

V

Institut Supérieur du Numérique Algèbre

Session Principale 2022 / 2024

Les documents et calculatrices ne sont pas autorisés Durée 1 h 30 mn

Exercice 1

- A. A l'aide de la méthode des tables de vérité, dites si les formules suivantes sont des tautologies.
 - i) $(P \lor Q) \Rightarrow (Q \lor P)$

Commutativité de la disjonction

ii) $(\overline{P} \Rightarrow Q) \land (\overline{P} \Rightarrow \overline{Q}) \Rightarrow P$

Preuve par l'absurde

- B. Ecrire à l'aide de quantificateurs les propositions suivantes :
 - 1) Le carré de tout réel est positif.
 - 2) Certains réels sont strictement supérieurs à leur carré.
 - 3) Aucun entier n'est supérieur à tous les autres
- C. Enoncer la négation des assertions suivantes :
 - 1. Tout triangle rectangle possède un angle droit
 - 2. Dans toutes les prisons tous les détenus détestent tous les gardiens

40= 9×4+4

40=12×3+4

Exercice 2

Soient le domaine $D = \{(x, y) \in \mathbb{R}^2, -y \le x \le y\}$ et la fonction $f: D \to \mathbb{R} \times \mathbb{R}$ définie par $f(x, y) = (x^2 + y^2, 2xy)$.

- 1. Représenter D dans le plan
- 2. Montrer que si deux couples de réels (x_1, y_1) et (x_2, y_2) vérifient $\begin{cases} x_1 + y_1 = x_2 + y_2 \\ x_1 y_1 = x_2 y_2 \end{cases}$ alors $(x_1, y_1) = (x_2, y_2)$
- 3. Montrer que f est injective, on pourra se ramener au système de la question 2
- 4. Est-ce que f est surjective?

(\(\frac{2_1}{2_e}\)^1

Exercice 3

Le nombre d'élèves d'une classe est inférieur à 40. Si on les regroupe par 9 ou par 12, il en reste 1 chaque fois. Quel est ce nombre ?

[2/2]:1

HINIGEH

Exercice 4

- I. On note $H = \{z \in \mathbb{C}, z^8 = 1\}$, où \mathbb{C} est l'ensemble des nombres complexes.
 - 1. Montrer que (H, X) est un sous-groupe de (C*, X).

2. Pour $z_1 \in H$ et $z_2 \in H$ on pose $z_1 \sim z_2 \Leftrightarrow z_1^4 = z_2^4$. Montrer \sim que est une relation d'équivalence sur H.

- 3. Montrer que H admet deux classes d'équivalence.
- 4. Déterminer les éléments de ces deux classes d'équivalence.

II. Soit $\sigma = \begin{pmatrix} 1234567 \\ 3567124 \end{pmatrix}$

- 1. Décomposer σ en produit de cycles à supports disjoints.
- 2. Donner la signature de σ.
- 3. Décomposer σ en produit de transpositions.
- 4. Calculer σ²⁰¹⁴

(1,5) (1,6) (2,5) (1,6) (2,7) (3,5) (3,6)(3,7) (4,5) (4,6) (4,7)

Bonno Chanco

(6") x 6"

| 6(1) = 36(3) = 66(6) = 26(1) = 56(1) = 56(2) = 16(3) = 16(4) = 76(5) = 76(5) =

6(7)=4.