

## **TABLE OF CONTENTS**

- Background
- 2 Approach
- 3 Principal Component Analysis (PCA) Results
- 4 Multivariate Cumulative Sum (m-CUSUM) Results
- Multivariate Exponentially Weighted Moving Average (m-EWMA) Results
- 6 Hotelling T<sup>2</sup> Results (Part 1)
- 7 Hotelling T<sup>2</sup> + m-EWMA RESULTS
- 8 Distribution Tests Results

## **BACKGROUND**

- Setting:
  - Manufacturing plant
    - ∘ 552 records
    - o p 209
    - ∘ n= 1
    - Actual meaning of data points is omitted
- Audience
  - Manufacturing Manager
- Objective:
  - Classify data into two sets
    - In-control
    - Out-of-control
  - Determine in control population parameters

## **APPROACH**

#### REFINE



- Refine the data to reduce the data set while retaining most of variation reflected in the original data set by using:
  - Principle component analysis

#### **DISCOVER**



- Finding best method to determine the in-control and out-of-control subset by using and combining the following techniques:
  - Multivariate cumulative sum (m-CUSUM)
  - Multivariate exponentially weighted moving average (m-EWMA)
  - Hotelling T<sup>2</sup>

#### **DEFINE**



- Determine the in-control dataset's parameters to describe the distribution by using:
  - Distribution tests

### DESCRIBE



- Summarize approach and findings into deliverables
  - Microsoft Word report saved as a PDF
  - Microsoft PowerPoint presentation saved as a PDF

# PRINCIPAL COMPONENT ANALYSIS (PCA) RESULTS

12000

- Vital Few effects to be monitored
- Eigenvalues ordered from largest to smallest
  - PVE = Proportion of Variance Explained
  - CVE = Cumulative Variance Explained
- 5 Principal Components Selected because it explains 81.79% of the data's variance

| E.V. | PVE   | CVE   |
|------|-------|-------|
| 1    | 59.52 | 59.52 |
| 2    | 13.35 | 72.87 |
| 3    | 5.23  | 78.1  |
| 4    | 2.00  | 80.1  |
| 5    | 1.69  | 81.79 |







## 4

# MULTIVARIATE CUMULATIVE SUM (M-CUSUM) RESULTS

• Iterations: 6

In-Control Points: 346



### 5

# MULTIVARIATE EXPONENTIALLY WEIGHTED MOVING AVERAGE (M-EWMA) RESULTS

• Iterations: 11

In-Control Points: 395



# **HOTELLING T<sup>2</sup> RESULTS (PART 1)**

### **HOTELLING T<sup>2</sup> ONLY**

• Iterations: 15

In-Control Points: 482

Out-of-Control Points: 2

### **HOTELLING T<sup>2</sup> + m-CUSUM**

• Iterations: 5

In-Control Points: 349





## $\overline{7}$

# **HOTELLING T<sup>2</sup> + m-EWMA RESULTS**

• Iterations: 9

In-Control Points: 491

∘ UCL = 14.71



## **DISTRIBUTION TESTS RESULTS**

- Minitab Individual Distribution Identification indicated that a Johnson Transformation best fit the data
- Transformation

$$x_{Transformed} = 1.11147 + 1.24842 * \ln(\frac{x + 0.156411}{19.5056 - x})$$

- Estimated Population Parameters on the Transformed Data  $\sim N(\hat{\mu}, \hat{\sigma})$ 
  - $\hat{\mu} = -0.0058$
  - $\hat{\sigma} = 0.9975$
- Probability plot to the right confirms that a normal distribution on the transformed data fits the data with only a few outlying points

