Теоретические домашние задания

Теория типов, ИТМО, совместно М3232-М3239 и М3332-М3339, весна 2024 года

Домашнее задание N1: лямбда исчисление — бестиповое и простотипизированное

1. Бесконечное количество комбинаторов неподвижной точки. Дадим следующие определения

$$\begin{split} L := \lambda abcdefghijklmnopqstuvwxyzr.r(this is a fixed point combinator) \\ R := LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL \end{split}$$

В данном определении терм R является комбинатором неподвижной точки: каков бы ни был терм F, выполнено R $F =_{\beta} F$ (R F).

- (а) Докажите, что данный комбинатор действительно комбинатор неподвижной точки.
- (b) Пусть в качестве имён переменных разрешены русские буквы. Постройте аналогичное выражение по-русски: с 33 параметрами и осмысленной русской фразой в терме L; покажите, что оно является комбинатором неподвижной точки.
- 2. Найдите необитаемый тип в просто-типизированном лямбда-исчислении (напомним: тип τ называется необитаемым, если ни для какого P не выполнено $\vdash P : \tau$).
- 3. Напомним определение: комбинатор лямбда-выражение без свободных переменных. Также напомним:

$$S := \lambda x. \lambda y. \lambda z. x \ z \ (y \ z)$$

$$K := \lambda x. \lambda y. x$$

$$I := \lambda x. x$$

Известна теорема о том, что для любого комбинатора X можно найти выражение P (состоящее только из скобок, пробелов и комбинаторов S и K), что $X =_{\beta} P$. Будем говорить, что комбинатор P выражает комбинатор X в базисе SK.

Косвенным аргументом (пояснением, но не доказательством!) в пользу этой теоремы являются два следующих соображения:

- теорема о замкнутости ИфИИВ: если $\vdash \varphi$, то $\vdash_{\rightarrow} \varphi$, значит, если выражение имеет тип, то этот тип можно получить с помощью доказательства в стиле Гильберта;
- ullet типы комбинаторов S и K это, соответственно, вторая и первая схемы аксиом.

Докажите тип следующих выражений как логическое высказывание с помощью гильбертового вывода и, пользуясь этим доказательством как источником вдохновения, выразите комбинаторы в базисе SK:

- (a) $\lambda x.\lambda y.\lambda z.y$
- (b) $\lambda x.\lambda y.\lambda z.yxz$
- (c) $\overline{1}$
- (d) Not
- (e) Xor
- (f) InR
- 4. Покажите на основании следующего преобразования полноту комбинаторного базиса SKI (проведите полное рассуждение по индукции, из которого будет следовать отсутствие в результате других термов, кроме SKI, бета-эквивалентность и определённость результата для всех комбинаторов σ):

$$[\sigma] = \left\{ \begin{array}{ll} x, & \sigma = x \\ [\varphi] \ [\psi], & \sigma = \varphi \ \psi \\ K \ [\varphi], & \sigma = \lambda x.\varphi, \quad x \notin FV(\varphi) \\ I, & \sigma = \lambda x.x \\ [\lambda x. \ [\lambda y.\varphi]], & \sigma = \lambda x.\lambda y.\varphi, \quad x \in FV(\varphi), x \neq y \\ S \ [\lambda x.\varphi] \ [\lambda x.\psi], & \sigma = \lambda x.\varphi \ \psi, \quad x \in FV(\varphi) \cup FV(\psi) \end{array} \right.$$

Заметим, что данные равенства объясняют смысл названий комбинаторов:

- S verSchmelzung, «сплавление»
- K Konstanz
- I Identität
- 5. Покажите, что следующая система комбинаторов образует полный базис в бестиповом лямбдаисчислении, но соответствующая им система аксиом в исчислении гильбертового типа не образует полного базиса для импликативного фрагмента:

$$\begin{split} I &:= \lambda x.x \\ K &:= \lambda x.\lambda y.x \\ S' &:= \lambda i.\lambda x.\lambda y.\lambda z.i \ (i \ ((x \ (i \ z)) \ (i \ (y \ (i \ z))))) \end{split}$$

Указание: покажите невыводимость $(\varphi \to \varphi \to \psi) \to (\varphi \to \psi)$.

6. Напомним определение аппликативного порядка редукции: редуцируется самый левый из самых вложенных редексов. Например, в случае выражения $(\lambda x.I\ I)\ (\lambda y.I\ I)$ самые вложенные редексы — применения $I\ I$:

$$(\lambda x.\underline{I}\underline{I}) (\lambda y.\underline{I}\underline{I})$$

и надо выбрать самый левый из них:

$$(\lambda x.I\ I)\ (\lambda y.I\ I)$$

- (а) Проведите аппликативную редукцию выражения 2 2.
- (b) Докажите или опровергните, что параллельная бета-редукция из теоремы Чёрча-Россера не медленнее (в смысле количества операций для приведения выражения к нормальной форме), чем нормальный порядок редукции с мемоизацией.
- (с) Найдите лямбда-выражение, которое редуцируется медленнее при нормальном порядке редукции, чем при аппликативном, даже при наличии мемоизации.
- 7. Напомним определение бета-редукции. $A \to_{\beta} B$, если:
 - $A \equiv (\lambda x.P) Q$, $B \equiv P [x := Q]$, при условии свободы для подстановки;
 - $A\equiv (P\ Q),\ B\equiv (P'\ Q'),$ при этом $P\to_{\beta} P'$ и Q=Q', либо P=P' и $Q\to_{\beta} Q';$
 - $A \equiv (\lambda x.P), B \equiv (\lambda x.P'), \text{ if } P \rightarrow_{\beta} P'.$
 - (a) Найдите лямбда-выражение, бета-редукция которого не может быть произведена из-за нарушения правила свободы для подстановки (для продолжения редукции потребуется производить переименование связанных переменных). Поясните, какое ожидаемое ценное свойство будет нарушено, если ограничение правила проигнорировать.
 - (b) Покажите, что недостаточно наложить требования на исходное выражение, и свобода для подстановки может быть нарушена уже в процессе редукции исходно полностью корректного лямбда-выражения.
- 8. Будем говорить, что выражение A находится в слабой заголовочной нормальной форме (WHNF), если оно не имеет вид $A \equiv (\lambda x.P)~Q$ (то есть, самый верхний терм его не является редексом). Выражение находится в заголовочной нормальной форме (HNF), когда его верхний терм не редекс и не лямбда-абстракция с бета-редексами в теле.
 - (а) Приведите нормальным порядком редукции выражение 2 2 в СЗНФ.
 - (b) Приведите нормальным порядком редукции выражение $Y(\lambda f.\lambda x.(IsZero\ x)\ 1\ (x\cdot f(x-1)))\ 3$ в СЗНФ.
 - (c) Верно ли, что «нормальность» формы выражения может в процессе редукции только усиливаться (никакая слабая заголовочная Н.Ф. заголовочная Н.Ф. нормальная форма)?
- 9. Как мы уже разбирали, $\forall x \; x : \tau$ в силу дополнительных ограничений правила

$$\overline{\Gamma,x:\tau \vdash x:\tau} \ x \not\in FV(\Gamma)$$

Найдите лямбда-выражение N, что $\not\vdash N: \tau$ в силу ограничений правила

$$\frac{\Gamma, x : \sigma \vdash N : \tau}{\Gamma \vdash \lambda x. N : \sigma \rightarrow \tau} \ x \not\in FV(\Gamma)$$

Домашнее задание №2: задачи типизации лямбда исчисления

1. Рассмотрим подробнее отличия исчисления по Чёрчу и по Карри. Определим точно бета-редукцию в исчислении по Чёрчу: $A \to_{\beta} B$, если

$$\begin{array}{ll} A=(\lambda x^{\sigma}.P)\ Q, & B=P[x:=Q] \\ A=P\ Q, & B=P\ Q'\ \text{или } B=P'\ Q\ \text{при } P\to_{\beta} P'\ \text{и } Q\to_{\beta} Q' \\ A=\lambda x^{\sigma}.P, & B=\lambda x^{\sigma}.P'\ \text{при } P\to_{\beta} P' \end{array}$$

- (a) Покажите, что в исчислении по Карри не выполняется даже «ограниченное» свойство распространения типизации (subject expansion): если $\vdash_{\kappa} M : \sigma, M \twoheadrightarrow_{\beta} N$ и $\vdash_{\kappa} N : \tau$, то необязательно, что $\sigma = \tau$.
- (b) Покажите, что в исчислении по Чёрчу «полное» свойство распространения типизации также не выполняется:

найдутся такие
$$M, N, \sigma$$
, что $\vdash_{\mathsf{q}} N : \sigma, M \rightarrow_{\beta} N$, но $\not\vdash_{\mathsf{q}} M : \sigma$.

Но при этом в исчислении по Чёрчу выполнено «ограниченное» свойство распространения типизации:

если
$$\vdash_{\kappa} M : \sigma, M \twoheadrightarrow_{\beta} N$$
 и $\vdash_{\kappa} N : \tau$, то тогда $\sigma = \tau$.

- 2. Покажите, что никакие связки в ИИВ не выражаются друг через друга: то есть, нет такой формулы $\varphi(A,B)$ из языка интуиционистской логики, не использующей связку \star , что $\vdash A \star B \to \varphi(A,B)$ и $\vdash \varphi(A,B) \to A \star B$. Покажите это для каждой связки в отдельности:
 - (а) конъюнкция;
 - (b) дизъюнкция;
 - (с) импликация;
 - (d) отрицание.
- 3. Рассмотрим алгоритм построения системы уравнений, а именно случай, когда рассматривается два разных вхождения одинакового по тексту применения. Например, $(x\ x)\ (x\ x)$ имеет два разных вхождения одной и той же аппликации $x\ x$. Всегда ли для корректной работы алгоритма достаточно одной типовой переменной β_{xx} для этих двух вхождений, или нужны две разные β_{xx}^L и β_{xx}^R ? Примечание: при одной переменной для обоих аппликаций система в данном случае, очевидно, несовместна: $\beta_{xx} \neq \beta_{xx} \to \sigma$. Но контрпримером это не является, поскольку типа у данного выражения всё равно нет.
- 4. Предложим альтернативные аксиомы для конъюнкции:

$$\frac{\Gamma \vdash \alpha \quad \Gamma \vdash \beta}{\Gamma \vdash \alpha \& \beta} \text{ Введ. } \& \qquad \frac{\Gamma \vdash \alpha \& \beta \quad \Gamma, \alpha, \beta \vdash \gamma}{\Gamma \vdash \gamma} \text{ Удал. } \&$$

- (a) Предложите лямбда-выражения, соответствующие данным аксиомам; поясните, как данные выражения абстрагируют понятие «упорядоченной пары».
- (b) Выразите изложенные в лекции аксиомы конъюнкции через приведённые в условии.
- (с) Выразите приведённые в условии аксиомы конъюнкции через изложенные в лекции.
- 5. Постройте систему уравнений для Y-комбинатора и примените к ней алгоритм унификации (ожидается, что система окажется несовместной).

Домашнее задание №3: сильная нормализуемость λ_{\rightarrow} , система F

- 1. Найдите $\llbracket \alpha \to \alpha \rrbracket$.
- 2. Найдите $\llbracket (\alpha \to \alpha) \to \alpha \rrbracket$.
- 3. Покажите, что SN насыщенное (постройте полноценное рассуждение по индукции для п.2 определения).
- 4. Покажите, что если \mathcal{A} и \mathcal{B} насыщены, то $\mathcal{A} \to \mathcal{B}$ насыщенное.
- 5. Покажите, что построенная на лекции простая модель для ИИП второго порядка неполна.

- 6. Напомним, что мы можем задать $\exists p.\varphi$ как $\forall q.(\forall p.\varphi \to q) \to q$ (где q некоторая свежая переменная). Покажите, что правила для квантора существования могут быть выведены из такого определения.
- 7. Требуется ли свобода для подстановки в правилах с квантором?

$$\frac{\Gamma \vdash \varphi[p := \theta]}{\Gamma \vdash \exists p. \varphi} \qquad \frac{\Gamma \vdash \forall p. \phi}{\Gamma \vdash \phi[p := \theta]}$$

Если да — приведите пример доказуемой при отсутствии свободы для подстановки, но некорректной формулы. Если нет — предложите доказательство корректности правил при любых подстановках.

- 8. Пусть $\Gamma \vdash \varphi$. Всегда ли можно перестроить доказательство φ , добавив ещё одну гипотезу: $\Gamma, \psi \vdash \varphi$? Если нет, каковы могли бы быть ограничения на ψ ?
- 9. Пусть $\Gamma \vdash \forall x.\varphi$. Верно ли тогда, что $\Gamma \vdash \forall y.\varphi[x:=y]$? Если это неверно в общем случае, возможно, это верно при каких-то ограничениях? В случае наличия ограничений приведите надлежащие контрпримеры.
- 10. Перенесите в систему F из бестипового лямбда-исчисления следующие функции иными словами, постройте их обобщение для системы F (приведите обобщённое выражение, укажите его тип и докажите его). Например, можно рассмотреть $I = \Lambda \pi . \lambda p^{\pi}.p \to p$.
 - (a) S, K.
 - (b) инъекции и *case* (операции с алгебраическим типом);
 - (с) истина, ложь, исключающее или;
 - (d) черчёвский нумерал (он должен иметь тип $\forall \alpha.(\alpha \to \alpha) \to (\alpha \to \alpha)$) и инкремент;
 - (e) возведение в степень: $\lambda m. \lambda n. n. m$;
 - (f) вычитание единицы (трюк зуба мудрости) и вычитание.

Домашнее задание №4: экзистенциальные типы, типовая система Хиндли-Милнера

1. Постройте экзистенциальный тип для очереди, и реализуйте его с помощью двух стеков. Реализацию напишите на Хаскеле, используя AbstractStack с лекции как ATД стека (возможно, этот пример надо будет расширить нужными вам методами), и реализуйте какой-нибудь простой классический алгоритм с её помощью. Как, интересно, осуществить инстанциацию вложенного абстрактного типа данных? Придумайте.

Как с помощью двух стеков можно реализовать очередь со средним временем доступа $\Theta(1)$: входные значения кладём во входной стек, выходные достаём из выходного, при исчерпании — переносим всё из входного в выходной:

- 2. Выразите дизъюнкцию через квантор существования в ИИП 2 порядка, а также алгебраический тип через экзистенциальный.
- 3. Покажите, что если $rk(\sigma,1)$, то для выражения σ найдётся эквивалентное σ' с поверхностными кванторами.
- 4. Покажите, что в предыдущем задании также имеется изоморфизм типов: существует биективная функция $\sigma \to \sigma'$, которую можно выразить лямбда-выражениями.
- 5. Рассмотрим QuickSort:

```
let rec quick l = match l with 
 [] -> [] 
 | l1 :: ls -> List.filter (fun x -> x < l1) ls @ [l1] @ List.filter (fun x -> x >= l1)
```

Укажите полные типовые схемы в системе НМ для всех функций, участвующих в данном примере (тип списка раскрывать не надо).

6. Заметим, что список — это «параметризованные» числа в аксиоматике Пеано. Число — это длина списка, а к каждому штриху мы присоединяем какое-то значение. Операции добавления и удаления элемента из списка — это операции прибавления и вычитания единицы к числу.

Рассмотрим тип «бинарного списка»:

```
type 'a bin_list = Nil | Zero of (('a*'a) bin_list) | One of 'a * (('a*'a) bin_list);;
```

Заметим, что здесь мы рассматриваем двоичную запись числа (чередующиеся Zero и One) — двоичную запись длины бинарного списка, и элемент двоичной записи номер n хранит 2^n или $2^n + 1$ значение (в зависимости от типа элемента). Например, 5-элементный список:

```
One ("a", Zero (One ((("b", "c"), ("d", "e")), Nil)))
```

По идее, операция добавления элемента к списку записывается на языке Окамль вот так (сравните с прибавлением 1 к числу в двоичной системе счисления):

```
let rec add elem lst = match lst with
  Nil -> One (elem,Nil)
| Zero tl -> One (elem,tl)
| One (hd,tl) -> Zero (add (elem,hd) tl)
```

Однако, тип этой функции Окамль вывести автоматически не может, его надо указывать явно, чтобы код скомпилировался:

```
let rec add : 'a . 'a -> 'a bin_list -> 'a bin_list = fun elem lst -> match lst with
```

- (а) Какой тип имеет add в (расширенной) системе F (напомним, поскольку функция рекурсивна, она должна использовать Y-комбинатор в своём определении)? Считайте, что семейство типов bin_list 'a предопределено и обозначается как τ_{α} . Также считайте, что определены функции roll и unroll с надлежащими типами. Какой ранг имеет тип этой функции? Почему этот тип не выразим в типовой системе Хиндли-Милнера?
- (b) Предложите функции для печати списка и для удаления элемента списка (головы).
- (c) Предложите функцию для эффективного соединения двух списков (источник для вдохновения сложение двух чисел в столбик).
- (d) Предложите функцию для эффективного выделения n-го элемента из списка.
- 7. Рассмотрим следующий код на Окамле, содержащий определения чёрчевских нумералов и некоторых простых операций с ними:

```
let zero = fun f x -> x;;
let plus1 a = fun f -> fun x -> a f (f x);;
let power m n = n m;;

let two = plus1 (plus1 zero);;
let two2 = fun f x -> f (f x);;

let e = power two two;; (* не компилируется *)
let e2 = power two2 two2;; (* компилируется и работает *)
```

Разберите вывод типов в этом фрагменте (относительно типовой системы Хиндли-Милнера) и поясните, почему:

- (a) определение e^2 компилируется и работает (предъявите доказательство типа в системе HM);
- (b) определение e не компилируется (например, примените алгоритм W и покажите шаг, где он выведет ошибку).

Домашнее задание №5: Обобщённая система типов, гомотопическая теория типов, язык Аренд

- 1. Задача на доказательство сильной нормализуемости λ_{\to} : найдите примеры лямбда-термов, не принадлежащие (1) множеству $[\![\alpha \to \alpha]\!]$ и (2) множеству $[\![\alpha \to \alpha]\!]$ (для выполнения задания надо выполнить оба пункта).
- 2. Укажите тип (род) в исчислении конструкций для следующих выражений (при необходимости определите типы используемых базовых операций и конструкций самостоятельно):
 - (a) В алгебраическом типе 'a option = None | Some 'a предложите тип (род) для: Some, None и option.
 - (b) Пусть задан род **nonzero** : ★ → ★, выбрасывающий нулевой элемент из типа. Например, **nonzero unsigned** тип положительных целых чисел. Тогда, для кода

```
template<typename T, T x> struct NonZero { const static std::enable_if_t<x != T(0), T> value = x; }; предложите тип (род) поля value.
```

- 3. Предложите выражение на языке C++ (возможно, использующее шаблоны), имеющее следующий род (тип):
 - (a) $\star \to \star \to \star$; $\star \to \mathbf{unsigned}$
 - (b) int $\rightarrow (\star \rightarrow \star)$
 - (c) $(\star \to int) \to \star$
 - (d) $\Pi x^{\star} . \lambda n^{\text{int}} . F(n, x)$, где

$$F(n,x) = \begin{cases} \text{int,} & n = 0\\ x \to F(n-1,x), & n > 0 \end{cases}$$

- 4. Определите функции из следующих частей λ -куба (в обобщённой типовой системе) и докажите их тип:
 - (a) (\Box, \star)
 - (b) (\star, \Box)
 - (c) (\Box, \Box)
- 5. Рассмотрим правый дальний нижний угол λ -куба ($\{(\star,\star);(\star,\Box);(\Box,\star)\}$). Можно предположить, что тогда в такой системе возможны и функции рода $f:\star\to\star$ (как композиция функций $p:\star\to\alpha$ и $q:\alpha\to\star$ например, можно кодировать тип его именем, затем по имени типа восстанавливать сам тип обратно). Почему всё-таки такие функции в обобщённых типовых системах невозможны без четвёртого элемента (\Box , \Box)?
- 6. Какова должна быть топология на множестве пар натуральных чисел (интуитивно мы будем понимать эти пары как рациональные числа, пары «числитель-знаменатель»), чтобы непрерывными были бы те и только те функции, для которых выполнено f(p,q) = f(p',q') для всех таких p,p',q и q', что $p \cdot q' = p' \cdot q$. Напомним, что равенство мы понимаем как наличие непрерывного пути между точками.
- 7. Докажите, приведя компилирующуюся программу на языке Apeнд (возможно, вам потребуются функции и приёмы, изложенные в документации по языку: https://arend-lang.github.io/documentation/tutorial/PartI/):
 - (а) ассоциативность сложения;
 - (b) коммутативность сложения;
 - (с) коммутативность умножения;
 - (d) дистрибутивность: $(a + b) \cdot c = a \cdot c + b \cdot c$;
 - (e) куб суммы: $(a+1)^3 = a^3 + 3 \cdot a^2 + 3 \cdot a + 1$.
- 8. Определим, что x делится на p, если обитаем тип \Sigma (q : Nat) (p * q = x).
 - (a) Покажите, что если x делится на 6, то x делится и на 3;

- (b) Покажите, что x! делится на x;
- (c) Покажите, что если x делится на y и y делится на z, то x делится на z;
- 9. Определите предикат (т.е. функцию с надлежащим типом) для формализации понятия простого числа isPrime. Покажите, что:
 - (a) 3 и 11 простые числа;
 - (b) Произведение простых чисел непросто;
 - (c) 2 единственное чётное простое число.
- 10. Определим отношение «меньше» на натуральных числах так (с помощью индуктивного типа, обобщения алгебраического типа данных зависимого типа, в котором при разных значениях аргументов типа допустимы разные конструкторы):

Например, конструктор natlesseq-zero можно использовать только если первый аргумент типа — число 0. А конструктор natlesseq-next применим только если первый аргумент больше 0; при этом данный конструктор требует значение типа с определёнными аргументами в качестве своего аргумента.

Будем говорить, что $a \leq b$ тогда и только тогда, когда NatLessEq a b обитаем. Например, утверждение $1 \leq 3$ доказывается так:

```
\func one-le-three : NatLessEq 1 3 => natlesseq-next (natlesseq-zero)
```

B самом деле, natlessed-zero может являться конструктором типа NatlessEq 0 b, а тогда

```
natlesseq-next (natlesseq-zero) : NatLessEq 1 (b+1)
```

Унифицировать b+1 и 3 компилятор (в данном случае) может самостоятельно, и потому код выше проходит проверку на корректность.

Докажите (везде предполагается, что a,b,c: Nat, если не указано иного):

- (a) $a \leq b$ тогда и только тогда, когда a меньше или равно b в смысле натуральных чисел (здесь требуется рассуждение на мета-языке).
- (b) $a \leq a+b+1$; то есть, определите функцию \func n-less-sum (a b : Nat) : NatLessEq a (a Nat.+ suc b)
- (c) Если $a \leq b$, то $a + c \leq b + c$
- (d) Если $a \leq b$ и $c \leq d$, то $a \cdot c \leq b \cdot d$
- (e) $a \prec 2^a$
- (f) Транзитивность: если $a \leq b$ и $b \leq c$, то $a \leq c$
- (g) $a \leq b \vee b \leq a$
- (h) Найдите стандартное определение отношения «меньше» в библиотеке Аренда (Nat.<) и докажите, что $a \leq b$ тогда и только тогда, когда a < b или a = b (реализуйте функции there (p : NatLessEq a b) : Data.Or (a Nat.< b) (a = b) и обратную к ней).
- (i) Покажите, что $a \prec b$ тогда и только тогда, когда $\exists k^{\mathbb{N}_0}.a + k = b.$
- 11. С точки зрения изоморфизма Карри-Ховарда индуктивные типы можно воспринимать как аналоги предикатов. В этом задании надо построить индуктивные типы для различных предикатов:
 - (a) Факториал (IsFact n), который будет обитаем только для таких n, что n=k!. Докажите на языке Аренд, что IsFact $(1 \cdot 2 \cdot 3 \cdot \cdots n)$ всегда обитаем, а тип IsFact 3— необитаем.
 - (b) Наибольший общий делитель двух чисел GCD x a b; *указание/пожелание*: воспользуйтесь алгоритмом Эвклида.
 - (c) Ограниченное натуральное число IndFin n, обитателями типа являются только те числа, которые меньше n. В стандартной библиотеке Fin определён через натуральные числа; сделайте это исключительно через индуктивные типы. Покажите, что если x: IndFin m y: IndFin n, то x + y: IndFin (m + n).

Домашнее задание №6: Иерархии универсумов

1. Рассмотрим следующее доказательство уникальности элементов списка:

```
\func not-member (A : \Type) (elem : A) (1 : List A) : \Type \elim 1
| nil => \Sigma
| :: hd tl => \Sigma (Not (hd = elem)) (not-member A elem tl)

\func unique-list (A : \Type) (1 : List A) : \Type \elim l
| nil => \Sigma
| :: hd tl => \Sigma (not-member A hd tl) (unique-list A tl)

Докажем, что список [0,1,2] состоит из уникальных элементов:

\func r-unique => unique-list Nat (0 :: 1 :: 2 :: nil)
\func x : r-unique => ((contradiction, (contradiction, ())), ((contradiction, ())), ((), ())))
```

- (a) Напишите функцию, строящую список b натуральных чисел от 0 до n и доказательство unique-list Nat b.
- (b) Покажите, что если $a_0 < a_1 < \dots < a_n$, то список $[a_0, a_1, \dots, a_n]$ уникальный.
- (c) Покажите, что если $n \geq 2$ и $a_k \neq a_{k+1}$ при $0 \leq k < n$, то необязательно, что список $[a_0, a_1, \dots, a_n]$ уникальный.
- 2. Определите тип $Perm\ n$ его элементами должны быть те и только те списки чисел, которые являются перестановкой n элементов и покажите, что:
 - (a) 0, 1, 2, ..., n-1 перестановка n элементов;
 - (b) определите, чему равна сумма всех элементов перестановки и докажите что это действительно так для любого n;
 - (c) всего существует 6 элементов в типе Perm 3 (то есть, существует такой список из 6 элементов, каждые два элемента которого не равны друг другу, и если $\mathbf x$: Perm 3, то x элемент данного списка).
- 3. Как вы помните из лекции, в языке Аренд существует иерархия вложенных типовых универсумов. Если в типе отсутствует упоминание \Type, то данный тип принадлежит универсуму 0. Однако, если в типе упоминается \Type k, то тип принадлежит универсумам, не меньшим k+1. Уровень универума обозначается специальным ключевым словом \1p. Над индексами можно проводить простые операции и сопоставление с образцом (\suc\lp). Более подробно можно это прочесть в документации по языку Аренд:

https://arend-lang.github.io/documentation/tutorial/PartI/universes.html

Рассмотрим определения:

Определите, развивая определения выше:

- (а) Операцию умножения.
- (b) Операцию «деление на три» (естественно, в версии, не использующей Y-комбинатор).
- (c) Операцию возведения в степень, определявшуюся как $\lambda m. \lambda n. n. m.$
- (d) Деление.
- (е) Вычисление факториала.

4. Введём тип данных IsEven:

Доказать, что этот тип является утверждением, можно например так:

```
\func is-even-isProp (n : Nat) : isProp (IsEven n) => all-even-different n
```

Обратите внимание: по переменным n, a и b производится элиминация, то есть множество значений переменных разбивается на фрагменты (в соответствии с конструкторами типа данных), и доказательство утверждения проводится независимо для каждого фрагмента; в частности, цель доказательства изменяется и просходит замена переменных a и b на сопоставляемые варианты (вместо ожидаемого типа a = b мы ожидаем тип zero-is-even = zero-is-even, и т.п.). Сравните с лекцией про элиминаторы, каждый из вариантов — тело отдельной функции-элиминатора.

Чтобы воспроизвести тот же эффект в конструкции \case, нужно указывать ключевое слово \elim перед каждой элиминируемой переменной:

```
\case \elim n, \elim a, \elim b \with { ... }
```

Полный код, определяющий тип IsEven (вместе с доказательством того, что тип — утверждение), выглядит так:

```
\data IsEven (n : Nat) \elim n
  | 0 => zero-is-even
  | (suc (suc k)) => next-next (IsEven k)
  \where {
    \func all-even-different ... -- скопируйте код функции сюда
    \use \level is-even-isProp (n : Nat) : isProp (IsEven n) => all-even-different n
}
```

Однако, незавершённым остаётся доказательство разрешимости типа IsEven n. Восполните лакуны:

```
\func even-is-dec (a : Nat) : Dec (IsEven a) \elim a
| 0 => yes zero-is-even
| 1 => no {?}
| suc (suc a) => {?}
```

5. Справедливости ради, в предыдущем задании компилятор сам может догадаться, что IsEven — утверждение. Но далеко не для всех типов это очевидно, и тогда функция с префиксом \use \level становится необходимой. Например, в следующем типе «простое число» данная функция должна доказать, что любые два значения типа при данном x равны:

```
\data Div3 (x : Nat)
| remainder-zero (Exists (p : Nat) (p Nat.* 3 = x))
| remainder-one (Exists (p : Nat) (p Nat.* 3 Nat.+ 1 = x))
| remainder-two (Exists (p : Nat) (p Nat.* 3 Nat.+ 2 = x))
\where \use \level levelProp {x : Nat} (a b : Div3 x) : a = b => {?}
```

- (а) Замените {?} в тексте выше на корректное доказательство.
- (b) Определите функцию, которая бы по x и значению $\exists pq.3 \cdot p + q = x \& 0 \le q < 3$ возвращала бы Div3 x (понятно, можно разделить x на 3, но нам уже результат деления дали вторым аргументом задача в том, чтобы им воспользоваться).
- (c) Постройте аналогичный тип Prime х для простых чисел—с тремя вариантами less-than-two, is-prime, is-composite—и определите функцию, строящую по числу значение данного типа.

- (d) Покажите, что в типе Prime (x*x + 2*x + 1) всегда (кроме граничных случаев) обитает вариант is-composite.
- (е) Покажите, что в типе

```
\data SuperDec (P : \Prop)
| sure P
| nope (P -> Empty)
| neither ((P || (P -> Empty)) -> Empty)
\where \use \level superDecProp {P : \Prop} (a b : SuperDec P): a = b => {?}
```

вариант neither невозможен (также, заполните пропущенное доказательство superDecProp).

6. Рассмотрим определение целых чисел как упорядоченной пары: $\langle a,b \rangle \subseteq \mathbb{N}^2$, причём $\langle a,b \rangle \approx \langle c,d \rangle$, если a+d=b+c. Построим соответствующий тип данных, \mathbb{N}^2/\approx :

```
\data Integer
  | int_data (l r : Nat)
  | int_eq (a b c d : Nat) (a Nat.+ d = b Nat.+ c) : int_data a b = int_data c d
```

Обратите внимание на второй конструктор int_eq — это специальный конструктор для отношения эквивалентности, он постулирует равенство между элементами, и его можно использовать для доказательства такого равенства. Указание на особую роль конструктора — указание его типа, и значением конструктора являются не сами элементы типа Integer (как это имеет место в случае int_data), а пути между элементами типа Integer. Покажем, например, что $[\langle 1, 3 \rangle] = [\langle 0, 2 \rangle]$:

```
\func r : int_data 1 3 = int_data 0 2 \Rightarrow int_eq 1 3 0 2 idp
```

Теперь мы можем определить функции на целых числах:

```
\func inc (a : Integer) : Integer \elim a
  | int_data l r => int_data (suc l) r
  | int_eq a b c d proof => int_eq (suc a) b (suc c) d (pmap suc proof)
```

Обратите внимание, мы должны указать не только образы для всех элементов Integer (первый случай), но и показать, что равные элементы перешли в равные (второй случай). А именно, нам потребовалось доказать, что операция прибавления 1 вернёт эквивалентные числа для эквивалентных аргументов: если $\langle a,b\rangle\approx\langle c,d\rangle$, то $\langle a+1,b\rangle\approx\langle c+1,d\rangle$.

- (a) Определите функцию isPositive : Integer -> \Туре, результат которой обитаем тогда и только тогда, когда аргумент положительное число.
- (b) Покажите Dec (isPositive k) для любого целого k.
- (c) Определите функцию dec : Integer -> Integer, уменьшающую число на 1.
- (d) Докажите, что inc (dec x) = x.
- (e) Определите функцию abs : Integer -> Nat, возвращающую модуль целого числа.
- (f) Определите функцию plus: Integer -> Integer, складывающую два числа.
- 7. Заметим, что получившийся тип Integer множеством (\Set) не будет. Чтобы такое выполнялось, необходимо показать равенство равенств элементов ($\Pi x^{\text{Integer}}.\Pi y^{\text{Integer}}.\Pi a^{x=y}.\Pi b^{x=y}.a=b$). Это можно сделать (точнее, nocmy.nuposamb), например, с помощью конструкции \truncate:

И далее, чтобы показать равенство равенств, мы сможем воспользоваться библиотечной функцией Path.inProp (без указания \truncate данный код не скомпилируется):

```
\func integer_eq (x y : Integer) (p1 p2 : x = y) : p1 = p2 => Path.inProp p1 p2
```

- (a) Поясните (на метаязыке, с точки зрения топологии), почему неусечённый тип Integer не \Set.
- (b) Определите функцию isSet: \Type -> \Type, результат которой обитаем если исходный тип является множеством в качестве источника вдохновения можно взять isProp. Докажите, что Nat множество.
- (c) Использовать конструкцию \truncate необязательно вместо неё можно указать надлежащий дополнительный конструктор равенства (теперь для путей) и указать надлежащую функцию \use \level:

```
| eq_eq (a b : Integer) (p1 p2 : a = b) : p1 = p2
\where { \use \level asSet ... }
```

Дополните описание типа данных так, чтобы тип данных Integer оказался множеством без специальной конструкции \truncate (убедитесь, что Path.inProp p1 p2 теперь определён для путей на Ingeger, и поэтому аналог integer_eq скомпилируется). Также исправьте определение функции inc из прошлого задания.

- 8. Научимся раскрывать усечённый тип данных (при возможности это сделать):
 - (a) По $\exists p.p'=x$ постройте такой p, что p'=x:

```
\func safe-dec (x : Nat) (Exists (p : Nat) (suc p = x)) : \Sigma (p : Nat) (suc p = x) Yказание: второй параметр нужен для того, чтобы исключить вариант x=0.
```

- (b) По not-equals : $(x > y \mid \mid x < y)$ при x y : Nat (обратите внимание, здесь применяется усечённое «или») получите $x \neq y$.
- (c) Пох: Natup: Exists (p: Nat) (p*p=x) найдите \Sigma (p: Nat) (p*p=x) (мы здесь должны существенно использовать единственность натурального корня числа).
- 9. В предыдущих заданиях мы строили фактор-множества вручную. То же можно сделать с помощью библиотечного типа данных Quotient.
 - (a) Постройте тип множества рациональных положительных чисел Rational как фактор-множество пар $\langle a,b \rangle$ и $\langle c,d \rangle$ по отношению «равны как простые дроби»: $\langle a,b \rangle \approx \langle c,d \rangle$, если $a\cdot d=b\cdot c$ $(a,c\in\mathbb{N}_0,\,b,d\in\mathbb{N}).$
 - (b) Определите арифметические операции (сложение, умножение).
 - (c) Постройте функцию to_rat (arg: Nat) : Rational и from_rat (выполняющую округление вниз). Покажите, что \Pi (x : Nat) -> x = from_rat (to_rat x).