Лекция 2

•••

ExpressML

Повторение: нейрон

Повторение: Функция активации, сигмоида

$$6(x) = \frac{1}{1+e^{-x}}$$
 $6(-\infty)=0$
 $6(+\infty)=1$

$$e^{(x)} = e^{(x)} (1 - e^{(x)})$$

Повторение: BCE + сигмоида Cross- Entropy $BCE(\vec{x}, y) = -\left(\frac{1-y}{\log(1-p)} + y \log p\right) \qquad p=6(2)$

$$\frac{2}{2}BCE = G(2) - y$$

Повторение: функции ошибки, откуда берутся

BCE
$$(\vec{x}, y)$$
 - Бернули $P = C_N \cdot p^n \cdot (1-p)^{N-n}$
Npaz
 $n \text{ paz} - + uercg(p)$

$$\sum_{i=1}^{N} \frac{e^{x}}{2}$$

1)
$$2e^{x_i} - e^{x_i}e^{x_k}$$
 = SoftMax; - SoftMax; SoftMax; $(\frac{y}{j-1}e^{x_j})^2$

8ik= 30 i#k

SoftMax; Sik - SoftMax; SoftMax = SoftMax (Sik - SoftMax)

2)
$$0 - e^{x_i}e^{x_k}$$

 $\frac{\sqrt{\sum_{j=1}^{N} 2^{x_i}}^2}{(\sum_{j=1}^{N} 2^{x_i})^2} = 0 - SoftMax_i$ SoftMax_k

SoftMax + CE
$$(\vec{x}, \vec{y})$$
 $\vec{y} = 0$ $\vec{y$

Оптимизация Нейронных Сетей

Повторение: оптимизация, градиентный спуск

χο
$$L(x)$$
-smin

 $X_1 = X_0 - \nabla L(x_0) \cdot L$
 $X_2 = X_1 - \nabla L(x_1) \cdot L$

Chopoeth 2 feed enyerge

 $X_1 = X_0 - \nabla L(x_0) \cdot L$
 $X_2 = X_1 - \nabla L(x_1) \cdot L$

Cone your fee go go octa

Kone unoue pagnocon
$$L(x_0) \times_0^i = x_0^i + a \times$$

$$2 L(x_0^i + a \times) - L(x_0^i)$$

$$3 \times a \times$$

$$4 \times a$$

Обратное распространение ошибки и Chain Rule

2 parame doaramy Градиентный спуск и Chain Rule

Проблемы градиентного спуска: проблема 1

Nesterov Momentum

Nesterov Momentum (иллюстрация)

Проблема 2: Усреднение множества градиентов

Батчи

Adam

Rprop

Вопросы по оптимизации

Некоторые проблемы

Проблема инициализации весов

Инициализация Ксавьера

Проблема Затухания градиента

ReLU, ELU

Проблема переобучения

Регуляризация (Weight Decay)

Drop-Out

Нормализация и центровка данных

Batch Normalization

