DeepCorr: Strong Flow Correlation Attacks on Tor Using Deep Learning

Milad Nasr milad@cs.umass.edu

Alireza Bahramali abahramali@cs.umass.edu

Amir Houmansadr University of Massachusetts Amherst University of Massachusetts Amherst University of Massachusetts Amherst . amir@cs.umass.edu

ARSTRACT

Flow correlation is the core technique used in a multitude of deanonymization attacks on Tor. Despite the importance of flow correlation attacks on Tor. existing flow correlation techniques are considered to be ineffective and unreliable in linking Tor flows when applied at a large scale, i.e., they impose high rates of false positive error rates or require impractically long flow observations to be able to make reliable correlations. In this paper, we show that, unfortunately, flow correlation attacks can be conducted on Tor traffic with drastically higher accuracies than before by leveraging emerging learning mechanisms. We particularly design a system called DeepCorr, that outperforms the state-of-the-art by significant margins in correlating Tor connections. DeepCorr leverages an advanced deep learning architecture to learn a flow correlation function tailored to Tor's complex network—this is in contrast to previous works' use of generic statistical correlation metrics to correlate Tor flows. We show that with moderate learning, DeepCorr can correlate Tor connections (and therefore break its anonymity) with accuracies significantly higher than existing algorithms, and using substantially shorter lengths of flow observations. For instance, by collecting only about 900 packets of each target Tor flow (roughly 900KB of Tor data), DeepCorr provides a flow correlation accuracy of 96% compared to 4% by the state-of-the-art system of RAPTOR using the same exact setting.

We hope that our work demonstrates the escalating threat of flow correlation attacks on Tor given recent advances in learning algorithms, calling for the timely deployment of effective countermeasures by the Tor community.

CCS CONCEPTS

 Information systems → Traffic analysis;
 Security and privacy -> Pseudonymity, anonymity and untraceability: Privacy-preserving protocols; • Networks → Network privacy and anonymity;

KEYWORDS

Traffic Analysis; Tor; Flow Correlation Attacks; Anonymous Com-

classroom use is granted without fee provided that copies are not made or distributed for poofit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored For all other uses, contact the owner/author(s).

CCS '25 October 15-29 2015 Toronto ON Comodo

© 2018 Copyright held by the owner/author(s). ACM ISBN 978-1-4503-5693-0/18/10.

ACM Reference Format:

Milad Nasr, Alireza Bahramali, and Amir Houmansadr, 2018. DeepCorr Strong Flow Correlation Attacks on Tor, Using Deep Learning. In 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS 18). October 15-19. 2018. Toronto. ON. Canada. ACM, New York, NY, USA. 15 pages. https://doi.org/10.1145/3243734.3243824

1 INTRODUCTION

Tor [16] is the most widely used anonymity system with more than 2 million daily users [74]. It provides anonymity by relaying clients' traffic through cascades of relays, known as onion-circuits, therefore concealing the association between the IP addresses of the communicating parties. Tor's network comprises around 7,000 public relays, carrying terabytes of traffic every day [74]. Tor is used widely not only by dissidents, journalists, whistleblowers, and businesses, but also by ordinary citizens to achieve anonymity and blocking resistance.

To be usable for everyday Internet activities like web browsing, Tor aims to provide low-latency communications. To make this possible, Tor relays refrain from obfuscating traffic features like packet timings as doing so will slow down the connections. Consequently, Tor is known to be susceptible to flow correlation attacks [14, 51, 68] in which an adversary tries to link the egress and ingress segments of a Tor connection by comparing their traffic characteristics, in particular their packet timings and packet sizes

This paper studies flow correlation attacks on Tor. Flow correlation is the core technique used in a wide spectrum of the attacks studied against Tor (and similar anonymity systems) [8, 20, 36, 38, 70, 72]. For instance, in the predecessor attack [83] an adversary who controls/eavesdrops multiple Tor relays attempts at deanonymizing Tor connections by applying flow correlation techniques. The Tor project adopted "guard" relays to limit such an adversary's chances of placing herself on the two ends of a target Tor connection. Borisov et al. [8] demonstrated an active denial-of-service attack that increases an adversary's chances of observing the two ends of a target user's Tor connections (who then performs flow correlation). Alternatively, various routing attacks have been presented on Tor [20, 38, 70, 72] that aim at increasing an adversary's odds of intercepting the flows to be correlated by anipulating the routing decisions

Despite the critical role of flow correlation in a multitude of Tor attacks, flow correlating Tor connections has long been considered to be inefficient at scale [37, 55, 66]-but not anymore! Even though Tor relays do not actively manipulate packet timings and sizes to resist flow correlation, the Tor network naturally perturbs Tor packets by significant amounts, rendering flow correlation a

Note that some Tor bridges (but not the public relays) obfuscate traffic character tween themselves and censored clients by using various Tor pluggable transports [61].

difficult problem in Tor. Specifically, Tor connections experie large network jitters, significantly larger than normal Internet connections. Such large perturbations are resulted by congestion on Tor relays, which is due to the imbalance between Tor's capacity and the bandwidth demand from the clients. Consequently, existing flow correlation techniques [34, 45, 53, 72] suffer from high rates of false positives and low accuracies, unless they are applied on very long flow observations and/or impractically small sets of target flows. For instance, the state-of-the-art flow correlation of RAP-TOR [72] achieves good correlation performance in distinguishing a small set of only 50 target connections, and even this requires the collection of 100 MB over 5 minutes of traffic for each of the intercepted flows

In this work, we take flow correlation attacks on Tor to reality. We develop tools that are able to correlate Tor flows with accuracies significantly higher than the state-of-the-art-when applied to large anonymity sets and using very short observations of Tor connections. We argue that existing flow correlation techniques [13, 34, 45, 53, 68, 72] are inefficient in correlating Tor traffic as they make use of generic statistical correlation algorithms that are not able to capture the dynamic, complex nature of noise in Tor. As opposed to using such general-purpose statistical correlation algorithms, in this paper we use deep learning to learn a correlation function that is tailored to Tor's ecosystem. Our flow correlation system, called DeepCorr, then uses the learned correlation function to cross-correlate live Tor flows. Note that contrary to website fingerprinting attacks [10, 27, 58, 75, 76], DeepCorr does not need to learn any target destinations or target circuits; instead DeepCorr learns a correlation function that can be used to link flows on arbitrary circuits, and to arbitrary destinations. In other words, DeepCorr can correlate the two ends of a Tor connection even if the connection destination has not been part of the learning set. Also, DeepCorr can correlate flows even if they are sent over Tor circuits different than the circuits used during the learning process. This is possible as DeenCorr's neural network learns the generic features of noise in Tor, regardless of the specific circuits and end-hosts used during the training process.

We demonstrate DeepCorr's strong performance through large scale experiments on live Tor network. We browse the top 50,000 Alexa websites over Tor, and evaluate DeepCorr's true positive and false positive rates in correlating the ingress and egress segments of the recorded Tor connections. To the best of our knowledge, our dataset is the largest dataset of correlated Tor flows, which we have made available to the public.2 Our experiments show that DeepCorr can correlate Tor flows with accuracies significantly superior to existing flow correlation techniques. For instance, compared to the state-of-the-art flow correlation algorithm of RAPTOR [72], Deep Corr offers a correlation accuracy of 96% compared to RAPTOR's accuracy of 4% (when both collect 900 packets of traffic from each of the intercepted flows)! The following is a highlight of DeepCorr's

- · We use a total of 25,000 Tor flows collected by ourselves to train DeepCorr (we use 5,000 flows for training in most of our experiments). Training DeepCorr takes about a day on a single TITAN X GPU, however we show that an adversary needs to re-train DeepCorr roughly once a month to preserve
- its correlation performance · DeepCorr can be used as a generic correlation function: Deep-Corr's performance is consistent for various test datasets
- with different sizes and containing flows routed over differ-· DeepCorr outperforms prior flow correlation algorithms
- by very large margins. Importantly, DeepCorr enables the correlation of Tor flows with flow observations much shorter than what is needed by previous work. For instance, with only 300 packets, DeepCorr achieves a true positive rate of 0.8 compared to less than 0.05 by prior work (for a fixed false positive rate of 10⁻³)
 - · DeepCorr's performance rapidly improves with longer flow observations and with larger training sets
- · DeepCorr's correlation time is significantly faster than pro ous work for the same target accuracy. For instance, each DeepCorr correlation takes 2ms compared to RAPTOR's more than 20ms, when both target a 95% accuracy on identical dataset

We hope that our study raises concerns in the community on the escalating risks of large-scale traffic analysis on Tor communications in light of the emerging deep learning algorithms. A possible countermeasure to DeepCorr is deploying traffic obfuscati niques, such as those employed by Tor pluggable transports [61], on all Tor traffic. We evaluate the performance of DeepCorr on each of Tor's currently-deployed pluggable transports, showing that meek and obfs4-iat0 provide little protection against DeepCorr's flow correlation, while obfs4-iat1 provides a better protection against DeepCorr (note that none of these obfuscation mechanisms are currently deployed by public Tor relays, and even obfs4-iat1 is deployed by a small fraction of Tor bridges [55]). This calls for designing effective traffic obfuscation mechanisms to be deployed by Tor relays that do not impose large bandwidth and performance quarhands on Tor communications

Finally, note that while we present DeepCorr as a flow correlation attack on Tor, it can be used to correlate flows in other flow correlation applications as well. To demonstrate this, we also apply DeepCorr to the problem of stepping stone detection [6, 26, 80] showing that DeepCorr significantly outperforms previous stepping stone detection algorithms in unreliable network settings

Organization: The rest of this paper is organized as follows. In Section 2, we overview preliminaries of flow correlation and motivate our work. In Section 3, we introduce our flow correlation system, called DeepCorr. We describe our experimental setup in Section 4, and present and discuss our experimental results in Section 5. We discuss and evaluate possible countermeasures against DeepCorr in Section 6 and conclude the paper in Section 7.

2 PRELIMINARIES AND MOTIVATION

Flow correlation attacks, also referred to as confirmation attacks, are used to link network flows in the presence of encryption and

³To be fair, in our comparison with RAPTOR we derive the accuracy metric similar to RAPTOR's paper [72]; each flow is paired with only one flow out of all evaluated flows st of our experiments, each flow can be declared as correlate f intercepted flows, which is a more realistic (and more chal

other content obfuscation mechanisms [14, 18, 26, 65, 36, 83, 81, 81, 82], in particular, flow correlation techniques can break anonymity in anonymous communication systems like Tor [16] and mix networks [15, 46, 64) by linking the eggess and ingress segments of the anonymous connections through correlating traffic features [4, 14, 51, 68, 87, 28, 28]. Almanulvely, flow correlation proxises to obfuscate their identities, i.e., stepping stone attacken [69, 84, 86].

2.1 Threat Model

Figure 1 shows the main setting of a flow correlation scenario. The setting consists of a computer network (e.g., Te's network) with M ingress flows and N egress flows. Some of the egress flows are the oblicated vertowings of some of the ingress flows, however, the relation between such flows can not detected using packet contents due to the use of encryption and similar content offunction techniques like onion encryption. For instance, in the case of Tor, for the content of N in and N is at to onion encryption. We call (F_{ν},F) a part of associated flows.

The goal of an adversary in this setting is to identify (some or all of the associated flow pairs, e.g., (F, F, F), by comparing traffic characteristics, e.g., packet timings and sizes, across all of the ingress and egress flows. Linking associated flow pairs using traffic characteristics is called flow correlation.

A flow correlation adversary can intercept network flows at various network locations. A Tor adversary, in particular, can intercept Tor flows either by running malicious Tor relays [8, 36, 83] or by controlling/wiretapping internet ASes or IXPs [39, 70, 72]. We further elaborate on this in Section 2.3.

Note that in this paper we study passive flow correlation attacks only; therefore, active flow correlation techniques, also known as flow watermarks as introduced in Section 2.5, are out of the scope of this paper. Also, flow correlation is different from website fingerprinting attacks, as discussed in Section 2.5.

2.2 Existing Flow Correlation Techniques

As mentioned before, flow correlation techniques use traffic fetures, particularly, poster timings, packet times, and their variation (e.g., flow area, inter-packet legist, yet.), to correlate and his neting the real particular times and the particular times and the particular times. The particular times are the particular times are the particular times, the early work of Passon and Zhang [16] models perceived a review of the particular times are times are times are the particular times are the particular times are t

Mutual Information The mutual information metric measures the dependency of two random variables. It, therefore, can be used to quantify the correlation of flow features across flows, e.g., the traffic features of an egress Tor flow depends on the features of its corresponding ingress flow. The mutual information technique has been used by Chothia et al. [13] and Zhu et al. [83] to link flows. This metric, however, requires a long vector of features (e.g., long flows) in order to make reliable decisions, as it needs to reconstruct and compare the empirical distributions of traffic features of target flows.

Pearson Correlation The Pearson Correlation coefficient is a classic statistical metric for linear correlation between random variables. Unlike the mutual information metric, the Pearson Correlation metric does not need to build the empirical distribution of the variables it is correlating, and therefore can be applied on a shorter length of data. The Pearson Correlation metric has been used by several flow correlation systems [54, 68].

Cosine Similarity The Cosine similarity metric measures the angular similarity of two random variables. Similar to the Pearson coefficient, it can be directly applied on the sample vectors of two random variables. This metric has been used by different timing and size correlation systems [34, 53] to link network flows.

Spearman Correlation The Spearman rank correlation metric measures the statistical dependence between the rankings of two variables. The metric can be defined as the Pearson correlation between ranked variables. The recent work of RAPTOR [72] uses this metric to correlate Tor flows.

2.3 Flow Correlation Attacks on Tor

How correlation is the core technique used in a broad range of attacks studied against for faind often consequently systems.) The stable to perform flow correlation, an adversary needs to observe (i.e., intercept) one faction of flows entering and exiting the Tor network. The adversary can then deamonymine a pecific For connection, if the is able to intercept both the ingersa and egges segments of that For connection (by performing a flow correlation algorithm on those flow segments). Therefore, an adversary can increase her chances of deamonymining For connections by trying to intercept a large fraction of For in segment and general flows.

There are two main approaches an attacker can take to increase the fraction of Tor connections also in increasing first. by running the fraction of Tor connections also in increasing first. by running the first property of the first property in the first property of the first property

Alternatively, an adversary can increase her opportunities of performing flow correlation by controlling/wiretapping autonomous systems (ASes) or Internet exchange points (DSP), and recoring the traffic features of the For connections that they are Several studies [21, 52, 72] demonstrate that specific ASes and INDs intercept a significant friction of Tor traffic, therefore a capable of performing flow correlation on Tor at all gas called Other 17, 21 study and 18, 21 study and 18, 21 study and further performance of the performance of

Figure 1: The main setting of a flow correlation attack on Tor. The adversary intercepts Tor flows either by running malicious Tor relays or wiretapping Internet ASes and IXPs.

increase her chances of flow correlation by performing various routing manipulation that rerouts a larger fraction of To connections through her adversarial ASes and D3Vs. For instance, Starov et al. [70] recently show that approximately θ 0 or of Tor circuits are valuescable to flow correlation attack by a single malicious AS_i and the contraction attack by a single malicious AS_i and the contraction attack by a single malicious AS_i and the contraction of the contraction of

2.4 This Paper's Contributions

While flow correlation is the core of a multitude of attacks on Tor [3, 8, 20, 22, 28, 38, 39, 49, 52, 54, 70, 72, 72, 83], existing flow correlation algorithms are assumed to be ineffective in linking Tor connections reliably and at scale [37, 55, 66]. This is due to Tor's extremely noisy network that applies large perturbations on Tor flows, therefore rendering traffic features across associated ingress and egress Tor flows hard to get reliably correlated. In particular, Tor's network applies large network jitters on Tor flows, which is due to congestion on Tor relays, and many Tor packets are fragmented and repacketized due to unreliable network conditions. Consequently, existing flow correlation techniques offer poor correlation performances-unless applied to very large flow observations as well as unrealistically small sets of target flows. For instance, the state-of-the-art correlation technique of Sun et al. [72] needs to observe 100MB of traffic from each target flow for around 5 minutes to be able to perform reliable flow correlations. Such long flow observations not only are impractical due to the short-lived nature of typical Tor connections (e.g., web browsing sessions), but also impose unbearable storage requirements if applied at large scale (e.g., a malicious Tor relay will likely intercepte tens of thousands of concurrent flows). Moreover, existing techniques suffer from

*Note that active attacks like [48] are out of our scope, as discussed in Section 2.5, since such attacks are easily detectable, and therefore can not be deployed by an adversary at large scale for a long time period without being detected.

high rates of false positive correlations unless applied on an unrealistically small set of suspected flows, e.g., Sun et al. [72] correlate among a set of only 50 target flows.

Our Approach: We believe that the main reason for the ineffectiveness of existing flow correlation techniques is the intensity as well as the unpredictability of network perturbations in Tor. We argue that previous flow correlation techniques are inefficient in correlating Tor traffic since they make use of general-purpose statistical correlation algorithms that are not able to capture the dynamic, complex nature of noise in Tor. As opposed to using such generic statistical correlation metrics, in this paper we use deep learning to learn a correlation function that is tailored to Tor's ecosystem. We design a flow correlation system, called DeepCorr, that learns a flow correlation function for Tor, and uses the learned function to cross-correlate live Tor connections. Note that contrary to website fingerprinting attacks [10, 27, 58, 75, 76], DeepCorr does not need to learn any target destinations or target circuits; instead Deep-Corr learns a correlation function that can be used to link flows on arbitrary circuits, and to arbitrary destinations. In other words, DeepCorr can correlate the two ends of a Tor connection even if the connection destination has not been part of the learning set. Also, DeepCorr can correlate flows even if they are sent over Tor circuits different than the circuits used during the training process. We demonstrate DeepCorr's strong correlation performance through large scale experiments on live Tor network, which we compare to previous flow correlation techniques. We hope that our study raises concerns in the community on the increasing risks of large-scale traffic analysis on Tor in light of emerging learning algorithms. We discuss potential countermeasures, and evaluate DeepCorr's performance against existing countermeasures.

2.5 Related Topics Out of Our Scope

Active flow correlation (watermarking) Network flow watermarking is an active variant of the flow correlation techniques introduced above. Similar to passive flow correlation schemes, flow watermarking aims at linking network flows using traffic features that peraist content defunction, i.e., packet sizes and timings. By contrast, flow wetermarking systems need to smaplage the traffice fortures of the flows they intercept in order to be able to perform flow correlation. In particular, many flow wetermarking systems [27–31, 33, 62, 78, 53] perturb packet timings of the intercepted flows by slightly delaying settors packets to module as a ratificial pattern into the flows, called the watermark. For instance, RAMSOW [13] manupulation that mere packet delays of network packets in order manupulations. The mere packet delays of network packets in soften manupulations that mere packet delays of network packets in soften to the packet of the packet of the packet of the packet of the law of the packet of the packet of the packet of the packet of the law of the packet of the pa

While passive flow correlation attack (studied in this paper) are information theoretically undetectable, a weatmanking adversary may reveal heared by applying traffic perturbations that differ from that of normal traffic. Some active correlation techniques [12, 63] do not even aim for invisibility, therefore they can be trivially detected and disable, making them unsatisfies for large scale flow correlation. Additionally, while passive flow correlation algorithms can be compared disable, flow watermarks need to be performed by on live Tor connections. In this paper, we only focus on passive flow correlation techniques.

Website Fingerprinting Website fingerprinting attacks [10, 24, 25, 27, 40, 47, 57, 58, 75-77] use a different threat model than flow correlation techniques. In website fingerprinting, an adversary intercepts a target client's ingress Tor traffic (e.g., by wiretapping the link between a Tor client and her guard relay), and compares the intercepted ingress Tor connection to the traffic fingerprints of a finite (usually small) set of target websites. This is unlike flow correlation attacks in which the adversary intercepts the two ends of an anonymous connection, enabling the attacker to deanonymize arbitrary senders and receivers. Existing website fingerprinting systems leverage standard machine learning algorithms such as SVM and kNN to classify and identify target websites, and recent work [67] has investigated the use of deep learning for website fingerprinting. In contrary, as overviewed in Section 2.2, prior passive flow correlation techniques use statistical correlation metrics to link traffic characteristics across network flows. We consider website fingerprinting orthogonal to our work as it is based on different threat model and techniques

3 INTRODUCING DeepCorr

In this section, we introduce our flow correlation system, called DeepCorr, which uses deep learning algorithms to learn correlation functions.

3.1 Features and Their Representation

Similar to existing flow correlation techniques overviewed earlier, our flow correlation system uses the timings and sizes of network flows to cross-correlate them. A main advantage [23] of deep learning noded can be provided with raw data features as eggosed to require earlier of the contract glical choice used by 50% and 18% based engineered unific features (glic choice used by 50% and 18% based engineered unific features (glic choice used by 50% and 18% based with the contract complex. effective features from the raw raping features [23] itself. Therefore, DeepCorr electric from the race imput features [20] itself. Therefore, DeepCorr electric from the race imput features [20].

takes raw flow features as input, and uses them to derive complex features, which is used by its correlation function.

We represent a bidirectional network flow, i_i with the following array:

$$F_i = [T_i^u; S_i^u; T_i^d; S_i^d]$$

where T is the vector of inter-packet delays (IPD) of the flow t.
S is the vector of 'fth packet sizes, and the u and d superscripts
represent 'upstream' and 'downstream' sides of the bidirectional
flow (e.g., T') is the vector of upstream IPDs of I). Also, note that the
we only use the first f elements of each of the vectors, e.g., only
the first d upstream IPDs. If a vector has fewer than f elements, we
pad it to f by appending zeros. We will use the flow representation
F, during our learning process.

Now suppose that we aim at correlating two flows i and j (say i was intercepted by a malicious Tor guard relay and j was intercepted by an accomplice exit relay). We represent this pair of flows with the following two-dimensional array composed of 8 rows:

 $F_{i,j} = [T_i^u; T_j^u; T_i^d; T_j^d; S_i^u; S_j^u; S_i^d; S_j^d]$

where the lines of the array are taken from the flow representations F_l and F_l .

3.2 Network Architecture

We use a Convolutional Neural Network (CNN) [23] to learn a correlation function furction for Tor's noisy network. We use a CNN since network flow features can be modeled as time series, and the CNNs are known to have good performance on time series [23]. Also, the CNNs are invariant to the position of the patterns in the data stream [23], which makes them ideal to look for possibly shifted traffic patterns.

Figure 2 shows the structure of DeepCorr's CNN activorl. The network takes a flow \overline{k} , \overline{k} as the input on the H side), Deep Corr's architecture is composed of two layers of convolution and three layers of a fully connected neural network. The first convolution layer has k kernels each of size $(2, w_1)$, where k_2 and w_1 are the hyperparameters, and we use a stride of (3, 1). The initialization behind using the first convolution layer is to capture correlation behind using the first convolution layer is to capture correlation behind using the first convolution layer is to capture correlation behind using the first convolution layer is to capture correlation behind using the first convolution layer is to capture correlation behind using the first convolution layer is to capture correlation between 10^{2} and 10^{2} cm 10^{2}

DeepCorr's second convolution layer aims at capturing traffic features from the combination of all timing and size features. At this layer, DeepCorr uses 82 kernels each of size (4, w2), where 82 and w2 are also our hyperparameters, and it uses a stride of (4, 1). The outuat of the second convolution layer is flattened and 16d

to a fully connected network with three layers. DeepCorr uses max pooling after each layer of convolution to ensure permutation invariance and to avoid overfitting [23]. Finally, the output of the network is:

$$p_{i,j} = \Psi(F_{i,j})$$

Note that our works in the first to use a learning association for favor corelation. In the second of the contract of the all upper verse to making (SVM, threew, CNR) product the bott flow correlation performance compared to all the other algorithms we investigated, which is institutely became CNRs are famous to work better for lenger that surpless, For instance, we achieved an accuracy of only 0.4 using fulling-connected neural networks, which is stratificated become than our neutronizes with CNRs.

Figure 2: The network architecture of DeepCorr.

which is used to decide if the two input flows in $F_{i,j}$ are correlated or not. To normalize the output of the network, we apply a sigmoid function [23] that scales the output between zero and one. Therefore, $\rho_{i,j}$ shows the probability of the flows i and j being associated (correlated), e.g., being the entry and exit segments of the same Tor connection

DeepCorr declares the flows i and j to be correlated if $p_{i,j} > \eta$, where η is our detection threshold discussed during the experiments.

where η is our detection threshold discussed during the experiments. The parameters (w_1, w_2, k_1, k_2) are the hyperparameters of our system; we will tune their values through experiments.

3.3 Training

To train our network, we use a large set of flow pairs that we created over the This includes a large set of associated flow pairs, and a large set of non-associated flow pairs, $I_{i,j}$, contains of the two segments of a Tor connection (e.g., $I_{i,j}$), $I_{i,j}$) and the of two segments of a Tor connection (e.g., $I_{i,j}$). We label an associated pair with $y_{i,j} = 1$. On the other band, each non-associated flow $y_{i,j} = 1$, $I_{i,j} = 1$. On the other band, each non-associated flow $y_{i,j} = 1$, $I_{i,j} = 1$. On the other band, each non-associated flow $y_{i,j} = 1$, $I_{i,j} = 1$, and $I_{i,j} = 1$ and $I_{i,j} = 1$ and $I_{i,j} = 1$. The connection for the $I_{i,j} = 1$ and $I_{i,j} = 1$ an

Finally, we define DeepCorr's loss function using a cross-entropy function as follows:

$$\mathcal{L} = -\frac{1}{|\mathcal{F}|} \sum_{F_{i,j} \in \mathcal{F}} y_{i,j} \log \Psi(F_{i,j}) + (1 - y_{i,j}) \log (1 - \Psi(F_{i,j})) \quad (1)$$

where \mathcal{F} is our training dataset, composed of all associated and non-associated flow pairs. We used the Adam optimizer [43] to minimize the loss function in our experiments. The learning rate of the Adam optimizer is another hyperparameter of our system.

4 EXPERIMENTAL SETUP

In this section, we discuss our data collection and its ethics, the choice of our hyperparameters, and our evaluation metrics.

4.1 Datasets and Collection

Figure 3 hows our experimental setup for our Toc experiment. We used several Toc feaths that we an inside sparset VMs to general and collect. To traffic. We use each of our Toc clients to browse the top 50000 Aleas websites over Toc and explanted feet for the property of the property o

Note that we did not set up our own Tor relays for the purpose of the experiments, and we merely used pulsells for relays in all of our experiments. We captured the ingenes Tor flow suggest greating on our Tor clients. To capture the experiments for the first ment of the contract of th

We collected our Tor traffic in two steps: first, we collected traffic over a two weeks period, and then with a three months gap we collected more Tor traffic for a one month period (in order to show the impact of time on training). We have made our dataset available publicly. To the best of our knowledge, this is largest dataset of

Figure 3: Our experimental setup on Tor

correlated Tor flows, and we hope it will be useful to the research community.

Note that while we only collect web traffic, this is not a constraint of DeepCorr, and it can be used to correlate arbitrary Tor traffic.

4.2 Ethics of Data Collection

To make sure we did not overfoad Tor's network, we ran up to 10 concurrent Tor connections during our data collection. Also, we alternated the guard nodes used in our circuits to reade overloading, any specific criticals or relays. We did not browse any illegal content over Tor, and we used an idle time between connections of each of our clients. As epilizated above, we collected our ingress and course of the content of th

our clients. As explained above, we collected our ingress and egress Tor flows on our own Tor clients as well as our own SOCKS proxy server; therefore, we did not collect any traffic of other Tor users. In our experiments with Tor pluggable transports, we collected a much smaller set of flows compared to our bare Tor experiments; we did so because Tor bridges are very scarce and expensive, and

therefore we avoided overloading the bridges. 4.3 Choosing the Hyperparameters

We used Tensorflow [1] to implement the neural networks of Deep Corr. We tried various values for different hyperparameters of our system to optimize the flow correlation performance. To optimize each of the parameters, our network took about a day to converge (we used a single Nvidia TITAN X GPU).

For the learning rate, we tried (0.001,0.0001,0.0001,0.00001

4.4 Evaluation Metrics

Similar to previous studies, we use the true positive (TP) and false positive (FP) error rates as the main metrics for evaluating the performance of flow correlation techniques. The TP rate measures the fraction of associated flow pairs that are correctly declared to

Table 1: DeepCorr's hyperparameters optimized to correlate Tor traffic

affic.			
Layer	Details		
Convolution Layer 1	Kernel num: 2000 Kernel size: (2, 30) Stride: (2,1) Activation: Relu		
Max Pool 1	Window size: (1,5) Stride: (1,1)		
Convolution Layer 2	Kernel nume: 1000 Kernel size: (4,10) Stride: (4,1) Activation: Relu		
Max Pool 2	Window size: (1,5) Stride: (1,1)		
Fully connected 1	Size: 3000, Activation: Relu		
Fully connected 2 Fully connected 3	Size: 800, Activation: Relu Size: 100, Activation: Relu		

be correlated by DeepCorr (i.e., a flow pair (i,j) where i and j are the segments of the same for connection, and we have $p_{i,j} > j$. 0. On the other hand, the P1 are measures the fraction of non-associated flow other hand, the P1 are measures the fraction of non-associated flow other hand and just the segments of two unrelated Tar connections, when i and just the segments of two unrelated Tar connections, $p_{i,j} > j$. The contraction of $p_{i,j} > j$. The control is connection of $p_{i,j} > j$. The control is connection of $p_{i,j} > j$. The control is connection of $p_{i,j} > j$. The control is connection of $p_{i,j} > j$. The control is connection of $p_{i,j} > j$. The control is connection of $p_{i,j} > j$ and $p_{i,j} > j$. The control is connected to experiments of $p_{i,j} > j$. The control is connected in the connection of $p_{i,j} > j$ and $p_{i,j} > j$. The connection of $p_{i,j} > j$ and $p_{i,j} > j$ and $p_{i,j} > j$ and $p_{i,j} > j$. The connection of $p_{i,j} > j$ are the connection of $p_{i,j} > j$ and $p_{i,j} > j$ a

Note that the detection threshold η makes a trade off between the FP and TP rates; therefore we make use of ROC curves to compare DeepCorr to other algorithms.

Finally, in our comparisons with AHTOR [7:3], we additionally use the accuracy metric the sum of time positive and time negative correlations over all correlations, which is used in the RAPTOR paper. To have a first comparison, we efter the accuracy metric similar to RAPTOR: each flow is declared to be associated with only a single flow or of all evaluated flows, e.g., the flow that results in the maximum correlation metric, p_{e_1} , p_{e_2} for the rest of our experiments, each flow on the declared as correlated with arbitrary concreted with arbitrary and mamber of intercepted flows $(e_i$, any pairs that $p_{e_i} > \eta_i$, which is a none realistic (and more challenging) extra one challenging of the control of t

5 EXPERIMENT RESULTS

In this section we present and discuss our experimental results.

5.1 A First Look at the Performance

As described in the experimental steap section, we knowe \$50,000 to place awhelies over 15 and collect their ingress and eggress flow segments. For this experiment, we selected 5,000 connections 150 to 150

On the practicality of false positive error rates Note that a 10⁻³ FP may seem too large for a real-world setting in which the malicious AS/IXP is intercepting several thousands of Tor connections at any time. First, the results presented here are for Tor flows with only $\ell=300$ packets to demonstrate DeepCorr's unique performance on short flows (no previous work has done experiments with such short lengths of Tor flows with acceptable accuracies). As shown later, increasing flow length rapidly improves DeepCorr's correlation performance, e.g., from Figure 8 a flow length of 450 packets improves FP by close to two orders of magnitude compared to 300 packets (for a fixed TP of 0.8). This is also evident from Figures 11 and 12. Second, the correlation adversary can deploy a multi-stage attack to optimize accuracy and traffic collection. For instance, she can apply DeepCorr on the first 300 packets of all intercepted Tor flows, and then collect more packets for the flow pairs detected by the first stage of the attack. She then re-applies DeepCorr on the longer observations of those flow pairs. Third, the adversary can perform standard pre-filtering mechanisms to further reduce FPs, e.g., she can ignore all flow pairs with substantially different start times. In our experiments, all of the flows have the same starting times.

5.2 DeepCorr Can Correlate Arbitrary Circuits and Destinations

As discussed earlier, DeepCorr Journa a correlation function for The that can be used to correlate for flowers on -supercustradiction of the control of the control of the control of the term of the control of the control of the control of the DeepCorr performance in two experiments, each consisting, 2000. To connections, therefore 2.000 associated pairs and 2.000 x 1.999 non-associated flow pairs in the frent eperiment, the flower testing as the flow used during DeepCorr's training, in the second experiment, the flower testing of the correlation by DeepCorr (1) use critical that are totally different from the criticals used during training, (2) training, and (2) are collected one week after the learning flower.

Figure 4: True positive and false positive error rates of Deep-Corr in detecting correlated pairs of ingress and egress Tor flows for different detection thresholds (η) . Each flow is only 300 packets.

Figure 5: DeepCorr's performance does not depend on the circuits and destinations used during the training phase.

Figure 5 compares DeepCorr's ROC curve for the two experiments. As can be seen. DeepCorr performs similarly in both of the experiments, demonstrating that DeepCorr's learned correlation function can be used to correlate Tor flows on arbitrary circuits and to arbitrary destinations. The third line on the figure shows the results when the training set is three months old, showing a degraded performance, as further discussed in the following.

Figure 6: DeepCorr's correlation values for associated and non-associated flows for 30 consecutive days without retraining. The performance only starts to drop after about three weeks.

5.3 DeepCorr Does Not Need to Re-Train Frequently

Since the characteristics of Tor traffic change over time, any learning-based algorithm needs to be re-trained exactionally to preserve its correlation performance. We preformed two experiments of the control of the

As an extreme case, we also evaluated DeepCorr's performance using a model that was trained three months earlier. Figure 5 compares the results in three cases: three months gap between training and test, one week popel between training and test, and no gap. We see that DeepCorr's accuracy significantly degrades with three months gap between training and test-inderestingly, even this significantly degraded performance of DeepCorr' due to lack of retraining is superior to all previous techniques compared in Figure 10.

5.4 DeepCorr's Performance Does Not Degrade with the Number of Test Flows

We also show that DeepCorr's correlation performance does not depend on the number of flows being correlated, i.e., the size of the test dataset. Figure "presents the TP and FP results (for a specific threshold) on datasets with different numbers of flows. As can be seen, the results are consistent for different numbers of flows being correlated. This suggests that DeepCorr's correlation performance correlated of the suggests that DeepCorr's correlation performance to the correlation of the suggests that DeepCorr's correlation performance to the support of the support o

Figure 7: DeepCorr's performance is consistent regardless of the size of the testing dataset (we use a fixed, arbitrary η).

5.5 DeepCorr's Performance Rapidly Improves with Flow Length

In all of the previous results, we used a flow length of $\ell=900$ packets. As can be expected, increasing the length of the own used for training and testing should improve the performance of DeepCorr. Figure 5 compares DeepCorr's performance find different lengths of flows, showing that DeepCorr's performance improves applicatingly for longer flow observations. For instance, for a target flows, which is the property of the previous performance improves the flows while it achieves TP=0.95 with flows that contain $\ell=450$ packets.

Note that the lengths of intercepted flows makes a tradeoff beween DeepCorr's performance and the adversary's computation overhead. That is, while a larger flow length improves DeepCorr's correlation performance, longer flows impose higher storage and computation overheads on the traffic correlation adversary. A larger flow length also increase the adversary's waiting time in detecting correlated flows in real-time.

5.6 DeepCorr's Performance Improves with the Size of the Training Set

As intuitively expected, DeepCorri performance improves when it uses a larger at of To flows during the training plants (i.e., DeepCorr learns a better correlation function for To with more training samples, Figure vonquese DeepCorr, To KC, carve when training samples, Figure vonquese DeepCorr, To KC, carve when the contract of the

Figure 8: DeepCorr's performance rapidly improves when using longer flows for training and testing.

Figure 9: DeepCorr's correlation performance improves with more training data.

larger training set increases the training time, however the learning process does not need to repeat frequently as evaluated before.

5.7 DeepCorr Significantly Outperforms the State-Of-The-Art

In Section 2.2 we overviewed major flow correlation techniques introduced prior to our work. We perform experiments to compare DeepCorr's performance with such prior systems in correlating Tor flows. Figure 10 compares the ROC curve of DeepCorr to other systems, in which all of the systems are tested on the exact same set of Tor flows (each flow is at most 300 packets). As can be seen, DeepCorr significantly outperforms the flow correlation algorithms

Table 2: Correlation time comparison with previous techniques

Method	One correlation time	
RAPTOR	0.8ms	
Cosine	0.4ms	
Mutual Information	1ms	
Pearson	0.4ms	
DeepCorr	2ms	

used by prior work, as we see a wide gap between the ROC curve of DeepCorr and other systems. For instance, for a target FP = 10⁻³, while DeepCorr a chieves a TP of 0.8, previous systems provide TP rates less than 0.05 This huge improvement comes from the fact that DeepCorr learns a correlation function tallored to Tor whereas previous systems use generic statistical correlation metrics (as introduced in Section 2.21) to lift. Tor connections

Needless to say, any flow correlation algorithm will improve its performance by increasing the length of the flows it intercepts for correlation (equivalently, the traffic volume it collects from each flow); we showed this in Section 5.5 for DeepCorr. To offer reasonable accuracies, previous works have performed their experiments on flows that contain significantly more packets (and more data) than our experiments. For instance, Sun et al. evaluated the state-ofthe-art RAPTOR [72] in a setting with only 50 flows, and each flow carries 100MB of data over 5 minutes. This is while in our experiments presented so far, each flow has only 300 packets, which is equivalent to only ≈ 300 KB of Tor traffic (in contrast to RAPTOR's 100MB!). To ensure a fair comparison, we evaluate DeepCorr to RAPTOR in the exact same setup (e.g., 50 flows each 100MB, and we use the accuracy metric described in Section 4.4). The results shown in Figure 11 demonstrates DeepCorr's drastically superior performance (our results for RAPTOR comply with the numbers reported by Sun et al. [72]). On the other hand, we show that the performance gap between DeepCorr and RAPTOR is significantly wider for shorter flow observations. To show this, we compare DeepCorr and RAPTOR based on the volume of traffic they intercept from each flow. The results shown in Figure 12 demonstrate that DeepCorr outperforms significantly, especially for shorter flow observations. For instance, RAPTOR achieves a 0.95 accuracy after receiving 100MB from each flow, whereas DeepCorr achieves an accuracy of 1 with about 3MB of traffic. We see that DeepCorr is particularly powerful on shorter flow observations. We zoomed in by comparing RAPTOR and DeepCorr for small number of observed packets, which is shown in Figure 13. We see that DeepCorr achieves an accuracy of = 0.96 with only 900 packets, in contrast to RAPTOR's 0.04 accuracy.

5.8 DeepCorr's Computational Complexity

In Table 2, we show the time to perform a single DeepCorr correlation in comparison to that of previous techniques (the correlated flows are 300 packets long for all the systems). We see that Deep-Corr is noticeably slower than previous techniques, e.g., roughly two times slower than RAPTOR. However, note that since all the systems use the same length of flows, DeepCorr offers drustically better correlation performance for the same time overhoad, for instance,

Figure 10: Comparing DeepCorr's ROC curve with previous systems shows an overwhelming improvement over the state-of-the-art (all the systems are tested on the same dataset of flows, and each flow is 300 packets).

Figure 11: Comparing DeepCorr to RAPTOR [72] using the same flow lengths and flow number as the RAPTOR [72] paper.

based on Figure 10, we see that DeepCorr offers a TP = 0.9 when all previous systems offer a TP less than 0.2. Therefore, when the systems offer similar accuracies (e.g., each using various lengths of input flows) DeepCorr will be factor than all the systems for the same accuracy. As an example, each RAPTOR correlation takes 200m (on much longer flow observations) in order to achieve the same accuracy as DeepCorr which takes only 2ms—i.e., DeepCorr is 10 times faster for the same accuracy.

Compared to previous correlation fechniques, DeepCorr is the only system that has a training phase. We trained DeepCorr using a standard Nvidia TITAN & GPU (with 1.5GHz clock speed and 12GB of memory) on about 5,000 pairs of associated flow pairs and

Figure 12: Comparing the accuracy of DeepCorr and RAP-TOR [72] for various volumes of data intercepted from each flow. The RAPTOR values are comparable to Figure 6 of the RAPTOR paper [72].

Figure 13: Comparing DeepCorr to RAPTOR in correlating short flows.

\$600 \times 4999 non-associated flow pairs, where each flow consists of 300 packets. In this setting, DeepCorr is trained in roughly one day. Recall that as demonstrated in Section \$3. DeepCorr does not need to be re-trained frequently, e.g., only once every three weeks. Also, a resourceful adversary with better GPU resources than ours will be able to cut down on the training time.

5.9 DeepCorr Works in Non-Tor Applications as Well

While we presented DeepCorr as a flow correlation attack on Tor, it can be used to correlate flows in other flow correlation applications as well. We demonstrate this by applying DeepCorr to the problem of stepping stone attacks [6, 26, 80]. In this setting, a cybercriminal proxise her traffic through a compromised machine (e.g., the

Figure 14: The network architecture of DeepCorr to detect stepping stone attacks

Table 3: DeepCorr's parameters optimized for the stepping stone attack application.

Layer	Details		
Convolution Layer 1	Kernel num: 200		
	Kernel size: (2, 10)		
	Stride: (1,1)		
	Activation: Relu		
Max Pool 1	Window size: (1,5)		
	Stride: (1,1)		
Fully connected 1	Size: 500, Activation: Relu		
Fully connected 2	Size: 100, Activation: Relu		

stepping stone) in order to hide her identity. Therefore, a network administrator can use flow correlation to match up the ingress and eggress segments of the relayed connections, and therefore trace back to the cybercriminal. Previous work has devised various flow correlation techniques for this application [17, 33, 35, 59, 81].

For our stepping stone detection experiments, we used the 2016 CAIDA assocyanic data trace [1:1]. Similar to the previous works [13, 34, 35] we simulated the network jitter using Lapkee distribution, and nodeled packet drops by a Bernoulli distribution with the contraction of the contraction of the contraction of the DeepCorr in a stepping stone setting. As the noise model is much simpler in this scenario tool for five wear supplemental network model for DeepCorr for this application. Also, we only use one direction of a halterional connection to have a fair comparison described to the contraction of the contraction of the contraction of the part and produced that the contraction of the contraction of the part of the contraction of the contraction of the contraction of the part of the contraction of the contraction of the contraction of the part of the contraction of the contraction of the contraction of the part of the contraction of the contraction of the contraction of the part of the contraction of the contraction of the contraction of the contraction of the part of the contraction of the contraction of the contraction of the contraction of the part of the contraction of the contraction

Our evaluations show that DeepCorr provides a performance comparable to 'Optimal' flow correlation techniques of Homanacate et al. [33, 34] when network conditions are stable. However, when the network conditions becomes noisy. Deep Correlation of the control of the control of the control of the stable shows a significantly stronger performance in detecting stepping stone attacks. This is shown in Figure 15, where the communication network has a network jitter with a 0.005s standard deviation, and the network randomly drops 15 of the packets.

6 COUNTERMEASURES

While previous work has studied different countermeasures against flow correlation and similar traffic analysis attacks $\{2,9,19,35,41,42,50,56,61,82\}$, they remain mostly non-deployed presumably due to the poor performance of existing flow correlation techniques at large scale $\{60,66\}$. In the following, we discuss two possible countermeasures.

Figure 15: DeepCorr outperforms state-of-the-art stepping stone detectors in noisy networks (1% packet drop rate).

6.1 Obfuscate Traffic Patterns

An intuitive countermeasure against flow correlation (and similar traffic analysis attacks like website fingerprinting) is to obfuscate traffic characteristics that are used by such algorithms. Therefore, various countermeasures have been suggested that modify packet timings and packet sizes to defeat flow correlation, in particular by padding or splitting packets in order to modify packet sizes, or by delaying packets in order to perturb their timing characteristics. The Tor project, in particular, has deployed various pluggable transports [61] in order to defeat censorship by nation-states who block all Tor traffic. Some of these pluggable transports only obfuscate packet contents [56], some of them obfuscate the IP address of the Tor relays [48], and some obfuscate traffic patterns [50, 56]. Note that Tor's pluggable transports are designed merely for the purpose of censorship resistance, and they obfuscate traffic only from a censored client to her first Tor relay (i.e., a Tor bridge). Therefore, Tor's pluggable transports are not deployed by any of Tor's public

As a possible countermeasure against DeepCorr, we suggest to deploy traffic obfictation techniques by all Tor relay including the guard and middle relays). We evaluated the impact of several for plaggidest transports on DeepCorr 1 performance. Currently, of the plaggidest transports on DeepCorr 1 performance consequence realized bept-for on mote and does to doked is as an other version of 06640. We also evaluated two modes of 06645 on with MTA mode for 153, which obstructes traffic features, and one with the LAT mode of "0, which obstructes traffic features, and one with the LAT mode of "0, which obstructes traffic features, was one of DeepCorr to learn and correlate traffic on these plays. However, due to enthular transport, we collected a much small rest of plons for these to related arounds, more collected a much small are of plons for these to related arounds, more collected a much small part of plons for these for obstructions of the collected and the collected and

Alternatively, we could set up our own Tor bridges for the experiments. We decided to use real-world bridges to incorporate the impact of actual traffic loads in our construction.

Table 4: DeepCorr's performance if Tor's pluggable transports are deployed by the relays (results are very optimistic due to our small training set, which is for ethical reasons).

Plug name	TP	FP
obfs4 with IAT=0	≈ 0.50	0.0005
meek	≈ 0.45	0.0005
obfs4 with IAT=1	≈ .10	0.001

very optimistic due to their small training datasets (e.g., a realworld adversary will achieve much higher correlation accuracies with adequate training). We browsed 500 websites over obfs4 with and without the IAT mode on, as well as over meek. We trained DeepCorr on only 400 flows (300 packets each) for each transport (in contrast to 5,000 flows in our previous experiments), and tested on another 100 flows. Table 4 summarizes the results. We see that meek and obfs4 with IAT=0 provide no protection to DeepCorr; note that a 0.5 TP is comparable to what we get for bare Tor if trained on only 400 flows (see Figure 9), therefore we expect correlation results similar to bare Tor with a larger training set. The results are intuitive: meek merely obfuscates a bridge's IP and does not deploy traffic obfuscation (except for adding natural network noise). Also obfs4 with IAT=0 solely obfuscates packet contents, but not traffic features. On the other hand, we see that DeepCorr has a significantly lower performance in the presence of obfs4 with IAT=1 (again, DeepCorr's accuracy will be higher for a real-world adversary who collects more training flows).

Our results suggest that (public) Tor relays should deploy a traffic obfuscation mechanism like obfs4 with IAT=1 to resist advanced flow correlation techniques like DeepCorr. However, this is not a trivial solution due to the increased cost, increased overhead (band width and CPU), and reduced QoS imposed by such obfuscation mechanisms. Even the majority [55] of Obfsproxy Tor bridges run obfs4 without traffic obfuscation (IAT=0). Therefore, designing an obfuscation mechanism tailored to Tor that makes the right balance between performance, cost, and anonymity remains a challenging problem for future work.

6.2 Reduce An Adversary's Chances of Performing Flow Correlation

Another countermeasure against flow correlation on Tor is reducing an adversary's chances of intercepting the two ends of many Tor connections (therefore, reducing her chances of performing flow correlation). As discussed earlier, recent studies [22, 52, 72] show that various ASes and IXPs intercept a significant fraction of Tor traffic, putting them in an ideal position to perform flow correlation attacks. To counter, several proposals suggest new relay selection mechanisms for Tor that reduce the interception chances of malicious ASes [2, 5, 41, 54, 71, 73]. None of such alternatives have been deployed by Tor due to their negative impacts on performance costs, and privacy. We argue that designing practical AS-aware relay selection mechanisms for Tor is a promising avenue to defend against flow correlation attacks on Tor.

7 CONCLUSIONS

We design a flow correlation system, called DeepCorr, that drastically outperforms the state-of-the-art systems in correlating Tor connections. DeepCorr leverages an advanced deep learning architecture to learn a flow correlation function tailored to Tor's complex network (as opposed to previous works' use of general-purpose statistical correlation metrics). We show that with adequate learning, DeepCorr can correlate Tor connections (and therefore break its anonymity) with accuracies significantly stronger than existing algorithms, and using substantially shorter lengths of flow observations. We hope that our work demonstrates the escalating threat of flow correlation attacks on Tor in rise of advanced learning algorithms, and calls for the deployment of effective countermeasures by the Tor community

ACKNOWLEDGMENTS

This work was supported by the NSF grants CNS-1525642, CNS-1553301, and CNS-1564067.

REFERENCES

- [1] Martin Abadi, Paul Barbam, Itanmin Chen, Zhifene Chen, Andy Davis, Jeffrey Martin Abadi, Paul narnam, jammu Chen, Zeineng Chen, Assay sawa, passay Dean, Matthiau Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. TemooFlow: A System for Large-Scale Machine Learning. In OSDI, Vol. 16.
- 283. sud Alchoondi, Curtis Yu, and Harsha V Madhyastha. 2012. LASTor: A low latency AS-aware Tor client. In Security and Privacy (SP), 2012 IEEE Symposium on IFFF 476-490
- on IEE, 410–400. Axed Arnbak and Sharon Goldberg. 2014. Loopholes for Circumventing the Con stitution: Unrestricted Bulk Surveillance on Americans by Collecting Network Traffic Abroad, Mich. Telecomm. & Tech. L. Rev. 21 (2014), 317. Adam Back, Ulf Möller, and Anton Stiglic. 2001. Traffic Analysis Attacks and
- Trade-Offs in Anonymity Providing Systems. In Information Hiding (Lecture Notes in Computer Science), Vol. 2137. Springer, 245–247.
 Armon Barton and Matthew Wright. 2016. DeNASA: D awareness in anonymous communications. Proceedings on Privacy Enhancing
- Technologies 2016, 4 (2016), 356-372.

 Avrim Blum, Dawn Song, and Shobba Venkutaraman. 2004. Detection of in teractive stepping stones: Algorithms and confidence bounds. In International
- [7] A. Blum, D. Song, and S. Venkutaraman. 2004. Detection of Interactive Stepping Stones: Aleonthus and Confidence Bounds. In RAID.
- [8] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. 2007. Denial of service or denial of security?. In Proceedings of the 14th ACM conference on
- Computer and construstactions accurity. ACM, 92–102.

 [9] X. Cai, X. Zhang, B. Joshi, and R. Johnson. 2012. Touching from a Distance: Website Fingeoprinting Attacks and Defensor. In CCS.

 [30] Xiang Cai, Xia Cheng Zhang, Brijosh Joshi, and Bob Johnson. 2012. Touching
- [11] caids trace [n. d.]. The CAIDA UCSD Anonymized Internet Traces 2016 [2016]
- [12] Sambuddho Chakuwarty, Marco V Barbera, Georgios Poetokalidis, Michalis Poly-chronalsis, and Ameelos D Keromettis. 2014. On the effectiveness of traffic analysis painst anonymity networks using flow records. In International conference on usine and active network measurement. Springer, 247–257. [13] Tom Chothia and Apratim Guha. 2011. A statistical test for information leaks us ing continuous mutual information. In Computer Security Foundations Symposium
- (CSF), 2011 IEEE 24th, IEEE, 177-190. [14] George Danezis. 2004. The traffic analysis of continuous-time mixes. In Interna-
- [44] George Danezzi. 2004. The trains arrayon of commission-trine mixes. in internal tional Workshop on Privacy Enhancing Technologies. Springer, 35–50.
 [15] George Danezzi. Roser Direledine, and Nick Mathewson. 2003. Misminion Design of a type III announces remailer protocol. In Security and Privacy, 2003. Proceedings, 2003 Symposium on IEEE, 2–15.
- Bager Disagledine, Nick Mathewann, and Paul Syverson. 2004. To: The Second-Generation Onion Router. In USENIX Security Symposium.
 D. Donsbo, A. Hesta, U. Shankar, V. Pacoco, J. Cett, and S. Staniford. 2002. Multi-scale Stepping-Stone Detection: Detecting Pairs of Jiltered Interactive Storans
- by Exploiting Maximum Tolerable Delay, In RAID.

 [18] David L Donoho, Ann Georgina Flexia, Umesh Shankar, Vern Paxson, Jason Coit, and Stuart Staniford. 2002. Multiscale stepping-stone detection: Detecting

- International Workshop on Recent Advances in Internation Detection. Springer, 17–35.

 [19] K. Dyer, S. Coull, T. Ristempart, and T. Shrimpton. 2013. Protocol Misidentification Made Easy with Format-Transforming Encryption. In CCS.

 [20] M. Edman and P. Syverson. 2009. AS-awareness in Teo path selection. In CCS.
- [21] T. Elahi, K. Bauer, M. AlSabah, R. Dingledine, and I. Goldberg. 2012. Changing of the Guards: Framework for Understanding and Improving Entry Guard Selection
- in 10r. in WPEX.

 [22] Nick Feamster and Roger Dingledine. 2004. Location Diversity in Anonyo
- etworks. In Workshop on Privacy in the Electronic Society. Washington, DC
- [23] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Dep learning. Vol. 1. MIT press Cambridge. Lamie Hayes and George Danezis. 2016. 8-fingerprinting: A Robust Scalable
 Website Fingerprinting Technique. In USENIX Security Sympasium. 1187–1283.
 Gaefeng He, Ming Yang, Xiaodas Gu, Jurnhou Luo, and Yuanyuan Ma. 2014. A novel active website fingerprinting attack against for anonymous system. In
- Computer Supported Cooperative Work in Design (CSCWD), Proceedings of the 2014 EEE 18th International Conference on. IEEE, 112–117.
- [26] Ting He and Lang Tong. 2007. Detecting encrypted stepping-stone con IEEE Transactions on Signal Processing 55, 5 (2007), 1612–1623.
 [27] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. 2009.
- fingerprinting: attacking popular privacy enhancing technologies with the multicompounds, meaning preparate privacy entrancing technologies with the multi-ential native-buyer classifier. In Proceedings of the 2009 ACM workshop on Cloud sparing security. ACM, 51–42.
- [28] Nicholas Hopper, Eugens Y Vasserman, and Eric Chan-Tin. 2010. How much ancosymity does network latency leak? ACM Transactions on Information and System Security (TISSE) 13, 2 (2010), 13.
 [29] A. Houmanude' and N. Berisov. 2011. SWRL: A Scalable Watermark to Detect
- Correlated Network Flows. In NDSS.

 [30] Amir Houmanadr and Nikita Borisov. 2011. Towards Imp
- Fatermarks using the Repeat-accumulate Codes. In ECASSP. imir Houmansadr and Nikita Borisov. 2013. The need for flow fingerprints to [31] 4 link correlated network flows. In International Symposium on Privacy Enhancing
- Technologies Symposium. Springer, 205–224.

 [32] Amir Houmanualt, Negar Kiyawash, and Nikita Borisov. 2009. Multi-Flow Attack Resistant Watermarks for Network Flows. In JCASSP.
- [33] Amir Houmannadt, Negar Kiyavash, and Nikita Borisov. 2009. RAINBOW: A Robust And Invisible Non-Blind Watermark for Network Flows. In Network and Distributed System Security Symposium (NDSS). Amir Hosmunsadr, Negar Kiyavash, and Nikita Borisov. 2014. Non-blind water [34] Amir Hour
- NAME AND THE STREET OF THE [35] A
- numanualt, T. Biedl, N. Borisov, and A. Singer. 2013. I Want My Voice to Be d: IP over Voice-over-IP for Unobservable Censonship Circumvention. In NDSS. [36] Rob Jansen, Marc Juarez, Rafa Gilvez, Tariq Elahi, and Claudia Diaz. 2018. Inside
- Job: Applying Traffic Analysis to Measure Tor from Within. In NDSS.

 [37] Filip Jelic. 2016. Tor's Bassest Threat Correlation Attack. https://www. deepdotweh.com/2016/10/25/tors-biggoot-threat-correlation-attack/.

 [38] A. Johnson, C. Wacek, R. Jamen, M. Sherr, and P. Syverson. 2013. Users Get
- Routed: Traffic Correlation on Tor by Realistic Adversaries. In CCS. [39] Auron Johnson, Chris Wacek, Rob Jazuen, Micah Sherr, and Paul Sys bers set routed: Traffic correlation on Tor by realistic adversaries. In Proceedi of the 2013 ACM SIGSAC conference on Computer & communications security. ACM,
- 337-340.
 [40] Marc Juanez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenet
- [41] Joshua Jiam, Aaron Johnson, Anapam Das, Nikita Borisov, and Matthew Cae. 2015. Defending for from network adversaries: A case study of network pa-prediction. Proceedings on Privacy Enhancing Technologies 2015, 2 (2015), 171–18 [42] G. Kadianakis. 2012. Packet Size Plaggable Transport and Traffic Morphing. To
- my Ba. 2014. Adam: A method for stocha [43] Diederik P Kinema and Jin [44] Negar Kiyavash, Amir Hosmannadr, and Nikita Borisov. 2008. Multi-Flow Attacko Against Network Flow Watermarking Schemes. In ISSPIX Security Symposium.
- [45] Brian N Levine, Michael K Beiter, Cherci Wang, and Matthew Wright. 2004. Tim-ing attacks in low-latency mix systems. In International Conference on Financia.
- Cryptography, Springer Berlin Heidelberg, 251–265.

 [46] Zhen Ling, Jurzhon Luo, Wei Yu, Xinwen Fu, Dong Xuan, and Weijia Jia. 2009.

 A new cell counter based attack against tor. In Proceedings of the 16th ACM conference on Comparier and constraintenium security. ACM, 578–589.
- [47] Liming Lu, Ee-Chien Chang, and Mun Choon Chan. 2010. Website fings and identification using codered feature sequences. In European Symp.

- Research in Computer Security, Springer, 199–214.

 [45] meek [n.d.]. meek Huggable Transport. https://trac.torproject.org/poj wiki, doc/meek.

 [49] Prateek Mittal, Ahmed Khurshid, Joshua Juen, Matthew Caesar, and Nikita
- on Computer and co nerunications accurity: ACM, 215-226
- [50] H. Moghaddam, B. Li, M. Derakhshani, and I. Goldberg. 2012. SkypeMorph Protocol Obfuscation for Tor Bridges. In CCS [51] Steven J Murdoch and George Danezis. 2005. Low-cost traffic analysis of Tor. In
- 2005 IEEE Symposium on Security and Privacy. IEEE, 183–195.

 [52] Steven J. Mundoch and Piote Zieliński. 2007. Sampled Traffic Analysis by Inte Exchange-Level Adversaries. In Privacy Enhancing Technologies Symposium (Lecture Notes in Computer Science), Nikita Borisov and Philippe Golle (Eds.), Vol. 4776
- Springer, Ottawa, Canada. [53] Milad Nasz, Amir Houmansadz, and Arya Manamdar. 2017. Compressive Traffic Musa Nast, Amir Insuransair, and Arya Manumair. 2011. Compositive trans-Analysis: A New Paradigm for Scalable Traffic Analysis. In Proceedings of the 2017 ACM SKSAC Conference on Computer and Communications Security. ACM,
 - Rishab Nithyanand, Oleksii Starov, Adva Zair, Phillipa Gill, and Michael Sch
- 2016. Measuring and mitigating AS-level adversaries against Tor. In NDSS.

 [55] obfis4 2016. Turning on timing obfuscation (int-mode=1) for some default bridges https://lists.torproject.org/pipermail/tor-project/2016-November/00 [56] obfuproxy [n. d.]. A Simple Obfuscating Proxy. https://www.torp
- nze, Andreas Zinnen, Martin Henze, Jan Pennekar
- Security Sympasium (NDSS 2016).
 [58] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Enrel. 2011
- goon and S. Floyd. 1995. Wide-Area Traffic: The Failure of Poisson M.
- //toog.tooproject.org/critique-website-traffic-tingerprinting-attacks.

 [61] PlaggableTransports [n. d.]. Tor: Plaggable Transports. https://www.t
- sung June Pyun, Young Hee Park, Xinyuan Wang, Douglas S Reeves, and Peng Ning, 2007. Tracing traffic through intermediate hosts that repacketing flows. In INFOCOM 2007. 20th IEEE International Conference on Computer Communications. EEE IEEE, 634-642 an Wang, and Xuxian Jiang. 2008. A first step t
- live botmaster traceback. In Recent Advances in Intrusion Detection. Springer, [64] Michael K Reiter and Aviel D Rubin. 1998. Crowds: Anonym tions. ACM Transactions on Information and System Security (TISSEC) 1, 1 (1998),
- 66–92. Marc Rennhard and Bernhard Plattner. 2002. Introducing MorphMix: peer-to peer based anonymous Internet usage with collusion detection. In Proceed the 2002 ACM workshop on Privacy in the Electronic Society. ACM, 91–102
- [64] Fatemeh Rezari and Amir Houmanude. 2017. Tagli: Tagging Network Flows using Blind Fingerprints. In Privacy Enhancing Technologies (PETS).
 [67] Vera Rimmer, Davy Prouvemeers, Manc Juarez, Tom Van Goethem, and Wonter Jossen. 2018. Autoensded Website Fingerprinting through Deep Learning. In
- [68] Vitaly Shmatikov and Ming-Hsiu Wang. 2006. Timing analysis in low-late. mix networks: Attacks and defenses. In European Symposium on Research in mix networks: Attacks and detenses. In European Sy Computer Security (ESOMECS). Springer, 18–33. [69] Stuart Stamford-Chen and L Todd Heberlein. 1995. Hold
- on the Internet. In Security and Privacy, 1995. Proceedings, 1995 IEEE Symposium [70] Oleksii Starov, Rishab Nithyanand, Adva Zair, Phillipa Gill, and Michael Schapira.
- 2016. Measuring and mitigating AS-level adversaries against Tor. In NDSS [71] Yixin Sun, Anne Edmundson, Nick Feamster, Mung Chiang, and Prateck M 2017. Counter-RAPTOR: Safeguarding Tor Against Active Routing Attacks. In Security and Privacy (SP), 2017 IEEE Symposium on. IEEE, 977–992.
- [72] Yicin Sun, Anne Edmundson, Luurent Varibever, Oscar Li, Jennifer Berdord, Mung Chiang, and Prabeck Mittal. 2015. RAPTOR: routing attacks on privacy in tor. In
- Zeith USENIX Security Symposium (USENIX Security 13), 271–286. Henry Tan, Micah Sherr, and Wenchao Zhou. 2016. Data-plane defenses ag [73] Henry Tan, Micah Sh routing attacks on Tor. Proceedings on Privacy Enhancing Technologies 2016, 4 (2016), 276-293
- [74] tor metrics [n. d.]. Tor Metrics. https://metrics.torproject.org.
 [75] Tao Wang, Xiang Cai, Rishab Nithyamand, Rob Johnson, and Ian Goldberg. 2014.
- Effective attacks and provable defenses for website fingerprinting. In 23rd USENIX Security Symposium (USENIX Security 14), 143–157.

- [76] Tao Wang and Ian Goldberg. 2013. Improved website fingerprinting on tor. In Proceedings of the 12th ACM workshop on Workshop on privacy in the electronic society. ACM, 201–212.
- society, ACM, 201–212.
 [77] Tao Wang and Ian Goldberg. 2016. On realistically attacking Tor with website fingerprinting. Proceedings on Privacy Enhancing Technologies 2016, 4 (2016).
- 21-36. [78] Xinyuan Wang, S. Chen, and S. Jajodia. 2005. Tracking Anonymous Peer-to-peer
- Xinyuan Wang, S. Chen, and S. Jojaka 2005. Tracking Anonymura Poer-to-per-Vall Calon on the Internet. In CCS.
 Xiryuan Wang, Shiping Chen, and Suduhi Jajodia. 2007. Versical flow vater-tion of the Computer of the Computer of the Computer of the Computer of Periva 2005. "Science of Periva 2005. The Electrophysions on IEEE, 144-139.
 Xiryuan Wang and Donglas Sheeves. 2003. Robust correlation of encrypted datasek lattle flowerings despite principate into of transported ridays. In Proceedings of the 20th ACM conference on Computer and communications in security ACM, 20-20.
- [81] Xinyuan Wang, Douglas S Reeves, and S Felix Wu. 2002. Inter-packet delay based correlation for tracing encrypted connections through stepping stones. In
- Compater Security dATESOMRS 2002. Springer, 244–265.

 [22] C. Wright, S. Cosil, and F. Menrous. 2009. Traffic Merphing: An Efficient Defense Against Statelacial Traffic Analysis. In NISSA.

 [33] Mortfew K. Wright, Micah Adler, Petran Neal Levine, and Clay Shields. 2002. An Analysis of the Degradation of Antersymment Perfocused. In NISSA, Vol. 2. 39–50.
- Analysis of the Degradation of Amerymens Protocols. In NIXX, Vol. 2, 39–50.

 [44] Kanikani Noda and Hissalia Elva 2000. Finding a connection chain for tracing intenders. In Computer Searchy-EloSiMC 2000. Springer, 191–20.

 [45] Contraders. In Computer Searchy-EloSiMC 2000. Springer, 191–20.

 [46] Contraders. In Computer Searchy-EloSiMC 2000. Springer, 191–20.

 [47] Contraders. In Contrader Search S
- Symposium, Vol. 171. 184.

 [87] Ye Zhu and Riccardo Bettati. 2005. Unmixing Mix Traffic. In Privacy Enhancing
- Tochnooleys Workshop, Jurish Martin and George Danzeits (Eds.). 110–127.
 Ye Zhu, Xizwen Fu, Beyan Gasham, Riccardo Settati, and Wei Zhao. 2004. On flow correlation attacks and countermeasures in mix networks. In International Workshop on Privacy Enhancing Victoriogies. Springer, 207–223.