Student: Arfaz Hossain Course: Math 101 A04 Spring 2022

Instructor: Muhammad Awais Book: Thomas' Calculus Early Transcendentals, 14e

Date: 02/11/22 **Time:** 20:

Find the area of the region enclosed by the curve $y = 15x \sin x$ and the x-axis (see the accompanying figure) for the following intervals.

a. $0 \le x \le \pi$

b. $\pi \le x \le 2\pi$

c. $2\pi \le x \le 3\pi$

d. What pattern do you see here? What is the area between the curve and the x-axis for $n\pi \le x \le (n+1)\pi$, n an arbitrary nonnegative integer?

a. The antiderivative of a function represents the area under the curve. To find the area under the curve from 0 to π for the

equation $y = 15x \sin x$, evaluate $15 \int_{0}^{\infty} x \sin x \, dx$. Use the integration by parts formula, $\int u \, dv = uv - \int v \, du$, to integrate.

Good choices for u and dv are u = x and $dv = \sin x dx$.

Use integration by parts to find $\int x \sin x \, dx$ with u = x and $dv = \sin x \, dx$. First determine du.

du = dx

Next, find the simplest antiderivative of sin x.

$$dv = \sin x dx$$

$$\int dv = \int \sin x dx$$

$$v = -\cos x$$

With u = x, du = dx, and $v = -\cos x$, rewrite the original integral using the formula for integration by parts,

$$\int u \, dv = uv - \int v \, du.$$

$$\int x \sin x \, dx = -x \cos x - \int -\cos x \, dx$$
$$= -x \cos x + \int \cos x \, dx$$

Therefore, $\int x \sin x \, dx = -x \cos x + \int \cos x \, dx = -x \cos x + \sin x$.

Using this result, evaluate $15 \int_{0}^{\pi} x \sin x dx$.

$$15 \int_{0}^{\pi} x \sin x \, dx = 15[-x \cos x + \sin x]_{0}^{\pi}$$

$$= 15[-(\pi) \cos(\pi) + \sin(\pi) - (-(0) \cos(0) + \sin(0))]$$

$$= 15\pi$$

Thus, the area of the region enclosed by the curve $y = 15x \sin x$ from 0 to π is 15π .

b. To find the area between the curve and the x-axis from π to 2π for the equation $y = 15x \sin x$, evaluate $15 \int_{\pi}^{\pi} x \sin x \, dx$.

Use the result of the integration from part (a) to evaluate $15 \int_{-\infty}^{\infty} x \sin x \, dx$.

$$15 \int_{\pi}^{2\pi} x \sin x \, dx = 15[-x \cos x + \sin x]_{\pi}^{2\pi}$$
$$= 15[-(2\pi)\cos(2\pi) + \sin(2\pi) - (-(\pi)\cos(\pi) + \sin(\pi))]$$
$$= -45\pi$$

Recall that area cannot be a negative value. While the value of the integral from π to 2π is -45π , the area is $|-45\pi|$ which is 45π .

Thus, the area of the region enclosed by the curve $y = 15x \sin x$ from π to 2π is 45π .

c. To find the area under the curve from 2π to 3π for the equation $y = 15x \sin x$, evaluate $15 \int_{2\pi}^{3\pi} x \sin x \, dx$.

Use the result of the integration from part (a) to evaluate $15 \int_{2\pi}^{3\pi} x \sin x dx$.

$$15 \int_{2\pi}^{3\pi} x \sin x \, dx = 15[-x \cos x + \sin x]_{2\pi}^{3\pi}$$

$$= 15[-(3\pi)\cos(3\pi) + \sin(3\pi) - (-(2\pi)\cos(2\pi) + \sin(2\pi))]$$

$$= 75\pi$$

Thus, the area of the region enclosed by the curve $y = 15x \sin x$ from 2π to 3π is 75π .

d. Use the fact that the intervals in parts (a), (b), and (c) correspond to n = 0, n = 1, and n = 2, respectively, to find an expression for the area in terms of n.

n	Area
0	$15\pi = 15 \cdot 1 \cdot \pi$
1	$45\pi = 15 \cdot 3 \cdot \pi$
2	$75\pi = 15 \cdot 5 \cdot \pi$

Describe the pattern.

As the value of n increases by 1, the factor in the area increases by 2 and is an odd number.

Determine an expression for the factor in the area in terms of n.

n	Area	
0	1	
1	3	
2	5	
n	2n + 1	

Thus, the area between the curve and the x-axis for $n\pi \le x \le (n+1)\pi$ is $15(2n+1)\pi$.