Intelligent Agents

CHAPTER 2
Oliver Schulte
Summer2011

Outline

- Agents and environments
- Rationality
- PEAS (Performance measure, Environment, Actuators, Sensors)
- Environment types
- Agent types

Agents

3

 An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators

Human agent:

- eyes, ears, and other organs for sensors;
- hands, legs, mouth, and other body parts for actuators

Robotic agent:

- cameras and infrared range finders for sensors
- various motors for actuators

Agents and environments

 The agent function maps from percept histories to actions:

$$[f: \mathcal{P}^{\star} \to \mathcal{A}]$$

- The agent program runs on the physical architecture to produce *f*
- agent = architecture + program

Vacuum-cleaner world

Demo:

http://www.ai.sri.com/~oreilly/aima3ejava/aima3ejavademos.html

- Percepts: location and contents, e.g., [A,Dirty]
- Actions: Left, Right, Suck, NoOp
- Agent's function \rightarrow look-up table
 - o For many agents this is a very large table

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	:

Rational agents

6

Rationality

- Performance measuring success
- Agents prior knowledge of environment
- Actions that agent can perform
- Agent's percept sequence to date
- Rational Agent: For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

•

Examples of Rational Choice

7

• See File: <u>intro-choice.doc</u>

Rationality

8

Rational is different from omniscience

- Percepts may not supply all relevant information
- o E.g., in card game, don't know cards of others.

Rational is different from being perfect

 Rationality maximizes expected outcome while perfection maximizes actual outcome.

Autonomy in Agents

The **autonomy** of an agent is the extent to which its behaviour is determined by its own experience, rather than knowledge of designer.

- Extremes
 - No autonomy ignores environment/data
 - Complete autonomy must act randomly/no program
- Example: baby learning to crawl
- Ideal: design agents to have some autonomy
 - Possibly become more autonomous with experience

PEAS

- PEAS: Performance measure, Environment, Actuators, Sensors
- Must first specify the setting for intelligent agent design
- Consider, e.g., the task of designing an automated taxi driver:
 - Performance measure: Safe, fast, legal, comfortable trip, maximize profits
 - Environment: Roads, other traffic, pedestrians, customers
 - Actuators: Steering wheel, accelerator, brake, signal, horn
 - Sensors: Cameras, sonar, speedometer, GPS, odometer, engine sensors, keyboard

PEAS

- Agent: Part-picking robot
- Performance measure: Percentage of parts in correct bins
- Environment: Conveyor belt with parts, bins
- Actuators: Jointed arm and hand
- Sensors: Camera, joint angle sensors

PEAS

- Agent: Interactive English tutor
- Performance measure: Maximize student's score on test
- Environment: Set of students
- Actuators: Screen display (exercises, suggestions, corrections)
- Sensors: Keyboard

Environment types

- Fully observable (vs. partially observable)
- Deterministic (vs. stochastic)
- Episodic (vs. sequential)
- Static (vs. dynamic)
- Discrete (vs. continuous)
- Single agent (vs. multiagent):

Fully observable (vs. partially observable)

- Is everything an agent requires to choose its actions available to it via its sensors? Perfect or Full information.
 - o If so, the environment is fully accessible
- If not, parts of the environment are inaccessible
 - Agent must make informed guesses about world.
- In decision theory: perfect information vs. imperfect information.

Cross Word	Poker	Backgammon	Taxi driver	Part picking robot	Image analysis
Fully	Partially	Partially	Partially	Fully	Fully

Deterministic (vs. stochastic)

- Does the change in world state
 - Open only on current state and agent's action?
- Non-deterministic environments
 - Have aspects beyond the control of the agent
 - Utility functions have to guess at changes in world

Cross Word	Poker	Backgammon	Taxi driver	Part picking rob	ot Image analysis
Deterministic S	Stochastic	Stochastic	Stochastic	Stochastic	Deterministic

Episodic (vs. sequential):

16

- Is the choice of current action
 - Open Dependent on previous actions?
 - If not, then the environment is episodic
- In non-episodic environments:
 - Agent has to plan ahead:
 - Current choice will affect future actions

Cross Word	Poker	Backgammon	Taxi driver	Part picking robot	Image analysis
Sequential Sec	quential	Sequential	Sequential	Episodic	Episodic

Static (vs. dynamic):

- Static environments don't change
 - While the agent is deliberating over what to do
- Dynamic environments do change
 - So agent should/could consult the world when choosing actions
 - Alternatively: anticipate the change during deliberation OR make decision very fast
- Semidynamic: If the environment itself does not change with the passage of time but the agent's performance score does.

Cross Word	Poker	Backgammon	Taxi driver	Part picking robot	Image analysis
Static	Static	Static	Dynamic	Dynamic	Semi

Another example: off-line route planning vs. on-board navigation system

Discrete (vs. continuous)

18

• A limited number of distinct, clearly defined percepts and actions vs. a range of values (continuous)

Cross Word Poker Backgammon Taxi driver Part picking robot Image analysis

Discrete Discrete Conti Conti

Single agent (vs. multiagent):

19

 An agent operating by itself in an environment or there are many agents working together

Cross Word	Poker	Backgammon	Taxi driver	Part picking robot	Image analysis
Single	Multi	Multi	Multi	Single	Single

Summary.

	Observable	Deterministic	Episodic	Static	Discrete	Agents
Cross Word	Fully	Deterministic	Sequential	Static	Discrete	Single
Poker	Fully	Stochastic	Sequential	Static	Discrete	Multi
Backgammon	Partially	Stochastic	Sequential	Static	Discrete	Multi
Taxi driver	Partially	Stochastic	Sequential	Dynami	c Conti	Multi
Part picking robo	t Partially	Stochastic	Episodic	Dynami	c Conti	Single
Image analysis	Fully	Deterministic	Episodic	Semi	Conti	Single

Artificial Intelligence a modern approach

Choice under (Un)certainty

Agent types

- Four basic types in order of increasing generality:
 - Simple reflex agents
 - Reflex agents with state/model
 - Goal-based agents
 - Utility-based agents
 - All these can be turned into learning agents
 - http://www.ai.sri.com/~oreilly/aima3ejava/aima3ejavad emos.html

Simple reflex agents


```
function Reflex-Vacuum-Agent ([location, status]) returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left
```

Simple reflex agents

- Simple but very limited intelligence.
- Action does not depend on percept history, only on current percept.
- Therefore no memory requirements.
- Infinite loops
 - Suppose vacuum cleaner does not observe location. What do you do given location = clean? Left of A or right on B -> infinite loop.
 - o Fly buzzing around window or light.
 - o Possible Solution: Randomize action.
 - Thermostat.
- Chess openings, endings
 - Lookup table (not a good idea in general)
 - x 35¹⁰⁰ entries required for the entire game

States: Beyond Reflexes

 Recall the agent function that maps from percept histories to actions:

$$[f: \mathcal{P}^{\star} \rightarrow \mathcal{A}]$$

- An agent program can implement an agent function by maintaining an **internal state**.
- The internal state can contain information about the state of the external environment.
 - The state depends on the history of percepts and on the history of actions taken:

[$f: \mathcal{P}^*, \mathcal{A}^* \to \mathcal{S} \to \mathcal{A}$] where \mathcal{S} is the set of states.

• If each internal state includes all information relevant to information making, the state space is **Markovian**.

States and Memory: Game Theory

- If each state includes the information about the percepts and actions that led to it, the state space has perfect recall.
- **Perfect Information** = Perfect Recall + Full Observability + Deterministic Actions.

Model-based reflex agents

- Know how world evolves
 - Overtaking car gets closer from behind
- How agents actions affect the world
 - Wheel turned clockwise takes you right
- Model base agents update their state

```
function REFLEX-AGENT-WITH-STATE( percept) returns action

static: state, a description of the current world state

rules, a set of condition-action rules

state ← UPDATE-STATE(state, percept)

rule ← RULE-MATCH(state, rules)

action ← RULE-ACTION[rule]

state ← UPDATE-STATE(state, action)

return action
```

Goal-based agents

- knowing state and environment? Enough?
 - Taxi can go left, right, straight
- Have a goal
 - A destination to get to
- Uses knowledge about a goal to guide its actions
 - o E.g., Search, planning

Goal-based agents

- Reflex agent breaks when it sees brake lights. Goal based agent reasons
 - Brake light -> car in front is stopping -> I should stop -> I should use brake

Utility-based agents

- Goals are not always enough
 - Many action sequences get taxi to destination
 - o Consider other things. How fast, how safe....
- A utility function maps a state onto a real number which describes the associated degree of "happiness", "goodness", "success".
- Where does the utility measure come from?
 - o Economics: money.
 - o Biology: number of offspring.
 - O Your life?

Utility-based agents

Learning agents

- Performance element is what was previously the whole agent
 - Input sensor
 - Output action
- Learning element
 - Modifies performance element.

Learning agents

- Critic: how the agent is doing
 - Input: checkmate?
 - Fixed
- Problem generator
 - Tries to solve the problem differently instead of optimizing.
 - Suggests exploring new actions -> new problems.

Learning agents(Taxi driver)

- Performance element
 - ➤ How it currently drives
- o Taxi driver Makes quick left turn across 3 lanes
 - Critics observe shocking language by passenger and other drivers and informs bad action
 - Learning element tries to modify performance elements for future
 - Problem generator suggests experiment out something called Brakes on different Road conditions
- Exploration vs. Exploitation
 - ▼ Learning experience can be costly in the short run
 - shocking language from other drivers
 - × Less tip
 - Fewer passengers

The Big Picture: AI for Model-Based Agents

Planning
Decision Theory
Game Theory

Action

Reinforcement Learning

Knowledge

Learning

Logic

Probability

Heuristics

Inference

Machine Learning

Statistics

The Picture for Reflex-Based Agents

• Studied in AI, Cybernetics, Control Theory, Biology, Psychology.

Discussion Question

- Model-based behaviour has a large overhead.
- Our large brains are very expensive from an evolutionary point of view.
- Why would it be worthwhile to base behaviour on a model rather than "hard-code" it?
- For what types of organisms in what type of environments?

Summary

- Agents can be described by their PEAS.
- Environments can be described by several key properties:
 64 Environment Types.
- A rational agent maximizes the performance measure for their PEAS.
- The performance measure depends on the **agent function**.
- The **agent program implements** the agent function.
- 3 main **architectures** for agent programs.
- In this course we will look at some of the common and useful combinations of environment/agent architecture.