Math 167 (Mathematical Game Theory) University of California, Los Angeles

Aaron Chao

Spring 2022

These are my lecture notes for Math 167 (Mathematical Game Theory) taught by Oleg Gleizer. The main textbook for this class is *Game Theory*, *Alive* by Anna Karlin and Yuval Peres and the supplementary textbook is *A Course in Game Theory* by Thomas Ferguson.

Contents	
Week 1	3
1 Mar 28, 2022 1.1 Impartial Combinatorial Games	3 3
2 Mar 30, 2022 2.1 Combinatorial Games (Cont'd)	6 6
3 April 1, 2022 3.1 The Game of Nim (Cont'd)	8 8 9 10
Week 2	11
4 Apr 4, 2022 4.1 Two-Person Zero Sum Games in Strategic Form (Cont'd)	11 11
5 Apr 6, 2022 5.1 General Two-Person Zero-Sum Games in Strategic Form	15 15
6 Apr 8, 2022 6.1 Solving Small-Dimensional Two-Person Zero-Sum Games Pen-and-Paper 6.2 Domination	19 19 19
Week 3	22

NΙ	atl	հ 1	16	7
IVI	$a_{\rm LL}$	n I	ιn	١/

Aaron Chao

7	Apr 11, 20227.1 Principle of Indifference7.2 Symmetric Games	
8	Apr 13, 2022	25

1 Mar 28, 2022

1.1 Impartial Combinatorial Games

Definition 1.1 (Impartial combinatorial game)

In an $\underline{\text{impartial combinatorial game}},$

- Two-person
- Perfect information
- No chance moves
- Win-or-lose outcome

Example 1.2

Suppose

- A pile of *n* chips on the table
- Two players: P1 and P2
- A move consists of removing one, two, or three chips from the pile
- P1 makes the first move, players alternate then
- The player to remove the last chip wins (the last player to move wins. If a player can't move, they lose.)

Method to analyze: backward induction.

Positions:

- N, next player to take a move wins.
- P, previous (second) player to take a move wins.

Graph of the game

Any move from a P position leads to an N position. There always exists a move from an N position to a P position.

Ending condition: the game ends in a finite number of moves, no matter how played. A T position is a P position.

Definition 1.3 (Normal play vs. misère play)

In a <u>normal play</u>, the last player to move wins. In a <u>misère play</u>, the last player to move loses.

Example 1.4

A misère game, a player can take 1-4 chips.

Every position is either N or P, but not nothing or both.

Example 1.5 (The game of Chomp)

Graph of the game:

- Positions correspond to vertices
- Moves correspond to oriented edges

Definition 1.6 (Strategy)

A function that assigns a move to each position, except for the terminal.

Definition 1.7 (Winning strategy from a position x)

A winning strategy from a position x is a sequence of moves, starting from x, that guarantees a win.

Consider a normal game. Let $\mathbf{N}_i/\mathbf{P}_i$ be the set of positions from which P1/P2 can win (reach the nearest terminal vertex of the same graph) in at most i moves.

$$\mathbf{P}_0 = \mathbf{P}_1 = \{\text{terminal positions}\}\$$

 $\mathbf{N}_{i+1} = \{x : \text{ there is a move from } x \text{ to } \mathbf{P}_i\}$

 $\mathbf{P}_{i+1} = \{y : \text{ each move leads to } \mathbf{N}_i\}$

Note 1.8: $\mathbf{P}_0 = \mathbf{P}_1 \subseteq \mathbf{P}_2 \subseteq \mathbf{P}_3 \dots$

$$\mathbf{N}_1 \subseteq \mathbf{N}_2 \subseteq \mathbf{N}_3 \dots$$

$$\mathbf{N} = \bigcup_{i=1} \mathbf{N}_i, \quad \mathbf{P} = \bigcup_{i=0} \mathbf{P}_i$$

Definition 1.9 (Progressively bounded)

A game is called <u>progressively bounded</u> if for every position x there exists an upper bound B(x) on the number of moves until the game terminates.

2 Mar 30, 2022

2.1 Combinatorial Games (Cont'd)

Recall 2.1 • $P_0 = P_1 = \{\text{terminal positions}\}\$

- $\mathbf{N}_{n+1} = \{x : \text{there is a move from } x \text{ to } \mathbf{P}_n \}$
- $\mathbf{P}_{n+1} = \{y : \text{ each move from } y \text{ leads to } \mathbf{N}_n \}$
- $P_0 = P_1 \subseteq P_2 \subseteq \dots$
- $\mathbf{N}_1 \subseteq \mathbf{N}_2 \subseteq \mathbf{N}_3 \subseteq$
- $\mathbf{P} = \bigcup_{n=0}^{\infty} \mathbf{P}_n$
- $\mathbf{N} = \bigcup_{n=1}^{n} \mathbf{N}_n$
- A game is called <u>progressively bounded</u> if for every position x there exists an upper bound B(x) on the number of moves until the game stops.

Theorem 2.2

In a progressively bounded impartial full information combinatorial game, all positions are in $\mathbb{N} \cup \mathbb{P}$. Thus, for every position there exists a winning strategy.

Proof. Let $B(x) \leq n$. Let us prove by induction that $x \in \mathbb{N}_n \cup \mathbb{P}_n$.

Base: n = 0

x is a terminal vertex $\implies x \in \mathbf{P}_0 = \mathbf{P}_1$.

Inductive hypothesis by \mathbf{P}_0 : $B(x) \leq n \implies x \in \mathbf{N}_n \cup \mathbf{P}_n$.

Inductive step: Show that $B(x) \leq n+1 \implies x \in \mathbf{N}_{n+1} \cup \mathbf{P}_{n+1}$

Consider a move $x \to y$ and $B(y) \le n$. Hence, $y \in \mathbf{N}_n \cup \mathbf{P}_n$. So either

Case 1: Each move from x leads to $y \in \mathbf{N}_n \implies x \in \mathbf{P}_{n+1}$.

Case 2: There exists a move from x to $y \notin \mathbf{N}_n$. Thanks to the inductive typo, $y \in \mathbf{N}_n \cup \mathbf{P}_n$ so $y \in \mathbf{P}_n \implies x \in \mathbf{N}_{n+1}$.

2.2 The Game of Nim

- Several piles, each containing finitely many chips.
- A move: a player can remove any number of chips, from one to all from any pile
- P1 and P2 alternate taking moves
- The player to take the last chip wins

Example 2.3

We have two piles. The general case for k piles, we state: (x_1, x_2, \dots, x_k) .

Nim-Sum:

Consider $x \oplus y$. We rewrite x and y as binary numbers and perform long addition of x_2 and y_2 without carry-over, i.e. mod 2.

Example 2.4

Note 2.5: Nim is a progressively bounded game.

Theorem 2.6 (Bouton)

A position $x = (x_1, x_2, \dots, x_k)$ is a **P** position $\iff x_1 \oplus x_2 \oplus \dots \oplus x_k = 0$.

3 April 1, 2022

3.1 The Game of Nim (Cont'd)

Recall 3.1 $x = (x_1, x_2, ..., x_k)$ Theorem (Bouton) says $x \in \mathbf{P} \iff x_1 \oplus x_2 \oplus \cdots \oplus x_k = 0$.

Proof of Theorem 2.6. We have

Terminal position: $x = (0, 0, \dots 0) \in \mathbf{P}$ Let $x \in \mathbf{N}$. Then there exists a move $x \to y \in \mathbf{P}$.

Find the left-most (most significant) column with an odd number of 1's. Change any number that has a 1 in the column so that there is an even number of 1's in every column. The 1 in the most significant position becomes a 0 which implies the number becomes smaller. So this is a legal move.

We have $x \in \mathbf{P} \implies$ any move $x \to y \in \mathbf{N}$ where

$$x = (x_1, x_2, \dots, x_k) \mapsto y = (x'_1, x_2, \dots, x_k)$$

such that

$$x_1' < x_1 \text{ and } x_1 \oplus x_2 \oplus \cdots \oplus x_k = 0.$$

If

$$x_1' \oplus x_2 \oplus \cdots \oplus x_k = 0$$

then

$$x_1' \oplus x_2 \oplus \cdots \oplus x_k = 0$$

then $x'_1 = x_0$, a contradiction. Hence

$$x_1' \oplus x_2 \oplus \cdots \oplus x_k \neq 0 \implies y \in \mathbf{N}.$$

Example 3.2

$$x_1 = 7$$
$$x_2 = 10$$
$$x_3 = 15$$

So we have that $(7, 10, 15) \mapsto (5, 10, 15)$

3.2 Subtraction Nim

Extra condition: A player can remove at most n chips.

We find pile sizes mod n + 1, i.e.

$$(x_1, x_2, \dots, x_k) \mapsto (x_1 \mod n + 1, x_2 \mod n + 1, \dots, x_k \mod n + 1)$$

Now we find the Nim-sum and make a move.

$$x \bmod n + 1 = \underbrace{(x_1 \bmod n + 1, x_2 \bmod n + 1, \dots, x_k \bmod n + 1)}_{(x_1 \bmod n + 1)_2 \oplus (x_2 \bmod n + 1)_2 \oplus \dots \oplus (x_k \bmod n + 1)_2} \implies \begin{cases} = 0 \iff \mathbf{P} \\ \neq 0 \iff \mathbf{N} \end{cases}$$

Example 3.3

We have x = (12, 13, 14) and n = 3. So,

$$(12 \mod 4, 13 \mod 4, 14 \mod 4) \equiv (0, 1, 2) = (0_2, 1_2, 10_2)$$

So

$$\begin{array}{ccc}
 & 0 & 0 \\
 & 0 & 1 \\
 & 1 & 0 \\
\hline
 & 1 & 1
\end{array}
\neq 0$$

so we take away one chip from the third pile

So we have that $(12, 13, 14) \mapsto (12, 13, 13)$.

Note 3.4: You can always make a legal move $\mathbb{N} \to \mathbb{P}$ by removing $i \leq n$ chips from a pile.

Note 3.5: To move from **P** to **P**, you need to remove n+1 chips from a pile. Not allowed! Hence, any move from **P** is to **N**.

Example 3.6

We have x = (12, 13, 13), with n = 3. So

$$x \mod 4 = (0, 1, 1)$$

therefore

$$\begin{array}{c}
0\\
1\\
1\\
0
\end{array}$$

3.3 Two-Person Zero Sum Games (Strategic Form)

We have

- P1: a non-empty set of strategies S1
- P2: a non-empty set of strategies S2
- A: $S1 \times S2 \to \mathbb{R}$, the min function for P1 (payoff matrix)

Note 3.7: Since the game is zero-sum, a win for P1 is a loss for P2. A(i, j) can be ≤ 0 , so works both ways.

Pure strategies:

A game. P1 chooses the strategy S1i. Simultaneously, P2 chooses the strategy S2j. P1 wins a_{ij} .

Lemma 3.8

 $\min_{j} \max_{i} a_{ij} \ge \max_{i} \min_{j} a_{ij}$

We will continue in the next lecture.

4 Apr 4, 2022

4.1 Two-Person Zero Sum Games in Strategic Form (Cont'd)

Recall 4.1 Recall that

P1 has a non-empty set of pure strategies

$$S1 = \{S11, S12, \dots, S1m\}$$

P2 has a non-empty set of pure strategies

$$S2 = \{S21, S22, \dots, S2n\}$$

 $A: S1 \times S2 \to \mathbb{R}$, payoff matrix P1, $S1i: a_{i1}, a_{i2}, \ldots, a_{in}$

Betting on the worst possible outcome, P1 bets on $\min_{1 \leq j \leq n} a_{ij}$. Being intelligent, P1 chooses

$$\max_{1 \le i \le m} \min_{1 \le j \le m} a_{ij}.$$

Betting on the worst possible loss, P2 bets on $\max_{1 \le i \le m} a_{ij}$. Being intelligent, P2 chooses

$$\min_{1 \le j \le n} \max_{1 \le i \le m} a_{ij}$$

Lemma 4.2

$$\max_{1 \le i \le m} \min_{1 \le j \le n} a_{ij} \le \min_{1 \le i \le m} \max_{1 \le j \le n} a_{ij}$$

Proof. Let

$$\max_{i} \min_{j} a_{ij} = a_{pq}$$
$$\min_{j} \max_{i} a_{ij} = a_{rs}$$

	q		s	
p	a_{pq}	\leq	a_{ps}	
			7	
r	a_{rq}		a_{rs}	

Example 4.3

Chooser (P1), Hider (P2). Hider hides behind their back

- Either left hand with one coin
- or right hand with two coins

Chooser chooses L or R,

 $P1: \max_{j} \min_{i} a_{ij} = 0$

 $P2: \min_{j} \max_{i} a_{ij} = 1$

Mixed strategies

P1: if P2 chooses the strategy L1, the expected gain is

$$1 \cdot p + 0 \cdot (1 - p) = 0$$

If P2 chooses R2, the expected gain is

$$0 \cdot p + 2(1-p) = 2 - 2p.$$

If P1 is out of luck, then the expected gain is

$$\min\{p, 2 - 2p\}$$

Since P1 is intelligent, they choose p s.t. the gain is

$$\max_{0 \leq p \leq 1} \min\{p, 2-2p\}$$

$$2 - 2p = p$$

$$2 = 3r$$

$$2 = 3p$$
$$p = \frac{2}{3}$$

The optimal strategy is

$$\frac{2}{3}L + \frac{1}{3}R$$

With expected gain $\geqslant \frac{2}{3}$. P2 is thinking. If P1 chooses L, my expected loss is

$$1 \cdot q + 0 \cdot (1 - q) = q$$

If P1 chooses R, my expected loss is

$$0 \cdot q + 2(1 - q) = 2 - 2q$$

Suppose I'm out of luck. Then my expected loss is

$$\max\{q, 2 - 2q\}$$

Being my very smart self,

$$\min_{0 \le q \le 1} \max\{q, 2 - 2q\}$$

The optimal strategy is

$$\frac{2}{3}L1 + \frac{1}{3}R2$$

With expected loss $\leq \frac{2}{3} = V$, the value of the game.

Let us generalize $A \in \mathbb{R}^{n \times m}$, an $n \times m$ payoff matrix.

$$\Delta_m = \left\{ \mathbf{p} \in \mathbb{R}^m : p_1 \ge 0, p_2 \ge 0, \dots, p_m \ge 0, \sum_{i=1}^m p_i = 1 \right\}$$

$$\Delta_n = \left\{ \mathbf{q} \in \mathbb{R}^n : q_1 \ge, q_2 \ge 0, \dots, q_n \ge 0, \sum_{j=1}^n q_j = 1 \right\}$$

A mixed strategy for P1 is determined by

$$\mathbf{p} \in \Delta_m$$

A mixed strategy for P2 is determined by

$$\mathbf{q} \in \Delta_n$$

Expected gain for P1 (expected loss for P2) = $(\mathbf{p})^T A \mathbf{q}$

		P2			
		q_1	q_2	• • •	q_n
	p_1	a_{11}	a_{12}	•••	a_{1n}
P1	p_2	a_{21}	a_{22}		a_{2n}
	:	•	•	٠	:
	p_m	a_{m1}	a_{m2}		a_{mn}

So

$$(\mathbf{p})^t A \mathbf{q} = p_i (a_i q_1 + a_{i2} q_2 + \dots + a_{in} q_n)$$

If P1 employs the strategy **P**, then in the worst case their payoff is

$$\min_{\mathbf{q} \in \Delta_n} (\mathbf{p})^t A \mathbf{q} = \min_{1 \le j \le n} \sum_{i=1}^m a_{ij} p_i$$

Hence, P1's winning strategy is

$$\max_{\mathbf{p} \in \Delta_m} \min_{\mathbf{q} \in \Delta_n} \mathbf{p}^T A \mathbf{q}$$

5 Apr 6, 2022

5.1 General Two-Person Zero-Sum Games in Strategic Form

Recall 5.1 Recall

With set of mixed strategies given by,

$$\Delta_m = \left\{ \mathbf{p} \in \mathbb{R}^m \colon \mathbf{p} \ge 0, \sum_{i=1}^m p_i = 1 \right\}$$

$$\Delta_n = \left\{ \mathbf{q} \in \mathbb{R}^n \colon \mathbf{q} \ge 0, \sum_{j=1}^n q_j = 1 \right\}$$

where $p_1 \ge 0, p_2 \ge 0, \dots, p_m \ge 0$.

We have

Expected gain of P1 =
$$(\mathbf{p})^t A \mathbf{q}$$

with $\mathbf{p} \in \Delta_m$ and $\mathbf{q} \in \Delta_n$.

The winning strategy for P1:

- Worst case: $\min_{\mathbf{q} \in \Delta_n} (\mathbf{p})^t A \mathbf{q}$
- Smart choice: $\max_{\mathbf{p} \in \Delta_m} \min_{\mathbf{q} \in \Delta_n} (\mathbf{p})^t A \mathbf{q}$

$$\min_{\mathbf{q} \in \Delta_n} (\mathbf{p})^t A \mathbf{q} = \min_{\mathbf{q} \in \Delta_m} \sum_{j=1}^n q_j \sum_{i=1}^m a_{ij} p_i$$
$$= \min_{1 \le j \le n} \sum_{i=1}^m a_{ij} p_i$$

The winning strategy for P2:

- Worst case: $\max_{\mathbf{p} \in \Delta_m} (\mathbf{p})^t A \mathbf{q}$
- Smart choice: $\min_{\mathbf{q} \in \Delta_n} \max_{\mathbf{p} \in \Delta_m} (\mathbf{p})^t A \mathbf{q}$

$$\max_{\mathbf{p} \in \Delta_m} (\mathbf{p})^t A \mathbf{q} = \max_{\mathbf{p} \in \Delta_m} \sum_{i=1}^m p_i \sum_{j=1}^n a_{ij} q_j$$
$$= \max_{1 \le i \le m} \sum_{j=1}^n a_{ij} q_j$$

Definition 5.2 (Safety value for P1 vs. P2)

The value $\hat{\mathbf{p}}$ at which

$$\max_{\mathbf{p}\in\Delta_m}\min_{\mathbf{q}\in\Delta_n}(\mathbf{p})^t A\mathbf{q}$$

is attained is called the safety value for P1. The value $\hat{\mathbf{q}}$ at which

$$\min_{\mathbf{q}\in\Delta_n}\max_{\mathbf{p}\in\Delta_m}(\mathbf{p})^tA\mathbf{q}$$

is attained is called the safety value for P2.

Theorem 5.3 (Von Neumann Minimax Theorem)

For any two-person zero-sum game with $m \times n$ payoff matrix A, there is a number V, called the value of the game, satisfying

$$\min_{\mathbf{q} \in \Delta_n} \max_{\mathbf{p} \in \Delta_m} (\mathbf{p})^t A \mathbf{q} = \max_{\mathbf{p} \in \Delta_m} \min_{\mathbf{q} \in \Delta_n} (\mathbf{p})^t A \mathbf{q} = V$$

Let $\hat{\mathbf{p}}$ be an optimal solution for P1. Let $\hat{\mathbf{q}}$ be an optimal solution for P2. Then

$$\min_{\mathbf{q}\in\Delta_n}(\hat{\mathbf{p}})^t A \mathbf{q} = \max_{\mathbf{p}\in\Delta_m}(\hat{\mathbf{p}})^t A \hat{\mathbf{q}}$$

Definition 5.4 (Value of the game)

Given conditions from Von Neumann Minimax Theorem, V is the value of the game.

Example 5.5 (Odd or Even) • P1 and P2 simultaneously call out one of the numbers, 1 or 2.

- If the sum is odd, P1 wins and gets the sum of the numbers in \$
- $\bullet\,$ If the sum is even, P2 wins and gets the sum of the numbers in \$

P1
$$\begin{array}{c|c} & & & & & & \\ & 1, q & 2, 1 - q \\ \hline 1, q & 2, 1 - q & & & \\ \hline 2, 1 - p & 3 & & -4 & \\ \end{array}$$

So P1's expected win (P2's expected loss) is

$$(\mathbf{p})^t A \mathbf{q} = \begin{bmatrix} p & 1-p \end{bmatrix} \begin{bmatrix} -2 & 3 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} q \\ 1-q \end{bmatrix}$$
$$= -12pq + 7p + 7q - 4$$

P1's worst possible case:

$$f(p) = \min_{0 \leq q \leq 1} \{-12pq + 7p + 7q - 4\}$$

$$q, S21$$
: $-2p + 3(1-p) = 3 - 5p$
 $1 - q, S22$: $3p - 4(1-p) = -4 + 7p$

- If $3 5p \ge -4 + 7p$, then q = 0.
- If 3 5p < -4 + 7p, then q = 1.

Hence,

$$f(p) = \min\{3 - 5p, 4 - 7p\}$$

Note that

$$(-12pq + 7p + 7q - 4)\Big|_{q=0} = -4 + 7p$$

 $(-12pq + 7p + 7q - 4)\Big|_{q=1} = 3 - 5p$

P1:
$$\max_{0 \le p \le 1} \min_{0 \le q \le 1} q \left(-2p + 3(1-p) \right) + (1-q) \left(3p - 4(1-p) \right) = \max_{0 \le p \le 1} \min \left\{ 3 - 5p, -4 + 7p \right\}$$

$$3 - 5p = -4 + 7p$$
$$7 = 12p$$
$$p = \frac{7}{12}, \quad q = \frac{5}{12}$$

Now from P2:

$$\text{P2: } \min_{0 \leq q \leq 1} \max_{0 \leq p \leq 1} p \Big(-2q + 3(1-q) \Big) + (1-p) \Big(3q - 4(1-q) \Big) = \min_{0 \leq q \leq 1} \max \big\{ 3 - 5q, -4 + 7q \big\}$$

6 Apr 8, 2022

6.1 Solving Small-Dimensional Two-Person Zero-Sum Games Penand-Paper

Definition 6.1 (Saddle point)

An element of A, a_{ij} is called a saddle point if

- a_{ij} is the min of the *i*-th row
- a_{ij} is the max of the j-th column

Then $p_i = 1, q_j = 1, V = a_{ij}$

Example 6.2

Given

$$\begin{bmatrix} 4 & 1 & -3 \\ 3 & 2 & 5 \\ 0 & 1 & 6 \end{bmatrix} \stackrel{\text{min}}{\underbrace{\begin{array}{c} 3 \\ 2 \\ 0 \\ 0 \end{array}}}$$

$$\max \quad 4 \quad 2 \quad 6$$

So $p_2 = q_2 = 1$ and V = 2.

Lemma 6.3

Let a_{pq} and a_{rs} be saddle points of a payoff matrix A. Then $a_{pq} = a_{rs}$.

	 q		s	
p	a_{pq}	<u> </u>	a_{ps}	
	VI		7	
r	a_{rq}	≥	a_{rs}	

6.2 Domination

Rows:

So $p_k = 0$ so k-th row can be removed from A.

Strict domination: for j = 1, 2, ..., n,

$$a_{ij} > a_{kj}$$

Columns: the k-th column dominates the j-th column

$$\begin{array}{ccc} a_{1j} & \geqslant & a_{1k} \\ a_{2j} & \geqslant & a_{2k} \\ \vdots & \vdots & \vdots \\ a_{mj} & \geqslant & a_{mk} \end{array}$$

Strict domination: for i = 1, 2, ..., m,

$$a_{ij} > a_{ij}$$

where a_{ij} is dominant.

- Removing a dominant row or column does not change the value of the game, but may remove an optimal strategy.
- Removing a strictly dominant row or column does not change the set of optimal strategies.

Example 6.4

$$A_1 = \begin{bmatrix} 2 & 0 & 4 \\ 1 & 2 & 3 \\ 4 & 1 & 2 \end{bmatrix}$$

Note: 0 < 4Note: 2 < 3, strict domination. 1 < 2

$$A_2 = \begin{bmatrix} 2 & 0 \\ 1 & 2 \\ 4 & 1 \end{bmatrix}$$

Note: $\wedge \wedge$, strict domination $\begin{pmatrix} 4 & 1 \end{pmatrix}$

$$\begin{bmatrix}
 1 & 2 \\
 4 & 1 \\
 4 & 2
 \end{bmatrix}
 1$$

$$\max 4 \quad 2$$

Note: No saddle point

Remark 6.5 A row/column can be dominated by a weighted sum of rows columns. For

example, $a_{i1} \quad a_{12} \quad \cdots \quad a_{in}$ $\vdots \quad \vdots \quad \vdots$ $a_{j1} \quad a_{j2} \quad \cdots \quad a_{jn}$ $\vdots \quad \vdots \quad \vdots$ $a_{k1} \quad a_{k2} \quad \cdots \quad a_{kn}$ For $\ell = 1, 2, \dots, n$, we have $\alpha a_{i\ell} + (1 - \alpha) a_{j\ell} \geqslant a_{k\ell}$

Example 6.6 $\begin{bmatrix} 0 & 4 & 6 \\ 5 & 7 & 4 \\ 9 & 6 & 3 \end{bmatrix}$ 4 > 3 7 > 4.5 $5 \ge 6$

7 Apr 11, 2022

7.1 Principle of Indifference

Let $\hat{\mathbf{p}} = (p_1, p_2, \dots, p_m)^t$ be an optimal strategy for P1 and let $q_j = 1$ be a pure strategy for P2.

$$\sum_{i=1}^{m} a_{ij} p_i \geqslant V \tag{1}$$

Let $\hat{\mathbf{q}} = (q_1, q_2, \dots, q_n)^t$ be an optimal strategy for P2 and let $p_i = 1$ be a pure strategy for P1. Then

$$\sum_{j=1}^{n} a_{ij} q_j \leqslant V \tag{2}$$

Note 7.1: If both players use optimal strategies, then

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} p_i q_j = V$$

Proof. We have

$$V \leqslant \sum_{i=1}^{m} a_{ij} p_i = 1 \cdot \sum_{i=1}^{m} a_{ij} p_i = \left(\sum_{j=1}^{m} q_j\right) \sum_{i=1}^{m} a_{ij} p_i$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} p_i q_j$$
$$= \sum_{i=1}^{m} p_i \sum_{j=1}^{m} a_{ij} q_j \leqslant V$$
$$= V$$

Theorem 7.2 (The Equilibrium Theorem)

Let $\hat{\mathbf{p}} = (p_1, p_2, \dots, p_m)$ and $\hat{\mathbf{q}} = (q_1, q_2, \dots, q_n)$ be optimal strategies for P1 and P2 respectively. Then

$$\sum_{i=1}^{n} a_{ij} q_j = V \quad \forall i \text{ s.t. } p_i > 0$$

$$\sum_{i=1}^{m} a_{ij} p_i = V \quad \forall j \text{ s.t. } q_j > 0$$

Proof. Let $p_k > 0$ and let $\sum_{j=1}^n a_{kj}q_j \neq V \implies \sum_{j=1}^n a_{kj}q_j < V$. We have

$$V \leqslant \sum_{i=1}^{m} p_i \sum_{j=1}^{n} a_{ij} q_j < V$$

a contradiction.

Example 7.3 (The game of Odd-and-Even)

Played with three numbers: 0, 1, and 2.

 $p_1 \ge 0, p_2 \ge 0, p_3 \ge 0$, and $p_1 + p_2 + p_3 = 1$. Then

$$\begin{cases}
p_2 - 2p_3 - V = 0 \\
p_1 - 2p_2 + 3p_3 - V = 0 \\
-2p_1 + 3p_2 - 4p_3 - V = 0 \\
p_1 + p_2 + p_3 = 1
\end{cases}$$

7.2 Symmetric Games

The rules are the same for P1 and P2. So $A^t = -A$.

Theorem 7.4

The value of a finite size symmetric game is zero.

Proof. Note $V^t = V$. And

$$V = (\hat{\mathbf{p}})^t A \hat{\mathbf{p}} = \left[(\hat{\mathbf{p}})^t A \hat{\mathbf{p}} \right]^t = -\hat{\mathbf{p}} A \hat{\mathbf{p}} = -V$$

So

$$V = -V \implies V = 0$$

Example 7.5 (Rock, Paper, Scissors)

We have

			P2	
		Rock	Paper	Scissors
	Rock	0	-1	1
P1	Paper	1	0	-1
	Scissors	-1	1	0

So

$$\begin{cases} p_2 - p_3 = 0 \\ -p_1 + p_3 = 0 \\ p_1 - p_2 = 0 \\ p_1 + p_2 + p_3 = 1 \end{cases}$$

Therefore,

$$p_1 = p_2 = p_3 = \frac{1}{3}$$

8 Apr 13, 2022