Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Systems Software & Architecture Lab.

Seoul National University

Fall 2019

Cache

Chap. 5.3

Cache Memories

- Small, fast SRAM-based memories managed automatically in hardware
 - Hold frequently accessed blocks of main memory
- CPU looks first for data in cache

Issues

- Given memory accesses $X_1, ..., X_{n-1}, X_n$
 - How to we know if the data is present in the cache?
 - Where do we look?

X_4
X ₁
X _{n-2}
X _{n-1}
X ₂
X ₃

X ₄
X ₁
X _{n-2}
X _{n-1}
X ₂
X _n
X ₃

- a. Before the reference to X_n
- b. After the reference to X_n

Direct Mapped Cache

- Location determined by address
- Direct mapped: only one choice

• index = Block_address modulo #Blocks_in_cache

- #Blocks_in_cache is a power of 2
- Use low-order address bits
 - index = Block_address & (#Blocks_in_cache I)
- Why low-order bits?

Cache

Tags and Valid Bits

- How do we know which particular block is stored in a cache location?
 - Store block address as well as the data
 - Actually, only need the high-order bits
 - Called the tag

- What if there is no data in a location?
 - Valid bit: I = present, 0 = not present
 - Initially 0

Direct Mapped Cache: Lookup

Assume: cache block size 8 bytes

Direct Mapped Cache: Lookup

Assume: cache block size 8 bytes

No match: old line is evicted and replaced

- 8 blocks, I word / block, direct mapped
- Initial state

Word address	Binary address	Cache block	Hit / Miss

Index	V	Tag	Data
000	N		
001	N		
010	N		
011	N		
100	N		
101	N		
110	N		
111	N		

- 8 blocks, I word / block, direct mapped
- Address 22 accessed

Word address	Binary address	Cache block	Hit / Miss
22	10 110	110	Miss

Index	V	Tag	Data
000	N		
001	N		
010	N		
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

- 8 blocks, I word / block, direct mapped
- Address 26 accessed

Word address	Binary address	Cache block	Hit / Miss
22	10 110	110	Miss
26	11 010	010	Miss

Index	V	Tag	Data
000	N		
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

- 8 blocks, I word / block, direct mapped
- Address 22 accessed

Word address	Binary address	Cache block	Hit / Miss
22	10 110	110	Miss
26	11 010	010	Miss
22	10 110	110	Hit

Index	V	Tag	Data
000	N		
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

- 8 blocks, I word / block, direct mapped
- Address 26 accessed

Word address	Binary address	Cache block	Hit / Miss
22	10 110	110	Miss
26	11 010	010	Miss
22	10 110	110	Hit
26	11 010	010	Hit

Index	V	Tag	Data
000	N		
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

- 8 blocks, I word / block, direct mapped
- Address 16 accessed

Word address	Binary address	Cache block	Hit / Miss
22	10 110	110	Miss
26	11 010	010	Miss
22	10 110	110	Hit
26	11 010	010	Hit
16	10 000	000	Miss

Index	V	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Υ	11	Mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

- 8 blocks, I word / block, direct mapped
- Address 3 accessed

Word address	Binary address	Cache block	Hit / Miss
22	10 110	110	Miss
26	11 010	010	Miss
22	10 110	110	Hit
26	11 010	010	Hit
16	10 000	000	Miss
3	00 011	011	Miss

Index	V	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Υ	11	Mem[11010]
011	Υ	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

- 8 blocks, I word / block, direct mapped
- Address 16 accessed

Word address	Binary address	Cache block	Hit / Miss
22	10 110	110	Miss
26	11 010	010	Miss
22	10 110	110	Hit
26	11 010	010	Hit
16	10 000	000	Miss
3	00 011	011	Miss
16	10 000	000	Hit

Index	V	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Υ	11	Mem[11010]
011	Υ	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

- 8 blocks, I word / block, direct mapped
- Address 18 accessed

Word address	Binary address	Cache block	Hit / Miss
22	10 110	110	Miss
26	11 010	010	Miss
22	10 110	110	Hit
26	11 010	010	Hit
16	10 000	000	Miss
3	00 011	011	Miss
16	10 000	000	Hit
18	10 010	010	Miss

Index	V	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Υ	10	Mem[10010]
011	Υ	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

- 8 blocks, I word / block, direct mapped
- Address 16 accessed

Word address	Binary address	Cache block	Hit / Miss
22	10 110	110	Miss
26	11 010	010	Miss
22	10 110	110	Hit
26	11 010	010	Hit
16	10 000	000	Miss
3	00 011	011	Miss
16	10 000	000	Hit
18	10 010	010	Miss
16	10 000	000	Hit

Index	V	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Υ	10	Mem[10010]
011	Υ	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

- 8 blocks, I word / block, direct mapped
- Address 26 accessed

Word address	Binary address	Cache block	Hit / Miss
22	10 110	110	Miss
(26)	11 010	010	Miss
22	10 110	110	Hit
(26)	11 010	010	Hit
16	10 000	000	Miss
3	00 011	011	Miss
16	10 000	000	Hit
(18)	10 010	010	Miss
16	10 000	000	Hit
26	11 010	010	Miss

Index	V	Tag	Data
000	Υ	10	Mem[10000]
001	N		
010	Υ	11	Mem[11010]
011	Υ	00	Mem[00011]
100	N		
101	N		
110	Υ	10	Mem[10110]
111	N		

Address Subdivision

Address (showing bit positions) 63 62 · · · · 13 12 11 · · · · 2 1 0 Byte offset 10 52 Hit Tag Data Index Tag Index Valid Data 2 1021 1022 1023 52 32

Example: Larger Block Size

- 64 blocks, I6 bytes / block
- To what block number does address 1200 map?
- Block address = \[1200/16 \] = 75
- Block number = 75 modulo 64 = 11

Block Size Considerations

- Larger blocks should reduce miss rate
 - Due to spatial locality
- But in a fixed-sized cache
 - Larger blocks ⇒ fewer of them (more competition ⇒ increased miss rate)
 - Larger blocks ⇒ pollution
- Larger miss penalty
 - Can override benefit of reduce miss rate
 - Early restart and critical-word-first can help

Cache Misses

On cache hit, CPU proceeds normally

- On cache miss
 - Stall the CPU pipeline
 - Fetch block from next level of hierarchy
 - Instruction cache miss
 - Restart instruction fetch
 - Data cache miss
 - Complete data access

Write-Through

- On data-write hit, could just update the block in cache
 - But then cache and memory would be inconsistent
- Write-through: also update memory
- But makes writes take longer
 - e.g., if base CPI = I, 10% of instructions are stores, write to memory takes 100 cycles: Effective CPU = I + $0.1 \times 100 = 11$
- Solution: write buffer
 - Holds data waiting to be written to memory
 - CPU continues immediately
 - Only stalls on write if write buffer is already full

Write-Back

- Alternative: On data-write hit, just update the block in cache
 - Keep track of whether each block is dirty ("dirty bit")
- When a dirty block is replaced
 - Write it back to memory
 - Can use a write buffer to allow replacing block to be read first

Write Allocation

What should happen on a write miss?

- Alternatives for write-through
 - Allocate on miss: fetch the block
 - Write around: don't fetch the block
 - Since programs often write a whole block before reading it (e.g., initialization)
- For write-back:
 - Usually fetch the block

Example: Intrinsity FastMATH

Embedded MIPS processor

- 12-stage pipeline
- Instruction and data access on each cycle
- Split cache: separate I-cache and D-cache
 - Each 16KB: 256 blocks x 16 words / block (4 bytes / word)
 - D-cache: write-through or write-back

SPEC2000 miss rates

• I-cache: 0.4%

• D-cache: 11.4%

• Weighted average: 3.2%

Example: Intrinsity FastMATH

Main Memory and Cache

Use DRAMs for main memory

- Fixed width (e.g., I word)
- Connected by fixed-width clocked bus
- Bus clock is typically slower than CPU clock

Example cache block read

- I bus cycle for address transfer
- 15 bus cycles per DRAM access
- I bus cycle per data transfer

For 4-word block, I-word-wide DRAM

- Miss penalty = $I + 4 \times I5 + 4 \times I = 65$ bus cycles
- Bandwidth = 16 bytes / 65 cycles = 0.25 bytes/cycle

 a. One-word-wide memory organization

Increasing Memory Bandwidth

b. Wider memory organization

c. Interleaved memory organization

4-word wide memory

- Miss penalty = | + | 5 + |
 = | 17 bus cycles
- Bandwidth = 16 bytes / 17 cycles= 0.94 bytes/cycle

4-bank interleaved memory

- Miss penalty = I + I5 + 4 x I= 20 bus cycles
- Bandwidth = 16 bytes / 20 cycles= 0.8 bytes/cycle