6.5 Suppose $0 . Then <math>L^p \nsubseteq L^q$ iff X contains sets of arbitrarily small positive measure, and $L^q \nsubseteq L^p$ iff X contains sets of arbitrarily large finite measure. What about the case $q = \infty$?

Solution $L^p \nsubseteq L^q$ iff X contains sets of arbitrarily small positive measure:

$$" \Longrightarrow "$$

Assume that there exists $\varepsilon > 0$ so that $\varepsilon \le \mu(E)$ for all non-null measurable sets $E \subseteq X$.

Now let $f = \sum_{n=1}^{N} a_n \chi_{E_n}$ be an integrable simple function in L^p . By Minkowski's inequality,

$$||f||_q \le \sum_{n=1}^N ||a_n \chi_{E_n}||_q = \sum_{n=1}^N |a_n| \mu(E_n)^{1/q} = \sum_{n=1}^N |a_n| \mu(E_n)^{\frac{1}{p}} \mu(E_n)^{\frac{1}{q} - \frac{1}{p}} \le \frac{1}{\varepsilon^{(q-p)/qp}} ||f||_p.$$

Hence, simple integrable functions in L^p are all contained in L^q , which is a Banach space, hence closed. By density of these functions, this means that $L^p \subseteq L^q$.

Let $\{E_n\}$ be a disjoint sequence of measurable sets so that $0 < \mu(E_n) < 2^{-n}$, which exists by assumption. Then set $a_n = \mu(E_n)^{-1/q}$ and $f = a_n \chi_{E_n}$. By the monotone convergence theorem,

$$||f||_p^p = \int \left| \sum_{n=1}^\infty a_n \chi_{E_n} \right|^p = \int \sum_{n=1}^\infty a_n^p \chi_{E_n} = \sum_{n=1}^\infty \int a_n^p \chi_{E_n} = \sum_{n=1}^\infty \mu(E_n)^{1-(p/q)} < \sum_{n=1}^\infty 2^{-n(q-p)/q} < \infty,$$

since (q-p)/q > 0. On the other hand, the same calculation yields

$$||f||_q^q = \sum_{n=1}^\infty \mu(E_n)^{1-(q/q)} = \sum_{n=1}^\infty 1 = \infty.$$

Hence, $L^p \not\subseteq L^q$.

 $L^q \not\subseteq L^p$ iff X contains sets of arbitrarily large finite measure:

Assume that there exists M > 0 so that $\mu(E) \leq M$ for all measurable $E \subseteq X$.

Let $f = \sum_{n=1}^{N} a_n \chi_{E_n}$ be an integrable simple function in L^q . Then by the triangle inequality,

$$||f||_p \le \sum_{n=1}^N ||a_n \chi_{E_n}|| \le \sum_{n=1}^N |a_n| \mu(E_n)^{1/p} = \sum_{n=1}^N |a_n| \mu(E_n)^{\frac{1}{q}} \mu(E_n)^{\frac{1}{p} - \frac{1}{q}} \le M^{(q-p)/pq} ||f||_p$$

As before, a dense subset of L^q is contained in the complete space L^p , so $L^q \subseteq L^p$.

"⇐="

Now let $\{E_n\}$ is a sequence of disjoint measurable subsets of X so that $2^n \leq \mu(E_n) < \infty$, which exists by assumption. Set $a_n = \mu(E_n)^{-1/p}$, and let $f = \sum a_n \chi_{E_n}$. Then by the similar calculation as the first part,

$$||f||_q^q = \sum_{n=1}^{\infty} a_n^q \mu(E_n) = \sum_{n=1}^{\infty} \mu(E_n)^{-q/p} \mu(E_n) \le \sum_{n=1}^{\infty} \frac{1}{2^{n(q/p-1)}} < \infty,$$

because q/p - 1 > 0. However

$$||f||_p^p = \sum_{n=1}^{\infty} \mu(E_n)^{-p/p} \mu(E_n) = \sum_{n=1}^{\infty} 1 = \infty,$$

so $f \in L^q$ but not L^p .

6.19 Define $\varphi_n \in (\ell^{\infty})^*$ by $\varphi_n(f) = n^{-1} \sum_{j=1}^n f(j)$. Then the sequence $\{\varphi_n\}$ has a weak* cluster point φ , and φ is an element of $(\ell^{\infty})^*$ that does not arise from an element of ℓ^1 .

Solution Notice that if $||f|| \le 1$, then

$$|\varphi_n(f)| = \left| n^{-1} \sum_{j=1}^n f(j) \right| \le n^{-1} \cdot n ||f||_{\infty} = 1,$$

for all $n \geq 1$. Thus, $\varphi_n \in B^*$, so by Banach–Alaoglu, φ_n admits a convergent subsequence $\varphi_{n_k} \to \varphi$ weakly*, so φ is a weak* cluster point of the sequence. Because K is a Banach space, $(\ell^{\infty})^*$ is one also, so $\varphi \in (\ell^{\infty})^*$. Now suppose φ arose from an element $g \in \ell^1$. Then by definition of weak convergence, for all $f \in \ell^{\infty}$,

$$\varphi_{n_k}(f) \xrightarrow{k \to \infty} \sum_j g(j)f(j).$$

Now consider the basis sequence $e_m \in \ell^{\infty}$, where $e_m(k) = 0$ unless k = m, where $e_m(m) = 1$. Then

$$\varphi_{n_k}(e_m) = \frac{1}{n_k} \xrightarrow{k \to \infty} 0 = \sum_j g(j)e_m(j) = g(j)$$

for all $j \geq 1$. But if we test g against the constant 1 sequence,

$$\varphi_{n_k}(1) = 1 \xrightarrow{k \to \infty} 1 = \sum_j 1 \cdot g(j) = 0,$$

which is impossible. Hence, φ does not arise from an element of ℓ^1 .

- **6.20** Suppose $\sup_n ||f_n||_p < \infty$ and $f_n \to f$ a.e.
 - a. If $1 , then <math>f_n \to f$ weakly in L^p .
 - b. The result of (a) is false in general for p=1. It is, however, true for $p=\infty$ if μ is σ -finite and weak convergence is replaced by weak* convergence.
- **Solution** a. Let $g \in L^q$ and $\varepsilon > 0$.

We follow the hint: By density of L^q -integrable simple functions, there exists $\varphi \in L^q$ so that $||g - \varphi||_q < \varepsilon/2$. Now let $\delta > 0$, which will be chosen later, and let $\mu(E) < \delta$. We have, by Minkowski's inequality, that

$$||g\chi_E||_q \le ||(g-\varphi)\chi_E||_q + ||\varphi\chi_E||_q.$$

We simply need to investigate the L^q norm of φ on E. If we write

$$\varphi = \sum_{n=1}^{N} a_n \chi_{E_n}, \text{ then } \varphi \chi_E = \sum_{n=1}^{N} a_n \chi_{E_n \cap E},$$

which gives

$$\|\varphi\chi_E\|_q \le \sum_{n=1}^N \int |a_n|^q \chi_{E_n \cap E} \le \sum_{n=1}^N |a_n|^q \mu(E) < \left(\sum_{n=1}^N |a_n|^q\right) \delta \xrightarrow{\delta \to 0} 0.$$

Hence, we may find δ which makes the last term smaller than $\varepsilon/2$, independently of E. Thus,

$$\|g\chi_E\|_q \leq \|(g-\varphi)\chi_E\|_q + \|\varphi\chi_E\|_q < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Now for the next part, for each $n \ge 1$, consider the measurable set $E_n := \{x \mid |g(x)|^q \ge 1/n\}$. This satisfies $E_1 \subseteq E_2 \subseteq \cdots$, and each of these have finite measure, or else $g \notin L^q$. Then

$$\int_{\bigcup E} |g|^q = \int_{\{|g|^q > 0\}} |g|^q = \int |g|^q.$$

Notice that $|g - g\chi_{E_n}|^q \leq |g|^q \in L^1$, so by the dominated convergence theorem,

$$\int_{X \setminus E_n} |g|^q = \int |g - g\chi_{E_n}|^q \xrightarrow{n \to \infty} 0.$$

This proves the second part: there exists $n \ge 1$ so that $\mu(E_n) < \infty$ and $\int_{X \setminus E_n} |g|^q < \varepsilon$.

For the last part, we may simply invoke Egorov's theorem on $A := E_n$, which gives us a set $B \subseteq A$ so that $f_n \to f$ uniformly on B and $\mu(A \setminus B) < \delta$.

Finally, let $M = \sup_n ||f_n||$. By Hölder's inequality,

$$\int |f_n g - f g| = \int_B |f_n - f||g| + \int_{A \setminus B} |f_n - f||g| + \int_{X \setminus A} |f_n - f||g|$$

$$\leq \|(f_n - f)\chi_B\|_p \|g\|_q + \|(f_n - f)\chi_{A \setminus B}\|_p \|g\chi_{A \setminus B}\|_q + \|(f_n - f)\chi_{X \setminus A}\|_p \|g\chi_{X \setminus A}\|_q$$

$$\leq \|(f_n - f)\chi_B\|_p \|g\|_q + 2M \|g\chi_{A \setminus B}\|_q + 2M \|g\chi_{X \setminus A}\|_q.$$

The first term can be made smaller than $\varepsilon/3$, because $f_n \to f$ uniformly on B by picking n large enough. Next, the second term can be made smaller than $\varepsilon/3$ also by picking $\delta(A, \varepsilon, n)$ small enough, so that $\mu(A \setminus B)$ is small. Lastly, the final term may be made smaller than $\varepsilon/3$ again by picking A large enough, shrinking $\delta(A, \varepsilon, n)$ if necessary. Hence,

$$\int |f_n g - f g| < \varepsilon$$

so $f_n \to f$ weakly in L^p .

b. Consider $f_n = \chi_{[n,n+1]}$. $f_n \in L^1$, since the measure of [n,n+1] is 1 for all $n \geq 1$. Moreover, $f_n \to 0$ pointwise. But if we let $g \equiv 1 \in L^{\infty}$, then

$$\int f_n g = 1 \xrightarrow{n \to \infty} 1 \neq 0 = \int 0 \cdot g,$$

so the conclusion of (a) fails.

Now, assume that $p=\infty$ and μ is a σ -finite measure, which means that the dual of L^1 is L^∞ . Let $f_n\to f$ a.e. and $M\coloneqq\sup_n\|f_n\|_\infty<\infty$.

Since $(L^1)^* = L^{\infty}$, it suffices to show that $\int f_n g \to \int f g$ for all $g \in L^1$.

Let $g \in L^1$. Notice that $|f_k - f||g| \le 2M|g| \in L^1$. Hence, because $|f_n - f| \to 0$ pointwise, dominated convergence gives us

$$\int |f_n g - f g| = \int |f_n - f||g| \xrightarrow{n \to \infty} 0,$$

so $f_k \to f$ weakly in L^{∞} .

- **6.22** Let X = [0, 1], with Lebesgue measure.
 - a. Let $f_n(x) = \cos 2\pi nx$. Then $f_n \to 0$ weakly in L^2 , but $f_n \not\to 0$ a.e. or in measure.
 - b. Let $f_n(x) = n\chi_{(0,1/n)}$. Then $f_n \to 0$ a.e. and in measure, but $f_n \not\to 0$ weakly in L^p for any p.
- **Solution** a. It suffices to show that $\int \varphi f_n \to 0$ for every integrable simple function, since they're dense. Hence, it suffices to show it for step functions. Because the Lebesgue measurable sets differ from a G_{δ} set by a null set, it further suffices to show this for step functions on an interval. Hence, let $E = (a, b) \subseteq [0, 1]$. Then

$$\int_0^1 \chi_E \cos 2\pi nx \, \mathrm{d}x = \int_0^b \cos 2\pi nx \, \mathrm{d}x = \frac{1}{2\pi n} (\sin 2\pi nb - \sin 2\pi na) \xrightarrow{n \to \infty} 0.$$

Hence, $f_n \to 0$ weakly in L^2 .

Now suppose $f_n \to 0$ a.e. Notice that $|f_n(x) - f_m(x)| \le 2 \in L^2([0,1])$. Then by the dominated convergence theorem,

$$\int_0^1 (f_{n+1}(x) - f_n(x))^2 dx \xrightarrow{n \to \infty} 0.$$

But by a calculation, (e.g., via WolframAlpha)

$$\int_0^1 (\cos 2\pi (n+1)x - \cos 2\pi nx)^2 dx = 1,$$

which is absurd. So, f_n admits no convergent subsequence.

Moreover, f_n cannot converge in measure, or else f_n has a pointwise convergent subsequence, which contradicts the previous part.

- b. The set on which f_n and 0 differ is (0, 1/n), whose measure is 1/n, and this tends to 0, so f_n converges in measure. f_n also converges pointwise everywhere except at the origin.
 - f_n does not converge to 0 weakly in any L^p , since $1 \in L^p([0,1])$, but

$$\int_0^1 1 \cdot f_n \, \mathrm{d}x = 1 \xrightarrow{n \to \infty} 1 \neq 0.$$

6.26 Complete the proof of Theorem 6.18 for the case p = 1.

Solution Assume

$$\int |K(x,y)| \,\mathrm{d}\mu(x) \le C,$$

for some C > 0. We need to show that for $f \in L^1(\nu)$,

$$Tf(x) = \int K(x, y)f(y) d\nu(y)$$

converges absolutely for a.e. $x \in X$, that $Tf \in L^1(\mu)$, and that $||Tf||_1 \leq C||f||_1$.

By Tonelli's theorem,

$$||Tf||_1 = \iint |K(x,y)f(y)| \,\mathrm{d}\nu(y) \,\mathrm{d}\mu(x)$$

$$= \iint \left(\int |K(x,y)| \,\mathrm{d}\mu(x) \right) |f(y)| \,\mathrm{d}\nu(y)$$

$$\leq C \int |f(y)| \,\mathrm{d}\nu(y)$$

$$= C||f||_1.$$

This also shows that the integral converges absolutely for a.e. x.

6.36 If $f \in \text{weak } L^p$ and $\mu(\{x \mid f(x) \neq 0\}) < \infty$, then $f \in L^q$ for all q < p. On the other hand, if $f \in (\text{weak } L^p) \cap L^\infty$, then $f \in L^q$ for all q > p.

Solution Let f be as in the problem, and let $M = \mu(\{x \mid f(x) \neq 0\})$. By definition,

$$[f]_p = \left(\sup_{\alpha > 0} \alpha^p \lambda_f(\alpha)\right)^{1/p} < \infty.$$

Also, notice that M is an upper bound for $\lambda_f(\alpha)$, by definition of λ_f . Then for q < p,

$$||f||_q^q = \int |f|^q d\mu$$

$$= q \int_0^\infty \alpha^{q-1} \lambda_f(\alpha) d\alpha$$

$$= q \int_0^\infty \alpha^p \alpha^{q-p-1} \lambda_f(\alpha) d\alpha$$

$$= q \left(\int_0^1 \alpha^p \alpha^{q-p-1} \lambda_f(\alpha) d\alpha + \int_1^\infty \alpha^p \alpha^{q-p-1} \lambda_f(\alpha) d\alpha \right)$$

$$\leq q \left(\int_0^1 \lambda_f(\alpha) d\alpha + \int_1^\infty \alpha^{q-p-1} (\alpha^p \lambda_f(\alpha)) d\alpha \right)$$

$$\leq q \left(M + [f]_p^p \int_1^\infty \alpha^{q-p-1} d\alpha \right)$$

$$< \infty.$$

Indeed, the integral converges because q - p - 1 < -1.

On the other hand, let $f \in (\text{weak } L^p) \cap L^{\infty}$, and let q > p. Since $f \in L^{\infty}$, there exists $\alpha_0 > 0$ so that $\lambda_f(\alpha) = 0$ for all $\alpha > \alpha_0$. Then by the same calculation as above,

$$||f||_q^q = q \left(\int_0^1 \alpha^p \alpha^{q-p-1} \lambda_f(\alpha) \, d\alpha + \int_1^\infty \alpha^p \alpha^{q-p-1} \lambda_f(\alpha) \, d\alpha \right)$$
$$= q \left([f]_p^p \int_0^1 \alpha^{q-p-1} \, d\alpha + \int_1^{\alpha_0} \alpha^p \alpha^{q-p-1} \lambda_f(\alpha) \, d\alpha \right)$$
$$< \infty.$$

The left integral convergences because q-p-1>-1, and the right integral converges because α^{q-1} is continuous on $[1, \alpha_0]$, hence integrable. Thus, $f \in L^q$.