

CS F425 - Deep Learning

Course Project, Group - 3

[Re] Rank-n-Contrast (NeurlPS'23 Spotlight)

Karan Bania (2021A7PS2582G) Tejas Agrawal (2021A3PS2789G) Rishav Mukherji (2020AAPS0330G) Jinam Keniya (2021A7PS1622G) Arnav Goyal (2021A7PS2596G)

Outline –

I. Reproduction of original results on AgeDB,

II. (Novel/Extra) Trying the loss on a Graph Regression task.

Part I. Reproduction of original results on AgeDB,

Dataset Used - AgeDB

- Why AgeDB? Relatively smaller dataset for easier training
- 2. ~16k celebrity face images and age values
- 3. ~75:12.5:12.5 train:val:test split
- 4. Augmentation: RandomResizedCrop, RandomHorizontalFlip, RandomGrayscale, ColorJitter.
- 5. Obtained from here (i.bug UK)

Part I. Reproduction of original results on AgeDB,

A few examples,

Reference: "AgeB: the first manually collected, in-the-wild age database"

Model Definition

Losses used to train encoder L1, RnC Losses used to train regressor L1, L2, Huber

Experiments

Experiment	type	Encoder trained using	Regressor trained using
L1	1-stage	L1	L1
L2	1-stage	L2	L2
Huber	1-stage	huber	huber
RnC(L1)	2-stage	RnC	L1
RnC(L2)	2-stage	RnC	L2
RnC(Huber)	2-stage	RnC	huber

Encoder representation Visualisation

Train

Hyperparams

Experiment	Batch size	Epochs	Learning Rate	Learning Decay	Weight Decay
L1	128	400	0.2	0.1	0.0001
L2	128	400	0.005	0	0.0001
Huber	128	400	0.05	0.1	0.0001
RnC(L1)	128	400(encoder) + 100(regressor)	0.5(encoder) + 0.05(regressor)	0.1(encoder) + 0.2(regressor)	0
RnC(L2)	128	400(encoder) + 100(regressor)	0.5(encoder) + 0.01(regressor)	0.1(encoder) + 0.2(regressor)	0
RnC(Huber)	128	400(encoder) + 100(regressor)	0.5(encoder) + 0.05(regressor)	0.1(encoder) + 0.2(regressor)	0.0001(encoder) + 0(regressor)

Reproduction of original results on AgeDB

		Results on AgeDB (batch_size = 128)						
	Experiments	Test MAE	Reported in paper (bs=256)	Error in replication(%)				
	L1	6.544	6.63	-1.297				
	L2	6.852	6.57	4.292				
	Huber	6.448	6.54	-1.407				
	RnC(L1)	6.154	6.14	0.228				
	RnC(L2)	6.439	6.19	4.023				
	RnC(Huber)	6.182	6.15	0.520				
7								

MAE Reduction by using RnC over standard loss (%)						
Experiments Test Reduction Reduction reported in Paper						
RnC(L1)	-5.960	-7.391				
RnC(L2)	-6.027	-5.784				
RnC(Huber)	-4.125	-5.963				

Train Loss

Train Loss (L2 plot removed)

Validation Loss

The **Dataset**,

- 1. ESOL (Estimated SOLubility),
- 2. 1128 molecules and their solubility values,
- 3. Why **ESOL**? Small enough to experiment quickly, Relevant enough to be challenging.
- 4. 80:10:10 train:val:test split.

A few examples, (plotted using RDkit)

Molecule: Oc1cccc(O)c1 log(Solubility): 0.8100000023841858 mol/L

Molecule: CCCCCC(=0)C log(Solubility): -2.049999952316284 mol/L

Molecule: CCN(Cc1c(F)cccc1Cl)c2c(cc(cc2N(=O)=... log(Solubility): -6.78000020980835 mol/L

Model Definition

$$\mathbf{x}_i' = h_{\mathbf{\Theta}} \left((1 + \epsilon) \cdot \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \mathbf{x}_j \right)$$

```
class Encoder(nn.Module):
   def __init__(self, args : ModelArgs):
       super(Encoder, self).__init__()
       self.convs = nn.ModuleList()
       self.bns = nn.ModuleList()
       self.num lavers = args.num lavers
       self.convs.append(GINConv(nn.Sequential(nn.Linear(args.in_channels, 4*args.hidden_channels),
                                               nn.ReLU(),
                                               nn.Linear(4*args.hidden channels, args.hidden channels))))
       self.bns.append(nn.BatchNorm1d(args.hidden_channels))
      for _ in range(self.num_layers-2):
           self.convs.append(GINConv(nn.Sequential(nn.Linear(args.hidden_channels, 4*args.hidden_channels),
                                                   nn.ReLU(),
                                                   nn.Linear(4*args.hidden_channels, args.hidden_channels))))
           self.bns.append(nn.BatchNorm1d(args.hidden channels))
       self.convs.append(GINConv(nn.Sequential(nn.Linear(args.hidden_channels, args.out_channels),
                                               nn.ReLU(),
                                               nn.Linear(args.out_channels, args.out_channels))))
```

First, results and then the approach. [NUMBERS]

5th trial, 2x iterations on RnC		800 Iterations on RnC and normal-L1, then 300 for L1/L2/Huber							
Experiments	Test MAE	Test MAE Test RMSE Test MSE Val MAE Val RMSE Val MSE							
L1 (UPDATEDx2)	0.247	0.326	0.106	0.224	0.325	0.106			
RnC(L1) + freeze	0.219	0.297	0.088	0.255	0.359	0.129			
RnC(L1)	0.212	0.314	0.099	0.235	0.345	0.119			
RnC(L2)	0.266	0.342	0.117	0.276	0.366	0.134			
RnC(Huber)	0.242	0.326	0.106	0.245	0.317	0.101			

Notice, all RnC based methods **beat normal-L1**, and the difference is **significant**.

First, results and then the approach. [PLOTS]

First, results and then the approach. [REP-SPACE]

Approach / Interesting findings,

A bigger MLP, doesn't work!

```
EXTRA -
args.out_channels),
nn.ReLU(),
nn.Linear(args.out_channels, 512),
nn.ReLU(),
nn.Linear(512,
```


self.mlp = nn.Sequential(nn.Linear(2*args.out_channels, 1))

First and Zeroth trials!	Results on ESOL (1128 molecules, 902 train, 113 val, 113 train), results ater / => small MLP (1)					
Experiments	Test MAE	Test RMSE	Test MSE	Val MAE	Val RMSE	Val MSE
L1	0.207 / 0.224	0.279 / 0.289	0.078 / 0.083	0.206 / 0.227	0.294 / 0.336	0.086 / 0.113
RnC(L1) + freeze	0.278 / 0.311	0.366 / 0.408	0.134 / 0.166	0.247 / 0.251	0.335 / 0.349	0.112 / 0.122
RnC(L1)	0.335 / 0.248	0.437 / 0.332	0.191 / 0.110	0.304 / 0.260	0.423 / 0.412	0.177 / 0.170
RnC(L2)	0.267 / 0.294	0.361 / 0.363	0.13 / 0.131	0.255 / 0.286	0.359 / 0.396	0.129 / 0.157

Approach / Interesting findings, Bigger LR for RnC.

Second trial with more RnC	Results on ESOL (1128 molecules, 902 train, 113 val, 113 train), results ater / => small MLP (2)							
Experiments	Test MAE	Test MAE Test RMSE Test MSE Val MAE Val RMSE Val MS						
L1 (same)	0.224	0.289	0.083	0.227	0.336	0.113		
RnC(L1) + freeze	0.311	0.408	0.166	0.251	0.349	0.122		
RnC(L1)	0.248	0.317	0.1	0.215	0.314	0.098		
RnC(L2)	0.25	0.328	0.108	0.215	0.292	0.086		

Approach / Interesting findings,

Expose normal-L1 and RnC to same information.

	Batch Size = 128							
Test MAE	Test MAE Test RMSE Test MSE Val MAE Val RMSE Val MSE							
0.258	0.34	0.116	0.252	0.36	0.13			
0.253	0.368	0.136	0.233	0.338	0.114			
0.265	0.387	0.15	0.221	0.32	0.103			
0.268	0.375	0.141	0.219	0.299	0.089			
0.288	0.402	0.162	0.227	0.301	0.091			
	Test MAE 0.258 0.253 0.265 0.268	Test MAE Test RMSE 0.258 0.34 0.253 0.368 0.265 0.387 0.268 0.375	Test MAE Test RMSE Test MSE 0.258 0.34 0.116 0.253 0.368 0.136 0.265 0.387 0.15 0.268 0.375 0.141	Test MAE Test RMSE Test MSE Val MAE 0.258 0.34 0.116 0.252 0.253 0.368 0.136 0.233 0.265 0.387 0.15 0.221 0.268 0.375 0.141 0.219	Test MAE Test RMSE Test MSE Val MAE Val RMSE 0.258 0.34 0.116 0.252 0.36 0.253 0.368 0.136 0.233 0.338 0.265 0.387 0.15 0.221 0.32 0.268 0.375 0.141 0.219 0.299			

Further experiments?

- 1. Test till what epoch does RnC performance really increase? Because, loss was decreasing.
- 2. Try to see what hyperparams work for a bigger MLP?
- 3. More regression datasets?

Thank you! Questions?

[link to our public repository with all the code]

[link to google sheet with experimental results on the AgeDB dataset]

[link to google sheet with a (few) more experiments for the ESOL dataset]

[link to the w&b report with all runs on the AgeDB dataset]

[link to the w&b with all runs on the ESOL dataset]