専門用語抽出システム完全ロジック詳細仕様書

目次

- 1. システム全体像
- 2. 処理シーケンス図
- 3. Phase 1: 形態素解析と前処理
- 4. Phase 2: 候補語生成
- 5. Phase 3: スコアリング
- 6. Phase 4: 関連語検出
- 7. Phase 5: LLM検証
- 8. Phase 6: 統合と出力

システム全体像

メイン処理フロー

Syntax error in text

mermaid version 10.4.0

詳細な候補語生成シーケンス

Syntax error in text

mermaid version 10.4.0

LLM検証プロセスの詳細

Syntax error in text

mermaid version 10.4.0

エラーハンドリングフロー

Syntax error in text

mermaid version 10.4.0

データフロー図

Phase 1: 形態素解析と前処理

1.1 SudachiPy Mode.C による解析

```
# Mode.Cを使用(最も詳細な解析)
sudachi_mode = tokenizer.Tokenizer.SplitMode.C
tokens = tokenizer.tokenize(text, sudachi_mode)
```

なぜMode.Cを使うのか?

Mode.C	最長単位	国際医薬品規制調和会議	 複合語認識に最適
Mode.B	中間単位	国際/医薬品/規制/調和/会議	バランス型
Mode.A	最短単位	国際/医薬/品/規制/調和/会議	詳細すぎる
Mode	分割単位	例:「国際医薬品規制調和会議」	用途

1.2 品詞情報の詳細抽出

for token in tokens:

pos_info = token.part_of_speech()

pos_info[0]: 品詞大分類(名詞、動詞など)

pos_info[1]: 品詞細分類(サ変接続、一般、固有名詞など)

pos_info[2-5]: さらに詳細な分類情報

1.3 品詞フィルタリング規則

採用する品詞細分類

品詞細分類	採用理由	例
サ変接続	専門用語に多い	製造、管理、検査
一般	基本的な名詞	医薬品、原料
固有名詞	固有の概念	GMP、FDA
複合	複合概念	品質管理

除外する品詞細分類

品詞細分類	除外理由	例
非自立	単独で意味を成さない	こと、もの
代名詞	一般的すぎる	これ、それ
数詞	専門性なし	1、2、三

品詞細分類	除外理由	例
接尾	単独では不完全	的、性、化

Phase 2: 候補語生成

2.1 名詞句の抽出

```
noun_phrases = []
current_phrase = []

for token in tokens:
    if token.pos[0] == '名詞' and token.pos[1] not in ['非自立', '代名詞', '数詞']:
        current_phrase.append(token)
    else:
        if len(current_phrase) >= 1:
            noun_phrases.append(current_phrase)
        current_phrase = []
```

2.2 候補語の種類

2.2.1 単体名詞(ユニグラム)

• 条件: 2文字以上

• ストップワード除外

• 例:製造、品質、管理

2.2.2 複合名詞(N-gram)

- 2-gram \sim 6-gram
- 最大20文字
- 例:品質管理、製造管理基準

2.2.3 パターンベース複合語

```
compound_patterns = {
    "医薬": ["品", "部外品"],
    "製造": ["管理", "工程", "設備"],
    "品質": ["管理", "保証", "基準"],
}
```

Phase 3: スコアリング

3.1 C値(C-value) アルゴリズム

数式

```
C-value(a) = log<sub>2</sub>|a| × (freq(a) - (1/|Ta|) × Σb ∈ Ta freq(b))

ここで:
|a| = 候補語aの長さ(文字数)
freq(a) = 候補語aの出現頻度
Ta = aを部分文字列として含む、より長い候補語の集合
freq(b) = より長い候補語bの出現頻度
```

実装

```
def calculate_c_value(candidates_freq):
   c_values = {}
   for candidate, freq in candidates_freq.items():
       length = len(candidate)
       # aを含むより長い候補語を探す
       longer_terms = [
           other for other in candidates_freq
           if candidate in other and candidate != other
       ]
       if not longer_terms:
           # 独立して出現する語(最も重要)
           c_value = math.log2(length) * freq
       else:
           # 他の語の一部としても出現
           sum_freq = sum(candidates_freq[t] for t in longer_terms)
           t_a = len(longer_terms)
           c_value = math.log2(length) * (freq - sum_freq / t_a)
       c_values[candidate] = max(c_value, 0)
   return c values
```

C値の解釈

C値	解釈	例	
高い (>10)	独立した重要な専門用語	品質管理基準	
中程度(5-10)	やや重要な専門用語	製造工程	
低い (<5)	他の語の一部として主に出現	 管理、製造	

3.2 文書内分布スコア

概念

専門用語は文書全体に均等に分布する傾向がある

計算式

```
def calculate_distribution_score(positions, doc_length):
    if len(positions) <= 1:
        return 0.5

# 位置の標準偏差
mean_pos = sum(positions) / len(positions)
variance = sum((p - mean_pos) ** 2 for p in positions) / len(positions)
std_dev = math.sqrt(variance)

# 理想的な均等分布との差
ideal_gap = doc_length / (len(positions) + 1)
distribution_score = 1.0 / (1.0 + std_dev / ideal_gap)
return distribution_score
```

スコアの意味

• 1.0に近い:均等に分布(専門用語の可能性高)

0.5前後:普通の分布

• 0.0に近い:偏った分布(一部でのみ使用)

3.3 初出位置スコア

概念

重要な専門用語は文書の前半で定義・導入される

計算式

```
def calculate_position_score(first_pos, doc_length):
    return 1.0 - (first_pos / doc_length) * 0.5
```

スコア解釈

1.0: 文書の最初に出現0.75: 文書の中間に初出0.5: 文書の最後に初出

3.4 共起関係スコア

概念

ドメインキーワードと共に出現する語は専門用語の可能性が高い

実装

3.5 総合スコア計算

```
total_score = (
    c_score * 1.0 + # C値 (基本スコア)
    dist_score * 0.3 + # 分布スコア
    pos_score * 0.2 + # 位置スコア
    cooc_score * 0.4 + # 共起スコア
    pos_bonus # 品詞ボーナス
)
```

重み付けの根拠

スコア種別	重み	根拠
C値	1.0	最も信頼性の高い統計的指標
共起スコア	0.4	ドメイン特性を強く反映
分布スコア	0.3	専門用語の使用パターンを反映
位置スコア	0.2	 補助的な指標

Phase 4: 関連語検出

4.1 検出アルゴリズムの統合

```
class SynonymDetector:
   def find_synonyms(candidates, noun_phrases):
```

```
synonyms = defaultdict(set)
# 1. 部分文字列関係(包含関係)
detect_substring_relations(candidates, synonyms)
# 2. 共起関係
detect_cooccurrence_relations(candidates, noun_phrases, synonyms)
# 3. 編集距離
detect_edit_distance_relations(candidates, synonyms)
# 4. 語幹・語尾パターン
detect_pattern_relations(candidates, synonyms)
# 5. 略語マッピング
apply_abbreviation_mapping(candidates, synonyms)
# 6. ドメイン辞書
apply_domain_relations(candidates, synonyms)
return synonyms
```

4.2 部分文字列関係とC値の違い

観点	部分文字列関係	C値	
目的	関連語を見つける	専門用語の重要度を評価	
処理	包含関係をチェック	統計的な独立性を計算	
結果	「製造」は「製造管理」の関連語	「製造管理」は重要、「製造」単体は低評価	
使用場面	synonymsフィールドの生成	候補語の優先順位付け	

4.3 関連語スコアリング

```
def score_synonym_relation(term1, term2):
    score = 0.0

# 包含関係 (3点)
    if term1 in term2 or term2 in term1:
        score += 3.0

# 編集距離 (0-5点)
    similarity = SequenceMatcher(None, term1, term2).ratio()
    score += similarity * 5.0

# 共起頻度 (0-4点)
    cooccurrence = get_cooccurrence_count(term1, term2)
    score += min(cooccurrence * 0.5, 4.0)

# ドメイン辞書 (5点)
```

```
if in_same_domain_group(term1, term2):
    score += 5.0

# 語幹共有 (3点)
if share_stem(term1, term2):
    score += 3.0

return score # 最大20点
```

Phase 5: LLM検証

5.1 プロンプト構成

```
validation_prompt = ChatPromptTemplate.from_messages([
   ("system", """
   【役割】専門分野の用語抽出専門家
   【判定基準】
   1. ドメイン固有性
   2. 概念の複合性
   3. 定義の必要性
   4. 文脈での重要性
   【類義語判定】
   1. 表記違い(医薬品/薬品)
   2. 略語と正式名称 (GMP/適正製造規範)
   3. 上位·下位概念(製造設備/製造装置)
   4. 同カテゴリ関連語(原薬/添加剤)
   【除外語】
   {stopwords}
   """),
   ("user", """
   ## テキスト: {text}
   ## 候補リスト: {candidates}
   ## 関連語ヒント: {synonym_hints}
   ## 関連文脈: {related_contexts}
   """)
])
```

5.2 LLMの判定プロセス

Phase 6: 統合と出力

6.1 重複マージアルゴリズム

```
def merge_duplicate_terms(term_lists):
    merged = {}

for term in all_terms:
    # 既存用語との類似度チェック
    best_match = find_best_match(term, merged)

if best_match and similarity > 0.85:
    # 既存エントリーに統合
    merge_into_existing(best_match, term)
    else:
    # 新規エントリー作成
    create_new_entry(term)

return merged
```

6.2 最終スコアによる選別

```
def select_final_terms(scored_candidates):
# 階層的フィルタリング
final_terms = []
seen_substrings = set()

for candidate, score in sorted_by_score:
# 部分文字列の除外
if not is_substring_of_selected(candidate, seen_substrings):
    if score > SCORE_THRESHOLD:
        final_terms.append(candidate)
        seen_substrings.add(candidate)

return final_terms
```

パフォーマンス指標

処理時間の内訳(典型的な10ページ文書)

Phase	処理時間	割合
形態素解析	0.5秒	5%
候補語生成	1.0秒	10%
スコアリング	0.8秒	8%
関連語検出	1.2秒	12%
 LLM検証	6.0秒	60%
統合・出力	0.5秒	5%
合計	10.0秒	100%

精度指標(医薬品製造ドメイン)

指標 	現在値	目標値
適合率(Precision)	82%	85%
再現率(Recall)	75%	80%
F1スコア	78%	82%

チューニングガイド

ドメイン別推奨パラメータ

医薬品製造

```
config = {
    'min_term_length': 2,
    'max_term_length': 20,
    'c_value_weight': 1.0,
    'cooc_score_weight': 0.5, # 共起重視
    'min_frequency': 2,
    'similarity_threshold': 0.85
}
```

法令・規制文書

```
config = {
    'min_term_length': 3,
    'max_term_length': 25, # 長い複合語が多い
    'c_value_weight': 1.2, # C値重視
    'cooc_score_weight': 0.3,
    'min_frequency': 1, # 頻度低くても重要
```

```
'similarity_threshold': 0.90 # 厳密な区別
}
```

技術仕様書

```
config = {
    'min_term_length': 2,
    'max_term_length': 15,
    'c_value_weight': 0.8,
    'cooc_score_weight': 0.6, # 技術用語の共起
    'min_frequency': 3,
    'similarity_threshold': 0.80
}
```

トラブルシューティング

よくある問題と解決策

問題1: 一般語が混入する

```
# 解決策:ストップワードを追加
STOPWORDS.update(['システム', 'データ', '情報'])
# C値の閾値を上げる
MIN_C_VALUE = 5.0 # 3.0 → 5.0
```

問題2: 重要な専門用語が漏れる

```
# 解決策:最低頻度を下げる
MIN_FREQUENCY = 1 # 2 → 1

# 共起スコアの重みを上げる
COOC_WEIGHT = 0.6 # 0.4 → 0.6
```

問題3: 処理が遅い

```
# 解決策:候補語数を制限
MAX_CANDIDATES = 80 # 100 → 80

# バッチサイズを調整
BATCH_SIZE = 5 # 3 → 5
```

まとめ

本システムは、以下の特徴により高精度な専門用語抽出を実現:

- 1. C値による統計的評価で専門用語の重要度を定量化
- 2. 複数のスコアリングにより多角的に評価
- 3. 6つの関連語検出アルゴリズムで網羅的に関連語を発見
- 4. LLMによる文脈理解で最終的な精度を確保
- 5. ドメイン知識の活用により分野特有の用語を正確に抽出

各フェーズのパラメータを適切に調整することで、様々なドメインの文書に対応可能です。