

WO 2004/020665

PCT/EP2003/009437

- 1 -

SEQUENCE LISTING

<110> Evotec NeuroSciences GmbH

<120> Diagnostic and therapeutic use of FOAP-13
polynucleotides and polypeptides for neurodegenerative
diseases

<130> 031985wo ME/BM

<140>

<141>

<150> 02019281.1

<151> 2002-08-28

<160> 18

<170> PatentIn Ver. 2.1

<210> 1

<211> 390

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: cDNA fragment
of the foap-13 gene

<400> 1

tggttcctgg ctctccctca agagtgcagc cttggctaga gaactcacag ctctgggaaa 60
aaggaggaca gacagggttc cctggccca gtctcagccc agccactgat gctggatgac 120
cttggcctga ccctggctcg gtctcagaat cactttccc atctgtaaaa ttgagatgaa 180
ttttgggttt gaaagttctt cctggagcag atgtcctaga aggttttagg aataagtgaca 240
gagtcaggcc accccaaggg ccatggagc cagctgaccc gcttgaccga aggatttctg 300
acagactatac tttggggatg tttcaagaa ggatataag ttatttactt tggcattta 360
aaagaaaatt tctctcggya ataattttat 390

<210> 2

<211> 491

<212> PRT

<213> Homo sapiens

<400> 2

Met	Ala	Gly	Gln	Gly	Leu	Pro	Leu	His	Val	Ala	Thr	Leu	Leu	Thr	Gly
1														15	

Leu	Leu	Glu	Cys	Leu	Gly	Phe	Ala	Gly	Val	Leu	Phe	Gly	Trp	Pro	Ser
													20	30	

Leu	Val	Phe	Val	Phe	Lys	Asn	Glu	Asp	Tyr	Phe	Lys	Asp	Leu	Cys	Gly
													35	45	

Pro	Asp	Ala	Gly	Pro	Ile	Gly	Asn	Ala	Thr	Gly	Gln	Ala	Asp	Cys	Lys
													50	60	

Ala	Gln	Asp	Glu	Arg	Phe	Ser	Leu	Ile	Phe	Thr	Leu	Gly	Ser	Phe	Met
													65	80	

Asn	Asn	Phe	Met	Thr	Phe	Pro	Thr	Gly	Tyr	Ile	Phe	Asp	Arg	Phe	Lys
													85	95	

- 2 -

Thr	Thr	Val	Ala	Arg	Leu	Ile	Ala	Ile	Phe	Phe	Tyr	Thr	Thr	Ala	Thr
					100				105					110	
Leu	Ile	Ile	Ala	Phe	Thr	Ser	Ala	Gly	Ser	Ala	Val	Leu	Leu	Phe	Leu
					115			120				125			
Ala	Met	Pro	Met	Leu	Thr	Ile	Gly	Gly	Ile	Leu	Phe	Leu	Ile	Thr	Asn
					130		135			140					
Leu	Gln	Ile	Gly	Asn	Leu	Phe	Gly	Gln	His	Arg	Ser	Thr	Ile	Ile	Thr
					145		150		155			160			
Leu	Tyr	Asn	Gly	Ala	Phe	Asp	Ser	Ser	Ser	Ala	Val	Phe	Leu	Ile	Ile
					165		170			175					
Lys	Leu	Leu	Tyr	Glu	Lys	Gly	Ile	Ser	Leu	Arg	Ala	Ser	Phe	Ile	Phe
					180		185			190					
Ile	Ser	Val	Cys	Ser	Thr	Trp	His	Val	Ala	Arg	Thr	Phe	Leu	Leu	Met
					195		200		205						
Pro	Arg	Gly	His	Ile	Pro	Tyr	Pro	Leu	Pro	Pro	Asn	Tyr	Ser	Tyr	Gly
					210		215		220						
Leu	Cys	Pro	Gly	Asn	Gly	Thr	Thr	Lys	Glu	Glu	Lys	Glu	Thr	Ala	Glu
					225		230		235			240			
His	Glu	Asn	Arg	Glu	Leu	Gln	Ser	Lys	Glu	Phe	Leu	Ser	Ala	Lys	Glu
					245		250			255					
Glu	Thr	Pro	Gly	Ala	Gly	Gln	Lys	Gln	Glu	Leu	Arg	Ser	Phe	Trp	Ser
					260		265		270						
Tyr	Ala	Phe	Ser	Arg	Arg	Phe	Ala	Trp	His	Leu	Val	Trp	Leu	Ser	Val
					275		280		285						
Ile	Gln	Leu	Trp	His	Tyr	Leu	Phe	Ile	Gly	Thr	Leu	Asn	Ser	Leu	Leu
					290		295		300						
Thr	Asn	Met	Ala	Gly	Gly	Asp	Met	Ala	Arg	Val	Ser	Thr	Tyr	Thr	Asn
					305		310		315			320			
Ala	Phe	Ala	Phe	Thr	Gln	Phe	Gly	Val	Leu	Cys	Ala	Pro	Trp	Asn	Gly
					325		330		335						
Leu	Leu	Met	Asp	Arg	Leu	Lys	Gln	Lys	Tyr	Gln	Lys	Glu	Ala	Arg	Lys
					340		345		350						
Thr	Gly	Ser	Ser	Thr	Leu	Ala	Val	Ala	Leu	Cys	Ser	Thr	Val	Pro	Ser
					355		360		365						
Leu	Ala	Leu	Thr	Ser	Leu	Leu	Cys	Leu	Gly	Phe	Ala	Leu	Cys	Ala	Ser
					370		375		380						
Val	Pro	Ile	Leu	Pro	Leu	Gln	Tyr	Leu	Thr	Phe	Ile	Leu	Gln	Val	Ile
					385		390		395			400			
Ser	Arg	Ser	Phe	Leu	Tyr	Gly	Ser	Asn	Ala	Ala	Phe	Leu	Thr	Leu	Ala
					405		410		415						
Phe	Pro	Ser	Glu	His	Phe	Gly	Lys	Leu	Phe	Gly	Leu	Val	Met	Ala	Leu

- 3 -

420 425 430

Ser Ala Val Val Ser Leu Leu Gln Phe Pro Ile Phe Thr Leu Ile Lys
435 440 445

Gly Ser Leu Gln Asn Asp Pro Phe Tyr Val Asn Val Met Phe Met Leu
450 455 460

Ala Ile Leu Leu Thr Phe Phe His Pro Phe Leu Val Tyr Arg Glu Cys
465 470 475 480

Arg Thr Trp Lys Glu Ser Pro Ser Ala Ile Ala
485 490

<210> 3

<211> 2630

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: cDNA of the
human foap-13 gene

<400> 3

cggacgcgtg ggcggacgcg tggcgacg cgtggctct gggagtgtga aactggaga 60
gacggtaag ctggggacgg tattcagaat tcgagcgcag gagctccgt tctccacctg 120
ctccccggga gctatttggga tccagagaat cacccgctga tggttttcc ccaggcctga 180
aacaaaccaga gagctacggg aaagaaaggg cttggcttg cagaggatt ttccaagtgc 240
tcaaacgcaca ggcttacggc gcctgtgatc cgtccaggag gacaaaatggg gatttgaaga 300
tccactccac ttctgtcatc ggcggccag ggcctgccc tgacatggc cacactgctg 360
actgggctgc tggaatgcct gggcttgct ggcgtcctct ttggctggcc ttcaactatgt 420
tttgttttca agaatgaaga ttactttaag gatctgtgt gaccagatgc tggccgatt 480
ggcaatgcaca cagggcaggc tgactgcaaa gcccaggatg agagggtctc actcatctc 540
accctgggt ctttcatgaa caacttcatg acattccccca ctggctacat ctttgaccgg 600
ttcaagacca ccgtggcacg cctcatagcc atattttctt acaccacccg cacactcata 660
atagccttca cctctgcagg cttagccgtg ctgcttcc tggccatgcc aatgcttacc 720
attggggaa tcctgtttct catcaccaac ctgcagattt ggaacctatt tggccaacac 780
cgttcgacca tcatcactt gtacaatggc gcattttgact ctteccctggc agtcttcctt 840
attattaagc ttctttatga aaaaggcatac accttcaggg ccttcattcat ctcatctt 900
gtctgcagta cctggcatgt agcacgcact ttcccttcgt tggcccccggg gcacatccca 960
tacccactgc cccccaacta cagctatggc ctgtgccctg ggaatggcac cacaaggaa 1020
gagaaggaaa cagctgagca tgaaaaacagg gagctacagt caaaggagtt ctttcagcg 1080
aagaagaga ccccaggggc agggcagaag caggaactcc gctcctctg gagctacgt 1140
ttctctggc gctttgcctg gcacccgttgg tggctgtctg tgatacagtt gtggcactac 1200
cttttcatttgc acactctcaa ctccctgtc accaacatgg ccggtggggc catggcacga 1260
gtcagcacct acacaaatgc ctttgccttc actcagttcg gagtgctgtg tgcccccctgg 1320
aatggcctgc tcatggaccc gcttaaacag aagtaccaga aggaagcaag aaagacagg 1380
tcctccactt tggcgggtggc cctctgtctg acgggtgcctt cgctggccct gacatccctg 1440
ctgtgcctgg gcttcgcctt ctgtgcctca gtcccccattcc tccctctcca gtacccatcacc 1500
ttcatcctgc aagtgtatcg ccgccttc ctctatggga gcaacgcggc ctttcctacc 1560
cttgctttcc cttcagagca ctttggcaag cttttgggc tggtgatggc cttgtcggt 1620
gtggtgtctc tgctccaggc ccccatcttc accctcatca aaggctccct tcagaatgtac 1680
ccattttacg tgaatgttatcg gttcatgtt gccattctt tgacattttt ccaccccttt 1740
ctgtatatac gggatgcgg tacttggaaa gaaagtccct ctgcaattgc atagttcaga 1800
agccctcact tttcagcccc gaggatggtt ttgttcatct tccaccaccc ttgaggaccc 1860
cgtgtcccaa aagactttgc ctatcccagc aaaacacaca cacacacaca cacacacaca 1920
aaataaaagac acacaaggac gtctgcgcag caagaaaaga atctcagttt ccaaggagat 1980
tgatatcaca cagactcaa gcaaaggcat gtggacttc tttatttcaa aacagaagtg 2040
tctcccttgca ctttagccttgc gcaagaccctt gactccaggg gagatgaccc gggggaggaa 2100
gtgtgtcaac tatttcttta ggcctgttttgc gctccgaagc ctatatgtgc ctggatcctc 2160
tgccacgggt taaattttca ggtgaagagt gagggttgtca tggcctcagc tatgcttcct 2220

- 4 -

ggctctccct caagagtgcg gccttggcta gagaactcac agctctggga aaaagaggag 2280
cagacagggt tccctggccc cagtcctcagc ccagccactg atgctggatg accttggcct 2340
gaccctggtc tggtctcaga atcactttc ccatctgtaa aattgagatg aattttggtg 2400
ttgaaagtcc ttccctggagc agatgtccctaa gaagggtttta ggaatagtga cagagtcaagg 2460
ccaccccaag ggccatggga gccagctgac ctgcttgacc gaaggatttc tgacagacta 2520
tcttgggaa tggttcaag aaggatata atttac tttggcatt taaaagaaaa 2580
tttctctcgga ataataattt atagaaaaat aaagcttctg tgtctaaggc 2630

<210> 4
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: one-base
anchor oligonucleotide

<400> 4
htttttttt tta

13

j

<210> 5
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: one-base
anchor oligonucleotide

<400> 5
htttttttt ttg

13

)

<210> 6
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: one-base
anchor oligonucleotide

<400> 6
htttttttt ttc

13

)

<210> 7
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for the
foap-13 gene

<400> 7
tcaggtgaag agtgaggatg tca

23

<210> 8

- 5 -

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for the foap-13 gene

<400> 8
ggctgcactc ttgagggaga

20

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for the cyclophilin B gene

<400> 9

actgaagcac tacgggcctg

20

<210> 10
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for the cyclophilin B gene

<400> 10

agccgttgtt gtctttgcc

19

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for the ribosomal protein S9

<400> 11

ggtcaaattt accctggcca

20

<210> 12
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for the ribosomal protein S9

<400> 12

tctcatcaag cgtcagcagt tc

22

- 6 -

<210> 13
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for the
beta-actin gene

<400> 13
tggaacggtg aaggtgaca

19

<210> 14
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for the
beta-actin gene

<400> 14
ggcaagggac ttcctgtaa

19

<210> 15
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for the
GAPDH gene

<400> 15
cgtcatgggt gtgaaccatg

20

<210> 16
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for the
GAPDH gene

<400> 16
gctaaggcgt tggtggtgca g

21

<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for the
transferrin receptor (TRR)

- 7 -

<400> 17
gtcgctggtc agttcgtgat t

21

<210> 18
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer for the
transferrin receptor (TRR)

<400> 18
agcagttggc tgggttacct ctc

23