The Complete Genomic Sequence of the Modified Vaccinia Ankara Strain: Comparison with Other Orthopoxviruses

G. Antoine, F. Scheiflinger, F. Dorner, and F. G. Falkner¹

Biomedical Research Center, Hyland-Immuno, Uferstrasse 15, A-2304 Orth/Donau, Austria
Received January 16, 1998; returned to author for revision February 4, 1998; accepted March 4, 1998

The complete genomic DNA sequence of the highly attenuated vaccinia strain modified vaccinia Ankara (MVA) was determined. The genome of MVA is 178 kb in length, significantly smaller than that of the vaccinia Copenhagen genome, which is 192 kb. The 193 open reading frames (ORFs) mapped in the MVA genome probably correspond to 177 genes, 25 of which are split and/or have suffered mutations resulting in truncated proteins. The left terminal genomic region of MVA contains four large deletions and one large insertion relative to the Copenhagen strain. In addition, many ORFs in this region are fragmented, leaving only eight genes structurally intact and therefore presumably functional. The inserted DNA codes for a cluster of genes that is also found in the vaccinia WR strain and in cowpox virus and includes a highly fragmented gene homologous to the cowpox virus host range gene, providing further evidence that a cowpox-like virus was the ancestor of vaccinia. Surprisingly, the central conserved region of the genome also contains some fragmented genes, including ORF F5L, encoding a major membrane protein, and ORFs F11L and O1L, encoding proteins of 39.7 and 77.6 kDa, respectively. The right terminal genomic region carries three large deletions: all classical poxviral immune evasion genes and all ankyrin-like genes located in this region are fragmented except for those encoding the interleukin-1β receptor and the 68-kDa ankyrin-like protein B18R. Thus, the attenuated phenotype of MVA is the result of numerous mutations, particularly affecting the host interactive proteins, including the ankyrin-like genes, but also involving some structural proteins.

INTRODUCTION

The members of the poxvirus family have large double-stranded DNA genomes encoding several hundred proteins (review: Moss, 1996). Several members of the poxviridae have been sequenced recently, including the vaccinia virus Copenhagen (CPN) strain (Goebel et al., 1990) encompassing 192 kb, the variola (VAR) strains Bangladesh (Massung et al., 1994) and India (Shchelkunov et al., 1993d) encompassing 186 kb, and the human tumorigenic poxvirus molluscum contagiosum virus (Senkevich et al., 1996) encompassing 190 kb. Sequence analysis of poxvirus genomes has increased our knowledge of the structure and function of poxviral genes and increased our understanding of host-virus interactions. Due to the complexity of poxviral genomes and the complex viral life cycle, questions concerning immunogenicity, virulence, and host range of poxvirus strains have been answered only partially for the respective virus strain. It was therefore of interest to determine the genomic sequence of the highly attenuated vaccinia strain modified vaccinia Ankara (MVA) (Mayr et al., 1978), which cannot grow in most mammalian cells and which is a good candidate for a recombinant vaccine vector (Sutter and Moss, 1992; Sutter et al., 1994). This strain has been passaged over 570 times in chicken embryo

fibroblasts, during which six major deletions relative to the parental wild-type strain Ankara, accompanied by a severe restriction in host range, have occurred (Meyer *et al.*, 1991). Precise restriction maps have been established (Meyer *et al.*, 1991) and two of the deletions have been characterized by sequence analysis (Altenburger *et al.*, 1989; Antoine *et al.*, 1996). In a first step to elucidate the genetic basis for the high degree of attenuation of MVA, the nucleotide sequence of its genomic DNA was determined and the open reading frames were compared to the entries of current sequence databases.

RESULTS

Basic genome data

The sequence of the linear, double-stranded DNA molecule totals 177,923 bp and the G+C content is 33.4%, exactly corresponding to the G+C content of the CPN strain. Translational analysis allowed the mapping of 192 ORFs specifying potential proteins \geq 65 amino acids. As in other orthopoxviruses, the ORF encoding the RNA polymerase subunit rpo7, G5.5R (MVA083R), is 63 amino acids in size (Amegadzie *et al.*, 1992). Eight duplicated ORFs \geq 65 amino acids that are located in the repeat regions within the terminal 5.5 kb of the inverted terminal repeats (ITRs) were not listed in Table 1 because they presumably do not represent functional genes. Translation of these ORFs resulted in a family of related proteins with repeat

¹To whom correspondence and reprint requests should be addressed. Fax: 43-2212-2716. E-mail: falknef@baxter.com.

TABLE 1
Features and Homologies of Open Reading Frames of the Vaccinia MVA Strain

ORF ^a	START STOP	ΑΛb	kDac	name / (putative) function / homologies ^g	BLAST ^d expect	BLAST ^c AA id	HSS ^r	references
left te	rminal	regio	n:	Tuneston . Montelogico			(,, ,	
001L/	6822	136	14.9	35k major secr. protein				(Patel et al., 1990)
193Rh	6412	244		chemokine receptor (f ⁱ) VAC (<i>C23L/B29R</i>)	6.0- 57	41/42	97	(Graham et al., 1997) (Goebel et al., 1990)
C23L		244 253		VAC (C23L/B29K) VAR-I ^j G3R	6.0e-57 8.9e-51	46/49	93	(Shchelkunov <i>et al.</i> , 1995)
		246		CPX ORF B	5.6e-49	40/42	95	(Hu et al., 1994)
		258		SFV T1 protein	2.5e-20	23/42	54	(Upton et al., 1987)
		260		Myxoma virus T1/35kDa	1.5e-14	21/42	50	(Graham <i>et al.</i> , 1997)
002L/	7784	176	19.7	secr. TNF receptor (f)				(Upton et al., 1991a)
192Rh	7254	355		CPX crmB	5.1e-71	76/83	91	(Hu et al., 1994)
		348 326		VAR-BSH G2R Myxoma virus T2	1.0e-66 4.9e-30	73/83 21/37	87 56	(Shchelkunov <i>et al.</i> , 1995) (Upton <i>et al.</i> , 1991a)
		325		Rabbit fibroma Virus T2	1.8e-28	17/36	47	(Upton et al., 1997a)
		202		CPX C4L	8.7e-15	30/51	58	(Safronov et al., 1996)
a.a.t		346		'HS TNF receptor protein	1.9e-08	14/26	53	(Heller et al., 1990)
C19L		259 277		VAC (C19L/B25R) human CD40L receptor	0.00026 0.0015	16/19 11/24	84 45	(Goebel et al., 1990) (Stamencovic et al., 1989)
		2.,		30 matches to TNF receptors	< 0.39			(Stameneovie et al., 1909)
				and surface proteins				
003L/	8780	102	12.1	45k ank ^k -like protein				(Goebel et al., 1990)
191Rh	8472	102	12.1	(f1)				(Goeber et al., 1990)
C17L		386		VAC C17L/B23R	1.3e-39	62/63	98	(Goebel et al., 1990)
004L/	9558	233	26.9	45k ank-like protein				(Goebel et al., 1990)
190R ^b C17L	8857	386		(f 2) VAC (C17L/B23R)	6.2e-159	110/110	100	(Goebel et al., 1990)
DIL		91		VAR-BSH	9.1e-31	46/49	93	(Shchelkunov et al., 1995)
		669		CPX host range	1.1e-13	22/50	44	(Spehner et al., 1988)
		452 574		VAR-I D6L (BSH:D8L) VAR-I B19R (BSH: B16R)	1.7e-11 1.2e-05	21/50 22/73	42 30	(Shchelkunov et al., 1995) (Shchelkunov et al., 1995)
		574		VAC B18R (WR: B17R)	8.6e-05	22/73	30	(Goebel et al., 1990)
		634		VAC C9L	0.00011	11/24	45	(Kotwal and Moss, 1988a)
		585		VAR-I GIR	0.00013 0.0088	22/74 15/49	29 30	(Shchelkunov et al., 1995) (Sullivan et al., 1995b)
		516 153		orf virus VAR-1 D7L (BSH:D10L)	0.0088	12/28	42	(Shchelkunov <i>et al.</i> , 1995)
	_							
005R	10203	140	15.5	Growth factor (EGF				(Twardzik et al., 1985)
CIIR	10625	142		receptor binding) VAC	2.9e-82	99/104	95	(Stroobant <i>et al.</i> , 1985) (Goebel <i>et al.</i> , 1990)
D2R		140		VAR-I (BSH:D4R)	3.6e-74	106/140	75	(Shchelkunov et al., 1995)
		138		CPX D5R	3.4e-95	101/114		(Safronov et al., 1996)
		169		human epiregulin 100 matches to growth factor	2.2e-14 <0.10	29/78	37	D30783
				like sequences				
006L	11758	326	37.9	37.9k protein				(Venkatesan et al., 1982)
CIOL	10778	331	31.9	VAC	1.7e-235	264/268	98	(Goebel et al., 1990)
		331		CPX D6L	7.7e-235	264/268		(Safronov et al., 1996)
D5L		330		VAR-BSH (I: D3L)	3.6e-233 1.7e-94	169/171 34/68	97 44	(Shchelkunov et al., 1995) (Shchelkunov et al., 1995)
		316 316		VAR-I D11L (BSH:D14L) VAC C4L	1.7e-94 1.8e-92	30/68	54	(Goebel et al., 1990)
		315		CPX D16L	2.3e-92	31/68	45	(Safronov et al., 1996)
		82		Ectromelia 42K protein	1.2e-50	78/82	95	(Senkevich et al., 1993a)
		418		FPV BamHI ORF1	3.0e-11	13/41	31	(Tomley et al., 1988)
007R	12263	91	10.6	28k virulence factor (f)				(Senkevich et al., 1993a)
	12538	242		CPX D7R VAC-WR 21.7k protein	1.5e-51	42/47 41/47	89 87	(Safronov et al., 1996)
D4R		184 242		VAC-WR 21.7k protein VAR-I (BSH:D6R)	5.3e-51 3.7e-50	41/47	87 87	(Kotwal and Moss, 1988a) (Shchelkunov et al., 1995)
		241		Ectromelia 28k secreted	3.7e-50	41/47	87	(Senkevich et al., 1993a)
				virulence factor				
008L	13414	120	13.7	13.7k protein				
D7L	13052	126		VAR-BSĤ (l:D5L)	1.9e-83	57/64	89	(Shchelkunov et al., 1995)
		138 124		Ectromelia 16k protein CPX D8L	7.8e-81 3.2e-67	58/60 49/60	96 81	(Senkevich <i>et al.</i> , 1993a) (Safronov <i>et al.</i> , 1996)
		68		7.8k protein (VAC-WR)	1.3e-34	53/64	82	(Kotwal and Moss, 1988a)
	7			•				
009L	13745	90 669	10.7	77k CPX hr protein (f1) CPX host range gene	2.7e-46	43/52	82	(Spehner et al., 1988) (Safronov et al., 1996)
	134/3	634		VAC C9L	1.7e-46	9/33	27	(Goebel et al., 1990)
010L	14186	142	16.1	77k CPX hr protein (f2)				(Spehner et al., 1988)
	13758	669		CPX host range gene	2.2e-91 9.2e-21	133/142 26/63	93 41	(Safronov et al., 1996) (Goebel et al., 1990)
D6L		634 452		VAC C9L VAR-I (BSH: D8L)	4.5e-13	27/29	93	(Shchelkunov <i>et al.</i> , 1995)
1		150		VAC C18L/B24R	1.3e-11	19/52	36	(Goebel et al., 1990)
		439		AT ankyrin repeat protein	9.5e-07	23/59	38	(Zhang et al., 1992)
1	1	558		VAR-I B6R (BSH:B5R) 30 matches with ankyrin	4.0e-05 2.7e-05 to	28/113	24	(Shchelkunov et al., 1995)
1	1			repeat containing proteins	0.016			
011L	14682	135	15.8	77k CPX hr protein (f3)	76-00	51161	0.4	(Spehner et al., 1988)
D6L	14275	669 452		CPX host range gene VAR-I (BSH: D8L)	7.6e-80 9.2e-78	54/64 52/64	84 81	(Safronov et al., 1996) (Shchelkunov et al., 1995)
012L	15183	90	10.3	77k CPX hr protein (f4)			-	(Spehner <i>et al.</i> , 1988)
		-						- '

TABLE 1—Continued

	ORF ^a	START STOP		kDa°	name / (putative) function / homologies ⁸	BLAST ^d expect	BLAST ^e AA id	HSS ^f (%)	references
669	-			1:	VAR LOCH, DOLL	2.20.52	90/05	0.4	(Stb11
153	D6L	14911							
	!	ŀ							
1.5	ļ		634		VAC C9L	1.3e-13	19/45	42	(Goebel et al., 1990)
1.5 1.5		1							
1.510	1								
131,									
Del.									
Del.	013L			8.5		5.2e-44	68/69	98	
	D6L				VAR (BSH: D8L)	7.9e-42		95	(Shchelkunov et al., 1995)
		1							
COL	<u> </u>								
D9L				13.1		3 9e-73	109/109	100	
D9L	CAL	13870							
	D9L								
16786 634 VAC VA	ĺ				CPX DIL				(Safronov et al., 1996)
CPA	0157	16706		11.2		0.021	5/16	31	
				11.2		4.0e-53	80/80	100	
		1.0170							
141	1		437		CPX DIL	9.6e-12	14/36	38	(Safronov et al., 1996)
1775 669	İ	1							
	ĺ								
	016L	17759		35.0		3.013	21.11	32	
D7L			634		VAC				(Goebel et al., 1990)
New York Section Sec									
DRL	D/L	1							
DRL	ĺ								
Ray	D8L	1							
S74	ł	1							
17.									
CSL 17802 184 VAC 1.2e-125 125/129 96 (Goebel et al., 1990) 182 VAC B7R 8.3e-06 16/67 23 (Goebel et al., 1990) 018L 18859 150 18.0 host range protein VAC H4L (RAP94) 0.60 12/45 26 (Goebel et al., 1990) 018L 18859 150 NAC PSR 1.6e-106 150/150 100 (Kotwal and Moss, 1988a) C7L 18407 150 VAR BSH (LDSL) 4.2e-106 149/150 99 (Schnitzlein and Tripathy, 1991) 185 Swinepox virus ORF SwF8a 1.4e-31 29/87 33 (Gershon and Black, 1989a) 185 Swinepox virus ORF MF8 5.6e-13 16/43 37 (Jackson and Black, 1989a) 185 Myxoma virus ORF MF8 5.6e-13 16/43 37 (Jackson and Black, 1989a) 191 19541 157 18.2 18.2k protein VAC 7.6e-104 151/151 100 (Goebel et al., 1990) (Shchelkunov et al., 1995) (Goebel et al., 1990) <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		_							
182				20.8		1 2e-125	125/129	96	
182	COL	17002							
Name									
C7L			795		VAC H4L (RAP94)	0.60	12/45	26	(Goebel et al., 1990)
D11L				18.0		1.6e-106	150/150	100	
197					VAR-BSH (I:D8L)		149/150	99	(Shchelkunov et al., 1995)
170									
158									
128									
C6L 19068 151 VAC 7.6e-104 151/151 100 (Goebel et al., 1990) D9L 156 VAR (BSH: D12L) 1.3e-96 145/150 96 (Shchelkunov et al., 1995) 156 CPX D14L 1.3e-96 141/150 94 (Safronov et al., 1996) 159 Capripox virus ORF T3a 4.4e-07 24/76 31 (Gershon and Black, 1989a) 151 Rabbit fibroma virus T3Aa 0.0047 16/46 34 (Upton et al., 1987) 181 VAC C16L/B22R 0.2 12/46 26 (Goebel et al., 1990) 149 VAR C4R 0.29 8/13 61 (Kotwal and Moss, 1988a) 020L 20025 113 13.2 14k virulence factor, secreted protein (f) (Kotwal and Moss, 1988a) NIL 117 VAC 2.6e-60 92/102 90 (Goebel et al., 1990) P1L 117 VAR-BSH, virokine 6.6e-56 88/102 86 (Safronov et al., 1995) P1L 117 VAR-BSH, virokine 6.6e-56									
D9L				18.2		7 6e-104	151/151	100	
156		1 3008							
159									
181			159		Capripox virus ORF T3a	4.4e-07	24/76	31	(Gershon and Black, 1989a)
149									
149									
NIL									
NIL 117 VAC 2.6e-60 92/102 90 (Goebel et al., 1990) P1L 117 CPX P1L 7.3e-58 85/102 83 (Shchelkunov et al., 1995) P1L 117 VAR-BSH, virokine 6.6e-56 88/102 86 (Safronov et al., 1996) 107 Rabbit fibroma virus 0.015 10/17 58 (Massung et al., 1992) 021L 20656 170 20.3 alpha-amanitin protein (Tamin et al., 1991) (Kotwal and Moss, 1988a) N2L 175 CPX P2L 3.0e-118 138/142 97 (Safronov et al., 1996) N2L 175 VAC 6.1e-118 137/142 96 (Goebel et al., 1996) P2L 177 VAR 9.7e-115 135/142 95 (Shchelkunov et al., 1995) 022L 20981 98 11.0 33k host range gene (f) (Gillard et al., 1986) K1L 20685 284 VAC 1.8e-56 86/88 97 (Altenburger et al., 1996) C1L 66 <td>020L</td> <td></td> <td>113</td> <td>13.2</td> <td></td> <td></td> <td></td> <td></td> <td></td>	020L		113	13.2					
P1L	N1L	19084	117			2.6e-60	92/102	90	
107 Rabbit fibroma virus 0.015 10/17 58 (Massung et al., 1992)					CPX P1L				(Shchelkunov et al., 1995)
20144 Protein Senstive Claimin et al., 1991	PIL								
N2L	021L	20656	170	20.3	alpha-amanitin sensitive				
N2L P2L 175 177 VAC VAR 6.1e-118 9.7e-115 137/142 135/142 96 9.7e-115 Goebel et al., 1990) (Shchelkunov et al., 1995) 022L K/L 20981 2085 98 284 11.0 VAC 33k host range gene (f) VAC (f) 1.8e-56 2.3e-56 86/88 86/88 97 97 (Altenburger et al., 1986) (Altenburger et al., 1989) CIL 66 VAR 2.3e-56 2.0e-39 86/88 63/66 97 95 (Safronov et al., 1996) (Shchelkunov et al., 1995)		20144				20	1201115	0.7	
P2L 177 VAR 9.7e-115 135/142 95 (Shchelkunov et al., 1995) 022L 20981 98 11.0 33k host range gene (f) (Gillard et al., 1986) (Altenburger et al., 1989) K1L 20685 284 VAC 1.8e-56 86/88 97 (Altenburger et al., 1999) C1L 66 VAR 2.0e-39 63/66 95 (Shchelkunov et al., 1995)	NOI								
022L 20981 98 11.0 33k host range gene (f) (Gillard et al., 1986) K1L 20685 284 VAC 1.8e-56 86/88 97 (Altenburger et al., 1989) 284 CPX MIL 2.3e-56 86/88 97 (Safronov et al., 1996) CIL 66 VAR 2.0e-39 63/66 95 (Shchelkunov et al., 1995)									
K1L 20685 284 VAC 1.8e-56 86/88 97 (Altenburger et al., 1989) 284 CPX MIL 2.3e-56 86/88 97 (Safronov et al., 1996) CIL 66 VAR 2.0e-39 63/66 95 (Shchelkunov et al., 1995)									
284 CPX MIL 2.3e-56 86/88 97 (Safronov et al., 1996) CIL 66 VAR 2.0e-39 63/66 95 (Shchelkunov et al., 1995)				11.0		1.0- 55	06100	0.7	
CIL 66 VAR 2.0e-39 63/66 95 (Shchelkunov et al., 1995)	N/L	20085							
	CIL								
			65		human NOTCH 2	0.00036	17/41	4 i	(Katsanis et al., 1996)

TABLE 1—Continued

ORF ^a	START STOP		kDa ^c	name / (putative) function / homologies ^g	BLAST ^d expect	BLAST ^c AA id	HSS ^f (%)	references
left te	22296	regio 369	42.3	serpin SPI-3, cell-cell				(Boursnell et al., 1988)
K2L	21187	369		fusion mutation VAC	1.2e-258	365/369	98	(Altenburger et al., 1989) (Goebel et al., 1990)]
C2L		373		CPX M2L	1.2e-256	331/337		(Safronov et al., 1996)
		373		VAR-BSH	9.9e-249	321/337	95	(Shchelkunov et al., 1995)
		373 386		Ectromelia virus H14-B HS plasminogen activator	6.5e-244 1.1e-35	312/337 30/68	44	U67964 (Loskutoff et al., 1987)
				inhibitor l				*
		58 369		CPX SPI 3 protein Myxoma virus MAP1 gene	8.2e-33 7.3e-32	57/58 33/131	98 25	gi:1168082 (Upton et al., 1990a)
		397		mouse protease nexin	1.5e-29	31/67	46	(Vassalli <i>et al.</i> , 1993)
		397		humane glia derived neurite-	8.7e-27	30/65	46	A03911
		320		promoting factor Swinepox SPI like protein	3.6e-21	20/70	28	(Massung et al., 1993)
		417		a-1 antitrypsin, human	2.2e-20	26/66	39	(Ciliberto et al., 1985)
		383		Corticosteroid-binding	9.0e-20			(Seralini et al., 1989)
		390		protein (rabbit) squamous cell carcinoma	1.9e-17			(Schneider et al., 1995)
				antigen				(233333)
024L	22612	88	10.5	IFN resistance, eIF-2a				(Beattie et al., 1991)
	22346	0.0		homolog	26061	00/00	100	(Davies et al., 1992)
K3L		88 88		CPX M3L VAC	2.6e-61 1.4e-60	88/88 87/88	100 98	(Safronov et al., 1996) (Goebel et al., 1990)
C3L		88		VAR-I	1.0e-52	73/88	82	(Shchelkunov et al., 1995)
		86		SPV C8 protein translation initiation factor 2	4.1e-22 1.2e-08/	20/44	45	(Massung et al., 1993)
				family	0.45			
025L	23938	424	48.9	phospholipase D-like				(Cao et al., 1997)
	22664			protein	1.5e-306	423/424	00	
K4L		424 424		VAC CPX M4L	2.1e-303	416/424		(Goebel et al., 1990) (Safronov et al., 1996)
		437		human HU-K4	2.8e-135	53/95	55	U60644
		372		D. discoideum	2.5e-91	28/47	59	(Giorda et al., 1989)
		516 2327		C. elegans C. elegans	6.6e-89 2.8e-52	31/61 36/60	50 60	gi: 2435624 gi: 2291241
		635		C. elegans	1.1e-24	19/53	35	(Wilson et al., 1994)
		377		FPV major envelope protein Myxoma virus env protein	2.9e-23 3.6e-22	19/61 18/51	31 35	(Calvert et al., 1992) U43549
		371 378		Orf virus env protein B2L	1.2e-21	21/71	29	(Sullivan <i>et al.</i> , 1994)
MC021L	,	388		MCV subtype i env protein	3.2e-21	20/63	31	(Senkevich et al., 1997)
C17L		372 372		VAR-BSH VAC F13L	4.6e-19 4.9e-17	15/52 15/52	28 28	(Shchelkunov et al., 1995) (Goebel et al., 1990)
026L	24478	170	19.1	lysophospholipase-like				(Upton & Buller, unpub.)
0202	23966		17.1	protein (f1)				
		276 277		CPX M5L Ectromelia virus H14-E	2.6e-110 2.7e-109	161/170 160/170		(Safronov et al., 1996) X94355 U67964
K5L		136		VAC	5.5e-69	107/108		(Goebel et al., 1990)
1		134		VAC-WR	8.3e-63	98/101	97	(Boursnell et al., 1988)
İ		313 323		HS lysophospholipase homolog	3.3e-35 1.2e-13	35/105 30/94	33 31	U67963 Z97050
		323		poss. oxidoreductase M.	1.20 15	50171	51	25,030
		324		tuberculosum	3.1e-5	13/58	22	U95973
Ì	1	313		Lysophospholipase isolog A. thaliana	0.047	13/30	43	U32747
1	1	0.0		H. influenza probable	****			
027L	24694	64	7.0	lysophospholipase L2 lysophospholipase-like				(Upton & Buller, unpub.)
	24500		7.0	protein (f2)				
K6L		81		VAC CPX M5L	5.3e-42 2.4e-36	63/63 57/58	100 98	(Boursnell et al., 1988) (Safronov et al., 1996)
		276 277		Ectromelia virus H14-E	2.4e-36 2.4e-36	57/58	98 98	U67964
		313		HS lyophospholipase homolog	9.1e-23	34/53	64	U67963
		323		hyp. oxidoreductase M. tuberculosis	9.9e-14	22/54	40	Z97050
		530		dihydrotestosterone/androsta	7.0e-05	6/17	35	A48633
				nediol UDP-glucuronosyl- transferase				
central	conse	-wod	region:					
028R	24864	149	17.5	17.5k protein				(Goebel et al., 1990)
K7R	25313	149		VAC	6.1e-105	149/149		(Goebel et al., 1990)
C4R		161 149		CPX M6R VAR	1.6e-101 4.9e-101	144/149 143/149		(Safronov et al., 1996) (Shchelkunov et al., 1995)
		236		Swinepox (sc76)	0.00017	19/49	95	(Massung et al., 1993)
029L	26046	222	25.9	25.9k protein				(Roseman and Slabaugh, 1990)
		226		VAC	2.7e-158	208/211		(Goebel et al., 1990)
F1L	25378				7.0e-148	166/189		(Safronov et al., 1996)
F1L C5L	25378	238 251		CPX G1L V A R-I	6.6e-147	184/200	92	(Shchelkunov et al., 1995)
C5L		238 251	16.2	VAR-I			92	
C5L 030L	25378 26501 26058	238 251 147	16.2	VAR-I dUTPase	6.6e-147	184/200		(Roseman and Slabaugh, 1990) (Roseman et al., 1996)
C5L	26501	238 251 147 147	16.2	VAR-I dUTPase VAC	6.6e-147 2.9e-102	184/200 147/147	100	(Roseman and Slabaugh, 1990) (Roseman et al., 1996) (Goebel et al., 1990)
C5L 030L	26501	238 251 147	16.2	VAR-I dUTPase	6.6e-147	184/200	100 97	(Roseman and Slabaugh, 1990) (Roseman et al., 1996)

TABLE 1—Continued

ORF ^a	START STOP		kDa ^c	name / (putative) function / homologies ^s	BLAST ^d expect	BLAST ^c AA id	HSS ^r (%)	references
left ter	rminal	region 142	:	Swinepox virus	8.0e-56	43/70	61	(Massung et al., 1993)
		159		orf virus	1.5e-49	45/69	65	(Mercer et al., 1989)
		178		avian adenovirus	6.6e-49	40/70	57	(Akopian <i>et al.</i> , 1992)
		1124		FIV pol polyprotein dUTPase pyrophosphatase	1.5e-26 >4.2e-06	49/117	41	(Talbott et al., 1989)
				family	24.2C-00			
031L	27955	476	55.3	kelch-like protein				(Senkevich et al., 1993b)
F21	26525	400		VAC	0.0	202/204	00	(Roseman and Slabaugh, 1990)
F3L		480 485		VAC CPX G3L	0.0 0.0	292/294 287/293		(Goebel et al., 1990) (Safronov et al., 1996)
C7L		179		VAR-I	1.9e-124	166/179		(Shchelkunov et al., 1995)
		500		Swinepox virus protein C13	4.4e-46	39/133	29	(Massung et al., 1993)
		564 689		VAC A55R kelch protein D.melanogaster	2.8e-21	17/51 21/65	33 32	(Goebel et al., 1990) (Xue and Cooley, 1993)
		512		CPX D18L	1.4e-16	15/33	45	(Safronov <i>et al.</i> , 1996)
		512		VAC C2L	1.6e-16	15/33	45	(Goebel et al., 1990)
		625		T27E9.4 C. elegans	3.7e-14	15/59	25	Z82059
		624 817		human KIAA0132 protein R09A8.3 (C. elegans)	1.9e-13 1.1e-12	13/60 17/45	21 37	D50922 o.k (Wilson <i>et al.</i> , 1994)
		611		C47D12.7 (C. elegans)	2.4e-12	22/91	24	(Wilson et al., 1994)
		530		Swinepox virus	3.0e-09	14/58	24	(Massung et al., 1993)
		589 521		M M ^m actin binding protein CPX C3L	1.9e-09 1.2e-08	18/88 15/37	20 40	U65079
		509		Myxoma virus MT-9	2.5e-08	17/58	29	(Safronov et al., 1996) (Upton et al., 1990a)
		202		Murine IAP-promoted	4.3e-08	17/56	30	(Chang-Yeh et al., 1991)
		226		placenta (MIPP) expressed	0.0.06	22100	0.7	700700
		326 559		protein A. thaliana hyp. protein	3.9e-06 9.0e-6	22/80 12/31	27 38	Z99708 (Senkevich <i>et al.</i> , 1993b)
		916		Ectromelia virus p65	0.00016	13/42	30	(Way et al., 1995)
		172		B-scruin (L. polyphemus)	0.018	15/36	41	(Shchelkunov et al., 1995)
				VAR-I J8R (BSH: J6R)				
032L	28925	319	37.0	ribonucleotide reductase				(Slabaugh et al., 1988)
	27966			(small subunit)				(Roseman and Slabaugh, 1990)
E41		319		CPX G4L VAC	2.3e-231 3.5e-231	317/319 317/319		(Safronov et al., 1996)
F4L C8L		319 333		VAC- VAR-BSH	4.1e-228	317/319		(Goebel et al., 1990) (Shchelkunov et al., 1995)
002				ribonucleotide reductase	>2.2e-10			(2, 2,
	_			family				
033L	29250	97	11.1	36.5k major membrane				(Roseman and Slabaugh, 1990)
C9L	28957	348		protein precursor (f1) VAR-BSH	1.9e-36	51/53	96	(Shchelkunov et al., 1995)
CAL	1	323		CPX G5L	2.4e-19	47/77	61	(Safronov et al., 1996)
F5L		321		VAC	3.3e-19	42/70	60	(Goebel et al., 1990)
		1584		non-receptor tyrosin kinase (Dictyostelium discoideum)	0.00038	15/35	42	(Tan and Spudich, 1990)
034L	29875	218	24.8	36.5k major membrane				(Roseman and Slabaugh, 1990)
ĺ	29219	222		protein precursor (f2)	0.0- 155	215/217	0.0	(6-6
F5L		323 321		CPX G5L VAC	8.2e-155 6.4e-155	215/217		(Safronov et al., 1996) (Goebel et al., 1990)
C9L		348		VAR-BSH	6.8e-141	186/210		(Shchelkunov et al., 1995)
035L	30129	74	8.6	8.6k protein				(Roseman and Slabaugh, 1990)
F6L	29905	74	0.0	VAC	5.5e-47	74/74	100	(Goebel et al., 1990)
C10L		72		VAR	2.3e-38	62/70	88	(Shchelkunov et al., 1995)
036L	30387	80	9.4	9.4k protein				(Roseman and Slabaugh, 1990)
CIIL	30145	79	7.1	VAR	2.9e-44	34/43	79	(Shchelkunov et al., 1995)
F7L		92		VAC	1.9e-43	65/65	100	(Goebel et al., 1990)
037L	30731	65	7.9	7.9k protein				(Roseman and Slabaugh, 1990)
F8L	30534	65	7.7	VAC	5.1e-43	63/65	96	(Goebel et al., 1990),
C12L		65		VAR-I	3.1e-41	61/65	93	(Shchelkunov et al., 1995)
038L	31429	212	23.8	23.8k protein				(Roseman and Slabaugh, 1990)
F9L	30791	212	23.6	VAC	7.1e-148	212/212	100	(Goebel et al., 1990),
C13L		212		VAR	1.2e-144	207/212		(Shchelkunov et al., 1995)
1400101		215		Swinepox virus	8.1e-72	39/93	41	(Massung et al., 1993)
MC0161	_	213 225		MCV subtype 1 Orf virus	2.8e-62 5.1e-39	71/152 27/84	46 32	(Senkevich et al., 1996) (Mercer et al., 1995)
		243		FPV protein FP2	2.8e-17	26/58	44	(Binns et al., 1988)
		243		MCV subtype 1 MC069R	7.7e-12	23/58	39	(Senkevich et al., 1996)
		250 250		VAC LIR VAR MIR	1.1e-07 1.1e-07	20/58 20/58	34 34	(Goebel et al., 1990), (Shchelkunov et al., 1995)
	22-2-							
039L	32735 31416	439	52.1	serine/threonine protein kinase 2				(Lin and Broyles, 1994) (Wang and Shuman, 1995)
FIOL	22.10	439		VAC	0.0	429/439		(Goebel et al., 1990),
C14L		439		VAR-BSH	0.0	424/439		(Shchelkunov et al., 1995)
MC017I		440 443		Swinepox virus MCV subtype 1	2.2e-233 2.3e-198	151/214 178/282		(Massung <i>et al.</i> , 1993) (Senkevich <i>et al.</i> , 1996)
/1	-	498		orf virus	2.2e-162			(Mercer et al., 1995)
040L	33012	84	9.6	39.7k protein (f1)				
	32758	354	7.0	VAR	6.6e-27	50/64	78	(Shchelkunov et al., 1995)
C15L						20161	70	(0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
F11L 041L	33771	354 100	11.4	VAC 39.7k protein (f2)	9.1e-27	50/64	78	(Goebel et al., 1990)

TABLE 1—Continued

ORF ^a	START STOP	AA ^b	kDac	name / (putative) function / homologies ^g	BLAST ^d expect	BLAST ^e AA id	HSS ^f (%)	references
	rminal	region	1:					
FIIL C15L	33469	354 354		VAC VAR	3.8e-62 8.8e-58	95/95 90/95	100 94	(Goebel et al., 1990), (Shchelkunov et al., 1995)
042L F12L C16L MC019L	35721 33814	635 635 635 352 663 640 630	73.1	73.1k protein VAC VAR-I Myxoma virus MCV subtype I orf virus FPV F12 homolog	0.0 0.0 3.6e-84 4.0e-60 4.8e-39 2.3e-15	629/635 607/635 28/66 29/82 19/61 19/67		(Goebel et al., 1990), (Shchelkunov et al., 1995) U43549 (Senkevich et al., 1996) U34774 (Ogawa et al., 1993)
043L F13L C17L MC021L	36866 35748	372 372 371 378 388 377 251 424 424 372 437	41.8	37k major EEV antigen IMCBH sensitive protein palmitylprotein VAC VAR-BSH Myxoma virus orf virus MCV subtype 1 FPV major env protein pigeonpox virus CPX M4L VAC K4L D. discoideum HU-K4 (homo sapiens)	2.1e-268 8.9e-265 2.5e-115 7.6e-108 6.1e-98 2.8e-88 1.8e-62 2.1e-18 1.7e-17 1.4e-16 1.5e-11	369/372 364/372 110/200 83/194 44/113 47/112 47/112 16/52 14/35 28/84 25/94	97	(Hirt et al., 1986) (Schmutz et al., 1991) (Grosenbach et al., 1997) (Goebel et al., 1990) (Schhelkunov et al., 1995) U43549 (Sullivan et al., 1994) (Senkevich et al., 1996) (Calvert et al., 1992) S27933 (Safronov et al., 1996) (Goebel et al., 1990) (Giorda et al., 1989) U60644
044L <i>F14L</i> C18L	37105 36884	73 73 73	8.3	8.3k protein VAC VAR	2.3e-44 2.1e-35	72/73 57/73	98 78	(Goebel et al., 1990) (Shchelkunov et al., 1995)
045 L F15L C19L MC025L	378533 37377	158 158 161 148 148	18.6	18.6k protein VAC VAR MCV subtype I Myxoma virus	2.3e-112 1.4e-107 3.5e-54 5.4e-50	157/158 150/153 52/113 48/112		(Goebel et al., 1990), (Shchelkunov et al., 1995) (Senkevich et al., 1996) U43549
046L F16L C20L MC029L	38555 37860	231 231 231 209 230	26.5	26.5k protein VAC VAR Myxoma virus MCV subtype 1	3.3e-159 5.6e-157 8.3e-48 6.9e-45	227/231 222/231 26/58 16/61		(Goebel et al., 1990), (Shchelkunov et al., 1995) U43549 (Senkevich et al., 1996)
047 R F17R C21R MC030R	38619 38924	101 101 101 102 92 46	11.3	11k DNA binding phosphoprotein VAC VAR MYX MCV subtype 1 orf virus	3.0e-69 9.7e-67 6.6e-26 1.5e-20 1.3e-06	100/101 99/101 45/92 33/53 16/29	99 98 98 48 62	(Bertholet et al., 1985) (Kao and Bauer, 1987) (Goebel et al., 1990) (Shchelkunov et al., 1995) U43549 (Senkevich et al., 1997) (Mercer et al., 1995)
048L EIL EIL MC031L	40360 38921	479 479 479 470	55.6	poly(A) polymerase catalytic subunit VAC VAR-I MCV subtype 1	0.0 0.0 1.5e-177	478/479 472/479 114/173	98	(Gershon et al., 1991) (Goebel et al., 1990), (Shchelkunov et al., 1995) (Senkevich et al., 1997)
049 L <i>E2L</i> E2L MC032L	42570 40357	737 737 737 748	85.9	85.9k protein VAC VAR-I MCV subtype 1	0.0 0.0 8.3e-127	735/737 731/737 59/198		(Ahn et al., 1990a) (Goebel et al., 1990), (Shchelkunov et al., 1995) (Senkevich et al., 1997)
050L <i>E3L E3L</i>	43269 42697	190 190 192 1175 1226 551	21.5	dsRNA dependent PK inhibitor, host range VAC VAR-BSH dsRNA specific ADA (rat) dsRNA specific ADA (human) human protein kinase p68 lNF inducible kinase family	1.4e-129 8.6e-126 7.2e-12 2.8e-09 3.8e-05 >0.00099	188/190 111/114 22/47 21/47 22/42		(Chang et al., 1992) (Chang et al., 1995b) (Goebel et al., 1990), (Shchelkunov et al., 1995) (O'Connell et al., 1995) (Kim et al., 1994) (Meurs et al., 1990)
051L <i>E4L</i> E4L MC034L	44103 43324	259 259 259 444 39 243	29.8	RNA polymerase subunit rpo30, VITF-1 VAC VAR-BSH MCV subtype 1 orf virus African swine fever virus TFIIS family	1.6e-182 3.2e-180 1.2e-84 6.7e-10 0.00034 <0.0096	258/259 255/259 107/171 21/39 17/36	98	(Ahn et al., 1990a) (Broyles and Pennington, 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Mercer et al., 1995) (Vydelingum et al., 1993)
052R <i>E5R</i> <i>E5R</i>	44180 45175	331 331 341 332 329 319 256	39.1	39.1k protein VAC VAR Taterapox Camelpox Cowpox Ectromelia	1.2e-235 3.1e-223 7.1e-225 1.4e-221 1.5e-202 3.8e-153	329/331 312/331 300/314 206/220 271/303 218/245	99 94 95 93 89	(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Douglas and Dumbell, 1996) (Douglas and Dumbell, 1996) (Douglas and Dumbell, 1996) (Douglas and Dumbell, 1996)
MC038R		276		MCV subtype 1	8.3e-109	94/152	61	(Senkevich et al., 1997)
053R	45312	567	66.7	66.7k protein				(Goebel et al., 1990)

TABLE 1—Continued

ORF ^a	START STOP rminal	AA ^b	kDa°	name / (putative) function / homologies ^g	BLAST ^d expect	BLAST ^c AA id	HSS ^f	references
E6R MC037R	minai	567 565		VAR MCV subtype 1	0.0 7.2e-247	555/567 258/451	97 57	(Shchelkunov et al., 1995) (Senkevich et al., 1997)
054R <i>E7R</i> E7R	47082 47582	166 166 60	19.5	17k myristylprotein VAC VAR-1 (BSH: E6.5R)	9.7e-116 2.7e-36	166/166 53/60	100 88	(Martin et al., 1997) (Goebel et al., 1990) (Shchelkunov et al., 1995)
055R <i>E8R</i> E8R MC038R	47695 48516	273 273 273 276	31.9	31.9k protein VAC VAR MCV subtype 1	4.5e-195 9.9e-192 8.3e-109	272/273 266/273 94/152	99 99 97	(Earl et al., 1986) (Goebel et al., 1990) (Shchelkunov et al., 1993a), (Senkevich et al., 1997)
056L <i>E9L</i> E9L MC039L	51543 48523	1006 1006 1005 1008 988 1004 964	116.9	DNA polymerase VAC VAR BSH Orf virus FPV MCV subtype I C. biennis poxvirus DNA polymerase family	0.0 0.0 0.0 0.0 0.0 2.6e-77 >6.0e-06	1005/10 06 598/608 199/388 179/294 175/297 28/82	98 51 60 58	(Earl et al., 1986) (Goebel et al., 1990), (Shchelkunov et al., 1995) (Mercer et al., 1996) (Binns et al., 1987) (Senkevich et al., 1997) (Mustafa and Yuen, 1991)
057R <i>E10R</i> E10R MC040R	51575 51862	95 95 95 101	10.9	10.9k protein VAC VAR MCV subtype 1	1.2e-65 3.1e-64 5.2e-44	93/95 90/95 58/95	97 100 94	(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1993a) (Senkevich et al., 1997)
058L <i>E11L</i> E11L MC041L	52246 51857	129 129 129 132	14.9	14.9k protein VAC VAR MCV subtype i	3.3e-89 4.2e-87 1.8e-30	129/129 125/129 31/96		(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
059L OIL QIL MC042L	52691 52233	152 666 666 783	17.6	77.6k protein (f1) VAC VAR-BSH MCV subtype leu zipper, bipartite nuclear	6.9e-101 3.4e-92 1.5e-22	151/152 137/152 39/105		(Goebel et al., 1990) (Goebel et al., 1990), (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Goebel et al., 1990)
060 L O1L Q1L MC042L	54189 52972	405 666 666 783	47.4	targeting sequence 77.6k protein (f2) VAC VAR-I MCV subtype 1	5.8e-277 1.7e-269 2.7e-51	399/400 383/400 38/104		(Goebel <i>et al.</i> , 1990) (Goebel <i>et al.</i> , 1990) (Shchelkunov <i>et al.</i> , 1995) (Senkevich <i>et al.</i> , 1997)
061L 02L Q2L	54555 54229	108 108 108 106	12.4	glutaredoxin 1 VAC VAR human glutaredoxin glutaredoxin family	2.0e-74 4.9e-72 3.2e-31 >9.0e-05	108/108 104/108 49/106		(Ahn and Moss, 1992a) (Johnson et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Fernando et al., 1994)
062L <i>ILL</i> K1L MC044L	55639 54701	312 312 312 310 1451	35.9	35.9k protein VAC VAR-BSH MCV subtype 1 transcription initiation protein (S. cerevisiae)	4.7e-208 4.8e-205 3.8e-110 0.029	310/312 305/312 163/307 10/28	97	(Schmitt and Stunnenberg, 1988) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Hansen et al., 1996)
063L <i>12L</i> K2L MC045L	55867 55646	73 73 73 72 887	8.5	8.5k protein VAC VAR MCV subtype l hypothetical yeast protein	5.5e-50 5.5e-50 3.5e-18 8.1e-05	73/73 73/73 20/33 9/24	100 100 60 37	(Schmitt and Stunnenberg, 1988) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) S48422
064L 13L K3L MC046L	56677 55868	269 269 269 288 209	30.0	DNA binding phospho- protein (F4L interacting) VAC VAR MCV subtype 1 FPV 13 protein	2.1e-173 2.5e-172 9.6e-66 8.4e-35	267/269 265/269 61/149 23/66		(Schmitt and Stunnenberg, 1988) (Davis and Mathews, 1993) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) A48563
065L 14L K4L	59075 56760	771 771 771	87.8	ribonucleotide reductase (large subunit) VAC VAR ribonucleotide red. family	0.0 0.0 >1.8e-05	771/771 761/771		(Schmitt and Stunnenberg, 1988) (Tengelsen et al., 1988) (Goebel et al., 1990) (Shchelkunov et al., 1995)
066L <i>15L</i> K5L MC047L	59342 59103	79 79 79 82 81 321	8.8	8.8k protein VAC VAR MCV subtype I FPV 9.1k protein formate dep. nitrit reductase protein (H. influenzae) permease (b. subtilis)	6.3e-49 1.2e-47 2.6e-17 1.4e-12 0.00022	79/79 76/79 27/73 13/38 7/18	100 96 36 34 38	(Schmitt and Stunnenberg, 1988) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Binns et al., 1988) (Fleischmann et al., 1995) gi:2415386
0 67 L <i>16 L</i> K6L MC0481	60509 59361	496 382 382 382 406	43.5	43.5k protein VAC VAR MCV subtype 1	8.6e-268 3.1e-267 2.1e-99	382/382 380/382 44/119	100	(Schmitt and Stunnenberg, 1988) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)

TABLE 1—Continued

ORF ⁴	START STOP		kDac	name / (putative) function / homologies ⁸	BLAST ^d expect	BLAST ^c AA id	HSS ^f (%)	references
left ter	rminal	region 390	n:	FPV 16 protein mitochondrial energy transfer proteins signature	1.4e-86	50/136	36	E48563, P12925 (Goebel et al., 1990)
	61773 60502	423 423 423 515 421 464	49.0	core protein, topoisomerase II VAC VAR MCV subtype I FPV 17 protein Amsacta moorei poxvirus	0.0 1.5e-306 1.9e-199 8.1e-180 3.2e-14	420/423 419/423 126/207 185/340 14/47	99 60	(Schmitt and Stunnenberg, 1988) (Kane and Shuman, 1993) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) F48563 (Hall and Moyer, 1991)
	61776 63809	676 676 676 684 682	77.6	NPH-II, NTPase, RNA helicase VAC VAR MCV subtype 1 FPV virus 18FPV 61 matches mainly to RNA helicase family	0.0 0.0 7.6e-227 4.2e-206 <0.38	674/676 665/676 144/272 98/178	99 98 52 55	(Shuman, 1992), (Koonin and Senkevich, 1992) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Binns et al., 1988)
	65588 63813	591 591 591 593 341	68.0	68k protein VAC VAR-I MCV subtype 1 FPV	0.0 0.0 1.2e-217 9.4e-75	590/591 582/591 183/361 45/101	98 50	(Schmitt and Stunnenberg, 1988) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) H48563
	65920 65585	111 111 111 108	12.8	12.8k protein VAC VAR MCV subtype 1	7.6e-74 2.4e-71 0.00012	111/111 108/111 15/45		(Schmitt and Stunnenberg, 1988) (Meis and Condit, 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
	65914 66576	220 220 220 246	25.8	IBT-dependent protein VAC VAR MCV subtype 1	1.9e-155 1.1e-151 2.7e-36	220/220 214/220 42/135	100 97 31	(Meis and Condit, 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
	66920 66546	124 124 124 126	14.0	glutaredoxin 2 membrane protein VAR VAC MCV subtype 1	4.0e-83 7.5e-83 1.1e-21	123/124 123/124 21/51		(Gvakharia et al., 1996) (Jensen et al., 1996) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Senkevich et al., 1997)
	66923 68227	434 434 434 437 1300	49.9	49.8k protein VAC VAR MCV subtype 1 HS CG1 protein	1.6e-305 1.9e-299 1.0e-55 0.015	432/434 423/434 56/119 22/82	99 97 47 26	(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Print et al., 1994)
	68235 68426	63 63 63	7.3	RNA polymerase subunit rpo7 VAC VAR MCV subtype 1 35 matches mainly to RNA polymerases	1.1e-40 1.1e-39 9.3e-27 <0.54	63/63 61/63 41/63	100 96 65	(Amegadzie et al., 1992), (Meis and Condit, 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
	68428 68925	165 165 165 195	19.0	18.9k protein VAC VAR MCV subtype 1	3.8e-116 1.5e-116 3.0e-32	162/165 164/165 27/57	98 99 47	(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
	70005 68890	371 371 371 402	42.0	42.0k protein VAC VAR MCV subtype 1	5.2e-255 7.1e-255 2.0e-109	370/371 369/371 69/145	99 99 47	(Schmitt and Stunnenberg, 1988) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
078R G8R H8R MC067R	70036 70818	260 260 260 260 260	29.9	VLTF-1, late transcription factor VAC VAR-I MCV subtype 1 FPV virus FPO	8.6-184 3.1e-183 8.5e-136 3.3e-129	259/260 258/260 185/260 175/250	99 99 71 67	(Keck et al., 1990) (Wright et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Binns et al., 1988)
079R <i>G9R</i> H9R MC068R	70838 71860	340 340 340 342 336	38.9	37k myristylprotein VAC VAR MCV subtype 1 FPV virus FP1	3.7e-237 9.1e-236 4.8e-79 3.9e-65	317/319 315/319 59/127 59/124	99 98 46 47	(Martin et al., 1997) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Binns et al., 1988)
080R LIR M1R MC069R	71861 72613	250 250 250 243 243 212 212	27.3	25k myristylprotein IMV virion protein VAC VAR MCV subtype 1 FPV virus FP2 VAC F9L VAR C13L	1.8e-175 6.4e-170 6.5e-103 6.2e-95 1.6e-0.7 3.1e-0.7	250/250 249/250 145/243 128/243 20/58 20/58	100 99 59 52 34 34	(Franke et al., 1990) (Martin et al., 1997) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Binns et al., 1988) (Goebel et al., 1990) (Shchelkunov et al., 1995)

TABLE 1—Continued

ORF ^a	START STOP		kDac	name / (putative) function / homologies [§]	BLAST ^d expect		HSS ^f (%)	references
left te	rminal	region 213	1:	MCV subtype 1 MC016L	1.6e-0.7	13/57	22	(Senkevich et al., 1997)
081R L2R M2R MC070R	72645 72908	87 87 87 93 504	10.3	swinepox 10.3k protein VAC VAR MCV subtype 1 Na* dependent phosphate transporter C. elegans	3.9e-57 4.0e-56 0.064 6.9e-05	87/87 85/87 18/80 10/39	100 97 22 25	(Massung et al., 1993) (Plucienniczak et al., 1985) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Wilson et al., 1994)
		233 2336 2238 1559		ATPase subunit T. cruzi Ca ²⁺ channel rat Ca ²⁺ channel mouse ABC transporter yeast	0.013 5.2e+0.2 7.1e+0.2 0.40	16/44 6/25 6/25 12/40	36 24 24 30	U38184 (Dubel et al., 1992) (Coppola et al., 1994) X97560
082L L3L M3L MC072L	73950 72898	350 350 349 310 301	40.6	40.6k protein VAC VAR MCV subtype 1 FPV F4 protein	2.2e-251 1.5e-241 1.5e-88 1.1e-80	346/350 9 296/306 9 64/136 4 58/134 4	6 7	(Plucienniczak et al., 1985) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Binns et al., 1988)
083R L4R M4R MC073R	73975 74730	251 251 251 254 253	28.5	core protein VP8 DNA/RNA binding protein VAC VAR MCV subtype 1 FPV virus FP5	5.6e-170 3.7-169 1.7e-76 6.4e-55	251/251 250/251 36/59 29/57	100 99 61 50	(Yang and Bauer, 1988) (Baylis and Smith, 1997) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Binns et al., 1988)
084R L5R M5R - MC074R	74740 75126	128 128 128 129 146 152	15.1	15.1k protein VAC 14.0k protein VAR FPV FP6 MCV subtype 1 melatonin receptor D. rerio	2.9e-89 2.0-87 8.1e-16 0.073 0.44	127/128 125/128 19/45 10/18 15/66	99 97 42 55 222	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Drillien et al., 1987) (Senkevich et al., 1997) (Reppert et al., 1995)
085 R J1R L1R MC075R	75083 75544	153 153 159 147 148 183 148	17.9	dimeric virion protein VAC VAR-I capripox CF7 myxoma MF7 MCV subtype 1 FPV FP7	6.0e-103 1.4e-101 6.5e-54 4.8e-51 1.9e-47 1.3e-35	152/153 149/153 53/90 54/93 47/93 37/84	99 97 58 58 50 44	(Holzer & Falkner, unpubl.) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Gershon and Black, 1989b) (Jackson and Bults, 1992) (Senkevich et al., 1997) (Drillien et al., 1987)
086R J2R L2R	75560 76093	177 177 177	20.0	VAC VAR 38 matches mainly to thymidine kinase family	5.7e-125 2.7e-122 <0.18	175/177 170/177	98 96	(Hruby and Ball, 1982) (Weir and Moss, 1983) (Goebel et al., 1990) (Shchelkunov et al., 1995)
087R J3R L3R MC076R	76159 77160	333 333 338 343 308	38.9	poly(A) polymerase su, 2'methyl transferase VAC VAR-BSH myxoma MCV subtype 1 FPV VP39	8.7e-136 9.8e-233 5.7e-288 1.4e-135 1.7e-96	330/333 326/333 247/333 79/144 125/267	99 97 74 54 46	(Gershon et al., 1991) (Gershon and Moss, 1993) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Jackson and Bults, 1990) (Senkevich et al., 1997) (Binns et al., 1988)
088R <i>J4R</i> L4R MC077R	77075 77632	185 185 185 185 187 186	21.3	RNA pol subunit rpo22 VAC VAR-BSH myxoma MCV subtype 1 FPV	1.2e-125 7.9e-125 1.5e-86 1.9e-76 2.1e-73	185/185 182/185 124/185 73/132 72/135	100 98 67 55 53	(Broyles and Moss, 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Jackson and Bults, 1990) (Senkevich et al., 1997) (Binns et al., 1988)
089L J5L L5L MC078L	78101 77700	133 133 133 134 137 377 378	15.2	15.2k protein VAC VAR-I MCV subtype 1 FPV VAR-I A16L (BSH:A17L) VAC A16L	2.4e-95 2.4e-94 5.7e-45 1.4e-43 0.049 0.049	133/133 131/133 60/127 60/130 7/28 7/28	100 98 47 46 25 25	(Plucienniczak et al., 1985) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Drillien et al., 1987) (Shchelkunov et al., 1995) (Goebel et al., 1990)
090R <i>J6R</i> L6R MC079R	78207 82067	1286 1286 1286 1289	146.9	RNA pol subunit rpo147 VAC VAR MCV subtype I 100 matches to RNA pol (large subunit) family	0.0 0.0 0.0 <3.7e-07	1283/1286 1275/1286 556/760	99 99 73	(Broyles and Moss, 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
091L H1L H11 MC082L	82579 82064	171 171 171 171 172 173 169	19.7	protein tyrosine/serine phosphatase VAC VAR racoonpox myxoma virus rabbit fibroma virus MCV subtype 1 protein phosphatase family	2.0e-117 1.1e-114 6.0e-111 1.5e-77 1.8e-77 1.4e-65 >2.8e-05	170/171 166/171 157/171 83/138 46/80 60/114	99 97 91 60 57 52	(Rosel et al., 1986) (Guan et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) B47452 (Mossman et al., 1995a) (Mossman et al., 1995a) (Senkevich et al., 1997)

TABLE 1—Continued

ORF ⁴	START STOP		kDac	name / (putative) function / homologies ^g	BLAST ^d expect	BLAST° AA id	HSSf (%)	references
1eft te 092R H2R 12R MC083R	82593 83162	189 189 189 189 191	n: 21.5	VAC VAR MCV subtype 1 myxoma	5.2e-134 1.4e-133 1.4e-71 1.3e-65	188/189 188/189 95/181 93/142	99 99 52 65	(Rosel et al., 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Jackson and Bults, 1990)
093L H3L I3L MC084L	84139 83165	324 324 325 298	37.5	immunodominant env protein p35; IMV membrane-associated VAC VAR-BSH MCV subtype 1	3.3e-231 1.7e-225 1.1e-36	322/324 311/320 38/117	99 97 32	(Rosel et al., 1986) (Chertov et al., 1991) (Takahashi et al., 1994) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
094L H4L I4L MC085L	86527 84140	795 795 795 791 804 484	93.6	RAP 94 (RNA-pol assoc. transcr. spec. factor) VAC VAR MCV subtype 1 Orf virus FPV LIL protein	0.0 0.0 0.0 0.0 2.4e-181	791/795 780/795 327/546 96/131 91/176	99 98 59 73 51	(Ahn and Moss, 1992b) (Kane and Shuman, 1992) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Fleming et al., 1993) 2209386A
095R <i>H5R</i> I5R	86713 87324	203 203 221 227 220 705	22.3	late transcription factor VLTF-4 VAC VAR orf virus F3R MCV subtype 1 nucleolin Xenopus 31 matches to glu/asp rich proteins	1.8e-128 5.1e-102 3.1e-14 3.1e-09 0.00041 E<0.52	202/203 91/97 29/69 28/64 18/57	99 93 42 43 31	(Kovacs and Moss, 1996) (Rosel et al., 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Fleming et al., 1993) (Senkevich et al., 1997) (Messmer and Dreyer, 1993)
096R H6R I6R MC087R	87325 88269	314 314 314 318 323 316	36.7	DNA topoisomerase I VAC VAR-BSH shope fibroma virus orf virus MCV subtype 1 FPV L3R 21 matches to topoisomerase family	0.0 9.5e-220 8.5e-141 5.2e-128 1.6e-121 2.9e-113	314/314 312/314 119/170 82/138 111/202 159/303	100 99 70 59 54 52	(Shuman and Moss, 1987) (Rosel et al., 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Upton et al., 1990b) (Fleming et al., 1993) (Senkevich et al., 1997) (Zantinge et al., 1996)
097R <i>H7R</i> 17R MC088R	88306 88746	146 146 146 143	17.0	17.0k protein VAC VAR MCV subtype 1	2.1e-98 6.7e-96 4.3e-30	144/146 141/146 45/115	98 96 39	(Rosel et al., 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
098R DIR FIR MCO90R	88790 91324	844 844 844 950 836 868	96.8	mRNA capping enzyme, large subunit VAC VAR-BSH MCV subtype I shope fibroma virus ASV NP868R	0.0 0.0 0.0 0.0 0.0 0.0033	842/844 830/844 322/64 243/305 17/55	99 98 64 79 30	(Morgan et al., 1984) (Niles et al., 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Upton et al., 1991b) (Pena et al., 1993)
099L D2L F2L MC091L	91723 91283	146 146 146 143 170	16.9	structural protein VAC VAR (BSH: F3L) Rabbit fibroma virus MCV subtype 1	5.9e-98 1.5e-97 2.0e-27 1.1e-20	146/146 145/146 13/33 19/41	100 99 39 46	(Niles et al., 1986) (Dyster and Niles, 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Upton et al., 1991b) (Senkevich et al., 1996)
100R D3R F2R MC092R	91716 92417	233 237 237 241 268 206	27.6	27k structural protein VAC VAR I:F3R shope fibroma virus MCV subtype 1 rabbit fibroma virus C3	3.8-167 1.5e-162 9.3e-20 3.5e-18 1.6e-09	136/142 131/142 27/100 16/39 26/96	95 92 27 41 27	(Dyster and Niles, 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Upton et al., 1991b) (Senkevich et al., 1997) (Strayer et al., 1991)
101R D4R F4R MC093R	92417 93073	218 218 218 218 226 218 297	25.1	uracil DNA glycosylase VAC VAR-BSH shope fibroma virus MCV subtype 1 FPV FPD4 uracil DNA glycosylase UL2 gallid herpesvirus 1	1.4e-157 5.1e-157 1.5e-117 8.4e-91 3.1e-88 0.019	217/218 216/218 151/218 65/113 116/216 8/14	99 99 69 57 53 57	(Upton et al., 1993) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Upton et al., 1993) (Senkevich et al., 1997) (Tartaglia et al., 1990) L34064
102R D5R F5R MC094R	93105 95462	785 785 785 786 791 791 942	90.4	90.4k ATP/GTP binding protein VAC VAR shope fibroma C5 MCV subtype 1 FPV virus FPD5 C29E6.4 C. elegans	0.0 0.0 0.0 0.0 0.0 0.0 0.72	780/785 774/785 283/450 184/334 170/345 16/56	99 98 62 55 49 28	(Niles et al., 1986) (Shchelkunov et al., 1993c) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Strayer et al., 1991) (Senkevich et al., 1997) (Tartaglia et al., 1990) (Wilson et al., 1994)
103R	95503 97416	637	73.9	early transcription factor VETF-1				(Broyles and Fesler, 1990) (Gershon and Moss, 1990)

TABLE 1—Continued

ORF ^a	START STOP	AA ^b	kDac	name / (putative) function / homologies ^g	BLAST ^d expect	BLAST ^c AA id	HSS ^f	references
	erminal	regio	n:					
D6R F6R MC095R		637 637 635 635		VAC VAR-I shope fibroma virus MCV subtype 1	0.0 0.0 0.0 0.0	635/637 633/637 212/262 199/263	99 99 80 75	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Strayer et al., 1991) (Senkevich et al., 1997)
		605 648 648		Choristoneura biennis EPV Amsacta moorei EPV	0.0 2.7e-08 4.2e-06	188/263 24/72 24/77	71 33 31	(Binns et al., 1990) (Tartaglia et al., 1990) (Yuen et al., 1991) (Hall and Moyer, 1991)
104R	97443	706 161	17.9	African swine fever virus RNA polymerase	1.5e-05	13/38	34	(Yanez et al., 1993) (Ahn et al., 1990b)
<i>D7R</i> F7R	97928	161 161 163		subunit rpo18 VAC VAR rabbit fibroma C8	1.4e-108 2.2e-106 3.4e-76	160/161 156/161 108/161	99 96 67	(Quick and Broyles, 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Strayer et al., 1991)
MC097R		161 161		MCV subtype 1 FPV D7	4.0e-70 5.4e-66	99/158 95/160	62 59	(Senkevich et al., 1997) (Binns et al., 1990)
105L	98805 97891	304	35.4	virion transmembrane protein, carbonic anhydrase-like				(Niles and Seto, 1988) (Niles et al., 1986) (Maa et al., 1990)
D8L F8L		304 304 304 303 304 304		VAC VAR Camelpox virus Ectromelia virus Monkeypox virus Cowpox virus Carbonic anhydrase family	2.3e-212 2.5e-209 1.1e-207 2.2e-207 3.0e-207 9.8e-206 >4.9e-13	297/304 291/304 290/304 195/207 287/304 285/304	95 95 94 94	(Goebel et al., 1990) (Shchelkunov et al., 1995) X97857 X97856 X97855 X97858
106R	98847 99488	213	25.0	25k mutT-like protein				(Koonin, 1993) (Niles et al., 1986)
<i>D9R</i> F9R	<i>y</i> y400	213 213 218		VAC VAR rabbit fibroma	1.6e-146 5.3e-145 1.7e-75	212/213 209/213 105/203	99 98 51	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Strayer et al., 1991)
MC098R		212 78		MCV subtype 1 FPV D9	5.3e-67 2.0e-13	54/111 25/51	48 49	(Senkevich et al., 1997) (Tartaglia et al., 1990)
MC099R		229 248 225 248		MCV subtype 1 VAR-I F10R FPV D10 VAC D10R	0.0041 0.018 0.14 0.23	13/31 14/32 15/34 11/26	41 43 44 42	(Senkevich et al., 1997) (Shchelkunov et al., 1995) (Tartaglia et al., 1990) (Goebel et al., 1990)
107R	99485 100231	248	28.9	29k mutT-like protein				(Koonin, 1993) (Niles et al., 1986)
D10R F10R		248 248 260 229		VAC VAR-I shope fibroma D10 MCV subtype 1	7.4e-173 5.4e-173 3.8e-72 1.4e-54	245/248 245/248 96/202 44/100	98 98 47 44	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Strayer et al., 1991) (Senkevich et al., 1997)
MC099R		225 218 212 136 213 213 169		PPV D10 shope fibroma D9 MCV subtype i MC098R mutator Synechocystis VAC D9R VAR F9R mutator M. jannaschii	1.1e-45 1.9e-06 0.13 0.23 0.24 0.24 0.39	45/102 19/54 12/21 12/27 11/26 11/26 13/25	44 35 57 44 42 42 52	(Binns et al., 1990) (Strayer et al., 1991) (Senkevich et al., 1997) D90899 (Goebel et al., 1990) (Shchelkunov et al., 1995) (Bult et al., 1996)
108L	102127 100232	631	72.4	nucleoside triphosphate phosphohydrolase I, DNA helicase				(Broyles and Moss, 1987) (Rodriguez <i>et al.</i> , 1986) (Koonin and Senkevich, 1992)
DIIL NIL MC100R		631 631 634 637 370 648 648 89 1098 1085 769		VAC VAR MCV subtype 1 FPV protein 5 Rabbit fibroma C14 protein AmEPV Choristoneura biennis EPV Swinepox virus ASF RAD26 (yeast) HS transcription activator NTPase family	0.0 0.0 7.3e-286 2.8e-275 1.8e-176 6.0e-142 1.1e-136 1.2e-34 1.6e-13 5.1e-05 0.00093 >5.1e-5	629/631 626/631 392/627 214/357 244/368 81/159 81/158 60/89 26/89 16/45 10/22	99 62 59	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) S42251 F36819 (Hall and Moyer, 1991) (Yuen et al., 1991) (Massung et al., 1993) (Baylis et al., 1993) (Huang et al., 1994) (Okabe et al., 1992)
109L	103025 102162	287	33.3	mRNA capping enzyme, transcription initiation factor VITF				(Niles et al., 1989) (Weinrich and Hruby, 1986) (Vos et al., 1991)
D12L N2L		287 287		VAC VAR	2.0e-198 9.8e-198	285/287 284/287	99	(Goebel et al., 1990) (Shchelkunov et al., 1995)
MC101L	ı	287 295 289		Swinepox virus MCV subtype 1 FPV protein 6	4.1e-160 5.8e-126 3.4e-113	220/287 171/279 114/215	61	(Massung et al., 1993) (Senkevich et al., 1996) S42252
110L D13L N3L MC102L	104711 103056	551 551 551 551 547 552 584	61.9	rifampicin resistance gene, IMV protein VAC VAR Swinepox virus MCV subtype 1 FPV protein 7 Heliothis armigera EPV	0.0 0.0 4.5e-286 5.4e-248 6.6e-223 9.5e-51	551/551 547/551 357/506 298/494 182/305 54/107	99 70 60	(Tartaglia and Paoletti, 1985) (Weinrich and Hruby, 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Massung et al., 1993) (Senkevich et al., 1996) S42253 (Osborne et al., 1996)

TABLE 1—Continued

ORF ^a	START STOP	ΑΛ ^b	kDa ^c	name / (putative) function / homologies ⁸	BLAST ^d expect	BLAST ^c AA id	HSSf (%)	references
	rminal	regio						
AIL AIL MC103L	105187 104735	150 150 150 169 154	16.9	late gene trans-activator, VLTF-2 VAC VAR MCV subtype FPV protein 8	6.8e-103 6.8e-103 6.3e-54 2.8e-50	149/150 149/150 74/147 50/87		(Weinrich and Hruby, 1986) (Keck et al., 1993) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) S42254
112L A2L A2L MC104L	105882 105208	224 224 224 228 606	26.3	late gene trans-activator VAC VAR MCV subtype 1 orf virus	1.3e-158 1.3e-158 6.4e-127 6.8e-30	224/224 224/224 172/222 43/66	100	(Weinrich and Hruby, 1986) (Passarelli et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Mercer et al., 1995)
A3L MC105L	106109 105879	76 76 76 70	8.9	8.9k protein VAC-WR VAR-BSH (I:A2.5L) MCV subtype I	1.6e-47 2.1e-47 9.8e-12	73/76 71/76 26/63	96 93 41	(Weinrich and Hruby, 1986) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
114L <i>A3L</i> A4L MC106L	108058 106124	644 644 644 675 657	72.6	major core protein P4b VAC VAR-BSH (I:A3L) MCV subtype 1 FPV Major core protein P4b	0.0 0.0 8.9e-272 9.1e-220	643/644 636/644 227/357 169/299	98 63	(Rosel and Moss, 1985) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Binns et al., 1989)
115L A4L A5L	108929 108111	272 281 271 268 5179	29.9	membrane associated core protein VAC VAR-BSH (I: A4L) Thermoproteus phage 1 human mucin many matches to Pro-rich proteins	1.1e-145 1.1e-112 1.9e-09 4.5e-07	180/187 165/178 38/127 34/139		(Demkowicz et al., 1992) (Cudmore et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Neumann and Zillig, 1990) (Gum et al., 1994)
116R A5R A5R MC108R	108967 109461	164 164 164 165 167	19.0	RNA pol subunit rpo19 VAC VAR-I (BSH:A6R) MCV subtype 1 FPV 54 matches/glu-rich proteins	5.8e-110 7.0e-109 3.3e-51 3.3e-51 <0.51	164/164 162/164 82/151 72/161	100 98 53 44	(Ahn et al., 1992) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Kumar and Boyle, 1990)
117L A6L A7L MC109L	110576 109458	372 372 372 461 339	43.1	43.1k protein VAC VAR-BSH (I: A6L) MCV subtype 1 FPV ORF 2 protein	1.2e-248 1.1e-244 4.0e-99 1.9e-95	371/372 364/372 132/367 111/279	97 35	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) B60013
118L A7L A8L MC110L	112732 110600	710 710 710 707	82.3	VETF 82k subunit VAC VAR-BSH (I: A7L) MCV subtype 1	0.0 0.0 0.0	708/710 700/710 240/374	98	(Gershon and Moss, 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
119R A8R A8R MC111R	112786 113652	288 288 288 435	33.6	33.6k protein VAC VAR-I (BSH:A9R) MCV subtype 1	5.3e-198 3.1e-195 4.4e-94	287/288 284/288 100/169	99 98 59	(Van Meir and Wittek, 1988) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
120L A10L A9L MC112L	113929 113645	94 95 99 128 69	10.5	10.5k protein VAR-BSH (I: A9L) VAC MCV subtype 1 orf virus	9.0e-59 9.4e-55 1.0e-29 3.0e-16	78/79 82/91 47/71 27/45	98 90 66 60	(Van Meir and Wittek, 1988) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Senkevich et al., 1996) (Mercer et al., 1995)
121L A10L A11L MC113L	116605 113930	891 891 892 889	102.2	major core protein P4a VAC VAR-BSH (I: A10L) MCV subtype I	0.0 0.0 5.8e-289	883/891 442/463 99/177		(Van Meir and Wittek, 1988) (Vanslyke et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
122R AIIR AIIR MCII4R	116620 117576	318 318 319 304 148	36.1	36.1k protein VAC VAR-I (BSH: A12R) MCV subtype 1 FPV 4a gene	3.5e-212 2.7e-154 2.9e-98 1.9e-13	318/318 242/277 92/154 18/32	100 87 59 56	(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Snekevich et al., 1997) A20158
123L A12L A13L MC115L	118141 117578	187 192 189 178	20.0	virion protein VAC VAR-BSH (I: A12L) MCV subtype 1	4.8e-127 5.9e-64 5.9e-37	127/128 101/144 39/83		(Takahashi et al., 1994) (Goebel et al., 1990) (Shcheikunov et al., 1995) (Senkevich et al., 1996)
124L A13L A14L	118377 118165	70 70 68	7.6	structural protein IMV membrane protein p 8 VAC VAR-BSH (I: A13L)	2.4e-42 4.1e-20	66/69 37/64	95 57	(Takahashi <i>et al.</i> , 1994) (Jensen <i>et al.</i> , 1996) (Goebel <i>et al.</i> , 1990) (Shchelkunov <i>et al.</i> , 1995)
125L	118757 118485	90	10.0	structural protein IMV membrane protein p16				(Takahashi <i>et al.</i> , 1994) (Jensen <i>et al.</i> , 1996)

TABLE 1—Continued

ORF°	START STOP		kDa°	name / (putative) function / homologies	BLAS expe	Td BLASTe	HSS ^r (%)	references
A14L A15L MC118L	rminal	90 90 90 94 125		VAC VAR-BSH (I: A14L) MCV subtype 1 human interferon induci protein	5.3e-6 5.3e-6 7.3e-2 (ble 0.23	88/90	100 97 43 30	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Deblandre et al., 1995)
126L A15L A16L MC120L	119209 118925	94 94 94 96	11.0	11k protein VAC VAR-BSH (I:A15L) MCV subtype 1	4.1e-6 1.0e-6 6.7e-0	92/94	100 97 33	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
127L <i>A16L</i> A17L MC121L	120326 119193	377 378 377 364	43.4	35k myristylprotein VAC VAR-BSH (I:A16L) MCV subtype 1	6.3e-2 1.5e-2 6.5e-1	83 368/377		(Martin et al., 1997) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
128L	120940 120329	203	23.0	IMV membrane protein morphogenesis factor	•	41 201/203	00	(Krijnse-Locker <i>et al.</i> , 1996) (Rodriguez <i>et al.</i> , 1995) (Wolffe <i>et al.</i> , 1996)
A17L A18L MC122L		203 203 179		VAC VAR-BSH (I:A17L) MCV subtype I	1.0e-1 1.0e-1 1.4e-4	41 201/203		(Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
129R A18R A18R MC123R	120955 122436	493 493 493 694 450	56.8	DNA helicase DNA dependent ATPase VAC VAR-1 (BSH:A19R) MCV subtype 1 Bacteriophage T5 D10 helicase-like protein	0.0 0.0 5.3e-1 0.0066		96	(Koonin and Senkevich, 1992) (Bayliss and Condit, 1995) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) P11107
130L A19L A19L MC124L	122650 122417	77 77 76 78 1721	8.3	8.3kb protein VAC VAR-I (BSH: A20L) MCV subtype 1 HS RIZ, zink finger prote	2.9e-5 1.2e-3 1.5e-1 in 0.0060	34 54/64 13 14/37	100 84 37 43	(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Buyse et al., 1995)
131L A21L A22L MC125L		117 117 117 114	13.6	13.6k protein VAC VAR-BSH (I: A20L) MCV subtype 1	5.3e-8 7.2e-8 2.8e-2	32 115/117		(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
132R A20R A21R MC126R	123003 124283	426 426 426 476 1118	49.1	49.1k protein VAC VAR MCV subtype 1 Pichia klyveri DNA pol	7.6e-2 1.6e-2 3.2e-9 0.069	294 418/426 95 34/131		(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) Y11606
133R A22R A22R MC127R	124213 124776	187 187 176 282	21.9	21.9k protein VAR-I (BSH:A23R) VAC MCV subtype 1	1.1e-1 1.2e-1 5.8e-4	22 174/176		(Goebel et al., 1990) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Senkevich et al., 1997)
134R A23R A23R MC128R	124796 125944	382 382 382 383	44.6	44.6k protein VAC VARI (BSH:A24R) MCV subtype 1	4.2e-2 1.7e-2 3.5e-1	265 377/382		(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
135 R A24R A25R MC129R		1155 1164 1164 1164 1165 1162	132.4	RNA pol subunit rpol: VAC CPX rpol32 VAR-BSH (I:A24R) MCV subtype 1 orf virus 101 matches to RNA pol be subunit family	0.0 0.0 0.0 0.0 0.0	794/796 794/795 789/795 441/565 166/258	99 99 78	(Hooda-Dhingra et al., 1990) (Amegadzie et al., 1991b) (Goebel et al., 1990) (Patel and Pickup, 1989) (Shchelkunov et al., 1995) (Senkevich et al., 1997) U33419
136L A25L	terminal 129638 129441	65 65	7.5	150k CPX-ATI (f) VAC	1.3e-4	11 64/65	98	(Funahashi <i>et al.</i> , 1988) (Goebel <i>et al.</i> , 1990)
		1284	27.	Cowpox (CPX-ATI)	3.2e-1		93	(Funahashi et al., 1988)
137L A30L A26L MC131L MC133L MC130L		230 498 322 513 546 451 702 726	27.1	27.1k protein (f) VAR-BSH (I: A29L) VAC (ATI flanking protei MCV subtype 1 MCV subtype 1 MCV subtype 1 VAR-1 A28L (BSH:A29L) Camelpox	3.1e- 5.6e- 2.1e- 4.2e- 2.3e- 0.002 0.051	142 195/197 12 19/59 11 12/40 10 14/40 1 12/37		(Amegadzie et al., 1991a) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Senkevich et al., 1996) (Senkevich et al., 1996) (Senkevich et al., 1996) (Shchelkunov et al., 1995) (Meyer and Rziha, 1993)
138L A27L A31L	131298 130966	110 110 110 117 110	12.5	14k membrane protei EEV protein fusion protein VAC VAR-BSH (I: /A30L) Camelpox virus Cowpox virus	3.3e-7 1.1e-6 1.5e-6 1.6e-6	59 107/110 59 106/110	97 96	(Rodriguez and Esteban, 1987) (Rodriguez and Smith, 1990) (Gong et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Meyer et al., 1994) (Meyer et al., 1994)

TABLE 1—Continued

OFF	are		1.55	IABLE I—		DI ACC	TTCC	
ORF*	START STOP		kDac	name / (putative) function / homologies ^g	BLAST ^d expect	BLAST ^e AA id	HSS ¹	references
left te	rminal	regio	n:	F. dan and P. dan and	(7. (0	1054112	0.5	04
		110 110		Ectromelia virus Monkeypox virus	6.7e-68 8.3e-67	105/110		(Meyer et al., 1994) (Meyer et al., 1994)
		89		Orf virus	4.8e-15	22/57	38	(Naase et al., 1991)
MC133L		188 546		Myxoma virus MCV subtype 1	2.5e-12 1.5e-11	18/33 26/58	54 44	(Jackson et al., 1996) (Senkevich et al., 1996)
MCISSE		148		Capripox virus HM2 protein	2.6e-10	21/42	50	(Gershon et al., 1989)
MC131L		513		MCV subtype 1	1.5e-05	18/58	31	(Senkevich et al., 1996)
139L	131739	146	16.3	16.3k protein				(Amegadzie et al., 1991a)
A28L	131299	146		VAC	1.7e-103 2.9e-100	146/146 141/146		(Goebel et al., 1990)
A31.5L		146 140		VAR-BSH (I: A31L) Myxoma virus	1.3e-55	30/52	57	(Shchelkunov et al., 1995) (Jackson et al., 1996)
		140		Capripox virus HM3 protein	3.3e-55	30/49	61	(Gershon et al., 1989)
MC134L		141 143		MCV subtype 1 Amsacta moorei poxvirus	1.0e-53 2.0e-14	31/52 16/36	59 44	(Senkevich et al., 1996) (Hall and Moyer, 1991)
1401	132657	305	35.4	RNA pol subunit rpo35				(Amegadzia et al. 1001a)
140L A29L	131740	305	33.4	VAC	3.6e-215	304/305		(Amegadzie <i>et al.</i> , 1991a) (Goebel <i>et al.</i> , 1990)
A32L		305		VAR-BSH	7.5e-211 7.0e-98	297/305 51/103	97 49	(Shchelkunov et al., 1995)
MC135L		303 126		MCV subtype 1 Capripox virus	2.2e-54	46/61	75	(Senkevich et al., 1996) (Gershon et al., 1989)
141L	132853	77	8.7	8.7k protein				(Amegadzie et al., 1991a)
A30L	132620	77	0.7	VAC	5.5e-48	77/77	100	(Goebel et al., 1990)
A33L		77 67		VAR	5.5e-48	77/77 18/40	100 45	(Shchelkunov et al., 1995)
MC136L		67		MCV subtype 1	9.2e-16	10/40	43	(Senkevich et al., 1996)
142R A31R	133013		14.4	14.4k protein VAC	2.0e-84	118/124	95	(Smith et al., 1991) (Goebel et al., 1990)
A31R A34R	133390	124 140		VAC VAR	2.0e-84 1.6e-79	118/124	95 97	(Shchelkunov et al., 1995)
MC138R		117		MCV subtype 1	6.2e-24	39/98	39	(Senkevich et al., 1997)
143L	134169	269	30.8	30.8k protein				(Smith et al., 1991)
A32L	133360	300		ATP/GTP binding motif A VAC	6.4e-190	268/269	99	(Koonin et al., 1993) (Goebel et al., 1990)
A35L		270		VAR	1.6e-186	263/269		(Shchelkunov et al., 1995)
MC140L		249		MCV subtype 1	7.6e-95	58/94	61	(Senkevich et al., 1996)
144R	134287	185	20.6	EEV glycoprotein				(Roper et al., 1996)
A33R	134844	185 184		VAC VAR	2.1e-124 1.8e-121	182/185 103/112	98 91	(Goebel et al., 1990) (Shchelkunov et al., 1995)
A36R		185		Ectromelia	2.8e-113	165/185	89	(Roper et al., 1996)
145R	134868	168	19.6	EEV glycoprotein				(Duncan and Smith, 1992a)
143K	135374	100	19.0	virulence factor				(McIntosh and Smith, 1996)
124B		160		actin microvilli inducer VAC	1.2e-117	165/168	98	(Wolffe et al., 1997) (Goebel et al., 1990)
<i>A34R</i> A37R		168 168		VAR-I	1.7e-117	164/168	97	(Shchelkunov <i>et al.</i> , 1995)
		167		FPV ORFs BamHI 2,8,11 hepatic	< 0.056	16/66	24	(Tomley et al., 1988)
		199		lectins homologs HS early T-cell activation	0.0038	12/38	31	(Hamann et al., 1993)
MC143R		159		antigen CD69 MCV subtype 1	0.080	12/48	25	(Senkevich et al., 1997)
MC143K		139		17 matches to lectins	0.000	12/40	23	(Schkevich et al., 1997)
146D	125410	176	20.0	20.0k protein				(Smith at al. 1991)
146R A35R	135418 135948	176 176	20.0	20.0k protein VAC	1.4e-126	176/176	100	(Smith et al., 1991) (Goebel et al., 1990)
A38R MC145P		60		VAR-I	2.9e-37	57/60	95 32	(Senkevich et al., 1995)
MC145R		233		MCV subtype 1	1.2e-07	18/55	32	(Senkevich et al., 1997)
147R	136015 136641	208	23.8k	EEV membrane protein virulence factor				(Parkinson and Smith, 1994) (Smith et al., 1991)
A36R	130041	221		VAC	2.8e-143	140/141	99	(Goebel et al., 1990)
A39R		216		VAR 19 matches to asn/ser-rich	2.1e-89 <0.41	138/177	77	(Shchelkunov et al., 1995)
				proteins	VU-41			
148R	136705	263	29.8	29.8k protein				
A37R	137496	263	49.0	VAC	6.8e-183	261/262	99	(Goebel et al., 1990)
A40R		68		VAR	4.9e-37	61/67	91	(Shchelkunov et al., 1995)
149L	138589	277	31.5	31.5k protein				(Amegadzie et al., 1991a)
<i>A38L</i> A41L	137756	277 277		VAC VAR	9.3e-198 1.6e-187	274/277 259/277		(Goebel et al., 1990) (Shchelkunov et al., 1995)
		303		Rattus norvegicus CD47	3.9e-24	23/86	26	(Nishiyama et al., 1997)
		324 323		MM integrin assoc. protein human CD47 precursor	1.0e-21 5.0e-19	23/86 28/86	26 32	(Lindberg et al., 1993) (Campbell et al., 1992)
150-	1,,,,,,,		0.4	•				•
150R	138606 138857	83	9.4	semaphorin-like protein (f1)				(Kolodkin et al., 1993)
A39R	1	403		VAC	8.0e-46	73/76	96	(Goebel et al., 1990)
A42R 151R	139163	74 210	23.9	VAR-I semaphorin-like protein	8.6e-44	67/71	94	(Shchelkunov et al., 1995) (Kolodkin et al., 1993)
	139795		2 .9	(f2)				
A39R A43R		403 139		VAC VAR (I:A44R)	3.0-147 1.8e-68	209/210 91/105	99 86	(Goebel et al., 1990) (Shchelkunov et al., 1995)
ATJIK		653		semaphorin-like protein	1.7e-20	29/79	36	(Ensser and Fleckenstein, 1995)
İ				Alcelaphine herpesvirus 37 matches to semaphorin				
L	_			5. materies to semaphorm				

TABLE 1—Continued

ORF ^a	START	AΑ ^b	kDa ^c	name / (putative)	BLAST	BLAST		references
left te	STOP rminal	regio	n:	function / homologies ^g	expect	AA id	(%)	
				/collapsin gene family				
152R A40R A45R	139821 140327	168 168 61 233	19.4	NK cell receptor homolog lectin-like protein VAC VAR-1 (BSH: A43.5R) HS natural killer (NK) cell	6.6e-97 9.6e-36 4.5e-11	134/137 54/59 20/74	97 91 27	(Scheiflinger et al., unpubl.) (Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Houchins et al., 1991)
		240 182 179		protein group 2-A, B HS type II membrane protein MM NK cell receptor HS CD 94 127 matches to lectins including NK cell surface proteins and snake venoms	6.9e-11 5.5e-09 1.7e-07	16/36 16/36 11/29	44 44 37	(Adamkiewicz et al., 1994) (Giorda et al., 1992) (Chang et al., 1995a)
153L <i>A41L</i> A44L	141025 140366		25.1	25.1k protein VAC VAR-BSH (I:A46L) VAC B29R/C23L Rabbit fibroma virus T1	1.9e-158 1.4e-152 0.0076 0.057	218/219 152/159 12/53 13/49	99 95 22 26	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Upton et al., 1987)
154R	141197	128	14.5	profilin-like protein				(Blasco et al., 1991)
A42R A47R	141583	133 133 140		VAC VAR-I (BSH:A45R) HS profilin 10 matches profilin family	1.2e-87 1.4e-85 2.2e-23	85/87 82/87 19/45	97 94 42	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Kwiatkowski and Bruns, 1988)
155R	141621	190	22.1	class I membrane				(Smith et al., 1991)
<i>A43R</i> A48R	142193	194 195 51		glycoprotein VAC VAR-I(BSH:A46R) HS leukocyte antigen	1.5e-137 1.9e-128 0.096	162/164 101/109 7/23	98 92 30	(Duncan and Smith, 1992b) (Goebel et al., 1990) (Shchelkunov et al., 1995) X79517
156R	142201 142437	78 78 258	8.8	8.8k protein VAC-WR SalF6R rabbit myosin heavy chain 144 matches to various asp/glu/lys-rich proteins	3.9e-45 0.00048	78/78 13/39	100 33	(Smith et al., 1991) (Smith et al., 1991) A02985
157L	143577	346	39.4	3B-hydroxysteroid				(Moore and Smith, 1992)
A44L A47L MC152R	142537	346 210 354 369		dehydrogenase (3B-HSD) VAC VAR-BSH (I: A49L) MCV subtype 1 FPV matches to dihydroflavonol reductases, cholesterol dehydrogenases, UDP- galactose-4-epimerases	4.5e-249 1.1e-136 8.2e-104 3.1e-83 >2.8e-05	342/346 185/195 123/272 33/85	98 94 45 38	(Blasco et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Skinner et al., 1994) (Baker and Blasco, 1992)
158 R A45 R A51 R	143624 143989	121 125 125	13.3	superoxide dismutase-like protein VAC VAR-I BSH A48R 117 matches with superoxide dismutase family	2.1e-82 1.1e-82 <0.027	94/96 93/96	97 96	(Blasco et al., 1991) (Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995)
159R A46R A52R	143979 144701	241 214 240	27.6	27.6k protein VAC VAR-I (BSH: A49R)	9.6e-167 5.6e-164	238/240 233/240	99 97	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995)
160L J1L <i>A47L</i>	145465 144749	238 244 244	27.6	27.6k protein VAR VAC integrin lipid binding motif	5.1e-146 8.2e-135	114/127 121/127	89 95	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Smith et al., 1991)
161R A48R J2R	145564 146178	204 204 205	23.2	thymidylate kinase VAC VAR 16 matches to thymidylate kinase family	5.2e-140 1.1e-137 <0.49	204/204 161/165	100 97	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995)
162R A49R J3R	146202 146690	162 162 162	18.8	18.8k protein VAC VAR	6.0e-106 2.4e-103	159/162 154/162	98 95	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995)
163R A50R J4R	146722 148380	552 552 552 922 559 564	63.5	DNA ligase VAC VAR-I HS DNA ligase III shope fibroma ligase FPV ligase 31 matches mainly to DNA ligase family	0.0 0.0 2.1e-235 9.9e-213 3.0e-195 <0.029	547/552 537/552 102/165 95/200 101/170	99 97 61 47 59	(Kerr and Smith, 1989) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Wei et al.,) (Parks et al., 1994) (Skinner et al., 1994)
164R A51R J5R	148426 149358	310 334 334	34.9	34.9k protein VAC VAR	1.5e-217 9.1e-208	267/274 251/274	97 91	(Antoine et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995)

TABLE 1—Continued

ORF ^a	START	AA ^b	kDac	name / (putative)	BLAST	BLAST	HSSf	references
	STOP terminal	regio		function / homologies ^g	expect	AA id	(%)	- W
		10,510		fusion of A51R/A55R ORFs				(Antoine et al., 1996)
165R A56R J9R	149416 150363	315 315 313 310	34.8	hemagglutinin VAC VAR-1 (BSH:J7R) raccoonpox 124 matches to various proteins	1.8e-211 4.3e-178 1.5e-91 <0.34	312/315 183/238 74/104	99 76 71	(Shida, 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Cavallaro and Esposito, 1992)
166R A57R J10R	150659 150952	97 151 151 198 197	11.4	guanylate kinase (f) VAC VAR (BSH:J8R) MM guanylate kinase HS guanylate kinase 21 matches mainly to guanylate kinases	3.2e-62 2.2e-57 4.3e-24 2.8e-20 <0.20	94/97 88/97 39/91 35/91	96 90 42 38	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Brady et al., 1996) (Brady et al., 1996)
167R	151103 152005	300	34.3	serine/threonine protein kinase				(Howard and Smith, 1989) (Banham and Smith, 1992) (Lin et al., 1992)
BIR BIR		300 300 283		VAC VAR-I VAC B12R 100 matches mainly to protein kinase family	7.1e-215 2.7e-210 4.9e-49 <0.00031	298/300 289/300 27/53	99 96 50	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Goebel et al., 1990)
168R	152144	96	11.5	24.6k protein (f1) VAC	8.5e-38	54/60	90	(Goebel et al., 1990)
B2R 169R	152434	219 149 143	16.1	histone H2A pea 24.6k protein (f2)	0.59	16/50	32	P40281 (Goebel et al., 1990)
B2R	152720	219	10.1	VAC Protein (12)	5.7e-86	124/128	96	(Goebel et al., 1990)
170R B3R	152917 153456	179 124 167 92	20.9	20.9k protein (f) VAC VAC WR VAR-GAR H5R	8.2e-33 5.3e-45 3.4e-06	51/56 51/56 19/28	91 91 67	(Goebel et al., 1990) (Smith et al., 1991) U18339
171R	153683	177	21.4	65k ank-like protein				(Howard et al., 1991) (Mossman et al., 1996)
B4R B6R 172R	154216 154107 155336	558 558 409	47.7	virulence factor (f1) VAC VAR-I (BSH:B5R) 65k ank-like protein virulence factor (f2)	8.5e-107 1.7e-98	151/154 140/154	98 90	(Mossman et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Howard et al., 1991) (Mossman et al., 1996)
B4R B6R		558 558 483 1765 516 574 574 882 237 472 474 446 437 634		VAC VAR-I (BSH:B5R) MYX M-T5 protein MM ankyrin 3 orf virus VAC B18R VAR-I B19R HS KIAA0379 CPX host range gene VAC WR hr gene VAC WR hr gene VAC OIL CPX OIL CPX OIL VAR OIL CPX DIL VAC CSL 159 matches including ankyrin proteins	2.4e-283 2.3e-270 5.5e-10 9.7e-10 1.8e-09 3.3e-09 3.6e-09 5.1e-09 1.7e-08, 2.8e-08 5.1e-07 8.7e-07 8.8e-07	195/201 185/201 19/57 22/54 16/47 11/23 19/72 20/52 14/47 15/47 23/81 22/61 23/81 8/27	97 92 33 40 34 47 26 38 29 31 28 36 28	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Mossman et al., 1996) (Peters et al., 1995) U34774 (Goebel et al., 1990) (Shchelkunov et al., 1995) AB002377 (Spehner et al., 1988) (Kotwal and Moss, 1988a) (Goebel et al., 1990) (Safronov et al., 1996) (Shchelkunov et al., 1995) (Safronov et al., 1996) (Goebel et al., 1996) (Goebel et al., 1996)
173R	155424 156377	317	35.1	ps/hr protein/ EEV gp42 complement control protein				(Takahashi-Nishimaki et al., 1991) (Engelstad et al., 1992) (Isaacs et al., 1992)
<i>B5R</i> B7R		317 317 259		VAC VAR-1 (BSH:B6R) CPX D17L 186 matches to complement control protein family	1.6e-232 7.1e-220 2.1e-12 <7.7e-05	312/317 294/316 16/52	98 93 30	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Safronov et al., 1996)
174R B6R B7R	156474 156995	173 173 65 685	20.2	20.2k protein VAC VAR-BSH (I:B8R) NAD-protein ADP ribosyl- transferase phage T4	1.5e-121 6.0e-40 0.56	173/173 62/65 17/56	100 95 30	(Goebel et al., 1990) (Shchelkunov et al., 1995) SXBPT4
175R B7R	157033 157566	177 182 184 182	20.7	20.7k protein VAC VAC C&L CPX D12L EF-hand calcium-binding domain	7.8e-129 0.16 0.49	95/108 9/44 8/36	87 20 22	(Goebel et al., 1990) (Goebel et al., 1990) (Safronov et al., 1996)
176R B8R B8R	157621 158301	226 272 266 266 274	26.0	31k interferon-gamma receptor (f) VAC VAR-BSH (I:B9R) ECT swinepox C6	3.3e-164 3.0e-153 2.6e-151 3.2e-09	116/123 111/123 110/123 12/31	94 90 89 38	(Upton et al., 1992) (Alcami and Smith, 1995) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Mossman et al., 1995b) (Massung et al., 1993)

TABLE 1—Continued

ORF ^a	START STOP	AA ^b	kDac	name / (putative) function / homologies ^g	BLAST ^d expect	BLAST ^c AA id	HSS ^f (%)	references
	erminal	regio						
177R B9R	158458 158676	72 77 240 237	8.3	8.3k protein VAC capripox T4 protein shope fibroma virus	3.0e-49 1.2e-09 0.0057	60/60 16/44 15/50	100 36 30	(Goebel et al., 1990) M28823 F43692
178R B10R	158639 159115	158 166 530 689	17.9	17.9k protein VAC swinepox VC04 kelch protein D. melanogaster	4.7e-110 0.040 0.14	146/146 13/42 12/54	100 30 27	(Goebel et al., 1990) (Massung et al., 1993) (Xue and Cooley, 1993) (Senkevich et al., 1993b)
179R BIIR	159187 159411	74 88	8.5	8.5k protein VAC 177 matches to glu/asn rich proteins	9.2e-43	70/73	95	(Goebel et al., 1990)
180R B12R B12R	159478 160329	283 283 134 300 300	33.3	protein kinase VAC VAR-I VAC BIR VAR-I BIR 120 matches mainly to protein kinase family	1.8e-207 8.7e-26 1.7e-54 7.7e-53 <0.34	282/283 31/54 26/53 25/53	99 57 49 47	(Howard and Smith, 1989) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Shchelkunov et al., 1995)
181R	160437	116	13.0	ICE inhibitor / SPI-2 (f1)				(Kotwal and Moss, 1989)
B13R B13R	160787	116 344 341 353 344 357 355 372 372		VAC VAR-I (BSH:B12R) CPX crmA VAC C12L (SPI-1) Ectromelia serpin rabbitpox SPI-1 CPX SPI-1 VAR-I B25R (BSH:B21R) CPX serpin-like protein 135 matches mainly to serpins	3.0e-72 2.7e-69 2.8e-39 2.1e-23 9.2e-23 5.5e-22 1.4e-21 1.7e-36 <0.12	111/116 105/114 66/100 25/34 24/34 25/34 25/36 25/34 25/36	95 92 66 73 70 73 69 73	(Smith et al., 1989) (Ray et al., 1992) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Pickup et al., 1986) (Goebel et al., 1990) (Senkevich et al., 1993b) (Ali et al., 1994) (Ali et al., 1994) (Shchelkunov et al., 1995) (Ali et al., 1994)
182 R B14R B13R	160762 161430	222 222 345 345 341 344	24.9	ICE inhibitor/SPI-2 (f2) VAC VAC WR rabbit pox SPI-2 CPX crmA VAR-I (BSH:B12R) 309 matches see above	6.2e-158 9.4e-156 1.6e-153 4.5e-148 1.5e-146 <1.3e-21	218/222 215/221 211/221 203/220 203/220	98 97 95 92 92	see above (Goebel et al., 1990) (Kotwal and Moss, 1989) (Ali et al., 1994) (Pickup et al., 1986) (Shchelkunov et al., 1995)
183R B15R B14R	161506 161937	143 149 149 153 181 159 151 190 149 149	16.7	16.7k protein VAC VAR-1 (BSH:B13R) VAR-1 D1L (BSH:D2L) VAC C16L/B22R capripox T3A rabbit fibroma T3A VAC A52R VAC WR K7R VAR-1 C4R CPX M6R	3.6e-105 9.1e-104 8.8e-31 1.0e-26 1.4e-17 2.6e-07 0.073 0.21 0.30 0.51	97/98 95/98 25/52 25/52 17/42 17/44 10/28 7/22 7/22 7/22	98 96 48 48 40 38 35 31 31	(Smith and Chan, 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Gershon and Black, 1989a) (Upton et al., 1987) (Goebel et al., 1990) (Boursnell et al., 1988) (Shchelkunov et al., 1995) (Safronov et al., 1996)
184R B16R B17R	162021 163001	326 326 326 290 69 296	36.6	interleukin-1ß receptor (IL-1ßR) VAC-WR B15R CPX B16 VAC VAR-1 (BSH:deleted) HS type II IL-1 receptor 271 matches mainly to IL-1 receptors, growth factor receptors and 1g family proteins	2.8e-229 2.3e-217 4.4e-202 8.1e-38 1.7e-36 <0.011	323/326 306/326 287/290 59/68 28/75	99 93 98 86 37	(Alcami and Smith, 1992) (Spriggs et al., 1992) (Smith et al., 1991) (Spriggs et al., 1992) (Goebel et al., 1990) (Shchelkunov et al., 1995) U64094
185L B17L B15L	164069 163047	340 340 340	39.6	39.6k protein VAC VAR-BSH (I:B18L)	4.8e-248 2.7e-241	335/340 9 325/340 9		(Goebel et al., 1990) (Shchelkunov et al., 1995)
186R B18R B19R	164209 165933	574 574 574	68.0	68k ank-like protein VAC VAR-I (BSH:B16R) 100 matches mainly to poxvirus ankyrin proteins	0.0 0.0 <0.53	560/574 539/574	97 93	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995)
187 R B19R B20R	165999 166703	234 353 354 569	27.5	surface antigen, IFN-alpha/beta receptor (f) VAC (WR:B18R) VAR-1 (BSH:B17R) HS interleukin-1 receptor 28 matches mainly to IL-1 receptors	1.4e-163 1.53-149 0.0051 <0.53	218/233 111/133 15/43	93 83 34	(Ueda et al., 1990) (Symons et al., 1995) (Colamonici et al., 1995) (Goebel et al., 1990) (Shchelkunov et al., 1995) (McMahan et al., 1991)
188R	167202	70	8.2	8.2k protein (f)				

TABLE 1—Continued

ORF ^a	START STOP	AA ^b	kDac	name / (putative) function / homologies ^g	BLAST ^d expect	BLAST ^c AA id	HSSf (%)	references
left te	erminal	region	1:					
B22R	167414	1897		VAR-BSH (I:B26R)	9.9e-23	31/38	81	(Shchelkunov et al., 1995)
189R	167897	188	21.7	21.7k protein				
B22R	168463	181		VAC B22R/C16L	2.9e-111	95/104	91	(Goebel et al., 1990)
D1L		153		VAR-I(BSH:D2L)	1.2e-88	66/71	92	(Shchelkunov et al., 1995)
		149		VAC B15R	7.2e-19	25/52	48	(Goebel et al., 1990)
		159		capripox T3A	8.0e-05	15/45	33	(Gershon and Black, 1989a)
		151		VAC C6L	0.25	12/46	26	(Goebel et al., 1990)
		156		VAR (I:D9L;BSH:D12L)	0.26	12/46	26	(Shchelkunov et al., 1995)
190R/ 004L	168531 169232	233	26.9	45k ank-like protein (f2)				
B23R	1	386		VAC (C17L/B23R)	6.2e-159	110/110	100	(Goebel et al., 1990)
DIL	1	91		VAR-BSH	9.1e-31	46/49	93	(Shchelkunov et al., 1995)
	1	669		CPX host range	1.1e-13	22/50	44	(Spehner et al., 1988)
	ı	452		VAR-I D6L (BSH:D8L)	1.7e-11	21/50	42	(Shchelkunov et al., 1995)
		574		VAR-1 B19R (BSH: B16R)	1.2e-05	22/73	30	(Shchelkunov et al., 1995)
		574		VAC B18R (WR: B17R)	8.6e-05	22/73	30	(Goebel et al., 1990)
	1	634		VAC C9L	0.00011	11/24	45	(Kotwal and Moss, 1988a)
	i	585		VAR-I GIR	0.00013	22/74	29	(Shchelkunov et al., 1995)
	i	516		orf virus	0.0088	15/49	30	(Sullivan et al., 1995b)
		153		VAR-I D7L (BSH:D10L)	0.014	12/28	42	(Shchelkunov et al., 1995)
191R/	169309	102	12.1	45k ank-like protein				, , , , , , , , , , , , , , , , , , , ,
003L	169617	386		(f1) VAC C17L/B23R	1.3e-39	(2)(2)	0.0	(0.11.1.1.1000)
B23R	j	300		VAC CI7L/B23R	1.36-39	62/63	98	(Goebel et al., 1990)
192R/	170305	176	19.7	secr. TNF receptor (f)				(Upton et al., 1991a)
002L	170835	355		CPX crmB	5.1e-71	76/83	91	(Hu et al., 1994)
G2R		348		VAR-BSH	1.0e-66	73/83	87	(Shchelkunov et al., 1995)
		326		Myxoma virus T2	4.9e-30	21/37	56	(Upton et al., 1991a)
		325		Rabbit fibroma Virus T2	1.8e-28	17/36	47	(Upton et al., 1987)
nacn		202		CPX C4L	8.7e-15	30/51	58	(Heller et al., 1990)
B25R		346		HS TNF receptor	1.9e-08	14/26	53	(Safronov et al., 1996)
		259		VAC (C19L/B25R)	0.00026	16/19	84	(Goebel et al., 1990)
		277		human CD40L receptor 30 matches to TNF receptors and surface proteins	0.0015 <0.39	11/24	45	(Stamencovic et al., 1989)
193R/ 001L	171267 171677	136	14.9	35k major secr. protein chemokine receptor (f)				(Patel et al., 1990) (Graham et al., 1997)
B29R		244		VAC (C23L/B29R)	6.0e-57	41/42	97	(Goebel et al., 1990)
G5R		253		VAR-I	8.9e-51	46/49	93	(Shchelkunov et al., 1995)
		246		CPX ORF B	5.6e-49	40/42	95	(Hu et al., 1994)
		258		SFV T1 protein	2.5e-20	23/42	54	(Upton et al., 1987)
		260		Myxoma virus T1/35kDa	1.5e-14	21/42	50	(Graham et al., 1997)

^a Open reading frame coding for at least 65 amino acids (for exceptions see text); minor ORFs located in reverse orientation within large ORFs or ORFs located in the repeat regions of the ITRs (see text) are not listed; the MVA ORFs (boldface), listed consecutively as appearing in the genome, and homologs in the Copenhagen strain (in italics), in the variola strains and in the molluscum contagiosum, are listed in this row. Split ORFs are boxed.

structures reflecting the natures of their DNA templates (not shown). For this family of hypothetical proteins, no significant homologies were found except for the homology to the ORF G4R, the last ORF present in the repeat region of the right terminus of the Brazilian alastrim variola minor virus strain Garcia-1966 (Massung *et al.*, 1996). Minor ORFs located in the reverse orientation within large ORFs and minor overlapping

ORFs were analyzed but no homologies except for the CPN homologs (Goebel *et al.*, 1990) were found; these ORFs are also not listed in Table 1. Although all MVA ORFs were named systematically according to their appearance in the genome, the established ORF nomenclature of the CPN strain (Goebel *et al.*, 1990) was used in this report for the homologous MVA ORFs unless otherwise indicated.

^b Number of deduced amino acids (AA) encoded within an ORF.

 $^{^{\}rm c}$ Predicted $M_{\rm r}$ (kDa) for the unmodified protein.

^d The lowest Poisson probability determined by the BLAST search (Altschul *et al.*, 1990). The Expect value of 0.0 indicates a probability of zero that an alignment occurs by chance; low Expect values correspond to high homology and vice versa.

^e Amino acid identity (AA id) of first high-scoring segment pair in the BLASTp protocol.

f Amino acid identity of first high-scoring segment pair (HSS)%.

⁹ Homologies based on searching PIR and SWISS-PROT databases (BLASTp nr).

^h Duplicated ORFs located in ITRs.

ⁱ Fragment; complete homologous ORF present in related poxvirus (see reference).

^j Variola India (I) or variola Bangladesh (BSH) sequences; in cases where the variola sequences are not identical, the variola strain first appearing in the blast search protocol is listed.

k ank, ankyrin.

¹HS, homo sapiens.

m MM, Mus musculus.

FIG. 1. (A) Structure of the terminal hairpin loops of MVA. The program DNAsis (Hitachi, Inc.) was used to calculate the most stable basepairing. The location of the 39 residue tandem repeats and the concatemer resolution sequence (Merchlinsky and Moss, 1989) are indicated by arrows. The G-residue of the first mismatched basepair was defined as residue 1. Thus, the database entry starts with this G-residue and proceeds leftward around the hairpin. (B) Repeat structure of the termini. The 9.8-kb-sized inverted terminal repeat (ITR) consists of six sequence elements, the terminal hairpin loop (L), the repeat regions I–III (RI–RIII), and the nonrepeated regions I and II (NRI–II). Restriction sites critical for cloning and characterization of the repeats (Clal, Xbal, Bsal) are indicated; the recognition sequence of the enzyme Bsal is part of the basic repeat unit and thus occurs frequently within the repeat regions. The numbers indicate the positions of the sequence elements within the MVA genomic sequence.

Structure of termini

The linear double-stranded DNA genome of poxviruses has covalently closed termini; the telomeric regions are identical but inverted in sequence (review: Moss, 1996). Within the poxviruses, ITRs are variable in sequence and length; the CPN and the shope fibrome ITRs, for instance, are 12 kb in size (Cabirac *et al.*, 1985; Goebel *et al.*, 1990) and encode for up to 12 ORFs, while the variola Bangladesh (VAR-BSH) ITR is 725 bp long and does not include ORFs larger than 65 amino acids (Massung *et al.*, 1994). In MVA the ends of the genome contain a 9.8-kb ITR that are identical up to positions 9809 and 168,280.

To characterize the incompletely base-paired terminal hairpin loops, which are characteristic for poxviral ITRs (Moss, 1996), telomeric RNA transcribed from the concatemer resolution sequence (Hu and Pickup, 1991) was converted into cDNA and sequenced. The MVA terminal hairpin loops are 165 residues in size, differing from the usual size of about 100 bases. The loop contains a perfect 39-nucleotide-long tandem repeat at positions 80–118 and 119–156, not present in the CPN strain (Fig. 1A). Similar to the CPN sequence, the first base of the MVA genome was defined to be the first mismatched residue of the hairpin loop (see below). Thus, the database entry, consisting of the upper DNA strand in 5'-3' orientation, starts with this G-residue and proceeds leftward around the 165 bases of the hairpin (see Fig. 1) and proceeds to the last base 177,923, the junction to the right hairpin loop, that is formally provided by the lower DNA strand and therefore not repeated in the database entry. The left concatemer resolution sequence is located adjacent to the hairpin (positions 171–190; see Fig.

1); the right concatemer resolution sequence is located at positions 177,899–177,918.

The structure of the repeated elements at both ends of the genome are depicted in Fig. 1B. Six segments were identified within the ITR; three regions of tandem repeats (RI, RII, and RIII) are located next to the hairpin loop (L) with an intervening nonrepetitive segment NRI. The inner part of the ITR consists of another nonrepetitive sequence NRII. Adjacent to the hairpin loop, an outer bloc of 13 tandem repeats (RI; Fig. 1B) is located from bases 252 to 1190; the equivalent region in the CPN strain is similarly organized but about three times larger. The RI region is composed of two types of different repeated elements, the 69- and the 70-bp repeat. Southern blot analyses confirmed that this region is responsible for a microheterogenicity of the terminal 1.1-kb Xbal fragment (not shown). The outer bloc is followed by the nonrepetitive region NRI (positions 1191 to 1395). Interestingly, a sequence stretch starting at position 1396 is repeated in position 3619 and nowhere else in the genome. Regions RII (positions 1396–3618) and RIII (positions 3619–6121) are very similar to each other and obviously the result of a duplication. Thus, MVA has two inner blocs, RII and RIII, 2.2 and 2.5 kb in length, respectively. The tandem repeats of the RII-RIII region start at base 1500 and end at 6121. RII and RIII contain clusters from one to seven copies of a conserved 54-bp repeat element also found in the CPN strain. Between these clusters, repeat elements similar to the 54-bp repeat element, but with variations in the sequence and length, are found. All repeats in RI, RII, and RIII have a 14-bp sequence (AA-GAGAGAAAGAGA) in common, which is repeated 77

FIG. 2. Maps of the left and right terminal regions of the vaccinia strains MVA and Copenhagen (CPN) and variola virus (VAR). A selection of genes involved in host–virus interaction is shown. Filled boxes indicate fragmented and open boxes structurally intact genes; names of fragmented genes are underlined. Deletion >150 bp in MVA relative to the CPN strain are indicated by bars located below the CPN map; the numbers refer to the size of the deletion (d) in basepairs. Vertical arrows in the MVA map indicate the positions of the deletions. ORFs in the left terminal region: 35k msp, 35-kDa major secreted protein, chemokine receptor (C23L); TNFR, tumor necrosis factor receptor (C22L); 45k ank, 45-kDa ankyrin-like protein (C17L); VGF, vaccinia growth factor (C11R); 28k vir, 28-kDa virulence factor (VAR-BSH D6R); cpx hr, 77-kDa cowpox host range protein (VAR ORFs D5L and D6L); SPI-1, serpin SPI-1 (C12L); 75k ank, 75-kDa ankyrin-like protein (C9L); C6L, 18.2k protein of unknown function; C7L, host range protein; VCP, 35-kDa vaccinia complement control protein (C3L); α-As, alpha-amanitin-sensitive protein (N2L); K1L, host range gene; SPI-3, serpin SPI-3 (K2L); IFN^r, interferon resistance (K3L); LPL, lysophospholipase-like gene (K5L). ORFs in the right terminal region: rpol32 (35), 132 (35)-kDa subunit of the RNA polymerase (A24R and A29L); ATI, cowpox A-type inclusion body region (A25L); 14k EEV, 14-kDa extracellular enveloped virus protein (A27L); SEM, semaphorin-like protein (A39R); NKCR, natural killer cell receptor homolog (A40R); 3β-HSD, 3β-hydroxysteroid dehydrogenase (A44L); SOD, superoxide dismutase-like protein (A45R); HA, hemagglutinin (A56R); GK, guanylate kinase (A57R); 65k ank, 65-kDa ankyrin-like protein (B4R); IFN-α/βR, interferon-α/β receptor (B16R); P214, variola 214-kDa protein (VAR B22R). Boldface horizontal lines indicate the extent of the inverted terminal repeats. Dotted lines help to identify the respective gene locus.

times, found for the first time at position 359 and ending the last time at position 5972.

Fragmented and deleted ORFs in the left terminal genomic region

The genomes of orthopoxviruses may be subdivided into a left terminal genomic region, spanning the region from the left hairpin loop to the lysophospholipase (LPL)-like gene (K6L), with the central conserved region including ORFs K7R to A24R (encoding a hypothetical 17.5-kDa protein and the RNA polymerase subunit rpo132, respectively) and the right terminal region extending from the A-type inclusion body (ATI) region (A25L) to the right hairpin loop (Massung *et al.*, 1994). The majority of ORFs in the left terminal genomic region of MVA are deleted, fragmented, or truncated (see Fig. 2 and Table 1). The first gene in the vaccinia CPN strain, C23L encoding the

35-kDa major secreted protein (Patel et al., 1990), recently shown to encode a chemokine binding protein expressed by several orthopoxvirus strains (Graham et al., 1997), is disrupted in MVA. Fragmented ORFs in the left terminal genomic region further include C19L, encoding a tumor necrosis factor receptor (TNFR) homolog (Hu et al., 1994; Upton et al., 1991a), and C17L, coding for the 45-kDa ankyrin-like protein (Goebel et al., 1990). A region common to MVA and the variola Bangladesh (BSH) strain, but absent in CPN, is the highly fragmented cowpox (CPX) virus host range (hr) gene region. This region includes a fragmented ORF (MVA007R) defined as a virulence factor in ectromelia virus, the 28k virulence factor (Senkevich et al., 1993a), which is also structurally intact in variola and CPX (Table 1), and a 13.7-kDa protein (MVA008L) that is homologous to a variola ORF (BSH-D7L) and to a corresponding ectromelia and CPX ORF.

Alignment of the CPX hr gene region with the corresponding sequence in MVA (not shown) confirmed that an MVA homolog to the CPX hr gene is present, but, due to deletions and frameshifts, is split into five ORFs (MVA009L-013L). An interrupted remnant of the CPX hr gene is also present in the vaccinia WR strain (Kotwal and Moss, 1988a) and in the ectromelia strain Moscow (Chen *et al.*, 1992).

Adjacent to the CPX hr gene homolog is the 75-kDa ankyrin-like protein (75k ank, C9L), which is split into three ORFs in MVA (MVA014L-016L). Furthermore, the neighboring C8L ORF has a 21-nucleotide internal deletion and the secreted 14k virulence factor (N1L) is partially deleted. A further potential virulence factor, which is intact in CPX and ectromelia, but split into the ORFs MVA026L and 27L as well as in the corresponding ORFs K5L and K6L in the CPN strain (see Table 1 and Fig. 2), is the vaccinia LPL homolog, which is homologous to human and bacterial lysophospholipases (R. L. Buller & C. Upton, unpublished).

Four large deletions in the MVA left terminal region relative to the CPN sequence, termed d1771, d3585, d4817, and d2763 (the numbers refer to the size of the deletion in basepairs) include totally or partially the ORFs C22L-C19L, C16L-C12L, C5L-N1L, and M1L-K1L (see lower part of Fig. 2). Among them is a potential virulence factor, the vaccinia complement-binding protein (VCP) that modulates complement activation (Kotwal, 1988; Miller *et al.*, 1997), the serpin SPI-1 (C12L), and the host range gene K1L (see also Altenburger *et al.*, 1989), thought to be necessary for growth of vaccinia in human cells.

Structurally intact ORFs in the left terminal genomic region

Only 8 of 27 listed ORFs are structurally intact in the left terminal region of MVA (see Table 1 and Fig. 2) and presumably encode functional proteins. The intact ORFs encode the vaccinia growth factor VGF (C11R), the C10L and C6L proteins of unknown function, the C7L hr protein, the α -amanitin-sensitive protein (N2L), the serpin SPI-3 (K2L), an interferon resistance protein (K3L) and the protein encoded by ORF K4L. The ORF K4L, encoding a major poxvirus envelope antigen present in various poxviruses except for variola, is highly homologous to a human member of the phospholipase D superfamily (Cao et al., 1997). Although structural integrity of an ORF does not mean expression of a functional protein, the eight intact ORFs in the left terminal region of MVA seem to be the minimal requirement of genes necessary for an efficient vaccinia vaccine strain. In summary, the left terminal genomic region of MVA is unique and includes relatively few intact genes, most of which seem to be involved in host-virus interaction. The region has large deletions but also a large insertion relative to the prototype vaccinia CPN sequence. The presence of the large

"cowpox hr-region" and its adjacent genes not present in the CPN strain supports the idea that CPX or a CPX-like virus is the ancestor of vaccinia viruses. This view is further supported by the fact that the vaccinia WR strain (Kotwal and Moss, 1988a) and the ectromelia Moscow strain (Chen et al., 1992; Senkevich et al., 1993a) also enharbor a cowpox hr region including the 28k virulence factor and the adjacent 13.7k protein (or remnants thereof) and interrupted versions of the CPX hr gene (see also Safronov et al., 1996). DNA alignments of the CPX hr genes of the CPX Brighton strain, the vaccinia MVA and WR strains, and the ectromelia Moscow strain revealed a closer relationship of the vaccinia and ectromelia sequences compared to the cowpox sequence (data not shown), again arguing for an ancestral CPX or CPX-like virus as an ancestor of vaccinia and ectromelia virus. Although similar, the mutations in the CPX hr genes of the MVA and the WR strain result in different fragmentations on the protein level excluding a closer relationship of the two strains. Since the CPX hr gene is sufficiently divergent between orthopoxviral strains, it seems to be an excellent candidate for establishing phylogenetic relationships.

Fragmented and mutated genes in the central conserved genomic region

As expected, most of the ORFs in the central conserved region are intact, although amino acid changes, compared to the respective homologs in the CPN and VAR strains, are frequent (see also Table 2). Surprisingly, however, three fragmented ORFs F5L, F11L, and O1L, were found in the MVA central region, indicating that these genes are nonessential and constitute potential stable insertion sites for foreign genes. In fact, WR strainbased mutants inactivating the F5L, F11L, and O1L loci could be generated, confirming their nonessential character (F. Scheiflinger, unpublished). The ORF F5L, encoding the 36.5k major membrane precursor (Roseman and Slabaugh, 1990), is split into two ORFs in MVA (MVA033L and MVA034L). An array of small ORFs of unknown function, F6L-F8L (MVA 035L-037L), located downstream of F5L, is present in variola and vaccinia strains. Further analysis of corresponding orthopoxviral sequences would be useful to clarify the question of whether this region is the remnant of one large gene.

The second fragmented ORF of the central region, F11L, encoding a 39.7-kDa protein of unknown function, is split into the ORFs MVA040L and MVA041L. In the orf virus strain NZ2, the F11L homolog is an early gene located near the left terminus in the orf virus genome (Sullivan *et al.*, 1995a).

The third ORF in this region that is split into two parts (MVA059L and MVA060L) is O1L, encoding a 77.6-kDa protein of unknown function. This protein contains a leucine zipper and a bipartite nuclear target sequence (Goebel *et al.*, 1990). Two of the nonessential ORFs also have ho-

TABLE 2

Divergent Homologous ORFs Located in the Central Conserved Region of MVA, CPN, and Variola Virus

	ORF name		Amino acids	
MVA ^a	CPN	VAR ^b	MVA/CPN/VAR	Deletion/insertion >2aa/function or homology
029L	F1L	C5L	222/226/237	12nt del; ukn
031L	F3L	C7L	476/480/161	12nt del; envelope antigen
032L	F4L	C8L	319/319/333	Ribonucleotide reductase
033L	F5L	C9L	97/321/348	Frame shift; truncation
034L	F5L	C9L	218/321/348	Membrane protein precursor
036L	F7L	C11L	80/92/79	36nt del (lys-asn repeats)
040L	F11L	C15L	84/354/354	Multiple deletions; truncation
041L	F11L	C15L	100/354/354	ukn
052R	E5R	E5R	331/331/341	30nt del; ukn
054R	E7R	E7R	166/166/60	17k myristylprotein; ukn
055R	E8R	E8R	273/273/273	Deletion in promoter region; ukn
059L	O1L	Q1L	152/666/666	19nt, 25nt del; fragmentation
060L	O1L	Q1L	405/666/666	Leu-zipper pattern; ukn
085R	J1R	L1R	153/153/159	Dimeric virion protein; ukn
095R	H5R	I5R	203/203/220	VLTF-4
100R	D3R	F2R	233/237/237	12nt del; structural 27k protein
104R	D7R	F7R	161/161/157	RNA pol subunit
115L	A4L	A5L	272/282/271	27nt del; core protein
120L	A9L	A10L	94/99/95	15nt del; ukn
123L	A12L	A13L	187/192/189	15nt del; virion protein
133R	A22R	A23R	187/176/187	ATG mutated in CPN; ukn
135R	A24R	A25R	1155/1164/1164	"Minor" ATG mutated; rpol132

^a Split ORFs are boxed

mologs in MCV; F11L is the homolog of MCV018L and O1L is homologous to MCV042L. F5L has no counterpart in MCV, consistent with its nonessential character.

Further significant differences (deletion/insertions > 2 amino acids) in homologous genes located in the central conserved regions of MVA, CPN, and variola are summarized in Table 2. An unusual mutation, the partial deletion of the promoter region of the E8R ORF, may influence expression of this gene in MVA. A second mutation of this type is the deletion of the late part of the hemagglutinin gene promoter (Antoine et al., 1996). Furthermore, some genes have suffered small in-frame deletions, resulting in slightly smaller proteins, among them genes encoding an envelope protein (F3L) and a structural 28-kDa protein (D3R). The F7L gene product, encoding a protein with lys-asn repeats, has suffered an internal deletion of 12 amino acids. A further interesting mutation that may affect the stability of MVA virions is the deletion of 9 amino acids in the membrane-associated core protein A4L (Cudmore et al., 1996).

A point mutation in the first of two possible ATGs of the A24R ORF, encoding the large RNA polymerase subunit, has the consequence that only the major primary gene product of 1155 amino acids, the 132-kDa form of the enzyme (Patel and Pickup, 1989), can be synthesized. A second mutation affecting a start codon was noted; the A22R gene in the CPN strain is mutated, resulting in a protein of reduced size. The MVA and variola homologs

share the same initiation codons. Although the functions of many proteins have been elucidated, the majority of genes in the central conserved region have not been characterized in detail.

Deleted and mutated ORFs in the right terminal genomic region

The right terminal region, beginning downstream of the RNA polymerase rpo132 subunit gene (A24R), with the remnants of the CPX A-type inclusion body (ATI) ORF and its flanking regions, is structurally more conserved than the left one. However, three large deletions, termed d3501, d809, and d1771, were found in the right terminal region relative to CPN sequence (Fig. 2). Deletion d3501 has been described previously and includes the ORFs A51R-A55R (Antoine et al., 1996), among them a small ORF (A53R) with homologies to TNFR. Due to d3551, a large new ORF (MVA164R) that is a fusion between ORFs A51R and A55R was formed, resulting in a hybrid gene. The promoter region of the hemagglutinin gene is also affected by d3551, presumably resulting in poor expression of this gene (see also Antoine et al., 1996). Deletion d809 affects the small ORF B20R of unknown function while deletion d1771, located in the ITR, includes the ORFs B25R-B28R, a region fragmented in the CPN strain that corresponds to a large ORF in variola coding for a 69k ankyrin-like gene (BSH-G1R).

^b Nomenclature according to Massung et al. (1994), ukn, unknown.

An array of more conserved genes, A27L-A38L, is located downstream of the ATI ORFs, including many proteins present in extracellular enveloped virions (EEV). One of them, the 43- to 50-kDa EEV membrane protein encoded by ORF A36R is also a virulence factor and determines plaque size (Parkinson and Smith, 1994). This gene is intact in MVA but two in-frame deletions of 27 and 12 nucleotides result in an altered protein of slightly reduced size, potentially affecting the properties of MVA.

A fragmented ORF that follows this conserved region in MVA is A39R encoding the human semaphorin (SEM) homolog. The semaphorin gene family encodes neural growth cone guidance molecules (see Kolodkin *et al.*, 1993) and was recently also found in lymphoid tissue, including T cells and natural killer cells (Furuyama *et al.*, 1996; Hall *et al.*, 1996). The semaphorin-like genes are structurally intact in CPN but disrupted in the variola strains as well as in MVA. Semaphorins are also present in herpesvirus (Ensser and Fleckenstein, 1995).

The ORF located downstream of the semaphorin homolog, A40R, was originally described as a lectin-like protein (Smith *et al.*, 1991). Recent progress in molecular biology of natural killer (NK) cells (review: Lanier, 1997) allowed the identification of this ORF as the human NK cell receptor (NKCR) homolog; the structures of A40R in various poxviruses and the potential role of this molecule, including MVA immune evasion, is discussed elsewhere (Scheiflinger *et al.*, submitted for publication).

One of the interesting genes downstream of the NK receptor homolog is the profilin homolog A42R (Blasco *et al.*, 1991). This ORF has a 15-nt in-frame deletion in MVA, which may affect the function of the slightly smaller profilin in the microfilament metabolism in which profilins are involved. The adjacent ORF A43R also carries a 12-nt deletion, reducing its size from 194 to 190 amino acids. The 3 β -hydroxysteroid dehydrogenase (3 β -HSD; A44L) is intact in MVA and CPN, while defective in variola. The superoxide dismutase-like ORF (SOD; A45R) carries an internal 12-nt deletion in MVA relative to the CPN and variola sequences.

A hypervariable region begins downstream of the viral ligase gene (Table 1). The guanylate kinase (GK; A57R) is truncated in MVA while intact in the CPN and variola strains. Further fragmented ORFs in the right terminal genomic region include B2R, an ORF of unknown function, split into two small ORFs (MVA168R and MVA169R), and B4R, a 65kDa ankyrin-like protein, split into the ORFs MVA171R and MVA172R. The B4R protein corresponds to the MT-5 protein, which is a strong virulence factor in myxoma virus (Mossman et al., 1996). Many of the classical poxviral immune evasion genes located in the right terminal region, including the interferon-γ receptor (IFN-γR; B8R), the interleukin converting enzyme inhibitor (SPI-2), the interferon- α/β receptor (IFN- α/β R; B19R) and the TNFR (CPX crmB), are fragmented; the interleukin 1β receptor (IL 1β -R), however, is intact and highly conserved between MVA, the WR strain, and CPX (see Table 1).

The right terminal genomic region additionally harbors ankyrin-like genes, the structures of which are summarized in Table 3. With the exception of the 68-kDa ank gene (B18R), all genes of this class are either fragmented or deleted in MVA, among them the 65- and the 54-kDa ank genes B4R and M1L, respectively. Interestingly, a small gene fragment, homologous to the largest poxvirus protein identified so far, the variola transmembrane protein (BSH-B22R), is present in the right terminal region (MVA188R). The last ORF in the unique part of the genome (B22R; unknown function) has suffered two deletions relative to the CPN sequence causing frame shifts. The duplicated open reading frames located in the right ITR are described above.

DISCUSSION

Mutated structural and membrane proteins potentially affecting the physical properties of MVA

Although MVA grows efficiently in chicken embryo fibroblasts (Mayr and Malicki, 1966) and also in baby hamster kidney (BHK) cells (Carroll and Moss, 1997), it seems to be unstable upon purification (F. G. Falkner, unpublished). The reasons for these properties are unclear, but may be the results of mutations in structural and membrane proteins. Most genes encoding structural, membrane, and core proteins are highly conserved among orthopoxviruses. However, several exceptions from this rule were found in the MVA sequence. The A36R ORF (MVA147R) has suffered two internal deletions of 9 and 3 amino acids that may affect EEV formation and virulence (see also Parkinson and Smith, 1994). A structural component that carries an internal deletion of 3 amino acids in MVA is the D3R protein, found in a detergent-insoluble fraction of the virion (Dyster and Niles, 1991). A further interesting structural protein carrying an internal deletion of 9 amino acids is the membrane-associated core protein p39 encoded by ORF A4L. This protein most likely interacts with an integral membrane protein of the IMV and possibly functions as a matrix-like linker protein between the core and the innermost of the two membranes surrounding the IMV (Cudmore et al., 1996). Substitution of the D3R or A4L ORFs by their wild-type counterparts may improve the physical properties of MVA.

Host range genes and genes containing ankyrin repeats in MVA

The 'classical' host range genes in orthopoxviruses include K1L and C7L, thought to be sufficient for growth of vaccinia in human cells, and the CPX virus hr gene, which extends the vaccinia host range to Chinese hamster ovary cells (review: Perkus *et al.*, 1990). The structures of the hr and ankyrin-like genes are summarized in Table 3. As described previously (Altenburger *et al.*, 1989; Meyer *et al.*, 1991), the hr gene K1L is partially deleted in

TABLE 3

Structure of ORFs of MVA Located in the Terminal Regions Specifying Potential Host Range (hr) Proteins, Including Proteins with Ankyrin (ank) Repeats and their Homologs in Vaccinia Copenhagen and Variola Virus

		Dutatha famathan/		
MVA ^a	CPN	VAR ^b	MVA/CPN/VAR	Putative function/ homology
003L	C17L	_	102/386/—	45k ank ^c protein
004L	C17L	D1L	233/386/91	45k ank protein
009L	_	_	90//	77k CPX ^d hr protein
010L	_	D6L	142/—/452	77k CPX hr protein
011L	_	D6L	135/—/452	77k CPX hr protein
012L	_	D6L	90/—/452	77k CPX hr protein
013L	_	D6L	71/—/452	77k CPX hr protein
014L	C9L	D6.5L	109/634/91	75k ank protein
015L	C9L	_	96/634/—	75k ank protein
016L	C9L	D7L	297/634/153	75k ank protein
018L	C7L	D11L	150/150/150	hr protein
	M1L	01L	<i>—</i> /472/446	54k ank protein
022L	K1L	O3L	98/284/70+76	Host range
022L	K1L	C1L	98/284/76	Protein
050L	E3L	E3L	190/190/192	dsRNA dep. PKI
171R	B4R	B5R	177/558/558	65k ank protein
172R	B4R	B5R	409/558/558	65k ank protein
173R	B5R	B6R	317/317/317	ps/hr / EEVgp42
186R	B18R	B16R	574/574/574	68k ank protein
190R	B23R	D1L	233/386/91	45k ank protein
191R	B23R	_	102/386/—	45k ank protein

Note. —, deleted in the respective virus.

MVA, and, similar to the situation in variola, the CPX hr homolog is split into several separate ORFs. Only C7L is intact (100% identity to C7L of the vaccinia WR strain); nevertheless, MVA does not grow in human cells. A further candidate gene that may affect host range in MVA is the serpin gene SPI-1, the lack of which in rabbit poxvirus (a close relative of vaccinia) resulted in a restricted host range including human cells (Ali *et al.*, 1994). The SPI-1 gene is deleted in MVA.

A class of genes related to and including some hr genes are the ankyrin-like (ank) genes (review: Shchelkunov et al., 1993b). All ank genes are defective or deleted in MVA except for the 68-kDa ank gene (B18R), the function of which is unclear. The 54-kDa ank gene (M1L) is deleted in MVA and the 65-kDa ank gene (B4R) is split into two pieces. A homolog of B4R, the strong myxoma virulence factor M-T5 (Mossman et al., 1996), is involved in attenuation and host range in myxoma virus. Two further ank genes present in variola, the 69k and the 94k ank genes (BSH-B18R and BSH-G1R), are absent in MVA. In summary, despite the presence of an intact human host range gene (C7L), MVA does not grow in most mammalian cell lines; replication of vaccinia in human cells is dependent not only on the configuration of the classical human hr genes, but also on the genetic background of the respective vaccinia strain.

A comparison of MVA with the host range restricted vaccinia strain NYVAC, which enharbors 18 engineered deleted ORFs (Tartaglia *et al.*, 1992), revealed that both viruses share common deleted or nonfunctional ORFs including the 6 ORFs of deletion d4817 (C5L-N1L), ORFs B13R and B14R encoding the ICE inhibitor, the ATI remnant ORF A26L, and the K1L host range gene. In contrast to NYVAC, the MVA strain has a functional thymidine kinase gene, an intact C7L host range gene, and intact C6L, A56R (hemagglutinin), and I4L (ribonucleotide reductase) ORFs. Despite similarities, the two potential life vaccine viruses have a clearly different genetic background.

Further ORFs involved in host-virus interaction

Homologies of vaccinia proteins with proteins involved in lipid metabolism were found recently; the vaccinia K4L protein is homologous to the phospholipase D (PLD) gene family (Cao *et al.*, 1997; Sung *et al.*, 1997). Mutation of a crucial motif found in the vaccinia PLD homolog resulted in loss of efficient vaccinia virus cell-to-cell spreading, suggesting that it encodes a lipid modifying or binding activity (Sung *et al.*, 1997). The adjacent ORFs K5L and K6L are fragments of a gene that is intact in cowpox virus and is homologous to human LPL (Table 1).

a,b see Table 2.

^c ankyrin.

^d cowpox host range.

Lysophosphatidic acid, the product of LPLs, is a multifunctional phospholipid messenger with many biological activities (review: Moolenaar *et al.*, 1997). Lysophospholipases are suspected to be virulence factors in many pathogenic bacteria, such as *Vibrio cholerae* (Whayeb *et al.*, 1996) or *Mycobacterium leprae* (Prabhakaran *et al.*, 1996). The presence of intact PLD homologs (K4L) and the fragmentation of the LPL homologs (K5L and K6L) seem to be markers for attenuated vaccinia viruses. In variola, both proteins are mutated, the K4L homolog is deleted, and the lysophospholipase is fragmented, while in CPX both ORFs are intact.

The role of the semaphorin homologs, further potential host interactive proteins in viruses, is still unclear. Originally identified as molecules expressed in neural tissue (Kolodkin et al., 1993), expression of family members in lymphoid cells was found, suggesting a role in the immune system. It seems reasonable to speculate that an interaction of viral semaphorins with lymphoid, rather than neural, cells occurs. Some semaphorins, such as CD100, interact with the CD40/CD40L B cell signaling system (Hall et al., 1996), which also affects virus replication (Ruby et al., 1995). In T cells and natural killer cells a serine kinase activity is associated with CD100 (Elhabazi et al., 1997). These cell types may be partners for interaction with viral semaphorins. Interestingly, the ORF adjacent to this potential immune modulator is the NK receptor homolog A40R (Table 1). Although key mutations were responsible for the attenuation of MVA (Meyer et al., 1991), numerous genes in MVA that differ only slightly compared to their CPN or BSH counterparts presumably contribute to the properties of MVA. Thus, the highly attenuated phenotype of MVA is the result of numerous mutations including large and small deletions and substitutions, resulting in the deletion and fragmentation of ORFs and the alteration of proteins.

MATERIALS AND METHODS

Sequence analysis of the MVA genome

Prior to sequencing, the MVA strain (obtained from Prof. A. Mayr, University of Munich, Faculty of Veterinary Medicine) was plaque purified once. The DNA from MVA clone M4 was cleaved with Xbal and cloned into pUC19 and minipreparations of DNA (QIAprep-8 kit (Qiagen 19047)) were sequenced (Sanger et al., 1977) on an Applied Biosystems Model 373A Sequencer using the cycle sequencing method with dye terminators and AmpliTag DNA polymerase FS (ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit 402122; Perkin-Elmer, Inc.). Selected regions were sequenced with genomic DNA as template with manually designed primers. Frameshift mutations were confirmed by direct sequencing of the corresponding genomic templates. The sequence of the MVA genome was deposited with Gen-Bank (Accession No. U94848) using the Sequin Program (National Center for Biotechnology Information, NIH).

Open reading frames (ORFs) >65 codons were translated using the MacMolly sequence analysis Software (Softgene, Inc.) and protein sequences were compared with the nonredundant protein sequence database (National Center for Biotechnology Information, NIH) using the program BLASTp (Altschul *et al.*, 1990). Selected proteins were also compared to the protein databases using the BLAST2 program that constructs alignments with gaps (Altschul and Gish, 1996).

ACKNOWLEDGMENTS

We thank M. Jank, I. Albrecht, K. Popovic, D. Pöltl, and G. Gerstenbauer for expert technical assistance, Prof. A. Mayr for the MVA strain, and Dr. C. P. Gibbs for critically reading the manuscript.

REFERENCES

- Adamkiewicz, T. V., McSherry, C., Bach, F. H., and Houchins, J. P. (1994).Natural killer lectin-like receptors have divergent carboxy-termini, distinct from C-type lectins. *Immunogenetics* 39, 218–218.
- Ahn, B. Y., Gershon, P. D., Jones, E. V., and Moss, B. (1990a). Identification of rpo30, a vaccinia virus RNA polymerase gene with structural similarity to a eucaryotic transcription elongation factor. *Mol. Cell. Biol.* 10, 5433–5441.
- Ahn, B. Y., Jones, E. V., and Moss, B. (1990b). Identification of the vaccinia virus gene encoding an 18-kilodalton subunit of RNA polymerase and demonstration of a 5' poly(A) leader on its early transcript. *J. Virol.* **64**, 3019–3024.
- Ahn, B. Y., and Moss, B. (1992a). Glutaredoxin homolog encoded by vaccinia virus is a virion-associated enzyme with thioltransferase and dehydroascorbate reductase activities. *Proc. Natl. Acad. Sci. USA* 89, 7060–7064.
- Ahn, B. Y., and Moss, B. (1992b). RNA polymerase-associated transcription specificity factor encoded by vaccinia virus. *Proc. Natl. Acad. Sci. USA* **89**, 3536–3540.
- Ahn, B. Y., Rosel, J., Cole, N. B., and Moss, B. (1992). Identification and expression of rpo19, a vaccinia virus gene encoding a 19-kilodalton DNA-dependent RNA polymerase subunit. *J. Virol.* **66**, 971–982.
- Akopian, T. A., Kaverina, E. N., Naroditsky, B. S., and Tikhonenko, T. I. (1992). Nucleotide sequence analysis of the avian adenovirus CELO (FAV1) DNA fragment (92-100%). *Mol. Gen. Microbiol. Virol.* 11, 19–23.
- Alcami, A., and Smith, G. L. (1992). A soluble receptor for interleukin-1 beta encoded by vaccinia virus: A novel mechanism of virus modulation of the host response to infection. *Cell* 71, 153–167.
- Alcami, A., and Smith, G. L. (1995). Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J. Virol. 69, 4633–4639.
- Ali, A. N., Turner, P. C., Brooks, M. A., and Moyer, R. W. (1994). The SPI-1 gene of rabbitpox virus determines host range and is required for hemorrhagic pock formation. *Virology* **202**, 305–314.
- Altenburger, W., Suter, C. P., and Altenburger, J. (1989). Partial deletion of the human host range gene in the attenuated vaccinia virus MVA. *Arch. Virol.* **105**, 15–27.
- Altschul, S. F., and Gish, W. (1996). Local alignment statistics. *Methods Enzymol.* **266**, 460–480.
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. *J. Mol. Biol.* 215, 403–410.
- Amegadzie, B. Y., Ahn, B. Y., and Moss, B. (1991a). Identification, sequence, and expression of the gene encoding a Mr 35,000 subunit of the vaccinia virus DNA-dependent RNA polymerase. *J. Biol. Chem.* 266, 13712–13718.
- Amegadzie, B. Y., Ahn, B. Y., and Moss, B. (1992). Characterization of a 7-kilodalton subunit of vaccinia virus DNA-dependent RNA polymerase with structural similarities to the smallest subunit of eukaryotic RNA polymerase II. *J. Virol.* **66**, 3003–3010.

Amegadzie, B. Y., Holmes, M. H., Cole, N. B., Jones, E. V., Earl, P. L., and Moss, B. (1991b). Identification, sequence, and expression of the gene encoding the second-largest subunit of the vaccinia virus DNA-dependent RNA polymerase. *Virology* 180, 88–98.

- Antoine, G., Scheiflinger, F., Holzer, G., Langmann, T., Falkner, F. G., and Dorner, F. (1996). Characterization of the vaccinia MVA hemagglutinin gene locus and its evaluation as an insertion site for foreign genes. *Gene* 177, 43–46.
- Baker, M. E., and Blasco, R. (1992). Expansion of the mammalian 3 beta-hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose-4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus. FEBS Lett. 301, 89–93.
- Banham, A. H., and Smith, G. L. (1992). Vaccinia virus gene B1R encodes a 34-kDa serine/threonine protein kinase that localizes in cytoplasmic factories and is packaged into virions. *Virology* 191, 803–812.
- Baylis, C. D., and Smith, G. L. (1997). Vaccinia virion protein VP8, the 25kDa product of the L4R gene, binds single-stranded DNA and RNA with similar affinity. *Nucleic Acids Res.* 25, 3984–3990.
- Baylis, S. A., Twigg, S. R., Vydelingum, S., Dixon, L. K., and Smith, G. L. (1993). Three African swine fever virus genes encoding proteins with homology to putative helicases of vaccinia virus. *J. Gen. Virol.* 74, 1969–1974.
- Baylis, C. D., and Condit, R. C. (1995). The vaccinia virus A18R gene product is a DNA-dependent ATPase. *J. Biol. Chem.* **270**, 1550–1556.
- Beattie, E., Tartagia, J., and Paoletti, E. (1991). Vaccinia virus-encoded eIF-2 alpha homolog abrogates the antiviral effect of interferon. *Virology* 183, 419–422.
- Bertholet, C., Drillien, R., and Wittek, R. (1985). One hundred base pairs of 5' flanking sequence of a vaccinia virus late gene are sufficient to temporally regulate late transcription. *Proc. Natl. Acad. Sci. USA* 82, 2096–2100.
- Binns, M. M., Boursnell, M. E., Tomley, F. M., and Campbell, J. (1989). Analysis of the fowlpoxvirus gene encoding the 4b core polypeptide and demonstration that it possesses efficient promoter sequences. *Virology* 170, 288–291.
- Binns, M. M., Britton, B. S., Mason, C., and Boursnell, M. E. (1990). Analysis of the fowlpox virus genome region corresponding to the vaccinia virus D6 to A1 region: Location of, and variation in, non-essential genes in poxviruses. *J. Gen. Virol.* 71, 2873–2881.
- Binns, M. M., Stenzler, L., Tomley, F. M., Campbell, J., and Boursnell, M. E. (1987). Identification by a random sequencing strategy of the fowlpoxvirus DNA polymerase gene, its nucleotide sequence and comparison with other viral DNA polymerases. *Nucleic Acids Res.* 15, 6563–6573.
- Binns, M. M., Tomley, F. M., Campbell, J., and Boursnell, M. E. (1988). Comparison of a conserved region in fowlpox virus and vaccinia virus genomes and the translocation of the fowlpox virus thymidine kinase gene. *J. Gen. Virol.* **69**, 1275–1283.
- Blasco, R., Cole, N. B., and Moss, B. (1991). Sequence analysis, expression, and deletion of a vaccinia virus gene encoding a homolog of profilin, a eukaryotic actin-binding protein. J. Virol. 65, 4598–4608.
- Boursnell, M. E., Foulds, I. J., Campbell, J. I., and Binns, M. M. (1988). Non-essential genes in the vaccinia virus HindIII K fragment: A gene related to serine protease inhibitors and a gene related to the 37K vaccinia virus major envelope antigen. *J. Gen. Virol.* **69**, 2995–3003.
- Brady, W. A., Kokoris, M. S., Fitzgibbon, M., and Black, M. E. (1996). Cloning, characterization, and modeling of mouse and human guanylate kinases. *J. Biol. Chem.* **271**, 16734–16740.
- Broyles, S. S., and Fesler, B. S. (1990). Vaccinia virus gene encoding a component of the viral early transcription factor. *J. Virol.* **64**, 1523–1529.
- Broyles, S. S., and Moss, B. (1986). Homology between RNA polymerases of poxviruses, prokaryotes, and eukaryotes: Nucleotide sequence and transcriptional analysis of vaccinia virus genes en-

- coding 147-kDa and 22-kDa subunits. *Proc. Natl. Acad. Sci. USA* 83, 3141–3145.
- Broyles, S. S., and Moss, B. (1987). Identification of the vaccinia virus gene encoding nucleoside triphosphate phosphohydrolase I, a DNA-dependent ATPase. *J. Virol.* **61**, 1738–1742.
- Broyles, S. S., and Pennington, M. J. (1990). Vaccinia virus gene encoding a 30-kilodalton subunit of the viral DNA-dependent RNA polymerase. *J. Virol.* **64**, 5376–5382.
- Bult, C. J., White, O., Olsen, G. J., Zhou, L., Fleischmann, R. D., Sutton, G. G., Blake, J. A., and Venter, J. C. (1996). Complete genome sequence of the methanogenic archeon, *Methanococcus jannaschii*. *Science* 273, 1058–1073.
- Buyse, I. M., Shao, G., and Huang, S. (1995). The retinoblastoma protein binds to RIZ, a zinc-finger protein that shares an epitope with the adenovirus E1A. *Proc. Natl. Acad. Sci. USA* **92**, 4467–4467.
- Cabirac, G. F., Strayer, D. S., Sell, S., and Leibowitz, J. L. (1985). Characterization, molecular cloning, and physical mapping of the Shope fibroma virus genome. *Virology* 143, 663–670.
- Calvert, J. G., Ogawa, R., Yanagida, N., and Nazerian, K. (1992). Identification and functional analysis of the fowlpox virus homolog of the vaccinia virus p37K major envelope antigen gene. *Virology* 191, 783–792.
- Campbell, I. G., Freemont, P. S., Foulkes, W., and Trowsdale, J. (1992). An ovarian tumor marker with homology to vaccinia virus contains an IgV-like region and multiple transmembrane domains. *Cancer Res.* **52**, 5416–5420.
- Cao, J. X., Gershon, P. D., and Black, D. N. (1995). Sequence analysis of HindIII Q2 fragment of capripoxvirus reveals a putative gene encoding a G-protein-coupled chemokine receptor homologue. *Virology* 209, 207–212.
- Cao, J. X., Koop, B. F., and Upton, C. (1997). A human homolog of the vaccinia virus HindIII K4L gene is a member of the phospholipase D superfamily. *Virus Res.* 48, 11–18.
- Carroll, M. W., and Moss, B. (1997). Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: Propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238, 198–205.
- Cavallaro, K. F., and Esposito, J. J. (1992). Sequences of the raccoon poxvirus hemagglutinin protein. *Virology* **190**, 434–439.
- Chang, C., Rodriquez, A., Carretero, M., Lopez-Botet, M., Phillips, J. H., and Lanier, L. L. (1995a). Molecular characterization of human CD94: A type II membrane glycoprotein related to the C-type lectin superfamily. Eur. J. Immunol. 25, 2433–2437.
- Chang, H. W., Uribe, L. H., and Jacobs, B. L. (1995b). Rescue of vaccinia virus lacking the E3L gene by mutants of E3L. J. Virol. 69, 6605–6608.
- Chang, H. W., Watson, J. C., and Jacobs, B. L. (1992). The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. *Proc. Natl. Acad. Sci. USA* 89, 4825–4829.
- Chang-Yeh, A., Mold, D. E., and Huang, R. C. C. (1991). Identification of a novel murine IAP-promoted placenta-expressed gene. *Nucleic Ac*ids Res. 19, 3667–3672.
- Chen, W., Drillien, R., Spehner, D., and Buller, R. M. (1992). Restricted replication of ectromelia virus in cell culture correlates with mutations in virus-encoded host range gene. *Virology* **187**, 433–442.
- Chertov, O., Telezhinskaya, I. N., Zaitseva, E. V., Golubeva, T. B., Zinov'ev, V. V., Ovechkina, L. G., Mazkova, L. B., and Malygin, E. G. (1991). Amino acid sequence determination of vaccinia virus immunodominant protein p35 and identification of the gene. *Biomed. Sci.* 2, 151–154.
- Ciliberto, G., Dente, L., and Cortese, R. (1985). Cell-specific expression of a transfected human alpha1-antitrypsin gene. *Cell*, 531–540.
- Colamonici, O. R., Domanski, P., Sweitzer, S. M., Larner, A., and Buller, R. M. (1995). Vaccinia virus B18R gene encodes a type I interferonbinding protein that blocks interferon alpha transmembrane signaling. *J. Biol. Chem.* 270, 15974–15978.
- Coppola, T., Waldmann, R., Borsotto, M., Heurteaux, C., Romey, G., Mattei, M. G., and Lazdunski, M. (1994). Molecular cloning of a

- murine N-type calcium channel alpha1 subunit. Evidence for isoforms, brain distribution, and chromosomal localization. *FEBS Lett.* **338**, 1–5.
- Cudmore, S., Blasco, R., Vincentelli, R., Esteban, M., Sodeik, B., Griffiths, G., and Krijnse Locker, J. (1996). A vaccinia virus core protein, p39, is membrane associated. *J. Virol.* 70, 6909–6921.
- Davies, M. V., Elroy-Stein, O., Jagus, R., Moss, B., and Kaufman, R. J. (1992). The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA-activated protein kinase and phosphorylation of the alpha subunit of eukaryotic initiation factor 2. *J. Virol.* **66**, 1943–1950.
- Davis, R. E., and Mathews, C. K. (1993). Acidic C terminus of vaccinia virus DNA-binding protein interacts with ribonucleotide reductase. *Proc. Natl. Acad. Sci. USA* 90, 745–749.
- Deblandre, G., Marinx, O., Evans, S., Majjaj, S., Leo, O., Caput, D., Huez, G., and Wathelet, M. (1995). Expression cloning of an interferon-inducible 17-kDa membrane protein implicated in the control of cell growth. *J. Biol. Chem.* **270**, 23860–23866.
- Demkowicz, W. E., Maa, J. S., and Esteban, M. (1992). Identification and characterization of vaccinia virus genes encoding proteins that are highly antigenic in animals and are immunodominant in vaccinated humans. *J. Virol.* **66**, 386–398.
- Douglas, N. J., and Dumbell, K. R. (1996). DNA sequence variation as a clue to the phylogenesis of orthopoxviruses. J. Gen. Virol. 77, 947– 951.
- Drillien, R., Spehner, D., Villeval, D., and Lecocq, J. P. (1987). Similar genetic organization between a region of fowlpox virus DNA and the vaccinia virus HindIII J fragment despite divergent location of the thymidine kinase gene. *Virology* 160, 203–209.
- Dubel, S. J., Starr, T. V. B., Hell, J., Ahlijanian, M. K., Enyeart, J. J., Catterall, W. A., and Snutch, T. P. (1992). Molecular cloning of the alpha-1 subunit of an omega-conotoxin-sensitive calcium channel. *Proc. Natl. Acad. Sci. USA* 89, 5058–5062.
- Duncan, S. A., and Smith, G. L. (1992a). Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. J. Virol. 66, 1610–1621.
- Duncan, S. A., and Smith, G. L. (1992b). Vaccinia virus gene SalF5R is non-essential for virus replication in vitro and in vivo. *J. Gen. Virol.* 73, 1235–1242.
- Dyster, L. M., and Niles, E. G. (1991). Genetic and biochemical characterization of vaccinia virus genes D2L and D3R which encode virion structural proteins. *Virology* **182**, 455–467.
- Earl, P. L., Jones, E. V., and Moss, B. (1986). Homology between DNA polymerases of poxviruses, herpesviruses, and adenoviruses: Nucleotide sequence of the vaccinia virus DNA polymerase gene. *Proc. Natl. Acad. Sci. USA* 83, 3659–3663.
- Elhabazi, A., Lang, V., Herold, C., Freeman, G. J., Bensussan, A., Boumsell, L., and Bismuth, G. (1997). The human semaphorin-like leukocyte cell surface molecule CD100 associates with a serine kinase activity. *J. Biol. Chem.* **272**, 23515–23520.
- Engelstad, M., Howard, S. T., and Smith, G. L. (1992). A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. *Virology* 188, 801–810.
- Ensser, A., and Fleckenstein, B. (1995). The Alcelaphine herpesvirus type 1 has a semaphorin-like gene. *J. Gen. Virol.* **76**, 1063–1067.
- Fernando, M. R., Sumimoto, H., Nanri, H., Kawabata, S., Iwanaga, S., Minakami, S., Fukumaki, Y., and Takeshige, K. (1994). Cloning and sequencing of the cDNA encoding human glutaredoxin. *Biochim. Biophys. Acta* **1218**, 229–231.
- Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J. F., Dougherty, B. A., and Merrick, J. M. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.
- Fleming, S. B., Blok, J., Fraser, K. M., Mercer, A. A., and Robinson, A. J. (1993). Conservation of gene structure and arrangement between vaccinia virus and orf virus. *Virology* **195**, 175–184.
- Franke, C. A., Wilson, E. M., and Hruby, D. E. (1990). Use of a cell-free

- system to identify the vaccinia virus L1R gene product as the major late myristylated virion protein M25. *J. Virol.* **64**, 5988–5996.
- Funahashi, S., Sato, T., and Shida, H. (1988). Cloning and characterization of the gene encoding the major protein of the A-type inclusion body of cowpox virus. *J. Gen. Virol.* **69**, 35–47.
- Furuyama, T., Inagaki, S., Kosugi, A., Noda, S., Saitoh, S., Ogata, M., Iwahashi, Y., Miyazaki, N., Hamaoka, T., and Tohyama, M. (1996). Identification of a novel transmembrane semaphorin expressed on lymphocytes. *J. Biol. Chem.* 271, 33376–33381.
- Gershon, P. D., Ahn, B. Y., Garfield, M., and Moss, B. (1991). Poly(A) polymerase and a dissociable polyadenylation stimulatory factor encoded by vaccinia virus. *Cell* 66, 1269–1278.
- Gershon, P. D., Ansell, D. M., and Black, D. N. (1989). A comparison of the genome organization of capripoxvirus with that of the orthopoxviruses. *J. Virol.* **63**, 4703–4708.
- Gershon, P. D., and Black, D. N. (1989a). A capripoxvirus pseudogene whose only intact homologs are in other poxvirus genomes. *Virology* 172, 350–354.
- Gershon, P. D., and Black, D. N. (1989b). The nucleotide sequence around the capripoxvirus thymidine kinase gene reveals a gene shared specifically with leporipoxvirus. *J. Gen. Virol.* **70**, 525–533.
- Gershon, P. D., and Moss, B. (1990). Early transcription factor subunits are encoded by vaccinia virus late genes. *Proc. Natl. Acad. Sci. USA* 87, 4401–4405.
- Gershon, P. D., and Moss, B. (1993). Stimulation of poly(A) tail elongation by the VP39 subunit of the vaccinia virus-encoded poly(A) polymerase. *J. Biol. Chem.* **268**, 2203–2210.
- Gillard, S., Spehner, D., Drillien, R., and Kirn, A. (1986). Localization and sequence of a vaccinia virus gene required for multiplication in human cells. *Proc. Natl. Acad. Sci. USA* **83**, 5573–5577.
- Giorda, R., Ohmachi, T., and Ennis, H. L. (1989). Organization of a gene family developmentally regulated during *Dictyostelium discoideum* spore germination. *J. Mol. Biol.* **205**, 63–69.
- Giorda, R., Weisberg, E. P., Ip, T. K., and Trucco, M. (1992). Genomic structure and strain-specific expression of the natural killer cell receptor NKR-P1. *J. Immunol.* **149**, 1957–1963.
- Goebel, S. J., Johnson, G. P., Perkus, M. E., Davis, S. W., Winslow, J. P., and Paoletti, E. (1990). The complete DNA sequence of vaccinia virus. *Virology* 179, 247–266, 517–563.
- Gong, S. C., Lai, C. F., and Esteban, M. (1990). Vaccinia virus induces cell fusion at acid pH and this activity is mediated by the N-terminus of the 14-kDa virus envelope protein. *Virology* **178**, 81–91.
- Graham, K. A., Lalani, A. S., Macen, J. L., Ness, T. L., Barry, M., Liu, L. Y., Lucas, A., Clark-Lewis, I., Moyer, R. W., and McFadden, G. (1997). The T1/35kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. *Virology* 229, 12–24.
- Grosenbach, D. W., Ulaeto, D. O., and Hruby, D. E. (1997). Palmitylation of the vaccinia virus 37-kDa major envelope antigen. Identification of a conserved acceptor motif and biological relevance. *J. Biol. Chem.* 272, 1956–1964.
- Guan, K. L., Broyles, S. S., and Dixon, J. E. (1991). A Tyr/Ser protein phosphatase encoded by vaccinia virus. *Nature* **350**, 359–362.
- Gum, J. R. J., Hicks, J. W., Toribara, N. W., Kim, Y. S., and Siddiki, B. (1994). Molecular cloning of human intestinal mucin (MUC2) cDNA: Identification of the amino terminal and overall sequence similarity to pre-pro-von Willebrand factor. J. Biol. Chem. 269, 2440–2446.
- Gvakharia, B. O., Koonin, E., and Mathews, C. (1996). Vaccinia virus G4L gene encodes a second glutaredoxin. *Virology* **226**, 408–411.
- Hall, K. T., Boumsell, L., Schultze, J. L., Boussiotis, V. A., Dorfman, D. M., Cardoso, A. A., Bensussan, A., Nadler, L. M., and Freeman, G. J. (1996). Human CD100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation. *Proc. Natl. Acad. Sci. USA* 93, 11780–11785.
- Hall, R. L., and Moyer, R. W. (1991). Identification, cloning, and sequencing of a fragment of *Amsacta moorei* entomopoxvirus DNA containing the spheroidin gene and three vaccinia virus-related open reading frames. J. Virol. 65, 6516–6527.

Hamann, J., Fiebig, H., and Strauss, M. (1993). Molecular cloning of the early activation antigen CD69, a type II integral membrane protein with a C-type lectin domain. *J. Immunol.* 150, 4920–4927.

- Hansen, M., Albers, M., Backes, U., Coblenz, A., Leuther, H., Neu, R., Schreer, A., Schafer, B., Zimmerman, M., and Wolf, K. (1996). The sequence of a 23.4 kb segment on the right arm of chromosome VII from *Saccharomyces cerevisiae* reveals CLB6, SPT6, RP28A and NUP57 genes, a Ty3 element and 11 new open reading frames. *Yeast* 12, 1273–1277.
- Heller, R. A., Song, K., Onasch, M. A., Fischer, W. H., Chang, D., and Ringold, G. M. (1990). Complementary DNA cloning of a receptor for tumor necrosis factor and demonstration of a shed form of the receptor. *Proc. Natl. Acad. Sci. USA* 87, 6151–6155.
- Hirt, P., Hiller, G., and Wittek, R. (1986). Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. *J. Virol.* **58**, 757–764.
- Hooda-Dhingra, U., Patel, D. D., Pickup, D. J., and Condit, R. C. (1990). Fine structure mapping and phenotypic analysis of five temperaturesensitive mutations in the second largest subunit of vaccinia virus DNA-dependent RNA polymerase. Virology 174, 60–69.
- Houchins, J. P., Yabe, T., McSherry, C., and Bach, F. H. (1991). DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. *J. Exp. Med.* 173, 1017–1020.
- Howard, S. T., Chan, Y. S., and Smith, G. L. (1991). Vaccinia virus homologues of the Shope fibroma virus inverted terminal repeat proteins and a discontinuous ORF related to the tumor necrosis factor receptor family. *Virology* 180, 633–647.
- Howard, S. T., and Smith, G. L. (1989). Two early vaccinia virus genes encode polypeptides related to protein kinases. J. Gen. Virol. 70, 3187–3201
- Hruby, D. E., and Ball, L. A. (1982). Mapping and identification of the vaccinia virus thymidine kinase gene. *J. Virol.* **43**, 403–409.
- Hu, F. Q., and Pickup, D. J. (1991). Transcription of the terminal loop region of vaccinia virus DNA is initiated from the telomere sequences directing DNA resolution. *Virology* 181, 716–720.
- Hu, F. Q., Smith, C. A., and Pickup, D. J. (1994). Cowpox virus contains two copies of an early gene encoding a soluble secreted form of the type II TNF receptor. *Virology* 204, 343–356.
- Huang, M. E., Chuat, J. C., and Galibert, F. (1994). A possible yeast homolog of human active-gene-repairing helicase ERCC6. *Biochem. Biophys. Res. Commun.* 201, 310–317.
- Hutson, R. A., Zhou, Y., Collins, M. D., Johnson, E. A., Hatheway, C. L., and Sugiyama, H. (1996). Genetic characterization of *Chlostridium* botulinum type A containing silent type B neurotoxin gene sequences. J. Biol. Chem. 271, 10786–10792.
- Isaacs, S. N., Wolffe, E. J., Payne, L. G., and Moss, B. (1992). Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. *J. Virol.* **66**, 7217–7224.
- Jackson, R. J., and Bults, H. G. (1990). A myxoma virus nucleotide sequence with homology to the vaccinia virus RNA polymerase 22-kDa subunit gene. *Nucleic Acids Res.* 18, 5290.
- Jackson, R. J., and Bults, H. G. (1992). The myxoma virus thymidine kinase gene: sequence and transcriptional mapping. J. Gen. Virol. 73, 323–328.
- Jackson, R. J., Hall, D. F., and Kerr, P. J. (1996). Construction of recombinant myxoma viruses expressing foreign genes from different intergenic sites without associated attenuation. J. Gen. Virol. 77, 1569–1575.
- Jensen, O. N., Houthaeve, T., Shevchenko, A., Cudmore, S., Ashford, T., Mann, M., Griffiths, G., and Krijnse Locker, J. (1996). Identification of the major membrane and core proteins of vaccinia virus by twodimensional electrophoresis. J. Virol. 70, 7485–7497.
- Johnson, G. P., Goebel, S. J., Perkus, M. E., Davis, S. W., Winslow, J. P., and Paoletti, E. (1991). Vaccinia virus encodes a protein with similarity to glutaredoxins. *Virology* 181, 378–381.
- Kane, E. M., and Shuman, S. (1992). Temperature-sensitive mutations in the vaccinia virus H4 gene encoding a component of the virion RNA polymerase. J. Virol. 66, 5752–5762.

- Kane, E. M., and Shuman, S. (1993). Vaccinia virus morphogenesis is blocked by a temperature-sensitive mutation in the I7 gene that encodes a virion component. J. Virol. 67, 2689–2698.
- Kao, S. Y., and Bauer, W. R. (1987). Biosynthesis and phosphorylation of vaccinia virus structural protein VP11. Virology 159, 399–407.
- Katsanis, N., Fitzgibbon, J., and Fisher, E. M. C. (1996). Paralogy mapping: Identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. *Genomics* 35, 101–108.
- Keck, J. G., Baldick, C. J., Jr., and Moss, B. (1990). Role of DNA replication in vaccinia virus gene expression: A naked template is required for transcription of three late trans-activator genes. *Cell* 61, 801–809.
- Keck, J. G., Kovacs, G. R., and Moss, B. (1993). Overexpression, purification, and late transcription factor activity of the 17-kilodalton protein encoded by the vaccinia virus A1L gene. J. Virol. 67, 5740–5748.
- Kerr, S. M., and Smith, G. L. (1989). Vaccinia virus encodes a polypeptide with DNA ligase activity. *Nucleic Acids Res.* 17, 9039–9050.
- Kim, U., Wang, Y., Sanford, T., Zeng, Y., and Nishikura, K. (1994). Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. *Proc. Natl. Acad. Sci. USA* 91, 11457–11461.
- Kolodkin, A. L., Matthes, D. J., and Goodman, C. S. (1993). The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. *Cell* **75**, 1389–1399.
- Koonin, E. V. (1993). A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses. *Nucleic Acids Res.* 21, 4847.
- Koonin, E. V., and Senkevich, T. G. (1992). Vaccinia virus encodes four putative DNA and/or RNA helicases distantly related to each other. *J. Gen. Virol.* **73**, 989–993.
- Koonin, E. V., Senkevich, T. G., and Chernos, V. I. (1993). Gene A32 product of vaccinia virus may be an ATPase involved in viral DNA packaging as indicated by sequence comparisons with other putative viral ATPases. Virus Genes 7, 89–94.
- Kotwal, G. J. (1996). The great escape. Immune evasion by pathogens. Immunologist 4/5, 157–164.
- Kotwal, G. J., and Moss, B. (1988a). Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology 167, 524–537.
- Kotwal, G. J., and Moss, B. (1988b). Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. *Nature* 335, 176–178.
- Kotwal, G. J., and Moss, B. (1989). Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease inhibitor superfamily *J. Virol.* **63**, 600–606. [Published erratum appears in *J. Virol.*, 1990, **64**(2), 966]
- Kovacs, G. R., and Moss, B. (1996). The vaccinia virus H5R gene encodes late gene transcription factor 4: purification, cloning, and overexpression. J. Virol. 70, 6796–6802.
- Krijnse-Locker, J., Schleich, S., Rodriguez, D., Goud, B., Snijder, E. J., and Griffiths, G. (1996). The role of a 21-kDa viral membrane protein in the assembly of vaccinia virus from the intermediate compartment. J. Biol. Chem. 271, 14950–14958.
- Kumar, S., and Boyle, D. B. (1990). Mapping of a major early/late gene of fowlpox virus. Virus Res. 15, 175–186.
- Kwiatkowski, D. J., and Bruns, G. A. P. (1988). Human profilin: Molecular cloning sequence comparison, and chromosomal analysis. J. Biol. Chem. 263, 5910–5915.
- Ladner, R. D., McNulty, D. E., Carr, S. A., and Roberts, G. D. (1996). Characterization of distinct nuclear and mitochondrial forms of human deoxyuridine triphosphate nucleotidohydrolase. *J. Biol. Chem.* 271, 7745–7751.
- Lanier, L. L. (1997). Natural killer cell receptors and MHC class I interactions. Curr. Opin. Immunol. 9, 126–131.
- Lin, S., and Broyles, S. S. (1994). Vaccinia protein kinase 2: A second essential serine/threonine protein kinase encoded by vaccinia virus. *Proc. Natl. Acad. Sci. USA* **91**, 7653–7657.

- Lin, S., Chen, W., and Broyles, S. S. (1992). The vaccinia virus B1R gene product is a serine/threonine protein kinase. *J. Virol.* **66**, 2717–2723.
- Lindberg, F. P., Gresham, H. D., Schwarz, E., and Brown, E. J. (1993). Molecular cloning of integrin-associated protein: An immunoglobulin family member with multiple membrane spanning domains implicated in alpha-v beta-3-dependent ligand binding. J. Cell. Biol. 123, 485–496.
- Loskutoff, D. J., Linders, M., Keuer, J., Veerman, H., van Heerikhuizen, H., and Pannekoek, H. (1987). Structure of the human plasminogen activator inhibitor 1 gene. Nonrandom distribution of introns. *Bio-chemistry* 26, 3763–3768.
- Maa, J. S., Rodriguez, J. F., and Esteban, M. (1990). Structural and functional characterization of a cell surface binding protein of vaccinia virus. J. Biol. Chem. 265, 1569–1577.
- Martin, K. H., Grosenbach, D. W., Franke, C. A., and Hruby, D. E. (1997). Identification and analysis of three myristylated vaccinia virus late proteins. J. Virol. 71, 5218–5226.
- Massung, R. F., Jayarama, V., and Moyer, R. W. (1993). DNA sequence analysis of conserved and unique regions of swinepox virus: Identification of genetic elements supporting phenotypic observations including a novel G protein-coupled receptor homologue. *Virology* 197, 511–528.
- Massung, R. F., Liu, L. I., Qi, J., Knight, J. C., Yuran, T. E., Kerlavage, A. R., Parsons, J. M., Venter, J. C., and Esposito, J. J. (1994). Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology 201, 215–240.
- Massung, R. F., Loparev, V. N., Knight, J. C., Totmenin, A. V., Chizhikov, V. E., Parsons, J. M., Safronov, P. F., Gutorov, V. V., Shchelkunov, S. N., and Esposito, J. J. (1996). Terminal region sequence variations in variola virus DNA. *Virology* 221, 291–300.
- Massung, R. F., McFadden, G., and Moyer, R. W. (1992). Nucleotide sequence analysis of a unique near-terminal region of the tumorigenic poxvirus, Shope fibroma virus. J. Gen. Virol. 73, 2903–2911.
- Mayr, A., and Malicki, K. (1966). Attenuierung von virulentem Hühnerpockenvirus in Zellkulturen und Eigenschaften des attenuierten Virus. Zentralb. Vet. Med. B. 13, 1–13.
- Mayr, A., Stickl, H., Müller, H. K., Danner, K., and Singer, H. (1978). The smallpox vaccination strain MVA: Marker, genetic structure, experience gained with the parenteral vaccination and behavior in organisms with a debilitated defence mechanism. *Zbl. Bakt. Hyg. I.Abt. Orig. B* 167, 375–390.
- McIntosh, A. A., and Smith, G. L. (1996). Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. *J. Virol.* **70**, 272–281.
- McMahan, C. J., Slack, J. L., Mosley, B., Cosman, D., Lupton, S. D., Brunton, L. L., Grubin, C. E., Wignall, J. M., Jenkins, N. A., and Brannan, C. I. (1991). A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types. *EMBO J.* 10, 2821–2832.
- Meis, R. J., and Condit, R. C. (1991). Genetic and molecular biological characterization of a vaccinia virus gene which renders the virus dependent on isatin-beta-thiosemicarbazone (IBT). Virology 182, 442–454.
- Mercer, A. A., Fraser, K. M., Stockwell, P. A., and Robinson, A. J. (1989).
 A homologue of retroviral pseudoproteases in the parapoxvirus, orf virus. *Virology* 172, 665–668.
- Mercer, A. A., Green, G., Sullivan, J. T., Robinson, A. J., and Drillien, R. (1996). Location, DNA sequence and transcriptional analysis of the DNA polymerase gene of orf virus. J. Gen. Virol. 77, 1563–1568.
- Mercer, A. A., Lyttle, D. J., Whelan, E. M., Fleming, S. B., and Sullivan, J. T. (1995). The establishment of a genetic map of orf virus reveals a pattern of genomic organization that is highly conserved among divergent poxviruses. *Virology* 212, 698–704.
- Merchlinsky, M., and Moss, B. (1989). Nucleotide sequence required for resolution of the concatemer junction of vaccinia virus DNA. J. Virol. 63, 4354–4361.
- Messmer, B., and Dreyer, C. (1993). Requirements for nuclear translo-

- cation and nucleolar accumulation of nucleolin of *X. laevis. Eur. J. Cell Biol.* **61,** 369–382.
- Meurs, E., Chong, K., Galabru, J., Thomas, N. S., Kerr, I. M., Williams, B. R., and Hovanessian, A. G. (1990). Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. *Cell* 62, 379–390.
- Meyer, H., Osterrieder, N., and Czerny, C. P. (1994). Identification of binding sites for neutralizing monoclonal antibodies on the 14-kDa fusion protein of orthopox viruses. *Virology* 200, 778–783.
- Meyer, H., and Rziha, H. J. (1993). Characterization of the gene encoding the A-type inclusion protein of camelpox virus and sequence comparison with other orthopoxviruses. *J. Gen. Virol.* **74**, 1679–1684.
- Meyer, H., Sutter, G., and Mayr, A. (1991). Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. *J. Gen. Virol.* **72**, 1031–1038.
- Miller, C. G., Shchelkunov, S. N., and Kotwal, G. J. (1997). The cowpox virus-encoded homolog of the vaccinia virus complement control protein is an inflammation modulatory protein. *Virology* 229, 126–133.
- Moolenaar, W. H., Kranenburg, O., Postma, F. R., and Zondag, G. C. M. (1997). Lysophosphatidic acid: G-protein signalling and cellular responses. *Curr. Opin. Cell Biol.* 9, 168–173.
- Moore, J. B., and Smith, G. L. (1992). Steroid hormone synthesis by a vaccinia enzyme: A new type of virus virulence factor *EMBO J.* 11, 1973–1980. [Published erratum appears in *EMBO J.* 1992, 11(9), 3490]
- Morgan, J. R., Cohen, L. K., and Roberts, B. E. (1984). Identification of the DNA sequences encoding the large subunit of the mRNA-capping enzyme of vaccinia virus. *J. Virol.* **52**, 206–214.
- Moss, B. (1996). Poxviridae: The viruses and their replication. *In* "Fields Virology" (B. N. Fields, D. M. Knipe, R. M. Chanock, J. Melnick, B. Roizman, and R. Shope, Eds.). Raven Press, Philadelphia.
- Mossman, K., Lee, S. F., Barry, M., Boshkov, L., and McFadden, G. (1996). Disruption of M-T5, a novel myxoma virus gene member of the poxvirus host range superfamily, results in dramatic attenuation of myxomatosis in infected European rabbits. J. Virol. 70, 4394–4411.
- Mossman, K., Ostergaard, H., Upton, C., and McFadden, G. (1995a). Myxoma virus and Shope fibroma virus encode dual-specificity tyrosine/serine phosphatases which are essential for virus viability. Virology 206, 572–582.
- Mossman, K., Upton, C., Buller, R. M., and McFadden, G. (1995b). Species specificity of ectromelia virus and vaccinia virus interferongamma binding proteins. *Virology* 208, 762–769.
- Mustafa, A., and Yuen, L. (1991). Identification and sequencing of the *Choristoneura biennis* entomopoxvirus DNA polymerase gene. *DNA Seq.* 2, 39–45.
- Naase, M., Nicholson, B. H., Fraser, K. M., Mercer, A. A., and Robinson, A. J. (1991). An orf virus sequence showing homology to the 14K 'fusion' protein of vaccinia virus. J. Gen. Virol. 72, 1177–1181.
- Neumann, H., and Zillig, W. (1990). Nucleotide sequence of the viral protein TPX of the TTV1 variant VT3. *Nucleic Acids Res.* 18, 2171.
- Niles, E. G., Condit, R. C., Caro, P., Davidson, K., Matusick, L., and Seto, J. (1986). Nucleotide sequence and genetic map of the 16-kb vaccinia virus *Hin*dIII D fragment. *Virology* 153, 96–112.
- Niles, E. G., Lee-Chen, G. J., Shuman, S., Moss, B., and Broyles, S. S. (1989). Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme. *Virology* 172, 513–522.
- Niles, E. G., and Seto, J. (1988). Vaccinia virus gene D8 encodes a virion transmembrane protein. *J. Virol.* **62**, 3772–3778.
- Nishiyama, Y., Tanaka, T., Naitoh, H., Mori, C., Fukumoto, M., Hiai, H., and Toyokuni, S. (1997). Overexpression of integrin-associated protein (CD47) in rat kidney treated with a renal carcinogen, ferric nitrilotriacetate. *Jpn. J. Cancer Res.* **88**, 120–128.
- O'Connell, M. A., Krause, S., Higuchi, M., Hsuan, J. J., Totty, N. F., Jenny, A., and Keller, W. (1995). Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. *Mol. Cell. Biol.* 15, 1389–1397.
- Ogawa, R., Calvert, J. G., Yanagida, N., and Nazerian, K. (1993). Insertional inactivation of a fowlpox virus homologue of the vaccinia virus

F12L gene inhibits the release of enveloped virions. *J. Gen. Virol.* **74**, 55–64

- Okabe, I., Bailey, L. C., Attree, O., Srinivasan, S., Perkel, J. M., Laurent, B. C., Carlson, M., Nelson, D. L., and Nussbaum, R. L. (1992). Cloning of human and bovine homologs of SNF2/SWI2: A global activator of transcription in yeast S. cerevisiae. Nucleic Acids Res. 20, 4649–4655.
- Osborne, R. J., Symonds, T. M., Sriskantha, A., Lai-Fook, J., Fernon, C. A., and Dall, D. J. (1996). An entomopoxvirus homologue of the vaccinia virus D13L-encoded rifampicin resistance' protein. *J. Gen. Virol.* 77, 839–846.
- Parkinson, J. E., and Smith, G. L. (1994). Vaccinia virus gene A36R encodes a M(r) 43-50 K protein on the surface of extracellular enveloped virus. *Virology* 204, 376–390.
- Parks, R. J., Lichty, B. D., Karakis, C., and Evans, D. H. (1994). Characterization of the Shope fibroma virus DNA ligase gene. *Virology* 202, 642–650.
- Passarelli, A. L., Kovacs, G. R., and Moss, B. (1996). Transcription of a vaccinia virus late promoter template: Requirement for the product of the A2L intermediate-stage gene. *J. Virol.* **70**, 4444–4450.
- Patel, A. H., Gaffney, D. F., Subak-Sharpe, J. H., and Stow, N. D. (1990).
 DNA sequence of the gene encoding a major secreted protein of vaccinia virus, strain Lister. *J. Gen. Virol.* 71, 2013–2021.
- Patel, D. D., and Pickup, D. J. (1989). The second-largest subunit of the poxvirus RNA polymerase is similar to the corresponding subunits of procaryotic and eucaryotic RNA polymerases. J. Virol. 63, 1076–1086.
- Pena, L., Yanez, R. J., Revilla, Y., Vinuela, E., and Salas, M. L. (1993). African swine fever virus guanylyltransferase. *Virology* **193**, 319–328.
- Perkus, M. E., Goebel, S. J., Davis, S. W., Johnson, G. P., Limbach, K., Norton, E. K., and Paoletti, E. (1990). Vaccinia virus host range genes. *Virology* 179, 276–286.
- Perkus, M. E., Goebel, S. J., Davis, S. W., Johnson, G. P., Norton, E. K., and Paoletti, E. (1991). Deletion of 55 open reading frames from the termini of vaccinia virus. *Virology* 180, 406–410.
- Peters, L. L., John, K. M., Lu, F. M., Eicher, E. M., Higgins, A., Yialamas, M., Turtzo, L. C., Otsuka, A. J., and Lux, S. E. (1995). Ank3 (epithelial ankyrin), a widely distributed new member of the ankyrin gene family and the major ankyrin in kidney, is expressed in alternatively spliced forms, including forms that lack the repeat domain. *J. Cell Biol.* 130, 313–330.
- Pickup, D. J., Ink, B. S., Hu, W., Ray, C. A., and Joklik, W. K. (1986). Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. *Proc. Natl. Acad. Sci. USA* 83, 7698–7702.
- Plucienniczak, A., Schroeder, E., Zettlmeissl, G., and Streeck, R. E. (1985). Nucleotide sequence of a cluster of early and late genes in a conserved segment of the vaccinia virus genome. *Nucleic Acids Res.* 13, 985–998.
- Prabhakaran, K., Harris, E. B., and Randhawa, B. (1996). Properties of lysophospholipase in *Mycobacterium leprae*. *J. Basic Microbiol.* **36**, 341–349.
- Print, C., Leung, E., Harrison, J., and Watoson, J. (1994). Cloning of a gene encoding a human leukocyte protein characterized by extensive heptad repeats. *Gene* 144, 221–228.
- Quick, S. D., and Broyles, S. S. (1990). Vaccinia virus gene D7R encodes a 20,000-dalton subunit of the viral DNA-dependent RNA polymerase. Virology 178, 603–605.
- Ray, C. A., Black, R. A., Kronheim, S. R., Greenstreet, T. A., Sleath, P. R., Salvensen, G. S., and Pickup, D. J. (1992). Viral inhibition of inflammation: Cowpox virus encodes an inhibitor of the interleukin-1β converting enzyme. *Cell* 69, 597–604.
- Reppert, S. M., Weaver, D. R., Cassone, V. M., Godson, C., and Kolakowski, L. F. (1995). Melatonin receptors are for the birds: Molecular analysis of two receptor subtypes differentially expressed in chick brain. *Neuron* 15, 1003–1015.
- Rodriguez, D., Esteban, M., and Rodriguez, J. R. (1995). Vaccinia virus A17L gene product is essential for an early step in virion morphogenesis. J. Virol. 69, 4640–4648.

- Rodriguez, J. F., and Esteban, M. (1987). Mapping and nucleotide sequence of the vaccinia virus gene that encodes a 14-kilodalton fusion protein. J. Virol. 61, 3550–3554.
- Rodriguez, J. F., Kahn, J. S., and Esteban, M. (1986). Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic aciddependent nucleoside triphosphatase gene. *Proc. Natl. Acad. Sci.* USA 83, 9566–9570.
- Rodriguez, J. F., and Smith, G. L. (1990). IPTG-dependent vaccinia virus: Identification of a virus protein enabling virion envelopment by Golgi membrane and egress. *Nucleic Acids Res.* 18, 5347–5351.
- Roper, R. L., Payne, L. G., and Moss, B. (1996). Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J. Virol. 70, 3753–3762.
- Rosel, J., and Moss, B. (1985). Transcriptional and translational mapping and nucleotide sequence analysis of a vaccinia virus gene encoding the precursor of the major core polypeptide 4b. J. Virol. 56, 830–838
- Rosel, J. L., Earl, P. L., Weir, J. P., and Moss, B. (1986). Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the HindIII H genome fragment. J. Virol. 60, 436– 449
- Roseman, N. A., Evans, R. K., Mayer, E. L., Rossi, M. A., and Slabaugh, M. B. (1996). Purification and characterization of the vaccinia virus deoxyuridine triphosphatase expressed in *Escherichia coli. J. Biol. Chem.* 271, 23506–23511.
- Roseman, N. A., and Slabaugh, M. B. (1990). The vaccinia virus *Hin*dIII F fragment: Nucleotide sequence of the left 6.2 kb. *Virology* 178, 410–418
- Ruby, J., Bluethmann, H., Aguet, M., and Ramshaw, I. A. (1995). CD40 ligand has potent antiviral activity. *Nature Med.* 1, 437–441. [See comments]
- Safronov, P. F., Petrov, N. A., Riazankina, O. I., Totmenin, A. V., Shchelkunov, S. N., and Sandakhiev, L. S. (1996). Genes of a circle of hosts for the cowpoxvirus. *Dokl. Akad. Nauk.* 349, 829–833.
- Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. *Proc. Natl. Acad. Sci. USA* 74, 5463– 5467
- Schmitt, J. F., and Stunnenberg, H. G. (1988). Sequence and transcriptional analysis of the vaccinia virus HindIII I fragment. *J. Virol.* **62**, 1889–1897.
- Schmutz, C., Payne, L. G., Gubser, J., and Wittek, R. (1991). A mutation in the gene encoding the vaccinia virus 37,000-M(r) protein confers resistance to an inhibitor of virus envelopment and release. *J. Virol.* 65, 3435–3442.
- Schneider, S. S., Schick, C., Fish, K. E., Miller, E., Pena, J. C., Treter, S., Hui, S. M., and Silverman, G. A. (1995). A serine proteinase inhibitor locus at 18q21.3 contains a tandem duplication of the human squamous cell carcinoma antigen gene. *Proc. Natl. Acad. Sci. USA* 92, 3147–3151
- Schnitzlein, W. M., and Tripathy, D. N. (1991). Identification and nucleotide sequence of the thymidine kinase gene of swinepox virus. *Virology* **181**, 727–732.
- Schweizer, M., and Neumann-Haefelin, D. (1995). Phylogenetic analysis of primate foamy virus by comparison of pol sequences. *Virology* 207, 577–582
- Senkevich, T. G., Bugert, J. J., Sisler, J. R., Koonin, E. V., Darai, G., and Moss, B. (1996). Genome sequence of a human tumorigenic poxvirus: prediction of specific host response-evasion genes. *Science* **273**, 813–816.
- Senkevich, T. G., Koonin, E. V., Bugert, J. J., Darai, G., and Moss, B. (1997). The genome of molluscum contagiosum virus: analysis and comparison with other poxviruses. *Virology* 233, 19–42.
- Senkevich, T. G., Koonin, E. V., and Buller, R. M. (1993a). A poxvirus protein with a RING zinc finger motif is of crucial importance for virulence. *Virology* **198**, 118–128.
- Senkevich, T. G., Muravnik, G. L., Pozdnyakov, S. G., Chizhkov, V. E., Ryazankina, O. I., Shchelkunov, S. N., Koonin E. V., and Chernos, V. I.

- (1993b). Nucleotide sequence of XhoI O fragment of ectromelia virus DNA reveals significant differences from vaccinia virus. *Virus Res.* **30.** 73–88.
- Seralini, G. E., Underhill, C. M., Smith, C. L., Nguyen, V. T., and Hammond, G. L. (1989). Biological half-life and transfer of maternal corticosteroid-binding globulin to amniotic fluid in the rabbit. *Endocrinology* 125, 1321–1325.
- Shchelkunov, S. N., Blinov, V. M., Resenchuk, S. M., Totmenin, A. V., and Sandakhchiev, L. S. (1993a). Analysis of the nucleotide sequence of a 43 kbp segment of the genome of variola virus India-1967 strain. *Virus Res.* **30**, 239–258.
- Shchelkunov, S. N., Blinov, V. M., and Sandakhchiev, L. S. (1993b). Ankyrin-like proteins of variola and vaccinia viruses. FEBS Lett. 319, 163–165.
- Shchelkunov, S. N., Blinov, V. M., Totmenin, A. V., Marennikova, S. S., Kolykhalov, A. A., Frolov, I. V., Chizhikov, V. E., Gytorov, V. V., Gashikov, P. V., and Belanov, E. F. (1993c). Nucleotide sequence analysis of variola virus HindIII M, L, I genome fragments. *Virus Res.* 27, 25–35.
- Shchelkunov, S. N., Marennikova, S. S., Blinov, V. M., Resenchuk, S. M., Totmenin, A. V., Chizhikov, V. E., Guturov, V. V., Safronov, P. F., Kurmanov, R. K., and Sandakhchiev, L. S. (1993d). Entire coding sequence of the variola virus. *Dokl. Akad. Nauk.* 328, 629–632.
- Shchelkunov, S. N., Massung, R. F., and Esposito, J. J. (1995). Comparison of the genome DNA sequences of Bangladesh-1975 and India-1967 variola viruses. *Virus Res.* 36, 107–118.
- Shida, H. (1986). Nucleotide sequence of the vaccinia virus hemagglutinin gene. *Virology* **150**, 451–462.
- Shuman, S. (1992). Vaccinia virus RNA helicase: An essential enzyme related to the DE-H family of RNA-dependent NTPases. *Proc. Natl. Acad. Sci. USA* 89, 10935–10939.
- Shuman, S., and Moss, B. (1987). Identification of a vaccinia virus gene encoding a type I DNA topoisomerase. *Proc. Natl. Acad. Sci. USA* 84, 7478–7482.
- Skimmer, M. A., Moore, J. B., Binns, M. M., Smith, G. L., and Boursnell, M. E. (1994). Deletion of fowlpox virus homologues of vaccinia virus genes between the 3 beta-hydroxysteroid dehydrogenase (A44L) and DNA ligase (A50R) genes. J. Gen. Virol. 75, 2495–2498.
- Slabaugh, M., Roseman, N., Davis, R., and Mathews, C. (1988). Vaccinia virus-encoded ribonucleotide reductase: Sequence conservation of the gene for the small subunit and its amplification in hydroxyurearesistant mutants. J. Virol. 62, 519–527.
- Smith, G. L., and Chan, Y. S. (1991). Two vaccinia virus proteins structurally related to the interleukin-1 receptor and the immunoglobulin superfamily. *J. Gen. Virol.* **72**, 511–518.
- Smith, G. L., Chan, Y. S., and Howard, S. T. (1991). Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. *J. Gen. Virol.* **72**, 1349–1376.
- Smith, G. L., Howard, S. T., and Chan, Y. S. (1989). Vaccinia virus encodes a family of genes with homology to serine proteinase inhibitors. *J. Gen. Virol.* **70**, 2333–2343.
- Spehner, D., Gillard, S., Drillien, R., and Kirn, A. (1988). A cowpox virus gene required for multiplication in Chinese hamster ovary cells. *J. Virol.* **62**, 1297–1304.
- Spriggs, M. K., Hruby, D. E., Maliszewski, C. R., Pickup, D. J., Sims, J. E., Buller, R. M., and VanSlyke, J. (1992). Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. *Cell* **71**, 145–152.
- Stamencovic, I., Clark, E. A., and Seed, B. (1989). A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. *EMBO J.* 8, 1403–1410.
- Strayer, D. S., Jerng, H. H., and O'Connor, K. (1991). Sequence and analysis of a portion of the genomes of Shope fibroma virus and malignant rabbit fibroma virus that is important for viral replication in lymphocytes. *Virology* **185**, 585–595.
- Stroobant, P., Rice, A. P., Gullick, W. J., Cheng, D. J., Kerr, I. M., and Waterfield, M. D. (1985). Purification and characterization of vaccinia virus growth factor. *Cell* **42**, 383–393.
- Sullivan, J. T., Fleming, S. B., Robinson, A. J., Mercer, A. A. (1995a).

- Sequence and transcriptional analysis of a near-terminal region of the orf virus genome. *Virus Genes* 11, 21–29.
- Sullivan, J. T., Fraser, K. M., Fleming, S. B., Robinson, A. J., and Mercer, A. A. (1995b). Sequence and transcriptional analysis of an orf virus gene encoding ankyrin- like repeat sequences. *Virus Genes* **9**, 277–282.
- Sullivan, J. T., Mercer, A. A., Fleming, S. B., and Robinson, A. J. (1994). Identification and characterization of an orf virus homologue of the vaccinia virus gene encoding the major envelope antigen p37K. *Virology* 202, 968–973.
- Sung, T. C., Roper, R. L., Zhang, Y., Rudge, S. A., Temel, R., Hammond, S. M., Morris, A. J., Moss, B., Engebrecht, J., and Frohman, M. A. (1997). Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. *EMBO J.* 16, 4519–4530.
- Sutter, G., and Moss, B. (1992). Nonreplicating vaccinia vector efficiently expresses recombinant genes. *Proc. Natl. Acad. Sci. USA* 89, 10847–10851.
- Sutter, G., Wyatt, L. S., Foley, P. L., Bennink, J. R., and Moss, B. (1994). A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. *Vaccine* 12, 1032–1040.
- Symons, J. A., Alcami, A., and Smith, G. L. (1995). Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. *Cell* 81, 551–560.
- Takahashi, R., Oie, M., and Ichihashi, Y. (1994). N-terminal amino acid sequences of vaccinia virus structural proteins. *Virology* **202**, 844–852.
- Takahashi-Nishimaki, F., Funahashi, S., Miki, K., Hashizume, S., and Sugimoto, M. (1991). Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins. *Virology* 181, 158–164.
- Talbott, R. L., Sparger, E. E., Lovelace, K. M., Fitch, W. M., Pedersen, N. C., Luciw, P. A., and Elder, J. H. (1989). Nucleotide sequence and genomic organization of feline immunodeficiency virus. *Proc. Natl. Acad. Sci. USA* 86, 5743–5747.
- Tamin, A., Esposito, J., and Hruby, D. (1991). A single nucleotide substitution in the 5'-untranslated region of the vaccinia N2L gene is responsible for both alpha-amanitin-resistant and temperature-sensitive phenotypes. *Virology* **182**, 393–396.
- Tan, J. L., and Spudich, J. A. (1990). Developmentally regulated proteintyrosine kinase genes in *Dictyostelium discoideum. Mol. Cell. Biol.* 10, 3578–3583.
- Tartaglia, J., Perkus, M. E., Taylor, J., Norton, E. K., Audonnet, J. C., Cox, W. I., Davis, S. W., van der Hoeven, J., Meignier, B., Riviere, M., Languet, B., and Paoletti, E. (1992). NYVAC: A highly attenuated strain of vaccinia virus. *Virology* 188, 217–232.
- Tartaglia, J., and Paoletti, E. (1985). Physical mapping and DNA sequence analysis of the rifampicin resistance locus in vaccinia virus. Virology 147, 394–404.
- Tartaglia, J., Winslow, J., Goebel, S., Johnson, G. P., Taylor, J., and Paoletti, E. (1990). Nucleotide sequence analysis of a 10.5 kbp HindIII fragment of fowlpox virus: Relatedness to the central portion of the vaccinia virus HindIII D region. *J. Gen. Virol.* 71, 1517–1524.
- Tengelsen, L. A., Slabaugh, M. B., Bibler, J. K., and Hruby, D. E. (1988). Nucleotide sequence and molecular genetic analysis of the large subunit of ribonucleotide reductase encoded by vaccinia virus. *Virology* 164, 121–131.
- Tomley, F., Binns, M., Campbell, J., and Boursnell, M. (1988). Sequence analysis of an 11.2 kilobase, near-terminal, BamHI fragment of fowl-pox virus. *J. Gen. Virol.* **69**, 1025–1040.
- Twardzik, D. R., Brown, J. P., Ranchalis, J. E., Todaro, G. J., and Moss, B. (1985). Vaccinia virus-infected cells release a novel polypeptide functionally related to transforming and epidermal growth factors. *Proc. Natl. Acad. Sci. USA* 82, 5300–5304.
- Ueda, Y., Morikawa, S., and Matsuura, Y. (1990). Identification and nucleotide sequence of the gene encoding a surface antigen induced by vaccinia virus. *Virology* 177, 588–594.

Upton, C., DeLange, A. M., and McFadden, G. (1987). Tumorigenic poxviruses: genomic organization and DNA sequence of the telomeric region of the Shope fibroma virus genome. *Virology* **160**, 20–30

- Upton, C., Macen, J. L., Schreiber, M., and McFadden, G. (1991a). Myxoma virus expresses a secreted protein with homology to the tumor necrosis factor receptor family that contributes to viral virulence. *Virology* 184, 370–382.
- Upton, C., Macen, J. L., Wishart, D. S., and McFadden, G. (1990a).Myxoma virus and malignant rabbit fibroma virus encode a serpin-like protein important for virus virulence. *Virology* 179, 618–631.
- Upton, C., Mossman, K., and McFadden, G. (1992). Encoding of a homolog of the IFN-g receptor by myxoma virus. *Science* 258, 1369– 1372.
- Upton, C., Opgenorth, A., Traktman, P., and McFadden, G. (1990b).
 Identification and DNA sequence of the Shope fibroma virus DNA topoisomerase gene. *Virology* 176, 439–447.
- Upton, C., Stuart, D., and McFadden, G. (1991b). Identification and DNA sequence of the large subunit of the capping enzyme from Shope fibroma virus. Virology 183, 773–777.
- Upton, C., Stuart, D. T., and McFadden, G. (1993). Identification of a poxvirus gene encoding a uracil DNA glycosylase. *Proc. Natl. Acad.* Sci. USA 90, 4518–4522.
- Van Meir, E., and Wittek, R. (1988). Fine structure of the vaccinia virus gene encoding the precursor of the major core protein 4a. *Arch. Virol.* **102**, 19–27.
- Vanslyke, J. K., Whitehead, S. S., Wilson, E. M., and Hruby, D. E. (1991). The multistep proteolytic maturation pathway utilized by vaccinia virus P4a protein: A degenerate conserved cleavage motif within core proteins. *Virology* 183, 467–478.
- Vassalli, J. D., Huarte, J., Bosco, D., Sappino, A. P., Sappino, N., Velardi, A., Wohlwend, A., Erno, H., Monard, D., and Belin, D. (1993). Proteasenexin 1 as an androgen-dependent secretory product of the murine seminal vesicle. *EMBO J.* 12, 1871–1898.
- Venkatesan, S., Gershowitz, A., and Moss, B. (1982). Complete nucleotide sequences of two adjacent early vaccinia virus genes located within the inverted terminal repetition. J. Virol. 44, 637–646.
- Vos, J. C., Sasker, M., and Stunnenberg, H. G. (1991). Vaccinia virus capping enzyme is a transcription initiation factor. *EMBO J.* **10**, 2553–2558.
- Vydelingum, S., Baylis, S. A., Bristow, C., Smith, G. L., and Dixon, L. K. (1993). Duplicated genes within the variable right end of the genome of a pathogenic isolate of African swine fever virus. *J. Gen. Virol.* 74, 2125–2130.
- Wang, S., and Shuman, S. (1995). Vaccinia virus morphogenesis is blocked by temperature-sensitive mutations in the F10 gene, which encodes protein kinase 2. *J. Virol.* **69**, 6376–6388.
- Way, M., Sanders, M., Chafel, M., Tu, Y. H., Knight, A., and Matsudaira, P. (1995). Beta-scruin, a homolog of the actin crosslinking protein scruin, is localized to the acrosomal vesicle of Limulus sperm. J. Cell. Sci. 108, 3155–3162.
- Wei, Y. F., Robins, P., Carter, K., Caldecott, K., Pappin, D. J. C., Yu, G. L., Wang, R. P., Shell, B. K., Nash, R., Schar, P., Barnes, D. E., Haseltine,

- W. A., and Lindahl, T. Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. *Mol. Cell. Biol.* 15, 3206–3216.
- Weinrich, S. L., and Hruby, D. E. (1986). A tandemly-oriented late gene cluster within the vaccinia virus genome. *Nucleic Acids Res.* 14, 3003–3016.
- Weir, J. P., and Moss, B. (1983). Nucleotide sequence of the vaccinia virus thymidine kinase gene and the nature of spontaneous frameshift mutation. *J. Virol.* **46**, 530–537.
- Whayeb, S. H., Yamamoto, K., Tojo, H., and Honda, T. (1996). Genetic analysis of the chromosomal region encoding lysophospholipase L2 of Vibrio cholerae O1. *Biochim. Biophys. Acta* **1300**, 1–4.
- Wilson, R., Ainscough, R., Anderson, K., Baynes, C., Berks, M., Bonfield, J., Burton, J., Connell, M., Copsey, T., Cooper, J., Coulson, A., Craxton, M., Dear, S., Du, Z., Durbin, R., Favello, A., Fulton, L., Gardner, A., Green, P., Hawkins, T., Hillier, L., Jier, M., Johnston, L., Jones, M., Kershaw, J., Kirsten, J., Laister, N., Latreille, P., Lightning, J., Lloyd, C., McMurray, A., Mortimore, B., O'Callaghan, M., Parsons, J., Percy, C., Rifken, L., Roopra, A., Saunders, D., Shownkeen, R., Smaldon, N., Smith, A., Sonnhammer, E., Staden, R., Sulston, J., Thierry-Mieg, J., Thomas, K., Vaudin, M., Vaughan, K., Waterston, R., Watson, A., Weinstock, L., Wilkinson-Sproat, J., and Wohldman, P. (1994). 2.2 Mb of contiguous nucleotide sequence from chromosome III of *C. elegans. Nature* 368, 32–38.
- Wolffe, E. J., Katz, E., Weisberg, A., and Moss, B. (1997). The A34R glycoprotein gene is required for induction of specialized actincontaining microvilli and efficient cell-to-cell transmission of vaccinia virus. J. Virol. 71, 3904–3915.
- Wolffe, E. J., Moore, D. M., Peters, P. J., and Moss, B. (1996). Vaccinia virus A17L open reading frame encodes an essential component of nascent viral membranes that is required to initiate morphogenesis. *J. Virol.* 70, 2797–2808.
- Wright, C. F., Keck, J. G., Tsai, M. M., and Moss, B. (1991). A transcription factor for expression of vaccinia virus late genes is encoded by an intermediate gene. *J. Virol.* **65**, 3715–3720.
- Xue, F., and Cooley, L. (1993). Kelch encodes a component of intercellular bridges in Drosophila egg chambers. *Cell* **72**, 681–693.
- Yanez, R. J., Rodriquez, J. M., Nogal, M. L., Yuste, L., Enriques, C., Rodriguez, J. F., and Vinuela, E. (1993). Analysis of the complete nucleotide sequence of African Swine Fever Virus. *Virology* 208, 249–278.
- Yang, W. P., and Bauer, W. R. (1988). Purification and characterization of vaccinia virus structural protein VP8. *Virology* **167**, 578–584.
- Yuen, L., Noiseux, M., and Gomes, M. (1991). DNA sequence of the nucleoside triphosphate phosphohydrolase I (NPH I) of the *Choristoneura biennis* entomopoxvirus. *Virology* 182, 403–406.
- Zantinge, J. L., Krell, P. J., Derbyshire, J. B., and Nagy, E. (1996). Partial transcriptional mapping of the fowlpox virus genome and analysis of the EcoRI L fragment. J. Gen. Virol. 77, 603–614.
- Zhang, H., Scheirer, D. C., Fowle, W. H., and Goodman, H. M. (1992). Expression of antisense gene blocks chloroplast differentiation in Arabidopsis. *Plant Cell* **4**, 1575–1588.