Limbaje formale, automate și compilatoare

Curs 9

- Analiza sintactică descendentă
 - Parser (Analizor de sintaxă) descendent general
- Gramatici LL(1)
 - Definiţie
 - Caracterizare
 - FIRST, FOLLOW
 - Tabela de parsare
 - Algoritmul de analiză sintactică LL(1)

Analizor sintactic descendent. Configurații

- O configuraţie (u#, γ#,π) este interpretată în felul următor:
 - -γ# este conţinutul stivei cu simbolul # la bază.
 - -u# este conţinutul intrării.
 - $-\pi$ este conținutul ieșirii.

Analizor sintactic descendent. Tranziții

- Dacă C este mulţimea configuraţiilor atunci ⊢⊆CxC este relaţia de tranziţie definită astfel:
 - (u#, A γ #, π) \vdash (u#, $\beta\gamma$ #, π r), unde r = A \rightarrow β \in P. (aplicare regulă, expandare)
 - (uv#, u γ #, π) \vdash (v#, γ #, π). (potrivire)
 - -(#, #, π) este configurație de acceptare dacă $\pi \neq \epsilon$.
 - O configurație c pentru care nu există c' astfel ca c⊢c' produce eroare.
 - ∘ Configurații inițiale: (w#, S#, ϵ) unde w∈T*

Exemplu

▶ 1.E \rightarrow E+T, 2.E \rightarrow T, 3.T \rightarrow T*F, 4.T \rightarrow F, 5.F \rightarrow (E), 6.F \rightarrow a

Intrare	Stivă	leşire
a+a*a#	E#	
a+a*a#	E+T#	1
a+a*a#	T+T#	12
a+a*a#	F+T#	124
a+a*a#	a+T#	1246
a*a#	T#	1246
a*a#	T*F#	12463
a*a#	F*F#	124634
a*a#	a*F#	1246346
a#	F#	1246346
a#	a#	12463466
#	#	12463466

Corectitudinea analizorului sintactic

- Teorema (de corectitudine a analizorului)
 - Fie gramatica redusă G=(N,T,S,P) şi w∈T*. Atunci, are loc (w#,S#,ε)⊢+(#,#,π) (acceptare) dacă şi numai dacă w∈L(G) şi π este o derivare exrem stângă a cuvântului w.

Lema 1

Dacă în analizorul sintactic descendent ataşat gramaticii G=(N,T,S,P) are loc calculul (uv#,uγ#,ε) $⊢^+(v\#,ψ\#,π)$, atunci în gramatica G are loc derivarea $γ^π⇒_{st}uψ$, oricare ar fi $u,v∈T^*$, $γ, ψ∈Σ^*, π∈P^*$.

Lema 2

- Dacă în gramatica G are loc derivarea γ^{π} ⇒_{st}uψ şi 1:ψ∈N∪{ε} atunci în parserul descendent are loc calculul: (uv#,uγ#,ε)⊢+(v#,ψ#,π), ∀v∈T*.
- Demonstrații: inducție după lungimea lui π

Observații

- Parserul este nedeterminist
- Există tipuri de gramatici pentru care este determinist?
- Construirea unei tabele de parsare

Gramatici LL(k)

- LL(k): Parsing from Left to right using Leftmost derivation and k symbols lookahead.
- Informal, o gramatică este LL(k) dacă tranziţia de tip "aplicare producţie" din parser se face cu o unică regulă A→β determinată prin următoarele k simboluri de la intrare.

Definiţie

- $k:\alpha$ reprezintă primele k simboluri din α (sau α dacă $|\alpha| < k$)
- α :k reprezintă ultimele k simboluri din α (sau α dacă $|\alpha| < k$)

Gramatici LL(k)

Defininiţie

- O gramatică independentă de context redusă este gramatică LL(k), k≥1, dacă pentru orice două derivări de forma:
 - $S \Rightarrow *_{st} u A \gamma \Rightarrow_{st} u \beta_1 \gamma \Rightarrow *_{st} u x$
 - $S \Rightarrow *_{st} u A \gamma \Rightarrow_{st} u \beta_2 \gamma \Rightarrow *_{st} u y$
- unde u, x, y \in T*, pentru care k:x = k:y, are loc $\beta_1 = \beta_2$.

Gramatici LL(k)

Teorema

Orice gramatică LL(k) este neambiguă.

Teorema

 Dacă G este o gramatică stâng recursivă, atunci nu există nici un număr k astfel încât G să fie LL(k).

Teorema

- Clasele de limbaje LL(k)formează o ierarhie infinită:
 - $\mathcal{LL}(0)\subset\mathcal{LL}(1)\subset\mathcal{LL}(2)\subset\ldots\subset\mathcal{LL}(k)\subset\mathcal{LL}(k+1)\subset\ldots$

Lema

 Există limbaje care nu sunt LL(k) pentru nici o valoare k∈N.

Gramatici LL(1). Caracterizare

Teoremă

- O gramatică G = (N, T, S, P) este gramatică LL(1) dacă și numai dacă pentru orice $A \in N$ și pentru orice două producții $A \rightarrow \beta_1 | \beta_2$ are loc:
- FIRST $(\beta_1 \text{ FOLLOW (A)}) \cap \text{FIRST } (\beta_2 \text{ FOLLOW (A)}) = \emptyset$

Tabela de parsare LL(1)

1.for($A \in N$) 2.for(a∈T∪{#}) • 3.M(A,a)= \emptyset ; ▶ 4.for($p=A \rightarrow \beta \in P$){ • 5.for($a \in FIRST(\beta) - \{\epsilon\}$) • 6.M(A,a)=M(A,a) \cup {(β ,p)}; 7.if(ε∈FIRST(β)){ 8.for(b∈FOLLOW(A)){ • 9.if(b== ϵ) M(A,#)=M(A,#) \cup {(β ,p)}; • 10.else $M(A,b)=M(A,b)\cup\{(\beta,p)\};$ }//endfor }//endif }//endfor 11.for($A \in N$) 12.for(a∈T∪{#}) • 13.if(M(A,a)= \varnothing) M(A,a)={eroare};

Exemplu

 \rightarrow S \rightarrow aSa | bSb | c

М	a	b	С	#	
S	(aSa, 1)	(bSb, 2)	(c, 3)	eroare	

S → aSa | bSb | a | b | c | ε

M	a	b	С	#	
S	(aSa, 1)	(bSb, 2) (c, 5)		(ε, 6)	
	(a, 3)	(b, 4)			
	(ε, 6)	(ε, 6)			

Parser LL(1)

- Configuraţia iniţială: (w#, S#, ε)
- Tranziţii
 - (u#, A γ #, π) \vdash (u#, $\beta\gamma$ #, π r), dacă M(A, 1:u#)=(β , r), (expandare)
 - $(uv\#, u\gamma\#,\pi) \vdash (v\#, \gamma\#,\pi)$ (potrivire)
 - $(\#, \#, \pi) \vdash \text{acceptare}, \text{dacă } \pi \neq \varepsilon \text{ (acceptare)}$
 - (au#, b γ #, π) \vdash eroare dacă a \neq b
 - $(u\#, A\gamma\#,\pi) \vdash eroare dacă M(A, 1:u\#) = eroare$

Exemplu

▶ 1. S → E, 2. S → B, 3. E → ε, 4. B → a, 5. B → begin SC end, 6. C → ε, 7. C → ;SC

X	FIRST(X)	FOLLOW(X)
S	a begin ϵ	end ; ϵ
E	3	end ; ϵ
В	a begin	end ; ε
С	; ε	end

M	a	begin	end	;	#
S	(B, 2)	(B, 2)	(E, 1)	(E, 1)	(E, 1)
E	eroare	eroare	(ε, 3)	(ε, 3)	(ε, 3)
В	(a, 4)	(begin SC end, 5)	eroare	eroare	eroare
C	eroare	eroare	(ε, 6)	(;SC, 7)	eroare

Intrare	Stivă	Acţiune	leşire	
begin a;;a end#	S#	expandare	2	
begin a;;a end#	B#	expandare	5	
begin a;;a end#	begin SC end#	potrivire		
a;;a end#	SC end#	expandare	2	
a;;a end#	BC end#	expandare	4	
a;;a end#	aC end#	potrivire		
;;a end#	C end#	expandare	7	
;;a end#	;SC end#	potrivire		
;a end#	SC end#	expandare	1	
;a end#	EC end#	expandare	3	
;a end#	C end#	expandare	7	
;a end#	;SC end#	potrivire		
a end#	SC end#	expandare	2	
a end#	BC end#	expandare	4	
a end#	aC end#	potrivire		
end#	C end#	expandare	6	
end#	end#	potrivire		
#	#	acceptare		

Eliminarea recursiei stângi

- Fie G = (N, T, S, P) o gramatică în formă redusă
- ▶ Fie A∈N imediat recursiv
- Fie $A \rightarrow A\alpha_1 |A\alpha_2| \dots |A\alpha_k| \beta_1 |\beta_1| \dots$ toate regulile care încep cu A. Fie P_A mulţimea acestor reguli.
- Gramatica G' unde A nu este recursiv imediat
 - G'=(N∪{A'}, T, S, P')
 - $P'=P-P_A \cup \{A' \rightarrow \alpha_1 A' | \alpha_2 A' | \dots \alpha_k A' |, A \rightarrow \beta_1 A' | \beta_2 A' | \dots \}$

Eliminarea recursiei stângi

- $E \rightarrow E + T \mid E T \mid T \mid T$
- $T \rightarrow T^*F \mid T/F \mid F$
- \rightarrow F \rightarrow (E) | a
- **▶** E → TE' | -TE'
- ▶ E' \rightarrow +T E'|-TE' | ϵ
- → T → FT'
- ▶ T' \rightarrow *FT' | /FT' | ε
- \rightarrow F \rightarrow (E) | a

Eliminarea recursiei stângi

X	FIRST(X)	FOLLOW(X)
E	(a -	ε)
E'	3 - +	ε)
T	(a	+ - ε)
T'	* / ε	+ - ε)
F	(a	*/+- ε)

M	a	+	-	*	/	()	#
E	(TE', 1)	eroare	(-TE', 2)	eroare	eroare	(TE', 1)	eroare	eroare
E'	eroare	(+TE',3)	(-TE', 4)	eroare	eroare	eroare	(ε, 5)	(ε, 5)
T	(FT', 6)	eroare	eroare	eroare	eroare	(FT', 6)	eroare	eroare
T'	eroare	(ε, 9)	(ε, 9)	(*FT',7)	(/FT',8)	eroare	(ε, 9)	(ε, 9)
F	(a, 11)	eroare	eroare	eroare	eroare	((E), 10)	eroare	eroare

Factorizare la stânga

- Factorizarea este o transformare aplicată asupra unei gramatici pentru a obţine o gramatică echivalentă, eventual LL(1)
- Dacă există producţiile
 - \circ A $\rightarrow \alpha \beta_1$, A $\rightarrow \alpha \beta_2$ cu $|\alpha| > 1$
- (deci gramatica nu este LL(1)), acestea se înlocuiesc cu $A \rightarrow \alpha A'$, A' un nou neterminal, şi producţiile $A' \rightarrow \beta_1$ şi $A' \rightarrow \beta_2$. Metoda de transformare se numeşte **factorizare la stânga**

Factorizare la stânga: Exemplu

- Fie gramatica
 - \circ S \rightarrow if E then S | if E then S else S | a
 - \circ E \rightarrow b
- factorizarea la stânga: $\alpha = if E then S$
- Gramatica echivalentă va fi
 - \circ S \rightarrow if E then S S' | a
 - S' \rightarrow else S | ϵ
 - \circ E \rightarrow b

Factorizare la stânga: Exemplu

M	a	ь	if	then	else	#
S	(a, 2)	eroare	(if E then S S', 1)	eroare	eroare	eroare
s'	eroare	eroare	eroare	eroare	(else S,3)	(ε, 4)
					(ε, 4)	
E	eroare	(b, 5)	eroare	eroare	eroare	eroare

- Prin factorizare nu este sigur că obţinem o gramatică LL(1).
- Putem rezolva ambiguitatea alegând regula S'→else S în M(S', else). Această alegere ar corespunde asocierii lui else pentru acel if precedent cel mai apropiat de el, soluţie adoptată de majoritatea limbajelor de programare.

Corectitudinea parserului LL(1)

- Este dovedită pe baza
 - Teoremei de corectitudine a parserului descendent general,
 - Teoremei de caracterizare a gramaticilor LL(1)
 - Modului în care a fost construită tabela de parsare