

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

NOMBRE DE	LA ASIGNATURA
	Química General

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Tercero	172033	101

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante los conceptos básicos de la química inorgánica que le servirán como apoyo importante para diversas áreas en la Ingeniería Física.

TEMAS Y SUBTEMAS

1. Introducción.

- 1.1. Propiedades de la materia y la energía.
- 1.2. Elementos, compuestos y mezclas.
- 1.3. Átomo, molécula e ion.
- 1.4. Teoría atómica de Dalton.
- 1.5. Masas atómicas y moleculares.
- 1.6. Unidad de masa atómica.
- 1.8. Número atómico y número de masa.
- 1.8. Isótopos y símbolos atómicos.

2. Los átomos y la tabla periódica.

- 2.1. Clasificación de los elementos. La ley periódica y la tabla periódica.
- 2.2. Números cuánticos.
- 2.3. Llenado de orbitales y regla de Hund.
- 2.4. Distribución electrónica en los átomos y tabla periódica.
- 2.5. Tamaños atómicos.
- 2.6. Energías de ionización.
- 2.7. Afinidades electrónicas.
- 2.8. Propiedades magnéticas de los elementos.
- 2.9. Número de oxidación.

3. Enlace iónico y covalente.

- 3.1. Enlaces químicos, símbolos de Lewis y la regla del octeto.
- 3.2. Red cristalina.
- 3.3. Enlace iónico.
- 3.4. Energías de redes cristalinas.
- 3.5. Nomenclatura de los compuestos iónicos.
- 3.6. Radio iónico y factores que lo afectan.
- 3.7. Enlace covalente.
- 3.8. Como dibujar estructura de Lewis, carga formal y resonancia.
- 3.9. Transición entre enlace iónico y covalente.
- 3.10. Electronegatividad.
- 3.11. Enlaces sigma y pi.
- 3.12. Orbitales híbridos.

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

4. Estados de la materia.

- 4.1. Estados de la materia.
- 4.2. Ley de Avogadro.
- 4.3. Estequiometria y volúmenes de los gases.
- 4.4. Fuerzas intermoleculares de atracción.
- 4.5. Enlace de hidrógeno.
- 4.6. Diagramas de fase.

5. Estequiometria.

- 5.1. Ecuaciones químicas.
- 5.2. El mol.
- 5.3. Derivación de fórmulas simple.
- 5.4. Composición en porcentaje de los compuestos.
- 5.5. Estequiometria de reacciones.
- 5.6. Información cuantitativa a partir de ecuaciones balanceadas.

6. Disoluciones, ácidos y bases.

- 6.1. Naturaleza de las soluciones.
- 6.2. Molalidad y molaridad.
- 6.3. Ósmosis.
- 6.4. Disoluciones electrolíticas.
- 6.5. Reacciones de óxido-reducción.
- 6.6. Ácidos y bases de Arrhenius.
- 6.7. Teoría de ácidos y bases de Bronsted-Lowry.
- 6.8. Auto ionización del agua y escala del PH.
- 6.9. Neutralización y electrólisis.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y los proyectores. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación

Además, se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

Universidad Tecnológica de la Mixteca 00040

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

- 1. Química General, Pretucci R.H., Henrry F.G., Madura J.D. and Bissonnette C., Pearson Prentice Hall, 10ª Ed.,
- Fundamentos de Química, Zumdahl, S.S., McGraw Hill, 2ª Ed., 2001.
 Química, Chang R., McGraw-Hill Interamericana, 2000.

Química Inorgánica Estructural, Wells A.F., Reverté, 1999.
 Inorganic Chemistry, Housecroft C.E. and Sharpe A.G., Pearson Prentice Hall, 2005.

PERFIL PROFESIONAL DEL DOCENTE

Maestría y/o Doctorado en Química o Ciencia de Materiales

GONZÁLEZ MARTÍNEŽ 4 X A C P JEFE DE CARRERA JEFATURA DE CARRERA INGENIERIA EN FÍSICA APLICADA

DR. AGUSTIN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO ORIA

ACADÉMICA