R     | 28     | 91     | × | ×  |      |      |    |   |      |     |     |     |      | 18     | 121                 | CRI   |     | 155  |      |     |      |     |
|               | JH AC          | 4             | T C | R     | 28     | 9.4    | X |    |      | -    |    |   | LUV  |     |     |     | -    |        | 030                 | 101   |     |      | -    |     |      |     |
| P             | S              | 16            | -   | R     | 38     | 674    |   | -  | -    | -    |    | - |      |     |     | -   | -    | +      | 100                 |       | -   | 1    | -    |     | -    | +   |

### SHIFT REGISTER WITH LATCH

|               |        |               |     |       | Line is | 10X    |    |   |     |      |    |    |                |     |     |     | Te  | chnolo | gy    | 10     | 0.1  |      |      | 18   |      |     |
|---------------|--------|---------------|-----|-------|---------|--------|----|---|-----|------|----|----|----------------|-----|-----|-----|-----|--------|-------|--------|------|------|------|------|------|-----|
|               |        |               |     |       |         |        |    |   | Bip | olar |    |    | CN             | /OS | K.  | BiC | MOS |        |       |        | Adva | nced | CMOS |      |      |     |
| Input<br>Type | Output | No. of<br>Bit | CLR | Shift | Output  | Device | TT | S | on. | ALS  | AS | u. | H <sub>C</sub> | HCT | BCT | ABT | LY. | ALVT   | AC    | ACT    | AHC  | AHC  | Ľ    | LVC  | ALVC | AVC |
|               |        | - 4           | C   | В     | 38      | 671    |    | X |     |      |    |    |                |     |     |     |     |        |       | 1 5 1  |      |      |      | 100  | -    |     |
| S/P           | S/P    | 4             | C   | В     | 35      | 672    |    | X |     |      |    |    |                |     | 1   | -   |     |        | 12200 | 1-5-1- |      |      |      |      | -    |     |
|               |        | 8             | С   | R     | 25      | 598    |    | 0 |     |      |    |    |                |     |     |     |     |        |       | 1-145  |      |      |      |      |      |     |
|               |        |               |     |       |         |        |    |   |     |      |    |    |                |     |     |     |     |        |       |        |      |      |      |      |      |     |
|               |        | 8             | C   | R     | 38      | 595    |    | 0 | 1   |      |    |    | 0/-            |     |     |     |     |        |       |        | 10   | 0    | OA   |      |      |     |
|               |        | 8             | C   | R     | OC      | 599    |    | × |     |      |    |    | 1              |     |     |     |     |        | 11000 | 12.1   |      | 133  |      |      |      |     |
| 0             | 0/0    | 0             | 0   | - 0   | 0.0     | 500    |    |   |     |      |    |    |                |     | 100 | 1   |     |        |       | 11.00  |      |      |      | 1000 | 0.00 |     |

|   | 1.0  | 8  | C | R | 35 | 595 | 101 | 0/- | 1135 |      |      | 0    | OA  |  |
|---|------|----|---|---|----|-----|-----|-----|------|------|------|------|-----|--|
|   |      | 8  | C | R | 00 | 599 | X   |     | 100  | 1000 | 12.7 | 1.33 |     |  |
| S | S/P  | 8  | C | R | oc | 596 | 0   |     |      | 1177 | 1000 |      |     |  |
|   |      | 8  | C | R | 25 | 594 |     | 0/- |      | 1000 | 0    | 0    | OA  |  |
|   | 15.7 | 16 | C | В | 38 | 673 | 0   |     |      |      | W    |      | 100 |  |

Explanatory notes [Input/Output Type] S: Serial P: Parallel S/P: Alternative Serial/Parallel [CLR] C: With Clear [Shift] R: Right-Shift B: Alternative Shift Right/Left [Output] 25: Totem-Pole Output 35: 3-State Output [Output] 25: Totem-Pole Output 35: 3-State Output [Output] 25: Totem-Pole Output 35: 3-State Output [Output] 25: Totem-Pole Output 35: 3-State Output [Output] 25: Totem-Pole Output 35: 3-State Output [Output] 25: Totem-Pole Output 35: 3-State Output [Output] 25: Totem-Pole Output 35: 3-State Output [Output] 25: Totem-Pole Output 35: 3-State Output [Output] 25: Totem-Pole Output 35: 3-State Output 35: Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Shift Sh

tion of the P. S. S. R. Lefeb. AD : Addressed in the Bill : District Later

BCT : SN74BCTxx / SN04BCTxx
AC : 74ACT1xx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx
ACT : 74ACT11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACTxx

### REGISTER(ETC)

|                                    |        |     |    |     |       |    |    |     |      |      |     | Te  | chnol | ogy   |              |     |      |      |      |      |     |
|------------------------------------|--------|-----|----|-----|-------|----|----|-----|------|------|-----|-----|-------|-------|--------------|-----|------|------|------|------|-----|
| 18071653 (FRO188999)               |        | - 9 |    | Bip | oolar |    |    | CI  | NOS  | -    | BiC | MOS |       |       |              | Adv | nced | CMOS | 3    |      |     |
| Description                        | Device | Ë   | 23 | co  | ALS   | AS | u. | HC. | нст  | BCT  | ABT | LVI | ALVT  | AC    | ACT          | AHC | AHC  | LV   | LVC  | ALVC | AVC |
| REGISTER FILES 8WX2B               | 172    | X   |    |     |       |    |    | 0.1 | - 2  |      |     |     |       | 100   | the state of | 200 |      |      | - 10 |      |     |
| REGISTER FILES 4WX4B               | 170    | X   | X  |     |       |    |    | . 5 |      | 100  |     |     |       |       | 1            |     |      |      |      | 1000 | 117 |
| REGISTER FILES 4WX4B               | 670    |     | 0  |     |       |    |    | -/0 | -/0  |      |     |     |       |       |              |     |      |      |      |      |     |
| REGISTER FILES 16WX5B              | 870    |     |    |     | 0     | X  |    |     |      |      |     |     |       | X/-/- | X/-/-        |     |      |      |      |      |     |
| REGISTER FILES 16WX5B              | 858    |     |    |     |       |    |    |     |      |      |     |     |       | X/-/- | X/-/-        | 117 |      |      |      |      |     |
| REGISTER FILES 16WX6B              | 871    |     |    |     | X     | X  |    |     |      |      |     | 1   | -01   |       |              |     |      |      |      |      |     |
| REGISTER FILES 32WX4B              | 859    |     |    |     |       |    |    |     |      |      |     |     | 1000  | X/-/- | X/-/-        |     |      |      |      |      |     |
| MUX WITH STRAGE                    | 298    | X   | 0  |     |       | OA |    | X/- |      |      |     |     |       | 1 11  |              | 14. |      |      |      | 1    |     |
| MUX WITH STRAGE                    | 398    |     | X  |     |       |    |    |     |      |      |     |     | 100   |       |              |     |      |      |      |      |     |
| 4BIT BUS-BUFFER REGISTER           | 173    | X   | OA |     |       |    |    | X/O | -/0  |      |     |     | 100   |       | 7 6 7        |     |      |      |      |      |     |
| 8BIT STORAGE REGISTER              | 396    |     | X  |     |       |    |    |     |      |      |     |     | 0.00  | 1.0   | 1 7 1        | 4   |      |      |      |      |     |
|                                    | 818    |     |    |     |       |    |    |     |      | V 1  |     |     | 100   | X/-/- | X/-/-        |     |      |      |      |      |     |
| 8BIT DIAGNOTICCS/PIPELINE REGISTER | 819    |     |    |     |       |    |    | 100 | V Tx | 10 % | 6   | 100 | 100   | X/-/- | X/-/-        |     |      |      | -    |      |     |
|                                    | 29818  |     |    |     | X     |    |    |     |      | X/-  |     | 21  | 735.7 |       |              |     |      |      |      |      |     |

○ : Product available in technology indicated \* : New product planned in technology indicated X : Discontinued ■ : Not recommended for new designs

HC : SN74HCx / CD74HCxx

HCT: SN74HCxx / CD74HCTxx BCT: SN74BCTxx / SN64BCTxx

AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx

ACT : 74ACT11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACTxx / CD74ACTxx

### MONOSTABLE MULTIVIBRATOR

|         |     |           |        |   |    |     |      | 100 | L.I. |       |     |     |     |     | chnolo | gy |     |      |      |      |     |      |       |
|---------|-----|-----------|--------|---|----|-----|------|-----|------|-------|-----|-----|-----|-----|--------|----|-----|------|------|------|-----|------|-------|
|         | 1   |           |        |   |    | Bip | olar |     |      | CN    | ios |     | BiC | MOS |        |    |     | Adva | nced | CMOS |     |      |       |
| Curcuit | CLR | Retrigger | Device | Ī | 53 | on  | ALS  | AS  | Ŀ    | E E   | HCT | BCT | ABT | LVI | ALVT   | AC | ACT | AHC  | AHCT | ΓΛ   | LVC | ALVC | 41.00 |
|         |     |           | 121    | 0 |    |     |      |     |      | 3.2.1 |     |     |     |     |        |    |     |      | -    |      | 7   |      | +     |
| 1       | C   | R         | 122    | X | 0  |     |      |     |      |       |     |     |     |     | 1000   |    |     | 6    |      |      | -51 |      | +     |
|         | C   | R         | 422    |   | X  |     |      | 10  |      | OVII  |     |     |     |     | 100    |    |     | 10-1 |      |      |     |      |       |
|         |     |           |        | 1 |    |     |      | 10  | 9-1  | CVOI  |     |     |     |     | 1910   |    |     |      |      |      | 31  |      |       |
|         | C   | R         | 123    | 0 | 0  |     |      |     |      | -/0   | -/0 |     |     |     | 1200   |    |     | OA   | OA   | OA   |     |      | Т     |
|         | C   |           | 221    | 0 | 0  |     |      |     |      | -/0   | -/0 | 25  |     |     |        |    |     |      |      | OA   |     |      | -     |
| 2       | C   | R         | 423    |   | 0  |     |      |     |      | -/0   | -/0 |     |     |     |        |    |     | 8    |      |      |     |      | +     |
|         | C   | R         | 4538   |   |    |     |      |     |      | -/0   | -10 |     |     |     |        |    |     |      |      |      |     |      | 1     |

Explanatory notes [CLR] C: With Clear
[Retrigger] R: With Retrigger
Status O: Product available in technology indicated X: Discontinued IN Not recommended for new designs
HC: SNY4HCX: POJP4HCXX

The Sinyandax / Curantax
Heft : Sinyandax / Curantax
Heft : Sinyandax / Curantax
Heft : Sinyandax / Curantax
Heft : Sinyandax / Curantax
Heft : Sinyandax / Curantax
Heft : Sinyandax / Curantax
Heft : Sinyandax / Curantax
Heft : Sinyandax / Curantax
Heft : Sinyandax / Curantax
Heft : Sinyandax / Curantax
Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft : Heft

| - 1  |    | 1  |   |               | 9   | 1             | 00    | X | 0   | -        | -   | -        | -   |        | _       |     | _      | 1             |             |               |            | 1000          | 7 0 5   | -      | - |
|------|----|----|---|---------------|-----|---------------|-------|---|-----|----------|-----|----------|-----|--------|---------|-----|--------|---------------|-------------|---------------|------------|---------------|---------|--------|---|
|      |    |    |   | $\rightarrow$ | 9   | -             |       |   |     | -        | -   |          | -   | _      | -       |     | -      |               |             | -             | _          | -             |         | 700    |   |
|      |    |    |   |               |     | -             | 290   | X | X   |          | -   |          | -   | 1410   |         |     |        | -             |             |               | _          |               | -       |        |   |
| -    | A  | 4  |   | A             |     | D             | 390   | X | .0. |          |     |          | -   | X/O    | -/0     |     |        |               |             |               | -          |               |         |        |   |
| -    |    |    |   | A             | A   |               | 176   | X |     |          |     |          |     |        |         |     |        | 1974          |             |               |            |               |         | 77.111 |   |
| _    |    |    |   | A             | A   |               | 196   | X | ×   | X        |     |          |     |        |         |     |        | 1 15:10       |             |               | - 100      |               | 10000   | 14     |   |
| _    |    |    |   | A             | 9   | D             | 490   | X | X   |          |     |          |     | X      |         |     |        | 1500          |             |               |            | 1 1 1 1 1     |         | 1000   |   |
|      |    |    |   |               | 100 |               | 560   |   |     |          | X   |          |     |        |         |     |        | 1797          |             |               |            | _             |         |        | Н |
|      |    |    |   | S             | S   |               | 162   | × | ΧA  | ×        |     | ×        | ×   | X/-    |         |     |        | -             | X/-/-       | ×/-/-         | -          | +             |         |        | Н |
|      |    |    |   | A             | S   | -             | 160   |   | XA  | -/-      | V.D | X        | 0   | X/-    | -       |     | -      |               | X/-/-       | X/-/-         | -          | -             |         |        | H |
| C    | _  | -  |   | A             | S   | $\rightarrow$ | 690   |   | X   |          | AD. | ^        | ^.  | VI-    | -       |     |        |               | VI-1-       | VI-1-         | _          | -             |         |        | ۰ |
|      |    |    |   |               |     | -             |       |   | X   |          |     |          |     |        | _       |     |        |               |             |               |            |               |         |        | L |
| - 1  |    | ,  |   | S             | S   |               | 692   |   | X   |          |     |          |     |        | 1000    | -   | X      | 0 00          | 0 1000      | 100           | 9111       | 7.77          |         |        | Ш |
| - 1  |    | 4  |   |               | S   |               | 568   |   |     |          | X   |          | X   |        |         | 190 | 9750 N | al interest   | X/-/-       | X/-/-         | 1,010      | 10000         | 0.0     |        | L |
| - 1  | S  | -  |   |               | S   |               | 168   |   |     | ×        | X   | X        | X   |        |         |     | _      |               | X/-/-       | X/-/-         | SA TEST    | 20114         | 11.01   |        | Г |
| - 1  |    |    |   |               | S   |               | 668   |   | X   |          |     |          |     |        |         |     |        |               |             | POLICE AND IN | 1          | 1000          | -       |        | Г |
| -1   |    |    | Y |               | A   |               | 190   | X | X   |          | X   |          | XA  | X/O    |         |     |        |               | X/-/-       | X/-/-         |            |               |         |        | h |
| - 1  |    |    |   | A             | S   |               | 696   |   | X   |          |     |          |     |        |         |     |        | -             | 70.7        | 24.           |            | -             | -       |        | H |
| - 1  |    |    |   | S             | S   | 1             | 698   |   | ×   |          | -   | -        |     | -      | 1000    | -   | -      | -             | 111 1111    | 70.1011       | 191        | -             | 10      |        | H |
| -1   |    |    |   | A             | A   |               | 192   |   | ×   |          | ×   |          |     | X/O    | -       |     |        |               | ×/-/-       | X/-/-         |            | -             | -       |        | + |
| -1   | 1  |    |   |               | A   |               |       |   | 1   |          | ^   |          |     |        |         |     |        |               | A/-/-       | A/-/-         |            |               |         |        | L |
| _    |    | 8  |   | Α             |     | J             | 4017  | _ | _   | _        |     |          |     | X/O    |         |     |        |               |             |               |            |               |         |        | L |
| -    |    |    |   | -             |     |               |       | _ | _   | _        | _   | _        | _   |        | _       |     |        |               |             |               |            |               |         |        | _ |
| -1   |    |    |   | A             |     |               | 69    |   | X   |          |     |          |     |        |         |     | -      |               |             | F3543.F       | 111        | 100           | 100000  | 1500   | Ľ |
| _    |    |    |   |               |     |               |       | X | 0   |          |     |          |     | -/0    | -/0     |     |        |               |             |               |            |               |         |        | Г |
|      |    | 4  |   | 1             |     |               |       | X |     |          |     |          | -   |        |         |     | 100    |               |             |               |            |               |         |        | ľ |
|      | 0  |    |   | A             |     | D             |       | X |     |          |     |          |     | 0/0    | -/0     |     |        |               |             |               |            | OA            |         |        | t |
| 4    | 18 |    |   | A             | A   |               | 177   |   | 1   |          | 12  |          |     |        | 1       |     | 0.1    |               | -           | -             |            | -             |         |        | f |
| -1   | A  |    |   | A             | A   | _             |       |   | ×   | ~        | -   |          | -   | _      | -       | -   |        |               | -           |               | -          | +             |         | -      | ٠ |
| -1   | -  | 7  |   | A             | ^   | -             | 4024  |   | -   | ^        |     |          | - 1 | 1110   | 10      |     | -      | -             | _           | _             | _          | -             |         | -      | ÷ |
| -1   |    |    |   |               | -   | -             |       |   | -   |          | _   |          |     | X/O    |         |     |        | -             | _           |               |            | -             |         |        | Ļ |
| -1   |    | 12 |   | A             |     |               | 4040  |   |     |          |     |          |     | 010    | -10     |     |        | 1 1 1 1 1 1 1 |             |               |            | OA            |         |        | L |
| _    |    |    |   | A             |     |               | 4020  |   |     |          |     |          |     | 0/0    | -/0     |     |        | 1237          |             |               |            |               |         |        | L |
|      |    | 14 |   | A             |     |               | 4060  |   |     |          |     |          |     | 0/0    | -10     |     |        |               |             |               |            |               |         |        | Г |
|      |    |    |   | A             |     |               | 4061  |   |     |          |     |          |     | X/-    |         |     |        | 16.7          |             | 17.           | 198        |               |         |        | Т |
| 1    |    |    |   |               |     |               | 561   |   |     |          | OA  |          |     |        |         |     |        | 1 111         |             |               |            |               |         |        | t |
|      |    |    |   | S             | S   |               | 163   |   | OA  | 0        |     |          | OA  | 0/0    | -/0     |     | _      |               | X/-/O       | X/-/O         |            | OA            |         | -      | t |
| -1   | -  |    |   | S             | S   | -             | 693   |   | X   | -        | OB  | -        | OM  | CVC    | -10     |     | -      | _             | N-10        | NITO          | _          | UA            | -       | -      | + |
| -    | -  | -  |   | A             | S   | -             | 161   |   |     | -        | On  | 0        | 04  | 0/0    | -/0     |     | -      | -             | V// 10      | X/-/O         | _          | 0.4           | -       | -      | H |
| - 1  |    |    |   | A             |     | $\rightarrow$ |       |   | OA  |          | OB  | U        | OA  | ONO    | -10     | -   |        |               | X/-/O       | X/-/U         |            | OA            |         |        | 4 |
|      |    |    |   | Α             | S   | -             | 691   |   | ×   |          |     |          |     |        |         |     |        |               | 110         | SIO BRIDE     |            |               | nion (  | no les | L |
| - 1  |    |    |   |               |     | D             | 4518  |   |     |          |     |          |     | -/0    |         |     |        | 100           | Batclett    | 107 7 31 1    | no inte    |               |         |        |   |
| - 1  |    | 4  |   |               | S   |               | 669   |   | 0   | alone.   |     |          | No. |        | A. Same | -   | 7.0    | Day Street    | and worself | of and all    | Live David | distribution. |         |        | Г |
| N    |    |    |   | S             | S   |               | 699   |   | X   |          |     |          |     |        |         |     |        |               |             |               |            |               | 100 - 5 |        | ľ |
| Le . |    |    |   |               | S   |               | 169   |   | OB  | X        | OB  | OA       | 0   |        |         |     |        |               | X/-/-       | X/-/-         |            |               |         |        | Ť |
| -1   |    |    | Y |               | A   |               | 191   |   |     | -        | OA  |          | -   | 0/0    | -10     |     |        |               | X/-/-       | X/-/-         | -          | 100           |         |        | Ť |
| - 1  |    |    |   | A             | S   | 1             | 697   |   | ŏ   |          | -   |          |     | 5/0    | 1.0     |     | _      | _             | 2.47-9-     | 7.4.7         | 1.2        | 1000          | . 101   |        | t |
| - 1  |    |    |   | A             | A   | -             | 193   |   |     | $\vdash$ | OA  | -        | VA  | 0/0    | 100     | -   | -      | -             | X/-/-       | X/-/-         | -          | 1             |         | _      | H |
| п    |    |    |   | A             |     | -             |       |   | 10  |          |     |          |     | ON     | -10     |     |        |               |             |               | 3 20 130   | 1             | 1       | _      | ł |
| J    |    |    |   |               | A   |               | 569   |   |     |          | OA  |          | X   | 11.000 |         |     | 0.0    |               | X/-/-       | X/-/-         | NH DAY     |               |         |        | 4 |
| П    | S  |    |   | A             | S   |               | 461   |   |     | -        | 000 |          | 100 |        | 1       |     | 100    | OLD ST        | X/-/-       | X/-/-         |            | I AAS         | 170     |        | 1 |
| - 1  |    |    |   | S             | S   |               | 463   |   |     |          |     |          |     |        |         |     |        |               | X/-/-       | X/-/-         |            |               |         |        | ſ |
| -1   |    |    |   | A             | A   | R             | 590   |   | 0   |          |     |          |     | OA/-   |         |     |        |               | X/-/-       | X/-/-         |            |               |         |        | ſ |
| -1   |    |    |   | A             | A   | R             | 591   |   | X   |          |     |          |     |        |         |     |        |               |             |               |            |               |         |        | Ť |
| -1   |    |    |   | A             | A   | R             | 592   |   | 0   |          |     |          |     |        |         |     |        |               | X/-/-       | X/-/-         |            |               |         |        | Ť |
| - 1  |    |    |   | A             | A   | R             | 593   |   | ŏ   |          |     |          |     |        | +       |     |        |               | X/-/-       | X/-/-         | _          | 1             |         |        | t |
| -1   |    |    |   | A             | -   | J             | 4022  |   | -   |          |     | -        |     | X/-    | 1       |     | -      | -             | 11-1-       | 121-1-        | _          | 1             |         |        | t |
| -1   |    | 8  |   |               | -   | 1             | 4520  |   | -   | -        | -   | $\vdash$ |     | -/0    | +       | -   | -      | -             | -           |               | -          | -             |         | _      | + |
| - 1  |    |    |   |               |     | 1             |       |   | -   | -        | -   | -        |     |        | -       | -   | _      | _             | -           |               | _          | -             |         |        | + |
| -1   |    |    |   | A             |     | J             | 7022  |   |     |          |     |          |     | X/-    |         |     |        |               |             |               |            |               |         |        | 1 |
| -1   |    |    |   |               |     | LI            | 40103 |   |     |          |     |          |     | -/0    |         |     |        |               |             |               |            |               |         |        | ſ |
| - 1  |    |    |   |               | S   |               | 469   |   |     |          |     |          |     |        |         |     |        |               | X/-/-       | X/-/-         |            |               |         |        | ľ |
| - 1  |    |    | Y |               |     |               | 579   |   |     |          |     |          |     |        |         |     |        |               | X/-/-       | X/-/-         |            |               |         |        | Т |
| - 1  |    |    | Y | S             | S   |               | 869   |   |     |          | 0   | 0        |     |        |         |     |        |               | X/-/-       | X/-/-         |            |               |         |        | t |
| _    |    |    |   | A             | S   | + +           | 867   |   |     |          |     | ŏ        |     |        | 1       |     |        |               | X/-/-       | X/-/-         | _          | 1             |         |        | t |
|      |    |    |   |               |     |               |       | X |     |          |     |          |     |        |         |     |        |               |             |               |            |               |         |        |   |

Explanatory notes [DEC-BIN] DEC: Decoder BIN: Binary Counter OHE: Other
[ASYN-SYN] ASYN: Asynchronous SVN: Synchronous
[Up/Down] Y: Up/Down
[CLR] A: With Asynchronous Clear S: With Synchronous Clear
[LOAD] A: With Asynchronous Clear S: With Synchronous Clear 9: Preset 9
[LOAD] A: With Asynchronous Clear 9: With Synchronous Clear 9: Preset 9
[LOAD] A: With Asynchronous Clear 9: Preset 9
[

AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx
ACT : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACTxx

### RATE MULTIPLIER/FREQUENCY DIVIDERS

| TOTAL MODELLI ELEMENT MEDICAL | vych   | 100 | 7   |     |       | _  |    |         |     |     | -   |     | chnolo | gy   |              |      |         |      |     |          |     |
|-------------------------------|--------|-----|-----|-----|-------|----|----|---------|-----|-----|-----|-----|--------|------|--------------|------|---------|------|-----|----------|-----|
| BOAC Beauty                   |        |     | 100 | Big | oolar |    |    | CA      | IOS |     | BIC | MOS |        |      |              | Adva | inced ( | CMOS |     |          |     |
| Description                   | Device | I   | 23  | o   | ALS   | AS | ū. | HC      | нст | BCT | ABT | LVT | ALVT   | AC   | ACT          | AHC  | AHC     | 7    | LVC | ALVC     | AVC |
| FREQUENCY DIVIDERS            | 56     | -   | ×   |     | 1     |    | 14 |         |     | 10  |     |     |        |      |              |      |         |      |     | Spirit C |     |
| FREQUENCY DIVIDERS            | 57     |     | X   |     |       |    |    |         |     |     |     |     |        |      |              |      |         |      |     |          |     |
| 6BIT BINARY RATE MULTIPLIER   | 97     | 0   |     |     |       |    |    |         |     |     |     |     |        |      | - Investment |      |         |      |     |          |     |
| DECADE RATE MULTILIER         | 167    | X   |     |     |       |    |    |         |     |     |     |     |        | TICH | -007         |      | 1       | 11.5 |     |          |     |
| PROGRAMABLE FREQUENCY         | 292    |     | 0   |     |       |    | 50 |         |     |     |     |     |        | OTSA | 1000         |      |         | 68   |     | Section  |     |
| DIVIDER/DIGITAL TIMERS        | 294    |     | 0   |     |       |    |    | J. Jane |     |     |     |     |        | POIL |              | 1    |         | 55   | 0   |          |     |

Status O: Product available in technology indicated \*: New product planned in technology indicated X: Discontinued III: Not recommended for new designs HC: SNT4HCXX / CDT4HCXX HCT: SNT4HCXX / CDT4HCXX HCT: SNT4HCXX / CDT4HCXX BCT: SNT4HCXX / SNT4BCTXX / SNT4BCTXX / SNT4BCTXX / SNT4BCTXX / SNT4BCTXX / SNT4BCTXX / SNT4BCTXX / SNT4BCTXX / SNT4BCTXX / SNT4BCTXX / SNT4BCTXX / SNT4BCTXX / SNT4BCTXX / CDT4ACXX ACT: 74ACT11xxx (Product available in reduced-noise advanced CMOS: 11000 Series) / SNT4ACTxX / CDT4ACTxX |                        |          |             |      |               |        |      |       |      |     |     |        |       |       |      | Te     | chnolo  | ogy       |                                         |       |        | 00     |      |      |     |
|------------------------|----------|-------------|------|---------------|--------|------|-------|------|-----|-----|--------|-------|-------|------|--------|---------|-----------|-----------------------------------------|-------|--------|--------|------|------|-----|
|                        |          |             |      |               |        |      | Bip   | olar |     |     | CM     | IOS   |       | BiC  | MOS    |         |           |                                         | Adva  | nced ( | CMOS   |      |      |     |
| No. of<br>Input/output | Output   | Curcuit     | ETC  | Device        | TTL    | LS.  | Ø     | ALS  | AS  | u.  | НС     | нст   | BCT   | ABT  | LVT    | ALVT    | AC        | ACT                                     | AHC   | AHCT   | LV     | TAC  | ALVC | 100 |
|                        | 28       | 1           | -    | 150           | 0      |      | _     |      | _   | -   | _      | ocina | 15791 | 10   | 110    |         | X/-/-     | ×1-1-                                   | 100   | -00    | Pouls  | 1128 | -    | +   |
|                        | 38       | 1           |      | 250           |        |      | -     |      | OA  |     |        |       | -     | -    |        | -       | X/-/-     | X/-/-                                   |       |        |        |      |      | +   |
| 16/1                   | 38       | 1           |      | 850           |        | _    | _     |      | X   |     |        |       |       | +    | +-     | -       | APP       | Alter                                   |       |        |        | -    | -    | t   |
|                        | 38       | 1           | 1    | 851           | -      |      | _     |      | X   |     |        | -     |       | 1    |        | 1       | 500,000   | 10000                                   | -     |        |        | -    |      | ۰   |
|                        | 28       | 1           | 100  | 4067          | 110    |      |       |      | -   |     | X/O    | -     | -     | -    | +      | -       | electron. | Position                                | 10 10 | -      | 1000   | -06  |      | ۰   |
|                        | 2.0      | 255 V V V   | X100 | 4001          | 011    |      | CAN   |      | 600 |     | 200    |       |       | -    | 1001   | 257 100 | 000000    | 01-007-0                                | 6321  | 1100   | 200    | 1-28 |      | +   |
|                        | 28       | 1           | T    | 151           | ×Δ     | 0    | 0     | 0    | 0   | ОВ  | 0/0    | -/0   | T     | T    | T-     | T       | X/-/O     | X/-/O                                   | _     |        | _      |      |      | т   |
|                        | 28       | 1           | 1    | 152           | - 104  | ~    | ~     | _    | _   | -   | X/-    | 70    |       | 1    |        |         | 75770     | 74.40                                   | -     |        |        |      |      | t   |
|                        | 38       | 1           |      | 251           | X      | 0    | ×     | 0    | X   | ОВ  |        | -/0   |       |      | -      | _       | X/-/O     | X/-/X                                   |       | -      |        |      |      | +   |
|                        | 38       | 1           | _    | 354           | -      | ×    |       |      |     | 0.0 | X/O    | -/0   |       |      | Anna   |         | 70.10     | 741.775                                 |       |        |        | 1000 |      | t   |
| 8/1                    | 38       | 1           | -    | 356           |        | ×    |       |      |     |     | X/-    | -10   | -     | -    | -      | +       | -         | H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -     | -      | -      |      | -    | ۰   |
|                        | 38       | 1           |      | 4051          |        |      |       |      |     |     | -10    | -/0   |       | _    | -      | 1       |           |                                         |       |        | OA     |      |      | t   |
|                        | 38       | 1           |      | 4351          |        |      |       |      |     |     | -10    | -/0   |       | 1    |        |         |           |                                         | -     |        | -      |      |      | t   |
|                        | OC       | 1 -         |      | 355           |        | ×    |       |      | 7   |     | 1 20   | -     |       | 100  |        |         | 100000    |                                         |       |        | 100    |      |      | t   |
|                        | OC       | 1 5         |      | 357           | 5-1    | ×    | -     |      |     |     |        |       | 100   | 100  | +      | 1       | _         | 1                                       |       |        | -      |      |      | t   |
|                        |          |             |      | 001           | -      |      |       | -    | -   |     | -      |       | -     | 4    | -      | -       |           | -                                       | -     | -      | -      | 1000 | 1000 | ٠   |
|                        | 28       | 2           |      | 352           |        | ×    |       | ×    | ×   | X   | X/-    |       |       | T    |        |         | X/-/-     | X/-/-                                   |       |        |        |      |      | Т   |
|                        | 38       | 2           |      | 153           | X      | 0    | X     | 0    | 0   | 0   | 0/0    | -10   |       |      |        | 100     | X/-/O     | X/-/O                                   |       |        |        |      |      | ۰   |
|                        | 38       | 2           |      | 253           |        | Ö    | -     | 0    | OA  | 0   | 0/0    | -10   |       |      |        | 1       | X/-/O     | X/-/O                                   |       | -      | -      |      |      | ۰   |
|                        | 38       | 2           |      | 353           |        | X    |       | X    | X   | ×   | X/-    | 1.0   |       |      |        | 1       | X/-/-     | X/-/-                                   |       |        | -      | 710  | -    | ۲   |
| 4/1                    | 38       | 2           | 1    | 4052          |        |      |       | -    |     | -   | -10    | -10   |       | 1    |        |         | 1000      | 1                                       |       |        | OA     | -    |      | Ť   |
|                        | 38       | 2           |      | 4352          |        |      |       |      |     |     | -10    | -     |       |      |        |         | Acres .   |                                         |       | 0.790  | Un     | PURC | 2120 | ۰   |
|                        | 38       | 4           |      | 16460         |        |      |       |      |     |     |        |       |       | HO   |        | 1       |           |                                         |       |        |        |      | X    | ۰   |
|                        | 38       | 4           |      | 162460        |        |      |       |      |     |     |        |       |       | HO   |        | 1       |           | _                                       |       |        |        |      | -    | ۰   |
|                        |          | -           | _    | at a safety a | 00     | 0711 |       |      | 08  |     | Spinio | 1000  | 100   | 1    | 0.00   | STORY.  | VEGTOR/I  | Set of up                               |       | 1      | 15.033 | 100  | -    | ٠   |
|                        | 28       | 1           |      | 157           | X      | 0    | 0     | OA   | 0   | OA  | 0/0    | 0/0   | 1     | 100  | Trest. | lam.    | X/-/O     | X/-/O                                   | 10    | -0     | OA     | OA   |      | т   |
|                        | 25       | 1           |      | 158           |        | 0    | X     | 0    |     | XA  |        | -/0   | _     |      |        |         | X/-/O     | X/-/O                                   | Ŏ.    | Ó      | 1      |      |      | t   |
|                        | 28       | 4           | S    | 399           |        | 0    |       |      |     |     |        |       |       |      |        |         |           |                                         |       |        |        | 4.1  |      | Ť   |
|                        | 38       | 1           |      | 257           |        | ОВ   | 0     | OA   | 0   | 0   | 0/0    | 0/0   |       |      |        |         | 0/-/0     | 0/-/0                                   |       | -      |        | OA   |      | T   |
|                        | 38       | 1           |      | 258           |        | OB   | X     | OA   | 0   | 0   | 0/0    | -/0   |       |      |        |         | X/-/-     | X/-/O                                   | 100   |        | 779    | 1    |      | Ť   |
|                        | 38       | 4           | 14.0 | 4053          | 3 [1]  | UT U | 5.0   |      |     |     | -10    | -10   |       | 10-0 |        |         | oldbir.   | 1 Jelius                                | 11.30 | 17.7   | OA     | DI   |      | Ť   |
| 2/1                    |          | 6           | U    | 857           | est in | 8.4  | OKA I | 0    | X   | 100 |        | man d | olon  | 100  | 357    | 10.00   | onlines.  | (Product                                | CERT  | TO.    | 157    | 755  |      | Ť   |
| 2/1                    | 38       |             |      |               |        | X    |       |      |     |     | ×      |       |       |      |        |         |           |                                         |       |        |        |      |      | Ť   |
| 2/1                    | 38       | 8           | S    | 604           |        |      |       |      |     |     |        |       |       |      |        |         |           |                                         |       |        |        |      |      |     |
| 2/1                    | 3S<br>OC | 8           | S    | 604<br>605    |        | X    |       |      |     |     |        |       |       |      |        |         |           |                                         |       |        |        |      |      | Т   |
| 2/1                    | 38       | 8<br>8<br>8 |      |               |        |      |       |      |     |     |        |       |       |      |        | -       |           |                                         |       |        |        |      |      | Ŧ   |
| 2/1                    | 3S<br>OC | 8           | S    | 605           |        | X    |       |      |     |     |        |       |       |      |        |         |           |                                         |       |        |        |      |      | I   |

### DECODER/DEMULTIPLEXER

|                        |          |         |     |        |     |     |     |      |    |   |     |     |      |      | Te   | chnolo        | gy          |           |      |       |        |           |       |     |
|------------------------|----------|---------|-----|--------|-----|-----|-----|------|----|---|-----|-----|------|------|------|---------------|-------------|-----------|------|-------|--------|-----------|-------|-----|
|                        | (BADADA) | 111111  |     |        |     | -   | Bip | olar |    |   | CN  | IOS |      | BIC  | MOS  |               |             |           | Adva | nced  | CMOS   |           | _     | _   |
| No. of<br>Input/output | Output   | Curcuit | ETC | Device | TTL | rs. | ø   | ALS  | AS | ш | HC  | нст | BCT  | ABT  | LVT  | ALVT          | AC          | ACT       | AHC  | AHCT  | ΓΛ     | LVC       | ALVC  | AVC |
|                        | 28       | 1       | AD  | 4514   |     |     |     |      |    |   | X/O | -/0 |      |      |      |               |             |           |      |       | 11.0   | HAT I     | 48.4  |     |
|                        | 28       | 1       | AD  | 4515   |     |     |     |      |    |   | X/O | -/0 |      |      |      |               |             |           |      | 100   | 500    | HT ED     | AMA   | 10  |
| 4/16                   | 3\$      | 1       |     | 154    | 0   |     |     |      |    |   | X/O | -/0 |      |      |      | - 3           | X/-/-       | X/-/-     |      |       | 11251/ | Thursday. |       | (In |
|                        | oc       | 1       |     | 159    | 0   |     |     |      |    |   |     |     |      |      |      |               |             |           |      |       |        |           |       |     |
|                        | 2S       | 1       | BD  | 42     | XA  | 0   |     |      |    |   | 0/0 | -/0 |      |      |      |               |             |           |      |       | 1      |           |       |     |
| 4/10                   | 28       | 1       | BD  | 43     |     | Ť   |     |      |    |   | -   | -   |      |      |      |               |             |           |      |       |        |           |       |     |
|                        | 28       | 1       | BD  | 44     | X   |     |     |      |    |   |     |     |      |      |      |               |             |           | -    |       |        |           |       |     |
|                        | 28       | 1       |     | 238    |     |     |     |      |    |   | X/O | -/0 |      |      |      |               | X/-/O       | X/-/O     |      | ITOS  | 1-188  | 170       |       |     |
|                        | 2S       | 1       | 100 | 138    |     | 0   | OA  | OA   | 0  | 0 | 0/0 | 010 |      | 20.0 |      |               | 0/-/0       | X/-/O     | 0    | 0     | OA     | OA        |       |     |
| 3/8                    | 2S       | 1       | AD  | 237    |     |     |     |      | 00 |   | X/O | -10 | bout |      | 0.00 | de la company | ni didahili | on reulic | 100  | 11111 | 5635   | T I'm     |       |     |
|                        | 28       | 1       | AD  | 137    |     | X   |     | OA   | X  |   | X/O | X/0 |      |      |      |               |             |           |      |       |        |           |       |     |
|                        | 2S       | 1       | AD  | 131    |     |     |     | X    | X  |   |     |     |      |      |      |               |             |           |      |       |        |           |       |     |
|                        | 2S       | 2       |     | 139    |     | IOA | OA  | 0    | IX | X | 0/0 | 0/0 |      |      |      | T             | X/-/O       | 0/-/0     | To   | ΙO    | OA     | OA        |       |     |
| 1.0                    | 2S       | 2       |     | 239    |     |     | 1   | -    |    |   | X/- | -   |      |      |      |               | X/-/-       | X/-/-     | 1    |       | -      |           |       |     |
| 2/4                    | 2S       | 2       |     | 155    | X   | OA  |     |      |    |   |     |     |      |      |      |               |             | 1123      | UNI  | UU    | THE.   | T-Uzil,   | 110.9 | 110 |
|                        | oc       | 2       |     | 156    | X   | 0   |     | 0    |    |   |     |     |      |      |      |               |             |           |      |       |        |           |       |     |

Explanatory notes [Output] 2S:Totem pole Output 3S:3-State Output OC:Open-Collector Output [ETC] AD:Adress Latch BD:BCD TO DECIMAL Status O:Product available in technology indicated \*:New product planned in technology indicated X:Obscontinued B:Not recommended for new designs HC:SN74HCxx / CD74HCxx HCT:SN74HCxx / CD74HCTxx BCT:SN74HCTx / SN64BCTxx AC:74AC1txx (Product available in reduced-noise advanced CMOS:11000 Series) / SN74ACxx / CD74ACxx

ACT: 74ACT11xxx (Product available in reduced-noise advanced CMOS: 11000 Series) / SN74ACTxx / CD74ACTxx

CODE CONVERTER. PRIORITY ENCODER/REGISTER

|                                      |        |    |    |     |      |    |   |     |     |     |     | Te  | chnolo | gy  |     |      |       |      |     |      |     |
|--------------------------------------|--------|----|----|-----|------|----|---|-----|-----|-----|-----|-----|--------|-----|-----|------|-------|------|-----|------|-----|
|                                      |        |    |    | Big | olar |    |   | CN  | IOS |     | BIC | MOS | 1-0    |     |     | Adva | anced | CMOS | 5   |      |     |
| Description                          | Device | TI | 53 | co  | ALS  | AS | ш | HC  | HCT | BCT | ABT | LVI | ALVT   | AC  | ACT | AHC  | AHC   | r    | LVC | ALVC | AVC |
| CODE CONVERTER                       | 184    |    |    |     |      |    |   |     | -   |     |     |     |        |     |     |      |       |      |     |      |     |
| CODE CONVERTER                       | 185    | X  |    |     |      |    | - |     | 10  |     | 1   |     |        |     |     |      | - 10  |      |     |      |     |
| 10-4 PRIORITY ENCODER                | 147    | X  | X  | 1   |      |    |   | -/0 | -/0 |     |     |     |        |     |     |      |       | - 0  |     |      |     |
| 8-3 PRIORITY ENCODER                 | 148    | X  | 0  |     |      |    | X | 0/- |     |     |     | 100 |        |     |     |      |       |      |     |      |     |
| 8-3 PRIORITY ENCODER                 | 348    |    | 0  |     |      |    |   | 1   |     |     |     | X   |        | 100 |     |      | 100   |      |     | 3.50 |     |
| 4BIT CASCADABLE PRIORITY<br>REGISTER | 278    | ×  |    |     |      |    |   |     |     |     |     |     |        | 1   |     |      | I III |      |     |      |     |

○ : Product available in technology indicated \*: New product planned in technology indicated X : Discontinued 
■ : Not recommended for new designs 
HC : SN74HCX / DD74HCX.

HCT: SN74HCxx / CD74HCTxx BCT: SN74BCTxx / SN64BCTxx

AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx

### Display Decoder/Driver

| ,          |                        | ygral gyvta | 11  |     |      |      |               |     |       |       |       |         |      | chnolo    | ogy        |           |          |       |        |          |         |     |
|------------|------------------------|-------------|-----|-----|------|------|---------------|-----|-------|-------|-------|---------|------|-----------|------------|-----------|----------|-------|--------|----------|---------|-----|
| 86/96/ 083 | NAME OF TAXABLE PARTY. | 10000       |     | 111 | Bip  | olar |               |     | CI    | MOS   | PH.   | BiC     | MOS  |           |            |           | Adva     | nced  | CMOS   | 5        |         |     |
| Function   | V <sub>OH</sub> (V)    | Device      | TTL | SI  | o    | ALS  | AS            | ш   | HC    | HCT   | BCT   | ABT     | F    | ALVT      | AC         | ACT       | AHC      | AHCT  | LV     | LVC      | ALVC    | AND |
| D          | 30                     | 45          | 0   |     | т    |      | $\overline{}$ |     |       |       |       |         |      |           |            |           |          |       |        |          |         |     |
| D          | 60                     | 141         | X   |     |      |      |               | -   |       | -     |       |         |      |           | 10.00      | )         |          |       | -      |          |         |     |
| D          | 15                     | 145         | 0   | 0   |      |      |               | -0  |       | - 60  |       |         | 100  |           |            |           | -        |       | 100    |          |         |     |
| D          | 7                      | 445         |     | X   |      |      |               |     |       |       |       |         | 1100 |           | 106        |           |          |       |        |          | - 3     |     |
| 7          | 30                     | 46          | X   |     |      |      |               | 10  |       |       |       | 00      | 100  |           |            |           |          |       |        |          |         |     |
| 7          | 15                     | 47          | OA  | 0   |      |      |               |     |       |       |       |         | -    |           |            |           |          |       |        |          | 1.5     |     |
| 7          | 5.5                    | 48          | X   | X   |      |      |               |     |       | 10    |       |         | -    |           |            |           |          |       |        |          |         |     |
| 7          | 5.5                    | 49          |     | X   |      |      |               |     |       |       |       | -       | 1    |           |            |           |          |       |        |          |         |     |
| 7          | 30                     | 246         | X   |     |      |      |               |     | -     |       |       |         |      |           |            |           |          |       |        |          |         |     |
| 7          | 15                     | 247         | X   | 0   |      |      |               |     |       |       |       | 100     | · ·  |           |            | and CE 12 | - Change |       | 100    | a Torres |         |     |
| 7          | 7                      | 347         |     | 1   | 1111 |      | 1             | -   |       | 1     |       |         |      |           |            |           | 100      |       |        |          | 1111111 |     |
| 7          | 7                      | 447         |     |     |      |      |               |     |       | 100-7 | 1995  | 11/1/17 | 100  | Critical  | SUCT ANTES | andher    | 100      | Ive   |        |          |         |     |
| 7          | 5.5                    | 248         |     | X   | 100  |      |               | 100 | 10000 | phypo | 11 90 | 11      |      | No.       | ast Allem  | Carabat n | Printer. | 978   | 20,000 | 100      |         |     |
| 7          | 5.5                    | 249         |     | X   |      |      | I             |     |       | - 1   | 1000  | 100     | 100  | SOUTH THE | monone     | 1001-1    |          | 10111 | 000    | 9        |         |     |
| В          | 7                      | 142         |     |     |      |      |               |     |       |       |       |         |      |           |            | 0.0141    | 5 30.    | 82.0  | (23)   | 11.0     |         |     |
| В          | 7                      | 143         | ×   |     |      | T    | T             | T   |       |       |       |         |      |           |            | OTOHOT    | COV      | 1000  | 1717   | 100      |         |     |
| В          | 7                      | 144         | X   |     |      |      |               | T   |       |       |       |         | 1    |           | 100        | rossai    | 11 1 2   | 100   | 17115  | 173      |         |     |

Explanatory notes [Function] D : BCD TO DECIMAL. 7 : BCD TO 7-SEGMENT. B : COUNTER/LATCH/DECODER/DRIVER  $[V_{\rm od}]$  Off-Stage Output Voltage(V)

\(\mathbb{V}\_{out}\) OT-Stage Output Voltage(V)
\(\mathbb{V}\) Product valiable in technology indicated
\(\times\): Discontinued
\(\mathbb{W}\): Not recommended for new designs
\(\mathbb{H}\): SNT4HCxx / CD74HCxx
\(\mathbb{H}\): T: SNT4HCxx / CD74HCTxx

BCT: SN74BCTxx / SN64BCTxx

AC : 74ACT11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx ACT : 74ACT11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACTxx / CD74ACTxx

### COMPARATOR

|               |       |     |     |     |                                                                                                                                                                                                                                                                                          |        | 2340   |     | 24(2) | (III) | UI II | 2077 | 10.101 | Section Co. | SULMI INC. | 4     | 177  | Te  | chnole | ogy                  | ORIGINAL IN  | til die | Days 1 | VIII. |        | 1911    |        |
|---------------|-------|-----|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-----|-------|-------|-------|------|--------|-------------|------------|-------|------|-----|--------|----------------------|--------------|---------|--------|-------|--------|---------|--------|
|               |       |     |     |     |                                                                                                                                                                                                                                                                                          |        |        |     |       | Bip   | olar  |      |        | CN          | 108        | W. Fr | BiC  | MOS | ontan  | Milling              | 2013 - 70    | Adva    | anced  | CMOS  | 3      |         |        |
| No. of<br>Bit | Input | P=Q | P=Q | P>Q | P <q< th=""><th>Output</th><th>Device</th><th>TTL</th><th>23</th><th>o</th><th>ALS</th><th>AS</th><th>ш</th><th>HC</th><th>HCT</th><th>BCT</th><th>ABT</th><th>LVT</th><th>ALVT</th><th>AC</th><th>ACT</th><th>AHC</th><th>AHC</th><th>LV</th><th>LVC</th><th>ALVC</th><th>AVC</th></q<> | Output | Device | TTL | 23    | o     | ALS   | AS   | ш      | HC          | HCT        | BCT   | ABT  | LVT | ALVT   | AC                   | ACT          | AHC     | AHC    | LV    | LVC    | ALVC    | AVC    |
| 4             | S     | Υ   | N   | Y   | Y                                                                                                                                                                                                                                                                                        | 28     | 85     | X   | 0     | 0     |       | X    |        | XA/O        | -/0        |       |      |     |        |                      |              |         |        |       | 2-0    |         |        |
| 6             | S     | N   | Y   | N   | N                                                                                                                                                                                                                                                                                        | 28     | 29806  | -   | 1     |       | X     | 30   | 111    |             | 2 000      | 1000  |      | 1   | 10000  | 0.01                 | Section 1977 | 1000    | 1000   |       | 2-11   |         |        |
| 8             | 20    | Y   | N   | N   | N                                                                                                                                                                                                                                                                                        | OC     | 518    | 777 | 110   | 999   | 0     | 25/1 | X      | 129712      | 12121720   | 10.00 | 141  |     | 1023.0 | J. DOLLARS           | er housely   | 19.0    | 9073   | 21910 | 1 1 44 |         |        |
| 8             | 20    | N   | Y   | N   | N                                                                                                                                                                                                                                                                                        | 2S     | 520    |     |       |       | 10    |      | ×      |             |            |       |      |     |        | X/-/-                | X/-/-        |         |        |       | -      |         |        |
| 8             | 20    | N   | Y   | N   | N                                                                                                                                                                                                                                                                                        | oc     | 522    |     |       |       | X     |      |        |             |            |       |      |     |        |                      |              |         |        |       |        |         |        |
| 8             | 20    | N   | Y   | Y   | N                                                                                                                                                                                                                                                                                        | 2S     | 682    |     | 0     |       |       |      |        | 0/-         |            |       |      |     |        |                      |              |         |        |       |        |         |        |
| 8             | 20    | N   | Y   | Y   | N                                                                                                                                                                                                                                                                                        | oc     | 683    |     | X     |       |       |      |        |             |            |       |      |     |        |                      |              |         |        |       |        |         |        |
| 8             | S     | Y   | N   | N   | N                                                                                                                                                                                                                                                                                        | OC     | 519    |     |       |       | X     |      | X      |             |            |       |      |     | - 20   | OUN CLOS             | at 1 litera  | 0.0     | 2000   | 100   | non.   | action. | 101    |
| 8             | S     | N   | Y   | N   | N                                                                                                                                                                                                                                                                                        | 28     | 521    |     |       |       | 0     |      | 0      |             |            |       |      |     | 10.00  | X/-/-                | X/-/-        |         |        |       |        |         |        |
| 8             | S     | N   | Y   | Y   | N                                                                                                                                                                                                                                                                                        | 28     | 684    |     | 0     |       |       |      |        | 0/-         |            |       |      |     | -      |                      |              |         |        |       | -      | 1       |        |
| 8             | S     | N   | Y   | Y   | N                                                                                                                                                                                                                                                                                        | oc     | 685    |     | X     |       |       | 700  |        |             | 100        | Thu.  |      |     |        |                      | malacia      |         |        | 44.52 | 5      | 100     |        |
| 8             | S     | N   | Y   | Y   | N                                                                                                                                                                                                                                                                                        | 2S     | 686    |     | X     |       | 1     |      | .0     | 100         | 10 2       |       | 00.1 |     | April  | T. L. J. S. S. S. S. | 70400        | 2.79    | 100    | ruo.  | 140    | 60.17   | ALC: N |
| 8             | S     | N   | Y   | Y   | N                                                                                                                                                                                                                                                                                        | oc     | 687    |     | X     |       |       |      |        |             | 113        |       |      |     |        |                      |              |         |        |       |        |         |        |
| 8             | S     | N   | Y   | N   | N                                                                                                                                                                                                                                                                                        | 28     | 688    |     | 0     |       | 0     |      |        | 0/0         | -10        |       |      | 100 |        |                      |              |         | Y      | TY.   |        |         |        |
| 8             | S     | N   | Y   | N   | N                                                                                                                                                                                                                                                                                        | oc     | 689    |     | X     |       | X     |      |        |             |            |       | DI   | 150 |        | N. Y.                | . Y.         |         | 1      | Y     |        |         | 1      |
| 8             | S     | Y   | N   | Y   | Y                                                                                                                                                                                                                                                                                        | 2S     | 860    |     |       |       |       |      |        |             |            |       |      | 100 |        | ×/-/-                | X/-/-        |         |        |       | 1      |         |        |
| 8             | S     | N   | N   | Y   | Y                                                                                                                                                                                                                                                                                        | 2S     | 865    |     |       |       | - 1   |      |        |             |            |       |      |     |        | X/-/-                | ×/-/-        |         |        |       |        |         |        |
| 8             | LP    | N   | N   | Y   | Y                                                                                                                                                                                                                                                                                        | 25     | 885    |     |       |       |       | 0    |        |             |            |       | K T  | 155 |        | X/-/-                | X/-/-        |         |        |       |        | 50.70   |        |
| 8             | LPQ   | Y   | N   | Y   | Y                                                                                                                                                                                                                                                                                        | oc     | 866    |     |       |       |       | XA   |        |             |            |       |      |     |        |                      | Y            |         |        |       |        |         |        |
| 9             | -     | N   | Y   | N   | N                                                                                                                                                                                                                                                                                        | 2S     | 29809  |     |       |       | X     |      |        |             |            |       | AL.  | 100 |        |                      |              |         |        | - Y   |        |         | 100    |

BCT : SN74BCTxx / SN64BCTxx

AC: 74AC11xxx (Product available in reduced-noise advanced CMOS: 11000 Series) / SN74ACxx / CD74ACxx ACT: 74AC11xxx (Product available in reduced-noise advanced CMOS: 11000 Series) / SN74ACxx / CD74ACTxx ACT: 74AC11xxx (Product available in reduced-noise advanced CMOS: 11000 Series) / SN74ACxx / CD74ACTxx

### ADRESS COMPARATOR . FUSE-PROGRAMMABLE IDENTITY COMPARATOR

| Tuesternia T |                                   |  | Technology |  |  |  |  |  |  |  |  |
|--------------|-----------------------------------|--|------------|--|--|--|--|--|--|--|--|
|              | Bipolar CMOS BICMOS Advanced CMOS |  |            |  |  |  |  |  |  |  |  |
|              | TITAL                             |  |            |  |  |  |  |  |  |  |  |

Explanatory notes [Function] A: Adress Comparator F: Fuse-Programmable Identity Comparators

[ETC] OE : Output-With Enable L : Output-With Latch Status : Product available in technology indicated \*: New product planned in technology indicated

X: Discontinued : Not recommended for new designs

HC : SN74HCxx / CD74HCxx

HCT: SN74HCxx / CD74HCTxx

BCT: SN74BCTxx / SN64BCTxx

AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx

ACT: 74ACT11xxx (Product available in reduced-noise advanced CMOS: 11000 Series) / SN74ACTxx / CD74ACTxx

### PARITY GENERATOR / CHECKER

|            |        |   | 81.0 | ool |      | 101 | 10 E | 1000100 | 100 00 | 1011-D | doub | Tech | nolog | У     | auti (Prae | ATT I | CIAN   |     | DAL |      |     |
|------------|--------|---|------|-----|------|-----|------|---------|--------|--------|------|------|-------|-------|------------|-------|--------|-----|-----|------|-----|
|            |        |   |      | Bip | olar | W   |      | CN      | ios    |        | BIC  | MOS  |       |       | A          | dvano | ced CI | MOS |     |      |     |
| No. of Bit | Device | E | ES.  | o   | ALS  | AS  | u.   | £       | НСТ    | BCT    | ABT  | LVT  | ALVT  | AC    | ACT        | AHC   | AHC    | 7   | LVC | ALVC | AVC |
| 8          | 180    |   |      |     |      |     |      | ×       |        |        |      |      |       |       |            |       |        |     |     |      |     |
| 9          | 280    |   | 0    | 0   | 10   | 0   | OB   | X/O     | -/0    |        |      |      |       | X/-/O | X/-/O      |       |        |     |     |      |     |
| 9          | 286    |   |      |     |      | 0   | X    |         |        |        |      |      |       | X/-/- | 0/-/-      |       |        |     |     |      |     |

HC: SN74HCxx / CD74HCxx

HCT : SN74HCxx / CD74HCTxx

BCT : SN74BCTxx / SN64BCTxx

AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx

ACT: 74ACT11xxx (Product available in reduced-noise advanced CMOS: 11000 Series) / SN74ACTxx / CD74ACTxx

### VOLTAGE CONTROLLED OSCILLATOR(VCO)

|         |               |       |        |        |      |     |        |    |    |     |      |    |   |      |        | 1     |     | Tech | nology | 1      |        |       |        |      |      |      | 100    |
|---------|---------------|-------|--------|--------|------|-----|--------|----|----|-----|------|----|---|------|--------|-------|-----|------|--------|--------|--------|-------|--------|------|------|------|--------|
| 7,000   |               |       |        |        |      |     |        |    |    | Bip | olar |    |   | CN   | ios    |       | BiC | MOS  |        |        |        | Advan | ced CI | MOS  |      |      | 1801   |
| Curcuit | Fmax<br>(MHz) | Z OUT | ENABLE | RANGE  | Rext | PLL | Device | I  | 23 | on  | ALS  | AS | ш | HC   | НСТ    | BCT   | ABT | LVI  | ALVT   | AC     | ACT    | AHC   | AHC    | r.   | LVC  | ALVC | AVC    |
|         | 20            | Y     | Y      | Y      |      |     | 624    |    | 0  |     |      |    | 7 | 1 14 | 130    |       |     |      |        | 11.00  |        | 10    |        | 1    |      |      |        |
| 1       | 20            | Y     | Y      | Y      | Y    |     | 628    |    | 0  |     |      |    |   |      | 111    |       |     |      | 2      |        | THE    |       |        | 15   |      |      |        |
|         | 24            |       |        | -1-176 | Υ    | Y   | 7046   |    |    |     |      |    |   | -10  | -10    |       |     | 10   |        |        |        |       | 15.    | 7    | L.E  |      |        |
|         | 20            |       |        | 1      | 1 3  |     | 627    |    | X  | _   |      |    |   |      |        |       |     |      |        | 1 88   | 1      | 1     |        |      |      | -    | T      |
|         | 20            |       | Y      | Y      |      |     | 629    |    | 0  |     |      |    |   |      |        |       |     |      |        | AU.    | 11 11  |       |        | 7    | 5116 |      | 1      |
|         | 20            | Y     |        |        |      |     | 625    |    | X  |     |      |    |   |      |        |       |     | 18   | (BES.) | -85.   | TILL   |       |        | 111  |      |      |        |
| 2       | 20            | Y     | Y      |        |      |     | 626    |    | X  |     |      |    |   |      |        |       |     |      |        |        |        | 1     |        |      |      |      |        |
|         | 60            |       | Y      | Y      | dolo | 100 | 124    | 70 |    | 0   | no   |    | 9 | 210  | el sal | du    | 9.7 | 1-15 | 08     | Smbm   | 18.13  | lus   |        | 10/0 | 1011 |      | 1      |
|         | 24            |       |        |        | Y    | Y   | 4046   |    |    |     |      |    |   | -10  |        | 14.57 | 111 | V    | W.     | 0.50.0 | CO. 10 | 0.0   |        |      |      |      | $\Box$ |

- HCT : SN74HCxx / CD74HCTxx
- BCT: SN74BCTxx / SN64BCTxx
- AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx
- AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN/4ACxx / CD/4ACxx

  ACT : 74AC111xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN/4ACxx / CD/4AC1xx

### ACCUMULATORS, ARITHMETIC LOGIC UNIT(ALU), LOOK-AHEAD CARRY GENERATOR

|                                   |         |     |     |     |      |    |   |      |            |     | To  | chno | ology |             |         |      |       |       |         |       |      |
|-----------------------------------|---------|-----|-----|-----|------|----|---|------|------------|-----|-----|------|-------|-------------|---------|------|-------|-------|---------|-------|------|
| Advantable (2008                  | 2 NATHE |     | - 3 | Bip | olar |    |   | CN   | <b>AOS</b> |     | BIC | MOS  |       |             | Ad      | vanc | ed C  | MOS   |         | Lan B |      |
| Description                       | Device  | TTL | 23  | s)  | ALS  | AS | u | HC   | HCT        | BCT | ABT | LVI  | ALVT  | AC          | ACT     | AHC  | AHCT  | r     | LVC     | ALVC  | AVC  |
| 4BIT PARALLEL BINARY ACCUMULATORS | 281     |     |     | X   |      |    |   |      | IX         | 1   | (0) |      |       |             | J. SPIS | 100  | 100   | 1933  | 2046    | Y     |      |
| 4BIT PARALLEL BINARY ACCUMULATORS | 681     |     | X   |     |      |    |   |      | 1.35       |     | 10  |      |       |             | 27134   | DRI  | 100   | High  | Marile. | 178   | 940  |
| 4BIT ALU/FUNCTION GENERATORS      | 181     | X   | 0   | X   |      | OA |   |      | 1.8        |     |     |      |       | X/-/-       | X/-/-   | 2811 | 100   | 1463  | 1 111   | YEL   |      |
| 4BIT ALU/FUNCTION GENERATORS      | 381     |     | X   | ×   |      |    | × |      | 1 %        |     | 10  |      |       |             | PE      | 130  | 11119 | 307.3 | 627)    | No.   | 16.5 |
| 4BIT ALU/FUNCTION GENERATORS      | 881     |     |     |     |      | XA |   |      | 18         |     | 10  |      |       | X/-/-       | X/-/-   |      | 18    | 139   |         | SOF   |      |
| 4BIT ALU WITH RIPPLE CARRY        | 382     |     | X   |     |      |    | X |      | 1 %        | 1   | 0   |      |       |             |         |      | 1.5   | 1295  | ASA.    | Hon   | 9/1  |
| LOOK AHEAD CARRY GENERATORS       | 264     |     |     |     |      | X  |   |      | LX         |     |     |      |       | Contract of | 1100 A  | 753  | 10.8  | 137   | 684     | SPOR  | 100  |
| LOOK AHEAD CARRY GENERATORS       | 182     | X   |     | 0   |      | X  |   |      | 1.76       | . 1 |     | TY.  |       |             | HUTA    | HIL  | 17.8  | -117  | 1474    | 1924  | 140  |
| LOOK AHEAD CARRY GENERATORS       | 282     |     |     |     |      | X  |   | . 10 |            |     | 100 |      |       |             |         |      |       | 101/  | 9.33    | diffe | 23.0 |
| LOOK AHEAD CARRY GENERATORS       | 882     |     |     |     |      | XA |   |      |            |     | 75  |      |       | ×/-/-       | X/-/-   |      | 1933  | 0108  | O M     | DAKE  |      |
| QUAD SERIAL ADDER/SUBTRACTOR      | 385     |     | X   |     |      |    |   |      |            |     |     | 2    |       |             |         |      |       |       |         |       |      |

- : Product available in technology indicated \*: New product planned in technology indicated
- X : Discontinued : Not recommended for new designs HC : SN74HCxx / CD74HCxx
- HCT : SN74HCxx / CD74HCTxx

- BOT : SN/HACT.xx / SN6-BBCT.xx

  BOT : SN/HACT.xx / SN6-BBCT.xx

  AC : 74ACT1xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACTxx / CD74ACTxx

  ACT : 74ACT1xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACTxx / CD74ACTxx

|                            |        |     |    |     |      |    |    |     |     |     | Te   | chno | logy |       |       |      |      |      |     |      |      |
|----------------------------|--------|-----|----|-----|------|----|----|-----|-----|-----|------|------|------|-------|-------|------|------|------|-----|------|------|
|                            |        |     |    | Bip | olar |    | 6  | CI  | MOS |     | BICI | MOS  |      |       | Ad    | vanc | ed C | MOS  |     |      |      |
| Description                | Device | TTL | 23 | so  | ALS  | AS | u. | HC  | HCT | BCT | ABT  | LVI  | ALVT | AC    | ACT   | AHC  | AHCT | LV   | LVC | ALVC | AVC  |
| 4BIT BINARY FULL ADDER     | 83     | ×   | ×  |     |      |    |    |     |     |     |      |      |      | - 100 |       |      |      |      |     |      |      |
| 4BIT BINARY FULL ADDER     | 283    | X   | 0  | 0   |      |    | 0  | -/0 | -10 |     |      |      |      | -/-/0 | -/-/0 |      |      |      |     |      |      |
| DUAL CARRY SAVE FULL ADDER | 183    |     | X  |     |      |    |    |     |     |     |      |      |      | 100   |       |      |      |      |     |      |      |
| GATED FULL ADDER           | 80     | X   |    |     |      |    |    |     |     |     |      |      |      | -     |       |      |      | 14.5 |     |      | 1016 |
| 2BIT BINARY FULL ADDER     | 82     | X   |    |     | 100  |    |    |     |     |     | 1    |      |      |       |       |      |      |      |     |      |      |

### Status

- : Product available in technology indicated \*: New product planned in technology indicated X : Discontinued ■: Not recommended for new designs HC : SN74HCx / CD74HCx.

- HCT: SN74HCxx / CD74HCTxx BCT: SN74BCTxx / SN64BCTxx
- AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx
- ACT : 74ACT11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACTxx / CD74ACTxx

| Electron September 1            |        |         |    | Technology |      |    |      |    |        |     |     |               |      |        |          |      |      |     |       |      |     |
|---------------------------------|--------|---------|----|------------|------|----|------|----|--------|-----|-----|---------------|------|--------|----------|------|------|-----|-------|------|-----|
| Description                     | Device | Bipolar |    |            |      |    | CMOS |    | BICMOS |     |     | Advanced CMOS |      |        |          |      |      |     |       |      |     |
|                                 |        | TTL     | 23 | S          | ALS  | AS | ш    | HC | нст    | BCT | ABT | LVT           | ALVT | AC     | ACT      | AHC  | AHCT | 2   | LVC   | ALVC | AVC |
| 2-4 PARALLEL BINARY MULTIPLIERS | 261    |         | X  |            | Tr.  |    |      |    |        |     | 100 |               |      |        |          | een- |      | 100 |       |      |     |
| 4-4 PARALLEL BINARY MULTIPLIERS | 284    | X       |    |            | 77.7 |    |      |    |        |     | 100 |               |      |        |          |      |      |     |       |      |     |
| 4-4 PARALLEL BINARY MULTIPLIERS | 285    | X       |    |            |      |    |      |    |        | 19  | 100 |               |      | HUNTAN | PH11-191 | 2.5  | 177  | -   | 12.00 | 1.00 |     |
| 2'S COMPLEMENT MULTIPLIERS      | 384    |         | X  |            |      |    |      |    |        |     |     |               |      |        |          |      |      |     |       |      |     |

- O: Product available in technology indicated \*: New product planned in technology indicated
- X: Discontinued II: Not recommended for new designs HC: SN74HCxx / CD74HCxx
- HCT : SN74HCxx / CD74HCTxx
- BCT: SN74BCTxx / SN64BCTxx
- AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx ACT : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74AC7xx / CD74AC7xx

#### MEMORY

|                            | Technology |   |     |     |      |     |     |    |     |            |     |     |      |     |        |               |      |      |        |        |     |  |
|----------------------------|------------|---|-----|-----|------|-----|-----|----|-----|------------|-----|-----|------|-----|--------|---------------|------|------|--------|--------|-----|--|
| TOTAL STREET               | 11 (1440)  |   |     | Bip | olar |     |     | CI | NOS | IOS BICMOS |     |     |      |     |        | Advanced CMOS |      |      |        |        |     |  |
| Description                | Device     | E | 1.3 | so. | ALS  | AS  | ш   | HC | HCT | BCT        | ABT | LVI | ALVT | AC  | ACT    | AHC           | AHCT | 2    | LVC    | ALVC   | AVC |  |
| MEMORY REFRESH CONTROLLERS | 600        |   | ×   |     |      |     |     |    |     |            |     |     |      | 3.0 | TARRE  | 101           | 71   | MIS  | SILU   | 10.17  |     |  |
| MEMORY REFRESH CONTROLLERS | 601        |   | X   |     |      |     |     |    | 1.8 |            | 10  |     |      | 100 | TAJUNE |               | 711  | HID  | 191.13 | 700    |     |  |
| MEMORY REFRESH CONTROLLERS | 603        |   | X   |     |      |     | AL. |    |     | 100        | 63  |     |      |     | 1500   | 10            |      | 400  | 11111  | 12110  |     |  |
| MEMORY CYCLE CONTROLLER    | 608        |   | X   |     |      | 111 |     |    | 1 X |            |     |     |      |     | IDita  | 100           |      | 0.1  | 110    | 10.10  |     |  |
| MEMMORY MAPPERS            | 612        |   | X   |     |      |     | 20  |    |     |            |     |     |      |     | 81101  |               | 100  | -    | 110    | 11.11  |     |  |
| MEMMORY MAPPERS            | 613        |   | X   |     |      | 100 |     |    | 12  | 13         | 1   |     |      |     |        | 100           |      | 1471 | 117    | Total  |     |  |
| MEMMORY MAPPERS WITH LATCH | 610        |   | X   |     |      |     |     |    |     |            |     |     |      |     | TOROT. | A TOP         | 197  | 1714 | A DE   | PAR.   | 150 |  |
| MEMMORY MAPPERS WITH LATCH | 611        |   | ×   |     |      |     |     |    |     | 10 10      |     |     |      |     | DIDE   | 1             | 10   | 1194 | 0.00   | THAT ! | 110 |  |
| MULTI-MODE LATCH           | 412        |   |     | X   |      |     |     |    |     |            |     |     |      |     | RECT   | 4 190         | 10   | HULA | . 114  | 104    | 100 |  |
| 3-8 MEMORY DECIDER         | 2414       |   |     |     |      |     | 2   |    |     | 0/-        |     |     |      |     | SAUT   |               | 10.  | 100  | 1 34   | 115    | 100 |  |

○ : Product available in technology indicated \*: New product planned in technology indicated X : Discontinued ■ : Not recomended for new designs HC : SN74HCXX / CD74HCXX

HC: SNY4BCXX / CD74BCXX
HCT: SNY4BCXX / CD74BCXX
BCT: SNY4BCXX / CD74BCXX
BCT: SNY4BCXX / SN64BCTXX
AC: 74AC11xxx (Product available in reduced-noise advanced CMOS: 11000 Series) / SN74ACxx / CD74ACxx
ACT: 74AC11xxx (Product available in reduced-noise advanced CMOS: 11000 Series) / SN74ACxx / CD74ACTxx

#### CLOCK GENERATOR CIRCUIT

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |     |     |     |       |    |     |     |      |     | Т   | echno | ology |    |               |     |      |    |     |      |     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-----|-----|-------|----|-----|-----|------|-----|-----|-------|-------|----|---------------|-----|------|----|-----|------|-----|--|
| A STATE OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE SAM | The second |     |     | Bip | oolar |    | 200 | CN  | CMOS |     |     | MOS   |       |    | Advanced CMOS |     |      |    |     |      |     |  |
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Device     | TTL | 1.8 | ø   | ALS   | AS | ш   | £   | нст  | BCT | ABT | LY    | ALVT  | AC | ACT           | AHC | AHCT | LV | LVC | ALVC | AVC |  |
| QUAD COMPLEMENTARY-OUTPUT LOGIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 265        | X   |     |     |       |    |     |     |      |     |     |       |       |    |               |     |      |    | -   |      |     |  |
| DUAL PULSE SYNCHRONIZERS/DRIVERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120        | X   |     |     |       |    |     |     |      |     | 100 |       |       |    |               |     | 1    |    |     | 1    |     |  |
| CRYSTAL-CONTOROLLED OSCILLATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 320        |     | X   |     |       |    |     | -10 |      |     | 11  |       |       | -  | 24.00         | 100 |      |    |     | 100  | 100 |  |
| CRYSTAL-CONTOROLLED OSCILLATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 321        |     | X   |     |       |    |     |     |      |     |     |       |       |    |               |     |      |    |     |      |     |  |
| DIGITAL PHASE-LOCK LOOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 297        |     | 0   |     |       |    |     | -10 | -/0  |     |     |       |       |    | -/-/0         |     |      |    |     |      |     |  |

- ○: Product available in technology indicated

  X: Discontinued

  I: Not recommended for new designs

  KO: SNY4HCxx / DDY4HCXx

  HCT: SNY4HCxx / CD74HCTxx

  BCT: SNY4BCTxx / SN4BCTxx

AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx ACT : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74AC7xx

#### SWITCH, SHIFTER, ERROR DETECTION CORRECTION CIRCUIT, HARD DISK DRIVER

|                                                     |          | Technology Bipolar CMOS BiCMOS Advanced CMOS |     |     |      |     |       |         |       |         |      |     |       |               |            |      |      |        |      |      |      |
|-----------------------------------------------------|----------|----------------------------------------------|-----|-----|------|-----|-------|---------|-------|---------|------|-----|-------|---------------|------------|------|------|--------|------|------|------|
| Description                                         | Land and |                                              |     | Bip | olar |     |       | CN      | ios   |         | BIC  | MOS |       | Advanced CMOS |            |      |      |        |      |      |      |
|                                                     | Device   | I                                            | 53  | on  | ALS  | AS  | ш     | HC      | нст   | BCT     | ABT  | LVI | ALVT  | AC            | ACT        | AHC  | AHCT | r.     | LVC  | ALVC | AVC  |
| QUAD BILATERAL SWITCHES                             | 4016     |                                              |     |     |      |     |       | -/0     | 1 4 3 |         |      |     |       |               | Epm N      |      | 1    | OA     | 172  | 100  |      |
|                                                     | 4066     |                                              |     |     |      |     |       | 0/0     | -/0   |         | 10   |     |       |               | Brims      |      | 1 V  | 13,600 |      | 100  | 100  |
| ANALOG SWITCHES WITH LEVEL TRANSLATION              | 4316     |                                              |     |     |      |     |       | -/0     | -10   |         |      |     |       |               | THAT       |      |      | 100    | -    |      |      |
| 4BIT SHIFTERS                                       | 350      |                                              |     | X   |      |     | ×     |         | 123   |         |      |     |       |               |            | 10   | 0.00 | 1 130  |      | 100  | 15.0 |
| 8BIT PARALLEL ERROR DETECTION CORRECTION<br>CIRCUIT | 636      |                                              | X   |     |      |     |       |         |       |         |      |     |       |               |            |      |      |        |      |      |      |
|                                                     | 637      | 30                                           | X   |     |      | 100 | 11 11 | A PRINT | SMA   |         | 1281 | 100 | 1.100 | TOTAL POP     | olds!      | -    | 110  | 05     |      | 1.0  |      |
|                                                     | 616      |                                              |     |     | X    |     |       | 100     | e-h v | 90 Y    |      | Mor | (7)90 | in Intil      |            | 110  | 101  | nici.  | ×    |      |      |
| 16BIT PARALLEL ERROR DETECTION CORRECTION           | 617      |                                              |     |     |      |     |       |         |       |         |      |     |       | 2307          | 17 U.O. 1  | 100  | 10.7 | 984    | 224  |      |      |
| CIRCUIT                                             | 630      |                                              | ×   |     |      |     |       |         |       |         |      |     |       | De TOHI       | 100 11     | o OH | 1    | 117    | 311  |      |      |
|                                                     | 631      |                                              | ×   |     |      |     |       |         |       |         |      |     |       | er tomb       | 100 A 3150 | dos  | 17   | 2.3    | 201  |      |      |
|                                                     | 632      | 1 (4)                                        | 700 | 100 | X    | ×   | 100   | DOM: N  | who a | des per | 200  | -   |       | Minus 5       | mboods)    |      | -07  | NT 5   | TLA: |      |      |
| 32BIT PARALLEL ERROR DETECTION CORRECTION           | 633      |                                              |     |     | X    |     |       |         |       |         |      |     |       |               | -          |      | 100  |        | SA   |      |      |
| CIRCUIT                                             | 634      |                                              |     |     | X    | X   |       |         |       |         |      |     |       |               |            |      |      |        |      |      |      |
|                                                     | 635      |                                              |     |     | X    |     |       |         |       |         |      |     |       |               |            |      |      |        |      |      |      |
| HARD DISK DRIVER                                    | 1250     |                                              |     |     | X    |     |       |         |       |         |      |     |       |               |            |      |      |        |      |      |      |

Status

- O: Product available in technology indicated \*: New product planned in technology indicated
- C : Product available in technology indicated
   ∴ New product
   ∴ Discontinued
   ∴ Not recommended for new designs
   HCT : SN74HCxx / CD74HCxx

BCT : SN74BCTxx / SN64BCTxx
AC : 74AC11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACxx / CD74ACxx

ACT : 74ACT11xxx (Product available in reduced-noise advanced CMOS : 11000 Series) / SN74ACTxx / CD74ACTxx

# **PIN ASSIGNMENTS**

## PIN ASSIGNMENTS















































































# Pin Assignments 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 See page 556 16334 16-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS CLK A1 A2 GND A3 A4 $V_{CC}$ A5 A6 GND A7 A8 A9 A10 GND A11 A12 $V_{CC}$ A13 A14 GND A15 A16 $\overline{LE}$ 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 OE Y1 Y2 GND Y3 Y4 VCC Y5 Y6 GND Y7 Y8 Y9 Y10 GND Y11 Y12 VCC Y13 Y14 GND Y15 Y16 NC NC - No internal connection See page 558 16344 1-BIT TO 4-BIT ADDRESS DRIVER WITH 3-STATE OUTPUTS OE4 881 882 GND 883 884 VCC 8A 781 782 GND 783 784 7A 6A 681 682 GND 683 684 5A VCC 5B1 582 GND 5B3 5B4 OE3 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 See page 560 16373 16-BIT TRANSPARENT LATCHES WITH 3-STATE OUTPUTS ILE 1D1 1D2 GND 1D3 1D4 V<sub>CC</sub> 1D5 1D6 GND 1D7 1D8 2D1 2D2 GND 2D3 2D4 V<sub>CC</sub> 2D5 2D6 GND 2D7 2D8 2LE 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 See page 562















| 1 2<br>4Y1 3Y1         | 3 4 5<br>GND 2Y1 1Y |          | 8 9<br>GND A2      | 10 11<br>GND A3 | 12 13<br>V <sub>CC</sub> NC |           |      | 16 17<br>DE1 DE |                 |           | 0 21 | 22<br>V <sub>CC</sub> | 23<br>GND |           |     |           | 27 2<br>Voc 4 | 8 29<br>97 3Y |            | 31<br>297  | 32         |
|------------------------|---------------------|----------|--------------------|-----------------|-----------------------------|-----------|------|-----------------|-----------------|-----------|------|-----------------------|-----------|-----------|-----|-----------|---------------|---------------|------------|------------|------------|
| See page 608           |                     |          |                    |                 |                             |           |      |                 |                 |           |      |                       |           |           |     |           | NC            | – No i        | nterna     | l con      |            |
| 16833                  |                     |          |                    |                 |                             |           |      |                 |                 |           |      |                       |           |           |     |           |               |               |            | 25         | 88         |
| DUAL 8-BI              | TTO 9-BI            | r Parity | BUSTE              | RANSCI          | EIVERS                      | •         |      |                 |                 |           |      |                       |           |           |     |           |               |               |            |            |            |
| 10EA 10                | R 1PARITY GND       | 181 182  | VCC 18             | 13 184          | 1B5 GND                     | 186       | 187  | 188 2           | B1 282          | 283       | GND  | 284                   | 285       | 286       | VCC | 287       | 288           | GND :         | PARITY     | 2CLR       | 20EA       |
| 56 5                   | 5 54 53             | 52 51    | 50 4               | 9 48            | 47 46                       | 45        | 44   | 43 4            | 2 41            | 40        | 39   | 38                    | 37        | 36        | 35  | 34        | 33            | 32            | 31         | 30         | 29         |
|                        |                     |          |                    |                 |                             |           |      |                 |                 |           |      |                       |           |           |     |           |               |               |            |            |            |
|                        |                     |          |                    |                 |                             |           |      |                 |                 |           |      |                       |           |           |     |           |               |               |            |            |            |
|                        |                     | -        |                    |                 | - 14 - 1                    |           |      | . Hed           |                 | <b>—</b>  |      | -                     | 7         | 4         | No  | 7         |               | -             | 7          | rF         | - Total    |
| 1 0EB 10               | LK 1ERR GND         |          |                    |                 | 10 11<br>1A5 GND            | 12<br>1A6 |      |                 | 15 16<br>A1 2A2 | 17<br>2A3 | GND  | 19<br>2A4             | 20<br>2A5 | 21<br>2A6 | VCC | 23<br>2A7 | 24<br>2A8     | GND           | 26<br>2ERR | 27<br>2CLK | 28<br>20E8 |
| See page 610           |                     |          |                    |                 |                             |           |      |                 |                 |           |      |                       |           |           |     |           |               |               |            | 08 0       | THE R      |
| 16834                  |                     |          |                    |                 |                             |           |      |                 |                 |           |      |                       |           |           |     |           |               |               |            |            |            |
| 16-BIT UN<br>WITH 3-ST |                     |          | IVER               |                 |                             |           |      |                 |                 |           |      |                       |           |           |     |           |               |               |            |            |            |
| GND NO                 |                     |          | V <sub>CC</sub> A4 | 110             | A6 GND                      | 100       | 1116 |                 | 10 A11          | A12       | GND  |                       | -         | A15       |     |           | A17           |               | _          | CLK        | _          |
| 56_55                  | 54_53               | 5251     | 50 49              | 48_4            | 17 46                       | 45_       | 44   | 43 4            | 2 41            | 40        | 39   | 38                    | 37        | 36        | 35  | 34        | 33            | 32            | 31         | 30         | 29         |
|                        |                     |          |                    |                 |                             |           |      |                 |                 |           |      |                       |           |           |     |           |               |               |            |            |            |
|                        |                     |          |                    |                 |                             |           |      |                 |                 |           |      |                       |           |           |     |           |               |               |            |            |            |
| 1 2                    | 3 4                 | 5 6      | 7 7 8              | 9 1             | 0 11                        | 12        | 13   | 14 1            | 5 16            | 17        | 18   | 19                    | 20        | 21        | 22  | 23        | 24            | 25            | 26         | 27         | 28         |
| NC NO                  |                     | Y2 Y3    | V <sub>CC</sub> Y4 |                 | Y6 GND                      | Y7        | Y8   |                 | 10 Y11          | Y12       | GND  | Y13                   | Y14       | Y15       | Voc | Y16       | Y17           | GND           | Y18        | ŌĒ         | LE         |
| See page 612           |                     |          |                    |                 |                             |           |      |                 |                 |           |      |                       |           |           |     |           | NC            | – No          | interna    | l con      | necti      |
| 16835                  |                     |          |                    |                 |                             |           |      |                 |                 |           |      |                       |           |           |     |           |               |               |            | 18         |            |
| 3.3-V ABT              |                     |          | L BUS I            | DRIVER          |                             |           |      |                 |                 |           |      |                       |           |           |     |           |               |               |            |            |            |
| WITH 3-ST              |                     | A2 A3    | V <sub>CC</sub> A  | 4 A5            | A6 GND                      | A7        |      |                 | 10 A11          |           | GND  | A13                   | A14       | A15       |     | A16       | A17           | -             |            | CLK        |            |
| GND N                  | C A1 GNE            |          |                    |                 |                             |           |      | 43              | 12 41           | 40        | 39   | 38                    | 37        | 36        | 35  | 34        | 33            | 32            | 31         | 30         | 29         |
|                        |                     |          | 50_4               | 9 48            | 47 46                       | 45        | 44   | 43              | 41              | 140       | 100  | 177                   |           |           | 100 | 0.4       | 100           | OL            | 10.1       | 00         | 23         |















# 

GKE PACKAGE

ABCDEFGHJKLMNPRT

| 6 | 1D2 | 1D4 | 1D6             | 1D8 | 2D2 | 2D4             | 2D6 | 2D7 | 3D2 | 3D4 | 3D6             | 3D8 | 4D2 | 4D4             | 4D6 | 4D7 |
|---|-----|-----|-----------------|-----|-----|-----------------|-----|-----|-----|-----|-----------------|-----|-----|-----------------|-----|-----|
| 5 | 1D1 | 1D3 | 1D5             | 1D7 | 2D1 | 2D3             | 2D5 | 2D8 | 3D1 | 3D3 | 3D5             | 3D7 | 4D1 | 4D3             | 4D5 | 4D8 |
| 4 | 1LE | GND | V <sub>cc</sub> | GND | GND | V <sub>cc</sub> | GND | 2LE | 3LE | GND | V <sub>cc</sub> | GND | GND | V <sub>cc</sub> | GND | 4LE |
| 3 | 10E | GND | V <sub>cc</sub> | GND | GND | V <sub>cc</sub> | GND | 2OE | 3OE | GND | V <sub>cc</sub> | GND | GND | V <sub>CC</sub> | GND | 40E |
| 2 | 1Q1 | 1Q3 | 1Q5             | 1Q7 | 2Q1 | 2Q3             | 2Q5 | 2Q8 | 3Q1 | 3Q3 | 3Q5             | 3Q7 | 4Q1 | 4Q3             | 4Q5 | 4Q8 |
| 1 | 1Q2 | 1Q4 | 1Q6             | 1Q8 | 2Q2 | 2Q4             | 2Q6 | 2Q7 | 3Q2 | 3Q4 | 3Q6             | 3Q8 | 4Q2 | 4Q4             | 4Q6 | 4Q7 |
|   | Α   | В   | С               | D   | E   | F               | G   | Н   | J   | K   | L               | M   | N   | P               | R   | Т   |

See page 650

#### 32374

32-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS

> GKE PACKAGE (TOP VIEW)

(TOP VIEW)



terminal assignments

|   | 1   | 2   | 3               | 4               | 5   | 6   |
|---|-----|-----|-----------------|-----------------|-----|-----|
| Α | 1Q2 | 1Q1 | 1OE             | 1CLK            | 1D1 | 1D2 |
| В | 1Q4 | 1Q3 | GND             | GND             | 1D3 | 1D4 |
| С | 1Q6 | 1Q5 | V <sub>cc</sub> | V <sub>cc</sub> | 1D5 | 1D6 |
| D | 1Q8 | 1Q7 | GND             | GND             | 1D7 | 1D8 |
| Е | 2Q2 | 2Q1 | GND             | GND             | 2D1 | 2D2 |
| F | 2Q4 | 2Q3 | V <sub>CC</sub> | V <sub>CC</sub> | 2D3 | 2D4 |
| G | 2Q6 | 2Q5 | GND             | GND             | 2D5 | 2D6 |
| Н | 2Q8 | 2Q7 | 2OE             | 2CLK            | 2D7 | 2D8 |
| J | 3Q2 | 3Q1 | 3OE             | 3CLK            | 3D1 | 3D2 |
| K | 3Q4 | 3Q3 | GND             | GND             | 3D3 | 3D4 |
| L | 3Q6 | 3Q5 | V <sub>CC</sub> | V <sub>CC</sub> | 3D5 | 3D6 |
| М | 3Q8 | 3Q7 | GND             | GND             | 3D7 | 3D8 |
| N | 4Q2 | 4Q1 | GND             | GND             | 4D1 | 4D2 |
| P | 4Q4 | 4Q3 | V <sub>CC</sub> | V <sub>CC</sub> | 4D3 | 4D4 |
| R | 4Q6 | 4Q5 | GND             | GND             | 4D5 | 4D6 |
| Т | 4Q7 | 4Q8 | 4OE             | 4CLK            | 4D8 | 4D7 |

See page 652











| <b>62525</b><br>-BIT REGISTEREI<br>ITH 3-STATE OUT                                                                                    |                                              | TRA                 | NSC                | EIV             | ER       |          |                      |          |          |           |           |           |           |           |                 |                        |                        |           |                        |                         |                   |                        |            |            |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------|--------------------|-----------------|----------|----------|----------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------------|------------------------|------------------------|-----------|------------------------|-------------------------|-------------------|------------------------|------------|------------|
| SEL CLKAB B1 GNC 56 55 54 53                                                                                                          |                                              |                     | 0.0                | 84<br><b>49</b> | 85<br>48 | 86<br>47 | GND<br>46            | 87<br>45 | 88       | 89<br>43  | 810       | 811       | B12       | GND 39    | 813             | 814<br>37              | B15                    | Vcc 35    | B16                    | B17                     |                   | B18                    | 30         |            |
| 1 2 3 4<br>CLKENAB DEAB A1 GNO                                                                                                        |                                              |                     |                    |                 | 9<br>A5  | 10<br>A6 | 11<br>GND            | 12<br>A7 | 13<br>A8 |           | 15<br>A10 | 16<br>A11 | 17<br>A12 |           | 19<br>A13       |                        |                        | 22<br>Vcc |                        |                         | 25<br>GND         | A18                    | OEBA       |            |
| 62541<br>8-V ABT 16-BIT BITH 3-STATE OUT                                                                                              |                                              | RS/DI               | RIVE               | RS              |          |          |                      | 8        | RSN      | (E)       | 215A)     | AT O      | SAS       | nau       | )BR             | oax                    | eue                    | ntau      |                        | okas<br>num             |                   | NIT.                   |            | 52         |
|                                                                                                                                       |                                              | 1A1<br>47           |                    |                 |          |          |                      |          |          |           |           |           |           |           |                 |                        |                        |           |                        |                         |                   |                        |            |            |
|                                                                                                                                       | 1<br>10E1                                    | 2                   | 3                  | 4 GND           | 5<br>1Y3 | 6        | 7<br>V <sub>00</sub> | 8        | 9 146    | 10<br>GND | 11<br>1Y7 | 12<br>1Y8 | 13<br>2Y1 | 14<br>2Y2 | 15<br>GND       | 16<br>2Y3              | 17<br>2Y4              | 18<br>Vcc | 19<br>2Y5              | 20<br>2Y6               | 21<br>GND         | 22                     | 23         | 24         |
|                                                                                                                                       |                                              |                     | _                  |                 | _        |          |                      |          |          |           |           |           |           |           |                 |                        |                        |           |                        | _                       | _                 | -                      | 019        |            |
| 62601<br>BIT UNIVERSAL                                                                                                                | PUTS                                         | B3                  | VCC                | 84              | B5       |          |                      |          |          |           |           |           |           |           |                 | B14                    | B15                    |           | 816                    | B17                     | GND               | 113 V<br>314           | CLKBA      | CLKEN      |
| 62601 BIT UNIVERSAL TH 3-STATE OUT  GENNA GLAS 81 GN  56 55 54 53                                                                     | PUTS  82  3 52                               | B3 <b>51</b>        | V <sub>CC</sub> 50 | 84<br>49        | 85<br>48 | 47       | 46                   |          | 44       | 43        | 42        | 41        | 40        | 39        | 38              | B14                    | B15<br>36              | Vcc 35    | 816                    | B17                     | GND 32            | 818 31                 | CLXBA 30   | 29<br>28   |
| 56 55 54 53                                                                                                                           | PUTS  B2  B2  B 52  D A2                     | 83<br>51<br>6<br>A3 | V <sub>CC</sub> 50 | 84<br>49        | 85<br>48 | 10       | 46                   | 12       | 13       | 43        | 42        | 41        | 40        | 39        | 38<br>19<br>A13 | 814<br>37<br>20<br>A14 | 815<br>36<br>21<br>A15 | Vcc 35    | 816<br>34<br>34<br>A16 | B17 33 33 24 A17        | GND 32            | 818<br>31<br>26<br>A18 | CLKBA 30   | 29 28 LEBA |
| 62601 BIT UNIVERSAL TH 3-STATE OUT  CUEBUS CLASS   15 CM  56 55 54 52  1 2 3 4  6628 LEAB A1 GM  P page 688  62721  3-V 20-BIT FLIP-F | PUTS  B2  B2  B2  B2  B2  B2  B3  B2  B3  B3 | 83 51 51 6 A3       | Vcc 50 Vcc Vcc     | 84<br>49        | 85<br>48 | 10       | 46                   | 12       | 13       | 43        | 42        | 41        | 40        | 39        | 38<br>19<br>A13 | 814<br>37<br>20<br>A14 | 36<br>36<br>21<br>A15  | Vcc 35]   | 816<br>34<br>34        | 817<br>333<br>24<br>A17 | GND 32 25 GND GND | 26<br>A18              | 27<br>068A | 29 28 LEBA |



| 162830 1-BIT to 2-BIT ADDRESS DRIVER WITH 3-STATE OUTPUTS                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 173 752 000 714 754 56 75 754 753 752 771 750 690 680 677 665 654 653 652 61 650 559 555 557 5                                                                                                    | 111 V <sub>2</sub> 1102 770 000 1113 7113 000 1141 714 V <sub>2</sub> 1115 7713 000 1181 7144 V <sub>3</sub> 1115 7713 000 1181 7181 565 565 54 533 52 51 50 449 448 477 465 445 44 43 42 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ्त्रव १७ ७० ७० १० १० ६८ म म १०० म म १०० म म १०० म विहे हिंद सब ४०० मा                                                                                                                             | 25   28   27   28   29   30   31   32   33   34   35   38   37   38   39   40  <br>30   50   A3   A4   50   A1   54   500   A0   A8   50   211   118   500   217   117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 162831 1-BIT TO 4-BIT ADDRESS REGISTER/DRIVER WITH 3-STATE OUTPUTS                                                                                                                                | 30-200 HI<br>162623<br>REST BUS-INTERFACE FUR-FLORE<br>WITH S-STATE OUTPUTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 172 FRZ 006 372 FRZ No. 110 771 000 372 FRZ No. 110 771 000 372 FRZ NO 100 174 274 No. 274 FRZ 000 171 FRZ NO 175 000 174 000 177 76 75 74 773 772 771 770 60 68 67 66 65 64 63 62 61 60 59 55 57 | THE VG. THE CTS DOC 117 277 DOC 317 GET VG. THE THE DOC 318 GET SEC. SEC. SEC. SEC. SEC. SEC. SEC. SEC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 47 27 00 27 17 18 5 14 00 5 5 17 18 5 14 00 5 5 17 18 5 14 00 5 5 18 18 18 18 18 18 18 18 18 18 18 18 18                           | M. $v_{\rm SC}$ As no GaO as no GNO as no $v_{\rm SC}$ are are one one of the NC – No internal connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 162832 1-BIT TO 4-BIT ADDRESS REGISTER/DRIVER WITH 3-STATE OUTPUTS                                                                                                                                | SHAND OR<br>162825<br>18-BIT BUFFERSIDRIVERS WITH 3-STATE OUTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 172 272 040 372 472 V <sub>01</sub> 173 273 040 373 473 040 V <sub>12</sub> 040 174 274 374 474 040 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46                                      | 115 275 V <sub>6.</sub> 376 475 600 600 V <sub>6.</sub> 176 274 600 376 476 445 44 43 42 41 40 39 38 37 36 35 34 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 47 371 040 271 171 V <sub>G</sub> AI 040 A2 040 A2 V <sub>G</sub> NC 040 CLK 0E 0E 0E 0E 0E                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 162834<br>162835                                                                                                                                                                                  | SHORDS TO SHORD SHOP SHOP SHOP SHOP SHOP SHOP SHOP SHOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                   | A12 GAD A13 A14 A15 M <sub>CC</sub> A19 A17 GAD A19 GLA GAD A10 GAD A19 GLA GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD A10 GAD |
|                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



#### 322374 3.3-V ABT 32-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS GKE PACKAGE (TOP VIEW) terminal assignments 1 2 3 4 5 6 3 4 5 6 10E 1Q1 1CLK 1D1 1D2 В GND 1D4 В 1Q4 1Q3 GND 1D3 C C 1Q6 1Q5 Vcc Vcc 1D5 1D6 000000 D D 108 1Q7 GND GND 1D7 1D8 E 2Q1 GND GND 2D1 2D2 2Q2 000000 2Q4 2Q3 2D3 2D4 VCC VCC G G 2Q6 2Q6 GND GND 2D5 2D6 Н 2OE Н 2Q7 2Q8 2CLK 2D8 2D7 J 3Q2 3Q1 3OE 3CLK 3D1 3D2 3Q4 3Q3 GND GND 3D3 3D4 3Q6 3Q5 3D5 3D6 VCC VCC M 3Q8 3Q7 GND GND 3D7 3D8 M N 4Q2 4Q1 GND GND 4D1 4D2 N Р 4Q4 4Q3 4D3 4D4 VCC VCC P 4Q6 4Q5 GND GND 4D5 4D6 R 40E 4CLK 4Q8 NC - No internal connection See page 703

# FUNCTION AND ELECTRICAL CHARACTERISTICS

# FUNCTION AND ELECTRICAL CHARACTERISTICS

#### Logic Diagram

#### QUADRUPLE 2-INPUT POSITIVE-NAND GATES

- $\bullet$  Y =  $\overline{A \bullet B}$
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | S  | ALS  | AS   | F    | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC   | SN74<br>AC | CD74<br>AC | ACT  | UNIT |
|-----------|------------|------|------|----|------|------|------|------------|------------|-------------|-------------|------|------------|------------|------|------|
| Icc       | MAX        | 22   | 4.4  | 36 | 3    | 17.4 | 10.2 | 0.02       | 0.04       | 0.02        | 0.04        | 0.04 | 0.02       | 0.08       | 0.04 | mA   |
| Іон       | MAX        | -0.4 | -0.4 | -1 | -0.4 | -2   | -1   | -4         | -4         | -4          | -4          | -24  | -24        | -24        | -24  | mA   |
| lou       | MAX        | 16   | 8    | 20 | 8    | 20   | 20   | 4          | 4          | 4           | 4           | 24   | 24         | 24         | 24   | mA   |

| PARAMETER | MAX or MIN | SN74<br>ACT | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | LVC<br>3V | ALVC<br>3V | UNIT |
|-----------|------------|-------------|-------------|------|------|----------|----------|-----------|------------|------|
| Icc       | MAX        | 0.02        | 0.08        | 0.02 | 0.02 | 7.5      | 0.02     | 0.01      | 0.01       | mA   |
| Юн        | MAX        | -24         | -24         | -8   | -8   | -6       | -12      | -24       | -24        | mA   |
| lou       | MAX        | 24          | 24          | 8    | 8    | 6        | 12       | 24        | 24         | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | TTL | LS | S   | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 |
|-----------|--------|--------|------------|-----|----|-----|-----|-----|-----|------------|------------|-------------|-------------|----------|------------|------------|-----------|
| tPLH      | AorB   | Υ      | MAX        | 22  | 15 | 4.5 | 11  | 4.5 | 6   | 23         | 27         | 25          | 30          | 7.4      | 8.5        | 7.3        | 12.3      |
| tPHL .    | A or B | Υ      | MAX        | 15  | 15 | 5   | 8   | 4   | 5.3 | 23         | 27         | 25          | 30          | 6.8      | 7          | 7.3        | 8.8       |

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | SN74<br>ACT | CD74<br>ACT | AHC | AHCT | LV<br>3V | LV<br>5V | TAC<br>3A | ALVC<br>3V |
|-----------|--------|--------|------------|-------------|-------------|-----|------|----------|----------|-----------|------------|
| tPLH .    | A or B | Υ      | MAX        | 9.5         | 10.8        | 8.5 | 9    | 13       | 8.5      | 4.3       | 3          |
| tPHL .    | AorB   | Υ      | MAX        | 8           | 13.2        | 8.5 | 9    | 13       | 8.5      | 4.3       | 3          |

UNIT:ns

QUADRUPLE 2-INPUT POSITIVE-NAND GATES WITH OPEN-COLLECTOR OUTPUTS

 $\bullet$  Y =  $\overline{A \bullet B}$ 

| 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 1Y    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAA = Y |
| 3A 3B 2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 OOO   2 |         |
| 4A ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 4Y    |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL | LS  | ALS | нс   | UNIT |
|-----------|------------|-----|-----|-----|------|------|
| Icc       | MAX        | 22  | 4.4 | 3   | 0.02 | mA   |
| Vон       | MAX        | 5.5 | 5.5 | 5.5 | Vcc  | V    |
| lor       | MAX        | 16  | 8   | 8   | 4    | mA   |

SWITCHING CHARACTERISTICS

| OVVII OTITIVO 1 | IIIAIIAOI | LINOTICO | 1          |     |    |     |    |
|-----------------|-----------|----------|------------|-----|----|-----|----|
| PARAMETER       | INPUT     | OUTPUT   | MAX or MIN | TTL | LS | ALS | нс |
| tplH            | A or B    | Y        | MAX        | 55  | 32 | 54  | 31 |
| tPHL .          | A or B    | Υ        | MAX        | 15  | 28 | 28  | 25 |

# **QUADRUPLE 2-INPUT**

- **POSITIVE-NOR GATES**
- $\bullet$  Y =  $\overline{A + B}$
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)

**Logic Diagram** 



| NECOMINICIANE | DUPENATING | CONDI | ITUNS | _  | _    | _    | _     | _          |            | _           | _           |          | 20011      |           | 100  |
|---------------|------------|-------|-------|----|------|------|-------|------------|------------|-------------|-------------|----------|------------|-----------|------|
| PARAMETER     | MAX or MIN | TTL   | LS    | S  | ALS  | AS   | n (F) | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | CD74<br>AC | ACT<br>11 | UNIT |
| lcc           | MAX        | 27    | 5.4   | 45 | 4    | 20.1 | 13    | 0.02       | 0.04       | 0.02        | 0.04        | 0.04     | 0.08       | 0.04      | mA   |
| Іон           | MAX        | -0.4  | -0.4  | -1 | -0.4 | -2   | -1    | -4         | -4         | -4          | -4          | -24      | -24        | -24       | mA   |
| lou           | MAX        | 16    | 8     | 20 | 8    | 20   | 20    | 4          | 4          | 4           | 4           | 24       | 24         | 24        | mA   |

| PARAMETER | MAX or MIN | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | TAC<br>TAC | UNIT |
|-----------|------------|-------------|------|------|----------|----------|------------|------|
| lcc       | MAX        | 0.08        | 0.02 | 0.02 | -31      | 0.02     | 0.01       | mA   |
| Іон       | MAX        | -24         | -8   | -8   | -6       | -12      | -24        | mA   |
| lou       | MAX        | 24          | 8    | 8    | 6        | 12       | 24         | mA   |

SWITCHING CHARACTERISTICS

|           |        |        | _          | -   |    |     | _   | _   |     |            | _          |             |             |          |            |           |
|-----------|--------|--------|------------|-----|----|-----|-----|-----|-----|------------|------------|-------------|-------------|----------|------------|-----------|
| PARAMETER | INPUT  | OUTPUT | MAX or MIN | TTL | LS | s   | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | CD74<br>AC | ACT<br>11 |
| tPLH .    | A or B | Y      | MAX        | 22  | 15 | 5.5 | 12  | 4.5 | 6.5 | 23         | 27         | 25          | 32          | 6.9      | 11.5       | 10.6      |
| tPHL .    | A or B | Y      | MAX        | 15  | 15 | 5.5 | 10  | 4.5 | 5.3 | 23         | 27         | 25          | 32          | 6.4      | 11.5       | 8.7       |

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | CD74<br>ACT | AHC | AHCT | LV<br>3V | LV<br>5V | LVC<br>3V |
|-----------|--------|--------|------------|-------------|-----|------|----------|----------|-----------|
| tPLH .    | A or B | Υ      | MAX        | 12.2        | 8.5 | 8.5  | 13       | 8.5      | 4.4       |
| tPHL .    | A or B | Y      | MAX        | 12.2        | 8.5 | 8.5  | 13       | 8.5      | 4.4       |



| RECOMMENDE | D OPERATING | CONDIT | IONS |     |     |            |            |             |      |      |  |  |
|------------|-------------|--------|------|-----|-----|------------|------------|-------------|------|------|--|--|
| PARAMETER  | MAX or MIN  | TTL    | LS   | S   | ALS | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT | āA.  |  |  |
| lcc        | MAX         | 22     | 4.4  | 36  | 4   | 0.02       | 0.04       | 0.04        | mA   | 20.1 |  |  |
| Vон        | MAX         | 5.5    | 8    | 5.5 | 8   | 0.05       | Vcc        | Vcc         | ٧    | 3    |  |  |
| lou        | MAX         | 16     | 0.1  | 20  | 0.1 | 4          | 4          | 4           | mA   | US   |  |  |

| SWITCHING C | HARACTER | RISTICS | _          |     |    | 710 | 1 37 | I V.       | 1/1        | 1010        |  |  |
|-------------|----------|---------|------------|-----|----|-----|------|------------|------------|-------------|--|--|
| PARAMETER   | INPUT    | OUTPUT  | MAX or MIN | TTL | LS | S   | ALS  | SN74<br>HC | CD74<br>HC | CD74<br>HCT |  |  |
|             |          |         |            |     |    |     | 100  | nc.        | nc         | пы          |  |  |
| tPLH        | A or B   | Υ       | MAX        | 45  | 32 | 7.5 | 50   | 31         | 30         | 36          |  |  |
| tphl.       | A or B   | Υ       | MAX        | 15  | 28 | 7   | 13   | 25         | 30         | 36          |  |  |

# HEX **INVERTERS**

- Logic Diagram

- $Y = \overline{A}$
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)

| RECOMMENDED | <b>OPERATING</b> | COND | ITIONS |
|-------------|------------------|------|--------|

| RECOMMENDE | D OPERATING | CONDI | TIONS |    | ,    |      |      |            |            |             |             |          |            |            |           |      |
|------------|-------------|-------|-------|----|------|------|------|------------|------------|-------------|-------------|----------|------------|------------|-----------|------|
| PARAMETER  | MAX or MIN  | ŤTL   | LS    | S  | ALS  | AS   | F    | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 | UNIT |
| Icc        | MAX         | 33    | 6.6   | 54 | 4.2  | 26.3 | 15.3 | 0.02       | 0.04       | 0.02        | 0.04        | 0.04     | 0.02       | 0.08       | 0.04      | mA   |
| Іон        | MAX         | -0.4  | -0.4  | -1 | -0.4 | -2   | -1   | -4         | -4         | -4          | -4          | -24      | -24        | -24        | -24       | mA   |
| lou        | MAX         | 16    | 8     | 20 | 8    | 20   | 20   | 4          | 4          | 4           | 4           | 24       | 24         | 24         | 24        | mA   |

| PARAMETER | MAX or MIN | SN74<br>ACT | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | TAC 3A | ALVC<br>3V | UNIT |
|-----------|------------|-------------|-------------|------|------|----------|----------|--------|------------|------|
| lcc       | MAX        | 0.02        | 0.08        | 0.02 | 0.02 |          | 0.02     | 0.01   | 0.01       | mA   |
| Іон       | MAX        | -24         | -24         | -8   | -8   | -6       | -12      | -24    | -24        | mA   |
| lot       | MAX        | 24          | 24          | 8    | 8    | 6        | 12       | 24     | 24         | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | TTL | LS | S   | ALS | AS | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 |
|-----------|--------|--------|------------|-----|----|-----|-----|----|-----|------------|------------|-------------|-------------|----------|------------|------------|-----------|
| tPLH      | A or B | Y      | MAX        | 22  | 15 | 4.5 | 11  | 5  | 6   | 24         | 26         | 25          | 29          | 7.1      | 7.5        | 6.5        | 9.7       |
| tPHL .    | A or B | Υ      | MAX        | 15  | 15 | 5   | 8   | 4  | 5.3 | 24         | 26         | 25          | 29          | 6        | 7          | 6.5        | 9.6       |

| PARAMETER   | INPUT  | OUTPUT | MAX or MIN | SN74<br>ACT | CD74<br>ACT | АНС | АНСТ | LV<br>3V | LV<br>5V | LVC<br>3V | ALVC<br>3V |
|-------------|--------|--------|------------|-------------|-------------|-----|------|----------|----------|-----------|------------|
| tPLH        | A or B | Υ      | MAX        | 9           | 9.3         | 8.5 | 8.5  | 12       | 8.5      | 4.5       | 2.8        |
| <b>TPHL</b> | AorB   | Υ      | MAX        | 8.5         | 9.3         | 8.5 | 8.5  | 12       | 8.5      | 4.5       | 2.8        |



U04

HEX **INVERTERS** 





 $\bullet$  Y =  $\overline{A}$ 

Unbuffered Output

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | SN74<br>HC | CD74<br>HC | AHC  | LV<br>3V | LV<br>5V | LVC<br>3V | UNIT |
|-----------|------------|------------|------------|------|----------|----------|-----------|------|
| Icc       | MAX        | 0.02       | 0.04       | 0.02 |          | 0.02     | 0.01      | mA   |
| Іон       | MAX        | -4         | -4         | -8   | -6       | -12      | -24       | mA   |
| lou       | MAX        | 4          | 4          | 8    | 6        | 12       | 24        | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | SN74<br>HC | CD74<br>HC | AHC | LV<br>3V | LV<br>5V | LVC<br>3V |
|-----------|--------|--------|------------|------------|------------|-----|----------|----------|-----------|
| tplh      | A or B | Υ      | MAX        | 20         | 21         | 8   | 13       | 8        | 3.8       |
| tphl.     | AorB   | Υ      | MAX        | 20         | 21         | 8   | 13       | 8        | 3.8       |

UNIT: ns

Logic Diagram 05 **HEX INVERTERS** WITH OPEN-COLLECTOR **OUTPUTS**  $\bullet$  Y =  $\overline{A}$ 

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL | LS  | S   | ALS | SN74<br>HC | CD74<br>AC | CD74<br>ACT | AHC  | LV<br>3V | LV<br>5V | UNIT |
|-----------|------------|-----|-----|-----|-----|------------|------------|-------------|------|----------|----------|------|
| Icc       | MAX        | 33  | 6.6 | 54  | 4.2 | 0.02       | 0.08       | 0.08        | 0.02 | -        | 0.02     | mA   |
| Іон       | MAX        | -   | -   | -   | -   | -          | -24        | -24         | -    | -        | -        | mA   |
| Vон       | MAX        | 5.5 | 5.5 | 5.5 | 5.5 | 5.5        | 5.5        | 5.5         | Vcc  | 5.5      | 5.5      | V    |
| lou       | MAX        | 16  | 8   | 20  | 8   | 4          | 24         | 24          | 8    | 6        | 12       | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | TTL | LS | S   | ALS | SN74<br>HC | CD74<br>AC | CD74<br>ACT | AHC | LV<br>3V | LV<br>5V |
|-----------|--------|--------|------------|-----|----|-----|-----|------------|------------|-------------|-----|----------|----------|
| tPLH      | A or B | Y      | MAX        | 55  | 32 | 7.5 | 54  | 29         |            |             |     | 12       | 8.5      |
| tPHL .    | A or B | Υ      | MAX        | 15  | 28 | 7   | 14  | 21         |            | -           | -   | 12       | 8.5      |
| tPLZ      | А      | Υ      | MAX        | -   | -  | -   | 187 | -          | 8.2        | 9.3         | 8.5 | -        | -        |
| tPZL      | A      | Υ      | MAX        | 1.  | -  | -   | -   | -          | 6.5        | 10.8        | 8.5 | -        | -        |

# **HEX INVERTER BUFFERS/DRIVERS** WITH OPEN-COLLECTOR **HIGH-VOLTAGE OUTPUTS**

 $\bullet$  Y =  $\overline{A}$ 



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | TA<br>TA | LV<br>5V | 3V    | UNIT |
|-----------|------------|------|------|----------|----------|-------|------|
| lcc       | MAX        | 51   | 60   | (15)     | 0.02     | 0.01  | mA   |
| Іон       | MAX        | 0.25 | 0.25 | 13       | ±0.0025  | H : 1 | mA   |
| Vон       | MAX        | 30   | 30   | 5.5      | 5.5      | 5.5   | V    |
| loc       | MAX        | 40   | 40   | 8        | 16       | 24    | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER   | INPUT  | OUTPUT | MAX or MIN | TTL | LS | LV<br>3V | LV<br>5V | LVC<br>3V |
|-------------|--------|--------|------------|-----|----|----------|----------|-----------|
| tPLH        | A or B | Y      | MAX        | 15  | 15 | 12       | 8.5      | 3.7       |
| <b>TPHL</b> | A or B | Y      | MAX        | 23  | 20 | 12       | 8.5      | 3.7       |

UNIT: ns

07

**HEX BUFFERS/DRIVERS** WITH OPEN-COLLECTOR HIGH-VOLTAGE OUTPUTS

Y = A

**Logic Diagram** 



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | LV<br>3V | LV<br>5V | LVC<br>3V | UNIT |
|-----------|------------|------|------|----------|----------|-----------|------|
| Icc       | MAX        | 41   | 45   | -        | 0.02     | 0.01      | mA   |
| Іон       | MAX        | 0.25 | 0.25 | -        | ±0.0025  | -         | mA   |
| Vон       | MAX        | 30   | 30   | 5.5      | 5.5      | 5.5       | ٧    |
| Ini       | MAX        | 40   | 40   | 8        | 16       | 24        | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | TTL | LS | LV<br>3V | LV<br>5V | TAC<br>TAC |
|-----------|--------|--------|------------|-----|----|----------|----------|------------|
| tPLH      | A or B | Υ      | MAX        | 15  | 10 | 12       | 8.5      | 2.9        |
| tphl.     | A or B | Υ      | MAX        | 26  | 30 | 12       | 8.5      | 2.9        |

Advanced CMOS (11000 Series)

• 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)

Logia Diagram

| RECOMMENDE | D OPERATING | CONDI | IUNS |    | ,    | -  | _    | -          |            |             |             |          |            |            |           |      |
|------------|-------------|-------|------|----|------|----|------|------------|------------|-------------|-------------|----------|------------|------------|-----------|------|
| PARAMETER  | MAX or MIN  | TTL   | LS   | S  | ALS  | AS | F    | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 | UNIT |
| Icc        | MAX         | 33    | 8.8  | 57 | 4    | 24 | 12.9 | 0.02       | 0.04       | 0.02        | 0.04        | 0.04     | 0.02       | 0.08       | 0.04      | mA   |
| Іон        | MAX         | -0.8  | -0.4 | -1 | -0.4 | -2 | -1   | -4         | -4         | -4          | -4          | -24      | -24        | -24        | -24       | mA   |
| lou        | MAX         | 16    | 8    | 20 | 8    | 20 | 20   | 4          | 4          | 4           | 4           | 24       | 24         | 24         | 24        | mA   |

| PARAMETER | MAX or MIN | SN74<br>ACT | CD74<br>ACT | AHC  | АНСТ | LV<br>3V | LV<br>5V | LVC  | ALVC | UNIT |
|-----------|------------|-------------|-------------|------|------|----------|----------|------|------|------|
| Icc       | MAX        | 0.02        | 0.08        | 0.02 | 0.02 | -        | 0.02     | 0.01 | 0.01 | mA   |
| Іон       | MAX        | -24         | -24         | -8   | -8   | -6       | -12      | -24  | -24  | mA   |
| lou       | MAX        | 24          | 24          | 8    | 8    | 6        | 12       | 24   | 24   | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | TTL | LS | s   | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | SN74<br>AC | CD74<br>AC | AC1 |
|-----------|--------|--------|------------|-----|----|-----|-----|-----|-----|------------|------------|-------------|-------------|----------|------------|------------|-----|
| tPLH .    | A or B | Y      | MAX        | 27  | 15 | 7   | 14  | 5.5 | 6.6 | 25         | 27         | 30          | 38          | 6.9      | 8.5        | 8.7        | 9   |
| tPHL .    | A or B | Υ      | MAX        | 19  | 20 | 7.5 | 10  | 5.5 | 6.3 | 25         | 27         | 30          | 38          | 6.5      | 7.5        | 8.7        | 8.2 |

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | SN74<br>ACT | CD74<br>ACT | AHC | AHCT | LV<br>3V | LV<br>5V | LVC | ALVO |
|-----------|--------|--------|------------|-------------|-------------|-----|------|----------|----------|-----|------|
| tPLH .    | A or B | Y      | MAX        | 10          | 12.9        | 9   | 9    | 14       | 9        | 4.1 | 2.9  |
| tPHL .    | A or B | Υ      | MAX        | 10          | 12.9        | 9   | 9    | 14       | 9        | 4.1 | 2.9  |



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL | LS  | S    | ALS | F    | SN74<br>HC | UNIT |
|-----------|------------|-----|-----|------|-----|------|------------|------|
| lcc       | MAX        | 33  | 8.8 | - 57 | 4.2 | 26.3 | 15.3       | mA   |
| Іон       | MAX        | 36  | 0.1 | 0.25 | 0.1 | 1.   | -          | mA   |
| Vон       | MAX        | 5.5 | 5.5 | 5.5  | 5.5 | 5.5  | Vcc        | mA   |
| lou       | MAX        | 16  | 8   | 20   | 8   | 20   | 4          | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | TTL | LS | S  | ALS | F   | SN74<br>HC |
|-----------|--------|--------|------------|-----|----|----|-----|-----|------------|
| tPLH      | A or B | Y      | MAX        | 32  | 35 | 10 | 54  | 9.6 | 31         |
| tPHL .    | A or B | Υ      | MAX        | 24  | 35 | 10 | 15  | 4.8 | 25         |

# TRIPLE 3-INPUT POSITIVE-NAND GATES

- Y = A•B•C
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | S  | ALS  | AS | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 | UNIT |
|-----------|------------|------|------|----|------|----|-----|------------|------------|-------------|-------------|----------|------------|------------|-----------|------|
| lcc       | MAX        | 16.5 | 3.3  | 27 | 2.2  | 13 | 7.7 | 0.02       | 0.04       | 0.02        | 0.04        | 0.04     | 0.02       | 0.08       | 0.04      | mA   |
| Іон       | MAX        | -0.4 | -0.4 | -1 | -0.4 | -2 | -1  | -4         | -4         | -4          | -4          | -24      | -24        | -24        | -24       | mA   |
| lou       | MAX        | 16   | 8    | 20 | 8    | 20 | 20  | 4          | 4          | 4           | 4           | 24       | 24         | 24         | 24        | mA   |

| PARAMETER | MAX or MIN | SN74<br>ACT | CD74<br>ACT | LV<br>3V | LV<br>5V | TAC<br>3A | ALVC | UNIT |
|-----------|------------|-------------|-------------|----------|----------|-----------|------|------|
| Icc       | MAX        | 0.04        | 0.08        | -        | 0.02     | 0.01      | 0.01 | mA   |
| Гон       | MAX        | -24         | -24         | -6       | -12      | -24       | -24  | mA   |
| lou       | MAX        | 24          | 24          | 6        | 12       | 24        | 24   | mA   |

SWITCHING CHARACTERISTICS

| SWITCHING C | HARACTERI | STICS  |            |     |    |     |     |     |     | Symm       |            |             |             | 42, 145  | n          |            |           |
|-------------|-----------|--------|------------|-----|----|-----|-----|-----|-----|------------|------------|-------------|-------------|----------|------------|------------|-----------|
| PARAMETER   | INPUT     | OUTPUT | MAX or MIN | TTL | LS | S   | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 |
| tPLH        | A, B or C | Y      | MAX        | 22  | 15 | 4.5 | 11  | 4.5 | 6   | 24         | 30         | 19          | 36          | 6.7      | 8          | 12.2       | 8.9       |
| <b>TPHL</b> | A, B or C | Υ      | MAX        | 15  | 15 | 5   | 10  | 4.5 | 5.3 | 24         | 30         | 19          | 36          | 7        | 6.5        | 12.2       | 8.2       |

| PARAMETER | INPUT     | OUTPUT | MAX or MIN | SN74<br>ACT | CD74<br>ACT | LV<br>3V | LV<br>5V | LVC<br>3V | ALVO |
|-----------|-----------|--------|------------|-------------|-------------|----------|----------|-----------|------|
| tplh      | A, B or C | Υ      | MAX        | 10          | -           | 13.5     | 9        | 4.9       | 3    |
| tPHL .    | A, B or C | Υ      | MAX        | 9.5         | 13.5        | 13.5     | 9        | 4.9       | 3    |



# TRIPLE 3-INPUT **POSITIVE-AND GATES**

- Y = A•B•C
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)

| RECOMMENDE | D OPERATING | CONDI | IUNS | (A) (M) | At 12 |     |            |            | NO F        |             |          |            |           | 2.1         | III      | 11185    | to XAI |
|------------|-------------|-------|------|---------|-------|-----|------------|------------|-------------|-------------|----------|------------|-----------|-------------|----------|----------|--------|
| PARAMETER  | MAX or MIN  | LS    | S    | ALS     | AS    | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | SN74<br>AC | ACT<br>11 | SN74<br>ACT | LV<br>3V | LV<br>5V | UNIT   |
| lcc        | MAX         | 6.6   | 42   | 3       | 18    | 9.7 | 0.02       | 0.04       | 0.02        | 0.04        | 0.04     | 0.02       | 0.04      | 0.02        | -        | 0.02     | mA     |
| Іон        | MAX         | -0.4  | -1   | -0.4    | -2    | -1  | -4         | -4         | -4          | -4          | -24      | -24        | -24       | -24         | -6       | -12      | mA     |
| lou        | MAX         | 8     | 20   | 8       | 20    | 20  | 4          | 4          | 4           | 4           | 24       | 24         | 24        | 24          | 6        | 12       | mA     |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT     | OUTPUT | MAX or MIN | LS | s   | ALS | AS  | F   | SN74<br>HC |    | SN74<br>HCT | CD74<br>HCT | AC<br>11 | SN74<br>AC | ACT<br>11 | SN74<br>ACT |
|-----------|-----------|--------|------------|----|-----|-----|-----|-----|------------|----|-------------|-------------|----------|------------|-----------|-------------|
| tPLH .    | A, B or C | Υ      | MAX        | 15 | 7   | 13  | 6   | 6.6 | 25         | 30 | 21          | 42          | 6.5      | 8.5        | 9.6       | 10.5        |
| tPHL .    | A, B or C | Υ      | MAX        | 20 | 7.5 | 10  | 5.5 | 6.5 | 25         | 30 | 21          | 42          | 6.9      | 7.5        | 8.7       | 10.5        |

| PARAMETER | INPUT     | OUTPUT | MAX or MIN | LV<br>3V | LV<br>5V |
|-----------|-----------|--------|------------|----------|----------|
| tPLH      | A, B or C | Y      | MAX        | 14       | 9        |
| tPHL .    | A, B or C | Y      | MAX        | 14       | 9        |

 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>AC | CD74<br>AC | SN74<br>ACT | CD74<br>ACT | AHC  | AHCT | UNIT |
|-----------|------------|------|------|------------|------------|-------------|-------------|------------|------------|-------------|-------------|------|------|------|
| lcc       | MAX        | 60   | 21   | 0.02       | 0.04       | 0.02        | 0.04        | 0.02       | 0.08       | 0.02        | 0.08        | 0.02 | 0.02 | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -4         | -4         | -4          | -4          | -24        | -24        | -24         | -24         | -8   | -8   | mA   |
| lou       | MAX        | 16   | 8    | 4          | 4          | 4           | 4           | 24         | 24         | 24          | 24          | 8    | 8    | mA   |

| PARAMETER | MAX or MIN | LV<br>3V | LV<br>5V | LVC<br>3V | ALVC<br>3V | UNIT |
|-----------|------------|----------|----------|-----------|------------|------|
| Icc       | MAX        |          | 0.02     | 0.01      | 0.01       | mA   |
| Іон       | MAX        | -6       | -12      | -24       | -24        | mA   |
| lou       | MAX        | 6        | 12       | 24        | 24         | mA   |

SWITCHING CHARACTERISTICS

| OVVII OTTITAL O | HAHAUILI | 1101100 |            |     |    |            |            |    |             |            |            |             |             |
|-----------------|----------|---------|------------|-----|----|------------|------------|----|-------------|------------|------------|-------------|-------------|
| PARAMETER       | INPUT    | OUTPUT  | MAX or MIN | TTL | LS | SN74<br>HC | CD74<br>HC |    | CD74<br>HCT | SN74<br>AC | CD74<br>AC | SN74<br>ACT | CD74<br>ACT |
| tPLH            | A or B   | Υ       | MAX        | 22  | 22 | 31         | 41         | 40 | 57          | 11         | 10.5       | 12.5        | 14.5        |
| tPHL .          | A or B   | Υ       | MAX        | 22  | 22 | 31         | 41         | 40 | 57          | 9.5        | 10.5       | 11          | 9.5         |

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | AHC | AHCT | LV<br>3V | LV<br>5V | LVC<br>3V | ALVC<br>3V |
|-----------|--------|--------|------------|-----|------|----------|----------|-----------|------------|
| tPLH      | A or B | Υ      | MAX        | 12  | 9    | 18.5     | 12       | 6.4       | 3.4        |
| tPHL .    | A or B | Υ      | MAX        | 12  | 9    | 18.5     | 12       | 6.4       | 3.4        |

HEX INVERTER
BUFFERS/DRIVERS
WITH OPEN-COLLECTOR
HIGH-VOLTAGE OUTPUTS

 $\bullet$  Y =  $\overline{A}$ 

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL | UNIT |
|-----------|------------|-----|------|
| Icc       | MAX        | 51  | mA   |
| Vон       | MAX        | 15  | V    |
| lou       | MAX        | 40  | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | TTL |
|-----------|-------|--------|------------|-----|
| tplH      | A     | Υ      | MAX        | 15  |
| tPHL .    | A     | Υ      | MAX        | 23  |

Logic Diagram



6A 13 6

TIRU 2.3 VIIIA ve SAM (ETTINA)
Am 0.0 XAM
Am 0.0 XAM

HEX BUFFERS/DRIVERS WITH OPEN-COLLECTOR HIGH-VOLTAGE OUTPUTS

Y = A

17

Logic Diagram

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL | UNIT |
|-----------|------------|-----|------|
| lec       | MAX        | 41  | 6.6  |
| Vон       | MAX        | 15  | V    |
| lou       | MAX        | 40  | mA   |

SWITCHING CHARACTERISTICS

| SWITCHING C | HANACIE | 1131163 | _          |     |
|-------------|---------|---------|------------|-----|
| PARAMETER   | INPUT   | OUTPUT  | MAX or MIN | TTL |
| tPLH .      | A       | Υ       | MAX        | 15  |
| tPHL .      | A       | Υ       | MAX        | 26  |

# HEX SCHMITT-TRIGGER INVERTERS

- $\bullet$  Y =  $\overline{A}$
- P-N-P Input Reduce System Loading (I<sub>IL</sub> = -0.05mA MAX)
- Excellent Noise Immunity with Typical Hysteresis of 0.8V

RECOMMENDED OPERATING CONDITIONS

| TILCONNINILIADE | D OI LIMINO | T    | T    |
|-----------------|-------------|------|------|
| PARAMETER       | MAX or MIN  | LS   | UNIT |
| lcc             | MAX         | 30   | mA   |
| Гон             | MAX         | -0.4 | mA   |
| lou             | MAX         | 8    | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | LS |
|-----------|--------|--------|------------|----|
| tPLH      | A or B | Y      | MAX        | 20 |
| tPHL      | A or B | Y      | MAX        | 30 |

UNIT: IIS

Logic Diagram

| 1A . | 1 |   | 2 | 1Y |  |
|------|---|---|---|----|--|
| 2A   | 3 | 1 | 4 | 2Y |  |

EX BUFFERS/DRIVERS WITH OPEN-COLLECTOR HON-VOLTAGE OUTPUTS

A=T

# DUAL 4-INPUT POSITIVE-NAND GATES

- $Y = \overline{A \cdot B \cdot C \cdot D}$
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)

# Logic Diagram





RECOMMENDED OPERATING CONDITIONS

| NECOMMENDE | U UPENATING | CUIVUI | ITUIVS | WI. | VIII |     | 34. | 11001      | MINI       | DIME.       |          |            |           |             |          |          |      |
|------------|-------------|--------|--------|-----|------|-----|-----|------------|------------|-------------|----------|------------|-----------|-------------|----------|----------|------|
| PARAMETER  | MAX or MIN  | TTL    | LS     | s   | ALS  | AS  | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | AC<br>11 | CD74<br>AC | ACT<br>11 | CD74<br>ACT | LV<br>2V | LV<br>5V | UNIT |
| Icc        | MAX         | 11     | 2.2    | 18  | 1.5  | 8.7 | 5.1 | 0.02       | 0.04       | 0.04        | 0.04     | 0.08       | 0.04      | 0.08        | . 8      | 0.02     | mA   |
| Іон        | MAX         | -0.4   | -0.4   | -1  | -0.4 | -2  | -1  | -4         | -4         | -4          | -24      | -24        | -24       | -24         | -6       | -12      | mA   |
| lou        | MAX         | 16     | 8      | 20  | 8    | 20  | 20  | 4          | 4          | 4           | 24       | 24         | 24        | 24          | 6        | 12       | mA   |

SWITCHING CHARACTERISTICS AND MICHAEL S 24 EUR 21 MM WARM TISTUD TURN FETIMAL

| SAALLCHIIAO C | HANAGILINGII | 00     | 1016   211   2 |     |    |     |     | _   |     |            |            |             |          |            |           |             |
|---------------|--------------|--------|----------------|-----|----|-----|-----|-----|-----|------------|------------|-------------|----------|------------|-----------|-------------|
| PARAMETER     | INPUT        | OUTPUT | MAX or MIN     | TTL | LS | S   | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | AC<br>11 | CD74<br>AC | ACT<br>11 | CD74<br>ACT |
| tPLH          | A, B, C or D | Υ      | MAX            | 22  | 15 | 4.5 | 11  | 5   | 6   | 28         | 30         | 42          | 6.7      | 12.2       | 9.1       | 13.5        |
| tPHL .        | A, B, C or D | Υ      | MAX            | 15  | 15 | 5   | 10  | 4.5 | 5.3 | 28         | 30         | 42          | 7.3      | 12.2       | 9.2       | 13.5        |

| PARAMETER | INPUT        | OUTPUT | MAX or MIN | LV<br>3V | LV<br>5V |
|-----------|--------------|--------|------------|----------|----------|
| tPLH      | A, B, C or D | Y      | MAX        | 11.5     | 8        |
| tPHL .    | A, B, C or D | Y      | MAX        | 11.5     | 8        |





# 2

- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | ALS  | AS | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | AC 11 | ACT<br>11 | LV<br>3V | LV<br>5V | UNIT |
|-----------|------------|------|------|----|-----|------------|------------|-------------|-------|-----------|----------|----------|------|
| lcc       | MAX        | 4.4  | 2.3  | 12 | 7.3 | 0.02       | 0.04       | 0.04        | 0.04  | 0.04      | -        | 0.02     | mA   |
| Іон       | MAX        | -0.4 | -0.4 | -2 | -1  | -4         | -4         | -4          | -24   | -24       | -6       | -12      | mA   |
| lou       | MAX        | 8    | 8    | 20 | 20  | 4          | 4          | 4           | 24    | 24        | 6        | 12       | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | . INPUT      | OUTPUT | MAX or MIN | LS | ALS | AS | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | AC<br>11 | ACT<br>11 | LV<br>3V | LV<br>5V |
|-----------|--------------|--------|------------|----|-----|----|-----|------------|------------|-------------|----------|-----------|----------|----------|
| tPLH .    | A, B, C or D | Y      | MAX        | 15 | 15  | 6  | 5.3 | 28         | 33         | 41          | 8.8      | 9.8       | 12       | 6        |
| tPHL .    | A, B, C or D | Υ      | MAX        | 20 | 10  | 6  | 5.5 | 28         | 33         | 41          | 6.9      | 8.9       | 12       | 8        |

# 25

# DUAL 4-INPUT POSITIVE-NOR GATES WITH STROBE

 $\bullet$  Y =  $\overline{G(A + B + C + D)}$ 



## RECOMMENDED OPERATING CONDITIONS

|           |            | 1    |      |
|-----------|------------|------|------|
| PARAMETER | MAX or MIN | TTL  | UNIT |
| Icc       | MAX        | 19   | mA   |
| Іон       | MAX        | -0.8 | mA   |
| Inc       | MAX        | 16   | mA   |

# SWITCHING CHARACTERISTICS

| OVVITORING C | IMINUTEI | 1101100 |            | _   |
|--------------|----------|---------|------------|-----|
| PARAMETER    | INPUT    | OUTPUT  | MAX or MIN | TTL |
| tPLH .       | A or B   | Υ       | MAX        | 22  |
| <b>TPHL</b>  | A or B   | Υ       | MAX        | 15  |



# RECOMMENDED OPERATING CONDITIONS

| TIE O O ITTITE I TO E | D OT BIDITING |     | 10.110 | _    |
|-----------------------|---------------|-----|--------|------|
| PARAMETER             | MAX or MIN    | TTL | LS     | UNIT |
| Icc                   | MAX           | 22  | 4.4    | mA   |
| Vон                   | MAX           | 15  | 15     | V    |
| lou                   | MAX           | 16  | 8      | mA   |
|                       |               |     |        |      |

## SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | TTL | LS |
|-----------|--------|--------|------------|-----|----|
| tPLH      | A or B | Y      | MAX        | 24  | 32 |
| tphL .    | A or B | Y      | MAX        | 17  | 28 |

UNIT: ns

27

# **TRIPLE 3-INPUT POSITIVE-NOR GATES**

- $\bullet$  Y =  $\overline{A + B + C}$
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise

# Logic Diagram



Advanced CMOS (11000 Series)

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | ALS  | AS   | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | AC<br>11 | ACT<br>11 | LV<br>3V | LV<br>5V | UNIT |
|-----------|------------|------|------|------|------|----|------------|------------|-------------|----------|-----------|----------|----------|------|
| Icc       | MAX        | 26   | 6.8  | 4    | 17.1 | 12 | 0.02       | 0.04       | 0.04        | 0.04     | 0.04      |          | 0.02     | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -0.4 | -2   | -1 | -4         | -4         | -4          | -24      | -24       | -6       | -12      | mA   |
| lou       | MAX        | 16   | 8    | 8    | 20   | 20 | 4          | 4          | 4           | 24       | 24        | 6        | 12       | mA   |

| PARAMETER | INPUT     | OUTPUT | MAX or MIN | TTL | LS | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | AC 11 | ACT 11 | LV<br>3V | LV<br>5V |
|-----------|-----------|--------|------------|-----|----|-----|-----|-----|------------|------------|-------------|-------|--------|----------|----------|
| tPLH de   | A, B or C | Y      | MAX        | 15  | 15 | 15  | 5.5 | 5.5 | 23         | 29         | 35          | 7.7   | 10.1   | 14       | 9        |
| TPHL 2    | A. B or C | Y      | MAX        | 11  | 15 | 9   | 4.5 | 4.5 | 23         | 29         | 35          | 8.1   | 9.4    | 14       | 9        |

30

# 8-INPUT POSITIVE-NAND GATES

- Y = A•B•C•D•E•F•G•H
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)

# Logic Diagram



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | S  | ALS  | AS  | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | AC<br>11 | ACT<br>11 | UNIT |
|-----------|------------|------|------|----|------|-----|----|------------|------------|-------------|----------|-----------|------|
| Icc       | MAX        | 6    | 1.1  | 10 | 0.9  | 4.9 | 4  | 0.02       | 0.04       | 0.04        | 0.04     | 0.04      | mA   |
| Іон       | MAX        | -0.4 | -0.4 | -1 | -0.4 | -2  | -1 | -4         | -4         | -4          | -24      | -24       | mA   |
| lou       | MAX        | 16   | 8    | 20 | 8    | 20  | 20 | 4          | 4          | 4           | 24       | 24        | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT    | OUTPUT | MAX or MIN | TTL | LS | S | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | AC<br>11 | ACT<br>11 |
|-----------|----------|--------|------------|-----|----|---|-----|-----|-----|------------|------------|-------------|----------|-----------|
| tPLH .    | A thru H | Y      | MAX        | 22  | 15 | 6 | 10  | 5   | 5.5 | 33         | 39         | 42          | 7.2      | 8.5       |
| tPHL.     | A thru H | Υ      | MAX        | 15  | 20 | 7 | 12  | 4.5 | 5   | 33         | 39         | 42          | 7.4      | 8.7       |

UNIT: ns

31

# **DELAY ELEMENTS**

- Delay Elements for Generating Delay Line
- Inverting and Non-inverting Elements
- Buffer NAND Elements Rated at I<sub>OL</sub> of 12/24mA
- P-N-P Inputs Reduce Fan-In (I<sub>IL</sub> = -0.2mA MAX)
- $\bullet$  Worst Case MIN/MAX Delays Guaranteed Across Temperature and  $V_{\text{CC}}$  Range

# Logic Diagram



RECOMMENDED RECOMMENDED OPERATING CONDITIONS

|     | PARAMETER         | MAX or MIN | LS   | UNIT |
|-----|-------------------|------------|------|------|
| Icc | PER STORY         | MAX        | 20   | mA   |
| Іон | Y3, Y4 outputs    | MAX        | -1.2 | mA   |
| IUH | All other outputs | MAX        | -0.4 | mA   |
| 1   | Y3, Y4 outputs    | MAX        | 24   | mA   |
| IOL | All other outputs | MAX        | 8    | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | LS |
|-----------|--------|--------|------------|----|
| tPLH      | A1 AC  | V1 V0  | MAY        | 65 |
| tPHL 200  | A1, A6 | Y1, Y6 | MAX        | 45 |
| tplh .    | A2 A5  | Y2, Y5 | MAN        | 80 |
| tPHL .    | A2, A5 | Y2, Y5 | MAX        | 95 |
| tPLH B    | A3, B3 | Vo Va  | MAY        | 15 |
| tPHL .    | A4, Y4 | Y3, Y4 | MAX        | 15 |
| UNIT: ns  |        |        |            |    |

# QUADRUPLE 2-INPUT POSITIVE-OR GATES

● Y = A + B



# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | S  | ALS  | AS   | F    | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 | UNIT |
|-----------|------------|------|------|----|------|------|------|------------|------------|-------------|-------------|----------|------------|------------|-----------|------|
| Icc       | MAX        | 38   | 9.8  | 68 | 4.9  | 26.6 | 15.5 | 0.02       | 0.04       | 0.02        | 0.04        | 0.04     | 0.02       | 0.08       | 0.04      | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -1 | -0.4 | -2   | -1   | -4         | -4         | -4          | -4          | -24      | -24        | -24        | -24       | mA   |
| lou       | MAX        | 16   | 8    | 20 | 8    | 20   | 20   | 4          | 4          | 4           | 4           | 24       | 24         | 24         | 24        | mA   |

| PARAMETER | MAX or MIN | SN74<br>ACT | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | TAC<br>TAC | ALVC | UNIT |
|-----------|------------|-------------|-------------|------|------|----------|----------|------------|------|------|
| Icc       | MAX        | 0.02        | 0.08        | 0.02 | 0.02 | 0.02     | 0.02     | 0.01       | 0.01 | mA   |
| Іон       | MAX        | -24         | -24         | -8   | -8   | -6       | -12      | -24        | -24  | mA   |
| lor       | MAX        | 24          | 24          | 8    | 8    | 6        | 12       | 24         | 24   | mA   |

## SWITCHING CHARACTERISTICS

| C T T C T T T T T T T T T T T T T T T T | AIIAO I EIIIO I I O | T      | T          |     | - 0 |   |     |     | 200 |            |            |             | 8 10 7      |          |            |
|-----------------------------------------|---------------------|--------|------------|-----|-----|---|-----|-----|-----|------------|------------|-------------|-------------|----------|------------|
| PARAMETER                               | INPUT               | OUTPUT | MAX or MIN | TTL | LS  | S | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | SN74<br>AC |
| tPLH                                    | A or B              | Y      | MAX        | 15  | 22  | 7 | 14  | 5.8 | 6.6 | 25         | 27         | 30          | 36          | 6.7      | 8.5        |
| tPHL .                                  | A or B              | Y      | MAX        | 22  | 22  | 7 | 12  | 5.8 |     | 25         | 27         | 30          | 36          | 5.9      | 7.5        |

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | CD74<br>AC | ACT<br>11 | SN74<br>ACT | CD74<br>ACT | AHC | АНСТ | LV<br>3V | LV<br>5V | LVC<br>3V | ALVC<br>3V |
|-----------|--------|--------|------------|------------|-----------|-------------|-------------|-----|------|----------|----------|-----------|------------|
| tPLH      | A or B | Y      | MAX        | 9.5        | 9         | 10          | 12.1        | 8.5 | 9    | 13       | 8.5      | 3.8       | 2.8        |
| tPHL      | A or B | Y      | MAX        | 9.5        | 8         | 10          | 12.1        | 8.5 | 9    | 13       | 8.5      | 3.8       | 2.8        |

# QUADRUPLE 2-INPUT POSITIVE-NOR BUFFERS WITH OPEN-COLLECTOR OUTPUTS

 $\bullet$  Y =  $\overline{A + B}$ 

| 1A    | 1 | 1Y        |
|-------|---|-----------|
| 1B —— |   | AD RU-B   |
| 2A    |   | 2Y        |
| 2B —— |   |           |
| 3A    |   | 3Y        |
| 3B —— |   | 31        |
| 4A    |   | 4Y        |
| 4B    |   | TARBED OF |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | ALS | UNIT |
|-----------|------------|------|------|-----|------|
| Icc       | MAX        | 16.5 | 13.8 | 9   | mA   |
| Vон       | MAX        | 5.5  | 5.5  | 5.5 | V    |
| lou       | MAX        | 48   | 24   | 24  | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | ΠL | LS | ALS |
|-----------|--------|--------|------------|----|----|-----|
| tPLH      | A or B | Υ      | MAX        | 15 | 32 | 33  |
| tPHL .    | A or B | Y      | MAX        | 18 | 28 | 12  |

HMIT: ns

Logic Diagram

# 35 HEX NONINVERTERS WITH OPEN-COLLECTOR OUTPUTS

Y = A



RECOMMENDED OPERATING CONDITIONS

| NEGOIVIIVIEIVDE | D OF LINATING | T   | 110143 |
|-----------------|---------------|-----|--------|
| PARAMETER       | MAX or MIN    | ALS | UNIT   |
| Icc             | MAX           | 63  | mA     |
| Vон             | MAX           | 5.5 | V      |
| lor             | MAX           | 8   | mA     |

SWITCHING CHARACTERISTICS

| SWITCHING C | HANAGIEN | 1131163 |            |     |
|-------------|----------|---------|------------|-----|
| PARAMETER   | INPUT    | OUTPUT  | MAX or MIN | ALS |
| tplH        | А        | Υ       | MAX        | 50  |
| tPHL.       | A        | Υ       | MAX        | 14  |



RECOMMENDED OPERATING CONDITIONS

| TIE O O WINTE TO E | D OI LIBITING | 001101 | 10110 |    |      |     |      |
|--------------------|---------------|--------|-------|----|------|-----|------|
| PARAMETER          | MAX or MIN    | TTL    | LS    | S  | ALS  | F   | UNIT |
| Icc                | MAX           | 54     | 12    | 80 | 7.8  | 33  | mA   |
| Іон                | MAX           | -1.2   | -1.2  | -3 | -2.6 | -15 | mA   |
| lot.               | MAX           | 48     | 24    | 60 | 24   | 64  | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER   | INPUT  | OUTPUT | MAX or MIN | TTL | LS | S   | ALS | F   |
|-------------|--------|--------|------------|-----|----|-----|-----|-----|
| tPLH .      | A or B | Υ      | MAX        | 22  | 24 | 6.5 | 8   | 6.5 |
| <b>TPHL</b> | A or B | Υ      | MAX        | 15  | 24 | 6.5 | 7   | 5   |

UNIT: ns

38

QUADRUPLE 2-INPUT
POSITIVE-NAND BUFFERS
WITH OPEN-COLLECTOR OUTPUTS

 $\bullet$  Y =  $\overline{A \cdot B}$ 

**Logic Diagram** 



RECOMMENDED OPERATING CONDITIONS

|           |            | 1   | 10.10 | -   | _   |     | -    |
|-----------|------------|-----|-------|-----|-----|-----|------|
| PARAMETER | MAX or MIN | TTL | LS    | S   | ALS | F   | UNIT |
| Icc       | MAX        | 54  | 12    | 80  | 7.8 | 30  | mA   |
| Von       | MAX        | 5.5 | 5.5   | 5.5 | 5.5 | 4.5 | V    |
| lou       | MAX        | 48  | 24    | 60  | 24  | 64  | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | TTL | LS | S  | ALS | F   |
|-----------|--------|--------|------------|-----|----|----|-----|-----|
| tPLH      | A or B | Υ      | MAX        | 22  | 32 | 10 | 33  | 13  |
| tPHL .    | A or B | Y      | MAX        | 18  | 28 | 10 | 12  | 5.5 |

- All Outputs Are High for Invalid Input Conditions
- Also for Applications as
   3-Line to 8-Line Decoders
  - 4-Line to 16-Line Decoders
- Full Decoding of Valid Input Logic Ensures That All Inputs Remain Off for All Invalid Input Conditions



# **FUNCTION TABLE**

|         |   | INP | UTS |   |   |   |    |   | OUT | PUTS |   |   |   |   |
|---------|---|-----|-----|---|---|---|----|---|-----|------|---|---|---|---|
| No.     | D | С   | В   | Α | 0 | 1 | 2  | 3 | 4   | 5    | 6 | 7 | 8 | 9 |
| 0       | L | L   | L   | L | L | Н | Н  | Н | Н   | Н    | Н | Н | Н | Н |
| 1       | L | L   | L   | Н | Н | L | H  | H | Н   | H    | H | H | H | H |
| 2       | L | L   | H   | L | Н | H | L. | H | H   | Н    | H | H | H | Н |
| 3       | L | L   | H   | H | Н | H | H  | L | H   | Н    | H | H | H | Н |
| 4       | L | Н   | L   | L | Н | H | Н  | Н | L   | Н    | Н | H | H | Н |
| 5       | L | Н   | L   | Н | н | Н | Н  | Н | Н   | L    | H | H | H | Н |
| 6       | L | Н   | H   | L | н | H | H  | Н | Н   | Н    | L | Н | H | Н |
| 7       | L | H   | H   | H | Н | H | H  | H | H   | H    | H | L | H | Н |
| 8       | H | L   | L   | L | H | H | Н  | H | H   | H    | H | H | L | H |
| 9       | Н | L   | L   | Н | Н | H | H  | H | Н   | Н    | H | Н | H | L |
|         | Н | L   | Н   | L | Н | Н | Н  | Н | Н   | Н    | H | Н | Н | Н |
| 0       | H | L   | H   | H | H | H | H  | H | H   | H    | H | H | H | Н |
| 7       | H | H   | L   | L | Н | H | H  | H | H   | H    | H | H | H | Н |
| INVALID | H | H   | L   | Н | H | H | H  | H | H   | H    | H | H | H | Н |
| =       | H | H   | H   | L | H | H | H  | H | Н   | H    | H | Н | H | Н |
|         | H | Н   | H   | Н | H | H | Н  | H | H   | H    | H | H | H | H |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------|------|------------|------------|-------------|------|
| Icc       | MAX        | 56   | 13   | 0.08       | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -4         | -4         | -4          | mA   |
| lou       | MAX        | 16   | 8    | 4          | 4          | 4           | mA   |

SWITCHING CHARACTERISTICS

| SVVITCHING CHARAC   | TEMOTICS     |        |            |     | _  |            |            |             |
|---------------------|--------------|--------|------------|-----|----|------------|------------|-------------|
| PARAMETER           | INTPUT       | OUTPUT | MAX or MIN | TTL | LS | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
| tPLH 2Level - Logic | A, B, C or D | 0-9    | MAX        | 25  | 25 | 38         | 45         | 53          |
| tPHL 2Level - Logic | A, B, C or D | 0-9    | IVIAX      | 25  | 25 | 38         | 45         | 53          |
| tPLH 3Level · Logic | A. B. C or D | 0-9    | MAX        | 30  | 30 | 38         | 45         | 53          |
| tPHL 3Level · Logic | A, B, C OI D | 0-9    | IVIAA      | 30  | 30 | 38         | 45         | 53          |

# **BCD-TO-DECIMAL DECODER/DRIVER**

- 80-mA Sink-Current Capability
- All Outputs Are Off for Invalid BCD Input Conditions





- Open-Collector Outputs
- Lamp-Test Provision
- Leading/Trailing Zero Suppression



# FUNCTION TABLE

|     |    | H   | NPU' | rs |   |   | DUDDO  |     |     | 0   | UTPUT | rs  |     |     |
|-----|----|-----|------|----|---|---|--------|-----|-----|-----|-------|-----|-----|-----|
| No. | LT | RBI | D    | C  | В | Α | BI/RBO | a   | b   | C   | d     | е   | f   | g   |
| 0   | Н  | Н   | L    | L  | L | L | Н      | ON  | ON  | ON  | ON    | ON  | ON  | OFF |
| 1   | H  | X   | L    | L  | L | H | H      | OFF | ON  | ON  | OFF   | OFF | OFF | OFF |
| 2   | H  | X   | L    | L  | H | L | H      | ON  | ON  | OFF | ON    | ON  | OFF | ON  |
| 3   | H  | X   | L    | L  | Н | H | H      | ON  | ON  | ON  | ON    | OFF | OFF | ON  |
| 4   | н  | X   | L    | Н  | L | L | H      | OFF | ON  | ON  | OFF   | OFF | ON  | ON  |
| 5   | H  | X   | L    | Н  | L | H | H      | ON  | OFF | ON  | ON    | OFF | ON  | ON  |
| 6   | H  | X   | L    | H  | H | L | H      | OFF | OFF | ON  | ON    | ON  | ON  | ON  |
| 7   | Н  | X   | L    | Н  | Н | Н | H      | ON  | ON  | ON  | OFF   | OFF | OFF | OFF |
| 8   | H  | X   | Н    | L  | L | L | H      | ON  | ON  | ON  | ON    | ON  | ON  | ON  |
| 9   | H  | X   | Н    | L  | L | Н | H      | ON  | ON  | ON  | OFF   | OFF | ON  | ON  |
| 10  | H  | X   | H    | L  | H | L | H      | OFF | OFF | OFF | ON    | ON  | OFF | ON  |
| 11  | H  | X   | Н    | L  | Н | H | H      | OFF | OFF | ON  | ON    | OFF | OFF | ON  |
| 12  | Н  | X   | Н    | Н  | L | L | H      | OFF | ON  | OFF | OFF   | OFF | ON  | ON  |
| 13  | H  | X   | Н    | Н  | L | Н | H      | ON  | OFF | OFF | ON    | OFF | ON  | ON  |
| 14  | H  | X   | Н    | Н  | H | L | H      | OFF | OFF | OFF | ON    | ON  | ON  | ON  |
| 15  | Н  | X   | Н    | Н  | Н | Н | H      | OFF | OFF | OFF | OFF   | OFF | OFF | OFF |
| BI  | X  | X   | X    | X  | X | X | L      | OFF | OFF | OFF | OFF   | OFF | OFF | OFF |
| RBI | Н  | L   | L    | L  | L | L | L      | OFF | OFF | OFF | OFF   | OFF | OFF | OFF |
| LT  | L  | X   | X    | X  | X | X | H      | ON  | ON  | ON  | ON    | ON  | ON  | ON  |

# WD-OR INVEST GATES

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS    | UNIT |
|-----------|------------|------|-------|------|
| Icc       | MAX        | 103  | 13    | mA   |
| Іон       | MAX        | -0.2 | -0.05 | mA   |
| lou       | MAX        | 8    | 3.2   | mA   |

## SWITCHING CHARACTERISTICS

| SWITCHING C | HANALIER | 1131163 |            |     | _   |
|-------------|----------|---------|------------|-----|-----|
| PARAMETER   | INPUT    | OUTPUT  | MAX or MIN | TTL | LS  |
| toff        | A        | A to g  | MAX        | 100 | 100 |
| ton         | A        | A to g  | MAX        | 100 | 100 |
| toff        | RBI      | A to g  | MAX        | 100 | 100 |
| ton         | RBI      | A to g  | MAX        | 100 | 100 |

# **AND-OR INVERT GATES**

- '51, 'S51: Y = AB + CD
- 'F51, 'LS51: 1Y = (1A•1B•1C) + (1D•1E•1F) 'HC51: 2Y = (2A•2B) + (2C•2D)



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | S  | F   | SN74<br>HC | UNIT |
|-----------|------------|------|------|----|-----|------------|------|
| Icc       | MAX        | 14   | 2.8  | 22 | 7.5 | 0.08       | mA   |
| Іон       | MAX        | -0.4 | -0.4 | -1 | -1  | -4         | mA   |
| lou       | MAX        | 16   | 8    | 20 | 20  | 4          | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | TTL | LS | S   | F   | SN74<br>HC |
|-----------|-------|--------|------------|-----|----|-----|-----|------------|
| tPLH .    | Any   | Y      | MAX        | 22  | 20 | 5.5 | 6.5 | 35         |
| tPHL.     | Any   | Υ      | MAX        | 15  | 20 | 5.5 | 4.5 | 35         |



# 4-2-3-2 INPUT AND-OR INVERT GATE

•  $Y = \overline{ABCD + EF + GHI + JK}$ 



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | S  | F   | UNIT |
|-----------|------------|----|-----|------|
| lcc       | MAX        | 16 | 4.7 | mA   |
| Іон       | MAX        | -1 | -1  | mA   |
| lou       | MAX        | 20 | 20  | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | S   | F   |
|-----------|-------|--------|------------|-----|-----|
| tplH      | Any   | Υ      | MAX        | 5.5 | 7   |
| tphl.     | Any   | Υ      | MAX        | 5.5 | 5.5 |



# **DUAL J-K FLIP-FLOPS WITH CLEAR**



CD74HC/HCT73



# **FUNCTION TABLE (SN74)**

|       | INPUTS |   |   | OUTPUTS |
|-------|--------|---|---|---------|
| CLEAR | CLOCK  | J | K | Q Q     |
| L     | X      | X | X | L H     |
| H     | 1      | L | L | Q0 Q0   |
| H     | 1      | H | L | H L     |
| H     | 1      | L | H | L H     |
| Н     | 1      | H | H | TOGGLE  |
| 10    | 13     | v | ~ | 0- 0-   |

# TRUTH TABLE (CD74)

|   | INP   |        | OUT  | PUTS   |       |
|---|-------|--------|------|--------|-------|
| R | CP    | CP J   |      | Q      | ā     |
| L | Х     | X      | X    | L      | Н     |
| Н | 1     | L      | L    | No C   | nange |
| Н | 1     | Н      | L    | Н      | L     |
| Н | 3 Nes | to Lb/ | Hio  | A-600  | Н     |
| Н | hekan | HA     | Hol/ | Toggle |       |
| Н | Н     | X      | Х    | No C   | nange |

• 74ACT11xxx: Product Available

NOTE:
H = High Level (Steady State)
L = Low Level (Steady State)
X = Irrelevant
↓ = High-to-Low Transition

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------|------|------------|------------|-------------|------|
| Icc       | MAX        | 20   | 6    | 0.04       | 0.08       | 0.08        | mA   |
| Іон       | MAX        | 16   | 8    | 4          | 4          | 4           | mA   |
| lou       | MAX        | -0.4 | -0.4 | -4         | -4         | -4          | mA   |

# SWITCHING CHARACTERISTICS

|             | PARAMETER     | INPUT | OUTPUT   | MAX or MIN | TTL | LS   | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
|-------------|---------------|-------|----------|------------|-----|------|------------|------------|-------------|
| fmax        |               |       |          | MIN        | 15  | 30   | 25         | 20         | 20          |
| tw          | CLOCK"L"      |       |          |            | 20  | -    | 20         | -          | -           |
|             | CLOCK"H"      |       |          | MIN        | 47  | 20   | 20         | -          | -           |
|             | CP Pulse Wide |       |          | IVIIIV     |     |      |            | 24         | 24          |
|             | CLEAR "L"     |       |          |            | 25  | 20   | 20         | 24         | 27          |
| tsu         | CLK           |       |          | MIN        | 0 ↑ | 20 ↓ | 25 ↓       | -          | -           |
|             | J,K to CP     |       |          | IVIIIV     |     |      | -          | 24         | 24          |
| th          | CLK           |       |          | MIN        | 0 1 | 0 1  | 01         |            |             |
|             | J,K to CP     |       |          | IVIIIV     |     | -    |            | 3          | 3           |
| tPLH        |               | CLEAR | ā        | MAX        | 25  | 20   | 39         | 44         | 51          |
| tPHL .      |               | CLEAR | u        | IVIAX      |     | 20   | 39         | 44         | 51          |
| tPLH        |               | CLEAR | Q        | MAX        |     | 20   | 39         | 44         | 51          |
| tPHL .      |               | CLEAR | u        | IVIAX      | 40  | 20   | 39         | 44         | 51          |
| tPLH .      |               | CLOCK | 0        | MAN        | 25  | 20   | 32         |            | -           |
| <b>TPHL</b> |               | CLOCK | Q or Q   | MAX        | 40  | 20   | 32         |            | -           |
| tPLH        |               | CP    | Q        | MAN        | -   | -    | -          | 48         | 57          |
| tPHL        |               | LP    | u u      | MAX        | -   | -    |            | 48         | 57          |
| tPLH        |               | CP    | <u>-</u> | 1111       | -   | -    | -          | 48         | 54          |
| <b>TPHL</b> |               | UP    | u        | MAX        |     | -    | -          | 48         | 54          |

UNIT fmax : MHz, other : ns



# **FUNCTION TABLE**

|        | INP   | UTS   |   | OUT | PUTS |
|--------|-------|-------|---|-----|------|
| PRESET | CLEAR | CLOCK | D | Q   | Q    |
| L      | Н     | ×     | X | Н   | L    |
| H      | L     | X     | × | L   | Н    |
| L      | L     | X     | X | H*  | H*   |
| Н      | Н     | 1     | H | H   | L    |
| Н      | Н     | 1     | L | L   | Н    |
| Н      | Н     | L     | X | Qn  | Qn   |

<sup>†</sup> This configuration is unstable; that is, it does not persist when PRE or CLR returns to its inactive (high) level.

# RECOMMENDED OPERATING CONDITIONS

| NECOMMENDE | DUILIMINU  | CONDI | TONS | -  |      |    |    | _          |            |             | 1 10        |          | _          |            |           |      |
|------------|------------|-------|------|----|------|----|----|------------|------------|-------------|-------------|----------|------------|------------|-----------|------|
| PARAMETER  | MAX or MIN | ΠL    | LS   | S  | ALS  | AS | F  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 | UNIT |
| Icc        | MAX        | 15    | 8    | 25 | 4    | 16 | 16 | 0.04       | 0.08       | 0.04        | 0.08        | 0.04     | 0.02       | 0.08       | 0.04      | mA   |
| Гон        | MAX        | -0.4  | -0.4 | -1 | -0.4 | -2 | -1 | -4         | -4         | -4          | -4          | -24      | -24        | -24        | -24       | mA   |
| lou        | MAX        | 16    | 8    | 20 | 8    | 20 | 20 | 4          | 4          | 4           | 4           | 24       | 24         | 24         | 24        | mA   |

| PARAMETER | MAX or MIN | SN74<br>ACT | CD74<br>ACT | AHC  | AHCT | TA<br>3A | LV<br>5V | LVC<br>3V | UNIT |
|-----------|------------|-------------|-------------|------|------|----------|----------|-----------|------|
| lcc       | MAX        | 0.02        | 0.08        | 0.02 | 0.02 | -        | 0.02     | 0.01      | mA   |
| Іон       | MAX        | -24         | -24         | -8   | -8   | -6       | -12      | -24       | mA   |
| lor.      | MAX        | 24          | 24          | 8    | - 8  | 6        | 12       | 24        | mA   |

# SWITCHING CHARACTERISTICS

|             | PARAMETER          | INPUT | OUTPUT            | MAX or MIN | TTL | LS | S    | ALS  | AS   | F    | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 |
|-------------|--------------------|-------|-------------------|------------|-----|----|------|------|------|------|------------|------------|-------------|-------------|----------|
| fmax        |                    | _     | (II) 24<br>(II) 0 | MIN        | 15  | 25 | 75   | 34   | 105  | 100  | 25         | 20         | 24          | 16          | 125      |
| tw          | CLOCK"H"           |       |                   | MIN        | 30  | 25 | 6    | 14.5 | 4    | 4    | 20         | 24         | 23          | 27          | 4        |
|             | CLOCK"L"           | 7     |                   | MIN        | 37  | -  | 7.3  | 14.5 | 5.5  | 5    | 20         | 24         | 23          | 27          | 4        |
|             | RESET or CLEAR "L" |       |                   | MIN        | 30  | 25 | 7    | 15   | 4    | 4    | 25         | 24         | 20          | 24          | 4        |
| tsu         | D                  |       |                   | MIN        | 20  | 20 | 3    | 15   | 4.5  | 3    | 25         | 18         | 15          | 18          | 3.5      |
|             | PRE, CLR INACTIVE  |       |                   | MIN        | 20  | -  | -    | 10   | 2    | 2    | 6          |            | 0           | 5           | 1        |
| th          |                    |       |                   | MIN        | 5   | 5  | 2    | 0    | 0    | 1    | 0          | 3          | 0           | 3           | 0        |
| tPLH        |                    | RESET | Q                 | MAX        | 25  | 25 | 6    | 13   | 7.5  | 7.1  | 58         | 60         | 44          | 60          | 7.1      |
| tPHL        |                    | HESEI | ā                 | IVIAX      | 40  | 40 | 13.5 | 15   | 10.5 | 10.5 | 58         | 60         | 44          | 60          | 9        |
| tPLH        |                    | OLEAD | ā                 | MAX        | 25  | 25 | 6    | 13   | 7.5  | 7.1  | 58         | 60         | 44          | 60          | 7.1      |
| <b>TPHL</b> |                    | CLEAR | Q                 | IVIAX      | 40  | 40 | 13.5 | 15   | 10.5 | 10.5 | 58         | 60         | 44          | 60          | 9        |
| tPLH        |                    | CLOCK | 0 0               | MAX        | 25  | 25 | 9    | 16   | 8    | 7.8  | 44         | 53         | 35          | 53          | 8.2      |
| tPHL        |                    | CLOCK | Q or Q            | IVIAX      | 40  | 40 | 9    | 18   | 9    | 9.2  | 44         | 53         | 35          | 53          | 7.5      |

| PARAMETER          | INPUT                                   | OUTPUT                               | MAX or MIN                                                                  | SN74<br>AC                                                                          | CD74<br>AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ACT<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SN74<br>ACT | CD74<br>ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AHC                             | AHCT                                 | LV<br>3V                                  | LV<br>5V                                       | TAC<br>TAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|-----------------------------------------|--------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                         | Am a                                 | MIN                                                                         | 125                                                                                 | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 125         | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75                              | 65                                   | 45                                        | 75                                             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CLOCK"H"           |                                         |                                      | MIN                                                                         | 5                                                                                   | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6           | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                               | 5                                    | 7                                         | 5                                              | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CLOCK"L"           |                                         |                                      | MIN                                                                         | 5                                                                                   | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6           | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                               | 5                                    | 7                                         | 5                                              | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RESET or CLEAR "L" |                                         |                                      | MIN                                                                         | 5                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                               | 5                                    | 7                                         | 5                                              | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D                  |                                         |                                      | MIN                                                                         | 3                                                                                   | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.5         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                               | 5                                    | 7                                         | 5                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PRE, CLR INACTIVE  | 3H 3H                                   |                                      | MIN                                                                         | 0                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                               | 3.5                                  | 5                                         | 3                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | 100                                     |                                      | MIN                                                                         | 0.5                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1           | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                             | 0                                    | 0.5                                       | 0.5                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | DECET                                   | 0                                    | MAN                                                                         | 10                                                                                  | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.5        | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                              | 13                                   | 18                                        | 11                                             | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | NESEI                                   |                                      | IVIAA                                                                       | 10.5                                                                                | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.5        | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                              | 13                                   | 18                                        | 11                                             | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | CLEAD                                   | ā                                    | MAN                                                                         | 10                                                                                  | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.5        | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                              | 13                                   | 18                                        | 11                                             | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | CLEAN                                   | 0                                    | IVIAX                                                                       | 10.5                                                                                | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.5        | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                              | 13                                   | 18                                        | 11                                             | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | CLOCK                                   | 0 0                                  | MAN                                                                         | 10.5                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14          | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.5                            | 10                                   | 17.5                                      | 10.5                                           | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | CLUCK                                   | uoru                                 | WAX                                                                         | 10.5                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12          | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.5                            | 10                                   | 17.5                                      | 10.5                                           | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | CLOCK"H" CLOCK"L"  RESET or CLEAR "L" D | CLOCK"H" CLOCK"L" RESET or CLEAR "L" | CLOCK'H' CLOCK'L' RESET or CLEAR 'L' D PRE, CLR INACTIVE  RESET 0 CLEAR 0 0 | CLOCK'H' CLOCK'L' MIN  RESET OF CLEAR 'L' D MIN MIN MIN MIN MIN MIN MIN MIN MIN MIN | NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC | MIN   125   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110 | MAX of MIN  | NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC   NAC | MIN   125   110   85   125   85 | MIN   125   110   85   125   85   75 | MIN   125   110   85   125   85   75   65 | MIN   125   110   85   125   85   75   65   45 | MAX of MIN   AC   AC   11   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT   ACT |

UNIT fmax : MHz, other : ns

# **4-BIT BISTABLE LATCHES**





CD74HC/HCT75

# **FUNCTION TABLE**

| INP | UTS | OUT | PUTS |
|-----|-----|-----|------|
| D   | C   | Q   | Q    |
| L   | Н   | L   | Н    |
| Н   | H   | H   | L    |
| X   | L   | Qo  | Qo   |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER           | MAX or MIN | TTL  | LS   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|---------------------|------------|------|------|------------|------------|-------------|------|
| Icc                 | MAX        | 53   | 12   | 0.04       | 0.08       | 0.08        | mA   |
| Іон                 | MAX        | -0.4 | -0.4 | -4         | -4         | -4          | mA   |
| lor and an analysis | MAX        | 16   | 8    | 4          | 4          | 4           | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | TTL | LS  | SN74<br>HC | CD74<br>HC | CD74<br>HCT |     |     |       |    |    |    |    |    |
|-----------|-------|--------|------------|-----|-----|------------|------------|-------------|-----|-----|-------|----|----|----|----|----|
| tw        |       |        | MIN        | 20  | 20  | 20         | 24         | 24          |     |     |       |    |    |    |    |    |
| tsu       |       | 2.01   | IVIIN      | 20  | 20  | 25         | 18         | 18          |     |     |       |    |    |    |    |    |
| th        |       | 8.11   | MIN        | 5   | 5   | 5          | 3          | 3           |     |     |       |    |    |    |    |    |
| tPLH      |       | 0      | MAX        | 30  | 27  | 30         | 33         | 42          |     |     |       |    |    |    |    |    |
| tphL .    | D     | 0      | MAX        | 25  | 17  | 30         | 33         | 42          |     |     |       |    |    |    |    |    |
| tPLH      |       | -      | MANY MAI   | 40  | 20  | 30         | 39         | 42          |     |     |       |    |    |    |    |    |
| tphl.     | D     | 0      | MAX        | 15  | 15  | 30         | 39         | 42          |     |     |       |    |    |    |    |    |
| tPLH      |       | 0      |            | MAN | MAY | MAN        | MANY       | MAN         | MAX | MAN | MAN 3 | 30 | 27 | 33 | 39 | 42 |
| tPHL .    | - G C | и      | WAX        | 15  | 25  | 33         | 39         | 42          |     |     |       |    |    |    |    |    |
| tPLH      | - G Q |        | MAX        | 30  | 30  | 33         | 39         | 45          |     |     |       |    |    |    |    |    |
| tPHL .    | U     | u.     | IVIAX      | 15  | 15  | 33         | 39         | 45          |     |     |       |    |    |    |    |    |

# **4-BIT MAGNITUDE COMPARATORS**

# **Logic Diagram**



# FUNCTION TABLE

| 1. 1. 2                                                                                                        |                                                                                                      | ARING<br>UTS                                                                               |                                                                                  |     | SCAD                                                                              |     | 0   | UTPU                          | rs   |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------|-----|-----|-------------------------------|------|
| A3, B3                                                                                                         | A2, B2                                                                                               | A1, B1                                                                                     | A0, B0                                                                           | A>B | A <b< th=""><th>A=B</th><th>A&gt;B</th><th>A<b< th=""><th>A=B</th></b<></th></b<> | A=B | A>B | A <b< th=""><th>A=B</th></b<> | A=B  |
| A3>B3                                                                                                          | X                                                                                                    | X                                                                                          | X                                                                                | X   | X                                                                                 | X   | Н   | L                             | - La |
| A3 <b3< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>L</td><td>Н</td><td>L</td></b3<> | X                                                                                                    | X                                                                                          | X                                                                                | X   | X                                                                                 | X   | L   | Н                             | L    |
| A3=B3                                                                                                          | A2>B2                                                                                                | X                                                                                          | X                                                                                | X   | X                                                                                 | X   | Н   | L                             | L    |
| A3=B3                                                                                                          | A2 <b2< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>L</td><td>H</td><td>L</td></b2<> | X                                                                                          | X                                                                                | X   | X                                                                                 | X   | L   | H                             | L    |
| A3=B3                                                                                                          | A2=B2                                                                                                | A1>B1                                                                                      | X                                                                                | X   | X                                                                                 | X   | H   | L                             | L    |
| A3=B3                                                                                                          | A2=B2                                                                                                | A1 <b1< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>L</td><td>Н</td><td>L</td></b1<> | X                                                                                | X   | X                                                                                 | X   | L   | Н                             | L    |
| A3=B3                                                                                                          | A2=B2                                                                                                | A1=B1                                                                                      | A0>B0                                                                            | X   | X                                                                                 | X   | H   | L                             | L    |
| A3=B3                                                                                                          | A2=B2                                                                                                | A1=B1                                                                                      | A0 <b0< td=""><td>X</td><td>X</td><td>X</td><td>L</td><td>H</td><td>L</td></b0<> | X   | X                                                                                 | X   | L   | H                             | L    |
| A3=B3                                                                                                          | A2=B2                                                                                                | A1=B1                                                                                      | A0=B0                                                                            | Н   | L                                                                                 | L   | H   | L                             | L    |
| A3=B3                                                                                                          | A2=B2                                                                                                | A1=B1                                                                                      | A0=B0                                                                            | L   | H                                                                                 | L   | L   | H                             | L    |
| A3=B3                                                                                                          | A2=B2                                                                                                | A1=B1                                                                                      | A0=B0                                                                            | Н   | H                                                                                 | L   | L   | L                             | L    |
| A3=B3                                                                                                          | A2≃B2                                                                                                | A1=B1                                                                                      | A0=B0                                                                            | L   | L                                                                                 | L   | H   | H                             | TUE  |
| A3=B3                                                                                                          | A2=B2                                                                                                | A1=B1                                                                                      | A0=B0                                                                            | X   | X                                                                                 | H   | L   | L                             | H    |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | S   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------|------|-----|------------|------------|-------------|------|
| Icc       | MAX        | 88   | 20   | 115 | 0.08       | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -0.4 | -0.4 | -1  | -4         | -4         | -4          | mA   |
| lou       | MAX        | 16   | 8    | 20  | 4          | 4          | 4           | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT        | OUTPUT       | Nunber of<br>Gate Levels | MAX or MIN | TTL | LS | S    | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
|-----------|--------------|--------------|--------------------------|------------|-----|----|------|------------|------------|-------------|
| to. u     | Any A or B   | A < B, A > B | 3                        | MAX        | 26  | 36 | 16   | 58         | 59         | 56          |
| tPLH .    | data input   | A =B         | 4                        | MAX        | 35  | 45 | 18   | 50         | 53         | 60          |
| ******    | Anv A or B   | A < B, A > B | 3                        | MAX        | 30  | 30 | 16.5 | 58         | 59         | 56          |
| tphl.     | data input   | A =B         | 4                        | MAX        | 30  | 45 | 16.5 | 50         | 53         | 60          |
| tPLH      | A < B, A = B | A>B          | 1                        | MAX        | 11  | 22 | 7.5  | 44         | 42         | 45          |
| tphl .    | A < B, A = B | A>B          | 1                        | MAX        | 17  | 17 | 8.5  | 44         | 42         | 45          |
| tPLH      | A =B         | A =B         | 2                        | MAX        | 20  | 20 | 10.5 | 37         |            |             |
| tPHL      | A =B         | A =B         | 2                        | IVIAX      | 17  | 26 | 7.5  | 37         |            |             |
| tPLH      | A >B, A =B   | A < B        | 1                        | MAX        | 11  | 22 | 7.5  | 44         | 42         | 47          |
| tPHL .    | A >B, A =B   | A < B        | 1                        | IVIAX      | 17  | 17 | 8.5  | 44         | 42         | 47          |

# QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

- $Y = A \oplus B \text{ or } Y = \overline{A}B + \overline{A}B$
- 74AC11xxx : Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)

# Logic Diagram



An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.



# RECOMMENDED OPERATING CONDITIONS

|           | D OPERATING |      |      |    |      |    | F  | SN74 | CD74 | CD74 | AC   | SN74 | CD74 | ACT  |      |
|-----------|-------------|------|------|----|------|----|----|------|------|------|------|------|------|------|------|
| PARAMETER | MAX or MIN  | TTL  | LS   | S  | ALS  | AS | 1  | HC   | HC   | HCT  | 11   | AC   | AC   | 11   | UNIT |
| lcc       | MAX         | 50   | 10   | 75 | 5.9  | 38 | 28 | 0.02 | 0.04 | 0.04 | 0.04 | 0.02 | 0.08 | 0.04 | mA   |
| Іон       | MAX         | 16   | 8    | 20 | 8    | 20 | 20 | 4    | 4    | 4    | 24   | 24   | 24   | 24   | mA   |
| lor       | MAX         | -0.8 | -0.4 | -1 | -0.4 | -2 | -1 | -4   | -4   | -4   | -24  | -24  | -24  | -24  | mA   |

| PARAMETER | MAX or MIN | SN74<br>ACT | CD74<br>ACT | АНС  | AHCT | LV<br>3V | LV<br>5V | LVC<br>3V | UNIT |
|-----------|------------|-------------|-------------|------|------|----------|----------|-----------|------|
| Icc       | MAX        | 0.04        | 0.08        | 0.02 | 0.02 | - 1      | 0.02     | 0.01      | mA   |
| Іон       | MAX        | 24          | 24          | 8    | 8    | 6        | 12       | 24        | mA   |
| lou       | MAX        | -24         | -24         | -8   | -8   | -6       | -12      | -24       | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | TTL | LS | S    | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 |
|-----------|--------|--------|------------|-----|----|------|-----|-----|-----|------------|------------|-------------|----------|------------|------------|-----------|
| tplh      | A or B | Υ      | MAX        | 23  | 23 | 10.5 | 17  | 7.5 | 6.5 | 25         | 36         | 48          | 7.6      | 9          | 10.8       | 9.6       |
| tPHL .    | AOFB   | Υ      | MAX        | 17  | 17 | 10   | 12  | 6.5 | 6.5 | 25         | 36         | 48          | 6.8      | 9.5        | 10.8       | 9         |
| tPLH      | 4 0    | Υ      | MAX        | 30  | 30 | 10.5 | 17  | 6.5 | 8   | 25         | 36         | 48          | 7.6      | 9          | 10.8       | 9.6       |
| tPHL .    | A or B | Y      | MAX        | 22  | 22 | 10   | 10  | 7   | 7.5 | 25         | 36         | 48          | 6.8      | 9.5        | 10.8       | 9         |

| PARAMETER       | INPUT  | OUTPUT | MAX or MIN | SN74<br>ACT | CD74<br>ACT | AHC | AHCT | LV<br>3V | LV<br>5V | TAC<br>3A |
|-----------------|--------|--------|------------|-------------|-------------|-----|------|----------|----------|-----------|
| tPLH Input Low  | A D    | Y      | MAX        | 10          | 14.6        | 10  | 10   | 16.5     | 10       | 4.6       |
| tPHL Input Low  | AorB   | Y      | MAX        | 10.5        | 14.6        | 10  | 10   | 16.5     | 10       | 4.6       |
| tРLH Input High | A D    | Υ      | MAX        | 10          | 14.6        | 10  | 10   | 16.5     | 10       | 4.6       |
| tPHL Input High | A or B | Υ      | MAX        | 10.5        | 14.6        | 10  | 10   | 16.5     | 10       | 4.6       |





|       | OUTPUTS |    |    |    |  |  |  |  |
|-------|---------|----|----|----|--|--|--|--|
| Count | QA      | QD | QC | QB |  |  |  |  |
| 0     | L       | L  | L  | L  |  |  |  |  |
| 1     | L       | L  | L  | Н  |  |  |  |  |
| 2     | L       | L  | H  | L  |  |  |  |  |
| 2     | L       | L  | H  | H  |  |  |  |  |
| 4     | L       | Н  | L  | L  |  |  |  |  |
| 5     | H       | L  | L  | L  |  |  |  |  |
| 6     | H       | L  | L  | Н  |  |  |  |  |
| 7     | H       | L  | H  | L  |  |  |  |  |
| 8     | H       | L  | H  | H  |  |  |  |  |
| 9     | H       | Н  | L  | L  |  |  |  |  |

# RESET/COUNT FUNCTION TABLE

| 1     | RESET | INPUTS | 3     |    | OUT | PUTS |    |
|-------|-------|--------|-------|----|-----|------|----|
| R0(1) | R0(2) | R9(1)  | R9(2) | QD | QC  | QB   | QA |
| H     | Н     | L      | X     | L  | L   | L    | L  |
| H     | H     | X      | L     | L  | L   | L    | L  |
| X     | X     | H      | H     | H  | L   | L    | Н  |
| X     | L     | X      | L     |    | Co  | unt  |    |
| L     | X     | L      | X     |    | Co  | unt  |    |
| L     | X     | X      | L     |    | Co  | unt  |    |
| X     | L     | L      | X     |    | Co  | unt  |    |



| RECOMMENDED OPERATING CONDITI | NN |
|-------------------------------|----|
|                               |    |

| PARAMETER | MAX or MIN | TTL  | LS   | UNIT |
|-----------|------------|------|------|------|
| Icc       | MAX        | 39   | 15   | mA   |
| Іон       | MAX        | -0.8 | -0.4 | mA   |
| loc       | MAX        | 16   | 8    | mA   |

SWITCHING CHARACTERISTICS

| SWI    | TCHING CHA        | RACTERISTIC | S      |            |     |    |
|--------|-------------------|-------------|--------|------------|-----|----|
| PA     | RAMETER           | INPUT       | OUTPUT | MAX or MIN | TTL | LS |
|        |                   | А           | QA     | MIN        | 32  | 32 |
| fmax   | ,                 | В           | QB     | IVIIIV     | 16  | 16 |
|        | A                 |             |        |            | 15  | 15 |
| tvv    | В                 |             |        | MIN        | 30  | 30 |
| RESET  |                   |             |        |            | 15  | 30 |
| tsu    | RESET<br>INACTIVE |             |        | MIN        | 25  | 25 |
| tPLH   |                   | А           | QA     | MAX        | 16  | 16 |
| tPHL   |                   | A           | UA     | IVIAX      | 18  | 18 |
| tPLH   |                   | А           | QD     | MAX        | 48  | 48 |
| tPHL   |                   | -           | ub.    | IVIAA      | 50  | 50 |
| tPLH   |                   | В           | QB     | MAX        | 16  | 16 |
| tPHL   |                   | D           | db.    | IVIAA      | 21  | 21 |
| tPLH   |                   | В           | QC     | MAX        | 32  | 32 |
| tPHL   |                   | D           | 46     | IVIAA      | 35  | 35 |
| tPLH   |                   | В           | QC     | MAX        | 32  | 32 |
| tPHL.  |                   | U           | ut.    | IVIAA      | 35  | 35 |
| tPHL . |                   | Set to 0    | Any    | MAX        | 40  | 40 |
| tPLH   |                   | Set to 9    |        | MAX        | 30  | 30 |
| tPHL.  |                   | 361 (0 3    | QB, QC | IVIAA      | 40  | 40 |





# **DIVIDE-BY-12 COUNTERS**

| COUNT |    |    |    |    |
|-------|----|----|----|----|
| COUNT | QD | QC | QB | QA |
| 0     | L  | L  | L  | L  |
| 1     | L  | L  | L  | H  |
| 2     | L  | L  | H  | L  |
| 3     | L  | L  | H  | H  |
| 4     | L  | Н  | L  | L  |
| 5     | L  | H  | L  | H  |
| 6     | H  | L  | L  | L  |
| 7     | H  | L  | L  | H  |
| 8     | H  | L  | H  | L  |
| 9     | H  | L  | Н  | Н  |
| 10    | H  | Н  | L  | L  |
| 11    | H  | H  | L  | Н  |

| RESET | INPUTS | OUTPUTS |    |     |    |  |  |
|-------|--------|---------|----|-----|----|--|--|
| R0(1) | R0(2)  | QD      | QC | QB  | QA |  |  |
| Н     | Н      | L       | L  | o L | L  |  |  |
| L     | ×      |         | CO | JNT |    |  |  |
| X     | L      |         | CO | UNT |    |  |  |

# RECOMMENDED OPERATING CONDITIONS

| RECOMMENDE | D OPERATING | CONDI | TIONS | _    |
|------------|-------------|-------|-------|------|
| PARAMETER  | MAX or MIN  | TTL   | LS    | UNIT |
| Icc        | MAX         | 39    | 15    | mA   |
| Іон        | MAX         | -0.8  | -0.4  | mA   |
| lou        | MAX         | 16    | 8     | mA   |

# SWITCHING CHARACTERISTICS

| PAI                   | RAMETER | INPUT    | OUTPUT | MAX or MIN | TTL | LS |
|-----------------------|---------|----------|--------|------------|-----|----|
| fmax                  |         | A QA MIN |        | NAIN       | 32  | 32 |
| ımax                  | ,       | В        | QB     | IVIIN      | 16  | 16 |
|                       | A       |          |        |            | 15  | 15 |
| tw                    | В       |          |        | MIN        | 30  | 30 |
|                       | RESET   |          |        |            | 15  | 30 |
| tsu RESET<br>INACTIVE |         |          |        | MIN        | 25  | 25 |
| tPLH<br>tPHL          |         |          | 0.4    | MAX        | 16  | 16 |
|                       |         | Α        | QΑ     | IVIAA      | 18  | 18 |
| tPLH                  |         | Α        | QD     | MAX        | 48  | 48 |
| tPHL                  |         | А        | ub.    | IVIAX      | 50  | 50 |
| tPLH                  |         | В        | QB     | MAX        | 16  | 16 |
| tPHL.                 |         | В        | цв     | WAX        | 21  | 21 |
| tPLH                  |         | В        | QC     | MANY       | 16  | 16 |
| tPHL .                |         | В        | uc     | MAX        | 21  | 21 |
| tPLH<br>tPHL<br>tPHL  |         | В        | QD     | MAX        | 32  | 32 |
|                       |         | D        | dD.    | IWAX       | 35  | 35 |
|                       |         | Set to 0 | Any    | MAX        | 40  | 40 |

UNIT fmax : MHz, other : ns

# Logic Diagram



# **4-BIT BINARY COUNTERS**

**FUNCTION TABLE** 

| COUNT |    | OUT | PUTS |    |
|-------|----|-----|------|----|
| COUNT | QD | QC  | QB   | QA |
| 0     | L  | L   | L    | L  |
| 1     | L  | L   | L    | Н  |
| 2     | L  | L   | H    | L  |
| 3     | L  | L   | H    | H  |
| 4     | L  | Н   | L    | L  |
| 5     | L  | Н   | L    | H  |
| 6     | L  | H   | H    | L  |
| 7     | L  | H   | H    | H  |
| 8     | H  | L   | L    | L  |
| 9     | H  | L   | L    | H  |
| 10    | H  | L   | Н    | L  |
| 11    | H  | L   | H    | H  |
| 12    | H  | Н   | L    | L  |
| 13    | H  | H   | L    | H  |
| 14    | H  | H   | Н    | L  |
| 15    | H  | H   | H    | H  |

| RESET | INPUTS | OUTPUTS |    |    |    |  |  |  |
|-------|--------|---------|----|----|----|--|--|--|
| R0(1) | R0(2)  | QD      | QC | QB | QA |  |  |  |
| Н     | Н      | L       | L  | L  | L  |  |  |  |
| L     | X      | COUNT   |    |    |    |  |  |  |
| X     | L      | COUNT   |    |    |    |  |  |  |

CKB (1)[8] J Q (9)[9] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K K W (1)[12] Q CK K K W (1)[12] Q CK K K K W (1)[12] Q CK K K K W (1)[12] Q CK K K K K W (1)[12] Q CK K K K K W (1)[12] Q CK K K K W (1)[12] Q CK K K K W (1)[12] Q CK K K K W (1)[12] Q CK K K K W (1)[12] Q CK K K K W (1)[12] Q CK K K K W (1)[12] Q CK K K K W (1)[12] Q CK K K K W (1)[12] Q CK K K K W (1)[12] Q CK K K K W (1)[12] Q CK K K K W (1)[12] Q CK K K W (1)[12] Q CK K K W (1)[12] Q CK K K W (1)[12] Q CK K K W (1)[12] Q CK K K W (1)[12] Q CK K K W (1)[12] Q CK K K W (1)[12] Q CK K K W (1)[12] Q CK K K W (1)[12] Q CK K K W (1)[12] Q CK K K W (1)[12] Q CK K K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK K W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK W (1)[12] Q CK

CKA (14)[14]

RECOMMENDED OPERATING CONDITIONS

| HEOOMMETADE | D OI LINTING | 001401 | 110110 | _          | _           |      |
|-------------|--------------|--------|--------|------------|-------------|------|
| PARAMETER   | MAX or MIN   | TTL    | LS     | CD74<br>HC | CD74<br>HCT | UNIT |
| Icc         | MAX          | 39     | 15     | 0.16       | 0.16        | mA   |
| Іон         | MAX          | -0.8   | -0.4   | -4         | -4          | mA   |
| lou         | MAX          | 16     | 8      | 4          | 4           | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER    |       | INPUT    | OUTPUT | MAX or MIN | TTL | LS | CD74<br>HC | CD74<br>HCT |
|--------------|-------|----------|--------|------------|-----|----|------------|-------------|
|              |       | А        | QA     | MIN        | 32  | 32 | 20         | 20          |
| fmax         | ,     | В        | QB     | IVIIIV     | 16  | 16 | 20         | 20          |
|              | A     |          |        |            | 15  | 15 | 24         | 24          |
| tw           | В     |          |        | MIN        | 30  | 30 | 24         | 24          |
| RESET        |       |          |        |            | 15  | 30 | 24         | 24          |
| tsu          | RESET |          |        | MIN        | 25  | 25 | -          | -           |
| tPLH         |       |          |        |            | 16  | 16 | 38         | 51          |
| tPHL .       |       | А        | QΑ     | MAX        | 18  | 18 | 38         | 51          |
| tPLH .       |       |          | 0.0    | MAN        | 70  | 70 | -          | 87          |
| tPHL         |       | А        | QD     | MAX        | 70  | 70 |            | 87          |
| tPLH         |       |          | 0.0    | MAN        | 16  | 16 | 41         | 51          |
| tPHL         |       | В        | QΒ     | MAX        | 21  | 21 | 41         | 51          |
| tPLH         |       | В        | QC     | MAY        | 32  | 32 | 56         | 69          |
| tPHL<br>tPLH |       | В        | uc     | MAX        |     | 35 | 56         | 69          |
|              |       |          |        | MAN        | 51  | 51 | 74         | 87          |
| tPHL         |       | В        | QD     | MAX        | 51  | 51 | 74         | 87          |
| tPHL.        |       | Set to 0 | ANY    | MAX        | 40  | 40 | -          | -           |

UNIT fmax : MHz, other : ns



| - | - | - | 17 | - | - | 7 | Н | H | 64       | 10 | 2  | 2  |      |
|---|---|---|----|---|---|---|---|---|----------|----|----|----|------|
| - | - | - | 17 | - | - | Н |   | - | 64<br>64 | H  | 4  | 4  | 4    |
| - | - | 7 | 1. | - | Н | 7 | - | - |          | Н  | 8  | 8  | - 1  |
| _ | - | - | L  | H | п | L | L | 1 | 64       |    | 16 | 16 | 1    |
| 1 | 1 | - | H  |   | ī | i | 1 |   | 64       | H  | 32 | 32 | ul i |
| L | L | L |    | H | Н | Н | Н | Н | 64       | H  | 63 | 63 | 1    |
| L | L | L | Н  | Н | Н | Н | Н | Н | 64       | L  | Н  | 63 | 1    |
| L | L | L | H  | L | Н | L | L | L | 64       | Н  | 40 | 40 | 1    |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | UNIT |
|-----------|------------|------|------|
| Icc       | MAX        | 120  | mA   |
| Іон       | MAX        | 16   | mA   |
| lou       | MAX        | -0.4 | mA   |

| SWI                  | TCHING CHA | ARACTERISTI | CS       | - 17_      | _   |
|----------------------|------------|-------------|----------|------------|-----|
| PAI                  | RAMETER    | INPUT       | OUTPUT   | MAX or MIN | TTL |
| fmax                 |            | A           | Q.A      | MIN        | 25  |
| tw                   | CLK        |             |          | MIN        | 20  |
|                      | CLR        |             |          | MIN        | 15  |
| tsu                  | Positive   |             |          | MIN        | 25  |
|                      | Negative   |             |          | MIN        | 0   |
| th                   | Positive   |             |          | MIN        | 0   |
|                      | Negative   |             |          | MIN        | 20  |
| tPLH                 |            | ELLA DI E   | ELLEDIE. | MAX        | 20  |
| tPHL.                |            | ENABLE      | ENABLE   | MAX        | 21  |
| tPLH                 |            | AWRE        | 7-0      | MAX        | 18  |
| tPHL.                |            | STRB        | Z        | MAX        | 23  |
| tPLH                 |            | 0.11        | Y        | MAX        | 39  |
| tPHL .               |            | CLK         | CLK T    |            | 30  |
| tPHL<br>tPHL<br>tPHL |            | OLK         | 2        | MAX        | 18  |
|                      |            | CLK         | Z        | MAX        | 26  |
| tPLH                 |            | DATE        |          | MAX        | 10  |
| tPHL                 |            | HATE        | RATE Z   |            | 14  |
| tPLH                 |            | UNITY       | γ        | MAX        | 14  |
| tPHL                 |            | /CAS        | ,        | MAX        | 10  |
| tPLH                 |            | STRB        | Y        | MAX        | 30  |
| tPHL                 |            | SINB        | T.       | MAX        | 33  |
| tPLH                 |            | CLK         | ENABLE   | MAX        | 30  |
| tPHL                 |            | ULK         | ENABLE   | MAX        | 33  |
| <b>t</b> PLH         |            | CLR         | Υ        | MAX        | 36  |
| tPHL                 |            | CLH         | Z        | MAX        | 23  |
| tPLH                 |            | DATE        | v        | MAX        | 23  |
| tPHL                 |            | KAIL        | RATE Y   |            | 23  |

IINIT fmax · MHz other · ns



|       | INPUTS |   | 183 | OUTPUTS | ų |
|-------|--------|---|-----|---------|---|
| CLEAR | CLOCK  | J | K   | QQ      |   |
| L     | X      | X | X   | L H     | П |
| H     |        | L | L   | Q0 Q0   |   |
| H     |        | H | L   | H L     |   |
| H     | JL     | L | H   | L H     |   |
| HE    |        | H | н   | TOGGLE  |   |

### 'LS107A,'HC107

|       | INPUTS |   |   | OUTPUTS |
|-------|--------|---|---|---------|
| CLEAR | CLOCK  | J | K | Q Q     |
| L     | X      | X | X | L H     |
| H     | 1      | L | L | Q0 Q0   |
| H     | 1      | H | L | H L     |
| H     | 1      | L | H | L H     |
| H     | 1      | H | H | TOGGLE  |
| H     | H      | X | X | Qn Qn   |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------|------|------------|------------|-------------|------|
| lcc       | MAX        | 20   | 6    | 0.04       | 0.08       | 0.08        | mA   |
| Іон О     | MAX        | -0.4 | -0.4 | -4         | -4         | -4          | mA   |
| lou       | MAX        | 16   | 8    | 4          | 4          | 4           | mA   |

| SWIII       | CHING CHARACTER | RISTICS    |        |            | ,  |    |            |            |            |
|-------------|-----------------|------------|--------|------------|----|----|------------|------------|------------|
| F           | PARAMETER       | INPUT      | OUTPUT | MAX or MIN | ΠL | LS | SN74<br>HC | CD74<br>HC | CD74<br>HC |
| fmax        |                 |            |        | MIN        | 15 | 30 | 25         | 20         | 19         |
| tw          | CLK H           |            |        | MIN        | 20 | 20 | 20         |            | -          |
|             | CLK L           |            |        | MIN        | 47 | -  | 20         | -          |            |
|             | CP              |            |        | MIN        | -  | -  | 100        | 24         | 27         |
|             | CLR L (or R)    |            |        | MIN        | 25 | 25 | 20         | 25         | 36         |
| tsu         | J, K            |            |        | MIN        | 0  | 20 | 25         | 30         | 30         |
|             | CLR INACTIVE    |            |        | MIN        | 0  | 25 | 25         | -          | -          |
| th          |                 |            |        | MIN        | 0  | 0  | 0          | 3          | 5          |
| tPLH        |                 | CLR (or R) | ā      | MAX        | 25 | 20 | 39         | 47         | 57         |
| <b>TPHL</b> |                 | CLN (OF N) | Q      | MAX        | 40 | 20 | 39         | 47         | 57         |
| tPLH        |                 | CLK        | ā      | MAX        | 25 | 20 | 32         |            | -          |
| tPHL        |                 | ULK        | Q      | MAX        | 40 | 20 | 32         |            | -          |
| tPLH        |                 | CP         | Q      | MAX        | -  | -  | -          | 51         | 65         |
| <b>TPHL</b> |                 | CF         | u      | MAX        | -  |    |            | 51         | 65         |
| tPLH        |                 | CP         | ā      | MAX        |    | -  |            | 51         | 60         |
| <b>TPHL</b> |                 | CF         | u      | MAX        | -  | -  |            | 51         | 60         |

UNIT fmax : MHz, other : ns



n n L A A Q0 Q0

† The output levels in this configuration are not guaranteed to meet the minimum levels for V<sub>OH</sub>. Furthermore, this configuration is nonstable; that is, it will not persist when either PRE or CLR returns to its inactive (high) level.

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | ALS  | AS | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT | UNIT |
|-----------|------------|------|------|------|----|----|------------|------------|-------------|------------|-------------|------|
| Icc       | MAX        | 15   | 8    | 4    | 17 | 17 | 0.04       | 0.08       | 0.08        | 0.08       | 0.08        | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -0.4 | -2 | 1  | -4         | -4         | -4          | -24        | -24         | mA   |
| lou       | MAX        | 16   | 4    | 8    | 20 | 20 | 4          | 4          | 4           | 24         | 24          | mA   |

### SWITCHING CHARACTERISTICS

| SWITE | CHING CHARACTE | RISTICS |             |            |     |    |      | 197. 19 | 1    |            |            |             |            |             |
|-------|----------------|---------|-------------|------------|-----|----|------|---------|------|------------|------------|-------------|------------|-------------|
| F     | PARAMETER      | INPUT   | ОИТРИТ      | MAX or MIN | TTL | LS | ALS  | AS      | F    | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT |
| fmax  |                |         | - 5         | MIN        | 25  | 25 | 34   | 105     | 90   | 25         | 25         | 19          | 100        | 100         |
| tw    | CLK H          |         |             | MIN        | 20  | 25 | 14.5 | 4       | 4    | 20         |            | -           | 275        | -           |
|       | CLK L          |         |             | MIN        | 20  | -  | 14.5 | 5.5     | 5    | 20         | -          | -           |            | -           |
|       | CP             |         |             | MIN        |     |    | -    | -       |      | -          | 24         | 27          | 5          | 5           |
|       | PRE L          |         |             | MIN        | 20  | 25 | 15   | 4       | 4    | 25         | -          | -           | -          | -           |
|       | CLR L          |         |             | MIN        | 20  | 25 | 15   | 4       | 4    | 25         | -          | -           | -          |             |
|       | R              |         |             | MIN        |     |    | -    | -       |      | 12.1       | 24         | 36          | 4.5        | 5.5         |
| tsu   | J, K           |         |             | MIN        | 10  | 25 | 15   | 5.5     | 3    | 25         | -          | -           | -          | -           |
|       | PRE, CLR       |         |             | MIN        | 10  | -  | 10   | 2       | 2    | 6          | -          | -           |            | -           |
|       | J, K to CP     |         |             | MIN        | -   | -  | -    |         |      | -          | 30         | 30          | 5.5        | 5.5         |
| th    |                |         |             | MIN        | 6   | 5  | 0    | 0       | 1    | 0          | 3          | 5           | 0          | 1           |
| tPLH  |                | PRE     | 0           | MAX        | 15  | 25 | 13   | 8       | 8    | 58         | 2          | -           | -          | -           |
| tPHL  |                | PRE     | ā           | MAX        | 35  | 40 | 15   | 10.5    | 10.5 | 58         | -          | -           | -          | -           |
| tPLH  |                | CLR     | ā           | MAX        | 15  | 25 | 13   | 8       | 8    | 58         | -          | -           | -          | -           |
| tPHL. |                | LLH     | Q           | MAX        | 25  | 40 | 15   | 10.5    | 10.5 | 58         | -          | -           | -          | -           |
| tPLH  |                | CLK     | ā,a         | MAX        | 16  | 25 | 16   | 9       | 8    | 44         | -          | -           | 1.0        | 19          |
| tPHL. |                | LLK     | u,u         | MAX        | 28  | 40 | 18   | 9       | 9.2  | 44         | -          | -           |            |             |
| tPLH  |                | CP      | Q           | MAX        |     | -  | -    | -       | -    | -          | 51         | 65          | 10.3       | 10.3        |
| tPHL. |                | LP      | u           | MAX        | -   | -  | -    |         | -    | -          | 51         | 65          | 10.3       | 10.3        |
| tPLH  |                | CP      | ā           | MAX        | - 1 |    | 140  | -       |      | -          | 51         | 60          | 10.3       | 10.3        |
| tPHL  |                | CP      | u           | MAX        |     | -  | 1-0  | -       | -    | -          | 51         | 60          | 10.3       | 10.3        |
| tPLH  |                | R       | <u>ā</u> ,a | MAX        |     | -  | -    | -       | -    |            | 47         | 57          | 12.2       | 12.2        |
| tPHL  | A A            | н       | u,u         | MAX        | -   | -  | -    | -       | -    | -          | 47         | 57          | 12.2       | 12.2        |

UNIT fmax : MHz, other : ns

# Logic Diagram



FUNCTION TABLE

|       | INF | PUTS |   |     | OUTPUTS |
|-------|-----|------|---|-----|---------|
| CLEAR | A1  | A2   | В | B2  | QQ      |
| L     | X   | X    | X | X   | L H     |
| X     | H   | H    | X | X   | L† H†   |
| X     | X   | X    | L | X   | L† H†   |
| X     | X   | X    | X | · L | L† H†   |
| Н     | L   | X    | 1 | H   | JL JL   |
| Н     | L   | X    | Н | 1   | JL J    |
| Н     | X   | L    | 1 | H   | TLT     |
| Н     | X   | L    | H | 1   |         |
| Н     | Н   | 1    | H | H   |         |
| H     | 1   | 1    | H | H   | 11.11   |
| Н     | 1   | Н    | H | H   | 122     |
| 1     | L   | X    | H | H   | TLT     |
| Ť     | X   | L    | Н | H   | 52.75   |

See explanation of function table on page

† These lines of the functional tables assume that the indicated steady-state conditions at the A and B inputs have been set up long enough to complete any pulse started before the set up.

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | S  | ALS  | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT | LVC<br>3V | UNIT |
|-----------|------------|------|----|------|----|------------|------------|-------------|------------|-------------|-----------|------|
| lcc       | MAX        | 6    | 25 | 4.5  | 19 | 0.04       | 0.08       | 0.08        | 0.08       | 0.08        | 0.01      | mA   |
| Іон       | MAX        | -0.4 | -1 | -0.4 | -1 | -4         | -4         | -4          | -24        | -24         | -24       | mA   |
| lou       | MAX        | 8    | 20 | 8    | 20 | 4          | 4          | 4           | 24         | 24          | 24        | mA   |

|       | PARAMETER    | INPUT      | OUTPUT                       | MAX or MIN | LS   | S     | ALS  | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | 3V  |
|-------|--------------|------------|------------------------------|------------|------|-------|------|-----|------------|------------|-------------|-----|
| fmax  |              |            |                              | MIN        | 30   | 80    | 30   | 100 | 20         | 20         | 20          | 150 |
| tw    | PRE, CLR     |            |                              | MIN        | 25   | 8     | 10   | 5   | 25         | 24         | 27          |     |
|       | CLK H        |            |                              | MIN        | 20   | 6     | 16.5 | 5   | 25         |            | 444         | 3.3 |
|       | CLK L        |            |                              | MIN        |      | 6.5   | 16.5 | 5   | 25         |            |             | 3.3 |
|       | CP           |            |                              | MIN        | -    | -     | -    | -   | -          | 24         | 24          | -   |
| tsu   | DATA         |            |                              | MIN        | 20   | 7     | 22   | 5   | 25         | 24         | 24          | 2.3 |
|       | PRE INACTIVE |            |                              | MIN        | 25   |       | 20   | 5   | 25         |            |             | 2.4 |
|       | CLR INACTIVE |            |                              | MIN        | 20   | May X | 20   | 5   | 25         | - 1        | PIPE        | 2.4 |
| th    |              |            |                              | MIN        | 0    | 0     | 0    | 0   | 0          | 0          | 3           | 0.7 |
| tPLH  |              | PRE or CLR | Q or $\overline{\mathbb{Q}}$ | MAX        | 20   | 7     | 15   | 7.5 | 41         | -          | -           | 4.8 |
| tPHL  |              | FRE OF CEN | u or u                       | MAX        | 20   | 7     | 18   | 7.5 | 41         |            | A -         | 4.8 |
| tPLH  |              | CLK        | Q or Q                       | MAX        | 20   | 7     | 15   | 7.5 | 31         | -          | 8 -         | 5.9 |
| tphl. |              | CLK        | u or u                       | MAX        | 20   | 7     | 19   | 7.5 | 31         |            | A -         | 5.9 |
| tPLH. |              | CP CP      | Q or Q                       | MAX        | 1    |       | -    | -   |            | 53         | 53          | -   |
| tPHL  |              | LP         | uoru                         | MAX        | -    |       |      | -   | -          | 53         | 53          | -   |
| tPLH  |              | -<br>S     | 0 - 0                        | MAX        |      | -     | -    | 12  | -          | 47         | 48          |     |
| tPHL  |              | 0          | Q or Q                       | MAX        | 1.00 | -     |      |     | -          | 47         | 48          | -   |
| tPLH  |              | R          | 0 0                          | MAX        | -    | -     | -    | -   | -          | 54         | 56          | -   |
| tPHL. |              | н          | Q or Q                       | MAX        |      |       | -    | -   | -          | 54         | 56          | -   |

UNIT fmax : MHz, other : ns

|    | INPUTS |   | OUTP | UTS |
|----|--------|---|------|-----|
| A1 | A2     | В | Q    | Q   |
| L  | X      | H | L    | Н   |
| X  | L      | H | L†   | H†  |
| X  | X      | L | L†   | H†  |
| H  | H      | X | L†   | H†  |
| H  | 1      | H | JT.  | L   |
| 1  | H      | H | TT.  | T   |
| 1  | 1      | H | LT.  | T   |
| L  | X      | 1 | J.   | T   |
| X  | L      | 1 |      | ш   |

Logic Diagram

A1 (3)
A2 (4)
B (5)

(10)
Cext

NOTES: 1. An external capacitor may be connected between C<sub>Ext</sub> (positive) and R<sub>Ext</sub>/C<sub>Ext</sub>.

2. To use the internal timing resistor, connect R<sub>int</sub> to V<sub>CC</sub>. For improved pulse width accuracy and repestability, connect an external resistor between R<sub>Ext</sub>/C<sub>Ext</sub> and V<sub>CC</sub> with R<sub>int</sub> open-circuited.

See explanation of function table on page

† These lines of the functional tables assume that the indicated steady-state conditions at the A and B inputs have been set up long enough to complete any pulse started before the set up.

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | UNIT |
|-----------|------------|------|------|
| lcc       | MAX        | 40   | mA   |
| Іон       | MAX        | -0.4 | mA   |
| lou       | MAX        | 16   | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT  | MAX or MIN | TTL |
|-----------|-------|---------|------------|-----|
| tw (IN)   | 0 0   | 0 0     | MIN        | 50  |
| tPLH 8    | A     | 14 0 EX | BI MAY     | 70  |
| tPHL PA   | В     | 18 45   | MAX        | 80  |
| tPLH .    | Α     | E -     | MAY        | 55  |
| tPHL -    | В     | u       | MAX        | 65  |

### Rint is nominally 10 kW for '122 and 'LS122

**FUNCTION TABLE** 

| INPUTS |    |    |   |    | OUTPUTS |
|--------|----|----|---|----|---------|
| CLEAR  | A1 | A2 | В | B2 | QQ      |
| L      | X  | X  | X | X  | L H     |
| ×      | H  | H  | X | X  | L† H†   |
| X      | X  | X  | L | X  | L† H†   |
| X      | X  | X  | X | L  | L† H†   |
| H      | L  | X  | 1 | H  | 111     |
| Н      | L  | X  | н | 1  | 1 11 11 |
| H      | X  | L  | 1 | H  | JLT     |
| H      | X  | L  | H | 1  |         |
| H      | H  | 1  | H | H  | 1111    |
| H      | 1  | 1  | Н | H  | TIT     |
| H      | 1  | Н  | Н | H  | JL 7L   |
| 1      | L  | ×  | H | H  | JLJ     |
| 1      | X  | L  | H | H  |         |

See explanation of function table on page

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | UNIT |
|-----------|------------|------|------|------|
| Icc       | MAX        | 66   | 11   | mA   |
| Гон       | MAX        | -0.8 | -0.4 | mA   |
| lou       | MAX        | 16   | 8    | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | TTL | LS |
|-----------|-------|--------|------------|-----|----|
| tw        | 61 55 | 91 61  | MIN        | 40  | 40 |
|           | A     |        | MAN        | 33  | 33 |
| tplH -    | В     | 1 0    | MAX        | 28  | 44 |
| 1000      | A     | ā      | 4444       | 40  | 45 |
| tphl.     | В     | u u    | MAX        | 36  | 56 |
| tPLH      | OLEAD | Q      | 1447       | 27  | 27 |
| tphl.     | CLEAR | ō      | MAX        | 40  | 45 |

<sup>†</sup> These lines of the functional tables assume that the indicated

steady-state conditions at the A and B inputs have been set up long enough to complete any pulse started before the set up.

# DUAL RETRIGGERABLE MONOSTABLE MULTIVIBARATORS WITH CLEAR

 Retriggerable for Very Long Output Pulse, Up to 100% Duty Cycle



### **FUNCTION TABLE**

| INPUTS |       |   | OUTPUTS |
|--------|-------|---|---------|
| CLEAR  | Ā (A) | В | Q Q     |
| L      | X     | X | L H     |
| X      | H     | × | L† H†   |
| X      | X     | L | L† H†   |
| H      | L     | 1 | 127     |
| H      | 1     | Н |         |
| 1      | L     | H | 11.11   |

See explanation of function table on page † These lines of the functional tables assume that the indicated steady-state conditions at the A and B inputs have been set up long enough to complete any pulse started before the set up.

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | CD74<br>HC | CD74<br>HCT | AHC  | AHCT  | LV<br>3V | LV<br>5V | UNIT |
|-----------|------------|------|------|------------|-------------|------|-------|----------|----------|------|
| Icc       | MAX        | 66   | 20   | 0.16       | 0.16        | 0.65 | 0.975 | 0.28     | 0.65     | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -4         | -4          | -8   | -8    | -6       | -12      | mA   |
| lou       | MAX        | 16   | 8    | 4          | 4           | 8    | 8     | 6        | 12       | mA   |

|  |  |  | STICS |
|--|--|--|-------|
|  |  |  |       |

| PARAMETER | INPUT | OUTPUT | MAX or MIN | TTL | LS | CD74<br>HC | CD74<br>HCT | AHC | AHCT | LV<br>3V | LV<br>5V |
|-----------|-------|--------|------------|-----|----|------------|-------------|-----|------|----------|----------|
| tw        |       |        | MIN        | 40  | 40 | 30         | 30          | 5   | 5    | 5        | 5        |
| to        | A (A) |        | MAX        | 33  | 33 | 90         | 141         | 16  | 12   | 27.5     | 16       |
| tPLH      | В     | 1 4    | IVIAA      | 28  | 44 | 90         |             | 16  | 12   | 27.5     | 16       |
|           | A (A) | ā      | MAX        | 40  | 45 | 96         |             | 16  | 12   | 27.5     | 16       |
| TPHL -    | В     | 1 u    | MAX        | 36  | 56 | 96         | -           | 16  | 12   | 27.5     | 16       |
| tPLH      | CLEAR | 0      | MAN        | 27  | 27 | 65         | -           | 13  | 14   | 22       | 13       |
| tphL .    | (R)   | ā      | MAX        | 40  | 45 | 65         |             | 13  | 14   | 22       | 13       |

# DUAL VOLTAGE-CONTROLLED OSCILLATORS WITH ENABLE INPUTS 1999 2018 2018 2018 2018

- Frequency Spectrum: 1Hz to 60MHz
- Typical fmax: 85MHz
- Typical Power Dissipation: 525mW



| RECOMMENDED | OPERATING CON | DITION | S   |
|-------------|---------------|--------|-----|
| PARAMETER   | MAX or MIN    | S      | UNI |
| lcc         | MAX           | 150    | mA  |

| 77110111121211 | 110.01.01.11111 | 1   |    |
|----------------|-----------------|-----|----|
| lcc            | MAX             | 150 | mA |
| Іон            | MAX             | -1  | mA |
| lor            | MAX             | 20  | mA |

| SWITCHING | CHARACTERISTICS |
|-----------|-----------------|
|           |                 |

| PARAMETER | MAX or MIN | 5  |
|-----------|------------|----|
| fo        | MIN        | 60 |

UNIT: NS



# Logic Diagram



### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | E   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | SN64<br>BCT | ABT | UNIT |
|-----------|------------|------|------|-----|------------|------------|-------------|-------------|-------------|-------------|-----|------|
| Icc       | MAX        | 54   | 20   | 40  | 0.08       | 0.16       | 0.08        | 0.16        | 49          | 49          | 30  | mA   |
| Іон       | MAX        | -5.2 | -2.6 | -15 | -6         | -6         | -6          | -6          | -15         | -15         | -32 | mA   |
| lou       | MAX        | 16   | 24   | 64  | 6          | 6          | 6           | 6           | 64          | 64          | 64  | mA   |

| PARAMETER | MAX or MIN | LVTH<br>3V | AHC  | AHCT | LV<br>3V | LV<br>5V | LVC<br>3V | ALVC | UNIT |
|-----------|------------|------------|------|------|----------|----------|-----------|------|------|
| lcc       | MAX        | 7          | 0.04 | 0.02 | 0.02     | 0.02     | 0.01      | 0.01 | mA   |
| Іон       | MAX        | -32        | -8   | -8   | -8       | -16      | -24       | -24  | mA   |
| lou       | MAX        | 64         | 8    | 8    | 8        | 16       | 24        | 24   | mA   |

### SWITCHING CHARACTERISTICS

| SVVII CHING CHAR | ACTEMISTICS | ,      |            |     |    |     |            |            |             |             |             |             |     |
|------------------|-------------|--------|------------|-----|----|-----|------------|------------|-------------|-------------|-------------|-------------|-----|
| PARAMETER        | INPUT       | OUTPUT | MAX or MIN | TTL | LS | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | SN64<br>BCT | ABT |
| tPLH             | ^           | V      | MAX        | 13  | 15 | 6.5 | 30         | 30         | 33          | 38          | 5.7         | 6           | 4.9 |
| PHL              | А           | 1      | MAX        | 18  | 18 | 8   | 30         | 30         | 33          | 38          | 7.7         | 8           | 4.9 |
| tPZH             |             |        | MAX        | 17  | 20 | 8.5 | 30         | 38         | 35          | 38          | 10.3        | 11.1        | 5.9 |
| tPZL             | G           | V      | MAX        | 25  | 25 | 9   | 30         | 38         | 35          | 38          | 11.7        | 12.8        | 6.8 |
| tPHZ             | ь           | Y      | MAX        | 8   | 20 | 6   | 30         | 38         | 33          | 42          | 8.9         | 9.4         | 6.2 |
| tPLZ             |             |        | MAX        | 12  | 20 | 6   | 30         | 38         | 33          | 42          | 8.6         | 9.9         | 6.2 |

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LVTH<br>3V | AHC | AHCT | LV<br>3V | LV<br>5V | LVC<br>3V | ALVC |
|-----------|-------|--------|------------|------------|-----|------|----------|----------|-----------|------|
| tPLH .    |       | v      | MAX        | 3.5        | 8.5 | 8.5  | 13       | 8.5      | 4.8       | 2.8  |
| tphL .    | А     | Y      | MAX        | 3.9        | 8.5 | 8.5  | 13       | 8.5      | 4.8       | 2.8  |
| tPZH      |       |        | MAX        | 4          | 8   | 8    | 13       | 8        | 5.4       | 3.5  |
| tPZL      | G     | v      | MAX        | 4          | 8   | 8    | 13       | 8        | 5.4       | 3.5  |
| tрнz      | G     | Y      | MAX        | 4.5        | 10  | 10   | 15       | 10       | 4.6       | 4    |
| tPLZ      |       |        | MAX        | 4.5        | 10  | 10   | 15       | 10       | 4.6       | 4    |

# Logic Diagram



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | F    | SN74<br>HC | CD74<br>HC | CD74<br>HCT | SN74<br>BCT | SN64<br>BCT | ABT | LVTH<br>3V | UNIT |
|-----------|------------|------|------|------|------------|------------|-------------|-------------|-------------|-----|------------|------|
| Icc       | MAX        | 62   | 22   | 48   | 0.08       | 0.16       | 0.16        | 51          | 51          | 30  | 7          | mA   |
| Гон       | MAX        | -5.2 | -2.6 | -15  | -6         | -6         | -6          | -15         | -15         | -32 | -32        | mA   |
| lou       | MAX        | 16   | 24   | - 64 | 6          | 6          | 6           | 64          | 64          | 64  | 64         | mA   |

| PARAMETER | MAX or MIN | AHC  | АНСТ | LV<br>3V | LV<br>5V | LVC<br>3V | ALVC | UNIT |
|-----------|------------|------|------|----------|----------|-----------|------|------|
| Icc       | MAX        | 0.04 | 0.02 | 0.02     | 0.02     | 0.01      | 0.01 | mA   |
| Іон       | MAX        | -8   | -8   | -8       | -16      | -24       | -24  | mA   |
| lou       | MAX        | 8    | 8    | 8        | 16       | 24        | 24   | mA   |

| SWITCHING CHAP | RACTERISTICS | 100    |            |     |    |     | _          |            |             |             |             |     |            |
|----------------|--------------|--------|------------|-----|----|-----|------------|------------|-------------|-------------|-------------|-----|------------|
| PARAMETER      | INPUT        | OUTPUT | MAX or MIN | TTL | LS | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | SN74<br>BCT | SN64<br>BCT | ABT | LVTH<br>3V |
| tPLH .         |              | v      | MAX        | 13  | 15 | 7   | 30         | 30         | 36          | 6.3         | 6.3         | 6.3 | 3.8        |
| tPHL .         | A            | Y      | MAX        | 18  | 18 | 8.5 | 30         | 30         | 36          | 7.4         | 7.4         | 5.7 | 3.9        |
| tPZH .         |              |        | MAX        | 18  | 25 | 8.5 | 30         | 38         | 38          | 7.9         | 7.9         | 6.5 | 5.4        |
| tPZL           |              |        | MAX        | 25  | 35 | 8.5 | 30         | 38         | 38          | 10.5        | 10.5        | 6.5 | 5.2        |
| tPHZ           | G            | ,      | MAX        | 16  | 25 | 7.5 | 30         | 38         | 42          | 10          | 10          | 6.8 | 3.8        |
| tPLZ           |              |        | MAX        | 18  | 25 | 8   | 30         | 38         | 42          | 12.3        | 12.3        | 6.7 | 5.5        |

| PARAMETER | INPUT | OUTPUT  | MAX or MIN | AHC | AHCT | LV<br>5V | LV<br>3V | TAC 3A | ALVC |
|-----------|-------|---------|------------|-----|------|----------|----------|--------|------|
| tPLH .    | , Am  | 1 ST- V | MAX        | 8.5 | 8.5  | 8.5      | 13       | 4.7    | 3.1  |
| tPHL .    | A     | ET 1    | MAX        | 8.5 | 8.5  | 8.5      | 13       | 4.7    | 3.1  |
| tPZH      |       |         | MAX        | 8   | 8    | 8        | 13       | 5.7    | 3.3  |
| tPZL      |       |         | MAX        | 8   | 8    | 8        | 13       | 5.7    | 3.3  |
| tPHZ      | G     | Y       | MAX        | 10  | 10   | 10       | 15       | 6      | 3.7  |
| tPLZ      |       |         | MAX        | 10  | 10   | 10       | 15       | 6      | 3.7  |



# **50-** $\Omega$ LINE DRIVERS

 $\bullet$  Y =  $\overline{A + B}$ 





12

| RECOMMENDED | OPERATING CON | DITIONS |      |
|-------------|---------------|---------|------|
| PARAMETER   | MAX or MIN    | TTL     | UNIT |
| Icc         | MAX           | 57      | mA   |
| Іон         | MAX           | -42.4   | mA   |
| Ini         | MAY           | 48      | mΛ   |

VI B S AI

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | TTL |
|-----------|-------|--------|------------|-----|
| tPLH .    | A, B  | Y      | MAX        | 9   |
| tphL .    | A, B  | Y      | MAX        | 12  |

132

# Logic Diagram

# QUADRUPLE 2-INPUT POSITIVE-NAND SCHMITT TRIGGERS

 $Y = \overline{A \cdot B}$ 



### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ΠL   | LS   | S  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | AHC  | AHCT | LV<br>3V | LV<br>5V | UNIT |
|-----------|------------|------|------|----|------------|------------|-------------|------|------|----------|----------|------|
| Icc       | MAX        | 40   | 14   | 68 | 0.02       | 0.04       | 0.04        | 0.02 | 0.02 | 0.02     | 0.02     | mA   |
| Гон       | MAX        | -0.8 | -0.4 | -1 | -4         | -4         | -4          | -8   | -8   | -6       | -12      | mA   |
| In        | MAX        | 16   | 8    | 20 | 4          | 4          | 4           | 8    | 8    | 6        | 12       | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | TTL | LS | S    | SN74<br>HC | CD74<br>HC | CD74<br>HCT | AHC  | AHCT | LV<br>3V | LV<br>5V |
|-----------|-------|--------|------------|-----|----|------|------------|------------|-------------|------|------|----------|----------|
| tPLH .    | A, B  | Y      | MAX        | 22  | 22 | 10.5 | 31         | 38         | 50          | . 11 | 10   | 17.5     | 11       |
| tPHL .    | A, B  | Y      | MAX        | 22  | 22 | 13   | 31         | 38         | 50          | 11   | 8    | 17.5     | 11       |

133

# Logic Diagram

# 13-INPUT POSITIVE-NAND GATES

 $\bullet$  Y =  $\overline{A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H \cdot I \cdot J \cdot K \cdot L \cdot M}$ 



# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | S  | ALS  | SN74<br>HC | UNIT |
|-----------|------------|----|------|------------|------|
| Icc       | MAX        | 10 | 0.34 | 0.02       | mA   |
| Іон       | MAX        | -1 | -0.4 | -4         | mA   |
| lor.      | MAX        | 20 | 8    | 4          | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | S | ALS | SN74<br>HC |
|-----------|--------|--------|------------|---|-----|------------|
| TPLH      | A to M | Y      | MAX        | 6 | 11  | 38         |
| tPHL      | A to M | Y      | MAX        | 7 | 25  | 38         |

# 136

QUAD EXCLUSIVE-OR GATES WITH OPEN-COLLECTOR OUTPUTS

 $\bullet$  Y = A  $\oplus$  B =  $\overline{A}B + \overline{A}B$ 

# **FUNCTION TABLE**

|   | 1 01 | 10110 | HA IMPLE |
|---|------|-------|----------|
| ľ | INP  | UTS   | OUTPUT   |
| ľ | Α    | В     | Y        |
| ľ | L    | L     | L        |
| ı | L    | H     | H        |
| ı | H    | L     | H        |
| ı | H    | Н     | L        |

# Logic Diagram



| RECOMMENDED OF | ERATING CUNDITI | UNS |     |     |     | _    |
|----------------|-----------------|-----|-----|-----|-----|------|
| PARAMETER      | MAX or MIN      | TTL | LS  | ALS | AS  | UNIT |
| Icc            | MAX             | 50  | 10  | 5.9 | 31  | mA   |
| Vон            | MAX             | 5.5 | 5.5 | 5.5 | 5.5 | V    |
| lou            | MAX             | 16  | 8   | 8   | 20  | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT               | MAX or MIN | TTL | LS | ALS | AS   |
|-----------|--------|----------------------|------------|-----|----|-----|------|
| tPLH      | A or B | Y (Other Output = L) | MAX        | 18  | 30 | 50  | 12.5 |
| tphl.     | A or B | Y (Other Output = L) | MAX        | 50  | 30 | 15  | 7.1  |
| tPLH      | A or B | Y (Other Output = L) | MAX        | 22  | 30 | 50  | 11.4 |
| tPHL .    | A or B | Y (Other Output = L) | MAX        | 55  | 30 | 15  | 10.7 |

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. See www.ti.com/sc/logic for the most current data sheets.





| L | Н | L | L | H | L | H   | H      | L             | H                 | H      | Н      | Н      | H     |
|---|---|---|---|---|---|-----|--------|---------------|-------------------|--------|--------|--------|-------|
| L | H | L | L | H | Н | H   | H      | H             | L                 | H      | H      | H      | H     |
| L | Н | L | Н | L | L | Н   | Н      | Н             | Н                 | L      | Н      | Н      | Н     |
| L | H | L | H | L | H | H   | Н      | H             | H                 | H      | L      | H      | H     |
| L | Н | L | H | H | L | H   | H      | H             | H                 | Н      | H      | L      | H     |
| L | H | L | H | Н | Н | H   | Н      | H             | Н                 | H      | H      | H      | L     |
| Н | Н | L | Х | X | X | Dep | ends u | pon thas at a | ne add<br>a logic | ress p | reviou | sly ap | plied |

### RECOMMENDED OPERATING CONDITIONS

| HEGGIVIIVIEIVEE | OI LIMITING COIL | DITTOTE | ,    |    |            | 1.11       |             |             |      |
|-----------------|------------------|---------|------|----|------------|------------|-------------|-------------|------|
| PARAMETER       | MAX or MIN       | LS      | ALS  | AS | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | UNIT |
| Icc             | MAX              | 18      | 11   | 24 | 0.08       | 0.16       | 0.08        | 0.16        | mA   |
| Іон             | MAX              | -0.4    | -0.4 | -2 | -4         | -4         | -4          | -4          | mA   |
| lou             | MAX              | 8       | 8    | 20 | 4          | 4          | 4           | 4           | mA   |

# SWITCHING CHARACTERISTICS

| SWITCHING CHA | TIMOTETTOO    |             |            | _  |     |      | _          |            |             | _           |
|---------------|---------------|-------------|------------|----|-----|------|------------|------------|-------------|-------------|
| PARAMETER     | INPUT         | OUTPUT      | MAX or MIN | LS | ALS | AS   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT |
| tplh          | A D C         | V (0D74. V) | MAX        | 24 | 20  | 12.5 | 48         | 54         | 48          | 57          |
| tphl.         | A, B, C       | Y (CD74: Y) | MAX        | 38 | 20  | 12.5 | 48         | 54         | 48          | 57          |
| tPLH .        | - <u>G2</u>   | V (CD74. V) | MAX        | 21 | 12  | 8    | 36         | 44         | 36          | 56          |
| tPHL .        | 62            | Y (CD74: Y) | MAX        | 27 | 15  | 8.5  | 36         | 44         | 36          | 56          |
| tPLH .        | G1            | Y (CD74; Y) | MAX        | 21 | 17  | 10   | 36         | 44         | 36          | 53          |
| tPHL .        | - 61          | Y (CD74: Y) | MAX        | 27 | 15  | 9    | 36         | 44         | 36          | 53          |
| tPLH          | LE (CD74: LE) | V (CD74. V) | MAX        | 27 | 22  | 13.5 | 48         | 57         | 52          | 66          |
| tphl .        | LE (GD/4: LE) | Y (CD74: Y) | MAX        | 38 | 20  | 14   | 48         | 57         | 52          | 66          |

IINIT:ns

# 3-TO-8 LINE DECODERS/DEMULTIPLEXRS

- 3 Enable Inputs to Simplify Cascading and /or Data Reception
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



|    |      |     |    |    |    |    |    | -   | _    |    |    |    |
|----|------|-----|----|----|----|----|----|-----|------|----|----|----|
|    | INPI | JTS |    |    |    |    |    | TUC | DIII | re |    |    |
| EN | ABLE | SE  | LE | CT |    |    | -  | 100 | PUI  | 5  |    |    |
| G1 | G2*  | C   | В  | Α  | Y0 | Y1 | Y2 | Y3  | Y4   | Y5 | Y6 | Y7 |
| X  | Н    | X   | X  | X  | H  | Н  | Н  | Н   | Н    | Н  | Н  | Н  |
| L  | X    |     |    |    |    |    |    |     |      |    | Н  |    |
| H  | L    | L   | L  | L  | L  | H  | H  | H   | H    | H  | H  | H  |
| Н  | L    | L   | L  | Н  | H  | L  | H  | Н   | H    | H  | H  | H  |
| H  | L    | L   | H  | L  | Н  | H  | L  | H   | H    | H  | H  | H  |
| Н  | L    | L   | H  | Н  | H  | H  | Н  | L   | Н    | Н  | H  | H  |
| Н  | L    | H   | L  | L  | H  | H  | Н  | H   | L    | Н  | Н  | H  |
| Н  | L    | Н   | L  | Н  | Н  | H  | H  | H   | H    | L  | Н  | H  |
| H  | L    | Н   | H  | L  | H  | H  | Н  | Н   | Н    | H  | L  | Н  |
| H  | L    | H   | H  | Н  | Н  | H  | Н  | H   | Н    | H  | H  | L  |

 $\overline{G}2^* = \overline{G}2A*\overline{G}2B$ 

# DECOMMENDED OBERATING CONDITIONS

| RECOMMENDED | UPENATING CON | DITIONS |    | 1    |    |    | 01174      | 0074       | 00174       | 0074        | 4.0      |      |
|-------------|---------------|---------|----|------|----|----|------------|------------|-------------|-------------|----------|------|
| PARAMETER   | MAX or MIN    | LS      | S  | ALS  | AS | F  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | UNIT |
| Icc Pyr     | MAX           | 10      | 74 | 10   | 20 | 20 | 0.08       | 0.16       | 0.08        | 0.16        | 0.04     | mA   |
| Іон         | MAX           | -0.4    | -1 | -0.4 | -2 | -1 | -4         | -4         | -4          | -4          | -24      | mA   |
| lor         | MAX           | 8       | 20 | 8    | 20 | 20 | 4          | 4          | 4           | 4           | 24       | mA   |

|           | 3          | 1          |           | -01         |      |      |          |          |           |      |
|-----------|------------|------------|-----------|-------------|------|------|----------|----------|-----------|------|
| PARAMETER | MAX or MIN | CD74<br>AC | ACT<br>11 | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | LVC<br>3V | UNIT |
| Icc       | MAX        | 0.16       | 0.04      | 0.16        | 0.04 | 0.04 | 0.02     | 0.02     | 0.01      | mA   |
| Іон       | MAX        | -24        | -24       | -24         | -8   | -8   | -6       | -12      | -24       | mA   |
| lou       | MAX        | 24         | 24        | 24          | 8    | 8    | 6        | 12       | 24        | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER  | INPUT   | OUTPUT                    | MAX or MIN | LS | S   | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 |
|------------|---------|---------------------------|------------|----|-----|-----|-----|-----|------------|------------|-------------|-------------|----------|
|            |         |                           |            |    |     |     |     |     | nc nc      | nc.        | nci         | nui         | 1.1      |
| tPLH       | A, B, C | Y (CD74:\(\overline{Y}\)) | MAX        | 27 | 12  | 22  | 10  | 8.5 | 45         | 45         | 45          | 53          | 8.1      |
| tPHL TYS — | A, D, U | 1 (6074.1)                | MAX        | 39 | 12  | 18  | 9.5 | 9   | 45         | 45         | 45          | 53          | 8.8      |
| tPLH       | G2      | Y (CD74:Y)                | MAX        | 26 | 11  | 17  | 7.5 | 8   | 39         | 53         | 42          | 53          | 8.3      |
| tphl .     | 02      | 1 (6074.1)                | MAX        | 38 | 11  | 17  | 8.5 | 7.5 | 39         | 53         | 42          | 53          | 8.3      |
| tPLH .     | GF G1   | Y (CD74:\(\overline{Y}\)  | MAX        | 26 | 11  | 17  | 10  | 9   | 39         | 53         | 42          | 53          | 7.5      |
| tPHL CYC - | GI      | Y (CD/4:Y)                | MAX        | 38 | -11 | 17  | 10  | 8.5 | 39         | 53         | 42          | 53          | 7.7      |

| PARAMETER   | INPUT   | OUTPUT     | MAX or MIN | CD74<br>AC | ACT<br>11 | CD74<br>ACT | AHC  | AHCT | TA<br>TA | LV<br>5V | LVC<br>3V |
|-------------|---------|------------|------------|------------|-----------|-------------|------|------|----------|----------|-----------|
| tPLH .      | 4.0.0   | V (0074 V) | MAX        | -11        | 9.8       | 12          | 11.5 | 13   | 18       | 11.5     | 6.7       |
| tphl.       | A, B, C | Y (CD74:Y) | MAX        | 11         | 9.7       | 12          | 11.5 | 13   | 18       | 11.5     | 6.7       |
| tPLH .      | G2      | V (ODZAVI) | MAX        | 10         | 8.9       | 10.5        | 11.5 | 12   | 18       | 11.5     | 6.5       |
| <b>TPHL</b> | 62      | Y (CD74:Y) | MAX        | 10         | 8.9       | 10.5        | 11.5 | 12   | 18       | 11.5     | 6.5       |
| tPLH        | 0.      | Y (CD74:Y) | MAX        | 11         | 9.3       | 11          | 11.5 | 11.5 | 18.5     | 11.5     | 5.8       |
| tPHL .      | G1      | Y (CD/4:Y) | MAX        | 11         | 9.8       | 11          | 11.5 | 11.5 | 18.5     | 11.5     | 5.8       |

# Logic Diagram



| INPL   | JTS |     |    |     | PUT | _  |
|--------|-----|-----|----|-----|-----|----|
| ENABLE | SEL | ECT |    | 100 | PUI | 5  |
| G      | В   | A   | Y0 | Y1  | Y2  | YS |
| Н      | X   | X   | Н  | Н   | Н   | Н  |
| L      | L   | L   | L  | H   | H   | H  |
| L      | L   | H   | H  | L   | H   | Н  |
| L      | Н   | L   | Н  | Н   | L   | Н  |
| 1      | H   | н   | H  | H   | н   | 1  |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | S  | ALS  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | CD74<br>AC | ACT<br>11 | CD74<br>ACT | UNIT |
|-----------|------------|------|----|------|------------|------------|-------------|-------------|------------|-----------|-------------|------|
| Icc       | MAX        | 11   | 90 | 13   | 0.08       | 0.08       | 0.08        | 0.16        | 0.16       | 0.08      | 0.16        | mA   |
| Іон       | MAX        | -0.4 | -1 | -0.4 | -4         | -4         | -4          | -4          | -24        | -24       | -24         | mA   |
| lou       | MAX        | 8    | 20 | 8    | 4          | 4          | 4           | 4           | 24         | 24        | 24          | mA   |

| PARAMETER | MAX or MIN | AHC  | AHCT | SV<br>SV | LV<br>5V | LVC<br>3V | UNIT |
|-----------|------------|------|------|----------|----------|-----------|------|
| lcc       | MAX        | 0.04 | 0.02 | 1.       | 0.02     | 0.01      | mA   |
| Іон       | MAX        | -8   | -8   | -6       | -12      | -24       | mA   |
| loL       | MAX        | 8    | 8    | 6        | 12       | 24        | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT      | MAX or MIN | LS | S  | ALS | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | CD74<br>AC | ACT<br>11 | CD74<br>ACT |
|-----------|--------|-------------|------------|----|----|-----|------------|------------|-------------|-------------|------------|-----------|-------------|
| tPLH .    | A or B | Y (CD74: Y) | MAX        | 29 | 12 | 14  | 44         | 44         | 43          | 51          | 10.5       | 8.5       | 11.5        |
| tPHL      | A or B | Y (CD74: Y) | MAX        | 38 | 12 | 14  | 44         | 44         | 43          | 51          | 10.5       | 8.5       | 11.5        |
| tPLH      | G      | Y (CD74: Y) | MAX        | 24 | 8  | 14  | 44         | 41         | 43          | 51          | 10.5       | 7.9       | 12          |
| tPHL .    | G      | Y (CD74: Y) | MAX        | 32 | 10 | 15  | 44         | 41         | 43          | 51          | 10.5       | 7.5       | 12          |

| PARAMETER | INPUT  | OUTPUT      | MAX or MIN | AHC  | AHCT | LV<br>3V | LV<br>5V | LVC<br>3V |
|-----------|--------|-------------|------------|------|------|----------|----------|-----------|
| tplH .    | A or B | Y (CD74: Y) | MAX        | 10.5 | 10.5 | 16.5     | 10.5     | 6.2       |
| tPHL      | A or B | Y (CD74: Y) | MAX        | 10.5 | 10.5 | 16.5     | 10.5     | 6.2       |
| tPLH .    | G      | Y (CD74: Y) | MAX        | 9.5  | 9.5  | 14.5     | 9.5      | 4.7       |
| tphl .    | G      | Y (CD74: Y) | MAX        | 9.5  | 9.5  | 14.5     | 9.5      | 4.7       |

Logic Diagram 1A 1A 1B 1C 1C 1D 1Y 1Y 1Y 1Y 12A 2B 2C 2C 2Y

 $\bullet$  Y =  $\overline{\mathsf{ABCD}}$ 

| RECOMMENDED | OPERATING CON | DITION | S    |  |  | 2 |  | avia (Tri | James Alizado |  |
|-------------|---------------|--------|------|--|--|---|--|-----------|---------------|--|
| PARAMETER   | MAX or MIN    | S      | UNIT |  |  |   |  |           |               |  |
| Icc         | MAX           | 44     | mA   |  |  |   |  |           |               |  |
| Іон         | MAX           | -40    | mA   |  |  |   |  |           |               |  |
| lou         | MAX           | 60     | mA   |  |  |   |  |           |               |  |

SWITCHING CHARACTERISTICS

| SWITCHING CHA | MAGILINGTICS |        |            | THE REAL PROPERTY. |
|---------------|--------------|--------|------------|--------------------|
| PARAMETER     | INPUT        | OUTPUT | MAX or MIN | S                  |
| tPLH          | A, B, C, D   | V      | MAX        | 6.5                |
| tphl .        | A, B, C, D   | T      | MAX        | 6.5                |

# BCD-TO-DECIMAL DECODERS/DRIVERS FOR LAMPS, RELAYS, MOS NO WITH BOUND BALLAGOT AND

- Sink-Current Capability: 80mA
- Low Power Dissipation (SN74LS): 35mW (typ)

# Logic Diagram



# FUNCTION TABLE

| No.     |   | INP | UTS |   |   |   |   |    | OUT | PUTS | ê |   |   |   | _ |
|---------|---|-----|-----|---|---|---|---|----|-----|------|---|---|---|---|---|
| NO.     | D | C   | В   | Α | 0 | 1 | 2 | 3  | 4   | 5    | 6 | 7 | 8 | 9 |   |
| 0       | L | L   | L   | L | L | Н | Н | Н  | Н   | Н    | Н | Н | Н | Н |   |
| 1       | L | L   | L   | H | H | L | H | H  | H   | Н    | H | Н | H | Н |   |
| 2       | L | L   | H   | L | H | H | L | H  | H   | Н    | Н | Н | Н | Н |   |
| 3       | L | L   | H   | H | Н | H | H | L  | H   | H    | Н | Н | H | Н |   |
| 4       | L | Н   | L   | L | Н | H | Н | H  | L   | H    | H | Н | H | H |   |
| 5       | L | Н   | L   | Н | Н | Н | н | Н  | Н   | L    | Н | Н | Н | Н |   |
| 6       | L | H   | H   | L | H | Н | H | Н  | H   | H    | L | Н | H | H |   |
| 7       | L | Н   | H   | H | Н | Н | Н | H  | Н   | Н    | Н | L | Н | Н |   |
| 8       | H | L   | L   | L | Н | H | Н | Н  | H   | H    | Н | Н | L | н |   |
| 9       | H | L   | L   | H | н | H | H | H  | H   | H    | H | H | H | L |   |
|         | Н | L   | H   | L | Н | Н | H | Н  | Н   | Н    | Н | Н | Н | Н |   |
| 0       | H | L   | H   | H | H | H | H | H. | H   | H    | Н | H | н | Н |   |
| INVALID | H | H   | L   | L | Н | H | Н | Н  | Н   | Н    | Н | Н | Н | Н |   |
| \$      | H | Н   | L.  | Н | Н | Н | Н | Н  | Н   | Н    | Н | Н | н | Н |   |
| Z       | Н | H   | Н   | L | H | Н | Н | Н  | н   | Н    | Н | Н | н | Н |   |
|         | Н | H   | Н   | H | Н | H | Н | Н  | Н   | Н    | Н | Н | Н | Н |   |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL | LS | UNIT |
|-----------|------------|-----|----|------|
| Icc       | MAX        | 70  | 13 | mA   |
| Vo (OFF)  | MAX        | 15  | 15 | mA   |

## SWITCHING CHARACTERISTICS

| PARAMETER | MAX or MIN | TTL | LS |
|-----------|------------|-----|----|
| tplH      | MAX        | 50  | 50 |
| tphl.     | MAX        | 50  | 50 |
|           |            |     |    |

# Logic Diagram



961

-TO 3-LINE DETAIL PRIORITY ENCODERS

|   | INPUTS |   |   |   |   |   |   |   |   |   | PUTS |   |
|---|--------|---|---|---|---|---|---|---|---|---|------|---|
| 1 | 2      | 3 | 4 | 5 | 6 | 7 | 8 | 9 | D | С | В    | Α |
| Н | Н      | Н | Н | Н | Н | Н | Н | Н | Н | H | Н    | Н |
| X | X      | X | X | X | X | X | X | L | L | H | H    | L |
| X | X      | X | X | X | X | X | L | H | L | H | H    | Н |
| X | X      | X | X | X | X | L | H | H | Н | L | L    | L |
| X | X      | X | X | X | L | H | H | H | Н | L | L    | H |
| X | X      | X | X | L | H | H | H | H | H | L | H    | L |
| X | X      | X | L | H | H | H | H | Н | Н | L | H    | H |
| X | X      | L | H | H | H | H | H | H | H | H | L    | L |
| X | L      | Н | Н | H | H | Н | Н | Н | H | H | L    | H |
| L | H      | H | Н | H | H | H | H | Н | Н | H | H    | L |

Logic Diagram

| COMMEN | NDED OP | FRATING | CONDITIONS |  |
|--------|---------|---------|------------|--|

| PARAMETER | MAX or MIN | TTL  | LS   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------|------|------------|------------|-------------|------|
| lcc       | MAX        | 70   | 20   | 0.08       | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -4         | -4         | -4          | mA   |
| loL       | MAX        | 16   | 8    | - 4        | 4          | 4           | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | MAX or MIN | TTL | LS | SN74<br>HC | CD74<br>HC |    |
|-----------|------------|-----|----|------------|------------|----|
| tPLH      | MAX        | 19  | 33 | 48         | 48         | 53 |
| tPHL .    | MAX        | 19  | 23 | 48         | 48         | 53 |





|    |   |   | 11 | IPUT: | S |   |   |   |    | O  | UTPU | TS |    |
|----|---|---|----|-------|---|---|---|---|----|----|------|----|----|
| El | 0 | 1 | 2  | 3     | 4 | 5 | 6 | 7 | A2 | A1 | A0   | GS | EO |
| Н  | X | X | X  | X     | X | X | X | X | Н  | H  | Н    | Н  | Н  |
| L  | Н | H | H  | H     | H | H | H | H | Н  | H  | H    | H  | L  |
| L  | X | X | X  | X     | X | X | X | L | L  | L  | L    | L  | Н  |
| L  | X | X | X  | X     | X | X | L | H | L  | L  | H    | L  | H  |
| L  | X | X | X  | X     | X | L | H | H | L  | H  | L    | L  | Н  |
| L  | X | X | X  | X     | L | H | Н | H | L  | H  | H    | L  | H  |
| L  | X | X | X  | L     | H | H | H | H | H  | L  | L    | L  | H  |
| L  | X | X | L  | H     | H | H | Н | H | H  | L  | H    | L  | H  |
| L  | X | L | H  | H     | H | H | H | H | H  | H  | L    | L  | H  |
| L  | L | H | H  | H     | H | H | H | H | H  | H  | H    | L  | H  |

1-OF-16 DATA SELECTOR

Legic Diagr

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | SN74<br>HC | UNIT |
|-----------|------------|------|------|------------|------|
| Icc       | MAX        | 60   | 20   | 0.08       | mA   |
| lou       | MAX        | 16   | - 8  | 4          | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -4         | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INPUT  | OUTPUT       | WAVEFORM        | MAX or MIN | TTL | LS | SN74<br>HC |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|-----------------|------------|-----|----|------------|
| tPLH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14-7   | 40.4140      | In advantage of | MAX        | 15  | 18 | 45         |
| tPHL .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 to 7 | A0, A1 or A2 | In-phase output | MAX        | 14  | 25 | 45         |
| tPLH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17     | A0, A1 or A2 | Out-of-phase    | MAX        | 19  | 36 | 45         |
| tPHL THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF | 1 to 7 | AU, AT OF AZ | output          | MAX        | 19  | 29 | 45         |
| tPLH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04-7   | EO           | Out-of-phase    | MAX        | 10  | 18 | 38         |
| tPHL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 to 7 | EU           | output          | IVIAA      | 25  | 40 | 38         |
| tPLH .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 7    | GS           | In Continue     | MAN        | 30  | 55 | 48         |
| tPHL .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 to 7 | 65           | In-phase output | MAX        | 25  | 21 | 48         |
| tPLH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 40.4140      |                 | 1447       | 15  | 25 | 49         |
| tPHL .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E1     | A0, A1 or A2 | In-phase output | MAX        | 15  | 25 | 49         |
| tPLH .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 00           |                 | MANY       | 12  | 17 | 36         |
| tPHL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E1     | GS           | In-phase output | MAX        | 15  | 36 | 36         |
| tPLH .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F1     | 50           | la absentant    | MAX        | 15  | 21 | 41         |
| tPHL .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E1     | EO           | In-phase output | IVIAX      | 30  | 35 | 41         |



**FUNCTION TABLE** 

|   |     | INP | UTS |        |        |
|---|-----|-----|-----|--------|--------|
|   | SEL | ECT |     | STROBE | OUTPUT |
| D | C   | В   | Α   | G      | VV     |
| X | X   | X   | X   | Н      | H      |
| L | L   | L   | L   | L      | E0     |
| L | L   | L   | H   | L      | E1     |
| L | L   | H   | L   | L      | E2     |
| L | L   | H   | H   | L      | E3     |
| L | H   | L   | L   | L      | E4     |
| L | H   | L   | H   | L      | E5     |
| L | H   | Н   | L   | L      | E6     |
| L | H   | H   | H   | L      | E7     |
| H | L   | L   | L   | L      | E8     |
| H | L   | L   | H   | L      | E9     |
| Н | L   | H   | L   | L      | E10    |
| H | L   | H   | H   | L      | E11    |
| H | Н   | L   | · L | L      | E12    |
| H | H   | L   | H   | L      | E13    |
| Н | H   | Н   | L   | L      | E14    |
| H | H   | H   | H   | L      | E15    |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | UNIT |
|-----------|------------|------|------|
| Icc       | MAX        | 48   | mA   |
| Іон       | MAX        | -0.8 | mA   |
| lou       | MAX        | 16   | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER   | INPUT          | OUTPUT | MAX or MIN | TTL |
|-------------|----------------|--------|------------|-----|
| tplH        | A D C D        | W      | MAX        | 35  |
| TPHL.       | A, B, C or D   | VV     | WAA        | 33  |
| tplH        | Strobe G       | 147    | 2447       | 24  |
| tphL .      | Strone G       | W      | MAX        | 30  |
| tPLH        | E0 thru E15 or |        | MANY       | 14  |
| <b>TPHL</b> | E0 thru D7     | W      | MAX        | 20  |

# 8-TO-1 LINE DATA SELECTORS/MULTIPLEXERS



|   | INI  | PUTS | OUTPUTS |      |      |  |  |
|---|------|------|---------|------|------|--|--|
| S | ELEC | Т    |         | 0011 | PUIS |  |  |
| C | В    | Α    | G       | Y    | W    |  |  |
| X | X    | X    | Н       | L    | Н    |  |  |
| L | L    | L    | L       | D0   | D0   |  |  |
| L | L    | Н    | L       | D1   | D1   |  |  |
| L | H    | L    | L       | D2   | D2   |  |  |
| L | Н    | Н    | L       | D3   | D3   |  |  |
| H | L    | L    | L       | D4   | D4   |  |  |
| Н | L    | H    | L       | D5   | D5   |  |  |
| Н | H    | L    | L       | D6   | D6   |  |  |
| H | H    | н    | L       | D7   | D7   |  |  |

# 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | S  | ALS  | AS  | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT | UNIT |
|-----------|------------|------|------|----|------|-----|----|------------|------------|-------------|------------|-------------|------|
| Icc       | MAX        | 48   | 10   | 70 | 12   | 30  | 21 | 0.08       | 0.16       | 0.16        | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -1 | -2.6 | -15 | -1 | -6         | -4         | -4          | -24        | -24         | mA   |
| lor       | MAX        | 16   | 8    | 20 | 24   | 48  | 24 | 6          | 4          | 4           | 24         | 24          | mA   |

## SWITCHING CHARACTERISTICS

| PARAMETER | INPUT     | ОИТРИТ       | MAX or MIN | TTL | LS | S    | ALS | AS   | F    | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
|-----------|-----------|--------------|------------|-----|----|------|-----|------|------|------------|------------|-------------|
| tplh      | A D C     | Y            | MANY       | 38  | 43 | 18   | 18  | 14.5 | 12   | 63         | 56         | 62          |
| tphl.     | A, B or C | τ.           | MAX        | 38  | 30 | 18   | 24  | 15   | 9    | 63         | 56         | 62          |
| tplH      | A D 0     | W (CD74; Y)  | 1444       | 26  | 23 | 15   | 24  | 12   | 9.5  | 63         | 62         | 65          |
| tpht.     | A, B or C | VV (CD74: Y) | MAX        | 30  | 32 | 13.5 | 23  | 12   | 7.5  | 63         | 62         | 65          |
| tPLH      | D0 to D7  | v            | MAX        | 20  | 32 | 16.5 | 10  | 10.5 | 7.5  | 49         | 51         | 57          |
| tPHL .    | DU to D7  | 1            |            | 27  | 26 | 18   | 15  | 11   | 7.5  | 49         | 51         | 57          |
| tPLH .    | D0 to D7  | W (CD74: Y)  | MANY       | 14  | 21 | 13   | 15  | 6.5  | 7    | 49         | 56         | 54          |
| tphl.     | DU to D7  | VV (CD/4: Y) | MAX        | 14  | 20 | 12   | 15  | 4.5  | 5    | 49         | 56         | 54          |
| tplH      | G         | Y            | ****       | 33  | 42 | 12   | 18  | 14   | 10.5 | 32         | 42         | 44          |
| tPHL .    | 6         | 1            | MAX        | 33  | 32 | 12   | 19  | 11   | 7.5  | 32         | 42         | 44          |
| tPLH      | G         | W (0D34 V)   | MAN        | 21  | 24 | 7    | 19  | 6    | 7    | 32         | 44         | 54          |
| tPHL      | G         | W (CD74: Y)  | MAX        | 23  | 30 | 7    | 23  | 10   | 6    | 32         | 44         | 54          |

| PARAMETER | INPUT     | OUTPUT       | MAX or MIN | CD74<br>AC | CD74 |
|-----------|-----------|--------------|------------|------------|------|
| tPLH .    | A D C     | Y            | MANY       | 18.2       | 20.2 |
| tphL .    | A, B or C | T T          | MAX        | 18.2       | 20.2 |
| tplH      | A. B or C | W (CD74: Y)  | MAX        | 19.6       | 21.6 |
| tPHL .    | A, B or C | VV (CD/4: Y) | IVIAX      | 19.6       | 21.6 |
| tplH      | D0 +- D7  | Υ            | MAN        | 13.5       | 15.5 |
| tphl.     | D0 to D7  | 1            | MAX        | 13.5       | 15.5 |
| tplH .    | D0 4- D7  | W (CD74: Y)  | MAY        | 14.9       | 16.9 |
| tphl.     | D0 to D7  | VV (CD/4: Y) | MAX        | 14.9       | 16.9 |
| tplH      | G         | Y            | MAN        | 12.2       | 12.1 |
| tPHL .    | G         | 1            | MAX        | 12.2       | 12.1 |
| tPLH      | G         | W (CD74: Y)  | MAN        | 13.5       | 13.5 |
| tPHL .    | G         | VV (CD/4: Y) | MAX        | 13.5       | 13.5 |



| ì | 11 | 6 | F | INC. | TION | TARI | F _ |   |
|---|----|---|---|------|------|------|-----|---|
| ı | Н  | H | X | X    | X    | L    | L   | L |
| ı | Н  | Н | X | X    | X    | H    | L   | H |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | S  | ALS  | AS  | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT | UNIT |
|-----------|------------|------|------|----|------|-----|----|------------|------------|-------------|------------|-------------|------|
| Icc       | MAX        | 60   | 10   | 70 | 14   | 33  | 20 | 0.08       | 0.16       | 0.16        | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -1 | -2.6 | -15 | -1 | -6         | -4         | -4          | -24        | -24         | mA   |
| lou       | MAX        | 16   | 8    | 20 | 24   | 48  | 20 | 6          | 4          | 4           | 24         | 24          | mA   |

### CMUTCHING CHARACTERISTICS

| PARAMETER | INPUT    | OUTPUT   | MAX or MIN | TTL | LS | S    | ALS | AS   | F    | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT |
|-----------|----------|----------|------------|-----|----|------|-----|------|------|------------|------------|-------------|------------|-------------|
| tplH      | DATA     |          | MAX        | 18  | 15 | 9    | 10  | 7    | 8    | 35         | 44         | 51          | 13.3       | 18          |
| tPHL .    | DATA     | 4        | MAX        | 23  | 26 | 9    | 15  | 8    | 7.5  | 35         | 44         | 51          | 13.3       | 18          |
| tPLH .    | OFLEGE   |          | MAX        | 34  | 29 | 18   | 21  | 12.5 | 12   | 38         | 48         | 51          | 20         | 22          |
| tphl .    | SELECT   | 1        | MAX        | 34  | 38 | 18   | 21  | 11   | 10.5 | 38         | 48         | 51          | 20         | 22          |
| tPLH      | STROBE Y | ATROPE V | MAX        | 30  | 24 | 15   | 18  | 11.5 | 10.5 | 24         | 36         | 41          | 11.8       | 12.6        |
| tPHL .    |          | Y        | MAX        | 23  | 32 | 13.5 | 18  | - 9  | 8    | 24         | 36         | 41          | 11.8       | 12.6        |

# 4-LINE TO 16-LINE DECODER/DEMULTIPLEXER

Logic Diagram



|    |    | INP | UTS |   |   |   |   |   |   |   |   |   | OUT | PUTS |   |    |    |    |    |    |    |
|----|----|-----|-----|---|---|---|---|---|---|---|---|---|-----|------|---|----|----|----|----|----|----|
| G1 | G2 | D   | С   | В | Α | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7   | 8    | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| L  | L  | Н   | L   | L | L | L | Н | H | Н | Н | Н | H | Н   | Н    | Н | Н  | H  | Н  | Н  | Н  | Н  |
| L  | L  | L.  | L   | L | н | Н | L | H | Н | Н | H | H | H   | H    | Н | H  | Н  | H  | H  | H  | H  |
| L  | L  | L   | L   | H | L | Н | H | L | H | H | H | H | H   | Н    | H | Н  | H  | H  | H  | H  | H  |
| L  | L  | L   | L   | H | H | Н | H | H | L | H | H | H | H   | H    | H | H  | H  | H  | H  | H  | H  |
| L  | L  | L   | Н   | L | L | Н | Н | H | Н | L | Н | H | Н   | H    | H | H  | H  | H  | Н  | Н  | Н  |
| L  | L  | L   | H   | L | Н | Н | H | H | H | H | L | H | H   | H    | H | H  | H  | H  | H  | H  | H  |
| L  | L  | L   | H   | Н | L | Н | H | H | H | Н | Н | L | H   | H    | H | H  | H  | Н  | H  | H  | Н  |
| L  | L  | L   | H   | H | Н | Н | H | H | H | Н | H | H | L   | H    | H | H  | H  | H  | H  | H  | H  |
| L  | L  | H   | L   | L | L | н | Н | H | H | H | H | H | H   | L    | H | H  | H  | Н  | H  | Н  | Н  |
| L  | Ŀ  | Н   | L   | L | H | Н | H | H | H | H | H | H | H   | H    | L | H  | H  | H  | H  | H  | H  |
| L  | L  | H   | L   | H | L | Н | H | H | H | H | H | H | H   | H    | H | L  | H  | H  | H  | H  | H  |
| L  | L  | Н   | L   | Н | Н | Н | H | H | H | Н | H | H | H   | H    | H | H  | L  | H  | Н  | H  | Н  |
| L  | L  | Н   | H   | L | L | Н | H | H | H | H | H | H | H   | H    | H | H  | H  | L  | H  | H  | Н  |
| L  | L  | H   | H   | L | Н | H | H | H | H | H | Н | H | H   | H    | H | H  | H  | H  | L  | H  | Н  |
| L  | L  | H   | H   | H | L | H | H | H | H | H | H | H | H   | H    | Н | H  | H  | H  | H  | L  | H  |
| L  | L  | H   | H   | H | Н | H | H | H | H | H | H | H | H   | H    | H | H  | H  | H  | H  | H  | L  |
| L  | Н  | X   | X   | X | X | H | H | H | H | H | H | H | Н   | H    | H | H  | H  | H  | H  | Н  | H  |
| H  | L  | X   | X   | X | X | Н | H | H | H | Н | H | H | Н   | H    | H | H  | Н  | H  | H  | H  | H  |
| H  | Н  | X   | X   | X | X | н | H | Н | Н | H | H | Н | Н   | H    | H | H  | Н  | Н  | Н  | Н  | Н  |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | ALS  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------|------|------------|------------|-------------|------|
| lcc       | MAX        | 56   | 23   | 0.08       | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -0.8 | 24   | -4         | -4         | -4          | mA   |
| lor       | MAX        | 16   | -0.4 | 4          | 4          | 4           | mA   |

#### SWITCHING CHARACTERISTICS U.O. (8)

|           | nvi        |                   |            |     |     |            | 1          |             |
|-----------|------------|-------------------|------------|-----|-----|------------|------------|-------------|
| PARAMETER | INPUT      | OUTPUT            | MAX or MIN | TTL | ALS | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
| tPLH      | ARCD       | 0 to 15           | MAX        | 36  | 12  | 45         | 53         | 53          |
| tPHL      | A, B, C, D | (CD74: Y0 to Y15) | IVIAA      | 33  | 12  | 45         | 53         | 53          |
| tPLH      | G1 to G2   | 0 to 15           | MAX        | 30  | 12  | 45         | 53         | 51          |
| tPHL .    | G1 t0 G2   | (CD74: Y0 to Y15) | IVIAA      | 27  | 12  | 45         | 53         | 51          |

UNIT: ns

# Logic Diagram



**FUNCTION TABLES** 

| 2-LINE | TO | 4-LINE  | DECODER OR    |
|--------|----|---------|---------------|
| 1-LINE | TO | 4-I INF | DEMULTIPLEXER |

|     |     | INPUTS |      |     | OUT | PUTS |     |
|-----|-----|--------|------|-----|-----|------|-----|
| SEL | ECT | STROBE | DATA |     |     |      |     |
| В   | Α   | 1G     | 1C   | 110 | 111 | 112  | 173 |
| X   | X   | Н      | X    | Н   | Н   | Н    | Н   |
| L   | L   | L      | H    | L   | H   | H    | Н   |
| L   | H   | L      | H    | H   | L   | Н    | Н   |
| H   | L   | L      | H    | H   | H   | L    | Н   |
| H   | H   | L      | H    | Н   | H   | H    | L   |
| X   | X   | X      | L    | H   | H   | H    | H   |

#### 2-LINE TO 4-LINE DECODER OR

|        |   | INPUTS |      | OUTPUTS |     |     |     |  |  |
|--------|---|--------|------|---------|-----|-----|-----|--|--|
| SELECT |   | STROBE | DATA |         |     |     |     |  |  |
| В      | Α | 2G     | 2C   | 2Y0     | 2Y1 | 2Y2 | 2Y3 |  |  |
| X      | X | Н      | X    | Н       | Н   | Н   | Н   |  |  |
| L      | L | a.L    | L    | L       | H   | H   | Н   |  |  |
| L      | H | O.L    | L    | H       | L   | H   | Н   |  |  |
| Н      | L | L      | L    | H       | H   | Ĺ   | H   |  |  |
| Н      | H | L      | L    | H       | H   | H   | L   |  |  |
| X      | X | X      | H    | H       | H   | H   | Н   |  |  |

# 3-LINE TO 8-LINE DECODER OR 1-LINE TO 8-LINE DEMULTIPLEXER

|    |      | INPU | rs                |     |     |     | OUT | PUTS |     |     |     |
|----|------|------|-------------------|-----|-----|-----|-----|------|-----|-----|-----|
| s  | ELEC | т    | STROBE<br>or DATA | (0) | (1) | (2) | (3) | (4)  | (5) | (6) | (7) |
| C† | В    | Α    | G‡                | 2Y0 | 2Y1 | 2Y2 | 2Y3 | 110  | 1Y1 | 1Y2 | 113 |
| X  | X    | Х    | Н                 | Н   | Н   | Н   | Н   | Н    | Н   | Н   | Н   |
| L  | L    | L    | L                 | L   | H   | H   | Н   | Н    | H   | H   | Н   |
| L  | L    | H    | L                 | H   | L   | H   | Н   | H    | H   | H   | H   |
| L  | H    | L    | L                 | H   | H   | L   | H   | H    | H   | H   | H   |
| L  | H    | H    | L                 | H   | H   | H   | L   | H    | H   | H   | Н   |
| H  | L    | L    | L                 | H   | H   | H   | H   | L    | H   | Н   | H   |
| H  | L    | Η.   | L L               | H   | H   | H   | H   | H    | L   | Н   | Н   |
| Н  | H    | L    | L                 | H   | Н   | H   | Н   | Н    | H   | L   | Н   |
| Н  | H    | H    | L                 | H   | H   | H   | Н   | Н    | Н   | Н   | L   |

# † C = inputs 1C and 2C connected together ‡ G = inputs 1G and 2G connected together

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | ALS  | UNIT |
|-----------|------------|------|------|------|------|
| Icc       | MAX        | 40   | 10   | 13   | mA   |
| Юн        | MAX        | -0.8 | -0.4 | -0.4 | mA   |
| lou       | MAX        | 16   | 8    | 8    | mA   |

| SWITCHING CHAR | ACTERISTICS |        |            |     |    |     |
|----------------|-------------|--------|------------|-----|----|-----|
| PARAMETER      | INPUT       | OUTPUT | MAX or MIN | TTL | LS | ALS |
| tPLH           | A or B      | Y      | MAX        | 32  | 26 | 14  |
| tPHL .         | A or B      | 1 '    | MAX        | 32  | 30 | 12  |
| tPLH .         | 1C          | v      | MAN        | 24  | 27 | 12  |
| tPHL .         | 10          | 1 '    | MAX        | 30  | 27 | 14  |

# **DECODERS/DEMULTIPLEXERS**

- Individual Strobes Simplify Cascading for Decoding or Demultiplexing Lager Words
- Outputs: Open-Collector

# Logic Diagram



2-LINE TO 4-LINE DECODER OR 1-LINE TO 4-LINE DEMULTIPLEXER

|        |   | INPUTS |      |     | OUT | PUTS |     |
|--------|---|--------|------|-----|-----|------|-----|
| SELECT |   | STROBE | DATA |     |     |      |     |
| В      | Α | 1G     | 1C   | 1Y0 | 111 | 112  | 1Y3 |
| X      | X | Н      | X    | Н   | Н   | Н    | Н   |
| L      | L | L      | H    | L   | H   | H    | Н   |
| L      | H | L      | H    | Н   | L   | H    | Н   |
| H      | L | L      | H    | H   | H   | L    | Н   |
| Н      | H | L      | H    | Н   | H   | H    | L   |
| v      | v | V      | 1    | 1.1 | 1.1 | 1.7  | 1.2 |

2-LINE TO 4-LINE DECODER OR

|     |     | INPUTS |      |     | OUT | PUTS |     |
|-----|-----|--------|------|-----|-----|------|-----|
| SEL | ECT | STROBE | DATA |     |     |      |     |
| В   | Α   | 2G     | 2C   | 2Y0 | 2Y1 | 2Y2  | 2Y3 |
| X   | X   | H      | X    | H   | Н   | Н    | Н   |
| L   | L   | L      | L    | L   | H   | H    | H   |
| L   | H   | L      | L    | H   | L   | H    | H   |
| Н   | L   | L      | L    | H   | H   | L    | H   |
| H   | H   | L      | L    | H   | H   | Н    | L   |
| X   | X   | X      | H    | H   | H   | H    | Н   |

3-LINE TO 8-LINE DECODER OR 1-LINE TO 8-LINE DEMULTIPLEXER

|    |      | INPU' | rs                | 1   |     |     | OUT | PUTS |     |     |     |
|----|------|-------|-------------------|-----|-----|-----|-----|------|-----|-----|-----|
| S  | ELEC | т     | STROBE<br>or DATA | (0) | (1) | (2) | (3) | (4)  | (5) | (6) | (7) |
| Ct | В    | Α     | G‡                | 2Y0 | 2Y1 | 2Y2 | 2Y3 | 1Y0  | 111 | 1Y2 | 1Y3 |
| Х  | X    | X     | H                 | Н   | Н   | Н   | Н   | Н    | Н   | H   | Н   |
| L  | L    | L     | L                 | L   | H   | H   | H   | H    | H   | H   | H   |
| L  | L    | H     | L                 | H   | L   | H   | H   | H    | Н   | H   | H   |
| L  | H    | L     | L                 | H   | H   | L   | H   | H    | H   | H   | H   |
| L  | H    | H     | L                 | H   | H   | H   | L   | Н    | H   | H   | Н   |
| H  | L    | L     | L                 | H   | H   | H   | H   | L    | H   | Н   | H   |
| H  | L    | Н     | L                 | Н   | H   | H   | H   | H    | L   | H   | H   |
| H  | H    | L     | L                 | Н   | H   | H   | H   | H    | H   | L   | Н   |
| H  | H    | H     | L                 | H   | H   | H   | H   | H    | H   | H   | 1   |

† C = inputs 1C and 2\overline{\overline{C}} connected together ‡ \overline{G} = inputs 1\overline{G} and 2\overline{G} connected together

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL | LS  | ALS | UNIT |
|-----------|------------|-----|-----|-----|------|
| Icc       | MAX        | 40  | 10  | 9   | mA   |
| lou       | MAX        | 16  | 8   | 8   | mA   |
| Vон       | MAX        | 5.5 | 5.5 | 5.5 | mA   |

SWITCHING CHARACTERISTICS

| SWITCHING CHAP | RACTERISTICS                           |        |            |     | _  | _   |
|----------------|----------------------------------------|--------|------------|-----|----|-----|
| PARAMETER      | INPUT                                  | ОИТРИТ | MAX or MIN | TTL | LS | ALS |
| tPLH           | 2C                                     | V      | MAX        | 23  | 40 | 38  |
| tPHL .         | 2 <u>C</u><br>1 <u>G</u> or 2 <u>G</u> | Ť      | IVIAX      | 30  | 51 | 22  |
| tPLH           | A or B                                 |        | DAAW.      | 34  | 46 | 55  |
| TPHL           | A or B                                 | Y      | MAX        | 34  | 51 | 25  |
| tplH .         | 1C                                     | v      | MAN        | 27  | 48 | 50  |
| PHL            | 1C                                     | 1 ,    | MAX        | 33  | 48 | 23  |

UNIT: ns



|        | INPUTS | ОИТРИТ |   |        |
|--------|--------|--------|---|--------|
| STROBE | SELECT | Α      | В | OUIPUI |
| Н      | X      | X      | X | L      |
| L      | L      | L      | X | L      |
| L      | L      | H      | × | H      |
| L      | H      | X      | L | L      |
| L      | H      | X      | H | H      |

#### RECOMMENDED OPERATING CONDITIONS

| HECOMINIEMAEN | OFENATING CON | DITIONS | )    | _  |      |    |    |            |            |             |             |      |
|---------------|---------------|---------|------|----|------|----|----|------------|------------|-------------|-------------|------|
| PARAMETER     | MAX or MIN    | TTL     | LS   | S  | ALS  | AS | F  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | UNIT |
| Icc -         | MAX           | 48      | 16   | 78 | 11   | 28 | 23 | 0.08       | 0.16       | 0.08        | 0.16        | mA   |
| Іон           | MAX           | -0.8    | -0.4 | -1 | -0.4 | -2 | -1 | -6         | -4         | -6          | -4          | mA   |
| lor           | MAX           | 16      | 8    | 20 | 8    | 20 | 20 | 6          | 4          | 6           | 4           | mA   |

| PARAMETER | MAX or MIN | CD74<br>AC | CD74<br>ACT | АНС  | AHCT | LV<br>3V | LV<br>5V | TAC 3A | UNIT |
|-----------|------------|------------|-------------|------|------|----------|----------|--------|------|
| Icc       | MAX        | 0.16       | 0.16        | 0.04 | 0.02 |          | 0.0.2    | 0.01   | mA   |
| Іон       | MAX        | -24        | -24         | -8   | -8   | -6       | -12      | -24    | mA   |
| lou YS    | MAX        | 24         | 24          | 8    | 8    | 6        | 12       | 24     | mA   |

#### SWITCHING CHARACTERISTICS

| OTTITO OTTA | MOTERIO | _      |            |     | _  |      |     |      |     |            |            |             |             |
|-------------|---------|--------|------------|-----|----|------|-----|------|-----|------------|------------|-------------|-------------|
| PARAMETER   | INPUT   | OUTPUT | MAX or MIN | TTL | LS | S    | ALS | AS   | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT |
| tPLH        | DATA    | V      | MAN        | 14  | 14 | 7.5  | 14  | 6    | 6.5 | 32         | 38         | 35          | 38          |
| tPHL .      | DATA    | Υ.     | MAX        | 14  | 14 | 6.5  | 12  | 5.5  | 7   | 32         | 38         | 35          | 38          |
| tPLH .      | STROBE  | v      | MAX        | 20  | 20 | 12.5 | 20  | 10.5 | -11 | 29         | 41         | 33          | 41          |
| tphl.       | STRUBE  | 1      | IVIAA      | 21  | 21 | 12   | 13  | 7.5  | 7   | 29         | 41         | 33          | 41          |
| tPLH .      | SELECT  | v      | MAN        | 23  | 23 | 15   | 24  | 11   | 11  | 31         | 44         | 40          | 44          |
| tPHL .      | SELECT  | 1      | MAX        | 27  | 27 | 15   | 17  | 10   | 8   | 31         | 44         | 40          | 44          |

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | CD74<br>AC | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | LVC<br>3V |  |
|-----------|--------|--------|------------|------------|-------------|------|------|----------|----------|-----------|--|
| tPLH .    | DATA   | V      | MAX        | 8.5        | 9.5         | 9.5  | 9.8  | 15       | 9.5      | 5.2       |  |
| tphl -    | DATA   | - 1    | IVIAA      | 8.5        | 9.5         | 9.5  | 9.8  | 15       | 9.5      | 5.2       |  |
| tPLH      | STROBE | V      | MAX        | 13.5       | 13.5        | 12   | 12   | 19.5     | 12       | 6.5       |  |
| tPHL.     | STRUBE | (1)    | IVIAA      | 13.5       | 13.5        | 12   | 12   | 19.5     | 12       | 6.5       |  |
| tPLH .    | SELECT | v      | MAX        | 14.5       | 14.5        | 11.5 | 12   | 19       | 11.5     | 6.8       |  |
| tPHL .    | SELECT | 1      | IVIAX      | 14.5       | 14.5        | 11.5 | 12   | 19       | 11.5     | 6.8       |  |

UNIT: ns

219

# QUAD 2-TO-1 LINE DATA SLECTORS/MULTIPLEXERS

Buffered Inputs and Outputs



|        | INPUTS | OUTPUT |   |        |
|--------|--------|--------|---|--------|
| STROBE | SELECT | Α      | В | OUTPUT |
| Н      | X      | X      | X | H      |
| L      | L      | L.     | × | H      |
| L      | L      | Н      | × | L      |
| L      | H      | X      | L | Н      |
| L      | H      | ×      | Н | L      |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | S  | ALS  | AS   | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------|----|------|------|----|------------|------------|-------------|------|
| Icc       | MAX        | 11   | 81 | 10   | 22.5 | 15 | 0.08       | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -0.4 | -1 | -0.4 | -2   | -1 | -6         | -4         | -4          | mA   |
| lou       | MAX        | 8    | 20 | 8    | 20   | 20 | 6          | 4          | 4           | mA   |

| PARAMETER | MAX or MIN | CD74<br>AC | CD74<br>ACT | AHC  | AHCT | UNIT |
|-----------|------------|------------|-------------|------|------|------|
| Icc       | MAX        | 0.16       | 0.16        | 0.04 | 0.02 | mA   |
| Іон       | MAX        | -24        | -24         | -8   | -8   | mA   |
| lou       | MAX        | 24         | 24          | 8    | 8    | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT   | ОИТРИТ | MAX or MIN | LS | s    | ALS | AS   | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
|-----------|---------|--------|------------|----|------|-----|------|-----|------------|------------|-------------|
| tPLH      | DATA    |        | BAAN.      | 12 | 6    | 15  | 5    | 7   | 32         | 42         | 42          |
| tPHL .    | DATA    | Y      | MAX        | 15 | 6    | 8   | 4.5  | 4.5 | 32         | 42         | 42          |
| tPLH      | OTDODE  | 1      |            | 17 | 11.5 | 18  | 6.5  | 7   | 29         | 48         | 48          |
| tPHL .    | STROBE  | Y      | MAX        | 24 | 12   | 18  | 10   | 6.5 | 29         | 48         | 48          |
| tPLH      | 0 - 100 | o( , ) | ****       | 20 | 12   | 18  | 9.5  | 9.5 | 31         | 45         | 45          |
| tPHL      | SELECT  | Y      | MAX        | 24 | 12   | 18  | 10.5 | 7   | 31         | 45         | 45          |

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | CD74<br>AC | CD74<br>ACT | AHC  | AHCT |
|-----------|--------|--------|------------|------------|-------------|------|------|
| tPLH      | DATA   | v      | MAN        | 8          | 9.2         | 9.5  | 9.8  |
| tphL.     | DATA   |        | MAX        | 8          | 9.2         | 9.5  | 9.8  |
| tPLH .    | OTDODE |        | MANY       | 11.9       | 12.4        | 12   | 12   |
| tphL .    | STROBE | 1      | MAX        | 11.9       | 12.4        | 12   | 12   |
| tplh .    | OFLEGE |        | 1447       | 12.9       | 13.5        | 11.5 | 12   |
| tphL .    | SELECT | Y      | MAX        | 12.9       | 13.5        | 11.5 | 12   |

UNIT: ns

# **Logic Diagram**



|              |                                         |                                     |                                       |                                 |                                 |   |       |    | FUN      | CTIC | N T | ABL                | E          |                                            |                                         |                                             |    |                                             |    |                                             |            |  |
|--------------|-----------------------------------------|-------------------------------------|---------------------------------------|---------------------------------|---------------------------------|---|-------|----|----------|------|-----|--------------------|------------|--------------------------------------------|-----------------------------------------|---------------------------------------------|----|---------------------------------------------|----|---------------------------------------------|------------|--|
|              |                                         |                                     | UTS                                   |                                 |                                 |   |       |    |          |      |     |                    |            | PUT                                        |                                         |                                             |    |                                             |    |                                             |            |  |
| L<br>L       | G2<br>L L L L L L L L L L L L L L H L H | D L L L L L L H H H H H H H H X X X | C L L L H H H H L L L L H H H H X X X | B L L H H L L H H L L H H X X X | A L H L H L H L H L H L H X X X |   | HHHHH | 2  |          | 4    | 5   | 6 1111111111111111 | 7          | 8<br>H H H H H H H H H H H H H H H H H H H | 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10<br>H H H H H H H H H H H H H H H H H H H | 12 | 13<br>H H H H H H H H H H H H H H H H H H H | 14 | 15<br>H H H H H H H H H H H H H H H H H H H | 4-BIT BING |  |
|              |                                         |                                     | T                                     |                                 | ATING                           | 4 | T     | E- |          | 7    |     |                    |            |                                            |                                         |                                             |    |                                             |    |                                             |            |  |
| PAR          | IAM                                     | ETER                                | 1                                     | MA                              | X or                            |   | T     | TL | UNI      | r    |     |                    |            |                                            |                                         |                                             |    |                                             |    |                                             |            |  |
| CC<br>OL     |                                         |                                     | _                                     |                                 | MAX                             |   | _     | 16 | mA<br>mA |      |     |                    |            |                                            |                                         |                                             |    |                                             |    |                                             |            |  |
|              |                                         | ETER                                | 1                                     |                                 | INPU                            | Г |       | 0  | TPUT     |      | MA  | X or               | 515<br>515 |                                            | TTL<br>36                               |                                             |    |                                             |    |                                             |            |  |
| TPHL<br>TPLH |                                         |                                     | 4                                     | _                               |                                 | _ | +     | -  |          | 4    |     |                    | 100        | 1                                          | 36<br>25                                | -                                           |    |                                             |    |                                             |            |  |
| PHL          |                                         | İ                                   | 88                                    | S                               | TROB                            | E |       | A  | NY       |      | 85  | MA)                | ( SB       | I.                                         | 36                                      |                                             |    |                                             |    |                                             |            |  |
| UNIT:        | ns                                      |                                     |                                       |                                 |                                 |   |       |    |          |      |     |                    |            |                                            |                                         |                                             |    |                                             |    |                                             |            |  |
|              |                                         |                                     |                                       |                                 |                                 |   |       |    |          | -0   |     |                    |            |                                            |                                         |                                             |    |                                             |    |                                             |            |  |
|              |                                         |                                     |                                       |                                 |                                 |   |       |    |          |      |     |                    |            |                                            |                                         |                                             |    |                                             |    |                                             |            |  |

Ther simplicity, reuting of complementary signals LD and CK is not shown on the central logic diagram. The uses of these signals are contine topic diagram of the D4 file-dops.

#### **SYNCHRONOUS 4-BIT BINARY COUNTERS**

- Asynchronous Clear Function
- Carry Output for n-Bit Cascading

# Logic Diagram



<sup>†</sup> For simplicity, routing of complementary signals  $\overline{LD}$  and  $\overline{CK}$  is not shown on this overall logic diagram. The uses of these signals are shown on the logic diagram of the D/T flip-flops.

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | ALS  | AS | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT | LV<br>3V | LV<br>5V | UNIT |
|-----------|------------|------|------|------|----|----|------------|------------|-------------|------------|-------------|----------|----------|------|
| Icc       | MAX        | 101  | 32   | 21   | 53 | 55 | 0.08       | 0.16       | 0.16        | 0.08       | 0.08        | -        | 0.02     | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -0.4 | -2 | -1 | 4          | -4         | -4          | -24        | -24         | -6       | -12      | mA   |
| lou       | MAX        | 16   | 8    | 8    | 20 | 20 | -4         | 4          | 4           | 24         | 24          | -6       | 12       | mA   |

#### SWITCHING CHARACTERISTICS

| SWIT       | CHING CHARACTERIS | TICS     |                        | mangeru c  | Bind |      | ,    |      |            | ,          |            | _           |
|------------|-------------------|----------|------------------------|------------|------|------|------|------|------------|------------|------------|-------------|
|            | PARAMETER         | INPUT    | OUTPUT                 | MAX or MIN | TTL  | LS   | ALS  | AS   | <i>E</i> 1 | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
| fmax       | 81V               |          | 00                     | MIN        | 25   | 25   | 40   | 75   | 90         | 25         | 20         | 20          |
| tw         | CLOCK             |          |                        | MIN        | 25   | 25   | -    | - /  | 7          | 20         | 24         | 24          |
|            | CLEAR             |          |                        | IVIIN      | 20   | 20   | 15   | 8    | 5          | 20         | 30         | 30          |
| tsu        | INPUT A, B, C, D  |          |                        | 1.3        | 20   | 20   | 15   | 8    | 5          | 38         | 18         | 15          |
|            | ENABLE, P, T      |          |                        |            | 20   | 20   | 15   | 8    | 11.5       | 43         | 15         | 20          |
|            | LOAD              |          |                        | MIN        | 25   | 20   | 15   | 8    | 11.5       | 34         | 18         | 18          |
|            | CLEAR INACTIVE    |          |                        |            | 20   | 25   | 10   | 8    |            | 31         | 20         | 153         |
| th         |                   |          |                        | MIN        | 0    | 3    | 0    | 0    | 2          | 0          | 3          | 5           |
| tPLH       |                   | OL OOK   | DIDDLE CARRY           | MAN        | 35   | 35   | 20   | 16.5 | 15         | 54         | 56         | 63          |
| tPHL       |                   | CLOCK    | RIPPLE CARRY           | MAX        | 35   | 35   | 20   | 12.5 | 15         | 54         | 56         | 63          |
| tPLH       |                   | 01.001   | *****                  | 14437      | 25   | 24   | 15   | 7    | 9.5        | 51         | 56         | 59          |
| tPHL       |                   | CLOCK    | ANY Q                  | MAX        | 29   | 27   | 20   | 13   | 11         | 51         | 56         | 59          |
| tPLH       |                   |          | FALADIE T DIDDLE GADDY | MAX        | 16   | 14   | 13   | 9    | 8.5        | 49         | 36         | 48          |
| tPHL       | AD -1             | ENABLE T | RIPPLE CARRY           | MAX        | 16   | 14   | 13   | 8.5  | 8.5        | 49         | 36         | 48          |
| tphl CLEAR | OLEAD             | ANY Q    | MAX                    | 38         | 28   | 24   | 13   | 13   | 53         | 63         | 75         |             |
|            | RIPPLE CARRY      | MAX      |                        | N          | 23   | 12.5 | 11.5 | 55   | 63         | 75         |            |             |

|       | PARAMETER        | INPUT    | OUTPUT       | MAX or MIN | CD74<br>AC | CD74<br>ACT | 3V   | LV<br>5V |
|-------|------------------|----------|--------------|------------|------------|-------------|------|----------|
| fmax  | > ag             | 5-10-0   | <            | MIN        | 103        | 91          | 50   | 85       |
| tw    | CLOCK            |          | 4            | GE MIN     | 4.8        | 5.4         | 5    | 5        |
|       | CLEAR            |          |              | MIN        | 4.4        | 5.3         | 5    | 5        |
| tsu   | INPUT A, B, C, D |          |              |            | 4.4        | 4.4         | 6.5  | 4.5      |
|       | ENABLE, P, T     |          |              | 24121      | -          | -           | 9    | 6        |
|       | LOAD             |          |              | MIN        | 5.3        | 5.3         | 9.5  | 6        |
|       | CLEAR INACTIVE   |          |              |            |            |             | 2.5  | 1.5      |
| th    | 20 21            |          | 177 C3       | MIN        | 0          | 0           | 1    | 1        |
| tPLH  |                  | CLOCK    | RIPPLE CARRY | MANY       | 15.2       | 15.2        | 23.5 | 14       |
| tPHL  |                  | CLUCK    | RIPPLE CARRY | MAX        | 15.2       | 15.2        | 23.5 | 14       |
| tPLH  |                  | CLOCK    | ANNO         | MANY       | 15         | 15          | 18.5 | 11.5     |
| tPHL  |                  | CLUCK    | ANY Q        | MAX        | 15         | 15          | 18.5 | 11.5     |
| tPLH  |                  | FNADIET  | RIPPLE CARRY | 1444       | 9.4        | 9.8         | 18   | 11.5     |
| tPHL  |                  | ENABLE T | RIPPLE CARRY | MAX        | 9.4        | 9.8         | 18   | 11.5     |
|       |                  | 01540    | ANYQ         | MAX        | 15         | 15          | 19.5 | 12.5     |
| tPHL. | ds -             | CLEAR    | RIPPLE CARRY | MAX        | 15         | 15          | 19   | 12       |



† For simplicity, routing of complementary signals  $\overline{LD}$  and  $\overline{CK}$  is not shown on this overall logic diagram. The uses of these signals are shown on the logic diagram of the D/T flip-flops.

#### SWITCHING CHARACTERISTICS

|              | PARAMETER        | INPUT     | OUTPUT       | MAX or MIN | TTL | LS | S   | ALS  | AS   | F    | SN74<br>HC |
|--------------|------------------|-----------|--------------|------------|-----|----|-----|------|------|------|------------|
| fmax         |                  |           |              | MIN        | 25  | 25 | 40  | 40   | 75   | 90   | 25         |
| tw           | CLOCK            |           |              | MIN        | 25  | 25 | 10  | - 1  | -    | 7    | 20         |
|              | CLEAR            |           |              | IVIIN      | 20  | 20 | 10  | 12.5 | 6.7  | -    | -          |
| tsu          | INPUT A, B, C, D |           |              | 10.5       | 20  | 20 | 4   | 15   | 8    | 5    | 38         |
|              | ENABLE, P, T     |           |              | MIN        | 20  | 20 | 12  | 15   | 8    | 11.5 | 43         |
|              | LOAD             |           |              | IVIIIN     | 25  | 20 | .14 | 15   | 8    | 11.5 | 34         |
|              | CLEAR            |           |              |            | 20  | 20 | 14  | 15   | 12   | -4-  | 40         |
| th           |                  |           |              | MIN        | 0   | 3  | 3   | 0    | 0    | 2    | 0          |
| TPLH         | 12 13            | CLOCK     | RIPPLE CARRY | MAX        | 35  | 35 | 25  | 20   | 16.5 | 15   | 54         |
| tPHL         | 90               | CLUCK     | RIPPLE CARRY | IVIAX      | 35  | 35 | 25  | 20   | 12.5 | 15   | 54         |
| tPLH         |                  | CLOCK     | ANY O        | MAX        | 25  | 24 | 15  | 15   | 7    | 9.5  | 51         |
| <b>t</b> PHL |                  | CLUCK     | AINT U       | IVIAA      | 29  | 27 | 15  | 20   | 13   | 11   | 51         |
| tPLH         |                  | CALADIC T | DIDDLE GADDY | MAN        | 16  | 14 | 15  | 13   | 9    | 8.5  | 49         |
| tPHL         |                  | ENABLE T  | RIPPLE CARRY | MAX        | 16  | 14 | 15  | 13   | 8.5  | 8.5  | 49         |

|             | PARAMETER        | INPUT    | OUTPUT       | MAX or MIN | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT | LV<br>3V | LV<br>5V |
|-------------|------------------|----------|--------------|------------|------------|-------------|------------|-------------|----------|----------|
| fmax        |                  |          |              | MIN        | 20         | 20          | 103        | 91          | 50       | 85       |
| tw          | CLOCK            |          |              | MINI       | 24         | 24          | 4.8        | 5.4         | 5        | 5        |
|             | CLEAR            |          |              | MIN        | -          | -           | -          | -           | -        | -        |
| tsu         | INPUT A, B, C, D |          |              |            | 18         | 15          | 4.4        | 4.4         | 6.5      | 4.5      |
|             | ENABLE, P, T     |          |              | NAIN!      | 15         | 20          | 4.4        | 5.3         | 9        | 6        |
|             | LOAD             |          |              | MIN        | 18         | 18          | 5.3        | 6.6         | 9.5      | 6        |
|             | CLEAR            |          |              |            | 20         | 20          | 5.3        | 6.6         | 4        | 3.5      |
| th          |                  |          |              | MIN        | 3          | 5           | 0          | 0           | 1        | 1        |
| tPLH        |                  | 01.001/  | DIDDLE GARDY | 1447       | 56         | 63          | 15.2       | 15.2        | 23.5     | 14       |
| tPHL.       |                  | CLOCK    | RIPPLE CARRY | MAX        | 56         | 63          | 15.2       | 15.2        | 23.5     | 14       |
| <b>TPLH</b> |                  | 01004    | AAUV O       |            | 56         | 59          | 15         | 15          | 18.5     | 11.5     |
| tPHL.       |                  | CLOCK    | ANY Q        | MAX        | 56         | 59          | 15         | 15          | 18.5     | 11.5     |
| tPLH        |                  | FNIADLET | DIDDLE GADDV | MAN        | 36         | 48          | 9.4        | 9.8         | 18       | 11.5     |
| tPHL        |                  | ENABLE T | RIPPLE CARRY | MAX        | 36         | 48          | 9.4        | 9.8         | 18       | 11.5     |

#### 8-BIT PARALLEL OUT SERIAL SHIFT REGISTERS

- AND-Gated (Enable/Disable) Serial Inputs
- Fully Buffered Clock and Serial Inputs



|       | INPUTS |   |   |     | OUTPL | JTS |
|-------|--------|---|---|-----|-------|-----|
| CLEAR | CLOCK  | Α | В | QA  | QB    | QH  |
| L     | X      | X | X | L   | L     | L   |
| H     | L      | × | X | QAO | QBO   | QHO |
| H     | 1      | H | H | H   | QAn   | QGr |
| Н     | 1      | L | X | L   | QAn   | QGr |
| H     | 1      | × | 1 | L   | OAn   | 000 |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | ALS  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT | LV<br>3V | LV<br>5V | UNIT |
|-----------|------------|------|------|------|------------|------------|-------------|------------|-------------|----------|----------|------|
| lcc       | MAX        | 54   | 27   | 24   | 0.08       | 0.16       | 0.16        | 0.16       | 0.16        | - 0      | 0.02     | mA   |
| Іон       | MAX        | -0.4 | -0.4 | -0.4 | -4         | -4         | -4          | -24        | -24         | -6       | -12      | mA   |
| lor       | MAX        | 8    | 8    | 8    | 4          | 4          | 4           | 24         | 24          | 6        | 12       | mA   |

#### CIANTOLINA CHADACTERICTICS

| 24411 | CHING CHARACTERIS | 1165  |        |            |     |    |     |            |            | Y           |            |             |
|-------|-------------------|-------|--------|------------|-----|----|-----|------------|------------|-------------|------------|-------------|
|       | PARAMETER         | INPUT | OUTPUT | MAX or MIN | TTL | LS | ALS | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT |
| fmax  | 35-11             | Rip.  | 86- 10 | MIN        | 25  | 25 | 50  | 25         | 20         | 18          | 75         | 70          |
| tw    | CLR "L"           |       |        | MIN        | 20  | 20 | 16  | 25         | 18         | 27          | 4.5        | 4.5         |
|       | CLK "H"           |       |        | MIN        | 20  | 20 | 10  | 20         | 24         | 27          | 6.7        | 7.1         |
|       | CLK "L"           |       |        | MIN        | 20  | 20 | 10  | 20         | 24         | 27          | 6.7        | 7.1         |
| tsu   | DATA              |       |        | MIN        | 15  | 15 | 6   | 25         | 18         | 18          | 2.5        | 2.5         |
|       | CLEAR INACTIVE    |       |        | MIN        | 20  | 20 | 8   | 25         | 18         | 18          | 2.5        | 2.5         |
| th    |                   |       |        | MIN        | 5   | 5  | 2   | 5          | 4          | 4           | 2.5        | 3           |
| tPHL  |                   | CLEAR | Q      | MAX        | 42  | 36 | 20  | 51         | 42         | 57          | 13.9       | 15.8        |
| tPLH  |                   | CLOCK | 0      | MANY       | 30  | 27 | 16  | 44         | 51         | 54          | 12.5       | 14.9        |
| tPHL  |                   | CLUCK | ۵      | MAX        | 37  | 32 | 17  | 44         | 51         | 54          | 12.5       | 14.9        |

|       | PARAMETER      | INPUT | OUTPUT | MAX or MIN | LV<br>3V | LV<br>5V |
|-------|----------------|-------|--------|------------|----------|----------|
| fmax  |                |       | 1      | MIN        | 45       | 75       |
| tw    | CLR "L"        |       |        | MIN        | 5        | 5        |
|       | CLK "H"        |       |        | MIN        | 5        | 5        |
|       | CLK "L"        |       |        | MIN        | 5        | 5        |
| tsu   | DATA           |       |        | MIN        | 6        | 4.5      |
|       | CLEAR INACTIVE |       |        | MIN        | 2.5      | 2.5      |
| th    |                |       |        | MIN        | 0        | 1        |
| tPHL. |                | CLEAR | 0      | MAX        | 18.5     | 12.5     |
| tPLH  |                | CLOCK | Q      | MAX        | 18.5     | 12.5     |
| tPHL  |                | CLUCK | u      | WAX        | 18.5     | 12.5     |



|        |         | INPUTS  |        |          | INTE | RNAL            | OUTPUT |
|--------|---------|---------|--------|----------|------|-----------------|--------|
| SHIFT/ | CLOCK   | 01.001/ | OFFILE | PARALLEL | OUT  | PUTS            | OUTFUT |
| LOAD   | INHIBIT | CLOCK   | SERIAL | AH       | QA   | QB              | QH     |
| L      | X       | X       | X      | ah       | а    | b               | h      |
| H      | L       | L       | X      | X        | QAO  | Q <sub>B0</sub> | QHO    |
| H      | L       | 1       | H      | X        | Н    | QAn             | QGn    |
| H      | L       | 1       | L      | X        | L    | QAn             | QGn    |
| H      | Н       | X       | X      | X        | QAO  | QBO             | QHO    |

RECOMMENDED OPERATING CONDITIONS

| TIEGOTHINETEDED | OI LINATING GOIL | DITTOTAL |      |      | _          | _          | -           | _        | _    |      |
|-----------------|------------------|----------|------|------|------------|------------|-------------|----------|------|------|
| PARAMETER       | MAX or MIN       | TTL      | LS   | ALS  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | TA<br>TA | 5 LV | UNIT |
| Icc             | MAX              | 63       | 30   | 24   | 0.08       | 0.16       | 0.16        | -        | 0.02 | mA   |
| Тон             | MAX              | -0.8     | -0.4 | -0.4 | -4         | -4         | -4          | -6       | -12  | mA   |
| lou.            | MAX              | 16       | 8    | 8    | 4          | 4          | 4           | 6        | 12   | mA   |
|                 |                  |          |      |      |            |            |             |          |      |      |

| SWIT   | CHING CHARACT | TERISTICS | plan                             | pl-sh      | 14  |    | 1   |            | 1-1        |             | ph-h     |          |
|--------|---------------|-----------|----------------------------------|------------|-----|----|-----|------------|------------|-------------|----------|----------|
| P/     | ARAMETER      | INPUT     | OUTPUT                           | MAX or MIN | TTL | LS | ALS | SN74<br>HC | CD74<br>HC | CD74<br>HCT | LV<br>3V | LV<br>5V |
| fmax   |               | 4.97      | 7 07                             | MIN        | 20  | 25 | 45  | 25         | 20         | 18          | 50       | 85       |
| tw     | OI DON        | H         | igh                              | MIN        | 25  | 15 | 11  | 20         | 24         | 27          | 7        | 4        |
|        | CLOCK         | L         | ow                               | MIN        | 25  | 25 | 11  | 20         | 24         | 27          | 7        | 4        |
|        | SH/ LD "L"    | Н         | igh                              | MIN        | 15  | 25 | -   | -          | -          | -           | -        | 3        |
|        | SH/ LD L      | L         | ow                               | MIN        | 15  | 17 | 12  | 20         | 24         | 30          | 9        | 6        |
| tsu    | CLK INH       |           |                                  |            | 30  | 30 | 11  | 25         | 24         | 30          | 5        | 3.5      |
|        | DATA          |           |                                  | MIN        | 10  | 10 | 10  | 25         | 24         | 30          | 8.5      | 5        |
|        | SER           |           |                                  | IVIIIN     | 20  | 20 | 10  | 10         | 24         | 30          | 6        | 4        |
|        | SH/ LD "H"    |           |                                  |            | 45  | 45 | 10  | 20         |            | -           | 6        | 4        |
| th     |               |           |                                  | MIN        | 0   | 0  | 4   | 5          | .11        | 11          | 0.5      | 1        |
| tPLH . |               | CLOCK     | 0 0                              | MAX        | 24  | 25 | 13  | 38         | 50         | 60          | 21.5     | 13.5     |
| tPHL   |               | CLUCK     | $Q_H$ or $\overline{Q}_H$        | IVIAA      | 31  | 25 | 14  | 38         | 50         | 60          | 21.5     | 13.5     |
| tPLH   |               | SH/ LD    | 0 5                              | MAX        | 31  | 35 | 20  | 38         | 53         | 60          | 22       | 13.5     |
| tPHL.  |               | SH/ LU    | Q <sub>H</sub> or Q <sub>H</sub> | IVIAA      | 40  | 35 | 22  | 38         | 53         | 60          | 22       | 13.5     |
| tPLH   |               | Н         | 0                                | MAX        | 17  | 25 | 13  | 38         | 45         | 53          | 20       | 12.5     |
| tPHL   |               | п         | QH                               | IVIAX      | 36  | 30 | 16  | 38         | 45         | 53          | 20       | 12.5     |
| tPLH   | н             |           | Q <sub>H</sub>                   | MAX        | 27  | 30 | 15  | 38         | 45         | 53          | 20       | 12.5     |
| tPHL   |               | ri        | Q <sub>H</sub>                   | IVIAX      | 27  | 25 | 16  | 38         | 45         | 53          | 20       | 12.5     |

#### **8-BIT SHIFT REGISTERS**

- Synchronous Load
- Direct Overriding Clear
- Parallel-to-Serial Conversion

# Logic Diagram



|       |        | 1       | NPUTS |        |            | INTE | RNAL             | OUTPUT |         |  |
|-------|--------|---------|-------|--------|------------|------|------------------|--------|---------|--|
|       | SHIFT/ | CLOCK   |       |        | PARALLEL C |      | OUTPUTS          |        | OUTPUTS |  |
| CLEAR | LOAD   | INHIBIT | CLOCK | SERIAL | AH         | QA   | QB               | QH     |         |  |
| L     | X      | X       | X     | X      | X          | L    | L                | L      |         |  |
| H     | X      | L       | L     | X      | X          | QAO  | Q <sub>B0</sub>  | QHO    |         |  |
| H     | L      | L       | 1     | X      | ah         | a    | b                | h      |         |  |
| H     | H      | L       | 1     | H      | X          | H    | QAn              | QGn    |         |  |
| H     | H      | L       | 1     | L      | X          | L    | QAn              | QGn    |         |  |
| H     | X      | Н       | 1     | X      | X          | QAO  | Q <sub>B</sub> 0 | QHO    |         |  |

4-BIT UP/DOWN SYNCHRONOUS O

Fully Synchronous Operation for Countin
 Internal Carry Look-Ahead Circuitry for E
 Carry Output for a Pic Secondary

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | ALS  | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | LV<br>3V | LV<br>5V | UNIT |
|-----------|------------|------|------|------|----|------------|------------|-------------|----------|----------|------|
| Icc       | MAX        | 127  | 32   | 24   | 60 | 0.08       | 0.16       | 0.16        | -        | 0.02     | mA   |
| Іон Остан | MAX        | -0.8 | -0.4 | -0.4 | -1 | -4         | -4         | -4          | -6       | -12      | mA   |
| lou       | MAX        | 16   | 8    | 8    | 20 | 4          | 4          | 4           | 6        | 12       | mA   |

SWITCHING CHARACTERISTICS

| SWIT | CHING CHARAC | TERISTICS |           |            |    |    |     |     |            | V          | -           |          | 1148     |
|------|--------------|-----------|-----------|------------|----|----|-----|-----|------------|------------|-------------|----------|----------|
| Р    | ARAMETER     | INPUT     | OUTPUT    | MAX or MIN | ΠL | LS | ALS | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | LV<br>3V | LV<br>5V |
| fmax |              |           |           | MIN        | 25 | 25 | 45  | 110 | 25         | 20         | 16          | 50       | 85       |
| tw   | CLOCK        |           | 0 < 0 - 6 | MIN        | 20 | 20 | 10  | 3.5 | 20         | 24         | 30          | 7        | 4        |
|      | CLEAR        | The land  | 01 5      | MIN        | 20 | 25 | 9   | 4   | 25         | 30         | 53          | 7        | 5        |
| tsu  | Mode Control | A III     |           | MIN        | 30 | 30 | 16  | 4   | 36         | 44         | 45          | 6        | 4        |
|      | DATA         |           |           | IVIII      | 20 | 20 | 7   | 3   | 20         | 24         | 24          | 6        | 4.5      |
| th   |              |           |           | MIN        | 0  | 0  | 3   | 0   | 0          | 1          | 0           | 0        | 1        |
| tPHL |              | CLEAR     | ΩН        | MAX        | 35 | 30 | 14  | 9.5 | 30         | 48         | 60          | 18.5     | 12       |
| tPHL | PHL CLOCK QH |           | MAN       | 30         | 25 | 13 | 14  | 38  | 48         | 60         | 21.5        | 13.5     |          |
| tPLH |              |           | MAX       | 26         | 20 | 12 | 9   | 38  | 48         | 60         | 21.5        | 13.5     |          |





| RECOMMENDED | OPERATING | CONDITIONS |    |
|-------------|-----------|------------|----|
| DADAMETED   |           | MAY or MIN | 10 |

| HEOOMHILLIAN | 20 01 210111110 01 |            | _    |     | _    | _  | _     | _    |
|--------------|--------------------|------------|------|-----|------|----|-------|------|
| PARAMETER    | R                  | MAX or MIN | LS   | S   | ALS  | AS | F     | UNIT |
| Icc          |                    | MAX        | 45   | 160 | 25   | 63 | 52    | mA   |
|              | RCO                | MAX        | -0.4 | -1  | -0.4 | -2 | nia e | mA   |
| ЮН           | Q                  | MAX        | -1.2 | -1  | -0.4 | -2 | -1    | mA   |
| Іон ВСС      | RCO                | MAX        | 8    | 20  | 8    | 20 | 20    | mA   |
|              | Q                  | MAX        | 24   | 20  | 8    | 20 | 20    | mA   |

 Fast Access Times: Typically 20ng Expandable to 1024 Words of 4 Bit

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LS | S  | ALS | AS   | F    |
|-----------|-------|--------|------------|----|----|-----|------|------|
| fmax      |       |        | MIN        | 20 | 40 | 40  | 75   | 90   |
| tPLH      | CLK   | RCO    | MAY        | 40 | 21 | 20  | 16.5 | 17   |
| tPHL ID   | CLK   | nco    | MAX        | 25 | 28 | 20  | 13   | 12.5 |
| tPLH      | 0114  | 4400   | 1111       | 25 | 15 | 15  | 13   | 9.5  |
| tPHL .    | CLK   | ANY Q  | MAX        | 25 | 15 | 20  | 7    | 13   |
| tPLH      | ENT   | RCO    | MAN        | 25 | 12 | 13  | 9    | 7    |
| tphl.     | ENT   | RUU    | MAX        | 20 | 25 | 16  | 9    | 9    |
| tPLH      | U/D   | RCO    | MAX        | 35 | 15 | 19  | 12   | 12.5 |
| tPHL .    | 0/0   | KLU    | MAX        | 25 | 22 | 19  | 13   | 12   |



#### **4-BY-4 REGISTER FILES**

- Separate Read/Write Addressing Permits Simultaneous Reading and Writing
- Fast Access Times: Typically 20ns
- Expandable to 1024 Words of 4 Bits



#### WRITE FUNCTION TABLE

| WRI | WRITE INPUTS |                | INPUTS OUTPUTS |       |       |       |
|-----|--------------|----------------|----------------|-------|-------|-------|
| WB  | WA           | G <sub>W</sub> | 0              | 1     | 2     | 3     |
| L   | L            | L              | Q = D          | 00    | QO    | 00    |
| L   | Н            | L              | 00             | Q = D | 00    | 00    |
| H   | L            | L              | 00             | 90    | Q = D | 00    |
| H   | Н            | L              | 90             | 00    | QO    | Q = D |
| X   | ×            | Н              | 90             | 90    | 90    | 00    |

#### READ FUNCTION TABLE

| RE/ | D INP | UTS |      | OUT  | PUTS |      |
|-----|-------|-----|------|------|------|------|
| RB  | RA    | GR  | Q1   | Q2   | Q3   | Q4   |
| L   | L     | L   | W0B1 | W0B2 | W0B3 | W0B4 |
| L   | Н     | L   | W1B1 | W1B2 | W1B3 | W1B4 |
| H   | L     | L   | W2B1 | W2B2 | W2B3 | W2B4 |
| Н   | Н     | L   | W3B1 | W3B2 | W3B3 | W3B4 |
| X   | ×     | Н   | H    | H    | H    | Н    |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL | LS  | UNIT |
|-----------|------------|-----|-----|------|
| Icc       | MAX        | 150 | 40  | mA   |
| Vон       | MAX        | 5.5 | 5.5 | V    |
| lou       | MAX        | 16  | 8   | mA   |

#### SWITCHING CHARACTERISTICS

| 300110      | JIING CHAI | RACTERISTICS |        |            |     |    |
|-------------|------------|--------------|--------|------------|-----|----|
| PAR         | RAMETER    | INPUT        | OUTPUT | MAX or MIN | TTL | LS |
| fmax        |            |              | 10<    | MIN        | 3   |    |
| tw          |            | -            |        | MIN        | 25  | 25 |
| tsu         | D          | 8 19         |        | NAINI      | 10  | 10 |
|             | W          | - O          |        | MIN        | 15  | 15 |
| th          | D          | -            |        | NAINI      | 15  | 15 |
|             | W          |              |        | MIN        | 5   | 5  |
| tPLH .      |            | READ         | 0      | MAX        | 15  | 30 |
| <b>TPHL</b> |            | ENABLE       | u      | IVIAX      | 30  | 30 |
| tPLH        |            | READ         | Ω      | MAX        | 35  | 40 |
| tPHL.       |            | SELECT       | u ar   | MAX        | 40  | 40 |
| tPLH        |            | WRITE        | 0      | MAX        | 40  | 45 |
| tPHL        |            | ENABLE       | u      | IVIAX      | 45  | 40 |
| tPLH.       |            | DATA         | 0      | MAN        | 30  | 45 |
| tPHL .      |            | DATA         | 0      | MAX        | 45  | 35 |



|       | INPUTS  LEAR CLOCK DATA ENABLE DATA  G1 G2  D |      |        |      |        |  |  |  |
|-------|-----------------------------------------------|------|--------|------|--------|--|--|--|
| CLEAR | CLOCK                                         | DATA | ENABLE | DATA | OUTPUT |  |  |  |
|       |                                               | G1   | G2     | D    |        |  |  |  |
| H     | X                                             | X    | ×      | X    | L      |  |  |  |
| L     | L                                             | X    | X      | X    | 90     |  |  |  |
| L     | 1                                             | H    | ×      | X    | 90     |  |  |  |
| L     | 1                                             | X    | Н      | X    | QO     |  |  |  |
| L     | 1                                             | L.   | L      | L    | L      |  |  |  |
| L     | 1                                             | L    | L      | H    | H      |  |  |  |

HEX D-TYPE FLIP-FLOPS

Buffered Cleak and Disease Class

Fully Buffered Dutauts for Maximum leadation

from External Disturbences

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------|------|------------|------------|-------------|------|
| lcc       | MAX        | 72   | 24   | 0.08       | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -5.2 | -2.6 | -6         | -6         | -6          | mA   |
| lou       | MAX        | 16   | 24   | 6          | 6          | 6           | mA   |

#### SWITCHING CHARACTERISTICS

| 1    | PARAMETER    | INPUT   | OUTPUT        | MAX or MIN | TTL | LS | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
|------|--------------|---------|---------------|------------|-----|----|------------|------------|-------------|
| fmax |              |         | Am   810   81 | MIN        | 25  | 25 | 25 25      | 20         | 13          |
| tvv  |              |         |               | MIN        | 20  | 25 | 20         | 24         | 28          |
| tsu  | DATA ENABLE  |         |               | 20 05      | 17  | 35 | 25         | 18         | 18          |
|      | DATA         |         |               | MIN        | 10  | 17 | 25         | 18         | 27          |
|      | CLR INACTIVE |         |               | MIN        | 10  | 10 | 23         | don        | 100         |
| th   | DATA ENABLE  |         |               | TONG VS    | 2   | 0  | 0          | 0          | 0           |
|      | DATA         |         |               | MIN        | 10  | 3  | 0          | 3          | 0           |
| tPHL | •            | CLEAR   | ۵             | MAX        | 27  | 35 | 38         | 53         | 66          |
| tPLH |              | CLOCK   | 0             | MANY       | 43  | 25 | 38         | 60         | 60          |
| tPHL |              | CLOCK   | u             | MAX        | 31  | 30 | 38         | 60         | 60          |
| tPZH |              | FALABLE | Q             | MAN        | 30  | 23 | 38         | 45         | 45          |
| tPZL |              | ENABLE  | и             | MAX        | 30  | 27 | 38         | 45         | 45          |
| tPHZ | senn senn s  | DICABLE | 0             | 1447       | 14  | 20 | 38         | 45         |             |
| tPLZ | T394 398     | DISABLE | Ω             | MAX        | 20  | 17 | 38         | 45         |             |

| <br>· · · · · · · · · · · · · · · · · · · | THE LET US |  |  |  |  |  |  |
|-------------------------------------------|------------|--|--|--|--|--|--|
|                                           |            |  |  |  |  |  |  |
|                                           |            |  |  |  |  |  |  |
|                                           |            |  |  |  |  |  |  |
|                                           |            |  |  |  |  |  |  |
|                                           |            |  |  |  |  |  |  |
|                                           |            |  |  |  |  |  |  |
|                                           |            |  |  |  |  |  |  |
|                                           |            |  |  |  |  |  |  |
|                                           |            |  |  |  |  |  |  |
|                                           |            |  |  |  |  |  |  |
|                                           |            |  |  |  |  |  |  |
|                                           |            |  |  |  |  |  |  |

# 174

# **HEX D-TYPE FLIP-FLOPS**

- Buffered Clock and Direct Clear Inputs
- Fully Buffered Outputs for Maximum Isolation from External Disturbances

#### **FUNCTION TABLE**

|       | INPUTS |   | OUTPUT |
|-------|--------|---|--------|
| CLEAR | CLOCK  | D | Q      |
| L     | X      | X | L      |
| H     | 1      | Н | H      |
| H     | 1      | L | L      |
| L     | L      | X | 00     |

# CLR 1 1D 1D 1D

To Five Other Channels

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | S   | ALS  | AS | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------|------|-----|------|----|----|------------|------------|-------------|------|
| Icc       | MAX        | 65   | 26   | 144 | 19   | 45 | 55 | 0.08       | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -1  | -0.4 | -2 | -1 | -4         | -4         | -4          | mA   |
| lou       | MAX        | 16   | 8    | 20  | 8    | 20 | 20 | 4          | 4          | 4           | mA   |

| PARAMETER | MAX or MIN | CD74<br>AC | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | UNIT |
|-----------|------------|------------|-------------|------|------|----------|----------|------|
| Icc       | MAX        | 0.16       | 0.16        | 0.04 | 0.04 |          | 0.02     | mA   |
| Іон       | MAX        | -24        | -24         | -8   | -8   | -6       | -12      | mA   |
| lou       | MAX        | 24         | 24          | 8    | 8    | 6        | 12       | mA   |

SWITCHING CHARACTERISTICS

| F            | PARAMETER    | INPUT | OUTPUT | MAX or MIN | TTL | LS | S  | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74<br>AC |
|--------------|--------------|-------|--------|------------|-----|----|----|-----|-----|-----|------------|------------|-------------|------------|
| fmax         |              |       |        | MIN        | 25  | 30 | 75 | 50  | 100 | 80  | 25         | 20         | 17          | 95         |
| tw           | CLR LOW      |       |        | MIN        | 20  | 20 | 10 | 10  | 5   | 5   | 20         | 24         | 38          | 4          |
|              | CLK HIGH     |       |        | MIN        | 20  | 20 | 7  | 10  | 4   | 4   | 20         | 24         | 30          | 5.2        |
|              | CLK LOW      |       |        | IVIIIV     | 20  | 20 | 7  | 10  | 6   | 6   | 20         | 24         | 30          | 5.2        |
| tsu          | DATA INPUT   |       |        | MIN        | 20  | 20 | 5  | 10  | 4   | 4.5 | 25         | 18         | 24          | 2          |
|              | CLR INACTIVE |       |        | MIN        | 25  | 25 | 5  | 6   | 6   | 5   | 25         | -          | -           | -          |
| th           |              |       |        | MIN        | 5   | 5  | 3  | 0   | 1   | 1   | 0          | 5          | 5           | 3          |
| tPLH         |              | CLR   | ANY Q  | MAX        | 25  | -  | -  | 18  |     | -   | 40         | 45         | 66          | 14.5       |
| TPHL         |              | ULH   | ANYU   | IVIAX      | 35  | 35 | 22 | 23  | 14  | 15  | 40         | 45         | 66          | 14.5       |
| tPLH         |              | 01.14 | ANY Q  | MAN        | 30  | 30 | 12 | 15  | 8   | 9   | 40         | 50         | 60          | 13.5       |
| <b>t</b> PHL |              | CLK   | ANYU   | MAX        | 35  | 30 | 17 | 17  | 10  | 11  | 40         | 50         | 60          | 13.5       |

| 1    | PARAMETER    | INPUT | OUTPUT | MAX or MIN | CD74<br>ACT | AHC  | AHCT | SV<br>TV | LV<br>5V |
|------|--------------|-------|--------|------------|-------------|------|------|----------|----------|
| fmax |              |       |        | MIN        | 80          | 80   | 65   | 50       | 80       |
| tw.  | CLR LOW      |       |        | MIN        | 4           | 5    | 5    | 5        | 5        |
|      | CLK HIGH     |       |        | 24121      | 6.2         | 5    | 5    | 5        | 5        |
|      | CLK LOW      |       |        | MIN        | 6.2         | 5    | 5    | 5        | 5        |
| tsu  | DATA INPUT   |       |        | MIN        | 2           | 4.5  | 5    | 6        | 4.5      |
|      | CLR INACTIVE |       |        | MIN        | -           | 2.5  | 3.5  | 3        | 2.5      |
| th   |              |       |        | MIN        | 2.5         | 0.5  | 0    | 0        | 0.5      |
| tPLH |              | 01.0  | ANIVO  | MANY       | 15.5        | -    | -    | 17       | 11       |
| tPHL |              | CLR   | ANY Q  | MAX        | 15.5        | 11   | 13   | 17       | 11       |
| tPLH |              | OL IV | 4100   | 1111       | 14          | 10.5 | 10   | 16.5     | 10.5     |
| tPHL |              | CLK   | ANY Q  | MAX        | 14          | 10.5 | 10   | 16.5     | 10.5     |

#### QUAD D-TYPE FLIP-FLOPS

- Complementary Outputs (Q, Q)
   Buffered Clock and Direct Clear Inputs
- Asynchronous Clear Function

# 1D -

Logic Diagram

#### **FUNCTION TABLE**

|       | INPUTS |   |    |    |  |  |
|-------|--------|---|----|----|--|--|
| CLEAR | CLOCK  | D | Q  | Q  |  |  |
| L     | X      | X | L  | Н  |  |  |
| H     | 1      | H | H  | L  |  |  |
| H     | 1      | L | L  | H  |  |  |
| H     | 4 11   | X | 90 | Qn |  |  |

To Three Other Channels

#### RECOMMENDED OPERATING CONDITIONS

| 9 4 11    |            |      |      |    | 1.76 |    |     |            |            |             |          |            |             |          |          |      |
|-----------|------------|------|------|----|------|----|-----|------------|------------|-------------|----------|------------|-------------|----------|----------|------|
| PARAMETER | MAX or MIN | TTL  | LS   | S  | ALS  | AS | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | AC<br>11 | CD74<br>AC | CD74<br>ACT | LV<br>3V | LV<br>5V | UNIT |
| lcc       | MAX        | 45   | 18   | 96 | 14   | 34 | 34  | 0.04       | 0.16       | 0.16        | 0.08     | 0.16       | 0.16        | -        | 0.02     | mA   |
| Гон       | MAX        | -0.8 | -0.4 | -1 | -0.4 | -2 | -1- | -4         | -4         | -4          | -24      | -24        | -24         | -6       | -12      | mA   |
| lou g     | MAX        | 16   | 8    | 20 | 8    | 20 | 20  | 4          | - 4        | 4           | 24       | 24         | 24          | 6        | 12       | mA   |

#### SWITCHING CHARACTERISTICS

| SVVII        | CHING CHARACTE | HISTICS |            | 1 119      |    |    | _  | -   |     |     |            |            |             |
|--------------|----------------|---------|------------|------------|----|----|----|-----|-----|-----|------------|------------|-------------|
| 1            | PARAMETER      | INPUT   | OUTPUT     | MAX or MIN | ΠL | LS | S  | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
| fmax         |                |         |            | MIN        | 25 | 30 | 75 | 50  | 100 | 100 | 25         | 20         | 16          |
| tw           | CLR LOW        |         |            |            | 20 | 20 | 10 | 10  | 5   | 5   | 20         | 24         | 30          |
|              | CLK HIGH       |         |            | MIN        | 20 | 20 | 7  | 10  | 4   | 4   | 20         | 24         | 30          |
|              | CLK LOW        |         |            |            | 20 | 20 | 7  | 10  | 5   | 5   | 20         | 24         | 30          |
| tsu          | DATA INPUT     | (1      |            | MIN        | 20 | 20 | 5  | 10  | 3   | 3   | 25         | 24         | 30          |
|              | CLR INACTIVE   |         |            | IVITIV     |    | 25 | 5  | 6   | 6   | 5   | 25         | -          | -           |
| th           |                |         |            | MIN        | 5  | 5  | 3  | 0   | -(1 | -1  | 0          | 5          | 5           |
| tPLH         |                | CLR     | ANY Q or Q | MAX        | 25 | 30 | 15 | 18  | 9   | 9   | 38         | 53         | 53          |
| tPHL.        |                | CLR     | ANT U OF U | IVIAX      | 35 | 30 | 22 | 23  | 13  | 13  | 38         | 53         | 53          |
| tPLH         | 11             | CIV     | ANV 0 0    | MAN        | 30 | 25 | 12 | 15  | 7.5 | 7.5 | 38         | 53         | 50          |
| <b>t</b> PHL |                | CLK     | ANY Q or Q | MAX        | 35 | 25 | 17 | 17  | 10  | 9.5 | 38         | 53         | 50          |

| F           | PARAMETER    | INPUT | OUTPUT      | MAX or MIN | AC<br>11 | CD74<br>AC | CD74<br>ACT | LV<br>3V | LV<br>5V |  |
|-------------|--------------|-------|-------------|------------|----------|------------|-------------|----------|----------|--|
| fmax        | 19 01        |       | (()         | MIN        | 125      | 100        | 114         | 45       | 75       |  |
| tw          | CLR LOW      |       |             |            | 4        | 4          | 4           | 5        | 5        |  |
|             | CLK HIGH     |       |             | MIN        | 4        | 5          | 5           | 5        | 5        |  |
|             | CLK LOW      |       |             |            | 4        | 5          | 5           | 5        | 5        |  |
| tsu         | DATA INPUT   |       |             | MIN        | 5.5      | 2          | 2           | 5        | 4        |  |
|             | CLR INACTIVE |       |             | IVIIIV     | 5.5      | -          | ¥.          | 5        | 5        |  |
| th          |              |       |             | MIN        | 0.5      | 2          | 2           | 1        | - 1      |  |
| tPLH        | 0 0          | CLR   | ANY Q or Q  | MAX        | 6.8      | 12.2       | 13          | 15.5     | 9.5      |  |
| <b>TPHL</b> |              | CEN   | AINT U OF U | IVIAX      | 9.3      | 12.2       | 13          | 15.5     | 9.5      |  |
| tPLH        |              | CLK   | ANY Q or Q  | MAX        | 6.9      | 12.2       | 11.5        | 17       | 10.5     |  |
| <b>TPHL</b> |              | ULK   | AINT COLC   | WAX        | 93       | 12.2       | 11.5        | 17       | 10.5     |  |
|             |              |       |             |            |          |            |             |          |          |  |



#### FUNCTION TABLE (ACTIVE LOW)

| SELECTIO |      |                              | ACTIVE-LOW            | DATA                       |  |  |  |  |
|----------|------|------------------------------|-----------------------|----------------------------|--|--|--|--|
| SELECTIO | IN . | M = L; ARITHMETIC OPERATIONS |                       |                            |  |  |  |  |
| S3 S2 S1 | SO F | LOGIC                        | Cn = L<br>(no carry)  | Cn = H<br>(with carry)     |  |  |  |  |
| LLL      | LF   | - Ā                          | F = A MINUS 1         | F = A                      |  |  |  |  |
| LLL      | H F  | = AB                         | F = AB MINUS 1        | F = AB                     |  |  |  |  |
| LLH      | L F  | = A + B                      | F = AB MINUS 1        | F = AB                     |  |  |  |  |
| LLH      | H F  | =1                           | F = MINUS 1(2's COMP) | F = 0                      |  |  |  |  |
| LHL      | LF   | = A + B                      | F = A PLUS (A + B)    | F = A PLUS (A + B) PLUS 1  |  |  |  |  |
| LHL      |      | = B                          | F = AB PLUS (A + B)   | F = AB PLUS (A + B) PLUS 1 |  |  |  |  |
| LHH      | LF   | - A @ B                      | F = A MINUS B MINUS 1 | F = A MINUS B              |  |  |  |  |
| LHH      | HF   | = A + B                      | F = A + B             | F = (A + B) PLUS 1         |  |  |  |  |
| HLL      | LF   | = AB                         | F = A PLUS (A + B)    | F = A PLUS (A + B) PLUS 1  |  |  |  |  |
| HLL      | H F  | = A ⊕ B                      | F = A PLUS B          | F = A PLUS B PLUS 1        |  |  |  |  |
| HLH      | LF   | = B                          | F = AB PLUS (A + B)   | F = AB PLUS (A + B) PLUS 1 |  |  |  |  |
| H L H    | H F  | = A + B                      | F = (A + B)           | F = (A + B) PLUS 1         |  |  |  |  |
| HHL      | L F  | = 0                          | F = A PLUS A*         | F = A PLUS A PLUS 1        |  |  |  |  |
| H H L    | H F  | = AB                         | F = AB PLUS A         | F = AB PLUS A PLUS 1       |  |  |  |  |
| ннн      | LF   | = AB                         | F = AB PLUS A         | F = AB PLUS A PLUS 1       |  |  |  |  |
| 21 22 22 | 11 6 |                              | F . A                 | F ADULE 1                  |  |  |  |  |

#### FUNCTION TABLE (ACTIVE HIGH)

| SELECTION   |                         | ACTIVE-HIGH DATA                 |                                 |  |  |  |  |  |
|-------------|-------------------------|----------------------------------|---------------------------------|--|--|--|--|--|
| SELECTION   | M = H                   | M = L; ARITHMETIC OPERATIONS     |                                 |  |  |  |  |  |
| S3 S2 S1 S0 | LOGIC                   | Cn = H<br>(no carry)             | Cn = L<br>(with carry)          |  |  |  |  |  |
| LLLL        | F = A                   | F = A                            | F = A PLUS 1                    |  |  |  |  |  |
| LLLH        | F = A + B               | F = A + B                        | F = (A + B) PLUS 1              |  |  |  |  |  |
| LLHL        | F = AB                  | $F = A + \overline{B}$           | $F = (A + \overline{B}) PLUS 1$ |  |  |  |  |  |
| LLHH        | F = 0                   | F = MINUS 1(2's COMPL)           | F = 0                           |  |  |  |  |  |
| LHLL        | F = AB                  | F = A PLUS AB                    | F = A PLUS AB PLUS 1            |  |  |  |  |  |
| LHLH        | $F = \widetilde{B}$     | F = (A + B) PLUS AB              | F = (A + B) PLUS AB PLUS 1      |  |  |  |  |  |
| LHHL        | F=A@B                   | F = A MINUS B MINUS 1            | F = A MINUS B                   |  |  |  |  |  |
| LHHH        | F = AB                  | F = AB MINUS 1                   | F = AB                          |  |  |  |  |  |
| HLLL        | $F = \widetilde{A} + B$ | F = A PLUS AB                    | F = A PLUS AB PLUS 1            |  |  |  |  |  |
| HLLH        | F = A $\oplus$ B        | F = A PLUS B                     | F = A PLUS B PLUS 1             |  |  |  |  |  |
| HLHL        | F = B                   | $F = (A + \overline{B}) PLUS AB$ | F = (A + B) PLUS AB PLUS 1      |  |  |  |  |  |
| HLHH        | F = AB                  | F = AB MINUS 1                   | F = AB                          |  |  |  |  |  |
| HHLL        | F = 1                   | F = A PLUS A*                    | F = A PLUS A PLUS 1             |  |  |  |  |  |
| HHLH        | $F = A + \overline{B}$  | F = (A + B) PLUS A               | F = (A + B) PLUS A PLUS 1       |  |  |  |  |  |
| HHHL        | F = A + B               | F = (A + B) PLUS A               | F = (A + B) PLUS A PLUS 1       |  |  |  |  |  |
| 0 0 0 0     | E A                     | E - A MINITE 1                   | E - A                           |  |  |  |  |  |

#### RECOMMENDED OPERATING CONDITIONS

| 112001111 |                             | 1          |      |      |     | 10  | _    |
|-----------|-----------------------------|------------|------|------|-----|-----|------|
|           | PARAMETER                   | MAX or MIN | TTL  | LS   | S   | AS  | UNIT |
| Icc       |                             | MAX        | 150  | 37   | 220 | 200 | mA   |
| Іон       | All outputs except<br>A = B | MAX        | -0.8 | -0.4 | -1  | -2  | mA   |
|           | G                           |            |      | -    | -   | -3  | mA   |
| lor       | All outputs except          | MAX        | 16   | 8    | 20  | 20  | mA   |
|           | G                           |            | 16   | 8    | 20  | 48  | mA   |

| SWITCHING CHAP | RACTERISTICS                     |                   |            |     |    | 1    | -   |
|----------------|----------------------------------|-------------------|------------|-----|----|------|-----|
| PARAMETER      | INPUT                            | OUTPUT            | MAX or MIN | TTL | LS | S    | AS  |
| tPLH           | X+C <sub>n</sub>                 | 0                 | MAX        | 18  | 27 | 10.5 | 9   |
| tphL .         | C <sub>n</sub>                   | C <sub>n</sub> +4 | WAX        | 19  | 20 | 10.5 | 9   |
| tplh           | Ā, B                             | 0.1               | MAX        | 43  | 38 | 18.5 | 12  |
| tPHL .         | А, В                             | C <sub>n</sub> +4 | WAX        | 41  | 38 | 18.5 | 12  |
| tPLH .         |                                  | Ē                 | MAN        | 19  | 26 | 12   | 9   |
| tphl.          | Cn                               | F                 | MAX        | 18  | 20 | 12   | 9   |
| tPLH.          | $\overline{A}_i, \overline{B}_i$ | F <sub>i</sub>    | MAN        | 42  | 32 | 16.5 | 9.5 |
| tPHL .         | A <sub>i</sub> , B <sub>i</sub>  | F <sub>i</sub>    | MAX        | 32  | 20 | 16.5 | 8   |

#### UNIT: ns







OUTPUT

#### 0

|    | INP | UTS | 3  |
|----|-----|-----|----|
| P3 | P2  | P1  | PO |
| L  | L   | L   | L  |

#### Cn+x OUTPUTS

|    | INPL   | JTS | OUTPUT           |
|----|--------|-----|------------------|
| GO | Po     | Cn  | C <sub>n+x</sub> |
| L  | X      | X   | Н                |
| X  | L      | H   | H                |
|    | II oth |     | L                |

|    |        | IN  | PUT | rs   |       |    | OUTPUT |
|----|--------|-----|-----|------|-------|----|--------|
| Ğ3 | Ğ2     | Ğ1  | P3  | P2   | P1    | P0 | G      |
| L  | X      | X   | X   | Χ    | X     | X  | L      |
| X  | L      | X   | X   | L    | X     | X  | L      |
| X  | X      | L   | X   | L    | L     | X  | L      |
| X  | X      | X   | L   | L    | L     | L  | L      |
| 7  | All of | her | com | bina | ation | s  | H      |

C-+V OUTDUTS

|    | Un- | -у ч   | 20 | IPU | 15   |
|----|-----|--------|----|-----|------|
|    | IN  | OUTPUT |    |     |      |
| G1 | G0  | P1     | P0 | Cn  | Cn+y |
| L  | X   | X      | X  | X   | H    |
| X  | L   | L      | X  | X   | H    |
| X  | X   | L      | L  | Н   | H    |
|    | Al  | loth   |    |     | L    |

Cn+z OUTPUTS

|    |       | IN  | PU' | TS  |       | -  | OUTPUT           |
|----|-------|-----|-----|-----|-------|----|------------------|
| 32 | G1    | G0  | P2  | P1  | P0    | Cn | C <sub>n+z</sub> |
| L  | X     | X   | X   | X   | X     | X  | H                |
| X  | L     | X   | L   | X   | X     | X  | H                |
| X  | X     | L   | L   | L   | X     | X  | H                |
| X  | X     | X   | L   | L   | L     | H  | V H              |
| A  | II ot | her | con | bin | ation | าร | L                |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | S   | AS | UNIT |
|-----------|------------|------|-----|----|------|
| Icc       | MAX        | 72   | 109 | 36 | mA   |
| Іон э     | MAX        | -0.8 | -1  | -2 | mA   |
| lou       | MAX        | 16   | 20  | 20 | mA   |

SWITCHING CHARACTERISTICS

| SWITCHING CHAN | ACTENISTICS |                                 |            | 1    |      |      |
|----------------|-------------|---------------------------------|------------|------|------|------|
| PARAMETER      | INPUT       | OUTPUT                          | MAX or MIN | TTL  | S    | AS   |
| tplH           | C-          | Cn + X, Cn + Y                  | MAX        | 10   | 10   | 10   |
| tPHL .         | Cn          | or Cn + Z                       | IVIAA      | 10.5 | 10.5 | 9.5  |
| tPLH .         | P or G      | Cn + X, Cn + Y<br>or Cn + Z MAX | MANY       | 7    | 7    | 10.5 |
| tPHL .         |             |                                 | IVIAA      | 7    | 7    | 6    |
| tPLH .         | P or G      | G                               | MAX        | 7.5  | 7.5  | 12   |
| tphL .         | Poru        | U                               | IVIAX      | 10.5 | 10.5 | 8    |
| tPLH .         | P           | P                               | MAN        | 6.5  | 6.5  | 7.5  |
| tPHL .         | P           | P                               | MAX        | 10   | 10   | 6    |

UNIT: ns





#### RECOMMENDED OPERATING CONDITIONS

| TILOUIVIIVILIADE | D OI LIMING | CONTENT | 10110 |      |            |            |      |
|------------------|-------------|---------|-------|------|------------|------------|------|
| PARAMETER        | MAX or MIN  | TTL     | LS    | ALS  | SN74<br>HC | CD74<br>HC | UNIT |
| Icc              | MAX         | 105     | 35    | 22   | 0.08       | 0.16       | mA   |
| Іон              | MAX         | -0.8    | -0.4  | -0.4 | -4         | 4          | mA   |
| Inc              | MAX         | 16      | 8     | 8    | 4          | 4          | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT              | OUTPUT       | MAX or MIN | TTL | LS | ALS | SN74<br>HC | CD74<br>HC |
|-----------|--------------------|--------------|------------|-----|----|-----|------------|------------|
| fmax      |                    |              | MIN        | 20  | 20 | 25  | 17         | 25         |
| tw        | CLK (CP)           |              |            | 25  | 25 | 20  | 30         | 20         |
|           | LOA                | D (PL)       | MIN        | 35  | 35 | 20  | 30         | 25         |
| tsu       | Data , high or low |              | MIN        | 20  | 20 | 20  | 38         | 15         |
| th        | Data hold time     |              | MIN        | 0   | 5  | 5   | 5          | 2          |
| tPLH .    | LOAD<br>(PL)       | 0            | MAX        | 33  | 33 | 30  | 66         | 49         |
| tphl.     |                    | u            |            | 50  | 50 | 30  | 66         | 49         |
| tPLH O    | DATA               | 0            | MAY        | 22  | 32 | 21  | 60         | 44         |
| tphL .    |                    | -u           | MAX        | 50  | 40 | 21  | 60         | 44         |
| tPLH      | CLK<br>(CP)        | RCO          | MAX        | 20  | 20 | 20  | 30         | 31         |
| tPHL .    |                    | (RC)         | IVIAX      | 24  | 24 | 20  | 30         | 31         |
| tPLH      | CLK                | Q            | MAX        | 24  | 24 | 18  | 48         | 43         |
| tPHL      | (CP)               | u            | MAX        | 36  | 36 | 18  | 48         | 43         |
| tPLH      | CLK                | MAX/MIN      | MAX        | 42  | 42 | 31  | 63         | 53         |
| tPHL      | (CP)               | (TC)         | MAX        | 52  | 52 | 31  | 63         | 53         |
| tPLH      | D/Ū                | D/Ū RCO (RC) | MAX        | 45  | 45 | 37  | 57         | 38         |
| tPHL      |                    |              |            | 45  | 45 | 28  | 57         | 38         |
| tplH      | D/Ū<br>(Ū/D)       | MAX/ MIN     | /          | 33  | 33 | 25  | 48         | 41         |
| tphl.     |                    | (TC)         | MAX        | 33  | 33 | 25  | 48         | 41         |



## 191

### SYNCHRONOUS UP/DOWN COUNTERS

- Count Enable Control Input
- Ripple Clock Output for Cascading
- Asynchronously Presentable with Load Control



### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | ALS  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------|------|------|------------|------------|-------------|------|
| lcc       | MAX        | 105  | 35   | 22   | 0.08       | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -0.4 | -4         | -4         | -4          | mA   |
| lor.      | MAX        | 16   | 8    | 8    | 4          | 4          | 4           | mA   |

#### SWITCHING CHARACTERISTIC

| SWIT   | CHING CHA | RACTERISTICS | ,               | 11183      | 20114 | HARM | ,    |            |            |             |
|--------|-----------|--------------|-----------------|------------|-------|------|------|------------|------------|-------------|
| PAI    | RAMETER   | INPUT        | OUTPUT          | MAX or MIN | TTL   | LS   | ALS  | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
| fmax   |           | (5) (M)      |                 | MIN        | 20    | 20   | 30   | 17         | 25         | 25          |
| tw     | CLK       |              |                 | MIN        | 25    | 25   | 16.5 | 30         | 20         | 20          |
|        | LOAD      |              |                 | IVIIIV     | 35    | 35   | 20   | 30         | 25         | 25          |
| tsu    | DATA      |              |                 | MIN        | 20    | 20   | 20   | 38         | 15         | 15          |
| th     | DATA      |              |                 | MIN        | 0     | 5    | 5    | 5          | 2          | 2           |
| tPLH   | AO TUS    | LOAD         | QA, QB          | MAX        | 33    | 33   | 30   | 66         | 49         | 50          |
| tPHL   |           | LUAD         | QC, QD          | IVIAX      | 50    | 50   | 30   | 66         | 49         | 50          |
| tPLH   |           | DATA         | QA, QB          | MAX        | 22    | 32   | 21   | 60         | 44         | 48          |
| tPHL   |           | A, B, C, D   | QC, QD          | IVIAA      | 50    | 40   | 21   | 60         | 44         | 48          |
| tPLH   |           | CLK          | RIPPLE          | MAX        | 20    | 20   | 20   | 30         | 31         | 34          |
| tPHL   |           | CLK          | CLK             | IVIAA      | 24    | 24   | 20   | 30         | 31         | 34          |
| tPLH   |           | CLK          | QA, QB          | MAX        | 24    | 24   | 18   | 48         | 43         | 44          |
| tPHL   |           | CLK          | QC, QD          | IVIAX      | 36    | 36   | 18   | 48         | 43         | 44          |
| tPLH   |           | CLK          | MAX or MIN      | MAX        | 42    | 42   | 31   | 63         | 53         | 53          |
| tPHL   | - of the  |              | IVIAX OF IVIIIN | IVIAX      | 52    | 52   | 31   | 63         | 53         | 53          |
| tPLH . |           | D/Ū          | RIPPLE          | MAX        | 45    | 45   | 37   | 57         | 38         | 38          |
| tPHL   |           | 0/0          | CLK             | IVIAX      | 45    | 45   | 28   | 57         | 38         | 38          |
| tPLH   |           | D/U          | MAN MINI        | MAN        | 33    | 33   | 25   | 48         | 41         | 48          |
| tPHL   |           | D/U          | MAX or MIN      | MAX        | 33    | 33   | 25   | 48         | 41         | 48          |

UNIT fmax : MHz, other : ns

# Logic Diagram (13) BO (12) CO DATA (15) DOWN (4) (3) OUTPUT QA DATA (1) INPUT B S DATA (10) S (6) OUTPUT QC DATA (9) CLR (14) (7) OUTPUT QD LOAD (11)

| CLOCK UP | CLOCK | RESET | PARALLEL<br>LOAD | FANCTION           |
|----------|-------|-------|------------------|--------------------|
| 1        | Н     | L     | Н                | Count Up           |
| Н        | 1     | L     | Н                | Count Down         |
| Х        | X     | Н     | X                | Reset              |
| Х        | Х     | L     | L                | Load Preset inputs |

NOTE: H = High Voltage Level, L = Low Voltage Level, X = Don't Care, ↑ = Transition from Low to High Level

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | UNIT |
|-----------|------------|------------|------|
| Icc       | MAX        | 0.16       | mA   |
| Іон       | MAX        | -4         | mA   |
| lou       | MAX        | 4          | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT      | OUTPUT       | MAX or MIN | CD74<br>HC |
|-----------|------------|--------------|------------|------------|
|           | CPU        | , CPD        |            | 35         |
| tw        |            | PL           | MIN        | 24         |
|           | MR         |              | 30         |            |
| tsu       | Pn         | to PL        | MIN        | 24         |
|           | Pn         | PL MIN       |            | 0          |
| th        | CPD to CPU | , CPD to CPU | IVIIN      | 24         |
| tPLH      | CPU        | TCU          | MAX        | 38         |
| tphl      | CPU        | 100          | MAX        | 38         |
| tPLH .    | CPD        | TCD          | MAX        | 38         |
| tphl.     | CPD        | I CD         | IVIAX      | 38         |
| tPLH .    | CPD        | 0-           | MAN        | 65         |
| tphl .    | CPD        | Qn           | MAX        | 65         |
| tplh      | CPD        | Qn           | MAX        | 65         |
| tphl .    | CPD        | un           | IVIAX      | 65         |
| tplH      | PL         | 0-           | MAN        | 66         |
| tPHL      | rL.        | Qn           | MAX        | 66         |
| tPHL      | MR         | Qn           | MAX        | 60         |

### SYNCHRONOUS UP/DOWN DUAL CLOCKCOUNTERS

- Parallel Asynchronous Load for Modulo-N Count Lengths
- Asynchronous Clear

## Logic Diagram



| HECOMINIENDED | OI LIMITING CON | DITION | ,    |      |    |            |            |             |      |
|---------------|-----------------|--------|------|------|----|------------|------------|-------------|------|
| PARAMETER     | MAX or MIN      | TTL    | LS   | ALS  | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
| Icc           | MAX             | 102    | 34   | 22   | 54 | 0.08       | 0.16       | 0.16        | mA   |
| Іон           | MAX             | -0.4   | -0.4 | -0.4 | -1 | -4         | -4         | -4          | mA   |
| lou           | MAX             | 16     | 8    | 8    | 20 | 4          | 4          | 4           | mA   |

SWITCHING CHARACTERISTICS

|        | AMETER | INPUT  | OUTPUT      | MAX or MIN | TTL | LS | ALS | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
|--------|--------|--------|-------------|------------|-----|----|-----|-----|------------|------------|-------------|
| fmax   |        |        |             | MIN        | 25  | 25 | 30  | 85  | 17         | 17         | 15          |
| tw     |        |        |             | MIN        | 20  | 20 | 20  | 4   | 30         | 30         | 35          |
| tsu    | DATA   |        |             | MIN        | 20  | 20 | 20  | 3.5 | 28         | 24         | 22          |
| th     | DATA   |        |             | MIN        | 0   | 5  | 5   | 2.5 | 5          | 0          | 0           |
| tPLH   |        | LID    | 8 <u>co</u> | MAY        | 26  | 26 | 16  | 9   | 41         | 38         | 41          |
| tPHL   |        | UP     | CO          | MAX        | 24  | 24 | 18  | 9   | 41         | 38         | 41          |
| tPLH   |        | DOWN   | 80          | MAX        | 24  | 24 | 16  | 9   | 41         | 38         | 41          |
| tPHL . |        | DUVVIN | ВО          | IVIAX      | 24  | 24 | 18  | 9   | 41         | 38         | 41          |
| tPLH   |        | UP or  | ANY Q       | MAX        | 38  | 38 | 19  | 9   | 63         | 65         | 60          |
| tPHL   |        | DOWN   | ANYU        | IVIAX      | 47  | 47 | 17  | 13  | 63         | 65         | 60          |
| tPLH   | 198.18 | LOAD   | ANY Q       | MAN        | 40  | 40 | 30  | 11  | 65         | 66         | 69          |
| tPHL   |        | LUAD   | ANYU        | MAX        | 40  | 40 | 28  | 13  | 65         | 66         | 69          |
| tPHL.  |        | CLR    | ANY Q       | MAX        | 35  | 35 | 17  | 12  | 60         | 60         | 65          |

UNIT fmax : MHz, other : ns





† I/O ports not shown: QB (14) and QC (13)

|                 | UTS | OUTF             | - ( |   |     |     |   |       | NPUTS | 11    |    |    |       |
|-----------------|-----|------------------|-----|---|-----|-----|---|-------|-------|-------|----|----|-------|
| 0-              | 00  | 0=               | QA  | L | LLE | ARA | P | RIAL  | SEF   | CLOCK | DE | MO | CLEAR |
| чD              | QC  | αB               | чA  | D | C   | В   | Α | RIGHT | LEFT  | CLUCK | SO | S1 | LEAR  |
| L               | L   | L                | L   | X | X   | X   | X | X     | X     | X     | X  | X  | L     |
| Q <sub>D0</sub> | QCO | Q <sub>B</sub> 0 | QAO | X | X   | X   | X | X     | X     | L     | X  | X  | H     |
| d               | C   | b                | a   | d | C   | b   | a | X     | X     | 1     | H  | Н  | H     |
| QCn             | QBn | QAn              | H   | X | X   | X   | X | H     | X     | 1     | H  | L  | H     |
|                 | QBn |                  | L   | X | X   | X   | X | L     | X     | 1     | H  | L  | Н     |
| H               |     | Qcn              | QBn | X | X   | X   | X | X     | H     | 1     | L  | Н  | Н     |
| L               |     |                  |     | X | X   | X   | X | X     | L     | 1     | L  | H  | Н     |
| QDO             |     | Q <sub>B</sub> 0 |     | X | X   | X   | X | X     | X     | X     | L  | L  | H     |

#### RECOMMENDED OPERATING CONDITIONS

| NECOMMENDED     | OF ENATING CON | DITION | ,    |     |    |            |            |             |      |
|-----------------|----------------|--------|------|-----|----|------------|------------|-------------|------|
| PARAMETER       | MAX or MIN     | TTL    | LS   | S   | AS | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
| Icc             | MAX            | 63     | 23   | 135 | 53 | 0.1        | 0.16       | 0.16        | mA   |
| Іон             | MAX            | -0.8   | -0.4 | -1  | -2 | -4         | -4         | -4          | mA   |
| lo <sub>L</sub> | MAX            | 16     | 8    | 20  | 20 | 4          | 4          | 4           | mA   |

### SWITCHING CHARACTERISTICS

|      | PARAMETER    | INPUT | ОИТРИТ  | MAX or MIN | TTL | LS | S    | AS  | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
|------|--------------|-------|---------|------------|-----|----|------|-----|------------|------------|-------------|
| fmax |              |       |         | MIN        | 25  | 25 | 70   | 80  | 25         | 20         | 18          |
| tw   | CLR          |       |         |            | 20  | 20 | 12   | 4.5 | 20         | 24         | 24          |
|      | CLK "H"      |       |         | MIN        | 20  | 20 | 7    | 4   | 20         | 24         | 24          |
|      | CLK "H"      |       |         |            | 20  | 20 | 7    | 7   | 20         | 24         | 24          |
| tsu  | Mode Control |       |         | -          | 30  | 30 | 11   | 9.5 | 25         | 24         | 30          |
|      | DATA         |       |         | MIN        | 20  | 20 | 5    | 4   | 25         | 21         | 21          |
|      | CLR INACTIVE |       |         | -          | 25  | 25 | 9    | 6   |            |            | C-          |
| th   | g            |       |         | MIN        | 0   | 0  | 3    | 0.5 | 0          | 0          | 0           |
| tPHL | - G 81       | CLEAR | ANY     | MAX        | 30  | 30 | 18.5 | 12  | 38         | 42         | 60          |
| tPLH |              |       | 4 4 104 | 1111       | 22  | 22 | 12   | 7   | 36         | 53         | 56          |
| tPHL | 12/45        | CLOCK | ANY     | MAX        | 28  | 26 | 16.5 | 7/  | 36         | 53         | 56          |

UNIT fmax : MHz, other : n

### **4-BIT PARALLEL-ACCESS SHIFT REGISTERS**

- Direct Overriding Clear
- Parallel-to-Serial, Serial-to-Parallel Conversions

### Logic Diagram



|        | INPUTS |       |     |      |    |     |     |    | OUTPUTS |                 |     |                 |     |  |
|--------|--------|-------|-----|------|----|-----|-----|----|---------|-----------------|-----|-----------------|-----|--|
| CLEAR  | SHIFT/ | CLOCK | SEF | RIAL | PA | AR/ | LLI | EL | QA      | QR              | QC  | QD              | Ōρ  |  |
| OLLAII | LOAD   |       | J   | ĸ    | A  | В   | С   | D  | -       | -               |     | _               | _   |  |
| L      | X      | X     | X   | X    | X  | X   | X   | X  | L       | L               | L   | L               | Н   |  |
| H      | L      | 1     | X   | X    | a  | b   | C   | d  | a       | b               | C   | d               | d   |  |
| H      | Н      | L     | X   | X    | X  | X   | X   | X  | QAO     | Q <sub>B0</sub> | QCO | Q <sub>D0</sub> | QDO |  |
| H      | H      | 1     | L   | H    | X  | X   | X   | X  | QAO     |                 |     | QCn             |     |  |
| H      | H      | 1     | L   | L    | X  | X   | X   | X  | L       |                 |     | QCn             |     |  |
| H      | H      | 1     | H   | H    | X  | X   | X   | X  | Н       | QAn             | QBn | QCn             | Qcn |  |
| Н      | Н      | 1     | Н   | L    | X  | X   | X   | X  | QAn     |                 |     | QCn             |     |  |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | S   | AS | SN74<br>HC | CD74<br>HC | UNIT |
|-----------|------------|------|------|-----|----|------------|------------|------|
| lcc       | MAX        | 63   | 21   | 109 | 57 | 0.1        | 0.16       | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -1  | -2 | -4         | -4         | mA   |
| lou       | MAX        | 16   | 8    | 20  | 20 | 4          | 4          | mA   |

### SWITCHING CHARACTERISTICS

|       | PARAMETER             | INPUT | ОИТРИТ | MAX or MIN | TTL | LS | S    | AS   | SN74<br>HC | CD74<br>HC |
|-------|-----------------------|-------|--------|------------|-----|----|------|------|------------|------------|
| fmax  |                       |       |        | MIN        | 30  | 30 | 70   | 70   | 25         | 20         |
| tw    | CLOCK                 |       |        | MIN        | 16  | 16 | 7    | 4    | 20         | 24         |
|       | CLEAR                 |       |        | IVIIIV     | 12  | 12 | 12   | 7.2  | 20         | 24         |
| tsu   | Shift / Load          |       |        |            | 25  | 25 | 11   | 8    | 25         | 30         |
|       | Serial & Pararel Data |       |        | MIN        | 20  | 15 | 5    | 3.5  | 25         | 30         |
|       | Clear Inactive Data   |       |        |            | 25  | 25 | 9    | 6    | 25         | 30         |
| TRELE | ASE                   |       |        | MAX        | 10  | 20 | 6    |      | NE.        | -          |
| th    |                       |       |        | MIN        | 0   | 0  | 3    | 1    | 0          |            |
| tPHL  |                       | CLEAR |        | MAX        | 30  | 30 | 18.5 | 11.5 | 38         | 45         |
| tPLH  |                       | CLOCK | QA, QD | MAX        | 22  | 22 | 12   | 8.5  | 36         | 53         |
| tPHL. |                       | CLUCK |        | WAX        | 26  | 26 | 16.5 | 10.5 | 36         | 53         |

Overriding Clear Terminates Outputs Pulse

UNIT fmax : MHz, other : ns

### Logic Diagram



| INF   | UTS |   | OUT | PUTS |
|-------|-----|---|-----|------|
| CLEAR | A   | В | Q   | Q    |
| L     | X   | X | L   | Н    |
| X     | H   | X | Lt  | H†   |
| X     | X   | L | Lt  | H†   |
| H     | L   | 1 | л   | T    |
| H     | 1   | H | 17  | 7.5  |
| 4     | 1 1 | L |     | 7.5  |

See explanation of function table on page
† These lines of the functional tables assume that the indicated
steady-state conditions at the A and B inputs have been
set up long enough to complete any pulse started before the set up.

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ΠL   | LS   | CD74<br>HC | CD74<br>HCT | LV<br>3V | LV<br>5V | UNIT |
|-----------|------------|------|------|------------|-------------|----------|----------|------|
| lcc       | MAX        | 80   | 27   | 0.16       | 0.16        | 0.28     | 0.65     | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -4         | -4          | -6       | -12      | mA   |
| lou       | MAX        | 16   | 8    | 4          | 4           | 6        | 12       | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT         | OUTPUT | MAX or MIN | ΠL | LS | CD74<br>HC | CD74<br>HCT | LV<br>3V | LV<br>5V |
|-----------|---------------|--------|------------|----|----|------------|-------------|----------|----------|
| describ.  | A (HC, LV: A) | 0      | MAY        | 70 | 70 | 63         | 63          | 27.5     | 16       |
| tPLH      | В             | Q      | MAX        | 55 | 55 | 63         | 63          | 27.5     | 16       |
| (21)      | A (HC, LV: A) | ā      | MAN        | 80 | 80 | 51         | 51          | 27.5     | 16       |
| TPHL      | В             | u      | MAX        | 65 | 65 | 51         | 51          | 27.5     | 16       |
| tPHL .    | 01            | Q      | MAN        | 27 | 55 | 48         | 57          | 22       | 13       |
| tPLH      | Clear         | ā      | MAX        | 40 | 65 | 54         | 56          | 22       | 13       |

Logic Diagram



|    |     | INPUTS |    |    |    |        |           |           | OUT        | PUTS        |          |          |            | and a sure of the second second second |
|----|-----|--------|----|----|----|--------|-----------|-----------|------------|-------------|----------|----------|------------|----------------------------------------|
| LE | OE0 | OE1    | A2 | A1 | A0 | Y0     | Y1        | Y2        | Y3         | Y4          | Y5       | Y6       | Y7         | BOYSEE DECORESION                      |
| X  | X   | Н      | X  | X  | X  | L      | L         | L         | L          | L           | L        | L        | L          |                                        |
| X  | L   | X      | X  | X  | X  | L      | L         | L         | L          | L           | L        | L        | L          |                                        |
| L  | H   | L      | L  | Ĺ  | L  | H      | L         | L         | L          | L           | L        | L        | L          |                                        |
| L  | Н   | L      | L  | L  | H  | L      | H         | L         | L          | L           | L        | L        | L          |                                        |
| L  | H   | L      | L  | H  | L  | L      | L         | H         | L          | L           | L        | L        | L          |                                        |
| L  | H   | L      | L  | H  | H  | L      | L         | L         | H          | L           | L        | L        | L          |                                        |
| L  | H   | L      | Н  | L  | L  | L      | L         | L         | L          | H           | L        | L        | L          |                                        |
| L  | H   | L      | H  | L  | H  | L      | L         | L         | L          | L           | H        | L        | L          |                                        |
| L  | H   | L      | H  | H  | L  | L      | L         | L         | L          | L           | L        | H        | L          |                                        |
| L  | H   | L      | H  | Н  | H  | L      | L         | L         | L          | L           | L        | L        | H          |                                        |
| Н  | H   | L      | X  | X  | X  | Depend | s upon th | e address | s previous | sly applied | while LE | was at a | logic low. |                                        |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------------|------------|-------------|------|
| lcc       | MAX        | 0.08       | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -4         | -4         | -4          | mA   |
| lou (6)   | MAX        | 4          | 4          | 4           | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT   | OUTPUT  | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
|-----------|---------|---------|------------|------------|------------|-------------|
| tw        | LE Puls | e Width | MIN        | 20         | 15         | 15          |
| tsu       | An      | to LE   | MIN        | 19         | 15         | 15          |
| th        | An      | to LE   | MIN        | 5          | 9          | 5           |
| tPLH .    | An      | Y       | MAX        | 48         | 48         | 57          |
| tPHL (1)  | An      | T       | WAX        | 48         | 48         | 57          |
| tPLH      | 0.5     | v       | MAN        | 44         | 44         | 60          |
| tPHL .    | 0E      | T -     | MAX        | 44         | 44         | 60          |

## Logic Diagram



|    |      |    | DUTO  | OUT   |     |     |    |      |       | UTS | INP |       |    |
|----|------|----|-------|-------|-----|-----|----|------|-------|-----|-----|-------|----|
|    |      |    | 2018  | OUTI  |     |     |    | ss   | DDRES | Al  | E   | NABLE | E  |
| Y7 | Y6   | Y5 | Y4    | Y3    | Y2  | Y1  | YO | A0   | A1    | A2  | E1  | E2    | E3 |
| L  | L    | L  | L     | L     | L   | L   | L  | X    | X     | X   | Н   | X     | X  |
| L  | L    | F  | L     | auf a | E F | FE  | L  | X    | X     | X   | X   | X     | L  |
| L  | L    | L  | L     | L     | L   | L   | L  | X    | X     | X   | X   | Н     | X  |
| L  | L    | L  | L     | L     | L   | L   | Н  | L    | L     | L   | L   | L     | Н  |
| L  | PETA | L  | T.    | T.    | L   | Н   | L  | Н    | L     | L   | L   | L     | Н  |
| L  | L/   | L  | ankey | 1 ba  | H   | 1 L | L  | ak n | Н     | L   | L   | L     | Н  |
| L  | L    | L  | L     | Н     | L   | L   | L  | Н    | Н     | L   | L,  | L     | Н  |
| L  | L    | L  | Н     | L     | L   | L   | L  | L    | L     | Н   | L   | L     | Н  |
| L  | L.   | H  | L     | L     | L   | L   | L  | Н    | L     | H   | L   | L     | Н  |
| L  | Н    | L  | L     | L     | L   | L   | L  | L    | Н     | Н   | L   | L     | Н  |
| Н  | og.  | L  | S LUB | L     | L   | L   | L  | Н    | Н     | Н   | L   | L     | Н  |

Note: H = High Voltage Level, L = Low Volltage Level, X = Don't Care

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT | UNIT |
|-----------|------------|------------|-------------|------------|-------------|------|
| lcc       | MAX        | 0.16       | 0.16        | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -4         | -4          | -24        | -24         | mA   |
| lor       | MAX        | 4          | 4           | 24         | 24          | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT   | OUTPUT | MAX or MIN | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT |
|-----------|---------|--------|------------|------------|-------------|------------|-------------|
| tPLH      | Address | y      | MAX        | 45         | 53          | 15         | 15          |
| tPHL      | Address | 1      | IVIAX      | 45         | 53          | 15         | 15          |
| tPLH .    | E1, E2  | v      | BAAV       | -          | 5=3         | 11.9       | 11.9        |
| tPHL .    | E1, EZ  | ,      | MAX        | -          | -           | 11.9       | 11.9        |
| tPLH      | E3      | v      | MAX        | -          | 120         | 16.6       | 16.6        |
| tphl.     | ES      | 1      | IVIAA      | 2          | -           | 16.6       | 16.6        |

### **OCTAL BUFFERS/LINE DRIVERS/LINE RECEIVERS**

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- PNP Inputs Reduce DC Loading
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)

### Logic Diagram



### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS  | S   | ALS | ALS<br>A-1 | AS  | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT  | LVT<br>3V | UNIT |
|-----------|------------|-----|-----|-----|------------|-----|-----|------------|------------|-------------|-------------|-------------|------|-----------|------|
| Іссн      | MAX        | 27  | 135 | 11  | 11         | 17  | 29  | 0.08       | 0.16       | 0.08        | 0.16        | 31          | 0.25 | 0.19      | mA   |
| Iccl      | MAX        | 44  | 150 | 23  | 23         | 75  | 75  | 0.08       | 0.16       | 0.08        | 0.16        | 71          | 30   | 5         | mA   |
| Iccz      | MAX        | 50  | 150 | 25  | 25         | 38  | 63  | 0.08       | 0.16       | 0.08        | 0.16        | 9           | 0.25 | 0.19      | mA   |
| Іон       | MAX        | -15 | -15 | -15 | -15        | -15 | -15 | -6         | -6         | -6          | -6          | -15         | -32  | -32       | mA   |
| lou       | MAX        | 24  | 64  | 24  | 48         | 64  | 64  | 6          | 6          | 6           | 6           | 64          | 64   | 64        | mA   |

| PARAMETER | MAX or MIN | LVTH<br>3V | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 | SN74<br>ACT | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | TAC<br>TAC | LVCZ<br>3V | UNIT |
|-----------|------------|------------|----------|------------|------------|-----------|-------------|-------------|------|------|----------|----------|------------|------------|------|
| Іссн      | MAX        | 0.19       | 0.08     | 0.04       | 0.16       | 0.08      | 0.04        | 0.16        | 0.04 | 0.04 | -1       | 0.02     | 0.01       | 0.1        | mA   |
| ICCL      | MAX        | 5          | 0.08     | 0.04       | 0.16       | 0.08      | 0.04        | 0.16        | 0.04 | 0.04 | -        | 0.02     | 0.01       | 0.1        | mA   |
| lccz      | MAX        | 0.19       | 0.08     | 0.04       | 0.16       | 0.08      | 0.04        | 0.16        | 0.04 | 0.04 | -        | 0.02     | 0.01       | 0.1        | mA   |
| Іон       | MAX        | -32        | -24      | -24        | -24        | -24       | -24         | -24         | -8   | -8   | -8       | -16      | -24        | -24        | mA   |
| lou       | MAX        | 64         | 24       | 24         | 24         | 24        | 24          | 24          | 8    | 8    | 8        | 16       | 24         | 24         | mA   |

### SWITCHING CHARACTERISTICS

| OTTITOTING OIL |       | 1      | _          | _  |    | _   | -          |     | _   |            | _          | _           |             | -           |     | -         |
|----------------|-------|--------|------------|----|----|-----|------------|-----|-----|------------|------------|-------------|-------------|-------------|-----|-----------|
| PARAMETER      | INPUT | OUTPUT | MAX or MIN | LS | S  | ALS | ALS<br>A-1 | AS  | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT | LVT<br>3V |
| tPLH .         | N 2 A | V      | MAX        | 14 | 7  | 9   | 9          | 6.5 | 8   | 25         | 30         | 32          | 33          | 5.6         | 4.8 | 3.8       |
| tphl.          | A     | 1      | IVIAX      | 18 | 7  | 9   | 9          | 6.5 | 5.7 | 25         | 30         | 32          | 33          | 4           | 4.8 | 4         |
| tPZH           | G     | v      | MAX        | 23 | 10 | 13  | 13         | 6.4 | 6.1 | 38         | -          | 44          |             | 8.8         | 5.2 | 4.6       |
| tPZL           | b     | 1      | IVIAX      | 30 | 15 | 18  | 18         | 9   | 10  | 38         | -          | 44          | -           | 10.5        | 6.2 | 4.4       |
| tPHZ           | -     | v      | MAY        | 25 | 9  | 10  | 10         | 5   | 6.3 | 38         | -          | 44          | -           | 8.1         | 6.4 | 4.4       |
| tPLZ           | U     | , T    | Y MAX      |    | 15 | 12  | 12         | 9.5 | 9.5 | 38         | -          | 44          | -           | 9.5         | 5.8 | 4.3       |

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LVTH<br>3V | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 | SN74<br>ACT | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | 3V<br>LVC | LVCZ<br>3V |
|-----------|-------|--------|------------|------------|----------|------------|------------|-----------|-------------|-------------|------|------|----------|----------|-----------|------------|
| tPLH .    |       | v      | MAN        | 3.8        | 8.4      | 7          | 7.2        | 10.6      | 9.5         | 8.6         | 8.5  | 9.5  | 12.5     | 8.5      | 6.5       | 6.5        |
| tPHL .    | А     | 1      | MAX        | 4          | 7.2      | 6.5        | 7.2        | 8.7       | 8.5         | 8.6         | 8.5  | 9.5  | 12.5     | 8.5      | 6.5       | 6.5        |
| tPZH      | G     | V      | MAX        | 4.6        | 9.2      | 8          | 12         | 12.5      | 9.5         | 13.4        | 10.5 | 13   | 16       | 10.5     | 8         | 8          |
| tPZL      | G     | 1      | IVIAX      | 4.4        | 8.7      | 8.5        | 12         | 12.3      | 10.5        | 13.4        | 10.5 | 13   | 16       | 10.5     | 8         | 8          |
| tPHZ      | G     | v      | MAX        | 4.4        | 6.6      | 9.5        | 12         | 10        | 10.5        | 13.4        | 10.5 | 13   | 17       | 15.5     | 7         | 7          |
| tPLZ      | U     | Υ.     | IVIAX      | 4.3        | 7.7      | 9.5        | 12         | 10.8      | 10.5        | 13.4        | 10.5 | 13   | 17       | 15.5     | 7         | 7          |



### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS  | S   | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | SN74<br>BCT | ABT  | LVTH<br>3V | SN74<br>AC | UNIT |  |
|-----------|------------|-----|-----|-----|-----|-----|------------|------------|-------------|-------------|------|------------|------------|------|--|
| СН        | MAX        | 27  | 160 | 18  | 35  | 60  | 0.08       | 0.16       | 0.16        | 43          | 0.25 | 0.19       | 0.04       | mA   |  |
| CCL       | MAX        | 46  | 180 | 26  | 90  | 90  | 0.08       | 0.16       | 0.16        | 85          | 30   | 5          | 0.04       | mA   |  |
| CCZ       | MAX        | 54  | 180 | 30  | 56  | 90  | 0.08       | 0.16       | 0.16        | 10          | 0.25 | 0.19       | 0.04       | mA   |  |
| )H        | MAX        | -15 | -15 | -15 | -15 | -15 | -6         | -6         | -6          | -15         | -32  | -32        | -24        | mA   |  |
| DL        | MAX        | 24  | 64  | 24  | 64  | 64  | 6          | 6          | 6           | 64          | 64   | 64         | 24         | mA   |  |

| PARAMETER | MAX or MIN | SN74<br>ACT | CD74<br>ACT | UNIT |
|-----------|------------|-------------|-------------|------|
| Іссн      | MAX        | 0.04        | 0.16        | mA   |
| ICCL      | MAX        | 0.04        | 0.16        | mA   |
| lccz      | MAX        | 0.04        | 0.16        | mA   |
| Іон       | MAX        | -24         | -24         | mA   |
| lou       | MAX        | 24          | 24          | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LS | S  | ALS | AS   | F   | SN74 | CD74 | CD74 | SN74 | ABT | LVTH | SN74<br>AC |
|-----------|-------|--------|------------|----|----|-----|------|-----|------|------|------|------|-----|------|------------|
|           |       |        | 100 100    |    |    | N   |      |     | HC   | HC   | HCT  | BCT  |     | 3V   |            |
| tPLH      | Α     | Y      | MAX        | 18 | 9  | 11  | 6.2  | 6.2 | 29   | 33   | 38   | 4.9  | 4.6 | 3.5  | 7.5        |
| tPHL .    | А     | '      | IVIAA      | 18 | 9  | 10  | 6.2  | 6.5 | 29   | 33   | 38   | 5.9  | 4.6 | 3.4  | 7.5        |
| tPZH      | 1G    | V      | MAX        | 23 | 12 | 21  | 9    | 6.7 | 38   | -    | -    | 8.7  | 6.8 | 4.5  | 9.5        |
| tPZL      | 10    | ,      | IVIAA      | 30 | 15 | 21  | 7.5  | 8   | 38   | 8 .  | -    | 9.4  | 6.8 | 4.4  | 9.5        |
| tPHZ      | 1G    | Y      | MAX        | 25 | 9  | 10  | 6    | 7   | 38   | -    | -    | 8.1  | 7.1 | 4.5  | 10.5       |
| tPLZ      | 10    | ,      | IVIAA      | 20 | 15 | 15  | 9    | 7   | 38   | -    | -    | 9.9  | 5.9 | 4.7  | 10.5       |
| tPZH      | 2G    | V      | MAX        | 23 | 12 | 21  | 10.5 | 6.7 | 38   | -    | -    | 8.7  | 6.8 | 4.5  | 9.5        |
| tPZL      | 20    | 1      | IVIAA      | 30 | 15 | 21  | 8.5  | 8   | 38   | -    | -    | 9.4  | 6.8 | 4.4  | 9.5        |
| tPHZ      | 2G    | Y      | MAX        | 25 | 9  | 10  | 7    | 7   | 38   | -    |      | 8.1  | 7.1 | 4.5  | 10.5       |
| tPLZ      | 20    | ,      | IVIAA      | 20 | 15 | 15  | 12   | 7   | 38   | -    | -    | 9.9  | 5.9 | 4.7  | 10.5       |

| PARAMETER | INPUT | OUTPUT | MAX or MIN | SN74<br>ACT | CD74<br>ACT |
|-----------|-------|--------|------------|-------------|-------------|
| tPLH .    |       | -      |            | 9.5         | 9.6         |
| tPHL .    | А     | Y      | MAX        | 8.5         | 9.6         |
| tPZH      | 1G    | · ·    |            | 9.5         | 13.4        |
| tPZL      | 16    | Y      | MAX        | 10.5        | 13.4        |
| tPHZ      | 1G    |        | MAN        | 10.5        | 13.4        |
| tPLZ      | 16    | Y      | MAX        | 10.5        | 13.4        |
| tPZH      | 00    | Y      | MAN        | 9.5         | 13.4        |
| tPZL      | 2G    | Y      | MAX        | 10.5        | 13.4        |
| tPHZ      | 20    | Y      | MANY       | 10.5        | 13.4        |
| tPLZ      | 2G    | Y      | MAX        | 10.5        | 13.4        |

### QUADRUPLE BUS TRANSCEIVERS

- Two-Way Asynchronous Communication Between Data Buses
- PNP Inputs Reduce DC Loading



| INP | UTS |                       |
|-----|-----|-----------------------|
| GAB | GBA | OPERATION             |
| L   | L   | A to B                |
| H   | H   | B to A                |
| H   | L   | Isolation             |
| L   | H   | Latch A and B (A = B) |

| PARAMETER | MAX or MIN | LS  | ALS | AS | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|-----|-----|----|------------|------------|-------------|------|
| Іссн      | MAX        | 38  | 25  | 44 | 0.08       | 0.16       | 0.16        | mA   |
| ICCL      | MAX        | 50  | 30  | 74 | 0.08       | 0.16       | 0.16        | mA   |
| lccz      | MAX        | 54  | 32  | 56 | 0.08       | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -15 | -15 |    | 19.        | -6         | -6          | mA   |
| lou       | MAX        | 24  | 24  | 64 | 6          | 6          | 6           | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | LS | ALS | AS   | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
|-----------|--------|--------|------------|----|-----|------|------------|------------|-------------|
| tPLH .    | A or B | A or B | MAX        | 18 | 11  | 7.5  | 25         | 27         | 33          |
| tphL .    | A or B | A or B | MAX        | 18 | 11  | 6.5  | 25         | 27         | 33          |
| tPZH      | GAB    | В      | MAX        | 23 | 20  | 9    | 38         | 45         | 51          |
| tPZL      | GAB    | В      | IVIAX      | 30 | 20  | 7.5  | 38         | 45         | 51          |
| tPHZ      | GAB    | В      | MAX        | 25 | 14  | 6.5  | 38         | 45         | 53          |
| tPLZ      | UAD    | D      | IVIAA      | 20 | 22  | 9    | 38         | 45         | 53          |
| tPZH      | GAB    | А      | MAX        | 23 | 20  | 10.5 | 38         | 45         | 51          |
| tPZL      | GAD    | A      | IVIAA      | 30 | 20  | 8.5  | 38         | 45         | 51          |
| tPHZ      | CAD    |        | MAX        | 25 | 14  | 7    | 38         | 45         | 53          |
| tPLZ      | GAB    | A      | IVIAX      | 20 | 22  | 11   | 38         | 45         | 53          |

## 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



| RECOMMENDED |  |
|-------------|--|

| RECOMMENDE | D OPERATING | CONDI    | TIONS      | 10.1       |            |             | -                 |            |            |             |             |             |             |            |            |             | _      | 138        | 18   |
|------------|-------------|----------|------------|------------|------------|-------------|-------------------|------------|------------|-------------|-------------|-------------|-------------|------------|------------|-------------|--------|------------|------|
| PARAMETER  | MAX or MIN  | LS       | S          | ALS        | ALS<br>C-1 | AS          | F <sub>FIRE</sub> | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | SN64<br>BCT | ABT        | LVT<br>3V  | LVTH<br>3V  | LVTT   | LVTZ<br>3V | UNIT |
| Іссн       | MAX         | 27       | 160        | 17         | 17         | 34          | 60                | 0.08       | 0.16       | 0.08        | 0.16        | 40          | 40          | 0.25       | 0.19       | 0.19        | 0.19   | 0.225      | mA   |
| ICCL       | MAX         | 46       | 180        | 24         | 24         | 90          | 90                | 0.08       | 0.16       | 0.08        | 0.16        | 80          | 80          | 30         | 5          | 5           | 12     | 15         | mA   |
| lccz       | MAX         | 54       | 180        | 27         | 27         | 54          | 90                | 0.08       | 0.16       | 0.08        | 0.16        | 10          | 10          | 0.25       | 0.19       | 0.19        | 0.19   | 0.225      | mA   |
| Іон        | MAX         | -15      | -15        | -15        | -15        | -15         | -15               | -6         | -6         | -6          | -6          | -15         | -15         | -32        | -32        | -32         | -32    | -32        | mA   |
| lot.       | MAX         | 24       | 64         | 24         | 48         | 64          | 64                | 6          | 6          | 6           | 6           | 64          | 64          | 64         | 64         | 64          | 64     | 64         | mA   |
|            |             |          |            |            |            |             |                   |            |            |             |             | 19          | pulso       | WUU!       | 17,010     | TROUGH      | D-D-11 | 2 1473     |      |
| PARAMETER  | MAX or MIN  | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11  | SN74<br>ACT | CD74<br>ACT       | AHC        | AHCT       | LV<br>3V    | LV<br>5V    | LVC<br>3V   | LVCH<br>3V  | LVCZ<br>3V | ALVC<br>3V | ALVCH<br>3V | UNIT   | 1          |      |
| Іссн       | MAX         | 0.08     | 0.04       | 0.16       | 0.08       | 0.04        | 0.16              | 0.04       | 0.04       | -           | 0.02        | 0.01        | 0.01        | 0.1        | 0.01       | 0.01        | mA     |            |      |
| lccL       | MAX         | 0.08     | 0.04       | 0.16       | 0.08       | 0.04        | 0.16              | 0.04       | 0.04       | -           | 0.02        | 0.01        | 0.01        | 0.1        | 0.01       | 0.01        | mA     |            |      |
| Iccz       | MAX         | 0.08     | 0.04       | 0.16       | 0.08       | 0.04        | 0.16              | 0.04       | 0.04       | -           | 0.02        | 0.01        | 0.01        | 0.1        | 0.01       | 0.01        | mA     | 1          |      |

-24 -24 -24 -24 -24 -24 -8 -8 -8 -16 -24 -24 -24 -24 -24 mA

16 24 24 24 24 mA

### SWITCHING CHARACTERISTICS

MAX

MAX

| SVIII GIIII G CII | AIIACILIIIOII | 00        |            |    |    |     |            |     |     | notified the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | desert.    |             |             |             |             |     |
|-------------------|---------------|-----------|------------|----|----|-----|------------|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------|-------------|-------------|-----|
| PARAMETER         | INPUT         | OUTPUT    | MAX or MIN | LS | s  | ALS | ALS<br>C-1 | AS  | F   | SN74<br>HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | SN64<br>BCT | ABT |
| tPLH .            | Λ             | v         | MAX        | 18 | 9  | 10  | 10         | 6.2 | 6.2 | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33         | 35          | 38          | 5           | 5.3         | 4.6 |
| tphL .            | A             |           | IVIAA      | 18 | 9  | 10  | 10         | 6.2 | 6.5 | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33         | 35          | 38          | 5.5         | 6           | 4.6 |
| tPZH              | G             | HISAVISA  | MAN        | 23 | 12 | 20  | 20         | 9   | 6.7 | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IA-        | 44          | DEC 10      | 8.7         | 9           | 5.1 |
| tPZL              | W.G. VE       | 1         | MAX        | 30 | 15 | 20  | 20         | 7.5 | 8   | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -          | 44          |             | 8.9         | 9.4         | 6.1 |
| tPHZ              | 0.0           | ESD , 200 | MAX        | 25 | 9  | 10  | 10         | 6   | 7   | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65 -       | 44          | XA          | 7.7         | 8           | 6.6 |
| tPLZ              | 8             |           | IVIAX      | 20 | 15 | 13  | 13         | 9   | 7   | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 -       | 44          | *41         | 8.9         | 9.8         | 5.7 |

| PARAMETER | INPUT      | ОИТРИТ    | MAX or MIN | LVT<br>3V | LVTH<br>3V | LVTT | LVTZ<br>3V | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 | SN74<br>ACT | CD74<br>ACT | AHC  | AHCT | LV<br>3V |
|-----------|------------|-----------|------------|-----------|------------|------|------------|----------|------------|------------|-----------|-------------|-------------|------|------|----------|
| tPLH      | 10.4       | 18 V 18   |            | 3.5       | 3.5        | 4.1  | 4.1        | 7.3      | 7.5        | 8.2        | 9.9       | 10          | 9.6         | 8.5  | 9.5  | 13.5     |
| tPHL      | A          | Y         | MAX        | 3.3       | 3.3        | 4.1  | 4.1        | 6.9      | 7.5        | 8.2        | 9.2       | 10          | 9.6         | 8.5  | 9.5  | 13.5     |
| tPZH      | G          |           | MAX        | 4.5       | 4.5        | 5.2  | 5.2        | 8.5      | 8          | 12         | 12.5      | 9.5         | 13.4        | 10.5 | 13   | 16       |
| tPZL TIME | HEVE MAYER | ZIVI KUVI | IVIAX      | 4.4       | 4.4        | 5.2  | 5.2        | 8.5      | 8.5        | 12         | 11.4      | 10.5        | 13.4        | 10.5 | 13   | 16       |
| tPHZ      | ē          | V         | MAX        | 4.4       | 4.4        | 5.6  | 5.6        | 7.3      | 9.5        | 12         | 10.4      | 10.5        | 13.4        | 10.5 | 13   | 18       |
| tPLZ      | 100 100    | 1.0 10.0  | WIAX       | 4.4       | 4.4        | 5.1  | 5.1        | 8.2      | 9.5        | 12         | 11.2      | 10.5        | 13.4        | 10.5 | 13   | 18       |

| PARAMETER | INPUT | OUTPUT  | MAX or MIN | LV<br>5V | LVC<br>3V | LVCH<br>3V | LVCZ<br>3V | ALVC<br>3V | ALVCH<br>3V |
|-----------|-------|---------|------------|----------|-----------|------------|------------|------------|-------------|
| tPLH .    | A     | 15 V 15 | I MAN      | 8.5      | 5.9       | 5.9        | 5.9        | 2.8        | 2.8         |
| tPHL .    | A     | 100 100 | MAX        | 8.5      | 5.9       | 5.9        | 5.9        | 2.8        | 2.8         |
| tPZH      | G     | V       | AAAV       | 10.5     | 7.6       | 7.6        | 7.6        | 4.5        | 4.5         |
| tPZL      | G     | 1       | MAX        | 10.5     | 7.6       | 7.6        | 7.6        | 4.5        | 4.5         |
| tPHZ      | G     | v       | MAN        | 15.5     | 6.5       | 5.8        | 6.5        | 4.2        | 4.2         |
| tPLZ      | G     | 1       | MAX        | 15.5     | 6.5       | 5.8        | 6.5        | 4.2        | 4.2         |

24 24 24 24 24 24

### OCTAL BUS TRANSCEIVERS

- 3-State Outputs Drive Bus Lines Directly
- PNP Inputs Reduce DC Loading on Bus Lines
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



### FUNCTION TABLE

| ENABLE<br>G | DIRECTION<br>CONTROL<br>DIR | OPERATION       |
|-------------|-----------------------------|-----------------|
| L           | L                           | B data to A bus |
| L           | H                           | A data to B bus |
| H           | Y                           | leolation       |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER    | MAX or MIN | LS  | ALS | ALS<br>C-1 | AS  | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | SN64<br>BCT | ABT  | ABTH | LVT<br>3V | LVTH<br>3V | LVTR<br>3V | UNIT |
|--------------|------------|-----|-----|------------|-----|-----|------------|------------|-------------|-------------|-------------|-------------|------|------|-----------|------------|------------|------|
| Іссн         | MAX        | 70  | 45  | 45         | 97  | 90  | 0.08       | 0.16       | 0.08        | 0.16        | 57          | 57          | 0.25 | 0.25 | 0.19      | 0.19       | 0.19       | mA   |
| Icci         | MAX        | 90  | 55  | 55         | 143 | 120 | 0.08       | 0.16       | 0.08        | 0.16        | 90          | 90          | 30   | 30   | 5         | 5          | 12         | mA   |
| lccz         | MAX        | 95  | 58  | 58         | 123 | 110 | 0.08       | 0.16       | 0.08        | 0.16        | 15          | 15          | 0.25 | 0.25 | 0.19      | 0.19       | 0.19       | mA   |
| lon (A port) | MAX        | -15 | -15 | -15        | -15 | -3  | -6         | -4         | -6          | -4          | -3          | -3          | -32  | -32  | -32       | -32        | -12        | mA   |
| loн (B port) | MAX        | -15 | -15 | -15        | -15 | -15 | 6          | -4         | -6          | -4          | -15         | -15         | -32  | -32  | -32       | -32        | -32        | mA   |
| lot (A port) | MAX        | 24  | 24  | 48         | 64  | 24  | -6         | -4         | 6           | 4           | 24          | 24          | 64   | 64   | 64        | 64         | 32         | mA   |
| lot (B port) | MAX        | 24  | 24  | 48         | 64  | 64  | 6          | 4          | 6           | 4           | 64          | 64          | 64   | 64   | 64        | 64         | 32         | mA   |

| PARAMETER    | MAX or MIN | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 | SN74<br>ACT | CD74<br>ACT | AHC  | АНСТ | SV<br>3V | LV<br>5V | 3V<br>LVC | LVCH<br>3V | LVCZ<br>3V | ALVC<br>3V | ALVCH | UNIT |
|--------------|------------|----------|------------|------------|-----------|-------------|-------------|------|------|----------|----------|-----------|------------|------------|------------|-------|------|
| Іссн         | MAX        | 0.08     | 0.04       | 0.16       | 0.08      | 0.04        | 0.16        | 0.04 | 0.04 | 1        | 0.02     | 0.01      | 0.01       | 0.1        | 0.01       | 0.01  | mA   |
| lccL         | MAX        | 0.08     | 0.04       | 0.16       | 0.08      | 0.04        | 0.16        | 0.04 | 0.04 | 1.0      | 0.02     | 0.01      | 0.01       | 0.1        | 0.01       | 0.01  | mA   |
| lccz         | MAX        | 0.08     | 0.04       | 0.16       | 0.08      | 0.04        | 0.16        | 0.04 | 0.04 |          | 0.02     | 0.01      | 0.01       | 0.1        | 0.01       | 0.01  | mA   |
| loн (A port) | MAX        | -24      | -24        | -24        | -24       | -24         | -24         | -8   | -8   | -8       | -16      | -24       | -24        | -24        | -24        | -24   | mA   |
| loн (В port) | MAX        | -24      | -24        | -24        | -24       | -24         | -24         | -8   | -8   | -8       | -16      | -24       | -24        | -24        | -24        | -24   | mA   |
| lot (A port) | MAX        | 24       | 24         | 24         | 24        | 24          | 24          | 8    | 8    | 8        | 16       | 24        | 24         | 24         | 24         | 24    | mA   |
| lot (B port) | MAX        | 24       | 24         | 24         | 24        | 24          | 24          | 8    | 8    | 8        | 16       | 24        | 24         | 24         | 24         | 24    | mA   |

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LS | ALS | ALS<br>C-1 | AS  | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | SN64<br>BCT | ABT | ABTH |
|-----------|-------|--------|------------|----|-----|------------|-----|-----|------------|------------|-------------|-------------|-------------|-------------|-----|------|
| tPLH .    | A D   | D. A.  | MAX        | 12 | 10  | 10         | 7.5 | 7   | 26         | 33         | 28          | 39          | 7           | 7           | 3.6 | 3.6  |
| tPHL      | A, B  | B, A   | IVIAX      | 12 | 10  | 10         | 7   | 7   | 26         | 33         | 28          | 39          | 7           | 7           | 3.9 | 3.9  |
| tpzH      | G     | A D    | MAX        | 40 | 20  | 20         | 9   | 8   | 58         | 45         | 58          | 48          | 10.9        | 10.9        | 5.6 | 5.6  |
| tPZL      | G     | A, B   | IVIAX      | 40 | 20  | 20         | 8.5 | 9   | 58         | 45         | 58          | 48          | 11.6        | 11.6        | 6.2 | 6.2  |
| tPHZ      | G     |        | 144V       | 28 | 10  | 10         | 5.5 | 7.5 | 50         | 45         | 50          | 45          | 9.3         | 9.3         | 5.9 | 5.9  |
| tPLZ      | G     | A, B   | MAX        | 25 | 15  | 15         | 9.5 | 7.5 | 50         | 45         | 50          | 45          | 9.1         | 9.1         | 4.5 | 4.5  |

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LVT<br>3V | LVTH<br>3V | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 | SN74<br>ACT | CD74<br>ACT | AHC | AHCT | LV<br>3V | LV<br>5V | LVC<br>3V |
|-----------|-------|--------|------------|-----------|------------|----------|------------|------------|-----------|-------------|-------------|-----|------|----------|----------|-----------|
| tPLH      | A D   | В. А.  | MAX        | 3.5       | 3.5        | 9.5      | 7          | 8.5        | 10        | 8           | 10          | 8.5 | 9.5  | 13.5     | 8.5      | 6.3       |
| tPHL TILL | A, B  | B, A   | MAX        | 3.5       | 3.5        | 6.9      | 7          | 8.5        | 9.1       | 9           | 10          | 8.5 | 9.5  | 13.5     | 8.5      | 6.3       |
| tPZH      | G     | 4.0    | MAX        | 5.5       | 5.5        | 11.4     | 9          | 14         | 13.2      | 11          | 14          | 12  | 16   | 19       | 12       | 8.5       |
| tPZL      | G     | A, B   | MAX        | 5.5       | 5.5        | 9.5      | 9.5        | 14         | 12.9      | 12          | 14          | 12  | 16   | 19       | 12       | 8.5       |
| tphz      | G     | A D    | MAN        | 5.9       | 5.9        | 9.5      | 10         | 14         | 12.9      | 11          | 14.4        | 11  | 16.5 | 22       | 16       | 7.5       |
| tPLZ      | G     | A, B   | MAX        | 5         | 5          | 10.4     | 10         | 14         | 13.9      | 11          | 14.4        | 11  | 16.5 | 22       | 16       | 7.5       |

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LVCH<br>3V | LVCZ<br>3V | ALVC<br>3V | ALVCH<br>3V |
|-----------|-------|--------|------------|------------|------------|------------|-------------|
| tPLH .    | A, B  | B, A   | MAX        | 6.3        | 6.3        | 3.4        | 3.4         |
| tphl.     | A, b  | В, А   | WAX        | 6.3        | 6.3        | 3.4        | 3.4         |
| tPZH      | G     | A D    | MANY       | 8.5        | 8.5        | 5.5        | 5.5         |
| tPZL      | G     | A, B   | MAX        | 8.5        | 8.5        | 5.5        | 5.5         |
| tPHZ      | 0 (7) | A D    | MAX        | 7.5        | 7.5        | 5.5        | 5.5         |
| tPLZ      | d     | A, B   | IVIAX      | 7.5        | 7.5        | 5.5        | 5.5         |

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LVTR<br>3V |
|-----------|-------|--------|------------|------------|
| tPLH TUST | in An | В      | MAY        | 4.2        |
| UPLH      | В     | Α      | MAX        | 4.4        |
| terri     | Α     | В      | MAX        | 4.6        |
| tPHL .    | В     | A      | IVIAX      | 4.1        |
| in au     | G     | В      | MAY        | 5.5        |
| tPZH      | G     | А      | MAX        | 6          |
| tezu      | (G)   | В      | MAX        | 6.6        |
| IPZL B    | G     | Α      | IVIAX      | 6.4        |
| ania.     | G     | В      | MAN        | 6.1        |
| tPHZ      | G     | A      | MAX        | 5.8        |
|           | G     | В      | MANY       | 5.2        |
| tPLZ      | G     | A      | MAX        | 5.2        |

UNIT: ns

PPLE-BLANKII INPUT

# BCD-TO-SEVEN-SEGMENT DECODEDS/DBIVEDS WITH BUTTO



| DECIMAL<br>OR |    | - 1 | NPU | TS |   |   | BI/RBO     |     |     | 0   | UTPU | rs  |     |     |
|---------------|----|-----|-----|----|---|---|------------|-----|-----|-----|------|-----|-----|-----|
| FUNCTION      | LT | RBI | D   | C  | В | Α |            | a   | b   | С   | d    | е   | f   | g   |
| 0             | Н  | Н   | L   | L  | L | L | Н          | ON  | ON  | ON  | ON   | ON  | ON  | OFF |
| 1             | H  | X   | L   | L  | L | H | н          | OFF | ON  | ON  | OFF  | OFF | OFF | OFF |
| 2             | H  | X   | L   | L  | H | L | Н          | ON  | ON  | OFF | ON   | ON  | OFF | ON  |
| 3             | H  | X   | L   | L  | H | Н | Н          | ON  | ON  | ON  | ON   | OFF | OFF | ON  |
| 4             | Н  | X   | L   | Н  | L | L | Н          | OFF | ON  | ON  | OFF  | OFF | ON  | ON  |
| 5             | H  | X   | L   | H  | L | Н | Н          | ON  | OFF | ON  | ON   | OFF | ON  | ON  |
| 6             | H  | X   | L   | H  | H | L | Н          | ON  | OFF | ON  | ON   | ON  | ON  | ON  |
| 7             | H  | X   | L   | Н  | H | Н | н          | ON  | ON  | ON  | OFF  | OFF | OFF | OFF |
| 8             | Н  | X   | Н   | L  | L | L | Н          | ON  | ON  | ON  | ON   | ON  | ON  | ON  |
| 9             | H  | X   | H   | L  | L | Н | H          | ON  | ON  | ON  | ON   | OFF | ON  | ON  |
| 10            | H  | X   | H   | L  | H | L | and Harris | OFF | OFF | OFF | ON   | ON  | OFF | ON  |
| 11            | H  | X   | H   | L  | H | H | H          | OFF | OFF | ON  | ON   | OFF | OFF | ON  |
| 12            | Н  | X   | Н   | Н  | L | L | Н          | OFF | ON  | OFF | OFF  | OFF | ON  | ON  |
| 13            | H  | X   | H   | H  | L | H | H          | ON  | OFF | OFF | ON   | OFF | ON  | ON  |
| 14            | H  | X   | H   | H  | H | L | H          | OFF | OFF | OFF | ON   | ON  | ON  | ON  |
| 15            | Н  | X   | Н   | Н  | H | Н | Н          | OFF | OFF | OFF | OFF  | OFF | OFF | OFF |
| BI            | X  | X   | X   | X  | X | X | L          | OFF | OFF | OFF | OFF  | OFF | OFF | OFF |
| RBI           | H  | L   | L   | L  | L | L | L          | OFF | OFF | OFF | OFF  | OFF | OFF | OFF |
| LT            | L  | X   | X   | X  | X | X | H          | ON  | ON  | ON  | ON   | ON  | ON  | ON  |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER |          | MAX or MIN | TTL  | LS    | UNIT |
|-----------|----------|------------|------|-------|------|
| lcc       |          | MAX        | 103  | 13    | mA   |
| Vo (off)  | - 41     | MAX        | 15   | 15    | ٧    |
| lo (on)   | a thru g | MAX        | 40   | 24    | mA   |
| Іон       | BI/RB0   | MAX        | -0.2 | -0.05 | mA   |
| lou       | BI/RBU   | MAX        | 8    | 3.2   | mA   |

### SWITCHING CHARACTERISTICS

| P    | ARAMETER  | MAX or MIN | TTL | LS  |
|------|-----------|------------|-----|-----|
| toff | INPUT A   | 14111      | 100 | 100 |
| ton  | INPUTA    | MIN        | 100 | 100 |
| toff | INDUT DO  | MIN        | 100 | 100 |
| ton  | INPUT RBI | MIN        | 100 | 100 |

### 1-OF-16 DATA SELECTOR/MULTIPLEXER

- 4-Line to 1-Line Multiplexers That Can Select 1-of-16 Data Inputs
- Applications:

Boolean Function Generator Parallel-to-Serial Converter Data Source Selector

- Buffered 3-State Bus Driver Inputs Permit Multiplexing From n Lines to One Line
- 3-State Outputs



|   |   | INI | PUTS |   |     | OUTPUT |
|---|---|-----|------|---|-----|--------|
| G | Α | В   | C    | D | Ei  | W      |
| L | L | L   | L    | L | E0  | E0     |
| L | Н | L   | L    | L | E1  | E1     |
| L | L | H   | L    | L | E2  | E2     |
| L | Н | H   | L    | L | E3  | E3     |
| L | L | L   | H    | L | E4  | E4     |
| L | Н | L   | H    | L | E5  | E5     |
| L | L | Н   | Н    | L | E6  | E6     |
| L | H | H   | Н    | L | E7  | E7     |
| L | L | L   | L    | Н | E8  | E8     |
| L | Н | L   | L    | Н | E9  | E9     |
| L | L | H   | L    | H | E10 | E10    |
| L | Н | H   | L    | H | E11 | E11    |
| L | L | L   | H    | H | E12 | E12    |
|   | H | L   | H    | H | E13 | E13    |
| L | L | H   | H    | Н | E14 | E14    |
| L | H | H   | H    | H | E15 | E15    |
| H | X | X   | X    | X | X   | Z      |

### ECTORS/WHI TIPLEXERS

- 121' in poissol/ etel2-5 4
- 3-State Outguts Interface Directly with System Bu
  - Perform Parallel-to-Serial Conversion
- Complementary Outputs Previde True and Inverted Data

### Logic Diagram

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | AS  | UNIT |
|-----------|------------|-----|------|
| Icc       | MAX        | 50  | mA   |
| Іон       | MAX        | -15 | mA   |
| IOL       | MAX        | 48  | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | AS   |
|-----------|--------|--------|------------|------|
| tPLH .    | DATA   |        |            | 8    |
| tphL .    | DATA   | W      | MAX        | 7    |
| tPLH .    | OFLECT | w      | MAN        | 13   |
| tphl.     | SELECT | VV     | MAX        | 10.5 |
| tрzн      | G      | w      | MAN        | 7    |
| tPZL      | G      | VV     | MAX        | 9    |
| tPHZ      | -      | w      | MAN        | 6    |
| tPLZ      | G      | VV     | MAX        | 6.5  |

Complementary Outputs Provide True and Inverted Data



| L | н | н | L | LD3 | D3       |
|---|---|---|---|-----|----------|
| Н | L | L | L | D4  | D4       |
| Н | L | H | L | D5  | D4<br>D5 |
| Н | H | L | L | D6  | D6       |
| Н | H | Н | L | D7  | D7       |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | S    | ALS  | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | SN74<br>AC | CD74<br>AC | UNIT |
|-----------|------------|------|------|------|------|----|------------|------------|-------------|------------|------------|------|
| lcc       | MAX        | 62   | 12   | 85   | 14   | 24 | 0.08       | 0.16       | 0.16        | 0.16       | 0.16       | mA   |
| Гон       | MAX        | -5.2 | -2.6 | -6.5 | -2.6 | -3 | -6         | -4         | -4          | -24        | -24        | mA   |
| los.      | MAX        | 16   | 8    | 20   | 24   | 24 | 6          | 4          | 4           | 24         | 24         | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT   | OUTPUT       | MAX or MIN | TIL | LS | S    | ALS | F    | SN74<br>HC | CD74<br>HC | CD74<br>HCT | SN74<br>AC | CD74<br>AC |
|-----------|---------|--------------|------------|-----|----|------|-----|------|------------|------------|-------------|------------|------------|
| tPLH .    | ARC     | Y            | MAX        | 45  | 45 | 18   | 18  | 9.5  | 51         | 74         | 63          | 18.2       | 18.2       |
| tphl .    | A, B, C | 1            | IVIAA      | 45  | 45 | 19.5 | 24  | 7.5  | 51         | 74         | 63          | 18.2       | 18.2       |
| tplh      | A D C   | W (CD74: Y)  | MAY        | 33  | 33 | 15   | 24  | 12.5 | 51         | 74         | 63          | 19.6       | 19.6       |
| tphl.     | A, B, C | VV (CD/4: 1) | MAX        | 33  | 33 | 13.5 | 23  | 9    | 51         | 74         | 63          | 19.6       | 19.6       |
| tPLH      | ANY D   | Y            | MAX        | 28  | 28 | 12   | 10  | 7    | 49         | 53         | 53          | 13.5       | 13.5       |
| tPHL .    | ANT D   | 1            | WAX        | 28  | 28 | 12   | 15  | 5    | 49         | 53         | 53          | 13.5       | 13.5       |
| tPLH      | ANY D   | W (CD74: Y)  | MAX        | 15  | 15 | 7    | 15  | 8    | 49         | 53         | 53          | 14.9       | 14.9       |
| tphl .    | ANTU    | VV (CD/4: 1) | MAX        | 15  | 15 | 7    | 15  | 8    | 49         | 53         | 53          | 14.9       | 14.9       |
| tpzh      | G       | Y            | MAX        | 27  | 45 | 19.5 | 15  | 7    | 36         | 42         | 45          | 13.5       | 13.5       |
| tPZL      | G       | 1            | IVIAX      | 40  | 40 | 21   | 15  | 6.5  | 36         | 42         | 45          | 13.5       | 13.5       |
| tPZH      | G       | W (CD74; Y)  | MAX        | 27  | 27 | 19.5 | 15  | 6    | 36         | 42         | 45          | 13.5       | 13.5       |
| tPZL      | G       | VV (CD/4. 1) | IVIAA      | 40  | 40 | 21   | 15  | 4.5  | 36         | 42         | 45          | 13.5       | 13.5       |
| tPHZ      | G       | Y            | MAX        | 8   | 45 | 8.5  | 10  | 8.5  | 49         | 42         | 45          | 13.5       | 13.5       |
| tPLZ      | 0       | 1            | IVIAA      | 23  | 25 | 14   | 10  | 8    | 49         | 42         | 45          | 13.5       | 13.5       |
| tPHZ      | G       | W (CD74; Y)  | MAX        | 8   | 55 | 8.5  | 10  | 5.5  | 49         | 42         | 45          | 13.5       | 13.5       |
| tPLZ      | G       | VV (GD74. 1) | IVIAA      | 23  | 25 | 14   | 10  | 4.5  | 49         | 42         | 45          | 13.5       | 13.5       |

### **DUAL DATA SELECTORS/MULTIPLEXERS**

- 3-State Version of '153
- Perform Parallel-to-Serial Conversion

### Logic Diagram



|   | ECT | 1  | DATA I | INPUTS | 8  | OUTPUT      | ОИТРИТ |
|---|-----|----|--------|--------|----|-------------|--------|
| В | Α   | CO | C1     | C2     | C3 | G           | Υ      |
| X | X   | X  | X      | X      | X  | Н           | Z      |
| L | L   | L  | X      | X      | X  | L           | L      |
| L | L   | H  | X      | ×      | X  | ne Sketein  | H      |
| L | H   | X  | L      | X      | X  | and for any | Len    |
| L | H   | X  | H      | X      | X  | L           | H      |
| H | L   | X  | X      | L      | X  | L.          | L      |
| H | L   | X  | X      | H      | X  | L           | H      |
| H | H   | X  | X      | X      | L  | L           | L      |
| H | H   | X  | X      | X      | H  | L           | H      |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | ALS  | AS  | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT | UNIT |
|-----------|------------|------|------|-----|----|------------|------------|-------------|------------|-------------|------|
| Icc       | MAX        | 14   | 14   | 33  | 23 | 0.08       | 0.16       | 0.16        | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -2.6 | -2.6 | -15 | -3 | -6         | -6         | -4          | -24        | -24         | mA   |
| lou       | MAX        | 8    | 24   | 48  | 24 | 6          | 6          | 4           | 24         | 24          | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | LS | ALS | AS   | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT |
|-----------|--------|--------|------------|----|-----|------|----|------------|------------|-------------|------------|-------------|
| tPLH      | DATA   | v      | 1441/      | 25 | 10  | 7.5  | 8  | 35         | 53         | 57          | 13.3       | 18          |
| tPHL      | DATA   | Y      | MAX        | 20 | 14  | 8    | 7  | 35         | 53         | 57          | 13.3       | 18          |
| tPLH .    | SELECT | V      | MAX        | 45 | 21  | 13.5 | 13 | 38         | 53         | 60          | 20         | 22          |
| tPHL      | SELECT | T T    | WAX        | 32 | 21  | 11.5 | 10 | 38         | 53         | 60          | 20         | 22          |
| tPZH      | G      | V      | MAX        | 28 | 14  | 12.5 | 9  | 25         | 33         | 45          | 11.5       | 12.6        |
| tPZL      | G      | -      | IVIAA      | 23 | 16  | 11.5 | 9  | 25         | 33         | 45          | 11.5       | 12.6        |
| tPHZ      | G      | v      | MAX        | 41 | 10  | 6    | 6  | 38         | 45         | 45          | 11.5       | 12.6        |
| tPLZ      | G      | 1      | IVIAX      | 27 | 14  | 7    | 7  | 38         | 45         | 45          | 11.5       | 12.6        |



|        | INPUTS |   |     | OUTDUT |
|--------|--------|---|-----|--------|
| OUTPUT | SELECT | A | В   | OUTPUT |
| Н      | X      | X | X   | Z      |
| L      | L      | L | X   | L      |
| L      | L      | Н | X   | H      |
| L      | Н      | X | L   | L      |
|        | 1.1    | V | 1.1 | 3.1    |

onio Diegram

### RECOMMENDED OPERATING CONDITIONS

|           |            |      |      | _    | _    | _  | _          | _          | _           | _           | _        | _          |           | _           | _    | _    |
|-----------|------------|------|------|------|------|----|------------|------------|-------------|-------------|----------|------------|-----------|-------------|------|------|
| PARAMETER | MAX or MIN | LS   | S    | ALS  | AS   | F  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | CD74<br>AC | ACT<br>11 | CD74<br>ACT | TAC. | UNIT |
| lcc       | MAX        | 19   | 87   | 14   | 31.9 | 23 | 0.08       | 0.16       | 0.08        | 0.16        | 0.08     | 0.16       | 0.08      | 0.16        | 0.01 | mA   |
| Іон       | MAX        | -2.6 | -6.5 | -2.6 | -15  | -3 | -6         | -6         | -6          | -6          | -24      | -24        | -24       | -24         | -24  | mA   |
| lou       | MAX        | 24   | 20   | 24   | 48   | 24 | 6          | 6          | 6           | 6           | 24       | 24         | 24        | 24          | 24   | mA   |

#### SWITCHING CHARACTERISTICS

| OTTITION ON | ANAOTEMOTIC | 70     | _          |    | _    |     | _   | _   | _          | _          | -           | _           | _        | _          | _         | _           | _         |
|-------------|-------------|--------|------------|----|------|-----|-----|-----|------------|------------|-------------|-------------|----------|------------|-----------|-------------|-----------|
| PARAMETER   | INPUT       | OUTPUT | MAX or MIN | LS | S    | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | AC<br>11 | CD74<br>AC | ACT<br>11 | CD74<br>ACT | LVC<br>3V |
| tPLH .      | DATA        | ANY    | MAX        | 13 | 7.5  | 10  | 5.5 | 7   | 25         | 45         | 38          | 50          | 6.4      | 9.3        | 6.9       | 10.7        | 4.6       |
| tphl .      |             |        |            | 15 | 6.5  | 12  | 6   | 6.5 | 25         | 45         | 38          | 50          | 7.2      | 9.3        | 8.7       | 10.7        | 4.6       |
| tPLH .      | SELECT      | ANY    | MAX        | 21 | 15   | 18  | -11 | 15  | 25         | 53         | 38          | 57          | 7.2      | 13.4       | 8.2       | 15.4        | 6.4       |
| tphl.       |             |        |            | 24 | 15   | 22  | 10  | 9.5 | 25         | 53         | 38          | 57          | 7.9      | 13.4       | 9.4       | 15.4        | 6.4       |
| tрzн        | G           | Υ      | MAX        | 30 | 19.5 | 16  | 7.5 | 8.5 | 38         | 45         | 38          | 45          | 6.5      | 14.7       | 7.3       | 16.1        | 5.6       |
| tPZL        |             |        |            | 30 | 21   | 18  | 9.5 | 8.5 | 38         | 45         | 38          | 45          | 8.6      | 14.7       | 9.6       | 16.1        | 5.6       |
| tPHZ        | G           | Υ      | MAX        | 30 | 8.5  | 10  | 6.5 | 7   | 38         | 45         | 38          | 45          | 7.6      | 14.7       | 8.4       | 16.1        | 4.3       |
| tPLZ        |             |        |            | 25 | 14   | 15  | 7   | 7   | 38         | 45         | 38          | 45          | 7.6      | 14.7       | 8.5       | 16.1        | 4.3       |



#### **QUAD DATA SELECTORS/MULTIPLEXERS**

- 3-State Outputs Interface Directly with System Bus
- Provides Bus Interface from Multiple Sources in High-Performance Systems



|        | INPUTS |   |   |        |
|--------|--------|---|---|--------|
| OUTPUT | SELECT | А | В | OUTPUT |
| Н      | X      | X | X | Z      |
| L      | L      | L | X | H      |
| L      | L      | H | X | F      |
| L      | H      | X | L | H      |
| L      | H      | X | H | L      |

#### -BIT ADDRESSABLE LATCHES

8-Bit Parallel-Out Storage Register Pa

Asynchronous Parailel Clear

Enable/Disable Input Simplifies Expansio

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | S    | ALS  | AS   | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74<br>ACT | UNIT |
|-----------|------------|------|------|------|------|----|------------|------------|-------------|-------------|------|
| Icc       | MAX        | 16   | 87   | 13   | 25.2 | 23 | 0.08       | 0.16       | 0.16        | 0.16        | mA   |
| Іон       | MAX        | -2.6 | -6.5 | -2.6 | -15  | -3 | -6         | -6         | -6          | -24         | mA   |
| lou       | MAX        | 8    | 20   | 24   | 48   | 24 | 6          | 6          | 6           | 24          | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | LS | S     | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74 |    |      |
|-----------|--------|--------|------------|----|-------|-----|-----|-----|------------|------------|-------------|------|----|------|
| tPLH      | 0.71   |        |            | 12 | 6     | 8   | 5   | 6   | 25         | 24         | 34          | 10.7 |    |      |
| tphl.     | DATA   | Y      | MAX        | 17 | 6     | 7   | 4   | 5.5 | 25         | 24         | 34          | 10.7 |    |      |
| tPLH      | OFLEGE | Y      | V          | V  | Y MAX | 21  | 12  | 25  | 9.5        | 9.5        | 29          | 35   | 43 | 15.4 |
| tPHL .    | SELECT |        | MAX        | 24 | 12    | 20  | 10  | 11  | 29         | 35         | 43          | 15.4 |    |      |
| tpzH      | G      |        | MAN        | 30 | 19.5  | 18  | 8   | 8.5 | 38         | 35         | 35          | 16.1 |    |      |
| tPZL      | G      | Y      | MAX        | 30 | 21    | 18  | 10  | 8.5 | 38         | 35         | 35          | 16.1 |    |      |
| tPHZ      | G      | 0 v    | MANY       | 30 | 8.5   | 10  | 6   | 7   | 38         | 38         | 38          | 16.1 |    |      |
| tPLZ      | G 50   | -      | MAX        | 25 | 14    | 18  | 6.5 | 7   | 38         | 38         | 38          | 16.1 |    |      |



#### **8-BIT ADDRESSABLE LATCHES**

- 8-Bit Parallel-Out Storage Register Performs Serial-to-Parallel Conversion with Storage
- Asynchronous Parallel Clear
- Active-High Decoder
- Enable/Disable Input Simplifies Expansion
- Expandable for n-Bit Applications
- Four Distinct Functional Modes



#### LATCH SELECTION

| FUNCTI | ONT | ARIE |
|--------|-----|------|

|   | NPUTS |      | LATCH<br>ADDRESSED |
|---|-------|------|--------------------|
| С | В     | Α    | ADDRESSED          |
| L | L     | v.L. | 0                  |
| L | L     | H    | 1                  |
| L | H     | L    | 2 3                |
| L | H     | H    | 3                  |
| H | L     | L    | 4                  |
| H | L     | H    | 5                  |
| H | H     | L    | 6                  |
| H | H     | H    | 7                  |

| INPUT | s | OUTPUT OF<br>ADDRESSED | EACH   | FUNCTION             |  |  |  |
|-------|---|------------------------|--------|----------------------|--|--|--|
| CLEAR | G | LATCH                  | OUTPUT | FUNCTION             |  |  |  |
| Н     | L | D                      | QiO    | Addressable latch    |  |  |  |
| Н     | Н | QiO                    | Qi0    | Memory               |  |  |  |
| L     | L | D                      | L      | 8-line demultiplexer |  |  |  |
| L     | Н | L                      | L      | Clear                |  |  |  |

#### RECOMMENDED OPERATING CONDITIONS

| NECOMMENDE | DUFENATING | COMPI | HUNS |      | ,          |            | -           |      |
|------------|------------|-------|------|------|------------|------------|-------------|------|
| PARAMETER  | MAX or MIN | TTL   | LS   | ALS  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
| Icc        | MAX        | 90    | 36   | 22   | 0.08       | 0.16       | 0.16        | mA   |
| Іон        | MAX        | 16    | 8    | 8    | 4          | 4          | 4           | mA   |
| lor        | MAX        | -0.8  | -0.4 | -0.4 | -4         | -4         | -4          | mA   |

#### SWITCHING CHARACTERISTICS

| P.     | PARAMETER INPUT OUTPUT |         | MAX or MIN | TTL    | LS | ALS | SN74<br>HC | CD74<br>HC | CD74<br>HCT |    |
|--------|------------------------|---------|------------|--------|----|-----|------------|------------|-------------|----|
| tw     | G                      |         |            | MIN    | 15 | 17  | 15         | 20         | 21          | 27 |
|        | CLR                    | 1       |            | IVIIIV | 15 | 10  | 10         | 20         | 21          | 27 |
| tsu    | DATA                   | 1       |            | MIN    | 15 | 20  | 15         | 19         | 24          | 26 |
|        | ADDRESS                | 1       |            | IVIIN  | 5  | 17  | 15         | 19         | 24          | 26 |
| th     | DATA                   | 1       |            | NAINI  | 0  | 0   | 0          | 5          | 0           | 0  |
|        | ADDRESS                | 1       |            | MIN    |    | 0   | 0          | 5          | 0           | 0  |
| tPLH . |                        | CLEAR   | Any Q      | MAX    | 25 | 18  | 12         | 38         | 47          | 59 |
| tPHL . |                        | DATA    | A O        | 1111   | 24 | 30  | 19         | 33         | 56          | 59 |
| tPLH   |                        | DATA    | Any Q      | MAX    | 20 | 20  | 12         | 33         | 56          | 59 |
| tPHL   |                        | 4000000 | 4          | MAN    | 28 | 27  | 22         | 50         | 56          | 61 |
| tPLH   |                        | ADDRESS | Any Q      | MAX    | 28 | 20  | 12         | 50         | 56          | 61 |
| tPHL . |                        | FNIADLE | 4 0        | 1444   | 20 | 24  | 20         | 43         | 51          | 57 |
| tPHL . |                        | ENABLE  | Any Q      | MAX    | 20 | 24  | 13         | 43         | 51          | 57 |



## DUAL 5-INPUT POSITIVE-NOR GATES

 $Y = \overline{A + B + C + D + E}$ 



Logic Diagram

RECOMMENDED OPERATING CONDITIONS

|           |            |    |     | T    |
|-----------|------------|----|-----|------|
| PARAMETER | MAX or MIN | S  | F   | UNIT |
| Icc       | MAX        | 45 | 9.5 | mA   |
| Іон       | MAX        | -1 | -1  | mA   |
| lor       | MAX        | 20 | 20  | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT         | OUTPUT | MAX or MIN | S   | F   |
|-----------|---------------|--------|------------|-----|-----|
| tPLH .    | 4 0 0 0 5     | ν.     | MAX        | 5.5 | 6.5 |
| tPHL .    | A, B, C, D, E | Y      | IVIAX      | 6   | 4.5 |

#### Logic Diagram

#### **QUAD COMPLEMENTARY-OUTPUT ELEMENTS**

- $\bullet$  Y =  $\overline{A}$ , W = A
- Y = AB, W = AB

| EL | EM | ENTS | 1 | and | 4 |
|----|----|------|---|-----|---|
|    |    |      |   |     |   |

ELEMENTS 2 and 3





RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | UNIT |
|-----------|------------|------|------|
| Icc       | MAX        | 34   | mA   |
| Іон       | MAX        | -0.8 | mA   |
| lou       | MAX        | 16   | mA   |

SWITCHING CHARACTERISTICS

| INPUT  | OUTPUT                             | MAX or MIN                                                           | TTL                                                                                                        |
|--------|------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| A or B | w                                  | MAX                                                                  | 18                                                                                                         |
| A or B | Υ                                  | MAX                                                                  | 18                                                                                                         |
| A or B | W                                  | MAX                                                                  | 18                                                                                                         |
| A or B | Y                                  | MAX                                                                  | 18                                                                                                         |
| A or B | W with respect Y                   | MAX                                                                  | ±3                                                                                                         |
| A or B | W with respect Y                   | MAX                                                                  | ±3                                                                                                         |
|        | A or B A or B A or B A or B A or B | A or B W A or B Y A or B W A or B W A or B Y A or B W with respect Y | A or B W MAX A or B Y MAX A or B W MAX A or B Y MAX A or B Y MAX A or B W with respect Y MAX A or B W with |

#### OHAD 2 INDUT

#### **FUNCTION TABLE**

| INP | UTS | OUTPUT |
|-----|-----|--------|
| Α   | В   | Y      |
| L   | L   | Н      |
| L   | H   | L      |
| H   | L   | L      |
| H   | H   | H      |

#### RECOMMENDED OPERATING CONDITIONS

| HEODIVINIENDE | D OI LIIATING | COIVE | TIOITO | _    |
|---------------|---------------|-------|--------|------|
| PARAMETER     | MAX or MIN    | LS    | нс     | UNIT |
| lcc           | MAX           | 13    | 0.02   | mA   |
| Vон           | MAX           | 5.5   | Vcc    | V    |
| lor           | MAX           | 8     | 4      | mA   |

#### SWITCHING CHARACTERISTICS

|           |                               |        | T          |    | T          |
|-----------|-------------------------------|--------|------------|----|------------|
| PARAMETER | INPUT                         | OUTPUT | MAX or MIN | LS | SN74<br>HC |
| tРLН      | A or B<br>Other Input<br>Low  | Υ      | MAX        | 30 | 31         |
| tphL .    | A or B<br>Other Input<br>Low  | Υ      | MAX        | 30 | 25         |
| tplH      | A or B<br>Other Input<br>High | Υ      | MAX        | 30 | 31         |
| tPHL .    | A or B<br>Other Input<br>High | Υ      | MAX        | 30 | 25         |

#### UNIT: ns

#### **Logic Diagram**

#### ZOLTZINGTOWNAL NO DIMENTINA

#### **OCTAL D-TYPE FLIP-FLOPS**

- Contain Eight Flip-Flops with Single-Rail Outputs
- Buffered Clock and Direct-Clear Inputs

#### Logic Diagram



#### **FUNCTION TABLE**

| II    | NPUTS |   | ОИТРИТ         |
|-------|-------|---|----------------|
| CLEAR | CLOCK | D | Q              |
| L     | X     | X | L              |
| H     | 1     | Н | H              |
| H     | 1     | L | L              |
| Н     | L     | X | Q <sub>0</sub> |

#### RECOMMENDED OPERATING CONDITIONS

| DULLIATING | CONDI                | HUNG                             |                            |                                                         | _                                                                       | _                                                                                       |                                                                                                     |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|----------------------|----------------------------------|----------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAX or MIN | TTL                  | LS                               | ALS                        | SN74<br>HC                                              | CD74<br>HC                                                              | SN74<br>HCT                                                                             | CD74<br>HCT                                                                                         | ABT                                                                                                                                                                                                                                                                                                             | LVTH<br>3V                                                                                                                                                                                                                                                                                                                             | CD74<br>AC                                                                                                                                          | CD74<br>ACT                                                                                                                                                                                                                                                                                                                                                                                                     | АНС                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AHCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LV<br>3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LV<br>5V                                                                                                                                                                | UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MAX        | 94                   | 27                               | 29                         | 0.08                                                    | 0.16                                                                    | 0.08                                                                                    | 0.16                                                                                                | 30                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                      | 0.16                                                                                                                                                | 0.16                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                                    | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAX        | -0.8                 | -0.4                             | -2.6                       | -4                                                      | -4                                                                      | -4                                                                                      | -4                                                                                                  | -32                                                                                                                                                                                                                                                                                                             | -32                                                                                                                                                                                                                                                                                                                                    | -24                                                                                                                                                 | -24                                                                                                                                                                                                                                                                                                                                                                                                             | -8                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -12                                                                                                                                                                     | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAX        | 16                   | 8                                | 24                         | 4                                                       | 4                                                                       | 4                                                                                       | 4                                                                                                   | 64                                                                                                                                                                                                                                                                                                              | 64                                                                                                                                                                                                                                                                                                                                     | 24                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                      | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | MAX or MIN  MAX  MAX | MAX or MIN TTL  MAX 94  MAX -0.8 | MAX 94 27<br>MAX -0.8 -0.4 | MAX or MIN TTL LS ALS  MAX 94 27 29  MAX -0.8 -0.4 -2.6 | MAX or MIN TTL LS ALS SN74 HC  MAX 94 27 29 0.08  MAX -0.8 -0.4 -2.6 -4 | MAX or MIN TTL LS ALS SN74 CD74 HC HC HC MAX 94 27 29 0.08 0.16 MAX -0.8 -0.4 -2.6 -4 4 | MAX or MIN TTL LS ALS SN74 CD74 SN74 HC HCT MAX 94 27 29 0.08 0.16 0.08 MAX -0.8 -0.4 -2.6 -4 -4 -4 | MAX or MIN         TTL         LS         ALS         SN74 HC         CD74 HCT         MAZ         CD74 HCT           MAX         94         27         29         0.08         0.16         0.08         0.16           MAX         -0.8         -0.4         -2.6         -4         -4         -4         -4 | MAX or MIN         TTL         LS         ALS         SN74 HC         CD74 HCT         CD74 HCT         ABT           MAX         94         27         29         0.08         0.16         0.08         0.16         30           MAX         -0.8         -0.4         -2.6         -4         -4         -4         -4         -32 | MAX or MIN TTL LS ALS SN74 CD74 SN74 CD74 ABT LVTH HCT HCT ABT LVTH SV MAX 94 27 29 0.08 0.16 0.08 0.16 30 5 MAX -0.8 -0.4 -2.6 -4 -4 -4 -4 -32 -32 | MAX or MIN         TTL         LS         ALS         SN74 HC         CD74 HC         MCD74 HCT         ABT         LVTH LVTH LVTH AR           MAX         94         27         29         0.08         0.16         0.08         0.16         30         5         0.16           MAX         -0.8         -0.4         -2.6         -4         -4         -4         -4         -32         -32         -24 | MAX or MIN         TTL         LS         ALS         SN74 HC         CD74 HC         RHC HCT         ABT         LVTH LOT4 SVA ACT         CD74 ACT           MAX         94         27         29         0.08         0.16         0.08         0.16         30         5         0.16         0.16           MAX         -0.8         -0.4         -2.6         -4         -4         -4         -4         -32         -32         -24         -24 | MAX or MIN         TTL         LS         ALS         SN74 HC         CD74 HC         RD74 HCT         ABT         LVTH         CD74 ACT         AHC           MAX         94         27         29         0.08         0.16         0.08         0.16         30         5         0.16         0.06         0.08           MAX         -0.8         -0.4         -2.6         -4         -4         -4         -4         -32         -32         -24         -24         -8 | MAX or MIN         TTL         LS         ALS         SN74 HC         CD74 HC         NT74 HC         CD74 HCT         ABT         LVTH OT OT AC         CD74 AC         AHC         AHC         AHCT           MAX         94         27         29         0.08         0.16         0.08         0.16         30         5         0.16         0.16         0.04         0.04           MAX         -0.8         -0.4         -2.6         -4         -4         -4         -32         -32         -24         -24         -8         -8 | MAX or MIN TTL LS ALS SN74 CD74 SN74 CD74 ABT LVTH CD74 CD74 AHC AHCT LV 3V AC ACT ACT AHC AHCT LV 3V AC ACT ACT AHC AHCT LV 3V ACT ACT ACT ACT ACT ACT ACT ACT ACT ACT | MAX or MIN TTL LS ALS SN74 CD74 SN74 CD74 ABT LVTH CD74 CD74 AHC AHCT LV SV SV ACC ACT AHC AHCT LV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV SV SV SV SV SV ACC ACT AHC AHCT LV SV SV SV SV SV SV SV SV SV SV SV SV SV |

#### SWITCHING CHARACTERISTICS

| PARAMETER |                | INPUT | OUTPUT     | MAX or MIN             | TTL  | LS | ALS | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | ABT | LVTH<br>3V | CD74<br>AC | CD74<br>ACT | AHC  |      |
|-----------|----------------|-------|------------|------------------------|------|----|-----|------------|------------|-------------|-------------|-----|------------|------------|-------------|------|------|
| fma       | K              | 1000  |            | MIN                    | 30   | 30 | 35  | 21         | 20         | 16          | 16          | 150 | 150        | 100        | 85          | 70   |      |
| tw        |                |       | NI to XANG | MIN                    | 16.5 | 20 | 14  | 20         | 24         | 25          | 30          | 3.3 | 3.3        | 5          | 6           | 5    |      |
| tsu       | tsu DATA INPUT |       |            | MIN                    | 20   | 20 | 10  | 25         | 18         | 25          | 18          | 2.5 | 2.3        | 2          | 2           | 4.5  |      |
|           | CLR INACVIVE   |       | 1/1/1/1    | MIN                    | 25   | 25 | 15  | 25         | -          | 25          |             | 2   | 2.3        | -          |             | 2    |      |
| th        |                |       | SHN        | MIN                    | 5    | 5  | 0   | 0          | 3          | 0           | 3           | 1.2 | 0          | 2          | 2           | -1   |      |
| tPHL .    |                | CLEAR | ANY Q      | MAX                    | 27   | 27 | 18  | 40         | 45         | 42          | 48          | 7.4 | 4.9        | 13.5       | 13.5        | 12   |      |
| tPLH      |                | CLOCK | 1004       | NAME OF TAXABLE PARTY. | MAX  | 27 | 27  | 12         | 40         | 45          | 42          | 45  | 6.5        | 4.8        | 13.5        | 13.5 | 12.5 |
| tPHL .    |                | CLUCK | ANY Q      | IVIAX                  | 27   | 27 | 15  | 40         | 45         | 42          | 45          | 7.3 | 4.3        | 13.5       | 13.5        | 12.5 |      |

| PARAMETER   |              | INPUT | OUTPUT | MAX or MIN | AHCT | LV<br>3V | LV<br>5V |
|-------------|--------------|-------|--------|------------|------|----------|----------|
| fmax        | (            |       | 22.58  | MIN        | 45   | 45       | 70       |
| tw          |              |       |        | MIN        | 6.5  | 6.5      | 5        |
| tsu         | DATA INPUT   |       |        | MIN        | 5    | 6.5      | 4.5      |
|             | CLR INACVIVE |       |        | MIN        | 2.5  | 2.5      | 2        |
| th          |              |       |        | MIN        | 0    | 2        | 1        |
| tPHL        |              | CLEAR | ANY Q  | MAX        | 12.6 | 19.5     | 12       |
| tPLH .      |              | CLOCK | ANY Q  | MAX        | 9.8  | 19.5     | 12.5     |
| <b>TPHL</b> |              | CLUCK | ANTU   | IVIAX      | 11   | 19.5     | 12.5     |

#### QUAD J-K FLIP-FLORS

- Separate Negative-Edge-Triggered Clocks
- Fully Buffered Outputs

#### Logic Diagram



#### **FUNCTION TABLE**

| COMMON | N INPUTS | INF   | OUTPUT |   |        |
|--------|----------|-------|--------|---|--------|
| PRESET | CLEAR    | CLOCK | J      | K | Q      |
| L      | Н        | X     | X      | X | H      |
| H      | L        | ×     | X      | × | L      |
| L      | L        | ×     | X      | × | H†     |
| H      | Н        | 1     | L      | H | Qo     |
| H      | H        | 1     | H      | H | H      |
| H      | THE H    | 1     | L      | L | L      |
| H      | H        | 1     | H      | L | TOGGLE |
| H      | H        | H     | X      | × | Qn     |

† The output levels in this configuration are not guaranteed to meet the minimum levels for Voys. Furthermore, this configuration is nonstable; that is, it will not persist when either PRE or CLR returns to its inactive (high) level.

#### RECOMMENDED OPERATING CONDITIONS

| NECOMMENDE | DULLIATING | CONDI | 110143 |
|------------|------------|-------|--------|
| PARAMETER  | MAX or MIN | TTL   | UNIT   |
| Icc        | MAX        | 81    | mA     |
| Іон        | MAX        | -0.8  | mA     |
| lou        | MAX        | 16    | mA     |

SWITCHING CHARACTERISTICS

| _                                | CHING CHARAC | TERISTICS |           | _          |      |  |
|----------------------------------|--------------|-----------|-----------|------------|------|--|
| P P                              | ARAMETER     | INPUT     | OUTPUT    | MAX or MIN | TTL  |  |
| fmax                             |              | C         | 1010A     | MIN        | 35   |  |
| tw CLOCK high CLOCK low tsu J, K |              |           |           | AMINI      | 13.5 |  |
|                                  |              |           |           | MIN        | 15   |  |
|                                  |              |           |           | ****       | 3    |  |
|                                  | CLD DD =     |           |           | MIN        | 10   |  |
| th                               |              |           |           | MIN        | 10   |  |
| tPLH                             |              | PRESET    | Q         | MAX        | 25   |  |
| tPHL VI                          |              | CLEAR     | Q         | MAX        | 30   |  |
| tPLH<br>tPHL                     |              |           |           | MAX        | 30   |  |
|                                  |              | CLOC K    | Q (2) (A) | MAX        | 30   |  |

QUAD S-R LATCHES



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | UNIT |
|-----------|------------|------|------|------|
| Icc       | MAX        | 30   | 7    | mA   |
| Іон       | MAX        | -0.8 | -0.4 | mA   |
| lou       | MAX        | 16   | 8    | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | TTL | LS |
|-----------|-------|--------|------------|-----|----|
| tw        | -     |        | MIN        | 20  | 20 |
| tPLH      | -     |        | MANY       | 22  | 22 |
| tphL .    | 5     | a      | MAX        | 15  | 21 |
| tphL .    | R     |        | MAX        | 27  | 27 |



| NO. OF INPUTS | OUTF  | UTS  |
|---------------|-------|------|
| THAT ARE HIGH | ΣEVEN | ΣODD |
| 0, 2, 4, 6, 8 | Н     | L    |
| 1, 3, 5, 7, 9 | L     | H    |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | s   | ALS  | AS | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT | UNIT |
|-----------|------------|------|-----|------|----|----|------------|------------|-------------|------------|-------------|------|
| Icc       | MAX        | 27   | 105 | 16   | 35 | 35 | 0.08       | 0.16       | 0.16        | 0.16       | 0.16        | mA   |
| 1он       | MAX        | -0.4 | -1  | -2.6 | -2 | -1 | -4         | -4         | -4          | -24        | -24         | mA   |
| lor.      | MAX        | 8    | 20  | 24   | 20 | 20 | 4          | 4          | 4           | 24         | 24          | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT    | MAX or MIN | LS | S  | ALS | AS   | F  | SN74<br>HC | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT |
|-----------|-------|-----------|------------|----|----|-----|------|----|------------|------------|-------------|------------|-------------|
| tPLH      | DATA  | S<br>EVEN | MAN        | 50 | 21 | 20  | 12   | 10 | 52         | 60         | 63          | 20         | 21.6        |
| tphl .    | DATA  |           | MAX        | 45 | 18 | 20  | 11   | 11 | 52         | 60         | 63          | 20         | 21.6        |
| tPLH      | DATA  | S         | MAY        | 35 | 21 | 20  | 12   | 10 | 52         | 60         | 68          | 21         | 21.6        |
| tphL -    | DATA  | ODD       | MAX        | 50 | 18 | 22  | 11.5 | 11 | 52         | 60         | 68          | 21         | 21.6        |



#### **4-BIT BINARY FULL ADDERS**

Full-Carry Look-Ahead Across the Four Bits



#### CUNCTION TARI

|    |     |     | FUN | ICTIO | N TA   | BLE  |      |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|-----|-----|-----|-------|--------|------|------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |     |     |     |       |        | OUT  | PUTS |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | INP | UTS |     | WH    | IEN CO | = L  | WH   | IEN C | ) = H | BIT PARITY GENERATOR/CHECKER WITH BUS DRIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |     |     |     | WH    | IEN C2 | = L  | WH   | IEN C | 2 = H |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A1 | B1  | A2  | B2  | Σ1    | Σ2     | C2   | Σ1   | Σ2    | C2    | Generate Either Odd or Even Parity for Nine Bata Lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A3 | В3  | A4  | B4  | Σ3    | Σ4     | C4   | Σ3   | Σ4    | C4    | Cascadable for n-Bit Parity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| L  | L   | L   | L   | L     | L      | L    | Н    | L     | L     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н  | L   | L   | L   | H     | C.L.   | L    | L    | H     | L     | Direct Bus Connection for Parity Ganeration or Checking by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| L  | H   | L   | L   | H     | L      | L    |      | H     | L     | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
| н  | H   | L   | L   | L     | H      | 9 Lo | H    | H     | L     | ZARC 10000 Product Available in Reduced-Neise Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| L  | L   | H   | L   | L     | H      | L    | Н    | H     | L     | ZAACTITXXXC Product Available in Reduced-Noise Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Н  | L   | H   | L   | H     |        | mis. | L    | E     | Н     | as our action recorded in arrelease for boild boxet in Assist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| L  | H   | H   | L   | H     | H      | L    | L    | L     | H     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н  | H   | H   | L   | L     | L      | H    | H    | L     | H     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L  | L   | L   | H   | L     | Н      | L    | H    | Н     | L     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н  | L   | L   | Н   | H     | Н      | L    | L    | L     | Н     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L  | Н   | L   | Н   | H     | Н      | L    | L    | L     | Н     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н  | Н   | L   | Н   | -     | L .    | H    | Н    | L     | H     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L  | L   | H   | H   | L     | L      | Н    | Н    | L     | H     | mineral (Amine I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Н  | L   | H   | H   | H     | L      | H    | -    | H     | H     | Logic Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| L  | Н   | H   | H   | Н     | H      | H    | H    | H     | H     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Н  | H   | Н   | Н   | L     | н      | Н    | H    | н     | Н     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### RECOMMENDED OPERATING CONDITIONS

|        | PARAMETER            | MAX or MIN | TTL  | TTL LS | S    | F  | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT | UNIT |
|--------|----------------------|------------|------|--------|------|----|------------|-------------|------------|-------------|------|
| Icc    |                      | MAX        | 110  | 39     | 160  | 55 | 0.16       | 0.16        | 0.16       | 0.16        | mA   |
| . BORR | Any output except C4 | MAX        | -0.8 | -0.4   | -1   | -1 | -4         | -4          | -24        | -24         |      |
| Юн     | C4                   | MAX        | -0.4 | -0.4   | -0.5 | -1 | -4         | -4          | -24        | -24         | mA   |
| i.     | Any output except C4 | MAX        | 16   | 8      | 20   | 20 | 4          | 4           | 24         | 24          |      |
| IOL    | C4                   | MAX        | 8    | 8      | 10   | 20 | 4          | 4           | 24         | 24          | mA   |

#### SWITCHING CHARACTERISTICS

| ANACIENISTIC | )      |            |       |       | -0-                                    |                                            |                                                |                                                                                                                                                                                                                                                                                                         |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|--------|------------|-------|-------|----------------------------------------|--------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INPUT        | OUTPUT | MAX or MIN | ΠL    | LS    | S                                      | F                                          | CD74<br>HC                                     | CD74<br>HCT                                                                                                                                                                                                                                                                                             | CD74<br>AC                                                               | CD74<br>ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 00           | 0      | MAX        | 21    | 24    | 18                                     | 10.5                                       | 69                                             | 47                                                                                                                                                                                                                                                                                                      | 17.6                                                                     | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CU           | 5      | MAX        | 21    | 24    | 18                                     | 10.5                                       | 69                                             | 47                                                                                                                                                                                                                                                                                                      | 17.6                                                                     | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Al Di        | C:     | MAX        | 24    | 24    | 18                                     | 10.5                                       | 63                                             | 69                                                                                                                                                                                                                                                                                                      | 18.2                                                                     | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AI OF BI     | 51     | MAX        | 24    | 24    | 18                                     | 10.5                                       | 63                                             | 69                                                                                                                                                                                                                                                                                                      | 18.2                                                                     | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00           |        | MAX        | 14    | 17    | 11                                     | 8.5                                        | 59                                             | 80                                                                                                                                                                                                                                                                                                      | 17.6                                                                     | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CO           | 04     | MAX        | 16    | 22    | 11                                     | 8                                          | 59                                             | 80                                                                                                                                                                                                                                                                                                      | 17.6                                                                     | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A1 D1        | L4     | MAX        | 14    | 17    | 12                                     | 8.5                                        | 59                                             | 72                                                                                                                                                                                                                                                                                                      | 17.6                                                                     | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ai or Bi     |        | MAX        | 16    | 17    | 12                                     | 8                                          | 59                                             | 72                                                                                                                                                                                                                                                                                                      | 17.6                                                                     | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |        | INPUT      | INPUT | INPUT | INPUT   OUTPUT   MAX or MIN   TTL   LS | INPUT   OUTPUT   MAX or MIN   TTL   LS   S | INPUT   OUTPUT   MAX or MIN   TTL   LS   S   F | INPUT OUTPUT MAX or MIN TTL LS S F CD74 HC  CO S MAX 21 24 18 10.5 69 MAX 21 24 18 10.5 69 MAX 21 24 18 10.5 69 MAX 24 24 18 10.5 63 MAX 24 24 18 10.5 63 MAX 24 24 18 10.5 63 MAX 24 24 18 10.5 63 MAX 24 24 18 10.5 63 MAX 14 17 11 8.5 59 MAX 16 22 11 8 59 MAX 16 12 21 11 8 59 MAX 16 17 12 8.5 59 | INPUT   OUTPUT   MAX or MIN   TTL   LS   S   F   CD74   HCT   CD74   HCT | INPUT OUTPUT MAX or MIN TTL LS S F CD74 HC CD74 AC CD74 AC CD74 AC CD74 HC CD74 HC AC CD74 HC CD74 AC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC CD74 HC |

• 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



| (A-I) THAT<br>ARE HIGH | XMIT   | PARITY<br>I/O | PARITY |  |
|------------------------|--------|---------------|--------|--|
| 0, 2, 4, 6, 8          | 1      | Н             | Н      |  |
| 1, 3, 5, 7, 9          | Ī      | L             | Н      |  |
| 0, 2, 4, 6, 8          | h<br>h | h<br>I        | H<br>L |  |
| 1, 3, 5, 7, 9          | h<br>h | h             | L<br>H |  |

h = high input level I = low input level H = high output level L = low output level

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER |              | MAX or MIN | AS  | AC<br>11 | ACT<br>11 | UNIT |
|-----------|--------------|------------|-----|----------|-----------|------|
| Icc       |              | MAX        | 50  | 0.08     | 0.08      | mA   |
|           | Parity error | MAX        | -2  | -24      | -24       | mA   |
| Іон       | Parity I/0   | MAX        | -15 | -24      | -24       | mA   |
|           | Parity error | MAX        | 20  | 24       | 24        | mA   |
| lor.      | Parity I/O   | MAX        | 48  | 24       | 24        | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT                   | OUTPUT       | MAX or MIN | AS   | AC<br>11 | ACT<br>11 |
|-----------|-------------------------|--------------|------------|------|----------|-----------|
| tPLH      |                         | MANY         | 15         | 9    | 10.4     |           |
| tPHL .    | A to I                  | Parity I/O   | MAX        | 14   | 107      | 12        |
| tPLH .    | A to i                  | Danita anna  | MAX        | 16.5 | 10       | 11.3      |
| tphl .    |                         | Parity error | IVIAA      | 16.5 | 12       | 12.9      |
| tPLH      | Parity I/O Parity error | Darita       | MAN        | 9    | 6.2      | 7.7       |
| tphl .    |                         | MAX          | 9          | 7.9  | 9.1      |           |
| tPZH      |                         |              | - do - d   | 13   | 5.3      | 7.3       |
| tPZL      | XMIT                    | Davis 110    | MAX        | 16   | 8.9      | 11.4      |
| tPHZ      |                         | Parity I/0   | MAX        | 11.5 | 6.5      | 8.5       |
| tPLZ      |                         |              |            | 10   | 6.3      | 7.8       |

UNIT: ns



#### PROGRAMMABLE FREQUENCY DIVIDER/DIGITAL TIMER

- Digitally Programmable from 2<sup>2</sup> to 2<sup>31</sup>
- Easily Expandable
- Applications:

Frequency Division
Digital Timing



| CLEAR | CLK 1 | CLK 2 | Q OUTPUT MODE |
|-------|-------|-------|---------------|
| L     | X     | X     | Cleared to L  |
| H     | #     | L     | Count         |
| H     | L     | *     | Count         |
| Н     | Н     | X     | Inhibit       |
| Н     | X     | H     | Inhibit       |

#### BIT BINARY COUNTERS

#### RECOMMENDED OPERATING CONDITIONS

| 112001111121102 |            | 001101 | 1    |
|-----------------|------------|--------|------|
| PARAMETER       | MAX or MIN | LS     | UNIT |
| Icc             | MAX        | 75     | mA   |
| Iон (Q only)    | MAX        | -1.2   | ٧    |
| IoL (Q only)    | MAX        | 24     | mA   |
|                 |            |        |      |

#### mediann siber

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LS  |
|-----------|-------|--------|------------|-----|
| fmax      | CLK   |        | MIN        | 30  |
| tPLH      | CLK   | Q      | MAX        | 90  |
| tPHL      | CLK   | Q      | MAX        | 120 |
| tPHL      | CLR   | ā      | MAX        | 65  |



#### COUNT SECUENCE

| 0011117                                                                      | OUTPUTS |     |             |         |  |
|------------------------------------------------------------------------------|---------|-----|-------------|---------|--|
| COUNT                                                                        | QD      | QC  | QB          | QA      |  |
| 0                                                                            | L       | L   | L           | H       |  |
| 1                                                                            | L       | L   | L           | H       |  |
| 2                                                                            | L       | L   | H           | L       |  |
| 3                                                                            | L       | L   | H           | H       |  |
| 4                                                                            | L       | H   | L           | L       |  |
| 5                                                                            | L       | H   | L           | L       |  |
| 6                                                                            | L       | HHH | H           | L       |  |
| 7                                                                            | L       | H   | H           | H       |  |
| 8                                                                            | H       | L   | L           | L       |  |
| 9                                                                            | H       | L   | L           | H       |  |
| 10                                                                           | HHHHH   | L   | L<br>H<br>H | L       |  |
| 11                                                                           | H       | L   | Н           | H       |  |
| 12                                                                           | H       | H   | L           | L       |  |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | Н       | Н   | L           | LHLHLHL |  |
| 14                                                                           | H       | Н   | H           | L       |  |
| 15                                                                           | H       | H   | Н           | H       |  |

NOTE: Output QA is connected to input B.

#### RESET/COUNT FUNCTION TABLE

| RESET              | INPUTS             |       | OUTF | UTS |    |
|--------------------|--------------------|-------|------|-----|----|
| R <sub>0</sub> (1) | R <sub>0</sub> (2) | QD    | QC   | QB  | QA |
| H                  | Н                  | L     | L    | L   | L  |
| L                  | ×                  | COUNT |      |     |    |
| X                  | L                  |       | COL  | INT |    |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | UNIT |
|-----------|------------|------|------|------|
| lcc       | MAX        | 39   | 15   | mA   |
| Іон       | MAX        | -0.8 | -0.4 | mA   |
| lou       | MAX        | 16   | 8    | mA   |

SWITCHING CHARACTERISTICS

| PAF    | RAMETER | INPUT OUTPUT MAX or MIN |     | TTL  | LS     |    |
|--------|---------|-------------------------|-----|------|--------|----|
|        |         | A                       | QA  | MIN  | 32     | 32 |
| fmax   |         | В                       | QB  | MIN  | 16     | 16 |
| tw     | A       |                         |     |      | 15     | 15 |
|        | В       | A, B                    |     | MIN  | MIN 30 |    |
|        | Reset   |                         | 7   | 15   | 15     |    |
| tsu    |         |                         |     | MIN  | 25     |    |
| tPLH . |         |                         | QA  | 144V | 16     | 16 |
| tPHL   |         | Α                       | UA  | MAX  | 18     | 18 |
| tPLH   |         | Α.                      | 0.0 | MAY  | 70     | 70 |
| tPHL   |         | Α                       | QB  | MAX  | 70     | 70 |
| tPLH   |         | D.                      | 0.0 | MAN  | 16     | 16 |
| tPHL . |         | В                       | QB  | MAX  | 21     | 21 |
| tPLH   |         | 0                       | 00  | MAN  | 32     | 32 |
| tphl.  |         | В                       | ac  | MAX  | 35     | 35 |
| tPLH   | 1       |                         | 00  | 1111 | 51     | 51 |
| tPHL   |         | В                       | QD  | MAX  | 51     | 51 |

#### PROGRAMMABLE FREQUENCY DIVIDER/DIGITAL TIMER

- Digitally Programmable from 2<sup>2</sup> to 2<sup>15</sup>
- Easily Expandable
- Applications

Frequency Division Digital Timing



|                    |       | III O INID | LITO |         | Y DIVISION |         |         |
|--------------------|-------|------------|------|---------|------------|---------|---------|
| PROGRAMMING INPUTS |       |            |      | Q       | 1          | TP .    |         |
| D                  | С     | В          | Α    | BINARY  | DECIMAL    | BINARY  | DECIMAL |
| L                  | L     | L          | L    | Inhibit | Inhibit    | Inhibit | Inhibit |
| L                  | L     | L          | Н    | Inhibit | Inhibit    | Inhibit | Inhibit |
| L                  | L     | H          | L    | 22      | 4          | 29      | 512     |
| L                  | L     | H          | H    | 23      | 8          | 29      | 512     |
| L                  | Н     | L          | L    | 24      | 16         | 29      | 512     |
| L                  | Н     | L          | Н    | 25      | 32         | 29      | 512     |
| L                  | H     | H          | L    | 26      | 64         | 29      | 512     |
| L                  | H     | Н          | H    | 27      | 128        | Disab   | led Low |
| Н                  | L     | L          | L    | 28      | 256        | 22      | 4       |
| Н                  | L     | L          | H    | 29      | 512        | 23      | 8       |
| Н                  | - L - | - H        | L    | 210     | 1024       | 24      | 16      |
| H                  | L     | Н          | Н    | 211     | 2048       | 25      | 32      |
| H                  | H     | L          | L    | 212     | 4096       | 26      | 64      |
| H                  | H     | L          | H    | 213     | 8192       | 27      | 128     |
| H                  | H     | H          | L    | 214     | 16384      | 28      | 256     |
| Н                  | H     | H          | H    | 215     | 32768      | 29      | 512     |

#### RECOMMENDED OPERATING CONDITIONS

|            | -          | 1                  |
|------------|------------|--------------------|
| MAX or MIN | LS         | UNIT               |
| MAX        | 50         | mA                 |
| MAX        | -1.2       | V                  |
| MAX        | 24         | mA                 |
|            | MAX<br>MAX | MAX 50<br>MAX -1.2 |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT      | OUTPUT | MAX or MIN | LS  |
|-----------|------------|--------|------------|-----|
| fmax      | CLK        | 1-4-   | MIN        | 30  |
|           | CLK 1 or 2 |        | MIN        | 16  |
| tw        | CLR        | 8 4    | MIN        | 35  |
| tPLH .    | 01111      |        | MAN        | 90  |
| tPHL .    | CLK 1 or 2 | u      | MAX        | 120 |
| tPLH .    | CLR        | ā      | MAX        | 65  |



K COUNTER FUNCTION TABLE

EXCLUSIVE OR PHASE DETECTOR

| D | С  | В  | Α | MODULO<br>(K) |
|---|----|----|---|---------------|
| L | L  | L  | L | Inhibited     |
| L | L  | L  | Н | 22            |
| L | L  | Н  | L | 24            |
| L | L  | Н  | Н | 25            |
| L | Н  | L  | L | 26            |
| L | H  | L  | Н | 27            |
| L | H  | Н  | L | 28            |
| L | H  | Н  | H | 29            |
| Н | L  | L  | L | 210           |
| Н | L  | L  | Н | 211           |
| H | L  | Н  | L | 212           |
| Н | L  | Н  | Н | 213           |
| Н | Н  | L  | L | 214           |
| Н | Н  | L  | н | 215           |
| Н | H- | H. | L | 216           |
| н | H  | н  | н | 217           |

| ØA1 | φB | XORPD OUT |
|-----|----|-----------|
| L   | L  | L         |
| L   | H  | H         |
| Н   | L  | H         |
| H   | Н  | L         |

EDGE-CONTROLLED PHASE DETECTOR

| Ø A2 | ØΒ   | ECPD OUT  |
|------|------|-----------|
| HorL | 1    | Н         |
| 1    | HorL | L         |
| HorL | 1    | No change |
| 1    | HorL | No change |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER       | MAX or MIN | LS   | CD74<br>HC | CD74<br>HCT | CD74<br>ACT | UNIT |
|-----------------|------------|------|------------|-------------|-------------|------|
| Icc             | MAX        | 120  | 0.16       | 0.16        | 0.08        | mA   |
| Ioн (I/D OUT)   | MAX        | -1   | -6         | -4          | -24         | mA   |
| IOH (XOR, ECPD) | MAX        | -0.4 | -6         | -4          | -24         | mA   |
| IoL (I/D OUT)   | MAX        | 24   | 6          | 4           | 24          | mA   |
| IoL (XOR, ECPD) | MAX        | 8    | 6          | 4           | 24          | mA   |

SWITCHING CHARACTERISTICS

| PAR   | RAMETER | IN        | PUT              | OUTPUT   | MAX or MIN | LS | CD74<br>HC | CD74<br>HCT | CD74<br>ACT |
|-------|---------|-----------|------------------|----------|------------|----|------------|-------------|-------------|
|       |         | K         | CLK              | I/D OUT  |            | 32 | 20         | 20          | 45          |
| fmax  |         | -1/D      | CLK              | I/D OUT  | MIN        | 16 | 13         |             | 35          |
| tw    | K CLK   | 100       | 7-10-4           |          |            | 16 | 24         | 24          | 8           |
|       | I/D CLK |           |                  |          | MIN        | 33 | 38         | 38          | 9           |
| tsu   | D/Ū     |           |                  |          |            | 30 | 30         | 30          | 17          |
|       | ENCLR   |           |                  |          | MIN        | 31 | 30         | 30          | 16          |
| th    | D/Ū     |           |                  |          |            | 0  | 0          | 0           | 7           |
|       | ENCLR   |           |                  |          | MIN        | 0  | 0          | 0           | 6           |
| tPLH  |         |           |                  | LID OUT  | MAN        | 25 | 53         | 53          | 24          |
| tPHL  |         | 1/D 1     | CLK ↑            | I/D OUT  | MAX        | 35 | 53         | 53          | 24          |
|       |         |           | other input low  | X or OUT |            | 15 | 45         | 45          | 22          |
| tpl.H |         | φA1 or φB | other input high | X 01 001 |            | 25 | 45         | 45          | 22          |
|       |         |           | other input low  | V 0117   | MAX        | 25 | 45         | 45          | 22          |
| tPHL. |         | φA1 or φB | other input high | X or OUT |            | 25 | 45         | 45          | 22          |
| tPLH  |         | ф         | BŢ               | ECPD OUT |            | 30 | 60         | 60          | 30          |
| tPHL  |         |           | A2 ↓             | ECPD OUT | MAX        | 30 | 60         | 60          | 30          |

#### QUAD 2-INPUT MULTIPLEXERS WITH STORAGE

Outputs Storage Register

# Logic Diagram A1 -3 ws \_\_10 A2 \_2 B1 \_\_4 B2 \_\_1 1R C1 \_\_9 13 QC C2 \_\_5 12 QD D2 \_\_6

| INP            | UTS   |     | OUT | PUTS |     |
|----------------|-------|-----|-----|------|-----|
| WORD<br>SELECT | CLOCK | QA  | QB  | QC   | QD  |
| L              | 1     | A1  | B1  | C1   | D1  |
| H              | 1     | A2  | B2  | C2   | D2  |
| X              | H     | QAO | QBO | Qcn  | Qnn |

† a1, a2, etc. = the level of steady-state input at A1, A2, etc. QA0, QB0, etc. = the level of QA, QB, etc. entered on the most recent O transition of CLK

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | AS | SN74<br>HC | UNIT |
|-----------|------------|------|------|----|------------|------|
| Icc       | MAX        | 65   | 21   | 36 | 0.08       | mA   |
| lou       | MAX        | 16   | 8    | 20 | 4          | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -2 | -4         | mA   |

ogic Disgram

#### SWITCHING CHARACTERISTICS

| P           | ARAMETER    | INPUT | OUTPUT   | MAX or MIN | ΠL | LS | AS  | SN74<br>HC |
|-------------|-------------|-------|----------|------------|----|----|-----|------------|
| tw          | 8.5         |       |          | MIN        | 20 | 20 | 8   | 27         |
|             | Data        |       |          | MIN        | 15 | 15 | 4.5 | 21         |
| Word Select |             |       |          | IVIIN      | 25 | 25 | 13  | 21         |
| al-         | Data        |       |          | AMINI      | 5  | 5  | 3.5 | 0          |
| th          | Word Select |       |          | MIN        | 0  | 0  | 1   | 0          |
| tPLH        |             | OLIV  | 0400     | MANY .     | 27 | 27 | 9   | 31         |
| tPHL.       |             | CLK   | GA to GD | MAX        | 32 | 32 | 11  | 31         |

#### 8-BIT BIDIRECTIONAL UNIVERSAL SHIFT/STORAGE REGISTERS

- Multiplexed I/O Ports Provide Improved Bit Density
- Four Modes of Operation:

Hold (Store)

Shift Right

Shift Left

Load Data

- Operate with Outputs Enabled or at High Impedance
- 3-State Outputs Drive Bus Lines Directly
- Can Be Cascaded for n-Bit Word Lengths

# | MAX or MIV | 1.5 | AS | 1.5 | LNUT | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX | MAX

#### **Logic Diagram**



† I/O ports not shown: B/QB (13), C/QC (6), D/QD (14), E/QE (5), F/QF (15), and G/QG (4).

|                |     |             |    |      |      |          |        |    | ONOTH        | MA IND       | las bes                            |              |              |              |              |                                    |                                    |     |
|----------------|-----|-------------|----|------|------|----------|--------|----|--------------|--------------|------------------------------------|--------------|--------------|--------------|--------------|------------------------------------|------------------------------------|-----|
|                |     |             |    | INP  | JTS  |          |        |    | I/O PORTS    |              |                                    |              |              |              |              |                                    | OUTPUTS                            |     |
| MODE           | CLR | S1          | S0 | OE1† | OE2† | CLK      | SL     | SR | A/Q A        | B/Q B        | C/Q C                              | D/Q D        | E/Q E        | F/Q F        | G/Q G        | H/Q H                              | QA'                                | QH  |
| Clear          | L   | X<br>L<br>H | X  | L    | L    | X<br>X   | X<br>X | X  | L            | L            | L                                  | L            | L            | L            | L<br>L<br>X  | L<br>X                             | L                                  | L   |
| Hold           | H   | L           | L  | L    | L    | X        | X      | X  | Q AO<br>Q AO | Q B0<br>Q B0 | Q C0<br>Q C0                       | Q D0<br>Q D0 | Q E0<br>Q E0 | QF0<br>QF0   | Q G0<br>Q G0 | Q <sub>H0</sub><br>Q <sub>H0</sub> | Q AO<br>Q AO                       | Q H |
| Shift<br>Right | H   | L           | H  | L    | Ł    | Ť        | X      | H  | H            | Q An<br>Q An | Q <sub>Bn</sub><br>Q <sub>Bn</sub> | Q Cn<br>Q Cn | Q Dn<br>Q Dn | Q En<br>Q En | QFn<br>QFn   | Q Gn<br>Q Gn                       | e de H                             | QG  |
| Shift<br>Left  | H   | H           | L  | L    | L    | <b>†</b> | H      | X  | Q Bn<br>Q Bn | Q Cn<br>Q Cn | Q Dn<br>Q Dn                       | Q En<br>Q En | Q Fn<br>Q Fn | Q Gn<br>Q Gn | Q Hn<br>Q Hn | H                                  | Q <sub>Bn</sub><br>Q <sub>Bn</sub> | L   |
| Load           | H   | H           | H  | ×    | X    | 1        | X      | X  | a            | h            | C                                  | d            | e            | f            | 0            | h                                  | а                                  | h   |

NOTE: a...h=the level of the steady-state input at inputs A through H, respectively. This data is loaded into the flip-flops while the flip-flop outputsare isolated from the I/O terminals.

† When one or both output-enable inputs are high, the eight I/O terminals are disabled to the high-impedance state; however, sequential operationor clearing of the register is not affected.

#### RECOMMENDED OPERATING CONDITIONS

| F   | PARAMETER                          | MAX or MIN | LS   | S    | ALS  | F    | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT | UNIT |
|-----|------------------------------------|------------|------|------|------|------|------------|-------------|------------|-------------|------|
| lec |                                    | MAX        | 53   | 225  | 40   | 95   | 0.16       | 0.16        | 0.16       | 0.16        | mA   |
| la  | Q <sub>A</sub> thru Q <sub>H</sub> | MAX        | -2.6 | -6.5 | -2.6 | -3   | -6         | -4          | -24        | -24         |      |
| Іон | QA or QH                           | MAX        | -0.4 | -0.5 | -0.4 | 1    | -4         | -4          | -24        | -24         | mA   |
| lou | Q <sub>A</sub> thru Q <sub>H</sub> | MAX        | 24   | 20   | 24   | - 24 | 6          | 4           | 24         | 24          | A    |
| IOL | QA' or QH'                         | IVIAX      | 8    | 6    | 8    | - 20 | 4          | 4-          | 24         | 24          | mA   |

#### SWITCHING CHARACTERISTICS

| F     | PARAMETER                                              | INPUT    | OUTPUT                             | MAX or MIN | LS | S    | ALS  | - F  | CD74<br>HC | CD74<br>HCT | CD74<br>AC | CD74<br>ACT |
|-------|--------------------------------------------------------|----------|------------------------------------|------------|----|------|------|------|------------|-------------|------------|-------------|
| fma)  | (                                                      |          | - 60                               | MIN        | 20 | 50   | 30   | 70   | 20         | 16          | 95         | 90          |
| tw    | CLK high                                               |          |                                    | 74         | 30 | 10   | 16.5 | 7    | 24         | 30          | 5.2        | 5.5         |
|       | CLK low                                                |          |                                    | MIN        | 10 | 10   | 16.5 | 7    | 24         | 30          | 5.2        | 5.5         |
|       | CLR DATA "H" -DATA "L" SELECT CLR INACTIVE DATA SELECT |          |                                    |            | 20 | 10   | 10   | 7    | 15         | 22          | 5          | 5           |
|       | DATA "H"                                               |          |                                    | M          | 20 | 7    | 16   | 5.5  | 36         | 30          | 4.5        | 4.5         |
| tsu   | -DATA "L"                                              |          |                                    | MIN        | 20 | 5    | 6    | 5.5  | 36         | - 30        | 4.5        | 4.5         |
| tsu   | SELECT                                                 |          |                                    | IVIIN      | 35 | 15   | 20   | 8.5  | 36         | 41          | 9          | 9           |
|       | CLR INACTIVE                                           |          |                                    |            | 20 | 10   | 15   | 7    |            | -           | -          | -           |
| th    | DATA                                                   |          |                                    | MIN        | 0  | 5    | 0    | 2    | 0          | 0           | 0          | 0           |
| LI I  | SELECT                                                 |          |                                    | IVIIIV     | 10 | 5    | - 0  | 0    | 0          | 0           | 0          | 0           |
| tPLH  |                                                        | CLV      | 00                                 | MAX        | 33 | 20 - | -15  | 10   | 60         | 68          | 12.9       | 12.9        |
| tPHL. |                                                        | CLK      | QA. or QB.                         | IVIAA      | 39 | 20   | - 18 | 9.5  | 60         | 68          | 12.9       | 12.9        |
| tPLH  |                                                        | CLV      | 0 1 0                              | MAX        | 25 | 21   | 13   | 10   | 60         | 68          | 13.5       | 14.5        |
| tPHL  |                                                        | CLK      | Q <sub>A</sub> thru Q <sub>H</sub> | IVIAX      | 39 | 21   | 19   | 12   | 60         | 68          | 13.5       | 14.5        |
| tPHL  | 5                                                      | CLR      | QA or QH                           | MAX        | 40 | 21   | 22   | 10.5 | 60         | 69          | 11.2       | 12.2        |
| tPHL. |                                                        | CLR      | Q <sub>A</sub> thru Q <sub>H</sub> | MAX        | 40 | 24   | 22   | 15   | 60         | 69          | 13.9       | 18.6        |
| tPZH  | ->:                                                    | 051 050  | 0 11 0                             | MAX        | 21 | 18   | 16   | 9    | 47         | 48          | 14.9       | 14.9        |
| tPZL  |                                                        | UET, UEZ | Q <sub>A</sub> thru Q <sub>H</sub> | IVIAA      | 30 | 18   | 22   | 11   | 39         | 45          | 14.9       | 14.9        |
| tPHZ  |                                                        | 0E1 0E2  | 0. 45 0                            | MAX        | 20 | 12   | 8    | 7    | 56         | -56 -       | 14.9       | 14.9        |
| tPLZ  |                                                        | UE1, UE2 | Q <sub>A</sub> thru Q <sub>H</sub> | IVIAX      | 15 | 12   | 15   | 6.5  | 47         | -48         | 14.9       | 14.9        |

#### CRYSTAL-CONTROLLED OSCILLATOR

- Crystal-Controlled Oscillator Operation from 1MHz to 20MHz
- Complementary Outputs



#### RECOMMENDED OPERATING CONDITIONS

| TEOO! | ADED OF EINTERING GOT |            | *************************************** |      |
|-------|-----------------------|------------|-----------------------------------------|------|
| -     | PARAMETER             | MAX or MIN | LS                                      | UNIT |
| lcc   |                       | MAX        | 75                                      | mA   |
|       | F' or F'              | MAX        | -24                                     | mA   |
| Іон   | F, F, F/2, F/4        | MAX        | -0.4                                    | mA   |
|       | F' or F'              | MAX        | 24                                      | mA   |
| lor   | F F F/2 F/4           | MAX        | 8                                       | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LS |
|-----------|-------|--------|------------|----|
|           |       | F/2    | MIN        | 10 |
| fmax      |       | F/4    | MAX        | 5  |
|           |       | ANY    | MIN        | 20 |
|           |       | F',F'  | MAX        | 14 |
| tr        |       | ANY    | MAX        | 40 |
|           |       | F',F'  | MAX        | 10 |
| tf        |       | ANY    | MAX        | 20 |



- Hold (Store) Shift Right Shift Left Load Data
- 3-State Outputs Drive Bus Lines Directly
- Can Be Cascaded for n-Bit Word Lengths

### **Logic Diagram**



† I/O ports not shown: B/QB (13), C/QC (6), D/QD (14), E/QE (5), F/QF (15), and G/QG (4).

|       |     |     |     | INF | UTS  |          |        |                  | VO BORD |                 |      |                 |      |         |                  |                  | OUTPUTS |     |
|-------|-----|-----|-----|-----|------|----------|--------|------------------|---------|-----------------|------|-----------------|------|---------|------------------|------------------|---------|-----|
| MODE  | CLR | SEL | ECT |     | TROL | CLK      | SEREAL | A/Q <sub>A</sub> | B/QB    | C/QC            | c/QD | C/QE            | C/QF | C/QG    | H/QH             | Q <sub>A</sub> · | QH'     |     |
|       |     | SR  |     |     |      |          |        |                  |         |                 |      |                 |      |         |                  |                  |         |     |
| Clear | L   | X   | L   | L   | L    | 1        | X      | X                | L       | L               | L    | L               | a L  | an El o | wit[]            | et Lahr          | ) des   | L   |
| Clear | L   | L   | X   | L   | L    | 1        | X      | X                | L       | L               | L    | L               | L    | L       | L                | L                | L       | L   |
| ***** | Н   | L   | L   | L   | L    | X        | X      | X                | QAO     | QAO             | QCO  | QDO             | QE0  | QFO     | QG0              | QHO              | QAO     | QHO |
| Hold  | H   | X   | ×   | L   | L    | L        | X      | X                | QAO     | Q <sub>B0</sub> | QCO  | Q <sub>D0</sub> | QE0  | QF0     | Q <sub>G</sub> 0 | QHO              | QAO     | QHO |
| Shift | Н   | L   | H   | L   | L    | 1        | X      | н                | Н       | QAn             | QBn  | QCn             | Qpn  | QEn     | QFn              | QGn              | Н       | QGn |
| Right | H   | L   | H   | L   | L    | Ť.       | X      | L                | L       | QAn             | QBn  | QCn             | QDn  | QEn     | QFn              | QGn              | L       | QGn |
| Shift | Н   | Н   | L   | L   | L    | <b>†</b> | H      | X                | QBn     | QCn             | QDn  | QEn             | QFn  | QGn     | QHn              | Н                | QBn     | Н   |
| Left  | Н   | H   | L   | L   | L    | 1        | L      | X                | QBn     | QCn             | QDn  | QEn             | QFn  | QGn     | QHn              | L                | QBn     | L   |
| Load  | Н   | Н   | . Н | X   | X    | 1        | X      | X                | a       | b               | C    | d               | е    | f       | q                | h                | а       | h   |

<sup>†</sup> a ...h=the level of the steady-state input at inputs A through H, respectively. This data is loaded into the flip-flops while the flip-flop outputsare isolated from the I/O terminals.

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER |                                    | MAX or MIN | LS   | ALS  | CD74<br>AC | CD74<br>ACT | UNIT |
|-----------|------------------------------------|------------|------|------|------------|-------------|------|
| Icc       |                                    | MAX        | 225  | 40   | 0.16       | 0.16        | mA   |
| 1он       | QA or QH                           | MAX        | -0.5 | -0.4 | -24        | -24         | mA   |
|           | Q <sub>A</sub> thru Q <sub>H</sub> | IVIAA      | -6.5 | -2.6 | -24        | -24         | mA   |
| lor.      | QA' or QH'                         | MAY        | 6    | 8    | 24         | 24          | mA   |
| IUL       | Q <sub>A</sub> thru Q <sub>H</sub> | MAX        | 20   | 24   | 24         | 24          | mA   |

#### SWITCHING CHARACTERISTICS

| P.A         | ARAMETER | INPUT | INPUT OUTPUT                       |        | LS | ALS  | CD74<br>AC | CD74<br>ACT |
|-------------|----------|-------|------------------------------------|--------|----|------|------------|-------------|
| fmax        |          |       | -1.0                               | MIN    | 25 | 17   | 95         | 90          |
| tw          | CLK      |       |                                    | MIN    | 30 | 16.5 | 5.2        | 5.5         |
|             | CLR      |       |                                    | IVITIV | 20 | -    | 5          | 5           |
| tsu         | DATA H   |       |                                    |        | 20 | 16   | 4.5        | 4.5         |
|             | DATA L   |       |                                    | 14141  | 20 | 6    | 4.5        | 4.5         |
|             | SELECT   |       |                                    | MIN    |    | 20   | 9          | 9           |
|             | CLR      |       |                                    | -0     |    | 20   | 5.5        | 5.5         |
| th          | SELECT   |       |                                    | MIN    |    | 0    | 0          | 0           |
|             | DATA     |       |                                    | MIN    | 0  | 0    | 0          | 0           |
| tPLH        |          | CLK   |                                    | 1444   | 33 | 15   | 12.9       | 12.9        |
| tPHL        |          | CLK   | Q <sup>A,</sup> or Q <sup>B,</sup> | MAX    | 39 | 18   | 12.9       | 12.9        |
| tPLH .      |          | CLK   | 0 1 0                              | MAX    | 25 | 13   | 13.5       | 14.5        |
| <b>TPHL</b> |          | CEK   | Q <sub>A</sub> thru Q <sub>H</sub> | MAX    | 39 | 19   | 13.5       | 14.5        |
| tPZH        |          | 0E1   |                                    | MAN    | 21 | 16   | 14.9       | 14.9        |
| tPZL.       |          | UEI   | Q <sub>A</sub> thru Q <sub>H</sub> | MAX    | 30 | 22   | 14.9       | 14.9        |
| tPHZ        |          | 0E1   | 0 11 0                             | EARY   | 20 | 8    | 14.9       | 14.9        |
| tPLZ        |          | UEI   | Q <sub>A</sub> thru Q <sub>H</sub> | MAX    | 15 | 15   | 14.9       | 14.9        |
| PZH         |          | 050   |                                    | MANY   | 21 | 16   | 14.9       | 14.9        |
| tPZL        | (9)      | 0E2   | Q <sub>A</sub> thru Q <sub>H</sub> | MAX    | 30 | 22   | 14.9       | 14.9        |
| tPHZ        | SA       | 0E2   | 0 1 0                              | MANY   | 20 | 8    | 14.9       | 14.9        |
| tPLZ        |          | UE2   | Q <sub>A</sub> thru Q <sub>H</sub> | MAX    | 15 | 15   | 14.9       | 14.9        |

#### **8-LINE TO 3-LINE PRIORITY ENCODER**

- 3-State Outputs Drive Bus Lines Directly
- Encodes 8 Data Lines to 3-Line Binary (Octal)



|    |   |   | IN | PUT | S |   |   |   |    | 0  | UTPL | JTS |    |
|----|---|---|----|-----|---|---|---|---|----|----|------|-----|----|
| E1 | 0 | 1 | 2  | 3   | 4 | 5 | 6 | 7 | A2 | A1 | A0   | GS  | E0 |
| Н  | X | X | X  | X   | X | X | X | X | Z  | Z  | Z    | H   | Н  |
| L  | H | H | H  | H   | H | H | Н | H | Z  | Z  | Z    | Н   | L  |
| L  | X | X | X  | X   | X | X | X | L | L  | L  | L    | L   | H  |
| L  | X | X | X  | X   | X | X | L | H | L  | L  | H    | L   | Н  |
| L  | X | X | X  | X   | X | L | H | H | L  | H  | L    | L   | H  |
| L  | X | X | X  | X   | L | H | H | H | L  | H  | H    | L   | H  |
| L  | X | X | X  | L   | H | H | Н | H | H  | L  | L    | L   | H  |
| L  | X | X | L  | Н   | Н | Н | Н | H | H  | L  | H    | L   | Н  |
| L  | X | L | Н  | Н   | H | Н | H | H | H  | Н  | L    | L   | H  |
| L  | L | Н | Н  | Н   | Н | Н | H | Н | H  | H  | Н    | L   | Н  |

#### RECOMMENDED OPERATING CONDITIONS PARAMETER MAX or MIN LS UNIT MAX 25 mA MAX A0, A1, A2 -2.6 mA Іон MAX EO, ES -0.4 mA A0, A1, A2 MAX 24 mA EO, ES MAX mA SWITCHING CHARACTERISTICS PARAMETER OUTPUT LS INPUT MAX or MIN tPLH MAX 35 1 to 7 A0, A1, A2 tPHL MAX 35 tPLH MAX 18 0 to 7 E0 tPHL MAX 40 tPLH MAX 55 0 to 7 GS tPHL. MAX 21 UNIT: ns



#### **FUNCTION TABLE (SN74)**

| JTH |  |
|-----|--|

|        |    | - 1 | NPUTS | 6    |         |    |                 |                 |
|--------|----|-----|-------|------|---------|----|-----------------|-----------------|
| SELECT |    | DC  |       | UTPI | OUTPUTS |    |                 |                 |
| S2     | S1 | S0  |       | G1   | G2      | G3 | W               | Υ               |
| X      | X  | X   | X     | H    | X       | X  | Z               | Z               |
| X      | X  | X   | X     | X    | Н       | X  | Z               | Z               |
| X      | X  | X   | X     | X    | X       | L  | Z               | Z               |
| L      | L  | L   | L     | L    | L       | H  | D0              | D0              |
| L      | L  | L   | H     | L    | L       | Н  | D0n             | D0n             |
| L      | L  | Н   | L     | L    | L       | H  | D1              | D1              |
| L      | L  | H   | H     | L    | L       | Н  | D1 <sub>n</sub> | D1 <sub>n</sub> |
| L      | H  | L   | L     | L    | L       | H  | D2              | D2              |
| L      | H  | L.  | H     | L    | L       | H  | D2 <sub>n</sub> | D2n             |
| L      | H  | H   | L     | L    | L       | H  | D3              | D3              |
| L      | Н  | H   | H     | L    | L       | H  | D3 <sub>n</sub> | D3 <sub>n</sub> |
| H      | L  | L   | L     | L    | L       | H  | D4              | D4              |
| H      | L  | L   | H     | L    | L       | H  | D4 <sub>n</sub> | D4 <sub>n</sub> |
| H      | L  | H   | L     | L    | L       | H  | D5              | D5              |
| Н      | L  | H   | H     | L    | L       | H  | D5 <sub>n</sub> | D5 <sub>n</sub> |
| Н      | H  | L   | L     | L    | L       | H  | D6              | D6              |
| Н      | H  | L   | H     | L    | L       | H  | D6 <sub>n</sub> | D6 <sub>n</sub> |
| Н      | H  | H   | L     | L    | L       | H  | D7              | D7              |
| Н      | Н  | Н   | Н     | L    | L       | Н  | D7n             | D7 <sub>n</sub> |

|    |           |         | INPUTS         |      |     |        |                 |                 |
|----|-----------|---------|----------------|------|-----|--------|-----------------|-----------------|
| SE | LECT (NOT | E 3)    | ENABLE<br>DATA | оит  |     | ARRIVE | OUT             | PUTS            |
| S2 | S1        | S0      | Ē              | OE1  | OE2 | OE3    | Ÿ               | Y               |
| X  | X         | X       | X              | Н    | ×   | Х      | Z               | Z               |
| Х  | X         | Х       | X              | X    | Н   | ×      | Z               | Z               |
| Х  | X         | X       | ×              | X    | ×   | L      | Z               | Z               |
| L  | III FIRE  | ill bib | L              | L    | L   | Н      | D0              | D0              |
| L  | L         | L       | Н              | L    | L   | Н      | D0n             | D0n             |
| L  | L         | Н       | L              | L    | L   | Н      | D1              | D1              |
| L  | L         | Н       | н              | ndn: | L   | н      | D1n             | D1 <sub>r</sub> |
| L  | Н         | L       | L              | L    | L   | Н      | D2              | D2              |
| L  | Н         | L       | Н              | L    | L   | Н      | D2 <sub>n</sub> | D2 <sub>n</sub> |
| L  | Н         | Н       | L              | L    | L   | н      | D3              | D3              |
| L  | Н         | Н       | Н              | L    | L   | Н      | D3 <sub>n</sub> | D3 <sub>r</sub> |
| Н  | L         | L       | L              | L    | L   | Н      | D4              | D4              |
| Н  | L         | L       | Н              | L    | L   | Н      | D4n             | D4r             |
| Н  | L         | Н       | L              | L    | L   | н      | D5              | D5              |
| Н  | L         | Н       | Н              | L    | L   | Н      | D5 <sub>n</sub> | DnS             |
| н  | Н         | L       | L              | L    | L   | Н      | D6              | D6              |
|    |           |         |                |      |     | - 11   | =               | -               |

† This column shows the input address setup with LE low.

RECOMMENDED OPERATING CONDITIONS

|           |            |      | -          | _          |             | _    |
|-----------|------------|------|------------|------------|-------------|------|
| PARAMETER | MAX or MIN | LS   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | UNIT |
| Icc       | MAX        | 46   | 0.08       | 0.16       | 0.16        | mA   |
| Іон В     | MAX        | -2.6 | -6         | -6         | -4          | mA   |
| lou       | MAX        | 24   | 6          | 6          | 4           | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT      | OUTPUT    | MAX or MIN | LS | SN74<br>HC | CD74<br>HC | SN74<br>HCT |
|-----------|------------|-----------|------------|----|------------|------------|-------------|
| tsu       |            |           | MAX        | 15 | 19         | 15         | 15          |
| th        |            |           | MAX        | 15 | 5          | 14         | 14          |
| tPLH      | D0.45 D7   | Υ         | MAX        | 36 | 59         | 63         | 71          |
| tPHL .    | D0 thru D7 | 4         | MAX        | 35 | 59         | 63         | 71          |
| tPLH .    | D0 45 D7   | W         | MAX        | 27 | 59         | 63         | 71          |
| tPHL .    | D0 thru D7 | (CD74: Y) | MAX        | 44 | 59         | 63         | 71          |
| tPLH      | DC         | γ         | MAX        | 42 | 68         | 75         | 81          |
| tphl.     | (CD74: E)  | 1         | MAX        | 39 | 68         | 75         | 81          |
| tPLH      | DC         | W         | MAX        | 33 | 68         | 75         | 81          |
| tPHL      | (CD74: E)  | (CD74: Y) | MAX        | 50 | 68         | 75         | 81          |



# FUNCTION TABLE (SN74)

|    |        |    | INPUTS |        |         |    |                                 |
|----|--------|----|--------|--------|---------|----|---------------------------------|
| SE | SELECT |    | CLK    | OUTPUT |         |    | OUTPUTS                         |
| C2 | C1     | CO |        | G1     | G2      | G3 | WY                              |
| X  | X      | X  | X      | Н      | X       | X  | Z Z                             |
| X  | X      | X  | X      | X      | H       | X  | Z Z                             |
| X  | X      | X  | X<br>↑ | X      | X       | L  | Z Z                             |
| L  | L      | L  | 1      | L      | L       | Н  | D0 D0                           |
| L  | L      | L  | HorL   | L      | L       | H  | Don Don                         |
| L  | L      | H  | 1      | L      | L       | H  | D1 D1                           |
| L  | L      | Н  | HorL   | L      | L       | H  | D1 <sub>n</sub> D1 <sub>n</sub> |
| L  | H      | L  | 1      | L      | L       | H  | D2 D2                           |
| L  | H      | L  | HorL   | L      | an Line | H  | D2 <sub>n</sub> D2 <sub>n</sub> |
| L  | H      | H  | 1      | L      | L       | H  | D3 D3                           |
| L  | H      | H  | HorL   | L      | L       | H  | D3 <sub>n</sub> D3 <sub>n</sub> |
| Н  | L      | L  | 1      | L      | L       | H  | D4 D4                           |
| H  | L      | L  | HorL   | L      | L       | H  | D4n D4n                         |
| Н  | L      | H  | 1      | L      | L       | Н  | D5 D5                           |
| H  | L      | H  | HorL   | L      | L.      | Н  | D5 <sub>n</sub> D5 <sub>n</sub> |
| H  | H      | L  | 1      | L      | L       | H  | D6 D6                           |
| H  | H      | L  | HorL   | L      | L       | H  | D6 <sub>n</sub> D6 <sub>n</sub> |
| H  | H      | Н  | 1      | L      | L       | Н  | D7 D7                           |
| Н  | H      | Н  | HorL   | L      | L       | H  | D7 <sub>n</sub> D7 <sub>n</sub> |

NOTIES: H= High Voltage Level (Steady State), L = Low Voltage Level (Steady State),  $\tilde{T}$  = Transition form Low to High Level, X = Dornt Care, Z = High Impedance State (Off State),  $Do_1$ , ...  $Dr_1$  = the level of steady-state inputs D0 through D7, respectively, before the most recent low-to-high transition of data control.

† This column shows the input address setup with LE low.

# TRUTH TABLE

|      |          |      | INPUT  | S      |          |     | 0.000            |                 |  |
|------|----------|------|--------|--------|----------|-----|------------------|-----------------|--|
| SELI | ECT (NOT | E 3) | сьоск  | OUTP   | UT ENABL | .ES | OUTPUTS          |                 |  |
| 52   | S1       | S0   | CP     | OE1    | OE2      | OE3 | Ÿ                | Υ               |  |
| X    | Х        | Х    | ×      | Н      | X        | Х   | Z                | Z               |  |
| X    | Х        | X    | ×      | Х      | н        | ×   | Z                | Z               |  |
| X    | X        | X    | ×      | Х      | ×        | L   | Z                | Z               |  |
| L    | L        | L    | 1      | L      | L        | Н   | D0               | D0              |  |
| L    | L        | L    | HorL   | L      | L        | Н   | D0n              | D0 <sub>f</sub> |  |
| L    | L        | H    | 1      | L      | L        | H   | D1               | D1              |  |
| L    | L        | Н    | H or L | L      | L        | Н   | D1 <sub>n</sub>  | D1              |  |
| L    | Н        | L    | Ť      | L      | L        | Н   | D2               | D2              |  |
| L    | Н        | L    | H or L | L      | L        | Н   | D2 <sub>n</sub>  | D2              |  |
| L    | Н        | Н    | 2510   | anyae. | L        | Н   | D3               | DS              |  |
| L    | Н        | Н    | H or L | JH L   | L        | Н   | D3 <sub>n</sub>  | D3              |  |
| н    | LAm      | L    | 0110   | 30 L   | IS L     | Н   | D4               | D4              |  |
| Н    | L        | L    | HorL   | ō L    | L        | Н   | D <sub>4</sub> n | D4              |  |
| Н    | L        | Н    | 1      | ° L    | L        | Н   | D5               | DS              |  |
| Н    | L        | Н    | H or L | L      | L        | Н   | D5 <sub>n</sub>  | D5              |  |
| Н    | Н        | L    | 1      | L      | L        | Н , | D6               | De              |  |
| Н    | н        | L    | HorL   | L      | L        | Н   | D6n              | D6              |  |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | SN74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------|------------|-------------|------|
| lcc       | MAX        | 46   | 0.08       | 0.16        | mA   |
| Іон       | MAX        | -2.6 | -6         | -4          | mA   |
| lou       | MAX        | 24   | 6          | 4           | mA   |

# SWITCHING CHARACTERISTICS

| OTTITO OTTA | IIAGTEMOTIO |           |            |    | 1          |             |
|-------------|-------------|-----------|------------|----|------------|-------------|
| PARAMETER   | INPUT       | OUTPUT    | MAX or MIN | LS | SN74<br>HC | CD74<br>HCT |
| tsu         | D0 th       | ru D7     | MIN        | 15 | 19         | 11          |
| th          | D0 th       | ru D7     | MIN        | 0  | 5          | 14          |
| tPLH .      | CLK         | Υ         | MAX        | 27 | 64         | 77          |
| tPHL .      | CLK         | Y.        | WAX        | 50 | 64         | 77          |
| tPLH        | OLK         | W         | MAN        | 36 | 64         | 77          |
| tphl .      | CLK         | (CD74: Y) | MAX        | 27 | 64         | 77          |
| tPLH .      | 00 01 00    | Y         | MAX        | 45 | 71         | 89          |
| tphl .      | S0, S1, S2  | 4         | IVIAX      | 48 | 71         | 89          |
| tPLH        | 00 04 00    | W         | MANY       | 54 | 71         | 89          |
| tPHL .      | S0, S1, S2  | (CD74: Y) | MAX        | 45 | 71         | 89          |



RECOMMENDED OPERATING CONDITIONS

|           | 511-10000000000000000000000000000000000 |      |      | _          | _          | _           |      |
|-----------|-----------------------------------------|------|------|------------|------------|-------------|------|
| PARAMETER | MAX or MIN                              | ΠL   | LS   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
| lcc so    | MAX                                     | 85   | 24   | 0.08       | 0.16       | 0.16        | mA   |
| Тон       | MAX                                     | -5.2 | -2.6 | -6         | -6         | -4          | mA   |
| lou       | MAX                                     | 32   | 24   | 6          | 6          | 4           | mA   |
|           |                                         |      |      |            |            |             |      |

SWITCHING CHARACTERISTICS

| SWITCHING CHAR |       |        |            |     |    |            |            |             |
|----------------|-------|--------|------------|-----|----|------------|------------|-------------|
| PARAMETER      | INPUT | OUTPUT | MAX or MIN | TTL | LS | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
| tPLH .         |       | - v    | MAX        | 16  | 15 | 24         | 32         | 38          |
| tPHL .         | A     | 1      | MAX        | 22  | 18 | 24         | 32         | 38          |
| tPZH           | G     | V      | MAX        | 35  | 35 | 48         | 45         | 53          |
| tPZL           | G     | Y      | MAX        | 37  | 45 | 48         | 45         | 53          |
| tPHZ           | -     | v      | MAX        | 11  | 32 | 48         | 45         | 53          |
| tPLZ           | G     | Y      | MAX        | 27  | 35 | 48         | 45         | 53          |

# HEX BUS DRIVERS HEX BUFFERS/LINE DRIVERS 3-STATE



NOTE: Inverter not included in HC/HCT365.

FIGURE 1. LOGIC DIAGRAM FOR THE HC/HCT365 AND HC366 (OUTPUTS FOR HC/HCT365 ARE COMPLEMENTS OF THOSE SHOWN, i.e., 1Y, 2Y, ETC.)

# **FUNCTION TABLE**

|    | INPUTS |   | OUTPUT |
|----|--------|---|--------|
| G1 | G2     | A | Y      |
| L  | L      | L | Н      |
| L  | L      | H | L      |
| X  | H      | X | Z      |
| Н  | X      | X | Z      |

NOTES: H = High Voltage Level L = Low Voltage Level X = Don't Care

Z = High Ompedance (OFF) State

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | SN74<br>HC | CD74<br>HC | UNIT |
|-----------|------------|------|------|------------|------------|------|
| Icc       | MAX        | 77   | 21   | 0.08       | 160        | mA   |
| Іон       | MAX        | -5.2 | -2.6 | -6         | -6         | mA   |
| loL       | MAX        | 32   | 24   | 6          | 6          | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT      | OUTPUT          | MAX or MIN | TTL | LS | SN74<br>HC | CD74<br>HC |
|-----------|------------|-----------------|------------|-----|----|------------|------------|
| tPLH III  | A          | Mary You Market | MAX        | 17  | 15 | 24         | 33         |
| tPHL .    | A          | (CD74: Y)       | MAX        | 16  | 18 | 24         | 33         |
| tPZH      | G          | Y               | MAX        | 35  | 35 | 48         | 45         |
| tPZL E    | (CD74: OE) | (CD74: Y)       | MAX        | 37  | 45 | 48         | 45         |
| PHZ       | G          | Y               | MAX        | 11  | 32 | 48         | 45         |
| tPLZ III  | (CD74: OE) | (CD74: Y)       | MAX        | 27  | 35 | 48         | 45         |

# **HEX BUS DRIVERS**



# To Three Other Channels

To One Other Channel

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | AHC  | AHCT | LV<br>3V | LV<br>5V | UNIT |
|-----------|------------|------|------|------------|------------|-------------|------|------|----------|----------|------|
| Icc       | MAX        | 85   | 24   | 0.08       | 0.16       | 0.16        | 0.04 | 0.04 | - 3      | 0.02     | mA   |
| Іон       | MAX        | -5.2 | -2.6 | -6         | -6         | -4          | -8   | -8   | -8       | -16      | mA   |
| lou       | MAX        | 32   | 24   | 6          | 6          | 4           | 8    | 8    | 8        | 16       | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | TTL | LS | SN74<br>HC | CD74<br>HC | CD74<br>HCT | AHC  | AHCT | LV<br>3V | LV<br>5V |
|-----------|-------|--------|------------|-----|----|------------|------------|-------------|------|------|----------|----------|
| tPLH .    |       | V      | MAX        | 16  | 16 | 24         | 32         | 38          | 9    | 6.5  | 13.5     | 9        |
| tphl.     | A     | YE o   | MAX        | 22  | 22 | 24         | 32         | 38          | 9    | 6.5  | 13.5     | 9        |
| tPZH      | G     | .,     | MAX        | 35  | 35 | 48         | 45         | 53          | 10.5 | 9.5  | 16       | 10.5     |
| tPZL      | G     | Y      | MAX        | 47  | 40 | 48         | 45         | 53          | 10.5 | 8.5  | 16       | 10.5     |
| tPHZ      | G     | v      | MAX        | 11  | 30 | 48         | 45         | 53          | 10.5 | 9.5  | 15.5     | 10.5     |
| tPLZ      | G     | Y      | MAX        | 27  | 35 | 48         | 45         | 53          | 10.5 | 8.5  | 15.5     | 10.5     |

# 368

# Logic Diagram

# **HEX BUS DRIVERS**



# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------|------|------------|------------|-------------|------|
| Icc       | MAX        | 77   | 21   | 0.08       | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -5.2 | -2.6 | -6         | -6         | -4          | mA   |
| lou       | MAX        | 32   | 24   | 6          | 6          | 4           | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT   | OUTPUT | MAX or MIN | TTL | LS | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
|-----------|---------|--------|------------|-----|----|------------|------------|-------------|
| tPLH C    | THE THE | 2 KAM  | MAX        | 17  | 15 | 24         | 32         | 45          |
| tPHL .    | А       | 200    | MAX        | 16  | 18 | 24         | 32         | 45          |
| tPZH      | G       | V      | MAX        | 35  | 35 | 48         | 45         | 53          |
| tPZL      | G       | AAM.   | MAX        | 37  | 45 | 48         | 45         | 53          |
| tPHZ      | =       |        | MAX        | 11  | 32 | 48         | 45         | 53          |
| tPLZ      | G       | Y      | MAX        | 27  | 35 | 48         | 45         | 53          |

# **OCTAL D-TYPE LATCHES**

- 3-State Bus-Driving True Outputs
- Buffered Control Inputs
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)

# **FUNCTION TABLE**

| OUTPUT  | INPL | JTS | OUTPUT |
|---------|------|-----|--------|
| CONTROL | LE   | D   | Q      |
| L       | Н    | Н   | Н      |
| L       | H    | L   | L      |
| L       | L    | X   | QO     |
| H       | X    | X   | Z      |

# Logic Diagram



To Seven Other Channels

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | S    | ALS  | AS  | F  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT | LVTH | UNIT |
|-----------|------------|------|------|------|-----|----|------------|------------|-------------|-------------|-------------|-----|------|------|
| Icc       | MAX        | 40   | 190  | 27   | 100 | 55 | 0.08       | 0.16       | 0.08        | 0.16        | 60          | 30  | 5    | mA   |
| Іон       | MAX        | -2.6 | -6.5 | -2.6 | -15 | -3 | -6         | -6         | -6          | -6          | -15         | -32 | -32  | mA   |
| lor       | MAX        | 24   | 20   | 24   | 48  | 24 | 6          | 6          | 6           | 6           | 64          | 64  | 64   | mA   |

| PARAMETER | MAX or MIN | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 | SN74<br>ACT | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | SV<br>TVC | ALVCH<br>3V | UNIT |
|-----------|------------|----------|------------|------------|-----------|-------------|-------------|------|------|----------|----------|-----------|-------------|------|
| Icc       | MAX        | 0.08     | 0.04       | 0.16       | 0.08      | 0.04        | 0.16        | 0.04 | 0.04 | 200      | 0.02     | 0.01      | 0.02        | mA   |
| Іон       | MAX        | -24      | -24        | -24        | -24       | -24         | -24         | -8   | -8   | -8       | -16      | -24       | -24         | mA   |
| lou       | MAX        | 24       | 24         | 24         | 24        | 24          | 24          | 8    | 8    | 8        | 16       | 24        | 24          | mA   |

#### SWITCHING CHARACTERISTICS

| PAF    | AMETER | INPUT | ОИТРИТ | MAX or MIN | LS | S   | ALS | AS    | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT | LVTF |
|--------|--------|-------|--------|------------|----|-----|-----|-------|-----|------------|------------|-------------|-------------|-------------|-----|------|
| tw     | High   | 20 24 | 25 05  | MIN        | 15 | 6   | 10  | 4.5   | 6   | 20         | 24         | 25          | 24          | 7.5         | 3.3 | 3    |
|        | Low    |       |        | MIN        | 15 | 7.3 | -   | 105.1 | -   | - 3        |            |             | -           | 12.0        |     | -    |
| tsu    | 40     |       |        | MIN        | 5  | 0   | 10  | 2     | 2   | 13         | 15         | 13          | 20          | 2           | 1.9 | 1.1  |
| th     |        |       |        | MIN        | 20 | 10  | 7   | 3     | 3   | 12         | 5          | 10          | 15          | 5.5         | 1   | 1.4  |
| tPLH . | 100    | D.    | 0      | MAX        | 18 | 12  | 12  | 6     | 8   | 38         | 45         | 44          | 48          | 9.3         | 5.9 | 3.9  |
| tPHL.  |        | U     | u      | MAX        | 18 | 12  | 16  | 6     | - 6 | 38         | 45         | 44          | 48          | 9.5         | 6.2 | 3.9  |
| tPLH . | 100    | LE    | 0      | MAX        | 30 | 14  | 22  | 11.5  | 13  | 44         | 53         | 44          | 53          | 9.3         | 6.6 | 4.2  |
| tPHL . | 1000   | LE    | u      | MAX        | 30 | 18  | 23  | 7.5   | - 8 | 44         | 53         | 44          | 53          | 8.8         | 7.2 | 4.2  |
| tPZH   |        | ŌĒ    | 0      | MAX        | 28 | 15  | 18  | 6.5   | 12  | 38         | 45         | 44          | 53          | 11.8        | 5.2 | 4.8  |
| tPZL   |        | UE    | u      | MAX        | 36 | 18  | 20  | 9.5   | 8.5 | 38         | 45         | 44          | 53          | 12          | 6.7 | 4.8  |
| tPHZ   |        | ŌĒ    | 0      | MAX        | 25 | 9   | 10  | 6.5   | 7.5 | 38         | 45         | 44          | 53          | 7           | 6.9 | 4.6  |
| tPLZ   |        | UE    | u      | MAX        | 20 | 12  | 12  | 7     | 6   | 38         | 45         | 44          | 53          | 7.4         | 6.5 | 4.5  |

| PAR    | RAMETER | INPUT     | OUTPUT | MAX or MIN | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 | SN74<br>ACT | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | LVC<br>3V | ALVC: |
|--------|---------|-----------|--------|------------|----------|------------|------------|-----------|-------------|-------------|------|------|----------|----------|-----------|-------|
| tw     | High    | 27 1 12   | 1 10   | MIN        | 4        | 4.5        | 4          | 5         | 8           | 4           | 5    | 6.5  | 5        | 5        | 3.3       | 3.3   |
| 1.0    | Low     |           |        | MIN        |          |            | 4          | MAN       | -           | 4           |      | -    | -        | 2 33     | ч.        | -     |
| tsu    |         |           |        | MIN        | 3.5      | 4.5        | 2          | 3.5       | 8           | 2           | 4    | 1.5  | 4        | 4        | 2         | 0.5   |
| th     | 5 1     |           |        | MIN        | 2        | 1          | 3          | 3.5       | 1           | 3           | 1    | 3.5  | 1        | 1        | 1.5       | 1.2   |
| tPLH   |         | D         |        | MAX        | 10.3     | 10.5       | 8.5        | 11.8      | 11.5        | 10.4        | 10.5 | 10.5 | 17       | 10.5     | 6.8       | 3.6   |
| tPHL   | 611     | CHI DE LY | 0 0    | MAX        | 8.4      | 10.5       | 8.5        | 10        | 11.5        | 10.4        | 10.5 | 10.5 | 17       | 10.5     | 6.8       | 3.6   |
| tPLH . |         | LE        | Q      | MAX        | 11.3     | 10.5       | 12         | 13        | 11.5        | 12.5        | 10.5 | 14.5 | 16.5     | 10.5     | 7.6       | 3.3   |
| tPHL . |         | all real  | u.     | MAX        | 10.2     | 10.5       | 12         | 12.2      | 11.5        | 12.5        | 10.5 | 14.5 | 16.5     | 10.5     | 7.6       | 3.3   |
| tPZH   | 41      | ŌĒ        | 0      | MAX        | 10.8     | 9.5        | 10.5       | 12.5      | 10.5        | 13.5        | 11.5 | 13.5 | 17       | 11.5     | 7.7       | 4.8   |
| tPZL   | 91      | UE        | u u    | MAX        | 9.7      | 9.5        | 10.5       | 12        | 10.5        | 13.5        | 11.5 | 13.5 | 17       | 11.5     | 7.7       | 4.8   |
| tPHZ   |         | ŌĒ        | 0      | MAX        | 11.1     | 12.5       | 11.5       | 12.2      | 12.5        | 12.5        | 10.5 | 12   | 15       | 10.5     | 7         | 4.4   |
| tPLZ   |         | UE        | u      | MAX        | 8.7      | 10         | 11.5       | 10.1      | 10          | 12.5        | 10.5 | 12   | 15       | 10.5     | 7         | 4.4   |

UNIT fmax : MHz, other : ns

 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



#### **FUNCTION TABLE**

| OUTPUT  | INPL | JTS | OUTPUT |
|---------|------|-----|--------|
| CONTROL | CLK  | D   | Q      |
| L       | 1    | Н   | H      |
| L       | 1    | L   | L      |
| L       | L    | ×   | Q0     |
| H       | X    | X   | Z      |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | S    | ALS  | AS  | F  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT | LVTH<br>3V | UNIT |
|-----------|------------|------|------|------|-----|----|------------|------------|-------------|-------------|-------------|-----|------------|------|
| Icc       | MAX        | 40   | 160  | 31   | 128 | 86 | 0.08       | 0.16       | 0.08        | 0.16        | 60          | 30  | 5          | mA   |
| Іон       | MAX        | -2.6 | -6.5 | -2.6 | -15 | -3 | -6         | -6         | -6          | -6          | -15         | -32 | -32        | mA   |
| lou.      | MAX        | 24   | 20   | 24   | 48  | 24 | 6          | 6          | 6           | 6           | 64          | 64  | 64         | mA   |

| PARAMETER | MAX or MIN | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 | SN74<br>ACT | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | LVC<br>3V | ALVCH<br>3V | UNIT |
|-----------|------------|----------|------------|------------|-----------|-------------|-------------|------|------|----------|----------|-----------|-------------|------|
| lcc       | MAX        | 0.08     | 0.04       | 0.16       | 0.08      | 0.04        | 0.16        | 0.04 | 0.04 | -        | 0.02     | 0.01      | 0.01        | mA   |
| Іон       | MAX        | -24      | -24        | -24        | -24       | -24         | -24         | -8   | -8   | -8       | -16      | -24       | -24         | mA   |
| lou       | MAX        | 24       | 24         | 24         | 24        | 24          | 24          | 8    | 8    | 8        | 16       | 24        | 24          | mA   |

# SWITCHING CHARACTERISTICS

| PAF  | RAMETER | INPUT | OUTPUT  | MAX or MIN | LS | S   | ALS | AS  | F    | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT | LVTH<br>3V |
|------|---------|-------|---------|------------|----|-----|-----|-----|------|------------|------------|-------------|-------------|-------------|-----|------------|
| fmax |         |       |         | MIN        | 35 | 75  | 35  | 125 | 70   | 24         | 20         | 25          | 20          | 70          | 150 | 150        |
| tw   | High    |       |         | MIN        | 15 | 6   | 14  | 4   | 7    | 20         | 24         | 20          | 24          | 7           | 3.3 | 3.3        |
| -    | Low     |       |         | MIN        | 15 | 7.3 | 14  | 3   | 6    | 20         | 24         | 20          | 24          | 9703        | 3.3 | 3.3        |
| tsu  | 11 2    |       |         | MIN        | 20 | 5   | 10  | 2   | 2    | 25         | 18         | 25          | 18          | 6.5         | 1.9 | 1.5        |
| th   | 1 1 00  | 10 01 |         | MIN        | 0  | 2   | 0   | 2   | 2    | 5          | - 5        | 10          | 5           | 0           | 2.1 | 0.8        |
| tPLH |         | CLK   | 0       | MAX        | 28 | 15  | 12  | 8   | 10   | 45         | 50         | 45          | 50          | 10.6        | 6.2 | 4.5        |
| tPHL |         | CLK   | 5 U S.  | MAX        | 28 | 17  | 16  | 9   | 10   | 45         | 50         | 45          | 50          | 10          | 7.1 | 4.2        |
| tPZH | 0.6     | OF    | 0       | MAX        | 26 | 15  | 17  | 6   | 12.5 | 38         | 45         | 38          | 42          | 12.3        | 5.2 | 4.7        |
| tPZL | 7.4     | OE 4  | u u     | MAX        | 28 | 18  | 18  | 10  | 8.5  | 38         | 45         | 38          | 42          | 12.7        | 6.7 | 4.7        |
| tPHZ | 1.6     | OF.   | 88 0.88 | MAX        | 28 | 9   | 10  | 6   | 8    | 38         | 41         | 38          | 45          | 6.8         | 6.7 | 4.6        |
| tPLZ |         | OE H  | u u     | MAX        | 20 | 12  | 18  | 6   | 6.5  | 38         | 41         | 38          | 45          | 6.8         | 6.5 | 4.5        |

| PAF  | RAMETER    | INPUT       | OU   | TPUT   | MAX or MIN | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 | SN74<br>ACT | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | 3V  | ALVCH<br>3V |
|------|------------|-------------|------|--------|------------|----------|------------|------------|-----------|-------------|-------------|------|------|----------|----------|-----|-------------|
| fmax | VIII VE    | T WE        |      | FRA    | MIN        | 95       | 100        | 12.5       | 55        | 90          | 110         | 75   | 75   | 50       | 75       | 100 | 150         |
| tw   | High       |             |      |        | MIN        | 5        | 4.5        | 4          | 9         | 5           | 4.5         | 5    | 6.5  | 5.5      | 5        | 3.3 | 3.3         |
|      | Low        |             |      |        | MIN        | 5        | 4.5        | 4          | 9         | 5           | 4.5         | 5    | 6.5  | 5.5      | 5        | 3.3 | 3.3         |
| tsu  | 8 8        |             |      |        | MIN        | 2.5      | 4.5        | 2          | 3         | 5.5         | 2           | 3    | 2.5  | 4.5      | 3        | 2   | 1.8         |
| th   | 21111      | 1 25        |      |        | MIN        | 3.5      | 1.5        | 2          | 5.5       | 1.5         | 3           | 2    | 2.5  | 2        | 2        | 1.5 | 0.5         |
| tPLH | 8.9 8.01   | CLK         | 10.5 | 03.01  | MAX        | 10.2     | 10.5       | 10.8       | 12.4      | 11.5        | 11.2        | 11.5 | 11.5 | 18.5     | 11.5     | 7   | 3.6         |
| TPHL | 88 200     | CLK         | 10.5 | KIT    | MAX        | 10.1     | 10         | 10.8       | 13        | 11          | 11.2        | 11.5 | 11.5 | 18.5     | 11.5     | 7   | 3.6         |
| tPZH | 8.5   5.01 | ŌĒ          | 101  | 0      | MAX        | 9.1      | 9.5        | 14.5       | 12.3      | 10.5        | 14.5        | 11   | 12.5 | 16.5     | 11       | 7.5 | 5.2         |
| tPZL | 11.6 7.6   | 231 231     |      | 2.51   | MAX        | 9.4      | 9.5        | 14.5       | 12.3      | 10.5        | 14.5        | 11   | 12.5 | 16.5     | 11       | 7.5 | 5.2         |
| tPHZ | 115 177    | 0E 281 2.17 | 217  | 0.2.87 | MAX        | 11.2     | 12.5       | 14.5       | 13.2      | 12.5        | 14.5        | 10   | 12   | 16       | 10       | 6.5 | 4.5         |
| tPLZ | TT BET     |             |      | U.S.   | MAX        | 9.2      | 10         | 14.5       | 10.8      | 10          | 14.5        | 10   | 12   | 16       | 10       | 6.5 | 4.5         |

# 375

# 4-BIT BISTABLE LATCHES

• Complementary Outputs  $(0, \overline{0})$ 

# Logic Diagram



# **FUNCTION TABLE**

| INP | UTS | OUT | PUTS           |
|-----|-----|-----|----------------|
| D   | С   | (   | 3              |
| L   | H   | L   | Н              |
| H   | H   | H   | L              |
| X   | L   | Qo  | Q <sub>0</sub> |

ogic Diagram

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | SN74<br>HC | UNIT |
|-----------|------------|------|------------|------|
| Icc       | MAX        | 12   | 0.04       | mA   |
| Гон       | MAX        | -0.4 | -4         | mA   |
| lou       | MAX        | 8    | 4          | mA   |

Få

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LS | SN74 |
|-----------|-------|--------|------------|----|------|
| tw        |       |        | MIN        | 20 | 20   |
| tsu       |       |        | MIN        | 20 | 25   |
| th        |       |        | MIN        | 0  | 5    |
| tplH      | D     | Q      | MAX        | 27 | 30   |
| tphL      | D     | u      | MAX        | 17 | 30   |
| tPLH .    | D     | ā      | MAX        | 20 | 30   |
| tphL .    | U     | u      | MAX        | 15 | 30   |
| tPLH .    | 0     | 0      | MAX        | 27 | 33   |
| tPHL .    | С     | Q      | MAX        | 25 | 33   |
| tPLH .    | С     | ā      | MAX        | 30 | 33   |
| tphL .    | U     | u      | MAX        | 15 | 33   |

# OCTAL D-TYPE FLIP-FLOPS

- Individual Data Input to Each Flip-Flop
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



To Seven Other Channels

**FUNCTION TABLE** 

|       | INPUTS |      | OUTI           | PUTS |
|-------|--------|------|----------------|------|
| CLKEN | CLOCK  | DATA | Q              | ā    |
| Н     | X      | X    | Qn             | Qn   |
| L     | 1      | H    | H              | L    |
| L     | 1      | L    | L              | H    |
| X     | L      | X    | Q <sub>0</sub> | Qo   |

RECOMMENDED OPERATING CONDITIONS

| RECOMMENDED | OPERATING CON | DITIONS |    | _          | _          |             | ,           |     | ,        |      |
|-------------|---------------|---------|----|------------|------------|-------------|-------------|-----|----------|------|
| PARAMETER   | MAX or MIN    | LS      | F  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | ABT | AC<br>11 | UNIT |
| Icc         | MAX           | 28      | 90 | 0.08       | 0.16       | 0.08        | 0.16        | 30  | 0.08     | mA   |
| Іон         | MAX           | -0.4    | -1 | -4         | -4         | -4          | -4          | -32 | -24      | mA   |
| Ini         | MAX           | 8       | 20 | 4          | 4          | 4           | 4           | 64  | 24       | mΔ   |

SWITCHING CHARACTERISTICS

|      | PARAMETER      | INPUT | OUTPUT | MAX or MIN | LS | F    | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | ABT | AC<br>11 |
|------|----------------|-------|--------|------------|----|------|------------|------------|-------------|-------------|-----|----------|
| fmax |                |       |        | MIN        | 30 | 110  | 20         | 20         | 17          | 16          | 150 | 100      |
| tw   |                |       |        | MIN        | 20 | 5    | 25         | 24         | 25          | 30          | 3.3 | 5        |
| tsu  | DATA           |       |        | MIN        | 20 | 2    | 25         | 18         | 15          | 18          | 2.5 | 4        |
|      | CLKEN ACTIVE   |       |        | MIN        | 25 | 2.5  | 25         |            | 15          | -           | 3   | 6        |
|      | CLKEN INACTIVE |       |        | MIN        | 10 | 4.5  | 25         | 18         | 15          | 18          | 3   | 6        |
| th   |                |       |        | MIN        | 5  | 1    | 5          | 3          | 3           | 3           | 1.8 | 0        |
| tPLH |                | CLK   | Q      | MAX        | 27 | 10   | 40         | 53         | 45          | 57          | 6.5 | 11.3     |
| tPHL |                | CLK   | u u    | MAX        | 27 | 10.5 | 40         | 53         | 45          | 57          | 7.3 | 12.9     |

UNIT fmax: MHz, other: ns



All Have Direct Clear for Each 4-Bit Counter

W WILLIAMS DIEGL CISSLES FOR ESCHAPER COUNTS!

Buffured Outputs Reduce Possibility of Collect

Logic Diagram



**FUNCTION TABLE** 

|   | INPUTS |      | OUT | PUTS |
|---|--------|------|-----|------|
| G | CLOCK  | DATA | Q   | Q    |
| Н | X      | X    | Qo  | Qo   |
| L | 1      | H    | H   | L    |
| L | 1      | L    | L L | H    |
| X | L      | X    | Qn  | Q    |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | F  | SN74<br>HC | UNIT |
|-----------|------------|------|----|------------|------|
| Icc       | MAX        | 22   | 45 | 0.08       | mA   |
| Іон       | MAX        | -0.4 | -1 | -4         | mA   |
| lou       | MAX        | 8    | 20 | 4          | mA   |

SWITCHING CHARACTERISTICS

|      | PARAMETER             | INPUT | OUTPUT | MAX or MIN | LS   | F   | SN74<br>HC                              |
|------|-----------------------|-------|--------|------------|------|-----|-----------------------------------------|
| fmax | W 110                 | 05 20 | 2010   | MIN        | 30   | 110 | 20                                      |
| tw   | CLK H                 |       |        | MIN        | 20   | 4   | 25                                      |
| Ter. | CLK L                 |       |        | MIN        | 20   | 6   | 25                                      |
| tsu  | DATA                  |       |        | MIN        | 20   | 5   | 25                                      |
| 88   | G ACTIVE              |       |        | MIN        | 25   | 3.5 | 25                                      |
| 51   | G INACTIVE            |       |        | MIN        | 10   | 5   | 25                                      |
| th   | 74                    |       |        | MIN        | 5 ↑  | 0   | 5                                       |
| tPLH | To part of the same   | CLK   | XAM o  | MAX        | 27   | 6.7 | 40                                      |
| tPHL | 12 7 6 6              | ULK   | u u    | MAX        | 27   | 6.1 | 40                                      |
| UNIT | fmax : MHz, other : r | IS    | XAW    | 0          | HERY | A   | *************************************** |

- Typical maximum Count Frequency: 35MHz
- Buffered Outputs Reduce Possibility of Collector Commutation



FUNCTION TABLE
BCD COUNT SEQUENCE

| COUNT | OUTPUTS |    |    |    |  |  |  |  |  |
|-------|---------|----|----|----|--|--|--|--|--|
| COUNT | QD      | QC | QB | QA |  |  |  |  |  |
| 0     | L       | L  | L  | L  |  |  |  |  |  |
| 1     | L       | L  | L  | H  |  |  |  |  |  |
| 2     | L       | L  | Н  | L  |  |  |  |  |  |
| 3     | L       | L  | H  | H  |  |  |  |  |  |
| 4     | L       | H  | L  | L  |  |  |  |  |  |
| 5     | E       | H  | L  | H  |  |  |  |  |  |
| 6     | L       | H  | H  | L  |  |  |  |  |  |
| 7     | L       | H  | H  | H  |  |  |  |  |  |
| 8     | Н       | L  | L  | L  |  |  |  |  |  |
| 9     | H       | L  | L  | H  |  |  |  |  |  |

DI GUINA DV

|                       | 1-00 | HAMI |      |    |
|-----------------------|------|------|------|----|
| COLUNIT               |      | OUT  | PUTS |    |
| COUNT                 | QA   | QD   | QC   | QB |
| 0                     | L    | L    | L    | L  |
| 1                     | L    | L    | L    | H  |
| 2                     | L    | L    | H    | L  |
| 2<br>3<br>4<br>5<br>6 | L    | L    | H    | H  |
| 4                     | L    | H    | L    | L  |
| 5                     | H    | L    | L    | L  |
| 6                     | H    | L    | L    | H  |
| 7                     | H    | L    | H    | L  |
| 8                     | H    | L    | H    | H  |
| 9                     | Н    | H    | L    | L  |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | TTL  | LS   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------|------|------------|------------|-------------|------|
| Icc       | MAX        | 69   | 26   | 0.08       | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -0.8 | -0.4 | -4         | -4         | -4          | mA   |
| lou       | MAX        | 16   | 8    | 4          | 4          | 4           | mA   |

# SWITCHING CHARACTERISTICS

| PAF    | RAMETER | INPUT | OUTPUT | MAX or MIN | TTL | LS   | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
|--------|---------|-------|--------|------------|-----|------|------------|------------|-------------|
|        |         | А     | QA     | MIN        | 25  | 25   | 25         | 20         | 18          |
| fmax   |         | В     | QB     | MIN        | 20  | 12.5 | 25         | 20         | 18          |
| tw     | A       |       |        | MIN        | 20  | 20   | 20         | 24         | 29          |
|        | В       |       |        | MIN        | 25  | 40   | 20         | 24         | 29          |
|        | CLR H   |       |        | MIN        | 20  | 20   | 20         | 15         | 20          |
| tsu    |         |       |        | MIN        | 25  | 25   | 5          | 31/2/11    |             |
| tPLH   |         |       | 0.4    | MAX        | 20  | 20   | 30         | 53         | 60          |
| tphL.  |         | A     | AD MA  | MAX        | 20  | 20   | 30         | 53         | 60          |
| tPLH . |         |       | 0.0    | MAX        | 60  | 60   | 72         |            | 126         |
| tPHL.  |         | A     | oc.    | MAX        | 60  | 60   | 72         | W.,        | 126         |
| tPLH   |         |       | OB     | MAX        | 21  | 21   | 33         | 56         | 65          |
| tPHL   |         | В     | QB     | MAX        | 21  | 21   | 33         | 56         | 65          |
| tPLH . |         |       | 0.0    | MAX        | 39  | 39   | 46         | 74         | 83          |
| tPHL . |         | В     | 30 1   | MAX        | 39  | 39   | 46         | 74         | 83          |
| tPLH   |         | n .   | AAM    | MAX        | 21  | 21   | 33         | 54         | 63          |
| tPHL   |         | В     | XAM QD | MAX        | 21  | 21   | 33         | 54         | 63          |
| tPHL   |         | CLR   | Q      | MAX        | 39  | 39   | 41         | 57         | 63          |

UNIT fmax : MHz, other : ns

# DUAL 4-BIT BINARY COUNTERS

- Dual 4-Bit Binary Counter with Individual Clock
- All Have Direct Clear for Each 4-Bit Counter
- Typical maximum Count Frequency: 35MHz
- Buffered Outputs Reduce Possibility of Collector Commutation

# FUNCTION TABLE

| COUNT  |    | INP | UTS |    |
|--------|----|-----|-----|----|
| COUNT  | QD | QC  | QB  | QA |
| 0      | L  | L   | L   | L  |
| -1     | L  | L   | L.  | H  |
| 1 2    | L  | L   | H   | L  |
| 3      | L  | L   | H   | H  |
| 4      | L  | Н   | L   | L  |
| 5      | L  | Н   | L   | H  |
| 6<br>7 | L  | Н   | H   | L  |
| 7      | L  | Н   | H   | H  |
| 8      | H  | L   | L   | L  |
| 9      | H  | L   | L   | H  |
| 10     | H  | L   | H   | L  |
| 11     | H  | L   | H   | H  |
| 12     | H  | H   | L   | L  |
| 13     | H  | H   | L   | H  |
| 14     | H  | H   | H   | L  |
| 15     | Н  | Н   | H   | H  |



RECOMMENDED OPERATING CONDITIONS

| NECOMMENDED | OF ENATING CON | DITIONS |      |            |            |             |          |          |      |
|-------------|----------------|---------|------|------------|------------|-------------|----------|----------|------|
| PARAMETER   | MAX or MIN     | TTL     | LS   | SN74<br>HC | CD74<br>HC | CD74<br>HCT | LV<br>3V | LV<br>5V | UNIT |
| Icc         | MAX            | 64      | 26   | 0.08       | 0.16       | 0.16        |          | 0.02     | mA   |
| Іон         | MAX            | -0.8    | -0.4 | -4         | -4         | -4          | -6       | -12      | mA   |
| lor.        | MAX            | 16      | 8    | 4          | 4          | 4           | 6        | 12       | mA   |

SWITCHING CHARACTERISTICS

| PAI    | RAMETER | INPUT | OUTPUT | MAX or MIN | TTL | LS | SN74<br>HC | CD74<br>HC | CD74<br>HCT | LV<br>3V | LV<br>5V |
|--------|---------|-------|--------|------------|-----|----|------------|------------|-------------|----------|----------|
| fmax   |         |       | -      | MIN        | 25  | 25 | 25         | 20         | 18          | 35       | 75       |
| tw     | Α       |       |        | MIN        | 20  | 20 | 20         | 24         | 29          | 5        | 5        |
|        | В       |       |        | MIN        | 25  | 40 | 20         | 24         | 29          | 5        | 5        |
|        | CLR H   |       |        | MIN        | 20  | 20 | 20         | 24         | 24          | - 5      | 5        |
| tsu    |         |       |        | MIN        | 25  | 25 | 5          | -          | -           | 5        | 4        |
| tPLH   |         |       | 0.4    | MAX        | 20  | 20 | 30         | 59         | 48          | 19       | 12       |
| tPHL . |         | А     | QΑ     | MAX        | 20  | 20 | 30         | 59         | 48          | 19       | 12       |
| tPLH   |         |       | 0.0    | MAX        | 60  | 60 | 72         | 86         | 93          | 26.5     | 16.5     |
| tPHL   |         | В     | QD     | MAX        | 60  | 60 | 72         | 86         | 93          | 26.5     | 16.5     |
| tPHL   |         | CLR   | Q      | MAX        | 39  | 39 | 41         | 41         | 48          | 18       | 11.5     |

UNIT fmax : MHz, other : ns

# **CASCADABLE UNIVERSAL SHIFT REGISTERS**

- 3-State Outputs
- Parallel-In, Parallel-Out Registers
- Low Power Dissipation: 75mW Typical (Enable)



# **FUNCTION TABLE**

|        | INPUTS     |       |         |   |     |     |   |     |                 | 3-STATE OUTPUTS |                 |                 |  |  |
|--------|------------|-------|---------|---|-----|-----|---|-----|-----------------|-----------------|-----------------|-----------------|--|--|
| CLEAR  | LOAD/SHIFT | CLOCK | SERIAL  | P | ARA | LLE | L | QA  | QB              | QC              | QD              | OUTPUT          |  |  |
| OLLAIT | CONTROL    | OLOOK | OLITIAL | Α | В   | C   | D |     |                 | -0              |                 | QD              |  |  |
| L      | X          | X     | X       | X | X   | X   | X | L   | L               | L               | L               | E.              |  |  |
| H      | H          | H     | X       | X | X   | X   | X | QAO | Q <sub>B0</sub> | QCO             | Q <sub>D0</sub> | Q <sub>D0</sub> |  |  |
| H      | H          | 1     | X       | a | b   | C   | d | a   | b               | C               | d               | d               |  |  |
| H      | L          | H     | X       | X | X   | X   | X | QAO | QBn             | Qcn             | QDn             | QDO             |  |  |
| H      | L          | 1     | H       | X | X   | X   | X | H   | QAn             | QBn             | QCn             | QCn             |  |  |
| H      | L          | 1     | L       | X | X   | X   | X | L   | QAn             | QBn             | QCn             | QCn             |  |  |

Logic Disprom

# RECOMMENDED OPERATING CONDITIONS

|     | PARAMETER      | MAX or MIN | LS   | UNIT |
|-----|----------------|------------|------|------|
| Icc |                | MAX        | 34   | mA   |
|     | QA, QB, QC, QD | MAX        | -2.6 | mA   |
| Іон | OD,            | MAX        | -0.4 | mA   |
| le: | QA, QB, QC, QD | MAX        | 24   | mA   |
| lor | QD'            | MAX        | 8    | mA   |

SWITCHING CHARACTERISTICS

| PAI       | PARAMETER INPUT OUTPUT |     | MAX or MIN | LS  |    |
|-----------|------------------------|-----|------------|-----|----|
| fmax      |                        | 507 | - 81       | MIN | 30 |
| tw        |                        |     |            | MIN | 16 |
| tsu LD/SH |                        |     |            | MIN | 40 |
|           | OTHER                  |     |            | MIN | 20 |
| th        |                        |     |            | MIN | 10 |
| tplH      | auv o                  |     |            | MAX | 30 |
| tPHL      |                        | CLK | 0          | MAX | 30 |

UNIT fmax: MHz, other: ns

WENTS CLOCK OA OB T

# Logic Diagram



FUNCTION TABLE

| INP            |       | OUT | PUTS             |     |     |
|----------------|-------|-----|------------------|-----|-----|
| WORD<br>SELECT | сьоск | QA  | QB               | QC  | QD  |
| L              | 1     | A1  | B1               | C1  | D1  |
| H              | 1     | A2  | B2               | C2  | D2  |
| X              | L     | QAO | Q <sub>B</sub> 0 | QCD | QDO |

RECOMMENDED OPERATING CONDITIONS

| RECOMMENDED | OPERATING CON | DITION | S    |
|-------------|---------------|--------|------|
| PARAMETER   | MAX or MIN    | LS     | UNIT |
| Icc         | MAX           | 13     | mA   |
| Іон         | MAX           | -0.4   | mA   |
| lou         | MAX           | 8      | mA   |

SWITCHING CHARACTERISTICS

| SVVI        | TCHING CHARACTER | 1131103 |        |            |    |     |    |
|-------------|------------------|---------|--------|------------|----|-----|----|
| PARAMETER   |                  | INPUT   | OUTPUT | MAX or MIN | LS |     |    |
| tw          |                  |         |        | MIN        | 20 |     |    |
| tsu         | DATA             |         |        | MIN        | 25 |     |    |
|             | WORD SELECT      |         |        | MIN        | 45 |     |    |
| th          | DATA             |         |        | MIN        | 0  |     |    |
| WORD SELECT |                  |         |        | MIN        | 0  |     |    |
| tPLH tPHL   |                  | tPLH .  |        | CLV        | 0  | MAX | 27 |
|             |                  | CLK     | Q.     | MAX        | 32 |     |    |



COMMON

# **FUNCTION TABLE**

| INF | INPUTS |   |      | PUTS |
|-----|--------|---|------|------|
| CLR | A      | В | Q    | Q    |
| L   | X      | X | L    | Н    |
| X   | H      | X | L    | H    |
| X   | X      | L | L    | Н    |
| Н   | L      | 1 | п    |      |
| H   | Ī      | H | I.L. | 7.5  |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------|------------|-------------|------|
| Icc       | MAX        | 20   | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -0.4 | -4         | -4          | mA   |
| lou       | MAX        | 8    | 4          | 4           | mA   |

SWITCHING CHARACTERISTICS

| SWITCHING CHAN | ACTENISTICS |        |            |    |            |             |
|----------------|-------------|--------|------------|----|------------|-------------|
| PARAMETER      | INPUT       | OUTPUT | MAX or MIN | LS | CD74<br>HC | CD74<br>HCT |
| tw             | VE          | 11111  | MIN        | 40 | 30         | 30          |
| tPLH -         | Α           | 0      | MAX        | 33 | 90         | -           |
|                | В           | u u    | IVIAX      | 44 | 90         | -           |
|                | A           |        | MANY       | 45 | 96         |             |
| tPHL -         | В           | u      | MAX        | 56 | 96         | -           |
| tPLH           | CLR         | Q      | MAX        | 27 | 65         | -           |
| tPHL .         | CLN         | ā      | MAX        | 45 | 65         |             |



# **FUNCTION TABLE**

|    |    |    | TRANSFERS |    |    |                                    |
|----|----|----|-----------|----|----|------------------------------------|
| cs | S1 | SO | GA        | GB | GC | BUSES                              |
| Н  | X  | X  | X         | X  | X  | None                               |
| X  | Н  | H  | X         | X  | X  | None                               |
| X  | X  | X  | Н         | H  | H  | None                               |
| X  | L  | L  | X         | Н  | Н  | None                               |
| X  | L  | H  | H         | X  | H  | None                               |
| X  | H  | L  | Н         | H  | X  | None                               |
| L  | L  | L  | X         | L  | L  | $A \rightarrow B, A \rightarrow C$ |
| L  | L  | H  | L         | X  | L  | $B \rightarrow C, B \rightarrow A$ |
| L  | H  | L  | L         | L  | X  | $C \rightarrow A, C \rightarrow B$ |
| L  | L  | L  | X         | L  | Н  | $A \rightarrow B$                  |
| L  | L  | H  | H         | X  | L  | $B \rightarrow C$                  |
| L  | H  | L  | L         | H  | X  | $C \rightarrow A$                  |
| L  | L  | L  | X         | H  | L  | $A \rightarrow C$                  |
| L  | L  | H  | L         | ×  | Н  | $B \rightarrow A$                  |
| L  | H  | L  | H         | L  | X  | $C \rightarrow B$                  |

# RECOMMENDED OPERATING CONDITIONS

| TIE O O ITITILE TO C | D OI LIBITINO | 00110 | T    |
|----------------------|---------------|-------|------|
| PARAMETER            | MAX or MIN    | LS    | UNIT |
| Icc                  | MAX           | 95    | mA   |
| Іон                  | MAX           | -15   | mA   |
| lou                  | MAX           | 24    | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT    | OUTPUT  | MAX or MIN | LS |
|-----------|----------|---------|------------|----|
|           | A        | B or C  |            |    |
| tPLH .    | В        | A or C  | MAX        | 14 |
|           | С        | A or B  |            |    |
|           | A        | B or C  |            |    |
| tPHL      | В        | A or C  | MAX        | 20 |
|           | С        | A or B  |            |    |
|           | Any G    |         |            | 33 |
| tPZL      | S0, S1   | A, B, C | MAX        | 42 |
|           | CS       |         |            | 36 |
| tPZH      | G, S, CS | A, B, C | MAX        | 32 |
| tPLZ      | G, S, CS | A, B, C | MAX        | 35 |
| tPHZ      | G, S, CS | A, B, C | MAX        | 25 |

OCTAL BUFFERS 3-STATE OUTDUTS

| IT 62 | 7 /   |
|-------|-------|
| A1 2  | 3 Y1  |
| A2 4  | 5 Y2  |
| A3 6  | 7 Y3  |
| A4 8  | 9 Y4  |
| A5 12 | 11 Y5 |
| A6 14 | 13 Y6 |
| A7 16 | 15 Y7 |
| A8 18 | 17 Y8 |

† These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

| PARAMETER | MAX or MIN | LS   | ALS | UNIT |
|-----------|------------|------|-----|------|
| Icc       | MAX        | 37   | 33  | mA   |
| Іон       | MAX        | -2.6 | -15 | mA   |
| lou       | MAX        | 24   | 24  | mA   |

SWITCHING CHARACTERISTICS PARAMETER INPUT OUTPUT MAX or MIN LS ALS MAX 15 Α Υ 18 12 23 25 10 18 MAX 40 45 40 45 G Υ MAX  $\overline{\mathsf{G}}$ UNIT:ns

# **8-BIT IDENTITY COMPARATOR**

- Open-Collector Outputs
- 20-kΩ Pullup Resistors on Q Inputs



| FU |  |  |  |  |  |
|----|--|--|--|--|--|
|    |  |  |  |  |  |

| Т | INF          | PUTS        | OUTPUT |
|---|--------------|-------------|--------|
|   | DATA<br>P, Q | ENABLE<br>G | P = Q  |
|   | P = Q        | L           | Н      |
|   | P > Q        | L           | L      |
|   | P < Q        | L           | L      |
|   | Y            | н           | Rane   |

# SOUTH INSULTED COMPARATOR

ZB-KL2 Pullup Hesistors on Ulinputs
 MACT type: Product Available in Reduce

| RECOMMENDED  | OFENATING CON    | T T |      |            |     |   |  |  |  |
|--------------|------------------|-----|------|------------|-----|---|--|--|--|
| PARAMETER    | MAX or MIN       | ALS | UNIT |            |     |   |  |  |  |
| cc           | MAX              | 17  | mA   |            |     |   |  |  |  |
| DL           | MAX              | 24  | mA   |            |     |   |  |  |  |
| /он          | MAX              | 5.5 | V    |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
| WITCHING CHA | RACTERISTICS     |     |      |            |     |   |  |  |  |
| PARAMETER    | INPUT            | OUT | ГРИТ | MAX or MIN | ALS |   |  |  |  |
| PLH          | P or Q           | D   | = Q  | MAX        | 33  |   |  |  |  |
| PHL          | roid             | E   | - u  | IVIAA      | 15  |   |  |  |  |
| PLH          | G                | P   | = 0  | MAX        | 33  | - |  |  |  |
| PHL          | , and the second |     |      | III.       | 15  |   |  |  |  |
| JNIT: ns     |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |
|              |                  |     |      |            |     |   |  |  |  |



| RECOMMENDED | OPERATING CON | DITION | S  |    |
|-------------|---------------|--------|----|----|
| PARAMETER   | MAX or MIN    | ΔΙς    | r. | AC |

| PARAMETER | MAX or MIN | ALS  | F  | AC<br>11 | UNIT |
|-----------|------------|------|----|----------|------|
| Icc       | MAX        | 19   | 32 | 8        | mA   |
| Іон       | MAX        | -2.6 | -1 | -24      | mA   |
| lou       | MAX        | 24   | 20 | 24       | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | ALS | F    | AC<br>11 |
|-----------|--------|--------|------------|-----|------|----------|
| tPLH      | P or Q |        | MAY        | 12  | 8.7  | 12.6     |
| tPHL .    | Poru   | P = 0. | MAX        | 20  | 10.3 | 11.3     |
| tPLH .    | ŌĒ     | D 0    | MAN        | 12  | 6.4  | 7.4      |
| tPHL .    | UE     | P = Q  | MAX        | 22  | 10.4 | 7.8      |



# **8-BIT IDENTITY COMPARATOR**

• 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)

# Logic Diagram



#### FUNCTION TABLE

| OUTPUT                        | UTS         | INP          |
|-------------------------------|-------------|--------------|
| $\overline{P} = \overline{Q}$ | ENABLE<br>G | DATA<br>P, Q |
| L                             | L           | P = Q        |
| Н                             | -Luca       | P > Q        |
| H                             | lan L       | P < Q        |
| H                             | K H         | X            |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS  | rest <sub>F</sub> ort | AC<br>11 | UNIT |
|-----------|------------|------|-----------------------|----------|------|
| Icc       | MAX        | 19   | 32                    | 0.08     | mA   |
| Іон       | MAX        | -2.6 | -1                    | -24      | mA   |
| lou       | MAX        | 24   | 20                    | 24       | mA   |

# CTAL D-TYPE TRANSPARENT

3-State Bus-Driving Inverting Outgets

Functionally Equivalent to '373, Except for Havin

Inverted Outputs

ARCT Door: Product Available in Reduced-Not

MACETTIXXX Product Available in Reduced-Nots

# 320K1 FK

| SWITCHING CHAP | RACTERIST | ICS         |     |     |     |        |             |      |            |           |  |  |
|----------------|-----------|-------------|-----|-----|-----|--------|-------------|------|------------|-----------|--|--|
| PARAMETER      | INPUT     | r           | OUT | PUT | MAX | or MIN | ALS         | F    | AC<br>11   |           |  |  |
| tPLH .         |           |             | _   | _   |     | 441/   | 12          | 11   | 13         |           |  |  |
| tPHL .         | PorC      | 1           | P = | u   | I.  | ЛАХ    | 20          | 11   | 11.4       |           |  |  |
| tPLH           | G         |             | -   | _   |     | 447    | 12          | 7.5  | 7.9        |           |  |  |
| tPHL .         | G         |             | P = | u   | I N | ΛAX    | 22          | 10   | 8.1        |           |  |  |
| UNIT: ns       | TIMU      | ATM:<br>TUA | WA  |     |     | 184    | HITT<br>TIM | 1011 | ACGS<br>OH | The Self- |  |  |
|                |           |             |     |     |     |        |             |      |            |           |  |  |
|                |           |             |     |     |     |        |             |      |            |           |  |  |

- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)

# Logic Diagram To Seven Other Channels

# **FUNCTION TABLE**

|    | INPUTS |   | OUTPUT         |
|----|--------|---|----------------|
| oc | ENABLE | D | Q              |
| L  | Н      | Н | L              |
| L  | Н      | L | Н              |
| L  | L      | X | Q <sub>0</sub> |
| H  | X      | X | Z              |

# RECOMMENDED OPERATING CONDITIONS

| RECOMMENDED | OPERATING CON | DITIONS |     |            |            | -           | - 64        | XA  | M        | . 0        | + 9       |             | 9    |
|-------------|---------------|---------|-----|------------|------------|-------------|-------------|-----|----------|------------|-----------|-------------|------|
| PARAMETER   | MAX or MIN    | ALS     | AS  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | ABT | AC<br>11 | SN74<br>AC | ACT<br>11 | SN74<br>ACT | UNIT |
| Icc         | MAX           | 28      | 110 | 0.08       | 0.16       | 0.08        | 0.16        | 30  | 0.08     | 0.04       | 0.08      | 0.04        | mA   |
| Іон         | MAX           | -2.6    | -15 | -6         | -6         | -6          | -6          | -32 | -24      | -24        | -24       | -24         | mA   |
| lor         | MAX           | 24      | 48  | 6          | 6          | 6           | 6           | 64  | 24       | 24         | 24        | 24          | mA   |

# SWITCHING CHARACTERISTICS

| SWITCHING CHA | NACTERIOTICS |        |            | T   |     |            |            |             |             |     |          |            |           |             |
|---------------|--------------|--------|------------|-----|-----|------------|------------|-------------|-------------|-----|----------|------------|-----------|-------------|
| PARAMETER     | INPUT        | OUTPUT | MAX or MIN | ALS | AS  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | ABT | AC<br>11 | SN74<br>AC | ACT<br>11 | SN74<br>ACT |
| tw            |              |        | MIN        | 15  | 2   | 20         | 24         | 25          | 24          | 3.3 | 4        | 5          | 5         | 6           |
| tsu           |              |        | MIN        | 15  | 2   | 13         | 15         | 13          | 15          | 2.1 | 3.5      | 4.5        | 3.5       | 4           |
| th            |              |        | MIN        | 7   | 3   | 5          | -11        | 5           | 12          | 2.1 | 2        | 1          | 3.5       | 2.5         |
| tPLH .        | D            | ā      | MAX        | 19  | 7.5 | 38         | 50         | 44          | 51          | 6.4 | 9.8      | 11         | 11.3      | 11.5        |
| tPHL .        | D            | u      | IVIAA      | 13  | 7   | 38         | 50         | 44          | 51          | 6.6 | 8        | 10.5       | 9.5       | 11          |
| tPLH          | LE _         | ā      | MAX        | 23  | 9   | 44         | 53         | 44          | 57          | 7.3 | 11.3     | 11.5       | 13        | 11.5        |
| tPHL .        | (CD74: LE)   | u      | MAX        | 18  | 8   | 44         | 53         | 44          | 57          | 7.3 | 10.3     | 11         | 12.2      | 11.5        |
| tPZH          | 0E           | ā      | MAX        | 17  | 6.5 | 38         | 45         | 44          | 53          | 5.7 | 10.8     | 10.5       | 12.5      | 11          |
| tPZL          | ÜE           | u      | MAX        | 18  | 9.5 | 38         | 45         | 44          | 53          | 6.7 | 9.7      | 10.5       | 12        | 11          |
| tPHZ          | ŌE           | ā      | MANY       | 10  | 6.5 | 38         | 45         | 44          | 45          | 6.9 | 11.4     | 11         | 12.8      | 11          |
| tPLZ          | UE           | u      | MAX        | 16  | 7   | 38         | 45         | 44          | 45          | 6.5 | 8.9      | 11         | 10.3      | 11          |

Functionally Equivalent to '374

- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



To Seven Other Channels

# **FUNCTION TABLE**

|    | INPUTS |   | OUTPUT |
|----|--------|---|--------|
| OC | CLK    | D | Q      |
| L  | Ť      | Н | L      |
| L  | 1      | L | Н      |
| L  | L      | X | Qo     |
| H  | X      | X | Z      |

RECOMMENDED OPERATING CONDITIONS

|           | 24 28      | Hō   |     |            | 1 3        |             | 0           | 0   |          | 1 48       | 1 85       |           | XAM         |      |
|-----------|------------|------|-----|------------|------------|-------------|-------------|-----|----------|------------|------------|-----------|-------------|------|
| PARAMETER | MAX or MIN | ALS  | AS  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | ABT | AC<br>11 | SN74<br>AC | CD74<br>AC | ACT<br>11 | SN74<br>ACT | UNIT |
|           |            |      |     |            |            |             |             |     |          |            |            |           |             |      |
| Icc       | MAX        | 31   | 128 | 0.08       | 0.16       | 0.08        | 0.16        | 30  | 0.08     | 0.04       | 0.16       | 0.08      | 0.04        | mA   |
| Іон       | MAX        | -2.6 | -15 | -6         | -6         | -6          | -6          | -32 | -24      | -24        | -24        | -24       | -24         | mA   |
| lor.      | MAX        | 24   | 48  | 6          | 6          | 6           | 6           | 64  | 24       | 24         | 24         | 24        | 24          | mA   |

SWITCHING CHARACTERISTICS

| PAR  | AMETER  | IN   | IPUT   | 0   | UTPUT | MAX or MIN | ALS  | AS  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | ABT | AC<br>11 | SN74<br>AC | CD74 |
|------|---------|------|--------|-----|-------|------------|------|-----|------------|------------|-------------|-------------|-----|----------|------------|------|
| fmax |         | SMAN | 1000   | RMS | 4500  | MIN        | 35   | 125 | 25         | 20         | 25          | 16          | 125 | 75       | 140        | 125  |
| tw   | CLK "H" |      |        |     |       | MIN        | 14   | 4   | 20         | 24         | 20          | 30          | 3.5 | 6.5      | 4          | 4    |
|      | CLK "L" |      |        |     |       | IVIIIN     | 14   | 3   | 20         | 24         | 20          | 30          | 3.5 | 6.5      | 4          | 4    |
| tsu  | 9.7     | 6.9  |        |     |       | 2 3 9      | 10   | 2   | 25         | 18         | 25          | 30          | 1.6 | 3.5      | 4          | 2    |
| h    | 6.0     |      |        |     |       | MIN        | 0    | 2   | 5          | 5          | 5           | 5           | 2   | 4.5      | 1.5        | 2    |
| PLH  | 1.014   | (    | CLK    | 0.  | -     | MAX        | 12   | 8   | 45         | 50         | 45          | 53          | 6.7 | 11.7     | 12         | 11.3 |
| PHL  | 9.9     | (CD) | 4: CP) | E   | ā     | IVIAX      | 16   | 9   | 45         | 50         | 45          | 53          | 7.6 | 12.1     | 11         | 11.3 |
| PZH  | 1.3     | R.   | 0E     | 0%  | =     | MAX        | 17   | 6   | 38         | 45         | 37          | 53          | 5   | 10.4     | 11.5       | 14.5 |
| PZL  | [ 5.8 ] |      | UE 30  | 86  | 0     | MAX        | 18   | 10  | 38         | 45         | 37          | 53          | 6.8 | 10.4     | 11.5       | 14.5 |
| PHZ  |         |      | 0E     |     | ā     | MAX        | 10   | 6   | 38         | 45         | 37          | 45          | 7.3 | 11.6     | 12.5       | 14.5 |
| PLZ  |         |      | UE     |     | u     | WAX        | . 14 | 6   | 38         | 45         | 37          | 45          | 6.5 | 9.2      | 11         | 14.5 |

| PA          | RAMETER | INPUT      | OUTPUT  | MAX or MIN | ACT<br>11 | SN74<br>ACT |
|-------------|---------|------------|---------|------------|-----------|-------------|
| fmax        |         | 8.8        | ls 10.5 | MIN        | 55        | 120         |
| tw          | CLK "H" |            |         | MIN        | 9         | 3.5         |
|             | CLK "L" |            |         | IVIIIN     | 9         | 3.5         |
| tsu         |         |            |         | MIN        | 3         | 4           |
| th          |         |            |         | IVIIN      | 5.5       | 1.5         |
| tPLH.       |         | CLK        | ā       | MAX        | 14.5      | 12.5        |
| <b>TPHL</b> |         | (CD74: CP) | u u     | IVIAA      | 15        | 12          |
| tPZH        |         | ŌE         | ā       | MAX        | 13.3      | 12.5        |
| tPZL        |         | JE.        | l u     | WAX        | 13.5      | 11.5        |
| tPHZ        |         | ŌE         | ā       | MAN        | 13.5      | 13.5        |
| tPLZ        |         | UE         | u       | MAX        | 12        | 10.5        |

UNIT fmax: MHz, other: ns

# 540

# OCTAL BUFFERS AND LINE DRIVERS

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- P-N-P Inputs Reduce D-C Loading
- Schmitt-Triggered Inputs (SN74LS540)

# **Logic Diagram**



To Seven Other Channels

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS  | ALS | ALS<br>A-1 | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT | LVTH<br>3V | CD74<br>AC | CD74<br>ACT | AHC  | AHCT | UNIT |
|-----------|------------|-----|-----|------------|------------|------------|-------------|-------------|-------------|-----|------------|------------|-------------|------|------|------|
| Icc       | MAX        | 52  | 22  | 22         | 0.08       | 0.16       | 0.08        | 0.16        | 71          | 30  | 5          | 0.16       | 0.16        | 0.04 | 0.04 | mA   |
| Іон       | MAX        | -15 | -15 | -15        | -6         | -6         | -6          | -6          | -15         | -32 | -32        | -24        | -24         | -8   | -8   | mA   |
| lor       | MAX        | 24  | 24  | 48         | 6          | 6          | 6           | 6           | 64          | 64  | 64         | 24         | 24          | 8    | 8    | mA   |

| PARAMETER | MAX or MIN | LV<br>3V | LV<br>5V | LVC<br>3V | UNIT |
|-----------|------------|----------|----------|-----------|------|
| Icc       | MAX        | 1 - 10   | 0.02     | 0.01      | mA   |
| Іон       | MAX        | -8       | -16      | -24       | mA   |
| lou       | MAX        | 8        | 16       | 24        | mA   |

#### SWITCHING CHARACTERISTICS

| SWITCHING CHAR | ACTERISTICS |           |            |    |     |            |            |            |             |             |             |     |            |
|----------------|-------------|-----------|------------|----|-----|------------|------------|------------|-------------|-------------|-------------|-----|------------|
| PARAMETER      | INPUT       | OUTPUT    | MAX or MIN | LS | ALS | ALS<br>A-1 | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT | LVTH<br>3V |
| tPLH .         |             | Y         | MAX        | 15 | 12  | 12         | 25         | 33         | 25          | 36          | 6.9         | 4.8 | 3.8        |
| tPHL .         | A           | (CD74: Y) | IVIAX      | 15 | 9   | 9          | 25         | 33         | 25          | 36          | 4           | 4.8 | 3.8        |
| tPZH           | ŌE          | Y         | MAX        | 25 | 15  | 15         | 38         | 48         | 38          | 53          | 10.1        | 5.9 | 5.2        |
| tPZL           | UE          | (CD74: Y) | IVIAX      | 38 | 20  | 20         | 38         | 48         | 38          | 53          | 11.3        | 6.4 | 5.3        |
| tPHZ           | ŌE          | Y         | MAN        | 25 | 10  | 10         | 38         | 48         | 38 .        | 53          | 9           | 7.3 | 5.6        |
| tPLZ           | UE          | (CD74: Y) | MAX        | 18 | 12  | 12         | 38         | 48         | 38          | 53          | 8.5         | 6.2 | 5          |

| PARAMETER | INPUT    | OUTPUT    | MAX or MIN | CD74<br>AC | CD74<br>ACT | AHC  | AHCT | 3V   | LV<br>5V | 3V<br>LVC |
|-----------|----------|-----------|------------|------------|-------------|------|------|------|----------|-----------|
| tplH      |          | Y         | MANY N     | 68         | 7.2         | 8    | 10   | 12   | 8        | 5.3       |
| tPHL .    | А        | (CD74: Y) | MAX        | 68         | 7.2         | 8    | 10   | 12   | 8        | 5.3       |
| tPZH      | ŌĒ       | Y         | MAY        | 12         | 13.4        | 10.5 | 12   | 16   | 10.5     | 6.6       |
| tPZL      | UE       | (CD74: Y) | MAX        | 12         | 13.4        | 10.5 | 12   | 16   | 10.5     | 6.6       |
| tPHZ      | <u> </u> | Y         | MAN        | 12         | 13.4        | 10   | 12   | 17.5 | 10       | 7.4       |
| tPLZ      | 0E       | (CD74: Y) | MAX        | 12         | 13.4        | 10   | 12   | 17.5 | 10       | 7.4       |

# OCTAL BUFFERS AND LINE DRIVERS

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- P-N-P Inputs Reduce D-C Loading
- Schmitt-Triggered Inputs (SN74LS541)

# Logic Diagram



To Seven Other Channels

#### ECOMMENDED OPERATING CONDITIONS

| RECUMINENDED | UPERATING CON | DITIONS | )   |            |     |            |            |             |             |             |     |            |            |             |      |      |
|--------------|---------------|---------|-----|------------|-----|------------|------------|-------------|-------------|-------------|-----|------------|------------|-------------|------|------|
| PARAMETER    | MAX or MIN    | LS      | ALS | ALS<br>A-1 | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT | LVTH<br>3V | CD74<br>AC | CD74<br>ACT | AHC  | UNIT |
| Icc          | MAX           | 55      | 25  | 25         | 75  | 0.08       | 0.16       | 0.08        | 0.16        | 72          | 30  | 5          | 0.16       | 0.16        | 0.04 | mA   |
| Іон          | MAX           | -15     | -15 | -15        | -15 | -6         | -6         | -6          | -6          | -15         | -32 | -32        | -24        | -24         | -8   | mA   |
| lou          | MAX           | 24      | 24  | 48         | 64  | 6          | 6          | 6           | 6           | 64          | 64  | 64         | 24         | 24          | 8    | mA   |

| PARAMETER | MAX or MIN | AHCT | LV<br>3V | LV<br>5V | LVC<br>3V | UNIT |
|-----------|------------|------|----------|----------|-----------|------|
| Icc       | MAX        | 0.04 | -        | 0.02     | 0.01      | mA   |
| Іон       | MAX        | -8   | -8       | -16      | -24       | mA   |
| lou       | MAX        | 8    | 8        | 16       | 24        | mA   |

# SWITCHING CHARACTERISTICS

| OTTTOTHING OTTO |       |        | THE PROPERTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH | FEED U |     |            | _   | т —        |            |             |             |             |     |
|-----------------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|------------|-----|------------|------------|-------------|-------------|-------------|-----|
| PARAMETER       | INPUT | OUTPUT | MAX or MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LS     | ALS | ALS<br>A-1 | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT |
| tPLH .          | Δ.    | v      | MAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15     | 14  | 14         | 6   | 29         | 35         | 29          | 42          | 6           | 3.6 |
| tPHL .          | А     | 1      | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18     | 10  | 10         | 6   | 29         | 35         | 29          | 42          | 8.2         | 3.9 |
| tPZH            | ŌE    | v      | 1447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32     | 15  | 15         | 9.5 | 38         | 48         | 38          | 53          | 10.7        | 4   |
| tPZL            | UE    | T      | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38     | 20  | 20         | 9.5 | 38         | 48         | 38          | 53          | 11.5        | 5.9 |
| tPHZ            | ŌE    | v      | MAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29     | 10  | 10         | 6.5 | 38         | 48         | 38          | 53          | 8.6         | 5.8 |
| tPLZ            | UE    | Y      | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18     | 12  | 12         | 6   | 38         | 48         | 38          | 53          | 8.6         | 4.4 |

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LVTH<br>3V | CD74<br>AC | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | LVC<br>3V |
|-----------|-------|--------|------------|------------|------------|-------------|------|------|----------|----------|-----------|
| tPLH      |       |        | 1447       | 3.5        | 7.8        | 8.2         | 8    | 9.5  | 12       | 8        | 5.1       |
| tphL .    | A     | Y      | MAX        | 3.5        | 7.8        | 8.2         | 8    | 9.5  | 12       | 8        | 5.1       |
| tpzH      | ŌE    |        | MANY       | 5.2        | 12         | 13.4        | 10.5 | 12   | 16       | 10.5     | 7         |
| tPZL      | UE    | Υ.     | MAX        | 5.3        | 12         | 13.4        | 10.5 | 12   | 16       | 10.5     | 7         |
| tPHZ      | ŌE    | .,     | MAN        | 5.6        | 12         | 13.4        | 10   | 12   | 17.5     | 10       | 7         |
| tPLZ      | UE    | Y      | MAX        | 5          | 12         | 13.4        | 10   | 12   | 17.5     | 10       | 7         |

# Logic Diagram



|  |  |  |  | To Sev | en Other Channe | els |  |
|--|--|--|--|--------|-----------------|-----|--|
|  |  |  |  |        |                 |     |  |
|  |  |  |  |        |                 |     |  |
|  |  |  |  |        |                 |     |  |
|  |  |  |  |        |                 |     |  |
|  |  |  |  |        |                 |     |  |
|  |  |  |  |        |                 |     |  |
|  |  |  |  |        |                 |     |  |

**FUNCTION TABLE†** 

|      | 1 0110 |      |   |                  |
|------|--------|------|---|------------------|
|      | INPL   | JTS  |   | OUTPUT           |
| CEAB | LEAB   | OEAB | Α | В                |
| Н    | X      | X    | X | Z                |
| X    | X      | Н    | X | Z                |
| L    | H      | L    | X | B <sub>0</sub> ‡ |
| L    | L      | L    | L | L                |
| 1.   | L      | L    | Н | н                |

# RECOMMENDED OPERATING CONDITIONS

| PARA | METER | MAX or MIN | F   | SN74<br>BCT | ABT  | LVTH<br>3V | ACT<br>11 | SV<br>TVC | UNIT |
|------|-------|------------|-----|-------------|------|------------|-----------|-----------|------|
| Іссн |       | MAX        | 100 | 8           | 0.25 | 0.19       | 0.08      | 0.01      | mA   |
| ICCL |       | MAX        | 125 | 71          | 30   | 5          | 0.08      | 0.01      | mA   |
| lccz |       | MAX        | 125 | 15          | 0.25 | 0.19       | 0.08      | 0.01      | mA   |
| Іон  | A     | MAX        | -3  | -15         | -32  | -32        | -24       | -24       | mA   |
| ЮН   | В     | MAX        | -15 | -15         | -32  | -32        | -24       | -24       | mA   |
| la:  | A     | MAX        | 24  | 64          | 64   | 64         | 24        | 24        | mA   |
| lor  | В     | MAX        | 64  | 64          | 64   | 64         | 24        | 24        | mA   |

|       | PARAMETER   |     | INPUT  | OUTPUT | MAX or MIN | F    | SN74<br>BCT | ABT | LVTH<br>3V | ACT<br>11 | SV. |
|-------|-------------|-----|--------|--------|------------|------|-------------|-----|------------|-----------|-----|
| tw    | 4D 01       | 2   | d ar-  |        | MIN        | 5    | 7           | 3.5 | 3.3        | 4         | 3.3 |
| tsu   | LE ↑ before | "H" | -      |        |            | 3.5  | 4.5         | 3.5 | 0.4        | 2.5       | 1.6 |
|       | LE ↑ before | "L" | 1      |        | MIN        | 3.5  | 4.5         | 3   | _1         | 2.5       | 1.6 |
|       | CE ↑ before | "H" |        | -      | 191114     | -    | -           | 3.5 | 0.2        | 3         | 1.6 |
|       | CE † before | "L" | 1      |        |            |      | -           | 3   | 0.7        | 3         | 1.6 |
| th    | LE ↑ after  | "H" | ]      | 100    |            | 3.5  | 1.5         | 0.5 | 1.5        | 2         | 2.1 |
|       | LE ↑ after  | "Ľ. |        |        | MIN        | 3.5  | 1.5         | 0.5 | 1.3        | 2         | 2.1 |
|       | CE ↑ after  | "H" | 1      |        | IVIIIV     | 0 -  | -           | 0.5 | 1.6        | 1.5       | 2.1 |
|       | CE ↑ after  | T   | d of   |        |            | -    |             | 0.5 | 1.4        | 1.5       | 2.1 |
| tPLH  | TILL        |     | A or B | B or A | MAX        | 8.5  | 8.8         | 6.9 | 3.7        | 10.2      | 7   |
| tPHL  |             |     | AUID   | DUIA   | IVIAA      | 7.5  | 9.6         | 6.9 | 3.7        | 12.1      | 7   |
| tPLH  |             |     | LEBA   | A      | MAX        | 12.5 | 12.9        | 6.6 | 4.7        | 11.2      | 8.5 |
| tPHL. |             |     | LEDA   | A      | IVIAA      | 12.5 | 12.7        | 7.1 | 4.7        | 13.2      | 8.5 |
| tPLH  |             |     | LEAB   | В      | MAX        | 12.5 | 12.9        | 6.6 | 4.7        | 11.2      | 8.5 |
| tPHL  |             |     | LEAD   | D .    | IVIAA      | 12.5 | 12.7        | 7.1 | 4.7        | 13.2      | 8.5 |
| tPZH  |             |     | OE     | A or B | MAX        | 10   | 10.7        | 6.4 | 4.9        | 11.5      | 7.7 |
| tPZL  | ACT PT      | 27. | UE     | A OF B | IVIAX      | 12   | 12.3        | 7.5 | 4.9        | 15.3      | 7.7 |
| tPHZ  |             |     | OE     | A or B | MAX        | 9    | 8.1         | 8.4 | 5.3        | 10.4      | 7   |
| tPLZ  |             |     | UE     | A OF B | IVIAX      | 8.5  | 7.2         | 8   | 5.3        | 10.5      | 7   |
| tPZH  |             |     | CE     | A or B | MAX        | 10   | 12          | 6.4 | 5.3        | 12.2      | 8   |
| tPZL  |             |     | LE.    | A OF B | IVIAA      | 12   | 13.5        | 7.5 | 5.3        | 16        | 8   |
| tPHZ  |             |     | CE     | A or B | MAX        | 9    | 8.5         | 8.4 | 5.4        | 11        | 7   |
| tPLZ  |             |     | CE     | M OF B | IVIAX      | 8.5  | 7.6         | 8   | 5.4        | 11.1      | 7   |

<sup>†</sup> A-to-B data flow is shown; B-to-A flow control is the same except that it uses CEBA, LEBA, and OEBA. ‡ Output level before the indicated steady-state input conditions were established

# 561

# **SYNCHRONOUS 4-BIT COUNTER**

- 3-State Outputs
- Choice of Asynchronous or Synchronous Clearing and Loading
- Internal Look-Ahead Circuitry for Fast Cascading

# Logic Diagram



# FUNCTION TABLE

|    |      |       | INP  | UTS   |     |     |     | OPERATION          |
|----|------|-------|------|-------|-----|-----|-----|--------------------|
| OE | ACLR | ALOAD | SCLR | SLOAD | ENT | ENP | CLK | OPERATION          |
| Н  | X    | X     | X    | X     | X   | X   | X   | Q outputs disabled |
| L  | L    | X     | X    | X     | X   | X   | X   | Asynchronous clear |
| L  | H    | L     | X    | X     | X   | X   | X   | Asynchronous load  |
| L  | Н    | H     | L    | X     | X   | X   | 1   | Synchronous clear  |
| L  | Н    | H     | H    | L     | X   | X   | 1   | Synchronous load   |
| L  | H    | H     | H    | H     | Н   | H   | 1   | Count              |
| L  | Н    | Н     | H    | H     | L   | X   | X   | Inhibit counting   |
| L  | Н    | H     | H    | H     | X   | L   | X   | Inhibit counting   |

RECOMMENDED OPERATING CONDITIONS

|     | PARAMETER | MAX or MIN | ALS  | UNIT |
|-----|-----------|------------|------|------|
| lcc |           | MAX        | 36   | mA   |
|     | OUTPUT Q  | MAX        | -2.6 | mA   |
| Іон | CCO & RCO | MAX        | -0.4 | mA   |
| lou | OUTPUT Q  | MAX        | 24   | mA   |
|     | CCO & RCO | MAX        | 8    | mA   |

| SWITC       | HING CHAR | ACTERIS | STICS       |      |        |            |      |
|-------------|-----------|---------|-------------|------|--------|------------|------|
|             | PARAMETE  | R       | INPUT       | Tipl | OUTPUT | MAX or MIN | ALS  |
| fmax        |           |         |             | 1    | 100    | MIN        | 30   |
| tw          | CLK       | "H"     | 1           |      |        | MIN        | 16.5 |
|             | CLK       | .r.     | 1           |      |        | MIN        | 16.5 |
| tsu         | ENP or    | Н       |             |      |        |            | 20   |
|             | ENT L     |         | 1           |      |        |            | 20   |
|             | A, B,     | C, D    | 1           |      |        |            | 20   |
|             | 0010      | L       | 1           |      |        | MIN        | 15   |
|             | SCLR      | H.      | DUENO SUMBI |      |        | 3904 400   | 30   |
|             |           | PL      | DA DA       |      |        | HC OH BAR  | 15   |
|             | SLOAD     | Н       | i 8         |      |        | is in ar   | 30   |
| th          |           | 711     | 7 33        |      |        | MIN        | 0    |
| tPLH        |           | 0       | CIK         |      | 0      | MAY        | 12   |
| tPHL.       |           | 3.61    | CLK         | - 8  | u      | MAX        | 18   |
| tPLH        |           | 100 01  | CIV         |      | RCO    | MAX        | 29   |
| tPHL.       |           | arril   | CLK         |      | nco    | MAX        | 24   |
| <b>TPLH</b> |           | 2.01    | 11000       |      |        |            | 35   |
| tPHL .      |           | 101     | ALOAD       |      | Q      | MAX        | 23   |
| tPLH        |           | 20      |             |      |        | MAY        | 55   |
| tPHL.       |           | an I    | ALOAD       |      | CCO    | MAX        | 33   |
| tPLH        |           |         | FAIT        | - '  | DOO    | MAY        | 16   |
| tPHL.       |           |         | ENT         |      | RCO    | MAX        | 14   |
| tPHL.       |           |         | ACLR        |      | Q      | MAX        | 22   |

UNIT fmax: MHz, other: ns

# OCTAL D-TYPE TRANSPARENT LATCHES WITH INVERTED OUTPUTS

- 3-State Buffer-Type Outputs Drive Bus Lines Directly
- Bus-Structured Pinout

# Logic Diagram DE 1 LE 11 D 2 1D 2

| FUN |  |  |  |
|-----|--|--|--|
|     |  |  |  |
|     |  |  |  |

|    | INPUTS       | INPUTS |        |  |  |
|----|--------------|--------|--------|--|--|
| ŌĒ | ENABLE<br>LE | D      | OUTPUT |  |  |
| L  | Н            | Н      | L      |  |  |
| L  | Н            | L      | H      |  |  |
| L  | L            | X      | Qo     |  |  |
| Н  | X            | X      | Z      |  |  |



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>AC | CD74<br>AC | SN74<br>ACT | UNIT |
|-----------|------------|------|------------|------------|-------------|-------------|------------|------------|-------------|------|
| Icc       | MAX        | 29   | 0.08       | 0.16       | 0.08        | 0.16        | 0.08       | 0.16       | 0.04        | mA   |
| Іон       | MAX        | -2.6 | -6         | -6         | -6          | -6          | -24        | -24        | -24         | mA   |
| lou       | MAX        | 24   | 6          | 6          | 6           | 6           | 24         | 24         | 24          | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT      | OUTPUT     | MAX or MIN | ALS | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>AC | CD74<br>AC | SN74<br>ACT |
|-----------|------------|------------|------------|-----|------------|------------|-------------|-------------|------------|------------|-------------|
| tw        |            |            | UL         | 15  | 20         | 24         | 25          | 24          | 5          | 4          | 3           |
| tsu       |            |            | MIN        | 10  | 13         | 15         | 13          | 15          | 2.5        | 2          | 4.5         |
| th        |            |            | (2)        | 10  | 5          | 4          | 10          | 5           | 2          | 3          | 0           |
| tPLH      | D          | ā          | MAX        | 18  | 44         | 45         | 44          | 45          | 11.5       | 10.5       | 12.5        |
| tphl .    |            | ų IVIA.    | MAX        | 14  | 44         | 45         | 44          | 45          | 11         | 10.5       | 11          |
| tPLH      | LE         | ā          | MAX        | 22  | 44         | 50         | 44          | 53          | 11         | 12         | 11.5        |
| tphl.     | (CD74: LE) | u          | MAX        | 21  | 44         | 50         | 44          | 53          | 9.5        | 12         | 10.5        |
| tPZH      | ŌĒ         | ā          | MAX        | 18  | 38         | 45         | 44          | 53          | 10         | 10.5       | 10          |
| tPZL      | UE         | u          | MAX        | 18  | 38         | 45         | 44          | 53          | 9.5        | 10.5       | 9.5         |
| tPHZ      | 05         | OE Q MAX - | MAN        | 10  | 38         | 45         | 44          | 53          | 12         | 11.5       | 11.5        |
| tPLZ      | UE         |            | 15         | 38  | 45         | 44         | 53          | 9           | 11.5       | 8.5        |             |

# 564

# OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS

- 3-State Buffer-Type Inverting Outputs Drive Bus Lines Directly
- Bus-Structured Pinout



# **FUNCTION TABLE**

|    | INPUTS |     | OUTPUT         |
|----|--------|-----|----------------|
| OE | CLK    | D   | Q              |
| L  | 1      | Н   | L              |
| L  | 1      | a-L | Н              |
| L  | 0.00   | X   | Q <sub>0</sub> |
| Н  | X      | X   | Z              |

# RECOMMENDED OPERATING CONDITIONS

| NECOMMENDED | UFENATING CON | DITION | 2          |            | _           |             |            |             |      |
|-------------|---------------|--------|------------|------------|-------------|-------------|------------|-------------|------|
| PARAMETER   | MAX or MIN    | ALS    | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>AC | SN74<br>ACT | UNIT |
| Icc         | MAX           | 30     | 0.08       | 0.16       | 0.08        | 0.16        | 0.04       | 0.04        | mA   |
| Гон         | MAX           | -2.6   | -6         | -6         | -6          | -6          | -24        | -24         | mA   |
| lor         | MAX           | 24     | 6          | 6          | 6           | 6           | 24         | 24          | mA   |
|             |               |        |            |            |             |             |            |             |      |

# SWITCHING CHARACTERISTICS

| SAALI        | CHING CHAN | ACTEMISTICS |        |            |     |            |            |             | _           |            | _           |
|--------------|------------|-------------|--------|------------|-----|------------|------------|-------------|-------------|------------|-------------|
| PARAMETER    |            | INPUT       | OUTPUT | MAX or MIN | ALS | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>AC | SN74<br>ACT |
| fmax         |            |             |        | MIN        | 30  | 25         | 20         | 25          | 16          | 85         | 75          |
| tw           | CLK "H"    |             |        |            | 14  | 20         | 24         | 20          | 30          | 5          | 3.5         |
|              | CLK "L"    |             |        | MIN        | 14  | 20         | 24         | 20          | 30          | 5          | 3.5         |
| tsu          | CLK ↑      |             |        |            | 15  | 25         | 18         | 25          | 30          | 2.5        | 3           |
| th           | CLK ↑      |             |        |            | 0   | 5          | 5          | 5           | 3           | 2          | 1           |
| tPLH         |            | CLK         | ā      | MAX        | 14  | 45         | 50         | 45          | 53          | 11.5       | 11.5        |
| tPHL.        |            | ULK         | u      | WIAA       | 14  | 45         | 50         | 45          | 53          | 10.5       | 10.5        |
| tPZH         |            | ŌE          | ā      | MAX        | 18  | 38         | 45         | 38          | 53          | 9.5        | 9.5         |
| tPZL         | ZL         |             | u      | IVIAA      | 18  | 38         | 45         | 38          | 53          | 9.5        | 9.5         |
| tPHZ<br>tPLZ |            | ŌE          | ā      | MAX        | 10  | 38         | 41         | 38          | 45          | 11.5       | 11.5        |
|              |            | UE Q        |        | WAX        | 15  | 38         | 41         | 38          | 45          | 9          | 8.5         |

UNIT fmax : MHz, other : ns

## SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

- 3-State Q Outputs Drive Bus Lines Directly
- Fully Synchronous Clear, Count, and Load
- Asynchronous Clear Is Also Provided
- Fully Cascadable

## Logic Diagram



#### FUNCTION TABLE

|     |      |      | INP  | OPERATION |     |     |     |                    |
|-----|------|------|------|-----------|-----|-----|-----|--------------------|
| ŌĒ  | ACLR | SCLR | LOAD | ENT       | ENP | U/D | CLK | OPERATION          |
| Н   | X    | X    | X    | X         | X   | X   | X   | Q outputs disabled |
| L   | L    | X    | X    | ×         | X   | X   | X   | Asynchronous clear |
| L   | Н    | L    | X    | ×         | X   | X   | 1   | Synchronous clear  |
| L   | Н    | H    | L    | X         | X   | X   | 1   | Load               |
| L   | H    | Н    | H    | L         | L   | H   | 1   | Count up           |
| - L | Н    | H    | Н    | L         | L   | L   | 1   | Count down         |
| L   | Н    | H    | H    | H         | X   | X   | X   | Inhibit count      |
| L   | Н    | H    | H    | X         | H   | X   | X   | Inhibit count      |

# OCTAL O-TYPE TRANSPARENT

3-State Buffer-Type Outputs Drive Bus Lines
 The contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contr

Bus-Structured Pinout

# RECOMMENDED OPERATING CONDITIONS

| F   | PARAMETER | MAX or MIN | ALS  | UNIT |
|-----|-----------|------------|------|------|
| lcc |           | MAX        | 32   | mA   |
| Іон | OUTPUT Q  | MAX        | -2.6 | mA   |
|     | CCO & RCO | IVIAX      | -0.4 | mA   |
| lou | OUTPUT Q  | MAX        | 24   | mA   |
|     | CCO & RCO | IVIAX      | 8    | mA   |

#### FUNCTION TABLE

#### SWITCHING CHARACTERISTICS

| SVVII | CHING CHAP | ACTENIA | 1163     | 5           | 100   | 9 9       | 1    |       |  |  |
|-------|------------|---------|----------|-------------|-------|-----------|------|-------|--|--|
|       | PARAMETE   | 3 16    | INPUT    | OUTPUT      | M     | AX or MIN | ALS  |       |  |  |
| fmax  |            |         |          |             |       | MIN       | 30   |       |  |  |
| tw    | ACLR, L    | OAD     |          |             | 11975 | V6 V      | 15   | TURA: |  |  |
|       | CLK '      | H"      |          |             |       | MIN       | 16.5 |       |  |  |
|       | CLK        | L*      |          |             | AMI   |           | 16.5 | 90.0  |  |  |
| tsu   | Data at A, | B, C, D |          |             | 100   | 100       | 20   | 8     |  |  |
|       | ENP, ENT   | High    |          |             | AUR   |           | 30   | 8     |  |  |
|       | ENP, ENI   | Low     |          |             |       |           | 20   |       |  |  |
|       | 0010       | High    |          |             |       |           | 15   |       |  |  |
|       | SCLR       | Low     |          |             |       | MIN       | 30   | -     |  |  |
|       | TOAD       | High    |          |             | 2.0   |           | 15   | 560   |  |  |
|       | LOAD       | Low     |          |             | 1     |           | 30   |       |  |  |
|       | UĒ         | 121     |          |             | 8.5   |           | 30   |       |  |  |
|       | ACL        | R       |          |             | 2     |           | 10   |       |  |  |
| th    | 61 13      | 77 24   |          |             | 3     | MIN       | 0    |       |  |  |
| tPLH  | 22 18      | 168     | CLK      | ANY Q       | 8     | MAX       | 13   |       |  |  |
| tPHL  | Ea L 38    | 63      | CLK      | ANYU        |       | WAX       | 16   |       |  |  |
| tPLH  | 8.8        | 1 88    | CLK      | RCO         | tt    | MAX       | 28   |       |  |  |
| tPHL. | 3.5 3.5    | 53      | ULK Ed   | RLU         | 5.5   | IVIAA     | 19   |       |  |  |
| tPLH  | ta Live    | 2.3     | ENT      | RCO         | 100   | MAX       | 15   |       |  |  |
| tPHL  | 14 1 10    | 1 68    | EN I     | HUU         | 0.5   | IVIAA     | 13   |       |  |  |
| tPHL  | Int I i    | 88      | ACLR     | ac 0 at     | 6.5   | MAX       | 20   |       |  |  |
| tPZH  | 88 BB      | 63      | ŌĒ       | 18 a 8      | 15    | MAX       | 18   |       |  |  |
| tPZL  |            |         | UE       | u           |       | IVIAX     | 24   |       |  |  |
| tPHZ  |            |         | ŌĒ       | 0           |       | MAX       | 10   |       |  |  |
| tPLZ  | 301 1      | V.      | TOHA OHA | Sign D Corn | egra  | IVIAA     | 13   | 10.0  |  |  |

UNIT fmax: MHz, other: ns

## **OCTAL D-TYPE TRANSPARENT** LATCHES

- 3-State Buffer-Type Outputs Drive Bus Lines
- Bus-Structured Pinout

# Logic Diagram OE 1 C1 1D To Seven Other Channels

#### **FUNCTION TABLE**

|    | INPUTS |   |        |
|----|--------|---|--------|
| ŌĒ | ENABLE | D | OUTPUT |
| L  | Н      | Н | Н      |
| L  | Н      | L | L      |
| L  | L      | X | Qo     |
| Н  | X      | X | Z      |

#### RECOMMENDED OPERATING CONDITIONS

| RECOMMENDED O | PERATING CONDI | TIONS |     |    |            |            |             |             |             |     |            |            |            |             |      |
|---------------|----------------|-------|-----|----|------------|------------|-------------|-------------|-------------|-----|------------|------------|------------|-------------|------|
| PARAMETER     | MAX or MIN     | ALS   | AS  | F  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT | LVTH<br>3V | SN74<br>AC | CD74<br>AC | SN74<br>ACT | UNIT |
| Icc           | MAX            | 27    | 106 | 55 | 0.08       | 0.16       | 0.08        | 0.16        | 62          | 30  | 5          | 0.04       | 0.16       | 0.04        | mA   |
| Іон           | MAX            | -2.6  | -15 | -3 | -6         | -6         | -6          | -6          | -15         | -32 | -32        | -24        | -24        | -24         | mA   |
| lou           | MAX            | 24    | 48  | 24 | 6          | 6          | 6           | 6           | 64          | 64  | 64         | 24         | 24         | 24          | mA   |

| PARAMETER | MAX or MIN | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | TAC<br>3A | UNIT |
|-----------|------------|-------------|------|------|----------|----------|-----------|------|
| lcc       | MAX        | 0.16        | 0.04 | 0.04 |          | 0.02     | 0.01      | mA   |
| Іон       | MAX        | -24         | -8   | -8   | -8       | -16      | -24       | mA   |
| lou       | MAX        | 24          | 8    | 8    | 8        | 16       | 24        | mA   |

#### SWITCHING CHARACTERISTICS

| PARA   | AMETER | INPUT | OUTPUT | MAX or MIN | ALS | AS  | F   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT | LVTH<br>3V |
|--------|--------|-------|--------|------------|-----|-----|-----|------------|------------|-------------|-------------|-------------|-----|------------|
| tw     | LE     |       |        | 06         | 10  | 4.5 | 6   | 20         | 24         | 25          | 24          | 4           | 3.3 | 3.3        |
| tsu    | LE ↓   |       |        | MIN        | 10  | 2   | 2   | 13         | 15         | 13          | 20          | 1           | 1.9 | 0.7        |
| th     | LE ↓   |       |        | 5          | 7   | 3   | 3   | 5          | 12         | 5           | 15          | 4           | 1.8 | 1.5        |
| tPLH   |        | D     | 0      | MAX        | 14  | 8   | 8   | 44         | 53         | 44          | 53          | 8.4         | 5.9 | 3.9        |
| tPHL . |        | U     | u      | IVIAX      | 14  | 7   | 6   | 44         | 53         | 44          | 53          | 9.6         | 6.2 | 3.9        |
| tPLH   |        | LE    | 0      | MAX        | 20  | 13  | 13  | 44         | 53         | - 44        | 53          | 8.1         | 6.6 | 4.2        |
| tPHL.  |        | LE    | 0      | IVIAA      | 19  | 7.5 | 8   | 44         | 53         | 44          | 53          | 7.8         | 7.2 | 4.2        |
| tPZH   |        | ŌĒ    | 0      | MAN        | 18  | 6.5 | 12  | 38         | 45         | 44          | 53          | 10.4        | 5.2 | 5.1        |
| tPZL   |        | UE    | ۵      | MAX        | 18  | 9.5 | 8.5 | 38         | 45         | 44          | 53          | 11          | 6.7 | 5.1        |
| tPHZ   |        | ŌĒ    | 0      | MAN        | 10  | 6.5 | 7.5 | 38         | 45         | 44          | 53          | 6           | 7.1 | 4.9        |
| tPLZ.  |        | UE    | Q      | MAX        | 15  | 7   | 6   | 38         | 45         | 44          | 53          | 6           | 6.5 | 4.6        |

| PARA   | AMETER | INPUT            | OUTPUT | MAX or MIN | SN74<br>AC | CD74<br>AC | SN74<br>ACT | CD74<br>ACT | AHC | AHCT | LV<br>5V | LV<br>3V | 3V<br>LVC |
|--------|--------|------------------|--------|------------|------------|------------|-------------|-------------|-----|------|----------|----------|-----------|
| tw     | LE     |                  |        |            | 5          | 4          | 4           | 4           | 5   | 5    | 5        | 5        | 3.3       |
| tsu    | LE Ţ   |                  |        | MIN        | 3.5        | 2          | 3.5         | 2           | 3.5 | 3.5  | 3.5      | 3.5      | 2         |
| th     | LE ↓   |                  |        |            | 2          | 3          | 0           | 3           | 1.5 | 1.5  | 1.5      | 1.5      | 1.5       |
| tPLH   |        | D                | Q      | MAX        | 11.5       | 8.5        | 12          | 10.4        | 10  | 7.5  | 10       | 16.5     | 6.9       |
| tphL.  |        |                  | u      | IVIAX      | 11         | 8.5        | 12          | 10.4        | 10  | 10   | 10       | 16.5     | 6.9       |
| tPLH . |        | LE               | Q      | MAX        | 11         | 12         | 12          | 12.5        | 11  | 8.5  | 11       | 17.5     | 7.7       |
| tphl.  |        | (CD74AC/ACT: LE) | u      | IVIAA      | 10         | 12         | 10.5        | 12.5        | 11  | 10   | 11       | 17.5     | 7.7       |
| tPZH   |        | - ŌE             | Д      | MAX        | 10         | 10.5       | 11          | 13.5        | 11  | 8    | 11       | 17       | 7.5       |
| tPZL   |        | UE I             | и      | WAX        | 9.5        | 10.5       | 10.5        | 13.5        | 11  | 11   | 11       | 17       | 7.5       |
| tPHZ   |        | ŌĒ               | 0      | MAX        | 12         | 11.5       | 12.5        | 12.5        | 11  | 12   | 11       | 16.5     | 6.5       |
| tPLZ   |        | UE               | u      | WAX        | 9          | 11.5       | 9.5         | 12.5        | 11  | 10.5 | 11       | 16.5     | 6.5       |

## OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS

- 3-State Buffer-Type Noninverting Outputs Drive Bus Lines Directly
- Bus-Structured Pinout

# OE 1 CLK 11 1D 2 To Seven Other Channels

Logic Diagram

#### **FUNCTION TABLE**

|    | INPUTS |   | OUTPUT         |
|----|--------|---|----------------|
| OE | CLK    | D | Q              |
| L  | 1      | н | Hamil          |
| L  | 1      | L | L              |
| L  | L      | × | Q <sub>0</sub> |
| Н  | X      | X | Z              |

#### ECOMMENDED OPERATING CONDITION:

| PARAMETER | MAX or MIN | ALS  | AS  | F  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT | LVTH<br>3V | SN74<br>AC | CD74<br>AC | SN74<br>ACT | UNIT |
|-----------|------------|------|-----|----|------------|------------|-------------|-------------|-------------|-----|------------|------------|------------|-------------|------|
| lcc       | MAX        | 28   | 134 | 86 | 0.08       | 0.16       | 0.08        | 0.16        | 62          | 30  | 5          | 0.04       | 0.16       | 0.04        | mA   |
| Іон       | MAX        | -2.6 | -15 | -3 | -6         | -6         | -6          | -6          | -15         | -32 | -24        | -24        | -24        | -24         | mA   |
| lor       | MAX        | 24   | 48  | 24 | 6          | 6          | 6           | 6           | 64          | 64  | 24         | 24         | 24         | 24          | mA   |

| PARAMETER | MAX or MIN | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | LVC<br>3V | UNIT |
|-----------|------------|-------------|------|------|----------|----------|-----------|------|
| Icc       | MAX        | 0.16        | 0.04 | 0.04 | -        | 0.02     | 0.01      | mA   |
| Іон       | MAX        | -24         | -8   | -8   | -8       | -16      | -24       | mA   |
| lou       | MAX        | 24          | 8    | 8    | 8        | 16       | 24        | mA   |

#### SWITCHING CHARACTERISTICS

| SWITCHING CHARA | CTERISTICS |         |            |     |     |      |            |            | 231         | SHEE        | ARAM?       | SWIND | SVE        |
|-----------------|------------|---------|------------|-----|-----|------|------------|------------|-------------|-------------|-------------|-------|------------|
| PARAMETER       | INPUT      | OUTPUT  | MAX or MIN | ALS | AS  | jų F | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT   | LVTH<br>3V |
| fmax            |            |         | MIN        | 35  | 125 | 100  | 24         | 20         | 24          | 20          | 77          | 150   | 150        |
| tw              |            |         | MIN        | 14  | 5.5 | 7    | 20         | 24         | 20          | 24          | 6.5         | 3.3   | 3.3        |
| tsu             |            |         | MIN        | 15  | 5.5 | 2    | 25         | 18         | 25          | 18          | 6           | 1.5   | 2          |
| th              |            |         | MIN        | 0   | 0   | 2    | 5          | 5          | 5           | 5           | 0           | 1.8   | 0.3        |
| tPLH            | CLK        | 0       | MAY        | 14  | 8   | 10   | 45         | 50         | 45          | 50          | 10          | 6.8   | 4.5        |
| tPHL .          | ULN        | ۵       | MAX        | 14  | 9   | 10   | 45         | 50         | 45          | 50          | 8.9         | 7.1   | 4.5        |
| tPZH            | ŌE         | Q       | MAX        | 18  | 6   | 12.5 | 38         | 45         | 38          | 45          | 10.4        | 5.1   | 4.8        |
| tPZL.           | UE         | OE U    |            | 18  | 10  | 8.5  | 38         | 45         | 38          | 45          | 10.9        | 6.7   | 4.8        |
| tPHZ            | ŌE         | <u></u> |            | 10  | 6   | 8    | 38         | 41         | 38          | 42          | 7.5         | 7     | 4.8        |
| tPLZ            | UE         | Q       | MAX        | 12  | 6   | 6.5  | 38         | 41         | 38          | 42          | 6.4         | 6.5   | 4.4        |

| PARAMETER | INPUT | OUTPUT   | MAX or MIN | SN74<br>AC | CD74<br>AC | SN74<br>ACT | CD74<br>ACT | AHC  | AHCT | LV<br>3V | LV<br>5V | 3V<br>LVC |
|-----------|-------|----------|------------|------------|------------|-------------|-------------|------|------|----------|----------|-----------|
| fmax      |       |          | MIN        | 85         | 125        | 85          | 110         | 75   | 75   | 45       | 75       | 100       |
| tw        |       |          | MIN        | 5          | 4          | 4           | 4.5         | 5    | 5.5  | 5        | 5        | 3.3       |
| tsu       |       |          | MIN        | 2          | 2          | 2.5         | 2           | 3    | 3.5  | 3.5      | 3.5      | 2         |
| th        |       |          | MIN        | 1.5        | 2          | 0           | 3           | 1.5  | 1.5  | 1.5      | 1.5      | 1.5       |
| tplH      | CLK   | 014      | MANY       | 11         | 10.8       | 12          | 11.2        | 12   | 12   | 19       | 12       | 7         |
| tрнL      | CLK   | ū        | MAX        | 9.5        | 10.8       | 11          | 11.2        | 12   | 12   | 19       | 12       | 7         |
| tpzH      | ŌE    | Q        | MANY       | 9          | 14.5       | 10          | 14.5        | 12.5 | 12.5 | 18.5     | 12.5     | 7.5       |
| tPZL      | OE U  |          | MAX        | 9          | 14.5       | 10          | 14.5        | 12.5 | 12.5 | 18.5     | 12.5     | 7.5       |
| tPHZ      | ŌE    | 0        | MAN        | 10.5       | 14.5       | 11.5        | 14.5        | 11.5 | 11.5 | 17       | 11.5     | 6.4       |
| tPLZ      | UE    | OE Q MAX | MAX        | 8.5        | 14.5       | 9           | 14.5        | 11.5 | 11.5 | 17       | 11.5     | 6.4       |

UNIT fmax : MHz, other : ns

## OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS

- 3-State Buffer-Type Noninverting Outputs Drive Bus Lines Directly
- Bus-Structured Pinout
- Synchronous Clear



#### **FUNCTION TABLE**

|    | INP | OUTPUT |   |    |
|----|-----|--------|---|----|
| ŌĒ | CLR | CLK    | D | Q  |
| L  | L   | 1      | X | L  |
| L  | Н   | 1      | Н | H  |
| L  | H   | 1      | L | L  |
| L  | H   | L      | X | Qo |
| H  | X   | X      | X | Z  |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS  | AS  | UNIT |
|-----------|------------|------|-----|------|
| lcc       | MAX        | 30   | 142 | mA   |
| Іон       | MAX        | -2.6 | -15 | mA   |
| lou       | MAX        | 24   | 48  | mA   |

SWITCHING CHARACTERISTICS

| PA      | RAMET | ER  | IN      | PUT   | 0     | UTPUT | MAX or MIN | ALS  | AS  |
|---------|-------|-----|---------|-------|-------|-------|------------|------|-----|
| fmax    |       | 17  | 100 145 |       | 00 10 |       | MIN        | 30   | 90  |
| tw      | CLK   | Н   | 95      | THE.  | 18    | Title | 5.8        |      |     |
|         |       | L   |         |       |       |       | 5 35 2     | 16.5 | 5.5 |
| tsu     | DA    | TA  | 1.6     | 15:   | 5     | E     | S MINI     | 15   | 5.5 |
| CLR     | CLR   | L   |         |       |       |       | MIN        | 15   | 6.5 |
| th DATA |       | TA  | 68      | 15    | 08    | 19    | M H P      |      | 3   |
|         | CI    | CLR |         |       |       |       | 21 6 0     | 0    | 0   |
| tPLH    | TEL   | P04 | 0       | w III | 80    |       | MAN        | 14   | 8   |
| tPHL .  |       | C   | LK      | 19    | Q     | MAX   | 14         | 9    |     |
| tРZH    |       | -   | C       | 16    | 0     | MAX   | 18         | 6    |     |
| tPZL    |       |     | 16      | 0     |       | WAX   | 18         | 10   |     |
| tPHZ    |       |     | C       | 0 MHC |       | MAX   | 10         | 6    |     |
| tpi 7   |       |     | 16      |       |       | MAX   | 13         | 6    |     |

## OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS

- 3-State Buffer-Type Inverting Outputs Drive Bus Lines Directly
- Bus-Structured Pinout
- Functionally Equivalent to '576, Except for Having Inverted Outputs



#### **FUNCTION TABLE**

| Γ |    | INPUTS |   | OUTPUT      |
|---|----|--------|---|-------------|
|   | ŌE | CLK    | D | Q           |
| Г | L  | 1      | Н | L           |
| П | L  | 1      | L | H           |
| ı | L  | L      | X | $\bar{Q}_0$ |
| ı | Н  | X      | X | Z           |



#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS  | AS  | UNIT |
|-----------|------------|------|-----|------|
| Icc       | MAX        | 30   | 135 | mA   |
| Іон       | MAX        | -2.6 | -15 | mA   |
| lor.      | MAX        | 24   | 48  | mA   |
|           |            |      |     |      |

#### SWITCHING CHARACTERISTICS

| SAALL        | JIIING CHANA | CIENISTICS |        |            | _    | _   |  |
|--------------|--------------|------------|--------|------------|------|-----|--|
| PA           | RAMETER      | INPUT      | ОИТРИТ | MAX or MIN | ALS  | AS  |  |
| fmax         |              |            |        | MIN        | 30   | 125 |  |
| tw           | Н            |            |        |            | 16.5 | 4   |  |
|              | L            |            |        | MIN        | 16.5 | 2   |  |
| tsu          | su DATA      |            |        | IVIIIN     | 15   | 2   |  |
| th           | DATA         |            |        |            | 0    | 2   |  |
| tPLH         |              | CLK        | ā      | MAX        | 14   | 8   |  |
| tPHL.        |              | ULK        | u      | MAX        | 14   | 9   |  |
| tPZH         |              | ŌE         | ā      | MAX        | 18   | 6   |  |
| tPZL         |              | UE         | u      | IVIAX      | 18   | 10  |  |
| tPHZ<br>tPLZ |              | ŌĒ         | ō      | MAX        | 10   | 6   |  |
|              |              | UE         | u      | WAX        | 15   | 6   |  |

UNIT fmax : MHz, other : ns

- Bus-Structured Pinout
- Synchronous Clear



#### FUNCTION TABLE

|    | INP |     | OUTPUT |                |
|----|-----|-----|--------|----------------|
| OE | CLR | CLK | D      | Q              |
| L  | L   | 1   | X      | Н              |
| L  | H   | 1   | Н      | L              |
| L  | H   | 1   | L      | H              |
| L  | H   | L   | X      | Q <sub>0</sub> |
| H  | X   | ×   | X      | Z              |



RECOMMENDED OPERATING CONDITIONS

|           |            |      |     | _    |
|-----------|------------|------|-----|------|
| PARAMETER | MAX or MIN | ALS  | AS  | UNIT |
| Icc       | MAX        | 30   | 142 | mA   |
| Іон       | MAX        | -2.6 | -15 | mA   |
| lou       | MAX        | 24   | 48  | mA   |

| SWITC  | HING CHARA    | ACTERISTICS |        |            |      |     |        |  |  |
|--------|---------------|-------------|--------|------------|------|-----|--------|--|--|
| PAR    | AMETER        | INPUT       | ОИТРИТ | MAX or MIN | ALS  | AS  | o XANI |  |  |
| fmax   |               |             |        | MIN        | 30   | 125 | 10     |  |  |
| tw     |               |             |        | 1          | 16.5 | 4   |        |  |  |
| tsu    | DATA          |             |        | MIN        | 15   | 2   | los    |  |  |
| th     | CLR           |             |        | 2          | 0    | 2   |        |  |  |
| tPLH   |               | OLK         | ā      | 144V S     | 14   | 8   |        |  |  |
| tPHL.  |               | CLK         | u      | MAX        | 14   | 9   | 100    |  |  |
| tPZH   |               | ŌE          | ā      | MAX        | 18   | 6   | 1000   |  |  |
| tPZL   |               | UE          | u      | IVIAX      | 18   | 10  | 10.0   |  |  |
| tPHZ   |               | ŌE          | ā      | MAX        | 10   | 6   |        |  |  |
| tPLZ   |               | UE          | u      | IVIAX      | 15   | 6   | OM     |  |  |
| UNIT 1 | fmax : MHz, o | ther: ns    |        | 8          | 15   |     | 100    |  |  |

## 580

## **OCTAL D-TYPE TRANSPARENT** LATCHES WITH INVERTED **OUTPUTS**

- 3-State Buffer-Type Outputs Drive Bus Lines
- Inverting-Logic Outputs
- Bus-Structured Pinout





To Seven Other Channels

**FUNCTION TABLE** 

|    | INPUTS |   | OUTDUT         |
|----|--------|---|----------------|
| OE | ENABLE | D | OUTPUT         |
| L  | Н      | Н | L              |
| L  | Н      | L | H              |
| L  | L      | X | Q <sub>0</sub> |
| Н  | X      | X | Z              |

RECOMMENDED OPERATING CONDITIONS

|           | 100        |      |     |      |
|-----------|------------|------|-----|------|
| PARAMETER | MAX or MIN | ALS  | AS  | UNIT |
| lcc       | MAX        | 29   | 115 | mA   |
| Іон       | MAX        | -2.6 | -15 | mA   |
| loc       | MAX        | 24   | 48  | mA   |
|           |            |      |     |      |

SWITCHING CHARACTERISTICS

| PARA   | AMETER | INPUT | OUTPUT | MAX or MIN | ALS | AS  |
|--------|--------|-------|--------|------------|-----|-----|
| tw     | C      |       | 100    |            | 15  | 2   |
| tsu    | C 1    |       |        | MIN        | 10  | 2   |
| th     | C \    |       |        |            | 10  | 3   |
| tPLH . | 100 E  | 100   | ā      | MAX        | 18  | 7.5 |
| tPHL . |        | D     | - u    | IVIAA      | 14  | 7   |
| tPLH   |        | LE    | ā      | MAX        | 22  | 9   |
| tPHL . |        | LE    | u u    | IVIAA      | 21  | 8   |
| tPZH   |        | ŌĒ    | ā      | MAX        | 18  | 6.5 |
| tPZL   | 30 -9  | OE .  | u      | MAX        | 18  | 9.5 |
| tPHZ   |        | ŌĒ    | ā      | MAX        | 10  | 6.5 |
| tPLZ   |        | UE    | u      | WAX        | 15  | 7   |

## 8-BIT BINARY COUNTER WITH OUTPUT REGISTER

- Parallel Register Outputs
- Counter Has Direct Clear
- 3-State Outputs
- Guaranteed Counter Frequency: DC to 20MHz

## Logic Diagram



| RECOMMENDED | ODEDATING | COMPLITIONS |
|-------------|-----------|-------------|
|             |           |             |

| HEGGIANALEIAN | DED OF ENATING OC | TENTIONE   |      | _          | _    |
|---------------|-------------------|------------|------|------------|------|
| PA            | ARAMETER          | MAX or MIN | LS   | SN74<br>HC | UNIT |
| Icc           |                   | MAX        | 65   | 0.08       | mA   |
|               | RCO               | MAX        | -1   | -4         | mA   |
| Іон           | Q                 | MAX        | -2.6 | -6         | mA   |
|               | RCO               | MAX        | 16   | 4          | mA   |
| lor           | 0                 | MAX        | 24   | 6          | mA   |

#### Logic Diagram

|  |  | TERIS |  |
|--|--|-------|--|
|  |  |       |  |

| F     | PARAMETER           | INPUT  | OUTPUT  | MAX or MIN | LS | SN74<br>HC |
|-------|---------------------|--------|---------|------------|----|------------|
| fmax  |                     | CCK    | RCO     | MIN        | 20 | 13         |
| tw    | CCK                 |        |         |            | 25 | 31         |
|       | CCLR                |        |         | MIN        | 20 | 25         |
|       | RCK                 |        |         |            | 20 | 31         |
| tsu   | CCLR ↑ bofore CCK ↑ |        |         | MIN        | 20 | 25         |
|       | CCK ↑ bofore RCK ↑  |        |         | Milly      | 40 | 25         |
| tPLH  |                     | CCK †  | RCO     | MAX        | 22 | 45         |
| tPHL  |                     | CCK    | nco     | IVIAA      | 30 | 45         |
| tPLH  |                     | CCLR ↓ | RCO     | MAX        | 45 | 39         |
| tPLH  |                     | DCV A  | Q       | MAX        | 18 | 42         |
| tPHL. |                     | RCK ↑  | 1 7-00- | IVIAA      | 33 | 42         |
| tPZH  |                     | Ğψ     | 0.115-  | MAX        | 38 | 37         |
| tPZL  |                     | g ţ    | u       | IVIAA      | 45 | 37         |
| tPHZ  |                     | G ↑    | 0       | MAX        | 30 | 37         |
| tPLZ  |                     | U T    | 0 80-   | IVIAA      | 38 | 37         |

#### UNIT fmax : MHz, other : ns

## 8-BIT BINARY COUNTER WITH INPUT REGISTER

- Parallel Register Inputs
- Counter Has Directly Overriding Load and Clear
- Accurate Counter Frequency: DC to 20MHz

## Logic Diagram



| PARAMETER | MAX or MIN | LS | UNIT |
|-----------|------------|----|------|
| Icc       | MAX        | 60 | mA   |
| Іон       | MAX        | -1 | mA   |
| lou       | MAX        | 16 | mA   |

#### HEIT BINARY COUNTER WITH IMPUT REGISTE

- Parallel 3-State I/O: Register Inguts/Counter Outputs
  - Tounter Has Directly Overriding Load and Clear

#### SWITCHING CHARACTERISTICS

|        | PARAMETER               | INPUT   | OUTPUT | MAX or MIN | LS |
|--------|-------------------------|---------|--------|------------|----|
| fmax   |                         | CCK     | RCO    | MIN        | 20 |
| tw     | CCK                     |         |        |            | 25 |
|        | CCLR                    |         |        | MIN        | 20 |
|        | RCK                     |         |        | WIIIV      | 20 |
|        | CLOAD                   |         |        |            | 40 |
| tsu    | CCLR ↑ bofore CCK ↑     |         |        |            | 20 |
|        | CLOAD ↑ bofore CCK ↑    |         |        | MIN        | 20 |
|        | RCK ↑<br>bofore CLOAD ↑ |         |        | Fine pares | 30 |
|        | A to H<br>bofore RCK    |         |        | 200        | 20 |
| th     |                         |         |        | MIN        | 0  |
| tPLH   |                         | CCK ↑   | RCO    | MAX        | 23 |
| tPHL   | -                       | CON     | 1100   | WIAA       | 30 |
| tPLH . | -                       | CLOAD 1 | RCO    | MAX        | 47 |
| tPHL   |                         | CEOMD 1 | 1100   | WIAA       | 17 |
| tPLH   |                         | CCLR ↓  | RCO    | MAX        | 45 |
| tPLH   |                         | RCK ↑   | RCO Q  | MAX        | 53 |
| tPHL.  |                         | HON     | 1100 0 | WINA       | 45 |

UNIT fmax : MHz, other : ns



|     | PARAMETER | MAX or MIN | LS   | ACT<br>11 | UNIT |
|-----|-----------|------------|------|-----------|------|
| Icc |           | MAX        | 85   | 0.08      | mA   |
| Іон | RCO       | MAX        | -1   | -24       | mA   |
| IUH | Q         | MAX        | -2.6 | -24       | mA   |
| los | RCO       | MAX        | 16   | 24        | mA   |
| lor | 0         | MAX        | 24   | 24        | mA   |

|      | PARAMETER               | INPUT   | OUTPUT | MAX or MIN | 11 |      |
|------|-------------------------|---------|--------|------------|----|------|
| fmax |                         | CCK     | RCO    | MIN        |    |      |
| tw   | CCK                     |         | '      |            | 25 | 9.6  |
|      | CCLR                    |         |        | AAINI      | 20 | 7.6  |
|      | RCK                     |         |        | MIN        | 20 | 5.8  |
|      | CLOAD                   |         |        |            | 40 | 6.2  |
| tsu  | CCLR ↑ bofore CCK ↑     |         |        |            | 20 | 1.2  |
|      | CLOAD ↑ bofore CCK ↑    |         |        | To Man     | 20 | 5.1  |
|      | RCK ↑<br>bofore CLOAD ↑ |         |        | MIN        | 30 | 7.4  |
|      | A to H<br>bofore RCK    |         |        |            | 20 | 2.4  |
| th   |                         |         |        | MIN        | 0  | 0.8  |
| tPLH |                         | 001/4   | a      | MAX        | 21 | 15.1 |
| tPHL |                         | CCK ↑   | u      | IVIAX      | 39 | 15   |
| tPLH | - 12                    | CLOAD 1 | Q      | MAX        | 51 | 19.1 |
| tPHL | 30                      | CLUAD 1 | D 68   | IVIAX      | 42 | 21.7 |
| tPHL |                         | CCLR 1  | 0      | MAX        | 38 | 16   |



## 8-BIT SHIFT REGISTER WITH OUTPUT LATCHE

- 8-Bit Serial-In, Parallel-Out Shift Registers with Storage
- Independent Direct Overriding Clears on Shift and Storage Registers
- Independent Clocks for Shift and Storage Registers
- Guaranteed Shift Frequency: DC to 20MHz



| SWITCHING CHARACTERISTICS |         |      |     |     |      |       |
|---------------------------|---------|------|-----|-----|------|-------|
|                           | CHAUTCE | HNIC | CUA | DAG | TEDI | CTICC |

| F           | PARAMETER           | INPUT   | OUTPUT   | MAX or MIN | LS | SN74<br>HC | AHC  | AHCT | LV<br>3V | LV<br>5V |
|-------------|---------------------|---------|----------|------------|----|------------|------|------|----------|----------|
| tw          | SRCK                |         | 1        | MIN        | 25 | 20         | 5    | 5.5  | 5.5      | 5        |
|             | RCK                 |         |          | IVIIN      | 20 | 20         | 5    | 5.5  | 5.5      | 5        |
| tsu         | SRCLR ↑ to SRCK ↑   |         |          |            | 20 | 10         | 3.3  | 3.3  | 4.8      | 3.3      |
|             | SER<br>to SRCK ↑    |         |          |            | 20 | 22         | 3    | 3    | 3.5      | 3        |
|             | SRCK ↑ to RCK ↑     | 44      |          | MIN        | 40 | 22         | 5    | 5    | 8.5      | 5        |
|             | SRCLR ↓<br>to RCK ↑ |         |          |            | 40 | 13         | 5    | 5    | 9        | 5        |
|             | RCLR ↑<br>to RCK ↑  |         |          |            | 20 | 5          | 3.7  | 3.8  | 5.3      | 3.7      |
| th          | 97                  |         |          | MIN        | 0  | 5          | 2    | 2    | 1.5      | 2        |
| TPLH        |                     | 0004 +  | OH,      | MAN        | 18 | 37         | 9.1  | 9.1  | 12.4     | 9.1      |
| tPHL        |                     | SRCK ↑  | un       | MAX        | 23 | 37         | 10.1 | 10.1 | 13.9     | 10.1     |
| tPLH        |                     | 201.4   | QA to QH | MAX        | 18 | 37         | 8.3  | 8.3  | 11.1     | 8.3      |
| TPHL        | -0 -E               | RCK ↑   | UA to UH |            | 30 | 37         | 9.7  | 9.7  | 13.1     | 9.7      |
| <b>TPHL</b> |                     | SRCLR ↓ | OH.      | MAX        | 33 | 37         | 10.7 | 10.1 | 14       | 10.1     |
| tPHL        |                     | RCLR 1  | QA to QH | IVIAX      | 57 | 31         | 10.1 | 10.7 | 14.4     | 10.7     |



## 8-BIT SHIFT REGISTER WITH OUTPUT LATCHE

- 8-Bit Serial-In, Parallel-Out Shift Registers with Storage
- 3-State Outputs
- Shift Register Has Direct Clear
- Accurate Shift Frequency: DC to 20MHz



#### RECOMMENDED OPERATING CONDITIONS

| PAR | AMETER   | MAX or MIN | LS  | SN74<br>HC | AHC  | AHCT | LV<br>3V | LV<br>5V | UNIT | SIT SHIFT REGISTER WIT        |
|-----|----------|------------|-----|------------|------|------|----------|----------|------|-------------------------------|
| С   |          | MAX        | 65  | 0.08       | 0.04 | 0.04 | -        | 0.02     | mA   |                               |
|     | ΩH.      | MAX        | -1  | -4         | -8   | -8   | -8       | -16      | mA   | 8-Bit Serial-In, Parallel-Out |
| Н   | QA to QH | MAX        | -26 | -6         | -8   | -8   | -8       | -16      | mA   | Councillector Parallel Outs   |
|     | σH.      | MAX        | 16  | 4          | 8    | 8    | 8        | 16       | mA   |                               |
| L   | QA to QH | MAX        | 24  | 6          | 8    | 8    | 8        | 16       | mA   | Shift Register Has Direct Cla |

#### SWITCHING CHARACTERISTICS

| SVVIIGI | HING CHARACTER    | 1131163  |          | 1000 1200 000 |    |    |      |      |          |          |  |
|---------|-------------------|----------|----------|---------------|----|----|------|------|----------|----------|--|
| Р       | ARAMETER          | INPUT    | OUTPUT   | MAX or MIN    | LS | нс | AHC  | AHCT | LV<br>3V | LV<br>5V |  |
| tw SRCK |                   |          |          |               | 25 | 20 | 5    | 5.5  | 5.5      | 5        |  |
|         | RCK               |          |          | MIN           | 20 | 20 | 5    | 5.5  | 5.5      | 5        |  |
| tsu     | SRCLR ↑ to SRCK ↑ | - 1110   | 3 -      |               | 20 | 12 | 2.5  | 3.8  | 3        | 2.5      |  |
|         | SER<br>to SRCK ↑  | No (III) |          | SE MIN        | 20 | 25 | 3    | 3    | 3.5      | 3        |  |
|         | SRCK ↑ to RCK ↑   |          |          |               | 40 | 19 | 5    | 5    | 8.5      | 5        |  |
|         | SRCLR ↓ to RCK ↑  | 80 (I)   |          | ne            | 40 | 13 | 5    | 5    | 9        | 5        |  |
| th      |                   | 1        |          | MIN           | 0  | 0  | 2    | 2    | 1.5      | 2        |  |
| PLH     |                   | CDCV A   | OH.      | MAY           | 18 | 40 | 11.4 | 11.4 | 18.5     | 11.4     |  |
| PHL     |                   | SRCK ↑   | UH L     | MAX           | 25 | 40 | 11.4 | 11.4 | 18.5     | 11.4     |  |
| PLH     |                   | DOV A    | QA to QH | MAX           | 18 | 37 | 10.5 | 10.5 | 17       | 10.5     |  |
| PHL     |                   | RCK ↑    | UA TO UH |               | 35 | 37 | 10.5 | 10.5 | 17       | 10.5     |  |
| tPHL    |                   | SRCLR ↓  | OH.      | MAX           | 35 | 44 | 11.1 | 11.1 | 17.2     | 11.1     |  |

## 8-BIT SHIFT REGISTER WITH OUTPUT LATCHE

- 8-Bit Serial-In, Parallel-Out Shift Registers with Storage
- Open-Collector Parallel Outputs
- Shift Register Has Direct Clear
- Accurate Shift Frequency: DC to 20MHz



#### RECOMMENDED OPERATING CONDITIONS

| TILOUTHITILITY | DED OF ENVITORED | T          |     | T    |
|----------------|------------------|------------|-----|------|
| P)             | ARAMETER         | MAX or MIN | LS  | UNIT |
| Icc            |                  | MAX 55     |     | mA   |
|                | σH.              | MAX        | 16  | mA   |
| Іон            | Q                | MAX        | 24  | mA   |
| lor            | OH.              | MAX        | -1  | mA   |
| Vон            | QA to QH         | MAX        | 5.5 | V    |

## IFT RESISTER WITH INPUT LATERS

48 8-Bit Parallel Storage Registers Inputs

Senitringpater has onest coefficiently coast and product

#### SWITCHING CHARACTERISTICS

| F      | ARAMETER            | INPUT   | OUTPUT   | MAX or MIN | LS |
|--------|---------------------|---------|----------|------------|----|
| tw     | SRCK                |         |          | MIN        | 25 |
|        | RCK                 |         |          | IVIIIV     | 20 |
| tsu    | SRCLR ↑ to SRCK ↑   |         |          | Y          | 20 |
|        | SER<br>to SRCK ↑    |         |          | MIN 2      |    |
|        | SRCK ↑ to RCK ↑     |         |          | MIN        | 40 |
|        | SRCLR ↓<br>to RCK ↑ |         |          |            | 40 |
| th     |                     |         |          | MIN        | 0  |
| PLH    |                     | CDCV A  | OH.      | MAX        | 21 |
| tPHL   |                     | SRCK ↑  | un       | IVIAA      | 30 |
| tPLH . |                     | RCK ↑   | QA to QH | MAX        | 42 |
| tPHL.  |                     | nuk T   | un to un | IVIAA      | 35 |
| tPHL   |                     | SRCLR 1 | OH.      | MAX        | 35 |

## 597

## 8-BIT SHIFT REGISTER WITH INPUT LATCHE

- 8-Bit Parallel Storage Registers Inputs
- Shift Register Has Direct Overriding Load and Clear
- Accurate Shift Frequency: DC to 20MHz

## Logic Diagram



#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|----|------------|-------------|------|
| Icc       | MAX        | 53 | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -1 | -4         | -4          | mA   |
| lou       | MAX        | 16 | 4          | 4           | mA   |

#### SWITCHING CHARACTERISTICS

|             | PARAMETER             | INPUT    | OUTPUT | MAX or MIN | LS | CD74<br>HC | CD74<br>HCT |
|-------------|-----------------------|----------|--------|------------|----|------------|-------------|
| fmax        |                       | SRCK     |        | -          | 20 | 20         | 16          |
| tw          | SRCK                  |          |        | MIN        | 35 | 24         | 30          |
|             | RCK                   |          |        | IVIIIV     | 20 | 18         | 20          |
|             | SRCLR                 |          |        | MIN        | 20 | 24         | 27          |
|             | SRLOAD                |          |        | IVIIIV     | 40 | 21         | 24          |
| tsu         | SRCLR ↑ to SRCK ↑     |          |        | MIN        | 25 | į.         | -11-X       |
|             | SRLOAD ↑<br>to SRCK ↑ |          |        | WIIN       | 30 | 1.         | -           |
|             | RCK ↑<br>to SRLOAD ↑  |          |        |            | 40 | (          |             |
|             | SER<br>to SRCK ↑      |          |        | MIN        | 20 | 15         | 15          |
|             | DATA<br>to RCK ↑      |          |        | MIN        | 20 | 15         | 15          |
| th          |                       |          |        | MIN        | 0  | 3          | 3           |
| tPLH        |                       | Annu .   | 000    | 1111       | 23 | 53         | 57          |
| tPHL        |                       | SRCK ↑   | σH.    | MAX        | 30 | 53         | 57          |
| tPLH        |                       | 001040   | OH,    | MAN        | 57 | 60         | 72          |
| tPHL        |                       | SRLOAD ↓ | ин     | MAX        | 44 | 60         | 72          |
| <b>TPHL</b> |                       | SRCLR ↓  | σH,    | MAX        | 36 | 53         | 66          |
| tPLH        |                       | DOV A    | OH.    | MAX        | 60 | 72         | 84          |
| tPHL.       |                       | RCK ↑    | ин     | IVIAX      | 48 | 72         | 84          |

UNIT fmax : MHz, other : ns



SWITCHING CHARACTERISTICS

| PARAMETER | INPUT     | ОИТРИТ         | MAX or MIN | LS |
|-----------|-----------|----------------|------------|----|
| fmax      | SRCK      | AL 1100 May 51 | MIN        | 20 |
| tPLH      |           | ΩH.            | 14437      | 17 |
| tPHL .    | SRCK ↑    | ин             | MAX        | 23 |
| tPLH      | 001010    | ΩH.            | 5.5.A.V    | 42 |
| tPHL .    | SRLOAD ↓  | ин             | MAX        | 30 |
| tPHL .    | SRCLR ↓   | OH.            | MAX        | 27 |
| tplH      | DCV A     | OH.            | MAX        | 48 |
| tphl .    | RCK ↑     | ин             | IVIAX      | 36 |
| tPLH      | ODOK A    | 0              | MAX        | 18 |
| tPHL .    | SRCK ↑    | u              | IVIAA      | 28 |
| tPLH      | SRLOAD J  | 0              | MAX        | 48 |
| tphl.     | SHLUAD \$ | u              | IVIAA      | 40 |
| tphl.     | SRCLR ↓   | Q              | MAX        | 38 |
| tPZH      | Ğψ        | 0              | MAX        | 31 |
| tPZL      | p †       | u              | IVIAA      | 43 |
| tрнz      | G↑        | 0              | MAX        | 38 |
| tPLZ      | 6.7       | 0              | IVIAX      | 30 |

waxamced United Chiefe Senes; MACT) Ixxx: Product Available in Reduced-N

SHOWS MAKENDERS

UNIT fmax : MHz, other : ns

## 620

## **OCTAL BUS TRANSCEIVERS**

- Local Bus-Latch Capability
- 3-State Inverting Outputs
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



#### **FUNCTION TABLE**

| ENABLE | INPUTS | OPERATION                         |
|--------|--------|-----------------------------------|
| ŌEBA   | OEAB   | OPERATION                         |
| L      | L      | B data to Abus                    |
| Н      | Н      | Ā data to B bus                   |
| Н      | L      | Isoration                         |
| L      | Н      | B data to Abus<br>A data to B bus |

#### RECOMMENDED OPERATING CONDITIONS

| NECOMMENDED  | OFENATING CON | DITION | )   |     | -          |             |      |          |           | _    |
|--------------|---------------|--------|-----|-----|------------|-------------|------|----------|-----------|------|
| PARAMETER    | MAX or MIN    | LS     | ALS | AS  | SN74<br>HC | SN74<br>BCT | ABT  | AC<br>11 | ACT<br>11 | UNIT |
| lccz         | MAX           | 95     | 47  | 77  | 0.08       | 10          | 0.25 | 0.08     | 0.008     | mA   |
| ICCL         | MAX           | 90     | 44  | 122 | 0.08       | 84          | 30   | 0.08     | 0.008     | mA   |
| Iон (A port) | MAX           | -15    | -15 | -15 | -6         | -3          | -32  | -24      | -24       | mA   |
| loн (B port) | MAX           | -15    | -15 | -15 | -6         | -15         | -32  | -24      | -24       | mA   |
| lot (A port) | MAX           | 24     | 24  | 64  | 6          | 24          | 64   | 24       | 24        | mA   |
| lot (B port) | MAX           | 24     | 24  | 64  | 6          | 64          | 64   | 24       | 24        | mA   |
| lor.         | MAX           |        | 48  |     |            |             |      |          | -         | mA   |
|              |               |        |     |     |            |             |      |          |           |      |

\*620-1

#### SWITCHING CHARACTERISTICS

| SWITCHING CHA | AHACTERISTICS |        | _          |    |     |    | 1          |             |     |          |           |
|---------------|---------------|--------|------------|----|-----|----|------------|-------------|-----|----------|-----------|
| PARAMETER     | INPUT         | OUTPUT | MAX or MIN | LS | ALS | AS | SN74<br>HC | SN74<br>BCT | ABT | AC<br>11 | ACT<br>11 |
| <b>TPLH</b>   | A             | В      | MAX        | 10 | 10  | 7  | 26         | 5.8         | 4.8 | 7.4      | 9.4       |
| tPHL .        | A             | В      | MAX        | 15 | 10  | 6  | 26         | 3.6         | 4.8 | 7.1      | 8.6       |
| tPLH          | В             | A      | MAX        | 10 | 10  | 7  | 26         | 6.9         | 4.8 | 7.4      | 9.4       |
| tPHL .        | В             | A      | IVIAX      | 15 | 10  | 6  | 26         | 3.9         | 4.8 | 7.1      | 8.6       |
| tPZH          | OEBA          | A      | MAX        | 40 | 17  | 8  | 53         | 10.6        | 5.5 | 8.9      | 10.3      |
| tPZL          | UEBA          | A      | IVIAA      | 40 | 25  | 9  | 53         | 11.1        | 7.1 | 8.5      | 10.1      |
| tPHZ          | OEBA          |        | MAX        | 25 | 12  | 6  | 38         | 10          | 7   | 8.1      | 10.4      |
| tPLZ          | UEBA          | A      | IVIAX      | 25 | 18  | 12 | 38         | 7.8         | 5.8 | 8.7      | 10.9      |
| tPZH          | OEAB          | В      | MAX        | 40 | 18  | 8  | 53         | 7.4         | 6.8 | 8.8      | 11.3      |
| tPZL          | UEAB          | В      | IVIAX      | 40 | 25  | 9  | 53         | 9           | 6.4 | 8.8      | 11        |
| tPHZ          | OEAB          | В      | MAX        | 25 | 12  | 6  | 38         | 8.1         | 6.5 | 8.2      | 9.4       |
| tPLZ          | UEAD          | D      | IVIAA      | 25 | 18  | 13 | 38         | 5.9         | 5.6 | 8.6      | 9.6       |

## **OCTAL BUS TRANSCEIVERS**

- Local Bus-Latch Capability
- Open-Collector True Outputs
- Schmitt-Triggered Inputs (SN74LS621)



#### **FUNCTION TABLE**

| ENABLE INPUTS |      | ODEDATION       |  |
|---------------|------|-----------------|--|
| OEBA          | OEAB | OPERATION       |  |
| L             | L    | B data to Abus  |  |
| Н             | Н    | A data to B bus |  |
| Н             | L    | Isoration       |  |
| L             | Н    | B data to Abus  |  |

|  | CONDITIONS |
|--|------------|
|  |            |

| PARAMETER | MAX or MIN | LS  | ALS | ALS<br>A-1 | AS  | UNIT |
|-----------|------------|-----|-----|------------|-----|------|
| Icc       | MAX        | 90  | 48  | 48         | 189 | mA   |
| Vон       | MAX        | 5.5 | 5.5 | 5.5        | 5.5 | V    |
| lou       | MAX        | 24  | 24  | 48         | 64  | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN    | LS   | ALS | ALS<br>A-1 | AS  |
|-----------|-------|--------|---------------|------|-----|------------|-----|
| tPLH      |       |        | 1444          | 25   | 33  | 33         | 24  |
| tPHL .    | A     | В      | MAX           | 25   | 20  | 20         | 21  |
| tPLH .    | В     |        | 144V          | 25   | 33  | 33         | 7.5 |
| tPHL      | В     | A A    | MAX           | 25   | 20  | 20         | 7.5 |
| tPLH      | 0EBA  |        | 144V          | 40   | 39  | 39         | 21  |
| tPHL .    | UEBA  | A      | MAX           | 50   | 35  | 35         | 9   |
| tPLH      | OEAB  | В      | MAX           | 40   | 39  | 39         | 22  |
| tPHL 1    | UEAB  | B      | MAX           | 50   | 35  | 35         | 10  |
| UNIT: ns  | 3.4   | 8 85 8 | 5 1 30 1 7 UP | [ [] | (1) |            |     |

## 623

- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



#### **FUNCTION TABLE**

| ENABLE | INPUTS | OPERATION                         |  |
|--------|--------|-----------------------------------|--|
| OEBA   | OEAB   | OPERATION                         |  |
| L      | L      | B data to Abus                    |  |
| Н      | Н      | A data to B bus                   |  |
| Н      | L      | Isoration                         |  |
| L      | Н      | B data to Abus<br>A data to B bus |  |

| RECOMMENDED  | OPERATING CON | DITIONS | 5   |     |     |            |             | Am II       |      |          | 83        |            |             | AIA  |
|--------------|---------------|---------|-----|-----|-----|------------|-------------|-------------|------|----------|-----------|------------|-------------|------|
| PARAMETER    | MAX or MIN    | LS      | ALS | AS  | F   | SN74<br>HC | SN74<br>HCT | SN74<br>BCT | ABT  | AC<br>11 | ACT<br>11 | CD74<br>AC | CD74<br>ACT | UNIT |
| Iccz         | MAX           | 95      | 55  | 116 | 130 | 0.08       | 0.08        | 11          | 0.25 | 0.08     | 0.04      | 0.16       | 0.16        | mA   |
| ICCL         | MAX           | 90      | 50  | 189 | 140 | 0.08       | 0.08        | 92          | 30   | 0.08     | 0.04      | 0.16       | 0.16        | mA   |
| Iон (A port) | MAX           | -15     | -15 | -15 | -3  | -6         | -6          | -3          | -32  | -24      | -24       | -24        | -24         | mA   |
| loн (B port) | MAX           | -15     | -15 | -15 | -15 | -6         | -6          | -15         | -32  | -24      | -24       | -24        | -24         | mA   |
| lot (A port) | MAX           | 24      | 24  | 64  | 24  | 6          | 6           | 24          | 64   | 24       | 24        | 24         | 24          | mA   |
| lot (B port) | MAX           | 24      | 24  | 64  | 64  | 6          | 6           | 64          | 64   | 24       | 24        | 24         | 24          | mA   |

#### CWITCHING CHARACTERISTICS

| SWITCHING CHAP | ACTENISTICS |        | 100        | 05 | _   |      | 1    |            |             |             |     |          |           | _          | 1           |
|----------------|-------------|--------|------------|----|-----|------|------|------------|-------------|-------------|-----|----------|-----------|------------|-------------|
| PARAMETER      | INPUT       | OUTPUT | MAX or MIN | LS | ALS | AS   | F    | SN74<br>HC | SN74<br>HCT | SN74<br>BCT | ABT | AC<br>11 | ACT<br>11 | CD74<br>AC | CD74<br>ACT |
| tPLH           |             |        | 1449       | 15 | 13  | 9    | 6.5  | 26         | 28          | 5.2         | 4.6 | 7.8      | 8.5       | 9.6        | 10.6        |
| tPHL .         | A           | В      | MAX        | 15 | 11  | 8    | 7.5  | 26         | 28          | 7.4         | 4.6 | 7.1      | 7.9       | 9.6        | 10.6        |
| tPLH           |             |        | 4444       | 15 | 13  | 9    | 6.5  | 26         | 28          | 6.7         | 4.6 | 7.8      | 8.5       | 9.6        | 10.6        |
| tphl .         | В           | A      | MAX        | 15 | 11  | 8.5  | 7.5  | 26         | 28          | 8           | 4.6 | 7.1      | 7.9       | 9.6        | 10.6        |
| tPZH           | OEBA        |        | MAX        | 40 | 22  | 11   | 12   | 53         | 53          | 10.6        | 7.5 | 9        | 9.7       | 13.4       | 14.4        |
| tPZL.          | UEBA        | A      | MAX        | 40 | 22  | 10   | 10   | 53         | 53          | 10.7        | 7.5 | 9.1      | 10        | 13.4       | 14.4        |
| tPHZ           | OEBA        |        | MAN        | 25 | 16  | 7.5  | 7.5  | 38         | 38          | 9.8         | 7.5 | 8.3      | 10.9      | 13.4       | 14.4        |
| tPLZ           | UEBA        | A      | MAX        | 25 | 19  | 11.5 | 7    | 38         | 38          | 7.8         | 7.5 | 8.8      | 11.5      | 13.4       | 14.4        |
| tPZH           | OCAR        | В      | MAN        | 40 | 22  | 11.5 | 11.5 | 53         | 53          | 7.6         | 7.5 | 9.2      | 10.7      | 13.4       | 14.4        |
| tPZL           | 0EAB        | В      | MAX        | 40 | 22  | 11   | 9.5  | 53         | 53          | 8.9         | 7.5 | 9.4      | 10.9      | 13.4       | 14.4        |
| tPHZ           | OFAR        | D      | MAN        | 25 | 16  | 7    | 10   | 38         | 38          | 7.7         | 7.5 | 8.3      | 9.5       | 13.4       | 14.4        |
| tPLZ           | OEAB        | В      | MAX        | 25 | 19  | 9    | 10   | 38         | 38          | 7.1         | 7.5 | 8.8      | 10        | 13.4       | 14.4        |

## **VOLTAGE-CONTROLLED OSCILLATOR**

- This Voltage Oscillators (VCOs) is Improved Versions of The Original VCO Family: Intelliged against air SN74124, 324, 325, 326, 327
- Separate Supply Voltage Pins for Isolation of Frequency Control Inputs and Oscillators from Outputs
   Circuitry
- Highly Stable Operation over Specified Temperature and / or Supply Voltage Ranges and added vidials and added vidials.



#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | UNIT |
|-----------|------------|------|------|
| lcc       | MAX        | 35   | mA   |
| lou       | MAX        | 24   | mA   |
| Іон       | MAX        | -1.2 | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | MAX or MIN | LS |
|-----------|------------|----|
| fo        | MAX        | 25 |

UNIT: MHz

#### **VOLTAGE-CONTROLLED OSCILLATOR**

- This Voltage Oscillators (VCOs) is Improved Versions of The Original VCO Family: conflicted against and SN74124, 324, 325, 326, 327
- Separate Supply Voltage Pins for Isolation of Frequency Control Inputs and Oscillators from Outputs
   Circuitry
- Highly Stable Operation over Specified Temperature and / or Supply Voltage Ranges and Addit Addit Addition
- Two Rexternal Pins Can Offer More Precise Temprature Compensation

## Logic Diagram



#### RECOMMENDED OPERATING CONDITIONS

| TIEGOTITITE TO ED | OI EIIIIIII OOII | 1    | _    |
|-------------------|------------------|------|------|
| PARAMETER         | MAX or MIN       | LS   | UNIT |
| Icc               | MAX              | 35   | mA   |
| Іон               | MAX              | -1.2 | mA   |
| lou               | MAX              | 24   | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | MAX or MIN | LS |
|-----------|------------|----|
| fo        | MAX        | 25 |

UNIT: MHz



## **VOLTAGE-CONTROLLED OSCILLATOR**

- This Voltage Oscillators (VCOs) is Improved Versions of The Original VCO Family: next and lengths sibility. SN74124, 324, 325, 326, 327
- Separate Supply Voltage Pins for Isolation of Frequency Control Inputs and Oscillators from Outputs
- Highly Stable Operation over Specified Temperature and / or Supply Voltage Ranges



#### RECOMMENDED OPERATING CONDITIONS

| THE OUTTO A DECEMBER OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OUT OF THE OUTE OF THE OUTE OF THE OUTE OF THE OUTE OUT OF THE OUTE OUT OF THE OUTE OUT OF THE OUTE OUT OF THE OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT | 01 210 111110 0011 | I    | _    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|------|
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAX or MIN         | LS   | UNIT |
| lcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAX                | 55   | mA   |
| Іон                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAX                | -1.2 | mA   |
| lou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAX                | 24   | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | MAX or MIN | LS |
|-----------|------------|----|
| fo        | MAX        | 25 |

## 638

#### OCTAL BUS TRANSCEIVERS

- Bidirectional Bus Tranceivers
- Inverting Logic
- Outputs A-Bus: Open-Collector 3-State
- Schmitt-Triggered Inputs (SN74LS638)



To Seven Other Transceivers

#### **FUNCTION TABLE**

| CONTROL INPUTS |     | OPERATION       |
|----------------|-----|-----------------|
| ŌĒ             | DIR | OPERATION       |
| L              | L   | B data to A bus |
| L              | H   | A data to B bus |
| H              | X   | Isoration       |

RECOMMENDED OPERATING CONDITIONS

|           |            |     |     |     | _    |
|-----------|------------|-----|-----|-----|------|
| PARAMETER | MAX or MIN | LS  | ALS | AS  | UNIT |
| lccz      | MAX        | 95  | 30  | 61  | mA   |
| ICCL      | MAX        | 90  | 41  | 122 | mA   |
| Іон (В)   | MAX        | -15 | -15 | -15 | mA   |
| Von (A)   | MAX        | 5.5 | 5.5 | 5.5 | V    |
| loL       | MAX        | 24  | 24  | 64  | mA   |
| lot-      | MAX        |     | 48  |     | mA   |

\*638-1

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT  | MAX or MIN | LS | ALS | AS  |
|-----------|-------|---------|------------|----|-----|-----|
| tPLH      |       |         |            | 10 | 12  | 7   |
| tPHL .    | A     | A B MAX |            | 15 | 12  | 6.5 |
| tPLH .    | В     | A       | MAN        | 25 | 25  | 20  |
| tphl.     | В     | A       | MAX        | 25 | 30  | 7   |
| tPLH      | ŌĒ    |         | MAN        | 40 | 25  | 19  |
| tPHL .    | OE A  |         | MAX        | 60 | 45  | 9   |
| tpzh      | ŌE    | В       | MANY       | 40 | 20  | 8   |
| tPZL      | UE    | В       | B MAX      |    | 22  | 10  |
| tPHZ      | ŌE    | D.      | MAY        | 25 | 10  | 7   |
| tPLZ      | UE    | В       | MAX        | 25 | 15  | 10  |

UNIT: ns

DWITCHING CHARACTERISTICS
PARAMETER MACK of MIN LS

#### Schmitt-Triggered Inputs (SN/4LS638)



**FUNCTION TABLE** 

| CONTRO | L INPUTS | OPERATION       |
|--------|----------|-----------------|
| ŌĒ     | DIR      | OPERATION       |
| L      | L        | B data to A bus |
| L      | H        | A data to B bus |
| Н      | X        | Isoration       |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS  | ALS | AS  | UNIT |
|-----------|------------|-----|-----|-----|------|
| Iccz      | MAX        | 95  | 54  | 100 | mA   |
| Iccı      | MAX        | 90  | 50  | 154 | mA   |
| Іон (В)   | MAX        | -15 | -15 | -15 | mA   |
| Von (A)   | MAX        | 5.5 | 5.5 | 5.5 | V    |
| lou       | MAX        | 24  | 24  | 64  | mA   |
| lor.      | MAX        |     | 48  | -   | mA   |

\*639-1

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT            | OUTPUT | MAX or MIN | LS | ALS | AS   |
|-----------|------------------|--------|------------|----|-----|------|
| tPLH      | 28 A EL          | В      | MAX        | 15 | 12  | 9.5  |
| tPHL      | T.E. I SE        | D.     | IVIAA      | 15 | 12  | 9    |
| tPLH      | 88 B             | A      | MAY        | 25 | 30  | 22   |
| tPHL .    | В                | A      | MAX        | 25 | 22  | 9    |
| tPLH      | 901 <u>0E</u> 84 | A      | MAX        | 40 | 30  | 21.5 |
| tphl.     | OE OE            | A      | MAX        | 50 | 35  | 11.5 |
| tPZH      | OE OE            | В      | NAV II     | 40 | 21  | 10.5 |
| tPZL      | UE               | В      | MAX        | 40 | 25  | 10.5 |
| tPHZ      | OE TO            | В      | MAY        | 25 | 10  | 7    |
| tPLZ      | UE               | В      | MAX        | 25 | 16  | 10.5 |

## **OCTAL BUS TRANSCEIVERS**

- Bidirectional Bus Tranceivers
- Inverting Logic
- 3-State Outputs
- Schmitt-Triggered Inputs (SN74LS640, 640-1)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



#### **FUNCTION TABLE**

| CONTRO | L INPUTS | OPERATION       |  |           |  |  |  |
|--------|----------|-----------------|--|-----------|--|--|--|
| ŌĒ     | DIR      |                 |  | OPERATION |  |  |  |
| L      | L        | B data to A bus |  |           |  |  |  |
| L      | H        | A datato B bus  |  |           |  |  |  |
| H      | X        | Isoration       |  |           |  |  |  |

| PARAMETER    | MAX or MIN | LS  | ALS | AS  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT  | ACT<br>11 | UNIT |
|--------------|------------|-----|-----|-----|------------|------------|-------------|-------------|-------------|------|-----------|------|
| lccz         | MAX        | 95  | 50  | 80  | 0.08       | 0.16       | 0.08        | 0.16        | 11          | 0.25 | 80.0      | mA   |
| Iccı         | MAX        | 90  | 55  | 123 | 0.08       | 0.16       | 0.08        | 0.16        | 94          | 30   | 0.08      | mA   |
| loн (A port) | MAX        | -15 | -15 | -15 | -6         | -6         | -6          | -6          | -3          | -32  | -24       | mA   |
| loн (B port) | MAX        | -15 | -15 | -15 | -6         | -6         | -6          | -6          | -15         | -32  | -24       | mA   |
| lot (A port) | MAX        | 24  | 24  | 64  | 6          | 6          | 6           | 6           | 24          | 64   | 24        | mA   |
| lot (B port) | MAX        | 24  | 24  | 64  | 6          | 6          | 6           | 6           | 64          | 64   | 24        | mA   |
| lor.         | MAX        | 48  | 48  | -   | -          | -          |             | -           | -           | *80  |           | mA   |

\*640-1

| SWITCHING CHAR | ACTERISTICS |        |            |    |     |     |            |            |             | 591193      | HE LIAN     | AND DE | HIGHN     |
|----------------|-------------|--------|------------|----|-----|-----|------------|------------|-------------|-------------|-------------|--------|-----------|
| PARAMETER      | INPUT       | OUTPUT | MAX or MIN | LS | ALS | AS  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT    | ACT<br>11 |
| tPLH           | A           | В      | MAX        | 10 | 11  | 7   | 26         | 27         | 28          | 33          | 6.5         | 4.9    | 10.5      |
| tphL .         | A           | В      | IVIAA      | 15 | 10  | 6   | 26         | 27         | 28          | 33          | 3.7         | 4.9    | 9.5       |
| tplH .         | В           | A      | MAX        | 10 | 11  | . 7 | 26         | 27         | 28          | 33          | 6.5         | 4.9    | 10.5      |
| tPHL           | В           | A      | WAA        | 15 | 10  | 6   | 26         | 27         | 28          | 33          | 3.7         | 4.9    | 9.5       |
| tPZH           | ŌE          |        | MAN        | 40 | 21  | 8   | 58         | 45         | 58          | 45          | 10.2        | 5.8    | 13.4      |
| tPZL           | UE          | A      | MAX        | 40 | 24  | 10  | 58         | 45         | 58          | 45          | 10.7        | 7.3    | 13.6      |
| tPHZ           | ŌE          |        | MANY       | 25 | 10  | 8   | 38         | 45         | 50          | 45          | 10.2        | 6.8    | 13.9      |
| tPLZ           | ÜE          | A      | MAX        | 25 | 15  | 13  | 38         | 45         | 50          | 45          | 7.8         | 5.5    | 14.2      |
| tPZH           | ŌE          |        | MAN        | 40 | 21  | 8   | 58         | 45         | 58          | 45          | 10.2        | 5.8    | 13.4      |
| tPZL           | UE          | В      | MAX        | 40 | 24  | 10  | 58         | 45         | 58          | 45          | 10.7        | 7.3    | 13.6      |
| tPHZ           | ŌE          |        | MAN        | 25 | 10  | 8   | 38         | 45         | 50          | 45          | 10.2        | 6.8    | 13.9      |
| tPLZ           | UE          | В      | MAX        | 25 | 15  | 13  | 38         | 45         | 50          | 45          | 7.8         | 5.5    | 14.2      |

#### **OCTAL BUS TRANSCEIVERS**

- Bidirectional Bus Tranceivers
- True Logic
- 3-State Outputs
- Schmitt-Triggered Inputs (SN74LS641)



#### **FUNCTION TABLE**

| CONTRO | L INPUTS | OPERATION       |  |
|--------|----------|-----------------|--|
| G      | DIR      | OPERATION       |  |
| L      | L        | B data to A bus |  |
| L      | H        | A datato B bus  |  |
| Н      | X        | Isoration       |  |





To Seven Other Transceivers

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS  | ALS | AS  | UNIT |
|-----------|------------|-----|-----|-----|------|
| lccz      | MAX        | 95  | -   | -   | mA   |
| Iccl      | MAX        | 90  | 47  | 136 | mA   |
| Voн       | MAX        | 5.5 | 5.5 | 5.5 | V    |
| lou       | MAX        | 24  | 24  | 64  | mA   |
| lor.      | MAX        | 48  | 48  | -   | mA   |

<sup>\*641-1</sup> 

CANITCHING CHARACTERISTICS

| SWITCHING CHAR | ACTERISTICS |        | 10000      |    |     |     |  |
|----------------|-------------|--------|------------|----|-----|-----|--|
| PARAMETER      | INPUT       | OUTPUT | MAX or MIN | LS | ALS | AS  |  |
| tPLH .         |             |        | MAX        | 25 | 25  | 21  |  |
| tPHL .         | А           | В      | IVIAA      | 25 | 18  | 7.5 |  |
| tPLH .         |             |        | MAX        | 25 | 25  | 21  |  |
| tPHL .         | В           | A      |            | 25 | 18  | 7.5 |  |
| tPLH .         | ŌE          | 4.0    | MAN        | 40 | 30  | 21  |  |
| tPHL .         | UE          | A,B    | MAX        | 50 | 30  | 9   |  |
| tPLH .         | DID         | 4.0    | 144V       | 40 | 32  | 22  |  |
| tPHL .         | DIR A,B MAX |        | MAX        | 50 | 32  | 10  |  |
|                |             |        |            |    |     |     |  |

## Schmitt-Triggered Inputs (SN74LS642)



**FUNCTION TABLE** 

| CONTRO | L INPUTS | OPERATION       |  |
|--------|----------|-----------------|--|
| ŌĒ     | DIR      |                 |  |
| L      | L        | B data to A bus |  |
| L      | H        | A data to B bus |  |
| H      | X        | Isoration       |  |



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS  | ALS | AS  | UNIT |
|-----------|------------|-----|-----|-----|------|
| lccz      | MAX        | 95  | -   |     | mA   |
| ICCL      | MAX        | 90  | 28  | 104 | mA   |
| Vон       | MAX        | 5.5 | 5.5 | 5.5 | V    |
| lou       | MAX        | 24  | 24  | 64  | mA   |
| lor.      | MAX        | 48  | 48  |     | mA   |

\*642-1

SWITCHING CHARACTERISTICS

| INPUT   | OUTPUT            | MAX or MIN         | LS                                                                                                | ALS                                                    | AS                                                    |
|---------|-------------------|--------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
|         |                   | MAN 20             | 25                                                                                                | 30                                                     | 24                                                    |
| А       | В                 | IVIAX              | 25                                                                                                | 22                                                     | 7.5                                                   |
| В       | А                 | MAX                | 25                                                                                                | 30                                                     | 24                                                    |
|         |                   |                    | 25                                                                                                | 22                                                     | 7.5                                                   |
| OF DID  |                   | MAN                | 40                                                                                                | 30                                                     | 23.5                                                  |
| UE, DIK | A                 | IVIAX              | 60                                                                                                | 38                                                     | 11.5                                                  |
| OF DID  |                   | MAN                | 40                                                                                                | 30                                                     | 23.5                                                  |
| UE, DIK | В                 | WAX                | 60                                                                                                | 38                                                     | 11.5                                                  |
|         | A<br>B<br>OE, DIR | A B B A  OE, DIR A | A         B         MAX           B         A         MAX           OE, DIR         A         MAX | A B MAX 25 B A MAX 25 0E, DIR A MAX 40 0E DIR B MAX 40 | A B MAX 25 30 25 22 B A MAX 25 30 0E, DIR A MAX 40 30 |

## OCTAL BUS TRANSCEIVERS

- Bidirectional Bus Tranceivers
- True Logic
- 3-State Outputs
- Schmitt-Triggered Inputs (SN74LS645, 645-1)



To Seven Other Transceivers

**FUNCTION TABLE** 

| OPERATION      | CONTROL INPUTS |    |  |
|----------------|----------------|----|--|
| OPERATION      | DIR            | ŌĒ |  |
| B data to A bu | L              | L  |  |
| A data to B bu | H              | L  |  |
| Isoration      | X              | H  |  |

RECOMMENDED OPERATING CONDITIONS

| HEOOMHHEITBED | OT ENDTHING GOTT | DITTO TE | 1   | _   | _          | _           | _    |
|---------------|------------------|----------|-----|-----|------------|-------------|------|
| PARAMETER     | MAX or MIN       | LS       | ALS | AS  | SN74<br>HC | SN74<br>HCT | UNIT |
| lccz          | MAX              | 95       | 58  | 123 | 0.08       | 0.08        | mA   |
| lcci          | MAX              | 90       | 55  | 149 | 0.08       | 0.08        | mA   |
| Іон           | MAX              | -15      | -15 | -15 | -6         | -6          | mA   |
| lou ne        | MAX              | 24       | 24  | 64  | 6          | 6           | mA   |
| ln:*          | MAX              | 48       | 48  | -   |            |             | mA   |

\*645-1

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT   | MAX or MIN | LS | ALS | AS  | SN74<br>HC | SN74<br>HCT |
|-----------|-------|----------|------------|----|-----|-----|------------|-------------|
| tPLH      | Α     | В        | MAN        | 15 | 10  | 9.5 | 26         | 28          |
| tPHL .    |       |          | MAX        | 15 | 10  | - 9 | 26         | 28          |
| tPLH      | В     | А        | 644V       | 15 | 10  | 9.5 | 26         | 28          |
| tPHL .    |       |          | MAX        | 15 | 10  | 9   | 26         | 28          |
| tPZH      | ŌĒ    | THAA THA | MAX        | 40 | 20  | 11  | 58         | 58          |
| tPZL      |       |          |            | 40 | 20  | 10  | 58         | 58          |
| tPHZ      | ŌĒ    |          | MAX        | 25 | 10  | 7   | 50         | 50          |
| tPLZ      | OE    | A        |            | 25 | 15  | 12  | 50         | 50          |
| tPZH      | ŌE    | 38 18-   | MAX        | 40 | 20  | 11  | 58         | 58          |
| tPZL.     | OE .  | ы В      |            | 40 | 20  | 10  | 58         | 58          |
| tPHZ      | ŌE    | В        | MAY        | 25 | 10  | 7   | 50         | 50          |
| tPLZ      | UE    |          | MAX        | 25 | 15  | 12  | 50         | 50          |

- Bidirectional Bus Tranceivers
- Independent Registers for A and B Buses
- Multiplexed Real-Time and Stored Data
- True Data Paths
- 3-State Outputs
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



| PARAMETER | MAX or MIN | LS  | ALS | AS   | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT | ABT | ABT<br>Ver.A | LVTH<br>3V | UNIT |
|-----------|------------|-----|-----|------|------------|------------|-------------|-------------|-------------|-----|--------------|------------|------|
| lcc       | MAX        | 165 | 88  | 211  | 0.08       | 0.16       | 0.08        | 0.08        | 67          | 30  | 30           | 5          | mA   |
| Іон       | MAX        | -15 | -15 | -15  | -6         | -6         | -6          | -6          | -15         | -32 | -32          | -32        | _mA  |
| lou       | MAX        | 24  | 24  | 48   | 6          | 6          | 6           | 6           | 64          | 64  | 64           | 64         | mA   |
| OL*       | MAX        | - 1 | 48  | 98 - | 1-1        | 01-        | 25*         | -           | - 2         | -   | -            |            | mA   |

|           |            |       | 100        |           |             |           |      |
|-----------|------------|-------|------------|-----------|-------------|-----------|------|
| PARAMETER | MAX or MIN | AC 11 | CD74<br>AC | ACT<br>11 | CD74<br>ACT | LVC<br>3V | UNIT |
| Icc       | MAX        | 0.08  | 0.08       | 0.08      | 0.08        | 0.01      | mA   |
| Іон       | MAX        | -24   | -24        | -24       | -24         | -24       | mA   |
| lou       | MAX        | 24    | 24         | 24        | 24          | 24        | mA   |
| lor.      | MAX        |       | -          | -         | -           | -         | mA   |
|           |            |       |            |           |             |           |      |

|    |     |             |             |        | FUNCI  | ION IMPL         | - Lin            |                                                     |
|----|-----|-------------|-------------|--------|--------|------------------|------------------|-----------------------------------------------------|
|    |     | INP         | UTS         |        |        | DATA             | 1/O†             |                                                     |
| OE | DIR | CLKAB       | CLKBA       | SAB    | SBA    | A1-A8            | B1-B8            | OPERATION OR FUNCTION                               |
| H  | X   | H to L      | H to L      | X      | X      | Input<br>Input   | Input<br>Input   | Isolation<br>Store A and B data                     |
| L  | L   | X<br>X      | X<br>H to L | X<br>X | L<br>H | Output<br>Output | Input<br>Input   | Real-time B data to A bus<br>Stored B data to A bus |
| L  | Н   | X<br>H to L | X           | L      | X      | Input<br>Input   | Output<br>Output | Real-time A data to B bus<br>Stored A data to B bus |

<sup>†</sup> The data output functions can be enabled or disabled by various signals at OE and DIR. Data input functions are always enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

## SWITCHING CHARACTERISTICS

|           |                   |         |            |    |      |     | 01174      | 0074       | 04174       | 0074        | 0.117       |
|-----------|-------------------|---------|------------|----|------|-----|------------|------------|-------------|-------------|-------------|
| PARAMETER | INPUT             | OUTPUT  | MAX or MIN | LS | ALS  | AS  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT |
| fmax      |                   |         | MIN        | -  | 40   | 90  | 27         | 25         | 27          | 20          | 83          |
|           | CLKBA,CLK         | AB "H"  |            | 15 | 12.5 | 5   | 19         | 20         | 19          | 31          | 6           |
| tw        | CLKBA,CLK         | AB "L"  | MIN        | 30 | 12.5 | 6   | 19         | 20         | 19          | 31          | 6           |
|           | DATA              | 4       |            | 30 | -    |     |            | -          | -           | -           | -           |
|           | CLKBA,CLK         | AB "H"  | MIN        | 15 | 10   | 6   | 25         | 15         | 25          | 15          | 6           |
| tsu       | CLKBA,CLK         | (AB "L" | MIN        | 15 | 10   | 6   | 25         | 15         | 25          | 15          | 6           |
| th        | CLKBA,C           | LKAB    | MIN        | 0  | 0    | 0   | 5          | 9          | 5           | 5           | 0.5         |
| tplH.     | NOON.             | 4.0     | 2447       | 25 | 30   | 8.5 | 45         | 55         | 45          | 55          | 11.2        |
| tphl.     | CLOCK             | A,B     | MAX        | 35 | 17   | 9   | 45         | 55         | 45          | 55          | 10.6        |
| tPLH      | 4.0               |         | 1111       | 18 | 20   | 9   | 34         | 34         | 34          | 46          | 9.5         |
| tphl .    | A,B               | B,A     | MAX        | 20 | 12   | 7   | 34         | 34         | 34          | 46          | 10.5        |
| tPLH .    | SAB,SBA           | A D     | MAX        | 40 | 25   | 11  | 48         | 43         | 48          | 58          | 13.8        |
| tPHL .    | (sored data high) | A,B     | MAX        | 35 | 20   | 9   | 48         | 43         | 48          | 58          | 9.1         |
| tPLH      | SAB,SBA           | 4.0     |            | 50 | 35   | 11  | 48         | 43         | 48          | 58          | 12          |
| tphL .    | (sored data low)  | A,B     | MAX        | 25 | 20   | 9   | 48         | 43         | 48          | 58          | 12.9        |
| tpzH      | ŌĒ                | A D     | BAAN.      | 55 | 17   | 9   | 61         | 44         | 61          | 56          | 13.2        |
| tPZL      | UE                | A,B     | MAX        | 65 | 20   | 14  | 61         | 44         | 61          | 56          | 14.4        |
| tрнz      | ŌĒ                | A D     | MAX        | 35 | 10   | 9   | 61         | 44         | 61          | 44          | 10.9        |
| tPLZ      | UE                | A,B     | IVIAX      | 35 | 16   | 9   | 61         | 44         | 61          | 44          | 10.5        |
| tpzH      | DIR               | A,B     | MAX        | 45 | 30   | 16  | 61         | 44         | 61          | 56          | 13.1        |
| tPZL      | UIK               | A,B     | IVIAX      | 60 | 25   | 18  | 61         | 44         | 61          | 56          | 14.6        |
| tPHZ      | DIR               | A D     | MAX        | 30 | 10   | 10  | 61         | 44         | 61          | 44          | 12.6        |
| tPLZ      | DIK               | A,B     | IVIAX      | 30 | 16   | 10  | 61         | 44         | 61          | 44          | 11.8        |

| PARAMETER | INPUT             | OUTPUT  | MAX or MIN | ABT | ABT<br>A Ver. | LVTH<br>3V | AC<br>11 | CD74<br>AC | ACT<br>11 | CD74<br>ACT | 3V<br>LVC |
|-----------|-------------------|---------|------------|-----|---------------|------------|----------|------------|-----------|-------------|-----------|
| fmax      |                   |         | MIN        | 125 | 125           | 150        | 100      | 125        | 105       | 110         | 150       |
|           | CLKBA,CLI         | KAB "H" |            | 4   | 4             | 3.3        | - 5      | 4          | 4.8       | 4.5         | 3.3       |
| tw        | CLKBA,CL          | KAB "L" | MIN        | 4   | 4             | 3.3        | 5        | 4          | 4.8       | 4.5         | 3.3       |
|           | DAT               | A       | 1          | 1   | 12.7          | - 1        |          | -          | -         | 7. 1        | 1 4       |
|           | CLKBA,CLI         | KAB "H" | MIN        | 3.5 | 3             | 1.2        | 4.5      | 2.5        | 4.5       | 2.5         | 1.5       |
| tsu       | CLKBA,CL          | KAB "L" | IVIIIN     | 3   | 3             | 1.6        | 4.5      | 2.5        | 4.5       | 2.5         | 1.5       |
| th        | CLKBA,C           | LKAB    | MIN        | 0   | 0             | 0.8        | 1        | 2          | 2.5       | 2           | 1.7       |
| tplH      | CLOCK             | A D     | MAX        | 7.8 | 5.6           | 4.7        | 11       | 13.5       | 13.5      | 15.5        | 8.4       |
| tphL .    | CLUCK             | A,B     | IVIAX      | 8.4 | 5.6           | 4.7        | 12.2     | 13.5       | 14.9      | 15.5        | 8.4       |
| tPLH      | A.B               | D. A.   | MAX        | 6.9 | 4.8           | 3.5        | 8.8      | 11         | 11.5      | 12.5        | 7.4       |
| tPHL .    | A,B               | B,A     | IVIAA      | 6.9 | 5.4           | 3.5        | 9.8      | -11        | 12        | 12.5        | 7.4       |
| tPLH      | SAB,SBA           | 4.0     | MAX        | 7.1 | 6.5           | 4.9        | 9.4      | 12         | 11.5      | 14.5        | 8.6       |
| tPHL .    | (sored data high) | A,B     | IVIAA      | 7.9 | 5.9           | 4.9        | 10.7     | 12         | 13.5      | 14.5        | 8.6       |
| tplH      | SAB,SBA           | A,B     | MAX        | 7.1 | 6.5           | 4.9        | 9.9      | 12         | 12.4      | 14.5        | 8.6       |
| tPHL      | (sored data low)  | A,B     | MAX        | 7.9 | 5.9           | 4.9        | 11       | 12         | 13.1      | 14.5        | 8.6       |
| tPZH      | ŌĒ                | A,B     | MAX        | 6.3 | 6.3           | 5.2        | 12       | 13.5       | 14.4      | 15.5        | 8.2       |
| tpzi.     | UE                | A,B     | IVIAX      | 8.8 | 8.8           | 5.2        | 13.1     | 13.5       | 15.3      | 15.5        | 8.2       |
| tрнz      | ŌĒ                | A,B     | MAX        | 8.3 | 5             | 5.5        | 8.9      | 13.5       | 11.6      | 15.5        | 7.5       |
| tplz      | UE                | A,b     | IVIAA      | 7.5 | 4.5           | 5.5        | 8.3      | 13.5       | 10.6      | 15.5        | 7.5       |
| tPZH      | DIR               | A,B     | MAY        | 6.7 | 6.7           | 5.2        | 12.6     | 13.5       | 15.3      | 15.5        | 8.3       |
| tPZL      | 1 DIK             | A,B     | MAX        | 9.5 | 9.5           | 5.2        | 13.7     | 13.5       | 16.5      | 15.5        | 8.3       |
| tPHZ      | DIR               | A D     | MAN        | 7.7 | 5.7           | 5.6        | 8.7      | 13.5       | 11.3      | 15.5        | 7.9       |
| tPLZ      | DIK               | A,B     | MAX        | 8.2 | 6             | 5.6        | 8.1      | 13.5       | 10.3      | 15.5        | 7.9       |

UNIT fmax : MHz other : ns

## **OCTAL BUS TRANSCEIVERS AND REGISTERS**

- Bidirectional Bus Tranceivers
- Independent Registers for A and B Buses
- Multiplexed Real-Time and Stored Data
- True Data Paths
- Open-Collector Outputs



| FUNCTION | TARLE |
|----------|-------|
|          |       |

| INPUTS                                                                     | DATA I/O† | OPERATION OR FUNCTION |
|----------------------------------------------------------------------------|-----------|-----------------------|
| the Bure terroupale le étorad on audit jour-to-pion transition of the cior | w innus   | OPERATION OR FUNCTION |

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS  | UNIT |
|-----------|------------|-----|------|
| Icc       | MAX        | 150 | mA   |
| Voн       | MAX        | 5.5 | V    |
| lou       | MAX        | 24  | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER   | INPUT                 | OUTPUT | MAX or MIN | LS |
|-------------|-----------------------|--------|------------|----|
| tw          |                       |        | MIN        | 30 |
| tsu         | A,B                   |        | MIN        | 15 |
| th          | A,B                   |        | MIN        | 0  |
| tPLH .      | CLOCK                 | A D    | MAX        | 35 |
| tphL .      | CLUCK                 | A,B    | IVIAX      | 45 |
| tplH .      | - A,B                 | B,A    | MAX        | 26 |
| tPHL .      |                       | D,A    | MAX        | 27 |
| tPLH        | SAB,SBA               | A,B    | MAX        | 50 |
| tPHL .      | (With Bus Input High) | A,B    | IVIAA      | 45 |
| tplH        | SAB,SBA               | A,B    | MAX        | 60 |
| tPHL .      | (With Bus Input Low)  | A,D    | IVIAA      | 30 |
| tPLH ne     | - G                   | A,B    | MAX        | 40 |
| tPHL .      | - 6                   | A,D    | IVIAA      | 50 |
| tPLH        | DIR                   | A,B    | MAX        | 35 |
| <b>TPHL</b> | DIK                   | M,D    | WAX        | 40 |

UNIT: ns

a Seven Other Channels

# **OCTAL BUS TRANSCEIVERS AND REGISTERS**

- Bidirectional Bus Tranceivers
- Independent Registers for A and B Buses
- Multiplexed Real-Time and Stored Data
- Inverting Data Paths
- 3-State Outputs



|        |        |        |             |     | 1 01401 | TON TABL         | - bar          |                                                     |  |
|--------|--------|--------|-------------|-----|---------|------------------|----------------|-----------------------------------------------------|--|
|        |        | INF    | UTS         |     |         | DATA             | A I/O†         | OPERATION OR FUNCTION                               |  |
| ŌĒ     | DIR    | CLKAB  | CLKBA       | SAB | SBA     | A1-A8            | B1-B8          | OPERATION OR FUNCTION                               |  |
| H      | X      | H to L | H to L      | X   | X       | Input<br>Input   | Input<br>Input | Isolation<br>Store A and B data                     |  |
| L<br>L | L<br>L | X      | X<br>H to L | ×   | L<br>H  | Output<br>Output | Input<br>Input | Real-time B data to A bus<br>Stored B data to A bus |  |
| L      | Н      | X      | X           | L   | X       | Input            | Output         | Real-time A data to B bus                           |  |

† The data output functions can be enabled or disabled by various signals at OE and DIR. Data input functions are always enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

#### RECOMMENDED OPERATING CONDITIONS

| RECOMMENDED OPE | RATING CONDITIO | N2  | _   |     |            | -           | į-   |
|-----------------|-----------------|-----|-----|-----|------------|-------------|------|
| PARAMETER       | MAX or MIN      | LS  | ALS | AS  | SN74<br>HC | SN74<br>HCT | UNIT |
| lcc             | MAX             | 180 | 88  | 195 | 0.08       | 0.08        | mA   |
| Іон             | MAX             | -15 | -15 | -15 | -6         | -6          | mA   |
| lou             | MAX             | 24  | 24  | 48  | 6          | 6           | mA   |

#### SWITCHING CHARACTERISTICS

| SWITCHING CHA | ARACTERISTICS         |         |            | _  |      |      | No.        |             |
|---------------|-----------------------|---------|------------|----|------|------|------------|-------------|
| PARAMETER     | INPUT                 | OUTPUT  | MAX or MIN | LS | ALS  | AS   | SN74<br>HC | SN74<br>HCT |
| fmax          |                       |         | MIN        | -  | 40   | 90   | 27         | 27          |
|               | CLKAB, CL             | KBA "H" | MIN        | 15 | 12.5 | 5    | 19         | 19          |
| tw            | CLKAB, CL             | KBA "L" | MIN        | 30 | 12.5 | 6    | 19         | 19          |
|               | DAT                   | Ά       | MIN        | 30 |      |      |            |             |
| tsu           | CLKAB, C              | CLKBA   | MIN        | 15 | 10   | 6    | 25         | 25          |
| th            | CLKAB, C              | CLKBA   | MIN        | 0  | 0    | 0    | 5          | 5           |
| tPLH .        | CLOCK                 | 4.0     | MAX        | 25 | 33   | 8.5  | 45         | 45          |
| tPHL .        | CLUCK                 | A,B     | MAX        | 40 | 20   | 9    | 45         | 45          |
| tPLH          | 4.0                   | D 4     |            | 18 | 17   | 8    | 34         | 34          |
| tPHL .        | A,B                   | B,A     | MAX        | 25 | 10   | 7    | 34         | 34          |
| tPLH          | SAB,SBA               | 4.0     | 1111       | 55 | 25   | -11  | 48         | 48          |
| tPHL .        | (With Bus Input High) | A,B     | MAX        | 40 | 21   | 9    | 48         | 48          |
| tPLH .        | SAB,SBA               |         |            | 40 | 39   | . 11 | 48         | 48          |
| tPHL .        | (With Bus Input Low)  | A,B     | MAX        | 40 | 22   | 9    | 48         | 48          |
| tPZH          | ŌĒ                    | 100     | 1          | 50 | 22   | 9    | 61         | 61          |
| tPZL          | OE                    | A,B     | MAX        | 55 | 22   | 15   | 61         | 61          |
| tPHZ          | ŌĒ                    | 4.0     |            | 45 | 10   | 9    | 61         | 61          |
| tPLZ          | OE .                  | A,B     | MAX        | 35 | 15   | 9    | 61         | 61          |
| tPZH          | DIR                   |         | MAX        | 40 | 27   | 16   | 61         | 61          |
| tPZL          | DIK                   | A,B     | MAX        | 45 | 19   | 18   | 61         | 61          |
| tPHZ          | DID                   | 4.0     | 1444       | 35 | 14   | 10   | 61         | 61          |
| tPLZ          | DIR                   | A,B     | MAX        | 30 | 15   | 10   | 61         | 61          |

UNIT fmax : MHz other : ns

OCTAL BUS TRANSER

miT-IseR bexeightelVI @

· Inverting Data Paths

- 651 Inverting Data Paths 3-State Outputs



|      |        | INP         | UTS         |        |        | DATA               | . VO                  | OPERATION OF FUNCTION                               |
|------|--------|-------------|-------------|--------|--------|--------------------|-----------------------|-----------------------------------------------------|
| OEAB | OEBA   | CLKAB       | CLKBA       | SAB    | SBA    | A1-A8              | B1-B8                 | OPERATION OR FUNCTION                               |
| L    | Н      | H to L      | H to L      | ×      | X      | Input<br>Input     | Input<br>Input        | Isolation<br>Store A and B data                     |
| X    | Н      | <b>†</b>    | H to L      | X      | X      | Input<br>Input     | Unspecified<br>Output | Store A, hold B<br>Store A in both registers        |
| L    | X<br>L | H to L      | <b>†</b>    | ×      | X<br>X | Unspecified Output | Input<br>Input        | Hold A, store B<br>Store B in both registers        |
| L    | L<br>L | X           | X<br>H to L | X      | L<br>H | Output<br>Output   | Input<br>Input        | Real-time B data to A bus<br>Stored B data to A bus |
| Н    | H      | X<br>H to L | ×           | L<br>H | X<br>X | Input<br>Input     | Output<br>Output      | Real-time A data to B bus<br>Stored A data to B bus |
| н    | L      | H to L      | H to L      | Н      | н      | Output             | Output                | Stored A data to B bus and stored B data to A bus   |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS  | ALS | AS  | SN74<br>HC | SN74<br>HCT | SN74<br>BCT | ABT | CD74<br>ACT | UNIT |
|-----------|------------|-----|-----|-----|------------|-------------|-------------|-----|-------------|------|
| Icc       | MAX        | 165 | 82  | 195 | 0.08       | 0.08        | 62          | 30  | 160         | mA   |
| Іон       | MAX        | -15 | -15 | -15 | -6         | -6          | -15         | -32 | -24         | mA   |
| lou       | MAX        | 24  | 24  | 48  | 6          | 6           | 64          | 64  | 24          | mA   |
| lor.      | MAX        |     | 48  | 200 | -          |             |             |     | -           | mA   |

\*651-1

### SWITCHING CHARACTERISTICS

| PARAMETER   | INPUT                 | OUTPUT  | MAX or MIN | LS | ALS  | AS  | SN74<br>HC | SN74<br>HCT | SN74<br>BCT | ABT | CD74<br>ACT |
|-------------|-----------------------|---------|------------|----|------|-----|------------|-------------|-------------|-----|-------------|
| fmax        |                       |         | MIN        | 1  | 40   | 90  | 27         | 20          | 85          | 125 | 110         |
|             | CLKBA, CLK            | (AB "H" | MIN        | 15 | 12.5 | 5   | 19         | 25          | 4.8         | 4   | 4.5         |
| tw          | CLKBA, CLI            | (AB "L" | MIN        | 15 | 12.5 | 6   | 19         | 25          | 7           | 4   | 4.5         |
|             | DATA                  | 4       | MIN        | 15 | 1 1  | -   |            |             |             |     | -           |
| tsu         | A,B                   |         | MIN        | 15 | 10   | 6   | 25         | 19          | 6           | 3   | 2.5         |
| th          | A,B                   |         | MIN        | 0  | 0    | 0   | 5          | 5           | 1           | 0   | 2           |
| tPLH .      | CLOCK                 | A,B     | MAX        | 24 | 32   | 8.5 | 45         | 45          | 11.7        | 5.6 | 15.5        |
| tPHL        | CLUCK                 | A,D     | IVIAA      | 35 | 17   | 9   | 45         | 45          | 11.8        | 5.6 | 15.5        |
| tPLH        | A,B                   | B.A     | MAX        | 18 | 18   | 9   | 34         | 34          | 12.6        | 6.2 | 12.5        |
| <b>TPHL</b> | A,B                   | D,A     | IVIAX      | 30 | 10   | 7   | 34         | 34          | 9.8         | 5.4 | 12.5        |
| tPLH .      | SAB,SBA               | A,B     | MAX        | 47 | 38   | 11  | 48         | 48          | 9.8         | 6.5 | 15.5        |
| tphl.       | (With Bus Input High) | A,B     | MAX        | 33 | 21   | 9   | 48         | 48          | 15.5        | 5.9 | 15.5        |
| tPLH .      | SAB,SBA               | A,B     | MAX        | 35 | 25   | 11  | 48         | 48          | 14.6        | 6.5 | 15.5        |
| tphi.       | (With Bus Input Low)  | A,D     | MAX        | 30 | 21   | 9   | 48         | 48          | 12.8        | 5.9 | 15.5        |
| tPZH        | OEBA                  | А       | MAX        | 44 | 20   | 10  | 61         | 61          | 12          | 5.8 | 15.5        |
| tPZL        | UEDA                  | А       | WAX        | 60 | 18   | 16  | 61         | 61          | 13.1        | 8.5 | 15.5        |
| tPHZ        | OEBA                  | A       | MAX        | 38 | 9    | 9   | 61         | 61          | 10.2        | 5   | 15.5        |
| tPLZ        | UEBA                  | A       | WAX        | 30 | 12   | 9   | 61         | 61          | 9.6         | 4.1 | 15.5        |
| tPZH        | OEAB                  | В       | MAX        | 29 | 22   | 11  | 61         | 61          | 8.3         | 6.5 | 15.5        |
| tPZL        | ULAB                  | D       | WAX        | 40 | 21   | 16  | 61         | - 61        | 9.7         | 7.4 | 15.5        |
| tPHZ        | DEAB                  | В       | MAX        | 38 | 12   | 10  | 61         | 61          | 15          | 5.5 | 15.5        |
| tPLZ        | UEAB                  | В       | IVIAX      | 30 | 14   | 11  | 61         | 61          | 12.3        | 5.1 | 15.5        |

UNIT fmax : MHz other : ns

Multiple W

● 74AC11x

# OCTAL BUS TRANSCEIVERS AND REGISTERS

- Bus Tranceivers / Registers
- Independent Registers and Enables for A and B Buses
- Multiplexed Real-Time and Stored Data
- True Data Paths
- 3-State Outputs
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



|   | FUNCTION | TABLE |  |
|---|----------|-------|--|
| т |          | DATE  |  |

|                                                     | .E                    | <b>FUNCTION TABL</b>  |        |        |             |             |        |      |
|-----------------------------------------------------|-----------------------|-----------------------|--------|--------|-------------|-------------|--------|------|
|                                                     | TA I/O                | DA                    |        |        | UTS         | INP         |        |      |
| OPERATION OR FUNCTION                               | B1-B8                 | A1-A8                 | SBA    | SAB    | CLKBA       | EBA CLKAB   |        | OEAB |
| Isolation<br>Store A and B data                     | Input<br>Input        | Input<br>Input        | X      | X      | H to L<br>↑ | H to L      | H      | L    |
| Store A, hold B<br>Store A in both registers        | Unspecified<br>Output | Input<br>Input        | ×      | ×      | H to L      | †<br>†      | Н      | Х    |
| Hold A, store B<br>Store B in both registers        | Input<br>Input        | Unspecified<br>Output | ×      | ×      | †           | H to L<br>↑ | X<br>L | L    |
| Real-time B data to A bus<br>Stored B data to A bus | Input<br>Input        | Output<br>Output      | L<br>H | ×      | X<br>H to L | ×           | L<br>L | L    |
| Real-time A data to B bus<br>Stored A data to B bus | Output<br>Output      | Input<br>Input        | ×      | L<br>H | X           | X<br>H to L | H      | Н    |
| Stored A data to B bus and stored B data to A bus   | Output                | Output                | н      | н      | H to L      | H to L      | L      | Н    |

| PARAMETER | MAX or MIN | LVTH<br>3V | AC<br>11 | CD74<br>AC | ACT<br>11 | CD74<br>ACT | LVC<br>3V | UNIT |
|-----------|------------|------------|----------|------------|-----------|-------------|-----------|------|
| Icc       | MAX        | 5          | 0.08     | 0.16       | 0.08      | 0.16        | 0.01      | mA   |
| Гон       | MAX        | -32        | -24      | -24        | -24       | -24         | -24       | mA   |
| lou       | MAX        | 64         | 24       | 24         | 24        | 24          | 24        | mA   |

SWITCHING CHARACTERISTICS

OEBA

OEAB

OEAB

A

В

tPZL tPHZ tPLZ tPZH tPZL tPHZ tPHZ Outputs A Bus: Open-Collector B Bus: 3-State

| PARAMETER | INPUT                 | OUTPUT  | MAX or MIN | LS | ALS  | AS  | SN74<br>HC | CD74<br>HC | SN74<br>HCT | CD74<br>HCT | SN74<br>BCT |     |
|-----------|-----------------------|---------|------------|----|------|-----|------------|------------|-------------|-------------|-------------|-----|
| fmax      |                       |         | MIN        |    | 40   | 90  | 27         | 20         | 20          | 17          | 77          |     |
|           | CLKBA, CL             | KAB "H" | MIN        | 15 | 12.5 | 5   | 19         | 24         | 25          | 38          | 6.5         |     |
| tw        | CLKBA, CL             | KAB "L" | MIN        | 15 | 12.5 | 6   | 19         | 24         | 25          | 38          | 6.5         |     |
|           | DAT                   | ΓΑ      | MIN        | 15 | ~ :  | - 1 | -          | -          | -           | -00         |             | 1   |
| tsu .     | A,B I                 | High    | MIN        | 15 | 10   | 6   | 25         | 18         | 19          | 18          | 5           | 43  |
| tsu .     | A,B I                 | Low     | MIN        | 15 | 10   | 6   | 25         | 18         | 19          | 18          | 5           |     |
| th        | A,i                   | В       | MIN        | 0  | 0    | 0   | 5          | 11         | 5           | 5           | 1           | 000 |
| tplh      | CLOCK                 | A,B     | MAX        | 25 | 30   | 8.5 | 45         | 66         | 45          | 66          | 10.5        | RE  |
| tphl .    | CLUCK                 | A,D     | IVIAA      | 36 | 17   | 9   | 45         | 66         | 45          | 66          | 9.9         |     |
| tplH      | A,B                   | B,A     | MAX        | 18 | 18   | 9   | 34         | 41         | 34          | 56          | 8.9         | P   |
| tphl.     | A,D                   | D,A     | IVIAA      | 20 | 12   | 7   | 34         | 41         | 34          | 56          | 9.8         | 1   |
| tplh      | SAB,SBA               | A,B     | MAX        | 35 | 35   | 11  | 48         | 51         | 48          | 69          | 13.1        | 148 |
| tphl.     | (With Bus Input High) | A,D     | WAX        | 32 | 20   | 9   | 48         | 51         | 48          | 69          | 8.5         |     |
| tplH      | SAB,SBA               | A,B     | MAX        | 50 | 25   | 11  | 48         | 51         | 48          | 69          | 11.3        | 1   |
| tphl.     | (With Bus Input Low)  | A,b     | IVIAX      | 23 | 20   | 9   | 48         | 51         | -48         | 69          | 12.5        | 1   |
| tPZH .    | OEBA                  | Δ.      | MAX        | 45 | 17   | 10  | 61         | 53         | 61          | 68          | 10.6        | 1   |
| PZH       | UEBA                  | - Gr A  | WAX        | 54 | 18   | 16  | 61         | 53         | 61          | 68          | 12          | 1   |
|           |                       |         |            |    |      |     |            |            |             |             |             |     |

MAX

MAX

MAX

38 10

30 16

30

38

38

22

18 16 61

61 53 61 53 10

61

11 61

53 61 53 53 61 68

10 10 61 53 61 53 11.6

30 16 11 61 53 61 53 11.3

53 61 68 9.3

9.5

8.1

| PARAMETER | INPUT                 | ОИТРИТ   | MAX or MIN | ABT | ABT<br>Ver.A | LVTH<br>3V | AC<br>11 | CD74<br>AC | ACT<br>11 | CD74<br>ACT | 3V<br>LVC |
|-----------|-----------------------|----------|------------|-----|--------------|------------|----------|------------|-----------|-------------|-----------|
| fmax      |                       |          | MIN        | 125 | 125          | 150        | 105      | 125        | 105       | 110         | 100       |
|           | CLKBA, CI             | LKAB "H" | MIN        | 4   | 4            | 3.3        | 4.8      | 4          | 4.8       | 4.5         | 3.3       |
| tw        | CLKBA, C              | LKAB "L" | MIN        | 4   | 4            | 3.3        | 4.8      | 4 .        | 4.8       | 4.5         | 3.3       |
|           | DA                    | TA       | MIN        | -   |              | -          |          | 7.1        | -         | -           | -         |
| tsu       | A,B                   | High     | MIN        | 3.5 | 3            | 1.2        | 4.5      | 2.5        | 4         | 2.5         | 1.9       |
| tso       | A,B                   | Low      | MIN        | 3.5 | 3            | 1.6        | 4.5      | 2.5        | 4         | 2.5         | 1.9       |
| th        | A,                    | В        | MIN        | 0   | 0            | 0.8        | 1        | 2          | 2.5       | 2           | 1.7       |
| tplh      | CLOCK                 | A,B      | MAX        | 7.8 | 5.6          | 4.7        | 10.7     | 13.5       | 13.1      | 15.5        | 8         |
| tphl      | CLUCK                 | A,D      | IVIAA      | 8.4 | 5.6          | 4.7        | 12       | 13.5       | 14.4      | 15.5        | 8         |
| tPLH      | A,B                   | B,A      | MAX        | 6.7 | 4.8          | 3.5        | 8.6      | 11         | 11.1      | 12.5        | 7.4       |
| tphl.     | A,D                   | D,A      | IVIAX      | 6.7 | 5.4          | 3.5        | 9.6      | 11         | 11.6      | 12.5        | 7.4       |
| tPLH      | SAB,SBA               | A,B      | MAX        | 6.9 | 6.5          | 4.9        | 9.1      | 12         | 11        | 14.5        | 8.7       |
| tPHL .    | (With Bus Input High) | A,D      | IVIAA      | 7.7 | 5.9          | 4.9        | 10.7     | 12         | 13.3      | 14.5        | 8.7       |
| tPLH      | SAB,SBA               | A,B      | MAX        | 6.9 | 6.5          | 4.9        | 9.9      | 12         | 12.2      | 14.5        | 8.7       |
| tphl .    | (With Bus Input Low)  | A,D      | IVIAA      | 7.7 | 5.9          | 4.9        | 10.9     | 12         | 12.6      | 14.5        | 8.7       |
| tрzн      | OEBA                  | A        | MAX        | 5.8 | 5.8          | 5.2        | 10.9     | 13.5       | 12.6      | 15.5        | 7.4       |
| tPZL      | UCDA                  | M        | IVIAA      | 8.5 | 8.5          | 5.2        | 12.2     | 13.5       | 13.8      | 15.5        | 7.4       |
| tрнz      | OEBA                  | A        | MAX        | 8.2 | 5            | 5.5        | 7.6      | 13.5       | 9.9       | 15.5        | 7.5       |
| tplz.     | ULDA                  | A        | IVIAA      | 6.8 | 4.1          | 5.5        | 7.1      | 13.5       | 9.3       | 15.5        | 7.5       |
| tpzH      | - OEAB                | В        | MAX        | 6.5 | 6.5          | 4.7        | 11.3     | 13.5       | 15.2      | 15.5        | 7.1       |
| tpzl      | ULMB                  | υ .      | IWIAA      | 7.4 | 7.4          | 4.7        | 12.3     | 13.5       | 16.1      | 15.5        | 7.1       |
| tPHZ      | OEAB                  | В        | MAX        | 6.9 | 5.5          | 5.6        | 7.6      | 13.5       | 10.3      | 15.5        | 7.4       |
| tPLZ      | ULAD                  | 0        | WIAA       | 6.2 | 5.1          | 5.6        | 7.2      | 13.5       | 9.3       | 15.5        | 7.4       |

UNIT fmax : MHz other : ns

# **OCTAL BUS TRANSCEIVERS AND REGISTERS**

- Bus Tranceivers / Registers
- Independent Registers and Enables for A and B Buses
- Multiplexed Real-Time and Stored Data
- Inverting Data Paths
- Outputs

A Bus: Open-Collector

B Bus: 3-State



| L      | L | 1      |             | ^ | FIII   | NCTION TABLE |        |                                                     |
|--------|---|--------|-------------|---|--------|--------------|--------|-----------------------------------------------------|
| L<br>L | L | ×      | X<br>H or L | × | L<br>H | Output       | Input  | Real-time B data to A bus<br>Stored B data to A bus |
| Н      | Н | X      | X           | L | X      | Input        | Output | Real-time A data to B bus                           |
| Н      | H | HorL   | X           | H | X      | Input        | Output | Stored A data to B bus                              |
| Н      | L | H or L | H or L      | Н | Н      | Output       | Output | Stored A data to B bus and stored B data to A bus   |

NOTES:

1 The data output functions can be enabled or dissabled by a variety of level combinations at GAB or GBA. Data input functions always are enabled; i.e., data at the bus terminals is storedd on every low-to-high transition on the clock inputs.

\$ Select control = 1: clocks can occur simultaneously.

Select control = 1: clock must be staggered to load both registers.

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS  | ALS | UNIT |
|-----------|------------|-----|-----|------|
| Icc       | MAX        | 165 | 88  | mA   |
| Іон       | MAX        | -15 | -15 | mA   |
| lou       | MAX        | 24  | 24  | mA   |

| SWITCHING CHAP | ACTERISTICS |        |            |    |      |
|----------------|-------------|--------|------------|----|------|
| PARAMETER      | INPUT       | OUTPUT | MAX or MIN | LS | ALS  |
|                | CLK "H"     |        | MIN        | 15 | 14.5 |
| tw             | CLK "L"     | 10     | MIN        | 30 | 14.5 |
|                | DATA        |        | MIN        | 30 | -    |
| tsu            | A, B        | 1      | MIN        | 15 | 10   |
| th             | A, B        | N      | MIN        | 0  | 0    |
| tPLH           | CLKDA       |        | MAN        | 38 | 64   |
| tPHL .         | CLKBA       | A      | MAX        | 39 | 22   |
| tPLH .         | OLIVAD      | -      | MAY        | 23 | 30   |
| tPHL .         | CLKAB       | В      | MAX        | 36 | 17   |
| tPLH           |             | -      | 1447       | 18 | 18   |
| <b>TPHL</b>    | A           | В      | MAX        | 30 | 15   |
| tPLH           | В           |        |            | 32 | 56   |
| tPHL           | В           | A      | MAX        | 24 | 15   |
| tPLH           | SBA         |        | MAY        | 57 | 62   |
| tPHL .         | (B "H")     | A      | MAX        | 39 | 25   |
| tPLH           | SBA         |        | MAY        | 51 | 62   |
| tphl.          | (B "L")     | A      | MAX        | 35 | 25   |
| tPLH           | SAB         | В      | MAX        | 48 | 35   |
| tPHL .         | (A "H")     | В      | IVIAX      | 33 | 22   |
| tPLH .         | SAB         |        | 1447       | 36 | 25   |
| tPHL .         | (A "L")     | В      | MAX        | 30 | 22   |
| tPLH           | OEBA        |        | MAN        | 35 | 30   |
| tPHL .         | UEBA        | A      | MAX        | 55 | 24   |
| tPZH           | OFAR        |        | MAN        | 29 | 22   |
| tPZL           | 0EAB        | В      | MAX        | 38 | 22   |
| tPHZ           | OFAR        | D      | MAY        | 39 | 14   |
| tPLZ           | 0EAB        | В      | MAX        | 29 | 16   |

UNIT:ns

- Bus Tranceivers / Registers
- Independent Registers and Enables for A and B Buses
- Multiplexed Real-Time and Stored Data
- True Data Paths
- Outputs

A Bus: Open-Collector

B Bus: 3-State



|        |        |             |             |        |        | 2.7                   | 110                |                                                     |  |  |
|--------|--------|-------------|-------------|--------|--------|-----------------------|--------------------|-----------------------------------------------------|--|--|
|        |        | INP         | UTS         |        |        | DATA                  | 4 1/0              | OPERATION OR FUNCTION                               |  |  |
| DEAB   | OEBA   | CLKAB       | CLKBA       | SAB    | SBA    | A1-A8                 | B1-B8              | OF EMAILOR OF TOROTTO                               |  |  |
| L      | H      | H to L<br>↑ | H to L      | X      | X      | Input<br>Input        | Input<br>Input     | Isolation<br>Store A and B data                     |  |  |
| X      | H      | <b>↑</b>    | H to L      | X      | ×      | Input 9 800           | Unspecified Output | Store A, hold B<br>Store A in both registers        |  |  |
| L      | X<br>L | H to L      | 1           | X      | X      | Unspecified<br>Output | Input<br>Input     | Hold A, store B<br>Store B in both registers        |  |  |
| L<br>L | L<br>L | X           | X<br>H to L | X      | L<br>H | Output<br>Output      | Input<br>Input     | Real-time B data to A bus<br>Stored B data to A bus |  |  |
| Н      | Н      | X<br>H to L | X           | L<br>H | ×      | Input<br>Input        | Output             | Real-time A data to B bus<br>Stored A data to B bus |  |  |
| Н      | L      | H to L      | H to L      | н      | н      | Output                | Output             | Stored A data to B bus and stored B data to A bus   |  |  |

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS  | ALS | UNIT |
|-----------|------------|-----|-----|------|
| Icc       | MAX        | 180 | 88  | mA   |
| Іон       | MAX        | -15 | -15 | mA   |
| loL       | MAX        | 24  | 24  | mA   |

### SWITCHING CHARACTERISTICS

| SWITCHING CHAIN | CTEMOTICS        | GB - 4-3  |            |    |      |
|-----------------|------------------|-----------|------------|----|------|
| PARAMETER       | INPUT            | OUTPUT    | MAX or MIN | LS | ALS  |
|                 | CLKBA, CLKAB "H" |           | MIN        | 15 | 14.5 |
| tw              | CLKBA, CLKAB "L" | 15 87     | MIN        | 30 | 14.5 |
| -               | DATA             | _         | MIN        | 30 |      |
| tsu             | A,B              | 14        | MIN        | 15 | 10   |
| th              | A,B              | 88        | MIN        | 0  | 0    |
| tPLH .          | OLKDA            |           | 1411       | 33 | 64   |
| tPHL .          | CLKBA            | A         | MAX        | 36 | 22   |
| tPLH .          | OLIVAR.          |           | 1447       | 21 | 30   |
| tPHL .          | CLKAB            | В         | MAX        | 33 | 17   |
| tPLH .          |                  |           | 1111       | 18 | 18   |
| tPHL.           | A — 🔾            | В         | MAX        | 30 | 15   |
| tPLH .          |                  | I W. I    | Jan.       | 27 | 56   |
| tPHL            | . B              | A         | MAX        | 21 | 21   |
| tPLH .          | 004 (0.00)       | (B "H") A |            | 48 | 62   |
| tPHL.           | SBA (B "H")      |           | MAX        | 32 | 25   |
| tPLH .          | 004 (0.00        |           | 1411       | 54 | 62   |
| tPHL            | SBA (B "L")      | A         | MAX        | 29 | 25   |
| tPLH            | 0.40 (4.888)     |           | MAX        | 35 | 25   |
| tPHL .          | SAB (A "H")      | 'H") B    |            | 27 | 22   |
| tPLH .          | SAB (A "L")      | В         | MAX        | 45 | 35   |
| tPHL .          | SAB (A 'L')      | В         | IVIAX      | 21 | 22   |
| tPLH .          | OEBA             |           | MAX        | 35 | 30   |
| tPHL ST         | UEBA             | A         | IVIAX      | 53 | 24   |
| tPZH .          | OFAR             |           | MAN        | 29 | 22   |
| tPZL            | OEAB             | В         | MAX        | 33 | 22   |
| tPHZ            | OFAR             | В         | MAX        | 39 | 14   |
| tPLZ            | OEAB             | В         | WAX        | 29 | 16   |

UNIT: ns



| RECOMMENDED 0             | PERATING CONDIT | TIONS |             |      |           |      |
|---------------------------|-----------------|-------|-------------|------|-----------|------|
| PARAMETER                 | MAX or MIN      | F     | SN74<br>BCT | ABT  | ACT<br>11 | UNIT |
| Іссн                      | MAX             | 125   | 2           | 0.25 | 0.08      | mA   |
| ICCL                      | MAX             | 150   | 90          | 40   | 0.08      | mA   |
| Iccz                      | MAX             | 145   | 1           | 0.25 | 0.08      | mA   |
| Іон А1-А9                 | MAX             | -3    | -3          | -32  | -24       | mA   |
| IOH B1-B9,<br>PARITY, ERR | MAX             | -12   | -15         | -32  | -24       | mA   |
| IoL A1-A8                 | MAX             | 24    | 24          | 64   | 24        | mA   |
| IOL B1-B8,                | MAX             | 64    | 64          | 64   | 24        | mA   |

| MITCHING | CHARACTERISTICS |
|----------|-----------------|

| PARAMETER | INPUT    | OUTPUT            | MAX or MIN | F    | SN74<br>BCT | ABT | ACT<br>11 |
|-----------|----------|-------------------|------------|------|-------------|-----|-----------|
| tPLH      | 4.0      | D.A.              | MAX        | 8    | 6.6         | 4.6 | 9.4       |
| tPHL .    | A,B      | B,A               | MAX        | 8    | 9           | 4.3 | 9.4       |
| tPLH .    | A        | DADITY            | MAX        | 16   | 15.4        | 8.1 | 14.4      |
| tphL .    | A        | PARITY            | MAX        | 16   | 15.9        | 7.7 | 15        |
| tPLH      | ODD/EVEN | PARITY FRR        | MAX        | 12   | 7.1         | 4.9 | 10.7      |
| tphL .    | UDD/EVEN |                   | MAX        | 12.5 | 9           | 4.9 | 11.3      |
| tPLH      | В        | ERR               | MAX        | 22.5 | 15.3        | 7.9 | 23.6      |
| tPHL .    |          |                   | MAX        | 22.5 | 15.5        | 7.8 | 24.6      |
| tplH      | PARITY   | ERR               | MAX        | 16.5 | 13.2        | 7.7 | 14.6      |
| tphl.     | PARITY   |                   | MAX        | 17   | 13.9        | 7.5 | 14.7      |
| tPZH      | ŌĒ       | A D DADITY        | MAX        | 9    | 9.1         | 6.5 | 12.1      |
| tPZL.     | UE       | A, B, PARITY      | MAX        | 11   | 16.3        | 6.5 | 13.8      |
| tPZH      | ŌE       | ERR               | MAX        | 9    | 9.1         | 6.6 | 12.1      |
| tPZL      | UE       | CHH               | MAX        | 11   | 16.3        | 9.2 | 13.8      |
| tPHZ      | ŌE       | A D DARITY FRR    | MAX        | 8    | 9.1         | 6.2 | 12.1      |
| tPLZ      | UE       | A, B, PARITY, ERR | MAX        | 6.5  | 8           | 7.8 | 11.6      |

- 3-State I/O-Type Read-Back Inputs
- True Outputs
- Bus-Structured Pinout



| DECOMMENDED | OPERATING | CONDITION |
|-------------|-----------|-----------|

|     | PARAMETER | MAX or MIN | ALS  | UNIT |  |  |  |  |  |
|-----|-----------|------------|------|------|--|--|--|--|--|
| Icc |           | MAX        | 73   | mA   |  |  |  |  |  |
|     | Q         | MAX        | -2.6 | mA   |  |  |  |  |  |
| Іон | D         | MAX        | -0.4 | mA   |  |  |  |  |  |
|     | Q         | MAX        | 24   | mA   |  |  |  |  |  |
| loL | D         | MAY        | 8    | mΔ   |  |  |  |  |  |

BIT D-TYPE TRANSPARENT READ-BACK LATE

- - Inverted Outputs
    - B Rus-Structured Pingut

Logic Diserem

| ,       | PARAMETER   | INPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OUTPUT | MAX or MIN | ALS |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|-----|
|         | LE "H"      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | MIN        | 10  |
| tw      | CLR "L"     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | MIN        | 10  |
|         | PRE "L"     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | MIN        | 10  |
| tsu DA1 | DATA (LE)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | MIN        | 10  |
|         | DATA (OERB) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | MIN        | 10  |
| lh      | DATA (LE)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | MIN        | 5   |
| tPLH    |             | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q      | MAX        | 14  |
| PHL     |             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | u      | IVIAA      | 18  |
| PLH     |             | LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0      | MAX        | 21  |
| PHL     | 2           | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | WAX        | 27  |
| tPHL    |             | CLR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0      | MAX        | 29  |
| urnu    |             | CLIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D      | WAX        | 32  |
| tPLH    |             | PRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ۵      | MAX        | 22  |
| tPHL    |             | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | D      | WAY G      | 28  |
| ten     | 101         | OERB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D      | MAX        | 21  |
| tdis    |             | GEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | WIFA       | 14  |
| ten     |             | OE1, OE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a      | MAX        | 21  |
| tdis    |             | OLT, OLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 100.00     | 14  |

To Seven Other Channels



### RECOMMENDED OPERATING CONDITIONS

|     | PARAMETER | MAX or MIN | ALS  | UNIT |
|-----|-----------|------------|------|------|
| lcc |           | MAX        | 79   | mA   |
| la. | ۵         | MAX        | -2.6 | mA   |
| Іон | D         | MAX        | -0.4 | mA   |
| la. | O.        | MAX        | 24   | mA   |
| lor | D         | MAX        | 8    | mA   |

## SWITCHING CHARACTERISTICS

| PARAMETER   |             | INPUT OUTPUT |     | MAX or MIN | ALS |
|-------------|-------------|--------------|-----|------------|-----|
| LE "H"      |             |              |     | MIN        | 10  |
| tw          | CLR "L"     |              |     | MIN        | 10  |
|             | PRE "L"     |              |     | MIN        | 10  |
|             | DATA (LE)   |              |     | MIN        | 10  |
| tsu         | DATA (OERB) |              |     | MIN        | 10  |
| th          | DATA (LE)   |              |     | MIN        | 5   |
| tPLH        |             | D            |     | MAX        | 20  |
| tPHL .      |             | U            | ā   | IVIAA      | 15  |
| tPLH        |             | LE Q         |     | MAX        | 28  |
| tPHL        |             |              |     | IVIAA      | 22  |
| tPHL        | CLR Q       |              | ā   | MAX        | 24  |
| urni        | 80          | D Q          |     | IVIAA      | 26  |
| tPLH        |             | PRE          |     | MAX        | 25  |
| tPHL        |             | D            |     | IVIAA      | 28  |
| ten<br>tdis |             | OERB         | D   | MAX        | 21  |
|             |             | UERB D       |     | IVIAX      | 14  |
| ten         |             | OE1, OE2     | ā   | MAX        | 21  |
| tdis        |             | OLI, OEZ     | u u | IVIAA      | 14  |

## UNIT: ns



# SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTER

- Fully Synchronous Operation for Counting and Programming
- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading



| RECOMMENDED | ODEDATING | COMPITIONS |
|-------------|-----------|------------|
|             |           |            |

| HEOOMHEREE      | 01 218111110 0011 |      | 1    |
|-----------------|-------------------|------|------|
| PARAMETER       | MAX or MIN        | LS   | UNIT |
| Icc             | MAX               | 34   | mA   |
| Іон             | MAX               | -0.4 | mA   |
| lo <sub>L</sub> | MAX               | 8    | mA   |

SWITCHING CHARACTERISTICS

| PA   | RAMETER | INPUT OUTPUT |     | MAX or MIN | LS |  |
|------|---------|--------------|-----|------------|----|--|
| fmax |         | -(           |     | MIN        | 25 |  |
| tw   |         |              |     | MIN        | 20 |  |
|      | A,B,C,D |              |     | MIN        | 25 |  |
| tsu  | ENP,ENT |              |     | MIN        | 40 |  |
| tsu  | LOAD    |              |     | MIN        | 30 |  |
|      | U/D     |              |     | MIN        | 45 |  |
| th   |         |              |     | MIN        | 0  |  |
| tPLH |         | CLOCK        | RCO | MAX        | 40 |  |
| tPHL |         | CLUCK        | nco | IVIAA      | 60 |  |
| tPLH |         | CLOCK        | 0   | MAX        | 27 |  |
| tPHL |         | CLUCK        | u   | MAX        | 27 |  |
| tPLH |         | ENT          | RCO | MAX        | 17 |  |
| tPHL | 20 100  | EIVI         | nC0 | WAX        | 45 |  |
| tPLH |         | U/D          | RCO | MAX        | 35 |  |
| tPHL |         | 0/0          | ncu | IVIAX      |    |  |

UNIT fmax : MHz other : ns

# 670

# **4-BY-4 REGISTER FILE**

- Separate Read / Write Addressing Permits Simultaneous Reading and Writing
- Organized as 4 Words of 4 Bits
- Expandable to 512 Words of n-Bits
- 3-State Outputs



| WRI | TE INF | PUTS |                | WC             | RD             |                |  |
|-----|--------|------|----------------|----------------|----------------|----------------|--|
| WB  | WA     | Gw   | 0              | 1              | 2              | 3              |  |
| L   | L      | L    | Q = D          | Qo             | Q <sub>0</sub> | Q <sub>0</sub> |  |
| L   | H      | L    | Q <sub>0</sub> | Q = D          | Qo             | Q <sub>0</sub> |  |
| Н   | L      | L    | Q <sub>0</sub> | Q <sub>0</sub> | Q = D          | Qo             |  |
| Н   | H      | L    | Qo             | Q <sub>0</sub> | Qo             | Q = D          |  |
| ~   | V      | ы    | 00             | 00             | Oa             | On             |  |

| READ INPUTS |    |    | OUTPUTS |      |      |      |  |
|-------------|----|----|---------|------|------|------|--|
| RB          | RA | GR | Q1      | Q2   | Q3   | Q4   |  |
| L           | L  | L  | W0B1    | W0B2 | W0B3 | W0B4 |  |
| L           | Н  | L  | W1B1    | W1B2 | W1B3 | W1B4 |  |
| Н           | L  | L  | W2B1    | W2B2 | W2B3 | W2B4 |  |
| Н           | Н  | L  | W3B1    | W3B2 | W3B3 | W3B4 |  |
| X           | X  | Н  | Z       | Z    | Z    | Z    |  |



## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------|------------|-------------|------|
| Icc       | MAX        | 50   | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -2.6 | -6         | -6          | mA   |
| lou       | MAX        | 8    | 6          | 6           | mA   |

## SWITCHING CHARACTERISTICS

| STATE CHIEF CHAIL | ACTEMIONIO |        |            |    |            |             |
|-------------------|------------|--------|------------|----|------------|-------------|
| PARAMETER         | INPUT      | OUTPUT | MAX or MIN | LS | CD74<br>HC | CD74<br>HCT |
| tw                |            |        | MIN        | 25 | 24         | 30          |
| tsu (D)           |            |        | MIN        | 10 | 18         | 18          |
| tsu (W)           |            |        | MIN        | 15 | 18         | 30          |
| th (D)            |            |        | MIN        | 15 | 5          | 5           |
| th (W)            |            |        | MIN        | 5  | 5          | 5           |
| Datch             |            |        | MIN        | 25 | 30         | 38          |
| tPLH .            | Read       |        | 111V       | 40 | 59         | 53          |
| tPHL .            | Select     | Q.     | MAX        | 45 | 59         | 53          |
| tPLH .            | Write      | 0      | MAN        | 45 | 75         | 75          |
| tPHL .            | Enable     | 0      | MAX        | 50 | 75         | 75          |
| tPLH .            |            | _      | 1411       | 45 | 75         | 75          |
| tPHL .            | Data       | 0      | MAX        | 40 | 75         | 75          |
| tPZH .            | Read       | Q      | 1447       | 35 | 45         | 57          |
| tPZL.             | Enable     | u      | MAX        | 40 | 45         | 57          |
| tPHZ              | Read       | 0      | MAN        | 50 | 45         | 53          |
| tPLZ              | Disable    | 0      | MAX        | 35 | 45         | 53          |

UNIT: ns

## **16-BIT SHIFT REGISTER**

- 16-Bit Serial-In, Serial-Out Shift Register with 16-Bit Parallel-Out Storage Register
- Performs Serial-to-Parallel Conversion

# **Logic Diagram** SER/Q15 16 PE† (7-11, 13-23) P0-P15 Q0-Q15 D0-D15 Y0-Y15 16 Y0-Y15 SH CLK (2) CLK 16BIT SER IN Q15 STORAGE 16-BIT SHIFT REGISTER MODE/STRCLK (5) STRCLR (4) † When PE is active, data synchronously parallel loaded into the shift registers form the 16 P inputs and no shifting takes place.

|        |           | INP     | UTS    |             |       |           | SHIFT REGISTER FUNCTIONS ST |              |        | STORAGE | REGISTER |  |  |  |  |
|--------|-----------|---------|--------|-------------|-------|-----------|-----------------------------|--------------|--------|---------|----------|--|--|--|--|
| CS R/W | 011.01.1/ | OTDOLD  | MODE/  | SER/<br>Q15 | SHIFT | READ FROM | WRITE INTO                  | PARALLEL     | FUNC   | TIONS   |          |  |  |  |  |
| CS     | R/W       | SH CLK  | STRCLR | STRCLK      | UIS   | SHIFT     | SERIAL INPUT                | SERIAL INPUT | LOAD   | CLEAR   | LOAD     |  |  |  |  |
| Н      | X         | X       | X      | X           | Z     | NO        | NO                          | NO           | NO     |         | NO       |  |  |  |  |
| X      | X         | X       | L      | X           |       |           |                             | 1            | Steine | YES     | O-lains  |  |  |  |  |
| L      | L         | Į.      | X      | X           | Z     | YES       | NO                          | YES          | NO     |         |          |  |  |  |  |
| L      | Н         | X       | ×      | X           | Q15   |           | YES                         | NO           | HOIS   |         | NO       |  |  |  |  |
| L      | Н         | 1       | X      | L           | Q14n  | YES       | YES                         | NO           | NO     |         | NO       |  |  |  |  |
| L      | Н         | 1       | L      | X           | L     | NO        | YES                         |              | YES    | YES;    | NO       |  |  |  |  |
| L      | н         | <u></u> | Н      | X           | Y15n  | NO        | YES                         |              | YES    | NO      | NO       |  |  |  |  |
| L      | L         | X       | Н      | +           | Z     |           | NO                          | S. STEPHER   |        | NO      | YES      |  |  |  |  |

## RECOMMENDED OPERATING CONDITIONS

| P   | ARAMETER | MAX or MIN | LS   | UNIT |
|-----|----------|------------|------|------|
| Icc |          | MAX        | 80   | mA   |
| In  | SER/Q15  | MAX        | -2.6 | mA   |
| Іон | Y0-Y15   | MAX        | -0.4 | mA   |
| lou | SER/Q15  | MAX        | 24   | mA   |
| IOL | Y0-Y15   | MAX        | 8    | mA   |

## SWITCHING CHARACTERISTICS

| PARAMETER |         | INPUT    | OUTPUT  | MAX or MIN | LS |  |
|-----------|---------|----------|---------|------------|----|--|
| fmax      |         |          |         | MIN        | 20 |  |
|           | CLK     |          |         | MIN        | 20 |  |
| tw        | CLR     |          |         | MIN        | 20 |  |
|           | SER/Q15 |          |         | MIN        | 20 |  |
| tsu       | Y0-Y15  |          |         | MIN        | 20 |  |
|           | Mode    |          |         | MIN        | 35 |  |
|           | R/W,CS  |          |         | MIN        | 35 |  |
|           | SER/Q15 |          |         | MIN        | 0  |  |
| th        | Y0-Y15  |          |         | MIN        | 0  |  |
|           | Mode    |          |         | MIN        | 0  |  |
| tPLH      |         | STRCLR   | Y0-Y15  | MAX        | 40 |  |
| tplH      |         | MODE/    | Y0-Y15  | MAX        | 45 |  |
| tphl .    |         | STRCLK   | 10-115  | IVIAX      | 45 |  |
| tPLH tPHL |         | 011 0114 |         | MAX        | 33 |  |
|           |         | SH CLK   | SER/Q15 | WAX        | 40 |  |

UNIT fmax : MHz other : ns

# **16-BIT SHIFT REGISTER**

- 16-Bit Parallel-In, Serial-Out Shift Register
- Performs Parallel-to-Serial Conversion



| † When PE is active    | , data synchronously parallel loaded into the |
|------------------------|-----------------------------------------------|
| shift registers form t | he 16 P inputs and no shifting takes place.   |

|  | hifting takes place. |  |  |
|--|----------------------|--|--|
|  |                      |  |  |
|  |                      |  |  |
|  |                      |  |  |
|  |                      |  |  |
|  |                      |  |  |
|  |                      |  |  |
|  |                      |  |  |
|  |                      |  |  |
|  |                      |  |  |
|  |                      |  |  |
|  |                      |  |  |
|  |                      |  |  |
|  |                      |  |  |
|  |                      |  |  |
|  |                      |  |  |
|  |                      |  |  |

**FUNCTION TABLE** 

| Ī |     | INF | UTS  | SER/     | OPERATION |                                  |  |  |  |  |
|---|-----|-----|------|----------|-----------|----------------------------------|--|--|--|--|
|   | CS  | R/W | MODE | CLK      | Q15       | OFERATION                        |  |  |  |  |
|   | Н   | X   | X    | X        | Z         | Do nothing                       |  |  |  |  |
|   | L   | L   | ×    | Į.       | Z         | Shift and write<br>(serial load) |  |  |  |  |
|   | L   | Н   | L    | <b>.</b> | Q14n      | Shift and read                   |  |  |  |  |
|   | - 7 | Н   | Н    |          | P15       | narallel load                    |  |  |  |  |

# MATERIAL PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPE

12-Bit Address Competator with Enable

Logic Disuram

| P/   | ARAMETER     | MAX or MIN   | LS   | UNIT |
|------|--------------|--------------|------|------|
| 1.7  | ANAIVIE I EN | WIAX OF WITH | LO   | ON   |
| CC   |              | MAX          | 40   | mA   |
| lau. | SER/Q15      | MAX          | -2.6 | mA   |
| Іон  | P0-P15       | MAX          | -0.4 | mA   |
|      | SER/Q15      | MAX          | 24   | mA   |
| lou  | P0-P15       | MAX          | 8    | mA   |

## SWITCHING CHARACTERISTICS

|        | TITALITA OTELLIO TIOO |               |         |            |         |     |    |  |
|--------|-----------------------|---------------|---------|------------|---------|-----|----|--|
| PA     | RAMETER               | INPUT         | OUTPUT  | MAX or MIN | LS      |     |    |  |
| fmax   |                       |               |         | MIN        | 20      |     |    |  |
| tw     | CLK                   |               |         | MIN        | 20      |     |    |  |
| tw     | CLR                   |               |         | IVIIIV     | 20      |     |    |  |
|        | SER/Q15               |               |         |            | 20      |     |    |  |
| Su     | P0-P15                |               | 4       | MIN        | 20      |     |    |  |
| SU     | Mode                  |               |         | IVIIIV     | 35      |     |    |  |
|        | R/W,CS                |               |         |            | 35      |     |    |  |
|        | SER/Q15               |               |         | of Fil     | 0       |     |    |  |
| th .   | P0-P15                |               | 1       | MIN        | 0       |     |    |  |
|        | Mode                  |               | - Marie | -(         | 0       |     |    |  |
| PLH    | T.H                   |               | Н       |            | SER/Q15 | MAX | 33 |  |
| tphL . |                       | CLK           | SEN/UIS | WAX        | 40      |     |    |  |
| tpzh   | 41.                   | CS, R/W       | SER/Q15 | MAX        | 45      |     |    |  |
| tPZL Y |                       | 03, N/VV      | 361/013 | WAA        | 45      |     |    |  |
| tPHZ   |                       | CS, R/W       | SER/Q15 | MAX        | 40      |     |    |  |
| tPLZ   |                       | US, H/W SER/U |         | MAN        | 40      |     |    |  |

UNIT fmax: MHz other:ns

# ADDRESS COMPARATOR

• 12-Bit Address Comparator with Enable





|        |     |     |     |     |    |    |       | " 17     | 0.10   |        |    |    |    |    |    |     |   |
|--------|-----|-----|-----|-----|----|----|-------|----------|--------|--------|----|----|----|----|----|-----|---|
| OUTPUT |     |     |     |     |    |    |       | UTS      | INP    |        |    |    |    |    |    |     |   |
| Y      | A12 | A11 | A10 | A9  | A8 | A7 | A6    | A5       | A4     | A3     | A2 | A1 | P0 | P1 | P2 | P3  | G |
| L      | Н   | Н   | Н   | Н   | H  | Н  | Н     | Н        | Н      | Н      | Н  | Н  | L  | L  | L  | L   | L |
| L      | Н   | H   | H   | H   | H  | H  | H     | H        | H      | H      | H  | L  | H  | L  | L  | L   | L |
| L      | H   | H   | H   | H   | H  | H  | H     | H        | H      | H      | L  | L  | L  | H  | L  | L   | L |
| L      | Н   | H   | H   | H   | H  | H  | H     | H        | H.     | L      | L  | L  | Н  | H  | L  | L   | L |
| L      | Н   | Н   | Н   | Н   | Н  | Н  | Н     | Н        | L      | L      | L  | L  | L  | L  | Н  | L   | L |
| 1      | H   | H   | H   | Н   | H  | H  | H     | L        | L      | L      | L  | L  | H  | L  | Н  | L   | L |
| Derti  | H   | H   | H   | H   | H  | H  | L     | L        | L      | L      | L  | L  | L  | H  | H  | L   | L |
| L      | H   | Н   | Н   | Н   | H  | L  | L     | L        | L      | L      | L  | L  | H  | Н  | H  | L   | L |
| L      | Н   | Н   | H   | Н., | L  | L  | L     | L        | L      | L      | L  | L  | L  | L  | L  | Н   | L |
| L      | H   | H   | Н   | L   | L  | L  | L     | L        | L      | L      | L  | L  | H  | L  | L  | Н   | L |
| L      | H   | H   | L   | L   | L  | L  | L     | L        | L      | L      | L  | L  | L  | H  | L  | Н   | L |
| L      | Н   | L   | L   | L   | 1  | L  | L     | L        | L      | L      | L  | L  | H  | H  | L  | H   | L |
| L      | L   | Н   | Н   | Н   | L  | L  | L     | L        | L      | L      | L  | L  | L  | L  | Н  | Н   | L |
| L      | L   | H   | Н   | L   | L  | L  | L     | L        | L      | L      | L  | L  | Н  | L  | H  | Н   | L |
| L      | L   | Н   | L   | L   | L  | L  | -     | L        | L      | L      | L  | L  | L  | H  | H  | .H. | L |
| L      | L   | L   | L   | L   | L  | L  | L     | L        | L      | L      | L  | L  | Н  | Н  | Н  | Н   | L |
| Н      |     |     |     |     |    |    | tions | mbina    | her co | All of |    |    |    |    |    |     | L |
| H      |     |     |     |     |    |    | on    | nbinatio | ny com | Ar     |    |    |    |    |    |     | Н |

## RECOMMENDED OPERATING CONDITIONS

|            | _          |                    | _                                           |
|------------|------------|--------------------|---------------------------------------------|
| MAX or MIN | ALS        | SN74<br>HC         | UNIT                                        |
| MAX        | 28         | 0.08               | mA                                          |
| MAX        | -2.6       | -4                 | mA                                          |
| MAX        | 24         | 4                  | mA                                          |
|            | MAX<br>MAX | MAX 28<br>MAX -2.6 | MAX 07 MIN ALS HC  MAX 28 0.08  MAX -2.6 -4 |

## SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | ALS | SN74<br>HC |
|-----------|-------|--------|------------|-----|------------|
| tPLH      | A D   | V      | MAX        | 25  | 375        |
| tphL .    | Any P |        | IVIAX      | 35  | 375        |
| tPLH      | A A   | V      | MAN        | 22  | 78         |
| tphL .    | Any A | т.     | MAX        | 30  | 78         |
| tplH      | G     | Y      | MAY        | 13  | 31         |
| tphl.     | G     | Y      | MAX        | 25  | 31         |

## UNIT: ns

- Totem-Pole Outputs
- Hysteresis at P and Q Inputs
- 20kΩ Pullup Resistors on the Q Inputs





FUNCTION TABLE

| 1 014         | 01101117 |      |
|---------------|----------|------|
| DATA          | OUT      | PUTS |
| INPUT<br>P, Q | P=Q      | P>Q  |
| P=Q           | L        | Н    |
| P>Q           | Н        | L    |
| P-0           | н        | Н    |

- - Totem-Pale Butputs
  - Hysterasis at P and Q Inputs

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | SN74<br>HC | UNIT |
|-----------|------------|------|------------|------|
| Icca      | MAX        | 70   | 0.11       | mA   |
| Іон       | MAX        | -0.4 | -4         | mA   |
| lou       | MAX        | 24   | - 4        | mA   |

## SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LS | SN74<br>HC |
|-----------|-------|--------|------------|----|------------|
| tPLH .    | P     | P = 0  | MAX        | 25 | 69         |
| tphl.     | P     | P = U  | IVIAX      | 25 | 69         |
| tPLH .    | 0     | P = 0  | MAX        | 25 | 69         |
| tphL .    | и     | P = U  | IVIAX      | 25 | 69         |
| tplh      | Р     | P > 0  | MAX        | 30 | 69         |
| tPHL .    | r     | r>u    | IVIAA      | 30 | 69         |
| tplh      | н     |        | MAX        | 30 | 69         |
| tPHL .    | u     | P > 0  | IVIAX      | 30 | 69         |

### UNIT: ns



- Totem-Pole Outputs
- Hysteresis at P and Q Inputs





FUNCTION TABLE

| DATA          | OUT | PUTS  |  |
|---------------|-----|-------|--|
| INPUT<br>P, Q | P=Q | P>Q   |  |
| P=Q           | L   | Н     |  |
| P>Q           | Н   | L     |  |
| D-O           | LI  | LI LI |  |

Totem-Pale Outputs

Annual Disease Commission of the

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LS   | SN74<br>HC | UNIT |
|-----------|------------|------|------------|------|
| Icc       | MAX        | 65   | 0.08       | mA   |
| Іон       | MAX        | -0.4 | -4         | mA   |
| loL       | MAX        | 24   | 4          | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT             | MAX or MIN | LS | SN74<br>HC |
|-----------|-------|--------------------|------------|----|------------|
| tPLH      | P     | $\overline{P} = 0$ | MAX        | 25 | 69         |
| tphL .    | Р     | P = U              | MAX        | 25 | 69         |
| tPLH .    | 0     | P = Q              | MAN        | 25 | 69         |
| tphL .    | и     | P=u                | MAX        | 25 | 69         |
| tplH      | Р     |                    | MAN        | 30 | 69         |
| tphl.     | Р     | P > Q              | MAX        | 30 | 69         |
| tPLH .    | 0     | P > Q              | MAY        | 30 | 69         |
| tPHL .    | IL Q  |                    | MAX        | 30 | 69         |

UNIT: ns



- Totem-Pole Outputs
- Hysteresis at P and Q Inputs



**FUNCTION TABLE** 

| INPUTS                                                    |        |    | OUTPUTS |     |
|-----------------------------------------------------------|--------|----|---------|-----|
| DATA                                                      | ENABLE |    | P=Q     | P>Q |
| P, Q                                                      | G1     | G2 | P=Q     | P>G |
| P=Q                                                       | L      | L  | L       | Н   |
| P>Q                                                       | L      | L  | H       | L   |
| P <q< td=""><td>L</td><td>L</td><td>Н</td><td>Н</td></q<> | L      | L  | Н       | Н   |
| X                                                         | Н      | Н  | H       | Н   |

DIT INSULTIV COMPARATOR

- Torem-Pole Outputs
- Hysteresis at P and C inputs

## marpaid sign.

| RECOMMENDED OF | RATING CONDITIONS |
|----------------|-------------------|
|----------------|-------------------|

| PARAMETER | MAX or MIN | LS   | UNIT |
|-----------|------------|------|------|
| Icc       | MAX        | 75   | mA   |
| Іон       | MAX        | -0.4 | mA   |
| lou       | MAX        | 24   | mA   |

| CIANTOUNA | CILA | DACTE | DICTICC |
|-----------|------|-------|---------|

| PARAMETER | INPUT | OUTPUT                        | MAX or MIN | LS |
|-----------|-------|-------------------------------|------------|----|
| tPLH .    | P     | P = Q                         | MAX        | 25 |
| tPHL .    | r     | P=U                           |            | 30 |
| tPLH      | 0     | $\overline{P} = \overline{Q}$ | MAX        | 25 |
| tphl .    | u u   |                               |            | 30 |
| tPLH .    | G1    | $\overline{P} = \Omega$       | MAX        | 20 |
| tPHL .    |       |                               |            | 30 |
| TPLH      | Р     | P > 0                         | MAX        | 30 |
| tphL .    | P     | P>U                           |            | 30 |
| tPLH      | Q     | P > Q                         | MAX        | 30 |
| tPHL .    |       |                               |            | 30 |
| tPLH .    | G2    | P > Q                         | MAX        | 30 |
| tPHL .    | 62    | P>U                           |            | 25 |



# 8-BIT IDENTITY COMPARATOR

- Totem-Pole Outputs
- Hysteresis at P and Q Inputs

# **Logic Diagram**



| 11                                    | IPUTS  | OUTPUT |
|---------------------------------------|--------|--------|
| DATA                                  | ENABLE | P=Q    |
| P, Q                                  | Ğ      | P=Q    |
| P=Q                                   | L      | L      |
| P>Q                                   | L      | Н      |
| P <q< td=""><td>L</td><td>Н</td></q<> | L      | Н      |
| X                                     | Н      | н      |

# YNCHRONOUS UP/DOWN COUNTER WITH OUTPUT REGISTER, MULT

Multiplexed Districts for Counter or Latched Bata

3-State Outputs Drive Bus Lines Oirectly

British Countries Dispose Chaire

#### RECOMMENDED OPERATING CONDITIONS

|           | MAN MIN    |      | ALS  | SN74 | CD74 | CD74 | UNIT |
|-----------|------------|------|------|------|------|------|------|
| PARAMETER | MAX or MIN | LS   | ALS  | HC   | HC   | НСТ  | UNIT |
| lcc       | MAX        | 65   | 19   | 0.08 | 0.16 | 0.16 | mA   |
| Іон       | MAX        | -0.4 | -2.6 | -4   | -4   | -4   | mA   |
| lou       | MAX        | 24   | 24   | 4    | 4    | 4    | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT           | OUTPUT                                                      | MAX or MIN | LS | ALS | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
|-----------|-----------------|-------------------------------------------------------------|------------|----|-----|------------|------------|-------------|
| tp.h      |                 |                                                             | MAY        | 18 | 12  | 53         | 51         | 51          |
| tphL .    | P               | P = Q                                                       | MAX        | 23 | 20  | 53         | 51         | 51          |
| tPLH .    | α<br>- <u>G</u> | $\overline{P} = \overline{Q}$ $\overline{P} = \overline{Q}$ | MAX        | 18 | 12  | 53         | 51         | 51          |
| tPHL      |                 |                                                             |            | 23 | 20  | 53         | 51         | 51          |
| tPLH      |                 |                                                             |            | 18 | 12  | 30         | 36         | 36          |
| tPHL .    |                 |                                                             |            | 20 | 22  | 30         | 36         | 36          |

# SYNCHRONOUS UP/DOWN COUNTER WITH OUTPUT REGISTER, MULTIPLEXED THREE-STATE OUTPUT

- Multiplexed Outputs for Counter or Latched Data
- 3-State Outputs Drive Bus Lines Directly
- Binary Counter, Direct Clear



#### RECOMMENDED OPERATING CONDITIONS

| TILOUISTIVILIA | DED OF ENATING GO | 1401110140 |      |      |
|----------------|-------------------|------------|------|------|
| P              | ARAMETER          | MAX or MIN | LS   | UNIT |
| Icc            |                   | MAX        | 70   | mA   |
| Іон            | Q                 | MAX        | -2.6 | mA   |
| IUH            | RCO               | IVIAA      | -0.4 | mA   |
| Inc            | Q                 | MAN        | 24   | mA   |
| TOL            | BCO               | MAX        | 8    | mA   |

SYNCHRONGUS UP/DOWN COUNTER WITH OUTPUT

#### SWITCHING CHARACTERISTICS

| PARAMETER |          | INPUT  | OUTPUT | MAX or MIN | LS |
|-----------|----------|--------|--------|------------|----|
| tw        | ССК      |        |        | MIN        | 25 |
| UV        | RCK      |        |        | IVIIIV     | 25 |
|           | A thru D |        |        |            | 30 |
| tsu       | ENT, ENP |        |        | MIN        | 30 |
|           | U/D      |        |        |            | 35 |
| th        |          |        |        | MIN        | 0  |
| tPLH .    |          | 001/ 4 | RCO    | MAX        | 40 |
| tPHL      |          | CCK ↑  | NCU    | IVIAA      | 40 |
| tPLH      |          | ENT    | RCO    | MAX        | 20 |
| tPHL      |          | EIVI   | nco    | IVIAA      | 20 |
| tPLH      |          | COV +  | _0_    | MAX        | 20 |
| tPHL      | 001/1    | CCK ↑  |        | IVIAA      | 25 |
| PLH       |          | DON A  |        | MAX        | 20 |
| tPHL      |          | RCK ↑  | 0      | IVIAX      | 25 |
| tPHL      |          | CCLR ↓ | 0      | MAX        | 40 |
| tplH      |          | R/C    | 0      | MAX        | 25 |
| tPHL .    |          | n/C    | u u    | IVIAA      | 25 |

431

# SYNCHRONOUS UP/DOWN COUNTER WITH OUTPUT REGISTER, MULTIPLEXED THREE-STATE OUTPUT

- Multiplexed Outputs for Counter or Latched Data
- 3-State Outputs Drive Bus Lines Directly
- Binary Counter, Synchronous Clear



#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER |     | MAX or MIN | LS   | UNIT |
|-----------|-----|------------|------|------|
| Icc       |     | MAX        | 70   | mA   |
|           | Q   | MAX        | -2.6 | mA   |
| Іон       | RCO | MAX        | -0.4 | mA   |
| le:       | 0   | MAX        | 24   | mA   |
| lor       | RCO | MAX        | 8    | mA   |

|        | PARAMETER | INPUT  | OUTPUT | MAX or MIN | LS |
|--------|-----------|--------|--------|------------|----|
| tw     | ССК       |        |        | MIN        | 25 |
| LW     | RCK       | 1      |        | IVIIIV     | 25 |
|        | A thru D  | -q o   |        | SAS        | 30 |
| tsu    | ENT, ENP  |        |        | MIN        | 30 |
| tsu    | U/D       | d a Ti |        | 13         | 35 |
|        | CCLR      |        |        | CAR        | 30 |
| th     |           |        |        | MIN        | 0  |
| tPLH.  | 277       | CCK ↑  | RCO    | MAX        | 40 |
| tPHL . |           | CCK    | nco    | IVIAA      | 40 |
| tPLH . |           | ENT    | RCO    | MAX        | 20 |
| tphl.  |           | CIVI   | nco    | IVIAA      | 20 |
| tPLH . |           | CCK ↑  | Q      | MAX        | 20 |
| tPHL   |           | CCK    | u      | IVIAA      | 25 |
| tPLH   |           | BCK &  | 0      | MAX        | 20 |
| tPHL.  |           | RCK ↑  | u      | IVIAA      | 25 |
| tPLH.  |           | R/C    | Q      | MAX        | 25 |
| tPHL . |           | n/C    | u      | IVIAA      | 25 |

# Logic Diagram



## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | AS  | SN74<br>BCT | UNIT |
|-----------|------------|-----|-------------|------|
| lcc       | MAX        | 80  | 86          | mA   |
| Von -     | MAX        | 5.5 | 5.5         | V    |
| lot.      | MAX        | 64  | 64          | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT    | OUTPUT | MAX or MIN | AS   | SN74<br>BCT |
|-----------|----------|--------|------------|------|-------------|
| PLH       |          | V      | MAX        | 19   | 11.3        |
| tPHL .    | A        | , r    | IVIAX      | 6    | 4.2         |
| PLH       | OE Y MAX |        | MAN        | 19.5 | 16.5        |
| PHL       | UE       | Y      | MAX        | 7.5  | 10.3        |

# Logic Diagram



#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | AS  | SN74<br>BCT | SN64<br>BCT | UNIT |
|-----------|------------|-----|-------------|-------------|------|
| Icc       | MAX        | 95  | 77          | 77          | mA   |
| Voн       | MAX        | 5.5 | 5.5         | 5.5         | V    |
| lou       | MAX        | 64  | 64          | 64          | mA   |

### SWITCHING CHARACTERISTICS

| SWITCHING CHAR | ACTENIOTICS |        |            |      |             |             |
|----------------|-------------|--------|------------|------|-------------|-------------|
| PARAMETER      | INPUT       | OUTPUT | MAX or MIN | AS   | SN74<br>BCT | SN64<br>BCT |
| tPLH .         | А           | Y      | MAX        | 18.5 | 10.1        | 10.1        |
| tPHL .         |             |        | IVIAA      | 6    | 6.6         | 6.6         |
| tPLH           | 10E         | 1Y     | 1747       | 20   | 19.7        | 19.7        |
| tPHL .         | IUE         |        | MAX        | 7    | 6.9         | 6.9         |
| tPLH .         | 20E         | 201    | MAN        | 21   | 18          | 18          |
| tPHL .         | ZUE         | 2Y     | MAX        | 7.5  | 8.5         | 8.5         |

HMIT-ne

# OCTAL BUFFER/LINE DRIVER/LINE RECEIVER WITH OPEN-COLLECTOR OUTPUTS [373] US [AT30]

- pnp Inputs Reduce dc Loading
- Open-Collector Versions of SN74ALS244 and SN74AS244

# Logic Diagram





#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS | AS  | SN74<br>BCT | UNIT |
|-----------|------------|-----|-----|-------------|------|
| lcc       | MAX        | 19  | 94  | 76          | mA   |
| Voн       | MAX        | 5.5 | 5.5 | 5.5         | V    |
| lou       | MAX        | 24  | 64  | 64          | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | ALS | AS   | SN74<br>BCT |
|-----------|-------|--------|------------|-----|------|-------------|
| tplH      | Λ     | Υ      | MAX        | 15  | 18.5 | 10          |
| tphl.     | А     |        | IVIAA      | 12  | 6    | 7.2         |
| tPLH      | ŌĒ    | v      | MAX        | 16  | 18.5 | 17.5        |
| tphl.     | UE    | 1      | IVIAA      | 13  | 7    | 9.9         |

# **HEX 2-INPUT NAND DRIVERS**

 $\bullet$  Y =  $\overline{A \bullet B}$ 

High Capacitive-Drive Capability

# Logic Diagram



#### **FUNCTION TABLE**

| INP | UTS | OUTPUT |
|-----|-----|--------|
| Α   | В   | Υ      |
| Н   | Н   | L      |
| L   | X   | Н      |
| X   | L   | Н      |

#### RECOMMENDED OPERATING CONDITIONS

| NECOMMENDED | UPENATING CON | DITIUNS |     |            | 13.1 |
|-------------|---------------|---------|-----|------------|------|
| PARAMETER   | MAX or MIN    | ALS     | AS  | SN74<br>HC | UNIT |
| Icc         | MAX           | 12      | 27  | 0.08       | mA   |
| Іон 🛚 🕊     | MAX           | -15     | -48 | -6         | mA   |
| lor         | MAX           | 24      | 48  | 6          | mA   |

#### SWITCHING CHARACTERISTICS

| SWITCHING CHAP | ACTERISTICS |        | Ad         |     |    |            |
|----------------|-------------|--------|------------|-----|----|------------|
| PARAMETER      | INPUT       | OUTPUT | MAX or MIN | ALS | AS | SN74<br>HC |
| tPLH .         | A D         | V      | MAX        | 7   | 4  | 25         |
| tPHL           | A, B        | 1      | MAX        | 8   | 4  | 25         |

# 805

# **HEX 2-INPUT NOR DRIVERS**

- $\bullet$  Y =  $\overline{A + B}$
- High Capacitive-Drive Capability

#### **FUNCTION TABLE**

| INP | UTS | OUTPUT |
|-----|-----|--------|
| Α   | В   | Υ      |
| Н   | X   | L      |
| X   | Н   | L      |
| L   | L   | H      |

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS | AS  | SN74<br>HC | UNIT |
|-----------|------------|-----|-----|------------|------|
| Icc       | MAX        | 14  | 32  | 0.08       | mA   |
| Іон       | MAX        | -15 | -48 | -6         | mA   |
| lou       | MAX        | 24  | 48  | 6          | mA   |

#### SWITCHING CHARACTERISTICS

| OTTITOTHE OTHER | PIOTEINIOTIO |        |            | _   |     | -          |
|-----------------|--------------|--------|------------|-----|-----|------------|
| PARAMETER       | INPUT        | OUTPUT | MAX or MIN | ALS | AS  | SN74<br>HC |
| tplH .          | A, B         | v      | MAX        | 7   | 4.3 | 24         |
| tPHL .          | A, D         | Y      | MAX        | 8   | 4.3 | 24         |

#### UNIT:ns

# 808

# **HEX 2-INPUT AND DRIVERS**

- Y = A + B
- High Capacitive-Drive Capability

#### **FUNCTION TABLE**

|   | INP | UTS | OUTPUT |
|---|-----|-----|--------|
| l | Α   | В   | Υ      |
|   | Н   | Н   | Н      |
| ı | L   | X   | L      |
| 1 | X   | L   | L      |

#### RECOMMENDED OPERATING CONDITIONS

| RECOMMENDED | OPERATING CON | IDITIONS   |     |      |
|-------------|---------------|------------|-----|------|
| PARAMETER   | MAX or MIN    | SN74<br>HC | AS  | UNIT |
| Icc         | MAX           | 0.08       | 33  | mA   |
| Іон         | MAX           | -6         | -48 | mA   |
| lou         | MAX           | 6          | 48  | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | SN74<br>HC | AS |
|-----------|-------|--------|------------|------------|----|
| tPLH      | A D   | v      | MAX        | 25         | 6  |
| tphl.     | A, B  | ,      | MAX        | 25         | 6  |

UNIT:ns

| 1A       | 1     |            | 0    |    |
|----------|-------|------------|------|----|
| 1B       | 2     | >-         | 3    | 1Y |
| 2A       | 4     |            | 6    |    |
| 2B       | 5     | >-         | 1050 | 2Y |
|          | 7     |            |      |    |
| 3A<br>3B | 8     | >          | 9    | 3Y |
|          | 12    |            | 11   |    |
| 4A<br>4B | 13    | >          | -11  | 4Y |
| 5A       | 15    |            |      |    |
| 5B       | 16 A1 | \<br>\<br> | 14   | 5Y |
| JD       | 18    |            |      |    |



# Logic Diagram

|          |    | •     |         |      |    |  |
|----------|----|-------|---------|------|----|--|
| 1A       | 1  |       |         | 3    |    |  |
| 1B       | 2  | o con | )       | 3    | 1Y |  |
|          | 4  |       |         |      |    |  |
| 2A<br>2B | 5  | 6.17  | )       | ь    | 2Y |  |
| 3A       | 7  |       | XAI     | 9    |    |  |
| 3B       | 8  | -     | )—      | -    | 3Y |  |
| 4A       | 12 | 95    | XAI     | 11   |    |  |
| 4B       | 13 |       | )—      | - 11 | 4Y |  |
| 5A       | 15 | _=    | 1831128 | 14   |    |  |
| JA       | 16 |       |         | 14   | 5Y |  |



# 10-BIT BUS INTERFACE FLIP-FLOPS TUSTUO 3 OE 4 MITH 4004 WITH 3-STATE OUTPUT

- Outputs Have Undershoot-Protection Circuitry
- Power-Up High-Impedance State



#### FUNCTION TABLE

| INPUTS |     |   | OUTPUT         |
|--------|-----|---|----------------|
| OE     | CLK | D | Q              |
| L      | î   | Н | H              |
| L      | 1   | L | L              |
| L      | L   | X | Q <sub>0</sub> |
| H      | X   | X | Z              |

#### RECOMMENDED OPERATING CONDITIONS

| TIEGOTI TIETO ED | OT EMPTITIES SOIT | I   | 1   |      |      |
|------------------|-------------------|-----|-----|------|------|
| PARAMETER        | MAX or MIN        | AS  | ABT | LVC  | UNIT |
| Icc              | MAX               | 113 | 38  | 0.01 | mA   |
| Іон              | MAX               | -24 | -32 | -24  | mA   |
| lou              | MAX               | 48  | 64  | 24   | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | AS   | ABT  | LVC |
|-----------|-------|--------|------------|------|------|-----|
|           |       |        |            | ,,,, | 1101 | 3V  |
|           | Н     | igh    | MIN        | 8    | 2.9  | 3.3 |
| tw        | L     | OVV    | MIN        | 8    | 3.8  | 3.3 |
| tsu       |       |        | MIN        | 6    | 2.1  | 1.9 |
| th        |       |        |            | .0   | 1.3  | 1.5 |
| tPLH .    | CLK   | Q      | MAX        | 7.5  | 6.2  | 7.3 |
| tPHL .    | CLK   | u      | IVIAX      | 13   | 6.7  | 7.3 |
| tPZH      | ŌE    |        |            | 11   | 5.8  | 7.6 |
| tPZL      | UE    | Q      | MAX        | 12   | 6.3  | 7.6 |
| tPHZ      | ŌE    | 0      | MAX        | 8    | 6.7  | 6.2 |
| tPLZ      | UE    | u      | IVIAX      | 8    | 6.5  | 6.2 |

# 9-BIT BUS INTERFACE FLIP-FLOP WITH 3-STATE OUTPUT 250 JR-4LF 33 A3 R3 TM 208 TI8-01

- Functionally Equivalent to AMD's AM29823 and AM29824
- Outputs Have Undershoot-Protection Circuitry
- Power-Up High-Impedance State

# Logic Diagram



|    | INPU | INPUTS | PUTS |   | OUTPUT |
|----|------|--------|------|---|--------|
| OE | CLR  | CLKEN  | CLK  | D | Q      |
| L  | L    | X      | X    | X | L      |
| L  | Н    | L      | 1    | H | Н      |
| L  | Н    | L      | 1    | L | L      |
| L  | H    | H      | X    | X | Qo     |
| H  | ×    | Y      | V    | Y | 7      |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | AS  | ABT | TAC. | UNIT |
|-----------|------------|-----|-----|------|------|
| Icc       | MAX        | 103 | 38  | 0.01 | mA   |
| Іон       | MAX        | -24 | -32 | -24  | mA   |
| lou       | MAX        | 48  | 64  | 24   | mA   |

#### SWITCHING CHARACTERISTICS

| P           | ARAMETER  | INPUT | OUTPUT | MAX or MIN | AS   | ABT | LVC<br>3V |
|-------------|-----------|-------|--------|------------|------|-----|-----------|
|             | CLR "L"   |       | g 5-   |            | 6.5  | 5.5 | 3.3       |
| tw          | CLK "H"   |       |        | MIN        | 8    | 2.9 | 3.3       |
|             | CLK "L"   |       |        |            | 8    | 3.8 | 3.3       |
|             | CLR       |       |        |            | 8    | 2.5 | -1        |
|             | DATA      |       |        |            | 6    | 2.1 | 1.3       |
| <b>İ</b> su | CLKEN "H" |       |        | MIN        | 7.5  | 2   | 1.8       |
|             | CLKEN "L" |       |        | + +        | -    | 3.3 | 1.8       |
|             | DATA      |       |        |            | -    | 1.3 | 2         |
| th          | CLKEN "H" | V     |        | MIN        | -    | 1   | -         |
|             | CLKEN "L" |       |        |            | 0    | 2   | 1.3       |
| tPLH        |           | CLK   | 0      | MAN        | 7.5  | 6.8 | 8         |
| tphl        |           | CLK   | ۵      | MAX        | 13   | 6.7 | 8         |
| tPHL        |           | CLR   | Q      | MAX        | 15.5 | 7.1 | 7.9       |
| tpzh        |           |       |        | MAX        | 11   | 6   | 7.2       |
| tPZL        |           | UE    | OE Q   |            | 12   | 6.5 | 7.2       |
| tPHZ        |           | ŌĒ    | 0      | MAX        | 8    | 7.5 | 6         |
| tPLZ .      |           | UE    | OE Q   |            | 8    | 6.9 | 6         |

441

# 8-BIT BUS INTERFACE FLIP-FLOP WITH 3-STATE OUTPUT

- Improved I<sub>OH</sub> Specifications (Max: -24mA)
- Outputs Have Undershoot-Protection Circuitry
- Power-Up High-Impedance State



|    |     | INPUTS |     |   | OUTPUT         |
|----|-----|--------|-----|---|----------------|
| OE | CLR | CLKEN  | CLK | D | Q              |
| L  | L   | X      | X   | X | L .            |
| L  | H   | L      | 1   | H | Н              |
| L  | Н   | L      | 1   | L | L              |
| L  | H   | H      | X   | X | Q <sub>0</sub> |
| H  | X   | X      | X   | X | Z              |

#### ART RUFFERS/RUS DRIVERS

- 3-State Dutputs Drive Bus Lines or Buffer Memory
   Arthrees Familians.
- 74AC11xxx Product Available in Reduced-Noise
- 74ACT11xxx: Product Available in Reduced-Noise

#### RECOMMENDED OPERATING CONDITIONS

| TIEGOTHINIETEDED | OT EMPTING CON |     |      |
|------------------|----------------|-----|------|
| PARAMETER        | MAX or MIN     | AS  | UNIT |
| Icc              | MAX            | 95  | mA   |
| Іон              | MAX            | -24 | mA   |
| lor              | MAX            | 48  | mA   |
|                  |                | -   |      |

#### FUNCTION TABLE

#### SWITCHING CHARACTERISTICS

| PARAMETER |         | INPUT | OUTPUT | MAX or MIN | AS   |
|-----------|---------|-------|--------|------------|------|
| 1.8 1.52  | CLR "L" |       |        |            | 4    |
| tw        | CLK "H" | ISAM. |        | MIN        | - 8  |
| 10.5      | CLK "L" |       |        |            | - 8  |
| 7.3       | CLR     | XARR  |        | 30         | - 8  |
| İsu       | DATA    |       |        | MIN        | 6    |
|           | CLKEN   | XAM   |        | 70         | 6    |
| th        |         |       |        | MIN        | 0    |
| tplh      |         | CLK   | Q      | MAX        | 7.5  |
| tphL      |         | - CLK |        | IVIAA      | 13   |
| TPHL .    |         | CLR   | Q      | MAX        | 15.5 |
| tpzh      |         |       | 0      | MAX        | 11   |
| tPZL      |         | J. UE | u      | IVIAX      | 12   |
| tPHZ      |         | ŌĒ    | 0      | MAX        | 8    |
| tPLZ      |         | UE    | OE Q   |            | 8    |

8

# 10-BIT BUFFERS/BUS DRIVERS

Address Registers

VAACT type: Product Available in Reduced-Noisi

74ACT11xxxx Product Available in Reduced-Noise

#### ECOMMENDED OFFICE CONDITIONS

#### PUNCTION TABLE

## **10-BIT BUFFERS/BUS DRIVERS**

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)



To Nine Other Channels

FUNCTION TABLE

| INPUTS OUT |                    | OUTPUT |
|------------|--------------------|--------|
| OE2        | Α                  | Y      |
| L          | Н                  | Н      |
| L          | L                  | L      |
| H          | X                  | Z      |
| X          | X                  | Z      |
|            | DE2<br>L<br>L<br>H |        |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | AC<br>11 | ACT<br>11 | LVC<br>3V | UNIT |
|-----------|------------|-----|----------|-----------|-----------|------|
| Icc       | MAX        | 40  | 80.0     | 0.08      | 0.01      | mA   |
| Іон       | MAX        | -32 | -24      | -24       | -24       | mA   |
| lou       | MAX        | 64  | 24       | 24        | 24        | mA   |

#### SWITCHING CHARACTERISTICS

| SWITCHING CHA | RACTERISTICS |        |            |     |          |           |           |
|---------------|--------------|--------|------------|-----|----------|-----------|-----------|
| PARAMETER     | INPUT        | OUTPUT | MAX or MIN | ABT | AC<br>11 | ACT<br>11 | 3V<br>LVC |
| tplh          | Toronto A    | Y      | MAX MAX    | 4.8 | 8.7      | 9.2       | 6.7       |
| tPHL          | MIM A        |        |            | 4.7 | 9.7      | 11.2      | 6.7       |
| tpzh          | ŌĒ           |        |            | 5.9 | 9.7      | 11.3      | 7.3       |
| tPZL          | UE           |        |            | 6.9 | 13       | 14        | 7.3       |
| tPHZ          | - OE         |        |            | 6.8 | 9.1      | 12        | 6.7       |
| tPLZ          |              |        |            | 6.9 | 8.8      | 11.6      | 6.7       |

#### UNIT: ns

# 828

# **10-BIT BUFFERS/BUS DRIVERS**

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- 74AC11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)
- 74ACT11xxx: Product Available in Reduced-Noise Advanced CMOS (11000 Series)

# **Logic Diagram**



To Nine Other Channels

#### **FUNCTION TABLE**

| Γ |     | INPUTS |   | OUTPUT |
|---|-----|--------|---|--------|
| Γ | OE1 | OE2    | Α | Y      |
| Ī | L   | L      | Н | L      |
|   | L   | L      | L | Н      |
|   | H   | X      | X | Z      |
|   | X   | H      | X | Z      |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | AC<br>11 | ACT<br>11 | LVC<br>3V | UNIT |
|-----------|------------|----------|-----------|-----------|------|
| lcc       | MAX        | 0.08     | 0.08      | 0.01      | mA   |
| Іон       | MAX        | -24      | -24       | -24       | mA   |
| lou       | MAX        | 24       | 24        | 24        | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | AC<br>11 | ACT<br>11 | 3V  |
|-----------|-------|--------|------------|----------|-----------|-----|
| tPLH      |       |        | MAN        | 9.5      | 10.2      | 6.7 |
| tphl.     | А     |        | MAX        | 10.4     | 11.7      | 6.7 |
| tPZH      | ŌĒ    |        | MAX        | 10.7     | 12.1      | 7.3 |
| tPZL      | UE    | T T    |            | 13.2     | 14.7      | 7.3 |
| tPHZ      | ŌĒ    | 1      | MAN        | 9.6      | 12.3      | 6.7 |
| tPLZ      | UE    |        | MAX        | 9.2      | 11.7      | 6.7 |

# 832

# Logic Diagram

# **HEX 2-INPUT OR DRIVERS**

|   | γ | = | Α   | + | В |  |
|---|---|---|-----|---|---|--|
| - |   |   | , , |   | _ |  |

High Capacitive-Drive Capability

## **FUNCTION TABLE**

|   | INP | UTS | OUTPUT |
|---|-----|-----|--------|
| Ì | Α   | В   | Υ      |
| ſ | Н   | X   | Hose   |
| 1 | X   | H   | H      |
| 1 | L   | L   | L      |

| 1A | eleagy: |           | 149 TI8 3 |    |  |
|----|---------|-----------|-----------|----|--|
| 1B | 2       | $\supset$ | 3         | 1Y |  |
| 2A | 4       |           | 6         |    |  |
| 2B | 5       | _) >      | 0         | 2Y |  |
| 3A | 7       | 1         | 9         |    |  |
| 3B | 8       | $\supset$ | 3         | 3Y |  |
| 4A | 12      |           | 11        |    |  |
| 4B | 13      | _) >      | . 0-      | 4Y |  |
| 5A | 15      | 1         | 14        |    |  |
| 5B | 16      | _) >      |           | 5Y |  |
| 6A | 18      |           | 17        |    |  |
| 6P | 19      | _) >      |           | 6Y |  |

#### RECOMMENDED OPERATING CONDITIONS

| MAX or MIN | ALS        | AS             | SN74<br>HC               | UNIT                                                 |
|------------|------------|----------------|--------------------------|------------------------------------------------------|
| MAX        | 16         | 36             | 0.08                     | mA                                                   |
| MAX        | -15        | -48            | -6                       | mA                                                   |
| MAX        | 24         | 48             | 6                        | mA                                                   |
|            | MAX<br>MAX | MAX 16 MAX -15 | MAX 16 36<br>MAX -15 -48 | MAX or MIN ALS AS HC  MAX 16 36 0.08  MAX -15 -48 -6 |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | ALS | AS  | SN74<br>HC |
|-----------|-------|--------|------------|-----|-----|------------|
| tPLH      | A D   | V      | MAX        | 9   | 6.3 | 25         |
| tPHL .    | A, B  | Y      | MAX        | 8   | 6.3 | 25         |



|   |     |             | NPUT:           | S                     |                | 0  | UTPU | TS AND I | /0                |                                                 |                                              |
|---|-----|-------------|-----------------|-----------------------|----------------|----|------|----------|-------------------|-------------------------------------------------|----------------------------------------------|
| В | OEA | CLR         | CLK             | Ai<br>Σ OF H's        | Bi<br>Σ OF H's | А  | В    | PARITY   | ERR               | FUNCTION                                        | INTERFACE D-TY                               |
|   | Н   | X           | Х               | Odd<br>Even           | NA             | NA | Α    | L        | NA                | A data to B bus and<br>generate parity          | uffer-Type Catouts Dr                        |
|   | L   | Н           | 1               | NA                    | Odd<br>Even    | В  | NA   | NA       | H                 | B data to A bus and<br>check parity             | uner-type uarpus ur<br>stured Pinout         |
|   | X   | L           | X               | X                     | X              | X  | NA   | NA       | H                 | Check error flag register                       |                                              |
|   | Н   | H<br>L<br>H | No↑<br>No↑<br>↑ | X<br>X<br>Odd<br>Even | ×              | Z  | Z    | Z        | NC<br>H<br>H<br>L | Isolation                                       | odra Bus-Driving Latel<br>high-Impedance Sta |
|   | L   | X           | Х               | Odd<br>Even           | NA             | NA | Α    | H        | NA                | A data to B bus and<br>generate inverted parity |                                              |

Logic Disorem

| INPUTS |     | INTERNAL<br>TO DEVICE | OUTPUT<br>PRE-STATE  | OUTPUT | FUNCTION |
|--------|-----|-----------------------|----------------------|--------|----------|
| CLR    | CLK | POINT P               | ERR <sub>n-1</sub> † | ERR    |          |
| Н      | 1   | Н                     | Н                    | Н      |          |
| H      | 1   | X                     | L                    | H      | Sample   |
| H      | 1   | L                     | X                    | L      |          |
| L      | X   | X                     | X                    | Н      | Clear    |

† The state of ERR before any changes at CLR, CLK, or point P



#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | UNIT |
|-----------|------------|-----|------|
| Icc       | MAX        | 38  | mA   |
| Іон       | MAX        | -32 | mA   |
| lou       | MAX        | 64  | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT         | MAX or MIN | ABT  |
|-----------|--------|----------------|------------|------|
| tplH      | A or B | B or A         | MAX        | 5.3  |
| tPHL .    | A or B | B OF A         | WAX        | 5.3  |
| tPLH      |        | DARITY         | 144V       | 11.2 |
| tPHL .    | A      | PARITY         | MAX        | 11   |
| tPZH      | ŌE     | PARITY         | MAX        | 10.5 |
| tPZL      | OE     | PARITY         | IVIAA      | 10   |
| tPLH      | CLR    | ERR            | MAX        | 5.2  |
| tpht.     | CLK    | ERR            | MAX        | 6.2  |
| tPZH      | ŌĒ     | A.B. or PARITY | 1447       | 6.5  |
| tPZL      | UE     | A,B, OF PARITY | MAX        | 6.5  |
| tPHZ      | ŌĒ     | A.D DADITY     | MAN        | 7.9  |
| tPLZ      | UE     | A,B, or PARITY | MAX        | 8.1  |

- The Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environment of the Environme
- 3-State Buffer-Type Outputs Drive Bus Lines Directly
   Bus-Structured Pinout
- Provide Extra Bus-Driving Latches Necessary for Wider Address/Data Paths or Buses with Parity
- Power-Up High-Impedance State



| Γ |    | INPUTS | OUTPUT |                |
|---|----|--------|--------|----------------|
| Г | OE | LE     | D      | Q              |
| Г | L  | Н      | Н      | L              |
| l | L  | H      | L      | H              |
| l | L  | L      | X      | Q <sub>0</sub> |
| ı | Н  | X      | X      | Z              |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS  | AS  | ABT | LVC<br>3V | UNIT |
|-----------|------------|------|-----|-----|-----------|------|
| Icc       | MAX        | 62   | 94  | 38  | 0.01      | mA   |
| Іон       | MAX        | -2.6 | -24 | -32 | -24       | mA   |
| lor.      | MAX        | 24   | 48  | 64  | 24        | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | ALS | AS   | ABT | SV. |
|-----------|-------|--------|------------|-----|------|-----|-----|
| tw        |       | 200    | 4 1        | 20  | 4    | 3.3 | 3.3 |
| tsu       | Hi    | gh     | MIN        | 10  | 2.5  | 2.5 | 2.1 |
| tsu       | Lo    | W      | MIN        | 10  | 2.5  | 1.5 | 2.1 |
| th        |       |        |            | 5   | 2.5  | 1.5 | 1   |
| tPLH      | D     | Q      | MAX        | 13  | 6.5  | 6.2 | 6.7 |
| tphL .    | U     | u      | IVIAX      | 13  | 10.5 | 6.2 | 6.7 |
| tplh      | LE    | 0      | MAY        | 21  | 12   | 6.5 | 7.6 |
| tphl.     | LE    | Q      | MAX        | 26  | 12   | 6.7 | 7.6 |
| tPZH      | ŌE    | Q      | MAX        | 12  | 14   | 5.3 | 7.2 |
| tPZL      | UE    | u      | IVIAX      | 12  | 16   | 6.3 | 7.2 |
| tPHZ      | ŌĒ    | 0      | MAX        | 10  | 8    | 7.1 | 5.9 |
| tPLZ      | OE Q  | u u    | IVIAX      | 12  | 8    | 6.5 | 5.9 |

# 9-BIT BUS INTERFACE D-TYPE LATCHES WITH 3-STATE OUTDUTS



|     |      | ОИТРИТ |    |   |                |
|-----|------|--------|----|---|----------------|
| PRE | CLR  | OE     | LE | D | OUIFUI         |
| L   | Н    | L      | X  | X | Н              |
| H   | L    | L      | X  | X | L              |
| L   | L    | L      | ×  | X | H              |
| H   | H    | L      | H  | L | L              |
| Н   | H    | L      | H  | H | H              |
| H   | H    | L      | L  | X | Q <sub>0</sub> |
|     | 2.41 |        |    |   | _              |

RECOMMENDED OPERATING CONDITIONS

| NEGOIVINIENDED | OI LIMING CON | T    |     | _   | -    |
|----------------|---------------|------|-----|-----|------|
| PARAMETER      | MAX or MIN    | ALS  | AS  | ABT | UNIT |
| Icc            | MAX           | 67   | 92  | 34  | mA   |
| Іон            | MAX           | -2.6 | -24 | -32 | mA   |
| IOL            | MAX           | 24   | 48  | 64  | mA   |

|            |              |      |                     |        | -   |      |     |
|------------|--------------|------|---------------------|--------|-----|------|-----|
| P          | PARAMETER    |      | T OUTPUT MAX or MIN |        | ALS | AS   | ABT |
|            | CLR "L"      |      |                     | -      | 35  | 4    | 5.5 |
| tw         | PRE "L"      |      |                     | MIN    | 35  | 4    | 4.5 |
| W          | LE "H"       |      |                     | MIIN   | 20  | 4    |     |
|            | LE "L"       |      |                     |        | -   | 4    | 3.4 |
|            | LE "L"       |      |                     | 385    | 10  | 2.5  | 2.5 |
|            | LE "H"       |      |                     | MIN    | 10  | 2.5  | 3   |
| tsu        | PRE inactive |      |                     | IVIIIV | -   | 15   | 1.6 |
|            | CLR inactive |      |                     |        | -   | 14   | 2   |
| h          | LE "L"       |      |                     | MIN    | 5   | 2.5  | 1   |
| ın         | LE "H"       |      |                     | IVIIIV | 5   | 2.5  | 1.5 |
| IPLH -     | 000          | D 0  |                     | MAX    | 13  | 6.5  | 6.7 |
| tPHL .     | 4            | U    | u                   | IVIAA  | 18  | 9    | 7.2 |
| IPLH .     |              | LE   | Q                   | MAX    | 21  | 12   | 7.2 |
| tPHL .     |              | LE   | u                   | IVIAX  | 26  | 12   | 6.9 |
| tPLH .     |              | CLR  | 0                   | MAX    | 1-7 | -    | 7.1 |
| tPHL       |              | CLK  | U MAX               |        | 23  | 13   | 8   |
| tPLH       |              | PRE  | Q                   | MAX    | 22  | 10   | 7.4 |
| PHL        |              | PHE  | u u                 | MAX    |     | -    | 7.2 |
| PZH<br>PZL |              | Q    |                     | MAX    | 12  | 10.5 | 5.7 |
|            |              |      |                     | MAX    | 14  | 13.5 | 6.5 |
| tPHZ       | PHZ          |      | Q                   | MAX    | 10  | 8    | 6.8 |
| PLZ        |              | OE Q |                     | MAX    | 12  | 8    | 5.9 |

# Logic Diagram



|     |     | - 1         | NPUT | S                         |               | 0  | UTPU | T AND I/O | Os                |                                                 |
|-----|-----|-------------|------|---------------------------|---------------|----|------|-----------|-------------------|-------------------------------------------------|
| OEB | ŌĒĀ | CLR         | LE   | Ai<br>Σ OF H              | Bi†<br>Σ OF H | Α  | В    | PARITY    | ERR‡              | FUNCTION                                        |
| L   | Н   | Χ           | X    | Odd<br>Even               | NA            | NA | Α    | L<br>H    | NA                | A data to B bus and<br>generate parity          |
| Н   | L   | Н           | L    | NA                        | Odd<br>Even   | В  | NA   | NA        | H                 | B data to A bus and<br>check parity             |
| Н   | L   | Н           | Н    | X                         | X             | X  | NA   | NA        | NC                | Store error flag                                |
| X   | X   | L           | Н    | X                         | X             | X  | NA   | NA        | Н                 | Clear error flag register                       |
| Н   | Н   | H<br>H<br>H | H    | X<br>X<br>L Odd<br>H Even | х             | Z  | Z    | Z         | NC<br>H<br>H<br>L | Isolation§ (parity check)                       |
| L   | L   | Х           | X    | Odd                       | NA            | NA | Α    | H         | NA                | A data to B bus and<br>generate inverted parity |

| INPL | JTS | TO DEVICE | OUTPUT<br>PRE-STATE  | OUTPUT      | FUNCTION |
|------|-----|-----------|----------------------|-------------|----------|
| CLR  | LE  | POINT P   | ERR <sub>n-1</sub> † | ERR         |          |
| L    | L   | L<br>H    | Х                    | L<br>H      | Pass     |
| Н    | L   | X<br>H    | X<br>L<br>H          | L<br>L<br>H | Sample   |
| L    | Н   | ×         | X                    | Н           | Clear    |
| Н    | Н   | ×         | L<br>H               | L<br>H      | Store    |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | UNIT |
|-----------|------------|-----|------|
| Icc       | MAX        | 38  | mA   |
| Іон       | MAX        | -32 | mA   |
| lou       | MAX        | 64  | mA   |

#### SWITCHING CHARACTERISTICS

| SWITCHING CHA | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |           |            | -    |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|------|--|
| PARAMETER     | INPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OUTPUT    | MAX or MIN | ABT  |  |
| tplH VIII     | A D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D A       | MAN        | 5.3  |  |
| tphl .        | A or B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B or A    | MAX        | 5.3  |  |
| tPLH TPLH     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PARITY    | MAN        | 11.2 |  |
| tphl          | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PARITY    | MAX        | 11   |  |
| tPLH TO       | ŌE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DADITY    | MAY        | 10.5 |  |
| tphL .        | UE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PARITY    | MAX        | 10   |  |
| tPLH .        | CLR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ERR       | MAX        | 6.2  |  |
| tPLH .        | LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ERR       | MAX        | 6    |  |
| tphl.         | LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Enn       | WAX        | 6.6  |  |
| tPLH 08       | B or RARITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ERR       | MAX        | 11.7 |  |
| tPHL .        | B OF HARITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Enn       | IVIAX      | 12.8 |  |
| tPZH          | ŌĒ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A or B    | MAX        | 6.7  |  |
| tPZL          | UE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | or PARITY | IVIAX      | 6.7  |  |
| tPHZ          | ŌĒ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A or B    | MAX        | 7.9  |  |
| tPLZ          | UE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | or PARITY | WAX        | 8.1  |  |

OIVII. IIS

# **HEX 2-TO-1 UNIVERSAL MULTIPLEXERS**

- Select True or Complementary Data
- Perform AND/NAND (Masking) of A or B Operand
- Cascadable to Expand Number of Operands
- Detect Zeros on A or B Operands
- 3-State Outputs Interface Directly with System Bus



| L | l H | н | L   | Inc. Inc.          |
|---|-----|---|-----|--------------------|
| Н | L   | L | Ā   | H = all A inputs L |
| Н | L   | н | B   | H = all B inputs L |
| H | H   | L | A•B | Z                  |
| Н | Н   | Н | Z   | Z                  |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER |          | MAX or MIN      | ALS  | AS  | UNIT |
|-----------|----------|-----------------|------|-----|------|
|           |          | INIMA OF IVITIN | ALS  | MO  | UNIT |
|           |          | MAX             | 36   | 135 | mA   |
| ICCL      |          | MAX             | 33   | 175 | mA   |
| Юн        | Y        | MAX             | -2.6 | -15 | mA   |
|           | OPER = 0 | MAX             | -2.6 | -2  | mA   |
|           | Y        | MAX             | 24   | 48  | mA   |
| IOL       | OPER = 0 | MAX             | 24   | 20  | mA   |

| PARAMETER       | INPUT                  | OUTPUT             | MAX or MIN | ALS | AS |
|-----------------|------------------------|--------------------|------------|-----|----|
| t <sub>pd</sub> | A or B<br>(COMP = "H") | Y<br>inverting     | MAX        | 14  | 12 |
| <b>t</b> pd     | A or B<br>(COMP = "L") | Y<br>non-inverting | MAX        | 14  | 10 |
| tpd             | S0 or S1               | Y                  |            | 33  | 13 |
| tpd             | COMP                   | Y                  | MAY        | 18  | 13 |
| tpd             | A or B                 | OPER = 0           | MAX        | 37  | 14 |
| tpd             | S0 to S1               | OPER = 0           | 1.0        | 23  | 18 |
| ten             | 00 +- 01               | Y                  | MANY       | 35  | 12 |
| tdis            | S0 to S1               | Y                  | MAX        | 23  | 11 |
| ten             | COMP                   | Y                  | MAN        | 24  | 12 |
| tdis            | COMP                   | Y                  | MAX        | 21  | 9  |
| ten             | SO                     | 0050 0             | MAN        | 20  | 12 |
| tdis            | 50                     | OPER = 0           | MAX        | 27  | 9  |
| ten             | S1                     | 0050 0             | MANY       | 25  | 12 |
| tdis            | 51                     | OPER = 0           | MAX        | 19  | 9  |
| ten             | COMP                   | OPER = 0           | MAX        | 25  | 13 |
| tdis            | COMP                   | UPER = U           | IVIAX      | 20  | 9  |

# 10-BIT TRANSCEIVERS WITH 3-STATE OUTPUTS



#### **FUNCTION TABLE**

| INP       | UTS | OPERATION                |  |
|-----------|-----|--------------------------|--|
| OEAB OEBA |     | OPERATION                |  |
| L         | Н   | A data to B bus          |  |
| Н         | L   | B data to A bus          |  |
| H         | H   | Isolation                |  |
| L         | L   | Latch A and B<br>(A = B) |  |

|  | To Nine Other Channels | 3 |
|--|------------------------|---|
|  |                        |   |
|  |                        |   |

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | LVC<br>3V | UNIT |
|-----------|------------|-----|-----------|------|
| lcc       | MAX        | 38  | 0.01      | mA   |
| Іон       | MAX        | -32 | -24       | mA   |
| lor       | MAX        | 64  | 24        | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT        | OUTPUT | MAX or MIN | ABT | LVC<br>3V | XAM |
|-----------|--------------|--------|------------|-----|-----------|-----|
| tPLH      |              | D 4    | MAX        | 5.2 | 6.4       |     |
| tPHL .    | A or B       | B or A | IVIAX      | 4.9 | 6.4       |     |
| tpzh      | OEAB or OEBA | B or A | MAX        | 5.9 | 7         | XAW |
| tPZL      |              |        |            | 6.9 | 7         |     |
| tphz      |              | B or A | MAN        | 7.5 | 5.9       | MAM |
| tPLZ      | OEAB or OEBA |        | MAX        | 7.1 | 5.9       | XAM |

# 9-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS

3-State Outputs

## **FUNCTION TABLE**

| OPERATION     | INPUTS  |       |       |       |  |
|---------------|---------|-------|-------|-------|--|
| OPERATION     | OEBA2   | OEBA1 | OEAB2 | OEAB1 |  |
| Latch A and I | L       | L     | L     | L     |  |
| A to B        | X       | Н     | L     | L     |  |
| A IO B        | H       | X     | L     | L     |  |
| B to A        | Lao.    | L     | X     | Н     |  |
| B to A        | Library | L     | H     | X     |  |
|               | X       | Н     | X     | Н     |  |
| Isolation     | H       | X     | X     | H     |  |
| ISOIATION     | H       | X     | H     | X     |  |
|               | V       | LI    | L     | v     |  |

# OEBA1 11 OEBA2 13 OEAB1 14 OEAB2 14 OEAB2 14 OEAB2 14 OEAB2 14 OEAB2 15 OEAB2 16 OEAB2 17 OEAB2 17 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEAB2 18 OEA

Logic Diagram

To Eight Other Channels

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | LVC<br>3V | UNIT |
|-----------|------------|-----|-----------|------|
| Icc       | MAX        | 38  | 0.01      | mA   |
| Іон       | MAX        | -32 | -24       | mA   |
| lou       | MAX        | 64  | 24        | mA   |

#### SWITCHING CHARACTERISTICS

| SWITCHING CHAN | ACTENISTICS | - 10 m | 1500-011   |     |           |
|----------------|-------------|--------|------------|-----|-----------|
| PARAMETER      | INPUT       | OUTPUT | MAX or MIN | ABT | LVC<br>3V |
| tPLH           | A or B      | D A    | MAX        | 5.7 | 6.1       |
| tphl.          | A OF B      | B or A | MAX        | 3.9 | 6.1       |
| tPZH           | ŌĒ          | A D    | MAX        | 5.5 | 7.2       |
| tPZL           | UE          | A or B | MAX        | 5.4 | 7.2       |
| tPHZ           | ŌĒ          | A D    | MANY       | 6.7 | 6.3       |
| tPLZ           | UE          | A or B | MAX        | 6.9 | 6.3       |

**Logic Diagram** CLK 14 S0 1 S1 2 SN74ALS867A Only (asynchronous clear) ENP 23 A 3 B 4 C \_5 D 19 QD D 6 E 7 18 QE G 9 ⊅ 16 QG H 10 D-13 RCO ENT 11

| S1 | S0 | FUNCTION   |  |
|----|----|------------|--|
| L  | L  | Clear      |  |
| L  | Н  | Count down |  |
| Н  | L  | Load       |  |
| Н  | Н  | Countum    |  |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS  | AS  | UNIT |
|-----------|------------|------|-----|------|
| Icc       | MAX        | 45   | 195 | mA   |
| Іон       | MAX        | -0.4 | -2  | mA   |
| lou       | MAX        | 8    | 20  | mA   |

| DADAMETER | INPUT OUTPUT                                |               | MAX or MIN | 410   | AS  |
|-----------|---------------------------------------------|---------------|------------|-------|-----|
| PARAMETER | INPUT                                       | 001101        | MAX or MIN | ALS   | AS  |
| fmax      |                                             | 10 -0         | MIN        | 35    | 50  |
| tw        | CLK (c                                      | lock)         | MIN        | 14    | 10  |
|           | S0 and S                                    | IVIIIV        | 10         | 10    |     |
| tsu       | Data inp                                    | ut A-H        |            | 10    | 4   |
|           | ENP o                                       | r ENT         |            | 15    | 8   |
|           | S0 low and S                                | 1 high (load) | MIN        | 12    | 10  |
|           | S0 and S1 I                                 | IVIIIV        | -          | 10    |     |
|           | S0 high and S1 low (count down)             |               |            | 12    | 40  |
|           | S0 and S1 hig                               |               | 12         | 40    |     |
| th        | S0 high after S1 ↑ or S1<br>high after S0 ↑ |               | MIN        | 3     |     |
|           | Data inp                                    | out A-H       |            | 0     | 0   |
| tPLH      | CLK                                         | RCO           | MAX        | 14    | 22  |
| tphl .    | CLK                                         | nco           | IVIAA      | 14    | 16  |
| tPLH      | CLK                                         | Any Q         | MAX        | 16    | 11  |
| tphl.     | CLK                                         | Ally u        | IVIAA      | 16    | 15  |
| tplh      | ENT                                         | RCO           | MAX        | 14    | 10  |
| tphl .    | LIVI                                        | HOU           | IVIAA      | 9     | 17  |
| tplh      | ENP                                         | RCO           | MAX        | -     | 14  |
| tрнL      | LINE                                        | nou           | IVIAA      | . 500 | 17  |
| tPHL .    | S0, S1<br>(clear mode)                      | Any Q         | MAX        | 26    |     |
| tPLH      | S0 or S1                                    | RCO           | MAX        | 16    | -   |
| tphl.     | (count up/down)                             | nco           | IVIAA      | 16    | ) - |
| tPHL .    | S0 or S1<br>(clear mode)                    | RCO           | MAX        | 16    | 21  |

UNIT fmax : MHz other : ns

# 8-BIT SYNCHRONOUS BIDIRECTIONAL COUNTER

- Fully Programmable with Synchronous Counting and Loading
- Synchronous Clear
- Ripple-Carry Output for n-Bit Cascading



| S1 | S0 | FUNCTION   |  |
|----|----|------------|--|
| L  | L  | Clear      |  |
| L  | Н  | Count down |  |
| Н  | L  | Load       |  |
| Н  | Н  | Count up   |  |

#### RECOMMENDED OPERATING CONDITIONS

| OT ENTAINING GOTE | I                    |                                  |                           |
|-------------------|----------------------|----------------------------------|---------------------------|
| MAX or MIN        | ALS                  | AS                               | UNIT                      |
| MAX               | 45                   | 195                              | mA                        |
| MAX               | -0.4                 | -2                               | mA                        |
| MAX               | 8                    | 20                               | mA                        |
|                   | MAX or MIN  MAX  MAX | MAX or MIN ALS  MAX 45  MAX -0.4 | MAX 45 195<br>MAX -0.4 -2 |

| SWITCHING CHA | ARACTERISTICS                               |                 |       | -   | +   |
|---------------|---------------------------------------------|-----------------|-------|-----|-----|
| PARAMETER     | INPUT                                       | NPUT OUTPUT MAX |       | ALS | AS  |
| fmax          |                                             |                 | MIN   | 35  | 45  |
| tw            | CLK                                         |                 | MIN   | 14  | 11  |
| tsu           | Data inpu                                   | t A-H           |       | 10  | 5   |
|               | ENP or                                      |                 | 15    | 9   |     |
|               | S0 low and S1                               | MIN             | 13    | 11  |     |
|               | S0 and S1 lo                                | IVIIIV          | 13    | 11  |     |
|               | S0 high and S1 lov                          |                 | 13    | 50  |     |
|               | S0 and S1 high                              |                 | 13    | 50  |     |
| th            | S0 high after S1 ↑ or S1<br>high after S0 ↑ |                 | MIN   | 3   |     |
|               | Data inpu                                   |                 | 0     | 0   |     |
| tPLH .        | CLK                                         | RCO             | MAX   | 14  | 35  |
| tphl          | CLK                                         | ncu             | IVIAA | 14  | 18  |
| tplH .        | CLK                                         | Any Q           | MAX   | 16  | 11  |
| tPHL .        | CLK                                         | Any u           | IVIAA | 16  | 15  |
| tPLH          | ENT                                         | RCO             | MAX   | 14  | 15  |
| tPHL          | EIVI                                        | ncu             | WIAX  | 9   | 17  |
| tplH .        | ENP                                         | RCO             | MAX   | -1- | 19  |
| tphl.         | CINP                                        | ENP             |       | -   | 18  |
| tPLH          | S1                                          | RCO             | MAX   | 15  | - 1 |
| tPHL          | (count up/down)                             | nuu             | IVIAA | 15  |     |
| tplH .        | S0                                          | RCO RCO         | MAX   | 16  | lan |
| tPHL .        | (clear/load)                                | 1100            | IVIMA | 12  | -   |

UNIT fmax : MHz other : ns

16 16

Three Identical Channels Not Shown

|    | FIL  | E SELECT         | INPUT/OUTPUT |    |                      |  |
|----|------|------------------|--------------|----|----------------------|--|
| SO | S1   | FILE SEL         | S2           | S3 | I/O SEL              |  |
| L  | L    | 1R to A, 1R to B | L            | L  | A out B A out, B out |  |
| H  | L    | 2R to A, 1R to B |              |    |                      |  |
| L  | H    | 1R to A, 2R to B |              |    |                      |  |
| H  | H    | 2R to A, 2R to B |              |    |                      |  |
| L  | L    | A to 1R, 1R to B | Н            | L  | A in B A in, B out   |  |
| Н  | L    | A to 2R, 1R to B |              |    |                      |  |
| L  | H    | A to 1R, 2R to B |              |    |                      |  |
| Н  | H    | A to 2R, 2R to B | -            |    |                      |  |
| L  | L    | 1R to A, B to 1R | L            | Н  | A out B A out, B in  |  |
| H  | n.L. | 2R to A, B to 1R | 170          |    |                      |  |
| L  | H    | 1R to A, B to 2R |              |    |                      |  |
| H  | H    | 2R to A, B to 2R | 0.1          |    |                      |  |
| L  | L    | B to 1R          | Н            | Н  | A in Bin A in, B     |  |
| H  | L    | A to 2R, B to 1R |              |    |                      |  |
| L  | H    | A to 1R, B to 2R | - 11         |    | -0                   |  |
| H  | H    | B to 2R          | 25           |    |                      |  |

#### RECOMMENDED OPERATING CONDITIONS

| ALS  | AS  | UNIT  |
|------|-----|-------|
|      |     |       |
| 110  | 190 | mA    |
| 24   | 48  | mA    |
| -2.6 | -15 | mA    |
|      | 24  | 24 48 |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT      | OUTPUT        | MAX or MIN | ALS | AS |
|-----------|------------|---------------|------------|-----|----|
| tw        | W          | rite          | MIN        | 12  | 12 |
| tsu       | Address be | efore write ↓ |            | 5   | 5  |
|           | Data bef   | ore write †   | MIN        | 15  | 15 |
|           | Select be  | fore write ↓  | 1          | 12  | 12 |
| th        | Address be | efore write ↓ |            | 0   | 0  |
|           | Data bef   | ore write ↑   | MIN        | 0   | 0  |
|           | Select be  | fore write ↓  |            | 12  | 12 |
| ta(A)     | Any A      | Any DQ        | MAX        | 19  | 15 |
| ta(S)     | SO         | Any DQA       | 144V       | 15  | 13 |
|           | S1         | Any DQB       | MAX        | 15  | 13 |
| tdis      | S2         | Any DQA       |            | 14  | 11 |
|           | S3         | Any DQB       | MAX        | 14  | 11 |
| ten       | S2         | Any DQA       |            | 17  | 12 |
|           | \$3        | Any DQB       | MAX        | 17  | 12 |
| tpd       | W          | Any DQ        | T-         | 23  | 19 |
|           | DA         | DQB           | MAX        | 26  | 22 |
|           | DQB        | DQA           | 1          | 26  | 22 |

### **DUAL 4-BIT D-TYPE LATCHES**

- 3-State Buffer-Type Outputs Drive Bus Lines Directly
- Bus-Structured Pinout
- Asynchronous Clear



### FUNCTION TABLE

|    | INF |            |   |        |
|----|-----|------------|---|--------|
| ŌĒ | CLR | CLR ENABLE |   | OUTPUT |
| L  | L   | X          | X | L      |
| L  | H   | H          | Н | H      |
| L  | H   | H          | L | L      |
| L  | Н   | L          | X | Qo     |
| H  | X   | X          | X | Z      |

### RECOMMENDED OPERATING CONDITIONS

| HEGOMINIENDED | OI EINTING GOIL | T    | F   | -    |
|---------------|-----------------|------|-----|------|
| PARAMETER     | MAX or MIN      | ALS  | AS  | UNIT |
| Icc           | MAX             | 31   | 129 | mA   |
| Іон           | MAX             | -2.6 | -15 | mA   |
| lou           | MAX             | 24   | 48  | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER  |         | INPUT | OUTPUT | MAX or MIN | ALS | AS   |
|------------|---------|-------|--------|------------|-----|------|
|            | CLR low |       |        |            | 15  | 5    |
| tw LE high |         |       |        | NAIN!      | 10  | 5    |
| tsu<br>th  |         |       |        | MIN        | 10  | 2    |
|            |         |       |        |            | 7   | 4.5  |
| tPLH .     |         | D     | Q      | MAN        | 14  | 9.5  |
| tPHL.      |         | U     | u      | MAX        | 14  | 7,5  |
| tPLH       |         | 15 0  |        |            | 22  | 13   |
| tPHL       |         | LE    | a      | MAX        | 21  | 7.5  |
| tPHL.      |         | CLR   | Q      | MAX        | 20  | 9    |
| tPZH       |         | ŌĒ    |        | 1111       | 18  | 6.5  |
| tPZL       |         | UE    | Q      | MAX        | 18  | 10.5 |
| tPHZ       |         | ŌE Q  |        | 1111       | 10  | 7.5  |
| tPLZ       |         | 0E Q  |        | MAX        | 15  | 7.5  |

### **DUAL 4-BIT D-TYPE EDGE-**TRIGGERD FLIP-FLOPS

- 3-State Buffer-Type Outputs Drive Bus Lines
- Bus-Structured Pinout
- Asynchronous Clear



### **FUNCTION TABLE**

| OUTDUT  | INPUTS |       |   |    |  |  |
|---------|--------|-------|---|----|--|--|
| OUTPUTS | D      | CLK D |   | ŌĒ |  |  |
| Leo     | X      | X     | L | L  |  |  |
| H       | H      | 1     | H | L  |  |  |
| L       | L      | 1     | H | L  |  |  |
| Qn      | X      | L     | H | L  |  |  |
| z       | X      | X     | X | H  |  |  |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS  | AS  | UNIT |
|-----------|------------|------|-----|------|
| lcc       | MAX        | 32   | 160 | mA   |
| Іон       | MAX        | -2.6 | -15 | mA   |
| lou       | MAX        | 24   | 48  | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT    | OUTPUT      | MAX or MIN | ALS  | AS   |   |     |    |     |
|-----------|----------|-------------|------------|------|------|---|-----|----|-----|
| fmax      |          |             | MIN        | 30   | 125  |   |     |    |     |
| tw        | PRE or   | CLR low     |            | 10   | 2    |   |     |    |     |
|           | CLI      | K "H"       | MIN        | 16.5 | 3    |   |     |    |     |
|           | CL       | K "L"       |            | 16.5 | 4    |   |     |    |     |
| tsu       | Data     |             | MIN        | 15   | 2    |   |     |    |     |
|           | PRE or C | LR inactive | IVIIIV     | 10   | 4    |   |     |    |     |
| th        |          |             | MIN        | 0    | 1    |   |     |    |     |
| tPLH      | 01.14    | CLK         | CLK        | CIV  | CI K | Q | MAX | 14 | 8.5 |
| tPHL .    | ULK      | u           | IVIAA      | 14   | 10.5 |   |     |    |     |
| tphl      | CLR      | 0           | MAX        | 17   | 9.5  |   |     |    |     |
| tPZH      | ŌĒ       | _           | MAN        | 18   | 7    |   |     |    |     |
| tPZL      | UE       | 0           | MAX        | 18   | 10.5 |   |     |    |     |
| tPHZ      | ŌĒ       | 0           | MANY       | 10   | 6    |   |     |    |     |
| tPLZ      | UE       | Q.          | MAX        | 12   | 7.5  |   |     |    |     |

UNIT fmax : MHz other : ns

### **DUAL 4-BIT D-TYPE FLIP-FLOPS**

- 3-State Buffer-Type Outputs Drive Bus Lines Directly
- Bus-Structured Pinout
- Asynchronous Clear

### Logic Diagram



### FUNCTION TABLE (each filip-flop)

|    | INP | UTS |   | OUTPUT         |
|----|-----|-----|---|----------------|
| OE | PRE | CLK | D | Q              |
| L  | L   | X   | X | L              |
| L  | H   | 1   | H | L              |
| L  | H   | 1   | L | H              |
| L  | H   | L   | X | Q <sub>0</sub> |
| н  | X   | X   | X | Z              |

### T MAGNITUOE COMPARATOR

this stool man P alderints ( 2002 ALERS )

RECOMMENDED OPERATING CONDITIONS

| RECOMMENDED | UPENATING CON | DITIUNS |     | _    |
|-------------|---------------|---------|-----|------|
| PARAMETER   | MAX or MIN    | ALS     | AS  | UNIT |
| lcc         | MAX           | 31      | 160 | mA   |
| Іон         | MAX           | -2.6    | -15 | mA   |
| lou         | MAX           | 24      | 48  | mA   |

mergald algo.

SWITCHING CHARACTERISTICS

|              | PARAMETER    | INPUT | OUTPUT | MAX or MIN | ALS  | AS   |
|--------------|--------------|-------|--------|------------|------|------|
| fmax         |              | - Cl  |        | MIN        | 30   | 80   |
|              | PRE "L"      |       |        | - Salar    | 10   | 4.5  |
| tw           | CLK "H"      | -     |        | MIN        | 16.5 | 6.2  |
|              | CLK "L"      |       |        | P2 = 02    | 16.5 | 6.2  |
|              | Data         |       |        | MIN        | 15   | 4.5  |
| tsu          | PRE inactive |       |        | INITIN     | 10   | 5    |
| th TUO       |              |       |        | MIN        | 0    | 2    |
| tPLH         |              | 01.16 | ā      | MAX        | 14   | 8.5  |
| tPHL .       |              | CLK   | u u    | IVIAA      | 14   | 10.5 |
| tPHL         | -            | PRE   | ā      | MAX        | 19   | 9.5  |
| tPZH         | - OE         |       | ā      | MAY        | 18   | 7    |
| tPZL         |              | OE OE | u      | MAX        | 18   | 11   |
| tPHZ<br>tPLZ |              | ŌĒ    | ā      | MAN        | 10   | 7    |
|              |              | UE    | u      | MAX        | 13   | 7    |

UNIT fmax : MHz, other : ns

### 8-BIT MAGNITUDE COMPARATOR

- SN54AS885 Latchable P-Input Ports with Power-Up Clear
- Choice of Logical or Arithmetic (Two's Complement) Comparison
- Data and PLE Inputs Utilize pnp Input Transistors to Reduce dc Loading Effects
- Cascadable to n Bits While Maintaining High Performance



ELINICTION TABLE

| FUNCTION TABLE          |     |                         |         |         |          |          |  |
|-------------------------|-----|-------------------------|---------|---------|----------|----------|--|
|                         |     | INF                     | OUTPUTS |         |          |          |  |
| COMPARISON              | L/A | DATA<br>P0-P7,<br>Q0-Q7 | P > QIN | P < QIN | P > QOUT | P < QOUT |  |
| Logical                 | Н   | P > Q                   | ×       | X       | Н        | L        |  |
| Logical                 | Н   | P < Q                   | ×       | X       | L        | H        |  |
| Logical†                | H   | P = Q                   | HorL    | H or L  | H or L   | HorL     |  |
| Arithmetic              | L   | PAGQ                    | X       | ×       | Н        | L        |  |
| Arithmetic              | L   | QAGP                    | X       | X       | L.       | H        |  |
| Arithmetic <sup>†</sup> | L   | P = Q                   | HorL    | HorL    | H or L   | HorL     |  |

In these cases, P > QOUT follows P > QIN and P < QOUT follows P < QIN. AG = arithmetically greater than

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | AS  | UNIT |  |
|-----------|------------|-----|------|--|
| Icc       | MAX        | 210 | mA   |  |
| Іон       | MAX        | -2  | mA   |  |
| loL       | MAX        | 20  | mA   |  |



### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT      | OUTPUT    | MAX or MIN | AS   |
|-----------|------------|-----------|------------|------|
| tsu       | Data befo  | ore PLE ↓ |            | 2    |
| th        | Data aft   | er PLE ↓  | MIN        | 4    |
| tPLH .    | L/Ā        | P < QOUT, | MAN        | 13   |
| tPHL .    | L/A        | P > QOUT  | MAX        | 13   |
| tPLH      | P < QIN,   | P < QOUT, | MAN        | 8    |
| tphL .    | P > QIN    | P > QOUT  | MAX        | 8    |
| tPLH      | Any P or Q | P < QOUT, | MAN        | 17.5 |
| tPHL      | data input | P > QOUT  | MAX        | 15   |

### 8-BIT D-TYPE TRANSPARENT READ-BACK LATCHES

- 3-State I/O-Type Read-Back Inputs
- True Logic Outputs
- Bus-Structured Pinout

### **Logic Diagram**



Zin MIN in X

### RECOMMENDED OPERATING CONDITIONS

| HECOMINIEME | ED OF ENATING CO | JIVDITIONS |      | T    |
|-------------|------------------|------------|------|------|
| PA          | RAMETER          | MAX or MIN | ALS  | UNIT |
| Icc         |                  | MAX        | 70   | mA   |
| Іон         | Q                | MAX        | -2.6 | mA   |
| IUH         | D                | IVIAA      | -0.4 | mA   |
| lou         | 0                | MAX        | 24   | mA   |
| IUL         | D                | IVIAX      | 8    | mA   |

### SWITCHING CHARACTERISTICS

| SWITCHING CHAN | ACTENISTICS |           | _          |     |
|----------------|-------------|-----------|------------|-----|
| PARAMETER      | INPUT       | OUTPUT    | MAX or MIN | ALS |
| tw             | LE          | high      | MIN        | 10  |
| tsu            | Data be     | fore LE ↓ | MIN        | 10  |
|                | Data bet    | fore OERB | IVIIN      | 10  |
| th             | Data a      | fter LE ↓ | MIN        | 5   |
| tPLH           | n           | Q         | MAX        | 17  |
| tphl.          | U           | u         | WAX        | 24  |
| tPLH           | LE          | 0         | MAX        | 26  |
| tPHL .         | LE          | Q.        | MAX        | 26  |
| ten            | OERB        | D         | MAX        | 21  |
| tdis           | UEHB        | D         | MAX        | 19  |

### 9-BIT D-TYPE TRANSPARENT

### 10-8(T D-TYPE TRANSPARENT READ-BACK LATCHES

- 3-State I/O-Type Read-Back Inputs
- True Logic Outputs
- Bus-Structured Pinout
- Designed with Nine Bits for Parity Applications

### 3-State I/O-Type Read-Back Inputs

True Logio Outputs

Bus-Structured Pinout



### RECOMMENDED OPERATING CONDITIONS

| PA  | RAMETER | MAX or MIN | ALS  | UNIT |
|-----|---------|------------|------|------|
| Icc |         | MAX        | 80   | mA   |
| Іон | 0       | MAX        | -2.6 | mA   |
| IUH | D       | IVIAA      | -0.4 | mA   |
| in. | Q.      | MAX        | 24   | mA   |
| lor | D       | IVIAX      | 8    | mA   |

### SWITCHING CHARACTERISTICS

| SWITCHING CHARAC | TERISTICS |           |            | 1   |
|------------------|-----------|-----------|------------|-----|
| PARAMETER        | INPUT     | OUTPUT    | MAX or MIN | ALS |
| tw               | С         | .н.       | MIN        | 10  |
|                  | CLF       | R "L"     | MIN        | 10  |
| tsu              | Data be   | efor LE ↓ | MIN        | 10  |
|                  | Data befo | or OERB ↓ | IVIIIV     | 10  |
| th               | Data af   | fter LE↓  | MIN        | 5   |
| tPLH .           | D         | Q         | MAX        | 14  |
| tphl .           | U         | u u       | IVIAA      | 16  |
| tplh             | LE        | Q         | MAX        | 20  |
| tphl .           | LE        | u u       | IVIAA      | 25  |
| <b>TPHL</b>      | CLR       | 0         | MAX        | 20  |
|                  | CLN       | D         | IVIAA      | 26  |
| ten              | OERB      | D         | MAX        | 21  |
| tdis             | UEND      | D         | IVIAX      | 14  |
| ten              | ŌΕQ       | 0         | MAX        | 18  |
| tdis             | ozu       | u u       | IVIAX      | 14  |

### 10-BIT D-TYPE TRANSPARENT READ-BACK LATCHES

- 3-State I/O-Type Read-Back Inputs
- True Logic Outputs
- Bus-Structured Pinout

- 3-State I/O-Type Read-Back Inputs
  - True Logic Outputs
  - Sus-Structured Pineut
- Designed with Nine Bits for Parity Applications

### **Logic Diagram**



PROTECTION DATE OF THE PROTECTION

20172-15T73AFEBIS BUILDING

### RECOMMENDED OPERATING CONDITIONS

| PAF | RAMETER | MAX or MIN | ALS  | UNIT |
|-----|---------|------------|------|------|
| Icc |         | MAX        | 82   | mA   |
|     | Q       | MAN        | -2.6 | mA   |
| Іон | D       | MAX        | -0.4 | mA   |
| le: | 0       | MAX        | 24   | mA   |
| lor | D       | WAX        | 8    | mA   |

### SWITCHING CHARACTERISTICS

| OTTITO OTTAINA | TEMOTIO          |           | _          | _   |
|----------------|------------------|-----------|------------|-----|
| PARAMETER      | INPUT OUTPUT     |           | MAX or MIN | ALS |
| tw             | C "H"            |           | MIN        | 10  |
| tsu            | Data be          | efor LE ↓ | MIN        | 10  |
|                | Data befo        | or OERB ↓ | IVIIIV     | 10  |
| th             | Data affter LE ↓ |           | MIN        | 5   |
| tplh           | D                | 0         | MAX        | 14  |
| tphl.          | D                | u u       | IVIAA      | 18  |
| tplh           | LE               | 0         | MAX        | 21  |
| tphl .         | LE               | u         |            | 27  |
| ten            | OERB             | n         | MAY        | 21  |
| tdis           | UEND             | D         | MAX        | 16  |

HMIT-ne

### 8-BIT D-TYPE EDGE-TRIGGERED READ-BACK LATCHES

- 3-State I/O-Type Read-Back Inputs
- True Logic Outputs
- T/C Determines True or Complementary Data at Q Outputs



### RECOMMENDED OPERATING CONDITIONS

| HEOOMHINEIT | DED OF EINTERING | ocitoo.    | Т    |      |
|-------------|------------------|------------|------|------|
| P           | ARAMETER         | MAX or MIN | ALS  | UNIT |
| Icc         |                  | MAX        | 85   | mA   |
|             | 0                | MAX        | 24   | mA   |
| lor         | D                | IVIAX      | 8    | mA   |
|             | Q                | MANY       | -2.6 | mA   |
| Іон         | 8 D              | MAX        | -0.4 | mA   |

### QUAD 2-INPUT NAND

### DO DATE Version of CALLAND

### Driver Version of SN74ASDI

### High Capacitive-Drive Capability

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT             | OUTPUT          | MAX or MIN | ALS  |
|-----------|-------------------|-----------------|------------|------|
| tw        | CLR               | low             |            | 10   |
|           | CLK               | low             | MIN        | 14.5 |
|           | CLK               | high            |            | 14.5 |
| tsu       | Data befo         | re CLK ↑        |            | 15   |
|           | EN low bet        | ore CLK ↑       | MIN        | 10   |
|           | CLK high be       | fore EN ↑*1     | IVIIN      | 15   |
|           | CLR high (inactiv | e) before CLK ↑ | Am 16      | 10   |
| th        | Data afte         | 1/              | 0          |      |
|           | EN low af         | MIN             | 5          |      |
|           | RD high aft       |                 | 5          |      |
| tplH      | CLK               | Q               | MAX        | 28   |
| tphl.     | ( T/C = H or L )  | MIN.            |            | 28   |
| tplh      | CLR (T/C = L)     | 0               | MAX        | 27   |
| tphl .    | CLR (T/C = H)     | u               | IVIAA      | 23   |
| tplh      | T / P             | T/C Q           |            | 23   |
| tphl .    |                   |                 | MAX        | 23   |
| tphl .    | CLR               | D               | MAX        | 30   |
| ten*3     | RD                | D               | MAX        | 16   |
| tdis*4    | NU                | D               | MAX        | 19   |
| ten*3     | EN                | alfi a Dal      | MAX        | 16   |
| tdis**4   | CIV III III       | sid a Dol       | IVIAA      | 19   |
| ten*3     | ŌE                | 0               | MAY        | 15   |
| tdis*4    | OE.               | 4               | MAX        | 10   |

## RABLE REFUNMENTERS NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND STREET NOW, AND ST

### UNIT: ns \*1 This setup time ensures that EN

- \*1 This setup time ensures that EN will not false clock the date register.
- \*2 This hold time ensures that there will be no conflict on the input date bus. WE are \$4402.1AAVME to protect the results of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
- $^{*3}$  =  $t_{\,\text{PZH}}$  or  $t_{\,\text{PZL}}$

| - | - 6 | HΖ | U | ٠ | PLZ |  |
|---|-----|----|---|---|-----|--|
|   |     |    |   |   |     |  |
|   |     |    |   |   |     |  |

### QUAD 2-INPUT NAND BUFFERS/DRIVERS

- Buffer Version of SN74ALS00A
- Driver Version of SN74AS00
- High Capacitive-Drive Capability

## Logic Diagram 1 2 4

1A

1B



Logic Diagram

### **FUNCTION TABLE**

| INPUTS |   | OUTPUT |
|--------|---|--------|
| Α      | В | Y      |
| Н      | Н | L      |
| L      | X | H      |
| X      | L | Н      |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS  | AS  | UNIT |
|-----------|------------|------|-----|------|
| Icc       | MAX        | 7.8  | 19  | mA   |
| Іон       | MAX        | -2.6 | -48 | mA   |
| lou       | MAX        | 24   | 48  | mA   |

### SWITCHING CHARACTERISTICS

| JWITCHING CHAIL | ACTEMOTICS |        | T          |     |    |
|-----------------|------------|--------|------------|-----|----|
| PARAMETER       | INPUT      | OUTPUT | MAX or MIN | ALS | AS |
| tPLH            | A or B     | 63 v   | MAX        | 8   | 4  |
| tPHL            | A OF B     | EL     | IVIAX      | 7   | 4  |

UNIT: ns

### 1004

### **HEX INVERTING DRIVERS**

- Driver Version of SN74ALS04B and SN74AS04
- High Capacitive-Drive Capability

### FUNCTION TABLE

| TOTO HOLL INDEE |        |  |  |  |
|-----------------|--------|--|--|--|
| INPUT<br>A      | OUTPUT |  |  |  |
| H               | L      |  |  |  |

### RECOMMENDED OPERATING CONDITIONS

| NEGOWINIENDED   | OI LIMITING CON | T   | ,   | _    |
|-----------------|-----------------|-----|-----|------|
| PARAMETER       | MAX or MIN      | ALS | AS  | UNIT |
| Icc             | MAX             | 12  | 27  | mA   |
| Іон             | MAX             | -15 | -48 | mA   |
| lo <sub>L</sub> | MAX             | 24  | 48  | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | ALS | AS |
|-----------|--------|--------|------------|-----|----|
| tPLH .    | A or B | V      | MAX        | 7   | 4  |
| tPHL .    | A OF B | 1      | IVIAX      | 6   | 4  |

### HEX INVERTING BUFFER GATES WITH OPEN-COLLECTOR OUTPUTS

Buffer Version of SN74ALS05A

### **FUNCTION TABLE**

| INPUT<br>A | OUTPUT |
|------------|--------|
| H          | L      |
| L          | H      |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS | UNIT |
|-----------|------------|-----|------|
| lcc       | MAX        | 12  | mA   |
| Vон       | MAX        | 5.5 | ٧    |
| loL       | MAX        | 24  | mA   |

### SWITCHING CHARACTERISTICS

|           |       |        |            | 1   |
|-----------|-------|--------|------------|-----|
| PARAMETER | INPUT | OUTPUT | MAX or MIN | ALS |
| tpLH      | Δ.    | V      | MAX        | 30  |
| tphi      | A     | 1      | IVIAA      | 10  |

## UNIT: ns

### QUADRUPLE 2-INPUT POSITIVE-AND BUFFERS/DRIVERS

- Buffer Version of SN74ALS08
- Driver Version of SN74AS08

### **FUNCTION TABLE**

| INP | UTS | OUTPUT |
|-----|-----|--------|
| Α   | В   | Y      |
| Н   | Н   | Haz    |
| L   | X   | Agr    |
| v   | 1   | 1      |

### RECOMMENDED OPERATING CONDITIONS

| HEGOWINENDED | OF LIMITING CON | DITIONS |     | _    |
|--------------|-----------------|---------|-----|------|
| PARAMETER    | MAX or MIN      | ALS     | AS  | UNIT |
| lcc          | MAX             | 9.3     | 22  | mA   |
| Іон          | MAX             | -2.6    | -48 | mA   |
| lau          | MAX             | 24      | 48  | mA   |

### SWITCHING CHARACTERISTICS

| SWITCHING CHAR | ACTERISTICS |        |            |     | _  |
|----------------|-------------|--------|------------|-----|----|
| PARAMETER      | INPUT       | OUTPUT | MAX or MIN | ALS | AS |
| tPLH .         | A or B      | V      | MAX        | 9   | 6  |
| tPHL .         | A UI D      | т.     | IVIAA      | 9   | 6  |

### UNIT: ns

### Logic Diagram





### Logic Diagram

| 1A 1 |                  | 3 1V      |  |
|------|------------------|-----------|--|
| 1B 2 | $\Box$ $\supset$ | 1Y 2 9 18 |  |
| 1B — |                  |           |  |

| 2A 4 | - | 6          |  |
|------|---|------------|--|
| 2B 5 |   | 2Y ydilidi |  |



| 44 12 |              | 10-1100 |  |
|-------|--------------|---------|--|
| 4B 13 | $oxed{oxed}$ |         |  |

### OUAD 2-INPUT OR RUFFERS/DRIVERS





FUNCTION TABLE

| INP | UTS | OUTPUT |  |
|-----|-----|--------|--|
| Α   | В   | Υ      |  |
| Н   | X   | Н      |  |
| X   | H   | H      |  |
| L   | L   | L      |  |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS  | AS  | UNIT |
|-----------|------------|------|-----|------|
| Icc       | MAX        | 10.6 | 24  | mA   |
| Іон       | MAX        | -2.6 | -48 | mA   |
| lou       | MAX        | 24   | 48  | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | ALS | AS  |
|-----------|--------|--------|------------|-----|-----|
| tplH      | A or B | YANA Y | MAX        | 9   | 6.3 |
| tPHL      | A or B | Y      | MAX        | 12  | 6.3 |
| UNIT:ns   | 30     | 633    |            |     |     |

1034

### HEX DRIVERS

- SN74AS1034A Offer High Capacitive-Drive Capability
- Noninverting Drivers

FUNCTION TABLE

| INPUT<br>A | OUTPUT |
|------------|--------|
| H          | H -    |
| 1          | 1      |

| RECOMMENDED | OPERATING CON | DITIONS | 3   |      |
|-------------|---------------|---------|-----|------|
| PARAMETER   | MAX or MIN    | ALS     | AS  | UNIT |
| Icc         | MAX           | 14      | 35  | mA   |
| Іон         | MAX           | -15     | -48 | mA   |

MAX

**Logic Diagram** 



SWITCHING CHARACTERISTICS

|           | Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Service of the Servic | ,      | _          | ,   |    | 1        |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|-----|----|----------|--|--|
| PARAMETER | INPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OUTPUT | MAX or MIN | ALS | AS | f to XAM |  |  |
| tPLH .    | ٨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v      | MAX        | 8   | 6  |          |  |  |
| tPHL .    | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , i    | MAX        | 8   | 6  | XAIR     |  |  |
| HMIT- ne  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            | -   | -  |          |  |  |

48 mA

### **HEX BUFFERS WITH OPEN-COLLECTOR OUTPUTS**

Noninverting Buffers with Open-Collector Outputs

### **FUNCTION TABLE**

|   | INPUT<br>A | OUTPUT |
|---|------------|--------|
| 1 | Н          | H      |
| L | L          | L      |

### RECOMMENDED OPERATING CONDITIONS

| TIEGOTATIVIETADED | OI EIDTING OOK | L   | _    |
|-------------------|----------------|-----|------|
| PARAMETER         | MAX or MIN     | ALS | UNIT |
| lcc               | MAX            | 14  | mA   |
| Vон               | MAX            | 5.5 | V    |
| loc               | MAX            | 24  | mA   |
|                   |                |     |      |

### SWITCHING CHARACTERISTICS

| FW1 -     |       |        | 263        | 1   |
|-----------|-------|--------|------------|-----|
| PARAMETER | INPUT | OUTPUT | MAX or MIN | ALS |
| tPLH      |       | V      | MAX        | 30  |
| tPHL      | A     |        | IVIAX      | 12  |

### 1240

### **OCTAL BUFFERS/LINE DRIVERS/LINE RECEIVERS**

- Low-Power Versions of SN74ALS240A
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers

### PECOMMENDED OPERATING CONDITIONS

| UPERATING CON | DITION                    | 5                           |
|---------------|---------------------------|-----------------------------|
| MAX or MIN    | ALS                       | UNIT                        |
| MAX           | 13                        | mA                          |
| MAX           | 14                        | mA                          |
| MAX           | -15                       | mA                          |
| MAX           | 16                        | mA                          |
|               | MAX or MIN  MAX  MAX  MAX | MAX 13<br>MAX 14<br>MAX -15 |

### SWITCHING CHARACTERISTICS

| OTTITOTITIES | Ullimile | HOTEMOTIO | 10 1140 | 10.11      |     |
|--------------|----------|-----------|---------|------------|-----|
| PARAMETE     | R        | INPUT     | OUTPUT  | MAX or MIN | ALS |
| tPLH .       | 25.      | 7         | V       | MAX        | 13  |
| tPHL .       | 25       | Ā         | Yno A   | 30         | 13  |
| tPZH         | 57       | 0E        | V       | MAX        | 20  |
| tPZL         | 81       | UE IVI    | aYan A  | 30         | 22  |
| tPHZ         |          | ŌĒ        | γ       | MAX        | 10  |
| tPLZ         |          | UE        |         |            | 13  |
| UNIT: ns     |          |           |         |            | -   |

### Logic Diagram



### Logic Diagram





PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. See www.ti.com/sc/logic for the most current data sheets.

### OCTAL BUFFERS/LINE DRIVERS/LINE RECEIVERS

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- pnp Inputs Reduce dc Loading
- Low-Power Versions of SN74ALS244 Series

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS | UNIT |
|-----------|------------|-----|------|
| lccz      | MAX        | 20  | mA   |
| ICCL      | MAX        | 17  | mA   |
| Іон       | MAX        | -15 | mA   |
| lou       | MAX        | 16  | mA   |

### SWITCHING CHARACTERISTICS

| SWITCHING CHAR | ACTERISTICS |        |            | _   |
|----------------|-------------|--------|------------|-----|
| PARAMETER      | INPUT       | OUTPUT | MAX or MIN | ALS |
| tPLH           | A           | Y      | MAX        | 14  |
| tphl.          |             |        |            | 14  |
| tPZH           | ŌE          | Y      | MAX        | 22  |
| tPZL           | UE          |        |            | 22  |
| tPHZ           | ŌE          | V      | MAN        | 13  |
| tPLZ           | UE          | Y      | MAX        | 16  |
| HAUT, no       |             |        |            |     |

### Logic Diagram





### 1245

### **OCTAL BUS TRANSCEIVERS**

Low-Power Versions of 4ALS245 Series

### FUNCTION TABLE

| CONTROL INPUTS |     |                 |
|----------------|-----|-----------------|
| OE             | DIR | OPERATION       |
| Lby            | L.  | B data to A bus |
| L              | Н   | A data to B bus |
| Н              | X   | Isolation       |

### Logic Diagram



### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS | UNIT |
|-----------|------------|-----|------|
| lccz      | MAX        | 36  | mA   |
| ICCL      | MAX        | 33  | mA   |
| Іон гус — | MAX        | -15 | mA   |
| lou       | MAX        | 16  | mA   |

### SWITCHING CHARACTERISTICS

|           |        |        |            | Г   | 1  |
|-----------|--------|--------|------------|-----|----|
| PARAMETER | INPUT  | OUTPUT | MAX or MIN | ALS | 10 |
| tPLH TPLH | A or B | B or A | MAX        | 13  | h  |
| tPHL .    | AUID   | D OF A | IVIAX      | 13  | 1  |
| tPZH      | ŌE     | A or B | MAX        | 25  |    |
| tPZL      | UE     |        |            | 25  | 1  |
| tрнz      | ŌĒ     | A or B | MAY        | 12  | 1  |
| tPLZ      |        | AUID   | MAX        | 18  | 1  |

### Logic Diagram

### OCTAL BUS TRANSCEIVERS

- Lower-Power Versions of SN74ALS640B
- Inverting Logic Upon and anotalizable leman
- 3-State Outputs

FUNCTION TABLE

| CONTROL INPUTS |     |                 |
|----------------|-----|-----------------|
| ŌĒ             | DIR | OPERATION       |
| L              | L   | B data to A bus |
| L              | H   | A data to B bus |
| Н              | X   | Isolation       |



### To Seven Other Transceivers

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS | UNIT |
|-----------|------------|-----|------|
| Icc       | MAX        | 32  | mA   |
| Іон       | MAX        | -15 | mA   |
| lou       | MAX        | 16  | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT    | MAX or MIN | ALS |
|-----------|--------|-----------|------------|-----|
| tplh      | A or B | B or A    | MAX        | 15  |
| tPHL .    | AOFB   | D OF A    | IVIAA      | 10  |
| tpzh      |        | ŌE A or B | MAX        | 20  |
| tPZL      | UE     |           |            | 22  |
| tPHZ      | ŌE     | A or B    | MAN        | 10  |
| tPLZ      | UE     | A or B    | MAX        | 13  |

UNIT: ns

### 1645

### **OCTAL BUS TRANSCEIVERS**

- Lower-Power Versions of SN74ALS645A
- 3-State Outputs

### Logic Diagram



### **FUNCTION TABLE**

| П | CONTROL INPUTS |     |                 |  |
|---|----------------|-----|-----------------|--|
|   | ŌĒ             | DIR | OPERATION       |  |
|   | L              | L   | B data to A bus |  |
|   | L              | H   | A data to B bus |  |
|   | Н              | X   | Isolation       |  |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS | UNIT |
|-----------|------------|-----|------|
| Icc       | MAX        | 38  | mA   |
| Іон       | MAX        | -15 | mA   |
| lou       | MAX        | 16  | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | ALS |    |
|-----------|--------|--------|------------|-----|----|
| tplH      | A or B | B or A | MAX        | 13  |    |
| tphl      | AorB   | BOLA   | IVIAX      | 13  |    |
| tPZH      | ŌĒ     |        | A D        | MAN | 25 |
| tPZL      | UE     | A or B | MAX        | 25  |    |
| tphz      | ŌE     | A D    | MAN        | 12  |    |
| tPLZ      | UE     | A or B | MAX        | 18  |    |

UNIT: ns

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. See www.ti.com/sc/logic for the most current data sheets.















| RECOMMENDED | OPERATING | CONDITIONS |  |
|-------------|-----------|------------|--|

| PARAMETER | MAX or MIN | ALS | ВСТ | ABT  | UNIT |
|-----------|------------|-----|-----|------|------|
| Iccz      | MAX        | 20  | 8   | 0.25 | mA   |
| ICCL      | MAX        | 23  | 76  | 30   | mA   |
| Гон       | MAX        | -15 | -12 | -32  | mA   |
| lor       | MAX        | 15  | 12  | 12   | mA   |

SWITCHING CHARACTERISTICS

| SWITCHING CHAR | ACTERISTICS |        |            |     |      |     |
|----------------|-------------|--------|------------|-----|------|-----|
| PARAMETER      | INPUT       | OUTPUT | MAX or MIN | ALS | вст  | ABT |
| tPLH           | A           | V .    | MAX        | 10  | 5.7  | 4.8 |
| tphl.          | A           | 1      | IVIAA      | 10  | 4.4  | 5.4 |
| tPZH           | ŌĒ          | V      | MAX        | 17  | 9.3  | 5.2 |
| tPZL           | UE          | 1      | MAX        | 20  | 12.4 | 6.8 |
| tPHZ           | ŌE          | - v    | MAX        | 10  | 8.7  | 6.4 |
| tPLZ           | UE          | V 1    | IVIAA      | 15  | 10.6 | 6.2 |

### OCTAL BUFFERS AND LINE DRIVERS / MOS DRIVERS WITH 3-STATE OUTPUTS METABLES LATTED

- Output Ports Have Equivalent 25-Ω Series Resistors, So No External Resistors Are Required (SN74ABT2241A)
  - Output Ports Have Equivalent 33-Ω Series Resistors, So No External Resistors Are Required (SN74BCT2241)

### Logic Diagram





### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | SN74<br>BCT | ABT  | UNIT |
|-----------|------------|-------------|------|------|
| lccz      | MAX        | 9           | 0.25 | mA   |
| Iccı      | MAX        | 76          | 30   | mA   |
| Іон       | MAX        | -12         | -32  | mA   |
| lor       | MAX        | 12          | 12   | mA   |

### SWITCHING CHARACTERISTICS

| SWITCHING CHARACTERISTICS |         |                   |       |             | 1117 |
|---------------------------|---------|-------------------|-------|-------------|------|
| PARAMETER                 | INPUT   | PUT OUTPUT MAX or |       | SN74<br>BCT | ABT  |
| tPLH                      | A       |                   | MAX   | 4.9         | 4.7  |
| tPHL .                    | A Y MAX |                   | 6.9   | 5.6         |      |
| tPZH                      | 10E     | Y                 | MAX   | 8.9         | 5.8  |
| tPZL                      | 10E     | T                 | IVIAA | 10.3        | 8.4  |
| tPHZ                      | 10E     | Y                 | MAX   | 8.7         | 6.6  |
| tPLZ                      | 105     | ,                 | IVIAX | 11.3        | 6.4  |
| tPZH                      | 20E     | Y                 | MAX   | 8.9         | 5.8  |
| tPZL                      | ZUE     | т т               | MAX   | 10.3        | 8.4  |
| tPHZ                      | 20E     | Y                 | MAN   | 8.7         | 6.6  |
| tPLZ                      | ZUE     | Y                 | MAX   | 11.3        | 6.4  |

### OCTAL BUFFERS AND LINE DRIVERS / MOS DRIVERS WITH 3-STATE OUTPUTS

- Output Ports Have Equivalent 25-Ω Series Resistors, So No External Resistors Are Required (SN74ABT2244A)
  - Output Ports Have Equivalent 33-Ω Series Resistors, So No External Resistors Are Required (SN74BCT2244)
  - $\bullet \ \, \text{Output Ports Have Equivalent 26-} \Omega \, \text{Series Resistors, So No External Resistors Are Required (SN74LVC2244A)} \\$

Logic Diagram





### **FUNCTION TABLE**

| INPL | JTS | OUTPUT |
|------|-----|--------|
| ŌĒ   | Α   | Y      |
| Н    | X   | Z      |
| L    | L   | L      |
| L    | Н   | H      |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS | SN74<br>BCT | ABT  | LVC<br>3V | UNIT |
|-----------|------------|-----|-------------|------|-----------|------|
| lccz      | MAX        | 23  | 10          | 0.25 | 0.01      | mA   |
| ICCL      | MAX        | 22  | 77          | 30   | 0.01      | mA   |
| Гон       | MAX        | -15 | -12         | -32  | -12       | mA   |
| lou       | MAX        | 15  | 12          | 12   | 12        | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT    | OUTPUT | MAX or MIN | ALS | SN74<br>BCT | ABT | TAC<br>3A |
|-----------|----------|--------|------------|-----|-------------|-----|-----------|
| tPLH .    |          | v      | MAN        | 16  | 4.9         | 4.7 | 5.5       |
| tPHL .    | A        | Y      | MAX        | 17  | 6.7         | 5.6 | 5.5       |
| tPZH      |          |        | 1447       | 17  | 8.7         | 5.5 | 7.1       |
| tPZL      | UE       |        | MAX        | 14  | 10.4        | 8.3 | 7.1       |
| tPHZ      | <u> </u> |        | 1444       | 9   | 7.8         | 6.6 | 6.8       |
| tPLZ      | UE       | Y      | MAX        | 9   | 9.8         | 5.8 | 6.8       |

### OCTAL TRANSCEIVER AND LINE/ TATE-6 HT MOS DRIVERS WITH 3-STATE OUTPUTS

- B Port Has Equivalent 33-Ω Series Resistors, So No External Resistors Are Required (SN74BCT2245)
- B-Port Outputs Have Equivalent 25-Ω Series Resistors, So No External Resistors Are Required (SN74ABT2245)
- Outputs Have Equivalent 25-Ω Series Resistors, So No External Resistors Are Required (SN74ABTR2245)
- All Outputs Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required (SN74LVCR2245)
- B-Port Outputs Have Equivalent 22-Ω Series Resistors, So No External Resistors Are Required (SN74LVTH2245)



### **FUNCTION TABLE**

| INPUTS |   |           |      |    |    |     |
|--------|---|-----------|------|----|----|-----|
| OE DIR |   |           | OPE  | KA | ПС | N   |
| L      | L | В         | data | to | Α  | bus |
| L      | Н | Α         | data | to | В  | bus |
| H      | X | Isolation |      |    |    |     |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER    | MAX or MIN | SN74<br>BCT | ABT  | ABTR | LVCR<br>3V | LVTH<br>3V | UNIT |
|--------------|------------|-------------|------|------|------------|------------|------|
| lccz         | MAX        | 15          | 0.25 | 0.25 | 0.01       | 0.19       | mA   |
| Iccı         | MAX        | 100         | 32   | 32   | 0.01       | 5          | mA   |
| loн (A port) | MAX        | -3          | -32  | -12  | -12        | -32        | mA   |
| loн (B port) | MAX        | -12         | -12  | -12  | -12        | -12        | mA   |
| lot (A port) | MAX        | 24          | 64   | 12   | 12         | 64         | mA   |
| lot (B port) | MAX        | 12          | 12   | 12   | 12         | 12         | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | SN74<br>BCT | ABT | ABTR | LVCR<br>3V | LVTH<br>3V |
|-----------|-------|--------|------------|-------------|-----|------|------------|------------|
| tPLH      |       | В      | MAX        | 5.8         | 3.8 | 3.8  | 6.3        | 4.4        |
| tPHL .    | A     | В      |            | 7.8         | 4.5 | 4.5  | 6.3        | 4.4        |
| tPLH .    | В     | A      | MAX        | 7           | 3.6 | 3.8  | 6.3        | 3.5        |
| tPHL .    | Ь     | A      | WAX        | 7.7         | 4   | 4.5  | 6.3        | 3.5        |
| tPZH      | ŌĒ    | В      | MAX        | 9.9         | 6.1 | 6.1  | 8.2        | 6.2        |
| tPZL      |       | В      | IVIAA      | 12.2        | 6.3 | 6.3  | 8.2        | 6.2        |
| tPHZ      | ŌE    | В      | MAX        | 8.2         | 5.3 | 5.3  | 7.8        | 5.9        |
| tPLZ      | UE    | В      |            | 9.2         | 4.8 | 4.8  | 7.8        | 5.4        |
| tPZH      | ŌE    | A      | MAN        | 11.1        | 5.5 | 6.1  | 8.2        | 5.5        |
| tPZL      | UE    | A      | MAX        | 11.4        | 5.7 | 6.3  | 8.2        | 5.5        |
| tPHZ      | ŌĒ    | Α      | MAX        | 9.4         | 5.6 | 5.3  | 7.8        | 5.9        |
| tPLZ      | UE    | A      | MAX        | 7.6         | 4.5 | 4.8  | 7.8        | 5          |

B-Port Outputs nave equivelent are Regulard Resistors, So No External Resistors Are Regulard margaid



To Seven Other Channels

### Logic Diagram

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | F  | UNIT |
|-----------|------------|----|------|
| lcc       | MAX        | 66 | mA   |
| Іон       | MAX        | -3 | mA   |
| lou       | MAX        | 12 | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT   | OUTPUT    | MAX or MIN | F   |
|-----------|---------|-----------|------------|-----|
| tiv       | LE high |           | MIN        | 6   |
| tsu       | Data be | fore LE ↓ | MIN        | 2   |
| th        | Data a  | fter LE ↓ | MIN        | 6   |
| tPLH      | D       | 0         | MAX        | 9   |
| tPHL .    | U       | u         | IVIAX      | 7   |
| tPLH      | LE      | 0 0       | MAX        | 13  |
| tPHL .    | LE      | u         | WAX        | 8   |
| tРZH      | ŌE      | n         | MAX        | 12  |
| tPZL      | UE      | u         | IVIAX      | 9.5 |
| tPHZ      | ŌĒ      |           | MAX        | 7.5 |
| tPLZ      | UE      | u         | IVIAX      | 6   |

UNIT:ns

### MEMORY DECODER WITH ON-CHIP V<sub>CC</sub> MONITOR

- Built-In Supply-Voltage Monitor for V<sub>CC</sub>
- Separate Enable Inputs for Easy Cascading

### | FUNCTION TABLE | (sec) letch) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 10



### FUNCTION TABLE

|         | R  | NPUT | S      |    |         | OUT | DUITE |     |
|---------|----|------|--------|----|---------|-----|-------|-----|
| CONTROL |    |      | SELECT |    | OUTPUTS |     |       |     |
| G       | 1G | SD   | 1B     | 1A | 1Y0     | 111 | 112   | 113 |
| Н       | X  | X    | X      | X  | Н       | Н   | H     | H   |
| X       | Н  | X    | X      | X  | Н       | H   | Н     | H   |
| X       | X  | L    | X      | X  | Н       | H   | H     | Н   |
| L       | L  | H    | L      | L  | L       | H   | H     | H   |
| L.      | L  | H    | L      | H  | H       | L   | H     | H   |
| L       | L  | H    | H      | L  | H       | H   | L     | H   |
| L       | L  | H    | H      | Н  | H       | H   | H     | L   |

|      | PUTS | OUT  |     |     | S   | IPUT | 11  |    |
|------|------|------|-----|-----|-----|------|-----|----|
|      | 013  | 0011 |     | ECT | SEL | OL   | NTR | CC |
| 2Y3  | 2Y2  | 2Y1  | 2Y0 | 2A  | 2B  | SD   | 2G  | G  |
| H    | Н    | Н    | Н   | X   | X   | X    | X   | Н  |
| H    | H    | H    | H   | X   | X   | X    | H   | X  |
| H    | H    | Н    | Н   | X   | X   | L    | X   | X  |
| H    | H    | H    | L   | L   | L   | Н    | H   | L  |
| H    | H    | L    | Н   | Н   | L   | H    | H   | L  |
| H    | L    | H    | H   | L   | H   | H    | H   | L  |
| 41.1 | H    | Н    | н   | H   | H   | H    | H   | 1  |

| RECOMMENDED | OPERATING | CONDITIONS |
|-------------|-----------|------------|

| ILCONNINCTADED    | OI EIIATIITO OOI | DITTOTAL    |      |  |
|-------------------|------------------|-------------|------|--|
| PARAMETER         | MAX or MIN       | SN74<br>BCT | UNIT |  |
| lcc               | MAX              | 3           | mA   |  |
| Іон               | MAX              | -0.4        | mA   |  |
| lbst (Output low) | MAX              | 3           | mA   |  |
| lou               | MAX              | 8           | mA   |  |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT           | ОИТРИТ | MAX or MIN | SN74<br>BCT |
|-----------|-----------------|--------|------------|-------------|
| tPLH .    | A or B          | AV     | MAX        | 12          |
| tPHL .    | A or B          | Any Y  | IVIAX      | 12          |
| tPLH      | A               | AV     | MAX        | 10          |
| tPHL .    | Any G           | Any Y  | MAX        | 11          |
| tPLH      | SD              | Any Y  | MAX        | 12          |
| tPHL      | 30              | Any t  | IVIAA      | 12          |
| tPLH .    | N               | A V    | MAX        | 250         |
| tPHL      | V <sub>cc</sub> | Any Y  | IVIAA      | 250         |
| tPLH      |                 | VS     | MAX        | 250         |
| tPHL .    | V <sub>cc</sub> | V.S    | IVIAA      | 250         |

### RECOMMENDED OPERATING CONDITIONS

| RECOMMENDED | OFENATING CON | DITION | 3    |
|-------------|---------------|--------|------|
| PARAMETER   | MAX or MIN    | ALS    | UNIT |
| lccz        | MAX           | 22     | mA   |
| Icci        | MAX           | 25     | mA   |
| Іон         | MAX           | -0.4   | mA   |
| lou         | MAX           | 12     | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | ALS |
|-----------|-------|--------|------------|-----|
| tPLH      |       | Y      | MAX        | 15  |
| tPHL .    | А     | ,      | IVIAA      | 12  |
| tPZH      | ŌĒ    |        | MAX        | 15  |
| tPZL      | UE    | Y      |            | 20  |
| tPHZ      | ŌE    | Y      | MAN        | 10  |
| tPLZ      | UE    | 1.     | MAX        | 12  |

All output resistors are 25  $\Omega$ .

2827

### 10-BIT BUS/MOS MEMORY DRIVERS WITH 3-STATE OUTPUTS

- Output Ports Have Equivalent 25-Ω Series Resistors, So No External Resistors Are Required (SN74ABT2827)
- Output Ports Have Equivalent 25-Ω Resistors; No External Resistors Are Required (SN74BCT2827C)



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | SN74<br>BCT | ABT  | UNIT |
|-----------|------------|-------------|------|------|
| lccz      | MAX        | 6           | 0.25 | mA   |
| lccL      | MAX        | 40          | 40   | mA   |
| Іон       | MAX        | -1          | -12  | mA   |
| lou       | MAX        | 12          | 12   | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | SN74<br>BCT | ABT |
|-----------|-------|--------|------------|-------------|-----|
| tPLH .    | Δ.    | Y      | MAX        | 6           | 5.5 |
| tphl.     | Α     |        | IWIAA      | 7.8         | 5.1 |
| tPZH      | ŌĒ    | Y      | MAX        | 10.7        | 6.7 |
| tPZL      | UE    | 1      | IVIAA      | 12.9        | 7.8 |
| tPHZ      | ŌE    | γ      | MAN        | 13          | 7.2 |
| tPLZ      | UE    | , ,    | MAX        | 10          | 7.5 |

### 10-BIT BUS/MOS MEMORY DRIVERS WITH 3-STATE INVERTING OUTPUTS

 Output Ports Have Equivalent 33-Ω Series Resistors, So No External Resistors Are Required (SN74BCT2828)



To Nine Other Channels

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | SN74<br>BCT | UNIT |
|-----------|------------|-------------|------|
| lccz      | MAX        | 6           | mA   |
| lccr.     | MAX        | 40          | mA   |
| Іон       | MAX        | -1          | mA   |
| lou       | MAX        | 12          | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | SN74<br>BCT |
|-----------|-------|--------|------------|-------------|
| tPLH      |       | V      | MAX        | 6.6         |
| tphl.     | Α     | 1      | IVIAX      | 5           |
| tPZH      | ŌĒ    | V      | MAX        | 9           |
| tPZL R    | UE    | ,      | IVIAA      | 11.5        |
| tPHZ      | ŌE    | V      | MAX        | 10.8        |
| tPLZ      | UE    | 1      | IVIAA      | 8.7         |

### **OCTAL BUS TRANSCEIVERS AND REGISTERS**

- Two 8-Bit Back-to-Back Registers Store Data Flowing in Both Directions
- Noninverting Outputs 3-State Outputs





### **FUNCTION TABLE†**

|         | INPUTS |      |   |         |  |  |
|---------|--------|------|---|---------|--|--|
| CLKENAB | CLKAB  | OEAB | A | В       |  |  |
| Н       | X      | L    | X | Bo      |  |  |
| L       | 1      | L    | L | L       |  |  |
| L       | 1      | L    | H | and Han |  |  |
| X       | X      | H    | X | Z       |  |  |

† A-to-B data flow is shown; B-to-A data flow is similar but uses CLKENBA, CLKBA, and OEBA.
‡ Level of B before the indicated steady-state input conditions were established

### RECOMMENDED OPERATING CONDITIONS

| P/  | ARAMETER | MAX or MIN | SN74<br>BCT | ABT | SV.  | LVT<br>3V | UNIT |
|-----|----------|------------|-------------|-----|------|-----------|------|
| Icc |          | MAX        | 55          | 35  | 0.01 | 5         | mA   |
| Іон | A        | MAX        | -3          | -32 | -24  | -32       | mA   |
| IUH | В        | IVIAA      | -15         | -32 | -24  | -32       | mA   |
| lou | A        | MAX        | 24          | 64  | 24   | 64        | mA   |
| IUL | В        | IVIAA      | 64          | 64  | 24   | 64        | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT                                                       | OUTPUT    | MAX or MIN | SN74<br>BCT | ABT | 3V<br>LVC | LVT<br>3V |
|-----------|-------------------------------------------------------------|-----------|------------|-------------|-----|-----------|-----------|
| fmax      |                                                             |           | MIN        | 125         | 150 | 150       | 150       |
| tw        | CLK                                                         | "H"       | MIN        | 4           | 3.3 | 3.3       | 3.3       |
|           | CLK                                                         | "L"       | IVIIIV     | 4           | 3.3 | 3.3       | 3.3       |
| tsu       | A or E                                                      | High      |            | 2.5         | 2.5 | 1.3       | 1.5       |
|           | A or B Low  CLKENAB or CLKENBA High  CLKENAB or CLKENBA Low |           | MIN        | 2.5         | 2.5 | 1.3       | 1.5       |
|           |                                                             |           |            | 2           | 3   | 1.1       | 1.5       |
|           |                                                             |           | 5 10       | 2           | 3   | 1.1       | 1.9       |
| th page 1 | Ac                                                          | r B       | MIN        | 1.5         | 1.5 | 1.1       | 1         |
|           | CLKENAB o                                                   | r CLKENBA | IVIIIV     | 2.5         | 2   | 1.1       | 1.2       |
| tPLH      | CLKBA                                                       | A,B       | MAX        | 9           | 5.9 | 8.2       | 4.6       |
| tPHL .    | CLKAB                                                       | A,D       | IVIAA      | 10.5        | 6.3 | 8.2       | 4.6       |
| tPZH      | OEBA                                                        | A,B       | MAX        | 8.2         | 5.6 | 7.8       | 4.6       |
| tPZL      | OEAB                                                        | G A,D     | IVIAA      | 12.9        | 6.6 | 7.8       | 4.6       |
| tPHZ      | OEBA                                                        | A,B       | MAX        | 8.4         | 6.4 | 7.8       | 5.4       |
| tPLZ      | OEAB                                                        | A,D       | IVIAA      | 7           | 6.2 | 7.8       | 5.1       |

UNIT fmax : MHz other : ns

### **OCTAL BUS TRANSCEIVERS AND REGISTERS**

- Two 8-Bit, Back-to-Back Registers Store Data Flowing in Both Directions
- Inverting Outputs
- 3-State Outputs

### **Logic Diagram**



|      | INP   | ОИТРИТ |   |    |
|------|-------|--------|---|----|
| OEAB | CLKAB | OEAB   | Α | В  |
| Н    | 1     | L      | X | Ao |
| L    | 1     | L      | L | Н  |
| L    | 1     | -a     | H | 10 |
| X    | X     | Н      | X | Z  |

† A-to-B data flow is shown; B-to-A data flow is similar but uses
CEBA, CLKBA, and OEBA.

‡ Level of B before the indicated steady-state input conditions were



RECOMMENDED OPERATING CONDITIONS

| PARA | METER | MAX or MIN | SN74<br>BCT | UNIT |
|------|-------|------------|-------------|------|
| lcc  |       | MAX        | 55          | mA   |
|      | A     | v          | -3          | mA   |
| Іон  | В     | MAX        | -15         | mA   |
|      | A     | 1111       | 24          | mA   |
| lor  | В     | MAX        | 64          | mA   |

SWITCHING CHARACTERISTICS

| OTTITOTING GIA | 11/10/12/11/01/100 |              |            |             |  |  |  |
|----------------|--------------------|--------------|------------|-------------|--|--|--|
| PARAMETER      | INPUT              | OUTPUT       | MAX or MIN | SN74<br>BCT |  |  |  |
| fmax           |                    |              | MIN        | 110         |  |  |  |
| tw             | CL                 | K "H"        | MIN        | 4.5         |  |  |  |
|                | CL                 | K "L"        | IVIIIN     | 4.5         |  |  |  |
| tsu            | A or               | B High       | Aris       | 2.5         |  |  |  |
|                | A or               | B Low        | MIN        | 2.5         |  |  |  |
|                | CLKENAB or         | CLKENBA High | Acre       | 2           |  |  |  |
|                | CLKENAB or         | CLKENBA Low  | Lot        | 2           |  |  |  |
| th             | A                  | or B         | MIN        | 1.5         |  |  |  |
|                | CLKENAB            | or CLKENBA   | Am         | 2           |  |  |  |
| tPLH           | CLKBA              | A,B          | MAX        | 9.5         |  |  |  |
| tphl.          | CLKAB              | A,D          | IVIAA      | 10.2        |  |  |  |
| tPZH           | OEBA               | A,B          | MAX        | 8.8         |  |  |  |
| tPZL           | OEAB               | A,D          | WIAA       | 14          |  |  |  |
| tPHZ           | OEBA               | A,B          | MAX        | 9.1         |  |  |  |
| tPLZ           | OEAB               | A,D          | MAA        | 7.6         |  |  |  |

UNIT fmax : MHz other : ns

### OCTAL BUS TRANSCEIVER WITH ADJUSTABLE OUTPUT VOLTAGE AND 3-STATE OUTPUTS

# Logic Diagram DIR 22 OE A1 To Seven Other Channels

### **FUNCTION TABLE**

| INP | UTS |                 |
|-----|-----|-----------------|
| OE  | DIR | OPERATION       |
| L   | L   | B data to A bus |
| L   | H   | A data to B bus |
| H   | X   | Isolation       |

| RECOMMEN | NDED OPERATIN | G CONDITIONS |                      |                      |      |      |     |  |  |  |
|----------|---------------|--------------|----------------------|----------------------|------|------|-----|--|--|--|
| PAI      | RAMETER       | MAX or MIN   | V <sub>CCA</sub> (V) | V <sub>CCB</sub> (V) | LVCC | UNIT | KAM |  |  |  |
|          | 1             |              |                      | OPEN                 | 0.05 | mA   | M   |  |  |  |
| ICCA     | B to A        | MAX          | 3.6                  | 3.6                  | 0.05 | mA   | 103 |  |  |  |
|          |               |              |                      | 5.5                  | 0.05 | mA   |     |  |  |  |
|          | 4             | 1447         | 0.0                  | 3.6                  | 0.05 | mA   |     |  |  |  |
| ICCB     | A to B        | MAX          | 3.6                  | 5.5                  | 0.08 | mA   | N/  |  |  |  |
|          |               | MAN          | 2.7                  |                      | -12  | mA   |     |  |  |  |
| Іона     |               | MAX          | 3.3                  | 3                    | -24  | mA   |     |  |  |  |
|          |               | 1447         | 2.7                  | 3.3                  | -12  | mA   | 100 |  |  |  |
| Іонв     |               | MAX          | 3.3                  | 3                    | -24  | mA   |     |  |  |  |
| 1000     |               |              | 2.7                  | _                    | 12   | mA   | 105 |  |  |  |
| IOLA     |               | MAX          | 3.3                  | 3                    | 24   | mA   |     |  |  |  |
|          |               |              | 2.7                  | 3.3                  | 12   | mA   | 100 |  |  |  |
| IOLB     |               | MAX          | 3.3                  | 3                    | 24   | mA   |     |  |  |  |
|          |               |              | 2.10                 |                      |      | 100  | NIM |  |  |  |
|          |               |              |                      |                      |      |      |     |  |  |  |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | $V_{CCA} = 2.5V$ $V_{CCB} = 3.3V$ | $V_{CCA} = 3.6V$ $V_{CCB} = 5V$ |
|-----------|-------|--------|------------|-----------------------------------|---------------------------------|
| tPLH .    | A     | В      | MAX        | 9.4                               | 6                               |
| tphL .    | А     | B MAX  |            | 9.1                               | 5.3                             |
| tPLH      | В     | A      | MAX        | 11.2                              | 5.8                             |
| tPHL .    | В     | A      | IVIAX      | 9.9                               | 7                               |
| tPZL      | ŌĒ    | Ā      | MANY       | 14.5                              | 9.2                             |
| tPZH      | UE    | A      | MAX        | 12.9                              | 9.5                             |
| tPZL      | ŌĒ    | B      | 144V       | 13                                | 8.1                             |
| tРZH      | UE    | В      | MAX        | 12.8                              | 8.4                             |
| tPLZ      | ŌĒ    | Ā      | MAN        | 7.1                               | 7                               |
| tphz      | UE    | A      | MAX        | 6.9                               | 7.8                             |
| tPLZ      | ŌĒ    | B      | MAN        | 8.8                               | 7.3                             |
| tPHZ      | UE    | В      | MAX        | 8.9                               | 7                               |

### **DUAL 4-INPUT POSITIVE-NOR GATES**

 $Y = \overline{A + B + C + D}$ 



Logic Diagram

### **FUNCTION TABLE**

|   | INP | UTS |   | OUTPUT  |
|---|-----|-----|---|---------|
| Α | В   | C   | D | Y       |
| L | L   | L   | L | Н       |
| H | X   | ×   | X | rotte f |
| X | H   | X   | X | L       |
| X | X   | H   | X | L       |
| X | X   | X   | Н | _ L/    |

NOTES: H = High Voltage Level L = Low Voltage Level X = Irrelevant

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | SN74<br>HC | CD74<br>HC | UNIT |
|-----------|------------|------------|------------|------|
| lcc       | MAX        | 0.02       | 0.04       | mA   |
| Іон       | MAX        | -4         | -4         | mA   |
| lou       | MAX        | 4          | 4          | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER  | INPUT   | OUTPUT | MAX or MIN | SN74<br>HC | CD74 |
|------------|---------|--------|------------|------------|------|
| tPLH       | A D C D | V      | MAX        | 28         | 30   |
| A, B, C, D |         | Y      | MAX        | 28         | 30   |

### Logic Diagram



### **FUNCTION TABLE**

| INPUTS |   |   | OUTPUT         |                |                |     |
|--------|---|---|----------------|----------------|----------------|-----|
| CP     | D | R | Q <sub>0</sub> | Q <sub>1</sub> | Q <sub>2</sub> | Q3  |
| 1      |   | L | L              | q'o            | q'1            | q'2 |
| 1      | h | L | Н              | g'o            | 91             | 92  |
| 1      | X | L | q'o            | 91             | 92             | q's |
| X      | X | Н | L              | L              | L              | L   |

- H = High Voltage Level
  h = High Voltage Level One Set-up Time Prior to the Low to High
  Clock Transition
- L = Low Voltage Level
  I = Low Voltage Level One Set-up Time Prior to the Low to High Clock Transition

- Clock Transition X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't Care X = Dn't C

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | UNIT |
|-----------|------------|------------|------|
| lcc       | MAX        | 0.16       | mA   |
| Гон       | MAX        | -4         | mA   |
| lou       | MAX        | 4          | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT         | OUTPUT       | MAX or MIN | CD74<br>HC |
|-----------|---------------|--------------|------------|------------|
| fmax      |               |              | MIN        | 45         |
| tw        | C             | lock         |            | 24         |
|           |               | MR           | MIN        | 45         |
| tsuL      | D-4-          | In to CP     | MIN        | 18         |
| tsun      | Data-         | in to CP     | MIN        | 18         |
| th        | Data-In to CP |              | MIN        | 0          |
| tPLH .    | Clock         | 0-           | MAX        | 54         |
| tphl.     | CIOCK         | Qn           |            | 54         |
| tPLH .    | MR            | Qn           | MAX        | 83         |
| tPHL      | IVIN          | (Clock High) | WAX        | 83         |
| tplh      | MD            | Qn           | MAN        | 98         |
| tphl.     | MR            | (Clock Low)  | MAX        | 98         |

UNIT fmax: MHz other:ns

### Logic Diagram



### **FUNCTION TABLE**

| INPUT<br>nE | SWITCH |
|-------------|--------|
| L           | OFF    |
| Н           | ON     |
| 7777777     |        |

NOTES: H = High Level Voltage L = Low Level Voltage

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | UNIT |
|-----------|------------|------------|------|
| Icc       | MAX        | 0.32       | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT     | OUTPUT     | MAX or MIN | CD74<br>HC |
|-----------|-----------|------------|------------|------------|
| TPLH .    | Switch In | Switch Out | MAX        | 18         |
| tphL .    |           |            |            | 18         |
| tPZH      | En        | Z          | MAX        | 57         |
| tPZL      |           |            |            | 57         |
| tPHZ      | En        | _          |            | 44         |
| tPLZ      |           | Z          | MAX        | 44         |

Logic Diagram



| OUTPUT               | INPUTS |       |     |  |  |  |
|----------------------|--------|-------|-----|--|--|--|
| STATET               | CLR    | CLKEN | CLK |  |  |  |
| No Change            | L      | X     | L   |  |  |  |
| No Change            | L      | Н     | X   |  |  |  |
| "0" = H, "1"-"9" = L | н      | ×     | X   |  |  |  |
| Increments Counter   | L      | L     | 1   |  |  |  |
| No Change            | L      | X     | 1   |  |  |  |
| No Change            | L      | 1     | X   |  |  |  |
| Increments Counter   | 1      | Ť.    | н   |  |  |  |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | SN74<br>HC | CD74<br>HC | UNIT |
|-----------|------------|------------|------------|------|
| lcc       | MAX        | 0.08       | 0.16       | mA   |
| Іон       | MAX        | -4         | -4         | mA   |
| lot -     | MAX        | 4          | 4          | mA   |

| PARAMETER   | INPUT                    | OUTPUT                   | MAX or MIN | SN74<br>HC | CD74<br>HC |
|-------------|--------------------------|--------------------------|------------|------------|------------|
| fmax        | - 80                     | 70                       | MIN        | 25         | 20         |
|             | CLI                      | (CP)                     | MIN        | 20         | 24         |
| tw          | CLR                      | (MR) H                   | MIN        | 20         | 24         |
|             | CLKEN to C               | CLKEN to CLK (CE to CP ) |            | 13         | 22         |
| tsu         | CLK Inactive             |                          | MIN        | 13         | -          |
| th          | CLKEN to CLK (CE to CP ) |                          | MIN        | 5          | 0          |
| tplh        | CLK Y, CO                |                          | MAX        | 58         | 69         |
| tphL .      | (CP)                     | (0 to 9, TC)             | IVIAX      | 58         | 69         |
| tplh        | CLKEN                    | Y, C0                    | MAX        | 63         | 75         |
| <b>TPHL</b> | (CE)                     | (0 to 9, TC)             | IVIAA      | 63         | 75         |
| tplH .      | CLR                      | Y                        | MAX        | 58         | 69         |
| tphl .      | (MR) (0 to 9)            |                          | IVIAX      | 58         | 69         |
| tPLH .      | CLR                      | CO                       | MAN        | -          | 69         |
| TPHL        | (MR)                     | (TC)                     | MAX        | 58         | 69         |

UNIT fmax : MHz, other : ns

# Logic Diagram



## **FUNCTION TABLE**

| 1 | CLK | CLR | OUTPUT                |
|---|-----|-----|-----------------------|
| Ī | *   | L   | No Change             |
|   | 4   | L   | Advance to Next State |
| 1 | X   | Н   | All Outputs Are Low   |

 $\begin{aligned} &\text{NOTE: H = High Voltage Level, L = Low Voltage Level,} \\ &\text{X = Don't Care,} = \uparrow Transition from Low to High Level,} \\ &\text{$\downarrow$ = Transition from High to Low.} \end{aligned}$ 

## RECOMMENDED OPERATING CONDITIONS

| HECONNINCIADED OF ENATING CONDITIONS |            |            |            |             |      |  |  |  |
|--------------------------------------|------------|------------|------------|-------------|------|--|--|--|
| PARAMETER                            | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |  |  |  |
| Icc                                  | MAX        | 0.08       | 0.16       | 0.16        | mA   |  |  |  |
| Іон                                  | MAX        | -4         | -4         | -4          | mA   |  |  |  |
| IOL.                                 | MAX        | 4          | 4          | 4           | mA   |  |  |  |

## SWITCHING CHARACTERISTICS

| SWITC                | HING CHARACTER | RISTICS      |              |            |            |            |             |
|----------------------|----------------|--------------|--------------|------------|------------|------------|-------------|
| F                    | PARAMETER      | INPUT        | OUTPUT       | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
| fmax                 |                |              |              | MIN        | 22         | 20         | 16          |
|                      | CLK            | 1            |              | MIN        | 23         | 24         | 30          |
| tw                   | CLR high       | 1            |              |            | 18         | 24         | 30          |
| tsu                  | CLK            | CLR inactive | before CLK ↓ | MIN        | 15         | -          | -           |
| tPLH<br>tPHL<br>tPHL |                | OLK          | 0.           | MANY       | 38         | 42         | 60          |
|                      |                | CLK          | QΑ           | MAX        | 38         | 42         | 60          |
|                      |                | CLR          | Any          | MAX        | 35         | 51         | 60          |

UNIT fmax : MHz other : ns

Same Pinouts as CM0S4040

1 Vec 2V to 6V

# **Logic Diagram**



**FUNCTION TABLE** 

| CLK | CLR | OUTPUT STATE          |  |  |
|-----|-----|-----------------------|--|--|
| 1   | L   | No Change             |  |  |
| 1   | L   | Advance to Next State |  |  |
| X   | Н   | All outputs Are Low   |  |  |

H = High Voltage Level, L = Low Voltage Level, X = Don't Care, † = Transition form Low to High Level, \( \pm = \text{Transition} \) High to Low.

RECOMMENDED OPERATING CONDITIONS

| TIEGOWINIETADED OF ETIATING CONDITIONS |            |            |            |             |      |  |  |
|----------------------------------------|------------|------------|------------|-------------|------|--|--|
| PARAMETER                              | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |  |  |
| Icc                                    | MAX        | 0.08       | 0.16       | 0.16        | mA   |  |  |
| Іон                                    | MAX        | -4         | -4         | -4          | mA   |  |  |
| lou                                    | MAX        | 4          | 4          | 4           | mA   |  |  |

виссоминярыя оренатира ариоттория

SWITCHING CHARACTERISTICS

| OTTITO OTTA | NOTEMOTIO |           |            | -          |            | _           |
|-------------|-----------|-----------|------------|------------|------------|-------------|
| PARAMETER   | INPUT     | OUTPUT    | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
| fmax        |           | 00 00     | MIN        | 22         | 20         | 16          |
| tw          | CLK (CP)  |           | MIN        | 23         | 24         | 30          |
|             | CLR (I    | MR) H     | MIN        | 20         | 24         | 30          |
| tsu         | CLR iow b | efore CLK | MIN        | 20         | -          | (6)76       |
| tPLH        | CLK       | QA        | MAX        | 30         | 42         | 60          |
| tphl.       | (CP)      | (01)      | IVIAX      | 30         | 42         | 60          |
| tplh        | CLD (MAD) | 0         | MAN        |            | 51         | 60          |
| tphl .      | CLR (MR)  | any Q     | MAX        | 33         | 51         | 60          |

UNIT fmax: MHz, other: ns

# 12-STAGE BINARY COUNTERS

7-STAGE BINARY COUNTERS

- Same Pinouts as CMOS4040
- V<sub>CC</sub>: 2V to 6V

# Logic Diagram



**FUNCTION TABLE** 

| CLK | CLR | OUTPUT                |
|-----|-----|-----------------------|
| 1   | L   | No Change             |
| 1   | L   | Advance to Next State |
| X   | Н   | All Outputs Are Low   |

NOTE: H = High Voltage Level, L = Low Voltage Level, X = Don't Care,  $\hat{T}$  = Transition from Low to High Level,  $\hat{J}$  = Transition from High to Low.

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT | LV<br>3V | LV<br>5V | UNIT |
|-----------|------------|------------|------------|-------------|----------|----------|------|
| Icc       | MAX        | 0.08       | 0.16       | 0.16        | 2        | 0.02     | mA   |
| Іон       | MAX        | -4         | -4         | -4          | -6       | -12      | mA   |
| lou       | MAX        | 4          | 4          | 4           | 6        | 12       | mA   |

SWITCHING CHARACTERISTICS

| 1    | PARAMETER | INPUT        | OUTPUT       | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT | 3V   | LV<br>5V |   |
|------|-----------|--------------|--------------|------------|------------|------------|-------------|------|----------|---|
| fmax |           |              |              | MIN        | 22         | 20         | 16          | 50   | 80       |   |
| tiv  | CLK       |              |              | MINI       | 23         | 24         | 30          | 5    | 5        |   |
| LW   | CLR high  |              |              | high       | MIN        | 18         | 24          | 30   | 5        | 5 |
| su   | CLK       | CLR inactive | before CLK ↓ | MIN        | 15         | -          | 116/1-      | 5    | 5        |   |
| PLH  |           | CLK          | QA           | MAN        | 38         | 42         | 60          | 17.5 | 10.5     |   |
| PHL  |           | CLK UA       |              | MAX        | 38         | 42         | 60          | 17.5 | 10.5     |   |
| PHL  |           | CLR          | Any          | MAX        | 35         | 51         | 60          | 18.5 | 12       |   |

UNIT fmax : MHz other : ns

# Logic Diagram



# Pin Descriptions

| PIN NUMBER | SYMBOL             | NAME AND FUNCTION             |  |
|------------|--------------------|-------------------------------|--|
| 1          | PCPOUT             | Phase Comparator Pulse Output |  |
| 2          | PC1 <sub>OUT</sub> | Phase Comparator 1 Output     |  |
| 3          | COMPIN             | Comparator Input              |  |
| 4          | VCO <sub>OUT</sub> | VCO Output                    |  |
| 5          | INH                | Inhibit Input                 |  |
| 6          | C1 <sub>A</sub>    | Capacitor C1 Connection A     |  |
| 7          | C1 <sub>B</sub>    | Capacitor C1 Connection B     |  |
| 8          | GND                | Ground (0V)                   |  |
| 9          | VCOIN              | VCO Input                     |  |
| 10         | DEMOUT             | Demodulator Output            |  |
| 11         | R <sub>1</sub>     | Resistor R1 Connection        |  |
| 12         | R <sub>2</sub>     | Resistor R2 Connection        |  |
| 13         | PC2 <sub>OUT</sub> | Phase Comparator 2 Output     |  |
| 14         | SIGIN              | Signal Input                  |  |
| 15         | PC3 <sub>OUT</sub> | Phase Comparator 3 Output     |  |
| 16         | Vcc                | Positive Supply Voltage       |  |

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------------|-------------|------|
| lcc       | MAX        | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -4         | -4          | mA   |
| lou       | MAX        | 4          | 4           | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER  | INPUT  | OUTPUT     | MAX or MIN | CD74<br>HC | CD74<br>HCT |
|------------|--------|------------|------------|------------|-------------|
| tPLH       | SIGIN  | DOL        | MAN        | 60         | 68          |
| tPHL       | COMPIN | PCIout MAX |            | 60         | 68          |
| tPLH       | SIGIN  | PCPout     | MAN        | 90         | 102         |
| tPHL       | COMPIN | PCPOUT     | MAX        | 90         | 102         |
| tPLH AVGO  | SIGIN  | РСЗоит     | - A44V     | 74         | 87          |
| tPHL 37    | COMPIN | PU3001     | MAX        | 74         | 87          |
| ttlh       | ٨      | y y        | MAX        | 22         | 22          |
| tthl ac    | A      | Yn Y       | IVIAX      | 22         | 22          |
| tрzн       | SIGIN  | DC2 our    | MAX        | 80         | 90          |
| tPZL       | COMPIN | PC2out     | IVIAX      | 80         | 90          |
| tPLZ       | SIGIN  | 000        | 1117       | 95         | 102         |
| PHZ COMPIN |        | PC2out     | MAX        | 95         | 102         |



Logic Diagram



SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | CD74<br>HC |
|-----------|-------|--------|------------|------------|
| tPLH      | -     | V V    | MAY        | 26         |
| tPHL E    | nA    | nY     | MAX        | 26         |

4050

Logic Diagram

# **HEX NON-INVERTING BUFFERS**

| RECOMMENDED | OPERATING | CONDITIONS |  |
|-------------|-----------|------------|--|

| TEOOMINETEDE | D OI LIMITING | CONTO      | 110140 |
|--------------|---------------|------------|--------|
| PARAMETER    | MAX or MIN    | CD74<br>HC | UNIT   |
| Icc          | MAX           | 0.04       | mA     |
| Іон          | MAX           | -4         | mA     |
| lou          | MAX           | 4          | mA     |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | CD74<br>HC |
|-----------|-------|--------|------------|------------|
| tPLH .    | XALL  | nY     | MAY        | 26         |
| tPHL .    | nA    | ny     | MAX        | 26         |
| UNIT:ns   | XXIV  | PCtour | COMPU      | 20         |
|           |       |        |            |            |

| Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj. | Proj

# Logic Diagram



# **FUNCTION TABLE**

|     | INP | UTS |   | ON      |
|-----|-----|-----|---|---------|
| INH | С   | В   | Α | CHANNEL |
| L   | L   | L   | L | YO      |
| L   | L   | L   | H | Y1      |
| L   | L   | H   | L | Y2      |
| L   | L   | H   | H | Y3      |
| L   | H   | L   | L | Y4      |
| L   | H   | L   | H | Y5      |
| L   | H   | H   | L | Y6      |
| L   | H   | H   | H | Y7      |
| H   | X   | X   | X | None    |

| RECOMMENDED | OPERATING CON | DITIONS    | 5           |          |          |      |  |  |  |  |
|-------------|---------------|------------|-------------|----------|----------|------|--|--|--|--|
| PARAMETER   | MAX or MIN    | CD74<br>HC | CD74<br>HCT | LV<br>3V | LV<br>5V | UNIT |  |  |  |  |
|             |               |            |             |          |          |      |  |  |  |  |
| Icc         | MAX           | 0.16       | 0.16        | (*)      | 0.02     | mA   |  |  |  |  |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT     | OUTPUT      | MAX or MIN | CD74<br>HC | CD74<br>HCT | LV<br>3V | LV<br>5V |
|-----------|-----------|-------------|------------|------------|-------------|----------|----------|
| tPLH .    | 0011      | Yn or COM   | MAX        | 18         | 18          | 12       | 8        |
| tPHL.     | COM or Yn | Yn or CUIVI |            | 18         | 18          | 12       | 8        |
| tPZH      | 18111     | COM or Yn   | MAX        | 68         | 83          | 25       | 18       |
| tPZL      | INH       |             |            | 68         | 83          | 25       | 18       |
| tPHZ      |           | 2011        | T 7474     | 68         | 68          | 25       | 18       |
| tPLZ      | INH       | COM or Yn   | MAX        | 68         | 68          | 25       | 18       |

# DUAL 4-CHANNEL ANALOG MULTIPLEXERS / DEMULTIPLEXERS | STEELING BOLIAMA JEMMAHD-8

Logic Diagram



# **FUNCTION TABLE**

| - 1   | NPUTS | 3 | ON       |
|-------|-------|---|----------|
| INH B |       | A | CHANNEL  |
| L     | L     | L | 1Y0, 2Y0 |
| L     | L     | H | 1Y1, 2Y1 |
| L     | H     | L | 1Y2, 2Y2 |
| L     | H     | H | 1Y3, 2Y3 |
| H     | X     | X | None     |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74 | CD74<br>HCT | LV<br>3V | LV<br>5V | UNIT |
|-----------|------------|------|-------------|----------|----------|------|
| Icc       | MAX        | 0.16 | 0.16        |          | 0.02     | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT     | OUTPUT      | MAX or MIN | CD74<br>HC | CD74<br>HCT | LV<br>3V | LV<br>5V |     |
|-----------|-----------|-------------|------------|------------|-------------|----------|----------|-----|
| tPLH .    | 00M V-    | V COM       | MAX        | 18         | 18          | 12       | 8        | 1   |
| tphL .    | COM or Yn | Yn or COM   | IVIAA      | 18         | 18          | 12       | 8        | 101 |
| tpzh      | INH       | COM or Yn   | MAN        | 98         | 105         | 25       | 18       | 1   |
| tPZL      | IINH      |             | MAX        | 98         | 105         | 25       | 18       | 100 |
| tPHZ      | INH       | COM or Yn   | 1447       | 75         | 75          | 25       | 18       | 1   |
| tPLZ      | шип       | COIVI OF TH | MAX        | 75         | 75          | 25       | 18       | 10  |

# TRIPLE 2-CHANNEL ANALOG MULTIPLEXERS/DEMULTIPLEXERS MID 338AMMARDORS 20MD



**FUNCTION TABLE** 

|     | INP | UTS |   | ON CHANNEL    |
|-----|-----|-----|---|---------------|
| INH | С   | В   | Α | ON CHANNEL    |
| L   | L   | L   | L | 1Y0, 2Y0, 3Y0 |
| L   | L   | L   | H | 1Y1, 2Y0, 3Y0 |
| L   | L   | H   | L | 1Y0, 2Y1, 3Y0 |
| L   | L   | Н   | H | 1Y1, 2Y1, 3Y0 |
| L   | H   | L   | L | 1Y0, 2Y0, 3Y1 |
| L   | H   | L   | H | 1Y1, 2Y0, 3Y1 |
| L   | H   | H   | L | 1Y0, 2Y1, 3Y1 |
| L   | H   | H   | Н | 1Y1, 2Y1, 3Y1 |
| Н   | X   | X   | X | None          |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | CD74<br>HCT | LV<br>3V | LV<br>5V | UNIT |
|-----------|------------|------------|-------------|----------|----------|------|
| Icc       | MAX        | 0.16       | 0.16        | -        | 0.02     | mA   |

## SWITCHING CHARACTERISTICS

| SWITCHING CHA | RACIERISTICS | 1.3H         |            |            |             |          |          |
|---------------|--------------|--------------|------------|------------|-------------|----------|----------|
| PARAMETER     | INPUT        | OUTPUT       | MAX or MIN | CD74<br>HC | CD74<br>HCT | LV<br>3V | LV<br>5V |
| tPLH          | COM or Yn    | Yn or COM    | MAX        | 18         | 18          | 12       | 8        |
| tphl .        | CUIVI OF YH  | Yn or Culvi  | IVIAA      | 18         | 18          | 12       | 8        |
| tPZH          | INH          | COM or Yn    | MAX        | 66         | 72          | 25       | 18       |
| tPZL          | IIVII        | COIVI OI III | IVIAA      | 66         | 72          | 25       | 18       |
| tPHZ          | INH          | COM or Yn    | MAX        | 63         | 66          | 25       | 18       |
| tPLZ          | IINH         | COIVI OI TII | IVIAA      | 63         | 66          | 25       | 18       |

# **Function Diagram**

## PROGRAM JAM INPUTS (BCD)



## **FUNCTION TABLE**

| MODE | SELECT | INPUT |
|------|--------|-------|
| Ka   | Kb     | Kc    |
| H    | H      | Н     |
| L    | Н      | H     |
| H    | L      | H     |
| L    | L      | H     |
| H    | Н      | L     |
| X    | L      | L     |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | UNIT |
|-----------|------------|------------|------|
| lcc       | MAX        | 0.16       | mA   |
| Іон       | MAX        | -4         | mA   |
| lou       | MAX        | 4          | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT    | MAX or MIN | CD74<br>HC |  |
|-----------|-------|-----------|------------|------------|--|
| fmax      |       | CP - 4500 | MIN        | 18         |  |
| tw        | 46 (  | CP        | MIN        | 27         |  |
| tsu       | Kb, K | c to CP   | MIN        | 22         |  |
| tPLH      | CP    | 0         | MAN        | 60         |  |
| tPHL      | UP    | u         | MAX        | 60         |  |
| tPLH      | I.E.  | 0         | 5.5.5.V    | 53         |  |
| tPHL .    | LE    | u         | MAX        | 53         |  |



V<sub>cc</sub>: 2V to 6V



# **Logic Diagram**



# **FUNCTION TABLE**

| INP  | UTS | OUTPL                 | JTS  |      |  |
|------|-----|-----------------------|------|------|--|
| CLKI | CLR | QD to QN              | CLKO | CLKO |  |
| 1    | L   | No Change             | 1    | 1    |  |
| 1    | L   | Advance to Next State | 1    | 1    |  |
| X    | H   | All Outputs are Low   | L    | H    |  |

# OPERATING CONDITIONS

| MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|------------|------------|------------|-------------|------|
| MAX        | 0.08       | 0.16       | 0.16        | mA   |
| - MAX      | -4         | -4         | -4          | mA   |
| MAX        | 4          | 4          | 4           | mA   |

| PARAMETER | INPUT OUTPUT              |      | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
|-----------|---------------------------|------|------------|------------|------------|-------------|
| fmax      |                           |      | MIN        | 22         | 20         | 20          |
| tw        | C                         | LKI  | MAIN       | 23         | 24         | 24          |
|           | CLR                       | high | MIN        | 23         | 24         | 38          |
| tsu       | CLR inactive before CLK ↓ |      | MIN        | 40         | -          | X/S/        |
| tPLH      | CLKI                      | 0-   | MAN        | 123        | 90         | 100         |
| tphl.     | CLKI                      | ΩD   | MAX        | 123        | 90         | 100         |
| tphl.     | CLR                       | Any  | MAX        | 35         | 53         | 66          |

UNIT fmax : MHz other : ns

# QUADRUPLE BILATERAL SWITCHES 20 0MA 2837MU00 YBAMIS 20AT2-AT 2U0MORHORY2A

- Same Pinouts as CMOS4016, 4066
- Low On-State Impedance: 50-Ω TYP at V<sub>CC</sub> = 6V
   A State Impedance: 50-Ω TYP at V<sub>CC</sub> = 6V
   A State Impedance: 50-Ω TYP at V<sub>CC</sub> = 6V
- Individual Switch Controls
- Extremely Low Input Current
- High On-Off Output Voltage Ratio
- Low Crosstalk Between Switches



# **FUNCTION TABLE**

| INPUT<br>(C) | SWITCH |   |
|--------------|--------|---|
| L            | OFF    |   |
| Н            | ON     | ī |

NOTE: H = High Level L = Low Level

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT | LV<br>3V | LV<br>5V | UNIT |
|-----------|------------|------------|------------|-------------|----------|----------|------|
| Icc       | MAX        | 0.02       | 0.04       | 0.04        |          | 0.02     | mA   |

V8 or V5 :20 W

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT   | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT | LV<br>3V | LV<br>5V |
|-----------|--------|----------|------------|------------|------------|-------------|----------|----------|
| tPLH      | A D    | D A      | MAX        | 15         | 18         | 18          | 12       | 8        |
| tphl.     | A or B | B or A   | IVIAA      | 15         | 18         | 18          | 12       | 8        |
| tpzh      | 0      | A D      |            | 45         | 30         | 36          | 22       | 16       |
| tPZL      | С      | A or B   | MAX        | 45         | 30         | 36          | 22       | 16       |
| tPHZ      |        | C A or B |            | 50         | 45         | 53          | 22       | 16       |
| tPLZ      | C      |          | MAX        | 50         | 45         | 53          | 22       | 16       |

# **16-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER**

7.8.4.7.4

# **Function Diagram**



# **FUNCTION TABLE**

| S0 | S1 | S2 | S3 | Ē | SELECTED<br>CHANNEL |
|----|----|----|----|---|---------------------|
| X  | X  | X  | X  | X | None                |
| 0  | 0  | 0  | 0  | 0 | 0                   |
| 1  | 0  | 0  | 0  | 0 | 1                   |
| 0  | 1  | 0  | 0  | 0 | 2                   |
| 1  | 1  | 0  | 0  | 0 | 3                   |
| 0  | 0  | 1  | 0  | 0 | 4                   |
| 1  | 0  | 1  | 0  | 0 | 5                   |
| 0  | 1  | 1  | 0  | 0 | 6                   |
| 1  | 1  | 1  | 0  | 0 | 7                   |
| 0  | 0  | 0  | 1  | 0 | 8                   |
| 1  | 0  | 0  | 1  | 0 | 9                   |
| 0  | 1  | 0  | 1  | 0 | 10                  |
| 1  | 1  | 0  | 1  | 0 | 11                  |
| 0  | 0  | 1  | 1  | 0 | 12                  |
| 1  | 0  | 1  | 1  | 0 | 13                  |
| 0  | 1  | 1  | 1  | 0 | 14                  |
| 1  | 1  | 1  | 1  | 0 | 15                  |

NOTES: H = High Level L = Low Level

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------------|-------------|------|
| Icc       | MAX        | 0.16       | 0.16        | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT     | OUTPUT      | MAX or MIN | CD74<br>HC | CD74<br>HCT |
|-----------|-----------|-------------|------------|------------|-------------|
| tPLH .    | Switch In | COMON I/O   | MAX        | 22         | 22          |
| tphl.     | Switch in | COMON I/O   | MAX        | 22         | 22          |
| tPZH      | Ē         | E COMON I/O |            | 83         | 90          |
| tPZL      | E         | COMON I/O   | MAX        | 83         | 90          |
| tрzн      | Sn        |             | 1447       | 90         | 90          |
| tPZL      | Sn        | COMON I/O   | MAX        | 90         | 90          |
| tPHZ      | Ē         | COMON I/O   | MANY       | 83         | 83          |
| tPLZ      | E         | COMON I/O   | MAX        | 83         | 83          |
| tPHZ      | 0-        | 001401110   | 1447       | 87         | 87          |
| tPLZ      | Sn        | COMON I/O   | MAX        | 87         | 87          |

# 4067

# TRIPLE 3-INPUT OR GATES

 $\bullet$  Y = A + B + C





STATEMENT PARAGE SAMPLE

NO ASSESSMENT AND PROPERTY OF THE

loves i right = 1

|   | INPUTS | 5 | OUTPUT |
|---|--------|---|--------|
| Α | В      | С | Y      |
| L | L      | L | L      |
| H | X      | X | H      |
| X | H      | X | H      |
| X | X      | H | H      |

NOTES:
H = High Voltage Level
L = Low Voltage Level
X = Don't Care

| RECOMMENDE | DUPERATING | CUNDI      | HUNS       |             |      |
|------------|------------|------------|------------|-------------|------|
| PARAMETER  | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
| Icc        | MAX        | 0.02       | 0.04       | 0.04        | mA   |
| Іон        | MAX        | -4         | -4         | -4          | mA   |
| lou        | MAX        | 4          | 4          | 4           | mA   |

## SWITCHING CHARACTERISTICS

| PARAMETER | INPUT     | оитрит | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
|-----------|-----------|--------|------------|------------|------------|-------------|
| tPLH      | A, B or C | Y      | MAX        | 25         | 30         | 36          |
| tPHL      | A, B or C | Y      | MAX        | 25         | 30         | 36          |

UNIT:ns

515



Logic Diagram



|    | INP | UTS |   | PALALLEL |      | SERIAL            |     |
|----|-----|-----|---|----------|------|-------------------|-----|
| CP | OE  | STR | D | Qo       | Qn   | QS <sub>1</sub> ‡ | QS2 |
| Ť  | L   | X   | X | Z        | Z    | Q'6               | NC  |
| 1  | L   | X   | X | Z        | Z    | NC                | Q'7 |
| 1  | Н   | L   | X | NC       | NC   | Q'6               | NC  |
| 1  | H   | Н   | L | L        | Qn-1 | Q'6               | NC  |
| 1  | Н   | Н   | Н | Н        | Qn-1 | Q'6               | NC  |
| 1  | Н   | Н   | Н | NC       | NC   | NC                | Q'7 |

NOTES:

1. H = High Voltage Level, L = Low Voltage Level, X = Don't Care, NC = No charge, Z = High Impedance Off-state, T = Transition from Low to High Level, L = Transition from High Level, L = Transition from High Low.

2. At the positive clock edge the information in the seventh resister stage is transferred to the Bith register stage and Sq. output.

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------------|-------------|------|
| Icc       | MAX        | 0.16       | 0.16        | mA   |
| lou       | MAX        | 4          | 4           | mA   |
| Іон       | MAX        | -4         | -4          | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | CD74<br>HC | CD74<br>HCT |
|-----------|-------|--------|------------|------------|-------------|
| tw        | (     | CP CP  | MIN        | 24         | 24          |
| twn       | S     | TR     | MIN        | 24         | 24          |
| tsu       | D     | ata    | MIN        | 15         | 15          |
|           | S     | TR     | MIN        | 30         | 30          |
| tH        | D     | ata    | MIN        | 3          | 4           |
|           | S     | TR     | MIN        | 0          | 0           |
| tPLH      | 0.0   | 004    |            | 45         | -           |
| tPHL      | CP    | QS1    | MAX        | 45         | 120         |
| tPLH .    | 0.0   | 000    |            | 41         | 1-0         |
| tPHL .    | CP    | QS2    | MAX        | 41         | -,          |
| tPLH .    | 0.0   |        |            | 59         | -           |
| tPHL .    | CP    | Qn     | MAX        | 59         | (4.0        |
| tPLH .    | ATR   |        |            | 54         | -           |
| tPHL .    | STR   | Qn     | MAX        | 54         | -           |
| tpzH      | 05    | 0-     | MAN        | 53         | 12.0        |
| tPZL      | 0E    | Qn     | MAX        | 53         | (*)         |
| tPLZ      | OF.   | 0-     | MANY       | 38         | -           |
| tPHZ      | 0E    | Qn     | MAX        | 38         | -           |



| INP | UTS |                 |
|-----|-----|-----------------|
| OE  | DIR | OPERATION       |
| L   | L   | B data to A bus |
| L   | H   | A data to B bus |
| H   | X   | Isolation       |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVC  | LVCC | UNIT |
|-----------|------------|------|------|------|
| ICCA      | MAX        | 0.08 | 0.08 | mA   |
| Іссв      | MAX        | 0.05 | 0.08 | mA   |
| Іон       | MAX        | -24  | -24  | mA   |
| lou       | MAX        | 24   | 24   | mA   |

# SWITCHING CHARACTERISTICS

| MAX or MIN | LVC                                      | V <sub>CCB</sub><br>3.3V                              |
|------------|------------------------------------------|-------------------------------------------------------|
| MAY        | 6.3                                      | 7                                                     |
| MAX        | 6.7                                      | 7                                                     |
| MAN        | 6.1                                      | 6.2                                                   |
| MAX        | 5                                        | 5.3                                                   |
| MAN        | 9                                        | 9                                                     |
| IVIAX      | 8.1                                      | 8                                                     |
| MAN        | 8.8                                      | 10                                                    |
| MAX        | 9.8                                      | 10.2                                                  |
| MAN        | 7                                        | 5.2                                                   |
| MAX        | 5.8                                      | 5.2                                                   |
| MAN        | 7.7                                      | 5.4                                                   |
| MAX        | 7.8                                      | 7.4                                                   |
|            | MAX or MIN  MAX  MAX  MAX  MAX  MAX  MAX | MAX 6.3 6.7 6.1 5 MAX 9.8 1 MAX 9.8 MAX 7.5 8 MAX 7.7 |



| INP | UTS |        |
|-----|-----|--------|
| Ē   | S   | SWITCH |
| L   | L   | OFF    |
| L   | H   | ON     |
| H   | ×   | OFF    |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------------|-------------|------|
| Icc       | MAX        | 0.16       | 0.16        | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT     | OUTPUT     | MAX or MIN | CD74<br>HC | CD74<br>HCT |
|-----------|-----------|------------|------------|------------|-------------|
| tPLH      | Switch in | Cuitab aut | MAX        | 18         | 18          |
| tPHL .    | Switch in | Switch out | IVIAX      | 18         | 18          |
| tPZH      | Ē         | 7100       | MAX        | 62         | 66          |
| tPZL      | E         | 2          | MAX        | 62         | 85          |
| tPZH      | -0        | 7 1/11/1   | MAN        | 53         | 60          |
| tPZL      | nS        | 2          | MAX        | 53         | 75          |
| tPLZ      | Ē         | ZXAM       | MAX        | 62         | 75          |
| tPHZ      | E         |            | IVIAX      | 62         | -           |
| tPLZ      | 1277      | XAM        | MAX        | 53         | 11 13       |
| tPHZ      | nS        | Z          | IVIAX      | 53         | 66          |
| UNIT:ns   | 77.0      | 1AM        | 25V        |            | 3.0         |
|           |           |            |            |            |             |

| 75<br>75 | 53<br>53 | MAX   | ZIIIM   |                                         | nS   |
|----------|----------|-------|---------|-----------------------------------------|------|
|          |          | IVIAA |         |                                         |      |
| 75       |          |       |         |                                         |      |
|          | 62       | MAX   | ZXAM    |                                         | Ē    |
| - 0      | 62       | MAX   | 2       |                                         | E    |
| U.S.     | 53       | gaV   | XAM     |                                         | 2017 |
| 66       | 53       | MAX   | Z       |                                         | nS   |
| n2       |          | 2:5V  | 10,0,00 | - 0                                     | 77.  |
|          |          |       |         |                                         |      |
|          |          |       |         |                                         |      |
|          |          |       |         |                                         |      |
|          |          |       |         |                                         |      |
|          |          |       |         |                                         |      |
|          |          |       |         |                                         |      |
|          |          |       |         |                                         |      |
|          |          |       |         |                                         |      |
|          |          |       |         |                                         |      |
| _        |          | 53    | MAX 53  | 200 200 200 200 200 200 200 200 200 200 |      |

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. See www.ti.com/sc/logic for the most current data sheets.

# ANALOG MULTIPLEXERS/DEMULTIPLEXERS WITH LATCH 3/31 HTM H3TIM2 30 JAMA BAUD

# Logic Diagram



**FUNCTION TABLE** 

|    |    | INPUTS | 3  |    | "ON"†               |
|----|----|--------|----|----|---------------------|
| E1 | E2 | S2     | S1 | SO | SWITCCHES<br>LE = H |
| L  | Н  | L      | L  | L  | A <sub>0</sub>      |
| L  | Н  | L      | L  | Н  | A <sub>1</sub>      |
| L  | Н  | L      | Н  | L  | A <sub>2</sub>      |
| L  | Н  | L      | H  | Н  | A <sub>3</sub>      |
| L  | н  | Н      | L  | L  | A <sub>4</sub>      |
| L  | Н  | Н      | L  | Н  | A <sub>5</sub>      |
| L  | Н  | Н      | Н  | L  | A <sub>6</sub>      |
| L  | Н  | Н      | Н  | Н  | A <sub>7</sub>      |
| Н  | L  | X      | X  | X  | None                |

NOTES:

† When LE is low S0-S2 data are latched and switches cannot change state
H = High Voltage Level, L = Low Voltage Level, X = Don't Care

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------------|-------------|------|
| Icc       | MAX        | 0.16       | 0.16        | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT      | OUTPUT     | MAX or MIN | CD74<br>HC | CD74<br>HCT |
|-----------|------------|------------|------------|------------|-------------|
| tw        | ī          | E- XAM     | MIN        | 30         | 28          |
| tsu       | Sn t       | o LE       | MIN        | -          |             |
| tH        | Sn t       | to LE      | MIN        | 5          | 5           |
| tPLH      | Switch In  | Switch Out | MAX        | -11        | 11          |
| tPHL .    | SWITCH III | Switch out | IVIAA      | 11         | 11          |
| tPZH      | E1, E2, LE | Vos        | MAX        | 90         | 113         |
| tPZL      | E1, EZ, LE | Vos        | MAX        | 90         | 113         |
| tPZH      | Sn         | Vos        | MAX        | 90         | 113         |
| tPZL      | Sn         | VOS        | IVIAX      | 90         | 113         |
| tPLZ      | E1         | Vos        | MAX        | 75         | 83          |
| tPHZ      | EI         | VOS        | WAX        | 75         | 83          |
| tPLZ      | E2         | Vos        | MAX        | 75         | 90          |
| tPHZ      | EZ         | VUS        | IVIAX      | 75         | 90          |
| tPLZ      | LE         | Vos        | MAX        | 83         | 90          |
| tPHZ      | LE         | VUS        | IVIAX      | 83         | 90          |
| tPLH .    | Sn         | Vos        | MAN        | 83         | 98          |
| tPHL      | эП         | VOS        | MAX        | 83         | 98          |

# ANALOG MULTIPLEXERS/DEMULTIPLEXERS WITH LATCH



# **FUNCTION TABLE**

|           | INP | UTS |    | "ON"†                           |
|-----------|-----|-----|----|---------------------------------|
| <u>E1</u> | E2  | S1  | SO | SWITCCHES                       |
| L         | Н   | L   | L  | A <sub>0</sub> , B <sub>0</sub> |
| L         | Н   | L   | Н  | A <sub>1</sub> , B <sub>1</sub> |
| L         | Н   | H   | L  | A2, B2                          |
| L         | Н   | H   | Н  | A <sub>3</sub> , B <sub>3</sub> |
| Н         | L   | X   | X  | None                            |

NOTES:

† When LE is low S0-S2 data are latched and switches cannot change state.

H = High Voltage Level, L = Low Voltage Level, X = Don't Care

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | UNIT |
|-----------|------------|------------|------|
| lcc       | MAX        | 0.16       | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT      | OUTPUT     | MAX or MIN | CD74<br>HC |
|-----------|------------|------------|------------|------------|
| tw        | ī          | .E         | MIN        | 30         |
| tsu       | Sn t       | to LE      | MIN        | -          |
| th        | Sn t       | to LE      | MIN        | 5          |
| tPLH      | Switch In  | Switch Out | MAX        | 11         |
| tphl.     | Switch in  | Switch Out | IVIAX      | 11         |
| tРZH      | E1, E2, LE | Vos        | MAX        | 105        |
| tPZL      | E1, E2, LE | Vos        | MAX        | 105        |
| tРZH      | 0          |            | MAX        | 113        |
| tPZL      | Sn         | Vos        | MAX        | 113        |
| tPLZ      | E1, E2, LE | Man        | - NAMA     | 83         |
| tPHZ      | E1, EZ, LE | Vos        | MAX        | 83         |





| LE | Bt | LT | D <sub>3</sub> | $D_2$ | D <sub>1</sub> | D <sub>0</sub> | а | b | С | d | е | f | g | Display |
|----|----|----|----------------|-------|----------------|----------------|---|---|---|---|---|---|---|---------|
| X  | X  | L  | X              | X     | X              | X              | Н | Н | Н | Н | Н | Н | Н | 8       |
| X  | L  | Н  | X              | X     | X              | X              | L | L | L | L | L | L | L | Blank   |
| L  | Н  | Н  | L              | L     | L              | L              | Н | Н | H | Н | H | Н | L | 0       |
| L  | Н  | Н  | L              | L     | L              | H              | L | H | H | L | L | L | L | 1       |
| L  | Н  | Н  | L              | L     | H              | L              | Н | H | L | H | H | H | L | 2       |
| L  | H  | Н  | L              | L     | Н              | Н              | Н | H | H | H | L | L | H | 3       |
| L  | Н  | Н  | L              | H     | L              | L              | L | H | H | L | L | H | H | 4       |
| L  | Н  | H  | L              | H     | L              | Н              | H | L | H | H | L | H | H | 5       |
| L  | Н  | Н  | L              | H     | Н              | L              | L | L | H | H | H | Н | H | 6       |
| L  | H  | H  | L              | Н     | H              | H              | Н | Н | H | L | L | L | L | 7 8     |
| L  | H  | Н  | H              | L     | L              | L              | Н | H | H | H | H | Н | H | 8       |
| L  | H  | Н  | H              | L     | L              | H              | Н | H | H | L | L | H | H | 9       |
| L  | H  | Н  | H              | L     | H              | L              | L | L | L | L | L | L | L | Blank   |
| L  | H  | Н  | Н              | L     | H              | Н              | L | L | L | L | L | L | L | Blank   |
| L  | Н  | H  | H              | Н     | L              | L              | L | L | L | L | L | L | L | Blank   |
| L  | Н  | Н  | Н              | H     | L              | н              | L | L | L | L | L | L | L | Blank   |
| L  | Н  | Н  | Н              | Н     | H              | L              | L | L | L | L | L | L | L | Blank   |
| L  | H  | Н  | Н              | H     | H              | Н              | L | L | L | L | L | L | L | Blank   |
| H  | H  | Н  | X              | X     | X              | X              |   |   |   |   |   |   |   |         |

NOTES: X = Don't Care

Depends on BCD code previously appied when LE = L Display is blank for all illegal input codes (BCD > HLLH).

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------------|-------------|------|
| Icc       | MAX        | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -7.4       | -7.4        | mA   |
| lou       | MAX        | 4          | 4           | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | CD74<br>HC | CD74<br>HCT |
|-----------|-------|--------|------------|------------|-------------|
| tw        | Latch | Enable | MIN        | 20         | 20          |
| tsu       | Dn    | to LE  | MIN        | 20         | 20          |
| th        | Dn    | to LE  | MIN        | 3          | 5           |
| tPLH      | Dn    |        | MAX        | 75         | 75          |
| tPHL:     | Un    | a to g | MAX        | 75         | 75          |
| tPLH      | TE    |        | MAN        | 68         | 68          |
| tphL .    | LE    | a to g | MAX        | 68         | 68          |
| tPLH      | BI    |        | MAN        | 55         | 55          |
| tPHL .    | BI    | a to g | MAX        | 55         | 55          |
| tPLH      | ĪŢ    |        | MANY       | 40         | 41          |
| tPHL      | LI    | a to g | MAX        | 40         | 41          |

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. See www.ti.com/sc/logic for the most current data sheets.

# 4-LINE TO 16-LINE DECODERS/DEMULTIPLEXERS WITH INPUT LATCHES THRIMBRE V-01-038





FUNCTION TABLE (LE = H)

|      |    |       |         | (LE = H) |                    |
|------|----|-------|---------|----------|--------------------|
| _    | D  | ECODE | R INPUT | S        | ADDRESSED OUTPUT H |
| Ē    | A3 | A2    | A1      | A0       | ADDRESSED OUTFUL H |
| L    | L  | L     | L       | L        | Y0                 |
| L    | L  | L     | L       | Н        | Y1                 |
| L    | L  | L     | H       | E.       | Y2                 |
| L    | L  | L     | Н       | Н        | Y3                 |
| L    | L  | Н     | L       | L        | Y4                 |
| L    | L  | Н     | L       | н        | Y5                 |
| L    | L  | Н     | H       | L        | Y6                 |
| L I  | L  | Н     | Н       | н        | Y7                 |
| L    | Н  | L     | L       | L        | Y8                 |
| L    | Н  | 1     | L       | 1. H.    | Y9                 |
| L o  | Н  | L     | Н       | L        | Y10                |
| L    | Н  | L     | H       | H        | Y11_               |
| 57 6 |    | Н     | L       | L        | Y12                |
| L    | Н  | H     | L       | н        | Y13                |
| L    | Н  | H     | H       | L        | Y14                |
| L.   | Н  | Н     | Н       | H        | Y15                |
| Н    | X  | X     | Х       | X        | All outputs = L    |

H = high, L = low, X = don't care

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------------|------------|-------------|------|
| Icc       | MAX        | 0.08       | 0.16       | 0.08        | mA   |
| Іон       | MAX        | -4         | -4         | -6          | mA   |
| lou       | MAX        | 4          | 4          | 6           | mA   |

| SWITCHING CH | HARACTERISTIC               | S      |            |            |            |             |
|--------------|-----------------------------|--------|------------|------------|------------|-------------|
| PARAMETER    | INPUT                       | OUTPUT | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
| tw           | LE (LE)                     |        | MIN        | 20         | 22         | 38          |
| tsu          | LE (LE)                     |        | MIN        | 25         | 30         | 25          |
| th           | LE (LE)                     |        | MIN        | 5          | 0          | 5           |
| tPLH         | A, B, C, D<br>(A1, 2, 3, 4) | V      | MAX        | 58         | 83         | 69          |
| tPHL .       |                             | ,      |            | 58         | 83         | 69          |
| tPLH         | LE<br>(LE)                  | Y      | MAX        | 58         | 68         | 63          |
| tPHL         |                             |        |            | 58         | 68         | 63          |
| tPLH         | G<br>(E)                    | γ      | MAX        | 44         | 53         | 50          |
| tPHL .       | (E)                         | Y      |            | 44         | 53         | 50          |



|   |                               |   |                    | ( |                 |
|---|-------------------------------|---|--------------------|---|-----------------|
| _ | E DECODER INPUTS  A3 A2 A1 A0 |   | DECODER INPUTS     |   |                 |
| E |                               |   | ADDRESSED OUTPUT L |   |                 |
| L | L                             | L | L                  | L | YO              |
| L | L                             | L | L                  | Н | Y1              |
| L | L                             | L | Н                  | L | Y2              |
| L | L                             | L | Н                  | н | Y3              |
| L | L                             | Н | L                  | L | Y4              |
| L | L                             | Н | L                  | Н | Y5              |
| L | L                             | H | Н                  | L | Y6              |
| L | L                             | Н | H                  | н | Y7              |
| L | Н                             | L | L                  | L | Y8              |
| L | Н                             | L | L                  | Н | Y9              |
| L | Н                             | L | H                  | L | Y10             |
| L | Н                             | L | H                  | н | Y11             |
| L | Н                             | H | L                  | L | Y12             |
| L | н                             | Н | L                  | н | Y13             |
| L | н                             | Н | Н                  | E | Y14             |
| L | Н                             | Н | Н                  | H | Y15             |
| Н | X                             | Х | х                  | X | All outputs = H |

H = high, L = low, X = don't care

# RECOMMENDED OPERATING CONDITIONS

| THE COMMITTEE OF EMPTH OF CONTENTIONS |            |            |            |             |      |  |  |
|---------------------------------------|------------|------------|------------|-------------|------|--|--|
| PARAMETER                             | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT | UNIT |  |  |
| Icc                                   | MAX        | 0.08       | 0.16       | 0.08        | mA   |  |  |
| Іон                                   | MAX        | -4         | -4         | -6          | mA   |  |  |
| In                                    | MAX        | 4          | 4          | 6           | mA   |  |  |

## SWITCHING CHARACTERISTICS

| PARAMETER | INPUT         | OUTPUT      | MAX or MIN | SN74<br>HC | CD74<br>HC | CD74<br>HCT |
|-----------|---------------|-------------|------------|------------|------------|-------------|
| tw        | LE            | (LE)        | MIN        | 20         | 22         | 38          |
| tsu       | LE (LE)       |             | MIN        | 25         | 30         | 25          |
| th        | LE (LE)       |             | MIN        | 5          | 0          | 5           |
| tPLH      | A, B, C, D    | Y           | MAX        | 58         | 83         | 69          |
| tphL .    | (A1, 2, 3, 4) | (CD74HCT:Y) |            | 58         | 83         | 69          |
| tPLH .    | LE            | Ÿ           | MAN        | 58         | 68         | 63          |
| tphl.     | (LE)          | (CD74HCT:Y) | MAX        | 58         | 68         | 63          |
| tPLH      | G<br>(E)      | Ÿ           | MANY       | 44         | 53         | 50          |
| tPHL .    | (Ē)           | (CD74HCT:Y) | MAX        | 44         | 53         | 50          |

# **DUAL SYNCHRONOUS COUNTERS**



# **FUNCTION TABLE**

|    | NPUT | S  |                      |
|----|------|----|----------------------|
| CP | E    | MR | OUTPUT STATE         |
| Ť  | Н    | L  | Increment Counter    |
| L  | 1    | L  | Increment Counter    |
| 1  | X    | L  | No Change            |
| H  | 1    | L  | No Change            |
| 1  | L    | L  | No Change            |
| H  | 1    | L  | No Change            |
| L  | X    | Н  | $Q_0$ thru $Q_3 = L$ |

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | UNIT |
|-----------|------------|------------|------|
| Icc       | MAX        | 0.16       | mA   |
| Іон       | MAX        | -4         | mA   |
| lou       | MAX        | 4          | mA   |

# SWITCHING CHARACTERISTICS

| SWITCHING CH. | ARACTERISTI | US      |            |            |
|---------------|-------------|---------|------------|------------|
| PARAMETER     | INPUT       | OUTPUT  | MAX or MIN | CD74<br>HC |
| fmax          |             |         | MIN        | 20         |
| tw            | MIN         | 24      |            |            |
|               | N           | ИR      | 1 IVIIIV   | 30         |
| tsu           | Enabl       | e to CP | MIN        | 24         |
|               | CP to       | Enable  | IVIIN      | 24         |
| tPLH          | on.         | 0-      | MAX        | 72         |
| tphL .        | CP          | Qn      | MAX        | 72         |
| tPLH          | F           | 0-      | MAN        | 72         |
| tphL .        | Enable Qn   |         | MAX        | 72         |
| tPLH          |             |         | MAN        | 45         |
| tphL .        | MH          | Un      | MAX        | 45         |
| HL            | MR          | Qn      | MAX        | 4          |

UNIT fmax: MHz other: ns

# DUAL SYNCHRONOUS COUNTERS WITHUM ALBARA DIROM MODERNAM ALBARADORTER LAUG



# **FUNCTION TABLE**

|                      | S  | NPUTS | 1  |
|----------------------|----|-------|----|
| <b>OUTPUT STATE</b>  | MR | E     | CP |
| Increment Counter    | L  | Н     | 1  |
| Increment Counter    | L  | 4     | L  |
| No Change            | L  | X     | 1  |
| No Change            | L  | †     | X  |
| No Change            | L  | L     | 1  |
| No Change            | L  | 1     | H  |
| $Q_0$ thru $Q_3 = L$ | H  | X     | X  |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------------|-------------|------|
| Icc       | MAX        | 0.16       | 0.16        | mA   |
| Юн        | MAX        | -4         | -4          | mA   |
| lou       | MAX        | 4          | 4           | mA   |

## SWITCHING CHARACTERISTICS

| PARAMETER | INPUT        | OUTPUT | MAX or MIN | CD74<br>HC | CD74<br>HCT |
|-----------|--------------|--------|------------|------------|-------------|
| fmax      |              | MIN    | 20         | 17         |             |
| tw        | CP           |        | MIN        | 24         | 30          |
|           | MR           |        | IVIIIV     | 30         | 30          |
| tsu       | Enable to CP |        | MIN        | 24         | 24          |
|           | CP to Enable |        | MIIN       | 24         | (*)         |
| tPLH      | CP Qn        |        | MAX        | 72         | 80          |
| tPHL .    |              |        | MAX        | 72         | 80          |
| tPLH      | Enable Qn    |        | MANY       | 72         | 83          |
| tрнL      |              |        | MAX        | 72         | 83          |
| tPLH      | MD           | 0-     | MAN        | 45         | 53          |
| tPHL      | - MR Qn      |        | MAX        | 45         | 53          |

UNIT fmax: MHz other: ns



# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------------|-------------|------|
| Icc       | MAX        | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -4         | -4          | mA   |
| lou       | MAX        | 4          | 4           | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | CD74<br>HC | CD74<br>HCT |
|-----------|-------|--------|------------|------------|-------------|
| WH A, B   |       | -      | 10-0-0     | 24         | 24          |
| twL       | A, B  |        | MIN        | 24         | 24          |
| twL       |       | R      | 80 Kg      | 24         | 30          |
| tPLH      | A, B  | 0      | MAX        | 75         | 83          |
| tPHL      | А, В  | ā      | MAX        | 75         | 83          |
| tPLH      | R     | ā      | MANY       | -          | 75          |
| tPHL      | ri    | Q      | MAX        | 75         | 60          |





| LD   | B1   | PH  | D3 | D2   | D1   | D0 | а | b | С    | d     | е    | f | g             | Display |
|------|------|-----|----|------|------|----|---|---|------|-------|------|---|---------------|---------|
| X    | Н    | L   | X  | X    | X    | X  | L | L | L    | L     | L    | L | L             | Blank   |
| Н    | L    | L   | L  | L    | L    | L  | H | H | Н    | Н     | H    | H | L             | 0       |
| Н    | L    | L   | L  | L    | L    | Н  | L | Н | H    | L     | L    | L | L             | 1       |
| Н    | L    | L   | L  | L    | H    | L  | H | Н | L    | H     | H    | L | H             | 2       |
| Н    | L    | L   | L  | L    | Н    | Н  | Н | Н | H    | H     | L    | L | H             | 3       |
| Н    | L    | 1   | L  | Н    | L    | L  | L | Н | Н    | L     | L    | H | Н             | 4       |
| Н    | L    | L   | L  | H    | L    | H  | Н | L | Н    | Н     | L    | Н | H             | 5       |
| Н    | L    | L   | L  | Н    | Н    | L  | H | L | Н    | Н     | Н    | H | H             | 6       |
| H    | L    | L   | L  | Н    | Н    | Н  | Н | Н | H    | L     | L    | L | L             | 7       |
| Н    | L    | L   | Н  | L    | L    | L  | Н | Н | H    | H     | H    | H | H             | 8       |
| н    | L    | Lon | H  | L.   | L    | H  | H | Н | H    | H     | L    | Н | H             | 9       |
| Н    | L    | L   | H  | L    | Н    | L  | L | L | L    | L     | L    | L | L             | Blank   |
| Н    | L    | L   | H  | L    | Н    | H  | L | L | L    | L     | L    | L | L             | Blank   |
| Н    | L    | L   | H  | H    | L    | L  | L | L | L    | L     | L    | L | L             | Blank   |
| Н    | L    | L   | H  | Н    | L    | Н  | L | L | L    | L     | L    | L | L             | Blank   |
| Н    | L    | L   | H  | Н    | Н    | L  | L | L | L    | L     | L    | L | L             | Blank   |
| Н    | L    | L   | H  | Н    | Н    | Н  | L | L | L    | L     | L    | L | L             | Blank   |
| L    | L    | L   | X  | X    | X    | X  |   |   |      |       |      |   |               |         |
| as a | bove | N   |    | as a | bove | 9  |   |   | inve | rse a | bove | 9 | inverse above |         |

Depends open the BCD code previously appled when LE = High

| PARAMETER | MAX or MIN | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------------|-------------|------|
| Icc       | MAX        | 0.16       | 0.16        | mA   |
| Іон       | MAX        | 10-1       | -1          | mA   |
| lou       | MAX        | 1          | 1           | mA   |

# SWITCHING CHARACTERISTICS

| OTTITO OII | ANAUTEMOT | 00      |            |            |             |
|------------|-----------|---------|------------|------------|-------------|
| PARAMETER  | INPUT     | OUTPUT  | MAX or MIN | CD74<br>HC | CD74<br>HCT |
| tw         | Latch     | Disable | MIN        | 13         | 13          |
| tsu        | Dn        | to LD   | MIN        | 15         | 15          |
| th         | Dn        | to LD   | MIN        | 8          | 10          |
| tPLH       | D-        | /3.70   | MAN        | 85         | 100         |
| tphL .     | Dn        | a to g  | MAX        | 85         | 100         |
| tPLH       | 1.0       |         | MANY       | 93         | 96          |
| tphl .     | LD        | a to g  | MAX        | 93         | 96          |
| tPLH .     | B1        | 020     | MAX        | 66         | 83          |
| tphl.      | ВІ        | a to g  | MAX        | 66         | 83          |
| tPLH       | DII       |         | MAN        | 50         | 83          |
| tPHL .     | PH        | a to g  | MAX        | 50         | 83          |

Output Ports Have Equivalent 25-Q Series Resistors

# Logic Diagram

## FUNCTION TABLE

| INPUTS |     |   | INPUT |  |
|--------|-----|---|-------|--|
| OE1    | OE2 | D | Y     |  |
| L      | L   | L | L     |  |
| L      | L   | H | H     |  |
| H      | X   | X | Z     |  |
| X      | H   | X | Z     |  |

# To Ten Other Channels

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | UNIT |
|-----------|------------|-----|------|
| Icc       | MAX        | 45  | mA   |
| Іон       | MAX        | -12 | mA   |
| lou       | MAX        | 12  | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | ОИТРИТ | MAX or MIN | ABT |
|-----------|-------|--------|------------|-----|
| tPLH      |       | Y      | AAAV V     | 6.2 |
| tphl.     | D     | 4-00   | MAX        | 5.6 |
| tPZH      | ŌĒ    | v      | MAN        | 8.7 |
| tPZL      | UE    | Y      | MAX        | 7.5 |
| tРHZ      | ŌĒ    | .,     |            | 5.2 |
| tPLZ      | ÜE    | Y      | MAX        | 6.9 |

## UNIT: ns

# 5401

# 11-BIT LINE/MEMORY DRIVERS WITH 3-STATE OUTPUTS

 Output Ports Have Equivalent 25-Ω Series Resistors, So No External Resistors Are Required (SN74ABT5401)



# **FUNCTION TABLE**

|     | INPUTS | UTS OUT |   |  |  |
|-----|--------|---------|---|--|--|
| OE1 | OE2    | D       | Y |  |  |
| L   | L      | L       | Н |  |  |
| L   | L      | H       | L |  |  |
| Н   | X      | X       | Z |  |  |
| X   | H      | X       | Z |  |  |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | UNIT |
|-----------|------------|-----|------|
| Icc       | MAX        | 45  | mA   |
| Іон       | MAX        | -12 | mA   |
| lou       | MAX        | 12  | mA   |

# SWITCHING CHARACTERISTICS

| OVVITORINVO OTIALI | TO TEINOTIOO |        |            |     |
|--------------------|--------------|--------|------------|-----|
| PARAMETER          | INPUT        | OUTPUT | MAX or MIN | ABT |
| tplH               | D            | - v    | MAX        | 6.9 |
| tPHL .             | υ .          | T      | IVIAX      | 5.7 |
| tpzh               | ŌE           | Υ      | MAX        | 8.5 |
| tPZL               | UE           | Y.     | MAX        | 6.8 |
| tPHZ               | ŌE           | v      | MANY       | 5.2 |
| tPLZ               | OE           |        | MAX        | 6.9 |

5402

(SN74ABT5402A)

Logic Diagram

To Eleven Other Channels

# **FUNCTION TABLE**

| INPUTS |     | OUTPUT |   |
|--------|-----|--------|---|
| OE1    | OE2 | D      | Υ |
| L      | L   | L      | L |
| L      | L   | H      | H |
| H      | X   | X      | Z |
| ×      | H   | X      | Z |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | UNIT |
|-----------|------------|-----|------|
| Icc       | MAX        | 48  | mA   |
| Іон       | MAX        | -12 | mA   |
| lou       | MAX        | 12  | mA   |

## SWITCHING CHARACTERISTICS

| SWITCHING CHAN | ACTENISTICS  |              |            | _   |
|----------------|--------------|--------------|------------|-----|
| PARAMETER      | INPUT        | OUTPUT       | MAX or MIN | ABT |
| tPLH           | D.           | V            |            | 6.2 |
| tPHL .         | OH DUNE TO 3 | HAME Y TUSTO | IVIAA      | 5.6 |
| tPZH           | Œ Œ          | V            | MAX        | 8.7 |
| tPZL           |              | 1 1          | MAA        | 7.5 |
| tPHZ           | <u> </u>     | ŌE Y         | MANY       | 5.2 |
| tPLZ           | ÜE           | 1            | MAX        | 6.9 |

UNIT: ns

# 5403

# 11-BIT LINE/MEMORY DRIVERS WITH 3-STATE OUTPUTS

Output Ports Have Equivalent 25-Ω Series
Resistors, So No External Resistors Are Required
(SN74ABT5403)

# **Logic Diagram**



To 11 Other Channels

# **FUNCTION TABLE**

|     | INPUTS OU |   | OUTPUT |
|-----|-----------|---|--------|
| OE1 | OE2       | D | Y      |
| L   | L         | L | Н      |
| L   | L         | Н | L      |
| H   | X         | X | Z      |
| X   | H         | X | Z      |

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | UNIT |
|-----------|------------|-----|------|
| Icc       | MAX        | 45  | mA   |
| Іон       | MAX        | -12 | mA   |
| lou       | MAX        | 12  | mA   |

### SWITCHING CHARACTERISTIC

| SWITCHING CHAP | RACTERISTICS  |            |            | _   |
|----------------|---------------|------------|------------|-----|
| PARAMETER      | INPUT         | OUTPUT     | MAX or MIN | ABT |
| tPLH           | Dilling and a | MM Y YUSTU | 444V       | 6.9 |
| tphl.          |               |            |            | 5.7 |
| tPZH           | OE XAM        | Y          | MAX        | 8.5 |
| tPZL           |               |            |            | 6.8 |
| tPHZ           | ŌE            | Υ          | MAX        | 5.2 |
| tPLZ           |               |            |            | 6.9 |

# 7001

# QUADRUPLE POSITIVE-AND GATES WITH SCHMITT-TRIGGER INPUTS

- Same Pinouts as SN74HC08
- V<sub>CC</sub>: 2V to 6V
- Schmitt-Triggered Inputs
- Y = A•B



Logic Diagram

# RECOMMENDED OPERATING CONDITIONS

| TIEGOTATIVIETADED | OF ENATING CON | T    |      |
|-------------------|----------------|------|------|
| PARAMETER         | MAX or MIN     | нс   | UNIT |
| Icc               | MAX            | 0.02 | mA   |
| Іон               | MAX            | -4   | mA   |
| lou               | MAX            | 4    | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | нс |
|-----------|--------|--------|------------|----|
| tPLH      | KAA    |        | MAY 30     | 33 |
| tPHL      | A or B | Y      | MAX        | 33 |

# Logic Diagram



# 7002

# QUADRUPLE POSITIVE-NOR GATES WITH SCHMITT-TRIGGER INPUTS

- Same Pinouts as SN74HC36
- V<sub>CC</sub>: 2V to 6V
- Schmitt-Triggered Inputs
- $\bullet$  Y =  $\overline{A}$  +  $\overline{B}$

## RECOMMENDED OPERATING CONDITIONS

| NECOMMENDED | OF ENATING CON | T    | 1    |
|-------------|----------------|------|------|
| PARAMETER   | MAX or MIN     | нс   | UNIT |
| Icc         | MAX            | 0.02 | mA   |
| Іон         | MAX            | -4   | mA   |
| lou         | MAX            | 4    | mA   |

### SWITCHING CHARACTERISTICS

| ACTENISTICS | _       |              | _                       |
|-------------|---------|--------------|-------------------------|
| INPUT       | OUTPUT  | MAX or MIN   | нс                      |
| A D         | V       | MAY          | 33                      |
| AOIB        | Y       | MAX          | 33                      |
|             | A Louis | INPUT OUTPUT | INPUT OUTPUT MAX or MIN |

# 536

# **Logic Diagram**

# QUADRUPLE 2-INPUT POSITIVE-OR GATES (1910) WITH SCHMITT-TRIGGER INPUTS



- Same Pinouts as SN74HC32
- V<sub>CC</sub>: 2V to 6V
- Schmitt-Triggered Inputs
- Y = A + B



### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | нс   | UNIT |
|-----------|------------|------|------|
| Icc       | MAX        | 0.02 | mA   |
| Іон       | MAX        | -4   | mA   |
| lor And   | MAX        | 4    | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | нс |
|-----------|--------|--------|------------|----|
| tPLH      | A == D | V PC   | MAX        | 33 |
| tPHL TPHL | A or B | Υ      | WAX        | 33 |



# **Logic Diagram**



# RECOMMENDED OPERATING CONDITIONS

| RECOMMENDE | U UPERATING | CUNDI      | LIUNS       |      |
|------------|-------------|------------|-------------|------|
| PARAMETER  | MAX or MIN  | CD74<br>HC | CD74<br>HCT | UNIT |
| lcc        | MAX         | 0.16       | 0.16        | mA   |
| Іон        | MAX         | -4         | -4          | mA   |
| lou        | MAX         | 4          | 4           | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT  | MAX or MIN | CD74<br>HC | CD74<br>HCT |
|-----------|--------|---------|------------|------------|-------------|
| tPLH .    | SIGIN, | 001     | MAY        | 60         | 68          |
| tPHL      | COMPIN | PC1 out | MAX        | 60         | 68          |
| tРZH      | SIGIN, | 000     | MAX        | 84         | 90          |
| tPZL      | COMPIN | PC2out  | MAX        | 84         | 90          |
| tPHZ      | SIGIN, | РС2оит  | MAX        | 98         | 105         |
| tPLZ      | COMPIN | FUZOUT  | IVIAX      | 98         | 105         |

| Г | INP | UTS | OUTPUT |
|---|-----|-----|--------|
|   | Α   | В   | Y      |
|   | L   | L   | Н      |
|   | L   | H   | L 278  |
|   | H   | L   | L      |
|   | H   | Н   | H      |

NOTES: H = High Voltage Level L = Low Voltage Level

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | SN74<br>HC | CD74<br>HC | UNIT |
|-----------|------------|------------|------------|------|
| Icc       | MAX        | 0.02       | 0.04       | mA   |
| Іон       | MAX        | -4         | -4         | V    |
| lou       | MAX        | 4          | 4          | V    |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | SN74<br>HC | CD74<br>HC |
|-----------|--------|--------|------------|------------|------------|
| tPLH      | A D    | Y      | MAX        | 25         | 35         |
| tPHL .    | A or B | Y      | MAX        | 25         | 35         |

# 8003

# **DUAL 2-INPUT POSITIVE-NAND GATES**



RECOMMENDED OPERATING CONDITIONS

| necommended of environe contaminate |            |      |     |      |  |  |
|-------------------------------------|------------|------|-----|------|--|--|
| PARAMETER                           | MAX or MIN | ALS  | AS  | UNIT |  |  |
| Icc                                 | MAX        | 1.5  | 8.7 | mA   |  |  |
| Іон                                 | MAX        | -0.4 | -2  | mA   |  |  |
| lou                                 | MAX        | 8    | 20  | mA   |  |  |

| SWITCHING CHAR | ACTERISTICS |        |            |     | _   |
|----------------|-------------|--------|------------|-----|-----|
| PARAMETER      | INPUT       | ОИТРИТ | MAX or MIN | ALS | AS  |
| tPLH .         | A or B      | v      | MAX        | 11  | 4.5 |
| tphl.          | A OF B      | 1      | WAX        | 8   | 4   |

# 16-BIT BUS BUFFERS/DRIVERS WITH 3-STATE OUTPUTS AND ROM-ENGLISMS TUSINES GAMB

# Logic Diagram





| INP | JTS | OUTPUT |
|-----|-----|--------|
| OE  | Α   | Y      |
| L   | Н   | L      |
| L   | L   | H      |
| H   | X   | 7      |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | LVT<br>3V | LVTH<br>3V | ALVT<br>3V | AC   | ACT  | AHC  | AHCT | LVCH<br>3V | LVCZ<br>3V | ALVCH<br>3V | UNIT |
|-----------|------------|-----|-----------|------------|------------|------|------|------|------|------------|------------|-------------|------|
| Icc       | MAX        | 34  | 5         | 5          | 5          | 0.08 | 0.08 | 0.04 | 0.04 | 0.02       | 0.1        | 0.04        | mA   |
| Іон       | MAX        | -32 | -32       | -32        | -32        | -24  | -24  | -8   | -8   | -24        | -24        | -24         | mA   |
| lou       | MAX        | 64  | 64        | 64         | 64         | 24   | 24   | 8    | 8    | 24         | 24         | 24          | mA   |

| SWITCHING CHARA | CIEMISTICS    |        | 1740       |     |           |            |            |     |      |      |      |
|-----------------|---------------|--------|------------|-----|-----------|------------|------------|-----|------|------|------|
| PARAMETER       | INPUT         | ОИТРИТ | MAX or MIN | ABT | LVT<br>3V | LVTH<br>3V | ALVT<br>3V | AC  | ACT  | AHC  | AHCT |
| tPLH .          |               | V .    | MAX        | 4.7 | 3.5       | 3.5        | 3.3        | 5.8 | 8.5  | 8.5  | 10.5 |
| tPHL .          | A             | 1      | WAX        | 4.8 | 3.5       | 3.5        | 3.2        | 7.1 | 10.2 | 8.5  | 10.5 |
| tPZH            | <del>OE</del> | V      | - May      | 5.3 | 4         | 4          | 3.7        | 6.6 | 9.4  | 10.5 | 13   |
| tPZL            | UE            |        | MAX        | 7.1 | 4.4       | 4.4        | 3.1        | 8.1 | 11.4 | 10.5 | 13   |
| tPHZ            | OE OE         | V      | S MAY      | 6.1 | 4.5       | 4.5        | 5          | 8.1 | 12   | 10.5 | 13   |
| tPLZ            | TAN OF        | < Y    | MAX        | 5.6 | 4.2       | 4.2        | 4.1        | 7.3 | 10.7 | 10.5 | 13   |

| INPUT     | OUTPUT | MAX or MIN | LVCH<br>3V | LVCZ<br>3V | ALVCH<br>3V                                                              |                                                                            |
|-----------|--------|------------|------------|------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 5Y5 - 500 | V      | 1 May      | 4.2        | 4.2        | 3.9                                                                      |                                                                            |
| A         | 1      | MAX        | 4.2        | 4.2        | 3.9                                                                      |                                                                            |
| <u> </u>  |        | 1444       | 4.7        | 4.7        | 5                                                                        |                                                                            |
| UE        | Y      | MAX        | 4.7        | 4.7        | 5                                                                        |                                                                            |
| ŌĒ        | V      | MAN        | 5.9        | 5.9        | 4.4                                                                      |                                                                            |
| UE        | Y      | WAX        | 5.9        | 5.9        | 4.4                                                                      |                                                                            |
|           | INPUT  | A Y 0E Y   | NPUT       | A          | A Y MAX 0 MIN 3V 3V  A Y MAX 4.2 4.2  OE Y MAX 4.7 4.7  OF V MAX 5.9 5.9 | A Y MAX 4.2 4.2 3.9  \[ \begin{array}{cccccccccccccccccccccccccccccccccccc |



| INPU"    | rs     | OUTPUTS |
|----------|--------|---------|
| 10E, 40E | 1A, 4A | 1Y, 4Y  |
| L        | Н      | L       |
| L        | L      | Н       |
| H        | X      | Z       |

| INPU"    | OUTPUTS |        |  |  |  |
|----------|---------|--------|--|--|--|
| 20E, 30E | 2A, 3A  | 2Y, 3Y |  |  |  |
| Н        | Н       | H      |  |  |  |
| Н        | L       | L      |  |  |  |
| L        | X       | Z      |  |  |  |





| PARAMETER | MAX or MIN | ABT | LVTH<br>3V | ACT  | UNIT |
|-----------|------------|-----|------------|------|------|
| Icc       | MAX        | 34  | 5          | 0.08 | mA   |
| Гон       | MAX        | -32 | -32        | -24  | mA   |
| lou       | MAX        | 64  | 64         | 24   | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT    | OUTPUT | MAX or MIN | ABT | LVTH<br>3V | ACT  |  |
|-----------|----------|--------|------------|-----|------------|------|--|
| tPLH .    | 05       | v      | S COMMAN   | 3.7 | 3.5        | 9.5  |  |
| tPHL .    | SYA A    |        | MAX        | 4.5 | 3.5        | 9.1  |  |
| tPZH      | OE or OE | V      | MAX        | 5   | 4.5        | 9.4  |  |
| tPZL .    | UE OF UE | T      | MAX        | 6.9 | 4.5        | 10.5 |  |
| PHZ       | OE or OE | V      | MAN        | 6.2 | 5.3        | 11.6 |  |
| tPLZ      | UE OF UE | T .    | MAX        | 5.6 | 4.9        | 10.7 |  |

# 16-BIT BUS BUFFERS/DRIVERS WITH 3-STATE OUTPUTS



| INPL | JTS | OUTPUT |
|------|-----|--------|
| ŌĒ   | Α   | Y      |
| L    | Н   | Н      |
| L    | L   | L      |
| H    | X   | Z      |

RECOMMENDED OPERATING CONDITIONS

| NECOMMENDED OF | PENATING CUNDITI | UNS |      |           |            |             |      |      |      |      |        |            |      |
|----------------|------------------|-----|------|-----------|------------|-------------|------|------|------|------|--------|------------|------|
| PARAMETER      | MAX or MIN       | ABT | ABTH | LVT<br>3V | LVTH<br>3V | ALVTH<br>3V | AC   | ACT  | AHC  | AHCT | TAC 3A | LVCH<br>3V | UNIT |
| Icc            | MAX              | 32  | 32   | - 5       | 5          | 5           | 0.08 | 0.08 | 0.04 | 0.04 | 0.02   | 0.02       | mA   |
| Юн 85          | MAX              | -32 | -32  | -32       | -32        | -32         | -24  | -24  | -8   | -8   | -24    | -24        | mA   |
| lou            | MAX              | 64  | 64   | 64        | 64         | 64          | 24   | 24   | 8    | 8    | 24     | 24         | mA   |

| PARAMETER | MAX or MIN | LVCZ<br>3V | ALVC<br>3V | ALVCH<br>3V | AVC<br>3V | UNIT |
|-----------|------------|------------|------------|-------------|-----------|------|
| Icc       | MAX        | 0.1        | 0.04       | 0.04        | 0.04      | mA   |
| Он        | MAX        | -24        | -24        | -24         | -12       | mA   |
| lor       | MAX        | 24         | 24         | 24          | 12        | mA   |

| SWITCHING CHARAC | CTERISTICS |        |            |     |      |           |            |             |     |      |      |
|------------------|------------|--------|------------|-----|------|-----------|------------|-------------|-----|------|------|
| PARAMETER        | INPUT      | ОИТРИТ | MAX or MIN | ABT | АВТН | LVT<br>3V | LVTH<br>3V | ALVTH<br>3V | AC  | ACT  | AHC  |
| tPLH             | A          | v      | MAX        | 3.5 | 3.5  | 3.2       | 3.2        | 2.4         | 7.1 | 9.4  | 8.5  |
| tPHL             | A          | 1      |            | 4.1 | 4.1  | 3.2       | 3.2        | 2.5         | 7.9 | 9.5  | 8.5  |
| tPZH             | ŌĒ         |        |            | 4.8 | 4.8  | 4         | 4          | 3.8         | 7.5 | 8.9  | 10.5 |
| tPZL             | UE         | Y      | MAX        | 4.8 | 4.8  | 4         | 4          | 2.9         | 9   | 10.3 | 10.5 |
| tPHZ             | ŌĒ         | V      | MAN        | 4.8 | 4.8  | 4.5       | 4.5        | 4.2         | 8.4 | 11.3 | 10.5 |
| tPLZ             | UE         | T      | MAX        | 4.1 | 4.1  | 4.2       | 4.2        | 3.6         | 7.6 | 10.3 | 10.5 |

| PARAMETER | INPUT | ОИТРИТ | MAX or MIN | AHCT | TAC<br>3A | LVCH | LVCZ<br>3V | ALVC<br>3V | ALVCH<br>3V | AVC<br>3V |
|-----------|-------|--------|------------|------|-----------|------|------------|------------|-------------|-----------|
| tPLH      | Α.    | v      | MAX        | 10.5 | 4.1       | 4.1  | 4.1        | 3          | 3           | 1.7       |
| tPHL .    | A     | т .    | IVIAA      | 10.5 | 4.1       | 4.1  | 4.1        | 3          | 3           | 1.7       |
| tPZH      | ŌĒ    | v      | MAN        | 13   | 4.6       | 4.6  | 4.6        | 4.4        | 4.4         | 3.5       |
| tPZL      | UE    | т т    | MAX        | 13   | 4.6       | 4.6  | 4.6        | 4.4        | 4.4         | 3.5       |
| PHZ.      | ŌĒ    | Y      | MAN        | 13   | 5.8       | 5.8  | 5.8        | 4.1        | 4.1         | 3.5       |
| tPLZ      | UE    |        | MAX        | 13   | 5.8       | 5.8  | 5.8        | 4.1        | 4.1         | 3.5       |

# 16245

# 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS





### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | АВТН | LVT<br>3V | LVTH<br>3V | ALVTH<br>3V | AC   | ACT  | AHCT | UNIT |
|-----------|------------|-----|------|-----------|------------|-------------|------|------|------|------|
| Icc       | MAX        | 32  | 32   | 5         | 5          | 5           | 0.08 | 0.08 | 0.04 | mA   |
| Іон       | MAX        | -32 | -32  | -32       | -32        | -32         | -24  | -24  | -8   | mA   |
| lou       | MAX        | 64  | 64   | 64        | 64         | 64          | 24   | 24   | 8    | mA   |

| PARAMETER | MAX or MIN | TAC 3A | LVCH<br>3V | LVCHR<br>3V | LVCZ<br>3V | ALVCH<br>3V | ALVC<br>HR<br>3V | AVC<br>3V | UNIT |
|-----------|------------|--------|------------|-------------|------------|-------------|------------------|-----------|------|
| Icc       | MAX        | 0.02   | 0.02       | 0.02        | 0.06       | 0.04        | 0.04             | 0.04      | mA   |
| Іон       | MAX        | -24    | -24        | -12         | -24        | -24         | -12              | -12       | mA   |
| lou       | MAX        | 24     | 24         | 12          | 24         | 24          | 12               | 12        | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | ABT | ABTH | LVT<br>3V | LVTH<br>3V | ALVTH<br>3V | AC   | ACT  | AHCT |
|-----------|--------|--------|------------|-----|------|-----------|------------|-------------|------|------|------|
| tPLH PS   |        |        | G:MAX -    | 3.9 | 3.9  | 3.3       | 3.3        | 3.1         | 7.9  | 10.5 | 10.5 |
| tPHL      | A or B | B or A |            | 4.2 | 4.2  | 3.3       | 3.3        | 2.9         | 8.9  | 10.2 | 10.5 |
| tPZH      | ŌE     | B or A | MAX        | 6.3 | 6.3  | 4.5       | 4.5        | 4.2         | 8.6  | 10   | 15   |
| tPZL      | OE.    |        |            | 6.4 | 6.4  | 4.6       | 4.6        | 3.5         | 10.7 | 11.6 | 15   |
| tPHZ      | ŌĒ     |        |            | 6.3 | 6.3  | 5.1       | 5.1        | 5.3         | 9.8  | 12.6 | 15   |
| tPLZ      | OF.    |        |            | 5.2 | 5.2  | 5.1       | 5.1        | 5           | 8.7  | 11.8 | 15   |

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | LVC<br>3V | LVCH<br>3V | LVCHR<br>3V | LVCZ<br>3V | ALVCH<br>3V | ALVC<br>HR<br>3V | AVC<br>3V |
|-----------|--------|--------|------------|-----------|------------|-------------|------------|-------------|------------------|-----------|
| tPLH .    | A D    | D A    | MAX        | 4         | 4          | 4.8         | 4          | 3           | 4.2              | 1.7       |
| tPHL      | A or B | B or A | MAX        | 4         | 4          | 4.8         | 4          | 3           | 4.2              | 1.7       |
| tPZH      | ŌĒ     | B or A | MAX        | 5.5       | 5.5        | 6.3         | 5.6        | 4.4         | 5.6              | 3.7       |
| tPZL      | UE     | B or A | MAX        | 5.5       | 5.5        | 6.3         | 5.6        | 4.4         | 5.6              | 3.7       |
| tphz      | ŌĒ     | D A    | MANY       | 6.6       | 6.6        | 7.4         | 6.6        | 4.1         | 5.5              | 3.9       |
| tPLZ      | 0E     | B or A | MAX        | 6.6       | 6.6        | 7.4         | 6.6        | 4.1         | 5.5              | 3.9       |



**FUNCTION TABLE** 

B TO A (OEB = H)

|    |    | DI  | MIOL | .0 - 11) |     |                |
|----|----|-----|------|----------|-----|----------------|
|    |    | INP | UTS  | (5)      |     | OUTPUT         |
| 1B | 2B | SEL | LE1B | LE2B     | OEA | A              |
| Н  | X  | Н   | Н    | X        | L   | H              |
| L  | X  | Н   | H    | X        | L   | L              |
| X  | X  | H   | L    | X        | L   | A <sub>O</sub> |
| X  | H  | L   | ×    | H        | L   | H              |
| X  | L  | L   | X    | H        | L   | L              |
| X  | X  | L   | X    | L        | L   | A <sub>0</sub> |
| X  | X  | X   | X    | X        | H   | Z              |

### A TO B (OFA = H)

|    |       | INPUTS |      |      | OUT    | PUTS            |
|----|-------|--------|------|------|--------|-----------------|
| 1B | LEA1B | LEA2B  | OE1B | OE2B | 1B     | 2B              |
| Н  | Н     | Н      | L    | L    | Н      | Н               |
| L  | H     | H      | L    | L    | L      | L               |
| Н  | H     | L      | L    | L    | H      | 2B <sub>0</sub> |
| L  | H     | L      | L    | L    | L      | 2B <sub>0</sub> |
| H  | L     | H      | L    | L    | 1B0    | H               |
| L  | L     | H      | L    | L    | 1B0    | L               |
| X  | L     | L      | L    | L    | 1B0    | 2B0             |
| X  | X     | X      | H    | H    | Z      | Z               |
| X  | X     | X      | L    | H    | Active | Z               |
| X  | X     | X      | H    | L    | Z      | Active          |
| X  | X     | X      | L    | L    | Active | Active          |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | АВТН | ALVCH<br>3V | UNIT |
|-----------|------------|------|-------------|------|
| lcc       | MAX        | 63   | 0.04        | mA   |
| Іон       | MAX        | -32  | -24         | mA   |
| lou       | MAX        | 64   | 24          | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER             | INPUT                | OUTPUT           | MAX or MIN | ABTH | ALVCH<br>3V |
|-----------------------|----------------------|------------------|------------|------|-------------|
| tw Pulse duration, LE | 1B, LE2B, LEA1B, or  | LEA2B high       | MIN        | 3.3  | 3.3         |
| tsu Setup time, data  | before LE1B, LE2B, L | EA1B, or LEA2B ↓ | MIN        | 1.5  | 1.1         |
| th Hold time, data af | ter LE1B, LE2B, LEA1 | B, or LEA2B ↓    | MIN        | 1    | 1.5         |
| tPLH                  | A D                  | D A              | MAX        | 5.6  | 4.3         |
| tphL .                | A or B               | B or A           | MAX        | 5.9  | 4.3         |
| tPLH                  | 15                   | A D              | MAX        | 5.8  | 4.4         |
| tphl.                 | LE                   | A or B           | IVIAX      | 5.3  | 4.4         |
|                       | SEL (B1)             |                  | 1111       | 5.3  | 5.6         |
| tPLH FSIS THE         | SEL (B2)             |                  | MAX        | 6    | 5.6         |
|                       | SEL (B1)             | A                | MAN        | 4.4  | 5.6         |
| tPHL                  | SEL (B2)             |                  | MAX        | 5.9  | 5.6         |
| tPZH                  | ŌĒ                   |                  | MAX        | 5.7  | 5.4         |
| tPZL                  | OE                   | A or B           | MAX        | 5.8  | 5.4         |
| tphz                  | ŌĒ                   |                  | GI GI      | 6.4  | 4.6         |
| tPLZ                  | UE                   | A or B           | MAX        | 4.8  | 4.6         |



OUTDUIT SMADUS -- \-----

| INPUTS  |         |     |   | OUTI | PUTS |
|---------|---------|-----|---|------|------|
| CLKENA1 | CLKENA2 | CLK | A | 1B   | 2B   |
| Н       | Н       | X   | X | 1Bnt | 2Bot |
| L       | ×       |     | L | L    | X    |
| L       | ×       | *   | H | H    | X    |
| ×       | L       |     | L | X    | L    |
| X       | L       | *   | Н | X    | H    |

† Output level before the indicated steady-state input conditions were established

B-TO-A STORAGE (OEA = L)

|     | INP | OUTPUT |    |     |
|-----|-----|--------|----|-----|
| CLK | SEL | 1B     | 2B | A   |
| X   | Н   | X      | X  | Ant |
| X   | L   | X      | X  | Ant |
| -   | H   | H      | X  | Ĺ   |
| ^   | H   | L      | X  | H   |
| *   | L   | X      | L  | L   |
| 1   | L   | X      | H  | H   |

† Output level before the indicated steady-str input conditions were established

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVCH<br>3V | ALVCHR<br>3V | AVC<br>3V | UNIT |
|-----------|------------|-------------|--------------|-----------|------|
| Icc       | MAX        | 0.04        | 0.04         | 0.04      | mA   |
| Іон       | MAX        | -24         | -12          | -12       | mA   |
| lor       | MAX        | 24          | 12           | 12        | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER          | INPUT               | OUTPUT       | MAX or MIN | ALVCH<br>3V | ALVCHR<br>3V | AVC<br>3V |
|--------------------|---------------------|--------------|------------|-------------|--------------|-----------|
| fmax               |                     | 30           | MIN        | 135         | 135          | 175       |
| tw Pulse duration, | CLK high or low     |              | MIN        | 3.3         | 3.3          | 3.5       |
|                    | A data before CLK ↑ | 10 4         | MIN        | 1.7         | 1            | 1.9       |
|                    | B data before CLK ↑ | 01           | MIN        | 1.8         | 1.1          | 1.9       |
| tsu Setup time     | SEL before CLK ↑    |              | MIN        | 1.3         | 1.3          | 1.3       |
|                    | CLKENA1 or CLKENA2  | before CLK ↑ | MIN        | 0.9         | 0.8          | 1.1       |
|                    | OE before CLK ↑     | 30           | MIN        | 1.3         | 1.2          | 1.1       |
|                    | A data after CLK ↑  |              | MIN        | 0.6         | 1.2          | 1         |
|                    | B data after CLK ↑  | 10 0         | MIN        | 0.6         | 1            | 0.7       |
| th Hold time       | SEL after CLK ↑     | ar -         | MIN        | 0.7         | 1.7          | 0.4       |
|                    | CLKENA1 or CLKENA2  | after CLK ↑  | MIN        | 1.1         | 1.6          | 1         |
|                    | OE after CLK ↑      | Sam Sam Sam  | MIN        | 0.8         | 1.2          | 0.3       |
|                    | CLK                 | В            | MAX        | 6.2         | 5.8          | 3         |
| tpd                | CER                 | A            | IVIAA      | 5           | 5.2          | 2.7       |
|                    | CLK                 | В            | MAX        | 6.1         | 5.8          | 3.8       |
| ten                | ULK                 | A            | IVIAX      | 5.9         | 5.3          | 3.4       |
|                    | CLK                 | В            | MAN        | 6.1         | 6            | 3.7       |
| tdis CLK           |                     | A            | MAX        | 5.6         | - 6          | 3.4       |

UNIT fmax: MHz other: ns

# 12-BIT TO 24-BIT REGISTERED BUS EXCHANGER WITH 3-STATE OUTPUTS



OUTPUT ENABLE

| INPUTS |     |     | OUTPUTS |        |  |
|--------|-----|-----|---------|--------|--|
| CLK    | OEA | OEB | A       | 1B,2B  |  |
| *      | Н   | Н   | Z       | Z      |  |
| 1      | H   | L   | Z       | Active |  |
| 1      | L   | H   | Active  | Z      |  |
|        | 1   | 1   | Activo  | Activo |  |

A-TO-B STORAGE (OEB = L)

| INPUTS  |         |     |   | OUTI              | PUTS              |
|---------|---------|-----|---|-------------------|-------------------|
| CLKENA1 | CLKENA2 | CLK | Α | 1B                | 2B                |
| L       | H       | 1   | L | L†                | 2B0‡              |
| L       | H       |     | H | H†                | 2B <sub>0</sub> ‡ |
| L       | L       | +   | L | L†                | L                 |
| L       | L       | 7   | H | H†                | H                 |
| H       | L       | 1   | L | 1Bo#              | L                 |
| Н       | L       | 1   | H | 1Bo#              | H                 |
| Н       | H       | X   | X | 1B <sub>0</sub> ‡ | 2B <sub>0</sub> ‡ |

† Two CLK edges are needed to propagate data. ‡ Output level before the indicated steady-state input conditions were established

B-TO-A STORAGE (OEA = L)

| INPUTS  |         |     |     |    |    | OUTPUT |
|---------|---------|-----|-----|----|----|--------|
| CLKEN1B | CLKEN2B | CLK | SEL | 1B | 2B | A      |
| Н       | X       | X   | H   | X  | X  | An‡    |
| ×       | H       | X   | L   | X  | X  | An‡    |
| L       | X       | 1   | H   | H  | X  | L      |
| L       | X       | *   | H   | L  | X  | H      |
| X       | L       | 1   |     | X  | L  | L      |
| X       | L       | 1   | L   | X  | Н  | H      |

Output level before the indicated steady-state input conditions were established

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVCH<br>3V | UNIT |
|-----------|------------|-------------|------|
| Icc       | MAX        | 0.04        | mA   |
| Іон 188   | MAX        | -24         | mA   |
| lou       | MAX        | 24          | mA   |

# SWITCHING CHARACTERISTICS

| PARAMETER          | INPUT              | ОИТРИТ          | MAX or MIN | ALVCH<br>3V |
|--------------------|--------------------|-----------------|------------|-------------|
| fmax               |                    |                 | MIN        | 150         |
| tw Pulse duration, | CLK high or low    |                 | MIN        | 3.3         |
|                    | A data before CLK  | 1               | MIN        | 3.1         |
|                    | B data before CLK  | <b>↑</b>        | MIN        | 0.9         |
| tsu Setup time     | CLKENA1 or CLKEN   | MIN             | 2.7        |             |
|                    | CLKEN1B or CLKEN   | MIN             | 2.6        |             |
|                    | OE before CLK ↑    | MIN             | 3.2        |             |
|                    | A data after CLK ↑ | MIN             | 0.2        |             |
|                    | B data after CLK ↑ | MIN             | 1.7        |             |
| th Hold time       | CLKENA1 or CLKEN   | NA2 after CLK ↑ | MIN        | 0.3         |
|                    | CLKEN1B or CLKEN   | MIN             | 0.6        |             |
|                    | OE after CLK ↑     |                 | MIN        | 0.1         |
|                    | CLK                | A or B          | MAX        | 5.1         |
| tpd                | CLK                | AUID            | IVIAA      | 4.7         |
|                    | SEL                | A               | MAX        | 5.5         |
|                    | CLK                | A or B          | MAX        | 6           |
| ten                | CLK                | A OF B          | WAX        | 6           |
|                    | CIK                | A D             | MAN        | 5.8         |
| tdis               | CLK                | A or B          | MAX        | 5.8         |

UNIT fmax: MHz other: ns



OUTPUT ENABLE

### A-TO-B STORAGE (OEB = L)

|         | OUT     | PUTS |   |      |      |
|---------|---------|------|---|------|------|
| CLKENA1 | CLKENA2 | CLK  | Α | 1B   | 2B   |
| Н       | Н       | X    | X | 1Bot | 2Bnt |
| L       | X       | 1    | L | L    | X    |
| L       | X       | *    | H | H    | X    |
| ×       | L       | +    | L | X    | L    |
| X       | L       |      | H | An   | Н    |

### B-TO-A STORAGE (OEA = L)

|        | INPUTS |            |         | OUTPUTA           |
|--------|--------|------------|---------|-------------------|
| LE     | SEL    | 1B         | 2B      |                   |
| Н      | X      | X          | X       | Ant               |
| H      | X      | X          | X       | Aot               |
| L      | H      | L          | X       | L                 |
| L      | H      | H          | X       | H                 |
| L      | L      | X          | L       | L                 |
| L      | L      | X          | H       | H                 |
| Dutnut | lovel  | hefore the | indical | and stoody, state |

† Output level before the indicated steady-state input conditions were established

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVCH<br>3V | UNIT |
|-----------|------------|-------------|------|
| Icc       | MAX        | 0.04        | mA   |
| Іон       | MAX        | -24         | mA   |
| lou       | MAX        | 24          | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER          | INPUT              | OUTPUT | MAX or MIN | ALVCH<br>3V |
|--------------------|--------------------|--------|------------|-------------|
| fmax               |                    |        | MIN        | 130         |
| tw Pulse duration, | CLK high or low    | 30 -   | MIN        | 3.3         |
|                    | A before CLK ↑     |        | MIN        | 1.7         |
| tsu Setup time     | B before LE        | MIN    | 1.3        |             |
|                    | CLKEN before CLK ↑ | MIN    | 1          |             |
|                    | A after CLK ↑      | MIN    | 0.7        |             |
| th Hold time       | B after LE         | MIN    | 1.1        |             |
|                    | CLKEN after CLK †  | MIN    | 0.9        |             |
|                    | CLK                | В      | MAX        | 4.3         |
|                    | В                  |        |            | 4           |
| tpd                | LE                 | A      | MAX        | 4.8         |
|                    | SEL                |        |            | 5.2         |
| ten                | OEB or OEA         | BorA   | MAX        | 5.1         |
| tdis               | OEB or OEA         | B or A | MAX        | 4.2         |

UNIT fmax: MHz other: ns





#### A-TO-B STORAGE (OE = L, DIR = H)

| INPUTS |     |     | OUTPUTS |      |
|--------|-----|-----|---------|------|
| SEL    | CLK | Α   | 1B      | 2B   |
| Н      | X   | X   | 1Bot    | 2Bot |
| L      | +   | L   | L‡      | X    |
|        |     | 1.1 | 1.14    | V    |

# B-TO-A STORAGE (OE = L, DIR = L)

|     | INP | OUTPUT |    |    |
|-----|-----|--------|----|----|
| CLK | SEL | 1B     | 2B | A  |
| +   | Н   | X      | L  | L§ |
|     | H   | X      | H  | H§ |
|     | L   | L      | X  | L  |
| +   | L   | H      | X  | H  |

§ Two CLK edges are needed to propagate the data. The data is loaded in the first register when SEL is low and propagates to the second register when SEL is high.

#### OUTPUT ENABLE

| INPUTS |    |     | OUT    | PUTS   |  |
|--------|----|-----|--------|--------|--|
| CLK    | OE | DIR | Α      | 1B,2B  |  |
| †:     | Н  | X   | Z      | Z      |  |
| +      | L  | L   | Z      | Active |  |
| +      | L  | H   | Active | Z      |  |





RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVCH<br>3V | UNIT |  |
|-----------|------------|-------------|------|--|
| Icc       | MAX        | 0.04        | mA   |  |
| Іон       | MAX        | -24         | mA   |  |
| lou       | MAX        | 24          | mA   |  |

| SWITCHING CHA      | HACTERISTICS       |        |            | _           |
|--------------------|--------------------|--------|------------|-------------|
| PARAMETER          | INPUT              | OUTPUT | MAX or MIN | ALVCH<br>3V |
| fmax               |                    |        | MIN        | 150         |
| tw Pulse duration, | CLK high or low    |        | MIN        | 3.3         |
|                    | A data before CLK  | MIN    | 2          |             |
| . 0                | B data before CLK  | 1      | MIN        | 1.8         |
| tsu Setup time     | DIR before CLK ↑   |        | MIN        | 1.7         |
|                    | SEL before CLK ↑   |        | MIN        | 1.8         |
|                    | A data after CLK ↑ |        | MIN        | 0.7         |
| th Hold time       | B data after CLK ↑ |        | MIN        | 0.6         |
| th Hold time       | DIR after CLK ↑    |        | MIN        | 0.5         |
|                    | SEL after CLK ↑    |        | MIN        | 0.8         |
|                    | OLK                | A      | MAX        | 5           |
| tpd                | CLK                | В      | IMAX       | 5.3         |
| ten                | ŌĒ                 | A      | MAN        | 5.7         |
|                    | UE                 | В      | MAX        | 7.4         |
|                    | ŌĒ                 | A      | MAN        | 5.7         |
| tdis               | UE.                | В      | MAX        | 6.4         |

UNIT fmax : MHz other : ns

L ↑ H H‡ X

† Output level before the indicated steady-state input conditions were established

‡ Two CLK edges are needed to propagate the data.



FUNCTION TABLE

|    | INF   | OUTPUT   |   |   |
|----|-------|----------|---|---|
| OE | OE LE | LE CLK A |   | Y |
| Н  | X     | X        | X | Z |
| L  | L     | X        | L | L |
| L  | L     | X        | H | H |
| L  | H     | 1        | L | L |
| L  | H     | 1        | H | H |
|    |       |          |   |   |

| L H 1 L H Lo Output level before | L L H H rH X Y0†    |            |             |           |           |            |             |           |  |  |
|----------------------------------|---------------------|------------|-------------|-----------|-----------|------------|-------------|-----------|--|--|
| input conditions were            | established         | ,          |             |           |           |            |             |           |  |  |
|                                  |                     |            |             |           |           |            |             |           |  |  |
| DECOMMENDED (                    | OPERATING CONDITION | NIC        |             |           |           |            |             |           |  |  |
| RECUMINIENDED (                  | JPERATING CONDITIO  | 11/1/2     |             |           |           |            |             |           |  |  |
| PARAMETER                        | MAX or MIN          | ALVC<br>3V | ALVCH<br>3V | AVC<br>3V | UNIT      |            |             |           |  |  |
| CC                               | MAX                 | 0.04       | 0.04        | 0.04      | mA        |            |             |           |  |  |
| 34 но                            | MAX                 | -24        | -24         | -12       | mA        |            |             |           |  |  |
| OL TELE                          | MAX                 | 24         | 24          | 12        | mA        |            |             |           |  |  |
| SWITCHING CHAP                   | RACTERISTICS        | 1          |             | 100       |           | 182        | 8           |           |  |  |
| PARAMETER                        | INPUT               | 01         | JTPUT       | M         | AX or MIN | ALVC<br>3V | ALVCH<br>3V | AVC<br>3V |  |  |
| fmax                             |                     | 4          |             | +         | MIN       | 150        | 150         | 150       |  |  |
| 20.00                            | LE low              | A          | -           | +         |           | 3.3        | 3.3         | 3.3       |  |  |
| w Pulse duration                 | CLK high or low     |            |             | +         | MIN       | 3.3        | 3.3         | 3.3       |  |  |
|                                  | Data before CLK ↑   | N          |             | _         | MIN       | 1.5        | 1.5         | 0.7       |  |  |
| su Setup time                    |                     | I K binb   |             | +         | MIN       | 1.3        | 1.3         | 0.9       |  |  |
| taa                              | Data before LE↑ C   |            | _           | +         | MIN       | 1.2        | 1.2         | 1         |  |  |
| 1.000                            | Data after CLK ↑    |            | -           | +         | MIN       | 0.9        | 0.9         | 0.7       |  |  |
| h Hold time                      |                     |            | -           | +         | MIN       | 1.1        | 1.1         | 1.5       |  |  |
| h Hold time                      | Data after LE ↑ CLM |            | _           | +         | MIN       | \$1.15     | 1.1         | 1.3       |  |  |
| 208                              | A A                 | low        | 1           |           | MAX       | 3.3        | 3.3         | 2.5       |  |  |
| lpd                              | LE                  |            | Υ           | -         | IVIAN     | 4.4        | 4.4         | 4         |  |  |
| EBB                              | CLK                 | 4          | ľ           | -         | MAX       | 4.1        | 4.1         | 3.1       |  |  |
| ten                              | OE OE               | 7          | Υ           | +         | IVIMA     | 4.6        | 4.6         | 6.2       |  |  |
| ten<br>tdis                      | OE<br>OE            | -          | Y           | +         | MAX       | 4.4        | 4.4         | 5.3       |  |  |
| UNIT fmax : MH;                  |                     | 4          | -           |           | IVIAA     | 284        | 4.4         | 5.5       |  |  |
| 51411 HIIDX . 14111              | 2 00101 . 113       |            |             |           |           |            |             |           |  |  |
|                                  |                     |            |             |           |           |            |             |           |  |  |
|                                  |                     |            |             |           |           |            |             |           |  |  |
|                                  |                     |            |             |           |           |            |             |           |  |  |
|                                  |                     |            |             |           |           |            |             |           |  |  |
|                                  |                     |            |             |           |           |            |             |           |  |  |
|                                  |                     |            |             |           |           |            |             |           |  |  |
|                                  |                     |            |             |           |           |            |             |           |  |  |



# 6-BIT TRANSPARENT LATCHES WITH 3-STATE OUTPUTS

| INPL                | JTS | OUTPUT |
|---------------------|-----|--------|
| INPUTS OE A L H L L | Bn  |        |
| L                   | Н   | Н      |
| L                   | L   | L      |
| 1.1                 | H   | 7      |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVCH<br>3V | UNIT |
|-----------|------------|-------------|------|
| Icc       | MAX        | 0.04        | mA   |
| Іон       | MAX        | -24         | mA   |
| Ini       | MAX        | 24          | mA   |

Louic Disoram

SWITCHING CHARACTERISTICS

| SWITCHING CHARAC | TERISTICS      |        | 86 F6      | 11          |
|------------------|----------------|--------|------------|-------------|
| PARAMETER        | INPUT          | OUTPUT | MAX or MIN | ALVCH<br>3V |
| tplH .           | A 100 and 100  |        | MAX        | 4           |
| tPHL .           | elem A Diserio | D      | IVIAA      | 4           |
| tPZH             | ŌĒ             |        | 1444       | 5.1         |
| tPZL             | UE             | В      | MAX        | 5.1         |
| tPHZ             | ŌĒ             |        | MAN        | 4           |
| tPLZ             | UE             | В      | MAX        | 4           |

# 16-BIT TRANSPARENT I ATCHES WITH CLOGIC Diagram



### RECOMMENDED OPERATING CONDITIONS

| TIEGOTHINETADED OF | ENFITHE CONTENT | 0140 |            |             |      |      |      |      |           |            |             |           |      |
|--------------------|-----------------|------|------------|-------------|------|------|------|------|-----------|------------|-------------|-----------|------|
| PARAMETER          | MAX or MIN      | ABT  | LVTH<br>3V | ALVTH<br>3V | AC   | ACT  | AHC  | AHCT | LVC<br>3V | LVCH<br>3V | ALVCH<br>3V | AVC<br>3V | UNIT |
| Icc                | MAX             | 85   | -5         | 5           | 0.08 | 0.08 | 0.04 | 0.04 | 0.02      | 0.02       | 0.04        | 0.04      | mA   |
| Іон                | MAX             | -32  | -32        | -32         | -24  | -24  | -8   | -8   | -24       | -24        | -24         | -12       | mA   |
| lou                | MAX             | 64   | 64         | 64          | 24   | 24   | 8    | 8    | 24        | 24         | 24.         | 12        | mA   |

#### SWITCHING CHARACTERISTICS

| SWITCHING CHAI     | ACTEMISTICS           | neves or |            |     |            | inniin)     | torillO re | 10885 01 |      |      |
|--------------------|-----------------------|----------|------------|-----|------------|-------------|------------|----------|------|------|
| PARAMETER          | INPUT                 | OUTPUT   | MAX or MIN | ABT | LVTH<br>3V | ALVTH<br>3V | AC         | ACT      | AHC  | AHCT |
| tw Pulse duration, | LE high or low        |          | MIN        | 3.3 | 3          | 1.5         | 4          | 1        | 5    | 6.5  |
| tsu Setup time     | Data before LE \$\d d | ata high | MIN        | 1.5 | 1          | 1.4         | 1.5        | 1        | 4    | 1.5  |
| isa Setup time     | Data before LE ↓, d   | ata low  | MIN        | 1.5 | 1          | 0.9         | 1.5        | 1        | 4    | 1.5  |
| a. Haldaima        | Data after LE 1, dat  | ta high  | MIN        | 1   | 1          | 0.9         | 2.4        | 5        | 1    | 3.5  |
| th Hold time       | Data after LE ↓, dat  | ta low   | MIN        | 1   | 1          | 1.4         | 2.4        | 5        | 1    | 3.5  |
| tPLH               | D                     | Q        | MAX        | 6.3 | 3.8        | 3.1         | 9.7        | 11.1     | 10.5 | 10.5 |
| tphl.              | 7 0                   | u        | MAX        | 6.2 | 3.6        | 3.3         | 10.1       | 12.3     | 10.5 | 10.5 |
| tPLH               | LE                    | Q        | MAN        | 6.7 | 4.3        | 3.3         | 11.9       | 12.8     | 10.5 | 10.5 |
| tphl.              | LE                    | u        | MAX        | 6.1 | 4          | 3.5         | 10.9       | 12.2     | 10.5 | 10.5 |
| tpzh               | ŌĒ                    | Q        | MAN        | 6.1 | 4.3        | 4           | 10.8       | 12.1     | 11.5 | 11.5 |
| tPZL               | UE UE                 | u u      | MAX        | 5.6 | 4.3        | 3.4         | 12.8       | 14.2     | 11.5 | 11.5 |
| tPHZ               | - OE                  | 0        | MAN        | 8.1 | 5          | 4.9         | 8.8        | 10.7     | 11.5 | 12   |
| tPLZ               | - UE                  | Q        | MAX        | 6.5 | 4.7        | 4.5         | 8.1        | 9.4      | 11.5 | 12   |

| PARAMETER          | INPUT                | OUTPUT   | MAX or MIN | LVC<br>3V | LVCH<br>3V | ALVCH<br>3V | AVC<br>3V |
|--------------------|----------------------|----------|------------|-----------|------------|-------------|-----------|
| tw Pulse duration, | LE high or low       |          | MIN        | 3.3       | 3.3        | 3.3         | 1.8       |
|                    | Data before LE 1, d  | ata high | MIN        | 1.7       | 1.7        | 1.1         | 0.8       |
| tsu Setup time     | Data before LE 1, d  | ata low  | MIN        | 1.7       | 1.7        | 1.1         | 0.8       |
| n Hatel days       | Data after LE 1, dat | a high   | MIN        | 1.2       | 1.2        | 1.4         | 1         |
| th Hold time       | Data after LE 1, dat | a low    | MIN        | 1.2       | 1.2        | 1.4         | 1         |
| tPLH               | D                    |          | MANY       | 4.2       | 4.2        | 3.6         | 2.8       |
| tPHL .             | D                    | ā        | MAX        | 4.2       | 4.2        | 3.6         | 2.8       |
| tplH .             | 1.5                  |          | 1441       | 4.6       | 4.6        | 3.9         | 3.2       |
| tPHL               | LE                   | Q        | MAX        | 4.6       | 4.6        | 3.9         | 3.2       |
| tPZH               | ŌE                   |          | 1447       | 4.7       | 4.7        | 4.7         | 3.4       |
| tPZL               | UE                   | Ω        | MAX        | 4.7       | 4.7        | 4.7         | 3.4       |
| tPHZ               |                      |          | 1447       | 5.9       | 5.9        | 4.1         | 3.9       |
| tPLZ               | OE OE                | Q        | MAX        | 5.9       | 5.9        | 4.1         | 3.9       |
|                    |                      |          |            |           |            |             |           |

# **Logic Diagram**



| TACTERISTICS V |            | To Seven Other Channels |  |  |         |         |  |  |  |  |  |
|----------------|------------|-------------------------|--|--|---------|---------|--|--|--|--|--|
| Other Channels | To Seven C |                         |  |  | n Other | To Seve |  |  |  |  |  |
|                |            |                         |  |  |         |         |  |  |  |  |  |
|                |            |                         |  |  |         |         |  |  |  |  |  |
|                |            |                         |  |  |         |         |  |  |  |  |  |
|                |            |                         |  |  |         |         |  |  |  |  |  |
|                |            |                         |  |  |         |         |  |  |  |  |  |
|                |            |                         |  |  |         |         |  |  |  |  |  |
|                |            |                         |  |  |         |         |  |  |  |  |  |
|                |            |                         |  |  |         |         |  |  |  |  |  |
|                |            |                         |  |  |         |         |  |  |  |  |  |
|                |            |                         |  |  |         |         |  |  |  |  |  |
|                |            |                         |  |  |         |         |  |  |  |  |  |
|                |            |                         |  |  |         |         |  |  |  |  |  |
|                |            |                         |  |  |         |         |  |  |  |  |  |
|                |            |                         |  |  |         |         |  |  |  |  |  |

#### FUNCTION TABLE (each fllp-flop)

|    | INPUTS |   | OUTPUT |
|----|--------|---|--------|
| ŌE | CLK    | D | Q      |
| L  | 1      | Н | Н      |
| L  | 7      | L | L      |
| L  | HorL   | X | QO     |
| H  | ×      | X | Z      |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | LVTH<br>3V | ALVTH<br>3V | AC   | ACT  | AHC  | AHCT | LVC<br>3V | LVCH<br>3V | ALVCH<br>3V | AVC<br>3V | UNIT |
|-----------|------------|-----|------------|-------------|------|------|------|------|-----------|------------|-------------|-----------|------|
| Icc       | MAX        | 72  | 5          | 5           | 0.08 | 0.08 | 0.04 | 0.04 | 0.02      | 0.02       | 0.04        | 0.04      | mA   |
| Іон пр    | MAX        | -32 | -32        | -32         | -24  | -24  | -8   | -8   | -24       | -24        | -24         | -12       | mA   |
| lou       | MAX        | 64  | 64         | 64          | 24   | 24   | 8    | 8    | 24        | 24         | 24          | 12        | mA   |

# SWITCHING CHARACTERISTICS

| SWITCHING CHAR    | ACTERISTICS         | 1                        |            | _   | _          |             |      | _    | 4    | 73   | 1  |
|-------------------|---------------------|--------------------------|------------|-----|------------|-------------|------|------|------|------|----|
| PARAMETER         | INPUT               | OUTPUT                   | MAX or MIN | ABT | LVTH<br>3V | ALVTH<br>3V | AC   | ACT  | AHC  | AHCT | 7. |
| fmax              | 1                   |                          | MIN        | 150 | 160        | 250         | 100  | 65   | 110  | 110  |    |
| tw Pulse duration | CLK high            | 10.10                    | MIN        | 3.3 | 3          | 1.5         | 5    | 7.5  | 5    | 6.5  |    |
| tw Pulse duration | CLK low             |                          | MIN        | 3.3 | 3          | 1.5         | 5    | 4.5  | 5    | 6.5  |    |
|                   | Data before CLK 1,  | data high                | X 28x X    | 1.1 | 1.8        | 1           | - 5  | 4.5  | 3    | 2.5  | A  |
| tsu Setup time    | Data before CLK 1,  | data low                 | MIN        | 1.1 | 1.8        | 1.5         | 5    | 4.5  | 3    | 2.5  |    |
| th Hold time      | Data after CLK ↑, d | a after CLK ↑, data high |            | 1.3 | 0.8        | 0.5         | 0    | 6.5  | 2    | 2.5  |    |
| th Hold time      | Data after CLK ↑, d | ata low                  | MIN        | 1.3 | 0.8        | 11          | 0    | 6.5  | 2    | 2.5  |    |
| tPLH .            | CLK                 | XUS                      | MAN        | 6.2 | 4.5        | 3.2         | 10.8 | 12.4 | 11.5 | 11.5 |    |
| tPHL .            | CLK                 | 0 0                      | MAX        | 5.9 | 4          | 3.2         | 10.6 | 12.2 | 11.5 | 11.5 |    |
| tPZH              | ŌĒ                  | 0                        | MAX        | 5.6 | 4.5        | 3.8         | 10.2 | 11.9 | 11.5 | 11.5 | D. |
| tPZL              | UE                  | u                        | IVIAX      | 5.3 | 4.4        | 3.3         | 12.1 | 13.4 | 11.5 | 11.5 |    |
| tPHZ              | ŌĒ                  | 0                        | MAN        | 8.2 | 5          | 4.6         | 8.2  | 10.4 | 11.5 | 12   |    |
| tPLZ              | UE                  | Q                        | MAX        | 6.6 | 4.6        | 4.2         | 7.9  | 9.8  | 11.5 | 12   |    |

| PARAMETER         | INPUT                                                                                | OUTPUT  | MAX or MIN             | 3V<br>LVC | 3V<br>LVCH | ALVCH<br>3V | AVC<br>3V |     |
|-------------------|--------------------------------------------------------------------------------------|---------|------------------------|-----------|------------|-------------|-----------|-----|
| fmax              |                                                                                      |         | MIN                    | 150       | 150        | 150         | 200       |     |
| . D. I I          | CLK high                                                                             |         | MIN                    | 3.3       | 3.3        | 3.3         | 2.5       |     |
| tw Pulse duration | CLK low                                                                              |         | Pulse duration CLK low | IVIIN     | 3.3        | 3.3         | 3.3       | 2.5 |
| . Catao tima      | Data before CLK ↑, data high Data before CLK ↑, data low Data after CLK ↑, data high |         | MIN                    | 1.9       | 1.9        | 1.9         | 1.4       |     |
| tsu Setup time    |                                                                                      |         | IVIIIV                 | 1.9       | 1.9        | 1.9         | 1.4       |     |
| th Hold time      |                                                                                      |         | MIN                    | 1.9       | 1.1        | 0.5         | 1.1       |     |
| th Hold time      | Data after CLK ↑, da                                                                 | ata low | IVIIIV                 | 1.9       | 1.1        | 0.5         | 1.1       |     |
| tplH              | CLK                                                                                  | Q       | MAX                    | 4.5       | 4.5        | 4.2         | 3.3       |     |
| tphl .            | CLK                                                                                  | u u     | WAX                    | 4.5       | 4.5        | 4.2         | 3.3       |     |
| tPZH              | ŌE                                                                                   | 0       | MANY                   | 4.6       | 4.6        | 4.8         | 3.4       |     |
| tPZL              | UE                                                                                   | u       | MAX                    | 4.6       | 4.6        | 4.8         | 3.4       |     |
| tPHZ              | <u></u>                                                                              | 0       | MAN                    | 5.5       | 5.5        | 4.3         | 3.9       |     |
| tPLZ              | OE Q                                                                                 |         | MAX                    | 5.5       | 5.5        | 4.3         | 3.9       |     |

UNIT fmax : MHz other : ns



| L         | X                | в <sub>0</sub> †      |
|-----------|------------------|-----------------------|
|           |                  | ndicated steady-state |
| input con | ditions were est | ablished              |

#### DATA-ELOW CONTROL

|    |    |   |     | ATA-F | LOW C | ONTE | OL  |                       |
|----|----|---|-----|-------|-------|------|-----|-----------------------|
| L  | L  | 1 | 0   | 0     | 1     | 0    | 0   | Not used              |
| L  | L  | 1 | 0   | 0     | 1     | 0    | 1   | Not used              |
| L  | L  | 1 | 0   | -0    | 1     | 1    | 0   | Not used              |
| L  | L  | 1 | 0   | 0     | 1     | 1    | 1   | Not used              |
| L  | L  | 1 | 0   | 1     | 0     | 0    | 0   | 2A to 1A and 1B to 2B |
| L  | L  | 1 | 0   | 1     | 0     | 0    | 1   | 2A to 1A              |
| L  |    | 1 | 0   | 1     | 0     | 1    | 0   | 2B to 1B              |
| L  | L  | 1 | 0   | 1     | 0     | 1    | 1   | 2A to 1A and 2B to 1B |
| L  | -  | 1 | 0   | 1     | 1     | 0    | 0   | 1A to 2A and 1B to 2B |
| L  | L  | 1 | 0   | 1     | 1     | 0    | 1   | 1A to 2A              |
| L  | L  | 1 | 0   | 1     | 1     | 1    | 0   | 1B to 2B              |
| L  | L  | 1 | 0   | 1     | 1     | 1    | 1   | 1A to 2A and 2B to 1B |
| L  | L  | 1 | 1   | 0     | 0     | 0    | 0   | 1A to 1B and 2B to 2A |
| L  | L  | 1 | 1   | 0     | 0     | 0    | 1   | 1A to 1B              |
| L  | L  | 1 | 1 . | - 0   | 0     | 1    | 0   | 2A to 2B              |
| L  | L  | 1 | 1   | 0     | 0     | 1    | 1   | 1A to 1B and 2A to 2B |
| L  | L  | 1 | 1   | 0     | 1     | 0    | 0   | 1B to 1A and 2A to 2B |
| L  | L  | 1 | 1   | 0     | 1     | 0    | 1   | 1B to 1A              |
| L  | L  | 1 | 1.  | 0     | 1     | 1    | 0   | 2B to 2A              |
| L  | L  | 1 | 1   | 0     | 1     | 1    | 1   | 1B to 1A and 2B to 2A |
| L  | -L | 1 | 1   | 1     | 0     | 0    | . 0 | 2B to 1A and 2A to 1B |
| L  | L  | 1 | 1   | 1     | 0     | 0    | 1   | 1B to 2A              |
| -1 | L  | 1 | 1   | 1     | 0     | 1    | 0   | 2B to 1A              |
| L  | L  | 1 | 1   | 1     | 0     | 1    | 1   | 2B to 1A and 1B to 2A |

1A to 2B and 1B to 2A 1A to 2B 2A to 1B 1A to 2B and 2A to 1B

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVCH<br>3V | ALVC<br>HR<br>3V | UNIT |
|-----------|------------|-------------|------------------|------|
| Icc       | MAX        | 0.04        | 0.04             | mA   |
| Іон       | MAX        | -24         | -12              | mA   |
| lou       | MAX        | 24          | 12               | mA   |

| PARAMETER          | INPUT                  | OUTPUT | MAX or MIN | ALVCH<br>3V | ALVO<br>HR<br>3V |
|--------------------|------------------------|--------|------------|-------------|------------------|
| fmax               | 11-17-22               | TI II  | MIN        | 120         | 120              |
| tw Pulse duration, | CLK high or low        | 19     | MIN        | 3           | 3                |
|                    | A or B data before CLF | < †    | MIN        | 1.4         | 1.4              |
|                    | SEL before CLK ↑       | -6     | MIN        | 3.5         | 3.5              |
| tsu Setup time     | SELEN before CLK ↑     |        | MIN        | 1.8         | 1.8              |
|                    | PRE before CLK ↑       |        | MIN        | 0.7         | 0.7              |
|                    | A or B data after CLK  | 1      | MIN        | 1           | - 1              |
| th Hold time       | SEL after CLK ↑        | -0     | MIN        | 0           | 0                |
|                    | SELEN after CLK ↑      | J.     | MIN        | 0.8         | 0.8              |
| tpd                | CLK                    | A or B | MAX        | 5.1         | 6.2              |
| ten                | CLK                    | A or B | MAX        | 5.7         | 6.8              |
| . i                | PRE                    | A D    | BAAV       | 5.7         | 6.1              |
| tdis               | PHE                    | A or B | MAX        | 6.1         | 6.4              |

UNIT fmax: MHz other: ns

# 4-TO-1 MULTIPLEXED/DEMULTIPLEXED TRANSCEIVERS WITH 3-STATE OUTPUTS



# A-TO-B OUTPUT ENABLE (assuming OEB = L, OEBn = L) ‡

| A-10 | -B UUTPI | JI ENABLE |
|------|----------|-----------|
| IN   | IPUTS    | OUTPUT    |
| OE   | B OEBn   | Bn        |
| H    | H        | Z         |
| H    | L        | Z         |
| L    | H        | Z         |
| L    | L        | Active    |

| INP | UTS  | OUTPUT |
|-----|------|--------|
| OEB | OEBn | Bn     |
| Н   | Н    | Z      |
| H   | L    | Z      |
| L   | H    | Z      |
| L   | L    | Active |

| INPUTS  |         |         |       |       |       |       | OUT   | PUTS |    |    |    |
|---------|---------|---------|-------|-------|-------|-------|-------|------|----|----|----|
| CLKENAB | CE_SEL1 | CE_SEL0 | CLKAB | LEAB1 | LEAB2 | LEAB3 | LEAB4 | B1   | B2 | B3 | B4 |
| X       | X       | X       | HorL  | Н     | L     | L     | L     | Α    | Ao | Ao | Ao |
| X       | X       | X       | HorL  | H     | H     | H     | L     | A    | A  | A  | An |
| L       | X       | X       | L     | L     | L     | L     | L     | An   | An | An | An |
| L.      | L       | L       | 4     | L     | L     | L     | L     | A    | Ao | Ao | Ao |
| L       | L       | H       | 1     | L     | L     | L     | L     | Ao   | A  | An | An |
| L       | H       | L       | 1     | L     | L     | L     | L     | Ao   | An | A  | An |
| L       | Н       | H       | 1     | L     | L     | L     | L     | Ao   | Ao | Ao | A  |
| H       | X       | X       | *     | L     | L     | L     | L     | An   | An | An | An |

#### B-TO-A STORAGE (after point P)

B-TO-A STORAGE (after point P)

|        |       |      | INPUT | S    |      |                   |                  | _                            |
|--------|-------|------|-------|------|------|-------------------|------------------|------------------------------|
| CLKENB | CLKBA | LEB1 | LEB2  | LEB3 | LEB4 | SEL1              | SEL0             | Р                            |
| X      | X     | Н    | L     | L    | L    | L                 | L                | B1                           |
| X      | X     | L    | H     | L    | L    | L                 | H                | B2                           |
| X      | X     | L    | L     | H    | L    | H                 | L                | B3                           |
| X      | X     | L    | L     | L    | H    | H                 | Н                | B4                           |
| L      | †     | L    | L     | L    | L    | L<br>L<br>H       | L<br>H<br>L      | B1<br>B2<br>B3               |
| L      | L     | L    | L     | L    | L    | L<br>L<br>DH<br>H | H<br>L<br>H<br>L | B10†<br>B20†<br>B30†<br>B40† |

|         | OUTPUT |      |     |   |           |
|---------|--------|------|-----|---|-----------|
| CLKENBA | CLKBA  | LEBA | OEA | В | A         |
| X       | X      | X    | Н   | X | Z         |
| X       | X      | H    | L   | L | Land Land |
| X       | X      | H    | L   | Н | H         |
| H       | X      | L    | L   | X | Ant       |
| L       | 1.5    | L    | L   | L | L.        |
| L       | 1      | L    | L   | H | Н         |
| L       | L      | L    | L   | X | Ant       |

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABTH | UNIT |
|-----------|------------|------|------|
| Icc       | MAX        | 32   | mA   |
| Іон       | MAX        | -32  | mA   |
| lou       | MAX        | 64   | mA   |

# SWITCHING CHARACTERISTICS

|                   | PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAX or MIN                               | ABTH |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------|
| fmax              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIN                                      | 160  |
|                   | CLKAB high or lov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LKAB high or low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.8                                      |      |
|                   | CLKBA high or lov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MIN MIN MIN MIN MIN MIN MIN MIN MIN MIN  | 4.5  |
| tw Pulse duration | LEAB1, 2, 3 or 4 high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIN                                      | 2.2  |
|                   | LEBA high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN | 2.1                                      |      |
|                   | LEB1, 2, 3 or 4 hig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MIN MIN MIN MIN MIN MIN MIN MIN MIN MIN  | 2.4  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MIN                                      | 2.5  |
|                   | Before CLKAB ↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CE_SEL0/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MIN                                      | 3.2  |
| w Pulse duration  | Sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CLKENAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIN                                      | 3.2  |
|                   | Before LEAB1, 2, 3, or 4 ↓ A bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIN                                      | 3.6  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MIN                                      | 3.8  |
|                   | Before CLKBA ↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CLKENB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIN                                      | 2.3  |
| tsu Setup time    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLKENBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIN                                      | 2.5  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEB1, 2, 3 or 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIN                                      | 4.3  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEL0/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIN                                      | 4.5  |
|                   | Before LEB1, 2, 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN   MIN | 3.2                                      |      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MIN                                      | 4    |
| tsu Setup time    | Before CLKBA ↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LEB1, 2, 3 or 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIN                                      | 4.4  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEL0/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIN MIN MIN MIN MIN MIN MIN MIN MIN MIN  | 4.3  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MIN                                      | 0.5  |
| after CLK         | after CLKAB ↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CE_SEL0/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MIN                                      | 1.1  |
|                   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | CLKENAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIN                                      | 0.5  |
|                   | after LEAB1, 2, 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | or 4 ↓ A bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN                                      | 1.2  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIN                                      | 1.3  |
| ı Hold time       | -6 CI VDA A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CLKENB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIN                                      | 1    |
|                   | Before CLKBA ↑  after CLKAB ↑  after LEAB1, 2, 3,  Hold time after CLKBA ↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CLKENBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MIN                                      | 1    |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEL0/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIN MIN II MIN II MIN II MIN MIN MIN MIN | 0    |
|                   | after LEB1, 2, 3, or 4 ↓ B bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MIN                                      | 1.5  |
|                   | after CLKBA ↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MIN                                      | 0.4  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEL0/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIN                                      | 0.1  |

| PARAMETER | INPUT          | OUTPUT                               | MAX or MIN                                        | ABTH |
|-----------|----------------|--------------------------------------|---------------------------------------------------|------|
| tPLH      | В              | 08 A                                 |                                                   | 6.5  |
| tPHL .    | В              | AASX                                 | MAX<br>MAX<br>MAX                                 | 6.5  |
| tРZH      | 0EA            | 80 A                                 | NAMA                                              | 5.6  |
| tPZL      | UEA            | A                                    | MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX           | 5.2  |
| tPHZ      | 0EA            | 85 A                                 | MAN                                               | 5.9  |
| tPLZ      | UEA            | AHAM                                 | MAX or MIN  MAX  MAX  MAX  MAX  MAX  MAX  MAX  MA | 6.5  |
| tPLH      |                | 27                                   | MAN                                               | 5.7  |
| tphl .    | A              |                                      | IVIAX                                             | 5.7  |
| tрzн      | OFF            | 2f n                                 | MAN                                               | 6.4  |
| tPZL      | UEB            | BIAS                                 | IVIAX                                             | 6.3  |
| tPHZ      | OFF            | A B MAX  DEB B MAX  T, 2, 3, 4 B MAX | 7                                                 |      |
| tPLZ      | UED            |                                      | IVIAX                                             | 6.1  |
| tPZH      | OED1 2 2 4     | В                                    | MAY                                               | 5.8  |
| tPZL      | UEB1, 2, 3, 4  | В                                    | MAX                                               | 5.6  |
| tPHZ      | OFD1 2 2 4     | n                                    | MANY                                              | 6.1  |
| tPLZ      | UEB1, 2, 3, 4  | В                                    | MAX or MIN  MAX  MAX  MAX  MAX  MAX  MAX  MAX  MA | 5.3  |
| tPLH      | CINBV          | Α.                                   | MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX           | 7.4  |
| tPHL .    | CLKBA          | A                                    | IVIAX                                             | 7.7  |
| tPLH      | CLKAB          | В                                    | MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX           | 6.2  |
| tPHL      | CLKAB          | В                                    | IVIAX                                             | 5.9  |
| tPLH      | LEBA           | А                                    | MAN                                               | 5.6  |
| tphl .    | LEDA           | A                                    | IVIAX                                             | 5.3  |
| tplh      | LEAB1, 2, 3, 4 | В                                    | A RANG                                            | 5.8  |
| tphl.     | LEAD1, 2, 3, 4 | Ь                                    | IVIAX                                             | 5.6  |
| tPLH      | LEBA1, 2, 3, 4 | А                                    | MAN                                               | 7.2  |
| tphl.     | LLDM1, 2, 3, 4 | A                                    | IVIAA                                             | 6.8  |
| tplh      | SEL            | A                                    | MAN                                               | 7.5  |
| tPHL.     | OEL            | A                                    | IVIAX                                             | 6.9  |

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty, Production processing does not necessarily include testing of all parameters. See www.ti.com/sc/logic for the most current data sheets.







| INPUTS |       |      | OUTPUT |     |
|--------|-------|------|--------|-----|
| CLKENA | CLKAB | OEAB | Α      | В   |
| Н      | X     | X    | X      | Z   |
| X      | ×     | H    | X      | Z   |
| L      | L     | L    | X      | Bo# |
| L      | 1     | L    | L      | Ĺ   |
| 1      |       | 1    | H      | H   |

† A-to-B data flow is shown; B-to-A flow is similar but uses CLKENBA, CLKBA, and OEBA.

† Output level before the indicated steady-state input conditions were established.

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | ACT  | UNIT |
|-----------|------------|-----|------|------|
| Icc       | MAX        | 35  | 0.08 | mA   |
| Іон       | MAX        | -32 | -24  | mA   |
| lor       | MAX        | 64  | 24   | mA   |

### SWITCHING CHARACTERISTICS

|                         | 71211101100        |        |                   | _    |      |
|-------------------------|--------------------|--------|-------------------|------|------|
| PARAMETER               | INPUT              | OUTPUT | MAX or MIN        | ABT  | ACT  |
| fmax                    |                    |        | MIN               | 150  | 55   |
| tw Pulse duration, CL   | KAB or CLKBA high  | 01     | MIN               | 3.3  | 4    |
| tw Pulse duration, CL   | KAB or CLKBA low   | 10     |                   | 3.3  | 8.5  |
| tsu Setup time, data b  | efore CLKAB † or C | LKBA ↑ | MIN               | 4    | 6    |
| th Hold time, data afte | er CLKAB † or CLKE | BA ↑   | MIN               | 1    | 1    |
| tPLH                    | CLK                | A or B | MAX               | 4.9  | 11.8 |
| tPHL                    | CLK                | AorB   |                   | 4.9  | 11.7 |
| tрzн                    | ŌĒ                 | A or B | MAN               | 4.9  | 11.9 |
| tPZL                    | UE                 | AorB   | MIN<br>MIN<br>MIN | 6.8  | 13.4 |
| tPHZ                    | ŌE                 | A or B | MAX               | 5.5  | 9.9  |
| tPLZ                    | UE                 | AorB   |                   | 5.3  | 9.5  |
| tPZH                    | CLKEN              | A or B | MAX               | 5.7  | 12.5 |
| tPZL.                   | CLKEN              | A OF B |                   | 7.2  | 14.3 |
| tPHZ                    | CLKEN A or B MAX   | MAX    | 5.8               | 11.2 |      |
| tPLZ                    | CLKEN              | A or B | IVIAX             | 5.4  | 10.9 |

UNIT fmax: MHz other:ns



### Logic Diagram



#### FUNCTION TABLE

|      | OUTPUT |       |   |     |
|------|--------|-------|---|-----|
| OEAB | LEAB   | CLKAB | Α | В   |
| L    | X      | X     | X | Z   |
| H    | H      | ×     | L | L   |
| H    | H      | X     | H | H   |
| Н    | L      | 4     | L | L   |
| H    | L      | j.    | H | H   |
| H    | L      | H     | X | Bo‡ |
| H    | 1      | 1     | V | Bo8 |

† A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, and CLKBA. Cutput level befor the indicated steady-state input conditions were established. Soutput level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | LVTH<br>3V | ALVCH<br>3V | UNIT |
|-----------|------------|-----|------------|-------------|------|
| Icc       | MAX        | 36  | 5          | 0.04        | mA   |
| Іон       | MAX        | -32 | -32        | -24         | mA   |
| lou       | MAX        | 64  | 64         | 24          | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT                                 | OUTPUT                               | MAX or MIN | ABT | LVTH<br>3V | ALVCH<br>3V |
|-------------------|---------------------------------------|--------------------------------------|------------|-----|------------|-------------|
| fmax              |                                       | XLID <                               | MIN        | 150 | 150        | 150         |
| tw Pulse duration | LEAB or LEBA high                     |                                      | MIN        | 2.5 | 3.3        | 3.3         |
| tw Pulse duration | CLKAB or CLKBA high                   | or low                               | IVIIIV     | 3   | 3.3        | 3.3         |
|                   | A before CLKAB ↓                      |                                      | 9-1        | 3   | 2.9        | 1.3         |
| . C               | B before CLKBA ↓                      |                                      | MIN        | 3   | 2.9        | 1.3         |
| tsu Setup time    | A before LEAB ⊥ or LEBA ⊥ CLK high    |                                      | MIN        | 1   | 1.4        | 1           |
|                   | A before LEAB 1 or LE                 | BA J CLK low                         |            | 2.5 | 2.9        | 1.4         |
|                   | A after CLKAB ↓ or B                  | after CLKBA 1                        | 99 99      | 0   | 0.4        | 1.3         |
|                   | A after LEAB ↓ or B after LEBA ↓ high |                                      | MIN        | 2   | 1.6        | 1.5         |
|                   | A after LEAB 1 or B at                | A after LEAB ↓ or B after LEBA ↓ low |            | 2   | 1.6        | 1.2         |
| tPLH              | 4 - 0                                 | 2 4                                  | MAX        | - 4 | 3.7        | 3.9         |
| tphL .            | A or B                                | B or A                               | MAX        | 4.9 | 3.7        | 3.9         |
| tPZH              | 1540 1504                             | D A                                  | MAN        | 5   | 5.1        | 4.7         |
| tPZL              | LEAB or LEBA                          | B or A                               | MAX        | 5   | 5.1        | 4.7         |
| tphz.             | CLKAB or CLKBA                        | D A                                  | MAN        | 5.3 | 5          | 5.5         |
| tPLZ              | CLKAB OF CLKBA                        | B or A                               | MAX        | 5.3 | 5          | 5.5         |
| tpzh              | 0510                                  | В                                    | 1111V      | 5.1 | 4.8        | 4.6         |
| tPZL              | - OEAB                                | В                                    | MAX        | 5.4 | 4.8        | 4.6         |
| tрнz              | 0540                                  | В                                    | MAX        | 6.5 | 5.8        | 5           |
| tPLZ              | 0EAB                                  | В                                    | MAX        | 5.4 | 5.8        | 5           |
| tpzh              | 0504                                  |                                      | MAN        | 5.1 | 4.8        | 5.2         |
| tPZL              | OEBA                                  | A                                    | MAX        | 5.4 | 4.8        | 5.2         |
| tPHZ              | OFDA                                  |                                      | MAN        | 6.5 | 5.8        | 4.3         |
| tPLZ              | OEBA                                  | A                                    | MAX        | 5.4 | 5.8        | 4.3         |



† A-to-B data flow is shown: B-to-A flow is similar but uses ØEBÄ, LEBA, and CLKBA.

2 Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low.

3 Output level before the indicated steady-state input conditions were established.

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT  | LVTH<br>3V | ALVCH<br>3V | UNIT |
|-----------|------------|------|------------|-------------|------|
| Icc       | MAX        | - 76 | 5          | 0.04        | mA   |
| Іон       | MAX        | -32  | -32        | -24         | mA   |
| lou       | MAX        | 64   | 64         | 24          | mA   |

#### CIMITCHING CHARACTERISTICS

| PARAMETER         | INPUT                 | OUTPUT         | MAX or MIN | ABT | LVTH<br>3V | ALVCH<br>3V |
|-------------------|-----------------------|----------------|------------|-----|------------|-------------|
| fmax              |                       |                | MIN        | 105 | 150        | 150         |
| tw Pulse duration | LEAB or LEBA high     |                | MIN        | 3.3 | 3.3        | 3.3         |
| tw Pulse duration | CLKAB or CLKBA high   | h or low       | MIN        | 4.7 | 3.3        | 3.3         |
| as 1              | A before CLKAB ↑      |                | MIN        | 3.5 | 2.1        | 1.7         |
|                   | B before CLKBA ↑      | 10-            | MIN        | 3.5 | 2.1        | 1.7         |
| tsu Setup time    | A before LEAB ↓ or L  | EBA J CLK high | MIN        | 4   | 2.4        | 1.5         |
|                   | A before LEAB 1 or L  | EBA J CLK low  | MIN        | 1.5 | 1.4        | 1           |
|                   | A after CLKAB ↑ or B  | after CLKBA ↑  | MIN        | 1   | 1          | 0.7         |
| th Hold time      | A after LEAB ↓ or B a |                | MIN        | 2.5 | 1.7        | 1.4         |
| tPLH              |                       |                | EAAV.      | 3.7 | 3.7        | 3.9         |
| TPHL              | A or B                | B or A         | MAX        | 4   | 3.7        | 3.9         |
| tPZH              | 1540 1504             |                | 1117       | 5.1 | 5.1        | 4.6         |
| tPZL .            | LEAB or LEBA          | B or A         | MAX        | 4.4 | 5.1        | 4.6         |
| tPHZ              | CIVAD CIVDA           | D A            | MAN        | 5   | 5.1        | 4.9         |
| tPLZ              | CLKAB or CLKBA        | B or A         | MAX        | 4.4 | 5.1        | 4.9         |
| tPZH              | 0510                  | В              | 1111       | 4.7 | 4.8        | 4.6         |
| tPZL              | - OEAB                | В              | MAX        | 6.5 | 4.8        | 4.6         |
| tPHZ              | 0510                  |                | 1447       | 5.8 | 5.8        | 5           |
| tPLZ              | - OEAB                | В              | MAX        | 4.9 | 5.8        | 5           |
| tPZH              | 0504                  |                | 1117       | 4.7 | 4.8        | 5           |
| tPZL              | OEBA                  | A              | MAX        | 6.5 | 4.8        | 5           |
| tPHZ              | 0504                  |                | MAN        | 5.8 | 5.8        | 4.2         |
| tPLZ              | OEBA                  | A              | MAX        | 4.9 | 5.8        | 4.2         |

**Logic Diagram** 



**FUNCTION TABLE** B-TO-A STORAGE (OEBA = L)

| INPUTS  |     |     | OUTPUT |     |
|---------|-----|-----|--------|-----|
| CLKENBA | CLK | SEL | В      | A   |
| Н       | X   | X   | X      | Ant |
| L       |     | Н   | L      | Ľ   |
| L       | +   | H   | Н      | H   |
| L       | *   | L   | L      | L‡  |
| L       | +   | L   | Н      | H±  |

Output level before the indicated steady-state input conditions were established
 Four positive CLK edges are needed to propagate data from B to A when SEL is low.

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVCH<br>3V | UNIT |
|-----------|------------|-------------|------|
| Icc       | MAX        | 0.04        | mA   |
| Іон       | MAX        | -24         | mA   |
| lou       | MAX        | 24          | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER                          | INPUT               | OUTPUT | MAX or MIN | ALVCH<br>3V |
|------------------------------------|---------------------|--------|------------|-------------|
| fmax                               |                     |        | MIN        | 150         |
| tw Pulse duration, CLK high or low |                     |        | MIN        | 3           |
|                                    | B data before CLK ↑ | MIN    | 1.1        |             |
| tsu Setup time                     | SEL before CLK ↑    | MIN    | 2.1        |             |
|                                    | CLKENBA before CLK  | MIN    | 2          |             |
|                                    | B data after CLK ↑  | MIN    | 1.2        |             |
| th Hold time                       | SEL after CLK ↑     | MIN    | 0.8        |             |
|                                    | CLKENBA after CLK   | MIN    | 0.3        |             |
|                                    | A                   | В      | MAX        | 3.2         |
| tpd                                | CLK                 | A      | MAX        | 5.2         |
| ten                                | OEAB or OEBA        | A or B | MAY        | 5.1         |
| tdis                               | OEAB or OEBA        | A or B | MAX        | 4.9         |

### 18-BIT REGISTERED BUS TRANSCEIVER WITH 3-STATE OUTPUTS







B-TO-A STORAGE (OEBA = L)

|        | IN     | PUTS   |     |   | OUTPUT |
|--------|--------|--------|-----|---|--------|
| CLKENA | CLK2BA | CLK1BA | SEL | В | A      |
| Н      | X      | X      | X   | X | Ant    |
| L      | *      | ×      | H   | L | L      |
| L      | 1      | X      | H   | H | H      |
| L      |        |        | L   | L | L‡     |
| L      | 1      | 1.00   | L   | H | H±     |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVCH<br>3V | UNIT |
|-----------|------------|-------------|------|
| Icc       | MAX        | 0.04        | mA   |
| Іон       | MAX        | -24         | mA   |
| lor       | MAX        | 24          | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER                          | INPUT                  | OUTPUT | MAX or MIN | ALVCH<br>3V |
|------------------------------------|------------------------|--------|------------|-------------|
| fmax                               |                        |        | MIN        | 150         |
| tw Pulse duration, CLK high or low |                        |        | MIN        | 3           |
|                                    | A data before CLKAB    | 1      | MIN        | 1.3         |
| tsu Setup time                     | B data before CLK2BA   | 1      | MIN        | 1.7         |
|                                    | B data before CLK1BA   | MiN    | 1.1        |             |
|                                    | SEL before CLK2BA 1    | MIN    | 3.3        |             |
|                                    | CLKENAB before CLK     | MIN    | 1.6        |             |
|                                    | CLKENBA before CLK     | MIN    | 2.1        |             |
|                                    | CLKENBA before CLK     | 2BA ↑  | MIN        | 2.2         |
|                                    | A data after CLKAB ↑   |        | MIN        | 0.9         |
|                                    | B data after CLK2BA    | MIN    | 0.6        |             |
|                                    | B data after CLK1BA    | MIN    | 1          |             |
| th Hold time                       | SEL after CLK2BA ↑     |        | MIN        | 0.1         |
|                                    | CLKENAB after CLKA     | Β ↑    | MIN        | 0.3         |
|                                    | CLKENBA after CLK18    | BA ↑   | MIN        | 0.1         |
|                                    | CLKENBA after CLK2BA ↑ |        | MIN        | 0           |
| tpd                                | CLKAB or CLK2BA        | A or B |            | 4.2         |
| ten                                | OEAB or OEBA           | A or B | MAX        | 5.1         |
| tdis                               | OEAB or OEBA           | A or B | 1 23       | 4.9         |

Output level before the indicated steady-state input conditions were established.
 Three CLK1BA edges and one CLK2BA edge are needed to propagate data from B to A when SEL is low.

### 16540

### 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS







To Seven Other Channels

To Seven Other Channels

**FUNCTION TABLE** (each 8-bit section)

|     | INPUTS | OUTPUT |   |
|-----|--------|--------|---|
| OE1 | OE2    | A      | Υ |
| L   | L      | L      | Н |
| L   | L      | Н      | L |
| H   | X      | X      | Z |
| X   | H      | X      | Z |

| OE1 | OE2 | A | Y |  |
|-----|-----|---|---|--|
| L   | L   | L | Н |  |
| L   | L   | H | L |  |
| H   | X   | X | Z |  |
| X   | H   | X | Z |  |
|     |     |   |   |  |
|     |     |   |   |  |

| RECOMMENDED | OPERATING CONDIT | IONS |     |
|-------------|------------------|------|-----|
| PARAMETER   | MAY or MIN       | ART  | ACT |

| PARAMETER | MAX or MIN | ABT | ACT  | AHC  | AHCT | LVCH<br>3V | UNIT |
|-----------|------------|-----|------|------|------|------------|------|
| Icc       | MAX        | 34  | 0.08 | 0.04 | 0.04 | 0.02       | mA   |
| Іон       | MAX        | -32 | -24  | -8   | -8   | -24        | mA   |
| lou       | MAX        | 64  | 24   | 8    | 8    | 24         | mA   |

| SWITCHING CHARAC | CTERISTICS |        | 5.0        | 114191 |      |      | T BANK | TOUR DE    |
|------------------|------------|--------|------------|--------|------|------|--------|------------|
| PARAMETER        | INPUT      | OUTPUT | MAX or MIN | ABT    | ACT  | AHC  | AHCT   | LVCH<br>3V |
| tPLH .           | А          | V      | MAN        | 4.1    | 7.5  | 8.5  | 10.5   | 3.7        |
| tPHL .           |            | T      | MAX        | 4.3    | 9.5  | 8.5  | 10.5   | 3.7        |
| tPZH             | ŌĒ         | Y      | MAX        | 5.1    | 8.9  | 10.5 | 13     | 4.8        |
| tPZL             | UE         |        |            | 5.9    | 10.5 | 10.5 | 13     | 4.8        |
| tPHZ             | ŌĒ         | γ γ    | MAX        | 5.7    | 11.9 | 10.5 | 13     | 5.9        |
| tPLZ             | UE         |        |            | 4.7    | 11.1 | 10.5 | 13     | 5.9        |

### 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS HTIM 28-34/3328/AST 083T21938 TIR-81

### Logic Diagram



FUNCTION TABLE (each 8-bit section)

| 1   | INPUTS | ê | OUTPUT |
|-----|--------|---|--------|
| OE1 | OE2    | Α | Y      |
| L   | L      | L | L      |
| L   | L      | H | H      |
| H   | X      | X | Z      |
| X   | H      | X | 7      |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | LVTH<br>3V | ACT  | AHC  | AHCT | LVCH<br>3V | UNIT |
|-----------|------------|-----|------------|------|------|------|------------|------|
| Icc       | MAX        | 34  | 5          | 0.08 | 0.04 | 0.04 | 0.02       | mA   |
| Іон       | MAX        | -32 | -32        | -24  | -8   | -8   | -24        | mA   |
| lou       | MAX        | 64  | 64         | 24   | 8    | 8    | 24         | mA   |

SWITCHING CHARACTERISTICS

| SWITCHING CHARAC | TERISTICS |        |            |     |            |      |      |      | -          |
|------------------|-----------|--------|------------|-----|------------|------|------|------|------------|
| PARAMETER        | INPUT     | OUTPUT | MAX or MIN | ABT | LVTH<br>3V | ACT  | AHC  | AHCT | LVCH<br>3V |
| tPLH .           | А         | Α Υ    | MAX        | 3.4 | 3.5        | 9    | 8.5  | 10.5 | 4.2        |
| tPHL .           |           |        |            | 4.2 | 3.5        | 9.2  | 8.5  | 10.5 | 4.2        |
| tPZH             |           | v      | MAX        | 5.2 | 4.6        | 9.7  | 10.5 | 13   | 5.6        |
| tPZL             | ŌĒ        | Υ      |            | 6   | 4.6        | 11   | 10.5 | 13   | 5.6        |
| tPHZ             | ŌĒ        | Y      | MAN        | 5.4 | 5.9        | 11.3 | 10.5 | 13   | 6.8        |
| tPLZ             |           |        | MAX        | 4.3 | 5.4        | 10.7 | 10.5 | 13   | 6.8        |

UNIT: ns

### 16-BIT REGISTERD TRANSCEIVERS WITH 3-STATE OUTPUTS



#### FUNCTION TABLE (each 8-bit section)

|      | INP  | OUTPUT |   |     |
|------|------|--------|---|-----|
| OEAB | LEAB | OEAB   | A | В   |
| Н    | X    | X      | X | Z   |
| X    | ×    | H      | X | Z   |
| L    | H    | L      | X | Bo‡ |
| L    | L    | L      | L | Ľ   |
| L    | L    | L      | H | H   |

† A-to-B data flow is shown: B-to-A flow control is the same except that it uses CEBA, LEBA, and OEBA. ‡ Output level before the indicated steady-state input conditions were established.

Logic Disgram

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | LVTH<br>3V | AC   | ACT  | TAC 3A | LVCH<br>3V | ALVCH<br>3V | UNIT |
|-----------|------------|-----|------------|------|------|--------|------------|-------------|------|
| Icc       | MAX        | 35  | 5          | 0.08 | 0.08 | 0.04   | 0.02       | 0.04        | mA   |
| Іон .     | MAX        | -32 | -32        | -24  | -24  | -24    | -24        | -24         | mA   |
| lou       | MAX        | 64  | 64         | 24   | 24   | 24     | 24         | 24          | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER          | INPUT                             | OUTPUT                                                                | MAX or MIN | ABT | LVTH<br>3V | AC   | ACT  | 3V<br>LVC | TACH 3A | ALVCH<br>3V |
|--------------------|-----------------------------------|-----------------------------------------------------------------------|------------|-----|------------|------|------|-----------|---------|-------------|
| tw Pulse duration, | LEAB or LEBA low                  |                                                                       | MIN        | 4   | 3.3        | 4    | 7.5  | 4         | 3.3     | 3.3         |
|                    | Data before LEAB                  | ↑ or LEBA ↑, high                                                     | MIN        | 1.5 | 0.5        | 1    | 2.5  | 2         | 1.1     | 1.2         |
|                    | Data before LEAB                  | Data before TEAB ↑ or TEBA ↑, low  Data before CEAB ↑ or CEBA ↑, high |            | 3.5 | 0.8        | 1    | 2.5  | 2         | 1.1     | 1.2         |
| tsu Setup time     | Data before CEAB                  |                                                                       |            | -   | 0          |      | V.F  | 2         | 1.1     | 1.2         |
|                    | Data before CEAB ↑ or CEBA ↑, low |                                                                       | MIN        | -   | 0.6        |      | -    | 2         | 1.1     | 1.2         |
| 0.9                | Data after LEAB ↑                 | Data after LEAB ↑ or LEBA ↑, high                                     |            | 1.5 | 1.5        | 3    | 4    | 2         | 1.9     | 1.3         |
| th Hold time       | Data after LEAB ↑ or LEBA ↑, low  |                                                                       | MIN        | 2   | 1.2        | 3    | 4    | 2         | 1.9     | 1.3         |
| n Hold tille       | Data after CEAB ↑                 | or CEBA ↑, high                                                       | MIN        | -   | 1.7        |      | -    | 2         | 1.9     | 1.3         |
|                    | Data after CEAB ↑                 | Data after CEAB ↑ or CEBA ↑, low                                      |            | an- | 1.6        |      | -    | 2         | 1.9     | 1.3         |
| tPLH               | A or B                            | B or A                                                                | MAX        | 3.8 | 3.2        | 8.8  | 10.5 | 8         | 5.4     | 4.3         |
| tphl.              | AUID                              | B OF A                                                                | IVIAA      | 5.1 | 3.2        | 9.2  | 11.6 | 8         | 5.4     | 4.3         |
| tplh               | LE A or B                         | A or B                                                                | MAX        | 5.2 | 3.9        | 11.5 | 13.8 | 9         | 6.1     | 5           |
| tphL               | - LE                              | AUID                                                                  | WAX        | 5.6 | 3.9        | 10.9 | 13.5 | 9         | 6.1     | 5           |
| tpzh               | - OE                              | A or B                                                                | MAX        | 5.2 | 4.3        | 9.6  | 11.4 | 8.5       | 6.3     | 5.3         |
| tPZL               | UE W                              | AUID                                                                  | IVIAA      | 7   | 4.3        | 11.3 | 13.2 | 8.5       | 6.3     | 5.3         |
| tPHZ               | ŌĒ                                | A or B                                                                | MAX        | 5.7 | 4.7        | 8.9  | 11.1 | 8.5       | 6.3     | 4.6         |
| tPLZ               | UE                                | AUID                                                                  | IVIAA      | 4.6 | 4.4        | 8.4  | 9.6  | 8.5       | 6.3     | 4.6         |
| tpzh               | CE                                | A and D                                                               | MAX        | 6.2 | 4.5        | 9.8  | 11.7 | 9         | 6.6     | 5.6         |
| tPZL               | 7                                 | CE A or B                                                             | IVIAA      | 7.8 | 4.5        | 11.5 | 13.5 | 9         | 6.6     | 5.6         |
| tPHZ               | CE                                | A or B                                                                | MAX        | 6.6 | 4.9        | 9.3  | 11.6 | 9         | 6.6     | 5.1         |
| tPLZ               | 7 05                              | M OF B                                                                | IVIAA      | 5.4 | 4.7        | 8.8  | 10.5 | 9         | 6.6     | 5.1         |

UNIT: ns

# Logic Diagram OEAB 1 CLKENAB 56 CLKAB 55 LEAB 2 LEBA 28 CLKBA 30 CLKENBA 29 OEBA 27 CE 1D C1 > CLK CE 1D C1 CLK< To 17 Other Channels

#### **FUNCTION TABLE**

|         |      | INPUTS |       |   | OUTPUT           |
|---------|------|--------|-------|---|------------------|
| CLKENAB | OEAB | LEAB   | CLKAB | A | В                |
| X       | Н    | X      | X     | X | Z                |
| X       | L    | H      | X     | L | L                |
| X       | L    | H      | ×     | H | H                |
| H       | L    | L      | X     | X | Bo‡              |
| H       | Ĺ.   | L      | X     | X | Bo‡              |
| L       | L    | L      | 1     | L | L                |
| L       | L    | L      | 4     | H | H                |
| L       | L    | L      | Н     | X | B <sub>0</sub> ‡ |
| 1       | L    | L      | L     | X | Bn6              |

† A-to-B data flow is shown: B-to-A flow is similar but uses ŌĒBĀ, LEBA, CLKBĀ and CLKENBĀ. ‡ Output level before the indicated steady-state input conditions were established.

§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | ALVCH<br>3V | UNIT |
|-----------|------------|-----|-------------|------|
| Icc       | MAX        | 36  | 0.04        | mA   |
| Іон       | MAX        | -32 | -24         | mA   |
| loL       | MAX        | 64  | 24          | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT                       | OUTPUT           | MAX or MIN | ABT  | ALVCH<br>3V |
|-------------------|-----------------------------|------------------|------------|------|-------------|
| fmax              |                             |                  | MIN        | 150  | 150         |
| tw Pulse duration | LEAB or LEBA high           | 777              | MIN        | 2.5  | 3.3         |
|                   | CLKAB or CLKBA high or I    | low              | MIN        | 3    | 3.3         |
| tsu Setup time    | A before CLKAB ↓ or B b     |                  | MIN        | 3    | -           |
|                   | Data before CLK ↑           | 0-30             |            | 1.2  |             |
|                   | A before LEAB ↓ or B before | MIN              | 2.5        | 1.1  |             |
|                   | A before LEAB ↓ or B before | MIN              | 2.5        | 1.5  |             |
|                   | CLKEN after CLK 1           | 0                | 2.5        | -    |             |
|                   | CLKEN after CLK ↑           |                  | MIN        | 2.5  | 0.8         |
| th Hold time      | A after CLKAB ↓ or B after  | er CLKBA 1       | MIN        | 0    | -           |
|                   | Data after CLK ↑            |                  |            | -    | 1.5         |
|                   | A after LEAB ↓ or B after   | LEBA J, CLK high | MIN        | 2    | 1.6         |
|                   | A after LEAB ↓ or B after   | MIN              | 2          | 1.3  |             |
|                   | CLKEN after CLK ↓           |                  | 1          | (=0) |             |
|                   | CLKEN after CLK ↑           |                  | MIN        | -    | 1.4         |
| tPLH .            | A or B                      | B or A           | MAX        | 4    | 4           |
| tphl.             | A OF B                      | B OF A           | WAX        | 4.9  | 4           |
| tplH .            | LEAB or LEBA                | B or A           | MAX        | 5    | 4.8         |
| tphl.             | LEAB OF LEBA                | B or A           | WAX        | 5    | 4.8         |
| tPLH              | CLKAB or CLKBA              | B or A           | MAX        | 5.3  | 5.7         |
| tphl.             | - CLKAB OF CLKBA            | BOLY             | MAX        | 5    | 5.7         |
| tpzH              | OEAB                        | В                | MAX        | 5.1  | 5.2         |
| tPZL              | UEAD                        | D                | IVIAA      | 5.4  | 5.2         |
| tPHZ              | - OEAB                      | В                | MAX        | 6.2  | 4.4         |
| tPLZ              | UEAD                        | D                | IVIAA      | 5.4  | 4.4         |
| tPZH              | - OEBA                      | A                | MAX        | 5.1  | 5.2         |
| tPZL              | OLDA                        | m                | IVIMA      | 5.4  | 5.2         |
| tPHZ              | OEBA                        | A                | MAX        | 6.2  | 4.4         |
| tPLZ              | J.JA                        | -                | m/A/A      | 5.4  | 4.4         |



| L . | L | 1 |   | H | н                |
|-----|---|---|---|---|------------------|
| L   | L | L | L | X | B <sub>0</sub> ‡ |
| L   | L | L | Н | X | Bo§              |

<sup>†</sup> A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, CLKBA and CLKENBA 2 Output level before the indicated steady-state input conditions were established.

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | ALVTH<br>3V | ALVCH<br>3V | ALVCHR<br>3V | UNIT |
|-----------|------------|-----|-------------|-------------|--------------|------|
| Icc       | MAX        | 36  | 5           | 0.04        | 0.04         | mA   |
| Іон       | MAX        | -32 | -32         | -24         | -12          | mA   |
| lou       | MAX        | 64  | 64          | 24          | 12           | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT                                                                                                                     | OUTPUT                | MAX or MIN | ABT | ALVTH<br>3V | ALVCH<br>3V | ALVCHR<br>3V |
|-------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|-----|-------------|-------------|--------------|
| fmax              |                                                                                                                           |                       | MIN        | 150 | 150         | 150         | 150          |
| tw Pulse duration | LEAB or LEBA high                                                                                                         |                       | MIN        | 2.5 | 1.8         | 3.3         | 3.3          |
| tw ruise duration | CLKAB or CLKBA high or                                                                                                    | low                   | MIN        | 3   | 2.3         | 3.3         | 3.3          |
|                   | Data before CLK † high                                                                                                    |                       | MIN        | 4   | 2.4         | 2.1         | 2.1          |
|                   | Data before CLK † low                                                                                                     |                       | IVIIIV     | 4   | 3.8         | 2.1         | 2.1          |
| tsu Setup time    | A before LEAB ↓ or B be                                                                                                   | fore LEBA ↓, CLK high | MIN        | 2.5 | 1           | 1.6         | 1.6          |
| Isu Setup time    | A before LEAB ↓ or B be                                                                                                   | fore LEBA ↓, CLK low  | MIN        | 1   | 0.6         | 1.1         | 1.1          |
|                   | CLKEN before † high                                                                                                       |                       | MIN        | 2.5 | 1.4         | 1.7         | 1.7          |
|                   | CLKEN before † low                                                                                                        |                       | IVIIIV     | 2.5 | 1.9         | 1.7         | 1.7          |
|                   | Data after CLK † high                                                                                                     |                       | MIN        | 0   | 0.5         | 0.8         | 0.8          |
|                   | Data after CLK ↑ low                                                                                                      |                       | IVIIN      | 0   | 0.5         | 0.8         | 0.8          |
| th Hold time      | A after LEAB ↓ or B after LEBA ↓, CLK high A after LEAB ↓ or B after LEBA ↓, CLK low CLKEN after ↑ high CLKEN after ↑ low |                       | MIN        | 2   | 2           | 1.4         | 1.4          |
| th Hold time      |                                                                                                                           |                       | MIN        | 2   | 2.3         | 1.7         | 1.7          |
|                   |                                                                                                                           |                       | MAIN       | 0   | 0.6         | 0.6         | 0.6          |
|                   |                                                                                                                           |                       | MIN        | 0   | 0.5         | 0.6         | 0.6          |
| tPLH              | A or B                                                                                                                    | D A                   | MAY        | 4   | 3.9         | 4.1         | 4.4          |
| tphl.             | A or B                                                                                                                    | B or A                | MAX        | 4.9 | 3.9         | 4.1         | 4.4          |
| tPLH .            | LEAB or LEBA                                                                                                              | D 4                   | MAX        | 5   | 4.6         | 4.7         | 5.1          |
| tphL              | LEAB OF LEBA                                                                                                              | B or A                | MAX        | 5.2 | 4.6         | 4.7         | 5.1          |
| tplH              | CLKAB or CLKBA                                                                                                            | D A                   | MAX        | 4.7 | 4.5         | 5           | 5.4          |
| tphL .            | CLKAB OF CLKBA                                                                                                            | B or A                | MAX        | 4.6 | 4.6         | 5           | 5.4          |
| tPZH              | - OEAB                                                                                                                    | В                     | MAX        | 5.5 | 4.2         | 5.2         | 5.6          |
| tPZL              | UEAB                                                                                                                      | В                     | MAX        | 5.8 | 4.4         | 5.2         | 5.6          |
| tPHZ              | - OEAB                                                                                                                    | В                     | MAN        | 6.2 | 5.3         | 4.4         | 4.7          |
| tplz              | UEAB                                                                                                                      | В                     | MAX        | 5.4 | 4.6         | 4.4         | 4.7          |
| tPZH              | OEBA                                                                                                                      | Α.                    | MAY        | 5.5 | 4.2         | 5.2         | 5.6          |
| tPZL.             | UEBA                                                                                                                      | A                     | MAX        | 5.8 | 4.4         | 5.2         | 5.6          |
| tphz              | OEBA                                                                                                                      | Δ.                    | MAN        | 6.2 | 5.3         | 4.4         | 4.7          |
| tPLZ              | UEBA                                                                                                                      | A                     | MAX        | 5.4 | 4.6         | 4.4         | 4.7          |

<sup>§</sup> Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.

16620

### 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS



Logic Diagram



#### **FUNCTION TABLE**

|                              | INPUTS |      |  |
|------------------------------|--------|------|--|
| OPERATIO                     | OEAB   | OEBA |  |
| B data to A                  | L      | L    |  |
| B data to A I<br>A data to B | Н      | L    |  |
| Isolation                    | L      | Н    |  |
| A data to B                  | н      | н    |  |

### .....

ie Dingram

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | AC   | ACT  | UNIT |
|-----------|------------|------|------|------|
| lcc       | MAX        | 0.08 | 0.08 | mA   |
| Іон       | MAX        | -24  | -24  | mA   |
| lot       | MAX        | 24   | 24   | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT        | OUTPUT     | MAX or MIN | AC  | ACT  |
|-----------|--------------|------------|------------|-----|------|
| tPLH .    | Other Channe | B To Sevin | MAY        | 6.8 | 8.5  |
| tphl.     | A            | В          | MAX        | 8.2 | 10.5 |
| tPLH      | D.           |            | MAN        | 6.8 | 8.5  |
| tPHL      | В            | A          | MAX        | 8.2 | 10.5 |
| tPZH      | OEBA         |            | MANY       | 7.9 | 9.1  |
| tPZL      | UEBA         | A          | MAX        | 9.4 | 10.9 |
| tPHZ      | 0504         |            | DOM:       | 9.2 | 11.9 |
| tPLZ      | OEBA         | A          | MAX        | 8.3 | 10.6 |
| tPZH      | 0515         | В          | 14434      | 7.3 | 8.9  |
| tPZL      | OEAB         | В          | MAX        | 9.1 | 10.5 |
| tPHZ      | OFAR         |            | BAAN/      | 9   | 10.8 |
| tPLZ      | OEAB         | В          | MAX        | 8   | 9.6  |

UNIT: ns

FUNCTION TABLE



## FUNCTION TABLE (each 8-bit section)

| INPUTS |      |                                    |  |  |
|--------|------|------------------------------------|--|--|
| BA     | OEAB | OPERATION                          |  |  |
|        | L    | B data to A bus                    |  |  |
|        | Н    | B data to A bus<br>A data to B bus |  |  |
| H      | L    | Isolation                          |  |  |
| 4      | Н    | A data to B bus                    |  |  |

### RECOMMENDED OPERATING CONDITIONS

| KECOMMENDED OF | PERATING CONDITI | UNS |      |      |
|----------------|------------------|-----|------|------|
| PARAMETER      | MAX or MIN       | ABT | ACT  | UNIT |
| Icc            | MAX              | 35  | 0.08 | mA   |
| Іон            | MAX              | -32 | -24  | mA   |
| lou            | MAX              | 64  | 24   | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT  | OUTPUT | MAX or MIN | ABT | ACT  |
|-----------|--------|--------|------------|-----|------|
| tPLH      | A or B | D A    | MAX        | 3.6 | 7.7  |
| tphl.     | A or B | B or A | MAX        | 4.3 | 8.6  |
| tpzH      | OEBA   |        | MAX        | 4.9 | 9.5  |
| tPZL      | UEBA   | A      | MAX        | 6   | 11.1 |
| tPHZ      | OEBA   |        | MAX        | 6   | 12   |
| tPLZ      | UEBA   | A      | MAX        | 5.4 | 10.7 |
| tpzh      | OEAB   | В      | MAX        | 4.9 | 9.3  |
| tPZL      | UEAB   | В      | MAX        | 6   | 10.6 |
| tphz      | OEAB   | В      | MAX        | 6   | 10.4 |
| TPLZ      | UEAB   | В      | IVIAX      | 5.4 | 9.5  |

UNIT: ns

## 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS ITZEGER AND REGISTRANSCEIVER WITH 3-STATE OUTPUTS

Logic Diagram



FUNCTION TABLE (each 8-bit section)

| INP | UTS |                 |  |
|-----|-----|-----------------|--|
| OE  | DIR | OPERATION       |  |
| L   | L.  | B data to A bus |  |
| L   | H   | A data to B bus |  |
| H   | ×   | Isolation       |  |

RECOMMENDED OPERATING CONDITIONS

|           |            | T   |      | I Commission |      |
|-----------|------------|-----|------|--------------|------|
| PARAMETER | MAX or MIN | ABT | AC   | ACT          | UNIT |
| Icc       | MAX        | 32  | 0.08 | 0.08         | mA   |
| Іон       | MAX        | -32 | -24  | -24          | mA   |
| lou       | MAX        | 64  | 24   | 24           | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT     | OUTPUT | MAX or MIN | ABT | AC  | ACT  |
|-----------|-----------|--------|------------|-----|-----|------|
| tplh      | 4         |        | 1447       | 4.3 | 7.3 | 9.1  |
| tphL .    | A or B    | B or A | MAX        | 3.9 | 8.6 | 10.5 |
| tPZH      | <u>OE</u> | 4 0    | MANY       | 5.5 | 8   | 9.8  |
| tpzl      | UE        | A or B | MAX        | 6.3 | 9.9 | 11.5 |
| tрнz      | - OE      | A or B | MAX        | 6.3 | 9.9 | 12.5 |
| tPLZ      | - UE      | A OF D | IVIAA      | 4.2 | 9   | 11   |

# **Logic Diagram** 10E 1DIR 1CLKBA 55 1SBA 54 1CLKAB 2 1SAB One of Eight Channels 1D C1< 52 1B1 1D To Seven Other Channels 2DIR 2CLKBA 2SBA 31 2CLKAB 27 One of Eight Channels 1D C1< <u>42</u> 2B1 1D 1111

To Seven Other Channels

#### **FUNCTION TABLE**

|                                                      | I/O                     | DATA                    |         | INPUTS |             |             |     |    |  |
|------------------------------------------------------|-------------------------|-------------------------|---------|--------|-------------|-------------|-----|----|--|
| OPERATION OR FUNCTION                                | B1 THRU B8              | A1 THRU A8              | SAB SBA |        | CLKBA       | CLKAB       | DIR | OE |  |
| Store A, B unspecitied †<br>Store B, A unspecitied † | Unspecified †<br>Input  | Input<br>Unspecified †  | X       | X      | X           | X           | X   | X  |  |
| Store A and B data<br>Isolation, hold storage        | Input<br>Input disabled | Input<br>Input disabled | X       | X      | ↑<br>H or L | ↑<br>H or L | X   | Н  |  |
| Real-time B data to A bus<br>Stored B data to A bus  | Input<br>Input          | Output<br>Output        | L       | X      | X<br>H or L | X           | L   | L  |  |
| Real-time A data to B bus<br>Stored A data to B bus  | Output                  | Input                   | X       | L      | X           | X<br>H or I | Н   | L  |  |

† The data output functions may be enabled or disabled by various signals at the  $\overline{OE}$  and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every low-to-high transition of the clock inputs.

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | LVTH<br>3V | AC   | ACT  | LVCH<br>3V | ALVCH<br>3V | AVC  | UNIT |
|-----------|------------|-----|------------|------|------|------------|-------------|------|------|
| Icc       | ' MAX      | 32  | 5          | 0.08 | 0.08 | 0.02       | 0.04        | 0.04 | mA   |
| Іон       | MAX        | -32 | -32        | -24  | -24  | -24        | -24         | -12  | mA   |
| lou       | MAX        | 64  | 64         | 24   | 24   | 24         | 24          | 12   | mA   |

#### SWITCHING CHARACTERISTICS

| SWITCHING CHAR    | ACTERISTICS                                |                                         |            |     |            |      |      |            | - 6         |     |
|-------------------|--------------------------------------------|-----------------------------------------|------------|-----|------------|------|------|------------|-------------|-----|
| PARAMETER         | INPUT                                      | OUTPUT                                  | MAX or MIN | ABT | LVTH<br>3V | AC   | ACT  | LVCH<br>3V | ALVCH<br>3V | AVC |
| fmax              |                                            |                                         | MIN        | 125 | 150        | 75   | 90   | 150        | 150         | 350 |
| tw Pulse duration | CLKAB or CLKBA high o                      | rlow                                    | MIN        | 4.3 | 3.3        | 6.5  | 5.5  | 3.3        | 3.3         | 1.4 |
| . C               | A or B before CLKAB ↑                      | B before CLKAB † or CLKBA †, data high  |            | 3   | 1.2        | 5    | 4    | 2.9        | 1.4         | 0.8 |
| tsu Setup time    | A or B before CLKAB ↑                      | or CLKBA ↑, data low                    | MIN        | 3   | 2          | 5    | 6    | 2.9        | 1.4         | 0.8 |
| th Hold time      | A or B after CLKAB ↑ or CLKBA ↑, data high |                                         | MIN        | 0   | 0.5        | 1    | 1.5  | 0.3        | 0.7         | 0.6 |
| u noid time       | A or B after CLKAB † or                    | or B after CLKAB ↑ or CLKBA ↑, data low |            | 0   | 0.5        | 1    | 1.5  | 0.3        | 0.7         | 0.6 |
| tplh              | CLKAB or CLKBA                             | B or A                                  | MAX        | 4.9 | 4.2        | 12.1 | 12.2 | 6.7        | 4.5         | 3.3 |
| tphl.             | CLAND OF CLANDA                            |                                         | IVIAA      | 4.7 | 4.2        | 11.9 | 12.3 | 6.7        | 4.5         | 3.3 |
| tplh              | A or B                                     | B or A                                  | MAN        | 3.9 | 3.4        | 9.5  | 10.6 | 5.7        | 3.9         | 2.6 |
| tphL .            | AOIB                                       | B OF A                                  | IVIAA      | 4.6 | 3.4        | 9.7  | 11.4 | 5.7        | 3.9         | 2.6 |
| tplH              | SAB or SBA                                 | B or A                                  | MAX        | 5   | 4.5        | 12.5 | 15.6 | 7.7        | 5.3         | 4   |
| tphL .            | SAB OF SBA                                 | D OF A                                  |            | 5   | 4.5        | 13.1 | 16.7 | 7.7        | 5.3         | 4   |
| tPZH              | ŌĒ                                         | A or B                                  | MAX        | 5.5 | 4.3        | 10.5 | 11.9 | 6.9        | 5.1         | 4   |
| tPZL              | OE .                                       | AUID                                    | IVIAA      | 5.7 | 4.3        | 12.2 | 13.5 | 6.9        | 5.1         | 4   |
| tPHZ              | - OE                                       | A or B                                  | MAX        | 5.4 | 5.6        | 8.9  | 10.2 | 6.9        | 4.7         | 4.2 |
| tPLZ              | UE UE                                      | AUID                                    | IVIAA      | 4.5 | 5.4        | 8.6  | 9.9  | 6.9        | 4.7         | 4.2 |
| tpzh              | DIR                                        | A or B                                  | MAX        | 5.4 | 4.4        | 10.9 | 15.2 | 7.2        | 5.1         | 4.3 |
| tPZL              | JIN JIN                                    | M Uf B                                  | WAX        | 5.6 | 4.4        | 12.2 | 13.1 | 7.2        | 5.1         | 4.3 |
| tPHZ              | DIR                                        | A or B                                  | MAX        | 6.7 | 5.7        | 9.4  | 10.8 | 7          | 5.3         | 4.3 |
| tPLZ              | DIN >10                                    | A UF B                                  | IVIAX      | 5.9 | 5.2        | 8.8  | 10.4 | 7          | 5.3         | 4.3 |



#### **FUNCTION TABLE**

|                                                    | 1/0 †                  | DATA                   |         |         | JTS      | INP   |      |      |
|----------------------------------------------------|------------------------|------------------------|---------|---------|----------|-------|------|------|
| OPERATION OR FUNCTION                              | B1-B8                  | A1-A8                  | SBA     | SAB     | CLKBA    | CLKAB | OEBA | OEAB |
| Isolation<br>Store A and B data                    | Input<br>Input         | Input<br>Input         | X       | X       | L        | L     | H    | L    |
| Store A, hold B<br>Store A in both registers       | Unspecified‡<br>Output | Input<br>Input         | X       | X<br>X‡ | Ļ        | ÷     | H    | Х    |
| Hold A, store B<br>Store B in both registers       | Input<br>Input         | Unspecified‡<br>Output | X<br>X‡ | X       | <b>^</b> | L     | X    | L    |
| Real-time B data to A bus<br>Store B data to A bus | Input<br>Input         | Output<br>Output       | L       | X       | X<br>L   | X     | L    | L    |
| Real-time A data to B bus<br>Store A data to B bus | Output<br>Output       | Input<br>Input         | X       | L<br>H  | ×        | X     | H    | H    |
| Store A data to B bus and<br>Store B data to A bus | Output                 | Output                 | Н       | Н       | L        | L     | L    | Н    |

The data-output functions may be enabled or disabled by a variety of level combinations at DEAB or DEBA. Data-input functions are always enabled; i.e., data at the bus terminats is stored on every low-to-high transition of the clock inputs.

\$ select contril = L. clocks can occur simultaneously.

Select control = I. clocks must be staggered to load both registers.

#### RECOMMENDED OPERATING CONDITIONS

| THE OUTTHE THE OT ET | T TOTAL TOTAL | _    | _    |
|----------------------|---------------|------|------|
| PARAMETER            | MAX or MIN    | ACT  | UNIT |
| Icc                  | MAX           | 0.08 | mA   |
| Іон                  | MAX           | -24  | mA   |
| lor                  | MAX           | 24   | mA   |

| SWITCHING CHAP    |                            |               |            |      |
|-------------------|----------------------------|---------------|------------|------|
| PARAMETER         | INPUT                      | OUTPUT        | MAX or MIN | ACT  |
| fmax              | <del></del>                |               | MIN        | 90   |
| tw Pulse duration | CLKAB or CLKBA high or     | low           | MIN        | 5.5  |
| tsu Setup time    | A before CLKAB ↑ or B b    | efore CLKBA ↑ | MIN        | 5.3  |
| th Hold time      | A after CLKAB † or B after | er CLKBA ↑    | MIN        | 1    |
| tPLH              | A or B                     | B or A        | MAX        | 11.3 |
| tPHL .            | M UT D                     | D OF A        | MAX        | 11.9 |
| tplh              | CLKAB or CLKBA             | A or B        | MAX        | 13.7 |
| tphl.             | CLNAD UI CLNDA             | AUID          | IVIAA      | 13.6 |
| tplh              | SAB or SBA                 | A or B        | MAX        | 17.3 |
| tphl .            | SAD UI SDA                 | AUID          | IVIAA      | 17.8 |
| tрzн              | - OEBA                     | A             | MAX        | 12.3 |
| tPZL              | UEDA                       | A             | IVIAA      | 13.9 |
| tphz              | DEBA                       | А             | MAX        | 10.6 |
| tPLZ              | UEDA                       | A             | IVIAA      | 10.8 |
| tPZH              | OEAB                       | В             | MAX        | 11.9 |
| tpzi              | UEAD                       | В             | MAX        | 13.5 |
| tрнz              | OEAB                       | В             | MAX        | 11.4 |
| tPLZ              | UEAD                       | В             | MAX        | 11.6 |

## 16-BIT BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS



#### **FUNCTION TABLE**

|      |      | INP    | UTS    |     |     | DATA          | I/O†          |                                                   |
|------|------|--------|--------|-----|-----|---------------|---------------|---------------------------------------------------|
| OEAB | OEBA | CLKAB  | CLKBA  | SAB | SBA | A1 THRU A8    | B1 THRU B8    | OPERATION OR FUNCTION                             |
| L    | H    | HorL   | HorL   | X   | X   | Input         | Input         | Isolation                                         |
| L    | H    | +      | 1      | X   | X   | Input         | Input         | Store A and B data                                |
| X    | H    | +      | HorL   | X   | X   | Input         | Unspecified ‡ | Store A, hold B                                   |
| H    | H    | +      | 1      | X±  | X   | Input         | Output        | Store A in both registers                         |
| L    | X    | HorL   | 1      | X   | X   | Unspecified ‡ | Input         | Hold A, store B                                   |
| L    | L    | +      | +      | X   | X‡  | Output        | Input         | Store B in both registers                         |
| L    | L    | X      | X      | X   | L   | Output        | Input         | Real-time B data to A bus                         |
| L    | L    | X      | HorL   | X   | Н   | Output        | Input         | Stored B data to A bus                            |
| H    | H    | X      | X      | L   | X   | Input         | Output        | Real-time A data to B bus                         |
| H    | H    | HorL   | X      | H   | X   | Input         | Output        | Store A data to B bus                             |
| Н    | L    | H or L | H or L | Н   | Н   | Output        | Output        | Stored A data to B bus and<br>stored B data A bus |

<sup>†</sup> The data output functions may be enabled or disabled by a variety of level combinations at the OEAB or  $\overline{\text{OEBA}}$  inputs. Data input functions are always enabled; i.e., data at the bus pins is stored on every low-to-high transition of the clock

inputs.

\$ Select control = L; clocks can occur simultaneously.

Select control = H; clocks must be staggered in order to load both registers.

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | LVTH<br>3V | AC   | ACT  | LVCH<br>3V | UNIT |
|-----------|------------|-----|------------|------|------|------------|------|
| Icc       | MAX        | 32  | 5          | 0.08 | 0.08 | 0.02       | mA   |
| Гон       | MAX        | -32 | -32        | -24  | -24  | -24        | mA   |
| lor       | MAX        | 64  | 64         | 24   | 24   | 24         | mA   |

| PARAMETER         | INPUT                     | OUTPUT             | MAX or MIN | ABT | LVTH<br>3V | AC   | ACT  | LVCH<br>3V |
|-------------------|---------------------------|--------------------|------------|-----|------------|------|------|------------|
| fmax              |                           |                    | MIN        | 125 | 150        | 95   | 90   | 150        |
| tw Pulse duration | CLKAB or CLKBA high or I  | ow                 | MIN        | 4.3 | 3.3        | 5    | 5.5  | 3.3        |
| . Catua tima      | A before CLKAB † or B be  | fore CLKBA ↑, high | MIN        | 3   | 1.2        | 4.5  | 4.5  | 3          |
| tsu Setup time    | A before CLKAB ↑ or B be  | fore CLKBA ↑, low  | MIN        | 3   | 2          | 4.5  | 4.5  | 3          |
| th Hold time      | A after CLKAB ↑ or B afte | MIN                | 0          | 0.5 | 0          | 1    | 0.2  |            |
| th mold time      | A after CLKAB ↑ or B afte | MIN                | 0          | 0.5 | 0          | 1    | 0.2  |            |
| tplh              | CLKAB or CLKBA            | A or B             | MAX        | 4.9 | 4.2        | 12.2 | 12.3 | 6.4        |
| tphl .            | CLKAB OF CLKBA            | A or B             | IVIAX      | 4.7 | 4.2        | 12.3 | 12.3 | 6.4        |
| tPLH              | A or B                    | B or A             | MAX        | 3.9 | 3.4        | 9.9  | 10.5 | 6.3        |
| tphl.             | A OF B                    | B or A             | IVIAX      | 4.6 | 3.4        | 10.2 | 11.6 | 6.3        |
| tplh              | SAB or SBA                | A or B             | MANY       | 5   | 4.5        | 13.8 | 16   | 7.4        |
| tphL .            | SAB OF SBA                | A or b             | MAX        | 5   | 4.5        | 13.8 | 16.9 | 7.4        |
| tPZH              | OEBA                      | А                  | MAN        | 5   | 4.3        | 10.7 | 11.7 | 6.3        |
| tPZL              | UEBA                      |                    | MAX        | 5.3 | 4.3        | 13.2 | 13.4 | 6.3        |
| tPHZ              | OEBA                      | A                  | MAY        | 4.9 | 5.6        | 8.8  | 9.5  | 6.2        |
| tPLZ              | UEBA                      | A                  | MAX        | 4   | 5.4        | 8.7  | 9.2  | 6.2        |
| tpzh              | OEAB                      | D.                 | MAN        | 4.2 | 4.2        | 10.5 | 10.8 | 6.3        |
| tpzl              | UEAB                      | В                  | MAX        | 4.6 | 4.2        | 13   | 12.4 | 6.3        |
| tPHZ              | OFAR                      | D                  | MAY        | 5.9 | 5.5        | 8    | 10.5 | 6.2        |
| tPLZ              | OEAB B                    |                    | MAX        | 5.2 | 5.5        | 7.8  | 9.9  | 6.2        |

### 16-BIT TRANSCEIVERS WITH PARITY GENERATORS/CHECKERS AND 3-STATE OUTPUTS



#### FUNCTION TABLE (each 8-bit section)

| NUMBER OF A OR B    |    | INI | PUTS     | INF | UT/OUTPUT |     | OUTPUTS     |
|---------------------|----|-----|----------|-----|-----------|-----|-------------|
| NPUTS THAT ARE HIGH | ŌE | T/R | ODD/EVEN | -   | PARITY    | ERR | OUTPUT MODE |
|                     | L  | Н   | Н        | -   | Н         | Z   | Transmit    |
|                     | L  | H   | L        | 1   | Las       | Z   | Transmit    |
| 00100               | L  | L   | H        |     | H         | JOH | Receive     |
| 0, 2, 4, 6, 8       | L  | L   | H        | -   | L         | L   | Receive     |
|                     | L  | L   | L        |     | H         | L   | Receive     |
|                     | L  | L   | L        |     | L 82      | H   | Receive     |
|                     | L  | Н   | Н        |     | L         | Z   | Transmit    |
|                     | L  | H   | L        | -   | H         | Z   | Transmit    |
| 1 2 5 7             | L  | L   | H        |     | H         | L   | Receive     |
| 1, 3, 5, 7          | L  | L   | . Н      |     | Ľ od      | H   | Receive     |
|                     | L  | L   | L        |     | H         | H   | Receive     |
|                     | L  | L   | L        |     | L         | L   | Receive     |
| Don't care          | Н  | X   | X        |     | Z         | Z   | Z           |

#### RECOMMENDED OPERATING CONDITIONS

|           |            | 1   | _    |      |
|-----------|------------|-----|------|------|
| PARAMETER | MAX or MIN | ABT | ACT  | UNIT |
| Icc       | MAX        | 36  | 0.08 | mA   |
| Іон       | MAX        | -32 | -24  | mA   |
| lou       | MAX        | 64  | 24   | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT      | OUTPUT      | MAX or MIN | ABT | ACT  |
|-----------|------------|-------------|------------|-----|------|
| tplh      | A D        | D A         | 1447       | 4.1 | 10.7 |
| tphl .    | A or B     | B or A      | MAX        | 4.3 | 10.6 |
| tplh      | A D        | DADITY      | MAN        | 6.7 | 14.3 |
| tphl .    | A or B     | PARITY      | MAX        | 6.1 | 14.3 |
| tplh      | ODD / EVEN | PARITY, ERR | MAN        | 6.7 | 13.7 |
| tрнL      | ODD / EVEN | PARILY, ERR | MAX        | 6.1 | 14.1 |
| tPLH      | В          | ERR         | MAN        | 6.7 | 14.6 |
| tphl.     | В          | ERR         | MAX        | 6.1 | 14.7 |
| tPLH .    | DADITY     | ERR         | MAN        | 6.7 | 13.8 |
| tphl.     | PARITY     | ERR         | MAX        | 6.1 | 14.2 |
| tPZH      | ŌĒ         | A D         | MAN        | 5.6 | 11.3 |
| tPZL      | UE         | A or B      | MAX        | 6   | 13   |
| tрнz      | ŌĒ         | A or B      | EANY       | 5.4 | 11.2 |
| tplZ      | UE         | AOFB        | MAX        | 4.3 | 10.5 |
| tpzh      | ŌE         | PARITY, ERR | 1467       | 5.6 | 11.3 |
| tPZL      | UE         | FARILY, ERR | MAX        | 6   | 13   |
| tphz      | ŌĒ         | DADITY FDD  | 1 1/2      | 5.4 | 11.2 |
| tPLZ      | UE         | PARITY, ERR | MAX        | 4.3 | 10.5 |

UNIT: ns

|  | 10.5 | 4.3 | 181 |
|--|------|-----|-----|
|  |      |     |     |
|  |      |     |     |
|  |      |     |     |
|  |      |     |     |
|  |      |     |     |
|  |      |     |     |
|  |      |     |     |
|  |      |     |     |
|  |      |     |     |
|  |      |     |     |
|  |      |     |     |
|  |      |     |     |

### 20-BIT FLIP-FLOP WITH 3-STATE OUTPUTS



#### FUNCTION TABLE (each filp-flop)

|    | INPL  | OUTPUT   |   |    |
|----|-------|----------|---|----|
| ŌE | CLKEN | CLK      | D | Q  |
| L  | Н     | X        | Н | 90 |
| L  | L     | <b>†</b> | H | H  |
| L  | L     | 1        | L | L  |
| L  | L     | L        | X | 90 |
| Н  | X     | X        | X | Z  |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVCH<br>3V | UNIT |
|-----------|------------|-------------|------|
| Icc       | MAX        | 0.04        | mA   |
| Іон       | MAX        | -24         | mA   |
| lou       | MAX        | 24          | mA   |

### SWITCHING CHARACTERISTICS

| SWITCHING CHAI    | ACTEMISTICS       |     | 1 1 1 1 1  |             |
|-------------------|-------------------|-----|------------|-------------|
| PARAMETER         | R INPUT OUTPUT    |     | MAX or MIN | ALVCH<br>3V |
| fmax              |                   | 5.0 | MIN        | 150         |
| tw Pulse duration | CLK high or low   |     | MIN        | 3.3         |
| . C-1 1           | Data before CLK ↑ | MIN | 3.1        |             |
| tsu Setup time    | CLKEN before CLK  | MIN | 2.7        |             |
| th Hold time      | Data after CLK ↑  |     | MIN        | 0           |
| to Hold time      | CLKEN after CLK ↑ | MIN | 0          |             |
| tPLH .            | CLK               | 0   | MAX        | 4.3         |
| tPHL .            | CLK               | u   | IVIAA      | 4.3         |
| tPZH              | ŌĒ                | 0   | MAX        | 4.8         |
| tPZL              | UE                | u   | IVIAX      | 4.8         |
| tPHZ              | ŌĒ                | 0   | MAN        | 4.4         |
| tPLZ              | Z OE              |     | MAX        | 4.4         |

### 16722

### 22-BIT FLIP-FLOP WITH 3-STATE OUTPUTS





FUNCTION TABLE (each filp-flop)

|    | INPL  | INPUTS |   |    |  |  |
|----|-------|--------|---|----|--|--|
| ŌĒ | CLKEN | CLK    | D | Q  |  |  |
| L  | Н     | X      | X | QO |  |  |
| L  | L     | 1      | H | Н  |  |  |
| L  | L     | 1      | L | L  |  |  |
| L  | L     | LorH   | X | Qo |  |  |
| Н  | ×     | X      | X | Z  |  |  |



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | AVC<br>3V | UNIT |
|-----------|------------|-----------|------|
| Icc       | MAX        | 0.04      | mA   |
| Іон       | MAX        | -12       | mA   |
| lou       | MAX        | 12        | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT OUTPUT       |     | MAX or MIN | AVC<br>3V |
|-------------------|--------------------|-----|------------|-----------|
| fmax              |                    |     | MIN        | 150       |
| tw Pulse duration | CLK high or low    |     | MIN        | 2.8       |
|                   | Data before CLK 1  | MIN |            |           |
| tsu Setup tîme    | CLKEN before CLK 1 | MIN |            |           |
| th Hold time      | Data after CLK ↑   |     | MIN        | 0         |
| th Hold time      | CLKEN after CLK ↑  | MIN | 1.2        |           |
| tplh .            | CLK                | 211 |            | 2.6       |
| tPHL .            | ULK                | a   | MAX        | 2.6       |
| tpzh              | ŌE                 | 0   | MAX        | 4.3       |
| tpzl              | - UE               | ۵   | IVIAX      | 4.3       |
| tPHZ              | ŌĒ                 | Q   | MAX        | 3.4       |
| tPLZ              | DE OE              |     | WAX        | 3.4       |

### 16820

# 10-BIT EDGE-TRIGGERD D-TYPE FLIP-FLOPS WITH DUAL OUTPUTS





FUNCTION TABLE (each filp-flop)

| 1                 | NPUTS | OUTPUT |     |
|-------------------|-------|--------|-----|
| OE <sub>n</sub> † | CLK   | D      | Qn† |
| L                 | *     | Н      | Н   |
| L                 | *     | L      | L   |
| L                 | L     | X      | Qn  |
| LF                | V     | V      | 7   |

† n = 1, 2

UNCTION TABLE

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVCH<br>3V | UNIT |
|-----------|------------|-------------|------|
| lcc       | MAX        | 0.04        | mA   |
| Іон       | MAX        | -24         | mA   |
| lou       | MAX        | 24          | mA   |

RECOMMENDED DESATING CONDITIONS

SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT             | OUTPUT | MAX or MIN | ALVCH<br>3V |  |
|-------------------|-------------------|--------|------------|-------------|--|
| fmax              |                   | 7.0    | MIN        | 150         |  |
| tw Pulse duration | CLK high or low   | -      | MIN        | 3.3         |  |
| tsu Setup time    | Data before CLK ↑ | MIN    | 1.4        |             |  |
| th Hold time      | Data after CLK ↑  |        | MIN        | 1           |  |
| tPLH              | CLK               | _      | MAX        | 4.8         |  |
| tPHL .            | ULK               | Q      | WAX        | 4.8         |  |
| tpzh              | ŌĒ                |        | 35,444     | 5           |  |
| tPZL              | UE                | ۵      | MAX        | 5           |  |
| tPHZ              | ŌĒ                |        | MAX        | 4.5         |  |
| tPLZ              | UE                | a      | MAX        | 4.5         |  |

Tac Sergy time CAREN Serger CAR T CAREN Serger CAR T CAREN Serger CAR T CAREN Serger CAR T CAREN SERV CAR T CAREN CAR T CAREN CAR T CAREN CAR T CAREN CAR T CAREN CAR T CAREN CAR T CAREN CAREN CAREN CAREN CAREN CAREN CAR

The could still a said to



| RECOMMENDED OF | PERATING CONDITI | ONS |             |      |             |      |  |  |  |
|----------------|------------------|-----|-------------|------|-------------|------|--|--|--|
| PARAMETER      | MAX or MIN       | ABT | ALVTH<br>3V | ACT  | ALVCH<br>3V | UNIT |  |  |  |
| Icc            | MAX              | 89  | 5           | 0.08 | 0.04        | mA   |  |  |  |
| Іон            | MAX              | -32 | -32         | -24  | -24         | mA   |  |  |  |
| lou            | MAX              | 64  | 64          | 24   | 24          | mA   |  |  |  |

| PARAMETER         | INPUT                 | ŧΙΑ                    | OUTPUT  | нтва | MAX or MIN | ABT | ALVTH<br>3V | ACT  | ALVCH<br>3V | TORNO             |  |
|-------------------|-----------------------|------------------------|---------|------|------------|-----|-------------|------|-------------|-------------------|--|
| fmax              | 621                   | 00                     | dr.     | 00   | MIN        | 150 | 150         | 70   | 150         |                   |  |
| tw Pulse duration | CLK high or low       | 1.5                    | N. Call | 2.5  | MIN        | 3.3 | 1.5         | 7    | 3.3         | well RUD          |  |
| . C-t ti          | Data before CLK †     | , low                  |         | 8.8  | MIN        | 1.8 | 1.5         | 7.5  | 3.4         | wol to right XUD  |  |
| tsu Setup time    | Data before CLK ↑     | , high                 | DEV.    | 8.1  | MIN        | 1.8 | 1.5         | 7.5  | 3.4         | CLS inactive      |  |
|                   | Data after CLK ↑,     | Data after CLK ↑, high |         |      | MIN        | 1.3 | 1           | 0.5  | 0.0         | Data high helps   |  |
| th Hold time      | Data after CLK ↑, low |                        |         | 11   | MIN        | 1.3 | 1           | 0.5  | 0 13        | Data low bators   |  |
| tplh              | CLK                   | ε                      | a       |      | MAX        | 6.1 | 3.5         | 13.4 | 4.5         | and with MSSUS    |  |
| tphl .            | CLK                   | i i                    | u       | 5.1  | WAX        | 5.4 | 3.5         | 14   | 4.5         | Data High after I |  |
| tpzh              | ŌĒ                    | 0                      | Ω       | 5.1  | MAX        | 5.7 | 4.1         | 11.9 | 5.1         | Data low after D  |  |
| tPZL              | 1.3                   | 1.3                    | u       | 3.0  | WAX        | 5.6 | 3.6         | 14.7 | 5.1         | enter seed M35/15 |  |
| tPHZ              | ŌĒ                    | 121                    | Q       | 3.1  | MAX        | 6.5 | 4.8         | 10.7 | 4.6         |                   |  |
| tPLZ              | UE                    | 120                    | u       | 3    | IVIAA      | 7.1 | 4.8         | 10   | 4.6         | 2.13              |  |
| UNIT fmax: MHz    | other: ns             |                        |         |      |            |     |             |      |             | 100               |  |
|                   |                       |                        |         |      |            |     |             |      |             |                   |  |
|                   |                       |                        |         |      |            |     |             |      |             |                   |  |

18-BIT EDGE-TRIGGERD **D-TYPE FLIP-FLOPS** WITH DUAL OUTPUTS





FUNCTION TABLE (each 9-bit filp-flop) INPUTS OUTPUT

| 20E -  | 27 |        |             | -d>    | 1             |
|--------|----|--------|-------------|--------|---------------|
|        | 28 |        |             |        |               |
| 2CLKEN | 30 |        | CE          |        |               |
| 2CLK - | 42 |        | − R<br>−>C1 |        | 15 2Q1        |
| 2D1 —  | ,  | ļ      | 1D          | 000    | 1098<br>10 80 |
|        |    | To Eig | ht Other Ch | annels |               |

CLKEN Q<sub>0</sub> Q<sub>0</sub> Z

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | ABTH | AC   | ACT  | ALVCH<br>3V | UNIT |
|-----------|------------|-----|------|------|------|-------------|------|
| Icc       | MAX        | 80  | 80   | 0.08 | 0.08 | 0.04        | mA   |
| Іон       | MAX        | -32 | -32  | -24  | -24  | -24         | mA   |
| lor       | MAX        | 64  | 64   | 24   | 24   | 24          | mA   |

SWITCHING CHARACTERISTICS

| SWITCHING CHAP      | ACTERISTICS           |                       |            | _   |      |      |      | GH          |
|---------------------|-----------------------|-----------------------|------------|-----|------|------|------|-------------|
| PARAMETER           | INPUT                 | OUTPUT                | MAX or MIN | ABT | ABTH | AC   | ACT  | ALVCH<br>3V |
| fmax                |                       | 180                   | MIN        | 150 | 150  | 115  | 90   | 150         |
| tw Pulse duration   | CLR low               | E.E                   | MIN        | 3.3 | 3.3  | 3.3  | 3.3  | 3.3         |
| tw Pulse duration   | CLK high or low       | 4.5                   | MIN        | 3.3 | 3.3  | 4.4  | 5.5  | 3.3         |
|                     | CLR inactive          | 3.5                   | MIN        | 1.6 | 1.6  | 0.6  | 0.5  | 0.8         |
|                     | Data high befor       | e CLK ↑               | MIN        | 1.7 | 1.7  | 5    | 7    | 111         |
| tsu Setup time      | Data low before CLK ↑ | CLK ↑                 | MIN        | 1.7 | 1.7  | 5    | 7    | 1.3         |
| CLKEN low before CL |                       | ore CLK ↑             | MIN        | 2.8 | 2.8  | 4.2  | 3.5  | 1.5         |
|                     | Data high after       | Data high after CLK ↑ |            | 1.2 | 1.2  | 1.3  | 0.5  | 0.8         |
| th Hold time        | Data low after (      | CLK ↑                 | MIN        | 1.2 | 1.2  | 1.3  | 0.5  | 0.5         |
|                     | CLKEN low after       | r CLK ↑               | MIN        | 0.6 | 0.6  | 1.4  | 2.5  | 0.4         |
| tplH                | OLK                   | 8                     | MANY       | 6.8 | 6.8  | 12   | 12.1 | 4.5         |
| tphl.               | CLK                   | ۵                     | MAX        | 6   | 6    | 12.7 | 12.9 | 4.5         |
| tPLH .              | CLR                   | 0                     | 1447       | -   | -    |      | -    | 4.6         |
| tphl.               | CLR                   | u                     | MAX        | 6.1 | 6.7  | 11   | 12.5 | 4.6         |
| tPZH                | ŌĒ                    |                       | 1441/      | 4.9 | 4.9  | 9.7  | 10.7 | 4.8         |
| tPZL                | OE OE                 | a                     | MAX        | 5.5 | 5.5  | 11.8 | 12.8 | 4.8         |
| tPHZ                | ŌĒ                    | 0                     | MANY       | 6.1 | 6.1  | 9.3  | 10.3 | 4.5         |
| tPLZ                | I OF                  | Q                     | MAX        | 8.7 | 8.7  | 8.6  | 9.4  | 4.5         |

### 16825

# 18-BIT BUS BUFFERS/DRIVERS WITH 3-STATE OUTPUTS





**Logic Diagram** 





FUNCTION TABLE (each 9-bit section)

| - 10 | INPUTS |   | OUTPUT |
|------|--------|---|--------|
| OE1  | OE2    | Α | Υ      |
| L    | L      | L | L      |
| L    | L      | H | H      |
| H    | X      | X | Z      |
| X    | H      | X | Z      |

PUNCTION TABLE

#### RECOMMENDED OPERATING CONDITIONS

| HEGGINITE TABLE O | LIBITING GOITBITI | 0140 |      |             |      |
|-------------------|-------------------|------|------|-------------|------|
| PARAMETER         | MAX or MIN        | ABT  | ACT  | ALVCH<br>3V | UNIT |
| Icc               | MAX               | 32   | 0.08 | 0.04        | mA   |
| Іон               | MAX               | -32  | -24  | -24         | mA   |
| lo <sub>L</sub>   | MAX               | 64   | 24   | 24          | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | ABT | ACT  | ALVCH<br>3V |
|-----------|-------|--------|------------|-----|------|-------------|
| tplH      |       |        | MAN        | 3.9 | 10.5 | 3.4         |
| tPHL .    | A     | Y      | MAX        | 4.4 | 10.3 | 3.4         |
| tPZH      | ŌĒ    |        | MAX        | 6.1 | 11   | 4.7         |
| tPZL      | UE    | WIA HT |            | 6   | 13.2 | 4.7         |
| tPHZ      | ŌĒ    | E v    | MAX        | 6.9 | 11.5 | 4.5         |
| tPLZ      | UE    | Y      | MAX        | 6.6 | 10.6 | 4.5         |

UNIT: ns



Logic Diagram

6825

To Nine Other Channels





To Nine Other Channels

FUNCTION TABLE (mich 9-bit section)

#### FUNCTION TABLE (each 10-bit section)

| INPUTS |     |   | OUTPUT |
|--------|-----|---|--------|
| OE1    | OE2 | Α | Y      |
| L      | L   | L | L      |
| L      | L   | H | H      |
| H      | X   | X | Z      |
| X      | Н   | X | Z      |

ECONOMERATION DESIGNATIONS CONDITION

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | ALVTH<br>3V | ACT  | ALVCH<br>3V | AVC  | UNIT |
|-----------|------------|-----|-------------|------|-------------|------|------|
| Icc       | MAX        | 32  | 6           | 0.08 | 0.04        | 0.04 | mA   |
| Іон       | MAX        | -32 | -32         | -24  | -24         | -12  | mA   |
| lor       | MAX        | 64  | 64          | 24   | 24          | 12   | mA   |

SWITCHING CHARACTERISTICS

| SWITCHING CHARAI | TERISTICS | 1.3    | 1.0        |     |             |      |             |     |
|------------------|-----------|--------|------------|-----|-------------|------|-------------|-----|
| PARAMETER        | INPUT     | OUTPUT | MAX or MIN | ABT | ALVTH<br>3V | ACT  | ALVCH<br>3V | AVC |
| tPLH             |           |        | MAY        | 3.4 | 3           | -11  | 3.4         | 1.7 |
| tphl .           | A         | Y      | MAX        | 4.2 | 2.8         | 10.8 | 3.4         | 1.7 |
| tPZH             | ŌE        | v      | MAX        | 5.6 | 3.9         | 11.7 | 4.7         | 5.1 |
| tPZL             | ÜE        | UE Y   |            | 5.5 | 3.4         | 14   | 4.7         | 5.1 |
| tPHZ             | ŌE        |        |            | 6.6 | 5.8         | 12.4 | 4.5         | 4.7 |
| tPLZ             | 0E        | Y Y    | MAX        | 6.1 | 4.6         | 11.5 | 4.5         | 4.7 |

UNIT: ns

### 1-TO-4 ADDRESS REGISTER/DRIVER WITH 3-STATE OUTPUTS INCOME 223600A 4-07-1



**FUNCTION TABLE** 

| INPUTS |     |     |   | OUTPUT |  |
|--------|-----|-----|---|--------|--|
| OE     | SEL | CLK | A | Y      |  |
| Н      | X   | X   | X | Z      |  |
| L      | H   | X   | L | L      |  |
| L      | H   | X   | H | H      |  |
| L      | L   | 1   | L | L      |  |
| L      | L   |     | H | H      |  |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVCH<br>3V | UNIT |
|-----------|------------|-------------|------|
| lcc       | MAX        | 0.04        | mA   |
| 1он       | MAX        | -24         | mA   |
| lou       | MAX        | 24          | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT               | OUTPUT | MAX or MIN | ALVCH<br>3V |
|-------------------|---------------------|--------|------------|-------------|
| fmax              |                     |        | MIN        | 150         |
| tw Pulse duration | CLK high or low     |        | MIN        | 3.3         |
| tsu Setup time    | A data before CLK ↑ |        | MIN        | 1.6         |
| th Hold time      | A data after CLK ↑  |        | MIN        | 1.1         |
| tPLH .            | A                   | Y      | MAX        | 3.6         |
| tphl .            |                     |        |            | 3.6         |
| tPLH              | CLK                 | Y      | MAX        | 3.9         |
| tphl .            |                     |        |            | 3.9         |
| tPLH              | SEL                 | Y      | MAX        | 4.4         |
| tPHL              | SEL                 |        |            | 4.4         |
| tРZH              | ŌĒ                  | Υ      | MAX        | 4.3         |
| tPZL              | UE                  |        |            | 4.3         |
| tрнz              | ŌĒ                  | Y      | MAX        | 4.5         |
| tPLZ              | OE OE               |        |            | 4.5         |

# 16831

# 1-TO-4 ADDRESS REGISTER/DRIVER WITH 3-STATE OUTPUTS MORST 2038 223800A N-DT-1



SUBJECT MORTHWAY

SUBCRISTON DULY STON ASSURANCE

manufacture and the state of the second

|    | INP | OUTPUT |   |   |
|----|-----|--------|---|---|
| OE | SEL | CLK    | Α | Υ |
| H  | X   | X      | X | Z |
| L  | H   | X      | L | L |
| L  | H   | X      | H | Н |
| L  | L   | +      | L | L |
| L  | L   |        | Н | Н |



| RECOMMENDED OF | PERATING CONDIT | IONS        |      |  |
|----------------|-----------------|-------------|------|--|
| PARAMETER      | MAX or MIN      | ALVCH<br>3V | UNIT |  |
| Icc            | MAX             | 0.04        | mA   |  |
| Іон            | MAX             | -24         | mA   |  |
| lou            | MAX             | 24          | mA   |  |



# SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT              | OUTPUT | MAX or MIN | ALVCH<br>3V |
|-------------------|--------------------|--------|------------|-------------|
| fmax              |                    |        | MIN        | 150         |
| tw Pulse duration | CLK high or low    |        | MIN        | 3.3         |
| tsu Setup time    | A data before CLK  | ( †    | MIN        | 1.6         |
| th Hold time      | A data after CLK 1 |        | MIN        | 8 1.1       |
| tPLH              | A                  | V      | MAX        | 3.6         |
| tphl.             | 7 A                | 1      | IVIAA      | 3.6         |
| tplh              | CIV                | ν      | MAX        | 3.9         |
| tphl .            | CLK                | of a   | IVIAA      | 3.9         |
| tplh              | SEL                | v 10-4 | MAX        | 4.4         |
| tphl.             | SEL                | La al  | IVIAA      | 4.4         |
| tPZH              | ŌĒ                 | V      | MAX        | 4.3         |
| tPZL.             | UE                 | 1      | IVIAX      | 4.3         |
| tPHZ              | ŌĒ                 | Y      | MAN        | 4.5         |
| tPLZ              | UE                 | 1      | MAX        | 4.5         |

# UNIT fmax: MHz other: ns





| п | п | H | ↑<br>↑ | Odd | ^ | 1 | _ | _ | H | isolations |   |            |
|---|---|---|--------|-----|---|---|---|---|---|------------|---|------------|
| Н | Н | Н | 1      | Odd | × | X | X | 4 | 2 | 2          | н | Isolation§ |

NA = not applicable, NC = no change, X = don't care

† Output states shown assume ERR was previously high.

† Summation of high-level inputs includes PARITY along with Bi inputs.

§ In this mode, ERR (when clocked) shows inverted pannity of the A bus.

### **ERROE-FLAG FUNCTION TABLE**

| INP | UTS | INTERNAL<br>TO DEVICE | OUTPUT<br>PRE-STATE  | ОИТРИТ | FUNCTION |  |
|-----|-----|-----------------------|----------------------|--------|----------|--|
| CLR | CLK | POINT P               | ERR <sub>n-1</sub> † | ERR    |          |  |
| Н   | 1   | Н                     | Н                    | Н      |          |  |
| H   | 1   | X ster                | Other Johnson        | A OF   | Sample   |  |
| H   | T   | L                     | X                    | L      |          |  |
| L   | X   | X                     | X                    | Н      | Clear    |  |

† State of ERR before any changes at CLR, CLK, or point P

# RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | ACT  | UNIT |
|-----------|------------|-----|------|------|
| Icc       | MAX        | 36  | 0.08 | mA   |
| Іон       | MAX        | -32 | -24  | mA   |
| lou       | MAX        | 64  | 24   | mA   |

| INPUT                                   |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BE VE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------|--------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 000000000000000000000000000000000000000 | OUTPUT                                                                                     | MAX or MIN | ABT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. 35-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         |                                                                                            | MIN        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | To the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the | 7 1 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2007                                    |                                                                                            |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MEDICAL PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         |                                                                                            | R MIN      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A data before CLK ↑                     | , OEA                                                                                      |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A data after CLK ↑,                     | A port or OEA                                                                              | O MIN      | 100 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (ASTRONOMICS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BUTPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A or B                                  | B or A                                                                                     | MAX        | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NUMBER OF STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7010                                    | DUIA                                                                                       | 041        | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ۸                                       | PARITY                                                                                     | MAY        | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ^                                       | 1 Aut 1                                                                                    | I I I I    | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| OFR as OFA                              | A and D                                                                                    | MANY       | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| UEB OF UEA                              | AUID                                                                                       | IVIAA      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Heart St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0FD 0FA                                 | A D                                                                                        | CARAN      | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| UED OF UEA                              | AUID                                                                                       | WIAA       | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CLK, CLR                                | <u> </u>                                                                                   | CAAN       | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Medid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CLK                                     | Enn                                                                                        | IVIAA      | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| OFP.                                    | DADITY                                                                                     | MAN        | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| UEB                                     | PARITY                                                                                     | MAX        | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 054                                     | DADITY                                                                                     | Takes .    | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| UEA                                     | PARITY                                                                                     | MAX        | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         |                                                                                            | 10         | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| OFR                                     | PARITY                                                                                     | MAX        | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                       | and an annual of the                                                                       | 1          | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| UEB                                     | PARITY                                                                                     | MAX        | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         |                                                                                            | 24         | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| OEA                                     | PARITY                                                                                     | MAX        | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         |                                                                                            |            | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| OEA                                     | PARITY                                                                                     | MAX        | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | A data before CLK ↑ A data before CLK ↑ A data after CLK ↑ A or B  A  OEB or OEA  CLK, CLR | CLR   low  | CLR low         MIN           A data before CLK ↑, A port         A data before CLK ↑, CLR           A data before CLK ↑, DEA         MIN           A data sefore CLK ↑, DEA         MIN           A data sefore CLK ↑, A port or OEA         MIN           A or B         B or A         MAX           A         PARITY         MAX           OEB or OEA         A or B         MAX           OEB or OEA         A or B         MAX           CLK, CLR         ERR         MAX           OEB         PARITY         MAX           OEA         PARITY         MAX           OEB         PARITY         MAX | CLR   Iow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLR   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK   CLK | CLK high or low         MIN         3         4           CLR low         -         4         4           A data before CLK ↑, A port         MIN         1         1.5           A data before CLK ↑, CLR         MIN         0         0           A data after CLK ↑, A port or OEA         MIN         0         0           A or B         B or A         MAX         4.1         10.4           A. OR B         B or A         MAX         6.7         13.5           6.1         13.8         6.1         13.8           0EB or OEA         A or B         MAX         5.6         11.2           6         13         4.3         10.1         10.8           0EB or OEA         A or B         MAX         4.3         10.1           CLK, CLR         ERR         MAX         4.6         15.8           CLK         ERR         MAX         3.9         11.6           OEB         PARITY         MAX         6.7         -           0EB         PARITY         MAX         6.7         13.2           0EB         PARITY         MAX         6.5         10.7           0EB         PARITY | CLK high or low         MIN         3         4           CLR low         4.5         -         4           A data before CLK ↑, CLR         MIN         1         1.5           A data after CLK ↑, CER         5         -           A data after CLK ↑, A port or OEA         MIN         0         0           A or B         B or A         MAX         4.1         10.4           A or B         B or A         MAX         6.7         13.5           6.1         13.8         0.1         13.8           0EB or OEA         A or B         MAX         5.6         11.2           6         13         0.1         13.8         0.1         13.8           0EB or OEA         A or B         MAX         5.4         10.8         0.1         10.8           0EB or OEA         A or B         MAX         4.3         10.1         0.1         10.8         0.1         10.8         0.1         10.8         0.1         10.8         0.1         10.8         0.1         10.8         0.1         10.8         0.1         10.8         0.1         10.8         0.1         10.8         0.1         10.8         0.1         10.8         0.1 |

# **16-BIT UNIVERSAL BUS DRIVER** WITH 3-STATE OUTPUTS



## **FUNCTION TABLE**

|    | INP | OUTPUT |   |     |
|----|-----|--------|---|-----|
| OE | LE  | CLK    | Α | Y   |
| Н  | X   | X      | X | Z   |
| L  | L   | X      | L | L   |
| L  | L   | X      | H | Н   |
| L  | H   | 1      | L | L   |
| L  | H   | +      | H | H   |
| L  | H   | H      | X | Yot |
| L  | H   | L      | X | Yo‡ |

Output level before the indicated steady-state input conditions were established, provided that CLK is high before LE goes high
 Output level before the indicated steady-state input conditions were established

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVC<br>3V | AVC<br>3V | UNIT |
|-----------|------------|------------|-----------|------|
| Icc       | MAX        | 0.04       | 0.04      | mA   |
| Іон       | MAX        | -24        | -12       | mA   |
| lor       | MAX        | 24         | 12        | mA   |

| PARAMETER         | INPUT                | ОИТРИТ  | MAX or MIN | ALVC<br>3V | AVC<br>3V |
|-------------------|----------------------|---------|------------|------------|-----------|
| fmax              |                      |         | MIN        | 150        | 150       |
| tw Pulse duration | LE low               |         | MIN        | 3.3        | 3.3       |
| tw ruise duration | CLK high or low      |         | MIN        | 3.3        | 3.3       |
|                   | Data before CLK ↑    |         | MIN        | 1.7        | 0.7       |
| tsu Setup time    | Data before LE ↑, C  | LK high | MIN        | 1.9        | 1         |
|                   | Data before LE ↑, C  |         | IVIIIV     | 1.5        | 1         |
|                   | A data after CLK ↑   | 201     | MIN        | 0.7        | 0.9       |
| th Hold time      | Data after LE ↑, CLI | K high  | TAIN!      | 0.9        | 1.4       |
|                   | Data after LE ↑, CLI | K low   | MIN        | 0.9        | 1.3       |
| tPLH              |                      | Y       |            | 3.6        | 2.5       |
| tPHL .            | Α                    | T       | MAX        | 3.6        | 2.5       |
| tPLH              | LE                   | Y       | 100        | 4.9        | 4         |
| tPHL .            | - LE                 | Y       | MAX        | 4.9        | 4         |
| tPLH              | 0114                 |         | 1111       | 4.6        | 3.1       |
| tphL .            | CLK                  | Y       | MAX        | 4.6        | 3.1       |
| tPZH              | ŌE                   | Y       | 1444       | 5          | 6.2       |
| tPZL              | OE OE                | Y       | MAX        | 5          | 6.2       |
| tPHZ              | ŌĒ                   |         | 1 1 1 1    | 4.5        | 5.3       |
| tPLZ              | - UE                 | Y       | MAX        | 4.5        | 5.3       |



|    | INP | UTS |   | OUTPUT |
|----|-----|-----|---|--------|
| OE | LE  | CLK | Α | Y      |
| Н  | X   | X   | X | Z      |
| L  | H   | X   | L | L      |
| L  | H   | X   | H | H      |
| L  | L   | *   | L | L      |
| L  | L   | +   | H | H      |
| L  | L   | H   | X | Yot    |
| L  | L   | L   | X | Yo‡    |

Output level before the indicated steady-state input conditions were established, provided that CLK was high before LE went low.
 Output level before the indicated steady-state input conditions were established

| PARAMETER | MAX or MIN | LVTH<br>3V | ALVC<br>3V | ALVCH<br>3V | AVC<br>3V | UNIT |
|-----------|------------|------------|------------|-------------|-----------|------|
| Icc       | MAX        | 5          | 0.04       | 0.04        | 0.04      | mA   |
| Іон       | MAX        | -32        | -24        | -24         | -12       | mA   |
| lor       | MAX        | 64         | 24         | 24          | 12        | mA   |

| PARAMETER         | INPUT                | OUTPUT | MAX or MIN | LVTH<br>3V | ALVC<br>3V | ALVCH<br>3V | AVC<br>3V |
|-------------------|----------------------|--------|------------|------------|------------|-------------|-----------|
| fmax              |                      |        | MIN        | 150        | 150        | 150         | 150       |
| tw Pulse duration | LE low               |        | MIN        | 3.3        | 3.3        | 3.3         | 3.3       |
| tw ruise duration | CLK high or low      |        | MIN        | 3.3        | 3.3        | 3.3         | 3,3       |
|                   | Data before CLK ↑    | HSMIA  | MIN        | 2.1        | 1.7        | 1.7         | 0.7       |
| tsu Setup time    | Data before LE 1, CI | K high | MIN        | 2.3        | 1.5        | 1.5         | 0.8       |
|                   | Data before LE ↓, CI | K low  | MIN        | 1.5        | 1          | 1           | 0.5       |
|                   | A data after CLK ↑   |        | MIN        | 1          | 0.7        | 0.7         | 1.3       |
| th Hold time      | Data after LE 1, CLK | high   | MIN        | 0.8        | 1.4        | 1.4         | 1.6       |
|                   | Data after LE 1, CLK | low    | MIN        | 0.8        | 1.4        | 1.4         | 1.4       |
| tplh -            | A                    | Y      | MAX        | 3.7        | 3.6        | 3.6         | 2.5       |
| tрнL              | 7 A                  | 1      |            | 3.7        | 3.6        | 3.6         | 2.5       |
| tPLH .            | LE                   | E y    | MAX        | 5.1        | 4.2        | 4.2         | 3.8       |
| tphl.             |                      |        | IVIAA      | 5.1        | 4.2        | 4.2         | 3.8       |
| tplh              | CLK                  | 8 y 8  | MAX        | 5.1        | 4.5        | 4.5         | 3.1       |
| tPHL              | ULK                  | 44     | 1417-04    | 5.1        | 4.5        | 4.5         | 3.1       |
| tpzh              | ŌĒ                   | Ty     | MAX        | 4.6        | 4.6        | 4.6         | 6.2       |
| tPZL              | UE                   | 1 -    | 1417-07    | 4.6        | 4.6        | 4.6         | 6.2       |
| tPHZ              | ŌĒ                   | Y      | MAX        | 5.8        | 3.9        | 3.9         | 5.3       |
| tPLZ              | UE UE                | Y      | MAX        | 5.8        | 3.9        | 3.9         | 5.3       |

UNIT fmax: MHz other: ns





### **FUNCTION TABLE** (each 10-bit latch)

|    | NPUTS |   | OUTPUT |
|----|-------|---|--------|
| ŌĒ | LE    | D | Q      |
| L  | Н     | Н | Н      |
| L  | H     | L | L      |
| L  | L     | X | Qn     |
| H  | X     | X | Z      |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | ACT  | ALVCH<br>3V | UNIT |
|-----------|------------|-----|------|-------------|------|
| lcc       | MAX        | 89  | 0.08 | 0.04        | mA   |
| Іон       | MAX        | -32 | -24  | -24         | mA   |
| lou       | MAX        | 64  | 24   | 24          | mA   |

| INPUT                 | OUTPUT                                                                        | 1.5                                                                                    | MAX or MIN                                                                                                | ABT   | ACT   | ALVCH<br>3V                             |
|-----------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------|-------|-----------------------------------------|
| LE high or low        |                                                                               |                                                                                        | MIN                                                                                                       | 4     | 4     | 3.3                                     |
| Data before LE ↓      | 1.00                                                                          | 10                                                                                     | MIN                                                                                                       | 1     | 1.5   | 1.1                                     |
| Data after LE ↓, high |                                                                               | 211                                                                                    | MIN                                                                                                       | 2     | 3     | 1.1                                     |
| Data after LE 1, low  | 7.1                                                                           | 200                                                                                    | MIN                                                                                                       | 2     | 4.5   | 1.1                                     |
| D D                   | 10 ax                                                                         | MAN                                                                                    | 5                                                                                                         | 11.8  | 3.9   |                                         |
|                       |                                                                               |                                                                                        | IVIAA                                                                                                     | 5.1   | 12.2  | 3.9                                     |
| 15                    |                                                                               |                                                                                        | MAN                                                                                                       | 5     | 12.7  | 4.3                                     |
| - LE                  | s u                                                                           | 5,5                                                                                    | IVIAX                                                                                                     | 5     | 12.7  | 4.3                                     |
| 05                    | 0                                                                             | -                                                                                      | MAN                                                                                                       | 5.7   | 11.3  | 4.9                                     |
| UE                    | g u                                                                           | 2.5                                                                                    | MAX                                                                                                       | 5.6   | 13.7  | 4.9                                     |
| OE .                  | 0                                                                             | 9.9                                                                                    | MANY                                                                                                      | 6.5   | 10.2  | 4.1                                     |
| T UE                  | U                                                                             | 0,0                                                                                    | IVIAX                                                                                                     | 7.1   | 9.6   | 4.1                                     |
|                       | LE high or low  Data before LE ↓  Data after LE ↓, high  Data after LE ↓, low | LE high or low Data before LE 1 Data after LE 1, high Data after LE 1, low D LE Q OE Q | INPUT OUTPUT  LE high or low Data before LE ↓ Data after LE ↓, high Data after LE ↓, low  D  LE  Q  OE  Q | INPUT | INPUT | INPUT   OUTPUT   MAX or MIN   ABT   ACT |



# FUNCTION TABLE (each 9-bit latch)

|     | INPUTS |    |    |   |    |  |  |  |
|-----|--------|----|----|---|----|--|--|--|
| PRE | CLR    | OE | LE | D | Q  |  |  |  |
| L   | X      | L  | ×  | × | Н  |  |  |  |
| Н   | L      | L  | X  | × | L  |  |  |  |
| H   | H      | L  | H  | L | L  |  |  |  |
| H   | H      | L  | H  | H | Н  |  |  |  |
| Н   | H      | L  | L  | X | Qn |  |  |  |
| X   | X      | H  | X  | X | Z  |  |  |  |

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | UNIT |
|-----------|------------|-----|------|
| Icc       | MAX        | 85  | mA   |
| Іон       | MAX        | -32 | mA   |
| lou       | MAX        | 64  | mA   |

### SWITCHING CHARACTERISTICS

| SWITCHING CHARA   | 300,011 0000 |              |               |     |
|-------------------|--------------|--------------|---------------|-----|
| PARAMETER         | INPUT        | OUTPUT       | MAX or MIN    | ABT |
| tw Pulse duration | CLF          | Rlow         | VI 100 NO. 10 | 3.3 |
|                   | PRE          | low          | MIN           | 3.3 |
|                   | LE           | high         |               | 3.3 |
| tsu Setup time    | Data befor   | e LE ↓, high | MIN           | 0.9 |
|                   | Data befor   | re LE ↓, low | IVIIIV        | 0.6 |
| th Hold time      | Data after   | r LE ↓, high | MIN           | 1.7 |
|                   | Data afte    | r LE ↓, low  | MILIA         | 1.8 |
| tplh              | D            | 0            | MAX           | 4.8 |
| tPHL .            | U            | u            | IVIAX         | 4.8 |
| tPLH .            | LE           | 0            | MAX           | 5.9 |
| tPHL .            | LE           | u            | WAX           | 5.3 |
| tPLH .            | PRE          | 0            | MAX           | 6.1 |
| tPHL .            | FNE          | u            | IVIAX         | 5   |
| tPLH              | CLR          | 0            | MAX           | 5.4 |
| tPHL .            | CLN          | u            | IVIAA         | 6   |
| tP2H              | 0E           | 0            | MAX           | 5.4 |
| tPZL              | UE           | u u          | WAX           | 5.8 |
| tPHZ              | 0E           | 0            | MAX           | 6.3 |
| tPLZ              | UE           | u            | IVIAA         | 5.2 |

# DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS AN ASHATAL BEYT-G SOARRETM AUS TIB-BE



### **FUNCTION TABLE**

|     |     | - 1         | NPUT | S                         |               | 0  | UTPU | IT AND I/O | Os                |                                                 |
|-----|-----|-------------|------|---------------------------|---------------|----|------|------------|-------------------|-------------------------------------------------|
| OEB | ŌEĀ | CLR         | LE   | Ai<br>Σ OF H              | Bi†<br>Σ OF H | Α  | В    | PARITY     | ERR‡              | FUNCTION                                        |
| L   | Н   | X           | X    | Odd<br>Even               | NA            | NA | Α    | L          | NA                | A data to B bus and generate parity             |
| Н   | L   | Н           | L    | NA                        | Odd<br>Even   | В  | NA   | NA         | H                 | B data to A bus and<br>check parity             |
| Н   | L   | H           | Н    | NA                        | X             | X  | NA   | NA         | NC                | Store error flag                                |
| X   | X   | L           | Н    | X                         | X             | X  | NA   | NA         | Н                 | Clear error flag register                       |
| Н   | Н   | H<br>L<br>X | H    | X<br>X<br>L Odd<br>H Even | ×             | Z  | Z    | Z          | NC<br>H<br>H<br>L | Isolation§<br>(parity check)                    |
| L   | L   | X           | ×    | Odd<br>Even               | NA            | NA | Α    | H          | NA                | A data to B bus and<br>generate inverted parity |

NA = not applicable, NC = no change, X = don't care
† Summation of high-level inputs includes PARITY along with Bi inputs.
² Cutput states shown assume ERR was previously high.
§ In this mode, ERR (when clocked) shows inverted panrity of the A bus.

# ERROR-FLAG FUNCTION TABLE

| INPUTS |    | INTERNAL<br>TO DEVICE | OUTPUT               | OUTPUT      | FUNCTION |
|--------|----|-----------------------|----------------------|-------------|----------|
| CLR    | LE | POINT P               | ERR <sub>n-1</sub> † | ERR         |          |
| L      | L  | L<br>H                | ×                    | L<br>H      | Pass     |
| Н      | L  | L<br>X<br>H           | X<br>L<br>H          | L<br>L<br>H | Sample   |
| L      | Н  | X                     | X                    | Н           | Clear    |
| н      | Н  | X                     | L                    | L           | Store    |

† State of ERR before changes at CLR, LE, or point P

| PARAMETER | MAX or MIN | ABT | UNIT |
|-----------|------------|-----|------|
| Icc       | MAX        | 40  | mA   |
| Іон       | MAX        | -32 | mA   |
| lou       | MAX        | 64  | mA   |

O-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUT

### SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT                      | OUTPUT  | MAX or MIN | ABT |
|-------------------|----------------------------|---------|------------|-----|
| tw Pulse duration | LE high or low             |         |            | 8.5 |
| tw ruise duration | CLR low                    |         | - BA301    | 4   |
| tsu Setup time    | A, B and PARITY befo       | re LE ↓ | MIN        | 10  |
| tsu Setup time    | CLR before LE ↓            |         |            | 0   |
| th Hold time      | A, B and PARITY after LE ↓ |         | MIN        | 0   |
| in nota time      |                            |         |            | 0   |
| tplh              | A or B                     | B or A  | MAX        | 4.1 |
| tPHL .            | AOIB                       | D OF A  |            | 4.3 |
| tPLH              | A or OE                    | PARITY  | MAX        | 7.1 |
| tPHL .            | AOFUE                      |         | IVIAX      | 7.2 |
| tPLH              | CLR                        | ERR     | MAX        | 5.7 |
| tPZH              | OE OE                      | A or B  | MAX        | 5.6 |
| tpzl              | UE                         | AUID    | WAX        | 6   |
| tPHZ              | ŌĒ                         | A or B  | MAX        | 5.4 |
| tPLZ              | 7 05                       |         |            | 4.3 |
| tpzh              | ŌĒ                         | PARITY  | MAX        | 5.7 |
| tPZL              | J 0E                       | PARITY  | WAA        | 6.5 |
| tPHZ              | ŌĒ                         | DADITY  | MAX        | 4.7 |
| tPLZ              | UE                         | PARITY  | IVIAA      | 4.1 |
| tPLH              | LE                         | ERR     | MAX        | 4.8 |
| tPHL .            | LE                         |         | MAX        | 4.9 |
| tPLH              | A. B or PARITY             | ERR     | MAX        | 7.2 |
| tPHL .            | A, D UI PARIIT             | ENN     | WAX        | 7.4 |



To Mins Other Chancels

# FUNCTION TABLE

### AND DESCRIPTION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF

### SOUTHWISE SERVICE SERVICES

# 16861



15

# FUNCTION TABLE (each 10-bit section)

| OEAB | OEBA   | OPERATION                |
|------|--------|--------------------------|
| L. L |        | Latch A and B<br>(A = B) |
| L    | H<br>L | A to B<br>B to A         |
| H    | H      | Isolation                |

### RECOMMENDED OPERATING CONDITIONS

| TIEGOTHITIETOED OF | LIBATING GONDIN | 1    | _    |
|--------------------|-----------------|------|------|
| PARAMETER          | MAX or MIN      | ACT  | UNIT |
| Icc                | MAX             | 0.08 | mA   |
| Іон                | MAX             | -24  | mA   |
| lo <sub>L</sub>    | MAX             | 24   | mA   |

### SWITCHING CHARACTERISTICS

| SWITCHING CHAR | ACTERISTICS  |        |            | _    |
|----------------|--------------|--------|------------|------|
| PARAMETER      | INPUT        | OUTPUT | MAX or MIN | ACT  |
| tPLH .         | A or B       |        |            | 10.4 |
| tphl.          | AOFB         | B or A | MAX        | 11.1 |
| tPZH           | OEBA or OEAB |        | 1449       | 10   |
| tPZL           | UEBA OF UEAB | A or B | MAX        | 12.7 |
| tphz           | OEBA or OEAB | A or B | MAX        | 10.7 |
| tPLZ           | UEDA OF UEAD | AOFB   | IVIAA      | 10   |

# 18-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS / REVIEW AND LARGE VIEW TIGHT



### FUNCTION TABLE (each 9-bit section)

|      | langua |                             |  |  |
|------|--------|-----------------------------|--|--|
| INP  | UTS    | Ci Santa and James de North |  |  |
| OEAB | OEBA   |                             |  |  |
| Н    | L      | B data to A bus             |  |  |
| L    | H      | A data to B bus             |  |  |
| H    | H      | Isolation                   |  |  |
|      |        | A or state a                |  |  |

## STREET MOLLONG

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | ACT  | ALVCH<br>3V | UNIT |
|-----------|------------|-----|------|-------------|------|
| Icc       | MAX        | 32  | 0.08 | 0.04        | mA   |
| Іон       | MAX        | -32 | -24  | -24         | mA   |
| lou       | MAX        | 64  | 24   | 24          | mA   |

### SWITCHING CHARACTERISTICS

| SVVII CHING CHAN | ACTEMISTICS  |        |            | 4.034 |      |             |
|------------------|--------------|--------|------------|-------|------|-------------|
| PARAMETER        | INPUT        | OUTPUT | MAX or MIN | ABT   | ACT  | ALVCH<br>3V |
| tPLH .           | A D          | D as A | MAN        | 3.5   | 11.1 | 3.4         |
| tPHL .           | A or B       | B or A | MAX        | 3.9   | 11.8 | 3.4         |
| tPZH             | OEBA or OEAB | H AW   | H          | 5.4   | 10.6 | 4.7         |
| tPZL             | UEBA OF UEAB | A or B | MAX        | 4.8   | 13.6 | 4.7         |
| tPHZ             | OEBA or OEAB | 4 0    | MAX        | . 6   | 11.6 | 4.2         |
| tPLZ             | UEBA OF UEAB | A or B | MAX        | 5     | 11   | 4.2         |

# 18-BIT UNIVERSAL BUS TRANSCEIVER WITH PARITY GENERATORS/CHECKERS AT 2018 TIR-BIT

# **Block Diagram**



**FUNCTION TABLE** 

|         | OUTPUT    |   |       |   |                  |
|---------|-----------|---|-------|---|------------------|
| CLKENAB | OEAB LEAB |   | CLKAB | Α | В                |
| X       | Н         | X | X     | X | Z                |
| X       | L         | H | X     | L | L                |
| X       | L         | H | X     | H | H                |
| H       | L         | L | X     | X | Bo‡              |
| L       | L         | L | 1     | L | L                |
| L       | L         | L | 1     | H | H                |
| L       | L         | L | L     | X | Bo‡              |
| L       | L         | L | H     | X | B <sub>0</sub> § |

## PARITY-ENABLE FUNCTION TABLE

| INPUTS |      | 3    | OPERATION                     | OR FUNCTION                    |
|--------|------|------|-------------------------------|--------------------------------|
| SEL    | OEBA | OEAB | OFERATION                     | ON PONCTION                    |
| L      | Н    | L    | Parity is checked on port A a | and is generated on port B.    |
| L      | L    | H    | Parity is checked on port B a | and is generated on port A.    |
| L      | H    | H    | Parity is checked on port B a | and port A. A of all a         |
| L      | L    | L    | Parity is generated on port A | and B if device is in FF mode. |
| Н      | L    | L    | Parity funcions are           | QA data to B, QB data to A     |
| H      | L    | H    | disabled; device acts as a    | Q <sub>B</sub> data to A       |
| H      | H    | L    | standard 18-bit registered    | Q <sub>A</sub> data to B       |
| Н      | H    | H    | transceiver.                  | Isolation                      |

PARITY FUNCTION TABLE

| 1888 | PUTS   | OUT  | 100   | 1100  |      |                          | INPUTS                   |          |      |      |     |
|------|--------|------|-------|-------|------|--------------------------|--------------------------|----------|------|------|-----|
| ERRB | BPAR   | ERRA | APAR  | BPAR  | APAR | Σ OF INPUTS<br>B1-B8 = H | Σ OF INPUTS<br>A1-A8 = H | ODD/EVEN | OEAB | OEBA | SEL |
| Z    | L      | H    | N/A   | N/A   | L    | N/A                      | 0, 2, 4, 6, 8            | L        | L    | H    | L   |
|      | H      | L    | N/A   | N/A   | L    | N/A                      | 1, 3, 5, 7               | L        | L    | H    | L   |
| Z    | L      | S L  | N/A   | N/A   | H    | N/A                      | 0, 2, 4, 6, 8            | L        | L    | H    | L   |
| Z    | H      | Н    | N/A   | N/A   | H    | N/A                      | 1, 3, 5, 7               | L        | L    | H    | L   |
| Н    | N/A    | Z    | L     | L     | N/A  | 0, 2, 4, 6, 8            | N/A                      | L        | Н    | L    | L   |
| L    | N/A    | Z    | H     | L     | N/A  | 1, 3, 5, 7               | N/A                      | L        | H    | L    | L   |
| L    | N/A    | Z    | L     | Н     | N/A  | 0, 2, 4, 6, 8            | N/A                      | L        | H    | L    | L   |
| H    | N/A    | Z    | H     | H     | N/A  | 1, 3, 5, 7               | N/A                      | L        | H    | L    | L   |
| Z    | Н      | L    | N/A   | N/A   | L    | N/A                      | 0, 2, 4, 6, 8            | H        | L    | H    | L   |
| Z    | LIST   | H    | N/A   | N/A   | BAL  | N/A                      | 1, 3, 5, 7               | H        | L    | H    | L   |
| Z    | H      | H    | N/A   | N/A   | H    | N/A                      | 0, 2, 4, 6, 8            | H        | L    | H    | L   |
| Z    | L      | L    | N/A   | N/A   | H    | N/A                      | 1, 3, 5, 7               | H        | L    | H    | L   |
| 8 L  | N/A    | Z    | H     | L 100 | N/A  | 0, 2, 4, 6, 8            | N/A                      | Н        | Н    | L    | L   |
| Н    | N/A    | Z    | L     | L     | N/A  | 1, 3, 5, 7               | N/A                      | H        | H    | L    | L   |
| H    | N/A    | Z    | Н     | Н     | N/A  |                          | N/A                      | H        | H    | L    | L   |
| AL   | N/A    | Z    | W. L. | H X   | N/A  | 1, 3, 5, 7               | N/A                      | H        | H    | L    | L   |
| Н    | Z      | Н    | Z     | L     | L    | 0, 2, 4, 6, 8            | 0, 2, 4, 6, 8            | L        | Н    | Н    | L   |
| L    | Z      | L    | Z     | L     | a L  | 1, 3, 5, 7               |                          | L        | H    | H    | L   |
| AL   | Z      | L    |       | HX    | H    |                          | 0, 2, 4, 6, 8            | L        | H    | H    | L   |
| H    | Z      | Н    | Z     | H     | H    | 1, 3, 5, 7               | 1, 3, 5, 7               | L        | H    | H    | L   |
| L    | Z      | L    | Z     | L     | L    | 0, 2, 4, 6, 8            | 0, 2, 4, 6, 8            | Н        | Н    | Н    | L   |
| H    | Z<br>Z | H    | Z     | L     | L    | 1, 3, 5, 7               | 1, 3, 5, 7               | H        | H    | H    | L   |
| H    | Z      | Н    | Z     | H     | H    | 0, 2, 4, 6, 8            | 0, 2, 4, 6, 8            | H        | H    | H    | L   |
| L    | Z      | L    | Z     | H     | H    | 1, 3, 5, 7               | 1, 3, 5, 7               | H        | Н    | Н    | L   |
| Z    | PE†    | Z    | PE†   | N/A   | N/A  | N/A                      | N/A                      | L        | L    | L    | L   |
| z    | POİ    | Z    | PO±   | N/A   | N/A  | N/A                      | N/A                      | H        | L    | L    | L   |

<sup>†</sup> Parity output is set to the level so that the specific bus side is set to even parity ‡ Parity output is set to the level so that the specific bus side is set to odd parity.

<sup>‡</sup> Output level before the indicated steady-state input conditions were established
§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low

| PARAMETER | MAX or MIN | LVCH<br>3V | ALVCH<br>3V | UNIT |
|-----------|------------|------------|-------------|------|
| Icc       | MAX        | 0.02       | 0.04        | mA   |
| Іон       | MAX        | -24        | -24         | mA   |
| lou       | MAX        | 24         | 24          | mA   |

### SWITCHING CHARACTERISTICS

| SWITCHING CHAR    | ACTERISTICS                             |                                         | communit : | looir.     |             |  |
|-------------------|-----------------------------------------|-----------------------------------------|------------|------------|-------------|--|
| PARAMETER         | INPUT                                   | OUTPUT                                  | MAX or MIN | LVCH<br>3V | ALVCH<br>3V |  |
| fmax              |                                         |                                         | MIN        | 125        | 125         |  |
| rygr-ryr          | CLK †                                   |                                         | MIN        | 3          | 3           |  |
| tw Pulse duration | LE high                                 | 180161                                  | MIN        | 3          | 3           |  |
|                   | A, APAR or B, BPAR                      | R hefore CLK ↑                          | MIN        | 2.5        | 1.7         |  |
| tsu Setup time    | CLKEN before CLK                        |                                         | MIN        | 2.5        | 1.7         |  |
|                   | A, APAR or B, BPAR                      |                                         | MIN        | 2          | 1.2         |  |
|                   | A, APAR or B, BPAR                      |                                         | MIN        | 1.3        | 0.5         |  |
| th Hold time      | CLKEN after CLK ↑                       | Tuttor out                              | MIN        | 1.5        | 0.7         |  |
|                   | A, APAR or B, BPAR                      | Rafter LE J                             | MIN        | 1.7        | 0.9         |  |
| tPLH .            |                                         |                                         |            | 5.4        | 4.4         |  |
| tphl.             | A or B                                  | B or A                                  | MAX        | 5.4        | 4.4         |  |
| tPLH              |                                         |                                         |            | 7.7        | 6.7         |  |
| tPHL              | A or B                                  | BPAR or APAR                            | MAX        | 7.7        | 6.7         |  |
| tPLH .            | -                                       |                                         |            | 5.7        |             |  |
| tPHL              | APAR or BPAR                            | BPAR or APAR                            | MAX        | 5.7        | 4.7         |  |
| tPLH .            | 9 9 0                                   | may I                                   | 0.0        | 8.5        | 7.5         |  |
| TPHL              | APAR or BPAR                            | ERRA or ERRB                            | MAX        | 8.5        | 7.5         |  |
| TPLH TPLH         |                                         |                                         | 4 4        | 7.8        | 6.8         |  |
| 270200            | ODD / EVEN                              | ERRA or ERRB                            | MAX        | 7.8        | 6.8         |  |
| tPHL OR           |                                         | 4                                       |            | 7.5        | 6.5         |  |
| tPLH DAIRAG       | ODD / EVEN                              | BPAR or APAR                            | MAX        | 7.5        | 6.5         |  |
| tPHL              |                                         |                                         |            | 6.1        | 5.1         |  |
| tPLH              | SEL                                     | BPAR or APAR                            | MAX        | 6.1        | 5.1         |  |
| tPHL              |                                         |                                         |            | 6.1        | 5.1         |  |
| tPLH .            | CLKAB or CLKBA                          | A or B                                  | MAX        | 6.1        | 5.1         |  |
| tPHL .            |                                         |                                         |            |            | 5.6         |  |
| tPLH              | CLKAB or CLKBA                          | BPAR or APAR<br>parity feedthrough      | MAX        | 6.6        | _           |  |
| tPHL .            |                                         |                                         |            | 6.6<br>8.7 | 7.7         |  |
| tPLH              | CLKAB or CLKBA                          | BPAR or APAR parity generated           | MAX        |            | 7.7         |  |
| tPHL .            |                                         | parity generated                        |            | 8.7        | 7.9         |  |
| tPLH              | CLKAB or CLKBA                          | ERRA or ERRB                            | MAX        | 8.9        | 7.9         |  |
| tPHL .            |                                         | chine                                   |            | 2.0        | 4.8         |  |
| tPLH              | LEAB or LEBA                            | A or B                                  | MAX        | 5.8        | 1000        |  |
| tpht.             | H = A01 - A1                            |                                         |            | 5.8        | 5.3         |  |
| tPLH .            | LEAB or LEBA                            | BPAR or APAR                            | MAX        | 6.3        | 1,500.00    |  |
| tPHL .            | H 1 01 B B A 3 D                        | parity feedthrough                      | 18 4       | 6.3        | 5.3         |  |
| tplH H            | LEAB or LEBA                            | BPAR or APAR                            | MAX        | 8.4        | 7.4         |  |
| tPHL .            | VI. (1) (1) (1)                         | parity generated                        |            | 8.4        | 7.4         |  |
| tPLH              | LEAB or LEBA                            | ERRA or ERRB                            | MAX        | 8.5        | 7.5         |  |
| tPHL .            | 833523                                  |                                         | 7 1        | 8.5<br>6.3 | 7.5         |  |
| tPZH              | OEAB or OEBA                            | B, BPAR<br>or A, APAR                   | MAX        |            | 2.2         |  |
| tPZL              |                                         | -                                       |            | 6.3        | 5.3         |  |
| tPHZ              | OEAB or OEBA                            | B, BPAR                                 | MAX        | 5.9        |             |  |
| tPLZ              |                                         | or A, APAR                              |            | 5.9        | 4.9         |  |
| tРZH              | OEAB or OEBA                            | ERRA or ERRB                            | MAX        | 5.9        | 4.9         |  |
| tPZL              | 100000000000000000000000000000000000000 |                                         |            | 5.9        | 4.9         |  |
| tPHZ              | OEAB or OEBA                            | ERRA or ERRB                            | MAX        | 6.7        | 5.7         |  |
| tPLZ              |                                         |                                         |            | 6.7        | 5.7         |  |
| tрzн              | SEL                                     | ERRA or ERRB                            | MAX        | 6.5        | 5.5         |  |
| tPZL              |                                         | 100000000000000000000000000000000000000 | 0.000.0000 | 6.5        | 5.5         |  |
| tPHZ              | SEL                                     | ERRA or ERRB                            | MAX        | 5.9        | 4.9         |  |
| tPLZ              |                                         |                                         |            | 5.9        | 4.9         |  |



### SWITCHING CHARACTERISTICS

| SWII        | CHING CHARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1           |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
| Р           | ARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | INPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OUTPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAX or MIN | ALVCH<br>3V |
| fmax        | ABAJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J1 - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN        | 125         |
| tw Pt       | Pulse duration  CLK ↑  1A-12A before CLK ↑, resist  1A-10A before CLK ↑, suffer  APAR before CLK ↑, buffer  APAR before CLK ↑, buffer  PARI/O before CLK ↑, buffer  11A/YERREN before CLK ↑, resiste  1A-12A after CLK ↑, resiste  1A-12A after CLK ↑, resiste  1A-10A after CLK ↑, resiste  APAR after CLK ↑, buffer  APAR after CLK ↑, buffer  APAR after CLK ↑, buffer  APAR after CLK ↑, buffer  APAR after CLK ↑, buffer  APAR after CLK ↑, buffer  APAR after CLK ↑, buffer  APAR after CLK ↑, buffer  CLKEN after CLK ↑, vesister  Buffer mode  A  Buffer mode  CLK  Buffer mode  CLK  Buffer mode  CLK  Buffer mode  CLK  FELH  Both mode  CLK  FELH  Both mode  CLK  FELH  Both mode  CLK  FELH  Both mode  CLK  FELH  Both mode  CLK  FELH  Both mode  CLK  FELH  Both mode  CLK  FELH  Both mode  CLK  FELH  Both mode  CLK  FELH  Both mode  CLK  FELH  Both mode  CLK  FELH  Both mode  CLK  FELH  Both mode  CLK  FELH  Both mode  CLK  FELH  Both mode  CLK  FELH  Both mode |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MIN        | 3           |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1A-12A before CLK ↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , resister mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN        | 1.45        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN        | 4.4         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | APAR before CLK 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | resister mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MIN        | 1.3         |
| tsu Se      | etup time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | APAR before CLK 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | buffer mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIN -      | 3.1         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN        | 1.7         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN        | 1.6         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CLKEN before CLK ↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , resister mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN        | 2.2         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN        | 0.55        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN        | 0.25        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN        | 0.7         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN        | 0.25        |
| th Ho       | ld time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4        |             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN        | 0.5         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4        |             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN        | 0.4         |
| tPLH        | n // 2521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _ 08 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 3.8         |
| tPHL.       | Buffer mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAX        | 3.8         |
| tPLH        | ERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VEDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 4.4         |
| tPHL.       | Both mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAX        | 4.4         |
| tPLH        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 212110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ****       | 6.6         |
| tPHL        | Both mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PARI / 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAX        | 6.6         |
| tPLH        | 2 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - OF       | 4.9         |
| tPHL        | Both mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAX        | 4.9         |
| tPLH        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 011/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AAAV       | 4.8         |
| <b>TPHL</b> | Resister mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | MAX        | 4.6         |
| tPZH        | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ŌĒ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAX        | 5.4         |
| tPZL        | Both mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAX        | 5.4         |
| tPZH        | D 41 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PAROE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DARLLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAX        | 4.8         |
| tPZL        | Both mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PARUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PARI / 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IVIAX      | 4.8         |
| tPHZ        | Both mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ŌE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAX        | 5           |
| tPLZ        | Both mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WAX        | 5           |
| tPHZ        | Dath made                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PAROE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DADL / O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAX        | 3.8         |
| tPLZ        | Both mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PARUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PARI / 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IVIAA      | 3.8         |
| tPLH        | Both mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ŌE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAX        | 4           |
| <b>TPHL</b> | Tour mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IENN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IVIAA      | 4.2         |

UNIT fmax: MHz other: ns



# 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS



### FUNCTION TABLE

|         | OUTPUT |      |   |                  |
|---------|--------|------|---|------------------|
| CLKENAB | CLKAB  | OEAB |   |                  |
| Н       | X      | L    | X | Bo‡              |
| ×       | L      | L    | X | B <sub>0</sub> ‡ |
| L       | 1      | L    | L | L                |
| L       | TYR -  | L    | H | Н                |
| Н       | X      | Н    | X | Z                |

† A-to-B data flow is shown; B-to-A data flow is similar but uses CEKENBA, CLKBA, and OEBA.

‡ Level of B before the indicated steady-state input conditions were established.

# S-Ω OCTAL BUS BUFFERS/DRIVERS

High Output Drive Correct

Distributed V<sub>CC</sub> and GND Pins Minimize Noise

1A3 20

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | AC   | LVTH<br>3V | LVCH<br>3V | ALVCH<br>3V | UNIT |
|-----------|------------|-----|------|------------|------------|-------------|------|
| Icc       | MAX        | 35  | 0.08 | 5          | 0.02       | 0.04        | mA   |
| Іон       | MAX        | -32 | -24  | -32        | -24        | -24         | mA   |
| lou       | MAX        | 64  | 24   | 64         | 24         | 24          | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT                             | OUTPUT | MAX or MIN | ABT | AC   | LVTH<br>3V | LVCH<br>3V | ALVCH<br>3V |
|-------------------|-----------------------------------|--------|------------|-----|------|------------|------------|-------------|
| fmax              | ne II                             | - 87   | MIN        | 150 | 75   | 150        | 150        | 150         |
| tw Pulse duration | CLKEN high                        |        | MIN        | -   | -    | -          | -          | 3.3         |
| tw ruise duration | CLK high or low                   | IVIIN  | 3.3        | 6.7 | 3.3  | 3.3        | 3.3        |             |
| tsu Setup time    | Data before CLK  CLKEN before CLK |        | MIN        | 3.5 | 5    | 1.7        | 2.8        | 1.5         |
|                   |                                   |        | MIN .      | 3   | 6.5  | 2          | 1.4        | 1           |
|                   | Data after CLK  CLKEN after CLK   |        | MIN        | 1   | 1    | 0.8        | 0.5        | 0.8         |
| th Hold time      |                                   |        | IVIIIN     | 1   | 0    | 0.4        | 1.9        | 1.1         |
| tPLH              | CLK                               | A B    | AAAW       | 4.3 | 11.8 | 4.4        | 6.6        | 3.9         |
| tPHL .            | CLK                               | A or B | MAX        | 4.5 | 11.7 | 4.4        | 6.6        | 3.9         |
| tPZH              | OEBA or OEAB                      | 4 D    | MAN        | 4.6 | 11.2 | 4.9        | 6.6        | 4.4         |
| tPZL              | OEBA or OEAB A or B               |        | MAX        | 6   | 13   | 4.9        | 6.6        | 4.4         |
| tPHZ              | OEBA or OEAB A or B               |        | MANY       | 5.5 | 9.4  | 6.2        | 6.7        | 4           |
| tPLZ              |                                   |        | MAX        | 4.2 | 8.7  | 5.3        | 6.7        | 4           |

UNIT fmax: MHz other:ns

DAMENDED OPERATING CONDITIONS

PAYTRICETA CO AND DISCOTTO



| RECOMMENDED OF | PERATING CONDIT | IONS        |             |      |
|----------------|-----------------|-------------|-------------|------|
| PARAMETER      | MAX or MIN      | SN74<br>BCT | SN64<br>BCT | UNIT |
| Icc            | MAX             | 119         | 119         | mA   |
| Тон            | MAX             | -80         | -80         | mA   |
| lou            | MAX             | 188         | 188         | mA   |

## SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | SN74<br>BCT | SN64<br>BCT |
|-----------|-------|--------|------------|-------------|-------------|
| tPLH      |       |        |            | 5.5         | 5.5         |
| tphL .    | A     | , ,    | MAX        | 6           | 6.3         |
| tpzH      | ŌĒ    | V      | MAN        | 9.3         | 9.7         |
| tPZL.     | UE    | 1      | MAX        | 10.2        | 10.4        |
| tPHZ      | ŌE    | v      | MAX        | 6.3         | 6.5         |
| tPLZ      | UE    | Y      | WAX        | 8.4         | 9.5         |





# **Logic Diagram**



FUNCTION TABLE

|       |           |      | INPUTS |     |    |
|-------|-----------|------|--------|-----|----|
| HON   | KAI       | OPER |        | DIR | OE |
| A bus | to        | data | В      | L   | L  |
| B bus | to        | data | A      | H   | L  |
| on    | Isolation |      |        |     | H  |

### FUNCTION TABLE

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER    | MAX or MIN | SN74<br>BCT | АВТН | UNIT |
|--------------|------------|-------------|------|------|
| Icc          | MAX        | 125         | 20   | mA   |
| loн (A port) | MAX        | -80         | -80  | mA   |
| loн (B port) | MAX        | -3          | -32  | mA   |
| lot (A port) | MAX        | 188         | 188  | mA   |
| lot (B port) | MAX        | 24          | 64   | mA   |

### COMMENDED OPERATING CONDITIONS

## SWITCHING CHARACTERISTICS

| SWITCHING CHARAC | CIENISTICS |         |                     |             |         | 1     |         |  |
|------------------|------------|---------|---------------------|-------------|---------|-------|---------|--|
| PARAMETER        | INPUT      | ОИТРИТ  | MAX or MIN          | SN74<br>BCT | ABTH    | מעדרט |         |  |
| tPLH             | A          | В       | MAX 5.7 3.9 7.2 4.3 | 5.7 3.9     | 5.7 3.9 | 3.9   | 5.7 3.9 |  |
| tPHL .           | А          | В       |                     | 7.2         | 4.3     | 8.    |         |  |
| tPLH .           | В          |         | MAX                 | 5.5         | 3.9     | A     |         |  |
| TPHL             | В          | A       | IVIAX               | 6.2         | 4.3     | - 2.  |         |  |
| tPZH             | ŌE         | A       | MAX                 | 9.6         | 6.5     | A     |         |  |
| tPZL             | UE         | _ ^     | A THINA             | 10.3        | 6.8     | ^     |         |  |
| tPHZ             | ŌE         | A       | MAX                 | 6.2         | 7.2     | 8     |         |  |
| tPLZ             | OE.        | A       | 8 IVIAA             | 8.3         | 6.4     | - 0   |         |  |
| tРZH             | OE B       | MAX     | 8.9                 | 6.5         | 0       |       |         |  |
| tPZL             | UL.        | Б       | OL SINAX 9.         | 9.7         | 6.8     |       |         |  |
| tPHZ             | ŌE         | В       | MAX                 | 6.9         | 7.2     |       |         |  |
| tPLZ             | UE         | UE B WI | WAA                 | 7.5         | 6.4     |       |         |  |

- High Output Drive Current
- Distributed V<sub>CC</sub> and GND Pins Minimize Noise Generated by the Simultaneous Switching of Outputs



To Seven Other Channels

# **FUNCTION TABLE**

| INPUTS |     | 0050171011      |
|--------|-----|-----------------|
| ŌĒ     | DIR | OPERATION       |
| L      | L   | B data to A bus |
| L      | H   | A data to B bus |
| H      | X   | Isolation       |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER    | MAX or MIN | SN74<br>BCT | UNIT |
|--------------|------------|-------------|------|
| Icc          | MAX        | 125         | mA   |
| loн (B port) | MAX        | -3          | mA   |
| lot (A port) | MAX        | 188         | mA   |
| lot (B port) | MAX        | 24          | mA   |
| Von (A port) | MAX        | 5.5         | V    |

| SWITCHING CHARAC | CTERISTICS |            |            |             |  |  |
|------------------|------------|------------|------------|-------------|--|--|
| PARAMETER        | INPUT      | OUTPUT HEE | MAX or MIN | SN74<br>BCT |  |  |
| tPLH             | A          | В          | MAX        | 6.2         |  |  |
| tPHL .           | A          | D 8.4      | IVIAA      | 4           |  |  |
| tPLH .           | В          | A          | MAX        | 6.3         |  |  |
| tPHL             | D          | A 8.3      | IVIAX      | 5.9         |  |  |
| tPLH             | ŌĒ         | A          | MAX        | 11.6        |  |  |
| tPHL .           | UE         | A 9.8      | IVIAX      | 11.3        |  |  |
| tPZH             | ŌĒ         | В 5.0      | MAX        | 9.1         |  |  |
| tPZL             | UE         | D 9.3      | IVIAA      | 9.8         |  |  |
| tPHZ             | ŌĒ         | В          | MAX        | 7.3         |  |  |
| tPLZ             | UE         | B          | WAX        | 7.3         |  |  |
| UNIT: ns         |            | 1.5        | 6.8        | KAM         |  |  |

# 29821 **Logic Diagram** 10-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS 3-State Outputs > C1 Data Flow-Through Pinout 1D 1D -To Nine Other Channels FUNCTION TABLE (each filp-flop) INPUTS OUTPUT CLK D Q HorL 00

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS | SN74<br>BCT | UNIT |
|-----------|------------|-----|-------------|------|
| Icc       | MAX        | 115 | 35          | mA   |
| Іон       | MAX        | -24 | -24         | mA   |
| lor       | MAX        | 48  | 48          | mA   |

### SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT             | OUTPUT         | MAX or MIN    | ALS    | SN74<br>BCT |
|-------------------|-------------------|----------------|---------------|--------|-------------|
| fmax              |                   | - 2            | CHAIRCTCAILST | RO AWA | 125         |
| tw Pulse duration | CLK high or low   |                | MIN           | 7      | 7           |
| tsu Setup time    | Data before CLK ↑ | UO FO          | MIN           | 4      | 7           |
| th Hold time      | Data after CLK ↑  |                | MIN           | 2      | 1           |
| tPLH .            | CIV               | 0              | MAY           | 10     | 12          |
| tPHL .            | CLK               | а              | MAX           | 10     | 10          |
| tpzh              | ŌĒ                |                |               | 14     | 12          |
| tPZL              | UE UE             | ngmansb 1-2    | MAX           | 14     | 13          |
| tPHZ              | 0.5               | VIOLETTIA T. 7 | MAN           | 14     | 8           |
| tPLZ              | - OE              | Q.             | MAX           | 12     | 8           |

UNIT fmax : MHz other : ns



To Seven Other Channels

**FUNCTION TABLE** 

|     |     | INPUTS |      |   | OUTPUT |
|-----|-----|--------|------|---|--------|
| OE† | CLR | CLKEN  | CLK  | D | Q      |
| L   | L   | X      | X    | X | L      |
| L   | H   | L      | 1    | H | H      |
| L   | H   | L      |      | L | L      |
| L   | H   | H      | HorL | X | Qn     |
| H   | X   | X      | X    | X | Z      |

 $\uparrow \overline{OE} = H$  if any of the output-enable inputs is high.  $\overline{OE} = L$  if all of the output-enable inputs are low.

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | SN74<br>BCT | UNIT |
|-----------|------------|-------------|------|
| Icc       | MAX        | 40          | mA   |
| Іон       | MAX        | -24         | mA   |
| lou       | MAX        | 48          | mA   |

| PARAMETER         | INPUT                |         | MAX or MIN | SN74<br>BCT |
|-------------------|----------------------|---------|------------|-------------|
| fmax              |                      | 1.303.4 | MIN        | 125         |
| 7.0               | CLK low              | 2. 7.   | MIN        | 4           |
| tw Pulse duration | CLK high or low      |         | MIN        | 4           |
| - XI              | Before CLK ↑, data   | high    | MIN        | 6           |
|                   | Before CLK †, data   | MIN     | 3.5        |             |
| tsu Setup time    | CLR                  | MIN     | 1.         |             |
|                   | CLKEN before CLK     | MIN     | 8          |             |
|                   | After CLK ↑, data h  | MIN     | 1.5        |             |
| th Hold time      | After CLK ↑, data lo | MIN     | 0          |             |
|                   | CLKEN after CLK ↑    | MIN     | 0.5        |             |
| tPLH              | 0111                 |         |            | 9           |
| tphL .            | CLK                  | Q.      | MAX        | 8.4         |
| tphl.             | CLR                  | Q       | MAX        | 9.5         |
| tрzн              | - OE                 |         |            | 10.3        |
| tPZL              | UE                   | Q       | MAX        | 10.2        |
| tрнZ              | - OE                 | 0       | MAX        | 9           |
| tPLZ              | 1 UE                 | u u     | WAX        | 8.2         |

UNIT fmax: MHz other:ns

2093 Tate Outputs

Data Flow-Through Pinout



To Nine Other Channels

**FUNCTION TABLE** 

|     | INPUT |   | OUTPUT |
|-----|-------|---|--------|
| OE1 | OE2   | Α | Y      |
| L   | L     | L | L      |
| L   | L     | H | H      |
| L   | X     | X | Z      |
| H   | H     | X | 2      |

†n = 1,2

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS | SN74<br>BCT | UNIT |
|-----------|------------|-----|-------------|------|
| lcc       | MAX        | 40  | 40          | mA   |
| Іон       | MAX        | -24 | -24         | mA   |
| lou       | MAX        | 48  | 48          | mA   |

|           |       |                |            |     |             | 1      |  |
|-----------|-------|----------------|------------|-----|-------------|--------|--|
| PARAMETER | INPUT | OUTPUT         | MAX or MIN | ALS | SN74<br>BCT | BUTFUS |  |
| tPLH .    |       | 7 5.5          |            |     |             |        |  |
| tPHL .    | _ A   | ,              | MAX        | 7.5 | 7.5         | Y      |  |
| tPZH      | ŌE    | V MAY 15 9.    | 9.1        |     |             |        |  |
| tPZL      | - UE  | 1              | MAX        | 15  | 12.8        | 1 7    |  |
| tрнz      | ŌE    | - <del> </del> | 8.8        |     |             |        |  |
| tPLZ -    | ] UE  | 7              | MAX        | 12  | 8.4         | 7      |  |
| UNIT: ns  |       |                |            |     |             |        |  |

# 29828

# **10-BIT BUFFERS AND BUS DRIVERS** WITH 3-STATE OUTPUTS

- pnp Inputs Reduce dc Loading
- 3-State Outputs
- Data Flow-Through Pinout





To Nine Other Channels

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS | UNIT |
|-----------|------------|-----|------|
| Icc       | MAX        | 40  | mA   |
| Гон       | MAX        | -24 | mA   |
| lou       | MAX        | 48  | mA   |

| SWITCHING CHARAC | CTERISTICS |        |            |        |  |    |  |  |  |
|------------------|------------|--------|------------|--------|--|----|--|--|--|
| PARAMETER        | INPUT      | OUTPUT | MAX or MIN | ALS    |  |    |  |  |  |
| tPLH .           |            | V I    | MAX        | 7      |  |    |  |  |  |
| tPHL .           | A          | Yaz    | MAX        | 7.5    |  |    |  |  |  |
| tPZH             | ŌĒ         | v      |            | 15     |  |    |  |  |  |
| tPZL             | UE         | Y 8.5  | MAX        | 15     |  |    |  |  |  |
| tPHZ             | ŌĒ         | 8.8    | 8.8        | 17     |  |    |  |  |  |
| tPLZ             | UE         | Ψ 0,1  | WAX        | MAX 12 |  | 12 |  |  |  |

UNIT: ns

**NOTICE: ALS IS NOT RECOMMENDED FOR NEW DESIGNS** 



| PARAMETER | MAX or MIN | ALS | SN74<br>BCT | UNIT |
|-----------|------------|-----|-------------|------|
| lcc       | MAX        | 85  | 35          | mA   |
| Іон       | MAX        | -24 | -24         | mA   |
| lou       | MAX        | 48  | 48          | mA   |

| SWITCHING CHAP    | ACTERISTICS          |        |            |     |             |
|-------------------|----------------------|--------|------------|-----|-------------|
| PARAMETER         | INPUT                | OUTPUT | MAX or MIN | ALS | SN74<br>BCT |
| tw Pulse duration | LE high or low       |        | MIN        | 6   | 4           |
| tsu Setup time    | Data beforeLE ↓      |        | MIN        | 2.5 | 2           |
| th Hold time      | Data after LE 1, hig | h      | MIN        | 4.5 | 1.5         |
|                   | Data after LE 1, lov | V      | MIN        | 4.5 | 3.5         |
| tplh              | D                    | Q      | MAX        | 9.5 | 7.5         |
| tphl .            |                      | u u    | IVIAA      | 9.5 | 8.6         |
| tplH              | LE                   | Q      | MAX        | 12  | 8.6         |
| tPHL              | _ LE                 | u u    | IVIAA      | 12  | 8.1         |
| tPZH              | ŌE                   | 0      | MAX        | 14  | 9.2         |
| tPZL              | UE                   | u      | MAX        | 14  | 12.8        |
| tPHZ              | ŌĒ                   | 0      | MAX        | 15  | 6.9         |
| tPLZ              | 7 06                 | l u    | IVIAX      | 12  | 6.9         |



To Eight Other Channels

## **FUNCTION TABLE**

|     |     | INPUTS |      | OUTPUT |    |
|-----|-----|--------|------|--------|----|
| PRE | CLR | ŌĒ     | E LE |        | Q  |
| L   | X   | L      | X    | X      | Н  |
| H   | L   | L      | X    | ×      | L  |
| H   | H   | L      | H    | L      | L  |
| H   | H   | L      | Н    | H      | Н  |
| Н   | H   | L      | L    | X      | Qn |
| X   | X   | H      | X    | X      | Z  |

## BIT TO 9-BIT PARITY BUS TRANSCRIVER

Logic Diagram

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | SN74<br>BCT | UNIT |
|-----------|------------|-------------|------|
| Icc       | MAX        | 35          | mA   |
| Іон       | MAX        | -24         | mA   |
| lor .     | MAX        | 48          | mA   |

| OTTITUDE OFFICE   | 0.1012111011100                                                                       |             |            |             |
|-------------------|---------------------------------------------------------------------------------------|-------------|------------|-------------|
| PARAMETER         | INPUT                                                                                 | ООТРОТ      | MAX or MIN | SN74<br>BCT |
|                   | PRE low                                                                               |             |            | 7           |
| tw Pulse duration | CLR low                                                                               |             | MIN        | 5           |
|                   | LE high                                                                               |             | Je         | 4           |
| 4 C-4 1           | PRE low CLR low LE high Data before LE ↓, h PRE or CLR inactive Data after LE ↓, high | high or low | MIN        | 1.5         |
| tsu Setup time    |                                                                                       |             | IVIIIV     | 2           |
| th Hold time      | Data after LE 1, his                                                                  | gh or low   | MIN        | 3.5         |
| tPLH              |                                                                                       | Δ.          | MAX        | 8           |
| tPHL              | D                                                                                     | u u         | IVIAX      | 9           |
| <b>TPLH</b>       | Si se                                                                                 | - 0         | MAX        | 10          |
| tPHL .            | C b L                                                                                 | u           | IVIAX      | 10          |
| tplh              | DDE                                                                                   | 0           | MAX        | 12          |
| tphL .            | PRE                                                                                   | ۵           | MAX        | 12          |
| tplH .            | 010                                                                                   | 0           | MAX        | 12          |
| tphL .            | CLR                                                                                   | u           | MAX        | 12          |
| tpzh              | <u> </u>                                                                              | 0           | MAX        | 15          |
| tPZL              | UE                                                                                    | u           | IVIAX      | 15          |
| tPHZ              | 05                                                                                    | Q.          | MANY       | 8           |
| tou a             | - UE                                                                                  | 1 4         | MAX        | 0           |



### FUNCTION TABLE

|                                              | 0                 | T AND I/ | UTPU | 0  |                |                           | UTS  | INP         |     |     |
|----------------------------------------------|-------------------|----------|------|----|----------------|---------------------------|------|-------------|-----|-----|
| OPERATION                                    | TA SA             | PARITY   | В    | A  | Bi†<br>Σ of Ls | Ai<br>Σ of Hs             | LE   | CLR         | OEA | OEB |
| A data to B bus and generate parity          | NA                | H        | Ā    | NA | NA             | Odd<br>Even               | X    | X           | Н   | L   |
| B data to A bus and check parity             | H                 | NA       | NA   | B  | Odd<br>Even    | NA                        | L    | Χ           | L   | Н   |
| Store error flag                             | N-1               | NA       | NA   | X  | X              | NA                        | Н    | Н           | L   | Н   |
| Clear error-flag register                    | Н                 | NA       | NA   | X  | X              | X                         | H    | L           | Х   | X   |
| Isolation§                                   | NC<br>H<br>L<br>H | Z        | z    | Z  | х              | X<br>X<br>L Odd<br>H Even | HHLL | H<br>L<br>X | Н   | Н   |
| Ā data to B bus and generate inverted parity | NA                | L<br>H   | Ā    | NA | NA             | Odd<br>Even               | X    | X           | L   | L   |

NA = not applicable, NC = no change, X = don't care
† Summation of high-level inputs includes PARITY along with Bi inputs.
† Output states Shown assume ERR was previously high.
§ in this mode, ERR, when enabled, shows inverted parity of the A bus.

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS | SN74<br>BCT | UNIT |
|-----------|------------|-----|-------------|------|
| Icc       | MAX        | 100 | 80          | mA   |
| Іон       | MAX        | -24 | -24         | mA   |
| lou       | MAX        | 48  | 48          | mA   |

### WITCHING CHARACTERISTICS

| PARAMETER         | INPUT                | OUTPUT          | MAX or MIN | ALS | SN74<br>BCT | 08     |
|-------------------|----------------------|-----------------|------------|-----|-------------|--------|
|                   | LE high              |                 | MIN        | 10  |             |        |
| tw Pulse duration | LE low               |                 | MIN        | 10  | 10          |        |
|                   | CLR low              |                 | MIN        | 10  | 10          |        |
|                   | Before LE 1, Bi and  | PARITY          | MIN        | 10  | 18          | 1      |
| tsu Setup time    | Before LE ↓, CLR his | gh              | MIN        | 15  | -           | 1      |
| th Hold time      | Bi and PARITY after  | LE ↓            | MIN        | 3   | 8           |        |
| tplh              | A or B               | B or A          | MANY       | 8   | 8           |        |
| tphL .            | A OF B B OF A        |                 | MAX        | 8   | 8           | שהייטו |
| tplh              | A                    | DARITY          | MANY       | 15  | 15          | 1      |
| tphL.             | A                    | PARITY          | MAX        | 18  | 15          | A so 8 |
| tpzh              | OEA or OEB           | A D             | MAX        | 17  | 17          | ]      |
| tPZL              | UEA OF UEB           | A or B          | MAX        | 17  | 19          | 8 10 / |
| tPHZ              | OEA or OEB           |                 |            | 15  | 15          |        |
| tPLZ              | UEA OF UEB           | A or B          | MAX        | 8   | 17          | B to A |
| tPHL .            | LE                   | ERR             | MAX        | 12  | 9           |        |
| tplh              | CLR                  | ERR             | MAX        | 12  | 15          | 1      |
| tplh              | OEA                  | DADITY          | MAN        | 17  | 15          |        |
| tphl.             | UEA                  | PARITY          | MAX        | 19  | 16          | 1      |
| tplH              | D: / DADITY          | Bi / PARITY ERR |            |     | 20          | 1      |
| tPHL .            | Bi / PARITY          | ERR             | MAX        | 20  | 15          | 1      |

# 29863

# 9-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

True Outputs

### **FUNCTION TABLE**

|       | INP   | - Janeary |       |               |
|-------|-------|-----------|-------|---------------|
| OEAB1 | OEAB2 | OEBA1     | OEBA2 | OPERATION     |
| L     | L     | L         | L     | Latch A and B |
| L     | L     | H         | X     | A to B        |
| L     | L     | X         | Н     | AIOB          |
| H     | X     | L         | L     | B to A        |
| X     | Н     | L         | L     | DIOA          |
| Н     | X     | Н         | X     |               |
| H     | X     | X         | H     | Installed     |
| X     | H     | X         | H     | Isolation     |
| X     | H     | H         | X     |               |

# Logic Diagram



To Eight Other Channels

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALS | SN74<br>BCT | UNIT |
|-----------|------------|-----|-------------|------|
| lcc       | MAX        | 65  | 45          | mA   |
| Іон       | MAX        | -24 | -24         | mA   |
| lou       | MAX        | 48  | 48          | mA   |

### SWITCHING CHARACTERISTICS

| SWITCHING CHAIL | ACTEMISTICS   |                                         |            | MIN |             |        |
|-----------------|---------------|-----------------------------------------|------------|-----|-------------|--------|
| PARAMETER       | INPUT         | OUTPUT                                  | MAX or MIN | ALS | SN74<br>BCT | Ang 8  |
| tPLH            | A D           | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |            | 8   | 5           | PARITY |
| tPHL .          | A or B        | B or A                                  | MAX        | 8   | 7.5         |        |
| tPZH            | 054D 05D4     | A D                                     | MANY       | 15  | 8.4         | 8 to A |
| tpzi            | OEAB or OEBA  | A or B                                  | MAX        | 15  | 12.6        | 1      |
| tPHZ            | OF A D OF D A |                                         | 1447       | 17  | 8.8         | 8 an A |
| tPL7            | OEAB or OEBA  | A or B                                  | MAX        | 12  | 8.1         | -      |

| 1 | . 0 | CI. | 12 | 8.1 |  |
|---|-----|-----|----|-----|--|
|   |     |     |    |     |  |
|   |     |     |    |     |  |
|   |     |     |    |     |  |
|   |     |     |    |     |  |
|   |     |     |    |     |  |

# 9-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

Inverted Outputs



|               | INPUTS |       |       |       |  |
|---------------|--------|-------|-------|-------|--|
| OPERATION     | OEBA2  | OEBA1 | OEAB2 | OEAB1 |  |
| Latch A and B | L      | L     | L     | E     |  |
| Ā to B        | X      | H     | L     | L     |  |
| AIOO          | Н      | X     | L     | L     |  |
| B to A        | L      | L     | X     | Н     |  |
| DIOA          | LIST   | L     | Н     | X     |  |
|               | X      | H     | X     | Н     |  |
| Do Catalon    | H      | X     | X     | H     |  |
| Isolation     | H      | X     | H     | X     |  |
|               | X      | H     | H     | X     |  |



179 SO 80 1

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | SN74<br>BCT | UNIT |
|-----------|------------|-------------|------|
| lcc       | MAX        | 45          | mA   |
| Іон       | MAX        | -24         | mA   |
| lou       | MAX        | 48          | mA   |

| SWITCHING CHAIL | ACTEMOTIO     |        |            |             |
|-----------------|---------------|--------|------------|-------------|
| PARAMETER       | INPUT         | ОИТРИТ | MAX or MIN | SN74<br>BCT |
| tPLH -          | A or B        | D A    | MAX        | 6.1         |
| tPHL .          | AOLD          | B or A | IVIAA      | 4.8         |
| tpzH            | OF A D OF D A |        | MANY       | 8.4         |
| tpzl.           | OEAB or OEBA  | A or B | MAX        | 12.5        |
| tphz            | OFAD OFDA     | A D    | MAN        | 8.4         |
| tPLZ            | OEAB or OEBA  | A or B | MAX        | 8.2         |



BIT BUS TRANSCEIVERS

Logic Diagram



| INP | JTS | OUTPUT |
|-----|-----|--------|
| ŌĒ  | Α   | Υ      |
| L   | Н   | L      |
| L   | L   | H      |
| Н   | ×   | Z      |

| TEOO!           | D OPERATING  | COND | ITIONS   |            |         |   |  |
|-----------------|--------------|------|----------|------------|---------|---|--|
| PARAMETER       | MAX or MIN   | LVT  | UNIT     |            |         |   |  |
| lcc             | MAX          | 10   | mA       |            |         |   |  |
| Іон             | MAX          | -32  | mA       |            |         |   |  |
| lou             | MAX          | 64   | mA       |            |         |   |  |
|                 | 378          | 201  | $\vdash$ |            |         |   |  |
| SWITCHING C     | HARACTERISTI | CS   | _<       | 1          | NAE NAE |   |  |
| PARAMETER       | INPUT        | 00   | TPUT     | MAX or MIN | LVT     |   |  |
| tPLH            |              |      | V        | MAX        | 3.5     | 7 |  |
| tphl .          | A sya -      | (SE) | Y        | MAX        | 3.5     |   |  |
| tpzh            | - OE         |      | Υ        | MAX        | 4       |   |  |
| tPZL            |              | 10   |          | MAX        | 4.4     |   |  |
| tPHZ            | OE OE        |      | Y        | MAX        | 4.5     |   |  |
| tPLZ<br>UNIT:ns | £Y8 -        |      |          | MAX        | 4.2     |   |  |
|                 |              |      |          |            |         |   |  |
|                 |              |      |          |            |         |   |  |
|                 |              |      |          |            |         |   |  |
|                 |              |      |          |            |         |   |  |
|                 |              |      |          |            |         |   |  |
|                 |              |      |          |            |         |   |  |
|                 |              |      |          |            |         |   |  |
|                 |              |      |          |            |         |   |  |
|                 |              |      |          |            |         |   |  |
|                 |              |      |          |            |         |   |  |



| PARAMETER | MAX or MIN | LVT<br>3V | LVTH<br>3V | ALVTH<br>3V | LVC  | LVCH<br>3V | ALVCH<br>3V | UNIT |
|-----------|------------|-----------|------------|-------------|------|------------|-------------|------|
| lcc       | MAX        | 10        | 10         | 5           | 0.02 | 0.02       | 0.04        | mA   |
| но!       | MAX        | -32       | -32        | -32         | -24  | -24        | -24         | mA   |
| lor       | MAX        | 64        | 64         | 64          | 24   | 24         | 24          | mA   |

| PARAMETER | INPUT    | OUTPUT | MAX or MIN | LVT<br>3V | LVTH<br>3V | ALVTH<br>3V | 3V<br>LVC | LVCH<br>3V | ALVCH<br>3V |
|-----------|----------|--------|------------|-----------|------------|-------------|-----------|------------|-------------|
| PLH       | A        | v      | MAX        | 3.2       | 3.2        | 2.4         | 4.1       | 4.1        | 3           |
| tPHL .    |          | 1      |            | 3.2       | 3.2        | 2.5         | 4.1       | 4.1        | 3           |
| PZH       | <u> </u> | Y      | MAX        | 4         | 4          | 3.8         | 4.6       | 4.6        | 4.4         |
| tPZL      | OE       |        |            | 4         | 4          | 2.9         | 4.6       | 4.6        | 4.4         |
| tPHZ      | or.      | V      | MAY        | 4.5       | 4.5        | 4.2         | 5.8       | 5.8        | 4.1         |
| PLZ       | 0E       | Y      | MAX        | 4.2       | 4.2        | 3.6         | 5.8       | 5.8        | 4.1         |

## 32245

# 36-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS



FUNCTION TABLE (each 9-bit section)

AFFCE

## 6-BIT TRI-PORT UNIVERSAL BUS EXCHANGERS

|       | OPERATION |      | INPUTS |    |   |
|-------|-----------|------|--------|----|---|
| TION  |           |      | DIR    | OE |   |
| A bus | to /      | data | В      | L  | L |
| B bus | to I      | data | A      | H  | L |
| on    | latio     | Iso  |        | ×  | Н |





# FUNCTION TABLE STORAGE†

|        | INPU | TS  |   |        |
|--------|------|-----|---|--------|
| CLKENA | CLKA | LEA | Α | OUTPUT |
| Н      | X    | L   | X | Qn‡    |
| L      | 1    | L   | L | L      |
| L      |      | L   | H | H      |
| X      | H    | L   | X | Qn‡    |
| X      | L    | L   | X | Qn‡    |
| X      | X    | H   | L | L      |
| ×      | X    | H   | H | H      |

† A-port register shown, B and C ports are similar but use CIKENB, CIKENC, CIKB, CIKC, LEB, and LEC † Output level before the indicated steady-state input conditions were established.

| A-PORT OUTPUT |      |                      |  |  |  |
|---------------|------|----------------------|--|--|--|
| INP           | UTS  | OUTDUT A             |  |  |  |
| OEA           | SELA | OUTPUT A             |  |  |  |
| Н             | X    | Z                    |  |  |  |
| L             | H    | Output of C register |  |  |  |
| L             | L    | Output of B register |  |  |  |

#### B-PORT OUTPUT

| INPUTS |      | CHEMIN D             |  |
|--------|------|----------------------|--|
| OEB    | SELB | OUTPUT B             |  |
| Н      | X    | Z                    |  |
| L      | H    | Output of A register |  |
| L      | L    | Output of C register |  |

#### C-PORT OUTPUT

| INP | UTS  | оитрит с             |     |   |  |
|-----|------|----------------------|-----|---|--|
| OEC | SELC |                      |     |   |  |
| H > | X    | H X                  | X Z | Z |  |
| L   | H    | Output of B register |     |   |  |
| L   | L    | Output of A register |     |   |  |

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABTH | UNIT |
|-----------|------------|------|------|
| Icc       | MAX        | 40   | mA   |
| Іон       | MAX        | -32  | mA   |
| lou       | MAX        | 64   | mA   |

| PARAMETER         | INPUT                | OUTPUT     | MAX or MIN | ABTH |
|-------------------|----------------------|------------|------------|------|
| fmax              |                      | 1          | MIN        | 150  |
| . Dulas duradas   | LE high              |            | MIN        | 3.3  |
| tw Pulse duration | CLK high or low      | -          | MIN        | 3.3  |
|                   | A, B, or C before CL | K ↑        | MIN        | 2.4  |
| tsu Setup time    | A or B before LE ↓   |            | MIN        | 2.1  |
|                   | CLKEN before CLK     |            | MIN        | 3.2  |
| 31                | A, B, or C after CLK | Î          | MIN        | 1.4  |
| th Hold time      | A or B after LE ↓    |            | MIN        | 2.1  |
|                   | CLKEN after CLK ↑    |            | MIN        | 1.1  |
| tPLH              | A D C                | C D A      | MAX        | 6.1  |
| tPHL              | A, B, or C           | C, B, or A | MAX        | 6.6  |
| tPLH .            | SEL                  | A D C      | MAN        | 6.5  |
| tPHL .            | SEL                  | A, B, or C | MAX        | 6.5  |
| tPLH              | LE                   | A D C      | MAX        | 7.5  |
| tPHL              | LE                   | A, B, or C | IVIAA      | 6.9  |
| tPLH .            | CLK                  | A P os C   | MAX        | 7.5  |
| tPHL              | - CLK                | A, B, or C | IVIAX      | 6.7  |
| tPZH              | ŌĒ                   | A B az C   | MAX        | 6.4  |
| tPZL              | UE                   | A, B, or C | IVIAA      | 6.8  |
| tPHZ              | - OE                 | A, B, or C | MAX        | 6    |
| tPLZ              | J. J.                | M, D, 01 C | IVIAA      | 6.1  |

UNIT fmax : MHz other : ns



Logic Diagram



#### FUNCTION TABLE STORAGET

|        | 0.10.10.0001 |   |                  |  |  |  |
|--------|--------------|---|------------------|--|--|--|
| INPUTS |              |   |                  |  |  |  |
| CLKA   | LEA          | Α | OUTPUT           |  |  |  |
| 1      | L            | L | L                |  |  |  |
| 1      | L            | H | Н                |  |  |  |
| H      | L            | X | Qo‡              |  |  |  |
| L      | L            | X | Q <sub>0</sub> ‡ |  |  |  |
| X      | H            | L | L                |  |  |  |
|        |              |   |                  |  |  |  |

† A-port register shown, B and C ports are similar but use CLKB, CLKC, LEB, and LEC. ‡ Outpu level befor the indicated steady-state input conditions were established.

## A-PORT OUTPUT

| INPUTS |      |                      |  |
|--------|------|----------------------|--|
| OEA    | SELA | OUTPUT A             |  |
| Н      | X    | Z                    |  |
| Low    | H    | Output of C register |  |
| L      | L    | Output of B register |  |

## B-PORT OUTPUT

|                      | INPUTS |     |
|----------------------|--------|-----|
| OUTPUT B             | SELB   | OEB |
| Z                    | X      | Н   |
| Output of A register | H      | L   |
| Output of C register | L      | L   |

## C-PORT OUTPUT

| INPUTS |      |                      |  |
|--------|------|----------------------|--|
| OEC    | SELC | OUTPUT C             |  |
| H      | X    | Z                    |  |
| L      | H    | Output of B register |  |
| 1.     | 1    | Output of A register |  |

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABTH | UNIT |
|-----------|------------|------|------|
| Icc       | MAX        | 45   | mA   |
| Іон       | MAX        | -32  | mA   |
| IOL.      | MAX        | 64   | mA   |

## SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT                  | OUTPUT     | MAX or MIN | АВТН |
|-------------------|------------------------|------------|------------|------|
| fmax              |                        |            | MIN        | 150  |
| D. I I I          | LE high                |            | MIN        | 3.3  |
| tw Pulse duration | CLK high or low        |            | MIN        | 3.3  |
| 70                | A, B, or C before CL   | K ↑        | MIN        | 2.4  |
| tsu Setup time    | A, B, or C before LE   | MIN        | 2.1        |      |
| e Hald days       | A, B, or C after CLK ↑ |            | MIN        | 1.4  |
| th Hold time      | A, B, or C after LE ↓  |            | MIN        | 2.1  |
| tplh              | A D C                  | C D A      | MAY        | 6.1  |
| tphl              | A, B, or C             | C, B, or A | MAX        | 6.6  |
| tPLH              | SEL                    | A, B, or C | MAX        | 6.5  |
| tPHL              | SEL                    | A, D, UI C | IVIAX      | 6.5  |
| tPLH .            | LE                     | A, B, or C | MAX        | 7.5  |
| tphl .            | LE                     | A, b, or c | IVIAX      | 6.9  |
| tPLH              | CLK                    | A D C      | MAX        | 7.4  |
| tPHL C            | CLK                    | A, B, or C | IVIAX      | 6.7  |
| tрzн              | ŌĒ                     | A B as C   | MAN        | 6.8  |
| tPZL              | 1 06                   | A, B, or C | MAX        | 7.1  |
| tphz              | OF A B or C            |            | MAN        | 6.2  |
| tPLZ              |                        |            | MAX        | 6    |

UNIT fmax: MHz other: ns



## **FUNCTION TABLE**

| ľ |    | NPUTS |   | OUTPUT |
|---|----|-------|---|--------|
|   | OE | LE    | D | Q      |
|   | L  | Н     | H | Н      |
|   | L  | H     | L | L      |
|   | L  | L     | X | Qn     |
|   | L  | V     | Y | 7      |

## BECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVTH<br>3V | ALVTH<br>3V | LVCH<br>3V | UNIT |
|-----------|------------|------------|-------------|------------|------|
| Icc       | MAX        | 10         | 5           | 0.02       | mA   |
| Юн        | MAX        | -32        | -32         | -24        | mA   |
| lou       | MAX        | 64         | 64          | 24         | mA   |

| PARAMETER          | alinput o ned                                                                                                             | O m OUTPUT | MAX or MIN | LVTH<br>3V | ALVTH<br>3V | LVCH<br>3V |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|-------------|------------|
| tw Pulse duration, | LE high or low                                                                                                            | -8         | MIN        | 3          | 1.5         | 3.3        |
| tsu Setup time     | Data before LE 1, da                                                                                                      | ata high   | MIN        | 1          | 1.4         | 1.7        |
| tsu Setup time     | Data before LE 1, data low  Data after LE 1, data high                                                                    | MIN        | 1          | 0.9        | 1.7         |            |
| ts Uald time       | high or low MIN Data before LE \( \), data high MIN Data before LE \( \), data low MIN Data after LE \( \), data high MIN | MIN        | 1          | 0.9        | 1.2         |            |
| is note time       | Data after LE ↓, dat                                                                                                      | a low      | MIN        | 1          | 1.4         | 1.2        |
| tPLH DI            | S                                                                                                                         | 0          |            | 3.8        | 3.1         | 4.2        |
| tphl .             |                                                                                                                           | u          | IVIAX      | 3.6        | 3.3         | 4.2        |
| tplh               | 15                                                                                                                        | 0          | MAN        | 4.3        | 3.3         | 4.6        |
| tphl.              | LE                                                                                                                        | u          | IVIAX      | 4          | 3.5         | 4.6        |
| tРZH               | OF HOLD                                                                                                                   | C commont  | MAN        | 4.3        | 4           | 4.7        |
| tPZL               | - UE                                                                                                                      | ц          | MAX        | 4.3        | 3.4         | 4.7        |
| tPHZ               | ŌĒ                                                                                                                        | 0          | LAXV.      | 5          | 4.9         | 5.9        |
| tPLZ               | OE OE                                                                                                                     | u u        | MAX        | 4.7        | 4.5         | 5.9        |



#### FUNCTION TABLE (each flip-flop)

|    | INPUTS |   | OUTPUT |
|----|--------|---|--------|
| OE | CLK    | D | Q      |
| L  | 1      | Н | Н      |
| L  | 1      | L | L      |
| L  | HorL   | X | Qn     |
| H  | X      | X | Z      |

# BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVTH<br>3V | ALVTH<br>3V | LVCH<br>3V | ALVCH<br>3V | UNIT |
|-----------|------------|------------|-------------|------------|-------------|------|
| Icc       | MAX        | 10         | 5           | 0.02       | 0.04        | mA   |
| Іон       | MAX        | -32        | -32         | -24        | -24         | mA   |
| lou       | MAX        | 64         | 64          | 24         | 24          | mA   |

## SWITCHING CHARACTERISTICS

| OTTITION OF                        |                              |          |            |            |             |            |             |
|------------------------------------|------------------------------|----------|------------|------------|-------------|------------|-------------|
| PARAMETER                          | INPUT                        | OUTPUT   | MAX or MIN | LVTH<br>3V | ALVTH<br>3V | LVCH<br>3V | ALVCH<br>3V |
| fmax                               |                              |          |            | 160        | 250         | 150        | 150         |
| tw Pulse duration, CLK high or low |                              |          | MIN        | 3          | 1.5         | 3.3        | 3.3         |
| t <sub>su</sub> Setup time         | Data before CLK ↑, data high |          | MIN        | 1.8        | 1           | 1.9        | 1.9         |
|                                    | Data before CLK ↑, data low  |          | MIN        | 1.8        | 1.5         | 1.9        | 1.9         |
|                                    | Data after CLK ↑, data high  |          | MIN        | 0.8        | 0.5         | 1.1        | 0.5         |
| th Hold time                       | Data after CLK ↑, da         | ata low  | MIN        | 0.8        | 1           | 1.1        | 0.5         |
| tPLH .                             | CLK                          |          | MAY        | 4.5        | 3.2         | 4.5        | 4.2         |
| tphl .                             | CLK                          | a        | MAX        | 4          | 3.2         | 4.5        | 4.2         |
| tpzH                               | ŌE                           |          | MAN        | 4.5        | 3.8         | 4.6        | 4.8         |
| tPZL                               | UE                           | OE Q MAX |            | 4.4        | 3.3         | 4.6        | 4.8         |
| tPHZ                               | - Y                          | OE Q     |            | 5          | 4.6         | 5.5        | 4.3         |
| tPLZ                               | UE                           | Q        | MAX        | 4.6        | 4.2         | 5.5        | 4.3         |
|                                    |                              |          |            |            |             |            |             |

UNIT fmax: MHz other: ns



## **Logic Diagram**



To 17 Other Channels

## **FUNCTION TABLE**†

| INPUTS  |           |                       |            | OUTPUT                               |  |
|---------|-----------|-----------------------|------------|--------------------------------------|--|
| OEAB    | LEAB CLKA |                       | Α          | В                                    |  |
| input o | onditions | efore the<br>were est | lablished, | steady-state<br>provided that<br>low |  |

SERIT REGISTERED BUS TRANSCEIVERS WITH 3-STATE OUTPUT

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABTH | ALVCH<br>3V | UNIT |
|-----------|------------|------|-------------|------|
| lec       | MAX        | 90   | 0.02        | mA   |
| Юн        | MAX        | -32  | -24         | mA   |
| lou       | MAX        | 64   | 24          | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT                              | OUTPUT        | MAX or MIN | ABTH | ALVCH<br>3V |  |  |
|-------------------|------------------------------------|---------------|------------|------|-------------|--|--|
| fmax              |                                    | $-\langle -$  | MIN        | 150  | 150         |  |  |
| tw Pulse duration | LEAB or LEBA high                  |               | MIN        | 3.3  | 3.3         |  |  |
| tw ruise duration | CLKAB or CLKBA high                | or low        | MIN        | 3.3  | 3.3         |  |  |
|                   | A before CLKAB ↑                   |               | MIN        | 3.5  | 1.7         |  |  |
| tsu Setup time    | B before CLKBA ↑                   |               | MIN        | 3.5  | 1.7         |  |  |
| su Setup time     | A before LEAB ↓ or LE              | BA J CLK high | MIN        | 1.6  | 1.5         |  |  |
|                   | A before LEAB ↓ or LE              | BA JCLK low   | MIN        | 1.6  | 1           |  |  |
| th Hold time      | A after CLKAB ↑ or B after CLKBA ↑ |               | MIN        | 0    | 0.7         |  |  |
| th Hold time      | A after LEAB ↓ or B at             | fter LEBA ↓   | MIN        | 1.6  | 1.4         |  |  |
| tplh              | A or B                             | B or A        | MAY        | 4.8  | 3.9         |  |  |
| tphl .            | AOID                               | D OF A        | MAX        | 5.4  | 3.9         |  |  |
| tPZH              | LEAB or LEBA                       | B or A        | MAX        | 5.3  | 4.6         |  |  |
| tPZL .            | LEAD OF LEDA                       | D OF A        | IVIAA      | 5.5  | 4.6         |  |  |
| tphz              | CLKAB or CLKBA                     | B or A        | MAX        | 5.3  | 4.9         |  |  |
| tPLZ              | CLAB OF CLABA                      | D OF A        | IVIAA      | 5.4  | 4.9         |  |  |
| tPZH              | OEAB                               | В             | MAX        | 5.6  | 4.6         |  |  |
| tPZL              | UEAB                               | D             | IVIAA      | 6    | 4.6         |  |  |
| tPHZ              | OEAB                               | D             | MAX        | 5.9  | 5           |  |  |
| tPLZ              | UEAD                               | В             | IVIAA      | 5.6  | 5           |  |  |
| tPZH -            | OEBA                               | A             | MAX        | 5.6  | 5           |  |  |
| tPZL              | UEDA                               |               | IVIAA      | 6    | 5           |  |  |
| tPHZ              | OEBA                               | A             | MAX        | 5.9  | 4.2         |  |  |
| tPLZ              | UEBA                               | A             | IVIAA      | 5.6  | 4.2         |  |  |

UNIT fmax: MHz other:ns

## **36-BIT REGISTERED BUS TRANSCEIVERS WITH 3-STATE OUTPUTS**





FUNCTION TABLE

|      | INP  | OUTPUT |   |                  |
|------|------|--------|---|------------------|
| CEAB | LEAB | OEAB   | Α | Y                |
| Н    | X    | X      | X | Z                |
| X    | X    | H      | X | Z                |
| L    | Н    | L      | X | B <sub>0</sub> ‡ |
| L    | L    | L      | L | Ľ                |
| L    | L    | L      | H | H                |

† A-to-B data flow is shown: B-to-A flow conditions is the same that it uses CEBA, LEBA, and OEBA. † Outoput level before the indicated steady-state input conditions were established

## RECOMMENDED OPERATING CONDITIONS

|                 |            | 1    | 1    |
|-----------------|------------|------|------|
| PARAMETER       | MAX or MIN | ABTH | UNIT |
| Icc             | MAX        | 20   | _mA  |
| Іон             | MAX        | -32  | mA   |
| lo <sub>L</sub> | MAX        | 64   | mA   |
|                 |            |      |      |

#### SWITCHING CHARACTERISTICS

| SWITCHING CHAI     | TACTENISTICS                |                              |            |      |  |  |
|--------------------|-----------------------------|------------------------------|------------|------|--|--|
| PARAMETER          | INPUT                       | DUTPUT                       | MAX or MIN | ABTH |  |  |
| tw Pulse duration, | LEAB or LEBA low            |                              | MIN        | 3.3  |  |  |
| t Catana tima      | Data before LEAB ↑          | or LEBA ↑                    | MIN        | 2.1  |  |  |
| tsu Setup time     | Data before CEAB ↑          | Data before CEAB ↑ or CEBA ↑ |            | 1.7  |  |  |
| th Hold time       | Data after LEAB ↑ or LEBA ↑ |                              | MIN        | 0.6  |  |  |
| th Hold time       | Data after CEAB ↑ o         | r CEBA ↑                     | MIN        |      |  |  |
| tPLH .             | A or B                      | B or A                       | MAX        | 5.9  |  |  |
| tPHL .             | A OF B                      | D OF A                       | IVIAA      | 5.7  |  |  |
| tplH               | LE                          | A or B                       | MAN        | 7.5  |  |  |
| tphl .             | LE                          | AOIB                         | MAX        | 6.6  |  |  |
| tPZH               | CE                          |                              | MAX        | 8    |  |  |
| tPZL               | - UE                        | A or B                       | IVIAX      | 8.8  |  |  |
| tPHZ               | CE                          | A D                          | MAN        | 7.1  |  |  |
| tPLZ               | Ut                          | A or B                       | MAX        | 7.5  |  |  |
| tPZH               | ŌĒ                          | A D                          | MAN        | 7.3  |  |  |
| tPZL               | UE                          | A or B                       | MAX        | 8.1  |  |  |
| tPHZ               | ŌĒ                          | 4 0                          | 2447       | 6.5  |  |  |
| tPLZ               | UE                          | A or B                       | MAX        | 6.9  |  |  |

TUNCTION TABLE

UNIT: ns



## **FUNCTION TABLE**

| CO | CONTROL INPUTS |    | CONTROL INPUTS |                |                                          |  |  |
|----|----------------|----|----------------|----------------|------------------------------------------|--|--|
| MR | PL             | PE | TE             | PRESET MODE    | ACTION                                   |  |  |
| L  | X              | X  | L              | Synchronous    | Inhibit Counter                          |  |  |
| X  | H              | X  | L              |                | Cownt Down                               |  |  |
| X  | X              | L  | L              |                | Preset On Next Positive Clock Transition |  |  |
| H  | L              | L  | L              | Asynchronously | Preset Asychronously                     |  |  |
| H  | L              | H  | L              |                | Clear to Maximum Count                   |  |  |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | CD74<br>HC | CD74<br>HCT | UNIT |
|-----------|------------|------------|-------------|------|
| lcc       | MAX        | 0.16       | 0.16        | mA   |
| Іон       | MAX        | -4         | -4          | mA   |
| lou       | MAX        | 4          | 4           | mA   |

| PARAMETER | INPUT    | ОИТРИТ         | MAX or MIN | CD74<br>HC | CD74 |
|-----------|----------|----------------|------------|------------|------|
| tw        |          | CP             |            | 50         | 53   |
|           |          | PL             | MIN        | 38         | 63   |
|           |          | MR             | 1          | 38         | 53   |
| tsu       | P        | to CP          |            | 30         | 36   |
|           | PE       | to CP          | MIN        | 22         | 30   |
|           | TE       | to CP          |            | 45         | 60   |
| th        | Р        | to CP          | MIN        | 5          | 5    |
|           | TE       | to CP          |            | 0          | 0    |
|           | PE       | to CP          |            | 2          | 2    |
| tPLH      | CP CP    | TC             | MAX        | 90         | 90   |
| tPHL .    | CF       | (Async Preset) | IVIAA      | 90         | 90   |
| tplH .    | CP TC MA |                | MAX        | 90         | 95   |
| tphl.     | GF.      | (Sync Preset)  | IVIAA      | 90         | 95   |
| tPLH      | TE       | TC             | MAX        | 60         | 75   |
| tPHL      | 15       | 10             | IVIAX      | 60         | 75   |
| tPLH      | PL       | TC             | MAX        | 83         | 102  |
| tphl .    | rL       | 10             | IVIAA      | 83         | 102  |
| tPLH      | MR       | TC             | MAX        | 83         | 83   |
| tPHL .    | IVIT     | 16             | IVIAX      | 83         | 83   |

## 1622/10

## **Logic Diagram**











## **FUNCTION TABLE**

| INP | JTS | OUTPUT |
|-----|-----|--------|
| OE  | Α   | Y      |
| L   | Н   | L      |
| L   | L   | H      |
| H   | X   | Z      |

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVT<br>3V | LVTH<br>3V | UNIT |
|-----------|------------|-----------|------------|------|
| Icc       | MAX        | 5         | 5          | mA   |
| Іон       | MAX        | -12       | -12        | mA   |
| lou       | MAX        | 12        | 12         | mA   |



## SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | LVT<br>3V | LVTH<br>3V |
|-----------|-------|--------|------------|-----------|------------|
| tPLH .    | E # 1 | V      | MAN        | 4         | 4          |
| tPHL .    | A     | т.     | MAX        | 4         | 4          |
| tPZH      | ŌĒ    | V      | MANY       | 4.8       | 4.8        |
| tPZL      | UE    | 1      | MAX        | 4.7       | 4.7        |
| tPHZ      | ŌĒ    | V      | MAX        | 4.7       | 4.7        |
| tPLZ      | UE    | 1      | WAX        | 4.5       | 4.5        |

UNIT: ns

# 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS VINDA AREA TIAL AT THE VICE.

## Logic Diagram



## **FUNCTION TABLE**

| INPU     | INPUTS |        |  |
|----------|--------|--------|--|
| 10E, 40E | 1A, 4A | 1Y, 4Y |  |
| L        | Н      | Н      |  |
| L        | L      | L      |  |
| H        | X      | Z      |  |

| INPUT    | OUTPUT |        |
|----------|--------|--------|
| 20E, 30E | 2A, 3A | 2Y, 3Y |
| Н        | Н      | Н      |
| H        | L      | L      |
| L        | X      | Z      |

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVTH<br>3V | UNIT |
|-----------|------------|------------|------|
| lcc       | MAX        | 5          | mA   |
| Іон       | MAX        | -12        | mA   |
| lou       | MAX        | 12         | mA   |

| PARAMETER | INPUT    | OUTPUT      | MAX or MIN | LVTH<br>3V |
|-----------|----------|-------------|------------|------------|
| tPLH      |          | ν.          | MAN        | 4.1        |
| tPHL .    | A        | Y           | MAX        | 4.1        |
| tPZH      | <u> </u> | v           | 1447       | 4.9        |
| tPZL HTVL | OE or OE | scatal mass | MAX        | 4.8        |
| tPHZ      | OE or OE | v           |            | 5.3        |
| tPLZ      | UE OF UE | Y           | MAX        | 4.9        |

# 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS TUD STATE & HTDW REVISED BARTTIR-AD

- SN74LVT162244A, LVTH162244: Output Ports Have Equivalent 22-Ω Series Resistors AMSSBITMATIME
- SN74ALVTH162244: Output Ports Have Equivalent 30-Ω Series Resistors no no9-A 284528 HTM JAPANA
- SN74LVC162244A: Output Ports Have Equivalent 26-Ω Series Resistors
- SN74LVCH162244A: Output Ports Have Equivalent 26-Ω Series Resistors
- SN74ALVCH162244: Output Ports Have Equivalent 26-Ω Series Resistors

## Logic Diagram 13 3Y1 14 3Y2 3A2 35 1A2 -16\_3Y3 3A3 33 1A3 17\_3Y4 3A4 32 1A4 1Y4 20E 2A1 41 19 4Y1 8 2Y1 20 4Y2 4A2 29 2A2 22\_ 4Y3 11 2Y3 23\_ 4Y4 12 2Y4 2A4 37

# FUNCTION TABLE (each 4-bit buffer)

| INP | JTS | OUTPUT |
|-----|-----|--------|
| ŌE  | Α   | Y      |
| L   | Н   | Н      |
| L   | L   | L      |
| H   | X   | Z      |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | LVT<br>3V | LVTH<br>3V | ALVTH<br>3V | 3V   | LVCH<br>3V | ALVCH<br>3V | UNIT |
|-----------|------------|-----|-----------|------------|-------------|------|------------|-------------|------|
| Icc       | MAX        | 30  | 5         | 5          | 5           | 0.02 | 0.02       | 0.04        | mA   |
| Іон       | MAX        | -12 | -12       | -12        | -12         | -12  | -12        | -12         | mA   |
| lou       | MAX        | 12  | 12        | 12         | 12          | 12   | 12         | 12          | mA   |

#### SWITCHING CHARACTERISTICS

| OTTIONING CHANAC | TEMOTIO |        |            |     |           |            |             |           |      |             |
|------------------|---------|--------|------------|-----|-----------|------------|-------------|-----------|------|-------------|
| PARAMETER        | INPUT   | OUTPUT | MAX or MIN | ABT | LVT<br>3V | LVTH<br>3V | ALVTH<br>3V | 3V<br>LVC | TACH | ALVCH<br>3V |
| tPLH .           |         | V      | MAX        | 3.9 | 4         | 4          | 3.3         | 4.4       | 4.4  | 4.2         |
| tPHL .           | A       | 1      |            | 4.8 | 3.6       | 3.6        | 3.3         | 4.4       | 4.4  | 4.2         |
| tPZH             |         |        | 1111       | 5.4 | 5.1       | 5.1        | 4.9         | 5.5       | 5.5  | 5.6         |
| tPZL             | 0E      | Y      | MAX        | 5.1 | 4.5       | 4.5        | 3.3         | 5.5       | 5.5  | 5.6         |
| tPHZ             | ŌE      |        | 1449       | 4.6 | 5         | 5          | 4.9         | 6.3       | 6.3  | 5.5         |
| tPLZ             | ÜE      | Y      | MAX        | 4.5 | 5         | 5          | 4.3         | 6.3       | 6.3  | 5.5         |
|                  |         |        |            |     |           |            |             |           |      |             |

UNIT: ns

- SIN/4EVGN10ZZ43: All Outputs have Equivalent 26-Ω Series Resistors IN amp9 augm0: AMASCR10VJATM2 @
  - SN74LVCH162244A: Output Ports Have Equivalent 26-Ω Series Resistors
  - SN74ALVCH162244: Dutput Ports Have Equivalent 26-Ω Series Resistors

## **Logic Diagram**





весомиямиль океальна соувущим

RINCTION TABLE

SOUTHWIND AND DRINGTON

111-7910

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER    | MAX or MIN | ABT | ABTH | LVT<br>3V | LVTH<br>3V | ALVTH<br>3V | LVCR<br>3V | UNIT |
|--------------|------------|-----|------|-----------|------------|-------------|------------|------|
| Icc          | MAX        | 32  | 32   | 5         | 5          | 5           | 0.02       | mA   |
| laн (A port) | MAX        | -12 | -12  | -12       | -12        | -12         | -12        | mA   |
| loн (B port) | MAX        | -32 | -32  | -32       | -32        | -32         | -12        | mA   |
| lot (A port) | MAX        | 12  | 12   | 12        | 12         | 12          | 12         | mA   |
| lot (B port) | MAX        | 64  | 64   | 64        | 64         | 64          | 12         | mA   |

| PARAMETER | INPUT | OUTPUT | MAX or MIN | ABT | ABTH | SV. | LVTH<br>3V | ALVTH<br>3V | 3V  |
|-----------|-------|--------|------------|-----|------|-----|------------|-------------|-----|
| tPLH .    | A     |        | MAX        | 3.9 | 3.9  | 3.3 | 3.3        | 3.1         | 7.5 |
| tPHL.     | A     | В      | MAX        | 4.2 | 4.2  | 3.3 | 3.3        | 3           | 7.5 |
| tPLH      | В     | А      | MAN        | 4.6 | 4.6  | 4   | 4          | 3.7         | 7.5 |
| tPHL .    | В     | A      | MAX        | 5.1 | 5.1  | 3.4 | 3.4        | 3.4         | 7.5 |
| tPZH      | ŌE    | В      | AAAV       | 6.3 | 6.3  | 4.6 | 4.6        | 3.8         | 9   |
| tPZL      | UE    | В      | MAX        | 6.4 | 6.4  | 4.6 | 4.6        | 3.4         | 9   |
| tPHZ      | ŌĒ    | В      | MAX        | 6.3 | 6.3  | 5.2 | 5.2        | 4.7         | 7.5 |
| tPLZ      | UE    | В      | IVIAX      | 5.2 | 5.2  | 5.1 | 5.1        | 4.8         | 7.5 |
| tPZH      | ŌĒ    |        | MAN        | 7.1 | 7.1  | 5.3 | 5.3        | 4.7         | 9   |
| tPZL      | UE    | A      | MAX        | 7   | 7    | 5.1 | 5.1        | 3.9         | 9   |
| tPHZ      | ŌE .  |        | MAX        | 6.6 | 6.6  | 5.6 | 5.6        | 5           | 7.5 |
| tPLZ      | UE    | A      | MAX        | 5.7 | 5.7  | 5.5 | 5.5        | 4.9         | 7.5 |

## 12-BIT TO 24-BIT MULTIPLEXED D-TYPE LATCH WITH 3-STATE OUTPUTS

- lacktriangle SN74ABTH162260: B-Port Outputs Have Equivalent 25- $\Omega$  Series Resistors
- ullet SN74ALVCH162260: B-Port Outputs Have Equivalent 26- $\Omega$  Series Resistors



|    |               | _   |      |      | -,  |                |  |  |
|----|---------------|-----|------|------|-----|----------------|--|--|
|    | INPUTS OUTPUT |     |      |      |     |                |  |  |
| 1B | 2B            | SEL | LE1B | LE2B | OEA | A              |  |  |
| Н  | X             | Н   | Н    | X    | L   | H              |  |  |
| L  | ×             | H   | H    | X    | L   | gratianis      |  |  |
| X  | X             | H   | L    | X    | L   | A <sub>0</sub> |  |  |
| X  | H             | L   | ×    | Н    | L   | H              |  |  |
| X  | L             | L   | X    | Н    | L   | L              |  |  |
| X  | X             | L   | X    | L    | L   | Ao             |  |  |
| X  | X             | X   | X    | X    | H   | Z              |  |  |

A TO B (OEA = H)

|   |       | INPUTS |      |      | OUT    | PUTS            |
|---|-------|--------|------|------|--------|-----------------|
| A | LEA1B | LEA2B  | OE1B | OE2B | 1B     | 2B              |
| Н | Н     | H      | L    | L    | Н      | H               |
| L | H     | H      | L    | L    | L      | L               |
| Н | H     | L      | L    | L    | H      | 2B <sub>0</sub> |
| L | H     | L      | L    | L    | L      | 2B <sub>0</sub> |
| H | L     | H      | L    | L    | 1B0    | H               |
| L | L     | H      | L    | L    | 1B0    | L               |
| X | L.    | L      | L    | L    | 1B0    | 2Bn             |
| X | X     | X      | H    | H    | Z      | Z               |
| X | X     | X      | L    | H    | Active | Z               |
| X | X     | X      | H    | L    | Z      | Active          |
| X | X     | X      | L    | L    | Active | Active          |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER    | MAX or MIN | ABTH | ALVCH<br>3V | UNIT |
|--------------|------------|------|-------------|------|
| Icc          | MAX        | 63   | 0.04        | mA   |
| loн (A port) | MAX        | -32  | -24         | mA   |
| Iон (B port) | MAX        | -32  | -12         | mA   |
| IoL (A port) | MAX        | 64   | 24          | mA   |
| lot (B port) | MAX        | 12   | 12          | mA   |

| SWITCHING CHARA        | CTERISTICS         | - UI         |            |      | _           |
|------------------------|--------------------|--------------|------------|------|-------------|
| PARAMETER              | INPUT              | OUTPUT       | MAX or MIN | ABTH | ALVCH<br>3V |
| fmax                   |                    |              |            |      | 150         |
| tw Pulse duration, LE  | 1B, LE2B, LEA1B, o | r LEA2B high | MIN        | 3.3  | 3.3         |
| tsu Setup time, data b | efore LE1B, LE2B,  | MIN          | 1.5        | 1.1  |             |
| th Hold time, data aft | er LE1B, LE2B, LEA | MIN          | 1          | 1.5  |             |
| tplH .                 | A                  | MAX          | 6.1        | 4.9  |             |
| tphL .                 | A                  | В            | IVIAA      | 7.1  | 4.9         |
| tPLH                   | В                  | A            | MAX        | 6    | 4.3         |
| tPHL .                 | В                  | A            | IVIAA      | 6.2  | 4.3         |
| tPLH                   | LE                 |              | MAX        | 6.3  | 4.4         |
| tphL .                 | LE                 | Agg          | IVIAA      | 5.8  | 4.4         |
| tPLH                   | LE                 | В            | MAX        | 6.1  | 5           |
| tphl.                  | LE                 | В            | IVIAA      | 7.1  | 5           |
|                        | SEL (1B)           | - CE         | MAX        | 5.6  | 5.6         |
| tplH -                 | SEL (2B)           | A            | WAX        | 6.3  | 5.6         |
|                        | SEL (1B)           | A            | MAX        | 5    | 5.6         |
| tPHL -                 | SEL (2B)           | Q1           | MAX        | 6.2  | 5.6         |
| tPZH                   | ŌĒ                 |              | MAX        | 6.3  | 5.4         |
| tPZL                   | UE                 | A            | MAX        | 6.5  | 5.4         |
| tPZH                   | ŌE                 | В            | MAX        | 6.3  | 6           |
| tPZL                   | UE                 | В            | IVIAX      | 8.2  | 6           |
| tpHZ                   | ŌĒ                 |              | MAN        | 6.7  | 4.6         |
| tPLZ                   | UE                 | A            | MAX        | 5.2  | 4.6         |
| tPHZ                   | ŌĒ                 | В            | MAX        | 7.5  | 5.1         |
| tpi 7                  | UE                 | В            | MAX        | 6.2  | 5.1         |

UNIT fmax : MHz other : ns



FUNCTION TABLE OUTPUT ENABLE

| 19-979 | NPUTS | 3   | OUTPUTS       |
|--------|-------|-----|---------------|
| CLK    | OEA   | OEB | A 1B, 2B      |
| 1      | Н     | Н   | Z Z           |
| +      | H     | L   | Z Active      |
|        | L     | H   | Active Z      |
|        | L     | L   | Active Active |

OUTPUTS
A 18 28

SW/AALVCHG18280: A-Port Outputs Have Equivalent 50-Ω Series Resist

## A-TO-B STORAGE (OEB = L)

|         | OUT     | PUTS |   |                   |                   |
|---------|---------|------|---|-------------------|-------------------|
| CLKENA1 | CLKENA2 | CLK  | Α | 1B                | 2B                |
| Н       | Н       | X    | X | 1B <sub>0</sub> ‡ | 2B <sub>0</sub> ‡ |
| L       | X       | 1    | L | L†                | X                 |
| L       | X       | *    | H | H†                | X                 |
| X       | L       | 7    | L | X                 | L                 |
| X       | L       | 1    | H | X                 | H                 |

†Two CLK edges are needed to propagate data. ‡ Output level before the indicated steady-state input conditions were established

## B-TO-A STORAGE (OEA = L)

|         | INPUTS  |     |     |    |    |     |
|---------|---------|-----|-----|----|----|-----|
| CLKEN1B | CLKEN2B | CLK | SEL | 1B | 2B | A   |
| Н       | X       | X   | Н   | X  | X  | An‡ |
| ×       | H       | X   | L   | X  | X  | An‡ |
| L       | ×       |     | H   | H  | X  | Ľ   |
| L       | X       |     | H   | L  | X  | H   |
| ×       | L       | 2   | L   | X  | L  | L   |
| X       | L       |     | L   | X  | Н  | H   |

Output level before the indicated steady-state input conditions were established.

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER    | MAX or MIN | ALVCH<br>3V | UNIT |
|--------------|------------|-------------|------|
| Icc III      | MAX        | 0.04        | mA   |
| loн (A port) | MAX        | -24         | mA   |
| loн (B port) | MAX        | -12         | -mA  |
| lot (A port) | MAX        | 24          | mA   |
| lot (B port) | MAX        | 12          | mA   |

#### SWITCHING CHARACTERISTIC

| PARAMETER                  | INPUT              | ОИТРИТ  | MAX or MIN | ALVCH<br>3V |
|----------------------------|--------------------|---------|------------|-------------|
| fmax                       |                    | 10 <    | MIN        | 150         |
| tw Pulse duration,         | CLK high or low    |         | MIN        | 3.3         |
|                            | A data before CLK  | MIN     | 3.4        |             |
|                            | B data before CLK  |         | MIN        | 1           |
| t <sub>su</sub> Setup time | SEL before CLK ↑   | MIN     | 1.3        |             |
|                            | CLKENA1 or CLKEN   | MIN     | 2.8        |             |
|                            | CLKENB1 or CLKEN   | MIN     | 2.5        |             |
|                            | OE before CLK ↑    | MIN     | 3.2        |             |
| th Hold time               | A data after CLK ↑ | MIN     | 0.2        |             |
|                            | B data after CLK ↑ | MIN     | 1.3        |             |
|                            | SEL after CLK ↑    | MIN     | 1          |             |
|                            | CLKENA1 or CLKEN   | MIN     | 0.4        |             |
|                            | CLKENB1 or CLKEN   | MIN     | 0.5        |             |
|                            | OE after CLK ↑     |         | MIN        | 0.2         |
|                            |                    | В       |            | 5.4         |
| tod                        | CLK                | A (1B)  | MAX        | 4.8         |
| гра                        | GLK                | A (2B)  | IVIAA      | 4.8         |
|                            |                    | A (SEL) | 1          | 5.8         |
| ten                        | CLK                | В       | MAX        | 6.1         |
| Len                        | ULK                | A       | IVIAA      | 5.1         |
| İtdis                      | CLK                | В       | MAX        | 5.9         |
| LOIS                       | GLK                | A       | IVIAX      | 5           |

UNIT fmax: MHz other:ns

TO BIT TO BE BIT HEGIOTERED DOO EXCHANGER WITH BITTE MACKO AND O

lacktriangle SN74ALVCHG162280: A-Port Outputs Have Equivalent 50- $\Omega$  Series Resistors

B-Port Outputs Have Equivalent 20-Ω Series Resistors



## **FUNCTION TABLE**

## A-TO-B STORAGE (OE = L, DIR = H)

|     | NPUTS |   | OUTI              | PUTS |
|-----|-------|---|-------------------|------|
| SEL | CLK   | Α | 1B                | 2B   |
| Н   | X     | X | 1B <sub>0</sub> † | 2Bot |
| L   |       | L | L‡                | X    |
| L   |       | H | H±                | X    |

## B-TO-A STORAGE (OE = L, DIR = L)

| OUTPUT |    | INPUTS |     |     |  |  |
|--------|----|--------|-----|-----|--|--|
| A      | 2B | 1B     | SEL | CLK |  |  |
| L§     | L  | X      | Н   | 1   |  |  |
| HŞ     | H  | X      | H   | 1   |  |  |
| L      | ×  | L      | L   | 1   |  |  |
| H      | X  | H      | L   | 1   |  |  |

<sup>§</sup> Two CLK edges are needed to propagate the data. The data is loaded in the first register when SEL is low and propagates to the second register when SEL is high.

## C-TO-D STORAGE (OE = L)

| INPUTS |     | OUTPUT |      |                   |
|--------|-----|--------|------|-------------------|
| SEL    | CLK | С      | 1D   | 2D                |
| Н      | X   | X      | 1Bot | 2B <sub>0</sub> 1 |
| L      | 1   | L      | L‡   | L                 |
| L      | 1   | H      | H‡   | H                 |

<sup>†</sup> Output level before indicated steady-state input conditions were established ‡ Two CLK edges are needed to propagate the data.

## OUTPUT ENABLE

| INPUTS |    | -   | Г      |        |        |
|--------|----|-----|--------|--------|--------|
| CLK    | OE | DIR | A      | 1B, 2B | 1D, 2D |
| 1      | Н  | X   | Z      | Z      | Z      |
| 1      | L  | H   | Z      | Active | Active |
| 1      | E. | 1 L | Active | Z      | Active |

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER    | MAX or MIN | ALVCHG<br>3V | UNIT |
|--------------|------------|--------------|------|
| Icc          | MAX        | 0.04         | mA   |
| Ion (A to B) | MAX        | 8            | mA   |
| Ioн (В to A) | MAX        | 6            | mA   |
| IoL (A to B) | MAX        | 8            | mA   |
| lot (B to A) | MAX        | 6            | mA   |

| PARAMETER          | INPUT               | OUTPUT         | MAX or MIN | ALVCHG<br>3V |
|--------------------|---------------------|----------------|------------|--------------|
| fmax               |                     |                | MIN        | 160          |
| tw Pulse duration, | CLK high or low     |                | MIN        | 2.3          |
|                    | A data before CLK   | 1, high or low | MIN        | 1.4          |
|                    | B data before CLK   | 1, high or low | MIN        | 2            |
| tsu Setup time     | C data before CLK   | T, high or low | MIN        | 1.3          |
|                    | DIR before CLK 1,   | high or low    | MIN        | 2            |
|                    | SEL before CLK 1,   | high or low    | MIN        | 2            |
|                    | A data after CLK T  | , high or low  | MIN        | 0.3          |
|                    | B data after CLK T  | , high or low  | MIN        | 0.3          |
| th Hold time       | C data after CLK 1  | , high or low  | MIN        | 0.3          |
|                    | DIR after CLK 1, hi | gh or low      | MIN        | 0.3          |
|                    | SEL after CLK 1, h  | igh or low     | MIN        | 0.3          |
|                    |                     | A              |            | 5            |
| tpd                | CLK                 | В              | MAX        | 7.4          |
|                    |                     | D              |            | 7.2          |
|                    | CLK                 | A              | MAX        | 6.2          |
|                    | ULK                 | В              | IVIAA      | 9.4          |
| ten                | 7                   | A              |            | 6            |
|                    | 0E                  | В              | MAX        | 9.5          |
|                    |                     | D              |            | 7.9          |
|                    | CLK                 | A              | MAX        | 6.4          |
|                    | CLK                 | В              | IVIAA      | 7.8          |
| ldis               |                     | A              |            | 5            |
|                    | ŌE                  | В              | MAX        | 7.6          |
|                    |                     | D              | 1          | 6.7          |

UNIT fmax: MHz other: ns

<sup>†</sup> Output level before indicated steady-state input conditions were established ‡ Two CLK edges are needed to propagate the data.

## 18-BIT TO 36-BIT REGISTERED BUS EXCHANGER WITH 3-STATE OUTPUTS

- ullet SN74ALVCHG162282: A-Port Outputs Have Equivalent 50- $\Omega$  Series Resistors
- B-Port Outputs Have Equivalent 20-Ω Series Resistors



Output level before indicated steady-state input conditions were established
 Two CLK edges are needed to propagate the data.

B-TO-A STORAGE (OE = L, DIR = L)

|     | INP | UTS |    | OUTPUT |
|-----|-----|-----|----|--------|
| CLK | SEL | 1B  | 2B | Α      |
| 1   | Н   | X   | L  | L§     |
| 1   | H   | X   | H  | H§     |
| 1   | L   | L   | X  | L      |
| 1   | 100 | H   | X  | H      |

§ Two CLK edges are needed to propagate the data. The data is loaded in the first register when SEL is low and proparates to the second register when SEL is high.

#### OUTPUT ENABLE

| INPUTS |    |     | OUTPUTS |        |
|--------|----|-----|---------|--------|
| CLK    | OE | DIR | A       | 1B, 2B |
| Ť      | Н  | X   | Z       | Z      |
| 1      | L  | H   | Z       | Active |
| 1      | L  | L   | Active  | Z      |

| lot (A to B) | MAX | 8 | mA |
|--------------|-----|---|----|
| IoL (B to A) | MAX | 6 | mA |

#### SWITCHING CHARACTERISTICS

| PARAMETER          | INPUT               | OUTPUT | MAX or MIN | ALVCHG<br>3V |
|--------------------|---------------------|--------|------------|--------------|
| fmax               |                     | 74,50  | MIN        | 160          |
| tw Pulse duration, | CLK high or low     | A 20   | MIN        | 2.3          |
|                    | A data before CLK 1 | b 31   | MIN        | 1.5          |
| tsu Setup time     | B data before CLK 1 | 4      | MIN        | 2            |
| isa Setup time     | DIR before CLK 1    | 7 70   | MIN        | 2            |
| 9                  | SEL before CLK 1    | 120    | MIN        | 2            |
|                    | A data after CLK 1  |        | MIN        | 0.3          |
| th Hold time       | B data after CLK 1  |        | MIN        | 0.3          |
| in Hold tillle     | DIR after CLK 1     |        | MIN        | 0.3          |
|                    | SEL after CLK↑      |        | MIN        | 0.3          |
| tod                | CLK                 | A      | MAX        | 5            |
| tpo.               | CER                 | В      | IVIAA      | 7.4          |
| alamani Ph         | CLK                 | A      | MAX        | 6.3          |
| ten                | GEK                 | В      | IVIAA      | 9.4          |
| Len                | ŌĒ                  | A      | MAX        | 6            |
|                    | ÜE.                 | В      | IVIAA      | 9.5          |
|                    | CLK                 | A      | MAX        | 6.4          |
| tdis               | OLK                 | В      | IVIAA      | 7.8          |
| toria .            | ŌĒ                  | A      | MAX        | 5            |
|                    | J.                  | В      | 1          | 7.6          |

UNIT fmax : MHz other : ns

## 162334

## **16-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS**

- ullet SN74ALVC162334: Output Ports Have Equivalent 26- $\Omega$  Series Resistors
- SN74ALVCH162334: Output Port Has Equivalent 26-Ω Series Resistors

## **Logic Diagram**



**FUNCTION TABLE** 

|    | INPUTS |      |   | OUTPUT |
|----|--------|------|---|--------|
| OE | LE     | CLK  | Α | Υ      |
| Н  | X      | X    | X | Z      |
| L  | L      | X    | L | L      |
| L  | L      | X    | H | H      |
| L  | H      | 1    | L | L      |
| L  | H      | +    | H | H      |
| L  | H      | LorH | X | Yot    |

† Output level before the indicated steady-state input conditions were established

| RECOMMENDED | OPERATING | CONDITIONS |
|-------------|-----------|------------|

| PARAMETER | MAX or MIN | ALVC<br>3V | ALVCH<br>3V | UNIT |
|-----------|------------|------------|-------------|------|
| Icc       | MAX        | 0.04       | 0.04        | mA   |
| Іон       | MAX        | -12        | -12         | mA   |
| lou       | MAX        | 12         | 12          | mA   |

## SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT               | OUTPUT | MAX or MIN | ALVC<br>3V | ALVCH<br>3V |  |
|-------------------|---------------------|--------|------------|------------|-------------|--|
| fmax              |                     |        | MIN        | 150        | 150         |  |
| tw Pulse duration | LE low              |        |            | 3.3        | 3.3         |  |
| tw Pulse duration | CLK high or low     |        | MIN        | 3.3        | 3.3         |  |
|                   | Data before CLK ↑   |        | MIN        | 1.5        | 1.5         |  |
| tsu Setup time    | Data before LE ↑ CI | K high | MIN        | 1.3        | 1.3         |  |
|                   | Data before LE ↑ CI | K low  | MIN        | 1.2        | 1.2         |  |
|                   | Data after CLK ↑    | 100    | MIN        | 0.9        | 0.9         |  |
| th Hold time      | Data after LE ↑ CLK | high   | MIN        | 1.1        | 1.1         |  |
|                   | Data after LE ↑ CLK | low    | MIN        | 1.1        | 1.1         |  |
| 15897             | A A                 |        | MAX        | 3.9        | 3.9         |  |
| tpd               | ĪĒ                  | Y      |            | 5          | 5           |  |
|                   | CLK                 |        | MAX        | 4.9        | 4.9         |  |
| ten               | ŌĒ                  | Y      |            | 5.4        | 5.4         |  |
| tdis              | ŌĒ                  | Υ      | MAX        | 5          | 5           |  |

UNIT fmax: MHz other: ns





## FUNCTION TABLE mangel@ sign.l

| PARAMETER | MAX or MIN | ALVCH<br>3V | UNIT |  |
|-----------|------------|-------------|------|--|
| Icc       | MAX        | 0.04        | mA   |  |
| Іон       | MAX        | -12         | mA   |  |
| lou       | MAX        | 12          | mA   |  |
|           |            |             |      |  |
|           |            |             |      |  |

| PARAMETER | INPUT | OUTPUT                 | MAX or MIN | ALVCH<br>3V |
|-----------|-------|------------------------|------------|-------------|
| tPLH      |       | -                      | MAX        | 4.4         |
| tphl.     | A     | В                      | IVIAX      | 4.4         |
| tpzH      | 25    | D agva2 <sub>B</sub> T | MANY       | 5.7         |
| tPZL      | UE    | В                      | MAX        | 5.7         |
| tPHZ      | ŌĒ    | В                      | MAX        | 4.5         |
| tPLZ      | UE    | D D                    | IVIAA      | 4.5         |

## 162373

## 3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

 SN74LVTH162373: Output Ports Have Equivalent 22-Ω Series Resistors



#### FUNCTION TABLE (each 8-bit section)

| 1  | INPUTS |   | OUTPUT |
|----|--------|---|--------|
| OE | LE     | D | Q      |
| L  | Н      | Н | Н      |
| L  | H      | L | L      |
| L  | L      | X | Qn     |
| H  | X      | X | Z      |

## RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVTH<br>3V | UNIT |
|-----------|------------|------------|------|
| Icc       | MAX        | 5          | mA   |
| Іон       | MAX        | -12        | mA   |
| lou       | MAX        | 12         | mA   |

| PARAMETER          | INPUT                | OUTPUT    | MAX or MIN | LVTH<br>3V |
|--------------------|----------------------|-----------|------------|------------|
| tw Pulse duration, | LE high or low       |           | MIN        | 3          |
| . Catua tima       | Data before LE 1, d  | lata high | MIN        | 1          |
| tsu Setup time     | Data before LE 1, d  | lata low  | MIN        | 1          |
| e Hallaton         | Data after LE 1, dat | ta high   | MIN        | 1          |
| th Hold time       | Data after LE ↓, dat | ta low    | MIN        | 1          |
| tPLH               | D                    | 0         | MAX        | 4.6        |
| tPHL .             |                      | u         | IVIAA      | 4          |
| tplH               | LE                   | 0         | MAX        | 5.1        |
| tphL .             | LE                   | u         | IVIAX      | 4.6        |
| tpzh               | - OE                 | 0         | MANY       | 5.4        |
| tPZL               | T UE                 | u         | MAX        | 4.9        |
| tPHZ               | - OE                 | 0         | BAAV       | 5.4        |
| tPLZ               | OE OE                | u         | MAX        | 5.1        |

## **Logic Diagram**

## 3.3-V ABT 16-BIT EDGE-TRIGGERED **D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS**

- SN74LVTH162374: Output Ports Have Equivalent 22-Ω Series Resistors
- SN74ALVCH162374: Output Ports Have Equivalent 26-Ω Series Resistors



To Seven Other Channels



To Seven Other Channels

**FUNCTION TABLE** (each fllp-flop)

|    | INPUTS |   | OUTPUT |
|----|--------|---|--------|
| ŌE | CLK    | D | Q      |
| L  | 1      | Н | H      |
| L  | 1      | L | 30 L-  |
| L  | L      | X | Qn     |
| H  | X      | X | Z      |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | LVTH<br>3V | ALVCH<br>3V | UNIT |  |
|-----------|------------|------------|-------------|------|--|
| Icc       | MAX        | 5          | 0.04        | mA   |  |
| Іон       | MAX        | -12        | -12         | mA   |  |
| lou       | MAX        | 12         | 12          | mA   |  |

## SWITCHING CHARACTERISTICS

UNIT fmax: MHz other: ns

|                   | MAGTEMOTICO         |          |            |            | -           |
|-------------------|---------------------|----------|------------|------------|-------------|
| PARAMETER         | INPUT               | ОИТРИТ   | MAX or MIN | LVTH<br>3V | ALVCH<br>3V |
| fmax              | 4                   |          |            | 160        | 150         |
| tw Pulse duration | CLK high or low     |          | MIN        | 3          | 3.3         |
|                   | Data before CLK 1,  | MIN      | 1.8        | 1.9        |             |
| tsu Setup time    | Data before CLK 1,  | data low | MIN        | 1.8        | 1.9         |
|                   | Data after CLK 1, d | ata high | MIN        | 0.8        | 0.5         |
| th Hold time      | Data after CLK 1, d | ata low  | MIN        | 0.8        | 0.5         |
| tPLH              | CLK                 | 0        |            | 5.3        | 4.6         |
| tPHL .            | ULK NAME            | u        | MAX        | 4.9        | 4.6         |
| tPZH              | OF.                 |          |            | 5.6        | 5.2         |
| tPZL              | OE Q                |          | MAX        | 4.9        | 5.2         |
| tPHZ              |                     |          | MAN        | 5.4        | 4.5         |
| tPLZ              | OE OLIS             | Q        | MAX        | 5          | 4.5         |



†n = 1, 2, 3, 4

#### B-TO-A STORAGE (after point P)

| Р                                                                                |      |      |      | S    | INPUT |      |       |        |   |   |   |   |   |   |   |   |   |   |   |
|----------------------------------------------------------------------------------|------|------|------|------|-------|------|-------|--------|---|---|---|---|---|---|---|---|---|---|---|
| Р                                                                                | SEL0 | SEL1 | LEB4 | LEB3 | LEB2  | LEB1 | CLKBA | CLKENB |   |   |   |   |   |   |   |   |   |   |   |
| B1                                                                               | L    | L    | L    | L    | L     | Н    | X     | X      |   |   |   |   |   |   |   |   |   |   |   |
| B2                                                                               | H    | L    | L    | L    | H     | L    | X     | X      |   |   |   |   |   |   |   |   |   |   |   |
| B3                                                                               | L    | H    | L    | H    | L     | L    | X     | X      |   |   |   |   |   |   |   |   |   |   |   |
| B4                                                                               | H    | H    | H    | L    | L     | L    | X     | X      |   |   |   |   |   |   |   |   |   |   |   |
| B1                                                                               | L    | L    |      |      |       |      |       |        |   |   |   |   |   |   |   |   |   |   |   |
| B2                                                                               | H    | L    | v    |      | L     |      |       |        |   |   |   |   |   |   |   |   |   |   |   |
| B3                                                                               | L    | H    | L    | _    |       | L    | L     | -      | - | L | - | - | - | - | _ | L | L | * | L |
| B4                                                                               | H    | H    |      |      |       |      |       |        |   |   |   |   |   |   |   |   |   |   |   |
| B1 <sub>0</sub> †<br>B2 <sub>0</sub> †<br>B3 <sub>0</sub> †<br>B4 <sub>0</sub> † | L    | L    |      |      |       |      |       |        |   |   |   |   |   |   |   |   |   |   |   |
| B201                                                                             | H    | L    |      | 1    |       |      |       |        |   |   |   |   |   |   |   |   |   |   |   |
| B301                                                                             | L    | H    | L    | L    | L     | L    | L     | L      |   |   |   |   |   |   |   |   |   |   |   |
| B401                                                                             | H    | H    |      |      |       |      |       |        |   |   |   |   |   |   |   |   |   |   |   |

B-TO-A STORAGE (after point P)

|         | INF   | UTS  |     |   | OUTPUT |
|---------|-------|------|-----|---|--------|
| CLKENBA | CLKBA | LEBA | OEA | В | A      |
| X       | X     | X    | H   | X | X      |
| X       | X     | H    | L   | L | L      |
| ×       | X     | H    | L   | H | H      |
| H       | X     | L    | L   | X | Aot    |
| L       | *     | L    | L   | L | L      |
| L       |       | L    | L   | H | H      |
| L       | L     | L    | L   | X | Apt    |



| PARAMETER    | MAX or MIN | ABTH | UNIT |
|--------------|------------|------|------|
| Icc          | MAX        | 32   | mA   |
| lon (A port) | MAX        | -32  | mA   |
| loн (B port) | MAX        | -12  | mA   |
| lot (A port) | MAX        | 64   | mA   |
| lor (B port) | MAX        | 12   | mA   |

# 18 10 XID

|                   | PARAMETER           |                                  | MAX or MIN | ABTH |  |
|-------------------|---------------------|----------------------------------|------------|------|--|
| fmax              |                     |                                  | MIN        | 160  |  |
|                   | CLKAB high or lo    | w                                | MIN        | 3.8  |  |
|                   | CLKBA high or lo    | CLKBA high or low                |            |      |  |
| tw Pulse duration | LEAB1, 2, 3 or 4 h  | igh                              | MIN        | 2.8  |  |
|                   | LEBA high           |                                  | MIN        | 2.8  |  |
|                   | LEB1, 2, 3 or 4 hig | jh                               | MIN        | 3    |  |
|                   |                     | A bus                            | MIN        | 2.5  |  |
|                   | Before CLKAB ↑      | CE_SEL0/1                        | MIN        | 3.2  |  |
|                   |                     | CLKENAB                          | MIN        | 3.2  |  |
|                   | Before LEAB1, 2,    | Before LEAB1, 2, 3, or 4 ↓ A bus |            |      |  |
|                   |                     | B bus                            | MIN        | 3.8  |  |
|                   |                     | CLKENB                           | MIN        | 2.3  |  |
| tsu Setup time    | Before CLKBA ↑      | CLKENBA                          | MIN        | 2.5  |  |
|                   |                     | LEB1, 2, 3 or 4                  | MIN        | 4.3  |  |
|                   |                     | SEL0/1                           | MIN        | 4.5  |  |
|                   | Before LEB1, 2, 3   | MIN                              | 3.2        |      |  |
|                   |                     | B bus                            | MIN        | 4    |  |
|                   | Before CLKBA ↑      | LEB1, 2, 3 or 4                  | MIN        | 4.4  |  |
|                   |                     | SEL0/1                           | MIN        | 4.3  |  |
|                   |                     | A bus                            | MIN        | 0.5  |  |
|                   | after CLKAB ↑       | CE_SEL0/1                        | MIN        | 1.1  |  |
|                   |                     | CLKENAB                          | MIN        | 0.5  |  |
|                   | after LEAB1, 2, 3,  | or 4   A bus                     | MIN        | 1.2  |  |
|                   |                     | B bus                            | MIN        | 1.3  |  |
| th Hold time      | after CLKBA ↑       | CLKENB                           | MIN        | 1    |  |
|                   | atter CERBA T       | CLKENBA                          | MIN        | 1    |  |
|                   |                     | SEL0/1                           | MIN        | 0    |  |
|                   | after LEB1, 2, 3, c | r 4 ↓ B bus                      | MIN        | 1.5  |  |
|                   | -G OLVDA A          | B bus                            | MIN        | 0.4  |  |
|                   | after CLKBA ↑       | SEL0/1                           | MIN        | 0.1  |  |

|             |                | 1      |            |       |
|-------------|----------------|--------|------------|-------|
| PARAMETER   | INPUT          | OUTPUT | MAX or MIN | ABTH  |
| tPLH .      | В              | А      | MAX        | 6.5   |
| tPHL        |                |        |            | 6.5   |
| tрzн        | ŌĒĀ            | А      | MAX        | 5.6   |
| tPZL        |                |        |            | 5.5   |
| tPHZ        | 0EA            | А      | MAX        | 5.9   |
| tPLZ        |                |        |            | 6.5   |
| tPLH .      | А              | В      | MAX        | 6.2   |
| <b>TPHL</b> |                |        |            | 6.5   |
| tPZH        | OEB            | В      | MAX        | 6.8   |
| tPZL        |                |        |            | 6.3   |
| tphz .      | OEB            | В      | MAX        | 6.2   |
| tPLZ        |                |        |            | 5.8   |
| tPZH        | OEB1, 2, 3, 4  | В      | MAX        | - 6.6 |
| tPZL        |                |        |            | 6.2   |
| tPHZ        | ŌEB1, 2, 3, 4  | В      | MAX        | 5.3   |
| tPLZ        |                |        |            | 4.9   |
| tPLH        | CLKBA          | А      | MAX        | 7.4   |
| tPHL        |                |        |            | 7.7   |
| <b>TPLH</b> | CLKAB          | В      | MAX        | 6.5   |
| TPHL        |                |        |            | 6.5   |
| tPLH .      | LEBA           | А      | MAX        | 5.8   |
| <b>TPHL</b> |                |        |            | 5.8   |
| tPLH        | LEAB1, 2, 3, 4 | В      | MAX        | 6.2   |
| tPHL .      |                |        |            | 6.2   |
| tPLH        | LEBA1, 2, 3, 4 | А      | MAX        | 7.2   |
| tPHL .      |                |        |            | 6.8   |
| tplh        | SEL            | А      | MAX        | 7.5   |
| tPHL .      |                |        |            | 6.9   |

<sup>†</sup> Output level before the indicated steady-state input conditions were established

### 18-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS

ullet SN74ABT162500: B-Port Outputs Have Equivalent 25- $\Omega$  Series Resistors



**FUNCTION TABLE** 

|      | INP  | UTS   |   | OUTPUT           |
|------|------|-------|---|------------------|
| OEAB | LEAB | CLKAB | Α | В                |
| L    | X    | X     | X | Z                |
| Н    | H    | ×     | L | L                |
| Н    | H    | X     | H | H                |
| Н    | L    | 1     | L | L S              |
| Н    | L    | 1     | H | H                |
| Н    | L    | H     | X | B <sub>0</sub> ‡ |
| H    | L    | L     | X | Bo§              |

Cutput level before the indicated steady-state input conditions were established.
 Soutput level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER    | MAX or MIN | ABT | UNIT |
|--------------|------------|-----|------|
| Icc          | MAX        | 36  | mA   |
| loн (A port) | MAX        | -32 | mA   |
| loн (B port) | MAX        | -12 | mA   |
| lot (A port) | MAX        | 64  | mA   |
| lor (B bort) | MAX        | 12  | mA   |

| SWITCHING CHAI    | RACTERISTICS                                                                        |                      |            |     |  |
|-------------------|-------------------------------------------------------------------------------------|----------------------|------------|-----|--|
| PARAMETER         | INPUT                                                                               | OUTPUT               | MAX or MIN | ABT |  |
| fmax              |                                                                                     | 7LID <               | MIN        | 150 |  |
| tw Pulse duration | LEAB or LEBA high                                                                   |                      | MIN        | 2.5 |  |
| tw ruise duration | CLKAB or CLKBA high                                                                 | or low               | MIN        | 3   |  |
|                   | A before CLKAB ↓                                                                    |                      | MIN        | 3.3 |  |
| t. Catua tima     | B before CLKBA ↓                                                                    |                      | MIN        | 3.3 |  |
| tsu Setup time    | A before LEAB ↓ or LE                                                               | BA ↓ CLK high        | MIN        | 1   |  |
|                   | A before LEAB 1 or LE                                                               | BA J CLK low         | MIN        | 2.5 |  |
| th Hold time      | A after CLKAB J or B                                                                | after CLKBA ↓        | MIN        | 0   |  |
| th Hold time      | A after CLKAB ↓ or B after CLKBA ↓  A after LEAB ↓ or B after LEBA ↓  A or B B or A |                      | MIN        | 2   |  |
| tPLH .            | A es D                                                                              | STEETING OF BUILDING |            | 4.8 |  |
| tPHL .            | Aorb                                                                                | B OF A               | MAX        | 5.7 |  |
| tPZH              | LEAB or LEBA                                                                        | B or A               | MAX        | 5.6 |  |
| tPZL              | LEAD OF LEDA                                                                        | D UI A               | IVIAA      | 5.9 |  |
| tPHZ              | CLKAB or CLKBA                                                                      | B or A               | MAX        | 5.9 |  |
| tPLZ              | CLNAD OF CLNDA                                                                      | D UI A               | IVIAA      | 6   |  |
| tPZH              | OFAB                                                                                | В                    | MAX        | 5.3 |  |
| tPZL              | UEAD                                                                                | D                    | IVIAA      | 5.4 |  |
| tPHZ              | OEAB                                                                                | B                    | MAX        | 6.5 |  |
| tPLZ              | UEAD                                                                                | Ь                    | IVIAX      | 5.8 |  |
| tPZH              | OEBA                                                                                | A                    | MAX        | 5.3 |  |
| tPZL              | ULDA                                                                                | A                    | IVIAA      | 5.4 |  |
| tPHZ              | - OEBA                                                                              | A                    | MAX        | 6.5 |  |
| tPLZ              | UEBA                                                                                | A                    | IVIAX      | 5.8 |  |

## 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SN74ABT162501: B-Port Outputs Have Equivalent 25-Ω Series Resistors



#### **FUNCTION TABLE**†

|      | INP  | OUTPUT |   |                  |
|------|------|--------|---|------------------|
| OEAB | LEAB | CLKAB  | Α | Y                |
| L    | X    | X      | X | Z                |
| H    | H    | X      | L | L                |
| H    | H    | X      | H | H                |
| H    | L    | 1      | L | L                |
| H    | L    | *      | H | H                |
| H    | L    | H      | X | B <sub>0</sub> ‡ |
| H    | L    | L      | X | Bo§              |

H L X BOS

A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, and CLKBA.

Output leveb before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAP went low

Output leveb before the indicated steady-state input conditions were established.

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER    | MAX or MIN | ABT | UNIT |
|--------------|------------|-----|------|
| Icc          | MAX        | 36  | mA   |
| loн (A port) | MAX        | -32 | mA   |
| Iон (B port) | MAX        | -12 | mA   |
| lot (A port) | MAX        | 64  | mA   |
| lor (B port) | MAX        | 12  | mA   |

| SWITCHING CHAP    | RACTERISTICS          |                |            |     |
|-------------------|-----------------------|----------------|------------|-----|
| PARAMETER         | INPUT                 | OUTPUT         | MAX or MIN | ABT |
| fmax              |                       |                | MIN        | 150 |
| tw Pulse duration | LEAB or LEBA high     |                | MIN        | 3   |
| tw ruise duration | CLKAB or CLKBA high   | or low         | MIN        | 3.3 |
|                   | A before CLKAB ↑      |                | MIN        | 4.3 |
| t. Catua tima     | B before CLKBA ↑      |                | MIN        | 4.3 |
| tsu Setup time    | A before LEAB ↓ or L  | EBA J CLK high | MIN        | 2.5 |
|                   | A before LEAB ↓ or L  |                | MIN        | 1   |
| th Hold time      | A after CLKAB † or B  | after CLKBA ↑  | MIN        | 0   |
| th Hold time      | A after LEAB ↓ or B a |                |            | 2   |
| tPLH -            |                       |                | MAX        | 4.8 |
| tPHL              | A or B                | B or A         | IVIAX      | 5.7 |
| tPZH              | LEAB or LEBA          | B or A         | MAX        | 5.6 |
| tPZL · · ·        | LEAD OF LEBA          | B OF A         | IVIAX      | 5.9 |
| tPHZ              | CLKAB or CLKBA        | B or A         | MAX        | 5.5 |
| tPLZ              | CLKAB OF CLKBA        | B OF A         | WAA        | 5.3 |
| tPZH              | OEAB                  | В              | MAX        | 5.3 |
| tPZL              | UEAB                  | В              | IVIAA      | 5.4 |
| tPHZ              | OEAB                  | В              | MAX        | 6.5 |
| tPLZ              | UEAD                  | В              | WAX        | 5.8 |
| tPZH              | OEBA                  | Α              | MAX        | 5.3 |
| tPZL.             | UEDA                  | A              | WAA        | 5.4 |
| tPHZ              | - OEBA                | А              | MAX        | 6.5 |
| tPLZ              | UEBA                  | A              | IVIAX      | 5.8 |



#### **FUNCTION TABLE**

A-TO-B STORAGE(OEAB=L)

|        | OUTPUT |   |                  |
|--------|--------|---|------------------|
| CLKNAB | OLKAB  | Α | В                |
| Н      | X      | X | B <sub>0</sub> † |
| L      | *      | L | L                |
| L      | †      | H | H                |

† Output level before the indicated steady-state input conditions were established

B-TO-A STORAGE (OFBA - I)

|         | INPUTS |        |     |   |     |  |
|---------|--------|--------|-----|---|-----|--|
| CLKENBA | CLK2BA | CLK1BA | SEL | В | A   |  |
| Н       | X      | X      | X   | X | Ant |  |
| L       | *      | X      | H   | L | L   |  |
| L       | +      | X      | H   | H | Н   |  |
| L       | 1      | +      | L   | L | L‡  |  |
| L.      | 1      | +      | L   | Н | H‡  |  |

were established
 Three CLK1BA edges and one CLK2BA edge are needed to propagate data from B to A when SEL is low.

RECOMMENDED OPERATING CONDITIONS



WITCHING CHARACTERISTICS

| PARAMETER          | INPUT                 | OUTPUT              | MAX or MIN | ALVCH<br>3V |
|--------------------|-----------------------|---------------------|------------|-------------|
| fmax               |                       |                     | MIN        | 150         |
| tw Pulse duration, | CLK high or low       |                     | MIN        | 3           |
|                    | A data before CLKA    | AB ↑                | MIN        | 1.3         |
|                    | B data before CLK2    | BA ↑                | MIN        | 1.7         |
|                    | B data before CLK1    | BA ↑                | MIN        | 1.1         |
| tsu Setup time     | SEL before CLK2BA     | 1                   | MIN        | 3.3         |
|                    | CLKENAB before C      | LKAB ↑              | MIN        | 1.6         |
|                    | CLKENBA before C      | LK1BA ↑             | MIN        | 2.1         |
|                    | CLKENBA before C      | LK2BA ↑             | MIN        | 2.2         |
|                    | A data after CLKAB    | 1                   | MIN        | 0.9         |
|                    | B data after CLK2B    | data after CLK2BA ↑ |            | 0.6         |
|                    | B data after CLK1BA ↑ |                     | MIN        | 1           |
| th Hold time       | SEL after CLK2BA ↑    |                     | MIN        | 0.1         |
|                    | CLKENAB after CLK     | KENAB after CLKAB ↑ |            | 0.3         |
|                    | CLKENBA after CLI     | K1BA ↑              | MIN        | 0.1         |
|                    | CLKENBA after CLF     | K2BA ↑              | MIN        | 0           |
| Ind                | CLKAB                 | В                   | MAX        | 4.7         |
| rba .              | CLK2BA                | A                   | IVIAA      | 4.2         |
| ten                | OEBA                  | A                   | MAX        | 5.1         |
| ten                | OEAB                  | В                   | IVIAA      | 5.7         |
| tdis               | OEBA                  | А                   | MAX        | 4.9         |
| tdis               | OEAB                  | В                   | IVIAX      | 4.9         |

UNIT fmax: MHz other: ns

■ SN74LVTH162541: Output Ports Have Equivalent 22-Ω Series Resistors

### 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

 $\bullet~$  SN74LVTH162541: Output Ports Have Equivalent 22- $\Omega$  Series Resistors

#### PUNCTION TABLE

A TO-P STORAGE(OEAR-L)

To Seven Other Channels



OUTPUT

INPUTS

OE1 OE2 A

| RECOMMENDED OF  | PERATING CONDIT | 21101      |      |            |            |  |  |
|-----------------|-----------------|------------|------|------------|------------|--|--|
| PARAMETER       | MAX or MIN      | LVTH<br>3V | UNIT |            |            |  |  |
| Icc             | MAX             | 5          | mA   |            |            |  |  |
| Іон             | MAX             | -12        | mA   |            |            |  |  |
| lor             | MAX             | 12         | mA   |            |            |  |  |
| SWITCHING CHARA | ACTERISTICS     | 01         | TPUT | MAX or MIN | LVTH<br>3V |  |  |
| tPLH .          |                 | -          |      | 33,80      | 4.1        |  |  |
| tPHL .          | A               |            | Υ    | MAX        | 4.1        |  |  |
| tPZH            | ŌĒ              |            | Υ    | MAX        | -5         |  |  |
| tPZL            | UE              |            | Y    | MAX        | 4.8        |  |  |
| tphz            | ŌĒ              |            | Υ    | MAX        | 5.9        |  |  |
| tPLZ            | 02              |            |      | Wirth      | 5.4        |  |  |
| UNIT: ns        |                 |            |      |            |            |  |  |
|                 |                 |            |      |            |            |  |  |

- CNITABITADOS DE
- SN74ABT162601: B-Port Outputs Have Equivalent 25- $\Omega$  Series Resistors SN74ALVCH162601: B-Port Outputs Have Equivalent 26- $\Omega$  Series Resistors





FUNCTION TABLE

|         | INPUTS |      |       |   |        |  |  |  |
|---------|--------|------|-------|---|--------|--|--|--|
| CLKENAB | OEAB   | LEAB | CLKAB | Ā | OUTPUT |  |  |  |
| X       | Н      | X    | X     | X | Z      |  |  |  |
| ×       | L      | H    | ×     | L | L      |  |  |  |
| ×       | L      | Н    | ×     | H | H      |  |  |  |
| Н       | L      | L    | X     | X | Bo‡    |  |  |  |
| Н       | L      | L    | ×     | X | Bo‡    |  |  |  |
| L       | L      | L    |       | L | L      |  |  |  |
| L       | L      | L    |       | H | H      |  |  |  |
| L       | L      | - OL | L     | X | Bo‡    |  |  |  |
| 1       | 1.     | 1    | H     | Y | Bo8    |  |  |  |

† A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, CLKBA, and CLKENBA. † Output level before the indicated steady-state input conditions were established.

§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER    | MAX or MIN | ABT | ALVCH<br>3V | UNIT |
|--------------|------------|-----|-------------|------|
| Icc          | MAX        | 36  | 0.04        | mA   |
| Iон (A port) | MAX        | -32 | -24         | mA   |
| loн (B port) | MAX        | -12 | -12         | mA   |
| loL (A port) | MAX        | 64  | 24          | mA   |
| lot (B port) | MAX        | 12  | 12          | mA   |

#### CHARTCHING CHARACTERISTICS

| PARAMETER         | INPUT                    | OUTPUT                 | MAX or MIN     | ABT | ALVCH<br>3V |                     |
|-------------------|--------------------------|------------------------|----------------|-----|-------------|---------------------|
| fmax              |                          |                        | MIN            | 150 | 150         |                     |
|                   | LEAB or LEBA high        |                        | MIN            | 2.5 | 3.3         |                     |
| tw Pulse duration | CLKAB or CLKBA high o    | MIN   15               | 3              | 3.3 |             |                     |
|                   | Data before CLK ↑        |                        | MIN            | 4.3 | 2.1         |                     |
|                   | A before LEAB ↓ or B be  | efore LEBA J, CLK high | MIN            | 2.5 | 1.6         |                     |
| tsu Setup time    | A before LEAB 1 or B be  | efore LEBA J, CLK low  | MIN            | 1   | 1.1         |                     |
|                   | CLKEN before ↑           |                        | MIN            | 2.7 | 1.7         |                     |
|                   | Data after CLK ↑         |                        | MIN            | 0   | 0.8         |                     |
|                   | A after LEAB ↓ or B afte | r LEBA 1. CLK high     | MIN            | 0.5 | 1.4         |                     |
| th Hold time      | A after LEAB ↓ or B afte |                        | MIN            | 0.5 | 1.7         |                     |
|                   | CLKEN after ↑            |                        | MIN            | 0   | 0.6         |                     |
| tPLH              |                          | 1131                   | IA STREET, SON | 4.8 | 4.5         |                     |
| tPHL.             | A                        | В                      | WAX            | 5.7 | 4.5         |                     |
| tPLH              |                          | . 0                    | ALL DELINA     | 4   | 4.1         |                     |
| tphl .            | В                        | A                      | MAX            | 4.9 | 4.1         | CLIC megh or law    |
| tplh              | 1504                     | . 1                    |                | 5   | 4.7         | Date before O.K. 1  |
| tPHL .            | LEBA                     | A                      | MAX            | 5   | 4.7         | CLAST Instant VISIO |
| tPLH              | LEAB                     |                        |                | 5.6 | 5.1         | 1 XQ0 refts areQ    |
| tphL .            | LEAB                     | В                      | MAX            | 5.9 | 5.1         | 1 X I3 min V5XID    |
| tPLH              | CLKBA                    |                        | MANY           | 5.3 | 5           |                     |
| tPHL              | CLKBA                    | A                      | IVIAX          | 5   | 5           | 9633                |
| tplH              | CLKAB                    | D                      | MAN            | 5.5 | 5.5         |                     |
| tphL .            | CLKAB                    | D                      | IVIAX          | 5.3 | 5.5         | 30 4                |
| tPZH              | - OEBA                   |                        | MAN            | 5.1 | 5.2         |                     |
| tPZL              | UEBA                     | A                      | MAX            | 5.4 | 5.2         | 30 -                |
| tPZH              | OEAB                     |                        | MAN            | 6.1 | 5.7         | un tadio            |
| tPZL              | UEAB                     | В                      | MAX            | 5.7 | 5.7         |                     |
| tphz .            | DEBA                     |                        | 1447           | 6.2 | 4.4         |                     |
| tPLZ              | UEBA                     | A                      | WAX            | 5.4 | 4.4         |                     |
| tphz              | OEAB .                   | D                      | MANY           | 5.4 | 4.8         |                     |
| TPLZ              | UEAB                     | R                      | MAX            | 5.2 | 4.8         | 1                   |



FUNCTION TABLE

|   |      | - ( | each fl | ip-flop) |                |
|---|------|-----|---------|----------|----------------|
|   |      | INP | UTS     |          | OUTPUT         |
| O | E CI | KEN | CLK     | D        | Q              |
| L |      | Н   | X       | X        | Q <sub>0</sub> |
| L |      | L   | *       | H        | H              |
| L |      | L   | *       | L        | L              |
| L |      | L   | LorH    | X        | Qn             |
| H |      | X   | X       | -X-      | Z              |

|  | RECOMMENDED | OPERATING | CONDITIONS |  |
|--|-------------|-----------|------------|--|
|--|-------------|-----------|------------|--|

| NECOMMENDED OF | PERATING CUNDIT | 101/15      |      |
|----------------|-----------------|-------------|------|
| PARAMETER      | MAX or MIN      | ALVCH<br>3V | UNIT |
| lcc -          | MAX             | 0.04        | mA   |
| Іон            | MAX             | -12         | mA   |
| lou            | MAX             | 12          | mA   |

| SWITCHING CHARACTERISTICS |                    |        |       |            |             |    |  |  |
|---------------------------|--------------------|--------|-------|------------|-------------|----|--|--|
|                           | T                  | 8.0    | -     | \$1746     |             | 1  |  |  |
| PARAMETER                 | INPUT              | OUTPUT | 8.5   | MAX or MIN | ALVCH<br>3V | 8  |  |  |
|                           |                    |        | Til   |            | 30          |    |  |  |
| fmax                      |                    | (3)    | - 6   | MIN        | 150         | A  |  |  |
| tw Pulse duration         | CLK high or low    | 12:01  | . 2 . | MIN        | 3.3         |    |  |  |
| tsu Setup time            | Data before CLK ↑  | 1,3    | 10    | MIN        | 3.1         | A  |  |  |
| isii Setup time           | CLKEN before CLK ↑ | 1.2    | 2.    | MIN        | 2.7         |    |  |  |
| th Hold time              | Data after CLK ↑   | 150    | 0.0   | MIN        | 0           | 18 |  |  |
| in noid time              | CLKEN after CLK ↑  | 1.5    | 8.    | MIN        | 0           |    |  |  |
| tPLH .                    | CLK                | a      | - 5   | MAX        | 5.3         | Α. |  |  |
| TPHL                      | CER                | u      | 8     | IVIAA      | 5.3         |    |  |  |
| tPZH .                    | - OE               | Q      | 935   | MAX        | 5.8         |    |  |  |
| tPZL                      | OL.                | ч      | 8.    | IVIAA      | 5.8         |    |  |  |
| <b>TPHZ</b>               | OE                 | 0      |       | MAX        | 5           | 70 |  |  |
| tPLZ                      | OL.                | 0      | 200   | WIAA       | 5           |    |  |  |
| UNIT fmax: MHz            | other : ns         |        |       |            |             |    |  |  |
|                           |                    |        |       |            |             |    |  |  |
|                           |                    |        |       |            |             |    |  |  |
|                           |                    |        |       |            |             |    |  |  |
|                           |                    |        |       |            |             |    |  |  |
|                           |                    |        |       |            |             |    |  |  |
|                           |                    |        |       |            |             |    |  |  |



RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVCH<br>3V | UNIT |  |
|-----------|------------|-------------|------|--|
| Icc       | MAX        | 0.04        | mA   |  |
| Іон       | MAX        | -12         | mA   |  |
| lor       | MAX        | 12          | mA   |  |
|           |            |             | 1966 |  |

#### SWITCHING CHARACTERISTICS

| INPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OUTPUT                               | MAX or MIN                                                        | ALVCH<br>3V     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | MIN                                                               | 150             |
| CLK high or low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THEIRIG                              | MIN                                                               | 3.3             |
| Data before CLK ↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | MIN                                                               | 1.4             |
| Data after CLK ↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | MIN                                                               | 1               |
| THE CLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                    | AAAV                                                              | 5.4             |
| CLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | u                                    | IVIAX                                                             | 5.4             |
| MILL OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                    | MAN                                                               | 5.6             |
| UE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | u                                    | MAX                                                               | 5.6             |
| OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PERSON NAMED IN COLUM | 0.000                                | MAN                                                               | 5               |
| UE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U AND E                              | WAX                                                               | 5               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLK high or low<br>Data before CLK ↑ | CLK high or low  Data before CLK ↑  Data after CLK ↑  CLK Q  OE Q | MIN   MIN   MIN |

| PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Production processing does not passessily include testing of all parameters. See wasky ti com/secllonic for the most current data sheats                |

69-

## 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS AND HOM 90.8-91.8 TIB-01 V-C.E

SN74ABT162823A: Output Ports Have Equivalent 25-Ω Series Resistors



**FUNCTION TABLE** 

|    |     | OUTPUT |     |   |    |
|----|-----|--------|-----|---|----|
| OE | CLR | CLENK  | CLK | D | Q  |
| L  | L   | X      | X   | X | L  |
| L  | H   | L      | +   | H | Н  |
| L  | H   | L      | 1   | L | L  |
| L  | H   | L      | L   | X | Qn |
| L  | H   | H      | X   | X | Qo |
| H  | X   | X      | X   | X | Z  |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | UNIT |
|-----------|------------|-----|------|
| Icc       | MAX        | 80  | mA   |
| Іон       | MAX        | -12 | mA   |
| lou       | MAX        | 12  | mA   |

SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT              | OUTPUT | MAX or MIN | ABT |
|-------------------|--------------------|--------|------------|-----|
| fmax              | 1000               |        | MIN        | 150 |
| tw Pulse duration | CLR low            | D      | MIN        | 3.3 |
| tw Pulse duration | CLK high or low    |        | MIN        | 3.3 |
|                   | CLR inactive       |        | MIN        | 1.6 |
| tsu Setup time    | Data before CLK ↑  |        | MIN        | 2   |
|                   | CLKEN low before   | CLK ↑  | MIN        | 2.8 |
| th Hold time      | Data after CLK ↑   |        | MIN        | 1.2 |
| th Hold time      | CLKEN low after CL | K ↑    | MIN        | 0.6 |
| tPLH              | CIV                | 0      | MAN        | 7.5 |
| tphl .            | CLK                | u      | MAX        | 6.7 |
| tPHL .            | CLR                | Q      | MAX        | 7   |
| tРZН              | OF.                |        |            | 5.9 |
| tPZL              | - <u>OE</u> 0      |        | MAX        | 7   |
| tPHZ              | - OF               | 0      | MANY       | 6.6 |
| tPLZ              | T UE               | u u    | MAX        | 9   |

# 18-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

 SN74ABT162825: Output Ports Have Equivalent 25-Ω Series Resistors



Logic Diagram

To Eight Other Channels



To Eight Other Channels

FUNCTION TABLE

|     | INPUTS | OUTPUT |   |
|-----|--------|--------|---|
| OE1 | OE2    | Α      | Y |
| L   | L      | L      | L |
| L   | L      | H      | H |
| H   | X      | X      | Z |
| X   | H      | X      | 7 |

RECOMMENDED OPERATING CONDITIONS

| necommence of | Elittinto oblitaliti | 1   | _    |
|---------------|----------------------|-----|------|
| PARAMETER     | MAX or MIN           | ABT | UNIT |
| Icc           | MAX                  | 32  | mA   |
| Іон           | MAX                  | -12 | mA   |
| lou           | MAX                  | 12  | mA   |

SWITCHING CHARACTERISTICS

| 01211101100 | HUTSALL STEE | 101 TEA - 1613s | And Make |
|-------------|--------------|-----------------|----------|
| INPUT       | OUTPUT       | MAX or MIN      | ABT      |
|             | 8 E E E      | MAY             | 3.9      |
| A           | 1.7 0.0      | IVIAX           | 4.7      |
| <u> </u>    |              | MAN             | 6.9      |
| UE          | 1 Y 0-0      | WAX             | 6.3      |
| <u> </u>    | V            | 5457            | 6.6      |
| UE          | Y            | IVIAX           | 6.3      |
|             |              | INPUT           | INPUT    |

UNIT: ns

- SN74ALVTH162827: Output Ports Have Equivalent 30-Ω Series Resistors
- SN74ALVCH162827: Output Ports Have Equivalent 26-Ω Series Resistors







## FUNCTION TABLE (each flip flop)

|     | INPUTS | OUTPUT |   |
|-----|--------|--------|---|
| OE1 | OE2    | A      | Y |
| L   | L      | L      | L |
| L   | L      | H      | H |
| H   | X      | X      | Z |
| X   | H      | X      | 7 |

†n = 1,2

#### RECOMMENDED OPERATING CONDITIONS

| RECOMMENDED OF | PERATING CONDITI | ONS |             |             |      |
|----------------|------------------|-----|-------------|-------------|------|
| PARAMETER      | MAX or MIN       | ABT | ALVTH<br>3V | ALVCH<br>3V | UNIT |
| Icc            | MAX              | 32  | 5.5         | 0.04        | mA   |
| Іон            | MAX              | -12 | -12         | -12         | mA   |
| lou            | MAX              | 12  | 12          | 12          | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER | INPUT | OUTPUT | MAX or MIN | ABT | ALVTH<br>3V | ALVCH<br>3V |
|-----------|-------|--------|------------|-----|-------------|-------------|
| tPLH      | Α     | Υ      | MAN        | 3.9 | 3.9         | 3.8         |
| tPHL .    |       |        | MAX        | 4.7 | 3.7         | 3.8         |
| tPZH .    | ŌĒ    |        | MAN        | 6.9 | 5.6         | 5.1         |
| tPZL      | UE    | 1      | MAX        | 6.3 | 4.1         | 5.1         |
| tPHZ      | ŌĒ    |        | MAX        | 6.6 | 6.3         | 4.7         |
| PLZ       | UE    | 1      | MAX        | 6.3 | 5.1         | 4.7         |

### 1-BIT TO 2-BIT ADDRESS DRIVER WITH 3-STATE OUTPUTS

 SN74ALVCH162830, SN74ALVCHS162830: Output Ports Have Equivalent 26-Ω Series Resistors



Logic Diagram

To 17 Other Channels

## FUNCTION TABLE

| INPUTS |     |   | OUT | PUTS |
|--------|-----|---|-----|------|
| OE1    | OE2 | Α | 1Yn | 2Yn  |
| L      | H   | H | H   | Z    |
| L      | H   | L | L   | Z    |
| H      | L   | H | Z   | H    |
| H      | L   | L | Z   | L    |
| L      | L   | H | H   | Н    |
| L      | L   | L | L   | L    |
| H      | H   | X | Z   | Z    |

|   | H | H | H | Z |  |  |  |
|---|---|---|---|---|--|--|--|
|   | H | L | L | Z |  |  |  |
|   | L | H | Z | H |  |  |  |
|   | L | L | Z | L |  |  |  |
|   | L | H | Н | H |  |  |  |
|   | L | L | L | L |  |  |  |
|   | H | X | Z | Z |  |  |  |
| _ |   |   |   |   |  |  |  |

### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVCH<br>3V | ALVCHS<br>3V | UNIT |
|-----------|------------|-------------|--------------|------|
| lcc       | MAX        | 0.04        | 0.04         | mA   |
| Іон       | MAX        | -12         | -12          | mA   |
| lou       | - MAX      | 12          | . 12         | mA   |

| SWITCHING CHARAC | TERISTICS |        | 1 470 asie etc | P.P.        | 30-00-000    |
|------------------|-----------|--------|----------------|-------------|--------------|
| PARAMETER        | INPUT     | OUTPUT | MAX or MIN     | ALVCH<br>3V | ALVCHS<br>3V |
| tPLH .           | A Y       | MAX    | 3.5            | 3.5         |              |
| tPHL             |           |        | IVIAA          | 3.5         | 3.5          |
| tPZH             | ŌĒ        | Y      | MAX            | 4.8         | 4.8          |
| tPZL             | UE        |        |                | 4.8         | 4.8          |
| tPHZ             | ŌĒ        | V      | MAN            | 5.2         | 5.2          |
| tPLZ             | UE        | 1      | MAX 5.2        |             | 5.2          |
| UNIT: ns         |           |        |                |             | -            |

## 1-BIT TO 4-BIT ADDRESS REGISTER/DRIVER WITH 3-STATE OUTPUTS 23 AGOA THE-S OT THE-I

SN74ALVC162831, SN74ALVCH162831: Output Ports Have Equivalent 26-Ω Series Resistors



**FUNCTION TABLE** 

|    | INP | UTS |   | OUTPUT |
|----|-----|-----|---|--------|
| OE | SEL | CLK | Α | Υ      |
| Н  | X   | X   | X | Z      |
| L  | H   | X   | L | L      |
| L  | H   | X   | H | H      |
| L  | L   | +   | L | L      |
| L  | L   | 1   | H | H      |

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVC<br>3V | ALVCH<br>3V | UNIT |
|-----------|------------|------------|-------------|------|
| lcc       | MAX        | 0.04       | 0.04        | mA   |
| Іон       | MAX        | -12        | -12         | mA   |
| lor       | MAX        | 12         | 12          | mA   |

| SWITCHING CHAR    | ACTERISTICS        |         |            |            |             |
|-------------------|--------------------|---------|------------|------------|-------------|
| PARAMETER         | INPUT              | OUTPUT  | MAX or MIN | ALVC<br>3V | ALVCH<br>3V |
| fmax              |                    |         | MIN        | 150        | 150         |
| tw Pulse duration | CLK high or low    |         | MIN        | 3.3        | 3.3         |
| tsu Setup time    | A data before CLK  | 1       | MIN        | 1.6        | 1.6         |
| th Hold time      | A data after CLK ↑ |         | MIN        | 1.1        | 1.1         |
| tPLH              |                    | Y       | ****       | 4.3        | 4.3         |
| tPHL .            | A                  | ruggiun | MAX        | 4.3        | 4.3         |
| tPLH              | OLK                | Y       | MAN        | 4.7        | 4.7         |
| tPHL .            | CLK                | Y       | MAX        | 4.7        | 4.7         |
| tPLH              | SEL                | V       | MAN        | 4.8        | 4.8         |
| tPHL 8 8 8 1      | SEL                | Y       | MAX        | 4.8        | 4.8         |
| tPZH E            | ŌĒ                 | Y       | 21/        | 5.1        | 5.1         |
| tPZL C            | OE OE              | Y       | MAX        | 5.1        | 5.1         |
| tPHZ 1            | ŌĒ                 | Y       | 39         | 5.1        | 5.1         |
| tPLZ              | J UE               | Y       | MAX        | 5.1        | 5.1         |

# 1-BIT TO 4-BIT ADDRESS REGISTER/DRIVER WITH 3-STATE OUTPUTS 2UG JA28-3VIMU TIB-81

SN74ALVCH162832: Output Ports Have Equivalent 26-Ω Series Resistors



**FUNCTION TABLE** 

|    | INP | UTS |   | OUTPUT |
|----|-----|-----|---|--------|
| OE | SEL | CLK | Α | Y      |
| Н  | X   | X   | X | Z      |
| L  | H   | X   | L | L      |
| L  | H   | X   | H | H      |
| L  | L   | +   | L | L      |
| L  | L   |     | H | H      |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVCH<br>3V | UNIT |
|-----------|------------|-------------|------|
| Icc       | MAX        | 0.04        | mA   |
| Іон       | MAX        | -12         | mA   |
| lor       | MAX        | 12          | mA   |

#### SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT               | OUTPUT | MAX or MIN | ALVCH<br>3V |
|-------------------|---------------------|--------|------------|-------------|
| fmax              |                     |        | MIN        | 150         |
| tw Pulse duration | CLK high or low     |        | MIN        | 3.3         |
| tsu Setup time    | A data before CLK ↑ |        | MIN        | 1.6         |
| th Hold time      | A data after CLK ↑  |        | MIN        | 1.1         |
| tPLH .            | 19118               | V      | MAN        | 4.3         |
| tPHL PL           | A                   | dold   | MAX        | 4.3         |
| tPLH              | 01.14               | v      | MAX        | 4.7         |
| tPHL 10           | CLK                 | ,      | MAX        | 4.7         |
| tPLH .            | SEL                 | V      | MAX        | 4.8         |
| tPHL PI           | SEL                 | 7      | MAX        | 4.8         |
| tPZH              | ŌĒ                  | Υ      | MAX        | 5.1         |
| tPZL              | UE                  | Y      | IVIAX      | 5.1         |
| tPHZ              | ŌĒ                  | Y      | MAX        | 5.1         |
| tPLZ              | UE                  | 17     | WAX        | 5.1         |



### 18-BIT LINIVERSAL RIIS DRIVED



#### **FUNCTION TABLE**

|          | INI     |            | OUTPUT   |                  |
|----------|---------|------------|----------|------------------|
| OE       | LE      | CLK        | Α        | Y                |
| H        | X       | X          | X        | Z                |
| L        | L       | X          | L        | L                |
| L        | L       | X          | H        | Н                |
| L        | H       | *          | L        | L                |
| L        | H       | *          | H        | H                |
| L        | H       | H          | X        | Yot              |
| L        | Н       | L          | X        | Y <sub>0</sub> ‡ |
| + Output | level I | before the | indicate | d steady-state   |

<sup>†</sup> Output level before the indicated steady-state input conditions were established, provided that CLK is high before LE goes high † Output level before the indicated steady-state input conditions were established

RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ALVC<br>3V | UNIT |
|-----------|------------|------------|------|
| Icc       | MAX        | 0.04       | mA   |
| Іон       | MAX        | -12        | _mA  |
| lou       | MAX        | 12         | mA   |

| THE CHORD         | Mill to 2.41/          | TUSTUO | TURKE      | 83         | SM  |
|-------------------|------------------------|--------|------------|------------|-----|
| PARAMETER         | INPUT                  | OUTPUT | MAX or MIN | ALVC<br>3V |     |
| fmax 0.5          | Mild                   | MIN    | 150        | ulb.       |     |
| tw Pulse duration | LE low                 |        | MIN        | 3.3        |     |
| tw Pulse duration | CLK high or low        |        | MIN        | 3.3        | 200 |
| 5.0               | Data before CLK ↑      |        |            | 1.7        |     |
| tsu Setup time    | Data before LE ↑, CLK  | high - | MIN        | 1.9        |     |
|                   | Data before LE ↑, CLK  | MIN    | 1.5        |            |     |
| th Hold time      | A data after CLK ↑     | MIN    | 0.7        |            |     |
|                   | Data after LE ↑, CLK h | MIN    | 0.9        |            |     |
|                   | Data after LE ↑, CLK I | MIN    | 0.9        |            |     |
| tPLH I I          | A                      |        |            |            |     |
| tPHL LE           | A                      | 1.1    | MAX        | 4.2        |     |
| tPLH              | LE                     | Y      | MAX        | 5.8        |     |
| tPHL I E          | LC                     | 17     | IVIAA      | 5.8        |     |
| tPLH              | CLK                    | ٧      | MAX        | 5.4        | TOT |
| tphl.             | CLK Y                  |        | IVIAA      | 5.4        | 7   |
| tРZH              | - OE Y                 |        | MAX        | 5.9        |     |
| tPZL              | UE I                   |        | IVIAA      | 5.9        | ]   |
| tPHZ              | - OE                   | ٧      | MAX        | 5          | 1   |
| tPLZ              | UE                     | 1      | IVIAX      | 5          | 1   |

#### **Logic Diagram**

### 18-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS

 SN74ALVC162835, SN74ALVCH162835: Output Port Has Equivalent 26-Ω Series Resistors



#### FUNCTION TABLE

input conditions were established

| INPUTS |    |      |   | OUTPUT |
|--------|----|------|---|--------|
| OE     | LE | CLK  | Α | Y      |
| Н      | X  | X    | X | Z      |
| L      | H  | X    | L | L      |
| L      | H  | X    | H | H      |
| L      | L  |      | L | L      |
| L      | L  |      | H | H      |
| L      | L  | LorH | X | Yot    |

| PARAMETER | MAX or MIN | ALVC<br>3V | ALVCH<br>3V | UNIT |
|-----------|------------|------------|-------------|------|
| Icc       | MAX        | 0.04       | 0.04        | mA   |
| Іон       | MAX        | -12        | -12         | mA   |
| lou       | MAX        | 12         | . 12        | mA   |

#### RECOMMENDED OPERATING CONDITIONS

#### SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT                | OUTPUT | MAX or MIN | ALVC<br>3V | ALVCH<br>3V |
|-------------------|----------------------|--------|------------|------------|-------------|
| fmax              | 1 50                 |        | MIN        | 150        | 150         |
| e Dolos dosedes   | LE low               |        | MIN        | 3.3        | 3.3         |
| tw Pulse duration | CLK high or low      |        | MIN        | 3.3        | 3.3         |
|                   | Data before CLK ↑    | MIN    | 1.7        | 1.7        |             |
| tsu Setup time    | Data before LE 1, C  | MIN    | 1.5        | 1.5        |             |
|                   | Data before LE 1, C  | MIN    | 1          | 1          |             |
|                   | A data after CLK ↑   | MIN    | 0.7        | 0.7        |             |
| th Hold time      | Data after LE 1, CLI | MIN    | 1.4        | 1.4        |             |
|                   | Data after LE 1, CLI | MIN    | 1.4        | 1.4        |             |
| tPLH              | A Y                  |        | MAN        | 4.2        | 4.2         |
| tPHL .            | 7 A                  | Y (    | MAX        | 4.2        | 4.2         |
| tPLH .            | 15                   | Y      |            | 5.1        | 5.1         |
| tphl.             | LE                   | Υ      | MAX        | 5.1        | 5.1         |
| tplH .            | 011/                 | Y      | 1444       | 5.4        | 5.4         |
| tphl .            | CLK                  | Y      | MAX        | 5.4        | 5.4         |
| tрzн              | ŌĒ                   | Y      |            | 5.5        | 5.5         |
| tPZL              | T UE                 | Υ      | MAX        | 5.5        | 5.5         |
| tPHZ              | ŌĒ                   | Y      | MAN        | 4.5        | 4.5         |
| tPLZ              | - UE                 | Y      | MAX        | 4.5        | 4.5         |

# 20-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS

 SN74ALVC162836, SN74ALVCH162836: Output Port Has Equivalent 26-Ω Series Resistors



#### **FUNCTION TABLE**

|    | INF | OUTPUT |   |     |
|----|-----|--------|---|-----|
| OE | LE  | CLK    | Α | Y   |
| H  | X   | X      | X | Z   |
| L  | L   | X      | L | L   |
| L  | L   | X      | H | H   |
| L  | H   | 1      | L | L   |
| L  | H   | 1      | H | H   |
| L  | H   | LorH   | X | Yot |

† Output level before the indicated steady-state input conditions were established

#### RECOMMENDED OPERATING CONDITIONS

| ENATING CONDIT | 10143                |                     |            |
|----------------|----------------------|---------------------|------------|
| MAX or MIN     | ALVC<br>3V           | ALVCH<br>3V         | UNIT       |
| MAX            | 0.04                 | 0.04                | mA         |
| MAX            | -12                  | -12                 | mA         |
| MAX            | 12                   | 12                  | mA         |
|                | MAX or MIN  MAX  MAX | MAX 0.04<br>MAX -12 | MAX or MIN |

#### SWITCHING CHARACTERISTICS

| PARAMETER         | INPUT                | OUTPUT  | MAX or MIN | ALVC<br>3V | ALVCH<br>3V |
|-------------------|----------------------|---------|------------|------------|-------------|
| fmax              |                      |         | MIN        | 150        | 150         |
|                   | LE low               | 1(3)    | MIN        | 3.3        | 3.3         |
| tw Pulse duration | CLK high or low      | V       | MIN        | 3.3        | 3.3         |
|                   | Data before CLK ↑    |         | MIN        | 1.5        | 1.5         |
| tsu Setup time    | Data before LE 1, C  | LK high | MIN        | 1.3        | 1.3         |
|                   | Data before LE 1, C  |         | MIN        | 1.2        | 1.2         |
| th Hold time      | A data after CLK ↑   |         | MIN        | 0.9        | 0.9         |
|                   | Data after LE ↓, CLI | K high  | MIN        | 1.1        | 1.1         |
|                   | Data after LE 1, CLI |         | MIN        | 1.1        | 1.1         |
| tPLH .            | A                    | Y       | CARAN      | 4          | 4           |
| tPHL              | Α Α                  | Y       | MAX        | 4          | 4           |
| tPLH .            | - LE                 | Y I     | MAN        | 5.1        | 5.1         |
| tphl.             | LE                   | Y       | MAX        | 5.1        | 5.1         |
| tPLH .            | CLK                  | ν       | MAX        | 5          | 5           |
| tPHL .            | ULK                  | 1       | IWAX       | 5          | 5           |
| tPZH              | ŌĒ                   | Y       | MAX        | 5.5        | 5.5         |
| tPZL              | OE.                  | Y       |            | 5.5        | 5.5         |
| tРНZ              | ŌE                   | V 5     | MAX        | 5.1        | 5.1         |
| tPLZ              | ] UE                 | Y       | IVIAX      | 5.1        | 5.1         |

#### 20-BIT BUS-INTERFACE D-TYPE LATCH WITH 3-STATE OUTPUTS

- SN74ABT162841: Output Ports Have Equivalent 25-Ω Series Resistors
- SN74ALVCH162841: Output Ports Have Equivalent 26-Ω Series Resistors





#### **FUNCTION TABLE** (each 10-bit latch)

| - 1 | NPUTS | 6 | OUTPUT |
|-----|-------|---|--------|
| OE  | LE    | D | Q      |
| L   | H     | H | Н      |
| L   | H     | L | L      |
| L   | L     | X | Qn     |
| H   | X     | X | Z      |

#### RECOMMENDED OPERATING CONDITIONS

| PARAMETER | MAX or MIN | ABT | ALVCH<br>3V | UNIT |
|-----------|------------|-----|-------------|------|
| Icc       | MAX        | 89  | 0.04        | mA   |
| Іон       | MAX        | -12 | -12         | mA   |
| lou       | MAX        | 12  | 12          | mA   |

| PARAMETER | MAX or MIN | ABT | ALVCH<br>3V | UNIT |
|-----------|------------|-----|-------------|------|
| Icc       | MAX        | 89  | 0.04        | mA   |
| Іон       | MAX        | -12 | -12         | mA   |
| lou       | MAX        | 12  | 12          | mA   |

#### SWITCHING CHARACTERISTICS

| INPUT            | OUTPUT                             | MAX or MIN                                                          | ABT                                                                                                                                                                                                            | ALVCH<br>3V                                                                                                                                |                |                |  |  |
|------------------|------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|--|--|
| LE high or low   | Am                                 | MIN                                                                 | 4                                                                                                                                                                                                              | 3.3                                                                                                                                        |                |                |  |  |
| Data before LE ↓ | Am                                 | MIN                                                                 | 0.8                                                                                                                                                                                                            | 1.1.0                                                                                                                                      |                |                |  |  |
| Data after LE ↓  | Am                                 | MIN                                                                 | 1.8                                                                                                                                                                                                            | 1.1                                                                                                                                        |                |                |  |  |
|                  | - Am                               |                                                                     | 5.2                                                                                                                                                                                                            | 4.3                                                                                                                                        |                |                |  |  |
| 1 0              | Au I                               | MAX                                                                 | 6                                                                                                                                                                                                              | 4.3                                                                                                                                        |                |                |  |  |
|                  | Am                                 |                                                                     | 5.4                                                                                                                                                                                                            | 4.7                                                                                                                                        |                |                |  |  |
| LE               | u MAX                              |                                                                     | LE U MAX 5.8 4.7                                                                                                                                                                                               |                                                                                                                                            |                |                |  |  |
|                  |                                    |                                                                     | 5.7                                                                                                                                                                                                            | 5.3                                                                                                                                        |                |                |  |  |
| UE UE            | Ε   Ω                              | UE U MAX                                                            |                                                                                                                                                                                                                | 6.5                                                                                                                                        | 5.3            |                |  |  |
|                  |                                    |                                                                     | 6.5                                                                                                                                                                                                            | 4.4                                                                                                                                        |                |                |  |  |
| OE OE            | HUBBYA Q 85VA                      | MAX                                                                 | 7.1                                                                                                                                                                                                            | 4.4                                                                                                                                        |                |                |  |  |
|                  | LE high or low<br>Data before LE ↓ | LE high or low Data before LE 1 Data after LE 1  D Q AM  LE Q  OE Q | LE high or low         MIN           Data before LE ↓         MIN           Data after LE ↓         MIN           D         Q         MAX           LE         Q         MAX           —         Q         MAX | LE high or low MIN 4 Data before LE ↓ MIN 0.8 Data after LE ↓ MIN 1.8 D Q MAX 5.2 E Q MAX 5.4  - LE Q MAX 5.8 - OE Q MAX 6.5  DE Q MAX 6.5 | LE high or low | LE high or low |  |  |

UNIT: ns

|  | Anna Anna | No really | A6 1 635 A | 76 - 8007 | AP - 1270-5 |
|--|-----------|-----------|------------|-----------|-------------|
|  |           |           |            |           |             |
|  |           |           |            |           |             |
|  |           |           |            |           |             |
|  |           |           |            |           |             |
|  |           |           |            |           |             |
|  |           |           |            |           |             |
|  |           |           |            |           |             |
|  |           |           |            |           |             |
|  |           |           |            |           |             |
|  |           |           |            |           |             |
|  |           |           |            |           |             |
|  |           |           |            |           |             |
|  |           |           |            |           |             |
|  |           |           |            |           |             |

#### ● SN/4ALVU164245:

A port has  $V_{\text{CCA}}\text{, which is set to operate at 2.5 V}$  and 3.3 V

B port has  $V_{\text{CCB}}$ , which is set to operate at 3.3 V and 5 V

#### SN74AVCB164245, SN74AVCBH164245:

The A-port is designed to track V<sub>CCA</sub>, v<sub>CCA</sub> accepts any supply voltage from 1.4 V to 3.6 V The B-port is designed to track V<sub>CCB</sub>, V<sub>CCB</sub> accepts any supply voltage from 1.4 V to 3.6 V





#### FUNCTION TABLE (each 8-bit section)

| INPUTS |     |                 |  |  |  |
|--------|-----|-----------------|--|--|--|
|        | DIR | OPERATION       |  |  |  |
|        | L   | B data to A bus |  |  |  |
|        | H   | A data to B bus |  |  |  |
|        | X   | Isolation       |  |  |  |

#### RECOMMENDED OPERATING CONDITIONS

|            |            | 1075018 |     |       |       |      |
|------------|------------|---------|-----|-------|-------|------|
| PARAMETER  | MAX or MIN | ALVC    | TEA | AVCB  | AVCBH | UNIT |
| Icc (5V)   | MAX        | 0.04    | à.  | - 1/1 |       | mA   |
| Icc (3V)   | MAX        | 0.02    | 0.0 | 0.04  | 0.04  | mA   |
| Iон (5V)   | MAX        | -24     | 8.7 | - 1/1 |       | mA   |
| Ior (5V)   | MAX        | 24      | 5.2 |       |       | mA   |
| Iон (2.3V) | MAX        | -12     | 35  | -8    | -8    | mA   |
| IoL (2.3V) | MAX        | 12      | 3.4 | 8     | 8     | mA   |
|            |            |         |     |       |       |      |

#### SWITCHING CHARACTERISTICS

|           |       |          | 1.4        | ALVC                   |                      | AVCB                   | AVCBH                  |     |
|-----------|-------|----------|------------|------------------------|----------------------|------------------------|------------------------|-----|
| PARAMETER | INPUT | OUTPUT   | MAX or MIN | VCCB: 3V<br>VCCA: 2.3V | VCCB: 5V<br>VCCA: 3V | VCCB: 3V<br>VCCA: 2.3V | VCCB: 3V<br>VCCA: 2.3V |     |
| tPLH      | Δ.    | В        | MAX        | 7.6                    | 5.8                  | 3.4                    | 3.4                    |     |
| tphl .    | Α     | В        | IVIAX      | 7.6                    | 5.8                  | 3.4                    | 3.4                    |     |
| tPLH .    | В     | А        |            | MAX                    | 7.6                  | 5.8                    | 3.7                    | 3.7 |
| tPHL .    | В     |          | IVIAA      | 7.6                    | 5.8                  | 3.7                    | 3.7                    |     |
| tPZL      | ŌĒ    |          | B MAX      | 11.5                   | 8.9                  | 5.1                    | 5.1                    |     |
| tPZH      | UE    | В        |            | 11.5                   | 8.9                  | 5.1                    | 5.1                    |     |
| tPZL      | ŌĒ    | Δ.       | A MAN      | 12.3                   | 9.1                  | 4.2                    | 4.2                    |     |
| tPZH      | UE    | A        | MAX        | 12.3                   | 9.1                  | 4.2                    | 4.2                    |     |
| tPLZ      | ŌĒ    | В        | MAX        | 10.5                   | 9.5                  | 3.3                    | 3.3                    |     |
| tPHZ      | UE    | . Б      |            | 10.5                   | 9.5                  | 3.3                    | 3.3                    |     |
| tPLZ      | OE A  | <u> </u> | Α          | MAX                    | 9.3                  | 8.6                    | 3                      | 3   |
| tPHZ      |       | IVIAA    | 9.3        | 8.6                    | 3                    | 3                      |                        |     |

## 3.3-V ABT 32-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP Degan 2 technical enhanced enhanced and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second

Output Ports Have Equivalent 22-Ω Series Resistors

#### **Logic Diagram**



20E H3
2CLK H4
2D1 E5 C1 E2 2Q1
To Seven Other Channels

3OE J3
3CLK
J4
3D1 J5
To Seven Other Channels



FUNCTION TABLE (each 8bit flip-flop)

| INPUTS |      |   | OUTPUT |
|--------|------|---|--------|
| ŌĒ     | CLK  | D | Q      |
| L      | 1    | Н | Н      |
| L      | 1    | L | L      |
| L      | HorL | X | Qn     |
| Н      | X    | X | Z      |

| RECOMMENDED OF | PERATING CONDITI | ONS        |      |
|----------------|------------------|------------|------|
| PARAMETER      | MAX or MIN       | LVTH<br>3V | UNIT |
| lcc            | MAX              | 10         | mA   |
| Іон            | MAX              | -12        | mA   |
| lou            | MAX              | 12         | mA   |

| PARAMETER                                                                                                                                                                                   | INPUT                           | OUTPUT                                                                                                                                                                                                                            | MAX or MIN | LVTH<br>3V |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| fmax                                                                                                                                                                                        |                                 |                                                                                                                                                                                                                                   |            | 160        |
| tw Pulse duration,                                                                                                                                                                          | CLK high or low                 | MIN                                                                                                                                                                                                                               | 3          |            |
|                                                                                                                                                                                             | Data before CLK 1,              | MIN                                                                                                                                                                                                                               | 1.8        |            |
| tw Pulse duration,<br>tsu Setup time<br>th Hold time<br>tPLH<br>tPHL                                                                                                                        | Data before CLK T, data low     |                                                                                                                                                                                                                                   | MIN        | 1.8        |
| e Distriction                                                                                                                                                                               | Data after CLK 1, d             | ata high                                                                                                                                                                                                                          | MIN        | 0.8        |
| th Hold time                                                                                                                                                                                | Data after CLK 1, data low      |                                                                                                                                                                                                                                   | MIN        | 0.8        |
| fmax         to Pulse duration, CLK high or low           tw Setup time         Data before CLK ↑, Data before CLK ↑, Data after CLK ↑, d           b Hold time         Data after CLK ↑, d | 0                               | MAN                                                                                                                                                                                                                               | 5.3        |            |
|                                                                                                                                                                                             | CLK                             | u u                                                                                                                                                                                                                               | IVIAX      | 4.9        |
| tpzh                                                                                                                                                                                        | Pulse duration, CLK high or low | MAY                                                                                                                                                                                                                               | 5.6        |            |
| tPZL                                                                                                                                                                                        | UE UE                           | before CLK ↑, data low         MIN           after CLK ↑, data high         MIN           after CLK ↑, data high         MIN           CLK         MIN           CLK         Q           MAX           OE         Q           MAX | 4.9        |            |
| tPHZ                                                                                                                                                                                        | OF.                             | ata before CLK T, data high ata before CLK T, data high ata before CLK T, data low AIIN ata after CLK T, data high MIN ata after CLK T, data high MIN CLK Q MAX  OE Q MAX                                                         | 5.4        |            |
| tPLZ                                                                                                                                                                                        | - UE 0                          |                                                                                                                                                                                                                                   | MAX        | 5          |

## TI Worldwide Technical Support

### Internet

#### TI Semiconductor Product Information Center Home Page

support.ti.com

#### TI Semiconductor KnowledgeBase Home Page

support.ti.com/sc/knowledgebase

## **Product Information Centers**

**Americas** 

Phone +1(972) 644-5580 Fax +1(972) 927-6377

Internet/Email support.ti.com/sc/pic/americas.htm

#### Europe, Middle East, and Africa

Phone

Belgium (English) +32 (0) 27 45 55 32 Finland (English) +358 (0) 9 25173948

France +33 (0) 1 30 70 11 64 Germany +49 (0) 8161 80 33 11 Israel (English) 1800 949 0107

Italy 800 79 11 37

Netherlands (English) +31 (0) 546 87 95 45 Spain +34 902 35 40 28

Sweden (English) +46 (0) 8587 555 22 United Kingdom +44 (0) 1604 66 33 99

Fax +(49) (0) 8161 80 2045 Email epic@ti.com

Internet support.ti.com/sc/pic/euro.htm

#### Japan

Fax

International +81-3-3344-5317

Domestic 0120-81-0036

Internet/Email

International support.ti.com/sc/pic/japan.htm

Domestic www.tij.co.jp/pic

Asia

Phone

International +886-2-23786800

Domestic Toll-Free Nu

 Domestic
 Toll-Free Number

 Australia
 1-800-999-084

 China
 108-00-886-0015

Hong Kong 800-96-5941 Indonesia 001-803-8861-1006

Korea 080-551-2804 Malaysia 1-800-80-3973 New Zealand 0800-446-934

Philippines 1-800-765-7404
Singapore 800-886-1028
Taiwan 0800-006800
Thailand 001-800-886-0010

Fax 886-2-2378-6808 Email tiasia@ti.com

Internet support.ti.com/sc/pic/asia.htm



| 80700   |  |  |
|---------|--|--|
| A070802 |  |  |

