The Class PSPACE and Game Theory

valentinpi

5. Januar 2021 (neueste Version)

Proseminar Theoretische Informatik WiSe 2020-21 Institut für Informatik Freie Universität Berlin

Definition

Let $f: \mathbb{N} \to \mathbb{R}^+$ be a function. The complexity classes *SPACE* and *NSPACE* of f are:

Definition

Let $f: \mathbb{N} \to \mathbb{R}^+$ be a function. The complexity classes *SPACE* and *NSPACE* of f are:

$$\mathsf{SPACE}(f(n)) \coloneqq \{\ L \mid L \text{ is decided by a deterministic turing machine} \\ \qquad \qquad \mathsf{using}\ \mathcal{O}(f(n)) \text{ space } \}$$

Definition

Let $f: \mathbb{N} \to \mathbb{R}^+$ be a function. The complexity classes *SPACE* and *NSPACE* of f are:

$$\mathsf{SPACE}(f(n)) \coloneqq \{\ L \mid L \text{ is decided by a deterministic turing machine} \\ \qquad \qquad \mathsf{using}\ \mathcal{O}(f(n)) \text{ space } \}$$

$$\mathsf{NSPACE}(f(n)) \coloneqq \{ \ L \mid L \ \mathsf{is} \ \mathsf{decided} \ \mathsf{by} \ \mathsf{a} \ \mathsf{nondeterministic} \ \mathsf{turing} \ \mathsf{machine} \ \mathsf{using} \ \mathcal{O}(f(n)) \ \mathsf{space} \ \}$$

2

PSPACE and NPSPACE

PSPACE and NPSPACE

Definition

In analogy to the classes P and NP, *PSPACE* and *NPSPACE* are defined as:

$$\mathsf{PSPACE} \coloneqq \bigcup_{k \in \mathbb{N}} \mathsf{SPACE}(n^k) \qquad \mathsf{NPSPACE} \coloneqq \bigcup_{k \in \mathbb{N}} \mathsf{NSPACE}(n^k)$$

Another inequality?

Relations between PSPACE and NPSPACE?

Another inequality?

Relations between PSPACE and NPSPACE?

Surprising result (Savitch):

 $\begin{array}{l} \textbf{Fact (Corollary from Savitchs Theorem)} \\ \textbf{PSPACE} = \textbf{NPSPACE} \end{array}$

PSPACE-Completeness

PSPACE-Completeness

Definition

A language B is PSPACE-complete, if:

- 1. $B \in \mathsf{PSPACE}$
- 2. $A \leq_p B$ for all $A \in PSPACE$, also called *PSPACE-hard*

Effects on the Landscape

Fact

The following holds:

Effects on the Landscape

Fact

The following holds:

$$P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME := \bigcup_{k \in \mathbb{N}} TIME (2^{n^k})$$

 $P \neq EXPTIME$

Generalization of SAT.

Prerequisites:

Generalization of SAT.

Prerequisites:

• Prenex Normal Form: $Q_1x_1Q_2x_2...Q_nx_n$: ϕ with $Q_1,...,Q_n \in \{\forall,\exists\}$

Generalization of SAT.

Prerequisites:

- Prenex Normal Form: $Q_1x_1Q_2x_2...Q_nx_n$: ϕ with $Q_1,...,Q_n \in \{\forall,\exists\}$
- Fully Quantified Boolean Formulas (Statements)

The TQBF Problem

 $\mathsf{TQBF} \coloneqq \{\; \langle \phi \rangle \mid \phi \text{ is a true fully quantified boolean formula } \}$

Theorem TQBF is PSPACE-complete.

Proof.

Theorem TQBF is PSPACE-complete.

Proof.

$TQBF \in PSPACE$:

Input: $\langle \phi \rangle$, where ϕ is a fully quantified boolean formula.

Function:

- 1: if $\phi = \psi$, no quantifiers then
- 2: Evaluate ψ , accept or reject depending on result.
- 3: else if $\phi = \exists x : \psi$ then
- 4: Recursive call on ψ with x = true, x = false.
- 5: If either accepts, accept. Otherwise, reject.
- 6: else $\phi = \forall x : \psi$
- 7: Recursive call on ψ with x = true, x = false.
- 8: If both accept, accept. Otherwise, reject.

Theorem TQBF is PSPACE-complete.

Proof.

Theorem TQBF is PSPACE-complete.

Proof.

TQBF is PSPACE-hard. (Proof idea)

Use Cook-Levin?

Machine → Fully Quantified Boolean Formula

Theorem TQBF is PSPACE-complete.

Proof.

TQBF is PSPACE-hard. (Proof idea)

Use Cook-Levin?

Machine → Fully Quantified Boolean Formula

Machine may run in exponential time \Rightarrow Exponential sized result

Theorem TQBF is PSPACE-complete.

Proof.

TQBF is PSPACE-hard. (Proof idea)

Use Cook-Levin?

Machine → Fully Quantified Boolean Formula

Machine may run in exponential time ⇒ Exponential sized result

 \Rightarrow Shorten Formula using \forall (Savitchs Theorem)

Proving more PSPACE-Completeness

From NP-completeness:

Proving more PSPACE-Completeness

From NP-completeness:

Corollary

If B is PSPACE-complete and $B \leq_p C$ for $C \in PSPACE$, then C is PSPACE-complete.

Games

$$\underbrace{\mathsf{Player}\;\mathsf{I} \to \mathsf{Goals} \leftarrow \mathsf{Player}\;\mathsf{II}}_{\mathsf{Rules}}$$

Games

$$\underbrace{\mathsf{Player}\;\mathsf{I} \to \mathsf{Goals} \leftarrow \mathsf{Player}\;\mathsf{II}}_{\mathsf{Rules}}$$

Game: Formula game between players A and E.

Games

$$\underbrace{\mathsf{Player}\;\mathsf{I} \to \mathsf{Goals} \leftarrow \mathsf{Player}\;\mathsf{II}}_{\mathsf{Rules}}$$

Game: Formula game between players A and E.

Want: Winning strategy

Equality of Problems

Equality of Problems

 $\begin{array}{l} \textbf{Corollary} \\ \textbf{FORMULA-GAME} = \textbf{TQBF} \ \textbf{and} \ \textbf{FORMULA-GAME} \ \textbf{is} \\ \textbf{PSPACE-complete}. \end{array}$

Geography and the World

A Game of Geography on France

Generalized Geography

Generalize for any directed graph:

 $\mathsf{GG} := \{ \ \langle \mathit{G}, \mathit{s} \rangle \ | \ \mathsf{Player} \ \mathsf{I} \ \mathsf{has} \ \mathsf{a} \ \mathsf{winning} \ \mathsf{strategy} \ \mathsf{for} \ \mathsf{the} \ \mathsf{GG} \ \mathsf{game} \\ \mathsf{played} \ \mathsf{on} \ \mathit{G}, \ \mathsf{starting} \ \mathsf{from} \ \mathit{s} \ \}$

GG is PSPACE-Complete

Theorem GG is PSPACE-complete.

Proof. FORMULA-GAME \leq_p GG

 $\mathsf{GG} \in \mathsf{PSPACE}$

Input: $\langle G, s \rangle$, where G is a directed graph and s a node from G.

Function:

1: if $\deg s = 0$ then

Reject, since Player I instantly looses.

3: Remove s and its edges from G for a new graph G'.

4: For the outgoing neighbors of s, $s_1,...,s_k$, do a recursive call on $\langle G',s_i\rangle$, $i\in\{1,...,k\}$.

5: If all accept, reject. Otherwise, accept.

GG is PSPACE-Complete

Theorem GG is PSPACE-complete.

Proof. FORMULA-GAME $\leq_p \mathsf{GG}$

$$\phi = \exists x_1 \forall x_2 \exists x_3 ... \exists x_n \colon \psi \mapsto (G, s)$$

Resources

Another New Landscape

Another New Landscape

(Assuming relationships are proper)

Another New Landscape

(Assuming relationships are proper)