lab06-Regresja

Jakub Bryl 25 11 2019

Wczytanie Danych

Dane pochodzą z laboratorium o wizualizacji danych od dr.Ruska. Opisują zależności przejechanych km, cen paliwa, licznika i czy tankowanie było do pełna (zmienna kategoryczna). Wybrałem te dane ponieważ po lab02 zacząłem próbować rzeczy związane z regresją ale nie dokończYłem ich, dlatego wykorzystując wiedzę z ostaniego laboratorium chciałem jeszcze raz użyć tych danych.

```
data <- read_csv("Samochod.csv")%>%
mutate(Data.tankowania=as.Date(Data.tankowania))
## Parsed with column specification:
## cols(
     `Sygnatura czasowa` = col_datetime(format = ""),
##
     Licznik = col_double(),
##
##
     Cena.tankowania = col_double(),
##
     Cena.jednostkowa = col_double(),
##
     Do.pełna = col_character(),
     Data.tankowania = col_date(format = "")
##
## )
print(data$Data.tankowania)
   [1] "2015-06-13" "2015-07-23" "2015-09-07" "2015-11-10" "2015-12-23"
  [6] "2016-01-29" "2016-03-05" "2016-04-30" "2016-07-31" "2016-08-15"
## [11] "2016-09-03" "2016-09-04" "2016-10-10" "2016-12-22" "2017-02-23"
## [16] "2017-06-03" "2017-07-03" "2017-08-03" "2017-09-09" "2017-11-10"
## [21] "2018-01-13" "2018-05-04" "2018-07-21" "2018-10-13" "2019-09-21"
## [26] "2019-06-15" "2019-02-10" "2019-10-15"
```

Dopasowanie regresji liniowej - ggplot:

```
data %>%arrange(Data.tankowania)%>%mutate(paliwo=cumsum(Cena.tankowania/Cena.jednostkowa))%>%
    ggplot(data=.,aes(x=Licznik,y=paliwo))+geom_point()+geom_line()+stat_smooth(method='lm')
```



```
# Dodanie dodatkowych zmiennych (mutate).
data%>%arrange(Data.tankowania)%>%mutate(paliwo=cumsum(Cena.tankowania/Cena.jednostkowa))%>%
    mutate(licznik100=Licznik/100)->data.100

# Nowy wykres do dopasowania regresji
plot1<-ggplot(data=data.100,aes(x=licznik100,y=paliwo))+
    geom_point()+geom_line()+stat_smooth(method='lm')

ggplot(data=data.100,aes(x=licznik100,y=paliwo))+geom_point()+
    geom_line()+stat_smooth(method='lm')</pre>
```


Dopasowanie regresji liniowej - manualnie:

```
#Model okresla zaleznosc miedzy paliwem w litrach a licznikiem na 100km.
model <- lm(paliwo~licznik100, data=data.100)
summary(model)
```

```
##
## Call:
## lm(formula = paliwo ~ licznik100, data = data.100)
##
## Residuals:
      Min
##
               1Q Median
                               3Q
                    3.302
                            8.667 27.798
## -41.376 -3.778
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.893e+03 4.238e+01 -91.86
              6.987e+00 6.661e-02 104.91
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.69 on 26 degrees of freedom
## Multiple R-squared: 0.9976, Adjusted R-squared: 0.9976
```

```
#Wyliczenie predykcji i dodanie wartości jako dodatkowej kolumny
data.100$prediction = predict(model, newdata = data.100)

#Obliczenie epsilon'u - roznicy miedzy predykcja a cana paliwa
data.100$epsilon <- data.100$paliwo - data.100$prediction

plot(model)</pre>
```


plot(data.100\$epsilon)

Wizualizacja recznie dopasowanej regresji liniowej

Sprwadzenie jakości modelu:

 $\ensuremath{\mathsf{RSE}}$ - bląd standardowy odchyłek

```
summary(model)$r.squere
```

NULL

R^2 - wariancja wyjaśniania przez model

```
summary(model)$sigma
```

[1] 15.68621

Współczynniki:

```
A <- data.frame(summary(model)$coef)
A[,4] <- format.pval(summary(model)$coeff[,4], eps=0.001, digits=2)
kable(A, digits=2, col.names = c('Współczynnik', 'SE', 't', 'p-value'))
```

	Współczynnik	SE	t	p-value
(Intercept) licznik100	-3893.07	42.38	-91.86	<0.001
	6.99	0.07	104.91	<0.001

kable(cor(data.100[c(3,4,7,8)], method = "pearson"), digits=3)

	Cena.tankowania	Cena.jednostkowa	paliwo	licznik100
Cena.tankowania	1.000	0.139	0.277	0.254
Cena.jednostkowa	0.139	1.000	0.529	0.533
paliwo	0.277	0.529	1.000	0.999
licznik100	0.254	0.533	0.999	1.000

Biorąc wszystko pod uwagę można dokonać podsumowania, iż regresja jest dobrze dopasowana.