Assignment 29

Alex Clemmer

Student number: u0458675

1

Transforming $x^p \equiv x \pmod{p}$ into a more familiar format is really simple. We start with prime identity given by the book, $x^{p-1} \equiv 1 \pmod{p}$. Multiplying both sides by x, we get $x^p \equiv x \pmod{p}$. We know that we can do this because x is obviously relatively prime to x.

2

Transforming some $x^{k(p-1)+1} \equiv x \pmod{p}$ also begins with the familiar identity that $x^{p-1} \equiv 1 \pmod{p}$. By raising both sides to the power of k we get $x^{k(p-1)} \equiv 1 \pmod{p}$. Remember that this is intuitively satisfying because we mod intuitively at every point we multiply a number by itself when raising it to some power. So if a number is congruent mod p, it should be congruent for all powers k that it is raised to.

There's no black magic in the last step: we simply multiply both sides by x. This gives us our final solution, $x^{k(p-1)+1} \equiv x \pmod{p}$.

3

e and p-1 are relatively prime, so we can use Extended Euclid's algorithm to give fe+b(p-1)=1. Moding both sides by p-1 gives us $fe\equiv 1 \pmod{p-1}$.

4

For some message y in $y \equiv x^e \pmod{p}$: we've found f in the previous part, so our equivalence relation becomes $y^f \equiv x^{ef} \pmod{p}$. The totient function $\phi(p) = p - 1$, so by Euler's we can $y^f \equiv x^{ef} \pmod{p-1} \pmod{p}$, which is then $y^f \equiv x \pmod{p}$.

Decrypting is simple: find f then use $x \equiv y^f \pmod{p}$.