Activité 2 : le protocole NMEA

Les différents composants d'un appareil électronique (ex : un téléphone mobile) communiquent par des protocoles normalisés.

Ainsi, les puces GPS qui effectuent les calculs de positionnement envoient leurs résultats présentés suivant une trame normalisée : **la trame NMEA 0183**. Le développeur d'une application (par exemple : la galerie photo, un jeu de capture de Pokémons...) souhaitant utiliser la position de l'utilisateur sait qu'il pourra exploiter cette trame pour en déduire les renseignements sur la position.

A) Les informations contenus dans la trame NMEA 0183 :

La trame se présente comme une suite de données séparées par des virgules, en voici un exemple :

\$GPGGA,064036.289,4836.5375,N,00740.9373,E,1,04,3.2,200.2,M,,,,0000*0E

Et voici le détails des données sur lesquelles elle apporte des informations :

\$GPGGA: Type de trame GGA (les deux premières lettres indiquent le système de satellite utilisé)

064036.289 : Trame envoyée à 06h 40m 36,289s (heure UTC)

4836.5375, N: Latitude Nord: 48°36.5375' (DM: degré et minute)

00740.9373,E: Longitude Est: 7°40.9373'(DM:degré et minute)

1 : Type de positionnement (le 1 est un positionnement GPS)

04 : Nombre de satellites utilisés pour calculer les coordonnées

3.2 : Précision horizontale ou HDOP (Horizontal dilution of precision)

200.2,M: Altitude 200,2, en mètres

"",0000 : D'autres informations peuvent être inscrites dans ces champs

*0E : Somme de contrôle de parité, un simple XOR sur les caractères entre \$ et *3

Exercice:

Compléter le tableau suivant en indiquant les informations apportées par les deux trames suivantes :

Trame	\$GPGGA,123519,4807.038,N, 01131.324,E,1,08,0.9,545.4,M, 46.9,M,,*42	\$GPGGA,143548.000,4921.4456, N,00315.0012,E,1,07,1.3,73.4,M, 47.3,M,,0000*6F
Système de satellite		
altitude		
longitude		
latitude		
Heure d'envoi		
Lieu géographique		

<u>Documents</u>: préfixe utilisés pour les systèmes de satellites

BD ou GB - Beidou (système chinois)

GA - Galileo (système européen)

GP - GPS (système américain)

GL – GLONASS (système russe)

<u>Détermination</u>	du	lieu	g	éog	ra	phic	ue	:

Vous pouvez utiliser des applications de cartes en ligne comme openstreetmap, il faut cependant co	nvertir
les latitudes et les longitudes en degré (elles sont en degré minutes pour l'instant).	

1 degré = 60 minutes

exemple : 20 minutes correspondent à : 20/60=0,33°

Conversions:

Visualisation des trames reçues par vos téléphones :

Il est possible de visualiser les trames générées par les puces GPS de vos téléphones : il suffit d'utiliser une application comme « nmea tools »(android) ou « NMEA GPS » (IOS).

A l'aide d'une de ces applications, enregistrer les trames reçues, isoler une trame de type GGA et en déduire le maximum d'informations :

Trame:

Informations:

B) Décodage d'une trame NMEA à l'aide d'un programme :

Le programme ci-dessous permet de créer une liste de données à partir d'une trame NMEA puis d'en extraire une donnée particulière : la longitude.

Il se trouve dans les dossiers de partage de la classe (decodage_nmea.py) : ouvrez-le et vérifier son fonctionnement.

```
trame="$GPGGA,064036.289,4836.5375,N,00740.9373,E,1,04,3.2,200.2,M,,,,0000*0E"
#donne un nom à la trame
données= trame.split(",")
#forme une liste à partir des caractères séparés par des virgules
satellite= données[0]
#on appelle satellite l'élément 0 de la liste
heure= données[1]

latitude = données[2:3]
#on appelle latitude les éléments de la liste compris entre 2 et 3
longitude = données[4:5]

print(longitude)
Ouestions:
```

- 1) Compléter ci-dessus en écrivant le rôle des instructions lorsqu'elles ne sont pas indiquées.
- 2) Modifier le programme pour qu'il affiche les informations concernant la latitude. Réécrire ci-dessous la ligne modifiée :

3) Modifier le programme pour qu'il affiche la valeur de l'altitude. Réécrire ci-dessous les lignes ajoutées ou modifiées :