МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СПбГУТ)

Кафедра теоретических основ телекоммуникаций

Курсовая работа

по дисциплине «Теория электрической связи»

Выполнил студент 2 курса, гр. РЦТ-22 Балан К. А. «19» мая 2024
Принял Зав. кафедры ТОТ _____ Щербатый П. Е. «___»____ 2024

Оглавление

Введение	3
Исходные данные	4
1. Структурная схема системы цифровой связи	5
2. Расчет системы цифровой связи	6
2.1. Источник сообщений	6
2.2. Аналого-цифровой преобразователь	11
2.3. Кодер	13
2.4 Формирователь модулирующих символов	15
2.5 Расчет модулятора	20
2.6 Непрерывный канал	26
2.7 Демодулятор	27
2.8 Декодер	30
Выводы	42
Список используемой литературы	43

Введение

Цель курсовой работы (КР) - изучить принципы работы системы цифровой передачи аналоговых сообщений и рассчитать основные характеристики входящих в неё функциональных узлов.

Задание: изучить и разработать систему цифровой связи, оптимальную в отношении флуктуационной помехи и исключающую появление межсимвольной помехи.

Требуется

- 1. Изобразить структурную схему системы цифровой связи, включив блоки сглаживающих формирующих фильтров СФФ1 и СФФ2 в передающем устройстве и согласованных фильтров СФ1 и СФ2 в приёмном устройстве.
- 2. Пояснить назначение всех функциональных узлов системы цифровой связи.
- 3. Рассчитать основные характеристики системы передачи цифровой информации.

Исходные данные

Цель: Изучить и разработать систему цифровой связи, оптимальную в отношении флуктуационной помехи и исключающую появления межсимвольной помехи.

Параметр	Данные по моему варианту					
Предельные уровни	$a_{\text{\tiny MAKC}} = 1.2 \text{ B}$					
аналогового сигнала $a_{\text{мин}}$, $a_{\text{макс}}$ (B)	$a_{\scriptscriptstyle \mathrm{MWH}}=0~\mathrm{B}$					
Верхняя частота спектра аналогового сигнала $f_{\rm B}$	$f_{ m B}=2400\Gamma$ ц					
Заданный уровень квантования	j = 340					
Спектральная плотность мощность флуктуационной помехи	$N_0 = 1 \cdot 10^{-7} \frac{\mathrm{B}^2}{\Gamma \mathrm{ц}}$					
q- номер тактового интервала ошибки	q = 4					
Вид модуляции	КФМ-4					

1. Структурная схема системы цифровой связи

Система связи предназначена для передачи аналоговых сообщений по цифровому каналу связи.

Рис. 1 Структурная схема системы цифровой связи

Структурная схема системы цифровой связи. Входящие в систему цифровой связи функциональные узлы:

- 1 источник сообщений;
- 2 аналого-цифровой преобразователь (АЦП);
- 3 кодер (К);
- 5 формирователь модулирующих символов (ФМС) или преобразователь последовательного кода в параллельный код;
 - 6 сглаживающие формирующие фильтры (СФФ1, СФФ2);
 - 7 перемножители;
 - 8 фазовращатель;
 - 9 генератор гармонических колебаний;
 - 10 инвертор;
 - 11 сумматор;
 - 12 непрерывный канал;
 - 13 демодулятор (ДМ);
 - 14 преобразователь параллельного кода в последовательный код;
 - 16 декодер (ДК);
 - 17 цифро-аналоговый преобразователь (ЦАП);
 - 18 получатель сообщений.

2. Расчет системы цифровой связи

2.1. Источник сообщений

$$A(t)$$
 UC (t)

Источник сообщения (ИС) вырабатывает реализации a(t) стационарного случайного процесса A(t)типа квазибелого шума с параметрами $a_{\rm мин}$, $a_{\rm макс}$ и $f_{\rm B}$. Мгновенные значения сообщения равновероятны в интервале от значения $a_{\rm мин}$ до значения $a_{\rm макс}$.

Требуется:

- 1. Написать аналитические выражения для плотности вероятности w(a) мгновенных значений сообщения, функции распределения F(a) и построить их графики.
- 2. Рассчитать математическое ожидание $\bar{A}(t)$ и дисперсию $D\{A(t)\}$ сообщенияA(t).
- 3. Написать аналитическое выражение для спектральной плотности мощности $G_A(f)$ сообщения A(t) и построить график.
- аналитическое 4. Найти выражение корреляционной ДЛЯ функции $B_A(\tau)$ сообщения По A(t)график. форме И построить графика $B_A(\tau)$ определить, является ЛИ сообщение A(t)эргодическим случайным процессом или не является таковым. 0

Ход работы:

1) Для нахождения одномерной плотности вероятности мгновенных значений случайного

процесса a(t) учтем, что все его мгновенные значения в заданном интервале равновероятны, и, следовательно, плотность вероятности будет постоянна в этом интервале и равна нулю вне этого интервала.

Значение плотности вероятности внутри интервала от $a_{\text{мин}}$ до $a_{\text{макс}}$ определим из условия нормировки:

$$\int_{a_{\text{MAKC}}}^{\infty} w_a(x) dx = 1$$

$$\int_{a_{\text{MAKC}}}^{\infty} w_a(x) dx = 1$$

$$w(a) \cdot (a_{\text{MAKC}} - a_{\text{MИH}}) = 1$$

$$w(a) = \frac{1}{a_{\text{MAKC}} - a_{\text{MИH}}} = 0,833 (1/B)$$

Таким образом, аналитическое выражение для плотности распределения вероятности случайного процесса a(t) имеет вид:

$$w_a(x) = \begin{cases} 0, & x < a_{\text{мин}} \\ \frac{1}{a_{\text{макс}} - a_{\text{мин}}} = 0,833, a_{\text{мин}} \le x \le a_{\text{макс}} \\ 0, & x > a_{\text{макс}} \end{cases}$$

Тогда построим график одномерного закона распределения плотности вероятности мгновенных значений случайного процессаa(t):

Рис. 2 Распределение плотности вероятности

Функция распределения F(a) связана с плотностью распределения интегральным соотношением:

$$F(a) = \int_{-\infty}^{a} w(x) dx$$

При $a < a_{\text{мин}}$ значение плотности вероятности w(x) = 0, следовательно, F(x) = 0.

При $a_{\text{мин}} \le x \le a_{\text{макс}}$ значение функции распределения будет находиться следующим образом ($\Delta = a_{\text{макс}} - a_{\text{мин}}$):

$$F(a) = \int_{a_{\text{MMH}}}^{a} w(x)dx = \int_{a_{\text{MMH}}}^{a} \frac{1}{\Delta} dx = \frac{x}{\Delta} \Big|_{a_{\text{MMH}}}^{a} = \frac{a - a_{\text{MMH}}}{\Delta}$$

При $x>a_{{ t Makc}}$ значение функции распределения будет находиться как:

$$F(a) = \int_{-\infty}^{a} w(x)dx = \int_{a_{\text{MMH}}}^{a_{\text{MAKC}}} \frac{1}{\Delta} dx = \frac{x}{\Delta} \Big|_{a_{\text{MUH}}}^{a_{\text{MAKC}}} = \frac{a_{\text{MAKC}} - a_{\text{MUH}}}{\Delta} = 1$$

Составим систему
$$F(a) = \begin{cases} 0, & \text{при } a < a_{\text{мин}} \\ \frac{a - a_{\text{мин}}}{a_{\text{макс}} - a_{\text{мин}}}, & \text{при } a_{\text{мин}} \leq x \leq a_{\text{макс}} \\ 1, & \text{при } x > a_{\text{макс}} \end{cases}$$

Подставляя числовые значения, получим функцию распределения:

$$F(a) = \begin{cases} 0, & \text{при } a < 0\\ \frac{a+0}{1,2}, & \text{при } 0 \le x \le 1,2\\ 1, & \text{при } x > 1,2 \end{cases}$$

Тогда построим график одномерного закона распределения вероятности мгновенных значений случайного процессаa(t):

Рис. 3 Функция распределения

2) Найдем математическое ожидание M случайного процесса a(t):

$$M = \bar{A}(t) = \int_{-\infty}^{\infty} x \cdot w_a(x) dx$$

Так как w(a) вне интервала от $a_{\text{мин}}$ до $a_{\text{макс}}$ равна нулю, то получим:

вне интервала от
$$a_{\text{мин}}$$
 до $a_{\text{макс}}$ равна нулю, то получ $M = \int\limits_{a_{\text{мин}}}^{a_{\text{макс}}} x \cdot w_a(x) dx = \int\limits_{a_{\text{мин}}}^{a_{\text{макс}}} x \cdot \frac{1}{a_{\text{макс}} - a_{\text{мин}}} dx$
$$M = \frac{1}{a_{\text{макс}} - a_{\text{мин}}} \cdot \int\limits_{a_{\text{мин}}}^{a_{\text{макс}}} x \cdot dx = \frac{a^2_{\text{макс}} - a^2_{\text{мин}}}{2 \cdot (a_{\text{макс}} - a_{\text{мин}})}$$

$$M = \frac{a_{\text{MaKC}} + a_{\text{MИH}}}{2} = 0.6 \text{ B}.$$

То есть получили, что среднее значение случайного процесса a(t) равно 0 В.

Найдем дисперсию или математическое ожидание квадрата D случайного процесса a(t):

$$D = \int_{-\infty}^{\infty} (x - M)^2 \cdot w(x) dx = \int_{-\infty}^{\infty} x^2 \cdot w(x) dx$$

$$D = \frac{1}{a_{\text{MAKC}} - a_{\text{MUH}}} \cdot \int_{a_{\text{MUH}}}^{a_{\text{MAKC}}} x^2 dx$$

$$D = \frac{a_{\text{MAKC}}^3 - a_{\text{MUH}}^3}{3 \cdot (a_{\text{MAKC}} - a_{\text{MUH}})} = \frac{a_{\text{MAKC}}^2 + a_{\text{MAKC}}^2 + a_{\text{MUH}}^2 + a_{\text{MUH}}^2}{3}$$

$$D = \frac{0^3 + 1.2^3}{3 \times 1.2} = 0.48 \text{ B}^2$$

3) Постоянная составляющая X(t) процесса:

$$X(t) = M[X(t)] = 0.6 \text{ B}$$

Мощность $P_x(t)$ переменной составляющей процесса:

$$P_x(t) = D[X(t)] = 0.48 \text{ B}^2$$

Спектральная плотность средней мощности имеет равномерное распределение в интервале частот от 0 до F_B величиной.

$$N_X = \frac{P_X}{F_B} = \frac{0.48}{2400} = 2 * 10^{-4} \frac{B^2}{\Gamma_{\text{II}}}$$

Функция спектральной плотности мощности будет иметь вид:

$$G_A(f) = egin{cases} 0, ext{при } f > 0 \ 2*10^{-4}, ext{при } 0 \leq f \leq F_B \ 0, ext{при } f > F_B \end{cases}$$

График энергетического спектра $G_X(f)$:

Рис. 4 Энергетический спектр

4) Корреляционную функцию случайного процесса можно определить через его энергетический спектр по теореме Винера-Хинчина.

Теорема Винера-Хинчина – связь между энергетическим спектром и корреляционной функцией:

$$B(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega) e^{j\omega\tau} d\omega \quad \leftrightarrow \quad G(\omega) = \int_{-\infty}^{\infty} B(\tau) e^{-j\omega\tau} d\tau$$

Корреляционную функцию случайного процесса:

$$\begin{split} B_A(\tau) &= \int\limits_{-\infty}^{\infty} \frac{G_A(f)}{2} \cdot e^{j2\pi f \tau} df = \int\limits_{-f_B}^{f_B} G_0 \cdot e^{j2\pi f \tau} df = \int\limits_{-f_B}^{f_B} G_0 \cdot \cos(2\pi f \tau) \, df = \\ &= 2G_0 \int\limits_{0}^{f_B} \cos(2\pi f \tau) \, df = \frac{2G_0}{2\pi \tau} \sin(2\pi f \tau) = 2G_0 f_B \frac{\sin(2\pi f_B \tau)}{2\pi f_B \tau} = \\ &= 0.96 * \frac{\sin(15080 * T)}{15080 * T} \, B^2 \end{split}$$

Рис. 5 Корреляционная функция

2.2. Аналого-цифровой преобразователь

Аналого-цифровой преобразователь (АЦП) преобразует реализации аналогового (непрерывного) сообщения A(t) в цифровую форму — поток двоичных символов нулей и единиц, т. е. в последовательность прямоугольных импульсов, где «0» имеет нулевое напряжение, а «1» - прямоугольный импульс положительной полярности.

Преобразование аналогового сигнала в цифровую форму осуществляется в три этапа.

На *первом* этапе производится дискретизация реализации a(t) сообщения A(t) по времени. В моменты времени t_i берутся непрерывные по уровню отсчёты $a(t_i)$ мгновенных значений реализации a(t). Расстояние между отсчётами равно интервалу Δt , величина которого определяется в соответствии с теоремой Котельникова.

На *втором* этапе выполняется квантование точных отсчётов $a(t_i)$ по уровню. Для этого интервал Δ равный разности $\Delta = a_{\text{макс}} - a_{\text{мин}}$ разбивается на уровни квантования с постоянным шагом $\Delta a = 3$ мB. Уровни квантования нумеруются целыми числами 0,1,2,3...L-1. Нумерация уровней начинается с уровня, которому соответствует значение $a_{\text{мин}}$, и заканчивается на уровне, которому соответствует значение $a_{\text{макс}}$. Каждый аналоговый отсчёт $a(t_i)$ заменяется значением ближайшего к нему уровня 0квантования j в виде целого числа, удовлетворяющего неравенству $0 \le j \le L-1$. Получаем квантованный отсчёт $j_{10}(t_i)$ в виде целого числа в десятичной форме счисления.

На *третьем* этапе число $j_{10}(t_i)$ в десятичной форме переводится в двоичную форму счисления $j_2(t_i)$ в виде последовательности k двоичных символов и на выходе АЦП появляется сигнал в виде двоичной цифровой последовательности k информационных символов.

Расчёты:

1. Интервал дискретизации Δt для получения $A(t_i)$ реализации $A(t), t_i = i \cdot \Delta t, i = 0, \pm 1, \pm 2 \dots$

$$\Delta t \le \frac{1}{2f_R} \le 2,083 \cdot 10^{-4}(c)$$

2. Частоты дискретизации:

$$F_d = 2f_B = 4.8 \cdot 10^3 \Gamma$$
ц

3. Число уровней квантования L:

$$L = \frac{(a_{\text{макс}} - a_{\text{мин}})}{\Delta a} = \frac{1.2}{3 \cdot 10^{-3}} = 400$$
, где $\Delta a -$ шаг квантования

4. Расчет мощности шума квантования:

$$\begin{split} P_{\text{иик}} &= \frac{(a_{\text{макс}} - a_{\text{мин}})^2}{12L^2} = \frac{D[A(t)]}{L^2} = \frac{0.48}{400^2} = 3 \; [\text{мк}B^2] \\ &\frac{P_{\text{IIIK}}}{D[A(t)]} \text{(в дБ)} = 10 \, \text{lg} \bigg(\frac{P_{\text{IIIK}}}{D[A(t)]} \bigg) = 10 \, \text{lg} \bigg(\frac{D[A(t)]}{L^2 D[A(t)]} \bigg) = 10 lg \bigg(\frac{1}{L^2} \bigg) = \\ &= -52.041 \; \partial E \end{split}$$

5. Найти минимальное число k двоичных разрядов, требуемое для записи в двоичной форме любого номера j из L-1 номеров уровней квантования. Параметры подбираются так, чтобы $L=2^k$, где k – разрядность АЦП, $L=2^k$, $k \ge \log_2 L$, где k – разрядность АЦП

$$k = log_2 512 = 9$$

6. Запись k разрядного двоичного числа, соответствующего заданному уровню квантования j:

$$j=340$$
 (340)₁₀ = (**101010100**)₂

7. Осциллограмма сигнала на выходе АЦП:

Рис. 7 Осциллограмма на выходе АЦП

2.3. Кодер

Простейший двоичный сверточный кодер выполняет кодирование и образует модулирующий сигнал b(t). Последовательность символов на выходе кодера можно рассматривать как свертку импульсной характеристики кодера с выходной последовательностью информационных сигналов.

Рис. 8 схема свёрточного кодера

Параметры кодера:

k - количество информационных символов, поступающих на вход кодера в виде информационного блока; k=1 .

n - количество кодовых символов, поступающих с выхода кодера в виде кодового блока; n=2.

К- длина кодового ограничения; К=3.

Отношение k/n называется степенью кодирования и является мерой добавленной избыточности; k/n = 1/2.

Векторы связи; g1 = 111 и g2 = 101.

Расчет импульсной характеристики кодера.

Реакция кодера на входной сигнал = 10000.... называется импульсной характеристикой кодера.

Рис. 9 Расчет импульсной характеристики кодера

Входные символы	1	0	0	0	0	0	0	0	0
Выходные символы	11	10	11	00	00	00	00	00	00

Следовательно, импульсная характеристика кодера h(k) = 111011000.

Кодовое расстояние d=5, т.к. расстояние Хемминга между кодовой последовательностью 110001110 и нулевой кодовой последовательностью равна 5, т.е. кодовое расстояние для сверточного кода, порождаемым кодером на рис. 8, будет равно 5. Величина может быть также определена как число единичных символов в импульсной характеристике свёрточного кодера.

Расчётная диаграмма сверточного кодера.

1. Решетчатая диаграмма сверточного кодера от момента времени t1 до момента t10:

Рис.9 Решетчатая диаграмма кодера m - исходное сообщения, u – конечное сообщения.

m=101010100 u=11 10 00 10 00 10 00 10 11

2.4 Формирователь модулирующих символов

Формирователь модулирующих сигналов (ФМС) предназначен для преобразования двоичного цифрового потока от кодера C(t) в модулирующие сигналы I(t) и Q(t), которые необходимо подавать на синфазный и квадратурный входы модулятора для получения заданного сигнального созвездия на его выходе. Он должен содержать:

- регистр сдвига для деления входного потока бит от кодера на группы, передаваемые одним сигналом $s_{K\Phi M}(t)$ (дибиты при QPSK и квадбиты при QASK);
- преобразователи уровней битовых сигналов (униполярной кодировки в биполярную: при QPSK «0» $\to h$, «1» $\to -h$; при QASK «00» $\to 3h$, «01» $\to h$, «10» $\to -h$, «11» $\to -3h$);
- дополнительно, при QASK, —кодопреобразователь исходного кода квадбит в код Грея для выравнивания минимальных расстояний между сигналами модулятора и соответствующим им квадбитам.
 - 1.Сигнальное созвездие для заданного вида модуляции

Рис. 16. Сигнальное созвездие квадратурной фазовой модуляции КФМ-4

2. График реализации c(t) случайного процесса C(t) с выхода блока сверточного кодера (К) на входе блока ФМС на первых 18 бинарных интервалах длительностью $T_{\rm B}$:

Аналитическое выражение для случайного процесса C(t):

$$C(t) = \sum_{n=-\infty}^{\infty} C_n \cdot g_1(t - nT_B)$$

15

где $g_1(t)$ прямоугольный импульс длительностью $T_{\scriptscriptstyle B}$

$$g_1(t) = \begin{cases} 1 \text{ B} & \text{при} \quad 0 \le t \le T_B \\ 0 \text{ B} & t < 0, \ t > T_B, \end{cases}$$

где $g_1(t-nT_B)$ прямоугольный импульс такой же формы, как $g_1(t)$, но сдвинутый вправо относительно импульса $g_1(t)$ на величину $nT_{\scriptscriptstyle B}$, если n > 0, или *влево*, если n < 0; C_n - случайная величина 0, +h (значение бита на n - интервале T_{R}).

3. Аналитические выражения и графики для случайных процессов I(t) и Q(t) на символьных интервалах длительностью T_S :

где
$$g_2(t)$$
 прямоугольный импульс длительностью $T_{S=2}T_B$.
$$g_2(t) = \begin{cases} 1B & \text{при} \quad 0 \le t \le T_s \ ; \\ 0B & \text{при} \quad t < 0, \quad t > T_s; \end{cases}$$

$$T_B = \frac{\Delta t}{k} = \frac{208,3 [\text{мкc}]}{9} = 23,15 \text{ [мкc]}$$

 T_B - бинарный интервал;

 T_s - символьный интервал;

 $g_2(t-nT_S)$ прямоугольный импульс такой же формы, как импульс $g_2(t)$, но сдвинутый вправо относительно импульса $g_2(t)$ на величину nT_S , если n>0, или влево, если n<0; I_n и Q_n независимые случайные величины, заданные на символьном интервале с номером п, которые согласно сигнальному созвездию принимают:

$$P(-h)=P(h)=0.5$$

4. Аналитические выражения для корреляционной функции $B_C(\tau)$ и спектральной

плотности G(w) входного случайного процесса C(t) и построение их графиков.

Процесс C(t) является случайным синхронным телеграфным сигналом. Его корреляционная функция имеет вид

$$Bc(au) = egin{cases} h^2 \cdot \left(1 - rac{| au|}{T}
ight), & ext{при } | au| \leq T; \ 0, & ext{при } | au| > T. \end{cases}$$

а энергетический спектр

$$G_{C}(\omega) = 2 \int_{-\infty}^{+\infty} B_{C}(\tau) \cdot e^{-i\omega\tau} d\tau = \int_{-\infty}^{+\infty} B_{C}(\tau) \cdot (\cos \omega \tau - i \sin \omega \tau) d\tau =$$

$$= 2 \int_{0}^{+\infty} B_{C}(\tau) \cdot \cos \omega \tau d\tau = 2h^{2} \int_{0}^{T_{B}} \left(1 - \frac{\tau}{T_{B}}\right) \cos \omega \tau d\tau =$$

$$= \frac{2h^{2}}{\omega} \cdot \sin \omega T_{B} - \frac{2h^{2}}{T_{B}} \int_{0}^{T_{B}} \tau \cdot \cos \omega \tau d\tau = T_{B} \cdot h^{2} \cdot \frac{\sin^{2}\left(\frac{\omega T_{B}}{2}\right)}{\left(\frac{\omega T_{B}}{2}\right)^{2}} =$$

$$= 2,315 \cdot 10^{-5} \cdot \frac{\sin^{2}(1.157 \cdot 10^{-5}f)}{(1.157 \cdot 10^{-5}f)^{2}},$$

где $T = T_B$ — длительность тактового интервала, а h=1.

Графики $B_{\mathbb{C}}(\tau)$ и $G_{\mathbb{C}}(f)$:

График корреляционной функции случайного процесса:

График спектральной плотности случайного процесса:

Аналитические выражения для корреляционных функций $B_I(\tau)$ и $B_Q(\tau)$, спектральных плотностей мощности $G_I(\omega)$ и $G_Q(\omega)$ случайных процессов I(t) и Q(t):

$$B_Q(\tau) = B_I(\tau) = \begin{cases} h^2 \cdot \left(1 - \frac{|\tau|}{T_S}\right), & |\tau| \in (-\infty; T_S] \\ 0, & |\tau| \in (T_S; +\infty) \end{cases}$$

Случайный процесс Q(t) имеет такие же вероятностные характеристики, какие имеет процесс I(t), поэтому имеет место равенство: $B_Q(\tau) = B_I(\tau)$.

График корреляционных функций $B_I(\tau)$ и $B_Q(\tau)$ ($B_Q(\tau) = B_I(\tau)$):

Используя теорему Винера — Хинчина и равенство $B_O(\tau) = B_I(\tau)$, получим:

$$G_Q(\omega) = G_I(\omega) = T_S \cdot h^2 \cdot \frac{\sin^2\left(\frac{\omega T_S}{2}\right)}{\left(\frac{\omega T_S}{2}\right)^2} = 4,63 \cdot 10^{-5} \cdot \frac{\sin^2(2,315 \cdot 10^{-5}f)}{(2,315 \cdot 10^{-5}f)^2}$$

График спектральной плотности мощности случайных процессов I(t) и Q(t):

1. Сравнить графики корреляционных функций и спектральных плотностей мощности сигналов на входе и выходе блока ФМС.

Рис.17 Сравнение графиков корреляционных функций на входе и на выходе ФМС

Рис.18 Сравнение графиков спектральных плотностей на входе и на выходе ФМС

В случае КФМ-4 величина $T_S=2T_B$, где T_B — бинарный интервал, и поэтому графики функций $G_Q(\omega)$ и $G_I(\omega)$, оставаясь нефинитными, станут в 2 раза уже, чем график $G_C(\omega)$. Графики $B_Q(\tau)$ и $B_I(\tau)$ поэтому станут в 2 раза шире, чем график $B_C(\tau)$.

2.5 Расчет модулятора

В состав модулятора входят блоки-перемножители, инвертор и сумматор, на выходе которого получаем сигнал заданного вида модуляции КФМ-4.

В состав модулятора структурной схемы цифровой системы связи (ЦСС) между блоками ФМС и перемножителями входят сглаживающие формирующие фильтры СФФ, необходимые для оптимизации ЦЦС в отношении межсимвольной помехи, а также инвертор и сумматор, на выходе которого получается сигнал заданного вида модуляции КФМ-4.

В модуляторе случайный синхронный телеграфный сигнал производит модуляцию гармонического несущего колебания u(t), где

$$u(t) = U_{\rm c} \cos 2\pi f_{\rm c} t$$
, $U_{\rm c} = 1 \, \rm B$, $f_{\rm c} = 100 \cdot V_{\rm K}$.

Используется фазовая модуляция (ФМ).

2.5.1. Сглаживающий формирующий фильтр

1. Изобразить структурную схему модулятора в составе ЦСС.

Схема модулятора в составе ЦСС

В состав модулятора входят блоки:

- генератор несущего колебания $U\cos\omega_{\mathrm{C}}t$,
- фазовращатель на 90° для получения квадратурного несущего колебания $U {
 m sin} \omega_{\rm C} t$,
- перемножители, для получения БМ сигналов $S_I(t) = I(t)\cos\omega_C t$ и $S_Q(t) = Q(t)\sin\omega_C t$, модулированных сигналами I(t) и Q(t), соответственно;
- сумматор для получения сигнала с квадратурной модуляцией $S_{\text{К}\Phi\text{M}}(t) = S_{l}(t) + S_{Q}(t) = I(t)\cos\omega_{\text{C}}t + Q(t)\sin\omega_{\text{C}}t = A(t)\cos(\omega_{\text{C}}t \psi) = A(t)\cos(\omega_{\text{C}}t + \phi)$,где $A(t) = \sqrt{I^{2}(t) + Q^{2}(t)}$ огибающая, а $\phi = (-\psi)$ фаза сигнала $S_{\text{K}\Phi\text{M}}(t)$; $\cos\psi = I(t)/A(t) = \cos\phi$, $\sin\psi = Q(t)/A(t) = -\sin\phi$.
- 2. Написать аналитические выражения для сигнала x(t) со «спектром приподнятого косинуса» (импульса Найквиста) и его спектральной плотности $S_x(f)$ для значений коэффициента сглаживания $0 \le \beta \le 1$. Изобразить их графики

сигналов x(t) и соответствующие спектральные плотности.

$$x(t) = \frac{\sin(\frac{\pi \cdot t}{T})\cos(\frac{\pi \beta t}{T})}{\frac{\pi \cdot t}{T} \cdot (1 - \frac{4\beta^2 t^2}{T^2})}$$

$$T \text{ при } 0 \le |f| \le \frac{1 - \beta}{2T};$$

$$S_x(f) = \left\{ \frac{T}{2} \cdot \left\{ 1 + \cos\left[\frac{\pi T}{\beta} \cdot \left(|f| - \frac{1 - \beta}{2T}\right)\right] \right\} \text{ при } \left(\frac{1 - \beta}{2T}\right) \le |f| \le \left(\frac{1 + \beta}{2T}\right);$$

$$0 \text{ при } |f| \ge \frac{1 + \beta}{2T},$$

где β – коэффициент сглаживания (или ската), который может принимать значения в интервале $0 \le \beta \le 1$.

Импульс Найквиста с разным коэффициентом В

График спектральной плотности импульса Найквиста с разным коэффициентом ß

3. Изобразить графики спектральных плотностей $S_x(f)$ и $S_{xl}(f)$ сигналов x(t) и $x_l(t)$ (рис.17), где x(t) - импульс Найквиста при коэффициенте сглаживания $\beta=1$; $x_l(t)$ -импульс со спектральной плотности $S_{xl}(f)=\sqrt{Sx(f)}$.

$$S_{x1}(f) = \sqrt{\frac{T}{2}(1 + \cos(f\pi T))} = \sqrt{T} \cdot \cos(\frac{\pi T}{2})$$

Сравнение графиков спектральный плотностей $S_x(f)$ и $S_{x,l}(f)$ сигналов

4. На одном рисунке изобразить графики импульсов x(t)и $x_I(t)$. Выполняя обратное преобразование Фурье от известной функции $S_{xI}(f)$, определим искомый импульс $x_I(t)$.

$$x_{1}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{x1}(f) \cdot e^{ift} df$$

$$\Rightarrow \frac{1}{2\pi} \int_{-\frac{2\pi}{T}}^{\frac{2\pi}{T}} \sqrt{T} \cdot \cos \omega \frac{T}{4} \cdot e^{i\omega t} d\omega \Rightarrow$$

Представляя экспоненту по формуле Эйлера и учитывая свойства четности функции $\cos\omega\frac{T}{4}$ и нечетности функции $\sin\omega\frac{T}{4}$, получим

$$\Rightarrow \frac{\sqrt{T}}{2\pi} \int_{-\frac{2\pi}{T}}^{\frac{2\pi}{T}} \cos \omega \frac{T}{4} \cdot \cos \omega t \cdot d\omega = \frac{\sqrt{T}}{2\pi} \int_{-\frac{2\pi}{T}}^{\frac{2\pi}{T}} \left[\frac{1}{2} \cos \omega \cdot \left(t - \frac{T}{4} \right) + \frac{1}{2} \cos \omega \cdot \left(t + \frac{T}{4} \right) \right] \cdot d\omega.$$

После элементарных преобразований получаем:

$$x_1(t) = \frac{1}{\sqrt{T}} \cdot \left[\frac{\sin\frac{2\pi}{T} \left(t - \frac{T}{4} \right)}{\frac{2\pi}{T} \left(t - \frac{T}{4} \right)} + \frac{\sin\frac{2\pi}{T} \left(t + \frac{T}{4} \right)}{\frac{2\pi}{T} \left(t + \frac{T}{4} \right)} \right]$$

Величина главного максимума импульса x(t) равна единице, а величина главного максимума $x_I(t)$ зависит от параметра T и равна $\frac{1,27}{\sqrt{T}}$. И желательно от импульса $x_I(t)$ перейти к нормальному импульсу $x_{IH}(t)$.

$$x_{1H}(t) = \frac{\sqrt{T}}{1.27} \cdot x_1(t)$$

Сравнение графиков импульсов x(t)и $x_1(t)$

5. Написать аналитическое выражение для случайных процессов $I_{\phi}(t)$ и $Q_{\phi}(t)$.

$$I_{\phi}(t) = \sum_{n=-\infty}^{\infty} I_n g_3(t-nT) \, Q_{\phi}(t) = \sum_{n=-\infty}^{\infty} Q_n g_3(t-nT),$$

где $g_3(t-nT)$ -детерминированный импульс, спектральная плотность, которого выражается через спектральную плотность импульса Нейквиста.

6. Написать аналитическое выражение для корреляционных функций и спектральных плотностей случайных процессов $I_{\phi}(t)$ и $Q_{\phi}(t)$, построить графики этих функций.

$$B_{I_{\Phi}}(\tau) = B_{Q_{\Phi}}(\tau) = \frac{\bar{I}_n^2}{1.27^2} \cdot x(\tau)$$

$$G_{Q_{\Phi}}(f) = G_{I_{\Phi}}(f) = egin{cases} rac{ar{I}_n^2}{1.27^2} \cdot rac{T}{2} [1 + \cos(fT\pi/2)], & ext{при } |f| \leq rac{2\pi}{T}, \ 0, & ext{при } |f| > rac{2\pi}{T}. \end{cases}$$

где \bar{I}_n^2 для КФМ-4 равен h^2 .

График корреляционных функций случайных процессов $I_{\phi}(t)$ и $Q_{\phi}(t)$:

График спектральных плотностей случайных процессов $I_{\phi}(t)$ и $Q_{\phi}(t)$:

2.5.2. Блоки перемножителей, инвертор, сумматор

Требуется:

1. Написать аналитические выражения для корреляционных функций $B_{I_{\phi}cos}(\tau)$ и $B_{Q_{\phi}sin}(\tau)$ случайных процессов $I_{\phi}(t) \cdot \cos(\omega_C t + \varphi_C)$ и $Q_{\phi}(t) \cdot \sin(\omega_C t + \varphi_C)$ на выходах перемножителей, где φ_C - случайная фаза с равномерной плотностью вероятности на интервале от $0...2\pi$. Случайная фаза φ_C не зависит от случайных процессов $I_{\phi}(t)$ и $Q_{\phi}(t)$:

$$B_{I_{\phi}cos}(\tau) = B_{Q_{\phi}sin}(\tau) = \frac{1}{2} \cdot \frac{\overline{I_n^2}}{1.27^2} \cdot x(\tau) \cdot \cos(\omega_C \tau)$$

2. Написать аналитические выражения для корреляционных функций $B_S(\tau) = B_{I_{\Phi}}(\tau) \cdot cos\omega_C \tau = B_{Q_{\Phi}}(\tau) \cdot cos\omega_C \tau$

и для спектральной плотности мощности $G_S(\omega)$ сигнала S(t) на выходе сумматора. Построить графики этих функций.

$$B_S(\tau) = \frac{\bar{I}_n^2}{1.27^2} \cdot x(\tau) \cdot \cos(\omega_C \tau),$$

где $x(\tau)$ - импульс Найквиста при $\beta=1$.

$$G_S(f) = \frac{1}{2} \cdot \frac{\bar{I}_n^2}{1.27^2} \cdot [S_x(f - f_C) + S_x(f + f_C)]$$

График корреляционной функции сигнала на выходе модулятора:

График спектральной плотности сигнала на выходе модулятора:

2.6 Непрерывный канал

Передача сигналаS(t)происходит по непрерывному неискаженному каналу с постоянными параметрами в присутствии аддитивной помехи n(t) типа Гауссовского белого шума. Сигнал Z(t) на выходе такого канала имеет вид:

$$Z(t) = \mu \cdot S(t) + n(t)$$

где μ — коэффициент передачи канала. Для всех вариантов принять μ = 1. Односторонняя спектральная плотность мощности помехи n(t) равна N_0 =1.0·10⁻⁷B²/ Γ ц.

Требуется:

1. Определить минимальную ширину полосы частот F_k непрерывного канала, необходимую для передачи по каналу сигнала S(t) с выхода модулятора.

$$F_k = \frac{2}{T_S} = \frac{2}{2 \cdot T_B} = 4,32 \cdot 10^4 \, \Gamma$$
ц

2. Определить P_c — среднюю мощность информационного сигнала μ · S(t) на выходе канала.

$$P_C = B_S(0) = \frac{\bar{I}_n^2}{1.27^2} = \frac{1h^2}{1.27^2} = 0.62 \, Bm$$

3. Определить P_π – среднюю мощность помехи n(t) на выходе канала и найти отношение P_{c}/P_π

$$P_{\Pi} = N_0 \cdot F_k = 0.004 \, Bm$$

$$\frac{P_c}{P_{\Pi}} = \frac{h^2}{1.27^2} \cdot \frac{1}{N_0 F_k} = 143,519$$

$$10 * \lg\left(\frac{P_c}{P_n}\right) = 2.157$$

4. Рассчитать пропускную способность С (за секунду) непрерывного канала.

$$C = F_k \cdot log_2 \left(1 + \frac{P_c}{P_n} \right) = 3,1 \cdot 10^5 \delta um/c.$$

2.7 Демодулятор

Требуется:

1. Изобразить структурную схему демодулятора.

Схема демодулятора

Сигнал Z(t) поступает на входы Согласованных фильтров 1 и 2, на которых формируется выходной сигнал как отклик на сумму слагаемых:

$$Z(t)=z1(t)+z2(t)+z3(t),$$
 где
$$z1(t)=\sum_{-\infty}^{\infty}\ln*g3(t-nT)cos(wc*t)$$

$$z2(t)=\sum_{-\infty}^{\infty}Qn*g3(t-nT)sin(wc*t)$$

$$z3(t)=n(t)$$

тогда отклик будет равен:

$$y1(kT) = \frac{hT}{2*1.27^2} * \sum_{n=-\infty}^{\infty} In * x((k-n-6)T) * cos(ws * kT)$$

$$y2(kT) = \frac{hT}{2*1.27^2} * \sum_{n=-\infty}^{\infty} Qn * x((k-n-6)T) * sin(ws * kT)$$

$$y3(kT) = \int_{-\infty}^{\infty} h * x1H(3T - \tau) * cos(wc * \tau) * n(kT - \tau)d\tau$$

В соответствии со схемой демодулятора и напряжением y(kT) на выходе СФ1 в момент временит t=kT можно определить напряжения на входах Решающего Устройства (РУ1) в моменты времени t=kT:

$$U_{BX1(kT)=y(kT)} - 0.5E1 = \frac{h_{T*I(k-6)}}{2*1.27^{2}} + \xi - 0.5E1$$

$$U_{BX2(kT)=-y(kT)} - 0.5E2 = -\frac{h_{T*I(k-6)}}{2*1.27^{\circ}2} - \xi - 0.5E2$$

Таким образом, если символ I_0 принимает одно из возможных значений h, -h, то максимальное напряжение в момент времени t=6T будет сформировано соответственно, на первом, втором, третьем или четвертом входах PY1, и решение будет принято в пользу только одного, определенного символа. Причем, он может быть ошибочным, из-за наличия помехи в канале n(t). Эти ошибки возможно будет исправить на этапе декодирования.

Рассуждения для СФ2 аналогичны.

2. Определение вероятности ошибок на выходах РУ1 и РУ2 при определении значений символов I_n и Q_n (равных h, -h, 3h, -3h):

$$P_{In=h}(\text{om.}\Pi) = P_{In=-h}(\text{om.}\Pi) = P_{Qn=h}(\text{om.}\Pi) = P_{Qn=-h}(\text{om.}\Pi)$$

где $P_{In=x}$ (ош) и $P_{Qn=x}$ (ош) — вероятности ошибочного приема при $I_n=x$ и $Q_n=x$, соответственно.

$$E1 = \frac{h^2 \cdot Ts}{2 \cdot 1.27^2} = 1,435 \cdot 10^{-5} \text{ Дж}$$

$$P_{In=h}(oii) = P_{In=-h}(oii) = P_{Qn=-h}(oii) = 2Q\left(\sqrt{\frac{2E1}{N0}}\right) = 2 * 3 \cdot 10^{-7} = 6 * 10^{-7}$$

3. На четырех символьных интервалах длительностью T_S нарисовать сигналы на выходах РУ1 и РУ2 демодулятора, соответствующие сигналам на выходе блока ФМС.

Осциллограмма сигнала на выходе РУ1 и РУ2:

4. Определить вероятности ошибок $P_{In=h,\ Qn=h}(oш.\pi)$ на выходе преобразователя параллельного кода в последовательный код, если $I_n=h$ и $Q_n=h$, где $P_{In=h,\ Qn=h}(oш.\pi)$ — обозначение вероятности ошибочного приема.

$$P_{In=h,Qn=h}(ou) = P_{In=h}(ou) + P_{Qn=h}(ou) - P_{In=h}(ou) \cdot P_{Qn=h}(ou) = 6 \times 10^{-7}$$

5. Определить среднюю вероятность ошибки на выходе преобразователя при условии, что имеют место равенства.

6.
$$P_{cp} = \frac{4 \cdot P_{I_n = h, Q_n = h}}{4} = P_{I_n = h, Q_n = h} = 3 \cdot 10^{-7}$$

2.8 Декодер

Требуется:

- 1. Построить решетчатую диаграмму декодера последовательности по аналогии с решетчатой диаграммой кодера. Численные обозначения над ребрами решетчатой диаграммы декодера определяются с учетом последовательности \bar{Z} своего варианта.
 - 2. g=4- ошибка будет в четвертом символе $\overline{u}=11\ 10\ 00\ 10\ 00\ 10\ 00\ 10\ 11$ $\bar{Z}=11\ 11\ 00\ 10\ 00\ 10\ 00\ 10\ 11$

Общая схема кодера с помеченными точками представлена ниже:

00									t10 • H					
									•					
01		• V	■ p	■ f	■ k	■ C	■ m	в	ш	• 9	• 0	■ B	• 4	
11		•	■ a	• g	•	■ V	■ й	■ e	. Щ	•	• D	Φ		

Тогда на каждом шаге будут следующие пути:

Шаг 1: **11**

Γqw=2 Γqe=0

Шаг 2: 11

 $\Gamma qwr = 2 + 2 = 4,$

 Γ qwt =2+0=2,

 Γ qeu =0+1=1,

 Γ qey =0+1=1,

Шаг 3:

 $\frac{\Gamma_{qwro}=2+2+2=6}{}$

 $\Gamma_{qwri} = 2 + 2 + 0 = 4$

Fqwtp = 2 + 0 + 1 = 3

Fqwta = 2+0+1=3

 Γ qeyo =0+1+0=1

 Γ qeyi =0+1+2=3

 $\Gamma \text{qeup} = 0 + 1 + 1 = 2$

 Γ qeua =0+1+1=2

HIar 4: **11**Fqeuaf =0+1+1+2=4

Fqeuag =0+1+1+0=2

Fqeyis =0+1+2+1=4

Fqeyid =0+1+2+1=4

Fqeyof =0+1+0+0=1

Fqeyog =0+1+0+2=3

Fqeups =0+1+1+1=3

Fqeupd =0+1+1+1=3

HIar 5: 11 11

Fqeupsj =0+1+1+1+2=5
Fqeupsh =0+1+1+1+0=3
Fqeupdk =0+1+1+1+1=4
Fqeupdl =0+1+0+0+0=1
Fqeyofj =0+1+0+0+2=3
Fqeuagk =0+1+1+0+1=3
Fqeuagl =0+1+1+0+1=3

HIar 6: 11 11 0

Fqeuagle =0+1+1+0+1+2=5

Fqeuagly =0+1+1+0+1+0=3

Fqeuagkz =0+1+1+0+1+1=4

Fqeuagkx =0+1+1+0+1+1=4

Fqeyofjc =0+1+0+0+0+0=1

Fqeyofjv =0+1+0+0+0+2=3

Fqeyofhz =0+1+0+0+2+1=4

Fqeyofhx =0+1+0+0+2+1=4

 $\begin{array}{l} \hline \text{Fqeyofjcnems} = 0 + 1 + 0 + 0 + 0 + 0 + 0 + 2 + 1 + 2 = 6 \\ \hline \text{Fqeyofjcnemx} = 0 + 1 + 0 + 0 + 0 + 0 + 0 + 2 + 1 + 0 = 4 \\ \hline \text{Fqeyofjcnems} = 0 + 1 + 0 + 0 + 0 + 0 + 0 + 2 + 1 + 1 = 5 \\ \hline \text{Fqeyofjcnemx} = 0 + 1 + 0 + 0 + 0 + 0 + 0 + 2 + 1 + 1 = 5 \\ \hline \text{Fqeyofjcnkh3} = 0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 1 \\ \hline \text{Fqeyofjcnkhx} = 0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 2 = 3 \\ \hline \text{Fqeyofjcnkh3} = 0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 2 + 1 = 4 \\ \hline \text{Fqeyofjcnkh3} = 0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 2 + 1 = 4 \\ \hline \end{array}$

Поскольку декодеру известно, что, начиная с 13-го шага, производится обнуление кодера, возможны лишь переходы в состояния 00 или 01.

 Γ qeyofjcnкнздпяс =0+1+0+0+0+0+0+0+0+0+0+0+0+0=1 Γ qeyofjcnкнздаче =0+1+0+0+0+0+0+0+0+0+0+0+2+1+2=6

3. Построить диаграммы выживших путей от момента времени до момента времени по аналогии с решетчатыми диаграммами.

Выводы

В представленной работе исследовались принципы работы цифровой системы передачи сообщений (с использованием современного вида модуляции КФМ-16). Функциональные блоки системы связи, а именно – источник сообщений, аналого-цифровой преобразователь, кодирующее устройство, формирователь символов, модулирующих модулятор, непрерывный канал, демодулятор и декодер (дополнительно: сглаживающие фильтры СФФ формирующие В модуляторе И соответствующие согласованные фильтры СФ в демодуляторе, оптимизирующие систему связи в отношении флуктуационной помехи и устраняющие межсимвольную помеху), – рассматривались последовательно от входа к выходу.

Были получены навыки расчета характеристик заданных блоков и построения соответствующих графиков с помощью программы MathCad. Также в ходе работы было рассмотрено и использовано сверточное кодирование и декодирование на основе алгоритма Витерби. Декодированием на основе данного алгоритма были исправлены ошибки на выходе демодулятора. Были выявлены преимущества импульсов Найквиста перед обычными прямоугольными посредством сравнения их характеристик.

Список используемой литературы

- 1. Общая теория связи: методические указания к выполнению курсовой работы / Л. Н. Куликов, М. Н. Москалец, П. П. Шумаков; СПбГУТ. СПб., 2016. 104 с.
- 2. Теория электрической связи. Основы теории сверточного кодирования: Учебное пособие/ Л.Н.Куликов, М.Н.Москалец;СПбГУТ. СПб., 2006.-32 с.
- 3. Зюко, А. Г. Теория передачи сигналов / А. Г. Зюко, Д. Д. Кловский, М. В. Назаров, Л. М. Финк. Изд. 2-е, перераб. и доп. М. : Радио и связь, 1986. 304 с.
- 4. Зюко, А. Г. Теория электрической связи : учебник для вузов / А. Г. Зюко, Д. Д. Кловский, В. И. Коржик, М. В. Назаров. М. : Радио и связь, 1998.
- 5. Прокис, Дж. Цифровая связь : пер. с англ. / Дж. Прокис ; под ред. Д. Д. Кловского. М. : Радио и связь, 2000. 800 с.
- 6. Галкин, В. А. Цифровая мобильная радиосвязь : учеб. пособие для вузов / В. А. Галкин. М. : Горячая линия Телеком, 2007 432 с.
- 7. Гоноровский, И. С. Радиотехнические цепи и сигналы : учеб. для вузов / И. С. Гоноровский. Изд. Радио и связь, 1977.
- 8. Куликов, Л. Н. Теория электрической связи. Основы сверточного кодирования : учеб. пособие / Л. Н. Куликов, М. Н. Москалец. СПб., 2006.
- 9. Куликов, Л. Н. Общая теория связи : методические указания к выполнению курсовой работы / Л. Н. Куликов, М. Н. Москалец, М. Н. Чесноков. СПб., 2012.
- 10. Григоровский, Л. Ф. Теория электрической связи. Модели сигналов и методы их преобразования в системах связи : учеб. пособие / Л. Ф. Григоровский, В. И. Коржик, В. Г. Красов, В. Ф. Кушнир. Л. : ЛЭИС. 1990.
- 11. Тихонов, В. И. Статистическая радиотехника / В. И. Тихонов. Изд. 2-е, перераб. и доп. М. : Радио и связь, 1982.-624 с.