Automaten und Formale Sprachen SoSe 2017 in Trier

Henning Fernau

Universität Trier fernau@uni-trier.de

18. Mai 2017

Automaten und Formale Sprachen Gesamtübersicht

- Organisatorisches
- Einführung
- Endliche Automaten und reguläre Sprachen
- Kontextfreie Grammatiken und kontextfreie Sprachen
- Chomsky-Hierarchie

Endliche Automaten und reguläre Sprachen

- 1. Deterministische endliche Automaten
- 2. Nichtdeterministische endliche Automaten
- 3. Reguläre Ausdrücke
- 4. Nichtreguläre Sprachen
- 5. Algorithmen mit / für endliche Automaten

Das Pumping-Lemma

Satz: Zu jeder regulären Sprache L gibt es eine Zahl n > 0, sodass jedes Wort $w \in L$ mit $\ell(w) \ge n$ als Konkatenation w = xyz dargestellt werden kann mit geeigneten x, y, z mit folgenden Eigenschaften:

1.
$$\ell(y) > 0$$
;

2.
$$\ell(xy) \leq n$$
;

3.
$$\forall i \geq 0 : xy^i z \in L$$
.

Hinweis: Die Umkehrung gilt nicht!

Zur Anwendung des Pumping-Lemmas (schematisch)

- 1. Wir vermuten, eine vorgegebene Sprache L ist nicht regulär.
- 2. Im Widerspruch zu unserer Annahme nehmen wir an, L wäre doch regulär. Dann gibt es die im Pumping-Lemma genannte Pumping-Konstante n.
- 3. Wir wählen ein geeignetes, hinreichend langes Wort $w \in L$ (d.h., $\ell(w) \ge n$). Dies ist der Schritt, wo man leicht "gut" oder "schlecht" wählt! Bemerkung: Da wir ja vermuten, L ist nicht regulär, ist L insbesondere unendlich, d.h., zu jedem n finden wir ein $w \in L$ mit $\ell(w) \ge n$.
- 4. Wir diskutieren alle möglichen Zerlegungen w = xyz mit $\ell(y) > 0$ und $\ell(xy) \le n$ und zeigen für jede solche Zerlegung, dass es ein $i \ge 0$ gibt, sodass $xy^iz \notin L$ gilt.

Die Komplexität dieser Diskussion hängt "in der Praxis" im Wesentlichen von der "geschickten" Wahl von w ab. Das Anfangsstück von w der Länge π sollte "schön" sein.

Zur Anwendung des Pumping-Lemmas (ein geschickter Einsatz)

Betrachte $L = \{a^k b^k \mid k \in \mathbb{N}\}.$

Wäre L regulär, so gäbe es Pumping-Konstante n.

Betrachte $a^nb^n \in L$; denn: $\ell(a^nb^n) = 2n \ge n$ und Präfix der Länge n ist a^n (sehr schön).

Diskutiere $a^nb^n = xyz$ mit $\ell(xy) \le n$ und $\ell(y) > 0$: Offenbar ist $xy \in \{a\}^+$ und damit $y = a^m$ für ein m > 0. \sim Nullpumpen liefert $a^{n-m}b^n \notin L$, $\not \subseteq L$ zur Annahme, L wäre regulär.

Zur Anwendung des Pumping-Lemmas (ein ungeschickter Einsatz)

Betrachte $L = \{a^k b^k \mid k \in \mathbb{N}\}.$

Wäre L regulär, so gäbe es Pumping-Konstante $\mathfrak n$. Da L nur Wörter gerader Länge enthält, können wir annehmen, $\mathfrak n$ ist gerade.

Betrachte $w = a^{n/2}b^{n/2} \in L \text{ mit } \ell(w) = n.$

Diskutiere w = xyz mit $\ell(xy) \le n$ und $\ell(y) > 0$:

Fall 1: $xy \in \{a\}^+$ (Nullpumpen ähnlich wie letzte Folie)

Fall 2: $xy = a^{n/2}b^m$ mit m > 0.

Fall 2a: $y \in \{b\}^+$ (Nullpumpen ähnlich wie letzte Folie)

Fall 2b: $y = a^r b^m$ mit r, m > 0. Dann liegt auch $xy^2z = a^{n/2}b^ma^rb^{n/2} \in L$ \nleq zur Struktur von L.

Die Spiegeloperation

Informell: w^R ergibt sich aus w durch "Rückwärtslesen" (Spiegeln).

Induktiv: $\lambda^R = \lambda$; für w = va mit $v \in \Sigma^*$, $a \in \Sigma$ definiere: $w^R := a(v^R)$.

Beispiel: $(abcd)^R = d(abc)^R = dc(ab)^R = dcb(a)^R = dcba(\lambda^R) = dcba\lambda = dcba$.

Erweiterung auf Wortmengen: $L^R = \{w^R \mid w \in L\}.$

Satz: Die regulären Sprachen sind unter Spiegelung abgeschlossen.

Beweis: Wichtig: Wahl des richtigen Modells! (siehe Übungsaufgabe)

Noch eine Anwendung des Pumping-Lemmas

Betrachte $L = \{w \in \{a, b\}^* \mid w = w^R\}$ (*Palindrome*)

Wäre L regulär, so gäbe es Pumping-Konstante n für L.

Betrachte $w = a^n b a^n \in L \text{ mit } \ell(w) \ge n$.

Widerspruch ergibt sich durch Nullpumpen.

... und noch eine ...

Betrachte $L = \{a^{k^2} \mid k \in \mathbb{N}\}.$

Wäre L regulär, so gäbe es Pumping-Konstante $\mathfrak n$ für L.

Betrachte $w = a^{(n+1)^2} \in L \text{ mit } \ell(w) \ge n.$

Widerspruch ergibt sich durch Nullpumpen:

Genauer haben wir, dass für ein $0 < i \le n$ stimmen muss, dass $a^{(n+1)^2-i} \in L$ gilt, im Widerspruch zu folgender Abschätzung, die $a^{(n+1)^2-i} = a^{r^2}$ annimmt:

$$r^2 \le n^2 < n^2 + n + (n - i) + 1 = n^2 + 2n + 1 - i = (n + 1)^2 - i$$
.

Der Beweis des Pumping-Lemmas

Ist L endlich, so ist die Aussage trivial mit $n := \max\{\ell(w) \mid w \in L\} + 1$.

Ist L unendlich aber regulär, so wird L von einem DEA A mit π Zuständen akzeptiert mit Anfangszustand q_0 .

Betrachte ein Wort $w = a_1 \dots a_m \in L$, $a_i \in \Sigma$, $m \ge n$.

Sei $(q_k, a_{k+1} \dots a_m)$ für $0 \le k \le n$ die Konfiguration nach k Schritten von A.

Da hierbei n+1 Zustände durchlaufen werden, gibt es nach dem Schubfachprinzip einen Zustand, der zweimal erreicht wird, d.h., $\exists 0 \le r < s \le n : q_r = q_s$.

$$\rightsquigarrow$$
 $y = a_{r+1} \dots a_s$ erfüllt $(q_r, y) \vdash_A^* (q_r, \lambda)$.

$$\rightsquigarrow \forall i \geq 0 : (q_r, y^i) \vdash_A^* (q_r, \lambda).$$
 (vgl. Schlingenlemma)

Mit $x = a_1 \dots a_r$ und $z = a_{s+1} \dots a_m$ folgt die Behauptung.

Nicht-Regularität durch Abschlusseigenschaften

Beispiel: Betrachte die Menge $L \subseteq \{a, b\}^*$ mit der Eigenschaft, dass $w \in L$ liegt gdw. w gleich viele a's wie b's besitzt.

Behauptung: L ist nicht regulär.

Beweis durch Widerspruch: Wäre L regulär, so auch $L' = L \cap \{a\}^* \{b\}^*$, denn

- $-\{a\}^*\{b\}^*$ ist regulär, und
- der Schnitt zweier regulärer Sprachen ist wiederum regulär.

Offenbar gilt: $L' = \{a^k b^k \mid k \in \mathbb{N}\}$, und

von dieser Sprache wissen wir bereits, dass sie nicht-regulär ist.

Auch hier Schwierigkeit: "Geschickte" Wahl der Operation...

Äquivalenzrelationen (hoffentlich noch bekannt ?!)

Eine Relation $R \subseteq X \times X$ heißt Äquivalenzrelation gdw.

- (1) $R^0 = \Delta_X \subseteq R$ (Reflexivität)
- (2) $R^2 = R \circ R \subseteq R$ (Transitivität)
- (3) Mit $R^{-1} = \{(y, x) \mid (x, y) \in R\}$ gilt $R^{-1} \subseteq R$ (Symmetrie)

Eine ÄR auf X induziert eine *Partition* von X in *Äquivalenzklassen* $[x]_R = \{y \in X \mid xRy\}.$

Eine Äquivalenzrelation auf Σ^*

Es sei $h: (\Sigma^*, \cdot, \lambda) \to (M, \circ, e)$ ein Monoidmorphismus.

Dann ist Definiere $x \equiv_h y$ gdw. h(x) = h(y).

Satz: $x \equiv_h y$ ist eine Äquivalenzrelation auf Σ^* .

Erinnerung: Der Kern eines Homomorphismus ist (sogar) eine Kongruenzrelation, also eine Äquivalenzrelation, die mit den Monoid-Operationen verträglich ist.

Noch eine Äquivalenzrelation auf Σ^*

```
Es sei A = (Q, \Sigma, \delta, q_0, F) ein vollständiger DEA.
Definiere \mathfrak{u} \equiv_A \nu gdw. \exists q \in Q : ((q_0, \mathfrak{u}) \vdash_A^* (q, \lambda)) \wedge ((q_0, \nu) \vdash_A^* (q, \lambda)).
Satz: \mathfrak{u} \equiv_A \nu ist eine Äquivalenzrelation auf \Sigma^*.
```

Ein direkter Beweis ist eine gute Übung. (Es ist klar, dass diese Relation reflexiv, symmetrisch und transitiv ist ?!) Alternativ: Dies folgt mit der Beziehung über Transformationsmonoide auch unmittelbar aus dem vorigen Satz.

... und noch eine Äquivalenzrelation auf Σ^*

Es sei $L \subseteq \Sigma^*$. L *trennt* zwei Wörter $x, y \in \Sigma^*$ gdw. $|\{x, y\} \cap L| = 1$.

Zwei Wörter $\mathfrak u$ und $\mathfrak v$ heißen *kongruent modulo* $\mathfrak L$ (i.Z.: $\mathfrak u \equiv_{\mathbb L} \mathfrak v$), wenn für jedes beliebige Wort $\mathfrak w$ aus $\mathfrak L^*$ die Sprache $\mathfrak L$ die Wörter $\mathfrak u \mathfrak w$ und $\mathfrak v \mathfrak w$ *nicht* trennt, d.h. wenn gilt:

$$(\forall w \in \Sigma^*) (uw \in L \Leftrightarrow vw \in L)$$

Satz: Für jede Sprache $L \subseteq \Sigma^*$ ist \equiv_L eine Äquivalenzrelation.

Def.: \equiv_{L} heißt auch *Myhill-Nerode Äquivalenz*.

Beweis: Reflexivität: $\forall u \in \Sigma^* : u \equiv_L u \checkmark$

Symmetrie: $\forall u, v \in \Sigma^* : u \equiv_L v \Rightarrow v \equiv_L u \checkmark$

Transitivität: $\forall u, v, x \in \Sigma^* : (u \equiv_L v \land v \equiv_L x) \Rightarrow u \equiv_L x$

Betrachte $u, v, x, w \in \Sigma^*$ mit $u \equiv_L v$ und $v \equiv_L x$ sowie w beliebig.

- (a) Falls $uw \in L$, so auch $vw \in L$, denn $u \equiv_L v$; wegen $v \equiv_L x$ gilt daher $xw \in L$.
- (b) Falls $uw \notin L$, so auch $vw \notin L$, denn $u \equiv_L v$; wegen $v \equiv_L x$ gilt daher $xw \notin L$.
- (a) und (b) zusammen liefert: $uw \in L \iff xw \in L$, also $u \equiv_L x$, da w beliebig.

Eigenschaften

Beobachtung. Gilt $u \in L$ und $v \equiv_L u$, so auch $v \in L$.

Beweis: Aus $(\forall w \in \Sigma^*)$ $(uw \in L \Leftrightarrow vw \in L)$ folgt für $w = \lambda$: $u \in L \iff v \in L$, also die Beh. \square

Lemma: $\equiv_{\mathbb{L}}$ ist sogar eine *Rechtskongruenz*,

d.h., aus $u \equiv_L v$ folgt für bel. Wörter $x \in \Sigma^*$: $ux \equiv_L vx$.

Zu zeigen bliebe dazu: $(\forall w \in \Sigma^*)$ $(uw \in L \Leftrightarrow vw \in L)$

impliziert: $(\forall x, w' \in \Sigma^*)$ ($uxw' \in L \Leftrightarrow vxw' \in L$). (leichte Übung)

Bsp.: $L = \{w \in \{a\}^* \mid \ell(w) \equiv 1 \pmod{3}\}$ hat drei Myhill-Nerode Äquivalenzklassen.

Beispiel: Betrachte

$$L = \{a^k b^k | k > 0\}$$

 $a^ib \not\equiv_L a^jb$ für $i \neq j$:

Verwende $w = b^{i-1}$ mit $a^ibw \in L$ und $a^jbw \not\in L$.

Damit hat man für $i = 1, 2, 3, \dots$ bereits

 $\underline{unendlich\ viele\ verschiedene}\ \ddot{A}quivalenzklassen\ [\alpha^ib]\ gefunden.$

Genauer gilt: $[a^ib] = \{a^ib, a^{i+1}b^2, a^{i+2}b^3, ...\}.$

Ferner gilt: [ab] = L.

Lemma: Es sei $L \subseteq \Sigma^*$ regulär, d.h., L ist durch ein endliches Monoid (M, \circ, e) , einen Monoidmorphismus $h : \Sigma^* \to M$ und eine endliche Menge $F \subseteq M$ beschrieben. Dann gilt: Falls $\mathfrak{u} \equiv_h \nu$, so $\mathfrak{u} \equiv_L \nu$.

Beweis: Betrachte zwei Wörter $u, v \in \Sigma^*$ mit $u \equiv_h v$, also h(u) = h(v).

Da h Morphismus, ist für $w \in \Sigma^*$: $h(uw) = h(u) \circ h(w) = h(v) \circ h(w) = h(vw)$.

Also liegen entweder sowohl uw als auch vw in L oder beide nicht.

Daher gilt $\mathfrak{u} \equiv_{\mathbb{L}} \nu$.

<u>Hinweis:</u> Ähnlicher Beweis über DEA-Äquivalenz \equiv_A !

Folgerung: Ist L regulär, so hat $\equiv_{\mathbb{I}}$ nur endlich viele Äquivalenzklassen.

Noch mehr Folgerungen aus dem letzten Beweis:

Betrachte reguläre Sprache $L \subseteq \Sigma^*$ und sie beschreibende Homomorphismen h bzw. Automaten A:

Ist $\mathcal{L} := \{L_1, \ldots, L_n\}$ die durch \equiv_L induzierte Zerlegung von Σ^* , so gilt für die durch \equiv_h induzierte Zerlegung $\mathcal{H} := \{H_1, \ldots, H_m\}$ von Σ^* (bzw. für die durch \equiv_A induzierte Zerlegung $\mathcal{A} := \{A_1, \ldots, A_\ell\}$ von Σ^*):

Für jedes H_i (bzw. A_i) gibt es ein L_j mit $H_i \subseteq L_j$ (bzw. $A_i \subseteq L_j$).

Daher heißen \mathcal{H} und \mathcal{A} auch *Verfeinerung*en von \mathcal{L} .

Bsp.: Der Homomorphismus $h : \{a\}^* \to \mathbb{Z}_6, w \mapsto \ell(w) \mod 6$ beschreibt mit $F = \{1, 4\}$ die Sprache $L = \{w \in \{a\}^* \mid \ell(w) \equiv 1 \pmod 3\}$.

Jede Äquivalenzklasse von \equiv_L enthält / besteht aus genau zwei Äquivalenzklassen von \equiv_h .

Satz: [Myhill und Nerode] Eine Sprache $L \subseteq \Sigma^*$ ist genau dann regulär, wenn es nur endlich viele Äquivalenzklassen bezüglich \equiv_I gibt.

Beweis: 1. L regulär ⇒ L hat endlich viele Äquivalenzklassen (siehe Folgerung).

2. Umkehrung: Sei k Zahl der Klassen von \equiv_I , d.h. $\Sigma^* = [x_1] \cup ... \cup [x_k]$.

Definiere den *Minimalautomaten* $A_{min}(L) = (S, \Sigma, \delta, s_0, F)$ durch

$$Q = \{[x_1], \dots, [x_k]\}$$

$$q_0 := [\lambda]$$

F bestehe aus allen Äquivalenzklassen $[x_i]$ mit $x_i \in L$

$$\delta([x], \alpha) := [x\alpha]$$

Wichtig: Mit [x] = [y] ist $xaw \in L \Leftrightarrow yaw \in L$,

also auch $[xa] = [ya], \rightsquigarrow$

$$\delta([x], \alpha) = [x\alpha] = [y\alpha] = \delta([y], \alpha)$$

 $\sim \delta$ ist wohldefiniert! (Rechtskongruenz!)

Offensichtlich gilt (Beweis ist eine einfache Induktion): $([\lambda], x) \vdash_{A_{min}}^{*} ([x], \lambda) \rightsquigarrow$

$$x \in L(A_{\mathsf{min}}) \Longleftrightarrow \exists q \in F : ([\lambda], x) \vdash_{A_{\mathsf{min}}}^* (q, \lambda) \Longleftrightarrow [x] \in F \Longleftrightarrow x \in L$$

Beispiel: Betrachte $L = \{a\}\{b, a\}^*$

•
$$\lambda \not\equiv_L \alpha \text{ mit } \lambda \lambda = \lambda \not\in L, \ \alpha \lambda = \alpha \in L.$$

- $b \not\equiv_L a \text{ mit } b\lambda = b \not\in L$, $a\lambda = a \in L$
- $\lambda \not\equiv_L b \text{ mit } \lambda a = a \in L, ba \not\in L.$
- $bw \equiv_{\mathsf{L}} b$
- $aw \equiv_L a$

Also gilt

$$\Sigma^* = [\lambda] \cup [b] \cup [\mathfrak{a}]$$

mit dem Minimalautomaten

Warum heißt der Minimalautomat so?

Lemma: Ist L regulär, so ist $A_{min}(L)$ der L akzeptierende DEA mit der kleinsten Anzahl von Zuständen.

```
<u>Beweis:</u> Zunächst sieht man: \equiv_L = \equiv_{A_{min}(L)} \leadsto
# Zustände von A_{min}(L) ist gleich # Äquivalenzklassen von \equiv_L.
```

Aus dem Beweis von obigem Lemma lesen wir ab:

Ist A ein DEA mit L = L(A), so ist:

- # Zustände von A ist gleich
- # Äquivalenzklassen von \equiv_A ist größer gleich
- # Äquivalenzklassen von \equiv_L .

Automatenmorphismen

Es seien $A_1=(Q_1,\Sigma,\delta_1,q_{01},F_1)$ und $A_2=(Q_2,\Sigma,\delta_2,q_{02},F_2)$ DEAs. Eine Funktion $f:Q_1\to Q_2$ heißt Automaten(homo)morphismus von A_1 nach A_2 gdw.:

- Für alle $\alpha \in \Sigma$ und für alle $q \in Q_1$ gilt $f(\delta_1(q, \alpha)) = \delta_2(f(q), \alpha)$.
- $f(q_{01}) = q_{02}$.
- Für alle $q \in Q_1$ gilt: $q \in F_1 \iff f(q) \in F_2$.

Ist f bijektiv, ist f ein *Automatenisomorphismus*. Vgl. die Begriffsbildungen aus DS!

Exkurs Automatenmorphismus

Satz: Es seien $A_1=(Q_1,\Sigma,\delta_1,q_{01},F_1)$ und $A_2=(Q_2,\Sigma,\delta_2,q_{02},F_2)$ DEAs und $f:Q_1\to Q_2$ ein Automatenmorphismus. Dann gilt: $L(A_1)=L(A_2)$.

Beweis: Betrachte $w \in \Sigma^n$ mit $w \in L(A_1)$, $w = a_1 \cdots a_n$ mit $a_i \in \Sigma$ für $1 \le i \le n$.

Es gibt also eine Folge von Zuständen $q_{01},q_{11},\ldots,q_{n1}$ aus $Q_1,\,q_{n1}\in F_1$ mit $\delta_1(q_{i-1,1},\alpha_i)=q_{i,1}$ für $i=0,\ldots,n-1$.

Da $f:Q_1\to Q_2$ Automatenmorphismus, gibt es eine Folge von Zuständen $q_{02},q_{12},\ldots,q_{n2}$ aus Q_2 mit $f(q_{i1})=q_{i2}$. Hierfür gilt: $f(q_{01})=q_{02}$ ist der Anfangszustand von $A_2,\ q_{n2}\in F_2$, und $\delta_2(q_{i-1,2},\alpha_i)=\delta_2(f(q_{i-1,1}),\alpha_i)=f(\delta_1(q_{i-1,1},\alpha_i))=f(q_{i,1})=q_{i,2}$ für $i=0,\ldots,n-1$. Also gilt: $w\in L(A_2)$.

Gilt $w \in \Sigma^n$ mit $w \notin L(A_1)$, so überführt w den Automaten A_1 in einen Nicht-Endzustand q_{n1} . Mit derselben Überlegung wie soeben überführt w den Automaten A_2 ebenfalls in einen Nicht-Endzustand q_{n2} .

Es gibt nur einen Minimalautomaten

Lemma: Der Minimalautomat ist "bis auf Isomorphie" (also bis auf Umbenennen der Zustände) eindeutig bestimmt.

Beweis: Es sei L regulär und n die Zustandsanzahl von $A_{min}(L)$ sowie die eines evtl. anderen DEA $A = (Q, \Sigma, \delta, q_0, F)$ mit L(A) = L.

(Erinnerung: Allgemein gilt $|Q(A)| \ge n$ für DEAs A mit L(A) = L, denn \equiv_A ist eine Verfeinerung von \equiv_L .)

Gilt nun sogar |Q| = n, so ist $\equiv_L = \equiv_A$.

$$\sim x \equiv_L y \iff x \equiv_A y \iff \exists q \in Q : ((q_0, x) \vdash_A^* (q, \lambda)) \land ((q_0, y) \vdash_A^* (q, \lambda)) \text{ für alle } x, y \in \Sigma^*.$$

Definiere $\phi: Q \to 2^{\Sigma^*}, q \mapsto \{w \in \Sigma^* \mid (q_0, w) \vdash_A^* (q, \lambda)\}.$

 φ identifiziert die Zustände von A mit den Äquivalenzklassen von \equiv_A und bildet so auf diejenigen von $\equiv_L = \equiv_{A_{min}(L)}$ (injektiv) ab. Anfangs- und Endzustände werden erhalten.

Für irgendein Wort $w_q \in \varphi(q)$ gilt:

(1)
$$([w_q]_L, \alpha) \vdash_{A_{min}(L)} ([w_q \alpha]_L, \lambda)$$
 sowie (2) $(q, \alpha) \vdash_A (q', \lambda)$ mit $\varphi(q') = [w_q \alpha]_L$.

Daher wird auch die Übergangsfunktion mit ϕ erhalten $\rightsquigarrow \phi$ ist Automatenisomorphismus. \Box

Eine Anwendung des Satzes von Myhill und Nerode

Folgerung: Hat \equiv_L unendlich viele Äquivalenzklassen, so ist L nicht regulär.

Beispiel: Zu

$$L = \{a^k b^k | k > 0\}$$

hat \equiv_L unendlich viele Äquivalenzklassen, L ist also nicht regulär.

Noch eine Äquivalenzrelation zur Vollständigkeit, ohne Beweise

Def.: Es sei $L \subseteq \Sigma^*$. $u, v \in \Sigma^*$ heißen syntaktisch kongruent modulo L, i.Z. $u \equiv_L^{synt} v$ gdw. $\forall x, y \in \Sigma^*$: $(xuy \in L \iff xvy \in L)$. Beobachte: $u \equiv_I^{synt} v$ impliziert $u \equiv_L v$.

Satz: Für jede Sprache L ist $u \equiv_L^{synt} v$ eine Kongruenzrelation.

Auf der Menge der Kongruenzklassen ist die "Konkatenation" $[\mathfrak{u}] \cdot [\mathfrak{v}] := [\mathfrak{u}\mathfrak{v}]$ wohldefiniert und macht diese zu einem Monoid, dem *syntaktischen Monoid* von L. Folgerung: Eine Sprache ist regulär gdw. sie besitzt ein endliches syntaktisches Monoid.

Satz: Ist L regulär, so ist das syntaktische Monoid von L isomorph zum Transformationsmonoid des Minimalautomaten $A_{min}(L)$ von L.

Folgerung: Ist $L \subseteq \Sigma^*$ regulär und (M, \circ, e) das Transformationsmonoid von $A_{min}(L)$ mit zugehörigem Morphismus $h: \Sigma^* \to M$, so ist \equiv_h die syntaktische Kongruenz von L.