THE UNIVERSITY OF A scalable and cost-effective method for measuring CHICAGO A scalable and cost-effective method for measuring pharyngeal pumping under controlled conditions

Monika Scholz¹, Kyung Suk Lee², Aaron Dinner³, Erel Levine², David Biron¹ contact: mscholz@uchicago.edu

HHMI BIOPHYSICAL DYNAMICS

Motivation

C. elegans feeding consists of two pharyngeal motions: pumping and isthmus peristalsis. Pumping is typically quantified by counting the number of quasi-periodic contractions of the terminal bulb during a fixed short period. Under ideal imaging conditions, i.e., high magnification and high spatial and temporal resolutions, automated detection of pharyngeal pumping can be achieved using intensity threshold-based machine vision. However, such conditions require the dedication of significant resources to every animal, thus limiting the throughput of the assay. We employ a mixture of affordable optics and novel analysis to build a highthroughput imaging and analysis pipeline. Models of regulatory strategies can potentially be tested using detailed experimental data and may assist in conceptualizing the data in terms of an optimality principle.

Appetite and Feeding in C. elegans depends on food availability

Microfluidic setup enables high-throughput imaging

Lower magnification and low-cost optics require sophisticated post-processing

Automatic image analysis pipeline uses entropy to detect events

Pumping at low food shows bimodal on - state duration

Feeding decisions in noisy environmental conditions

Conclusion

Using a high-throughput setup allows us to sample the pumping rates of many animals. Investing in custom image analysis tools improves the tradeoff between cost-efficient instrumentation and highquality data. Automatic image analysis allows us to get long time-series of pumping. The bimodality of the distributions suggests a process that uses regular puming for exploitation and irregular pumps, interspersed with pauses to collect information.