NSUCRYPTO2024

Problem 2: AntCipher 2.0

October 21, 2024

Solution:

The plaintext in iteration 1704:

 $M_{1704} = 1100\ 0001\ 1100\ 1110\ 0101\ 1100\ 0001\ 0101\ 0100\ 0011\ 0001\ 0010\ 1001\ 0101\ 1000\ 1100$

Decomposition of the CNF C

First, we decompose C into four sub-expressions, where $C_{x_i} = 1$ serves as a function that accepts inputs x_1, x_2, x_3, x_4 and produces outputs x_i .

The function F_C is defined as follows:

$$F_C = (x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_5) \land (x_1 \lor x_3 \lor \neg x_5) \land (\neg x_1 \lor \neg x_3 \lor x_5) \land (x_2 \lor x_3 \lor \neg x_5) \land (\neg x_2 \lor \neg x_3 \lor x_5)$$

$$\land (x_1 \lor x_2 \lor \neg x_6) \land (\neg x_1 \lor \neg x_2 \lor x_6) \land (x_1 \lor x_4 \lor \neg x_6) \land (\neg x_1 \lor \neg x_4 \lor x_6) \land (x_2 \lor x_4 \lor \neg x_6) \land (\neg x_2 \lor \neg x_4 \lor x_6)$$

$$\land (x_1 \lor x_3 \lor \neg x_7) \land (\neg x_1 \lor \neg x_3 \lor x_7) \land (x_1 \lor x_4 \lor \neg x_7) \land (\neg x_1 \lor \neg x_4 \lor x_7) \land (x_3 \lor x_4 \lor \neg x_7) \land (\neg x_3 \lor \neg x_4 \lor x_7)$$

$$\land (x_2 \lor x_3 \lor \neg x_8) \land (\neg x_2 \lor \neg x_3 \lor x_8) \land (x_2 \lor x_4 \lor \neg x_8) \land (\neg x_2 \lor \neg x_4 \lor x_8) \land (\neg x_3 \lor \neg x_4 \lor x_8).$$

Definitions of Sub-Expressions

We define the sub-expressions as follows:

$$C_{x_5} = (x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_5) \land (x_1 \lor x_3 \lor \neg x_5) \land (\neg x_1 \lor \neg x_3 \lor x_5) \land (x_2 \lor x_3 \lor \neg x_5) \land (\neg x_2 \lor \neg x_3 \lor x_5)$$

$$C_{x_6} = (x_1 \lor x_2 \lor \neg x_6) \land (\neg x_1 \lor \neg x_2 \lor x_6) \land (x_1 \lor x_4 \lor \neg x_6) \land (\neg x_1 \lor \neg x_4 \lor x_6) \land (x_2 \lor x_4 \lor \neg x_6) \land (\neg x_2 \lor \neg x_4 \lor x_6)$$

$$C_{x_7} = (x_1 \lor x_3 \lor \neg x_7) \land (\neg x_1 \lor \neg x_3 \lor x_7) \land (x_1 \lor x_4 \lor \neg x_7) \land (\neg x_1 \lor \neg x_4 \lor x_7) \land (x_3 \lor x_4 \lor \neg x_7) \land (\neg x_3 \lor \neg x_4 \lor x_7)$$

$$C_{x_8} = (x_2 \lor x_3 \lor \neg x_8) \land (\neg x_2 \lor \neg x_3 \lor x_8) \land (x_2 \lor x_4 \lor \neg x_8) \land (\neg x_2 \lor \neg x_4 \lor x_8) \land (x_3 \lor x_4 \lor \neg x_8) \land (\neg x_3 \lor \neg x_4 \lor x_8)$$

Finally, we can express the overall CNF as:

$$C = C_{x_5} \wedge C_{x_6} \wedge C_{x_7} \wedge C_{x_8}$$

Bit Calculation for K_{1703} and K_{1704}

The truth table of C_{x_5} is showed in Table 1. We can construct similar truth tables for other C_{x_i} expressions and we observed that the F_C is not a bijective mapping. To be more precise, the input space contains $2^4 = 16$ elements, while the output space has 8 elements.

x_1	x_2	x_3	x_5	C_{x_5}
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1 0
0	1	0	1	0
0 0 0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1 0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Table 1: Truth Table for x_1, x_2, x_3, x_5

Since K_{1702} is the output of K_{1701} , each of its 4-bit chunk must lies in the output space of F_C . This is also the case with K_{1703} . With this observation, we were able to recover K_{1703} .

 $K_{1703} = 0101\ 0110\ 1111\ 0011\ 0011\ 1111\ 1100\ 0000\ 1111\ 0000\ 1010\ 0101\ 0110\ 0101\ 0000\ 1111$

We then apply F_C on K_{1703} to obtain the K_{1704} and original plaintext M_{1704}

 $K_{1704} = 0101\ 1001\ 1111\ 0011\ 0011\ 1111\ 1100\ 0000\ 1111\ 0000\ 1010\ 0101\ 1001\ 0101\ 0000\ 1111$

 $M_{1704} = 1100\ 0001\ 1100\ 1110\ 0101\ 1100\ 0001\ 0101\ 0100\ 0011\ 0001\ 0010\ 1001\ 0101\ 1000\ 1100$

Please refer to the solution script for more details on NSUCRYPTO2024 Problem 2.