Motion Capture (Mocap)

What is motion capture?

- Recording 3D live action
 - Track motion of reference points
 - Convert to joint angles
 - Use angles to drive an articulated model
 - Motion paths can then be combined to give greater control

Pros and Cons of Motion Capture

- Pros
 - All fine details of human motion will be recorded
 - if they can be captured
- Cons
 - Not so easy to
 - Edit
 - Generalize
 - Control
 - Not cheap

Applications

- Animation
- Special effects
- Robot control
- Interactive characters

Computer Puppetry

Using physical device to control animation

Shin et al., "Computer puppetry"

What is captured?

- What do we need to know?
 - X,Y, Z
 - roll, pitch, yaw
- Errors cause
 - Joints to come apart
 - Links to grow/shrink
 - Bad contact points

What is captured?

- Large and small scale
 - whole body
 - face, hands
 - animals

How to use the data?

- Off-line
 - Processed by filtering, inverse kinemtics
 - Produce libraries of motion trajectories
 - Choose among them
 - Blend between them
 - Modify on the fly
- On-line (performance animation)
 - Driving character directly based on what actor does in real time

History of the technology

- Recording motion for biomechanics
 - High accuracy
 - Fewer recorded points
 - Hand digitizing film
 - Supplement with force plate, muscle activity

E. Muybridge, 1830-1904

History of the technology

- Computer animation
 - Rotoscoping

- VR tracking technology
 - Less accuracy required
 - Fewer sensors

Fleischer, 1915

Rotoscoping

- Capturing video
- Tracing using transparent matte

Rotoscoping

- Capturing video
- Tracing using transparent matte
- Post-processing

Production Pipeline

Motion Capture Systems

- Optical
 - 3D position of markers
- Magnetic
 - 6 DOF of a solid
- Mechanical
 - Exo-skeleton
- Inertial
 - gyroscope, accelerometer

Optical Motion Capture (Passive)

- Passive reflection
 - Camera
 - Infrared, visible, or near infrared strobes
 - High resolution (1 to 4 million pixels)
 - 120-240 frames/sec (max 2000 frames/sec)
 - Not outdoors
 - No glossy or reflective materials
 - Tight clothing
 - Occlusion of markers by limbs or props

Optical Motion Capture (Active)

- Each marker encoded by active LED pulse
- No marker confusion problem
- Outdoor capture
- 3,600 x 3,600 resolution
- 120 frames/sec (128 markers or four persons)
- 480 frames/sec (32 markers or single person)
- 1/3 the cost of passive systems

Magnetic Motion Capture

- Electromechanical transducer
- Heavier sensors
- Wires on body (wireless back to base station)
- Limited accuracy (~10x less accuracy than

optical)

Magnetic Motion Capture (cont.)

- Smaller workspace
- Sensors are the cost
- Sensitive to EMI/metal
- Relatively cheaper than optical device

Ascension MotionStar Wireless

Mechanical Motion Capture

- Subject wears an exoskeleton
- No interference from light or magnetic field
- No marker confusions
- No range limit
- Some restriction of movement
- Absolute position is unknown

Mechanical Motion Capture

- Data glove
 - Bend sensor + optical tracking
 - **-6 DOF**
- video

http://www.vrealities.com/glove.html

Inertial Motion Capture

- Inertia sensors
 - gyroscope
 - accelerometer

Moven / xsen

- Outdoor capture
- Difficult to calibrate

Nintendo, Wii

RGBD Camera

- RGB + Depth Cameras
- Capture both skin deformation and skeleton motion

Technical Issues

- Resolution/range of motion
- Calibration
- Accuracy
 - Marker movement
 - Sensor noise
 - Restrictions on the environment
 - Capture rate
- Occlusion/correspondence

Recent Mocap Research

Skin motion capture

Outdoor motion capture

- Nonintrusive motion capture
 - Multiview vision approaches
 - Learning-based approaches

Skin Motion Capture Park & Hodgins, SIGGRAPH'06

40-60 markers

A dense set of markers

 Uses a conventional optical motion capture system

Data collection and cleaning

 Uses a conventional optical motion capture system

Data collection and cleaning

Skin Animation

A dense set of markers

Detailed surface model

Videos

- Park & Jessica, SIGGRAPH'06
- Lord of the rings: Gollum

Outdoor Capture

- Vlasic et al., "Practical Motion Capture in Everyday Surroundings," SIGGRAPH'07
- Inertia sensors + ultrasonic measurements

Correct MOCAP using high rate IMUs

- Kuo et al., <u>Creating impactful characters:</u> <u>correcting human impact accelerations using</u> <u>high rate IMUs in dynamic activities</u>, TOG'19
- Use FK (Jacobian) to predict an IMU's acceleration, which depends on joint angles
- Correct joint angles such that the predicted and measured accelerations at IMUs are matched
- Correction only applied during impact → won't affect other captured motion without impact!

Nonintrusive Motion Capture

- Capture 3D geometry and appearance
 - Vlasic et al., "Articulated Mesh Animation from Multi-view Silhouettes," SIGGRAPH'08
 - Edilson de Aguiar, "Performance Capture from Sparse Multi-view Video," SIGGRAPH '08

Real-time Markerless MOCAP from Single RGB Camera

- Many learning-based methods proposed recently in computer vision and graphics
- Skeleton capture
 - Mehta et al., <u>VNect: real-time 3D human pose</u>
 <u>estimation with a single RGB camera</u>, SIGGRAPH'17
- Geometry + Appearance
 - Habermann et al., <u>LiveCap: Real-time Human</u>
 <u>Performance Capture from Monocular Video</u>, TOG'19

Limitation of learning-based methods: extreme cases not in training data

Failure cases in LiveCap

Diffusion Models: PhysDiff, CVPR'23

Mocap Resources

- CMU Mocap database
 - http://mocap.cs.cmu.edu
 - 2605 motion clips, 23 categories
 - Free for research
- "Database Techniques With Motion Capture", SIGGRAPH'07 course
 - Motion extraction and segmentation
 - Motion retrieval
 - Motion signal modeling