# **Functional Analysis**

Matias G. Delgadino

University of Oxford

May 7, 2020

Email: Matias.Delgadino@maths.ox.ac.uk, Office: S2.23

# Who is this guy teaching me Functional?

Main field of study: PDEs arising from modelling, in particular Stochastic interacting particle systems and Wasserstein gradient flows.

# Who is this guy teaching me Functional?

**Main field of study:** PDEs arising from modelling, in particular Stochastic interacting particle systems and Wasserstein gradient flows. That's why most of the applications will be in PDEs.

# Who is this guy teaching me Functional?

**Main field of study:** PDEs arising from modelling, in particular Stochastic interacting particle systems and Wasserstein gradient flows. That's why most of the applications will be in PDEs.

### Bio:

```
2006-2011 Lic. en Matematica at UNC (Cordoba, Argentina)
2011-2016 Ph.D. Applied Mathematics at UMD (Maryland, United States)
2016-2017 Postdoc at ICTP (Trieste, Italy)
2017-2019 Postdoc at Imperial College (London, England)
```

2019- Proffessor at PUC (Rio de Janeiro, Brazil)

2020-2022 Hooke Fellow at Oxford (Oxford, England)

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

Differential Calculus and L<sup>p</sup> spaces.

- Differential Calculus and L<sup>p</sup> spaces.
- Distributions.

- $\blacksquare$  Differential Calculus and  $L^p$  spaces.
- Distributions.
- Sobolev Spaces.

- Differential Calculus and L<sup>p</sup> spaces.
- Distributions.
- Sobolev Spaces.
- Embedding Theorems.

## Recomended books

### Foundations functional analysis and distributions

- Linear Functional Analysis by Rynne, Bryan, Youngson, M.A.
- Functional analysis by Walter Rudin

## Recomended books

### Foundations functional analysis and distributions

- Linear Functional Analysis by Rynne, Bryan, Youngson, M.A.
- Functional analysis by Walter Rudin

### **Sobolev Spaces**

- Measure Theory and Fine Properties of Functions, by L.C. Evans and R.F. Gariepy.
- Functional Analysis, Sobolev Spaces and Partial Differential Equations, by Haim Brezis
- Sobolev Spaces, by R.A. Adams and J.J.F. Fournier.
- The Analysis of Partial Differential Operators I, by L. Hörmander.

**Functional Analysis:** When Analysis/(point set) Topology meets Linear Algebra.

**Functional Analysis:** When Analysis/(point set) Topology meets Linear Algebra. The study of the Topology of infinite dimensional of (mostly linear) spaces.

**Functional Analysis:** When Analysis/(point set) Topology meets Linear Algebra. The study of the Topology of infinite dimensional of (mostly linear) spaces.

Given a set U (e.g.  $U \subset \mathbb{R}^n$ ), the set of scalar functions  $F(U) = \{f : f : U \to \mathbb{R}\}$  has a clear vector space structure.

**Functional Analysis:** When Analysis/(point set) Topology meets Linear Algebra. The study of the Topology of infinite dimensional of (mostly linear) spaces.

Given a set U (e.g.  $U \subset \mathbb{R}^n$ ), the set of scalar functions  $F(U) = \{f : f : U \to \mathbb{R}\}$  has a clear vector space structure.

That is to say:

■ If f,  $g \in F(U)$ , then  $f + g \in F(U)$ , where (f + g)(x) = f(x) + g(x).

**Functional Analysis:** When Analysis/(point set) Topology meets Linear Algebra. The study of the Topology of infinite dimensional of (mostly linear) spaces.

Given a set U (e.g.  $U \subset \mathbb{R}^n$ ), the set of scalar functions  $F(U) = \{f : f : U \to \mathbb{R}\}$  has a clear vector space structure.

That is to say:

- If  $f, g \in F(U)$ , then  $f + g \in F(U)$ , where (f + g)(x) = f(x) + g(x).
- If  $f \in F(U)$  and  $c \in \mathbb{R}$ , then  $(cf) \in F(U)$ , where (cf)(x) = cf(x).

### Definition

A subspace  $X \subset F(U)$  endowed with topology  $\tau$ , is a Topological Vector Space. If the operations addition and multiplication by a scalar are continuous in the topology  $\tau$ .

### Definition

A subspace  $X \subset F(U)$  endowed with topology  $\tau$ , is a Topological Vector Space. If the operations addition and multiplication by a scalar are continuous in the topology  $\tau$ .

More specifically, we consider summing two functions as an application  $sum: F(U) \times F(U) \to F(U)$ . Then, the definition is asking that sum is continuous when we endow  $F(U) \times F(U)$  with the product topology  $\tau \times \tau$ .

### Definition

A subspace  $X \subset F(U)$  endowed with topology  $\tau$ , is a Topological Vector Space. If the operations addition and multiplication by a scalar are continuous in the topology  $\tau$ .

More specifically, we consider summing two functions as an application  $sum: F(U) \times F(U) \to F(U)$ . Then, the definition is asking that sum is continuous when we endow  $F(U) \times F(U)$  with the product topology  $\tau \times \tau$ .

i.e. whenever we have sequence  $\{f_n\}_{n\in\mathbb{N}}$ ,  $\{g_n\}_{n\in\mathbb{N}}\subset X$ , such that

$$f_n \to^{\tau} f$$
 &  $g_n \to^{\tau} g$ ,

then

$$f_n + g_n \rightarrow^{\tau} f + g$$
.

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · 釣♀

The most studied types of vector spaces:

- **Metrizable/Metric:** There exists a metric/distance  $d_{\tau}(\cdot, \cdot): X \times X \to [0, \infty)$ , satisfying the triangle inequality that induces the topology  $\tau$ .
- **Normed:** There exists a norm  $\|\cdot\|_{\tau}: X \to [0,\infty)$  that induces the metric/distance  $d_{\tau}(f,g) = \|f-g\|_{\tau}$  that induces the topology  $\tau$ .
- Inner Product: There exists an inner product  $\langle \cdot, \cdot \rangle_{\tau} : X \times X \to \mathbb{R}$  that induces a norm  $\langle f, f \rangle_{\tau}^{1/2} = \|f\|_{\tau}$  that induces a metric, that induces the topology  $\tau$ .

Examples: Take  $U=\mathbb{R}^n$  or any other measure space with underlying measure  $\mu$ , we have

$$L^{p}(U) = \{ f \in F(U) \cap \mathcal{M}(U) : \int_{U} |f(x)|^{p} d\mu(x) < \infty \}.$$

- For  $p \ge 1$ ,  $L^p$  is a **Normed** vector space.
- For p = 2,  $L^2$  is an **Inner-Product** space.
- For  $0 , <math>L^p$  is a **Metric** vector space with distance

$$d_p(f,g) = \int_U |f-g|^p d\mu.$$



### Definition

A **metric** space *X* is said to be **complete** if every Cauchy sequence admits a limit.

### Definition

A **metric** space *X* is said to be **complete** if every Cauchy sequence admits a limit.

**Reminder:**  $\{f_n\}_{n\in\mathbb{N}}$  is Cauchy, if for every  $\epsilon>0$  exists  $N(\epsilon)\in\mathbb{N}$  such that if  $n,\ m\geq N(\epsilon)$ , then

$$d(f_n, f_m) < \epsilon$$
.

### Definition

A **metric** space *X* is said to be **complete** if every Cauchy sequence admits a limit.

**Reminder:**  $\{f_n\}_{n\in\mathbb{N}}$  is Cauchy, if for every  $\epsilon>0$  exists  $\mathcal{N}(\epsilon)\in\mathbb{N}$  such that if  $n,\ m\geq \mathcal{N}(\epsilon)$ , then

$$d(f_n, f_m) < \epsilon$$
.

By the definition there exists a unique  $f_{\infty} \in X$ , such that

$$\lim_{n\to\infty}d(f_n,f_\infty)=0.$$



**Completeness** is such an important property that spaces change their name.

Complete metric spaces are called Frechet Spaces (or F-Spaces depending if the balls can be taken to be convex).

- Complete metric spaces are called Frechet Spaces (or F-Spaces depending if the balls can be taken to be convex).
- Complete normed spaces are called Banach Spaces.

- Complete metric spaces are called Frechet Spaces (or F-Spaces depending if the balls can be taken to be convex).
- Complete normed spaces are called Banach Spaces.
- Complete inner product spaces are called Hilbert Spaces.

- Complete metric spaces are called Frechet Spaces (or F-Spaces depending if the balls can be taken to be convex).
- Complete normed spaces are called Banach Spaces.
- Complete inner product spaces are called Hilbert Spaces.

**Hilbert** spaces are the most similar to finite dimensional vector spaces.

**Hilbert** spaces are the most similar to finite dimensional vector spaces. They admit an infinite complete Orthonormal basis  $\{e_i\}_{i\in I}$  such that

$$\langle e_i, e_j \rangle = \delta_{i,j} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

and simplifies the proofs greatly.

**Hilbert** spaces are the most similar to finite dimensional vector spaces. They admit an infinite complete Orthonormal basis  $\{e_i\}_{i\in I}$  such that

$$\langle e_i, e_j \rangle = \delta_{i,j} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

and simplifies the proofs greatly.

**Warning:** The set of indexes *I* is not necessarily countable!

### Definition

A topological space X is said to be **separable** if there exists a countable set of points  $\{f_n\} \subset X$  which is dense in X.

### Definition

A topological space X is said to be **separable** if there exists a countable set of points  $\{f_n\} \subset X$  which is dense in X.

### Theorem

If X is a **separable Hilbert** space, then it admits a countable orthonormal basis.

### Definition

A topological space X is said to be **separable** if there exists a countable set of points  $\{f_n\} \subset X$  which is dense in X.

### **Theorem**

If X is a **separable Hilbert** space, then it admits a countable orthonormal basis.

### Corollary

If X is a separable Hilbert space, then it is homeomorphic to  $L^2([0,1])$ .

One of the main difference between finite dimensions and infinite dimensions is the compactness.

One of the main difference between finite dimensions and infinite dimensions is the compactness.

## Theorem (Heine-Borel)

Any bounded sequence, admits a convergent subsequence. Alternatively, every closed bounded set is compact.

One of the main difference between finite dimensions and infinite dimensions is the compactness.

### Theorem (Heine-Borel)

Any bounded sequence, admits a convergent subsequence. Alternatively, every closed bounded set is compact.

### Corollary

In  $\mathbb{R}^n$  all norms induce the same topology.

Infinite dimensional separable **Hilbert** spaces do not satisfy the **Heine-Borel** property.

Infinite dimensional separable **Hilbert** spaces do not satisfy the **Heine-Borel** property. Take  $\{e_n\}_{n\in\mathbb{N}}$ , the orthonormal basis then

$$||e_i - e_j||^2 = \langle e_i - e_j, e_i - e_j \rangle = 2(1 - \langle e_i, e_j \rangle) = 2\delta_{i,j}$$

For  $L^2([0,1])$  this is like taking the Fourier basis

$$e_n = \sin(2\pi nx)$$



Infinite dimensional separable **Hilbert** spaces do not satisfy the **Heine-Borel** property. Take  $\{e_n\}_{n\in\mathbb{N}}$ , the orthonormal basis then

$$\|e_i - e_j\|^2 = \langle e_i - e_j, e_i - e_j \rangle = 2(1 - \langle e_i, e_j \rangle) = 2\delta_{i,j}$$

For  $L^2([0,1])$  this is like taking the Fourier basis

$$e_n = \sin(2\pi nx) \rightarrow 0$$

This is known as the Riemann-Lebesgue Lemma.



Given two **normed** vector spaces X, Y we can consider  $\Omega \subset X$  open, an application

$$F:\Omega\subset X\to Y$$

and the set of continuous linear mappings

$$\mathcal{L}(X,Y) = \{L : X \to Y : L \text{ is linear and continuous}\}.$$

Given two **normed** vector spaces X, Y we can consider  $\Omega \subset X$  open, an application

$$F:\Omega\subset X\to Y$$

and the set of continuous linear mappings

$$\mathcal{L}(X,Y) = \{L : X \to Y : L \text{ is linear and continuous}\}.$$

#### Theorem

If X and Y are normed spaces then  $\mathcal{L}(X,Y)$  is normed space.



Given two **normed** vector spaces X, Y we can consider  $\Omega \subset X$  open, an application

$$F:\Omega\subset X\to Y$$

and the set of continuous linear mappings

$$\mathcal{L}(X,Y) = \{L : X \to Y : L \text{ is linear and continuous}\}.$$

#### Theorem

If X and Y are normed spaces then  $\mathcal{L}(X,Y)$  is normed space.

If  $Y = \mathbb{R}$  with the usual topology, then we denote  $\mathcal{L}(X, R) = X^*$ .



#### Definition

A mapping  $F:\Omega\to Y$  is said to be (Frechet) differentiable at  $x_0\in\Omega$  if exists  $L\in\mathcal{L}(X,Y)$  such that

$$F(x) = F(x_0) + L(x - x_0) + o(|x - x_0|).$$

#### Definition

A mapping  $F: \Omega \to Y$  is said to be (Frechet) differentiable at  $x_0 \in \Omega$  if exists  $L \in \mathcal{L}(X,Y)$  such that

$$F(x) = F(x_0) + L(x - x_0) + o(|x - x_0|).$$

**Remark:** *L* is unique and we denote  $DF(x_0) = dF(x_0) = L$ .



#### Definition

A mapping  $F: \Omega \to Y$  is said to be (Frechet) differentiable at  $x_0 \in \Omega$  if exists  $L \in \mathcal{L}(X,Y)$  such that

$$F(x) = F(x_0) + L(x - x_0) + o(|x - x_0|).$$

**Remark:** *L* is unique and we denote  $DF(x_0) = dF(x_0) = L$ .

**Remark:** If F is differentiable at  $x_0 \in \Omega$ , then we say that it is differentiable in  $\Omega$ .



#### Definition

A mapping  $F: \Omega \to Y$  is said to be (Frechet) differentiable at  $x_0 \in \Omega$  if exists  $L \in \mathcal{L}(X,Y)$  such that

$$F(x) = F(x_0) + L(x - x_0) + o(|x - x_0|).$$

**Remark:** *L* is unique and we denote  $DF(x_0) = dF(x_0) = L$ .

**Remark:** If F is differentiable at  $x_0 \in \Omega$ , then we say that it is differentiable in  $\Omega$ .



If F is differentiable in  $\Omega$  we can consider the mapping  $DF: \Omega \subset X \to \mathcal{L}(X,Y)$  and ask if it is Frechet Differentiable.

If F is differentiable in  $\Omega$  we can consider the mapping  $DF:\Omega\subset X\to \mathcal{L}(X,Y)$  and ask if it is Frechet Differentiable. If it is differentiable and it's differential is continuous then we say that  $F\in C^2(\Omega;Y)$ , and

$$D^2F \in \mathcal{L}(X^2, Y)$$
.

If F is differentiable in  $\Omega$  we can consider the mapping  $DF:\Omega\subset X\to \mathcal{L}(X,Y)$  and ask if it is Frechet Differentiable. If it is differentiable and it's differential is continuous then we say that  $F\in C^2(\Omega;Y)$ , and

$$D^2F \in \mathcal{L}(X^2, Y)$$
.

The idea is to lose fear and realize that most of the properties that you know for differentiable vector valued functions  $F: \mathbb{R}^n \to \mathbb{R}^m$  are still valid in this case.

For instance,

### Theorem (Fundamental Theorem of Calculus)

If  $F:(a,b)\subset\mathbb{R}\to Y$  is  $C^1$  and Y is a **Banach** space, then

$$F(t) = F(s) + \int_{s}^{t} dg(u) \ du,$$

where we define the integral via Riemman sums.

Remark: Mean Value theorem doesn't hold, but MV Inequality does.

A vector valued function is  $C^1$ , if and only if, it has continuous partial derivatives.

A vector valued function is  $C^1$ , if and only if, it has continuous partial derivatives.

#### Theorem

Let  $D \subset S_X = \{x : ||x|| = 1\}$ , such that cl(Span(D)) = X, then  $F \in C^1$  if and only if

F is continuous.

A vector valued function is  $C^1$ , if and only if, it has continuous partial derivatives.

#### Theorem

Let  $D \subset S_X = \{x : ||x|| = 1\}$ , such that cl(Span(D)) = X, then  $F \in C^1$  if and only if

- F is continuous.
- For every  $x \in \Omega$   $F(x + \cdot d) : \mathbb{R} \to \mathbb{R}$  is differentiable.

A vector valued function is  $C^1$ , if and only if, it has continuous partial derivatives.

#### Theorem

Let  $D \subset S_X = \{x : ||x|| = 1\}$ , such that cl(Span(D)) = X, then  $F \in C^1$  if and only if

- F is continuous.
- For every  $x \in \Omega$   $F(x + \cdot d)$  :  $\mathbb{R} \to \mathbb{R}$  is differentiable.
- There exists  $g: \Omega \to \mathcal{L}(X,Y)$  continuous such that

$$\frac{d}{dt}F(x+td)=g(x+td)(d)\in Y.$$

A vector valued function is  $C^1$ , if and only if, it has continuous partial derivatives.

#### Theorem

Let  $D \subset S_X = \{x : ||x|| = 1\}$ , such that cl(Span(D)) = X, then  $F \in C^1$  if and only if

- F is continuous.
- For every  $x \in \Omega$   $F(x + \cdot d)$  :  $\mathbb{R} \to \mathbb{R}$  is differentiable.
- There exists  $g: \Omega \to \mathcal{L}(X,Y)$  continuous such that

$$\frac{d}{dt}F(x+td)=g(x+td)(d)\in Y.$$

In this case dF = g.



Given a measure space  $(\Omega, \mathcal{F}, \mu)$  we can define

$$L^p(\Omega;d\mu)=\left\{f:\Omega o\mathbb{R}\; extit{measurable}\;:\;\int_\Omega|f|^p\;d\mu<\infty
ight\}.$$

Given a measure space  $(\Omega, \mathcal{F}, \mu)$  we can define

$$L^p(\Omega;d\mu)=\left\{f:\Omega o\mathbb{R}\; extit{measurable}\;:\;\int_\Omega|f|^p\;d\mu<\infty
ight\}.$$

**Reminder:** Measurable  $f^{-1}((a,b)) \in \mathcal{F}$  for all a, b.

Given a measure space  $(\Omega, \mathcal{F}, \mu)$  we can define

$$L^p(\Omega;d\mu)=\left\{f:\Omega o\mathbb{R}\; extit{measurable}\;:\;\int_\Omega|f|^p\;d\mu<\infty
ight\}.$$

**Reminder:** Measurable  $f^{-1}((a,b)) \in \mathcal{F}$  for all a, b. They are defined almost everywhere (a.e.), with respect to the measure

$$f \sim g$$
 if and only if  $\mu(\{f \neq g\}) = 0$ .

Given a measure space  $(\Omega, \mathcal{F}, \mu)$  we can define

$$L^p(\Omega;d\mu)=\left\{f:\Omega o\mathbb{R}\; extit{measurable}\;:\;\int_\Omega|f|^p\;d\mu<\infty
ight\}.$$

**Reminder:** Measurable  $f^{-1}((a,b)) \in \mathcal{F}$  for all a, b. They are defined almost everywhere (a.e.), with respect to the measure

$$f \sim g$$
 if and only if  $\mu(\{f \neq g\}) = 0$ .

For instance we say  $f \in L^p$  is continuous if there exists a continuous representative.

Given a measure space  $(\Omega, \mathcal{F}, \mu)$  we can define

$$L^p(\Omega;d\mu)=\left\{f:\Omega o\mathbb{R}\; extit{measurable}\;:\;\int_\Omega|f|^p\;d\mu<\infty
ight\}.$$

**Reminder:** Measurable  $f^{-1}((a,b)) \in \mathcal{F}$  for all a, b. They are defined almost everywhere (a.e.), with respect to the measure

$$f \sim g$$
 if and only if  $\mu(\{f \neq g\}) = 0$ .

For instance we say  $f \in L^p$  is continuous if there exists a continuous representative.

Typical case  $\Omega \subset \mathbb{R}^n$  and  $\mu$  is the Lebesgue measure.



 $L^p$  endowed with the norm

$$||f||_p = \left(\int_{\Omega} |f|^p \ d\mu\right)^{1/p}$$

is a complete normed vector space.

 $L^p$  endowed with the norm

$$||f||_p = \left(\int_{\Omega} |f|^p \ d\mu\right)^{1/p}$$

is a complete normed vector space.  $L^p$  is a Banach space!

 $L^p$  endowed with the norm

$$||f||_p = \left(\int_{\Omega} |f|^p \ d\mu\right)^{1/p}$$

is a complete normed vector space.  $L^p$  is a Banach space!

■ For  $1 \le p < \infty$  it is separable.

 $L^p$  endowed with the norm

$$||f||_p = \left(\int_{\Omega} |f|^p \ d\mu\right)^{1/p}$$

is a complete normed vector space.  $L^p$  is a Banach space!

■ For  $1 \le p < \infty$  it is separable. Ex:  $L^{\infty}((0,1))$  is not separable.

 $L^p$  endowed with the norm

$$||f||_p = \left(\int_{\Omega} |f|^p \ d\mu\right)^{1/p}$$

is a complete normed vector space.  $L^p$  is a Banach space!

- For  $1 \le p < \infty$  it is separable. Ex:  $L^{\infty}((0,1))$  is not separable.
- For  $1 \le p < \infty$ , the dual of  $L^p$  is  $(L^p)^* = L^q$ , where

$$\frac{1}{p} + \frac{1}{q} = 1.$$

 $L^p$  endowed with the norm

$$||f||_p = \left(\int_{\Omega} |f|^p \ d\mu\right)^{1/p}$$

is a complete normed vector space.  $L^p$  is a Banach space!

- For  $1 \le p < \infty$  it is separable. Ex:  $L^{\infty}((0,1))$  is not separable.
- For  $1 \le p < \infty$ , the dual of  $L^p$  is  $(L^p)^* = L^q$ , where

$$\frac{1}{p} + \frac{1}{q} = 1.$$

■ For  $1 <math>L^p$  is reflexive

$$(L^p)^{**}=L^p.$$



**Usefuel Inequalities:** 

### **Usefuel Inequalities:**

■ Hölder inequality or duality pairing for  $X = L^p(\Omega; d\mu)$ 

$$\left| \int_{\Omega} fg \ d\mu \right| = |\langle f, g \rangle_{X, X^*}| \le \|f\|_X \|g\|_{X^*} = \|f\|_{L^p} \|g\|_{L^q},$$

if 
$$1/p + 1/q = 1$$



### **Usefuel Inequalities:**

■ Hölder inequality or duality pairing for  $X = L^p(\Omega; d\mu)$ 

$$\left|\int_{\Omega} fg \ d\mu\right| = \left|\langle f,g\rangle_{X,X^*}\right| \leq \|f\|_X \|g\|_{X^*} = \|f\|_{L^p} \|g\|_{L^q},$$

if 
$$1/p + 1/q = 1$$

A useful variation

$$||fg||_{L^r} \leq ||f||_{L^p}||g||_{L^q},$$

if 
$$1/p + 1/q = 1/r$$
.



■ Minkowski's or triangle inequality for the norm

$$||f+g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$$

# L<sup>p</sup> spaces

Minkowski's or triangle inequality for the norm

$$||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$$

Interpolation

$$||f||_{L^r} = ||f||_{L^p}^{\lambda} ||f||_{L^q}^{1-\lambda}$$

if

$$\frac{\lambda}{p} + \frac{1 - \lambda}{q} = \frac{1}{r}.$$



# $L^p$ spaces

Young's inequality for the convolution

$$||f * g||_{L^r} \le ||f||_{L^p} ||g||_{L^q}$$

if

$$\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r}.$$



From now on  $\Omega \subset \mathbb{R}^n$  open.

From now on  $\Omega \subset \mathbb{R}^n$  open. We consider the test functions

$$C_c^{\infty}(\Omega) = \{ \varphi \in C_c^{\infty} : supp \varphi = \{ x \in \Omega : \varphi(x) \neq 0 \} \text{ is compact} \}.$$

From now on  $\Omega \subset \mathbb{R}^n$  open.

We consider the test functions

$$C_c^{\infty}(\Omega) = \{ \varphi \in C_c^{\infty} : supp \varphi = \{ x \in \Omega : \varphi(x) \neq 0 \} \text{ is compact} \}.$$

When endowed with a specific topology they are denoted by

$$\mathcal{D}(\Omega)$$
.

From now on  $\Omega \subset \mathbb{R}^n$  open.

We consider the test functions

$$C_c^{\infty}(\Omega) = \{ \varphi \in C_c^{\infty} : supp \varphi = \{ x \in \Omega : \varphi(x) \neq 0 \} \text{ is compact} \}.$$

When endowed with a specific topology they are denoted by

$$\mathcal{D}(\Omega)$$
.

The basic building block is

$$\varphi(x) = \begin{cases} e^{-\frac{1}{1-|x|^2}} & |x| < 1\\ 0 & |x| \ge 1. \end{cases}$$



We can show existence of partitions of unity

#### Lemma

Given an open covering  $\{U_i\}_{i\in I}$  there exists positive functions  $\varphi_i \in C_c^{\infty}(U_i)$  such that

$$\sum_{i\in I}\varphi_i(x)=1\qquad\forall x\in\Omega,$$

such that only a finite number of them are non-zero.

We can show existence of cut-off functions with estimates

#### Lemma

For any V compact subset  $\Omega$ , there exists  $\chi_V \in C_c^{\infty}(\Omega)$ , such that

$$\chi_V(x) = 1$$
 for all  $x \in V$ 

and

$$|D^{\alpha}(\chi_V)(x)| \leq C_{\alpha} d(x, \partial \Omega)^{-|\alpha|}.$$

To mollify a function we need to take a  $\varphi \in C_c^\infty(B_1)$  which is positive and

$$\int_{\mathcal{B}_1} \varphi = 1.$$

To mollify a function we need to take a  $arphi\in C_c^\infty(B_1)$  which is positive and

$$\int_{B_1} \varphi = 1.$$

We denote by

$$\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(\frac{x}{\varepsilon}).$$

To mollify a function we need to take a  $\varphi \in C_c^\infty(B_1)$  which is positive and

$$\int_{B_1} \varphi = 1.$$

We denote by

$$\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(\frac{x}{\varepsilon}).$$

A mollification of a function  $f \in L^p$  is given by

$$f^{\varepsilon}(x) = f * \varphi_{\varepsilon}(x) = \int_{\mathbb{D}^n} f(y) \varphi_{\varepsilon}(x-y) dy,$$

where we have extended f by zero outside of  $\Omega$ .

#### **Properties:**

 $lacksquare f^arepsilon\in \mathcal{C}^\infty$  and

$$D^{\alpha}f^{\varepsilon}=\left( D^{\alpha}\varphi_{\varepsilon}\right) \ast f.$$

#### **Properties:**

 $lacksquare f^arepsilon\in \mathcal{C}^\infty$  and

$$D^{\alpha}f^{\varepsilon}=(D^{\alpha}\varphi_{\varepsilon})*f.$$

By Young's

$$||f^{\varepsilon}||_{L^p} \leq ||f||_{L^p} ||\varphi_{\varepsilon}||_{L^1} = ||f||_{L^p}.$$



#### **Properties:**

 $lacksquare f^arepsilon\in \mathcal{C}^\infty$  and

$$D^{\alpha}f^{\varepsilon}=(D^{\alpha}\varphi_{\varepsilon})*f.$$

By Young's

$$\|f^{\varepsilon}\|_{L^{p}}\leq \|f\|_{L^{p}}\|\varphi_{\varepsilon}\|_{L^{1}}=\|f\|_{L^{p}}.$$

■ It approximates f in  $L^p$ :

$$||f^{\varepsilon}-f||_{L^{p}}\to 0$$



#### **Properties:**

 $lacksquare f^arepsilon\in \mathcal{C}^\infty$  and

$$D^{\alpha}f^{\varepsilon}=(D^{\alpha}\varphi_{\varepsilon})*f.$$

■ By Young's

$$\|f^{arepsilon}\|_{L^p} \leq \|f\|_{L^p} \|arphi_{arepsilon}\|_{L^1} = \|f\|_{L^p}.$$

■ It approximates f in  $L^p$ :

$$||f^{\varepsilon}-f||_{L^{p}}\to 0$$

•  $suppf^{\varepsilon} \subset (suppf) + B_{\varepsilon}$ .



#### **Properties:**

 $\mathbf{I}^{\varepsilon} \in \mathcal{C}^{\infty}$  and

$$D^{\alpha}f^{\varepsilon}=(D^{\alpha}\varphi_{\varepsilon})*f.$$

■ By Young's

$$\|f^{\varepsilon}\|_{L^p} \leq \|f\|_{L^p} \|\varphi_{\varepsilon}\|_{L^1} = \|f\|_{L^p}.$$

■ It approximates f in  $L^p$ :

$$||f^{\varepsilon}-f||_{L^{p}}\to 0$$

•  $suppf^{\varepsilon} \subset (suppf) + B_{\varepsilon}$ .

Then  $C_c^{\infty}$  dense in  $L^p$ .



### Theorem (Fatou's Lemma)

If  $f_n \to f$  a.e and  $f_n \ge 0$ , then

$$\liminf \int f_n \ge \int \liminf f_n = \int f.$$

### Theorem (Fatou's Lemma)

If  $f_n \to f$  a.e and  $f_n \ge 0$ , then

$$\liminf \int f_n \ge \int \liminf f_n = \int f.$$

### Theorem (Monotone Convergence)

If  $f_n \to f$  a.e. is monotone increasing i.e.  $f_n(x) \le f_{n+1}(x)$  for every x and n, then

$$\lim_{n} \int f_{n} = \sup_{n} \int f_{n} = \int \sup_{n} f_{n} = \int f.$$



#### Theorem (Lebesgue Dominated Convergence)

If  $f_n \to f$  a.e. and exists  $g \in L^1$  such that  $|f_n|(x) \le g(x)$  for every n and x then

$$\lim \int f_n = \int \lim f_n = \int f.$$



#### Theorem (Vitali's Convergence theorem)

Given  $\Omega$  a set of finite measure  $|\Omega| < \infty$ , then  $f_n \to f$  in  $L^p$ , i.e.

$$||f_n-f||_{L^p}\to 0,$$

if and only if,

•  $f_n \rightarrow f$  in measure, i.e. for every  $\varepsilon > 0$ 

$$|\{x : |f_n(x) - f(x)| > \varepsilon\}| \to 0.$$

C

### Theorem (Vitali's Convergence theorem)

Given  $\Omega$  a set of finite measure  $|\Omega| < \infty$ , then  $f_n \to f$  in  $L^p$ , i.e.

$$||f_n-f||_{L^p}\to 0,$$

if and only if,

•  $f_n \rightarrow f$  in measure, i.e. for every  $\varepsilon > 0$ 

$$|\{x : |f_n(x) - f(x)| > \varepsilon\}| \to 0.$$

■ The family  $\{f_n\}$  is equintegrable. i.e. for every  $\varepsilon > 0$  exists a  $\delta$  such that for every measurable set A satisfying  $|A| < \delta$  implies

$$\int_A |f_n|^p \le \varepsilon.$$

### Theorem (Riesz-Kolmogorov)

For  $1 \le p < \infty$ , a family  $\{f_i\}_{i \in I}$  is pre-compact in  $L^p(\mathbb{R}^n)$ , iff,

■ It is Bounded

$$\sup_{I}\|f_{i}\|_{L^{p}}<\infty.$$

### Theorem (Riesz-Kolmogorov)

For  $1 \le p < \infty$ , a family  $\{f_i\}_{i \in I}$  is pre-compact in  $L^p(\mathbb{R}^n)$ , iff,

■ It is Bounded

$$\sup_{I}\|f_{i}\|_{L^{p}}<\infty.$$

It is equi-continuous:

$$\sup_{I}\|f_{i}(\cdot+h)-f_{i}(\cdot)\|_{L^{p}}\to 0.$$

### Theorem (Riesz-Kolmogorov)

For  $1 \le p < \infty$ , a family  $\{f_i\}_{i \in I}$  is pre-compact in  $L^p(\mathbb{R}^n)$ , iff,

It is Bounded

$$\sup_{I}\|f_{i}\|_{L^{p}}<\infty.$$

It is equi-continuous:

$$\sup_{I}\|f_{i}(\cdot+h)-f_{i}(\cdot)\|_{L^{p}}\to 0.$$

■ It is tight: for every  $\varepsilon > 0$  there exists a compact set  $K \subset \mathbb{R}^n$  such that

$$\sup_{I}\int_{K^{c}}|f_{I}|^{p}\leq\varepsilon.$$

This should be reminiscent of compactness for continuous functions:

This should be reminiscent of compactness for continuous functions:

### Theorem (Arzela-Ascoli)

A family of continuous functions  $\{f_i\}_{i\in I}$  from a compact set K is pre-compact, iff,

They are uniformly bounded

$$\sup_{I}\|f_{i}\|_{\infty}<\infty$$

This should be reminiscent of compactness for continuous functions:

### Theorem (Arzela-Ascoli)

A family of continuous functions  $\{f_i\}_{i\in I}$  from a compact set K is pre-compact, iff,

■ They are uniformly bounded

$$\sup_{I}\|f_{i}\|_{\infty}<\infty$$

■ They have a uniform modulus of continuity. i.e. there exists  $\omega:[0,\infty)\to[0,\infty)$  such that  $\omega$  is increasing and

$$\sup_{x,y,l} d(f_i(x), f_i(y)) \leq \omega(d(x,y)).$$

The main point is that there is three necessary and sufficient conditions for convergence:

The main point is that there is three necessary and sufficient conditions for convergence:

■ Boundedness in the appropriate norm.

The main point is that there is three necessary and sufficient conditions for convergence:

- Boundedness in the appropriate norm.
- Uniform Regularity measured in the appropriate norm.

The main point is that there is three necessary and sufficient conditions for convergence:

- Boundedness in the appropriate norm.
- Uniform Regularity measured in the appropriate norm.
- Tightness, you need be careful things are not escaping to infinity.

Given a space X, the weak topology is the smallest/coarsest topology that makes every element of  $X^*$  continuous.

Given a space X, the weak topology is the smallest/coarsest topology that makes every element of  $X^*$  continuous.i.e.

$$f_n \rightharpoonup f$$
 iff  $\langle f_n, T \rangle_{X,X^*} \to \langle f, T \rangle_{X,X^*}$   $\forall T \in X^*$ 

Given a space X, the weak topology is the smallest/coarsest topology that makes every element of  $X^*$  continuous.i.e.

$$f_n \rightharpoonup f$$
 iff  $\langle f_n, T \rangle_{X,X^*} \to \langle f, T \rangle_{X,X^*}$   $\forall T \in X^*$ 

Given  $X^*$ , the weak-\* topology is the smallest/coarsets topology that makes the elements of  $X \subset X^{**}$  continuous.

Given a space X, the weak topology is the smallest/coarsest topology that makes every element of  $X^*$  continuous.i.e.

$$f_n \rightharpoonup f$$
 iff  $\langle f_n, T \rangle_{X,X^*} \to \langle f, T \rangle_{X,X^*}$   $\forall T \in X^*$ 

Given  $X^*$ , the weak-\* topology is the smallest/coarsets topology that makes the elements of  $X \subset X^{**}$  continuous.i.e.

$$T_n \rightharpoonup^* T$$
 iff  $\langle f, T_n \rangle_{X,X^*} \rightarrow \langle f, T \rangle_{X,X^*}$   $\forall f \in X$ .

Given a space X, the weak topology is the smallest/coarsest topology that makes every element of  $X^*$  continuous.i.e.

$$f_n \rightharpoonup f$$
 iff  $\langle f_n, T \rangle_{X,X^*} \to \langle f, T \rangle_{X,X^*}$   $\forall T \in X^*$ 

Given  $X^*$ , the weak-\* topology is the smallest/coarsets topology that makes the elements of  $X \subset X^{**}$  continuous.i.e.

$$T_n \rightharpoonup^* T$$
 iff  $\langle f, T_n \rangle_{X,X^*} \rightarrow \langle f, T \rangle_{X,X^*}$   $\forall f \in X$ .

#### Theorem (Banach-Alaoglu)

If X is separable, then bounded sets of  $X^*$  are compact with the weak-\* topology.

### Theorem (Banach-Alaoglu)

If X is separable, then bounded sets of  $X^*$  are compact with the weak-\* topology.

**Remark:** When  $X = X^{**}$  is reflexive, then the weak topology is equal to weak-\* on  $X^*$ .

### Theorem (Banach-Alaoglu)

If X is separable, then bounded sets of  $X^*$  are compact with the weak-\* topology.

**Remark:** When  $X = X^{**}$  is reflexive, then the weak topology is equal to weak-\* on  $X^*$ .

#### Corollary

For 1 bounded sets are weakly compact.

### Theorem (Banach-Alaoglu)

If X is separable, then bounded sets of  $X^*$  are compact with the weak-\* topology.

**Remark:** When  $X = X^{**}$  is reflexive, then the weak topology is equal to weak-\* on  $X^*$ .

#### Corollary

For 1 bounded sets are weakly compact.

#### Corollary

For  $p \in L^{\infty}$  bounded sets are weak-\* compact.

### Theorem (Banach-Alaoglu)

If X is separable, then bounded sets of  $X^*$  are compact with the weak-\* topology.

**Remark:** When  $X = X^{**}$  is reflexive, then the weak topology is equal to weak-\* on  $X^*$ .

#### Corollary

For 1 bounded sets are weakly compact.

#### Corollary

For  $p \in L^{\infty}$  bounded sets are weak-\* compact.

Bounded sets in  $L^1$  are not compact!



There a few ways weakly convergent sequences can fail to converge strongly:

There a few ways weakly convergent sequences can fail to converge strongly:

Concentration:

$$f_n(x) = n^{p/n} f(nx)$$

There a few ways weakly convergent sequences can fail to converge strongly:

Concentration:

$$f_n(x) = n^{p/n} f(nx)$$

Oscillation:

$$f_n(x) = \sin(nx)f(x).$$

There a few ways weakly convergent sequences can fail to converge strongly:

Concentration:

$$f_n(x) = n^{p/n} f(nx)$$

Oscillation:

$$f_n(x) = \sin(nx)f(x).$$

Not tight:

$$f_n(x) = \frac{1}{n^{1/p}} \chi_{(-n,n)}$$



## Weak convergence

Weak or Weak-\* convergence can be characterized by any dense subset of the space X or  $X^*$ .

### Theorem (Dunford-Pettis)

$$|\Omega| < 1$$
 and  $1 , then  $f_n 
ightharpoonup f$ , if and only if$ 

$$\int_Q f_n o \int_Q f$$
 for all cubes  $Q$ 

**Remark:** For  $p = \infty$ , replace weak by weak-\*. For p = 1, we need equiintegrability.

## Weak convergence

Weak or Weak-\* convergence can be characterized by any dense subset of the space X or  $X^*$ .

#### Theorem (Dunford-Pettis)

$$|\Omega| < 1$$
 and  $1 , then  $f_n 
ightharpoonup f$ , if and only if$ 

$$\int_{Q} f_n \to \int_{Q} f$$
 for all cubes  $Q$ 

$$\sup_{n} \|f_n\|_{L^p} < \infty.$$

**Remark:** For  $p = \infty$ , replace weak by weak-\*. For p = 1, we need equiintegrability.



$$L^1(\Omega) \subset \mathcal{M}(\Omega)$$
,

where  $\mathcal{M}(\Omega)$  is the set of signed bounded Radon measures.

$$L^1(\Omega) \subset \mathcal{M}(\Omega)$$
,

where  $\mathcal{M}(\Omega)$  is the set of signed bounded Radon measures.

$$\mu \in \mathcal{M}(\Omega)$$
 iff  $\mu = \mu_+ - \mu_ \mu_+, \mu_- \in \mathcal{M}_+(\Omega)$ ,

where  $\mathcal{M}_{+}(\Omega)$  is the set of bounded Radon measures.



$$L^1(\Omega) \subset \mathcal{M}(\Omega)$$
,

where  $\mathcal{M}(\Omega)$  is the set of signed bounded Radon measures.

$$\mu \in \mathcal{M}(\Omega)$$
 iff  $\mu = \mu_+ - \mu_ \mu_+, \mu_- \in \mathcal{M}_+(\Omega)$ ,

where  $\mathcal{M}_+(\Omega)$  is the set of bounded Radon measures. Given  $f \in L^1(\Omega)$ , we can consider

$$\mu_f = f d\mathcal{L}$$
 i.e.  $\mu_f(A) = \int_A f \ d\mathcal{L}$ .



#### Theorem (Riesz-Representation Theorem)

The dual of continuous functions with compact support is locally finite measures:

$$\mathcal{M}_{loc}(\Omega) = (C_c(\Omega))^*.$$

Small caveat with the topology of  $C_c(\Omega)$ ,  $f_n \to f$  if  $||f_n - f||_{\infty} \to 0$  and support of  $\bigcup_n supp f_n$  is compact. More, next class.

### Theorem (Riesz-Representation Theorem)

The dual of continuous functions with compact support is locally finite measures:

$$\mathcal{M}_{loc}(\Omega) = (C_c(\Omega))^*.$$

i.e. for every  $T \in (C_c(\Omega))^*$  there exists a unique  $\mu \in \mathcal{M}_{loc}(\Omega)$  such that

$$\langle f, T \rangle_{\mathcal{C}_c(\Omega), (\mathcal{C}_c(\Omega))^*} = \int_{suppf} f \ d\mu = \int_{suppf} f d\mu_+ - \int_{suppf} f d\mu_-.$$



### Theorem (Riesz-Representation Theorem)

The dual of continuous functions with compact support is locally finite measures:

$$\mathcal{M}_{loc}(\Omega) = (C_c(\Omega))^*.$$

i.e. for every  $T \in (C_c(\Omega))^*$  there exists a unique  $\mu \in \mathcal{M}_{loc}(\Omega)$  such that

$$\langle f, T \rangle_{\mathcal{C}_c(\Omega), (\mathcal{C}_c(\Omega))^*} = \int_{suppf} f \ d\mu = \int_{suppf} f d\mu_+ - \int_{suppf} f d\mu_-.$$

Small caveat with the topology of  $C_c(\Omega)$ ,  $f_n \to f$  if  $||f_n - f||_{\infty} \to 0$  and support of  $\bigcup_n suppf_n$  is compact. More, next class.



#### Corollary

As  $C_c$  or  $C_b$  are separable, then bounded sets of  $\mathcal{M}$  or  $\mathcal{M}_{loc}$  are weak-\* compact.

#### Corollary

As  $C_c$  or  $C_b$  are separable, then bounded sets of  $\mathcal{M}$  or  $\mathcal{M}_{loc}$  are weak-\* compact.

Finally, consider  $\{f_n\} \subset L^1$  such that  $\sup_n \|f_n\|_{L^1} < \infty$ , then, up to subsequence, there exists  $\mu \in \mathcal{M}(\Omega)$  such that

$$\int \varphi f_{n} \to \int \varphi d\mu$$

for every  $\varphi \in C_b$ .



#### Corollary

As  $C_c$  or  $C_b$  are separable, then bounded sets of  $\mathcal{M}$  or  $\mathcal{M}_{loc}$  are weak-\* compact.

Finally, consider  $\{f_n\} \subset L^1$  such that  $\sup_n \|f_n\|_{L^1} < \infty$ , then, up to subsequence, there exists  $\mu \in \mathcal{M}(\Omega)$  such that

$$\int \varphi f_{n} \to \int \varphi d\mu$$

for every  $\varphi \in C_b.\mu$  is not necessarilly in  $L^1$ .

