Analiza

Siruri si serii de numere reale 1. Numer reale $N = \{0,1,2,...\}, N* = IN \setminus \{0\}$ 1 12 , 12 ¢ Q Z = {..., -2, -1, 0, 1, 2, ...} $Q = \{ \frac{P}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \}$ Tie p, q ez* numer prime între ele Daca numarul
rational q este moderni a ecuatiei polinomiale au coeficienti a x + ... + a x + a = 0 a, a, ..., a, EZ, a, + 0, a, + 0 (nEN*) olunci:
1. p divide a.
g divide a. $a_{n}\left(\frac{P}{q}\right)^{n} + \dots + a_{1}\frac{P}{q} + a_{s}=0 \Rightarrow a_{n}p^{n} + \dots + a_{s}pq^{n-1} + a_{s}q^{s}=0$ => a, gn = -p.(an.pn-1+...+a, gn-1) => p divide do g =>p divide a.

Ex: a) \(\frac{12}{2} \notin \mathbb{Q}\) Arājām cā ecuatia x²-z=0 nu are nādācini rationale dan 1 = 12 este nadacina, lousi Jz & Q bresupen prin absurd cà PER est radacina a ec. => p/2 Si q/1=> == \ == \ == \ 2,-1,1,2\ absund! b) \$\frac{1}{3} + \sqrt{2} \noting \alpha $\lambda = \sqrt[3]{3 + \sqrt{2}} = 2$ $\lambda^3 = 3 + \sqrt{2} = 2$ $(\lambda^3 - 3)^2 = 2$ adica 2 est massacina ec. polinomiale X6-6x3+7=0 Daca $\frac{P}{q} \in \mathbb{Q}$ este o rádacina = $\frac{P}{7}$ Si $\frac{q}{1} = \frac{P}{q} \in \frac{9}{2} - 7$ -1,1,73 aleswod. c) IT, R& R Def: Multimea numerilor reale R este acea multime de numere care satisface axioma infimului si, respective axioma supremului. Lef: Tu A⊆R, A≠Ø a) MIN (A) = { x ∈ R / + a ∈ A , x ∈ a3 se numese

n, MAj(A) = { XEIR / \take a \ A > a3 se munistra majoranilar lui A init interior daca MIN(A) + Q c) A se numețe mân dacă c) și d) au loc simulan. di A se munește marg e) A se munique ma Axioma infimumului: Orice submultime nevida și marginità inferior A S R posedà (în R) un cel mai more minorant mmi margine interpart (infimum) a lui A, noted in A. Axioma suprumu du : Orice submultime nevida și marginità superion A S R Posedà (în R) un cel mai mic majorant mini mariginea superiorità (supremen) a lui A, notal Sup A. Ex: a) Multimea Or mu sotisface axioma infimumului sour a superimenti A = (-J2, J2) NQ $A = \{x \in Q \mid x^2 < 2\} \leq Q$ $MIN(A) = (-\infty, -5) \cap Q$ MAJ (A) = (JZ, +0) NQ

My A, Sup A? $MIN(A) = (-\infty, -52]; MAJ(A) = CJZ, +\infty)$ ing A = - JZEIR, sup A = JZEIR m = inf A <=> { m & MIN(A) W = inf A <=> { The MIN(A) arem m's m M = SUP A <=) { M & MAJ(A) W = SUP A <=) { Y M' & MAJ(A) arem M'>M Crap (caracterisones algebrica a inf si sup) $m = \inf_{A \le 1} A \le 3$ $\lim_{A \le 1} \forall x \in A, x \ge m$ $\lim_{A \le 1} \forall x \in A, x \ge m$ $\lim_{A \le 1} \forall x \in A, x \ge m$ Ex: A=IN, in IN=0, sup IN? IN numarginata Del: Consideram dova elemente -∞, + 00 € R avand urnatourele proprietati: YXER, - DCXC+D $X + \omega = \omega + X = \omega$, $X - \omega = -\omega + X = -\omega$ ∞ + ∞ = ∞ - ∞ = - ∞ $\frac{x}{\infty} = \frac{x}{-\infty} = 0$ $\infty \cdot \infty = (-\infty) \cdot (-\infty) = \infty$ ∞ · (-∞) = (-∞) · ∞ = -∞ $\forall \times >0$, $X \cdot \omega = \omega \cdot X = \omega$, $X \cdot (-\omega) = (-\omega) \cdot X = -\omega$ $X \cdot \infty = \infty \cdot X = -\infty$, $X \cdot (-\infty) = (-\infty) \cdot X = \infty$ Multimea R = R v \ - 00 \ v \ 03 se nunere multimea exinsõ a numeror reale. O_{ns} : a) $\mathbb{R} = (-\infty, +\infty)$, $\mathbb{R} = [-\infty, +\infty]$ b) bonnabarele operatione se définise: $\infty - \omega$, $-\omega + \omega$, $0 \cdot (\pm \omega)$, $(\pm \omega) \cdot 0$, $\pm \omega$ a) Daca A = R est nemargini inferior alunci infA = -00 b) Dace $A \subseteq \mathbb{R}$ ist numerignit superior of sup $A = +\infty$ c) in $\phi = +\infty$, sup $\phi = -\infty$

