ИИР НГУ

Теория параллелизма

Задание 2

Номер группы: 22930

ФИО:

Киреев Никита

Владимирович

Новосибирск, 2024 г.

Данные системы

Наименование и краткая характеристика узла

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Address sizes: 46 bits physical, 48 bits virtual

Byte Order: Little Endian

CPU(s): 80

On-line CPU(s) list: 0-79

Vendor ID: GenuineIntel

Model name: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz

CPU family: 6

Model: 85

Thread(s) per core: 2

Core(s) per socket: 20

Socket(s): 2

Stepping: 7

CPU max MHz: 3900.0000

CPU min MHz: 1000.0000

BogoMIPS: 5000.00

Caches (sum of all):

L1d: 1.3 MiB (40 instances)

L1i: 1.3 MiB (40 instances)

L2: 40 MiB (40 instances)

L3: 55 MiB (2 instances)

NUMA:

NUMA node(s): 2

NUMA node0 CPU(s): 0-19,40-59

NUMA node1 CPU(s): 20-39,60-79

Наименование сервера

ProLiant XL270d Gen10

NUMA node:

available: 2 nodes (0-1)

node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54 55 56 57 58 59

node 0 size: 385636 MB node 0 free: 175650 MB

node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 60 61 62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

node 1 size: 387008 MB node 1 free: 253026 MB

node distances:

node 0 1

0: 10 21

1: 21 10

Операционная система

PRETTY_NAME="Ubuntu 22.04.3 LTS"

NAME="Ubuntu"

VERSION_ID="22.04"

VERSION="22.04.3 LTS (Jammy Jellyfish)"

VERSION_CODENAME=jammy

ID=ubuntu

ID_LIKE=debian

HOME URL="https://www.ubuntu.com/"

SUPPORT_URL="https://help.ubuntu.com/"

BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"

PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"

 $UBUNTU_CODENAME=jammy$

Задание 1

Таблица и графики масштабируемости представлены на следующем листе.

Вывод о масштабируемости: масштабируемость присутствует, но низкого качества, т. к. при экстенсивном наращивании мощностей (увеличении кол-ва используемых потоков) кривые графиков ускорений ниже линейного.

Приложения

		Количество потоков													
N = M	1	2		4		7		8		16		20		40	
	T ₁	T ₂	S ₂	T ₄	S ₄	T ₇	S ₇	T ₈	S ₈	T ₁₆	S ₁₆	T ₂₀	S ₂₀	T ₄₀	S ₄₀
20000 (~3 GiB)	2,01	1,01	1,99	0,64	3,14	0,37	5,43	0,35	5,74	0,18	11,17	0,17	11,82	0,12	16,75
40000 (~12 GiB)	7,83	4,00	1,96	2,54	3,08	1,47	5,33	1,09	7,18	1,00	7,83	0,88	8,90	0,35	22,37

Страница 1

Задание 2

Таблица и графики масштабируемости представлены на следующем листе.

Вывод о масштабируемости: масштабируемость присутствует на малом участке кол-ва потоков (до 4, после присутствует снижение ускорения), низкого качества, т. к. при экстенсивном наращивании мощностей (увеличении кол-ва используемых потоков) кривые графиков ускорений ниже линейного. Но, поскольку ускорения слишком малы с учётом количества используемых потоков и уменьшения этого ускорения, признаю отсутствие масштабируемости для данной задачи с данными параметрами.

Лист1

		Количество потоков													
nsteps 1		2		4		7		8		16		20		40	
	T ₁	T ₂	S ₂	T ₄	S ₄	T ₇	S ₇	T ₈	S ₈	T ₁₆	S ₁₆	T ₂₀	S ₂₀	T ₄₀	S ₄₀
40000000	0,27	0,21	1,32	0,19	1,41	0,20	1,39	0,19	1,45	0,25	1,08	0,24	1,12	0,25	1,08

Страница 1

Задание 3

Предисловие. Максимально для программы доступно 320 потоков (выявлено эмпирически) при 80-ти ядрах, каждое из которых поддерживает по 2 потока. Значит, при используемых потоках больше 80-ти наступит замедление из-за использования псевдопараллельных потоков. Также следует понимать, что сервером пользуются другие студенты, существуют операционные процессы. Потому замедление должно проявляться при количестве потоков даже меньших 80-ти.

Таблица и графики масштабируемости представлены на следующем листе.

Вывод о масштабируемости: масштабируемость присутствует до 40 используемых потоков. т. к. при экстенсивном наращивании мощностей (увеличении кол-ва используемых потоков) кривые графиков ускорений ниже линейного и не убывают (не считая один «выброс» на втором варианте при 20-ти потоках), но следует заметить, что до 16-ти потоков кривая близка к линейному ускорению, что характеризует качественную масштабируемость. Как и было сказано в предисловии, на 80-ти потоках действительно начинается снижение производительности и ускорения соответственно.

При использовании директив с различными параметрами в schedule(...) при 40 потоках, тау = 0.0005, эпсилон = 0.00001 была выявлена самая быстродействующая в условиях данной задачи: schedule(static, 20).

В итоге использование обоих вариантов приближённо равноценное и целесообразное.

Приложения

						Ko	оличес	тво по	отоков						
N = 3990 1		2		4		7		8		16		20		40	
	T ₁	T ₂	S ₂	T ₄	S ₄	T ₇	S ₇	T ₈	S ₈	T ₁₆	S ₁₆	T ₂₀	S ₂₀	T ₄₀	S ₄₀
Variant 1	59,39	30,39	1,95	15,76	3,77	9,15	6,49	7,98	7,45	4,22	14,09	3,51	16,94	2,52	23,58
Variant 2	56,68	29,68	1,91	15,75	3,60	9,12	6,21	8,08	7,01	4,19	13,54	4,40	12,89	2,54	22,33

	Количество потоков										
N = 3990	8	80	1	60	320						
	T ₈₀	S ₈₀	T ₁₆₀	S ₁₆₀	T ₃₂₀	S ₃₂₀					
Variant 1	3,23	18,41	4,93	12,04	5,31	11,18					
Variant 2	3,10	18,26	5,53	10,26	5,65	10,02					

Приложения

Приложение

	N = 3990	Threads = 40						
Параметр	tau = 0.0005	epsilon = 0.00001						
static, 1	3,5851							
static, 2	3,50	09792						
static, 5	3,3	6014						
static, 10	3,22	29107						
static, 20	3,1	71155						
static, 40	3,1	3,172664						
static, 80	3.44	44238						
dynamic, 1	6,151515							
dynamic, 2	4,701236							
dynamic, 5	4,567894							
dynamic, 10	4,177951							
dynamic, 20	3,888567							
dynamic, 40	segmentation fault							
dynamic, 80	segmen	tation fault						
guided, 1	4,43	38105						
guided, 2	4,34	42715						
guided, 5	4,132234							
guided, 10	3,880632							
guided, 20	segmentation fault							
guided, 40	segmen	tation fault						
guided, 80	segmentation fault							