AI中的教学国际私名作业 23000199 产品的

8.4

 $m{7}$ 4. 设G 为欧拉图, $v_0 \in V(G)$,若从 v_0 开始行遍,无论行遍到那个顶点,只要未行遍过的边就可以行遍,最

后行遍所有边回到 v_0 ,即得 G 中一条飲拉回路,則称 v_0 是可以任意行遍的. 证明 v_0 是可以任意行遍的当且仅当 $G-v_0$ 中无圖.

证: (=): 若 $G-V_0$ 中有圈 C. 则 G'=G-E(C) 好是改拉圈或某干独立的改证图之本

小岩G'联直用从比哥部行面, 舒适 G'中价有效. 最后可以回到 Vo. 最后副 C 师 Vo. 不在 C 与 无独究或 a 的 及报证面

上岩G不取包. C'=Ci, VGi, VGz V-VCk, 其中 Gi---Gk 相互独之具是改起国, 沒 10 € Gk. 国从10出发完成 Gi 行应国到 10. 在无法到 C上,无法行应 G.

(二):岩G-16元圆面 (是改程). 那么 G = GUG... Ck 即在港干不到的国产且16 e G;...Ck 于是从16组8不断完成 G 即可完成对 G 行通.

10.1 苯英联矩阵

- 4. 有向图如图 10.10 所示.
- (1) D中v₁ 到v₄ 长度为1,2,3,4 的通路各为多少条?
- (2) v1 到 v4 长度小于等于 3 的通路为多少条?

图 10.10

- (3) v1 到 v1 长度为 1,2,3,4 的回路各为多少条?
- (4) v4 到 v4 长度小于等于 3 的回路为多少条?
- (5) D中长度为4的通路(不含回路)有多少条?
- (6) D中长度为4的回路有多少条?
 - (7) D 中长度小于等于 4 的通路为多少条? 其中有多少条为回路
 - (8) 写出 D 的可达矩阵。

$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 3 & 2 & 2 & 2 \\ 1 & 2 & 1 & 0 \\ 2 & 2 & 2 & 1 \end{pmatrix} A^{4} = \begin{pmatrix} 5 & 6 & 4 & 2 \\ 2 & 2 & 2 & 1 \\ 4 & 4 & 3 & 2 \\ 2 & 2 & 2 & 1 \end{pmatrix}$$

- (1) 0,0,2,2
- (2) 2
- (3) 1, 1, 3,5
- (4) 1
 - (5) 6+4+2+2+2+1+4+4+2+2+2+2+2=3>
- (b) 5+2+3+1=11

- LU /						
(7)	恢	通路(无国	胆	: 由功有	884.	八条国的
	1	Ь	1			
	2	10	3			
	3	Ŋ	7			
	4	35	11			

5. 已知标定的无向图如图 10.11 所示. A 是它的相邻矩阵,求 A^{k} 中的元素 $a_{22}^{(k)}$, $k=1,2,\cdots$.

图 10.10

图 10.11

$$k=1$$
: $A_{21}=1$ $k=2$: $A_{21}=0$ $A_{22}=0$ $A_{23}=1$ $A_{23}=0$

$$| a_{21} = 0$$
 $| a_{21} = 2^n$ $| a_{21} = 2^n$

$$a_{22}^{(h)} = \begin{cases} 2^n, & k=2n \\ & , & n \in [0,1,...] \end{cases}$$

