Eléments pour la fonction coût

- On suppose connue à chaque instant la distance du robot au but.
- On pourra tenir compte également du nombre de cellules distinctes visitées par le robot lors de l'exécution de son programme.
- Les robots n'ont pas à leur disposition la carte directionnelle.

Algorithmes génétiques

Principales notions:

Théorie de l'évolution	Algorithmes génétiques	Problème du labyrinthe
Individu	Une solution possible au problème	Un programme de déplacement de robot dans le labyrinthe
Population	L'ensemble des solutions étudiées	Ensemble de programmes
Reproduction	Croisement de deux solutions pour en produire une nouvelle	Nouveau programme obtenu par combinaison de deux autres
Mutation	Modification aléatoire d'une solution	Changement aléatoires de direction(s) dans un programme
Sélection	Élimination des solutions les moins adaptées	Élimination des programmes les plus éloignés de la solution

Principe de fonctionnement d'un algorithme génétique

- Genèse : création d'une population initiale
- Évolution au cours de plusieurs générations :
 - Évaluation des individus de la population
 - Sélection d'une partie de la population
 - Reproduction par croisement de certains individus
 - Mutation de certains individus
- Évaluation des individus (meilleurs programmes)
- Sélection du meilleur individu de la dernière génération

Problème du labyrinthe

-éléments de modélisation-

- On suppose que l'on dispose d'une population de robots programmables simplistes
- Le programme d'un robot est une simple suite d'instruction lui permettant d'avancer (ou de rester sur place en présence d'obstacle) dans une direction (codée de 0 à 7) à chaque itération : exemple [0,7,5,3,2,1,7,3,...]
- Si le robot ne peut pas avancer dans la direction proposée, il reste sur place (il dispose de capteurs lui permettant de détecter les obstacles)
- Si sur une case donnée, le robot n'a pas d'autre choix que de revenir en arrière, il dépose une phéromone sur la case où il se trouve.
- Une case contenant une phéromone est équivalente à un mur pour les robots (ils n'iront pas explorer cette case considérant qu'elle est bloquée)
- A chaque 'époch' (génération) tous les robots reviennent à la position de départ, leur programme est chargé, puis exécuté. En fonction de leur point d'arrivée dans le labyrinthe, leur programme est évalué par une fonction de coût à minimiser (ou de gain à maximiser).