#### Chaotic Pendulum

Carmen Lopez, Isak Enström, Azjargal Naranbaatar

#### I. Goals

#### What we want to achieve

- Understand the movement equations of a double pendulum and compare with experimental results
  - a. Construct a compound pendulum
  - b. Programme the equations and do some plots
  - c. Get experimental data and do some plots
  - d. Compare plots
  - e. Demonstration

What is chaos?

#### II. Theory

| • | Chaotic does not mean random                                               |
|---|----------------------------------------------------------------------------|
|   |                                                                            |
| • | The path is determined by initial conditions and is very sensitive to them |
|   |                                                                            |
|   |                                                                            |

#### The Lagrangian

- Lagrangian mechanics is a reformulation of classical mechanics.
- "The Lagrangian"
  - summarizes dynamics of an entire system
  - Differential equation as function of time
  - Transitioning from coordinates
- Based on minimum action principle



Joseph-Louis Lagrange

1736 - 1813

#### Formulas to solve

[1]

$$rac{d^2 heta_1}{dt^2} = rac{\cos( heta_1 - heta_2)igg(rac{g}{l_1}\sin heta_2 - \Big(rac{d heta_1}{dt}\Big)^2\sin( heta_1 - heta_2)igg) - rac{l_2}{l_1}igg((m+1)rac{g}{l_2}\sin heta_1 + \Big(rac{d heta_2}{dt}\Big)^2\sin( heta_1 - heta_2)igg)}{m+\sin^2( heta_1 - heta_2)}$$

$$\frac{\frac{d^{2}\theta_{2}}{dt^{2}}}{dt^{2}} = \frac{\cos(\theta_{1} - \theta_{2}) \left( (m+1) \frac{g}{l_{2}} \sin \theta_{1} + \left( \frac{d\theta_{2}}{dt} \right)^{2} \sin(\theta_{1} - \theta_{2}) \right) - (m+1) \frac{l_{1}}{l_{2}} \left( \frac{g}{l_{1}} \sin \theta_{2} - \left( \frac{d\theta_{1}}{dt} \right)^{2} \sin(\theta_{1} - \theta_{2}) \right)}{m + \sin^{2}(\theta_{1} - \theta_{2})}$$

$$m = m1/m2$$

#### Construction

#### Materials



- UV diode
- Clay
- Copper wires
- Conducting plates
- White sticker papers
- Photoluminescent powder -Strontiumaluminate
- Akryl Lak

#### Main Parts

- Assembling the pendulum
  - Insert bearings into openings
  - Adjust rods together
  - Use spacers, extra bearings
- Attaching UV diode onto the pendulum
  - Place batteries in between conducting plates
  - Adjust with glue-gun and tie zips
  - Adjust diode with clay
- Preparing the board
  - Stick papers
  - Paint
  - Fasten on stand

#### Closer look...



## Path tracing\programming

#### Python

- 1. Theoretical data
  - a. Input: parameters and initial conditions
  - b. Applied to equations [1] and [2]
  - c. Output:  $\Theta$ 1,  $\Theta$ 2  $\longrightarrow$  (x1,y1) and (x2,y2)
- Experimental data
  - a. Computer vision  $\longrightarrow$  automatically analyzes pixels
  - b. Red spot attached to the end of a rod:
    - i. Input: video of an experiment
    - ii. Output: position of the red spot per every frame

#### Python - Theoretical data

- 1. Sets g, l1, l2, m1 and m2
- 2. Sets  $\Theta$ 1,  $\Theta$ 2,  $\omega$ 1 and  $\omega$ 2.
- 3. Sets the interval time.
- 4. Numerically solves the differential equations for that time interval (odeint)
- 5. From  $\Theta$ 1,  $\Theta$ 2  $\longrightarrow$  (x1,y1) and (x2,y2)
- 6. Plots:
  - a. x vs y
  - b. time vx x
  - c. time vs y

#### Python - Experimental data

- Gets all frames of a video
- 2. For every frame:
  - a. Locates all red pixels
  - b. Computes the center of those pixels
  - c. (x,y) centre coordinates  $\longrightarrow$  data file
  - d. Saves the frame with a turquoise dot in the centre
- 3. Plots:
  - a. x vs y
  - b. Frames vs x
  - c. Frames vs y

#### Outcome

#### Frames



#### Plots

All based on the following initial conditions:

$$\Theta 1 = \pi/2 \text{ rad}$$

$$\Theta$$
2 = 0 rad

$$\omega 1 = 0 \text{ m/s}$$

$$\Omega 2 = 0 \text{ m/s}$$

Parameters (theoretical):

$$g = 9.81 \text{ m/s}^2$$

$$m1 = 0.190 \text{ kg}$$

$$m2 = 0.116 \text{ kg}$$

$$11 = 12 = 0.29 \text{ m}$$

#### First Rod - x vs y



#### First Rod - time vs y



#### First Rod - time vs x



#### Second Rod - x vs y



#### Second Rod - time vs y



#### Second Rod - time vs x



Failures\Trial Error

Failed Arduino idea

Complications with adjusting

- Too heavy without wi-fi
- Board painted glow in the dark pink wasted 3-4h
- Last resort unit circle coordinate system

#### The verdict





### Future improvements

- New solvers for differential equations
- Tracing multiple colors instead of one
- Better construction spacing between rods
- High-definition and speed camera

#### UV light show

# Insert group picture