NOSQL 研发之路

孙立 @ 凤凰网

http://t.ifeng.com/sunli

http://t.sina.com.cn/sunli1223

NOSQL 介绍

- NOSQL=Not Only SQL
- NOSQL分类
- NOSQL+Mysql+Memcached

参见: http://nosql-database.org/

MYSQL 的不足, 让 NOSQL 来弥补

- Mysql 的扩展问题
- Mysql 的 Queycache 问题
- Mysql 的 SQL 解析和协议太重

Tokyocabinet/Tokyotyrant

Tokyo Cabinet 是日本人 Mikio Hirabayashi (平林幹雄)のページ 开发的一款 DBM 数据库(注: 大名鼎鼎的 DBM 数据库 qdbm 就是他开发的),该数据库读写非常快。insert:0.4sec/1000000 recordes(2500000qps),写入100万数据只需要 0.4 秒。search:0.33sec/1000000 recordes (3000000 qps),读取 100万数据只需要 0.33 秒。下图为各种key-value 数据库读写数据的性能测试,可以看出 Tokyo Cabinet的速度是非常快的。

Tokyotyrant 是 TC 的网络接口,提供兼容的 memcached 协 议, http 协议,还提供更加强大的二进制协议。

因为 Tokyotyrant 的进程名字是 ttserver, 我们习惯性的称其为 ttserver

为什么使用 ttserver

- □ 08 年开发全站评论系统开始使用
- 高性能
- 支持主从复制
- · 兼容 memcached 协议
- 数据文件小
- 备份,增加从库方便

Ttserver 的缺陷和解决办法

不支持 memcached 的 flag 和 expire

o 大规模出错问题

Ttserver 的问题

」 · 大数据崩溃,甚至无法重启。

- 单文件,更新随机写严重
- 吞吐量不稳定

Ttserver 的问题

ttserver 的问题

IO 不稳定,造成延迟

Kyoto

作者目前宣称不再升级

TC 的存储机制

TC 的存储机制

array

value	value	value	value
value	value	value	value
value	value	value	value
value	value	value	value
value	value	value	value
value	value	value	value
value	value	value	value
value	value	value	value
value	value	value	value
value	value	value	value

开发自己的 NOSQL

- during ttserver 不稳定的风险
- 线上产品都是用了 memcached 协议 (无 缝切换)
- 增强对底层存储的技术控制能力
- 为此,我们开发了INetDB

我们用在

- IMCP 系统的所有新闻存储,目前使用 Izf 压缩后超过 30GB
- 论坛的持久缓存启用了两个实例,使用了 p hp 客户端压缩,分别占用 42GB
- 论坛其中一个实例的监控图

Features

- 🏺 兼容的 memcached 协议
- Master-slave 主从复制
- 支持 ttserver 复制协议
- 高性能
- · 支持内部数据压缩(gzip,lzf)
- 数据遍历
- 复制无需保存类似 ttserver 的 bin-log
- 全面的监控数据接口

Benchmark(基准测试)

50 线程随机读取 10 万 key 区间, value 为 1K, 模 拟应用的热点读取能达到 84000r/s

INetDB vs TTServer

- 。 小数据量下 INetDB 没有 ttserver 写入和读取 快
- · 大数据量下, INetDB 性能表现更加稳定和可靠
- INetDB 支持 Flags 参数,支持压缩和直接的 p hp 数组存储.同时也支持过期参数。
- · 无复制 log 文件,避免定期清理 log
- INetDB 的状态监控更多

无日志复制实现方式

po s	key	operation
1	\$key1	add
2	\$key2	set
3	\$key2	increment
4	\$key2	delete
5		flush

复制协议流程

提高性能的一些调整

- [▶] 你应该使用 php 的长连接
- · 如果数据超过 5K 建议使用 php 的压缩选项
- 请求如果落在一定的 key 区间,也就是热点 访问,可以提高缓存命中率
- ulimit -SHn 51200

延伸

• 利用复制协议可以做很多事情

关于磁盘 IO

- 随机写和随机读是很慢的
- 顺序写和顺序读是很快的
- 比较好避免随机写,难于避免随机读
- 充分利用内存仍然是最好的优化方式

关于开发自己的 NOSQL 存储

- 有现成的最好不要自行开发
- 弄清你需要的存储类型
- 结合你的业务特点,不要盲目对比性能
- 网络协议很重要
- · 一切可替换,避免 Cassandra 在 digg 的 遭遇

谢谢 Q&A