

Improving detection of gene duplications in whole-genome sequencing data using allelic depth imbalance

Paweł Sztromwasser BTM, Medical University of Łódź

Copy number variants

normal deletion duplication

How to detect them in NGS data?

How to detect them in NGS data?

Benchmark results

	LUMPY, TrioCNV, ERDS		
	Precision (PPV)	sensitivity	
1000 Genomes deletions (1947)	2.0 - 50.6 %	28.6 - 83.0%	
1000 Genomes duplications (90)	1.4 - 6.5 %	7.8 - 43.3 %	

Allelic depth imbalance (ADI)

Proof of concept

1000 Genomes duplications

Allelic Depth Imbalance (ADI) score

- χ genomic interval, potential duplication
- n number of het variants overlapped by χ

alternative allele depth

(1)
$$ADI_x = \sum_{i=1}^{n} |0.5 - \frac{AD_i}{DP_i}|$$
 total depth

(2) $B_n = \{b_i : i = 1..1000 \text{ and } b_i \text{ overlaps } n \text{ heterozygous } SNVs\}$ $ADI_{B_n} = \{ADI_{b_i} : b_i \in B_n\}$ $ADIscore(x, B_n) = rank(ADI_x, ADI_{B_n})$

Results

Prioritizing calls

Acknowledgements

St

Inge Jonassen

Kjell Petersen

Vidar Steen

Stefan Johansson

Tomasz Stokowy

Wojciech Fendler

Project funded by Bergen Research Foundation and National Science Center in Poland (POLONEZ 2016/23/P/NZ2/04251)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665778.

Materials

1. NA12878 genome

sequenced on Illumina Hiseq XTen, 150bp pair-end, 124GBps, 29x (NA12878D library provided by DNAnexus)

https://kccq.garvan.org.au/confluence/pages/viewpage.action?pageId=31592745

2. CEU trio (NA12878, NA12891, and NA12892)

sequenced on Illumina HiSeq 2000, 101bp pair-end, 245-290GBps, 37-64x (by 1000Genomes Consortium)

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20120117 ceu trio b37 decoy/

Copy number → ↓ CNV set	0	1	2	3	4	5	6	7
1000 Genomes	624	1411	135	38	57	1	3	1
Conrad (2010)	137	352	(3975)	89	134	13	1	1
Mills (2011) GS	6	17	-	271*				

*) Conrad + 24 from McCarroll et al, 2008

10 out of 238 Conrad variants are overlapping a variant in the 1000 Genomes

	1000 Genomes (100)	Conrad (238)	Mills (271)
1000 Genomes	-	10 (4%)	18 (7%)
Conrad	9 (9%)	-	243 (90%)
Mills	14 (14%)	238 (100%)	-

Can it work?

Performance

ADI vs Depth

