Hypothesis tests

Definition 1.9

A statistical hypothesis is a statement about the unknown parameter θ . The most general formulation is

$$H_0: \theta \in \Theta_0$$

where

$$\Theta_0 \subset \Theta$$

and Θ is the parameter space.

Scalar parameter

Usually of the form

$$H_0$$
: $\theta = \theta_0$.

simple hypothesis

composite hypothesis

Hypothesis testing

Hypothesis testing is formulated in terms of two hypotheses:

- H_0 : the null hypothesis the default hypothesis initially assumed to be true typically we want to try to disprove this based on the observed sample
- H_a : the alternative hypothesis mutually exclusive to Ho usually the complement of Ho

eg. checking if a coin is fair
$$H_0: p = \frac{1}{2}$$

let $p = probability$ of head $H_0: p \neq \frac{1}{2}$

Hypothesis test

A test of the hypothesis H_0 is a rule that tells us, for a given set of data $y_1, y_2, ..., y_n$ whether we should reject or not reject H_0 .

- 2 possible outcomes:
- reject Ho: there is enough evidence in the sample
- fail to reject Ho: there is insufficient evidence in the sample

Hypothesis test

Example

Consider a jury trial. The hypotheses are:

- H_0 : defendant is innocent
- H_a : defendant is guilty

 H_0 (innocent) is rejected if H_a (guilty) is supported by evidence beyond "reasonable doubt".

Failure to reject H_0 (prove guilty) does not imply innocence, only that the evidence is insufficient to reject it.

Hypothesis test

Usually a test is constructed from a test statistic, T, and a critical region, C, with the rule

- Reject H_0 if $T \in C$ Fail to reject H_0 if $T \notin C$

test statistic: a function of the data on which our decision is based on

critical region: the set of all test statistic values for which (rejection region) Ho will be rejected in favour of Ha

Hypothesis testing

A statistical test is composed of these essential elements:

- Null hypothesis
- Alternative hypothesis
- Test statistic
- Critical region

Example 1.9

If $y_1, y_2, ..., y_n$ are i.i.d. $N(\mu, \sigma^2)$ observations with known σ^2 .

Write down the appropriate test statistic and critical region to test

$$H_0: \mu = \mu_0$$
. vs $H_a: \mu \neq \mu_0$

test statistic:
$$Z = \frac{\overline{y} - \mu_0}{\frac{\sigma}{5n}}$$

critical region: $C = \{z: |z| \ge 1.96\}$
(using $\alpha = 0.05$ level of significance)

Example 1.10

A rental car company is looking for fuel additives that may increase fuel efficiency. They conducted a pilot study with 30 cars using a new additive, in a road test from Adelaide to Victor Harbour. Without the additive, the cars are known to average 10L/100km with a standard deviation of 2L/100km. It turns out, with the additive, the cars average 9L/100km. What should the company conclude?

Let Yi = fuel efficient of car i in the trial, i=1,2,...,30

Assume Y: ~ iid N(4, 0=4).

Ho: $\mu = 10$

Ha: $\mu < 10$

test statistic: $Z = \frac{9-10}{2} \approx -2.74$

Critical region: C= { Z: Z<-Za} = { Z: Z<-1.64} assuming x=0.05

Since Z falls within C, we have sufficient evidence to reject Ho. It appears the additive does increase fuell efficiency.