Digital Systems Design and Laboratory [15. Reduction of State Tables and State Assignment]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Sequential Logic Design

- ☐ Unit 11: Latches and Flip-Flops
- ☐ Unit 12: Registers and Counters
- ☐ Units 13--15: Finite State Machines
- ☐ Unit 16: Summary
- ☐ Designing a sequential circuit
 - Construct a state graph or state table (Unit 14)
 - Simplify it (Unit 15)
 - Derive flip-flop input equations and output equations (Unit 12)

- ☐ Elimination of Redundant States
- Equivalent States
- ☐ Implication Table
- ☐ Equivalent Sequential Circuits
- ☐ Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- ☐ Equivalent State Assignments
- ☐ Guidelines for State Assignment
- ☐ One-Hot State Assignment

"0101/1001" Detector

- ☐ Output "1" if detecting "0101" or "1001"
- ☐ Reset after every 4 inputs
- Example
 - ➤ Input X 01010010100100
 - > Output Z 000100000010000
- Complete state graph
 - \triangleright S₀: Reset
 - $> S_1: 0$
 - > S₂: 1
 - \triangleright S₃: Two inputs received; Z must be 0
 - > S_4 : 01 or 10
 - \triangleright S₅: Three inputs received; Z must be 0
 - $> S_6$: 010 or 100

Elimination of Redundant States (1/4)

☐ "Another" state graph for "0101/1001" sequence detector

Elimination of Redundant States (2/4)

- Many similar cases
- ☐ Equivalent state
 - > Same next states
 - > Same outputs
- ☐ Check H

$$\rightarrow$$
 H = I = K = M = N = P

☐ Check J

$$\rightarrow$$
 J = L

Input	Present	Next State		Present	Output
Sequence	State	X = 0	X = 1	X = 0	X = 1
Reset	А	В	С	0	0
0	В	D	Е	0	0
1	С	F	G	0	0
00	D	Н	I	0	0
01	Е	J	K	0	0
10	F	L	M	0	0
11	G	N	Р	0	0
000	Н	А	Α	0	0
001	Ī	А	Α	0	0
010	J	А	Α	0	1
011	K	А	Α	0	0
100	L	А	Α	0	1
101	М	А	Α	0	0
110	N	Α	Α	0	0
111	Р	Α	А	0	0

Elimination of Redundant States (3/4)

- ☐ Check E
 - \triangleright E = F
- ☐ Check D
 - \triangleright D = G

Input	Present	Next	Next State		Output
Sequence	State	X = 0	X = 1	X = 0	X = 1
Reset	А	В	С	0	0
0	В	D	E	0	0
1	С	F	G	0	0
00	D	Н	$I \rightarrow H$	0	0
01	E	J	$K \rightarrow H$	0	0
10	F	$L \rightarrow J$	$M \rightarrow H$	0	0
11	G	$N \rightarrow H$	$P \rightarrow H$	0	0
000	Н	Α	Α	0	0
001	1	А	А	0	0
010	J	Α	Α	0	1
011	K	А	А	0	0
100	L	А	А	0	1
101	M	А	А	0	0
110	N	А	А	0	0
111	Р	А	А	0	0

Elimination of Redundant States (4/4)

Input	Present	Next	Next State		Output
Sequence	State	X = 0	X = 1	X = 0	X = 1
Reset	А	В	С	0	0
0	В	D	Е	0	0
1	С	$F \rightarrow E$	$G \rightarrow D$	0	0
00	D	Н	Н	0	0
01	Е	J	Н	0	0
10	F	J	Н	0	0
11	G	Н	Н	0	0
000	Н	А	Α	0	0
001	- 1	А	А	0	0
010	J	А	Α	0	1
011	K	А	А	0	0
100	L	А	А	0	1
101	M	А	А	0	0
110	N	А	А	0	0
111	Р	А	А	0	0

- Elimination of Redundant States
- **□ Equivalent States**
- ☐ Implication Table
- Equivalent Sequential Circuits
- ☐ Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- ☐ Equivalent State Assignments
- ☐ Guidelines for State Assignment
- ☐ One-Hot State Assignment

State Equivalence

Definition

- \triangleright N₁, N₂: sequential circuits (not necessarily different)
- $\triangleright \underline{\mathbf{X}}$: a sequence of inputs of arbitrary length
- Then, state p in $N_1 \equiv$ state q in N_2 if and only if $\lambda_1(p,\underline{X}) = \lambda_2(q,\underline{X})$ for every possible input sequence \underline{X}
 - λ: output
- Difficult to check the equivalence using this definition!
 - Infinite number of input sequences

□ Theorem

- Two states p and q of a sequential circuit are equivalent if and only if for every single input X, the outputs are the same and the next states are equivalent, i.e., $\lambda(p,X) = \lambda(q,X)$ and $\delta(p,X) \equiv \delta(q,X)$
 - δ: next state
 - Note that the next state do not have to be equal, just equivalent

Example: State Equivalence

☐ The following state table has no equivalent states

- \triangleright The only possible pair of equivalent states is S₀ and S₂
 - $S_0 \equiv S_2$ if and only if $S_3 \equiv S_3$, $S_2 \equiv S_0$, $S_1 \equiv S_1$, and $S_0 \equiv S_1$
- \triangleright However $S_0 \equiv S_1$ is not true due to different outputs

Present	Next State			Present Output				
State	$X_1 X_2 = 00$	01	10	11	$X_1 X_2 = 00$	01	10	11
S_0	S ₃	S ₂	S ₁	S ₀	00	10	11	01
S_1	S ₀	S_1	S_2	S_3	10	10	11	11
S_2	S ₃	S_0	S_1	S_1	00	10	11	01
S_3	S ₂	S_2	S_1	S_0	00	00	01	01

- Elimination of Redundant States
- ☐ Equivalent States
- Implication Table
- ☐ Equivalent Sequential Circuits
- ☐ Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- ☐ Equivalent State Assignments
- ☐ Guidelines for State Assignment
- ☐ One-Hot State Assignment

Implication Table Construction (1/3)

- ☐ Draw an empty table, where each square represents a pair
- ☐ If outputs are different, give it an X (impossible!)
- ☐ Write down the implied pair in the square
- ☐ Delete self-implied pairs (redundant)

Present	Next	Present	
State	X = 0	X = 1	Output
Α	D	С	0
В	F	Н	0
С	Е	D	1
D	Α	E	0
Е	С	А	1
F	F	В	1
G	В	Н	0
Н	С	G	1

	<u> </u>	,					
В	D-F C-H						
С	X	х					
D	A-D C-E	A-F E-H	Х				
Ε	Х	Х	C-E A-D	Х			
F	Х	Х	E-F B-D	Х	C-F A-B		
G	B-D C-H	B-F	х	A-B E-H	Х	Х	
Н	X	X	C-E D-G	Х	A-G	C-F B-G	х
·	Α	В	С	D	Е	F	G

Implication Table Construction (2/3)

- ☐ Iteratively compare states by the implied pairs
 - Only for the same output
 - First pass (column-by-column in this case)
 - ➤ Second pass ×

Present	Next	Present	
State	X = 0	X = 1	Output
Α	D	С	0
В	F	Н	0
С	Е	D	1
D	Α	Е	0
Е	С	Α	1
F	F	В	1
G	В	Н	0
Н	С	G	1

Implication Table Construction (3/3)

- ☐ Find equivalent states
 - \triangleright For each square i-j which does not contain an X, i \equiv j
- ☐ The same procedure for Moore and Mealy machines

Present	Next	Present	
State	X = 0	X = 1	Output
Α	$D \rightarrow A$	С	0
В	F	Н	0
С	E → C	$D \rightarrow A$	1
D	А	Е	0
Е	С	А	1
F	F	В	1
G	В	Н	0
Н	С	G	1

- ☐ Elimination of Redundant States
- ☐ Equivalent States
- ☐ Implication Table
- **☐ Equivalent Sequential Circuits**
- ☐ Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- ☐ Equivalent State Assignments
- ☐ Guidelines for State Assignment
- ☐ One-Hot State Assignment

Equivalent Sequential Circuits

Definition

- \triangleright Two sequential circuits are equivalent: $N_1 \equiv N_2$ if
- For each state p in N_1 , there is a state q in N_2 such that $p \equiv q$
- For each state s in N_2 , there is a state t in N_1 such that $s \equiv t$

Implication Table

Present	Next	State Present Out		Output
State	X = 0	X = 1	X = 0	X = 1
Α	В	Α	0	0
В	С	D	0	1
С	Α	С	0	1
D	С	В	0	0

Present	Next State		Present Output		
State	X = 0	X = 1	X = 0	X = 1	
S_0	S ₃	S_1	0	1	
S_1	S ₃	S_0	0	0	
S ₂	S_0	S ₂	0	0	
S_3	S ₂	S_3	0	1	

S ₀	X	C-S ₃ D-S ₁	A-S ₃ e-S ₁	Х
S ₁	B-S ₃ A-S ₀	X	X	C-S ₃ B-S ₀
S ₂	B-S ₀ A-S ₂	X	X	S-S ₀ B-S ₂
S ₃	Х	D-S ₂ D-S ₃	A-S ₂ -C-S ₃	Х

$$A \equiv S_{2}$$

$$B \equiv S_{0}$$

$$C \equiv S_{3}$$

$$D \equiv S_{1}$$

$$N_{1} \equiv N_{2}$$

- Elimination of Redundant States
- ☐ Equivalent States
- ☐ Implication Table
- ☐ Equivalent Sequential Circuits
- **☐** Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- ☐ Equivalent State Assignments
- ☐ Guidelines for State Assignment
- ☐ One-Hot State Assignment

How about Don't Cares?

- ☐ A state table is incompletely specified if don't cares are present
 - > Certain sequences will never occur as inputs

Present	Next	State	Present Output		
State	X = 0	X = 1	X = 0	X = 1	
А	В	D	0		
В	С	D		0	
С	В	Α	1	0	
D	С	D	0	1	

Present	Next State		Present Output		
State	X = 0	X = 1	X = 0	X = 1	
Α	В	Α	0	1	
В	В	Α	1	0	
С	В	А	1	0	
D	С	D	0	1	

- ☐ Elimination of Redundant States
- ☐ Equivalent States
- ☐ Implication Table
- ☐ Equivalent Sequential Circuits
- ☐ Incompletely Specified State Tables
- **□** <u>Derivation of Flip-Flop Input Equations</u>
- ☐ Equivalent State Assignments
- ☐ Guidelines for State Assignment
- ☐ One-Hot State Assignment

Recap: Sequential Logic Design

- ☐ Designing a sequential circuit
 - > Construct a state graph or state table (Unit 14)
 - ➤ Simplify it (Unit 15)
 - State reduction
 - State assignment
 - Choice of flip-flops
 - > Derive flip-flop input equations and output equations (Unit 12)

State Assignment and Transition Table

- ☐ Given a state table
 - > 7 states
 - ➤ 3 flip-flops
- ☐ State assignment
 - Many possible ways
 - Example

$S_0 = 000, S_1 = 110,$	S_6
$S_2 = 001, S_3 = 111,$	· ·
$S_4 = 011, S_5 = 101, S_6$	= 010

7	, ,	
Transitio	on ta	hle

- > State table + state assignment
- ☐ If using D flip-flops
 - > By Karnaugh maps

•
$$A^+ = D_A = X'$$
, $B^+ = D_B = X'C' + A'C + A'B$, $C^+ = D_C = A + XB$

	X = 0	X = 1	X = 0	X = 1			
S ₀	S ₁	S ₂	0	0			
S_1	S ₃	S_2	0	0			
S ₂	S ₁	S ₄	0	0			
S ₃	S ₅	S_2	0	0		A ⁺ B) +
S ₄	S_1	S_6	0	0		X = 0	
S ₅	S ₅	S_2	1	0	000	110	
S ₆	S ₁	S_6	0	1	110	111	
010					001	110	
010					111	101	
					011	110	

X = 0

X = 1

X = 1

Recap: Derivation of Flip-Flop Input Equations

☐ Determine the flip flop input equations from the <u>next-state</u> <u>equations</u> using K-maps

Туре	Innut	Q = 0		Q = 1		Rules for forming input map from next state map	
of FF Input		$Q^+ = 0$	Q+ = 1	$Q^+ = 0$	Q+ = 1	Q = 0 Half of Map	Q = 1 Half of Map
D	D	0	1	0	1	No change	No change
Т	Т	0	1	1	0	No change	Complement
S-R	S	0	1	0	Х	No change	Replace 1's with X's
	R	Х	0	1	0	Replace 0's with X's Replace 1's with 0's	Complement
J-K	J	0	1	Х	Х	No change	Fill in with X's
	К	Х	Х	1	0	Fill in with X's	Complement

- ☐ Elimination of Redundant States
- ☐ Equivalent States
- ☐ Implication Table
- ☐ Equivalent Sequential Circuits
- ☐ Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- **□** Equivalent State Assignments
- ☐ Guidelines for State Assignment
- ☐ One-Hot State Assignment

Equivalent State Assignments

- ☐ Elimination of Redundant States
- ☐ Equivalent States
- ☐ Implication Table
- ☐ Equivalent Sequential Circuits
- ☐ Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- ☐ Equivalent State Assignments
- **☐** Guidelines for State Assignment
- ☐ One-Hot State Assignment

State Assignment

- ☐ State assignment determines the cost of the logic required to realize a sequential circuit
 - ➤ A good state assignment leads to a Karnaugh map that can easily be simplified and results in few terms
- ☐ Idea: Place 1's together (or 0's together) on the next-state maps

Guidelines

Guidelines

- ➤ No guarantee a minimum solution
- ➤ Work for D & J-K flip-flops, not for T and S-R flip-flops

Adjacent assignments

- \triangleright For a given input, states with the same next state (S₀ and S₁)
- \triangleright States which are next states of the same state (S₄ and S₅)
- \triangleright States which have the same output (S₆ and S₇)
 - Place 1's together on the output maps

- Elimination of Redundant States
- ☐ Equivalent States
- ☐ Implication Table
- ☐ Equivalent Sequential Circuits
- ☐ Incompletely Specified State Tables
- ☐ Derivation of Flip-Flop Input Equations
- ☐ Equivalent State Assignments
- ☐ Guidelines for State Assignment
- **☐** One-Hot State Assignment

One-Hot State Assignment

- Different strategy
 - > Do not care about how many flip-flops used
 - Examples: Complex Programmable Logic Device (CPLD) and Field Programmable Gate Array (FPGA)
 - Only care about the speed
- ☐ One-hot state assignment: One flip-flop for each state
 - \triangleright Example: 3 flip-flops for 3 states (Q₀Q₁Q₂)
 - $S_0 = 100$, $S_1 = 010$, $S_2 = 001$
 - Write next-state and output (Z) equations directly by inspecting the state graph
 - $Q_0^+ = F'R'Q_0 + F'RQ_1 + FQ_2$
 - $Q_1^+ = F'R'Q_1 + F'RQ_2 + FQ_0$
 - $Q_2^+ = F'R'Q_2 + F'RQ_0 + FQ_1$
 - $Z = Z_0Q_0 + Z_1Q_1 + Z_2Q_2$

Q&A