Организация обмена данными между процессором и внешним устройством

- 1. Программный обмен.
- 2. Обмен с использованием системы прерываний.
- 3. Обмен с прямым доступом в память.

Знать: состав и взаимодействие необходимых аппаратных и программных средств для каждого способа обмена данными, их достоинства и недостатки.

Организация обмена данными

- Уметь: Оценить время выполнения основной программы при использовании каждого способа обмена данными.
- <u>Помнить:</u> процессор после отключения от внешних шин может продолжать вычисления, если они не связаны с подключениями к этим шинам.

• Литература:

• Цилькер Б.Я., Орлов С.А. Организация ЭВМ и систем. Учебник для вузов. — СПб.: Питер, 2004. — 668 с. (с. 387-412)

1. Программный обмен

- Различные способы обмена данными рассмотрим на примере задачи, в процессе решения которой можно выделить первую фазу вычисления (В1), фазу ввода данных (ВД) и вторую фазу вычислений (В2).
- Общий алгоритм решения задачи в этом случае может быть представлен, как показано на рисунке 1.

Характеристика процессов обмена

- Предположим, что задача характеризуется следующими параметрами.
- Время вычислений в первой фазе (T_1) и во второй фазе (T_2) одинаковы и равны 1 сек.
- Число данных, вводимых в фазе ввода N=1000.
- Время ввода одного данного внешним устройством $T_{O\!K}\!\!=\!\!1$ мс.
- Процессор связан с ЗУ и ВУ с помощью шины данных (ШД), шины адреса (ША) и шины управления (ШУ) (рисунок 2).

Структура системы

Граф-схема алгоритма программного ввода

данных

- i параметр цикла программы, изменяющийся от 1 до N;
- "Пуск ВУ" сигнал запуска внешнего устройства для ввода очередного данного;
- Ф флаг окончания ввода данного внешним устройством;
- АВУ адрес внешнего устройства,
- ЧтВУ сигнал чтения данного из внешнего устройства;
- АЗУ [i] адрес і-й ячейки памяти ЗУ;
- ЗпЗУ сигнал записи данных в ЗУ.

Время решения задачи при программном вводе

- Время решения задачи при программном вводе можно оценить следующим образом: $T_{\Pi B} = T_1 + T_2 + T_{BД}$, где $T_{BД} -$ время ввода данных: $T_{BД} = T_{\Pi U} + Nx(T_{OW} + T_{TU})$, здесь $T_{\Pi U} -$ время выполнения части программы ввода данных, связанной с подготовкой к циклу ввода; $T_{TU} -$ время выполнения тела цикла программы.
- Если, время выполнения команды (t_K) в среднем равно 0,1 мкс, то $T_{\Pi I I} = 0,5$ мкс, $T_{T I I} = 5$ мкс. Время ввода в этом случае будет равно: $T_{B I I} = 0,0005 \times 10^{-3} + 1000 \times (1 \times 10^{-3} + 0,005 \times 10^{-3})$. $T_{B I I} = 1$ сек.
- Тогда время решения задачи: Т_{ПВ}=3 сек.

2. Обмен с использованием системы прерываний

Выполнение основной программы

- Перед началом вычислений в фазе В1* выполняются подготовительные операции, связанные с инициализацией ввода данных.
- Эти операции включают: указание числа вводимых данных N, установку счетчика циклов i:=1; подачу сигнала "Пуск ВУ", обнуление ячейки (регистра) признака окончания ввода данных G:=0.
- Предположим, что число команд в прерывающей программе K=100.

Выполнение прерывающей программы

Время решения задачи при вводе по прерываниям

• Время решения задачи при использовании системы прерывания можно оценить следующим образом:

$$T_{C\Pi} = T_1 + T_2 + NxT_{\Pi B \coprod} + T_G,$$

где $T_{\Pi B J}$ — время выполнения прерывающей программы, осуществляющей ввод данных, T_G — время ожидания завершения ввода данных программой вычисления.

- При этом $NxT_{\Pi B J} = Nxt_K x K = 10^3 x 0, 1x 10^{-6} x 100 = 0,01$ сек.
- Предположим, что $T_G=0$. Тогда время решения задачи: $T_{C\Pi}=2,01$ сек.

3. Обмен с прямым доступом в память

Выполнение основной программы

- Перед началом вычислений в фазе В1** выполняются подготовительные операции, связанные с инициализацией ввода данных.
- Эти операции включают: пересылку в управляющий автомат ВУ числа вводимых данных N и адреса ЗУ, начиная с которого необходимо загрузить данные; обнуление ячейки (регистра) признака окончания ввода данных g:=0; подачу сигнала "Пуск ВУ".

Граф-схема алгоритма ввода данных с использованием прямого доступа в память

Время решения задачи при вводе с использованием прямого доступа в память

- Предположим, что время обращения к запоминающему устройству T_{3y} =0,02 мкс.
- Время решения задачи при использовании прямого доступа в память можно оценить следующим образом:
- $T_{\Pi J} = T_1 + T_2 + NxT_J + Tg$, где T_J время прямого доступа в память; Tg время ожидания завершения ввода данных программой вычисления.
- При этом в худшем случае NxT_{Π} = $Nx2xT_{3y}$ = $10^3x2x0,02x10^{-6}$ = $0,04x10^{-3}$ сек.
- Предположим, что Tg=0. Тогда время решения задачи: $T_{\Pi \Pi}$ =2,000042 сек.