Magnet Precalculus D Combinatorics

Devin D. Droddy

Contents

Chapter 1	Intro to Combinatorics	rage 2
1.1	Counting	2
1.2	Factorials	2
1.3	Permutations	2
1.4	Combinations	3
Chapter 2	Theoretical Probability	Page 4
2.1	Intro to Probability	4
2.2	Compound Events	4
Chapter 3	Venn Diagrams	Page 5
3.1	Basic Venn Diagram Notation	5
3.2	Combining Venn Diagram Notation	7
3.3	Venn Diagram Examples	7

Chapter 1

Intro to Combinatorics

1.1 Counting

If decision M can be made in x number of ways and decision N can be made in y number of ways, then the number of ways to make both decisions is $x \cdot y$.

Example 1.1.1 (Counting)

The ice cream shop offers a choice of a 3 cone sizes, 15 flavors, and 8 toppings. How many cones are possible if you can only choose one flavor and one topping?

$$3 \cdot 15 \cdot 8 = 360$$

There are 360 cones possible.

1.2 Factorials

Definition 1.2.1: Factorial

A factorial of some number n, denoted as n!, is the product of all natural numbers from 1 to n. For example, $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$.

1.3 Permutations

Definition 1.3.1: Permutation

A permutation of objects, denoted as ${}_{n}P_{r}$, is an arrangement of r objects chosen from a set of n objects. The number of possible permutations of size r is denoted as ${}_{n}P_{r} = \frac{n!}{(n-r)!}$.

Note:-

0! = 1. This means that if n = r, then ${}_{n}P_{r} = n!$, since n - r = 0, so $\frac{n!}{(n-r)!} = \frac{n!}{0!} = n!$.

Example 1.3.1 (Permutation)

There are 16 players on the baseball team. How many ways can the coach make a 9-player batting order?

$$n = 16r = 9_n P_r = {}_{16} P_9 = \frac{16!}{(16-9)!} = \frac{16!}{7!} = \frac{16!}{5040} = \frac{20922789888000}{5040} = 4151347200$$

There are 4,151,347,200 ways to make a 9-player batting order.

1.4 Combinations

Definition 1.4.1: Combination

A combination of objects, denoted as ${}_{n}C_{r}$, is a selection of r objects chosen from a set of n objects. The number of possible combinations of size r is denoted as ${}_{n}C_{r} = \frac{n!}{r!(n-r)!}$. This is different from a permutation because you can have multiple of the same object.

Chapter 2

Theoretical Probability

2.1 Intro to Probability

Probability is the measure of how likely an event is to occur. The set of all possible outcomes is called the **sample space**. For equally likely outcomes, the probability of an event E is given by the formula $P(E) = \frac{\text{number of outcomes in } E}{\text{number of outcomes in the sample space}}$.

Example 2.1.1 (Simple Event)

A jar contains 32 red marbles and 28 blue marbles. The probability that a randomly selected marble is red is $\frac{32}{32+28} = \frac{32}{60} = \frac{8}{15}$.

2.2 Compound Events

A compound event is an event that consists of two or more simple events. There are two kinds of compound events: **independent** and **dependent**. A compound event is independent when the outcome of one event does not affect the outcome of the other event. A compound event is dependent when the outcome of one event does affect the outcome of the other event. In both cases, the probability of a compound event is the product of the probabilities of the simple events.

Example 2.2.1 (Independent Event)

A jar contains 32 red marbles and 28 blue marbles. If you select a marble, replace it, and then select another marble, the probability that both marbles are red is $\frac{32}{60} \cdot \frac{32}{60} = \frac{1024}{3600} = \frac{256}{900}$.

Example 2.2.2 (Dependent Event)

A jar contains 32 red marbles and 28 blue marbles. If you select a marble, do not replace it, and then select another marble, the probability that both marbles are red is $\frac{32}{60} \cdot \frac{31}{59} = \frac{992}{3540} = \frac{248}{885}$.

Note:-

In the dependent event example, the effect of the first event is that the sample space is reduced by one.

Chapter 3

Venn Diagrams

This is a venn diagram:

You can specify many different areas within the diagram, such as only where A and B overlap, or everywhere other than A. There is standard mathematical notation to represent these areas.

3.1 Basic Venn Diagram Notation

First, \cup , the **or** operator. This is the union of two sets, or the area where either A or B is true.

Second is \cap , the **and** operator. This is the intersection of two sets, or the area where both A and B are true.

$A \cap B$

Finally, A^c , also written as A', the **complement** of A. This is also known as the **not** operator. This is the area where A is false.

A^c

3.2 Combining Venn Diagram Notation

You can combine these operators to create more complex areas. For example, $A \cap B^c$ is the area where A is true and B is false.

3.3 Venn Diagram Examples

 $(A \cap B)^c$

 $((A \cup C)^c \cap B)^c$

 $C^c \cap (A \cup B)$

 $(C \cap A^c) \cup B$

 $(A \cap C^c) \cup (B \cup C)^c$

 $((A \cap B) \cup (B \cap C))^c$

