FOND VĚDY FSI

2019 Žádost o udělení grantu

Datum podání: 28. 3. 2019						
Navrhovatel:	<u>.</u>					
Příjmení: Hrazdíra	Jméno: Zdeněk	Pracoviště: ÚM FSI				
tel.:+420 607 622 931	E-mail: 160683@vutbr.cz					
spolunavrhovatel:						
Příjmení: tel.:	Jméno: E-mail:	Pracoviště:				
Název projektu: Interaktivní software pro vizua filtrů založených na modifikac	•	transformace obra	zu a aplikaci			
Téma disertační prác navrhovatele:						
Numerické metody analýzy po	ohybů ve sluneční koróně					
Věcné náklady:		Kč				
 náklady na pořízení výpočetní techniky 		• 35 000 Kč				
• služby (úhrada faktur za pro	• 0 Kč					
cestovné a pobytové náklad cesty, konference, apod.	• 15 000 Kč					
• stipendia		• 30 000 Kč				
Požadované věcné neinvestič (Kč):	• 80 000 Kč					

FOND VĚDY FSI 2019 Zdůvodnění návrhu

1 Současný stav poznání

Mnoho metod zpracování obrazu je založeno na analýze a modifikaci frekvenčního spektra obrazů [1, 2]. V tomto spektru je totiž řešení spousty hlavních cílů zpracování obrazu mnohem jednodušší a rychlejší, díky moderním algoritmům pro jeho výpočet [2–4].

Ústředním tématem projektu je tzv. diskrétní Fourierova transformace (DFT), která převádí diskrétní signál (např. obraz) z klasického (běžně časového či prostorového) spektra do spektra frekvenčního (časové či prostorové frekvence). Analýzou zastoupení jednotlivých frekvencí v daném signálu (jejich amplitud) je možné získat mnoho důležitých informací o jeho charakteristice [5], např. (při analýze prostorových frekvencí obrazu) – ostrost obrazu, míra šumu, astigmatizmus, poloha(natočení) předmětů v obraze a mnoho dalších. Díky těmto vlastnostem je vizualizace a porozumění DFT důležitým krokem pro vyřešení značné části úkolů zpracování digitálních signálů (obrazů) a problémů vznikajících při práci s nimi.

Obr. 1 Obraz a jeho amplitudové spektrum diskrétní 2D Fourierovy transformace (pro lepší vizualizaci jsou intenzity pixelů amplitudového spektra zobrazeny v logaritmickém měřítku)

2 Cíle projektu a postup řešení

Vytvoření algoritmu pro výpočet vícerozměrné DFT

V prvním kroku bude vytvořen algoritmus pro výpočet vícerozměrné diskrétní Fourierovy transformace, ze které budou vycházet všechny další postupy zpracování obrazů a jejich vizualizace. Také bude naprogramována zpětná vícerozměrná diskrétní Fourierova transformace (IDFT) pro následnou vizualizaci výsledných filtrovaných obrazů. Tento výpočet bude implementován v programovacím jazyce C++.

Implementace algoritmů založených na modifikaci DFT

Po správném výpočtu diskrétní Fourierovy transformace daného obrazu je možno získané frekvenční spektrum filtrovat a získat tak po zpětné diskrétní Fourierově transformaci filtrovaný obraz, s potenciálně lepšími vlastnostmi. Existuje mnoho frekvenčních filtrů, z nichž budou v softwaru implementovány ty nejefektivnější.

Tvorba interaktivního grafického uživatelského rozhraní pro vizualizaci výsledků

Jelikož se celý projekt týká zpracování obrazu, je důležité získané obrazy a spektra vhodně vizualizovat. K tomuto účelu bude vyvinuto interaktivní grafické uživatelské rozhraní v C++, pomocí kterého bude uživatel chod programu ovládat, a které bude vhodně vizualizovat výsledky daných algoritmů. Uživateli bude umožněno nahrát do softwaru libovolný obraz, vizualizovat ho ve frekvenčním spektru pomocí několika různých metod a aplikovat frekvenční filtry podle volby. Uživatel bude také moci specifikovat přesné parametry jednotlivých filtrů/algoritmů.

Navrhovatel projektu využívá zmíněné metody filtrace obrazů pomocí modifikace DFT ve své dizertační práci, jako jednu z úprav vstupních dat pro další, pokročilejší metody zpracování obrazů na základě jejich frekvenčního spektra (fázová korelace, křížová korelace, dekonvoluce apod.). Pro všechny tyto metody je výpočet a vizualizace FT nezbytným krokem.

3 Časový plán

	2019, měsíc								
Aktivita		5	6	7	8	9	10	11	12
Vytvoření algoritmu pro výpočet vícerozměrné FT									
Zpracování a vizualizace FT									
Implementace algoritmů ve frekvenčním spektru									
Tvorba interaktivního uživatelského rozhraní									

Obr. 2 Časový plán projektu

4 Využití výsledků projektu ve vzdělávací činnosti

Předložený projekt najde velké využití v předmětu **Počítačové metody zpracování obrazů** (**TNM**), kde jsou obrazová Fourierova transformace a filtry frekvenčního spektra důležitým vyučovaným tématem. Při cvičeních s počítačovou podporou běžně není díky komplexnosti vícerozměrné DFT čas na její naprogramování, a tak by výstupní software z předloženého projektu nově studentům umožňoval rychlé a snadné vyzkoušení, ověření funkčnosti a lepší pochopení značné části vyučované látky TNM. Software se také může hodit jakýmkoliv případným studentům či zaměstnancům VUT, kteří ve své vědecké práci zpracovávají digitální signály pomocí Fourierovských metod.

5 Předpokládané výstupy

Přímý výstup tohoto projektu bude **kategorie R** – software. Software bude obsahovat numerický výpočet 2D diskrétní Fourierovy transformace, kterou bude schopen aplikovat na libovolný reálný vstupní obraz. Dále budou v softwaru obsaženy nejefektivnější filtry frekvenčního spektra, které si uživatel bude moct vyzkoušet na daném vstupním obrazu. Software bude schopný pracovat se všemi běžnými obrazovými formáty – jpg, png, tiff apod. a libovolnými barevnými hloubkami – 8bit, 16bit... Uživatel bude řídit chod programu pomocí interaktivního grafického uživatelského rozhraní, pomocí kterého bude také schopen specifikovat parametry zvolených filtrů a vizualizovat jednotlivé kroky při filtraci obrazu. Celý software s grafickým rozhraním bude implementován v jazyce C++.

6 Financování projektu

V následující tabulce je uveden plán rozdělení finančních prostředků:

	Částka [Kč]				
Celkový rozpočet projektu	80 000				
Cestovní náklady					
Cestovné, ubytování, konference	15000				
Věcné materiálové náklady					
Nákup výpočetní techniky pro tvorbu softwaru	35 000				
Stipendium					
Ing. Zdeněk Hrazdíra	30 000				

Reference

- [1] STEPHANE, Mallat. *A Wavelet toor of signal processing The Sparse Way* [online]. 2004. ISBN 9780123743701. Dostupné z: doi:10.1016/B978-012466606-1/50004-0
- [2] VOROBYOV, Sergiy A a Paolo FAVARO. Digital signal processing (dsp). 2007.
- [3] SMITH, Steven. Digtal Signal Processing. 2003. ISBN 075067444X.
- [4] ZHOU, Yicong, Weijia CAO, Licheng LIU, Sos AGAIAN a C. L.Philip CHEN. Fast Fourier transform using matrix decomposition. *Information Sciences* [online]. 2015, **291**(C), 172–183. ISSN 00200255. Dostupné z: doi:10.1016/j.ins.2014.08.022
- [5] BERNATH, Peter F. *Fourier Transform Techniques* [online]. 3. vyd. B.m.: Elsevier Inc., 2018. ISBN 9780124095472. Dostupné z: doi:10.1016/B978-0-12-409547-2.14518-4