Deep Generative Models

Lecture 13

Roman Isachenko

2024, Summer

ELBO of gaussian diffusion model

$$\begin{split} \mathcal{L}(q, \boldsymbol{\theta}) &= \mathbb{E}_{q(\mathbf{x}_1|\mathbf{x}_0)} \log \rho(\mathbf{x}_0|\mathbf{x}_1, \boldsymbol{\theta}) - \mathcal{K}L\big(q(\mathbf{x}_T|\mathbf{x}_0)||\rho(\mathbf{x}_T)\big) - \\ &- \sum_{t=2}^T \underbrace{\mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} \mathcal{K}L\big(q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)||\rho(\mathbf{x}_{t-1}|\mathbf{x}_t, \boldsymbol{\theta})\big)}_{\mathcal{L}_t} \\ q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) &= \mathcal{N}\big(\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\boldsymbol{\beta}}_t \mathbf{I}\big), \\ \rho(\mathbf{x}_{t-1}|\mathbf{x}_t, \boldsymbol{\theta}) &= \mathcal{N}\big(\boldsymbol{\mu}_{\boldsymbol{\theta}, t}(\mathbf{x}_t), \boldsymbol{\sigma}_{\boldsymbol{\theta}, t}^2(\mathbf{x}_t)\big) \end{split}$$

Our assumption: $\sigma_{\theta,t}^2(\mathbf{x}_t) = \tilde{\beta}_t \mathbf{I}$.

$$\mathcal{L}_t = \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} \left[rac{1}{2 ilde{eta}_t} ig\| ilde{oldsymbol{\mu}}_t(\mathbf{x}_t,\mathbf{x}_0) - oldsymbol{\mu}_{oldsymbol{ heta},t}(\mathbf{x}_t) ig\|^2
ight]$$

$$\mathcal{L}_t = \mathbb{E}_{q(\mathsf{x}_t|\mathsf{x}_0)} \left[rac{1}{2 ilde{eta}_t} ig\| ilde{oldsymbol{\mu}}_t(\mathsf{x}_t,\mathsf{x}_0) - oldsymbol{\mu}_{oldsymbol{ heta},t}(\mathsf{x}_t) ig\|^2
ight]$$

Reparametrization

$$\begin{split} \tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) &= \frac{1}{\sqrt{\alpha_t}} \cdot \mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{\alpha_t (1 - \bar{\alpha}_t)}} \cdot \epsilon \\ \mu_{\theta, t}(\mathbf{x}_t) &= \frac{1}{\sqrt{\alpha_t}} \cdot \mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{\alpha_t (1 - \bar{\alpha}_t)}} \cdot \epsilon_{\theta, t}(\mathbf{x}_t) \end{split}$$

$$\mathcal{L}_{t} = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \mathbf{I})} \left[\frac{(1 - \alpha_{t})^{2}}{2\tilde{\beta}_{t}\alpha_{t}(1 - \bar{\alpha}_{t})} \left\| \epsilon - \epsilon_{\theta, t} \left(\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \epsilon \right) \right\|^{2} \right]$$

At each step of reverse diffusion process we try to predict the noise ϵ that we used in the forward diffusion process!

Simplified objective

$$\mathcal{L}_{\mathsf{simple}} = \mathbb{E}_{t \sim U\{2, T\}} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\boldsymbol{\theta}, t} \left(\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} \right) \right\|^2$$

Training of DDPM

- 1. Get the sample $\mathbf{x}_0 \sim \pi(\mathbf{x})$.
- 2. Sample timestamp $t \sim U\{1, T\}$ and the noise $\epsilon \sim \mathcal{N}(0, I)$.
- 3. Get noisy image $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \cdot \mathbf{x}_0 + \sqrt{1 \bar{\alpha}_t} \cdot \epsilon$.
- 4. Compute loss $\mathcal{L}_{\text{simple}} = \|\epsilon \epsilon_{\theta,t}(\mathbf{x}_t)\|^2$.

Sampling of DDPM

- 1. Sample $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$.
- 2. Compute mean of $p(\mathbf{x}_{t-1}|\mathbf{x}_t, \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\mu}_{\boldsymbol{\theta},t}(\mathbf{x}_t), \sigma_t^2 \cdot \mathbf{I})$:

$$\mu_{\theta,t}(\mathbf{x}_t) = \frac{1}{\sqrt{\alpha_t}} \cdot \mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{\alpha_t(1 - \bar{\alpha}_t)}} \cdot \epsilon_{\theta,t}(\mathbf{x}_t)$$

3. Get denoised image $\mathbf{x}_{t-1} = \boldsymbol{\mu}_{\theta,t}(\mathbf{x}_t) + \sigma_t \cdot \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$.

DDPM objective

$$\mathbb{E}_{\pi(\mathbf{x}_0)} \mathbb{E}_{t \sim U\{1,T\}} \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} \left[\frac{(1-\alpha_t)^2}{2\tilde{\beta}_t \alpha_t} \left\| \mathbf{s}_{\boldsymbol{\theta},t}(\mathbf{x}_t) - \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t|\mathbf{x}_0) \right\|_2^2 \right]$$

In practice the coefficient is omitted.

NCSN objective

$$\mathbb{E}_{\pi(\mathbf{x}_0)} \mathbb{E}_{t \sim U\{1,T\}} \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} \big\| \mathbf{s}_{\boldsymbol{\theta},\sigma_t}(\mathbf{x}_t) - \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t|\mathbf{x}_0) \big\|_2^2$$

Note: The objective of DDPM and NCSN is almost identical. But the difference in sampling scheme:

- NCSN uses annealed Langevin dynamics;
- DDPM uses ancestral sampling.

$$\mathbf{s}_{\boldsymbol{\theta},t}(\mathbf{x}_t) = -\frac{\boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t)}{\sqrt{1-\bar{\alpha}_t}} = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\boldsymbol{\theta})$$

Unconditional generation

$$\mathbf{x}_{t-1} = rac{1}{\sqrt{lpha_t}} \cdot \mathbf{x}_t + rac{1-lpha_t}{\sqrt{lpha_t}} \cdot
abla_{\mathbf{x}_t} \log p(\mathbf{x}_t|oldsymbol{ heta}) + \sigma_t \cdot oldsymbol{\epsilon}$$

Conditional generation

$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \cdot \mathbf{x}_t + \frac{1 - \alpha_t}{\sqrt{\alpha_t}} \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{y}, \boldsymbol{\theta}) + \sigma_t \cdot \boldsymbol{\epsilon}$$

Conditional distribution

$$\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{y}, \boldsymbol{\theta}) = \nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t) - \frac{\epsilon_{\boldsymbol{\theta}, t}(\mathbf{x}_t)}{\sqrt{1 - \bar{\alpha}_t}}$$

Here $p(\mathbf{y}|\mathbf{x}_t)$ – classifier on noisy samples (we have to learn it separately).

Classifier-corrected noise prediction

$$\epsilon_{\theta,t}(\mathbf{x}_t, \mathbf{y}) = \epsilon_{\theta,t}(\mathbf{x}_t) - \sqrt{1 - \bar{\alpha}_t} \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t)$$

Guidance scale

$$\begin{aligned} \epsilon_{\theta,t}(\mathbf{x}_t, \mathbf{y}) &= \epsilon_{\theta,t}(\mathbf{x}_t) - \gamma \cdot \sqrt{1 - \bar{\alpha}_t} \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t) \\ \nabla_{\mathbf{x}_t}^{\gamma} \log p(\mathbf{x}_t|\mathbf{y}, \boldsymbol{\theta}) &= \nabla_{\mathbf{x}_t} \log \left(\frac{p(\mathbf{y}|\mathbf{x}_t)^{\gamma} p(\mathbf{x}_t|\boldsymbol{\theta})}{Z} \right) \end{aligned}$$

Note: Guidance scale γ tries to sharpen the distribution $p(\mathbf{y}|\mathbf{x}_t)$.

Guided sampling

$$\begin{aligned} \boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) &= \boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t) - \gamma \cdot \sqrt{1 - \bar{\alpha}_t} \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t) \\ \boldsymbol{\mu}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) &= \frac{1}{\sqrt{\alpha_t}} \mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{\alpha_t(1 - \bar{\alpha}_t)}} \cdot \boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) \\ \mathbf{x}_{t-1} &= \boldsymbol{\mu}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) + \sigma_t \cdot \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0},\mathbf{I}) \end{aligned}$$

- Previous method requires training the additional classifier model $p(\mathbf{y}|\mathbf{x}_t)$ on the noisy data.
- Let try to avoid this requirement.

$$\nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{y}, \boldsymbol{\theta}) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\boldsymbol{\theta})$$

$$\begin{split} \nabla_{\mathbf{x}_t}^{\gamma} \log p(\mathbf{x}_t|\mathbf{y}, \boldsymbol{\theta}) &= \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\boldsymbol{\theta}) + \gamma \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t) = \\ &= (1 - \gamma) \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\boldsymbol{\theta}) + \gamma \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{y}, \boldsymbol{\theta}) \end{split}$$

Classifier-free-corrected noise prediction

$$\hat{\boldsymbol{\epsilon}}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) = \gamma \cdot \boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) + (1-\gamma) \cdot \boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t)$$

- ► Train the single model $\epsilon_{\theta,t}(\mathbf{x}_t,\mathbf{y})$ on **supervised** data alternating with real conditioning \mathbf{y} and empty conditioning $\mathbf{y} = \emptyset$.
- ▶ Apply the model twice during inference.

Continuous-in-time dynamic (neural ODE)

$$egin{aligned} rac{d\mathbf{z}(t)}{dt} &= \mathbf{f}_{m{ heta}}(\mathbf{z}(t),t); \quad ext{with initial condition } \mathbf{z}(t_0) = \mathbf{z}_0. \ \mathbf{z}(t_1) &= \int_{t_0}^{t_1} \mathbf{f}_{m{ heta}}(\mathbf{z}(t),t) dt + \mathbf{z}_0 pprox ext{ODESolve}(\mathbf{z}(t_0),\mathbf{f}_{m{ heta}},t_0,t_1). \end{aligned}$$

Euler update step

$$\frac{\mathbf{z}(t+\Delta t)-\mathbf{z}(t)}{\Delta t}=\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t),t) \ \Rightarrow \ \mathbf{z}(t+\Delta t)=\mathbf{z}(t)+\Delta t \cdot \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t),t)$$

Theorem (Picard)

If \mathbf{f} is uniformly Lipschitz continuous in \mathbf{z} and continuous in t, then the ODE has a **unique** solution.

$$\mathbf{z} = \mathbf{z}(t_1) = \mathbf{z}(t_0) + \int_{t_0}^{t_1} \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t) dt$$
 $\mathbf{z} = \mathbf{z}(t_0) = \mathbf{z}(t_1) + \int_{t_1}^{t_0} \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t) dt$

Theorem (Kolmogorov-Fokker-Planck: special case)

If f is uniformly Lipschitz continuous in z and continuous in t, then

$$\frac{d\log p(\mathbf{z}(t),t)}{dt} = -\mathrm{tr}\left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t),t)}{\partial \mathbf{z}(t)}\right).$$

$$\log p(\mathbf{z}(t_1), t_1) = \log p(\mathbf{z}(t_0), t_0) - \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}\right) dt.$$

- **Discrete-in-time NF**: evaluation of determinant of the Jacobian costs $O(m^3)$ (we need invertible \mathbf{f}).
- ▶ Continuous-in-time NF: getting the trace of the Jacobian costs $O(m^2)$ (we need smooth \mathbf{f}).

Hutchinson's trace estimator

$$\log p(\mathbf{z}(t_1)) = \log p(\mathbf{z}(t_0)) - \mathbb{E}_{p(\epsilon)} \int_{t_0}^{t_1} \left[\epsilon^T \frac{\partial \mathbf{f}}{\partial \mathbf{z}} \epsilon \right] dt.$$

Grathwohl W. et al. FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models. 2018

Forward pass (Loss function)

$$\mathbf{z} = \mathbf{x} + \int_{t_1}^{t_0} \mathbf{f}_{\theta}(\mathbf{z}(t), t) dt, \quad L(\mathbf{z}) = -\log p(\mathbf{x}|\theta)$$

$$L(\mathbf{z}) = -\log p(\mathbf{z}) + \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial \mathbf{f}_{\theta}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}\right) dt$$

Adjoint functions

$$\mathbf{a_z}(t) = \frac{\partial L}{\partial \mathbf{z}(t)}; \quad \mathbf{a_{\theta}}(t) = \frac{\partial L}{\partial \boldsymbol{\theta}(t)}.$$

These functions show how the gradient of the loss depends on the hidden state $\mathbf{z}(t)$ and parameters θ .

Theorem (Pontryagin)

$$\frac{d\mathbf{a_z}(t)}{dt} = -\mathbf{a_z}(t)^T \cdot \frac{\partial \mathbf{f_\theta}(\mathbf{z}(t), t)}{\partial \mathbf{z}}; \quad \frac{d\mathbf{a_\theta}(t)}{dt} = -\mathbf{a_z}(t)^T \cdot \frac{\partial \mathbf{f_\theta}(\mathbf{z}(t), t)}{\partial \theta}.$$

Forward pass

$$\mathbf{z} = \mathbf{z}(t_0) = \int_{t_0}^{t_1} \mathbf{f}_{m{ heta}}(\mathbf{z}(t),t) dt + \mathbf{x} \quad \Rightarrow \quad \mathsf{ODE} \; \mathsf{Solver}$$

Backward pass

$$\begin{split} &\frac{\partial L}{\partial \boldsymbol{\theta}(t_1)} = \boldsymbol{a}_{\boldsymbol{\theta}}(t_1) = -\int_{t_0}^{t_1} \boldsymbol{a}_{\boldsymbol{z}}(t)^T \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{z}(t),t)}{\partial \boldsymbol{\theta}(t)} dt + 0 \\ &\frac{\partial L}{\partial \boldsymbol{z}(t_1)} = \boldsymbol{a}_{\boldsymbol{z}}(t_1) = -\int_{t_0}^{t_1} \boldsymbol{a}_{\boldsymbol{z}}(t)^T \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{z}(t),t)}{\partial \boldsymbol{z}(t)} dt + \frac{\partial L}{\partial \boldsymbol{z}(t_0)} \\ &\boldsymbol{z}(t_1) = -\int_{t_1}^{t_0} f_{\boldsymbol{\theta}}(\boldsymbol{z}(t),t) dt + \boldsymbol{z}_0. \end{split} \right\} \Rightarrow \mathsf{ODE} \; \mathsf{Solver}$$

Note: These scary formulas are the standard backprop in the discrete case.

- Guidance
 Classifier guidance
 Classifier-free guidance
- 2. Continuous-in-time normalizing flows
- 3. Continuous-in-time NF: adjoint method
- 4. SDE basics
- 5. Probability flow ODE
- 6. Reverse SDE
- 7. Diffusion and Score matching SDEs

- 1. Guidance
 - Classifier guidance Classifier-free guidance
- 2. Continuous-in-time normalizing flows
- 3. Continuous-in-time NF: adjoint method
- 4. SDE basics
- 5. Probability flow ODE
- 6. Reverse SDE
- 7. Diffusion and Score matching SDEs

- 1. Guidance
 - Classifier guidance

Classifier-free guidance

- 2. Continuous-in-time normalizing flows
- 3. Continuous-in-time NF: adjoint method
- 4. SDE basics
- 5. Probability flow ODE
- 6. Reverse SDE
- 7. Diffusion and Score matching SDEs

DDPM sampling

- 1. Sample $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$.
- 2. Compute mean of $p(\mathbf{x}_{t-1}|\mathbf{x}_t, \boldsymbol{\theta}) = \mathcal{N}(\mu_{\boldsymbol{\theta},t}(\mathbf{x}_t), \sigma_t^2 \cdot \mathbf{I})$:

$$\mu_{\theta,t}(\mathbf{x}_t) = \frac{1}{\sqrt{\alpha_t}} \cdot \mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{\alpha_t(1 - \bar{\alpha}_t)}} \cdot \epsilon_{\theta,t}(\mathbf{x}_t)$$

3. Get denoised image $\mathbf{x}_{t-1} = \boldsymbol{\mu}_{\boldsymbol{\theta},t}(\mathbf{x}_t) + \sigma_t \cdot \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \cdot \mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{\alpha_t (1 - \bar{\alpha}_t)}} \cdot \epsilon_{\boldsymbol{\theta}, t}(\mathbf{x}_t) + \sigma_t \cdot \epsilon$$

$$\mathbf{s}_{\boldsymbol{\theta}, t}(\mathbf{x}_t) = -\frac{\epsilon_{\boldsymbol{\theta}, t}(\mathbf{x}_t)}{\sqrt{1 - \bar{\alpha}_t}} = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \boldsymbol{\theta})$$

$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \cdot \mathbf{x}_t + \frac{1 - \alpha_t}{\sqrt{\alpha_t}} \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \boldsymbol{\theta}) + \sigma_t \cdot \epsilon$$

Unconditional generation

$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{lpha_t}} \cdot \mathbf{x}_t + \frac{1 - lpha_t}{\sqrt{lpha_t}} \cdot
abla_{\mathbf{x}_t} \log p(\mathbf{x}_t | oldsymbol{ heta}) + \sigma_t \cdot oldsymbol{\epsilon}$$

Conditional generation

$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \cdot \mathbf{x}_t + \frac{1 - \alpha_t}{\sqrt{\alpha_t}} \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{y}, \boldsymbol{\theta}) + \sigma_t \cdot \boldsymbol{\epsilon}$$

Conditional distribution

$$\nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}|\mathbf{y}, \boldsymbol{\theta}) = \nabla_{\mathbf{x}_{t}} \log \left(\frac{p(\mathbf{y}|\mathbf{x}_{t})p(\mathbf{x}_{t}|\boldsymbol{\theta})}{p(\mathbf{y})} \right)$$

$$= \nabla_{\mathbf{x}_{t}} \log p(\mathbf{y}|\mathbf{x}_{t}) + \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}|\boldsymbol{\theta})$$

$$= \nabla_{\mathbf{x}_{t}} \log p(\mathbf{y}|\mathbf{x}_{t}) - \frac{\epsilon_{\boldsymbol{\theta}, t}(\mathbf{x}_{t})}{\sqrt{1 - \bar{\alpha}_{t}}}$$

Here $p(\mathbf{y}|\mathbf{x}_t)$ – classifier on noisy samples (we have to learn it separately).

Dhariwal P., Nichol A. Diffusion Models Beat GANs on Image Synthesis, 2021

Conditional distribution

$$\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{y}, \boldsymbol{\theta}) = \nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t) - \frac{\epsilon_{\boldsymbol{\theta}, t}(\mathbf{x}_t)}{\sqrt{1 - \bar{\alpha}_t}}$$

Let parametetrize $\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{y}, \boldsymbol{\theta}) = -\frac{\epsilon_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y})}{\sqrt{1-\bar{\alpha}_t}}$.

Classifier-corrected noise prediction

$$\boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) = \boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t) - \sqrt{1-\bar{\alpha}_t} \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t)$$

Guidance scale

$$\epsilon_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) = \epsilon_{\boldsymbol{\theta},t}(\mathbf{x}_t) - \gamma \cdot \sqrt{1 - \bar{\alpha}_t} \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t)$$

Here we introduce guidance scale γ that controls the magnitude of the classifier guidance.

Classifier-corrected noise prediction

$$\epsilon_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) = \epsilon_{\boldsymbol{\theta},t}(\mathbf{x}_t) - \gamma \cdot \sqrt{1 - \bar{\alpha}_t} \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t)$$

Conditional distribution

$$\begin{split} \frac{\epsilon_{\theta,t}(\mathbf{x}_t, \mathbf{y})}{\sqrt{1 - \bar{\alpha}_t}} &= \frac{\epsilon_{\theta,t}(\mathbf{x}_t)}{\sqrt{1 - \bar{\alpha}_t}} - \gamma \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t) \\ \nabla_{\mathbf{x}_t}^{\gamma} \log p(\mathbf{x}_t|\mathbf{y}, \boldsymbol{\theta}) &= \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\boldsymbol{\theta}) + \gamma \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t) \\ &= \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\boldsymbol{\theta}) + \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t)^{\gamma} \\ &= \nabla_{\mathbf{x}_t} \log \left(\frac{p(\mathbf{y}|\mathbf{x}_t)^{\gamma} p(\mathbf{x}_t|\boldsymbol{\theta})}{Z} \right) \end{split}$$

Note: Guidance scale γ tries to sharpen the distribution $p(\mathbf{y}|\mathbf{x}_t)$.

- Train DDPM as usual.
- ▶ Train the classifier $p(\mathbf{y}|\mathbf{x}_t)$ on the noisy samples \mathbf{x}_t .

Guided sampling

- 1. Sample $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
- 2. Compute "corrected" $\epsilon_{\theta,t}(\mathbf{x}_t,\mathbf{y})$:

$$\boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) = \boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t) - \gamma \cdot \sqrt{1 - \bar{\alpha}_t} \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t)$$

3. Compute mean of $p(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{y},\boldsymbol{\theta}) = \mathcal{N}(\mu_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}),\sigma_t^2 \cdot \mathbf{I})$:

$$\mu_{\theta,t}(\mathbf{x}_t,\mathbf{y}) = \frac{1}{\sqrt{\alpha_t}}\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{\alpha_t(1-\bar{\alpha}_t)}} \cdot \boldsymbol{\epsilon}_{\theta,t}(\mathbf{x}_t,\mathbf{y})$$

4. Get denoised image $\mathbf{x}_{t-1} = \boldsymbol{\mu}_{\boldsymbol{\theta},t}(\mathbf{x}_t, \mathbf{y}) + \sigma_t \cdot \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

- 1. Guidance
 - Classifier guidance
 - Classifier-free guidance
- 2. Continuous-in-time normalizing flows
- Continuous-in-time NF: adjoint method
- 4. SDE basics
- 5. Probability flow ODE
- 6. Reverse SDE
- 7. Diffusion and Score matching SDEs

Classifier-free guidance

- Previous method requires training the additional classifier model $p(\mathbf{y}|\mathbf{x}_t)$ on the noisy data.
- Let try to avoid this requirement.

$$\nabla_{\mathbf{x}_t}^{\gamma} \log p(\mathbf{x}_t|\mathbf{y}, \boldsymbol{\theta}) = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\boldsymbol{\theta}) + \gamma \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t)$$

$$\nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log \left(\frac{p(\mathbf{x}_t|\mathbf{y}, \boldsymbol{\theta})p(\mathbf{y})}{p(\mathbf{x}_t|\boldsymbol{\theta})} \right)$$
$$= \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{y}, \boldsymbol{\theta}) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\boldsymbol{\theta})$$

$$\begin{aligned} \nabla_{\mathbf{x}_{t}}^{\gamma} \log p(\mathbf{x}_{t}|\mathbf{y}, \boldsymbol{\theta}) &= \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}|\boldsymbol{\theta}) + \gamma \cdot \nabla_{\mathbf{x}_{t}} \log p(\mathbf{y}|\mathbf{x}_{t}) = \\ &= \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}|\boldsymbol{\theta}) + \gamma \cdot \left(\nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}|\mathbf{y}, \boldsymbol{\theta}) - \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}|\boldsymbol{\theta}) \right) = \\ &= (1 - \gamma) \cdot \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}|\boldsymbol{\theta}) + \gamma \cdot \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}|\mathbf{y}, \boldsymbol{\theta}) \end{aligned}$$

Note: In the case of $\gamma = 1$ we will get the identity statement.

Classifier-free guidance

$$\nabla_{\mathbf{x}_t}^{\gamma} \log p(\mathbf{x}_t | \mathbf{y}, \boldsymbol{\theta}) = (1 - \gamma) \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \boldsymbol{\theta}) + \gamma \cdot \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{y}, \boldsymbol{\theta})$$
$$\frac{\epsilon_{\boldsymbol{\theta}, t}(\mathbf{x}_t, \mathbf{y})}{\sqrt{1 - \bar{\alpha}_t}} = (1 - \gamma) \cdot \frac{\epsilon_{\boldsymbol{\theta}, t}(\mathbf{x}_t)}{\sqrt{1 - \bar{\alpha}_t}} + \gamma \cdot \frac{\epsilon_{\boldsymbol{\theta}, t}(\mathbf{x}_t, \mathbf{y})}{\sqrt{1 - \bar{\alpha}_t}}$$

Classifier-free-corrected noise prediction

$$\hat{\boldsymbol{\epsilon}}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) = \gamma \cdot \boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t,\mathbf{y}) + (1-\gamma) \cdot \boldsymbol{\epsilon}_{\boldsymbol{\theta},t}(\mathbf{x}_t)$$

- ► Train the single model $\epsilon_{\theta,t}(\mathbf{x}_t,\mathbf{y})$ on **supervised** data alternating with real conditioning \mathbf{y} and empty conditioning $\mathbf{y} = \emptyset$.
- ▶ Apply the model twice during inference.

- Guidance
 Classifier guidance
 Classifier-free guidance
- 2. Continuous-in-time normalizing flows
- 3. Continuous-in-time NF: adjoint method
- 4. SDE basics
- 5. Probability flow ODE
- 6. Reverse SDE
- 7. Diffusion and Score matching SDEs

Discrete-in-time NF

Previously we assume that the time axis is discrete:

$$\mathbf{z}_{t+1} = \mathbf{f}_{\theta}(\mathbf{z}_t); \quad \log p(\mathbf{z}_{t+1}) = \log p(\mathbf{z}_t) - \log \left| \det \frac{\partial \mathbf{f}_{\theta}(\mathbf{z}_t)}{\partial \mathbf{z}_t} \right|.$$

Let assume the more general case of continuous time. It means that we will have the dynamic function $\mathbf{z}(t)$.

Continuous-in-time dynamics

Consider Ordinary Differential Equation (ODE)

$$\frac{d\mathbf{z}(t)}{dt} = \mathbf{f}_{\theta}(\mathbf{z}(t), t);$$
 with initial condition $\mathbf{z}(t_0) = \mathbf{z}_0$.

$$\mathbf{z}(t_1) = \int_{t_0}^{t_1} \mathbf{f}_{m{ heta}}(\mathbf{z}(t),t) dt + \mathbf{z}_0 pprox \mathsf{ODESolve}(\mathbf{z}(t_0),\mathbf{f}_{m{ heta}},t_0,t_1).$$

Here we need to define the computational procedure ODESolve($\mathbf{z}(t_0), \mathbf{f}_{\theta}, t_0, t_1$).

Grathwohl W. et al. FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models. 2018

Euler update step

$$\frac{\mathbf{z}(t+\Delta t)-\mathbf{z}(t)}{\Delta t}=\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t),t) \ \Rightarrow \ \mathbf{z}(t+\Delta t)=\mathbf{z}(t)+\Delta t \cdot \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t),t)$$

Note: Euler method is the simplest version of ODESolve that is unstable in practice. It is possible to use more sophisticated methods (e.x. Runge-Kutta methods).

Neural ODE

$$\frac{d\mathbf{z}(t)}{dt} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t);$$
 with initial condition $\mathbf{z}(t_0) = \mathbf{z}_0$

- Let $\mathbf{z}(t_0)$ will be a random variable with some density function $p(\mathbf{z}(t_0))$.
- ► Then $\mathbf{z}(t_1)$ will be also a random variable with some other density function $p(\mathbf{z}(t_1))$.
- We could say that we have the joint density function p(z(t), t).
- What is the difference between $p(\mathbf{z}(t), t)$ and $p(\mathbf{z}, t)$?

Let say that $p(\mathbf{z}, t_0)$ is the base distribution (e.x. standard Normal) and $p(\mathbf{z}, t_1)$ is the desired model distribution $p(\mathbf{x}|\theta)$.

Theorem (Picard)

If f is uniformly Lipschitz continuous in z and continuous in t, then the ODE has a **unique** solution.

It means that we are able uniquely revert our ODE.

Forward and inverse transforms

$$\mathbf{z} = \mathbf{z}(t_1) = \mathbf{z}(t_0) + \int_{t_0}^{t_1} \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t) dt$$
 $\mathbf{z} = \mathbf{z}(t_0) = \mathbf{z}(t_1) + \int_{t_0}^{t_0} \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t) dt$

Note: Unlike discrete-in-time NF, **f** does not need to be bijective (uniqueness guarantees bijectivity).

What do we need?

- ▶ We need the way to compute $p(\mathbf{z}, t)$ at any moment t.
- ightharpoonup We need the way to find the optimal parameters heta of the dynamic $extbf{f}_{ heta}$.

Theorem (Kolmogorov-Fokker-Planck: special case)

If f is uniformly Lipschitz continuous in z and continuous in t, then

$$\frac{d \log p(\mathbf{z}(t), t)}{dt} = -\operatorname{tr}\left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}\right).$$

$$\log p(\mathbf{z}(t_1), t_1) = \log p(\mathbf{z}(t_0), t_0) - \int_{t_0}^{t_1} \operatorname{tr} \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)} \right) dt.$$

It means that if we have the value $\mathbf{z}_0 = \mathbf{z}(t_0)$ then the solution of the ODE will give us the density at the moment t_1 .

Forward transform + log-density

$$\mathbf{x} = \mathbf{z} + \int_{t_0}^{t_1} \mathbf{f}_{\theta}(\mathbf{z}(t), t) dt$$

$$\log p(\mathbf{x}|\theta) = \log p(\mathbf{z}) - \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial \mathbf{f}_{\theta}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}\right) dt$$

Here $p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{z}(t_1), t_1), \ p(\mathbf{z}) = p(\mathbf{z}(t_0), t_0).$

- ▶ **Discrete-in-time NF**: evaluation of determinant of the Jacobian costs $O(m^3)$ (we need invertible \mathbf{f}).
- ▶ Continuous-in-time NF: getting the trace of the Jacobian costs $O(m^2)$ (we need smooth \mathbf{f}).

Why $O(m^2)$?

 $\operatorname{tr}\left(\frac{\partial f_{\theta}(\mathbf{z}(t))}{\partial \mathbf{z}(t)}\right)$ costs $O(m^2)$ (m evaluations of \mathbf{f}), since we have to compute a derivative for each diagonal element. It is possible to reduce cost from $O(m^2)$ to O(m)!

Hutchinson's trace estimator

If $\epsilon \in \mathbb{R}^m$ is a random variable with $\mathbb{E}[\epsilon] = 0$ and $\mathsf{cov}(\epsilon) = \mathbf{I}$, then

$$\begin{aligned} \operatorname{tr}(\mathbf{A}) &= \operatorname{tr}\left(\mathbf{A} \cdot \mathbf{I}\right) = \operatorname{tr}\left(\mathbf{A} \cdot \mathbb{E}_{p(\epsilon)}\left[\epsilon \epsilon^{T}\right]\right) = \\ &= \mathbb{E}_{p(\epsilon)}\left[\operatorname{tr}\left(\mathbf{A}\epsilon \epsilon^{T}\right)\right] = \mathbb{E}_{p(\epsilon)}\left[\epsilon^{T}\mathbf{A}\epsilon\right] \end{aligned}$$

Jacobian vector products $\mathbf{v}^T \frac{\partial f}{\partial \mathbf{z}}$ can be computed for approximately the same cost as evaluating \mathbf{f} (torch.autograd.functional.jvp).

FFJORD density estimation

$$\log p(\mathbf{z}(t_1)) = \log p(\mathbf{z}(t_0)) - \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}\right) dt =$$

$$= \log p(\mathbf{z}(t_0)) - \mathbb{E}_{p(\epsilon)} \int_{t_0}^{t_1} \left[\epsilon^{T} \frac{\partial \mathbf{f}}{\partial \mathbf{z}} \epsilon\right] dt.$$

Grathwohl W. et al. FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models. 2018

- Guidance
 Classifier guidance
 Classifier-free guidance
- 2. Continuous-in-time normalizing flows
- 3. Continuous-in-time NF: adjoint method
- 4. SDE basics
- 5. Probability flow ODE
- 6. Reverse SDE
- 7. Diffusion and Score matching SDEs

Neural ODE

Continuous-in-time NF

$$\begin{split} \frac{d\mathbf{z}(t)}{dt} &= \mathbf{f}_{\theta}(\mathbf{z}(t), t) & \frac{d\log p(\mathbf{z}(t), t)}{dt} = -\mathrm{tr}\left(\frac{\partial \mathbf{f}_{\theta}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}\right) \\ \mathbf{x} &= \mathbf{z} + \int_{t_0}^{t_1} \mathbf{f}_{\theta}(\mathbf{z}(t), t) dt & \log p(\mathbf{x}|\theta) = \log p(\mathbf{z}) - \int_{t_0}^{t_1} \mathrm{tr}\left(\frac{\partial \mathbf{f}_{\theta}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}\right) dt \end{split}$$

How to get optimal parameters of θ ?

For fitting parameters we need gradients. We need the analogue of the backpropagation.

Forward pass (Loss function)

$$\mathbf{z} = \mathbf{x} + \int_{t_1}^{t_0} \mathbf{f}_{m{ heta}}(\mathbf{z}(t), t) dt, \quad L(\mathbf{z}) = -\log p(\mathbf{x}|m{ heta})$$
 $L(\mathbf{z}) = -\log p(\mathbf{z}) + \int_{t_0}^{t_1} \operatorname{tr}\left(rac{\partial \mathbf{f}_{m{ heta}}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}
ight) dt$

Neural ODE

Adjoint functions

$$\mathbf{a}_{\mathbf{z}}(t) = \frac{\partial L}{\partial \mathbf{z}(t)}; \quad \mathbf{a}_{\boldsymbol{\theta}}(t) = \frac{\partial L}{\partial \boldsymbol{\theta}(t)}.$$

These functions show how the gradient of the loss depends on the hidden state $\mathbf{z}(t)$ and parameters θ .

Theorem (Pontryagin)

$$\frac{d\mathbf{a}_{\mathbf{z}}(t)}{dt} = -\mathbf{a}_{\mathbf{z}}(t)^{\mathsf{T}} \cdot \frac{\partial \mathbf{f}_{\theta}(\mathbf{z}(t), t)}{\partial \mathbf{z}}; \quad \frac{d\mathbf{a}_{\theta}(t)}{dt} = -\mathbf{a}_{\mathbf{z}}(t)^{\mathsf{T}} \cdot \frac{\partial \mathbf{f}_{\theta}(\mathbf{z}(t), t)}{\partial \theta}.$$

Solution for adjoint function

$$\begin{split} \frac{\partial L}{\partial \boldsymbol{\theta}(t_1)} &= \mathbf{a}_{\boldsymbol{\theta}}(t_1) = -\int_{t_0}^{t_1} \mathbf{a}_{\mathbf{z}}(t)^T \frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t)}{\partial \boldsymbol{\theta}(t)} dt + 0 \\ \frac{\partial L}{\partial \mathbf{z}(t_1)} &= \mathbf{a}_{\mathbf{z}}(t_1) = -\int_{t_0}^{t_1} \mathbf{a}_{\mathbf{z}}(t)^T \frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)} dt + \frac{\partial L}{\partial \mathbf{z}(t_0)} \end{split}$$

Note: These equations are solved in reverse time direction.

Adjoint method

Forward pass

$$\mathbf{z} = \mathbf{z}(t_0) = \int_{t_0}^{t_1} \mathbf{f}_{m{ heta}}(\mathbf{z}(t),t) dt + \mathbf{x} \quad \Rightarrow \quad \mathsf{ODE} \; \mathsf{Solver}$$

Backward pass

$$\begin{split} &\frac{\partial L}{\partial \boldsymbol{\theta}(t_1)} = \boldsymbol{a}_{\boldsymbol{\theta}}(t_1) = -\int_{t_0}^{t_1} \boldsymbol{a}_{\boldsymbol{z}}(t)^T \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{z}(t),t)}{\partial \boldsymbol{\theta}(t)} dt + 0 \\ &\frac{\partial L}{\partial \boldsymbol{z}(t_1)} = \boldsymbol{a}_{\boldsymbol{z}}(t_1) = -\int_{t_0}^{t_1} \boldsymbol{a}_{\boldsymbol{z}}(t)^T \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{z}(t),t)}{\partial \boldsymbol{z}(t)} dt + \frac{\partial L}{\partial \boldsymbol{z}(t_0)} \\ &\boldsymbol{z}(t_1) = -\int_{t_1}^{t_0} f_{\boldsymbol{\theta}}(\boldsymbol{z}(t),t) dt + \boldsymbol{z}_0. \end{split} \right\} \Rightarrow \mathsf{ODE} \; \mathsf{Solver}$$

Note: These scary formulas are the standard backprop in the discrete case.

- Guidance
 Classifier guidance
 Classifier-free guidance
- 2. Continuous-in-time normalizing flows
- 3. Continuous-in-time NF: adjoint method
- 4. SDE basics
- 5. Probability flow ODE
- 6. Reverse SDE
- 7. Diffusion and Score matching SDEs

Ordinary differential equation (ODE)

Continuous-in-time Normalizing Flows

$$\frac{d\mathbf{z}(t)}{dt} = \mathbf{f}_{\theta}(\mathbf{z}(t), t);$$
 with initial condition $\mathbf{z}(t_0) = \mathbf{z}_0$

- Let $z(t_0)$ will be a random variable with some density function $p(z(t_0))$.
- ► Then $\mathbf{z}(t_1)$ will be also a random variable with some other density function $p(\mathbf{z}(t_1))$.
- We could say that we have the joint density function p(z(t), t).
- What is the difference between $p(\mathbf{z}(t), t)$ and $p(\mathbf{z}, t)$?

Ordinary differential equation (ODE)

$$d\mathbf{z} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}, t) \cdot dt$$

Discretization of ODE (Euler method)

$$\mathbf{z}(t+dt) = \mathbf{z}(t) + \mathbf{f}_{\theta}(\mathbf{z}(t),t) \cdot dt$$

Theorem (Kolmogorov-Fokker-Planck: special case)

If f is uniformly Lipschitz continuous in z and continuous in t, then

$$\frac{d \log p(\mathbf{z}(t), t)}{dt} = -\operatorname{tr}\left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}(t), t)}{\partial \mathbf{z}(t)}\right).$$

It means that if we have the value $\mathbf{z}_0 = \mathbf{z}(t_0)$ then the solution of the ODE will give us the density at the moment t_1 .

Let define stochastic process $\mathbf{x}(t)$ with initial condition $\mathbf{x}(0) \sim p_0(\mathbf{x}) = \pi(\mathbf{x})$:

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

- ▶ $\mathbf{f}(\mathbf{x},t): \mathbb{R}^m \times [0,1] \to \mathbb{R}^m$ is the **drift** function of $\mathbf{x}(t)$.
- ▶ $g(t) : \mathbb{R} \to \mathbb{R}$ is the **diffusion** function of $\mathbf{x}(t)$.
- $\mathbf{w}(t)$ is the standard Wiener process (Brownian motion):
 - 1. $\mathbf{w}(0) = 0$ (almost surely);
 - 2. $\mathbf{w}(t)$ has independent increments;
 - 3. $\mathbf{w}(t) \mathbf{w}(s) \sim \mathcal{N}(0, (t-s)\mathbf{I})$, for t > s.
- $\mathbf{w} = \mathbf{w}(t + dt) \mathbf{w}(t) = \mathcal{N}(0, \mathbf{l} \cdot dt) = \epsilon \cdot \sqrt{dt}$, where $\epsilon \sim \mathcal{N}(0, \mathbf{l})$.
- ▶ If g(t) = 0 we get standard ODE.

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

- ▶ In contrast to ODE, initial condition x(0) does not uniquely determine the process trajectory.
- We have two sources of randomness: initial distribution $p_0(\mathbf{x})$ and Wiener process $\mathbf{w}(t)$.

Discretization of SDE (Euler method)

$$\mathbf{x}(t+dt) = \mathbf{x}(t) + \mathbf{f}(\mathbf{x}(t),t) \cdot dt + g(t) \cdot \epsilon \cdot \sqrt{dt}$$

If dt = 1, then

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{f}(\mathbf{x}_t, t) + g(t) \cdot \epsilon$$

- At each moment t we have the density $p(\mathbf{x}(t), t)$.
- ▶ $p: \mathbb{R}^m \times [0,1] \to \mathbb{R}_+$ is a **probability path** between $p_0(\mathbf{x})$ and $p_1(\mathbf{x})$.
- ▶ How to get the distribution path $p(\mathbf{x}, t)$ for $\mathbf{x}(t)$?

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}, \quad d\mathbf{w} = \epsilon \cdot \sqrt{dt}, \quad \epsilon \sim \mathcal{N}(0, \mathbf{I}).$$

Theorem (Kolmogorov-Fokker-Planck)

Evolution of the distribution $p(\mathbf{x}, t)$ is given by the following equation:

$$\frac{\partial p(\mathbf{x},t)}{\partial t} = -\text{div}\left(\mathbf{f}(\mathbf{x},t)p(\mathbf{x},t)\right) + \frac{1}{2}g^2(t)\Delta_{\mathbf{x}}p(\mathbf{x},t)$$

Here

$$\operatorname{div}(\mathbf{v}) = \sum_{i=1}^{m} \frac{\partial v_i(\mathbf{x})}{\partial x_i} = \operatorname{tr}\left(\frac{\partial \mathbf{v}(\mathbf{x})}{\partial \mathbf{x}}\right)$$

$$\Delta_{\mathbf{x}} p(\mathbf{x}, t) = \sum_{i=1}^{m} \frac{\partial^{2} p(\mathbf{x}, t)}{\partial x_{i}^{2}} = \operatorname{tr} \left(\frac{\partial^{2} p(\mathbf{x}, t)}{\partial \mathbf{x}^{2}} \right)$$

$$\frac{\partial p(\mathbf{x},t)}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\big[\mathbf{f}(\mathbf{x},t)p(\mathbf{x},t)\big] + \frac{1}{2}g^2(t)\frac{\partial^2 p(\mathbf{x},t)}{\partial \mathbf{x}^2}\right)$$

Theorem (Kolmogorov-Fokker-Planck)

$$\frac{\partial p(\mathbf{x},t)}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x},t)p(\mathbf{x},t)\right] + \frac{1}{2}g^{2}(t)\frac{\partial^{2}p(\mathbf{x},t)}{\partial \mathbf{x}^{2}}\right)$$

- ► KFP theorem uniquely defines the SDE.
- This is the generalization of KFP theorem that we used in continuous-in-time NF:

$$\frac{d \log p(\mathbf{x}(t), t)}{dt} = -\operatorname{tr}\left(\frac{\partial \mathbf{f}(\mathbf{x}, t)}{\partial \mathbf{x}}\right).$$

Langevin SDE (special case)

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$
$$d\mathbf{x} = \frac{1}{2} \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}, t)dt + 1 \cdot d\mathbf{w}$$

Let apply KFP theorem to this SDE.

Langevin SDE (special case)

$$d\mathbf{x} = \frac{1}{2} \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}, t) dt + 1 \cdot d\mathbf{w}$$

$$\begin{split} \frac{\partial p(\mathbf{x},t)}{\partial t} &= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[p(\mathbf{x},t)\frac{1}{2}\frac{\partial}{\partial \mathbf{x}}\log p(\mathbf{x},t)\right] + \frac{1}{2}\frac{\partial^2 p(\mathbf{x},t)}{\partial \mathbf{x}^2}\right) = \\ &= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\frac{1}{2}\frac{\partial}{\partial \mathbf{x}}p(\mathbf{x},t)\right] + \frac{1}{2}\frac{\partial^2 p(\mathbf{x},t)}{\partial \mathbf{x}^2}\right) = 0 \end{split}$$

The density $p(\mathbf{x}, t) = \text{const}(t)!$ If $\mathbf{x}(0) \sim p_0(\mathbf{x})$, then $\mathbf{x}(t) \sim p_0(\mathbf{x})$.

Discretized Langevin SDE

$$\mathbf{x}_{t+1} - \mathbf{x}_t = \frac{\eta}{2} \cdot \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}, t) + \sqrt{\eta} \cdot \epsilon, \quad \eta \approx dt.$$

Langevin dynamic

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \frac{\eta}{2} \cdot \nabla_{\mathbf{x}} \log p(\mathbf{x}|\boldsymbol{\theta}) + \sqrt{\eta} \cdot \boldsymbol{\epsilon}, \quad \eta \approx dt.$$

Outline

- Guidance
 Classifier guidance
 Classifier-free guidance
- 2. Continuous-in-time normalizing flows
- 3. Continuous-in-time NF: adjoint method
- 4. SDE basics
- 5. Probability flow ODE
- 6. Reverse SDE
- 7. Diffusion and Score matching SDEs

Probability flow ODE

Theorem

Assume SDE $d\mathbf{x} = \mathbf{f}(\mathbf{x},t)dt + g(t)d\mathbf{w}$ induces the probability path $p(\mathbf{x},t)$. Then there exists ODE with identical probability path $p(\mathbf{x},t)$ of the form

$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^2(t)\frac{\partial}{\partial \mathbf{x}}\log p(\mathbf{x}, t)\right]dt$$

Proof

$$\frac{\partial p(\mathbf{x}, t)}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x}, t)p(\mathbf{x}, t)\right] + \frac{1}{2}g^{2}(t)\frac{\partial^{2}p(\mathbf{x}, t)}{\partial \mathbf{x}^{2}}\right) =$$

$$= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x}, t)p(\mathbf{x}, t) - \frac{1}{2}g^{2}(t)\frac{\partial p(\mathbf{x}, t)}{\partial \mathbf{x}}\right]\right) =$$

$$= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x}, t)p(\mathbf{x}, t) - \frac{1}{2}g^{2}(t)p(\mathbf{x}, t)\frac{\partial \log p(\mathbf{x}, t)}{\partial \mathbf{x}}\right]\right) =$$

$$= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\left(\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^{2}(t)\frac{\partial \log p(\mathbf{x}, t)}{\partial \mathbf{x}}\right)p(\mathbf{x}, t)\right]\right)$$

Probability flow ODE

Theorem

Assume SDE $d\mathbf{x} = \mathbf{f}(\mathbf{x},t)dt + g(t)d\mathbf{w}$ induces the distribution $p(\mathbf{x},t)$. Then there exists ODE with identical probabilities distribution $p(\mathbf{x},t)$ of the form

$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^2(t)\frac{\partial}{\partial \mathbf{x}}\log p(\mathbf{x}, t)\right]dt$$

Proof (continued)

$$\frac{\partial p(\mathbf{x}, t)}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\left(\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^{2}(t)\frac{\partial \log p(\mathbf{x}, t)}{\partial \mathbf{x}}\right)p(\mathbf{x}, t)\right]\right) =
= \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\tilde{\mathbf{f}}(\mathbf{x}, t)p(\mathbf{x}, t)\right]\right)$$

$$d\mathbf{x} = \tilde{\mathbf{f}}(\mathbf{x}, t)dt + 0 \cdot d\mathbf{w} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^2(t)\frac{\partial}{\partial \mathbf{x}}\log p(\mathbf{x}, t)\right]dt$$

Probability flow ODE

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w} - \mathsf{SDE}$$

$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^2(t)\frac{\partial}{\partial \mathbf{x}}\log p(\mathbf{x}, t)\right]dt - \mathsf{probability flow ODE}$$

- ► The term $\mathbf{s}(\mathbf{x},t) = \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x},t)$ is a score function for continuous time.
- ▶ ODE has more stable trajectories.

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

Outline

- 1. Guidance
 - Classitier guidance Classifier-free guidance
- 2. Continuous-in-time normalizing flows
- 3. Continuous-in-time NF: adjoint method
- 4. SDE basics
- Probability flow ODE
- 6. Reverse SDE
- 7. Diffusion and Score matching SDEs

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt, \quad \mathbf{x}(t + dt) = \mathbf{x}(t) + \mathbf{f}(\mathbf{x}, t)dt$$

Here dt could be > 0 or < 0.

Reverse ODE

Let $\tau = 1 - t$ ($d\tau = -dt$).

$$d\mathbf{x} = -\mathbf{f}(\mathbf{x}, 1 - \tau)d\tau$$

- ► How to revert SDE $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$?
- ▶ Wiener process gives the randomness that we have to revert.

Theorem

There exists the reverse SDE for the SDE $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$ that has the following form

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - g^2(t) \frac{\partial \log p(\mathbf{x}, t)}{\partial \mathbf{x}}\right) dt + g(t) d\mathbf{w}$$

with dt < 0.

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

Theorem

There exists the reverse SDE for the SDE $d\mathbf{x} = \mathbf{f}(\mathbf{x},t)dt + g(t)d\mathbf{w}$ that has the following form

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - g^2(t) \frac{\partial \log p(\mathbf{x}, t)}{\partial \mathbf{x}}\right) dt + g(t) d\mathbf{w}$$

with dt < 0.

Note: Here we also see the score function $\mathbf{s}(\mathbf{x},t) = \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x},t)$.

Sketch of the proof

- Convert initial SDE to probability flow ODE.
- Revert probability flow ODE.
- Convert reverse probability flow ODE to reverse SDE.

Proof

Convert initial SDE to probability flow ODE

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$
$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^{2}(t)\frac{\partial}{\partial \mathbf{x}}\log p(\mathbf{x}, t)\right]dt$$

Revert probability flow ODE

$$\begin{split} d\mathbf{x} &= \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2} g^2(t) \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}, t) \right] dt \\ d\mathbf{x} &= \left[-\mathbf{f}(\mathbf{x}, 1 - \tau) + \frac{1}{2} g^2(1 - \tau) \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}, 1 - \tau) \right] d\tau \end{split}$$

Convert reverse probability flow ODE to reverse SDE

$$d\mathbf{x} = \left[-\mathbf{f}(\mathbf{x}, 1 - \tau) + \frac{1}{2}g^2(1 - \tau) \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}, 1 - \tau) \right] d\tau$$
$$d\mathbf{x} = \left[-\mathbf{f}(\mathbf{x}, 1 - \tau) + g^2(1 - \tau) \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}, 1 - \tau) \right] d\tau + g(1 - \tau) d\mathbf{w}$$

Theorem

There exists the reverse SDE for the SDE $d\mathbf{x} = \mathbf{f}(\mathbf{x},t)dt + g(t)d\mathbf{w}$ that has the following form

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - g^2(t) \frac{\partial \log p(\mathbf{x}, t)}{\partial \mathbf{x}}\right) dt + g(t) d\mathbf{w}$$

with dt < 0.

Proof (continued)

$$d\mathbf{x} = \left[-\mathbf{f}(\mathbf{x}, 1 - \tau) + g^2(1 - \tau) \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}, 1 - \tau) \right] d\tau + g(1 - \tau) d\mathbf{w}$$

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - g^2(t) \frac{\partial \log p(\mathbf{x}, t)}{\partial \mathbf{x}}\right) dt + g(t) d\mathbf{w}$$

Here $d\tau > 0$ and dt < 0.

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w} - \mathsf{SDE}$$

$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^2(t)\frac{\partial}{\partial \mathbf{x}}\log p(\mathbf{x}, t)\right]dt - \mathsf{probability flow ODE}$$

$$d\mathbf{x} = \left(\mathbf{f}(\mathbf{x}, t) - g^2(t)\frac{\partial \log p(\mathbf{x}, t)}{\partial \mathbf{x}}\right)dt + g(t)d\mathbf{w} - \mathsf{reverse SDE}$$

- We got the way to transform one distribution to another via SDE with some probability path $p(\mathbf{x}, t)$.
- We are able to revert this process with the score function.

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

Outline

- Guidance
 Classifier guidance
 Classifier-free guidance
- 2. Continuous-in-time normalizing flows
- 3. Continuous-in-time NF: adjoint method
- 4. SDE basics
- 5. Probability flow ODE
- 6. Reverse SDE
- 7. Diffusion and Score matching SDEs

Score matching SDE

Denoising score matching

$$\begin{aligned} \mathbf{x}_t &= \mathbf{x} + \sigma_t \cdot \boldsymbol{\epsilon}_t, \quad p(\mathbf{x}, \sigma_t) = \mathcal{N}(\mathbf{x}, \sigma_t^2 \cdot \mathbf{I}) \\ \mathbf{x}_{t-1} &= \mathbf{x} + \sigma_{t-1} \cdot \boldsymbol{\epsilon}_{t-1}, \quad p(\mathbf{x}, \sigma_{t-1}) = \mathcal{N}(\mathbf{x}, \sigma_{t-1}^2 \cdot \mathbf{I}) \\ \mathbf{x}_t &= \mathbf{x}_{t-1} + \sqrt{\sigma_t^2 - \sigma_{t-1}^2} \cdot \boldsymbol{\epsilon}, \quad q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_{t-1}, (\sigma_t^2 - \sigma_{t-1}^2) \cdot \mathbf{I}) \end{aligned}$$

Let turn this Markov chain to the continuous stochastic process $\mathbf{x}(t)$ taking $T \to \infty$:

$$\mathbf{x}(t+dt) = \mathbf{x}(t) + \sqrt{\frac{\sigma^2(t+dt) - \sigma^2(t)}{dt}} dt \cdot \epsilon = \mathbf{x}(t) + \sqrt{\frac{d[\sigma^2(t)]}{dt}} \cdot d\mathbf{w}$$

Variance Exploding SDE

$$d\mathbf{x} = \sqrt{\frac{d[\sigma^2(t)]}{dt}} \cdot d\mathbf{w}$$

Diffusion SDE

Denoising Diffusion

$$\mathbf{x}_t = \sqrt{1 - \beta_t} \cdot \mathbf{x}_{t-1} + \sqrt{\beta_t} \cdot \epsilon, \quad q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{1 - \beta_t} \cdot \mathbf{x}_{t-1}, \beta_t \cdot \mathbf{I})$$

Let turn this Markov chain to the continuous stochastic process taking $T \to \infty$ and taking $\beta(\frac{t}{T}) = \beta_t \cdot T$

$$\begin{split} \mathbf{x}(t) &= \sqrt{1 - \beta(t)dt} \cdot \mathbf{x}(t - dt) + \sqrt{\beta(t)dt} \cdot \epsilon \approx \\ &\approx (1 - \frac{1}{2}\beta(t)dt) \cdot \mathbf{x}(t - dt) + \sqrt{\beta(t)dt} \cdot \epsilon = \\ &= \mathbf{x}(t - dt) - \frac{1}{2}\beta(t)\mathbf{x}(t - dt)dt + \sqrt{\beta(t)} \cdot d\mathbf{w} \end{split}$$

Variance Preserving SDE

$$d\mathbf{x} = -\frac{1}{2}\beta(t)\mathbf{x}(t)dt + \sqrt{\beta(t)}\cdot d\mathbf{w}$$

Diffusion SDE

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

Variance Exploding SDE (NCSN)

$$d\mathbf{x} = \sqrt{\frac{d[\sigma^2(t)]}{dt}} \cdot d\mathbf{w}, \quad \mathbf{f}(\mathbf{x}, t) = 0, \quad g(t) = \sqrt{\frac{d[\sigma^2(t)]}{dt}}$$

Variance grows since $\sigma(t)$ is a monotonically increasing function.

Variance Preserving SDE (DDPM)

$$d\mathbf{x} = -rac{1}{2}eta(t)\mathbf{x}(t)dt + \sqrt{eta(t)}\cdot d\mathbf{w}$$
 $\mathbf{f}(\mathbf{x},t) = -rac{1}{2}eta(t)\mathbf{x}(t), \quad g(t) = \sqrt{eta(t)}$

Variance is preserved if $\mathbf{x}(0)$ has a unit variance.

Song Y., et al. Score-Based Generative Modeling through Stochastic Differential Equations, 2020

Summary

- Classifier guidance is the way to turn the unconditional model to the conditional one via the training additional classifier on the noisy data.
- Classifier-free guidance allows to avoid the training additional classifier to get the conditional model. It is widely used in practice.
- Continuous-in-time NF uses neural ODE to define continuous dynamic $\mathbf{z}(t)$. It has less functional restrictions.
- Nolmogorov-Fokker-Planck theorem allows to calculate $\log p(\mathbf{z}, t)$ at arbitrary moment t.
- ▶ FFJORD model makes such kind of NF scalable.
- Adjoint method generalizes backpropagation procedure and allows to train Neural ODE solving ODE for adjoint function back in time.
- ➤ SDE defines stochastic process with drift and diffusion terms. ODEs are the special case of SDEs.
- ► KFP equation defines the dynamic of the probability function for the SDE.