Finite-State Methods in Natural-Language Processing: Algorithms

Ronald M. Kaplan and Martin Kay

Data Structures

```
FSM
    states
    start
    sigma
    properties
      (epsilon-free, determinisitc ...)
State
    final
    arcs
    name
    mark
Arc
    label
    destination
```

```
Traverse(FSMs, StartFn, FinalFn, ArcsFn)
Start := StartFn(FSMs);
States := (Start);
STP := (Start);
while s := pop(STP) do
s.final := FinalFn(s.name);
s.arcs := ArcsFn(s.name);
return new FSM[states = States,
start=start];

GetSi
```

A Traversal Function

Copy

N.B. The *name* of a state in the copied machine is the *state* itself in the machine being copied.

```
StartFn(n) = new State[name=n.start]
FinalFn(n) = n.final
ArcsFn(n) = {new Arc[label=a.label,
destination=GetState(a.destination)] |
a in n.arcs}
```

The Paradigm

```
Copy(FSM) =
  Travers(FSM, 'CopyStartFn, 'CopyFinalFn,
    'CopyArcsFn)
Inverse(FSM) =
  Travers(FSM, 'InverseStartFn, 'InverseFinalFn,
    'InverseArcsFn)
CrossProduct(<FSM1, FSM2>) =
  Travers(<FSM1, FSM2>, 'CrossProductStartFn,
    'CrossProductFinalFn, 'CrossProductArcsFn)
Intersection(<FSM1, FSM2>, 'IntersectionStartFn,
    'IntersectionFinalFn, 'IntersectionArcsFn)
```

```
Traverse(FSMs, StartFn, FinalFn, ArcsFn)

Start := StartFn(FSMs);

States := (Start);

STP := (Start);

while s := pop(STP) do

s.final := FinalFn(s.name);

s.arcs := ArcsFn(s.name);

return new[states = States,

start=start];
```

Inverse

```
StartFn(n) = new State[name=n.start]
FinalFn(n) = n.final
ArcsFn(n) = {new Arc[label=y:x,
destination=GetState(a.destination)] |
a in n.arcs & a.label = x:y}
```

Prune

Prune(F)=Reverse(Copy(Reverse(F)))

N.B. Not ε-free

Dead states are not reachable in Reverse(F)

- :. They are not included in Copy(Reverse(F))
- :. They are not included in Copy(Reverse((Reverse(F)))

Cross Product

```
StartFn(\langle f1, f2 \rangle) = \textbf{new} \ State[name = \langle f1.start, f2.start \rangle]
FinalFn(\langle s1, s2 \rangle) = s1.final \& s2.final
ArcsFn(\langle s1, s2 \rangle) = \{\textbf{new} \ Arc[label = a1.label: a2.label,
destination = GetState(\langle a1.destination,
a2.destination \rangle)] \mid
a1 \ \textbf{in} \ s1.arcs \& \ a2 \ in \ s2.arcs \}
\cup \{\textbf{new} \ Arc[label = a1.label: \epsilon,
destination = GetState(\langle \epsilon, a2.destination \rangle)] \mid
a1 \ \textbf{in} \ s1.arcs \& \ (s2.final \mid s2 = \epsilon)
\cup \{\textbf{new} \ Arc[label = \epsilon: a2.label,
destination = GetState(\langle \epsilon, a2.destination \rangle)] \mid
a1 \ \textbf{in} \ (s1.final \mid s1 = \epsilon \& a2 \ in \ s2.arcs)
```

Intersection

N.B.

- Result is not necessarily pruned because some paths die.
- FSMs must be ε-free.

Intersection (with ε)

```
StartFn(<f1, f2>) = new State[name=<f1.start, f2.start>]
FinalFn(\langle s1, s2 \rangle) = s1.final & s2.final
ArcsFn(\langle s1, s2 \rangle) =
    {new Arc[label=L, destination=GetState(<a1.destination,
                                                       a2.destination>)]|
     a1 in s1.arcs & a2 in s2.arcs & L=a1.label=a2.label}
 \cup {new Arc[label= \varepsilon , destination=GetState(<s1,
                                                       a2.destination >)] |
     al in s1.arcs & a2 in s2.arcs & a1.label \neq \epsilon & a2.label=\epsilon}
 \cup {new Arc[label= \varepsilon, destination=GetState(<a1.destination,
                                                       s2 >)]
     a1 in s1.arcs & a2 in s2.arcs & a1.label=\varepsilon & a2.label \neq \varepsilon}
```

StringToFSM

```
StartFn(<string, f>) = new State[name=<string, 0>]
FinalFn(<string, s>) = string=""
ArcsFn(<[First | Rest], s>) =
{new Arc[label=First, destination=<s+1, Rest>]}
```

Composition (draft!)

```
StartFn(<F1, F2>) = \textbf{new} \ State[name=<F1.start, F2.start>] FinalFn(<s1, s2>) = s1.final \ \& s2.final ArcsFn(<s1, s2>) = \{\textbf{new} \ Arc[label=x:y, \\ destination=GetState(<a1.destination, \\ a2.destination>)] \mid a1 \ \textbf{in} \ s1.arcs \ \& \ a1.label=x:z \ \& \ a2 \ \textbf{in} \ s2.arcs \ \& \ a2.label=z:y\}
```

Composition

```
StartFn(<f1, f2>) = new State[name=<f1.start, f2.start>]
FinalFn(\langle s1, s2 \rangle) = s1.final & s2.final
ArcsFn(\langle s1, s2 \rangle) =
   {new Arc[label=x:y, destination=GetState(<a1.destination,
                                                      a2.destination>)]|
   a1 in s1.arcs & a1.label=x:z & a2 in s2.arcs & a2.label=z:y}
\cup {new Arc[label= x:\epsilon, destination=GetState(<a1.destination,
                                                      s2>)]|
   a1 in s1.arcs & a1.label= x:ε & a2 in s2.arcs & a2.label=z:y &
   z\neq\epsilon
\cup {new Arc[label= \varepsilon:y, destination=GetState(<s1,
                                                      a2.destination>)]
   al in sl.arcs & al.label= x:z & a2 in s2.arcs & a2.label= \varepsilon:y
   & z \neq \epsilon
```

Martin Kay

Epsilon-closure

```
Epsilon-closure(state) =
  closure := {state} ; STP := {state} ;
  while s := pop(STP) do
     for d in { a.destination | a in s.arcs &
                                 a.label=ε &
                                  a.detination ∉ closure}
     do if d \notin \text{closure} then { closure := closure \cup d;
                                 STP := STP \cup d
  return closure
EC-Arcs(state) = \{a \mid a \text{ in s.arcs \& a.label} \neq \epsilon\}
                         for some s in Epsilon-closure(state)}
```

RemoveEpsilons

```
StartFn(n) = new State[name=n.start]
FinalFn(n) = There is s in Epsilon-closure(n) such that s.final
ArcsFn(n) = {new Arc[label=a.label,
destination=GetState(a.destination)] |
a in EC-Arcs(n)}
```

Intersection — again

```
StartFn(<f1, f2>) = \textbf{new} \ State[name=<f1.start, f2.start>] FinalFn(<s1, s2>) = s1.final \& s2.final ArcsFn(<s1, s2>) = \{\textbf{new} \ Arc[label=L, \\ destination=GetState(<a1.destination, \\ a2.destination>)] \mid a1 \ \textbf{in} \ EC-Arcs(s1) \& \\ a2 \ \textbf{in} \ EC-Arcs(s2) \& \\ L=a1.label=a2.label\}
```

Determinize

```
StartFn(f) = \textbf{new} State[name=\{f.start\}]
FinalFn(n) = There is an s in n such that s.final;
ArcsFn(n) = \{\textbf{new} Arc[label=L, \\ destination=GetState(D)] \mid \\ D= \bigcup_{s \in n} \{a.destination \mid a \in EC-Arcs(s) \& \\ a.label = L\}\}
```

Complete

```
DeadState:=new State;
DeadState.arcs := {new Arc[label=1,
                              destination = DeadState] | 1 in \Sigma}
StartFn(f) = new State[name=f.start]
FinalFn(n) = n.final;
ArcsFn(n) =
    {new Arc[label=a.label, destination=GetState(a.destination)] |
     a in n.arcs}
 U {new Arc[label=1, destination=DeadState] | There is no a in
     n.arcs such that a.label=1 for 1 in \Sigma}
```

Complement

```
Complement(FSM) =
Traverse(Determinize(Complete(FSM)), S, F, A)
```

where

```
S (f) = new State[name = f.start]
F(n) = ~n.final
ArcsFn(n) =
{new Arc[label=a.label,
destination=GetState(a.destination)] | a in n.arcs}
```

Minus

Minus(FSM1, FSM2) =
Intersect(FSM1, Complement(FSM2))

Empty

Otherwise the FSM could contain a final state not reachable from the start state.

Empty(FSM) =

New := Copy(FSM);

There is no s in New.states such that s.final.

Equivalence

$$L1=L2 = L1-L2=L2-L1={}$$

Minimization

using the Brzozovsky Construction

Determinize(Reverse(Determinize(Reverse(f))))

- Each suffix s of f is a prefix s' of Reverse(f) and, in DR(f)=Determinize(Reverse(f)), δ(start(DR(f)), s') is a unique state q.
- In Reverse(Determinize(Reverse(f))), q is the only state whose suffix set contains s.
- Since each state in Determinize(Reverse(Determinize(Reverse(f)))) corresponds to a different subset of the states of Reverse(Determinize(Reverse(f))), each has a unique suffix set.□

Minimize this

using the Brzozovsky Construction

Reverse

New start state points to all previous final states—makes no difference in this case.

Determinize

But it's not minimal!

Multiple Start States

Reverse

Determinize

But it's minimal!

Minimization

Give an FSM f and a state s, let suffix(f, s) be the FSM that results from replacing the start state of f with s

To minimize an FSM f, conflate all pairs of states s1 and s2 in F iff equivalent(suffix(f, s1), suffix(f, s2))

Exponential because involves determinization

Strings distinguish states

Disitnguished by ϵ

Strings distinguish states

Disitnguished by 0 (and 1)

Strings distinguish states

Disitnguished by 01

Minimization

To determine if a pair of states in an *n*-state FSA is distinguishable, it is sufficient to consider strings of length *n* because no states need be visited more than once.

C is the only final state, so it is distinguishable from all others.

В	X						
C	X	X					
D			X				
E			X				
F			X				
G			X				
Н			X				
	A	В	C	E	D	F	G

Equivalent

Complexity

 $\begin{pmatrix} n \\ 2 \end{pmatrix}$ pairs of states

 $\binom{n+1}{2}$ iterations of the main loop

 \Rightarrow n⁴

Reducing Complexity

• Associate with each pair of states $\{r, s\}$, a list of pairs $\{p, q\}$ such that p and q must be distinguishable if r and s are,

Put $\{r, s\}$ on the list for $\{p, q\}$

Start with $\{p, q\}$ where p is final and q non-final

Minimization — Mark_Partition

Annotate with mark all states reachable form the states in class over arcs with label.

Mark_partition(class, label, mark) =
for state in class do
for arc in state.arcs do
if arc.label=label then
a.destination.mark=mark

Martin Kay Chart Translation 40

Minimization — Marked? & Final?

Return true iff state is marked 1

Marked?(state) = state.mark=1

Return true iff state is final

Final?(state) = state.final

Make functions for these so that they can be passed as arguments to other functions.

Minimization — Split

Return a new partition containing states removed from *partition*. The moved states are either those of which *predicate* is true or those of which it is false, whichever gives the smaller new partition.

```
Split(class, predicate) =
  i:=0; new:={};
  for state in class do
      if predicate(state) then i := i+1;
  p = ( i < |class|/2);
  for state in class do
      if predicate(state)=p then
      new := new ∪ delete(state, class)</pre>
```

States are moved to the smaller class. The old class becomes the larger member of the new pair

return new

Minimization -3

```
Minimize(FSM) =

push(active, Split(FSM.states, final?));

while p1 := pop(active) do

push(inactive, p1);

for label in Σ do

Mark_partition(p1, label, 1)

for p2 in active ∪ inactive do

push(active, Split(p2, Marked?))

Mark_partition(p1, label, 0)
```

Membership

```
Member(string, FSM) =
   ~Empty(Intersect(FSM, StringToFsm(string)))
```

Membership for complete, deterministic, ϵ -free FSMs

Membership for pruned, deterministic, ϵ -free FSMs

Membership for arbitrary FSMs

Member(string, FSM) = M(string, 1, FSM.start)

```
M(string, pos, state) =
  if pos > length(string)
    then return ∃ s in Epsilon-closure(state) such that s.final
  for a in EC-Arcs(state.arcs) do
    if a.label = string[pos] & M(string, pos+1, a.destination)
    then return true
  return false
```

Recursive because backtracking

Pair Membership for arbitrary FSTs

PMember(string1, string2, FST) = PM(string1, 1, string2, 1, FST.start)

```
PM(s1, p1, s2, p2, state) =

if p1 > length(s1) & p2 > length(s2)

then return \exists s in Epsilon-alosure(state) such that s.final

for a in EC-Arcs(state.arcs) do

if (a.label.1 = \epsilon & a.label.2=s2[p2] & PM(s1, p1, s2, p2+1, a.destination)

or

(a.label.1 = s1[p1] & a.label.2= \epsilon & PM(s1, p1+1, s2, p2, a.destination) or

(a.label.1 = s1[p1] & a.label.2 = s2[p2] & Closure over \epsilon:\epsilon

PM(s1, p1+1, s2, p2+1, a.destination)))

then return true

return false
```

Martin Kay Chart Translation 48

Empty

Empty(ID(StringToFSM(s1)) ° FSM ° ID(StringToFSM(s2)))

Image and Inverse Image

```
Image(string, FST) =
    Range(Compose(ID(StringToFSM(String)), FST))
InverseImage(string, FST) =
```

Domain(Compose(FST, ID(StringToFSM(string)))) =

Image(string, Inverse(FST))

Image

```
Image(string, FST) =
  results={},
  Im (string, 1, "", 1, FST.start)
  return results
Im(s1, p1, s2, p2, state) =
  if p1 > length(s1) & 3 s in Epsilon-closure(state) such that s.final
    then push(results, CopyString(s2, p2));
  for a in EC-Arcs(state.arcs) do
    if a.label.1 = \epsilon then s2[p2] := a.label.2; Im(s1, p1, s2, p2+1,
a.destination):
    else if a.label.1 = s1[p1] then
       if a.label.2= \epsilon then Im(s1, p1+1, s2, p2, a.destination)
       else s2[p2]:=a.label.2; Im(s1, p1+1, s2, p2+1, a.destination)
```

Image and Inverse

```
Image(string, FST, inverse) =
  results={},
  Im (string, 1, "", 1, FST.start)
  return results
Im(s1, p1, s2, p2, state) =
  if p1 > length(s1) & 3 s in Epsilon-closure(state) such that s.final
    then push(results, CopyString(s2, p2));
  for a in EC-Arcs(state.arcs) do
     if inverse then inlab:=a.label.2, outlab := a.label.1
       else inlab := a.label.1: outlab := a.label.2
    if inlab = \varepsilon & outlab = \varepsilon then Im(s1, p1, s2, p2, a.destination)
     else if inlab = \varepsilon then s2[p2] := outlab; Im(s1, p1, s2, p2+1,
a.destination);
                else if inlab = char(s1, p1) then
                    if outlab= \varepsilon then Im(s1, p1+1, s2, p2, a.destination)
                    else s2[p2]:=outlab; Im(s1, p1+1, s2, p2+1, a.destination)
    Martin Kay
```

Linear Bounded?

Recursive algorithm (Inverse) Image algorithms may not halt if FST is not linear bounded.

Composition algorithms halt but may produce cyclic FSMs.

Challenge: A recursive algorithm that always halts and produces output in the form of an FSM. Hint: try Traverse.