CLAIMS

1. A luminance control method for an organic electroluminescence display, characterized by comprising:

a first step of calculating a luminance accumulation value for each screen on the basis of a video input signal;

a second step of controlling the amplitude of the video input signal on the basis of the luminance accumulation value calculated in the first step, and feeding to the organic electroluminescence display the video signal whose amplitude has been controlled.

2. The luminance control method for the organic electroluminescence display according to claim 1, characterized in that

in the second step, the amplitude of the video input signal is controlled so as to be reduced when the luminance accumulation value calculated in the first step is large.

3. The luminance control method for the organic electroluminescence display according to either one of claims 1 and 2, characterized in that

the video input signal is a digital video signal, and in the second step, a reference voltage supplied to a digital-to-analog converter for converting the digital video input signal into an analog video signal is controlled on the

basis of the luminance accumulation value calculated in the first step, to control the amplitude of the video input signal.

4. The luminance control method for the organic electroluminescence display according to claim 3, characterized in that

the reference voltage supplied to the digital-to-analog converter includes a black-side reference voltage for defining a light-emitting luminance corresponding to the black level of the input signal and a white-side reference voltage for defining a light-emitting luminance corresponding to the white level of the input signal, and

in the second step, the white-side reference voltage is controlled on the basis of the luminance accumulation value calculated in the first step.

5. A luminance control circuit for an organic electroluminescence display, characterized by comprising

a digital-to-analog converter for converting a digital video input signal into an analog video output signal on the basis of input/output characteristics defined by a given reference voltage, and feeding the analog video output signal to the organic electroluminescence display; and

a reference voltage control circuit for controlling the reference voltage supplied to the digital-to-analog converter on the basis of the digital video input signal, and in that

the reference voltage control circuit comprises a

luminance accumulation value calculation circuit for calculating a luminance accumulation value for each screen on the basis of the digital video input signal, and a voltage control circuit for controlling the reference voltage supplied to the digital-to-analog converter on the basis of the luminance accumulation value calculated by the luminance accumulation value calculation circuit.

6. The luminance control circuit for the organic electroluminescence display according to claim 5, characterized in that

the reference voltage supplied to the digital-to-analog converter includes a black-side reference voltage for defining a light-emitting luminance corresponding to the black level of the input signal and a white-side reference voltage for defining a light-emitting luminance corresponding to the white level of the input signal, and

the voltage control circuit controls the white-side reference voltage on the basis of the luminance accumulation value calculated by the luminance accumulation value calculation circuit.

7. The luminance control circuit for the organic electroluminescence display according to claim 6, characterized in that

the voltage control circuit controls the white-side reference voltage such that the light-emitting luminance

corresponding to the white level of the input signal is reduced when the luminance accumulation value calculated by the luminance accumulation value calculation circuit is large.

8. The luminance control circuit for the organic electroluminescence display according to either one of claims 6 and 7, characterized in that

the voltage control circuit comprises a gain calculation circuit for calculating a gain for controlling the white-side reference voltage on the basis of the luminance accumulation value calculated by the luminance accumulation value calculation circuit, and a control circuit for controlling the white-side reference voltage on the basis of the gain calculated by the gain calculation circuit.

9. The luminance control circuit for the organic electroluminescence display according to claim 8, characterized in that

the gain calculation circuit has such input/output characteristics that a gain to be outputted is set to a constant value when the inputted luminance accumulation value is not more than a predetermined value, and the larger the inputted luminance accumulation value is, the smaller the gain to be outputted is made when the inputted luminance accumulation value exceeds the predetermined value, and

the control circuit controls the white-side reference voltage such that the smaller the gain is, the lower the

light-emitting luminance corresponding to the white level of the input signal becomes.

10. The luminance control circuit for the organic electroluminescence display according to either one of claims 6 and 7, characterized in that

the voltage control circuit comprises a gain calculation circuit for calculating a first gain for controlling the white-side reference voltage on the basis of the luminance accumulation value calculated by the luminance accumulation value calculation circuit, a multiplication circuit for multiplying the first gain calculated by the gain calculation circuit by a second gain given from the exterior, and a control circuit for controlling the white-side reference voltage on the basis of a third gain which is the result of the multiplication by the multiplication circuit.

11. The luminance control circuit for the organic electroluminescence display according to claim 10, characterized in that

the gain calculation circuit has such input/output characteristics that a gain to be outputted is set to a constant value when the inputted luminance accumulation value is not more than a predetermined value, and the larger the inputted luminance accumulation value is, the smaller the gain to be outputted is made when the inputted luminance accumulation value exceeds the predetermined value, and

the control circuit controls the white-side reference voltage such that the smaller the third gain is, the lower the light-emitting luminance corresponding to the white level of the input signal becomes.

12. In a portable telephone set comprising a camera having an automatic exposure control function and an organic electroluminescence display,

a portable telephone set characterized by comprising:
judgment means for judging peripheral brightness on the
basis of exposure control information relating to the camera;
and

display luminance control means for controlling the display luminance of the organic electroluminescence display on the basis of the peripheral brightness judged by the judgment means.

13. The portable telephone set according to claim 12, characterized in that

the display luminance control means controls the display luminance of the organic electroluminescence display such that the display luminance of the organic electroluminescence display is reduced when the peripheral brightness judged by the judgment means is low, while being increased when the peripheral brightness judged by the judgment means is high.

14. The portable telephone set according to either one of claims 12 and 13, characterized in that

the exposure control information relating to the camera is one selected from exposure time information and AGC gain information.

15. In a portable telephone set comprising an organic electroluminescence display,

a portable telephone set characterized by comprising:

detection means for detecting the direction of a display
surface of the organic electroluminescence display; and

display luminance control means for controlling the display luminance of the organic electroluminescence display on the basis of the direction of the display surface of the organic electroluminescence display which is detected by the detection means.

16. The portable telephone set according to claim 15, characterized in that

the display luminance control means controls the display luminance of the organic electroluminescence display such that the display luminance of the organic electroluminescence display is increased when the display surface of the organic electroluminescence display is directed upward, while being reduced when the display surface of the organic electroluminescence display is directed downward.