Preliminaries

I just want to mention that I used the following imports in the python code.

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
```

Exercise 1

a)


```
# plt.scatter(class_1['petal_length'], class_1['petal_width'],
11
                      label="Iris-versicolor", alpha=0.7)
12
13
14
         plt.scatter(class_3['petal_length'], class_3['petal_width'],
                     label="Iris-virginica", alpha=0.7)
15
16
         plt.xlabel('Petal Length')
17
         plt.ylabel('Petal Width')
18
         plt.title('Petal Dimensions of Iris Classes')
19
         plt.legend()
20
         plt.grid(True)
21
22
23
         plt.show()
```

B & c)


```
def sigmoid(x):
    return 1/(1+np.exp(-x))

def oneLayerNN(data, weights, bias):
    return sigmoid(np.dot(data, weights) + bias)

def decisionBoundaryPlot(data, weights, bias):
```

```
class_2 = data[data['species'] == 'versicolor']
10
        class_3 = data[data['species'] == 'virginica']
11
12
13
        plt.figure(figsize=(10, 6))
14
        plt.scatter(class_2['petal_length'], class_2['petal_width'],
15
                     label="Iris-versicolor", alpha=0.7)
16
17
        # plt.scatter(class_1['petal_length'], class_1['petal_width'],
18
                      label="Iris-versicolor", alpha=0.7)
19
20
        plt.scatter(class_3['petal_length'], class_3['petal_width'],
21
22
                     label="Iris-virginica", alpha=0.7)
23
        x_min, x_max = data['petal_length'].min() - 0.5,
24
    data['petal_length'].max() + 0.5
25
        y_min, y_max = data['petal_width'].min() - 0.5,
26
    data['petal_width'].max() + 0.5
27
        xx, yy = np.meshgrid(np.linspace(x_min, x_max, 200),
28
                              np.linspace(y_min, y_max, 200))
29
30
        grid_points = np.c_[xx.ravel(), yy.ravel()]
31
        outputs = oneLayerNN(grid_points, weights, bias)
32
33
        outputs = outputs.reshape(xx.shape)
34
35
        plt.contour(xx, yy, outputs, levels=[0.5], colors='red', linewidths=2)
36
        # Add labels and title
37
        plt.xlabel('Petal Length')
38
        plt.ylabel('Petal Width')
39
        plt.title('Decision Boundary Overlaid on Iris Data')
40
        plt.legend()
41
42
        plt.grid(True)
        plt.show()
43
```

The particular weights and bias for the image instance were:

```
Weights: [1.0,1.5] and Bias: -7.5
```

d)


```
def plot_surface(weights, bias, x_range, y_range):
1
            # Generate a grid of points over the feature space
2
        xx, yy = np.meshgrid(np.linspace(x_range[0], x_range[1], 100),
3
                              np.linspace(y_range[0], y_range[1], 100))
4
5
        # Flatten the grid and compute model outputs
6
        grid_points = np.c_[xx.ravel(), yy.ravel()]
7
        outputs = oneLayerNN(grid_points, weights, bias)
8
9
        # Reshape the output to match the grid shape
10
        zz = outputs.reshape(xx.shape)
11
12
        # Create a 3D surface plot
13
        fig = plt.figure(figsize=(12, 8))
14
        ax = fig.add_subplot(111, projection='3d')
15
        ax.plot_surface(xx, yy, zz, cmap='viridis', alpha=0.8)
16
17
        # Add labels and title
18
        ax.set_xlabel('Feature 1 (Petal Length)')
19
20
        ax.set_ylabel('Feature 2 (Petal Width)')
        ax.set_zlabel('Network Output')
21
        ax.set_title('3D Surface Plot of Neural Network Output')
22
23
```

```
# Show the plot
plt.show()
```

This was generated with the same weights and bias as above.

e)

```
def sampleOutput(data, weights, bias):
1
         data = data[(data['species'] == 'versicolor') | (data['species'] ==
2
     'virginica')]
3
         features = data[['petal_length', 'petal_width']].values
4
         outputs = oneLayerNN(features, weights, bias)
5
6
         data['output'] = outputs
7
8
        data['class'] = data['output'] > 0.5
9
10
        data['class'] = data['class'].map({True: 'virginica', False:
11
     'versicolor'})
12
         unambiguous_examples = data[(outputs < 0.2) | (outputs > 0.8)]
13
         near_boundary_examples = data[(outputs >= 0.4) & (outputs <= 0.6)]</pre>
14
15
        # Display results
16
         print("Unambiguous Examples:")
17
         print(unambiguous_examples
18
               [['petal_length', 'petal_width', 'output', 'class', 'species']])
19
20
         print("\nNear-Boundary Examples:")
21
         print(near_boundary_examples
22
               [['petal_length', 'petal_width', 'output', 'class', 'species']])
23
```

Output

```
Unambiguous Examples:
1
2
         petal_length petal_width
                                     output
                                                  class
                                                            species
3
    53
                  4.0
                              1.3 0.175086 versicolor versicolor
    57
                  3.3
                              1.0 0.062973 versicolor versicolor
4
    59
                  3.9
                              1.4 0.182426 versicolor versicolor
5
    60
                  3.5
                              1.0 0.075858 versicolor versicolor
6
    62
                  4.0
                              1.0 0.119203 versicolor versicolor
7
    64
                              1.3 0.124553 versicolor versicolor
                  3.6
8
    67
                  4.1
                              1.0 0.130108 versicolor versicolor
9
    69
                  3.9
                              1.1 0.124553 versicolor versicolor
10
```

_						
11	71	4.0	1.3	0.175086	versicolor	versicolor
12	79	3.5	1.0	0.075858	versicolor	versicolor
13	80	3.8	1.1	0.114052	versicolor	versicolor
14	81	3.7	1.0	0.091123	versicolor	versicolor
15	82	3.9	1.2	0.141851	versicolor	versicolor
16	88	4.1	1.3	0.190002	versicolor	versicolor
17	89	4.0	1.3	0.175086	versicolor	versicolor
18	92	4.0	1.2	0.154465	versicolor	versicolor
19	93	3.3	1.0	0.062973	versicolor	versicolor
20	95	4.2	1.2	0.182426	versicolor	versicolor
21	98	3.0	1.1	0.054681	versicolor	versicolor
22	99	4.1	1.3	0.190002	versicolor	versicolor
23	100	6.0	2.5	0.904651	virginica	virginica
24	102	5.9	2.1	0.824914	virginica	virginica
25	104	5.8	2.2	0.832018	virginica	virginica
26	105	6.6	2.1	0.904651	virginica	virginica
27	107	6.3	1.8	0.817574	virginica	virginica
28	109	6.1	2.5	0.912934	virginica	virginica
29	117	6.7	2.2	0.924142	virginica	virginica
30	118	6.9	2.3	0.945319	virginica	virginica
31	120	5.7	2.3	0.838891	virginica	virginica
32	122	6.7	2.0	0.900250	virginica	virginica
33	130	6.1	1.9	0.809998	virginica	virginica
34	131	6.4	2.0	0.869892	virginica	virginica
35	132	5.6	2.2	0.802184	virginica	virginica
36	135	6.1	2.3	0.885948	virginica	virginica
37	136	5.6	2.4	0.845535	virginica	virginica
38	140	5.6	2.4	0.845535	virginica	virginica
39	143	5.9	2.3	0.864127	virginica	virginica
40	144	5.7	2.5	0.875447	virginica	virginica
41						
42	Near-	-Boundary Exam	•			
43	F-0	petal_length	petal_width	output	class	species
44	52	4.9	1.5	0.413382	versicolor	versicolor
45	56	4.7	1.6	0.401312	versicolor	versicolor
46	70	4.8	1.8	0.500000	versicolor	versicolor
47	72	4.9	1.5	0.413382	versicolor 	versicolor
48	77	5.0	1.7	0.512497	virginica	versicolor
49	83	5.1	1.6	0.500000	versicolor	versicolor
50	119	5.0	1.5	0.437823	versicolor	virginica
51	121 123	4.9 4.9	2.0	0.598688 0.524979	virginica	virginica
52 53	123	4.9	1.8 1.8	0.524979	virginica versicolor	virginica virginica
54	127	4.8	1.8	0.524979	virginica	virginica
55	133	5.1	1.5	0.324979	versicolor	virginica
56	134	5.6	1.4	0.549834	virginica	virginica
30	104	5.0	1.4	01079004	virginica	virginica

```
138
                               1.8 0.500000 versicolor
                                                           virginica
57
                  4.8
    146
                  5.0
                               1.9 0.586618
                                               virginica
                                                           virginica
58
                               1.8 0.574443
59
    149
                  5.1
                                               virginica
                                                           virginica
60
```

Exercise 2

a)

```
def mse(data, weights, bias, labels):
    data = data[(data['species'] == 'versicolor') | (data['species'] ==
    'virginica')]

features = data[['petal_length', 'petal_width']]
    outputs = oneLayerNN(features, weights, bias)

mse = np.mean((labels-outputs)**2)
    print(mse)
    return mse
```

b)

```
mse(iris_data, weights, bias, data['species'].map({'versicolor': 0,
    'virginica': 1}))

mse(iris_data, np.array([-0.5, 2.5]), -5,
    data['species'].map({'versicolor': 0, 'virginica': 1}))
```

Output

```
Weights: [1. 1.5], Bias: -7.5, MSE: 0.08529593279618802
Weights: [-0.5 2.5], Bias: -5, MSE: 0.4308316119255908
```

c)

We define the error function as:

$$E = rac{1}{2} \sum_{n=0}^{N} \left(\sigma \left(ec{w} \cdot ec{x_n}
ight) - c_n
ight)^2 .$$

Then we take the derivative as:

$$rac{\partial E}{\partial ec{w}} = rac{1}{2}rac{\partial}{\partial ec{w}}\sum_{n=0}^{N}\left(\sigma\left(ec{w}\cdotec{x_{n}}
ight) - c_{n}
ight)^{2}$$

By the linearity of the partial derivative operator over finite sums we can take the partial derivative inside the sum. For brevity let $e_n = \sigma \left(\vec{w} \cdot \vec{x_n} \right) - c_n$. Hence:

$$rac{\partial E}{\partial ec{w}} = rac{1}{2} \sum_{n=0}^N rac{\partial}{\partial ec{w}} (e_n)^2 = \sum_{n=0}^N e_n rac{\partial e_n}{\partial ec{w}}$$

Examining the inside term we can take the relevant partial derivatives with respect to \vec{w} .

$$rac{\partial e_n}{\partial ec{w}} = rac{\partial}{\partial ec{w}}ig(\sigma\left(ec{w}\cdotec{x_n}ig) - c_nig) = \sigma\left(ec{w}\cdotec{x_n}ig)ig(1 - \sigma\left(ec{w}\cdotec{x_n}ig)ig)ec{x_n}$$

Returning to our sum we find:

$$rac{\partial E}{\partial ec{w}} = \sum_{n=0}^{N} \left(\sigma \left(ec{w} \cdot ec{x_n}
ight) - c_n
ight) \left(\sigma \left(ec{w} \cdot ec{x_n}
ight) \left(1 - \sigma \left(ec{w} \cdot ec{x_n}
ight)
ight) ec{x_n}
ight)$$

Thus concluding the derivation.

d)

```
gradient(data, np.array([1.16663732, 6.19051848, -15.84598601]),
data['species'].map({'versicolor': 0, 'virginica': 1}))
```

I defined a gradient function and called it as such. The weights are passed in as

$$\langle w_{
m petal\ width}, w_{
m petal\ length}, {
m bias} \rangle$$

This bias term is later included in the dot product by a dummy column in the input data which is a series of ones.

Hence the following weights yielded a decision boundary:

$$w_1 = \langle 2, 4, -11 \rangle$$

With a gradient: [189.76129556 59.28079357 43.73572109]

Which indicates we need to decrease all weights.

Following this 'recommendation' I changed the weights to:

$$w_2=\langle 1.5,3.8,-11.2
angle$$

Which yields the following decision boundary:

Which is clearly better, i.e. misclassifies less points.

Code Snippet

```
def gradient(data, weights, labels):
        # Filter and preprocess data
2
         data = data[(data['species'] == 'versicolor') | (data['species'] ==
3
     'virginica')]
        data = data[['petal_length', 'petal_width']]
4
         data['bias'] = 1 # Add a bias term
         labels = labels[(data.index)]
6
        # Convert to numpy arrays
        X = data.to_numpy()
9
        y = labels.to_numpy()
10
11
        # Compute z = X @ weights
12
         z = np.dot(X, weights)
13
14
        # Apply sigmoid function
15
         sigma_z = 1 / (1 + np.exp(-z))
16
17
        # Compute the gradient: (sigma_z - y) * X
18
        errors = sigma_z - y
19
20
         gradient = np.dot(errors, X)
```

```
21
22    print(gradient)
23
24    return gradient
```

Exercise 3

a)

Code Snippet

```
def optimize(data, weights, labels, epsilon=0.01, maxIters=999,
    minDelta=1e-6):
         mse_history = [] # Store MSE for each iteration
 2
 3
         last_loss = float('inf')
         convergedIters = -1
4
         for i in range(maxIters):
 5
             grad = gradient(data, weights, labels)
 6
             weights -= epsilon * grad
 7
8
             mse_value = mse(data, weights, labels)
9
             mse_history.append(mse_value)
10
             0.000
11
             if i % 500 == 0:
12
13
                 print(i)
                 decisionBoundaryPlot(data, weights)
14
             1111111
15
             if abs(mse_value - last_loss) < minDelta:</pre>
16
                 print(f"Converged after {i} iterations")
17
                 convergedIters = i
18
                 break
19
20
             last_loss = mse_value
21
22
         print("Final Weights:", weights)
23
         return weights, mse_history, convergedIters
```

b)

Code Snippet

```
final_weights, mse_history = optimize(data, np.array([1.5, 3.8, -11.2]),
labels, maxIters=2000, epsilon=0.0001)
decisionBoundaryPlot(data, final_weights)
```

```
# Plot MSE over iterations
 5
    plt.figure(figsize=(10, 6))
 6
    plt.plot(range(len(mse_history)), mse_history, label="MSE")
7
8
    plt.xlabel("Iteration")
    plt.ylabel("Mean Squared Error")
9
    plt.title("MSE as a Function of Iterations")
10
    plt.grid(True)
11
    plt.legend()
12
    plt.show()
13
```

Objective Function Plot

This plot was with an $\epsilon = 0.0001$

This plot was with an $\epsilon=0.01$

Decision Boundary Plot

With $\epsilon=0.01$

Initial

With $\epsilon=0.0001$, plotted at 500 iteration intervals

Initial

c)

Code Snippet

I chose the stopping condition to be some value δ such that $|\mathrm{MSE}_t - \mathrm{MSE}_{t-1}| < \delta$ terminates the loop. In other words, when the improvement according the objective function becomes negligible.

First I ran this with a learning rate $\epsilon=0.01$

Output

1st Trial

```
w = \left[-0.06272994, 0.22535715, 0.11599697\right]
```


 $w_{
m converged} = [-0.34854547, 10.8105952, -15.84675652]$

After 352 iterations we had convergence at:

w = [0.04932924, -0.17199068, -0.17200274]

 $w_{\text{converged}} = [-0.25486567, 10.63529813, -16.02755514]$

After 350 iterations we had convergence at:

3rd Trial w = [-0.22095819, 0.18308807, 0.05055751]

 $w_{\text{converged}} = [-0.35071788, 10.81513701, -15.84226559]$

After 350 iterations we had convergence at:

4th Trial w = [0.10403629, -0.23970775, 0.23495493]

 $w_{\text{converged}} = [-0.28950702, 10.70004222, -15.96086814]$

After 355 iterations we had convergence at:

Next I ran it with a considerably smaller $\epsilon=0.0001.$

Output

w = [-0.06272994, 0.22535715, 0.11599697]

 $w_{
m converged} = [-0.21101993, 2.34299673, -2.68027061]$

After 5370 iterations we had convergence at:

With a final MSE = 0.13307768698447137

2nd Trial w = [0.04932924, -0.17199068, -0.17200274]

 $w_{\text{converged}} = [-0.09012191, 2.13293405, -2.92941176]$

After 5405 iterations we had convergence at:

With a final MSE = 0.13063885216705365

3rd Trial

w = [-0.22095819, 0.18308807, 0.05055751]

 $w_{
m converged} = [-0.20769341, 2.33715552 - 2.68703228]$

After 5331 iterations we had convergence at:

With a final $\mathrm{MSE}=0.13300781992100666$ 4th Trial w=[0.10403629,-0.23970775,0.23495493]

 $w_{\text{converged}} = [-0.14074069, 2.21954725, -2.82293308]$

After 5795 iterations we had convergence at:

With a final MSE = 0.13166561957875447

d)

Code Snippet

```
def optimize_tracked(data, weights, labels, epsilon=0.01, maxIters=999,
    minDelta=1e-6):
        mse_history = []
                          # Store MSE for each iteration
2
         last_loss = None
3
         convergedIters = -1
4
         initial_mse = None
5
         half_mse_reached = False
6
         half_mse_iteration = -1
7
         half_mse_weights = None
8
9
         for i in range(maxIters):
10
             grad = gradient(data, weights, labels)
11
             weights -= epsilon ∗ grad
12
13
             mse_value = mse(data, weights, labels)
14
             mse_history.append(mse_value)
15
16
             if i == 0:
17
18
                 initial_mse = mse_value
                 last_loss = None # Initialize properly
19
```

```
20
             if not half_mse_reached and mse_value < (initial_mse / 2):</pre>
21
                 half mse reached = True
22
23
                 half_mse_iteration = i
                 half_mse_weights = weights.copy()
24
25
             if last_loss is not None and abs(mse_value - last_loss) <</pre>
26
    minDelta:
                 print(f"Converged after {i} iterations")
27
                 convergedIters = i
28
                 break
29
30
31
             last_loss = mse_value # Update after the stopping criterion check
32
         return weights, mse_history, half_mse_iteration, half_mse_weights,
33
    convergedIters
34
35
    # Main
    iris_data = pd.read_csv("irisdata.csv")
36
    data = iris_data[(iris_data['species'] == 'versicolor') |
37
    (iris_data['species'] == 'virginica')]
    labels = data['species'].map({'versicolor': 0, 'virginica': 1})
38
    data['bias'] = 1
39
40
    # Initialize random weights and parameters
41
    np.random.seed(42)
42
    initial_weights = np.random.uniform(-1, 1, size=3)
43
44
    learning_rate = 0.001
    max_iters = 9000
45
    epsilon_loss = 1e-6
46
47
    print("Initial Weights:", initial_weights)
48
49
50
    # Plot initial decision boundary
51
    print("Initial Decision Boundary:")
    decisionBoundaryPlot(data, initial_weights)
52
53
54
    # Optimize weights and track MSE
    final_weights, mse_history, half_mse_iteration, half_mse_weights,
55
    convergedIters = optimize_tracked(
             data, initial_weights, labels, minDelta=epsilon_loss,
56
    maxIters=max_iters, epsilon=learning_rate
57
58
    # Plot decision boundary when error is reduced by half
59
    if half_mse_iteration > -1:
60
```

```
print(f"Decision Boundary after MSE reduced by half (Iteration
61
    {half_mse_iteration}):")
             decisionBoundaryPlot(data, half_mse_weights)
62
63
    # Plot final decision boundary
64
    print(f"Final Decision Boundary after Convergence (Iteration
65
    {convergedIters}):")
    decisionBoundaryPlot(data, final_weights)
66
67
    # Plot MSE over iterations
68
    plt.figure(figsize=(10, 6))
69
    plt.plot(range(len(mse_history)), mse_history, label="MSE")
70
    plt.axvline(x=half_mse_iteration, color='orange', linestyle='--',
71
    label="MSE Reduced by Half")
    plt.xlabel("Iteration")
72
    plt.ylabel("Mean Squared Error")
73
    plt.title("MSE as a Function of Iterations")
74
    plt.legend()
75
    plt.grid(True)
76
    plt.show()
77
```

Initial

```
w = [-0.25091976, 0.90142861, 0.46398788]
```


Half Way (742 Iterations)

Final (2736 Iterations)

