有限自动机

确定的有限自动机 (DFA)

(Deterministic Finite Automata)

- 一.DFA的定义
- 二. DFA的三种表示
- 三. DFA接受的语言

有限自动机

- 有限自动机(Finite Automata, FA)由两位神经物理学家

 MeCuloch和Pitts于1948年首先提出,是对一类处理系统建
 立的数学模型
- 这类系统具有一系列离散的输入输出信息和有穷数目的内部 状态(状态:概括了对过去输入信息处理的状况)
- 系统只需要根据当前所处的状态和当前面临的输入信息就可 以决定系统的后继行为。每当系统处理了当前的输入后,系 统的内部状态也将发生改变

FA的典型例子

- 电梯控制装置
 - 输入: 顾客的乘梯需求(所要到达的层号)
 - 状态: 电梯所处的层数+运动方向
 - 电梯控制装置并不需要记住先前全部的服务要求,只需要知道电梯当前所处的状态以及还没有满足的所有服务请求

FA的模型

- 输入带(input tape): 用来存放输入符号串
- 读头(head): 从左向右逐个读取输入符号,不能修改(只读)、不能往返移动
- 有穷控制器(finite control): 具有有穷个状态数, 根据当前的状态和当前输入符号控制转入下一状态

一·DFA M定义

一个<u>确定</u>的<u>有限</u>自动机 DFA M是一个五元组

 $M = (\Sigma, S, S_0, Z, f)$

Σ是一个字母表,它的每个元素称为一个输入符号。

S是一个有限状态集合。

 $S_0 \in S$, S_0 称为初始状态。

Z是S的子集,称为终结状态集合。

f是一个从S×Σ到S的单值映射

 $f(q, a) = q'(q, q' \in S, a \in \Sigma)$

表示当前状态为q,输入符号为a时,自动机将转换到下一个状态 q', q'称为 q 的后继。

```
例 设DFA M=({a,b}, {0,1,
2,3},0,{3},f) 其中
f(0,a)=1,f(1,a)=3
f(2,a)=1,f(3,a)=3
f(0,b)=2,f(1,b)=2
f(2,b)=3,f(3,b)=3
```

二 DFA的三种表示:

- (1) 用转换函数
- (2) 转移矩阵
- (3) 状态转换图

(1) 用转换函数

```
f (0, a) = 1, f (1, a) = 3
f (2, a) = 1, f (3, a) = 3
f (0, b) = 2, f (1, b) = 2
f (2, b) = 3, f (3, b) = 3
```

所谓确定的状态机,其确定性表现在状态转移函数是单值函数!

(2) 转移矩阵

	a	b
0	1	2
1	3	2
2	1	3
3	3	3

(3) 状态转换图

输入 字符		1
状态	a	b
0	1	2
1	3	2 3
2	1	3
3	3	3

结点表示状态,箭弧标记为字母表中的字母

终结状态如何表示?

三·DFA M接受的语言(字符串集)

如果对所有 $w \in \Sigma^*$,以下述方式递归地扩充f的定义

$$f(q, \epsilon) = q$$

$$f(q, wa) = f(f(q, w), a)$$

对于上例中的DFA M 和 w=baa,

$$f(0, baa) = f(2,aa) = f(1,a) = 3$$

该DFA M能够识别字符串baa

从状态转换图看,从初态出发,沿任一条路径 到达终结状态,这条路径上的弧上的标记符号连 接起来构成的符号串为DFA M所识别。

DFA M所能识别的符号串的全体记为L(M), 称为DFA M所识别的语言。

$$L (M) = \{ w \mid w \in \Sigma^*, \text{ 若存在 } q \in Z,$$
 使f (q₀, w) = q \}

非确定的有限自动机 (NFA)

Nondeterministic Finite Automata

- 一. NFA m的定义
- 二. FA的等价定理
- 三. 具有ε-转移的NFA构造DFA的算法

一 NFA的形式定义:

非确定有限自动机M是一个五元组

$$\mathbf{M} = (\Sigma, S, S_0, Z, f)$$

其中 Σ , S, Z的意义和DFA的定义一样,其中S₀表示初始状态集,f是一个从S×(Σ U { ϵ })到S的子集的映射,即f: S×(Σ U { ϵ }) → 2 S, 其中 2 S是S的幂集,即S中所有子集组成的集合。

确定的和非确定的有限自动机之间的重要区别是

- 1、状态转换函数是一个多值映射;反映在状态转换图上即对同一弧标记到达的状态结点不惟一。
- 2、NFA初态集,而DFA是一个唯一的状态. NFA存在ε弧 标记

类似 D FA,NFA m可用状态转换图表示,如果 $f(q, a) = \{q_1, q_2, \dots, q_k\}$,则从q出发分别向 q_1, q_2, \dots, q_k 各画出一条标记为a的箭弧(非确定的含义)。

同理可定义NFA m所识别(接受)的语言。 Σ*中所有可能被NFA m所识别的符号串的集合记 为L(M)。

NFA M'所识别的语言为:

$$L(M')=\{\alpha|f(q_0,\alpha)=q q \in \mathbb{Z}, \exists \alpha \in \Sigma^*\}$$

二.FA的等价定理

定理 对任何一个NFA M,都存在一个 DFA M',使L(M')=L(M)

构造方法:用M'的一个状态对应M的多个状态,用这种方法,能从一个NFA M构造一个等价的DFA M',称作子集构造法。

|三、具有ε-转移的NFA构造等价DFA的方法

定义 集合I的ε-闭包:

- 令I是一个状态集的子集,定义 ϵ -closure(I)为:
- 1) 若s∈I, 则s∈ε-closure (I);
- 2)若s∈I,则从s出发经过任意条ε弧能够到达的 任何状态都属于ε-closure(I)。

状态集ε-closure(I) 称为I的ε-闭包

通过例子来说明状态子集的ε-闭包的构造方法

例:

如图所示的状态转换图:

$$\diamondsuit I = \{1\},$$

 $漱 \epsilon \text{-closure } (I) = ?$

根据定义:

 ϵ -closure (I) ={1, 3, 5}

构造等价DFA算法

- 1) 若 t_1 是NFA的初态,DFA的初态A= ϵ —closure($\{t_1\}$)。
- 2) 对NFA中每一个箭弧标记m, 计算ε—closure(f(q,m)), 其中q 为已生成的DFA状态。遍历字母表的每个字符为输入

例如字母表为{a,b}

 $B = \varepsilon$ —closure(f(A,a))

 $C = \varepsilon - closure(f(A,b))$

如果B和C不为空集,重复这一过程,直到不在出现新的状态集合)

 $D = \varepsilon$ —closure(f(B,a)) $E = \varepsilon$ —closure(f(B,b))

 $F = \varepsilon$ —closure(f(C,a)) $G = \varepsilon$ —closure(f(C,b))

注意: D,E,F,G中相等的集合合并,空集则舍去.

states	a	ь
A={0,1,2,4,7} B={3,8,6,1,2,4,7	В	C
B={3,8,6,1,2,4,7	В	D
$C=\{5,6,1,2,4,7\}$ $D=\{5,9,6,1,2,4,7\}$	В	C
	В	E
E={5,10,6,1,2,4,7	В	C

等价DFA的转移矩阵

等价的DFA的状态转换图

☆注意:包含原初始状态0的状态子集A为DFA M的初态 包含原终止状态10的状态子集E为DFA M的终态。 例:有NFA M'


```
A = \varepsilon-closure(\{1\})=\{1,4\}
B = \varepsilon - closure(f(A,a))
    =\varepsilon-closure(f({1, 4}, a))
    =\varepsilon-closure(f(1,a) \cup f(4,a))
    = \varepsilon-closure(\{2,3\} \cup \varphi)
    = \varepsilon-closure ({2,3})
    =\{2,3\}
C = \varepsilon - closure(f(A,b))
    = \varepsilon-closure(f(1,b) \cup f(4,b))
    = \varepsilon-closure(\varphi)
    =\varphi
D = \varepsilon - closure(f(A,c))
    = \varepsilon-closure(f(1,c) \cup f(4,c))
    = \varphi
```

DFA M的状态图:

★注意:包含原初始状态1的状态子集为DFA M的初态 包含原终止状态4的状态子集为DFA M的终态。

具有ε-转移的NFA构造等价DFA的方法

不具有ε-转移的NFA如何构造等价DFA?

例 NFA M=({0,1}, {q₀,q₁},q₀, {q₁}, f),其中
$$f(q_0,0) = \{ q_0,q_1 \}, f(q_0,1) = \{ q_1 \}$$

$$f(q_1,0) = \emptyset \qquad f(q_1,1) = \{ q_0,q_1 \}$$

$$\begin{split} f(\{q_0\},0) &= \{ \ q_0,q_1 \}, & f(\{q_0\},1) &= \{ \ q_1 \} \\ f(\{q_1\},0) &= \varnothing \ , & f(\{q_1\},0) &= \{ \ q_0,q_1 \} \\ f(\{\ q_0,q_1\},0) &= \delta \ (q_0\,,0) \ \cup \ \delta \ (q_1\,,0) &= \{ \ q_0,q_1 \} \\ f(\{\ q_0,q_1\},1) &= \delta \ (q_0\,,1) \ \cup \ \delta \ (q_1\,,1) &= \{ \ q_0,q_1 \} \end{split}$$

M与M'的状态转换图如下所示:

确定有限自动机的化简

自动机是描述信息处理过程的—种数学模型

对一种语言,它可以用许多文法来描述,同样可以有无限多个FA来描述一种语言;这些FA是等价的,但其构成的复杂程度差别很大

所谓一个DFA M=(Σ , S, S₀, Z, f)的化简是指寻找一个状态数比较少的DFA M',使 L(M)=L(M')。而且可以证明,存在一个最少状态的DFA M',使 L(M)=L(M')。

一个DFA m是最小化的 ⇔ 它没有多余状态并且没有 互相等价的状态。

一个DFA m可以通过消除多余状态和合并等价状态 而转换成一个最小的与之等价的DFA m'

一、有限自动机的多余状态(无关状态)

- (1) 从该自动机的开始状态出发,任何输入串也不能到达的那个状态
- (2) 从该状态出发没有通向终态结的道路

这些多余状态不在从初态到终态的路径上,对识别句子无任何作用。

二、等价状态的定义

设 $p,q \in S$,若对任何 $w \in \Sigma^*$,f(p,w) 与 f(q,w) 同时到达终止状态或拒绝状态之中 , 则称p和q是等价的。否则,称p和q不等价(可区别)。

判定两个状态p和q不等价,只要找到一个 $w \in \Sigma^*$,使f(p,w) $\in Z$ 且f(q,w) $\notin Z$,或者相反。

说明

- (a) 终结状态与非终结状态不等价。
- (b) 对于 $\forall a \in \Sigma$, f(p, a) = r, f(q, a) = s, r与s均等价,则p与q等价;

若存在某个a $\in \Sigma$, f (p,a)=r, f (q,a)=s 其中r与s不等价,则p与q不等价。

r与s不等价,存在w∈ Σ * f (r, w) \notin Z且f (s, w) \in Z f (p, aw) \notin Z且f (q, aw) \in Z 一个DFA m可以通过消除多余状态和合并等价状态 而转换成一个最小的与之等价的DFA m'

分割法: 把一个DFA(不含多余状态)的状态分割成一些不相关的子集,使得任何不同的两个子集状态都是可区别的,而同一个子集中的任何状态都是等价的.在各个子集中任取一个状态做代表,删去子集的其余状态。

分割法(划分法)具体实现:

有没有多余状态?

终结状态与非终结状态不等价

用子集号代替状态号得:

化简以下DFA

区分终态与非终态

用子集号代替状态号得:

化简过程

回顾复习

构造一个DFA,它接受Σ={0,1} 上所有满足如下条件的字符串: 每个1都有0直接跟在右边。

参考答案

• 解答: (0|10)*

- NFA如下:

• NFA确定化:

	1	2
{1,2,4}	{2,4}	{3}
{2,4}	{2,4}	{3}
{3}	{2,4}	-

	0	1
1	2	3
2	2	3
3	2	-

DFA 如下:

• DFA化简?

• DFA

化简:

- (1) 基本分划: {1,2}, {3}
- (2) $\{1,2\}_0 = \{2,2\} \subset \{1,2\}$ $\{1,2\}_1 = \{3,3\} \subset \{3\}$ 无需再分
- (3) 最后分划为: {1,2}, {3}

- 语言
 - 自然语言
 - 英语、汉语等
 - 语言的产生过程: 先有语言, 再有语法结构
 - 自然语言的识别,为什么会成为人工智能领域的一个重大的问题
 - 形式语言
 - C语言、C++、Java等
 - 语言的产生过程: 先有正式的语法结构, 之后才由这些语法结构来产生语言。

集合

- 如何表达一个集合? 一般而言,有这么两种方法: 一个是列举法,一个是描述法。
- 对于个数有限的集合,可以用列举法一一列出;而对于无穷的集合,则多用描述法来表达。

 把高级语言看成一个集合,那么每个合法 的高级语言源代码就是这个集合里的一个 元素,合法的高级语言源代码有无穷多个, 那我们要用什么样的描述方法来表达这个 无穷集合?

文法 (关于如何生成语言的法则)

- $G:<V_T,V_N,S,P>$
- L(G): 句型、句子、句子的集合
- 推导
 - 最左推导、最右推导、直接推导、多步推导
- 语法树
- 二义性文法
- 文法分类

- 有限自动机 $< \Sigma$, S, S_0 , Z, f >
 - DFA
 - 单值映射
 - NFA
 - 多值映射
 - NFA确定化为DFA
 - 构造子集法: 集合I的ε-闭包
 - DFA化简
 - 划分法: 消除多余状态和等价状态