

粗糙集简介

作者 昔正化

目園

什么是粗結集

应用举例

参考文庫

粗糙集简介

作者 黄正华

武汉大学 数学与统计学院

2015年10月8日

目录

作者 黄正华

日求

什么是粗糙组

应用举例

参考又的

1 什么是粗糙集

2 粗糙集应用举例

③ 参考文献

粗糙集简介

• 几个符号:

有限论域, $U = \{x_1, x_2, \dots, x_n\}$.

R等价关系 (满足自反、对称和传递性).

 $[x]_R$ 等价类, $[x]_R = \{ y \in U \mid (x, y) \in R \}$.

U/R 等价关系 R 划分论域 U, 所得等价类的集合.

粗糙集简介

作者 黄正华

目录

什么是粗糙身 应用举例 • 几个符号:

$$U$$
 有限论域, $U = \{x_1, x_2, \dots, x_n\}$.

R 等价关系 (满足自反、对称和传递性).

$$[x]_R$$
 等价类, $[x]_R = \{ y \in U \mid (x, y) \in R \}.$

U/R 等价关系 R 划分论域 U, 所得等价类的集合.

• 问题:

Question

给定 $X \subseteq U$, 如何用等价类

$$[x_{i_1}]_R$$
, $[x_{i_2}]_R$, \cdots , $[x_{i_k}]_R$

描述表达 X?

阻極集间)

作者 黄正华

目录

什么是粗糙组

应用举

参考文i

- 给定论域 U;
- 用一个等价关系将 U 进行划分;
- 给定目标集合 X;
- X 的下近似 $\underline{R}X = \{x \in U \mid [x]_R \subseteq X\}.$
- X 的边界域.

1221212771

作者 黄正华

目录

什么是粗糙纟

应用举

参考文i

- 给定论域 U;
- 用一个等价关系将 U 进行划分;
- 给定目标集合 X;
- X 的下近似 $\underline{R}X = \{x \in U \mid [x]_R \subseteq X\}.$
- X 的边界域.

122121-331

作者 黄正华

目录

什么是粗糙组

应用举

参考文[

- 给定论域 U;
- 用一个等价关系将 U 进行划分;
- 给定目标集合 X;
- X 的下近似 $\underline{R}X = \{x \in U \mid [x]_R \subseteq X\}.$
- X 的边界域.

且他朱间刀

作者 黄正华

目录

什么是粗糙组

应用举

参考文[

- 给定论域 U;
- 用一个等价关系将 U 进行划分;
- 给定目标集合 X;
- X 的下近似 $\underline{R}X = \{x \in U \mid [x]_R \subseteq X\}.$
- X 的边界域.

且他未间几

作者 黄正华

目录

什么是粗糙组

应用举

参考又!

- 给定论域 U;
- 用一个等价关系将 U 进行划分;
- 给定目标集合 X;
- X 的下近似 $\underline{R}X = \{x \in U \mid [x]_R \subseteq X\}.$
- *X* 的边界域.

粗糙集的定义

粗糙集简介

作者 黄正华

目录

什么是粗糙

应用举

参考文i

给定 $X \subseteq U$, 要用 U/R 中的元素来描述、表达 X, 不一定能精确地进行. 但常常可以用关于 X 的一对下近似、上近似来界定 X, 这导致粗糙集概念的产生.

粗糙集的定义

粗糙集简介

给定 $X \subset U$, 要用 U/R 中的元素来描述、表达 X, 不一定能精 确地进行,但常常可以用关于 X 的一对下近似、上近似来界 定 X, 这导致粗糙集概念的产生.

定义 (PAWLAK(1982)^[2])

设 R 是论域 U 上的等价关系, 对集合 $X \subseteq U$, 偶对 $(RX, \overline{R}X)$ 称为 X 在近似空间 (U,R) 上的一个粗糙近似, 其中

$$\underline{R}X = \left\{ x \in U \mid [x]_R \subseteq X \right\},
\overline{R}X = \left\{ x \in U \mid [x]_R \cap X \neq \varnothing \right\}.$$
(1)

 $RX \setminus \overline{R}X$ 分别称为 X 的 R 下近似和 R 上近似.

一个决策表的例子

柤槌果间介

作者 黄正华

目录

什么是粗糙绿

× 1/~1

(a) 医疗信息决策表

(*) -/ * * * * * * * * * * * * * * * * * *					
论域	:	决策属性			
病人	头痛	肌肉痛	体温	流感	
e_1	是	是	正常	否	
e_2	是	是	高	是	
e_3	是	是	很高	是	
e_4	否	是	正常	否	
e_5	否	否	高	否	
e_6	否	是	很高	是	
e_7	否	否	高	是	
e_8	否	是	很高	否	

一个决策表的例子

粗糙集简介

作者 苗正生

目录

什么是粗糙第 应用**举例**

270

(a) 医疗信息决策表

(a) Z/1 HE//RX					
论域	条件属性			决策属性	
病人	头痛	肌肉痛	体温	流感	
e_1	是	是	正常	否	
e_2	是	是	高	是	
e_3	是	是	很高	是	
e_4	否	是	正常	否	
e_5	否	否	高	否	
e_6	否	是	很高	是	
e_7	否	否	高	是	
e_8	否	是	很高	否	

(b) 数字化表达的决策表

U		C		D
	a	b	c	d
1	1	1	1	0
2	1	1	2	1
3	1	1	3	1
4	0	1	1	0
5	0	0	2	0
6	0	1	3	1
7	0	0	2	1
8	0	1	3	0

粗糙集简介

决策表条件属性的区分矩阵

决策表的区分矩阵如下表所示 (由于对称性只给出了其下三角 部分).

	1	2	3	4	5	6	7	8
1	-							
2	c							
3	c	c						
4	a	a, c	a					
5	a, b,	c a, b	a, b, a	c = b, c				
6	a, c	a, c	a, c	c	b, c			
7	a, b,	c a, b	a, b, a	c = b, c		b, c		
8	a, c	a, c	a, c	c	b, c		b, c	

容易得到条件属性约简为 $\{a, c\}$.

粗糙集简介

条件属性的约简

通过属性约简, 决策表简化为如下的形式:

表: 约简的决策表

\overline{U}	(D	
	\overline{a}	c	d
1	1	1	0
2	1	2	1
3	1	3	1
4	0	1	0
5	0	2	0
6	0	3	1
7	0	2	1
8	0	3	0

由表知, $D/\{d\} = \{\{1,4,5,8\}, \{2,3,6,7\}\};$ $U/\{a,c\} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5,7\}, \{6,8\}\}.$

决策规则

粗糙集简介

作者 黄正华

目录

什么是粗糙

应用举例

参考文i

记 $D_0 = \{1, 4, 5, 8\}$, $D_1 = \{2, 3, 6, 7\}$, 则 $\underline{R}D_0 = \{1, 4\}$, $\underline{R}D_1 = \{2, 3\}$. 进而得到确定的决策规则:

$$r_1:(a, 1) \wedge (c, 1) \longmapsto (d, 0);$$
 (2)

$$r_2: (a, 0) \wedge (c, 1) \longmapsto (d, 0); \tag{3}$$

$$r_3:(a, 1) \wedge (c, 3) \longmapsto (d, 1);$$
 (4)

$$r_4:(a,1)\wedge(c,2)\longmapsto(d,1).$$
 (5)

决策规则

粗糙集简介

HAC

十么是粗糙组

应用举例

记 $D_0 = \{1, 4, 5, 8\}, D_1 = \{2, 3, 6, 7\}, 则 <u>R</u><math>D_0 = \{1, 4\},$ <u>R</u> $D_1 = \{2, 3\}$. 进而得到确定的决策规则:

$$r_1:(a, 1) \wedge (c, 1) \longmapsto (d, 0);$$
 (2)

$$r_2: (a, 0) \land (c, 1) \longmapsto (d, 0); \tag{3}$$

$$r_3: (a, 1) \wedge (c, 3) \longmapsto (d, 1); \tag{4}$$

$$r_4:(a, 1) \wedge (c, 2) \longmapsto (d, 1).$$
 (5)

这样就从无序庞杂的信息中得到为人们提供参考的决策规则:

$$(头痛, 是)$$
 且 $(体温, 正常) \mapsto (流感, 否);$ (6)

(头痛, 否) 且 (体温, 正常)
$$\longmapsto$$
 (流感, 否); (7)

参考文献

粗糙集简介

作者 黄正华

日录

什么是粗糙

应用举位

参写 又用

№ 张文修, 吴伟志, 梁吉业, 李德玉.

粗糙集理论与方法.

科学出版社, 北京, 2001.

Z. Pawlak.

Rough sets.

International Journal of Computer Information Science, 5:341–356, 1982.

W. Ziarko.

Variable precision rough set model.

Journal of Computer and System Sciences, 46:39–59, 1993.

J. D. Katzberg and W. Ziarko.

Variable precision extension of rough sets.

Fundamenta Informaticae, 27:155–168, 1996.

日录

市公定租便界

业用争例

参考文献

Thank you!

AUTHOR: HUANG Zheng-hua

Address: School of Mathematics & Statistics

Wuhan University

Wuhan, 430072, China

EMAIL: huangzh@whu.edu.cn