Замечательные пределы

Наиболее часто на практике можно встретить два замечательных предела: первый замечательный предел и второй замечательный предел.

Первый замечательный предел:

$$\lim_{\alpha \to 0} \frac{\sin \alpha}{\alpha} = 1$$

В качестве параметра α может выступать не только буква x, но и сложная функция, важно только, чтобы она стремилась к нулю.

Пример:

$$\lim_{x\to 0} \frac{\sin(x^3 + 2x^2)}{x^3 + 2x^2} = 1$$
, здесь всё нормально, так как $x^3 + 2x^2 \to 0$

А вот в этом случае: $\lim_{x\to 0}\frac{\sin(2x+3)}{2x+3}$ первый замечательный предел использовать нельзя, так как $2x+3\to 3\neq 0$

Следует отметить, что если поменять числитель и знаменатель местами, то от этого ничего не изменится: $\lim_{\alpha \to 0} \frac{\alpha}{\sin \alpha} = 1$ — тот же самый первый замечательный предел.

Второй замечательный предел:

$$\lim_{\alpha \to +\infty} \left(1 + \frac{1}{\alpha} \right)^{\alpha} = e$$

e – это иррациональное число: $e \approx 2,7....$

Нередко можно встретить модификацию второго замечательного предела:

$$\lim_{\alpha \to 0} (1 + \alpha)^{\frac{1}{\alpha}} = e$$

В практических задачах для общего случая (когда «икс» стремится к произвольному числу a) удобно использовать формулу, которая представляет собой следствие второго замечательного предела:

Неопределенность вида 1^{∞} можно устранить с помощью формулы:

$$\lim_{x\to a} u(x)^{v(x)} = e^{\lim_{x\to a} [(u(x)-1)\cdot v(x)]}$$

Намного реже встречаются другие замечательные пределы:

$$\lim_{\alpha \to 0} \frac{\log_b(1+\alpha)}{\alpha} = \frac{1}{\ln b}$$
, $(b > 0, b \ne 1)$, в частности: $\lim_{\alpha \to 0} \frac{\ln(1+\alpha)}{\alpha} = 1$

$$\lim_{\alpha \to 0} \frac{b^{\alpha} - 1}{\alpha} = \ln b$$
, $(b > 0, b \neq 1)$, в частности: $\lim_{\alpha \to 0} \frac{e^{\alpha} - 1}{\alpha} = 1$

$$\lim_{\alpha \to 0} \frac{(1+\alpha)^k - 1}{\alpha} = k$$
, где k – любое действительное число.

Опять же: в качестве параметра α может выступать не только буква x, но и сложная функция, важно только, чтобы она стремилась к нулю.

Внимание! Перестановка числителя и знаменателя в данных пределах в общем случае **не обходится без последствий**:

$$\lim_{\alpha \to 0} \frac{\alpha}{\log_b(1+\alpha)} = \ln b, (b > 0, b \neq 1)$$

$$\lim_{\alpha \to 0} \frac{\alpha}{b^{\alpha} - 1} = \frac{1}{\ln b}, (b > 0, b \ne 1)$$

$$\lim_{\alpha \to 0} \frac{\alpha}{(1+\alpha)^k - 1} = \frac{1}{k}$$
, где k – любое действительное число, отличное от нуля.

HO распространенные частные случаи перестановочны числителем и знаменателем без изменения значения предела (что логично):

$$\lim_{\alpha \to 0} \frac{\alpha}{\ln(1+\alpha)} = 1$$

$$\lim_{\alpha \to 0} \frac{\alpha}{e^{\alpha} - 1} = 1$$

Замечательные эквивалентности

Если $\alpha \to 0$, то справедливы следующие замечательные эквивалентности:

- 1) $\sin \alpha \sim \alpha$
- 2) $tg\alpha \sim \alpha$
- 3) $\arcsin\alpha \sim \alpha$
- 4) $arctg\alpha \sim \alpha$

5)
$$1-\cos\alpha \sim \frac{1}{2} \cdot \alpha^2$$

6)
$$\log_b(1+\alpha) \sim \frac{\alpha}{\ln b}$$
 ($b > 0, b \ne 1$), в частности: $\ln(1+\alpha) \sim \alpha$

7)
$$b^{\alpha} - 1 \sim \alpha \ln b \ (b > 0, b \neq 1)$$
, в частности: $e^{\alpha} - 1 \sim \alpha$

8)
$$(1+\alpha)^k - 1 \sim \alpha k$$
, как вариант: $(1+\alpha)^k \sim \alpha k + 1$

В качестве параметра α может выступать и сложная функция, **лишь бы она стремилась к нулю**.