AAMEG - MATEMÁTICA DISCRETA

O presente questionário é um resultado do projeto de ensino "Ações de apoio à melhoria do ensino de Matemática Discreta", que foi concluído e associado ao programa "Ações de Apoio à Melhoria do Ensino de Graduação (AAMEG)", sob a coordenação da Pró-Reitoria de Graduação (PROGRAD). Este formulário tem como propósito primordial identificar as principais questões enfrentadas pelos estudantes de Matemática Discreta, com enfoque específico no conteúdo de soma e produto dos termos de uma sequência - demonstração por indução matemática.

* In	dica uma pergunta obrigatória	
1.	E-mail *	
2.	Nome *	
3.	Matrícula *	

4.	1. Considerando o enunciado, "Demonstre, por indução matemática, que * o pontos
	para todo $x \ge 1$, $1 + 5 + 9 + \cdots + (4x - 3) = x(2x - 1)$ ", qual das alternativas a
	seguir corresponde à sequência correta de passos que deve ser
	efetuada para realizar a demonstração anterior?

Marcar apenas uma oval.

Passo Indutivo - Passo Base – Portanto para todo $x \ge 1$, $1 + 5 + 9 + \cdots + (4x - 3) = x(2x - 1) - QED.$
Passo Base – Passo Indutivo – Portanto para todo $x \ge 1$, $1 + 5 + 9 + \cdots + (4x - 3) = x(2x - 1) - QED.$
Para todo x ≥ 1, 1 + 5 + 9 + ··· + (4x - 3) = $x(2x - 1)$ - Passo Base - Passo Indutivo - QED.
Passo Base – Passo Induzido – Portanto para todo $x \ge 1$, $1 + 5 + 9 + \cdots + (4x - 3) = x(2x - 1) - QED.$
N.D.A (Nenhuma das Alternativas).

5. 2. Tendo como base o enunciado a seguir, "Demonstre, por indução * 0 pontos matemática, que para todo x ≥ 1, 3 + 7 + 11 + ··· +(4x - 1) = x(2x + 1).", qual alternativa corresponde corretamente ao começo do passo base da questão?

Marcar apenas uma oval.

(P.B.) Temos que demonstrar que (4 * 3 - 1) = 1 * (2 * 3 + 1)
(P.B.) Temos que demonstrar que para todo $y \ge 1$, se $3 + 7 + 11 + \cdots + (4y - 1) = y(2y + 1)$ então $3 + 7 + 11 + \cdots + (4 * (y + 1) - 1) = (y + 1) * [2 * (y + 1) + 1].$
(P.B.) Temos que demonstrar que (4 * 1 - 1) = 1 * (2 * 1 + 1)
(P.B.) Temos que demonstrar que 3 + 7 + 11 + ··· + (4 * 1 - 1) = 1 * (2 * 1 + 1)
(P.B.) Temos que demonstrar que (4 * y - 1) = 1 * (2 * y + 1)

- 6. 3. Tendo como base o enunciado a seguir, "Demonstre, por indução matemática, que para todo x ≥ 1, 3 * 24 * ... *(3x³) = (3^x) * (x!)³.", qual alternativa corresponde corretamente à hipótese indutiva da questão, supondo que a variável é representada pela letra "k"?
- * 0 pontos

Marcar apenas uma oval.

- 3 * 24 * ... * [3 * (k+1)^3] = [3^(k+1)] * [(k+1)!]³
- 3 * 24 * ... * [3 * k+ 1^3] = [3^(k+1)] * [k+1!]³
- 1 * 3 * 24 * ... * (3k³) = (3^k) * [(k+1)!]³
- 1 * 3 * 24 * ... * (3k³) = (3^k) * (k!)³
- 3 * 24 * ... * (3k³) = (3^k) * (k!)³
- 7. 4. Dada a expressão: { [(-2)^(k+1)] 1 3 * [(-2)^(k+1)] } / (-3), qual das * 0 pontos alternativas abaixo representa uma expressão que se iguala à anterior?

Marcar apenas uma oval.

- $([(-2)^{(k+1+1)}] 1) / (-3)$
- { [(-2)^(k+1)] 4 * [(-2)^(k+1)] } / (-3)
- { [(-2)^(k+1) } 1 * [(+6)^(k+1)] } / 3
- (-4)/(-3)
- N.D.A.

8. 5. Tendo como base o enunciado a seguir, "Demonstre, por indução * 0 pontos matemática, que para todo $x \ge 1$, $1 + 5 + 9 + \cdots + (4x - 3) = [x(4x - 2)] / 2.", qual alternativa corresponde corretamente ao começo do passo indutivo da questão?$

Marcar apenas uma oval.

(P.I.) Temos que demonstrar que para todo $y \ge 1$, se $1 + 5 + 9 + \cdots + (4y - 3) = [y(4y - 2)] / 2 então 1 + 5 + 9 + \cdots + (4y + 1 - 3) = [y + 1 * (4y + 1 - 2)] / 2.$
(P.I.) Temos que demonstrar que (4 * 1 - 3) = [1 * (4 * 1 - 2)] / 2.
(P.I.) Temos que demonstrar que para todo $y \ge 1$, se $1 + 5 + 9 + \cdots + (4y - 3) = [y(4y - 2)] / 2 então 1 + 5 + 9 + \cdots + [4(y+1) - 3] = \{ (y + 1) * [4(y + 1) - 2] \} / 2.$
(P.I.) Temos que demonstrar que $(4 * y - 3) = [y * (4 * y - 2)] / 2$.
(P.I.) Temos que demonstrar que para todo $y \ge 1$, se $(4y - 3) = [y(4y - 2)] / 2$ então $[4(y+1) - 3] = \{ (y + 1) * [4(y + 1) - 2]) \} / 2$.

Este conteúdo não foi criado nem aprovado pelo Google.

Google Formulários