Aufgabe NUS I-1: Plattenkondensator

25 Punkte

Gegeben ist ein Plattenkondensator gemäss **Fig. 1(a)**. Die Abmessungen des Plattenkondensators sind mit der Länge l_0 und der Tiefe t (senkrecht zur Zeichenebene) gegeben. In der Mitte des Kondensators befindet sich ein Dielektrikum mit der Dielektrizitätskonstante ε_1 und der Dicke d/3. Zunächst werde die Spannung U_0 wie eingezeichnet angelegt. Vernachlässigen Sie bei allen Berechnungen sämtliche Randeffekte und verwenden Sie $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{A\,s/(V\,m)}$.

Fig. 1: Plattenkondensator mit unterschiedlichen Dielektrika.

a) Berechnen Sie die elektrische Flussdichte und das elektrische Feld (Betrag und Richtung) in den einzelnen Dielektrika in Abhängigkeit der Ladung Q des Kondensators.

(4 Pkt.)

b) Berechnen Sie die Ladung Q des Kondensators, die elektrische Flussdichte und das elektrische Feld in den einzelnen Dielektrika in Abhängigkeit der angelegten Spannung U_0 und der Kondensatorgeometrie.

(5 Pkt.)

c) Berechnen Sie die Gesamtkapazität $C_{\rm ges}$ der Anordnung.

(2 Pkt.)

Nun wird die Spannungsquelle U_0 vom Kondensator getrennt, wobei der Kondensator geladen bleibt. Zusätzlich wird das Dielektrikum mit der Dielektrizitätskonstante ε_1 gemäss **Fig. 1(b)** um $l_0/3$ nach rechts verschoben und es wird die Spannung $U_{\rm m}$ gemessen.

d) Zeichnen Sie das elektrische Ersatzschaltbild der entstehenden Anordnung und bestimmen Sie die Teilkapazitäten des linken $(0 < x < l_0/3)$ und rechten $(l_0/3 < x < l_0)$ Kondensatorteils. Betrachten Sie dabei nur den Bereich $0 < x < l_0$.

(6 Pkt.)

e) Vor dem Abtrennen der Spannungsquelle sei $U_0 = 15 \,\mathrm{kV}$ gewesen. Weiterhin gilt $\varepsilon_{r,1} = 3.5$ und $\varepsilon_{r,0} = 1$. Berechnen Sie die resultierende Spannung U_{m} algebraisch und numerisch. Ist U_{m} grösser oder kleiner als U_0 ? Wie verteilt sich die Ladung über die Kondensatorplatten? Bestimmen Sie dabei algebraisch die Ladung auf dem linken $(0 < x < l_0/3)$ und auf dem rechten $(l_0/3 < x < l_0)$ Kondensatorteil.

(8 Pkt.)