4-Mark
1. Various functional units of computer:
=> There are fine units
-> Imput: Connerts external world data to a binary format.
ex: keyboard
-> Output: Converts the binary format to world data format.
ex: Krinter.
-> Arthmetic 3 logic ALU 3 CU Form processes.
Operands are brought into processes to perform
required operation and is stored in he gisters
- ALU executes most operations.
- Memony: - · Stores date/programs; there are 2 classes.
(1) Intmany storage: - Fast merron, main memory ex: RAM
(i) Secondary Storage: - External/Auxiliary manney
co-ordinates operations of all other units.
· Physically distributed throughout the machine
· Carries signals Himing/ Lync of events in all units.

2.	Vacious types of Memory System!
	Primary Memory. Secondary Memory
	-> Directly accessed by CPU -> Not directly accessed by CPU.
	-> It is made memory -> It is backup memory.
-	-> Computer cantrum -> Computer can sun without
	without it it.
	-> It is faster -> It is slower.
	en! ROM, RAM ENS CD, DVD.

- 3. Explain hole of PC, IR, MAR and MDR in processer
- => PC Program Counter
 - -> Holds the memory address of the next Instruction to be fetched and executed.

IR - Anstruction Register

-> flolds the Instruction that is currently being executed.

MAR - Holds the address of memory to be accessed.

MDR - Contains the data to be written into / head out of the addressed location

MAR -> Memory Address Register ? Facilitate communication MOR -> Memory Data Register. CoHh memory.

4. What is a Bus? Explain single & multiple bus structure.

=> Bus => Communication system that transfers data lietueen components in or between computers.

Single Bus => Only one transfer at a time, two units active at any time

· Simplest way to connect all functional units.

Advantage: Low cost, flexible to add peripheral devices.

Multiple Bus => More concurrency -> 2 or more transfers at the same time.

Advantage! - Improves performance.

Disadvantage: High cost.

- 5. Register Transfer Nobatton.
- -> Used to describe how data is passed between CPU registers during the execution of Instructions.
 - · Written in human readable format.
 - · Locations are specified in instructions by symbolic names.
 - · Contents of location denoted by square bracket over name of location.
- ex: DATAIN, DATAOUT, INSTATUS, OUTSTATUS IO registers.

6. Explain Assembly Language Notation:
> Notation to supresentation
-> machine instructions 3 program.
-Mnemonics are used to define Assembly Language Instructions.
Different processers have different mnemonics.
ex! R1 = [LOC] -> Copies content from location LOC to register R1
· R3 - [R1] + [R2] -> Adds content in R1 3 R2 and mones to R3.
7. Different types of Instruction Format:
=> (1) Three-address Instruction
Syntax: - Operation source 1, source 2, distination.
est: Add A,B,C.
Disadvantage: Instruction is too long for one word.
as Two-address instruction
signtani. Operation source, destination
· Single two-address instruction isn't enough.
ex: MOVE B, C
ADD A, C.
an one-address instruction
syntan: Operation Source/destination.
· Etther source (destination is mentioned.
en: Load A.

8. Diff RISC & CISC	
⇒ RISC	CISC
-> Reduced Instruction Set Computer	-> complex Instructions
Set Compuler	set computer
-> Uses more registers.	-> less registers
-> More addressing modes	-> less addressing mo
-> Pipelaning is difficult	-> Apelining is easy.
-> Instructions take a	-> Instructions take one
varying amount of cycle	cyde Hme.
time.	·
9. What are Assembles Director Assembles directors are do to take some action / chan	irections to the assembler
-> They do not represent	
•	
-> They aren't translated "	
There are 4 assembles direc	ethes:
\rightarrow . tent	
-> data ex	. label var 1
→ . label	onumber 5
-> number.	
And, # is used to specify a	comment.

10. Various Processer and CPU cores in ARM processes.
- ARMATEMA
=> ARM 7 TDMI Processes Core
-> Commonly used for low cost/power applications.
-> Mas 3 stage pipelining.
-> Supports Thumb & Standard Instruction sets.
=> ARM9TDMI & ARMIOTDMI Processes Core.
-> Seperate instruction is data ports for high performance.
-> 5 3 6 stage pipelining.
-> Decade Thumb Instruction directly.
=> ARM 720 T CPU core.
-> Consists of ARM7TDMI Processes core with 8k byte unified
Instruction 3 data cache
-> Clock thate can be up to 60 mmg.
=> ARM920T 3 ARM1020E CPU core
-> Based on ARMATOMI & ARMIOTOMI processes core.
-> 15ased on April 10. 11 - 5 data caches
-> Have seperate instruction & data caches.
-> ARM920T -> 16k bytes
 ARM1020E -> 32k byles.

_