Computational searches for fractional Calabi-Yau algebras

James R Calvert

University of East Anglia

September 1, 2023

A **quiver** is a directed graph consisting of sets of vertices and arrows.

A **quiver** is a directed graph consisting of sets of vertices and arrows.

We say that a quiver is linear if it is of the form

$$1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} 3 \xrightarrow{\alpha_3} \cdots \xrightarrow{\alpha_{n-2}} n - 1 \xrightarrow{\alpha_{n-1}} n$$

and denote this quiver by Q_n .

A **quiver** is a directed graph consisting of sets of vertices and arrows.

We say that a quiver is linear if it is of the form

$$1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} 3 \xrightarrow{\alpha_3} \cdots \xrightarrow{\alpha_{n-2}} n - 1 \xrightarrow{\alpha_{n-1}} n$$

and denote this quiver by Q_n .

Note: Arrows only go from left-to-right.

A **quiver** is a directed graph consisting of sets of vertices and arrows.

We say that a quiver is linear if it is of the form

$$1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} 3 \xrightarrow{\alpha_3} \cdots \xrightarrow{\alpha_{n-2}} n - 1 \xrightarrow{\alpha_{n-1}} n$$

and denote this quiver by Q_n .

Note: Arrows only go from left-to-right.

A length m path in Q_n is a sequence of m arrows.

A **quiver** is a directed graph consisting of sets of vertices and arrows.

We say that a quiver is linear if it is of the form

$$1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} 3 \xrightarrow{\alpha_3} \cdots \xrightarrow{\alpha_{n-2}} n - 1 \xrightarrow{\alpha_{n-1}} n$$

and denote this quiver by Q_n .

Note: Arrows only go from left-to-right.

A length m path in Q_n is a sequence of m arrows. We say that a path is a **zero path** if it contains non-consecutive arrows.

A **quiver** is a directed graph consisting of sets of vertices and arrows.

We say that a quiver is linear if it is of the form

$$1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} 3 \xrightarrow{\alpha_3} \cdots \xrightarrow{\alpha_{n-2}} n - 1 \xrightarrow{\alpha_{n-1}} n$$

and denote this quiver by Q_n .

Note: Arrows only go from left-to-right.

A length m path in Q_n is a sequence of m arrows. We say that a path is a **zero path** if it contains non-consecutive arrows.

Example: $\alpha_2\alpha_1$ is a zero path in Q_3 , whereas $\alpha_1\alpha_2$ is non-zero.

The **source** of a path P is the vertex from which it originates. Similarly, the **target** of a path P is the vertex at which it ends.

The **source** of a path P is the vertex from which it originates. Similarly, the **target** of a path P is the vertex at which it ends.

A path algebra $A = kQ_n$ of a quiver Q_n is a vector space over a field (e.g. \mathbb{R} or \mathbb{C}) k with basis containing all paths in Q_n together with multiplication

$$\cdot: A \times A \rightarrow A$$
.

The **source** of a path P is the vertex from which it originates. Similarly, the **target** of a path P is the vertex at which it ends.

A path algebra $A = kQ_n$ of a quiver Q_n is a vector space over a field (e.g. \mathbb{R} or \mathbb{C}) k with basis containing all paths in Q_n together with multiplication

$$\cdot: A \times A \rightarrow A$$
.

If b_1 and b_2 are basis vectors, then

$$b_1 \cdot b_2 = \begin{cases} b_1 b_2, & \text{if } t(b_1) = s(b_2); \\ 0, & \text{otherwise.} \end{cases}$$

The **source** of a path P is the vertex from which it originates. Similarly, the **target** of a path P is the vertex at which it ends.

A path algebra $A = kQ_n$ of a quiver Q_n is a vector space over a field (e.g. \mathbb{R} or \mathbb{C}) k with basis containing all paths in Q_n together with multiplication

$$\cdot: A \times A \rightarrow A$$
.

If b_1 and b_2 are basis vectors, then

$$b_1 \cdot b_2 = \begin{cases} b_1 b_2, & \text{if } t(b_1) = s(b_2); \\ 0, & \text{otherwise.} \end{cases}$$

Example: kQ_3 has basis $\{e_1, e_2, e_3, \alpha_1, \alpha_2, \alpha_1\alpha_2\}$, where e_i are the **lazy paths**. We write $e_i \cdot \alpha_i = \alpha_i$.

A **relation** on Q_n is a non-zero path that we set to be zero.

A **relation** on Q_n is a non-zero path that we set to be zero. For example, in Q_3 we have the length two relation

$$1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} 3$$

$$\alpha_1 \alpha_2$$

A **relation** on Q_n is a non-zero path that we set to be zero. For example, in Q_3 we have the length two relation

$$1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} 3$$

$$\alpha_1 \alpha_2$$

We can embed relations into an algebra by forming the quotient algebra kQ_n/I , where $kQ_n \supseteq I = (r_1, \ldots, r_m)$ is the ideal generated by the relations r_1, \ldots, r_m .

A **left-module** M for an algebra A^* is a k-vector space on which A^* "acts".

A **left-module** M for an algebra A^* is a k-vector space on which A^* "acts".

Given $A = kQ_n/I$, we define P_i and I_i to be a k-vector spaces with bases containing all paths into i and out of i respectively.

A **left-module** M for an algebra A^* is a k-vector space on which A^* "acts".

Given $A = kQ_n/I$, we define P_i and I_i to be a k-vector spaces with bases containing all paths into i and out of i respectively.

It can then be shown that P_i and I_i are left A-modules.

A **left-module** M for an algebra A^* is a k-vector space on which A^* "acts".

Given $A = kQ_n/I$, we define P_i and I_i to be a k-vector spaces with bases containing all paths into i and out of i respectively.

It can then be shown that P_i and I_i are left A-modules. The P_i are the **projective modules** and the I_i are the **injective modules**.

A **left-module** M for an algebra A^* is a k-vector space on which A^* "acts".

Given $A = kQ_n/I$, we define P_i and I_i to be a k-vector spaces with bases containing all paths into i and out of i respectively.

It can then be shown that P_i and I_i are left A-modules. The P_i are the **projective modules** and the I_i are the **injective modules**.

A projective resolution of a left A-module M is given by

A **left-module** M for an algebra A^* is a k-vector space on which A^* "acts".

Given $A = kQ_n/I$, we define P_i and I_i to be a k-vector spaces with bases containing all paths into i and out of i respectively.

It can then be shown that P_i and I_i are left A-modules. The P_i are the **projective modules** and the I_i are the **injective modules**.

A projective resolution of a left A-module M is given by

We can represent this projective resolution using a matrix. Then, if the matrix doesn't have finite order, then kQ_n/I is not fCY.

The **Serre functor** \$ takes P_i to a projective resolution of I_i .

The **Serre functor** \$ takes P_i to a projective resolution of I_i .

We say that kQ_n/I is r/s-fCY if $\$^s \cong \Sigma^r$, and call r/s the Calabi-Yau dimension.

The **Serre functor** \$ takes P_i to a projective resolution of I_i .

We say that kQ_n/I is r/s-fCY if $\$^s \cong \Sigma^r$, and call r/s the Calabi-Yau dimension.

Theorem: kQ_n (i.e. l=0) has Calabi-Yau dimension $\frac{n-1}{n+1}$.

The **Serre functor** \$ takes P_i to a projective resolution of I_i .

We say that kQ_n/I is r/s-fCY if $\$^s \cong \Sigma^r$, and call r/s the Calabi-Yau dimension.

Theorem: kQ_n (i.e. l=0) has Calabi-Yau dimension $\frac{n-1}{n+1}$.

However, less is known about kQ_n/I for other ideals I. This is the primary motivation behind performing these computational searches.

 $Programming\ Interlude...$

Some data...

Question 1: Does there exist an I and an n such that kQ_n/I is not fCY?

Question 1: Does there exist an I and an n such that kQ_n/I is not fCY?

Question 2: For $n \ge 3$, is kQ_n/I fCY whenever I is generated by length 2 relations?

Question 1: Does there exist an I and an n such that kQ_n/I is not fCY?

Question 2: For $n \ge 3$, is kQ_n/I fCY whenever I is generated by length 2 relations?

Question 3: Does the number of algebras passing the matrix test tend to zero as n tends to infinity?

Thank you for listening.