Reading and Writing: Discriminative and Generative Modeling for Self-Supervised Text Recognition

[ACMMM, 2022]

2023. 05. 26.

김성수

Data Mining and Quality Analytics

- Task명

Task: Self-supervised Learning + Scene Text Recognition **

- SSL: Unlabeled 데이터를 활용하여 Feature Extractor의 성능 향상
- STR: 다양한 배경과 여러 형태의 글꼴이 존재하는 일상 이미지 내 문자를 인식하는 연구분야

- 선행연구의 한계

Limitation of Previous Research

- STR은 학습을 위한 Labeled 데이터가 부족
 - ✓ 이에 따라 합성 이미지를 활용하지만, 이는 Domain Gap이 존재하기에 일반화 성능 저하

- 선행연구의 한계를 극복과정 (Overview of Research)

Overcome the Limitation

- Unlabeled 데이터를 활용하여 Labeled 데이터가 부족한 한계를 극복
- 이때, 자기지도학습 방법론 중 대조학습을 활용

- 선행연구의 한계를 극복과정 (Overview of Research)

Overcome the Limitation

- 사람은 이미지 내 문자열을 이해할 때, 읽는 행위와 쓰는 행위를 통해서 학습
- Step1. Reading (= Discriminative = Contrastive SSL)
- Step2. Writing (= Generative = Generative SSL)

- 선행연구의 한계를 극복과정 (Overview of Research)

Overcome the Limitation

- 사람은 이미지 내 문자열을 이해할 때, 읽는 행위와 쓰는 행위를 통해서 학습
- Step1. Reading (= Discriminative = Contrastive SSL)
- Step2. Writing (= Generative = Generative SSL)

Contrastive SSL

- 선행연구의 한계를 극복과정 (Overview of Research)

Overcome the Limitation

- 사람은 이미지 내 문자열을 이해할 때, 읽는 행위와 쓰는 행위를 통해서 학습
- Step1. Reading (= Discriminative = Contrastive SSL): 다양한 각도에서 글자 간 다른 것을 식별
- Step2. Writing (= Generative = Generative SSL): 문자열을 직접 작성해보면서 학습

Generative SSL

Input

- Contribution

Contribution

- {STR+SSL}에 Generative 모델링을 처음으로 적용
- 기존 방법론들보다 성능이 크게 개선
- 다양한 Task에서 좋은 성능을 보임
 - Text Super-Resolution, Text Segmentation, Text Recognition

Cockaton Com

- 개요

❖ DiG: <u>Di</u>scriminative and <u>G</u>enerative Self-supervised Method

- ① 데이터 증강 및 Masking 수행
- ② Contrastive Loss 산출
- ③ Generative Loss 산출
- ④ 최종 Loss 산출
- ⑤ Online Network는 Backpropagation으로, Momentum Network는 EMA로 Update (BYOL style)

- DiG Detail

❖ Step1. 데이터 증강 및 Masking 수행

- 겹치지 않는 4x4 크기의 패치들을 활용
- 전체 이미지의 60%를 Masking
- 데이터 증강은 SeqCLR(CVPR, 2021)보다 강하게 활용

- DiG Detail

❖ Step2. Contrastive Loss 산출

- Encoder: ViT → Feature Extractor
- Patch head: Mapping Function (Adaptive Average Pooling)
- Projection Head: 3FC Layer + GELU + Layer Normalization
- Prediction Head: 2FC Layer + GELU + Layer Normalization

- DiG Detail

❖ Step2. Contrastive Loss 산출

- $$\begin{split} L_c &= -\log \frac{exp(q_m \cdot \hat{k}_a/\tau)}{exp(q_m \cdot \hat{k}_a/\tau) + \sum_{\hat{k}_a^-} exp(q_m \cdot \hat{k}_a^-/\tau)} \\ &- \log \frac{exp(q_a \cdot \hat{k}_m/\tau)}{exp(q_a \cdot \hat{k}_m/\tau) + \sum_{\hat{k}_m^-} exp(q_a \cdot \hat{k}_m^-/\tau)}, \end{split}$$
- 흔히 아는 대조학습 Loss(InfoNCE)와 유사한 형태
 - ▶ 특이점: 각 Masking과 Augmentation의 객체에서 나온 Output을 다르게 교차하여 대조학습

- DiG Detail

❖ Step3. Generative Loss 산출

- 이미지에서 Masking된 부분을 복원하는 방식으로 학습
- L2 Loss 활용 $L_m = \frac{1}{N} \sum_{i \in N} (x_i y_i)^2$

$$L_m = \frac{1}{N} \sum_{i \in N} (x_i - y_i)^2$$

$$L_m = \frac{1}{N} \sum_{i \in N} (x_i - y_i)^2 \qquad L_c = -\log \frac{\exp(q_m \cdot \hat{k}_a/\tau)}{\exp(q_m \cdot \hat{k}_a/\tau) + \sum_{\hat{k}_a^-} \exp(q_m \cdot \hat{k}_a^-/\tau)}$$

$$-\log\frac{\exp(q_a\cdot\hat{k}_m/\tau)}{\exp(q_a\cdot\hat{k}_m/\tau)+\sum_{\hat{k}_m^-}\exp(q_a\cdot\hat{k}_m^-/\tau)},$$

- DiG Detail

Step4 & 5 Loss 가중합 및 Network Update

- Contrastive Loss와 Generative Loss를 가중합하여 최종 Loss 산출 $L = L_c + \alpha \times L_m$
- Online Network는 Backpropagation으로, Momentum Network는 EMA로 Update (BYOL style)

- Setting

❖ 실험환경

- 사전학습에는 합성 Labeled 데이터(17M)와 실제 Unlabeled 데이터(15.77M)를 함께 활용
- DiG-ViT-Tiny / DiG-ViT-Small / DiG-ViT-Base 에 대해서 실험 수행
 - ✓ 각각은 Embedding 크기에 차이가 있음 (192, 384, 512)

- Result

❖ Scene Text Recognition Benchmark 데이터셋 실험 결과

- 기존 방법론보다 큰 폭으로 성능 개선
- Discriminative방식과 Generative 방식 모두 효과가 있음을 입증
- 유사한 파라미터 개수의 모델과 비교 시 큰 성능 개선
 - ✓ 물론 Unlabeled 데이터를 함께 활용하니 당연한 결과 일수도,
 - ✓ ABINet같은 경우는 Language Model을 함께 활용함에도 이김

Method	Decoder	Regular			Irregular							Occluded		Handwritten	
	200000	IIIT	SVT	IC13	IC15	SVTP	CUTE	COCO	CTW	TT	HOST	WOST	IAM	CVL	
SeqCLR [1]		80.9	-	86.3	-	-	-	-	-	-	-	-	76.7	76.9	
PerSec-ViT + UTI-100M [34]		85.4	86.1	92.8	70.3	73.9	69.2	-	-	-	-	-	79.9	80.5	
DiG-ViT-Tiny	CTC	93.3	89.7	92.5	79.1	78.8	83.0	58.7	69.7	72.1	32.3	53.3	79.5	82.7	
DiG-ViT-Small		95.5	91.8	95	84.1	83.9	86.5	64.3	76.0	76.87	48.6	67.7	82.7	86.4	
DiG-ViT-Base		95.9	92.6	95.3	84.2	85.0	89.2	66.0	77.3	78.7	58.0	73.1	83.2	87.4	
SeqCLR [1]		82.9	-	87.9	-	-	-	-	-	-	-	-	79.9	77.8	
PerSec-ViT + UTI-100M [34]		88.1	86.8	94.2	73.6	77.7	72.7	-	-	-	-	-	83.7	82.9	
DiG-ViT-Tiny	Attention	95.1	92.4	95.8	83.2	85.4	84.7	63.8	72.3	75.9	47.7	65.1	83.8	86.6	
DiG-ViT-Small		96.4	94.6	96.6	86.0	89.3	88.9	68.2	76.7	80.0	65.0	77.1	84.9	89.0	
DiG-ViT-Base		96.8	94.1	96.6	86.5	87.9	92.4	68.7	77.7	81.3	70.1	80.2	85.6	90.2	
DiG-ViT-Tiny		95.8	92.9	96.4	84.8	87.4	86.1	66.8	75.3	78.1	60.9	73.0	85.2	88.9	
DiG-ViT-Small	Transformer	96.7	93.4	97.1	87.1	90.1	88.5	68.8	78.8	81.1	72.1	81.1	85.7	90.5	
DiG-ViT-Base		96.7	94.6	96.9	87.1	91.0	91.3	69.8	79.3	81.9	74.9	82.3	87.0	91.3	

- Result

❖ Scene Text Recognition Benchmark 데이터셋 실험 결과

- 기존 방법론보다 큰 폭으로 성능 개선
- Discriminative방식과 Generative 방식 모두 효과가 있음을 입증
- 유사한 파라미터 개수의 모델과 비교 시 큰 성능 개선

DiG-ViT-Small

- ✓ 물론 Unlabeled 데이터를 함께 활용하니 당연한 결과 일수도,
- ✓ ABINet같은 경우는 Language Model을 함께 활용함에도 이김

Regular

97.7

96.1

Encoder Freeze (0)

Method	Regular					Irreg	Occl	Avg.				
	IIIT	SVT	IC13	IC15	SVTP	CUTE	COCO	CTW	TT	HOST	WOST	11.8.
Gen-ViT-Small	86.6	82.1	88.7	72.9	74.4	72.2	48.5	64.1	63.3	33.8	56.5	59.3
Dis-ViT-Small	92.6	90.4	93.4	81.2	81.7	84.0	60.0	72.8	73.1	33.3	56.1	67.0
DiG-ViT-Small	94.2	93.0	95.3	84.3	86.1	87.5	63.4	77.9	75.8	41.7	64.0	71.1

Irregular

75.0

86.3

88.9

56.0

Label Fraction	Method													
		IIIT	SVT	IC13	IC15	SVTP	CUTE	COCO	CTW	TT	HOST	WOST	Avg.	
1% (27.8K)	Scratch-ViT-Small	12.6	3.9	10.3	7.56	3.41	6.9	2.2	4.6	4.5	5.4	6.0	5.2	
	Gen-ViT-Small	87.2	84.9	89.5	76.0	75.5	72.6	52.0	63.7	64.7	30.1	54.2	60.6	
	Dis-ViT-Small	87.5	85.9	88.9	75.9	73.3	72.9	52.8	63.9	65.2	30.3	49.5	60.6	
	DiG-ViT-Small	88.4	86.2	89.9	79.0	76.6	77.8	54.8	67.9	67.2	33.2	53.3	62.9	
	Scratch-ViT-Small	78.4	73.6	81.8	66.8	64.8	56.6	43.2	48.9	54.4	30.7	48.4	52.3	
10% (278K)	Gen-ViT-Small	95.0	92.3	95.1	83.7	84.7	90.6	65.1	79.3	80.6	37.8	63.9	71.9	
	Dis-ViT-Small	94.6	92.3	94.6	84.5	86.2	89.9	65.7	78.2	79.8	39.0	61.3	71.9	
	DiG-ViT-Small	95.3	94.4	95.9	85.3	87.9	91.7	67.1	80.5	81.1	42.1	64.0	73.5	
100% (2.78M)	Scratch-ViT-Small	95.0	92.9	94.9	85.2	86.7	88.9	66.1	78.8	81.0	44.8	67.9	73.4	
	Gen-ViT-Small	97.2	97.1	97.6	88.5	91.5	95.5	74.6	86.0	89.2	54.4	74.3	80.2	
	Dis-ViT-Small	97.1	95.7	97.4	88.1	92.1	94.8	74.3	85.2	88.7	55.5	72.9	79.9	

Encoder Freeze (X)

75.7

80.7

Occluded

88.6

91.6

96.2

97.3

- Result

❖ Scene Text Recognition Benchmark 데이터셋 실험 결과

- 기존 방법론보다 큰 폭으로 성능 개선
- Discriminative방식과 Generative 방식 모두 효과가 있음을 입증
- 유사한 파라미터 개수의 모델과 비교 시 큰 성능 개선
 - ✓ 물론 Unlabeled 데이터를 함께 활용하니 당연한 결과 일수도,,
 - ✓ ABINet같은 경우는 Language Model을 함께 활용함에도 이김

- Result

Method Medium Easy Medium Hard Easy Hard SRCNN [13] 0.8152 0.6425 0.6833 23.13 19.57 19.56 SRResNet [27] 0.8176 0.6324 0.7060 20.65 18.90 19.50 **TSRN** [56] 0.6596 0.7285 22.95 19.26 19.76 0.8562 TBSRN [3] 0.8729 0.6455 0.7452 24.13 19.08 20.09 Scratch-ViT-Small 20.45 0.8143 0.6288 0.6845 22.90 19.65 DiG-ViT-Small 0.8613 0.6561 0.7215 23.98 19.85 20.57

SSIM

❖ 다양한 Task에서 실험 결과

• 학습된 Encoder를 Text Segmentation 및 Text Super-Resolution에 적용 시 성능 향상 확인

PSNR