Università degli Studi di Padova

RELAZIONE DI LABORATORIO: DISTRIBUZIONI ANGOLARI

Laboratorio di fisica, primo anno LM

Davide Chiappara

Università di Padova, facoltà di fisica, davide.chiappara@studenti.unipd.it Matricola: 1153465

Ivan Di Terlizzi

Università di Padova, facoltà di fisica, ivan.diterlizzi@studenti.unipd.it Matricola: 1155188

Enrico Lusiani

Università di Padova, facoltà di fisica, enrico.lusiani@studenti.unipd.it Matricola: 1153399

Sommario

La seguente è la relazione sull'esperimento di distribuzioni angolari eseguito da Chiappara Davide, Di Terlizzi Ivan e Lusiani Enrico facenti parte del gruppo 8. I dati sono stati raccolti presso il laboratorio di fisica in via Loredan in data 5-6-7 Novembrebre 2016, e sono stati successivamente analizzati durante lo stesso anno accademico.

L'esperienza consiste nella misura della correlazione angolare di una sorgente gamma di 60 Co tramite rivelatori a scintallazione di NaI(Tl) di cui si misura inoltre l'efficienza.

Indice

1 Esecuzione esperimento		1	
2	Ana	ılisi dati	2
	2.1	Calibrazione	2

1. Esecuzione esperimento

L'apparato sperimentale consiste in una serie di moduli NIM (un generatore di alta tensione per alimentare i due PMT, un fan in/out, un CFTD, un TAC, una scatola di ritardi e una coincidence unit), due scintillatore di NaI(Tl) collegati ciascuno ad un PMT XP2020, un oscilloscopio e un digitizer CAEN DT5720.

Durante la prima giornata si sono analizzate le varie parti dell'apparato strumentale e si sono calibrati i sistemi di acquisizione. Per prima cosa si sono collegate le uscite dei due rivelatori al fan in/out e da lì all'oscilloscopio, e si è analizzata la forma (polarità, ampiezza media e tempi caratteristici) dei due segnali. Si è inoltre identificata l'ampiezza caratteristica dei segnali corrispondenti al fotone da 1333 keV.

Subito dopo si è passati all'analisi del segnale del CFTD. Si è perciò collegato un uscita del fan in/out (su ciascun segnale) all'entrate del CFTD e le uscite prompt e delayed di quest ultimo all'oscilloscopio. Triggherando sul segnale di prompt si è analizzato l'effetto dei microswitch sul segnale delayed.

Per evitare che il CFTD scattasse sul rumore bianco dell'elettronica è stata poi settata la soglia del modulo. Si è collegata un uscita del fan in/out all'oscilloscopio, triggherando sull'uscita delayed del CFTD. Tramite l'uso della funzione "persistenza" dell'oscilloscopio si è regolata la soglia facendo in modo che in corrispondenza del trigger i segnali avessero tutti un ampiezza minima che li identificasse come eventi reali. Il procedimento è stato ripetuto per il secondo rivelatore.

Per la calibrazione in energia si è preso uno spettro con un campione di ⁶⁰Co, mandando il segnale del CFTD alla coincidence unit settata in modalità "OR" (ovvero semplicemente il segnale stesso), che in precedenza era stata collegata all'entrate TRG IN del digitizer. Le misure sono state acquisite per 10 min su ogni rivelatore. Dato che i fotoni del decadimento del ⁶⁰Co hanno energie molto alte e vicine tra loro, è stato necessario acquisire anche uno spettro con un campione di ²⁴¹Am, che contiene un fotone di energia di 59.5 keV, per eliminare la forte correlazione che si avrebbe in caso contrario tra i parametri della retta del fit.

Si è poi verificato che i segnali di CFTD si trovassero effettivamente sovrapposti in presenza di una coincidenza, trovando che effettivamente lo erano, e non è stato perciò necessario cambiare il ritardo del segnale delayed.

In preparazione ai giorni seguenti, si è definita la geometria dell'apparato. Le distanze dalla sorgente e le aree sottese dai rivelatori sono infatti necessarie sia per una stima dell'accettanza dei rivelatori, sia per una buona analisi delle misure della correlazione angolare eseguite il terzo giorno. Subito dopo è stato preso un campione di prova con i rivelatori a 180° l'uno dall'altro, per ottenere una misura della rate da confrontare con quella teorica ricavabile dai parametri geometrici appena misurati.

Durante la seconda giornata si sono completate le misure della geometria dell'apparato ed eseguite misure riguardanti l'efficienza dei due rivelatori. Nella prima parte si è cercata la posizione della sorgente rispetto all'asse di rotazione del braccio dell'apparato contenente il rivelatore 2. Per fare ciò si è posto il trigger del digitizer sul CFTD di tale rivelatore e si sono presi campioni da 10 min l'uno facendo variare l'angolo del braccio a 0, 20, 40, 50, 70 e 90°. Dalle differenze delle rate misurate è

Gruppo 8 2 Analisi dati

possibile ricavare una stima della posizione della sorgente.

Una volta conosciuta la struttura precisa dell'apparato si è passati a misure dell'efficienza dei rivelatori. Questa misura è stata fatta utilizzando sia il metodo dei due fotoni, sia con il metodo del picco somma. Entrambe le misure hanno richiesto run di circa 60/90 min, con il trigger sulla coincidence unit in modalità "OR", ma mentre nella prima si cercavano gli eventi in cui un fotone era stato rivelato dal primo e uno dal secondo rivelatore, nella seconda si cercavano gli eventi in cui entrambi i fotoni erano stati raccolti dallo stesso rivelatore. Dato che quest'ultimo evento è molto raro e nello spettro in energia si trova sommerso dal rumore si è deciso che sarebbe stata presa anche una run notturna per avere una campione dalla statistica molto alta.

Si sono poi cominciate a prendere le misure per la correlazione angolare dei due fotoni, poi completate il giorno seguente. Tali misure sono state prese con il trigger sulla coincidence unit in modalità "AND", con una durata di 10 min per ogni run, facendo variare l'angolo del braccio dell'apparato di 10 in 10° tra 0 e 90° . Grazie alla misura della rate di coincidenze al variare dell'angolo, si ha una stima dei parametri della funzione di correlazione angolare.

2. Analisi dati

2.2.1 Calibrazione

Un primo passo necessario per la successiva analisi dati vera e propria è la calibrazione dei sistema di acquisizione, effettuata tramite una conoscenza a priori dell'energia associata ai fotoni emessi dalla sorgente. I fotoni utilizzati a tale scopo sono quelli relativi alla cascata gamma successiva al decadimento β del nucleo di cobalto, ovvero i gamma con energia pari a 1173 keV e 1333 keV. Per ogni rivelatore è stato quindi acquisito uno spettro in cui fossero visibili i picchi associati a tali gamma che sono stati successivamente fittati in maniera tale da potervici associare un centroide. A questo punto avendo due coppie di valori per rivelatore sarebbe in linea di principio possibile ottenere una relazione lineare che permette di calibrare lo spettro, ma essendo i centroidi trovati di valore molto grande $\approx 10^4$ e relativamente molto vicini, ciò porterebbe ad una grande incertezza sul parametro di ordine 0 del fit (p_0). Si è quindi acquisito un ulteriore spettro relativo ad una sorgente di Americio che presenta un picco a 59.5 keV, ottenendo in tal modo un terzo punto per la calibrazione. Di seguito i punti ottenuti per la calibrazione ed i parametri ricavati dal fit.

Gruppo 8 2 Analisi dati

Figura 1: Calib R1

Figura 2: Calib R2

Riferimenti bibliografici