

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2019-1

[Cod: CM334 Curso: Análisis Numérico I]

[Prof: L. Paredes.]

Solucionario del Examen Sustitutorio

1. a) Sabemos que

$$\begin{array}{lcl} f'(1)=exp(1) & = & \lim\limits_{h\to 0}\frac{exp(1+h)-exp(1)}{h} \\ & \approx & \frac{exp(1+h)-exp(1)}{h}, \ \operatorname{con}\, h\approx 0. \end{array}$$

Entonces $h = \frac{h}{r}$. El programa es:

function
$$[tabla] = eval1(x0, tol, h, r, maxit)$$

$$DQ = \frac{f4(x0+h) - f4(x0)}{h};$$

$$i = 0;$$

$$err = 1;$$

$$tabla = [i \ h \ DQ];$$

$$while err >= tol \ and \ i <= maxit$$

$$h = \frac{h}{r};$$

$$DQn = \frac{f4(x0+h) - f4(x0)}{h};$$

$$err = abs(DQn - DQ);$$

$$DQ = DQn;$$

$$i = i+1;$$

$$tabla = [tabla \ i \ h \ DQ \ err];$$
end
$$endfunction$$

$$function function fx = f4(x)$$

$$fx = exp(x);$$

b) La tabla es:

\boldsymbol{k}	h	$f(x_k)$	Error
0	0,2	3,0091755	
1	0,02	2,7456468	0,2635287
2	0,002	2,7210019	0,0246449
3	0,0002	2,7185537	0,0024482
4	0,00002	2,718309	0,0002447
5	0,000002	2,7182845	0,0000245
6	0,0000002	2,7182821	0,0000024

a) Sean

 I_1 Corriente 1 I_2 Corriente 2 I_3 Corriente 3

Por la ley de Kirchhoff para el voltaje:

El sistema es:

b) Por el método de LU, donde

$$\underbrace{\left[\begin{array}{cccc} 1 & 0 & 0 \\ -0,2727273 & 1 & 0 \\ 0 & -0,1929825 & 1 \end{array}\right]}_{L} \underbrace{\left[\begin{array}{cccc} 11 & -3 & 0 \\ 0 & 5,1818182 & -1 \\ 0 & 0 & 2,8070175 \end{array}\right]}_{U} \left[\begin{array}{c} I_{1} \\ I_{2} \\ I_{3} \end{array}\right] = \left[\begin{array}{c} 30 \\ 5 \\ -25 \end{array}\right]$$

Al resolver, la solución es $[3 \ 1 \ -8]^T$. \Box

c) Sea

$$R=A ilde{x}-b=\left[egin{array}{c} 0 \ 0 \ 0 \end{array}
ight]$$

Donde $\|R\|_{\infty} = 0$ y $\|b\|_{\infty} = 30$. Luego

$$A^{-1} = \begin{bmatrix} 0.10625 & 0.05625 & 0.01875 \\ 0.05625 & 0.20625 & 0.06875 \\ 0.01875 & 0.06875 & 0.35625 \end{bmatrix}$$

El número de condición es $Cond_{\infty}(A) = \|A\|_{\infty} \|A^{-1}\|_{\infty} = 14*0,44375 = 6,2125$. Finalmente, el error relativo es:

$$\frac{0}{30} \cdot \frac{1}{6,2125} \leq \frac{\|E\|_{\infty}}{\|x\|_{\infty}} \leq 6,2125 \cdot \frac{0}{30} \ \Rightarrow \ \frac{\|E\|_{\infty}}{\|x\|_{\infty}} = 0.$$

Lo cual indica que la solución aproximada es la exacta.

3. a) Sean $\boldsymbol{x}, \boldsymbol{y}$: los catetos del triángulo rectángulo.

Donde, las funciones son:

$$f_1(x,y) = x^2 + y^2 - 225 = 0$$

 $f_2(x,y) = x - y - 3 = 0$

b) El Jacobiano es:

$$J(x,y) = \left[egin{array}{cc} 2x & 2y \ 1 & -1 \end{array}
ight]$$

Luego

$$\begin{bmatrix} \frac{1}{2x} & 0 \\ -\frac{1}{2x} & 1 \end{bmatrix} \begin{bmatrix} 2x & 2y \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{y}{x} \\ 0 & -\frac{x+y}{x} \end{bmatrix}$$
$$\begin{bmatrix} 1 & \frac{y}{x} \\ 0 & -\frac{x}{x+y} \end{bmatrix} \begin{bmatrix} 1 & \frac{y}{x} \\ 0 & -\frac{x+y}{x} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Donde:

$$J(x,y)^{-1} = \left[egin{array}{ccc} 1 & rac{y}{x+y} \\ 0 & -rac{x}{x+y} \end{array}
ight] \left[egin{array}{ccc} rac{1}{2x} & 0 \\ -rac{1}{2x} & 1 \end{array}
ight] = rac{1}{2x+2y} \left[egin{array}{ccc} 1 & 2y \\ 1 & -2x \end{array}
ight] oldsymbol{oldsymbol{ o}}$$

c) Por el método de Newton-Raphson, se tiene:

$$\left[egin{array}{c} x_{k+1} \ y_{k+1} \end{array}
ight] = \left[egin{array}{c} x_k \ y_k \end{array}
ight] - \left[egin{array}{c} rac{x_k^2 + y_k^2 + 6y_k + 225}{2(x_k + y_k)} \ \ rac{x_k^2 + y_k^2 - 6x_k + 225}{2(x_k + y_k)} \end{array}
ight]$$

La tabla resulta con $(x_0, y_0) = (1; 1)$:

k	x_k	y_k
0	1	1
1	58,25	55,25
2	30,8463656387665	27,8463656387665
3	18,0516096296585	15,0516096296385
4	13,1062966058647	10,1062966058647
5	12,0527253533883	9,05272535338832
	÷	
9	12	9

4. a) Sean x: número de hembras de clase 1.

 \boldsymbol{y} : número de hembras de clase $\boldsymbol{2}.$

Donde

$$\left[\begin{array}{c} x_{k+1} \\ y_{k+1} \end{array}\right] = \left[\begin{array}{cc} 1.5 & 2 \\ 0.08 & 0 \end{array}\right] \left[\begin{array}{c} x_k \\ y_k \end{array}\right]$$

Con $[x_0 \ y_0]^T = [100 \ 100]^T$.

b) Por el método de Krylov, se sabe que $\lambda^2 + b_1\lambda + b_2 = 0$.

Con $A^2y + b_1Ay + b_2Iy = 0$ y $y = [1 \ 0]^T$, se tiene:

$$1,5b_1 + b_2 = -2,41$$

 $0,08b_1 = -0,12$

La solución es:

$$\left[\begin{array}{c}b_1\\b_2\end{array}\right]=\left[\begin{array}{c}-1.5\\-0.16\end{array}\right]$$

Donde el polinomio característico es:

$$P(\lambda) = \lambda^2 - 1.5\lambda - 0.16.$$

El cual tiene dos valores reales.

 $c)\;\;{\rm Los}$ valores y vectores propio real, usando el método de potencia es:

\boldsymbol{k}	$y1_k$	$y2_k$	λ_k	$x1_1$	$x2_k$	Error
0				100	100	
1	350	8	350	1	0,0228571	348,633
2	1,5457143	0,08	1,5457143	1	0,051756	0,0576486
3	1,603512	0,08	1,603512	1	0,0498905	0,0037219
4	1,599781	0,08	1,599781	1	0,0500068	0,0002322
5	1,6000137	0,08	1,6000137	1	0,0499996	0,0000145
6	1,5999991	0,08	1,5999991	1	0,05	0,000001

Donde el valor propio es $\lambda_1=1,5999991$ y su vector propio es $v_1=(1\ 0,05)^T$.

Por el método de potencia inversa, se tiene tabla siguiente:

\boldsymbol{k}	$y1_k$	$y2_k$	λ_k	$x1_1$	$x2_k$	Error
0				100	100	
1	1250	-887,5	1250	1	-0,71	1,71
2	-8,875	7,15625	-8,875	1	$-0,\!806338$	0,096338
3	-10,079225	8,059419	-10,079225	1	-0,799607	0,006731
4	-9,9950873	7,9963155	-9,9950873	1	-0,8000246	0,0004176
5	-10,000307	8,0002304	-10,000307	1	-0,7999985	0,0000261
6	-9,9999808	7,9999856	-9,9999808	1	-0,8000001	0,0000016
7	-10,000001	8,0000009	-10,000001	1	-0,8	0,0000001

Luego el valor propio es $\lambda_2=\frac{1}{-10,000001}=-0,1$ y su vector propio es $v_2=(1\ -0,8)^T.$

5. a) Sea la interpolación de Lagrange de orden dos.

$$\begin{split} P_2(x) &= \sum_{k=0}^2 f(x_k) L_k(x) \\ &= f(x_0) L_0(x) + f(x_1) L_1(x) + f(x_2) L_2(x) \\ \\ &= 8 \frac{(x-5)(x-8)}{(3-5)(3-8)} + 22 \frac{(x-3)(x-8)}{(5-3)(5-8)} + 73 \frac{(x-3)(x-5)}{(8-3)(8-5)} \\ \\ &= 17 - 9x + 2x^2 \\ \\ &= 17 + x \left[-9 + 2x \right] \end{split}$$

- b) Evaluando en x = 6.5 se tiene $P_2(6.5) \approx 43$. \Box
- c) Sea la tabla de la interpolación de Newton:

x_k	y_k	D.D. Orden 1	D.D. Orden 2
3	8		
5	22	7	
8	73	17	2

El polinomio de Newton es:

$$P_2(x) = 8 + (x-3)[7 + 2(x-5)].$$

d) Evaluando en x=6.5 se tiene $P_2(6.5)\approx 43$. \Box

20 de Diciembre del 2018