Lista 4

resztki

Weronika Jakimowicz

Zadanie 8

 $\text{Załóżmy, } \dot{\text{ze}} \; \text{F, G} \in \text{K[X, Y]} \; \text{sq nierozkładalne i } \dot{\text{ze}} \; \text{F nie dzieli G. Niech V} = \text{V(FG)} \subseteq \mathbb{A}^2 \; \text{oraz a} \in \text{V taki, }$ $\dot{z}e F(a) = G(a) = 0$. Udowodnić, $\dot{z}e a jest punktem osobliwym V.$

Pomysł:

$$\frac{\partial}{\partial X}(FG)(X,Y) = G(X,Y)\frac{\partial}{\partial X}F(X,Y) + F(X,Y)\frac{\partial}{\partial X}G(X,Y)$$

daje, że pochodna w a jest zerem, bo F(a) = G(a) = 0. Tak samo dla $\frac{\partial}{\partial Y}$

Zadanie 9

Niech $F \in K[X, Y]$ i $V = V(F) \subseteq \mathbb{A}^2$. Udowodnić, że

- 1. jeśli F ∉ K, to V nieskończony
- 2. jeśli V(F, $\frac{\partial F}{\partial X}$, $\frac{\partial F}{\partial Y}$) jest skończony, to $\sqrt{(F)} = (F)$ oraz I(V) = (F). 3. jeśli V(F, $\frac{\partial F}{\partial X}$, $\frac{\partial F}{\partial Y}$) = \emptyset , to V jest gładką rozmaitością algebraiczną.
- 1. Lopatologicznie, to jeśli $F \notin K$, to dla dowolnego $a \in K$ $F(a, Y) \in K[Y]$ lub $F(X, a) \in K[X]$ i mogę przesuwać a, dostając nowe wielomianki.

Mniej łopatologicznie, mogę wziąć dowolny $(a,b) \in V(F)$. Wtedy $f_a(Y) = F(a,Y)$ jest wielomianem jednej zmiennej, który jeśli jest stały (a z racji, że F(a,b)=0 to musiałby być stale równy 0), to daje nieskończenie wiele rozwiązań F. Zapisujemy więc

$$\mathsf{F}(\mathsf{X},\mathsf{Y}) = \sum \alpha_{\mathsf{k}}(\mathsf{X})\mathsf{Y}^{\mathsf{k}}$$

i w ciekawszym casie któryś $\alpha_k(X)$ nie jest zerem, tylko wielomianem jednej zmiennej. Czyli ma skończenie wiele pierwiastków i nieskończenie wiele nie-pierwiastków, z których każde daje nam jakieś rozwiązanie F(-, Y).

- 2. nie przemawia do mnie ten podpunkt
- 3. Tutaj po prostu nie mamy punktów osobliwych. Tzn. zbiór zer krzywej i zbiór zer jej pochodnych mają pusty przekrój. Tylko chyba powinnam zrobić większe kombinacje umysłowo-definicjowe. Tylko zaczęłam od LATEX-owania ostatniego zadania i odmawiam.

1

Zadanie 10

Załóżmy, że char $(K) \neq 2$. Dla poniższych $F \in K[X,Y]$, znaleźć punkty osobliwe V(F) oraz dopasować krzywe V(F) do poniższego obrazka.

Są dwa obrazki symetryczne względem prostej y = x, Teraz zostały te, które są symetryczne względem OX. czyli podmiana x na y nie powinna zmienić równania i są to y $^6+$ x $^6-$ xy oraz y $^4+$ x $^4-$ x 2 y-xy $^2.$ Jeden z tych $\,$ czyli y $^4+$ x $^4-$ x 2 obrazków nie ma równań gdy x
 <0oraz y
 <0i tak zachowa się pierwsze z równań, czyli mamy y $^6 + x^6 - xy$

Ale tylko jedno z nich jest symetryczne względem OY,

oraz $y^4 + x^4 - x^2y - y^2x$

To teraz punkty osobliwe, czyli takie, gdzie pochodne cząstkowe się zerują 💥. Uwaga, będą kolory, ale idę od lewego górnego rysunku przeciwnie do ruchu wskazówek zegara.

$$\frac{\partial}{\partial \mathsf{X}}\mathsf{F} = 6\mathsf{X} - \mathsf{Y}$$

$$\frac{\partial}{\partial \mathsf{Y}}\mathsf{F} = 6\mathsf{Y} - \mathsf{X}$$

oba równają się 0, jeśli X=Y=0 ($Y=6X=6\cdot 6Y$)

$$\frac{\partial}{\partial X} F = 4X^3 - 2XY - Y^2 = X^2 (4X + 1) - (Y + X)^2$$
$$\frac{\partial}{\partial Y} F = 4Y^3 - 2XY - X^2 = Y^2 (4Y + 1) - (X + Y)^2$$

Dostaję, że $X^2(4X+1) = Y^2(4Y+1)$, czyli X = Y i wtedy oba są zerem.

$$\frac{\partial}{\partial X}F = 4X^3 - 2X^2 = 2X(2X^2 - 1)$$
$$\frac{\partial}{\partial Y}F = 4Y^3$$

Druga różniczka jest zerem \iff Y = 0. Pierwsza jest zerem gdy X = 0 lub X = $\pm \frac{1}{\sqrt{2}}$. (0,0) oczywiście śmiga, natomiast $(\pm \frac{1}{\sqrt{2}},0)$ nie leży na muszce (krzywej).

$$\frac{\partial}{\partial X} F = 4X^3 - 3X^2 = X^2(4X - 3)$$
$$\frac{\partial}{\partial Y} F = 4Y^3 + 2Y = 2Y(2Y^2 + 1)$$

Druga różniczka jest zerem tylko gdy Y = 0, bo $2\mathsf{Y}^2+1$ nie ma rozwiązań rzeczywistych. Pierwsze równanie daje nam z kolei X = 0 lub X = $\frac{3}{4}$. Punkt (0,0) śmiga, punkt $(\frac{3}{4},0)$ nie leży na krzywej.