

Quanto é que à rais de cima percorreu?

1 + dsints = 1

12 - dsints quanto x = 0 temos a

duple font normal

$$\frac{\delta}{2} = \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right) =$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1}{2} \sin \theta \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \sin \theta - \frac{1$$

A distancia entre 2 pontos A eB no 2100 é simplemente $\Delta = L \sin \theta A - C \sin \theta B$, onde θA e θB são 25 Roce (i zaçõe) angulans dicada respetivo punho

 $\Delta z = L(\sin \theta_{5} - \sin \theta_{2}) = 0$ $\frac{1}{2}$ \frac

$$\angle = \lambda = \frac{1}{2} \left(6 - 3 \right) = \frac{1}{2} \left(\frac{\lambda}{2} \right)$$

Problème 1

Utilizando a resultado abtida enteriormente

$$\Delta = 2 \sin \theta_0 - 2 \sin \theta_0^{\dagger} = 2 \Delta z = 0$$

$$\pi \cos \theta_0 \cos \theta_0 = 2 \Delta z = 0$$

$$\pi \cos \theta_0 \cos \theta_0 = 0$$

$$\cos \theta_0 \cos \theta_0 = 0$$

$$\cos \theta_0 \cos \theta_0 = 0$$

$$L=1$$
 $L=\frac{2d\Delta}{\lambda}$, valous do probleme $\lambda = 533 \times 10^{-6}$ mm $\Delta = 3.5$ mm $\Delta = 3.5$ mm $\Delta = 3.2$ mm $\Delta = 3.2$ mm

 $\approx 5 \times 10^3 \text{ mm} = 5 \text{ m}$

en cula (solução aparecerá depois).

Parc que a reflexão total seja possível $\partial_r = \overline{z} = 3 \quad \sin \theta_r = 2 \quad \log_2 \alpha \quad \text{(e) is smell}$ $\frac{1}{2} \cos \theta_r = \frac{1}{2} = \frac{1}{2} \sin \theta_r = \frac{1}{2} \quad \log_2 \alpha \quad \text{(e) is smell}$ $\frac{1}{2} \cos \theta_r = \frac{1}{2} \cos \theta_r = \frac{1}{2} \cos \theta_r = \frac{1}{2} \cos \theta_r$ $\sin \theta_r = \frac{1}{2} \cos \theta_r = \frac{1}{2} \cos \theta_r$ $\sin \theta_r = \frac{1}{2} \cos \theta_r = \frac{1}{2} \cos \theta_r$ $\sin \theta_r = \frac{1}{2} \cos \theta_r$

Perc reflexão total

$$\sin \vartheta; = \frac{nc}{hp} c=,$$
 $c=) \sqrt{\Delta - \frac{Na^2}{hp^2} \sin^2 \vartheta} = \frac{Nc}{hp} c=,$
 $z= > \vartheta = 2rcsin \left[\frac{hp}{ha} \left(\Delta - \frac{nc^2}{hp^2} \right)^{\Delta/2} \right]$