KEA128 数据手册

2015/03/24

苏州大学飞思卡尔嵌入式中心 译

目录

第 1	章	订购	1
	1.1	确定有效的可订购的产品	1
第 2	章	产品型号识别	2
	2.1	描述	2
	2.2	命名格式	2
	2.3	字段	2
	2.4	例子	2
第3	章	产品等级	3
	3.1	热处理等级	3
	3.2	防潮处理等级	3
	3.3	ESD 处理等级	3
	3.4	电压和电流的操作等级	4
第 4	章	产品通用知识点	5
	4.1	非开关电气规格	5
		4.1.1 DC 特点	5
		4.1.2 电流供应特性	9
		4.1.3 EMC 性能	. 10
	4.2	转换说明	11
		4.2.1 控制时序	11
		4.2.2 FTM 模块时序	. 12
	4.3	能量说明	. 13
		4.3.1 能量特点	. 13
第 5	章	外围工作需求和行为	. 14
	5.1	内核模块	. 14
		5.1.1 SWD 电压	. 14

	5.2	外部振荡器 (OSC) 和 ICS 特征	14
	5.3	NVM 说明	16
	5.4	模拟	17
		5.4.1 ADC 特性	17
		5.4.2 模拟比较器	19
	5.5	通信接口	20
		5.5.1 SPI 开关说明	20
		5.5.2 MSCAN	22
第 6	章	封装	23
	6.1	封装大小	23
第 7	章	引脚分配	24
	7.1	信号复用和引脚分配	24
第 8	章	历史版本	25

KEA128 子系列数据手册

支持: S9KEAZ64AMLK(R), S9KEAZ128AMLK(R), S9KEAZ64AVLK(R),

S9KEAZ128AVLK(R), S9KEAZ64ACLK(R), S9KEAZ128ACLK(R), S9KEAZ64 AMLH(R), S9KEAZ128AMLH(R), S9KEAZ64AVLH(R), S9KEAZ128AVLH(R), S9KEAZ64ACLH(R)和 S9KEAZ128ACLH(R)

主要特征:

1、操作特点

电压范围—2.7 至 5.5 V; Flash 写电压范围—2.7 至 5.5 V; 温度范围(环境)—40 至 125 °C

2、性能

高达 48MHz ARM® Cortex-M0+内核; 单周期 32 位×32 位乘法器; 单周期 I/O 端口的访问

3、内存和内存接口

高达 128 KB flash: 高达 16 KB RAM

- 4、时钟
- 一振荡器(Oscillator,OSC),支持 32.768 kHz 晶振或 4MHz 至 24 MHz 晶体或陶瓷谐振器: 选择低功耗或高增益振荡器。
- 一内部时钟源(ICS),带有内部或外部参考电压的内部 FLL,为 48 MHz 系统时钟提供 37.5 kHz 的预修改内部参考电压。
 - 一内部 1 kHz 低功耗振荡器 (LPO)
 - 5、系统外设
- 一电源管理模块(Power management module, PMC),三种电源模式: Run(运行)、Wait(等待)、Stop(停止)。
 - 一低电压检测(Low-voltage detection, LVD),有复位、中断模式,可选择的触发点。
 - 一看门狗(Watchdog, WDOG),具有独立的时钟源。
 - 一可编程循环冗余校验模块(可编程循环冗余校验模块, CRC)。
 - 一串行线调试接口(Serial wire debug, SWD)。

- 一别名 SRAM 位带域(Aliased SRAM bitband region, BIT-BAND)。
- 一位操作引擎(Bit manipulation engine, BME)。
- 6、安全性和完整性模块

每个芯片 80 位的唯一的标识 (ID) 号。

- 7、人机接口
- 71 个通用输入输出口 (general-purpose input/output, GPIO); 两个 32 位键盘中断模块 (keyboard interrupt modules, KBI); 外部中断 (External interrupt, IRQ)。
 - 8、模拟模块
 - 一一个多达 16 个通道的 12 位 SAR ADC, 在停止模式下运行, 可选硬件触发 (ADC)
 - 一两个包含一个 6 位的 DAC 的模拟比较器,和可编程参考电压输入(ACMP)
 - 9、定时器
- 一个 6 通道 FlexTimer/PWM (FTM); 两个 2 通道 FlexTimer/PWM (FTM); 一个 2 通道周期中断定时器(periodic interrupt timer, PIT); 一个脉冲宽度定时器(pulse width timer, PWT); 一个实时时钟(real-time clock, RTC)
 - 10、通信接口

两个 SPI 模块(串行外设接口); 三个 UART 模块; 两个 I2C 模块; 一个 MSCAN 模块;

- 11、封装选择
- 80 引脚封装; 64 引脚封装

第1章 订购

1.1 确定有效的可订购的产品

freescale.com 网站上搜索产品编号: KEAZ128。

第2章 产品型号识别

2.1 描述

芯片具有型号标识,可以识别特定产品。

2.2 命名格式

芯片的命名格式为: "Q B KEA A C FFF M T PP N"。

2.3 字段

表 2-1 为 Kinetis EA 系列芯片命令字段说明。

表2-1 Kinetis EA系列芯片命令字段说明

字段	说明	取值
Q	质量状态	S=汽车级; P=工程测试芯片
В	内存类型	9=Flash
KEA	Kinetis汽车系列号	KEA
A	内核属性	Z=M0+内核
С	CAN总线可用性	N=CAN不可用; (Blank) =CAN可用
FFF	程序Flash内存大小	64 = 64 KB; 128=128 KB
M	生产版本	F0=第一版本; F1=第一版本之后的修订版
T	运行温度范围	M=-40°C~125°C
PP	封装类型	LH =64LQFP(10mm x 10mm); LK =80LQFP(14mm x 14mm)
CC	CPU最高频率	4 = 48 MHz
N	包装类型	R=卷包装;(空)=盒包装

2.4 例子

例如芯片命名为: S9KEAZ128AMLK

第3章 产品等级

3.1 热处理等级

表3-1 热处理等级

信号名称	描述	最小	最大	单位	备注
TSTG	存放温度	-55	150	° C	1
TSDR	焊料温度,无铅	_	260	° C	2

- 1、根据 JEDEC 标准 JESD22-A103,越耐高温,寿命越长。
- 2、对于密闭的固态表面贴装器件, IPC/ JEDEC 标准 J-STD-020 确定潮湿/回流敏感性分类。

3.2 防潮处理等级

表3-2 防潮处理等级

信号名称	描述	最小	最大	单位	备注
MSL	潮湿敏感等级		3		1

1、对于密闭的固态表面贴装器件, IPC/ JEDEC 标准 J-STD-020 确定潮湿/回流敏感性分类。

3.3 ESD处理等级

表3-3 ESD处理等级

信号名称	描述	最小	最大	单位	备注
V_{HBM}	静电放电电压, 人体模型	-6000	+6000	V	1
V_{CDM}	静电放电电压,充电设备模型	-500	+500	V	2
I_{LAT}	℃的环境温度下的闭锁电流	-100	+100	mA	3

- 1、静电放电(ESD)敏感度测试人体模型(HBM)由 JEDEC 标准 JESD22-A114 决定。
- 2、对于微电子元件的静电放电耐压的阈值,由 JEDEC 标准 JESD22-C101 确定电场感应带电模型测试方法。
 - 3、由 JEDEC 标准 JESD78D 确定 IC 闭锁测试。测试流程如下:
 - •测试在125°C的温度下(Ⅱ级)进行。

- •I/O 引脚通过+100/-100 mA I-test,与400mA I_{DD}电流限制(正向电流通过时 V_{DD}崩溃)。
- •对于 V_{DD}, I/O 引脚通过+50/-100 mA I- test, 并且 I_{DD} 电流限制在 1000 mA。
- •电压通过 1.5 V_{ccmax}。
- •由于产品条件要求, RESET B 引脚只与负向 I- test 测试。

3.4 电压和电流的操作等级

绝对最大等级值只是压力等级值,不能保证最大值下的功能操作。压力超出表 3-4 中规定的限值可能会影响器件可靠性,或对器件造成永久性损坏。对于功能操作条件,参考本文中其它表。

该芯片包含保护电路,防止由于高静电压或电场造成损坏。但是,建议使用正常的预防措施,对于这个高阻抗电路注意避免使用比最大额定电压还高的电压。如果未使用的输入连接到一个适当的逻辑电压电平(例如,VSS 或 VDD)或使能与该引脚相关的可编程上拉电阻,操作的可靠性提高。

信号名称 描述 最大 单位 最小 V_{DD} 数字供电电压 -0.3 6.0 V V_{DD} 下的最大电流 120 I_{DD} mΑ 输入电压,除了开漏极引脚 -0.3 $V_{DD} + 0.3^{\odot}$ V V_{IN} 开漏极引脚的输入电压 -0.3 瞬时最大电流单引脚限制(适 I_D mΑ -25 25 用于所有端口引脚) 模拟供电电压 V V_{DDA} $V_{DD} - 0.3$ $V_{DD} + 0.3$

表3-4 电压和电流的操作等级

^①V_{DD}的最大等级也适用 V_{IN}

第4章 产品通用知识点

4.1 非开关电气规格

4.1.1 DC特点

本节主要为有关电压供应的要求和 I/O 引脚特征的信息。

表4-1 DC特点

信号名称	描述			最小	典型①	最大	单位	
_		操作电压	_	2.7	_	5.5	V	
		所有I/O引脚是标准	5 V, Iload = -5 mA	VDD - 0.8	_	_	V	
VOH	输出高电压	驱动能力,除了 PTA2和PTA3	3 V, Iload = -2.5 mA	VDD – 0.8	_	_	V	
		高电流驱动引脚,高	5 V, Iload = -20 mA	VDD - 0.8	_	_	V	
		驱动能力 ^②	3 V, Iload = -10 mA	VDD - 0.8	_	_	V	
IOHT	输出高电流	所有端口的最大总	5 V	_	_	-100	mA	
		Іон	3 V	_		-60		
		所有I/O引脚都是标	5 V, Iload = 5 mA	_		0.8	V	
VOL	输出低电压	准驱动能力	3 V, Iload = 2.5 mA	_		0.8	V	
, oz	和山风毛丛	高电流驱动引脚,高	5 V, Iload =20 mA	_	_	0.8	V	
		驱动能力	3 V, Iload = $10 mA$		_	0.8	V	
IOLT	输出低电流	所有端口的最大总	5 V		_	100	mA	
		I_{OL}	3 V	_	_	60	ША	
1/111	输入高电压	WIII	 所有数字输入引脚	4.5≤VDD<5.5 V	0.65 × VDD	_	_	V
VIH		別有 奴 子和八分	2.7≤VDD<4.5 V	0.70 × VDD	_	_	v	
VIII	松)//(由厅	<u> </u>	4.5≤VDD<5.5 V	_	_	0.35 × VDD	V	
VIL	输入低电压	所有数字输入引脚 	2.7≤VDD<4.5 V	_	_	0.30 × VDD	v	
Vhys	输入延迟	所有数字输入引脚	_	0.06 × VDD	_	_	mV	
IIn	输入漏电流	每个引脚(处于高阻 抗输入模式的引脚)	VIN = VDD或 VSS	_	0.1	1	μΑ	
$ I_{InTOT} $	所有端口引 脚总漏电流	引脚(处于高阻抗输 入模式的引脚)	V _{IN} = V _{DD} 或 V _{SS}	30.0	_	2	kΩ	
R _{PU}	上拉电阻	当使能,所有数字输 入引脚(所有I/O引脚	_	30.0	_	50.0	kΩ	

[⊕]典型值是在 25℃下测得的。特点是,没有测试。

[©]只有 PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0 和 PTH1 支持高驱动输出。

	除了PTA2和PTA3)						
$R_{PU}{}^{\tiny{\tiny{\scriptsize (1)}}}$	上拉电阻	PTA2和PTA3	_	30.0	_	60.0	kΩ
	DC注入电	单引脚限制		-2	_	2	
I_{IC}	が全 流 ²³⁴	总MCU限制,包括所 有压力引脚总和	$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	-5	_	25	mA
C _{IC}	输入电容,所有引脚		_		_	7	pF
V_{RAM}	RA	M保持电压	_	2.0	_	_	V

表4-2 LVD和POR规范

信号名称		描述	最小	典型	最大	单位
V _{POR}	PO	R re-arm电压1 ^⑤	1.5	1.75	2.0	V
V_{LVDH}	下降沿低电压检测	则阈值一高的范围(LVDV=1) ®	4.2	4.3	4.4	V
V_{LVW1H}	工政训化市厂数	等级1下降沿(LVWV = 00)	4.3	4.4	4.5	V
V_{LVW2H}	下降沿低电压警告阈值一高的范	等级2下降沿(LVWV = 01)	4.5	4.5	4.6	V
V_{LVW3H}	日 四 四 四 四 四 四 四 四 四	等级3下降沿(LVWV = 10)	4.6	4.6	4.7	V
V_{LVW4H}	ഥ	等级4下降沿(LVWV = 11)	4.7	4.7	4.8	V
$V_{\rm HYSH}$	高范围低	氐电压检测/警告延迟		100		mV
V_{LVDL}		压检测阈值─低的范围 (LVDV=0)	2.56	2.61	2.66	V
V_{LVW1L}	工政训化由工数	等级1下降沿(LVWV = 00)	2.62	2.7	2.78	V
V_{LVW2L}	下降沿低电压警告阈值—低的范	等级2下降沿(LVWV = 01)	2.72	2.8	2.88	V
V_{LVW3L}	古國祖――仏的他 	等级3下降沿(LVWV = 10)	2.82	2.9	2.98	V
$V_{\rm LVW4L}$	ഥ	等级4下降沿(LVWV = 11)	2.92	3.0	3.08	V
V_{HYSDL}	低范围的低电压	E 检测延迟	_	40	_	mV

[®]指定的电阻值是芯片内部的实际值。测量时,外部引脚上拉值可能会更高。

 $^{^{\}circ}$ 所有的功能性非电源引脚,除了 PTA2 和 PTA3,在内部与 V_{SS} 和 V_{DD} 钳位。PTA2 和 PTA3 是真正的开漏 I/O 引脚,内部与 V_{SS} 钳位。

[®]输入电流必须限制在指定的值范围内。确定所需限流电阻的值,计算出正和负钳位电压对应的电阻值,然后使用较大的值。

[®]在瞬间和最大操作电流期间,电源必须在 V_{DD}工作范围内调节。如果注入的正电流(V_{IN}> V_{DD})大于 I_{DD} 高,注入电流可以流出 V_{DD},并可能导致外部电源停止调整。当 MCU 不耗电,确保外部 V_{DD} 负载将分流,高于最大注入电流。如在没有系统时钟,或时钟速率很低(这会降低整体功耗)。

⑤最大值是 POR 保证的最高电压值。

[®]上升阈值=下降阈值+延迟

V _{HYSWL}	低范围的低电压警告延迟	_	80		mV
V_{BG}	缓冲带隙输出 ^①	1.14	1.16	1.18	V

图4-1 典型 V_{DD} - V_{OH} V_s . I_{OH} (标准驱动能力)(V_{DD} = 5 V)

图4-2 典型 V_{DD} - V_{OH} V_s . I_{OH} (标准驱动能力)(V_{DD} = 3 V)

图4-3 典型 V_{DD} - V_{OH} Vs. I_{OH} (高驱动能力) (V_{DD} = 5 V)

^①在 VDD=5.0 V, 温度=125° C 调整电压

图4-4 典型 V_{DD} - V_{OH} V_{S} . I_{OH} (高驱动能力) (V_{DD} = 3 V)

图4-5 典型 V_{OL} Vs. I_{OL} (标准驱动能力) ($V_{DD} = 5 V$)

图4-6 典型 V_{OL} Vs. I_{OL} (标准驱动能力) (V_{DD} = 3 V)

图4-7 典型V_{OL} Vs. I_{OL} (高驱动能力) (V_{DD} = 5 V)

图4-8 典型 V_{OL} Vs. I_{OL} (高驱动能力) (V_{DD} = 3 V)

4.1.2 电流供应特性

本节包括了在各种操作模式下电流供应特性的信息。

表4-3 电流供应特性

参数	符号	内核/总线	VDD(V)	标准	最大	单位	温度	
		时钟						
		48/24 MHz		11.1	_			
		24/24 MHz	_	8	_			
运行电流供应FEI	DID	12/12 MHz	5	5	_			
模式,使能所有模	RID D	1/1 MHz		2.4	_	A	40t- 125 ° C	
块时钟,从Flash开	ע	48/24 MHz	3	11	_	mA	-40to 125 ° C	
始运行		24/24 MHz		7.9	_			
		12/12 MHz		3	3	4.9	_	
		1/1 MHz		2.3	_			
2. 4. 本. A. C.		48/24 MHz		7.8	_			
运行电流供应FEI	RID	24/24 MHz	_	5.5	_			
模式,禁止所有模	D	12/12 MHz	5	3.8	_	mA	-40 to 125 ° C	
块时钟,从Flash开 始运行		1/1 MHz		2.3	_			
		48/24 MHz	3	7.7	_			

24/24 MHz								,
Total			24/24 MHz		5.4	_		
接行电流供应FBE 模式、使能所有模 块时钟、从RAM开 始运行 RID D			12/12 MHz		3.7	_		
24/24 MHz			1/1 MHz		2.2	_		
正子 正子 正子 正子 正子 正子 正子 正子			48/24 MHz		14.7	_		
接式、使能所有模块时钟,从RAM开始之。			24/24 MHz	_	9.8	14.92		
模式、使能所有模 块时钟、从RAM开 始运行 1/1 MHz	运行电流供应FBE		12/12 MHz	5	6	_		
大田神、从RAM开 始运行			1/1 MHz		4	_	mA	40 427 0 6
### ### ### ### ### ### ### ### ### #		D	48/24 MHz		14.6	_		-40 to 125 ° C
12/12 MHz	始运行		24/24 MHz		9.6	12.82	1	
接待电流供应FBE 模式・禁止所有模				3	5.9		1	
接待电流供应FBE 模式・禁止所有模			1/1 MHz		2.3	_		
正子 正子 正子 正子 正子 正子 正子 正			t					
E						12.52	1	
模式、禁止所有模	运行由流供应FRF			5			1	
映时钟,从RAM开 始运行						_	1	
## 対応行		D					mA	-40 to 125 ° C
12/12 MHz						9.52		
等待电流供应FBE 模式, 使能所有模 块时钟 WID D HAP A HAP	, = .			3		7.52		
等待电流供应FBE 模式,使能所有模 块时钟 WID D			-			_	1	
等待电流供应FBE 模式,使能所有模 块时钟			t			_		
等待电流供应FBE 模式,使能所有模 块时钟 WID D 1/1 MHz 48/24 MHz 24/24 MHz 12/12 MHz 11/1 MHz 5 4.3						7 22	1	
等待电流供应FBE 模式,使能所有模 块时钟				5		7.22		
模式,使能所有模		WID				_		
接向性 24/24 MHz 3 6.4 7.12 4.2						_	mA	-40 to 125 ° C
等待模式电流供	块时钟					7 12		
等待模式电流供				3		7.12	1	
等待模式电流供						_	1	
 应, 无活跃时钟(除了1KHz的LPO时中) ADC加法器 ADLPC=1 ADLSMP=1 ADCO=1 MODE=10B ADICLK=11B ACMP加法器 3 12			1/1 WITTZ	_		1702		40 to 125 ° C
「				3	2	1702		-40 to 125 C
ADC加法器 ADLPC=1 ADLSMP=1 ADCO=1 MODE=10B ADICLK=11B ACMP加法器 - 5 12 _ μA -40 to 125 ° C 1VD加法器 5 130 _ μA -40 to 125 ° C		SIDD	_	3	1.9	1602	μА	-40 to 125 ° C
ADLPC=1 ADLSMP=1 ADCO=1 MODE=10B ADICLK=11B ACMP加法器 - 3 82 - μA -40 to 125 ° C 1 μ A -40 to 125 ° C 1 μ A -40 to 125 ° C								
ADLSMP=1 ADCO=1 MODE=10B ADICLK=11B ACMP加法器 - 3 82	ADC加法器			5	86	_	1	
ADCO=1	ADLPC=1							
ADCO=1 MODE=10B ADICLK=11B ACMP加法器 -	ADLSMP=1						u A	-40 to 125 ° C
ADICLK=11B ACMP加法器 - 5 12 - μ A -40 to 125 ° C LVD加法器 5 130 - μ A -40 to 125 ° C	ADCO=1	_	_	3	82	_	P 11	
ACMP加法器 _ _ _ _ _ μ A _								
ACMP加法器 _ _ 3 12 _ μ A LVD加法器 _ _ _ μ A -40 to 125 ° C	ADICLK=11B							
TVD加法器	ACMP加法器					_	μA	-40 to 125 ° C
LVD加沃器 I I I I I I I I I I I I I I I I I I I	TIOTH WHIZH	_	_			_	F- 2.1	
3 125 _	LVD加法器					_	μА	-40 to 125 ° C
	2.27HIAH	_	_	3	125	_		

4.1.3 EMC性能

电磁兼容(EMC)的性能很大程度上依赖于 MCU 的环境,面板设计与布局、电路拓扑

结构选择、外部构件的位置和特性以及 MCU 的软件操作对 EMC 的性能都有很大影响。 系统设计者必须查阅以下 Freescale 应用注意事项,访问 www.freescale.com 可以获得一些 建议和指导,目的在于优化 EMC 性能。

AN2321: 用于板级电磁兼容

AN1050: 用于带有 HCMOS 微控制器的 EMC

AN1263: 用于带有单芯片的微控制器的 EMC

AN2764: 提升基于微控制器应用的脉冲发生器性能

AN1259: 用于减少 MCU 系统中的噪声系统设计与布局技术

4.2 转换说明

4.2.1 控制时序

表4-4 控制时序

编号	速率		符号	较小	标准	最大	单位
1	系统和内核	时钟	fSys	DC	_	43	MHz
2	总线时钟		fBus	DC	_	24	MHz
3	内部低功耗晶:	振频率	fLPO	0.67	1.0	1.25	KHz
4	外部复位脉冲	中宽度	textrst	1.5 ×Tcyc	_	ı	ns
5	复位低功耗	驱动	trstdrv	$34 \times \text{tcyc}$	_	ı	ns
6	IRQ脉冲宽度	异步路径	tILIH	100	_	_	ns
	IKQ脉件见度	同步路径	tILIH	1.5× tcyc	_	_	ns
7	键盘中断脉冲宽	异步路径	tILIH	100	_	-	ns
	度	同步路径	tILIH	1.5× tcyc	_	-	
	端口上升和下降		tRise	_	10.2	ı	
8	时间—正常驱动 能力	_	tFall	_	9.5	-	ns
	端口上升和下降		tRise	_	5.4	_	
-	时间一高驱动能 力	_	tfall	_	4.6	_	ns

图4-9 复位时序

图4-10 KBIPx时序

4.2.2 FTM模块时序

输入捕捉脉冲宽度

tICPW

同步电路可决定能够被识别的最短输入脉冲或者最快时钟,该时钟能够被作为定时计数器的可选外部时钟源。这些同步操作来至于当前总线速率时钟。

功能 符号 最小 最大 单位 定时器时钟频率 Hz fTimer fBus fSys 外部时钟频率 fTCLK 0 fTimer/4 Hz 外部时钟周期 tTCLK 4 tcyc 外部时钟高时间 tclkh 1.5 tcyc 外部时钟低时间 1.5 tclkl tcyc

tcyc

表4-5 FTM输入时序

1.5

图4-11 定时器外部时钟

图4-12 定时器输入捕捉脉冲

4.3 能量说明

4.3.1 能量特点

本节提供了一些有关操作温度范围、能量消耗和包能量阻力。I/O 引脚上的能量消耗通常小于芯片上和电压稳压器电路的能量消耗,并且这是用户决定的而不是由 MCU 设计所控制的。为了计算 $P_{I/O}$ 上的能量,决定实际引脚电压和 V_{SS} 或者 V_{DD} 和为每个 I/O 引脚扩大引脚电流。除了高引脚电流情况下,引脚电压和 V_{SS} 或者 V_{DD} 的不同将是非常小的。

板类型	符号	描述	64LQFP	80LQFP	单位
单层(1S)	R θ JA	能量阻力,连接周围环境	71	57	° C/W
4层(4S)	R θ JA	能量阻力,连接周围环境	53	44	° C/W
单层(1S)	R θ ЈМА	能量阻力,连接周围环境	59	47	° C/W
4层(2S2P)	R ^θ ЈМА	能量阻力,连接周围环境	46	38	° C/W
_	Вθ ЈВ	能量阻力,连接板	35	28	° C/W
	R θ JC	能量阻力,连接箱	20	15	° C/W
-	ΨЈТ	能量特性参数,连接包的顶端、外部和中心	5	3	° C/W

表4-6 能量属性

平均芯片结温 (T_J) 可从以下公式得到 $(^{\circ}C)$: $T_{J=}T_{A+}(P_D \times \theta_{JA})$, 其中,

 T_A =环境温度, $^{\circ}$ C; $^{\circ}$ $^$

对于大多数应用,PI/O<< P_{int} ,可以忽略不计。 P_D 和 T_J 之间的近似关系(如果忽略 $P_{I/O}$)为: $P_D=K\div(T_J+273°C)$ 。其中, $K=P_D\times(T_A+273°C)$ + $\theta_{JA}\times(P_D)^2$,K是一个常数有关的特定值,可通过已知的 T_A 测量 P_D (在平衡时)来确定。使用该 K 的值,使用已知的 T_A 值,通过解上述迭代方程获得 P_D 和 T_J 的值。

第5章 外围工作需求和行为

5.1 内核模块

5.1.1 SWD电压

表5-1 SWD电压范围

信号	描述	最小值	最大值	单位
	操作电压	2.7	5.5	V
J1	SWD_CLK操作频率,串行线调试	0	24	MHz
J2	SWD_CLK循环周期	1/J1	_	ns
J3	SWD_CLK时钟脉冲宽度,串行线调试	20		ns
J4	SWD_CLK 上升和下降次数		3	ns
J9	SWD_DIO 输入数据设置时间使SWD_CLK上升	10	_	ns
J10	SWD_DIO输入数据使SWD_CLK上升后保持时间	3	_	ns
J11	SWD_CLK高于 SWD_DIO数据有效	_	35	ns
J12	SWD_CLK 高于SWD_DIO高阻抗	5	_	ns

图5-1 串行线时钟输入定时

图5-2 串行线数据定时

5.2 外部振荡器(OSC)和ICS特征

表5-2 OSC和ICS规格(温度范围=-40至125°C)

编号	特点	信号	最小	典型	最大	单位

1	 晶体或谐振频率	低范围 (RANGE = 0)	flo	31.25	32.768	39.0625	kHz
1	田 体 以 佰 派 妙 半	高范围 (RANGE = 1)	fhi	4	_	24	MHz
2	负	载电容	C1, C2			See Note	
		低频率, 低功耗模式					$M\Omega$
3	反馈电阻	低频率, 高增益模式	RF		10		$M\Omega$
3	及顷屯阻	高频率, 低功耗模式	KI		1		$M\Omega$
		高频率,高增益模式		_	1	_	ΜΩ
4	串联电阻-低频	低功耗模式	RS	1	0		kΩ
	中极电阻一队频	高增益模式	KS		200		kΩ
	串联电阻-高频	低功耗模式			0	_	kΩ
5	串联电阻-高频,	4 MHz	RS		0		kΩ
3	市联电阻-高频, 高增益模式	8 MHz	KS		0		kΩ
	同相皿法式	16 MHz		_	0	_	kΩ
	晶振启动时间低	低范围, 低功耗模式	tCSTL	_	1000	_	ms
6	范围=32.768	低范围,高增益模式	iCSTL		800		ms
Ü	kHz; 高范围	高范围, 低功耗模式	tCSTH		3		ms
	=20MHz	高范围,高增益模式		_	1.5	_	ms
7	内部参	考的启动时间	tIRST	_	20	_	μs
8		RC)的频率调整范围	fint_t	31.25	_	39.0625	kHz
9	内部参考时钟频 率,工厂调整	T = 125 °C, $VDD = 5$ V	fint_ft	_	37.5	_	kHz
10	DCO输出频率范 围	FLL参考= fint_t,flo, 或fhi/RDIV	fdco	40		50	MHz
11	工厂调整内部振 荡器精度	T=125 °C, VDD = 5 V	Δ fint_ft	-0.8	_	0.8	%
12	当T=25°C, VDD= 5V调整 时,IRC温度过 高。	温度范围为-40°C至 125°C	Δ fint_t	-1	_	0.8	%
13	DCO输出频率准 确度使用出厂预 设值,	温度范围为-40°C至 125°C	Δ fdco_ft	-2.3	_	0.8	%
14		采集时间	tAcquire	_	_	2	ms
15		长时间抖动(平均超过2 的间隔)	CJitter			0.2	%fdco

图5-3典型的晶体或谐振器电路

5.3 NVM说明

本节给出 flash 内存的编程/擦除次数和时长。

表5-3 Flash特性

特性	标识	最小值 ^①	标准值 ^②	最大值®	单位④
-40℃-125℃下编程/擦除工作 电压	Vprog/erase	2.7	-	5.5	V
读取操作的工作电压	VRead	2.7	-	5.5	V
NVM总线频率	fNVMBUS	1	-	24	MHz
NVM操作频率	fNVMOP	0.8	1	1.05	MHz
擦除并验证所有块	tVFYALL	-	-	2605	tcyc
擦除并验证Flash块	tRD1BLK	-	-	2579	tcyc
擦除并验证Flash段	tRD1SE	-	-	485	tcyc
一次读取	tRDONCE	-	-	464	tcyc
程序内存(2个字)	tPGM2	0.12	0.13	0.31	ms
程序内存(4个字)	tPGM4	0.21	0.21	0.49	ms
一次编程	tPGMONCE	0.20	0.21	0.21	ms
擦除所有块	tERSALL	95.42	100.18	100.30	ms
擦除Flash块	tERSBLK	95.42	100.18	100.30	ms
擦除Flash段	tERSPG	19.10	20.05	20.09	ms
非安全内存	tUNSECU	95.42	100.19	100.31	ms
验证后门访问密钥	tVFYKEY	-	-	482	tcyc
设置用户边界等级	tMLOADU	-	-	415	tcyc
-40℃-125℃下编程/擦除时长	nFLPE	10k	100k	-	Cycles
10000个编程/擦除周期后,数	tD_ret	15	100	-	years

^①最小值基于最大值 f_{NVMOP} 和最大值 f_{NVMBUS}

^②标准值基于标准的 f_{NVMOP} 和最大值 f_{NVMBUS}

[®]最大值基于标准的 fnvmop 和标准的 fnvmbus 加时效

[®] tcyc=1/f_{NVMBUS}

据在平均温度为85℃下能保			
持的时长			

除正常 V_{DD} 供应外,编程和擦除操作不需要其他特别的电源。详见参考手册的 Flash 内存模块章节。

5.4 模拟

5.4.1 ADC特性

表5-4 5V12位ADC操作条件

	次5-4 5 V 12 世ADC 床 17 示 IT							
特性	条件	标识	最小值	标准 值①	最大值	单位	备 注	
参考电压	低 高	VREFL VREFH	VSSA VDDA/2	-	VDDA/2 VDDA	V	-	
工作由口	绝对	VDDA	2.7	-	5.5	V	-	
工作电压	VDD	∆ VDDA	-100	0	+100	mV	-	
输入电压		VADIN	VREFL	-	VREFH	V	-	
输入电容		CADIN	-	4.5	5.5	pF	-	
输入电阻		RADIN	-	3	5	kΩ		
	12位模式 fADCK>4 MHz fADCK<4 MHz		-	-	2 5		MG	
模拟电压 电阻	10位模式 fADCK>4 MHz fADCK<4 MHz	RAS	-	-	5 10	kΩ	MC U外 部	
	8位模式 (所有有效fADCK)		-	-	10			
ADC转换	高速(ADLPC=0)	fA DCV	0.4	-	8.0	MHa		
时钟频率	低功耗(ADLPC=1)	fADCK	0.4	-	4.0	MHz		

[®] 除另有说明外,标准值假设 $V_{DDA} = 5.0 \text{ V}$, $Temp = 25 ^{\circ} \text{ C}$, $f_{ADCK} = 1.0 \text{ MHz}$ 。标准值仅供参考,不作为生产中的测试值。

图5-4 ADC输入阻抗相等关系图

表5-5 12位ADC特性(VREFH = VDDA,VREFL = VSSA)

特性	条件	标识	最小值	标准值 ^①	最大值	单位
工作电流						
ADLPC = 1		I_{DDA}		133		μА
ADLSMP = 1		IDDA	_	133	_	μА
ADCO = 1						
工作电流						
ADLPC = 1		Inn.		218		μА
ADLSMP = 0		I_{DDA}	-	210	_	μА
ADCO = 1						
工作电流						
ADLPC = 0		I_{DDA}		327		μА
ADLSMP = 1		IDDA	-	321	_	μА
ADCO = 1						
工作电流						
ADLPC = 0		Idda		582	990	μА
ADLSMP = 0		IDDA	-	362	990	μА
ADCO = 1						
工作电流	停止,重置,模块关闭	I_{DDA}	-	0.011	1	μА
ADCE上时始近	高速(ADLPC =0)	c c	2	3.3	5	MHz
ADC异步时钟源	低功耗(ADLPC =1)	fadack	1.25	2	3.3	MHZ
转换时间(包括	短采样(ADLSMP=0)		-	20	-	ADCK
采样时间)	长采样(ADLSMP = 1)	tadc	-	40	-	周期
	短采样(ADLSMP=0)		-	3.5	-	ADCK
采样时间 	长采样(ADLSMP=1)	$t_{ m ADS}$	-	23.5	-	周期

18

[®] 除另有说明外,标准值假设 $V_{DDA} = 5.0 \text{ V}$, $Temp = 25 ^{\circ} \text{ C}$, $f_{ADCK} = 1.0 \text{ MHz}$ 。标准值仅供参考,不作为生产中的测试值。

十二田 献 (井)口 台 粉	12位模式		-	±5.0	-	
未调整错误总数	10位模式	E_{TUE}	-	±1.5	-	LSB ²
	8位模式		-	± 0.8	-	
	12位模式	DNL	1	±1.5	-	
差分非线性	10位模式		-	± 0.4	-	LSB
	8位模式		1	± 0.15	-	
	12位模式	DNL	-	±1.5	-	
积分非线性	10位模式		-	± 0.4	-	LSB
	8位模式		-	± 0.15	-	
	12位模式	Ezs	-	± 1.0	-	LSB
0-规模错误®	10位模式		-	± 0.2	-	
	8位模式		-	± 0.35	-	
	12位模式	Б	-	± 2.5	-	
全-规模错误④	10位模式	E_{FS}	-	± 0.3	-	
积分非线性 0-规模错误 [®] 全-规模错误 [®] 量化错误 输入漏错误 [®] 温度传感器范围	8位模式		1	± 0.25	-	
量化错误	≤12位模式	E_Q	-	-	± 0.5	LSB
输入漏错误 ^⑤	所有模式	E_{IL}		$I_{In} \; x \; R_{AS}$		mV
泪嵌丛咸翠菇围	-40 ℃–25 ℃		-	3.266	-	mV/9C
血 及传恩奋犯国	25 ℃–125 ℃	m	ı	3.638	-	mV/℃
温度传感器电压	25 ℃	V _{TEMP}	-	1.396	-	V

5.4.2 模拟比较器

表5-6 比较器电气规范

特性	标识	最小值	标准值	最大值	单位
工作电压	VDDA	2.7	-	5.5	V
工作电流 (操作模式)	IDDA	-	10	20	μА
模拟输入电压	VAIN	VSS - 0.3	-	VDDA	V
模拟输入偏置电压	VAIO	-	-	40	mV
模拟比较器迟滞(HYST=0)	VH	-	15	20	mV
模拟比较器迟滞(HYST=1)	VH	-	20	30	mV
工作电流 (关闭模式)	IDDAOFF	-	60	-	nA
传播延迟	tD	-	0.4	1	μs

^①包括量化

 $^{^{\}circ}$ 1 LSB = (V_{REFH} - V_{REFL})/2^N

 $^{^{\}tiny{(3)}} V_{ADIN} = V_{SSA}$

 $^{^{\}tiny{\textcircled{4}}} \ V_{ADIN} = V_{DDA}$

[®] Iɪn=漏电流(参考 DC 特性来说)

5.5 通信接口

5.5.1 SPI开关说明

串行外设接口(SPI)提供了带有主从操作模式的同步串行总线。许多转移参数是可编程的。表给出基本 SPI 时序模式的特性。参看芯片参看手册 SPI 章节可获得用于和更低串行设备通信的可调整的转移格式。除非另有说明,所有关于 20% V_{DD} 和 80% V_{DD} 的时序均被显示,同时在所有 SPI 引脚上增加 25pF 负荷。所有时序假设转换速率控制被禁用,并且 SPI 输出引脚的高驱动力使能。

序号	标识	描述	最小值	最大值	单位	备注	
1	fop	操作频率	fBus/2048	fBus/2	Hz	fBus是总线时钟	
2	tSPSCK	SPSCK周期	2 x tBus	2048 x tBus	ns	tBus = 1/fBus	
3	tLead	使能提前时间	1/2	-	tSPSCK	-	
4	tLag	使能滞后时间	1/2	-	tSPSCK	-	
5	tWSPS	/SPS 时钟高低时间	(D. 20 1024 (D.				
	o CK	的特高似的问	tbus – 50	1024 X tBus	ns	-	
6	tSU	数据准备时间(输入)	8	-	ns		
7	tHI	数据持续时间(输入)	8	-	ns	-	
8	tv	数据有效(SPSCK边沿后)	-	25	ns	-	
9	tHO	数据保持时间(输出)	20	-	ns	-	
10	tRI	上升时间输入		4D 25			
10	tFI	下降时间输入	-	tBus – 25	ns	-	
11	tRO	上升时间输出		25		-	
11	$t_{ m FO}$	下降时间输出	-	25	ns		

表5-6 SPI主机模式时序

图5-5 SPI主机模式时序(CPHA=0)

1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

图5-6 SPI主机模式时序(CPHA=1)

表5-7 SPI从机模式时序

序号	标识	描述	最小值	最大值	单位	备注	
1	fop	操作频率	0	fBus/4	Hz	fBus是总线时钟	
2	tSPSCK	SPSCK周期	4 x tBus	-	ns	tBus = 1/fBus	
3	tLead	使能提前时间	1	-	tBus	-	
4	tLag	使能滞后时间	1	-	tBus	-	
5	tWSPS	 时钟高低时间	tBus -	tBus	ns	-	
	CK	***************************************	30				
6	tSU	数据准备时间(输入)	15	-	ns	<u>-</u>	
7	tHI	数据持续时间(输入)	25	-	ns		
8	ta	数据访问时间	1	tBus	ns	自高阻态时间数据活跃	
9	tdis	从机MISO除能时间	-	tBus	ns 保持时间高阻态		
10	tv	数据有效(SPSCK边沿后)	-	25	ns	-	
11	tHO	数据保持时间(输出)	0	-	ns	-	
12	tRI	上升时间输入		tBus -	n .c		
	tFI	下降时间输入	-	25	ns	-	
13	tRO	上升时间输出		25	ns	-	
	t_{FO}	下降时间输出	-				

图5-7 SPI从机模式时序(CPHA=0)

图5-8 SPI从机模式时序(CPHA=1)

5.5.2 MSCAN

表5-8 MSCAN唤醒脉冲特性

参数	标识	最小值	标准值	最大值	单位
MSCAN唤醒主导脉冲过滤	tWUP	-	-	1.5	μs
MSCAN唤醒主导脉冲通过	tWUP	5	-	-	μѕ

第6章 封装

6.1 封装大小

可以登陆 freescale.com 通过关键字查找文档编号获得对应的封装图。

7,7,22,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,	
封装类型	文档编号
64-pin LQFP	98ASS23234W
80-pin LQFP	98ASS23237W

第7章 引脚分配

7.1 信号复用和引脚分配

详见 KEA128 参考手册信号复用和信号描述章节。

第8章 历史版本

表 8-1 给出各历史版本。

表8-1 历史版本

版本号	日期	实质性改变
Rev. 1	2014-3-11	初始版本
		去掉参数分类章节
Rev. 2	2014-6-18	所有表格中的分类栏都去掉
		新增章节——工作电流特性
	2014-7-18	增加支持部分数字
D 2		更新ESD处理评级章节
Rev. 3		更新DC特性章节的图
		更新表9的参数
Rev. 4	2014-9-03	数据表类型改为"技术数据"