Database Systems I CS3431

Solution of Homework 3

Problem 1

1- Several Nontrivial FDs are (You are required to derive 5 only):

- $C \rightarrow D$
- $D \rightarrow A$
- $C \rightarrow A$
- $BD \rightarrow A$
- $CD \rightarrow A$
- $BC \rightarrow A$
- $AB \rightarrow C$
- $AC \rightarrow D$
- $AB \rightarrow D$
- $BD \rightarrow C$
- $BC \rightarrow D$
- ABD → C
- $ABC \rightarrow D$
- $BCD \rightarrow A$

2- The attribute closures are:

- ${AD}^+ = {AD}$
- $\{C\}^{+} = \{ACD\}$
- ${AB}^{+} = {ABCD}$

3- Candidate keys of R are: {AB}, {BC}, {BD}

Proof:

 ${AB}^+ = {ABCD}$, and neither ${A}^+$ nor ${B}^+$ contain all the attributes of R ${BC}^+ = {ABCD}$, and neither ${B}^+$ nor ${C}^+$ contain all the attributes of R ${BD}^+ = {ABCD}$, and neither ${B}^+$ nor ${D}^+$ contain all the attributes of R

Problem 2

Part 1

a- (Department, Surname), (Surname, FirstName, Address)

- -- Lossy decomposition.
- -- The reason is that the common attribute (Surname) is not a key in either relations and hence the natural join will generate more tuples than that of the original relation.

b- (Department, FirstName, Surname), (FirstName, Address)

- -- Lossless decomposition.
- -- The reason is that the common attribute (FirstName) can be a key (after removing the duplicates) for the second relation (FirstName, Address) and hence the natural join will generate the same tuples as in the original relation.

Part 2

Dependencies that hold from the given data are:

Department → Surname

Department → FirstName

Department → Address

FirstName → Address

FirstName → Surname

a- (Department, FirstName, Surname), (Surname, Address)

-- Does not preserve the dependencies because Department → Address cannot be derived

b- (Department, FirstName, Surname), (Surname, FirstName, Address)

-- Preserve the dependencies because all dependencies can be derived including the Department \rightarrow Address dependency.

Problem 3

- When decompose a relation R, you need to recheck the new relations against the FDs that you have. In some cases you may need to decompose multiple times as shown below.
- The decomposition is not unique, that is you may find more than one decomposition that satisfy the required normalization level.
- The underlined attributes are the key for its relation.

Relation Number	Candidate Keys	BCNF Violations	BCNF Decomposition	3NF Violations	3NF Decomposition
1	AB, BC, BD	$C \rightarrow D$ $D \rightarrow A$	Using $C \rightarrow D$ (\underline{C}, D) , $(\underline{A}, \underline{B}, C)$ Using $D \rightarrow A$ (A,\underline{D}) , $(\underline{B}, \underline{C}, D)$ Then (B, C, D) is broken based on $C \rightarrow D$ to have: (A,\underline{D}) , (\underline{C},D) , $(\underline{B},\underline{C})$	None	
2	AB, BC, CD, AD	None		None	
3	AB, AC, AD	C →D D→B D→E	Using $C \rightarrow D$ $(\underline{C}, D), (\underline{A}, \underline{B}, \underline{E}, C)$ Then (A, B, C, E) is broken based $AB \rightarrow C$ to have: $(\underline{C}, D), (\underline{A}, \underline{B}, C), (\underline{A}, \underline{B}, \underline{E})$ Using $D \rightarrow B$ $(\underline{D}, B), (\underline{A}, \underline{C}, \underline{E}, D)$ Then (A, C, E, D) is broken based on $C \rightarrow D$ to have: $(\underline{D}, B), (\underline{C}, D), (\underline{A}, \underline{C}, \underline{E})$	D→E	Same decomposition as in the BCNF: $(\underline{C},D), (\underline{A},\underline{B},C), (\underline{A},\underline{B},\underline{E})$ Using $D \rightarrow E$ $(\underline{D},E), (A,B,C,D)$

^{**} Note the question did not ask for 3NF, but I just included them in the table