Lab05-Numbering Programs

CS363-Computability Theory, Xiaofeng Gao, Spring 2016

- * Please upload your assignment to FTP or submit a paper version on the next class * If there is any problem, please contact: nongeek.zv@gmail.com
 - * Name:Zhang Yupeng StudentId: 5130309468 Email: 845113336@qq.com
- 1. Show that there is a total computable function k such that for each n,
 - (a) k(n) is an index of the function $|\sqrt[n]{x}|$.

Solution:

Let
$$f(n,x) = |\sqrt[n]{x}|$$

So,
$$f(n,x) = \mu z \le ((z+1)^n > x)$$

So, f(n,x) is computable. So, according to the s-m-n theory, there is a total computable function k(n) such that for any fixed n, $f(n,x) = \phi_{k(n)}(x)$

(b)
$$W_{k(n)}^{(m)} = \{(y_1, \dots, y_m) : y_1 + y_2 + \dots + y_m = n\} \ (m \ge 1).$$

Solution:

Let
$$f(n, y_1, ...y_m) = \mu z(n - (y_1 + ...y_m) + z = 0)$$

So, $f(n, y_1, ... y_n)$ is computable. So, according to teh s-m-n theory, there is a total computable function k(n) such that for any fixed n, $f(n, y_1, ... y_m) = \phi_{k(n)}^m(y_1, ... y_m)$, and $W_{k(n)}^m = \{(y_1, ... y_m) | y_1 + ... y_m = n\}$

(c) $E_{k(n)} = W_n$.

Solution:

For each n, We assume the last register used by P_n is R_n .

So, $T(1, R_n + 1), P_n, T(R_n + 1, 1)$ has the range as same as the domain of P_n .

Let
$$k(n) = \gamma(T(1, R_n + 1), P_n, T(R_n + 1, 1)), k(n)$$
 is total and computable.

2. (a) Find P_{1028} . Distinguish what are $\phi_{1028}(x)$ and $\phi_{1028}^{(n)}(x_1, \dots, x_n)$ and their corresponding $W_{1028}(x)$, $E_{1028}(x)$ and $W_{1028}^{(n)}(x)$, $E_{1028}^{(n)}(x)$;

Solution:

1)

$$1028 = 2^{0} + 2^{2} + 2^{10} - 1$$

$$\beta(I_{1}) = 0, \beta(I_{2}) = 1 + 1, \beta(I_{3}) = 7 + 1 + 2$$

$$I_{1} : Z(1), I_{2} : S(1), I_{3} : J(2, 1, 1)$$

So,
$$P_{1028} = Z(1); S(1); J(2, 1, 1).$$

2)

$$\phi_{1028}(x) = 1$$

$$W_{1028}(x) = \mathbb{N}$$

$$E_{1028}(x) = \{1\}$$

3)

$$\phi_{1028}^{(n)}(x_1, \dots x_n) = \begin{cases} 1 & , x_2 \neq 1 \\ undefined & , x_2 = 1 \end{cases}$$

$$W_{1028}^{(n)}(x) = \mathbb{N} \times (\mathbb{N} - \{1\}) \times \mathbb{N}^{n-2}$$
$$E_{1028}^{(n)}(x) = \{1\}$$

(b) Let P be the program J(1,2,4), Z(1), S(1). Calculate $\gamma(P)$. Solution:

$$\beta(J(1,2,4)) = 4 * 27 + 3 = 111$$
$$\beta(Z(1)) = 0$$
$$\beta(S(1)) = 1$$
$$\gamma(P) = 2^{111} + 2^{112} + 2^{114} - 1$$

3. (a) (Cantor) Show that the set of all functions from \mathbb{N} to \mathbb{N} is not denumerable.

Proof:

If the set of all functions from \mathbb{N} to \mathbb{N} is denumerable, then we assume $f_1, f_2, ... f_n$ is an enumeration of functions from \mathbb{N} to \mathbb{N} , so we define that $g(n) = f_n(n) + 1$, for each $n, g \neq f_n$, however, g is also a function from \mathbb{N} to \mathbb{N} .

So, there's contradiction, the set of all functions from \mathbb{N} to \mathbb{N} is not denumerable.

(b) Show that the set of all non-computable total functions from \mathbb{N} to \mathbb{N} is not denumerable.

Proof:

If the set of all non-computable total functions from \mathbb{N} to \mathbb{N} is denumerable. Since we know that the set of all computable total functions from \mathbb{N} to \mathbb{N} is denumerable, the set of all functions from \mathbb{N} to \mathbb{N} , however,the set of all functions from \mathbb{N} to \mathbb{N} is not denumerable which has been already proved.

So, there's contradiction, the set of all non-emoputable total functions from \mathbb{N} to \mathbb{N} is not denumerable.

4. Alternative Selection of π

The π function where $\pi(x,y)=2^x(2y+1)-1$ can enumerate linearly all pairs of natural numbers $(x,y)\in\mathbb{N}\times\mathbb{N}$. However, it does not generate a trace in the first quadrant of the plane. Correspondingly, instead of applying this π function, we can define an alternative bijection π' , such that $\pi':\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ and it grows horizontally and vertically according to the right figure. Thus we have:

$$\pi'(0,0) = 0, \ \pi'(0,1) = 1, \ \pi'(1,0) = 2,$$

 $\pi'(1,1) = 3, \ \pi'(0,2) = 4, \ \pi'(1,2) = 5,$
 $\pi'(2,0) = 6, \ \pi'(2,1) = 7, \ \pi'(2,2) = 8, \ \text{etc.}$

Now please develop a mathematical formula for π' , (like the notation of original π), and prove the correctness of your design.

Solution:

We can see that if the $x = 0, \pi'(0, y) = 0, 1, 4, 9, ..., y = 0, 1, 2, 3...$

If the
$$y = 0, \pi'(x, 0) = 0, 2, 6, 12..., x = 0, 1, 2, 3...$$

We define that
$$\pi'(x,y) = \begin{cases} x + y^2, & x < y \\ x(x+1) + y, & x \ge y \end{cases}$$

Proof:

First, we prove the function is a injective function, we assume two different pair (x_1, y_1) and (x_2, y_2) .

We assume that $x_1 < y_1, x_2 < y_2$, so $\pi'(x_1, y_1) = x_1 + y_1^2, \pi'(x_2, y_2) = x_2 + y_2^2$, if $\pi'(x_1, y_1) = \pi'(x_2, y_2)$, we get $x_1 - x_2 = (y_2 + y_1)(y_2 - y_1)$

If $x_1 = x_2$, $y_1 = y_2$, so we assume $x_1 > x_2$, then $y_2 - y_1$ must equal to at least 1, and $y_2 + y_1 > x_1 + x_2 > x_1 - x_2$, so $x_1 = x_2$, $y_1 = y_2$

Similarly, we can prove the equiation is hold in other three conditions, so the function is injective.

Next, we prove the function is a surjective function, we can see that $\forall z \in \mathbb{N}$, we can find $n \in \mathbb{N}$ that $n \leq z \leq (n+1)^2$

We assume $m = z - n^2$, if m < n, then (m, n) is the corresponding pair (x, y), if $m \ge n$, then (n, m - n) is the corresponding pair.

So, we've proved $\forall z \in \mathbb{N}$, there is a corresponding (x, y), so the function is a surjective function. So, our design is coorect.