Real Analysis: Boundedness Theorem Attempt

James Pagan

August 2023

Contents

1 INCORECT Boundedness Theorem

1

1 INCORECT Boundedness Theorem

Theorem. If $f: \mathbb{R} \to \mathbb{R}$ is continuous on [a,b], then f(x) is bounded on [a,b].

Proof. Suppose for contradiction that f(x) is not bounded on [a, b]; that is, for all $M \in \mathbb{R}$, there is some $y \in [a, b]$ such that f(y) > M. We will prove that this implies the existence of a real number inside [a, b] outside the domain of f(x).

For all $M \in \mathbb{Z}_{\geq 0}$, let $S_M = \{x \mid x \in [a, b], f(x) \geq M\}$ — we supposed that S_M is nonempty.

Claim. S_M contains a closed proper interval for all $M \in \mathbb{Z}_{>0}$.

Proof. For some $M \in \mathbb{Z}_{\geq 0}$, let c be a real number belonging to S_{M+1} . Observe that $c \in [a,b]$ and f(c) > M+1.

If all reals in $x \in [a, c)$ satisfy f(x) > M, then $[a, c] \subseteq S_M$ — and likewise, if all $x \in (c, b]$ satisfy f(x) > M, then $[c, b] \subseteq S_M$. Otherwise, there exist real numbers $\alpha \in [a, c)$ and $\beta \in (c, b]$ such that $f(\alpha) \leq M$ and $f(\beta) \leq M$.

Let $p = \sup\{x \mid x \in [\alpha, c), f(x) = M\}$ and $q = \inf\{x \mid x \in (c, \beta], f(x) = M\}$. The Intermediate Value Theorem guarantees that both sets are nonempty, so each set possess a supremum and infimum — furthermore, it trivially guarantees that $f(x) \geq M$ for all $x \in [p, c]$ and $x \in [c, q]$. Then $[p, q] \subseteq S_M$, and S_M contains a closed interval for all $M \in \mathbb{Z}_{\geq 0}$.

=== PLEASE READ ===

There is a flaw in my definition of a characteristic of an interval — it's literally just the floor of p (or floor of q). Every point is contained within at most one maximal interval for a given S_M , where M is a nonnegative integer. Oops!

Suppose we have that f(x) is defined on [0,1] and is continuous on all points that are not the reciprocals of powers of three; all these points have infinite limits. Our iterative $(2^n$ slices) idea would converge on 0 — which is actually defined! Oops!

Yes, the limit of 0 is not defined — but that's not how I originally conceived of this proof :)

=== THE FOLLOWING PROOF IS HIGHLY FLAWED ===

We now develop the notion of a maximal interval of S_n , which we define to be a closed proper interval in S_n that satisfies three criteria:

- 1. Its endpoints p < q satisfy f(p) = f(q) = M;
- 2. Either p = a or there exists $\epsilon_1 > 0$ such that 0 implies <math>f(x) < M.
- 3. Either q = b or there exists $\epsilon_2 > 0$ such that $0 < x q < \epsilon_2$ implies f(x) < M.

Maximal intervals satisfy key proprties that enable us to construct a real number inside [a, b] that lies outside the domain of f(x):

Claim. WRONG! WRONG! WRONG! At most one maximal interval contains any real $r \in [a, b]$.

Proof. Let [p,q] and [s,t] be distinct maximal intervals that contain r.

Suppose for contradiction that q > t. If $q \notin [s,t]$, then [p,q] and [s,t] are entirely disjoint, which contradicts the definition of r. Otherwise, $q \in [s,t]$. Now as $q \neq b$, $0 < x - q < \min\{\frac{\epsilon_2}{2}, t\}$, implies f(x) < M. These x-values are contained within [s,t]—therefore, [s,t] is not maximal, a contradiction. An identical argument shows that s < t leads to contradiction. Thus, we must have that t = s.

Suppose for contradiction that p < s. If $s \notin [p,q]$, then [p,q] and [s,t] are entirely disjoint, which contradicts the definition of r. Otherwise, $s \in [p,q]$. Now as $s \neq a$, $0 < s - x < \min\{\frac{\epsilon_2}{2}, q\}$, implies f(x) < M. These x-values are contained within [p,q]—therefore, [p,q] is not maximal, a contradiction. An identical argument shows that p > s leads to a contradiction. Thus, w must have that p = s.

Then [p,q] and [s,t] are the same interval — at most one maximal interval contains r.

We thus have that maximal intervals are non-overlapping; most notably, they have distinct endpoints.

Claim. Any interval is S_M is contained within a unique maximal interval of S_M .

Proof. Let [p,q] be an interval contained within S_M . Then the interval

$$[\max\{a, \sup\{x \mid x \ge M, x \le p\}\}, \min\{b, \inf\{x \mid x \ge M, x \ge q\}\}]$$

exists by the Intermediate Value Theorem, contains [p,q] — and if we define s and t such that the interval is [s,t] — we have that f(s) = f(t) = M.

We deduce from our claims that S_M contains a maximal interval for all $M \in \mathbb{Z}_{\geq \mathcal{V}}$. Define the *characteristic* of a maximal interval with endpoints p and q as $\lfloor p \rfloor$ — or equivalently, $\lfloor q \rfloor$.

For $n \in \mathbb{Z}_{\geq 0}$, consider the 2^N closed intervals of size $\frac{b-a}{2^N}$ between a and b. Let I_N be unique interval that these that — among those that contain maximal subintervals of arbitrarily large characteristic — with the greatest upper bound.

Claim. I_N exists for all $n \in \mathbb{Z}_{>0}$.

Proof.

We now have two cases — one in which there exists an $M \in \mathbb{Z}_{\geq 0}$ such that S_n contains finitely many maximal intervals for all integers M < n, or whether no such n exists. We will refer to these as the *finite case* and *infinite case*. We wish to prove that in both cases, there exists a real number x that lies inside intervals of arbitrarily large characteristic.

Lemma 1. If f(x) satisfies the finite case on [a,b] for $M \in \mathbb{Z}$, then there exists a real number x that lies inside maximal intervals of arbitrarily large characteristic.

Proof. Suppose for contradiction that all maximal intervals have finite characteristic. Then there does not exist a maximal interval with characteristic $\max\{f(I_1), f(I_2), f(I_3), \dots f(I_j)\} + 1$. This contradicts our finding that there exists a maximal interval for every $M \in \mathbb{Z}_{\geq 0}$, so some maximal interval must have infinite characteristic.

Furthermore, note that the maximal intervals of

Claim. There exists a sequence of closed intervals I_M such that $I_M \subseteq S_M$ and $I_{M+1} \subseteq I_M$ for all $M \in \mathbb{Z}_{>0}$.

Proof. Suppose for contradiction that no such sequence exists. The prior claim establishes the existence of a sequence of closed intervals I_M for all $M \in \mathbb{Z}_{>0}$ such that $I_M \subseteq S_M$ — thus, all such sequences must fail to satisfy the second requirement. For each sequence, there is a positive integer q such that $I_q < I_n$.i

closed interval inside S_M for all $M \in \mathbb{Z}_{>0}$, so the second condition must be false — namely, that all closed intervals in S_{M+1} are not contained within S_M for some positive integer M.

However, all closed intervals of S_{M+1} lie inside intervals of S_M —