淮北市 2023 届高三第一次模拟考试

数学试题卷

注意事项:

- 1. 答卷前,考试务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上.
- 2. 回答选择题时, 选出每个小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再洗涂其他答案标号,回答非洗择题时,将答案写在答题卡上. 写在本试卷上无效.
 - 3. 考试结束后,将本答题卡交回.
- 一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是 符合题目要求的.
- **1.** 已知全集 $U = \mathbf{R}$, 集合 $P = \{x \in \mathbf{N} \mid x^2 2x 3 \le 0\}$ 和 $Q = \{x \mid x = 2k 1, k \in \mathbf{Z}\}$, 则集合 $P \cap (C_U Q)$ 的元素个数为

A. 1

B. 2

D. 4

2. 已知复数 z 在复平面内对应点的坐标是 (2, -1), 则 $\frac{z+2}{z-1}$ =

A. $\frac{1}{2} - \frac{5}{2}i$

B. $\frac{1}{2} + \frac{5}{2}i$ C. $\frac{5}{2} - \frac{3}{2}i$ D. $\frac{5}{2} + \frac{3}{2}i$

3. 如图所示, 在三棱台 A'B'C' - ABC 中, 沿平面 A'BC 截去三棱锥 A' - ABC, 则剩余 的部分是

- A. 三棱锥
- B. 四棱锥
- C. 三棱柱
- D. 组合体

(第3题图)

4. 已知 $\frac{\cos 2\alpha}{\sin \alpha + \cos \alpha} = \frac{1}{3}$, 则 $\sin \left(\alpha + \frac{3\pi}{4}\right) =$

A. $-\frac{\sqrt{2}}{6}$ B. $\frac{1}{3}$ C. $\frac{\sqrt{2}}{6}$

 $D.-\frac{1}{2}$

5. 在平面直角坐标系 xOy 中, 点 $A(x_1,y_1)$, $B(x_2,y_2)$ 在椭圆 $C: \frac{x^2}{2} + y^2 = 1$ 上, 且直线 OA,OB 的斜率之积为 $-\frac{1}{2}$, 则 $x_1^2 - y_1^2 + x_2^2 - y_2^2 =$

A. 1

B. 3

C. 2

D. $\frac{5}{2}$

6. 如图, 在平面直角坐标系 xOy 中, \widehat{AB} , \widehat{CD} , \widehat{EF} , \widehat{GH} 分别是单位圆上的四段弧, 点 P 在其中一段弧上, 角 α 以 Ox 为始边, OP 为终边. 若 $\sin \alpha < \cos \alpha < \tan \alpha$, 则点 P 所在的圆弧是

 $A.\widehat{AB}$

B. \widehat{CD}

 $C.\widehat{EF}$

 $D.\widehat{GH}$

题图) (第7题图)

7. 如图, 对于曲线 Γ 所在平面内的点 O, 若存在以 O 为顶点的角 α , 使得对于曲线 Γ 上的任意两个不同的点 A,B 恒有 $\angle AOB \leqslant \alpha$ 成立, 则称角 α 为曲线 Γ 的相对于点 O 的 "界角",并称其中最小的 "界角" 为曲线 Γ 的相对于点 O 的 "确界角". 已知曲线

 $C:y = \begin{cases} xe^{x-1} + 1, x \ge 0, \\ 4x^2 + x + 1, x < 0 \end{cases}$ (其中 e = 2.71828··· 是自然对数的底数), O 为坐标原

点,则曲线 C 的相对于点 O 的"确界角"为

A. $\frac{\pi}{6}$

B. $\frac{\pi}{4}$

C. $\frac{\pi}{2}$

D. $\frac{\pi}{2}$

8. 对于一个古典概型的样本空间 Ω 和事件 A,B,C,D, 其中 $n(\Omega)=60,n(A)=30,n(B)=10,n(C)=20,$ $n(D)=30,n(A\bigcup B)=40,n(A\bigcap C)=10,n(A\bigcup D)=60,$ 则

A. A 与 B 不互斥

B.A 与 D 互斥但不对立

C. C 与 D 互斥 D. A 与

D.A 与 C 相互独立

- 二、多项选择题: 本题共 4 小题, 每小题 5 分, 共 20 分. 在每小题给出的选项中, 有多项符合题目要求. 全部选对的得 5 分, 部分选对的得 3 分, 有选错的得 0 分.
- 9. 已知 $D \in \triangle ABC$ 的边 BC 上的一点 (不包含顶点), 且 $\overrightarrow{AD} = x\overrightarrow{AB} + y\overrightarrow{AC}$, 其中 $x,y \in \mathbb{R}$, 则

A. x + y = 1

B. x + 2y = 1

C. $\sqrt{x} + \sqrt{y} \geqslant \sqrt{2}$

- $\operatorname{D.log}_2 x + \log_2 y \leqslant -2$
- **10.** 已知函数 $f(x) = x \ln(1+x)$, 则

A. f(x) 在 $(0, +\infty)$ 单调递增

B. f(x) 有两个零点

C. 曲线 y=f(x) 在点 $\left(-\frac{1}{2},f\left(-\frac{1}{2}\right)\right)$ 处切线的斜率为 $-1-\ln 2$

D.f(x) 是奇函数

- 11. 已知曲线 Γ : $y^2 = 16x$, 直线 l 过点 F(4,0) 交 Γ 于 A,B 两点, 下列命题正确的有
 - A. 若 A 点横坐标为 8 , 则 |AB| = 24
 - B. 若 P(2,3), 则 |AP| + |AF| 的最小值为 6
 - C. 原点 O 在 AB 上的投影的轨迹与直线 $x + \sqrt{3}y 6 = 0$ 有且只有一个公共点
 - D. 若 $\overrightarrow{AF} = 2\overrightarrow{FB}$, 则以线段 \overrightarrow{AB} 为直径的圆的面积是 81π
- 12. 如图, 以正方形的一边为斜边向外作直角三角形, 再以该直角三角形的两直角边分别向

外作正方形,重复上述操作,保持所作的直角三角形都相似,得四个正方形,记为 A、B、C、D,其面积记为 S_A , S_B , S_C , S_D ,则下列结论正确的有

B.
$$S_A \cdot S_D = S_B \cdot S_C$$

$$C. S_A + S_D \geqslant 2S_B$$

$$D. S_A + S_D < 2S_C$$

三、填空题:本题共4小题,每小题5分,共20分.

- (第 12 题图)
- **14.** 已知直四棱柱 $ABCD-A_1B_1C_1D_1$ 的底面是菱形, $\angle ABC=120^\circ$, 棱长均为 4, AB、 CC_1 的中点分别为 P、Q, 则三棱锥 $P-A_1D_1Q$ 的体积为
- **15.** 设 $f(x) = \begin{cases} e^{-x}, x < 0, \\ e^{x}, 0 \le x \le 1 \end{cases}$ 若互不相等的实数 x_1, x_2, x_3 满足 $f(x_1) = f(x_2) = f(x_3), 3 x, x > 1.$

则 $x_1 f(x_1) + x_2 f(x_2) + x_3 f(x_3)$ 的取值范围是_____

- 四、解答题:本题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.
- 17. (本题满分 10 分) 设 $\triangle ABC$ 内角 A、B、C 所对边分别为 a、b、c, 已知 $\frac{c\sin C}{a}$ $\sin C = \frac{b\sin B}{a} \sin A$, b = 4.
 - (I) 求角 B 的大小;
 - (II) 若 $c = \frac{4\sqrt{6}}{3}$, 求 $\triangle ABC$ 的面积.
- **18.** (本题满分 12 分) 已知数列 $\{a_n\}$ 满足 $a_1 = 1, a_n = 3a_{n-1} + 2, (n \ge 2, n \in \mathbb{N}).$
 - (I) 求证: 数列 $\{a_n + 1\}$ 是等比数列;
 - (II) 若 $b_n = (2n+1)(a_{n+1}-a_n), S_n$ 为数列 $\{b_n\}$ 的前 n 项和, 求 S_n .

- **19.** (本题满分 12 分)如图, 已知四棱锥 P ABCD 的底面是平行四边形, 侧面 PAB 是等 边三角形, BC = 2AB, $\angle ABC = 60^{\circ}$, $PB \perp AC$.
 - (I) 求证: 面 $PAB \perp$ 面 ABCD;
 - (II) 设 Q 为侧棱 PD 上一点, 四边形 BEQF 是过 B,Q 两点的截面, 且 AC// 平面 BEQF,是否存在点 Q,使得平面 BEQF \bot 平面 PAD? 若存在, 确定点 Q 的 位置; 若不存在, 说明理由.

20. (本题满分 12 分) 为弘扬中华优秀传统文化, 荣造良好的文化氛围, 某高中校团委组织 非毕业年级开展了"我们的元宵节"主题知识竞答活动, 该活动有个人赛和团体赛, 每人 只能参加其中的一项, 根据各位学生答题情况, 获奖学生人数统计如下:

	奖项组别	个人赛			日休宝去次	
		一等奖	二等奖	三等奖	团体赛获奖	
	高一	20	20	60	50	
	高二	16	29	105	50	

- (I) 从获奖学生中随机抽取 1 人, 若已知抽到的学生获得一等奖, 求抽到的学生来自高一的概率;
- (II) 从高一和高二获奖者中各随机抽取 1 人, 以 X 表示这 2 人中团体赛获奖的人数, 求 X 的分布列和数学期望:
- (III) 从获奖学生中随机抽取 3 人, 设这 3 人中来自高一的人数为 ξ , 来自高二的人数为 η , 试判断 $D(\xi)$ 与 $D(\eta)$ 的大小关系. (结论不要求证明)
- **21.** (本题满分 12 分)已知椭圆 Γ : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$, A、F 分别为 Γ 的左顶点和右焦点,O 为坐标原点,以 OA 为直径的圆与 Γ 交于 M 点(第二象限), $|OM| = \frac{a}{2}$.
 - (I) 求椭圆 Γ 的离心率 e;
 - (II) 若 b=2, 直线 l//AM, $l \, \nabla \, \Gamma \, \mp \, P \, Q$ 两点, 直线 OP, OQ 的斜率分别为 k_1, k_2 .
 - (i) 若 l 过 F, 求 $k_1 \cdot k_2$ 的值;
 - (ii) 若 l 不过原点, 求 $S_{\triangle OPQ}$ 的最大值.
- **22.** (本题满分 12 分)已知函数 $f(x) = e^x kx k, k \in \mathbb{R}$.
 - (I) 讨论函数 f(x) 的单调性;
 - (II) $\stackrel{\text{def}}{=} k = 1 \text{ fr}, \Rightarrow g(x) = \frac{2f(x)}{x^2}$.
 - (i) 证明: 当 x > 0 时, g(x) > 1;
 - (ii) 若数列 $\{x_n\}$ 满足: $x_1 = \frac{1}{3}, e^{x_{n+1}} = g(x_n),$ 证明: $x_n < \ln(1 + \frac{1}{2^n})$.