Lecture 6 EE 421 / C\$ 425 Digital System Design

Spring 2023
Shahid Masud

Topics

- Topics remaining from previous lecture on Glitches and Hazards
- -----
- Review of Sequential Digital Logic Circuits
- Basics of Latches
- Basics of Flipflops
- Setup and Hold Times
- D Flipflop
- Clock Issues

Latches and Flipflops - Definitions

- Latches: Level Sensitive storage elements; that can transition at any point in time
- Flipflops: Edge Sensitive storage elements, that transition at clock edges, either rising or falling
- Asynchronous Sequential Logic: Based on latches and un-clocked transitions
- Synchronous Sequential Logic: Based on flipflops and only clocked transitions

Fundamental Element - SR Latch

SR Latch Using 2 Input NOR Gate – Function Table

S (Set)	R (Reset)	Q	Condition
0	0	Q (=1 after S=1, R=0)	Hold
0	0	Q (=0 after S=0, R=1)	Hold
0	1	0	Reset
1	0	1	Set RACE
1	1	0	Not Allowed Cond

SR Latch Using 2 Input NAND Gate – Function Table

S	R	Q	Condition	RACE
0	0	1	Not Allowed	Condition
0	1	1	Set	
1	0	0	Reset	
1	1	Q (=0 after S=1, R=0)	Hold	
1 on gn Lecture 6 Fall 2023	1	Q (=1 after S=0, R=1)	Hold 4	

Transparent Latch

- An additional 'Enable' input is provided
- Definition: Output of Transparent Latch changes in response to the data input only when the Latch is 'Enabled'.
- Changes in input are straight away visible at the output

Transparent Latch Circuit Timing Diagram - With Input Inverter

SR Latch With Enable (Without Inverter)

En	S	R	Next State of Q
0	Х	Х	No Change
1	0	0	No Change
1	0	1	Q=0; Reset State
1	1	0	Q=1; Set State
1	1	1	Not Allowed Digital Syst

When Enable is '0'; U='1' and V='1'; Hold Condition in SR Latch

Only these two states are valid when inverter is inserted

D Flipflop from Transparent Latch

Timing Definitions

- Setup Time: The duration of time the Data needs to be present before the arrival of clock.
- Any Data activity, in tandem with clock edge, violates setup time and will not be recorded in the D flipflop
- Hold Time: The time for which data has to remain stable after the removal of clock edge.
- If the Data changes too soon, the internal circuit may not have settled with the new value.

Setup and Hold Times

Maximum clock frequency has to be slower than (t setup + t hold) to maintain correct data

These timings needed both ways, slow data and fast clock; as well as slow clock and fast data

Timing in a simple frequency divider

If the current output of flipflop is 1, a value of 0 will appear at D after propagation delay of inverter Assuming that next active edge of clock arrives after setup time has elapsed, the output of flipflop will go to 0

A continuous waveform with period twice the period of Clk is observed at Q

Metastable State

Given a pulse input:

Output reaches a value (or oscillates) somewhere in-between '0' and '1' and stays there, neither '0' nor '1', for some noticeable time

Why?

- Too small pulse violates setup and hold times
- Too less drive strength available to overcome the intermediate state

Clock - Problems

Clock is an essential Signal in Synchronous Digital Systems

Issues:

- 1. Too much load on Clock Input Pin
- 2. Variable path delay to Different Chips in circuit
- 3. Path is prone to picking up noise from surrounding

Clock Distribution Circuit

Qualities of a Good Clock Signal:

- Clock has to reach each and every module of a complex circuit
- Clock needs very high signal drive strength
- Clock Edge has to appear at the same instant across all modules (skew)
- Clock should be stable and free from jitter (time variations along stable reference point)

Clock Tree Synthesis

- Clock tree synthesis is performed during the physical design process considering the effects of place and route, channel impedance, parasitic loads, etc.
- Then through the insertion of buffers or inverters along the clock paths, it minimize or balances skew of important clock signal chains, build a clock tree that achieves proper timing across the entire design.

Ref: https://www.system-to-asic.com/blog/what-is-asic-design/

Some Techniques for Clock Distribution

H-Tree Clock Synthesis
Path is balanced through
Tree structure

H Tree Clock Distribution Network
Buffer Insertion for Delay Balancing in un-balanced trees

Hierarchical Clock

Buffer based Path Delay Balancing

Two Level Distributed Clock Buffering

