10. კვადრატული ფუნქცია. კვადრატული განტოლება და უტოლობა.

 $ax^2 + bx + c = 0$ სახის განტოლებას, სადაც x ცვლადია, ხოლო a, b და c ნებისმიერი ნამდვილი რიცხვებია, $a \neq 0$, კვადრატული განტოლება ეწოდება. a–ს ეწოდება კვადრატული განტოლების პირველი კოეფიციენტი, b-ს მეორე კოეფიციენტი, ხოლო c–ს თავისუფალი წევრი.

კვადრატული განტოლება ax 2 + bx + c = 0

დისკრიმინანტი $D = b^2 - 4ac$

 \cdot თუ $\mathbf{D} > \mathbf{0}$, მაშინ განტოლებას აქვს ორი განსხვავებული ნამდვილი ამონახსნი

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}.$$

• თუ $\mathbf{D} = \mathbf{0}$, მაშინ განტოლებას აქვს მხოლოდ ერთი ნამდვილი ამონახსნი

$$x = -\frac{b}{2a}$$
,

• თუ $\mathbf{D} < \mathbf{0}$, მაშინ განტოლებას არ აქვს ნამდვილი ამონახსნები.

	D > 0	D = 0	D < 0
a>0		X	
a<0		X X	\(\)

ვიეტის თეორემა

თეორემა. თუ $ax^2 + bx + c = 0$ კვადრატული განტოლების დისკრიმინანტი D > 0, მაშინ განტოლების ამონახსნთა ჯამი უდრის $-\frac{b}{a}$ –ს, ხოლო ნამრავლი $\frac{c}{a}$ –ს.

თუ ax 2 + bx + c = 0 განტოლებას აქვს ნამდვილი ამონახსნები, მაშინ

$$x_1 + x_2 = -\frac{b}{a}$$
, $x_1 x_2 = \frac{c}{a}$.

კვადრატული სამწევრის დაშლა მამრავლებად

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = a\left(x^{2} - (x_{1} + x_{2})x + x_{1}x_{2}\right) =$$

$$= a\left(x^{2} - x_{1}x - x_{2}x + x_{1}x_{2}\right) = a\left(x(x - x_{1}) - x_{2}(x - x_{1})\right) = a\left(x - x_{1}\right)\left(x - x_{2}\right).$$
ამრიგად
$$ax^{2} + bx + c = a\left(x - x_{1}\right)\left(x - x_{2}\right),$$

ბიკვადრატული განტოლება

 $ax^4 + bx^2 + c = 0$ სახის განტოლებას, სადაც x ცვლადია, ხოლო a, b და c ნებისმიერი ნამდვილი რიცხვებია, $a \neq 0$, ბიკვადრატული განტოლება ეწოდება.

თუ შემოვიღებთ აღნიშვნას $x^2 = y$, მივიღებთ კვადრატულ განტოლებას y ცვლადის მიმართ

$$ay^2 + by + c = 0. (1)$$

კვადრატული უტოლობა:

 $ax^2 + bx + c > 0$ და $ax^2 + bx + c < 0$ სახის უტოლობებს, სადაც x ცვლადია, ხოლო a, b და c ნებისმიერი ნამდვილი რიცხვებია, $a \neq 0$, კვადრატული უტოლობები ეწოდება.

1. თუ $D=b^2-4ac<0$, მაშინ პარაბოლა მთლიანად მოთავსებულია Ox ღერძის ზემოთ და ამიტომ $ax^2+bx+c>0$ უტოლობის ამონახსნთა სიმრავლეა R (ნახ. 31), ხოლო $ax^2+bx+c<0$ უტოლობის ამონახსნთა სიმრავლე კი—ცარიელია.

2. თუ $D=b^2-4ac>0$, მაშინ $y=ax^2+bx+c$ პარაბოლა Ox ღერძს ჰკვეთს ორ x_1 და x_2 წერტილში $(x_1 < x_2)$, რომლებიც ax^2+bx+c კვაღრატული სამწევრის ფესვებს წარმოადგენენ. ამიტომ $ax^2+bx+c>0$ უტოლობის ამონახსნთა სიმრავლე შედგება Ox ღერძის ყველა იმ წერტილებისაგან, რომლებიც მდებარეობენ x_1 -ის მარცხნივ ან x_2 -ის მარჯვნივ ე. ი. "ფესვებს გარეთ" (ნახ. 32), ხოლო $ax^2+bx+c<0$ უტოლობის ამონახსნთა სიმრავლე შედგება Ox ღერძის ყველა იმ წერტილებისაგან, რომლებიც მდებარეობენ x_1 და x_2 წერტილებს შორის (ე. ი. "ფესვებს შორის") (ნახ. 33).

ამრიგად, თუ a>0 და D>0, მაშინ $ax^2+bx+c>0$ უტოლობის ამონახსნთა სიმრავლეა $]-\infty; x_1[\ \bigcup\]x_2; +\infty[\ ,$ ხოლო $ax^2+bx+c<0$ უტოლობის ამონახსნთა სიმრავლე კი $-\]x_1; x_2[\ .$

3. თუ $D=b^2-4ac=0$, მაშინ $y=ax^2+bx+c$ პარაბოლა Ox ღერძს ეხება $x=-\frac{b}{2a}$ წერტილში. ამიტომ $ax^2+bx+c>0$ უტოლობის ამონახსნს წარმოადგენს Ox ღერძის ნებისმიერი წერტილი გარდა $x=-\frac{b}{2a}$ წერტილისა (ნახ. 34), ე. ი. ამონახსნ-თა სიმრავლეა $\left| \int_{-\infty}^{+\infty} -\frac{b}{2a} \left[\bigcup_{-\infty}^{+\infty} -\frac{b}{2a} \right] \right|$, ხოლო $ax^2+bx+c<0$ უტოლობის ამონახსნთა სიმრავლე კი ცარიელია

იმ შემთხვევაში, როცა a < 0, უტოლობის ორივე მხარის -1ზე გამრავლებით და უტოლობის ნიშნის მოპირდაპირეთი შეცვლით კვადრატული უტოლობის ამოხსნა დაიყვანება განხილულ შემთხვევებზე.

კვადრატული ფუნქცია, თვისებები:

 $Y=ax^2+bx+c\ (a\neq 0)\ D(y)=R;$ თუ a>0 მცირდება $(-\infty;x_0]$ და იზრდება $[x_0;+\infty);\ x_0=-rac{b}{2a}$

(მინიმუმის წერტილი): $Y_0=Y(X_0)$)მინიმუმი $\mathrm{E}(\mathrm{Y})=[Y_0;+\infty)$; გრაფიკის სახე პარაზოლა.

წვეროს კოორდინატები $x_0=-\frac{b}{2a}$; $Y_0=Y(X_0)=-\frac{D}{4a}$. სიმეტრიის ღერძი $\mathbf{x}=x_0$ თუ $\mathbf{a}<0$ y_0 —უდიდესს მნიშვნელობაა, თუ $\mathbf{a}>0$ y_0 —უმცირესი მნიშვნელობაა. თუ $\mathbf{a}<0$ იზრდება

 $(-\infty; x_0]$ შუალედში, მცირდება $[x_0; +\infty)$ შუალედში. $x_0=-\frac{b}{2a}$ - მაქსიმუმის წერტილია, - $Y_0=Y(X_0)$ — მაქსიმუმია. $\mathrm{E}(\mathrm{Y})=(-\infty; Y_0); \ \mathrm{Y}=\mathrm{ax}^2$ ლუწი ფუნქციაა.

$$D=b^2-4 a c > 0$$

$$D=b^2-4ac=0$$

$$D=b^2-4ac < 0$$

აქვს ორი ფესვი $X_1; X_2$ OX ღერძს კვეთსორ წერტილში

აქვს ერთი ფესვი
$$X_0=-rac{b}{2a}$$

არ აქვს ფევი OX ღერძს არ კვეთს

 OX ღერძს გრაფიკი ეხება x_0 წერტილში