

Sensitivity Analysis

- A sensitivity analysis is how we investigate the effect changes in the objective function and constraints have on the optimal solution
- Types of changes
 - Changes in the objective function coefficients
 - Changes in the constraint quantity values
 - Changes in the constraint coefficients
 - Additional constraints
 - Additional decision variables
- Excel's Solver can handle changes in the first two types
- Other types involve rerunning Excel's Solver with different information

Changing Objective Function

- Q: How much can parameters change without changing the optimal solution?
- Changes in objective function parameters lead to changes in the direction of level curves in a graph
- Consider the Beaver Creek linear program

Maximize
$$40x + 50y$$

Subject to $x + 2y \le 40$
 $4x + 3y \le 120$
 $x \ge 0$
 $y \ge 0$

Recall optimal solution was (24,8)

Changing Objective Function

• We will "tilt" the objective function coefficients (a, b) = (40,50) until the optimal

solution changes

• Any vector in direction of (a, b), where (a, b) is in the purple region will lead to the same optimal solution

Changing Objective Function

• Line
$$y = 2x$$
 is perpendicular to $x + 2y = 40$ $\left(y = 20 - \frac{1}{2}x\right)$

• Line
$$y = \frac{3}{4}x$$
 is perpendicular to $4x + 3y = 120$ $\left(y = 40 - \frac{4}{3}x\right)$

• Points
$$(a, b)$$
 in purple cone must satisfy $\frac{3}{4} \le \frac{b}{a} \le 2$

• If we fix
$$b = 50$$
, then $25 \le a \le \frac{200}{3}$

- Download BeaverCreek.xlsx from website link called Sheet 1
- We start by considering changes to the objective function 40x + 50y
- Attempt to solve linear program produces menu of options

Selecting OK creates a new sheet in Excel file

Variable Cells	S					
		Final F	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$11 Bov	wls = Bowl	24	0	40	26.6666667	15
\$B\$12 Mu	gs = Bowl	8	0	50	30	20

• If we fix
$$b = 50$$
, then $25 = 40 - 15 \le a \le 40 + 26.67 = \frac{200}{3}$

• If we fix
$$a = 40$$
, then $30 = 50 - 20 \le b \le 50 + 30 = 80$

Next, we consider changes to the constraint quantit

Changing Constraint Quantity

Subject to
$$x + 2y \le c$$
$$4x + 3y \le d$$
$$x \ge 0$$
$$y \ge 0$$

- Changes in these quantities cause vertical shifts of constraints in graph
- Constraint is binding at the optimal solution if the constraint holds with equality
- Constraint is non-binding at optimal solution if the constraint fails with equality
- In this sensitivity analysis, there is not concern about different optimal solutions

Changing Constraint Quantity

- Binding constraints at the optimal solution (24,8)
 - x + 2y = 24 + 2(8) = 40 = c
 - 4x + 3y = 4(24) + 3(8) = 120 = d
- Non-binding constraints at the optimal solution (24,8)
 - $x = 24 \neq 0$
 - $y = 8 \neq 0$
- Q: How can we change (c, d) while keeping the first two constraints binding at optimality? (i.e. we want the optimal solution to occur at the intersection of the lines x + 2y = c and 4x + 3y = d)

Changing Constraint Quantity

• Adjustment of y-intercepts of lines until lines don't intersect and one of the constraints is no longer "necessary"

• We can change $30 \le c \le 80$ and $60 \le d \le 160$

- Follow same steps in Excel from previous sensitivity analysis
- Sensitivity analysis for constraint quantities displayed below

Constraints									
		Final	Shadow	Constraint	Allowable	Allowable			
Cell	Name	Value	Price	R.H. Side	Increase	Decrease			
\$D\$6	Labor (hr/unit) Usage	40	16	40	40	10			
\$D\$7	Clay (lb/unit) Usage	120	6	120	40	60			

- If we fix $c = 40 \ hours \ of \ labor$, then $30 = 40 10 \le c \le 40 + 40 = 80$
- If we fix $d = 120 \ lbs. \ of \ clay$, then $60 = 120 60 \le d \le 120 + 40 = 160$

Shadow Prices

- The shadow price or dual value of a constraint (resource) correspond to the maximum amount that one would be willing to pay for one additional unit of that resource
- Standard sensitivity reports include these shadow prices
- In general, there is one shadow price for each constraint

Co	Constraints									
L			Final	Shadow						
L	Cell	Name	Value	Price						
L	\$D\$6	Labor (hr/unit) Usage	40	16						
	\$D\$7	Clay (lb/unit) Usage	120	6						

- The shadow prices of labor and clay are 16 and 6, respectively
- Implication for labor
 - If we increase labor hours from 40 to 40 + x, the profit increases by 16x
 - We shouldn't pay more than \$16 per hour of labor
- Implication for clay
 - If we increase pounds of clay from 120 to 120 + y, the profit increases by 6y
 - We shouldn't pay more than \$6 per pound of clay
- This only can be applied for constraint quantity values in the limits under the specificity analysis

- Quick-Screen is a clothing manufacturing company specializing in the production of commemorative shirts immediately following major sporting events and they have a contract to produce shirts for winning team of a college football bowl game on New Year's Day between State and Tech
- They will produce two different sweatshirts and two different t-shirts with one of each having writing on front (F) only and the other having writing on both front (F) and back (B)
- All items will be produced by the box where each box contains a dozen items
- Q: How much of each of the items should be produced to maximize profit?

- **Decision Variables**
 - $x_1 = Number\ of\ Boxes\ of\ Sweatshirts\ -F$
 - $x_2 = Number\ of\ Boxes\ of\ Sweatshirts B/F$
 - $x_3 = Number\ of\ Boxes\ of\ T shirts F$
 - $x_4 = Number\ of\ Boxes\ of\ T shirts B/F$
- Consider the following table showing resource requirements, unit costs, and profit of every dozen (box) of shirts

	Processing time	Cost	Profit
	(hr.) per dozen	per dozen	dozen
Sweatshirt - F	0.10	\$36	\$90
Sweatshirt - B/F	0.25	48	125
T-shirt - F	0.08	25	45
T-shirt - B/F	0.21	35	65

- Goal: Maximize profit on shirts
- $Z = 90x_1 + 125x_2 + 45x_3 + 65x_4$

Constraints

- Only have 72 hours of processing time to produce all items: $0.1x_1 + 0.25x_2 + 0.08x_3 + 0.21x_4 \le 72$
- Company has a budget of \$25,000: $36x_1 + 48x_2 + 25x_3 + 35x_4 \le 25,000$
- Trailer truck will pick up shirts and can accommodate 1,200 standard-size boxes where each standard-size box holds 12 T-shirts and a box of 12 sweatshirts is 3 times the size of the standard-size box:

$$3(x_1 + x_2) + x_3 + x_4 \le 1,200$$

- They have 500 dozens of blank sweatshirts: $x_1 + x_2 \le 500$
- They have 500 dozens of blank T-shirts: $x_3 + x_4 \le 500$
- Nonnegativity: $x_1, x_2, x_3, x_4 \ge 0$

- Download ProductMix.xlsx from website link called Sheet 2
- Before Excel solver

A product mix								
Products:	Swoatshirt F	Sweatshirt-B/F	T chirt E	T-shirt-B/F				
Froducts.	(dozen)	(dozen)	(dozen)	(dozen)				
Profit per dozen:	90	•						
Resources:					Usage Cons	straint Availa	able	Left over
Processing time	0.1	0.25	0.08	0.21	0 <=		72	72
Cost	36	48	25	35	0 <=		25000	25000
Truck capacity	3	3	1	1	0 <=		1200	1200
Blank sweatshirts	1	1	0	0	0 <=		500	500
Blank T-shirts	0	0	1	1	0 <=		500	500
Production:								
Sweatshirts-F =	0							
Sweatshirts-B/F =	0							
T-shirt-F =	0							
T-shirt-B/F =	0							
Profit =	0							

After Excel solver

A product mix								
Products:	Sweatshirt-F	Sweatshirt-B/F	T-shirt-F	T-shirt-B/F				
	(dozen)	(dozen)	(dozen)	(dozen)				
Profit per dozen:	90	125	-	-				
Resources:					Usage	Constraint	Available	Left over
Processing time	0.1	0.25	0.08	0.21	72	<=	72	0
Cost	36	48	25	35	21593.333	<=	25000	3406.6667
Truck capacity	3	3	1	1	1200	<=	1200	0
Blank sweatshirts	1	1	0	0	233.33333	<=	500	266.66667
Blank T-shirts	0	0	1	1	500	<=	500	0
Production:								
Sweatshirts-F =	175.55556							
Sweatshirts-B/F =	57.77778							
T-shirt-F =	500							
T-shirt-B/F =	0							
Profit =	45522.222							

- Recommended optimal solution to maximize profit at \$45,522.22
 - $x_1 = 175.56$
 - $x_2 = 57.78$
 - $x_3 = 500$
 - $x_4 = 0$
- Sensitivity report for objective function coefficients

Variable (Cells						
		Final	Reduced	(Objective	Allowable	Allowable
Cell	Name	Value	Cost	C	oefficient	Increase	Decrease
\$B\$15	Sweatshirts-F = (dozen)	175.555556		0	90	11.92307692	40
\$B\$16	Sweatshirts-B/F = (dozen)	57.7777778		0	125	13.21428571	11.92307692
\$B\$17	T-shirt-F = (dozen)	500		0	45	1E+30	4.111111111
\$B\$18	T-shirt-B/F = (dozen)	0	-10.3333333	3	65	10.33333333	1E+30

• Sensitivity report for constraint quantities

Constrain	nts					
		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$F\$10	Blank sweatshirts Usage	233.3333333	0	500	1E+30	266.6666667
\$F\$11	Blank T-shirts Usage	500	4.111111111	500	185.7142857	500
\$F\$7	Processing time Usage	72	233.3333333	72	26.33333333	8.666666667
\$F\$8	Cost Usage	21593.33333	0	25000	1E+30	3406.666667
\$F\$9	Truck capacity Usage	1200	22.2222222	1200	260	316

The End

