EPR Paradoksas

Julius Ruseckas

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas

Sausio 9, 2012

Apie ką kalbėsime

Tema

Koreliacijos klasikinėje ir kvantinėje fizikoje.

Dviejų dydžių x ir y koreliacija

$$\rho = \langle (X - \langle X \rangle)(y - \langle Y \rangle) \rangle$$

Apie ką kalbėsime

Tema

Koreliacijos klasikinėje ir kvantinėje fizikoje.

Dviejų dydžių x ir y koreliacija

$$\rho = \langle (x - \langle x \rangle)(y - \langle y \rangle) \rangle$$

Tikimybinis aprašymas klasikinėje fizikoje

- Ir klasikinėje fizikoje naudosime tikimybinį aprašymą
- Tikimybės klasikinėje fizikoje atsiranda tik dėl pradinių sąlygų neapibrėžtumo

Kaip išmatuoti koreliaciją

- Turime sistemų ansamblį
- Kiekvienai sistemai išmatuoti dydžius x ir y
- Perduoti juos į kompiuterį
- Taip padaryti daug kartų, kiekvienai ansamblio sistemai
- Kompiuteryje suskaičiuoti sandaugos vidurkį

Kaip koreliacija atsiranda

- Koreliacija tiek klasiknėje, tiek kvantinėje fizikoje atsiranda sąveikos metu
- Po sąveikos daleles galime atskirti ir nutolinti viena nuo kitos
- Jei atskyrimo ir nutolinimo metu dalelės nesutrikdomos, koreliacija išlieka. Tas galioja tiek klasikinėje, tiek kvantinėje fizikoje.

Dvi klasikinės dalelės

Eksperimentas I

- Turime daug pirštinių porų
- Kiekviena pirštinė apibūdinama vienu parametru: ji yra kairei arba dešinei rankai
- Koreliacija tarp pirštinių atsiranda gamybos metu
- Iš kiekvinos poros viena atsitiktinai parinkta (taip atsiranda tikimybės) pirštinė paliekama Žemėje, kita nusiunčiama į Kentauro Alfą

Eksperimentas I

 Tiek Žemėje, tiek Kentauro Alfoje laborantas fiksuoja atsitiktinę kairiųjų ir dešiniųjų pirštinių seką:

```
Žemė KDKKDKDD...
Kentauro Alfa DKDDKDKK...
```

- Palyginus rezultatus matyti pilna koreliacija
- Jei muitinė Kentauro Alfoje konfiskuoja kai kurias pirštines (trikdis!), turime nepilną koreliaciją

Eksperimentas I

- Jei laborantas Žemėje pamato pirštinę kairei rankai...
- jis iš karto žino, kad Kentauro Alfoje yra pirštinė dešinei rankai!

Žaibiškas informacijos perdavimas?

Ne! Kiekvienas iš laborantų mato tik atsitiktinę seką. Koreliacija išmatuojama tik persiuntus duomenis iš abiejų laborantų į Žemės kompiuterį.

Kvantinė mechanika?

Tol, kol apsiribojame tik vieno dydžio matavimu, koreliacija kvantinėje mechanikoje elgiasi taip pat, kaip ir klasikinėje

Dvi dalelės: pridedame dar vieną parametrą

Eksperimentas II

- Kiekviena pirštinė, nepriklausomai nuo to, ar ji yra kairei ar dešinei rankai, gali būti raudona arba žalia.
 Vienoje poroje pirštinės yra skirtingų spalvų.
- Eksperimentas vykdomas tomis pačiomis sąlygomis

Eksperimentas II

 Jei žiūrima, ar pirštinė kairei ar dešinei rankai, gauname

```
Žemė KDKKDKDD...
Kentauro Alfa DKDDKDKK...
```

Jei žiūrima į spalvą, gauname

```
Žemė RZZZRRZR...
Kentauro Alfa ZRRRZZRZ...
```

Eksperimentas II

Kiekvienas iš laborantų gali atsitiktinai pasirinkti, ar žiūrėti kuriai rankai pirštinė, ar į jos spalvą:

```
Žemė KDZKRRZD...
Kentauro Alfa ZKRDZDRZ...
```

 Tiems matavimams kuriems atsitiktinai pasirinktas matuoti tas pats dydis vėl turime pilną koreliaciją

Piktas laboratorijos vedėjas

Draudžiama atlikti du matavimus su tuo pačiu objektu! Galima arba žiūrėti tik į formą arba tik registruoti spalvą.

Problema

Dabar neaišku, ar turime reikalą su spalvotomis pirštinėmis, ar, matuojant spalvą, pakišamas koks kitas daiktas.

Čia priėjo Einstein'as...

EPR pasiūlymas

- Reikia atlikti matavimus atskirtus erdviškuoju intervalu, atsitiktinai kiekviename gale pasirinkus ką (formą ar spalvą) matuoti.
- Jei gaunamos koreliacijos, vadinasi iš tikro matuojame spalvotas pirštines

EPR pasiūlymo logika

- Jei atsitiktiniai pasirinkimai ką matuoti yra atskirti erdviškuoju intervalu, tarp jų negali būti priežastinio ryšio.
- Todėl, jei matuojant formą yra pakišama pirštinė, o matuojant spalvą – koks nors kitas daiktas, negali būti žinoma, kokios formos pirštinė arba kokios spalvos daiktas turi būti pakišamas.
- Jei yra pakišama, tai koreliacijų neturi būti
- Jei yra koreliacijos, tai tikrai turime spalvotas pirštines!

Eksperimentas III, kvantinis

- Turime daug vienodų sistemų talpinančių po dvi daleles
- Dalelės su sukiniu 1/2
- Tegu sąveikos metu pasigamina būsena su pilnu sukiniu lygiu 0
- Po dalelių sąveikos jos atskiriamos ir viena paliekama Žemėje, kita nesutrikdant nusiunčiama į Kentauro Alfą
- Matuojame vieną iš dviejų dydžių: sukinio projekciją išilgai z ašies S_z ir sukinio projekciją išilgai x ašies S_x

Kvantmechaninis aprašymas

- ▶ Būsenos vektoriai $|+z\rangle$ ir $|-z\rangle$ yra tikriniai operatoriui S_z , būsenos vektoriai $|+x\rangle$ ir $|-x\rangle$ yra tikriniai operatoriui S_x
- Iš sukinio savybių seka kad

$$|\pm z\rangle = \frac{1}{\sqrt{2}}(|+x\rangle \pm |-x\rangle)$$

Tegu po sąveikos pasigamina dviejų dalelių būsena, aprašoma tokiu būsenos vektoriumi (pilnas sukinys lygus 0):

$$|\psi\rangle = \frac{1}{\sqrt{2}} (|+z\rangle \otimes |-z\rangle - |-z\rangle \otimes |+z\rangle)$$

> Būsenos vektorių $|\psi\rangle$ galima perrašyti tokiu pavidalu:

$$|\psi\rangle = -\frac{1}{\sqrt{2}}(|+x\rangle\otimes|-x\rangle-|-x\rangle\otimes|+x\rangle$$

Kvantmechaninis aprašymas

- Siunčiant dalelę į Kentauro Alfą, sukininė būsena nesutrikdoma, taigi būsenos vektorius nepasikeičia
- Jei registruojame vienos dalelės sukinio matavimą išilgai z ašies arba išilgai x ašies, gauname, kad sukinio projekcijos vertė yra +1/2 su tikimybe 0.5 ir -1/2 su tikimybe 0.5
- ▶ Tegu matuojame pirmos dalelės S_z . Jei gavome vertę +1/2, tai būsenos vektorius po matavimo tampa

$$|\psi'\rangle = |+z\rangle \otimes |-z\rangle$$

o jei gavome vertę -1/2, tai būsenos vektorius po matavimo yra

$$|\psi'\rangle = |-z\rangle \otimes |+z\rangle$$

Kvantmechaninis aprašymas

- Jei abiejų dalelių sukinius matuojame išilgai z ašies arba išilgai x ašies tai gauname kad dalelės yra priešingų sukinių: kai vienos dalelės sukinio projekcija į z ašį yra +1/2, kitos yra -1/2. Registruojame pilną koreliaciją!
- Jei vienos dalelės sukinį matuojame išilgai z ašies, o kitos išilgai x ašies, tai matavimų rezultatai visiškai nekoreliuoti.

Kvantinė mechanika?

- Atrodo, viskas tas pats, kas ir su spalvotom pirštinėm.
- ▶ Sekant EPR logika, reikėtų dalelei priskirti S_Z ir S_X vertes.
- ▶ Jei apsiribojame tik dviejų dydžių matavimu, tokį priskyrimą galima daryti. Koreliacija kvantinėje mechanikoje elgiasi taip pat, kaip ir klasikinėje, jei laikysime, kad S_z ir S_x vertes yra apibrėžtos, bet nepasiekiamos vienu metu. Tai yra, turime paslėptus kintamuosius (hidden variables).

Pasak Einstein'o

Mes turime dvi alternatyvas:

- Dalelė turi ir S_z ir S_x vertes, bet jos tiesiog nepasiekiamos vienu metu. Tai yra, turime paslėptus kintamuosius (hidden variables). Apie juos bus Bell'o nelygybė (kitas pranešimas).
- spukhafte Fernwirkung (spooky action at a distance, vaiduokliškas veikimas per atstumą)

Kvantinė mechanika?

- ▶ Sekant EPR logika, reikėtų dalelei priskirti S_z ir S_x vertes. Bet...
- Operatoriai S_z ir S_x nekomutuoja! Negalima vienai dalelei priskirti iš karto abiejų dydžių.

Paradoksas

Kvantinėje mechanikoje EPR pasiūlytas metodas netinka!

Kodėl?

Mano nuomone, klaida EPR logikoje yra bandymas priskirti "būseną" (kad ir kas tai bebūtų) atskirai dalelei.

Ačiū už dėmesį!

Laukite tęsinio!