Алгоритмы поиска с бикритериальной оптимизацией Проект по курсу "Эвристические методы планирования"

Угадяров Л.А. https://github.com/ugadiarov-la-phystech-edu/hs-project

МФТИ, группа МО5-006а

15 апреля 2021 г.

Задачи многокритериальной оптимизации

Необходимо найти оптимальное решение, учитывая множество критериев.

Практические приложения:

- 🌘 Прокладка телекомуникационных сетей: стоимость и вероятность отказа
- Планирование в робототехнике: длинна пути, потребление энергии
- Езда на велосипеде: длинна пути, безопасность велосипедиста
- Грузоперевозки: стоимость транспортировки, время в пути, экологические факторы
- Перевозки опасных грузов: длина пути, риск человеческих жерт при возможной аварии
- Пассажирские перевозки: стоимость проезда, время в пути, количество пересадок
- Планирование спутниковой фотосъёмки: удовлетворение запросов пользователей, приоритет запросов, минимизация износа оборудования

Математическая постановка бикритериальной задачи

Пусть $\mathbb{p}=(p_1,p_2)$ и $\mathbb{q}=(q_1,q_2)$ — пары вещественных чисел, тогда:

- ullet $\mathbb{p}\prec \mathbb{q}$ (\mathbb{p} доминирует \mathbb{q}), если $(p_1< q_1)\wedge (p_2\leq q_2)$ или $(p_1=q_1)\wedge (p_2< q_2)$
- ullet р \leq q (ldap слабо доминирует q), если $(p_1 \leq q_1) \wedge (p_2 \leq q_2)$

Бикритериальная задача поиска маршрутов с наименьшей стоимостью $\mathcal{U} = (S, E, \mathbb{h}, \mathbb{e}, s_{start}, s_{goal})$:

- S конечное множество состояний
- \bullet $E \subseteq S \times S$ множество рёбер
- ullet $c: E
 ightarrow \mathbb{R}^+ imes \mathbb{R}^+$ функция стоимости, $c(e) = (c_1(e), c_2(e))$
- ullet $\mathbb{h}:S o\mathbb{R}^+ imes\mathbb{R}^+$ эвристическая функция, $\mathbb{h}(s)=(h_1(s),h_2(s))$
- s_{start} начальное состояние

```
\pi(s_1,s_n)=s_1,\ldots,s_n — маршрут из s_1 в s_n, где \{s_i\}\subseteq S и \{(s_i,s_{i+1})\}\subseteq E. \mathbb{C}(\pi)=\sum_{i=1}^{n-1}\mathbb{C}(s_i,s_{i+1}) — стоимость маршрута \pi. Маршрут \pi(s_1,s_n) доминирует маршрут \pi^{'}(s_1,s_n):\pi\prec\pi^{'}\Leftrightarrow\mathbb{C}(\pi)\prec\mathbb{C}(\pi^{'}). Маршрут \pi(s_{start},s_{goal}) называется парето-оптимальным решением задачи \mathcal{U}\Leftrightarrow \nexists\pi^{'}(s_{start},s_{goal}):\pi^{'}\prec\pi.
```

Рассматривается поиск множества всех парето-оптимальных решений задачи $\mathcal U$ с уникальной стоимостью. Рассматриваются монотонные эвристические функции: $\mathbb h(s_{goal})=(0,0)$ и $\forall (s,t)\in E$ $\mathbb h(s)\leq \mathbb c(s,t)+\mathbb h(t)$.

Пример парето-оптимального множества решений

Общий подход к решению бикритериальной задачи

OPEN

- ullet ОРЕN содержит нераскрытые узлы кортежи x=(s,g,f), где g и f векторы
- ullet Для состояния s в OPEN одновременно могут находится несколько узлов (s,g_1,f_1) и (s,g_2,f_2)

Выбор узла из ОРЕМ:

• Для раскрытия выбирается такой узел $(s,g,f) \in OPEN$, что $\nexists (s',g',f') \in OPEN$: $f' \prec f$ Для бикритериальной задачи это условие эквивалентно извлечению узла с лексикографически минимальным значением f

Обработка узлов вида (s_{goal}, g, f) :

- ullet Поддерживается множество найденный решений: $SOL = \{\pi_i(s_{start}, s_{goal})\}$
- Если для найденного маршрута $\pi(s_{start}, s_{goal}) \Rightarrow \nexists \pi^{'} \in SOL : \pi^{'} \prec \pi$, то удаляем из SOL все маршруты $\tilde{\pi} : \pi \prec \tilde{\pi}$ и добавляем π в SOL

Раскрытие узла (s, g, f):

- ullet Для каждого дочернего состояния $s^{'} \in Succ(s)$ строится узел $(s^{'},g^{'},f^{'})$
- ullet Дочерний узел $(s^{'},g^{'},f^{'})$ добавляется в *OPEN* при одновременном выполнении двух условий:
 - ightharpoons $\sharp (s', \tilde{g}, \tilde{f}) \in OPEN : \tilde{f} \prec f'$
 - $\blacktriangleright \ \ \nexists \pi \in SOL : \mathfrak{c}(\pi) \prec f'$
- ullet Если $(s^{'},g^{'},f^{'})$ добавляется в OPEN, то из OPEN удаляются все узлы $(s^{'}, ilde{g}, ilde{f})$: $f^{'}\prec ilde{f}$

Если *OPEN* пустой, то алгоритм завершает работу и возвращает *SOL*.

Алгоритмы

Алгоритм NAMOA*:

• Реализация общего подхода с незначительными оптимизациями за счёт поддержки множества всех раскрытых узлов $G_{cl}(s)$

Алгоритм NAMOA*dr

- Оптимизация операции добавления дочернего узла в *OPEN* для случая монотонной эвристической функции и извлечения узлов из *OPEN* в лексикографическом порядке по f:
 - ▶ Проверка $\nexists \pi \in SOL : \varepsilon(\pi) \prec (f_{\mathbf{1}}^{'}, f_{\mathbf{2}}^{'})$ заменяется на $\min_{\pi \in SOL} c_{\mathbf{2}}(\pi) \geq f_{\mathbf{2}}^{'}$
 - lacktriangle В некоторых случаях проверку $extstyle
 extstyle (s', ilde{g}, ilde{f}) \in OPEN : ilde{f} \prec f'$ можно можно заменить на $\min_{ ilde{t} \in OPEN} ilde{t}_2 \geq t_2'$

Алгоритм ВОА*:

- Для случая монотонной эвристической функции и извлечения узлов из OPEN в лексикографическом порядке по f доказаны ещё более сильные утверждения, которые позволяют все проверки доминирования совершать за константное время за счёт поддержки $g_2^{min}(s)$ минимального значения g_2 для раскрытых узлов с состоянием s
- В узлах дополнительно хранятся ссылки на родительские узлы: x = (s, g, f, parent(x))

Mandow, L., and Pérez-de-la-Cruz, J. (2010). Multiobjective A* search with consistent heuristics
Machuca, E., and Mandow, L. (2012). Multiobjective heuristic search in road maps
Hernández Ulloa, C., Yeoh, W., Baier, J. A., Zhang, H., Suazo, L., & Koenig, S. (2020). A Simple and Fast Bi-Objective Search Algorithm

Bi-Objective A* (BOA*)

Сравнение качества работы алгоритмов на дорожных картах городов США 9th DIMACS Implementation Challenge - Shortest Paths. Критерии — длинна маршрута и время движения по маршруту:

- NAMOA*, NAMOA*dr, BOA* авторские реализации (язык Си)
- sBOA* модификация BOA* без применения оптимизаций, приводящих к константному времени проверки условий доминирования, авторская реализация (язык Си)
- Оригинальные реализации на Си для Bi-Objective Dijkstra (BDijkstra) и Bidirectional Bi-Objective Dijkstra (BBDijkstra) предоставлены авторами этих алгоритмов

		York City		
264,346 stat		00 edges, se Average	ols = 199 on Max	average Min
NAMOA*	50/50	157.17	1.936.36	0.02
sBOA*	50/50	9.75	148.65	0.10
NAMOA*dr	50/50	0.65	4.99	0.11
BOA*	50/50	0.32	1.95	0.11
BBDijkstra	50/50	1.94	23.43	0.26
BDijkstra	50/50	2.55	21.16	0.17

Colorado (COL)				
435,666 states, 1,042,400 edges, sols = 427 on average				
	Solved	Average	Max	Min
NAMOA*	48/50	476.26	3,551.32	0.08
sBOA*	50/50	38.88	1,141.78	0.17
NAMOA*dr	50/50	2.16	57.40	0.17
BOA*	50/50	0.79	15.26	0.17
BBDijkstra	50/50	4.79	83.07	0.41
BDijkstra	50/50	7.78	135.24	0.29

San Francisco Bay (BAY)				
321,270 states, 794,830 edges, sols = 119 on average				
	Solved	Average	Max	Min
NAMOA*	50/50	58.87	1,474.76	0.02
sBOA*	50/50	3.38	120.57	0.12
NAMOA*dr	50/50	0.38	6.08	0.12
BOA*	50/50	0.29	4.17	0.12
BBDijkstra	50/50	0.87	9.61	0.28
BDiikstra	50/50	1.83	33.39	0.22

Florida (FL) 1,070,376 states, 2,712,798 edges, $ sols = 739$ on average				
NAMOA*	43/50	812.48	3,298.90	1.42
sBOA*	46/50	349.64	1,238.25	0.43
NAMOA*dr	50/50	19.66	329.79	0.43
BOA*	50/50	4.59	60.54	0.43
BBDijkstra	50/50	91.36	1,772.48	1.11
BDijkstra	50/50	158.33	2,722.69	0.77

Algorithm : Bi-Objective A* (BOA*)

 $\begin{array}{c} \textbf{Input} & \text{: A search problem } (S, E, \mathbf{c}, s_{start}, s_{goal}) \text{ and a} \\ & \text{consistent heuristic function } \mathbf{h} \end{array}$

Output: A cost-unique Pareto-optimal solution set 1 $sols \leftarrow \emptyset$

2 for each
$$s \in S$$
 do
3 $a_2^{\min}(s) \leftarrow \infty$

4
$$x \leftarrow$$
 new node with $s(x) = s_{start}$

5
$$\mathbf{g}(x) \leftarrow (0,0)$$

6 $parent(x) \leftarrow \text{null}$

9 while $Open \neq \emptyset$ do

Remove a node x from Open with the

lexicographically smallest f-value of all nodes in Open

$$g_2^{\min}(s(x)) \leftarrow g_2(x)$$

if $s(x) = s_{goal}$ **then**
Add x to $sols$

Add x to sols continue

 $\text{ for each } t \in \operatorname{Succ}(s(x)) \text{ do}$

$$y \leftarrow \text{new node with } s(y) = t$$

 $\mathbf{g}(y) \leftarrow \mathbf{g}(x) + \mathbf{c}(s(x), t)$

$$parent(y) \leftarrow x$$

 $\mathbf{f}(y) \leftarrow \mathbf{g}(y) + \mathbf{h}(t)$

if
$$g_2(y) \ge g_2^{\min}(t) \lor f_2(y) \ge g_2^{\min}(s_{goal})$$
 then continue

25 return sols

17

18

План работы

Репозиторий проекта: https://github.com/ugadiarov-la-phystech-edu/hs-project

- Набор данных для задачи бикритериальной оптимизации 9th DIMACS Implementation Challenge Shortest Paths:
 - http://www.diag.uniroma1.it/challenge9/download.shtml
- Формирование размеченной выборки для проверки корректности реализуемых алгоритмов поиска множества парето-оптимальных решений:
 - ▶ Использование алгоритма Дейкстры для поиска множества кротчайших путей по каждому критерию между парами вершин (пакет NetworkX: https://networkx.org/)
 - 🕨 Построение множества парето-оптимальных решений по результатам работы алгоритма Дейкстры
- Реализация ВОА*:
 - ▶ Проверка корректности реализации на размеченной выборке
 - 🕨 Эксперименты для оценки эффективности реализации: количество порождённых узлов, время работы
 - ▶ Оформление результатов

Срок: 26.04.2021

- Реализация NAMOA*:
 - ▶ Проверка корректности реализации на размеченной выборке
 - 🕨 Эксперименты для оценки эффективности реализации: количество порождённых узлов, время работы
 - Оформление результатов

Срок: 03.05.2021