Problem set-3 for MA1201

Prepared by Dr. Asit Saha

Lecture-9: Class Problems: (Linear differential equations of higher order)

1. Solve:
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$$
. Ans: $y = c_1e^{2x} + c_2e^{3x}$.

2. Solve:
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$$
. Ans: $y = (c_1 + c_2x)e^{2x}$.

3. Solve:
$$\frac{d^3y}{dx^3} - 3\frac{d^2y}{dx^2} + 4y = 0$$
. Ans: $y = (c_1 + c_2x)e^{2x} + c_3e^{-x}$

4. Solve:
$$(D^2 - 2D + 2)y = 0$$
, where $D \equiv \frac{d}{dx}$ Ans: $y = e^x \{c_1 \cos x + c_2 \sin x .\}$

Homework:

1. Solve:
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 0$$
. Ans: $y = (c_1 + c_2x)e^{-3x}$

2. Solve:
$$\frac{d^2y}{dx^2} + 4y = 0$$
. Ans: $y = c_1 \cos 2x + c_2 \sin 2x$.

3. Solve:
$$(D^2 - D + 1)y = 0$$
, where $D \equiv \frac{d}{dx}$.

Lecture-10: Class Problems: (Linear differential equations of higher order)

1. Solve: Solve :
$$(D^3 + D^2 + 4D + 4)y = 0$$
, where $D \equiv \frac{d}{dx}$.

2. Solve:
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$$
.

3. Solve:
$$(D-2)^3(D^2+1)y=0$$
, where $D \equiv \frac{d}{dx}$.

4. Solve:
$$(D^2 + 5D + 6)y = e^{2x}$$
, where $D \equiv \frac{d}{dx}$, Ans: $y = c_1 e^{2x} + c_2 e^{-3x} + \frac{1}{20} e^{2x}$.

Homework:

1. Solve:
$$\frac{d^3y}{dx^3} + 7\frac{d^2y}{dx^2} - 6y = 0$$
.

2. Solve
$$(D^2 + 5D + 6)y = e^{-2x}$$
, where $D \equiv \frac{d}{dx}$, Ans: $y = c_1 e^{2x} + c_2 e^{-3x} + x e^{-2x}$.

Lecture-11: Class Problems: (Linear differential equations of higher order)

1. Solve:
$$\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = e^{2x} + \sin 2x$$
, $PI = \frac{1}{18}e^{2x} + \frac{6}{100}\cos 2x - \frac{8}{100}\sin 2x$.

2. Solve:
$$\frac{d^2y}{dx^2} - 4y = x^2$$
. $PI = -\frac{1}{8}(2x^2 + 1)$.

3. Solve:
$$(D^2 - 4D + 3)y = \sin 3x \cos 2x$$
, where $D \equiv \frac{d}{dx}$.

Homework:

1. Solve:
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4$$
, $PI = \frac{x^3}{3} + 4x - 4$.

2. Solve:
$$\frac{d^3y}{dx^3} + 4\frac{dy}{dx} = \sin 2x$$
, $PI = -\frac{1}{8}x \sin 2x$.

Lecture-12: Class Problems: (Linear differential equations of higher order)

1. Solve:
$$(D^2 - 2D + 4)y = e^x \cos x$$
, $PI = \frac{1}{2}e^x \cos x$.

2. Solve:
$$(D^2 - 2D + 1)y = xe^x \sin x$$
, $PI = e^x (-2\cos x - x\sin x)$.

3. *Solve:
$$(D^2 - 1)y = x \sin 3x$$
, where $D \equiv \frac{d}{dx}$.

Homework:

1. Solve:
$$(D^3 + 1)y = \cos(2x - 1)$$
, $PI = \frac{1}{65}\cos(2x - 1) - \frac{8}{65}\sin(2x - 1)$.

2. *Solve:
$$(D^2 + 1)y = x \sin^2 x$$
, where $D \equiv \frac{d}{dx}$.

Problems for Remedial Class:

1. Solve :
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$$
.

2. Solve:
$$\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 16y = 0$$
.

3. Solve:
$$(D-2)^2y = e^{2x} + \sin 2x$$
, where $D \equiv \frac{d}{dx}$

4. Solve:
$$\frac{d^2y}{dx^2} + 9y = 3x^3$$
.