MRU, MRUV, MNU

William Humberto Callao López Ing.Informatica UMSS Facultad Ciencias y Tecnología (Dated: 23 de Mayo de 2021)

En el presente informe se refleja la simulación, tratamiento e interpretación de datos, en relación con el movimiento rectilíneo uniforme, movimiento uniformemente variado y el movimiento no uniforme.

1. FUNDAMENTOS TEÓRICOS

La cinemática es el estudio de los movimientos de los objetos sin considerar las causas que lo producen.

$$a = \frac{d^2 * x}{d * t^2} = \frac{d * v}{d * t} = constante \tag{5}$$

Si el objeto parte del reposo:

$$x = \frac{1}{2} * a * t^2 \qquad \qquad v = a * t$$

1.1. Movimiento Rectilíneo Uniforme

Un movimiento es rectilíneo uniforme es cuando un "objeto" viaja en una trayectoria recta a una velocidad constante, dado que su aceleración es nula

La ecuación de posición para el MRU es:

$$x = x_0 + v * t \tag{1}$$

 $x_0 = Posici\'on inicial$ v = velocidad del objeto

$$v = \frac{dx}{dt} \tag{2}$$

1.2. Movimiento Rectilíneo Uniformemente Variado

Es aquel movimiento en el que un objeto se desplaza sobre una trayectoria recta estando sometido a una aceleración constante.

Las ecuaciones de posición y velocidad del MRUV son:

$$x = x_0 + v_0 t + \frac{1}{2} a * t^2 \tag{3}$$

$$v = v_0 + a * t \tag{4}$$

 $x_0 = Posici\'on inicial$ v = velocidad del objetoa = Aceleracion del movimiento

1.3. Movimiento No Uniforme

En este caso la relación entre la posición y el tiempo también tiene una aceleración y puede variar su velocidad.

2. OBJETIVO

Los objetivos de este informe son:

- Simular datos con errores asociados.
- Encontrar las ecuaciones de ajuste para los distintos casos.
- Interpretación de datos.

3. MATERIALES Y MÉTODOS

Para la representación gráfica y manejo de datos se usó el programa estadístico R.

Primeramente se crearon secuencias de números a los que se les añadió variaciones con respecto a una función gaussiana.

Luego por método de "modelación" lineal se obtuvo los coeficiente necesarios para armar la ecuación de ajuste.

UMSS - FCyT Dep. Física

4. RESULTADOS

4.1. MRU

La siguiente imagen corresponde a 100 datos con desviaciones que representan valores obtenidos de un movimiento Rectilíneo Uniforme

Figura 1: Posición con respecto al tiempo

Por el método de "modelacion lineal realizado con ayuda programa estadístico ${\cal R}$ se obtuvo una correlación de 0,9986 entre los datos y el ajuste.

Los valores estimados con sus respectivos errores son:

$$A = 14,87730$$
 $error(A) = 0,50781$
 $B = 5,00569$ $error(B) = 0,01737$

Figura 2: La linea de color azul representa la recta de ajuste obtenida con los valores estimados, se aprecia que se ajusta correctamente a los datos

4.2. MRUV

La siguiente imagen corresponde a 100 datos con desviaciones que representan valores obtenidos de un movimiento Rectilíneo Uniformemente Variado

Figura 3: Posición con respecto al tiempo

Por el método de "modelacion linealrealizado con ayuda programa estadístico R se obtuvo una correlación de 0,9993 entre los datos y el ajuste.

Los valores estimados con sus respectivos errores son:

$$\begin{array}{ll} A = 8740, 10 & error(A) = 20, 08 \\ B = 73301, 61 & error(B) = 200, 83 \\ C = 17992, 77 & error(C) = 200, 83 \end{array}$$

Figura 4: La linea de color azul representa la recta de ajuste obtenida con los valores estimados, se aprecia que se ajusta correctamente a los datos

UMSS - FCyT Dep. Física

4.3. MNU

El siguiente gráfico corresponde a un comportamiento no uniforme, pero al igual que los anteriores casos se puede hallar los parámetros de una ecuación que se ajuste a este comportamiento

Figura 5: corresponde a la ecuación: $\frac{A*T}{B+T}$

Los coeficientes estimados son:

$$A = 3,97419$$
 $error(A) = 0,06165$
 $B = 3,91581$ $error(B) = 0,14970$

Figura 6: Se puede observar que el ajuste conformado por los coeficientes calculados se ajusta de buena manera al comportamiento de los datos

5. CONCLUSIONES

Podemos concluir que con ayuda de algunos programas se pueden calcular ajustes lineales con gran precisión y de manera muy rápida, no solamente de ecuaciones lineales sino también de comportamientos no uniformes