Convolutional operators and their structure

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Output size

• Input: $\mathbf{X} \in \mathbb{R}^{H \times W \times C_1}$

• Kernel: $\mathbf{w} \in \mathbb{R}^{h \times w \times C_1 \times C_2}$

• Output: $\mathbf{Z} \in \mathbb{R}^{(H-h+1)\times (W-w+1)\times C_2}$

*

a	b
С	d

Padding

- Add P_w, P_h zeros in each dimension
- Input: $\mathbf{X} \in \mathbb{R}^{H \times W \times C_1}$
- Kernel: $\mathbf{w} \in \mathbb{R}^{h \times w \times C_1 \times C_2}$
- Output: $\mathbf{Z} \in \mathbb{R}^{(H-h+2p_h+1)\times(W-w+2p_w+1)\times C_2}$

*

a	b
С	d

Output resolution

- High output resolution
 - Slow computation

Striding

- Only compute every nth output: S_w , S_h
- Input: $\mathbf{X} \in \mathbb{R}^{H \times W \times C_1}$
- Kernel: $\mathbf{w} \in \mathbb{R}^{h \times w \times C_1 \times C_2}$
- Output:

$$\mathbf{Z} \in \mathbb{R}^{\left(\frac{H-h+2p_h}{s_h}+1\right)\times\left(\frac{W-w+2p_w}{s_w}+1\right)\times C_2}$$

Output size with striding

Parameters

• Every input channel C_1 is connected to every output channel C_2

$$C_1 = 6$$

Grouping

- Split channels into g groups
- Reduce parameters and computation by factor g

$$C_1 = 6$$

$$C_2 = 4$$

Depthwise convolution

Special grouping

$$\bullet \quad C_1 = g$$

•
$$C_2 = g$$

$$C_1 = 3$$
 $C_2 = 3$

Hyper-parameters of convolutions

• Kernel size: $w \times h$

• Padding: p_w , p_h

• Stride: S_w , S_h

Convolutional operators

• Run arbitrary operation $f(\mathbf{x})$ "over" image

4

a	b	С
d	e	f
g	h	i

