

4.2inch e-Paper V2 User Manual

Revision History

Version	Date	Item	Page	Remark
1.0	NOV.06.2020	New Creation	All	

Contents

1. OVERVIEW	
2. FEATURES	2
3. MECHANICAL SPECIFICATION	3
4. MECHANICAL DRAWING OF EPD MODULE	4
5. INPUT/OUTPUT PIN ASSIGNMENT	5
6. ELECTRICAL CHARACTERISTICS	7
6.1 Absolute Maximum Rating	7
6.2 DC Characteristics	8
6.3 AC Characteristics	9
6.3.1 MCU Interface Selection	9
6.3.2 MCU Serial Interface (4-wire SPI)	9
6.3.3 MCU Serial Peripheral Interface (3-wire SPI)	10
6.3.4 Interface Timing	11
7. COMMAND TABLE	13
8. OPTICAL SPECIFICATIONS	
9. HANDLING, SAFETY, AND ENVIRONMENT REQUIREMENTS	29
10. RELIABILITY TEST	30
11. BLOCK DIAGRAM	31
12. REFERENCE CIRCUIT	
13. TYPICAL OPERATING SEQUENCE	
13.1 Normal Operation Flow	33
13.2 Normal Operation Reference Program Code	
14. INSPECTION CONDITION	35
14.2 Illuminance	
14.3 Inspect method	
14.4 Display area	
14.5 Inspection standard	36
14.5.1 Electric inspection standard	36
14.5.2 Appearance Inspection Standard	37
15. PACKING	39
16. PRECAUTIONS	40

User Manual

1. OVERVIEW

4.2inch e-Paper V2 is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black full display capabilities. The 4.2inch active area contains 400×300 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2. FEATURES

- ♦ 400×300 pixels display
- ♦ High contrast High reflectance
- ♦ Ultra wide viewing angle Ultra low power consumption
- ♦ Pure reflective mode
- ♦ Bi-stable display
- ♦ Commercial temperature range
- ♦ Landscape portrait modes
- ♦ Hard-coat antiglare display surface
- ♦ Ultra Low current deep sleep mode
- ♦ On-chip display RAM
- ♦ Waveform can stored in On-chip OTP or written by MCU
- ♦ Serial peripheral interface available
- ♦ On-chip oscillator
- ♦ On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- ♦ I²C signal master interface to read external temperature sensor
- ♦ Support partial update mode
- ♦ Built-in temperature sensor

3. MECHANICAL SPECIFICATION

Parameter	Specification	Unit	Remark
Screen Size	4.2	Inch	
Display Resolution	400(H) x 300(V)	Pixel	DPI:120
Active Area	84.8 x 63.6	mm	
Pixel Pitch	0.212 x 0.212	mm	
Pixel Configuration	Rectangle		
Outline Dimension	91(H) x 77 (V) x 1.2(D)	mm	
Weight	16.1±0.3	g	
	Shorte and shorter	J. WO!	

4. MECHANICAL DRAWING OF EPD MODULE

5. INPUT/OUTPUT PIN ASSIGNMENT

I = Input Pin, O = Output Pin, I/O = Bidirectional Pin (Input/output), P = Power Pin, C = Capacitor Pin.

NO.	Name	I/O	Description	Remark
1	NC		Do not connect with other NPC pins	Keep Open
2	GDR	0	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage (Red)	
6	TSCL	0	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	0	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input, Active Low	Note 5-3
11	D/C#	I	Data/Command control pin	Note 5-2
12	12 CS# I Chip select output pin		Note 5-1	
13	13 SCL I Serial Clock pin (SPI)			
14	SDA	I/O	Serial Data pin (SPI)	
4.5	VDDIO	Р	Power supply for interface logic pins.	
15	VDDIO	P	It should be connected with VCI.	
16	VCI	Р	Power supply for the chip	
17	VSS	Р	Ground	
10	VDD	_	Core logic power pin VDD can be regulated internally from	
18	VDD	С	VCI. A capacitor should be connected between VDD and VSS.	
19	VPP	Р	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	
Power Supply pin for Negative Gate driving voltage V0		Power Supply pin for Negative Gate driving voltage VCOM		
23	VGL	С	and VSL	
24	VCOM	С	VCOM driving voltage	

- Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.
- Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode.

 When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when -Outputting display waveform-Communicating with digital temperature sensor.

Note 5-5: Bus interface selection pin.

BS1 State	MCU Interface			
L	4-lines serial peripheral interface(SPI) - 8 bits SPI			
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI			

6. ELECTRICAL CHARACTERISTICS

6.1 ABSOLUTE MAXIMUM RATING

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	°C
Storage Temp range	TSTG	-25 to+70	
Optimal Storage Temp	TSTGo	23±2	°C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 DC CHARACTERISTICS

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C.

Parameter	Symbol	Condition	Applicable pin	Min.	Тур.	Max.	Unit
Single ground	Vss	-		-	0	-	V
Logic supply voltage	V _{CI}	-	VCI	2.2	3.3	3.7	V
Core logic voltage	V_{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	-	-	0.8V _{CI}	-	-	V
Low level input voltage	VIL	-	•	-	ı	0.2V _{CI}	V
High level output voltage	V _{ОН}	IOH = - 100uA	-	0.9V _{CI}	-	-	V
Low level output voltage	V _{OL}	IOL = 100uA	-	-	-	0.1V _{CI}	V
Typical power	P _{TYP}	V _{CI} =3.0V	ı	-	18.48	-	mW
Deep sleep mode	P _{STPY}	V _{CI} =3.0V	ı	-	TBD	0.0165	mW
Typical operating current	lopr_V _{CI}	V _{CI} =3.0V	-	-	5.6	-	mA
Image update time	-	25 °C	-	-	3	-	sec
Sleep mode current	Islp_V _{Cl}	DC/DC off, No clock No input load Ram data retain	-	-	TBD	-	uA
Deep sleep mode current	ldslp_V _{Cl}	DC/DC off, No clock No input load Ram data not retain	-	-	2	5	uA

Notes:

- 1. This screen could support full refresh(3s), fast refresh(1.5s or 1s) and partial refresh (0 .42s).
- 2. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.
- 3. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 4. The listed electrical/optical characteristics are only guaranteed under the controller &

waveform provided by Waveshare.

6.3 AC CHARACTERISTICS

6.3.1 MCU INTERFACE SELECTION

The IC can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 6-1.

Table 6-1: Interface pins assignment under different MCU interface

	PIN Name					
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA
3-wire serial peripheral interface (SPI) - 9 bits SPI	Н	RES#	CS#	L	SCL	SDA

Note: (1) L is connected to VSS and H is connected to VDDIO.

6.3.2 MCU SERIAL INTERFACE (4-WIRE SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2.

Table 6-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	L	L
Write data	†	Data bit	Н	Ĺ

Note:

- (1) L is connected to VSS and H is connected to VDDIO.
- (2) † stands for rising edge of signal.
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

Figure 6-1: Write procedure in 4-wire SPI mode

6.3.3 MCU SERIAL PERIPHERAL INTERFACE (3-WIRE SPI)

MCU Serial Peripheral Interface (3-wire SPI) The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/ C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C#bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI.

Table 6-3: Control pins status of 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	Tie LOW	L
Write data	1	Data pin	Tie LOW	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO.
- (2) † stands for rising edge of signal.

Figure 6-3: Write procedure in 3-wire SPI mode

6.3.4 INTERFACE TIMING

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C.

Write mode

Symbol	Parameter	Min.	Тур.	Max.	Unit
fSCL	SCL frequency (Write Mode)	-	-	20	MHZ
tCSSU	Time CS# has to be low before the first rising edge of SCLK	TBD	-	-	ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	TBD	-	-	ns
tCSHIGH	Time CS# has to remain high between two transfers	TBD	-	-	ns
tSCLHIGH	Part of the clock period where SCL has to remain high	TBD	-	-	ns
tSCLLOW	Part of the clock period where SCL has to remain low	TBD	-	-	ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	TBD	-	-	ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the next rising edge of SCL	TBD	-	-	ns

Read mode

Symbol	Parameter	Min.	Тур.	Max.	Unit
fSCL	SCL frequency (Read Mode)	-	-	2.5	MHZ
tCSSU	Time CS# has to be low before the first rising edge of SCLK	TBD	-	-	ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	TBD	-	-	ns
tCSHIGH	Time CS# has to remain high between two transfers	TBD	_	-	ns
tSCLHIGH	Part of the clock period where SCL has to remain high	TBD	-	-	ns
tSCLLOW	Part of the clock period where SCL has to remain low	TBD	-	-	ns
tSOSU	Time SO (SDA Read Mode) will be stable before the next rising edge of SCL	TBD	TBD	-	ns
tSOHLD	Time SO (SDA Read Mode) remain stable after the next rising edge of SCL	TBD	TBD	-	ns

Note: All timing are based on 20% to 80% of VDDIO-VS.

7. COMMAND TABLE

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	01	0	0	0	0	0	0	0	1		Gate setting
0	1		A7	A6	A5	A4	А3	A2	A1	A0		Set A[8:0]=12Bh[POR],
0	1		0	0	0	0	0	0	0	A8		300MUX
0	1		0	0	0	0	0	B2	B1	В0		MUX Gate lines setting as
												(A[8:0] + 1).
												B[2:0]=000[POR]
												Gate scanning sequence
												and direction
												B[2]:GD
												Selects the 1st output
												Gate
												GD=0[POR],
												G0 is the 1st gate output
												channel, gate output
											Driver Output	sequence is G0, G1, G2,
											Control	G3
											Control	B[1]:SM
												Change scanning order of
												gate driver.
												SM=0[POR],
												G0, G1, G2, G3299
												(left and right gate
												interlaced)
												SM=1,
												G0, G2, G4,G294,
												G1, G3,G299
												B[0]:TB
												TB=0[POR], scan from G0
												to G299
												TB=1, scan from G299 to
												G0.
0	0	03	0	0	0	0	0	0	1	1		Set Gate Driving voltage
0	1		0	0	0	A4	А3	A2	A1	A0		A[4:0] = 00h [POR]
											Gate Driving	VGH setting from 10V to
											voltage	20V
											control	A[4:0] VGH A[4:0] VGH
												00h 20 0Dh 15
												03h 10 0Eh 15.5

												04h	10.5	0Fh	16
												05h	11	10h	16.5
												06h	11.5	11h	17
												07h	12	12h	17.5
												08h	12.5	13h	18
												07h	12	14h	18.5
												08h	12.5	15h	19
												09h	13	16h	19.5
												0Ah	13.5	17h	20
												0Bh	14	Other	NA
												0Ch	14.5		
0	0	04	0	0	0	0	0	1	0	0		Set So	urce D	riving v	oltage
0	1		A7	A6	A5	A4	A3	A2	A1	A0		A[7:0]	= 41h[POR], \	/SH1
0	1		В7	В6	B5	B4	В3	B2	B1	B0	Source	at 15V			
0	1		C7	C6	C5	C4	C3	C2	C1	C0	Driving	B[7:0]=	A8h[P	OR], V	SH2
											voltage	at 5V			
											control	C[7:0]=	32h[P	OR], V	SL1 at
												-15V			
												Remar	k: VSF	H1>=VS	SH2

B[7]=1,

VSH2 voltage setting from 2.4V to 8.6V.

A/B[7:01	VSH1/VSH2	A/B[7:01	VSH1/VSH2
8Eh	2.4	AEh	5.6
8Fh	2.5	AFh	5.7
90h	2.6	B0h	5.8
91h	2.7	B1h	5.9
92h	2.8	B2h	6
93h	2.9	B3h	6.1
94h	3	B4h	6.2
95h	3.1	B5h	6.3
96h	3.2	B6h	6.4
97h	3.3	B7h	6.5
98h	3.4	B8h	6.6
99h	3.5	B9h	6.7
9Ah	3.6	BAh	6.8
9Bh	3.7	BBh	6.9
9Ch	3.8	BCh	7
9Dh	3.9	BDh	7.1
9Eh	4	BEh	7.2
9Fh	4.1	BFh	7.3

A[7]/B[7]=0,

VSH1/VSH2 voltage setting from 8.8V to 17V.

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
21h	8.8	37h	13
23h	9	38h	13.2
24h	9.2	39h	13.4
25h	9.4	3Ah	13.6
26h	9.6	3Bh	13.8
27h	9.8	3Ch	14
28h	10	3Dh	14.2
29h	10.2	3Eh	14.4
2Ah	10.4	3Fh	14.6
2Bh	10.6	40h	14.8
2Ch	10.8	41h	15
2Dh	11	42h	15.2
2Eh	11.2	43h	15.4
2Fh	11.4	44h	15.6
30h	11.6	45h	15.8
31h	11.8	46h	16
32h	12	47h	16.2

C[7]=0

VSL setting from -5V to -17V

C[7:0]	VSL
0Ah	-5
0Ch	-5.5
0Eh	-6
10h	-6.5
12h	-7
14h	-7.5
16h	-8
18h	-8.5
1Ah	-9
1Ch	-9.5
1Eh	-10
20h	-10.5
22h	-11
24h	-11.5
26h	-12
28h	-12.5
2Ah	-13
2Ch	-13.5

A0h	4.2	C0h	7.4
A1h	4.3	C1h	7.5
A2h	4.4	C2h	7.6
A3h	4.5	C3h	7.7
A4h	4.6	C4h	7.8
A5h	4.7	C5h	7.9
A6h	4.8	C6h	8
A7h	4.9	C7h	8.1
A8h	5	C8h	8.2
A9h	5.1	C9h	8.3
AAh	5.2	CAh	8.4
ABh	5.3	CBh	8.5
ACh	5.4	CCh	8.6
ADh	5.5	Other	NA

	33h	12.2	48h	16.4
	34h	12.4	49h	16.6
	35h	12.6	4Ah	16.8
	36h	12.8	4Bh	17
•			Other	NA

2Eh	-14	
30h	-14.5	
32h	-15	
34h	-15.5	
36h	-16	
38h	-16.5	
3Ah	-17	
Other	NA	

0	0	08	0	0	0	0	1	0	0	0			Program Initial Code
													Setting
											Initial co	da	The command required
													CLKEN=1
											setting O		Refer to Register Ox22 for
											Prograr	П	detail.
													BUSY pad will output high
													during operation.
0	0	09	0	0	0	0	1	0	0	1			Write Register for Initial
0	1		A7	A6	A5	A4	А3	A2	A1	A0	Write		Code Setting Selection
0	1		В7	В6	B5	B4	В3	B2	B1	В0	Register	for	A[7:0]∼D(7:0): Reserved
0	1		C7	C6	C5	C4	СЗ	C2	C1	C0	Initial Co	de	Details refer to Application
0	1		D7	D6	D5	D4	D3	D2	D1	D0	Setting)	Notes of Initial Code
													Setting
0	0	0A	0	0	0	0	1	0	1	0	Read		
											Register	for	Read Register for Initial
											Initial Co	de	Code Setting
											Setting)	

	man D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Description				
	D.0#	- III		00	-	-	-	-		-	Communa	Description				
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with Phase 1, Phase 2 and Phase for soft start current and duration setting. A[7:0] -> Soft start setting for Phase1 = 8Bh [POR] B[7:0] -> Soft start setting for Phase2 = 9Ch [POR]				
0	1	-	1	As	A ₅	A4	A ₃	A ₂	Aı	Ao						
0	1		1	Ве	B ₅	B ₄	Вз	B ₂	Bı	Bo						
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	Cı	Co	-					
0	-	-	0		_	_	_	_	_	-	-					
U	1		Ü	0	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		C[7:0] -> Soft start setting for Phase3 = 96h [POR] D[7:0] -> Duration setting = 0Fh [POR] Bit Description of each byte: A[6:0] / B[6:0] / C[6:0]: Driving Strength				
												Bit[6:4] Selection				
												000 1(Weakest)				
												001 2				
												010 3				
												011 4				
												100 5				
												101 6				
												110 7				
												111 8(Strongest)				
													Bit[3:0] Min Off Time Setting of GDR			
												0000 ~ NA 0011				
												0100 2.6				
												0101 3.2				
												0110 3.9				
												0111 4.6				
												1000 5.4				
												1001 6.3				
												1010 7.3				
												1011 8.4				
												1100 9.8				
												1101 11.5				
												1110 13.8				
												1111 16.5				
											D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2 D[1:0]: duration setting of phase 1					
												Bit[1:0] Duration of Phase [Approximation]				
												00 10ms				
												01 20ms				
												10 30ms				
												11 40ms				

-	man D/C#		_	De	DE		-	DO.	n.	no	C	Description					
(/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	ion				
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deen Slee	ep mode Control:				
0	1	10	0	0	0	0	0	0	Aı	Ao	Doop Gloop Ilload		Description				
U	,		U	0	0	0	U		A	A0		00	Normal Mode [POR]				
												01	Enter Deep Sleep Mode 1				
												11	Enter Deep Sleep Mode 2				
												enter Dee keep outp Remark: To Exit De	command initiated, the chip will ep Sleep Mode, BUSY pad will				
0	0	44	0	^	0	-	0	_	0	4	Data Fatar and antina	D-6 J-					
0	1	11	0	0	0	0	0	0 A ₂	0 A ₁	1 Ao	Data Entry mode setting		ita entry sequence 111 [POR]				
								ne ne		70		A [1:0] = I Address a setting The settin decrement be made lower bit of 00 – Y dec 10 – Y inc 11 – Y inc A[2] = AN Set the di counter is are writte AM= 0, the	ID[1:0] automatic increment / decrement ing of incrementing or nting of the address counter can independently in each upper and of the address. crement, X decrement, crement, X increment, rement, X increment [POR] I rection in which the address is updated automatically after data in to the RAM. is address counter is updated in action. [POR]				
0	0	12	0	0	0	1	0	0	1	0	SW RESET	their S/W R10h-Dee During op high.	he commands and parameters to Reset default values except ep Sleep Mode peration, BUSY pad will output M are unaffected by this				

	-	d Ta		-	-		-		-	-	0	Daniel 1	22		
(24.0)	2000	Hex	250	D6	D5	D4	D3	D2	D1	D0	Command	Descripti			
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready A[7:0] = 0 The common ANALOG Refer to F After this detection BUSY particular detection The detection Status Bit	Ready from the		
0	1		0	A6	A 5	A4	0	A ₂	A ₁	A ₀		Status Bit Read (Command 0x2f A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigge each cool down time. The detect completed when HV is ready. For 1 shot HV ready detection, A be set as 00h.			wn Loop to er after tion will be
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Dete	ction		
0	1	10	0	0	0	0	0	A2	A ₁	A ₀	VOI Detection	A[2:0] = 1		, Detect level etect	at 2.3V
													A[2:0]	VCI level	
													011	2.2V	-
													100	2.3V	4
													101	2.4V	_
													110	2.5V	-
													111 Other	2.6V NA	-
												ANALOG Refer to F After this starts. BUSY pa detection. The detection	The command required ANALOGEN=1 Refer to Register 0x2 After this command is starts. BUSY pad will output detection. The detection result Status Bit Read (Core		detection
0	0	10	0	0	0		4	0	0		Temperature Course	T	lura Com	or Coleation	
0	1	18	0 A ₇	0 A ₆	0 A ₅	1 A ₄	1 A ₃	0 A2	0 A ₁	0 A ₀	Temperature Sensor Control	A[7:0] = 4 sensor	8h [POR]	or Selection , external tem al temperature	
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to to	emperatur	e register.	
0	1		A ₇	A ₆	A 5	A4	A ₃	A ₂	A ₁	A ₀	Control (Write to temperature register)	A[7:0] = 7Fh [POR]			
												D14		orwallow-sing tippos	
0	0	10	0	0	0	- 1							n tomorr	turo rogintos	
0	0	1B	0 A ₇	0 A ₆	O As	1 A4	1 A ₃	0 A ₂	1 A ₁	A ₀	Temperature Sensor Control (Read from	Head from	n tempera	ture register.	

MALE	D/C#	Hav	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
# AA T	D/C#	nex	U	Do	DD	D4	D3	UZ	DI	DU	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A7	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control (Write Command	sensor.
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	Bı	Bo	to External temperature	A[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	sensor)	B[7:0] = 00h [POR], C[7:0] = 00h [POR],
												of riof = don't ord;
												A[7:6]
												A[7:6] Select no of byte to be sent 00 Address + pointer
												01 Address + pointer + 1st parameter
												Address + pointer + 1st parameter +
												2nd pointer 11 Address
												A[5:0] – Pointer Setting
												B[7:0] - 1st parameter
												C[7:0] – 2 nd parameter
												The command required CLKEN=1.
												Refer to Register 0x22 for detail.
												After this assessment in his and 100 inc.
												After this command initiated, Write Command to external temperature senso
												starts. BUSY pad will output high during
												operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
												The Diselection of the Control of th
												The Display Update Sequence Option is located at R22h.
												Todatos at 1 izz.ii.
												BUSY pad will output high during
												operation. User should not interrupt this
												operation to avoid corruption of panel
												images.
												I .
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update
0	1		A7	A ₆	A 5	A4	A ₃	A ₂	A ₁	Ao	1	A[7:0] = 00h [POR] B[7:0] = 00h [POR]
0	1		B ₇	0	0	0	0	0	0	0		A17-41 B-4 BAN
												A[7:4] Red RAM option
												0000 Normal
												0100 Bypass RAM content as 0
												1000 Inverse RAM content
												A[3:0] BW RAM option
												0000 Normal
												0100 Bypass RAM content as 0
					l .							1000 Inverse RAM content

Com	-	-		-	-		-	-		80	Command	Description	
	D/C#	2000	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	1	22	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁	O Ao	Display Update Control 2	Display Update Sequence Opt Enable the stage for Master Ac A[7:0]= FFh (POR)	
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal → Enable Analog	C0
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal →Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entrie written into the BW RAM until a command is written. Address p advance accordingly	nother
												For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	

-	man D/C#	-	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED)	Description After this command, data entries will be
-				0.50							/ RAM 0x26	written into the RED RAM until another command is written. Address pointers will advance accordingly.
												For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until anothe command is written. Address pointers will advance accordingly.
												The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired.
0	1		0	1	0	0	A ₃	A2	Aı	Ao		A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.

	man			De	DE	D4	Da	Da	Dr	DO	Command	December	ion		
0300		200	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript			
0	1	2C	0 A ₇	0 A ₆	A ₅	0 A4	1 A ₃	1 A ₂	0 A ₁	0 A ₀	Write VCOM register		OM regist 00h [POR]		ICU interface
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1		A7 B7 C7 D7 E7 F7 G7 H7 J7	As Bs C6 D6 E5 F6 Gs Hs J5 Ks	As Bs Cs Ds Es Fs Gs Hs Is Js Ks	A4 B4 C4 D4 E4 F4 G4 H4 J4 K4	A ₃ B ₃ C ₃ D ₃ E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	A ₂ B ₂ C ₂ D ₂ E ₂ F ₂ G ₂ H ₂ I ₂ L ₂ K ₂	A1 B1 C1 D1 E1 F1 G1 H1 H1 K1	A ₀ B ₀ C ₀ D ₀ E ₀ F ₀ G ₀ H ₀ I ₀ K ₀	Display Option	(Comm. B[7:0]: \(Comm. C[7:0]~\(Comm. [5 bytes H[7:0]~\)	- K[7:0]: Wa and 0x37,	Byte A) gister splay Mod Byte B to	le Byte F) ersion
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10	Buta I lea	ID store	ed in OTP:
1	1	2C	A7	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Usel ID Head				Byte A and
1	1		B ₇	B ₆	B ₅	-		_	B ₁	-			[10 bytes]		
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	Cı	Co					
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	Dt	Do					
1	1		E7	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀					
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀					
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀					
1	1		H_7	H ₆	H ₅	H ₄	Нз	H ₂	Ht	Ho					
1	1		17	16	l ₅	14	l ₃	l ₂	l ₁	lo					

	-	nd Ta	with the same of		1	1		Towns of	Na.	10000	Daniel Company	le va
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0 1	2F	0	0	1 As	0 A4	1 0	1 0	1 A1	1 Ao	Status Bit Read	Read IC status Bit [POR 0x01] A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	0	_	D WO OTD	D OTD -(W/ O-11)
0	U	30	U	U	1	1	U	U	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
						2	2	88	ā	Î		The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface [227 bytes], which contains the content of
0	1	-	A ₇	A ₆	A ₅	A ₄	A3	A ₂	A ₁	A ₀		VS[nX-LUTm], TP[nX], RP[n], SR[nXY], F
0	1	-	B ₇	B6	B6	B4 :	B₃ :	B ₂	B ₁	B ₀	-	and XON[nXY]
0	1		:	-65			-	-			-	Refer to Session 6.7 WAVEFORM SETTING
		_		(34)	-	- 23 3	2	20	*			
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1683 application note. BUSY pad will output high during operation.
0	0	25	0	0	4	4	0		0	4	CDC Status David	CRC Status Read
1	1	35	Ο Δ.	0	1	1	0	1	0 A ₉	1	CRC Status Read	A[15:0] is the CRC read out value
1	1		A15	A ₁₄	A ₁₃	A ₁₂	A ₁₁	-	-	As Ao	-	
1	-1	_	A7	P46	H5	H4	H3	A ₂	A ₁	A0	I	<u> </u>

/W#	D/C#	Her	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description		
0	0		ALC: SEL	1000	PHONE .	1	170000	100000	1	-	Communic	Strategic Control of Control of Control		
U	U	36	0	0	1	1	0	1		0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.		
												4 of Open Control of		
0	0	37	0	0	1	1	0	1	1	1		Write Register for Display Option		
0	1		A7	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection 0: Default [POR]		
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	Bı	B ₀		1: Spare		
0	1	Ш	C ₇	C ₆	C ₅	C ₄	C ₃	C2	C ₁	Co				
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0] Display Mode for WS[7:0] C[7:0] Display Mode for WS[15:8]		
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		D[7:0] Display Mode for WS[13:0]		
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	F ₀		0: Display Mode 1		
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	Gı	G ₀		1: Display Mode 2		
0	1		H ₇	Нє	H ₅	H ₄	Нз	H ₂	Hi	Ho		F[6]: Ping-Pong for Display Mode 2		
0	1		17	16	15	14	la	12	I ₁	lo		0: RAM Ping-Pong disable [POR]		
0	1		J ₇	Jв	Js	J4	J ₃	J ₂	Jı	Jo		1: RAM Ping-Pong enable G[7:0]~J[7:0] module ID /waveform version. Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not suppor		
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	for Display Mode 1 Write Register for User ID		
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	At	A ₀		A[7:0]]~J[7:0]: UserID [10 bytes]		
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	Bı	B ₀		Remarks: A[7:0]~J[7:0] can be stored in		
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		OTP		
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	1			
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	Eı	E ₀	1			
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	Fı	Fo	1			
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	Gı	Go	1			
0	1		H ₂	Нє	H ₅	H ₄	H ₃	H ₂	Hı	Ho	1			
0	1		17	16	15	14	l ₃	l ₂	l ₁	lo	1			
0	1	-	J ₇	J ₆	J ₅	J4	J ₃	J ₂	J ₁	Jo				
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode		
0	1	00	0	0	0	0	0	0	Aı	Ao	o i piogram mode	A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage Remark: User is required to EXACTLY follow the reference code sequences		

	man	-			1 2 2	10000	-		100000	1000	12	.	8		
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	1		
0	0	3C	0 A ₇	0 A6	1 As	1 A4	1	0	0 A ₁	0 A ₀	Border Waveform Control		er waveform for VBD [POR], set VBD as HIZ.		
					1.0								ect VBD option		
												A[7:6]	Select VBD as		
												00	GS Transition, Defined in A[2] and A[1:0]		
												01	Fix Level, Defined in A[5:4]		
												10	VCOM		
												11[POR]	HiZ		
												A IE ALE			
													evel Setting for VBD		
												A[5:4]	VBD level		
												00	VSS		
												01	VSH1		
												10	VSL		
												11	VSH2		
												VBD Level S	; 01b: VSH1;		
												A[1:0]	VBD Transition		
												00	LUT0		
												01	LUT1		
												10	LUT2		
										_		11	LUT3		
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LI	UT end		
0	1		A7	A ₆	A5	A ₄	A ₃	A ₂	Aı	Ao		Set this byte	to 22h		
0	0	41	0	-	0	0	0	0	0	-	Dood DAM Ontion	Dood DAM	Dation		
0	1,000	41	-	1	-	-	0	-	-	1	Read RAM Option	Read RAM (A[0]= 0 [POF			
0	1		0	0	0	0	0	0	0	Αo		0: Read RA	M corresponding to RAM0x24 M corresponding to RAM0x26		
_			•								la . B				
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address Start / End position	Specify the s window add	start/end positions of the ress in the X direction by an		
0	1		0	0	A ₅	A ₄	A ₃	A ₂	Aı	Ao	The position	address unit			
0	1		0	0	B ₅	B ₄	Вз	B ₂	Bı	Во			5:0], XStart, POR = 00h 5:0], XEnd, POR = 31h		
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the	start/end positions of the		
0	1	-10	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position	window add	ress in the Y direction by an		
0	1		0	0	0	0	0	0	0	As		address unit			
0	1		B ₇	B ₆	Bs	B ₄	Вз	B ₂	Bı	Bo	1	418-01- VC 41	8:0], YStart, POR = 000h		
0	1		0	0	0	0	0	0	0	Be		B[8:0]: YEA[8:0], YEnd, POR = 12Bh		
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for	Auto Write E	RED RAM for Regular Pattern		
_		40			-	-	-		-				RED RAM for Regular Pattern (POR)		
0	1		A ₇	A ₆	A5	A ₄	0	A ₂	A ₁	A ₀	A ₀ Regular Pattern	A[7:0] = 00h [POR]			

A (3) The 1st step value, POR = 0
A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction accor to Gate A[6:4] Height A[6:4] Height 000 8 100 128 001 16 101 256 010 32 110 300 011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accor to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA BUSY pad will output high during
A[6:4] Height A[6:4] Height 000 8 100 128 001 16 101 256 010 32 110 300 011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accor to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA BUSY pad will output high during
000 8 100 128 001 16 101 256 010 32 110 300 011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accor to Source A[2:0]: Width A[2:0]: Width Width 000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA BUSY pad will output high during
001 16 101 256 010 32 110 300 011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accor to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA BUSY pad will output high during
010 32 110 300 011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accor to Source A[2:0]: Width A[2:0]: Width Width 000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA BUSY pad will output high during
011 64 111 NA A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accor to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA BUSY pad will output high during
A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accor to Source A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA BUSY pad will output high during
000 8 100 128 001 16 101 256 010 32 110 400 011 64 111 NA BUSY pad will output high during
001 16 101 256 010 32 110 400 011 64 111 NA BUSY pad will output high during
010 32 110 400 011 64 111 NA BUSY pad will output high during
011 64 111 NA BUSY pad will output high during
BUSY pad will output high during
operation.
Write B/W RAM for Auto Write B/W RAM for Regular Pattern A[7:0] = 00h [POR]
A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction accor to Gate
A[6:4] Height A[6:4] Height
000 8 100 128
001 16 101 256
010 32 110 300
011 64 111 NA
A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction accor to Source
pro-contraction and a second s
A[2:0] Width A[2:0] Width
A[2:0] Width A[2:0] Width 000 8 100 128
A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256
A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256 010 32 110 400
A[2:0] Width A[2:0] Width 000 8 100 128 001 16 101 256

₹/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
344	D. C.II		-	-	-	-		-	-	-	Communa	A[5:0]: 00h [POR].
_			_		_	<u></u>	<u></u>		(0)	Vii.	66	
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initial settings for the RAM Y addres
0	1		A ₇	Ав	A ₅	A4	A ₃	A ₂	A ₁	Ao	The state of the s	in the address counter (AC)
0	1		0	0	0	0	0	0	0	As		A[8:0]: 000h [POR].
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands
												JOHO
												77
												POLGMOLE.
												Lough A
												Lie Loigh
												We Kolyn
											Neso	We Kolyn
											OWES	We Kolyn
											O.Neso	Lie Loigh
						•					o weso	We Kolyn
						•					O Neso	We Kokyy
									3		e ones	Lie Koigh
									3		O Weso	We kory
									3		O Neso	Lie Koilgu
											e owes	Lie Kaily

8. OPTICAL SPECIFICATIONS

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	Write Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	Indoor	8:1		-		8-2
GN	2 Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	At 25℃		3	-	sec	
Life		Topr		1000000times or 5years			

Notes:

- 8-1. Luminance meter: Eye-One Pro Spectrophotometer.
- 8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
- 8-3. WS: White state, DS: Dark state

9. HANDLING, SAFETY, AND ENVIRONMENT REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

	Data sneet status							
Product specification	This data sheet contains final product specifications.							
	Limiting values							
Limiting values given are in ac	cordance with the Absolute Maximum Rating System (IEC							
134).								
Stress above one or more of	the limiting values may cause permanent damage to the							
device. These are stress rating	s only and operation of the device at these or at any other							

Application information

conditions above those given in the Characteristics sections of the specification is not

implied. Exposure to limiting values for extended periods may affect device reliability.

Where application information is given, it is advisory and does not form part of the specification.

10. RELIABILITY TEST

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=+70°C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=+50°C, RH=30%, 240h
4	Low-Temperature Operation	0°C, 240h
5	High Temperature High Humidity Operation	T=40°C , RH=90%, 168h
6	High Temperature High Humidity Storage	T=60°C , RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle: [-25°C 30min]→ [+70 °C 30 min] : 100 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs, 40 ℃ Test in white pattern
9	ESD Gun	Air+/-15KV; Contact +/-8KV (Test finished product shell, not display only) Air+/-8KV; Contact +/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV; Contact +/-2KV (Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1 hour after test finished, display performance is OK.

11. BLOCK DIAGRAM

12. REFERENCE CIRCUIT

13. TYPICAL OPERATING SEQUENCE

13.1 NORMAL OPERATION FLOW

13.2 NORMAL OPERATION REFERENCE PROGRAM CODE

ACTION	VALUE/DATA	COMMENT			
POWER ON					
delay	10ms				
PIN CONFIG					
RESE#	low	Hardware reset			
delay	200us				
RESE#	high				
delay	200us				
Read busy pin		Wait for busy low			
Command 0x12		Software reset			
Read busy pin		Wait for busy low			
Command 0x01	Data 0x2b 0x01 0x00	Set display size and drive output control			
Command 0x11	Data 0x01	Ram data entry mode			
Command 0x44	Data 0x00 0x31	Set Ram X address			
Command 0x45	Data 0x2b 0x01 0x00 0x00	Set Ram Y address			
Command 0x3C	Data 0x01	Set border			
	LOAD IMAGE AND UPDATE				
Command 0x4E	Data 0x00	Set Ram X address counter			
Command 0x4F	Data 0x2b 0x00	Set Ram Y address counter			
Command 0x24	Data 0xXX, 0xXX	Write B/W image data into Register 0x24 RAM			
Command 0x4E	Data 0x00	Set Ram X address counter			
Command 0x4F	Data 0x2b 0x00	Set Ram Y address counter			
Command 0x26	Data 0xXX, 0xXX	Write Red image data into Register 0x26 RAM			
Command 0x20					
Read busy pin	,				
Command 0x10	Data 0x01	Enter deep sleep mode			
POWER OFF					

14. INSPECTION CONDITION

14.1 ENVIRONMENT

Temperature: 25±3℃

Humidity: 55±10%RH

14.2 ILLUMINANCE

Brightness:1200~1500LUX; distance:20-30CM; Angle: Relate 45° surround.

14.3 INSPECT METHOD

14.4 DISPLAY AREA

14.5 INSPECTION STANDARD

14.5.1 ELECTRIC INSPECTION STANDARD

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA	Visual inspection Visual/ Inspection card	Zone A
2	Black/White spots	D≤0.25mm, Allowed 0.25mm <d≤0.4mm, 0.4mm<d="" allow<="" and="" distance≥5mm="" not="" n≤3,="" td=""><td rowspan="2">MI</td></d≤0.4mm,>	MI		
3	Black/White spots (No switch)	L ≤0.6mm, W≤0.2mm, N≤1 L≤2.0mm, W>0.2mm, Not Allow L>0.6mm, Not allow			
4	Ghost image	Allowed in switching process	МІ	Visual inspection	
5	Flash spots/Large FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/Circuit break/Abnormal display	Not Allowed			

14.5.2 APPEARANCE INSPECTION STANDARD

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots/Bubble/Foreign bodies/Dents	D=(L+W)/2 D≤0.25mm, Allowed 0.25mm <d≤0.4mm, d="" n≤3="">0.4mm, Not allow</d≤0.4mm,>	MI	Visual Inspection	Zone A
2	Glass crack	Not Allowed	MA	Visual/ Microscope	Zone A Zone B
3	Dirty	Allowed if can be removed	MI		Zone A Zone B
4	Chips/Scratch/Edge crown	X≤3mm,Y≤0.5mm 2mm≤X or 2mm≤Y Allow W≤0.1mm, L≤5mm, n≤2 Edge crown: X≤0.3mm, Y≤3mm	MI	Visual/ Microscope	Zone A Zone B
5	Substrate color difference	Allowed			
6	FPC broken/Goldfingers oxidation/scratch	Not allow	MA	Visual/ Microscope	Zone B
7	PCB damaged/Poor welding/Curl	PCB (Circuit area) damaged Not Allow, PCB Poor welding Not Allow PCB Curl≤1%	MI	Visual/Ruler	Zone B
8	Edge Adhesives	Edge Adhesives H≤Display surface			

	height/FPL/Edge	Edge adhesives seep in ≤1/2 Margin		
	adhesive bubble	width		
		FPL tolerance ±0.3mm		
		Edge adhesive bubble:		
		bubble Width≤1/2		
		Margin width: Length≤0.5mm, n≤3		
9	Protect film	Surface scratch but not effect protect	Visual	
		function, Allow	Inspection	

15. PACKING

16. PRECAUTIONS

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL/EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL/EPD Tag with a completely white image to avoid this issue.
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.
- (7) For more precautions, please click on the link: https://www.waveshare.com