FROM LAST TIME...

Architectural Issues

- Internal Model Principle
- Feedforward
- Cascade Control

D(s)

INTRO TO STATE-SPACE MODELS

Topics

- Review of State Space
- Transfer Functions and State Space
- Canonical Forms

At the end of this sections, students should be able to:

- Convert an ODE to state space form.
- Identify components of a state space model.
- Describe observable and controllable canonical forms.
- Transform

RECALL OUR PREVIOUS DISCUSSION ON CONTROL THEORY

Classical Control Theory

- Single-Input Single-Output (SISO) systems
- Linear Time-Invariant (LTI) systems
- Developed without computers
- Graphical tools, algebraic manipulation

Modern Control Theory

- Multiple-Input Multiple-Output (MIMO) systems
- Nonlinear systems
- Easy access to computers
- Numeric solutions, matrix manipulation

DEFINITIONS

State

• The smallest set of n variables (state variables) such that knowledge of these n variables at $t=t_0$, together with knowledge of the input for $t \geq t_0$, completely and uniquely determines system behavior for $t \geq t_0$.

State vector

nth order vector whose components are the state variables

State space

• n-dimensional space whose coordinate axes consist of the x_1 axis, x_2 axis, etc.

State trajectory

 Path produced in the state space by the state vector as it changes over time

FOR LTI SYSTEMS WE CAN SIMPLIFY THE GENERAL STATE SPACE FORM

General state space equations:

$$\dot{x}(t) = f(x, u, t)$$
$$y(t) = g(x, u, t)$$

Assuming system is linear:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

Assuming system is time-invariant:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

WE WILL RESTRICT OURSELVES TO LINEAR STATE-SPACE MODELS

WE CAN CONVERT STATE-SPACE TO TRANSFER FUNCTION FORM

$$\dot{x} = Ax(t) + Bu(t)$$
$$y = Cx(t) + Du(t)$$

$$Y(s) = [C(sI - A)^{-1}B + D]U(s)$$

CONSIDER A SECOND-ORDER SYSTEM: THE MASS-SPRING-DAMPER

CONSIDER A GENERAL nth ORDER ODE

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1\dot{y} + a_0y = u$$

$$\frac{Y(s)}{U(s)} = \frac{1}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$$

WE CAN WRITE THIS IN MATRIX FORM

$$\begin{bmatrix} x_1 \\ x_2 \\ \dot{x}_3 \\ \vdots \\ \dot{x}_n \end{bmatrix} + \begin{bmatrix} u \\ \vdots \\ 0 \end{bmatrix}$$

$$y = [$$

WHAT IF THE GENERAL ODE INCLUDES INPUT DERIVATIVES?

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1\dot{y} + a_0y = b_mu^{(m)} + b_{m-1}u^{(m-1)} + \dots + b_1\dot{u} + b_0u$$

$$\frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

Define a new dummy variable Z(s)

$$\frac{Y(s)}{Z(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{1}$$

$$\frac{Z(s)}{U(s)} = \frac{1}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$$

CONTROLLABLE CANONICAL FORM

CONTROLLABLE CANONICAL FORM

$$\begin{bmatrix} x_1 \\ x_2 \\ \dot{x}_3 \\ \vdots \\ \dot{x}_n \end{bmatrix} + \begin{bmatrix} u \\ \vdots \\ \vdots \\ u \end{bmatrix}$$

$$y = [$$

OBSERVABLE CANONICAL FORM

OBSERVABLE CANONICAL FORM

$$\begin{bmatrix} x_1 \\ x_2 \\ \dot{x}_3 \\ \vdots \\ \dot{x}_n \end{bmatrix} + \begin{bmatrix} u \\ \vdots \\ 0 \end{bmatrix}$$

$$y = [$$

OBSERVABLE AND CONTROLLABLE CANONICAL FORMS ARE RELATED BY A TRANSFORMATION.

STATE TRANSFORMATIONS

Two sets of states can be related by a transformation matrix T:

Original system:

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

New System:

$$\dot{z} = \hat{A}z + \hat{B}u$$
$$y = \hat{C}z + \hat{D}u$$

RELATE THE TWO FORMULATIONS

TF IS INDEPENDENT OF STATE

Start with the TF:

$$Y(s) = [C(sI - A)^{-1}B + D]U(s)$$

Apply state transformation:

$$\hat{A} = T^{-1}AT$$
, $\hat{B} = T^{-1}B$
 $\hat{C} = CT$, $\hat{D} = D$

COMING UP...

Linear Algebra Review

- Matrix Inverses
- Eigenvalues and Eigenvectors
- Jordan Canonical Form
- Solution of LTI State Equations

Solution of LTI State Equations

- State Transition Matrix
- Free Response
- Forced Response