10.4.ex.3

EE24BTECH11009 - Mokshith kumar

Question:

Find the roots of equation $2x^2 - 7x + 3 = 0$

Theoretical Solution:

Applying the Quadratic formula, we get

$$x_1 = \frac{5 + \sqrt{25 - 24}}{4} \tag{0.1}$$

$$x_1 = \frac{3}{2} \tag{0.2}$$

$$x_2 = \frac{5 - \sqrt{25 - 24}}{4} \tag{0.3}$$

$$x_2 = 1 \tag{0.4}$$

 \therefore The roots of the equation $2x^2 - 5x + 3 = 0$ are $x_1 = \frac{3}{2}$ and $x_2 = 1$

Computational Solution:

Newton-Raphson Method

1) Update Equation:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \tag{1.1}$$

- 2) Steps:
 - 1. Start with an initial guess x_0 .
 - 2. Define the function f(x) and its derivative f'(x).
 - 3. Iterate using:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 (2.1)

until convergence, i.e.,

$$|x_{n+1} - x_n| < \text{tolerance} \tag{2.2}$$

- 4. Stop if $f'(x_n)$ is close to zero to avoid division by zero.
- 3) Convergence Criteria: The method converges quadratically if the initial guess is sufficiently close to the root and $f'(x) \neq 0$.

For our question $f(x) = 2x^2 - 5x + 3$ and f'(x) = 4x - 5, on substituting we get

$$x_{n+1} = x_n - \frac{2x^2 - 5x + 3}{4x - 5} \tag{3.1}$$

Secant Method:

a) Update Formula:

$$x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$
(3.2)

- b) Steps:
 - 1. Start with two initial guesses x_0 and x_1 .
 - 2. Define the function f(x).
 - 3. Iterate using:

$$x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$
(3.3)

until convergence, i.e.,

$$|x_{n+1} - x_n| < \text{tolerance.} \tag{3.4}$$

- 4. Stop if $f(x_n) f(x_{n-1})$ is close to zero to avoid division by zero.
- c) Convergence Criteria: The method converges superlinearly and does not require the derivative f'(x).

Fig. 3.1: Roots of the quadratic equation $2x^2 - 5x + 3 = 0$

Finding Eigen-Value:

A general quadratic equation $ax^2 + bx + c$ is written in matrix form as

$$Matrix = \begin{pmatrix} 0 & -\frac{c}{a} \\ 1 & -\frac{b}{a} \end{pmatrix}$$
 (3.5)

For our question a = 2, b = -5 and c = 3, on substituting

$$Matrix = \begin{pmatrix} 0 & -\frac{3}{2} \\ 1 & \frac{5}{2} \end{pmatrix}$$
 (3.6)

QR-DECOMPOSITION:-GRAM-SCHMIDT METHOD

1) QR decomposition

$$A = QR \tag{1.1}$$

- a) Q is an $m \times n$ orthogonal matrix
- b) R is an $n \times n$ upper triangular matrix.

Given a matrix $A = [a_1, a_2, ..., a_n]$, where each a_i is a column vector of size $m \times 1$.

2) Normalize the first column of *A*:

$$q_1 = \frac{a_1}{\|a_1\|} \tag{2.1}$$

3) For each subsequent column a_i , subtract the projections of the previously obtained orthonormal vectors from a_i :

$$a_i' = a_i - \sum_{k=1}^{i-1} \langle a_i, q_k \rangle q_k \tag{3.1}$$

Normalize the result to obtain the next column of Q:

$$q_i = \frac{a_i'}{\|a_i'\|} \tag{3.2}$$

Repeat this process for all columns of A.

4) Finding R:-

After constructing the ortho-normal columns $q_1, q_2, ..., q_n$ of Q, we can compute the elements of R by taking the dot product of the original columns of A with the columns of Q:

$$r_{ij} = \langle a_j, q_i \rangle$$
, for $i \le j$ (4.1)

QR-Algorithm

1) Initialization

Let $A_0 = A$, where A is the given matrix.

2) QR Decomposition

For each iteration k = 0, 1, 2, ...:

a) Compute the QR decomposition of A_k , such that:

$$A_k = Q_k R_k \tag{2.1}$$

where:

- i) Q_k is an orthogonal matrix $(Q_k^{\top} Q_k = I)$.
- ii) R_k is an upper triangular matrix.

The decomposition ensures $A_k = Q_k R_k$.

b) Form the next matrix A_{k+1} as:

$$A_{k+1} = R_k Q_k \tag{2.2}$$

3) Convergence

Repeat Step 2 until A_k converges to an upper triangular matrix T. The diagonal entries of T are the eigenvalues of A.

4) The eigenvalues of matrix will be the roots of the equation.

Fig. 4.1: Roots of the quadratic equation $2x^2 - 5x + 3 = 0$