

Discrete optimization

Alberto TONDA

UMR 518 MIA-PS, INRAE, AgroParisTech, Université Paris-Saclay UAR 3611, Institut des Systèmes Complexes de Paris Île-de-France

Outline

- Definition of discrete optimization
- Combinatorial optimization
- Mixed-integer linear programming
- SAT solvers (Boolean satisfiability problem)
- Evolutionary algorithms (again)

> Definition of discrete optimization

- ullet Some (or all) variables values are in $\mathbb Z$ or $\mathbb N$
 - It is commonly assumed that variable values can be sorted
 - If we can enumerate all candidates, combinatorial optimization

Example: mixed integer sphere

$$f(x_1, x_2) = x_1^2 + x_2^2$$
 where $x_1 \in \mathbb{R}, x_2 \in \mathbb{Z}$

Definition of discrete optimization

- Variable values could also be categorical
 - E.g. x={red, green, blue}; there is no default way of sorting
 - Some algorithms can manage them natively
 - Others encode them as bitstrings with constraints
 - In ML sometimes called "one-hot encoding"
- Example: $x \to x_r, x_g, x_b \in \{0,1\}; x_r + x_g + x_b = 1$

Discrete optimization

- Trivial (and *ineffective*) solution
 - "Relax" the problem into a continuous one
 - Round up variable values of best solution to the closest integer

- If you can enumerate all possible solutions of a problem
- Exhaustive approach: evaluate them all, find global optimum
- Branch & Bound guarantees finding the global optimum
 - Without exploring everything, creates a tree
 - Branch: divide search space into partitions with extra constraints
 - Bound: compute lower bound for a partition, linear programming
 - Pruning: decide what branches are not worthy of being explored

argmax
$$f(x_1, x_2) = 5x_1 + 6x_2$$

 $x_1 + x_2 \le 5$
 $4x_1 + 7x_2 \le 28$
 $x_1, x_2 \ge 0$
 $x_1, x_2 \in \mathbb{N}$

$$f(x_1, x_2) = 27.67$$

 $x_1 = 2.33$
 $x_2 = 2.67$

argmax
$$f(x_1, x_2) = 5x_1 + 6x_2$$

 $x_1 + x_2 \le 5$
 $4x_1 + 7x_2 \le 28$
 $x_1, x_2 \ge 0$
 $x_1, x_2 \in \mathbb{N}$

 $f(x_1, x_2) = 27.67$ $x_1 = 2.33$ $x_2 = 2.67$

$$\underset{x_1 + x_2 \le 5}{\operatorname{argmax}} f(x_1, x_2) = 5x_1 + 6x_2$$
$$x_1 + x_2 \le 5$$
$$4x_1 + 7x_2 \le 28$$

 $x_2 \le 2$

$$argmax f(x_1, x_2) = 5x_1 + 6x_2$$

$$x_1 + x_2 \le 5$$

$$4x_1 + 7x_2 \le 28$$

$$x_2 \le 2$$

 $x_2 \ge 3$

$$argmax f(x_1, x_2) = 5x_1 + 6x_2$$

$$x_1 + x_2 \le 5$$

$$4x_1 + 7x_2 \le 28$$

$$x_2 \ge 3$$

$$\underset{x_1 + x_2 \le 5}{\operatorname{argmax}} f(x_1, x_2) = 5x_1 + 6x_2$$
$$x_1 + x_2 \le 5$$
$$4x_1 + 7x_2 \le 28$$

 $x_2 \leq 2$

$$x_2 \ge 3$$

$$f(x_1, x_2) = 26.75$$

 $x_1 = 1.75$
 $x_2 = 3$

$$argmax f(x_1, x_2) = 5x_1 + 6x_2$$

$$x_1 + x_2 \le 5$$

$$4x_1 + 7x_2 \le 28$$

$$x_2 \le 2$$

$$f(x_1, x_2) = 27$$

 $x_1 = 3$
 $x_2 = 2$

 $f(x_1, x_2) = 27.67$ $x_1 = 2.33$ $x_2 = 2.67$

$$\underset{x_1 + x_2 \le 5}{\operatorname{argmax}} f(x_1, x_2) = 5x_1 + 6x_2$$
$$x_1 + x_2 \le 5$$
$$4x_1 + 7x_2 \le 28$$

 $x_2 \le 2$

 $x_2 \ge 3$

 $f(x_1, x_2) = 26.75$ $x_1 = 1.75$ $x_2 = 3$

$$argmax f(x_1, x_2) = 5x_1 + 6x_2$$

$$x_1 + x_2 \le 5$$

$$4x_1 + 7x_2 \le 28$$

$$x_2 \le 2$$

 $f(x_1, x_2) = 27$ $x_1 = 3$ $x_2 = 2$ $argmax f(x_1, x_2) = 5x_1 + 6x_2$ $x_1 + x_2 \le 5$ $4x_1 + 7x_2 \le 28$ $x_2 \ge 3$

 $x_1 \leq 1$

 $x_1 \ge 2$

$$argmax f(x_1, x_2) = 5x_1 + 6x_2$$

$$x_1 + x_2 \le 5$$

$$4x_1 + 7x_2 \le 28$$

$$x_2 \ge 3, x_1 \le 1$$

 $argmax f(x_1, x_2) = 5x_1 + 6x_2$ $x_1 + x_2 \le 5$ $4x_1 + 7x_2 \le 28$ $x_2 \ge 3, x_1 \ge 2$

 $f(x_1, x_2) = 27.67$ $x_1 = 2.33$ $x_2 = 2.67$

$$\underset{x_1 + x_2 \le 5}{\operatorname{argmax}} f(x_1, x_2) = 5x_1 + 6x_2$$
$$x_1 + x_2 \le 5$$
$$4x_1 + 7x_2 \le 28$$

 $x_2 \le 2$

 $x_2 \ge 3$

 $x_1 \le 1$

 $f(x_1, x_2) = 26.75$ $x_1 = 1.75$ $x_2 = 3$

$$argmax f(x_1, x_2) = 5x_1 + 6x_2$$

$$x_1 + x_2 \le 5$$

$$4x_1 + 7x_2 \le 28$$

$$x_2 \le 2$$

$$f(x_1, x_2) = 27$$

 $x_1 = 3$
 $x_2 = 2$

 $f(x_1, x_2) = 25.57$ $x_1 = 1$ $x_2 = 3.42$

 $\operatorname{argmax} f(x_1, x_2) = 5x_1 + 6x_2$

 $x_1 + x_2 \le 5$

 $4x_1 + 7x_2 \le 28$

 $x_2 \ge 3, x_1 \le 1$

 $argmax f(x_1, x_2) = 5x_1 + 6x_2$ $x_1 + x_2 \le 5$ $4x_1 + 7x_2 \le 28$ $x_2 \ge 3$

 $x_1 \ge 2$

 \mathbf{x}

$$argmax f(x_1, x_2) = 5x_1 + 6x_2$$

$$x_1 + x_2 \le 5$$

$$4x_1 + 7x_2 \le 28$$

$$x_2 \ge 3, x_1 \ge 2$$

Unfeasible

(no solutions)

> Traveling salesman problem

- Salesman has to visit multiple cities once, in any order
- What is the optimal order, to minimize total time?

> Traveling salesman problem

Combinatorial: compute total number of possible paths

$$n_p = \frac{(n_c - 1)!}{2}$$

- With n_c being the number of cities
 - For 30 cities, 4.42×10^{30} possible paths
 - For 100 cities, 4.67 x 10¹⁵⁵
 - For 1,000 cities, 2.01 x 10²⁴⁹
- Estimated number of atoms in the universe: 10⁷⁸ 10⁸²

> Traveling salesman problem

- The best algorithm is (arguably) heuristic
 - Mix of linear programming, evolutionary algorithms, ...
 - CONCORDE: https://www.math.uwaterloo.ca/tsp/index.html

Routing Research Challenge.

Optimal crawl to 49,687 pubs in the UK.

Visit 49,603 historic sites in the US.

Mixed-integer linear programming

- MILP: Class of problems with different solvers
- Example: Branch-and-cut
 - Similar to Branch and Bound + cutting planes (multiple variables)
 - Different strategies to find best possible cutting planes

Boolean satisfiability (SAT solvers)

- Boolean expression (binary variables)
- Existence of a candidate solution that outputs true?

$$f(\mathbf{x}) = x_1 \wedge (x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2)$$

- Complex problem
- Specialized techniques called SAT solvers

> Evolutionary algorithms (again)

- Internal representation of a candidate solution mixed integer
 - Requires problem-specific variators (int for int parameters, ...)
 - But in general, it's relatively straightforward
 - No guarantee to find the global optimum

Questions?

Bibliography

- Kochenderfer & Wheeler, Algorithms for Optimization, MIT Press, 2019
- Vanderbei, Linear Programming: Foundations and Extensions, 2014
- Hamano et al., CMA-ES with Margin: Lower-Bounding Marginal Probability for Mixed-Integer Black-Box Optimization, 2022
- Applegate et al., Solution of a Min-Max Vehicle Routing Problem, 2002

Images: unless otherwise stated, I stole them from the Internet. I hope they are not copyrighted, or that their use falls under the Fair Use clause, and if not, I am sorry. Please don't sue me.