NPTEL MOOC, JAN-FEB 2015 Week 3, Module 6

DESIGN AND ANALYSIS OF ALGORITHMS

Directed acyclic graphs (DAGs)

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Tasks with constraints

- * For a foreign trip you need to
 - * Get a passport
 - * Buy a ticket
 - * Get a visa
 - * Buy travel insurance
 - * Buy foreign exchange
 - * Buy gifts for your hosts

Tasks with constraints

- * There are constraints
 - * Without a passport, you cannot buy a ticket or travel insurance
 - * You need a ticket and insurance for the visa
 - * You need the visa for foreign exchange
 - * You don't want to invest in gifts unless the trip is confirmed

Goal

* Find a sequence in which to complete the tasks, respecting the constraints

Model using graphs

- * Vertices are tasks
- * Edge from Task1 to Task2 if Task1 must come before Task2
 - * Getting a passport must precede buying a ticket
 - * Getting a visa must precede buying foreign exchange

Our example as a graph

Order of tasks should respect dependencies

- * Passport, Ticket, Insurance, Visa, Gift, Forex
- * Passport, Insurance, Ticket, Visa, Forex, Gift
- * Passport, Ticket, Insurance, Visa, Forex, Gift
- * Passport, Insurance, Ticket, Visa, Gift, Forex

Buy gifts

Buy foreign exchange

Our example as a graph

* Cyclic dependencies are unsatisfiable

Directed Acyclic Graphs

- * G = (V,E), a directed graph
- * No cycles
 - * No directed path from any v in V back to itself
- * Such graphs are also called DAGs

- * Given a DAG $G = (V,E), V = \{1,2,...,n\}$
- * Enumerate the vertices as {i1,i2,...,in} so that
 - * For any edge (j,k) in E,
 - j appears before k in the enumeration
- * Also known as topological sorting

- * Observation
 - * A directed graph with cycles cannot be topologically ordered
 - * Path from j to k and from k to j means
 - * j must come before k
 - * k must come before j
 - * Impossible!

* Claim

* Every directed acyclic graph can be topologically ordered

* Strategy

- * First list vertices with no incoming edges
- * Then list vertices whose incoming neighbours are already listed

*

- * indegree(v): number of edges into v
- * outdegree(v): number of edges out of v

- * indegree(v): number of edges into v
- * outdegree(v): number of edges out of v
- * Every dag has at least one vertex with indegree 0
 - * Start with any v such that indegree(v) > 0
 - * Walk backwards to a predecessor so long as indegree > 0
 - * If no vertex has indegree 0, within n steps we will complete a cycle!

- * Pick a vertex with indegree 0
 - * No dependencies
 - * Enumerate it and delete it from the graph
- * What remains is again a DAG!
- * Repeat the step above
 - * Stop when the resulting DAG is empty

Indegree

```
function TopologicalOrder(G)
 for i = 1 to n
   indegree[i] = 0
   for j = 1 to n
    indegree[i] = indegree[i] + A[j][i]
 for i = 1 to n
   choose j with indegree[j] = 0
    enumerate j
    indegree[j] = -1
    for k = 1 to n
      if A[j][k] == 1
        indegree[k] = indegree[k]-1
```

- * Complexity is O(n²)
 - * Initializing indegree takes time O(n²)
 - * Loop n times to enumerate vertices
 - * Inside loop, identifying next vertex is O(n)
 - * Updating indegrees of neighbours is O(n)

- * Using adjacency list
 - * Scan lists once to compute indegrees O(m)
 - * Put all indegree 0 vertices in a queue
 - * Enumerate head of queue and decrement indegree of neighbours degree(j), overall O(m)
 - * If indegree(k) becomes 0, add to queue
- * Overall O(n+m)

Topological ordering revisited

```
function TopologicalOrder(G) //Edges are in adjacency list
 for i = 1 to n { indegree[i] = 0 }
 for i = 1 to n
   for (i,j) in E //proportional to outdegree(i)
     indegree[j] = indegree[j] + 1
 for i = 1 to n
   if indegree[i] == 0 { add i to Queue }
 while Queue is not empty
   j = remove_head(Queue)
   for (j,k) in E //proportional to outdegree(j)
     indegree[k] = indegree[k] - 1
     if indegree[k] == 0 { add k to Queue }
```