Микроэкономика-І

Павел Андреянов, PhD 18 января 2022 г.

Начала оптимизации

Начала оптимизации

Любая оптимизационная задача это две вещи - функция, которую мы максимизируем - область определения аргументов, по которым мы максимизируем

Ключевыми факторами тут являются непрерывность целевой функции и выпуклость области определения.

Существование решения, как правило, мы можем легко гарантировать при помощи следующей теоремы

Theorem 1 (Вейерштрасса)

Непрерывная функция на компакте гарантированно достигает своего минимума и максимума.

Что такое непрерывная функция вы уже знаете.

А компакт в \mathbb{R}^n это просто ограниченное и замкнутое множество.

В контексте одномерной оптимизации, [a,b] это компакт, а (a,b], [a,b), (a,b), $[a,\infty)$, (a,∞) это все не компакты.

Таким образом, у вас есть всего два сценария как решение оптимизационной задачи с непрерывной функцией могло бы не существовать: либо оно вообще бесконечно, либо оно конечно, но достигается в точке которая попала на границу области.

Условия Первого Порядка

Если решение лежит внутри области, то обязательно выполнены условия первого порядка. Например, если функция U(x,y,z) от трех переменных, и вы убедили себя что решение надо искать внутри, то

УПП (FOC) :
$$\nabla U = 0$$

должны выполняться в оптимальной точке (x^*, y^*, z^*) . Зачастую, граничных точек не так уж и много, и их можно просто перебрать руками, сравнивая значения. Затем можно выбрать наилучшую из граничных и внутренних точек, удовлетворяющих УПП.

Иногда число кандидатов на оптимум, прошедших условия первого порядка, можно дополнительно сузить за счет условий второго порядка.

УВП (SOC) :
$$\nabla^2 U$$
 ? 0

Если Гессиан во внутренней точке отрицательно определен $abla^2 U \leqslant 0$ (парабола рогами вниз) то это локальный максимум и этот кандидат проходит отбор.

Если Гессиан положительно определен $\nabla^2 U \geqslant 0$ (парабола рогами вверх) то это локальный минимум и этот кандидат не проходит отбор.

Если у вас остался один кандидат то он и является оптимумом.

Если кандидатов несколько то надо опять сравнивать значения функции руками.

Выпуклость

Выпуклость

К счастью, в экономике, зачастую удается показать что, поверх непрерывности, функция полезности

- либо вогнутая
- либо она монотонное преобразование вогнутой
- либо она квази-вогнутая

Если, вдобавок к этому, область определения не только компакт но и выпуклое множество, то, во первых, решение всегда единственное, а во вторых, условия второго порядка можно не проверять, поскольку они (или что то очень похожее на них) выполнены глобально.

Выпуклость

Очень важно уметь, глядя на задачу, определять выпуклая она или нет, чтобы не тратить время на анализ второго порядка.

Общий алгоритм решения выпуклых и непрерывных задач на компакте очень простой:

- ищем решение как будто оно внутреннее
- если оно оказалось не внутреннее ищем на границе

В выпуклых задачах условия второго порядка не нужны.

Линии уровня

Линии уровня

Наконец, линии уровня это очень удобный инструмент для отлова и классификации кандидатов на решение оптимизационной задачи.

Definition 2

Линией уровня полезности U, проходящей через точку x называется множество всех точек $y \in X$ таких что U(y) = U(x).

И есть очень похожее определение для предпочтений...

Кривые безразличия

Definition 3

Кривой безразличия предпочтений \succcurlyeq , проходящей через точку x называется множество всех точек $y \in X$ таких что $x \sim y$.

Совершенно ясно, что в контексте представлений предпочтений полезностями, кривая безразличия и линия уровня это одно и то же.

Линейная полезность

Рассмотрим полезность вида: U(x, y) = ax + by. Тогда линия уровня ищется следующим образом:

$$c = ax + by$$

$$c - ax = by$$

$$y = \frac{c - ax}{b}$$

Линия уровня это прямая вида $y = \alpha x + \beta$.

Гиперболическая полезность

Рассмотрим полезность вида: $U(x,y) = a \log x + \log y$. Тогда линия уровня ищется следующим образом:

$$c = a \log x + \log y$$
$$e^{c} = x^{a}y$$
$$y = \frac{e^{c}}{x^{a}}$$

Линия уровня это гипербола вида $y = x^{\alpha}\beta$.

Полезность минимум

Рассмотрим полезность вида: $U(x, y) = \min(ax, by)$. Тогда линия уровня ищется следующим образом:

$$c = \min(ax, by)$$

$$\frac{c}{b} = \min(\frac{a}{b}x, y), \quad \frac{c}{a} = \min(x, \frac{b}{a}y)$$

$$y = \frac{c}{b}\mathbb{I}(ax > c), \quad x = \frac{c}{a}\mathbb{I}(by > c)$$

Линия уровня это конкатенация горизонтальной и вертикальной линий, соединенных вдоль ax = by.

Зачем нужны линии уровня

Очень часто, в задачах есть выпуклое ограничение типа неравенства, например, бюджетное ограничение. В таком случае, все кандидаты будут формально не внутренние.

Однако, с точки зрения выпуклой оптимизации, такие точки можно интерпретировать как «внутренние», если решать методом Лагранжа. О методе Лагранжа мы поговорим на следующей лекции.

Внутреннее решение выпуклой (и гладкой) оптимизационной задачи можно охарактеризовать как точку касания линии уровня с выпуклым ограничением.

Квази вогнутость

Конец