Curso: Engenharia de Produção

DISCIPLINA: Desafios de Engenharia

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

O método da engenharia

- 1. Identificar e definir o problema
- 2. Identificar restrições e critérios para atingir o sucesso
- 3. Buscar soluções
- 4. Analisar cada solução potencial
- 5. Selecionar a melhor solução
- 6. Especificar a solução
- 7. Construir a solução

O método da engenharia

- 1. Identificar e definir o problema
- 2. Identificar restrições e critérios para atingir o sucesso
- 3. Buscar soluções
- 4. Analisar cada solução potencial
- 5. Selecionar a melhor solução: solução ÓTIMA
- 6. Especificar a solução
- 7. Construir a solução

Os modelos

modelos qualitativos

modelos quantitativos matemáticos e estatísticos

modelos computacionais

modelos físicos

Modelos matemáticos e estatísticos

Modelos quantitativos: expressam grandezas e as unidades de medida relacionadas com o problema

Otimização: A engenharia aponta a solução **ótima**

Solução ÓTIMA

Problemas de engenharia, de logística, de transporte e de outras ciências, quando se consegue construir modelos quantitativos das soluções

busca minimizar ou maximizar uma função através da escolha dos valores de variáveis.

Solução ÓTIMA

encontrar uma solução para maximizar ou minimizar uma função previamente definida como índice de desempenho (ID), obtendo o melhor desempenho possível do sistema, sujeita às variáveis de restrição estabelecidas.

Exemplo

 Uma pessoa em dieta precisa ingerir pelo menos 20 gramas de vitamina C, 10 gramas de vitamina B e 2 gramas de vitamina A, em uma semana. Sua dieta deve contemplar dois tipos de alimentos (A1 e A2) para suprir as necessidades de vitamina. As quantidades de vitamina que cada alimento contém e os respectivos custos estão apresentados na tabela:

	Vitamina A (g)	Vitamina B (g)	Vitamina C (g)	Custo (R\$ 1,00)
A1	4	1	1	30
A2	1	2	-	20

 Qual é a quantidade de alimentos que a pessoa precisa comprar para a dieta, de modo a gastar o mínimo possível? Supondo que o alimento A1 está em promoção, a R\$ 18, haveria mudança?

Solução ÓTIMA

encontrar uma solução (quantidades a adquirir) para minimizar uma função previamente definida como índice de desempenho (ID) (custo), obtendo o melhor desempenho possível do sistema, sujeita às variáveis de restrição estabelecidas (consumo de vitaminas recomendado).

Exemplo 2

Minimizar o custo (c): $f_c = 30 x_{A1} + 20 x_{A2}$,

 x_{A1} e x_{A2} são as quantidades dos alimentos a comprar

Restrições:

$$4x_{A1} + 1x_{A2} \ge 20$$
 $1x_{A1} + 2x_{A2} \ge 10$
 $1x_{A1} \ge 2$

Os modelos

modelos qualitativos

modelos quantitativos matemáticos e estatísticos

modelos computacionais

modelos físicos

Espaço das soluções

- O espaço N-dimensional de cada solução contempla as variáveis e seus respectivos valores que a torna viável, embora normalmente imperfeita
- Variáveis condicionantes: restringem ou limitam os valores das variáveis do espaço de soluções
- Variáveis conflitantes: qualidade e custo; facilidade de uso e número de funções; potência e consumo; etc. Em geral, as soluções de engenharia não alcançam o grau máximo de otimização
- Critérios para a seleção da solução mais vantajosa

O método da engenharia

- 1. Identificar e definir o problema
- 2. Identificar restrições e critérios para atingir o sucesso
- 3. Buscar soluções
- 4. Analisar cada solução potencial
- 5. Selecionar a melhor solução: análise MULTICRITÉRIOS
- 6. Especificar a solução
- 7. Construir a solução

Análise MULTICRITÉRIOS

Selecionando a alternativa mais vantajosa

- Método elementar: média ponderada
- Dadas r soluções. Para cada solução determinar

$$M_i = P_1.N_1 + P_2.N_2 + \cdots + P_k.N_k$$

onde

- k é o número de critérios utilizados
- P_k é o peso de cada critério
- N_k é a nota da solução Mi segundo o critério k

Exemplo

- Um operador de turismo precisa planejar uma viagem. Precisa decidir qual itinerário seguir: BR 101 ou BR116.
- Estabeleceu 3 critérios de decisão: (i) beleza do roteiro; (ii) qualidade da rodovia; (iii) segurança.
- Atribuiu o peso 2 à beleza, peso 4 à qualidade da rodovia e peso 5 à segurança.
- Realizou o julgamento qualitativo de cada alternativa segundo cada critério em uma escala determinada
- Obteve a média ponderada

Exemplo

	peso	BR101	BR116
beleza	2	9	7
qualidade	4	8	7
segurança	5	6	8
	11	7,272727	7,454545

Método de Análise Hierárquica

- Do inglês, Analytic Hierarchy Process (AHP)
- Desenvolvido pelo matemático Thomas Saaty, usa como base as observações sobre subjetividades e intuições do raciocínio do homem, o pensamento analítico e a medição para solução quantitativa
- Baseia-se em sucessivos julgamentos paritários subjetivos baseados em critérios para pontuação de várias alternativas de solução a um problema.

Método AHP

Método AHP

1. Alternativas de solução

- O emprego dos métodos faz sentido quando existem várias alternativas de solução a um problema.
- Deseja-se saber:
 - > Qual é a solução mais adequada?
 - > Qual é o peso da avaliação de cada solução?

Exemplo

- Um empreendedor deseja implantar um loja em um bairro da cidade do Rio de Janeiro. Levantou duas alternativas:
 Botafogo ou Leblon. Precisa decidir em qual dos bairros deverá implantar a loja.
- Resposta desejada:
 - Em qual dos bairros é mais vantajoso implantar a loja?
 - Quanto uma alternativa é superior à outra?

Método AHP

2. Levantando critérios

- Os critérios serão os **parâmetros de referência** para comparação subjetiva entre as alternativas existentes.
- Os critérios podem ser decompostos hierarquicamente, gerando subcritérios, os quais também serão comparados.
- Após a identificação dos critérios e subcritérios obtém-se uma estrutura analítica hierárquica cujo vértice é o objetivo e a base são as alternativas de solução ao problema.

Exemplo

- Para decidir se implanta a loja no **Botafogo** ou **Leblon**, o empreendedor identificou como adequado usar os **critérios**:
 - \triangleright (C₁) acessibilidade;
 - (C_2) qualidade dos imóveis.
- O critério de qualidade dos imóveis para locação pode ser decomposto nos subcritérios em:
 - \triangleright (C_{2.1}) lojas isoladas ou
 - $(C_{2,2})$ centros comerciais.

Método AHP

3. Árvore hierárquica

- Árvore analítica hierárquica:
 - > em que o objetivo está no topo;
 - > os critérios/subcritérios que decompõem a referência do julgamento estão no nível intermediário; e
 - > as alternativas estão na base.

Exemplo: Árvore hierárquica

Exemplo: Árvore hierárquica

Exemplo: Árvore hierárquica

Método AHP

- Os critérios são comparados em importância dois a dois (comparação paritária), gerando uma matriz paritária de critérios
- Os subcritérios são comparados dois a dois em importância, para cada critério ao qual se relacionam, gerando matrizes paritárias de subcritérios
- As alternativas são comparadas duas a duas para cada critério/subcritério aos quais estão vinculados, gerando matrizes paritárias de alternativas

	C1	C2	C 3	Ck
C1	11,1	11,2	11,3	11,k
C2	12,1	12,2	12,3	12,k
• • •				
Ck	<i>IK</i> , 1	<i>1k</i> , 2	IK,3	IK,K

Escala

Índice	Definição	Descrição
1	Igual importância	Os dois elementos contribuem igualmente para o objetivo
3	Importância pequena de uma para outra	A experiência do avaliador diz que um elemento possui importância pouco maior que o outro para o objetivo
5	Importância grande	A experiência do avaliador diz que um elemento possui importância maior que o outro para o objetivo
7	Importância muito grande	A experiência do avaliador diz que um elemento possui importância relativamente maior que o outro para o objetivo
9	Importância absoluta	A experiência do avaliador diz com alto grau de certeza que um elemento possui importância maior que o outro em relação ao objetivo
2,4,6,8	Valores intermediários	Utilizado quando é necessário um índice intermediário de importância

- Observações:
 - ➤ Valores da diagonal principal da matriz sempre terão valor igual a 1, pois considera a comparação de um fator em relação a ele mesmo, logo possuem igual importância.
 - Conceito de **Reciprocidade**: a comparação de um fator A em relação a B é o inverso na comparação do fator B em relação ao fator A. Esse conceito **reduz a inconsistência** do julgamento.

Características da matriz de comparação paritária

Exemplo

Comparação dos critérios

	Acessibilidade	Qualidade dos imóveis
Acessibilidade	1	0,33333333
Qualidade dos imóveis	3	1

Comparação dos subcritérios

	Lojas isoladas	Centros comerciais	
Lojas isoladas	1	C),2
Centros comerciais	5		1

Exemplo

Comparação das alternativas

Acessibilidade	Botafogo	Leblon
Botafogo	1	3
Leblon	0,33333333	1
Qualidade das lojas isoladas	Botafogo	Leblon
Botafogo	1	0,142857143
Leblon	7	1
Qualidade dos centros comenrciais	Botafogo	Leblon
Botafogo	1	0,2
Leblon	5	1

Método AHP

6. Formulação matemática

- O método AHP converte um julgamento subjetivo em quantitativo, para tratar múltiplos critérios - multicritérios
- Baseia-se em Álgebra Linear, na determinação de autovalores e autovetores das matrizes paritárias
- Saaty propõe um método de cálculo simples, cuja imprecisão geralmente não compromete o resultado final
- Os resultados são propagados desde o topo da árvores até a base

6. Formulação matemática: passo 1 normalizar as matrizes

1. As matrizes normalizadas são obtidas através do cálculo da divisão de cada item da matriz comparativa pelo somatório total de cada coluna da matriz

		Original	Normalizada		
	Acessibilidade	Qualidade dos imóveis	Acessibilidade	Qualidade dos imóveis	
Acessibilidade	1	0,33333333	0,25	0,25	
Qualidade dos imóveis	3	1	0,75	0,75	
	4	1,333333333			
		Original	Normalizada		
	Lojas isoladas	Centros comerciais	Lojas isoladas	Centros comerciais	
Lojas isoladas	1	0,2	0,166666667	0,166666667	
Centros comerciais	5	1	0,833333333	0,833333333	
	6	1,2			
		Original	Normalizada		
Acessibilidade	Botafogo	Leblon	Botafogo	Leblon	
Botafogo	1	3	0,75	0,75	
Leblon	0,333333333	1	0,25	0,25	
	1,333333333	4			
	Original		Normalizada		
Qualidade das lojas isoladas	Botafogo	Leblon	Botafogo	Leblon	
Botafogo	1	0,142857143	0,125	0,125	
Leblon	7	1	0,875	0,875	
	8	1,142857143			
		Original	Normalizada		
Qualidade dos centros comenrciais	Botafogo	Leblon	Botafogo	Leblon	
Botafogo	1	0,2	0,166666667	0,16666667	
Leblon	5	1	0,833333333	0,833333333	
	6	1,2			

6. Formulação matemática: passo 2 determinar os vetores de prioridades relativas

2. Os vetores de prioridade relativa são estabelecidos pela **média aritmética de cada linha** da matriz normalizada

	Normalizada		
	Acessibilidade	Qualidade dos imóveis	Média
Acessibilidade	0,25	0,25	0,25
Qualidade dos imóveis	0,75	0,75	0,75
	N	ormalizada	
	Lojas isoladas	Centros comerciais	Média
Lojas isoladas	0,166666667	0,16666667	0,166667
Centros comerciais	0,833333333	0,833333333	0,833333
	Normalizada		
Acessibilidade	Botafogo	Leblon	Média
Botafogo	0,75	0,75	0,75
Leblon	0,25	0,25	0,25
	Normalizada		
Qualidade das lojas isoladas	Botafogo	Leblon	Média
Botafogo	0,125	0,125	0,125
Leblon	0,875	0,875	0,875
	Normalizada		
Qualidade dos centros comenrciais	Botafogo	Leblon	Média
Botafogo	0,166666667	0,16666667	0,166667
Leblon	0,833333333	0,833333333	0,833333

6. Formulação matemática: passo 2 determinar o vetor de prioridades absolutas

- 3. O vetor de prioridades absolutas das alternativas é obtida pela:
 - produto das prioridades de critérios e respectivos subcritérios
 - soma dos produtos das alternativas pelos respectivos critérios/subcritérios

	Média		
Acessibilidade	0,25		Peso acessibilidade
Qualidade dos imóveis	0,75		Peso qualidade
	Média	0,75	Peso qualidade
Lojas isoladas	0,166667	0,125	Peso qualidade lojas isoladas
Centros comerciais	0,833333	0,625	Peso qualidade centros comerciais
Acessibilidade	Média	0,25	
Botafogo	0,75	0,1875	
Leblon	0,25	0,0625	
Qualidade das lojas isoladas	Média	0,125	
Botafogo	0,125	0,015625	
Leblon	0,875	0,109375	
Qualidade dos centros comenrciais	Média	0,625	
Botafogo	0,166667	0,104167	
Leblon	0,833333	0,520833	
Botafogo		0,307292	Soma dos pesos
Leblon		0,692708	Soma dos pesos

Método AHP: hierarquia da análise

Método AHP: hierarquia da análise

pesos relativos dos critérios e alternativas

Pesos absolutos

A pontuação absoluta é dada pela soma dos produtos das alternativas pelos respectivos pesos relativos dos seus critérios e subcritérios.

Permite:

- Estabelecer a prioridade das alternativas elencadas;
- Avaliar a distância da importância entre as alternativas.

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

