Fakultet elektrotehnike i računarstva Zavod za automatiku i računalno inženjerstvo

Arhitektura računala 1

Zadaci za 1. ciklus laboratorijskih vježbi

1. Priprema

Proučiti:

Programske primjere obrađene na dosadašnjim predavanjima

2. Organizacija vježbe

Zadatke iz nastavka treba **izraditi prije dolaska na termin vježbe**. Na samom terminu vježbe treba demonstrirati rješenja zadataka.

Na termin vježbe treba doći s rješenjima zadataka u elektroničkom obliku, spremnima za pokretanje. Potpuno je svejedno da li rješenja demonstrirate na fakultetskom ili vlastitom računalu.

Nakon uspješne demonstracije rješavaju se zadaci koji nose od 0 do 4 boda. Uspješna demonstracija rješenja ne nosi bodove, no nužan je uvjet za pristup rješavanju zadataka za bodove. Nakon demonstracije rezultata možete i odustati od rješavanja zadataka za bodove (u tom slučaju iz vježbe dobivate 0 bodova).

Neuvjerljiva demonstracija rezultata (ako asistent/ica ima razloga vjerovati da niste samostalno izradili vježbu, bilo zbog vašeg nesnalaženja s alatima i/ili manjka suvislih odgovora na pitanja iz vježbe) **donosi 2 negativna boda.** Neuvjerljiva demonstracija rezultata također automatski znači nemogućnost rješavanja zadataka za bodove.

3. Prvi zadatak: pretvorba formata zapisa brojeva

U memoriji od adrese 500₁₆ nalazi se blok podataka zapisanih u **64-bitnom formatu s bitom za predznak** (tj. format s bitom za predznak u dvostrukoj preciznosti). Niža riječ 64-bitnog broja nalazi se na nižim memorijskim adresama, a viša riječ na višim adresama (cijeli 64-bitni podatak zapisan je u *little-endian* poretku). Veličina bloka zapisana je u prvom 32-bitnom podatku na adresi 500₁₆. Napišite program za FRISC koji će podatke iz opisanog bloka pretvoriti **u 16-bitni format dvojnog komplementa te zapisati u novi blok od adrese 1000₁₆. Podaci u početnom bloku trebaju biti: -1₁₀, +2₁₀, -4₁₀, +37₁₀, -73₁₀. Novi blok mora biti zaključen s 16-bitnom vrijednošću 8000₁₆.**

Program treba spremiti u direktorij *atlas/vjezba1*, asemblirati i simulirati alatima *xconas i xcompas*. Provjerite je li rezultantni blok (u tablici ispod) jednak onom koji ste dobili. Pri ispravljanju eventualnih logičkih grešaka u programu, primijenite točke praćenja i prekidne točke.

Početni blok (od adrese 500 ₁₆)	Rezultantni blok (od adrese 1000 ₁₆)				
prikazano po 64-bitnim riječima (osim prvog podatka)	Prikazano po poluriječima				
0000 0005, (broj podataka u bloku 32 bita)					
8000 0000 0000 0001,	FFFF,				
0000 0000 0000 0002,	0002,				
8000 0000 0000 0004,	FFFC,				
0000 0000 0000 0025,	0025,				
8000 0000 0000 0049,	FFB7,				
	8000 (oznaka kraja)				

Vodite računa da FRISC sve podatke zapisuje u *little-endian* poretku. Na primjer, podatak FFFC u odredišnom bloku ispravno je po oktetima zapisan ovako:

adresa	podatak		
1004	FC		
1005	FF		

Odgovarajući podatak 8000 0000 0000 0004 u izvornom bloku zapisan je po oktetima ovako:

dresa	podatak
514	04
515	00
516	00
517	00
518	00
519	00
51A	00
51B	80

Neka od pitanja koja bi vam asistenti mogli postaviti:

- Što je SR, ALU, PC?
- Ako pretpostavimo da su brojevi 99999999 i 77777777 u 32 bitnom NBC formatu, koji je veći? A ako je to zapis u formatu 2'k, koji je broj veći?
- Kakvo značenje poprima zastavica C kod operacije oduzimanja i kada će biti postavljena u kojem odnosu moraju biti brojevi koje sudjeluju u oduzimanju?
- Zbrojite dva broja te odredite stanja zastavica.
- Pretvoriti brojeve -6 i 3 u format 2'k.
- Da li naredba LOAD mijenja zastavice?
- Koje naredbe mijenjaju zastavice, a koje ne?
- Kako znamo kada je došlo do pogreške prilikom računanja sa brojevima u 2`k formatu a kada s brojevima u NBC formatu (koje zastavice treba ispitivati?)?
- Pokazati gdje se u memoriji nalazi izvorišni niz podataka?
- Pokazati gdje se u memoriji nalazi odredišni niz podataka?
- Nabrojite sve memorijske lokacije koje zauzima 2. član izvorišnog niza podataka?

4. Drugi zadatak: računanje pariteta

Za procesor FRISC treba napisati potprogram *PAR* koji prima jedan parametar sa stoga. Parametar je 8 bitni broj u kojem treba prebrojiti jedinice u **nižih 7 bita** podatka te zatim **postaviti ili obrisati najviši bit** tako da rezultantni 8-bitni podatak ima **neparni paritet.** Rezultat treba vratiti preko registra *R0*. Potprogram mora čuvati stanja registara.

Napisati glavni program, koji će koristeći potprogram *PAR* obraditi blok 8-bitnih podataka. Zna se da u bloku ima 12 podataka. Glavni program treba za svaki podatak u bloku učitati podatak, spremiti ga na stog i pozvati potprogram *PAR*, te nakon toga zapisati rezultat natrag u blok (i osloboditi stog).

Dodatno, glavni program mora brojati koliko podataka je promijenjeno nakon poziva potprograma (tj. koliko podataka je u početku imalo paran paritet). Ovaj broj se na kraju programa upisuje u *R6*.

Blok podataka nalazi se neposredno iza glavnog programa, tj. iza naredbe *HALT*. Blok sadrži sljedeće brojeve: 0, 1, FF, 2, 3, F3, F8, E, B, 36, 7E, 9F (heksadekadski brojevi).

Program treba spremiti u direktorij *atlas/vjezba2*. Simulirajte rad programa. Provjerite jesu li rezultati dobiveni programom ispravni.

U bloku na početku ima 7 podataka s parnim paritetom, pa mora biti *R6=07*.

Početni												
blok	0	1	FF	2	3	F3	F8	Е	В	36	7E	9F
Rezultantni												
blok	80	1	7F	2	83	73	F8	Е	В	B6	FE	1F

Neka od pitanja koja bi vam asistenti mogli postaviti:

- Kojim naredbama se ostvaruje pomak ulijevo i udesno? Koja je razlika između aritmetičkog i logičkog pomaka?
- Koja je razlika između pomaka (shift) i rotacije?
- Pokazati gdje se u memoriji nalazi niz podataka koji se obrađuje?
- Kako se može ispitati stanje bita u registru?
- Pokazati sadržaj registara procesora?
- Pokrenite program s uključenom točkom praćenja 2 (*tracepoint*).
- Pokrenite program s postavljenom prekidnom točkom na zadanoj naredbi (breakpoint).
- Koji registar u vašem programu koristite kao brojač za petlju?
- Pokažite naredbu kojom čitate podatak iz bloka?
- Kako i gdje se spremaju registri u potprogramu?
- Kako se prenose parametri u potprogram?