Development and testing of methods for drones control

Paolo Leopardi

Università degli Studi di Perugia

July 18, 2023

Flight Stack selection

Autopilot selection is made by evaluating possible pros and cons which every autopilot flight stack brings with it. Three possible solution were evaluated:

- ► INAV [1]
- ► PX4 [2]
- ► Agilicious [3]

Evaluation based on the following parameters:

- configuration
- missions definition
- ► future developments

Configuration

INAV videos on Youtube at this link

PX4 follow sections from *Basic Assembly* to *Flying* in the official documentation

Agilicious no description

Missions definition

- INAV provide a Ground Control Station (GCS) which is capable of define only waypoints link
 - PX4 typically use QGroundControl (QGC) as GCS¹, here different missions can be defined and it is worth to note that there is also survey missions which seems particularly suited with the aim of this project
- Agilicious doesn't not provide a GCS for missions definition, but it has a module called **reference** which implements different ways of generating reference trajectories

Future developments

- INAV no description to interface with Robot Operating System (ROS)
- PX4 has a subsection dedicated to ROS communication with PX4. In addiction PX4 has a MATLAB package called UAV Toolbox Support Package for PX4 Autopilots [4]
- Agilicious has very good structure for future developments beacause you can change controller or estimator by simply modify a yaml file. It's not provided a way to integrate GPS measurements. An interface for ROS called agiros is provided.

Both PX4 and Agilicious docs propose a simulator.

Conclusions

- 1. PX4
- 2. Agilicious
- 3. INAV

References I

iNavFlight.

iNav.

Available at: https://github.com/iNavFlight/inav, 2023.

Accessed: 12 July 2023.

PX4 Autopilot Development Team.

PX4 Autopilot.

Available at: https://px4.io/, 2023.

Accessed: 12 July 2023.

Philipp Foehn, Elia Kaufmann, Angel Romero, Robert Penicka, Sihao Sun, Leonard Bauersfeld, Thomas Laengle, Giovanni Cioffi, Yunlong Song, Antonio Loquercio, et al.

Agilicious: Open-source and open-hardware agile quadrotor for vision-based flight.

Science robotics, 7(67):eabl6259, 2022.

References II

MathWorks.

PX4 Support Package.

Available at:

https://it.mathworks.com/help/supportpkg/px4/, 2023.

Accessed: 12 July 2023.