# Using the Choquet Integral in the Fuzzy Reasoning Method of Fuzzy Rule-Based Classification Systems

Gabriel Rosa

## Foco do artigo e Objetivos

- O objetivo do artigo é apresentar um novo Método de Raciocínio Fuzzy(FRM) com a integral de Choquet sendo usada como função de agregação;
- É proposto também um método de aprendizado através de um *algoritmo genético*(GA) que se mostrou o mais apto para a Medida Fuzzy em cada classe computada nos testes;
- Testagem desse novo FRM em diferentes datasets e trazer uma análise de desempenho na utilização da integral de Choquet como função de agregação, 3ª etapa da FRM.

#### **Preliminares**

- Fuzzy Sets -> As variáveis linguísticas que compõem os antecedentes das regras;
- Operador T-norma Triangular-> É o operador que aplicará a operação de conjunção nos antecedentes das regras;
- Funções de Agregação -> Necessária para a combinação de vários valores em um único
- Medidas Fuzzy -> A partir dela é possível modelar a relação entre os elementos a serem agregados;
- Integral Discreta de Choquet -> A fórmula geral desenvolvida por Gustave Choquet, função que será desenvolvida no artigo para atuar em problemas de classificação;
- Fuzzy Rule-Based Classification Systems(FRBCSs) -> Modelo de aprendizagem de máquina que utiliza de regras de associação fuzzy, utilizado no artigo;
- Fuzzy Reasoning Method (FRM) -> Técnica utilizada nos FRBCS para conseguir trabalhar em cima de dados fuzzy e conseguir estipular, nesse caso de classificação, uma classe C para um novo dado;

# Preliminares: Algoritmo de Chi

- É uma extensão do algoritmo proposto por Wang e Mendel;
- Muito utilizado devido a sua simplicidade na formulação de regras fuzzy;
- Utiliza de um método para determinar uma relação entre atributos e classes do problema, faz isso seguindo os seguintes passos:
  - Estabelecimento de partições linguísticas
  - Geração de uma regra fuzzy para um exemplo  $x_p = (x_{p1}, \dots, x_{pn}, C_p)$ , seguindo os passos:
    - Computa o grau de pertinencia μ(x<sub>p</sub>) de um exemplo com todas as regiões fuzzy com o operador de conjunção (mínimo ou Produto t-norma)
    - Assinala o exemplo x<sub>n</sub> com a região de maior grau correspondente
    - Gera as regras para o exemplo, com o antecedente sendo a região fuzzy designada e o consequente a classe designada para aquele exemplo
    - Utiliza de uma regra de peso para avaliação das regras:

$$RW_j = PCF_j = \frac{\sum_{x_p \in ClassC_j} \mu_{A_j}(x_p) - \sum_{x_p \notin ClassC_j} \mu_{A_j}(x_p)}{\sum_{p=1}^{m} \mu_{A_j}(x_p)}$$

#### Preliminares: Modelo Evolucionário

- Nos experimentos realizados, foi utilizado o modelo evolucionário CHC para realizar a etapa de aprendizado das medidas fuzzy;
- É um modelo com uma abordagem de Population-Based Selection, ou seja, é formado por N
  parentes e seus descendentes correspondentes são combinados para encontrar os melhores N
  indivíduos para formar a próxima população;
- Como mecanismo de prevenção de incesto, foi definido no modelo apresentado que dois parentes só serão cruzados se metade de suas distâncias (medida pela distância Hamming) é acima de um limite predeterminado *Th(threashold)*;
- Para esse limite foi criado um esquema de codificação, em que cada gene é considerado um Gray Code (codificação binária) com um número fixo de bits por gene (BITSGENE), estipulado por um expert. O valor inicial do Th é ditado pela fórmula: Th = (#Genes \* BITSGENE) / 4.0, sendo #Genes o tamanho total de um cromossomo;
- O Th é decrementado por um BITSGENE quando não há novos indivíduos na próxima geração;
- O algoritmo reinicia quando *Th* < 0;
- De maneira visual esse modelo evolucionário é construído da seguinte forma:

#### Preliminares: Modelo Evolucionário



# Desenvolvimento da utilização da Integral

 A integral é alterada de maneira a utilizar as regras que estão no RB do modelo para prover as informações locais a serem agregadas ficando da seguinte forma:

$$Y_k = C_{m_k}(b_j^k|j=1,\dots,L \text{ and } b_j^k>0), \qquad k=1,\dots,M \qquad \quad \text{, sendo m}_k \text{ a medida fuzzy considerada para a k-th classe, M o número de classes e L o número de regras compondo o RB.}$$

- Na FRM proposta no artigo, primeiramente foi testado a utilização da integral de Choquet com a mesma medida fuzzy para cada classe do problema. Isso não foi tão eficaz pois cada conjunto de regras interagem de maneiras diferentes. Isso é observado na medida fuzzy de cardinalidade exponencial;
- Então a partir desse problema o CHC evolucionário foi usado para encontrar a melhor medida fuzzy a ser utilizada em cada classe;
- Os passos desse modelo são:
  - Esquema de Codificação
  - Gama de Genes Iniciais
  - Validação de Cromossomos
  - Operador de Cruzamento
  - Abordagem de Reinício

## Descrição do Modelo Evolucionário

Esquema de Codificação -> A partir de um set de parâmetros reais a ser otimizado (q<sub>k</sub>, k =1, ..., M), com um intervalo de variação sugerido de [0.01, 100]. A codificação não é feita diretamente em um cromossomo, mas sim é adaptada usando os cromossomos na forma de: C<sub>Choquet</sub> ={G<sub>1</sub>, ..., G<sub>M</sub>}, em que G<sub>k</sub> ∈ [0.01, 1.99], com k = 1, ..., M. Para encontrar os valores reais ([1,100]) a equação a seguir é aplicada:

$$q_k = \begin{cases} G_k, & \text{if } 0 < G_k \le 1\\ \frac{1}{2 - G_k}, & \text{if } 1 < G_k < 2 \end{cases}$$

- Gama de Genes Iniciais -> É incluso um indivíduo que tiver todos os genes no valor 1. Desse
  jeito é possível obter os resultados providos pela medida de cardinalidade
- Validação de Cromossomos → Utiliza da taxa de acurácia para a classificação;

## Descrição do Modelo Evolucionário

- Operador de Cruzamento → Utiliza dos conceios de ambientes (a prole é gerada ao redor de seus pais). Utiliza o operador PCBLC (Parent Centric BLX), com a variação de BLX-α (prole ao redor dos dois pais).
  - PCBLX -> Assumindo que  $X(x_1, ..., x_n)$  e Y =  $(y_1, ..., y_n)$  e  $(xi, yi \in [ai, bi] \subset R, i = 1 \cdot \cdot \cdot n)$  como dois cromossomos reais-codificados que irão ser cruzados. o PCBLX tem dois resultados:
    - O<sub>1</sub> = (o<sub>11</sub>, ..., o<sub>1n</sub>), em que o<sub>1i</sub> é um número escolhido aleatoriamente (uniformemente) do intervalo [I<sub>1</sub><sup>1</sup>, u<sup>1</sup><sub>1</sub>], com I<sub>1</sub><sup>1</sup> = max{a<sub>i</sub>, y<sub>i</sub> I<sub>i</sub>} e u<sup>1</sup><sub>i</sub> = min{b<sub>i</sub>, x<sub>i</sub> + I<sub>i</sub>} e I<sub>i</sub> = | x<sub>i</sub> y<sub>i</sub> |
    - O<sub>2</sub> =  $(o_{21}, ..., o_{2n})$ , em que  $o_{2i}$  é é um número escolhido aleatoriamente (uniformemente) do intervalo  $[I_i^2, u_i^2]$ , com  $I_i^2$  = max{a<sub>i</sub>, y<sub>i</sub> I<sub>i</sub>} e  $u_i^2$  = min{b<sub>i</sub>, x<sub>i</sub> + I<sub>i</sub>} e I<sub>i</sub> = | x<sub>i</sub> y<sub>i</sub> |
    - Representação visual desse operador PCBLX em comparação com o BLX:



#### Descrição do Modelo Evolucionário

- Abordagem de Reinício -> esse algoritmo usa de uma abordagem de reinício já que ele não aplica a mutação durante a fase de recombinação. Entretanto, quando o threshold < 0, todos os cromossomos são re-gerados randomicamente para introduzir uma nova diversidade na busca.
  - A melhor solução encontrada é incluir na população para melhorar a convergência do algoritmo.

## Testagem do Modelo

- Foram selecionados 17 datasets, retirados do repositório KEEL data-set.
- Algumas etapas de preparo foram realizadas: retirando dados que tinha valores faltando e em alguns datasets foi necessário uma redução de tamanho para não ficarem extremamente grandes.

 O método de validação do modelo utilizado foi o 5-fold Cross-Validation, sendo 20% para teste e 80% para treino.

Datasets utilizados:

| Id. | Data-set   | #Ex. | #Atts. | #Class. |  |  |
|-----|------------|------|--------|---------|--|--|
| bal | Balance    | 625  | 4      |         |  |  |
| ban | Banana     | 5300 | 2      | 2       |  |  |
| eco | Ecoli      | 336  | 7      | 8       |  |  |
| gla | Glass      | 214  | 9      | 6       |  |  |
| iri | Iris       | 150  | 4      | 3       |  |  |
| led | Led7digit  | 500  | 7      | 10      |  |  |
| mag | Magic      | 1902 | 10     | 2       |  |  |
| new | Newthyroid | 215  | 5      | 3       |  |  |
| pho | Phoneme    | 5404 | 5      | 2       |  |  |
| pim | Pima       | 768  | 8      | 2       |  |  |
| rin | Ring       | 740  | 20     | 2       |  |  |
| seg | Segment    | 2310 | 19     | 7       |  |  |
| tit | Titanic    | 2201 | 3      | 2       |  |  |
| two | Twonorm    | 740  | 20     | 2       |  |  |
| veh | Vehicle    | 846  | 18     | 4       |  |  |
| win | Wine       | 178  | 13     | 3       |  |  |
| wis | Wisconsin  | 683  | 11     | 2       |  |  |

## Configurações do modelo na testagem

Para a utilização do algoritmo de Chi et al. foram consideradas as seguintes configurações::

- Operador de conjunção → Produto t-norma
- Regra de Peso → Penalized Certainty Factor
- Numero de labels linguísticos → 3

Para o processo genético foram utilizados os valores:

- Tamanho de população: 50 individuos
- Numero de avaliações: 20000
- Bits por gene para a codificação Gray (prevenção de incesto): 30 bits

Na proposta de utilização da medida fuzzy de Dirac, o valor selecionado como i é associado com a média, ou seja, se o número de elementos é impar i = (n+1)/2, se o número de elementos é par i = n/2 + 1

# **Resultados Obtidos**

| Data | Max.             |                  | AC               |                  | Card.            |                  | Dirac            |                  | WMean            |                  | OWA              |                  | Card_GA          |                  |
|------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Set  | Tr.              | Tst              |
| Bal  | 91.52 ± 0.23     | $90.56 \pm 1.04$ | 91.52 ± 0.23     | 90.56 ± 1.19     | 89.96 ± 1.11     | 86.72 ± 2.57     | 89.48 ± 0.41     | 87.04 ± 1.04     | $90.20 \pm 0.93$ | 86.72 ± 1.93     | 90.24 ± 1.07     | 86.88 ± 2.37     | 91.52 ± 0.23     | 89.92 ± 0.91     |
| Ban  | 60.36 ± 0.39     | $60.32 \pm 1.33$ | $59.83 \pm 0.28$ | $60.02 \pm 1.30$ | $60.68 \pm 0.60$ | $60.47 \pm 1.62$ | $62.00 \pm 1.18$ | $61.77 \pm 0.79$ | $60.34 \pm 0.63$ | $60.08 \pm 1.44$ | $60.55 \pm 0.71$ | $60.36 \pm 1.34$ | 63.11 ± 0.90     | $62.36 \pm 1.28$ |
| Eco  | 76.27 ± 1.34     | $71.76 \pm 6.69$ | $78.42 \pm 0.86$ | $73.53 \pm 5.40$ | $75.97 \pm 2.03$ | $69.71 \pm 5.94$ | 73.36 ± 2.57     | $67.94 \pm 6.01$ | $75.60 \pm 1.45$ | $70.59 \pm 6.33$ | $75.45 \pm 1.73$ | $70.88 \pm 6.36$ | 83.26 ± 2.12     | $75.00 \pm 9.24$ |
| Gla  | 66.01 ± 2.58     | $57.67 \pm 1.04$ | 66.47 ± 1.84     | $59.07 \pm 2.65$ | 62.61 ± 3.39     | $58.60 \pm 3.82$ | $62.15 \pm 4.82$ | $57.21 \pm 2.08$ | $61.09 \pm 3.97$ | $57.21 \pm 4.53$ | $63.31 \pm 2.86$ | $59.53 \pm 2.65$ | $68.23 \pm 1.36$ | $59.53 \pm 3.12$ |
| Iri. | $93.00 \pm 0.75$ | $92.67 \pm 1.49$ | 95.33 ± 1.51     | $94.67 \pm 4.47$ | $88.50 \pm 1.09$ | $87.33 \pm 1.49$ | $84.67 \pm 1.73$ | $84.00 \pm 4.35$ | $88.67 \pm 1.92$ | 87.33 ± 2.79     | $87.00 \pm 1.26$ | $86.67 \pm 2.36$ | $96.67 \pm 0.83$ | $94.67 \pm 2.98$ |
| Led  | $75.90 \pm 2.96$ | $64.20 \pm 5.63$ |
| Mag  | $76.00 \pm 0.61$ | $74.75 \pm 1.85$ | $76.49 \pm 0.56$ | $75.38 \pm 1.51$ | $74.11 \pm 0.22$ | $72.65 \pm 1.50$ | $71.65 \pm 0.43$ | $70.81 \pm 1.04$ | $74.01 \pm 0.31$ | $72.97 \pm 1.65$ | $74.29 \pm 0.32$ | $73.07 \pm 1.40$ | 79.31 ± 0.93     | $77.80 \pm 3.62$ |
| New  | $86.40 \pm 1.06$ | $85.12 \pm 3.53$ | $87.44 \pm 1.40$ | $86.51 \pm 4.16$ | 87.79 ± 1.23     | $86.05 \pm 3.68$ | $89.19 \pm 0.88$ | $86.98 \pm 4.22$ | $87.91 \pm 1.61$ | $87.44 \pm 3.53$ | $88.02 \pm 1.52$ | $86.51 \pm 3.45$ | 94.42 ± 1.27     | $92.56 \pm 4.47$ |
| Pho  | $71.91 \pm 0.11$ | $71.91 \pm 0.37$ | $72.82 \pm 0.09$ | $72.62 \pm 0.64$ | $71.54 \pm 0.18$ | $71.23 \pm 0.80$ | $72.20 \pm 0.36$ | $72.16 \pm 0.71$ | $71.79 \pm 0.27$ | $71.56 \pm 0.60$ | $72.03 \pm 0.26$ | $71.93 \pm 1.01$ | $76.16 \pm 0.25$ | $75.39 \pm 1.28$ |
| Pim  | $75.46 \pm 0.70$ | $72.99 \pm 0.98$ | $74.64 \pm 0.50$ | $73.25 \pm 1.55$ | $75.75 \pm 0.40$ | $73.77 \pm 1.75$ | $75.36 \pm 0.49$ | $73.38 \pm 1.66$ | $75.98 \pm 0.48$ | $74.55 \pm 2.53$ | $75.46 \pm 0.28$ | $74.03 \pm 2.43$ | $78.39 \pm 0.71$ | $75.06 \pm 1.18$ |
| Rin  | $59.39 \pm 0.44$ | $52.70 \pm 0.83$ | $57.70 \pm 0.44$ | $52.03 \pm 0.48$ | $53.75 \pm 0.44$ | $51.08 \pm 0.37$ | $51.11 \pm 0.28$ | $50.68 \pm 0.48$ | $53.99 \pm 0.64$ | $51.08 \pm 0.37$ | $53.72 \pm 0.41$ | $51.22 \pm 0.30$ | 81.35 ± 1.69     | $77.70 \pm 1.85$ |
| Seg  | 86.01 ± 1.31     | $85.02 \pm 2.26$ | 86.03 ± 0.95     | $84.81 \pm 1.84$ | $84.40 \pm 0.92$ | $83.51 \pm 1.93$ | $78.40 \pm 1.93$ | $77.92 \pm 3.93$ | $84.43 \pm 1.22$ | $83.38 \pm 2.16$ | $83.99 \pm 0.91$ | $82.94 \pm 2.62$ | $87.18 \pm 0.74$ | $85.06 \pm 2.23$ |
| Tit  | $78.33 \pm 0.41$ | $78.32 \pm 1.71$ |
| Two  | 87.13 ± 0.77     | $83.78 \pm 1.72$ | 94.97 ± 0.51     | $93.24 \pm 1.85$ | $73.34 \pm 1.23$ | $70.41 \pm 4.39$ | $63.68 \pm 1.44$ | $62.57 \pm 4.91$ | $73.01 \pm 1.33$ | $69.19 \pm 4.29$ | $74.02 \pm 2.23$ | $70.68 \pm 3.59$ | 91.45 ± 0.44     | $87.57 \pm 1.83$ |
| Veh  | $66.11 \pm 0.80$ | $61.41 \pm 3.66$ | $64.16 \pm 0.70$ | $61.29 \pm 3.26$ | $64.21 \pm 0.56$ | $60.94 \pm 4.29$ | 57.54 ± 1.25     | $53.41 \pm 3.29$ | $64.18 \pm 0.85$ | $60.12 \pm 3.56$ | $63.95 \pm 0.58$ | $59.65 \pm 3.26$ | $67.85 \pm 0.48$ | $60.59 \pm 3.53$ |
| Win  | $98.74 \pm 0.58$ | $92.78 \pm 5.41$ | $98.74 \pm 0.59$ | $93.33 \pm 5.76$ | $96.21 \pm 0.62$ | $91.11 \pm 5.69$ | $89.61 \pm 1.32$ | $85.56 \pm 4.12$ | $95.93 \pm 0.76$ | $91.11 \pm 5.69$ | $96.21 \pm 1.07$ | $90.00 \pm 4.65$ | $99.86 \pm 0.31$ | $92.22 \pm 4.56$ |
| Wis  | $98.17 \pm 0.29$ | $95.62 \pm 1.37$ | $97.99 \pm 0.45$ | $95.77 \pm 1.31$ | $98.21 \pm 0.27$ | $96.06\pm1.42$   | 98.13 ± 0.24     | $95.91\pm1.60$   | $98.24 \pm 0.28$ | $95.77\pm1.66$   | $98.21 \pm 0.27$ | $96.06\pm1.42$   | $98.54 \pm 0.13$ | $95.33 \pm 1.42$ |
| Mean | 79.22 ± 0.90     | 75.98 ± 2.41     | 79.81 ± 0.84     | 76.98 ± 2.63     | 77.13 ± 1.04     | $74.24 \pm 2.86$ | 74.87 ± 1.33     | $72.34 \pm 2.80$ | 77.03 ± 1.18     | 74.21 ± 2.96     | 77.10 ± 1.11     | 74.29 ± 2.74     | 83.03 ± 0.93     | 79.02 ± 2.99     |

#### **Resultados Obtidos**

- Foram utilizados algumas técnicas de validação de hipóteses como suporte estatístico a análise dos dados. Utilizando de métodos como:
- Teste de postos alinhados de Friedman: para detectar diferenças estatísticas entre um grupo de resultados;
- Teste post-hoc de Holm para encontrar os algoritmos que rejeitam a hipótese de igualdade em relação a um método de controle selecionado, permitindo identificar se uma hipótese de comparação pode ser rejeitada em um nível de significância especificado α;
- Cálculo do valor de p ajustado (APV) para levar em conta o fato de que vários testes são realizados, permitindo a comparação direta do APV com o nível de significância α para poder rejeitar a hipótese nula.
- O método de postos alinhados dos algoritmos para mostrar graficamente quão bom um método é em relação aos seus parceiros.
  - O primeiro passo para calcular esse ranking é obter o desempenho médio dos algoritmos em cada conjunto de dados
  - Após calcula-se as subtrações entre a precisão de cada algoritmo menos o valor médio para cada conjunto de dados e os classifica em ordem decrescente;
  - Por fim, é feita a média dos rankings obtidos por cada algoritmo, logo, o algoritmo que tiver a menor média é o melhor

# Resultados Obtidos pelo suporte estatístico



| i | Algorithm | <b>APV</b> 5.52E-7 |  |  |  |
|---|-----------|--------------------|--|--|--|
| 1 | Dirac     |                    |  |  |  |
| 2 | OWA       | 1.14E-4            |  |  |  |
| 3 | Card.     | 1.56E-4            |  |  |  |
| 4 | WMean     | 1.56E-4            |  |  |  |
| 5 | Max.      | 0.06               |  |  |  |
| 6 | AC        | 0.13               |  |  |  |