МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА № 2

ОТЧЕТ					
ЗАЩИЩЕН С О	ЦЕНКОЙ				
ПРЕПОДАВАТЕ.					
Доце			С.Л. Козенко		
	Степень, звание	подпись, дата	инициалы, фамилия		
ОТЧЕТ О ПРАКТИЧЕСКОЙ РАБОТЕ №1					
НЕЛИНЕЙНЫЕ УРАВНЕНИЯ					
	по кур	осу: ВЫЧИСЛИТЕЛЬНАЯ	МАТЕМАТИКА		
РАБОТУ ВЫПО	ЛНИЛ				
		BAC			
СТУДЕНТ ГР.	4136		Бобрович Н. (<u> </u>	

подпись, дата

инициалы, фамилия

Цель работы:

- а) освоение методов решения нелинейных уравнений;
- б) совершенствование навыков по алгоритмизации и программированию вычислительных задач.

Задание:

3.	$tg(ax+b)+cx^2=0$	Ньютона ε = 10 ⁻³	a = 3.01; b = 4; c = -1
----	-------------------	---------------------------------	-------------------------

Математическая часть:

Пусть определен интервал [a, b], в пределах которого расположен единственный корень x* уравнения f(x)=0, и функция f(x) удовлетворяет требованиям ("a","b","c", см. п.2.1). Пусть в качестве начального приближения выбрано значение x_0 и отвечающая ему точка $A_0[x_0, f(x_0)]$ (рис. 2.5).

Найдем следующее приближение как точку пересечения с осью касательной к кривой y=f(x), проведенной в точке A_0 . Определив таким образом новую точку A_1 [x_1 , $f(x_1)$], найдем следующее приближение x_2 как абсциссу пересечения касательной в точке A_1 .

Повторяя подобные операции, построим последовательность $x_1, x_2, ...,$ сходящуюся (при выполнении определенных условий) к искомому корню x*.

Для некоторого приближения x_n уравнение касательной, проведенной в точке A_n [x_n , $f(x_n)$], имеет вид $y-f(x_n)=f'(x_n)(x-x_n)$, и значение x_{n+1} , отвечающее следующему приближению, находится из условия $y(x_{n+1})=0$, отвечающего пересечению касательной с осью абсцисс. Отсюда

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
, $n=0, 1, 2, ...,$ (2.11)

что и определяет последовательность расчетных формул метода. Можно показать, что если f(x) удовлетворяет упомянутым требованиям "a","b","c" и начальное приближение выбрано так, что

$$f(x_0) \cdot f''(x_0) > 0,$$
 (2.12)

где $f''(x_0)=f''(x)$ при $x=x_0$ то последовательные приближения x_0, x_1, \ldots сходятся к единственному на интервале [a, b] корню x*, который может быть вычислен с любой необходимой точностью.

Точность вычислений может быть оценена с помощью соотношения

$$|x_{n+1}-x^*| \le |x_{n+1}-x_n|,$$
 (2.13)

из которого следует, что вычисления могут быть прекращены с получением заданной точности $|x_{n+1}-x*| \leq \varepsilon$, когда выполняется неравенство

$$/x_{n+1}-x_n/\leq \varepsilon, \tag{2.14}$$

аналогичное условию (2.10) метода последовательных приближений.

При несоблюдении условия (2.12) выбора начальной точки x_0 метод может дать неудовлетворительный результат. Например, при выборе x_0 =a (рис. 2.5) последующее приближение x_1 может оказаться вне интервала [a,b] отделения данного корня x*. При этом в соответствии с (2.12) в качестве начальной следует выбрать ту из граничных точек, в которой знаки функции и ее второй производной совпадают.

Рис.2.5. Метод касательных

Пример 2.4.

Вычислить наименьший положительный корень уравнения $e^{x}-3x=0$ с точностью $\varepsilon=0.0001$.

Решение. Для отделения возможных положительных корней перепишем уравнение в виде $e^x=3x$ и построим графики функций $y=e^x$, y=3x (рис. 2.7), показывающие, что имеются два положительных корня, наименьший из которых x_1* заключен в интервале [0,1].

Проверяя выполнение требований "a","b","c", предъявляемых к функции $f(x)=e^x-3x$, находим $f'(x)=e^x-3$, $f''(x)=e^x$, f'(x)<0, f''(x)>0

при $0 \le x \le 1$ производные непрерывны и сохраняют знаки на рассматриваемом интервале. При этом f(x) так же непрерывна, но $f(0) \cdot f(1) < 0$.

Выбирая начальную точку
$$x_0$$
, находим $f(0) \cdot f''(0) = (e^x - 3x) e^x \big|_{x=0} = 1 > 0$, $f(1) \cdot f''(1) = (e^x - 3x) e^x \big|_{x=1} = (e-3)e < 0$.

Следовательно, необходимо принять x_0 =0. Последующие приближения вычисляются по формулам (11), которые в данном случае принимают вид

$$x_{n+1} = x_n - \frac{e^{x_n} - 3x_n}{e^{x_n} - 3}$$
 (n=0,1,2,...).

Результаты следующих отсюда вычислений сведены в табл. 2.1 При этом величина

$$\varepsilon_{n} = \frac{f(x_{n})}{f'(x_{n})} = x_{n+1} - x_{n}$$
в соответствии с (2.13) и (2.14) определяет точность приближения x_{n+1} к искомому корню $x*$.

Таблица 2.1

n	X _n	e ^x	3x	$f(\mathbf{x_n})$	$f'(\mathbf{x_n})$	εn
0	0.00000	1.0000	0.0000	1.0000	-2.0	-0.500000
1	0.50000	1.6500	1.5000	0.1500	-1.35	-0.110000
2	0.61000	1.8404	1.8300	0.0104	-1.16	-0.009000
3	0.61900	1.8571	1.8570	0.0001	-1.14	-0.000088
4	0.61909	1.8573	1.8573	0.0000	-	-

В качестве искомого значения корня принимаем х≈*0.619.

Аналитические расчеты:

Шаг 6

Вычисления представляем в виде таблицы:

iter	X _n	$f(x_n)$	$f(x_n)'$	$ f(x_n) $	$\left x_n - x_{n-1} \right $
0	0.0	1.15782128234958	7.0450558668035063	1.15782128234958	·
1	- 0.1643452236915913	0.3536559347922388	3.774857690955678	0.353655934792239	0.164345223691591
2	- 0.2580324468257444	0.0153314030903857	3.5462607889828474	0.0153314030903857	0.0936872231341532
3	- 0.2623557056052497	- 5.4794336549 · 10 ^{- 6}	3.5489694371513959	5.4794336549 • 10 - 6	0.00432325877950536

Шаг 7

На 3 итерации сработал критерий останова вычислений по отличию значения функции от нуля ,т.е. $\left|f\left(x_{3}\right)\right|<arepsilon$:

5.4794336549 • 10 - 6 < 0.001

Ответ

Итак, мы нашли корень нашего уравнения с заданной точностью:

x = -0.2623557056052497

Шаг 2

Теперь у нас есть все необходимые данные для того, чтобы начать поиск корня по методу Ньютона.

Запишем формулу Ньютона для нашего уравнения:

$$x_{n+1} = x_n - \frac{\operatorname{tg}(3.01 \cdot x_n + 4) - x_n^2}{3.01 \cdot \operatorname{sec}^2(3.01 \cdot x_n + 4) - 2.0 \cdot x_n}$$

Шаг 3

Покажем как используя приведённую выше формулу и зная значение x_0 , вычислить значение x_1 .

Если n=1, то формула принимает вид:

$$x_1 = x_0 - \frac{\operatorname{tg}(3.01 \cdot x_0 + 4) - {x_0}^2}{3.01 \cdot \sec^2(3.01 \cdot x_0 + 4) - 2.0 \cdot x_0}$$

Шаг 4

Подставляем значение $x_0=0$ в приведённую выше формулу:

$$x_1 = -\frac{\text{tg (4)}}{3.01 \cdot \text{sec}^2(4)}$$

Шаг 5

🚹 показать шаги

Упрощая, получаем значение для x_1 :

 $x_1 = -0.1643452236915913$

График функции:

Схема решения задачи:

1) Блок схема фунцкии f:

2) Блок схема фунцкии fp:

3) Блок схема фунцкии main:

Листинг кода программы:

```
#include <iostream>
#include <cmath>
#include <conio.h>
using namespace std;
double f(double a, double b, double c, double x) {
        return tan(a * x + b) + c * pow(x, 2);
}
double fp(double a, double b, double c, double x) {
        return (a / (pow(cos(a * x + b), 2))) - 2*x;
}
int main()
        double a, b, c, x0, x1, e, count, temp, xmin, xmax;
        //a = 3.01;
        //b = 4;
        //c = -1;
        //e = 0.001;
        count = 1;
        cout << "PR1 Bobrovich 4136" << endl;
        cout << "3 \ var: \\ \\ | tg(ax+b) + cx2 = 0 \\ \\ | Newton's \ method \\ \\ | na = 3.01; \ b = 4; \ c = -1; \ e = 0.001 \\ \\ | n" << endl; \ endl;
        cout << endl;
        cout << "Press any key to continue." << endl;
        _getch();
         system("cls");
        cout << "Please, enter a: ";</pre>
        cin >> a;
        cout << "Please, enter b: ";</pre>
        cin >> b;
        cout << "Please, enter c: ";</pre>
```

```
cin >> c;
cout << "Please, enter e: ";</pre>
cin >> e;
cout << "Please, enter lower bound: ";</pre>
cin >> xmin;
cout << "Please, enter upper bound: ";</pre>
cin >> xmax;
x0 = (xmin + xmax) / 2;
cout << "Step number: " << count << endl;</pre>
count++;
cout << "X: " << x0 << endl;
cout << endl;
while (fabs(f(a, b, c, x0)) > e) \{
  temp = ((-1) * f(a, b, c, x0)) / fp(a, b, c, x0);
  x1 = temp + x0;
  if(f(a, b, c, x1) == 0) {
     break;
  }
  x0 = x1;
  cout << \verb"Step number:" << count << endl;
  count++;
  cout << "f(X):" << f(a, b, c, x0) << endl;
  cout << "X: " << x0 << endl;
  cout << endl;
if ((f(a, b, c, x0) < 0.001) && (f(a, b, c, x0) > -0.001))
  cout << "All is right!" << endl;</pre>
}
cout << "Thank you for using this beautifull thing!" << endl;</pre>
return 0;
```

Результаты программных расчетов:

```
M Консоль отладки Microsoft Visual Studio
                                                                                                                        Please, enter b: 4
Please, enter c: -1
Please, enter e: 0.001
Please, enter lower bound: -10
Please, enter upper bound: 10
Step number: 1
X: 0
Step number: 2
f(X): 0.353656
X: -0.164345
Step number: 3
f(X): 0.0153314
X: -0.258032
Step number: 4
f(X): -5.47943e-06
X: -0.262356
Verification passed!
Thank you for using this beautifull thing!
C:\Users\User\source\repos\VM1\x64\Debug\VM1.exe (процесс 4624) завершил работу с кодом 0.
Нажмите любую клавишу, чтобы закрыть это окно:_
```

Сравнение результатов программных и аналитических расчетов:

Исходя из результатов мы видим, что результаты не совсем сходятся, но это не означает, что программа производит неверный расчет. В аналитических данных не записан самый первый интервал [-10,10]. Это первая причина несхождения. Вторая - кругление. В аналитических расчетах, когда точность равна 0.00122, остановили расчет, так как при округлении это будет равно 0.001, а значит по условию дальнейшие шаги не выполняются, так как задана точность. В программе же не идет округление, поэтому рассчитывается еще один шаг. Из-за расхождения последних интервалов, искомые корни, так же отличаются.

Вывод

В ходе выполнения практической работы №1 был освоен метод решения нелинейных уравнений — метод Ньютона. Также были улучшены навыки по алгоритмизации и программированию вычислительной задачи на языке C++ в программе Microsoft Visual Studio.