lad	How to solve	: ODE? F	l review	of some	e tednni	ques f	rom Cal	c/54.
Warm up	(Revisit of	concepts from	m last lea	ture)	•			1 .
1. 12 day	+ (4x) =	: 005/X ·	Dep var X	ind var t	order 4	auto V	linear X	homoz (it linear
y' = t	y +t²	ς ÿ = (l ἀ =	y t tytt²	(v) = (4	(;y+t2)	= (t o)	$\begin{pmatrix} u \\ u \end{pmatrix} + \begin{pmatrix} v \\ t^2 \end{pmatrix}$
	l *χω) = V ₀			Explain u yet)= 2(t)=	ny 20 -±9t²- -49t}+	iondition ofth ofth X	6 "50/n"	eded in IVP 'eral soln"
Generally, how Ans = 1	many initial	conditions s	nould be	given in	1 an II	lb m/	n-th orde	er oDE?
	what does in How?	t mean to	Solve	ODE?				
solve?	= f((t,y,)	(,yn) me	•				•	us $D \sqsubseteq R^{H} \rightarrow R$ s and n tans
(i) q'	n = fn(t, y,, defined on] (+), \$((+), , (4(+),, \$(+) , is sortified	Such that \cdot , $\phi_i(t) \in D$						

- Why is I important? \underline{L}_{x} . $y = y^{2}$ 0 Is $y = \underline{J}_{-t}$ a soln on the interval (0,3).? $\underline{L}_{y}(1) = 1$ 0 Determine the largest interval that the soln is valid. (interval of validity) Although Eq is satisfied. Y is not defined on (0,3) Ans O NO!! let alone its derivative. (2) f(t,y) = y2, D=1R2 → 1R2 (2-x7) defined on (-00, 2), (2,+00) interval of validity: (-00,2) Quick Energize $(\dot{y}=\dot{y}^2)$ $\dot{y}=\dot{y}^2$ is a solution $(0,+\infty)$. Q2: How to solve? scalar ODE. Today: 1st order scalar ODE. [18] dy = f(t/y) Sep of var. dy = Fet) (ig) One can do: $\frac{dy}{C(u)} = F(t) dt$ I Note these two Eqs are not completely equivalent.

Need to pay attention to Gry1 = 0 Ex. yH1= + y3 + y3 @ soln to IVP w./ Y(4) = \(\frac{1}{2}\); largest valid interval? O Find General soln ý = (t+1) y3 $y = \sqrt{-t^2 - 2t + 3}$ $t \in (-3, 1)$ y-3dy = til dt - \frac{1}{2} \frac{t^2}{2} + \frac{t}{t} + C \frac{\text{"Equillorium soln"}}{\text{Equillorium soln"}} 13+14-3 50 $y = \frac{1}{-t^2-2t+C}$ or y=0. (+3)(+1) EO

I lost my apple pencil, so have to type..

Two great questions in the class

1. Concave up/ down?

Check increasing or decreasing of the first derivative

2. Why the solution starting in between 0 and 1 can not touch the line P=1?

Population Exal logistic Eq. #= k(1-f)P N: environmental corrying capacity

FP = A ekt (PD) = k d+

> P= Aekt or P=1 1-p + p dp = kd+ In = kt+C

P(0) = Po Why can not cross? A = Po Qualitative Behavior of 50 ln P(t)= Pekt 1-Po+Poekt be need of >0 to cross, but if P=1, we get of =0.

1st order Inear ODE (Integrating factor)

JH) + att) y = b(t) if b+)=0, separable. y+)=Ce-Sa+)d+ Generally.

integrating factor

m(t) = e Sa(t) dt $m(x) \hat{y}(x) + a(x) m(x) y = m(x) b(x)$

& (m+) g+))= m+) b+)

(will be proved later in course) => yH) = mH) (mH)bH) dt + C Observation General solv of non-homo Eq = General solv of homo part @ Particular solv of non-homo Eq.

yH)=tty , y(1)=0 tetat=tdet (e-t'y) = te-t $m(t) = e^{-t}$ VH) = et(-tet-et+c) =-tet-e-t+c e-ty - e-ty = te-t = -(t+1)+Cet

=> (+)= -(+1)+2et-1

*. Other Egs that can be converted into above form
Bernoulli Eg
$\frac{dy}{dt} + O(t) y = b(t) y^n \qquad n \ge 0.$
When N=0. 1st order linear.
N=1. 1st order linear homogeneous.
WIDG assume n = 0,1. Not necessorily integer.
y ⁿ dy + a+) y ^{l-η} = b+)
Change of var $2 = y^{l-n}$
Find $z + a(t)z = b(t)$ 1st order linear!
(-n (
Ex dy 3 11 113 113
$\frac{dy}{dt} = -\frac{3}{t}y + t^2y^2$ (txo) Find its general solution.
2 = y-1
$\frac{d^2}{dt} = \sqrt{-2} \frac{dy}{dt} = \frac{3}{5} - t^2$
M4)= = t3
z= t3 (J-t-1 dt+c)
$= t^3 (c-lnt)$
=) $y = t^{-3} (C - (nt)^{-1})$ or $y = 0$.
1 0 (- INC) or y=0.