Target Business Case:

Target is one of the world's most recognized brands and one of America's leading retailers. Target makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and an exceptional guest experience that no other retailer can deliver.

This business case has information of 100k orders from 2016 to 2018 made at Target in Brazil. Its features allows viewing an order from multiple dimensions: from order status, price, payment and freight performance to customer location, product attributes and finally reviews written by customers.

Dataset:

https://drive.google.com/drive/folders/1TGEc66YKbD443nslRi1bWgVd238gJCnb

Data is available in 8 csv files:

- 1. customers.csv
- 2. geolocation.csv
- 3. order_items.csv
- 4. payments.csv
- 5. reviews.csv
- 6. orders.csv
- 7. products.csv
- 8. sellers.csv

Each feature or columns of different CSV files are described below:

The customers.csv contain following features:

Features Description

customer_id Id of the consumer who made the purchase.

customer_unique_id Unique Id of the consumer.

customer_zip_code_prefix Zip Code of the location of the consumer.

customer_city Name of the City from where order is made.

customer_state State Code from where order is made(Ex- sao

paulo-SP).

The sellers.csv contains following features:

Features Description

seller_id Unique Id of the seller registered

seller_zip_code_prefix Zip Code of the location of the seller.

seller_city Name of the City of the seller.

seller_state State Code (Ex- sao paulo-SP)

The order_items.csv contain following features:

Features Description

order_id A unique id of order made by the consumers.

order_item_id A Unique id given to each item ordered in the order.

product_id A unique id given to each product available on the

site.

seller_id Unique Id of the seller registered in Target.

shipping_limit_date The date before which shipping of the ordered product

must be completed.

price Actual price of the products ordered.

freight_value Price rate at which a product is delivered from one

point to another.

The geolocations.csv contain following features:

Features Description

geolocation_zip_code_prefix first 5 digits of zip code

geolocation_lat latitude

geolocation_lng longitude

geolocation_city city name

geolocation_state state

The payments.csv contain following features:

Features Description

order_id A unique id of order made by the consumers.

payment_sequential sequences of the payments made in case of EMI.

payment_type mode of payment used.(Ex-Credit Card)

payment_installments number of installments in case of EMI purchase.

payment_value Total amount paid for the purchase order.

The orders.csv contain following features:

Features Description

order_id A unique id of order made by the consumers.

customer_id Id of the consumer who made the purchase.

order_status status of the order made i.e delivered, shipped etc.

order_delivered_carrier_date delivery date at which carrier made the delivery.

order_delivered_customer_date date at which customer got the product.

order_estimated_delivery_date estimated delivery date of the products.

The reviews.csv contain following features:

Description

review_id Id of the review given on the product ordered by the

order id.

order_id A unique id of order made by the consumers.

review_score review score given by the customer for each order on

the scale of 1-5.

review_comment_title Title of the review

review_comment_message Review comments posted by the consumer for each

order.

review_creation_date Timestamp of the review when it is created.

The products.csv contain following features:

Features	Description
----------	-------------

product_id A unique identifier for the proposed project.

product_name_lenght length of the string which specifies the name given

to the products ordered.

product_description_lenght length of the description written for each product

ordered on the site.

product_photos_qty	Number of photos of each product ordered available on the shopping portal.
product_weight_g	Weight of the products ordered in grams.
product_length_cm	Length of the products ordered in centimeters.
product_height_cm	Height of the products ordered in centimeters.
product_width_cm	width of the product ordered in centimeters.

High level overview of relationship between datasets:

Assume you are a data scientist at Target, and are given this data to analyze and provide some insights and recommendations from it.

What 'good' looks like?

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
 - 1. Data type of columns in a table
 - 2. Time period for which the data is given
 - 3. Cities and States covered in the dataset
- 2. In-depth Exploration:
 - 1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?
 - 2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?
- 3. Evolution of E-commerce orders in the Brazil region:
 - 1. Get month on month orders by region, states
 - 2. How are customers distributed in Brazil
- 4. Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others.
 - 1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)
 - 2. Mean & Sum of price and freight value by customer state
- 5. Analysis on sales, freight and delivery time
 - 1. Calculate days between purchasing, delivering and estimated delivery
 - 2. Create columns:
 - time_to_delivery = order_purchase_timestamp-order_delivered_customer_date
 - diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date
 - Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery
 - 4. Sort the data to get the following:
 - 1. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5
 - 2. Top 5 states with highest/lowest average time to delivery
 - 3. Top 5 states where delivery is really fast/ not so fast compared to estimated date

- 6. Payment type analysis:
 - 1. Month over Month count of orders for different payment types
 - 2. Distribution of payment installments and count of orders

Evaluation Criteria (80 points)

- 1. Initial exploration of dataset like checking the characteristics of data (10 points)
- 2. In-depth Exploration (10 points)
- 3. Evolution of E-commerce orders in the Brazil region (10 points)
- 4. Impact on Economy (10 points)
- 5. Analysis on sales, freight and delivery time (10 points)
- 6. Payment type analysis (10 points)
- 7. Actionable Insights (10 points)
- 8. Recommendations (10 points)

Submission Process:

- Type your insights and recommendations in the text editor
- Convert your solutions notebook into PDF, upload it on the dashboard
- Optionally, you may add images/graphs in the text editor by taking screenshots
- After submitting, you will not be allowed to edit your submission

Solution:

Q1) Import the dataset and do usual exploratory analysis steps like checking the structure &

characteristics of the dataset

- 1) Data type of columns in a table
- 2) Time period for which the data is given
- 3) Cities and States covered in the dataset

1) Data type of columns in a table

describe customers; describe geolocation; describe order_items; describe order_reviews;

```
describe orders;
describe payments;
describe products;
describe reviews;
describe sellers;
```

2) Time period for which the data is given

```
SELECT
```

```
MIN(order_purchase_timestamp) AS min_date,
    MAX(order_purchase_timestamp) AS max_date,
    datediff(MAX(order_purchase_timestamp), MIN(order_purchase_timestamp)) AS
days_difference
FROM orders;
```

3) Cities and States covered in the dataset

Distinct Cities

```
SELECT
DISTINCT geolocation_city AS cities
FROM
geolocation;
```

Distinct States

```
SELECT
DISTINCT geolocation_state AS states
FROM
geolocation;
```

Q2) In-depth Exploration:

- 1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?
- 2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?
- 1) Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?
 - To verify if there is an increasing trend on e-commerce in Brazil, we can check if the number of orders has increased over the years. If yes then we can say that there is an increasing trend. So to get year wise data and their count we can use the following query:

```
SELECT
YEAR(order_purchase_timestamp) as year_of_purchase,
count(*) as total_orders
FROM orders
GROUP BY year_of_purchase
ORDER BY year of purchase;
```


Conclusion: So we can see the number of orders placed is increasing continuously and there is an increasing trend on e-commerce in Brazil.

 To check seasonality where there are more orders placed. Can we see some seasonality with peaks at specific months

Link used to refer months and seasons : <u>Seasons and Months</u>

Use comparison year wise.

```
SELECT
```

CASE

WHEN MONTH(order_purchase_timestamp) in (1, 2, 3) then 'Summer' WHEN MONTH(order_purchase_timestamp) in (4, 5, 6) then 'Autumn' WHEN MONTH(order_purchase_timestamp) in (7, 8, 9) then 'Winter' WHEN MONTH(order_purchase_timestamp) in (10, 11, 12) then 'Spring' END AS season.

COUNT(*) AS orders_per_season FROM orders GROUP BY season ORDER BY orders per season DESC;

	season	orders_per_season
•	Autumn	29328
	Summer	26470
	Winter	25466
	Spring	18177

Considering Months (Jan, Feb, Mar) As 'Summer', (Apr, May, Jun) As 'Autumn', (Jul, Aug, Sep) As 'Winter' and (Oct, Nov, Dec) As 'Spring' seasons. So when we count total orders placed per season, we can see that <u>Autumn season</u> has more orders placed, following Summer, Winter, and Spring season.

Conclusion: So we can see the number of orders placed in Autumn Season are more as compared to any other Season in Brazil.

2) What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

SELECT CASE

when hour(order_purchase_timestamp) BETWEEN 5 AND 11 then 'Morning' when hour(order_purchase_timestamp) BETWEEN 12 AND 16 then 'Afternoon' when hour(order_purchase_timestamp) BETWEEN 17 AND 20 then 'Evening' else 'Night'

end AS time_purchased, COUNT(*) as orders_placed FROM orders GROUP BY time_purchased ORDER BY orders_placed DESC;

	time_purchased	orders_placed
•	Afternoon	32211
	Evening	24094
	Morning	22428
	Night	20708

Considering Hours (24 Hours Format Clock) **5 - 11** As 'Morning', **12 - 16** As 'Afternoon', **17 - 20** As 'Evening' and **21 - 4** As 'Night' time. So when we count total orders placed based on time, we can see that most customers place orders in Afternoon following Evening, Morning, and Night time..

Conclusion: So we can see the number of orders placed in the Afternoon time period is more as compared to any other time in a day.

- 3) Evolution of E-commerce orders in the Brazil region:
 - 1. Get month on month orders by region, states

```
SELECT

DISTINCT c.customer_state,

MONTHNAME(order_purchase_timestamp) AS 'month',

COUNT(*)

OVER

(

PARTITION BY c.customer_state,

YEAR (order_purchase_timestamp),

MONTH(order_purchase_timestamp)

ORDER BY MONTH(order_purchase_timestamp)

) AS total_orders

FROM orders o

JOIN customers c

ON o.customer_id = c.customer_id
```

	customer_state	month	year	total_orders
•	AC	January	2017	2
	AC	February	2017	3
	AC	March	2017	2
	AC	April	2017	5
	AC	May	2017	8
	AC	June	2017	4
	AC	July	2017	5

We can see that from State 'AC' there were 2 orders in January, 3 Orders in February and so on.

Conclusion: We can see the number of orders per month placed for all the states in Brazil.

2. If we want to see increase or decrease in orders comparing each month, eg. If we want to see what is the growth in orders as compared to previous month we can do the following:

```
SELECT
      customer_state,
      month,
      year,
      total orders,
      ROUND((total_orders - LAG (total_orders)
      OVER (
             PARTITION BY customer_state, year
  ))/ LAG (total_orders) OVER (
             PARTITION BY customer state, year
      ) * 100,2) AS difference_perc_growth
FROM (
      SELECT
             DISTINCT c.customer_state,
             MONTH(order purchase timestamp) AS 'month',
             YEAR(order_purchase_timestamp) AS 'year',
             COUNT(*)
             OVER(
                    PARTITION BY c.customer_state,
YEAR(order purchase timestamp), MONTH(order purchase timestamp)
                    ORDER BY MONTH(order purchase timestamp)
             ) AS total_orders
      FROM orders o
      JOIN customers c
      ON o.customer_id = c.customer_id
) AS table1
ORDER BY customer_state, year, month;
```

	customer_state	month	year	total_orders	difference_perc_growth
•	AC	1	2017	2	HULL
	AC	2	2017	3	50.00
	AC	3	2017	2	-33.33
	AC	4	2017	5	150.00
	AC	5	2017	8	60.00
	AC	6	2017	4	-50.00

The above query will give us total orders per month and the percentage of orders increased/decreased with respect to the previous month for each state for each year. With this we can analyze that each state has what percentage of orders has increased/decreased for each year.

3. How are customers distributed in Brazil

```
SELECT
      customer_state,
      total customers,
      ROUND((total_customers/sum_cust) * 100,3) AS
customers_distributed_percentage
      FROM
      (
             SELECT
                   c.customer_state,
                   COUNT(*) as total_customers,
                   SUM(COUNT(*)) OVER() as sum_cust
             FROM orders o
             JOIN customers c
             ON o.customer_id = c.customer_id
             GROUP BY customer_state
      ) AS table1
ORDER BY customers_distributed_percentage DESC;
```

	customer_state	total_customers	customers_distributed_percentage
•	SP	41746	41.981
	RJ	12852	12.924
	MG	11635	11.700
	RS	5466	5.497
	PR	5045	5.073
	SC	3637	3.657

In the results above we can see that **most of the customers** are from the State abbreviation 'SP' which is 41.981%. Followed by 'RJ', 'MG', 'RS', 'PR' and 'SC'.

Conclusion: The following is the distribution of customers who are registered with Target around Brazil.

- 4) Analysis on sales, freight and delivery time
 - a) Calculate days between purchasing, delivering and estimated delivery
 - b) Create columns:
 - i) time_to_delivery = order_purchase_timestamp-order_delivered_customer_date
 - ii) diff_estimated_delivery =
 order_estimated_delivery_date-order_delivered_customer_date

SELECT

o.order_id, c.customer_id, c.customer_state,

DATEDIFF(order_delivered_customer_date,order_purchase_timestamp) AS time_to_delivery,

DATEDIFF(order_estimated_delivery_date,order_delivered_customer_dat e) AS diff_estimated_delivery

FROM orders o

JOIN customers c

ON c.customer_id = o.customer_id;

	order_id	customer_id	customer_state	time_to_delivery	diff_estimated_delivery
•	000 10242 fe8c5a6d 1ba2dd 792cb 16214	3ce436f183e68e07877b285a838db11a	RJ	7	9
	00018f77f2f0320c557190d7a144bdd3	f6dd3ec061db4e3987629fe6b26e5cce	SP	16	3
	000229ec398224ef6ca0657da4fc703e	6489ae5e4333f3693df5ad4372dab6d3	MG	8	14
	00024acbcdf0a6daa1e931b038114c75	d4eb9395c8c0431ee92fce09860c5a06	SP	6	6
	00042b26cf59d7ce69dfabb4e55b4fd9	58dbd0b2d70206bf40e62cd34e84d795	SP	25	16
	00048cc3ae777c65dbb7d2a0634bc1ea	816cbea969fe5b689b39cfc97a506742	MG	7	15

Here we can get all the details like customer state, id, order time to delivery, diff estimated delivery for each order.

c) Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

SELECT

s.seller state,

ROUND(SUM(ot.freight_value) / COUNT(ot.freight_value),2) AS mean freight value,

ROUND(SUM(DATEDIFF(o.order_delivered_customer_date,o.order_purc hase_timestamp)) /

COUNT(DATEDIFF(o.order_delivered_customer_date,o.order_purchase_timesta mp)),2) AS mean_delivery_time,

ROUND(SUM(DATEDIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date)) /

COUNT(DATEDIFF(o.order_estimated_delivery_date,o.order_delivered_custome r_date)),2) AS mean_diff_estimated_delivery

FROM order items of

JOIN sellers s

ON s.seller id = ot.seller id

JOIN orders o

ON ot.order_id = o.order_id

GROUP BY s.seller state;

	seller_state	mean_freight_value	mean_delivery_time	mean_diff_estimated_delivery
•	SP	18.45	12.21	11.30
	MG	24.08	12.75	13.47
	PR	22.72	13.32	14.23
	SC	26.15	13.52	14.20
	DF	20.57	12.44	13.18

Here we can see all the mean values of freight, delivery time, difference estimated delivery date.

- d) Sort the data to get the following:
 - Top 5 states with highest/lowest average freight value sort in desc/asc limit 5

HIGHEST FREIGHT AVERAGE:

SELECT

s.seller_state,

ROUND(SUM(ot.freight_value) / COUNT(ot.freight_value),2) AS avg_freight_value,

ROUND(SUM(DATEDIFF(o.order_delivered_customer_date,o.order_purc hase_timestamp)) /

COUNT(DATEDIFF(o.order_delivered_customer_date,o.order_purchase_timestamp)),2) AS avg_delivery_time,

ROUND(SUM(DATEDIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date)) /

COUNT(DATEDIFF(o.order_estimated_delivery_date,o.order_delivered_c ustomer_date)),2) AS avg_diff_estimated_delivery

FROM order_items ot
JOIN sellers s
ON s.seller_id = ot.seller_id
JOIN orders o
ON ot.order_id = o.order_id
GROUP BY s.seller_state
ORDER BY avg_freight_value DESC
LIMIT 5;

	seller_state	avg_freight_value	avg_delivery_time	avg_diff_estimated_delivery
•	RO	50.91	17.43	24.50
	CE	46.38	17.90	13.38
	PB	39.19	12.38	19.78
	PI	36.94	13.73	15.00
	AC	32.84	HULL	NULL

Here are the 5 states that have the highest average freight value, so state 'RO' has highest average freight i.e 50.91 as compared to other states, which is followed by state 'CE' with average freight of 46.38 and the rest.

LOWEST FREIGHT AVERAGE:

SELECT

s.seller_state,

ROUND(SUM(ot.freight_value) / COUNT(ot.freight_value),2) AS avg_freight_value,

ROUND(SUM(DATEDIFF(o.order_delivered_customer_date,o.order_purc hase_timestamp)) /

COUNT(DATEDIFF(o.order_delivered_customer_date,o.order_purchase_timestamp)),2) AS avg_delivery_time,

ROUND(SUM(DATEDIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date)) /

COUNT(DATEDIFF(o.order_estimated_delivery_date,o.order_delivered_c ustomer_date)),2) AS avg_diff_estimated_delivery

FROM order_items ot JOIN sellers s ON s.seller_id = ot.seller_id JOIN orders o ON ot.order_id = o.order_id GROUP BY s.seller_state ORDER BY avg_freight_value LIMIT 5;

	seller_state	avg_freight_value	avg_delivery_time	avg_diff_estimated_delivery
•	SP	18.45	12.21	11.30
	PA	19.39	13.25	11.38
	RJ	19.47	11.94	12.51
	DF	20.57	12.44	13.18
	PR	22.72	13.32	14.23

Here are the 5 states that have the lowest average freight value, so state 'SP' has lowest average freight i.e 18.45 as compared to other states, which is followed by state 'PA' with average freight of 19.39 and the rest.

Conclusion: So we can say that the lowest freight average cost in Brazil is 18.45 which is in the state SP and the highest freight average cost is 50.91 which is in the state 'RO'.

ii) Top 5 states with highest/lowest average time to delivery

LOWEST TIME TO DELIVERY AVERAGE:

SELECT

s.seller_state,

ROUND(SUM(DATEDIFF(o.order_delivered_customer_date,o.order_purc hase_timestamp)) /

COUNT(DATEDIFF(o.order_delivered_customer_date,o.order_purchase_timestamp)),2) AS avg_delivery_time

FROM order items ot

JOIN sellers s

ON s.seller_id = ot.seller_id

JOIN orders o

ON ot.order id = o.order id

WHERE order_status = 'delivered'

GROUP BY s.seller_state
ORDER BY avg_delivery_time
LIMIT 5;

	seller_state	avg_delivery_time
•	RS	11.49
	RJ	11.94
	SP	12.21
	MS	12.30
	PB	12.38

Here are the 5 states that have the lowest average freight value, so state 'RS' has lowest average freight i.e 11.49 days as compared to other states, which is followed by state 'RJ' with average freight of 11.94 days and the rest.

HIGHEST TIME TO DELIVERY AVERAGE:

SELECT

s.seller_state,

ROUND(SUM(DATEDIFF(o.order_delivered_customer_date,o.order_purc hase_timestamp)) /

COUNT(DATEDIFF(o.order_delivered_customer_date,o.order_purchase_timestamp)),2) AS avg_delivery_time

FROM order_items ot

JOIN sellers s

ON s.seller_id = ot.seller_id

JOIN orders o

ON ot.order_id = o.order_id

GROUP BY s.seller state

ORDER BY avg_delivery_time DESC

LIMIT 5;

Here are the 5 states that have the highest average time to delivery value, so state 'AM' has highest average time to delivery i.e 48.00 days as compared to other states, which is followed by state 'CE' with average freight of 17.90 days and the rest.

	seller_state	avg_delivery_time
•	AM	48.00
	CE	17.90
	MA	17.65
	RO	17.43
	MT	14.69

iii) Top 5 states where delivery is really fast/ not so fast compared to estimated date

FAST Delivery:

LIMIT 5;

```
SELECT
seller_state,
avg_diff_estimated_delivery,
avg_delivery_time,
avg_diff_estimated_delivery - avg_delivery_time AS early_by
FROM(
SELECT
s.seller_state,
```

ROUND(SUM(DATEDIFF(o.order_delivered_customer_date,o.order_purc hase_timestamp)) /

COUNT(DATEDIFF(o.order_delivered_customer_date,o.order_purchase_timestamp)),2) AS avg_delivery_time,

```
ROUND(SUM(DATEDIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date)) /
COUNT(DATEDIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date)),2) AS avg_diff_estimated_delivery
FROM order_items ot
JOIN sellers s
ON s.seller_id = ot.seller_id
JOIN orders o
ON ot.order_id = o.order_id
WHERE o.order_status = 'delivered'
GROUP BY s.seller_state
HAVING avg_diff_estimated_delivery > avg_delivery_time) AS t
ORDER BY early_by DESC
```

	seller_state	avg_diff_estimated_delivery	avg_delivery_time	early_by
•	PB	19.78	12.38	7.40
	RO	24.50	17.43	7.07
	MS	17.38	12.30	5.08
	RS	16.33	11.49	4.84
	SE	17.30	12.60	4.70

Here are the 5 states that deliver products before their estimated delivery average time, so state 'PB' has the highest early_by value i.e 7.40 days as compared to other states, which is followed by state 'RO' with average freight of 7.07 days and the rest.

5) Payment type analysis:

a) Month over Month count of orders for different payment types

```
SELECT
DISTINCT p.payment_type,
YEAR(order_purchase_timestamp) as 'year',
MONTHNAME(order_purchase_timestamp) AS 'month',
COUNT(*)
OVER(
PARTITION BY p.payment_type,
YEAR(order_purchase_timestamp),
MONTH(order_purchase_timestamp)
ORDER BY MONTH(order_purchase_timestamp)
) AS total_orders
FROM payments p
JOIN orders o
ON o.order_id= p.order_id
ORDER BY 'year';
```

b) Distribution of payment installments and count of orders

```
SELECT

payment_installments,

total_orders,

ROUND((total_orders/sum_orders) * 100,2) AS orders_per_installments

FROM (
```

```
SELECT payment_installments,COUNT(*) as total_orders,
SUM(COUNT(*)) OVER() as sum_orders
    FROM payments
    WHERE payment_installments > 0 AND (payment_type = 'credit_card'
OR payment_type = 'debit_card')
    GROUP BY payment_installments
) AS T
ORDER BY orders_per_installments DESC;
```

	payment_installments	total_orders	orders_per_installments
•	1	26984	34.45
	2	12413	15.85
	3	10461	13.36
	4	7098	9.06
	10	5328	6.80
	5	5239	6.69

Here we can see that most of the customers prefer **ONE month EMI** to purchase any product. As **34.45**% of orders are placed with one month installments followed by **TWO months EMI** which has around **15.85**% of orders placed. And followed by the rest.

Conclusion: We can see that around 63% of orders have EMIs 3 Months and below. So we can conclude that in Brazil most people prefer Maximum of 3 Months of EMI plans.

States that have less than 10% of total users

```
SELECT
customer_state,
      total_customers,
      ROUND((total_customers/sum_cust) * 100,3) AS
customers distributed percentage
FROM
(
             SELECT
                   c.customer_state,
                    COUNT(*) as total_customers,
                    SUM(COUNT(*)) OVER() as sum_cust
             FROM orders o
             JOIN customers c
             ON o.customer id = c.customer id
             GROUP BY customer_state
) AS table1
```

ORDER BY customers_distributed_percentage;

customer_sta	ate total_custom	ners customers_distributed_percentage
RR	46	0.046
AP	68	0.068
AC	81	0.081
AM	148	0.149
RO	253	0.254
то	280	0.282

Payment Type Details:

SELECT

payment_type, COUNT(*) total_orders FROM payments GROUP BY payment_type;

	payment_type	total_orders
•	credit_card	76795
	UPI	19784
	voucher	5775
	debit_card	1529
	not_defined	3

Conclusion: Most of the customers make a purchase using Credit Cards.

Q7) Actionable Insights:

From the insights above we can say that:

- For states which have more delay in delivering the orders we can improve our delivery network and solve the problem.
- There are around 25 states which have less than 10% of the registered users on the platform. We can try to increase our customers in the following states which will help us increase sales in these regions.
- People are adapting to e-commerce as there are 99441 records in the order table, in a span of around 2.1 Years of time. Which we can improve moving forward

Q8) Recommendations

- From the insights above we can say that there is an upward trend in E-Commerce in Brazil. And we can increase our e-commerce business in the Brazil region.
- People from Brazil mostly purchase during Afternoon period. So we can show our best selling items, or we can show offers to users during the afternoon time period.
- The number of orders placed in Autumn Season are more as compared to any other Season in Brazil so we can increase our offers, staff, reduce the time to delivery during this period of time.
- Most of our customers use Credit Cards as their payment type, so we can tie up
 with any banks which will give users some offers and can also issue credit cards
 to eligible users.
- Around 63% of orders have EMIs 3 Months and below. So we can give no cost EMI options to the users in Brazil as most people prefer Maximum of 3 Months of EMI plans. Which can also help increase sales.