

# **AMBO TONY METER**

# Datasheet

Revision – 0.1

#### **Contact Information:**

**AMBO Technology** 

New Taipei City, Taiwan

Website: www.ambo.com.tw

Email: tyrone@ambo.com.tw

Phone: +886-2-3234-0520



### Ordering Information:



#### Features:

- Small form factor: 13.22 x 22.27 x 3.8 mm
- 1% error for voltage, current, power, energy measurement.
- Up to 40 A (RMS).
- Four high-accuracy channels for monitoring up to four loads
- Four 16-bit ADC channels for residual current detection
- V<sub>ref</sub> output pin to offset external inputs.
- Zero-crossing detection output.
- Operating voltage range 2.7 3.3V.
- Current consumption: 25 mA.
- 14 IO pins (with 2 open-drain pins).
- Two serial port interfaces.
- Easy to use interfaces: AT commands and Modbus RTU (optional).
- Control function supports both latching and non-latching relays.
- Frequency measurement

#### Introduction:



Figure 1: Module overview



Tony Meter is a compact solution to control and monitor AC loads. Each module has 4 channels. Roughly speaking, a Tony Meter is equivalent to 4 independent single-phase meters. Each channel can monitor the basic parameters of its load: voltage, current, power, and delivered energy, as shown in Figure 2. Besides, the module provides some functions to control AC loads: zero-crossing, overload protection, no-load protection, residual current protection.



Figure 2: Tony meter measurement function.

The configuration of the module is flexible, with plenty of options. The flexibility helps the module adapt to any design quickly.



Figure 3: Module connection

The diagram on the right of Figure 3 shows an example of the module connection. A host controller communicates with the module by a *UART bus*. Through this bus, the host can read all parameters of the load by using AT commands or Modbus RTU. On the other hand, the diagram on the left of Figure 3 shows



another case of module usage. In which, the host control the relay directly by using the *Zero-cross* signal from the module.

### Dimensions:



1. 60mm
1. 00mm
2. 20 m
1. 60mm
1. 60mm
1. 60mm
1. 60mm
2. 20 m
1. 60mm
1. 60m

Figure 4: Module dimensions

## Pin Descriptions



Figure 5: Module pinout



| Pin | Name | Description                            |
|-----|------|----------------------------------------|
| 1   | VREF | Referent voltage (0.6 V)               |
| 2   | GND  | GND                                    |
| 3   | I4N  | Channel 4 negative pin                 |
| 4   | I3N  | Channel 3 negative pin                 |
| 5   | I2N  | Channel 2 negative pin                 |
| 6   | I1N  | Channel 1 negative pin                 |
| 7   | GND  | GND                                    |
| 8   | VCC  | Isolated 3.3VDC (board's power supply) |
| 9   | 1013 | GPIO (Open drain)                      |
| 10  | IO12 | GPIO                                   |
| 11  | 1011 | GPIO/ADC channel 0                     |
| 12  | 1010 | GPIO/ADC channel 1                     |
| 13  | 109  | GPIO/ADC channel 2                     |
| 14  | 108  | GPIO/ADC channel 3/UART2 TX            |
| 15  | 107  | GPIO/UART2 RX                          |
| 16  | 106  | GPIO (Open drain)                      |
| 17  | 105  | UART1 RX                               |
| 18  | 104  | UART1 TX                               |
| 19  | 103  | GPIO                                   |
| 20  | 102  | GPIO                                   |
| 21  | 101  | GPIO                                   |
| 22  | 100  | GPIO                                   |
| 23  | VCC  | Isolated 3.3VDC (board's power supply) |
| 24  | GND  | AC Line.                               |
| 25  | IP1  | Channel 1 positive pin.                |
| 26  | IP2  | Channel 2 positive pin.                |
| 27  | IP3  | Channel 3 positive pin.                |
| 28  | IP4  | Channel 4 positive pin.                |
| 29  | VIN  | AC Neutral.                            |

Table 1: Pin function table

# **Technical Specifications**

| DC specification         |                             |                    |          |          |
|--------------------------|-----------------------------|--------------------|----------|----------|
| Operating voltage        | 2.7 - 3.6V                  |                    |          |          |
| Current consumption      | 25 mA                       |                    |          |          |
| AC Measurement           |                             |                    |          |          |
|                          | Range                       | Display Resolution | Accuracy | Channels |
| Voltage                  | 90 – 380 V                  | 10 mV              | 1%       | 1        |
| Current                  | 0.05 – 10 A                 | 1 mA               | 1%       | 4        |
| Power                    | 4.5 – 3800 W                | 10 mW              | 1%       | 4        |
| Energy                   | 0 – 100000 Wh               | 1 Wh               | 1%       | 4        |
| ADC specification        |                             |                    |          |          |
| Resolution               | 16 bits                     |                    |          |          |
| Vref                     | 0.6 V                       |                    |          |          |
| Range                    | 3 mVRMS – 400 mVRMS         |                    |          |          |
| Zero-crossing specificat | Zero-crossing specification |                    |          |          |



| Error             | ±0.3 ms                |
|-------------------|------------------------|
| Output frequency  | 25 Hz (for 50 Hz grid) |
| Interfaces        |                        |
| Serial port       | 2 ports <sup>1</sup>   |
| Baudrate          | 19200 bps              |
| Temperature       |                        |
| 40 A (continuous) | 60° C (with shield)    |

## Sample Application

Figure 6 shows an example application of Tony Meter. The module in the sample application controls 4 relays through 4 IO pins: 0, 1, 2, 3.

#### Sample config:

| AT+ENABLE=0,0           | Disable all channels to prevent unexpected     |
|-------------------------|------------------------------------------------|
| AT+ENABLE=1,0           | conflicts.                                     |
| AT+ENABLE=2,0           |                                                |
| AT+ENABLE=3,0           |                                                |
| AT+ADC=0,3,0            | Channel 0 uses 13 without reverse.             |
| AT+ADC=1,2,0            | Channel 1 uses I2 without reverse.             |
| AT+ADC=2,1,0            | Channel 2 uses I1 without reverse.             |
| AT+ADC=3,0,0            | Channel 3 uses IO without reverse.             |
| AT+RELAYPINS=0,0,3      | Channel 0 uses IO3.                            |
| AT+RELAYPINS=1,0,0      | Channel 1 uses IOO.                            |
| AT+RELAYPINS=2,0,1      | Channel 2 uses IO1.                            |
| AT+RELAYPINS=3,0,2      | Channel 3 uses IO2.                            |
| AT+ONDELAY=0,90         | The relay set time is 15 ms                    |
| AT+ONDELAY=1,90         | The relay set time is 15 ms.                   |
| AT+ONDELAY=2,90         | The relay set time is 15 ms.                   |
| AT+ONDELAY=3,90         | The relay set time is 15 ms.                   |
| AT+OFFDELAY=0,90        | The relay reset time is 15 ms.                 |
| AT+OFFDELAY=1,90        | The relay reset time is 15 ms.                 |
| AT+OFFDELAY=2,90        | The relay reset time is 15 ms.                 |
| AT+OFFDELAY=3,90        | The relay reset time is 15 ms.                 |
| AT+RESDETECT=0,0,130,30 | The residual detection threshold is 30 mA, and |
| AT+ENABLE=0,1           | the gain is 0.13.                              |
| AT+ENABLE=1,1           | Enable all channels, apply the configurations. |
| AT+ENABLE=2,1           |                                                |
| AT+ENABLE=3,1           |                                                |

Table 2: Sample Configuration

<sup>1</sup> The secondary port is not provided in the standard firmware, contact us for a customized firmware.





Figure 6: Sample application



## Testing

### Measurement Accuracy

Test machine: KP-S3000-12 Three-phase energy meter test bench.









### Thermal Test



Figure 7: Thermal test position



Figure 8: Thermal test board (bottom)



| Current (A) | Max Temperature (°C) |
|-------------|----------------------|
| 30          | 50                   |
| 40          | 60                   |

# Options

| Number of | The maximum current of |
|-----------|------------------------|
| channels  | each channel (A)       |
| 1         | 10                     |
| 1         | 20                     |
| 1         | 30                     |
| 1         | 40                     |
| 2         | 10                     |
| 2         | 20                     |
| 3         | 10                     |
| 4         | 10                     |
| 1         | СТ                     |
| 2         | СТ                     |
| 3         | СТ                     |
| 4         | СТ                     |

# **Revision History**

| Version | Date       | Description   |
|---------|------------|---------------|
| 0.1     | 13/01/2016 | First version |
|         |            |               |