CSC336 Assignment 4

Name: Zheyu Yang; Student Number: 1003932943

1.(a)
Let
$$\hat{x}_i = e_i$$
, where $i = 1, 2, ..., n$

Thus,
$$\widehat{x}_{i} \in \mathbb{R}^{n}$$
 and $\widehat{x}_{i} \neq \overrightarrow{0}$ since $\widehat{x}_{i} = \begin{pmatrix} 0 \\ \vdots \\ 1(i^{th} \ element) \\ \vdots \\ 0 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$

Since A is real symmetric positive – definite,

$$\hat{x}_i^T A \hat{x}_i = e_i^T A e_i = 1 \cdot A_{i,i} \cdot 1 = A_{i,i}$$
 will be greater than 0.

(b)

$$M_{1} = I - m_{1} e_{1}^{T} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} - \begin{pmatrix} 0 \\ \frac{A_{2,1}}{A_{1,1}} \\ \vdots \\ \frac{A_{n,1}}{A_{1,1}} \end{pmatrix} \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ -\frac{A_{2,1}}{A_{1,1}} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{A_{n,1}}{A_{1,1}} & 0 & \cdots & 1 \end{pmatrix}$$

$$M_{1}^{T} = \begin{pmatrix} 1 & -\frac{A_{2,1}}{A_{1,1}} & \cdots & -\frac{A_{n,1}}{A_{1,1}} \\ 0 & 1 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

$$M_{1}AM_{1}^{T} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ -\frac{A_{2,1}}{A_{1,1}} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{A_{n,1}}{A_{1,1}} & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ A_{2,1} & A_{2,2} & \cdots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n,1} & A_{n,2} & \cdots & A_{n,n} \end{pmatrix} \begin{pmatrix} 1 & -\frac{A_{2,1}}{A_{1,1}} & \cdots & -\frac{A_{n,1}}{A_{1,1}} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

$$\begin{pmatrix} A_{1,1} & A_{1,2} & \cdots & A_{1,n} \\ 0 & \frac{-A_{2,1} \cdot A_{1,2}}{A_{1,1}} + A_{2,2} & \cdots & \frac{-A_{2,1} \cdot A_{1,n}}{A_{1,1}} + A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \frac{-A_{n,1} \cdot A_{1,2}}{A_{1,1}} + A_{n,2} & \cdots & \frac{-A_{n,1} \cdot A_{1,n}}{A_{1,1}} + A_{n,n} \end{pmatrix} \begin{pmatrix} 1 & -\frac{A_{2,1}}{A_{1,1}} & \cdots & -\frac{A_{n,1}}{A_{1,1}} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

$$= \begin{pmatrix} A_{1,1} & -A_{2,1} + A_{1,2} & \cdots & -A_{n,1} + A_{1,n} \\ 0 & \widehat{A}_{2,2} & \cdots & \widehat{A}_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \widehat{A}_{n,2} & \cdots & \widehat{A}_{n,n} \end{pmatrix} = \begin{pmatrix} A_{1,1} & 0 & \cdots & 0 \\ 0 & \widehat{A}_{2,2} & \cdots & \widehat{A}_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \widehat{A}_{n,2} & \cdots & \widehat{A}_{n,n} \end{pmatrix}$$

Since $A = A^T$, so $A_{i,j} = A_{j,i}$, and then $-A_{i,j} + A_{j,i} = 0$ for all i = 1, 2, ... n and j = 1, 2, ..., n (c)

Facts:

- 1. M₁ is a lower triangular matrix (form shown in (b))
- 2. M_1 is an upper triangular matrix since 1 (form shown in (b))
- 3. $A = \widehat{LL}^T$ since A is real symmetrix positive-definite
- 4. \widehat{L} is lower triangular matrix and \widehat{L}^T is an upper triangular matrix
- 5. The product of two upper/lower triangular matrices is still a upper/lower triangular matrix

Since
$$A_1 = M_1 A M_1^T$$

Then
$$A_1 = M_1 \widehat{LL}^T M_1^T$$

Let
$$\widetilde{L} = M_1 \widehat{L}$$
 and $\widetilde{L}^T = \widehat{L}^T M_1^T$, since $(AB)^T = B^T A^T$ for all matrices

Then $A_1 = \widetilde{L}\widetilde{L}^T$, by 5, \widetilde{L} is a lower triangular matrix, and \widetilde{L}^T is an upper triangular matrix and they are also $n \times n$ since M_1 and \widehat{L} are both $n \times n$

Therefore A_1 is real symmetric positive – definite

(d)

For i = 2, 3, ..., n & j = 2, 3, ..., n

$$\widehat{A}_{i,j} = A_{1_{i,j}} = \left(\frac{-A_{i,1} \cdot A_{1,j}}{A_{1,1}} + A_{i,j}\right) = \left(\frac{-A_{j,1} \cdot A_{1,i}}{A_{1,1}} + A_{j,i}\right) = A_{1_{j,i}} = \widehat{A}_{j,i}$$

Since their values don't vary after calculating $M_I A$, so we will only count operations in $M_I A$

For every $\widehat{A}_{i,j}$, 1 multiplication required for $\frac{-A_{i,1}}{A_{1,1}}\cdot A_{1,j}$

1 add required for
$$\frac{-A_{i,1}}{A_{I,1}} \cdot A_{i,j} + A_{i,j}$$

So that's 1 add and multiplication for one $\widehat{A}_{i,j}$

Since there are (n-1) rows in M_1 that have $\frac{-A_{i,1}}{A_{1,1}}$ in it, (n-1) divisions are required for them. multiplying M_1 to A (which has (n) columns) would require $n(n-1) \times 1$ adds and multiplications. However, since A is symmetric, the upper/lower part can be set at the same time after each add and multiplication, thus, a total number of $(\frac{n(n-1)}{2})$ adds and multiplications are required.

$$\begin{split} &(e)\\ &M_{n\text{-}1}M_{n\text{-}2}...M_{2}M_{1}AM_{1}{}^{T}M_{2}{}^{T}...M_{n\text{-}2}{}^{T}M_{n\text{-}1}{}^{T} = D\\ &(\boldsymbol{M_{n\text{-}1}}^{-1})M_{n\text{-}1}M_{n\text{-}2}...M_{2}M_{1}AM_{1}{}^{T}M_{2}{}^{T}...M_{n\text{-}2}{}^{T}M_{n\text{-}1}{}^{T} = (\boldsymbol{M_{n\text{-}1}}^{-1})D\\ &IM_{n\text{-}2}...M_{2}M_{1}AM_{1}{}^{T}M_{2}{}^{T}...M_{n\text{-}2}{}^{T}M_{n\text{-}1}{}^{T} = M_{n\text{-}1}{}^{-1}D\\ &...\\ &AM_{1}{}^{T}M_{2}{}^{T}...M_{n\text{-}2}{}^{T}M_{n\text{-}1}{}^{T} = M_{1}{}^{-1}...M_{n\text{-}2}{}^{-1}M_{n\text{-}1}{}^{-1}D\\ &AM_{1}{}^{T}M_{2}{}^{T}...M_{n\text{-}2}{}^{T}M_{n\text{-}1}{}^{T}(\boldsymbol{M_{n\text{-}1}}^{T})^{-1} = M_{1}{}^{-1}...M_{n\text{-}2}{}^{-1}M_{n\text{-}1}{}^{-1}D(\boldsymbol{M_{n\text{-}1}}^{T})^{-1}\\ &AM_{1}{}^{T}M_{2}{}^{T}...M_{n\text{-}2}{}^{T}I = M_{1}{}^{-1}...M_{n\text{-}2}{}^{-1}M_{n\text{-}1}{}^{-1}D(\boldsymbol{M_{n\text{-}1}}^{T})^{-1}\\ &...\\ &A = M_{1}{}^{-1}...M_{n\text{-}2}{}^{-1}M_{n\text{-}1}{}^{-1}D(\boldsymbol{M_{n\text{-}1}}^{T})^{-1}(\boldsymbol{M_{n\text{-}2}}^{T})^{-1}...(\boldsymbol{M_{1}}^{T})^{-1}\\ &Let\ L = M_{1}{}^{-1}...M_{n\text{-}2}{}^{-1}M_{n\text{-}1}{}^{-1}and\\ &L^{T} = (\boldsymbol{M_{n\text{-}1}}^{T})^{-1}(\boldsymbol{M_{n\text{-}2}}^{T})^{-1}...(\boldsymbol{M_{1}}^{T})^{-1}(\boldsymbol{1}) \end{split}$$

Justification for 1:

Then $A = LDL^T$

Like question (c), all the M_i/M_i^T for i=1,2,...,n-1 are lower/upper triangular matrices and the inverse matrices of them are still lower/upper triangular matrices. Also, the product of lower/upper triangular matrices is still a lower/upper triangular matrix.

Thus, M_1^{-1} , ..., M_{n-2}^{-1} , M_{n-1}^{-1} are lower triangular matrices

⇒ L is still a lower triangular matrix and

 $(M_{n-1}^T)^{-1}$, $(M_{n-2}^T)^{-1}$, ..., $(M_1^T)^{-1}$ are upper triangular matrices

 \Rightarrow L^T is still an upper triangular matrix and

L^T is the transpose of L since $(A_1A_2...A_n)^T = A_n^T A_{n-1}^T...A_1^T$ and $(A^T)^{-1} = (A^{-1})^T$ for any matrix A, A₁, A₂, ..., A_n.

So, L need in (3) is just $(M_1^{-1}...M_{n-2}^{-1}M_{n-1}^{-1})$, where it will just copy items in each column of M_i^{-1} to a new matrix, but copying items will NOT be considered as additional arithmetic work. It is considered as additional "storage" work though, but "storage" work is not arithmetic.

```
2.
Code part:
p = [5, 4, 9, 10, 6, 8, 10, 9, 10];
x = [1:10]';
y1 = perm a(p, x);
q = perm_b(p);
y2 = perm c(q, x);
fprintf('y1 = (\n');
fprintf('%i\n', y1);
fprintf(')\n\n');
fprintf('q = (');
fprintf('%i ', q);
fprintf(')\n\n');
fprintf('y2 = (\n');
fprintf('%i\n', y2);
fprintf(')\n');
function f1 = perm a(p, x)
    for i = 1:length(p)
         one = x(i);
         x(i) = x(p(i));
         x(p(i)) = one;
    end
    f1 = x;
end
function f2 = perm b(p)
    q_{init} = [1:length(p)+1];
    for i = 1:length(p)
         two = q init(i);
         q init(i) = q init(p(i));
         q init(p(i)) = two;
    end
    f2 = q_{init};
end
```

function $f3 = perm_c(q, x)$

for i = 1:length(q)

three(i) = x(q(i));

three = x;

f3 = three;

end

end

```
(a)
y1 = (
5
4
9
10
6
8
2
3
7
1
)
(b)
q = (5 4 9 10 6 8 2 3 7 1)
(c)
y2 = (
5
4
9
10
6
8
2
3
7
1
)
```

```
3.(a)
g_1(x) = (x^2 + 2)/3, g_1'(x) = 2x/3, |g_1'(2)| = 4/3 > 1 \Rightarrow diverges;
g_2(x) = \sqrt{3x-2}, g_2'(x) = 3/2\sqrt{3x-2}, |g_2'(2)| = 3/4 < 1 and >0 \Rightarrow \approx linearly converges;
g_3(x) = 3 - 2/x, g_3'(x) = 2/x^2, |g_3'(2)| = 1/2 < 1 and >0 \Rightarrow \approx linearly converges;
g_4(x) = \frac{(x^2 - 2)}{(2x - 3)}, g_4'(x) = \frac{2(x^2 - 3x + 2)}{(2x - 3)^2}, |g_4'(2)| = 0 \Rightarrow quaduatically converges;
(b)
Code part:
 x1 = 2.1;
 x2 = 1.5;
 x3 = 1.5;
 x4 = 100;
 T1 = table;
 T2 = table;
 T3 = table;
 T4 = table;
]for n = 0:10
       err1 = abs(x1-2);
       err2 = abs(x2-2);
       err3 = abs(x3-2);
       err4 = abs(x4-2);
       q1 = ((x1^2) + x1)/3;
       q2 = sqrt(3*x2 - 2);
       q3 = 3 - (2/x3);
       q4 = ((x4^2) - 2)/(2*x4 - 3);
       x1 = q1;
       x2 = q2;
       x3 = g3;
       x4 = q4;
       T1 = [T1; table(n, q1, err1)];
       T2 = [T2; table(n, g2, err2)];
       T3 = [T3; table(n, q3, err3)];
       T4 = [T4; table(n, q4, err4)];
```

-end

For g_1

iteration	g1	error
	-	
0	2.17	0.1
1	2.293	0.17
2	2.5169	0.29297
3	2.9505	0.51689
4	3.8854	0.95054
5	6.3272	1.8854
6	15.454	4.3272
7	84.758	13.454
8	2422.9	82.758
9	1.9576e+06	2420.9
10	1.2774e+12	1.9576e+06

It diverges quickly even when the guess is pretty close to root. For \mathbf{g}_2

iteration	g2	error
-	-	
0	1.5811	0.5
1	1.6563	0.41886
2	1.7231	0.34367
3	1.7802	0.27693
4	1.8278	0.21977
5	1.8664	0.17224
6	1.8971	0.13365
7	1.9213	0.10288
8	1.9401	0.078711
9	1.9545	0.059931
10	1.9656	0.045465

It converges, and the error shrinks about 25% each time when the guess is close to root.

For g_3

iteration	g3	error
<u>.</u>	-	
0	1.6667	0.5
1	1.8	0.33333
2	1.8889	0.2
3	1.9412	0.11111
4	1.9697	0.058824
5	1.9846	0.030303
6	1.9922	0.015385
7	1.9961	0.0077519
8	1.9981	0.0038911
9	1.999	0.0019493
10	1.9995	0.00097561

It converges, and the error shrinks about 50% each time when the guess is close to root. For $\ensuremath{g_4}$

iteration	g4	error
		
0	50.751	98
1	26.128	48.751
2	13.819	24.128
3	7.6697	11.819
4	4.6051	5.6697
5	3.0928	2.6051
6	2.3749	1.0928
7	2.0803	0.37489
8	2.0056	0.080319
9	2	0.0055583
10	2	3.0555e-05

It converges, and the error shrinks about 50% each time even though the guess is not even close to root.

```
4.(a)
syms x;
f = (x^2) - 2;
df = diff(f);
x = 1;
fprintf('n
          x(n)
                          x(n)-sqrt(2)\n');
fprintf('----\n')
for n = 0:5
   fprintf('%i %20.15f %20.15f\n', n, x , x -sqrt(2));
   x = x - subs(f, x, x) / subs(df, x, x);
end
>> A4Q4a
          x (n)
                           x(n)-sqrt(2)
n
     1.0000000000000000
                       -0.414213562373095
0
     1.500000000000000
                       0.085786437626905
1
2
     1.414215686274510 0.000002123901415
3
    1.414213562374690 0.000000000001595
4
     1.414213562373095 0.000000000000000
5
```

```
(b)
syms x;
f = (x^2) - 2;
xn 2 = 1;
xn 1 = 2;
fprintf('n
fprintf('-----
                         ----\n')
fprintf('0 \ \ \%20.15f \ \ \%20.15f \ \ \%20.15f \ \ \ double(xn_2), \ double(xn_2 - sqrt(2)));
fprintf('1 \ \%20.15f \ \%20.15f \ n', \ double(xn_1), \ double(xn_1 - sqrt(2)));
xn = (xn_2*subs(f, x, xn_1) - xn_1*subs(f, x, xn_2))/(subs(f, x, xn_1) - subs(f, x, xn_2));
for n = 2:7
   fprintf('%i %20.15f %20.15f\n', n, double(xn), double(xn-sqrt(2)));
   xn_2 = xn_1;
   xn 1 = xn;
   xn = (xn_2*subs(f, x, xn_1) - xn_1*subs(f, x, xn_2))/(subs(f, x, xn_1) - subs(f, x, xn_2));
end
                  x(n)
                                              x(n) -sqrt(2)
n
                                        -0.414213562373095
0
        1.0000000000000000
                                          0.585786437626905
1
        2.0000000000000000
2
        1.3333333333333333
                                        -0.080880229039762
3
        1.4000000000000000
                                        -0.014213562373095
4
        1.414634146341463
                                          0.000420583968368
5
        1.414211438474870
                                        -0.000002123898225
6
        1.414213562057320
                                        -0.000000000315775
7
        1.414213562373095
                                          0.0000000000000000
```

```
5.
a = 3.592;
b = 0.04267;
R = 0.082054;
T = 300;
Tb = table;
|for p = [1, 10, 100]
    v = (R*T) / p;
    left = v - 1;
    right = v + 1;
    zero interval = [left right];
    f = @(v)(p + a/(v^2))*(v-b) - R*T;
    v_sol = fzero(f, zero_interval);
    \underline{\text{Tb}} = [\text{Tb}; \text{table(p, v, v_sol)]};
end
Tb.Properties.VariableNames = {'pressure', 'solution_from_initial_guess', 'solution_from_fzero'};
disp(Tb);
 >> A4Q5
                        solution_from_initial_guess
                                                                      solution_from_fzero
      pressure
```

24.616

2.4616

0.24616

24.513

2.3545

0.079511

1

10

100

6.(a)

Since (i) and (ii)

Then f(x) is always concaving up (by definition of concavity on 2nd derivative)

Then
$$\forall x, y \in R, x > y \Rightarrow f'(x) > f'(y)$$

Since (iii)

Then
$$\forall x \in R, x > \hat{x} \Rightarrow f'(x) > f(\hat{x}) = 0$$

since $\infty > \hat{x}$ there is no limit to f'(x) (the growth of x) after $x = \hat{x}$

Then as
$$x \to \infty$$
, $f'(x) \to \infty$ and $f(x) \to \infty$

Since
$$f(\hat{x}) < 0$$
 and $\lim_{x \to \infty} f(x) \to \infty$ and $\infty > 0$

Then in order to get to ∞ , value of f will have to surpass 0 at some point

Then
$$\exists x^* \in R, x^* > \widehat{x} \land f(x^*) = 0$$

Also Since
$$(1)$$
,

The tagent line of $(x^*, f(x^*))$ will be unique (this slope happens once only) for all x. Thus, $\forall x \in R$, $(f(x) = 0 \land x > \widehat{x}) \Rightarrow x = x^*$, so $(x^*, f(x^*) = 0)$ is unique.

(b)

Show $x^* \leq x_n$, for all n = 1, 2, ... by induction on n

Base case: n = 1

We know that:
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \Rightarrow (x_1 - x_0) f'(x_0) + f(x_0) = 0$$

Since f is convex function, we have
$$f(x_1) \ge (x_1 - x_0)f'(x_0) + f(x_0) = 0$$

We will have 2 cases in the Base case in order to show $x_1 > \hat{x}$

Since only when x_1 is on the increasing side of $f(x_1 > \hat{x})$, we can conclude the root is valid

$$Case 1: \widehat{x} < x_0 \le x^* \ (\textit{NOTE}: f(x^*) = 0)$$

Then we have $f(x_0) \le 0$, but $f'(x_0) > 0$

Thus,
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \ge x_0 > \hat{x}$$

$$\uparrow \le 0$$

Case 2:
$$\hat{x} < x^* < x_0 (NOTE: f(x^*) = 0)$$

Then we have
$$f'(x_0) > 0$$
, $f(x_0) > 0$

Prove $x_1 > \hat{x}$ *by contradiction: we assume* $x_1 \le \hat{x}$

Then
$$x_0 f'(x_0) - f(x_0) \le \hat{x} f'(x_0) \Rightarrow f(x_0) + (\hat{x} - x_0) f'(x_0) \ge 0$$

But
$$f(\widehat{x}) \ge f(x_0) + f'(x_0)(\widehat{x} - x_0) \ge 0$$
 while $f(\widehat{x}) < 0$ is not possible!

Thus,
$$x_1 > \hat{x}$$

Therefore, we can truly conclude that $x_1 \ge x^*$, base case holds.

Inductive Step (n > 1): Assume $x_n \ge x^*$, we need to show that $x_{n+1} \ge x^*$

Then
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \Rightarrow f'(x_n)(x_{n+1} - x_n) + f(x_n) = 0$$

By convexity, we know
$$f(x_{n+1}) \ge f'(x_n)(x_{n+1} - x_n) + f(x_n) = f(x^*) = 0$$

Also, with similar proof of base cases, we can conclude that $x^* > \hat{x}$

Thus,
$$x_{n+1} \ge x^*$$

Therefore, $x^* \le x_n$ for all n = 1, 2, ...

Show $x_{n+1} \le x_n$, for n = 1, 2, ...

Then
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Then $f(x_n) \ge 0$ and $f'(x_n)$ (by conclusion from previous proof)

Then $x_n \ge x_n - (something \ge 0)$

Therefore $x_n \ge x_{n+1}$

(c)

Since x_n is a decreasing sequence on n and f is increasing after $x = \hat{x}$

And
$$x_n \ge x^* > \widehat{x}$$
 for all $n = 1, 2, \dots$ (by $6(b)$)

So $f(x_n)$ is also a decreasing sequence as n increases.

Also, we know that x_n is bounded by x^* (given), so $f(x_n)$ will never decrease below $f(x^*)$

Thus, $f(x_n)$ is bounded by $f(x^*)$

Therefore, $\lim_{n \to \infty} f(x_n) = f(x^*) = 0 \Leftrightarrow \lim_{n \to \infty} x_n = y^* = x^*$ is true for such decreasing sequence.