相

狭义相对论

© LePtC (萌狸)

笔记项目主页: http://leptc.github.io/lenote

署名・非商用・相同方式共享

精

(同力学, 电磁学, 电动力学等, 推荐赵凯华力学电磁学, 虞福春电动)

参

刘辽. 狭义相对论(第二版). 高等教育出版社 (泡利度规的)

Landau. The Classical Theory of Fields └ 中译: 鲁欣. 场论(第八版). 高等教育出版社

符号约定

上标撇 '表示动系,v 表示动系速度,u 表示观察到的运动速度,固有速度为 $\gamma_u \vec{u}$ μ, ν 表示四维指标,从 0 开始,采用西海岸度规 $\eta_{\mu\nu} = \operatorname{diag} \begin{bmatrix} 1 & -1 & -1 \end{bmatrix}$ (常见于粒子和场论教材) (注: 东海岸度规 (-+++) , $(\operatorname{d} s)^2$ 反号,导致 $u^2 = -c^2$ 等,常见于引力和弦论教材)

相关笔记

伽利略变换(以下简称 GT)见〈力学〉 张量分析见〈矢分〉 洛仑兹, 庞加莱群见〈李群〉 旋量场见〈相对论量子力学〉 总的标准模型见〈粒子〉

(Last compiled on 2015/10/12 at 23:43:00)

相对论时空观

ether

<mark>以太</mark> 曾以为的传播电磁波的介质 Michelson-Morley

迈克尔逊莫雷实验 (1887) 干涉仪转 90°测不到条纹移动,即不同方向光速一样 (迈认为是地球带着以太运动) aberration of light

光行差 (Bradlet 1728) 因地球公转, 星光光线的真实方向和视方向有夹角 $arcsin \beta \approx 20.47$ " (实验观测与理论一致, 故以太并未被拖拽)

 $egin{array}{c} egin{array}{c} egin{array$

肯尼迪桑戴克实验 (1932) 不等臂干 涉仪, 仍未观察到条纹移动

✓表示理论与实验结果符合 ※表示理论与实验结果不符合 ○表示理论不能解释实验			光学实验							其他方面实验					
			光行差现象	斐索运流实验	迈克耳孙-莫雷实验	肯尼迪-桑戴克实验	运动的光源和反射镜实验	双星运行轨道的观察	太阳光源迈克耳孙-莫雷实验	质量随速度变化实验	普遍的质能相当实验	运动电荷的辐射实验	高速介子的衰变实验	特鲁顿-诺布耳实验	永磁体的单极感应实验
以太理论	固定以太理论(无洛伦兹收缩) 固定以太理论(有洛伦兹收缩) 以太附着在有质物体上的理论		× ×	× ×	×	× × ✓	< < <	< < <	×	×	000	< < < < < < < < < < < < < < < < < < <	000	×	× × O
发射理论	光在动镜 反射后的 速度	相对于原光源为 c/n 相对于反射镜为 c/n 相对于光源的像为 c/n	> > >	> 00			× ×	× × ×	× × •	000	000	× × ×	000	000	000
狭义相对论				V	V	V	V	\checkmark	V	\checkmark	\checkmark	\checkmark	V	V	V

发射理论 (里兹 1908) 光不需要以太, 真空光速为 c 按 GT, 承认绝对时空观 (否认麦方程协变性) 特鲁顿实验 (1903) 悬挂的电偶极子, 若有绝对速度 \vec{v} , 则会有磁力作用, 转向与 \vec{v} 垂直, 结果示零 质量增加 (考夫曼 1901) 高速运动电子束荷质比会变 时间延缓 高速运动 π 介子寿命延长 γ 倍

principle of relativity
相对性原理(爱因斯坦 1905)物理规律在所有惯性参考系的形式相同the universal speed of light

event world point t 时刻在 (x,y,z) 处发生某 $\boxed{\text{事件}}$, 记为 $\boxed{\text{世界点}}$ (t,x,y,z) world line space-time diagram

世界线 某粒子身上发生的事件,在时空图中连成的轨迹

例 不同地点的匀速直线运动, 世界线是平行的直线 interval

两事件的 间隔 $(\Delta s)^2 \equiv (c\Delta t)^2 - [(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2]$

「光速不变 | \rightarrow **间隔不变性** $(\Delta s)^2 = (\Delta s')^2$ (闵可夫斯基 1907)

时间↑t

等 s 线 到原点的间隔相同 闵氏长度 欧氏长度乘以因子 $\sqrt{\cos 2\theta}$ $\lceil c^2(\Delta t)^2 - (\Delta l)^2 = c^2(\Delta t')^2 - (\Delta l')^2$,令 $\Delta l' = 0$ 或 $\Delta t' = 0$] 类时间隔 存在同地的参考系

洛仑兹变换

洛仑兹变换 $t' = \gamma(t - xv/c^2), x' = \gamma(x - vt), y' = y, z' = z$ (把 '互换, v 换 -v, 就是逆变换式)

 $\lceil t_2' - t_1' = \gamma \left[(t_2 - t_1) - \frac{v}{c^2} (x_2 - x_1) \right] \rfloor$ 推论 同地点事件, 同时先后性绝对 $\lceil \Delta t \rangle$ 同号 $\rightarrow 1 > \frac{v}{c^2} \frac{x_2 - x_1}{t_2 - t_1} \rfloor$

信号速度 $v_s \equiv \left| \frac{x_2 - x_1}{t_2 - t_1} \right| \rightarrow$ 因果事件 的先后性绝对 (若 $v_s > c$ 则必为无因果联系事件, 先后次序可变)

LT 在时空图中使坐标轴对称地向光锥靠拢或远离, $\tan\theta = \beta$ $\boxed{\textbf{i}}$ 不平行的 LT 不对易 (GT 总对易)

记 $\beta = \tanh \xi$, $\gamma = \cosh \xi$, 有 快度 $\xi = \frac{1}{2} \ln \left(\frac{1+\beta}{1-\beta} \right)$ 例 光速的快度是无穷 (所以光速不变)

快度在 LT 下 (像 GT 下的速度一样) 直接相加減 **例** 速度合成 $\xi' = \xi - \xi_v$, 其中 $\tanh \xi = \frac{u}{c}$, $\tanh \xi_v = \frac{v}{c}$

时间变换
$$\frac{\mathrm{d}t'}{\mathrm{d}t} = \gamma \Gamma = (\gamma \Gamma')^{-1}$$
,其中 $\Gamma \equiv 1 - \frac{vu_x}{c^2}$, $\Gamma' \equiv 1 + \frac{vu_x'}{c^2}$

速度变换
$$u_x' = \frac{\mathrm{d}x'/\mathrm{d}t}{\mathrm{d}t'/\mathrm{d}t} = \frac{u_x - v}{\Gamma}, u_y' = \frac{u_y}{\gamma\Gamma}, u_z'$$
 同理, 逆变换 $u_x = \frac{u_x' + v}{\Gamma}$

例 动系 $v=\frac{c}{3}$,看到物体 $u_x'=\frac{c}{2}$,则该物体相对于静系 $u_x=\frac{5}{7}c$

质量变换
$$m' = \frac{m_0}{\sqrt{1 - (u_x')^2/c^2}} = \gamma \Gamma m$$
 加速度变换 $a_x' = \frac{du_x'}{dt} \frac{dt}{dt'} = \frac{du_x'}{dt'}$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{u_x - v}{\Gamma} \right) \frac{1}{\gamma \Gamma} = \frac{a_x}{(\gamma \Gamma)^3}, \ a_y' = \frac{1}{(\gamma \Gamma)^2} \left(a_y + \frac{v u_y}{c^2 \Gamma} a_x \right), \ a_z'$$
 同理

能量动量变换 $(E/c^2, \vec{p})$ 的变换与 (t, \vec{x}) 形式相同

D的变换
$$F_x' = \frac{\mathrm{d}p_x'}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}t'} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\gamma \left(p_x - v \frac{E}{c^2} \right) \right] \frac{1}{\gamma \Gamma} = \left[F_x - \frac{v}{c^2} (\vec{F} \cdot \vec{u}) \right] \frac{1}{\Gamma} = F_x - \frac{v}{c^2 \Gamma} (F_y u_y + F_z u_z), \ F_y' = \frac{F_y}{\gamma \Gamma}$$

$$\begin{bmatrix} E' = \gamma(E - p_x v) \end{bmatrix}$$
 、代入 $p_x = \frac{E}{c} \cos \theta$ 、 $E = \hbar \omega$ 」 相对论多普勒效应 $\omega' = \gamma(1 - \beta \cos \theta) \omega$

纵向: $\theta=0,\pi$ 时 $\frac{\omega}{\omega}\approx1\pm\beta$, 即经典的红移公式, 横向: $\theta=\frac{\pi}{2}$ 时 $\frac{\omega}{\omega}=\gamma^{-1}\approx1-\frac{1}{2}\beta^2$ **囫** 发现微波背景辐射 (宇宙热平衡电磁辐射) 有 10⁻³ 偶极各向异性, 说明我星系相

对于背景辐射有速度 $c \times 10^{-3}$,方向由红移指向蓝移

proper time

效应与佯谬

固有时 物体的静止系 (即同速动系) 测出的时间 Δau 推论 $\Delta s = c \Delta au$ 「同地点事件 | 钟慢 $\Delta t = \gamma \Delta au$ twin paradox

孪生子佯谬| 孪生兄弟分别留在地面和高速旅行, 到底谁更年轻 「旅行者会经历加速, 两参考系不等价 | $\overline{\mathbf{M}}$ 地球和某星相距 8 lv ,旅行者以 $\mathrm{0.8c}$ 飞到该星然后返航 (为避免广相计算, 假设加速度无穷大) 起飞时地球, 飞船, 星上的钟均为 t=0, 飞船突然达到 0.8c, $\gamma^{-1}=0.6$, $t=\gamma(0+x'v/c^2)=\beta x/c$ 星上的 钟跳到 6.4 a, 到达该星时, 飞船 t=6 a 地球 3.6 a 星 6.4+3.6 a, 飞船突然调头, 飞船仍为 t=6 a, 地球 的钟跳到 3.6+2*6.4 a, 回到地球时, 飞船 t=6+6 a 地球 16.4+3.6 a, 即地面的兄弟比自己老 8 岁

李生子效应 (Hafele 1971) 飞机载铯原子钟绕赤道一周 (忽略公转,飞机小于自转速度,故均为绝对向 东),向东:钟慢 59 ns (理论:广相贡献 144 狭相 -184),向西:钟快 273 ns (广相 179 狭相 96)

结论 相对于惯性系加速越大的钟越慢

rest length

length contraction

静长度 l_0 「同时测量 | \mathbb{R} 缩 $l_{\parallel} = \gamma^{-1} l_0$ (垂直于运动方向不收缩)

爱伦费斯特佯谬 旋转唱片, 周长收缩半径不收缩 → 加速物体绝非刚体 位矢角度变换 沿 θ 角某一边的方向以 v 运动, 看到角度 $\tan \theta' = \gamma \tan \theta$ Terrell

特勒尔转动 (1959) 尺缩效应对应的是测量形象 (物体上各点相对静系 同一时刻的位置) 但物体的视觉影像为同时到达眼睛的光 (不同时发出) 故有景深的物体看起来是发生了转动 $\arcsin \beta$

列车佯谬 列车通过与它等长的山洞, 记列车与山洞中点对齐为 0 时刻 ① 司机认为山洞变短, 在 0 时刻从车头车尾同时向地面射出标记, 然而 观众看到先射尾标 → 车尾进洞 → 关门 → 车头撞门出洞 → 再射头标 ② 观众认为列车变短, 在 0 时刻在两洞口同时放下闸门关住列车, 然而 司机看到前门先关 → 车头撞门出洞 → 车尾进洞 → 后门再关

穿孔佯谬 可以穿过. 在动系看来是因为栅栏变斜而穿过的

rest mass

静质量 m_0 (旧称 $m=\gamma m_0$ 为 **动质量** 现已弃用, 见相对论的牛二律公式, 还有别的项)

| 相对论能量| $E=mc^2=\gamma m_0c^2=m_0\left(1+\frac{1}{2}\beta^2+\frac{3}{8}\beta^4+\dots\right)c^2\equiv m_0c^2+E_{\mathbf{k}}=\sqrt{|\vec{p}|^2c^2+m_0^2c^4}$ 〈 4 动量 〉

推论 群速度 $v_g = \frac{\mathrm{d}\omega}{\mathrm{d}k} = \frac{\mathrm{d}E}{\mathrm{d}p} = \frac{\mathrm{d}E}{\mathrm{d}p$

「洛仑兹变换(数学)并不禁止超光速,是因果律(亦可能是热二律)禁止的,见双曲面的图 |

光速极限原理 在任意惯性系中观测,任意物体/信号/能量在空间中传播的速度,不超过真空光速

例 可以超光速:空间本身的膨胀速度,相速度 (对于反常色散,群速度不代表信号速度),影子的速度,几何交点的速度,第三观察者看到的相对速度,量子纠缠 (尚有争议),虚粒子等

推论 不存在绝对刚体,应力波未到达的区域仍保持原有应力分布及运动状态 tachyon

若选择超光速的惯性参考系,则 γ 为虚数 \rightarrow 快子 (所有论文都可写个快子版的,故在证实前一律不收) (热力学量的变换尚有争议)

相对论电磁学

例 导体动磁场不动, 和磁场动导体不动, 产生的电动势相等 $\mathcal{E} = -\frac{\mathrm{d}}{\mathrm{d}t}\Phi_B = -\partial_t(\oint_L \vec{A} \cdot \mathrm{d}\vec{l}) = \oint_L \vec{E}_{\not{k}}\vec{l}$ [洛伦兹力为 $F_y = q(E_y + u_z B_x - u_x B_z)$ 等 3 式, 由力变换公式, 及速度逆变换, 得 $F_y' = \gamma \Gamma' F_y = q(\gamma \Gamma' u_z) B_x + q\gamma \left(1 + \frac{u_x' v}{c^2}\right) E_y - q\gamma (\Gamma' u_x) B_z = qu_z' B_x + q\gamma \left[(E_y - v B_z) + u_x' \left(\frac{v}{c^2} E_y - B_z\right)\right]$, 同理由 F_z' 得另 3 式 $E_x' = E_x$, $E_y' = \gamma (E_y - v B_z)$, $E_z' = \gamma (E_z + v B_y)$, $B_x' = B_x$, $B_y' = \gamma \left(B_y + \frac{v}{c^2} E_z\right)$, $B_z' = \gamma \left(B_z - \frac{v}{c^2} E_y\right)$ (对于电磁学, 无论速度多低, 伽利略变换都不适用)

推论 若 S 系中 $\vec{E}=0$, 则 $\vec{E}'=\vec{v}\times\vec{B}'$, 若 S 系中 $\vec{B}=0$, 则 $\vec{B}'=-\frac{1}{c^2}(\vec{v}\times\vec{E}')$ $E^2-c^2B^2$ 是不变量, $\vec{E}\cdot\vec{B}$ 是不变量 \rightarrow 保正交性,保锐/钝角

例 匀速直线运动点电荷 (并非稳恒电流) 「对 E 积分, 可验证高斯定理仍成立」

$$E = k_e \frac{q}{r^2} \frac{1 - \beta^2}{(1 - \beta^2 \sin^2 \theta)^{3/2}} , \quad B = k_m \frac{qv}{r^2} \frac{(1 - \beta^2) \sin \theta}{(1 - \beta^2 \sin^2 \theta)^{3/2}} \xrightarrow{\beta \ll 1} k_m \frac{qv}{r^2} \sin \theta$$

注 特鲁顿实验示零原因:运动学:静系下加速度沿连线方向,则变换后依然如此动力学:杆不是刚体,可以证明电力磁力矢量和总与椭圆周正交

隐藏动量 $\vec{p} = \frac{1}{c^2} (\vec{m} \times \vec{E})$,电场中的磁偶极矩携带动量(尽管不运动),纯相对论力学效应,与电磁场动量精确相消

实闵 (boost)

复闵 (Wick)

张量代数

(类似 GT 下距离不变, 说明空间不是 3 个无关维度) [LT 表明 1 维时间和 3 维空间是整体四维时空] Minkowski Space metric

闵氏空间 内积 $(\mathbf{d}s)^2 = \eta_{\mu\nu} \mathbf{d}x^{\mu} \mathbf{d}x^{\nu}$ (求和约定),伪欧空间,闵氏度规 $\eta_{\mu\nu} = \eta^{\mu\nu} = \operatorname{diag} \begin{bmatrix} 1 & -1 & -1 \end{bmatrix}$

指标升降 $\eta_{\mu\nu}x^{\nu}=x_{\mu}$, $\eta^{\mu\nu}x_{\nu}=x^{\mu}$ **例** 内积 $a^{\mu}b_{\mu}=a_{\mu}b^{\mu}=\eta_{\mu\nu}a^{\mu}b^{\nu}=a^{0}b^{0}-\vec{a}\cdot\vec{b}$ (上标指第 0 分量)

复闵氏空间 取 $x_{\mu}=x^{\mu}=(\mathbf{i}ct,x,y,z)$ 可实现该内积 (此为泡利度规, 已弃用) Wick rotation

标量 坐标系转动时量值不变 → 不变量 内积, 固有量, 电量, 4 体积元 d^4x 等

4 矢量 分量随坐标系做转动变换 → (以下采用 Bjorken-Drell 度规) contravariant

逆变坐标 $x^{\mu}=(ct,x,y,z)$ (列矢量) 协变坐标 $x_{\mu}=(ct,-x,-y,-z)$

洛伦兹变换 矩阵写法 $\vec{x}' = \vec{\Lambda} \vec{x}$, 指标表示 $(x')^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$, $x'_{\mu} = \Lambda^{\nu}_{\mu} x_{\nu}$ 公式 $\Lambda^{\mu}_{\nu} \Lambda^{\nu}_{\rho} = \delta^{\mu}_{\rho} \to \Lambda^{\mu}_{\nu} \Lambda^{\nu}_{\mu} = 1$

 \mathbb{E} $\Lambda_{\nu}^{\mu} = (\Lambda^{T})^{\mu}_{\nu}$ 本笔记不区分前后 $\left[(\Delta s)^{2} = (\Delta x)^{T} \eta(\Delta x) = (\Delta x')^{T} \eta(\Delta x') = (\Delta x)^{T} \Lambda^{T} \eta \Lambda(\Delta x) \right] \rightarrow$

相对性原理 $\eta = \Lambda^T \eta \Lambda$ (矩阵写法不能换序) 张量按 $(\eta')^{\mu\nu} = \Lambda^\mu_\rho \Lambda^\nu_\sigma \eta^{\rho\sigma}$ 变换 (指标表示不用管求和顺序)

(欧氏空间中用两点之差定义矢量,非欧空间中矢量不能随意平移,只能在一个时空点上定义)→切空间 「矢量的参数化写法 $r(t)=r_a+t(r_b-r_a) \rightarrow v=\frac{d}{dt}r(t)|_{t=0}$ 」 参数化 $x^{\mu}(\lambda) \rightarrow \boxed{$ 切矢量 (的分量) $V^{\mu}=\frac{d}{d\lambda}x^{\mu}$

 \rightarrow 分量的变换方式和 x^{μ} 相同 $V^{\mu} \stackrel{\text{LT}}{\longleftrightarrow} (V')^{\mu} = \Lambda^{\mu}_{\nu} V^{\nu}$ 「以后构造的 4 矢量均按此式变换, 不再重申」 (采用被动变换观点) 矢量的本体 $V=V^{\mu}\vec{e}^{(\mu)}$ 不变, 基矢 $\vec{e}^{(\mu)}$ 和分量 V^{μ} 按相反方式变换

 $\begin{bmatrix} V = V^{\nu} \overrightarrow{e}^{(\nu)} = (V^{,})^{\mu} \overrightarrow{e}^{,(\mu)} = \Lambda^{\mu}_{\nu} V^{\nu} \overrightarrow{e}^{,(\mu)} \rightarrow \overrightarrow{e}^{(\nu)} = \Lambda^{\mu}_{\nu} \overrightarrow{e}^{,(\mu)} \end{bmatrix}$ 基矢的变换方式为 $\overrightarrow{e}^{,(\mu)} = \Lambda^{\nu}_{\mu} \overrightarrow{e}^{(\nu)}$ covector cotangent space

|混合张量| 以矢量基矢的张量积为基 (张量积一般不可交换), 代表矢量间的映射 $T^{\mu}_{
u}V^{
u}=U^{\mu}$

缩并 的结果还是张量 $T^{\mu\rho}{}_{\sigma}F^{\sigma}{}_{\rho\nu}=U^{\mu}{}_{\nu}, T^{\mu\nu\rho}{}_{\sigma\nu}=F^{\mu\rho}{}_{\sigma},$ 顺序不同张量不同 $T^{\mu\nu\rho}{}_{\sigma\nu}\neq T^{\mu\rho\nu}{}_{\sigma\nu}$

| 逆变张量| ((2,0)) 所 张量) 一般 $T^{\mu\nu} \neq T^{\nu\mu}$ (対 称 张量 才 等 于) | 协变张量| $T_{\mu\nu}$ ((0,2)) 所 张量)

张量的指标升降, 不可变指标顺序 $\boxed{0}$ $\eta^{\mu\gamma}T^{\alpha\beta}{}_{\gamma\sigma}=T^{\alpha\beta\mu}{}_{\sigma}$, $\eta_{\mu\alpha}T^{\alpha\beta}{}_{\gamma\sigma}=T_{\mu}{}^{\beta}{}_{\gamma\sigma}$

单位张量 (四维) $\delta^{\mu}_{\nu}x^{\nu}=x^{\mu}$, 迹 $\delta^{\mu}_{\mu}=4$ 性质 $\eta, \delta, \varepsilon$ 均为各向同性张量 例 $\eta^{\rho}_{\mu}=\eta_{\mu\nu}\eta^{\nu\rho}=\delta^{\rho}_{\mu}$

 $\varepsilon^{\mu\nu\rho\sigma} \varepsilon_{\mu\nu\tau\omega} = -2(\delta^{\rho}_{\tau}\delta^{\sigma}_{\omega} - \delta^{\rho}_{\omega}\delta^{\sigma}_{\tau}), \varepsilon^{\mu\nu\rho\sigma} \varepsilon_{\mu\nu\rho\tau} = -6\delta^{\sigma}_{\tau}, \varepsilon^{\mu\nu\rho\sigma} \varepsilon_{\mu\nu\rho\sigma} = -4!$

达朗贝尔算符 □²= $\partial^{\mu}\partial_{\mu}$ = $\frac{1}{c^{2}}\partial_{t}^{2}$ - ∇^{2} (或记作 □, 不推荐) (是标量算符) (东岸度规与此相反)

力学协变形式

4 位移 Δx^{μ} 例 $\Delta x^{\mu} \Delta x_{\mu} = (\Delta s)^2 = c^2 (\Delta \tau)^2$ 是不变量

牛工律 $\vec{F} = \frac{d}{dt} \vec{p} = \frac{d}{dt} (\gamma_u m_0 \vec{u})$ 在狭相依然成立, 记平常加速度 $\vec{a} = \frac{d}{dt} \vec{u}$

得 $\vec{F} = \gamma_u m_0 \left[\vec{a} + \frac{(\vec{u} \cdot \vec{a})\vec{u}}{c^2 - u^2} \right]$,固有 4 加速度 $\alpha^\mu \equiv \frac{\mathrm{d}}{\mathrm{d}\tau} u^\mu = \gamma_u \left(\frac{1}{c} \gamma_u^3 (\vec{u} \cdot \vec{a}), \frac{\vec{F}}{m_0} \right)$ 性质 和 4 速度正交 $\alpha^\mu u_\mu = 0$

推论 带电粒子在电磁场中的平常加速度 $\vec{a} = \frac{q}{\gamma_u m_0} \left[\vec{E} + \vec{u} \times \vec{B} - \frac{1}{c^2} (\vec{u} \cdot \vec{E}) \vec{u} \right]$

囫 恒力作用下粒子的 s-t 图为双曲线 $x(t) = \frac{m_0 c^2}{F} \left[\sqrt{1 + \left(\frac{Ft}{m_0 c}\right)^2} - 1 \right]$ (经典为抛物线 $x(t) = \frac{F}{2m_0} t^2$)

注 牛三律与同时的相对性不相容, 必须是两物体接触作用 (同地点事件) 才可以

能量动量 4 矢量, 简称 $\boxed{4 动量} p^{\mu} \equiv m_0 u^{\mu} = (E/c, \vec{p}), p^{\mu} p_{\mu} = m_0^2 c^2$

固有 4 维力矢量, 又称 闵氏力 $K^{\mu} = \frac{d}{d\tau} p^{\mu} = (K^0, \gamma_u \vec{F})$, $K^{\mu} K_{\mu} = \gamma_u^2 (1 - \beta_u^2 \cos^2 \theta) F^2$, θ 为 \vec{u} 和 \vec{F} 夹角 牛二律的闵氏形式 $K^{\mu}=m_0\alpha^{\mu}$, 同理有正交性 $K^{\mu}u_{\mu}=0$

 $\begin{bmatrix} E = \hbar\omega, \vec{p} = \hbar\vec{k} \end{bmatrix}$ **4 波矢** $k^{\mu} = (\omega/c, \vec{k})$ 「亦可推出多普勒效应, 用 $\cos\theta = \vec{u} \cdot \vec{k}/uk$ 」 $\rightarrow \phi = k^{\mu}x_{\mu} = \omega t - \vec{k} \cdot \vec{r}$ 相位不变性 任何波, 相位为不变量 (波峰还是波谷, 绝对)

「电动力学的协变性并非理论证明的结果, 而是狭义相对论的前提, 由实验来检验, 本章只是重写公式使

其协变性更明显 |

sor
$$E_x/c$$
 E_y/c

$$\begin{vmatrix} 0 & -B_x & -B_y \\ B_x & 0 & E_z/c \\ B_y & -E_z/c & 0 \end{vmatrix}$$

$$egin{array}{cccc} B_x & 0 & E_z/c & -E_y/c \ B_y & -E_z/c & 0 & E_x/c \ B_z & E_y/c & -E_x/c & 0 \ \end{array}$$

为四维二阶反对称张量, 电磁场不变量 $\sum_{k=0}^{16} F_{\mu\nu} F^{\mu\nu} = 2[B^2 - (E/c)^2]$, $|F_{\mu\nu}| = [(\vec{E}/c) \cdot \vec{B}]$

 $[q \ \text{不变}, \rho = \gamma_u \rho_0, \overrightarrow{j} = \rho u]$ 4 电流密度 $j^{\mu} \equiv \rho_0 u^{\mu} = \frac{d}{d\tau} q = (c\rho, \overrightarrow{j})$

散度为零 $\partial_{\mu}j^{\mu}=0 \rightarrow$ 连续性方程 $\partial_{t}\rho+\nabla\cdot\overrightarrow{j}=0$

$$\partial_{\mu}F^{\mu\nu} = \mu_0 j^{\nu}$$

$$(\nu=0): [0+(\frac{\partial}{\partial x}E_x)]$$

麦方程组
$$\frac{\partial_{\mu}F^{\mu\nu}=\mu_{0}j^{\nu}}{(\Leftrightarrow \partial_{\nu}F^{\mu\nu}=-\mu_{0}j^{\mu})}$$
 $\rightarrow \begin{cases} \nu=0: & \left[0+(\partial_{x}E_{x}+\partial_{y}E_{y}+\partial_{z}E_{z})/c=\mu_{0}c\rho\right]$ 电高斯 $\nabla\cdot\vec{E}=\rho/\varepsilon_{0}$ $\nu=1,2,3: & \left[-\partial_{t}E_{x}/c^{2}+\partial_{y}B_{z}-\partial_{z}B_{y}=\mu_{0}j_{x}\right]$ 磁环路 $\nabla\times\vec{B}-\partial_{t}\vec{E}/c^{2}=\mu_{0}\vec{j}$

$$\begin{array}{l} \frac{\partial_{\lambda}F_{\mu\nu}+\partial_{\mu}F_{\nu\lambda}+\partial_{\nu}F_{\lambda\mu}=0}{\text{g}} \\ \text{g} \ \frac{\partial_{\mu}F_{*}^{\mu\nu}=0}{\text{g}} \ \lceil \overrightarrow{E}/c \rightarrow \overrightarrow{B}, \overrightarrow{B} \rightarrow -\overrightarrow{E}/c \ \rfloor \end{array} \rightarrow \left\{ \begin{array}{l} \nu=0: \ \overrightarrow{\text{w}} \ \overrightarrow{\text{a}} \ \overrightarrow{\text{h}} \ \nabla \cdot \overrightarrow{B}=0 \\ \nu=1,2,3: \ \textbf{e} \ \overrightarrow{\text{h}} \ \overrightarrow{\text{h}} \ \overrightarrow{\text{h}} \ \overrightarrow{\text{h}} =0 \end{array} \right.$$

囫 从麦方程可直接导连续性方程: $\partial_{\mu}\partial_{\nu}F^{\mu\nu} = \mu_0 \partial_{\mu}j^{\mu}$, 而 $\partial_{\mu}\partial_{\nu}F^{\mu\nu} = \partial_{\nu}\partial_{\mu}F^{\nu\mu} = \partial_{\mu}\partial_{\nu}(-F^{\mu\nu})$ 故为零

闵氏力 $K^{\mu} = qu_{\nu}F^{\mu\nu} \rightarrow \left\{ \begin{array}{l} \nu = 0: \text{ 功率 } \frac{\mathrm{d}}{\mathrm{d}t}E = q(\overrightarrow{u} \cdot \overrightarrow{E}) \\ \nu = 1, 2, 3: \text{ 洛伦兹力 } \overrightarrow{K}/\gamma_u = \overrightarrow{F} = q(\overrightarrow{E} + \overrightarrow{u} \times \overrightarrow{B}) \end{array} \right.$

定义 4 力密度 $f^{\mu} = (\frac{1}{c} \vec{f} \cdot \vec{u}, \vec{f}) \rightarrow \Delta$ 密度形式 $f^{\mu} = j_{\nu} F^{\mu\nu} = (\frac{1}{c} \vec{E} \cdot \vec{j}, \rho \vec{E} + \vec{j} \times \vec{B})$

4 **矢势** $A^{\mu}=(\varphi/c,\overrightarrow{A})$ 则场张量可表示为 $F^{\mu\nu}=\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}$

$$[\mathfrak{G}: F^{01} = \frac{\partial_t A_x}{\partial_t A_x}/c - (-\frac{\partial_x}{\partial_x})\varphi/c = -E_x/c, F^{12} = (-\frac{\partial_x}{\partial_x})A_y - (-\frac{\partial_y}{\partial_y})A_x = -(\nabla \times \overrightarrow{A})_z = -B_z]$$

规范不变性 可以给 A^{μ} 加上任意标量函数的梯度 $\partial^{\mu}\phi$ 而不改变 $F^{\mu\nu}$

(库仑规范不能在 LT 下保持) **洛伦茲规范** $\partial_{\mu}A^{\mu}=0 \rightarrow \partial_{t}\varphi/c^{2}+\nabla\cdot\overrightarrow{A}=0$

「麦方程 + 洛规范」→ **电磁波** $\square^2 A^{\nu} = \mu_0 j^{\nu}$ (东岸度规有个负号) \longrightarrow $\left\{ \begin{array}{c} \frac{1}{c^2} \partial_t^2 \varphi - \nabla^2 \varphi = \rho/\varepsilon_0 \\ \frac{1}{c^2} \partial_t^2 \vec{A} - \nabla^2 \vec{A} = \mu_0 \vec{j} \end{array} \right.$

将麦氏应力张量推广到四维
$$\rightarrow$$
 stress-energy-momentum tensor $T^{\mu\nu}\equiv\begin{bmatrix} w & g_xc & g_yc & g_zc \\ S_x/c & -T_{xx} & -T_{xy} & -T_{xz} \\ S_y/c & -T_{yx} & -T_{yy} & -T_{yz} \\ S_z/c & -T_{zx} & -T_{zy} & -T_{zz} \end{bmatrix}$ w 为电磁场能量密度 \overrightarrow{g} 为电磁场动量密度 \overrightarrow{y} 为电磁场动量密度 \overrightarrow{y} 为电磁场动量密度

电磁场运动方程的能动张量表示 $f^{\nu} = -\frac{\partial_{\mu}T^{\mu\nu}}{\partial_{\nu}T^{\mu\nu}} \rightarrow \left\{ \begin{array}{l} \nu = 0: \text{ 能量守恒 } \overrightarrow{f} \cdot \overrightarrow{u} = -(\frac{\partial_{t}w + \nabla \cdot \overrightarrow{S}}{\partial_{i}T_{ij}}) \\ \nu = 1, 2, 3: \text{ 动量守恒 } f_{i} = -\frac{\partial_{t}g_{i} + \frac{\partial_{i}T_{ij}}{\partial_{i}T_{ij}} \end{array} \right.$

「分析力学中拉氏量为 $L(q,\dot{q},t)$,作用量为 $S=\int_t L dt$,时空不对称 |

定义 $L = \iiint \mathcal{L} d^3x$, 拉氏量密度 \mathcal{L} 应为标量 (LT 不变量), 能量密度的量纲

并将 q(t) 推广为 $\psi(x^{\mu})$, 从而 $S=\iiint \mathcal{L}(\psi, \partial_{\mu}\psi) d^4x$ **哈密顿原理** 变为 $\delta \psi(x_1^{\mu}) = \delta \psi(x_2^{\mu}) = 0$, 则 $\delta S = 0$

(同理拉氏量密度不唯一, 可加上任意矢量函数的散度 $\mathcal{L} + \partial_{\mu} V^{\mu}$)

同理可定义 正则动量密度 $\pi^{\mu} \equiv \frac{\partial}{\partial_{\mu}\psi} \mathcal{L}$ 哈氏量密度 $\mathcal{H}(\psi, \pi^{\mu}) = \pi^{\mu} \frac{\partial}{\partial_{\mu}} \psi - \mathcal{L}$ [标准模型的任务是构造拉氏量, 使其拉氏方程 $\partial_{\psi}\mathcal{L} = \partial_{\mu}\pi^{\mu}$ 能给出运动方程]

标量场

① ψ 取为实标量 $\phi(x^{\mu}) \in \mathbb{R}$ 〈流体力学〉「动能 $\frac{1}{2}\dot{\phi}^2$,梯度能 $\frac{1}{2}(\nabla\phi)\cdot(\nabla\phi)$,势能 $U(\phi)$ 」 将动能项写为协变形式 $\frac{1}{2}(\partial_{\mu}\phi)^2 \equiv \frac{1}{2}(\partial^{\mu}\phi)(\partial_{\mu}\phi) = \frac{1}{2}(\partial_t\phi)^2 - \frac{1}{2}(\nabla\phi)^2 \rightarrow \mathcal{L} = \frac{1}{2}(\partial_{\mu}\phi)^2 - U(\phi)$ $\left[\begin{array}{c} \partial_{\phi}\mathcal{L} = -\frac{\mathrm{d}}{\mathrm{d}\phi}U, \partial_{(\partial_{\mu}\phi)}\mathcal{L} = \partial^{\mu}\phi \end{array}\right]$ 若U=0,得运动方程为 $\square^2\phi=0$,描述的是自由粒子

 $m{Q}$ 〈 广相 〉对于标量场 $T^{\mu\nu} = \pi^{\mu} \partial^{\nu} \phi - g^{\mu\nu} \mathcal{L} \left[\pi^{\mu} = \partial^{\mu} \phi \right] \rightarrow T^{00}$ 是哈氏量 Klein-Gordon equation

若取谐振子势 $U=\frac{1}{2}m^2\phi^2$ \rightarrow **克莱因戈登方程** $(\square^2+m^2)\phi=0$,即描述有质量的自由粒子

 $\mathcal{L}=\frac{1}{2}(\partial_{\mu}\phi)^2-\frac{1}{2}m^2\phi^2+J\phi$ 得运动方程 $(\Box^2+m^2)\phi=J$,故 ϕ 的一次项称为 **源流** $J(x^{\mu})\phi(x^{\mu})$

「一般的势函数 $U=\frac{1}{2}m^2\phi^2+\frac{h}{3!}\phi^3+\frac{g}{4!}\phi^4+\dots$, h,g,\dots 为常系数, 若有 $\phi\to-\phi$ 对称性则无奇次幂项 |

 $\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} m^{2} \phi^{2} - \frac{g}{4!} \phi^{4} \rightarrow \text{ 自发对称性破缺〈热力学〉}$

interaction strength

得运动方程为 $(\square^2+m^2)\phi=-\frac{g}{3!}\phi^3$,描述有质量粒子受到相互作用,g 称为 相互作用强度

现有两个全同的标量粒子发生相互作用, 记 $\mathcal{L}_i = \frac{1}{2} \left(\frac{\partial}{\partial \mu} \phi_i \right)^2 - \frac{1}{2} m^2 \phi_i^2$

「考虑 $\phi_1 \leftrightarrow \phi_2$ 交换对称性,自作用 ϕ_1^4 应和互作用 $\phi_1^2 \phi_2^2$, $\phi_2^2 \phi_1^2$ 一样强」加入势能 $\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2 - g(\phi_1^2 + \phi_2^2)^2$ 做变换 $\begin{bmatrix} \phi_1^i \\ \phi_2^i \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix}$ 时拉氏量不变 \rightarrow 实标量粒子有内禀 $\mathbf{SO}(2)$ 对称性

② 复标量场, 取 $\psi = \frac{1}{\sqrt{2}}(\phi_1 + \mathbf{i}\phi_2)$, 则 $\psi^{\dagger} = \frac{1}{\sqrt{2}}(\phi_1 - \mathbf{i}\phi_2)$, 得 $\mathcal{L} = \frac{\partial^{\mu}\psi^{\dagger}\partial_{\mu}\psi - m^2\psi^{\dagger}\psi - g(\psi^{\dagger}\psi)^2$ 做变换 $\psi \rightarrow \psi e^{i\theta}$ 时拉氏量不变 \rightarrow 复标量粒子有内禀 U(1) 对称性

矢量场

③ 对于电磁场, ψ 取 4 矢势 A_{ν} 「 \mathcal{L} 可以是 A_{ν} , $\partial_{\mu}A_{\nu}$, $F_{\mu\nu}$... 的函数, 又要求为标量, 故应做内积」 「哈氏量的提示 $\mathcal{H} = \frac{1}{2} \varepsilon_0 E^2 + \frac{1}{2\mu_0} B^2$ 」 取 $\mathcal{L}_0 = \frac{1}{2} \varepsilon_0 E^2 - \frac{1}{2\mu_0} B^2 = -\frac{1}{4\mu_0} F_{\mu\nu} F^{\mu\nu}$

 $\int \mathcal{L}_0$ 仅为 $\partial_\mu A_\nu$ 的函数, 故 $\partial_{A_\nu} \mathcal{L} = 0$, 因要对 $\partial_\mu A_\nu$ 求导, 故把 F 都换到下标, 并换指标记号以免混淆 $F_{\alpha\beta}F^{\alpha\beta} = \eta^{\alpha\overline{\alpha}}\eta^{\beta\overline{\beta}}F_{\alpha\beta}F_{\overline{\alpha}\overline{\beta}}, \ \frac{\partial_{(\partial_{\mu}A_{\nu})}F_{\alpha\beta} = \partial_{(\partial_{\mu}A_{\nu})}(\partial_{\alpha}A_{\beta} - \partial_{\beta}A_{\alpha}) = \delta^{\mu}_{\alpha}\delta^{\nu}_{\beta} - \delta^{\mu}_{\beta}\delta^{\nu}_{\alpha}, \ \text{积的求导} \ \frac{\partial_{(\partial_{\mu}A_{\nu})}(F_{\alpha\beta}F^{\alpha\beta}) = \eta^{\alpha\overline{\alpha}}\eta^{\beta\overline{\beta}}\left[(\delta^{\mu}_{\alpha}\delta^{\nu}_{\beta} - \delta^{\mu}_{\beta}\delta^{\nu}_{\alpha})F_{\overline{\alpha}\overline{\beta}} + (\delta^{\mu}_{\overline{\alpha}}\delta^{\nu}_{\overline{\beta}} - \delta^{\mu}_{\overline{\beta}}\delta^{\nu}_{\overline{\alpha}})F_{\alpha\beta}\right] = (\eta^{\mu\overline{\alpha}}\eta^{\nu\overline{\beta}} - \eta^{\nu\overline{\alpha}}\eta^{\mu\overline{\beta}})F_{\overline{\alpha}\overline{\beta}} + (-\overline{K}\mathfrak{b}) = 2(F^{\mu\nu} - F^{\nu\mu}) = 4F^{\mu\nu}$

得运动方程为 $\partial_{\mu}F^{\mu\nu}$ =0,故 \mathcal{L}_0 描述真空中的电磁场

「可加上任意矢量的散度 $-\frac{1}{2\mu_0}\partial_{\mu}(A_{\nu}\partial^{\nu}A^{\mu})$,因 $\partial_{\mu}A^{\mu}=0$ 括号可去掉」亦可写作 $\mathcal{L}_0=-\frac{1}{2\mu_0}\partial_{\mu}A_{\nu}\partial^{\mu}A^{\nu}$

 $\lceil \frac{\partial_{(\partial_{\mu}A_{\nu})}(\partial_{\alpha}A_{\beta}\partial^{\alpha}A^{\beta}) = \eta^{\alpha\alpha}\eta^{\beta\beta}(2\partial_{\alpha}A_{\beta})\delta^{\mu}_{\alpha}\delta^{\nu}_{\beta} = 2\partial^{\mu}A^{\nu} \rfloor \quad \not{\text{\bar{e}}} \quad \partial_{\mu}\partial^{\mu}A^{\nu} = 0$

有源时取 $\mathcal{L}_{em} = \mathcal{L}_0 - j^{\nu} A_{\nu}$, 则得 $\frac{\partial_{\mu} F^{\mu\nu}}{\partial_{\mu} F^{\mu\nu}} = \mu_0 j^{\nu}$ 或 $\frac{\partial_{\mu} \partial^{\mu} A^{\nu}}{\partial_{\mu} \partial_{\nu}} = \mu_0 j^{\nu}$

若规范粒子有质量, 无源为 $\overline{\text{KG}}$ 方程, 有源为 $\overline{\text{**es}}$ 普罗卡方程 $(\square^2+m^2)A^\mu=\mu_0 j^\mu \to \mathcal{L}=\mathcal{L}_{em}+\frac{m^2}{2\mu_0}A^\nu A_\nu$

→ 加入质量项后不再有规范不变性

〈广相〉对于矢量 $T^{\mu\nu} = \pi^{\mu\nu} \partial^{\lambda} A_{\nu} - g^{\mu\nu} \mathcal{L}$ (不唯一, 可加个反对称张量的梯度) $\pi^{\mu\nu} \equiv \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} = -F^{\mu\nu}$

「 $m \partial_{\lambda}(F^{\mu\lambda}A^{\nu})$ 使对称化」 $T^{\mu\nu} = \frac{1}{\mu_0}F^{\mu\lambda}F_{\lambda}{}^{\nu} - \eta^{\mu\nu}\mathcal{L}$ 例 「 $\eta^{00}F^{0\lambda}F_{\lambda0} = (-E/c)^2$, $\eta^{00}F^{i\lambda}F_{\lambda0} = (\vec{E} \times \vec{B})_i/c$ 」

 $T^{00} = \frac{1}{\mu_0} F^{0\lambda} F_{\lambda}{}^0 - \frac{1}{2} (\varepsilon_0 E^2 - \frac{1}{\mu_0} B^2) = \frac{1}{2} (\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2) = w \quad , \quad T^{i0} = \frac{1}{\mu_0} F^{i\lambda} F_{\lambda}{}^0 = S_i / c$