# Body Part Position Estimation

Jorik Spijkerman en Sanne Bouwmeester

## Introduction

Body Pose Recognition

Kinect

Initial Pose

Automatically induce body position from depth point cloud

# Video Example

 $\underline{\text{https://youtu.be/ZXI6gko7kG4?t=1m}}$ 

# Background: ICP

Fixed model of body and skeleton

Movement is concatenation of rigid transformations

ICP to estimate what these transformations are

Estimate depth from 2 images using triangulation

Nonlinear Body Pose Estimation from Depth Images Daniel Grest, Jan Woetzel and Reinhard Koch

# Background: Suggested Poses

Depth camera

Render depth cloud from Pose Skeleton

Compare them



Human Pose Estimation from a Single View Point, Real-Time Range Sensor Matheen Siddiqui and G'erard Medioni

#### Data

Body position data relies on shape of body and clothes

Manipulate known data to unknown shapes and clothes

More data is useful for overfitting

More data is useful for robustness

Add transformations and mirrored data

## Classification

#### Depth Features

- Location
- Offset



#### Random Forests

Goal: Classify different body parts

#### Split nodes

- A feature  $\theta$
- A threshold au

#### Leaf node

- probability over body part classes

Several trees are averaged



# Body part labeling

Local labels

Skeletal joints are used directly

Other body parts only used sparsely

31 body part tags



## Joint Position estimation

Input: Body part clusters with body part class labels

Pooling per body part, in particular joints

Mean shift



### Joint Position estimation

Input: Body part clusters with body part class labels

Pooling per body part, in particular joints

Mean shift

- Weighted Gaussian Kernel to compute mean
- Several joint proposals, weighted with confidence estimate
- Account for body depth

# Experiments

#### Training



#### Testing

- Synthetic depth images (5k)
- Real depth images (8.8k)

#### Results



### Results

#### Classification







Joint precision (0.731 mAP)

- Synthetic test set, worse than real set



Joint prediction accuracy

# In comparison(1)



# In comparison(2)



### Discussion

- How is 3 trees enough?
- Deeper trees?
- Good generalization



Shen M., Duan L., Deussen O. (2016) Single-Image Insect Pose Estimation by Graph Based Geometric Models and Random Forests. In: Hua G., Jégou H. (eds) Computer Vision – ECCV 2016 Workshops. ECCV 2016. Lecture Notes in Computer Science, vol 9913. Springer, Cham

## Conclusion

- Fast
- Accurate

- Serves as a great fundament to other research

# Questions?