PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

51) International Patent Classification 6:		11) International Publication Number: WO 99/35139
C07D 315/00	A1	43) International Publication Date: 15 July 1999 (15.07.99
21) International Application Number: PCT/EP 22) International Filing Date: 4 January 1999 (BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GI GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KI KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MR
30) Priority Data: M198A000021 9 January 1998 (09.01.98) 71) Applicant (for all designated States except US): LONZ	ZA S.P.	ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, T TM), European patent (AT, BE, CH, CY, DE, DK, ES, F
[IT/IT]; Via Vittor Pisani, 31, I-20124 Mailand (I 72) Inventors; and 75) Inventors/Applicants (for US only): CASTIGLIOI Luca [IT/IT]; Via Roseto, 15, I-47036 Ricci FUMAGALLI, Carlo [IT/IT]; Via C. Albani, 2/a, Albano S. Alessandro (IT). 74) Agents: RAUBER, Beat et al.; Lonza AG, Patent Postfach, CH-4002 Basel (CH).	NI, Gia one (I , I–240	SN, TD, TG). Published With international search report. Before the expiration of the time limit for amending to claims and to be republished in the event of the receipt
÷		
(54) Title: PROCESS FOR THE PRODUCTION OF GA	MMA-	UTYROLACTONE
(57) Abstract A new process for the production of gamma–Butyrols takes place in the presence of a catalyst composed of copplete process.	actone i per oxid	described. Starting from maleic and/or succinic anhydride the conversion and zinc oxide.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
ВВ	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

5

10

15

20

25

1

Process for the Production of gamma-Butyrolactone

The present invention relates to a process for selective hydrogenation of maleic or succinic anhydride to gamma-butyrolactone (GBL) in the vapour phase using a catalyst comprising a mixed oxide of copper and zinc

GBL represents an example of a small volume commodity of great industrial interest, because of its increasing demand.

The main use of GBL is as intermediate for the synthesis of solvents with lower environmental impact than chlorinated ones, like pyrrolidone and N-methylpyrrolidone. It is also the raw material for the production of N-vinilpyrrolidone, of herbicides, pharmaceuticals and rubber additives. The first works on GBL synthesis appeared in the 1940's, due to the start up of the Reppe process from acetylene and formaldehyde to give 1,4 butanediol (BDO) and then GBL by dehydrogenation. The drawbacks of this process are connected with the fluctuating prices of the raw materials and, mainly, with the hazard and the environmental impact of the use of both acetylene and formaldehyde.

During the second half of this century, other technologies have been studied and the number of patents about GBL production processes alternative to the Reppe process constantly increased.

The availability of maleic anhydride on industrial scale led to the development of new technologies for producing GBL, tetrahydrofurane (THF) or BDO by hydrogenation of maleic anhydride or of maleic anhydride derivatives like maleic acid diesters or succinic anhydride.

The liquid phase hydrogenation of maleic anhydride to GBL has been employed in commercial production, but never reached great industrial importance.

CONFIRMATION COPY

Many patents describe the vapour phase hydrogenation of maleic anhydride or its esters, but mainly for the production of BDO; for instance WO 86/03189 describe the vapour phase hydrogenation of diethyl maleate to BDO. WO 86/07358 describes a similar process for GBL production.

From a technological and economical point of view the esters of maleic acid or other maleic acid and/or succinic acid derivatives are less desirable raw materials compared with maleic anhydride.

Many patents describe the direct vapour phase hydrogenation of maleic anhydride to GBL, but none of the processes disclosed are completely satisfactory.

Some of these patents claim the use of copper chromites as catalysts (e.g. US Patent 3 065 243) but with unsatisfactory conversion and selectivity. Similar systems were claimed in US Patent 3 580 930 or in EP 332 140 (Cu/Zn/Cr/Al), but none of them are completely satisfactory in terms of GBL yield, productivity, by-products formation and catalyst durability.

Moreover chromium containing catalysts should not be the choice because of the negative environment impact of chromium, due to the toxicity of its compounds.

The WO 91/16132 disclose a process for the GBL production from maleic anhydride using a Cu/Zn/Al catalyst calcined at 400 - 525 °C. Such a high temperature is a draw-back in terms of plant design and operation.

Different catalytic systems, based on noble metal catalysts such as Cu/Pd and Cu/Pt have been described in e.g. US Patent 4 105 674. The cost of the noble metal is the draw back of these catalysts.

The object of the present invention is to provide a new and environmentally friendly process for the production of GBL by vapour phase hydrogenation of maleic anhydride and / or succinic anhydride with essentially quantitative conversion of the starting material, very high selectivity and using a commercial chromium-free catalyst.

10

15

10

The present invention provides a process for the vapour phase hydrogenation of maleic and / or succinic anhydride to GBL over a a catalyst comprising a mixed oxide of copper and zinc.

The content of Copper as CuO is 50 - 90 wt% and Zinc as ZnO is 10 - 50 wt%.

5 Preferably the mixed oxide contains 60 - 80 wt% CuO and 20 - 40 % wt ZnO. The catalyst composition may further contain inert components, such as tabletting aids or inert fillers.

Preferred catalysts are commercially available e.g. from Süd Chemie, Germany. In the active state, the catalytically active oxide material may include some metallic components (like metallic copper) formed in the activation step or during the hydrogenation.

The mixed oxide catalyst is commonly subjected to an activation treatment comprising gradually increasing its temperature from room temperature to 200 - 380 °C, preferably from room temperature to 250 - 300 °C in the presence of a hydrogen-containing gas.

The hydrogen-containing gas in the activation treatment may be a mixture of hydrogen and nitrogen. After the activation treatment the catalyst is ready for use. Activation requires a time usually varying from about 8 to 48 h, depending on reactor size and design.

The activation of the catalyst is exothermic. In case the reactor does not provide an efficient heat removal the hydrogen-containing gas must be suitably diluted or the space velocity must be increased to control exothermic peaks.

Hydrogen dilution results in longer time for the exothermic phase of activation.

Large adiabatic reactors usually requires the longest activation times.

During operation molten maleic anhydride or succinic anhydride or a mixture thereof is expediently vaporised in an hot hydrogen stream in a mixing section; the mixture can then be fed into the reactor packed with the above described activated catalyst. Optionally the catalyst can be packed between two layers of an essentially inert support material, possibly with the same size and shape of the catalyst. Suitable examples of essentially inert support materials include

silica, alumina, silica-alumina compound (e.g. mullite), silicon carbide, steatite and titania.

The reaction pressure is preferably between about 1 and 100 bar, more preferably between about 1 and 30 bar.

The molar ratio of hydrogen to the anhydride in the feed is between 10:1 and 300:1 and more preferably between 40:1 and 200:1. Lower hydrogen to anhydride ratios usually result in tar formation and short catalyst life, higher ratios tend to penalise the productivity of the catalyst.

The reaction temperature is preferably between about 150 and 350 °C, and more preferably between 200 and 300 °C.

As it is well known by those skilled in the art, temperature and pressure range in the hydrogenation reaction depend on the desired product mixture. Increasing temperature will result in the mix containing more THF, while increasing pressure will yield substantial amounts of BDO.

15

10

The following examples illustrate this invention in more detail.

Example 1: (laboratory scale reactor)

controlled in order not to exceed

20

350 g of g of a commercial Cu/Zn catalyst, T-4322 from Süd Chemie AG (64 % CuO, 23.5 % ZnO), were packed in a 1 inch (2.54 cm) internal diameter tubular reactor; the resulting height of the bed was 0.7m.

The reactor was provided with an external jacket electrically heated to assure isothermicity all over the reactor length and with an axial thermowell with a movable thermocouple which was used to control and regulate the temperature in the catalyst bed.

- The catalyst was activated in situ according to the following procedure:

 The temperature of the reactor was adjusted to 150 °C by means of the external jacket; a mixture of H₂/N₂ was passed over the catalyst. To avoid hot spots the activation was performed gradually: the hydrogen content was gradually increased from 0 up to 8 % vol and the temperature was risen to 250 °C. During the procedure the bed temperature was checked by means of the axial thermocouple. The increase of temperature and hydrogen content was
 - 20 25 °C as hot spot all along the catalytic bed. After reaching 250 °C the hydrogen content in the gas stream was gradually increased up to 100%. After 5 hours at 250 °C in hydrogen, the activation was stopped.
 - After catalyst activation a mixture of hydrogen and maleic anhydride was fed to the catalyst bed at ambient pressure. Hydrogenation conditions and performances are summarised in table 1.
- The maleic anhydride (MA) conversion was complete all over the tests. The yield of GBL was constantly over 95 % molar after the first 48 hours.

Table 1

T.O.S.	MA feed	H ₂ /MA	T	М	olar Y	ields ('	%)
(h)	(g/h)	(molar ratio)	(°C)	GBL	SA	THF	Others
48	14	141	228	95,6	0,5	0,4	3,5
140	11	175	229	95,3	0,0	0,6	4,1
150	12	165	228	97,7	0,0	0,3	2,3
177	18	109	237	97,6	0,1	0,2	2,1
209	8	236	233	96,2	0,0	0,5	3,3
272	12	158	259	95,1	0,7	0,1	4,1

GBL = γ -butyrolactone; SA = succinic anhydride;

THF = tetrahydrofuran; Others = mainly C_2 - C_4 alcohols and acids.

T.O.S. = Time on Stream

5

10

20

Example 2: (pilot reactor)

A tubular reactor with an internal diameter of 1 inch (2.54 cm) was packed with 1700 g of the same catalyst described in example 1; the resulting height of the bed was 3 m.

The reactor was provided with an external jacket with a circulation of diathermic oil and was equipped with an axial thermowell and a multipoint thermocouple. The catalyst was in-situ activated following the same procedure described in example 1.

15 After catalyst activation a mixture of hydrogen and maleic anhydride was fed to the catalyst bed at a pressure of 5 bar. Hydrogenation conditions and performances are summarised in table 2.

The MA conversion was complete all over the tests. The yield of GBL was always over 92 % molar and after the first 300 hours has constantly been over 95 % molar.

Table 2

T.O.S.	MA feed	H ₂ /MA	T	M	olar Y	ields (°	%)
(h)	(g/h)	(molar ratio)	(°C)	GBL	SA	THF	Others
28	118	136	234	92,6	1,2	4,0	2,2
158	126	126	235	93,0	2,0	3,0	1,8
272	137	102	239	94,1	0,5	3,2	2,1
372	157	102	245	96,5	0,1	1,3	2,2
539	170	94	248	95,5	0,1	2,3	1,7
645	208	70	270	94,9	0,6	1,8	3,3
692	219	67	270	95,5	0,3	1,3	3,0
765	222	61	264	96,6	0,4	1,0	1,8

GBL = γ -butyrolactone; SA = succinic anhydride;

THF = tetrahydrofuran; Others = mainly C_2 - C_4 alcohols and acids.

T.O.S. = Time on Stream

Claims:

1. A process for the production of gamma-butyrolactone comprising catalytically hydrogenating maleic anhydride and / or succinic anhydride in a vaporous mixture with a hydrogen containing gas in contact with a catalyst comprising a catalytically active oxide material and optionally an inert support, wherein the catalytically active oxide material comprises a mixed oxide of copper and zinc, said mixed oxides being composed of 50 to 90 wt% copper oxide and 10 to 50 wt% zinc oxide.

10

- A process according to claim 1 wherein said mixed oxides are composed of 60 to 80 wt% copper oxide and 20 to 40 wt% zinc oxide.
- 3. A process according to claim 1 or 2 wherein the molar ratio of hydrogen to anhydride in the vaporous mixture of the hydrogen containing gas and the maleic anhydride and / or succinic anhydride is between 10 to 1 and 300 to 1.
- 4. A process according to any one of claims 1 to 3 wherein the hydrogenation is conducted at a temperature of about 150 °C and 350 °C.
 - 5. A process according to any one of claims 1 to 4 wherein the hydrogenation is conducted at a pressure of about 1 to 100 bar.

INTERNATIONAL SEARCH REPORT

Ir ational Application No PCT/EP 99/00003

		PCI/EP	99/00003
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C07D315/00		
According to	o International Patent Classification (IPC) or to both national classific	ation and IPC	
_	SEARCHED		
Minimum do IPC 6	ocumentation searched (classification system followed by classificati ${\tt C07D}$	ion symbols)	
	tion searched other than minimum documentation to the extent that s		
	ata base consulted during the international search (name of data ba	se and, where practical, search terms	used)
	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rel	evant passages	Relevant to claim No.
Y	CHEMICAL ABSTRACTS, vol. 70, no. 1969 Columbus, Ohio, US; abstract no. 77355x, page 283; XP002103357 see abstract & JP 06 814463 A (JAPAN GAS-CHEMI 19 May 1968		1-5
X Furth	ner documents are listed in the continuation of box C.	X Patent family members are	isted in annex.
"A" docume conside "E" earlier difiling de "L" documer which is citation "O" docume other rr "P" documer later the	nt which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified) int referring to an oral disclosure, use, exhibition or neans nt published prior to the International filing date but	"T" later document published after the or priority date and not in conflicicited to understand the principle invention "X" document of particular relevance; cannot be considered novel or cannot be an inventive step when the comment of particular relevance; cannot be considered to involve document is combined with one ments, such combination being of in the art. "&" document member of the same particular relevance.	with the application but or theory underlying the the claimed invention annot be considered to be document is taken alone the claimed invention an inventive step when the or more other such docubivious to a person skilled atent family
	l May 1999	04/06/1999	
Name and m	nalling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Francois, J	

INTERNATIONAL SEARCH REPORT

Ir ational Application No
PCT/EP 99/00003

0.15		PC17EP 99700003		
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	T _F .		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Rele	evant to claim No.	
Y	CHEMICAL ABSTRACTS, vol. 119, no. 27, 1993 Columbus, Ohio, US; abstract no. 225800m, page 997; XP002103358 see abstract & PL 157 851 A (INSTYTUT CHEMII PRZEMYSLOWEJ) 31 July 1992		1-5	
Υ	US 5 122 495 A (PAUL D. TAYLOR) 16 June 1992 see column 1 – column 9		1-5	
Υ	US 5 698 713 A (ROSA LANCIA ET AL.) 16 December 1997 see column 1 - column 5		1-5	
Y	WO 91 16132 A (ISP INVESTMENTS) 31 October 1991 see claims		1-5	
,				
	·			

INTERNATIONAL SEARCH REPORT

information on patent family members

Ir ational Application No
PCT/EP 99/00003

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5122495	A 16-06-1992	NONE	
US 5698713	A 16-12-1997	IT 1273320 B AU 1809995 A DE 69503761 D DE 69503761 T EP 0746553 A JP 9508918 T AT 169013 T WO 9522539 A ES 2119400 T	08-07-1997 04-09-1995 03-09-1998 01-04-1999 11-12-1996 09-09-1997 15-08-1998 24-08-1995 01-10-1998
WO 9116132	A 31-10-1991	US 5347021 A AT 135938 T AU 642250 B AU 7657691 A CA 2080123 A DE 69118404 D DE 69118404 T DK 593458 T EP 0593458 A ES 2085992 T	13-09-1994 15-04-1996 14-10-1993 11-11-1991 17-10-1991 02-05-1996 19-09-1996 08-07-1996 27-04-1994 16-06-1994