

M-UDAS 操作マニュアル

for M-UDAS 1.00

2020年8月20日

IUGONETプロジェクトチーム

目次

- 1. M-UDASとは?
- 2. 公開中・公開予定のロード関数
- 3. インストール
- 4. 基本的な使い方
- 5. サンプルスクリプト
- 6. 動作環境と注意事項、問い合わせ先

1. M-UDAS とは

IUGONET参加機関がウェブ上に公開している多種多様なデータを読み込み・解析するための MATLABライブラリです。

ロード関数を使えば、複数日のデータファイルのダウンロード、読み込みが1コマンドで実行でき、速やかに可視化・解析に進めます。

- >> iug load XXX(開始日時, 終了日時, 'パラメータ名', '値');
- >> whos
- >> disp_info(xxx_info);
- >> plot(xxx_time, xxx_data)

解析の一連の流れが スムーズに!

iug_load_XXX で 自動ダウンロード

2. 公開中・公開予定のロード関数

本パッケージに含まれるロード関数(2020年7月現在)

No.	データの種類	ロード関数名
1	極地研・全天イメージャデータ	iug_load_asi_nipr
2	極地研・全天イメージャ・ケオグラムデータ	iug_load_ask_nipr
3	名大ISEE・広ビームリオメータデータ	iug_load_brio_isee
4	EISCATレーダーデータ	iug_load_eiscat
5	名大ISEE・フラックスゲート磁力計データ	iug_load_gmag_isee_fluxgate
6	名大ISEE・誘導磁力計データ	iug_load_gmag_isee_induction
7	MAGDAS磁力計ネットワークデータ	iug_load_gmag_magdas
8	210度磁気子午線磁力計ネットワークデータ	iug_load_gmag_mm210
9	極地研・フラックスゲート磁力計データ	iug_load_gmag_nipr
10	極地研・誘導磁力計磁力計データ	iug_load_gmag_nipr_induction
11	京大RISH・流星レーダーデータ	iug_load_meteor_rish
12	京大RISH・MFレーダーデータ	iug_load_mf_rish

【公開予定のロード関数】

今後、随時、IUGONETが公開している以下のCDF (Common Data Format) またはNetCDF (Network Common Data Form) フォーマットのデータを公開していきます。その後、ASCII、FITSフォーマット等のデータを公開する予定です。

- ・東北大: 太陽/木星電波HF帯広帯域スペクトルデータ、LF帯 標準電波データ
- •極地研: イメージングリオメータデータ
- ・名大ISEE: VLF帯電磁波動データ、OMTI全天イメージャデータ
- ・京大RISH: EARレーダーデータ、MUレーダーデータ、ラジオゾンデデータ、GPS掩蔽観測データ
- SuperDARNレーダーデータ、EISCATレーダーイオン速度・電場データ、ABON/VLF-Bデータ

IUGONET

3. インストール

1. M-UDASをダウンロードし、解凍します。

ダウンロード元URL: https://github.com/iugonet/UdasMatlab

[Clone or Download]ボタンからZIPファイルをダウンロードし、適当なディレクトリに解凍します。

2. MATLAB版CDFソフトウェア(V3.8.0)をダウンロードし、解凍・インストールします。

ダウンロード元URL: https://spdf.gsfc.nasa.gov/pub/software/cdf/dist/cdf38 0/matlab/

- Windows: matlab cdf380 win64 VS2015.exe
- Linux: matlab cdf380 lin64.tar.gz ※HOWTO-install.txtに従ってインストールしてください。
- Mac OS: matlab cdf380 mac64.tar.gz
- 3. M-UDAS、CDFソフトウェアにパスを通します。

GUIによる設定:

- 1. MATLABを起動し、[ホーム] タブの [環境] セクションで、[パスの設定] をクリックします。
- 2. 「パス設定]ウィンドウで、「サブフォルダも追加]をクリックし、M-UDASディレクトリを選択します。
- 3. 同様に、CDFソフトウェアのディレクトリ、サブディレクトリもパスに追加します。
- 4. 「保存]をクリックしてパスを保存し、「閉じる]をクリックする。

CUIによる設定:

- 1. MATLABを起動し、コマンドラインで以下のコマンドを実行します。
- >> addpath(genpath('M-UDASの最上位のディレクトリへのパス'))
- >> addpath(genpath('CDFソフトウェアの最上位のディレクトリへのパス'))
- ※MATLAB起動時に自動的にパスを通すには、上記のコマンドをstartup.mに追加し、startup.mをMATLAB起動時のカレントディレクトリ、またはMATLABパス上のディレクトリに保存します。

4. 基本的な使い方(1)

iug load XXX(開始日時,終了日時,'オプション名','値');

IUGONET参加機関が公開しているデータをロードします。

XXXには、データの種類や観測装置、プロジェクト名などが入ります。

(例)

>> iug load gmag magdas('2007-3-1', '2007-3-5', 'site', {'asb', 'kuj'});

>> whos

Name	Size	Bytes	Class
magdas_mag_asb_1sec_all	1x9	26266822	cell
magdas_mag_asb_1sec_f	345600x1	2764800	double
magdas_mag_asb_1sec_hdz	345600x3	8294400	double
magdas_mag_asb_1sec_info	1x1	71148	struct
magdas_mag_asb_1sec_time	345600x1	2764800	double
magdas mag kuj 1sec all	1x9	26266822	cell

ロード関数を実行すると、データファイルがダウンロードされ、コンソールに利用規約が表示されます。利用規約に従って、データを利用してください。

- データは、予め定義されている変数名でロードされます。

この例では、

'magdas_mag_サイト名_時間分解能_パラメータ名'

という変数名でロードされています。

magdas mag asb 1sec all :全ての実データを含むcell配列。

magdas_mag_asb_1sec_all{要素番号}により、値を取り出すことができます。

magdas_mag_asb_1sec_info : メタデータが入った構造体。disp_info関数により、コンソールに表示できます。

magdas_mag_asb_1sec_time: 時刻。MATLABのシリアル日付値(0000年1月0日からの日数(整数および小数))。

magdas_mag_asb_1sec_hdz :地磁気3成分。 magdas_mag_asb_1sec_f :地磁気絶対値。

4. 基本的な使い方(2)

disp_info(メタデータ変数);

データの情報(メタデータ)をコンソールに表示します。

ロードされたメタデータ変数(xxx_info)を入力します。

(例)

>> disp info(magdas mag asb 1sec info)

1. epoch_1sec データの1番目の要素 FIELDNAM: Epoch (xxx all{1})の情報。

CATDESC: Time, beginning of interval VALIDMIN: 01-Jan-1990 00:00:00.000 VALIDMAX: 31-Dec-2100 23:59:59.999 SCALEMIN: 01-Jan-1990 00:00:00.000 SCALEMAX: 31-Dec-2100 23:59:59.999

....

>> plot(magdas_mag_asb_1sec_time,... magdas mag asb 1sec hdz(:,1))

- >> datetick('x', 'mm/dd')
- >> set(gca, 'xlim', [datenum(2007,3,1), datenum(2007,3,4)])

時刻は、シリアル日付値(0000年1月0日からの日数(整数および小数))です。プロットの際、datetick関数により、日付を書式化した目盛りラベルに変換できます。また、X軸のレンジは、datenum関数で指定します。

表示されるメタデータの通し番号は、ロードされた 全データ(magdas_mag_asb_1sec_all)のcell 配列の要素番号に相当します。

この例の場合、9つの要素があるので、9つのメタデータが表示されます。

4. 基本的な使い方(3)

ロード関数の入力引数:

iug_load_XXX(開始日時,終了日時,'オプション名','値')

必須

No.	項目名	変数型	書式	例	説明
1	開始日時	char配列 or datetime型 or シリアル日付値	'yyyy-MM-dd HH:mm:ss' or datetime(Y,M,D,H,MN,S) or datenum(Y,M,D,H,MN,S)	'2000-01-02 03:04:05' datetime(2000,1,2,3,4,5) datenum(2000,1,2,3,4,5)	開始日時。開始日時~終了日時のデータをロードし、連結して出力する。
2	終了日時	char配列 or datetime型 or シリアル日付値	'yyyy-MM-dd HH:mm:ss' or datetime(Y,M,D,H,MN,S) or datenum(Y,M,D,H,MN,S)	'2000-06-07 08:09:10' datetime(2000,6,7,8,9,10) datenum(2000,6,7,8,9,10)	終了日時。 開始日時~終了日時のデータをロードし、連結して出力する。

オプション

※関数によりオプションの有無、名称は異なります。

No.	オプション名(※)	変数型	書式	例	説明
3	site	char配列 or cell配列	'site1' {'site1', 'site2', 'site3'}	'asb' {'asb', 'kag', 'kuj'} 'all' or '*'	観測点名を表すchar配列、または、cell配列。 'all' or '*'で、全ての観測点データをロードする。
4	datatype	char配列 or cell配列	'type1' {'type1', 'type2', 'type3'}	'1sec' {'1sec', '1min', '1h'} 'all' or '*'	データ種を表すchar配列、または、cell配列。 'all' or '*'で、全てのデータ種をロードする。
5	parameter	char配列 or cell配列	'para1' {'para1', 'para2', 'para3'}	'iono' {'iono', 'meso', 'trop'} 'all' or '*'	パラメータを表すchar配列、または、cell配列。 'all' or '*'で、全てのパラメータをロードする。
6	downloadonly	整数型	0 or 1 (デフォルトは0)	1	0:メモリにデータをロードする。 1:ダウンロードのみ行い、データをロードしない。
7	no_download	整数型	0 or 1 (デフォルトは0)	1	0:リモートサーバからファイルをダウンロードする。 1:リモートサーバからファイルをダウンロードしない。

5. サンプルスクリプト

examples/iug_crib_XXX.m は、ロード関数 iug_load_XXX を使ったサンプルスクリプトです。

(例) iug_crib_gmag_magdas.m

```
%---- Delete all variables ----%
clear all;
%---- Load 1 site data ----%
                                                                   データをロードします。
iug load gmag magdas('2007-3-1', '2007-3-5', 'site', 'asb');
%---- Check the loaded data ----%
                                                                 - ロードしたデータを表示します。
whos
%----- Display metadata -----%
                                                                — メタデータを表示します。
disp_info(info);
%----- Pause -----%
input('Press any key.');
%---- Load 1 site data ----%
figure;
plot(magdas_mag_asb_1sec_time, magdas_mag_asb_1sec_hdz(:,1)) ← データをプロットします。
```

【使い方】

iug_crib_XXX.m の中のコマンドを**1行ずつコマンドラインで実行**することで、ロード関数 iug_load_XXX の基本的な使い方を知ることができます。または、以下のように、コマンドラインで iug_crib_XXX を実行することもできます。

>> iug_crib_XXX

このサンプルスクリプトを実行することで、データのロード、情報の表示、クイックルックプロットの作成を体験でき、即座にデータ解析、研究に進むことができます。

6. 動作環境と注意事項、問い合わせ先

動作環境(2020年8月現在)

OS

Windows / MacOS / Linux

MATLAB

8.5以上

CDFソフトウェア

v3.7.1以上 (https://cdf.gsfc.nasa.gov/)

注意事項

- M-UDASを利用する場合は、IUGONETプロジェクトの利用規則に従ってください。利用規約 http://www.iugonet.org/rules/
- 2. M-UDASを使用の際、ご自身のパソコンのハードウェア及びソフトウェア、資産、そのほかに損害が生じてもIUGONETでは責任を負いかねます。ご了承ください。

問い合わせ先

質問やコメント、共同研究に関するご相談は、以下にお問い合わせください。

Email: iugonet-contact@iugonet.org