Veremautomaták és környezetfüggetlen nyelvtanok ekvivalenciája

Varga Richárd

Tétel:

Minden környezetfüggetlen nyelvtanhoz meg lehet adni verem automatát úgy, hogy a verem automata (üres veremmel vagy végállapottal) ugyanazt a nyelvet ismeri fel, amit a környezetfüggetlen nyelvtan generál.

Bizonyítás:

Vegyünk egy $G=(N, \Sigma, R, S)$ környezetfüggetlen nyelvtant, amelyhez megadunk egy P verem automatát úgy, hogy az üres veremmel ugyanazt a nyelvet ismeri fel, amit a G nyelvtan generál. Legyen ez $P=(\{q\}, \Sigma, \Gamma, \delta, q, Z_0, \emptyset)$. Itt a veremautomata 1 állapotból áll, és erre is igaz lesz, hogy fel tudja ismerni a környezetfüggetlen nyelvtant. Mivel most a végállapotoknak nincs szerepe itt, ezért a végállapot halmaz lehet üres. A verem szimbólumai(Γ) a nyelvtan terminálisai(Γ) és nemterminálisai(Γ) lesznek. Kezdőszimbóluma(Γ) a nyelvtan kezdőszimbólumával lesz egyenlő(Γ). Az átmenetfüggvényt definiáljuk a következőképpen:

- minden A ∈ N-re(∈ Γ) δ(q, ε, A) = {(q, α) | A → α ∈ R}, tehát ha q állapotból nem olvasunk inputot és A van a verem tetején, akkor ugyanúgy q állapotban marad, és A helyére beírja valamelyik A → α szabályt(A bal oldalú szabály jobb oldalát). Az összes ilyen (q, α) alakú párok halmaz lesz ebben a halmazban (ezért látszik, hogy nemdeterminisztikus).
- minden $a \in \Sigma$ -ra $(\in \Gamma)$ $\delta(q, a, a) = \{(q, \varepsilon)\}$, vagyis ha ugyanolyan terminális van a verem tetején, mint ami az input, akkor elfogadja, és törli a veremből.

A veremautomatánk a nyelvtannak a levezetéseit fogja szimulálni.

Elég igazolni, hogy minden $X \in (N \cup \Sigma)$ és $w \in \Sigma^*$ esetén a nyelvtanban X-ből levezethető a w akkor és csakis akkor, ha $(q, w, X) \vdash * (q, \varepsilon, \varepsilon)$, vagyis ha a (q, w, X) konfigurációból valamennyi lépésből el lehet jutni $(q, \varepsilon, \varepsilon)$ -ba. Ha X helyére a verem kezdőszimbólumát(S) írunk, akkor S-ből levezethető a w a nyelvtanban akkor és csakis akkor, ha $(q, w, S) \vdash * (q, \varepsilon, \varepsilon)$, és mivel S a kezdőszimbólum, ezért az azt jelenti, hogy a w szót elfogadta a veremautomata üres veremmel.

Tegyük fel, hogy X-ből valamennyi n lépésből levezethető a w.

- Ha n = 0, akkor az csak úgy lehet, ha X = w, ami csak akkor lehet, ha mind a kettő eleme a Σ -nak. Ekkor a (q, w, X) = (q, w, w), w egyetlen betűje a Σ -nak, amiből el tudunk jutni a $(q, \varepsilon, \varepsilon)$ -ba, mivel az elején ilyen átmenetek letttek definiálva.
- Ha n-re teljesül, akkor az indukciós lépés szerint n+1-re is teljesülni fog.
 X ⇒ X₁ . . . X_k ⇒ⁿ w₁ . . . w_k = w. Az első lépésben alkamazzuk a nyelvtan egyik szabályát, majd lesz még n lépés, és abból levezetjük a w-t. X₁-ből levezetjük a w₁-t, X_k-ból a w_k-t, és ezek kokatenációj a w. Megállapítjuk, hogy
 - $X \rightarrow X_1 \dots X_k \in \mathbb{R}$, vagyis ezek szabályai a nyelvtannak, és
 - X_i ⇒ⁿⁱ w_i minden 1 ≤ i ≤ k-ra, ahol n_i ≤ n(mivel X₁ . . . X_k együttes lépés n darab).
 Ez az állítás már hasonló ahhoz, amit feltettünk, de ez legfeljebb n hosszúságra. Használjuk erre az indukciós feltevést:

```
Minden 1 \le i \le k esetén (q, w_i, X_i) \vdash^* (q, \varepsilon, \varepsilon). Innen kapjuk, hogy (q, w, X) = (q, w_1 \dots w_k, X), előzőek alapján (w = w_1 \dots w_k)
\vdash (q, w_1 \dots w_k, X_1 \dots X_k), X \text{ nemterminális helyére beírom a szabály jobb oldalát}
\vdash^* (q, w_2 \dots w_k, X_2 \dots X_k)
\dots
\vdash^* (q, wk, Xk)
\vdash^* (q, \varepsilon, \varepsilon).
```

Ezzel végeztünk a bizonyítás egyik oldalával.

*PÉLDA

<u>Tétel:</u> Minden veremautomatával felismert nyelv környezetfüggetlen.

Bizonyítás:

Legyen $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ veremautomata. Most ehhez adunk meg egy olyan G környezetfüggetlen nyelvtant, ami ugyanazt a nyelvet generálja, mint amit a P veremautomata üres veremmel felismer (L(G) = $L_0(P)$). Legyen $G=(N, \Sigma, R, S)$, ahol S egy új szimbólum, a terminálisok megyegyeznek, a nemterminálisok pedig: $N = \{S\} \cup \{[qZr] \mid q,r \in Q, Z \in \Gamma\}$, vagyis az S és még a [qZr] halamazok uniója. Ebből már látható, hogy sok nemterminálisa lesz a nyelvtannak. Egy [qZr] hármas jelentése az, hogy ha a veremautomata q állapotban van, a verem legfelső szimbóluma Z, akkor az r állapotba jutva tudja kivenni (törölni) Z-t a veremből.

Most adjuk meg az R szabályok halmazát, amire teljesülnek, hogy:

- minden $q \in Q$ -ra legyen $S \to [q_0 Z_0 q]$ szabály R-ben, vagyis $[q_0 Z_0 q]$ egy nemterminális lényegében.
- veremautomata átmeneteiből késztjük el a nyelvtan szabályait: kétféle átmenet van, az egyik mikor a verembe írunk valamit a Z helyére: minden q ∈ Q, a ∈ (Σ ∪ {ε}), Z ∈ Γ-ra, ha (s₀, Z₁ . . . Zk) ∈ δ(q, a, Z), (ahol k ≥ 1, Z₁, . . . , Zk ∈ Γ) akkor minden s₁, . . . , sk ∈ Q sorozatra legyen [qZsk] → a[s₀Z₁s₁] . . . [sk-1Zksk] szabály R-ben. Tehát amit az átmenetfüggvény elolvasott, azt írja ki a nyelvtan, és végén a Z el fog tűnni a veremből, mert üres veremmel felismeri. Ez úgy lehetséges, hogy először az s₀ állapotba megy át, és Z-k bekerülnek a verembe, majd sorban törlődnek onnan. Nem tudjuk, hogy milyen állapotokba kerül közben, ezért minden lehetséges s₁, . . . , sk ∈ Q sorozatra fel kell venni [qZsk] → a[s₀Z₁s₁] . . . [sk-1Zksk] szabályt([qZsk] lesz az utolsó, amibe kerül, ahonnan a Z kitörlődik). Itt látjuk, hogy Z₁-t kitörli valamilyen s₁ állapottal, Z₂-t s₂ állapottal, és így tovább.
- a másik mikor a Z-t kitöröljük:
 Ez az előzőnek egy speciális esete, mikor a (s₀, Z₁ . . . Zk) ∈ δ(q, a, Z)-ben a k = 0.
 Minden q ∈ Q, a ∈ (Σ ∪ {ε}), Z ∈ Γ-ra, ha (s₀, ε) ∈ δ(q, a, Z), akkor legyen [qZs₀] → a szabály R-ben.

Elegendő megmutatni, hogy minden $q,r \in Q$, $Z \in \Gamma$ ´es $w \in \Sigma *$ esetén $(q,w,Z) \vdash * (r, \varepsilon, \varepsilon)$ akkor és csak akkor, ha $[qZr] \Rightarrow * w$. (Azért választottunk ilyen 3-asokat nemterminálisoknak, mert itt (q,w,Z) q-ból indul, Z van a verem tetején, és mire a Z eltűnik, Z rállapotba kerül). Ilyenkor igaz arra is, amikor Z and Z eltűnik, Z van a verem tetején, és mire a Z eltűnik, Z van a verem tetején, eltűnik, Z van a verem tetején, Z van a verem tetején, eltűnik, Z van a verem tete

```
\begin{split} &w \in L_{\emptyset}(P) \\ &\Leftrightarrow (q_0, w, Z_0) \vdash^* (r, \epsilon, \epsilon) \\ &\Leftrightarrow [q_0 Z_0 r] \Rightarrow^* w \\ &\Leftrightarrow S \Rightarrow [q_0 Z_0 r] \Rightarrow^* w \\ &\Leftrightarrow w \in L(G) \end{split}
```

Ebben az esetben azt jelenti, hogy (q,w, Z)-ból levezethetjük (r, ϵ , ϵ), vagyis ha q a kezdőállapot Z a kezdőszimbóluma, az azt jelenti hogy w-t felismeri üres veremmel és [q₀Z₀r] \Rightarrow * w. Ha ebből levezethető, akkor S-ből is levezethető, tehát w-t generálja a nyelvtan.

Tegyük fel, hogy [qZr] \Rightarrow ⁿ w valamilyen n ≥ 1-re.

- n = 1
 [qZr] ⇒ w, ez csak úgy lehet, ha w = a ∈ (Σ ∪ {ε}) és (r, ε) ∈ δ(q, a, Z). Tehát (q,w, Z) =
 (q, a, Z) ⊢ (r, ε, ε). 1 Lépésben csak olyat vezethetek le, ami terminális
- n = n + 1 (indukciós lépés).

Legelső lépés: $a[s_0Z_1s_1]\dots[s_{k-1}Z_ks_k]$ minden ilyen alakú. mivel csak ilyen szabályokat definiáltunk.

$$[qZr] \Rightarrow a[s_0Z_1s_1] \dots [s_{k-1}Z_ks_k] \Rightarrow^n aw_1 \dots w_k = w$$

Ebből következik, hogy:

- $[qZr] \rightarrow a[s_0Z_1s_1] \dots [s_{k-1}Z_ks_k] \in R$, $r = s_k$ (így adtuk meg a nyelvtanban), azaz $(s_0, Z_1 \dots Z_k) \in \delta(q, a, Z)$. Ha ez az átmenet történik, akkor minden $s_1...s_k$ állapot esetén ezt a szabály betesszük az R-be.
- Minden nemterminálisból levezetünk egy w szót, tehát Minden $1 \le i \le k$ -ra $[s_{i-1}Z_is_i] \Rightarrow^{ni} w_i$, és ni $\le n$. Erre már lehet Alkamazni az indukciós feltevést:

```
Minden 1 \le i \le k-ra (s_{i-1}, w_i, Z_i) \vdash^* (s_i, \epsilon, \epsilon). Kapjuk, hogy: (q, w, Z) = (q, aw_1 \dots w_k, Z)
\vdash (s_0, w_1 \dots w_k, Z_1 \dots Z_k)
\vdash^* (s_1, w_2 \dots w_k, Z_2 \dots Z_k)
\dots
\vdash^* (s_{k-1}, w_k, Z_k)
\vdash^* (s_k, \epsilon, \epsilon) = (r, \epsilon, \epsilon).
```

Legelső lépésben a-t beolvassuk és Z helyére írom a $Z_1 \dots Z_k$ -t és s_0 állapotba kerülünk, mert csak akkor van ilyen szabály benne, ha létezik ilyen átmenet. Innentől alkalmazva az indukciós feltevést eljutunk (r, ϵ , ϵ)-hoz.

Feladatok:

- Legyen L= {aⁿb^mc^k | n = m vagy m = k}
 Adjunk meg egy olyan veremautomatát, ami az L nyelvet ismeri fel.
- Vegyünk egy G nyelvtant:

$$S \rightarrow A \mid B \mid a$$

 $A \rightarrow bBb \mid B$
 $B \rightarrow A \mid S \mid b$

Konstruáljuk azt a $P=(\{q\}, \Sigma, \Gamma, \delta, q, K, \emptyset)$ veremautomatát, ami ugyanazt a nyelvet ismeri fel, mint amit a nyelvtan generál.

• Konstruáljuk meg az alábbi veremautomatához azt a nyelvtant, ami ugyanazt a nyelvtant generálja

