Elektrotehnički fakultet u Beogradu Matematička statistika 13M081MAST

Prof. dr Milan Merkle *Domaći zadatak 2*

Zadatak 1. Imamo uzorak obima n iz raspodele Unif [a, b]. Metodom momenata naći ocene parametara a i b.

Rešenje. Za uniformnu raspodelu imamo ¹

$$EX^r = \int_a^b \frac{x^r}{b-a} \mathrm{d}x,$$

odakle nalazimo

$$\mu_1 = EX = \frac{a+b}{2}, \quad \mu_2 = EX^2 = \frac{a^2 + ab + b^2}{3}$$

Rešavanjem jednačina dobijamo

$$a = \mu_1 - \sqrt{3(\mu_2 - \mu_1^2)}, \quad b = \mu_1 + \sqrt{3(\mu_2 - \mu_1^2)}$$

gde smo uzeli onu kombinaciju koje daje a < b. Na osnovu definicije ocene parametara po metodu momenta, parametre a i b nalazimo tako što u gornjoj jednačini momente zamenimo njihovim ocenama, a koje su date formulom

$$\hat{\mu_r} = \frac{1}{n} \sum_{k=1}^n X_k^r.$$

Zadatak 2. Metodom maksimalne verodostojnosti naći ocenu parametra λ Poisson-ove raspodele iz uzorka obima n.

 $Re \check{s}enje.$ Ako sa x_i označimo i-tumerenu vrednost, verovatnoća realizacije datog uzorka je:

$$L(\lambda) = \prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_i}}{x_i!}$$

Ocena parametra λ metodom maksimalne verodostojnosti podrazumeva da pronađemo ono λ za koje je data funkcija dostiže maksimum. Maksimiziranje date funkcije može da se uradi tako što se maksimizira njen logaritam. Dobijamo

$$l(\lambda) = \sum_{i=1}^{n} -\lambda + x_i \log \lambda$$

 $^{^{1}}$ Mogli smo i da koristimo $VarX = \mu_{2} - \mu_{1}^{2}$ koju već znamo za uniformnu raspodelu.

gde su izbačeni članovi zbira koji ne sadrže λ . Nalaženjem prvog izvoda i izjednačavanjem sa nulom dobijamo 2 :

$$\lambda = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Ovo je ista procena do koje bismo došli korišćenjem metode momenata. \square

Zadatak 3. Testira se hipoteza H_0 : $\mu < 65$ protiv H_1 : $\mu \ge 65$ na osnovu uzorka obima n iz normalne raspodele za koju je poznato σ^2 . Statistika testa je aritmetička sredina uzorka $\hat{\mu}$.

Za n=9 i $\sigma^2=36$ naći oblast odbacivanja sa nivoom značajnosti $\alpha=0.05$. Zatim izračunati verovatnoće greške prve vrste za $\mu=63$ i verovatnoću greške druge vrste za $\mu=67$.

 $Re\check{s}enje$. Aritmetička sredina uzorka $\hat{\mu}$ ima $\mathcal{N}(\mu, \sigma^2/n)$ raspodelu. Oblast odbacivanja hipoteze je $\hat{\mu} \geq c$, to jest, ako je dobijena aritmetička sredina dovoljno velika, to je dokaz protiv hipoteze H_0 . Greška prve vrste govori koja je verovatnoća da, kada je hipoteza H_0 tačna, donesemo odluku da H_0 treba da se odbaci. Njena maksimalna vrednost je nivo značajnosti testa:

$$\alpha = \sup_{\mu < 65} P(\hat{\mu} \ge c) = \sup_{\mu < 65} P\left(Z \ge \frac{c - \mu}{\sigma / \sqrt{n}}\right)$$

Ova vrednost je najveća kada je granica minimalna, odnosno, kada je μ maksimalno. Prema tome:

$$P\left(Z \ge \frac{c - 65}{2}\right) = 0.05$$

Odavde nalazimo c = 68.29.

Greška prve vrste za $\mu = 63$ je

$$P\left(Z \ge \frac{68.29 - 63}{2}\right) = 0.0041$$

Greška druge vrste je verovatnoća da nećemo odbaciti originalnu hipotezu onda kada je H_1 tačna:

$$P\left(Z < \frac{68.29 - 67}{2}\right) = 0.7405$$

Zadatak 4. Imamo novčić sa nepoznatom verovatnoćom p padanja pisma. Testira se hipoteza H_0 : $p = \frac{1}{2}$ protiv H_1 : $p < \frac{1}{2}$. Za statistiku testa uzimamo broj pisama u 6 bacanja novčića.

a) Naći p-vrednost za S=1. Bez ponovnog izračunavanja odgovoriti da li bismo za S=1 odbacili nultu hipotezu ako je zadat nivo značajnosti $\alpha=0.05$? Obrazložiti odgovor.

b) Ako se za oblast odbacivanja uzme $S \leq 1$ napisati formulu za verovatnoću greške druge vrste za $p=\frac{2}{5}$ i izračunati brojnu vrednost.

²Lako se vidi da je drugi izvod negativan.

 $Re\check{s}enje$. U ovom slučaju oblast odbacivanja je oblika $S \leq c$.

a) Značajnost vrednosti S=1 dobijamo kao:

$$\sup_{p=\frac{1}{2}} P(S \le 1) = \sum_{k=0}^{1} {6 \choose k} p^{k} (1-p)^{n-k} \approx 0.11$$

Pošto je za S=1 značajnost veća od zadatog nivo
a značajnosti, nema smisla odbaciti originalnu hipotezu.

b) Verovatnoća greške druge vrste je

$$P\left(S > 1 \mid p = \frac{2}{5}\right) = 1 - \sum_{k=0}^{1} {6 \choose k} p^{k} (1-p)^{n-k} \approx 0.77$$

Zadatak 5. Nezavisne slučajne promenljive X_1, \ldots, X_{100} čine uzorak iz raspodele sa nepoznatim matematičkim očekivanjem μ i varijansom $\sigma^2 = 1.21$. Aritmetička sredina uzorka je $\hat{\mu} = 2.1$.

- a) Naći jednostrani 99 % interval poverenja za μ oblika $[a, +\infty)$. Obrazložiti odgovor.
- b) Sa istim uzorkom testirati hipotezu H_0 : $\mu = 2$ protiv alternativne hipoteze H_1 : $\mu > 2$ sa nivoom značajnosti 0.01 (odrediti statistiku testa, oblast odbacivanja, i navesti koji zaključak se dobija pri datim podacima).
- c) Naći p-vrednost za $\hat{\mu}=2.3$ i iz toga izvući zaključak da li odbacujemo hipotezu pod b).

Rešenje.

a) Pošto imamo jako veliki obim uzorka slučajna promenljiva $Z = \sqrt{n} \frac{\hat{\mu} - \mu}{\sigma}$ ima $\mathcal{N}(0, 1)$ raspodelu. Jednostrani $1 - \alpha$ interval poverenja $[a, +\infty)$ je interval u kome se nalazi μ sa verovatnoćom $1 - \alpha$. Iz $P(\mu \geq a) = 1 - \alpha$ nalazimo $P\left(Z \leq \frac{\sqrt{n}}{\sigma} (\hat{\mu} - a)\right) = 1 - \alpha$. Odavde je

$$P\left(\mu \in \left[\hat{\mu} - \varepsilon_{1-\alpha} \frac{\sigma}{\sqrt{n}}, +\infty\right)\right) = 1 - \alpha$$

Zamenom vrednosti dobijamo

$$P(\mu \in [1.84, +\infty)) = 0.99$$

b) Statistika je aritmetička sredina uzorka $\hat{\mu}$. Ukoliko je $\hat{\mu} > c$ hipotezu H_0 odbacujemo sa nivoom značajnosti 0.01.

$$P\left(Z > \frac{c - \mu}{\sigma/\sqrt{n}}\right) = 0.01$$

Odavde dobijamo da je za $\hat{\mu} > 2.26$ verovatnoća odbacivanja hipoteze H_0 , onda kada je ista tačna, u najgorem slučaju 0.01. Prema tome, za dobijenu vrednost aritmetičke sredine, ne odbacujemo osnovnu hipotezu.

c) P-vrednost za $\hat{\mu} = 2.3$ je

$$P\left(Z > \frac{2.3 - 2}{\sqrt{1.21/100}}\right) = 0.0032$$

Pošto je p-vrednost manja od zadatog nivoa značajnosti možemo da odbacimo originalnu hipotezu. Ovo je u skladu sa rezultatom dobijenim pod b). \square