Grafos

Plano de Ensino 2025.2

Prof. Roberto Samarone Araújo rsa@ufpa.br

Abril/2025

Identificação

• Disciplina: Grafos

• Carga horária: 68 horas-aula Teóricas: 68 Práticas: 0

• Período: 1o. Semestre de 2025

• Sala: Mirante

Requisito(s)

Não há

Ementa

Conceitos preliminares. Representação computacional para grafos. Caminhamento. Conectividade. Árvores. Planaridade e Coloração. Fluxo em rede. Problemas típicos representáveis em grafos.

Objetivos

- Geral: Dotar o aluno de conceitos e algoritmos que possibilitem a abstração de problemas diversos e a solução dos mesmos através de grafos.
- Específicos:
 - Conhecer os principais conceitos de grafos e suas representações computacionais;
 - Conhecer grafos dirigidos e não dirigidos e seus algoritmos;
 - Conhecer os mecanismos de busca em grafos;
 - Conhecer os conceitos de árvore, coloração, fluxo de redes e seus algoritmos.

- Introdução
- Conceitos Básicos
 - Revisão de relações
 - Definição e notação de grafo, exemplos de aplicações
 - Tipos de grafos, vértices adjacentes, laços e arestas paralelas
 - Grafos simples, pseudo-grafo, multigrafos
 - Gafos reflexivo, vazio, nulo e trivial
 - Hipergrafo, grau dos vértices, número de arestas
 - Grafos regulares, completos e bipartidos
 - Subgrafos e Clique
 - Grafos rotulados e valorados
 - Grafos planares
 - Isomorfismo de grafos
 - Algumas Operações com Grafos
 - Iniciando uma API para Grafos

- Conexidade
 - Grafo conexo, subgrafo maximal, componente conexa
 - Conexidade de vértices e arestas, conjuntos de desconexão e aresta desconectante
 - cortes e pontes, k-conexidade, vértices fortemente e fracamente conectados.
- Operações com Grafos

- Representações Computacionais de Grafos
 - Matriz de Adjacência/Incidência
 - Listas de Adjacências
 - Classes/Bibliotecas para linguagens de programação
- Percursos em Grafos
 - Definição, percursos aberto e fechado, percurso simples, percurso elementar, Ciclos
 - Percurso abrangente, Comprimento de um percurso, Caminhos.
 - Percursos eulerianos e hamiltonianos
- Algoritmos de Busca
 - Busca em Profundidade (DFS)
 - Busca em Largura (BFS)

- Percursos em Grafos
 - Caminhos mínimos com uma fonte Alg. de Dijkstra
 - Caminhos mínimos com uma fonte Alg. de Bellman-Ford
 - Caminhos mínimos Alg. de Floyd-Warshall
- Componentes Conectados
 - Algoritmo para encontrar os componentes conectados

- Grafos Dirigidos (Dígrafos)
 - Fechos transitivos
 - Algoritmo de Warshall
 - Dígrafos Acíclicos: Definição, fonte e sumidouro
 - Ordenação Topológica
 - Componentes Fortemente Conectados

- Árvores
 - Conceitos básicos: definição, folhas e vértices interiores, floresta, árvore enraizada, nível e altura da árvore, árvores e os alg. DFS/BFS
 - Árvores geradoras Mínima Subgrafo gerador, cortes, estrutura
 - Algoritmos de Prim e Kruskal

- Coloração de Grafos
- Fluxo de Redes

Metodologia

As aulas serão expositivas seguidas de exercícios em sala de aula.

Avaliação

A disciplina está dividida em 3(três) avaliações (P1, P2 e P3). Cada avaliação é composta por uma prova no valor de 8(oito) pontos e trabalhos extraclasse no valor de 2(dois) pontos. O conceito final (MF) é dado pela média aritmética simples dessas avaliações:

$$MF = \frac{P1+P2+P3}{3}$$

Conforme o Regimento Geral da UFPA, Art. 178:

Média Final	Conceito
9,0 - 10,0	Excelente
7,0 - 8,9	Bom
5,0 - 6,9	Regular
0 - 4.9	Insuficiente

Avaliaç $\tilde{a}o$

Conforme o Regimento Geral da UFPA:

"Art. 179. Considerar-se-á aprovado o discente que, na disciplina ou atividade correspondente, obtiver o conceito REG, BOM ou EXC e pelo menos setenta e cinco por cento (75%) de frequência nas atividades programadas."

Avaliações

Conforme o Regulamento do Ensino de Graduação - Res. n.3.633:

"Art. 115. O discente que, por impedimento legal, doença atestada por serviço médico de saúde ou motivo de força maior, devidamente comprovado, faltar a um momento de verificação de aprendizagem, poderá realizá-la sob a forma de segunda chamada, desde que requeira por escrito à direção da subunidade acadêmica em até setenta e duas horas úteis após a realização da primeira chamada."

Cronograma

A provas serão aplicadas nas aulas seguintes ao fim das unidades conforme a tabela.

Avaliação	Matéria	
P1	Conceitos Básicos, Representações Computa-	
	cionais de Grafos, Grafos não Dirigidos	
P2	Grafos Dirigidos, Árvores	
P3	Coloração e Fluxo de Redes	

Bibliografia Básica

- Goldbarg M.; Goldbarg E.; Grafos: Conceitos, algoritmos e aplicações, 1^a.ed. Campus, 2012;
- LEISERSON, Charles E.; STEIN, C.; RIVEST, Ronald L., CORMEN, Thomas H. Algoritmos: Teoria e Prática, 1^a.ed. Campus, 2002 (caps. 22 à 26);
- NETTO, Paulo O. B. Teoria e Modelos e Algoritmos, 4^a.
 ed. Edgard Blücher. São Paulo, 2006;
- GERSTING, Judith L. Fundamentos Matemáticos para a Ciência da Computação. 5a. Edição. LTC Editora, 2004. 616p. ISBN-10: 8521614225. ISBN-13: 978-8521614227;

Bibliografia Complementar

- SZWARCFITER, J. L. Grafos e Algoritmos Computacionais. Campus, 1984.
- NETTO, Paulo O. B.; Jurkiewicz, Samuel Grafos: Introdução e Prática, Edgard Blücher. São Paulo, 2009
- SEDGEWICK, Robert; Wayne K. Algorithms, Fourth Edition, Pearson Education, 2011;
- SEDGEWICK, Robert. Algorithms in Java, Part 5: Graph Algorithms, 3rd Edition, Addison-Wesley Professional, 2003;
- GROSS, Jonthan L., YELLEN, Jay. Graph Theory and Its Applications, Second Edition, Chapman and Hall/CRC, 2005.