FEEG6013 Group Design Project

GDP 28: Access Gate for Disabled Ramblers

Mark Newman Aaron Horsfield Jessica Shum James Maybey Ming Sheng

Supervisor:

Prof. Anna Barney

Co-Supervisor:

Prof. David Richards

Group Members and Roles

Mark Newman:

Team Leader

Aaron Horsfield:

Vice Team Leader & Electronics Lead

Jessica Shum:

Ethics and Research Lead

James Maybey:

CAD and Design Lead

Ming Sheng:

Secretary and Treasurer

The Brief

Design a structure that **allows mobility scooters** through but **excludes motorcycles**

Aim and Objectives

Aim: Design and manufacture a prototype structure that is both motorcycledeterring and more accessible for mobility scooter users than current designs on the market

Objectives:

- 1. Investigate existing designs and viewpoints of relevant stakeholders
- 2. Form a product design specification and identify areas for improvement
- 3. Produce multiple design solutions that resolve the design brief
- 4. Construct and test a full-scale prototype of a selected design
- 5. Use feedback from testing to suggest improvements to the design

Contents

Background Research

Design Process

Final Design Proposal

Future Work

Project Review

Background Research

Identification of Stakeholders

Scope of the Motorcycle Issue

Legal Aspects

Equality Act 2010:

 Requirement for adjustments to be made where a 'physical feature puts a disabled person at a substantial disadvantage'

Highways Act 1980:

 Permission to erect a structure on a PRoW can only be granted for stock proofing

Current Advice

BS5709:2018

- Provides guidance on best practice for gaps, gates and stiles
- Advisory panels use BS5709:2018 to inform their recommendations
- Compliance means a structure is more likely to be recommended

User Opinions on Existing Structures

91% HAVE BEEN DETERRED FROM A TRIP BY THE THOUGHT OF USING A GATE

70% IDENTIFIED PUSHING AWAY AS THE EASIEST MOTION FROM A MOBILITY SCOOTER

80% RATED THEIR EXPERIENCE WITH **BIKE INHIBITORS** AS **NEGATIVE**

33% RATED THEIR EXPERIENCE WITH RADAR LOCKS ON GATES AS NEGATIVE

Existing Gates & Structures

- Reflects the intention of each solution
- Effectiveness is often subjective

Existing Gates & Structures: Motorcycle Deterrents

Stiles

- + Steps allow pedestrian access
- Mobility scooter access not possible

Large Mobility Kissing Gate

- + Hoop section prevents motorcycle access
- + RADAR key padlock allows mobility scooter access
- Position of padlock is awkward

Bike Inhibitor

- + Fixed width -> catches handlebars of motorcycles
- Limited clearance

Summary of Findings

- **Keys** are **difficult** to use
- Bike inhibitors prevent large scooters
- Hands-free operation preferable
- In rural areas, motorcycles are a perceived issue
- Motorcycle issues are localised & confined to 'urban fringes'
- Larger landowners (National Trust) may be willing to pay more
- Maintenance of current gates is infrequent

Design Process

Design Process Overview

Product Design Specification

Design Specification Category	Specification Target
Aesthetic	Compliments surroundings
Cost	Manufacturing cost < £700
Customer	 Accessible from scooter seat Operation clear to the user
Environment	• Fully reusable or recyclable
Safety	Protruding edges roundedFew pinch points
Size	Minimum clearance 1.1m
Function	 Mobility scooter Pedestrians Motorcycles
Materials and Manufacturing	Standard material sizesWeatherproof

Input-Based Approach

Weight Input

2-Wheel Axle Input

2D/3D Profiles

Physical Driver Inputs

Electronic Input

Electronic Input from Scooter

Thrust from Scooter

Design Concepts

A-Frame

- Reassessment of existing frame dimensions
- Considered mobile and static versions

RADAR Kissing Gate

- Positional improvements
- One-handed operation

Lever Operated

- Easy to operate
- Can incorporate RFID + RADAR key

Design Concepts

Ride-On Mechanism

- Exploits 2 parallel wheels on one axle
- Completely hands-free

RFID Kissing Gate

- Easy-tap fob
- Stock electronic components

Insert chosen key profile here

Pole Key

- Custom key profile fitted to a mobility aid
- Well-developed existing mechanism

Design Matrix

Category	Weighting (1-5)	Reasoning
Aesthetic	1	Easier to market
Cost Efficiency	2	Competitive pricing
Manufacturing and Material Efficiency	3	Reduce production costs and environmental impact
Maintenance	4	Ensure longevity and functionality of structure
Ease for Mobility Scooters	5	Design Project Aim
Prevention of Motorcycles	5	Design Project Aim
Ease to Make Two-Way	4	Easier for those in wheeled mobility aids
Self-Closing	5	Vulnerable to livestock/those with unauthorised access
Access for Pedestrians	3	Desirable to install on public footpaths
Spatial Requirements	2	Smaller ground footprint

The benchmark Aston 2-way gate produced a score of 113

Design Selection

RFID Kissing Gate

- Matrix Score of 120
- Electronic concept
- Uses RFID to unlock the mechanism
- Permits standard foot traffic

RADAR Kissing Gate

- Matrix Score of 119
- Fully mechanical concept
- Must be reset by user
- Permits standard foot traffic

Ride-On Mechanism

- Matrix Score of 114
- Fully mechanical concept
- Standard self-closing method
- Hands-free operation

Prototyping: RFID Pawls + Housing

- Floating pawls
- Pulley system

 Addition of linear rail

- Creation of the pawl housing
- Limit switches
- L-shaped crank

- Two linear rails
- Hinged pawls
- Connecting rod

Final Design Proposal

Pawl Housing B Overview Pawl Housing A of Design Proposal RFID Reader B Offset Hinges RFID Reader A

RADAR Backup

Plan View

■ RFID Reader

Latch Strike Mechanism

- Reproduced both a RADAR lock bracket and strike
- Semi-circular strike profile
- Bracket design to fit
 45x95mm wood profiles
- Lightweight aluminium

Crank-Slider Mechanism

Moving Pawl Mechanism

Electronic Functionality

Requirements:

- Read RFID fobs
- Raise sliders
- Hold gate in open position
- Return to closed position

Components	Functions
Arduino UNO	Determine state of
	circuit
	 Control components
	Store master ID
RFID Readers	Read RFID fobs
Limit Switches	Determine slider
	position
DC Motors	 Raise/lower sliders
MOSFET Drivers	 Control power supply
	to motors
	• Transmit signals
Ethernet Cables	between
	components

Component Layout

State Machine Flowchart

Gate Hinges

- Required a self-closing hinge with 180° opening span
- Raised mass returns gate to resting position
- Adjustment of resting position unsuccessful

*Image taken from Centrewire 180° hinge installation instructions

Free-Standing Structure

- Avoided obtrusions into the gate path
- Calculated required balancing forces
- Emulated strength of a sunk gate post

Testing Session Overview

Construction of free-standing, full-scale prototype

Tamper Testing

Strike Latching Functionality

Testing Session Overview

Ergonomic features tested

RFID Functionality

RADAR Padlock

Pedestrian Testing

Findings From Testing

What We Tested	What We Learned
Positioning of the RFID readers	Database-informed position was suitable
Positioning of the pawl housings	Pawl housing can be difficult to align with moving strike
Opening duration for the gate	Optimal open time for the gate was around 10 seconds
Resting position of the gate	Offset hinges provide inadequate adjustment of resting position
Effectiveness of latching mechanism	Pawls too short
Effectiveness of tamper-proofing measures	Flanged pieces and thin strike are not preventative

Slanted roof aids run off

Roof fixed with screws upholds maintenance

Final Refinements

Maintenance hatch model

Increased slot size

Increased pawl length

Project Review

Aim: Design and manufacture a prototype structure that is both motorcycle-deterring and more accessible for mobility scooter users than current designs on the market

Cost of Prototype

Strengths

Limitations

Project Review

Objectives:

- 1. Investigate existing designs and viewpoints of relevant stakeholders Motorcycle-deterring structures are not ergonomic for mobility scooter users.
- 2. Use product design specification to identify areas for improvement. PDS highlighted improvements could be made in positioning of unlatching mechanism.
- 3. Produce multiple design solutions that resolve the design brief. An RFID-based kissing gate was selected for prototyping.
- 4. Construct and test a full-scale prototype of a selected design.

 A free-standing gate was constructed and tested with a mobility scooter.
- 5. Use feedback from testing to suggest improvements to design. Further design iteration produced after testing.

Future Work

Future Improvements

- Steel or aluminium welded casing
- Reassess required material thickness
- Add flanges to strike channel
- Reconfigure pawl housing mounting
- Improved components
- PV power source

Power Solutions

Average energy consumption of 1.25Wh per day assuming 80 daily uses

Mains Power Source

- Solar solutions able to provide approx. 10 times power required
- Additional power charges backup battery

Photovoltaic Power Source

Thank you to...

- Participants & Volunteers
- Prof. Anna Barney
- Prof. David Richards
- Shail Patel
- Dr. Matthew Wright
- The Disabled Ramblers Charity
- The Centre for Outdoor Accessibility Training
- Val Woods
- Tom Bindoff
- Centrewire
- The Disabled Ramblers' community

Questions

Thank you for listening