M1 UPEM - Analyse numérique des EDP

Bastien SAUVAGE et Guillaume ROUMAGE

Semestre 1 - 2018/2019

Partie théorique 1

Question 1 1.1

Nous considérons 6 corps que nous noterons P_i avec $1 \le i \le 6$. Nous devons considérer un corps fixe sur lequel nous fixerons un repère fixe R_G . Notons G le centre de masse du soleil et prenons G comme origine de notre repère fixe R_G (repère galiléen).

On pose :
$$\overrightarrow{q_i} = \overrightarrow{GP_i}, q_i = ||\overrightarrow{q_i'}||, \overrightarrow{V_{P_i/R_G}} = \overrightarrow{q_i}, 1 \le i \le 6, \overrightarrow{q_{ij}} = \overrightarrow{q_j} - \overrightarrow{q_j} = \overrightarrow{P_iP_j} = q_{ij}\overrightarrow{e_{ij}}, q_{ij} = ||\overrightarrow{q_{ij}}||$$

Soit R_i les repères relatifs attachés au centre de chaque corps qui se déplace autour du Soleil.

Appliquons le principe fondamental de la dynamique, avec m_i la masse du i-ème corps :

$$m_i \overrightarrow{\Gamma_{i/R_g}} = \sum \overrightarrow{F_{\rightarrow P_i}} = \sum_{j=1, i \neq j}^6 \overrightarrow{F_{P_j \rightarrow P_i}} = \sum_{j=1, i \neq j}^6 G_{m_i m_j} \frac{\overrightarrow{q_{ij}}}{q_{ij}^3}$$

Soit avec les notations de l'énoncé :
$$m_i\ddot{q}_i = \sum_{j=1,i\neq j}^6 G_{m_im_j} \frac{q_j-q_i}{||q_j-q_i||^3} \Leftrightarrow \ddot{q}_i = \sum_{j=1,i\neq j}^6 -G_{m_j} \frac{q_i-q_j}{||q_i-q_j||^3}$$

Question 2

On a p_i qui est la quantité de mouvement, donc $p_i = m_i v_i$.

On a $\frac{1}{2} \sum_{i=1}^{6} \frac{1}{m_i} ||p_i^2|| = \sum_{i=1}^{6} \frac{1}{2} m_i ||v_i||^2$. Comme $\frac{1}{2} m_i ||v_i||^2$ est l'énergie cinétique du i-ème corps alors $\frac{1}{2}\sum_{i=1}^{6}\frac{1}{m_{i}}||p_{i}^{2}||$ est l'énergie cinétique du système.

De plus, $-\sum_{i=1}^{5}\sum_{j=i+1}^{6}G\frac{m_im_j}{||g_i-q_j||}$ est l'énergie potentielle du système.

1.3 Question 3

Soit
$$H(p,q) = K(p) + U(q)$$
. On a
$$\begin{cases} p'(t) = -\nabla U(q(t)) \\ q'(t) = \nabla K(p(t)) \end{cases}$$

On pose $\frac{d}{dt}(||v_i(t)||^2) = 2v_i(t)$ et

$$\frac{d}{dt} \left(\frac{1}{||q_i(t) - q_j(t)||} \right) = \frac{d}{dt} \left(\frac{1}{\sqrt{\langle q_i(t) - q_j(t), q_i(t) - q_j(t) \rangle}} \right) = \frac{-\frac{2(q_i(t) - q_j(t))}{2\sqrt{\langle q_i(t) - q_j(t), q_i(t) - q_j(t) \rangle}}}{||q_i(t) - q_j(t)||^2} = -\frac{q_i(t) - q_j(t)}{||q_i(t) - q_j(t)||^3}$$

Donc
$$p_i(t) = \sum_{j=i+1}^{6} G \frac{m_i m_j}{||q_i(t) - q_j(t)||} \Leftrightarrow m_i v_i(t) = \sum_{j=i+1}^{6} G \frac{m_i m_j}{||q_i(t) - q_j(t)||} \Leftrightarrow v_i(t) = \sum_{j=i+1}^{6} G \frac{m_j}{||q_i(t) - q_j(t)||}$$

En dérivant on obtient : $v_i'(t) = \sum_{j=i+1}^6 -Gm_j \frac{q_i(t) - q_j(t)}{||q_i(t) - q_j(t)||^3}$. En posant $q_i(t) = \frac{1}{2} \frac{1}{m_i} ||p_i(t)||^2 = \frac{1}{2} m_i ||v_i(t)||^2$ on obtient en dérivant : $q_i'(t) = v_i(t)$

1.4 Question 4

On a $\forall t \in [0, +\infty[, H(p(t), q(t)) = H(p(0), q(0))]$. Donc il y a conservation du Hamiltonien.

2 Résolution numérique

2.1 Question 5

Planètes	Distance au soleil au 1er Septembre 2021 à 00h00 (en unité astronomique)
Jupiter	5.027224125435747
Saturne	9.75997406864005
Uranus	20.064417494648882
Neptune	29.994559200673816
Pluton	32.29064621908046

Voir la fonction distance_sun sur le dépôt github¹.

2.2 Question 6

Les formules de la méthode d'Euler explicite appliquée au système donnent pour $0 \le i \le 6, t \in [0,T]$ et $h = \frac{T}{dt}$:

$$\begin{cases} q_i'(t) = q_i(t) + hv_i(t) \\ v_i'(t) = v_i(t) + h \sum_{i \le j \le 6, i \ne j} -Gm_j \frac{q_i(t) - q_j(t)}{||q_i(t) - q_j(t)||^3} \end{cases}$$

2.3 Question 7

Voir la fonction solaire_euler sur le dépôt github.

2.4 Question 8

Les formules de la méthode de Störmer-Verlet appliquée au système donnent pour $0 \le i \le 6, t \in [0,T]$ et $h = \frac{T}{dt}$:

$$\begin{cases} q_{i,1}(t) = q_i(t) + \frac{h}{2}v_i(t) \\ v_i'(t) = v_i(t) + h \sum_{i \le j \le 6, i \ne j} -Gm_j \frac{q_i(t) - q_j(t)}{||q_i(t) - q_j(t)||^3} \\ q_i'(t) = q_{i,1}(t) + \frac{h}{2}v_i'(t) \end{cases}$$

2.5 Question 9

Voir la fonction solaire_stormer_verlet sur le dépôt github.

¹https://github.com/groumage/SolarSystem

2.6 Question 10

Figure 1: Utilisation du schéma d'euler explicite sur 200 000 jours avec un pars de 10 jours.

Figure 2: Utilisation du schéma de stormer-verlet sur 200 000 jours avec un pars de 10 jours.

Figure 3: Utilisation du schéma de stormer-verlet sur 200 000 jours avec un pars de 200 jours.

Pour un même pas de temps et un même intervalle de temps, on remarque que la méthode de Störmer-Verlet offre des trajectoires plus précises que la méthode d'Euler explicite. Le calcul du Hamiltonien est également plus précis, avec moins de perturbations.

Lorsque l'on utilise la méthode de Störmer-Verlet sur 200 000 jours avec un pas de temps de 200 jours, les calculs sont plus rapides mais les trajectoires très perturbées. Le Hamiltonien est également calculé de façon moins précise qu'avec un pas de temps de 10 jours. Un pas de temps de 200 jours est donc trop grand pour cette simulation.

Dans tous les cas, le Hamiltonien n'est pas conservée alors qu'il devrait rester constant (vu à la question 4). Cela est dû au fait que les méthodes utilisées ne sont pas des méthodes symplectiques.

2.7 Question 11

Planètes	Période calculée	Période réelle
Jupiter	4 356	4 332
Saturne	10 791	10754
Uranus	30 696	30 698
Neptune	60 236	60 216
Pluton	90 744	90 487

Voir la fonction revolution sur le dépôt github.

2.8 Question 12

Voir la fonction solaire_anime sur le dépôt github.