Note 1 (Propositional Logic)

- $P \implies Q \equiv \neg P \lor Q$
- $P \implies Q \equiv \neg Q \implies \neg P$
- $\neg (P \land Q) \equiv \neg P \lor \neg Q$
- $\neg (P \lor Q) \equiv \neg P \land \neg Q$
- $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$ Extended Euclidean Algorithm:
- $\neg(\forall x P(x)) \equiv \exists x \neg P(x)$
- $\neg(\exists x P(x)) \equiv \forall x \neg P(x)$

Note 2/3 (Proofs)

- · Direct proof
- · Proof by contraposition
- Proof by cases
- · Proof by induction
 - Base case (prove smallest case is true)
 - Inductive hypothesis (assume n = k true for weak induction, assume $n \le k$ true for strong induction)
 - Inductive step (prove n = k + 1 is true)
- · Pigeonhole principle
 - Putting n + m balls in n bins $\implies \ge 1$ bin has ≥ 2 balls

Note 4 (Sets)

- $\mathcal{P}(S)$ = powerset/set of all subsets; if |S| = k, $|\mathcal{P}(S)| = 2^k$
- One to one (injection); $f(x) = f(y) \implies x = y$
- Onto (surjection); $(\forall y \exists x) (f(x) = y)$; "hits" all of range
- · Bijection: both injective and surjective

Note 5 (Countability & Computability)

- Countable if bijection to N
- Cantor-Schroder-Bernstein Theorem: bijection between A and B if there exists injections $f: A \to B$ and $g: B \to A$
- Cantor diagonalization: to prove uncountability, list out possibilities, Breaking RSA if we know d: construct new possibility different from each listed at one place (ex. reals \in (0, 1), infinite binary strings, etc)
- $A \subseteq B$ and B is countable \implies A is countable
- $A \supseteq B$ and A is uncountable $\implies B$ is uncountable
- Infinite cartesian product sometimes countable $(\emptyset \times \emptyset \times \cdots)$, sometimes **Note 9 (Polynomials)** uncountable ($\{0,1\}^{\infty}$)
- Halting Problem: can't determine for every program whether it halts (uncomputable)
- Reduction of TestHalt(P, x) to some task (here, TestTask)
 - define inner function that does the task if and only if P(x) halts
 - call TestTask on the inner function and return the result in TestHalt

Note 6 (Graph Theory)

- K_n has $\frac{n(n-1)}{2}$ edges
- Handshaking lemma: total degree = 2e
- Trees: (all must be true)
 - connected & no cycles
 - connected & has n-1 edges (n = |V|)
 - connected & removing an edge disconnects the graph
 - acyclic & adding an edge makes a cycle
- Hypercubes:
 - n-length bit strings, connected by an edge if differs by exactly 1 bit
 - n-dimensional hypercube has $n2^{n-1}$ edges, and is bipartite (even vs odd parity bitstring)
- Eulerian walk: visits each edge once; only possible if connected and all even degree or exactly 2 odd degree
- Eulerian tour: Eulerian walk but starts & ends at the same vertex; only possible if all even degree and connected
- Planar graphs
 - -v+f=e+2
 - $\sum_{i=1}^{f} s_i = 2e$ where s_i = number of sides of face i
 - $-e \le 3v 6$ if planar (because $s_i \ge 3$)
 - e ≤ 2v 4 if planar for bipartite graphs (because s_i ≥ 4)
 - nonplanar if and only if the graph contains K_5 or $K_{3,3}$
 - all planar graphs can be colored with ≤ 4 colors

Note 7 (Modular Artithmetic)

- $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$ x^{-1} (modular inverse) exists mod m if and only if gcd(x, m) = 1

$$x \ y \ \lfloor x/y \rfloor \ a \ b$$
35 12 2 -1 3 answer - new $a = \text{old } b$
12 11 1 1 -1 - new $b = a - b \left\lfloor \frac{x}{y} \right\rfloor$
11 1 11 0 1 order start - if $\gcd(x, y) = 1$, then $a = x^{-1} \mod y$, $b = y^{-1} \mod x$

- Chinese Remainder Theorem:
 - find bases b_i that are $\equiv 1 \mod m_i$ and $\equiv 0 \mod m_j$ for $j \neq i$
 - $\rightarrow b_i = c_i(c_i^{-1} \mod m_i)$ where $c_i = \prod_{i \neq j} m_i$
 - $-x \equiv \sum a_i b_i \pmod{\prod m_i}$
 - solution is unique mod $\prod m_i$
- m_i must be pairwise relatively prime in order to use CRT

Note 8 (RSA)

- Scheme: for primes p, q, find e coprime to (p-1)(q-1)
 - public key: N = pq and e
 - private key: $d = e^{-1} \mod (p-1)(q-1)$
- encryption of message $m: m^e \pmod{N} = y$
- decryption of encrypted message $y: y^d \pmod{N} = m$
- Fermat's Little Theorem (FLT): $x^p \equiv x \pmod{p}$, or $x^{p-1} \equiv 1$ \pmod{p} if x coprime to p
- Prime Number Theorem: $\pi(n) \ge \frac{n}{\ln n}$ for $n \ge 17$, where $\pi(n) = \#$ of primes $\leq n$
- - we know de 1 = k(p 1)(q 1), where $k \le e$ because
 - d < (p-1)(q-1)- so $\frac{de-1}{k} = pq p q + 1$; pq = N, so we can find p, q because we know d, e, k

- Property 1: nonzero polynomial of degree d has at most d roots
- Property 2: d + 1 pairs of points (x_i distinct) uniquely defines a polynomial of degree at most d
- · Lagrange Interpolation:
 - $-\Delta_i(x) = \prod_{i \neq j} \frac{x x_j}{x_i x_j}$
 - $P(x) = \sum_{i} y_i \Delta_i(x)$
- Secret Sharing (normally under GF(p)):
 - P(0) = secret, $P(1), \ldots, P(n)$ given to all people
 - P(x) = polynomial of degree k-1, where k people are needed to get the secret
- Rational Root Theorem: for $P(x) = a_n x^n + \cdots + a_0$, the roots of P(x)that are of the form $\frac{p}{q}$ must have $p \mid a_0, q \mid a_n$

Note 10 (Error Correcting Codes)

- Erasure Errors: k packets lost, message length n; need to send n + kpackets because P(x) of degree n-1 needs n points to define it
- General Errors: k packets corrupted, message length n; send n + 2kpackets
- Berlekamp Welch:
 - P(x) encodes message (degree n-1)
 - E(x) constructed so that roots are where the errors are (degree k); coefficients unknown
 - Q(x) = P(x)E(x) (degree n + k 1)
 - substitute all (x_i, r_i) into $Q(x_i) = r_i E(x_i)$, make system of equa-
 - solve for coefficients; $P(x) = \frac{Q(x)}{F(x)}$

Note 11 (Counting)

- 1st rule of counting: multiply # of ways for each choice
- 2nd rule of counting: count ordered arrangements, divide by # of ways to order to get unordered
- $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \#$ ways to select k from n
- Stars and bars: n objects, k groups $\rightarrow n$ stars, k-1 bars $\to \binom{n+k-1}{k-1} = \binom{n+k-1}{n}$
- Zeroth rule of counting: if bijection between A and B, then |A| = |B|
- Binomial theorem: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$
- Hockey-stick identity: $\binom{n}{k+1} = \binom{n-1}{k} + \binom{n-2}{k} + \cdots + \binom{k}{k}$
- Derangements: $D_n = (n-1)(D_{n-1} + D_{n-2}) = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$
- Principle of Inclusion-Exclusion: $|A_1 \cup A_2| = |A_1| + |A_2| |A_1 \cap A_2|$ More generally, alternate add/subtract all combinations
- Stirling's approximation: $n! \approx \sqrt{2\pi n \left(\frac{n}{e}\right)^r}$

Note 12 (Probability Theory)

- Sample points = outcomes
- Sample space = Ω = all possible outcomes
- Probability space: $(\Omega, \mathbb{P}(\omega))$; (sample space, probability function)
- $0 \le \mathbb{P}(\omega) \le 1, \forall \omega \in \Omega; \sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1$
- Uniform probability: $\mathbb{P}(\omega) = \frac{1}{|\Omega|}, \forall \omega \in \Omega$
- $\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\omega)$ where A is an event
- If uniform: $\mathbb{P}(A) = \frac{\text{\# sample points in } A}{\text{\# sample points in } \Omega} = \frac{|A|}{|\Omega|}$
- $\mathbb{P}(\overline{A}) = 1 \mathbb{P}(A)$

Note 13 (Conditional Probability)

- $\mathbb{P}(\omega \mid B) = \frac{\mathbb{P}(\omega)}{P(B)}$ for $\omega \in B$ $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \to \mathbb{P}(A \cap B) = \mathbb{P}(A \mid B) \mathbb{P}(B)$
- Bayes' Rule:

$$\mathbb{P}(A\mid B) = \frac{\mathbb{P}(B\mid A)\,\mathbb{P}(A)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B\mid A)\,\mathbb{P}(A)}{\mathbb{P}(B\mid A)\,\mathbb{P}(A) + \mathbb{P}(B\mid \overline{A})\,\mathbb{P}(\overline{A})}.$$

• Total Probability Rule (denom of Bayes' Rule)

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B \cap A_i) = \sum_{i=1}^{n} \mathbb{P}(B \mid A_i) \, \mathbb{P}(A_i)$$

for A_i partitioning Ω

- Independence: $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$ or $\mathbb{P}(A \mid B) = \mathbb{P}(A)$
- Union bound: $\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} \mathbb{P}(A_i)$

Note 14 (Random Variables)

- · Bernoulli distribution: used as an indicator RV
- Binomial distribution: $\mathbb{P}(X = i) = i$ successes in *n* trials, success
 - If $X \sim \text{Bin}(n, p)$, $Y \sim \text{Bin}(m, p)$ independent, $X+Y \sim \text{Bin}(n+m, p)$
- Hypergeometric distribution: $\mathbb{P}(X = k) = k$ successes in N draws w/o replacement from size N population with B objects (as successes)
- Joint distribution: $\mathbb{P}(X = a, Y = b)$
- Marginal distribution: $\mathbb{P}(X = a) = \sum_{b \in B} \mathbb{P}(X = a, Y = b)$
- Independence: $\mathbb{P}(X = a, Y = b) = \mathbb{P}(X = a) \mathbb{P}(Y = b)$
- Expectation: $\mathbb{E}[X] = \sum_{x \in \mathcal{X}} x \mathbb{P}(X = x)$
- LOTUS: $\mathbb{E}[g(X)] = \sum_{x \in \mathcal{X}} g(x) \mathbb{P}(X = x)$
- Linearity of expectation: $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y]$
- X, Y independent: $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$

Note 15 (Variance/Covariance)

- Variance: $Var(X) = \mathbb{E}[(X \mu)^2] = \mathbb{E}[X^2] \mathbb{E}[X]^2$ - $Var(cX) = c^2 Var(X)$, Var(X+Y) = Var(X) + Var(Y) + 2 Cov(X, Y)
- if indep: Var(X + Y) = Var(X) + Var(Y)

- Covariance: Cov(X, Y) = E[XY] E[X] E[Y]
 Correlation: Corr(X, Y) = Cov(X, Y) / σ_X σ_Y, always in [-1, 1]
 Indep. implies uncorrelated (Cov = 0), but not other way around, ex.

$$X = \begin{cases} 1 & p = 0.5 \\ -1 & p = -0.5 \end{cases}, \quad Y = \begin{cases} 1 & X = -1, p = 0.5 \\ -1 & X = -1, p = 0.5 \\ 0 & X = 1 \end{cases}$$

Note 16 (Geometric/Poisson Distributions

- Geometric distribution: $\mathbb{P}(X = i) = \text{exactly } i \text{ trials until success with}$ probability p; use X - 1 for failures until success
 - Memoryless Property: $\mathbb{P}(X > a + b \mid X > a) = \mathbb{P}(X > b)$; i.e. waiting > b units has same probability, no matter where we start
- Poisson distribution: λ = average # of successes in a unit of time
- $X \sim \text{Pois}(\lambda)$, $Y \sim \text{Pois}(\mu)$ independent: $X + Y \sim \text{Pois}(\lambda + \mu)$
- $X \sim \text{Bin}(n, \frac{\lambda}{n})$ where $\lambda > 0$ is constant, as $n \to \infty, X \to \text{Pois}(\lambda)$

Note 20 (Continuous Distributions)

- Probability density function:
 - $f_X(x) \ge 0$ for $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1$
- Cumulative density function: $F_X(x) = \mathbb{P}(X \le x) = \int_{-\infty}^x f_X(t) dt$, $f_X(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_X(x)$
- Expectation: $\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx$ LOTUS: $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$ Joint distribution: $\mathbb{P}(a \le X \le b, c \le Y \le d)$
- $f_{XY}(x, y) \ge 0, \forall x, y \in \mathbb{R}$ $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy = 1$
- Marginal distribution: $f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) \, dy$; integrate over all y
- Independence: $f_{XY}(x, y) = f_X(x) f_Y(y)$
- Conditional probability: $f_{X|A}(x,y) = \frac{f_X(x)}{\mathbb{P}(A)}, f_{X|Y}(x \mid y) = \frac{f_{XY}(x,y)}{f_Y(y)}$
- Exponential distribution: continuous analog to geometric distribution
 - Memoryless property: $\mathbb{P}(X > t + s \mid X > t) = \mathbb{P}(X > s)$
 - Additionally, $\mathbb{P}(X < Y \mid \min(X, Y) > t) = \mathbb{P}(X < Y)$
- If $X \sim \text{Exp}(\lambda_X)$, $Y \sim \text{Exp}(\lambda_Y)$ independent, then $\min(X,Y) \sim \operatorname{Exp}(\lambda_X + \lambda_Y)$ and $\mathbb{P}(X \leq Y) = \frac{\lambda_X}{\lambda_X + \lambda_Y}$
- Normal distribution (Gaussian distribution)
- If $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$, $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ independent:
- $Z = aX + bY \sim \mathcal{N}(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2)$ Central Limit Theorem: if $S_n = \sum_{i=1}^n X_i$, all X_i iid with mean μ , variance σ^2 ,

$$\frac{S_n}{\sigma} \approx \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right); \quad \frac{S_n - n\mu}{\sigma\sqrt{n}} \approx \mathcal{N}(0, 1).$$

Note 17 (Concentration Inequalities, LLN

- Markov's Inequality: $\mathbb{P}(X \ge c) \le \frac{\mathbb{E}[X]}{c}$, if X nonnegative, c > 0
- Generalized Markov: $\mathbb{P}(|Y| \ge c) \le \frac{\mathbb{E}[|Y|^r]}{c^r}$ for c, r > 0
- Chebyshev's Inequality: $\mathbb{P}(|X \mu| \ge c) \le \frac{\text{Var}(X)}{c^2}$ for $\mu = \mathbb{E}[X]$,
- Corollary: $\mathbb{P}(|X \mu| \ge k\sigma) \le \frac{1}{k^2}$ for $\sigma = \sqrt{\text{Var}(X)}, k > 0$
- · Confidence intervals:
- For proportions, $\mathbb{P}(|\hat{p} p| \ge \varepsilon) \le \frac{\text{Var}(\hat{p})}{\varepsilon^2} \le \delta$, where δ is the confidence level (95% interval $\rightarrow \delta = 0.05$)
- \hat{p} = proportion of successes in *n* trials, $Var(\hat{p}) = \frac{p(1-p)}{n}$
- $\implies n \ge \frac{1}{4 \epsilon^2 n}$
- For means, $\mathbb{P}\left(\left|\frac{1}{n}S_n \mu\right| \ge \varepsilon\right) \le \frac{\sigma^2}{n s^2} = \delta$
- $S_n = \sum_{i=1}^n X_i$, all X_i 's iid mean μ , variance σ^2
- $\implies \varepsilon = \frac{\sigma}{\sqrt{n\delta}}, \text{ interval} = S_n \pm \frac{\sigma}{\sqrt{n\delta}}$ With CLT,

$$\mathbb{P}(|A_n - \mu| \le \varepsilon) = \mathbb{P}\left(\left|\frac{(A_n - \mu)\sqrt{n}}{\sigma}\right| \le \frac{\varepsilon\sqrt{n}}{\sigma}\right) \approx 1 - 2\Phi\left(-\frac{\varepsilon\sqrt{n}}{\sigma}\right) = 1 - \delta.$$

Here, $A_n = \frac{1}{n} S_n$ and CLT gives $A_n \approx \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$; use inverse cdf

• Law of large numbers: as $n \to \infty$, sample average of iid $X_1, \ldots X_n$ tends to population mean

Note 24 (Markov Chains)

- Markov chain = sequence of states
- X_n = state at time step n
- X = state space (finite)
- π_n = distribution of states at time step n
- Markov property (memoryless): $\mathbb{P}(X_{n+1} = i \mid X_n, X_{n-1}, \dots, X_0) = \mathbb{P}(X_{n+1} = i \mid X_n)$
- Transition matrix (P): transition probabilities, from row to column
- $\pi_n = \pi_0 \mathbf{P}^n$
- Invariant distribution: π = πP; solve balance equations in addition to Σ π(i) = 1
- · Irreducible Markov chain: any state can be reached from any other
- All irreducible Markov chains have a unique invariant distribution:

$$\pi(i) = \lim_{n \to \infty} \frac{1}{n} \sum_{m=0}^{n-1} \mathbf{1} \{ X_m = i \}.$$

That is, average time spent at state $i = \pi(i)$

- Periodicity: let $d(i) = \gcd\{n > 0 : \mathbb{P}(X_n = i \mid X_0 = i) > 0\}$
 - If d(i) > 1, periodic with period d
 - If d(i) = 1, aperiodic
 - If irreducible, all states have the same d(i)
- Aperiodic irreducible Markov chains will always converge to the invariant distribution
- Hitting time: # of steps before first reaching state i
 - Let $\beta(j)$ denote this value, starting at state j; set up system of equations and solve
- P(A before B): similarly, let α(j) denote this probability, starting at state j; set up system of equations and solve (use TPR)
- Similar problems: let f(i) denote # of steps or probability, starting at state i; set up equations and solve
- 2-state Markov chain:

$$1-a$$
 $1-b$ $1-b$

$$\mathbf{P} = \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix} \text{ and } \pi = \begin{bmatrix} \frac{b}{a + b} & \frac{a}{a + b} \end{bmatrix}$$

Other

- In CS70, naturals and whole numbers both include 0
- Sum of finite geometric series: $\frac{1-r^n}{1-r}a$ where r is ratio, a is first term, n is number of terms
- Memoryless property independence: if X, Y both memoryless (i.e. geometric or exponential), then $\min(X, Y)$ and $\max(X, Y) \min(X, Y)$ are independent
- If $S_n = \sum_{i=1}^n X_i$, then (useful for variance of indicators)

$$\mathbb{E}\left[S_n^2\right] = \sum_{i=1}^n \mathbb{E}\left[X_i^2\right] + \sum_{i \neq j} \mathbb{E}\left[X_i X_j\right] = \sum_{i=1}^n \mathbb{E}\left[X_i^2\right] + 2\sum_{i < j} \mathbb{E}\left[X_i X_j\right]$$

- Coupon Collector Problem:
 - n distinct items, each with equal probability; $X_i = \#$ of tries before ith new item, given i 1 already
 - $S_n = \sum X_i$ = total tries before getting all items
 - We have $X_i \sim \text{Geom}(\frac{n-i+1}{n})$ because i-1 old items, so n-i+1 new items
 - Hence,

$$\mathbb{E}[S_n] = \sum_{i=1}^n \mathbb{E}[X_i] = \sum_{i=1}^n \frac{n}{n-i+1} = n \sum_{i=1}^n \frac{1}{i} \approx n(\ln n + 0.5772)$$

Table 1: Common Discrete Distributions

Distribution	Parameters	$PMF\left(\mathbb{P}(X=k)\right)$	$\mathrm{CMF}\left(\mathbb{P}(X\leq k)\right)$	Expectation ($\mathbb{E}[X]$)	Variance $(Var(X))$	Support
Uniform	Uniform(a,b)	$\frac{1}{b-a+1}$	$\frac{k-a+1}{b-a+1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$	$X \in [a, b]$
Bernoulli	Bernoulli(p)	$\begin{cases} 1 & p \\ 0 & 1-p \end{cases}$	_	p	p(1-p)	$X \in \{0,1\}$
Binomial	Bin(n, p)	$\binom{n}{k} p^k (1-p)^{n-k}$	_	np	np(1-p)	$X \in \mathbb{N}$
Geometric	Geom(p)	$p(1-p)^{k-1}$	$1-(1-p)^k$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$X \in \mathbb{N}$
Poisson	$Pois(\lambda)$	$\frac{\lambda^k e^{-\lambda}}{k!}$	_	λ	λ	$X \in \mathbb{N}$
Hypergeometric	Hypergeometric (N, K, n)	$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$	_	$n\frac{K}{N}$	$n\frac{K(N-K)(N-n)}{N^2(N-1)}$	$X\in\mathbb{N}$

Table 2: Common Continuous Distributions

Distribution	Parameters	PDF $(f_X(x))$	$CDF (F_X(x) = \mathbb{P}(X \le x))$	Expectation ($\mathbb{E}[X]$)	Variance $(Var(X))$	Support
Uniform	Uniform (a, b)	$\frac{1}{b-a}$	$\frac{x-a}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$X \in [a, b]$
Exponential	$Exp(\lambda)$	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$X \in [0, \infty)$
Normal/Gaussian	$\mathcal{N}(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$\Phi(x)$	μ	σ^2	$X \in \mathbb{R}$