Sequence Alignment

Lecture – 4

Nafis Neehal, Lecturer, Department of CSE, DIU

CONTENTS

- 1. Sequence Alignment
- 2. Sequence Alignment Methods
 - Pairwise Alignment
 - Multiple Sequence Alignment
- 3. Pairwise Sequence Alignment Methods
 - -Global Alignment (Needleman-Wunsch)
 - Local Alignment (Smith-Waterman)
- 4. Multiple Sequence Alignment
 - Progressive Method
 - Iterative Method
 - MSA Challenges

1. Sequence Alignment

Why and how align sequences

Sequence Alignment

A way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences

CTGTCG-CTGCACG

-TGC-CG-TG----

2. Sequence Alignment Methods

Pairwise and Multiple

Pairwise Sequence Alignment

- ▶ A pair of sequences as input
- Align them in such a way that, for that particular alignment the assumed region of similarity produces higher score than all the other alignments
- ▶ Methods
- Global Alignment (Needleman-Wunsch)
- Local Alignment (Smith-Waterman)

Multiple Sequence Alignment

Hunga specific specific

Human ATGAACGCATGC

Chimp. ATGCACGCATGC

Gorilla ATGCATGCATGC

Mouse ATGCATGCATGC

Ancestor ATGCATGCACGC

Horse ATGCATGCACGC

- Three or more than three sequences as input
- Align all the sequences altogether in such a manner that the alignment produces highest score

3. Pairwise Sequence Alignment

Global and Local methods

Global Alignment (Needleman-Wunsch)

3 Major Steps

- -Create 2D Matrix
- -Trace back
- -Final Alignment

Create 2D Matrix

- Row x Col 2D matrix draw (Row, Col size of seq1 and seq2 respectively)
- Place 2 seqs as Row and Column Header
- Cell (0,0) = 0
- Cell (0,1) to Cell (0,Column) and Cell (1,0) to Cell (Row,0) value = delete gap value from previous cell value
- For other cell values, follow equation in (1)

Trace back

- Start from Cell (Row, Col)
- Go back up to Cell (0,0)

Final Alignment

- Start from Cell (Row, Col)
- If then, place character in both seq
- If ← or ↑ then character in start seq & gap in end seq

Global Alignment (Needleman-Wunsch) - Example

Input

- seq1 = AAAC

- seq2 = AGC

-AGC

AAAC

Scoring Scheme

 $\delta(x, y) = -1$ (Mis match)

Final $\delta(x, x) = 1 \text{ (Match)}$ Alignment $\delta(x,-) = -2 (Gap)$

$$V_{i,j} = \max \begin{cases} V_{i-1,j} + \delta(s_i, -) \\ V_{i,j-1} + \delta(-, t_j) \\ V_{i-1,j-1} + \delta(s_i, t_j) \end{cases}$$

Eq. 1: Cell Value

		Α	G	С
	0	-2	-4	-6
Α	-2	1	-1	-3
Α	-4	-1	0	-2
Α	-6	-3	-2	1
С	-8	-5	-4	-1

Local Alignment (Smith-Waterman)

3 Major Steps

- -Create 2D Matrix
- -Trace back
- -Final Alignment

Create 2D Matrix

- Row x Col 2D matrix draw (Row, Col size of seq1 and seq2 respectively)
- Place 2 seqs as Row and Column Header
- First Row, First Column all value = 0
- For other cell values, follow equation in (2)

Trace back

- Start from each Cell which has the maximum value in the entire matrix
- Go back up to the Cell where first time 0 occurs

Final Alignment

- Start from each Cell with max value
- If 🔨 then, place character in both seq
- If ← or ↑ then character in start seq & gap in end seq

Local Alignment (Smith-Waterman) - Example

Input

- seq1 = AAAC

- seq2 = AAG

-AAG

AAAC

Alignment

Final

Scoring Scheme

 $\delta(x, x) = 1 \text{ (Match)}$

 $\delta(x,-) = -2 (Gap)$

 $\delta(x, y) = -1$ (Mis match)

$$A[i, j] = \max \begin{cases} A[i, j - 1] + \text{gap} \\ A[i - 1, j] + \text{gap} \\ A[i - 1, j - 1] + \text{match}(i, j) \\ 0 \end{cases}$$

Eq. 2: Cell Value

		Α	Α	G
	0	0	0	0
Α	0	1	1	0
Α	0	1	2	0
Α	0	1	2	1
С	0	0	0	1

4. Multiple Sequence Alignment

Progressive, Iterative

Progressive Method

- Two major steps Guide Tree build up and Multiple Pairwise Alignment
- Steps
- Take each pair, align
- Generate consensus of that alignment
- Align new sequence with the consensus of the previous one
- Go back, Until all sequences are finished
- Example
 - Clustal ω
 - MAFFT
 - KALIGN
 - T-COFFEE

Iterative Method

- Works similarly to progressive methods
- Repeatedly realign the initial sequences as well as add new sequences to the growing MSA
- Example
 - DIALIGN
 - MUSCLE
 - POA

MSA Challanges

- Computationally Expensive
- Difficult to score. Multiple comparison necessary in each column of the MSA for a cumulative score
- Placement of gaps and scoring of substitution is more difficult
- Difficulty increases with diversity
- Relatively easy for a set of closely related sequences.
 Identifying the correct ancestry relationships for a set of distantly related sequences is more challenging
- Even difficult if some members are more alike compared to others

95%

Of Human DNA is identical to Chimpanzees

2 gm DNA

Can contain digital information of whole world

510 DNA Codes

Lost throughout human evolution

1.8 Meter

Long DNA is squeezed into a space of 0.09 µm

TO BE CONTINUED

Shocked?

Youtube Links

- □ Global Alignment Part 1 https://www.youtube.com/watch?v=vqxc2EfPWdk
- ▷Global Alignment Part 2 https://www.youtube.com/watch?v=zwA-6_1bLgE
- ► Local Alignment https://www.youtube.com/watch?v=latoW0sJ35Q