Lecture 9 Self-Balancing Trees

Department of Computer Science Hofstra University

AVL Tree

AVL Tree: A balanced BST that maintains the invariant: |LeftHeight - RightHeight | <= 1 for all nodes in the tree.

- Named after Adelson-Velsky and Landis
- But also A Very Lovable Tree!

An AVL Tree has height $\approx \log(n)$

Measuring Balance

Measuring balance:

- For each node, compare the heights of its two subtrees
- Balanced when the difference in heights between subtrees is no greater than 1

Unbalanced

Is this a valid AVL tree?

Is this a valid AVL tree?

Time Complexity

```
public boolean containsKey(node, key) {
    // find key
}
```

containsKey benefits from invariant: worst-case O(log *n*) time

```
public boolean insert(node, key) {
    // find where key would go
    // insert
    }
```

Insert benefits from invariant: worst-case $O(\log n)$ time to find location for key

How to maintain the invariant?

- Track heights of subtrees
- Detect any imbalance
- Restore balance

BST containsKey() The AVL Invariant

Rotations

Insertion

What happens if an insertion breaks the AVL invariant? The AVL rebalances itself by rotations. AVL is a type of "Self-Balancing Tree"

- A rotation alters the structure of a tree by rearranging subtrees.
- Goal is to decrease the height of the tree to maximum height of O(log n).
- Larger subtrees up, smaller subtrees down
- Does not affect the order of elements
- Time complexity O(1)

Fixing AVL Invariant: Left Rotation

We can fix the AVL invariant by performing rotations wherever an imbalance was created

Left Rotation

- Find the node that is violating the invariant (here, 1) Let it "fall" left to become a left child

Apply a left rotation whenever the newly inserted node is located under the right child of the right child

Left Rotation: More Precisely

Subtrees are okay! They just come along for the ride.

• Subtree 2 changes from left child of B to right child of A – but notice that its relationship with nodes A and B doesn't change in the new position!

Right Rotation

P

NODE

Right Rotation

• Mirror image of Left Rotation!

Left or Right Rotation Examples

Not Quite as Straightforward

What if there's a "kink" in the tree where the insertion happened?

Can we apply a Left Rotation?

No, violates the BST invariant!

Right/Left Rotation

Solution: Right/Left Rotation

- Two steps: First do a right rotation for the right two nodes. then do a left rotation for the three nodes.
- Preserves BST invariant!

Right/Left Rotation: More Precisely

Again, subtrees are invited to come with

- Now 2 and 3 both have to hop, but all BST ordering properties are still preserved
- o(Note that A, B and C denote some numerical value, not letters 'A', 'B', 'C')

Left/Right Rotation

Two AVL Cases

Line Case

Solve with 1 rotation

Rotate Right

Rotate Left

Kink Case Solve with 2 rotations

Right Kink Resolution
Right/Left Rotation

Left Kink Resolution
Left/Right Rotation

How Long Does Rebalancing Take?

- Assume we store in each node the height of its subtree.
 - How do we find an unbalanced node?
 - Go back up the tree from where we inserted.
- How many rotations might we have to do?
 - Just a single or double rotation on the lowest unbalanced node.
 - A rotation will cause the subtree rooted where the rotation happens to have the same height it had before insertion
 - O(log n) time to traverse to a leaf of the tree
 - O(log n) time to find the imbalanced node
 - O(1) constant time to do the rotation(s)
 - Overall complexity: O(log n) time for adding a node.

AVL insertion: Approach

Overall algorithm:

- 1. Insert the new node as in a BST (a new leaf)
- 2. For each node on the path from the root to the new leaf:
 - The insertion may (or may not) have changed the node's height
 - O Detect height imbalance and perform a rotation to restore balance

Facts that make this easier:

- Imbalances can only occur along the path from the new leaf to the root
- We only have to address the lowest unbalanced node
- Applying a rotation (or double rotation), restores the height of the subtree before the insertion -when everything was balanced!
- Therefore, we need at most one rebalancing operation

AVL insertion: Example

(3) Left rotation on 8 will restore the subtree to height2, whole tree balanced again!

AVL deletion

- Deletion involves a similar set of rotations that let you rebalance an AVL tree after deleting an element
 - Omitted since it is beyond scope of this course
- In the worst case, takes O(log n) time to rebalance after a deletion
 - Finding the node to delete is also $O(\log n)$, so total complexity is $O(\log n)$

AVL Trees

PROS

- All operations on an AVL Tree (search, insertion, deletion) have worst-case complexity O(log n)
- Because the tree is always balanced!

CONS

- Additional space for the height field
- Rebalancing does incur some overhead
 - May not may not be important depending on the application

Red Black Trees

Red-Black Tree

- Red-Black Tree: A balanced BST that maintains the invariant: the longest path (root to farthest NIL) is no more than twice the length of the shortest path (root to nearest NIL).
 - Right figure: Shortest path: all black nodes (=2); Longest path: alternating red and black (=4)
- RBT uses color coding to maintain balance and reduce the number of node re-arrangements needed via rotations. It has four properties:

 Node Color: A node is either red or black.

 - Root Property: The root and leaves (NIL) are black.
 - Red Property: If a node is red, then its children are black.
 - Black Property: All paths from a node to its NIL descendants contain the same number of black nodes.
- Node insertion and deletion may result in violation of these properties.
 - Use recoloring and rotations to maintain these properties.

Examples

- Tree on the left: Incorrect Red Black Tree.
 - Two red nodes are adjacent to each other.
 - One of the paths to a leaf node has zero black nodes, whereas the other two paths contain 1 black node each.

Red-Black tree ensures balancing

A linear chain of 3 nodes is not possible in a Red-Black tree

Additional Properties

 AVL Tree: A balanced BST that maintains the invariant |LeftHeight - RightHeight | <= 1 for all nodes in the tree.

Insertion

- Inserting a new node in a Red-Black Tree involves a twostep process: performing a standard <u>binary search tree</u> (<u>BST</u>) insertion, followed by fixing any violations of Red-Black properties.
- Insertion Steps
- 1. BST Insert: Insert the new node into BST and color it red.
- 2. Fix Violations:
 - 2. If the parent of the new node is **black**, no properties are violated.
 - 3. If the parent is **red**, the tree might violate the Red Property, requiring fixes.

Insertion

- Step 1. Insert Z and color it red
- Step 2. Recolor and rotate nodes to fix violations
- 4 scenarios after inserting node Z
- Case 0. Z = root
 - Color Z black
- Case 1. Z.uncle = red
 - Recolor Z's parents and grandparent
- Case 2. Z.uncle = black (triangle)
 - Rotate Z.parent, turns into Case 3
- Case 3. Z.uncle = black (line)
 - Rotate Z.grandparent & Recolor Z's parents and grandparent

Case O. Z = root

Color Z black

Case 1. Z.uncle = red

• Recolor Z's parent, uncle, and grandparent

Case 2. Z.uncle = black (triangle)

case 2 : Z.uncle = black (triangle)

Case 2. Z.uncle = black (triangle)

- Rotate Z.parent
- Turns into Case 3

Case 3 Z.uncle = black (line)

case 3: Z.uncle = black (line)

Case 3 Z.uncle = black (line)

• Rotate Z.grandparent

Example 1

Example 2 Con't

Another Example

Red Black Tree – Insertion
https://www.youtube.com/watch?v=9ublKipLp

Time Complexity

- 1. Insert : O(log(n))
 - maximum height of red-black trees
- 2. Color red : O(1)
- 3. Fix violations:
 - Constant # of:
 - o a. Recolor : O(1)
 - b. Rotation: O(1)
- Overall time complexity: O(log(n))

AVL vs Red Black Trees

Red Black Tree:

- A balanced BST that maintains the invariant: the longest path (root to farthest NIL) is no more than twice the length of the shortest path (root to nearest NIL).
- Better performance for insertion and deletion because the balancing mechanism is less strict than AVL Tree

AVL Tree:

- A balanced BST that maintains the invariant: |LeftHeight –
 RightHeight | <= 1 for all nodes in the tree.
- Have better look up performance because of their strict balance requirements

Video Tutorials

- Red-Black Trees // Michael Sambol
 - https://www.youtube.com/playlist?list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmU
 Ein
 - Lecture slides based in this video series
- Red Black Tree Insertion
 - https://www.youtube.com/watch?v=9ubIKipLpRU
- Introduction to Red-Black Tree
 - https://www.geeksforgeeks.org/introduction-to-red-black-tree/

Trie: An Introduction

- Tries view its keys as:
 - a sequence of characters
 - some (hopefully many!) sequences share common prefixes
- Each level of the tree represents an index in the string
 - Children at that level represent possible
 - characters at that index
- This abstract trie stores the set of strings:
 - o awls, a, sad, same, sap, sam
- How to deal with a and awls?
 - Mark which nodes complete a string (shown in purple)

Searching in Tries

Two ways to fail a contains() check:

- 1. If we fall off the tree
- 2. If the final node isn't purple (not a key)

Input String	Fall Off? / Is Key?	Result
contains("sam")	hit / purple	True
contains("sa")	hit / white	False
contains("a")	hit / purple	True
contains("saq")	fell off / n/a	False

Keys as "a sequence of characters"

- Most dictionaries treat their keys as an "atomic blob": you can't disassemble the key into smaller components
- Tries take the opposite view: keys are a sequence of characters
 - Strings are made of Characters
- Tries are defined by 3 types:
 - An "alphabet": the domain of the characters
 - A "key": a sequence of "characters" from the alphabet
 - A "value": the usual Dictionary value

Simple Trie Implementation

```
public class TrieSet {
   private Node root;
   private static class Node {
      private char ch;
      private boolean isKey;
      private Map<char, Node> next;
      private Node(char c, boolean b) {
          ch = c;
          isKey = b;
          next = new HashMap();
```


Simple Trie Node Implementation

Trie-Specific Operations

- Prefix matching
 - Keys are sequences that can have prefixes
- Longest prefix
 - o longestPrefixOf("sample")
 - Want: { "sam" }
- Prefix match
 - o findPrefix("sa")
 - O Want: {"sad", "sam", "same", "sap"}

Summary

- A trie data structure implements the Dictionary and Set
- Tries store sequential keys
 - ... which enables very efficient prefix operations like findPrefix
- Tries have many different implementations
 - Could store HashMap/TreeMap/any-dictionary within nodes