Understanding the biology of morpholino in zebrafish through integrated gene expression analysis 14/07/2015

Kristina Gagalova

MSc Bioinformatics and Systems Biology

MORPHOLINO ANTISENSE

The morpholino is an antisense molecule used for gene expression knockdown. It is specifically designed to bind to a target sequence

MORPHOLINO ANTISENSE

revisited from Corey and Abrams, 2001 Base Morpholine ring **Phosphorodiamidate** Base group Oligomer chain R - 5'

Morpholino

Phosphodiester DNA

The morpholino is an antisense molecule used for gene expression knockdown. It is specifically designed to bind to a target sequence

- Non-ionic backbone
- Excellent water solubility
- Resistance to enzymatic degradation

Janson C. and During M. (2006) Morpholinos and Related Antisense Biomolecules, Springer US, Springer-Verlag US J. Summerton - Morphlinos and PNAs compared

Genetic compensation induced by deleterious mutations but not gene knockdowns.

Andrea Rossi^{1,*}, Zacharias Kontarakis^{1,*}, Claudia Gerri¹, Hendrik Nolte^{1,2}, Soraya Hölper¹, Marcus Krüger^{1,2} and Didier Y.R. Stainier¹

in press

Genetic compensation induced by deleterious mutations but not gene knockdowns.

Andrea Rossi^{1,*}, Zacharias Kontarakis^{1,*}, Claudia Gerri¹, Hendrik Nolte^{1,2}, Soraya Hölper¹, Marcus Krüger^{1,2} and Didier Y.R. Stainier¹ in press

Discrepancies between EGFL7 mutant and morphant. The mutant does not show evident phenotype

DISCUSSION

activation of a compensatory network against deleterious mutations

Introduction

Genetic compensation induced by deleterious mutations but not gene knockdowns.

Andrea Rossi^{1,*}, Zacharias Kontarakis^{1,*}, Claudia Gerri¹, Hendrik Nolte^{1,2}, Soraya Hölper¹, Marcus Krüger^{1,2} and Didier Y.R. Stainier¹

in press

Discrepancies between EGFL7 mutant and morphant. The mutant does not show evident phenotype

DISCUSSION

activation of a compensatory network against deleterious mutations

Reverse Genetic Screening Reveals
Poor Correlation between Morpholino-Induced
and Mutant Phenotypes in Zebrafish

Fatma O. Kok,^{1,7} Masahiro Shin,^{1,7} Chih-Wen Ni,^{1,7,8} Ankit Gupta,¹ Ann S. Grosse,¹ Andreas van Impel,² Bettina C. Kirchmaier,^{2,9} Josi Peterson-Maduro,² George Kourkoulis,¹ Ira Male,¹ Dana F. DeSantis,¹ Sarah Sheppard-Tindell,¹ Lwaki Ebarasi,^{3,4} Christer Betsholtz,^{3,4} Stefan Schulte-Merker,^{2,5} Scot A. Wolfe,^{1,6} and Nathan D. Lawson^{1,*}

Genetic compensation induced by deleterious mutations but not gene knockdowns.

Andrea Rossi^{1,*}, Zacharias Kontarakis^{1,*}, Claudia Gerri¹, Hendrik Nolte^{1,2}, Soraya Hölper¹, Marcus Krüger^{1,2} and Didier Y.R. Stainier¹

in press

Discrepancies between EGFL7 mutant and morphant. The mutant does not show evident phenotype

DISCUSSION

activation of a compensatory network against deleterious mutations

Reverse Genetic Screening Reveals Poor Correlation between Morpholino-Induced and Mutant Phenotypes in Zebrafish

Fatma O. Kok,^{1,7} Masahiro Shin,^{1,7} Chih-Wen Ni,^{1,7,8} Ankit Gupta,¹ Ann S. Grosse,¹ Andreas van Impel,² Bettina C. Kirchmaier,^{2,9} Josi Peterson-Maduro,² George Kourkoulis,¹ Ira Male,¹ Dana F. DeSantis,¹ Sarah Sheppard-Tindell,¹ Lwaki Ebarasi,^{3,4} Christer Betsholtz,^{3,4} Stefan Schulte-Merker,^{2,5} Scot A. Wolfe,^{1,6} and Nathan D. Lawson^{1,5}

Discrepancies between mutant and morphant phenotypes for 19/21 genes

DISCUSSION

morphant phenotypes may be due on off-target effects

Introduction

Material and Methods

Results

Discussion and conclusions

MORPHOLINO OFF-TARGET EFFECTS

"Not dependent of Watson/Crick pairing to RNA but instead are due to interactions between the knockdown oligo and extracellular, cell-surface or intracellular structures via a mechanism other than Watson/Crick base-pairing"

James E. Summerton, Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity.

PLOS GENETICS

p53 Activation by Knockdown Technologies

Mara E. Robu¹, Jon D. Larson¹, Aidas Nasevicius¹, Soraya Beiraghi¹, Charles Brenner², Steven A. Farber³, Stephen C. Ekker¹

1 University of Minnesota, Minneapolis, Minnesota, United States of America, 2 Dartmouth Medical School, Lebanon, New Hampshire, United States of America, 3 Carnegie Institute of Washington. Baltimore. Maryland. United States of America

Introduction

MOTIVATION FOR MORPHOLINO STUDY

 Large amount of gene expression data available from morpholino studies and missing systematic data analysis

MOTIVATION FOR MORPHOLINO STUDY

- Large amount of gene expression data available from morpholino studies and missing systematic data analysis
 - Describe other possible off-target effects

MOTIVATION FOR MORPHOLINO STUDY

- Large amount of gene expression data available from morpholino studies and missing systematic data analysis
 - Describe other possible off-target effects
- New interest in combined knockdown and mutation studies

PROJECT GOALS

Gene expression analysis of embryos treated with morpholino

PROJECT GOALS

Gene expression analysis of embryos treated with morpholino

Unsupervised learning

Find hidden structures or patterns in unlabeled data

"Plot" the microarray samples to find similarities

PROJECT GOALS

Gene expression analysis of embryos treated with morpholino

Unsupervised learning

Find hidden structures or patterns in unlabeled data

"Plot" the microarray samples to find similarities

Supervised learning

Inferring differences between labeled data

Define differences between the control and morphant samples

Data collection from GEO

- Data collection from GEO
- 2. Retrieve the annexed scientific literature, **DISCARD DATASETS WITH MISSING REFERENCE**

- Data collection from GEO
- Retrieve the annexed scientific literature, <u>DISCARD</u> DATASETS WITH MISSING REFERENCE
- Carefully go through the article, read and extract useful information
- 4. Process information transform variables, retrieve missing information

- Data collection from GEO
- 2. Retrieve the annexed scientific literature, **DISCARD DATASETS WITH MISSING REFERENCE**
- Carefully go through the article, read and extract useful information
- Process information transform variables, retrieve missing information
- Check compatibility between different microarray platforms

DATASET FEATURES - unsupervised

Study	MO phenotype	MO target	
GSE12012	disrupted vessels integrity	miR-126	
GSE13157	reduced neuromasts	esr2a	
GSE13158	reduced neuromasts	esr2a	
GSE16740	missing heart contraction	tnnt2	
GSE18830	severe developmental abnormalities	sox2/3/19a/19b	
GSE21539	craniofacial defects, reduced pectoral fin	esco2	
	growth		
GSE27569	Neural crest (NC) defects	Ovo1	
GSE32914	developmental arrest	Sox31	
GSE46844	disrupted kidney morphogenesis	mir-34B	
GSE51541	cardiac defects	atg5/becn1/atg7	
GSE8800	disrupted primitive hematopoiesis, brain and	C1q-like	
	craniofacial defects		

DATASET FEATURES - unsupervised

Study	MO phenotype	MO target
GSE12012	disrupted vessels integrity	miR-126
GSE13157	reduced neuromasts	esr2a
GSE13158	reduced neuromasts	esr2a
GSE16740	missing heart contraction	tnnt2
GSE18830	severe developmental abnormalities	sox2/3/19a/19b
GSE21539	craniofacial defects, reduced pectoral fin growth	esco2
GSE27569	Neural crest (NC) defects	Ovo1
GSE32914	developmental arrest	Sox31
GSE46844	disrupted kidney morphogenesis	mir-34B
GSE51541	cardiac defects	atg5/becn1/atg7
GSE8800	GSE8800 disrupted primitive hematopoiesis, brain and craniofacial defects	

Control MO* (18) + Wild Type (34) + MO (52) Total # of Microarrays: 104

^{*}Standard control

DATASET FEATURES - supervised

Study	MO phenotype	MO target
GSE12012	disrupted vessels integrity	miR-126
GSE13157	reduced neuromasts	esr2a
GSE13158	reduced neuromasts	esr2a
GSE16740	missing heart contraction	tnnt2
GSE18830	severe developmental abnormalities	sox2/3/19a/19b
GSE21539	craniofacial defects, reduced pectoral fin growth	esco2
GSE27569	Neural crest (NC) defects	Ovo1
GSE32914	developmental arrest	Sox31
G3E46844	disrapted kidney morphogenesis	mir 34B
GSE51541	cardiac defects	atg5/becn1/atg7
GSE8800	disrupted primitive hematopoiesis, brain and	C1g-like
	craniofacial defects	'

Wild Type (34) + MO (40) Total # of Microarrays: 74

Rhodes, 2002; Choi 2003; Warnat et al., 2005

META-ANALYSIS

Rhodes, 2002; Choi 2003; Warnat et al., 2005

Introduction **Material and Methods** Results

DIRECT INTEGRATION

- Larger sample size: improved generalization
 - Correction for differences between protocols
 - Application of machine learning approaches

Rhodes, 2002; Choi 2003; Warnat et al., 2005

SCAN normalized - Correct microarrays for background noise and probe bias 6 2 . 0

Study ID (GEO)

*Adjust for non-biological variability given by the differences in sample preparation and different protocols of hybridization (BATCH EFFECT)

GENES SELECTION IN SUPERVISED LEARNING

	Gene A	Gene B	Gene C	Gene D	Gene E
Sample 1	1	0	1	0	1
Sample 2	1	1	0	0	1
Sample 3	0	0	0	1	0
Sample 4	0	0	1	1	0

Dataset of microarray intensities

1 - High gene expression

0 - Low gene expression

Noisy/irrelevant genes: B, C

Redundant genes: A-E

High variability among the genes

Machine learning: the study of algorithms that can learn and make predictions on data

Machine learning seeks to learn a model from the dataset and to identify a data structure

Machine learning: the study of algorithms that can learn and make predictions on data

Machine learning seeks to learn a model from the dataset and to identify a data structure

Introduction Material and Methods Results Discussion and conclusions

Introduction Material and Methods Results Discussion and conclusions

APPROACH: MACHINE LEARNING

The feature selection in the model identifies a small subset of genes which has a high discriminant power between the two groups

APPROACH: MACHINE LEARNING

The feature selection in the model identifies a small subset of genes which has a high discriminant power between the two groups

BioChip J. (2013) 7(1): 57-62 DOI 10.1007/s13206-013-7109-8

Original Research

Identification of cancer-specific biomarkers by using microarray gene expression profiling

Jin Choul Chai¹, Soojun Park², Hyemyung Seo¹, Soo Young Cho³ & Young Seek Lee¹

Received: 25 December 2012 / Accepted: 9 January 2013 / Published online: 20 March 2013 © The Korean BioChip Society and Springer 2013

Biomarkers selection through feature selection for cancer diagnosis and prevention

- Screening tests
- Identification of cancer subtypes

RESULTS

Principal Component Analysis and treatment effect

(Unsupervised learning)

GSEA from the genes ranked by Machine Learning

(Supervised learning)

Stage specific gene expression in morphants

RESULTS

Principal Component Analysis and treatment effect

(Unsupervised learning)

GSEA from the genes ranked by Machine Learning

(Supervised learning)

Stage specific gene expression in morphants

PCA describes the main sources of variance from the data as principal components (PC)

Every sample is plotted in the space of PC for finding samples grouping or subpopulations

Introduction

PCA describes the main sources of variance from the data as principal components (PC)

Every sample is plotted in the space of PC for finding samples grouping or subpopulations

Figure 2C

Principal component analysis reveals the 1000 Genomes Project does not sufficiently cover the human genetic diversity in Asia Dongsheng Lu and Shuhua Xu

Introduction

Material and Methods

Results

Discussion and conclusions

Samples labeled by tissue source and dev.stage

Introduction Material and Methods **Results** Discussion and conclusions

Samples labeled by tissue source and dev.stage

PC1 - separation by developmental stage

Introduction Material and Methods Results

Samples labeled by tissue source and dev.stage

PC2 - separation by tissue type

Introduction Material and Methods Results

Samples labeled by treatment and dev.stage

Introduction Material and Methods **Results** Discussion and conclusions

RESULTS

Principal Component Analysis and treatment effect

(Unsupervised learning)

GSEA from the genes ranked by Machine Learning

(Supervised learning)

Stage specific gene expression in morphants

Gene Set Enrichment Analysis

- Machine learning and feature selection for MO vs WT
- Model and accuracy optimization selection of the best performing model
- Ranked list of features as output features with high discriminant power on top positions

Introduction

Gene Set Enrichment Analysis

- Machine learning and feature selection for MO vs WT
- Model and accuracy optimization selection of the best performing model
- Ranked list of features as output features with high discriminant power on top positions GOrilla is a tool for identifying and visualizing enriched GO terms in ranked lists of genes.

It can be run in one of two modes:

- 1. Searching for enriched GO terms that appear densely at the top of a ranked list of genes or
- 2. Searching for enriched GO terms in a target list of genes compared to a background list of genes.

For further details see References.

Running example Usage instructions GOrilla News (Undated March 8th 20)

Step 1: Choose organism

Danio rerio (Zebrafish)

Step 2: Choose running mode

Single ranked list of genes

Two unranked lists of genes (target and background lists)

Gene Set Enrichment Analysis

- Machine learning and feature selection for MO vs WT
- Model and accuracy optimization selection of the best performing model
- Ranked list of features as output features with high discriminant power on top positions

 Gorilla is a tool for identifying and visualizing enriched GO terms in ranked lists of genes.

Output in Gene Ontology domains:

- Biological process
- Molecular function
- Cellular component

GOrilla is a tool for identifying and visualizing enriched GO terms in ranked lists of genes. It can be run in one of two modes:

- 1. Searching for enriched GO terms that appear densely at the top of a ranked list of genes or
- 2. Searching for enriched GO terms in a target list of genes compared to a background list of genes.

For further details see References.

Running example Usage instructions GOrilla News (Updated March 8th 20)

Step 1: Choose organism

Danio rerio (Zebrafish)

Step 2: Choose running mode

Single ranked list of genes

Two unranked lists of genes (target and background lists)

BIOLOGICAL PROCESS

BIOLOGICAL PROCESS

phlda3 - pleckstrin homology-like domain, family a, member 3

dap1b - death associated protein 1b

tp53 - tumor protein p53

baxa - bcl2-associated x protein, a

PHLDA3 The molecule interferes with Akt and promotes apoptosis. The protein is induced by DNA-damaging agents in cell lines (Kawase et al., 2009) **baxa** pro-apoptotic molecule

MOLECULAR FUNCTION

MOLECULAR FUNCTION

mmp14b - matrix metalloproteinase 14b (membrane-inserted)

mmp11b - matrix metallopeptidase 11b (stromelysin 3)

zgc:152830 - zgc:152830

zmpste24 - zinc metallopeptidase, ste24 homolog

taf2 - taf2 rna polymerase ii, tata box binding protein (tbp)-associated factor

cndp2 - cndp dipeptidase 2 (metallopeptidase m20 family)

mmp9 - matrix metalloproteinase 9

phex - phosphate regulating gene with homologues to endopeptidases on the x chromosome

mmp2 - matrix metalloproteinase 2

ace - angiotensin i converting enzyme (peptidyl-dipeptidase a) 1

cpda - carboxypeptidase d, a

metap1 - methionyl aminopeptidase 1

ide - insulin-degrading enzyme

cpn1 - carboxypeptidase n, polypeptide 1

Mmp matrix metalloproteinase (MMP) family involved in the breakdown of extracellular matrix in normal physiological processes

RESULTS

PCA and treatment effect

(Unsupervised learning)

GSEA from the genes ranked by Machine Learning

(Supervised learning)

Stage specific gene expression in morphants

STAGE DEPENDENT EFFECT

p < 0.001 two-way ANOVA interaction effect

STAGE DEPENDENT EFFECT

STAGE DEPENDENT EFFECT

isg20 Interferon Stimulated Exonuclease Gene 20kDa, Interferon-induced antiviral exoribonuclease that acts on single-stranded RNA **abcc5** Member of the superfamily of ATP-binding cassette (ABC) transporters, acts as a multispecific organic anion pump which can transport nucleotide analogs

eif3s6ip Eukaryotic Translation Initiation Factor 3 Subunit 6-Interacting Protein, eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis

Introduction Material and Methods **Results** Discussion and conclusions

STAGE DEPENDENT EFFECT: p53

p53 upregulation during the segmentation stage in morphants

p53 in wild type embryos has the highest gene expression at 1 hpf and by 48 hpf the levels of p53 transcript and protein are barely detectable

Cheng et al. 1997; Thisse et al. 2000; Lee et al. 2008

DATA ANALYSIS APROACH

Successful microarray processing and integration. Observation of main biological features from unsupervised learning such as developmental stage and tissue type

DATA ANALYSIS APROACH

Successful microarray processing and integration. Observation of main biological features from unsupervised learning such as developmental stage and tissue type

Efficient strategy for gene selection in microarrays

- algorithms and feature selection optimization
- identification of the optimal number of features

BIOLOGICAL RESULTS

Overall gene expression is not strongly altered by the MO treatment

BIOLOGICAL RESULTS

- Overall gene expression is not strongly altered by the MO treatment
 - Possible off-target effects observed from integrated dataset
 - Upregulation of gene expression in Morphants (data not shown)

BIOLOGICAL RESULTS

- Overall gene expression is not strongly altered by the MO treatment
 - Possible off-target effects observed from integrated dataset
 - Upregulation of gene expression in Morphants (data not shown)
 - Activation of p53 pathway and matrix metalloproteinases

BIOLOGICAL RESULTS

- Overall gene expression is not strongly altered by the MO treatment
 - Possible off-target effects observed from integrated dataset
 - Upregulation of gene expression in Morphants (data not shown)
 - Activation of p53 pathway and matrix metalloproteinases
 - Stage specific effect observed during the segmentation stage

FUTURE DIRECTIONS

Morpholino data analysis for other microarray platforms and technologies

Introduction Material and Methods Results **Discussion and conclusions**

FUTURE DIRECTIONS

- Morpholino data analysis for other microarray platforms and technologies
 - Study involving other control morpholinos

 -mismatch
 -random sequence
 -buffer injection
 - MO sequence specific studies in correlation to off-target effects

FUTURE DIRECTIONS

- Morpholino data analysis for other microarray platforms and technologies
 - Study involving other control morpholinos

 -mismatch
 -random sequence
 -buffer injection
 - MO sequence specific studies in correlation to off-target effects
 - Validation of isg20, phlda3, mmp upregulation in MO

Thanks To

Didier Jason Soraya and Sriram

Andrea R., Javad, Chris, Zach, Carol, Ziba, Aly, Claudia, Michele M.

. . .

and all the members of the Lab!

Special thanks to

supplementary information

MO validation in studies

Study	RT-qPCR	Luciferase assay	GFP assay	Rescue MO	Western blot	Co-injection with mutated target	None
GSE12012	х						
GSE13157						х	
GSE13158						х	
GSE16740							X
GSE18830		X					
GSE21539			X				
GSE27569							X
GSE32914				Х			
GSE46844			X				
GSE51541					X		
GSE8800	X						
	2	1	2	1	1	2	2

Study details

Study	ng	picoM	Type MO*	Gene
GSE12012	6	-	miRNA	miR- 126
GSE13157	-	0.015/0.05	Т	Esr2a
GSE13158	-	0.015/0.05	Т	Esr2a
GSE16740	4	-	Т	Tnnt2
GSE18830	3.6	-	Т	Sox2/3/19a/19b
GSE21539	3	-	Т	Ovo1
GSE27569	2	-	Т	Esco2
GSE32914	-	1.2	S	Sox31
GSE46844	-	1	miRNA	miR-34B
GSE51541	-	0.65	Т	Atg5/Bcn1/Atg7
GSE8800	5	-	Т	C1q-like

^{*}Target inactivation strategy: S – splicing, T – translation, miRNA

Hierarchical clustering

Samples labeled by treatment

GSEA supplementary

BIOLOGICAL PROCESS

psme4b - proteasome (prosome, macropain) activator subunit 4b
 psmb1 - proteasome (prosome, macropain) subunit, beta type, 1
 psma6a - proteasome (prosome, macropain) subunit, alpha type, 6a
 psmb2 - proteasome (prosome, macropain) subunit, beta type, 2
 psma2 - proteasome (prosome, macropain) subunit, alpha type, 2
 psma8 - proteasome (prosome, macropain) subunit, alpha type, 8
 psmb7 - proteasome (prosome, macropain) subunit, beta type, 7

BIOLOGICAL PROCESS

mfn2 - mitofusin 2bmb - brambleberrybaxa - bcl2-associated x protein, a

MOLECULAR FUNCTION

phlda3 - pleckstrin homology-like domain, family a, member 3

MOLECULAR FUNCTION

mthfd2 - methylenetetrahydrofolate dehydrogenase (nadp+ dependent) 2, methenyltetrahydrofolate cyclohydrolase **dhfr** - dihydrofolate reductase

mthfd1b - methylenetetrahydrofolate dehydrogenase (nadp+ dependent) 1b

aldh112 - aldehyde dehydrogenase 1 family, member 12

STAGE EFFECT (1)

STAGE EFFECT (2)

STAGE EFFECT (3)

STAGE DEPENDENT EFFECT (pattern)

apoda.2 - apolipoprotein, duplicate 2

prss59.2 - protease, serine, 59, tandem duplicate 2

rho - rhodopsin

acta - actin alpha 2

nme2a - nucleoside diphosphate kinase

Discussion and conclusions

TMP1 - tropomyosin 1 (alpha)

CELA1 - Chymotrypsin-Like Elastase Family, Member 1

Introduction Material and Methods

Results

Control vs WT

Feature selection performed on 31 samples (14 WT and 17 CO)

Control - GeneTools Standard Control Oligo

Samples from Pharyngula and Hatching stages

Biological process

Mass Spectrometry

genes: vegfaa (24 hpf), dll4 (24 hpf), tnnt2 (36 hpf) 3 biological replicates for morphants wild type as controls - 3 replicates for 24 hpf, 3 replicates for 36 hpf

Upregulated in WT

Upregulated in MO

Upregulated in WT

Upregulated in MO

extra slides

PROBLEM: how to identify differentially expressed genes on a big dataset?

Dalman et al. BMC Bioinformatics 2012, 13(Suppl 2):S11 http://www.biomedcentral.com/1471-2105/13/S2/S11

PROCEEDINGS

Open Access

Fold change and p-value cutoffs significantly alter microarray interpretations

Mark R Dalman^{1*}, Anthony Deeter², Gayathri Nimishakavi², Zhong-Hui Duan²

From Great Lakes Bioinformatics Conference 2011 Athens, OH, USA. 2-4 May 2011

Which are the optimal fold change and p-value thresholds?

How to deal with high variability in the integrated gene expression dataset?

STAGE DEPENDENT EFFECT

INGREDIENTS:

- One measurement variable (microarray gene intensity)
- Two nominal variables (Treatment and Developmental stage)
- Each value of one nominal variable in combination with each value of the other nominal variable

Two-way ANOVA

adapted for microarrays datasets

Interaction effect

Material and Methods

Results

Data collection

PRINCIPAL COMPONENT ANALYSIS

PCA does not highlight grouping for treatment: absent data pattern for the first five PCA components

The results are confirmed also with hierarchical clustering

PRINCIPAL COMPONENT ANALYSIS

Set of samples characterized by x and y variables

Eigenvectors that identify the direction of variance in the data. Eigenvalues are orthogonal to each other in order to span the x-y area

Principal Component Analysis 4 Dummies: Eigenvectors, Eigenvalues and Dimension Reduction

PCA: re-framed data set based on the eigenvectors

Note that nothing has been done to the data itself. We're just looking at it from a different angle