# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

#### КАФЕДРА № 51

| ОТЧЕТ<br>ЗАЩИЩЕН С ОЦЕНК                                                          | ЮЙ     |               |                   |  |  |  |
|-----------------------------------------------------------------------------------|--------|---------------|-------------------|--|--|--|
| ПРЕПОДАВАТЕЛЬ                                                                     |        |               |                   |  |  |  |
| ассистент                                                                         |        |               | М.Н. Исаева       |  |  |  |
| должность, уч. степень,                                                           | звание | подпись, дата | инициалы, фамилия |  |  |  |
| ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ                                                      |        |               |                   |  |  |  |
| ОДНОНАПРАВЛЕННЫЕ ХЕШ-ФУНКЦИИ по курсу: КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ |        |               |                   |  |  |  |
|                                                                                   |        |               |                   |  |  |  |
| РАБОТУ ВЫПОЛНИЛ                                                                   | [      |               |                   |  |  |  |
| СТУДЕНТ ГР.                                                                       | 5912   | _             | В.И.Исаева        |  |  |  |
|                                                                                   |        | подпись, дата | инициалы, фамилия |  |  |  |

#### Задача

#### Вариант 4.

Реализовать алгоритм хеширования SHA-1.

Провести эксперимент, согласно варианту: придумать 3 слова-пароля, которые будут исходным сообщением х (пусть один из них будет состоять из нулей), далее с каждым: найти от него хеш h(х) взять от полученного хеша первые 8 бит, обозначив последовательность у0. Далее случайным образом сгенерировать N (N зависит от двух условий, описанных ниже) сообщений, найти от каждого хеш и взять от каждого хеша первые 8 бит, получив последовательность у1, у2,..., уN-1.

- 1). Нахождение второго прообраза. Необходимо найти такой уі, что уі = у0. Посчитать количество шагов, которое потребовалось, чтобы найти уі это сложность второго прообраза.
- 2). Нахождение коллизий. Необходимо найти в полученной последовательности такие уі и уј, что уі = уј. Посчитать количество шагов, которое потребовалось, чтобы найти эту пару это сложность коллизии.

Проделать оба эксперимента 1000 раз, получить средние значения сложности второго прообраза и сложности коллизии.

Повторить данные манипуляции для последовательности хешей размером 10, 12, 14 и 16 бит. Построить графики зависимости среднего значения сложности второго прообраза и коллизии от количества взятых бит. Оценить полученные графики.

## Тестируемый алгоритм

SHA-1 представляет собой алгоритм хэширования 512-битных блоков данных в 160-битный хэш.

## Описание алгоритма

SHA-1 реализует хеш-функцию, построенную на идее функции сжатия. Входами функции сжатия являются блок сообщения длиной 512 бит и выход предыдущего блока сообщения. Выход представляет собой значение всех хеш-блоков до этого момента. Хеш-значением всего сообщения является выход последнего блока.

В начале работы алгоритма сообщение дополняется так, чтобы его длина стала кратной 512 разрядам: в конец сообщения добавляют 1, а затем столько нулей, чтобы размер сообщения стал

кратен 448, а затем к полученному результату добавляется 64-битовое представление размера исходного сообщения. Затем особым образом инициализируются пять 32-битовых переменных и начинается главный цикл(рис.1).



Рисунок 1. Схема одной операции SHA-1

Главный цикл состоит из 4 раундов, каждый из которых включает по 20 операций. Каждая такая операция состоит из подсчета нелинейной функции над тремя переменными из пяти. После выполнения вычислений над результатом выполняются операции сдвига и сложения.

После выполнения всех вышеперечисленных операций значения, полученные путем обработки текущего блока данных, складываются со значениями, полученными путем обработки предыдущих блоков данных, и алгоритм переходит к обработке следующего блока данных. Окончательный результат получается конкатенацией значений.

## Примеры использования алгоритма

Пример 1.

Исходное сообщение: «»

Хэш: «da39a3ee 5e6b4b0d 3255bfef 95601890 afd80709»

Пример 2.

Исходное сообщение: «sha»

Хэш: «d8f45903 20e1343a 915b6394 170650a8 f35d6926»

## Пример 3.

Исходное сообщение: «Sha»

Хэш: «ba79baeb 9f10896a 46ae7471 5271b7f5 86e74640»

# Исследование

Для проведения исследования были взяты следующие слова-пароли: «word», «sha», «00000». Результаты исследования приведены в таблице 1:

Таблица 1. Результаты исследования

| Количество<br>взятых бит | Тест     |           | Слово-пароль |           |  |
|--------------------------|----------|-----------|--------------|-----------|--|
|                          |          | word      | sha          | 00000     |  |
| 6                        | Прообраз | 39.772    | 10.000       | 48.308    |  |
|                          | Коллизия | 22.572    | 1.000        | 21.787    |  |
| 8                        | Прообраз | 171.296   | 147.191      | 75.814    |  |
|                          | Коллизия | 19.617    | 34.532       | 12.224    |  |
| 10                       | Прообраз | 427.387   | 3.000        | 945.801   |  |
|                          | Коллизия | 36.121    | 3.000        | 60.351    |  |
| 12                       | Прообраз | 835.984   | 3301.323     | 18165.724 |  |
|                          | Коллизия | 42.878    | 62.935       | 65.092    |  |
| 14                       | Прообраз | 86040.753 | 44774.337    | 52536.06  |  |
|                          | Коллизия | 53.056    | 42.727       | 24.728    |  |

По результатам исследования были построены графики зависимостей второго прообраза и коллизии от количества взятых бит (рис.2 и 3):



Рисунок 2. График зависимости второго прообраза от количества взятых бит



Рисунок 3. График зависимости коллизии от количества взятых бит

### Вывод

В данной лабораторной работе был реализован алгоритм хэширования SHA-1, по которому было проведено исследование по нахождению второго прообраза и коллизии, на основании которого можно сделать вывод, что чем длиннее искомая последовательность, тем сложнее ее найти.

SHA-1 является наиболее распространенным из всего семейства SHA и применяется в различных широко распространенных криптографических приложениях и алгоритмах, таких как S/MIME, SSL, IPSec и т.д.

Из-за блочной и итеративной структуры алгоритмов, а также отсутствия специальной обработки в конце хеширования, все хеш-функции семейства SHA уязвимы для атак удлинением сообщения и коллизиям при частичном хешировании сообщения. Эти атаки позволяют подделывать сообщения, подписанные только хэшем путём удлинения сообщения и пересчёту хэша без знания значения ключа. Простейшим исправлением, позволяющим защититься от этих атак, является двойное хеширование.

Данный алгоритм был создан в 1995 году, а уже в 2005 году были опубликованы теоретические атаки на SHA-1, требующие менее  $2^{63}$  операций. В 2017 году специалисты из Google и CWI объявили о практическом взломе алгоритма, опубликовав 2 PDF-файла с одинаковой контрольной суммой SHA-1.