

Faculty of Engineering, Architecture and Science

Department of Electrical and Computer Engineering

Course Number	ELE 532 - Section 12
Course Title	Signals and Systems 1
Semester / Year	F2023
Instructor	Dr. Javad Alirezaie
Assignment Number	4
Assignment Title	The Fourier Transform: Properties and Applications
Submission Date	2023/12/01
Due Date	2023/12/02
Student Name	Sarim Shahwar
Student ID	501109286
Signature*	SS

^{*}By signing above you attest that you have contributed to this written lab report and confirm that all work you have contributed to this lab report is your own work. Any suspicion of copying or plagiarism in this work will result in an investigation of Academic Misconduct and may result in a "0" on the work, an "F" in the course, or possibly more severe penalties, as well as a Disciplinary Notice on your academic record under the Student Code of Academic Conduct, which can be found online at: www.ryerson.ca/senate/current/pol60.pdf.

Code:

```
%% A.1
N = 100;
PulseWidth = 10;
t = [0:1:(N-1)];
x = [ones(1, PulseWidth), zeros(1, N-PulseWidth)];
Xf = fft(x);
f = [-(N/2):1:(N/2)-1]*(1/N);
Zf = abs((Xf).^2);
subplot(311);plot(f,fftshift(Xf));
subplot(312);plot(f,fftshift(Xf));
subplot(313);plot(f,fftshift(Zf));
```


Code:

```
%% A.3
N = 100;
PulseWidth = 10;
t = [0:1:(N-1)];
x = [ones(1, PulseWidth), zeros(1, N-PulseWidth)];
Xf = fft(x);
f = [-(N/2):1:(N/2)-1]*(1/N);
Zf = abs((Xf).^2);
subplot(311);plot(f,fftshift(Zf));
subplot(312);plot(f,fftshift(abs(Zf)));
subplot(313);plot(f,fftshift(angle(Zf)));
```


Code:

```
%% A.4
t1 = -20;
t2 = 20;
N = 2000;
Delta_t = (t2 - t1)/N;
t = [t1:Delta_t:t2];
x = zeros(size(t));
x(t >= 0 & t <= 10) = 1;
x1 = x*Delta_t;
z = conv(x,x1);
subplot(2,1,1);
plot(t,z(1000:3000));
axis([t1 t2 -0.1 10.1]);
title('z(t) in time - domain');
xlabel('t');</pre>
```

The results obtained using both time and frequency domain operations closely resemble the analytical outcomes computed in section A.1. By employing convolution in the time domain and multiplication in the frequency domain to generate z(t), we observed that both methods produced identical results. This agreement underscores a fundamental property of Fourier Transforms: the convolution of x(t) and y(t) is equivalent to the product of their respective Fourier transforms, denoted as X(w) and Y(w).

Code: Part A %% A.5 A % Pulse Width of 5 N = 100; PulseWidth = 5; t = [0:1: (N-1)]; x = [ones(1, PulseWidth), zeros(1, N-PulseWidth)]; Xf = fft(x); f = [-(N/2):1: (N/2)-1]*(1/N);

subplot(311);plot(f,fftshift(Zf));

```
subplot(312);plot(f,fftshift(abs(Zf)));
subplot(313);plot(f,fftshift(angle(Zf)));
```


Code:Part B

 $Zf = abs((Xf).^2);$

```
%% A.5 B

N = 100;

PulseWidth = 25;

t = [0:1:(N-1)];

x = [ones(1, PulseWidth),

zeros(1, N-PulseWidth)];

Xf = fft(x);

f = [-(N/2):1:(N/2)-1]*(1/N);

Zf = abs((Xf).^2);
```

```
subplot(311);plot(f,fftshift(Zf));
subplot(312);plot(f,fftshift(abs(Zf)));
subplot(313);plot(f,fftshift(angle(Zf)));
```

The Fourier Transform exhibits an increase in both amplitude and frequency when the pulse width of the original function is extended. Conversely, a reduction in pulse width results in a decrease in both amplitude and frequency of the Fourier Transform. This characteristic is commonly referred to as the time-scaling property of the Fourier Transform.


```
N = 100;
PulseWidth = 10;
t = [0:1:(N-1)];
x = [ones(1,PulseWidth),
zeros(1,N-PulseWidth)];
wplus =
x.*exp(1j.*(pi/3).*t)
Xf = fft(wplus);
f =
[-(N/2):1:(N/2)-1]*(1/N);
figure();
subplot(311);
```

plot(f,fftshift(Xf));

title('X(w)');

xlabel('w');

subplot(312);

w+(t): Code:

```
plot(f,fftshift(abs(Xf)));
title('|X(w)|');
xlabel('w');
subplot(313);
plot(f,fftshift(angle(Xf)));
title('angle X(w)');
xlabel('w');
```


W-(t):

```
Code:
N = 100;
PulseWidth = 10;
t = [0:1:(N-1)];
x = [ones(1,PulseWidth),
zeros(1,N-PulseWidth)];
wminus =
x.*exp(-1j.*(pi/3).*t);
Xf = fft(wminus);
f =
[-(N/2):1:(N/2)-1]*(1/N);
figure();
subplot(311);
plot(f,fftshift(Xf));
title('X(w)');
xlabel('w');
subplot(312);
plot(f,fftshift(abs(Xf)));
```

```
title('|X(w)|');
xlabel('w');
subplot(313);
plot(f,fftshift(angle(Xf)));
title('angle X(w)');
xlabel('w');
```


wc(t):

```
Code:
N = 100;
PulseWidth = 10;
t = [0:1:(N-1)];
x = [ones(1, PulseWidth),
zeros(1,N-PulseWidth)];
wc = x.*cos((pi/3).*t);
Xf = fft(wc);
f =
[-(N/2):1:(N/2)-1]*(1/N);
figure();
subplot(311);
plot(f,fftshift(Xf));
title('X(w)');
xlabel('w');
subplot(312);
```

```
plot(f,fftshift(abs(Xf)));
title('|X(w)|');
xlabel('w');
subplot(313);
plot(f,fftshift(angle(Xf)));
title('angle X(w)');
xlabel('w');
```

When we multiplied the original function by a complex exponential, it caused a shift in frequency. This interesting effect is known as the frequency shift property of the Fourier Transform.

Essentially, if $x_1(t)$ has a Fourier Transform $X_1(jw)$), and we multiply $x_1(t)$ by e^{jw_0t} , the resulting function $x_2(t)$ will have a Fourier Transform $X_2(jw)$ equal to $X_1(j(w-w_0))$. This means that the entire frequency content of the signal $x_1(t)$ is shifted by w_0 in the frequency domain.

Equation (including properity): $x_2(t) = e^{\int w_0^t} \cdot x_1(t) --> X_2(jw) = X_1(j(w-w_0))$

Problem B

```
Codes:
```

```
%% Part B.1
load('Lab4 Data.mat');
% plotting all the values from the data given on a graph for a visual
% repersentation as well as a baseline for the encoder and decoder
figure (1)
plot (xspeech)
title('xspeech');
figure (2)
MagSpect(hChannel)
title('hChannel domain (Frequency)');
figure(3)
MagSpect(hLPF2000)
title('hLPF2000 domain (Frequency)');
figure (4)
MagSpect (hLPF2500)
title('hLPF2500 domain (Frequency)');
```



```
%% Encoder:
% The audio file will be encoded with the following sets of codes below. To
% encode the file, the first step will be to convolute the audio file with
% a low pass filter to ensure the higher frequency are removed. This is
% because it is not needed. Secondly, the convoluted signal are multiplied
% with the Carrier signal function (from osc.m) to ensure efficient
% transmission. At the very end, he product is convoluted with the
% hChannel to get the final encoded signal.
MagSpect(xspeech)
title('xspeech (Frequency)');
Convolution 1 = conv(xspeech,hLPF2000);
figure(5)
MagSpect(Convolution 1)
title('Convolution of xspeech and hLPF2000');
Carrier = osc(3500, 80710, 32000);
figure (6)
plot(Carrier)
title('Carrier Signal #1');
Mod = Convolution_1.*Carrier;
figure(7)
MagSpect (Mod)
title('Modulated Signal Frequency Domain');
Output = conv(Mod, hChannel);
figure(8)
MagSpect (Output)
title('Encoded Signal Frequency Domain');
```



```
%% Decoder:
% To start off, the signal is multiplied with the carrier signal. Secondly,
% the function is convoluted with the second low-pass filter to remove the
% higher frequencies which will return the final signal.
% %centeral Freq change.
Carrier 2 = osc(3500, 81520, 32000);
figure (9)
plot(Carrier 2)
title('Carrier Signal #2');
Demod = Output.*Carrier 2;
figure(10)
MagSpect (Demod)
title('Demodulated Signal Domain (Frequency)');
new xspeech = conv(Demod, hLPF2500);
figure(11)
plot(new_xspeech)
title('Decoded Signal');
figure(12)
MagSpect(new_xspeech)
sound(new xspeech, 32000)
title('Decoded Signal Domain (Frequency)');
% 1. Encoded the audio file using the hLPF2000 low pass filter
% 2. Carrier signal generated by the osc.m file and the hChannel signal
% 3. Encoded signal is decoded using another carrier signal (from)the osc.m.
% and hLPF25000 low pass filter.
```


Implement an audio transmission using an encoder and decoder. (anudation of x speech with low pass filter (hlpF2000), modulating the result with Carrier signed, then convolcting again with the Ih Channel filter FOT Decoder, demodulating the Signed, filter With the Low-Pass Litter ('hLPF25001).

LLPF 2500 - Second LOW Fass APIter

h Channel - Channel Friter

