Pseudopotentials/effective core potentials

Lubos Mitas North Carolina State University

QMC Workshop 2021

Funding: U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program and Center for Predictive Simulation of Functional Materials.

pseudopotentials ... difficult subject

- highly technical
- often the most complicated parts of the codes
- "only" an auxiliary concept, not really fundamental :-(

but

- it saves (b)millions of hours of computer time
- enables to do calculations/predictions which otherwise are impossible
- forces you to learn/understand electronic structure a lot deeper

outline

- total energy as a function of Z (atomic number)
- core vs valence: energy and length scales
- pseudoion: effective potential in the core + valence electrons
- QMC: smaller total energies, significant gain in efficiency
- evaluation of PP terms in VMC/QMC, localization, T-moves
- how do they looks like
- how it is done: norm-conserving and ccECP constructions
- forms, existing tables, accuracy, errors to watch
- examples

reminder: one-particle electronic structure methods, DFT and HF

Density Functional Theory:

$$E_{tot} = \int F_{tot}[\rho(\mathbf{r})] d\mathbf{r}$$

Hartree-Fock:
$$\psi_{HF}(\boldsymbol{r_1}, \boldsymbol{r_2}, ...) = det[\{\phi_i(\boldsymbol{r_j})\}]$$
 $E_{HF} = \langle \psi_{HF} | H | \psi_{HF} \rangle = min$

core vs valence states

two fundamental differences:

- spatial distribution
- energy scales

spatial range of core vs valence electrons: carbon atom

core vs valence electrons: copper atom, semicore states 3s,3p

core vs valence in bonds: isosurfaces of molecular orbitals of C_2 dimer

1s core states (unchanged)

atom with nuclear charge Z: energies of one-particle states

core states qualitatively: $E_n = -Z^2/(2n^2)$, n is the principal q. number

~ 100 - 10^6 eV

semicore states ~ 30 - 100 eV

valence states ~ 0.001 - 30 eV

crucial for efficiency of QMC → energy fluctuations

energy of core states scales as Z^2, and energy variance is determined by the largest scale present!

$$\sigma^2 = \langle \psi_{VMC} | (H - E_{VMC})^2 | \psi_{VMC} \rangle \approx Z^4$$

efficiency of sampling of valence properties (bond energies, gaps etc) for heavy atoms therefore is very low

in reality: for He atom $\sigma^2 \approx 0.2$ for Cu atom $\sigma^2 \approx 100$

slowdown by a factor of ~ 500 (heavier atoms: impractical → impossible)

while we are interested in valence properties almost all the time would be spent on sampling irrelevant fluctuations in the core!!!

core – valence partitioning

- core states/electrons are rigid and affect valence electronic structure (bonds, excitations, band gaps, conductivity) only marginally
 - → different energy and length scales
 - → eliminate the core states/electrons and keep only the valence ones
- represent the core by an effective operator (cannot be a simple potential, must be angular momentum dependent because of different number of core states in s, p, d angular momentum channels)
- valence electrons feel a pseudopotential operator (instead of core e-)

$$W = \sum_{l} v_{l}(r) \sum_{m} |lm\rangle \langle lm| + v_{loc}(r)$$

dictionary and notations

in condensed matter physics: pseudopotentials or PPs

in quantum chemistry : effective core potentials or ECPs

$$W = \sum_{l} v_{l}(r) \sum_{m}^{l_{max}} |lm\rangle \langle lm| + v_{loc}(r)$$

 $v_{\scriptscriptstyle I}(r)$ - radial pseudopotential function for a given I-symmetry channel

 $v_{loc}(r)$ - outside the core will be just - Z_eff/r = - (Z-Z_core)/r

|lm> < lm| projection operator on Im ang. mom. state \rightarrow nonlocal!!!

 $l_{\it max}$ - number of different occupied channels \rightarrow number of nonlocal projection operators

nonlocality: (effective) potential depends of the Im-channel

remember the self-consistent loop/one-particle eigenfunction eq. ?

$$[T_{kin} + (V_{ext=ion}) + V_{eff}^{HF}(\{\phi_j\})]\phi_i = E_i\phi_i$$

in the simplest atomic case the nonlocality implies that each symmetry channel has different ionic (pseudo)potential

s-channel

$$[T_{kin} + (v_s + v_{loc}) + V_{eff}^{HF}(\{\phi_j\})]\phi_s = E_s\phi_s$$

p-channel

$$[T_{kin} + (v_p + v_{loc}) + V_{eff}^{HF}(\{\phi_j\})]\phi_p = E_p\phi_p$$

etc

PPs in VMC: straightforward but numerically involved

|lm> < lm| projectors are nonlocal, ie, have off-diagonal matrix elements

- action on a many-body trial wave function

$$W \psi = \sum_{electrons \ i, \ ions \ I} \langle \mathbf{R} | W(iI) | \mathbf{R}' \rangle \psi(\mathbf{R}') d \mathbf{R}'$$

$$W(iI)\psi = \sum_{lm} v_{l}(r_{iI}) Y_{lm}(\omega_{iI}) \int_{4\pi} Y *_{lm}(\omega'_{iI}) \psi(r_{1}, ..., r'_{iI}, ..., r_{N}) d\omega'_{iI} =$$

$$= \sum_{l} \frac{2l+1}{4\pi} v_{l}(r_{iI}) \int_{4\pi} P_{l}[\cos(\theta'_{iI})] \psi(r_{1}, ..., r'_{iI}, ..., r_{N}) d\omega'_{iI}$$

spherical surface integral → numerical quadratures → N_quad points

effciency gain from pseudopotential vs accuracy Fe atom example

Fe atom
$$\rightarrow$$
 [Ne] 3s^23p^63d^64s^2 [Ar] 3d^64s^2 all-electron [Ne]-core [Ar]-core E_HF [au] -1262.444 -123.114 -21.387 E_VMC[au] -1263.20(2) -123.708(2) -21.660(1) σ_{VMC}^2 [au] ~ 50 1.5 0.16 efficiency = $\frac{1}{\sigma^2 T_{decorr}}$ 0.02 2.1 125 valence errors "0" < 0.1 eV ~ 0.5 eV !!!

additional important gain: scalar relativistic effects built-in pseudopots.

→ differences are more accurate than using nonrel. all-electrons!!!

in DMC PPs/ECPs are more involved: localization approximation

- off-diagonal matrix elements imply non-local moves → could violate the fixed-node condition
- localization approximation by projection onto accurate trial function

$$W \rightarrow \frac{[W \psi_T]}{\psi_T} = W_{\psi_T, localized}(\mathbf{R})$$

- the result is a many-body effective operator, depends on the trial wf, its properties:
 - bias quadratic in trial function error, ie, converges quickly
 → zero variance property (psi_T → psi_exact)
 - not necessarily un upper bound, however, small biases tend to cancel out in differences (burried in fixed-node bias)

alternative to localization approximation: T-moves → restore the upper bound property

- find out which moves break the fixed-node condition and which do not
- sample those that do not break it
- use the localization ("average ↔ spherical integral") for those that do

$$\psi_T(\mathbf{R})\langle \mathbf{R}|W|\mathbf{R}'\rangle\psi_T(\mathbf{R}') > 0$$
 vs ... <0

properties:

- total energy is an upper bound
- but lost zero variance → even for an exact trial function there are statistical fluctuations (some increase in computational effort)

complementary: localization approximation ← T-moves

PP/ECP advantages

- smaller energy fluctuations (crucial)
- reduced # of degrees of freedom
- smaller/smoother bases (plane waves in particular)
- scalar relativity included, spin-orbit more straightforward

additional

_

difficulties from cores for DFT (HF, etc): large/huge basis and/or combined basis necessary

Clearly difficult to describe both core and valence:

- core states/electrons are highly localized and have large energies: require very accurate description: nuclear cusp $\rightarrow \phi_{core}(r) \approx \exp(-Zr)$
 - requires very localized description and basis, for plane waves basically impossible
- valence states have small energies, affected significantly due to bonding; states at or above Fermi level in solids can be even completely delocalized like a free-particle wave, very smooth
 - calls for very smooth basis, plane wave almost ideal

PPs in VMC: elimination of the numerical bias

Quadratures are such that they integrate products of spherical harmonics up to a given I_max exactly, eg, N_k=12 I_max=5

Quadratures by V. Lebedev from a russian math journal (available in original at UI Urbana-Champaign library :-))

- numerical bias from the integration: to the leading order eliminated by random rotations of the quadrature points on the sphere (Fahy et al, '88)

