Dynamic Programming

Algorithm Design 6.1, 6.2, 6.4

In class (today and next time)

- In class (today and next time)
 - Weighted interval scheduling
 - Set of weighted intervals with start and finishing times
 - Goal: find maximum weight subset of non-overlapping intervals

- Today and next time
 - Weighted interval scheduling
 - Subset Sum and Knapsack
 - Set of items each having a weight and a value
 - Knapsack with a bounded capacity
 - Goal: fill knapsack so as to maximise the total value.

- Today and next time
 - Weighted interval scheduling
 - Subset Sum and Knapsack
 - Sequence alignment
 - Given two strings A and B how many edits (insertions, deletions, relabelings)
 is needed to turn A into B?

- Today and next time
 - Weighted interval scheduling
 - Subset Sum and Knapsack
 - Sequence alignment
 - Shortest paths with negative weights
 - Given a weighted graph, where edge weights can be negative, find the shortest path between two given vertices.

- Today and next time
 - Weighted interval scheduling
 - Subset Sum and Knapsack
 - Sequence alignment
 - Shortest paths with negative weights
- Some other famous applications
 - Unix diff for comparing 2 files
 - Vovke-Kasami-Younger for parsing context-free grammars
 - Viterbi for hidden Markov models

•

Dynamic Programming

- Greedy. Build solution incrementally, optimizing some local criterion.
- Divide-and-conquer. Break up problem into independent subproblems, solve each subproblem, and combine to get solution to original problem.
- Dynamic programming. Break up problem into overlapping subproblems, and build up solutions to larger and larger subproblems.
 - Can be used when the problem have "optimal substructure":
 - + Solution can be constructed from optimal solutions to subproblems
 - + Use dynamic programming when subproblems overlap.

Computing Fibonacci numbers

• Fibonacci numbers:

$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{otherwise} \end{cases}$$

• First try:

Memoized Fibonacci numbers

• Fibonacci numbers:

$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{otherwise} \end{cases}$$

Remember already computed values:

```
for j=1 to n
 F[j] = null
Mem-Fib(n)
Mem-Fib(n)
if n = 0
 return 0
else if n = 1
 return 1
else
  if F[n] is empty
   F[n] = Mem-Fib(n-1) + Mem-Fib(n-2)
  return F[n]
```

time $\Theta(n)$

Bottom-up Fibonacci numbers

Fibonacci numbers:

$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{otherwise} \end{cases}$$

Remember already computed values:

```
Iter-Fib(n)
F[0] = 0
F[1] = 1
for i = 2 to n
  F[n] = F[n-1] + F[n-2]
return F[n]
```

time $\Theta(n)$

Bottom-up Fibonacci numbers - save space

Fibonacci numbers:

$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{otherwise} \end{cases}$$

Remember last two computed values:

```
Iter-Fib(n)
previous = 0
current = 1
for i = 1 to n
  next = previous + current
  previous = current
  current = next
return current
```

time $\Theta(n)$ space $\Theta(1)$

- Weighted interval scheduling problem
 - n jobs (intervals)
 - Job *i* starts at s_i , finishes at f_i and has weight/value v_i .
 - Goal: Find maximum weight subset of non-overlapping (compatible) jobs.

- Weighted interval scheduling problem
 - n jobs (intervals)
 - Job *i* starts at s_i , finishes at f_i and has weight/value v_i .
 - Goal: Find maximum weight subset of non-overlapping (compatible) jobs.

- Weighted interval scheduling problem
 - n jobs (intervals)
 - Job *i* starts at s_i , finishes at f_i and has weight/value v_i .
 - Goal: Find maximum weight subset of non-overlapping (compatible) jobs.

• Label/sort jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$

- Label/sort jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$
- Greedy?

- Label/sort jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$
- p(j) = largest index i < j such that job i is compatible with j.
- Optimal solution OPT:
 - Case 1. OPT selects last job $OPT = v_n + optimal \ solution \ to \ subproblem \ on \ 1, ..., p(n)$
 - Case 2. OPT does not select last job

OPT = optimal solution to subproblem on 1,...,n-1

- OPT(j) = value of optimal solution to the problem consisting job requests 1,2,...,j.
 - Case 1. OPT(j) selects job j $OPT(j) = v_j + optimal \ solution \ to \ subproblem \ on \ 1, ..., p(j)$
 - Case 2. OPT(j) does not select job j

OPT = optimal solution to subproblem 1,...j-1

Recursion:

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max\{v_j + OPT(p(j)), OPT(j-1)\} \end{cases}$$
 otherwise

Weighted interval scheduling: brute force

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max\{v_j + OPT(p(j)), OPT(j-1)\} \end{cases}$$
 otherwise

Weighted interval scheduling: memoization

```
Input: n, s[1..n], f[1..n], v[1..n]
Sort jobs by finish time so that f[1] \le f[2] \le ... \le f[n]
Compute p[1], p[2], ..., p[n]
for j=1 to n
 M[i] = null
M[0] = 0.
Compute-Memoized-Opt(n)
Compute-Memoized-Opt(j)
if M[i] is empty
  M[j] = max(v[j] + Compute-Memoized-Opt(p[j]),
        Compute-Memoized-Opt(j-1))
return M[j]
```


- Running time O(n log n):
 - Sorting takes O(n log n) time.
 - Computing p(n): O(n log n) use log n time to find each p(i).
 - · Each subproblem solved once.
 - Time to solve a subproblem constant.
- Space O(n)

Weighted interval scheduling: memoization

Weighted interval scheduling: bottom-up

```
Compute-Bottom-Up-Opt(n, s[1..n], f[1..n], v[1..n])
Sort jobs by finish time so that f[1] ≤ f[2]≤ ... ≤ f[n]
Compute p[1], p[2], ..., p[n]

M[0] = 0.
for j=1 to n
   M[j] = max(v[j] + M(p[j]), M(j-1))
return M[n]
```


- Running time O(n log n):
 - Sorting takes O(n log n) time.
 - Computing p(n): O(n log n)
 - For loop: O(n) time
 - Each iteration takes constant time.
- Space O(n)

Weighted interval scheduling: bottom-up

```
Compute-Bottom-Up-Opt(n, s[1..n], f[1..n], v[1..n])
Sort jobs by finish time so that f[1] ≤ f[2]≤ ... ≤ f[n]
Compute p[1], p[2], ..., p[n]

M[0] = 0.
for j=1 to n
   M[j] = max(v[j] + M(p[j]), M(j-1))
return M[n]
```


i	M[i]
0	0
1	1
2	4
3	4
4	11
5	11
6	11
7	11
8	15

Weighted interval scheduling: find solution

```
Find-Solution(j)
if j=0
  Return emptyset
else if M[j] > M[j-1]
  return {j} U Find-Solution(p[j])
else
  return Find-Solution(j-1)
```

Solution = 8, 4, 2

	M[i]
0	0
1	1
2	4
3	4
4	11
5	11
6	11
7	11
8	15

Subset Sum and Knapsack

Subset Sum

- Given n items $\{1,\ldots,n\}$
- Item i has weight w_i
- Bound W
- \bullet Goal: Select maximum weight subset S of items so that

$$\sum_{i \in S} w_i \le W$$

Example

- $\{2, 5, 8, 9, 12, 18\}$ and W = 25.
- Solution: 5 + 8 + 12 = 25.

- \mathcal{O} = optimal solution
- Consider element *n*.
 - Either in Ø or not.
 - $n \notin \mathcal{O}$: Optimal solution using items $\{1, ..., n-1\}$ is equal to \mathcal{O} .
 - $n \in \mathcal{O}$: Value of $\mathcal{O} = w_n$ + weight of optimal solution on $\{1,\dots,n-1\}$ with capacity $W-w_n$.
- Recurrence
 - $OPT(i, w) = optimal solution on <math>\{1, ..., i\}$ with capacity w.
 - From above:

$$\mathsf{OPT}(n,W) = \max(\mathsf{OPT}(n-1,W), w_n + \mathsf{OPT}(n-1,W-w_n))$$

• If $w_n > W$:

$$OPT(n, W) = OPT(n - 1, W)$$

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

```
Subset-Sum(n,W)
Array M[0...n, 0...W]
Initialize M[0,w] = 0 for each w = 0,1,...,W
for i = 1 to n
  for w = 0 to W
    if w < wi
        M[i,w] = M[i-1,w]
    else
        M[i,w] = max(M[i-1,w], wi + M[i-1, w-wi])
  return M[n,W]</pre>
```


$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
 - $\{1, 2, 5, 8, 9\}$ and W = 12

• Recurrence:

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

Example

• $\{1, 2, 5, 8, 9\}$ and W = 12

9	5	0	1	2	3	3	5	6	7	8	9	10	11	12
8	4	0	1	2	3	3	5	6	7	8	9	10	11	11
5	3	0	1	2	3	3	5	6	7	8	8	8	8	8
2	2	0	1	2	3	3	3	3	3	3	ന	3	റ	3
1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	·	0	1	2	3	4	5	6	7	8	9	10	11	12

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Running time:
 - Number of subproblems = nW
 - Constant time on each entry $\Rightarrow O(nW)$
 - Pseudo-polynomial time.
 - Not polynomial in input size:
 - whole input can be described in O(n log n + n log w) bits, where w is the maximum weight (including W) in the instance.

Knapsack

Knapsack

- Given n items $\{1,\ldots,n\}$
- Item i has weight w_i and value v_i
- Bound W
- Goal: Select maximum value subset S of items so that

$$\sum_{i \in S} w_i \le W$$

Example

Optimal solution: {3,4} has value 40

Capacity 11

Knapsack

- \mathcal{O} = optimal solution
- Consider element *n*.

- Either in O or not.
 - $n \notin \mathcal{O}$: Optimal solution using items $\{1, ..., n-1\}$ is equal to \mathcal{O} .
 - $n \in \mathcal{O}$: Value of $\mathcal{O} = v_n$ + value on optimal solution on $\{1,\dots,n-1\}$ with capacity $W-w_n$.

Recurrence

• OPT(i, w) = optimal solution on $\{1, ..., i\}$ with capacity w.

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), v_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

• Running time O(nW)

Dynamic programming

First formulate the problem recursively.

- Describe the problem recursively in a clear and precise way.
- Give a recursive formula for the problem.

Bottom-up

- Identify all the subproblems.
- Choose a memoization data structure.
- · Identify dependencies.
- Find a good evaluation order.

Top-down

- Identify all the subproblems.
- Choose a memoization data structure.
- Identify base cases.