Separate to Adapt: Open Set Domain Adaptation via Progressive Separation

Hong Liu, et al., CVPR, 2019

2019/07/18, Kangyeol Kim

Today, OSDA, Separate to Adapt

Main challenge of OSDA

- Aligning the whole distribution of source and target domains will be risky.
 - Unknown class in target domain impairs the alignment (negative transfer)

Main challenge of OSDA

- Aligning the whole distribution of source and target domains will be risky.
 - Unknown class in target domain impairs the alignment (negative transfer)
- We need to identify the boundary between known and unknown classes.
 (Without any labels in target class)

- For this, this paper adopt multi-binary classifiers (G_c) and unknown class identifier (G_b) , we want that :
 - G_c measures the similarity between each target sample and each source class, thus introduce loss L_s

$$L_s = \sum_{c=1}^{|\mathcal{C}_s|} rac{1}{n_s} \sum_{i=1}^{n_s} L_{ ext{bce}}\left(G_c\left(G_f\left(\mathbf{x}_i^s
ight)
ight), I\left(y_i^s, c
ight)
ight)$$

- For this, this paper adopt multi-binary classifiers (G_c) and unknown class identifier (G_b) , we want
 - G_c to measure the similarity between each target sample and each source class, thus introduce loss L_s

$$L_s = \sum_{c=1}^{|\mathcal{C}_s|} rac{1}{n_s} \sum_{i=1}^{n_s} L_{ ext{bce}}\left(G_c\left(G_f\left(\mathbf{x}_i^s
ight)
ight), I\left(y_i^s, c
ight)
ight)$$

• *G_b* to measure the **probability that a sample belongs to unknown class,** thus introduce the following steps:

- For this, this paper adopt multi-binary classifiers (G_c) and unknown class identifier (G_b), we want
 - G_c to measure the similarity between each target sample and each source class, thus introduce loss L_s

$$L_s = \sum_{c=1}^{|\mathcal{C}_s|} rac{1}{n_s} \sum_{i=1}^{n_s} L_{ ext{bce}}\left(G_c\left(G_f\left(\mathbf{x}_i^s
ight)
ight), I\left(y_i^s, c
ight)
ight)$$

- *G_b* to measure the **probability that a sample belongs to unknown class,** thus introduce the following steps:
 - Pick highest probability from G_c (confidence to source class)
 - Cluster into 3 groups depending on confidence: highest, medium, lowest group and compute the means of highest, lowest group (s_h, s_l)
 - Annotate $s_j > s_h$ to known class, $s_j < s_l$ to unknown class.

- For this, this paper adopt multi-binary classifiers (G_c) and unknown class identifier (G_b), we want
 - G_c to measure the similarity between each target sample and each source class, thus introduce loss L_s

$$L_{s} = \sum_{c=1}^{\left|\mathcal{C}_{s}
ight|} rac{1}{n_{s}} \sum_{i=1}^{n_{s}} L_{ ext{bce}}\left(G_{c}\left(G_{f}\left(\mathbf{x}_{i}^{s}
ight)
ight), I\left(y_{i}^{s}, c
ight)
ight)$$

- G_b to measure the **probability that a sample belongs to unknown class**, thus introduce the following steps:
 - Pick highest probability from G_c (confidence to source class)
 - Cluster into 3 groups depending on confidence: highest, medium, lowest group and compute the means of highest, lowest group (s_h, s_l)
 - Annotate $s_j > s_h$ to known class $(d_j = 0)$, $s_j < s_l$ to unknown class $(d_j = 0) =>$ set X'

- For this, this paper adopt multi-binary classifiers (G_c) and unknown class identifier (G_b) , we want
 - G_c to measure the similarity between each target sample and each source class, thus introduce loss L_s

$$L_{s} = \sum_{c=1}^{\left|\mathcal{C}_{s}
ight|} rac{1}{n_{s}} \sum_{i=1}^{n_{s}} L_{ ext{bce}}\left(G_{c}\left(G_{f}\left(\mathbf{x}_{i}^{s}
ight)
ight), I\left(y_{i}^{s}, c
ight)
ight)$$

- G_b to measure the **probability that a sample belongs to unknown class**, thus introduce the following steps:
 - Pick highest probability from G_c (confidence to source class)
 - Cluster into 3 groups depending on confidence: highest, medium, lowest group and compute the means of highest, lowest group (s_h, s_l)
 - Annotate $s_j > s_h$ to known class $(d_j = 0)$, $s_j < s_l$ to unknown class $(d_i = 0) = sol X'$, finally train G_b with

$$L_{b} = rac{1}{|\mathbf{X}'|} \sum_{\mathbf{x}_{j} \in \mathbf{X}'} L_{\text{bce}} \left(G_{b} \left(G_{f} \left(\mathbf{x}_{j}
ight)
ight), d_{j}
ight).$$

Adding supervision loss using source dataset, whole losses in this step:

$$L_{ ext{cls}}^{s} = rac{1}{n_{s}} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{s}} L_{y} \left(G_{y}^{1:|\mathcal{C}_{s}|} \left(G_{f} \left(\mathbf{x}_{i}
ight)
ight), y_{i}
ight)$$

- Meaning of progressive separation step
 - By multi-binary classifiers, we can get **the decision boundaries for each class.** (whether a sample belongs to the class or not)
 - Furthermore, by G_b , multi-binary classifiers roughly need to filter the unknown class samples in target domain.

Weighted adaptation step

- Next, we need to focus the model on aligning the distribution of source and target data in the shared label space.
 - Using G_b , we can obtain instance-level a probability to be unknown class: $\mathbf{w}_i = G_b(G_f(x_i))$.
 - Exploiting w_j , a weighted loss for adversarial adaptation is defined. Note that $(1 - w_j)$ is the probability to be known class.

$$L_{d} = \frac{1}{n_{s}} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{s}} L_{\text{bce}}\left(G_{d}\left(G_{f}\left(\mathbf{x}_{i}\right)\right), d_{i}\right)$$

$$+ \frac{1}{\sum_{\mathbf{x}_{j} \in \mathcal{D}_{t}} \left(1 - w_{j}\right)} \sum_{\mathbf{x}_{j} \in \mathcal{D}_{t}} \left(1 - w_{j}\right) L_{\text{bce}}\left(G_{d}\left(G_{f}\left(\mathbf{x}_{j}\right)\right), d_{j}\right).$$

Weighted adaptation step

• Additionally, to get more accurate unknown class boundary, unknown class branch of G_f is trained using weights of w_j , and $l_{uk} \in \{0, 1\}$ which is determined by w_i (? Thresholding)

$$L_{ ext{cls}}^{t} = rac{1}{|\mathcal{C}_{s}|} rac{1}{\sum\limits_{\mathbf{x}_{j} \in \mathcal{D}_{t}} w_{j}} \sum_{\mathbf{x}_{j} \in \mathcal{D}_{t}} w_{j} L_{y} \left(G_{y}^{|\mathcal{C}_{s}|+1}\left(G_{f}\left(\mathbf{x}_{j}
ight)
ight), l_{ ext{uk}}
ight)$$

• Moreover, entropy minimization loss on the known classes of target domain is incorporated to enforce the decision boundary to pass through low-density area in the target domain (? ref.)

$$L_e = \frac{1}{\sum_{\mathbf{x}_j \in \mathcal{D}_t} (1 - w_j)} \sum_{\mathbf{x}_j \in \mathcal{D}_t} (1 - w_j) H\left(G_y^{1:|\mathcal{C}_s|} \left(G_f\left(\mathbf{x}_j\right)\right)\right)$$

Weighted adaptation step

• Then, the total losses in this step is described as:

Separation and adaptation alternatively

• The two steps are implemented alternately resulting more accurate separation boundary and feature alignment between source and target domain within the known classes

Metric for open set DA

OS

normalized accuracy for all the classes including the unknown as one class

OS*

normalized accuracy only on known classes

ALL

• the accuracy of all instances (without averaging accuracy over the classes)

UNK

• the accuracy of unknown samples

Experiment, Comparison with baselines

Table 1. Classification accuracy (%) of open set domain adaptation tasks on Digits (LeNet) and VisDA-2017 (VGGNet)

		Digits											VisDA-2017											
Method	SVHN -	$USPS \to MNIST$				M	$MNIST \rightarrow USPS$			Avg			Synthetic \rightarrow Real											
	OS OS*	ALL	UNK	OS	OS*	ALL	UNK	OS	OS*	ALL	UNK	OS	OS*	ALL	UNK	bicycle	bus	car	motorcycle	train	truck	UNK	os c)S*
OSVM [13]	54.3 63.1	37.4	10.5	43.1	32.3	63.5	97.5	79.8	77.9	84.2	89.0	59.1	57.7	61.7	65.7	31.7	51.6	66.5	70.4	88.5	20.8	38.0	52.5 5	54.9
MMD+OSVM	55.9 64.7	39.1	12.2	62.8	58.9	69.5	82.1	80.0	79.8	81.3	81.0	68.0	68.8	66.3	58.4	39.0	50.1	64.2	79.9	86.6	16.3	44.8	54.4 5	6.0
DANN+OSVM	62.9 75.3	39.2	0.70	84.4	92.4	72.9	0.90	33.8	40.5	21.4	44.3	60.4	69.4	44.5	15.3	31.8	56.6	71.7	77.4	87.0	22.3	41.9	55.5 5	57.8
ATI- λ	67.6 66.5	69.8	73.0	82.4	81.5	84.0	86.7	86.8	89.6	82.8	73.0	78.9	79.2	78.9	77.6	46.2	57.5	56.9	79.1	81.6	32.7	65.0	59.9 5	59.0
OSBP	63.0 59.1	71.0	82.3	92.3	91.2	94.4	97.6	92.1	94.9	88.1	78.0	82.4	81.7	84.5	85.9	51.1	67.1	42.8	84.2	81.8	28.0	85.1	62.9 5	59.2
STA	76.9 75.4	80.0	84.4	92.2	91.3	93.9	96.5	93.0	94.9	90.3	83.5	87.3	87.2	88.1	88.1	52.4	69.6	59.9	87.8	86.5	27.2	84.1	66.8 6	53.9

Table 2. Classification Accuracy (%) of open set domain adaptation tasks on Office-31 (ResNet-50)

Method	A -	→ W	$\mathbf{A} \to \mathbf{D}$		$\mathbf{D} \to \mathbf{W}$		W -	→ D	D -	→ A	W -	Avg		
	OS	OS*	OS	OS*	OS	OS*	OS	OS*	OS	OS*	OS	OS*	OS	OS*
ResNet [9]	82.5±1.2	82.7±0.9	85.2±0.3	85.5±0.9	94.1±0.3	94.3±0.7	96.6±0.2	97.0±0.4	71.6±1.0	71.5±1.1	75.5±1.0	75.2±1.6	84.2	84.4
RTN [19]	85.6 ± 1.2	88.1 ± 1.0	89.5 ± 1.4	90.1±1.6	94.8 ± 0.3	96.2 ± 0.7	97.1 ± 0.2	98.7 ± 0.9	72.3 ± 0.9	72.8 ± 1.5	73.5 ± 0.6	73.9 ± 1.4	85.4	86.8
DANN [4]	85.3 ± 0.7	87.7 ± 1.1	86.5 ± 0.6	87.7 ± 0.6	97.5 ±0.2	98.3 ±0.5	99.5 ±0.1	$100.0 \pm .0$	75.7±1.6	76.2 ± 0.9	74.9 ± 1.2	75.6 ± 0.8	86.6	87.6
OpenMax [2]	87.4 ± 0.5	87.5 ± 0.3	87.1 ± 0.9	88.4 ± 0.9	96.1 ± 0.4	96.2 ± 0.3	98.4 ± 0.3	98.5 ± 0.3	83.4 ± 1.0	82.1 ± 0.6	82.8 ± 0.9	82.8 ± 0.6	89.0	89.3
ATI- λ [25]	87.4 ± 1.5	88.9 ± 1.4	84.3 ± 1.2	86.6 ± 1.1	93.6 ± 1.0	95.3 ± 1.0	96.5 ± 0.9	98.7 ± 0.8	78.0 ± 1.8	79.6 ± 1.5	80.4 ± 1.4	81.4 ± 1.2	86.7	88.4
OSBP [30]	86.5 ± 2.0	87.6 ± 2.1	88.6 ± 1.4	89.2 ± 1.3	97.0 ± 1.0	96.5 ± 0.4	97.9 ± 0.9	98.7 ± 0.6	88.9 ± 2.5	90.6 ± 2.3	85.8 ± 2.5	84.9 ± 1.3	90.8	91.3
STA	89.5 ±0.6	92.1 ±0.5	93.7 ±1.5	$\textbf{96.1} \!\pm 0.4$	97.5 ±0.2	96.5 ± 0.5	99.5 \pm 0.2	99.6 ± 0.1	89.1 \pm 0.5	93.5 ± 0.8	87.9 \pm 0.9	87.4 ±0.6	92.9	94.1

Experiment, Ablation study

- Without weight (w), negative transfer
- Without multi-binary classifiers (c) just softmax classifier, worsen to measure to compute the similarites with source class independently
- Without G_b (b), naïve results from multi-binary classifiers are not enough
- Without alternation (j)

Table 4. Classification accuracy (%) of STA and its three variants on Office-31 (ResNet-50)

Method	A -	→ W	$\mathbf{A} \to \mathbf{D}$		$\mathbf{D} \to \mathbf{W}$		W -	→ D	D -	→ A	W -	Avg		
	OS	OS*	os	OS*	os	OS*	OS	OS*	os	OS*	os	OS*	os	OS*
STA w/o w	87.5±1.4	91.4±1.1	83.0±1.2	89.6±1.2	96.2±0.9	97.3±0.4	98.1±0.7	100.0 ±.0	80.3±1.5	79.3±1.5	71.2±1.2	74.3±1.2	86.1	88.7
STA w/o c	90.4 ±1.7	90.6 ± 1.7	91.5±1.4	91.3±1.4	95.9 ± 1.0	96.7 ± 1.1	98.8 ± 0.6	98.7 ± 0.5	87.4 ± 1.5	87.8 ± 1.5	84.6 ± 1.7	85.2 ± 1.7	91.5	91.8
STA w/o b	85.0 ± 1.5	89.0 ± 1.5	90.6 ± 1.2	91.5±1.3	94.8 ± 1.9	97.6 ±0.8	96.2 ± 0.6	98.2 ± 0.5	77.7 ± 2.2	82.5 ± 2.4	78.9 ± 2.6	83.6 ± 3.5	87.2	90.4
STA w/o j	89.0 ± 1.3	92.8 ±1.2	94.8 ±1.5	95.9 ± 1.0	96.4 ± 0.6	96.2 ± 0.3	98.8 ± 0.7	99.4 ± 0.2	89.7 ±1.4	93.6 ±1.4	85.1 ± 1.1	86.7 ± 1.1	92.5	93.9
STA	89.5 ± 0.6	$92.1{\pm}0.5$	93.7±1.5	$\textbf{96.1} \!\pm 0.4$	97.5 \pm 0.2	96.5 ± 0.5	99.5 ±0.2	99.6 ± 0.1	89.1 ± 0.5	$93.5{\pm}0.8$	87.9 ± 0.9	$\textbf{87.4} {\pm} 0.6$	92.9	94.1

Experiment, Openness variation

- Define openness as $\mathbf{0} = \mathbf{1} \frac{|c_s|}{|c_t|}$
- STA is robust to any openness, even the O = 0 (meaning no unknown class), which indicates the framework can play a role as **filtering a noisy target data.**

Figure 4. Accuracy (OS) w.r.t. different openness levels in the target domain.

Experiment, Weight visualization

Thanks a lot !!
Any Questions?