Calculus I

Riccardo Cereghino S4651066

 $March\ 14,\ 2019$

Contents

1	Not	azione	1
	1.1	Insiemi	1
	1.2	Logica	1
	1.3	Operazioni tra insiemi	2
	1.4	Prodotto cartesiano	2
		1.4.1 Intervalli	2
	1.5	Proprietà delle operazioni tra numeri reali	3
	1.6	Geometria	4
		1.6.1 Circonferenza	4
		1.6.2 Ellisse	4
2	Fun	zioni	5
	2.1	Il concetto di funzione	5
	2.2	Operazioni tra funzioni	5
		2.2.1 Nomenclatura	5
	2.3	Funzioni reali di variabile reale	6
		2.3.1 Funzioni pari e dispari	6
		2.3.2 Funzioni monotone	6
	2.4	Traslazioni, dilatazioni e riflessioni	7
	2.5	Simmetrie, traslazioni, compressioni e dilatazioni di grafici	7
	2.6	Funzione composta	8
	2.7	Funzione inversa e sue proprietà	8
		2.7.1 Costruire l'inverso di f	8
	2.8	Funzioni elementari	9
		2.8.1 Polinomi	9
		2.8.2 Potenze	9
			1
		2.8.4 Logaritmo	2
	2.9	9	13
		9	13
			15

Chapter 1

Notazione

1.1 Insiemi

- \emptyset = Insieme vuoto
- $\mathbb{Z} = \{... -3, -2, -1, 0, 1, 2, 3...\} = \text{Relativi}$
- $\mathbb{R} = \text{Reali}$

1.2 Logica

- \bullet | tale che
- $\bullet \Rightarrow implica$
- $\bullet \Leftrightarrow se e solo se$
- $\bullet \ \forall$ per ogni
- \bullet \exists esiste
- ∄ non esiste
- $\bullet \in appartiene$
- ullet non appartiene

1.3 Operazioni tra insiemi

• A sottoinsieme di B

$$A \subseteq B$$
$$\forall x \in A \Rightarrow x \in B$$

• A sottoinsieme proprio

$$A \subsetneq B$$

$$\begin{cases} \forall x \in A \Rightarrow x \in B \\ \exists x \in B | x \notin A \end{cases}$$

• Intersezione

$$A \cap B = \{x \in X | x \in A, x \in B\}$$

• Unione

$$A \cup B = \{x \in X | x \in Aorx \in B\}$$

• Differenza insiemistica

$$A \setminus B = \{x \in X | x \in A, x \notin B\}$$

• Complementare

$$A^C = \{x \in X | x \notin A\}$$

1.4 Prodotto cartesiano

Assegnati due numeri reali a,b,a < b, si definiscono intervalli gli insiemi seguenti:

$$A\times B=\{(x,y)|x\in A,y\in B\}$$

Coppia ordinata: $(1,3) \neq (3,1)$

1.4.1 Intervalli

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$$

$$(a,b) = \{x \in \mathbb{R} | a < x < b\}$$

$$[a,b) = \{x \in \mathbb{R} | a \le x < b\}$$

$$(a,b] = \{x \in \mathbb{R} | a < x \le b\}$$

$$[a,+\infty) = \{x \in \mathbb{R} | x \ge a\}$$

$$(a,+\infty) = \{x \in \mathbb{R} | x \ge a\}$$

$$(-\infty,b] = \{x \in \mathbb{R} | x \le b\}$$

$$(-\infty,b) = \{x \in \mathbb{R} | x < b\}$$

$$(-\infty,b) = \{x \in \mathbb{R} | x < b\}$$

$$(-\infty,+\infty) = \mathbb{R}$$

1.5 Proprietà delle operazioni tra numeri reali

$$x, y, z \in \mathbb{R}$$

• Associativa

$$(x + y) + z = x + (y + z) = x + y + z$$

 $(xy)z = x(yz) = xyz$

• Commutativa

$$x + y = y + x$$
$$xy = yx$$

• Distributiva

$$x(y+z) = xy + xz$$

• Esistenza elemento neutro

$$x + 0 = x$$
$$1x = x$$

• Esistenza dell'universo

1.

$$\forall x \in \mathbb{R} \quad \exists! y = -x \in \mathbb{R} | x + (-x) = 0$$

2.

$$\forall x \in \mathbb{R} \quad x \neq 0 \quad \exists ! y = \frac{1}{x} \in \mathbb{R} | x \frac{1}{x} = 1$$

• Relazione d'ordine totale

$$x, y, z \in \mathbb{R}$$

$$\begin{cases} x < y & oppure \\ x = y & oppure \\ x > y \end{cases}$$

• Transitività

$$x, y, z \in \mathbb{R}$$
$$(x < y) \cap (y < z) \Rightarrow (x < z)$$

• Compatibilità con la somma

$$x,y,z \in \mathbb{R}$$

$$x < y \Rightarrow x+z < y+z$$

• Compatibilità con il prodotto

$$x, y, z \in \mathbb{R}$$
$$x < y \cap z > 0 \Rightarrow xz < yz$$
$$x < y \cap z < 0 \Rightarrow xz > yz$$

1.6 Geometria

1.6.1 Circonferenza

Dato il centro di una circonferenza $C=(x_c,y_c)$ Si esprime l'equazione della circonferenza nella forma:

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

$$x^2 + y^2 + \alpha x + \beta y + \gamma = r^2$$

Per cui se O = (0,0)

$$x^2 + y^2 = r^2$$

Forma canonica:

$$\alpha = -2x_c \quad \beta = -2y_c \quad \gamma = x_c^2 + y_c^2 - r^2$$
$$x^2 + y^2 + \alpha x + \beta y + \gamma = r^2$$

Da cui calcolare centro e raggio:

$$C = \left(-\frac{\alpha}{2}, -\frac{\beta}{2}\right); \quad r = \sqrt{\frac{\alpha^2}{4} + \frac{\beta^2}{4} - \gamma}$$

1.6.2 Ellisse

Equazione dell'ellisse (con centro nell'origine degli assi)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2}$$
 $a \neq 0, b \neq 0$

Chapter 2

Funzioni

2.1 Il concetto di funzione

Definizione: una funzione $f: A \to \mathbb{R}$ dove $A \subseteq \mathbb{R}$ è una legge che assegna ad ogni $x \in A$ uno ed un solo valore $y = f(x) \in \mathbb{R}$

Nota: in questo caso, i valori di A sono chiamati variabile indipendente (x), mentre \mathbb{R} è la variabile dipendente y = f(x)

Nota: inoltre definiamo A = dom f come il dominio della funzione.

Definizione: Il grafico di f:

$$f = \{(x, y) \in \mathbb{R}^2 | x \in A, y = f(x) \}$$

Definizione: L'immagine di f, Im f:

$$f(A) = \{ f(x) \in \mathbb{R} | x \in A \}$$

2.2 Operazioni tra funzioni

Date due funzioni $f: A \to \mathbb{R}$ $g: B \to \mathbb{R}$

Somma e differenza: (f+g)(x)=f(x)+g(x) $dom(f+g)=A\cap B$

Prodotto: (fg)(x) = f(x)g(x) $dom(fg) = (A \cap B)$

Rapporto: $(\frac{f}{g})(x) = f(x)g(x)$ $dom(\frac{f}{g}) = \{x \in \mathbb{R} | x \in A, x \in B, g(x) \neq 0\}$

Reciproco: $\frac{1}{f}(x) = \frac{1}{f(x)} = [f(x)]^{-1}$ $dom(\frac{1}{f}) = x \in A | f(x) \neq 0$

2.2.1 Nomenclatura

Data una funzione $f: A \to \mathbb{R}, \quad y = f(x)$

• f è detta **iniettiva** se $\forall y_0 \in \mathbb{R}, f(x) = y_0$ ha al più una soluzione.

- f è detta surgettiva se $\forall y_0 \in \mathbb{R}, f(x) = y_0$ ha almeno una soluzione.
- f è detta **bigettiva** se $\forall y_0 \in \mathbb{R}, f(x) = y_0$ ha una ed una sola soluzione, ovvero se la funzione è sia iniettiva che surgettiva.

Osservazioni

- 1. f è surgettiva se e solo se $IMf = \mathbb{R}$
- 2. f è iniettiva se e solo se $y_0 \in IMf, f(x) = y_0$ ha al più una soluzione.

Data una funzione $f: A \to \mathbb{R}, \quad y = f(x)$ sono fatti equivalenti:

- \bullet f è iniettiva
- $\forall x_1, x_2 \in A \cap x_1 \neq x_2 \text{ allora } f(x_1) \neq f(x_2)$
- dati $x_1, x_2 \in A | f(x_1) = f(x_2)$ allora $x_1 = x_2$

2.3 Funzioni reali di variabile reale

2.3.1 Funzioni pari e dispari

Data una funzione $f:A\to\mathbb{R},\quad y=f(x),\,\forall x\in A\quad -x\in A$ f è detta:

$$f(-x) = \begin{cases} f(x) & pari \\ -f(x) & dispari \end{cases}$$

2.3.2 Funzioni monotone

Data una funzione $f: A \to \mathbb{R}, \quad y = f(x)$

• $\forall x_1, x_2 \in A$ $x_1 < x_2$ f è detta:

$$\begin{cases} f(x_1) \le f(x_2) & crescente \\ f(x_1) \ge f(x_2) & decrescente \end{cases}$$

• $\forall x_1, x_2 \in A$ $x_1 < x_2$ f è detta:

$$\begin{cases} f(x_1) < f(x_2) & strettamentecrescente \\ f(x_1) > f(x_2) & strettamentedecrescente \end{cases}$$

2.4 Traslazioni, dilatazioni e riflessioni

Data una funzione $f: A \to \mathbb{R}, \quad y = f(x)$:

Traslazioni: $x_0 > 0, \quad y_0 \in \mathbb{R}$

$$g(x)=f(x-x_0)$$
 Traslazione verso destra
$$g(x)=f(x+x_0)$$
 Traslazione verso sinistra
$$g(x)=f(x)+y_0$$
 Traslazione verso l'alto
$$g(x)=f(x)-y_0$$
 Traslazione verso il basso

Dilatazioni: a > 0

$$g(x) = f(\frac{x}{a}) \text{ Dilata su asse x}$$

$$g(x) = a \times f(x) \text{ Dilata su asse y}$$

Riflessioni:

$$g(x)=f(-x)$$
 Riflette su asse y
$$g(x)=-f(x)$$
 Riflette su asse x
$$g(x)=-f(-x)$$
 Riflette rispetto l'origine

Osservazioni

Se f(x) è dispari e $0 \in \text{dom } f$

$$f(0) = f(-0) = -f(0) \Rightarrow f(0) = 0$$

Se $n \in \mathbb{N}, n \geq 1$

$$f(x) = x^n = \underbrace{x \times \cdots \times x}_{\mathbf{n} \text{ volte}}$$

- se n è pari, f è pari
- \bullet se n è dispari, f è dispari

2.5 Simmetrie, traslazioni, compressioni e dilatazioni di grafici.

Data una funzione $f: A \to \mathbb{R}, \quad y = f(x)$:

Traslazioni: $x_0 > 0, \quad y_0 \in \mathbb{R}$

$$g(x) = f(x - x_0)$$
 Traslazione verso destra $g(x) = f(x + x_0)$ Traslazione verso sinistra $g(x) = f(x) + y_0$ Traslazione verso l'alto $g(x) = f(x) - y_0$ Traslazione verso il basso

Dilatazioni: a > 0

$$g(x) = f(\frac{x}{a})$$
 Dilata su asse x
$$g(x) = a \times f(x)$$
 Dilata su asse y

Riflessioni:

$$g(x)=f(-x)$$
 Riflette su asse y
$$g(x)=-f(x)$$
 Riflette su asse x
$$g(x)=-f(-x)$$
 Riflette rispetto l'origine

2.6 Funzione composta

Date due funzioni $f:A\to\mathbb{R}$ $g:B\to\mathbb{R}$

$$g(y) = g(f(x)) = g \circ f(x)$$
 dom $g \circ f(x) = \{x \in A \cap f(x) \in \text{se n dispari} B\}$

2.7 Funzione inversa e sue proprietà.

Data una funzione iniettiva $f:A\to\mathbb{R}$

$$\forall y \in f = f(A), \exists ! x \in A | f(x) = y$$

Da cui si ricava che:

$$x = f^{-1}(y)$$
 $f^{-1}: B \to \mathbb{R}$ $B = Imf$

2.7.1 Costruire l'inverso di f

- 1. Determinare Imf = B e $dom f^{-1} = B$
- 2. $y \in B$ determiniamo $x \in A | f(x) = y$
- 3. $x = f^{-1}(y)$
- 4. $y = f^{-1}(x)$ $x \rightleftharpoons y$

Il grafico di $y = f^{-1}(x)$ è simmetrico rispetto alla bisettrice x = y della funzione y = f(x)

Osservazioni

$$f(f^{-1}(y)) = y$$
 $\forall y \in dom^{f^{-1}} = Imf$
 $f^{-1}(f(x)) = x$ $\forall x \in domf = Imf^{-1}$

Inoltre f è invertibile se e solo se è iniettiva o surgettiva, da cui:

$$g^{-1}: Imf \to \mathbb{R}$$

2.8 Funzioni elementari

2.8.1 Polinomi

$$f(x) = a_0 + a_1 x + \dots + a_n x^n = \sum_{k=0}^{n} a_k x^k$$

 $a_0,a_1,\dots,a_n\in\mathbb{R}$ Coefficienti $a_n\neq 0$ n è il grado del polinomio

Per cui:

$$n=1$$
 $y=a_0+a_1x$ Rette
$$n=2$$
 $y=a_0+a_1x+a_2x^2$ Parabole

2.8.2 Potenze

Fissato un esponente $a \in \mathbb{R}$ la funzione potenza è:

$$f(x) = x^a$$

la cui definizione e dominio dipendono dal valore dell'esponente a.

• $a = n \in \mathbb{N}$

$$f(x) = x^n = \underbrace{x \times \dots \times x}_{\mathbf{n} \text{ volte}} \qquad \text{dom } f = \mathbb{R} \qquad \text{Im } f = \begin{cases} \mathbb{R} & \text{se n dispari} \\ [0, +\infty) & \text{se n pari } n \neq 0 \\ \{0\} & n = 1 \end{cases}$$

• $a = -n \in \mathbb{Z}, n \in \mathbb{N}, n \ge 1$

$$f(x) = x^{-n} = \frac{1}{x^n}$$
 dom $f = \mathbb{R} \setminus \{0\}$ Im $f = \begin{cases} \mathbb{R} \setminus \{0\} & \text{n dispari} \\ (0, +\infty) & \text{n pari} \end{cases}$

 $\bullet \ \ a = \frac{1}{n} \in \mathbb{Z}, n \in \mathbb{N}, n \geq 2$

$$f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$$
 dom $f = \begin{cases} \mathbb{R} & \text{n dispari} \\ [0, +\infty) & \text{n pari} \end{cases}$ Im $f = \begin{cases} \mathbb{R} & \text{n dispari} \\ [0, +\infty) & \text{n pari} \end{cases}$

•
$$a = \frac{m}{n} \in \mathbb{Q}, n \in \mathbb{N}, n \ge 1, m \in \mathbb{Z}$$

$$f(x) = x^{\frac{m}{n}} = \sqrt[n]{m} \quad \text{dom } f = (0, +\infty) \quad \text{Im } f = (0, +\infty)$$

• $a \in \mathbb{R}$

$$f(x) = x^{a} = \begin{cases} \sup\{x^{q} | q \in \mathbb{Q}, q \le a\} & x \ge 1\\ \inf\{x^{q} | q \in \mathbb{Q}, q \le a\} & 0 < x < 1 \end{cases} \quad \text{dom } f = (0, +\infty) \quad \text{Im } f = (0, +\infty)$$

Osserviamo che:

•
$$f(0) = 0$$

•
$$f(1) = 1$$

- \bullet se n pari f è pari
- se n dispari f è dispari

Proprietà delle potenze

$$\bullet \ x^{n+m} = x^n x^m$$

$$(x^n)^m = x^{nm}$$

Osservazioni

$$f(x) = x^0 = 1 \quad \forall x \in \mathbb{R}$$

$$0^0 = 1$$

Dimostrazioni

$$x^{n+m} = \underbrace{x \times \dots \times x}_{\text{n+m volte}} = \underbrace{(x \times \dots \times x)}_{\text{n volte}} \times \underbrace{x \times \dots \times x}_{\text{m volte}} = x^{n+m}$$

$$(x^n)^m = \underbrace{x^n \times \dots \times x^n}_{\text{m volte}}$$

$$x^n = x^{n+0} = x^n x^0 \qquad x \neq 0$$

$$x^0 = 1 \quad \forall x \in \mathbb{R}$$

2.8.3Esponenziale

Fissata la base a > 0 con $a \neq 1$, la funzione esponenziale è

$$f(x) = a^x$$
 dom $f = \mathbb{R}$ Im $f = (0, +\infty)$

Se si sceglie come base il numero di Nepero $e=2.71828\cdots>1$, la funzione esponenziale si denota:

$$f(x) = e^x = \exp x$$

Proprietà

- 1. se a > 1, allora la funzzione a^x è strettamente crescente
- 2. se 0 < a < 1, allora la funzione a^x è strettamente decrescente
- 3. se $0 < a < b \text{ con } a, b \neq 1$

$$\begin{cases} a^x < b^x & x > 0 \\ a^x > b^x & x < 0 \end{cases}$$

- 4. valgono le seguenti proprietà:
 - $a^0 = 1$
 - $a^1 = a$
 - $a^{x_1+x_2} = a^{x_1+x_2}$ $x_1, x_2 \in \mathbb{R}$

 - $a^{-x} = (\frac{1}{a})^x$ $x \in \mathbb{R}$ $(a^x)^b = a^{bx}$ $x, b \in \mathbb{R}$

Figure 2.2: Esponenziali

2.8.4 Logaritmo

Fissata la base a > 0 con $a \neq 1$, la funzione logaritmo

$$f(x) = \log_a x$$
 dom $f = (0, +\infty)$ Im $f = \mathbb{R}$

è definita come la funzione inversa della funzione esponenziale a^x . Se si sceglie come base il numero di Nepero e, il logaritmo si denota:

$$f(x) = \log_e = \log x = \ln x$$

- 1. se a>1, allora la funzione $\log_a x$ è strettamente crescente
- 2. se0 < a < 1,allora la funzione $\log_a x$ è strettamente decrescente
- 3. se $0 < a < b \text{ con } a, b \neq 1$

$$\begin{cases} \log_a x > \log_b x & sex > 1 \\ \log_a x < \log_b x & se0 < x < 1 \end{cases}$$

4. valgono le seguenti proprietà:

- $\bullet \ \log_a a^x = x \qquad x > 1$
- $\bullet \ a^{\log_a x} = x \qquad x > 0$
- $\log_a 1 = 0$
- $\log_a a = 1$
- $\log_a(x_1x_2) = \log_a x_1 + \log_a x_2$ $x_1, x_2 > 0$
- $\log_a(\frac{x_1}{x_2}) = \log_a x_1 \log_a x_2$ $x_1, x_2 > 0$
- $\log_a x^b = b \log_a x$ $x > 0, b \in \mathbb{R}$
- $\log_a x = \frac{\log_b x}{\log_b a} = \frac{\ln x}{\ln a}$ $x > 0, b > 0, b \neq 1$
- $a^x = e^{(\ln a)x}$ $x \in \mathbb{R}, a > 0, a \neq 1$

Figure 2.3: Logaritmi

2.9 Funzioni trigonometriche

Una funuone $f: \mathbb{R} \in \mathbb{R}$ è detta periodica di periodo T, T > 0 se:

$$f(x+T) = f(x) \forall x \in \mathbb{R}$$

La caratteristica fondamentale delle funzioni periodiche è che i suoi valori si ripetono dopo intervalli di ampiezza T.

2.9.1 Le funzioni seno e coseno

Sia γ una circonferenza di raggio 1 (detta circonferenza goniometrica) il cui centro O è anche l'origine di un sistema di assi cartesiani e sia A il punto (1,0). Partendo da A percorriamo la circonferenza in senso antiorario oppure in senso orario. Sia x un numero reale, denotiamo con P_x il punto su γ che si ottiene percorrendo la circonferenza a partire dal punto A per un arco di lunghezza |x|, in senso antorario se $x \geq 0$, oppure in senso orario se x < 0. Il punto P_x individua un angolo nel piano avente vertice O e delimitatio dalle semirette nel piano uscenti da O e passanti per A e per P_x . Il numero reale x rappresenta la misura dell'angolo in radianti.

Osserviamo che l'incremento della lunghezza x di 2π corrisponde a compiere un intero giro sulla circonferenza in senso antiorario ritornando al punto P_x (così come decrementare di 2π la lunghezza x). Quindi si ha:

$$P_{x \pm k2\pi} = P_x \qquad \forall x \in \mathbb{R}, k \in \mathbb{N}$$

Simmetria Indichiamo con $\cos x$ e con $\sin x$ rispettivamente l'ascissa e l'ordinata del punto P_x . Le funzioni $y = \cos x$ e $y = \sin x$ sono definite su \mathbb{R} a valori nell'intervallo [-1,1], sono periodiche di minimo periodo 2π e soddisfano la relazione:

$$\sin^2 x + \cos^2 x = 1$$

Figure 2.4: Circonferenza goniometrica con seno e coseno

Monotonia Per la periodicità di seno e coseno ci basta studiarne le proprietà nell'intervallo $[0,2\pi]$. Dalle definizioni segue subito che la funzione seno è dispari e la funzione coseno è pari; inoltre la funzione coseno è strettamente decrescente in $[0,\pi]$ e strettamente crescente in $[\pi,2\pi]$. La funzione seno è strettamente crescente in $[0,\frac{\pi}{2}] \cup [\frac{3}{2}\pi,2\pi)$ e strettamente decrescente in $[\frac{\pi}{2},\frac{3}{2}\pi]$.

Figure 2.5: Grafico delle funzioni: seno (sinistra) e coseno (destra)

Formule trigonometriche

Formule di addizione e sottrazione

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

Formule di duplicazione

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = 2\cos^2 x - 1$$

Formule di potenza

$$(\sin x)^2 = \sin^2 x = \frac{1 - \cos(2x)}{2}$$

$$(\cos x)^2 = \cos^2 x = \frac{1 + \cos(2x)}{2}$$

Formule di bisezione

$$\sin(\frac{x}{2}) = \sqrt{\frac{1 - \cos x}{2}} \qquad 0 < x \le 2\pi$$

$$\cos(\frac{x}{2}) = \sqrt{\frac{1 + \cos x}{2}} \qquad -\pi < x \le \pi$$

Formule di prostaferesi

$$\sin x - \sin y = 2\sin(\frac{x-y}{2})\cos(\frac{x+y}{2})$$

$$\cos x - \cos y = -2\cos(\frac{x-y}{2})\sin(\frac{x+y}{2})$$

$$cos(x + \pi) = -cos x$$
 $sin(x + \pi) = -sin x$

$$\cos(x + \frac{\pi}{2}) = -\sin x \qquad \sin(x + \frac{\pi}{2}) = \cos x$$

2.9.2 La funzione tangente e la funzione cotangente

La funzione tangente è:

$$\tan x = \frac{\sin x}{\cos x}$$

è definita nei punti di \mathbb{R} diversi da $\frac{\pi}{2}+k\pi, k\in\mathbb{Z}$ e, come vedremo in seguito, ha immagine \mathbb{R} .

Proprietà fondamentali

Dal grafico della tangente di ottiene che $\tan(x) = \tan(x + k\pi)$ per $k \in \mathbb{Z}$ cioè $\tan(x)$ è periodica di minimo periodo $T = \pi$

Figure 2.6: Funzioni trigonometriche