Министерство науки и высшего образования Федеральное государтсвенное бюджетное образовательное учреждение высшего образования

Югорский государственный университет

Отчет о лабораторной работе Ne4 по дисциплине «Методы оптимизации»

Выполнил	
Студент группы	1162б Панчишин И. Р
«»	_ 2019 г.
Принял	
Доцент ИЦЭ	
	_ Самарин В. А.
«»	_ 2019 г.

Цель

Изучить численные методы приближенного нахождения корня.

Задачи

- 1. Рассмотреть метод половинного деления.
- 2. Рассмотреть метод хорд.
- 3. Рассмотреть метод Ньютона.

Ход работы

Вывод рекурентной формулы метода хорд:

$$\begin{cases} f(x_1) = kx_1 + b \\ f(x_2) = kx_2 + b \end{cases}$$

Вычтем из первого уравнения второе и выразим k

$$f(x_1) - f(x_2) = k(x_1 - x_2)$$
$$k = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$$

Подставим k в первое уравнение системы и выразим b

$$b = f(x_1) - \frac{x_1}{x_1 - x_2} (f(x_1) - f(x_2))$$

Запишем уравнение прямой (хорды), используя полученные коэффициенты

$$f(x) = \frac{f(x_1) - f(x_2)}{x_1 - x_2}x + f(x_1) - \frac{x_1}{x_1 - x_2}(f(x_1) - f(x_2)) = \frac{f(x_1) - f(x_2)}{x_1 - x_2}(x - x_1) + f(x_1)$$

Выразим значение корня x_3 , т. е. $x = x_3$, y = 0

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2}(x_3 - x_1) + f(x_1) = 0$$

$$x_3 = -f(x_1)\frac{x_1 - x_2}{f(x_1) - f(x_2)} + x_1$$

Данная форма не требует нахождения производной.

Вывод рекурентной формулы метода Ньютона:

По определению производной

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x)$$
$$f(x) = f'(x)(x - x_0) + f(x_0)$$

Найдем точку пересечения с абсциссой или первое приближение корня — x_1

$$f'(x_1)(x_1 - x_0) + f(x_0) = 0$$
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_1)}$$

Реализация требуемых методов на языке Octave представлена в листинге ниже:

```
set(0, defaultaxesfontsize, 12)
   set(0, defaulttextfontsize, 12)
    % метод половинного деления
    % будет работать бесконечно, если на отрезке нет корня
6
    function [xroot yroot n] = bisection(f, a, b, e)
        Ap = [a f(a)]; % A point
8
        Bp = [b f(b)];
9
        n = 2;
10
11
        [Ap Bp n] = bisection_step(f, Ap, Bp, e, n);
12
        xroot = (Ap(1) + Bp(1)) / 2;
14
        yroot = f(xroot);
15
    end
16
17
    function [Ap Bp n] = bisection_step(f, Ap, Bp, e, n)
18
        if (abs(Bp(1) - Ap(1)) \le e)
19
            return
20
21
        end
22
        c = (Ap(1) + Bp(1)) / 2;
23
        fc = f(c);
24
        ++n;
25
26
        % учтен случай, когда попадается корень
27
        if (fc * Ap(2) \le 0)
            Bp = [c fc];
29
        end
30
31
        if (fc * Bp(2) \le 0)
32
            Ap = [c fc];
33
        end
34
35
        [Ap Bp n] = bisection_step(f, Ap, Bp, e, n);
37
38
    % первая производная
39
    function res = der1(f, x0, h)
40
        res = (f(x0 + h) - f(x0)) / h;
41
    end
42
    % вторая
44
    function res = der2(f, x0)
45
        h = 0.001;
46
47
        d1 = der1(f, x0, h);
        d2 = der1(f, x0 + h, h);
48
        res = (d2 - d1) / h;
49
   end
50
    % метод хорд
52
    function [xroot yroot n] = chord(f, a, b, e)
53
        Ap = [a f(a)];
54
        Bp = [b f(b)];
55
        n = 2;
56
57
        d2 = der2(f, Ap(1));
        if (d2 * Ap(2) > 0) % выбор начального приближения корня
            [Xp n] = chord_step(f, Bp, Ap, e, n);
60
```

```
else
61
62
             [Xp n] = chord_step(f, Ap, Bp, e, n);
63
64
         [xroot yroot] = deal(Xp(1), Xp(2));
65
    end
66
67
    function [Xp n] = chord_step(f, Xp, Bp, e, n)
68
         x = Xp(1) - Xp(2) * (Xp(1) - Bp(1)) / (Xp(2) - Bp(2));
69
70
         if (abs(x - Xp(1)) \le e)
71
             return
72
         end
73
74
         fchord = Q(X)(Xp(2) - Bp(2)) / (Xp(1) - Bp(1)) * (X - Xp(1)) + Xp(2);
75
         global X;
76
         % раскомментировать для визуализации
77
         %plot(X, fchord(X));
78
79
         Xp = [x f(x)];
80
81
         ++n;
82
         [Xp n] = chord_step(f, Xp, Bp, e, n);
83
    end
84
85
     % метод Ньютона
86
    function [xroot yroot n] = newton(f, a, b, e)
87
         Ap = [a f(a)];
88
89
         Bp = [b f(b)];
         n = 2;
90
91
         d2 = der2(f, Ap(1));
92
93
         if (d2 * Ap(2) > 0)
             [Xp n] = newton_step(f, Ap, e, n);
94
         else
95
96
             [Xp n] = newton_step(f, Bp, e, n);
97
         end
98
         [xroot yroot] = deal(Xp(1), Xp(2));
99
100
    end
101
    function [Xp n] = newton_step(f, Xp, e, n)
102
         d1 = der1(f, Xp(1), 0.001);
103
         x = Xp(1) - Xp(2) / d1;
104
105
         if (abs(x - Xp(1)) \le e)
106
             return
107
108
         end
109
         ftang = O(X) d1 * (X - Xp(1)) + Xp(2);
110
         global X;
111
112
         %plot(X, ftang(X));
113
         Xp = [x f(x)];
114
         ++n:
115
116
         [Xp n] = newton_step(f, Xp, e, n);
117
    end
118
119
120
```

```
% функции
121
    F = \{0(X) \ 2.^X - 2, \ 0(X) \ 2.^X - 2, \ 0(X) \ -(2.^X - 2), \ 0(X) \ -(2.^X - 2)\};
    global X = linspace(-3, 3, 100);
123
124
    Fm = {@bisection, @chord, @newton};
125
126
    %% визуализация работы
127
    %for i = 1:length(Fm)
128
    %
          for j = 1:4
129
    %
              subplot(2, 2, j);
130
    %
              box off;
131
    %
              hold on;
132
   %
             grid on;
133
   %
              set(gca, xaxislocation, origin);
134
              set(gca, yaxislocation, origin);
135
    %
              plot(X, F\{j\}(X));
136
    %
              xlabel(x);
137
    %
138
              ylabel(y);
    %
139
    %
              [xroot, yroot, n] = Fm\{i\}(F\{j\}, -2, 2.5, 0.2);
140
              plot(xroot, yroot, bo, MarkerFaceColor, b);
141
    %
142
    %
          figure;
143
    %end
144
146
    % зависимость кол-ва вычислений от точности
    hold on;
147
    E = linspace(0.00000001, 0.2, 20);
148
    for i = 1:length(Fm)
         N = [];
150
         for e = E
151
             [xroot yroot n] = Fm{i}(F{1}, -2, 2.5, e);
152
153
             N = [N n];
         end
154
         plot(E, N);
155
156
    legend(Половинного деления, Хорд, Ньютона);
157
    xlabel(Погрешность)
158
    ylabel (Вычислений)
159
160
161
    pause
162
```

В коде можно встретить неравенство $f''(x_0)f(x_0) > 0$. Оно описывает обязательное требование к начальному приближению x_0 , которым является один из концов отрезка поиска.

Результаты нахождения корня представлены на рисунках 1, 2, 3. На каждом рисунке функция в различных положениях на плоскости. Благодаря правильному определению начального приближения алгоритм сходится во всех случаях.

Зависимости количества вычислений функции для каждого метода представлены на Рис. 4.

Вывод

Выполнил все поставленные задачи, вывел основные формулы и написал программную реализацию требуемых методов, сравнил их работу. Наиболее эффективным методом приближенного нахождения корня среди рассмотренных оказался метод Ньютона.

Рис. 1: Метод половинного деления

Рис. 2: Метод хорд

Рис. 3: Метод Ньютона

Рис. 4: Скорость работы