

CCIE Security Version 5 Advanced Technologies Class

Unicast Reverse Path Forwarding

What is RPF - Reverse Path Forwarding?

How is it used for unicast traffic?

Reverse Path Forwarding Overview

▶What is RPF?

- Perform some validations for source address of a packet
- Packets failing the validations are dropped
- ▶For which packet types is the check done?
 - Multicast, enabled by default
 - Unicast (uRPF), disabled by default
- ►What is the purpose of RPF?
 - In multicast: loop prevention and multicast tree building
 - In unicast: IP address spoofing

uRPF Overview

- ▶uRPF is defined in RFC 3704 for IPv4 unicast
 - Feature has been implemented also for IPv6 unicast
- ▶RFC 3704 defines three deployment options
 - Strict RPF
 - Feasible path RPF
 - Loose RPF
- ▶IOS routers support only strict and loose
 - In both modes, validation of the source address is performed against the FIB

uRPF Overview

uRPF strict and loose considerations

- CEF is required for uRPF to work
- Any best route (not LFA) from the FIB can be used to validate the source address
- uRPF is compatible with ECMP (equal cost multipath)
- uRPF is compatible with UCMP (unequal cost multipath)

Strict uRPF Overview

With strict uRPF enabled

Packet is accepted only if it was received on the RPF interface

►What is the RPF interface?

 Identifies the egress interface the router would use to route for the source IP of the packet

Which routes are usable for strict RPF?

- Any routes except the default route
- Optionally, the default route can be taken into account

Strict uRPF Overview

Considerations

It's not compatible with asymmetric routing environments

Strict uRPF

- ►Implementation steps
 - Enable uRPF strict mode
 - Verify its functionality
- ○Optionally
 - Configure the default route to be valid for RPF checks

Loose uRPF Overview

With loose uRPF enabled

- Packet is accepted as long as the router has a route for the source IP of the packet
- Traffic with source matching on a Null0 route is dropped
- ▶In which environment does loose mode fit?
 - Asymmetric routing
- ▶Which routes are usable for RPF?
 - Any routes except the default route
 - Optionally, the default route can be taken into account

Loose uRPF

►Implementation steps

- Enable uRPF loose mode
- Verify its functionality

○Optionally

Configure the default route to be valid for RPF checks

uRPF Conclusions

uRPF is preferred against the RFC's defined for IP address spoofing

- It is dynamic
- It is performed in CEF, thus CPU friendly
- Fits both symmetric and asymmetric routing environments

Knowledge is Power!

