

Peter Tian, Shuyang Lin, and Weixi Chen
Supported By Global Operations Science & Analytics Team

DHL Supply Chain - Excellence. Simply Delivered.
October 2022

About DHL Supply Chain

DHL Supply Chain is a division of Deutsche Post DHL Group with a global network and an extensive logistics portfolio that deals with warehousing, transport and VAS for other companies

DHL Supply Chain is the

Contract Logistics Provider

Managing Supply Chains to reduce complexities

Market Position DHL Supply Chain GXO Logistics Kuehne + Nagel Hitachi Transport 2% UPS 2%

Project Overview

DHL Transportation Solution Team quotes third-party companies contract prices or spot prices to find feasible transportation solutions for client's shipments

TruckLoad Shipment (TL)

Less-Than-TruckLoad Shipment (LTL)

Intermodal Shipment (Railway)

DHL Transport Solution Team:

- •The team considers quoted price in different data frames as a benchmark to find lowest price
- •The team will save quoted price and historical shipments in the database

With available historical shipment data and quoted price data:

A Learning models is asked to **predict future transportation rates** by inputting available shipment information and quoted price.

Data Description

Data is provided by DHL Operation and Analytics Team. All data is for study use and has be masked

Historical Shipment Data (MT_Data)

Description: The dataset includes 4 month historical

shipment information

Column: 31

Rows: 4,963,508

Historical Quoted Price Data (DAT_Data)

Description: The dataset includes 4 month historical

quoted price data information

Column: 40 Rows: 63,486

Exploratory Data Analysis

Data is provided by DHL Operation and Analytics Team. All data is for study use and has be masked

Augmented Dickey-Fuller Results
Test Statistic -4.713
P-value 0.000
Lags 1

Trend: Constant

Critical Values: -3.48 (1%), -2.88 (5%), -2.58 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

Exploratory Data Analysis

Data is provided by DHL Operation and Analytics Team. All data is for study use and has be masked

Data Cleaning

Data Cleaning is a critical working before we implementing model

STEPS	DESCRIPTION	
Merge two datasets	Using Zip information and Appointed Shipping time as foreigner key to connect two tables	
Narrow dataset by location	Collect records only for US and Canada Shipment	
Splitting Raw Data	The original data is arranged into three for LTL, TL, and Railway datasets	
Removing NA data	If a record has missing information in LINEHAUL COSTS , FUEL COSTS, ACC. COSTS, TOTAL ACTUAL COST, the record will be removed from model training.	
Fix Zip related feature	Correctly zip into a correct US or Canada format	
Correct Data	Compare Only keeps records whose shipment data is not later than quotes time	
Splitting Raw Data	The original data is arranged into three for specific model training	

Deep Learning Model Design

Based on the dataset, a Long Short-Term Memory Model is design for prediction

Good to carry both long term and short term info by:

- Cell state vector carrying memories
- Gates deciding to forget or not
- Tanh layers to process candidates

LSTM Model Building

We use PyTorch to build a class to to train a sample LSTM model

Step 1	Splitting Training data and Test data
Step 2	Building a Neural Network
Step 3	Setting Accuracy Measurement for Loss Calculation
Step 4	Setting Gradient Descent as Model Optimizer
Step 5	Building a Learning Epoch
Step 6	Record Test Error

lyperparameter and Outcome			
activation Function	ReLU		
lidden Layers	2		
lidden Layers Size	size of training row*2/3		
oss Measurement	SAMPE		
earning Epoch	1000		

LSTM Model SMAPE Performance

TransRater will compare its SAMPE loss with DataRobot best model to evaluate its performance

TL MODEL

0.3378606

Wait For Test

LTL MODEL

0.25428137

Wait For Test

Railway MODEL

0.33060297

Wait For Test

Next Step

TransRater has an User Interface to help Transportation Solution Teams predict transportation quoted price

Next Step

We use PowerBI to build a Dashboard for prediction visualization.

Building...