Vertex of the Quadratic

Given a quadratic $s(g) = a g^2 + b g + c$ compute its value at $g_1 = -\frac{b}{2a}$ namely $s(g_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $g_1 + h$, namely

Now compute the same quadratic at
$$g_1+h$$
, namely
$$s(g_1+h) = -\frac{b^2}{4a} + ah^2 + c$$

Compute $\triangle = s(g_1 + h) - s(g_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

Example 1.

$s(g) = 2g^2 + 12g + 32$

-200

-300

-400

Secant

Line 2