Slide 6–Matrix Inverse MAT2040 Linear Algebra

1 / 26

Example 6.1 Consider the following linear system

$$-7x_1 - 6x_2 - 12x_3 = -33,$$

$$5x_1 + 5x_2 + 7x_3 = 24,$$

$$x_1 + 4x_3 = 5.$$

It can be represented as

$$A\mathbf{x} = \mathbf{b}$$
,

where

$$A = \begin{bmatrix} -7 & -6 & -12 \\ 5 & 5 & 7 \\ 1 & 0 & 4 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -33 \\ 24 \\ 5 \end{bmatrix}$$

2 / 26

Slide 6–Matrix Inverse

Now define

$$B = \begin{bmatrix} -10 & -12 & -9 \\ \frac{13}{2} & 8 & \frac{11}{2} \\ \frac{5}{2} & 3 & \frac{5}{2} \end{bmatrix}$$

One can check that

$$BA = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] = I_3$$

Apply this to solve the equation

$$\mathbf{x} = I_3 \mathbf{x} = BA\mathbf{x} = B\mathbf{b} = \begin{bmatrix} -10 & -12 & -9 \\ \frac{13}{2} & 8 & \frac{11}{2} \\ \frac{5}{2} & 3 & \frac{5}{2} \end{bmatrix} \begin{bmatrix} -33 \\ 24 \\ 5 \end{bmatrix} = \begin{bmatrix} -3 \\ 5 \\ 2 \end{bmatrix}$$

() Slide 6–Matrix Inverse 3 / 26

Definition 6.2 (Invertible Matrix) Let $A, B \in \mathbb{R}^{n \times n}$ be such that

$$AB = BA = I_n$$

then A is invertible and B is the inverse of A. We shall write $B = A^{-1}$.

Remark. For a linear system $A\mathbf{x} = \mathbf{b}$ with n equations and n variables, then A is a square matrix with size $n \times n$. If A is invertible, then the system has a unique solution, which is given by $\mathbf{x} = A^{-1}\mathbf{b}$. This is due to $\mathbf{x} = I\mathbf{x} = A^{-1}A\mathbf{x} = A^{-1}\mathbf{b}$.

4 / 26

()

Question:

For any $A \in \mathbb{R}^{n \times n}$, does there exist B, s.t. $BA = AB = I_n$?

Answer: Not all matrices satisfy this condition, e.g. $A = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$.

()

Example 6.3

(1) Let

$$A = \left[\begin{array}{cc} 3 & 0 \\ 0 & 4 \end{array} \right]$$

then

$$\left[\begin{array}{cc} 3 & 0 \\ 0 & 4 \end{array}\right] \left[\begin{array}{cc} \frac{1}{3} & 0 \\ 0 & \frac{1}{4} \end{array}\right] = \left[\begin{array}{cc} \frac{1}{3} & 0 \\ 0 & \frac{1}{4} \end{array}\right] \left[\begin{array}{cc} 3 & 0 \\ 0 & 4 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

Thus,

$$A^{-1} = \left[\begin{array}{cc} \frac{1}{3} & 0\\ 0 & \frac{1}{4} \end{array} \right]$$

6 / 26

Slide 6–Matri

(2) Let

$$A = \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right]$$

then

$$\left[\begin{array}{cc} 1 & -2 \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} 1 & -2 \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

Thus,

$$A^{-1} = \left[\begin{array}{cc} 1 & -2 \\ 0 & 1 \end{array} \right]$$

7 / 26

Slide 6–Matrix Inve

(3) Let

$$A = \left[\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array} \right]$$

Suppose

$$B = \left[\begin{array}{cc} w & x \\ y & z \end{array} \right] = A^{-1},$$

then

$$\left[\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} w & x \\ y & z \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

But

$$\left[\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} w & x \\ y & z \end{array}\right] = \left[\begin{array}{cc} 2w + y & 2x + z \\ 0 & 0 \end{array}\right] \neq \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

In this case,

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$$
 is not invertible.

()

Remark

- (1) The diagonal matrix $A = diag(a_{11}, a_{22}, \dots, a_{nn})$ is invertible if and only if all $a_{ii} \neq 0, i = 1, \dots, n$, and $A^{-1} = diag(a_{11}^{-1}, a_{22}^{-1}, \dots, a_{nn}^{-1})$.
- (2) Not all square matrices are invertible.
- (3) **Invertible matrices** are sometimes called **nonsingular** or **nondegenerate matrices**. On the other hand, square matrices that are **not invertible** are also called **singular** or **degenerate**.

()

Theorem 6.4 (Matrix inverse is unique) Suppose the square matrix A has an inverse. Then A^{-1} is unique.

Proof. Let B, C be the inverse of A, thus, AB = BA = I, AC = CA = I. Then B = BI = BAC = IC = C

10 / 26

Property 6.5 (Matrix Inverse of a Matrix Transpose) Suppose A is an invertible matrix. Then A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

Proof. $A^T(A^{-1})^T = (A^{-1}A)^T = I^T = I$ and $(A^{-1})^T A^T = (AA^{-1})^T = I^T = I$.

Property 6.6 (Matrix Inverse of a Scalar Multiple) Suppose A is an invertible matrix and α is a nonzero scalar. Then αA is invertible and $(\alpha A)^{-1} = \frac{1}{a}A^{-1}$.

Proof. $(\alpha A)(\frac{1}{\alpha}A^{-1}) = AA^{-1} = I$, and $(\frac{1}{\alpha}A^{-1})(\alpha A) = A^{-1}A = I$.

Property 6.7 (Matrix Inverse of a Matrix Inverse) Suppose A is an invertible matrix. Then A^{-1} is invertible and $(A^{-1})^{-1} = A$.

Proof. By definition, $AA^{-1} = A^{-1}A = I$, thus $(A^{-1})^{-1} = A$.

Slide 6–Matrix Inverse 11 / 26

Theorem 6.8 (Matrix Inverse of Matrices Product) Suppose A and B are invertible matrices of size n, then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

Proof. By assumption, A^{-1} and B^{-1} exist. Thus,

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = AA^{-1} = I.$$

$$B^{-1}A^{-1}(AB) = B^{-1}(A^{-1}A)B = B^{-1}B = I.$$

Hence, $(AB)^{-1} = B^{-1}A^{-1}$.

() Slide 6-Matrix Inverse 12 / 26

Remark. $(A + B)^{-1} \neq A^{-1} + B^{-1}$, can you find an counterexample?

13 / 26

Slide 6–Matri

Elementary Matrix and its inverse

Definition 6.9 (Elementary Matrices) If we start with the identity matrix, and perform exactly one type of elementary row operations, then the resulting matrix is called elementary matrix.

14 / 26

(1) The elementary matrix corresponding to elementary row operation 1 $(R_i \leftrightarrow R_i)$ is (elementary matrix type I)

15 / 26

Slide 6–Matrix Inverse

Suppose $E_{R_iR_j} \in \mathbb{R}^{m \times m}$, $A \in \mathbb{R}^{m \times n}$, the result of $E_{R_iR_j}A$ is just to exchange the ith row and jth row of matrix A, $E_{R_iR_j}$ is also called the **row exchange matrix**.

Example

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} y & z \\ w & x \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = \begin{bmatrix} a_{31} & a_{32} \\ a_{21} & a_{22} \\ a_{11} & a_{12} \end{bmatrix}$$

Actually, $E_{R_iR_i}$ is a **permutation matrix** (will be defined later on).

16 / 26

Slide 6–Matrix In

 $\cdot ()$

(2) The elementary matrix corresponding to elementary row operation 2 $(R_i \to \alpha R_i (\alpha \neq 0))$ is (elementary matrix type II)

ith column

17 / 26

Slide 6

Suppose $E_{\alpha R_i} \in \mathbb{R}^{m \times m} (\alpha \neq 0)$, the result of $E_{\alpha R_i} A$ is just to multiply each element of *i*th row of matrix A by α .

Example

$$\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} w & x \\ 3y & 3z \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ 2a_{31} & 2a_{32} \end{bmatrix}$$

Slide 6-Matrix Inverse 18 / 26

(3) The elementary matrix corresponding to elementary row operation 3 $(R_j \to \beta R_i + R_j)$ is (elementary matrix type III)

ith column ith column

Suppose $E_{\beta R_i + R_j} \in \mathbb{R}^{m \times m}$, the result of $E_{\beta R_i + R_j} A(\alpha \neq 0)$ is to multiply each element of *i*th row of matrix A by α , then add them into the *j*th row while keeping *i*th row unchanged.

Example

$$E_{2R_1+R_2}\left[\begin{array}{cc} w & x \\ y & z \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array}\right] \left[\begin{array}{cc} w & x \\ y & z \end{array}\right] = \left[\begin{array}{cc} w & x \\ 2w + y & 2x + z \end{array}\right]$$

$$E_{-2R_1+R_3} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ -2a_{11} + a_{31} & -2a_{12} + a_{32} \end{bmatrix}$$

Slide 6-Matrix Inverse 20 / 26

Important property for elementary matrices

For a given matrix A, performing elementary row operation for A is equivalent to premultiplying A by the corresponding elementary matrix.

Theorem 6.10 (Elementary Matrices are Invertible and Their Inverse are also Elementary Matrices)

- (1) $E_{R_iR_j}^{-1}=E_{R_iR_j}$, corresponding to the reverse row operation 1: $R_i\leftrightarrow R_j$.
- (2) $E_{\alpha R_i}^{-1} = E_{\frac{1}{\alpha}R_i}$ ($\alpha \neq 0$), corresponding to the reverse row operation 2: $R_i \to \frac{1}{\alpha}R_i$.
- (3) $E_{\beta R_i + R_j}^{-1} = E_{-\beta R_i + R_j}$, corresponding to the reverse row operation 3: $R_j \to -\beta R_i + R_j$.

Remark. The inverse of the elementary matrices corresponding to the reverse row operations and belong to the same type of elementary matrices.

22 / 26

Slide 6–Matrix II

Example

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

Slide 6-

Definition 6.11 (Permutation matrix)

A permutation matrix is a square matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere.

Remark A permutation matrix can be obtained by reordering the rows of the identity matrix.

Example

$$P = \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]$$

)

Property 6.12 For a permutation matrix P, it can always be decomposed into a multiplication of finite number of row exchange matrices $E_{R_iR_i}$ (corresponding to the row exchange $R_i \leftrightarrow R_j$), i.e.

$$P = E_{R_{i_k}R_{j_k}} \cdots E_{R_{i_2}R_{j_2}} E_{R_{i_1}R_{j_1}}$$

Example

$$P = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = E_{R_2R_4}E_{R_1R_3}$$

25 / 26

Slide 6–Matrix Inverse

Property 6.13 For a permutation matrix P, $P^{-1} = P^T$, since

$$P^{-1} = (E_{R_{i_k}R_{j_k}} \cdots E_{R_{i_2}R_{j_2}} E_{R_{i_1}R_{j_1}})^{-1}$$

$$= E_{R_{i_1}R_{j_1}}^{-1} E_{R_{i_2}R_{j_2}}^{-1} \cdots E_{R_{i_k}R_{j_k}}^{-1}$$

$$= E_{R_{i_1}R_{j_1}} E_{R_{i_2}R_{j_2}} \cdots E_{R_{i_k}R_{j_k}}$$

$$= E_{R_{i_1}R_{j_1}}^T E_{R_{i_2}R_{j_2}}^T \cdots E_{R_{i_k}R_{j_k}}^T$$

$$= P^T$$

Example

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}^{T}$$

Slide 6–Matrix Inverse 26 / 26