The CYK algorithm

L645 Autumn 2009

An example grammar

Lexicon: $Vt \rightarrow saw$ $Det \rightarrow the$

 $\begin{array}{c} \text{Det} \to \textit{the} \\ \text{Det} \to \textit{a} \\ \text{N} \to \textit{dragon} \end{array}$

 $\begin{array}{c} \mathsf{N} \to \mathit{boy} \\ \mathsf{Adj} \to \mathit{young} \end{array}$

Syntactic rules:

 $S \rightarrow NP VP$ $VP \rightarrow Vt NP$ $NP \rightarrow Det N$

 $\mathsf{N} \to \mathsf{Adj} \; \mathsf{N}$

Problem: Inefficiency of recomputing subresults

Two example sentences and their potential analysis:

- (1) He [gave [the young cat] [to Bill]].
- (2) He [gave [the young cat] [some milk]].

The corresponding grammar rules:

- $\bullet \ \mathsf{VP} \to \mathsf{V}_{ditrans} \ \mathsf{NP} \ \mathsf{PP}_{to}$
- \bullet VP \rightarrow V_{ditrans} NP NP

Regardless of the final sentence analysis, the ditransitive verb (gave) and its first object NP $(the\ young\ cat)$ will have the same analysis

 \Rightarrow No need to analyze it twice

Solution: Chart Parsing (Memoization)

- Store intermediate results:
 - a) completely analyzed constituents: well-formed substring table or (passive) chart
 - b) partial and complete analyses: (active) chart
- In other words, instead of recalculating that the young cat is an NP, we'll store that information
 - Dynamic programming: never go backwards
- All intermediate results need to be stored for completeness.
- All possible solutions are explored in parallel.

CFG Parsing: The Cocke Younger Kasami Algorithm

- Grammar has to be in Chomsky Normal Form (CNF), only
 - RHS with a single terminal: $A \rightarrow a$
 - RHS with two non-terminals: $A \to BC$
 - no ϵ rules $(A \rightarrow \epsilon)$
- A representation of the string showing positions and word indices:

$$\cdot_0$$
 $w_1 \cdot_1$ $w_2 \cdot_2$ $w_3 \cdot_3$ $w_4 \cdot_4$ $w_5 \cdot_5$ $w_6 \cdot_6$

For example: \cdot_0 the \cdot_1 young \cdot_2 boy \cdot_3 saw \cdot_4 the \cdot_5 dragon \cdot_6

The well-formed substring table (= passive chart)

- ullet The well-formed substring table, henceforth (passive) chart, for a string of length n is an $n \times n$ matrix.
- ullet The field (i,j) of the chart encodes the set of all categories of constituents that start at position i and end at position j, i.e.
 - chart(i,j) = $\{A \mid A \Rightarrow^* w_{i+1} \dots w_j\}$
- The matrix is triangular since no constituent ends before it starts.

Coverage Represented in the Chart

An input sentence with 6 words:

$$\cdot_0 \ w_1 \cdot_1 \ w_2 \cdot_2 \ w_3 \cdot_3 \ w_4 \cdot_4 \ w_5 \cdot_5 \ w_6 \cdot_6$$

Coverage represented in the chart:

		TO:							
		1	2	3	4	5	6		
	0	0-1	0–2	0–3	0–4	0–5	0–6		
EDOM:	1		1–2	1–3	1–4	1–5	1–6		
FROM:	2			2–3	2-4	2–5	2–6		
	3				3–4	3–5	3–6		
	4					4–5	4–6		
	5						5–6		

Example for Coverage Represented in Chart

Example sentence:

$$\cdot_0$$
 the \cdot_1 young \cdot_2 boy \cdot_3 saw \cdot_4 the \cdot_5 dragon \cdot_6

Coverage represented in chart:

		1	2	3	4	5	6
	0	the	the young	the young boy	the young boy saw	the young boy saw the	the young boy saw the dragon
	1		young	young boy	young boy saw	young boy saw the	young boy saw the dragon
-	2			boy	boy saw	boy saw the	boy saw the dragon
	3				saw	saw the	saw the dragon
	4					the	the dragon
_	5						dragon

,

Parsing with a Passive Chart

- The CKY algorithm is used, which:
 - explores all analyses in parallel,
 - in a bottom-up fashion, &
 - stores complete subresults
- $\bullet\,$ The reason this algorithm is used is to:
 - add top-down guidance (to only use rules derivable from start-symbol), but avoid left-recursion problem of top-down parsing
 - store partial analyses

An Example for a Filled-in Chart

Input sentence:

 \cdot_0 the \cdot_1 young \cdot_2 boy \cdot_3 saw \cdot_4 the \cdot_5 dragon \cdot_6

		1	2	3	4	5	6
	0	{Det}	{}	{NP}	{}	{}	{S}
	1		{Adj}	{N}	{}	{}	{}
Chart:	2			{N}	{}	{}	{}
	3				{V, N}	{}	{VP}
	4					{Det}	{NP}
	5						{N}

10

Filling in the Chart

• We build all constituents that end at a certain point before we build constituents that end at a later point.

		1	2	3	4	5	6
ĺ	0	1	3	<u>6</u>	<u>10</u>	<u>15</u>	<u>21</u>
•	1		2	<u>5</u>	9	<u>14</u>	<u>20</u>
	2			4	8	<u>13</u>	<u>19</u>
•	3				7	<u>12</u>	21 20 19 18
	4					11	<u>17</u>
	5						16

 $\begin{aligned} &\text{for } j := 1 \text{ to length}(string) \\ &\textbf{lexical_chart_fill}(j-1,j) \\ &\text{for } i := j-2 \text{ down to } 0 \\ &\text{syntactic_chart_fill}(i,j) \end{aligned}$

 $lexical_chart_fill(j-1,j)$

- ullet Idea: Lexical lookup. Fill the field (j-1,j) in the chart with the preterminal category dominating word j.
- Realized as:

$$chart(j-1,j) := \{ X \mid X \to word_j \in P \}$$

11

12

syntactic_chart_fill(i,j)

- Idea: Perform all reduction steps using syntactic rules such that the reduced symbol covers the string from i to j.
- $\bullet \text{ Realized as: } chart(i,j) = \begin{cases} A & | A \rightarrow BC \in P, \\ i < k < j, \\ B \in chart(i,k), \\ C \in chart(k,j) \end{cases}$
- ullet Explicit loops over every possible value of k and every context free rule:

```
chart(i,j) := \{\}.
for k := i + 1 to j - 1
     \text{for every } A \to BC \in P
           if B \in chart(i, k) and C \in chart(k, j) then
                chart(i,j) := chart(i,j) \cup \{\mathsf{A}\}.
```

Input: start category S and input string

$$\begin{split} n &:= \mathsf{length}(string) \\ \text{for } j &:= 1 \text{ to } n \\ & chart(j-1,j) := \{ \mathsf{X} \mid \mathsf{X} \to \mathsf{word}_j \in \mathsf{P} \} \\ \text{for } i &:= j-2 \text{ down to } 0 \\ & chart(i,j) := \{ \} \\ \text{for } k &:= i+1 \text{ to } j-1 \\ & \text{for every } A \to BC \in P \\ & \text{if } B \in chart(i,k) \text{ and } C \in chart(k,j) \text{ then } \\ & chart(i,j) := chart(i,j) \cup \{ \mathsf{A} \} \end{split}$$

The Complete CYK Algorithm

Output: if $S \in chart(0, n)$ then accept else reject

How memoization helps

If we look back to the chart for the sentence the young boy saw the dragon:

	1	2	3	4	5	6
0	{Det}	{}	{NP}	{}	{}	{S}
1		{Adj}	{N}	{}	{}	{}
2			{N}	{}	{}	{}
3				{V, N}	{}	{VP}
4					{Det}	{NP}
5						{N}

- At cell (3,6), a VP is built by combining the V at (3,4) with the NP at (4,6), based on the rule $VP \rightarrow V NP$
- Regardless of further processing, that VP is never rebuilt

From recognition to parsing

Extend chart to store in each field

- mother symbol (as before)
- daughters and their field numbers (i.e., backpointers to the structure)

Chart for recovering parses

	1	2	3	4	5	6
0	Det		NP			S
			(D,0,1)			(NP,0,3)
			(N,1,3)			(VP,3,6)
1		Adj	N			
			(A,1,2)			
			(A,1,2) (N,2,3)			
2			N			
3				V, N		VP
						(V,3,4)
						(NP,4,6)
4					Det	NP
						(D,4,5)
						(D,4,5) (N,5,6)
5						N

Extending CYK to CFG

We can allow for rules of arbitrary RHS length by doing the following:

- 1. initialize each field i, i+1 with the categories from the terminal rules
- 2. for each rule $A \rightarrow \alpha \in P$:
 - check whether there are fields in the chart for which the symbols can be concatenated to α so that an uninterrupted sequence of words i,j is covered
 - insert A into field i, j
- 3. if S (the start symbol) is in field 1, n (n = number of words), then accept the

Ambiguous parses

the boy saw her duck

	1	2	3	4	5
0	D	NP			S
		(D,0,1;N,1,2)			(NP,0,2;VP,2,5)
1		N			
2			V		VP
					(V,2,3;NP,3,5)
					(V,2,3;NP,3,4;VP,4,5)
3				NP	NP
				(N,3,4)	(D,3,4;N,4,5)
				Ď, N	, ,
4					VP
					(V,4,5)
					Ň, V

19