FICHE 07-01: Déterminant de Smith MET-1 3.6.6

Yvann Le Fay

Juillet 2019

Enoncé

Soit $n \in \mathbb{N}$, $\psi : \mathbb{N}^* \mapsto \mathbb{C}$, on définit pour tout $i, j \in [1; n]$, $a_{i,j} = \sum_{k|i, k|j} \psi(k)$ et $A = (a_{i,j})$. Montrer que

$$\det A = \prod_{k=1}^{n} \psi(k)$$

Appliquer cette formule pour calculer det A où $a_{i,j}$ est respectivement, le nombre de diviseurs communs à i et à j, la somme des diviseurs communs à i et à j, $i \wedge j$.

Solution

Posons $b_{i,j} = 0$ si $i \nmid j$ et $b_{i,j} = 1$ so $i \mid j$, puis $B = (b_{i,j})$, alors,

$$a_{i,j} = \sum_{k|i, k|j} \psi(k) = \sum_{k=1}^{n} b_{k,j} b_{k,i} \psi(k)$$

D'où, $A = {}^t B \operatorname{diag}(\psi(k)) B$ puis $\det A = \prod_{k=1}^n \psi(k)$. Pour le premier cas on pose $\psi(k) = 1$ et on trouve 1, le second, $\psi(k) = k$ et on trouve n! et le troisième on utilise,

$$n = \sum_{k|n} \varphi k$$

où φ est l'indicatrice d'Euler, on utilise donc $n = i \wedge j$, d'où on tire

$$i \wedge j = \sum_{k|i \wedge j} \varphi(k) = \sum_{k|i,\,k|j} \varphi(k)$$

puis det $A = \prod_{k=1}^{n} \varphi(k)$.