Machine Learning 101

Regularización

Felipe Alonso Atienza

Data Scientist @BBVA

Índice

- 1. Regresión lineal (revisited)
- 2. El problema de overfitting
- 3. Regularización: ridge regression
- 4. Least Absolute Shrinkage and Selection Operator (LASSO)

Regresión lineal (una variable)

 $x = tamaño (m^2)$

$$f_{\omega}(x) = \omega_0 + \omega_1 x$$

$$J(\omega_0, \omega_1) = \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - f_{\omega}(x^{(i)}) \right)^2$$

 $\min_{\omega_0,\omega_1} J(\omega_0,\omega_1)$ Descenso por gradiente

	sqm_living	bedrooms	floors	years	price
0	109.625587	3	1.0	62	221900.0
1	238.760813	3	2.0	66	538000.0
2	71.535341	2	1.0	84	180000.0
3	182.089958	4	1.0	52	604000.0
4	156.077107	3	1.0	30	510000.0

$$\hat{y} = f_{\omega}(x) = \omega_0 + \omega_1 x_1 + \omega_2 x_2 + \omega_3 x_3 + \omega_4 x_4$$

$$\hat{y} = f_{\omega}(x) = 80 + 0.1x_1 + 0.01x_2 + 3x_3 - 2x_4$$

	sqm_living	bedrooms	floors	years	price
0	109.625587	3	1.0	62	221900.0
1	238.760813	3	2.0	66	538000.0
2	71.535341	2	1.0	84	180000.0
3	182.089958	4	1.0	52	604000.0
4	156.077107	3	1.0	30	510000.0

$$\hat{y}^{(0)} = \omega_0 + \omega_1 x_1^{(0)} + \omega_2 x_2^{(0)} + \omega_3 x_3^{(0)} + \omega_4 x_4^{(0)}$$
$$\hat{y}^{(1)} = \omega_0 + \omega_1 x_1^{(1)} + \omega_2 x_2^{(1)} + \omega_3 x_3^{(1)} + \omega_4 x_4^{(1)}$$

$$\hat{y}^{(4)} = \omega_0 + \omega_1 x_1^{(4)} + \omega_2 x_2^{(4)} + \omega_3 x_3^{(4)} + \omega_4 x_4^{(4)}$$

$$\begin{bmatrix} \hat{y}^{(0)} \\ \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(4)} \end{bmatrix} \quad \begin{bmatrix} 1 & x_1^{(0)} & x_2^{(0)} & x_3^{(0)} & x_4^{(0)} \\ 1 & x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & x_4^{(1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_1^{(4)} & x_2^{(4)} & x_3^{(4)} & x_4^{(4)} \end{bmatrix} \begin{bmatrix} \omega_0 \\ \omega_1 \\ \vdots \\ \omega_4 \end{bmatrix}$$

$$\hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\omega}$$

$$\hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\omega}$$

$$J(\boldsymbol{\omega}) = \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \hat{y}^{(i)} \right)^2 \equiv ||\mathbf{y} - \mathbf{X}\boldsymbol{\omega}||_2^2$$

1.1.1. Ordinary Least Squares

LinearRegression fits a linear model with coefficients $w=(w_1,...,w_p)$ to minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. Mathematically it solves a problem of the form:

$$\min_{w} ||Xw - y||_2^2$$

 La solución al problema de optimización anterior tiene una expresión analítica cerrada:

$$oldsymbol{\omega} = \left(\mathbf{X}^T\mathbf{X}
ight)^{-1}\mathbf{X}^T\mathbf{y}$$

- ¿Qué pasa si $\mathbf{X}^T\mathbf{X}$ no es invertible? La solución no es única, debido a:
 - Variables redundantes (linealmente dependientes)
 - Más variables/características que muestras
- Consecuencias
 - Inestabilidad de la solución (overfitting)
 - Coeficientes del modelo contraintuitivos

Índice

- 1. Regresión lineal (revisited)
- 2. El problema de overfitting
- 3. Regularización: ridge regression
- 4. Least Absolute Shrinkage and Selection Operator (LASSO)

El problema de overfitting

$$\boldsymbol{\omega} = [0, -2.1]$$

$$\boldsymbol{\omega} = [0, -16.8, -82.7, 118.2, -52.3]$$

$$\omega = [0, 243.9, -1553.3, 4943.9, -9040.2, 9816.6, -5974.5, 1585.7]$$

El problema de *overfitting*

¿Cómo abordar el sobreajuste? Dos estrategias

- Regularización: penalizar coeficientes grandes
- Selección de características: reducir la dimensionalidad del problema

En ambos casos, se busca reducir la complejidad del modelo (a costa de aumentar el sesgo).

El problema de *overfitting*

También aplica en clasificación: regresión logística

Índice

- 1. Regresión lineal (revisited)
- 2. El problema de overfitting
- 3. Regularización: ridge regression
- 4. Least Absolute Shrinkage and Selection Operator (LASSO)

Motivación

- La solución de mínimos cuadrados es inestable (coeficientes de alto valor)
- Solución: penalizar los coeficientes de alto valor
- ¿Cómo? Modificando la función de coste

$$\min_{\boldsymbol{\omega}} \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - f_{\omega}(\mathbf{x}^{(i)}) \right)^{2} + \alpha \sum_{k=1}^{D} (\omega_{k})^{2}$$

α: parámetro de regularización (hay que fijarlo a priori)

Parámetro de regularización

- Compromiso entre magnitud de los coeficientes y ajuste de la solución
 - \circ Si α es muy grande \rightarrow todos los coeficientes nulos (*underfitting*)
 - \circ Si lpha es nulo \rightarrow no hay regularización (posibilidad de sobreajuste)
- Ha de fijarse a priori (k-fold CV)
- Se cumple que $lpha \geq 0$

Parámetro de regularización

Fuente: http://scikit-learn.org/stable/auto_examples/linear_model/plot_ridge_path.html#sphx-glr-auto-examples-linear-model-plot-ridge-path-py

Ridge regression

En forma matricial

$$\min_{\boldsymbol{\omega}} \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - f_{\omega}(\mathbf{x}^{(i)}) \right)^{2} + \alpha \sum_{k=1}^{D} (\omega_{k})^{2}$$

$$\min_{\omega} ||\mathbf{y} - \mathbf{X}\boldsymbol{\omega}||_2^2 + \alpha ||\boldsymbol{\omega}||_2^2$$

1.1.2. Ridge Regression

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of coefficients. The ridge coefficients minimize a penalized residual sum of squares,

$$\min_{w} ||Xw - y||_2^2 + \alpha ||w||_2^2$$

Here, $\alpha \geq 0$ is a complexity parameter that controls the amount of shrinkage: the larger the value of α , the greater the amount of shrinkage and thus the coefficients become more robust to collinearity.

Índice

- 1. Regresión lineal (revisited)
- 2. El problema de overfitting
- 3. Regularización: ridge regression
- 4. Least Absolute Shrinkage and Selection Operator (LASSO)

Lasso

$$\min_{\pmb{\omega}} \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - f_{\omega}(\mathbf{x}^{(i)}) \right)^2 + \alpha \sum_{k=1}^{D} |\omega_k|$$
Regresión lineal Regularización

$$\min_{\boldsymbol{\omega}} ||\mathbf{y} - \mathbf{X}\boldsymbol{\omega}||_2^2 + \alpha ||\boldsymbol{\omega}||_1$$

Norma L1 vs Norma L2

$$\min_{\boldsymbol{\omega}} ||\mathbf{y} - \mathbf{X}\boldsymbol{\omega}||_2^2 + \alpha ||\boldsymbol{\omega}||_2^2 \Rightarrow \min_{\boldsymbol{\omega}} ||\mathbf{y} - \mathbf{X}\boldsymbol{\omega}||_2^2 \text{ sujeto a } ||\boldsymbol{\omega}||_2^2 \leq \alpha$$

Lasso vs Ridge

Fuente: http://www.pmean.com/16/images/lasso.pdf

The Lasso path

Ridge

$$\min_{\boldsymbol{\omega}} ||\mathbf{y} - \mathbf{X}\boldsymbol{\omega}||_2^2 + \alpha ||\boldsymbol{\omega}||_2^2$$

- Afecta a todos los coeficientes (incluye todos o ninguno)
- Computacionalmente eficiente y previene overfitting
- Buen punto de partida para analizar un problema

Lasso

$$\min_{\boldsymbol{\omega}} ||\mathbf{y} - \mathbf{X}\boldsymbol{\omega}||_2^2 + \alpha ||\boldsymbol{\omega}||_1$$

- Capaz de anular algunos coeficientes (solución dispersa)
- Selección de características e interpretabilidad del modelo (también previene overfitting)

Lasso vs Ridge

from sklearn import datasets
diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

Lo que puedes hacer ahora ...

- Implementar algoritmos de regresión lineal (+regularización) y Lasso
- Entender cómo afecta el parámetro de regularización a los coeficientes del modelo
- Entender las diferencias entre Ridge y Lasso
- Entender cómo afecta el parámetro de regularización en regresión logística a la frontera de separación

Referencias

- An Introduction to Statistical Learning.
 - o Capítulo 3.

Hora de practicar

