DSA5102 PROJECT Loan Default Prediction

CHAI JIAYING (A0296685E)

Introduction

Financial loan services are widely used by banks, financial institutions, and government entities to manage lending risks. By using machine learning to **predict potential loan defaults**, companies can proactively identify high-risk individuals, enabling timely interventions to **minimize financial losses** and **improve repayment compliance**.

Goal: To predict loan default risk accurately using machine learning models trained on sample data.

DATASET

The dataset contains **255,347 rows** and **18 columns.**

Default			
0	225694		
1	29653		

The dataset is **unbalanced**, so we take a **subsample** with an equal ratio of positive and negative samples.

Default				
0 25000				
	-///			
1	25000			

FEATURES

17 features: 9 numerical features, 7 categorical features (including 3 binary features)

	Description	Column.name	
	A unique identifier for each loan.	Loan ID	0
	The age of the borrower.	Age	1
	The annual income of the borrower.	Income	2
	The amount of money being borrowed.	LoanAmount	3
	The credit score of the borrower, indicating their creditworthiness.	CreditScore	4
numerical	The number of months the borrower has been employed.	MonthsEmployed	5
	The number of credit lines the borrower has open.	NumCreditLines	6
	The interest rate for the loan.	InterestRate	7
	The term length of the loan in months.	LoanTerm	8
	The Debt-to-Income ratio, indicating the borrowers debt compared to their income.	DTI Ratio	9
	The highest level of education attained by the borrower.	Education	10
cotogorical	The type of employment status of the borrower.	${\bf Employment Type}$	11
categorical	The marital status of the borrower.	MaritalStatus	12
	The purpose of the loan.	LoanPurpose	13
	Whether the borrower has a mortgage.	HasMortgage	14
binary	Whether the borrower has dependents.	HasDependents	15
	Whether the loan has a co-signer.	HasCoSigner	16
	The binary target variable indicating whether the loan defaulted (1) or not (0).	Default	17

Visualize Data

numerical features

1	Age	The age of the borrower.
2	Income	The annual income of the borrower.
3	LoanAmount	The amount of money being borrowed.
4	CreditScore	The credit score of the borrower, indicating their creditworthiness.
5	MonthsEmployed	The number of months the borrower has been employed.
6	NumCreditLines	The number of credit lines the borrower has open.
7	InterestRate	The interest rate for the loan.
8	LoanTerm	The term length of the loan in months.
9	DTI Ratio	The Debt-to-Income ratio, indicating the borrowers debt compared to their income.

- Older people are seen less likely to default
- The dafaulters are seen with lower avg income
- The dafaulters are seen with larger
 Loan Amount and lesser credit score
- People having higher Interest rate are more likely to default

Visualize Data

categorical features

10 Education	The highest level of education attained by the borrower. (PhD, Masters, Bachelor's, High School)
11 EmploymentType	The type of employment status of the borrower. (Full-time, Part-time, Self-employed, Unemployed)
12 MaritalStatus	The marital status of the borrower. (Single, Married, Divorced)
13 LoanPurpose	The purpose of the loan. (Home, Auto. Education. Business, Other)
14 HasMortgage	Whether the borrower has a mortgage.(Yes or No)
15 HasDependents	Whether the borrower has dependents.(Yes or No)
16 HasCoSigner	Whether the loan has a co-signer.(Yes or No)

- Higher education people are seen less likely to default
- Unemployed people are seen more likely to default
- People without mortgage or dependent or co-signer are more likely to default

2000

HasCoSigner

Visualize Data

Correlation Matrix

No significant correlation found

Importance:

Age -0.26

Interest Rate 0.21

Income -0.15

MonthsEmployed -0.15

LoanAmount 0.13

Correlation Matrix (including Default)

Preprocessing Data

Feature Engineering

Standard Scaler

The order of magnitude difference between the different features is very large, so consider normalizing the data.

Lable Encoder

- convert categorical and binary data into numerical values
- Apply LabelEncoder to binary columns
 'HasMortgage', 'HasDependents', 'HasCoSigner'
- Apply one-hot encoding to categorical columns 'Education', 'EmploymentType', 'MaritalStatus', 'LoanPurpose'

Splitting the dataset

- Split the dataset into features and target variable
- Train-test split (80% train, 20% test)

Model Selection

Supervised Learning

Random Forest

XGBoost

SVM (Support Vector Machine)

Unsupervised Learning

Kernel PCA

t-SNE

Supervised Learning - Random Forest

Model

rf_model =
RandomForestClassifier
(n_estimators=1000,
random_state=1,
max_features="sqrt",
max_depth=34,
criterion="entropy")
KFold: n_splits=5

Confusion Matrix

Feature Importance

Classification Report

Random Forest Classifier with K-Fold Cross-Validation:

Test Accuracy: 0.6862 Classification Report:

Classificación	precision	recall	f1-score	support
0.0	0.68	0.70	0.69	5022
1.0	0.69	0.67	0.68	4978
accuracy			0.69	10000
macro avg	0.69	0.69	0.69	10000
weighted avg	0.69	0.69	0.69	10000

Model	Accuracy	Recall	AUC	PR AUC	
Random Forest	0.686	0.70/0.67	0.748	0.745	

- The model performs fairly balanced in capturing both default and non-default samples.
- TOP 3 features: Interest rate, Age, Loan-to-Income ratio

Supervised Learning - XGBoost

Model

xgb_model =

XGBClassifier(max_depth=4,

min_child_weight=6,

gamma=0.1, subsample=0.8,

colsample_bytree=0.8,

learning_rate=0.1,n_estimators=100,

use_label_encoder=False,

eval_metric='logloss',

random_state=42)

KFold: n_splits=5

Confusion Matrix

Feature Importance

Classification Report

XGBoost Classifier with K-Fold Cross-Validation:

Test Accuracy: 0.6935 Classification Report:

Classification	precision	recall	f1-score	support
0.0	0.69	0.70	0.70	5022
1.0	0.69	0.69	0.69	4978
accuracy			0.69	10000
macro avg	0.69	0.69	0.69	10000
weighted avg	0.69	0.69	0.69	10000

Model	Accuracy	Recall	AUC	PR AUC	
Random Forest	0.686	0.70/0.67	0.748	0.745	
XGBoost	0.694	0.70/0.69	0.758	0.755	

- The model performs fairly balanced in capturing both default and non-default samples.
- TOP 3 features: Age, Loan-to-Income ratio, Interest rate.

Supervised Learning - SVM

Model

svm_model =
SVC(kernel='poly',C=0.03,gamma='scale',
probability=True)

KFold: n_splits=5

Classification Report

SVM Classifier with K-Fold Cross-Validation:

Test Accuracy: 0.691 Classification Report:

	precision	recall	f1-score	support
0.0	0.70	0.68	0.69	5022
1.0	0.68	0.70	0.69	4978
accuracy			0.69	10000
macro avg	0.69	0.69	0.69	10000
weighted avg	0.69	0.69	0.69	10000

Confusion Matrix

Evaluation

Model	Accuracy	Recall	AUC	PR AUC	
Random Forest	0.686	0.70/0.67	0.748	0.745	
XGBoost	0.694	0.70/0.69	0.758	0.755	
SVM	0.691	0.68/0.70	0.754	0.745	

SVM has lower False Negative (FN) than previous model, indicates that the model has fewer missed judgments for positive class samples.

Unsupervised Learning - PCA

Model

pca = PCA(n_components=5)

kmeans = KMeans(n_clusters=2, random_state=42)

Classification Report

Unbalanced Data

Balanced Data

Clustering Accuracy with best alignment: 0.575644123486863				Clustering Ac	curacy with	best alig	nment: 0.5	8382	
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.91	0.58	0.71	225694	0	0.57	0.69	0.62	25000
1	0.15	0.58	0.24	29653	1	0.61	0.48	0.53	25000
accuracy			0.58	255347	accuracy			0.58	50000
macro avg	0.53	0.58	0.47	255347	macro avg	0.59	0.58	0.58	50000
weighted avg	0.82	0.58	0.65	255347	weighted avg	0.59	0.58	0.58	50000

Visualization

Model	Imbalan	ced data	Balanced data		
	Accuracy	F1-Score	Accuracy	F1-Score	
PCA	0.575	0.71/0.24	0.583	0.62/0.53	

- Model use unbalanced data does not perform well on default=1 class.
- After balanced the dataset, the model performs better than before, but still worse than supervised learning method.

Unsupervised Learning - Kernel PCA

Model

kpca =
KernelPCA(kernel="rbf",
gamma=0.1, n_components=3)

kmeans =
KMeans(n_clusters=2,
random_state=42)

Classification Report

Unbalanced Data

accuracy

macro avg

weighted avg

Clustering Ac	curacy with	best alig	nment: 0.57	714	Clustering
	precision	recall	f1-score	support	
0.0	0.58	0.56	0.57	5022	
1.0	0.57	0.59	0.58	4978	

 0.57
 0.59
 0.58
 4978

 0.57
 10000

 0.57
 0.57
 10000

 0.57
 0.57
 10000

Balanced Data

Accuracy with best alignment: (0.4237,) precision recall f1-score support 0.42 0.43 0.43 5000 1 0.42 0.42 0.42 5000 0.42 10000 accuracy 0.42 0.42 0.42 10000 macro avg weighted avg 0.42 0.42 0.42 10000

Visualization

Model	Imbalan	ced data	Balanced data		
	Accuracy	F1-Score	Accuracy	F1-Score	
PCA	0.575	0.71/0.24	0.583	0.62/0.53	
Kernel PCA	0.571	0.57/0.58	0.424	0.43/0.42	

- This model appears more stable with imbalanced data and less sensitive to class imbalance.
- And can better capture nonlinear factors in the data.

Unsupervised Learning - t-SNE

Model

tsne = TSNE(n_components=2, random_state=42)

kmeans =
KMeans(n_clusters=2,
random_state=42)

Classification Report

Unbalanced Data

Balanced Data

Clustering A	accuracy with	best alig	gnment: 0.5	323657611015599	Clustering Ac	curacy with	best alig	nment: 0.58	3214
	precision	recall	f1-score	support		precision	recall	f1-score	support
	0.01	0.50	0.66	225604		0.50	2 64		25222
6	0.91	0.52	0.66	225694	0	0.58	0.61	0.59	25000
1	0.14	0.61	0.23	29653	1	0.59	0.56	0.57	25000
accuracy	′		0.53	255347	accuracy			0.58	50000
macro avg	0.53	0.56	0.45	255347	macro avg	0.58	0.58	0.58	50000
weighted avg	0.82	0.53	0.61	255347	weighted avg	0.58	0.58	0.58	50000

Visualization

Evaluation

Model	Imbalan	ced data	Balanced data		
	Accuracy	F1-Score	Accuracy	F1-Score	
PCA	0.575	0.71/0.24	0.583	0.62/0.53	
Kernel PCA	0.571	0.57/0.58	0.424	0.43/0.42	
t-SNE	0.532	0.66/0.23	0.582	0.59/0.57	

t-SNE, like PCA, is more influenced by data imbalance but shows improvements with balanced data.

CONCLUSION

Model comparison

Model	Accuracy	Recall	AUC	PR AUC	
Random Forest	0.686	0.70/0.67	0.748	0.745	
XGBoost	0.694	0.70/0.69	0.758	0.755	
SVM	0.691	0.68/0.70	0.754	0.745	

Model	Imbalan	ced data	Balanced data		
	Accuracy	F1-Score	Accuracy	F1-Score	
PCA	0.575	0.71/0.24	0.583	0.62/0.53	
Kernel PCA	0.571	0.57/0.58	0.424	0.43/0.42	
t-SNE	0.532	0.66/0.23	0.582	0.59/0.57	

- For imbalanced data, Kernel PCA is the best choice as it performs well without a significant drop in F1-scores between classes, showing robustness to imbalance.
- For balanced data, PCA and t-SNE both perform comparably well, with t-SNE slightly edging out on F1-scores.

In summary, supervised learning models perform significantly better than unsupervised models due to their ability to learn directly from labeled data, and among the supervised models, XGBoost achieves the best overall performance.

EVALUATION

Top 3 Feature Impact on Loan Default Prediction:

- Age: Younger borrowers may have less financial stability and credit history, leading to a higher risk of default.
- Loan-to-Income Ratio: Higher values indicate a larger debt burden relative to income, increasing default likelihood due to financial strain.
- Interest Rate: Higher interest rates increase monthly payments, making it harder for borrowers to keep up with repayments, which can raise the risk of default.

Economic Value of Loan Default Prediction:

- Enables lenders to assess borrower risk effectively, helps reduce financial losses, improve capital allocation.
- Identifying high-risk loans can support lenders in setting appropriate interest rates or collateral requirements, ultimately contributing to a healthier credit market.

