Анализ качества восстановления каплинга в обратной задаче Курамото-модели для различных модельных функций

Научный семинар

by

Антон Савостьянов

Contents

1. Модель Курамото

Постановка задачи и обозначения

- 2. Кусочно-константные модельные приближения $k_0(t)$ Положительный и отрицательный шоки $k_0(t)$; случай нарушения основного Курамото-неравенства
- 3. Приближение $k_0(t)$ простыми колебаниям $(\sin(t))$ Влияние спектральных параметров на качество восстановления
- **4.** Авторегрессионный процесс как $k_0(t)$ Слабая стационарность; влияение параметров на среднее качество восстановления; средняя доля катастроф
- Итоги

Модель Курамото

- Moдель предложена в 1975 Yoshiki Kuramoto
- Поведение осцилляторов в модели:

$$X_i(t) = a_i(t) \sin (\Omega_i t + \varphi_i)$$
$$X_i(t) = \sin (\theta_i(t))$$

Явление синхронизации: $\Omega_i=\Omega_j=\Omega$ (частотная) и $\varphi_i-\varphi_j=const$ (фазовая)

$$\varphi_i - \varphi_j = (\Omega t + \varphi_i) - (\Omega t + \varphi_j) = \theta_i(t) - \theta_j(t) \Rightarrow$$
$$\Rightarrow \dot{\theta}_i - \dot{\theta}_j = 0$$

Модель Курамото

Динамика фаз осцилляторов:

$$\dot{\theta}_i = \omega_i + \sum_{j=1}^n \frac{k_{ij}}{2}(t) \sin(\theta_j - \theta_i),$$

где ω_i — разница фаз, $k_{ij}(t)$ — каплинг осцилляторов, а $\theta_i - \theta_i$ — фазовая разница.

• Положим задачу для двух осцилляторов (i,j=1,2) с постоянными естественными частотами $(\omega_i=const)$ и симметричным каплингом $(k_{12}(t)=k_{21}(t)=k(t))$. Вычитая уравнения $(\Delta\omega=\frac{\omega_1-\omega_2}{2},\theta_1-\theta_2=\theta)$:

$$\dot{\theta} = 2\Delta\omega - \mathbf{k}(t)\sin\theta(t)$$

ightharpoonup Обратная задача: по X(t) и Y(t) восстановить k(t)

Обратная задача

Задача

Оценить качество восстановления на модельных функциях, после чего использовать полученные результаты для анализа качества восстановления на реальных данных.

Процедура восстановления

- 1. Выберем некоторое начальное приближение каплинга $k_0(t)$; решим дифференциальное уравнение $\dot{\theta}=2\Delta\omega-k_0(t)\sin\theta(t)$;
- 2. Введем два виртуальных маятника: $X_0 = \sin(\Omega t + \theta(t)), Y_0 = \sin(\Omega t),$ посчитаем их скользящую корреляцию в окне периода $C_0(t);$
- 3. Исходя из предположений квазистационарности $(\dot{ heta} pprox 0)$: $\varphi_0 = \arccos C_0(t) \Rightarrow \hat{k}(t) = \frac{2\Delta\omega}{\sin\varphi_0}$

Кусочно-константные $k_0(t)$

Пусть

$$k_0(t) = \begin{cases} d, \ 0 \le t \le 2T \land t \ge 2T + \tau \\ d + \Delta d, \ 2T \le t \le 2T + \tau \end{cases}$$

- → d невозмущенное значение;
- ▶ Δd величина возмущения (шока);
- au длительность возмущения (шока);
- Т общий главный период маятников.

Заметим, что если $\Delta d < 0$, то может быть нарушено основное Курамото-неравенство:

$$\left| \frac{2\Delta\omega}{k_0(t)} \right| \le 1$$

Кусочно-константные $k_0(t)$ ($\Delta d > 0$)

Меры качества восстановления

Для данного случая будем рассматривать следующие метрики для сравнения $k_0(t)$ и $\hat{k}(t)$:

1.
$$jumpK = \frac{\left|\hat{k}(2T+\tau)-d\right|}{\Delta d}$$

2.
$$jumpKC = \frac{\max\limits_{t \geq 2T+\tau} \left| \hat{k}(t) - d \right|}{\Delta d}$$

3.
$$jumpKR = \frac{1}{nT} \sqrt{\int_0^{nT} (\hat{k}(t) - k_0(t))^2} dt$$

4.
$$jumpKR_0 = \frac{1}{n\sigma(k_0(t))T} \sqrt{\int_0^{nT} \left(\hat{k}(t) - k_0(t)\right)^2} dt$$

Кусочно-константные $k_0(t)$ ($\Delta d > 0$)

Кусочно-константные $k_0(t)$ ($\Delta d < 0$)

Кусочно-константные $k_0(t)$ ($\Delta d < 0$)

- 🕨 Пожалуйста, включите видео const_anim.mp4
- Можно заметить две характерных длительности шока, нарушающего основное Курамото-неравенство: момент появления второго экстремума и момент появления сингулярности (катастрофы)

Кусочно-константные $k_0(t)$ ($\Delta d < 0$)

Приведем два графика времени появлений второго экстремума и катастрофы: для слабого ($d=0.25, \Delta d=-0.2$) и сильного ($d=2.5, \Delta d=-2.45$) каплингов

Приближение $k_0(t)$ синусом

Пожалуйста, включите видео sink_anim.mp4

Приближение $k_0(t)$ синусом

Приведем графики качества восстановления $jumpRK_0$ при различных C:

Приближение $k_0(t)$ синусом

Приведем графики качества восстановления $jumpRK_0$ при различных B: слева амплитуда не позволяет нарушений Курамото-неравенства, а справа позволяет (ось ординат логарифмическая):

$k_0(t)$ как реализация AR(1)

▶ Положим k₀(t) следующим случайным процессом:

$$k_0(t) = \alpha k_0(t-1) + m + \xi(t-1), \ \xi(t) \sim N(0, \sigma^2)$$

Такой процесс называется авторегрессионным.

• Через характерное время $au = \frac{1}{1-\alpha}$ процесс становится стационарным в слабом смысле, причем:

$$\mathbb{E}[\mathbf{k}_0] = \frac{\mathbf{m}}{1 - \alpha}$$

$$\sigma[\mathbf{k}_0] = \frac{\sigma}{\sqrt{1 - \alpha^2}}$$

$k_0(t)$ как реализация AR(1)

$k_0(t)$ как реализация AR(1)

$\overline{k_0(t)}$ как реализация $\mathsf{AR}(\mathbf{1})$

$\overline{k_0(t)}$ как реализация AR(1)

Таким образом доля катастроф есть $\approx f((1-\alpha))e^{-(1-\alpha)}!$

Спасибо за внимание!

Спасибо за внимание! 19/20

$oldsymbol{k}_0(t)$ как реализация AR(1)

Спасибо за внимание! 20/20