ANALISIS PENGIMPLEMENTASIAN PROTOKOL MQTT BERBASIS CLOUD DALAM SISTEM MONITORING KETERSEDIAAN AIR DENGAN WEB DAN ANDROID

PRA PROPOSAL PROYEK AKHIR

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek Akhir

oleh:

MUHAMMAD REVALDI RAHMAN 6705184091

D3 TEKNOLOGI TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM 2020

Latar Belakang

Air sebagai salah satu kebutuhan pokok makhluk hidup memegang peranan penting dalam kehidupan sehari-hari. Seiring berkembangnya jaman, kebutuhan air juga meningkat, khususnya kebutuhan air bersih. Berdasarkan data yang diperoleh dari Badan Pusat Statistik, tercatat bahwa hingga tahun 2018 kebutuhan air bersih di Indonesia meningkat setiap tahunnya [1].

Untuk menjaga ketersediaan air bersih di lingkungan rumah sudah banyak yang menggunakan tandon air. Masalah yang muncul adalah tidak diketahuinya ketersediaan air yang ada pada tandon. Secara umum untuk pemantauan ketinggian air dapat dilakukan secara manual, namun kegiatan tersebut dinilai tidak cukup efisien karena memerlukan waktu dan tenaga tambahan.

Sebagai solusi dari permasalahan tersebut sudah banyak penelitian yang memanfaatkan konsep IoT (*Internet of Things*) yang dapat memantau ketinggian air secara otomatis dan *realtime*. Umumnya komunikasi yang digunakan pada penelitian terdahulu adalah dengan menggunakan protokol HTTP (*Hypertext Transfer Protocol*) yang menghubungkan langsung dari mikrokontroller ke *server*. Protokol HTTP memiliki beberapa kekurangan seperti pemakaian *bandwidth* yang besar, dan ukuran paket yang besar sehingga kurang dapat diandalkan saat berjalan pada sistem yang *bandwidth* nya rendah atau dengan latensi yang tinggi.

Untuk mengatasi permasalahan tersebut dapat digunakan protokol MQTT (Message Queueing Telemetry Transport) yang merupakan protokol komunikasi yang dirancang khusus untuk mendukung komunikasi "Machine to Machine". MQTT merupakan protokol komunikasi sederhana dan ringan, yang memiliki fungsi Publish dan Subscribe untuk komunikasi 2 arah, baik antar server maupun dengan perangkat. MQTT juga didesain untuk sistem berkemampuan terbatas, bandwidth yang rendah, latensi yang tinggi, dan jaringan yang kurang dapat diandalkan. Berdasarkan penelitian yang telah dilakukan didapatkan hasil bahwa protokol MQTT dapat memberikan performa yang lebih baik dibandingkan dengan protokol HTTP, terlebih jika menggunakan banyak device. [2]

Oleh karena itu, proyek tingkat ini bermaksud untuk menganalisa pengimlementasian protokol MQTT berbasis cloud dalam sistem monitoring ketersediaan air dengan web dan android.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	Prototipe Sistem Monitoring Air Pada	2017	Dalam penelitian ini penulis membuat suatu sistem monitoring ketinggian
	Tangki Berbasis Internet of Things		air menggunakan sensor ultrasonic dan rain sensor, serta NodeMCU
	Menggunakan NodeMCU Esp8266 Dan		Esp8266 sebagai microcontroller. Dibuat juga sistem monitoring berupa
	Sensor Ultrasonik [3]		website yang tampilannya masih sederhana.
2.	Tandon Air Otomatis Dengan Sistem	2018	Dalam penelitian ini penulis membuat suatu sistem monitoring ketinggian
	Monitoring Melalui Android Berbasis		air dan debit air pada tandon menggunakan sensor ultrasonic dan water flow
	Arduino Uno [4]		sensor, serta modul Bluetooth. Namun untuk tampilan android tidak
			dicantumkan.
3.	Prototype Sistem Monitoring dan	2018	Dalam penelitian ini dibuat suatu sistem monitoring dan control
	Pengontrolan Level Tangki Air Berbasis		menggunakan sensor ultrasonic, Arduino Uno dan relay untuk
	SCADA [5]		menghidupkan pompa. Sebagai tampilan interface digunakan aplikasi
			desktop.
4.	Sistem Instalasi Air Rumah	2017	Dalam penelitian ini dibuat suatu sistem pendeteksi ketinggian air pada
	Terkomputerisasi Berbasis		tandon bawah tanah dan tandon air atas menggunakan sensor ultrasonic,
	Mikrokontroler Dengan Perintah SMS [6]		juga menggunakan Arduino Uno untuk menyalakan pompa dan
			menggunakan GSM modul untuk interface melalui SMS.

5.	Prototype Pengontrol Pengisian Tandon	2018	Dalam penelitian ini dibuat suatu sistem pengisian tandon air dengan		
	Air Secara Paralel Menggunakan Solenoid		memanfaatkan water float sensor sebagai trigger untuk menyalakan pompa		
	Valve Berbasis ATMEGA 2560 [7]		dan membuka solenoid valve. Pada penelitian ini belum disediakan		
			monitoring apapun.		
6.	Rancang Bangun Monitoring Ketinggian	2018	Dalam penelitian ini dibuat sistem monitoring ketinggian air pada prototipe		
	Air dan Sistem Kontrol Pada Pintu Air		pintu air menggunakan sensor ultrasonic dan controlling untuk membuka		
	Berbasis Arduino dan SMS Gateway [8]		penutup pintu air. Sebagai interface digunakan LCD serta modul SMS		
			untuk mengirimkan SMS pada pengguna.		
7.	Prototype Sistem Monitoring Level	2019	Dalam penelitian ini dibuat sistem monitoring ketinggian air pada		
/.	Air Berbasis LabView & Arduino		tangka menggunakan sensor ultrasonic, dan Arduino Uno. Dilengkapi		
	Sebagai Sarana Pendukung Praktikum		juga dengan pompa untuk mengisi air secara otomatis. Sebagai		
	Instrumentasi Sistem Kendali [9]		interface digunakan LCD, 3 lampu LED, serta perangkat lunak		
			LabView.		
8.	Analisis Perancangan Sistem	2018	Dalam penelitian ini dibuat sistem monitoring ketinggian air		
0.	Monitoring Level Ketinggian Air		menggunakan sensor ultrasonic serta NodeMCU Esp8266. Sistem ini		
	Menggunakan Protokol MQTT [10]		juga menggunakan protokol MQTT, namun tidak disebutkan jenis		
			broker MQTT yang digunakan. Telah dibuat juga suatu website		
			sebagai interfacenya.		
9.	Implementasi Internet of Things Pada	2018	Dalam penelitian ini dibuat suatu sistem monitoring suhu serta		
٦.	Sistem Monitoring Suhu dan Kontrol		kontroling air menggunakan sensor ultrasonic, sensor DHT22, serta		
	Air Pada Kandang Burung Puyuh		water float sensor. Sistem juga menggunakan protokol MQTT,		

	Petelur dengan Menggunakan Protokol		dimana broker MQTT berupa broker public, yaitu HiveMQ. Sebagai	
	MQTT [11]		interface, digunakan aplikasi Android.	
10.	Rancang Bangun Aplikasi Monitoring	2020	Dalam penelitian ini dibuat suatu sistem monitoring ketinggian air	
10.			pada sungai menggunakan sensor ultrasonic, serta NodeMCU	
	Internet of Things Menggunakan		Esp8266. Sistem ini juga menggunakan protokol MQTT dimana	
	Amazon Web Service [12]		broker MQTT menggunakan layanan Amazon Web Service. Sebagai	
			interface, sistem ini dilengkapi website.	

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai perancangan sistem monitoring ketersediaan air menggunakan protokol MQTT berbasis cloud dengan web dan android. Adapun model sistem yang telah dibuat dapat dilihat pada Gambar 1 dibawah ini.

Gambar 1. Model Sistem Perancangan Sistem Monitoring Ketersediaan Air Menggunakan Protokol MQTT Berbasis Cloud dengan Web dan Android

Sistem yang dirancang akan menggunakan broker MQTT berbasis cloud, sehingga tiap client MQTT tidak harus berada pada satu jaringan. Akan terdapat 3 node client berupa NodeMCU ESP8266 yang berperan sebagai *Publisher* data sensor dari prototype tandon air, serta 1 client NodeMCU ESP8266 yang berperan untuk menghubungkan sistem dengan Firebase. Kemudian data yang disimpan pada Firebase selanjutnya dapat dihubungkan dengan website dan aplikasi android, untuk memudahkan proses monitoring prototype tandon air secara realtime.

Referensi

- [1] B. P. Statistik, "Badan Pusat Statistik," 2018. [Online]. Available: http://www.bps.go.id. [Accessed 10 12 2020].
- [2] N. B. R. M. Windryani N.P., "Analisa Perbandingan Protokol MQTT dengan HTTP Pada IOT Platform Patriot," *e-Proceeding of Engineering*, vol. 6, no. 2, p. 3193, 2019.
- [3] e. a. Ulumuddin, "Prototipe Sistem Monitoring Air Pada Tangki Berbasis Internet of Things Menggunakan NodeMCU Esp8266 dan Sensor Ultrasonik," *SENTER 2017*, pp. 100-105, 2017.
- [4] D. E., Y. J. and R. M., "Tandon Air Otomatis dengan Sistem Monitoring Melalui Android Berbasis Arduino Uno," *Jurnal Autocracy*, vol. 5, no. 1, pp. 8-16, 2018.
- [5] R. A. Irvawansyah, "Prototype Sistem Monitoring dan Pengontrolan Level Tangki Air Berbasis SCADA," *Jurnal Teknologi Terapan*, vol. 4, no. 1, 2018.
- [6] I. M. I.D.M.B.A Darmawan, "Sistem Instalasi Air Rumah Terkomputerisasi Berbasis Mikrokontroler dengan Perintah SMS," *Jurnal Sains dan Teknologi*, vol. 6, no. 1, 2017.
- [7] S. A. La Raufun, "Prototype Pengontrol Pengisian Tandon Air Secara Paralel Menggunakan Solenoid Valve Berbasis ATMEGA 2560," *Jurnal Informatika*, vol. 7, no. 2, 2018.
- [8] I. S. P. Sumardi Sadi, "Rancang Bangun Monitoring Ketinggian Air dan Sistem Kontrol Pada Pintu Air Berbasis Arduino dan SMS Gateway," *Jurnal Teknik: Universitas Muhammadiyah Tangerang*, vol. 7, no. 1, pp. 77-91, 2018.
- [9] A. B. Hery Suryantoro, "Prototype Sistem Monitoring Level Air Berbasis Labview & Arduino Sebagai Sarana Pendukung Praktikum Instrumentasi Sistem Kendali," *Indonesian Journal of Laboratory*, vol. 1, no. 3, pp. 20-32, 2019.
- [10] E. W. H. P. Tri Rahmat Irianto, "Analisis Perancangan Sistem Monitoring Level Ketinggian Air Menggunakan Protokol MQTT," in *CENTIVE 2018*, Purwokerto, 2018.
- [11] A. I. W. I. Zulhan M., "Implementasi Internet of Things Pada Sistem Monitoring Suhu dan Kontrol Air Pada Kandang Burung Puyuh Petelur dengan Menggunakan Protokol MQTT," 2018.

[12] N. X. N. M. Usman M.M., "Rancang Bangun Aplikasi Monitoring Ketinggian Air Sungai Berbasis Internet of Things Menggunakan Amazon Web Service," *Jurnal Teknik Informatika*, vol. 9, no. 2, pp. 73-80, 2020.

Form Kesediaan Membimbing Proyek Tingkat

PROYEK TINGKAT SEMESTER GANJIL|GENAP* TA 20 20/2021

Tanggal: 11 Desem	ber 2020					
Kami yang bertanda tan	gan dibawah in i:					
CALON PEMBIMBING 1						
Kode : <u>DUM</u>						
Nama : <u>Dadan Nur</u>	Ramadan, S.Pd., M.T.					
CALON PEMBIMBING 2						
Kode : IDI						
Nama : Indrarini Dy	yah Irawati, S.T., M.T.					
Menyatakan bersedia m	enjadi dosen p embimbing Proyek Tingkat bagi mahasiswa berikut,					
NIM	: 6705184091					
Nama	: Muhammad Revaldi Rahman					
Prodi / Peminatan : _TT_/ (contoh: MI / SDV)						
Calon Judul PA : Analisis Pengimplementasian Protokol MQTT Berbasis Cloud						
Dalam Sistem Monitoring Ketersediaan Air Dengan Web dan						
	Android					

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing 1

Dadan Nur Ramadan, S.Pd., M.T.

NIP: 14820047

Calon Pembimbing 2

(Indrarini Dyah Irawati, S.T., M.T.

NIP: 07780053

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk Mahasiswa)

: 6705184091

Dosen Wali Program Studi : DUM / DADAN NUR RAMADAN : D3 Teknologi Telekomunikasi

Nama

: MUHAMMAD REVALDI RAHMAN

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	А
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	А
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	В
1	HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	AB
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	А
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	А
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	А
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ
2	DMH1A2	OLAH RAGA	SPORT	2	А
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	А
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	А
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	AB
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	А
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	А
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	AB
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	А
	83	3.91			

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	А
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	А
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	А
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	А
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	А
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	А
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	А
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	А
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	А
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	А
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	А
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	А
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	А
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А
5	DUH2A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	А
	83	3.91			

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	
4	UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	
	Jumla	13			

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
5	VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2	
5	UWI3E1	HEI	HEI	1	
5	VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	
	Jumlal	13			

Jumlah SKS	: 83 SKS		IPK : 3.91
Tingkat III	: 83 SKS	Belum Lulus	IPK: 3.91
Tingkat II	: 81 SKS	Belum Lulus	IPK: 3.91
Tingkat I	: 41 SKS	Belum Lulus	IPK: 3.82

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 11 Desember 2020 07:53:22 oleh MUHAMMAD REVALDI RAHMAN