TP5: Medios granulares

Grupo 5 Tomás Álvarez Escalante (60127) Lucas Agustín Ferreiro (61595) Román Gómez Kiss (61003)

Introducción

Fundamentos y modelo

Fundamentos del sistema

- Sistema de partículas macroscópicas
- Interacciones disipativas por fuerzas de contacto normales y tangenciales
- Sistemas densos t_{choque} >> t_{vuelo}

<u>Modelo</u>

Fuerza de contacto normal

$$F_{N_{ij}} = \left[-k_n \xi - \gamma \dot{\xi} \right] \widehat{n}$$

Fuerza de contacto tangencial

$$F_{T_{ij}} = min \begin{cases} -\mu |F_N| sgn(\dot{r}_{rel}\hat{t}) \hat{t} \\ -k_T \sum_{t} \Delta t \dot{r}_{rel}{}^c \hat{t} \end{cases}$$

Suma de fuerzas

$$F_{i}^{Tot} = m_{i}g + \sum_{j} F_{N_{ij}} + \sum_{j} F_{T_{ij}}$$

Modelo

Superposición entre partículas

$$\xi_{ij} = R_i + R_j - \left| r_j - r_i \right|$$

Superposición partícula-pared

$$\xi_{ij} = R_i - |r_i|$$

Modelo

Velocidad relativa entre partículas

$$v_{rel} = \left(v_i - v_j\right)$$

Velocidad relativa partícula-pared

$$v_{rel} = (v_i)$$

Implementación

Arquitectura y algoritmo

<u>Diagrama UML</u>

<u>Pseudo-código</u>

Algorithm 1: Algoritmo del modelo de Dinámica Granular

Generar partículas con (x,y) aleatorios sin superposición;

while $t < t_f$ do

Agitar el silo;

for particle do

Predecir posición con Beeman;

Corregir con Beeman;

Actualizar las fuerzas;

Guardar el estado del sistema;

Simulaciones

Constantes, variables a estudiar y observables

Condiciones de la simulación

- Método de integración Beeman
- Condiciones de contorno cuasi-periódicas
- Si la partícula alcanza (L/10) cm por debajo de la salida, se reinyecta en y ε[40 cm, 70 cm] con v=0
- El silo vibra solo en su base por un forzado externo
- Partículas generadas en forma aleatoria sin superposición con v=0

Constantes

- N = 200
- $m_i = 1g$
- r = [0.85 cm; 1.15 cm]
- L = 70 cm
- W = 20 cm
- \bullet $T_{\text{max}} = 1000 \text{ s}$
- $dt = 10^{-3} s$

- A = 0.15 cm
- dt = 0.001 s
- $k_N = 250 \text{ dina/cm}$
- y = 2.5 g/s
- $\mu = 0.1$
- $g = 5 \text{ cm/s}^2$

Variables a estudiar

- Ancho de apertura de salida $D \in \{3, 4, 5, 6\}$ [cm]
- Frecuencia del forzado externo $\omega \in \{5, 10, 15, 20, 30, 50\}$ [rad/s]

Medio granular gravitatorio que fluye desde un silo 2D

Estudios a realizar

- Descarga → Nro. de partículas que salieron en función del tiempo
- Observable: Caudal (Q) → Número de partículas por unidad de tiempo
- Q en función de $\omega \rightarrow \omega$ que maximiza Q
- Q en función de D
- Comparación con Ley de Beverloo para silo 2D:

$$Q \approx n_p \sqrt{g} (d - cr)^{1.5} = B(d - cr)^{1.5}$$

• Error de ajuste

$$E(c) = \sum_{d \in D} [Q(d) - Q_{beverloo}(d, c)]^2$$

Resultados

Animaciones y gráficos

$$\omega = 5 \text{ rad/s}$$
 D = 5 cm

https://youtu.be/GeAW1jg_7wU

$$\omega = 30 \text{ rad/s}$$
 D = 5 cm

https://youtu.be/FUxutN9PgXQ

Descarga en función del tiempo

D = 5 cm

Caudal en función de la frecuencia

D = 5 cm

$$\omega$$
 = 20 rad/s

D = 3 cm

$$\omega$$
 = 20 rad/s

$$D = 6 cm$$

https://youtu.be/kh8_fUBbzeM

https://youtu.be/mhd63H90-BU

Caudal para distintos tamaños de apertura

 ω = 20 rad/s

Error de ajuste del parámetro libre

 $\omega = 20 \text{ rad/s}$

Comparativa de los datos y Ley de Beverloo

 ω = 20 rad/s

Conclusiones

- 1. La frecuencia que maximiza el caudal es ω = 20 rad/s
- 2. El caudal no siempre aumenta a medida que la frecuencia lo hace
- 3. A mayor tamaño de apertura del silo, el caudal aumenta
- 4. Las simulaciones cumplen con la Ley de Beverloo

¡Muchas gracias!