

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr.IPLCO
 Dt: 02-08-15

 Time: 09:00 AM to 12:00 Noon
 RPTA-1
 Max.Marks: 180

PAPER-1

KEY & SOLUTIONS

PHYSICS

1	D	2	BD	3	ABC	4	ABCD	5	A	6	BCD
7	ABCD	8	ABD	9	ABCD	10	AD	11	3	12	3
13	1	14	5	15	5	16	2	17	6	18	2
19	9	20	5								

CHEMISTRY

21	ABCD	22	ABC	23	AB	24	BCD	25	ABCD	26	ABCD
27	ABC	28	BCD	29	ABC	30	CD	31	5	32	3
33	4	34	9	35	2	36	5	37	5	38	5
39	5	40	4	1 2	Wi						

MATHS

41	AC	42	ABCD	43	BD	44	BCD	45	ABC	46	C
47	ABCD	48	ABC	49	ABD	50	AD	51	5	52	9
53	5	54	3	55	3	56	5	57	6	58	1
59	5	60	4								

CHEMISTRY

21. A) $-CH_3$ in p-position releases electrons by +I effect and increases distance between positive and negative poles

B) When compared to $-CH_3$, $-C(CH_3)_3$ releases electrons to a greater extent by exerting + I effect

totuene $\mu = 0.37D$ tert butyl benzene $\mu = 0.7D$

C) -M effect of No_2 increases the distance between +ve and -ve poles

- D) In transisomer the distance between positive and negative poles is increasing and dipole moment is increases
- 22. A) -CHO Group in the side chain of ring is in 3rd position from point of connection to ring. Hence the name.
 - B) -COCH₃ is parent chain. Ring is substituent
 - C) Two methyl groups one on C_2 the other on N are indicated as –N , 2 di methyl
 - D) is not a correct name correct name is 4-chlorobut -en-2-ol
- 23. A) the conjugate base of 3-oxobutanal is more stable than that of diketone given

$$CH_3 - CH - CH - CH - H$$

In the conjugate base of diket one there is competitor for spreading of charge on right side

$$CH_{3} - C + CH + CH_{2}$$

$$CH_{3} - C + CH_{2}$$

$$CH_{2} - CH_{2}$$

$$CH_{2} - CH_{2}$$

$$COmpetent$$

- B) Picric acid is stronger than nitro acetic acid as the 3 NO_2 groups exert m effect and stabilize the conjugate base to a greater extent
- 24. B) cyclooctene exists in cis, trans forms cis is more stable, trans is less stable due to twist structure.
 - C) It is planar and like cumulative polyene with 3 double bonds exhibits geometrical isomerism as the terminal carbons are connected to two different atoms.

25) A)

$$C_6H_5 - CH = C - H \Longrightarrow C_6H_5 CH_2 - C - C$$

$$| \qquad \qquad | \qquad \qquad |$$

$$O - H \qquad O$$

B)

02-08-15_Sr.IPLCO_Jee-Adv_2014-P1_Key &Sol's

$$\stackrel{O}{ \longrightarrow} \stackrel{OH}{ \longrightarrow}$$

C)

$$\bigcap_{C \to O-H} \bigcirc \bigcap_{H} \bigcirc \bigcap_{O} \bigcap_{H} \bigcap_{O} \bigcap_{O} \bigcap_{H} \bigcap_{O} \bigcap_{H} \bigcap_{O} \bigcap_{H} \bigcap_{O} \bigcap_{O} \bigcap_{H} \bigcap_{O} \bigcap_{O} \bigcap_{H} \bigcap_{O} \bigcap_{O} \bigcap_{H} \bigcap_{O} \bigcap_{O}$$

D)

$$\begin{array}{c}
OH \\
N \\
H
\end{array}$$

26. Acetoacetic ester exists as a mixture of keto - enolforms and exhibits the properties of both forms

$$CH_{3}-C-CH_{2}-C-OC_{2}H_{5} \xrightarrow{NH_{2}OH} CH_{3}-C-CH_{2}-C-OC_{2}H_{5}$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$O \qquad O \qquad \qquad NOH \qquad O$$

$$\xrightarrow{NH_{2}OH} CH_{3}CH-CH_{2}-C-OC_{2}H_{5}$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$OH \qquad O$$

02-08-15_Sr.IPLCO_Jee-Adv_2014-P1_Key &Sol's

$$CH_{3}-C=CH-C-OC_{2}H_{5}\xrightarrow{Na}CH_{3}-C=CH-C-OC_{2}H_{5}+\frac{1}{2}H_{2}$$

$$| \qquad \qquad | \qquad \qquad | \qquad \qquad | \qquad \qquad |$$

$$OH \qquad O \qquad O\Theta N\stackrel{\oplus}{a} \quad O$$

 $\xrightarrow{Br_2}$ decolorised

27.

$$\begin{array}{cccc}
H \\
CH_2 & CH = CH_2 & H\Theta \\
CH_2 & CH_2 = CH - CH_2
\end{array}$$

It is no bond resonance called Baker Nathan effect..

It is less predominating than resonance

28. B)

Secondary

More stable 3° carbocation

C)

More stable

D)

02-08-15_Sr.IPLCO_Jee-Adv_2014-P1_Key &Sol's

Aromatic more stable

- 29. A) The I effect exerted by $\stackrel{-NH_3}{=}$ stabilizes the conjugate base $\stackrel{CH_2 COOH}{=}$. So acid becomes strong
 - B) $-CF_3$ group decreases the negative charge of adjacent $-CH_2$ group and it is stabilized. The three methyl groups release electrons by + I effect and destabilize carbanion.
 - C) +I effect exerted by the three CH_3 groups decrease the positive change formed in the conjugate acid. It becomes stable. Base becomes strong
 - D) I CH₃ is planar
- 30. Only phenol and aniline are more reactive than benzene
- 31. It has 5 chiral centres

- 32. benzylamine, p-toeluidine, p methoxy anline are stronger bases than aniline
- 33. Formic acid, salicylic acid, phthalic acid, malefic acid one stronger than

$02\hbox{-}08\hbox{-}15_Sr.IPLCO_Jee\hbox{-}Adv_2014\hbox{-}P1_Key \&Sol's$

34. $CH_3 - CH_2 - C = CH$ $CH_3 - C = C - CH_3$ $CH_2 = CH - CH = CH_2$

$$CH_3 - CH = C = CH_2$$

35.

+2 other structures

37. All are negatively changed and better nucleophiles

38.

39. As it has 5α atoms it has 5 hyper conjugative resonating structures

40.

Both have $(4n+2)\pi e^{-}$ aromatic

Both rings have $(4n+2)\pi e^{-}$ aromatic

 $(4n+2)\pi e$, aromatic Furan has $(4n+2)\pi$ electrons and aromatic