TA: Nhan Huynh PSTAT 172A - Winter 2019

Review some important notations:

- 1. T_0 , T_x , and the relationship between T_0 and T_x ($T_x = T_0 x$); $K_x = \text{completed (integer) number of years until (x)'s death}$
- 2. $S_x(t) = P(T_x > t) := {}_t p_x; F_x(t) = P(T_x \le t) := {}_t q_x; l_x, d_x, \text{ and their relationship with } {}_t p_x \text{ and } {}_t q_x$
- 3. Factorization of survival probability: $_tp_x = _np_x(_{t-n}p_{x+n})$ and deferred mortality: $_{t|u}q_x = _tp_x(_uq_{x+t}) = _{t+u}q_x _tq_x$
- 4. Force of mortality (hazard rate) μ_x instantaneous rate of mortality at age x given alive at age x: $\mu_x = -\frac{d}{dx} ln S_0(x)$. Hence, relationship between survival function and force of mortality: $S_0(x) = {}_x p_0 = e^{-\int_0^x \mu_t dt}$. Generalization: force of morality t years after age x: $\mu_{x+t} = \frac{f_x(t)}{1-F_x(t)} = -\frac{d}{dt} ln S_0(x+t) \rightarrow f_x(t) = {}_t p_x(\mu_{x+t})$. Some handy formulas involving T_x and μ_x :
 - (a) $_{n}p_{x}=e^{-\int_{x}^{x+n}\mu_{s}ds}=e^{-\int_{0}^{n}\mu_{x+t}dt}$. **Note**: μ_{x+t} is also denoted as $\mu_{x}(t)$.
 - (b) $_nq_x = P[0 \le T_x \le n] = \int_0^n f_x(s)ds = \int_0^n sp_x\mu_{x+s}ds$ and $_{t|u}q_x = \int_t^{t+u} sp_x\mu_{x+s}ds$.
- 5. (a) $\mathring{e}_x = E[T_x] = \int_0^\infty t_t p_x \mu_{x+t} dt = \int_0^\infty t p_x dt$. Note: replace ∞ by ωx if ω is the upper age limit. Similarly, $E[T_x^2] = \int_0^\infty t^2 x p_t \mu_{x+t} dt = \int_0^\infty 2t_t p_x dt$. Hence: $Var[T_x] = E[T_x^2] E[T_x]^2$.
 - (b) n-year term expectation of life for (x): $\mathring{e}_{x:\overline{n}} = \int_0^n t p_x dt = E[min\{T_x, n\}] = n_n p_x + \int_0^n t_t p_x \mu_{x+t} dt$
 - (c) Recursive relationship: $\mathring{e}_x = \mathring{e}_{x:\overline{n}|} + {}_n p_x \mathring{e}_{x+n}$ and $\mathring{e}_x = \int_0^1 {}_x p_t dt + p_x \mathring{e}_{x+1}$
- 6. (a) $e_x = E[K_x] = \sum_{k=0}^{\infty} k P[K_x = k] = \sum_{k=0}^{k} k_{k|} q_x = \sum_{k=1}^{\infty} k p_x$. Note: replace ∞ by $\omega x 1$ if ω is the upper age limit. $E[K_x^2] = \sum_{k=0}^{\infty} k^2{}_{k|} q_x$.
 - (b) n-year term curtate expectation: $e_{x:\overline{n}|} = \sum_{k=1}^{n} {}_{k}p_{x}$
 - (c) Recursive relationship: $e_x = e_{x:\overline{n}|} + {}_{n}p_x e_{x+n}$ and $e_x = p_x + p_x e_{x+1}$

HOMEWORK 1

Problem 6

Given: (a) $_3p_{70} = .95$ (b) $_2p_{71} = .96$ (c) $\int_{71}^{75} \mu_x dx = .107$. Calculate $_5p_{70}$.

Problem 16

- (a) Show that $\mathring{e}_x \leq \mathring{e}_{x+1} + 1$ (b) Show that $\mathring{e}_x \geq e_x$ (c) Explain why $\mathring{e}_x \approx e_x + 1/2$.
- (d) Is \dot{e}_x always a non-increasing function of x?

Problem 17

A subgroup of lives is subject to twice the normal force of mortality, i.e. $\mu'_x = 2\mu_x$ where the prime indicates the rate for the subgroup. Express q'_x in terms of q.

Problem 18

You are given $p_{30} = .95$ for a standard insured with a force of mortality of μ_{30+t} , $0 \le t \le 1$. For a preferred insured, force of mortality is $\mu_{30+t} - c$, $0 \le t \le 1$. Find c such that the probability that (30) will die within one year is 25% lower for a preferred life than for a standard insured.

Supplemental problem 1

Using $S_0(x) = 1 - \frac{x^2}{100}$ for $0 \le x \le 10 = \omega$. Find the mean, variance, median and the mode of T_4 .

Supplemental problem 2

You are given: (a) $l_x = (100 - x)^{1/2}$, $0 \le x \le 100$ (b) $\mathring{e}_{36:\overline{28}} = 24.67$. Calculate $\int_0^{28} t_t p_{36} \mu_{36+t} dt$.