UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Cálculo II

03 de Dezembro de 2017

(1) Calcule, caso exista, $\lim_{n \to \infty} x_n$, com x_n igual a: (a) $\frac{n^3 + 3n + 1}{4n^3 + 2}$ (b) $\sqrt{n+1} - \sqrt{n}$ (c) $\operatorname{sen}\left(\frac{1}{n}\right)$ (d) $\int_1^n \frac{1}{x} dx$ (e) $\left(1 + \frac{2}{n}\right)^n$ (f) $\sum_{k=0}^n \frac{1}{2^k}$ (g) $\frac{\operatorname{sen}(n)}{n}$

(a)
$$\frac{n^3 + 3n + 1}{4n^3 + 2}$$

(b)
$$\sqrt{n+1} - \sqrt{n}$$

(c) sen
$$\left(\frac{1}{n}\right)$$

(d)
$$\int_{1}^{n} \frac{1}{x} dx$$

(e)
$$\left(1+\frac{2}{n}\right)^n$$

(f)
$$\sum_{k=0}^{n} \frac{1}{2^k}$$

(g)
$$\frac{\operatorname{sen}(n)}{n}$$

(2) Calcule, se possível, a soma das séries:

(a)
$$\sum_{k=1}^{\infty} \frac{n^2}{5n^2 + 4}$$

(b)
$$\sum_{k=0}^{\infty} e^{-k}$$

(a)
$$\sum_{k=1}^{\infty} \frac{n^2}{5n^2 + 4}$$
 (b) $\sum_{k=0}^{\infty} e^{-k}$ (c) $1 + \frac{1}{\sqrt[3]{2}} + \frac{1}{\sqrt[3]{3}} + \dots + \frac{1}{\sqrt[3]{n}} + \dots$

(d) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ [Dica: escreva a fração como soma de frações parciais.]

(e) $\sum_{k=0}^{\infty} \frac{1}{(4k+1)(4k+5)}$ [Dica: escreva a fração como soma de frações parciais.]

(3) Determine se as séries geométricas são convergentes ou divergentes. Calcule a soma das séries convergentes.

(a)
$$4+3+\frac{9}{4}+\frac{27}{16}+\cdots$$

(b)
$$2+0, 5+0, 125+0, 03125+\cdots$$

(4) Calcule a soma das séries

(a)
$$\left(\frac{1}{2} + \frac{1}{4}\right) + \left(\frac{1}{2^2} + \frac{1}{4^2}\right) + \left(\frac{1}{2^3} + \frac{1}{4^3}\right) + \cdots$$

(b)
$$\sum_{k=1}^{\infty} \left(\frac{1}{5^k} - \frac{1}{k(k+1)} \right)$$

(5) Determine se as séries são convergentes ou divergentes

(a)
$$\sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}}$$

(b)
$$\sum_{k=1}^{\infty} \frac{1}{k^{\pi}}$$

$$\text{(c) } \sum_{k=1}^{\infty} k^2 e^{-k}$$

(d)
$$\sum_{n=1}^{\infty} \frac{n!}{e^{n^2}}$$

- (6) Encontre o raio e o intervalo de convergência das séries
 - (a) $\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}$
 - (b) $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^n}$
- (7) (a) Escreva as funções senx e $\cos x$ como série de Maclaurin e encontre seu raio e intervalo de convergência.
 - (b) Utilize o item (a) e a série de Maclaurin da função e^x para verificar a Fórmula de Euler: $e^{ix} = \cos x + i \operatorname{sen} x$, onde i é a unidade imaginária.
- (8) Encontre a série de Taylor das funções abaixo centradas no valor dado:
 - (a) $f(x) = x^4 3x^2 + 1$, a = 1
 - (b) $f(x) = \ln x, a = 2$

Gabarito

- (1) (a) $\frac{1}{4}$ (b) 0

 - (c) 0
 - (d) ∞
 - (e) e^2
 - (f) 2
 - (g) 0
- (2) (a) Diverge

 - (b) $\frac{e}{e-1}$ (c) Diverge
 - (d) 1
 - (e) $\frac{1}{4}$
- (3) (a) 16
 - (b) $\frac{40}{15}$
- (4) (a) $\frac{4}{3}$ (b) $-\frac{3}{4}$
- (5) (a) Convergente
 - (b) Convergente
 - (c) Convergente
 - (d) Convergente
- (6) (a) R = 3, (-5,5)(b) $R = \infty, (-\infty, infty)$