

Adjustments and Regularization

Adjustments and Regularization

- Now that there are multiple features on a regression, the following may occur:
 - Each feature is on a different scale
 - Feature 1 ranges from 1 to 5 (# beds)
 - •Feature 2 ranges from 500 to 8,000 (Square foot)
 - •This doesn't mean that square footage is a better predictor (more important when predicting the output) compared to the # of bedrooms

Adjustments

- •There are two main tools to solve the scale problem:
 - Feature Scaling
 - Feature Mean Normalization

- Why is it even needed?
 It is not, but it usually helps to converge faster
- Linear Regression cost function will always have a "bowl" shape
- Every time we do an iteration using gradient descent we get closer to the center of the "bowl"

- •What happens with that bowl when feature values are very different range wise?
 - It will get squashed/stretched
 - A theta will probably have a big weight and the other one will be really small
 - That may affect the learning

Feature range: [-1,1]

α: 0.2

$$h_{\theta}(x) = y = \theta_0 + \theta_1 x$$

But it still converges... Let is just iterate more times

Feature range: [-5,5]

α: 0.2

 $h_{\theta}(x) = y = \theta_0 + \theta_1 x$

- Not the case always
- That gradient descent is not going downwards
- •Will tend to infinite values for θ s

Feature range: [-5.3,5.3]

$$h_{\theta}(x) = y = \theta_0 + \theta_1 x$$

Adjustments

•Goal:

 \square Have the values of every x (features) in one of the following ranges:

$$-1 \le x \le 1$$
$$-0.5 \le x \le 0.5$$
$$0 \le x \le 1$$

Min-Max Scaling

- Compute the range of values (maximum minimum)
- Divide each value by the range and subtract the minimum

$$x = \frac{x - \min_{x}}{\max_{x} - \min_{x}}$$

•What is the range of the output?

$$0 \le x \le 1$$

•This is applied to each feature independently!

Min-Max Scaling

Data	800	1000	830	910	980	1510	990	890	820		
		x - x	$-min_{i}$	x	x - 80	0 _ 2	x - 800				
		$x - \overline{ma}$	$\overline{x_{x}-m}$	$\overline{in_x} - \overline{1}$	510 – 8	$\frac{1}{800} = -$	710	•			

Data	800	1000	830	910	980	1510	990	890	820
Min-Max	0	0.28	0.04	0.15	0.25	1	0.27	0.13	0.03

•What if we remove the value max value of the feature from the dataset?

Data	800	1000	830	910	980	X	990	890	820
Min-Max	0	1	0.15	0.55	0.9	X	0.95	0.45	0.1

Feature Mean Normalization

- Features are not normalized.
 - Mean is not 0
 - •A house's square footage is 500 to 8,500
 - •Mean = 4,500
 - Why normalize?
 - •Normalizing allows θ_0 to be the predicted output (y) when all predictor values (x_1 , x_2 , x_3 etc.) are set to their means instead of 0
- Compute the mean of a feature
- Compute the range of values (maximum minimum)

Feature Mean Normalization

- Compute the mean of a feature
 - Sum all values per features
 - Divide by the number of samples
- Compute the range of values (maximum minimum)
- Subtract the mean from each value

$$x = \frac{x - \mu}{max_x - min_x}$$

• What is the range of the output?

$$-1 \le x \le 1$$

Feature Mean Normalization

$u = \frac{1}{N} \sum_{i}^{m} r^{(i)} = \frac{800 + 1000 + 830 + 910 + 980 + 1210 + 990 + 890 + 820}{1000 + 1000 + 830 + 910 + 980 + 1210 + 990 + 890 + 820} \approx 936.66$	Data	800	1000	830	910	980	1210	990	890	820
$1\sum_{i}^{m} 800 + 1000 + 830 + 910 + 980 + 1210 + 990 + 890 + 820$										
		$u = \frac{1}{2} \sum_{i=1}^{m} x^{(i)}$	800 +	1000 + 83	30 + 910 -	+ 980 + 12	210 + 990	+890 + 8	$\frac{320}{}$ ≈ 936	

$$x = \frac{x - \mu}{max_x - min_x} = \frac{x - 936.66}{1210 - 800} = \frac{x - 936.66}{410}$$

Data	800	1000	830	910	980	1210	990	890	820
FMN	-0.33	0.15	-0.26	-0.07	0.11	0.67	0.13	-0.11	-0.28

Data	800	1000	830	910	980	X	990	890	820
FMN	-0.51	0.49	-0.36	0.04	0.39	X	0.44	-0.06	-0.41

Adjustment

- Are the ranges of Feature Scaling and Mean Normalization guaranteed?
 - Yes
 - Always?
 - Only for the training dataset...
- While training we only have access to some datapoints, not every possible datapoint
 - •Future test data might be out of the training data range

Adjustment Implementation

- •When should we apply this scaling on the implementation?
 - Everytime data is passed?
 - •Isn't this wasteful?
 - Once for the training dataset?
 - •What about the test dataset?
- Considerations
 - What data do we need to apply normalization?
 - Min and Max (Range)
 - Average (for FMN)
 - Should we know about ALL datapoints beforehand?

Recall on Underfitting

Underfitting

- Model has fewer parameters than needed/justified by the data
- Curve is much simpler than what it needs to be
- Example: Trying to fit a line into points generated from a quadratic equation
- Won't be able to predict future values accurately

Recall on Underfitting

- •Common underfitting scenarios?
 - Happens when model does not have enough information to predict the output
 - Complexity is not enough, need to increment the complexity
 - Data is completely unrelated (cannot find a correlation)

Recall on Overfitting

Overfitting

- Model has more parameters than needed/justified by the data
- The curve of a high order polynomial can twist and adjust in order to pass through more samples
 - Or at least pass closer to them
 - •J(θ) will be close to 0
- Example:
 - •Training points closer to y = ax + b
 - Model is trying to fit a quadratic or cubic curve
- Won't be able to predict future values accurately

Recall on Overfitting

- Common overfitting scenarios
 - •Few training samples, or too many features (or both)
 - Model is actually memorizing training data, not generalizing it
 - •Need to reduce the complexity or remove features
 - Regularization

- Goal: Avoid overfitting
- •Not enough samples:
 - Not an algorithm related issue, cannot do much about that
- Using too many features increases the possibility of overfitting
 - Learning algorithm might put large emphasis on unimportant features
 - Solution: Eliminate features!
 - Which ones?

Higher order polynomials contribute more to overfitting

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2 + \theta_3 x_3^4 + \theta_4 x_1^2 x_3^2$$

- "Twistier" curve
- •Assume $x_1 = 5$, $x_2 = 7$, $x_3 = 9$

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2 + \theta_3 x_3^4 + \theta_4 x_1^2 x_3^2$$

Becomes

$$y = \theta_0 + 5\theta_1 + 49\theta_2 + 6561\theta_3 + 2025\theta_4$$

- Fitted curve needs to be as simple as possible
- Still providing reliable predictions on unseen data

- •We want:
 - •Keep all the features
 - Reduce the effect of higher order polynomials
 - Don't necessarily remove them completely
 - $^{\scriptscriptstyle 0}$ If θ_3 and θ_4 were closer to 0, then the equation above would become less complex
 - Closer to $y = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2$
 - Simpler hypothesis

- •Regularization pushes the values of θ 's to be smaller
 - •θ's are adjusted by the negative of the cost function derivative
 - The higher the cost, the greater the adjustment
 - $^{\square}$ Modify the cost function, so that it takes θ 's values into account

New cost function

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

Usual Least Squares Cost function

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

- • λ = Regularization parameter
- •n: number of θ values
- •Cost increases as θ 's values increase
- Basically, penalize the complexity of the equation
- Equation is now a tradeoff: Fitting the data VS reducing the complexity

- •Regularization parameter λ
 - Controls the tradeoff between the 2 goals: Converging without overfitting
 - The greater the value of θ 's, the greater the cost

- •λ's value and its effect on regularization
 - \neg If $\lambda = 0$, then there is no regularization
 - Cost function would be the same as before
 - \neg If λ is too high, it could result in underfitting
 - Or even fail to converge at all
 - •Example: If all θ 's are very close to 0, then y would always be equal to θ_0

•y =
$$\theta_0$$
 + $\theta_1 x_1$ + $\theta_2 x_2^2$ + $\theta_3 x_2 x_3$ + $\theta_4 x_3^4$ + $\theta_5 x_1^2 x_3^2$ becomes

$$y = \theta_0$$

$$h_{\theta}(x) = y = \theta x$$

- If we change the cost function...
- We need to update the cost derivative

we
$$= \frac{\partial}{\partial_{\theta}} J(\theta)$$

$$= \frac{\partial}{\partial_{\theta}} \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i}) \cdot x^{i} + \lambda \theta_{j}$$

•Remember each θ value has a different cost derivative based on the power of the feature it is attached to

- Gradient descent with regularization
 - ${}^{\scriptscriptstyle \square}$ For every feature $heta_i$

$$\theta_j = \theta_j - \alpha \frac{1}{m} \left[\sum_{i=1}^m (h_\theta(x^i) - y^i) \cdot x_j^i + \lambda \theta_j \right]$$

- $\bullet \theta_0$
 - Common practice not to regularize it

$$\theta_0 = \theta_0 - \alpha \frac{1}{m} \left[\sum_{i=1}^{m} (h_{\theta}(x^i) - y^i) \right]$$

- Added steps in the algorithm:
 - Pick a value for the regularization term λ
 - Change the cost function and its derivative

- •If we are training a model with regularization and we get an underfitting model:
 - Decrease the regularization parameter λ
 - Still can add more features
 - Make the polynomial more complex

References

Notes by Antoine Abi Chacra, DigiPen Institute of Technology