EE 456

Question: Design and train an ADALINE network to implement a 2-input OR gate using error based method **Solution:** The network will work on Bipolar Input, the function and the parameters are as follows:

- f(0) = 1 and $\alpha = 0.4$
- $\bullet \ Y_{in} = \sum_{i}^{n} W_i \times X_i + b$
- $W_{=}$ $\begin{bmatrix} 1 \\ -0.5 \\ 0.25 \end{bmatrix}$ initially, where $w_1 = 1, w_2 = -0.5$ and b = 0.25
- The truth table for the 2-input OR gate is as follows:

X_i	1	2	$(\vee)T_i$
1	-1	-1	-1
2	-1	1	1
3	1	-1	1
4	1	1	1

- Each X_i and T_i is a column vector.
- Error is calculated as: $E = 0.5 * \sum_{i=1}^{n} (T_i Y_i)^2$. Error should decrease after every cycle of input is applied.
- $W_{new} = W_{old} + \alpha \times X_i \times (T_i Y_{in})$
- $b_{new} = b_{old} + \alpha \times (T_i Y_{in})$

Calculations:

- First calculate error E.
 - 1. $Y_{1_{in}}$ is as follows:

$$y_{1_{in}} = f(w_1 * X_{11} + w_2 * X_{12} + b)$$

 $y_{1_{in}} = f(1*-1 + -0.5*-1 + 0.25) = f(-0.25) = -1 = T_1 \to \mathbf{ok}$

EE 456

2. Y_{2in} is as follows:

$$y_{2_{in}}=f(\ w_1*X_{21}+\ w_2*X_{22}+\ b\)$$

$$y_{2_{in}}=f(\ 1*-1\ +\ -0.5*1\ +\ 0.25)\ =\ f(-1.25)\ =\ -1\neq T_2\to {\rm not\ ok}$$

3. $Y_{3_{in}}$ is as follows:

$$y_{3_{in}} = f(w_1 * X_{31} + w_2 * X_{32} + b)$$

 $y_{3_{in}} = f(1 * 1 + -0.5 * -1 + 0.25) = f(1.75) = 1 = T_3 \to \mathbf{ok}$

4. Y_{4in} is as follows:

$$y_{4_{in}} = f(w_1 * X_{41} + w_2 * X_{42} + b)$$

 $y_{4_{in}} = f(1 * 1 + -0.5 * 1 + 0.25) = f(0.75) = 1 = T_4 \to \mathbf{ok}$

 \bullet Therefore error E is :

$$E = 0.5 * \sum_{i=1}^{n} (T_i - Y_i)^2.$$

$$E = 0.5 * [(T_1 - Y_1)^2 + (T_2 - Y_2)^2 + (T_3 - Y_3)^2 + (T_4 - Y_4)^2]$$

$$E = 0.5 * [(-1 - (-1))^2 + (1 - (-1))^2 + (1 - 1)^2 + (1 - 1)^2)]$$

$$E = 0.5 * 4 = 2$$

- We start from X_2 since Y_1 is ok according to current weight and bias. Since function on $Y_{2_{in}}$ is not equal to T_2 , we need to train the network
- Let's train:

1.
$$w_{1 \ new} = w_{1 \ old} + \alpha \times X_{21} \times (T_2 - Y_{2_{in}}) = 1 + 0.4 \times -1 \times 2.25 = 0.1$$

2.
$$w_{2 new} = w_{2 old} + \alpha \times X_{22} \times (T_2 - Y_{2in}) = -0.5 + 0.4 \times -1 \times 2.25 = 0.4$$

3.
$$b_{new} = b_{old} + \alpha \times (T_2 - Y_{2_{in}}) = 0.25 + 0.5 \times 2.25 = 1.15$$

4. Therefore,
$$W = \begin{bmatrix} 0.1\\ 0.4\\ 1.15 \end{bmatrix}$$

• Apply
$$X_3$$
, $y_{3_{in}} = f(0.1 - 0.4 + 1.15) = f(0.85) = 1 \to \mathbf{ok}$

• Apply
$$X_4$$
, $y_{4_{in}} = f(0.1 + 0.4 + 1.15) = f(1.65) = 1 \rightarrow \mathbf{ok}$

• Again start from
$$X_1$$
. Apply X_1 , $y_{1_{in}} = f(-0.1 - 0.4 + 1.15) = f(0.65) = 1 \to \text{not ok}$.

EE 456

• Let's train:

$$1. \ w_{1 \ new} = w_{1 \ old} \ + \ \alpha \times X_{11} \times (T_1 - Y_{1_{in}}) = 0.1 \ + \ 0.4 \times -1 \times -1.65 = \ 0.76$$

$$2. \ w_{2 \ new} = w_{2 \ old} \ + \ \alpha \times X_{12} \times (T_1 - Y_{1_{in}}) = 0.4 \ + \ 0.4 \times -1 \times -1.65 = \ 1.06$$

3.
$$b_{new} = b_{old} + \alpha \times (T_1 - Y_{1_{in}}) = 1.15 + 0.4 \times -1.65 = 0.49$$

4. Therefore ,
$$W = \begin{bmatrix} 0.76\\1.06\\0.49 \end{bmatrix}$$

• Apply
$$X_2$$
, $y_{2_{in}} = f(-0.76 + 1.06 + 0.49) = f(0.79) = 1 \to \mathbf{ok}$

• Apply
$$X_3$$
, $y_{3_{in}} = f(0.76 - 1.06 + 0.49) = f(0.19) = 1 \rightarrow **ok**$

• Apply
$$X_4$$
, $y_{4_{in}} = f(0.76 + 1.06 + 0.49) = f(2.31) = 1 \to \mathbf{ok}$

• Finally apply
$$X_1, y_{1_{in}} = f(-0.76 - 1.06 + 0.49) = f(-1.33) = -1 \rightarrow \mathbf{ok}$$

Therefore the network is set for 2-input OR gate and we do not need to train it further.