

تمرین سری اول درس یادگیری ماشین

استاد درس: دكتر اميرخاني

مهلت تحویل: شنبه ۱۸ اسفندماه

- 1. Complete the notebook which is attached.
- 2. Assume y is an exponentially distributed random variable with rate $\lambda > 0$, i.e., $f_y(y; \lambda) = \lambda e^{-\lambda y}$. Verify that the maximum-likelihood estimate of λ given N iid realizations is $\hat{\lambda} = \frac{N}{\sum_{i=1}^{N} y_i}$.
- 3. Let y be distributed according to the following distribution, and Assume we collect N iid observations $\{y_1, y_2, y_3, ..., y_N\}$.

$$f_y(y;a) = a_y^{a-1}$$
 , $y \in (0,1)$, $a > 0$

show that the Maximum-likelihood estimate of a is given by:

$$\hat{a}_{ML} = -\left(\frac{1}{N}\sum_{j=1}^{N}\ln(y_i)\right)^{-1}$$

- 4. Consider a collection of N independent Gaussian realizations $\{y_n\}$ with mean μ and unit variance. (i.e., $y_n \sim N(\mu, 1)$). The mean μ is unknown but arises from a Gaussian prior distribution $\mu \sim N(0, \sigma_{\mu}^2)$ with known variance.
 - (a) Determine the posterior distribution $f_{\mu|y_0,y_1,...,y_n}(\mu|y_0,y_1,...,y_n)$
 - (b) Determine the MAP estimator for μ .

تمرین سری اول درس یادگیری ماشین

استاد درس: دکتر امیرخانی

مهلت تحویل: شنبه ۱۸ اسفندماه

5. Assume that δ is a known constant.

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with the probability density function:

$$f(x; \beta, \delta) = \beta \delta x^{\delta - 1} e^{-\beta x^{\delta}}, x > 0, 0$$
 otherwise.

- a. Derive the maximum likelihood estimator (MLE) of β , denoted as $\hat{\beta}$.
- 6. Let $\tau > 0$, and let $X_1, X_2, ..., X_n$ be a random sample drawn from a distribution with the probability density function:

$$f(x;\tau) = \tau e^{-\tau(x-3)}, x > 3, 0$$
 otherwise

- a. Derive the maximum likelihood estimator (MLE) of τ , denoted as $\hat{\tau}$.
- b. Given a sample of size n = 4 with observed values $X_1 = 3.15$, $X_2 = 3.65$, $X_3 = 3.10$, and $X_4 = 3.30$, compute the maximum likelihood estimate of τ .

Submission Guidelines:

- Submit **only one** compressed file (**zip**, **rar**, etc.) containing:
 - A **PDF file** (typewritten is preferred; handwritten is acceptable).
 - One notebook file (.ipynb).
- Do your homework independently. Similarities with other students' work will not be tolerated.
- **Reminder:** Humans are always smarter than AI tools like ChatGPT. Use them wisely.
- File Naming Convention:
 - Compressed file: HWn_[studentNumber].zip
 - PDF file: HWn_[studentNumber].pdf
 - Notebook file: HWn_[studentNumber].ipynb
- o Important:
 - Include your name and student number on the first page of your PDF file.

Good Luck