Primitive Ideals of Group Algebras of Supersoluble Groups

Martin Lorenz

Mathematisches Institut der Universität Gießen, Arndtstr. 2, D-6300 Gießen, Federal Republic of Germany

Introduction

A group G (not necessarily finite) is *polycyclic* if G has a subnormal series $\langle 1 \rangle = G_0 \subset G_1 \subset ... \subset G_{n-1} \subset G_n = G$ such that $G_{i-1} \lhd G_i$ and G_i/G_{i-1} is cyclic (i=1, 2, ..., n). If in addition the groups G_i appearing in the above series are normal in the whole group G then G is called *supersoluble*. The group G is *polycyclic-by-finite* if G has a normal polycyclic subgroup of finite index. It is well-known that the group ring R[G] of a polycyclic-by-finite group G over a noetherian ring G is noetherian (Hall [5], Theorem 1).

This note aims to characterize the primitive ideals (i.e. the kernels of the simple left modules) of the group algebra $\ell[G]$ of a supersoluble group G over a perfect field ℓ . The methods used and the statement of the results have been very much influenced by the great success of Lie algebra theory on this subject, because in a sense, supersoluble groups can be considered as the formal group theoretic analogue of completely solvable finite-dimensional Lie algebras [i.e. Lie algebras g having a series $0 = g_0 \subset g_1 \subset ... \subset g_{n-1} \subset g_n = g$ of ideals g_i such that $\dim(g_i) = i$].

Section 1 deals with the group algebra $\ell[G]$ of a general polycyclic-by-finite group G. Using methods developed by Hall in [6] we prove that the endomorphism ring of a simple $\ell[G]$ -module is finite-dimensional over the ground field ℓ if the latter is perfect. We then give a short proof of the well-known fact that $\ell[G]$ is a Jacobson ring (i.e. the Jacobson radical of every homomorphic image is nilpotent, cf. [8, 4]).

In Section 2 the notion of the semicentre for factor algebras of group algebras is defined. The corresponding notion has been a very useful tool in the study of enveloping algebras of solvable Lie algebras (cf. [2], § 6). The main result of this section is a version of Smith's Theorem A in [9] and states that: given two ideals $I \subseteq J$ in the group algebra of a supersoluble group G over an algebraically closed field ℓ , it is possible to find a homomorphism $\lambda \in \text{Hom}(G, \ell')$ and an element $\alpha \in J \setminus I$ such that $\lambda(G)$ is finite and $\alpha^x - \lambda(x)\alpha \in I$ for all $x \in G$.

Section 3 uses the above to prove the main result of this note (Theorem 3.3): Let G be a supersoluble group, ℓ a perfect field and I a prime ideal of the group algebra $\ell[G]$. Then the following are equivalent: (i) I is primitive. (ii) The centre

 $Z(\ell[G]/I)$ of $\ell[G]/I$ is a finite algebraic field extension of ℓ . (iii) I is maximal. (iv) I is locally closed in Spec $\ell[G]$. — Here as usual Spec $\ell[G]$ denotes the set of prime ideals in $\ell[G]$, endowed with the Jacobson topology (see [2], 1.2). I is called locally closed if $\{I\}$ is a locally closed subset of Spec $\ell[G]$ in this topology, that is the intersection of all prime ideals strictly containing I is distinct from I. Theorem 3.3 generalizes results of Zalesskij on group algebras of finitely generated nilpotent groups ([10], Theorem 1, Theorem 3).

The final Section 4 gives a method how to construct counterexamples to Theorem 3.3 in the case of general polycyclic-by-finite groups.

I would like to thank Professor G. O. Michler for his constant help and encouragement. I am also indepted to the referee for his valuable suggestions and comments.

1. Endomorphism Rings of Simple Modules

Throughout this note "module" will mean "left module" and "ideal" stands for "two-sided ideal".

(1.1) A suitable adaption of the proof (due to Gabriel) given in ([3], 2.6.9) yields the following technical

Lemma. Let k be a field and A a k-algebra such that for any extension field K of k the K-algebra $A \bigotimes K$ is noetherian. Furthermore let V be a completely reducible A-module of finite length. Then for any separable algebraic field extension K/k the $A \bigotimes K$ -module $A \bigotimes K$ is completely reducible of finite length.

- (1.2) **Theorem.** Let G be a polycyclic-by-finite group, ℓ a field and V an irreducible $\ell[G]$ -module. Then every element of the endomorphism ring $D := \operatorname{End}_{\ell[G]}(V)$ is algebraic over ℓ . Furthermore, if ℓ is perfect, $\dim_{\ell}(D) < \infty$.
- *Proof.* (1) Recall the following result of Hall ([6], Lemma 3): Let $J := \ell[\langle t \rangle]$ be the group algebra of the infinite cyclic group $\langle t \rangle$ over ℓ . Then a finitely generated J[G]-module cannot contain a J-submodule which is isomorphic with the field of fractions Q(J) of J.
- (2) Let $0 \neq x \in D$. We show that x is algebraic over ℓ . If not, the subalgebra $J := \ell[x, x^{-1}]$ of the division ring D generated by $1, x, x^{-1}$ can be considered as the group algebra $\ell[\langle x \rangle]$ of the infinite cyclic group $\langle x \rangle$ over ℓ . The $\ell[G]$ -module V can be viewed as a module over the group ring $J[G] = J \bigotimes \ell[G]$ via the

action $(j \otimes \alpha) \cdot v = j(\alpha \cdot v) = \alpha \cdot j(v) (j \in J, \alpha \in \ell[G], v \in V)$. The simplicity of $\ell[G]$ implies V to be a cyclic J[G]-module.

The field of fractions Q(J) of J is contained in D and hence acts on V. Let $0 \neq v \in V$. Then $Q(J) \cdot v$ is a J-submodule of V that is isomorphic to Q(J) via the map $q \mapsto q(v)$ $(q \in Q(J))$. This contradicts the result mentioned in (1) and concludes the proof of the first part of the theorem.

(3) As to the second assertion let $\hat{\ell}$ be an algebraic closure of ℓ . By (1.1) $V \bigotimes_{\ell} \hat{\ell}$ is a direct sum of finitely many irreducible $\hat{\ell}[G]$ -modules \hat{V}_i (i=1,2,...,n). Therefore

$$D \bigotimes_{\ell} \hat{\ell} \in \operatorname{End}_{\hat{\ell}[G]} \left(V \bigotimes_{\ell} \hat{\ell} \right) = \prod_{i,j=1}^{n} \operatorname{Hom}_{\hat{\ell}[G]} (\hat{V}_{i}, \hat{V}_{j}).$$

Since by (2) endomorphisms of simple $\widehat{\ell}[G]$ -modules are scalar, it follows that $\dim_{\widehat{\ell}}(D) = \dim_{\widehat{\ell}}(D \bigotimes \widehat{\ell})$ is finite. Thus the theorem is proved.

(1.3) An ideal I of the ring R is called *semiprime* if $I \neq R$ and the factor R/I has no nonzero nilpotent ideals. I is *primitive* if R/I has a faithful simple module, i.e. a simple module $M \neq 0$ such that $a \cdot M = 0$ for $a \in R/I$ implies a = 0. The intersection of all primitive ideals of R containing a given ideal I is just the inverse image in R of the Jacobson radical of R/I. — From (1.2) one derives the following

Corollary. Let G be a polycyclic-by-finite group and k a field. Then any semi-prime ideal of the group algebra k[G] is an intersection of primitive ideals of k[G].

Proof. Let I be a semiprime ideal of $\ell[G]$. We have to show that the Jacobson radical J of the algebra $A:=\ell[G]/I$ is zero. Consider the direct product $H:=G\times\langle x\rangle$ of G with an infinite cyclic group $\langle x\rangle$ and let $I':=I\ell[H]$ be the two-sided ideal of $\ell[H]$ generated by I. Then the factor $\ell[H]/I'$ is isomorphic to the group ring $B:=A[\langle x\rangle]$. (The isomorphism is given by $\sum \alpha_i x^i + I' \mapsto \sum [\alpha_i + I] x^i, \alpha_i \in \ell[G]$.) Choose $a \in J$. It will suffice to show that a is nilpotent, for then J is a nil ideal of the semiprime noetherian ring A and hence zero.

Claim.
$$B(1-ax)=B$$
.

Pf. If not, B(1-ax) is contained in a maximal left ideal L of B. Let V be the simple B-module V := B/L, $v_0 := 1 + L \in V$ and x_V the endomorphism $v \mapsto x \cdot v$ of V. Since x is central in B it follows that $x_V \in \operatorname{End}_B(V)$. Therefore, by (1.2), x_V is algebraic over ℓ . Furthermore being induced by a group element x_V is obviously invertible in $\operatorname{End}_B(V)$. Set $y := x_V^{-1} \in \operatorname{End}_B(V)$. For some polynomial $f \in \ell[X]$, the polynomial algebra in one indeterminate X over ℓ , one has $x_V = f(y)$. The equation $a \cdot x_V(v_0) = v_0$ gives $a \cdot v_0 = y(v_0)$ and therefore $(1 - af(a)) \cdot v_0 = (1 - yf(y))(v_0) = 0$, a contradiction to the fact that 1 - af(a) is contained in 1 + J and hence is invertible.

Thus we may write $1 = (a_{-m}x^{-m} + ... + a_{-1}x^{-1} + a_0 + a_1x + ... + a_nx^n)(1 - ax)$ for suitable $a_i \in A$. Comparing degrees one obtains $a_{-m} = a_{-m+1} = ... = a_{-1} = 0$, $a_0 = 1$, $a_1 = a$, $a_2 = a^2$,..., $a_n = a^n$, $a_n^{n+1} = 0$. This finishes the proof.

2. Semicentres

(2.1) Let G be a group, ℓ a field and I an ideal of the group algebra $\ell[G]$. Then G acts on the factor $A:=\ell[G]/I$ according to $(\alpha+I)^x=\alpha^x+I$ $(x\in G, \alpha\in \ell[G])$. Set $G^*:=\operatorname{Hom}(G,\ell)$, and for $\lambda\in G^*$ set $A^\lambda:=\{a\in A:a^g=\lambda(g)a$ for all $g\in G\}$. In case $A^\lambda \neq \{0\}$ λ is called an *eigenvalue* of G in A and an element $0 \neq a \in A^\lambda$ is called semiinvariant. Collect the eigenvalues of G in A in the subset $\ell(A)$ of G^* and define the semicentre Sc(A) of A to be the sum of the eigenspaces A^λ , $\lambda\in \ell(A)$, in A. Using

standard arguments one shows that this sum is direct, hence

$$Sc(A) = \sum_{\lambda \in \mathscr{E}(A)} \bigoplus A^{\lambda}$$
.

- (2.2) Remarks. a) Sc(A) is a subalgebra of A: For λ , $\nu \in \mathscr{E}(A)$ one easily verifies the inclusion $A^{\lambda}A^{\nu} \subset A^{\lambda \cdot \nu}$. Here $\lambda \cdot \nu \in G^*$ is defined by $(\lambda \cdot \nu)(x) = \lambda(x)\nu(x)$ $(x \in G)$.
- b) Obviously the centre Z(A) of A is just the eigenspace A^1 corresponding to the character of G given by $\mathbb{1}(x) = 1$ for all $x \in G$. Thus $Z(A) \subset Sc(A)$. In case G = [G, G] one has the equality Z(A) = Sc(A), while in general the semicentre can be strictly greater than the centre of A.
- c) For any semiinvariant element $e \in A$ one has eA = Ae. If in addition A is prime, e is a regular element of A: eb = 0 for some $b \in A$ implies 0 = Aeb = eAb and hence b = 0. Analoguously be = 0 implies b = 0. Thus $\{1, e, e^2, ...\}$ is an Ore subset of A (see [2], 2.2). In the same way one shows that a semiinvariant element $e \in A$ is not nilpotent provided I is semiprime.
- d) If $\mathscr{E}[G]$ is noetherian and I is prime one can form the (classical) quotient ring Q(A) of $A = \mathscr{E}[G]/I$. Suppose for some $\lambda \in \mathscr{E}(A)$ elements $a, b \in A^{\lambda}$ are given, with $b \neq 0$. Then by c) b is invertible in Q(A). Furthermore remarks a) and b) show that $ab^{-1} \in Z(Q(A))$ (cf. 3.2b).
- (2.3) The following theorem is based on the proof of Smith's result ([9], Theorem A).

Theorem (P. F. Smith). Let k be an algebraically closed field and G a supersoluble group. If $I \subseteq J$ are ideals of the group algebra k[G] then there exists $\lambda \in G^*$ such that $\lambda(G)$ is finite and $J/I \cap (k[G]/I)^{\lambda} \neq 0$.

Proof. Let $\langle 1 \rangle = G_0 \subset G_1 \subset ... \subset G_n = G$ be a series such that the groups G_i are normal in G and the factors G_i/G_{i-1} are cyclic. The proof is by induction on the subscript i of the groups G_i in the above series. For any normal subgroup V of G such that G/V is abelian and any index $i \in \{0, 1, ..., n\}$ let (V, i) denote the following statement:

(*V*, *i*): If $I \subseteq J$ are *V*-stable ideals of $\mathscr{A}[G_i]$ then there exist $\gamma \in J \setminus I$ and $\lambda \in V^*$ such that $\lambda(V)$ is finite, $\lambda(G, G) = 1$ and $\gamma^* - \lambda(x)\gamma \in I$ for all $x \in V$.

Thus the assertion of the theorem is just (G, n) and our i^{th} induction statement will be:

For every normal subgroup V of G such that G/V is finite abelian the assertion (V, i) is true.

The case i=0 being trivial we proceed to prove the induction step. Choose $V \triangleleft G$ such that G/V in finite abelian and set $U := V \cap K_i$, where K_i denotes the kernel of the natural map $G \rightarrow \operatorname{Aut}(G_{i+1}/G_i)$. Then U is a normal subgroup of G and, since $\operatorname{Aut}(G_{i+1}/G_i)$ is a finite abelian group, the factor G/U is finite abelian. In order to prove (V, i+1) we proceed in two steps

- (1) (U, i+1) is true.
- (2) If $D \subset E$ are normal subgroups of G such that G/D is finite abelian and E/D is cyclic then (D, i+1) implies (E, i+1).

Consider a series $U = U_0 \subset U_1 \subset ... \subset U_s = V$ of normal subgroups of G such that U_i/U_{i-1} is cyclic. Then (U, i+1) together with (2) finally yields (V, i+1). Set $R := \ell[G_{i+1}], S := \ell[G_i]$.

Proof of (1). Let $\{g_l\}_{l\in M}$ be a transversal for G_i in G_{i+1} , M some index set such that $1\in M$, $g_1=1$. The elements of R are uniquely expressible in the form $\alpha=\sum_{l\in M}\alpha_lg_l$, where $\alpha_l\in S$. Set $S(\alpha):=\{g_l:l\in M,\,\alpha_l\neq 0\}$ and call card $S(\alpha)$ the length of α .

Choose an element $\alpha \in J \setminus I$ of minimal length among the elements of $J \setminus I$. Eventually multiplying on the right by a suitable group element we can clearly assume that $1 \in S(\alpha)$. Using the definition of U one easily sees that

$$C_{\alpha}(I) := \left\{ \gamma_1 \in S : \exists \gamma = \gamma_1 + \sum_{1 \neq l \in M} \gamma_l g_l \in I, \, \gamma_l \in S, \, S(\gamma) \in S(\alpha) \right\}$$

and the analoguously defined $C_{\alpha}(J)$ are U-stable ideals of S such that $C_{\alpha}(J) \supset C_{\alpha}(I)$. Clearly $\alpha_1 \in C_{\alpha}(J)$, and the minimality of α implies that $\alpha_1 \notin C_{\alpha}(I)$. Therefore by assumption (U,i), there are $\delta_1 \in C_{\alpha}(J) \setminus C_{\alpha}(I)$ and $\lambda \in U^*$ such that $\lambda(U)$ is finite, $\lambda|[G,G]=1$ and $\delta_1^x - \lambda(x)\delta_1 \in C_{\alpha}(I)$ for all $x \in U$. Choose $\delta \in J$ such that $\delta = \delta_1 + \sum_{1 \neq l \in M} \delta_l g_l$, $\delta_l \in S$, $S(\delta) \subset S(\alpha)$ and for each $x \in U$ choose $\gamma_x \in I$ such that $\gamma_x = \delta_1^x - \lambda(x)\delta_1 + \sum_{1 \neq l \in M} \gamma_{x,l}g_l$, $\gamma_{x,l} \in S$, $S(\gamma_x) \subset S(\alpha)$. Then $\delta \notin I$ since $\delta_1 \notin C_{\alpha}(I)$. For $x \in U$ one obtains

$$\delta^{x} - \lambda(x)\delta = \gamma_{x} + \left(-\sum_{1 \text{ } t \in M} \gamma_{x,l}g_{l} + \sum_{1 \text{ } t \in M} \left(\delta^{x}_{l}[x,g_{l}^{-1}] - \lambda(x)\delta_{l}\right)g_{l}\right).$$

Since $S(\gamma_x)$, $S(\delta) \subset S(\alpha)$ and $[x, g_l^{-1}] \in G_l$, the term in the brackets has shorter length than α . The minimality of α implies $\delta^x - \lambda(x)\delta \in I$. Thus (1) is proved.

Proof of (2). Write $E = \langle D, e \rangle$, where $e^m \in D$. Consider E-stable ideals $I \subseteq J$ of R. In particular I and J are D-stable and hence by the assumption (D, i+1) there exist $\gamma \in J \setminus I$ and $\lambda \in D^*$ such that $\lambda(D)$ is finite, $\lambda \mid [G, G] = 1$ and $\gamma^x - \lambda(x)\gamma \in I$ for all $x \in D$. Let L be the finite-dimensional ℓ -vector space $L := (\ell \gamma + \ell \gamma^e + \ell \gamma^{e^2} + \dots + \ell \gamma^{e^{m-1}} + I)/I$ and let $\Phi \in \operatorname{End}_{\ell}(L)$ be induced by the automorphism $r \mapsto r^e$ of R.

Since ℓ is algebraically closed, Φ has an eigenvalue $\xi \in \ell$. If $0 = \sum_{i=0}^{m-1} k_i \gamma^{e^i} + I$

 $(k_i \in \mathcal{E})$ is a corresponding eigenvector in L, then $\delta := \sum_{i=0}^{m-1} k_i \gamma^{e^i} \in J \setminus I$ and $\delta^e - \xi \delta \in I$.

For $x \in D$ one obtains $\gamma^{e^i x} = \gamma^{[e^{-i}, x^{-1}]xe^i} = \gamma^{xe^i} = \lambda(x)\gamma^{e^i} \mod I$ since $[G, G] \subset \text{Ker } \lambda$. Therefore for all $x \in D: \delta^x - \lambda(x)\delta \in I$. Thus one obtains a homomorphism $\tilde{\lambda} \in E^*$ such that $\delta^x - \tilde{\lambda}(x)\delta \in I$ for all $x \in E$, $\tilde{\lambda}|D = \lambda$, $\tilde{\lambda}(e) = \xi$. Since $e^m \in D$ one has $\xi^m \in D$ $\xi^m \in \tilde{\lambda}(D) = \lambda(D)$ and hence $\xi^n = 1$ for a suitable n. It follows that $\tilde{\lambda}(E)$ is finite. This concludes the proof of (2) and of (2.3).

3. Primitive Ideals

(3.1) **Lemma.** Let G be a polycyclic-by-finite group, k a perfect field and I an ideal of the group algebra k[G]. For an extension field k' of k let $I' := I \bigotimes_{k} k'$ be the ideal of k'[G] generated by I. If I is semiprime then so is I'.

Proof. With the obvious notational changes the proof given in [3], 3.4.2 (see also [2], 3.10) carries over.

(3.2) **Proposition.** Let G be a supersoluble group, ℓ a perfect field and I a semiprime ideal of the group algebra $\ell[G]$. Set $A := \ell[G]/I$.

- (a) If J is an ideal of $\mathscr{E}[G]$ strictly containing I then $J/I \cap Z(A) \neq 0$.
- (b) If in addition I is prime and Q(A) is the (classical) quotient ring of A then Z(Q(A)) = Q(Z(A)).
- *Proof.* (a) First suppose ℓ to be algebraically closed. Then for any ideal J of $\ell[G]$ strictly containing I there exists $\lambda \in G^*$ such that $\operatorname{card} \lambda(G) = : n < \infty$ and $J/I \cap A^{\lambda} \neq 0$ (2.3). Choose $0 \neq a \in J/I \cap A^{\lambda}$. Then $a^n \neq 0$ since I is semiprime (2.2c). Furthermore $\lambda^n(x) = 1$ for all $x \in G$ and hence by (2.2a) $0 \neq a^n \in A^{\perp} = Z(A)$ and clearly $a^n \in J/I$.

In the general case let \hat{k} be an algebraic closure of \hat{k} and let $\hat{I}:=I\bigotimes\hat{k},\,\hat{J}:=I$

- $J \bigotimes_{\ell} \hat{\ell}$ be the ideals of $\hat{\ell}[G]$ generated by I, J. Then $\hat{I} \subsetneq \hat{J}$, and by (3.1), \hat{I} is semiprime. Therefore there exists $0 \neq \hat{a} = \hat{\alpha} + \hat{I} \in \hat{J}/\hat{I} \cap Z(\hat{\ell}[G]/\hat{I})$ ($\hat{\alpha} \in \hat{J}$). Using a ℓ -basis $\{k_i\}_{i \in M}$ of $\hat{\ell}$ write $\hat{\alpha}$ in the form $\hat{\alpha} = \sum_{i \in M_0} \alpha_i k_i$, $M_0 \in M$ a finite set, $\alpha_i \in J \setminus I$. Then obviously for all $i \in M_0$: $0 \neq \alpha_i + I \in J/I \cap Z(A)$.
- (b) Let c be a central element of Q(A). The set of all elements $a \in A$ such that $ac \in A$ forms a nonzero two-sided ideal of A. Therefore, by (a), we can find $0 \neq z \in Z(A)$ such that $zc \in A$. Obviously $zc \in Z(A)$. Now since I is prime, z is regular in A and hence invertible in Q(A). Thus $Z(Q(A)) \subset Q(Z(A))$. The other inclusion is trivial.
- (3.3) **Theorem.** Let G be a supersoluble group and k a perfect field. Then for any prime ideal I of the group algebra k[G] the following properties are equivalent:
 - (i) I is primitive.
 - (ii) The centre Z(k[G]/I) of k[G]/I is a finite algebraic field extension of k.
 - (iii) I is maximal.
 - (iv) I is locally closed in Spec $\ell[G]$.

Proof. (i) \Rightarrow (ii). Let V be an irreducible $\ell[G]$ -module with kernel I. Then $Z(\ell[G]/I)$ is in a natural way embedded in $Z(\operatorname{End}_{\ell[G]}(V))$. Application of (1.2) yields the result. (ii) \Rightarrow (iii). This follows immediately from (3.2a). Finally (iii) \Rightarrow (iv) is trivial and (iv) \Rightarrow (i) is a consequence of (1.3).

4. Counterexamples

- (4.1) In the present form (3.3) does not extend to group algebras of general polycyclic-by-finite groups: Let G be a polycyclic group having all nontrivial conjugacy classes of infinite order and let ℓ be an absolute field, i.e. a field that is algebraic over a finite field. Then by a result of Roseblade ([8], Theorem A), $\ell[G]$ is certainly not primitive. On the other hand $\ell[G]$ is prime and $Z(\ell[G]) = \ell$. Thus the ideal I = 0 satisfies (ii) but not (i).
- (4.2) Another more interesting example dealing with non absolute fields will be given below. We first state a slightly more general result suggested by the referee. Recall that if H is a group acting on a ring S, then the crossed product $S_{\alpha}[H]$ of S and H with respect to the action $\alpha: H \to \operatorname{Aut}(S)$ is a ring that is free as a right S-module with basis the elements of H. The multiplication is defined distributively extending the rule $xr \cdot ys = xyr^{\alpha(y)}s$ $(x, y \in H, r, s \in S)$.

Proposition. Let k be an algebraically closed field and let X be an irreducible affine k-variety with coordinate ring S. Furthermore let H be a group acting faithfully on X and let $R := S_{\alpha}[H]$ be the crossed product of S and H with respect to the induced action $\alpha: H \to \operatorname{Aut}(S)$ of H on S. Then:

- (a) R is prime.
- (b) If X contains a dense H-orbit, then R is primitive.
- (c) If R is noetherian, then the ideal I=0 of R is locally closed in Spec R if and only if the union of all H-orbits that are not dense in X is not dense.

Proof. (1) If J is a nonzero ideal of R, then $J \cap S \neq 0$. Every element $\alpha \in R$ can be written uniquely in the form $\alpha = \sum_{i=1}^{n} h_i s_i$, where $h_i \in H$ are distinct and s_i are nonzero elements of S. Call the number of summands occuring in such an expression the length of α and choose $0 \neq \alpha \in J$ of minimal length n among the nonzero elements of J. After multiplying with a suitable element of H if necessary, we may assume that $h_1 = 1$. The assertion will be proved if we can show that n = 1. Assume n > 1. Then $h_n \neq 1$ and there exists an element $s \in S$ such that $s^{h_n} \neq s$. (We write s^h instead of $s^{\alpha(h)}$.) The element $\beta := s\alpha - \alpha s = \sum_{i=2}^{n} h_i(s^{h_i} - s)s_i \in J$ is nonzero, because

 $s^{h_n} - s$, $s_n \neq 0$ and S has no zero divisors by the irreducibility of X. Since β has shorter length than α we have the desired contradiction.

- (2) Proof of (a). If A, B are nonzero ideals of R, then by (1) $A \cap S$ and $B \cap S$ are nonzero. Therefore $(A \cap S)(B \cap S) \neq 0$ and $AB \neq 0$.
- (3) Proof of (b). The existence of a dense H-orbit is equivalent to the existence of a maximal ideal I of S such that $\bigcap_{h \in H} I^h = 0$. Consider the left ideal RI of R. Since R

is free over S, it follows that $RI \neq R$. Hence we can choose a maximal left ideal L of R containing RI. Let V be the irreducible R-module V := R/L. Then as S-modules $V \supset S + L/L \cong S/S \cap L = S/I$. Therefore $A \cap S \subset I$, where $A := Ann_R(V)$. Since $A \cap S$ is clearly an H-stable ideal of S, it follows that $A \cap S \subset \bigcap_{h \in H} I^h = 0$.

Finally A = 0, by (1). Thus V is a faithful irreducible R-module and R is primitive. (4) If J is a semiprime ideal of R, then $J \cap S$ is a semiprime ideal of S. Let $\mathcal{M} := \{P_1, ..., P_n\}$ be the set of minimal prime ideals of S containing $J_S := J \cap S$. Since J_S

is H-stable, H operates on \mathcal{M} . It follows that the radical $\sqrt{J_S} = \bigcap_{i=1}^n P_i$ of the ideal

 J_S is H-stable. Hence $R \bigvee J_S$ is a two-sided ideal of R. Furthermore there exists an n such that $\bigvee J_S{}^n \subset J_S$. It follows that $(R \bigvee J_S)^n = R \bigvee J_S{}^n \subset RJ_S \subset J$. Therefore, since J is semiprime, $R \bigvee J_S \subset J$ and $\bigvee J_S \subset J \cap S = J_S$.

(5) Proof of (c). First suppose that the union of all H-orbits in X that are not dense is dense, i.e. there are maximal ideals I_{α} , $\alpha \in A$, of S such that $D(I_{\alpha}) := \bigcap_{h \in H} I_{\alpha}^{h} \neq 0$

for all $\alpha \in A$ but $\bigcap_{\alpha \in A} D(I_{\alpha}) = 0$. Each $D(I_{\alpha})$ is a semiprime H-stable ideal of S. Let

 I'_{α} be the two-sided ideal $I'_{\alpha} := RD(I_{\alpha})$ of R and let $J_{\alpha} := \sqrt{I'_{\alpha}}$ be the radical of I'_{α} . Since R is noetherian, J_{α} is a semiprime ideal of R such that $J''_{\alpha} \subset I'_{\alpha}$ for some n. Therefore $(J_{\alpha} \cap S)^n \subset I'_{\alpha} \cap S = D(I_{\alpha})$ and hence $J_{\alpha} \cap S = D(I_{\alpha})$. It follows that $\left(\bigcap_{\alpha \in A} J_{\alpha}\right) \cap I'_{\alpha} \cap$

 $S = \bigcap_{\alpha \in A} D(I_{\alpha}) = 0$ and, by (1), $\bigcap_{\alpha \in A} J_{\alpha} = 0$. Thus the ideal I = 0 is the intersection of

nonzero prime ideals and therefore is not locally closed in Spec R.

Conversely, suppose $\bigcap J_{\alpha}=0$, where $\{J_{\alpha}\}_{\alpha\in A}$ denotes the set of nonzero prime ideals of R. Then $0 = \bigcap_{\alpha=1}^{\alpha \in A} (J_{\alpha} \cap S)$ and, by (1) and (4), each $J_{\alpha} \cap S$ is a nonzero semiprime ideal of S. The Jacobson property of S implies that $J_{\alpha} \cap S$ is the intersection of all maximal ideals of S containing $J_{\alpha} \cap S$. Collect these ideals in \mathscr{V} . Certainly H operates on $\mathscr V$ and hence $J_{\alpha} \cap S = \bigcap_{M \in \mathscr V} \bigcap_{h \in H} M^h$. Let x_M be such that $\{x_M\}$ is the set of zeros of M and let $\mathscr O_M$ be the H-orbit $\mathscr O_M := x_M^H$. Then $\mathscr O_M$ is not dense, since its annihilating ideal $\mathscr I(\mathscr O_M) = \bigcap_{h \in H} M^h$ is nonzero. But the union $\bigcup_{\alpha \in A} \bigcup_{M \in \mathscr V} \mathscr O_M$ is dense, because $\mathscr I(\bigcup_{\alpha \in A} \bigcup_{M \in \mathscr V} \mathscr O_M) = \bigcap_{\alpha \in A} \bigcap_{M \in \mathscr V} \mathscr I(\mathscr O_M) = \bigcap_{\alpha \in A} (J_{\alpha} \cap S) = 0$.

- (4.3) We close with the promised example: Let $A = \langle x \rangle \times \langle y \rangle$ be a free abelian group of rank 2 and let $z \in Aut(A)$ be defined by $x^z = x^2y$, $y^z = xy$. Consider the group algebra $\mathcal{M}[G]$ of the semidirect product $G := A \otimes_{\sigma} \langle z \rangle$ over the algebraically closed field ℓ . Then $\ell[A]$ can be considered as the coordinate ring S of the variety $X := \ell \times \ell'$. If we let $\langle z \rangle$ act on X according to $(c, d)^z := (cd^{-1}, c^{-1}d^2)$ $(c, d \in \ell')$, then $\mathcal{E}[G]$ is isomorphic to the crossed product of S and $\langle z \rangle$. The orbits of the action of $\langle z \rangle$ on X are easily described (We omit the verifications):
 - (1) All infinite $\langle z \rangle$ -orbits are dense in X.
- (2) If $E \in \mathcal{K}$ denotes the set of roots of unity in \mathcal{K} then $E \times E$ is the union of all finite $\langle z \rangle$ -orbits in X.

Now suppose ℓ to be non absolute. Then $E \neq \ell'$ and hence there are infinite $\langle z \rangle$ -orbits in X. By (4.2b) together with (1), we conclude that $\ell \lceil G \rceil$ is primitive. Finally, since $E \times E$ is dense in X, (4.2c) and (2) show that the ideal I=0 is not locally closed in Spec $\ell[G]$. – We remark that the primitivity of $\ell[G]$ also follows from a result of Passman ([7], Corollary 7.9) that is based on Bergman's work in [1].

References

- 1. Bergman, G. M.: The logarithmic limit set of an algebraic variety. Trans. Amer. Math. Soc. 157, 459 469 (1971)
- 2. Borho, W., Gabriel, P., Rentschler, R.: Primideale in Einhüllenden auflösbarer Lie-Algebren. Berlin, Heidelberg, New York: Springer 1973
- 3. Dixmier, J.: Algèbres enveloppantes. Paris: Gauthiers-Villars 1974
- 4. Goldie, A. W., Michler, G.O.: Ore extensions and polycyclic group rings. J. London Math. Soc. 9, 337—345 (1974)
- 5. Hall, P.: Finiteness conditions for soluble groups. Proc. London Math. Soc. 4, 419—436 (1954)
- 6. Hall, P.: On the finiteness of certain soluble groups. Proc. London Math. Soc. 9, 595—622 (1959)
- 7. Passman, D.S.: Advances in group rings. Israel J. Math. 19, 67—107 (1974)
- 8. Roseblade, J. E.: Group rings of polycyclic groups. J. Pure and Appl. Algebra 3, 307-328 (1973)
- 9. Smith, P. F.: Group rings of hypercyclic groups. Math. Zeitschr. 144, 283—288 (1975)
- 10. Zalesskij, A. E.: Irreducible representations of finitely generated nilpotent torsion-free groups. Math. Notes 9, 117-123 (1971)