ALGEBRA 1, Lista 10

Ćwiczenia 10.12.2019, Konwersatorium 11.12.2019 i materiał na Kartkówkę 8 (17.12.2019).

- 0S. Materiał teoretyczny: Pierścień (przemienny, z jedynką), dzielnik zera, element odwracalny, grupa elementów odwracalnych pierścienia, dziedzina, ciało. Przykłady pierścieni. Każda skończona dziedzina jest ciałem. Wyliczenie, które pierścienie \mathbb{Z}_n są ciałami. Homomorfizm i izomorfizm pierścieni, definicja, przykłady. Produkt pierścieni. Izomorfizm pierścieni $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$, gdy m i n są względnie pierwsze. Funkcja i twierdzenie Eulera.
- 1K. Znaleźć wszystkie homomorfizmy $f:R\to S$ pierścieni z jedynką R i S (uwaga: zgodnie z definicją, $f(1_R)=1_S$), dla:
 - (a) $R = \mathbb{Z}, S = \mathbb{Z}_6$;
 - (b) $R = \mathbb{Z}_{15}, S = \mathbb{Z}_3;$
 - (c) $R = \mathbb{Z}_7$, $S = \mathbb{Z}_4$;
 - (d) $R = \mathbb{Z}, S = \mathbb{Z};$
 - (e) $R = \mathbb{Q}, S = \mathbb{Q};$
 - (f) $R = \mathbb{Z} \times \mathbb{Z} = S$;
 - (g) $R = \mathbb{R} = S$.
 - 2. Znaleźć wszystkie dzielniki zera i wszystkie elementy odwracalne w następujących pierścieniach:
 - (a) $\mathbb{Z}_4 \times \mathbb{Z}_2$;
 - (b) $\mathbb{Z}_4 \times \mathbb{Z}_{10}$;
 - (c) $\mathbb{Z} \times \mathbb{R}$;
 - 3. Niech $+, \cdot$ będą działaniami określonymi w zbiorze A. Wiadomo, że (A, +) jest grupą, zaś działanie \cdot jest łączne, rozdzielne względem + i ma element neutralny $1 \in A$. Wykazać, że wtedy $(A, +, \cdot)$ jest pierścieniem.

Wskazówka: wystarczy udowodnić przemienność +. W tym celu wymnożyć na dwa sposoby (1+1)(a+b) i porównać wyniki.

- 4. Załóżmy, że $(R, +, \cdot)$ jest pierścieniem, w którym grupa addytywna (R, +) jest cykliczna. Udowodnić, że R jest przemienny.
- 5. Załóżmy, że w pierścieniu R mamy $a^2 = a$ dla wszystkich $a \in R$.
 - (a) Udowodnić, że a + a = 0 dla wszystkich $a \in R$ (wskazówka: rozważyć $(a + a)^2$).
 - (b) Udowodnić, że R jest przemienny (wskazówka: rozważyć $(a+b)^2$).
- 6. Niech $C(\mathbb{R})$ oznacza zbiór wszystkich funkcji ciągłych $f:\mathbb{R}\to\mathbb{R}$ z działaniami

$$(f+g)(x) = f(x) + g(x), (f \cdot g)(x) = f(x) \cdot g(x).$$

- (a) Czy funkcja f(x) = x jest odwracalna w pierścieniu $C(\mathbb{R})$? Czy jest dzielnikiem zera?
- (b) Podać przykład funkcji odwracalnej w $C(\mathbb{R})$, różnej od funkcji stale równej jeden (jedynki pierścienia $C(\mathbb{R})$).
- (c) Które funkcje w $C(\mathbb{R})$ są odwracalne?
- (d) Podać przykład funkcji w $C(\mathbb{R})$, która jest dzielnikiem zera w $C(\mathbb{R})$.
- (e) Które funkcje w $C(\mathbb{R})$ sa dzielnikami zera?