Departamento de Matemática	Universidade do Minho
Tópicos de Matemática	3º teste – 13 jan 2023
Lic. em Ciências de Computação - 1º ano	duração: duas horas
Nome	Nº
GRUPO I. Em cada uma das questões seg assinalando a opção conveniente:	guintes, diga se é verdadeira (V) ou falsa (F) a proposição,
1. Existem conjuntos $\cal A$ para os quais qualq definida é transitiva.	uer relação binária simétrica neles V□ F□
2. Para qualquer relação de equivalência R então, $(3,1) \in R$.	em $A=\{1,2,3,4\}$, se $2\in [1]_R\cap [3]_R$, $V\Box \ F\Box$
3. O conjunto $\{\{1,2\},3,\{4,5\}\}$ é uma par	tição de $B=\{1,2,3,4,5\}.$ $V\Box \ \ \Box$
4. Para quaisquer conjuntos não vazios A e relação de equivalência em $A \cup B$.	B , $\omega_{B\backslash A}\cup\omega_{A\backslash B}$ é uma $V\square\ F\square$
5. A relação binária $\theta = \{(1,2),(3,1),(2,1)\}$ antissimétrica.)} em $A = \{1,2,3,4\}$ é uma relação $\mathbf{V} \square \ \mathbf{F} \square$
6. A relação $R=\{(2,1),(1,3),(2,3),(1,1)\}$ em $A=\{1,2,3\}$.	$(0,(2,2),(3,3))$ é uma relação de ordem total V \Box F \Box
7. Para qualquer c.p.o. (A, \leq) e qualquer s elemento máximo, então, $A \backslash X$ admite e	ubconjunto não vazio X de A , se X admite lemento mínimo. $V \square F \square$
8. Para quaisquer c.p.o.'s A e B e qualquer elemento máximo de A então $f(m)$ é ele	r função isótona sobrejetiva $f:A\to B$, se m é emento máximo de B . $V\Box$ $F\Box$

GRUPO II. Considere o conjunto $A=\{a,b,c\}$. Dê exemplo, ou justifique que não existe, de:

1. Uma relação binária θ em A que seja simétrica mas não transitiva;

2. Uma relação de equivalência ${\mathcal R}$ em A com 4 elementos;

3. Uma relação de ordem parcial \leq em A tal que \leq = \leq_d ;

4. Uma relação de ordem parcial \leq em A tal que no c.p.o. A não existe $\inf \varnothing$ nem $\sup \varnothing$.

GRUPO III. Sejam A um conjunto e ρ a relação binária definida em $\mathcal{P}(A) \times A$ por

$$(X,a) \ \rho \ (Y,b) \Leftrightarrow \{a\} \cup X = \{b\} \cup Y \qquad (a,b \in A, \ X,Y \subseteq A).$$

1. Mostre que ρ é uma relação de equivalência em $\mathcal{P}(A) \times A$.

2. Dado $a \in A$, determine as classes $[(\emptyset, a)]_{\rho}$ e $[(A, a)]_{\rho}$	2.	$Dado\ a \in A,$	determine	as classes	$[(\emptyset,a)]_{\rho}$	e[(A,a)]
--	----	------------------	-----------	------------	--------------------------	----------

3. Determine em que condições se tem
$$[(\emptyset,a)]_{\rho}\cap [(A,a)]_{\rho}\neq \emptyset$$
.

4. Para
$$A=\{1,2\}$$
, indique o conjunto quociente definido por $\rho.$

GRUPO IV. Considere o c.p.o. (A,\leq) definido pelo diagrama de Hasse apresentado. Indique, caso exista:

- 1. Maj $\{2, 4, 5, 7\}$;
- 2. $\inf\{2,4\}$:
- 3. $\inf \emptyset \in \sup \emptyset$;

- 4. Um subconjunto X de A que não admita supremo;
- 5. Um subconjunto X de A com 3 elementos maximais e 4 elementos minimais;
- 6. um elemento x de A tal que $\{3,5,9,x\}$ seja um reticulado para a ordem parcial induzida pela ordem do c.p.o. A.