Math 390.4 / 650.3 Spring 2019 Midterm Examination Two

Professor Adam Kapelner Thursday, April 16, 2019

Full Name		
Code of Academic Integrity		
Since the college is an academic community, its fundamental purpose it to the success of this educational mission is a commitment to the promember of the college community is responsible for upholding the high Students, as members of the community, are also responsible for adher following Code of Academic Integrity. Activities that have the effect or intention of interfering with education of a student's performance are prohibited. Examples of such to the following definitions: Cheating Using or attempting to use unauthorized assistance, may or other academic work or preventing, or attempting to prevent, another academic work or preventing, or attempting to prevent, another academic work or preventing, or attempting to prevent, another academic work or preventing, or attempting to prevent, another academic work or preventing, or attempting to prevent, another academic work or preventing, or attempting to prevent, another academic work or preventing, or attempting to prevent, another academic work or preventing, or attempting to prevent, another academic work or preventing, or attempting to prevent, another academic work or preventing, or attempting to prevent, another academic work or preventing, or attempting to prevent, another academic work or preventing, or attempting to prevent, another academic work or preventing, or attempting to prevent, another academic work or preventing, or attempting to prevent, another academic work or preventing an unauthorized cheat sheet exam and resubmitting it for a better grade, etc.	rinciples of academic integrity hest standards of honesty at a ring to the principles and spir ucation, pursuit of knowledge h activities include but are not aterial, or study aids in exam her from using authorized ass	t. Every ll times it of the e, or faint limited inations sistance,
I acknowledge and agree to uphold this Code of Academic Integrity.		
signature	date	
Instructions		

Instructions

This exam is 110 minutes and closed-book. You are allowed **one** page (front and back) of a "cheat sheet." You may use a graphing calculator of your choice. Please read the questions carefully. If the question reads "compute," this means the solution will be a number otherwise you can leave the answer in *any* widely accepted mathematical notation which could be resolved to an exact or approximate number with the use of a computer. I advise you to skip problems marked "[Extra Credit]" until you have finished the other questions on the exam, then loop back and plug in all the holes. I also advise you to use pencil. The exam is 100 points total plus extra credit. Partial credit will be granted for incomplete answers on most of the questions. Box in your final answers. Good luck!

Problem 1 Below are some theoretical questions related to OLS.

(a) [5 pt / 5 pts] Let $\boldsymbol{w} \in \mathbb{R}^{p+1}$ be a vector, let $\boldsymbol{y} \in \mathbb{R}^n$ be a vector constant with respect to \boldsymbol{w} and let $\boldsymbol{X} \in \mathbb{R}^{n \times (p+1)}$ be a full-rank matrix constant with respect to \boldsymbol{w} . Find the \boldsymbol{w} that solves the following equation by showing all steps:

$$\frac{\partial}{\partial w} \left[y^{\top} y - 2w X^{\top} y + w^{\top} X^{\top} X w \right] = 0$$

$$\Rightarrow -\frac{1}{2} X^{\top} \vec{y} + \vec{z} X^{\top} \vec{x} \vec{w} = 0$$

$$\Rightarrow X^{\top} \vec{x} \vec{w} = X^{\top} \vec{y} \qquad \text{mology both sades by } (X^{\top} \vec{x})^{-1}$$

$$\Rightarrow (X^{\top} \vec{x})^{-1} (X^{\top} \vec{x}) \vec{w} = (X^{\top} \vec{x})^{-1} X^{\top} \vec{y}$$

$$\Rightarrow \vec{w} = (X^{\top} \vec{x})^{-1} X^{\top} \vec{y}$$

$$\Rightarrow \vec{w} = (X^{\top} \vec{x})^{-1} X^{\top} \vec{y}$$

Problem 2 We continue now with questions related to OLS. Let $\boldsymbol{b} \in \mathbb{R}^{p+1}$ be the vector found in 1(a), let $\boldsymbol{y} \in \mathbb{R}^n$ be a constant vector, let $\boldsymbol{X} \in \mathbb{R}^{n \times (p+1)}$ be a constant full-rank matrix where the first column equals $\mathbf{1}_n$ and let \boldsymbol{H} be the orthogonal projection matrix that we spoke about in class. Let $\hat{\boldsymbol{y}} \in \mathbb{R}^n$ be the orthogonal projection of \boldsymbol{y} using \boldsymbol{H} and let $\boldsymbol{e} \in \mathbb{R}^n$ be the difference of \boldsymbol{y} and its orthogonal projection using \boldsymbol{H} . Further, let $\mathrm{SST}:=||\boldsymbol{y}-\bar{\boldsymbol{y}}||^2$, $\mathrm{SSR}:=||\hat{\boldsymbol{y}}-\bar{\boldsymbol{y}}||^2$ and $\mathrm{SSE}:=||\boldsymbol{e}||^2$.

(a) [3 pt / 8 pts] Prove \boldsymbol{H} is symmetric.

$$H = X (X^{T}X)^{-1} X^{T}, \quad H^{T} = \left(X(X^{T}X)^{-1} X^{T}\right)^{T} = \left(X^{T}\right)^{T} \left(X^{T}X\right)^{-1} X^{T}$$

$$= X \left(\left(X^{T}X\right)^{T}\right)^{-1} X^{T} = X \left(X^{T}X\right)^{-1} X^{T} = H \checkmark$$

(b) [3 pt / 11 pts] Compute $||Proj_{colsp[X]}(\mathbf{1}_n)||^2$. Justify each non-trivial step.

(c) [2 pt / 13 pts] Let θ be the angle between \boldsymbol{y} and $\hat{\boldsymbol{y}}$. As the number of columns grows larger and X remains full rank, what value does $\cos(\theta)$ converge to?

(d) [2 pt / 15 pts] Let Q denote X orthogonalized using the Gram-Schmidt algorithm. What is the dimension of Q?

$$dun(Q) = dun(X) = h \times (p+1)$$

(e) [3 pt / 18 pts] Let $q_{.j}$ denote the jth column of Q. Find $q_{.1}$.

$$\vec{\chi}_{i} = \vec{T}_{h} \implies \vec{e}_{i} = \frac{\vec{T}_{h}}{||\vec{T}_{h}||} = \frac{\vec{T}_{h}}{\sqrt{h}} = \frac{1}{\sqrt{h}} \left[\frac{1}{\sqrt{h}} \right]$$

- (g) [3 pt / 24 pts] If you add one column to \boldsymbol{X} and it remains full rank and recompute $\hat{\boldsymbol{y}}$, circle all quantities below that change:
 - i) n
 - (ii) p
 - (iii) b
 - iv) SST
 - v) SSR
 - vi) SSE
 - (vii) dim [H]
 - (viii) rank[H]
 - ix) $Proj_{colsp[X]}(y)$

Problem 3 This question is about modeling price of cars in the cars dataset:

- 10							
	> dim(cars)						
	[1] 93 27						
3	> summary(cars)						
4	Manufacture		0.1	Min. Price	Price	120	
5	Chevrolet: 8	100 : 1	Compact:16 Mir		Min. : 7.40		
6	Ford : 8	190E : 1		Qu.:10.80	1st Qu.:12.20		
7	Dodge : 6	240 : 1		dian :14.70	Median :17.70		
8	Mazda : 5	300E : 1	Small :21 Mea	an :17.13	Mean :19.51		
9	Pontiac : 5	323 : 1		Qu.:20.30	3rd Qu.:23.30		
10	Buick : 4	535 i : 1	Van : 9 Max	:45.40	Max. :61.90		
11	(Other) :57	(Other):87					
12	Max. Price	MPG. city	MPG. highway		AirBags		
13	Min. : 7.9	Min. :15.00	Min . :20.00	Driver & F	assenger:16		
14	1st Qu.:14.7	1st Qu.:18.00	1st Qu.:26.00	Driver onl	y :43		
15	Median:19.6	Median :21.00	Median :28.00	None	:34		
16	Mean : 21.9	Mean :22.37	Mean :29.09				
17	3rd Qu.:25.3	3rd Qu.:25.00	3rd Qu.:31.00				
18	Max. :80.0	Max. :46.00	Max. :50.00				
19							
20	DriveTrain Cy	vlinders Eng	ineSize Hors	epower	RPM		
21	4WD :10 3	: 3 Min.		: 55.0 Mi	n. :3800		
22	Front:67 4	:49 1st Q	1.:1.800 1st Qu	.:103.0 1s	t Qu.:4800		
23	Rear :16 5	: 2 Mediar	:2.400 Median	:140.0 Me	edian :5200		
24	6	:31 Mean	:2.668 Mean	:143.8 Me	an :5281		
25	8	: 7 3rd Qu	1.:3.300 3rd Qu	.:170.0 3rd	d Qu.:5750		
26	rota	ary: 1 Max.	:5.700 Max.	:300.0 Ma	x. :6500		
27							
28	Rev.per.mile	Man. trans. ava	il Fuel.tank.capa	city Passe	ngers		1
29	Min. :1320	No :32	Min. : 9.20	Min.	:2.000		
30	1st Qu.:1985	Yes:61	1st Qu.:14.50	1st Qu.:	4.000		
31	Median :2340		Median:16.40	Median	:5.000		
32	Mean :2332		Mean :16.66	Mean	:5.086		
33	3rd Qu.:2565		3rd Qu.:18.80	3rd Qu.:	6.000		
34	Max. :3755		Max. :27.00	0.73	8.000		
35							
36	Length	Wheelbase	Width	Turn. circ	ele Rear.seat	. room	
37	Min. :141.0	Min. : 90.0	Min. :60.00			9.00	
38	1st Qu.:174.0	1st Qu.: 98.0	1st Qu.:67.00	1st Qu.:37			
39	Median :183.0	Median :103.0	Median :69.00	Median :39			
10	Mean :183.2	Mean :103.9	Mean :69.38			7.83	
11	3rd Qu.:192.0	3rd Qu.:110.0	3rd Qu.:72.00	3rd Qu.:41			
12	Max. :219.0	Max. :119.0	Max. :78.00			6.00	
- 1					THE THE PERSON OF THE PERSON O	0.00	I

43					NAs	: 2	1
4.4	Luggage.room	Weight	Origin	Make			
45	Min. : 6.00	Min. :1695	USA :48	Acura Integra: 1			1
46	1st Qu.:12.00	1st Qu.:2620	non-USA:45	Acura Legend : 1			
47	Median :14.00	Median :3040		Audi 100 : 1			
48	Mean :13.89	Mean :3073		Audi 90 : 1			
49	3rd Qu.:15.00	3rd Qu.:3525		BMW 535i : 1			
50	Max. :22.00	Max. :4105		Buick Century: 1			
51	NAs :11			(Other) :87			

Below are the outputs for a few different OLS models for variable price:

Model 1 (Intercept) 18.212500	TypeLarge 6.087500	TypeMidsize 9.005682	TypeSmall -8.045833	TypeSporty 1.180357	TypeVan 0.887500
Model 2 TypeCompact 18.21250	TypeLarge 24.30000	TypeMidsize 27.21818	TypeSmall 10.16667	TypeSporty 19.39286	TypeVan 19.10000

(a) [2 pt / 26 pts] What is the R code used to fit Model 1?

Im (price a Type)

- (b) [2 pt / 28 pts] Which model most likely has higher \mathbb{R}^2 ?
 - i) Model 1
 - ii) Model 2
 - (iii) They have equal R^2
 - iv) Not enough information to tell
- (c) [2 pt / 30 pts] Which model most likely has higher $\cos R^2$?
 - i) Model 1
 - ii) Model 2
 - (iii) They have equal $\cos R^2$
 - iv) Not enough information to tell
- (d) [4 pt / 34 pts] Assume the dataframe cars is sorted by variable Type in ascending alphabetical order of the factor level name. Find $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ explicitly for Model 2.

Consider the following plot:

(e) [4 pt / 38 pts] Write ggplot code (as best as you can) to generate this figure.

gyplat (cons) +
geom-point (res (x= Horseponer, y= Price, shape = Type))

liher OLS

Consider the following model for target variable price:

	21	
Model 3	(Intercept)	Horsepower
	1.45938866	0.12788635
	TypeLarge	TypeMidsize
	5.13487179	-4.98652796
	TypeSmall	TypeSporty
	2.42815602	2.23460382
	TypeVan	Horsepower: TypeLarge
	25.53605395	-0.02922214
	Horsepower: TypeMidsize	Horsepower: TypeSmall
	0.04973893	-0.05888501
	Horsepower: TypeSporty	Horsepower: TypeVan
	-0.02985597	-0.1807183

(f) [2 pt / 40 pts] What is the R code used to fit Model 3?

Im (prie v Horsepan & Tape)

- (g) [1 pt / 41 pts] Which model most likely has higher R^2 ?
 - i) Model 2
 - (ii) Model 3
 - iii) They have equal R^2
 - iv) Not enough information to tell
- (h) [2 pt / 43 pts] Which model most likely has higher $\cos R^2$?
 - i) Model 2
 - ii) Model 3
 - iii) They have equal $\cos R^2$
 - iv) Not enough information to tell
- (i) [3 pt / 46 pts] Interpret the number -0.1807183 for term Horsepower:TypeVan in Model 3.

the slage of Horsgoner vamille does if the cartigle is Van is 0.18 lower ohm the slage of the Horsgom variable if Car type is compact.

Problem 4 This question is about OLS again. For the questions concerned with out of sample, consider running the code using split-sample or gathering future data under stationarity. Consider the following code:

```
 \begin{array}{l} n = 100 \\ x = \mathrm{runif}(n, 0, 1) \\ X = \mathrm{cbind}(1, x) \\ beta = c(1, 1) \\ delta = \mathrm{rnorm}(n, mean = 0, sd = 0.1) \\ y = X \% * \% beta + delta \\ \\ mod1 = \lim(y \ \ 0 + X) \\ \end{array}
```

(a) [2 pt / 48 pts] What is f(x) in this case? f is defined as we did in class.

$$\mathcal{L}(\alpha) = (+ \times$$

- (b) [3 pt / 51 pts] Circle all the following that are true for mod1.
 - i) b will be very close to β
 - ii) b will not be very close to β
 - (iii) s_e will be very small
 - iv) s_e will not be very small
 - v) $ooss_e$ will be very small
 - vi) $\cos s_e$ will not be very small

Now consider running the following code after running the first chunk of code:

```
 \begin{array}{l} x_{prime} = x + \operatorname{rnorm}(n, \text{ mean} = 0, \text{ sd} = 1e-6) \\ X = \operatorname{cbind}(X, x_{prime}) \\ \operatorname{mod}2 = \operatorname{lm}(y - 0 + X) \end{array}
```

(c) [1 pt / 52 pts] In the case of model 2, what is p?

- (d) [4 pt / 56 pts] Circle all the following that are true for mod2.
 - i) \boldsymbol{b} will be very close to β
 - (ii) b will not be very close to β
 - (iii) s_e will be very small
 - iv) s_e will not be very small
 - v)oos s_e will be very small
 - vi) $\cos s_e$ will not be very small

Now consider running the following code after running the two previous chunks of code:

$$mod3 = lm(y \sim poly(x, 6))$$

- Circle all the following that are true for mod3. (e) [4 pt / 60 pts]
 - i) **b** will be very close to β
 - ii) b will not be very close to β ii) b will not be very close to β iii) a will not be very close to β
 - iii)) s_e will be very small
 - iv) s_e will not be very small
 - v) $\cos s_e$ will be very small
 - vi) $boss_e$ will not be very small

Problem 5 This question is about the concept of model validation and the strategy we discussed in class. Let's say we divide scramble the rows of \mathbb{D} then create a partition

$$\mathbb{D} = \left[egin{array}{c} \mathbb{D}_{ ext{train}} \\ \mathbb{D}_{ ext{select}} \\ \mathbb{D}_{ ext{test}} \end{array}
ight]$$

in a 3:1:1 ratio train: select: test (in number of rows).

We then fit $g_1 = \mathcal{A}(\mathcal{H}, \mathbb{D}_{\text{train}}), g_2 = \mathcal{A}(\mathcal{H}, \mathbb{D}_{\text{test}})$ and $g_{\text{final}} = \mathcal{A}(\mathcal{H}, \mathbb{D})$. Which of the following statement(s) can be employed as a means of honest model validation?

- (a) [3 pt / 63 pts] We wish to select a model out of M candidate models g_1, g_2, \ldots, g_M . Which of the following are recommended strategies of doing so?
 - i) Fitting g_1, g_2, \ldots, g_M to $\mathbb{D}_{\text{train}}$ and then testing on $\mathbb{D}_{\text{train}}$ and then choosing the model with lowest error on $\mathbb{D}_{\text{train}}$.
 - ii) Fitting g_1, g_2, \ldots, g_M to $\mathbb{D}_{\text{train}}$ and then testing on \mathbb{D} and then choosing the model with lowest error on \mathbb{D} .
 - iii) Fitting g_1, g_2, \ldots, g_M to $\mathbb{D}_{\text{train}}$ and then testing on $\mathbb{D}_{\text{select}}$ and then choosing the model with lowest error on D_{select}.
 - (iv) Fitting g_1, g_2, \ldots, g_M to $\mathbb{D}_{\text{train}}$ and then testing on $\mathbb{D}_{\text{select}}$ and then choosing the model with lowest error on \mathbb{D}_{test} .
- (b) [3 pt / 66 pts] We wish to select a model out of M candidate models g_1, g_2, \ldots, g_M and then provide an estimate of model generalization error. Which of the following are recommended strategies of doing so?
 - i) Fitting g_1, g_2, \ldots, g_M to $\mathbb{D}_{\text{train}}$ and then testing on $\mathbb{D}_{\text{select}}$ and then choosing the model with lowest error on $\mathbb{D}_{\text{select}}$ and providing the estimate of that error.
 - ii) Fitting g_1, g_2, \ldots, g_M to $\mathbb{D}_{\text{train}}$ and then testing on $\mathbb{D}_{\text{select}}$ and then choosing the model with lowest error on $\mathbb{D}_{\text{select}}$ and then testing on \mathbb{D} and providing the estimate using that error.

- Fitting g_1, g_2, \ldots, g_M to $\mathbb{D}_{\text{train}}$ and then testing on $\mathbb{D}_{\text{select}}$ and then choosing the model with lowest error on $\mathbb{D}_{\text{select}}$ and then testing on \mathbb{D}_{test} and providing the estimate using that error.
 - iv) Fitting g_1, g_2, \ldots, g_M to $\mathbb{D}_{\text{train}}$ and then testing on $\mathbb{D}_{\text{select}}$ and then \mathbb{D}_{test} and then choosing the model with lowest error on \mathbb{D}_{test} and providing the estimate using that error.
- (c) [2 pt / 68 pts] Would your answer in (b) be able to provide an estimate of the variability in the generalization error? Yes No.

Consider the selection of the model g_1, g_2, \ldots, g_M to be termed "tuning". Imagine we used the protocol pictured below.

(d) [3 pt / 71 pts] What are the number of folds in the inner loop and the outer loop in our problem respecting the ratio given in the problem description?

Inn loop: I folds Our loop: 5 folds (e) [4 pt / 75 pts] What are the two main advantages of the protocol above over the answer you gave in (b)?

(I) It will yield an estrume of the error in the algorithe
"select the best model from Ji, gm" and not only the error
of one of thex models.

1) The generalizator error will be more sample.

1) The generalizator error will be more sample.

Problem 6 Consider the following code:

```
compute_distance_matrix = function(X)
     n = nrow(X)
    D = matrix(NA, n, n)
     for (i_2 in (i_1 + 1) : n)
         D[\hat{i}_{-1}, i_{-2}] = sqrt(sum((\hat{X}[i_{-1}, ] - X[i_{-2}, ])^2))
    D
10
12 pacman::p_load(Rcpp)
  cppFunction('
    NumericMatrix compute_distance_matrix_cpp(NumericMatrix X) {
       int n = X.nrow();
15
       int p = X. ncol();
       NumericMatrix D(n, n);
       std::fill(D.begin(), D.end(), NA_REAL);
19
       for (int i_1 = 0; i_1 < (n-1); i_1++)
20
         for (int i_2 = i_1 + 1; i_2 < n; i_2 + + 1)
21
           int \operatorname{sqd}_{-}\operatorname{diff} = 0;
           for (int j = 0; j < p; j++){
             sqd_diff += pow(X(i_1, j) - X(i_2, j), 2);
           D(i_1, i_2) = \operatorname{sqrt}(\operatorname{sqd}_{\operatorname{diff}});
      return D;
30
```

We now profile both functions using a matrix X that has n in the 100's via the code:

```
system.time({
    D = compute_distance_matrix(X)
})
system.time({
    D = compute_distance_matrix_cpp(X)
}
```

(a) [2 pt / 77 pts] Which function registers a faster profiling time and by how much? Provide a multiple.

the app funton by a factor of 310.

(b) [2 pt / 79 pts] Explain why this should be.

R his poor performine for loops.

(c) [2 pt / 81 pts] You wish to recode the R function sort using Rcpp. Assume your C++ code is bug-free. Is this endeavor fruitful? Why or why not?

No. sort is a base R fruit ahad, huter in CH/Form, and approved over decades of consumerous by brilliant people the world over. You want be able to best it exity.

Problem 7 Consider the following dataset:

```
> pacman::p_load(ggplot2, dplyr, magrittr)
2 > D = ggplot2::txhousing
3 > \dim(D)
4 [1] 8602
5 > summary (D)
    city
                         year
                                       month
 Length:8602
                     Min. :2000
                                    Min. : 1.000
  Class : character
                   1st Qu.:2003
                                    1st Qu.: 3.000
 Mode : character
                   Median :2007
                                    Median : 6.000
```

```
:2007
                                         Mean
                                                 : 6.406
11
                        3rd Qu.:2011
                                         3rd Qu.: 9.000
                                :2015
                        Max.
                                         Max.
                                                 :12.000
13
        sales
                           volume
14
                                                 median
   Min.
                6.0
                      Min.
                              :8.350e+05
15
                                                    : 50000
   1st Qu.:
              86.0
                      1st Qu.:1.084e+07
16
                                            1st Qu.:100000
   Median : 169.0
                      Median : 2.299e+07
17
                                            Median :123800
   Mean
           : 549.6
18
                      Mean
                              :1.069e+08
                                            Mean
                                                    :128131
   3rd Qu.: 467.0
                      3rd Qu.: 7.512e+07
19
                                            3rd Qu.:150000
   Max.
           :8945.0
                              :2.568e+09
20
                      Max.
                                            Max.
                                                    :304200
   NAs
21
          :568
                    NAs
                          :568
                                             :616
      listings
                       inventory
                                             date
   Min.
                0
                            : 0.000
                     Min.
                                                :2000
                                        Min.
   1st Qu.:
             682
                     1st Qu.: 4.900
                                        1st Qu.:2004
   Median: 1283
                     Median : 6.200
                                        Median:2008
           : 3217
   Mean
                     Mean
                            : 7.175
                                        Mean
                                                :2008
   3rd Qu.: 2954
                     3rd Qu.: 8.150
                                        3rd Qu.:2012
   Max.
           :43107
                     Max.
                            :55.900
                                       Max.
                                               :2016
   NAs
          :1424
                    NAs
                           :1467
```

(a) [2 pt / 83 pts] Write dplyr code below to update D to convert the city variable into a nominal factor variable.

(b) [5 pt / 88 pts] Write dplyr code below to update D to create a new character variable called month_date which has a string timestamp with format MM/YYYY, then sort by date (earliest first) and then drop columns month, year and date.

(c) [2 pt / 90 pts] Write dplyr code below to "windsorize" D on the volume variable. This means it will only contain rows that are between the 5%ile and 95%ile of volumes.

(d) [3 pt / 93 pts] Write dplyr code below to summarize the data in D by providing the average volume in each month.

DY.>%.
grmp-by (monty-dote) %.>%.
Simminge (avg-vdine = pream (vdine))

We now wish to predict the target volume based on the other variables as features. Consider the following code after the first chunk has been executed:

> D % <> % na.omit
> pacman::p_load(mlr)
> modeling_task = makeRegrTask(data = D, target = "volume")
> algorithm = makeLearner("regr.lm")
> validation = makeResampleDesc("CV", iters = 5)
> resample(algorithm, modeling_task, validation, measures = list(rmse))\$
aggr
34120325

(e) [3 pt / 96 pts] Interpret the output, 34120325, as best as you can.

An estimate of the glumenter erson (Se) of the lam model of value on all other fermer,

(f) [2 pt / 98 pts] What simple transformation can be done to one of the variables in the dataset that would likely increase predictive performance?

lay the value. He penner page shout the Supermy of all variables. It is clear that value is skeed vight.

Typically largery the our care variable that is steemed right violed.

Consider the following code: better predictive pageousnes.

1 > X = model.matrix(volume * . * . * . , D)

(g) [2 pt / 100 pts] In one sentence (or less) answer the following: which procedure could you use to build a model predicting volume based on the features now found in the design matrix X?

forum skpine lien regesson / OUS.