

USN											21CS43
-----	--	--	--	--	--	--	--	--	--	--	--------

Fourth Semester B.E. Degree Examination, 2023

Model Question Paper Operating System

Time: 3 hrs. Max. Marks: 60

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Q. No.		Questions	Marks	BL/CO	
		Module I			
1	a.	Illustrate the Process states with a diagram. Demonstrate how many processes are created by the below program? #include <stdio.h> #include <unistd.h> int main () { int i; for(i=0; i<4;i++) fork (); return 0; }</unistd.h></stdio.h>		CL3/CO1	
	b.	Explain Operating system services with respect to User & System with a neat block diagram.	07	CL2/CO1	
	c.	Compare traditional versus clustered system.	03	CL2/CO1	
		OR	•		
2	a.	Demonstrate the Process creation and Termination using System calls –fork (), vfork(), exit(), return 0.	10	CL3/CO1	
	b.	Summarize Inter process Communication.	07	CL2/CO1	
	c.	Explain Process control block.	03	CL2/CO1	
	1	Module II	·		
3	a.	Illustrate the different multithreading models with suitable examples.	10	CL2/CO2	
	b.	Calculate average turnaround time and average waiting time for the below process snapshot by using FCFS, SJF, Priority (Preemptive).	07	CL3/CO2	

		Process ID	Т	A seize	al Tim	<u>.</u> T.	Duran	t Tin		D.	iorit		\neg			
		P1	\rightarrow	0	ai imi	+	uis 4	LIII	ie	2	10111	у	\dashv			
			\dashv			_				+			\dashv			
		P2		1		+	3			3			4			
		P3	_	2		+	1			4			_			
		P4		3		+	5			5			_			
		P5		4			2			5						
	c.	Differentia	te Cl	PU sc	hedul	er aı	nd Jo	ob so	chec	luler	•				03	CL2/CO2
											OR	•				
4	a.	Illustrate th	e iss	ues tl	hat co	mes	witl	h mu	ıltitl	hrea	ded j	prog	ram	ming	10	CL2/CO2
														time for the below process s) Priority (Non-Preemptive)		
		Process ID		Arriv	al Tim	e :	Burs	t Tin	ıe	Pr	iorit	у				
		P1		3		- 1	4			5			\neg			
	b.	P2		5			3			3	3				07	CL3/CO2
		P3		0			2			2	2					
		P4		5			1			4			\exists			
		P5		4			3			2			\dashv			
	С											03	CL2/CO2			
	C	Explain Scheduling criteria of process scheduling.											CL2/CO2			
_		Module III Illustrate software-based solution for critical section problem and justify the following														
5	a.	criteria's i.	Mut	ual ex	xclusi	on ii	. Pro	ogre	ss ii	i. Bo	ounc	led v	vaiti	ng.	10	CL3/CO3
						_		ne w	_			_	ving	system is in a safe state.	10	
		PROCESS	\vdash	OCAT	C	M/	_	С	A		ABLE	E C				
		PO	A 0	B 0	2	0	B 0	4	1	-	-	2				
	b.	P1	1	0	0	2	0	1	I		1					CL3/CO3
		P2	1	3	5	1	3	7	+	+	+	_				
		P3 P4	1	3	3	8	5	7	+	+	+	-				
		If a request	fron	n a pr	ocess	P2 a	rriv	es fo	r (0	,0,2) car	the	requ	uest be granted immediately.		
											OR				· · · · · · · · · · · · · · · · · · ·	
6	a.	semaphore												of synchronization using	10	CL3/CO3
		Using Banl	ker's	algo	rithm	dete	rmiı	ne w	hetl	ner t	he fo	ollov	ving	system is in a safe state.		
		PROCESS	ALLO	CATION	V	MA	X			AVA	AILAB	LE]		
			-	в с		Α	В	С	D	Α	В	С	D			
	b.		_	0 0	-	5	2	5	2	3	3	2	1		10	CL3/CO3
			-	1 0	-	2	3	1	6							
			_	3 <u>1</u> 4 3	2	3	6	6	5							
											•	-				
		If process P2 requests (0,1,1,3) resources can it be granted immediately.														

		Module IV		
7	a.	With a diagram, illustrate the steps in handling a page fault in Demand Paging.	10	CL3/CO4
	b.	Explain contiguous memory allocation.	10	CL2/CO4
8		Consider the page reference string 1,0,7,1,0,21,2,3,0,3,2,4,0,3,6,2,1 for a memory with		
	a.	three frames. Calculate the number of page faults using FIFO, Optimal page replacement	10	CL3/CO4
		algorithms.		
	b.	Explain the different allocation methods.	10	CL2/CO4
		Module V		
9	a.	A drive has 5000 cylinders numbered 0-4999 the drive is currently serving a request at 143 and previously served a request at 125. The queue of pending requests in FIFO order is 86,1470,913,1774,948,1509,1022,1750,130 starting from the current head position calculate what is the distance travelled (in cylinders) by disk arm to satisfy the requests using FCFS, SSTF, SCAN, LOOK and C-LOOK algorithms.	12	CL3/CO5
	b.	Explain access matrix method of system protection with domain as objects and its implementation.	8	CL2/CO5
		OR		
10	a.	A disk drive has 8000 cylinders numbered 0-7999. The drive is currently serving a request at cylinder 500 and previously served a request at cylinder 600. The queue of pending requests in FIFO order is 200, 1200, 4000, 3500, 6000. Calculate the distance traveled (in cylinders) by the disk arm to satisfy the requests using FCFS, SSTF, SCAN, LOOK, and C-LOOK algorithms.	12	CL2/CO5
	b.	Explain mass storage structure with a diagram.	8	CL3/CO5

Cognitive Levels of Bloom's Taxonomy

No.	CL1	CL2	CL3	CL4	CL5	CL6
Level	Remember	Understand	Apply	Analyze	Evaluate	Create

Course Outcomes

CO1	Illustrate the operating system, its components, and the ideas behind system calls and inter-process communication.	CL3
CO2	Apply the concepts of multithreading and demonstrate various algorithms by considering different scheduling criteria.	CL3
CO3	Illustrate the process synchronization, its classical approaches and discuss the concepts of deadlock.	CL3
CO4	Apply the concept of memory management, demand paging, and demonstrate the working of various page replacement algorithms and file system operations.	CL3
CO5	Analyze the structure of mass storage devices, various disk scheduling techniques and concepts of operating system protection.	CL4