

Mustang Math Tournament 2024

Relay Rodeo Stallion Round

Basic Format

- This round contains 21 problems to be solved in 45 minutes.
- The problems are divided into four suits $(\diamondsuit, \heartsuit, \clubsuit, \spadesuit)$ with five problems each, plus one Joker problem.
- Some of the problems refer to the answer to earlier problems in the same suit. For example, problem $[\lozenge 2]$ may begin with, "Let N be the answer to $[\lozenge 1]$." So, $[\lozenge 2]$ can only be attempted after $[\lozenge 1]$ has been answered. In a similar manner, the Joker problem refers to the answer to the last problem in every suit.
- The first four problems in each suit are worth 2 points each, and the last problem in each suit is worth 3 points. The Joker problem is worth 6 points.
- **Do not** write below the provided answer blank inside each space on the answer sheet (the space is for grading purposes).
- Be sure to **dot** your i's and **dash** your t's (i.e. carefully check your work) to submit each set with no remorse.

You may use this sheet as scratch paper. NO ANSWERS ON THIS SHEET WILL BE GRADED.

Diamonds \Diamond

- [\$\displays1]. Charlie the Colt is standing in line to get ice cream from the ice cream truck. There are 4 colts in front of Charlie and 5 colts behind Charlie. How many colts are in the line, in total?
- $[\lozenge 2]$. Let N be the answer to $[\lozenge 1]$. The Martian alphabet contains N letters. Half of them are vowels, and the other half of them are consonants. A Martian syllable is any string of two letters that has exactly one vowel. How many different Martian syllables are there?
- [\diamondsuit 3]. Let N be the answer to [\diamondsuit 1]. A rectangle has integer side lengths and a perimeter of N-4. What is the area of the rectangle?
- $[\diamondsuit 4]$. Let N be the answer to $[\diamondsuit 1]$. Sally evaluates the two expressions $2^N + N^3$ and $3^N + N^2$, and writes both results on the chalkboard. What is the smaller of the two numbers written?
- $[\diamondsuit 5]$. Let N be the answer to $[\diamondsuit 1]$. Suppose m is a positive integer that has exactly N positive divisors, one of which is 20. What is m?

Hearts ♡

- [\bigcirc 1]. There are 7 balls placed in a bag, each with a different color. When 3 balls are drawn from the bag with replacement, the probability that all three of them have the same color can be expressed as $\frac{1}{a}$. What is a?
- $[\heartsuit 2]$. Let N be the answer to $[\heartsuit 1]$. N is a perfect square that has the property that the digits of N are positive perfect squares. What is the smallest perfect square greater than N that has the same property?
- $[\heartsuit 3]$. Let N be the answer to $[\heartsuit 2]$. A large square with area N is cut into many smaller squares, as shown below. What is the perimeter of the smallest square?

- $[\heartsuit 4]$. Let N be the answer to $[\heartsuit 3]$. A fair coin is flipped N times. What is the probability that tails is flipped exactly once?
- $[\heartsuit 5]$. Let N be the answer to $[\heartsuit 4]$. A positive integer a has exactly d positive divisors, and exactly $d^2N + 1$ of these divisors are composite numbers. What is the value of d?

Clubs 🌲

- [\$1]. How many times do the graphs of $y = \lfloor x \rfloor \lceil x \rceil$ and y = 3x intersect? $\lfloor x \rfloor$ is defined as the largest integer less than or equal to x, and $\lceil x \rceil$ is defined as the smallest integer greater than or equal to x.
- [\$\delta 2]. How many zeroes are at the end of 20! when it is written in base 24? As usual, 20! denotes the product of the integers from 1 to 20, or $1 \times 2 \times 3 \times \cdots \times 20$.
- $[\clubsuit 3]$. Let N be the answer to $[\clubsuit 1]$. There are N breeds of horses in a barn, and there are 8 indistinguishable horses of each breed. Each horse in the barn will be given to one of 6 people, and each person needs at least 1 horse of each breed. Let n be the number of ways to assign the horses to people. What is the sum of the digits of n?
- [\$4]. Let N be the answer to [\$2]. A regular tetrahedron is inscribed in a sphere of radius N. The volume of this tetrahedron can be written as $m^2\sqrt{n}$, where m and n are positive integers, and where n is not divisible by any perfect square greater than 1. What is m+n?
- [\$\.\[\beta 5]. Let x and y be the answers to [\$\.\[\beta 3]\$ and [\$\.\[\beta 4]\$, respectively. Four points A, B, C, and D lie on a circle, in that order. Let diagonals \overline{AC} and \overline{BD} intersect at M. We are given that MB < MD and MA < MC. Furthermore, BD = x and AC = y, and the lengths MA and MB are both integers. What is the maximum possible area of $\triangle AMD$?

Spades \spadesuit

- [\spadesuit 1]. Let N be the smallest positive integer that has the same number of positive divisors as 675. Find the number of distinct prime factors of N.
- [\spadesuit 2]. A fair 10 sided die is rolled 8 times, and the numbers rolled are recorded in the order that they are rolled in. The probability that the first number is greater than the sum of the other 7 can be expressed as $\frac{a}{b}$, where a and b are relatively prime positive integers. What is the sum of the digits of b?
- [\spadesuit 3].8 circles of radius 1 are drawn, each centered at a distinct vertex of a regular octagon with side length 2. The radius of the circle that is externally tangent to each of these 8 circles can be expressed in the form $\sqrt{a+b\sqrt{c}}+d$, where a,b,c, and d are integers, and c is not divisible by any perfect square greater than 1. Determine the value of a-b+c+d.
- [\spadesuit 4]. Let $\lfloor y \rfloor$ denote the greatest integer less than or equal to y, and $\{y\}$ denote $y \lfloor y \rfloor$. For example, $\lfloor 14.3 \rfloor = 14$ and $\{14.3\} = 0.3$. Find the value of $\lfloor x \rfloor$, given that x satisfies

$$\lfloor x \rfloor + \sqrt{\{x\} + \sqrt{\lfloor x \rfloor + \sqrt{\{x\} + \cdots}}} = 5.76$$

[\spadesuit 5]. Let a_1, a_2, a_3 , and a_4 be the answers to [\spadesuit 1], [\spadesuit 2], [\spadesuit 3], and [\spadesuit 4], respectively. The polynomial $p(x) = a_3x^4 + x^2 + x + a_2$ has complex roots $r_1 \dots r_4$. Find the integer closest to the value of

$$\sum_{n=1}^{4} \frac{60}{\sqrt{a_4 - a_1 r_n}}.$$

JOKER

[J1]. Let A, B, C, and D be the answers to $[\diamondsuit 5]$, $[\heartsuit 5]$, $[\clubsuit 5]$, and $[\clubsuit 5]$, respectively. A quadrilateral has vertices at (A,0), (0,B), (-C,0), and (0,-D) on the coordinate plane. There is a circle ω on the plane and a positive real number r such that the distance from each vertex to ω is r. If the smallest possible value of r can be written as $\sqrt{X} - \sqrt{Y}$, where X and Y are rational numbers, find X - Y.

Acceptable Answers

The following rules provide guidelines for acceptable answers in this round. Please note that any specifications provided in a problem will take precedence over these rules. The decisions of MMT coordinators are final.

- Common fractions are defined as a fraction in the form $\pm \frac{a}{b}$ where a and b are natural numbers and gcd(a,b)=1.
- Ratios and fractional answers should be expressed as common fractions unless otherwise specified.
- Radicals should be simplified. A simplified radical must satisfy:
 - No square factors, fractions, or nested radicals inside a radical
 - No radicals inside the denominator of a fraction
- Answers must be expressed to the exact accuracy called for in the problem (e.g. 25.0 will not be accepted for 25 and 25 will not be accepted for 25.0).
- Do not make approximations for numbers (e.g. 3.14 or $\frac{22}{7}$ for π) unless otherwise specified.
- Units do not need to be included but must be correct if included.