Differential Equations: Numerical Methods

Mikhail Moiseev B17-05

Github link:

https://github.com/lackadaisicalcynic/Differential-Equations

Exact solution of the given differential equation

$$y' = 2y^{\frac{1}{2}} + 2y + 1 : y^{\frac{1}{2}}$$
 Bernoulli equation

 $y' = 2 + 2y^{\frac{1}{2}}$

Substitution: $z = y^{\frac{1}{2}}$; $z' = \frac{1}{2}y^{-\frac{1}{2}}y^{\frac{1}{2}}$
 $z' = z + 1$
 $z' - z = 0$
 $\ln z = x + C$
 $z = e^{x} \cdot C(x)$
 $e^{x} c'(x) + e^{x} c(x) - e^{x} c(x) = 1$
 $e^{x} c'(x) = 1$
 $c(x) = -e^{-x} + C$
 $z = -1 + Ce^{x}$
 $y = (-1 + Ce^{x})^{2}$
 $y(0) = 1; \quad 1 = (-1 + C)^{2}$
 $y(0) = 1; \quad 1 = (-1 + C)^{2}$
 $y(0) = 1; \quad 1 = (-1 + C)^{2}$
 $y(0) = 1; \quad 1 = (-1 + C)^{2}$
 $y(0) = 1; \quad 1 = (-1 + C)^{2}$
 $y(0) = 1; \quad 1 = (-1 + C)^{2}$
 $y(0) = 1; \quad 1 = (-1 + C)^{2}$

No points of discontinuity, x belongs to R, y > 0.

Sample graph to consider numerical methods comparing to each other and to the exact solution

Step = 0.5, Interval = [0:3]

Local truncation error sample graph:

Step h=0.5, Interval = [0:3]

Global truncation error graph:

Interval of function [0:9], OX: step for numerical method [0.001 : 0.1], OY: Global truncation error for corresponding value of step.