Overview

- represent logic statements
- structure consisting of nodes/vertices and edges
 - edges and nodes can have labels
 - * labelled graph
 - * unlabelled graph
 - edges can have direction
 - * directed graph
 - * undirected graph
- some knowledge can be well represented as graph
- further details [[Graphentheorie]]

Adjacency Matrix

• represents distance/adjacency between all nodes of a graph

Graph representation as adjacency matrix

Adjacency matrix A

- i = row-index
- j = column-index
- A(i,j) = number of edges e(i,j)
- Uniquely represents the graph

	1	2	3	4	5
1	0	0	1	0	1
2	0	0	1	0	1
3	1	1	0	0	1
4	0	0	0	0	1
5	1	1	1	1	0

Use Cases

- Shortest Path
 - determine shortest path between two nodes in grap
 - minimise weight of constituent edges
- Centrality
 - determine most influential nodes in graph
 - different types of centrality depending on use case

- degree centrality
 - * number of incoming connections
- closeness centrality
 - \ast the closer to all other nodes the more central

$$CC(x) = \frac{N}{\sum_{y} d(y,x)}$$

* _ _ _

 $[[Knowledge\ Representation]] \\$