

人工智能的硬件基石

从物理器件到计算架构

第三讲: 复杂逻辑与计算单元设计

主讲: 陶耀宇

2025年春季

注意事项

・课程作业情况

· 第1次作业将在周一3月3号(今晚)上线

2周时间完成, 第1次作业提交截止日期: 3月17号晚11:59

6次作业可以使用总计6个Late day

Late Day耗尽后,每晚交1天扣除20%当次作业分数

· 第1次lab时间: 3月10-4月10

· 第2次lab时间: 4月10-6月10

注意事项

・课程作业情况

- 请各位选课同学能够初步熟练使用CLAB平台!
- Clab网址: <u>clab.pku.edu.cn</u>
- · Clab问题请联系助教詹喆同学

- 01. 晶体管与逻辑门电路基础
- 02. 电路延迟分析与逻辑功效
- 03. 动态逻辑电路与时序电路
- 04. 复杂计算单元与线路分析

逻辑电路的Elmore Delay模型

· 拓展多级的RC模型

- 导通晶体管看作电阻
- 电路网络建模为RC阶梯
- RC阶梯的Elmore延迟
- Apply to complex gates (i.e.,stacks),also interconnect (later)

$$t_{pd} \approx \sum_{\substack{\text{nodes } i \\ \text{endes } i}}^{\text{R}} R_{i-to-source} C_{i}$$

$$= R_{1}C_{1} + (R_{1} + R_{2})C_{2} + \dots + (R_{1} + R_{2} + \dots + R_{N})C_{N}$$

$$\downarrow C_{1} \qquad \downarrow C_{2} \qquad \downarrow C_{3}$$

$$\downarrow C_{N}$$

逻辑电路的Elmore Delay模型

・ 拓展多级的RC模型 – 3-input NAND gates

估算驱动f个相同栅极的3输入与非门的上升/下降延迟的最差情况

2

- 01. 晶体管与逻辑门电路基础
- 02. 电路延迟分析与逻辑功效
- 03. 动态逻辑电路与时序电路
- 04. 复杂计算单元与线路分析

・电路为什么需要一个时钟?

无时钟: 非常难以控制每一个信号的有效时间

引入时钟: 每隔一段计算将结果同步一次

思想自由 兼容并包

・同步时序 (Synchronous Timing)

触发器 组合逻辑 (各种逻辑门电路) (Register)

・同步时序 (Synchronous Timing)

・时钟的不稳定性

Minimum cycle time:

$$T \ge t_{c-q} + t_{su} + t_{logic} - \delta$$

最坏情况为接收边沿过早到达 (negative δ)

Hold time constraint:

$$t_{(c-q, cd)} + t_{(logic, cd)} > t_{hold} + \delta$$

最坏情况为接收边沿过晚到达(正偏差) 数据和时钟之间的竞争

Cd: contamination delay (最快可能延迟)

- 01. 晶体管与逻辑门电路基础
- 02. 电路延迟分析与逻辑功效
- 03. 动态逻辑电路与时序电路
- 04. 复杂计算单元与线路分析

・简单1bit加法器电路

•
$$C_o = AB + BC_i + AC_i = AB + (A + B)C_i$$

• 28 transistors

· Ripple Carry加法器电路

最差延迟与比特数呈线性关系

$$t_d = O(N)$$

$$t_{adder} = (N-1)t_{carry} + t_{sum}$$

目标: 设计拥有最快可能进位路径的电路

·基于PGK的加法器设计方法

– Propagate: C_{out} = C_{in}

Kill: C_{out} = 0 independent of C_{in}

Propagate (P) =
$$A \oplus B$$

$$C_o(G, P) = G + PC_i$$

$$S(G, P) = P \oplus C_i$$

$$P = A + B$$

基于PGK的加法器设计方法

Carry-Ripple using P and G

$$t_{adder} = t_{setup} + (N-1) t_{carry} + max(t_{carry}, t_{sum})$$

·基于PGK的加法器设计方法

Buffer

PG生成逻辑

Carry Ripple的PG图

· 基于PGK的加法器设计方法 – 复杂PG树加法器

13:12 11:10 ...

・基于PGK的加法器设计方法 – 复杂PG树加法器

- Kogge-Stone: low logic levels, low fanout, high wiring
- Brent-Kung: low fanout, low wiring, high logic levels
- Sklansky: low logic levels, low wiring, high fanout

思想自由 兼容并包

・乘法器设计的核心是部分和累加

Example:

1100 : 12₁₀

 $\frac{0101}{1100}$: 5_{10}

1100

0000

1100

0000

00111100 : 60

multiplicand multiplier

partial products

product

M x N比特乘法

- 产生N个M比特部分乘积
- 求和得到M+N比特的结果

・乘法器设计的核心是部分和累加

Multiplicand: $Y = (y_{M-1}, y_{M-2}, ..., y_1, y_0)$

Multiplier: $X = (x_{N-1}, x_{N-2}, ..., x_1, x_0)$

Product:
$$P = \left(\sum_{j=0}^{M-1} y_j 2^j\right) \left(\sum_{i=0}^{N-1} x_i 2^i\right) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} x_i y_j 2^{i+j}$$

Each dot represents a bit

・乘法器设计的核心是部分和累加

• 如何减少部分和累加的次数?

- 阵列乘法器需要N个部分结果
- 如果我们将乘数以r bits为单位分组做乘法,我们将获得N/r个部分结果

- ・如何减少部分和累加的次数 布斯编码 (Radix-2^r)
 - Ppi = 3Y时,可以用-Y表示并在下一级部分积中加4Y 通过这种方式,部分积的计算中只用到了移位和补码计算
 - 相似的, Ppi = 2Y时, 可以用-2Y表示并在下一级部分积中加4Y

					Inputs		Partial Product	В	ooth Selects	
				x_{2i+1}	x_{2i}	x ₂ ;−1	PP_i	$SINGLE_i$	$DOUBLE_i$	NEG_i
			_	0	0	0	0	0	0	0
4y-2y 4y - y	1	0		0	0	(1)	Ÿ	1	0	0
4y - Y	1	ı		0	1	0	Y	1	0	0
				0	1	1	2Y	0	1	0
				(1	0)	0	-2 <i>Y</i>	0	1	1
				1	0	1	- Y	1	0	1
				1	1	0	-Y	1	0	1
				(1	1)	1	-0 (= 0)	0	0	1
			U		(V)	~				
			1		$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$					

思想自由 兼容并包

・如何减少部分和累加的次数 – 布斯编码 (Radix-2^r)

布斯编码的几点要求:

- 乘数、被乘数、结果均为补码
- 乘法计算前应在乘数末尾补零
- 被乘数双符号位
- 符号位参与计算

Inputs			Partial Product	В	ooth Selects			
x_{2i+1}	x_{2i}	x_{2i-1}	PP_i	$SINGLE_i$	$DOUBLE_i$	NEG_i		
0	0	0	0	0	0	0		
0	0	(1)	Ŷ	1	0	0		
0	1	0	Y	1	0	0		
0	1	1	2Y	0	1	0		
(1	0)	0	-2Y	0	1	1		
1	0	1	-Y	1	0	1		
1	1	0	-Y	1	0	1		
(1	1)	1	-0 (= 0)	0	0	1		

假设计算 Y x Q = -6 x -7, Q 是乘数, Y 是被乘数 (4bit)

1,
$$Y = -6 = 1010$$
 $Q = -7 = 1001$ $-Y = 6 = 0110$

- 2、乘数 Q 后补零, Q = 10010
- 3、被乘数双符号位, Y = 11010, -Y = 00110
- 3、乘法步骤 (A为部分和、Q为乘数)

Step 1: Q = 10010

A = 11111010 Q = 10<u>01</u> Q-1 = 0 补码符号扩展

Step 2: Q = 10010

A = 00110000 Q = 1001 Q-1 = 0 左移补零

结果: 11111010 (-6) + 00110000 (48) = 42

・如何减少部分和累加的次数 – 布斯编码 (Radix-2^r)

布斯编码的几点要求:

- 乘数、被乘数、结果均为补码
- 乘法计算前应在乘数末尾补零
- 被乘数双符号位
- 符号位参与计算

	Inputs		Partial Product	В	ooth Selects	
x_{2i+1}	x_{2i}	x_{2i-1}	PP_i	$SINGLE_i$	$DOUBLE_i$	NEG_i
0	0	0	0	0	0	0
0	0	(1)	Y	1	0	0
0	1	0	Y	1	0	0
0	1	1	2Y	0	1	0
(1	0)	0	-2Y	0	1	1
1	0	1	-Y	1	0	1
1	1	0	-Y	1	0	1
(1	1)	1	-0 (= 0)	0	0	1

假设计算 $Y \times Q = -6 \times 7$, Q 是乘数, Y 是被乘数 (6bit)

1, Y = -6 = 111010 Q = 7 = 000111 -Y = 6 = 000110

2、乘数 Q 后补零, Q = 0001110

3、被乘数双符号位, Y = 1111010, -Y = 0000110

3、乘法步骤(A为部分和、Q为乘数)

Step 1: Q = 0001110

A = 000000000110 Q = 000111 Q-1 = 0 补码符号扩展

Step 2: Q = 0001110

A = 111111010000 Q = 000111 Q-1 = 0 左移/符号位扩展

Step3: Q = 0001110

结果 = 000000000110 (6) + 1111111010000 (-48) = -42

位移器设计

· Shifter也是重要的数字电路模块之一

```
module barrel shifter
        input logic [7:0] a,
        input logic [2:0] amt,
        output logic [7:0] y
                                                                8-bit
                                                               Barrel
    always comb
        case (amt)
                                                               Shifter
                                                amt __
            3'b0000: y = a;
            3'b001: y = \{a[0], a[7:1]\};
            3'b010: y = {a[1:0], a[7:2]};
            3'b011: y = {a[2:0], a[7:3]};
            3'b100: y = \{a[3:0], a[7:4]\};
            3'b101: y = \{a[4:0], a[7:5]\};
            3'b110: y = {a[5:0], a[7:6]};
            3'b111: y = {a[6:0], a[7]};
            default: y = a;
        endcase
endmodule
```

思想自由 兼容并包

・控制电路的基石

社桌大学 PEKING UNIVERSITY

・控制电路的基石

状态机实例1 - 控制一个红绿灯

- · 仅考虑红灯和绿灯,灯转换的速度不快于每次30s (0.033 Hz 时钟)
- 2个输出
 - NSlight: 1=南北向为绿灯; 0=南北向红灯
 - EWlight: 1=东西向为绿灯; 0=东西向为红灯
- 2个输入
 - Nscar: 1=南北向有车等; 0=南北向无车等
 - Ewcar: 1=东西向有车等; 0=南北向无车等
- 规则
 - 交通灯切换到另一个方向当且仅当另一方向有车等
 - 否则, 保持当前交通灯不变

和某人等 PEKING UNIVERSITY

・控制电路的基石

状态机实例1-控制一个红绿灯

- 2个输出
 - NSlight: 1=南北向为绿灯; 0=南北向红灯
 - EWlight: 1=东西向为绿灯; 0=东西向为红灯
- 2个输入
 - Nscar: 1=南北向有车等; 0=南北向无车等
 - Ewcar: 1=东西向有车等; 0=南北向无车等
- 规则
 - 交通灯切换到另一个方向当且仅当另一方向有车等
 - 否则,保持当前交通灯不变

- 需要2个状态
 - Nsgreen EWgreen

EWCar=0, NSCar=0 or 1

NSCar=0, EWCar=0 or 1

EWCar=1, NSCar=0 or 1

・控制电路的基石

状态机实例1 - 控制一个红绿灯

- 需要2个状态
 - Nsgreen, EWgreen

EWCar=0, NSCar=0 or 1

NSCar=0, EWCar=0 or 1

EWCar=1, NSCar=0 or 1	E١	W	Car=:	1, N	SCai	r=0	or	1
-----------------------	----	---	-------	------	------	-----	----	---

	Inj	puts	
Current state	NScar	EWcar	Next state
NSgreen	0	0	NSgreen
NSgreen	0	1	EWgreen
NSgreen	1	0	NSgreen
NSgreen	1	1	EWgreen
EWgreen	0	0	EWgreen
EWgreen	0	1	EWgreen
EWgreen	1	0	NSgreen
EWgreen	1	1	NSgreen

	Out	puts
Current state	NSlite	EWlite
NSgreen	1	0
EWgreen	0	1

 $NextState = (\overline{CurrentState} \cdot EWcar) + (CurrentState \cdot \overline{NScar})$

 $NSlite = \overline{CurrentState}$

EWlite = CurrentState

・控制电路的基石

状态机实例1-控制一个红绿灯

NScar	EWcar	Next state
0	0	NSgreen
0	1	EWgreen
1	0	NSgreen
1	1	EWgreen
0	0	EWgreen
0	1	EWgreen
1	0	NSgreen
1	1	NSgreen
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0 0 1

	Outputs			
Current state	NSlite	EWlite		
NSgreen	1	0		
EWgreen	0	1		

 $NextState = (\overline{CurrentState} \cdot EWcar) + (CurrentState \cdot \overline{NScar})$

NSlite = CurrentState

EWlite = CurrentState

・控制电路的基石

Step 1 – 定义状态并画出状态转换图

Step 2 - 给每一个状态赋值并更新状态转换图

Step 3 – 根据状态转换图写出下一状态和输出的逻辑表达式

Step 4 – 画出实际电路图

状态将在每一个时钟上升沿更新

· 最基础的二进制数据格式 – 原码 (无符号数)

2 ²	2 ¹	2 ⁰		
0	0	0	0	
0	0	1	1	An <i>n</i> -bit unsigned intege
0	1	0	2	
0	1	1	3	represents 2^n values:
1	0	0	4	
1	0	1	5	from 0 to 2 ⁿ -1
1	1	0	6	
1	1	1	7	

· 最基础的二进制数据格式 - 原码 (无符号数)

- ・有符号数的表现格式
 - 一个n bit数可以表示2n不同的值
 - 近一半赋值到正整数(1~(2ⁿ⁻¹-1))
 近一半赋值到负整数((-(2ⁿ⁻¹-1))~(-1))
 - 还剩下两个值:表示0

正整数

同无符号数-最高位为0

00101 = 5

负整数

对于原码来说,将最高位设为**1**代表负数,其他比特同无符号数一样 10101 = -5

・有符号数的表现格式 – 补码

原码(sign-magnitude)有什么问题?

0有两种重复表示 (+0 and -0)

计算电路复杂

对负数做加法时,实际上需要减法操作

需要考虑减法中的借位操作

2的补码表示方法可以让计算电路更简单

• 对于每个正数 X,保证其相反数(-X)满足 X + (-X) = 0,其中的加法为忽略最高位进位的普通加法

· 有符号数的表现格式 – 补码

若数字为正数或是0

• 正常二进制表示方法

若数字为负数

- 写出和它互为相反数的那个正数
- 翻转每一个比特
- 最后加1

$$00101 (5)$$
 $01001 (9)$
 $11010 (1's comp)$ $10110 (1's comp)$
 $+ 1 1011 (-5)$ $10111 (-9)$

・ 定点数 – Fixed-point

如何表示分数?

- 使用二进制小数点来分开2的正数次幂和负数次幂(同十进制相似)
- 2的补码加法和减法依然成立
 - ▶前提时小数点对齐

No new operations -- same as integer arithmetic.

・特別大和特別小的数: 浮点数 – Floating-point

Large values: 6.023 x 10²³ -- requires 79 bits

Small values: 6.626×10^{-34} -- requires > 110 bits

使用科学计数法的等效: F x 2^E 需要表示分数F (fraction), 指数E (exponent), and 符号位S(sign). IEEE 754 浮点数标准(32-bits):

$$N = -1^{S} \times 1.$$
fraction $\times 2^{\text{exponent} - 127}$, $1 \le \text{exponent} \le 254$

$$N = -1^{S} \times 0.$$
fraction $\times 2^{-126}$, exponent = 0

・特別大和特別小的数: 浮点数 – Floating-point

- Sign is 1 number is negative.
- Exponent field is 01111110 = 126 (decimal).
- Fraction is 0.100000000000... = 0.5 (decimal).

Value = $-1.5 \times 2^{(126-127)} = -1.5 \times 2^{-1} = -0.75$.