Chapter 3

System Properties and Solution techniques

In this chapter we discuss system properties and solution techniques for discrete-time systems. (For the continuous case, see Rowell & Wormley [4], chapter 8).

3.1 Singularity input functions

In Rowell & Wormley [4], chapter 8, some singularity input functions for continuous-time systems were defined. In this section we redefine some of the functions for discrete-time:

The Unit Step Function: The discrete-time unit step function $u_s(k)$, $k \in \mathbb{Z}$ is defined as:

$$u_s(k) = \begin{cases} 0 & \text{for } k < 0\\ 1 & \text{for } k \ge 0 \end{cases}$$
 (3.1)

The Unit Impulse Function: The discrete-time unit Impulse function $\delta(k)$, $k \in \mathbb{Z}$ is defined as:

$$\delta(k) = \begin{cases} 1 & \text{for } k = 0 \\ 0 & \text{for } k \neq 0 \end{cases}$$
 (3.2)

Note that for discrete-time the definition of a function $\delta_T(k)$ is not appropriate. The discrete-time impulse function (or discrete-time Dirac delta function) has the property that

$$\sum_{m=-\infty}^{\infty} \delta(m) = 1$$

The unit ramp function: The discrete-time unit ramp function $u_r(k)$, $k \in \mathbb{Z}$ is defined to be a linearly increasing function of time with a unity increment:

$$u_r(k) = \begin{cases} 0 & \text{for } k \le 0\\ k & \text{for } k > 0 \end{cases}$$
 (3.3)

Note that

$$\Delta\{u_r(k+1)\} = u_r(k+1) - u_r(k) = u_s(k) \tag{3.4}$$

and

$$\Delta\{u_s(k)\} = u_s(k) - u_s(k-1) = \delta(k)$$
(3.5)

and also in the reverse direction:

$$\Delta^{-1}\{\delta(k)\} = \sum_{m=0}^{k} \delta(k) = u_s(k)$$
(3.6)

and

$$\Delta^{-1}\{u_s(k)\} = \sum_{m=0}^{k} u_s(k) = u_r(k+1)$$
(3.7)

3.2 Classical solution of linear difference equations

In this section we briefly review the classical method for solving a linear nth-order ordinary difference equation with constant coefficients, given by

$$y(k+n) + a_{n-1}y(k+n-1) + \ldots + a_0y(k)$$

$$= b_m u(k+m) + b_{m-1}u(k+m-1) + \ldots + b_0u(k)$$
(3.8)

where in general $m \leq n$. We define the forcing function

$$f(k) = b_m u(k+m) + b_{m-1} u(k+m-1) + \dots + b_0 u(k)$$
(3.9)

which is known, because u(k) is known for all $k \in \mathbb{Z}$. Eq. (3.8) now becomes

$$y(k+n) + a_{n-1}y(k+n-1) + \ldots + a_0y(k) = f(k)$$
(3.10)

The task is to find a unique function y(k) for $k \ge k_0$ that satisfies the difference equation (3.8) given the forcing function f(k) and a set of initial conditions $y(k_0), y(k_0+1), \ldots, y(k_0+n-1)$.

The general solution to Eq. (3.8) may be derived as the sum of two solution components

$$y(k) = y_h(k) + y_p(k)$$
 (3.11)

where y_h is the solution of the homogeneous equation (so for f(k) = 0) and $y_p(k)$ is a particular solution that satisfies (3.10) for the specific f(k) (but arbitrary initial conditions).

3.2.1 Homogeneous solution of the difference equation

The homogeneous difference equation $(a_n \neq 0)$ is given by

$$a_n y(k+n) + a_{n-1} y(k+n-1) + \ldots + a_0 y(k) = 0$$
(3.12)

The standard method of solving difference equations assumes there exists a solution of the form $y(k) = C \lambda^k$, where λ and C are both constants. Substitution in the homogeneous equation gives:

$$C(a_n\lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_0)\lambda^k = 0$$
(3.13)

For any nontrivial solution, C is nonzero and λ^k is never zero, we require that

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_0 = 0 (3.14)$$

For an *n*th-order system with $a_n \neq 0$, there are n (complex) roots of the characteristic polynomial and n possible solution terms $C_i \lambda_i^k$ (i = 1, ..., n), each with its associated constant. The homogeneous solution will be the sum of all such terms:

$$y_h(k) = C_1 \lambda_1^k + C_2 \lambda_2^k + \ldots + C_n \lambda_n^k$$
 (3.15)

$$= \sum_{i=1}^{n} C_i \lambda_i^k \tag{3.16}$$

The *n* coefficients C_i are arbitrary constants and must be found from the *n* initial conditions.

If the characteristic polynomial has repeated roots, that is $\lambda_i = \lambda_j$ for $i \neq j$, there are not n linearly independent terms in the general homogeneous response (3.16). In general if a root λ of multiplicity m occurs, the m components in the general solution are

$$C_1 \lambda^k$$
, $C_2 k \lambda^k$,..., $C_m k^{m-1} \lambda^m$

If one or more roots are equal to zero $(\lambda_i = 0)$, the solution $C \lambda^k = 0$ has no meaning. In that case we add a term $C \delta(k - k_0)$ to the general solution. If the root $\lambda = 0$ has multiplicity m, the m components in the general solution are

$$C_1 \delta(k-k_0)$$
, $C_2 \delta(k-k_0-1)$,..., $C_m \delta(k-k_0-m+1)$

3.2.2 Particular solution of the difference equation

Also for discrete-time systems, the method of undetermined coefficients can be used (see [4], page 255-257), where we use table 3.1 to find the particular solutions for some specific forcing functions.

Terms in $u(k)$	Assumed form for $y_p(k)$	Test value
α	eta_1	0
$\alpha k^n , (n = 1, 2, 3, \ldots)$	$\beta_n k^n + \beta_{n-1} k^{n-1} + \ldots + \beta_1 k + \beta_0$	0
$\alpha \lambda^k$	$eta \lambda^k$	λ
$\alpha \cos(\omega k)$	$\beta_1 \cos(\omega k) + \beta_2 \sin(\omega k)$	$j\omega$
$\alpha \sin(\omega k)$	$\beta_1 \cos(\omega k) + \beta_2 \sin(\omega k)$	$j\omega$

Figure 3.1: Definition of Particular $y_p(k)$ using the method of undetermined coefficients

Example 9 (Solution of a difference equation)

Consider the system described by the difference equation

$$2y(k+3) + y(k+2) = 7u(k+1) - u(k)$$

Find the system response to a ramp input u(k) = k and initial conditions given by y(0) = 2, y(1) = -1 and y(2) = 2.

Solution:

homogeneous solution: The characteristic equation is:

$$2\lambda^3 + \lambda^2 = 0$$

which has a root $\lambda_1 = -0.5$ and a double root $\lambda_{2,3} = 0$. The general solution of the homogeneous equation is therefore

$$y_h(k) = C_1 (-0.5)^k + C_2 \delta(k) + C_3 \delta(k-1)$$

particular solution: From table 3.1 we find that for u(k) = k, the particular solution is selected:

$$y_p = \beta_1 k + \beta_0$$

Testing gives:

$$2(\beta_1(k+3) + \beta_0) + (\beta_1(k+2) + \beta_0) = 7(k+1) - k = 6k + 7$$

We find $\beta_1 = 2$ and $\beta_0 = -3$ and so the particular solution is

$$y_p(k) = 2k - 3$$

complete solution: The complete solution will have the form:

$$y(k) = y_h(k) + y_n(k) = C_1 (-0.5)^k + C_2 \delta(k) + C_3 \delta(k-1) + 2k - 3$$

Now the initial conditions are evaluated in k = 0, k = 1 and k = 2.

$$y(0) = C_1 (-0.5)^0 + C_2 \delta(0) + C_3 \delta(0-1) + 20 - 3$$

$$= C_1 + C_2 - 3 = 2$$

$$y(1) = C_1 (-0.5)^1 + C_2 \delta(1) + C_3 \delta(1-1) + 21 - 3$$

$$= -C_1 0.5 + C_3 - 1 = -1$$

$$y(2) = C_1 (-0.5)^2 + C_2 \delta(2) + C_3 \delta(2-1) + 22 - 3$$

$$= C_1 0.25 + 1 = 2$$

We find a solution for $C_1 = 4$, $C_2 = 1$, $C_3 = 2$ and so the final solution becomes:

$$y(k) = 4(-0.5)^k + \delta(k) + 2\delta(k-1) + 2k - 3$$

3.3 Discrete-time Convolution

In this section we derive the computational form of the discrete-time system $H\{u(k)\}$, defined in [4], chapter 7, and section 2.1 of these lecture notes, that is based on a system's response to an impulse input. We assume that the system is initially at rest, that is, all initial conditions are zero at time t = 0, and examine the discrete-time domain forced response y(k), $k \in \mathbb{Z}$ to a discrete-time waveform u(k).

To start with, we assume that the system response to $\delta(k)$ is a known function and is designated h(k) as shown in figure 3.2.

Figure 3.2: System response to a delayed unit pulse

Then if the system is linear and time-invariant, the response to a delayed unit pulse, occurring at time n is simply a delayed version of the pulse response:

$$u(k) = \delta(k-n) \quad \text{gives} \quad y(k) = h(k-n) \tag{3.17}$$

Multiplication with a constant α gives:

$$u(k) = \alpha \, \delta(k-n)$$
 gives $y(k) = \alpha \, h(k-n)$ (3.18)

The input signal u(k) may be considered to be the sum of non-overlapping delayed pulses $p_n(k)$:

$$u(k) = \sum_{n=-\infty}^{\infty} p_n(k) \tag{3.19}$$

where

$$p_n(k) = \begin{cases} u(k) & \text{for } k = n \\ 0 & \text{for } k \neq n \end{cases}$$
 (3.20)

Each component $p_n(k)$ may be written in terms of a delayed unit pulse $\delta(k)$, that is

$$p_n(k) = u(n)\delta(k-n)$$

From equation (3.18) it follows that for a delayed version of the pulse response, multiplied by a constant u(n) we obtain the output y(k) = u(n) h(k-n). For an input

$$u(k) = \sum_{n=-\infty}^{\infty} p_n(k)$$

we can use the principle of superposition and the output can be written as a sum of all responses to $p_n(k)$, so:

$$y(k) = \sum_{n = -\infty}^{\infty} u(n) h(k - n)$$
 (3.21)

This sum is denoted as the convolution sum for discrete-time systems.

For physical systems, the pulse response h(k) is zero for time k < 0, and future components of the input do not contribute to the sum. So the convolution sum becomes:

$$y(k) = \sum_{n = -\infty}^{k} u(n) h(k - n)$$
 (3.22)

The convolution operation is often denoted by the symbol *:

$$y(k) = u(k) * h(k) = \sum_{n = -\infty}^{k} u(n) h(k - n)$$
(3.23)

Example 10 (Discrete-time convolution)

The first-order exponential smoother of example 6 is described by the difference equation

$$y(k+1) = a y(k) + (1-a) u(k+1)$$

By repeated substitution it easily follows that if y(k) = 0 for $k < n_0$, the output of the system is given by

$$y(k) = (1 - a) \sum_{n=n_0}^{k} a^{k-n} u(n)$$
 $k \ge n_0$

assuming that the input u(k) is such that the sum converges, and let n_0 approach to $-\infty$. Then the response of the system takes the form

$$y(k) = (1-a) \sum_{n=-\infty}^{k} a^{k-n} u(n) \qquad k \in \mathbb{Z}$$

Define the function h such that

$$h(k) = \begin{cases} 0 & \text{for } k < 0 \\ (1-a)a^k & \text{for } k \ge 0 \end{cases}$$
$$= (1-a)a^k u_s(k)$$

we see that on the infinite time axis the system may be represented as the convolution sum

$$y(k) = \sum_{n=-\infty}^{\infty} h(k-n) u(k)$$

Bibliography

- [1] H. Freeman. Discrete-time systems. John Wiley & Sons, New York, USA, 1965.
- [2] H. Kwakernaak and R. Sivan. *Modern Signals and Systems*. Prentice Hall, New Jersey, USA, 1991.
- [3] C. Phillips and J.M. Parr. Signals, Systems, and Tranforms. Prentice Hall, New Jersey, USA, 1999.
- [4] D. Rowell and D.N. Wormley. System Dynamics, an introduction. Prentice Hall, New Jersey, USA, 1997.