Maharashtra State Board 12th Commerce Maths Solutions Chapter 2 Insurance and Annuity Ex 2.1

Question 1.

Find the premium on a property worth ₹ 25,00,000 at 3% if

(i) the property is fully insured

(ii) the property is insured for 80% of its value.

Solution:

Case-1

Property value = ₹ 25,00,000

Rate of Premium = 3%

Policy Value = ₹ 25,00,000

∴ Amount of Premium = 3% × 25,00,000 = ₹ 75,000

Case-2

Property Value = ₹ 25,00,000

Policy value = $80\% \times 25,00,000 = ₹20,00,000$

Rate of Premium = 3%

∴ Amount of Premium = 3% × 20,00,000 = ₹ 60,000

Question 2.

A shop is valued at ₹ 3,60,000 for 75% of its value. If the rate of premium is 0.9%, find the premium paid by the owner of the shop. Also, find the agents commission if the agent gets commission at 15% of the premium.

Solution:

Property Value = ₹ 3,60,000

Policy Value = $75\% \times 3,60,000 = ₹2,70,000$

Rate of Premium = 0.9%

∴ Amount of Premium = 0.9% × 2,70,000 = ₹ 2,430

Rate of Commission = 15%

∴ Amount of Commission = 15% × 2,430 = ₹ 364.5

Question 3.

A person insures his office valued at ₹ 5,00,000 for 80% of its value. Find the rate of premium if he pays ₹ 13,000 as premium. Also, find agent's commission at 11%.

Solution:

Property Value = ₹ 5,00,000

Policy Value = $80\% \times 5,00,000 = ₹4,00,000$

Amount of Premium = ₹ 13000

Let the rate of Premium be x%

Amount of premium = Rate × Policy Value

 \therefore 13000 = x% × 4,00,000

:. 13,0004,00,000=x100

∴ 13,000×1004,00,000 = X

x = 3.25%

Rate of commission = 11%

∴ Amount of Commission = 11% × 13,000 = ₹ 1,430

Question 4.

A building is insured for 75% of its value. The annual premium at 0.70 percent amounts to ₹ 2625. If the building is damaged to the extent of 60% due to fire, how much can be claimed under the policy?

Solution:

Let the Property Value of building be ₹ x

Policy Value = $75\% \times x = 0.75x$

Rate of Premium = 0.70%

Amount of Policy = Rate \times Policy Value

 $2625 = 0.70\% \times 0.75x$

 $26250.75 = 0.70\% \times X$

 $3520 = 0.70100 \times X$

3*500*×1*000.70* = X

x = ₹ 5,00,000

∴ Damage = 60% × Property Value

 $= 60100 \times 5,00,000$

= ₹ 3,00,000

∴ Policy Value = $0.75 \times 3,00,000 = ₹ 2,25,000$

∴ Claim = Policy value Property value × Loss

- Arjun
- Digvijay
- $= 2,25,0005,000,000 \times 3,000,000$
- **=** ₹ 1,35,000

Question 5.

A stock worth $\stackrel{?}{}$ 7,00,000 was insured for $\stackrel{?}{}$ 4,50,000. Fire burnt stock worth $\stackrel{?}{}$ 3,00,000 completely and damaged there remaining stock to the extent of 75% of its value. What amount can be claimed undertaken policy?

Solution:

Property Value = ₹ 7,00,000

Policy Value = ₹ 4,50,000

Complete Loss = 3,00,000

Partial loss = $75\% \times [7,00,000 - 3,00,000]$

- $= 75100 \times 4,00,000$
- = ₹ 3.00.000
- ∴ Total loss = ₹ 3,00,000 + ₹ 3,00,000 = ₹ 6,00,000
- : Claim = Policy value Property value × Loss
- $=4,50,0007,00,000 \times 6,00,000$
- = ₹ 3,85,714.29

Question 6.

A cargo of rice was insured at 0.625 % to cover 80% of its value. The premium paid was ₹ 5,250. If the price of rice is ₹ 21 per kg. find the quantity of rice (in kg) in the cargo.

Solution:

Let Property Value be ₹ x

Policy Value = $80\% \times x = ₹ 0.8x$

Rate of Policy = 0.625%

Amount of Premium = Rate × Policy value

- \therefore 5250 = 0.625% × 0.8x
- $\therefore 5250 = 0.005x$
- ∴ x = 52500.005
- ∴ x = ₹ 10,50,000

Rate of Rice = ₹21/kg

- : Quantity of Rice (in kg) = Total value Rate of Rice
- = 10,50,00021
- = 50,000 kgs

Question 7.

60,000 articles costing ₹ 200 per dozen were insured against fire for ₹ 2,40,000. If 20% of the articles were burnt and 7,200 of the remaining articles were damaged to the extent of 80% of their value, find the amount that can be claimed under the policy. Solution:

No of articles = 60,000

Cost of articles = ₹ 200/dozen

- : Property of Value = 60,00012 × 200 = ₹ 10,00,000
- ∴ Policy Value = ₹ 2,40,000

Complete Loss = $20\% \times 10,00,000 = ₹ 2,00,000$

Partial loss = $720012 \times 200 \times 80\% = ₹ 96,000$

∴ Total loss = 2,00,000 + 96,000 = ₹ 2,96,000

Claim = Policy value Property value × Loss

- = 2,40,00010,00,000 × 2,96,000
- = ₹ 71,040

Question 8.

The rate of premium is 2% and other expenses are 0.075%. A cargo worth ₹ 3,50,100 is to be insured so that all its value and the cost of insurance will be recovered in the event of total loss.

Solution:

Let the Policy Value of Cargo be ₹ 100 which includes insurance and other expenses

∴ Property Value = 100 - [2 + 0.075] = ₹ 97.925

If Policy Value is ₹ 100, then Property Value is ₹ 97.925

If Property Value is ₹ 3,50,100

Then policy Value = $100 \times 3,50,10097.925 = ₹3,57,518.51$

Question 9.

A property worth \neq 4,00,000 is insured with three companies. A, B, and C. The amounts insured with these companies are \neq 1,60,000, \neq 1,00,000 and \neq 1,40,000 respectively. Find the amount recoverable from each company in the event of a loss to the extent of \neq 9,000.

Property Value = ₹ 4,00,000

Loss = ₹ 9,000

Total Value of Policies = 1,60,000 + 1,00,000 + 1,40,000 = ₹ 4,00,000

```
Allguidesite - - Arjun - Digvijay

Claim = Policy value Property value \times Loss

Claim of company A = 1,60,00040,000 \times 9,000 = ₹ 3,600

Claim of company B = 1,00,0004,00,000 \times 9,000 = ₹ 2,250
```

Claim of company $C = 1,40,0004,00,000 \times 9,000 = ₹ 3,150$

Question 10.

A car valued at $\stackrel{?}{\sim}$ 8,00,000 is insured for $\stackrel{?}{\sim}$ 5,00,000. The rate of premium is 5% less 20%. How much will the owner bear including the premium if value of the ear is reduced to 60% of its original value.

Solution:

```
Property Value = ₹ 8,00,000
Policy Value = ₹ 5,00,000
Rate of Premium = 5% less 20%
= 5\% - 20\% \times 5\%
= (5 - 1)\%
= 4%
Amount of Premium = 4% × 5,00,000 = ₹ 20,000
Loss = [100 - 60]\% \times Property Value
= 40\% \times 8,00,000
= ₹ 3,20,000
Claim = Policy value Property value × Loss
= 5,00,0008,00,000 × 3,20,000
= ₹ 2,00,000
Loss bear by owner = Loss – claim + Premium
= 3,20,000 - 2,00,000 + 20,000
= ₹ 1,40,000
```

Question 11.

A shop and a godown worth ₹ 1,00,000 and ₹ 2,00,000 respectively were insured through an agent who was paid 12% of the total premium. If the shop was insured for 80% and the godown for 60% of their respective values, find the agent's commission, given that the rate of premium was 0.80% less 20%.

Solution:

```
Rate of Premium = 0.80% Less 20% = 0.80\% - 20\% \times 0.80\% = (0.80 - 0.16)\% = 0.64\% For Shop Property Value = \$1,00,000 Policy Value = 80\% \times 1,00,000 = \$80,000 Premium = 0.64\% \times 80,000 = \$512 For Godown Property Value = \$2,00,000 Policy Value = \$2,00,000 Policy Value = \$3,000 Premium = \$3,000 Premiu
```

Question 12.

The rate of premium on a policy of \ge 1,00,000 is \ge 56 per thousand per annum. A rebate of \ge 0.75 per thousand is permitted if the premium is paid annually. Find the net amount of premium payable if the policy holder pays the premium annually. Solution:

```
Policy Value = ₹ 1,00,000
```

Rate of Premium = ₹ 56 per thousand p.a

Rate of Rebate = ₹ 0.75 per thousand p.a

Premium is paid annually

- ∴ Net rate of = 56 0.75 = ₹ 55.25 per thousand p.a.
- ∴ Net Amount ot Premium = 1,00,0001000 × 55.25 = ₹ 5,525

Question 13.

A warehouse valued at $\stackrel{?}{_{\sim}}$ 40,000 contains goods worth $\stackrel{?}{_{\sim}}$ 2,40,000. The warehouse is insured against fire for $\stackrel{?}{_{\sim}}$ 16,000 and the goods to the extent of 90% of their value. Goods worth $\stackrel{?}{_{\sim}}$ 80,000 are completely destroyed, while the remaining goods are destroyed to 80% of their value due to a fire. The damage to the warehouse is to the extent of $\stackrel{?}{_{\sim}}$ 8,000. Find the total amount that can be claimed. Solution:

```
For Warehouse

Property Value = ₹ 40,000

Policy Value = ₹ 16,000

Loss = ₹ 8,000

Claim = Policy value Property value × Loss
```

```
Allguidesite - - Arjun - Digvijay = 16,00040,000 \times 8,000 = 3,200 For Goods Property Value = 2,40,000 = 2,16,000 Complete Loss = 80,000 Partial Loss = 80\% \times (2,16,000 - 80,000) = 1,08,800 Claim = 1,08,800 × 1,08,800 = 1,08,800 × 1,08,800 = 1,08,800 × 1,08,800 = 1,08,800 × 1,08,800 × 1,08,800
```

∴ Total Claim = 3,200 + 97,920 = ₹ 1,01,120

Question 14.

A person takes a life policy for $\stackrel{?}{_{\sim}}$ 2,00,000 for a period of 20 years. He pays premium for 10 years during which bonus was declared at an average rate of $\stackrel{?}{_{\sim}}$ 20 per year per thousand. Find the paid up value of the policy if he discontinuous paying premium after 10 years.

Solution:
Policy Value = ₹2,00,000Rate of Bonus = ₹20 Per thousand p.a.
Total Bonus = $2,00,000 \times 201,000 = ₹4,000$ ∴ Bonus for 10 years = $4,000 \times 10 = ₹40,000$ Period of Policy = 20 years
∴ Amount of Premium = 2,00,00020 = ₹10,000 p.a.
∴ Total Premium for 10 years = $10,000 \times 10 = ₹1,00,000$ ∴ Paid up Value of Policy = Total premium + Total Bonus = 1,00,000 + 40,000= ₹1,40,000

Maharashtra State Board 12th Commerce Maths Solutions Chapter 2 Insurance and Annuity Ex 2.2

Question 1.

Find the accumulated (future) value of annuity of ₹ 800 for 3 year at interest rate 8% compounded annually. [Given: (1.08)3 = 1.2597]

Solution:
∴
$$C = ₹ 800$$

∴ $n = 3 \text{ years}$
∴ $r = 8\% \text{ p.a.}$
∴ $i = \frac{r}{100} = \frac{8}{100} = 0.08$
∴ $A = \frac{C}{i} [(1+i)^n - 1]$
∴ $A = \frac{800}{0.08} [(1+0.08)^3 - 1]$
∴ $A = 10,000[(1.08)_3 - 1]$
∴ $A = 10,000[1.2597 - 1]$
∴ $A = 10,000 \times 0.2597$
∴ $A = ₹ 2,597$

Question 2.

A person invested $\leq 5,000$ every year in finance company that offered him interest compounded at 10% p.a., what is the amount accumulated after 4 years? [Given: (1.1)4 = 1.4641] Solution:

- Arjun
- Digvijay

$$r = 10\%$$
 p.a.

$$i = \frac{r}{100} = \frac{10}{100} = 0.1$$

 $\therefore n = 4 \text{ years}$

$$\therefore A = \frac{C}{i} \Big[(1+i)^n - 1 \Big]$$

$$=\frac{5,000}{0.1}\Big[(1+0.1)^4-1\Big]$$

- = 50,000[(1.1)4 1]
- = 50,000[1.4641 1]
- $= 50,000 \times 0.4641$
- = ₹ 23,205

Question 3.

Find the amount accumulated after 2 years if a sum of \ge 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given: (1.06)4 = 1.2625]

Solution:

- ∴ C = ₹ 24,000
- \therefore n = 2 years

But invested half yearly

- \therefore n = 2 × 2 = 4
- \therefore r = 12% p.a. compounded half yearly

$$r = \frac{12}{2} = 6\%$$

$$\therefore i = \frac{r}{100} = \frac{6}{100} = 0.06$$

$$\therefore A = \frac{C}{i} \Big[(1+i)^n - 1 \Big]$$

$$=\frac{24,000}{0.06}\Big[(1+0.06)^4-1\Big]$$

- =4,00,000[(1.06)4-1]
- =4,00,000[1.2625-1]
- $= 4,00,000 \times 0.2625$
- = ₹ 1,05,000

Question 4.

Find the accumulated value after 1 year of an annuity immediate in which ₹ 10,000 are invested every quarter at 16% p.a. compounded quarterly. [Given: $(1.04)_4 = 1.1699$]

Solution:

- ∴ C = ₹ 10,000
- ∴ n = 1 year

But invested every quarterly

- $\therefore n = 1 \times 4 = 4$
- \therefore r = 16% p.a. compounded quarterly

$$\therefore r = \frac{16}{4} = 4\%$$

$$\therefore i = \frac{r}{100} = \frac{4}{100} = 0.04$$

$$\therefore A = \frac{C}{i} [(1+i)^n - 1]$$

$$= \frac{10,000}{0.04} [(1+0.04)^4 - 1]$$

$$=\frac{10,00,000}{4}\Big[(1.04)^4-1\Big]$$

- = 2,50,000 [1.1699 1]
- $= 2,50,000 \times 0.1699$
- = ₹ 42,475

Question 5.

Find the present value of an annuity immediate of ₹ 36,000 p.a. for 3 years at 9% p.a. compounded annually. [Given: (1.09)-3 = 0.7722] Solution:

: C = ₹ 36,000

- Arjun
- Digvijay
- \therefore n = 3 years
- r = 9% p.a.

Question 6.

Find the present value of ordinary annuity of $\stackrel{?}{\stackrel{?}{=}}$ 63,000 p.a. for 4 years at 14% p.a. compounded annually. [Given: (1.14)-4 = 0.5921] Solution:

- ∴ C = ₹ 63,000
- \therefore n = 4 years
- r = 14% p.a.

$$\therefore i = \frac{r}{100} = \frac{14}{100} = 0.14$$

$$\therefore P = \frac{C}{i} \Big[1 - (1+i)^{-n} \Big]$$

$$\therefore P = \frac{63,000}{0.14} \left[1 - (1 + 0.14)^{-4} \right]$$

$$\therefore P = \frac{63,000 \times 100}{14} \left[1 - (1.14)^{-4} \right]$$

- =4,50,000[1-0.5921]
- $= 4,50,000 \times 0.4079$
- = ₹ 1,83,555

Question 7.

A lady plans to save for her daughter's marriage. She wishes to accumulate a sum of $\stackrel{?}{_{\sim}}$ 4,64,100 at the end of 4 years. What amount should she invest every year if she get an interest of 10%p.a. compounded annually? [Given: (1.1)4 = 1.4641] Solution:

- ∴ A = ₹ 4,64,100
- \therefore n = 4 years
- r = 10% p.a.

$$\therefore i = \frac{r}{100} = \frac{10}{100} = 0.1$$

$$\therefore A = \frac{C}{i} \lceil (1+i)^n - 1 \rceil$$

$$\therefore 4,64,100 = \frac{C}{0.1} [(1+0.1)^4 - 1]$$

- \therefore 46,410 = C[1.4641 1]
- \therefore 46,410 = C × 0.4641
- : 46,4100.4641 = C
- ∴ C = ₹ 1,00,000

Question 8.

A person wants to create a fund of $\stackrel{?}{\stackrel{?}{\stackrel{?}{?}}}$ 6,96,150 after 4 years at the time of his retirement. He decides to invest a fixed amount at the end of every year in a bank that offers him interest of 10% p.a. compounded annually. What amount should he invest every year? [Given: $(1.1)^4 = 1.4641$]

$$(1.1)4 = 1.46$$

Solution:

- ∴ A = ₹ 6,96,150
- \therefore n = 4 years
- r = 10% p.a

$$\therefore i = \frac{r}{100} = \frac{10}{100} = 0.1$$

$$\therefore A = \frac{C}{i} \Big[(1+i)^n - 1 \Big]$$

$$\therefore 6,96,150 = \frac{C}{0.1} [(1+0.1)^4 - 1]$$

$$\therefore$$
 69,615 = C[1.4641 - 1]

- Arjun
- Digvijay
- \therefore 69,615 = C × 0.4641
- : 69,6150.4641 = C
- ∴ C = ₹ 1,50,000

Question 9.

Find the rate of interest compounded annually if an annuity immediate at ₹ 20,000 per year amounts to ₹ 2,60,000 in 3 years.

- ∴ C = ₹ 20,000
- ∴ A = ₹ 2,60,000
- \therefore n = 3 years

$$\therefore A = \frac{C}{i} \Big[(1+i)^n - 1 \Big]$$

$$\therefore 2,60,000 = \frac{20,000}{i} \left[(1+i)^3 - 1 \right]$$

$$\therefore \frac{2,60,000i}{20,000} = 1 + 3i + 3i^2 + i^3 - 1$$

- $\therefore 13i = 3i + 3i_2 + i_3$
- $\therefore 13i = i(3 + 3i + i2)$
- $\therefore 13 = 3 + i + i_2$
- $\therefore i_2 + 3i + 3 13 = 0$
- $\therefore i_2 + 3i 10 = 0$
- (i + 5)(i 2) = 0
- : i + 5 = 0 or i 2 = 0
- \therefore i = -5 or i = 2
- : Rate of interest cannot be negative
- \therefore i = 2 is accepted
- $\therefore r100 = 2$
- r = 200% p.a.

Question 10.

Find the number of years for which an annuity of $\stackrel{?}{\sim}$ 500 is paid at the end of every years, if the accumulated amount works out to be $\stackrel{?}{\sim}$ 1,655 when interest is compounded annually at 10% p.a.

Solution:

- ∵ C = 7500
- A = 71,655
- r = 10% p.a.

$$\therefore i = \frac{r}{100} = \frac{10}{100} = 0.1$$

$$\therefore A = \frac{C}{i} \left[(1+i)^n - 1 \right]$$

$$\therefore 0.331 + 1 = (1.1)n$$

$$\therefore 1.331 = (1.1)_n$$

$$\therefore$$
 (1.1)3 = (1.1)n

$$\therefore$$
 n = 3 years

Question 11.

Find the accumulated value of annuity due of \mathbb{T} 1,000 p.a. for 3 years at 10% p.a. compounded annually. [Given: (1.1)3 = 1.331] Solution:

$$\therefore$$
 n = 3 years

$$\therefore i = \frac{r}{100} = \frac{10}{100} = 0.1$$

$$\therefore A' = \frac{C(1+i)}{i} \left[(1+i)^n - 1 \right]$$

$$\therefore A' = \frac{1,000(1+0.1)}{0.1} \left[(1+0.1)^3 - 1 \right]$$

- Arjun
- Digvijay
- $\therefore A' = 10,000 \times 1.1[(1.1)^3 1]$
- $\therefore A' = 11,000 [1.331 1]$
- $\therefore A' = 11,000 \times 0.331$
- ∴ A' = ₹ 3,641

Question 12.

A person plans to put \neq 400 at the beginning of each year for 2 years in a deposit that gives interest at 2% p.a. compounded annually. Find the amount that will be accumulated at the end of 2 years. [Given: $(1.02)_2 = 1.0404$]

Solution:

$$r = 2\% \text{ p.a.}$$

$$\therefore i = \frac{r}{100} = \frac{2}{100} = 0.02$$

$$\therefore n = 2 \text{ years}$$

$$\therefore A' = \frac{C(1+i)}{i} \left[(1+i)^n - 1 \right]$$

$$\therefore A' = \frac{400(1+0.02)}{0.02} \Big[(1+0.02)^2 - 1 \Big]$$

$$=\frac{40,000(1.02)}{2}\left[(1.02)^2-1\right]$$

- = 20,000 (1.02) (1.0404 1)
- = 20,400 [0.0404]
- = ₹ 824.16

Question 13.

Find the present value of an annuity due of $\stackrel{?}{\stackrel{?}{=}}$ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)-4 = 0.7350] Solution:

- ∴ C = ₹ 600
- ∴ n = 1 year
- ∴ But invested every quarterly
- $\therefore n = 1 \times 4 = 4$
- ∵ r = 32% p.a. compounded quarterly

$$\therefore r = \frac{32}{4} = 8\%$$

$$\therefore i = \frac{r}{100} = \frac{8}{100} = 0.08$$

$$\therefore P' = \frac{C(1+i)}{i} \left[1 - (1+i)^{-n} \right]$$

$$\therefore P' = \frac{600(1+0.08)}{0.08} \left[1 - (1+0.08)^{-4}\right]$$

- = 7,500(1.08) [1 0.7350]
- = 8,100 [0.2650]
- = ₹ 2,146.5

Question 14.

An annuity immediate is to be paid for some years at 12% p.a. The present value of the annuity is ₹ 10,000 and the accumulated value is ₹ 20,000. Find the amount of each annuity payment.

Solution:

- ∵ r = 12% p.a.
- \therefore i = r100=12100 = 0.12
- ∴ P = ₹ 10,000
- ∴ A = ₹ 20,000
- : 1P-1A=iC

- Arjun
- Digvijay

$$\therefore \frac{1}{10,000} - \frac{1}{20,000} = \frac{0.12}{C}$$

$$\therefore \frac{2-1}{20,000} = \frac{0.12}{C}$$

$$\therefore \frac{1}{20,000} = \frac{0.12}{C}$$

$$\therefore$$
 C = 0.12 × 20,000

Question 15.

For an annuity immediate paid for 3 years with interest compounded at 10% p.a. the present value is $\stackrel{?}{\sim}$ 24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]

Solution:

- \therefore n = 3 years
- ∴ P = ₹ 24,000
- r = 10% p.a.
- i = r100 = 10100 = 0.1
- : $A = P(1 + i)_n$
- $\therefore A = 24,000 [1 + 0.1]_3$
- $\therefore A = 24,000 \times (1.1)_3$
- $\therefore A = 24,000 \times 1.331$
- ∴ A = ₹ 31,944

Question 16.

A person sets up a sinking fund in order to have ₹ 1,00,000 after 10 years. What amount should be deposited bi-annually in the account that pays him 5% p.a. compounded semi-annually? [Given: $(1.025)_{20} = 1.675$] Solution:

- ∴ A = ₹ 1,00,000
- \therefore n = 10 years

But, invested half yearly

- $\therefore n = 10 \times 2 = 20$
- \therefore r = 5% p.a. compounded half yearly
- r = r2 = 52 = 2.5%
- i = r100 = 2.5100 = 0.025

$$\therefore A = \frac{C}{i} \lceil (1+i)^n - 1 \rceil$$

$$\therefore 1,00,000 = \frac{C}{0.025} \Big[(1 + 0.025)^{20} - 1 \Big]$$

$$\therefore 1,00,000 \times 0.025 = C [(1.025)^{20} - 1]$$

- $\therefore 2,500 = C[1.675 1]$
- $\therefore 2,500 = C \times 0.675$
- ∴ 2,5000.675 = C
- ∴ C = ₹ 3,703.70

- Digvijay

Maharashtra State Board 12th Commerce Maths Solutions Chapter 2 Insurance and Annuity Miscellaneous Exercise 2

(I) Choose the correct alternative.

Question 1.

- "A contract that pledges payment of an agreed-upon amount to the person (or his/her nominee) on the happening of an event covered against" is technically known as
- (a) Death coverage
- (b) Saving for future
- (c) Life insurance
- (d) Provident fund

Answer:

(c) Life insurance

Question 2.

Insurance companies collect a fixed amount from their customers at a fixed interval of time. This amount is called

- (a) EMI
- (b) Installment
- (c) Contribution
- (d) Premium

Answer:

(d) Premium

Question 3.

Following are different types of insurance.

- I. Life insurance
- II. Health insurance
- III. Liability insurance
- (a) Only I
- (b) Only II
- (c) Only III
- (d) All the three

Answer:

(d) All the three

Question 4.

By taking insurance, an individual

- (a) Reduces the risk of an accident
- (b) Reduces the cost of an accident
- (c) Transfers the risk to someone else
- (d) Converts the possibility of large loss to the certainty of a small one

Answer:

Converts the possibility of large loss to the certainty of a small one

Question 5.

You get payments of ₹ 8,000 at the beginning of each year for five years ta 6%, what is the value of this annuity?

(a) ₹ 34,720

(b) ₹ 39,320

(c) ₹ 35,720

(d) ₹ 40,000

Answer: (c) ₹ 35,720

Question 6.

In an ordinary annuity, payments or receipts occur at

- (a) Beginning of each period
- (b) End of each period
- (c) Mid of each period
- (d) Quarterly basis

Answer:

(b) End of each period

Question 7.

The amount of money today which is equal to a series of payments in the future is called

Allguidesite - - Arjun	
- Digvijay	
(a) Normal value of the annuity	
(b) Sinking value of the annuity	
(c) Present value of the annuity	
(d) Future value of the annuity Answer:	
(c) Present value of the annuity	
Question 8.	
Rental payment for an apartment is an example of	
(a) Annuity due	
(b) Perpetuity	
(c) Ordinary annuity	
(d) Installment	
Answer:	
(b) Perpetuity	
Question 9.	
is a series of constant cash flows over a limited period of time.	
(a) Perpetuity (b) Annuity	
(c) Present value	
(d) Future value	
Answer:	
(b) Annuity	
Question 10.	
A retirement annuity is particularly attractive to someone who has	
(a) A severe illness	
(b) Risk of low longevity	
(c) Large family	
(d) Chance of high longevity Answer:	
(d) Chance of high longevity	
(II) Fill in the blanks.	
Question 1.	
An installment of money paid for insurance is called	
Answer:	
premium	
Question 2.	
General insurance covers all risks except	
Answer:	
life	
Question 3.	
The value of insured property is called	
Answer:	
property value	
Question 4.	
The proportion of property value to insured is called	
Answer:	
policy value	
Question 5.	
The person who receive annuity is called	
Answer:	
Annuitant	
Question 6.	
The payment of each single annuity is called	
Answer:	
installment	
Question 7.	
The intervening time between payment of two successive installments is called as	

Allguidesite - - Arjun
- Digvijay
Answer: payment period
Question 8. An annuity where payments continue forever is called Answer: perpetuity
Question 9. If payments of an annuity fall due at the beginning of every period, the series is called Answer: annuity due
Question 10. If payments of an annuity fall due at the end of every period, the series is called annuity Answer: immediate
(III) State whether each of the following is True or False.
Question 1. General insurance covers life, fire, and theft. Answer: False
Question 2. The amount of claim cannot exceed the amount of loss. Answer: True
Question 3. Accident insurance has a period of five years. Answer: False
Question 4. Premium is the amount paid to the insurance company every month. Answer: True
Question 5. Payment of every annuity is called an installment. Answer: False
Question 6. Annuity certainly begins on a fixed date and ends when an event happens. Answer: True
Question 7. Annuity contingent begins and ends on certain fixed dates. Answer: False
Question 8. The present value of an annuity is the sum of the present value of all installments. Answer: True
Question 9. The future value of an annuity is the accumulated value of all installments. Answer: False

- Arjun
- Digvijay

Question 10.

The sinking fund is set aside at the beginning of a business.

Answer:

True

(IV) Solve the following problems.

Question 1.

A house valued at ₹ 8,00,000 is insured at 75% of its value. If the rate of premium is 0.80%. Find the premium paid by the owner of the house. If the agent's commission is 9% of the premium, find the agent's commission.

Solution:

Property value = ₹ 8,00,000

Policy value = $75\% \times 8,00,000 = ₹6,00,000$

- ∴ Rate of Premium = 0.80%
- ∴ Amount of Premium = 0.80% × 6,00,000 = ₹ 4,800
- ∴ Rate of commission = 9%
- ∴ Agent commission = 9% × 4800 = ₹ 432

Question 2.

A shopkeeper insures his shop and godown are valued at ₹ 5,00,000 and ₹ 10,00,000 respectively for 80% of their values. If the rate of premium is 8%, find the total annual premium.

Solution:

Property value of shop = ₹ 5,00,000

- ∴ Policy value = $80\% \times 5,00,000 = ₹4,00,000$
- ∴ Rate of Premium = 8%
- ∴ Amount of premium = 8% × 4,00,000 = ₹ 32,000
- ∴ Property value of Godown = ₹ 10,00,000
- ∴ Policy value = $80\% \times 10,00,000 = ₹8,00,000$
- ∴ Rate of Premium = 8%
- ∴ Amount of Premium = 8% × 8,00,000 = ₹ 64,000
- ∴ Total annual Premium = 64,000 + 32,000 = ₹ 96,000

Question 3.

A factory building is insured for (56)th of its value at a rate of premium of 2.50%. If the agent is paid a commission of ₹ 2,812.50, which is 7.5% of the premium, find the value of the building.

Solution:

Let the Property value be ₹ x

- ∴ Policy value = ₹ 5x6
- ∴ Rate of premium = 2.50%
- ∴ Amount of premium = 5x6 × 2.50% = ₹ x48
- ∴ Rate of Agent commission = 7.5%
- \therefore Agent commission = 7.5% × \times 48
- ∴ 2812.50 = *x640*
- \therefore 2812.50 × 640 = x
- ∴ x = ₹ 18,00,000
- ∴ Value of the building is ₹ 18,00,000.

Question 4.

A merchant takes a fire insurance policy to cover 80% of the value of his stock. Stock worth $\stackrel{?}{\underset{?}{?}}$ 80,000 was completely destroyed in a fire. While the rest of the stock was reduced to 20% of its value. If the proportional compensation under the policy was $\stackrel{?}{\underset{?}{?}}$ 67,200, find the value of the stock.

Solution:

Let the Property value be ₹ x

- ∴ Policy value 80% × x = ₹ 4x5
- ∴ Complete loss = ₹ 80,000
- : Partial loss = $20\% \times (x 8,00,000) = x 80,0005$
- \therefore Total loss = 80,000 + x-80,0005 = x5 + 64,000
- : Claim = ₹ 67,200

- Arjun
- Digvijay

$$\therefore \frac{\text{Policy value}}{\text{Property value}} \times \text{loss} = 67,200$$

$$\therefore \frac{4x}{5} \times \left[\frac{x}{5} + 64,000 \right] = 67,200$$

$$\therefore \frac{4x}{25} + \frac{4 \times 64,000}{5} = 67,200$$

$$\therefore \frac{4x}{25} + 51,200 = 67,200$$

$$\therefore \frac{4x}{25} = 67,200 - 51,200$$

$$\therefore x = \frac{16,000 \times 25}{4}$$

- ∴ x = ₹ 1,00,000
- ∴ The value of the stock is ₹ 1,00,000.

Question 5.

A 35-year old person takes a policy for $\stackrel{?}{\stackrel{?}{\stackrel{?}{$\sim}}}$ 1,00,000 for a period of 20 years. The rate of premium is $\stackrel{?}{\stackrel{?}{\stackrel{?}{$\sim}}}$ 76 and the average rate of bonus is $\stackrel{?}{\stackrel{?}{\stackrel{?}{$\sim}}}$ 7 per thousand p.a. If he dies after paying 10 annual premiums, what amount will his nominee receive?

Solution:

Policy value = ₹ 1,00,000

Period of Policy = 20 years

- ∴ Rate of premium = ₹ 76 per thousand
- ∴ Amount of premium = 761,000 × 1,00,000 = ₹ 7,600
- ∴ Total Premium = 7,600 × 10 = ₹ 76,000
- ∴ Rate of Bonus = ₹7 per thousand p.a
- ∴ Total Bonus = 71,000 × 1,00,000 = ₹ 7,000
- : Amount received by Nominee = Policy value + Bonus earned
- = 1,00,000 + 7,000
- = ₹ 1,07,000

Question 6.

15,000 articles costing ₹ 200 per dozen were insured against fire for ₹ 1,00,000. If 20% of the articles were burnt completely and 2,400 other articles were damaged to the extent of 80% of their value, find the amount that can be claimed under the policy. Solution:

Total Articles = 15,000

- :. Property value = $15,00012 \times 200 = 2,50,000$
- : Policy value = ₹ 1,00,000
- ∴ Complete loss = 20% × 2,50,000 = ₹ 50,000
- ∴ Partial loss = 80% × 2,40012 × 200 = ₹ 3,20,000
- ∴ Total loss = 32,000 + 50,000 = ₹82,000
- : Claim = Policy value Property value × Loss
- = 1,00,0002,50,000 × 82,000
- = ₹ 32,800

Question 7.

For what amount should a cargo worth ₹ 25,350 be insured so that in the event of a total loss, its value, as well as the cost of insurance, may be recovered when the rate of premium is 2.5%.

Solution:

Let the policy value be ₹ 100 which includes the cost of insurance and premium

∴ Property value = 100 - 2.50 = ₹ 97.50

If the value of the cargo is $\stackrel{?}{_{\sim}}$ 97.50, then the policy value is $\stackrel{?}{_{\sim}}$ 100.

If the value of the cargo is ₹ 25,350, then

Policy value = 100×25,35097.50 = ₹ 26,000

Question 8.

A cargo of grain is insured at (34)% to cover 70% of its value. ₹1,008 is the amount of premium paid. If the grain is worth ₹ 12 per kg, how many kg of the grain did the cargo contain?

Solution:

Let the Property value be ₹ x

- ∴ policy value = $70\% \times x = ₹ 7x10$
- ∵ Rate of premium = 34%
- ∴ Amount

- Arjun
- Digvijay

$$\therefore 1,008 = \frac{7x}{10} \times \frac{3}{4} \times \frac{1}{100}$$

$$\therefore 1,008 = \frac{21x}{4,000}$$

$$\therefore \frac{1,008 \times 4,000}{21} = x$$

- ∴ x = ₹ 1,92,000
- ∴ Rate of Jowar = ₹ 12/kg
- : Quantity of Jowar = 1,92,00012 = 16,000 kgs

Question 9.

4,000 bedsheets worth ₹ 6,40,000 were insured for (37)th of their value. Some of

the bedsheets were damaged in the rainy season and were reduced to 40% of their value. If the amount recovered against damage was ₹ 32,000. Find the number of damaged bedsheets.

Solution:

- : Property value = ₹ 6,40,000
- ∴ Policy value = 6,40,000 × 37 = ₹ 19,20,0007
- : Cost of one Bedsheet = 6,40,0004,000 = ₹ 160

Let 'x' bedsheets be damaged.

- ∴ Cost of x bedsheets = ₹ 160x
- ∴ Value of loss = $160x \times \frac{40}{100} = ₹64x$

$$\therefore \text{ Claim} = \frac{\text{Policy value}}{\text{Property value}} \times \text{Loss}$$

$$\therefore 24,000 = \frac{19,20,000}{7} \times 64x$$

$$\therefore 24,000 = \frac{19,20,000 \times 64x}{6,40,000 \times 7}$$

$$\therefore 24,000 = \frac{192}{7}x$$

$$\therefore \frac{24,000 \times 7}{192} = x$$

 $\therefore x = 875$

: 875 Bedsheets damaged.

Question 10.

A property valued at ₹7,00,000 is insured to the extent of ₹5,60,000 at (58)% less 20%. Calculate the saving made in the premium. Find the amount of loss that the owner must bear, including premium, if the property is damaged to the extent of 40% of its value. Solution:

- ∴ Property value = ₹ 7,00,000
- ∴ Policy value = ₹ 5,60,000
- ∴ Rate of premium = 58%
- ∴ Amount of premium = 58% × 5,60,000 = ₹ 3,500

New rate of premium = 58% less 20%

- = 58 [20% x 58]
- = 58 18
- = 12%
- ∴ Amount of premium = 12% × 5,60,000 = ₹ 2,800
- ∴ Saving made in premium = 3,500 2,800 = ₹ 700
- \therefore Loss = 7,00,000 × 40% = 2,80,000
- : Claim = Policy value Property value × Loss
- $= 5,60,0007,00,000 \times 2,80,000$
- = ₹ 2,24,000
- ∴ Loss bear by owner = loss claim + premium
- = 2,80,000 2,24,000 + 2,800
- = ₹ 58,800

Question 11.

Stocks in a shop and godown worth ₹ 75,000 and ₹ 1,30,000 respectively were insured through an agent who receive 15% of the premium as commission. If the shop was insured for 80% and godown for 60% of the value, find the amount of agent's commission

- Arjun
- Digvijay

when the premium was 0.80% less 20%. If the entire stock in the shop and 20% stock in the godown is destroyed by fire, find the amount that can be claimed under the policy.

Solution:

- ∴ Rate of premium = 0.80% less 20%
- $= 0.80 20\% \times 0.80$
- = 0.80 0.16
- = 0.64%

For Shop

- ∴ Property value = ₹ 75,000
- ∴ Policy value = 80% × 75,000 = ₹ 60,000
- ∴ Premium = 0.64% × 60,000 = ₹ 384
- ∴ Loss = ₹ 75,000
- :: Claim = Policy value Property value × Loss
- = *60,00075,000* × 75,000
- = ₹ 60,000

For Godown

- ∴ Property value = ₹ 1,30,000
- ∴ Policy value = $60\% \times 1,30,000 = ₹78,000$
- ∴ Premium = 0.64% × 78,000 = ₹ 499.2

Loss = $20\% \times 1,30,000 = ₹ 26,000$

- :: Claim = Policy value Property value × Loss
- = 78,0001,30,000 × 26,000
- = ₹ 15,600

Total claim = 16,600 + 60,000 = ₹75,600

- ∴ Rate of commission = 15%
- \therefore Agent commission = 15% × [384 + 499.2]
- = 15% × 883.2
- = ₹ 132.48

Question 12.

A person holding a life policy of ₹ 1,20,000 for a term of 25 years wants to discontinue after paying a premium for 8 years at the rate of ₹ 58 per thousand p.a. Find the amount of paid-up value he will receive on the policy. Find the amount he will receive if the surrender value granted is 35% of the premium paid, excluding the first year's premium. Solution:

Policy value = ₹ 1,20,000

- ∴ Rate of premium = ₹ 58 per thousand p.a.
- ∴ Premium for 8 years = $8 \times 581000 \times 1,20,000 = ₹55,680$
- ∴ Amount of 1st premium = 55,6808 = ₹ 6,960
- Paid-up value of policy = No of Premium paid Terms of policy × Policy value
- = 825 × 1,20,000
- = ₹ 38,400
- : Surrender value = 35% × [Total premium 1st year premium]
- $= 35\% \times [55,680 6,960]$
- $= 35\% \times 48,720$
- = ₹ 17,052

Question 13.

A godown valued at $\stackrel{?}{_{\sim}}$ 80,000 contained stock worth $\stackrel{?}{_{\sim}}$ 4,80,000. Both were insured against fire. Godown for $\stackrel{?}{_{\sim}}$ 50,000 and stock for 80% of its value. A part of stock worth $\stackrel{?}{_{\sim}}$ 60,000 was completely destroyed and the rest was reduced to 60% of its value. The amount of damage to the godown is $\stackrel{?}{_{\sim}}$ 40,000. Find the amount that can be claimed under the policy. Solution:

For Godown

- ∴ Property value = ₹ 80,000
- ∴ Policy value = ₹ 50,000
- : Loss = ₹ 40,000
- ∵ Claim = Policy value Property value × Loss
- = *50,00080,000* × 40,000
- = ₹ 25,000

For stock

- ∴ Property value = ₹ 4,80,000
- : Policy value = $80\% \times 4,80,000 = ₹ 3,84,000$
- ∵ Complete loss = ₹ 60,000
- \therefore Partial loss = $(100 60)\% \times [4,80,000 60,000]$
- $= 40\% \times 4,20,000$
- = ₹ 1,68,000
- ∴ Total loss = 1,68,000 + 60000 = ₹ 2,28,000
- : Claim = Policy value Property value × Loss
- $= 3,84,0004,80,000 \times 2,28,000$

- Arjun
- Digvijay
- = ₹ 1,82,400
- ∴ Total claim = 25,000 + 1,82,400 = ₹ 2,07,400

Question 14.

Find the amount of an ordinary annuity if a payment of ₹ 500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [Given: (1.03)20 = 1.8061]

Solution:

- ∴ C = ₹ 500
- \therefore r = 12% p.a. compounded quarterly,
- r = 124 = 3%
- \therefore n = 5 years

But, payment is made quarterly

$$\therefore n = 5 \times 4 = 20$$

$$\therefore i = \frac{r}{100} = \frac{3}{100} = 0.03$$

$$\therefore A = \frac{C}{i} [(1+i)^n - 1]$$

$$\therefore A = \frac{500}{0.03} [(1 + 0.03)^{20} - 1]$$

$$\therefore A = \frac{500}{0.03} [1.8061 - 1]$$

$$A = \frac{500}{0.3} \times 0.8061$$

Question 15.

Find the amount a company should set aside at the end of every year if it wants to buy a machine expected to cost ₹ 1,00,000 at the end of 4 years and interest rate is 5% p.a. compounded annually.

Solution: ∴ A = ₹ 1,00,000

$$\therefore i = r100 = 5100 = 0.05$$

$$\therefore$$
 n = 4 years

$$\therefore A = Ci[(1+i)n-1]$$

$$\therefore 1,00,000 = CO.OS[(1 + 0.05)4 - 1]$$

$$\therefore 1,00,000 \times 0.05 = C [(1.05)4 - 1]$$

- \therefore 5,000 = C(1.2155 1)
- \therefore 5,000 = C × 0.2155
- ∴ 5,0000.2155 = C
- ∴ C = ₹ 23,201.86

Question 16.

Find the least number of years for which an annuity of $\stackrel{?}{=}$ 3,000 per annum must run in order that its amount exceeds $\stackrel{?}{=}$ 60,000 at 10%compounded annually. [Given: $(1.1)_{11} = 2,8531$, $(1.1)_{12} = 3.1384$]

Solution:

$$r = 10\%$$
 p.a.

$$i = r100 = 10100 = 0.1$$

$$\therefore A = Ci[(1+i)n-1]$$

$$\therefore 60,000 = 3,0000.1[(1+0.1)n-1]$$

$$\therefore$$
 60,000 = 30,000[(1.1)n - 1]

$$\therefore$$
 60,00030,000 + 1 = (1.1)n

$$\therefore 2 + 1 = (1.1)_n$$

$$\therefore 3 = (1.1)_n$$

Taking log

$$\therefore \log 3 = \log (1.1)_n$$

$$\therefore \log 3 = n \log(1.1)$$

$$\log 3\log 1.1 = n$$

$$\therefore$$
 n = 0.47710.0414 = 11.52 ~ 12 years

- Arjun
- Digvijay

Question 17.

Find the rate of interest compounded annually if an ordinary annuity of ₹ 20,000 per year amounts to ₹ 41,000 in 2 years.

Solution:

- ∴ C = ₹ 20,000
- ∴ A = ₹ 41,000
- \therefore n = 2 years

$$\therefore A = \frac{C}{i} \Big[(1+i)^n - 1 \Big]$$

$$\therefore 41,000 = \frac{20,000}{i} \left[(1+i)^2 - 1 \right]$$

$$\therefore \frac{41,000i}{20,000} = 1 + 2i + i^2 - 1$$

$$\therefore \frac{41i}{20} = i(2+i)$$

- $\therefore 41 = 40 + 20i$
- $\therefore 41 40 = 20i$
- $\therefore \frac{1}{20} = i$
- $\therefore \frac{1}{20} = \frac{r}{100}$
- $\therefore \frac{100}{20} = r$
- \therefore r = 5% p.a.

Question 18.

A person purchases a television by paying $\stackrel{?}{_{\sim}}$ 20,000 in cash and promising to pay $\stackrel{?}{_{\sim}}$ 1,000 at the end of every month for the next 2 years. If money is worth 12% p.a., converted monthly. Find the cash price of the television. [Given: (1.01)-24 = 0.7880]

Solution:

Down payment = ₹ 20,000

 \therefore n = 2 years

But, EMI Payable monthly

- \therefore n = 2 × 12 = 24
- \therefore r = 12% p.a. compounded monthly

$$r = \frac{12}{12} = 1\%$$

$$i = \frac{r}{100} = \frac{1}{100} = 0.01$$

$$\therefore P = \frac{C}{i} \left[1 - (1+i)^{-n} \right]$$

$$\therefore P = \frac{1000}{0.01} \left[1 - (1 + 0.01)^{-24} \right]$$

$$P = 1,00,00 [1 - 0.7880]$$

- $\therefore P = 1,00,00 \times 0.2120$
- ∴ P = ₹ 21,200

Cash price = Present value + Down payment

- = 21,200 + 20,000
- = ₹ 41,200

Question 19.

Find the present value of an annuity immediate of ₹ 20,000 per annum for 3 years at 10% p.a. compounded annually. [Given: (1.1)-3 = 0.75131

Solution:

- ∵ C = ₹ 20,000
- : n = 3 years
- r = 10% p.a.

$$\therefore i = \frac{r}{100} = \frac{10}{100} = 0.1$$

$$\therefore P = \frac{C}{i} \left[1 - (1+i)^{-n} \right]$$

$$\therefore P = \frac{20,000}{0.1} \left[1 - (1+0.1)^{-3} \right]$$

- Arjun
- Digvijay
- $\therefore P = 2,00,000 [1 0.7513]$
- \therefore P = 2,00,000 [0.2487]
- ∴ P = ₹ 49,740

Question 20.

A man borrowed some money and paid it back in 3 equal installments of ₹ 2,160 each. What amount did he borrow if the rate of interest was 20% per annum compounded annually? Also, find the total interest charged. [Given: (1.2)-3 = 0.5788]

: C = ₹ 2,160

- ∵ n = 3
- r = 20% p.a.

$$\therefore i = \frac{r}{100} = \frac{20}{100} = 0.2$$

$$P = \frac{C}{i} \left[1 - (1+i)^{-n} \right]$$

$$\therefore P = \frac{2,160}{0.2} \left[1 - (1+0.2)^{-3} \right]$$

$$\therefore P = \frac{21,600}{2}(1-0.5788)$$

$$\therefore P = 10,800 \times 0.42112$$

- ∴ P = ₹ 6,251.04
- : Total amount paid = 2,160 × 3 = ₹ 6,480
- \therefore Interest = 6,480 − 6,251.04 = ₹ 228.96

Question 21.

A company decides to set aside a certain amount at the end of every year to create a sinking fund that should amount to \$ 9,28,200 in 4 years at 10% p.a. Find the amount to be set aside every year. [Given: $(1.1)^4 = 1.4641$] Solution:

- ∴ A = ₹ 9,28,200
- \therefore n = 4 years
- ∵ r = 10% p.a.

$$i = \frac{r}{100} = \frac{10}{100} = 0.1$$

$$\therefore A = \frac{C}{i} [(1+i)^n - 1]$$

$$\therefore 9,28,200 = \frac{C}{0.1} [(1+0.1)^4 - 1]$$

- \therefore 9,28,200 × 0.1 = C[1.4641 1]
- \therefore 92,820 = C × 0.4641
- :. 92,8200.4641 = C
- ∴ C = ₹ 2,00,000

Question 22.

Find the future value after 2 years if an amount of $\mathbf{12,000}$ is invested at the end of every half-year at 12% p.a. compounded half-yearly. [Given: $(1.06)^4 = 1.2625$]

Solution:

 \therefore n = 2 years

Payable half yearly, $n = 2 \times 2 = 4$

- ∴ C = ₹ 12,000
- ∴ r = 12% p.a. Compounded half yearly

$$r = \frac{12}{2} = 6\%$$

$$\therefore i = \frac{r}{100} = \frac{6}{100} = 0.06$$

$$\therefore A = \frac{C}{i} [(1+i)^n - 1]$$

- Arjun
- Digvijay

$$\therefore A = \frac{12,000}{0.12} \left[(1+0.06)^4 - 1 \right]$$

$$\therefore A = \frac{12,00,000}{12} \left[(1.06)^4 - 1 \right]$$

- $\therefore A = 1,00,000 [1.2625 1]$
- \therefore A = 1,00,000 × 0.2625
- ∴ A = ₹ 26,250

Question 23.

After how many years would an annuity due of \leq 3,000 p.a. accumulated \leq 19,324.80 at 20% p.a. compounded annually? [Given: (1.2)4 = 2.0736]

Solution:

- ∴ C = ₹ 3,000
- ∴ A = ₹ 9,324.80
- r = 20% p.a.

$$\therefore i = \frac{r}{100} = \frac{20}{100} = 0.2$$

$$\therefore A = \frac{C(1+i)}{i} \left[(1+i)^n - 1 \right]$$

$$\therefore 19,324.80 = \frac{3,000(1+0.2)}{0.2} \left[(1+0.2)^n - 1 \right]$$

- $\therefore 19,324.80 = 15,000 \times 1.2[(1.2)n 1]$
- $\therefore 19,324.80 = 18,000[(1.2)_n 1]$
- \therefore 19,324.8018,000 + 1 = (1.2)n
- $\therefore 1.0736 + 1 = (1.2)n$
- $\therefore 2.0736 = (1.2)n$
- \therefore (1.2)₄ = (1.2)_n
- \therefore n = 4 years

Question 24.

Some machinery is expected to cost 25% more over its present cost of \$ 6,96,000 after 20 yeas. The scrap value of the machinery will realize \$ 1,50,000. What amount should be set aside at the end of every year at 5% p.a. compound interest for 20 years to replace the machinery? [Given: $(1.05)_{20} = 2655$]

Solution:

Present cost = ₹ 6,96,000

Expected cost = $25\% \times 6,96,000 + 6,96,000$

- = 1,74,000 + 6,96,000
- = ₹ 8,70,000
- ∴ Scrap value = ₹ 1,50,000
- ∴ Sinking fund = 8,70,000 1,50,000 = ₹7,20,000
- ∴ A = ₹ 7,20,000, n = 20 years, r = 5% p.a.

$$\therefore i = \frac{r}{100} = \frac{5}{100} = 0.05$$

$$\therefore A = \frac{C}{i} \left[(1+i)^n - 1 \right]$$

$$7,20,000 = \frac{C}{0.05} \Big[(1+0.05)^{20} - 1 \Big]$$

- \therefore 7,20,000 × 0.05 = C[(1.05)₂₀ 1]
- \therefore 36,000 = C[2.655 1]
- \therefore 36,000 = C × 1.655
- ∴ 36,0001.655 = C
- ∴ C = ₹ 21,752.27