Number Theory - Some Problems & Solutions

Sudev Naduvath

Problem 1. For all integers n > 1, show that the numbers $n^4 + 4$ and $8^n + 1$ are composite.

Sol: consider the integer $n^4 + 4$, where n > 1. Then,

$$n^{4} + 4 = (n^{2})^{2} + 2^{2}$$

$$= (n^{2} + 2)^{-}(2n)^{2} \qquad (as \ a^{2} + b^{2} = (a + b)^{2} - 2ab)$$

$$= (n^{2} + 2 - 2n)(n^{2} + 2 + 2n) \qquad (as \ a^{2} - b^{2} = (a + b)(a - b)$$

That is, $n^4 + 4$ is a product of two integers and hence is not a prime.

From the factorization, we have $a^3 + 1 = (a+1)(a^2 - a + 1)$. Therefore, by a=2n we have

$$8^{n} + 1 = (2^{3})^{n} + 1$$
$$= (2^{n})^{3} + 1$$
$$= (2^{n} + 1)(2^{2n} - 2^{n} + 1).$$

Since 2n > 1 for any $n \in \mathbb{N} \cup \{0\}$ and $2^n + 1 = 8^n + 1 \iff n = 0$, we have $2^n + 1$ is a proper divisor of $8^n + 1$ for any $n \in \mathbb{N}$. Thus, $8^n + 1$ is composite.

Problem 2. Prove or disprove: The sum of squares of two odd integers cannot be a perfect square.

Sol: Assume to the contrary that the sum of the squares of two odd integers can be the square of an integer. Suppose that $x, y, z \in \mathbb{Z}$ such that $x^2 + y^2 = z^2$, and x and y are odd. Since x and y are odd, both x^2 and y^2 are odd and hence $x^2 + y^2$ must be even.

Let x = 2m + 1 and y = 2n + 1. Hence,

$$x^{2} + y^{2} = (2m+1)^{2} + (2n+1)^{2}$$

= $4m^{2} + 4m + 1 + 4n^{2} + 4n + 1$

$$= 4(m^2 + n^2) + 4(m+n) + 2$$
$$= 2[2(m^2 + n^2) + 2(m+n) + 1]$$

Since $2(m^2 + n^2) + 2(m + n) + 1$ is odd, which is a contradiction to the fact that $x^2 + y^2$ is even. Hence, the sum of the squares of two odd integers cannot be the square of an integer.

Problem 3. Prove or disprove: The product of four consecutive integers is 1 less than a perfect square.

Sol: Let the numbers be n, n+1, n+2, n+3. Therefore,

$$n(n+1)(n+2)(n+3) = n^4 + 6n^3 + 11n^2 + 6n.$$
 (1)

If this last expression is a perfect square, it must be the square of something of the form $n^2 + an + b$ for some a and b. Squaring $n^2 + an + b$, we get

$$(n^2 + an + b)^2 = n^4 + 2an^3 + (a^2 + 2b)n^2 + (2ab)n + b^2.$$
 (2)

Comparing Equations (1) and (2) and equating the coefficients of the RHS of these equations, we get 2a = 6, a2 + 2b = 11, 2ab = 6, $b^2 = 1$.

Solving these equations, we get a = 3, b = 1. Therefore, we have

$$n(n+1)(n+2)(n+3) = (n^2 + 3n + 1)^2 - 1$$

as required. \Box

Problem 4. Prove or disprove: There is an infinite number of primes.

Sol: Assume there are a finite number, say $p_i, 1 \leq i \leq n$, of primes and let p_n the largest of those primes. Consider the number that is the product of these, plus one: $N = p_1 p_2 \dots p_n + 1$. By construction, N is not divisible by any of the p_i . Hence it is either prime itself, or divisible by another prime greater than p_n , contradicting the assumption that p_n is the largest prime. Hence, there are infinite number of primes.

Problem 5. A certain numbers of sixes and nines are added to give a sum of 126. If the numbers of sixes and nines are interchanged, the new sum is 114. How many of each were there originally?

Sol: Let the number of sixes be x and number of nines be y. Then, we get the equations 6x + 9y = 126 and 9x + 6y = 114. Solving for x and y, (use Diophantine Equations method to solve these equations. The solution is left to the learner.

Problem 6. Divide 100 into two summands such that one is divisible by 7 and the other is divisible by 11.

Sol: Let 100 = m + n, where $7 \mid m$ and $11 \mid n$. Then, m = 7x and n = 11y for some integers x and y and hence we have 7x + 11y = 100, which a Diophantine equation. Rest of the solution is left to the learner.

Problem 7. A small clothing manufacturer produces two styles of sweaters: cardigan and pullover. She sells cardigans for \$31 each and pullovers for \$28 each. If her total revenue from a day's production is \$1460, how many of each type might she manufacture in a day?

Sol: Let x denotes the number of cardigans and y denotes the number of pullovers manufactured. Then, we have 31x + 28y = 1460, which is a Diophantine equation. Rest of the solution is left to the learner.

Problem 8. Obtain three consecutive integers such that each integer having a square factor.

Sol: Let x, x+1, x+2 be the three required consecutive integers with square factors. Therefore, $2^2 \mid x, 3^2 \mid x+1$ and $5^2 \mid x+2$ (note that we are not taking $4^2 \mid x+2$ since if so, obviously $2^2 \mid x+2$, which is not possible).

Since $4 \mid x$, we have $x \equiv 0 \pmod{4}$. Since $9 \mid x+1$, we have $x \equiv -1 \pmod{9}$ or equivalently $x \equiv 8 \pmod{9}$. In a similar way, we have $25 \mid x+2$ and hence we have $x \equiv -2 \pmod{25}$ or equivalently, we have $x \equiv 23 \pmod{25}$.

Hence, we get a system of simultaneous linear congruences

$$x \equiv 0 \pmod{4}$$

$$x \equiv 8 \pmod{9}$$

$$x \equiv 23 \pmod{25}$$

We can use the Chinese remainder Theorem to find the solution of the above system of linear congruences and the rest of the solution is left to the learner. \Box

Problem 9. Obtain three consecutive integers such that the first of which is divisible by a square, the second of which is divisible by a cube and the third is divisible by a fourth power.

Sol: Here, we want to find the integer x such that $5^2 \mid x, 3^3 \mid x+1$ and $2^4 \mid x+2$. Then,

(i)
$$5^2 \mid x \implies x \equiv 0 \pmod{25}$$
.

(ii)
$$3^3 \mid x+1 \implies x \equiv -1 \pmod{27} \implies x \equiv 26 \pmod{27}$$
.

(iii
$$2^4 \mid x+2 \implies x \equiv -2 \pmod{16} \implies x \equiv 14 \pmod{16}$$
.

Hence, we get a system of simultaneous linear congruences

$$x \equiv 0 \pmod{25}$$

$$x \equiv 26 \pmod{27}$$

$$x \equiv 14 \pmod{16}$$

We can use the Chinese remainder Theorem to find the solution of the above system of linear congruences and the rest of the solution is left to the learner. \Box

Problem 10. What is the remainder when the sum $1^5 + 2^5 + 3^5 + \ldots + 99^5 + 100^5$ is divided by 4?

Sol: Note that

$$1^{5} \equiv 1 \pmod{4}$$

$$2^{5} \equiv 0 \pmod{4}$$

$$3^{5} \equiv 3 \pmod{4}$$

$$4^{5} \equiv 0 \pmod{4}$$

Therefore, $1^5 + 2^5 + 3^5 + 4^5 \equiv 1 + 3 \pmod{4} = 0 \pmod{4}$. Similarly,

$$5^{5} \equiv 1 \pmod{4}$$

$$6^{5} \equiv 0 \pmod{4}$$

$$7^{5} \equiv 3 \pmod{4}$$

$$8^{5} \equiv 0 \pmod{4}$$

Hence, $5^5 + 6^5 + 7^5 + 8^5 \equiv 1 + 3 \pmod{4} = 0 \pmod{4}$.

The pattern follows throughout and hence 0 is the remainder when $1^5 + 2^5 + 3^5 + \dots + 99^5 + 100^5$ is divided by 4.

Problem 11. For any integer a, show that $a^2 - a + 7$ ends in one of the digits 3, 7 or 9.

Sol:

Problem 12. If p is an odd prime, the use Fermat's theorem to prove that

(i)
$$1^{p-1} + 2^{p-1} + 3^{p-1} + \ldots + (p-1)^{p-1} \equiv 1 \pmod{p}$$
.

(ii)
$$1^p + 2^p + 3^p + \ldots + (p-1)^p \equiv 0 \pmod{p}$$
.

Sol: (i) Since p is an odd prime, $p \mid /a$ if a < p. Therefore, by Fermat's Theorem, $a^{p-1} \equiv 1 \pmod{p}$. Therefore, we have

$$1^{p-1} \equiv 1 \pmod{p}$$

$$2^{p-1} \equiv 1 \pmod{p}$$

$$3^{p-1} \equiv 1 \pmod{p}$$

$$\vdots \quad \vdots \quad \vdots$$

$$(p-1)1^{p-1} \equiv 1 \pmod{p}$$

Now adding all the above congruences, we have

$$1^{p-1} + 2^{p-1} + 3^{p-1} + \ldots + (p-1)^{p-1} \equiv (p-1) \pmod{p}$$

$$\equiv -1 \pmod{p}.$$

(ii) By Fermat's Theorem, for any integer $a \ a^p \equiv a \ (\text{mod } p)$. Therefore, we have

$$1^{p} \equiv 1 \pmod{p}$$

$$2^{p} \equiv 2 \pmod{p}$$

$$3^{p} \equiv 3 \pmod{p}$$

$$\vdots \quad \vdots \quad \vdots$$

$$(p-1)1^{p} \equiv (p-1) \pmod{p}$$

Now adding all the above congruences, we have

$$1^{p} + 2^{p} + 3^{p} + \ldots + (p)^{p} \equiv (1 + 2 + \ldots + (p - 1)) \pmod{p}$$
$$\equiv \frac{(p - 1)p}{2} \pmod{p}$$

Since p is an odd prime, p-1 is even and hence $\frac{p-1}{2}$ is an integer. Hence, we have $\frac{p-1}{2} \equiv 0 \pmod{p}$. Therefore, from the above two congruences, we have

$$1^p + 2^p + 3^p + \ldots + (p)^p \equiv 0 \pmod{p}.$$

Problem 13. Assuming that a and b are integers not divisible by the prime p, establish the following:

- (i) If $a^p \equiv b^p \pmod{p}$, then $a \equiv b \pmod{p}$.
- (ii) If $a^p \equiv b^p \pmod{p}$, then $a^p \equiv b^p \pmod{p^2}$.

5

- Sol: (i) We have $a^p \equiv a \pmod{p}$, by Fermat's Theorem. Then, by symmetry, we have $a \equiv a^p \pmod{p}$. Also, given that $a^p \equiv b^p \pmod{p}$. Then, by transitivity, we have Also, given that $a \equiv b^p \pmod{p}$. Again by Fermat's Theorem, we have $b^p \equiv b \pmod{p}$, Therefore, by transitivity we have $a \equiv b \pmod{p}$.
- (ii) Given that $a^p \equiv b^p \pmod{p}$. Therefore, by (i), we have $p \mid a b$ or equivalently, a = b + pk, for some positive integer k. Then, we have

$$a^{p} - b^{p} = (b + pk)^{p} - b^{p}$$

$$= \left[b^{p} + \binom{n}{1}b^{p-1}pk + \binom{n}{2}b^{p-2}(pk)^{2} + \dots + \binom{n}{n}(pk)^{n}\right] - b^{p}$$

$$= \binom{p}{1}b^{p-1}pk + \binom{p}{2}b^{p-2}(pk)^{2} + \dots + \binom{p}{p}(pk)^{n}$$

$$= p.b^{p-1}pk + \frac{p(p-1)}{2}b^{p-2}(pk)^{2} + \dots + (pk)^{n}$$

Note that every term in the above expression contains p^2 or higher powers of p and hence $p^2 \mid a^p - b^p$ or equivalently, $a^p \equiv b^p \pmod{p^2}$.