1/29/12 Quiz Feedback

Coursera Dong-Bang Tsai About Feedback

Probabilistic Graphical Models

Daphne Koller, Kevin Murphy
Winter 2011-2012

Home

Quizzes

Theory Problems

Assignments

Assignment Questions

Video Lectures

Discussion Forums

Course Wiki

Lecture Slides

Course Schedule

Course Logistics

Course Information

Course Staff

Octave Installation

Feedback — Week 2 Review

You achieved a score of 3.00 out of 3.00

Question 1

Template Model Representation. Consider the following scenario:

On each campus there are several Computer Science students and several Psychology students (each student belongs to one xor the other group). We have a binary variable L for whether the campus is large, a binary variable S for whether the CS student is shy, a binary variable S for whether the Psychology student likes computers, and a binary variable S for whether the Computer Science stuck is friends with the Psychology student. Which of the following plate models can represent this scenarior.

Your Answer	Score	Explanation			
	1.00	(A) is right because there are separate plates for CS and Psych students who do not overlap; the student plates are within the campuses plate sine every student is on a campus; the location node is on the campus plate since location is only a property of campuses; the properties of types of students nodes are on those students' plates; and the friend node is on a the plates since friendship involves both types of students and the campu			
Total	1.00				

Question 2

1/29/12

Quiz Feedback

*I-Equivalence. Let Bayesian network G be a simple directed chain $X_1 \to X_2 \to \ldots \to X_n$ for snumber n. How many Bayesian networks are I-equivalent to G including G itself?

Your Answer		Score	Explanation
n	~	1.00	The chain $X_1 \leftarrow \ldots \leftarrow X_i \rightarrow \ldots \rightarrow X_n$ is I-equivalent, where i can be i through i (when $i=n$, all arrows point left). Thus, there are i equivalent networks like this. Including the original network makes i .
Total		1.00	

Question 3

Partition Function. Which of the following is a use of the partition function?

Your Answer		Score	Explanation
One can divide factor products by the partition function in order to convert them into probabilities.	•	1.00	This is a common of the partition function.
Total		1.00	