Chapter 1 - Fusion

Hunt Feng¹

¹Faculty of Physics And Engineering Physics University of Saskatchewan

September 19, 2023

- Introduction to Fusion
- 2 Ignition
- Tokamaks
- 4 Commercial Fusion

- Introduction to Fusion
- 2 Ignition
- 3 Tokamaks
- 4 Commercial Fusion

Fusion Reactions

There are a few fusion reactions,

 D-T reaction: large cross-section at low temperature, but hard to find Tritium.

$$^2_1D+^2_1T
ightarrow^4_2$$
 He $+^1_0$ n + 17.6MeV

 D-D reaction: easy to find the fuel, but small cross-section at low temperature.

$$^2D+^2D
ightarrow ^3He+^1n+3.27 \text{MeV}$$

 $^2D+^2D
ightarrow ^3T+4.03 \text{MeV}$

 D-He reaction: easy to find the fuel, but small cross-section at low temperature.

$$^2D+^3He \rightarrow ^4He+^1H+18.3 \text{MeV}$$

Figure 1: Adapted from [4] Cross-sections for the reactions D-T, D-D and D-³He. The two D-D reactions have similar cross-sections, the graph gives their sum. At 100keV, D-T reaction has the largest cross-section, meaning that more fusion reactions happen in D-T reaction compare to the other two reactions.

Thermonuclear Fusion

The reaction rate is given by

$$R = \left(\frac{8}{\pi}\right)^{1/2} n_1 n_2 \left(\frac{\mu}{T}\right)^{3/2} \frac{1}{m_1^2} \int \sigma(\epsilon) \epsilon \exp\left(-\frac{\mu \epsilon}{m_1 T}\right) d\epsilon \tag{1}$$

where the subscript 1 and 2 are D and T, respectively. And n is the number density, $\mu=m_1m_2/(m_1+m_2)$ is the reduced mass, and $\epsilon=\frac{1}{2}m_1(v_1-v-2)^2$ is the kinetic energy of D.

- The rate is maximized when $n_1 = n_2$.
- The cross-section σ is given by Fig.1.

Figure 2: Adapted from [4], $\langle \sigma v \rangle$ for D-T, D-D(total) and D-³He reactions as a function of plasma temperature. $\langle \sigma v \rangle$ for D-D and D-³He are much smaller than that of D-T.

- 1 Introduction to Fusion
- 2 Ignition
- 3 Tokamaks
- 4 Commercial Fusion

Power Balance - Thermonuclear Power

For D-T reaction (assuming $n_d=n_t$), the thermonuclear power density is given by

$$p_{Tn} = \frac{1}{4} n^2 \langle \sigma v \rangle \varepsilon \tag{2}$$

where $n = n_d + n_T$ is the total number of density, and $\langle \sigma v \rangle$ is drawn in Fig.2, ε is the energy released per reaction.

- 4/5 of the reaction energy, ε , is carried away by neutrons, the rest is carried by α -particles, ε_{α} .
- Neutrons will leave plasma without any interaction.
- ullet The lpha-particles will be confined by magnetic field, hence self heating the plasma.

Power Balance - α -particle Heating

Since the α -particles are trapped by the magnetic field, so they will transfer their 3.5MeV energy to the plasma through collisions. Thus, the α -particle heating power

$$P_{\alpha} = \int \frac{1}{4} n^2 \langle \sigma v \rangle \, \varepsilon_{\alpha} \, \mathrm{d}^3 x = \frac{1}{4} \overline{n^2 \langle \sigma v \rangle} \varepsilon_{\alpha} V \tag{3}$$

where the bar means average in the plasma, and ${\it V}$ is the volume of the plasma.

10/26

Hunt Feng (Usask) Chapter 1 - Fusion September 19, 2023

Power Balance - Energy Loss

Since each plasma particle has energy 3T/2 (T/2 in each degree of freedom), and there are equal number of electrons and ions, so the total energy of the plasma is

$$W = \int 3nT \, \mathrm{d}^3 x = 3\overline{nT}V \tag{4}$$

where V is the volume of the plasma.

If the energy confinement time is $au_{\it E}$, then the energy loss power is

$$P_L = W/\tau_E \tag{5}$$

• To experimentally determine τ_E , we can maintain a steady state plasma by external heating. In this case the power of energy loss can be estimated by the power of heating, $P_L = P_H$, so

$$au_{E} = W/P_{H}$$

Ignition - Condition

The requirement for the plasma burn to be self-sustaining is

$$P_{\alpha} > P_{L} \tag{6}$$

Take constant density and temperature for simplicity, we have

$$n\tau_{E} > \frac{12T}{\langle \sigma v \rangle \, \varepsilon_{\alpha}} \tag{7}$$

The right-hand-side of the inequality is drawn in Fig.3.

Since τ_E itself is also a function of temperature, so there is a more convenient form,

$$nT\tau_E > 3 \times 10^{21} \text{keV·s} \tag{8}$$

Ignition - Condition

Figure 3: Adapted from [4]. The value of $n\tau_E$ required to obtain ignition, as a function of temperature.

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト 3 見 9 9 9 0

13/26

Ignition - Approach

- L-mode: Low confinement mode. Poor confinement in this regime.
- ullet H-mode: High confinement mode. au_E of plasma is long in this regime.
- With high enough applied power, plasma transition from L to H-mode.
- Once the mode transition happens, the plasma burn is self-sustaining.

Figure 4: Adapted from [4]. P_L and P_α as function of temperature.

- 1 Introduction to Fusion
- 2 Ignition
- Tokamaks
- 4 Commercial Fusion

Tokamaks

The Tokamak uses coils to control the plasma in the torus-shape chamber.

(a) Arrangement of coils in a tokamak.

(b) Blanket (compound containing Li) is used to absorb the thermonuclear energy and also for tritium breeding.

Hunt Feng (Usask) Chapter 1 - Fusion September 19, 2023 16 / 26

Magnetic Field

The poloidal and toroidal magnetic field are essential to stabilize the plasma

(a) Toroidal magnetic field B_{ϕ} , and poloidal magnetic field B_{p} due to toroidal current I_{ϕ} .

(b) Combination of B_{ϕ} and B_{p} causes field lines to twist around plasma.

Tokamak Reactor - Structure

In the classical design of tokamak reactor, we only replace the energy source by a tokamak, for the rest of the structure we have mature industrial solutions already.

Figure 7: Thermonuclear power absorbed in blanket would be converted into electric power by conventional means.

Tokamak Reactor - Power

The power density of the D-T reaction is given by Eq.(2), so

$$P = \frac{\pi}{2} \varepsilon \int n^2 \langle \sigma v \rangle \, RdS \tag{9}$$

where S is an area element of the poloidal cross-section. We can simplify it by taking R as constant and $\bar{a}=(ab)^{1/2}$. Moreover, $\langle \sigma v \rangle$ can be approximated by $1.1 \times 10^{-24} T^2$, and the pressure profile can be taken as $nT=\hat{n}\hat{T}(1-r^2/\bar{a}^2)^{\nu}$, so the total power

$$P = \frac{0.15}{2\nu + 1} Rab \left(\frac{\hat{n}}{10^2 0}\right)^2 \hat{T}^2 \tag{10}$$

where the unit of \hat{T} is keV.

Tokamak Reactor - Impurities

There are two types of impurities:

- lons coming from solid surfaces (walls). Need to avoid this since it causes plasma energy loss through radiation.
- α -particles, ⁴He. The α -particles are the byproduct of fusion reaction. It is believed that a magnetic divertor is required to guide the "helium ash" to a "target" surface well separated from the plasma, and to restrict the impurity back-flow.

- 1 Introduction to Fusion
- 2 Ignition
- 3 Tokamaks
- 4 Commercial Fusion

Commercial Fusion

- I will talk about General Fusion's fusion reactor.
- I think it is useful to include a list of companies working on fusion energy. https://en.wikipedia.org/wiki/Commercial_fusion
- General Fusion uses a structure called Magnetized Target Fusion.

General Fusion - Magnetic Target Fusion

Figure 8: [2] General Fusion's Acoustic Magnetized Target Fusion Reactor Concept.

Hunt Feng (Usask) Chapter 1 - Fusion September 19, 2023 23/26

General Fusion - Plasma in Field-Reverse Configuration

- Plasma injectors inject spheromaks with opposite helicity into the center.
- Spheromaks meet and form a plasma that is in field reverse configuration (FRC).
- Plama in FRC is stable, so no need for the coils. [3]

Figure 9: Field-reversed configuration: a toroidal electric current is induced inside a cylindrical plasma, making a poloidal magnetic field, reversed in respect to the direction of an externally applied magnetic field. The resultant high-beta axisymmetric compact toroid is self-confined. Taken from https://commons.wikimedia.org/wiki/File:

Field Devenged Configuration and

Field-Reversed_Configuration.svg

General Fusion - Liquid Pb-Li as Blanket

In order to absorb the neutrons emitted from the fusion reaction, a liquid metal, Pb-Li, is used as the blanket. Moreover, the Li element can help to breed the tritium through the reaction, ${}^{7}Li + n \rightarrow {}^{4}He + {}^{3}H + n$, for further fusion reaction. [3]

- Pb-Li liner is spun up in the device to wrap the plasma.
- Steam piston compresses all the things to create fusion.
- Liquid metal liner is extracted for heat exchange purpose.

Figure 10: Image of Liquid Pb.

25 / 26

Introduction to Plasma Physics and Controlled Fusion. Springer, dec 29 2015.

M. Delage, A. Froese, D. Blondal, and D. Richardson.

Progress towards acoustic magnetized target fusion: An overview of the r&d program at general fusion.

In Canadian Nuclear Society - 33rd Annual Conference of the Canadian Nuclear Society and 36th CNS/CNA Student Conference 2012: Building on Our Past... Building for the Future, volume 1, pages 285–297, 2012.

M. Laberge.

Experimental results for an acoustic driver for mtf.

Journal of fusion energy, 28(2):179–182, 2009.

J. Wesson and D. J. Campbell.

Tokamaks.

International Monographs on Ph, oct 13 2011.