!All Organic Reactions with Conditions!

Type of Reaction	Reaction Name	Conditions	Example Equa	ation	
	Alkanes				
Reduction	Preparation by Hydrogenation of Alkenes/ Cracking	Ni 140° OR Pt/Pd r.t.	$R'R'' = R'''R'''' + H_2 \xrightarrow{Ni + \Delta} R'.$	R''HC— CHR'''R''''	
Free Radical Substitution	Free Radical Substitution Mechanism	Exc. Cl UV	Initiation: $ \left\{ Cl_{2} \stackrel{uv}{\rightarrow} 2Cl \bullet \right\} $ Propagation: $ \left\{ \begin{array}{c} Cl \bullet + CH_{4} \rightarrow \bullet CH_{3} + HCl \\ \bullet CH_{3} + Cl_{2} \rightarrow CH_{3}Cl + Cl \bullet \end{array} \right\} $ $ \frac{2Cl \bullet \rightarrow Cl_{2}}{2 \cdot CH_{3} \rightarrow H_{3}C - CH_{3}} $ $ \frac{2CH_{3} \rightarrow CH_{3}Cl - CH_{3}}{2 \cdot CH_{3} + Cl \cdot \rightarrow CH_{3}Cl} $ Overall: $ \frac{uv}{2CH_{3} + CH_{3}Cl + HCl} $	Types of Substitutions $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$ $CH_3Cl + Cl_2 \rightarrow CH_2Cl_2 + HCl$ $CH_2Cl_2 + Cl_2 \rightarrow CHCl_3 + HCl$ $CHCl_3 + Cl_2 \rightarrow CCl_4 + HCl$	
		Alke	enes		
	Preparation of Alkene/ Dehydration of Alcohol	Excess c. $H_2SO_4 170^{\circ}$ $Al_2O_3 300-350^{\circ}$	$RH_2C - CH_2OH \xrightarrow{H_2SO_4 \text{ at } 170^\circ}$	$RHC = CH_2 + H_2O$	
Elimination	Dehydrohalogenation of Halogenoalkanes (Markovnikov Involved)	$NaOH_{(alc)} \mid\mid Reflux$	$RHXC - CH_3 \xrightarrow{\text{NaOH}_{(alc)}} RHC = CH_2 + NaX + H_2O$ $RHXC - CH_3 \xrightarrow{\text{NaOH}_{(aq)}} RCH(OH) - CH_3 + NaX$		
	Hydrohalogenation of Alkenes (Markovnikov Involved)	HX r.t.	$H_2C = CH_2 + HX \xrightarrow{RTP} H$	G_3C-CH_2X	
EA	Halogenation of Alkenes in CCl ₄	X_2 in $CCl_4 \parallel r.t. \parallel$ Decolor from red- brown Br in CCl_4	$H_2C = CH_2 + X_2 \xrightarrow{RTP + CCl_4} H_2XC - CH_2X$		
	$\begin{array}{c} {\rm Halogenation~of~Alkenes} \\ {\rm in~H_2O} \end{array}$	X_2 in $H_2O \mid\mid r.t. \mid\mid$ Decolor from red- brown $Br_{(aq)}$	$H_2C = CH_2 + X_2 + H_2O \xrightarrow{RTP} H_2XC - CH_2OH + HX$		
	Hydration of Alkenes	c. H ₂ SO ₄ H ₂ O Δ	$H_2C = CH_2 + H_2O \frac{H_2SO_4 \text{ with } \Delta + C}{2}$	$\xrightarrow{water} H_3C - CH_2OH$	
Reduction	Hydrogenation of Alkenes	H ₂ Pt/Pd; r.t. or Ni; 140°	$H_2C=CH_2+H_2$ Pt/Pd at RTP / N	$\xrightarrow{\text{fi at } 140^{\circ}} H_3C - CH_3$	

Oxidation	In/Complete Combustion Hydroxylation/Diol Formation	$O_2 \mid\mid \Delta$ Alkaline/Dil. KMnO ₄ $\mid\mid$ Cold $\mid\mid$ Purple decolors to Brown ppt = MnO ₂	$C_{2}H_{4} + 3O_{2} \xrightarrow{\Delta} 2CO_{2} + 2H_{2}O$ $C_{2}H_{4} + 2O_{2} \xrightarrow{\Delta} 2CO + 2H_{2}O$ $C_{2}H_{4} + O_{2} \xrightarrow{\Delta} 2C + 2H_{2}O$ $H_{2}C = CH_{2} + [O] + H_{2}O \rightarrow H_{2}OHC - CH_{2}OH$
		Halogeno	alkanes
ES	Preparation from Alcohols	$egin{array}{ll} \mathrm{PX_3} \; \mathrm{Reflux} \\ \mathrm{PCl_5} \; \mathrm{r.t.} \\ \mathrm{SOCl_2} \; \; \mathrm{Reflux^*} \\ \mathrm{HX} \end{array}$	$3ROH + PX_3 \xrightarrow{reflux} 3RX + H_3PO_4$ $ROH + PX_5 \xrightarrow{RTP} RX + HX + POX_3$ $ROH + SOCl_2 \xrightarrow{RTP} RX + HX + SO_2$ $ROH + HX \rightarrow RX + H_2O$
EA	Preparation from Alkenes / Hydrohalogenation of Alkenes	HX r.t.	$RH_2C = CH_2 + HX \xrightarrow{RTP} RH_2XC - CH_3$
Nuc Substitution	Alkaline Hydrolysis/ Formation of Alcohol	$NaOH_{(aq)} Under$ reflux	$RX \xrightarrow{\text{NaOH(aq)}} ROH + X^-$
ivae Substitution	Formation of Nitriles	$\mathrm{KCN}_{\mathrm{(alc)}} \mid\mid \mathrm{Reflux}$	$RX + CN^{-} \xrightarrow{\text{NaOH}_{(alc)}} RCN + X^{-}$
Hydrolysis	Further Carboxylic Acid Formation	$\mathrm{H^{+}_{(aq)}}\mid\mid\Delta$	$RCN \xrightarrow{H^+ + \Delta} RCOOH + NH_4^+$
Reduction	Further Amine Formation	$ ext{LiAlH}_4 ext{ in dry ether } $	$RCN + 4[H] \xrightarrow{RTP} RCH_2NH_2 + NH_4^+$
Nuc Substitution	Amine Formation	Excess $NH_{3(alc)} \parallel \Delta \parallel$ Pressure in Sealed Tube	$RX + NH_3 \xrightarrow{\Delta} RNH_2 + HX$ Note: Excess RX forms higher order amines
Elimination favored: • Δ • \uparrow [NaOH] • Solvent=Ethanol	$\rm S_{N}2$ 1° Halogenoalkanes	Polar Aprotic Solvents (contain no H atoms connected directly to an EN atom. Not capable of H-bonding)	$H_3C - CH_2X + OH^{-} \xrightarrow{slow} H_2C(OH) - CH_3 + X^{-}$
Substitution favored: $ \bullet \text{Solvent} = \text{H}_2\text{O} $	$S_{\rm N}1$ 3° Halogenoalkanes	Polar Protic Solvents (capable of hydrogen H-bonding.)	$C(RR'R'')X \xrightarrow{slow} C^{+}(RR'R'') + X^{-} \xrightarrow{fast+OH^{-}} C(RR'R'')OH$
Elimination	(follows Markovnikov)	$ m NaOH_{(alc)} Under \ reflux$	$H_3C - CH_2X + NaOH \xrightarrow{\text{NaOH}_{(aq)}} H_2C = CH_2 + NaBr + H_2O$

Alcohols					
Hydration		Alkenes	Cold c. H_2SO_4 $H_2O \parallel \Delta$	$H_2C = CH_2 \xrightarrow{\text{Cold c. } H_2SO_4} H_3C - CH_2 - OSO_3H \xrightarrow{Water+\Delta} H_3C - CH_2OH$	
NS	Preparation from		Alkaline Hydrolysis of Halogenoalkanes	$ m NaOH_{(alc)} Reflux$	$RX \xrightarrow{\text{NaOH(alc)}} ROH + X^-$
		Reduction of Carboxylic Acids	LiAlH ₄ in dry ether $ $ r.t. + H ₂ O OR NaBH _{4(alc)} OR H ₂ /Pt/Pd; r.t. or H ₂ /Ni; 140° Na _(alc)	$RCOOH + 4[H] \xrightarrow{RTP} RCH_2OH + H_2O$	
Reduction		Reduction of Aldehydes —> 1° Alcohols		$RCHO + 4[H] \xrightarrow{RTP} RCH_2OH$	
		$egin{array}{ccc} { m Reduction\ of} \\ { m Ketones} \longrightarrow 2^{\circ} \\ { m Alcohols} \\ \end{array}$		$RR'C = O + 4[H] \xrightarrow{RTP} RR'CH - OH$	
Nuc Substitution	Forma	ation of Haloalkanes	Reflux $ZnCl_2$ in case of $X=Cl$	$ROH + HX \rightarrow RX + H_2O$	
Redox	Reaction with Na		Reactive Metal	$2ROH + 2Na \rightarrow 2RO^{-}Na^{+} + H_{2}$	
	Oxidation of 1° Alcohols Oxidation of 2° Alcohols (No 3° as alpha carbon does not have H atoms)	$Alc \longrightarrow Aldehyde = $ $Distillation$ $Alc \longrightarrow Carboxylic$	$RCH_2OH \xrightarrow{[O] and Distil} RCH = O \xrightarrow{[O] and Reflux} RCOOH$		
Oxidation		3° as alpha carbon	$egin{array}{ll} { m Acid} &= { m Reflux} \\ { m Alc} &\longrightarrow { m Ketone} = \\ { m Reflux} \end{array}$	$RR'CHOH \xrightarrow{[O] + Reflux} RR'C = 0$ $[O] \text{ can be } MnO_4^- OR Cr_2O_7^{2-}/H^+$	
Elimination	Dehydration to Alkenes (follows Zaitsev=More Alkyl groups=major)		Excess c. H ₂ SO ₄ 170° Al ₂ O ₃ 300–350°	$RH_2C - CH_2OH \xrightarrow{\text{H}_2SO_4 \text{ at } 170^{\circ}} RHC = CH_2 + H_2O$	
Esterification	Acylation (Ester Formation) with Carboxylic Acids		c. $H_2SO_4 \mid\mid \Delta$	$RCOOH + R'OH \xrightarrow{c.H_2SO_4 + \Delta} RCO - OR' + H_2O$	
Esterification	Acylation (Ester Formation) with Acyl Chlorides		r.t.	$RCO-Cl + R'OH \rightarrow RCO-OR' + HCl$	

Aldehydes & Ketones (Carbonyl Compounds)				
Oxidation	Preparation from Alcohol	$egin{aligned} & ext{Alc} \longrightarrow ext{Aldehyde} = \ & ext{Distillation} \ & ext{Alc} \longrightarrow ext{Ketone} = \ & ext{Reflux} \end{aligned}$	$RCH_2OH \xrightarrow{[0] and \ Distil} RCH = 0$	
		$[O]$ can be $\mathrm{MnO_4}^ \mathrm{OR}~\mathrm{Cr_2O_7}^{2-}/\mathrm{H^+}~\mathrm{(orange}$ to green)	$RR'CHOH \xrightarrow{[O] and Reflux} RR'C = O$	
	Reduction of Aldehydes —> 1° Alcohols	$ ext{LiAlH}_4 ext{ in dry ether } $	$RCHO + 4[H] \xrightarrow{RTP} RCH_2OH$	
Reduction	Reduction of Ketones—> 2° Alcohols	$egin{array}{c} ext{OR NaBH}_{4(alc)} \ ext{OR H}_2/ ext{Pt/Pd} \parallel ext{r.t. or} \ ext{H}_2/ ext{Ni} \parallel 140^{\circ} \ ext{OR Na}_{(alc)} \ \end{array}$	$RR'C = O + 4[H] \xrightarrow{RTP} RR'CH - OH$	
	Carboxylic Acids, Esters, Acyl Chlorides and Anhydrides			
Oxidation	Preparation of Carboxylic Acids from Oxidation of 1° Alcohol	${ m MnO_4^-/~H^+~OR~Cr_2O_7^{2-}} \ /{ m H^+}$	$RCH_2OH + 2[O] \xrightarrow{\Delta / Reflux} RCOOH + H_2O$	
Oxidation	Preparation of Carboxylic Acids from Oxidation of Aldehydes	$\Delta \mid ext{Reflux}$	$RCH = O + [O] \xrightarrow{\Delta / Reflux} RCOOH$	
Hydrolysis	Preparation of	dil. $ m H_2SO_4 \ / \ HCl$ $ m \Delta \ \ Reflux$	$RCN + 2H_2O + H^+ \xrightarrow{reflux} RCOOH + NH_4^+$	
(Acidic/Basic)	Carboxylic Acids from Hydrolysis of Nitriles	$ m NaOH_{(aq)}$ followed by dil. $ m H_2SO_4$ / $ m HCl$ $ m \Delta$ $ m Reflux$	$RCN + 2H_2O + OH^{-} \xrightarrow{reflux} RCOO^{-} + NH_3$ $RCOO^{-} \xrightarrow{H^{+}} RCOOH$	
Acid-Base Reaction	Formation of Carboxylate Salts	_	$RCOOH + NaOH \rightarrow RCOO^{-}Na^{+} + H_{2}O$ $2RCOOH + Na_{2}CO_{3} \rightarrow 2RCOO^{-}Na^{+} + CO_{2} + H_{2}O$ $RCOOH + Na \rightarrow RCOO^{-}Na^{+} + \frac{1}{2}H_{2}$	
Esterification	Formation of Esters	c. H ₂ SO ₄ Reflux	$RCOOH + R'OH \stackrel{c.H_2SO_4 + Reflux}{\longleftrightarrow} RCO - OR' + H_2O$	
Nuc Substitution	Formation of Acyl Chlorides	SOCl_{2}^{*} or $\mathrm{PCl}_{5} \mid\mid \mathrm{r.t.}$	$\begin{array}{c} RCOOH + \ PCl_5 \xrightarrow{RTP} RCOCl + HCl + POCl_3 \\ RCOOH + SOCl_2 \xrightarrow{RTP} RCOCl + HCl + SO_2^* \end{array}$	
Reduction Hydrolysis	Reduction to 1° Alcohols	$ ext{LiAlH}_4 ext{ in dry ether } ext{r.t.} + ext{H}_2 ext{O}$	$RCOOH + 4[H] \xrightarrow{RTP} RCH_2OH + H_2O$	

			Other reducing agents can't be used as reduction is more difficult	$\left[RCOCH_2\mathbf{COOH} + 2[H] \xrightarrow{NaBH_{4(alc)}} RCH(OH)CH_2\mathbf{COOH}\right]$
Esterification		Alcohols		$RCO - Cl + R'OH \rightarrow RCO - OR' + HCl$ Name: R'-yl R-oate
Nuc Addition	Acyl Chlorides +	Ammonia	r.t.	$RCOCl + NH_3 \rightarrow RCONH_2 + HCl$
Nuc Addition		1° Amines		$RCOCl + R'NH_2 \rightarrow RCONHR' + HCl$ Name: N-R'-yl R-amide
Hydrolysis		Water		$RCOCl + H_2O \rightarrow RCOOH + HCl$
Esterification	Preparation from Carbox: Alco		c. $\mathrm{H}_{2}\mathrm{SO}_{4}\mid\mid\Delta$	$RCOOH + R'OH \stackrel{c.H_2SO_4+\Delta}{\longleftrightarrow} RCO - OR' + H_2O$
Estermeation	from Acyl	on of Esters Chlorides + cohols	r.t.	$RCO-Cl + R'OH \rightarrow RCO-OR' + HCl$
		is of Esters cidic)	$ m dil.~H_2SO_4~/~HCl$ $ m Reflux$	$RCOOR' + H_2O \stackrel{H^+ + Reflux}{\longleftrightarrow} RCOOH + R'OH$
Hydrolysis		is of Esters caline)	$ m NaOH_{(aq)}$ followed by Alcohol/ Carboxylate Salt Reflux	$RCOOR' + NaOH \xrightarrow{reflux} RCOO^{-}Na^{+} + R'OH$ $RCOO^{-}Na^{+} \xrightarrow{H^{+}} RCOOH + Na^{+}$
			Benz	zene
ES	Nitration of Benzene		c. H ₂ SO ₄ c. HNO ₃ >60°	$2H_{2}SO_{4} + HNO_{3} \xrightarrow{\Delta} NO_{2}^{+} + 2HSO_{4}^{-} + H_{3}O^{+}$ $NO_{2}^{+} \qquad HNO_{2}$ $+ H^{+}$ $H_{2}SO_{4} + HNO_{3}$ $- H_{2}O_{-} - HSO_{4}^{-} - NO_{2}$ $NO_{2}^{+} \qquad NO_{2}^{+}$ $+ H^{+}$ $NO_{2}^{+} \qquad NO_{2}^{+} \qquad NO_{2}^{+}$ $+ HO_{3}^{+} \qquad NO_{2}^{+} \qquad NO_{2}^{+}$ $+ H^{+}$ $+ H^$

ES	Bromination of Benzene	$\mathrm{Br}_2 \mid\mid \mathrm{Fe} \mid \mathrm{FeBr}_3$	$Br \longrightarrow Br \longrightarrow FeBr_3$ $Br \longrightarrow FeBr_3$ $Br \longrightarrow FeBr_3$ $Br \longrightarrow FeBr_3$ $Br \longrightarrow FeBr_4$ $Br \longrightarrow FeBr_4$
Free Radical Substitution	Chlorination of Benzene	Limited Cl ₂ UV	CH ₃ Cl ₂ and UV -HCI CHCl ₂ Cl ₂ and UV -HCI Cl ₂ and UV -HCI
Oxidation	Oxidation of Alkylbenzene to Carboxylic Acid	$\mathrm{MnO_4^-/~H^+~ ~\Delta}$ $\mathrm{OR~MnO_4^-/~OH^-~ ~\Delta~ }$ $\mathrm{H^+}$	Alkylbenzene Benzoic acid

Extra Notes

Nucleophilic substitution — a nucleophile (contains a lone pair + negative charge) attacking a molecule that is electron deficient. This is prevalent in halogenoalkanes due to the polar bond.

Electrophilic addition —when electrophiles (electron deficient/cations) molecules are combined with another molecule. And usually this happens with alkenes. Alkenes have a double bond where pi bonds are present, and here it is dense

in electrons.

Polymerization — is the merging of several alkenes.

- Monomers \rightarrow Polymers which are huge molecules with repeating units Ethene \rightarrow Polyethene.
 - o The doubles bonds are broken from ethene and actually a really long chain of alkane is formed. Propene → Polypropylene
- Condensation polymerization can only happen when there are two reactive functional groups. You must form chains on both ends! But addition polymerization require double bond(s).

