Unsupervised Learning

Fabio G. Cozman - fgcozman@usp.br

December 1, 2020

What can we do?

- We just have a dataset with features (no labels, no response).
 - We want to "understand" the data... no easy to define this.

What can we do?

- We just have a dataset with features (no labels, no response).
 - We want to "understand" the data... no easy to define this.
- Possible ideas:
 - Find association rules that indicate relationships amongst variables (market basket analysis).
 - Find compact ways to summarize observations (representation learning).
 - Cluster the data.

Representation learning

- Often it is possible to find compact representations that capture most of the content of observations.
 - Dimension is reduced: easier to visualize, easier to understand.
 - Easier to capture complex patterns (manifolds).
 - In essense, the idea is to "learn (the real) features".

A data manifold

Principal Component Analysis (PCA)

We have features X_1, \ldots, X_n , suitably normalized (zero mean and unit variance).

Principal Component Analysis (PCA)

- We have features X_1, \ldots, X_n , suitably normalized (zero mean and unit variance).
- The first principal component Z_1 is a linear combination

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \cdots + \phi_{n1}X_n,$$

where $\sum \phi_{i1}^2 = 1$, and such that Z_1 has the largest possible variance.

Principal Component Analysis (PCA)

- We have features X_1, \ldots, X_n , suitably normalized (zero mean and unit variance).
- The first principal component Z_1 is a linear combination

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \cdots + \phi_{n1}X_n,$$

where $\sum \phi_{i1}^2 = 1$, and such that Z_1 has the largest possible variance.

■ The next principal components similarly maximize variance, being uncorrelated with previous ones (orthogonal to previous ones...).

A two-dimensional example

Loadings

■ The coefficients ϕ_{ij} are called *loadings*.

- As features are centered, the mean of Z_i is zero as well.
 - Hence sample variance of Z_1 is

$$\sum_{j=1}^{N} \left(\sum_{i=1}^{n} \phi_{n1} x_{ij} \right)^{2}.$$

Building the representation

■ To find the loadings for the first principal component, maximize sample variance:

$$\max_{\phi_{11},...,\phi_{n1}} \sum_{j=1}^{N} \left(\sum_{i=1}^{n} \phi_{n1} x_{ij} \right)^{2},$$

subject to
$$\sum_{i=1}^{n} \phi_{i1}^2 = 1$$
.

Quadratic problem (can be solved).

Building the representation, continued

- After finding Z_1 , find Z_2 : same problem, but in orthogonal space.
- Again, quadratic problem (can be solved).
- Then repeat for other principal components.

Building the representation, continued

- After finding Z_1 , find Z_2 : same problem, but in orthogonal space.
- Again, quadratic problem (can be solved).
- Then repeat for other principal components.

- In the end, an orthogonal basis that spans the feature space.
- Actually, there are fast algorithms that use matrices.

Example: the USArrests dataset

Other manifold learning techniques

From AstroML documentation, by Jake VanderPlas (http://www.astroml.org/book_figures/chapter7/fig_S_manifold_PCA.html).

Another interpretation for PCA

■ First loading vector yields the line that is closest to the *N* observations.

Another interpretation for PCA

- First loading vector yields the line that is closest to the *N* observations.
- First and second loading vectors yield the plance that is closest to the N observations.

Another interpretation for PCA

- First loading vector yields the line that is closest to the *N* observations.
- First and second loading vectors yield the plance that is closest to the N observations.
- And so on.

Example in three dimensions

The important idea

■ If we retain just a few principal components, we explain most of the variance in the data.

 Hopefully by keeping a few principal components we have better features.

Explained variance

- The total variance is $\sum_{i=1}^{n} (1/N) \sum_{j=1}^{N} x_{ij}^2$.
- The *variance explained* by principal component Z_k is

$$(1/N)\sum_{j=1}^N z_{jk}^2.$$

Explained variance

- The total variance is $\sum_{i=1}^{n} (1/N) \sum_{j=1}^{N} x_{ij}^2$.
- The *variance explained* by principal component Z_k is

$$(1/N)\sum_{j=1}^N z_{jk}^2.$$

■ The proportion of variance explained by Z_k is

$$\frac{(1/N)\sum_{j=1}^{N}z_{jk}^{2}}{\sum_{i=1}^{n}(1/N)\sum_{j=1}^{N}x_{ij}^{2}}.$$

Main practical question

- How many principal components to keep?
- No easy answer.
 - Check proportion of explained variance; stop when it is "small" enough.
 - Try a few possibilities.

PCA in supervised learning

- PCA is a tool to explore data.
- But it can also be used to produce a compact set of features.
 - Any classifier can be preceded by some feature summarization through PCA.

Really doing PCA

 Principal components are produced by eigenvector computation.

Really doing PCA

 Principal components are produced by eigenvector computation.

■ Take matrix **A** and suppose

$$\mathbf{A}\mathbf{v}=\lambda\mathbf{v}.$$

Then λ is an eigenvalue, and ${\bf v}$ is an eigenvector.

Suppose matrix **A** is symmetric

- Then eigenvalues are real; eigenvectors are orthogonal and real.
- Build matrix with eigenvectors

$$\mathbf{U} = [\mathbf{u}_1 \mathbf{u}_2 \dots \mathbf{u}_n]$$

and diagonal matrix with eigenvalues

$$\mathbf{D} = \left[egin{array}{cccc} \lambda_1 & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{array}
ight].$$

■ Then:

Covariance matrix

Consider the matrix

$$\mathbf{X} = \left[egin{array}{c} \mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_N \end{array}
ight]$$

and compute a symmetric matrix

$$\frac{1}{N-1}\mathbf{X}^T\mathbf{X}.$$

■ Each element of this matrix is a "covariance"

$$\frac{1}{N-1}\sum_{i=1}^N x_{ij}x_{kj}.$$

Decomposition

- Compute matrix **U** of eigenvectors of **X**^T**X**, sorted from largest to smallest eigenvalue.
- Then principal components are

$$\begin{bmatrix} Z_1 \\ \vdots \\ Z_n \end{bmatrix} = \mathbf{U}^T \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}.$$

■ The most numerically stable way to compute this transformation is through the *Singular Value Decomposition* (SVD) of **X**.

A summary:

Compute $\mathbf{m} = \sum_{j=1}^{N} \mathbf{x}_j$ and

$$S = (X - m)^T (X - m).$$

- Compute the eigenvalues and eigenvectors of S.
- Order the eigenvectors by the value of their eigenvalues (from largest to smallest).
- 4 Select the K eigenvectors with largest eigenvalues, and build the matrix

$$\mathbf{U} = [\mathbf{u}_1 \dots \mathbf{u}_K]$$
.

Then define

$$Z = U^T(X - m).$$

Reconstruction

- Suppose we have **m** and **U**.
- Suppose we have a point **x**; then we compute

$$z = U^T(x - m).$$

■ We can now see the "approximate" point

$$\hat{\mathbf{x}} = \mathbf{m} + \mathbf{U}\mathbf{z}$$
.

(See Barber's book, Figures 15.1 and 15.3.)

Clustering

- The goal is to find subgroups of the dataset; each sugbroup is a *cluster*.
 - Often clustering appears as synonym for unsupervised learning.
- Examples:
 - Clustering species in biology experiment.
 - Clustering clients of supermarket based on purchases.

A few points

- Clustering is not easy to evaluate.
 - A bit subjective.
 - It depends on measure of "similarity".
 - It must somehow maximize intra-cluster similarity, and minimize inter-cluster similarity.

- Two important methods:
 - K-means.
 - hierarchical clustering.

Example

(Obtained with K-means, discussed later.)

K-means: Setup

■ Features $X_1, ..., X_n$; clusters $C_1, ..., C_K$ to be found (all disjoint).

K-means: Setup

- Features $X_1, ..., X_n$; clusters $C_1, ..., C_K$ to be found (all disjoint).
- We must find clusters that

$$\max_{C_1,\ldots,C_k}\sum_{k=1}^K s(C_k)$$

for some measure of intra-cluster similarity s.

■ One "reasonable" measure:

$$s(C_k) = -\frac{1}{|C_k|} \sum_{x',x'' \in C_k} \sum_{i=1}^n (x'_i - x''_i)^2.$$

K-means: Setup

- Features $X_1, ..., X_n$; clusters $C_1, ..., C_K$ to be found (all disjoint).
- We must find clusters that

$$\max_{C_1,\ldots,C_k}\sum_{k=1}^K s(C_k)$$

for some measure of intra-cluster similarity s.

One "reasonable" measure:

$$s(C_k) = -\frac{1}{|C_k|} \sum_{x',x'' \in C_k} \sum_{i=1}^n (x_i' - x_i'')^2.$$

K-means offers an approximate solution to the resulting maximization problem.

K-means

Input: dataset; distance measure; number K.

- \blacksquare Select initial assignment to K clusters:
 - One possibility: assign each point randomly.
 - Another one: randomly select *K* points as centroids and assign points to closest centroids.
- Iterate until stopping criterion is met:
 - Compute centroid for each cluster.
 - 2 Assign each point to closest centroid (use distance measure).

Note: centroid of points is the average across coordinates.

Example

Another example

When to stop?

- When a maximum number of iterations is run.
- When centroids stop changing (or display little change).
- When the measure $\sum_{k=1}^{K} s(C_k)$ displays little change.

K-means: strengths

- Easy to understand, easy to implement.
- Cost is proportional to number of points, number of clusters, and number of iterations.

K-means: weaknesses

- \blacksquare Requires K.
- Results depend on initial guess.
- Sensitive to outliers.
- No real theoretical guarantees; stopping is somewhat ad hoc.
- Centroid computation may be meaningless for categorical data.

Sensitivity to initial guess

Sensitivity to initial guess

Sensitivity to outliers

Sensitivity to outliers

Some techniques

- Run K-means several times, then select best clustering according to $\sum_{k=1}^{K} s(C_k)$.
- Remove points that are "too far" from the cloud of points in dataset.
- Instead of centroid, use a more "robust" representation for clusters...
 - select a few points randomly to compute centroid...
 - use K-medoids (medoid is a point whose sum of distances to other points in cluster is minimal).

Example

Hierarchical clustering

- Main idea: build a representation for all possible clusters, instead of working with a fixed K.
- Usual representation is dendrogram.
- Dendrograms can be build bottom-up (agglomerative) or top-down (divisive).
 - Most popular (by far): agglomerative clustering.

A dendrogram

Interpreting a dendrogram

Agglomerative clustering

- Compute distance between all *N* points, using some given distance measure.
- Repeat whenever possible:
 - Find the two closest clusters.
 - 2 Fuse these clusters in the dendrogram (height is the distance between them).

What is the distance between clusters?

- Complete linkage: distance between two points (one in each cluster) that are most distant.
- Single linkage: distance between two points (one in each cluster) that are closest.
- Average linkage: average of the distance between all pairs of points (one in each cluster).
- Centroid linkage: distance between centroids of both clusters.

Centroid linkage may be a bit difficult to represent.

Example

Note: single linkage may lead to "long clusters" ...

Distance measures

Common: (weighted/squared) Euclidian distance.

$$\sqrt{(x_1-y_1)^2+\cdots+(x_n-y_n)^2}$$
.

(weighted) Manhattan distance:

$$|x_1-y_1|+\cdots+|x_n-y_n|.$$

(weighted) Chebyshev distance:

$$\max(|x_1 - y_1|, \dots, |x_n - y_n|)$$
.

(Note: usually good idea to standardize.)

Distance measures: categorical data

- Observations of binary variables (0s and 1s): just the proportion of disagreements.
 - Jaccard distance:

number of disagreements number of points

- For categorical variables:
 - Proportion of disagreements.
 - Use one-hot encoding and techniques for binary variables.

Latent models

- A different scheme is to assume a statistical model.
- For instance, suppose there is class variable with K labels, and $\mathbb{P}(X = x | Y = y)$ for each label.
 - Estimate the probabilities, then assign labels.
 - This is a mixture model.
 - The class variable is a latent variable.

Latent models

- A different scheme is to assume a statistical model.
- For instance, suppose there is class variable with K labels, and $\mathbb{P}(X = x | Y = y)$ for each label.
 - Estimate the probabilities, then assign labels.
 - This is a *mixture model*.
 - The class variable is a latent variable.
- There are very complex latent models around (often called topic models).

We are not discussing latent models in this course...

Evaluating a clustering

- Not easy; quite subjective and application-dependent.
 - Try a few things and compare the results!
 - Visualize the clusters (projections).
 - Check sum of inter/intra-cluster distances.
 - Use a global metric (for instance, *silhoutte*).

- Many algorithms have been proposed; hard to compare them.
 - K-means and dendrograms are still the champions.

Silhoutte

- For each point *x*:
 - a(x) is the average distance between x and all other points in the same cluster.
 - Find the average distance between x and all other points in each other cluster; denote by b(x) the smallest of these averages.

Silhoutte

- For each point *x*:
 - a(x) is the average distance between x and all other points in the same cluster.
 - Find the average distance between x and all other points in each other cluster; denote by b(x) the smallest of these averages.
- Define

$$s(x) = \begin{cases} 1 - a(x)/b(x) & \text{if } a(x) < b(x); \\ 0 & \text{if } a(x) = b(x); \\ b(x)/a(x) - 1 & \text{if } a(x) > b(x). \end{cases}$$

■ Note: $s(x) \in [-1, 1]$ (1 is "good"; -1 is "bad").

Silhoutte

- For each point x:
 - a(x) is the average distance between x and all other points in the same cluster.
 - Find the average distance between x and all other points in each other cluster; denote by b(x) the smallest of these averages.
- Define

$$s(x) = \begin{cases} 1 - a(x)/b(x) & \text{if } a(x) < b(x); \\ 0 & \text{if } a(x) = b(x); \\ b(x)/a(x) - 1 & \text{if } a(x) > b(x). \end{cases}$$

- Note: $s(x) \in [-1, 1]$ (1 is "good"; -1 is "bad").
- Take the average of s(x) for all points as the measure (the silhoutte) of the clustering.
- A higher silhoutte is better than a lower one...

A final note

Some of the figures in this presentation are taken from *An Introduction to Statistical Learning, with applications in R* (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.