综合测试1

一、填空题(每小题 3 分,共 15 分).	
一、填空题(母小园)为为人	2.
$- , 填空题(每小题 3 分, 共 15 分).$ 1. $\lim_{x \to \infty} \left[\sin \ln \left(1 + \frac{3}{x} \right) - \sin \ln \left(1 + \frac{1}{x} \right) \right] = $	
2. 曲线 $y=2(x-1)^2$ 在 $x=$	处兵有取小山十一————————————————————————————————————
3. 设 $f(x)$ 为已知的连续函数,则 $\frac{d}{dx}\int_{0}^{x^{2}}(x^{2})$	$(t)f(t)dt = 2X \int_0^\infty f(t)dt$
$te^{t} dt$,则常数 $a = \int_{a}^{a} te^{t} dt$,则常数 $a = \int_{a}^{a} te^{t} dt$	Zi Zinahi ana Shan
5 已知曲线上任一点处的二阶导数 y"=6x	,且任曲线上点(0, 5)
3y=6,则这条曲线方程为	JXEN 3
	3 x² + C,
二、选择题(每小题 3 分,共 18 分).	
1. 设 $\alpha(x) = \int_0^{5x} \frac{\sin t}{t} dt, \beta(x) = \int_0^{\sin x} (1+t) dt$	$(t)^{\frac{1}{t}}dt$,则当 $x\to 0$ 时, $\alpha(x)$ 是 $\beta(x)$ 的().
A. 高阶无穷小	B. 低阶无穷小
C. 同阶但不等价的无穷小	D. 等价无穷小
2. 设函数 $f(x)$ 对任意 x 均满足 $f(1+x)$	=af(x),且有 $f'(0)=b$,其中 a,b 为非
零常数,则())	
A. $f(x)$ 在 $x=1$ 处不可导	B. $f(x)$ 在 $x=1$ 处可导,且 $f'(1)=a$
	D. $f(x)$ 在 $x=1$ 处可导,且 $f'(1)=ab$
3. 若 $F(x) = \int_{0}^{x} (2t - x) f(t) dt$,其中 $f(0, 0)$	(x)在区间 $(-1,1)$ 上二阶可导,且 $f'(x)$
A. 函数 $F(x)$ 必在 $x=0$ 处取得极大值 B. 函数 $F(x)$ 必在 $x=0$ 取得极小值	
C. 函数 $F(x)$ 在 $x=0$ 处没有极值,但点	(0,F(0))为曲线 $y=F(x)$ 的拐点
D. 函数 $F(x)$ 在 $x=0$ 处没有极值,点(0	$\mathbf{F}^{(0)}$ 也不是曲线 $\mathbf{y} = \mathbf{F}(\mathbf{x})$ 的拐点
4. 设周期函数 $f(x)$ 在 $(-\infty, +\infty)$ 内可	导,周期为 4,又 $\lim_{x\to 0} \frac{f(1)-f(1-x)}{2x} = -1$,
则曲线 $y=f(x)$ 在点(5, $f(5)$)处的切线斜率为(力).	
A. $\frac{1}{2}$ B. 0	C1 J''' $F -2$ $D2$

四、解答题(每小题8分,共16分).

四、解答题(每小题 8分, 共 16分).

1. 求微分方程
$$xy' + 2y = x \ln x$$
 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.

1. 求微分方程 $xy' + 2y = x \ln x$ 为 $xy' + 2y =$

综合测试 2

填空题(每小题 4 分,共 20 分). 设函数 f(x) 在 x=0 的某邻域内可导,且 $f'(x)=e^{f(x)}$, f(2)=1,则 f''(2)1. 设 $f(x+\frac{1}{x}) = \frac{x+\frac{1}{x}}{1+x^4}, \quad \frac{(t^{\frac{1}{x}})^{\frac{1}{x}}}{1+x^4}$ $f(x) dx = \frac{x}{1+x^4}$ 5. 微分方程 xy'+y=0 满足条件 y(1)=1 的解是 $y \in X'$. サーツ ールンニ はな 二、选择题(每小题 4 分, 共 20 分). ; : Cx · 1. 设函数 f(x)在区间[-1,1]上连续,则 x=0 是函数 g(x)=B. 可去间断点 C. 无穷间断点 D. 振荡间断点 A. 跳跃间断点 2. 当 $x \to 0^+$ 时,与 \sqrt{x} 等价的无穷小量是(3). B. $\ln(1+\sqrt{x})$ 3. 设函数 f(x)在 x=0 处连续,且 $\lim_{h\to 0} \frac{f(h^2)}{h^2} = 1$,则(C):
A. f(0)=0 且 f'(0)存在
B. f(0)=1B. f(0) = 1 且 f'(0)存在 D. f(0)=1 且 $f'_{+}(0)$ 存在 C. f(0) = 0 且 $f'_{+}(0)$ 存在 4. 设函数 y=f(x)具有二阶导数,且 f'(x)>0, f''(x)>0, Δx 为自变量 x 在点 x。 处的增量, Δy 与 dy 分别为 f(x) 在点 x_0 处对应的增量与微分,若 $\Delta x > 0$,则(A). A. $0 < dy < \Delta y$ B. $0 < \Delta y < dy$ C. $\Delta y < dy < 0$ D. $dy < \Delta y < 0$ 5. 设非齐次线性微分方程 y'+p(x)y=Q(x)有两个不同的解 $y_1(x),y_2(x),C$ 为 任意常数,则该方程的通解是(B. $y_1(x) + C[y_1(x) - y_2(x)]$ A. $C[y_1(x)-y_2(x)]$ D. $y_1(x) + C[y_1(x) + y_2(x)]$ C. $C[y_1(x) + y_2(x)]$

 $0, \int_0^2 f(x) dx$

五、证明题(第1小题7分,第2小题12分,共19分).

1. 设函数 f(x)在 $[0,\pi]$ 上连续,且 $\int_{0}^{\pi} f(x) dx = 0$, $\int_{0}^{\pi} f(x) \cos x dx = 0$. 证明: 在(0, π)内至少存在两个不同的点 ξ_1, ξ_2 ,使 $f(\xi_1) = f(\xi_2) = 0$.

Fran:
$$\int_{0}^{\infty} f(x) dx$$
.

Fran: $\int_{0}^{\infty} f(x) dx$.

 $f(x) = \int_{0}^{\infty} f(x) dx$.

2. 设 y=f(x)是区间[0,1]上的任一非负连续函数.

(1)证明:存在 $x_0 \in (0,1)$,使得在区间 $[0,x_0]$ 上以 $f(x_0)$ 为高的矩形面积,等于在区间 $[x_0,1]$ 上以 y=f(x)为曲边的曲边梯形面积;