Homework 1 (due Feb. 28)

손량(20220323)

Last compiled on: Friday 24th February, 2023, 17:02

1 Problem 1

1.1 Proof for r + x

We will use proof by contradiction here. Suppose that r+x is a rational number. By the definition of rational numbers, r+x can be written as m/n where $m,n\in\mathbb{Z}$ and $n\neq 0$. Then, x can be written as m/n-r. Since the set of rational number is a field, the additive inverse of r, -r is a rational number. Also, m/n-r is a rational number because of axioms for addition, which is a contradiction. Thus, r+x is not a rational number. By the definition of irrational number, r+x is irrational since it is a real number but not a rational number.

1.2 Proof for rx

Use the similar argument as r + x case. Suppose that rx is a rational number. By the definition of rational numbers, rx can be written as m/n where $m, n \in \mathbb{Z}$ and $n \neq 0$. Then, x can be written as (m/n)(1/r). Since the set of rational number is a field, the multiplicative inverse of r, 1/r is a rational number. Also, (m/n)(1/r) is a rational number because of axioms for multiplication, which is a contradiction. Thus, rx is not a rational number. By the definition of irrational number, rx is irrational since it is a real number but not a rational number.

2 Problem 2

Let x be a real number where $x^2=12$, and y be a real number where 2y=x. Then, $y^2=3$. Let's prove that y cannot be a rational number using proof by contradiction. Suppose that there exists $p\in\mathbb{Q}$ where $p^2=3$. By the definition of rational numbers, p can be written as m/n where $m,n\in\mathbb{Z}$ are not both multiples of 3. Let's assume that this is done. Then the following holds:

$$3n^2 = m^2$$

This shows that m is a multiple of 3, and m^2 is divisible by 9. By this, the left side $3n^2$ is divisible by 9. Thus, n^2 is divisible by 3 and it implies that n is divisible by 3. This leads to the conclusion that m and n are both multiples of 3, which is a contradiction. Since y cannot be a rational number, x also cannot be rational using the result proven in problem 1, since x = 2y.

3 Problem 3

First, prove (a) using the axioms (M).

$$y = 1 \cdot y = ((1/x)x)y = (1/x)(xy)$$
$$= (1/x)(xz) = ((1/x)x)z = 1 \cdot z = z$$

Take z = 1 in (a) to obtain (b), and take z = 1/x in (a) to obtain (c). Since x(1/x) = 1, (c) (with 1/x, x in place of x and y, respectively) gives (d).

4 Problem 4

Suppose that there exists a subset E' where $\alpha' > \beta'$ holds for its lower bound α' and upper bound β' . By definition, $x \ge \alpha' \ \forall x \in E'$ and $x \le \beta' \ \forall x \in E'$, so there exists an element z such that $z \ge \alpha'$ and $z \le \beta'$. There are three possibilities:

- 1. $z = \alpha'$
- $2. \ z = \beta'$
- 3. $z \neq \alpha'$ and $z \neq \beta'$

For $z=\alpha'$ case, $z>\beta'$ because we assumed that $\alpha'>\beta'$, but it contradicts with $z\leq\beta'$. $z=\beta'$ case is similar because it implies $\alpha'>z$, but it contradicts with $z\geq\alpha'$. For the final case, $z\neq\alpha'$ and $z\neq\beta'$ implies $z>\alpha'$ and $z<\beta'$, so $\alpha'<\beta'$ according to the axioms of ordered sets. In conclusion, such subset E' cannot exist, meaning that for all subset E with lower bound α and upper bound β , $\alpha\leq\beta$ holds.

5 Problem 5

Let $\alpha:=\inf A$. By the definition of lower bound, $x\geq\alpha$ $\forall x\in A$. According to axioms of ordered fields, $-x\leq-\alpha$ $\forall x\in A$. By the definition of -A, $y\leq-\alpha$ $\forall y\in-A$. This implies that -A is bounded above, and $-\alpha$ is an upper bound of -A. Since A is a set of real numbers, so -A is also a set of real numbers and it has the least upper bound, $\beta:=\sup(-A)$. Suppose that $\beta<-\alpha$. By the definition of upper bound, $y\leq\beta$ $\forall y\in-A$. Using axioms of ordered fields again, $-y\geq-\beta$ $\forall y\in-A$, and the proposition 1.14 in the book implies that $x\geq-\beta$ $\forall x\in A$, so $-\beta$ is a lower bound of A. However the assumption we made earlier implies that $-\beta>\alpha$, and it contradicts with the definition of α since lower bound greater than the greatest lower bound must not exist. Thus, $\beta\geq-\alpha$ holds, and since $-\alpha$ is an upper bound of -A, it becomes the least upper bound of -A. This means that $\alpha=\inf A=-\beta=-\sup(-A)$.