Curl, div and parametric surfaces

Reading: Textbook, \$16.5-16.6

§1. Curl and divergence

Our next goal is to extend Green's Theorem to vector fields in \mathbb{R}^3 . One key quantity we need to generalize is $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ for vector fields having 3 components: $\vec{F}(x,y,z) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$.

Def. If
$$\vec{F}(x,y,z)$$
 is a vector field as above, we define its curl as the vector field (also written as $curl\vec{F}$):

$$|\vec{\nabla} \times \vec{F}| := \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ P & Q & R \end{vmatrix} = (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z})\vec{L} - (\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z})\vec{J} + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})\vec{k}$$

Here we have formally identified $\overrightarrow{\nabla} = \frac{\partial}{\partial x} \overrightarrow{i} + \frac{\partial}{\partial y} \overrightarrow{j} + \frac{\partial}{\partial z} \overrightarrow{k}$ as a vector-valued differential operator.

• Grassmann algebra in IR³.

We extend our earlier usage of dx, dy, dxdy into dx, dy, dz, satisfying

dx dx = dy dy = dz dz = 0, dx dy = -dy dx, dx dz = -dz dx, dy dz = -dz dx, dx dy dz = dz dx dy.

Then $\vec{F} \cdot d\vec{r} = Pdx + Qdy + Rdz$, and $d(\vec{F} \cdot d\vec{r}) = d(Pdx + Qdy + Rdz)$

Eq. Find the curl of $\vec{F}(x,y,z) = (xy, xz, xyz^2)$.

Eg. Where on IR^3 is the vector field $\vec{F}(x,y,z) = \frac{x\vec{\iota} + y\vec{\jmath} + z\vec{k}}{\sqrt{(x^2+y^2+z^2)^3}}$ defined? Find its curl.

Thm. If \vec{F} is conservative, then $\vec{\nabla} \times \vec{F} = 0$.

Using the Grassmannian language, \vec{F} being conservative \iff $\vec{F} \cdot d\vec{r} = df$ for some function f on the domain of \vec{F} . Then $\vec{\nabla} \times \vec{F}$ has components computed by $d(\vec{F} \cdot d\vec{r}) = d^2 f$:

$$d^2f = d(f_x dx + f_y dy + f_z dz)$$

Eg. Determine if the vector field
$$\vec{F}(x,y,z) = y^2 z^3 \vec{i} + 2xyz^3 \vec{j} + 3xyz^2 \vec{k}$$

Def If
$$\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$$
 is a vector field as before, then its divergence is the function (also written as $div\vec{F}$)
$$\vec{\nabla} \cdot \vec{F} := \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

• In terms of Grassmann algebra, introduce the oriented infinitesimal area

Then $\vec{F} \cdot d\vec{S} = Pdydz + Qdzdx + Rdxdy \Longrightarrow$ $d(\vec{F} \cdot d\vec{S}) = (Px + Qq + Rz) dxdydz = (\vec{\nabla} \cdot \vec{F}) dxdydz.$ We will also run into d'S again when talking about vector integral over parametric surfaces.

Thm. If $\vec{F}(x,y,z) = \vec{\nabla} \times \vec{G}(x,y,z)$ on a domain $D \subseteq \mathbb{R}^3$, then $\vec{\nabla} \cdot \vec{F} = 0$ on D

In fact, $\vec{F} = \vec{\nabla} \times \vec{G} \iff \vec{F} \cdot d\vec{S} = d(\vec{G} \cdot d\vec{r})$. Thus $(\vec{\nabla} \cdot \vec{F}) dx dy dz = d(d\vec{F} \cdot d\vec{S}) = d^2(\vec{G} \cdot d\vec{r}) = 0$ again by Clairaut's Theorem.

• Such \vec{G} that $\vec{\nabla} \times \vec{G} = \vec{F}$ is also called a vector potential.

Eg. Does the vector field
$$\vec{F}(x,y,z) = (x \sin y, \cos y, z - xy)$$

have a vector potential?

Warning. Do not confuse
$$\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} f)$$
 with $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{F}) = 0$. The first quantity equals $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = (-1) \cdot \Delta f$

Solutions to $\Delta f \equiv 0$ on IR^3 are called harmonic functions.

Eg. Prove the equality:
$$\overrightarrow{\nabla}(f\overrightarrow{F}) = (\overrightarrow{\nabla}f) \cdot \overrightarrow{F} + f(\overrightarrow{\nabla}\cdot \overrightarrow{F})$$
.

§ 2. Parametric surfaces and their areas

Previously, we have described space/plane curves as a one-parameter family of vectors. Similarly, to describe a surface in \mathbb{R}^3 , we need a two-parameter family of vectors.

Eg. We have already seen some special parametric surfaces in IR^3 . For instance, the graph of a function f(x,y) can be regarded as $\vec{r}(x,y) = \kappa \vec{\iota} + y \vec{j} + f(x,y) \vec{k} = (x, y, f(x,y))$.

Eg. As another example, the sphere $x^2+y^2+z^2=1$ is not the graph of any function, but near any point, it can

be written as a parametric surface. Say, near (-1,0,0)

The back hemisphere

$$\vec{\Gamma}(u,v) = -\sqrt{1-u^2-v^2}\vec{i} + u\vec{j} + v\vec{k}$$

$$(u,v) \in D = \{(u,v) | u^2+v^2 \le 1\}$$

On parametric surfaces, there are many natural parametric curves: fixing either u or v and let the other variable change, we obtain the grid curves on $\vec{r} = \vec{r}(u,v)$.

An important class of parametric surfaces is given by surfaces of revolution: if you start with a curve on the xz-plane, revolve about the z-axis by 360° :

In special case, the curve on the xy-plane is given by the graph of a function z = f(x). When the positive x-coordinate is rotated, distance on it becomes a parameter r (distance from the z-axis). Another natural parameter is the angle

θ

$$\vec{r}(r,\theta) = r\cos\theta \vec{i} + r\sin\theta \vec{j} + f(r)\vec{k}$$

$$r\in [a,b], \quad \theta \in [a,2\pi].$$

• At each point $\vec{r}(u_0, v_0)$ of a parametric surface, the surface is best linearly approximated by its tangent plane at $\vec{r}(u_0, v_0)$:

To find the plane, we first find the tangent directions to the grid lines through $\vec{\Gamma}(u_0,v_0)$: $\vec{\Gamma}_u(u_0,v_0)$, $\vec{\Gamma}_v(u_0,v_0)$.

Thus the normal vector $\vec{n}(u_0,v_0) = \vec{r}_u(u_0,v_0) \times \vec{r}_v(u_0,v_0)$, and the tangent plane ·

$$(\vec{r} - \vec{r}(u_0, v_0)) \cdot (\vec{r}_u(u_0, v_0) \times \vec{r}_v(u_0, v_0)) = 0$$

Eg. Let $\vec{\Gamma}(u,v) = (u-v)\vec{\iota} + (u^2-2v)\vec{\jmath} + v\vec{k}$. Find the tangent plane at the point (0,-1,1).

The tangent plane helps us with local approximation of the area of a surface. In turn this helps with finding

the area of a parametric surface.

The parallelogram is formed by the vectors $\vec{\Gamma}(u_0, v_0)$ $\vec{\Gamma}(u_0+\Delta u, v_0) \approx \vec{\Gamma}(u_0, v_0) + \vec{\Gamma}_u(u_0, v_0) \Delta u$ $\vec{\Gamma}(u_0, v_0+\Delta v) \approx \vec{\Gamma}(u_0, v_0) + \vec{\Gamma}_v(u_0, v_0) \Delta v$,

Γ(U0+ΔU, U0+ΔU)≈Γ(U0, U0)+ Γu(U0, U0) ΔU+ Γv(U0, U0)ΔV

Thus the side vectors are given by $\vec{r}_u(u_0,v_0) \triangle u \;, \qquad \vec{r}_v(u_0,v_0) \triangle v$ and the small area equals

Summing up
$$\Delta A$$
's and taking limit, we get

Thm. If a smooth parametric surface S is given by $\vec{r} = \vec{r}(u,v)$ where $(u,v) \in D$, then

 $\Delta A = \| \vec{r}_{\mu}(u_0, v_0) \times \vec{r}_{\nu}(u_0, v_0) \| \Delta u_{\Delta} v_0 \|$

$$A(S) = \iint_{\mathcal{D}} \|\vec{r}_{u} \times \vec{r}_{v}\| \, du \, dv$$

Eq. If S is the graph z=frx.y) for a smooth function frx.y) defined over \mathcal{D} , then $\vec{r} = \vec{r}(x, y) = (x, y, f(x,y))$

defined over
$$\vec{D}$$
, then $\vec{r} = \vec{r}(x, y) = (x, y, f(x, y))$

$$\vec{\Gamma}_x \times \vec{\Gamma}_y = (\vec{\iota} + f_x \vec{k}) \times (\vec{\jmath} + f_y \vec{k}) = -f_x \vec{\iota} - f_y \vec{\jmath} + \vec{k}.$$

$$\implies A(S) = \iint_{\vec{D}} \sqrt{f_x^2 + f_y^2 + 1} \, dx dy.$$

Eq. Find the area of the surface z = xy that lies inside the

Eq. Find the area of the sphere $x^2 + y^2 + z^2 = R^2$

cylinder $x^2+y^2=1$.