Dependable Distributed Systems Confiabilidade de Sistemas Distribuídos

DI-FCT-UNL, Nuno Preguiça

Course Overview

2018/2019, 2nd SEM MIEI

Mestrado Integrado em Engenharia Informática

Lectures and Labs

- Nuno Preguiça
 - P3/7 ext ????, asc.di.fct.un.pt/~nmp

Course Ref. (#11555)

CLIP: Course information

- Objectives, Program, Requirements
- Bibliography
- Materials: Slides/Lectures and Suggested Readings
- Documentation
- Evaluation (Methods, Criteria) and Results
- ... Events, Messages, Notifications
 -See also your Email (Reg. CLIP)

Course Objectives (see CLIP)

- Have solid understanding of the basic concepts and theory of secure and dependable distributed computing.
- Getting familiar with some basic building blocks (tools and APIs) and techniques, needed to build secure and dependable systems.
- No attempt to be comprehensive:
 - topics covered are inspired by reference authors and what we conduct as research interests in NOVA LINCS
 - ... and in "Looking at my crystal ball, what will be important in the near future"

Program Topics

- Introduction Dependable Systems: Concepts, Properties and Involved Technologies
- Mechanisms for Fault-tolerance
 - State-machine replication, quorum based replication
- Mechanisms for Intrusion Tolerance and Fault-Tolerance
 - BFT
- Decentralized mechanisms for fault-tolerance
 - Blockchains, Smart contracts
- Security in Database Systems and Advanced Cryptographic Methods
 - Erasure-codes, homomorphic Encryption Methods
- Security with trusted computing hardware
 - TPMs, SGX
- Secure networking
- Availability and Operation Continuity: DoS/DDoS Protection

Requirements / Course Plan Sequence

Practical Requirements

- Practice, Autonomy in:
 - Java Programming & debugging, IDEs
 - Internetworking / Dist. Programming with Java: Sockets,
 REST, SOAP
 - Java Security Prog. (Crypto, JCE, Crypto Primitives)
 - Unix-based development environment (Linux. Mac-OS)
 - Management / Sys Admin
 - Virtualization with Docker ("containerized SW", TPs)
 - https://www.docker.com

Lectures/Labs

- Lectures
 - 1 Lecture, 2 h / week
- Labs / Work-Assignment / Evaluation Projects
 - 1 Lab Slot, 2 h / week
 - Focus:
 - Introducing the technologies used for developing the projects
 - Requirements and Design Criteria (Discussion)
 - Design and Implementation (Refinement, Discussion)
 - Experimental Evaluation and Demonstrations
 - Presentations, Demos, Discussion

Schedule

2º F 3º F 4º F 5º F 6º F

Sometimes we will need to reschedule ...

- Backup Slot
- Changing Lect <> Labs ...
- Rescheduling classes in some weeks
- Notification in advance ...

9h-11h

Lect.

112 Ed II

11h-13h

Lab Slot 112-II

Plan / Topics

	Lectures	Labs
08-Mar	Introduction & Paxos	
15-Mar	Quorums, ABD & Randomized algorithms	
22-Mar	Byzantine fault tolerance	
29-Mar	BlockChain and Bitcoin	
05-Apr	Smart contracts	1 st proj: 8/4
12-Apr	Database Security	
19-Apr	Easter	
26-Apr	Erasure coding + cloud of clouds	
03-May	Practical Partial Homomorphic Encryption Applicatinos	Test 1: 2/5
10-May	Trusted Computing with TPMs	
17-May	Trusted Computing Environments (TEEs) and Applications	
24-May	IPSec, Tunneling and Secure VPNs	2 nd proj: 24/5
31-May	Secure networking	
07-Jun		Test 2: 6/5

Bibliography / References

- Bibliography (See CLIP)
- Topics vs. Book Chapters and Selected Papers for Readings
 - References in each Lecture

 Slides for the course are based on a previous version produced by Henrique João Domingos.

Assessment (1)

- 2 Midterm Tests: T1, T2
 - Covering Theoretical Topics / Lectures
 - Book Chapters and Suggested Readings
 - Typically (ref): 1h30-2h00

- 2 Frequency Elements: Work-Assignments
 - F1, F2

Assessment (2)

- Frequency Elements TP1, TP2
 - 65%: Implementation
 - 20% Report/Writing (w/ structure based on a given template)
 - 15% Practical Evaluation
 - Demo or question included in test.

Assessment and Grade (Summary)

Frequency

- TP1 min >= 8/20
- TP2 min >= 8/20
- Average TP1,TP2 >=8/20

• FS - Final Score:

- -T1 (20%)
- T2 (30%)
- TP1 (17,5%)
- TP2 (32,5 %)

Appeal Exam: 50%

- (equiv. to T1, T2)

Grade, if

- -FS >= 9,5/20
- Average T1,T2 >=8,5/20
- Average TP1,TP2 >=8/20

Appeal: if

- -FS < 9,5/20
- TP1 min >= 8/20 (2/5)
- TP2 min >= 8/20 (2/5)

Dates

```
• T1: 2/5
```

- TP1: Deliv. until 8/Apr (*)
- T2: 6/6
- TP2: Deliv. until 24/May (*)

^{*)} Deliverables with instructions for delivering defined in the Project Requirements.

Course Motivation

Relevance of Secure and Dependable Computing

- Why Secure and Dependable Computing is important?*
 - Critical Systems
 - Increased reliance on software to optimize everything from business processes to engine fuel economy
 - Relentlessly growing scale and complexity of systems and systems-of-systems
 - Near-universal reliance on a commodity technology base that is not specifically designed for dependability
 - Growing stress on legacy architectures (both hardware and software) due to ever-increasing performance demands
 - Worldwide interconnectivity of systems and the integration of current relevant technology: Clouds, Clouds-of-Clouds, Mobility, IoT
 - Continual threats of malicious attacks on critical systems

^(*) Taken from a typical research project: "A high dependability computing consortium", James H. Morris, CMU, http://www.cs.cmu.edu/%7Ejhm/hdcc.htm

More motivation ...

- The cost of poor software is very high
 - Annual cost to US economy of poor quality software: \$60B in 2002
 - source: US NIST Report 7007.011, May 2002.
- Industry (and new critical systems and applications) needs greater dependability and security
 - Improved quality of products
 - Improved quality of development processes
 - Better system and network security, to avoid:
 - viruses, trojans, denial of service, ...
 - network penetration, loss of privacy/confidential data, ...
 - Improved customer satisfaction
 - Regulation and compliance issues in more exigent sectors
 - The high cost of downtime

The Cost of Downtime

The average financial impact per hour of interrupted computer operations (by industry)

(1996 Cost of Downtime Study – by Contingency Planning Research)

Only 6 percent of companies suffering from a catastrophic data loss survive, while 43 percent never reopen and 51 percent close within two years.

\$6.45M

SOURCE: UNIVERSITY OF TEXAS

Cost of Downtime ...

- From "Assessing the Financial Impact of Downtime" by Vision Solutions, Inc. 2008 (http://www.strategiccompanies.com/pdfs/Assessing%20the%2 OFinancial%20Impact%20of%20Downtime.pdf)
- Typical hourly cost of downtime by Industry
 - Brokerage Service: \$6,480,000
 - Energy: \$2,800,000
 - Telecom: \$2,000,000
 - Manufacturing: \$1,600,000
 - Retail: \$1,100,000
 - Healthcare: \$636,000
 - Media: \$90,000

The enormous cost of system failures ... (very underestimated today ?)

- Average costs for downtime in data-centers *[1,3]:
 - 42.000 to 300.000 USD \$ per hour
 - Wasted expenses + Loss of Revenues
 - Damages in reputation and loyalty of potential customers

(*) Examples:

[1] A. Arnold, Assessing the finantial impact of downtime, Apr 2010, www.businesscomputingworld.co.uk/assessing- the-financial-impactof-downtime/

[3] ChannelInsider, Unplanned it outages cost more tha \$5000 per minute, Technical Report,

www.channelinsider.com/c/a/Spotlight/Unplanned-ITOutages-Cost-More-than-5000-per-Minute-Report-105393/, May 2011

Industry is more and more embracing Secure and Dependable Computing

- New HW and SW Platforms: Trusted hardware, Smartcards,
 Pervasive Computing and autonomic-computing
- The case for Healthcare Management Systems, HMRs; Finance: Fraud, AML; Citizenship Systems (Identity Thefts)...
- New Apps (Mobility and IoT): how to avoid an Internet of unsecure or unreliable things? (ex., IMDs, Privacy-Preservation...)
- Cloud-Based App and Services w/ Dependability Requirements

Industry is more and more embracing Secure and Dependable Computing

- Major Personal Computing dependability and security initiatives (regulatons, standards) under way:
 - Trusted Computing Group
 - Ex.,: Intel, HP, IBM, Microsoft
 - Intel SGX, Arm TrustZone initiatives (among other efforts)

The best dependability solutions: optimization (best balance) of tradeoffs

Reliability vs. Availability vs. Security and Privacy

... AND...

- Performance
- Openness
- Scalability
- Transparency criteria (Distributed Systems)
 - Access
 - Location
 - Migration vs. Relocation
 - Replication
 - Concurrency (sharing)
 - Failures

Can we have designed solutions addressing properly (and balancing) these different criteria together?