TD 3: Fonctions analytiques

Exercice 1. Déterminer le rayon des convergence des séries suivantes :

a)
$$\sum_{n=0}^{\infty} 2^n z^n$$

c)
$$\sum_{n} (-1)^n 2^n z^{2n+2}$$

a)
$$\sum_{n\geq 0} 2^n z^n$$

b) $\sum_{n\geq 0} (-1)^n z^n$
c) $\sum_{n\geq 0} (-1)^n 2^n z^{2n+2}$
d) $\sum_{n\geq 1} \frac{z^n}{\sqrt{n}}$
e) $\sum_{n\geq 0} \frac{2^n}{(2n)!} z^n$
f) $\sum_{n\geq 1} \frac{n!}{n^n} z^n$

$$g) \sum_{n \ge 0} 2^n z^{2^n}$$

b)
$$\sum_{n>0} (-1)^n z^n$$

d)
$$\sum_{n \ge 1} \frac{z^n}{\sqrt{n}}$$

f)
$$\sum_{n \ge 1} \frac{n!}{n^n} z^n$$

h)
$$\sum_{n\geq 1} \frac{(n!)^2}{(2n)!} z^{2n}$$
.

Exercice 2. Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Montrer que pour tout $p \in \mathbb{N}^*$, la série entière $\sum a_n z^{pn}$ a pour rayon de convergence $R^{\frac{1}{p}}$.

Exercice 3. Soit $R_1, R_2 > 0$. Donner un exemple de série entière $\sum_{n \in \mathbb{N}} a_n z^n$ de rayon de convergence R_1 et un exemple de série entière $\sum_{n \in \mathbb{N}^1} b_n z^n$ de rayon de convergence R_2 telles que la série entière produit $\sum_{k=1}^{n} \left(\sum_{k=1}^{n} a_k b_{n-k}\right) z^n$ ait un rayon de convergence strictement supérieur à min (R_1, R_2) .

Exercice 4. On considère la fonction $f: \mathbb{C}^* \to \mathbb{C}$ définie par $f(z) = \sin(\frac{1}{z})$. Montrer que si l'on note $z_n = \frac{1}{\pi n}$ pour tout $n \in \mathbb{N}^*$, alors $z_n \xrightarrow{n \to +\infty} 0$ et $f(z_n) = 0$ pour tout $n \in \mathbb{N}^*$. Est-ce en contradiction avec le théorème de prolongement analytique? Pourquoi?

Exercice 5. On considère la série entière $\ell(z) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n} z^n$.

- 1. Montrer que le rayon de convergence de cette série est 1.
- 2. Montrer que pour tout $z \in B(0,1)$, $\ell'(z) = \frac{1}{1+z}$.
- 3. En déduire que $\ell(z) = \text{Log}_0(1+z)$ pour tout $z \in B(0,1)$.

Exercice 6. Montrer que les fonction f suivante sont analytiques sur $\mathbb{C} \setminus \{1\}$ puis calculer leur série de Taylor en 0: $f(z) = \frac{1}{1-z}$, $f(z) = \frac{1}{(1-z)^2}$, $f(z) = \frac{1}{(1-z)^3}$.

Exercice 7. Montrer que la fonction $f: \mathbb{C} \setminus \{1,2\} \to \mathbb{C}$ définie par

$$f(z) = \frac{1}{(z-1)(z-2)}$$

est analytique, puis pour tout $z_0 \in \mathbb{C} \setminus \{1,2\}$ calculer le développement en série entière de f centré en z_0 .

Exercice 8. Soit $U \subset \mathbb{C}$ un ouvert connexe. On note $\mathcal{A}(U)$ l'ensemble des fonctions analytiques sur U. Montrer que, muni de l'addition et de la multiplication de fonctions, $\mathcal{A}(U)$ est un anneau intègre. Que se passet-il si l'on retire l'hypothèse de connexité?

Exercice 9. Soit $f(z) = \sum_{n>0} a_n z^n$ une série entière de rayon de convergence R > 0 et telle que $a_0 \neq 0$. L'objectif de cet exercice est de démontrer que la fonction $\frac{1}{f}$ est développable en série entière en 0.

1. On suppose que ceci est le cas et que $\frac{1}{f(z)} = \sum_{n=0}^{+\infty} b_n z^n$. Quelle relation de récurrence vérifie la suite $(b_n)_{n\in\mathbb{N}}$?

2. Soit $(b_n)_{n\in\mathbb{N}}$ une suite vérifiant le relation de récurrence précédente. Montrer qu'il existe C>0 tel que pour tout $n\geq 0$, on a

$$|b_n| \le \frac{C^n}{|a_0|}.$$

3. En déduire que $\frac{1}{f}$ est développable en série entière en 0.

Exercice 10. Soit $U \subset \mathbb{C}$ un ouvert. Soit $f: U \to \mathbb{C}$ une fonction analytique. Soit $F: U \to \mathbb{C}$ une fonction holomorphe telle que F' = f. Montrer que F est analytique. En déduire que le logarithme principal Log est analytique sur $\mathbb{C} \setminus \mathbb{R}_-$

Exercice 11. Soit $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ une série entière de rayon de convergence R > 0. Un point $z_0 \in \partial B(0, R)$ est un *point régulier* de f si il existe une extension analytique de f dans un voisinage de $B(0, R) \cup \{z_0\}$. Si $z_0 \in \partial B(0, R)$ n'est pas régulier pour f, on dit que c'est un *point singulier* de f. On note $Sing(f) \subset \partial B(0, R)$ l'ensemble des points singuliers de f.

- 1. Considère la série entière $f(z) = \sum_{n=0}^{+\infty} z^n$ (de rayon de convergence 1).
 - (a) Montrer que $Sing(f) = \{1\}.$
 - (b) Montrer que la série $\sum_{n=0}^{+\infty} z^n$ ne converge en aucun point du bord du disque de convergence.
- 2. Considère la série entière $f(z) = \sum_{n=2}^{+\infty} \frac{z^n}{n(n-1)}$ (de rayon de convergence 1).
 - (a) Montrer que $Sing(f) = \{1\}$. (On pourra utiliser la détermination principale du logarithme).
 - (b) Montrer que la série $\sum_{n=2}^{+\infty} \frac{z^n}{n(n-1)}$ converge en tout point du bord du disque de convergence.
- 3. Y-a-t'il un lien entre la régularité d'un point $z_0 \in \partial B(0,R)$ et la convergence de $\sum_{n=0}^{+\infty} a_n z_0^n$?
- 4. Montrer que Sing(f) est fermé.
- 5. On considère $f(z) = \sum_{n=0}^{+\infty} z^{2^n}$.
 - (a) Montrer que le rayon de convergence de f est 1.
 - (b) Montrer que 1 est un point singulier de f. (Indication, montrer que $\lim_{t\to 1^-}\sum_{n=0}^{+\infty}t^{2^n}=+\infty$).
 - (c) Plus généralement, montrer que pour tout $m \in \mathbb{N}$, toute racine 2^m -ième de 1 est un point singulier de f. (Indication, observer que si z_0 est une racine 2^m -ème de l'unité, alors pour tout $t \in]0,1[$ on a $f(tz_0) = \sum_{n=0}^{m-1} (tz_0)^{2^n} + \sum_{n=m}^{+\infty} t^{2^n}$ et utiliser l'argument de la question précédente).
 - (d) En déduire que $\operatorname{Sing}(f) = \partial B(0, 1)$.