Densdisigeblaj spacoj

Guillaume Brunerie

1 Enkonduko

 \mathbb{R} povas dispartiĝi en du densajn subarojn, \mathbb{Q} kaj ĝia komplemento. La celo de tiu artikolo estas pliĝeneraligi tiun econ al (preskaŭ ĉiuj) aliaj metrikaj spacoj.

1.1 Difinoj

Ni bezonos tiujn du difinojn:

Difino 1.1 Metrika spaco E estas densdisigebla se ekzistas du tiaj subaroj A kaj B de E, ke:

- $-A \cup B = E$
- $-A \cap B = \emptyset$
- A kaj B estas densaj subaroj de E.

Alidire, E estas densdisigebla se kaj nur se ekzistas dispartigo de E en (almenaŭ du) densajn subarojn.

Ekzemple, \mathbb{R} estas densdisigebla ĉar ĝi estas dispartigebla en $(\mathbb{Q}, \mathbb{R} \setminus \mathbb{Q})$ kaj densaj estas \mathbb{Q} kaj $\mathbb{R} \setminus \mathbb{O}$.

Difino 1.2 Estu E metrika spaco kaj $x \in E$. x estas izola punkto de E se $\{x\}$ estas malfermita.

1.2 Teoremo

La teoremo kiun ni volas pruvi estas la jena:

Teoremo 1.3 Estu E metrika spaco sen izola punkto. Tiam E estas densdisigebla.

Rimarku ke metrika spaco kun izola punkto ne povas esti densdisigebla. Pruve, se $x \in E$ estas izola punkto kaj E estas densdisigebla en (A, B), ni povas supozi ke $x \in A$ kaj tiam $\overline{B} \subset E \setminus \{x\} \subsetneq E$ do B ne estas densa.

Tial, tiu teoremo estas optimuma pri la metrikaj spacoj.

1.3 Strukturo de la demonstro

Por montri la teoremo 1.3 ni montros la du jenajn lemojn :

Lemo 1.4 Estu E metrika spaco sen izola punkto. Tiam ekzistas tia nemalplena $D \subset E$ ke D estas densdisigebla.

Lemo 1.5 Estu tia E metrika spaco ke por ĉiu malfermita $O \subset E$ ekzistas nemalplena densdisigebla $D \subset O$. Tiam E estas densdisigebla.

Demonstro: Ni supozu ke la du antaŭaj lemoj estas pruvitaj kaj ni montru la teoremo 1.3.

Estu E metrika spaco sen izola punkto kaj $O \subset E$ malfermita. Se $x \in O$ estus izola punkto de $O, \{x\}$ estus malfermita en O kaj do malfermita en E ĉar O estas malfermita (en E). Sed x ne povas esti izola punkto de E: absurda. Do O estas sen izola punkto.

Se ni konsideras O kiel metrika spaco, ĝi estas sen izola punkto do per lemo 1.4 ekzistas tia $D \subset O$ ke D estas densdisigebla.

Tiu verigas la kondiĉoj de la lemo 1.5 kaj tiel E estas densdisigebla.

$\mathbf{2}$ Ekzisto de densdisigebla subaro

Ni konsideru Emetrikan spacon sen izola punkto kaj ni konstruu $D \subset E$ densdisigebla. Ni bezonos tiun sublemon:

Lemo 2.1 Estu F diskreta subaro de E (t.e. $\forall x \in F, \exists r > 0, B(x,r) \cap F = \{x\}$). Tiam ekzistas tia F subaro de E, ke :

- $\begin{array}{ll} -\ \tilde{F}\ estas\ diskreta\\ -\ \overline{F}\cap \tilde{F}= \underline{\emptyset}_{\overline{\bullet}} \end{array}$
- $-\overline{F}\cup \tilde{F}\subset \tilde{F}$

2.1Demonstro de la sublemo

Por ĉiu $x \in F$, estu tia $r_x > 0$ ke $B(x, r_x) \cap F = \{x\}$ kaj estu $B_x = B(x, \frac{r_x}{3}) \subset E$. Tiel, se $x \neq y$, ni havas $B_x \cap B_y = \emptyset$. Pruve, se $z \in B_x \cap B_y$, $r_x, r_y \leq d(x, y)$ do $d(x, y) \leq d(x, z) + d(x, y) \leq d(x, y)$ $\frac{r_x}{3} + \frac{r_y}{3} < d(x,y)$: absurda, do $B_x \cap B_y = \emptyset$.

Por ĉiu $x \in F$, x ne estas izola punkto de E do ekzistas tian injekcian vicon (u_n^x) ke $\lim_{n \to +\infty} u_n^x =$ x kaj $\forall n \in \mathbb{N}, u_n^x \neq x$, kaj prenante subvicon ni povas supozi ke $\forall n \in \mathbb{N}, u_n^x \in B_x \setminus \{x\}$.

- Ni konsideru la aron $\tilde{F}=\{u_n^x\mid x\in F \text{ kaj }n\in\mathbb{N}\}.$ estu $u_n^x\in \tilde{F} \text{ kaj }r=\frac{1}{2}\min(d(x,u_n^x),r_x-d(x,u_n^x)).$ Tiam la globon $B(u_n^x,r)$ inkluzivas $B_x \setminus \{x\}$ kaj x ne estas adhera al ĝi. La aro $B(u_n^x, r) \cap \tilde{F} = B(u_n^x, r) \cap \{u_n^x \mid n \in \mathbb{N}\}$ do estas finia kaj ekzistas do tia r' > 0 ke $B(u_n^x, r') \cap \tilde{F} = \{u_n^x\}$ ĉar (u_n^x) estas injekcia. Do, \tilde{F} estas diskreta.
- estu $u_n^x \in \tilde{F}$, r kaj $B(u_n^x, r)$ kiel antaŭe. Tiam $B(u_n^x, r) \cap F = \emptyset$ do $u_n^x \notin \overline{F}$. Do $\overline{F} \cap \tilde{F} = \emptyset$.
- se $x \in F$, la vico $(u_n^x)_{n \in \mathbb{N}} \in \tilde{F}^{\mathbb{N}}$ konverĝas al x, do $F \subset \overline{\tilde{F}}$, do $\overline{F} \subset \overline{\tilde{F}}$ ĉar $\overline{\tilde{F}}$ estas fermita, do $\overline{F} \cup \tilde{F} \subset \tilde{F}$.

2.2Demonstro de la lemo 1.4

Ni nun konsideru $D_0 = \{x\}$ kie x estas iu ajn punkto de E, kaj, por ĉiu $n \in \mathbb{N}$, $D_{n+1} = D_n$. Ni plue konsideru $D = \bigcup_{k \in \mathbb{N}} D_k$, $A = \bigcup_{k \in \mathbb{N}} D_{2k}$, kaj $B = \bigcup_{k \in \mathbb{N}} D_{2k+1}$.

- $-A \subset D, B \subset D \text{ kaj } A \cup B = D.$
- Ni montru per indukto ke $\forall n \in \mathbb{N}, \bigcup_{k=0}^n D_k \subset \overline{D_n}$.

Se $n=0, D_0 \subset D_0$.

Estu tia $n \in \mathbb{N}$ ke $\bigcup_{k=0}^n \underline{D_k} \subset \overline{D_n}$. Tiam $\bigcup_{k=0}^{n+1} D_k \subset \overline{D_n} \cup D_{n+1} = \overline{D_n} \cup \widetilde{D_n} \subset \overline{\widetilde{D_n}} = \overline{D_{n+1}}$ Do, $\forall n \in \mathbb{N}, \bigcup_{k=0}^n D_k \subset \overline{D_n}$.

Tial, se estas tiaj $i, j \in \mathbb{N}$ ke $i < j, D_i \subset \bigcup_{k=0}^{j-1} D_k \subset \overline{D_{j-1}}$, kaj $\overline{D_{j-1}} \cap D_j = \emptyset$, do $D_i \cap D_j = \emptyset$. Do $A \cap B = \emptyset$

– Por ĉiuj $n \in \mathbb{N}$, $\overline{D_n} \supset \bigcup_{k=0}^n D_k$, do $\overline{A} \supset \bigcup_{k \in \mathbb{N}} \overline{D_{2k}} \supset D$ kaj same $\overline{B} = D$.

D estas tiel densdisigebla, kaj la lemo 1.4 estas pruvita.

3 Densdisigebleco

Estu tia E metrika spaco ke por ĉiu malfermita $O \subset E$ ekzistas densdisigebla $D_O \subset O$. Ni volas montri ke E estas densdisigebleco.

Ni rememorigu (sen demonstro) la zornan lemon, kiun ni bezonos :

Lemo 3.1 Estu tia orda aro (C, \preceq) ke ĉiu tutece orda subaro posedas superan baron. Tiam C posedas maksimumon.

Estu $\mathcal{D} = \{(D, A, B) \in \mathcal{P}(E)^3 \mid A \cap B = \emptyset, A \cup B = D \text{ kaj } A, B \text{ densaj en } D\}$ (t.e. la aro de la densdisigeblaj subaroj de E).

Por $(D, A, B), (D', A', B') \in \mathcal{D}$ ni difinas :

$$(D, A, B) \leq (D', A', B') \iff D \subset D', A = A' \cap D, \text{ kaj } B = B' \cap D$$

 \leq estas ordo-rilato, ĉar :

- por ĉiu $(D, A, B) \in \mathcal{D}$, $D \subset D$, $A = A \cap D$ ĉar $A \subset D$, kaj same $B = B \cap D$
- se $(D,A,B) \preceq (D',A',B')$ kaj $(D',A',B') \preceq (D,A,B)$, tiam $D=D', A=A' \cap D=A' \cap D'=A'$ kaj same B=B'
- se $(D,A,B) \preceq (D',A',B')$ kaj $(D',A',B') \preceq (D'',A'',B'')$, $D \subset D' \subset D''$, $A = A' \cap D = (A'' \cap D') \cap D = A'' \cap D$, kaj same $B = B'' \cap D$

Estu $\mathcal{F} \subset \mathcal{D}$ tutece orda subaro de \mathcal{D} , kaj estu

$$F = (D', A', B') = \left(\bigcup_{(D, A, B) \in \mathcal{F}} D, \bigcup_{(D, A, B) \in \mathcal{F}} A, \bigcup_{(D, A, B) \in \mathcal{F}} B\right)$$

la kunaĵo de la elementoj de \mathcal{F} .

Klare, $A' \cap B' = \emptyset$, $A' \cup B' = D'$ kaj $\overline{A'} \supset \bigcup_{(D,A,B) \in \mathcal{F}} \overline{A} \supset \bigcup_{(D,A,B) \in \mathcal{F}} D = D'$ kaj same $\overline{B'} = D'$. Ni do havas $F \in \mathcal{D}$ kaj F estas superan baron de \mathcal{F} .

Per la zorna lemo, estu (D, A, B) maksimumo de \mathcal{D} .

- Se $\overline{D} \neq E$, $O = E \setminus \overline{D}$ estas nemalplena malfermita subaro de E, do ni havas iu nemalplena $D_O \subset E \setminus \overline{D}$ densdisigebleco en (A_O, B_O) . Sed $(D \cup D_O, A \cup A_O, B \cup B_O) \in \mathcal{D}$ kaj estas strikte pli granda ol (D, A, B): absurda.
- Do $\overline{D}=E$. Se $D\neq E,$ $(E,A\cup(E\setminus D),B)\in\mathcal{D}$ kaj estas strikte pli granda ol (D,A,B): absurda
- Do D = E kaj E estas densdisigebleco.