Meta-Programming and Hybrid Parallel Strategies for Solving PDEs: An FDM and PINN Comparison ^{1, 2}

Seminar Presentation III

LI YIHAI

Student ID: 23345919

Supervision: Michael Peardon

September 23, 2024

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath

full docs: https://livihai.com/html/index.html

²repository: https://github.com/livihai-official/Final-Project

- Introduction
 - Related Work
 - Challenges & Objectives
- 2 Problem Setups
 - General Form
 - Thermal Conduction Systems
- Methodology
 - N-Dimension Matrix
 - Parallelization of N-dimension Arrays

- 4 Implementations
 - PDE Solvers
 - PINN Model
- S Experiments
 - On Single Node
 - On Multi-node
 - On Different Dimensions
 - With PINN on accuracy
- 6 Discussion
- Further Research Directions

- Introduction
 - Related Work
 - Challenges & Objectives
- 2 Problem Setups
 - General Form
 - Thermal Conduction Systems
- Methodology
 - N-Dimension Matrix
 - Parallelization of N-dimension Arrays

- 4 Implementations
 - PDE Solvers
 - PINN Model
- **S** Experiments
 - On Single Node
 - On Multi-node
 - On Different Dimensions
 - With PINN on accuracy
- 6 Discussion
- 7 Further Research Directions

Kolmogorov PDEs

Solving
$$u(x, T)$$
, for $\mathbb{R}^1 \ni T > 0$, $x \in \mathbb{R}^d$, $t \in [0, T]$, $u(t, x) = u \in \mathbb{R}^1$, $\mu(x) \in \mathbb{R}^d$, $\sigma(x) \in \mathbb{R}^{d \times d}$,
$$u_t = \frac{1}{2} \operatorname{Trace}_{\mathbb{R}^d} \left[\sigma(x) \left[\sigma(x) \right]^* \operatorname{Hess}_x u \right] + \langle \mu(x), \nabla_x u \rangle_{\mathbb{R}^d}$$
(1)

Figure: Deep Neural Network (DNN) Methodology of Solving Kolmogorov PDEs [FIRST]

LI Yihai (Mathematics Institute)

An FDM and PINN Comparison

September 23, 2024

4/54

Introduction

Recap - Physics Informed Nerual Network

General Form of PDEs

- -u(t,x) denotes with the target function, $x \in \mathbb{R}^d$.
- $-\Gamma[\cdot;\lambda]$ is a non-linear operator parameterized by λ .

$$u_t(t,x) + \Gamma[u;\lambda] = 0 \tag{2}$$

Define f(t,x) to be given by

$$f(t,x) = u_t(t,x) + \Gamma[u;\lambda]$$
(3)

Figure: PINN, with 3 fully connected hidden layers

Introduction Recap - Conclusion

Comparing With Finite Difference Time Domain Method (FDTD)

- Deep Neural Network [FIRST]
 - Gives lower quality approximations.
 - Takes longer time to train.
 - Possible to solve high dimension PDEs
- Physics Informed Neural Network
 - Gives higher quality approximations.
 - Takes longer time to train.
 - Has more flexible way to get results.
 - Possible to solve high dimension PDEs

Objectives

This project focused on following objectives:

- Implement FDTD and PINN in C++/C.
- Implement FDTD hybrid parallel version using MPI/OpenMP.
- Implement PINN GPU parallel version using Libtorch/CUDA.
- Evaluate the efficiency and accuracy of FDTDs and PINNs.

Challanges

However, there were many obstacles including:

- Portability.
- Overlapping Communication and Computation.
- Unnecessary intra-node communication
- Communication Overhead.
- Scalability Issues.
- Memory Management.

- Introduction
 - Related Work
 - Challenges & Objectives
- 2 Problem Setups
 - General Form
 - Thermal Conduction Systems
- Methodology
 - N-Dimension Matrix
 - Parallelization of N-dimension Arrays

- 4 Implementations
 - PDE Solvers
 - PINN Model
- S Experiments
 - On Single Node
 - On Multi-node
 - On Different Dimensions
 - With PINN on accuracy
- 6 Discussion
- Further Research Directions

General Form of problem

The PDE parametrized by number λ and an operator $\mathcal{N}[\cdot; \lambda]$, and assume the variable x is a 2D or 3D spatio-vector which is written in

$$\begin{cases} \frac{\partial u}{\partial t}(t, \vec{x}) + \mathcal{N}[u; \lambda] = 0\\ u(0, \vec{x}) = \varphi(\vec{x}) \end{cases}$$
(4)

where φ is the initial condition, and $\vec{x} \in \Omega, t \in [0, +\infty)$.

Boundary Conditions

The Dirichlet and Von Neurmann boundary conditions are formed as

$$\begin{cases} u(t,\vec{x}) = g(t,\vec{x}) \\ \frac{\partial u}{\partial \vec{n}} = g(t,\vec{x}) \end{cases}$$
 (5)

10/54

where \vec{n} is the normal vector on $\overline{\Omega}$ the boundary of domain Ω .

Thermal Conduction Systems Heat Equation 2D

The function

$$u(t, x, y) = x + y - xy, \forall \alpha \in \mathbb{R}^{1}$$
(6)

is the solution of 2D Heat Equation 7 below

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial u^2}{\partial x^2} + \frac{\partial u^2}{\partial y^2} \right) \qquad (x, y) \in \Omega, t \in [0, +\infty)$$

$$u(0, x, y) = \varphi(x, y) = 0 \qquad (x, y) \in \Omega \qquad (7)$$

$$\begin{cases}
y, x = 0, y \in (0, 1) \\
1, x = 1, y \in (0, 1)
\end{cases}$$

$$u(t,x,y) = g(x,y) = \begin{cases} y, & x = 0, y \in (0,1) \\ 1, & x = 1, y \in (0,1) \\ x, & y = 0, x \in (0,1) \\ 1, & y = 1, x \in (0,1) \end{cases}$$
 $t \in [0, +\infty)$

4 D > 4 D > 4 E > 4 E > E 990

Thermal Conduction Systems Heat Equation 3D

The function

$$u(t,x,y,z) = x + y + z - 2xy - 2xz - 2yz + 4xyz, \forall \alpha \in \mathbb{R}^1$$
(8)

12/54

is the solution of 3D Heat Equation 9 below

$$\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial u^2}{\partial x^2} + \frac{\partial u^2}{\partial y^2} + \frac{\partial u^2}{\partial z^2} \right) \qquad (x, y, z) \in \Omega, \ t \in [0, +\infty)$$

$$u(0, x, y, z) = \varphi(x, y, z) = 0 \qquad (x, y, z) \in \Omega \qquad (9)$$

$$u(t,x,y,z) = g(x,y,z) = \begin{cases} y+z-2yz, & x=0, \\ 1-y-z+2yz, & x=1, \\ x+z-2xz, & y=0, \\ 1-x-z+2xz, & y=1, \\ x+y-2xy, & z=0, \\ 1-x-y+2xy, & z=1 \end{cases}$$
 $t \in [0,+\infty)$

- Introduction
 - Related Work
 - Challenges & Objectives
- 2 Problem Setups
 - General Form
 - Thermal Conduction Systems
- Methodology
 - N-Dimension Matrix
 - Parallelization of N-dimension Arrays

- 4 Implementations
 - PDE Solvers
 - PINN Model
- S Experiments
 - On Single Node
 - On Multi-node
 - On Different Dimensions
 - With PINN on accuracy
- 6 Discussion
- 7 Further Research Directions

N-dimension Matrix Challanges

STL provides containers std::array and std::vector for creating one-dimension array. There are two way for dealing with high-dimension data:

- Nesting the one dimension arrays or vectors.
- Hierarchy approach, designing derived classes of one-dimension array base class.

Figure: Derived Class calling members in Base class, timing is not predictable.

- Nesting multi-dimension array has non-contiguous memory layout.
- Derived class needs more time to access members in base class.
- Or cache utilization leads to poor performance.
- MPI type create requires contiguous memory layout.

Figure: Using nested std::array<T, N> to store 2D array data.

N-dimension Matrix Solution

• Separate into two detail and user interface objects adhering RAII rules.

Figure: The solution of N-dimension Matrix, using detail Class, user interface Class

N-dimension Matrix Solution

- Separate into two detail and user interface objects adhering RAII rules.
- An external small __multi_array_shape object defines the routines for accessing the elements.

Figure: The solution of N-dimension Matrix, using detail Class, user interface Class and a shape management structure.

N-dimension Matrix Solution

- Separate into two detail and user interface objects adhering RAII rules.
- An external small __multi_array_shape object defines the routines for accessing the elements.
- Smart pointer, ensure memory's contiguous layout and safety.

Figure: The solution of N-dimension Matrix, using detail Class, user interface Class and a shape management structure.

Parallelization of N-dimension Arrays MPI Environment

The hybrid PDE solver requires the MPI supports multi-threads on each processes.

- High-level libraries like Boost.MPI
 - have better MPI resource management and other basic communication features.
 - only provide limited useful features for latter PDE solvers.
 - lead to lower performance than low-level OpenMPI.

Parallelization of N-dimension Arrays MPI Environment

The hybrid PDE solver requires the MPI supports multi-threads on each processes.

- High-level libraries like Boost.MPI
 - have better MPI resource management and other basic communication features.
 - only provide limited useful features for latter PDE solvers.
 - **1** lead to lower performance than low-level OpenMPI.
- I developed an environment class for MPI
 - better resource management than raw MPI.
 - provides basic features exclusively for this project.

Parallelization of N-dimension Arrays MPI Topology - Challanges

Distributed N-dimension arrays are created based on MPI N-dimension Cartesian topology.

Parallelization of N-dimension Arrays MPI Topology - Challanges

Distributed N-dimension arrays are created based on MPI N-dimension Cartesian topology.

- Ghost communication is required in overlapping of MPI communication and local computation.
- 2 Parallel I/O is needed for debugging and storing results.
- **3** Topology information will be frequently used in PDE solver.

18/54

• An MPI Topology class defines the distribution details of N-dimension array.

Figure: The Schematic representation of the MPI Cartesian topology scheme of 24 processors on 3 dimension space, which has a $2 \times 3 \times 4$ grid of processes

Using MPI_Type_create_subarray for creating Ghost MPI datatype for communication.

Figure: Representation of a 3D MPI Communication Scheme of 2 among 24 processes between 3 dimension sub-arrays.

- Ocartesian array has members Topology class and N-dimension array class, to ensure they are closely located on memory.
- The external functions provide gather-based I/O and MPI I/O for handling different scenarios.
 - gather-based function is designed for small scale problem, it collects all data included with the boundaries to the root process, and use the I/O of N-dimension array.
 - MPI I/O function is designed for handling large scale problem, it only collects the internal bulk without boundary.

- User interface class unified features for both topology and array classes.
- Separate into two detail and user interface objects adhering RAII rules.

Figure: The solution of distributed N-dimension Array, using detail class, user interface class and a Cartesian topology class.

- Introduction
 - Related Work
 - Challenges & Objectives
- Problem Setups
 - General Form
 - Thermal Conduction Systems
- Methodology
 - N-Dimension Matrix
 - Parallelization of N-dimension Arrays

- 4 Implementations
 - PDE Solvers
 - PINN Model
- S Experiments
 - On Single Node
 - On Multi-node
 - On Different Dimensions
 - With PINN on accuracy
- 6 Discussion
- 7 Further Research Directions

- 4 Implementations
 - PDE Solvers
 - Boundary/Initial Conditions
 - Pure MPI
 - Master-only, no overlapping
 - Master-only, with overlapping
 - PINN Model

24/54

N-dimension Boundary and Initial Conditions Challanges

- Mathematical function needs be discretized and distributed as well.
- Initial and Dirichlet boundary conditions only applies once.
- Von Neumann boundary condition participates the evolving process in FDM.
- Need to access the data.

N-dimension Boundary and Initial Conditions Solution

- Use lambda function to construct classes.
- Oreating external classes for each conditions as the friend classes of PDE solver classes.
- Set Bool vectors help to determine the status of conditions and type of boundary conditions.

N-dimension PDE solvers Challanges

- PDE solver of Heat Equations in different dimension space have similar parameters and features, type-field solution lead to code redundancy.
- Applying MPI communications between local arrays, avoiding overhead.
- Three type of strategies:
 - Pure MPI parallel
 - Master-only, no overlapping hybrid parallel.
 - Master-only, communication/computation (comm./comp.) overlapping hybrid parallel.

- 4 Implementations
 - PDE Solvers
 - Boundary/Initial Conditions
 - Pure MPI
 - Master-only, no overlapping
 - Master-only, with overlapping
 - PINN Model

28/54

virtual function is resolved at run-time, and only lose up to about 25% efficiency in terms of the function call mechanism,

• Create an abstract Heat base class of Heat Equation, and overriding functions in derived class on every dimension.

MPI communications are implemented in blocking and non-blocking ways using MPI_Sendrecv and MPI_Isend/MPI_Irecv.

- Three type of strategies
 - Pure MPI parallel

LI Yihai (Mathematics Institute) An FDM and PINN Comparison September 23, 2024

- Three type of strategies
 - Master-only, no overlapping hybrid parallel.

N-dimension PDE solvers Solutions

- Three type of strategies
 - Master-only, comm./comp. overlapping hybrid parallel.

PINN Model Challanges

For neural network implementations, there are some issues in practice: Python has many easy-use libraries such as Pytorch, Tensorflow and Caffe.

- Interpret language Python is significant slower than compile language C/C++
- Worse resource management than C/C++
- Solution Lower security in parallel program.

PINN Model Solution

For getting higher performance and better safety, I chose to use

• Pytorch C++ API: Libtorch.

to reproduce the Python version of PINN.

September 23, 2024

Outline

- Introduction
 - Related Work
 - Challenges & Objectives
- 2 Problem Setups
 - General Form
 - Thermal Conduction Systems
- Methodology
 - N-Dimension Matrix
 - Parallelization of N-dimension Arrays
- 4 Implementations
 - PDE Solvers
 - Boundary/Initial Conditions

- Pure MPI
- Master-only, no overlapping
- Master-only, with overlapping
- PINN Mode
 - Customized Loss Function
- Network Structure
- S Experiments
 - On Single Node
 - On Multi-node
 - On Different Dimensions
 - With PINN on accuracy
- 6 Discussion
 - Further Research Directions

Single Node Scaling Tests

2D Heat Equation Single Precision

Problem Size: 512², 1024², 2048², 4096², 8192², 16384², 32768²

Non-unified Memory Access (NUMA) node Topology:

Figure: NUMA topology of single node on Cluster

Single Node Scaling Tests Strong Scaling - pure MPI

Single Node Scaling Tests Strong Scaling - MPI/OpenMP Hybrid

LI Yihai (Mathematics Institute)

An FDM and PINN Comparison

September 23, 2024

Single Node Scaling Tests Weak Scaling

Strategy	Size	Number of CPUs			C (C1)
		4	16	64	$f_p(\%)$
Pure MPI		4.006	12.497	47.849	75.1
No Overlap	512^{2}	2.876	11.206	42.754	67.0
With Overlap		3.173	10.818	42.282	66.2
Pure MPI		3.838	9.304	33.707	53.2
No Overlap	1024^2	3.947	12.995	33.447	54.1
With Overlap		4.024	12.932	33.361	54.0
Pure MPI		2.376	8.245	31.203	49.0
No Overlap	2048^{2}	3.874	8.972	31.510	49.8
With Overlap		3.740	8.989	31.430	49.7
Pure MPI		3.543	8.245	31.203	77.5
No Overlap	4096^{2}	3.953	13.799	49.515	78.0
With Overlap		3.948	13.800	49.989	78.7

September 23, 2024

Multi-node Scaling Tests Strong Scaling - pure MPI

Single Node Scaling Tests Strong Scaling - MPI/OpenMP Hybrid

(a) No overlapping comm./comp.

(b) With overlapping comm./comp.

LI Yihai (Mathematics Institute)

An FDM and PINN Comparison

September 23, 2024

42/54

Single Node Scaling Tests Weak Scaling

Strategy	Size		Number of CPUs			
	Size	4	16	64	256	$f_p(\%)$
Pure MPI		3.300	10.379	26.000	124.375	48.2
No Overlap	512^{2}	-	8.094	25.931	127.648	49.3
With Overlap		-	8.386	27.126	116.951	45.5
Pure MPI		3.848	13.037	30.143	-	49.3
No Overlap	1024^2	-	13.702	44.040	-	69.8
With Overlap		-	13.834	44.090	-	69.9
Pure MPI		3.787	9.172	32.013	-	50.6
No Overlap	2048^{2}	-	13.936	34.368	-	55.7
With Overlap		-	14.274	34.414	-	55.9
Pure MPI		3.884	13.859	51.041	-	80.2
No Overlap	4096^2	-	15.315	53.157	-	83.8
With Overlap		-	15.294	53.401	-	84.2

LI Yihai (Mathematics Institute) An FDM and PINN Comparison September 23, 2024

3D Space Heat Equation Strong Scaling - pure MPI

3D Space Heat Equation

Strong Scaling - MPI/OpenMP Hybrid, Single Node

3D Space Heat Equation

Strong Scaling - MPI/OpenMP Hybrid, Four Nodes

3D Space Heat Equation Weak Scaling

Strategy	Size		Number of CPUs			C (CI)
	Size	8	64	64 _{Multi-nod}	$f_p(\%)$	$f_p(\%)$ Multi-node
Pure MPI		5.243	26.405	9.078	41.6	14.2
No Overlap	32^{3}	2.124	13.386	8.094	21.0	12.7
With Overlap		2.014	13.884	9.586	21.8	39.7
Pure MPI		7.937	32.034	30.106	50.8	47.1
No Overlap	64^{3}	5.393	20.007	33.460	31.8	52.3
With Overlap		5.200	19.558	35.254	31.1	31.6
Pure MPI		3.513	24.239	25.428	38.0	39.7
No Overlap	128^{3}	3.303	15.235	35.254	24.1	55.1
With Overlap		3.187	15.107	20.096	23.9	31.4

PINN v.s. FDTD Accuracy

Table: Mean Square Error of Results

Method	Heat 2D	Heat 3D
FDTD	1.7287	953.84
PINN	13.37	24.896
	1	

Tolerance: 10^{-4}

PINN v.s. FDTD

Memory Usage v.s. Time of Convergence

Figure

September 23, 2024

Outline

- Introduction
 - Related Work
 - Challenges & Objectives
- Problem Setups
 - General Form
 - Thermal Conduction Systems
- Methodology
 - N-Dimension Matrix
 - Parallelization of N-dimension Arrays
- 4 Implementations
 - PDE Solvers
 - Boundary/Initial Conditions

- Pure MPI
- Master-only, no overlapping
- Master-only, with overlapping
- PINN Mode
 - Customized Loss Function
 - Network Structure
- Experiments
 - On Single Node
 - On Multi-node
 - On Different Dimensions
 - With PINN on accuracy
- 6 Discussion
- 7 Further Research Directions

Conclusion Finite Difference Time Domain Method

For 2D and 3D Thermal Conduction PDE systems

I implemented the FDTD methods in fined region with three parallel models:

- Pure MPI model
 - had best performance on single compute node overall.
 - speedup ratio quickly drop on multi-node.
- MPI/OpenMP Hybrid models
 - had lower performance in general.
 - can make more use of the advantage of L3 cache.
 - superliner speedup in certain scenario.

Conclusion Physics Informed Neural Network

For 2D and 3D Thermal Conduction PDE systems

I implemented PINN models and trained on generated datasets, comparing with FDTD, the PINN

- had identical or higher accuracy.
- a had less memory usage.
- took shorter time to get the predictions(results).
- had more flexibility on producing the results.

Outline

- Introduction
 - Related Work
 - Challenges & Objectives
- Problem Setups
 - General Form
 - Thermal Conduction Systems
- Methodology
 - N-Dimension Matrix
 - Parallelization of N-dimension Arrays
- 4 Implementations
 - PDE Solvers
 - Boundary/Initial Conditions

- Pure MPI
- Master-only, no overlapping
- Master-only, with overlapping
- PINN Mode
 - Customized Loss Function
 - Network Structure
- Experiments
 - On Single Node
 - On Multi-node
 - On Different Dimensions
 - With PINN on accuracy
- 6 Discussion
- Further Research Directions

Further Research Directions

- Resource Management
- Workload Management
- MPI/CUDA Hybrid parallel of FDTD/PINN
- Other PDE Systems

Closing Remarks

Thank you for your attention!

Any questions?