Instruction Formats and Addressing Modes

Slides prepared by:
Dr. Zubair Ahmad Shah
Department of Computer Science and Engineering
Islamic University of Science and Technology, Awantipora

Instruction Formats

- Three-Address Instruction Format
- Two-Address Instruction Format
- One-Address Instruction Format
- Zero-Address Instruction Format

Example: (A + B) * (C + D)

Three-Address Instructions:

ADD R1, A, B R1
$$\leftarrow$$
 M(A) + M(B)
ADD R2, C, D R2 \leftarrow M(C) + M(D)
MUL X, R1, R2 M(X) \leftarrow R1 * R2

Two-Address Instructions:

Example: (A + B) * (C + D)

One-Address Instructions:

```
LOAD A AC \leftarrow M[A]

ADD B AC \leftarrow AC + M[B]

STORE T M[T] \leftarrow AC

LOAD C AC \leftarrow M[C]

ADD D AC \leftarrow AC + M[D]

MUL T AC \leftarrow AC * M[T]

STORE X M[X] \leftarrow AC
```

Zero-Address Instructions:

PUSH A
$$TOS \leftarrow A$$

PUSH B $TOS \leftarrow B$
ADD $TOS \leftarrow (A + B)$
PUSH C $TOS \leftarrow C$
PUSH D $TOS \leftarrow D$
ADD $TOS \leftarrow (C + D)$
MUL $TOS \leftarrow (C + D) * (A + B)$
POP X $M[X] \leftarrow TOS$

TOS: Top of Stack

Example: (A + B) * (C + D)

RISC Instructions:

LOAD	R1, A	$R1 \leftarrow M[A]$
LOAD	R2, B	$R2 \leftarrow M[B]$
LOAD	R∃, C	$R3 \leftarrow M[C]$
LOAD	R4, D	$R4 \leftarrow M[D]$
ADD	R1, R1, R2	R1 ← R1 + R2
ADD	R3, R3, R2	$R3 \leftarrow R3 + R4$
MUL	R1, R1, R3	$R1 \leftarrow R1 * R3$
STORE	X, R1	$M[X] \leftarrow R1$

Addressing Modes

- **1. Implied Mode**: The operands are specified implicitly in the definition of instruction (Example: Zero Address Instructions).
- **2. Immediate Mode**: The operand is specified in the instruction itself.
- **3. Register Mode**: The instruction specifies a register in the CPU that is holding the operand.
- **4. Register Indirect Mode**: The instruction specifies a register in the CPU whose contents give the address of the operand in the memory.
- **5. Autoincrement mode**: This is similar to register indirect mode except that the register is incremented *after* its value is used to access memory.
- **6. Autodecrement mode**: This is similar to register indirect mode except that the register is decremented *before* its value is used to access memory.

Addressing Modes Cont.

- **7. Direct Address Mode**: The effective address is equal to the address part of the instruction.
- **8. Indirect Address Mode**: The address field of the instruction gives the address where the effective address is stored in memory.
- **9. Relative Address Mode**: The content of the program counter is added to the address part of the instruction in order to obtain the effective address.
- **10. Indexed Addressing Mode**: The content of an index register is added to the address part of the instruction in order to obtain the effective address.
- **11. Base Register Addressing Mode**: The content of a base register is added to the address part of the instruction in order to obtain the effective address.

Numerical Example

Address	Memory		
200	Load to AC	Mode	
201	Address = 500		
202	Next instruction		
399	450		
400	700		
	200		
500	800		
600	900		
702	325		
800	300		
'			

$$XR = 100$$

$$R1 = 400$$

Addressing Mode	Effective Address	Content of AC
Direct address	500	800
Immediate operand	201	500
Indirect address	800	300
Relative address	702	325
Indexed address	600	900
Register	_	400
Register indirect	400	700
Autoincrement	400	700
Autodecrement	399	450

REFERENCE

Morris Mano, Computer System Architecture, Prentice-Hall of India.