Intro to machine learning

Ed Morrissey

Morrissey Group: Quantitative biology of cell fate and tissue dynamics Centre for Computational Biology - WIMM

Overview

- Machine learning
 - Methods
 - Why it's become popular
- Iris data set
- Decision trees
- Overfitting
- Random forest
- Dimensionality reduction methods

Kaggle

- Platform for predictive modelling and analytics competitions
 - https://www.kaggle.com/
- Companies post data and a challenge
 - Users compete to produce the best models for predicting and describing the datasets
 - Normally there is a cash prize
- Leaderboards
- After a competition has finished
 - Analysis scripts and results are then posted
 - Used as a learning resource

scikit-learn

- High quality python machine learning library
 - Very nicely structured
 - Well documented
 - Plenty of examples
- Has made machine learning more accessible
- http://scikit-learn.org/stable/

Machine learning overview

- Supervised
 - o Regression
 - Classification
 - Examples
 - Support Vector Machines (SVM)
 - Decision trees
 - Random forest
- Unsupervised
 - Clustering
 - k-means
 - Dimensionality reduction
 - PCA
 - t-SNE
 - Knn graphs
 - Novelty detection
- Deep Neural Networks covers both (more on this in the next talk)

Classification: The aim

- Supervised so we have data set where we know the truth
- Derive a set of rules to classify unknown data
- Fisher's Iris data: flower petal data
 - Classic data set
 - Used extensively in documents and tutorials
- Could use for example single cell data where you know the cell type

Data: Iris data set

- Fisher's data
 - Used a lot for tutorials etc (often in libraries)
 - Goto Code!
 - o 1936 The use of multiple measurements in taxonomic problems
 - 50 samples from three species of Iris
 - Iris setosa
 - Iris virginica
 - Iris versicolor
 - Measure 4 things
 - Petal width and length
 - Sepal width and length
- If someone gave you those 4 measurements
 - How would you predict the species?
 - Classifier!

```
In [3]: iris.data
Out[3]:
array([[ 5.1,  3.5,  1.4,  0.2],
        [ 4.9,  3. ,  1.4,  0.2],
        [ 4.7,  3.2,  1.3,  0.2],
        [ 5. ,  3.6,  1.4,  0.2],
        [ 5. 4,  3.9,  1.7,  0.4],
        [ 4.6,  3.4,  1.5,  0.2],
        [ 5. ,  3.4,  1.5,  0.2],
        [ 4.4,  2.9,  1.4,  0.2],
        [ 4.9,  3.1,  1.5,  0.1],
        [ 5.4,  3.7,  1.5,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.,  1.4,  0.1],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3.4,  1.6,  0.
```


Iris Data (red=setosa,green=versicolor,blue=virginica)

Classification: SVM

- Non probabilistic classifier
- Partition space to predict classes (hyperplanes)
 - Can use several functions for this
 - Example is linear

Classification: Decision trees

- Decision tree
 - Sequence of decisions
- Train with data to find tree
- Apply rules to new data to predict
- Tends to overfit!

Classification: Decision trees

For the iris data set: Goto Code!

Overfitting

- A common problem in machine learning
- Makes prediction for new samples worse
- There are methods to try to minimise this
- For decision trees a very common variant to minimise overfitting
 - Random forest

Random forest

- Loads of decision trees run on random subsets of the data
 - Forest!
 - Also use subsets of the variables when splitting
- Consensus prediction from the forest of trees
- Reduces overfitting
- Finds variable importance

http://blog.citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics

Classification: Other classifiers and performance

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Dimensionality reduction

- Very useful in single cell techniques
 - scRNA-seq
 - 20,000 genes x 10,000 cells
- 20,000 => 2
 - Chucking out loads of information!
 - Not the truth, just a very useful tool
- Can be done in a number of ways
 - Right way?
- Examples
 - PCA Linear
 - tSNE non linear
 - o Knn graphs "non linear"

Dimensionality Reduction: PCA

- You get as many new dimensions (principal components) as you start with
- The new ones (PC) are ordered by "how much information" they have
- People normally do dimensionality reduction by discarding "low info" dimensions

tSNE - nonlinear dimensionality reduction

- Calculate a distance between cells using a gaussian (and some tricks) in 20,000 dims
- Find a 2D arrangement that respects those distances (using t-distribution in 2d)
- https://distill.pub/2016/misread-tsne/

Expression of gene A

Umap:Uniform Manifold Approximation and Projection

- Based on algebraic geometry
- Much faster than tSNE
- Can add new data
- Can also add labels
- Gives good results

Knn

- K-nearest neighbour graph
- Can define trajectories or clusters
 - Phenograph uses community detection
- Quick
- A knn of k = 5
 - Calculate distance between cells ie d = $(gene_A_{c1} gene_A_{c2})^2 + (gene_A_{c2} gene_A_{c2})^2 + \dots$
 - Join every cell to its 5 closest cells (most similar)
- Spring a web tool to calculate and view knn graphs

Knn for clustering

- K-nearest neighbour graph
- Find clusters
 - Nodes that are more connected between themselves than others
 - Used to find communities in social media analysis
 - Different names
 - Louvain clustering
 - Phenograph (used for cytof data)

Machine learning vs Stats: Generally speaking

- Both
 - Very similar
 - Often use similar statistical tools to solve problems (sometimes with different names)
 - More and more they are blending into each other
- Stats
 - More interested in learning about the system
 - Make specific assumptions about the data (which you can normally check)
 - Quantify uncertainty
 - Typically moderate size data sets
- ML
 - Focused on accurate prediction and speed
 - Tends to deal with huge datasets
 - Less interested in understanding the underlying data and how it was generated
- Slightly provocative:
 - 'machine learning is statistics minus any checking of models and assumptions'. Prof Brian D. Ripley
 - o ML tend to be seen as more hacky by statisticians. A bit black box like.
- Deep Neural Networks have made a huge impact and are drawing attention from statisticians

The End

