MATH 131—HOMEWORK 6

Ricardo J. Acuña (862079740)

Q1 Prove that there does not exist a linear map $T: \mathbb{R}^5 \to \mathbb{R}^5$ such that

range
$$T = \text{null } T$$

Pf.

$$\begin{array}{l} \forall \ T \in \mathcal{L}(\mathbb{R}^5,\mathbb{R}^5): \\ 5 = \dim \ (\mathbb{R}^5) = \dim \ \operatorname{null}(T) + \dim \ \operatorname{range}(T) \ \ (\text{by FTLA}) \\ \text{Assume } K = \dim \ \operatorname{null}(T) = \dim \ \operatorname{range}(T) \\ \Rightarrow 5 = 2K \Rightarrow K = \frac{5}{2} \notin \mathbb{N}, \ \text{but } \dim \ \operatorname{null}(T) \in \mathbb{N} \\ \text{By contradiction } \dim \ \operatorname{null}(T) \neq \dim \ \operatorname{range}(T) \\ \Rightarrow \operatorname{range}(T) \neq \operatorname{null}(T) \quad \ (\text{by Proposition 1 in 2C}) \\ \Rightarrow \not \equiv T : \operatorname{range}(T) = \operatorname{null}(T) \end{array}$$

Q2 Prove or give a counterexample:

If $T: V \to W$ is a linear map and $v_1, ..., v_n$ spans V. Then $T(v_1), ..., T(v_n)$ spans range(T).

Pf.

$$\begin{split} & \operatorname{range}(T) = \{w \in W | \ \exists \ v \in V : w = T(v)\} \\ & v_1,...,v_n \ \operatorname{spans} V \Rightarrow V = \operatorname{span}(\{v_1,...,v_n\}) \\ & \forall w \in \operatorname{range}(T) : \exists \ v \in V : \exists a_1,...,a_n \in \mathbb{F} : v = \sum_{i=1}^n a_i v_i : \\ & w = T(v) \Rightarrow w = T(\sum_{i=1}^n a_i v_i) = \sum_{i=1}^n a_i T(v_i) \\ & \Rightarrow w \in \operatorname{span}\left(\{T(v_1),...,T(v_n)\}\right) \\ & \operatorname{So}_{\cdot} T(v_1),...,T(v_n) \ \operatorname{spans} \ \operatorname{range}(T) \end{split}$$

Q3 Prove or give a counterexample: Let $T:V\to W$ and $S:V\to W$ are two linear maps. If null T= null S, then T=S

Let
$$V=W=\mathbb{R}$$
: Define $T(x)=x$ and $S(x)=5x$ null $T=\{x\in\mathbb{R}|T(x)=0\}$ T is the identity map so null $T=\{0\}$ null $S=\{x\in\mathbb{R}|S(x)=0\}$

$$S$$
 is defined by $x\mapsto 5x$ and $0=5(0)\Rightarrow x=0$

$$\Rightarrow \operatorname{null} S = \!\! \{0\} = \operatorname{null} T$$

but, $T \neq S$

Q4 Suppose V and W are both finite-dimensional. Prove that there exists an injective linear map from V to W if and only if dim $V \leq \dim W$

Pf.

 (\Rightarrow) Assume $\exists T: V \to W$ and T is injective.

(by Proposition 1 in 3B) null $T = \{0\} \Rightarrow \dim \text{ null } T = 0$

(by FTLA) dim $V = \dim \text{null } T + \dim \text{range } T$

$$\Rightarrow$$
 dim $V = 0 +$ dim range T

 \Rightarrow dim V = dim range T

 $\operatorname{range} T \trianglelefteq W \Rightarrow \dim \operatorname{range} T \leq \dim W$

$$\Rightarrow \dim \, V \leq \dim \, W$$

 (\Leftarrow) Assume $n = \dim V \le \dim W = m$

Suppose $B = \{v_1, ..., v_n\}$ and $B^* = \{w_1, ..., w_m\}$ are bases for V and W respectively.

Consider $R: V \Rightarrow W$ defined by

$$R(v_i) = w_i, 1 \le i \le n$$

$$v_i \neq v_j \Rightarrow R(v_i) \neq R(v_j) \Rightarrow w_i \neq w_j$$
, whenever $i \neq j$

R is injective as long as $n \le m$. If n > m, then some v_k where k > m, has to get mapped to some vector in W that has already been mapped by R.

So, R exists and it is injective.

So, there exists an injective linear map from V to W if and only if dim $V \leq \dim W$

Q5 Prove that there does not exist a linear map from \mathbb{F}^5 to \mathbb{F}^2 whose nullspace equals

$$\{(x_1, x_2, x_3, x_4, x_5) | x_1 = 3x_2; x_3 = x_4 = x_5\}$$

Pf.

Assume $R: \mathbb{F}^5 \to \mathbb{F}^2: \text{null } R = \{(x_1, x_2, x_3, x_4, x_5) | x_1 = 3x_2; x_3 = x_4 = x_5, x_i \in \mathbb{F} \}$

$$\forall s \in \text{null } R \Rightarrow s = (3x_2, x_2, x_3, x_3, x_3)$$

$$\Rightarrow s = x_2(3, 1, 0, 0, 0) + x_3(0, 0, 1, 1, 1)$$

and $(3, 1, 0, 0, 0) \neq k(0, 0, 1, 1, 1), k \in \mathbb{F}$, because $1 \neq k0 = 0$

$$\Rightarrow B = \{(3,1,0,0,0), (0,0,1,1,1)\}$$
 is a basis for null R

 \Rightarrow dim null R = |B| = 2

 $\dim \mathbb{F}^5 = \dim \operatorname{null} R + \dim \operatorname{range} R \text{ (By FTLA)}$

5=2+ dim range $R\Rightarrow$ dim range R=5-2=3

range $R \leq \mathbb{F}^2 \Rightarrow \dim \operatorname{range} R \leq \dim_{\mathbb{F}} \mathbb{F}^2 = 2 \Rightarrow 3 \leq 2 \Rightarrow \operatorname{False}$

So, by contradiction to our assumption R doesn't exist

 $\textbf{Q6} \quad \text{Suppose} \ T \in \mathcal{L}(V,W) \ \text{is injective and} \ \{v_1,...,v_n\} \ \text{is linearly independent in} \ V. \ \text{Prove or disprove} \ \{T(v_1),...,T(v_n)\} \ \text{is linearly independent in} \ W.$

₽f..

 $\forall T \in \mathcal{L}(V, W)$: T is injective

$$\Rightarrow$$
 null $T = \{0\}$

and $\{v_1, ..., v_n\}$ is linearly independent in V

Set up the dependence test equation as such

$$\sum_{i=1}^n a_i T(v_i) = 0: \exists a_1,...,a_n \in \mathbb{F}$$

$$\Rightarrow \sum_{i=1}^n a_i T(v_i) = T(\sum_{i=1}^n a_i v_i) = 0$$

$$\textstyle \sum_{i=1}^n a_i v_i \in \operatorname{null} T \Rightarrow \textstyle \sum_{i=1}^n a_i v_i \in \{0\}$$

$$\Rightarrow \sum_{i=1}^{n} a_i v_i = 0$$

Since $\{v_1,...,v_n\}$ is linearly independent in V, then $a_1=...=a_n=0$.

So, $\{T(v_1),...,T(v_n)\}$ is linearly independent in W.