MECH421 Midterm Exam

Feb. 25th 2019, 3pm-4pm

Figure 1: A motor power amplifier with a current controller.

In Figure 1, OP 27 is considered as an ideal op-amp to implement current controller. PA52 is a high power op-amp to drive the motor, and Figure 2 describes its frequency response. In this circuit PA52 is not an ideal op-amp. INA106 is a difference op-amp with a fixed gain of 10 (K_g =10), and its functions follow the equation: $V_{diff} = K_g(V_{IN+} - V_{IN-})$. Lm and Rm are motor's inductance and resistance. Rs is the current sensing resistor. Lm=6mH, Rm=3.9 Ω , Rs=0.1 Ω .

- 1). (30 marks) Draw a block diagram for the whole circuit in Figure 1. Clearly label the following signals:
 - a) V_{Ir} (reference current command).
 - b) V_c (input voltage of PA52).
 - c) V_o (output voltage of PA52).
 - d) I_o (motor current).
 - e) V_s (current sensing signal).

- 2). (30 marks) Consider voltage stage only, which is an inverting amplifier circuit; the input is V_c and the output is V_o . PA52 frequency response is shown in Figure 2 below.
 - a) Design resistors R1 and R2 to set the DC gain from V_c to V_o is 9. (i.e. $|V_o/V_c|=9$).
- b) Is this voltage stage stable? If yes, what is the negative loop transmission (NLT) crossover frequency, and what is the phase margin.
- 3). (40 marks) Consider the current controllor design with following objectives: 10kHz closed loop bandwidth; no steady-state error; at least 60 degree phase margin.
- a) Select R3, R4 and C in the circuit to design a PI ($C(s) = K(1 + \frac{\omega_I}{s})$) controller to achieve above objectives. Make sure to show K and ω_I clearly.
 - b) Draw Bode plots of the controller only.
 - c) Draw Bode plots for the NLT of the whole system, and label the corner frequencies.

Figure 2: PA52 frequency response.