PROBABILITY & STOCHASTIC PROCESSES

OG PROBABILITY MODELS OF DERIVED PANDOM VARIABLES

MORGAN BERGEN

TUES NOV 08 2022

TRANSFORMATION OF RANDOM VARIABLES

INTRO

TRANSFORMATION OF DRVS

A SINGLE DRV FROM SINGLE DRY

SINGLE DRV FROM THO DRV

RESULT D = M(G, H)

$$\overrightarrow{F}_{D}(d) = \sum_{(g,h): m(g,h) = d} \overrightarrow{F}_{G,H}(g,h)$$

EXAMPLE

FOR GIVEN HOUSE ON HALOWEEN, LET G BE THE # OF CANDIES GIVEN PER GROUP OF KIDS BY 2 ADULTS (ONE GIVES 4, OTHER GIVES 8) & LET H BE THE # KIDS PER GROUP (ASSUME 2 OR 4)

SUPPOSE WE WANT PMF OF CANDIES PER MIOS

<u>_</u> G	Н	G/H	PG,H	So = { 1, 2, 4}
4	2	2	. 4	
4	4	ı	. 3	
8	2	4	. 2	
8	4	2	.1	

$$P_{B}(a) = 0.3$$
 , $d=1$
0.5 , $d=2$
0.2 , $d=4$

TRANSFORMATIONS OF CRVs

<u>REVIEW</u> WE DO HAVE RESULTS ALREADY FOR SPECIAL CASE: LINEAR COMBINATION OF GAUSSIAN CRYS IS GAUSSIAN

SINGLE DERIVED CRV FROM SINGLE CRV

MOST GENERAL APPROACH FOR CRV G, TO GET PDF OF J = M(G)(i) DETERMINE COF OF $J : F_{\mathcal{J}}(j) = \mathcal{P} \left[\mathcal{J} \leq j \right]$

- (ii) TAKE DERIVATIVE TO GET PDF

$$\int_{\mathcal{T}}(j) = \frac{d}{dj} F_{\mathcal{T}}(j)$$

MORGAN BERGEN

TUES NOV 08 2022

SIMPLE EXAMPLE

GENERAL THEOREM 6.2
$$J = aG$$
 with $a > 0$

THEN $F_{J}(j) = P[J \le j] = P[J \le j] = P[a G \le j/a] = F_{G}(j/a)$

THEN $f_{J}(j) = \frac{d}{dj} F_{J}(j) = \frac{d}{dj} F_{G}(j/a) = \int_{G} (j/a) \cdot \frac{d}{dj} (j/a)$

CHAIN EULE

$$f_{J}(j) = \frac{1}{a} f_{G}(j/a)$$

SPECIFIC G IS SPECIFIC
$$\exp(\lambda)$$
 & $J = mG$ a 70

THEN
$$\int_{J} (j) = \frac{1}{a} \int_{a} \left(\frac{j}{a} \right) = \frac{1}{a} \left(\frac{j}{a} \right) e^{-\lambda \left(\frac{j}{a} \right)}$$

$$\int_{J} (j) = \frac{1}{a} \int_{a} \left(\frac{j}{a} \right) dx$$

so
$$\mathcal{J}$$
 is \mathcal{E}_{XP} $\left(\frac{\lambda}{\alpha}\right)$

SEE THM 6.3 FOR OTHER COMMON G RVS SEE THM 6.4 J = G + b , THEN

$$F_{J}(j) = F_{G}(j-b)$$
 AND $f_{J}(j) = f_{G}(j-b)$

THM 6.5

LET \bigcup BE A UNIFORM (0,1) CRV & LET F(g) DENOTE ANY VALID CDF WITH INVERSE F'(u) DEFINED FOR $0 \le u \le 1$ THEN THE RV G = F'(u) HAS CDF FG(g) = F(g)

PROOF

$$F_{G}(g) = \mathcal{F}[G \not\subseteq g] = \mathcal{F}[F'(u) \not\subseteq g] = \mathcal{F}[U \not\subseteq F(g)] = F(g)$$

$$F_{G}(g) = F(g)$$

TO SHOW
$$F'(u)$$
 IS NON-DECREASING:
LET $U \ge u'$ & $g = F'(u)$ & $g' = F'(u')$ OF $U(0,1)$

SHOW THAT
$$g \ge g'$$

HERE $u = F(g)$ & $u' = F(g)$ so $F(g) \ge F(g')$ BUT F is A CDF HENCE NON-DECREASING

THIS IMPLIES $g \ge g'$

PROBABILITY & STOCHASTIC PROCESSES OG PROBABILITY MODELS OF DERIVED RANDOM VARIABLES

MORGAN BERGEN

TUES NOV 08 2022

U IS UN, FORM (O, 1). WHAT M(W) WILL MAKE G = M(W) ON EXP (A) RV??

WITH
$$N=1-2$$
, THEN $0 \le \alpha \le 1$

so
$$F^{-1}(u) = \frac{1}{2} \ln(1-u)$$

so
$$G = F'(u) = \frac{-1}{\lambda} LN(1-u)$$
 GIVEN

$$F_{6}(g) = F(g) = \begin{cases} 0 & g \neq 0 \\ -2g & g \geq 0 \end{cases}$$

STRICTLY MONOTONIC FUNCTIONS (TRANSFORMATIONS)

ALMOST AS GENERAL & MORE DIRECT

LET J=m(G) WITH m STRICTLY MONOTONE, SO THE MAPPING m IS I TO I W FOR ANY $j \in S_J$ THERE IS A UNIQUE $g \in S_G$, THEN FOR ANY ARBITRARY INTERVAL $\begin{bmatrix} j_1, j_2 \end{bmatrix} \in S_J$

THEN $\begin{bmatrix} j, jz \end{bmatrix}$ CORRESPOND TO $\begin{bmatrix} g_1, g_2 \end{bmatrix}$ IF M IS INCREASING OR $\begin{bmatrix} g_2, g_1 \end{bmatrix}$ IF M IS DECREASING

CAN FIND $f_{\sigma}(j)$ DIRECTLY IN TERMS OF $f_{G}(g)$ (NO COF STEP, NO DERIVATIVE) AS FOLLOWS

CONSIDER SMALL INTERVAL B = [j., j2] OF WIDTH Dj = j2 - j, THAT CONTAINS j

Assume M is INCREASING & LET WIDTH OF CORRESPONDING INTERVAL $X = \begin{bmatrix} g_1, g_2 \end{bmatrix}$ BE $\Delta g = g_2 - g_1$

SINCE M IS MONOTONIC, α MUST CONTAIN $g = m^{-1}(j)$

NOW,
$$\overline{\mathcal{F}}_{J}(g) = \int_{-\infty}^{\infty} f_{J}(x) dx \leq f_{J}(j) \Delta j$$

PROBABILITY & STOCHASTIC PROCESSES OG PROBABILITY MODELS OF DERIVED RANDOM VAZIABLES

MORGAN BERGEN

TUES NOV 08 2022

STRICTLY MONOTONIC FUNCTIONS (TRANSFORMATIONS) ALMOST AS GENERAL & MORE DIRECT

LET J = M (G) WITH M STRICTLY MONOTONIC, SO THE MAPPING M IS 1 TO 1 & FOR ANY jest There is A unique gesta, THEN FOR ANY ARBITRARY INTERVAL [ji, jz] EST

THEN $[j, j_2]$ correspond to $[g, g_2]$ if M is increasing or $[g_2, g_3]$ if

(AN FIND $f_{+}(j)$ DIRECTLY IN TERMS OF $f_{+}(g)$ (NO COF STEP, NO DERIVATIVE) AS FOLLOWS

CONSIDER SMALL INTERVAL B = [j., jz] OF WIDTH Dj = jz-j, THAT CONTAINS j

ASSUME M IS INCREASING & LET WIDTH OF CORRESPONDING INTERVAL X = [9,,92] BE D9 = 92 - 9,

SINCE M IS MONOTONIC, & MUST CONTAIN 9 = M (j)

NOW,
$$\mathcal{F}_{J}(\beta) = \int_{-\infty}^{\infty} f_{J}(x) dx \leq f_{J}(j) \Delta j$$

$$\mathcal{F}_{\alpha}(\alpha) = \int_{g_{1}}^{g_{2}} f_{\alpha}(2) dx \stackrel{\nu}{=} f_{\alpha}(g) \Delta g$$

THESE 2 PROBABILITIES MUST BE EQUAL, SO $f_{\tau}(j) \stackrel{\checkmark}{=} \frac{f_{G}(g)}{\left(\frac{\Delta j}{\Delta g}\right)}$

NOW NOTE THAT $\left(\frac{\Delta j}{\Delta g}\right) \longrightarrow M'(g)$ is $\Delta j \to 0$

SO THAT $f_{J}(j) = \underline{f_{G}(g)}$ FOR M INCREASING m'(q)

EXERCISE FOR M DECREASING, SHOW THAT $f_3(j) = \underline{f_6(g)}$ $-m^2(g)$

GENENERAL RESULT

FOR I = m(G) & M STRICTLY MONOTONIC

$$f_{\sigma}(j) = \underline{f_{\alpha}(g)} = \underline{f_{\alpha}(m'(j))}$$

$$|m'(g)| = \underline{f_{\alpha}(m'(j))}$$