Lecture 20: Kernel PCA, tSNE, Laplacian eigenmaps

Nisha Chandramoorthy

November 2, 2023

▶ when E and D are linear \rightarrow PCA.

- ▶ when *E* and *D* are linear \rightarrow PCA.
- \triangleright $E(x) = Wx, D(z) = W^{\top}z.$

- ▶ when *E* and *D* are linear \rightarrow PCA.
- \triangleright $E(x) = Wx, D(z) = W^{\top}z.$
- Let $C = \sum_{i=1}^{m} x_i x_i^{\top} = X^{\top} X$ be the data correlation matrix, neglecting the 1/m factor.

- ▶ when E and D are linear \rightarrow PCA.
- \triangleright $E(x) = Wx, D(z) = W^{\top}z.$
- Let $C = \sum_{i=1}^{m} x_i x_i^{\top} = X^{\top} X$ be the data correlation matrix, neglecting the 1/m factor.
- ▶ *C* is symmetric and positive semi-definite, $C = V \Lambda V^{\top}$.
- ► Theorem PCA: among linear hypothesis classes, $E^* = V^{\top}$, $D^* = V$, where V is the matrix of eigenvectors of $C = X^{\top}X$.

Linear algebra review: Rayleigh Quotient

For a square matrix $A \in \mathbb{R}^{d \times d}$, the Rayleigh quotient is a scalar function,

$$r(x) = \frac{x^{\top} A x}{x^{\top} x}.$$

Linear algebra review: Rayleigh Quotient

For a square matrix $A \in \mathbb{R}^{d \times d}$, the Rayleigh quotient is a scalar function,

$$r(x) = \frac{x^{\top} A x}{x^{\top} x}.$$

ightharpoonup Eigenvalues of A are the stationary points of r(x).

Linear algebra review: Rayleigh Quotient

For a square matrix $A \in \mathbb{R}^{d \times d}$, the Rayleigh quotient is a scalar function,

$$r(x) = \frac{x^{\top} A x}{x^{\top} x}.$$

- ightharpoonup Eigenvalues of A are the stationary points of r(x).

PCA by SVD

▶ When m > d, do eigenvalue decomposition of X^TX or SVD of X.

PCA by SVD

- ▶ When m > d, do eigenvalue decomposition of $X^T X$ or SVD of X.
- ▶ When m < d, do eigenvalue decomposition of XX^{\top} . If v_1, v_2, \dots, v_n are the n largest eigenvectors, principal vectors are $\frac{1}{\|X^{\top}v_i\|}X^{\top}v_i$.

PCA by SVD

- ▶ When m > d, do eigenvalue decomposition of X^TX or SVD of X.
- ▶ When m < d, do eigenvalue decomposition of XX^{\top} . If v_1, v_2, \dots, v_n are the n largest eigenvectors, principal vectors are $\frac{1}{\|X^{\top}v_i\|}X^{\top}v_i$.
- ► Computational complexity: $O(\min(m^2d, md^2))$.

ightharpoonup Exact when $X^{T}X$ is rank n.

- \triangleright Exact when $X^{\top}X$ is rank n.
- Maximizes variance. Let x be a random vector chosen uniformly from centered data x_1, \dots, x_m . Then, for any $w \in \mathbb{R}^d$,

$$var(x \cdot w) = \frac{1}{m} \sum_{i=1}^{m} (w \cdot x_i)^2.$$

- \triangleright Exact when $X^{\top}X$ is rank n.
- Maximizes variance. Let x be a random vector chosen uniformly from centered data x_1, \dots, x_m . Then, for any $w \in \mathbb{R}^d$,

$$var(x \cdot w) = \frac{1}{m} \sum_{i=1}^{m} (w \cdot x_i)^2.$$

First principal component maximizes $var(x \cdot w)$ over all w with ||w|| = 1. (See Ex 23.4 in book.)

- \triangleright Exact when $X^{\top}X$ is rank n.
- Maximizes variance. Let x be a random vector chosen uniformly from centered data x_1, \dots, x_m . Then, for any $w \in \mathbb{R}^d$,

$$var(x \cdot w) = \frac{1}{m} \sum_{i=1}^{m} (w \cdot x_i)^2.$$

- First principal component maximizes $var(x \cdot w)$ over all w with ||w|| = 1. (See Ex 23.4 in book.)
- ► Informally, PCA rotates the data so that the variance is maximized along the first axis, then the second, and so on.

- \triangleright Exact when $X^{\top}X$ is rank n.
- Maximizes variance. Let x be a random vector chosen uniformly from centered data x_1, \dots, x_m . Then, for any $w \in \mathbb{R}^d$,

$$var(x \cdot w) = \frac{1}{m} \sum_{i=1}^{m} (w \cdot x_i)^2.$$

- First principal component maximizes $var(x \cdot w)$ over all w with ||w|| = 1. (See Ex 23.4 in book.)
- Informally, PCA rotates the data so that the variance is maximized along the first axis, then the second, and so on.
- Separates dissimilar points

Kernel PCA

Let V be the matrix of the top n eigenvectors of $K = XX^{\top} \in \mathbb{R}^{m \times m}$.

Kernel PCA

- Let V be the matrix of the top n eigenvectors of $K = XX^{\top} \in \mathbb{R}^{m \times m}$.
- ▶ Then, principal vectors are $d_i^* = \frac{1}{\|X^\top v_i\|} X^\top v_i$, $i = 1, 2, \dots, n$.

Kernel PCA

- Let V be the matrix of the top n eigenvectors of $K = XX^{\top} \in \mathbb{R}^{m \times m}$.
- ▶ Then, principal vectors are $d_i^* = \frac{1}{\|X^\top v_i\|} X^\top v_i$, $i = 1, 2, \dots, n$.
- For some PD kernel, if $K_{ij} = k(x_i, x_j) = \langle \varphi(x_i), \varphi(x_j) \rangle = (XX^\top)_{ij}$, can compute K only using kernel evaluations.

► Choose weighting, such as, $w_{ij} = \exp(-\|x_i - x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.

- ► Choose weighting, such as, $w_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.
- ▶ Let *D* be the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.

- ► Choose weighting, such as, $w_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.
- ▶ Let *D* be the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ▶ Graph laplacian: L = D W.

- ► Choose weighting, such as, $w_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.
- ▶ Let *D* be the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ▶ Graph laplacian: L = D W.
- Detects local structure / clusters in data.

▶ Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i - y_j||^2$.

- ► Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i y_j||^2$.
- ▶ optimal embeddings: $y_i = E(x_i) = U[i, -n]$ where U is the matrix of eigenvectors of L.

- ▶ Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i y_j||^2$.
- ▶ optimal embeddings: $y_i = E(x_i) = U[i, -n]$ where U is the matrix of eigenvectors of L.
- ► For any vector v, $v^{\top}Lv = (1/2) \sum_{i,j=1}^{m} w_{ij}(v_i v_j)^2$.

- ▶ Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i y_j||^2$.
- ▶ optimal embeddings: $y_i = E(x_i) = U[i, -n]$: where U is the matrix of eigenvectors of L.
- ► For any vector v, $v^{\top}Lv = (1/2) \sum_{i,j=1}^{m} w_{ij}(v_i v_j)^2$.
- L is positive semi-definite.

Bottom *n* eigenvectors

Rayleigh quotient optimality

Bottom *n* eigenvectors

- Rayleigh quotient optimality
- Another interpretation: top n eigenvectors of L^{\dagger} . L_{ij}^{\dagger} represents expected time for random walk $i \rightarrow j \rightarrow i$.

Bottom *n* eigenvectors

- Rayleigh quotient optimality
- Another interpretation: top n eigenvectors of L^{\dagger} . L_{ij}^{\dagger} represents expected time for random walk $i \rightarrow j \rightarrow i$.
- ► Kernel PCA with $K = L^{\dagger}$ is equivalent to Laplacian eigenmaps.

Stochastic neighbor embedding(SNE): conditional probability that x_i would pick x_j as its neighbor, given by

$$p(x_j|x_i) = \frac{\exp(-\|x_i - x_j\|^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2/2\sigma_i^2)}.$$

Stochastic neighbor embedding(SNE): conditional probability that x_i would pick x_j as its neighbor, given by

$$p(x_j|x_i) = \frac{\exp(-\|x_i - x_j\|^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2/2\sigma_i^2)}.$$

► For the embeddings $y_i = E(x_i)$,

$$q(y_j|y_i) = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}.$$

Stochastic neighbor embedding(SNE): conditional probability that x_i would pick x_j as its neighbor, given by

$$p(x_j|x_i) = \frac{\exp(-\|x_i - x_j\|^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2/2\sigma_i^2)}.$$

► For the embeddings $y_i = E(x_i)$,

$$q(y_j|y_i) = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}.$$

SNE minimizes $\sum_{i=1}^{m} D_{KL}(p_i||q_i)$, where p_i and q_i are the conditional probabilities of x_i and y_i respectively.

Stochastic neighbor embedding(SNE): conditional probability that x_i would pick x_j as its neighbor, given by

$$p(x_j|x_i) = \frac{\exp(-\|x_i - x_j\|^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2/2\sigma_i^2)}.$$

► For the embeddings $y_i = E(x_i)$,

$$q(y_j|y_i) = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}.$$

- SNE minimizes $\sum_{i=1}^{m} D_{KL}(p_i||q_i)$, where p_i and q_i are the conditional probabilities of x_i and y_i respectively.
- ▶ Penalizes large distances between x_i and x_j but also preserves local structure.

tSNE [Van der Maaten and Hinton 2008]

- ▶ tSNE cost function is $D_{\mathrm{KL}}(p||q) = \sum_{i=1}^{m} \sum_{j\neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$, where p_{ij} and q_{ij} are the joint probabilities of (x_i, x_j) and (y_i, y_j) respectively.
- Changes joint distribution to a heavy-tailed distribution, $q(y_j, y_i) = \frac{(1+||y_i-y_j||^2)^{-1}}{\sum_{k\neq i} (1+||y_i-y_k||^2)^{-1}}.$

tSNE [Van der Maaten and Hinton 2008]

- ▶ tSNE cost function is $D_{\mathrm{KL}}(p||q) = \sum_{i=1}^{m} \sum_{j\neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$, where p_{ij} and q_{ij} are the joint probabilities of (x_i, x_j) and (y_i, y_j) respectively.
- Changes joint distribution to a heavy-tailed distribution, $q(y_j, y_i) = \frac{(1+||y_i-y_j||^2)^{-1}}{\sum_{k \neq i} (1+||y_i-y_k||^2)^{-1}}.$
- approaches inverse square law on embedded space.

tSNE visualization

From Van der Maaten and Hinton 2008. tSNE (left) and LLE (right) on MNIST dataset.

Random projections: x → We W: random matrix

∈ R^{d×n} Johnson - Lindenstraus lemma: I W with wij being an independent Normal. for any $\varepsilon \in (0, \frac{1}{2})$ and m > 4and $n = 20\log m$

St. for all is $j \in [m]$, $(1-\epsilon) \|x_i - x_j\|^2 \le \|\|Wx_i - Wx_j\|^2 \le (1+\epsilon) \|x_i - x_j\|^2$ Informally: Use random projection: x > Wz
Wij are lid | Wx; - Wx; 11/ 1 ~ Q(1+E) $h = O\left(\frac{\log m}{52}\right)$

$$x \in \mathbb{R}^{d} \qquad E(x) \in \mathbb{R}^{n}$$

$$n < d$$

$$\Rightarrow x \in \mathbb{R}^{m \times d}$$

$$x[i_{j}:] = x_{i}^{T}$$

$$x^{T}y = y \leq y^{T} (s)$$

$$X[i] = Si$$

$$X^{T}X = V \leq V^{T} (SVD) =$$
eigenvolue
$$clecomposition$$

$$X^{T}X = \sum_{i=1}^{n} \sigma_{i} v_{i} v_{i}^{T}$$

$$X^{T}X = \sum_{i=1}^{n} \sigma_{i} v_{i} v_{i}^{T}$$

$$i=1$$
 (reduced SVD)

The contered data: $E = 0$

$$\omega^{+} = \underset{\omega}{\operatorname{argmax}} \operatorname{Vag}(x \cdot \omega)$$
 $\|\omega\| = 1$
 $= \underset{i=1}{\operatorname{argmax}} \sum_{i=1}^{m} (x_{i} \cdot \omega)^{2}$
 $\|\omega\| = 1$

$$w^* = v_1$$
 (v_1, v_2, v_n exerting the top n Signles vectors or $x^T x$).

$$E(x) = [v_1^T x, v_2^T x, ..., v_n^T x]$$

$$\in \mathbb{R}^n \quad (PCA)$$

 $\chi^T \chi$

 $\begin{array}{rcl}
\rightarrow & \chi \chi^{\mathsf{T}}[i,j] &=& \langle \bar{\mathcal{P}}(x_i), \bar{\mathcal{P}}(x_j) \rangle \\
& &=& x_i \cdot x_j \\
&=& k(x_i, x_j)
\end{array}$

eig (XXT) = eig (K)

L> Gam

makix

> X^Tv_i principal sectors

||X^Tv_i||

>tSNE

Nonbriear

D'im reduction: LLE, Isomeps, 3 book

— Laplacian eigenmans of Mohra

Croph

Nodes: x_1, x_2, \ldots, x_m

Nodes:
$$x_1, x_2, ..., x_m$$

Edges: $x_i - x_j$ if they are "paighbors"

i.e, if x_i is a neighbor x_i ;
then, $y_i = E(x_i)$ neighbor g_i

eigenvector $1 \in \mathbb{R}^m$ corresponding to -> Smallest non-zero eigenvalue of L.

$$W = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

0 = 1/5 /2 < ... /m

$$L1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

-> 12: Fiedler eigenvalue Corresponding eigen victor represents Clusters in data

$$= \underbrace{\sum_{i,j=1}^{m} P(x_i|x_j) \log \frac{P(x_i|x_j)}{2(y_i|x_j)}}_{i,j=1}$$