Exercise	2					
e) dXt	= K (O	-Xt)dt i	1 dWF av	nd Vt + yv	= O ,	
So, by a	essumption	we have	Vt + K (0-x) vx + /2 vxx	= 0	
			V(t,x) = e	×ρ (Υ (7- t, ν)	+ 4(7-t,v) x	
=> V	t = (Yt	(T-t, y) +	Ψ _t (T-t, ν) ×) ∨		
	, ,	$(7-t, \nu) V$ $(7-t, \nu) V$				∨(t,×)≠ 0 (t,×)
- > (4	(t (T-t,v) +	Y= (7-t, v) x)	x + xl0-x) 4(1	-t, v) x + 12 4	²(T-t, \(\mu \) \(\mu =	- 0
=>0) /	кО Y(T-t · к Y(T-t	$(\nu) + \int_{2}^{2} \psi$	$(7-t, \nu) + (7-t, \nu) =$	- Y _t (T-t, v)	= 0	
			к 4 Ст-Е,			
=>	Y (7-6	と,ひ)= ~ (- K (T-t)	, where a	is $\alpha(\nu)$.	
				-t) + 4t (7-t		
=> 4	t (7-t, 2) = - KK	θ e- κ(7-t)	- 12 22 e-2161	-t)	
=>	Y (7-t,	ひ) = - < (9 e-n(7-t)	- 12 2 e - 2k	(T-t) - B	where B
=> V(t,	x)=exp	(- αθ e- κ (- t) - 1/2 x2 e-21	- B + de	k (1-t) ×	às B(v)

c) I can notice know that the expression obtained in (1) is god to the characteristic function of a normal veriable. Indeed, $(1) = e^{\kappa \rho} \left(i \nu \left(\theta \left(1 - e^{-\kappa t} \right) + \kappa e^{-\kappa t} \right) - \frac{\nu^2}{2} \left(\frac{\lambda^2 \left(1 - e^{-2\kappa t} \right)}{2\kappa} \right) \right)$ and this is the derectoristic function of a normal varieble with mean and variance equal to $\mu = \theta + e^{-\kappa t} \left(x - \theta \right) \qquad \delta^2 = \frac{\lambda^2 \left(1 - e^{-2\kappa t} \right)}{2\kappa} \qquad (2)$ Since the characteristic fraction determines the lew of a s.v. we obtem that $X_{t} \sim N(\mu_{1}\sigma^{2})$ d) Consider the process $X_{t} = \theta + (x - \theta) e^{-\kappa t} + \lambda e^{-\kappa t} \int_{0}^{t} e^{\kappa s} dW_{s}$ we can show that it is a solution. Indeed, set $f(t, \times) = \theta + (\times -\theta) e^{-\kappa t} + \Lambda e^{-\kappa t} \times (of cless C^2)$ $\frac{\partial \xi}{\partial t}(t,x) = \kappa(\theta - x_0)e^{-\kappa t} - \lambda \kappa e^{-\kappa t}x$ $\frac{\partial \xi}{\partial x}(t,x) = \int e^{-\kappa t}$ $\frac{\partial^2 t}{\partial x^2} \left(t \cdot x \right) = 0$

