Tutorium: Diskrete Mathematik

Lineare Gleichungssysteme

Steven Köhler

mathe@stevenkoehler.de mathe.stevenkoehler.de

Definition

Als lineare Gleichungssysteme bezeichnet man in der linearen Algebra Gleichungssysteme der folgenden Art:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Das Gleichungssystem besteht dabei aus m Gleichungen mit n Unbekannten.

Darstellungsformen I

Es existieren verschiedene Darstellungsformen für lineare Gleichungssysteme:

- die explizite Form;
- die Matrixform;
- die Spaltenform (oder auch Vektorform).

Darstellungsformen II

Die explizite Form

Bei dieser Form wird das Gleichungssystem als eine Menge von m separaten Gleichungen mit n Unbekannten angegeben.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Darstellungsformen III

Die Matrixform

Bei dieser Form wird das Gleichungssystem als Produkt einer Koeffizientenmatrix A, einem Spaltenvektor x mit den Unbekannten sowie einem Lösungsvektor b angegeben.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Die Gleichung lässt sich auch in der folgenden kompakten Form schreiben:

$$Ax = b$$
.

Darstellungsformen IV

Die Spaltenform

Bei dieser Form wird das Gleichungssystem als Summe der Produkte der Unbekannten mit den Spaltenvektoren der Matrix A sowie einem Lösungsvektor b angegeben:

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

Verwendet man für die Spalten die Schreibweise a_i , so ergibt sich die folgende kompakte Schreibweise:

$$x_1 a_1 + x_2 a_2 + \ldots + x_n a_n = b.$$

Gauß-Verfahren I

Das Gauß-Verfahren bietet eine einfache Möglichkeit, lineare Gleichungssysteme zu lösen. Es basiert auf der Matrixform des Gleichungssystems.

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

Gauß-Verfahren II

Für die Lösung des Gleichungssystems Ax = b sind nur die Koeffizientenmatrix A sowie der Lösungsvektor b von Interesse.

Diese fasst man in der sogenannten erweiterten Koeffizientenmatrix zusammen:

$$\begin{bmatrix} A|b \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{bmatrix}.$$

Gauß-Verfahren III

Das Gauß-Verfahren basiert auf der Grundidee, zunächst die erweiterte Koeffizientenmatrix durch elementare Zeilenumformungen in Zeilenstufenform zu überführen und anschließend durch Rückwärtseinsetzen schrittweise die Lösung zu bestimmen.

Wichtig: Durch elementare Spaltenumformungen kann sehr leicht die Lösungsmenge des Gleichungssystems verändert werden. Aus diesem Grund sind diese beim Lösen linearer Gleichungssysteme mit dem Gauß(-Jordan)-Verfahren verboten!

Gauß-Verfahren IV

Aufgabe

Löse das folgende Gleichungssystem mit dem Gauß-Verfahren!

$$2x_1 + 4x_2 = 22$$

$$3x_1 - 2x_2 = -7$$

Lösung

Zunächst wird die erweiterte Koeffizientenmatrix erstellt und schrittweise in Zeilenstufenform gebracht.

$$\begin{bmatrix} A|b \end{bmatrix} = \begin{bmatrix} 2 & 4 & 22 \\ 3 & -2 & -7 \end{bmatrix}$$

Gauß-Verfahren V

Multiplikation der ersten Zeile mit $\frac{1}{2}$ ergibt

$$\left[\begin{array}{cc|c} 1 & 2 & 11 \\ 3 & -2 & -7 \end{array}\right].$$

Anschließend wird durch Addition des (-3)-fachen der ersten Zeile zur zweiten die erste Spalte in die richtige Form gebracht:

$$\left[\begin{array}{cc|c} 1 & 2 & 11 \\ 0 & -8 & -40 \end{array}\right].$$

Multiplikation der zweiten Zeile mit $-\frac{1}{8}$ stellt die gewünschte Zeilenstufenform her:

$$\left[\begin{array}{cc|c} 1 & 2 & 11 \\ 0 & 1 & 5 \end{array}\right].$$

Gauß-Verfahren VI

Zur Erinnerung: Die Darstellung durch die erweiterte Koeffizientenmatrix ist lediglich eine andere Schreibweise für das Gleichungssystem, das nach den Umformungen wie folgt lautet:

$$x_1 + 2x_2 = 11$$

 $x_2 = 5$.

Nun löst man die Gleichungen von unten nach oben auf. $x_2 = 5$ liegt bereits in der gewünschten Form vor. Setzt man x_2 nun in die obere Gleichung ein, so ergibt sich

$$x_1 + 2 \cdot 5 = 11,$$

woraus sofort $x_1 = 1$ folgt.

Gauß-Verfahren VII

Die einzige Lösung des Gleichungssystems lautet also

$$x_1 = 1$$
 und $x_2 = 5$.

Man kann dies leicht durch Einsetzen in die Ausgangsgleichungen überprüfen.

Gauß-Jordan-Verfahren I

Beim Gauß-Jordan-Verfahren wird die Matrix in reduzierte Zeilenstufenform gebracht, d.h., außer den führenden Einsen enthält die Matrix A in der erweiterten Koeffizientenmatrix [A|b] nur Nullen.

Wir hatten beim Gauß-Verfahren die erweiterte Koeffizientenmatrix bereits in Zeilenstufenform gebracht.

$$\left[\begin{array}{cc|c} 1 & 2 & 11 \\ 0 & 1 & 5 \end{array}\right].$$

Gauß-Jordan-Verfahren II

Man muss also nur noch durch Addition des (-2)-fachen der zweiten Zeile zur ersten die zweite Spalte in die richtige Form bringen:

$$\left[\begin{array}{cc|c} 1 & 0 & 1 \\ 0 & 1 & 5 \end{array}\right].$$

Hier kann man nun die Lösungen für x_1 und x_2 ohne weiteres Rechnen direkt ablesen. Es folgt wie erwartet

$$x_1 = 1$$
 und $x_2 = 5$.

Anzahl der Lösungen I

Ein Gleichungssystem kann keine, genau eine oder unendlich viele Lösungen besitzen.

Anzahl der Lösungen II

Eine Lösung

Den Fall genau einer Lösung haben wir bereits bei unserem Beispiel gesehen.

Dieser Fall liegt immer genau dann vor, wenn in der erweiterten Koeffizientenmatrix [A|b] die Matrix A nach dem Überführen in Zeilenstufenform genauso viele vom Nullvektor verschiedene Zeilen besitzt wie das Gleichungssystem Variablen hat.

Anzahl der Lösungen III

Keine Lösung

Es ist möglich, dass ein Gleichungssystem keine Lösung besitzt.

Dies ist immer genau dann der Fall, wenn in der erweiterten Koeffizientenmatrix [A|b] (nach dem Überführen in Zeilenstufenform) eine Zeile der folgenden Art auftritt:

$$\begin{bmatrix} 0 & \dots & 0 & | & b & \end{bmatrix} \pmod{b \neq 0}.$$

Anzahl der Lösungen IV

Dies würde bedeuten, dass

$$0x_1 + \ldots + 0x_n = b \ (\neq 0)$$

gilt, was einen Widerspruch darstellt. Das Gleichungssystem kann folglich keine Lösung besitzen.

Anzahl der Lösungen V

Aufgabe 1

Bestätige, dass das folgende Gleichungssystem keine Lösung besitzt.

$$x_1 + 2x_2 + 3x_3 = 5$$

$$x_1 - x_2 + 2x_3 = 7$$

$$-2x_1 - x_2 - 5x_3 = -13$$

Anzahl der Lösungen VI

Unendlich viele Lösungen

Es ist zudem möglich, dass ein Gleichungssystem unendlich viele Lösungen besitzt.

Dieser Fall liegt immer genau dann vor, wenn in der erweiterten Koeffizientenmatrix [A|b] (nach dem Überführen in Zeilenstufenform) die Matrix A weniger vom Nullvektor verschiedene Zeilen besitzt als das Gleichungssystem Variablen hat.

Mit anderen Worten: Es gibt mehr Variablen als Gleichungen.

Anzahl der Lösungen VII

Aufgabe

Löse das folgende lineare Gleichungssystem.

$$2x_1 + 4x_2 + x_3 = 22$$

$$3x_1 - 2x_2 - x_3 = -7$$

Lösung

Auch in diesem Fall wird zunächst die erweiterte Koeffizientenmatrix erstellt und schrittweise in Zeilenstufenform gebracht.

$$\begin{bmatrix} A|b \end{bmatrix} = \begin{bmatrix} 2 & 4 & 1 & 22 \\ 3 & -2 & -1 & -7 \end{bmatrix}$$

Anzahl der Lösungen VIII

Multiplikation der ersten Zeile mit $\frac{1}{2}$ ergibt

$$\left[\begin{array}{cc|c} 1 & 2 & \frac{1}{2} & 11 \\ 3 & -2 & -1 & -7 \end{array} \right].$$

Anschließend wird durch Addition des (-3)-fachen der ersten Zeile zur zweiten die erste Spalte in die richtige Form gebracht:

$$\left[\begin{array}{cc|c} 1 & 2 & \frac{1}{2} & 11 \\ 0 & -8 & -\frac{5}{2} & -40 \end{array}\right].$$

Anzahl der Lösungen IX

Multiplikation der zweiten Zeile mit $-\frac{1}{8}$ stellt die gewünschte Zeilenstufenform her:

$$\left[\begin{array}{cc|c} 1 & 2 & \frac{1}{2} & 11 \\ 0 & 1 & \frac{5}{16} & 5 \end{array}\right].$$

Die Spalten mit den führenden Einsen repräsentieren die führenden Variablen, die restlichen Spalten stellen die freien Variablen dar.

Anzahl der Lösungen X

Um die Lösung zu erhalten, weist man den freien Variablen Parameter zu. In unserem Beispiel ist

$$x_3 = t \quad (t \in \mathbb{R})$$

die einzige freie Variable.

Die führenden Variablen rechnet man wie gewohnt durch Rückwärtseinsetzen aus. Für die zweite Zeile der Matrix ergibt sich somit

$$x_2 + \frac{5}{16} \ x_3 = 5$$

$$x_2 = 5 - \frac{5}{16} t \quad (t \in \mathbb{R}).$$

Anzahl der Lösungen XI

Um x_1 zu berechnen, setzt man nun x_2 und x_3 in die erste Zeile ein. Es folgt

$$x_1 + 2x_2 + \frac{1}{2}x_3 = 11.$$

Umstellen nach x_1 ergibt

$$x_1 = 11 - 2 \cdot \left(5 - \frac{5}{16} t\right) - \frac{1}{2} t$$
$$= 1 + \frac{1}{8} t \quad (t \in \mathbb{R}).$$

Anzahl der Lösungen XII

Als Gesamtlösung haben wir also Folgendes erhalten $(t \in \mathbb{R})$:

$$x_1 = 1 + \frac{1}{8}t$$

$$x_2 = 5 - \frac{5}{16}t$$

$$x_3 = t$$

Anzahl der Lösungen XIII

Wir können die Lösung auch wie folgt darstellen:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 + \frac{1}{8}t \\ 5 - \frac{5}{16}t \\ t \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 5 \\ 0 \end{pmatrix} + \begin{pmatrix} \frac{1}{8}t \\ -\frac{5}{16}t \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 0 \end{pmatrix} + t \begin{pmatrix} \frac{1}{8} \\ -\frac{5}{16} \\ 1 \end{pmatrix} \quad (t \in \mathbb{R}).$$

Man nennt dies die Parameterform der Lösung.

Aufgaben I

Aufgabe 2

Bestimme die Lösungen der folgenden Gleichungssysteme. Gib die Lösungen ggf. in Parameterform an.

$$2x_1 - x_2 = -1$$
$$x_1 + 3x_2 = 10$$

$$5x_1 - x_2 = -2$$
$$8x_1 - \frac{8}{5}x_2 = -3$$

c)
$$2x_1 - x_2 = 3$$

 $-x_1 + \frac{1}{2}x_2 = -\frac{3}{2}$

Aufgaben II

Aufgabe 3

Wir gehen davon aus, dass die erweiterte Koeffizientenmatrix eines linearen Gleichungssystems durch elementare Zeilenumformungen auf die folgende Zeilenstufenform gebracht wurde:

$$\left[\begin{array}{ccc|ccc|ccc|ccc|ccc|ccc|} 1 & 3 & -1 & 2 & -1 & 1 \\ 0 & 1 & 3 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -3 \end{array}\right].$$

Bestimme die Lösung dieses Gleichungssystems. Gib die Lösung in Parameterdarstellung an und deute das Ergebnis geometrisch.

Aufgaben III

Aufgabe 4

Bestimme die Lösung des folgenden linearen Gleichungssystems. Gib die Lösung in Parameterform an.

$$-x_1 - 2x_2 - 3x_4 + x_6 = -2$$

$$-x_1 + 2x_3 - x_4 + 10x_5 - x_6 = -2$$

$$-x_1 + 2x_3 - x_4 + 11x_5 + x_6 = -1$$

$$2x_1 + 3x_2 - x_3 + 5x_4 - 2x_5 + 5x_6 = 7$$

Aufgaben IV

Aufgabe 5

Bestimme mit Hilfe des Gauß- oder Gauß-Jordan-Verfahrens die Koordinatenform der Ebene, die durch die Punkte A = (1, 1, 2), B = (3, 4, -1) und C = (4, 3, 1) gegeben ist.

Überprüfe anschließend, ob der Punkt D=(1,2,3) in der durch $A,\,B$ und C beschriebenen Ebene liegt oder nicht.

LGS & inverse Matrizen I

Hat ein lineares Gleichungssystem eine eindeutige Lösung, so lässt sich dieses auch mit Hilfe der Inversen der Koeffizientenmatrix A berechnen. Es gilt

$$Ax = b$$

$$\Rightarrow x = A^{-1}b.$$

LGS & inverse Matrizen II

Aufgabe V-6

Überprüfe dies anhand des Gleichungssystems aus Aufgabe V-2a.

$$2x_1 - x_2 = -1$$

$$x_1 + 3x_2 = 10$$