Inference on SPMs: Random Field Theory & Alternatives

Thomas Nichols, Ph.D.
Oxford Big Data Institute
Li Ka Shing Centre for Health Information and Discovery
Nuffield Department of Population Health
University of Oxford

FIL SPM Course

Assessing Statistic Images...

Assessing Statistic Images

Where's the signal?

High Threshold

Good Specificity

Poor Power (risk of false negatives)

Med. Threshold

Low Threshold

Poor Specificity (risk of false positives)

Good Power

Blue-sky inference: What we'd like

- Don't threshold, model the signal!
 - Signal location?
 - Estimates and CI's on (x,y,z) location
 - Signal magnitude?
 - CI's on % change
 - Spatial extent?
 - Estimates and CI's on activation volume
 - Robust to choice of cluster definition
- ...but this requires an explicit spatial model 5
 - We only have a univariate linear model at each voxel!

Real-life inference: What we get

- Signal location
 - Local maximum no inference
- Signal magnitude
 - Local maximum intensity P-values (& CI's)
- Spatial extent
 - Cluster volume P-value, no CI's
 - Sensitive to blob-defining-threshold

Voxel-level Inference

- Retain voxels above α -level threshold u_{α}
- Gives best spatial specificity
 - The null hyp. at a single voxel can be rejected

Cluster-level Inference

- Two step-process
 - Define clusters by arbitrary threshold $u_{\rm clus}$
 - Retain clusters larger than α -level threshold k_{α}

Cluster-level Inference

- Typically better sensitivity
- Worse spatial specificity
 - The null hyp. of entire cluster is rejected

Set-level Inference

- Count number of blobs c
 - Minimum blob size *k*
- Worst spatial specificity
 - Only can reject global null hypothesis

Here c = 1; only 1 cluster larger than k

Multiple comparisons...

Hypothesis Testing

- Null Hypothesis H_0
- Test statistic T
 - t observed realization of T
- α level
 - Acceptable false positive rate
 - Level $\alpha = P(T > u_{\alpha} \mid H_0)$

- Assessment of t assuming H_0
- $P(T > t | H_0)$
 - Prob. of obtaining stat. as large or larger in a new experiment
- P(Data|Null) <u>not</u> P(Null|Data)

Multiple Comparisons Problem

- Which of 100,000 voxels are sig.?
 - $-\alpha=0.05 \Rightarrow 5{,}000$ false positive voxels

- Which of (random number, say) 100 clusters significant?
 - $-\alpha=0.05 \Rightarrow 5$ false positives clusters

MCP Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 - Existence of one or more false positives
 - FWER is probability of familywise error
- False Discovery Rate (FDR)
 - FDR = E(V/R)
 - R voxels declared active, V falsely so
 - Realized false discovery rate: V/R

MCP Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 - Existence of one or more false positives
 - FWER is probability of familywise error
- False Discovery Rate (FDR)
 - FDR = E(V/R)
 - R voxels declared active, V falsely so
 - Realized false discovery rate: V/R

FWE MCP Solutions: Bonferroni

- For a statistic image *T*...
 - $-T_i$ ith voxel of statistic image T
- ...use $\alpha = \alpha_0/V$
 - $-\alpha_0$ FWER level (e.g. 0.05)
 - -V number of voxels
 - $-u_{\alpha}$ α -level statistic threshold, $P(T_i \ge u_{\alpha}) = \alpha$
- By Bonferroni inequality...

FWER = P(FWE)
= P(
$$\bigcup_i \{T_i \ge u_\alpha\} \mid H_0$$
)
 $\le \sum_i P(T_i \ge u_\alpha \mid H_0)$
= $\sum_i \alpha$

 $=\sum_{i} \alpha_{0}/V = \alpha_{0}$

Conservative under correlation

Independent: V tests

Some dep.: ? tests

Total dep.: 1 test

Random field theory...

SPM approach: Random fields...

- Consider statistic image as lattice representation of a continuous random field
- Use results from continuous random field theory

FWER MCP Solutions: Random Field Theory

- Euler Characteristic χ_u
 - Topological Measure
 - #blobs #holes
 - At high thresholds,just counts blobs

RFT Details: Expected Euler Characteristic

$$E(\chi_u) \approx \lambda(\Omega) |\Lambda|^{1/2} (u^2 - 1) \exp(-u^2/2) / (2\pi)^2$$

- $-\Omega$ \rightarrow Search region $\Omega \subset \mathbb{R}^3$
- $-\overline{\lambda(\Omega)} \rightarrow \text{volume}$
- $|\Lambda|^{1/2} \rightarrow \text{roughness}$
- Assumptions
 - Multivariate Normal
 - Stationary*
 - ACF twice differentiable at 0
- * Stationary
 - Results valid w/out stationary
 - More accurate when stat. holds

Random Field Theory Smoothness Parameterization

- $E(\chi_u)$ depends on $|\Lambda|^{1/2}$
 - $-\Lambda$ roughness matrix:
- Smoothness
 parameterized as
 Full Width at Half Maximum
 - FWHM of Gaussian kernel needed to smooth a white noise random field to roughness Λ

$$\begin{split} & \Lambda = \mathbf{Var} \left(\frac{\partial G}{\partial (x,y,z)} \right) \\ & = \begin{pmatrix} \mathbf{Var} \left(\frac{\partial G}{\partial x} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial z} \right) \\ & \mathbf{Cov} \left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial x} \right) & \mathbf{Var} \left(\frac{\partial G}{\partial y} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial z} \right) \\ & \mathbf{Cov} \left(\frac{\partial G}{\partial z}, \frac{\partial G}{\partial x} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial z}, \frac{\partial G}{\partial y} \right) & \mathbf{Var} \left(\frac{\partial G}{\partial z} \right) \end{pmatrix} \\ & = \begin{pmatrix} \lambda_{xx} & \lambda_{xy} & \lambda_{xz} \\ \lambda_{yx} & \lambda_{yy} & \lambda_{yz} \\ \lambda_{zx} & \lambda_{zy} & \lambda_{zz} \end{pmatrix} \end{split}$$

$$|\Lambda|^{1/2} = \frac{(4\log 2)^{3/2}}{\text{FWHM}_x \text{FWHM}_y \text{FWHM}_z}.$$

Random Field Theory Smoothness Parameterization

RESELS

- Resolution Elements
- 1 RESEL = FWHM_x × FWHM_y × FWHM_z
- RESEL Count R
 - $R = \lambda(\Omega) \sqrt{|\Lambda|} = (4\log 2)^{3/2} \lambda(\Omega) / (FWHM_x \times FWHM_y \times FWHM_z)$
 - Volume of search region in units of smoothness
 - Eg: 10 voxels, 2.5 FWHM 4 RESELS

- Beware RESEL misinterpretation
 - RESEL are not "number of independent 'things' in the image"
 - See Nichols & Hayasaka, 2003, Stat. Meth. in Med. Res.

Random Field Theory Smoothness Estimation

- Smoothness est'd from standardized residuals
 - Variance of gradients
 - Yields resels per voxel (RPV)
- RPV image
 - Local roughness est.
 - Can transform in to local smoothness est.
 - FWHM Img = $(RPV Img)^{-1/D}$
 - Dimension D, e.g. D=2 or 3

```
\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}
```

```
spm_imcalc_ui('RPV.img', ...
'FWHM.img','i1.^(-1/3)')
```

Random Field Intuition

• Corrected P-value for voxel value t

$$P^{c} = P(\max T > t)$$

$$\approx E(\chi_{t})$$

$$\approx \lambda(\Omega) |\Lambda|^{1/2} t^{2} \exp(-t^{2}/2)$$

- Statistic value *t* increases
 - $-P^c$ decreases (but only for large t)
- Search volume increases
 - $-P^c$ increases (more severe MCP)
- Smoothness increases (roughness $|\Lambda|^{1/2}$ decreases)
 - $-P^c$ decreases (less severe MCP)

RFT Details: Unified Formula

- General form for expected Euler characteristic
 - χ^2 , F, & t fields restricted search regions D dimensions •

$$\mathsf{E}[\chi_u(\Omega)] = \sum_d \mathsf{R}_d(\Omega) \, \rho_d(u)$$

 $R_d(\Omega)$: *d*-dimensional Minkowski functional of Ω

- function of dimension, space Ω and smoothness:

 $R_0(\Omega) = \chi(\Omega)$ Euler characteristic of Ω

 $\overline{R_1(\Omega)}$ = resel diameter

 $R_2(\Omega)$ = resel surface area

 $R_3(\Omega)$ = resel volume

 $\rho_d(\Omega)$: *d*-dimensional EC density of $Z(\underline{x})$

- function of dimension and threshold, specific for RF type:

E.g. Gaussian RF:

$$\rho_0(u) = 1 - \Phi(u)$$

$$\rho_1(u) = (4 \ln 2)^{1/2} \exp(-u^2/2) / (2\pi)$$

$$\rho_2(u) = (4 \ln 2) \exp(-u^2/2) / (2\pi)^{3/2}$$

$$\rho_3(u) = (4 \ln 2)^{3/2} (u^2 - 1) \exp(-u^2/2) / (2\pi)^2$$

$$\rho_4(u) = (4 \ln 2)^2 (u^3 - 3u) \exp(-u^2/2) / (2\pi)^{5/2}$$

Random Field Theory Cluster Size Tests

- Expected Cluster Size
 - E(S) = E(N)/E(L)
 - S cluster size
 - N suprathreshold volume $\lambda(\{T > u_{\text{clus}}\})$
 - L number of clusters
- $E(N) = \lambda(\Omega) P(T > u_{clus})$
- $E(L) \approx E(\chi_u)$
 - Assuming no holes

Random Field Theory Limitations

- Sufficient smoothness
 - FWHM smoothness $3-4 \times \text{voxel size}(Z)$
 - More like $\sim 10 \times$ for low-df T images
- Smoothness estimation
 - Estimate is biased when images not sufficiently smooth
- Multivariate normality
 - Virtually impossible to check
- Several layers of approximations
- Stationary required for cluster size results

Real Data

- fMRI Study of Working Memory
 - 12 subjects, block design Marshuetz et al (2000)
 - Item Recognition
 - Active: View five letters, 2s pause, view probe letter, respond
 - Baseline: View XXXXX, 2s pause, view Y or N, respond
- Second Level RFX
 - Difference image, A-B constructed for each subject
 - One sample t test

Real Data: RFT Result

• Threshold

- -S = 110,776
- $-2 \times 2 \times 2$ voxels $5.1 \times 5.8 \times 6.9$ mm FWHM
- u = 9.870
- Result
 - 5 voxels above the threshold
 - 0.0063 minimumFWE-correctedp-value

Massive Null (resting-state) fMRI Evaluation

Goal: Evaluate AFNI, FSL & SPM *task* fMRI with *resting-state* fMRI data, using 4 designs, 3 million randomised analyses

Outcome: Voxel FWE *OK* (Conservative) Cluster FWE 0.001 *OK*Cluster FWE 0.01 *Very Bad* (Liberal)

Why? Spatial ACF not Gaussian, Nonstationarity smoothness

Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates (2016). Eklund, TE Nichols, H Knutsson PNAS, 113(28), 7900-5

Real Data:

SnPM Promotional

$$u^{RF} = 9.87$$

 $u^{Bonf} = 9.80$
5 sig. vox.

t₁₁ Statistic, RF & Bonf. Threshold

- Nonparametric method more powerful than RFT for low DF
- "Variance Smoothing" even more sensitive
- FWE controlled all the while!
- http://nisox.org/Software/SnPM

Smoothed Variance *t* Statistic, ³⁶
Nonparametric Threshold

False Discovery Rate...

MCP Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 - Existence of one or more false positives
 - FWER is probability of familywise error
- False Discovery Rate (FDR)
 - FDR = E(V/R)
 - R voxels declared active, V falsely so
 - Realized false discovery rate: V/R

False Discovery Rate

• For any threshold, all voxels can be cross-classified:

	Accept Null	Reject Null	
Null True	V_{0A}	V_{0R}	m_0
Null False	V _{1A}	V_{1R}	m_1
	N _A	N_R	V

Realized FDR

$$rFDR = V_{0R}/(V_{1R}+V_{0R}) = V_{0R}/N_R$$
$$- If N_R = 0, rFDR = 0$$

- But only can observe N_R, don't know V_{1R} & V_{0R}
 - We control the expected rFDR

$$FDR = E(rFDR)$$

False Discovery Rate Illustration:

Noise Signal Signal+Noise

Control of Per Comparison Rate at 10%

Percentage of Null Pixels that are False Positives

Control of Familywise Error Rate at 10%

Occurrence of Familywise Error

FWE

41

Control of False Discovery Rate at 10%

Percentage of Activated Pixels that are False Positives

Benjamini & Hochberg Procedure

- Select desired limit q on FDR
- Order p-values, $p_{(1)} \le p_{(2)} \le ... \le p_{(V)}$

JRSS-B (1995) 57:289-300

• Let *r* be largest *i* such that

$$p_{(i)} \leq i/V \times q$$

Reject all hypotheses corresponding to

$$p_{(1)}, \ldots, p_{(r)}$$
.

Adaptiveness of Benjamini & Hochberg FDR

P-value threshold when no signal: α/V

P-value threshold when all signal:

α

Real Data: FDR Example

- Threshold
 - -u = 3.83

- Result
 - -3,073 voxels above u
 - -<0.0001 minimum FDR-corrected p-value

FDR Threshold = 3.83 3,073 voxels FWER Perm. Thresh. = 9.87 7 voxels

FDR Changes

- Before SPM8
 - Only voxel-wise FDR
- SPM8
 - Cluster-wise FDR
 - Peak-wise FDR
 - Voxel-wise available: edit spm_defaults.m to read
 defaults.stats.topoFDR = 0;
 - Note!
 - Both cluster- and peak-wise FDR depends on cluster-forming threshold!

Item Recognition data

```
Cluster-forming threshold P=0.001

Peak-wise FDR: t=4.84, P<sub>FDR</sub> 0.836

Cluster-forming threshold P=0.01

Peak-wise FDR: t=4.84, P<sub>FDR</sub> 0.027
```

Cluster FDR: Example Data

Level 5% Voxel-FWE

Level 5% Voxel-FDR

Level 5% Cluster-FWE
P = 0.001 cluster-forming thresh

 $k_{\text{FWE}} = 241$, 5 clusters

Level 5% Cluster-FDR, P = 0.001 cluster-forming thresh $k_{FDR} = 138$, 6 clusters

Level 5% Cluster-FWE P = 0.01 cluster-forming thresh $k_{FWE} = 1132$, 4 clusters

Level 5% Cluster-FDR P = 0.01 cluster-forming thresh $k_{FDR} = 1132$, 4 clusters

Conclusions

- Must account for multiplicity
 - Otherwise have a fishing expedition
- FWER
 - Very specific, not very sensitive
- FDR
 - Voxel-wise: Less specific, more sensitive
 - Cluster-, Peak-wise: Similar to FWER

References

• TE Nichols & S Hayasaka, Controlling the Familywise Error Rate in Functional Neuroimaging: A Comparative Review. Statistical Methods in Medical Research, 12(5): 419-446, 2003.

TE Nichols & AP Holmes, Nonparametric Permutation Tests for Functional Neuroimaging: A Primer with Examples. *Human Brain Mapping*, 15:1-25, 2001.

CR Genovese, N Lazar & TE Nichols, Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. *NeuroImage*, 15:870-878, 2002.

JR Chumbley & KJ Friston. False discovery rate revisited: FDR and topological inference using Gaussian random fields. *NeuroImage*, 44(1), 62-70, 2009