ACCUITCO	MI	A PATHITIAL A	Á	C
PRUEBA	. IJE.	ANTRIN	A	. 7

ETSETB

19-01-2009

Tiempo total: 2 horas 20 minutos (Cuestiones 35 min.-25%-, Problemas 105 min.-75%-)
Test monorespuesta con penalización por respuesta incorrecta de 1/3.
Código de prueba: 230 11511 01 0 01

1	La eficiencia de una espira elemental con núcleo de ferrita respecto a la de un dipolo de iguidimensión es:						igual		
		b) La mitad		c) Muc	ho mayor		d) Mucho men	nor	
2	La longitud efectiva) λ/10	va de un dipolo b) λ/20	de longi	itud total c) λ/40		d) λ/π			
3	Una espira de 1 cr aumenta en un fac a) 1	ctor:		MHz. A		radio a 2	2 cm su área efe	ectiva	
4	La impedancia de y separado d $\ll \lambda$ a) $Z_{in} \approx 0$	es							
5	¿Cual debe ser el espaciado máximo entre elementos en una antena de barrido electrónico ('phased-array') con 30° de barrido a cada lado de la dirección broadside para que no aparezcan lóbulos de difracción? a) 0.5λ b) 0.536λ c) 0.666λ d) 0.716λ								
6	En una agrupación binómica de 4 elementos separados de $\alpha = -90^{\circ}$, la relación de lóbulo principal a secundario vale: a) 0 dB b) 6 dB c) 9dB					=\(\lambda/2\) y con desfase progresivo d) ∞			
7	Se desea sintetizar un diagrama de la forma FA(ψ)=cos ⁴ (ψ/2) con una agrupación de 5 elementos. ¿Cual será la distribución de corrientes? a) 1:4:6:4:1 b) 1:0:1:0:1 c) 1:2:4:2:1 d) 1:1:1:1								
8	¿Cual es el ancho α =0 ? a) 23°	b) 47°			rupación tria d) 132°	ngular d	e 9 antenas, d	$=\lambda/2$,	
9	a) tienen la mib) tienen la mi	a circular, ¿ cua sma eficiencia isma directivida sma área efecti	al de las de ilum ad	siguier	ites afirmacio			, una	

- 10 Para una boca de guía rectangular situada en el plano XY de dimensiones $a=\lambda$ según el eje X y $b=0.5\lambda$ según el eje Y, iluminada según el modo TE_{10} : $\vec{E}=E_0\cos\left(\frac{\pi x}{a}\right)\hat{y}$. ¿Cuál de las siguientes afirmaciones es falsa?
 - a) El plano E es el plano ZY
- b) El NLPS^{plano-H} > NLPS^{plano-E}

c) $E_{\theta}(\phi=0)=0$

- c) $E_{\phi}(\phi=0)=0$
- 11 Para una bocina piramidal óptima, ¿cuál de las siguientes afirmaciones para la distribución de campos iluminantes en la apertura de la bocina es correcta?
 - a) La amplitud en un corte plano-E es aproximadamente uniforme
 - b) La amplitud en un corte plano-H es aproximadamente uniforme
 - c) La fase en un corte plano-E es aproximadamente uniforme
 - d) La fase en un corte plano-H es aproximadamente uniforme
- 12 Un reflector parabólico de diámetro D_a=1m y f/D_a=0.4 se alimenta desde el foco con un alimentador cuyo diagrama ha sido optimizado para obtener la máxima directividad del reflector. Al aumentar f/D_a=0.5, manteniendo constantes el diámetro y el alimentador, ¿cuál de las siguientes afirmaciones es cierta?
 - a) La eficiencia de polarización disminuye
 - b) La eficiencia de iluminación disminuye
 - c) La eficiencia de desbordamiento disminuye
 - d) La eficiencia total aumenta

Fecha notas revisadas: 29 de Enero

Profesores: S. Blanch, Ll. Jofre, J. Romeu.

Informaciones adicionales:

- Duración 105 minutos.
- Las respuestas de los diferentes ejercicios se entregarán en hojas separadas.
- No se permiten libros ni apuntes.

Ejercicio 1) Se desea diseñar un mopolo de longitud total 2.5 m que sea resonante a las frecuencias de f_1 =20 MHz y f_2 = 50 MHz. Para ello se elige la configuración de la figura en la que deberá:

- a) Determinar la frecuencia de resonancia del resonador paralelo y el valor de ℓ_1 para que la antena sea resonante a $f_2=50$ MHz.
- b) Determinar el valor de L, C y ℓ_2 para que la antena sea resonante a f_1 = 20 MHz. Para ello considere el efecto del circuito resonante a la frecuencia de 20 MHz.
- c) Encontrar el valor de la longitud efectiva y la resistencia de radiación a las dos frecuencias.

$$X_{in}(c.a.) = -Z_0 \cot g(k\ell)$$

$$Z_{0 \text{ monopolo}} = 180 \Omega$$

$$\begin{pmatrix} \hat{r} \\ \hat{\theta} \\ \hat{\phi} \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\ -\sin\phi & \cos\phi & 0 \end{pmatrix} \begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix}$$

Ejercicio 2) Se tiene una antena formada por 16 (4 x 4) dipolos cortos de longitud $\ell << \lambda$, a una distancia $\lambda/4$ de un plano conductor, tal como indica la figura. Las corrientes en los dipolos son: $I_n=\{1:2:2:1:1:2:2:1:1:2:2:1\}$.

- a) Encontrar la expresión del campo total radiado por la antena, $\vec{E}(heta,\phi)$.
- b) Se desea que el lóbulo principal de la antena tenga una anchura entre ceros en los planos principales del diagrama de 35° en el plano E y 45° en el plano H. Encontrar el espaciado entre elementos, (d_x, d_y) .
- c) Representar los cortes del diagrama en los planos principales de la antena.

Ejercicio 3) Se desea diseñar un reflector parabólico simétrico de 90 cm de diámetro a la frecuencia de 10 GHz. Como alimentador se emplea una pequeña bocina cuyo diagrama tiene simetría de revolución y puede expresarse como $t_f(\theta') = \cos^6(\theta'/2)$.

a) Calcular el valor numérico máximo, D_{max} , de la directividad de la bocina de alimentación.

b) Obtener la expresión analítica de la eficiencia total del reflector en función del ángulo β del reflector.
 Suponer que no hay pérdidas de polarización cruzada.

c) Calcular los valores de la geometría óptima del reflector, β y f/D_a , para obtener una eficiencia total del reflector máxima. (Sugerencia: probar valores de β entre 60° y 90° con intervalos de 5°)

d) Calcular para la geometría óptima del apartado c) el valor de la eficiencia total, de desbordamiento y de iluminación.

e) Calcular para la geometría óptima del apartado c) la directividad del reflector parabólico.

$$y' = 2 f \tan(\theta'/2)$$

$$z' = f (1 - \tan^2(\theta'/2))$$

$$r' = f / \cos^2(\theta'/2)$$

$$\sin \alpha = 2 \sin(\alpha/2) \cos(\alpha/2)$$

$$\eta_i = \cot^2\left(\frac{\beta}{2}\right) \left| \int_0^\beta \sqrt{D_f(\theta')} tg\left(\frac{\theta'}{2}\right) d\theta' \right|^2$$

$$\eta_s = \frac{1}{2} \int_0^\beta D_f(\theta') \sin \theta' d\theta'$$