

Departamento de Arquitectura y Tecnología de computadores Domótica ©2021 Universidad de Granada

Práctica 2: Centro de Control Domótico

Contenido

1	Cen	Centro de Control Domótico. Objetivos3			
2	Hardware necesario				
2	2.1	Para Home Assistant:			
2	2.2	Para el dispositivo IoT:			
3	Inst	ralación de Home Assistant3			
4	Con	Configuración			
5	Con	Configurar <i>Lovelace</i> 4			
6	Las	Las claves en secrets5			
7	Add	Add-ons5			
8	Inte	ntegración mosquito MQTT6			
9	Aña	- Añadir dispositivos a HA			
ç	9.1	Integración de un dispositivo IoT			
	9.1.	.1 Telémetro de ICI comunicado con el broker MQTT			
	9.1.	.2 Dispositivo Tasmota comunicado con el broker MQTT			
	9.1.	.3 ESPHome			
10	Α	Automatizaciones, escenas y scripts			
11	N	Node-RED			
12	С	Copias de seguridad de la configuración			
13	K	Kit de prácticasiError! Marcador no definido			
14	La	La tarjeta ESPiError! Marcador no definio			
15	Ir	Instalación del IDE de Arduino para NodeMCUiError! Marcador no definido			
16	El	El telémetro ultrasónico US-100jError! Marcador no defi			

16.3	1 (Conexión entre telémetro y NodeMCU	¡Error! Marcador no definido.
16.2	2 F	Funcionamiento del telémetro	¡Error! Marcador no definido.
17	•	emplo de programa para medir distancia enviando rror! Marcador no definido.	la medida por el puerto serie
17.3	1 F	Para probarlo:	¡Error! Marcador no definido.
18	Eje	ercicios	¡Error! Marcador no definido.

1 Centro de Control Domótico. Objetivos.

Un centro de control domótico permite la integración de todos los dispositivos domóticos de nuestro hogar ofreciendo una interfaz potente y amigable.

En esta práctica el alumno instalará un centro de control domótico que incluirá un broker MQTT y una herramienta poderosa de programación para IoT: *Node-RED*.

Además se integrarán los dispositivos que cada alumno tenga disponibles en su hogar, y al menos un dispositivo basado en *NodeMCU* o similar con algún sensor y/o actuador que será programado por el propio alumno.

Hay disponibles distintos programas para ser usados como centro de control domótico: *Home Assistant, OpenHab*, etc. El servidor donde se instala puede ser un mini PC tipo Raspberry Pi 3B o 4B, un contenedor *docker* en su PC, etc.

Se recomienda la instalación de *Home Assistant* con supervisor en una "Raspberry Pi 4" con al menos 2GB de RAM y *SDcard* de 32GB.

2 Hardware necesario

2.1 Para Home Assistant:

- Raspberry PI (3B+ o 4B+) + caja, fuente de alimentación + ventilador + disipadores
- Tarjeta micro SD (32GB) + lector de tarjetas SD si su portátil no lo tiene.
- Cable Ethernet o un pen drive para configurar la conexión a la WiFi.

2.2 Para el dispositivo IoT:

- NodeMCU ESP8266, módulo de desarrollo de ESP32, o similar.
- Cable uUSB para conectar el dispositivo a su PC y programarlo.
- Protoboard de pruebas (opcional).
- Cables para conexión de pines para conectar el sensor al *NodeMCU*.
- Uno o varios sensores.
- Alimentador de 5V (si se desea independizar el dispositivo del PC).

3 Instalación de Home Assistant

Para la instalación de *Home Assistant* en Raspberry Pi siga las instrucciones que puede encontrar en https://www.home-assistant.io/installation/raspberrypi.

Una vez que termina de instalarse (unos 20 minutos), creamos una cuenta e introducimos algunos datos de configuración.

4 Configuración

Podemos configurar casi todo desde el menú configuración. Podemos personalizar la cuenta de usuario accediendo a través del nombre de usuario que aparece abajo a la izquierda. En el menú Configuración -> General se puede realizar una configuración básica.

Además, con el *add-on File Editor* puede configurar los archivos de configuración de *Home Assistant*. El archivo principal de configuración es *configuration.yaml*. Una guía de configuración básica puede encontrarla en https://www.home-assistant.io/docs/configuration/basic/. En general es preferible hacer el mínimo de configuración editando archivos de configuración.

5 Configurar Lovelace

Lovelace es el panel para representar los dispositivos de Home Assistant accesible desde el menú resumen: https://www.home-assistant.io/lovelace. La edición se abre desde los tres puntos de la parte superior derecha.

Pruebe distintas tarjetas de representación para sus dispositivos.

6 Las claves en secrets

Las claves que utilice en Home Assistant puede mantenerlas en un archivo especial de configuración, *secrets.yaml*, y puede editarlas con *File Editor*: https://www.home-assistant.io/docs/configuration/secrets/

7 Add-ons

Si ha instalado Home Assistant en una Raspberry Pi (con el supervisor), puede instalar Add-ons de forma sencilla:

Para instalar add-ons:

- Se ha de activar "Modo avanzado" en el perfil de nuestra cuenta (última opción del menú vertical de la izquierda) para que aparezcan disponibles más add-ons.
- Para instalar add-ons: Supervisor > Add-on Store > seleccionar el add-on > INSTALL
- Una vez instalados se han de configurar (si es necesario) e iniciar: START
- Se pueden poner en el menú de Home Assistant accesos directos a los add-on más utilizados, activando la opción "Show in sidebar" una vez que el add-on se haya instalado.

Instale algunos add-ons básicos como:

- File editor, que permite editar archivos directamente desde Home Assistant
- Samba share, que permite acceder a las carpetas de Home Assistant desde Windows
- Terminal & SSH para acceder al sistema
- Mosquito broker, que instala un broker MQTT
- Node-RED, instala la herramienta de programación Node-RED
- TasmoAdmin para gestionar dispositivos con ESP8266/32 con Tasmota
- ESPHome con el que también podemos integrar ESP8266/32.
- Duck DNS, que permite acceder desde el exterior al HomeAssistant con ssl, opcional.
- Grafana con InfluxDB, para análisis y representación gráfica de los datos, opcionales.

8 Integración mosquito MQTT

Una vez instalado, configurado e iniciado el *add-ons Mosquitto Broker* puede concluir la integración en Configuración>Integraciones>Mosquitto Broker>Configurar, donde puede probar el funcionamiento del *broker* suscribiéndose a un *topic* y publicando en él.

Si ha realizado otro tipo de instalación sin supervisor puede instalar un broker MQTT

de forma independiente o usar uno externo como por ejemplo el de hivemq.com.

Además puede realizar algunas pruebas de comunicación a través de su broker con algún programa cliente para su Smartphone o para su PC.

9 Añadir dispositivos a HA

Si tenemos dispositivos IoT ya instalados en la casa se descubrirán automáticamente y se nos notificará si queremos integrarlo en nuestro *Home Assistant*. Vea https://www.home-assistant.io/integrations/discovery/. No obstante, en cualquier momento podemos añadir más dispositivos desde el menú Configuración > Integraciones > AÑADIR INTEGRACIÓN.

También puede integrar dispositivos configurándolos en *configuration.yaml*. Por ejemplo puede integrar un dispositivo que se comunique con MQTT a través del broker que ha integrado. Vea https://www.home-assistant.io/docs/configuration/devices/.

10 Integración de un dispositivo IoT comunicado con el broker MQTT

Como hemos mencionado podemos integrar dispositivos comunicados a través del broker MQTT configurándolos en *configuration.yaml*. Integre de esa forma un sensor con comunicación MQTT que puede realizar con un *nodeMCU* basado en ESP8266 o en ESP32 siguiendo el guion de la práctica del telémetro IoT: "*Practica IoT telemetro 2021.pdf*". Pruebe la integración tanto con el firmware realizado usando las librerías de comunicación MQTT como con el firmware Tasmota.

10.1 Dispositivo Tasmota comunicado con el broker MQTT

Integre también con MQTT el mismo u otro dispositivo similar programándolo con un firmware *Tasmota*: https://github.com/arendst/Tasmota.

10.1.1 Instalación de Tasmota

10.1.1.1 Instalación de Tasmota en el NodeMCU ESP8266.

- Tasmota-PyFlasher-1.0: https://github.com/tasmota/tasmota-pyflasher/releases
- tasmota-ES.bin https://github.com/arendst/Tasmota/releases
- Cargar el firmware "tasmota-ES.bin" con el programa Tasmota-PyFlasher.
- Conectarse a la wifi del Nodemcu (tasmota).
- Configurar el punto de acceso wifi al que se conectará para acceder a la red. Al terminar el tasmota se conecta a esa red.

10.1.1.2 Instalación de Tasmota para ESP32.

Los programas mencionados para el *flasheo* de Tasmota en el ESP8266 aún no son compatibles con el ESP32. El procedimiento para ESP32 está descrito en https://www.youtube.com/watch?v=Dz2dc- HR5M:

- Es necesario descargar la aplicación oficial desde la página web de Espressif: https://www.espressif.com/en/support/download/other-tools
- Es necesario instalar cuatro archivos que puede descargar desde https://github.com/techiesms/TASMOTA-on-ESP32. Puede sustituir el binario de Tasmota por su versión en español u otro idioma.
- Además, con esto no se genera un punto de acceso WiFi, sino que debemos proporciónale a través de una terminal serie, por ejemplo Termite, los datos de acceso a nuestra red WiFi. Tras esto, a nuestro dispositivo se le asignará una IP que debemos introducir en el navegador para acceder a la interfaz web de configuración del dispositivo tasmota.

10.1.2 Configuración del tasmota

- Acceda a la web del tasmota a través del navegador introduciendo su dirección IP.
- Para el NodeMCU ESP8266, en "Configuración" se selecciona el tipo de módulo "Generic(18)" y se guarda.
- En "Configuración del Módulo" se asocian los pines de los sensores y actuadores que hayamos conectado.
- Configure MQTT para conectarse a su broker.
- Si tiene salidas puede configurar temporizadores.
- Puede realizar otras configuraciones introduciendo comando desde la consola.

11 ESPHome

Integre con *ESPHome* el mismo u otro dispositivo similar con el programándolo con el firmware específico *ESPHome*: https://esphome.io/guides/getting started hassio.html.

12 Automatizaciones, escenas y scripts

Las Automatizaciones en *Home Assistant*, accesibles desde el menú de Configuración, permiten crear reglar de comportamiento utilizando los dispositivos y entidades integrados en nuestra casa.

Es posible configurar automatizaciones (https://www.home-assistant.io/getting-started/automation/), configurar escenas o *scrpts* desde el menú de configuración de forma sencilla. También es posible hacerlo, pero no es recomendable, editando los archivos de configuración .yaml correspondientes con *File Editor*.

13 Node-RED

También podemos usar *Node-RED* integrado con *Home Assistant* como alternativa para realizar muchas tareas de automatización, comunicación, tratamiento de datos y representación de la información. Las posibilidades que nos ofrece son enormes.

Si ha realizado otro tipo de instalación sin supervisor puede instalar *Node-RED* de forma independiente en su PC y realizar la integración con la librería de nodos de *Home Assistant*.

- Pruebe la utilización práctica de distintos nodos, incluyendo los de la librería "dashboard".
- Conecte a su Centro de Control mediante Node-RED algunos dispositivos disponibles a través del broker de hivemq.com con los topic "ugr/francis/#".

14 Copias de seguridad de la configuración

Es conveniente, cuando esté todo configurado y funcionando, hacer cada cierto tiempo copias de seguridad. A ello se accede desde el menú Supervisor > Snapshots. Guarde las copias en un lugar seguro.