

第六讲 图论模型

周毓明

南京大学计算机科学与技术系

课程内容

- 1. 数学概念与模型
- 2. 实际案例与分析
- 3. 计算机典型应用

1. 数学概念与模型

- ① 图的基本概念
- ② 图的最小树
- ③ 最短路径问题

运筹学的分支

- 线性规划
- 整数规划
- 非线性规划
- 动态规划
- 多目标规划
- 随机规划
- 模糊规划等

- 图与网络理论
- 存储论
- 排队论
- 决策论
- 博弈论
- 排序与统筹方法
- ■可靠性理论等

图的基本概念

二部图(偶图)

图G=(V,E)的点集V可以分为两各非空子集X,Y,集 $X \cup Y=V,X \cap Y=\emptyset$,使得同一集合中任意两个顶点均不相邻,称这样的图为偶图

(a)明显为二部图,(b)也是二部图,但不明显,改画为(c)时可以清楚看出

图的基本概念

子图,部分图(支撑子图)

图 $G_1 = \{V_1, E_1\}$ 和图 $G_2 = \{V_2, E_2\}$ 如果有 $V_1 \subseteq V_2$ 和 $E_1 \subseteq E_2$ 称 G_1 是 G_2 的一个子图。 若有 $V_1 = V_2$, $E_1 \subseteq E_2$,则称 G_1 是 G_2 的一

个部分图(支撑子图)

图的基本概念

网络 (赋权图)

设图G=(V, E),对G的每一条边 (v_i,v_j) 相应赋予数量指标 w_{ij} , w_{ij} 称为边 (v_i,v_j) 的Q,赋予权的图Q 称为网络(或赋权图)。 权可以代表距离、费用、通过能力(容量)等等。

端点无序的赋权图称为无向网络,端点有序的赋权图称为<mark>有</mark> 向网络。

树: 无圈的连通图即为树

性质1: 任何树中必存在度为1的点。

性质2: n 个顶点的树必有n-1 条边。

 v_1 v_2 v_3 v_4

性质3: 树中任意两个顶点之间, 恰有且仅有一条链。

性质4: 树连通, 但去掉任一条边, 必变为不连通。

性质5: 树无回圈,但不相邻的两个点之间加一条边,恰

得到一个圈。

图的最小部分树(支撑树)

如果G2是G1的部分图,又是树图,则称G2是G1的部分树 (或支撑树)。树图的各条边称为树枝,一般图G1含有多 个部分树,其中树枝总长最小的部分树,称为该图的最小 部分树(或最小支撑树)

求树的方法: 破圈法和避圈法

破圈法

避圈法

赋权图中求最小树的方法: 破圈法和避圈法

破圈法: 任取一圈, 去掉圈中最长边, 直到无圈

边数 = n-1=5

得到最小树:

Min C(T)=15

避圈法:

去掉G中所有边,得到n个孤立点;然后加边。

加边的原则为:从最短边开始添加,加边的过程中不能形成圈,直到点点连通(即:n-1条边)

问题描述:

就是从给定的网络图中找出一点到各点或任意两点之间 距离最短的一条路 .

有些问题,如选址、管道铺设时的选线、设备更新、投资、某些整数规划和动态规划的问题,也可以归结为求最短路的问题。因此这类问题在生产实际中得到广泛应用

迪杰斯特拉(Dijkstra)标号算法的基本思路:

若序列 $\{v_s, v_1, ..., v_{n-1}, v_n\}$ 是从 v_s 到 v_t 间的最短路,则序列 $\{v_s, v_1, ..., v_{n-1}\}$ 必为从 v_s 到 v_{n-1} 的最短路。

假定 $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4$ 是 $v_1 \rightarrow v_4$ 的最短路,则 $v_1 \rightarrow v_2 \rightarrow v_3$ 一定是 $v_1 \rightarrow v_3$ 的最短路, $v_2 \rightarrow v_3 \rightarrow v_4$ 也一定是 $v_2 \rightarrow v_4$ 的最短路。

求网络图的最短路,设图的起点是 v_s ,终点是 v_t ,以 v_i 为起点 v_j 为终点的弧记为 (i,j) 距离为 d_{ij}

P标号(点标号): b(j) —起点 v_s 到点 v_i 的最短路长;

T标号(边标号): $k(i,j)=b(i)+d_{ij}$,

步骤:

- 1. 令起点的标号; b(s) = 0。
- 2. 找出所有 v_i 已标号 v_j 未标号的弧(边)集合 B={(i,j)} 如果这样的弧不存在或 v_i 已标号则计算结束;
- 3. 计算集合B中弧 $k(i, j)=b(i)+d_{ij}$ 的标号
- 4. 选一个点标号 $b(l) = \min_{j} \{k(i,j) | (i,j) \in B\}$, 在终点 v_l 处标号b(l), 返回到第2步。

求下图v1到v7的最短路长及最短路线

v7已标号,计算结束。从v1到v7的最短路长是11,

最短路线: $V_1 \rightarrow V_4 \rightarrow V_6 \rightarrow V_7$

求下图以到各点的最短距离及最短路线。

所有点都已标号,点上的标号就是v1到该点的最短距离,最短路线就是红色的链

2. 实际案例与分析

- ① 考试计划
- ② 过河安排
- ③ 设备更新

一个班级的学生共计选修A、B、C、D、E、F六门课程,其中一部分人同时选修D、C、A,一部分人同时选修B、C、F,一部分人同时选修B、E,还有一部分人同时选修A、B,期终考试要求每天考一门课,六天内考完,为了减轻学生负担,要求每人都不会连续参加考试,试设计一个考试日程表

以每门课程为一个顶点,共同被选修的课程之间用边相连,得图,按题意,相邻顶点对应课程不能连续考试,不相邻顶点对应课程允许连续考试,因此,作图的补图,问题是在图中寻找一条哈密顿道路,如C—E—A—F—D—B,就是一个符合要求的考试课程表

过河安排

一老汉带了一只狼、一只羊、一棵白菜想要从 南岸过河到北岸,河上只有一条独木舟,每次除 了人以外,只能带一样东西;另外,如果人不在, 狼就要吃羊,羊就要吃白菜,问应该怎样安排渡 河,才能做到既把所有东西都运过河去,并且在 河上来回次数最少?

过河安排

定义:

- 1) 人— M(Man), 狼— W(Wolf), 羊— G(Goat), 草— H(Hay)
- 2) 点—— v_i 和 u_i 表示河岸的状态
- 3) 边—— e_k 表示由状态 v_i 经一次渡河到状态 u_i
- 4) 权——边 e_k 上的权定为 1

过河安排

状态说明

 $v_1,u_1 = (M,W,G,H); v_2,u_2 = (M,W,G); v_3,u_3 = (M,W,H);$ $v_4,u_4 = (M,G,H); v_5,u_5 = (M,G)$

此游戏转化为在下面的二部图中求从 v_1 到 u_1 的最短路问题

某公司使用一台设备,在每年年初,公司就要决定是购买新的设备还是继续使用旧设备。如果购置新设备,就要支付一定的购置费,当然新设备的维修费用就低。如果继续使用旧设备,可以省去购置费,但维修费用就高了。请设计一个五年之内的更新设备的计划,使得五年内购置费用和维修费用总的支付费用最小。已知:

设备每年年初的价格表

年份	1	2	3	4	5
年初价格	11	11	12	12	13

设备维修费

使用年数	0-1	1-2	2-3	3-4	4-5
每年维修费用	5	6	8	11	18

解:将问题转化为最短路问题,如下图:用 v_i 表示"第i年年初购进一台新设备",弧(v_i , v_j)表示第i年年初购进的设备一直使用到第i年年初。

把所有弧的权数计算如下表,把权数赋到图中,再用 Dijkstra算法求最短路。

	1	2	3	4	5	6
1		16	22	30	41	59
2			16	22	30	41
3				17	23	31
4					17	23
5						18
6						

最终得到下图,可知, v_1 到 v_6 的距离是**53**,最短路径有两条: $v_1 \rightarrow v_3 \rightarrow v_6$ 和 $v_1 \rightarrow v_4 \rightarrow v_6$

3. 计算机典型应用

- ① 车联网中的协作通信问题
- ② 无线传感网中的数据收集
- ③ 其他应用…

(1) 单跳通信: 车辆直接和基站通信, V2I

(2) 双跳通信: 车辆以其他车辆作为中继和基站通信, V2V+V2I

限制条件: 每辆车只能作为一辆车的中继, 反之亦然

如何安排通信方案, 使得整个网络的通信(数据下载)速度最大?

从完全图G构造最大生成树T(spanning tree), 边上权值表示"下载速度"

- (1) 任何车辆必须和一个发送者(基站或者其他车辆)相连
- (2) 一个车辆最多仅能接收另一个车辆的数据,且该车辆和基站相连
- (3) 任何车辆最多只能为另一个车辆充当中继

如何从G构造T,使得树T上的权值之和最大?

穷举法: 枚举G的生成树,取权值之和最大的树

复杂性分析:假定N辆车,n辆为双跳通信,N-n辆为单跳通信

- (1) 选择n辆作为DV: C_N^n
- (2) 从其余N-n辆中选n俩作为RV(排列): A_{N-n}^n
- (3) 对任一 $0 < n \le N/2$, 组合数目为: $C_N^n A_{N-n}^n$

$$\sum_{n=1}^{\lfloor N/2 \rfloor} C_N^n A_{N-n}^n = \sum_{n=1}^{\lfloor N/2 \rfloor} \frac{N!}{n!(N-2n)!}$$

二部图法: 假定N辆车

(1) 构造二部图: 离基站远的n辆为双跳通信, 其余为单跳通信

(2) 二部图匹配: 找最优的V2V连接, 使得二部图权值之和最大

(3) 重复上述步骤, 找到最优的n

复杂性分析: $O(N^3 \log N)$

二部图法:假定N辆车

(1) 构造二部图: 离基站远的n辆为双跳通信, 其余为单跳通信

(2) 二部图匹配: KM算法, 针对对称的二部图

(3) 重复上述步骤, 找到最优的n

仿真实验

SIMULATION PARAMETERS

Parameter	Value		
Cell radius	500 m		
VE number	10 to 100		
Vehicle model	Microscopic model in [25]		
Max drive peed	126 km/h (35 m/s)		
Acceleration	2.6 m/s^2		
Deceleration	-4.5 m/s^2		
Link scheduling interval	1 s		
TTI	1ms		
Thermal Noise Density	-174 dB/Hz		
LTE-Advanced cor	nfiguration (V2I link)		
Carrier frequency	2 GHz		
Bandwidth	40 MHz		
Transmit power of BS	52 dBm for 40 MHz		
DSRC configu	ration (V2V link)		
Carrier frequency	5.9 GHz		
Bandwidth	5 MHz		
VE transmit power	20 dBm for 5 MHz		

Fig. 7. CDFs of the data rate with the MSR and BG-based schemes.

与"穷举法"相比, BG-based显著降低"低速"部分的车辆比例

Fig. 9. Average data rates and the data rates at 5% CDF with the MSR and BG-based schemes.

与"穷举法"相比,BG-based的平均速度相似

Fig. 9. Average data rates and the data rates at 5% CDF with the MSR and BG-based schemes.

与"穷举法"相比,BG-based的平均速度相似

与"穷举法"相比, BG-based的"低速"车辆数据传输速度是它的 的两倍左右

Fig. 10. Average data rate obtained by the non-cooperative and BG-based cooperative system under various VE numbers.

"中继"能改进数据传输速度

Fig. 12. Average destination vehicle number in the BG-based cooperative system under various VE numbers.

纵坐标:需要"中继"的车辆数目

横坐标: 总的车辆数目

更多细节参见

1450

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 4, MAY 2013

A Graph-Based Cooperative Scheduling Scheme for Vehicular Networks

Kan Zheng, Senior Member, IEEE, Fei Liu, Qiang Zheng, Wei Xiang, Senior Member, IEEE, and Wenbo Wang, Member, IEEE

单跳通信:移动收集器在候选收集点(传感器位置或者与传感器隔一跳的位置)接收数据

如何合理安排路径, 使得收集数据的总路径最短?

.

无线传感网中的数据收集

传感器集合 $S = \{s_1, s_2, ..., s_m\}$ 候选收集点集合 $L = \{l_0, l_1, ..., l_n\}, l_0$ 是开始点和终止点

对 $1 \le l_i \le l_n$, $nb(l_i) = \{s \mid s$ 是一跳之内可达的传感器}

求从*l*₀出发的收集点访问序列,使得:(1)每个传感器至少属于一个收集点的邻居集;(2)序列经过的路径长度最短

Minimize

$$\sum_{i,j\in L, i\neq j} c_{ij} x_{ij} \tag{1}$$

Subject to

$$\sum_{i \in L, i \neq j} x_{ij} = I_j \qquad \forall j \in L \tag{2}$$

$$\sum_{j \in L, j \neq i} x_{ij} = I_i \qquad \forall i \in L \tag{3}$$

$$\sum_{j \in nb(l_i)} I_i \ge 1 \qquad \forall j \in S \tag{4}$$

$$x_{ij} = \begin{cases} 1, & \text{if data-gathering tour contains arc } a_{ij} \\ 0, & \text{otherwise} \end{cases}$$

$$I_i = \begin{cases} 1, & \text{if data-gathering tour contains} \\ & \text{candidate polling point } l_i \\ 0, & \text{otherwise} \end{cases}$$

贪心算法

SPANNING TREE COVERING ALGORITHM

Spanning Tree Covering Algorithm

Create an empty set P_{curr}

Create a set U_{curr} containing all sensors

Create a set L containing all candidate polling points

while $U_{curr} \neq \Phi$

Find a polling point $l \in L$, which minimizes $\alpha = \frac{cost\{nb(l)\}}{|nb(l) \cap U_{curr}|}$

Cover sensors in nb(l)

Add the corresponding polling point of nb(l) into P_{curr}

Remove the corresponding polling point of nb(l) from L

Remove sensors in nb(l) from U_{curr}

end while

Find an approximate shortest tour on polling points in P_{curr}

小规模网络上的结果比较

"路径长度 vs. 节点数目"

大规模网络上的结果比较

"路径长度 vs. 节点数目"

路径长度 vs. 传感器分布面积

收集点数目 vs. 传感器分布面积

更多细节参见

1472

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 4, MAY 2013

Tour Planning for Mobile Data-Gathering Mechanisms in Wireless Sensor Networks

Ming Ma, Yuanyuan Yang, Fellow, IEEE, and Miao Zhao

自适应交通信号控制

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 4, MAY 2013

1459

Adaptive Traffic Signal Control With Vehicular Ad hoc Networks

Kartik Pandit, Dipak Ghosal, *Member, IEEE*, H. Michael Zhang, and Chen-Nee Chuah, *Senior Member, IEEE*

移动用户(mobile users)定位

1484

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 4, MAY 2013

Analysis of Wireless Localization in Nonline-of-Sight Conditions

Dawei Liu, Moon-Chuen Lee, Chi-Man Pun, Senior Member, IEEE, and Hongli Liu

63

基站信号调度

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 4, MAY 2013

1435

Application of Graph Theory to the Multicell Beam Scheduling Problem

Guido Dartmann, Student Member, IEEE, Xitao Gong, Student Member, IEEE, and Gerd Ascheid, Senior Member, IEEE

低的信号-干扰噪声比

高的信号-干扰噪声比

车联网中可靠的通信路由选择

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 4, MAY 2013

1493

An Evolving Graph-Based Reliable Routing Scheme for VANETs

Mahmoud Hashem Eiza and Qiang Ni, Senior Member, IEEE

(a)

65

小结

- ■二部图
- 支撑树(生成树)
- ■最短路径

Thanks for your time and attention!

