39 LES LOGIQUES

- La logique a été l'un des premiers formalismes proposés pour représenter de la connaissance.
- La logique est un moyen de :
 - description des objets et de leurs propriétés.
 - · de faire des raisonnements.
- Domaines d'application :
 - · Intelligence artificielle,
 - · Spécification et conception sûres,
 - Bases de données, ...

Représentation de Connaissances Ingéniérie des Connaissances

40 LES LOGIQUES

En général, on décrit une logique par les éléments suivants :

- syntaxe:
 - qu'est-ce qu'une formule ?
 - comment s'écrit-elle ?
- sémantique :
 - quel est le sens donné à chaque formule ?
- système de déduction :
 - une méthode de preuve pour déterminer si une formule est vraie.

41 LES LOGIQUES

- Les logiques les plus connues
 - La logique des propositions (LP)
 - La logique des prédicats du premier ordre

Représentation de Connaissances Ingéniérie des Connaissances

42 LA LOGIQUE DES PROPOSITIONS

- · Logique des propositions est définie par:
 - · un alphabet:
 - Symboles de propositions: P, Q, ... (phrases)
 - Phrases spéciales (valeurs):Vrai, Faux
 - Opérateurs: ∧ (et), ∨ (ou), ¬ (non), ⇒ (implique), ⇔ (équivalent)
 - des règles de construction de phrases: former énoncés plus complexes en utilisant les connecteurs logiques.
 - un calcul de valeurs de vérité pour ces phrases: par tables de vérités, par inférence, ...

Les phrases sont appelées des formules en logique.

43 LA LOGIQUE DES PROPOSITIONS

Exemple

- s'il fait beau et que l'on est pas vendredi alors je fais la cueillette des olives.
- si je fais la cueillette des olives alors c'est l'hiver

Ce problème peut être modélisé sous la forme suivante :

- variable propositionnelle b = il fait beau
- variable propositionnelle s = on est vendredi
- variable propositionnelle f = je fais la cueillette des olives
- variable propositionnelle p = c'est l'hiver

$$((b \land (\neg s)) \to f)$$
$$(f \to p)$$

Représentation de Connaissances Ingéniérie des Connaissances

44 LA LOGIQUE DES PROPOSITIONS

- La logique propositionnelle a un pouvoir expressif limité (contrairement au langage naturel par exemple)
- Exemples:
 - Tous les étudiants sont intelligents
 - · Tous les étudiants sont soit satisfaits ou pas par les cours de ce semestre
 - Chaque étudiant travaille avec un autre.
- Donc, la plupart de nos connaissances portent sur des individus, sur des classes d'individus, sur des relations entre individus.
- Utiliser la logique des prédicats du premier ordre

45 LOGIQUE DES PRÉDICATS DU PREMIER ORDRE

- Logique des prédicats du premier ordre
 - plus riche que LP,
 - · L'alphabet inclut des symboles de fonctions.
- Eléments de Syntaxe
 - un ensemble de variables x, y, ...,
 - un ensemble de constantes a, b, , ...,
 - les éléments V et F,
 - · un ensemble de fonctions f, g, ..., ayant chacun une arité,
 - un ensemble de prédicats P, Q, ..., ayant chacun une arité,
 - des connecteurs : la négation ¬, et des connecteurs binaires : Λ, V, ...
 - les quantificateurs ∀ et ∃.

Représentation de Connaissances Ingéniérie des Connaissances

46 LOGIQUE DES PRÉDICATS DU PREMIER ORDRE

- Par exemple, $\neg((\forall x)(\exists y)P(x,f(y),a))$, est une formule du premier ordre.
- (∀x) : quantification universelle ("pour tout x"),
- (∃x) : quantification existentielle (" il existe un x tel que")
- Si P est un prédicat d'arité n, P(X1,X2,...,Xn) est une formule atomique.

47 LOGIQUE DES PRÉDICATS DU PREMIER ORDRE

- Permet de modéliser le monde en termes d'objets, de relations entre objets, de propriétés des objets et de faits ou règles concernant ces relations et propriétés.
- Dans les formules logiques utilisées :
 - les constantes, variables et fonctions représentent des objets de la partie du monde ou du système modélisé
 - les symboles de prédicats représentent les relations entre objets ou, pour les prédicat unaires, le fait qu'un objet possède une propriété
 - les formules fermées représentent des faits particuliers (formules sans quantificateurs) ou et règles générales (formules quantifiées)

Représentation de Connaissances Ingéniérie des Connaissances

48 LOGIQUE DES PRÉDICATS DU PREMIER ORDRE

- On veut modéliser les relations entre personnes (connaissances, amitié, ...), le fait qu'une personne a envoyé un message à une autre personne, et les règles générales sur ces relations. On utilise le vocabulaire de prédicats
- prédicats : personne (unaire), message (ternaire), connait (binaire),
- constantes: Fatma, Omar, Ali (représentent des personnes), m1, m2, m3, ... (les messages)
- soient les faits suivants :
 - Fatma est une personne
 - le message m3 a été envoyé par Fatma à Ali
 - Ali connait Houda

49 LOGIQUE DES PRÉDICATS DU PREMIER ORDRE

- fl = personne(Fatma).
- f2 = message(m3, Fatma, Ali)
- f3 = connait(Ali, Houda).
- La représentation des règles générales de ce domaine passe par l'écriture de formules quantifiées.
- L'expéditeur et le destinataire d'un message sont forcément des personnes et elles doivent se connaître :
 - $f4 = \forall x \forall y \forall z \text{ (message(x, y, z)} \Rightarrow \text{personne(y)} \land \text{personne(z)} \land \text{connait(y, z))}.$
- Pour être dans le réseau il faut connaitre au moins une personne
 f5 = ∀x(personne(x) ⇒ ∃y connait(x, y)).

Représentation de Connaissances Ingéniérie des Connaissances A. Achroufene

50 LOGIQUE DES PRÉDICATS DU PREMIER ORDRE

- La programmation logique est née d'une analogie entre les expressions du langage logique et les langages de programmation, donnant naissance au langage PROLOG (En 1972).
- Inconvénient: la logique dite classique ne reconnait comme modalités que le vrai et le faux

51 LES LOGIQUES NON CLASSIQUES

Logique non classique:

- La logique floue: introduit des degrés dans la valeur de vérité d'une formule.
- Les logiques modales : introduisent :
 - des modalités telles que la possibilité ou la nécessité
 - · Exemple : un étudiant peut avoir un diplôme,
 - des modalités temporelles telles que le passé ou le futur
 - Exemple: un étudiant finira par avoir un diplôme.

Représentation de Connaissances Ingéniérie des Connaissances

52 LES LOGIQUES NON CLASSIQUES

Logique non classique:

- Les logiques non-monotones nées à partir des années 1970 introduisent la non-monotonie :
 - certaines formules peuvent être considérées comme prouvables dans un ensemble d'axiomes A, mais non prouvables dans un ensemble A' contenant A.
- Les logiques de défauts (exceptions)
 - Prise en considération des exception dans la modélisation
 - Exemple: tous les oiseaux volent, exception les autruches

- La logiques de description (LD) est une famille de langages de représentation de connaissances.
- Les LD sont influencées par:
 - · la logique des prédicats,
 - · les schémas (frames), et
 - · les réseaux sémantiques.
- La présence de catégories générales d'objets et de relations dans
 LD fait partie de l'héritage conceptuel des schémas et des réseaux sémantiques.

Représentation de Connaissances Ingéniérie des Connaissances

54 LOGIQUE DE DESCRIPTION

- Concept ⇔ entité générique d'un domaine
 - Un concept permet de représenter un ensemble d'individus
- - Un rôle représente une relation binaire entre individus.
- Un concept et un rôle possèdent une description structurée élaborée à partir de constructeurs
- Une sémantique est associée à chaque description de concept et de rôle par l'intermédiaire d'une interprétation.

55 PRINCIPES DES LD

Modélisation des connaissances d'un domaine :

- Représentation des concepts et des rôles relèvent du niveau terminologique ⇔TBox
- Description et manipulation des individus relèvent du niveau factuel ou niveau des assertions ABox

Représentation de Connaissances Ingéniérie des Connaissances

56 LOGIQUE DE DESCRIPTION

Exemple

TBox	ABox
$Femelle \sqsubseteq \top \sqcap \urcorner M \hat{a} l e$	Humain(Anne)
$M\hat{a}le \sqsubseteq \top \sqcap \neg Femelle$	Femelle(Anne)
$Animal \equiv M\hat{a}le \sqcup Femelle$	Femme(Sophie)
$Humain \sqsubseteq Animal$	Humain(Robert)
$Femme \equiv Humain \sqcap Femelle$	$\neg Femelle(Robert)$
$Homme \equiv Humain \sqcap \urcorner Femelle$	Homme(David)
$M\`{e}re \equiv Femme \sqcap \exists relation ParentEnfant$	relationParentEnfant(Sophie, Anne)
$P\`{e}re \equiv Homme \cap \exists relation ParentEnfant$	relationParentEnfant(Robert, David)
$M\grave{e}reSansFille \equiv M\grave{e}re\sqcap$	
$\forall relation Parent Enfant. \ \ Femme$	
$relationParentEnfant \sqsubseteq \top_R$	

57 PRINCIPES DES LD

- Organisation des concepts et rôles par la relation de subsomption par niveau de généralité:
 - C subsume D si C est plus général que D au sens que l'ensemble d'individus représenté par C contient l'ensemble d'individus représenté par D

 hiérarchie de concepts et (parfois) hiérarchie de rôles.
- Opérations de base : classification et instanciation.
 - Classification de concepts (ou rôles) et détermine la position d'un concept (d'un rôle) dans une hiérarchie. Construction et maintenance de la hiérarchie est assistée par le processus de classification.
 - L'instanciation permet de retrouver les concepts dont UN individu est susceptible d'être une instance (sens différent dans les langages à objet).

Représentation de Connaissances Ingéniérie des Connaissances

58 LOGIQUE DE DESCRIPTION

- Niveau terminologique (TBox)
 - Entités atomiques
 - Les concepts atomiques et rôles atomiques constituent les entités élémentaires d'une TBox.
 - Les noms débutant par une lettre majuscule désignent les concepts (par exemple : Femelle, Mâle), (A, B des concepts atomiques)
 - Les noms débutant par une lettre minuscule dénomment les rôles (par exemple : relationParentEnfant). (R dénote un rôle)
 - · Concepts et rôles atomiques prédéfinis

Les LD prédéfinissent minimalement quatre concepts atomiques :

- le concept T et le rôle T_R, les plus généraux de leur catégorie respective
- le concept \bot ainsi que le rôle \bot_R les plus spécifiques (l'ensemble vide).

Entités composées

- Les concepts et rôles atomiques peuvent être combinés au moyen de constructeurs pour former respectivement des concepts et des rôles composés. (C, D des concepts composés)
- Exemple I:
 - le concept composé *Mâle*□*Femelle* résulte de l'application du constructeur □ aux concepts atomiques *Mâle* et *Femelle*.
 - Il s'interprête comme l'ensemble des individus qui appartiennent aux concepts Mâle et Femelle.
- Les différentes LD se distinguent par les constructeurs qu'elles proposent.

Représentation de Connaissances Ingéniérie des Connaissances

60 LOGIQUE DE DESCRIPTION

Notion d'interprétation:

Pour expliciter formellement la sémantique d'une TBox.

Définition 1 (Interprétation)

Une interprétation $\mathcal{I}=(\Delta_{\mathcal{I}}, \mathcal{I})$ est la donnée d'un ensemble $\Delta_{\mathcal{I}}$ appelé domaine de l'interprétation et d'une fonction d'interprétation. \mathcal{I} qui fait correspondre à un concept un sous-ensemble de $\Delta_{\mathcal{I}}$ et à un rôle un sous-ensemble de $\Delta_{\mathcal{I}} \times \Delta_{\mathcal{I}}$, de telle sorte que les équations suivantes soient satisfaites:

Notion d'interprétation:

Pour expliciter formellement la sémantique d'une TBox.

Représentation de Connaissances Ingéniérie des Connaissances

62 LOGIQUE DE DESCRIPTION

Définition formelle de TBox

Une TBox contient des axiomes terminologiques de la forme $C \sqsubseteq D$ (relations d'inclusion) ou $C \equiv D$ (relations d'équivalence entre concepts).

- Une interprétation I satisfait un axiome $C \sqsubseteq D$ ssi $C^I \subseteq D^I$.
- Une interprétation I satisfait un axiome $C \equiv D$ ssi $C^I = D^I$.
- Une interprétation satisfait une TBox (est un modèle de TBox) ssi l'interprétation satisfait tous les axiomes de la TBox.

Niveau factuel (ABox)

- Une ABox contient un ensemble d'assertions sur les individus :
 - (I) des assertions d'appartenance et
 - (2) des assertions de rôle.
- Chaque ABox doit être associée à une TBox, car les assertions s'expriment en terme des concepts et des rôles de la TBox.
- Une ABox désigne des individus dans ses assertions par des noms qu'elle leur donne, dans le tableau 1 :Anne, David, Robert et Sophie.
- On utilise le terme *individu nommé* pour référer à ces noms : représente par les lettres a, b.
- Une fonction d'interprétation assigne à chacun de ces noms a, un individu a^I tel que $a^I \in \Delta_I$.

Représentation de Connaissances Ingéniérie des Connaissances

64 LOGIQUE DE DESCRIPTION LOGIQUE MINIMALE AL

On décrit une logique minimale nommée dans le sens où une logique moins expressive représente peu d'intérêt.

Les constructeurs d'AL

Les constructeurs offerts AL par pour l'édification de concepts composés.

$$C, D \longrightarrow A$$
 (concept atomique)

 $|\top$ (le concept universel)

 $|\bot$ (le concept le plus spécifique)

 $| \neg A$ (la négation atomique)

 $| C \sqcap D$ (l'intersection)

 $| \exists R. \top$ (quantification existentielle limitée)

 $| \forall R.C$ (quantification universelle complète)

 Le constructeur C⊔D permet de faire la conjonction de 2 concepts composés, i.e. représente l'ensemble des individus, membres des concept C et D pour une interprétation.

65 LOGIQUE DE DESCRIPTION LOGIQUE MINIMALE AL

• Le quantificateur existentiel non typé ∃R.T désigne l'ensemble des individus, membres du domaine d'un rôle R pour une interprétation donnée.

Exemple: pour une interprétation I qui est un modèle de l'ABox et de la TBox du tableau I, $\exists relationParentEnfant$. I équivaut l'ensemble des individus $\{Sophie^I, Robert^I\}$.

• Le quantificateur universel ∀R. C évoque l'ensemble des individus du domaine d'un rôle R qui sont en relation, par le biais de R, avec un individu du concept C, pour une interprétation donnée.

Exemple: pour une interprétation I qui est un modèle de l'ABox et de la TBox du tableau I, \forall relation Par arent E n fant. H omme équivaut l'ensemble des individus $\{R$ obert $\}$.

 AL ne permet pas la spécification de rôles à l'aide de constructeurs (rôles composés).

Représentation de Connaissances Ingéniérie des Connaissances

66 LOGIQUE DE DESCRIPTION LOGIQUE MINIMALE AL

• La sémantique formelle d'AL

Afin de supporter la notion de concepts composés, la fonction d'interprétation est étendue par les règles décrites ci-dessous.

• Deux concepts C et D d'une TBox T s'équivalent si et seulement si $C^I = D^I$ pour toute interprétation I modèle de T .

$$\begin{array}{lll} \top^{\mathcal{I}} & = & \triangle^{\mathcal{I}} \\ \bot^{\mathcal{I}} & = & \emptyset \\ (\neg A)^{\mathcal{I}} & = & \triangle^{\mathcal{I}} \backslash A^{\mathcal{I}} \\ (C \sqcap D)^{\mathcal{I}} & = & C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (\forall R.C)^{\mathcal{I}} & = & \{a \in \triangle^{\mathcal{I}} | \forall b.(a,b) \in R^{\mathcal{I}} \rightarrow b \in C^{\mathcal{I}}\} \\ (\exists R.\top)^{\mathcal{I}} & = & \{a \in \triangle^{\mathcal{I}} | \exists b.(a,b) \in R^{\mathcal{I}}\} \end{array}$$

67 LOGIQUE DE DESCRIPTION LOGIQUE MINIMALE AL

L'inférence

L'inférence s'effectue au niveau terminologique ou factuel.

- L'inférence au niveau terminologique
 - Quatre principaux problèmes d'inférence se présentent au niveau terminologique : Satisfiabilité, Subsomption, Équivalence, Disjonction
- Un concept C est satisfiable ou cohérent si et seulement s'il existe une interprétation \mathcal{I} telle que $C^{\mathcal{I}} \neq \emptyset$; C est non satisfiable ou incohérent sinon.
- Deux concepts C et D sont dits équivalents, ce qui se note C \equiv D, si et seulement si $C^{\mathcal{I}} = D^{\mathcal{I}}$ pour toute interprétation \mathcal{I} .
- Deux concepts C et D sont incompatibles ou disjoints si et seulement si $C^{\mathcal{I}} \cap D^{\mathcal{I}} = \emptyset$ pour toute interprétation \mathcal{I} .

Représentation de Connaissances Ingéniérie des Connaissances

68 LOGIQUE DE DESCRIPTION LOGIQUE MINIMALE AL

- les quatre types de problèmes d'inférence peuvent être réduits à des problèmes de subsomption ou à des problèmes de satisfiabilité.
 - Réduction des problèmes d'inférence d'une TBox à des problèmes de subsomption

C est insatisfiable \iff C est subsumé par \bot C et D sont équivalents \iff C est subsumé par D, et D par C C et D sont disjoints \iff $C \sqcap D$ est subsumé par \bot

 Réduction des problèmes d'inférence d'une TBox à des problèmes de satisfiabilité

C est subsumé par D \iff $C \sqcap \neg D$ est insatisfiable C et D sont équivalents \iff $C \sqcap \neg D$ et $\neg C \sqcap D$ sont insatisfiables C et D sont disjoints \iff $C \sqcap D$ est insatisfiable

69 LOGIQUE DE DESCRIPTION LOGIQUE MINIMALE AL

L'inférence au niveau factuel

Le niveau factuel comprend quatre principaux problèmes d'inférence :

- Cohérence: Une ABox A est cohérente par rapport à une TBox T si et seulement s'il existe un modèle I de A et T.
- Vérification d'instance : Vérifier par inférence si une assertion
 C(a) est vraie pour tout modèle I d'une ABox A et d'une TBox T.
- **Vérification de rôle** : Vérifier par inférence si une assertion R(a, b) est vraie pour tout modèle *I* d'une ABox A et d'une TBox *T*.
- Problème de récupération : Pour une ABox A, un concept C d'une terminologie T, inférer les individus a a₁^I ... a_n^I ∈ CI pour tout modèle I de T.