DEVOIR À LA MAISON N°8: CORRIGÉ

Problème 1 – Petites Mines 2009

Partie I - Étude d'une fonction

1. f est dérivable sur \mathbb{R} par opérations arithmétiques sur des fonctions dérivables. Pour tout $x \in \mathbb{R}$,

$$f'(x) = 3(1 - 2x^2)e^{-2x^2}$$

On en déduit que f est

- ▶ strictement décroissante sur $\left]-\infty, -\frac{1}{\sqrt{2}}\right]$;
- strictement croissante sur $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$;
- ▶ strictement décroissante sur $\left[\frac{1}{\sqrt{2}}, +\infty\right[$.

Pour tout $x \neq 0$, $xe^{-x^2} = \frac{x^2 e^{-x^2}}{x}$. Par croissances comparées,

$$\lim_{x \to +\infty} x^2 e^{-x^2} = \lim_{x \to -\infty} x^2 e^{-x^2} = 0$$

via le changement de variables $X = x^2$. A fortiori

$$\lim_{x \to +\infty} x e^{-x^2} = \lim_{x \to -\infty} x e^{-x^2} = 0$$

Puis, par opérations

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = -1$$

On en déduit le tableau de variations suivant.

En particulier, C_f admet une asymptote horizontale d'équation y = -1 au voisinage de $+\infty$ et $-\infty$. Puisque f(-x) + f(x) = -2 pour tout $x \in \mathbb{R}$, C_f est symétrique par rapport au point de coordonnées (0, -1).

2. Puisque f(0) = -1 et f'(0) = 3, C_f admet au point d'abscisse 0 une tangente d'équation y = 3x - 1. Pour tout $x \in \mathbb{R}$

$$f(x) - (3x - 1) = 3x(e^{-x^2} - 1)$$

Pour tout $x \in \mathbb{R}$, $e^{-x^2} - 1 \leqslant 0$ car $-x^2 \leqslant 0$ et par croissance de exp sur \mathbb{R} . Ainsi $f(x) - (3x - 1) \leqslant 0$ pour $x \geqslant 0$ et $f(x) - (3x - 1) \geqslant 0$ pour $x \leqslant 0$. On en déduit que \mathcal{C}_f est au-dessus de sa tangente à gauche de 0 et au-dessous de celle-ci à droite de 0. \mathcal{C}_f admet donc un point d'inflexion au point d'abscisse 0.

3.

- **4. a.** f étant de classe C^{∞} sur \mathbb{R} , elle admet un développement limité à tout ordre en 0.
 - **b.** On sait que $e^{u} = 1 + u + \frac{u^{2}}{2} + o(u^{2})$. On en déduit que

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2} + o(x^4)$$

puis que

$$f(x) = _{x \to 0} -1 + 3x - 3x^3 + \frac{3}{2}x^5 + o(x^5)$$

Partie II – Étude d'une équation différentielle

- 1. L'équation différentielle H_n est $xy'-(n-2x^2)y=0$. Sur \mathbb{R}^* , elle équivaut à $y'-\left(\frac{n}{x}-2x\right)y=0$. Une primitive de $x\mapsto\frac{n}{x}-2x$ sur \mathbb{R}^*_+ est $x\mapsto n\ln(x)-x^2$. Les solutions de H_n sur \mathbb{R}^*_+ sont donc les fonctions $x\mapsto \lambda x^n e^{-x^2}$ où λ décrit \mathbb{R} . Une primitive de $x\mapsto\frac{n}{x}-2x$ sur \mathbb{R}^*_- est $x\mapsto n\ln(-x)-x^2$. Les solutions de H_n sur \mathbb{R}^*_+ sont donc les fonctions $x\mapsto \lambda(-x)^n e^{-x^2}$ où λ décrit \mathbb{R} ou, de manière plus simple, les fonctions $x\mapsto \lambda x^n e^{-x^2}$ où λ décrit encore \mathbb{R} .
- 2. La fonction constante égale à -1 étant clairement une solution particulière de E_n sur \mathbb{R} . On en déduit que les solutions de E_n sur \mathbb{R}_+^* et sur \mathbb{R}_-^* sont les fonctions $x\mapsto -1+\lambda x^n e^{-x^2}$.
- 3. Supposons dans un premier temps n=1. Soit y une solution de E_1 sur \mathbb{R} . Comme y est solution de E_1 sur \mathbb{R}_+^* et \mathbb{R}_+^* , il existe $(\lambda,\mu)\in\mathbb{R}^2$ tel que

$$y(x) = \begin{cases} -1 + \lambda x e^{-x^2} & \text{si } x > 0 \\ -1 + \mu x e^{-x^2} & \text{si } x < 0 \end{cases}$$

La continuité de y en 0 impose y(0) = -1. De plus,

$$\lim_{x\to 0^+}\frac{y(x)-y(0)}{x-0}=\lambda \qquad et \lim_{x\to 0^+}\frac{y(x)-y(0)}{x-0}=\mu$$

La dérivabilité de y en 0 impose donc $\lambda = \mu$. On a donc $y(x) = \lambda x e^{-x^2}$ pour tout $x \in \mathbb{R}$. Réciproquement pour tout $\lambda \in \mathbb{R}$, $x \mapsto -1 + \lambda x e^{-x^2}$ est de classe \mathcal{C}^1 et solution de E_1 sur \mathbb{R} . Les solutions de E_1 sur $\mathbb R$ sont donc les fonctions $x\mapsto -1+\lambda xe^{-x^2}$ où λ décrit $\mathbb R$.

Supposons maintenant $n \ge 2$. Comme précédemment toute solution y de E_n sur \mathbb{R} est nécessairement de la forme

$$y(x) = \begin{cases} -1 + \lambda x^n e^{-x^2} & \text{si } x > 0 \\ -1 + \mu x^n e^{-x^2} & \text{si } x < 0 \\ -1 & \text{si } x = 0 \end{cases}$$

Réciproquement, si y est de la forme précédente, elle est bien solution de E_n sur \mathbb{R}_+^* et \mathbb{R}_-^* , elle est bien de classe \mathcal{C}^1 sur \mathbb{R}_+^* et sur \mathbb{R}^* —, elle est continue en 0 puisque $\lim_{0^+} y = \lim_{0^-} y = 0 = y(0)$ et

$$\lim_{x \to 0^{+}} y'(x) = \lim_{x \to 0^{-}} y'(x) = 0$$

donc y est de classe C^1 sur \mathbb{R} en vertu du théorème de prolongement C^1 .

REMARQUE. Si on ne connaît pas encore le théorème de prolongement \mathcal{C}^1 , on procède «à la main». On constate que

$$\lim_{x \to 0^+} \frac{y(x) - y(0)}{x - 0} = \lim_{x \to 0^-} \frac{y(x) - y(0)}{x - 0} = 0$$

donc y est dérivable en 0 et y'(0) = 0. De plus

$$\lim_{x \to 0^+} y'(x) = \lim_{x \to 0^-} y'(x) = 0 = y'(0)$$

donc y' est continue en 0. Puisque y' est continue sur \mathbb{R}_+^* et \mathbb{R}_+^* , y' est continue sur \mathbb{R} i.e. y est de classe \mathcal{C}^1 sur

On vérifie alors que y est encore solution de E_n en 0 donc elle est solut

 $\text{Les solutions de } E_n \text{ sur } \mathbb{R} \text{ sont donc les fonctions } x \mapsto \begin{cases} -1 + \lambda x^n e^{-x^2} & \text{si } x > 0 \\ -1 + \mu x^n e^{-x^2} & \text{si } x < 0 \text{ avec } (\lambda, \mu) \in \mathbb{R}^2. \\ -1 & \text{si } x = 0 \end{cases}$

Partie III - Étude de deux suites

- 1. On a $f_n(0) = -1 < 0$ et $f_n(1) = \frac{3}{e} 1 > 0$.
- **2.** f_n est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$

$$f_n'(x) = 3(nx^{n-1} - 2x^{n+1})e^{-x^2} = 3x^{n-1}(n - 2x^2)e^{-x^2}$$

On en déduit que f_n est strictement croissante sur $\left[0,\sqrt{\frac{n}{2}}\right]$ et strictement décroissante sur $\left[\sqrt{\frac{n}{2}},+\infty\right[$. Pour tout $x \in \mathbb{R}_+^*$

$$f_n(x) = (x^2)^{\frac{n}{2}} e^{-x^2} - 1$$

donc, par croissances comparées, $\lim_{x\to +\infty} f_n(x) = -1$. Remarquons que puisque $n\geqslant 2,\ 1\in \left[0,\sqrt{\frac{n}{2}}\right]$ et puisque f_n est strictement croissante sur cet intervalle, $f_n\left(\sqrt{\frac{n}{2}}\right) \geqslant f_n(1) > 0.$

 $f \text{ est strictement monotone et continue sur chacun des deux intervalles } \left[0, \sqrt{\tfrac{n}{2}}\right] \text{ et } \left[\sqrt{\tfrac{n}{2}}, +\infty\right[\text{. De plus, } f_n(0) < 0 \right] < 0 + 0$ $0, f_n\left(\sqrt{\frac{n}{2}}\right) > 0$ et $\lim_{\infty} f < 0$ donc, d'après le corollaire du théorème des valeurs intermédiaires, f_n s'annule une unique fois sur chacun des deux intervalles $\left[0,\sqrt{\frac{n}{2}}\right]$ et $\left[\sqrt{\frac{n}{2}},+\infty\right]$ en deux réels notés respectivement u_n

Puisque $f_n(1) > 0$ et que 1 appartient à l'intervalle $\left[0, \sqrt{\frac{n}{2}}\right]$ sur lequel f_n est strictement croissante, $u_n > 1$. Par ailleurs $\nu_n > \sqrt{\frac{\pi}{2}} \geqslant 1$ puisque $n \geqslant 2$.

3. D'après la question précédente, $\nu_n \geqslant \sqrt{\frac{n}{2}}$ pour tout $n \geqslant 2$. Or $\lim_{n \to +\infty} \sqrt{\frac{n}{2}} = +\infty$ donc $\lim_{n \to +\infty} \nu_n = +\infty$ par théorème de minoration.

- **4.** a. Par définition, $f_n(u_n) = 0$ pour tout $n \ge 2$ donc $e^{-u_n^2} = \frac{1}{3u^n}$.
 - **b.** $f_{n+1}(u_n) = 3u_n^{n+1}e^{-u_n^2} 1 = u_n 1 < 0.$
 - c. On sait également que $f_{n+1}(u_{n+1}) = 0$ et que f_{n+1} est strictement croissante sur l'intervalle [0,1] contenant u_n et u_{n+1} . D'où $u_n < u_{n+1}$. Ceci étant valable pour tout $n \ge 2$, la suite $(u_n)_{n \ge 2}$ est strictement croissante
 - **d.** La suite $(u_n)_{n\geqslant 2}$ est également majorée par 1 donc elle converge en vertu du théorème de la limite monotone.
- **5. a.** Évident.
 - **b.** Supposons $l \neq 1$. On a en fait l < 1 puisque (u_n) est majorée par 1. Pour tout $n \geqslant 2$, $f_n(u_n) = 0$ et donc $g_n(u_n) = 0$ d'après la question précédente. Ainsi pour tout $n \in \geqslant 2$.

$$0 = \ln 3 + n \ln(u_n) - u_n^2$$

Puisque l < 1, le membre de droite diverge vers $-\infty$, ce qui est absurde. On en déduit que l = 1.

c. Pour tout $n \ge 2$, $g_n(u_n) = 0$ et donc

$$n\ln(1+w_n)=u_n^2-\ln 3$$

Puisque (w_n) converge vers 0, $n \ln(1+w_n) \sim n w_n$. Par ailleurs, $\lim_{n\to+\infty} u_n^2 - \ln 3 = 1 - \ln 3$ donc

$$w_n \underset{n \to +\infty}{\sim} \frac{1 - \ln 3}{n}$$

SOLUTION 1.

- **1.** Soit $x \in [0, 1]$. Alors $\sqrt{x} \in [0, 1]$ donc $f(x) = 1 \sqrt{x} \in [0, 1]$.
- 2. On procède par récurrence. Tout d'abord, $u_0 \in [0,1]$. Supposons que $u_n \in [0,1]$ pour un certain $n \in \mathbb{N}$. Alors $u_{n+1} = f(u_n) \in [0,1]$ d'après la question précédente.
- 3. f est clairement décroissante sur [0, 1] à valeurs dans [0, 1]. On en déduit que $f \circ f$ est croissante sur [0, 1].
- **4.** Pour $x \in [0, 1]$,

$$f(x) = x$$

$$\iff \qquad \sqrt{x} = 1 - x$$

$$\iff \qquad x = (1 - x)^2 \qquad \text{car les membres de l'égalité précédente sont positifs}$$

$$\iff \qquad x^2 - 3x + 1 = 0$$

Les racines du trinôme précédent sont $\frac{3-\sqrt{5}}{2}$ et $\frac{3+\sqrt{5}}{2}$. La première racine appartient à l'intervalle [0,1] puisque $1\leqslant\sqrt{5}\leqslant3$ mais la seconde racine n'appartient pas à l'intervalle [0,1] car $\sqrt{5}>1$.

Finalement, l'unique point fixe de f sur [0, 1] est $\alpha = \frac{3-\sqrt{5}}{2}$.

- 5. Puisque $20\leqslant 25,\, 5\leqslant \frac{25}{4}$ puis $\sqrt{5}\leqslant \frac{5}{2}$ puis $\alpha=\frac{3-\sqrt{5}}{2}\geqslant \frac{1}{4}=u_0.$
- **6.** On procède par récurrence. Tout d'abord, $u_0 \leqslant \alpha$. Supposons $u_{2n} \leqslant \alpha$ pour un certain $n \in \mathbb{N}$. Alors par croissance de $f \circ f$ sur [0,1],

$$f \circ f(u_{2n}) \leqslant f \circ f(\alpha)$$

c'est-à-dire

$$u_{2n+2} \leqslant \alpha$$

On en déduit que $u_{2n} \leq \alpha$ pour tout $n \in \mathbb{N}$.

7. On a $u_0 = \frac{1}{4}$ puis $u_1 = \frac{1}{2}$ et enfin $u_2 = 1 - \frac{1}{\sqrt{2}}$. Puisque $8 \leqslant 9$, $\frac{1}{2} \leqslant \frac{9}{16}$ puis $\frac{1}{\sqrt{2}} \leqslant \frac{3}{4}$ et enfin $u_2 = 1 - \frac{1}{\sqrt{2}} \geqslant \frac{1}{4} = u_0$.

Supposons maintenant que $u_{2n} \leqslant u_{2n+2}$ pour un certain $n \in \mathbb{N}$. Par croissance de $f \circ f$, $u_{2n+2} = f \circ f(u_{2n}) \leqslant f \circ f(u_{2n+2}) = u_{2n+4}$. Par récurrence, on a donc $u_{2n} \leqslant u_{2n+2}$ pour tout $n \in \mathbb{N}$. Ainsi (u_{2n}) est croissante. La suite (u_{2n}) est croissante et majorée par α donc elle converge.

8. Soit $x \in [0, 1]$.

Or on a vu précédemment que α est la seule racine du trinôme $x^2 - 3x + 1$ dans l'intervalle [0, 1]. On en déduit que les points fixes de $f \circ f$ sur [0, 1] sont $0, \alpha$ et 1.

- 9. f est continue sur [0,1] à valeurs dans [0,1] donc $f \circ f$ est continue sur [0,1]. De plus, $u_{2n+2} = f \circ f(u_{2n})$ et $u_{2n} \in [0,1]$ pour tout $n \in \mathbb{N}$ donc la suite (u_{2n}) converge vers un point fixe de $f \circ f$ sur [0,1], à savoir $0, \alpha$ ou 1. Or (u_{2n}) est croissante et majorée par α donc $u_0 \leqslant u_{2n} \leqslant \alpha$ pour tout $n \in \mathbb{N}$. Sa limite ℓ vérifie donc $u_0 \leqslant \ell \leqslant \alpha$. A fortiori, $0 < \ell \leqslant \alpha$. Puisque ℓ est un point fixe de $f \circ f, \ell = \alpha$.
 - Enfin, $u_{2n+1} = f(u_{2n})$ pour tout $n \in \mathbb{N}$ et f est continue sur [0,1] donc (u_{2n+1}) converge vers $f(\alpha) = \alpha$. Puisque les suites (u_{2n}) et (u_{2n+1}) convergent toutes les deux vers α , la suite (u_n) converge également vers α .