MAP569 Machine Learning II

PC8: K-means, Expectation Maximization

K-means algorithm

The K-means algorithm is a procedure which aims at partitioning a data set into K distinct, non-overlapping clusters. Consider $n \ge 1$ observations (X_1, \ldots, X_n) taking values in \mathbb{R}^p . The K-means algorithm seeks to minimize over all partitions $C = (C_1, \ldots, C_K)$ of $\{1, \ldots, n\}$ the following criterion

$$crit(C) = \sum_{k=1}^{K} \frac{1}{2|C_k|} \sum_{a,b \in C_k} ||X_a - X_b||^2,$$

where for all $1 \leq i \leq n$, $1 \leq k \leq K$, $i \in C_k$ if and only if X_i is in the k-th cluster.

Symmetrization

1. Establish that

$$\operatorname{crit}(C) = \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{a,b \in C_k} \langle X_a, X_a - X_b \rangle = \sum_{k=1}^{K} \sum_{a \in C_k} \|X_a - \bar{X}_{C_k}\|^2,$$

where

$$\bar{X}_{C_k} = \frac{1}{|C_k|} \sum_{b \in C_k} X_b.$$

Solution.

Note that

$$\operatorname{crit}(C) = \sum_{k=1}^{K} \frac{1}{2|C_k|} \sum_{a,b \in C_k} ||X_a - X_b||^2,$$

$$= \sum_{k=1}^{K} \frac{1}{2|C_k|} \sum_{a,b \in C_k} \langle X_a - X_b, X_a - X_b \rangle,$$

$$= \sum_{k=1}^{K} \frac{1}{2|C_k|} \left\{ \sum_{a,b \in C_k} \langle X_a - X_b, X_a \rangle + \langle X_b - X_a, X_b \rangle \right\}.$$

$$= \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{a,b \in C_k} \langle X_a - X_b, X_a \rangle.$$

which concludes the proof of the first inequality. For the second inequality, write

$$\begin{split} \sum_{k=1}^{K} \sum_{a \in C_k} \|X_a - \bar{X}_{C_k}\|^2 &= \sum_{k=1}^{K} \sum_{a \in C_k} \langle X_a - \frac{1}{|C_k|} \sum_{b \in C_k} X_b, X_a - \frac{1}{|C_k|} \sum_{c \in C_k} X_c \rangle \,, \\ &= \sum_{k=1}^{K} \frac{1}{|C_k|^2} \sum_{a,b,c \in C_k} \langle X_a - X_b, X_a - X_c \rangle \,, \\ &= \sum_{k=1}^{K} \frac{1}{|C_k|^2} \sum_{a,b,c \in C_k} \langle X_a - X_b, X_a \rangle - \sum_{k=1}^{K} \frac{1}{|C_k|^2} \sum_{a,b,c \in C_k} \langle X_a - X_b, X_c \rangle \,, \end{split}$$

where

$$\sum_{a,b,c \in C_k} \langle X_a - X_b, X_c \rangle = |C_k| \sum_{a,c \in C_k} \langle X_a, X_c \rangle - |C_k| \sum_{b,c \in C_k} \langle X_b, X_c \rangle = 0 \,.$$

Thus,

$$crit(C) = \sum_{k=1}^{K} \sum_{a \in C_k} ||X_a - \bar{X}_{C_k}||^2.$$

Independent observations

Assume that the observations are random and independent. Write, for all $1 \leq a \leq n$, $\mathbb{E}[X_a] = \mu_a \in \mathbb{R}^p$ so that

$$X_a = \mu_a + \varepsilon_a$$
,

with $(\varepsilon_1, \dots, \varepsilon_n)$ centered and independent random variables. For all $1 \leq a \leq n$, define

$$v_a = \operatorname{trace}(\operatorname{cov}(X_a))$$
.

1. Check that the expected value of the criterion is

$$\mathbb{E}[\operatorname{crit}(C)] = \frac{1}{2} \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{a,b \in C_k} (\|\mu_a - \mu_b\|^2 + v_a + v_b) \mathbb{1}_{a \neq b}.$$

Solution.

The expectation of crit(C) is given by

$$\mathbb{E}\left[\text{crit}(C)\right] = \frac{1}{2} \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{a,b \in C_k} \mathbb{E}\left[\|X_a - X_b\|^2 \right].$$

Let $a, b \in C_k, a \neq b$,

$$\begin{split} \mathbb{E}\left[\|X_a - X_b\|^2\right] &= \mathbb{E}\left[\|\mu_a - \mu_b + \varepsilon_a - \varepsilon_b\|^2\right] \,, \\ &= \mathbb{E}\left[\|\mu_a - \mu_b\|^2\right] + \mathbb{E}\left[\|\varepsilon_a - \varepsilon_b\|^2\right] + 2\underbrace{\mathbb{E}\left[\langle \mu_a - \mu_b, \varepsilon_a - \varepsilon_b\rangle\right]}_{=0}, \\ &= \|\mu_a - \mu_b\|^2 + \mathbb{E}\left[\|\varepsilon_a\|^2\right] + \mathbb{E}\left[\|\varepsilon_b\|^2\right] + 2\underbrace{\mathbb{E}\left[\langle \varepsilon_a, \varepsilon_b\rangle\right]}_{=0}, \end{split}$$

since ε_a and ε_b are independent and centred. Finally, since for all $a \in C_k$, $\mathbb{E}\left[\|\varepsilon_a\|^2\right] = v_a$,

$$\mathbb{E}\left[\operatorname{crit}(C)\right] = \frac{1}{2} \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{a,b \in C_k} \left(\left\|\mu_a - \mu_b\right\|^2 + v_a + v_b\right) \mathbbm{1}_{a \neq b}.$$

2. What is the value of $\mathbb{E}[\operatorname{crit}(C)]$ when for all $1 \leq k \leq K$, there exists $m_k \in \mathbb{R}^p$ such that for all $a \in C_k$, $\mu_a = m_k$?

Solution.

In this setting,

$$\mathbb{E}\left[\operatorname{crit}(C)\right] = \frac{1}{2} \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{a,b \in C_k} \left(v_a + v_b\right) \mathbbm{1}_{a \neq b} \,,$$

where

$$\begin{split} \frac{1}{|C_k|} \sum_{a,b \in C_k} \left(v_a + v_b \right) \mathbbm{1}_{a \neq b} &= \frac{1}{|C_k|} \left(\sum_{a,b \in C_k} \left(v_a + v_b \right) - \sum_{a,b \in C_k} \left(v_a + v_b \right) \mathbbm{1}_{a = b} \right) \,, \\ &= \frac{1}{|C_k|} \left(2|C_k| \sum_{a \in C_k} v_a - 2 \sum_{a \in C_k} v_a \right) \,, \\ &= \frac{2(|C_k| - 1)}{|C_k|} \sum_{a \in C_k} v_a \,. \end{split}$$

Consequently, if, for all $a \in C_k$, $\mu_a = m_k$,

$$\mathbb{E}\left[\operatorname{crit}(C)\right] = \sum_{k=1}^{K} \frac{|C_k| - 1}{|C_k|} \sum_{a \in C_k} v_a.$$

Mixture model

Assume now that there exists a partition $C^* = (C_1^*, \dots, C_K^*)$ such that there exist m_1^*, \dots, m_K^* in \mathbb{R}^p and $\gamma_1^*, \dots, \gamma_K^*$ in \mathbb{R}^* satisfying $\mu_a = m_k^*$ and $v_a = \gamma_k^*$ for all $a \in C_k^*$ and $k = 1, \dots, K$. This section investigates under which condition the expected value of the K-means criterion is minimum at C^* .

1. What is the value of $\mathbb{E}[\operatorname{crit}(C^*)]$? Solution.

By the previous question,

$$\mathbb{E}\left[\operatorname{crit}(C)\right] = \sum_{k=1}^{K} \frac{|C_k| - 1}{|C_k|} \sum_{a \in C_k} v_a = \sum_{k=1}^{K} \frac{|C_k| - 1}{|C_k|} |C_k| \gamma_k = \sum_{k=1}^{K} (|C_k| - 1) \gamma_k.$$

2. In the special case where $\gamma_1^* = \ldots = \gamma_K^* = \gamma$, which partition $C = (C_1, \ldots, C_K)$ minimizes $\mathbb{E}[\operatorname{crit}(C)]$ under the constraint $\gamma_1 = \ldots = \gamma_K = \gamma$? Solution.

For any partition C,

$$\mathbb{E}\left[\operatorname{crit}(C)\right] = \frac{1}{2} \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{a,b \in C_k} \left(\|\mu_a - \mu_b\|^2 \right) + \frac{1}{2} \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{a,b \in C_k} \left(v_a + v_b \right) \mathbb{1}_{a \neq b},$$

$$= \frac{1}{2} \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{a,b \in C_k} \left(\|\mu_a - \mu_b\|^2 \right) + \sum_{k} \frac{|C_k| - 1}{|C_k|} \sum_{a \in C_k} \gamma,$$

$$= \frac{1}{2} \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{a,b \in C_k} \left(\|\mu_a - \mu_b\|^2 \right) + \gamma(n - K).$$

In particular, for C^* ,

$$\mathbb{E}\left[\operatorname{crit}(C^*)\right] = \gamma(n-K)\,,$$

which leads to

$$\mathbb{E}\left[\operatorname{crit}(C)\right] - \mathbb{E}\left[\operatorname{crit}(C^*)\right] = \frac{1}{2} \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{a,b \in C_k} \left(\|\mu_a - \mu_b\|^2 \right) \geqslant 0.$$

The minimum of $\mathbb{E}\left[\mathrm{crit}(C)\right]$ is reached at $C=C^*$. To prove that this minimum is unique under the constraint, choose C such that $\mathbb{E}\left[\mathrm{crit}(C)\right]=\mathbb{E}\left[\mathrm{crit}(C^*)\right]$. Then, for all k, and for all $a,b\in C_k$, $\mu_a=\mu_b$ which implies that $C=C^*$ (if all μ_k are different).

3. Assume now that C^* contains K=3 groups of size s (with s even),

$$m_1 = (1, 0, 0)^T$$
, $m_2 = (0, 1, 0)^T$, $m_3 = (0, 1 - \tau, \sqrt{1 - (1 - \tau)^2})^T$,

with $\tau > 0$, and

$$\gamma_1 = \gamma_+, \quad \gamma_2 = \gamma_3 = \gamma_-.$$

What is the value of $\|\mu_2 - \mu_3\|^2$? Solution.

Simple algebra leads to $\|\mu_2 - \mu_3\|^2 = 2\tau$.

4. Compute $\mathbb{E}[\operatorname{crit}(C^*)]$. Solution.

By question 1,

$$\mathbb{E}\left[\text{crit}(C^*)\right] = \sum_{k=1}^{K} (|C_k| - 1)\gamma_k = (s - 1)(\gamma_+ + 2\gamma_-).$$

5. Define C' obtained by splitting C_1^* into two groups C_1' , C_2' of equal size s/2 and by merging C_2^* and C_3^* into a single group C_3' of size 2s. Check that

$$\mathbb{E}[\operatorname{crit}(C')] = s(\gamma_+ + 2\gamma_- + \tau) - (2\gamma_+ + \gamma_-).$$

Solution.

Write

$$\mathbb{E}\left[\operatorname{crit}(C')\right] = \frac{1}{2} \sum_{k=1}^{3} \frac{1}{|C'_{k}|} \sum_{a,b \in C'_{k}} \left(\|\mu_{a} - \mu_{b}\|^{2} + v_{a} + v_{b} \right) \mathbb{1}_{a \neq b},$$

$$= 2 \left(\frac{1}{2} \frac{1}{s/2} \sum_{a,b \in C'_{k}} (2\gamma_{+}) \mathbb{1}_{a \neq b} \right) + \frac{1}{4s} \sum_{a,b \in C'_{k}} \|\mu_{a} - \mu_{b}\|^{2} + \frac{1}{4s} \sum_{a,b \in C'_{k}} (2\gamma_{-}) \mathbb{1}_{a \neq b},$$

$$= 2\gamma_{+} \left(\frac{s}{2} - 1 \right) + \frac{2s^{2}}{4s} \|\mu_{2} - \mu_{3}\|^{2} + \gamma_{-} (2s - 1),$$

$$= 2\gamma_{+} \left(\frac{s}{2} - 1 \right) + \tau s + \gamma_{-} (2s - 1).$$

6. Under which assumption $\mathbb{E}[\operatorname{crit}(C^*)] < \mathbb{E}[\operatorname{crit}(C')]$? Solution.

According to question 4 and 5,

$$\mathbb{E}\left[\operatorname{crit}(C^*)\right] < \mathbb{E}\left[\operatorname{crit}(C')\right] \Leftrightarrow (s-1)(\gamma_+ + 2\gamma_-) < 2\gamma_+(\frac{s}{2} - 1) + \tau s + \gamma_-(2s-1),$$

$$\Leftrightarrow \gamma_+ - \gamma_- < s\tau,$$

$$\Leftrightarrow \|\mu_2 - \mu_3\|^2 > 2\left(\frac{\gamma_+ - \gamma_-}{s}\right).$$

Expectation Maximization algorithm

In the case where we are interested in estimating unknown parameters $\theta \in \mathbb{R}^m$ characterizing a model with missing data, the Expectation Maximization (EM) algorithm (Dempster et al. 1977) can be used when the joint distribution of the missing data X and the observed data Y is explicit. For all $\theta \in \mathbb{R}^m$, let p_{θ} be the probability density function of (X, Y) when the model is parameterized by θ with respect to a given reference measure μ . The EM algorithm aims at computing

iteratively an approximation of the maximum likelihood estimator which maximizes the observed data loglikelihood:

$$\ell(\theta; Y) = \log p_{\theta}(Y) = \log \int f_{\theta}(x, Y) \mu(\mathrm{d}x).$$

As this quantity cannot be computed explicitly in general cases, the EM algorithm finds the maximum likelihood estimator by iteratively maximizing the expected complete data loglikelihood. Start with an inital value $\theta^{(0)}$ and let $\theta^{(t)}$ be the estimate at the t-th iteration for $t \ge 0$, then the next iteration of EM is decomposed into two steps.

1. **E step**. Compute the expectation of the complete data loglikelihood, with respect to the conditional distribution of the missing data given the observed data parameterized by $\theta^{(t)}$:

$$Q(\theta, \theta^{(t)}) = \mathbb{E}_{\theta^{(t)}} \left[\log p_{\theta}(X, Y) | Y \right].$$

2. M step. Determine $\theta^{(t+1)}$ by maximizing the function Q:

$$\theta^{(t+1)} \in \operatorname{argmax}_{\theta} Q(\theta, \theta^{(t)})$$
.

1. Prove the following crucial property motivates the EM algorithm. For all $\theta, \theta^{(t)}$,

$$\ell(Y;\theta) - \ell(Y;\theta^{(t)}) \geqslant Q(\theta,\theta^{(t)}) - Q(\theta^{(t)},\theta^{(t)}).$$

Solution.

This may be proved by noting that

$$\ell(Y; \theta) = \log \left(\frac{p_{\theta}(X, Y)}{p_{\theta}(X|Y)} \right).$$

Considering the conditional expectation of both terms given Y when the parameter value is $\theta^{(t)}$ yields

$$\ell(Y; \theta) = Q(\theta, \theta^{(t)}) - \mathbb{E}_{\theta^{(t)}}[\log p_{\theta}(X|Y)|Y].$$

Then

$$\ell(Y;\theta) - \ell(Y;\theta^{(t)}) = Q(\theta,\theta^{(t)}) - Q(\theta^{(t)},\theta^{(t)}) + H(\theta,\theta^{(t)}) - H(\theta^{(t)},\theta^{(t)}),$$

where

$$H(\theta, \theta^{(t)}) = -\mathbb{E}_{\theta^{(t)}}[\log p_{\theta}(X|Y)|Y].$$

The proof is completed by noting that

$$H(\theta, \theta^{(t)}) - H(\theta^{(t)}, \theta^{(t)}) \geqslant 0$$

as this difference if a Kullback-Leibler divergence.

In the following, $X=(X_1,\ldots,X_n)$ and $Y=(Y_1,\ldots,Y_n)$ where $\{(X_i,Y_i)\}_{1\leqslant i\leqslant n}$ are i.i.d. in $\{-1,1\}\times\mathbb{R}^d$. For $k\in\{-1,1\}$, write $\pi_k=\mathbb{P}(X_1=k)$. Assume that, conditionally on the event $\{X_1=k\}$, Y_1 has a Gaussian distribution with mean $\mu_k\in\mathbb{R}^d$ and covariance matrix $\Sigma\in\mathbb{R}^{d\times d}$. In this case, the parameter $\theta=(\pi_1,\mu_1,\mu_{-1},\Sigma)$ belongs to the set $\Theta=[0,1]\times\mathbb{R}^d\times\mathbb{R}^d\times\mathbb{R}^d\times\mathbb{R}^{d\times d}$.

1. Write the complete data loglikelihood. Solution.

The complete data loglikelihood is given by

$$\begin{split} \log p_{\theta}\left(X,Y\right) &= -\frac{nd}{2} \log(2\pi) + \sum_{i=1}^{n} \sum_{k \in \{-1,1\}} \mathbbm{1}_{X_{i} = k} \left(\log \pi_{k} - \frac{\log \det \Sigma}{2} - \frac{1}{2} \left(Y_{i} - \mu_{k}\right)^{T} \Sigma^{-1} \left(Y_{i} - \mu_{k}\right) \right) \,, \\ &= -\frac{nd}{2} \log(2\pi) - \frac{n}{2} \log \det \Sigma + \left(\sum_{i=1}^{n} \mathbbm{1}_{X_{i} = 1} \right) \log \pi_{1} + \left(\sum_{i=1}^{n} \mathbbm{1}_{X_{i} = -1} \right) \log(1 - \pi_{1}) \\ &- \frac{1}{2} \sum_{i=1}^{n} \mathbbm{1}_{X_{i} = 1} \left(Y_{i} - \mu_{1}\right)^{T} \Sigma^{-1} \left(Y_{i} - \mu_{1}\right) - \frac{1}{2} \sum_{i=1}^{n} \mathbbm{1}_{X_{i} = -1} \left(Y_{i} - \mu_{-1}\right)^{T} \Sigma^{-1} \left(Y_{i} - \mu_{-1}\right) \,. \end{split}$$

 \Box

2. Let $\theta^{(t)}$ be the current parameter estimate. Compute $\theta \mapsto Q(\theta, \theta^{(t)})$. Solution.

Write $\omega_t^i = \mathbb{P}_{\rho(t)}(X_i = 1|Y_i)$. The intermediate quantity of the EM algorithm is given by

$$Q(\theta, \theta^{(t)}) = -\frac{nd}{2}\log(2\pi) - \frac{n}{2}\log\det\Sigma + \left(\sum_{i=1}^{n}\omega_{t}^{i}\right)\log\pi_{1} + \sum_{i=1}^{n}\left(1 - \omega_{t}^{i}\right)\log(1 - \pi_{1})$$
$$-\frac{1}{2}\sum_{i=1}^{n}\omega_{t}^{i}\left(Y_{i} - \mu_{1}\right)^{T}\Sigma^{-1}\left(Y_{i} - \mu_{1}\right) - \frac{1}{2}\sum_{i=1}^{n}(1 - \omega_{t}^{i})\left(Y_{i} - \mu_{-1}\right)^{T}\Sigma^{-1}\left(Y_{i} - \mu_{-1}\right).$$

3. Compute $\theta^{(t+1)}$.

Solution.

The gradient of $Q(\theta, \theta^{(t)})$ with respect to θ is therefore given by

$$\begin{split} &\frac{\partial Q(\theta,\theta^{(t)})}{\partial \pi_1} = \frac{\sum_{i=1}^n \omega_t^i}{\pi_1} - \frac{n - \sum_{i=1}^n \omega_t^i}{1 - \pi_1} \,, \\ &\frac{\partial Q(\theta,\theta^{(t)})}{\partial \mu_1} = \sum_{i=1}^n \omega_t^i \left(2\Sigma^{-1} Y_i - 2\Sigma^{-1} \mu_1 \right) \,, \\ &\frac{\partial Q(\theta,\theta^{(t)})}{\partial \mu_{-1}} = \sum_{i=1}^n (1 - \omega_t^i) \left(2\Sigma^{-1} Y_i - 2\Sigma^{-1} \mu_{-1} \right) \,, \\ &\frac{\partial Q(\theta,\theta^{(t)})}{\partial \mu_{-1}} = \frac{n}{2} \Sigma - \frac{1}{2} \sum_{i=1}^n \omega_t^i \left(Y_i - \mu_1 \right) \left(Y_i - \mu_1 \right)^T - \frac{1}{2} \sum_{i=1}^n (1 - \omega_t^i) \left(Y_i - \mu_{-1} \right)^T \,. \end{split}$$

Then, $\theta^{(t+1)}$ is defined as the only parameter such that all these equations are set to 0. It is given by

$$\begin{split} \widehat{\pi}_{1}^{(t+1)} &= \frac{1}{n} \sum_{i=1}^{n} \omega_{t}^{i} \,, \\ \widehat{\mu}_{1}^{(t+1)} &= \frac{1}{\sum_{i=1}^{n} \omega_{t}^{i}} \sum_{i=1}^{n} \omega_{t}^{i} \,Y_{i} \,, \\ \widehat{\Sigma}^{(t+1)} &= \frac{1}{n} \sum_{i=1}^{n} \omega_{t}^{i} \,(Y_{i} - \mu_{1}) \,(Y_{i} - \mu_{1})^{T} + \frac{1}{n} \sum_{i=1}^{n} (1 - \omega_{t}^{i}) \,(Y_{i} - \mu_{-1}) \,(Y_{i} - \mu_{-1})^{T} \,. \end{split}$$