# Regularity and Smoothness



### Regularity and Smoothness

#### 1 Modules of differentials and derivations

In this subsection, let R be a ring and A an R-algebra.

**Definition 1** (Derivation). A derivation of A over R is an R-linear map  $\partial: A \to M$  with an A-module such that for all  $a, b \in A$ , we have

$$\partial(ab) = a\partial(b) + b\partial(a).$$

Given the module M, the set of all derivations of A over R into M forms an A-module, denoted by  $\operatorname{Der}_R(A, M)$ .

Given a module homomorphism  $f: M \to N$  of A-modules and a derivation  $\partial \in \operatorname{Der}_R(A, M)$ , the map  $f \circ \partial$  is a derivation of A over R into N.

**Proposition 2.** The functor  $\operatorname{Der}_R(A,-)$  is representable. The representing object is denoted by  $\Omega_{A/R}$ , which is called the *module of differentials* of A over R.

Proof. Yang: To be completed.

**Proposition 3.** Let A, R' be R-algebras and  $A' := A \otimes_R R'$ . Then the module of differentials  $\Omega_{A'/R'}$  is isomorphic to  $\Omega_{A/R} \otimes_A A'$ .

*Proof.* Yang: To be completed.

**Proposition 4.** Suppose A is of finite type over R. Then the module of differentials  $\Omega_{A/R}$  is a finitely generated A-module.

Proof. Yang: To be completed.

**Theorem 5.** Let A be an R-algebra and B an A-algebra. Then there is a short exact sequence

$$\Omega_{A/R} \otimes_A B \to \Omega_{B/R} \to \Omega_{B/A} \to 0.$$

Proof. Yang: To be completed.

**Theorem 6.** Let A be an R-algebra and I an ideal of A. Then there is a short exact sequence

$$I/I^2 \to \Omega_{A/R} \otimes_A A/I \to \Omega_{(A/I)/R} \to 0.$$

#### 2 Zariski's tangent space

**Definition 7.** Let A be a noetherian ring. For every  $\mathfrak{p} \in \operatorname{Spec} A$ ,  $\mathfrak{p}/\mathfrak{p}^2$  is a vector space over  $\kappa(\mathfrak{p})$ . The Zariski's tangent space  $T_{A,\mathfrak{p}}$  of A at  $\mathfrak{p}$  is defined as the dual  $\kappa(\mathfrak{p})$ -vector space of  $\mathfrak{p}/\mathfrak{p}^2$ .

**Definition 8.** A noetherian ring A is said to be regular if for every prime ideal  $\mathfrak{p} \in \operatorname{Spec} A$ , we have

$$\dim_{\kappa(\mathfrak{p})} T_{A,\mathfrak{p}} = \dim A_{\mathfrak{p}},$$

where dim  $A_{\mathfrak{p}}$  is the Krull dimension of the local ring  $A_{\mathfrak{p}}$ .

**Proposition 9.** Regularity is a local property, i.e., TFAE:

- (a) A is regular;
- (b) for every prime ideal  $\mathfrak{p} \in \operatorname{Spec} A$ , the local ring  $A_{\mathfrak{p}}$  is regular;

Date: June 16, 2025, Author: Tianle Yang, My Website

| Regularity and Smoothness                                                                                      | 2 |
|----------------------------------------------------------------------------------------------------------------|---|
| (c) for every maximal ideal $\mathfrak{m} \in \mathrm{mSpec}A$ , the local ring $A_{\mathfrak{m}}$ is regular. |   |
| Proof. Yang: To be completed.                                                                                  |   |
| Proposition 10.                                                                                                |   |
| Example 11.                                                                                                    |   |

## 3 Jacobiian criterion