TUGAS METODE PERAMALAN FUNGSI TRANSFER NONMUSIMAN

Harga Minyak Mentah Indonesia yang Dipengaruhi oleh Harga Minyak Mentah Dunia periode Januari 2009 – Desember 2013

oleh: Ari Purwanto Sarwo Prasojo 125090500111043

PROGRAM STUDI STATISTIKA

JURUSAN MATEMATIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

UNIVERSITAS BRAWIJAYA

MALANG

2015

A. DATA

Data yang digunakan dalam pemodelan ini adalah data bulanan harga minyak mentah dunia (menurut harga OPEC) dan harga minyak mentah Indonesia keduanya dalam satuan US \$/barrel. Untuk harga minyak mentah dunia diambil dari www.opec.org sedangkan untuk data minyak mentah indonesia diambil dari www.esdm.go.id

Period	Indonesia	Dunia (Opec)	Period	Indonesia	Dunia (Opec)
Jan-2009	41,89	41,54	Jul-2011	117,15	111,62
Feb-2009	43,1	41,41	Ag-2011	111,67	106,32
Mar-2009	46,95	45,78	Sep-2011	111	107,61
Apr-2009	50,62	50,2	Okt-2011	109,25	106,29
Mei-2009	57,86	56,98	Nop-2011	112,94	110,08
Jun-2009	68,91	68,36	Des-2011	110,55	107,34
Jul-2009	64,85	64,59	Jan-2012	115,91	111,76
Ag-2009	72,47	71,35	Feb-2012	122,17	117,48
Sep-2009	67,07	67,17	Mar-2012	128,14	122,97
Okt-2009	72,53	72,67	Apr-2012	124,63	118,18
Nop-2009	77,08	76,29	Mei-2012	113,76	108,07
Des-2009	75,58	74,01	Jun-2012	99,08	93,98
Jan-2010	77,29	76,01	Jul-2012	102,88	99,55
Feb-2010	74,01	72,99	Ag-2012	111,72	109,52
Mar-2010	78,67	77,21	Sep-2012	111,02	110,67
Apr-2010	85,48	82,33	Okt-2012	109,85	108,36
Mei-2010	79,96	74,48	Nop-2012	106,68	106,86
Jun-2010	75,22	72,95	Des-2012	106,9	106,55
Jul-2010	73,74	72,51	Jan-2013	111,07	109,28
Ag-2010	75,94	74,15	Feb-2013	114,86	112,75
Sep-2010	76,76	74,63	Mar-2013	107,42	106,44
Okt-2010	82,26	79,86	Apr-2013	100,19	101,05
Nop-2010	85,07	82,83	Mei-2013	99,01	100,65
Des-2010	91,37	88,56	Jun-2013	99,97	101,03
Jan-2011	97,09	92,83	Jul-2013	103,12	104,45
Feb-2011	103,31	100,29	Ag-2013	106,5	107,52
Mar-2011	113,07	109,84	Sep-2013	109,69	108,73
Apr-2011	123,36	118,09	Okt-2013	106,39	106,69
Mei-2011	115,18	109,94	Nop-2013	104,69	104,97
Jun-2011	113,82	109,04	Des-2013	107,2	107,67

Satuan : US \$/Barrel

B. GAMBARAN HARGA MINYAK MENTAH

Gambar 1. Plot datat harga minyak mentah

Harga minyak mentah mengalami perubahan yang cukup fluktuaktif pada periode Januari 2009 sampai Desember 2013. Periode ini dipilih karena merupakan periode pasca terjadinya krisis global tahun 2008, Jika dilihat pada plot di atas pola data harga minyak mentah dunia dan indondesia memiliki pola yang setipe, terlihat bahwa jika harga minyak mentah dunia mengalami kenaikan maka kenaikan juga diikuti oleh harga minyak mentah di Indonesia, demikian pula jika harga minyak mengalami penurunan. diduga harga minyak mentah dunia mempengaruhi harga minyak mentah di Indonesia. Harga minyak mentah dunia mengalami pola fluktuaktif yang cenderung meningkat, mencapai titik puncak pada Maret 2012 dengan harga 122,97 US \$/Barrel.

C. MEMPERSIAPKAN DERET INPUT & OUTPUT

1. Deret Input

Stasioneritas ragam

Deret input yang digunakan pada pemodelan ini adalah data harga minyak mentah dunia, sebelum digunakan sebagai input, deret perlu distasionerkan terlebih dahulu

Gambar 2. Transformasi Box-Cox deret input

berdasarkan hasil, deret asli sudah stasioner terhadap ragam, ditunjukkan dngan parameter tranformasi $\lambda=1$.

• Stasioneritas rata-rata

Setelah memenuhi stasioneritas ragam, selanjutnya adalah mendapatkan stasioneritas rata-rata, stasioneritas rata-rata dapat dilihat dari ACF, berikut adalah ACF dari deret input (harga minyak dunia)

Gambar 3. ACF deret input

deret input belum memenuhi stasioneritas rata-rata hal ini ditunjukkan dengan plot autokorelasi yang nyata sampai lag ke-4 dan pada lag ke-5 ACF masih mengenai batas, sehingga perlu dilakukan pembedaan

Gambar 4. ACF pembedaan saru kali untuk deret input

dengan melakukan pembedaan satu kali telah didapatkan deret yang stasioner terhadap rata-rata. Plot ACF menunjukkan bahwa tidak terdapat lag yng keluar dari batas sehingga stasioneritas deret input merupakan model acak berjalan (*random walk*).

Gambar 3. Deret input yang telah stasioner

2. Deret output

Deret output yang akan digunakan juga harus dstasionerkan terlebih dahulu, transformasi yang dilakukan mengikuti transformasi dari deret input, sehingga transformasi yang dilakukan adalah $y_t=(1-B)Y_t$, untuk mengecek stasioneritas deret output yang telah ditransformasi, dapat dilakukan dengan menggunakan transformasi box-cox dan ACF dari deret

Gambar 4. Transformasi box-cox deret output

Parameter transformasi $\lambda=1$ menunjukkan bahwa data telah stasioner terhadap ragam

Gambar 5. Plot ACF deret output yang telah didiferensi satu kali

Berdasarkan ACF di atas pembedaan satu kali telah didapatkan deret yang stasioner terhadap rata-rata.

Bedasarkan deret yang telah stasioner maka untuk identifikasi selanjutnya, deret input dan deret output yang digunakan adalah $x_t = (1-B)X_t$ (deret input) dan $y_t = (1-B)Y_t$ (deret output).

D. PEMUTIHAN

Dari hasil identifikasi sebelumnya telah didapatkan model dari deret input yaitu ARIMA(0,1,0) atau model acak berjalan, sehingga pemutihan untuk deret input didefinisikan

$$\alpha_t = (1 - B)X_t$$
$$\alpha_t = X_t - X_{t-1}$$

Nilai inisialisasi $\alpha_1=0$

sedangkan pemutihan untuk deret output adalah

$$eta_t = (1-B)Y_t$$
 $eta_t = Y_t - Y_{t-1}$ Nilai inisialisasi $eta_1 = 0$

sehingga akan diperoleh deret baru yaitu α_t dan β_t dengan $t=1,2,\ldots,102$ yang akan digunakan sebagai identifikasi tahap berikutnya, nilai dari deret tersebut disajikan pada tabel 2.

Tabel 2. Deret hasil pemutihan

t	at	bt	t	at	bt	t	at	bt	t	at	bt
1	0,0000	0,0000	16	5,1200	6,8100	31	2,5800	3,3300	46	-2,3100	-1,1700
2	-0,1300	1,2100	17	-7,8500	-5,5200	32	-5,3000	-5,4800	47	-1,5000	-3,1700
3	4,3700	3,8500	18	-1,5300	-4,7400	33	1,2900	-0,6700	48	-0,3100	0,2200
4	4,4200	3,6700	19	-0,4400	-1,4800	34	-1,3200	-1,7500	49	2,7300	4,1700
5	6,7800	7,2400	20	1,6400	2,2000	35	3,7900	3,6900	50	3,4700	3,7900
6	11,3800	11,0500	21	0,4800	0,8200	36	-2,7400	-2,3900	51	-6,3100	-7,4400
7	-3,7700	-4,0600	22	5,2300	5,5000	37	4,4200	5,3600	52	-5,3900	-7,2300
8	6,7600	7,6200	23	2,9700	2,8100	38	5,7200	6,2600	53	-0,4000	-1,1800
9	-4,1800	-5,4000	24	5,7300	6,3000	39	5,4900	5,9700	54	0,3800	0,9600
10	5,5000	5,4600	25	4,2700	5,7200	40	-4,7900	-3,5100	55	3,4200	3,1500
11	3,6200	4,5500	26	7,4600	6,2200	41	-10,1100	-10,8700	56	3,0700	3,3800
12	-2,2800	-1,5000	27	9,5500	9,7600	42	-14,0900	-14,6800	57	1,2100	3,1900
13	2,0000	1,7100	28	8,2500	10,2900	43	5,5700	3,8000	58	-2,0400	-3,3000
14	-3,0200	-3,2800	29	-8,1500	-8,1800	44	9,9700	8,8400	59	-1,7200	-1,7000
15	4,2200	4,6600	30	-0,9000	-1,3600	45	1,1500	-0,7000	60	2,7000	2,5100

E. IDENTIFIKASI MODEL FUNGSI TRANSFER

1. Korelasi Silang (CCF) & Respon Impuls

Sebelum melakukan perhitungan respon impuls terlebh dahulu menghitung nilai standar deviasi dari deret α_t dan β_t , hasil perhitungan standar deviasi adalah sebagai berikut

```
Descriptive Statistics: at; bt

Variable N N* Mean StDev Minimum Maximum
at 60 0 1,102 5,029 -14,090 11,380
bt 60 0 1,089 5,308 -14,680 11,
```

Korelasi silang dan respon impuls, batas signifikansi dari CCF dan respons impuls dihitung dengan

$$\hat{v}_j = \left(\hat{\sigma}_\beta/\hat{\sigma}_\alpha\right)\hat{
ho}_{(\alpha\beta)}(k)$$
 untuk respon impuls
$$1/\sqrt{n-k} \text{ untuk standard error dari korelasi silang}$$
 $\left(\hat{\sigma}_\beta/\hat{\sigma}_\alpha\right)1/\sqrt{n-k}$ untuk standard error dari respon impuls

Hasil perhitungan CCF dan respon impuls disajikan pada tabel 3, tampak sepertii berikut

Tabel 3. Korelasi silang dan respon impuls

	asi silalig dali res		Vj (respon	atal tasas da	Cianifilanai
lag	CCF	std.ccf	impuls)	std.impuls	Signifikansi
-17	0,1177	0,0917	0,1243	0,0968	-
-16	0,0589	0,0921	0,0621	0,0972	-
-15	-0,1450	0,0925	-0,1530	0,0976	-
-14	-0,3005	0,0928	-0,3172	0,0980	**
-13	-0,0626	0,0933	-0,0661	0,0984	-
-12	0,1588	0,0937	0,1676	0,0989	-
-11	0,1865	0,0941	0,1969	0,0993	-
-10	0,1452	0,0945	0,1533	0,0997	-
-9	-0,0938	0,0949	-0,0991	0,1002	-
-8	-0,1297	0,0953	-0,1369	0,1006	-
-7	-0,0513	0,0958	-0,0542	0,1011	-
-6	0,0573	0,0962	0,0605	0,1016	-
-5	0,1036	0,0967	0,1094	0,1020	-
-4	-0,1047	0,0971	-0,1105	0,1025	-
-3	-0,1799	0,0976	-0,1899	0,1030	-
-2	-0,0997	0,0981	-0,1052	0,1035	-
-1	0,1597	0,0985	0,1686	0,1040	-
0	0,9792	0,0990	1,0335	0,1045	**
1	0,2596	0,0995	0,2740	0,1050	**
2	-0,0262	0,1000	-0,0276	0,1055	-
3	-0,1943	0,1005	-0,2051	0,1061	-
4	-0,0796	0,1010	-0,0840	0,1066	-
5	0,1399	0,1015	0,1476	0,1072	-
6	0,0512	0,1021	0,0541	0,1077	-
7	-0,0959	0,1026	-0,1013	0,1083	-
8	-0,2263	0,1031	-0,2388	0,1089	**
9	-0,0761	0,1037	-0,0803	0,1094	-
10	0,1419	0,1043	0,1498	0,1100	-
11	0,2092	0,1048	0,2208	0,1106	-
12	0,2107	0,1054	0,2223	0,1113	-
13	-0,0273	0,1060	-0,0288	0,1119	-
14	-0,3179	0,1066	-0,3355	0,1125	**
15	-0,1634	0,1072	-0,1724	0,1132	
16	0,0406	0,1078	0,0429	0,1138	-
17	0,1284	0,1085	0,1356	0,1145	-

^{**}signfiikan pada taraf 5%

⁻tidak signifikan pada taraf 5%

Hasil identiifikasi respon impuls nyata pada kedua sisi (lag positif dan lag negatif) sehingga pada data harga minyak mentah dunia dengan minyak mentah indonesia memiliki hubungan dua arah sehingga akan lebih tepat kalau menggunakan model VAR (Vector Autoregressive). Namun pada pembahasan ini dibatasi pada hubungan satu sisi saja, yang dipandang adalah lag yang positif. Pada lag yang postiif respon impuls nyata pertama kali pada lag 0, sehingga orde untuk parameter delay adalah nol atau b=0 selanjutnya, identifikasi untuk r dan s dilihat melalui pola respon impuls. Pola respon impuls adalah sebagai berikut

Gambar 6. Respon impuls

berdasarkan pola respon impuls pola yang terbentuk gelombang sinus, maka orde r untuk fungsi transfer adalah 2 atau r=2, sedangkan untuk plot korelasi silang tampak sebagai berikut

Gambar 10. Plot korelasi silang

plot kroelasi silang juga menunjukkan pola deret sinus, sehingga sepadan dengan orde yang diidentifikasi melalui respon impuls yaitu $r=2\,$

setelah didapatkan orde b dan r, orde s dapat ditentukan dari respon impuls yang signifikan yang dekat dengan respon impuls yang nyata pertama, pada kasus ini didapat s=1. Sehingga model fungsi transfer adalah (b,r,s)=(0,2,1)

F. IDENTIFIKASI MODEL SISAAN

1. Penaksir langsung bobot respon impuls

Sebelum melakukan identifikasi model sisaan (*noise*), terlebih dahulu dilakukan pendugaan model fungsi transfer (penaksir langsung) yang selanjutnya akan digunakan untuk menkasir deret siaan (*noise*),

Secara umum fungs transfer memiliki degan orde (b,r,s) memiliki struktur sebagai berikut

$$v(B) = \frac{\omega(B)B^b}{\delta(B)} x_t$$

Bobot respon impuls dapat dihitung dari koefisien B^j pada persamaan

$$v(B)\delta(B) = \omega(B)B^b$$
 atau

$$[1 - \delta_1 B - \dots - \delta_1 B^r][v_0 + v_1 B + v_2 B^2 + \dots] = [\omega_0 - \omega_1 B - \dots - \omega_s B^s]B^b$$

Sesuai dengan orde yang didapatkan dari hasil identifikasi (b,r,s)=(0,2,1), akan menjadi

$$[1 - \delta_1 B - \delta_2 B^2][v_0 + v_1 B + v_1 B^2 + \cdots] = [\omega_0 - \omega_1 B]$$

Menurut Box-Jenkins, penaksir bobot langsung respon impuls untuk model fungsi transfer (b,r,s)=(b,2,1) adalah

Tabel 4. Penaksir bobot respon impuls untuk (b, r, s) = (b, 2, 1)

v_{j}	Kondisi
ω_0	j = b
$\delta_1 \omega_0 - \omega_1$	j = b + 1
$\delta_1 v_{j-1} - \delta_2 v_{j-2}$	j > b + 1

Sehingga untuk (b,r,s)=(0,2,1) bobot respon impuls dapat ditaksir melalui solusi dari sistem persamaan

$$v_0 = \omega_0$$

$$v_1 = \delta_1 \omega_0 - \omega_1$$

$$v_2 = \delta_1 v_1 - \delta_2 v_0$$

$$v_3 = \delta_1 v_2 - \delta_2 v_1$$

Dengan menyulihkan respon impuls yang telah didapatkan dari tahap sebelumnya, sistem persamaan akan menjadi

(1)
$$1,0335 = \hat{\omega}_0$$

(2)
$$0.2740 = \hat{\delta}_1 1.0335 - \hat{\omega}_1$$

(3)
$$-0.0276 = \hat{\delta}_1 0.2740 - \hat{\delta}_2 1.0335$$

(4)
$$-0.2051 = -\hat{\delta}_1 0.0276 - \hat{\delta}_2 0.2740$$

Terlebih dahulu menyelesaikan persamaan (3) dan (4)

$$\begin{pmatrix} 0,2740 & -1,0335 \\ -0,0276 & -0,2740 \end{pmatrix} \begin{pmatrix} \hat{\delta}_1 \\ \hat{\delta}_2 \end{pmatrix} = \begin{pmatrix} -0,0276 \\ -0,2051 \end{pmatrix}$$

Diperoleh solusi

$$\begin{pmatrix} \hat{\delta}_1 \\ \hat{\delta}_2 \end{pmatrix} = \begin{pmatrix} 0.2740 & -1.0335 \\ -0.0276 & -0.2740 \end{pmatrix}^{-1} \begin{pmatrix} -0.0276 \\ -0.2051 \end{pmatrix}$$
$$\begin{pmatrix} \hat{\delta}_1 \\ \hat{\delta}_2 \end{pmatrix} = \begin{pmatrix} 1.9730 \\ 0.5497 \end{pmatrix}$$

Dengan menyulihkan solusi ke persamaan 2, diperoleh nilai $\widehat{\omega}_1=1,7651$ didapatkan penaksir bobot impuls berturut-turut adalah $\widehat{\omega}_0=1,0335$, $\widehat{\omega}_1=1,7651$, $\widehat{\delta}_1=1,9730$ dan $\widehat{\delta}_2=0,5497$.

2. Pendugaan deret gangguan (noise)

model untuk menduga deret gangguan (noise) n_t adalah

$$\begin{split} y_t &= \hat{v}(B)x_t + \hat{n}_t \\ y_t &= \frac{\hat{\omega}(B)}{\hat{\delta}(B)}x_t + \hat{n}_t \\ \hat{n}_t &= y_t - \frac{\hat{\omega}(B)}{\hat{\delta}(B)}x_t \\ \hat{n}_t &= y_t - \frac{(\hat{\omega}_0 - \hat{\omega}_1 B)}{(1 - \hat{\delta}_1 B - \hat{\delta}_2 B^2)}x_t \\ &\qquad (1 - \hat{\delta}_1 B - \hat{\delta}_2 B^2)\hat{n}_t = (1 - \hat{\delta}_1 B - \hat{\delta}_2 B^2)y_t - (\hat{\omega}_0 - \hat{\omega}_1 B)x_t \\ \hat{n}_t &= \hat{\delta}_1 \hat{n}_{t-1} - \hat{\delta}_2 \hat{n}_{t-2} = y_t - \hat{\delta}_1 y_{t-1} - \hat{\delta}_2 y_{t-2} - \hat{\omega}_0 x_t + \hat{\omega}_1 x_{t-1} \\ \hat{n}_t &= \hat{\delta}_1 \hat{n}_{t-1} + \hat{\delta}_2 \hat{n}_{t-2} + y_t - \hat{\delta}_1 y_{t-1} - \hat{\delta}_2 y_{t-2} - \hat{\omega}_0 x_t + \hat{\omega}_1 x_{t-1} \\ \hat{n}_t &= y_t - \hat{\omega}_0 x_t + \hat{\omega}_1 x_{t-1} + \hat{\delta}_1 (\hat{n}_{t-1} - y_{t-1}) + \hat{\delta}_2 (\hat{n}_{t-2} - y_{t-2}) \\ \hat{n}_t &= y_t - 1,0335 x_t + 1,7651 x_{t-1} + 1,9730(\hat{n}_{t-1} - y_{t-1}) + 0,5497(\hat{n}_{t-2} - y_{t-2}) \end{split}$$

Dengan memisalkan $\hat{n}_1=\hat{n}_2=0$, diperoleh deret \hat{n}_t , sebagai berikut

Tabel 4. Penduga deret gangguan

t	nt	t	nt	t	nt	t	nt
1	0	16	-1,4E+11	31	-2,3E+16	46	-3,6E+21
2	0	17	-3,2E+11	32	-5E+16	47	-7,9E+21
3	-3283188	18	-7,1E+11	33	-1,1E+17	48	-1,8E+22
4	-7923500	19	-1,6E+12	34	-2,5E+17	49	-3,9E+22
5	-1,9E+07	20	-3,5E+12	35	-5,5E+17	50	-8,6E+22
6	-4,6E+07	21	-7,8E+12	36	-1,2E+18	51	-1,9E+23
7	-1,1E+08	22	-1,7E+13	37	-2,7E+18	52	-4,3E+23
8	-2,4E+08	23	-3,8E+13	38	-6E+18	53	-9,5E+ 2 3
9	-5,4E+08	24	-8,5E+13	39	-1,3E+19	54	-2,1E+24
10	-1,2E+09	25	-1,9E+14	40	-3E+19	55	-4,7E+24
11	-2,7E+09	26	-4,2E+14	41	-6,6E+19	56	-1E+25
12	-5,9E+09	27	-9,3E+14	42	-1,5E+20	57	-2,3E+25
13	-1,3E+10	28	-2,1E+15	43	-3,2E+20	58	-5,1E+25
14	-2,9E+10	29	-4,6E+15	44	-7,2E+20	59	-1,1E+26
15	-6,5E+10	30	-1E+16	45	-1,6E+21	60	-2,5E+26

3. Identifikasi model ARIMA dari deret gangguan

ACF

ACF digunakan sebagai alat identifikasi untuk orde MA, dengan menggunakan bantuan software SPSS didapatkan ACF deret gangguan adalah sebagai berikut

Tabel 5. Autokorelasi deret gangguan

Autocorrelations

Series:	nt		Box-Ljung Statistic		
Lag	Autocorrelation	Std. Error ^a	Value	df	Sig. ^b
1	,350	,126	7,720	1	,005
2	,169	,125	9,559	2	,008
3	,069	,124	9,865	3	,020
4	,032	,123	9,935	4	,042
5	,014	,122	9,947	5	,077
6	,003	,120	9,948	6	,127
7	-,002	,119	9,948	7	,192
8	-,004	,118	9,949	8	,269
9	-,005	,117	9,951	9	,354
10	-,006	,116	9,954	10	,444
11	-,007	,115	9,958	11	,534
12	-,008	,114	9,963	12	,619
13	-,009	,112	9,969	13	,696
14	-,009	,111	9,976	14	,764
15	-,010	,110	9,985	15	,821
16	-,011	,109	9,994	16	,867

- a. The underlying process assumed is independence (white noise).
- b. Based on the asymptotic chi-square approximation.

Gambar 11. ACF deret gangguan

Berdasarkan plot ACF, tampak bahwa autokorelasi dari deret gangguan nyata pada lag pertama, maka orde MA untuk model sisaan adalah MA(1).

PACF

Orde AR (Autoregressive) dapat ditentukan melalui identifikasi PACF (partial autocorrelation function), berikut merupakan PACF dari deret gangguan

Partial Autocorrelations

Series: nt

Lag	Partial Autocorrelation	Std. Error
1		
	,350	,129
2	,053	,129
3	-,007	,129
2 3 4 5	,003	,129
	-,001	,129
6	-,004	,129
7	-,002	,129
8	-,003	,129
9	-,003	,129
10	-,003	,129
11	-,004	,129
12	-,004	,129
13	-,004	,129
14	-,005	,129
15	-,005	,129
16	-,005	,129

Gambar 12. PACF deret gangguan

Tampak bahwa PACF dari deret gangguan nyata pada lag pertama, maka orde AR untuk model ARIMA sisaan adalah AR(1). Berdasarkan hasil identifikasi model ARIMA untuk sisaan adalah ARIMA(1,0,1) atau ARMA(1,1) atau dapat ditulis sebagai

$$n_t = \frac{(1 - \theta B)}{(1 - \phi B)} a_t$$
$$(1 - \phi B) n_t = (1 - \theta B) a_t$$

 a_t merupakan sisaan yang harus memenuhi sifat white noise

G. PENDUGAAN PARAMETER

Berdasarkan hasil identifikasi model, model fungsi transfer yang akan diduga adalah (b,r,s)=(0,2,1) dengan model sisaan ARMA(1,1). Dituliskan sebagai

$$(1-B)Y_t = \frac{(\omega_0 - \omega_1 B)}{(1 - \delta_1 B - \delta_2 B^2)} (1-B)X_t + \frac{(1-\theta B)}{(1-\phi B)} a_t$$

Pendugaan parameter menggunakan bantuan softtware SPSS, mendapatkan hasill sebagai berikut

Tabel 7. Pendugaan parameter model fungsi transfer (b,r,s)=(0,2,1)-ARMA(1,1)ARIMA Model Parameters

					Estimate	SE	t	Sig.
Harga Minyak	Harga Minyak Mentah	No	AR	Lag 1	,999	,010	97,036	,000*
Mentah	Indonesia (US \$/Barrel)	Transformation	MA	Lag 1	-,475	,135	-3,510	,001*
Indonesia (US \$/Barrel)-	Harga Minyak Mentah	No	Numerator	Lag 0	,925	,039	23,567	,000*
Model 1	Dunia (US \$/Barrel)	Transformation		Lag 1	-,774	,206	-3,761	,000*
			Difference		1			
			Denominator	Lag 1	,131	,201	,653	,516
				Lag 2	,849	,197	4,316	,000*

^{*}signifikan pada taraf 1%

Dari hasil pendugaan parameter koefisien dari model denominator untuk lag 1 atau δ_1 tidak nyata, maka dapat diduga model lain yang merupakan model tentatif, model tentatif yang dipilih sebagai alternatif adalah dengan mengganti orde s=0. (b,r,s)=(0,2,0)-ARMA(1,1), atau ditulis dengan

$$(1-B)Y_t = \frac{\omega_0}{(1-\delta_1 B - \delta_2 B^2)} (1-B)X_t + \frac{(1-\theta B)}{(1-\phi B)} a_t$$

Tabel 8. Pendugaan parameter model fungsi transfer (b, r, s) = (0,2,0)-ARMA(1,1)

ARIMA Model Parameters

					Estimate	SE	t	Sig.
Harga Minyak	Harga Minyak Mentah	No	AR	Lag 1	,998	,011	91,094	,000*
Mentah	Indonesia (US \$/Barrel)	Transformation	MA	Lag 1	-,434	,142	-3,048	,004*
Indonesia (US \$/Barrel)-	Harga Minyak Mentah	No	Numerator	Lag 0	,899	,040	22,685	,000*
Model 1	Dunia (US \$/Barrel)	Transformation	Difference		1			
			Denominator	Lag 1	,876	,044	19,898	,000*
				Lag 2	,110	,041	2,697	,009*

^{*}signifikan pada taraf 1%

Hasil pendugaan menunjukkan bahwa semua parameter pada model fungsi transfer (b,r,s)=(0,2,0)-ARMA(1,1) signifikan, ditunjukkan dengan nilai signifikansi yang sangat kecil, sehingga model fungsi transfer (b,r,s)=(0,2,0)-ARMA(1,1) dipilih, selanjutnya akan dilakukan uji kelayakan model (diagnostik).

H. DIAGNOSTIK MODEL

Model yang dipilih adalah fungsi transfer (b,r,s)=(0,0,1)-ARMA(1,1), uji kelayakan model pada model fungsi transfer dilakukan dua tahap yaitu diagnostik pada model fungsi transfer melalui korelasi silang (CCF) antara \hat{a}_t dengan α_t dan yang kedua adalah diagnostik untuk model *noise* dilakukan dengan uji autokorelasi melalui ACF dan PACF dari \hat{a}_t .

1. Diagnostik model fungsi transfer

Pengujian korelasi silang (CCF), bagian model fungsi transfer dikatakan layak atau tidak terdapat masalah jika tidak terdapat korelasi silang yang nyata antara \hat{a}_t dengan α_t , hasil pengujian korelasi silang adalah sebagai berikut

Tabel 9. Korelasi silang \hat{a}_t dengan α_t Cross Correlations

Series Pair: at with alfat

Lag	Cross Correlation	Std. Error ^a
-14	-,012	,152
-14		
-13 -12	,000 ,034	,151 ,149
-12	,034	,149
-10	-,024	,147
	,034	,146
-9 0	-,070	,144
-8	,040	,143
-7	,021	,141
-6	,016	,140
-5	,017	,139
-4	-,031	,137
-3	-,010	,136
-2	-,024	,135
-1	,028	,134
0	-,005	,132
1 2 3	-,125	,134
2	-,242	,135
3	,065	,136
4	-,143	,137
5	,163	,139
6	-,109	,140
7	-,108	,141
8	,022	,143
9	-,036	,144
10	,117	,146
11	-,091	,147
12	-,093	,149
13	,222	,151
14	,011	,152

a. Based on the assumption that the series are not cross correlated and that one of the series is white noise.

Gambar 12. Korelasi silang (CCF) \hat{a}_t dengan α_t

Hasil diagnostik menunjukkan bahwa sudah tidak terdapat korelasi silang yang signifikan antara \hat{a}_t dengan α_t ditunjukkan dengan nilai korelasi silang yang tidak melebihi ± 2 standard error, dan jika dilihat dari plot CCF juga nampak bahwa tidak ada lag yang keluar, sehingga model fungsi transfer sudah layak dan tidak terdapat masalah.

2. Diagnostik model noise

Asumsi yang harus terpenuhi adalah \hat{a}_t merupakan deret sisaan yang bersifat white noise yaitu saling bebas antar sesamanya atau tidak terdapat autokorelasi, untuk mengeceknya dapat dilakukan melalui ACF dan PACF berikut adalah ACF dan PACF dari deret \hat{a}_t

ACF sisaan

Tabel 10. Autokorelasi sisaan (\hat{a}_t) Autocorrelations

Autocorrelations							
Series: re	esiduals model (at)						
			Во	x-Ljung Statis	tic		
Lag	Autocorrelation	Std. Error ^a	Value	df	Sig. ^⁵		
1	-,041	,129	,102	1	,749		
2	-,043	,128	,214	2	,898,		
3	-,007	,127	,217	3	,975		
4	,021	,126	,245	4	,993		
5	-,049	,124	,398	5	,995		
6	,029	,123	,455	6	,998		
7	-,015	,122	,470	7	1,000		
8	,024	,121	,509	8	1,000		
9	-,014	,119	,524	9	1,000		
10	-,006	,118	,526	10	1,000		
11	,015	,117	,541	11	1,000		
12	,011	,116	,551	12	1,000		
13	,059	,114	,819	13	1,000		
14	-,087	,113	1,417	14	1,000		

- a. The underlying process assumed is independence (white noise).
- b. Based on the asymptotic chi-square approximation.

Gambar 13. Plot ACF sisaan (\hat{a}_t)

Sudah tidak terdapat lag yang nyata pada ACF siaan \hat{a}_t , ditunjukkan dengan tidak terdapat lag yang keluar batas pada plot ACF.

PACF sisaan

Tabel 21. Autokorelasi parsial sisaan (\hat{a}_t) Partial Autocorrelations residuals model (at)

Selles. Tesiduais model (at)					
	Partial				
Lag	Autocorrelation	Std. Error			
1	-,041	,132			
2	-,045	,132			
2	-,011	,132			
4 5	,018	,132			
	-,048	,132			
6	,027	,132			
7 8 9	-,017	,132			
8	,024	,132			
9	-,011	,132			
10	-,009	,132			
11	,017	,132			
12	,009	,132			
13	,065	,132			
14	-,085	,132			

Gambar 14. Plot PACF sisaan (\hat{a}_t)

Sudah tidak terdapat lag yang nyata pada PACF siaan \hat{a}_t , ditunjukkan dengan tidak terdapat lag yang keluar batas pada plot PACF.

Berdsarkan hasil diagnostik model sisaan melalui ACF dan PACF, sisaan telah bersifat white noise, sebab tidak terdapat autokorelasi yang nyata. Maka model sisaan telah layak dan tidak terdapat masalah

I. MODEL SUMMARY

Model yang terpilih untuk emnggambarkan hubungan harga minyak mentah dunia dengan harga minyak mentah Indonesia dengan menggunakan data harga minyak mentah pada periode Januari 2009 sampai dengan Desember 2013 adalah model fungsi transfer (b,r,s)=(0,2,0)-ARMA(1,1). Dengan hasil pendugaan parameter

Tabel 12. Parameter model

ARIMA Model Parameters

					Estimate	SE	t	Sig.
Harga Minyak Mentah Indonesia (US \$/Barrel)- Model_1	Harga Minyak Mentah Indonesia (US \$/Barrel) Harga Minyak Mentah Dunia (US \$/Barrel)	No Transformation No Transformation	AR	Lag 1	,998	,011	91,094	,000*
			MA	Lag 1	-,434	,142	-3,048	,004*
			Numerator	Lag 0	,899	,040	22,685	,000*
			Difference		1			
			Denominator	Lag 1	,876	,044	19,898	,000*
				Lag 2	,110	,041	2,697	,009*

^{*}signifikan pada taraf 1%

$$\phi = 0.998$$
 , $\theta = -0.434$, $\omega_0 = 0.899$, $\delta_1 = 0.876$, $\delta_2 = 0.110$

Uraian model dalam bentuk linier adalah

$$(1-B)Y_{t} = \frac{\omega_{0}}{(1-\delta_{1}B-\delta_{2}B^{2})}(1-B)X_{t} + \frac{(1-\theta B)}{(1-\phi B)}a_{t}$$

$$(1-B)Y_{t} = \frac{\omega_{0}(1-\phi B)}{(1-\delta_{1}B-\delta_{2}B^{2})(1-\phi B)}(1-B)X_{t} + \frac{(1-\delta_{1}B-\delta_{2}B^{2})(1-\theta B)}{(1-\delta_{1}B-\delta_{2}B^{2})(1-\phi B)}a_{t}$$

$$(1-\delta_{1}B-\delta_{2}B^{2})(1-\phi B)(1-B)Y_{t} = \omega_{0}(1-\phi B)(1-B)X_{t} + (1-\delta_{1}B-\delta_{2}B^{2})(1-\theta B)a_{t}$$

$$(1-\delta_{1}B-\delta_{2}B^{2}-\phi B+\delta_{1}\phi B^{2}+\delta_{2}\phi B^{3}-B+\delta_{1}B^{2}+\delta_{2}B^{3}+\phi B^{2}+\delta_{1}\phi B^{3}+\delta_{2}\phi B^{4})Y_{t}$$

$$= (\omega_{0}-\omega_{0}B-\omega_{0}\phi B+\omega_{0}\phi B^{2})X_{t}$$

$$+(1-\delta_{1}B-\delta_{2}B^{2}-\theta B+\delta_{1}\theta B^{2}+\delta_{2}\theta B^{3})a_{t}$$

$$Y_{t} = (\delta_{1}+\phi+1)Y_{t-1}+(\delta_{2}-\delta_{1}\phi-\delta_{1}-\phi)Y_{t-2}-(\delta_{2}\phi-\delta_{2}-\delta_{1}\phi)Y_{t-3}-\delta_{1}\phi Y_{t-4}+\omega_{0}X_{t}$$

$$-(\omega_{0}+\omega_{0}\phi)X_{t-1}+\omega_{0}\phi X_{t-2}+a_{t}-(\delta_{1}+\theta)a_{t-1}-(\delta_{2}-\delta_{1}\theta)a_{t-2}+\delta_{2}\theta a_{t-3}$$

Dengan menyulihkan parameter hasil estimasi, model dituliskan menjadi

$$Y_{t} = 2,874Y_{t-1} - 2,638Y_{t-2} + 0,874Y_{t-3} - 0,874Y_{t-4} + 0,998X_{t} - 1,796X_{t-1} + 0,8972X_{t-2} + a_{t} - 0,442a_{t-1} - 0,490a_{t-2} + 0,047a_{t-3}$$

Keterangan

 Y_t : Harga minyak mentah Indonesia US \$/Barrel pada waktu ke-t (bulan)

 X_t : Harga minyak mentah Dunia (Opec) US \$/Barrel pada waktu ke-t (bulan)

 a_t : Galat (sisaan) acak pada saat ke-t (bulan)

Ukuran Keakuratan model

Keakuratan model sebagai alat peramalan (*performance*) dapat dilihat dari beberapa ukuran yaitu MSE (*mean square error*), MAPE (*mean average percentage error*), BIC (*bayesian information criterion*), R-square dan lainnya, berikut adalah beberapa ukuran keakuratan model

Tabel 13. Ukuran keakuratan model

Model Fit						
Fit Statistic	Mean					
Stationary R-squared	,935					
R-squared	,935					
RMSE	4,840					
MAPE	2,411					
MaxAPE	66,058					
MAE	1,733					
MaxAE	33,161					
Normalized BIC	3.509					

R-squared sebesar 93,5% artinya adalah model sudah dapat menjelaskan 93,5% keragaman harga minyak mentah Indonesia, untuk nilai-nilai lainnya meskipun dapat dinyatakan kecil namun, tidak terdapat patokan yang pasti mengenai batasan kapan nilai akan dinyatakan baik, sebab nilai RMSE, MAPE, MAE dan lainnya bergantung pada data. Untuk menggambarkan ketepatan prediksi digunakan series plot aktual vs prediksi sebagai berikut

Gambar 15. Plot harga minyak mentah Indonesia aktual vs prediksi