Лабораторная работа 2. Исследование функций оперативной надежности, восстановимости и коэффициента готовности распределенных вычислительных систем со структурной избыточностью

(BC) Имеется распределенная вычислительная система укомплектованная N одинаковыми элементарными машинами (ЭМ). Основная подсистема (вычислительное ядро) BC состоит их n ЭM, n-N элементарных машин составляют структурную λ – интенсивность избыточность. Заданы потока отказов любой ИЗ $(\lceil \lambda \rceil = 1/4)$. т - количество элементарных машин восстанавливающих устройств восстанавливающей системы и µ – интенсивность потока восстановления элементарных машин одним восстанавливающим устройством ($[\mu] = 1/4$).

При анализе надежности BC в стационарном режиме работы используются такие показатели как функция $R^*(t)$ оперативной надежности, функция $U^*(t)$ оперативной восстановимости и коэффициент S готовности.

В рамках лабораторной работы требуется выполнить нижеследующие задания.

- 1. Написать программу расчета функции $R^*(t)$ оперативной надежности, функции $U^*(t)$ оперативной восстановимости и коэффициента S готовности BC со структурной избыточностью.
- **2.** Построить график зависимости функции $R^*(t)$ оперативной надежности для следующих значений параметров: $N=10; n \in \{8, 9, 10\}; \lambda = 0.024$ 1/ч; $\mu = 0.71$ 1/ч; m=1; t=0,2,4,...,24 ч.
- **2.** Построить график зависимости функции $U^*(t)$ оперативной восстановимости для следующих значений параметров: N=16; $n\in\{10,11,...,16\};$ $\lambda=0,024$ 1/4; $\mu=0,71$ 1/4; m=1; t=0,2,4,...,24 4.
- **4.** Заполнить таблицу значений показателя S для следующих значений параметров: $N=16; \lambda=0.024\ 1/\mathrm{y}; \mu=0.71\ 1/\mathrm{y}.$

n	m	
	1	16
11		
12		
13		
14		
15		
16		

5. Выполнить нижеследующие задания

- 1. Дать определение ВС со структурной избыточностью.
- 2. Описать стохастическую модель функционирования BC со структурной избыточностью (трехпараметрическая модель: λ , μ , ν).
- 3. Пояснить смысл вероятностей состояния системы в стационарном режиме.

- 4. Дать определение основных показателей надежности ВС в стационарном режиме функционирования.
- 5. Варьирование каких параметров позволяет увеличить/уменьшить значение функции $R^*(t)$, функции $U^*(t)$ и коэффициента S?