

PARTIAL TRANSLATION:

PUBLICATION NO. SU 1,835,412 A1

COMPOSITE MATERIAL

Abstract: Application – composite polymer materials based on thermoplastic binders and a fibrous filler, designed for producing parts for machines operating under conditions of friction without a lubricant (slide bearings, packings, etc.). The composite material has a low coefficient of friction, which makes it possible to use it as an antifriction material in the friction assemblies of machines and mechanisms. The essence of the invention: a known composite material based on a formaldehyde-dioxolane copolymer* and barium sulfate also contains carbonized carbon fibers and thermoplastic polyurethane in a specified weight ratio. 3 tables.

*This copolymer is identified as polyacetal in the body of the specification — Tr. Ed.

XP-002247952

AN - 1995-073867 [38]

AP - SU19904871102 19901002

CPY - DNCH

DC - A21 A25 A88 L02

FS - CPI

IC - C08K13/06; C08L59/00

IN - BASHTANNIK P I; LEBEDEV YU M; OKHOTNIK K A

MC - A05-G01B A05-H A05-H02A A08-M10 A08-R01 A10-E05B A12-H10 A12-S08D1 L02-J02B

PA - (DNCH) DNEPR CHEM TECHN INST

PN - SU1835412 A1 19930823 DW199510 C08L59/00 003pp

PR - SU19904871102 19901002

XA - C1995-032886

XIC - C08K-013/06; C08L-059/00; (C08L-059/00 C08L-075/04); (C08K-003/30 C08K-009/00 C08K-013/06)

AB - SU1835412 Composite comprises (mass %): 77.5-80.5 copolymer of formaldehyde and dioxolan, 1.0-2.0 barium sulphate, 15.0-20.0 carbonised C fibre based on cellulose hydrate and heat treated at 2,500deg.C with a density of 1,380 kg/m3 and filament dia. of 5-7 mum, and 1.5-2.5 thermoplastic polyurethane.

 - USE - The material is used to make components that work under dry friction conditions.

 ADVANTAGE - The material has a dynamic coefft, of friction of 0.15-0.23 and a tensile strength of 67 MPa (cf. 0.30 and 63.7 MPa for prototype).

- (Dwg.0/0)

C - C08L59/00 C08L75/04;

- C08K13/06 C08K3/30 C08K9/00

IW - POLYMERISE MATERIAL REDUCE COEFFICIENT FRICTION BASED COPOLYMER FORMALDEHYDE DIOXOLAN CARBONISE CARBON FIBRE POLY URETHANE ADDITIVE IKW - POLYMERISE MATERIAL REDUCE COEFFICIENT FRICTION BASED COPOLYMER

FORMALDEHYDE DIOXOLAN CARBONISE CARBON FIBRE POLY URETHANE ADDITIVE INW - BASHTANNIK P I; LEBEDEV YU M; OKHOTNIK K A

NC - 001

OPD - 1990-10-02

ORD - 1993-08-23

PAW - (DNCH) DNEPR CHEM TECHNINST

TI - Polymeric material with reduced coefficient of friction - based on copolymer of formaldehyde and dioxolan with carbonised carbon fibre and poly:urethane additive

A01 - [001] 017; G1638 G1592 D01 D22 F34 D23 D31 D46 D50 D83; R00001 G1503 D01 D50 D81 F22; P0055; P0248 P0226 D01 F24; P0975 P0964 F34 D01 D10; H0022 H0011; H0260;

[002] 017; ND01; Q9999 Q7603-R; Q9999 Q7896 Q7885; B9999 B5367 B5276; B9999 B4171 B4091 B3838 B3747; N9999 N5970-R; N9999 N6042-R; N9999 N6439; N9999 N6440-R; N9999 N6144; (Q8892)

[003] 017; R05086 D00 D09 C-AA; A999 4419; A999 A759; S9999 S1070-5; B9999 B4842 B4831 B4740; B9999 B5254 B5243 B4740; [004] 017; R01739 D00 F60 C- 6A S- Sa 2A; A999 A237; most 017; A999 A748;

BEST BY WARRY IN BILL HASS WING

A02 - [001] 017; R01852-R G3634 D01 D03 D11 D10 D23 D22 D31 D42 D50 D86 F24 F29 F26 F34 H0293 P0599 G3623; M9999 M2391; M9999 M2108 M2095; L9999 L2391; L9999 L2108 L2095; S9999 S1070-R; A999 A419; A999 A782; K9461; - [002] 017; B9999 B4842 B4831 B4740; B9999 B5254 B5243 B4740; N9999 N6177-R; - [003] 017; R01740 D00 F20 H- O- 6A; H0226; A03 - [001] 017; P1592-R F77 D01; H0317; A999 A748; A999 A782;

СОЮЗ СОВЕТСКИХ СОЦИАЛИСТИЧЕСКИХ РЕСПУБЛИК

1835412 A1

ГОСУДАРСТВЕННОЕ ПАТЕНТНОЕ ВЕДОМСТВО СССР (ГОСПАТЕНТ СССР)

C 08 L 59/00, C 08 K 13/06 (C 08 L 59/00, 75:04) (C 08 K 13/06, 3:30, 9:00)

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

BARGUESHAR NATEMAD-TERMASHAR EMERILOTEKA

(21) 4871102/05

(22) 02.10.90

(46) 23.08.93. Бюл. № 31

(71) Днепропетровский химико-техноло-гический институт им. Ф.3.Дзержинско-го

(72) П.И.Баштанник, К.А.Охотник, Ю.М.Лебедев, В.Н.Анисимов и В.П.Марыгин

(56) Авторское свидетельство СССР № 525726, кл. С 08 L 59/00, 1974.

(54) КОМПОЗИЦИОННЫЙ МАТЕРИАЛ

(57) Использование: композиционные полимерные материалы на основе термопластичных связующих и волокнистого наполнителя, предназначенные для из-

готовления деталей машин, работающих в условиях трения без смазки (подшип~ ники скольжения, уплотнения и т.п.). Композиционный материал обладает низким коэффициентом трения, что позволяет использовать его в качестве антифрикционного материала в узлах трения машин и механизмов. Сущность изобретения: известный композиционный материал на основе сололимера.формальдегида с диоксоланом и сернокислого бария дополнительно содержит карбонизованные углеродные волокна и термопластичный полиуретан при определенном массовом соотношении. 3 табл.

Изобретение относится к композиционным материалам на основе термопластичных связующих и волокнистого наполнителя, предназначенных для изготовления деталей машин, работающих в условиях трения без смазки (подшипники скольжения, уплотнения, зубчатые колеса).

Наиболее близким по технической сущности и достигнутому результату к изобретению является композиционный материал на основе полиацеталя (сополимера формальдегида с диоксоланом) и сернокислого бария. Композиционный материал содержит 98% сополимера формальдегида с диоксоланом и 2% серномальдегида с диоксоланом и 2% серномислого бария. Его коэффициент тремия без смазки достаточно высок (0,28-0,31), что ограничивает области применения.

Цель изобретения - снижение коэффициента трения в условиях трения без смазки.

Поставленная цель достигается тем, что известный композиционный материал на основе сополимера формальдегида с диоксоланом и сернокислого бария, дополнительно содержит карбонизованные углеродные волокна и термопластичный полиуретан при следующем соотношении компонентов. мас. %:

Сополимер формальдегида с диоксоланом (ТУ 6-05-1543-87) 77,5-80,5 Сернокислый барий (ГОСТ 3158-75) 1,0-2,0 Карбонизованные углеродные волокна 15,0-20,0 Термопластичный полиуретан 1,5-2,5 (19) SU (11) 1835412 A

Карбонизованные углеродные волокна на основе гидратцеллюлозы получают путем фрагментации ткани ТГН-2М (ТУ 48-20-19-77), конечная температура термообработки которой составляет 2500°C. Характеризуются свойствами: плотность 1380 кг/м³, диаметр филаментов 5-7 мкм, разрывная нагрузка филаментов 1000 МПа.

Термопластичный полиуретан представляет собой продукт взаимодействия диизоцианата с низкомолекулярными : гликолями. Выбран термопластичный полиуретан марки Витур Т-1413-85, син- 15 тезированный на основе сложного полиэфира - полиэтиленбутиленгликольадипината, 1,4-бутандиола и 4,4'-дифенилметандиизоцианата при соотношении NCO/OH=1 (ТУ,-6-05-221-526-82). Физико-механические свойства термопластичного полиуретана Витур Т-1413-85: плотность 1160 кг/м3, твердость по Шору А 85+2 усл.ед., условная прочность при растяжении не менее 20 МПа, относительное удлинение при разрыве не менее 250%, остаточное удлинение не более 80%, сопротивление раздиру - не менее 55 Н/мм, интенсивность изнашивания при трении без смазки (Р 0,8 МПа, V 0,3 м/с) 2,5 MT/KM.

Композиционный материал готовят по следующей методике. Ингредиенты композиционного материала сначала смешиваются при нормальных условиях на 2-образном лопастном смесителе, а затем в червячно-дисковом экструдере при температуре 190-200°С. Получен-

ный гранулят используют для переработки методом литься под давлением. При этом при температуре 190-210°С изготавливают образцы для испытаний фрикционных свойств.

Пример. Готовят композиционные материалы, состав которых приведен в табл. 1. Из композиционных материалов отливают образцы, которые используют для испытания фрикционных свойств при трении без смазки на машине трения 2070 СМТ-1 по схеме дисколодка. В качестве контртела используют сталь 40х, термообработанную до твердости НРС 38-48 с показетелем шероховатости R_{α} 0,63 мкм. Фрикционные свойства композитов приведены в табл. 2 и 3.

Формула изобретения

Композиционный материал, включающий сополимер формальдегида с диоксоланом и сернокислый барий, о т л и ч а ю щ и й с я тем, что, с целью снижения коэффициента трения при трении без смазки, он дополнительно содержит карбонизованные углеродные волокна и термопластичный полиуретан при следующем соотношении компонентов, мас.%:

Сополимер формальдегида	
с диоксоланом	77,5-80,5
Сернокислый барий Карбонизованные угле-	1,0-2,0
родные волокна	15 0-20 0
Термопластичный поли-	15,0-20,0
уретан	1,5-2,5

Таблица т

				.*		,	аол	ица Т
Компоненты	Содержание компонентов по примерам, мас.%							
	1	2	3	4	5	6	T 7	Прототип
Сополимер формальдегида с диоксоланом	73.5	77,5	79,0	00 e ·	00 -	·		L
Сернокислый барий	0,5	1,0	1,5	80,5 2,0	82,5 2,5	83,0 2,0	96,0 2,0	98,0 2,0
Карбонизованные углерод- ные волокна	25,0	20,0	17,5	15,0	12,0	15.0	- ·	-, •
Термопластичный полиуре- тан	1,0	1,5	2,0	2,5	3,0	-	2,0	

********************						T	абл	ица 2
Свойства	Примеры							
and the control and and the property and the control part and the control and	1	2	3	4	5	6	7	Прототип
Динамический коэффициент трения (Р 0,8 МПа, V 0,3 м/с)	0,18	0,16	0,15	0,17	0,19	0,18	0,23	0,30
	~~~~~~					•		

Таблица 3 Физико-механические свойства композиционных материалов на основе полиацеталей

Показатель	Заявляемый композицион- ный материал (пример 2)	Прото- тип
Прочность при растяжении, МПа Относительное	67	63,7
удлинение при разрыве	7,5	26
Модуль упругос- ти, ГПа	1,1	0,5
Усадка, %	0,88	1,94

Редактор Г.Мельникова Техред М.Моргентал Корректор И.Иаксимишинец
Заказ 2976 Тираж Подписное
ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., д. 4/5
Производственно-издательский комбинат "Патент", г. Ужгород, ул. Гагарина, 101