Об оценке параметров специальной модели кривых дожития

Коробейников Антон Иванович, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Барт А.Г.

к.ф.-м.н., доц. Алексеева Н.П.

Рецензент: к.ф.-м.н., доц. Некруткин В.В.

Санкт-Петербург 2007г.

Кривые дожития

- au время до наступления события, называемого *отказом*.
- ullet Кривой дожития называется функция $S\left(t
 ight)=\mathbf{P}\left(au>t
 ight).$
- Приложения в теории надежности, медицине, биологии, страховой математике и т.п.
- Генеральная модель кривой дожития функция распределения: F(t) = 1 S(t).

Постановка задачи

- Рассматривается специальная модель кривых дожития (Барт А.Г., Бондаренко Б.Б., Бойко В.И., 1980).
- Решается задача построения оценок параметров модели.
- Исследуются статистические свойства полученных оценок.
- Свойства оценок проверяются на модельных выборках.
- Оценки используются для обработки реальных данных из стоматологии и кардиологии.

Специальная модель кривых дожития

Модельная функция распределения задается уравнением

$$F(x; \eta, \tau, \mu) = 1 - \exp\left(-\eta \left(\frac{x - \mu}{\tau}\right)\right) \cos\left(\frac{\pi}{2} \left(\frac{x - \mu}{\tau}\right)\right),$$
$$\eta > 0, \ \mu < x < \mu + \tau.$$

Задача оценивания параметров данного распределения относится к так называемому «нерегулярному типу»:

- **1** Носитель распределения зависит от значений неизвестных параметров μ и τ .
- Плотность распределения имеет ненулевые пределы на границе носителя.

Обозначения

- X₁,..., X_n набор из n независимых одинаково распределенных случайных величин с модельной функцией распределения.
- η_0 , τ_0 , μ_0 истинные значения параметров η , τ , μ .
- L_n логарифм функции правдоподобия:

$$L_n(\eta, \tau, \mu) = \frac{1}{n} \sum_{i=1}^n \log f(X_i; \eta, \tau, \mu).$$

- ullet Порядковые статистики: $X_{[1:n]} < \cdots < X_{[n:n]}$.
- \tilde{L}_n логарифм модифицированной функции правдоподобия:

$$\tilde{L}_n(\eta, \tau, \mu) = \frac{1}{n} \sum_{i=2}^{n-1} \log f\left(X_{[i;n]}; \eta, \tau, \mu\right).$$

Известные факты

• Пусть $\bar{\eta}_n$ — оценка максимального правдоподобия для η при известных значениях μ_0 , τ_0 . Оценка $\bar{\eta}_n$ необходимо удовлетворяет уравнению:

$$\frac{\partial L_n}{\partial \eta} \left(\bar{\eta}_n, \tau_0, \mu_0 \right) = 0.$$

- К $\bar{\eta}_n$ применимы результаты классической теории оценок макимального правдоподобия в регулярном случае.
- Известно (Cheng, Traylor, 1995), что оценки параметров, полученные максимизацией непосредственно логарифма функции правдоподобия L_n по всем трем аргументам (в нерегулярном случае), могут быть несостоятельными.

Процедура оценивания

Двухстадийная процедура:

• Эффективное оценивание параметров τ и μ при помощи порядковых статистик:

$$\hat{\mu}_n = X_{[1;n]}, \quad \hat{\tau}_n = X_{[n;n]} - X_{[1;n]}.$$

② Получение оценки $\tilde{\eta}_n$ как локального максимума \tilde{L}_n :

$$\tilde{\eta}_n = \operatorname*{arg\,max} \tilde{L}_n \left(\eta, \hat{\tau}_n, \hat{\mu}_n \right).$$

Оценка $\tilde{\eta}_n$ должна удовлетворять уравнению правдоподобия

$$\frac{\partial \tilde{L}_n}{\partial \eta} \left(\tilde{\eta}_n, \hat{\tau}_n, \hat{\mu}_n \right) = 0.$$

Процедура оценивания

Двухстадийная процедура:

• Эффективное оценивание параметров τ и μ при помощи порядковых статистик:

$$\hat{\mu}_n = X_{[1;n]}, \quad \hat{\tau}_n = X_{[n;n]} - X_{[1;n]}.$$

② Получение оценки $ilde{\eta}_n$ как локального максимума $ilde{L}_n$:

$$\tilde{\eta}_n = \underset{\eta>0}{\operatorname{arg\,max}} \tilde{L}_n (\eta, \hat{\tau}_n, \hat{\mu}_n).$$

Оценка $\tilde{\eta}_n$ должна удовлетворять уравнению правдоподобия

$$\frac{\partial \tilde{L}_n}{\partial \eta} \left(\tilde{\eta}_n, \hat{\tau}_n, \hat{\mu}_n \right) = 0.$$

Процедура оценивания

Двухстадийная процедура:

• Эффективное оценивание параметров τ и μ при помощи порядковых статистик:

$$\hat{\mu}_n = X_{[1;n]}, \quad \hat{\tau}_n = X_{[n;n]} - X_{[1;n]}.$$

 $oldsymbol{0}$ Получение оценки $ilde{\eta}_n$ как локального максимума $ilde{L}_n$:

$$\tilde{\eta}_n = \underset{\eta>0}{\operatorname{arg max}} \tilde{L}_n (\eta, \hat{\tau}_n, \hat{\mu}_n).$$

Оценка $\tilde{\eta}_n$ должна удовлетворять уравнению правдоподобия

$$\frac{\partial \tilde{L}_n}{\partial \eta} \left(\tilde{\eta}_n, \hat{\tau}_n, \hat{\mu}_n \right) = 0.$$

Оценки $\hat{ au}_n$ и $\hat{\mu}_n$

Утверждение

Для оценок $\hat{\tau}_n$, $\hat{\mu}_n$ имеет место состоятельность:

- $\bullet \hat{\mu}_n \mu_0 = O_p\left(\frac{1}{n}\right), n \to \infty.$
- $2 \tau_0 \hat{\tau}_n = O_p\left(\frac{1}{n}\right), n \to \infty.$

Следствие

Асимптотически:

•
$$n(\hat{\mu}_n - \mu_0) \sim Exp(\eta_0)$$
.

Замечание

Оценки $\hat{ au}_n$ и $\hat{\mu}_n$ демонстрируют сверхсходимость: дисперсия оценок имеет порядок $\frac{1}{n^2}$, против обычного $\frac{1}{n}$.

Оценка $ilde{\eta}_n$

Теорема

- ① Оценка $\tilde{\eta}_n$, удовлетворяющая уравнению правдоподобия: $\frac{\partial \tilde{L}_n}{\partial \eta}\left(\tilde{\eta}_n,\hat{\tau}_n,\hat{\mu}_n\right)=0$ существует и притом единственна.
- ② С вероятностью, стремящейся к 1 при $n \to \infty$ имеет место $\tilde{\eta}_n \bar{\eta}_n = o_p\left(\frac{1}{n^{1-\varepsilon}}\right), \ \forall \varepsilon\colon 0<\varepsilon<1.$

Следствие

- $oldsymbol{0}$ $ilde{\eta}_n$ состоятельная оценка для параметра η .
- \mathbf{Q} $\tilde{\eta}_n$ асимптотически эффективна.
- 3 Случайная величина $\sqrt{n}\left(\tilde{\eta}_n-\eta_0\right)$ асимптотически нормальна.

Изучение свойств оценок на модельных выборках

- Исследование различных способов моделирования кривой дожития:
 - ullet Метод обратных функций для малых значений η .
 - Метод отбора (из сдвиговой модификации экспоненциального распределения) для не очень малых значений η .

- Проверка теоретических результатов на модельных выборках:
 - Изучение скорости сходимости оценок параметров.
 - Изучение асимптотического распределения оценок параметров.

Изучение свойств оценок на модельных выборках

- Исследование различных способов моделирования кривой дожития:
 - ullet Метод обратных функций для малых значений η .
 - Метод отбора (из сдвиговой модификации экспоненциального распределения) для не очень малых значений η .

- Проверка теоретических результатов на модельных выборках:
 - Изучение скорости сходимости оценок параметров.
 - Изучение асимптотического распределения оценок параметров.

Цензурирование

При проведении процедуры сбора реальных данных типично *цензурирование* — наблюдение над индивидом прекращается до наступления момента отказа.

Модель цензурирования:

- ullet $au_{j} \in \{0,1\}$ показатель цензурирования.
- c_i момент цензурирования.
- ullet Наблюдается пара (Y_j, au_j) , где $Y_j = au_j c_j + (1 au_j) \, X_j$.
- X_i , τ_i , c_i все зависимы.

Типичный случай — «цензурирование справа»:

$$au_j = \mathbb{I}\left(X_j > c\right), \quad Y_j = \min\left\{c, X_j\right\}, \quad c_j = c,$$

где \mathbb{I} — индикатор множества, c — известная константа.

Оценки по выборке с цензурированием

Модифицированная двухстадийная процедура:

Оценивание параметра μ при помощи порядковых статистик:

$$\hat{\mu}_n = X_{[1;n]}.$$

② Получение оценок $\tilde{\eta}_n^c$ и $\tilde{ au}_n^c$ как локального максимума \tilde{L}_n^c :

$$\begin{split} \tilde{L}_{n}^{c}\left(\eta,\tau,\mu\right) &= \\ &\frac{1}{n}\left[\sum_{i:\,\tau_{i}=0}\log f\left(Y_{i};\eta,\tau,\mu\right) + \sum_{i:\,\tau_{i}=1}\log\left(1 - F\left(Y_{i};\eta,\tau,\mu\right)\right)\right], \\ &\left(\tilde{\eta}_{n}^{c},\,\tilde{\tau}_{n}^{c}\right) = \underset{\eta>0,\tau>0}{\arg\max}\,\tilde{L}_{n}^{c}\left(\eta,\tau,\hat{\mu}_{n}\right). \end{split}$$

Оценки по выборке с цензурированием

Модифицированная двухстадийная процедура:

Оценивание параметра μ при помощи порядковых статистик:

$$\hat{\mu}_n = X_{[1;n]}.$$

 $m{Q}$ Получение оценок $ilde{\eta}_n^c$ и $ilde{ au}_n^c$ как локального максимума $ilde{L}_n^c$:

$$\begin{split} \tilde{L}_{n}^{c}\left(\eta,\tau,\mu\right) &= \\ &\frac{1}{n}\left[\sum_{i:\,\tau_{i}=0}\log f\left(Y_{i};\eta,\tau,\mu\right) + \sum_{i:\,\tau_{i}=1}\log\left(1 - F\left(Y_{i};\eta,\tau,\mu\right)\right)\right], \\ &(\tilde{\eta}_{n}^{c},\,\tilde{\tau}_{n}^{c}) = \underset{\eta>0,\tau>0}{\arg\max}\,\tilde{L}_{n}^{c}\left(\eta,\tau,\hat{\mu}_{n}\right). \end{split}$$

Результаты моделирования (без цензурирования)

Результаты моделирования (с цензурированием)

Оценки по выборке с цензурированием:

- $oldsymbol{0}$ Оценка $\hat{\mu}_n$ демонстрирует сверхсходимость, оценки $\tilde{ au}_n^c$, $\tilde{\eta}_n^c$ — обычную скорость сходимости.
- \mathbf{Q} $\hat{\mu}_n$ асимптотически распределена экспоненциально, распределение оценок $\tilde{\tau}_n^c$, $\tilde{\eta}_n^c$ хорошо аппроксимируется нормальным.
- f 0 Оценка $ilde{\eta}^c_n$ смещена. Смещение вызвано цензурированием и одновременным оцениванием параметра au.

Стандартное отклонение оценок (с цензурированием)

Пример из кардиологии

