

LSK170 A/B/C/D

Over 30 Years of Quality Through Innovation

High Input Impedance, Ultra-Low Noise, Single N-Channel JFET

Ultra-Low Noise at Both High & Low Frequencies With a Narrow Range of IDSS

Absolute Maximum Ratings				
@ 25 °C (unless otherwise stated)				
Maximum Temperatures				
Storage Temperature	-55 to +150°C			
Junction Operating Temperature	-55 to +135°C			
Maximum Power Dissipation				
Continuous Power Dissipation @ +25°C	400mW			
Maximum Currents				
Gate Forward Current	$I_{G(F)} = 10mA$			
Maximum Voltages				
Gate to Source	$V_{GSS} = 40V$			
Gate to Drain	$V_{GDS} = 40V$			

Features

- ULTRA LOW NOISE (f=1khz): $e_n = 0.9 \text{nV}/\sqrt{\text{Hz}}$
- High Breakdown Voltage: $BV_{GSS} = 40V \min$
- High Gain: G_{fs} = 22mS (typ)
- High Input Impedance: 20GΩ typ
- Low Capacitance: 22pF max
- Improved Second Source Replacement for 2SK170
- For Equivalent Monolithic-Dual, See the LSK389 Series

Benefits

- Direct Pin-For-Pin Replacement of Toshiba's 2SK170
- Optimized to Provide Low Noise at Both High and Low Frequencies With a Narrow Range of IDSS and Low Capacitance
- Low Noise to Capacitance Ratio and Narrow Range of Low Value IDSS Provide Solutions for Low Noise Applications Which Cannot Tolerate High Values of Capacitance or Wide Ranges of IDSS

Applications

- Audio Amplifiers and **Preamps**
- Discrete Low-Noise Operational **Amplifiers**
- **Guitar Pickups**
- Effects Pedals
- Microphones
- Audio Mixer Consoles
- **Acoustic Sensors**
- Sonobouys
- Hydrophones

Applications Cont'd

- Chemical and Radiation Detectors
- Instrumentation Amplifiers
- Accelerometers
- CT Scanners Input Stages
- Oscilloscope Input Stages
- Electrometers and Vibrations Detectors

Description

The LSK170 is specifically designed for low noise, high input The device is available in a surface mount SOT-23 package, throughhighly desirable, particularly for audio front-end preamplifiers.

impedance applications within the audio, instrumentation, medical hole TO-92 package and SOT-89 package. The surface mount and sensors markets. The narrow ranges of I_{DSS} grades with the version of the LSK170 Series creates new opportunities for engineers LSK170 promote ease of design, particularly in low voltage seeking to design lower noise circuits in compact embeddable applications. The LSK170 is ideal for portable battery operated applications where shielding and space are critical. The LSK170 applications, and features high BV_{DSS} for maximum linear series is a pin for pin replacement of the Toshiba 2SK170 and headroom in high transient program content amplifiers. The series improved functional replacement for the Interfet IF1320, IF1330, has a uniquely linear V_{GS} transfer function for a stability that is IF1331, and IF4500. Contact the factory for tighter noise and other specification selections.

Electrical Characteristics @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC			TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage		-40.0			V	$V_{DS} = 0V, I_{D} = -100\mu A$
$V_{GS(OFF)}$	Gate to Source Pinch-off Voltage		-0.2		-2.0	V	$V_{DS} = 10V, I_{D} = 1nA$
V _{GS}	Gate to Source Operating Voltage			0.5		V	$V_{DS} = 10V, I_D = 1mA$
l _{DSS} ²	Drain to Source Saturation Current	LSK170A	2.6		6.5	mA	V _{DS} = 10V, V _{GS} = 0
		LSK170B	6.0		12.0		
		LSK170C	10.0		20.0		
		LSK170D	18.0		30.0		
I _G	Gate Operating Current				-0.5	nA	$V_{DG} = 10V, I_D = 1mA$
I _{GSS}	Gate to Source Leakage Current				-1.0	nA	$V_{Gs} = -10V, V_{Ds} = 0V$
G _{fs}	Full Conduction Transconductance		14.0	22.0		mS	$V_{DS} = 10V, V_{GS} = 0, f = 1kHz$
G _{fs}	Typical Conduction Transconductance		6.0	10.0		mS	$V_{DS} = 15V, I_{D} = 1mA$
e _n	Noise Voltage			0.9	1.9	nV/√Hz	$V_{DS} = 10V$, $I_D = 2mA$, $f = 1kHz$, $NBW = 1Hz$
e _n	Noise Voltage			1.4	4.0	nV/√Hz	$V_{DS} = 10V$, $I_{D} = 2mA$, $f = 10Hz$, $NBW = 1Hz$
C _{ISS}	Common Source Input Capacitance			20.0		pF	$V_{DS} = 15V$, $I_D = 100\mu A$, $f = 1MHz$,
C _{RSS}	Common Source Reverse Transfer Cap.			5.0		pF	$V_{DS} = 15V$, $I_D = 100\mu A$, $f = 1MHz$,

Typical Characteristics

Typical Characteristics

Typical Characteristics

Common Source Transconductance vs.

Typical Characteristics

Drain Current Transconductance vs. Gate-Source Cutoff Voltage

Equivalent Input Noise Voltage vs. Frequency

Ordering Information

STANDARD PART CALL-OUT	CUSTOM PART CALL-OUT CUSTOM PARTS INCLUDE SEL + 4 DIGIT NUMERIC CODE)
LSK170A TO-92 3L RoHS	LSK170A TO-92 3L RoHS SELXXXX
LSK170B TO-92 3L RoHS	LSK170B TO-92 3L RoHS SELXXXX
LSK170C TO-92 3L RoHS	LSK170C TO-92 3L RoHS SELXXXX
LSK170D TO-92 3L RoHS	LSK170D TO-92 3L RoHS SELXXXX
LSK170A SOT-23 3L RoHS	LSK170A SOT-23 3L RoHS SELXXXX
LSK170B SOT-23 3L RoHS	LSK170B SOT-23 3L RoHS SELXXXX
LSK170C SOT-23 3L RoHS	LSK170C SOT-23 3L RoHS SELXXXX
LSK170D SOT-23 3L RoHS	LSK170D SOT-23 3L RoHS SELXXXX
LSK170A SOT-89 3L RoHS	LSK170A SOT-89 3L RoHS SELXXXX
LSK170B SOT-89 3L RoHS	LSK170B SOT-89 3L RoHS SELXXXX
LSK170C SOT-89 3L RoHS	LSK170C SOT-89 3L RoHS SELXXXX
LSK170D SOT-89 3L RoHS	LSK170D SOT-89 3L RoHS SELXXXX

Package Dimensions

Notes

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse Test: PW ≤ 300µs, Duty Cycle ≤ 3%
- 3. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only.
- 4. When ordering include the full Linear Systems part number and package type. Linear Systems creates custom parts on a case by case basis. To learn whether Linear Systems can meet your requirements, please send your drawing along with a detailed description of the device specifications to sales@linearsystems.com. One of our qualified representatives will contact you.
- 5. All standard parts are RoHS compliant. Contact the factory for availability of non-RoHS parts.
- 6. Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.
- 7. Voltage specifications are not tested 100%, but guaranteed by lot sampling. Contact the factory if 100% test is required.