PROPIEDADES DE LA TRANSFORMADA DE FOURIER

Las funciones son periódicas con período T, a>0; b, t_o y $\omega_o=2\pi/T$, son constantes reales, con $n=1,2,\cdots$

f(t)

 $F(\omega)$

$$a_1 \tilde{f}_1(t) + a_2 f_2(t)$$

$$f(st)$$

$$f(st)$$

$$\frac{1}{|a|} F\left(\frac{\omega}{a}\right)$$

$$f(-t)$$

$$f(t - t_0)$$

$$f(t) e^{j\omega_0 t}$$

$$f(t) \cos \omega_0 t$$

$$f(t) \sin \omega_0 t$$

$$f(t) \sin \omega_0 t$$

$$f(t) = \frac{1}{2} [f(t) + f(-t)]$$

$$f(t) = f_0(t) + f_0(t)$$

$$f'(t) = f_0(t) +$$

f(t)

 $F(\omega)$.

$$\begin{aligned} & f_1(t) \, f_2(t) \\ & e^{-at} \, u(t) \\ & e^{-at^2} \\ \end{aligned}$$

$$e^{-at^2}$$

$$p_a(t) = \begin{cases} 1 & \text{para } |t| < a/2 \\ 0 & \text{para } |t| > a/2 \end{cases}$$

$$\frac{\sin at}{\pi t}$$

$$te^{-at} \, u(t)$$

$$\frac{t^{n-1}}{(n-1)!} e^{-at} \, u(t)$$

$$e^{-at} \cos bt u(t)$$

$$e^{-at} \cos bt u(t)$$

$$\frac{1}{a^2 + t^2}$$

$$\frac{\cos bt}{a^2 + t^2}$$

$$\frac{\sin bt}{a^2 + b^2}$$

$$\delta(t)$$

$$\delta(t - t_0)$$

$$\delta'(t)$$

$$\delta^{(n)}(t)$$

$$u(t)$$

$$u(t)$$

$$u(t - t_0)$$

$$1$$

$$t$$

$$t$$

$$\frac{1}{2\pi} F_1(\omega) * F_2(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(y) F_2(\omega - y) \, dy$$

$$\frac{1}{j\omega + a}$$

$$\frac{2a}{a^2 + \omega^2}$$

$$\sqrt{\frac{\pi}{a}} e^{-\omega^2/(4a)}$$

$$\frac{\sin\left(\frac{\omega a}{2}\right)}{\left(\frac{\omega a}{2}\right)}$$

$$\frac{1}{(j\omega + a)^2}$$

$$\frac{1}{(j\omega + a)^2}$$

$$\frac{1}{(j\omega + a)^2 + b^2}$$

$$\frac{j\omega + a}{(j\omega + a)^2 + b^2}$$

$$\frac{\pi}{a} e^{-a|\omega|}$$

$$\frac{\pi}{2a} \left[e^{-a|\omega - b|} + e^{-a|\omega + b|}\right]$$

$$\frac{\pi}{2aj} \left[e^{-a|\omega - b|} - e^{-a|\omega + b|}\right]$$

$$1$$

$$e^{-j\omega t_0}$$

$$j\omega$$

$$(j\omega)^n$$

$$\pi\delta(\omega) + \frac{1}{j\omega}$$

$$2\pi\delta(\omega)$$

$$2\pi j \delta'(\omega)$$

$$2\pi j^n \delta^{(n)}(\omega)$$

$$f(t)$$
 $F(\omega)$

Otras propiedades:

$$\int_{-\infty}^{\infty} f_1(t) f_2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) d\omega,$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega,$$

$$\int_{-\infty}^{\infty} f(x) G(x) dx = \int_{-\infty}^{\infty} F(x) g(x) dx.$$

TABLA 18.1 Transformadas finitas de Fourier en senos

f(x)	$S_n\{f(x)\} = F_S(n)$
$\frac{\pi - x}{\pi}$	$\frac{1}{n}$
$\frac{x}{\pi}$	$\frac{(-1)^{n+1}}{n}$
1	$\frac{1-(-1)^n}{n}$
$\frac{x(\pi^2-x^2)}{6}$	$\frac{(-1)^{n+1}}{n^3}$
$\frac{x(\pi-x)}{2}$	$\frac{1-(-1)^n}{n^3}$
x ²	$\frac{\pi^2(-1)^{n+1}}{n} - \frac{2[1-(-1)^n]}{n^3}$
<i>x</i> ³	$\pi(-1)^n \left(\frac{6}{n^3} - \frac{\pi^2}{n}\right)$
e ^{ax}	$\frac{n}{n^2+a^2}[1-(-1)^n e^{an}]$
sen(kx), k = 1, 2, 3,	$\begin{cases} 0 & \text{si } n \neq k \\ \pi/2 & \text{si } n = k \end{cases}$
$\cos(ax)$, $a \neq \text{entero}$	$\frac{n}{n^2-a^2}[1-(-1)^n\cos(a\pi)]$
$\cos(kx), \qquad k=1,2,3,\ldots$	$ \frac{n^2 - a^2}{n^2 - a^2} [1 - (-1)^n \cos(a\pi)] $ $ \begin{cases} \frac{n}{n^2 - a^2} [1 - (-1)^{n+k}], & n \neq k \\ \frac{\pi}{2}, & n = k \end{cases} $

TAE

 $\frac{2}{\pi}$

f(:

co.

sen

sen

 $\frac{2}{\pi}$. $\frac{2}{1}$

 $\frac{1}{\pi}$

18.12 EXIS

TABLA 18.1 Transformadas finitas de Fourier en senos

f(x)	$S_n\{f(x)\} = F_S(n)$	
$\frac{\pi - x}{\pi}$	$\frac{1}{n}$	
$\frac{x}{\pi}$	$\frac{(-1)^{n+1}}{n}$	
- 1	$\frac{1-(-1)^n}{n}$	
$\frac{x(\pi^2-x^2)}{6}$	$\frac{(-1)^{n+1}}{n^3}$	
$\frac{x(\pi-x)}{2}$	$\frac{1-(-1)^n}{n^3}$	
x^2	$\frac{\pi^2(-1)^{n+1}}{n} - \frac{2[1-(-1)^n]}{n^3}$	
x ³	$\pi(-1)^n \left(\frac{6}{n^3} - \frac{\pi^2}{n}\right)$	
e^{ax}	$\frac{n}{n^2+a^2} \left[1-(-1)^n e^{an}\right]$	
$\operatorname{sen}(kx), \qquad k = 1, 2, 3, \dots$	$\begin{cases} 0 & \text{si } n \neq k \\ \pi/2 & \text{si } n = k \end{cases}$	
$cos(ax)$, $a \neq entero$	$\frac{n}{n^2-a^2}\left[1-(-1)^n\cos(a\pi)\right]$	
$cos(kx), \qquad k=1, 2, 3, \ldots$	$\begin{cases} \frac{n}{n^2 - a^2} [1 - (-1)^{n+k}], & n \neq k \end{cases}$	
	$\left \frac{\pi}{2}\right $, $n=k$	

TAE

 $\frac{2}{\pi}$

 $\frac{x}{n}$

CO

sei ---

sei

 $\frac{2}{\pi}$ $\frac{2}{\pi}$ $\frac{1}{\pi}$

TABLA 18.2 Transformadas finitas de Fourier en cosenos

f(x)	$C_n\{f(x)\} = F_C(n)$
Ĭ	$\begin{cases} 0 & \text{si} n = 1, 2, 3, \dots \\ \pi & \text{si} n = 0 \end{cases}$
$\begin{cases} 1, & \text{si } 0 \le x \le k \\ -1, & \text{si } k < x < \pi \end{cases}$	$\begin{cases} \frac{2}{n} \operatorname{sen}(nk) & \text{si} n = 1, 2, 3, \dots \\ 2k - \pi & \text{si} n = 0 \end{cases}$
X	$\begin{cases} \frac{-\left[1-(-1)^n\right]}{n^2} & \text{si} n=1,2,3,\dots\\ \frac{\pi^2}{2} & \text{si} n=0 \end{cases}$
$\frac{x^2}{2\pi}$	$\begin{cases} \frac{(-1)^n}{n} & \text{si} n = 1, 2, 3, \dots \\ \frac{\pi^2}{6} & \text{si} n = 0 \end{cases}$
x ¹	$\begin{cases} 3\pi^2 \frac{(-1)^n}{n^2} + 6 \frac{[1 - (-1)^n]}{n^4} & \text{si} n = 1, 2, 3, \dots \\ \frac{\pi^2}{4} & \text{si} n = 0 \end{cases}$
e ^{ax}	$\left(\frac{(-1)^n e^{a\pi} - 1}{n^2 + a^2}\right) a$
sen (ax) , $a \neq \text{entero}$	$\left(\frac{(-1)^n \cos(a\pi) - 1}{n^2 - a^2}\right) a$
$\mathrm{sen}(kx), \qquad k=1, 2, \ldots$	$\begin{cases} \frac{(-1)^{n+k}-1}{n^2-k^2} k & \text{si } n \neq k \\ 0 & \text{si } n = k \end{cases}$
$\cos(kx), \qquad k=1,2,3,\ldots$	$\begin{cases} 0 & \text{si } n \neq k \\ \frac{\pi}{2} & \text{si } n = k \end{cases}$
$f(\pi - x)$	$(-1)^n F_C(n)$
$\frac{1}{\pi} \frac{1-k^2}{1+k^2-2k\cos(x)}$	$k^n \qquad (k < 1)$
$-\frac{1}{\pi}\ln[1+k^2-2k\cos(x)]$	$\frac{1}{n}k^n \qquad (k <1)$
$\frac{\cosh[k(\pi-x)]}{k \operatorname{senh}(k\pi)}$	$\frac{1}{k^2 + n^2} \qquad (k \neq 0)$
$\frac{1}{\pi} \frac{\operatorname{senh}(y)}{\cosh(y) - \cos(x)}$	$e^{-ny} \qquad (y>0)$
$\frac{1}{2}\left[y - \ln(2\cosh(y) - 2\cos(x))\right]$	$\frac{1}{2}e^{-ny} \qquad (y>0)$

TABLA 18.4 Transformadas de Fourier en cosenos

	f(x)	$\mathscr{F}_{\mathcal{C}}\{f(x)\} = F_{\mathcal{C}}(\omega)$
	$x^{r-1} \qquad (0 < r < 1)$	$\Gamma(r)\cos\left(\frac{\pi r}{2}\right)\omega^{-r}$
	$e^{-ax} \qquad (a > 0)$	$\frac{a}{a^2 + \omega^2}$
	$xe^{-ax} \qquad (a>0)$	$\frac{a^2 - \omega^2}{(a^2 + \omega^2)^2}$
	$e^{-a^2x^2} \qquad (a>0)$	$\frac{\sqrt{\pi}}{2} a^{-1} \omega e^{-\omega^2/4a^2}$
	$\frac{1}{a^2 + x^2} \qquad (a > 0)$	$\frac{\pi}{2} \cdot \frac{1}{a} e^{-a\omega}$
	$\frac{1}{(a^2+x^2)^2} \qquad (a>0)$	$\frac{\pi}{4} a^{-3} e^{-a\omega} (1 + a\omega)$
	$\cos\left(\frac{x^2}{2}\right)$	$\frac{\sqrt{\pi}}{2} \left[\cos \left(\frac{\omega^2}{2} \right) + \sin \left(\frac{\omega^2}{2} \right) \right]$
	$\operatorname{sen}\left(\frac{x^2}{2}\right)$	$\frac{\sqrt{\pi}}{2} \left[\cos \left(\frac{\omega^2}{2} \right) - \sin \left(\frac{\omega^2}{2} \right) \right]$
	$\frac{1}{2}(1+x)e^{-x}$	$\frac{1}{(1+\omega^2)^2}$
	$\sqrt{\frac{2}{\pi x}}$	$\frac{1}{\sqrt{\omega}}$
-	$e^{-x/\sqrt{2}}\operatorname{sen}\left(\frac{\pi}{4} + \frac{x}{\sqrt{2}}\right)$	$\frac{1}{1+\omega^2}$
	$e^{-x/\sqrt{2}}\cos\left(\frac{\pi}{4} + \frac{x}{\sqrt{2}}\right)$	$\frac{\omega^2}{1+\omega^4}$
	$\frac{2}{x}e^{-x}\mathrm{sen}(x)$	$\tan^{-1}\left(\frac{2}{\omega^2}\right)$
	H(x) - H(x - a)	$\frac{1}{\omega}$ sen $(a\omega)$

TABLA 18.2 Transformadas finitas de Fourier en cosenos

f(x)	$C_n\{f(x)\} = F_C(n)$
1	$\begin{cases} 0 & \text{si} n = 1, 2, 3, \dots \\ \pi & \text{si} n = 0 \end{cases}$
$\begin{cases} 1, & \text{si } 0 \le x \le k \\ -1, & \text{si } k < x < \pi \end{cases}$	$\begin{cases} \frac{2}{\pi} \operatorname{sen}(nk) & \text{si} n = 1, 2, 3, \dots \\ 2k - \pi & \text{si} n = 0 \end{cases}$
X	$\begin{cases} \frac{-\left[1-(-1)^n\right]}{n^2} & \text{si} n=1,2,3,\dots\\ \frac{\pi^2}{2} & \text{si} n=0 \end{cases}$
$\frac{x^2}{2\pi}$	$\begin{cases} \frac{(-1)^n}{n} & \text{si} n = 1, 2, 3, \dots \\ \frac{\pi^2}{6} & \text{si} n = 0 \end{cases}$
<i>x</i> ³	$\begin{cases} 3\pi^2 \frac{(-1)^n}{n^2} + 6 \frac{[1 - (-1)^n]}{n^4} & \text{si } n = 1, 2, 3, \dots \\ \frac{\pi^2}{4} & \text{si } n = 0 \end{cases}$
e ^{ax}	$\left(\frac{(-1)^n e^{a\pi} - 1}{n^2 + a^2}\right) a$
$sen(ax)$, $a \neq entero$	$\left(\frac{(-1)^n \cos(a\pi) - 1}{n^2 - a^2}\right) a$
$\operatorname{sen}(kx), \qquad k=1,2,\ldots$	$\begin{cases} \frac{(-1)^{n+k}-1}{n^2-k^2} k & \text{si } n \neq k \\ 0 & \text{si } n = k \end{cases}$
$\cos(kx), \qquad k=1,2,3,\ldots$	$\begin{cases} 0 & \text{si } n \neq k \\ \frac{\pi}{2} & \text{si } n = k \end{cases}$
$f(\pi - x)$	$(-1)^n F_C(n)$
$\frac{1}{\pi} \frac{1 - k^2}{1 + k^2 - 2k \cos(x)}$	$k^n \qquad (k < 1)$
$-\frac{1}{\pi}\ln[1+k^2-2k\cos(x)]$	$\frac{1}{n}k^n \qquad (k < 1)$
$\frac{\cosh[k(\pi-x)]}{k \operatorname{senh}(k\pi)}$	$\frac{1}{k^2 + n^2} \qquad (k \neq 0)$
$\frac{1}{\pi} \frac{\mathrm{senh}(y)}{\mathrm{cosh}(y) - \mathrm{cos}(x)}$	$e^{-ny} \qquad (y>0)$
$\frac{1}{-1}[y - \ln(2\cosh(y) - 2\cos(x))]$	$\frac{1}{z}e^{-ny} \qquad (y>0)$

TABLA 18.4 Transformadas de Fourier en cosenos

f(x)	$\mathscr{F}_{C}\{f(x)\} = F_{C}(\omega)$
$x^{r-1} \qquad (0 < r < 1)$	$\Gamma(r)\cos\left(\frac{\pi r}{2}\right)\omega^{-r}$
$e^{-ax} \qquad (a>0)$	$\frac{a}{a^2 + \omega^2}$
$xe^{-ax} \qquad (a>0)$	$\frac{a^2 - \omega^2}{(a^2 + \omega^2)^2}$
$e^{-a^2x^2} \qquad (a>0)$	$\frac{\sqrt{\pi}}{2} a^{-1} \omega e^{-\omega^2/4a^2}$
$\frac{1}{a^2 + x^2} \qquad (a > 0)$	$\frac{\pi}{2} \frac{1}{a} e^{-a\omega}$
$\frac{1}{(a^2 + x^2)^2} \qquad (a > 0)$	$\frac{\pi}{4} a^{-3} e^{-a\omega} (1 + a\omega)$
$\cos\left(\frac{x^2}{2}\right)$	$\frac{\sqrt{\pi}}{2} \left[\cos \left(\frac{\omega^2}{2} \right) + \sin \left(\frac{\omega^2}{2} \right) \right]$
$\operatorname{sen}\left(\frac{x^2}{2}\right)$	$\frac{\sqrt{\pi}}{2} \left[\cos \left(\frac{\omega^2}{2} \right) - \sin \left(\frac{\omega^2}{2} \right) \right]$
$\frac{1}{2}(1+x)e^{-x}$	$\frac{1}{(1+\omega^2)^2}$
$\sqrt{\frac{2}{\pi x}}$	$\frac{1}{\sqrt{\omega}}$
$e^{-x/\sqrt{2}}\operatorname{sen}\left(\frac{\pi}{4} + \frac{x}{\sqrt{2}}\right)$	$\frac{1}{1+\omega^2}$
$e^{-x/\sqrt{2}}\cos\left(\frac{\pi}{4} + \frac{x}{\sqrt{2}}\right)$	$\frac{\omega^2}{1+\omega^4}$
$\frac{2}{x}e^{-x}\mathrm{sen}(x)$	$\tan^{-1}\left(\frac{2}{\omega^2}\right)$
H(x)-H(x-a)	$\frac{1}{\omega}\operatorname{sen}(a\omega)$

TABLA 4.1 PROPIEDADES DE LA TRANSFORMADA DE FOURIER

Sectión	Propiedad Señal aperiódica		Transformada de Fourier
		x(t) $y(t)$	$X(j\omega)$ $Y(j\omega)$
4.3.1 4.3.2 4.3.6 4.3.3 4.3.5	Linealidad Desplazamiento de tiempo Desplazamiento de frecuencia Conjugación Inversión de tiempo	$ax(t) + by(t)$ $x(t - t_0)$ $e^{j\omega_0 t} x(t)$ $x^*(t)$	$aX(j\omega) + bY(j\omega)$ $e^{-j\omega t_0}X(j\omega)$ $X(j(\omega - \omega_0))$ $X^*(-j\omega)$ $X(-j\omega)$
4.3.5 4.4	Escalamiento de tiempo y de frecuencia Convolución	x(at) $x(t) * y(t)$	$\frac{1}{ a } X \left(\frac{j\omega}{a} \right)$ $X(j\omega) Y(j\omega)$
4.5	Multiplicación	x(t)y(t)	$\frac{1}{2\pi}X(j\omega)*Y(j\omega)$
4.3.4	· Diferenciación en tiempo	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
4.3.4	Integración	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega)+\pi X(0)\delta(\omega)$
4.3.6	Diferenciación en frecuencia	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
	· ·	*	$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re\{X(j\omega)\} = \Re\{X(-j\omega)\} \end{cases}$
4.3.3	Simetría conjugada para señales reales	x(t) real	$\begin{cases} g_m\{X(j\omega)\} = -g_m\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \not \leq X(j\omega) = - \not \leq X(-j\omega) \end{cases}$
4.3.3	Simetría para señales real y par	x(t) real y par	$X(j\omega)$ real y par
4.3.3	Simetría para señales real e impar	x(t) real e impar	$X(j\omega)$ puramente imaginaria e impar
4.3.3	Descomposición par-impar de señales reales	$x_o(t) = \mathcal{E}v[x(t)] [x(t) \text{ real}]$ $x_o(t) = \mathcal{C}d[x(t)] [x(t) \text{ real}]$	$\mathcal{R}_{n}\{X(j\omega)\}$ $j\mathcal{G}_{n}\{X(j\omega)\}$
4.3.7		al para señales aperiódicas	8

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 d\omega$$

citatrices puede :
ente natural cotransformada
condiciones iniestudiemos otras
ibrimientos en

os capítulos fue a función consistante en la ecuaite. Si lo hiciéra, o, afortunada-(31),

ransformada re-

(34)

35)

n bastante ante

na función singu-

(36)

e a la transformahacer la sustituvez que tratemos ero a medida que lo una nueva un factor de con la evalua-

cuanto |t| es

469 Parejas de transformadas de Fourier para algunas funciones simples

Tabla 18-1 Algunas parejas familiares de transformada de Fourier

f(t)	f		
,/(//	f(t)	$\mathfrak{F}\{f(t)\} = \mathrm{F}(j\omega)$	$ \mathbf{F}(j\omega) $
$ \begin{array}{c} \uparrow^{(1)} \\ \hline t_0 \end{array} $	$\delta(t-t_0)$	e-jula	$\frac{1}{} \longrightarrow \omega$
compleja → t	Olwal	$2\pi\delta(\omega-\omega_0)$	$\begin{array}{c} & \downarrow^{(2\pi)} \\ & \downarrow^{\omega_0} \\ & & \downarrow^{\omega_0} \end{array} \rightarrow \omega$
	$\cos \omega_0 t$	$\pi[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$	$ \begin{array}{c c} \downarrow^{(\pi)} & \downarrow^{(\pi)} \\ -\omega_0 & \omega_0 \end{array} $
$\begin{array}{c c} & & \\ \hline & & \\ \hline & & \\ \end{array} \rightarrow \iota$	1	$2\pi\delta(\omega)$	$\stackrel{\uparrow}{\longrightarrow} \omega$
$\begin{array}{c c} 1 \\ \hline \\ -1 \end{array} \rightarrow t$	$\operatorname{sgn}(t)$	$\frac{2}{j\omega}$	$\longrightarrow \omega$
1 > t	u(t)	$\pi \delta(\omega) + \frac{1}{j\omega}$	(π) ω
1	$e^{-\alpha t}u(t)$	$\frac{1}{\alpha + j\omega}$	$\xrightarrow{\frac{1}{\alpha}} \omega$
	$e^{-nt}\cos\omega_d t \cdot u(t)$	$\frac{\alpha + j\omega}{(\alpha + j\omega)^2 + \omega_d^2}$	$-\omega_d$ ω_d ω_d
$\begin{array}{c c} & \uparrow \\ \hline -\frac{T}{2} & \frac{T}{2} \end{array} \rightarrow t u($	$t + \frac{1}{2}T$) - $u(t - \frac{1}{2}T)$	$T \frac{\sec \frac{\omega T}{2}}{\frac{\omega T}{2}}$	$-\frac{2\pi}{T} \cdot \frac{2\pi}{T} \rightarrow \omega$

TRANSFORMADA DE FOURIER DE SENOS

$$f(t) F_s[f(t)] = F_s(w)$$

1 si
$$0 < t < \alpha$$
 $1 - \cos \alpha w$

(0 si $t > \alpha$ w

$$\frac{\Gamma(\alpha)}{w^{\alpha}} \operatorname{sen}\left(\frac{\alpha w}{2}\right)$$

$$\frac{\Gamma(\alpha)}{w^{\alpha}} \operatorname{sen}\left(\frac{\alpha w}{2}\right)$$

$$\frac{\Gamma(\alpha)}{w^{\alpha}} \operatorname{sen}\left(\frac{\alpha w}{2}\right)$$

$$\frac{1}{\sqrt{2w}}$$

$$\frac{\pi}{2e^{\alpha w}}$$

$$\sqrt{\frac{\pi}{2w}}$$

$$\frac{\pi}{2e^{aw}}$$

$$\frac{w}{a^2 + w^2}$$

(a > 0)

 $(a^2 + t^2)^2$ (a > 0)

$$\frac{w}{a^2 + w^2}$$

$$\frac{2aw}{(a^2 + w^2)^2}$$

(a > 0)

$$\frac{\sqrt{\pi}}{4\alpha^3} We^{-\frac{w^2}{4\alpha^2}}$$

(a > 0)

TABLA TRANSFORMADA DE FOURIER DE SENOS

$$f(t) F_s[f(t)] = F_s(w)$$

$$t^{-1}e^{-at} (a > 0) tan^{-1}\left(\frac{w}{a}\right)$$

$$\sqrt{\frac{2}{\pi t}}$$

$$\frac{1}{\sqrt{w}}$$

$$\frac{1}{t}$$

$$\frac{1}{2}\ln\left(\frac{w+a}{w-a}\right)$$

$$\frac{1}{2}\ln\left(\frac{w+a}{w-a}\right)$$

$$\frac{1}{2}\ln\left(\frac{w+a}{w-a}\right)$$

$$\frac{t}{t} = \frac{1}{2} \ln \left(\frac{\pi w}{w} \right)$$

$$\frac{\sin \alpha t}{t^2} = \frac{\pi \alpha}{2}$$

$$\frac{\cos \alpha t}{t} = \frac{0}{\pi/4}$$

 $V \vee \alpha$

どくな

$$\tan^{-1}\left(\frac{t}{a}\right) \qquad \frac{\pi}{2we^{aw}}$$

$$\csc at \qquad \frac{\pi}{2a} \tanh \frac{\pi w}{2a}$$

$$e^{-\frac{t}{\sqrt{2}}} \operatorname{sen}\left(\frac{t}{\sqrt{2}}\right)$$

TABLA TRANSFORMADAS DE FOURIER DE COSENOS

$$f(t) F_c[f(t)] = F_c(w)$$

$$\begin{cases} 1 & \text{Sil } 0 < t < a \\ 0 & \text{Sil } t > a \end{cases}$$

$$t^{a-1} \quad 0 < a < 1$$

$$e^{-at} \quad a > 0$$

$$e^{-at} \quad a > 0$$

$$e^{-at^2} \quad a > 0$$

$$e^{-at^2} \quad a > 0$$

$$\frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-\frac{w^2}{4a}}$$

$$e^{-at^2} \quad a > 0$$

$$\frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-\frac{w^2}{4a}}$$

$$e^{-at^2} \quad a > 0$$

$$\frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-\frac{w^2}{4a}}$$

$$\frac{\pi w^{n-1} \sec \frac{n\pi}{2}}{2\Gamma(n)}$$

$$\frac{2\Gamma(n)}{\pi e^{-aw}}$$

TABLA TRANSFORMADAS DE FOURIER DE COSENOS

$$f(t) F_{\sigma}[f(t)] = F_{\sigma}(w)$$

$$\frac{1}{(a^2 + t^2)^2} \quad a > 0 \qquad \frac{\pi}{4a^3} e^{-aw} (1 + aw)$$

$$\frac{\sin at}{t}$$

$$\frac{\pi t}{t}$$

$$\frac{\pi t}{t}$$

$$\frac{\pi t}{t}$$

$$\cos at^2$$

$$\cos at^2$$

$$\cos at^2$$

$$\cos at^2$$

$$\cos at^2$$

$$\cos at^2$$

$$\frac{\pi}{8a} \left(\cos \frac{w^2}{4a} - \sin \frac{w^2}{4a}\right)$$

$$\frac{\pi}{2} \left[\cos \frac{w^2}{4a} + \sin \frac{w^2}{4a}\right]$$

$$\frac{1}{2} \left[\cos \left(\frac{w^2}{2}\right) - \sin \left(\frac{w}{2}\right) - \sin \left(\frac{w}{2}\right)\right]$$

$$\frac{1}{t+w^2}$$

$$\frac{(1+t)}{2e^t}$$

$$\frac{1}{(1+w^2)^2}$$

TABLA PARES DE TRANSFORMADAS DE FOURIER

F[f(t)] = F(w)

$$\begin{cases} 1 & \text{si } |t| < \alpha \\ 0 & \text{si } |t| > \alpha \end{cases} \qquad \frac{2 \text{sen } \alpha w}{w}$$

$$\begin{cases}
0 & \text{Si} \quad W = 0 \\
-i & \text{Si} \quad W < 0 \\
2a & \text{Si} & \text{Si} < 0
\end{cases}$$

 $te^{-a|t|}$

(a>0)

 $(\alpha > 0)$

 $(\alpha > 0)$

$$\frac{2a}{a^{2} + w^{2}}$$

$$\frac{4aiw}{(a^{2} + w^{2})^{2}}$$

$$\frac{2(a^{2} - w^{2})}{(a^{2} + w^{2})^{2}}$$

$$\frac{\sqrt{\pi}e^{-\frac{w^{2}}{4a^{2}}}$$

(a > 0)

$$\frac{\pi}{ae^{a|w|}}$$

(a > 0)

$$\frac{\pi i w}{2\alpha e^{a|w|}}$$

(a > 0)