MS101 - 2023-24/II Spring

Midsem Examination (Feb 28, 2024)

EE Questions and Solutions

Total marks: 38.5

Q-1 Which of the following unregulated DC power supplies has the highest peak-to-peak ripple voltage?	1 mark
A) An unregulated DC power supply made of a half-wave rectifier with load resistance R_L = 2 k Ω and a filter capacitance C = 100 μ F.	
b) An unregulated DC power supply made of a half-wave rectifier with load resistance R_L = 2 k Ω and a filter capacitance C = 1000 μ F.	
c) An unregulated DC power supply made of a bridge rectifier with load resistance R_L = 2 k Ω and a filter capacitance C = 100 μ F.	
d) An unregulated DC power supply made of a bridge rectifier with load resistance R_L = 2 k Ω and a filter capacitance C = 1000 μF .	
Answer:	Α
Q–2 A DC power supply is made using a step-down transformer (230 V rms to 15 V rms), and a half-wave rectifier circuit with a load resistance $R_L = 20~k\Omega$ and a filter capacitance $C = 1000\mu F$. You may assume the diode drop to be 0.6 V and the resistance of wires used for transformer windings to be negligible. What is the peak output voltage in volts?	1.5 marks
Answer:	20.61
Peak output voltage = $[15 \times \text{sqrt}(2)] - 0.6 = 21.21 - 0.6 = 20.61 \text{ V}$ (Accepted range: 20.6 to 21.22)	Range (20.6 to 21.22)
Q-3 Consider the binary number "10101011". This number is rotated right by 2 places. (For rotating right by one place, we move each bit one place to the right and bring the least significant bit of the original number to the most significant position). What is the rotated number in hexadecimal form?	2 marks
Answer: The binary number after rotating right two places: "11101010" Rotated number in hexadecimal: EA	EA
Q-4 Consider the hexadecimal number "FA". Write its value in decimal format if it is interpreted as: A) an unsigned number B) a signed number.	3 (=1.5 + 1.5) marks

Answer: A) Unsigned number: FA : 11111010 in decimal format is 250 B) Signed number: Find the 2's complement of 1111 1010 2's complement of is : 0000 0101 + 0000 0001 = 0000 0110 which is −6 Q-5 Write the hexadecimal equivalent of the decimal number 325. 1 mark Answer: 145 Q-6 The truth table for a logical function Fn is given below. Using Karnaugh map (use the given Karnaugh map format) obtain the minimized logic expression Fn. No. A B C D Fn 00 0 0 0 0 0 1 1 01 0 0 0 1 1 1 02 0 0 1 1 0 1 1 03 0 0 1 1 0 1 04 0 1 0 0 0 0 1 05 0 1 0 1 0 1 0 07 0 1 1 1 1 0 08 1 0 0 0 0 1 09 1 0 0 0 1 0 0 10 1 1 1 0 0 11 1 0 0 0 1 11 1 0 0 1 1 0 11 1 1 0 1 1 1 01 0 1 0		
FA : 11111010 in decimal format is 250 B) Signed number: Find the 2's complement of 1111-1010 2's complement of is : 0000 0101 + 0000 0001 = 0000 0110 which is 6 Q-5 Write the hexadecimal equivalent of the decimal number 325. 1 mark Answer: 145 Q-6 The truth table for a logical function Fn is given below. Using Karnaugh map (use the given Karnaugh map format) obtain the minimized logic expression Fn. No. A B C D Fn 00 0 0 0 0 0 1 1 1 01 0 0 0 1 1 0 1 02 0 0 1 1 0 1 03 0 0 1 1 1 1 04 0 1 1 0 0 0 0 1 05 0 1 1 0 1 1 1 0 07 0 1 1 1 1 0 08 1 0 0 0 0 1 0 10 1 0 1 0 1 0 0 11 1 1 0 0 1 0 1	Answer:	250
8) Signed number: Find the 2's complement of 1111 1010 2's complement of is: 0000 0101 + 0000 0001 = 0000 0110 which is 6 Q-5 Write the hexadecimal equivalent of the decimal number 325. 1 mark Answer: 145 Q-6 The truth table for a logical function Fn is given below. Using Karnaugh map (use the given Karnaugh map format) obtain the minimized logic expression Fn. No. A B C D Fn 00 0 0 0 0 0 1 1 01 0 0 0 1 1 1 02 0 0 1 1 0 1 1 03 0 0 1 1 1 1 04 0 1 0 0 0 0 1 05 0 1 0 1 1 1 1 06 0 1 1 1 0 0 0 07 0 1 1 1 1 0 0 08 1 0 0 0 1 0 1 09 1 0 0 0 1 0 11 1 1 0 1 1 0 1 01 0 1 0 1		
Find the 2's complement of 1111-1010 2's complement of is: 0000 0101 + 0000 0001 = 0000 0110 which is 6 Q-5 Write the hexadecimal equivalent of the decimal number 325. 1 mark Answer: 145 Q-6 The truth table for a logical function Fn is given below. Using Karnaugh map (use the given Karnaugh map format) obtain the minimized logic expression Fn. No. A B C D Fn 00 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0		
2's complement of is : 0000 0101 + 0000 0001 = 0000 0110 which is -6 Q-5 Write the hexadecimal equivalent of the decimal number 325. 1 mark Answer: 145 Q-6 The truth table for a logical function Fn is given below. Using Karnaugh map (use the given Karnaugh map format) obtain the minimized logic expression Fn. No. A B C D Fn Fn 00 0 0 0 1 00 0 0 0 1 1 00 0 0 1 1 1 00 0 0 1 1 1 00 0 0 1 1 1 00 0 1 1 1 1 00 0 1 1 1 0 0 05 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 <td< td=""><td>. •</td><td>-6</td></td<>	. •	-6
Q-5 Write the hexadecimal equivalent of the decimal number 325. Answer: 145 Q-6 The truth table for a logical function Fn is given below. Using Karnaugh map (use the given Karnaugh map format) obtain the minimized logic expression Fn. No. A B C D Fn 00 0 0 0 0 0 1 1 1 01 0 0 0 0 1 1 1 1	·	
Q-6 The truth table for a logical function Fn is given below. Using Karnaugh map (use the given Karnaugh map format) obtain the minimized logic expression Fn. No. A B C D Fn	2's complement of is : 0000 0101 + 0000 0001 = 0000 0110 which is -6	
Q-6 The truth table for a logical function Fn is given below. Using Karnaugh map (use the given Karnaugh map format) obtain the minimized logic expression Fn. No. A B C D Fn	O. E. Write the heyadecimal equivalent of the decimal number 225	1 mark
Q-6 The truth table for a logical function Fn is given below. Using Karnaugh map (use the given Karnaugh map format) obtain the minimized logic expression Fn. No. A B C D Fn Fn	Q-5 Write the nexadecimal equivalent of the decimal number 525.	1 IIIdi K
Q-6 The truth table for a logical function Fn is given below. Using Karnaugh map (use the given Karnaugh map format) obtain the minimized logic expression Fn. No. A B C D Fn	Δnswer·	145
Karnaugh map format) obtain the minimized logic expression Fn.	Allower.	143
Karnaugh map format) obtain the minimized logic expression Fn.		
Karnaugh map format) obtain the minimized logic expression Fn.	Q-6 The truth table for a logical function Fn is given below. Using Karnaugh map (use the given	4 (=2 + 2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		` '
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AD CD 00 01 11 10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Answer: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Answer: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Answer:	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
00 1 1 1 1 1 1 1 1 1		
	00 1 1 1 1 1 1 1 0 1 0 0	

$AB\downarrow CD\rightarrow$	UU	UI	11	10
00	1	1	1	1
01	0	1	0	0
11	0	1	0	0
10	1	0	0	0

AB		CD	>	
Y	00	01	11	10
00	1	1	1	1
01	0	1	0	0
11	0	1	0	0
10	1	0	0	0

 $F_n = \overline{A} \cdot \overline{B} + \overline{B} \cdot \overline{C} \cdot \overline{D} + B \cdot \overline{C} \cdot D$

Marking scheme:

- Correct K-map entries: 2 marks (0.5 marks deducted for each wrong entry)
- Correct circling of entries: 1 mark (0.5 marks deducted for each wrong or missing circling)
- Final expression: 1 mark (0.5 marks deducted for each incorrect/missing term)

Q-7 You are given a 4-bit number ABCD where A is the most significant bit. Obtain the logic expression F which will evaluate to TRUE only when the number represented by ABCD is exactly divisible either by 3 or by 7.

6 (=2 + 2 + 2) marks

- A) Write the truth table for the logical expression Fn.
- B) Using Karnaugh map (use the given Karnaugh map format) obtain the minimized logic expression Fn.

$AB\downarrow CD\rightarrow$	00	01	11	10
00				
01	1			T
11	Į.		7)	
10	1	9		

Answer:

A) Truth Table

No.	A	В	С	D	Fn
00	0	0	0	0	0
01	0	0	0	1	0
02	0	0	1	0	0
03	0	0	1	1	1
04	0	1	0	0	0
05	0	1	0	1	0
06	0	1	1	0	1
07	0	1	1	1	1
08	1	0	0	0	0
09	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	1

B) K-map entries, K-map minimization and the minimized Fn

Karnaugh

$AB\downarrow CD\rightarrow$	00	01	11	10
00	0	0	1	0
01	0	0	1	1
11	1	0	1	1
10	0	1	0	0

Map

 $F_n = B \cdot C + \overline{A} \cdot C \cdot D + A \cdot B \cdot \overline{D} + A \cdot \overline{B} \cdot \overline{C} \cdot D$

Marking scheme:

- Correct Truth table: 2 marks (0.5 marks deducted for each wrong entry)
- Correct K-map entries: 1 mark (0.5 marks deducted for each wrong or missing entries)
- Correct circling of entries: 1 mark (0.5 marks deducted for each wrong or missing circling)
- Final expression: 2 marks (0.5 marks deducted for each incorrect/missing term)

newValue = map (oldValue, fromRangelow, fromRangehigh, toRangelow, toRangehigh). What will be the returned value if the map function is called with the following arguments: 10.1 A) 512, 0, 1023, 0, 255 10.2 B) 100, 0, 1023, 255, 0 Answer 10.1 A) Straight mapping: Returned value computation = (512/1023) x 255 = 127.6 Actual value returned = 127 10.2 B) Reversed destination range: Returned value computation = [(100 – 1023) /1023] x 255 = 230.07 Actual value returned = 230 C – 11 The "analogWrite" function in Arduino library provides a pulse width modulated output Mai	27 ge 127 128) 30 ge 230 230) rks 3 5+1.5)
What will be the returned value if the map function is called with the following arguments: 10.1 A) 512, 0, 1023, 0, 255 10.2 B) 100, 0, 1023, 255, 0 Answer 10.1 A) Straight mapping: Returned value computation = (512/1023) x 255 = 127.6 Actual value returned = 127 10.2 B) Reversed destination range: Returned value computation = [(100 – 1023) /1023] x 255 = 230.07 Actual value returned = 230 C – 11 The "analogWrite" function in Arduino library provides a pulse width modulated output Mai	ge 127 128) 30 ge 230 230)
10.1 A) 512, 0, 1023, 0, 255 10.2 B) 100, 0, 1023, 255, 0 Answer 10.1 A) Straight mapping: Returned value computation = (512/1023) x 255 = 127.6 Actual value returned = 127 10.2 B) Reversed destination range: Returned value computation = [(100 – 1023) /1023] x 255 = 230.07 Actual value returned = 230 Q – 11 The "analogWrite" function in Arduino library provides a pulse width modulated output Mai	ge 127 128) 30 ge 230 230)
Answer 10.1 A) Straight mapping: Returned value computation = (512/1023) x 255 = 127.6 Actual value returned = 127 10.2 B) Reversed destination range: Returned value computation = [(100 – 1023) /1023] x 255 = 230.07 Actual value returned = 230 Q – 11 The "analogWrite" function in Arduino library provides a pulse width modulated output Mai	ge 127 128) 30 ge 230 230)
A) Straight mapping: Returned value computation = (512/1023) x 255 = 127.6 Actual value returned = 127 10.2 B) Reversed destination range: Returned value computation = [(100 – 1023) /1023] x 255 = 230.07 Actual value returned = 230 Q-11 The "analogWrite" function in Arduino library provides a pulse width modulated output Mai	ge 127 128) 30 ge 230 230)
A) Straight mapping: Returned value computation = (512/1023) x 255 = 127.6 Actual value returned = 127 10.2 B) Reversed destination range: Returned value computation = [(100 – 1023) /1023] x 255 = 230.07 Actual value returned = 230 Q-11 The "analogWrite" function in Arduino library provides a pulse width modulated output Mai	ge 127 128) 30 ge 230 230)
Actual value returned = 127 10.2 B) Reversed destination range: Returned value computation = [(100 – 1023) /1023] x 255 = 230.07 Actual value returned = 230 Q – 11 The "analogWrite" function in Arduino library provides a pulse width modulated output Mai	128) 30 ge 230 230) rks 3
Returned value computation = $[(100 - 1023) /1023] \times 255 = 230.07$ (Rang Actual value returned = 230 to 2	ge 230 230) rks 3
Actual value returned = 230 to 2 Q – 11 The "analogWrite" function in Arduino library provides a pulse width modulated output Mai	230) rks 3
Q – 11 The "analogWrite" function in Arduino library provides a pulse width modulated output Mai	rks 3
- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	
- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	
$\frac{1}{1}$ a specified pin. It divides 2113 in 255 time slots and if H is the $\frac{1}{1}$ value given to the	5 (1.5)
function, the output is at 5 V for <i>n</i> slots and at 0 V for the remaining 255- <i>n</i> slots. What value	
should we choose for <i>n</i> if we want the average of the output to be close to:	
11.1 A) 1.0 V	
11.2 B) 2.9 V	
Answer 5	51
A) (n/255) x 5= 1 V, n = 51	
B) (n/255) x 5= 2.9 V, n = 147.9, rounded to 148	48
2. 42. Assume that an Auglan to Digital Conventor (ADC) is designed to govern the digital value.	-d 2
	rks 3 L + 2)
voltage. The input voltage of the ADC varies from 0 to 5 V. The input voltage at a given instant is	. + 2)
3.45 V. What will be the ADC output in the binary form if the ADC is:	
, , , , , , , , , , , , , , , , , , , ,	
12.1 A) a 1-bit ADC	
12.2 B) a 4-bit ADC	
Answer	1
A) 1-bit ADC	•
1- bit ADC has 2 levels only and by definition it would represent signals between	
0 to 2.5 V as '0', and 2.5 to 5 as '1'. In this case, the true input value of 3.45 V would be	
interpreted as 2.5 V.	
ADC output = 1	
2) 41::420	
B) 4-bit ADC This ADC has 16 quantization levels, at intervals of 5/16 = 0.3125 V.	011
The actual value will lie between 11 x0.3125 = 3.4375 V and 12x0.3125 = 3.75 V.	
Nearest level less than the actual value is 3.4375	
ADC output (binary of 11) = 1011	
Q – 13 Simplify the following Boolean expressions: Mai	rks 3
,	5 +0.5
•	.+1)
13.3 C) X · (X + Y) =	
13.4 D) $X + \overline{X} \cdot Y =$	

Answer	
A) X+1 = 1	1
B) X + X = X	Х
C) $X \cdot (X + Y) = X$	X
D) $X + \overline{X} \cdot Y = X + Y$	X + Y
Q – 14 An R-S flip flop is initially in the Set state (i.e. Q=1). For the times t1, t2, t3, t4 and t5, the R and S inputs are varied as indicated below. Find the values of the output Q:	Marks 2.5 (= 0.5 x 5)
R R R R R R R R R R R R R R R R R R R	
14.2 B) Q output at time instant t2	
14.3 C) Q output at time instant t3	
14.4 D) Q output at time instant t4	
14.5 E) Q output at time instant t5	
Answer	
A) At t1, R = 1, S = 0. Hence Q = 0	0
B) At t2, R = 0, S = 1. Hence Q = 1	1
C) At t3, R = 1, S = 1. Hence Q = 0	0
D) At t4, R = 0, S = 1. Hence Q = 1	1
E) At t5, R = 0, S = 0. Hence Q = 1	1