IBM Watson Marketing

Customer Value Analysis

By Team 5

Aishwarya Panse Farin Fukunaga Jann Ang Maggie Ding Queenie Chao

ABOUT OUR DATASET

Introduction

Purpose of this dataset

To predict customer behavior by examining all the relevant customer data of a car insurance company and create targeted customer retention strategies, optimizing renewal strategies, and maximizing customer lifetime value.

Origin of our dataset

Dataset released date

IBM Official Website

2018

Business Problems & Objectives

New Customer Acquisition:

- Which customers are the most valuable (in terms of CLV)?
- How can we identify potential valuable customers?

Renewal and Churn Prevention:

- How do we drive policy renewals?
- What renewal marketing efforts are effective?

TOOLS & TECHNIQUES

Our Methodology

- All 9134 entries were examined
 - Converted categorical variables such as Gender and Marital Status into dummy variables to facilitate inclusion in regression models
- Model Selection & Validation
 - Chose semi-log and logistic regression for their ability to model non-linear relationships and binary outcomes, respectively
- Analytical Tools
 - R Studio features (glm packages for model building and evaluation)
 - Anaconda (data manipulation and visualization, employing packages like pandas, NumPy, seaborn and matplotlib)
- Visualization Techniques
 - Data visualizations (histograms, Q-Q plots, and scatter plots)
 - Interactive visualizations (Python's Bokeh and Plotly)

df.isnull().sum()

Customer	0
State	0
Customer Lifetime V	/alue 0
Response	0
Coverage	0
Education	0
Effective To Date	0
EmploymentStatus	0
Gender	0
Income	0
Location Code	0
Marital Status	0
Monthly Premium Au	
Months Since Last 0	Claim 0
Months Since Policy	Inception 0
Number of Open Co	mplaints 0
Number of Policies	0
Policy Type	0
Policy	0
Renew Offer Type	0
Sales Channel	0
Total Claim Amount	0
Vehicle Class	0
Vehicle Size	0
dtype: int64	

Data Summary

Our Dependent Variables

Variable	Туре	Description		
CLV (Customer Lifetime Value)	Numerical	The total revenue the car insurance company can expect to bring in from the customer if he/she remains a client		
Respond	Categorical	Whether the customer has responded to the marketing calls		

Predicted Variables: Factors that can affect insurance premium and reflect insure behavior pattern

- Demographics & Basic Information
 - Car Plate Number, Gender, Education Level, Employment Status, Income, Marital Status, Living State, Type of Living Area
- Insure Behavior

Vehicle Class & Size, Insurance Coverage Level, Monthly Premium, Sales Channel, Renew Offer, Number of Open Complaints

Policy Record

How long since last claim, Number of Policies, Policy & Policy Type (Purpose of vehicle use), Total Claim Amount, Duration Since Policy Inception

Data Visualization (CLV)

The sample has the median CLV of around \$7,000 and the mean CLV of around \$10,000. Over 80% customers have CLV under \$10,000.

Customer Lifetime Value Distribution

Customer Lifetime Value Distribution

Predicting CLV

USING SEMI-LOG REGRESSION MODEL

- Y-Variable: Log(Customer Lifetime Value)
- X-Variables are as follows:

Variable Names	Variable Type	Note			
Coverage	Categorical	Basic, Extended, Premium			
Employment Status	Categorical	Employed, Unemployed, Retired, Disabled, Medical Leave			
Monthly Premium Auto	Numerical				
Number of Open Complaints	Numerical				
Number of Policies	Numerical	Personal, Corporate, Special			
Policy	Numerical				
Renew Offer	Categorical	Offer1, Offer2, Offer3, Offer4			

```
Residuals:
   Min
            1Q Median
                                   Max
-1.0757 -0.4592 -0.1114 0.2659 1.8509
Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
(Intercept)
                          7.9352335 0.0254911 311.295
                                                      < 2e-16 ***
Coverage_Ext
                          0.0431497 0.0154534
                                                2.792
                                                      0.00525 **
Coverage_Pre
                          0.0239962
                                    0.0259835
                                                0.924
                                                      0.35577
                         -0.1195313 0.0158453 -7.544 5.12e-14 ***
Employ_Unemp
                         -0.0668636 0.0329290 -2.031
Employ_Dis
                                                      0.04234 *
Employ_Med
                         -0.0753617 0.0317513 -2.373
                                                      0.01765 *
                         -0.1183461 0.0388741 -3.044
Employ_Ret
                                                      0.00234 **
                                    0.0002166 37.801
Monthly.Premium.Auto
                          0.0081876
                                                      < 2e-16 ***
Number.of.Open.Complaints
                         -0.0286805
                                    0.0072762 -3.942 8.17e-05 ***
Number.of.Policies
                          0.0522081 0.0027538 18.959
                                                      < 2e-16 ***
Policy_Cor
                         -0.0241376 0.0164113 -1.471
                                                      0.14139
Policy_Spe
                          0.0912785 0.0318373 2.867
                                                      0.00416 **
Renew_02
                         -0.1299291 0.0160120 -8.114 5.68e-16 ***
                                    0.0198515 -3.424
Renew_03
                         -0.0679791
                                                      0.00062 ***
Renew_04
                         -0.1471387 0.0224736 -6.547 6.26e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5647 on 7306 degrees of freedom
Multiple R-squared: 0.2574,
                               Adjusted R-squared: 0.256
F-statistic: 180.9 on 14 and 7306 DF, p-value: < 2.2e-16
```

The Results

The Central Limit Value (CLV) in the middle is accurately predicted. However, the model tends to underestimate in extreme values.

Key Findings

- 1. Employment status is also a significant contributor to CLV. When a customer is employed, CLV tends to increase.
- 2. The number of policies has a positive impact on CLV since the coefficient is positive. Therefore, a <u>greater focus should be placed on customers with a higher number of policies</u>.
- 3. The Renew Offer plays a pivotal role in influencing CLV. The coefficients for Renew_O2 to Renew_O4 are all negative. Adjusting Renew Offer 1 positively contributes to increasing CLV.


```
Call:
glm(formula = response_binary ~ EmploymentStatus + Renew.Offer.Type +
    Sales.Channel + Education, family = binomial(link = "logit"),
    data = data.train)
Coefficients:
```

Estimate \$td. Error z value Pr(>|z|) 0.16581 -7.247 4.26e-13 *** (Intercept) -1.20168 EmploymentStatusEmployed -0.43865 0.15712 -2.792 0.00524 ** EmploymentStatusMedical Leave 0.02990 0.20624 0.145 0.88473 EmploymentStatusRetired 2.66542 0.22405 11.897 < 2e-16 *** EmploymentStatusUnemployed -0.91732 0.17222 -5.326 1.00e-07 *** Renew.Offer.TypeOffer2 0.67095 0.07867 8.528 < 2e-16 *** Renew.Offer.TypeOffer3 -2.10124 0.21631 -9.714 < 2e-16 *** Renew.Offer.TypeOffer4 -16.78815 222.92553 -0.075 0.93997 Sales.ChannelBranch -0.66737 0.09390 -7.107 1.19e-12 *** Sales.ChannelCall Center -0.48808 0.10430 -4.679 2.88e-06 *** -4.688 2.76e-06 *** -0.55519 0.11843 Sales.ChannelWeb EducationCollege 0.16489 0.09492 1.737 0.08237 . 0.48699 0.00726 ** EducationDoctor 0.18139 2.685 -0.434 0.66465 EducationHigh School or Below -0.04270 0.09850

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

0.23962

0.14446

1.659 0.09716 .

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6016.2 on 7320 degrees of freedom Residual deviance: 4850.9 on 7306 degrees of freedom

AIC: 4880.9

EducationMaster

Number of Fisher Scoring iterations: 17

Predicting Response Rate

MODEL (TRAINING)

- Using logistic regression model on the Training list
- Y dependent variable:
 - Response (Binary)
- 4 X independent variables:
 - Employment Status Employed, Unemployed, Retired, etc.
 - 4 Renew Offer Type Offer 1, Offer 2, Offer 3, Offer 4
 - Sales Channel Agent, Branch, Call Center, or Web
 - Education High School, Bachelor, Masters, etc.
- Coefficients Interpretation
 - E.g. EmploymentStatusRetired has a positive coefficient, suggesting that retired customers are more likely to renew

Expected and Actual Positive Responses vs. Number of Prospects Targeted

Confusion Matrix

• The model stuffers from false negatives where the model predicts a non-renewal but the customer actually renewed (234 cases).

Model Accuracy

 Predicted many true negatives correctly, which is good for identifying low-potential customers.

Lift Curve

 The model predicted the response rate well for the first ~1000 customers but becomes less accurate as it moves to customers with a lower propensity to respond.

Key Findings

- **Demographics:** Older people respond more often. Highly educated people respond more often.
- Sales-Related: Agent is the best channel. Offers 1 and 2 are the best.
- Response rates do not differ by: Location, Vehicle Type, Number of Claims, Type of Policy (Personal vs. Corporate vs Special), CLV

Recommendation

Outcome from CLV

- Enhance focus on Employment Status
 - Create tailored communication for employed individuals emphasizing the security a policy provides against potential income loss.
- 2 Leverage Policy Count
 - Include bundle offers or discounts for customers who hold or add multiple policies
- 3 Streamline Policy Upgrades
 - For customers who are likely to increase their CLV, make it easier to upgrade or add policies

Outcome from Response Rate

- Target Elderly Retired & Highly Educated Individuals Via Their Personal Agents
 - Capitalizes on the personal touch that can be very effective with older demographics
 - Higher education levels often correlate with a greater understanding of the benefits and complexities of insurance policies
- Reevaluate Sales Channels (Branch, Call Center & Web) and Offers (3 and 4)
 - Gather sentiment analysis on why these offers are not performing well could lead to more effective offer structuring
 - Conduct A/B Testing with variations to measure

Future Analysis

Longitudinal Tracking

- Is there any evidence that the campaigns were successful?
- Compare initial predictions with actual customer behavior.
 This includes whether non-responsive customers in the dataset eventually renewed and if there was a real lift in response rates from campaigns.
- Make changes to advertising campaigns in response to patterns and outcomes seen over the long run.

2

Clustering & Micro-Segmentation

- How should we aggregate and target specific customer groups?
- Use clustering algorithms to identify distinct groups within the customer base based on a variety of factors beyond CLV, like behavior patterns, policy preferences, and demographic details.
- To maximize the efficacy of outreach, create clusterspecific marketing tactics.

THANK YOU

FOR LISTENING

By Team 5

RangeIndex: 9134 entries, 0 to 9133 Data columns (total 24 columns):

dtypes: float64(2), int64(7), object(15)

memory usage: 1.7+ MB

Data columns (total 24 columns):						
#	Column Non-Null Count Dtype					
0	Customer	9134 non-null object				
1	State	9134 non-null object				
	Customer Lifetime Value 9134 non-null float64					
3	Response	9134 non-null int64				
4	Coverage	9134 non-null object				
	Education	9134 non-null object				
	Effective To Date	9134 non-null object				
7	EmploymentStatus	9134 non-null object				
8	Gender	9134 non-null object				
9	Income	9134 non-null int64				
	Location Code	9134 non-null object				
	Marital Status	-				
	Monthly Premium Au					
	3 Months Since Last Claim 9134 non-null int64					
	14 Months Since Policy Inception 9134 non-null int64					
	15 Number of Open Complaints 9134 non-null int64					
	Number of Policies					
	Policy Type	9134 non-null object				
	Policy	9134 non-null object				
	Renew Offer Type	9134 non-null object				
20	Sales Channel	9134 non-null object				
	Total Claim Amount					
	Vehicle Class	9134 non-null object				
23	Vehicle Size	9134 non-null object				

In [120]: df.describe()

Out[120]:

•										
•		Customer Lifetime Value	Response	Income	Monthly Premium Auto	Months Since Last Claim	Months Since Policy Inception	Number of Open Complaints	Number of Policies	Total Claim Amount
	count	9134.000000	9134.000000	9134.000000	9134.000000	9134.000000	9134.000000	9134.000000	9134.000000	9134.000000
	mean	8004.940475	0.143201	37657.380009	93.219291	15.097000	48.064594	0.384388	2.966170	434.088794
	std	6870.967608	0.350297	30379.904734	34.407967	10.073257	27.905991	0.910384	2.390182	290.500092
	min	1898.007675	0.000000	0.000000	61.000000	0.000000	0.000000	0.000000	1.000000	0.099007
	25%	3994.251794	0.000000	0.000000	68.000000	6.000000	24.000000	0.000000	1.000000	272.258244
	50%	5780.182197	0.000000	33889.500000	83.000000	14.000000	48.000000	0.000000	2.000000	383.945434
	75%	8962.167041	0.000000	62320.000000	109.000000	23.000000	71.000000	0.000000	4.000000	547.514839
	max	83325.381190	1.000000	99981.000000	298.000000	35.000000	99.000000	5.000000	9.000000	2893.239678

Average Customer Lifetime Value

The clients who are employed are with higher consuming power and more auto use, leading to much higher CLV on average

Average Customer Lifetime Value

Female with education level of high school or below and education level of master have much higher CLV

Average Customer Lifetime Value

The clients living in Arizona and Nevada Urban have higher risk of accidents, leading to much higher CLV

Average Customer Lifetime Value 12000 10000 8000 4000 Description Basic Extended Premium Insurance Coverage

The clients purchasing premium insurance coverage have much higher CLV

Average Customer Lifetime Value

The clients using their vehicles for business or special purpose have much higher CLV

Average Customer Lifetime Value

The clients having two policies have much higher CLV on average

Average Customer Lifetime Value

The clients of Offer 1 and 3 have higher CLV

Total Count of Responses (Yes/No)

It is worth noting that approximately 14% of customers have replied to marketing calls, while the remaining 86% have not.

Count of Responses based on Gender

A marketing call will get nearly the same number of responses from males and females.

Count of Responses based on Renew Offer Type

Customers have answered marketing calls for offers 1 and 2, but for offers 3 and 4, nearly no one has answered.

Count of Responses based on Different Sales Channel

Response rate through sales agent garnered the highest response rate of 7.29%.

Heatmap of a Correlation Matrix Using Continuous Variable Only

- Monthly Premium Auto and Total Claim Amount have a strong positive correlation (0.63), suggesting that as the monthly auto premium increases, the total claim amount tends to increase as well.
- Income and Total Claim Amount have a moderate negative correlation (-0.36), suggesting that higher income levels are associated with lower total claim amounts.
- Customer Lifetime Value and Monthly Premium Auto also show a positive correlation (0.4), implying that customers with higher lifetime values tend to pay higher monthly premiums.

Count of Responses based on Renew Offer Type

Responses Rate based on Total Claim Amount

Response '0':

- Has a higher median Total Claim Amount compared to Response '1'.
- Displays a wider interquartile range, indicating more variability in the Total Claim Amount.
- · Has a longer upper whisker and more outliers, suggesting that there are more claims with higher amounts in this category.

Response '1':

- Has a lower median, indicating that the central tendency of claims is less than that of Response '0'.
- The interquartile range is narrower, suggesting less variability in the Total Claim Amount.
- There are fewer outliers, indicating fewer extreme claim amounts.