Name:	
Student ID:	
Section:	
Instructor: Paul Gustafson	

Math 131 (Principles of Calculus) Final Exam A

RED

Instructions:

- For questions which require a written answer, show all your work. Full credit will be given only if the necessary work is shown justifying your answer.
- Simplify your answers.
- Calculators are allowed.
- Should you have need for more space than is allocated to answer a question, use the back of the exam.
- Please do not talk about the test with other students until exams are handed back.
- Honor Code:

An Aggie does not lie, cheat, or steal or tolerate those who do.				
Signature				

For Instructor use only.

#	Possible	Earned
MC	135	
Sub	135	

#	Possible	Earned
Sub	0	
Total	135	

Multiple Choice (5 points each) Mark the correct answer on the bubble sheet.

For questions 1-4, use the following graph of f(x):

Figure 1: f(x)

- 1. According to the graph of f(x), the $\lim_{x\to 3} f(x)$ equals which of the following.
 - a) 8

b) 2

c) -1

d) -3

- e) The limit does not exist.
- 2. According to the graph of f(x), the $\lim_{x\to -2^-} f(x)$ equals which of the following.
 - a) 7

b) 0

c) -2

d) -5

- e) The limit does not exist.
- 3. According to the graph of f(x), the $\lim_{x\to 5} f(x)$ equals which of the following.
 - a) 8

b) 4

c) 0

d) -1

- e) The limit does not exist.
- 4. According to the graph of f(x), the function f(x) is not continuous at x=3 because
 - a) f(x) is not defined at x = 6.
- b) there is a removable discontinuity at x = 6
- c) $\lim_{x\to 6} f(x)$ does not exist.

- d) there is a horizontal asymptote at x = 6.
- e) there is a vertical asymptote at x = 6.

5. The graph of g(x) is given below.

Figure 2: g(x)

According to the graph above, the domain and range of g(x) are

a) Domain: [-4, 4], Range: [-4, 2]

b) Domain: [-6, 4], Range: [-2, 6]

c) Domain: [-6, 2], Range: [-2, 4]

d) Domain: [-4, 4], Range: [-6, 2]

- e) Domain: [-2, -6], Range: [-2, 4]
- 6. Find the domain of $f(x) = \frac{1}{x^2 16}$.
 - a) $(-2,2) \cup (2,\infty)$

b) $(-\infty, -4) \cup (-4, 4) \cup (4, \infty)$

c) $(-\infty, -4) \cup (0, \infty)$

d) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$

- e) [-2, 2)
- 7. Let $f(x) = \sqrt{4 x^2}$ and $g(x) = \ln(x)$. What is the domain of f(x) * g(x)?
 - a) (0,2]

b) [-1,2)

c) $[-2,\infty)$

 $\mathrm{d}) \quad (0, \infty)$

e) [-2, 2]

- 8. Given a function f(x), then the graph of 2f(3-x) will be
 - a) the graph of f(x) shrunk horizontally by a factor of 2, shifted 4 units up, then reflected across the x-axis.
 - c) the graph of f(x) stretched vertically by a factor of 2, shifted 3 units to the right, then reflected across the y-axis.
 - e) the graph of f(x) shrunk horizontally by a factor of 3, shifted 4 units to the right, then reflected across the x-axis.
- b) the graph of f(x) stretched vertically by a factor 3, shifted 2 units up, then reflected across the y-axis.
- d) the graph of f(x) stretched vertically by a factor of 2, shifted 3 units to the left, then reflected across the y-axis.
- 9. A bacteria population doubles every 47 minutes. If the initial population is 1000 bacteria, how many bacteria will there be after 5 hours?

a)
$$4.2 \times 10^4$$

b)
$$3.2 \times 10^3$$

c)
$$4.3 \times 10^3$$

d)
$$1.2 \times 10^3$$

e)
$$8.3 \times 10^3$$

10. Find the derivative of the function $f(x) = \frac{3}{x^3} - 4x^2 + 3$.

$$a) \quad -\frac{15}{x^2} - 8x$$

b)
$$-\frac{15}{x^2} + 3$$

c)
$$-\frac{9}{x^4} - 8x$$

d)
$$-\frac{9}{x^4} - 4$$

e)
$$-\frac{10}{x} - 3$$

For the next two questions, use the following graph of f'(x):

Figure 3: f'(x)

- 11. According to the graph of f'(x), the original function f(x) has a local maximum at
 - a) -5

b) -3

c) 0

d) 1

- e) 5
- 12. According to the graph of f'(x), the original function f(x) is concave upward in which interval(s)?
 - a) $(-\infty, \infty)$

b) $(-\infty, -3) \cup (1, 5)$

c) $(1,\infty)$

- d) $(-\infty, -3)$
- e) The original function f(x) is never concave up.
- 13. A vertical spring is released at time t = 0 seconds and begins to oscillate in a straight vertical line. The height of its endpoint above the ground in meters is given by the function

$$h(t) = 3 - 0.2\cos(2t)$$

To two decimal places, what is the velocity (in meters/second) of the spring's endpoint at time t=3?

a) -0.11

b) -0.06

c) 0.12

d) 2.12

e) 2.84

14. Find the linear approximation to $\sqrt{x^2 + 8}$ at x = 1

a) $3x + \sqrt{8}$

b) $x + \sqrt{8}$

c) $\frac{1}{6}x + 3$

d) $\frac{2}{3}x + 3$

e) $\frac{1}{3}x + 3$

15. We are given an unknown function f(x) such that f'(2) > 0 and f''(2) < 0. We can conclude that at x = 2, the function f(x) has

a) a local min.

b) a local max.

c) an inflection point.

d) an undefined derivative.

e) none of the above.

16. Calculate the equation of the tangent line to $y = \frac{1}{x}$ at x = 2

a) $y = -\frac{1}{4}x + \frac{1}{2}$

b) $y = x + \frac{1}{2}$

c) $y = -\frac{1}{2}x + 2$

d) $y = -\frac{1}{2}x + \frac{1}{2}$

e) $y = -\frac{1}{4}x + 2$

17. Find the absolute maximum and minimum values for the function $f(x) = \ln(x^2 + 1)$ on the interval [-1,3]

- a) maximum value = 2.30, minimum value = 1.1
- b) maximum value = 3.62, minimum value = 1.1
- c) maximum value = 2.30, minimum value = 0
- d) maximum value = 3.62, minimum value = 0
- e) maximum value = 1.32, minimum value = 1

- 18. Find the derivative of the function $tan(xe^x)$.
 - a) $(1+x)e^x \sec^2(xe^x)$

b) $e^x \sec^2(xe^x)$

c) $(1+x)e^x \tan(xe^x)$

d) $e^x \cos^2(xe^x)$

- e) $\sec^2(xe^x)$
- 19. If $f'(x) = \frac{1}{2\sqrt{x}}$ and f(9) = 5
 - a) $f(x) = \frac{3}{4}x^{-3/2} + \frac{11}{4}$

b) $f(x) = \sqrt{x} + \frac{7}{2}$

 $c) \quad f(x) = \frac{1}{2}\sqrt{x} + 3$

d) $f(x) = \frac{1}{2}\sqrt{x} + \frac{7}{2}$

- e) $f(x) = \sqrt{x} + 2$
- 20. A particle moves along a wire with velocity $v(t) = 4\cos(2t)$. Find the net change in position between time t = 0 and $t = \pi$
 - a) $1 + \pi$

b) 2π

c) 4π

d) 0

- e) $\frac{\pi}{2}$
- 21. Calculate the indefinite integral $\int \frac{1}{x} + \sec(3x)\tan(3x) dx$
 - a) $\ln|x| + 3\sec(3x) + C$

b) $\frac{2}{x^2} + \frac{1}{3}\sec(3x) + C$

c) $\ln |x| + \frac{1}{3}\sec(3x) + C$

d) $-\frac{2}{x^2} + \frac{1}{3}\tan(3x) + C$

e) $\ln |x| + \frac{1}{3}\cot(3x) + C$

- 22. Use the fundamental theorem of calculus to find the derivative of $f(x) = \int_{1}^{x^2} \sin(\cos(t)) dt$
 - a) $\sin(\cos(x^2))$

b) $x^2 \sin(\cos(x^2))$

c) $(x^2 - 1)\sin(\cos(x^2))$

d) $2x\sin(\cos(x^2))$

- e) $(2x-1)\sin(\cos(x))$
- 23. Use the geometric shape of the graph to find the integral $\int_{-3}^{2} f(x)$ where

$$f(x) = \begin{cases} 5, & x \le 0\\ \sqrt{4 - x^2}, & x > 0 \end{cases}$$

a) 2π

b) $\frac{15}{2} + \frac{1}{4}\pi$

c) $15 + \pi$

d) $15 + 2\pi$

- e) $10 + \frac{\pi}{2}$
- 24. The acceleration of a particle is given by $a(t) = 6\sin(t)$. The position of the particle at times t = 0 is s(0) = 3. The initial velocity of the particle is v(0) = -7. The position function for the particle is
 - a) $s(t) = -3t^2 + 5t + 3$

b) $s(t) = -6\sin(t) - t + 3$

c) $s(t) = -6\cos(t) - t + 6$

d) $s(t) = -6\cos(t) - 13t + 3$

- e) $s(t) = -6\sin(t) 13t + 3$
- 25. Calculate $\int_{1}^{e^3} \frac{(\ln(x))^2}{x} dx.$
 - a) 9

b) $\frac{1}{3}e^3 - 1$

c) $2e^{-3}$

d) $\frac{1}{3}$

- e) 8
- 26. Calculate the area between the curves y = x and $y = x^2$.
 - a) $\frac{1}{3}$

b) $\frac{1}{6}$

c) $\frac{2}{3}$

d) 1

e) $-\frac{1}{2}$

27. What is the average value of the function $f(x) = \sin(x)$ on $[0, \pi]$

a) 2

b) -2π

c) $-\frac{\pi}{2}$

d) π

e) $\frac{2}{\pi}$