```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [2]: df=pd.read_csv("13_placement.csv")
    df
```

Out[2]:

	cgpa	placement_exam_marks	placed
0	7.19	26.0	1
1	7.46	38.0	1
2	7.54	40.0	1
3	6.42	8.0	1
4	7.23	17.0	0
995	8.87	44.0	1
996	9.12	65.0	1
997	4.89	34.0	0
998	8.62	46.0	1
999	4.90	10.0	1

1000 rows × 3 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 3 columns):

Column	Non-Null Count	υτype
cgpa	1000 non-null	float64
placement_exam_marks	1000 non-null	float64
placed	1000 non-null	int64
	cgpa placement_exam_marks	cgpa 1000 non-null placement_exam_marks 1000 non-null

dtypes: float64(2), int64(1)
memory usage: 23.6 KB

In [4]: df.describe()

Out[4]:

	cgpa	placement_exam_marks	placed
count	1000.000000	1000.000000	1000.000000
mean	6.961240	32.225000	0.489000
std	0.615898	19.130822	0.500129
min	4.890000	0.000000	0.000000
25%	6.550000	17.000000	0.000000
50%	6.960000	28.000000	0.000000
75%	7.370000	44.000000	1.000000
max	9.120000	100.000000	1.000000

In [5]: sns.pairplot(df)

Out[5]: <seaborn.axisgrid.PairGrid at 0x1440cd48d00>

In [8]: sns.displot(df['placement_exam_marks'])

Out[8]: <seaborn.axisgrid.FacetGrid at 0x1440e393fa0>

In [9]: df1=df.drop(['placed'],axis=1)
df1

Out[9]:

	cgpa	placement_exam_marks
0	7.19	26.0
1	7.46	38.0
2	7.54	40.0
3	6.42	8.0
4	7.23	17.0
995	8.87	44.0
996	9.12	65.0
997	4.89	34.0
998	8.62	46.0
999	4.90	10.0

1000 rows × 2 columns

```
In [10]: sns.heatmap(df1.corr())
```

Out[10]: <AxesSubplot:>


```
In [11]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

```
In [13]: y=df['placement_exam_marks']
    x=df1.drop(['placement_exam_marks'],axis=1)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
    print(x_train)
```

```
353 6.82
379 7.37
146 6.75
117 7.11
336 7.93
... 144 6.67
644 7.65
236 7.70
519 6.60
682 6.34
```

cgpa

[700 rows x 1 columns]

```
In [14]: model=LinearRegression()
model.fit(x_train,y_train)
model.intercept_
```

Out[14]: 34.26800206769539

```
In [15]:
         coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
         coeff
Out[15]:
                Coefficient
                 -0.347464
          cgpa
In [16]:
         prediction=model.predict(x_test)
         plt.scatter(y_test,prediction)
Out[16]: <matplotlib.collections.PathCollection at 0x1440f1072e0>
           32.4
           32.2
           32.0
           31.8
           31.6
           31.4
           31.2
                       20
                                         60
                                                  80
                                                           100
In [17]: model.score(x_test,y_test)
Out[17]: -0.002973135729535503
         from sklearn.linear model import Ridge,Lasso
In [18]:
In [19]: | rr = Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[19]: Ridge(alpha=10)
In [20]: |rr.score(x_test,y_test)
Out[20]: -0.0030162898246126613
In [21]: la = Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[21]: Lasso(alpha=10)
In [22]: |la.score(x_test,y_test)
```

Out[22]: -0.004300952019827831

In []: