STREAMLINE Training Summary Report: 2023-06-27 17:24:26.126216

General Pipeline Settings:

Data Path: /Users/yanbo/Dropbox/STREAMLINE-Regression/DemoData_2

Output Path:

/Users/yanbo/Dropbox/STREAMLINE-Regression/Colab_Output

Experiment Name: Demo_Experiment

Class Label: quality Instance Label: None Ignored Features: None

Specified Categorical Features: None

CV Partitions: 5 Partition Method: R Match Label: None Categorical Cutoff: 10

Statistical Significance Cutoff: 0.05 Export Feature Correlations: True Export Univariate Plots: False

Random Seed: 42

Run From Jupyter Notebook: False

Use Data Scaling: True
Use Data Imputation: True
Use Multivariate Imputation: True
Use Mutual Information: True
Use MultiSURF: True

Use TURF: False TURF Cutoff: 0.5

MultiSURF Instance Subset: 2000 Max Features to Keep: 2000 Filter Poor Features: False Top Features to Display: 40

Export Feature Importance Plot: True Overwrite CV Datasets: True

Primary Metric: explained_variance

Uniform Feature Importance Estimation (Models): True

 $Hyperparameter\ Sweep\ Number\ of\ Trials:\ 50$

Hyperparameter Timeout: 900

Export Hyperparameter Sweep Plots: True

Export Metric Boxplots: True

Export Feature Importance Boxplots: True

Metric Weighting Composite FI Plots: explained_variance

Top Model Features To Display: 40

ML Modeling Algorithms:

Linear Regression: True
Elastic Net: True
Group Lasso: False
RF Regressor: False
AdaBoost: False
GradBoost: False
SVR: True

Datasets:

D1 = winequality-red

	nalysis of Each	Dataset (10p	Toreatures	IOI Eacil)		
				7E) 60	• • • • • • • • • • • • • • • • • • • •	
ARNING: Un	ivariate analysi	is failed from	scipy packag	ge error. To fi	x: pip install	upgrade scip

Dataset and Model Prediction Summary: D1 = winequality-red

Dataset Counts Summary:

instances: 1599.0 features: 11.0

categorical_features: 0.0 quantitative_features: 11.0 missing_values: 0.0 missing_percent: 0.0

Top ML Algorithm Results (Averaged Over CV Runs):

Best (Max Error): Elastic Net = 2.229
Best (Mean Absolute Error): SVR = 0.461
Best (Mean Squared Error): SVR = 0.392

Best (Explained Variance): SVR = 0.398

Best (Median Absolute Error): SVR = 0.336

 $Best \ (Pearson \ Correlation) \hbox{: Elastic Net} = 0.589$

Average Model Prediction Statistics (Rounded to 3 Decimal Points)

D1 = winequality-red						
ML Algorithm	Max	Mean	Mean	Median	Explained	Pearson
	Error	Absolute	Squared	Absolute	Variance	Correlation
Linear Regression	2.276	0.505	0.427	0.4	0.344	0.59
Elastic Net	2.229	0.508	0.428	0.407	0.343	0.589
SVR	2.455	0.461	0.392	0.336	0.398	0.634

Feature Importance Summary: D1 = winequality-red

Datasets:		
D1 = winequality-red		

Using Best Performing Algorithms (Kruskall Wallis Compare Datasets)

Pipeline Runtime Summary

winequality-red		
Pipeline Component	Time (sec)	
Exploratory Analysis	0.79	
Preprocessing	0.02	
Mutual Information	0.34	
MultiSURF	57.81	
Feature Selection	0.29	
Linear Regression	0.18	
Elastic Net	12.34	
SVR	124.58	
Stats Summary	22.86	