Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи №6 з дисципліни «Ігрова фізика»

«Визначення швидкості звуку в повітрі методом стоячої хвилі»

Варіант 10

Виконав студент ІП-13, Замковий Дмитро Володимирович

(шифр, прізвище, ім'я, по батькові)

Перевірив Скирта Юрій Борисович

(прізвище, ім'я, по батькові)

Лабораторна робота 6

Визначення швидкості звуку в повітрі методом стоячої хвилі

Мета: вивчення властивостей стоячої хвилі і визначення швидкості звуку в повітрі методом стоячої хвилі

Теорія:

Стояча хвиля виникає в результаті накладання (інтерференції) двох біжучих хвиль, що рухаються у протилежних напрямах і мають однакові частоти та амплітуди. Зазвичай стоячі хвилі виникають у разі відбивання хвиль від перешкоди. Падаюча на перешкоду хвиля і біжуча їй назустріч відбита хвиля, накладаючись одна на одну, утворюють стоячу хвилю.

На рисунку нижче зображено схему установки для вимірювання швидкості звуку методом стоячої хвилі. Вона складається з розсувної труби РТ, звукового генератора ГЗ, динаміка Д, мікрофона М і осцилографа О.

Виміри будемо проводити при довжині труби від 1 метру до 2 метрів

Швидкість обраховується по формулі

$$v=\frac{L_m-L_1}{m-1}\cdot 2\nu,$$

де L_1 — довжина труби на першому максимальному значенні амплітуди; m — кількість максимальних значень амплітуд у вимірюванні;

L_m – m-те вимірювання довжини труби на якій присутня максимальна амплітуда;

В абсолютній похибці будемо брати значення температури за 343 м/с

Розрахунки:

No॒	v ₁ =1000 Гц				v ₂ = 1500 Гц				v ₃ = 2000 Гц			
	L_1	L _m	m	v_1	L_1	L _m	m	v_2	L_1	L _m	m	v_3
1	1,029	1,886	6	342,80	1,000	1,913	9	342,38	1,019	1,962	12	342,91
2	1,004	1,862	6	343,20	1,016	1,929	9	342,38	1,013	1,956	12	342,91
3	1,013	1,872	6	343,60	1,022	1,936	9	342,75	1,020	1,965	12	343,64

Знайдемо абсолютну і відносну похибку вимірювань швидкості

Для
$$v_1 = 1000 \Gamma ц$$

$$= 343,47 \text{ m/c}$$

$$\Delta v_1 = 343,47 - 343 = 0,47 \text{ m/c}$$

$$\Delta = 0.47/343 * 100\% = 0.14\%$$

$$= 343,13 \text{ m/c}$$

$$\Delta v_2 = 343,13 - 343 = 0,13 \text{ m/c}$$

$$\Delta = 0.13/343 * 100\% = 0.04\%$$

$$= 343,39 \text{ m/c}$$

$$\Delta \ \upsilon_3 = 343,39 - 343 = 0,39 \ \text{м/c}$$

$$\Delta = 0.39/343 * 100\% = 0.11\%$$

Обчислимо теоретичне значення

$$V_{\text{rep}} = 20.1 * \sqrt{T} = 20.1 * \sqrt{291.4} = 343.12 \,\text{m/c}$$

Висновок:

В ході даної лабораторної роботи ми вивчили властивості стоячої хвилі і визначили швидкість звуку в повітрі методом стоячої хвилі, провівши дослідження в імітаторі. Також порахували абсолютну та відносну похибку наших вимірювань. Також порахували теоретично швидкість звуку за температури в лабораторії та отримали значення, що є близьким, до отриманого експериментально.

Відповіді на контрольні запитання:

1. В чому головна відмінність біжучої і стоячої хвилі?

Головною відмінністю біжучої хвилі від стоячої полягає в тому, що біжуча хвиля, на відміну від стоячої, під час поширення в середовищі переносить енергію. Також варто зазначити, що стояча хвиля утворюється в наслідок накладання двох біжучих хвиль.

2. Що називають вузлом і пучністю стоячої хвилі?

Вузлом стоячої хвилі називають таку точку в якій амплітуда дорівнює нулю. ($A_{ct} = 0, \lambda_{ct} = \lambda/2$)

Координати вузла можна знайти з наступного рівняння

$$\left|\cos 2\pi \frac{x}{\lambda}\right| = 0$$

учністю стоячої хвилі називають таку точку, в якій амплітуда ε максимальною. ($A_{\text{cr}}=2*A_{\text{біr}}$)

Координати пучності можна знайти з наступного рівняння

$$\left|\cos 2\pi \frac{x}{\lambda}\right| = 1$$

3. За якої умови виникає стояча хвиля в стовпі повітря, обмеженому трубою?

Стояча хвиля виникає: при будь-якій фазі коливань та не поширюється в просторі; в результаті накладання двох біжучих хвиль, що поширюються назустріч одна одній і мають деякий зсув фаз. Також стоячу хвиля описується за формулою (за умови гармонічності)

$$u = u_0 \cos(\omega t - \varphi)$$

4. Чи відбувається перенесення енергії стоячою хвилею?

Ні, енергію переносять біжучі хвилі, а стоячі через площину, в якій розташовані вузли, не переносить енергію.

5. Від чого залежить швидкість поширення звуку в різних середовищах?

Швидкість поширення звуку залежить від модуля швидкості і густини середовища, в якому поширюються коливання, а також від його температури.

$$v = \left(\frac{dp}{d\rho}\right)^{\frac{1}{2}}$$