REPORT TO BOSS

(Xinqian Wang s4565489/Ziyi Liu 45655335)

Formulation

Communication10

Data: SpeciesMap Dictionary contains label site and its value for which species live in

the site.

Stages: The stages are in the state.

State: <u>SavedSpecies</u> List contains the species are saved. **Actions**: Restoring sites to save species.

Let f(SavedSpecies, k) be equal to SavedSpecies with list $\,k\,$ contains sites being restored.

Value Function: Minimise the length of k sites until we get SavedSpecies with

the length of 20.

Contribution Function: Calculate the number of species are saved.

```
We want f(SavedSpecies = [], k = []).
```

```
f(SavedSpecies, k)
i \in SpeciesMap = \min\{f(SavedSpecies + SpeciesMap[i], k + [i])\}
if i not in k and len(k) < 20
f(SavedSpecies k)
```

f(SavedSpecies, k)if len(k) = 20 = (len(k), SavedSpecies, k)

Communication11

Data: $\underline{Size_i}$ The size of species $i \in [0,6,7,9,16]$.

*Value*_i The value of species $i \in [0,6,7,9,16]$.

Stages: The stages are in the state.

State: Capacity The capacity of the container left.

Actions: Packing species i into the container if the Capacity has space.

Value Function: Maxmise the total value of container until it has been full.

We want f(Capacity = 0).

```
f(\mathsf{Capacity})
i \in [0,6,7,9,16] = \max\{Value_i + f(\mathsf{Capacity} - Size_i)\}
if \mathsf{Capacity} \geq Size_i
f(\mathsf{Capacity})
i \in [0,6,7,9,16] = 0 + f(\mathsf{Capacity})
if \mathsf{Capacity} < \min\{Size_i\}
```

Data: <u>AvailableResort</u> List of saving species in sequence.

<u>LostProb</u> List contains the lost probability for each site.

Stages: The stages are in the state.

State: <u>SD</u> List contains the current statue which represents site in

 $Available Resort. \quad i \\ i \in SD = \begin{cases} -1 \ if \ site \ i \ is \ lost \\ 0 \ if \ site \ i \ is \ fragile \\ 1 \ if \ site \ i \ is \ restored \end{cases}$

Actions: Restoring the fragile sites from the *SD* sequentially.

Contribution Function: C(SD, LostProb)

Calculate and return a dictionary contains label of the probabilitie

and its state. VN(SD)

Calculate the number of species have been saved, according to

AvailableResort.

Value Function: Calculate the expected number of species been saved.

We want f(SD = [0,0,0,0,0,0,0,0,0]).

$$\frac{f(SD)}{if \ 0 \ in \ SD} = \sup_{for \ j \ in \ C(SD, LostProb)} \{j[0] * f(SD = j[1])\}$$

$$\begin{array}{c} f(SD) \\ if \ 0 \ not \ in \ SD \end{array} = \ VN(SD) \\ \end{array}$$

Data: SpeciesMap Dictionary contains label site and its value for which species live in

the site.

<u>LostProb</u> List contains the lost probability for each site.

Stages: The stages are in the state.

State: <u>SD</u> List contains the current statue which represents site in

SpeciesMap.
$$i \in SD = \begin{cases} -1 & \text{if site i is lost} \\ 0 & \text{if site i is fragile} \\ 1 & \text{if site i is restored} \end{cases}$$

Example: SD[0] represents the first site which is SpeciesMap[0].

Actions: Restoring the fragile sites from the *SD*.

Contribution Function: C(SD, LostProb)

Calculate and return a dictionary contains label of the probabilitie and its state.

UPDATE SDL(SD)

Return the tuple which contains three lists, Saved, Dead and Left.

$$\begin{array}{c} \textit{Saved} \\ \textit{for i in SD if } i == 1 \\ \end{array} = [\textit{SpeciesMap}[i]]$$

Dead for
$$i$$
 in SD if $i == -1$ = [SpeciesMap[i]]

$$for i in SD if i == 0 = [SpeciesMap[i]]$$

VN_13(Saved)

Calculate the number of species have been saved, according to SpeciesMap.

SavedWho(Saved, Left)

Return a list of SD which represents the possible outcomes of restoring.

Value Function: Maximise the expected number of species been saved.

We want f(SD = [0,0,0,0,0,0,0,0,0]).

$$f(SD) \\ if \ 0 \ in \ SD = \max_{\substack{for \ SD^* \ in \ Saved \ Who(Saved, Left) \\ Saved = \ Update_SDL(SD)[0] \\ Left = \ Update_SDL(SD)[2] } } \left\{ \sup_{\substack{for \ j \ in \ C(SD^*, LostProb) \\ Left = \ Update_SDL(SD)[2] }} \{ j[0] * f(SD = j[1]) \} \right\}$$

$$\begin{array}{l} f(SD) \\ if \ 0 \ not \ in \ SD \end{array} = \begin{array}{l} \text{VN_13} \\ \text{Saved=Update}_{SDL(SD)[0]} \\ \text{Left=Update}_{SDL(SD)[2]} \end{array}$$

Data: SpeciesMap Dictionary contains label site and its value for which species live in

the site.

<u>LocationMap</u> Dictionary contains label site and its adjacent sites.

<u>LostProb</u> List contains the lost probability for each site.

Stages: The stages are in the state.

State: SD List contains the current statue which represents site in

$$\text{SpeciesMap.} \quad i \\ i \in \mathit{SD} = \begin{cases} -1 \ if \ site \ i \ is \ lost \\ 0 \ if \ site \ i \ is \ fragile \ . \\ 1 \ if \ site \ i \ is \ restored \end{cases}$$

Example: SD[0] represents the first site which is SpeciesMap[0].

Actions: Restoring the fragile sites from the *SD*.

Contribution Function: C(SD, LostProb)

Calculate and return a dictionary contains label of the probabilitie and its state.

LostRate(SD)

Calculate the lost probability of each site according to the sites which have been lost and their location.

UPDATE SDL(SD)

Return the tuple which contains three lists, Saved, Dead and Left.

$$\begin{array}{c} \textit{Saved} \\ \textit{for i in SD if } i == 1 \end{array} = [\textit{SpeciesMap}[i]]$$

Dead for i in SD if
$$i == -1$$
 = [SpeciesMap[i]]

VN 13(Saved)

Calculate the number of species have been saved, according to *SpeciesMap*.

SavedWho(Saved, Left)

Return a list of SD which represents the possible outcomes of restoring.

Value Function: Maximise the expected number of species been saved.

We want f(SD = [0,0,0,0,0,0,0,0,0]).

$$f(SD) = \max_{\substack{for SD^* \ in \ Saved Who(Saved, Left) \\ Saved = Update_SDL(SD)[0] \\ Left = Update_SDL(SD)[2] \\ LostProb = LostRate(SD)} } \left\{ \sup_{\substack{for j \ in \ C(SD^*, LostProb) \\ Sum} } \{j[0] * f(SD = j[1]) \} \right\}$$

$$f(SD) \\ if \ 0 \ not \ in \ SD \\ = VN_13 \\ Saved = Update_{SDL(SD)[0]} \\ Saved = Update_{SDL(SD)[2]}$$

Data: SpeciesMap Dictionary contains label site and its value for which species live in

the site.

<u>LocationMap</u> Dictionary contains label site and its adjacent sites.

<u>LostProb</u> The list contains the lost probability for each site.

<u>TouristList</u> The list contains the species that the tourists really come to see.

Stages: The stages are in the state.

State: SD List contains the current statue which represents site in

$$\text{SpeciesMap.} \quad i \\ i \in \textit{SD} = \begin{cases} -1 \, if \, site \, i \, is \, lost \\ 0 \, if \, site \, i \, is \, fragile \, . \\ 1 \, if \, site \, i \, is \, restored \end{cases}$$

Example: SD[0] represents the first site which is SpeciesMap[0].

Actions: Restoring the fragile sites from the *SD*.

Contribution Function: C(SD, LostProb)

Calculate and return a dictionary contains label of the probabilitie and its state.

LostRate(SD)

Calculate the lost probability of each site according to the sites which have been lost and their location.

UPDATE SDL(SD)

Return the tuple which contains three lists, Saved, Dead and Left.

Saved
for i in SD if
$$i == 1$$
 = [SpeciesMap[i]]

Dead
for i in SD if
$$i == -1$$
 = [SpeciesMap[i]]

$$for i in SD if i == 0 = [SpeciesMap[i]]$$

VN_15(Saved)

Return the list which contains species have been saved, according to SpeciesMap.

$$\begin{array}{l} \text{VN_15(Saved)} \\ \forall j \in \textit{TouristList} = \left\{ \begin{matrix} 1, & \textit{if } j \textit{ in } \textit{Saved} \\ 0, & \textit{if } j \textit{ not } \textit{in } \textit{Saved} \\ \end{matrix} \right. \end{array}$$

SavedWho(Saved, Left)

Return a list of SD which represents the possible outcomes of restoring.

Value Function: Maximise the expected number of species been saved.

We want f(SD = [0,0,0,0,0,0,0,0,0,0]).

$$f(SD)$$
if 0 not in SD =
$$\begin{cases} VN_{-15} \\ Saved = Update_{SDL(SD)[0]} \\ Left = Update_{SDL(SD)[2]} \end{cases}$$