Package 'dgdecomp'

January 10, 2020

Type Package

Title Das Gupta Decomposition on Multiplicative Factors

Version 1.1.0

Description Takes any P number of factors, and decomposes them into additive factors.

Encoding UTF-8 **LazyData** TRUE

URL https://github.com/sadatnfs/dgdecomp

BugReports https://github.com/sadatnfs/dgdecomp/issues

NeedsCompilation yes **Author** Nafis Sadat [aut]

Maintainer Nafis Sadat <sadatnfs@gmail.com>

LinkingTo Rcpp, RcppArmadillo

Depends data.table, Rcpp, RcppArmadillo

Suggests assertthat, testthat, foreach, data.table, matrixStats, MASS,

knitr, rmarkdown

VignetteBuilder knitr

License MIT + file LICENSE

RoxygenNote 6.1.1 **RemoteType** github

RemoteHost api.github.com

RemoteRepo dgdecomp

RemoteUsername sadatnfs

RemoteRef master

 $\textbf{RemoteSha} \ \ 545f88d3b3677b192c3fca1b5a4cf0c39d2bef9a$

RemoteSubdir dgdecomp GithubRepo dgdecomp GithubUsername sadatnfs

GithubRef master

GithubSHA1 545f88d3b3677b192c3fca1b5a4cf0c39d2bef9a

GithubSubdir dgdecomp

Archs i386, x64

2 dgdecomp-package

R topics documented:

	dgdecomp-package	2
	Decomp_Factors	4
	Decomp_on_DT	5
	Func_Create_Combn	5
	Func_Cross	6
	Func_Dem	6
	Func_Inner	7
	Func_Inner_Sum	7
	Func_Num	8
	simulate_decomp_data	8
	simulate_decomp_data_fullmat	9
Index	1	10

dgdecomp-package

Das Gupta Decomposition on Multiplicative Factors

Description

Takes any P number of factors, and decomposes them into additive factors.

Details

The DESCRIPTION file:

Package: dgdecomp Type: Package

Title: Das Gupta Decomposition on Multiplicative Factors

Version: 1.1.0

Authors@R: person("Nafis", "Sadat", email = "sadatnfs@gmail.com", role = c("aut", "cre"))

Description: Takes any P number of factors, and decomposes them into additive factors.

Encoding: UTF-8 LazyData: TRUE

URL: https://github.com/sadatnfs/dgdecomp
BugReports: https://github.com/sadatnfs/dgdecomp/issues

NeedsCompilation: yes

Author: Nafis Sadat [aut]

Maintainer: Nafis Sadat <sadatnfs@gmail.com>

LinkingTo: Rcpp, RcppArmadillo

Depends: data.table, Rcpp, RcppArmadillo

Suggests: assertthat, testthat, foreach, data.table, matrixStats, MASS, knitr, rmarkdown

VignetteBuilder: knitr

License: MIT + file LICENSE

RoxygenNote: 6.1.1
RemoteType: github
RemoteHost: api.github.com
RemoteRepo: dgdecomp
RemoteUsername: sadatnfs
RemoteRef: master

RemoteSha: 545f88d3b3677b192c3fca1b5a4cf0c39d2bef9a

dgdecomp-package 3

RemoteSubdir: dgdecomp GithubRepo: dgdecomp GithubUsername: sadatnfs GithubRef: master

545f88d3b3677b192c3fca1b5a4cf0c39d2bef9a GithubSHA1:

GithubSubdir: dgdecomp

Index of help topics:

Decomp_Factors Compute the marginal decomposition effects from

given input

Decomp_on_DT Apply DG Decomposition to data.table columns Func_Create_Combn

Compute the combination of all positions of the

given factor segmented into two pieces

Compute the combination of all the elements of Func_Cross

the given vectors corresponding to the given

sizes (using Func_Create_Combn)

Func_Dem Compute the denomiator of the inner sums in the

DG Decomposition

Compute the fraction for the inner sum in the Func_Inner

DG Decomposition where all the params gets

passed to Func_Num() and Func_Den()

Func_Inner_Sum Sum over all inner sums for the DG

Decomposition

Compute the numerator of the inner sums in the Func_Num

DG Decomposition

dgdecomp-package Das Gupta Decomposition on Multiplicative

Factors

simulate_decomp_data Simulate simple random decomp data for P

factors such that the product of P factors

equal a measure for 2 time periods

simulate_decomp_data_fullmat

Simulate grouped data for decomp analysis (T by

IDI by factors)

This section should provide a more detailed overview of how to use the package, including the most important functions.

Author(s)

Nafis Sadat [aut]

Maintainer: Nafis Sadat <sadatnfs@gmail.com>

References

This optional section can contain literature or other references for background information.

See Also

Optional links to other man pages

Decomp_Factors

Examples

```
## Optional simple examples of the most important functions
## Use \dontrun{} around code to be shown but not executed
```

 ${\tt Decomp_Factors}$

Compute the marginal decomposition effects from given input

Description

Decomp_Factor_Matx() can be used if the input has multiple rows of data to decompose, whereas Decomp_Factor() only takes in vectors as inputs.

Usage

```
Decomp_Factors(vec_x, vec_y, return_dt = TRUE, equality_check = TRUE,
    ...)

Decomp_Factors_Matx(mat_x, mat_y, return_dt = TRUE, use_cpp = TRUE,
    parallel = 1, equality_check = TRUE, ...)
```

Arguments

vec_x	First input vector (represents t-1)
vec_y	Second input vector (represents t)
return_dt	A boolean on whether to return a data.table or a vector
equality_check	Check whether the decomp values align with inputs. Default: TRUE. Highly recommended to set to TRUE.
	extra parameters to be passed to all.equal(), for e.g. the tolerance.
mat_x	First input matrix (only for Decomp_Factor_Matx())
mat_y	Second input matrix (only for Decomp_Factor_Matx())
use_cpp	A boolean on whether to use the C++ compiled code or not. Default: TRUE
parallel	Number of threads. Default: 1

Value

A data.table or vector of decomposed effects for each factors, which is already multiplied by the change values

Decomp_on_DT 5

Decomp_on_DT	Apply DG Decomposition to data.table columns	

Description

Apply DG Decomposition to data.table columns

Usage

```
Decomp_on_DT(input_data, factor_names, time_col, bycol, use_cpp = TRUE,
    parallel = 1, ...)
```

Arguments

input_data	A data.table with the factors, which must already be sorted
factor_names	A vector of column names for the factor
time_col	A string for the column name
bycol	The 'by' slicer which must make sure that the data is reduced to just 2 rows per group after slicing
use_cpp	A boolean on whether to use the C++ compiled code for the factor for-loop or not (passes to Decomp_Factor_Matx()). Default: TRUE
parallel	Number of threads. Default: 1
	extra parameters to be passed through Decomp_Factors() to all.equal()

Value

A data.table of the same size as input, but instead with the additive decomposition results (first row will be NA as being the starting period)

Func_Create_Combn	Compute the combination of all positions of the given factor segmented
	into two pieces

Description

Compute the combination of all positions of the given factor segmented into two pieces

Usage

```
Func_Create_Combn(Pfac, size1, size2)
```

Arguments

Pfac	Number of factors minus 1
size1	Number of elements to take from vec_x
size2	Number of elements to take from vec_y

Value

A vector of positions made from the unique combinations of size 1 and size $\!2$

Func_Dem

Func_Cross	Compute the combination of all the elements of the given vectors cor-
	responding to the given sizes (using Func_Create_Combn)

Description

Compute the combination of all the elements of the given vectors corresponding to the given sizes (using Func_Create_Combn)

Usage

```
Func_Cross(vec_x, vec_y, size1, size2)
Func_Cross_Matx(vec_x, vec_y, size1, size2)
```

Arguments

vec_x	First input vector
vec_y	Second input vector
size1	Number of elements to take from vec_x
size2	Number of elements to take from vec_y

Value

A vector of column products made from the unique combinations of the *data*

Func_Dem	Compute the denomiator of the inner sums in the DG Decomposition
----------	--

Description

Compute the denomiator of the inner sums in the DG Decomposition

Usage

```
Func_Dem(P, r)
```

Arguments

P	Number of factors
r	The summing indicator

Value

```
A numeric with value of P * choose((P-1), (r-1))
```

Func_Inner 7

Func_Inner	Compute the fraction for the inner sum in the DG Decomposition
	where all the params gets passed to Func_Num() and Func_Den()

Description

Compute the fraction for the inner sum in the DG Decomposition where all the params gets passed to Func_Num() and Func_Den()

Usage

```
Func_Inner(P, r, vec_x, vec_y)
Func_Inner_Matx(P, r, vec_x, vec_y)
```

Arguments

P	Number of factors
r	The summing indicator
vec_x	First input vector
vec_y	Second input vector

Value

The fraction of the results of Func_Num() and Func_Den

Func_Inner_Sum Sum over all inner sums for the DG Decomposition

_ _

Sum over all inner sums for the DG Decomposition

Usage

Description

```
Func_Inner_Sum(P, vec_x, vec_y)
Func_Inner_Sum_Matx(P, vec_x, vec_y)
```

Arguments

P	Number of factors
vec_x	First input vector
vec_y	Second input vector

threads Number of OpenMP threads to use. Default: 1

Value

A numeric value with the full inner sum for the given effect

Func_Num

Compute the numerator of the inner sums in the DG Decomposition

Description

Compute the numerator of the inner sums in the DG Decomposition

Usage

```
Func_Num(P, r, vec_x, vec_y)
Func_Num_Matx(P, r, vec_x, vec_y)
```

Arguments

P	Number of factors
r	The summing indicator
vec_x	First input vector
vec_y	Second input vector

Value

A single numeric from the sums of Func_Cross()

simulate_decomp_data Simulate simple random decomp data for P factors such that the product of P factors equal a measure for 2 time periods

Description

Simulate simple random decomp data for P factors such that the product of P factors equal a measure for 2 time periods

Usage

```
simulate_decomp_data(num_fac)
```

Arguments

num_fac Number of factors to simulate

Value

A named list with the vector of P factors for 2 time periods, and 2 numeric measures for each time period, which are just the product of each of the two factor vectors

```
simulate_decomp_data_fullmat
```

Simulate grouped data for decomp analysis (T by IDI by factors)

Description

Simulate grouped data for decomp analysis (T by IDI by factors)

Usage

```
simulate_decomp_data_fullmat(T_term, num_factors, id_grps)
```

Arguments

T_term Number of time periods

id_grps Number of groups

Value

A data.table with T_{term} rows and num_factors+1 columns where X_1, \dots, X_p are the factors, and Y is the rowwise product of the factors

Index

```
*Topic package
    dgdecomp-package, 2
Decomp_Factors, 4
Decomp_Factors_Matx (Decomp_Factors), 4
Decomp_on_DT, 5
dgdecomp (dgdecomp-package), 2
{\tt dgdecomp-package}, \\ 2
Func_Create_Combn, 5
Func_Cross, 6
Func_Cross_Matx (Func_Cross), 6
Func_Dem, 6
Func_Inner, 7
Func_Inner_Matx (Func_Inner), 7
Func_Inner_Sum, 7
Func_Inner_Sum_Matx (Func_Inner_Sum), 7
Func_Num, 8
Func_Num_Matx (Func_Num), 8
simulate\_decomp\_data, 8
\verb|simulate_decomp_data_fullmat|, 9
```