

b-flavour tagging in pp collisions

Alex Birnkraut on behalf of the LHCb collaboration

Basics

Introduction

Measurements of flavour oscillations and time-dependent *CP* asymmetries in neutral *B* meson systems require knowledge of the *b* quark flavour at production. This identification is performed by the Flavour Tagging. [1,2]

Two independent classes of algorithms

same side taggers (SS)

use charged particles created in the fragmentation process of the *b* quark of the signal *B* meson

- kaon for B_s^0
- \rightarrow SS kaon / SS kaon nnet
- pion for B^0
- \rightarrow SS pion / SS pion BDT
- proton for B⁰
- \rightarrow SS proton
- opposite side taggers (OS)
- exploit the non-signal b quark of the initial $b\overline{b}$ pair
 - overall charge of the secondary vertex (SV)

 → OS vertex charge
 - \rightarrow OS vertex charge lepton from semi-leptonic b hadron decays
- \rightarrow OS muon / OS electron - kaon from the $b \rightarrow c \rightarrow s$ decay chain
- \rightarrow C \rightarrow C \rightarrow C decay cha \rightarrow OS kaon / OS kaon nnet
- D meson from the b → c decay chain
 → OS charm

Each tagger provides a decision d on the initial flavour ("tag") and a probability to be wrong, η .

Flavour Tagging characteristics

mistag

fraction of events with a wrong tagging decision

$$\omega = rac{N_{ ext{wrong}}}{N_{ ext{right}} + N_{ ext{wrong}}}$$

tagging efficiency

fraction of events with a tagging decision

$$oldsymbol{arepsilon}_{\mathsf{tag}} = rac{N_{\mathsf{right}} + N_{\mathsf{wrong}}}{N_{\mathsf{all}}}$$

effective tagging efficiency

represents the statistical reduction factor of a sample in a tagged analysis

$$oldsymbol{arepsilon}_{ ext{eff}} = oldsymbol{arepsilon}_{ ext{tag}} \left(1 - 2\omega
ight)^2$$

Calibration

Mistag calibration

$$\omega(\eta) = p_0 + p_1(\eta - \langle \eta \rangle)$$
 measured ev-by-ev mistag ev-by-ev mistag estimated mistag

Several flavour-specific decay channels are used

• $B^+ \to J/\psi \, K^+, \, B^+ \to D^0 \pi^+$ charged channels: extract ω by comparing tag deci-

sion with charge of the final state

• $B^0 \to J/\psi \, K^{*0}$, $B^0 \to D^{*-} \mu^+ \nu_\mu$, $B^0_s \to D^-_s \pi^+$, ... neutral channels: full time-dependent analysis to extract ω from the mixing asymmetry

$$\mathcal{A}_{\mathsf{mix}}(t) \propto (1-2\omega) \cos(\Delta m_{d/s} t)$$

Flavour Tagging in Run I

Strategy

- universal calibration for each tagger
- systematic uncertainties from
 - calibration methods
 - portability
- mode-specific calibration if FT becomes leading systematic uncertainty in precision analyses

Performance in analyses

Analysis	$arepsilon_{ ext{eff}}$ on data $[\%]$		ratio	references
	previous	latest	latest/previous	references
$B_{\rm s} \rightarrow J/\psi \ \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$	2.43	3.89	1.60	Phys. Lett. B 713 (2012) 378-386 Phys. Lett. B 736 (2014) 186
$B_{\rm s} \! o \! J/\psi K^{\scriptscriptstyle +} K^{\scriptscriptstyle -}$	3.13	3.73	1.19	Phys. Rev. D87 (2013) 11, 112010 Phys. Rev. Lett. 114 (2015) 041801
$B_{\rm s}\! o\! J/\psiK_{\rm s}$	-	4.00		JHEP 1506 (2015) 131
$B_{ extsf{s}}\! o\!\phi\phi$	3.29	5.38	1.64	Phys. Rev. Lett. 110 (2013) 241802 Phys. Rev. D90 (2014) 5,052011
$B_s \rightarrow D_s K$	1.9	5.07	2.67	LHCb-CONF-2012-029 JHEP 1411 (2014) 060
$B_s \rightarrow D_s D_s$	-	5.33		Phys. Rev. Lett. 113 (2014) 211801
$B^{\scriptscriptstyle 0}\! o\! J/\psi K_{\scriptscriptstyle m S}$	2.38	3.02	1.27	Phys. Lett. B 721 (2013) 24-31 Phys. Rev. Lett. 115 (2015) 031601
$B^{\scriptscriptstyle 0}$ $ ightarrow$ $J/\psi~\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$	-	3.26		Phys. Lett. B 742 (2015) 38-49

Performance improvements in Run I

- OS tagging improved $\mathcal{O}(15\%)$
- SS kaon tagging improved $\mathcal{O}(40\%)$
 - ⇒ Flavour Tagging has been a success in Run I

Highlight analyses using flavour tagging

Measurement of Δm_s Determination of the $B^0 - \overline{B}^0$ oscillation

 $B_s^0 - \overline{B}_s^0$ oscillation frequency with $B_s^0 \to D_s^- \pi^+$ [3].

 $e^{-\Gamma t} \left(\dots + d \cos \left(\Delta m t \right) \right)$

CP analysis of $B_s^0 o D_s^\mp K^\pm$ decays

 \rightarrow SS kaon nnet adds more than 1.3 % to $\varepsilon_{\rm eff}$ [4]

Measurement of $\sin 2\beta$

- → precision analysis→ mode-specific
- calibration with $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow J/\psi K^{*0}$ [5]

Developments

SS kaon calibration with excited B_s^0 states

- SS kaon taggers calibrated with $B_s^0 o D_s^- \pi^+$ only
 - limited statistics
 - time-dependent analysis required
- new idea: calibrate with B_s^{**0} decays
 - narrow states
 - reconstruct in $B_s^{**0} \to B^+ K^-$ decays
 - calibrate by counting, as in other charged modes

- true independent crosscheck for $B_s^0 o D_s^- \pi^+$
- results in agreement with $B_s^0 o D_s^- \pi^+$ channel

SS pion calibration

- calibration performed with $B^0 o J/\psi \, K^{*0}$
- full evaluation of systematic uncertainties
- used for the first time in the measurements of
 - $\sin(2\beta)$ with $B^0 o J/\psi K_S^0$
 - \Rightarrow precision comparable to B-factories
 - $\Rightarrow \ arepsilon_{ ext{eff}}^{ ext{SS}\pi} = 0.38 \,\%$
 - $-\sin(2eta_{
 m eff})$ with $B^0 o J\!/\psi\,\pi^+\pi^-$
 - $\Rightarrow \ \epsilon_{\rm eff}^{\rm SS\pi} = 0.54 \%$

OS and SS Kaon tagging using neural nets (NN)

- basic idea: use two NN
 - first NN distinguishes between:
 - fragmentation tracks
 ⇒ signal for SS kaon nnet
 - 2. OS *b* hadron tracks
 - ⇒ signal for OS kaon nnet3. underlying event tracks

- second NN:
 - o receives up to 3 candidates
 - assigns final tag and mistag
- SS kaon nnet tagger is a great success, compared to the previous cut-based SS kaon it gives
 - $-B_s^0 o D_s^- \pi^+$: 50 % relative improvement in $oldsymbol{arepsilon}_{ ext{eff}}$
 - $B_s^0
 ightarrow J\!/\psi \phi$: 41 % relative improvement in $arepsilon_{ ext{eff}}$

OS charm tagger

- reconstruct $D^0/D^{\pm}/D^*$ decays related to OS b decay
- one boosted decision tree (BDT) for each mode
- clean measure of *B* meson flavour (low mistag)
- adds about 0.37 % to $\epsilon_{
 m eff}$

SS pion BDT and SS proton

- promising new taggers based on BDT's
- development ongoing

References

- [1] LHCb Collaboration, R. Aaij et. al., Opposite-side flavour tagging of B mesons at the LHCb experiment, Eur. Phys. J. C72 (2012) 2022
- [2] LHCb Collaboration, R. Aaij et. al., Optimization and calibration of the same-side kaon tagging algorithm using hadronic B_5^0 decays in 2011 data, LHCb-CONF-2012-033
- [3] LHCb Collaboration, R. Aaij et. al., Precision measurement of the $B_s^0 \overline{B}_s^0$ oscillation frequency with the decay $B_s^0 \to D_s^- \pi^+$, New J.Phys. 15 (2013) 053021
- [4] LHCb Collaboration, R. Aaij et. al., Measurement of CP asymmetry in $B_s^0 \to D_s^\mp K^\pm$ decays, JHEP 1411 (2014) 060
- [5] LHCb Collaboration, R. Aaij et. al., Measurement of CP violation in $B^0 \to J/\psi K_S$ decays, LHCb-PAPER-2015-004