

• Set nMOS Linear I_{DS} equal to pMOS Saturation I_{DS} $k_p \left(\frac{\left(V_{tn} - V_{DD} - V_{tp} \right)^2}{2} \right) = k_q \left(\left(V_{tn} - V_{tn} \right) V_{out} - \frac{V_{out}^2}{2} \right)$ $\frac{V_{out}^2}{2} - \left(V_{tn} - V_{tn} \right) V_{out} + \frac{k_p}{k_a} \frac{\left(V_{tn} - V_{DD} - V_{tp} \right)^2}{2} = 0$ $V_{out} = \left(V_{tn} - V_{tn} \right) - \sqrt{\left(V_{tn} - V_{tn} \right)^2 - \frac{k_p}{k_a} \left(V_{tn} - V_{DD} - V_{tp} \right)^2}$

3 March 2009

CMOS Inverter				
(assume $V_1 = V_{tn} = V_{tp} $)				
V _{in}	pMOS mode	nMOS mode	V _{out}	
$V_{\underline{in}} < V_{\underline{t}}$	Linear	Cutoff	V_{DD}	
$V_{\underline{t}} < V_{\underline{in}} < V_{\underline{out}} V_{\underline{t}}$	Linear	Saturation	$(V_{in} + V_i) + \sqrt{(V_{in} - V_{DD} + V_i)^2 - (V_{in} - V_i)^2}$	
$V_{\underline{out}}$ - $V_{\underline{t}}$ < $V_{\underline{in}}$ < $V_{\underline{out}}$ + $V_{\underline{t}}$	Saturation	Saturation	Interpolate	
$V_{\underline{out}}+V_{\underline{t}}< V_{\underline{in}}< V_{\underline{DD}}-V_{\underline{t}}$	Saturation	Linear	$(V_{in} - V_r) - \sqrt{(V_{in} - V_r)^2 - (V_{in} - V_{DD} + V_r)^2}$	
V <u>in</u> > V <u>DD</u> -V _{<u>t</u>}	Cutoff	Linear	0	
3 March 2009			18	

Switching Threshold

The point $(V_{...})$ at which the inverter has both transistors in saturation $(V_{in} = V_{out})$

$$\frac{k_{o}}{2}(V_{M}-V_{m})^{2} = \frac{k_{p}}{2}(V_{M}-V_{DD}-V_{pp})^{2}$$

$$(V_{M}-V_{m}) = -\sqrt{\frac{k_{p}}{k_{o}}}(V_{M}-V_{DD}-V_{pp})$$

$$V_{M}(1+r) = V_{m} + r(V_{DD}+V_{pp})$$

$$V_{M} = \frac{V_{m} + r(V_{DD}+V_{pp})}{V_{M}(1+r)}$$

 \emph{r} is the relative driving strengths of the PMOS and NMOS transistors

Switching Threshold

$$V_M = \frac{V_{tn} + r(V_{DD} + V_{tp})}{1 + r}$$

When $V_{tn} = -V_{tp}$ and r = 1,

$$V_M = \frac{V_{DD}}{2}$$

When $V_{tn} = -V_{tp}$ and r > 1,

$$V_{\scriptscriptstyle M} > \frac{V_{\scriptscriptstyle DD}}{2}$$
 Stronger PMOS

Noise Margin

- A measure of the acceptable noise at a gate input so that the output is not affected.
- Noise margin is closely related to the DC voltage characteristics
- Sources: supply noise, crosstalk, interference

Noise Margin High Noise Margin Input acteristi Volmax: Maximum low output voltage produced by the driving gate V_{ILmax}: Maximum low input voltage recognized by the receiving gate ŮNM^Γ ► Logical Low Input Voltage Low Noise Margin Logical Low Output Voltage

Noise Margins

Voltage Transfer Function

$$V_{out} = f(V_{in})$$

Voltage Transfer Function with Noise

$$V_{out} = f(V_{in} + \Delta V_{noise})$$

$$V_{out} \approx f(V_{in}) + \frac{dV_{out}}{\Delta V_{out}} \Delta V_{out}$$

Voltage Harister I unclude With Noise $V_{out} = f(V_{in} + \Delta V_{noise})$ $V_{out} \approx f(V_{in}) + \frac{dV_{out}}{dV_{in}} \Delta V_{noise}$ Perturbed voltage is the sum of the nominal

- output plus the gain times the noise
- Keep the gain less than 1

3 March 2009

Static Load Inverter

· Transistor is in saturation

$$\begin{split} I_{DS} &= k_n \frac{(V_{OS} - V_T)^2}{2} (1 + \lambda V_{DS}) \\ V_{OUT} &= V_{DD} - Rk_n \frac{(V_{IN} - V_T)^2}{2} (1 + \lambda V_{OUT}) \\ V_{OUT} &= \frac{2V_{DD} - Rk_n (V_{IN} - V_T)^2}{2 + \lambda Rk_n (V_{IN} - V_T)^2} \end{split}$$

3 March 2009

Static Load Inverter

- Does not go down all the way to 0 due to the resistance path between $\rm V_{\rm DD}$ and ground when nMOS is on
- Static power
- Noise margins are tighter
- · Switching threshold is not centered
- To get high gain in the transition region, bigger resistors are needed

3 March 2009

33