

Geometria analítica – **Lista 6** – Mudança de coordenadas

- 1) Seja P = (22, 17). Se os eixos do sistema de coordenadas forem transladados de forma que a origem vá para (15, 14), quais são as novas coordenadas de P?
- 2) São dados A=(2,0) e $B=(3,\sqrt{3})$. Fazendo uma rotação de 30° nos eixos quais são as novas coordenadas de A e B? Faça uma figura para entender bem o que aconteceu.
- 3) Dadas as equações abaixo, faça uma translação dos eixos de forma que a nova origem seja $O_1 = (4,1)$ e determine as novas equações neste sistema.

a)
$$3x + 5y = 7$$

b)
$$y = x^2 - 3$$

- 4) Elimine os termos do primeiro grau e diga o que representa a equação $x^2 + y^2 5x y + \frac{11}{2} = 0$.
- 5) Elimine os termos de primeiro grau de $2x^2 + 5y^2 12x + 10y 17 = 0$ e dê os comprimentos dos eixos desta cônica.
- 6) Determine o parâmetro e o foco da parábola $y^2 6x 4y + 5 = 0$.
- 7) Faça um esboço do gráfico da curva dada ela equação $x^2 6x + 4y = 3$.
- 8) Determine o comprimento do eixo maior da elipse $x^2 + 2y^2 3x + 4y 2 = 0$.
- 9) Elimine os termos de primeiro grau da equação 2xy x y + 4 = 0.

- 10) Algum professor de Cálculo disse que xy = 1 é a equação de uma hipérbole. Faça uma rotação de 45° nos eixos para verificar isso e determine os focos dessa hipérbole (no novo sistema e no sistema original).
- 11) Dada a equação $.7x^2 6\sqrt{3}xy + 13y^2 = 16$, faça uma rotação adequada dos eixos para eliminar o termo xy. Identifique a cônica e dê sua nova equação.
- 12) Dada a equação $x^2 + 6xy + y^2 = 4$, faça uma rotação adequada dos eixos para eliminar o termo xy. Identifique a cônica e dê sua nova equação.
- 13) Mostre que a equação $x^2 + 6xy + y^2 = 0$ representa um par de retas concorrentes.
- 14) Simplifique a equação $x^2 + xy + y^2 3y 6 = 0$.
- 15) O que representa a equação $x^2 4xy + 4y^2 = 4$?
- 16) Complete quadrados para determinar o que significa cada uma das equações abaixo:

a)
$$x^2 - 6xy + 9y^2 + 5x - 15y + 6 = 0$$

b)
$$x^2 - 6xy + 9y^2 + 4x - 12y + 4 = 0$$

c)
$$x^2 - 6xy + 9y^2 + x - 3y + 2 = 0$$

- 17) Elimine os termos de primeiro grau da equação $2x^2 + xy y^2 6x + 3y = 0$.
- 18) A equação $2x'^2 + x'y' y'^2 = 0$ é a resposta do exercício anterior. Mostre que ela representa duas retas concorrentes. Dê as equações dessas retas após a translação e antes da translação.
- 19) Determine o centro e o comprimento do eixo maior da elipse definida pela equação $36x^2 + 24xy + 29y^2 120x + 10y = 0$.
- 20) Identifique a cônica $9x^2 + 24xy + 16y^2 + 80x 60y = 0$

Respostas

2)
$$A = (\sqrt{3}, -1), B = (2\sqrt{3}, 0)$$

3) a)
$$3x' + 5y' = -10$$
 b) $y = x'^2 + 8x' + 12$

b)
$$v = x'^2 + 8x' + 12$$

4) circunferência
$$x'^2 + y'^2 = 1$$
 de centro $O_1 = (\frac{5}{2}, \frac{1}{2})$ e raio 1.

5)
$$2x'^2 + 5y'^2 = 40$$
, $4\sqrt{5}$ e $4\sqrt{2}$

6)
$$y'^2 = 6x'$$
, $p = 3$, $F = (\frac{5}{3}, 2)$

7)
$$O_1 = (3,3), x'^2 = -4y'$$

8)
$$2a = 5$$

9)
$$4x'y' + 7 = 0$$

10) novo:
$$F_1' = (2, 0), F_2' = (-2, 0), \text{ antigo: } F_1 = (\sqrt{2}, \sqrt{2}), F_2 = (-\sqrt{2}, -\sqrt{2})$$

11) Elipse,
$$x'^2 + 4y'^2 = 4$$

12) Hipérbole,
$$2x'^2 - y'^2 = 2$$

13)
$$(\sqrt{2}x' + y')(\sqrt{2}x' - y') = 0$$

14)
$$3x'^2 + y'^2 = 18$$

15) duas retas paralelas

16) a) duas paralelas:
$$x - 3y = -2$$
 e $x - 3y = -3$, b) a reta $x - 3y = -2$, c) \varnothing

17)
$$2x'^2 + x'y' - y'^2 = 0$$
 com $O_1 = (1, 2)$

18) depois:
$$y' = 2x'$$
 e $y' = -x'$, antes: $x + y = 3$ e $2x - y = 0$

19)
$$O_1 = (2, -1)$$
 e $2a = 5$

20) Parábola
$$x'^2 = 4y'$$