Thermochimie

La **thermodynamique** étudie les lois qui gouvernent les **échanges d'énergie**

La thermodynamique classique (macroscopique) étudie les propriétés macroscopiques de la matière ex: T, P, V... et repose sur <u>3 principes</u>

En **thermochimie** ou thermodynamique chimique, on s'intéresse au **réactions chimiques** et aux phénomènes de changements d'état

La thermodynamique statistique analyse les mécanismes liés aux variables microscopiques du système. Cette aspect ne sera pas abordé dans ce cours.

Définitions

Système homogène: avec une seule phase **Système hétérogène**: avec plusieurs phases

Suivant les échanges du système avec l'extérieur, on distingue:

Système ouvert: avec échange de matière et d'énergie Système fermé: avec échange d'énergie mais pas de matière Système isolé: sans échange de matière ni d'énergie

 $\begin{array}{ll} \mbox{Transformation isotherme:} & \mbox{T= cte} \\ \mbox{Transformation isobare:} & \mbox{P=cte} \\ \mbox{Transformation isochore:} & \mbox{V=cte} \\ \end{array}$

Transformation adiabatique: pas d'échange de chaleur

Convention de signe

Tout **apport d'énergie** (travail ou chaleur) **du milieu extérieur vers le système** est compté positivement

Toute **dépense d'énergie** (travail ou chaleur) du **système** vers le milieu extérieur est comptée négativement

Relation des gaz parfaits

PV = n RT

- P Pression du gaz
- V volume du gaz
- **n** nombre de moles
- T température en Kelvin (0° C = 273,15 K)
- R Constante des gaz parfaits

R= 0,082 atm.l.mol⁻¹.K⁻¹

R= 8,31 J. mol⁻¹.K⁻¹

R= 2 cal. mol⁻¹.K⁻¹

Energie mécanique W

$$W = -\int P_{\text{ext}} \cdot dV$$

Unités : Joule (J) ou calorie (cal)

Cas d'une compression ou détente d'un gaz parfait

Signe de W

Pour une compression W > 0 Pour une détente W < 0

W n'est pas une fonction d'état car sa valeur dépend du chemin suivi

W irréversible ≠ W réversible

Transformation irréversible, calcul de W_{irrev}

$$W = -\int P_{ext} \cdot dV$$

<u>Transformation irréversible:</u> P_{ext} = P₂

$$W_{irrev} = - \int P_{ext} \cdot dV = - P_2 \int dV = - P_2 \Delta V = - P_2 (V_2 - V_1)$$

Vérification de la convention de signe :

Compression W > 0

Détente W < 0

Transformation réversible, calcul de $W_{r\acute{e}V}$ $W = -\int P_{ext} \cdot dV$ Transformation réversible: $P_{ext} = P_{gaz}$ $P_{1} gaz \qquad gaz$ Cas d'une transformation isotherme réversible d'un gaz parfait: $W_{rev} = -\int P_{ext} \cdot dV = -\int P \cdot dV = -\int nRT \ dV/V = -nRT \int dV/V$ $W_{rev} = -nRT \ Ln(V_2/V_1)$ Vérification de la convention de signe : Compression $W > 0$ Détente $W < 0$	
Chaleur Q La chaleur dépend de la capacité calorifique de la matière et de la variation de la température (∆T en °C ou °K) Q _{molaire} = ∫ C _{molaire} dT Unités : C _{molaire} cal.mof¹.K², Q _{molaire} J.mof¹, cal.mof¹ Q _{totale} = ∫ nC _{molaire} dT Q _{totale} = ∫ C _{totale} dT Q _{totale} = ∫ mC _{massique} dT Unités: C _{totale} cal.K¹, C _{massique} cal.g¹.K¹, Q _{totale} J ou cal Signe de Q Transformation exothermique (Q<0) ou endothermique (Q>0) Q n'est pas une fonction d'état car sa valeur dépend du chemin suivi	

Premier principe de la thermodynamique

Premier principe de la thermodynamique: L'ensemble des échanges énergétiques (W et Q) pour un système fermé est constant

«Rien ne se perd, rien ne se crée, tout se transforme »

Energie interne U

Variation de l'énergie interne ΔU = Q + W

 ΔU = échanges énergétiques du système avec le milieu extérieur

Pour un **système fermé <u>A</u>U =cte** (1^{er} principe) Pour **système isolé ∆U=0**

Transformation isochore $\Delta U = Q_v$ (bombe calorimérique)

Transformation isotherme d'un gaz parfait

 $\Delta U = 0$ (Loi de Joule, $\Delta U = 3/2$ nRT)

W et Q ne sont pas des fonctions d'état. ${f U}$ est une **fonction d'état**, $\Delta {f U}$ ne dépend pas du chemin suivi

Enthalpie H

Enthalpie H = U + PVVariation de l'enthalpie $\Delta H = \Delta U + \Delta (PV)$

Pour une réaction isotherme avec des gaz parfaits $\Delta H = \Delta U + \Delta (PV) = \Delta U + \Delta (nRT) = \Delta U + RT\Delta n$ Exemple: $PCl_5(g) \implies PCl_3(g) + Cl_2(g) \quad \Delta n=1$

Transformation isobare

 $\Delta H = Q_{D}$

 ${f H}$ est une **fonction d'état,** $\Delta {f H}$ ne dépend pas du chemin suivi

Valeurs de ΔH pour différentes transformations

* Pour une **réaction chimique** (Loi de Hess)

 $aA + bB \rightarrow cC + dD$

 $\Delta H_r = c\Delta H_f(C) + d\Delta H_f(D) - a\Delta H_f(A) - b\Delta H_f(B)$

Si conditions standards T=298K et P=1 atm, notation $\Delta H_r^{\,\circ}$ et $\Delta H_f^{\,\circ}$ ΔH_f° (éléments simples) est nul, Exemples: $C_{qraphite}$, H_2 , O_2 ...

* Chauffage ou refroidissement d'un corps pur (P=1 atm)

 $\Delta H = Qp = \int C_p dT$

* Changement d'état d'un corps pur (T= cte)

 $\begin{array}{l} \Delta H_{vap} = L_{vap} \; \text{(Chaleur latente de vaporisation)} \\ \Delta H_{sub} = L_{sub} \; \text{(Chaleur latente de sublimation)} \ldots \end{array}$

_			
·			
•			
•			
•			
•			
_			
•			

Entropie S

Entropie
$$\Delta S = \int (\delta Q_{rev} / T)$$

(2^{ème} et 3^{ème} principes de la thermodynamique)

L'entropie peut être considérée comme **une mesure du désordre**

Plus le désordre est important, plus l'entropie est grande, d'où le classement

$$S_{solide} < S_{liquide} << S_{gaz}$$

Variation d'entropie ΔS

Pour une **réaction chimique aA + bB → cC + dD**

 $\Delta S_r = cS_f(C) + dS_f(D) - aS_f(A) - bS_f(B)$ Si conditions standards T=298K et P=1 atm, notation ΔS_r° et S_f°

Pour un cristal parfait $S_0^{\circ} = 0$

Enthalpie libre de Gibbs ΔG

Enthalpie libre de Gibbs G = H - TS Si T= cte alors $\Delta G = \Delta H - T \Delta S$

(2ème et 3ème principes de la thermodynamique)

Signe de ∆G

∆G < 0 réaction possible (spontanée)

∆G > 0 réaction impossible

 $\Delta G = 0$ réaction équilibrée

Cas d'un équilibre chimique homogène (gaz) Soit un équilibre homogène en phase gazeuse $aA + bB \rightleftharpoons cC + dD$ Kp: Constante d'équilibre en fonction des pressions partielles $P_{A'} P_{B'} P_{C'} P_{D}$ $Kp = (P_C)^c (P_D)^d / (P_A)^a (P_B)^b$ avec $P_A = (n_A/nt) P_t$, $P_B = (n_B/nt) P_t$ $P_C = (n_C/nt) P_t$, $P_D = (n_D/nt) P_t$ Remarque: Kx constante d'équilibre en fonction des fractions molaires avec $\begin{array}{ccc} x_A = (n_B/nt) & x_B = (n_B/nt) \\ x_C = (n_C/nt) & x_D = (n_D/nt) \end{array}$

Relation ΔG et Constante d'équilibre Kp

Pour un équilibre homogène en phase gazeuse

$$\Delta G_T^P = \Delta G_T^0 + RT Ln Kp$$

 ΔG_T^0 variation de l'enthalpie libre à P=1 atm ΔG_{T}^{P} variation de l'enthalpie libre à P

Pour un équilibre, $\Delta G_T^P = 0$ d'où $\Delta G_T^0 = - RT Ln Kp$ $Kp = exp \left(-\Delta G_T^0/RT\right)$

Principe de Lechatelier

Principe de Le Chatelier ou Loi de modération

Tout modification de l'un des facteurs de l'équilibre (T, P ..) déplace l'équilibre dans le sens qui tend à atténuer la variation du facteur modifié

Effet de l'addition d'un des composés Soit l'équilibre suivant: $\stackrel{(1)}{\longleftarrow}$ cC + dD D'après la loi de modération, l'addition d'un des composés fait évoluer l'équilibre de façon à éliminer cet excès Ainsi: * l'addition d'un des réactifs (A ou B), fait évoluer l'équilibre dans le sens (1) * l'addition d'un des produits (C ou D), fait évoluer l'équilibre dans le sens (2) Evolution d'un équilibre avec T Variation de T: Si T augmente, évolution de l'équilibre dans le sens où T diminue donc dans le sens de la réaction endothermique Inversement Si **T diminue**, évolution de l'équilibre dans le sens où T augmente donc dans le **sens de la réaction** exothermique Evolution d'un équilibre gazeux avec P Variation de P: Si P augmente, évolution de l'équilibre dans le sens où P diminue donc dans le sens où le nombre de moles diminue Si **P diminue**, évolution de l'équilibre dans le sens où P augmente donc dans le sens où le nombre de moles Exemple: $PCl_5(g)$ \rightleftharpoons $PCl_3(g)+ Cl_2(g)$

Pas d'effet de P sur l'équilibre si pas de variation du

nombre de moles