

Einführung in FDM basierten 3D-Druck

Outline

- 1. Einsatzgebiet, Vor- und Nachteile
- 2. Materialkunde
- 3. Die Pipeline: Von der Idee bis zum fertigen Objekt
 - o Livedemo: OnShape & Cura
- 4. Übersicht und Handhabe unseres Druckers
- 5. Weitere Quellen

Vorwort

- Wir reden nur über FDM (Fused Deposition Modeling)
- Grober Überblick über alle Themen
- 3D-Druck ist viel Trial & Error
 - Lernen aus Fehlern
 - Zusammenhänge verstehen
 - o Improvise. Adapt. Overcome!
- Just do it!
 - Man kann (fast) nichts kaputt machen
 - Verbrauchsmaterial ist günstig

Einsatzgebiet, Vor- und Nachteile

- Kommerziell: Rapid Prototyping, Einzelfertigung
- Privat: Werkstücke & Ersatzteile, Dekoration und Cosplay

- Geräte werden immer erschwinglicher
- viel Open-Hardware, Open-Source und Dokumentation
 - o primär durch die RepRap Bewegung
 - o aber auch bei kommerziellen Anbietern
- Breite Auswahl an Materialien und Farben
- Druckzeit wächst schnell mit der Objektgröße und Komplexität
- Breite Auswahl an Materialien
- Fehleranfällig, Debugging oft zeitintensiv

Materialkunde

- Material hat größten Einfluss auf Eigenschaften des Objekts
 - Bereits in der Entwurfsphase bedenken
- Materialabhängige Faktoren:
 - Kosten
 - Härte ⇔ Flexibilität
 - Resistenz gegen
 - Ausbleichen von Farbe (UV-Licht)
 - Angreifen der Oberfläche (Kratzer, Säure, Öl oder Lösungsmittel)
 - Verformungen (Temperatur)
 - Features wie
 - Fluoreszierend
 - Reflektierend
 - Wasserlöslichkeit
 - Lagerungsbedingungen
 - o Druckbedingungen (Geschwindigkeit, Temperatur, Heizbett)

Materialkunde

- PLA (ab 15€/kg)
 - Sehr einfach zu drucken
 - Nur industriell kompostierbar
 - Lebensmittelecht
 - Hart aber brüchig

- ABS (ab 20€/kg)
 - Schwieriger zu drucken
 - Kann mit Aceton geglättet werden
 - Gast aus beim Drucken
 - Stabil und gegen vieles Resistent

- PET, PETG, PETT (ab 25€/kg)
 - Druckeigenschaften wie PLA
 - Materialeigenschaften wie ABS
 - "Wunderkind"

- Spezialfilamente (~30-100€/kg)
 - TPU+TPE
 - Nylon
 - Mit Partikeln (Holz, Metal, Carbon)
 - Wasserlöslich (HIPS, PVA)
 - ASA
 - Und viele andere!

Von der Idee bis zum fertigen Objekt

Modellieren

- CAD-Software
 - kennt Bemaßungen und Randbedingungen
 - o Im Gegensatz zu Blender oder Cinema4D

- Preis
 - Kostenlos ⇔ Sehr teuer
- Zielgruppe
 - Anfänger ⇔ Kommerzielle CAD Grafiker
- Plattform
 - Browser ⇔ Nativ

Kostenlos, Anfänger, Browser

Tinkercad

- Kostenloses Produkt von Autodesk
- Alle Modelle sind öffentlich

- Einsteigerfreundlich
- Kann keine Bemaßungen

Kostenlos, Fortgeschrittene, Browser

OnShape

- Kommerzielles Produkt von OnShape
- Umsonst wenn man es Privat benutzt
- Alle Modelle sind öffentlich

- Full-Blown CAD Software im Browser
- Ein bisschen Träge

Kostenlos, Fortgeschrittene, Browser

Fusion360

- Kommerzielles Produkt von Autodesk
- Umsonst wenn
 - Private Nutzung
 - Jahresumsatz < 100k EUR
- Alle Objekte "gehören" Autodesk

- Native Performance
- Full Stack (CAE, Simulation, Bibliothek, ...)
- Lizenzierungsmodell
- Nur Windows + macOS

OnShape Live-Demo

Slicen

- Wandelt Polygonmodell in Druckeranweisungen (G-Code) um
- Große Softwareauswahl
 - Die beliebtesten Slicer sind frei und offen (FOSS)

- Theoretisch
 - Erfüllen den gleichen Job
- Praktisch
 - Fertige Presets (Drucker, Filament) ersparen aufwendige Einrichtung
 - Unterschiedliche Algorithmen (Infill, Wegfindung, usw.) liefern verschiedene Ergebnisse

\$ Simplify3D

Slic3r / Slic3r-PE

CURA

Slicen

- Alle Slicer besitzen hunderte von Parametern
- Was welche Auswirkung hat lernt man nur durch Zeit und Testdrucke
- Einstieg am besten mit einem Slicer der ein fertiges Druckerprofil hat
 - Oder hauseigenen Slicer des Herstellers, falls vorhanden (Ultimaker, Prusa)

- Übersicht einiger wichtiger Parameter:
 - Layer-Höhe
 - Infill (Dichte und Muster)
 - Temperaturen von Bed & Hotend
 - Anzahl ausgefüllter Schichten für Wände/Böden/Decken
 - Bewegungsgeschwindigkeit
 - Support

Slicen

Support

- Ermöglicht das Drucken von Überhängen
- Erfordert mehr Nachbearbeitung des Objektes
- Kann durch Rotation des Objektes optimiert werden

Bed Adhesion

Verbessert Haftung am Druckbett mit bestimmten Materialen oder filligranen Objekten

Cura Live-Demo

Übersicht und Handling des Druckers

Übersicht und Handling des Druckers

Filamentwechsel

- Aufheizen über Druckermenü oder Octoprint (bis min. 170°C)
- Hebel am Extruder drücken
- Aktuelles Filament vollständig rausziehen
- Ende schräg abschneiden
- Loses Ende ordentlich an der Rolle sichern
- Hebel am Extruder drücken und neues Filament komplett einführen
- Einige cm extruden bis altes Filament vollständig aus Hotend entfernt

Druckbett nivellieren

- Heizbett inkl. Druckplatte auf normale Drucktemperatur vorheizen (65°C)
- Über Druckermenü oder Octoprint 'Autohome' ausführen
- Schrittmotoren deaktivieren
- Extruder über erste Stellschraube schieben
- O Blatt Papier (80g/m²) unter Hotend schieben und durchgehend damit hin und her wackeln
- Schraube justieren bis Hotend gerade so am Papier kratzt
- 4x wiederholen (1, 2, 3, 4, 1)

Drucken

- G-code an den Drucker transferieren
 - Am Computer per USB
 - Von SD-Karte im Drucker
 - Per RaspberryPl und OctoPrint

- Auf Zieltemperatur vorheizen
- Ggf. Mesh Bed Leveling
 - Kann kleine Unebenheiten und Schrägstellung des Druckbettes erkennen und ausgleichen
- Drucken der Intro Line
 - o damit das Hotend vollständig mit Filament gefüllt ist
- Verarbeitung der G-code Instruktionen

Drucken

OctoPrint

- Freie Software zur Druckersteuerung
- Häufig auf Single-Board-Computer
- Per USB mit Drucker verbunden
- Druckermanagement aus der Ferne
- Webinterface bietet
 - Druckjob steuern/überwachen
 - G-Code Verwaltung
 - Videostream
- Viele Plugins für weitere Features

Drucken

Pre-Flight Check

- 1. Druckbett leer?
- 2. Druckbett sauber? (→ Isopropanol)
- 3. Druckbett nivelliert? (→ Falls kein ABL Sensor verbaut)
- Passendes Filament (Material, Farbe) eingelegt?
- Noch genug Filament auf der Rolle? (→ Waage, Filamentsensor)
 < Druck starten>
- 6. Passt das Objekt auf den Drucker? (→ Skirt)
- Die ersten paar Schichten sind kritisch (→ Betreutes Drucken)
 <Warten>
- 8. Kritische Stellen erneut beobachten (→ Überhang, feine Details, etc.)
- 9. Fertiges Objekt abziehen, Filament entnehmen und verstauen

Weitere Informationen

- Bebildertes Troubleshooting der Druckqualität
 - www.simplify3d.com/support/print-quality-troubleshooting/
 - www.prusa3d.com/print-quality-troubleshooting/
- Größtes Portal für fertige 3D Modelle
 - thingiverse.com
- Ausführliche Materialkunde
 - o www.prusa3d.com/material-guides/
 - all3dp.com/de/1/3d-drucker-filament-vergleich-beste-arten/
- Reddit Communities: Kaufberatung, Troubleshooting, Show-Off
 - o r/3Dprinting
 - o r/prusa3d
 - r/ender3
 - r/functionalprint