Abstract:

In this project, you will:

- 1. Use the output of semantic segmentation neural networks to implement drivable space estimation in 3D.
- 2. Use the output of semantic segmentation neural networks to implement lane estimation.
- 3. Use the output of semantic segmentation to filter errors in the output of 2D object detectors.
- 4. Use the filtered 2D object detection results to determine how far obstacles are from the self-driving car.

Repository Link:

https://github.com/Padmanabha123/Self_Driving_Using_carla/tree/main/Part%203%20-%20Visual%20perception%20for%20self%20driving%20car

Drivable Space Estimation Using Semantic Segmentation Output:

- 1. xy_from_depth: Estimating the x, y, and z coordinates of every pixel in the image
- 2. Ransac_plane_fit: Estimating The Ground Plane Using RANSAC

Freespace output:

Lane Estimation Using The Semantic Segmentation Output:

- 1. Estimate_lane_lines : Estimating Lane Boundary Proposals
- 2. Merge_lane_lines : Merging and Filtering Lane Lines

Lane detection output:

<u>Computing Minimum Distance To Impact Using The Output of 2D Object Detection:</u>

- 1. Filter_detections_by_segmentation : Filtering Out Unreliable Detections
- 2. Find_min_distance_to_detection : Estimating Minimum Distance To Impact

Bounding box and distance output:

