582206 Laskennan mallit, syksy 2012

6. harjoitusten malliratkaisut

Juhana Laurinharju ja Jani Rahkola

Säännölliset kielet

- 1. Osoita seuraavat kielet epäsäännöllisiksi käyttäen pumppauslemmaa (tai jollain muulla haluamallasi tavalla):
 - (a) $\{a^m b^n c^n \mid n, m \ge 1\}$
 - (b) aakkoston $\{a, b, c\}$ palindromit
 - (c) $\{0^n 10^n \mid n \in N\}.$
- 2. Mitkä seuraavista kielistä ovat säännöllisiä, mitkä eivät (kielillä A_1 ja A_2 aakkostona $\{0,1\}$, muilla $\{a,b,c\}$):

$$A_{1} = \{0^{n}1^{m}0^{n} \mid n, m \in N\}$$

$$A_{2} = \{0^{n}0^{n} \mid n \in N\}$$

$$A_{3} = \{ww^{\mathcal{R}} \mid w \in \Sigma^{*}\}$$

$$A_{4} = \{wuw^{\mathcal{R}} \mid w, u \in \Sigma^{+}\}.$$

$$A_{5} = \{wxw^{\mathcal{R}} \mid w \in \Sigma^{*}, x \in \Sigma\}$$

$$A_{6} = \{abca^{n}b^{n}c^{n} \mid n \in N\}$$

Perustele. Voit käyttää hyväksi kaikkia tunnettuja säännöllisiä kieliä koskevia ominaisuuksia, etenkin edellisen tehtävän tuloksia.

Kontekstittomat kielet

- 3. Esitä kontekstittomat kieliopit, jotka tuottavat seuraavat aakkoston $\Sigma = \{0, 1\}$ kielet:
 - (a) parittoman mittaiset merkkijonot

$$\begin{split} S &\to MT \\ T &\to MMT \mid \varepsilon \\ M &\to 0 \mid 1 \end{split}$$

(b) merkkijonot, joilla on osamerkkijono 111

$$S \rightarrow H111H$$

$$H \rightarrow MH \mid \varepsilon$$

$$M \rightarrow 0 \mid 1$$

(c) merkkijonot, joissa on ainakin kaksi merkkiä ja joiden ensimmäinen ja viimeinen merkki ovat samat

$$S \rightarrow 1H1 \mid 0H0$$

$$H \rightarrow MH \mid \varepsilon$$

$$M \rightarrow 0 \mid 1$$

(d) parittoman mittaiset merkkijonot, joiden ensimmäinen ja keskimmäinen merkki ovat samat.

1

$$S \to 1T_1M \mid 0T_0M$$

$$T_1 \to MT_1M \mid 1$$

$$T_0 \to MT_0M \mid 0$$

$$M \to 0 \mid 1$$

4. Esitä kontekstittomat kieliopit seuraaville kielille:

- (a) $01^* \cup 10^*$
- (b) $\{0^n 1^m \mid m, n \in N \text{ ja } m \ge n\}$
- (c) $\{0^n 1^k 0^m \mid m, n, k \in N \text{ ja } k = n + m\}$
- (d) $\{a^n b^m c^m \mid m, n \in N\}$
- (e) aakkoston {0,1} merkkijonot, joissa on yhtä paljon nollia ja ykkösiä.
- 5. Täydennä Jyrkin luentojen lauseen 2.3 todistus (s. 140) osoittamalla, että kontekstiton kielten luokka on suljettu myös konkatenaation ja tähtioperaation suhteen. Esitä todistus samalla tarkkuustasolla kuin luentomuistiinpanoissa esitetty yhdisteen tapaus.

Olkoon A ja B aakkoston Σ yhteydettömiä kieliä ja $A = L(G_A)$ ja $B = L(G_B)$ kieliopeilla $G_A = (V_A, \Sigma, R_A, S_A)$ ja $G_B = (V_B, \Sigma, R_B, S_B)$. Oletetaan $V_A \cap V_B = \emptyset$.

Väite. Kieli $A \circ B$ on yhteydetön.

Todistus. Luodaan uusi kielioppi, jossa on uusi lähtösymboli $S \notin V_A \cup V_B$, ja sääntö $S \to S_A S_B$ jolla tästä uudesta lähtösymbolista voi tuottaa alkuperäisten kielten lähtösymbolien katenaation.

$$G_{A \circ B} = (V_{A \circ B}, \Sigma, R_{A \circ B}, S)$$

$$V_{A \circ B} = V_A \cup V_B \cup \{S\}$$

$$R_{A \circ B} = R_A \cup R_B \cup \{S \to S_A S_B\}$$

Väite. Kieli A* on yhteydetön.

Todistus. Luodaan uusi kielioppi, jossa on uusi lähtösymboli $S \notin V_A \cup V_B$, ja sääntö $S \to S_A S \mid \varepsilon$ joka mahdollistaa A:n merkkijonojen toistamisen.

$$G_{A^*} = (V_{A^*}, \Sigma, R_{A^*}, S)$$

$$V_{A^*} = V_A \cup \{S\}$$

$$R_{A^*} = R_A \cup \{S \rightarrow S_A S \mid \varepsilon\}$$

- 6. Voidaan osoittaa, että kieli $A = \{a^nb^nc^n \mid n \in N\}$ ei ole kontekstiton. (Tähän palataan myöhemmin kurssilla.) Käyttäen tätä tietoa hyväksi osoita, että kontekstiton kielten luokka ei ole suljettu leikkauksen suhteen. (Vihje: esitä A kahden kontekstittoman kielen leikkauksena.) Päättele edelleen, että kontekstittomien kielten luokka ei ole suljettu komplementoinnin suhteen.
- 7. Osoita, että seuraavien aakkoston $\{a, b, c\}$ kielten komplementit ovat kontekstittomia:
 - (a) $A_1 = \{a^n b^n \mid n \in N\}$
 - (b) $A_2 = \{a^n b^n c^n \mid n \in N\}$

Vihje: Voit tietysti yksinkertaisesti kirjoittaa kontekstittomat kieliopit komplementeille $\overline{A_1}$ ja $\overline{A_2}$. Voi kuitenkin olla helpompaa esittää $\overline{A_1}$ ja $\overline{A_2}$ yhdisteinä yksinkertaisemmista kielistä, jotka on suoraviivaisempaa nähdä kontekstittomiksi.