MW 22.12.13

p.11 s.5

Oznaczenie		Koks igłowy ("premium")	Koks gąbczasty	Antracyt donieck
			("regular")	
Popiół	% mas.	< 0,2	0,54	3,1
Części lotne	% mas	0,60	2,08	1,7
Gęstość rzeczywista	g/cm ³	2,13		1,83
Skład petrograficzny:	% obj.			
Witrynit				85
Inertynit				14
Skład elementamy:	% mas.			
Cdaf				97.0
Hdaf				1,3
Sa		0,66	0,85	0,5
Ndaf		0,4	0,4	
Rozszerzalność termiczna 10-6K-1		~ 0,5	~1	
Zawartość struktur igłowych %		30	5	

p.11 s.6

Opóźnione koksowanie (450-550°C) Kalcynacja (1000-1300°C)

QI - nierozpuszczalne w chinolinie (en.quinoline insoluble)

Temperatura w piecu rurowym - $500^{\circ}C$ Warunki w kamorach koksowniczych - $450-550^{\circ}C$, 0.1-0.7MPa Wymiary komory koksowniczej - d: 5-10m, h: 25-40m

p.12 s.6

MW-5/6

Podstawowe funkcje

Lepiszcze (spoiwo) - Nadanie masie w czasie formowania odpowiedniej plastyczności oraz spojenie ziaren wypełniacza silnymi mostkami koksowymi podczas karbonizacji lepiszcza w procesie wypalania.

Ważne cechy – wysoki uzysk koksu w czasie karbonizacji, dobra zwilżalność ziaren wypełniacza.

Syciwo – wypełnienie porów powstających podczas wypalania uformowanego wyrobu w wyniku karbonizacji lepiszcza i wydzielania się lotnych produktów jego rozkładu.

Ważne cechy – wysoka zdolność zwilżania materiału wypalonego i penetracji w pory wyrobu, wysoki uzysk koksu w czasie wypalania.

Właściwości paków stosowanych jako lepiszcza i syciwa

Oznaczenie		Pak lepiszcze	Pak syciwo	
Temperatura mięknienia TM (PiK)	°C	71 - 76	54 - 56	
Temperatura mięknienia TM (Mettler)	°C	76 - 81	58 - 60	
Pozostalość po skoksowaniu (LK)	% mas	40 - 41	31 - 32	
Liczba koksowania (CV)	% mas	49 - 50	40 - 42	
Zawartość popiołu	% mas	0,1-0,2	~0,1	
Składniki nierozpuszczalne w toluenie	% mas	25 - 27,5	15 - 17	
Składniki nierozpuszczalne w chinolinie	% mas	9,5 - 13	4,5 - 5,5	
Skład elementarny (daf):	%mas			
С		94 - 94,5	92,5 - 94	
н		~4,2	4,4 - 4,6	
N		1,5 - 1,9	1,4 - 1,8	
S		~ 0,5	~ 0,5	

p.13 s.1

Właściwości technologiczne paków stosowanych jako lepiszcza i syciwa

Oznaczenia umowne, znormalizowane, charakteryzujące przydatność surowca pakowego do różnych zastosowań.

- Temperatura mięknienia metody oznaczania Kramera-Sarnowa, TM (KS)
 Pierścienia i Kuli, TM (PiK)
 Mettlera, TM (Mettler)
 TM (PiK) = 1,04 TM (KS) +10
- Pozostałość po skoksowaniu LK wygrzewanie 1 g próbki w zamkniętym tyglu porcelanowym w 870°C przez 3 min.

Liczba koksowania (CV – coking value) – wygrzewanie 1 g próbki przez 2,5 godz. w 550°C w tyglu porcelanowym umieszczonym w zasypce koksowej.

- Zawartość składników nierozpuszczalnych w toluenie.
- · Zawartość składników nierozpuszczalnych w chinolinie.
- TI frakcja nierozpuszczalna w toluenie a rozpuszczalna w chinolinie $(\alpha 1)$, średni ciężar cząsteczkowy ok. 1000, składająca się z 6-7 pierścieni, decydują o sile wiążącej paku i jego lepkości, określa podatność na grafityzacje.

MW-5/6

QI- frakcja nierozpuszczalna w chinolinie $(\alpha 2)$, średni ciężar, cząsteczkowy powyżej 2000, składająca się z 13-40 pierścieni, cząstki sadzopodobne 10-100 μm i cząstki popiołu, QI są wysoce niepożądane, nie ulegają grafityzacji.

Ach ten Racibórz...

p.13 s.3

Do prasowania przelotowego - duża wydajność procesu. Cechy wyrobów - niska gęstość i wytrzymałość. Średnica 1-150cm, długość do 450cm

p.13 s.4

Do prasowania wibracyjnego - izotropowe właściwości wyrobów. Wymiary, 1.5m - 5m długości. Zastosowanie: wykładziny wielkich pieców, elektrolizery aluminium, piece łukowe do produkcji stali.

Wypalanie wyrobów

Wypalanie – obróbka termiczna uformowanych (nasyconych) wyrobów w temperaturze 1100-1300°C. Cel - skarbonizowanie lepiszcza i wytworzenie silnych, odpornych termicznie mostków koksowych wiążących ziarna wypełniacza. Wypalanie w piecach kręgowych typu komorowego, rzadko w tunelowych. Piece kręgowe -16-32 komory w dwóch rzędach. Wyroby umieszczane w zasypce koksowej w kasetach lub stalowych kokilach. Ogrzewanie gazowe. Piec pracuje w sposób ciągły, komory – okresowo.

Widok pieca kręgowego

Wspólny system ogrzewania i odprowadzenia spalin.

1- otwór na termoparę, 2- pokrywa, 3- kaseta, 4kanały grzewcze, 5- podłoga kasety, 6- wsporniki, 7- kanały gazów, 8- komora spalania, 9- palniki, 10- rurociąg gazu, 11- rurociąg spalin, 12- kanał łączący, 13- kanał zbiorczy

Czas pracy - 2-5 tygodni

p.13 s.6

Podczas wypalania równolegle zachodzi szereg procesów:

- transport ciepła od powierzchni do wnętrza wyrobów,
- rozkład termiczny lepiszcza do koksu (~65%) i produktów lotnych,
- transport produktów lotnych z wnętrza na powierzchnię wyrobów.
 W miarę wzrostu temperatury wypraski staja się plastyczne, następnie w wyniku rozkładu lepiszcza tworzą się mostki koksowe (spiekanie), w zakresie dużej plastyczności występuje skurcz a następnie ekspansja.

Zmiany właściwości wyrobu ze wzrostem temperatury podczas wypalania 1- plastyczność, 2- wydzielanie części lotnych, 3- porowatość, 4- deformacja, 5- wytrzymałość na ściskanie, 6- opór właściwy

MW-5/6

MW-5/6

MW-5/6

Nasycanie wyrobów wypalonych

Cel – zmniejszenie porowatości / zwiększenie gęstości pozornej, z czym wiąże się wyraźny wzrost wytrzymałości mechanicznej i odporności termicznej, spadek oporu elektrycznego. Nasycanie syciwem pakowym wyrobów gruboziarnistych, elektrod grafitowych i złącz elektrodowych. Nasycanie w aparaturze próżniowo-ciśnieniowej.

	Liczba cykli nasycania				
Właściwość	0	1	2	3	
Gęstość pozorna, kg/dm3	1,62	1,77	1,83	1,87	
Opór elektryczny właściwy, μΩ m	10,6	8,0	7,1	6,7	
Wytrzymałość na zginanie, MPa	5,3	8,1	12,9	16,1	
Współcz, rozszerzalności liniowej, 10-6 K-1	0,80	0,93	0,92	0,94	
Porowatość całkowita, %	~31	~24	~21	~18	
Porowatość otwarta, %	~30	~20	~16	~13	
Przyrost masy, %		8-12	3-6	1,5-3	