Trees

Linked lists:

linear access time to a node => O(N)

- Need a data structure for which the running time of most operations is O(log N) in average.
 - => Binary Search Trees (BST)

- Tree: collection of nodes
- A nonempty tree consists of:
 - a root node: r
 - zero or more nonempty (sub)trees T_1 , T_2 , ..., T_k each of whose roots are connected by an edge from r.
- *r* is the parent of each subtree root.
- Each subtree is a child of r.

- N node tree => N-1 edges
 - Proof: each edge connects some node to its parent, every node except the root has one parent.
- Leaves: nodes with no children
- Siblings: nodes with the same parent

- Path from n_1 to n_k : a sequence of nodes n_1 , n_2 , ..., n_k such that n_i is the parent of n_{i+1} , $1 \le i \le k$.
- In a tree there is exactly one path from the root to each node.
- Path length = number of edges on the path

- Depth of node n_i = length of the longest path from the root to n_i .
- Depth of root = 0
- Height of n_i = length of the longest path from n_i to a leaf.
- Height of all leaves = 0
- Height of the tree = height of the root
- n_1 is an ancestor of n_2 and n_2 is a descendant of n_1 if there is a path from n_1 to n_2 .
- If $n_1 \neq n_2$ then n_1 is a proper ancestor of n_2 and n_2 is a proper descendant of n_1 .

Implementation of Trees

- Implementation 1: have in each node besides its data a link to each child of the node.
 - => not efficient, waste of space if variable number of children per node
- Implementation 2: keep children of each node in a linked list of tree nodes.

```
struct TreeNode
{
         Object element;
         TreeNode *firstChild;
         TreeNode *nextSibling;
};
```


Preorder Traversal

- Preorder traversal: Visit each node before visiting its children.
- => A B D C E G F H I

 Example: list a directory in a hierarchical file system

Postorder Traversals

- Postorder traversal: Visit each node after visiting its children.
- => DBGEHIFCA
- Example: calculate the size of a directory

Inorder Traversals

- Inorder traversal: Visit the left subtree, then the node, then the right subtree.
- => B D A G E C H F I

BinaryTrees

- Binary Tree: no node can have more than two children.
- Properties:
 - Average depth of binary tree is O(N^{1/2})
 - Average depth of a
 Binary Search Tree is
 O(log N).
- Maximum depth = N-1

Binary Trees: Implementation

```
struct BinaryNode
{
    Object element;
    BinaryNode *left;
    BinaryNode *right;
};
```

Example: Expression Trees

- Expression tree:
 - leaves <-> operands;
 internal nodes <-> operators
- Example: (a + b * c) + ((d * e + f) * g)
- Inorder traversal => infix representation
- Postorder traversal => postfix representation:

Preorder traversal => prefix representation:

 Problem: Convert a postfix expression into an expression tree

Idea:

- Read one symbol at the time
- If (operand) then create a one-node tree and push a pointer into a stack
- If (operator) then pop two pointers from stack T1, T2 and form a new tree (root = operator; left = T1 and right =T2). A pointer to root is pushed into the stack.

$$ab+cde+**$$

$$ab + cde + **$$

$$ab+cde+**$$

$$ab+cde+**$$

