LTL Fonts Proof Sheet

An LTL formula φ is defined by the following grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \mid \varphi \leftrightarrow \varphi \mid \forall x \varphi \mid \exists x \varphi$$
$$\mid \Box \varphi \mid \Diamond \varphi \mid \bigcirc \varphi \mid \varphi \mathcal{U} \varphi \mid \varphi \mathcal{W} \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \bigcirc \varphi \mid \varphi \mathcal{S} \varphi \mid \varphi \mathcal{B} \varphi,$$

where p is an assertion and x is a variable.

The truth of an LTL formula φ at position n of an infinite sequence σ of states is denoted $\sigma, n \models \varphi$ and defined, by induction on the structure of φ , as follows:

- $\sigma, n \models p$, for p an assertion, if p holds at state $\sigma[n]$;
- $\sigma, n \models \neg \varphi \text{ if } \sigma, n \not\models \varphi;$
- $\sigma, n \vDash \varphi \land \psi$ if both $\sigma, n \vDash \varphi$ and $\sigma, n \vDash \psi$;
- $\sigma, n \models \varphi \lor \psi$ if either $\sigma, n \models \varphi$ or $\sigma, n \models \psi$, or both;

:

- $\sigma, n \models \Box \varphi \text{ if } \sigma, i \models \varphi \text{ for all } i \geq n;$
- $\sigma, n \vDash \Diamond \varphi$ if there exists $i \geq n$ such that $\sigma, i \vDash \varphi$;
- $\sigma, n \vDash \bigcirc \varphi \text{ if } \sigma, (i+1) \vDash \varphi;$
- $\sigma, n \models \varphi \mathcal{U} \psi$ if there exists $i \geq n$ such that $\sigma, i \models \psi$ and $\sigma, j \models \varphi$ for all $j \in [n, j)$;
- $\sigma, n \models \varphi \mathcal{W} \psi$ if either $\sigma, n \models \varphi \mathcal{U} \psi$ or $\sigma, n \models \Box \varphi$;
- $\sigma, n \models \Box \varphi \text{ if } \sigma, i \models \varphi \text{ for all } i \in [0, n];$
- $\sigma, n \models \Diamond \varphi$ if there exists $i \in [0, n]$ such that $\sigma, i \models \varphi$;
- $\sigma, n \models \bigcirc \varphi \text{ if } n > 0 \text{ and } \sigma, (i-1) \models \varphi;$
- $\sigma, n \models \odot \varphi$ if either n = 0 or $\sigma, (i 1) \models \varphi$;
- $\sigma, n \vDash \varphi \mathcal{S} \psi$ if there exists $i \in [0, n]$ such that $\sigma, i \vDash \psi$ and $\sigma, j \vDash \varphi$ for all $j \in (j, n]$;
- $\sigma, n \vDash \varphi \mathcal{B} \psi$ if either $\sigma, n \vDash \varphi \mathcal{S} \psi$ or $\sigma, n \vDash \Box \varphi$.

The strict versions of the operators are defined as follows:

$$\widehat{\Box}\varphi \equiv \bigcirc\Box\varphi
\widehat{\Diamond}\varphi \equiv \bigcirc\Diamond\varphi
\widehat{\varphi}\widehat{\psi} = \bigcirc(\varphi \mathcal{U}\psi)
\varphi \widehat{\mathcal{W}}\psi \equiv \bigcirc(\varphi \mathcal{W}\psi)
\varphi \widehat{\mathcal{W}}\psi \equiv \bigcirc(\varphi \mathcal{W}\psi)
\widehat{\varphi}\widehat{\mathcal{W}}\psi \equiv \bigcirc(\varphi \mathcal{W}\psi)
\widehat{\mathcal{W}}\psi \equiv \bigcirc(\varphi \mathcal{W}\psi)$$

Some examples:

Operator pairs:

$\Box\Box p$	$\Box \Diamond p$	$\Box \bigcirc p$	$\Box(p\mathcal{U}q)$	$\Box(p \ \mathcal{W} \ q)$	
$\Box \Box p$	$\Box \diamondsuit p$	$\Box \ominus p$	$\square \odot p$	$\Box(p\mathcal{S}q)$	$\Box(p \mathcal{B} q)$
$\Diamond\Box p$	$\Diamond \Diamond p$	$\Diamond \bigcirc p$	$\Diamond(p\mathcal{U}q)$	$\Diamond(p \ \mathcal{W} \ q)$	
$\Diamond \Box p$	$\Diamond \Diamond p$	$\Diamond \ominus p$	$\Diamond \odot p$	$\Diamond(p\mathcal{S}q)$	$\diamondsuit(p \mathcal{B} q)$
$\bigcirc \Box p$	$\bigcirc \diamondsuit p$	$\bigcirc\bigcirc p$	$\bigcirc(p\mathcal{U}q)$	$\bigcirc(p \mathcal{W} q)$	
$\bigcirc \Box p$	$\bigcirc \diamondsuit p$	$\bigcirc\bigcirc p$	$\bigcirc \bigcirc p$	$\bigcirc(p\mathcal{S}q)$	$\bigcirc(p \mathcal{B} q)$
$\Box p \mathcal{U} \Box q$	$\Diamond p \mathcal{U} \Diamond q$	$\bigcirc p \mathcal{U} \bigcirc q$	$(p\mathcal{U}q)\mathcal{U}(r\mathcal{U}s)$	$(p \mathcal{W} q) \mathcal{U}(r \mathcal{W} s)$	
$\Box p \mathcal{U} \Box q$	$\diamondsuit p \mathcal{U} \diamondsuit q$	$\bigcirc p \mathcal{U} \bigcirc q$	$\odot p \mathcal{U} \odot q$	$(p \mathcal{S} q) \mathcal{U} (r \mathcal{S} s)$	$(p \mathcal{B} q) \mathcal{U}(r \mathcal{B} s)$
$\Box p \mathcal{W} \Box q$	$\Diamond p \mathcal{W} \Diamond q$	$\bigcirc p \mathcal{W} \bigcirc q$	$(p \mathcal{U} q) \mathcal{W} (r \mathcal{U} s)$	$(p \mathcal{W} q) \mathcal{W} (r \mathcal{W} s)$	
$\Box p \mathcal{W} \Box q$	$\diamondsuit p \mathcal{W} \diamondsuit q$	$\bigcirc p \mathcal{W} \bigcirc q$	$\odot p \mathcal{W} \odot q$	$(p \mathcal{S} q) \mathcal{W} (r \mathcal{S} s)$	$(p \mathcal{B} q) \mathcal{W} (r \mathcal{B} s)$
$\Box\Box p$	$\Box \diamondsuit p$	$\Box \bigcirc p$	$\boxminus(p\mathcal{U}q)$	$\boxminus(p \ \mathcal{W} \ q)$	
$\Box\Box p$	$\Box \diamondsuit p$	$\Box \ominus p$	$\Box \odot p$	$\boxminus(p\mathcal{S}q)$	$\Box(p \mathcal{B} q)$
$\diamondsuit\Box p$	$\diamondsuit \diamondsuit p$	$\Diamond \bigcirc p$	$\Leftrightarrow (p \mathcal{U} q)$	$\Leftrightarrow (p \mathcal{W} q)$	
$\Diamond \Box p$	$\diamondsuit \diamondsuit p$	$\Diamond \ominus p$	$\Diamond \odot p$	$\Leftrightarrow (p \mathcal{S} q)$	$\diamondsuit(p \mathcal{B} q)$
$\ominus\Box p$	$\ominus \diamondsuit p$	$\bigcirc\bigcirc p$	$\ominus(p \mathcal{U} q)$	$\ominus(p \mathcal{W} q)$	
$\ominus \Box p$	$\ominus \diamondsuit p$	$\bigcirc\bigcirc p$	$\Theta \otimes p$	$\ominus(p \mathcal{S} q)$	$\ominus(p \mathcal{B} q)$
$\odot\Box p$	$\odot \diamondsuit p$	$\odot \bigcirc p$	$\odot(p\mathcal{U}q)$	$\odot(p \mathcal{W} q)$	
$\odot \Box p$	$\odot \diamondsuit p$	$\odot \ominus p$	$\odot \odot p$	$\odot(p\mathcal{S}q)$	$\odot(p \mathcal{B} q)$
$\Box p \mathcal{S} \Box q$	$\Diamond p \mathcal{S} \Diamond q$	$\bigcirc p \mathcal{S} \bigcirc q$	$(p \mathcal{U} q) \mathcal{S} (r \mathcal{U} s)$	(p W q) S (r W s)	
$\Box p \mathcal{S} \Box q$	$\diamondsuit p \mathcal{S} \diamondsuit q$	$\bigcirc p \mathcal{S} \bigcirc q$	$\odot p S \odot q$	$(p \mathcal{S} q) \mathcal{S} (r \mathcal{S} s)$	$(p \mathcal{B} q) \mathcal{S} (r \mathcal{B} s)$
$\Box p \mathcal{B} \Box q$	$\Diamond p \mathcal{B} \Diamond q$	$\bigcirc p \ \mathcal{B} \bigcirc q$	$(p\mathcal{U}q)\mathcal{B}(r\mathcal{U}s)$	$(p \mathcal{W} q) \mathcal{B} (r \mathcal{W} s)$	
$\Box p \mathcal{B} \Box q$	$\diamondsuit p \mathcal{B} \diamondsuit q$	$\bigcirc p \mathcal{B} \bigcirc q$	$\odot p \mathcal{B} \odot q$	$(p\mathcal{S}q)\mathcal{B}(r\mathcal{S}s)$	$(p \mathcal{B} q) \mathcal{B} (r \mathcal{B} s)$

Upper case versions of the font (right column):

$$\Box P \to \bigcirc \diamondsuit Q$$

$$\Box \exists u \left(x = u \land \bigcirc (x = u + 1) \right)$$

$$\Box \exists u \left(x = u \land \bigcirc (x = u + 1) \right)$$