This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 688421.

copycat: Testing Differential Treatment of New Transport Protocols in the Wild

Korian Edeline*, Mirja Kühlewind‡, Brian Trammell‡, Benoit Donnet*

- * Université de Liège, Montefiore Institute
- ‡ ETH Zurich, Networked Systems Group

measurement and architecture for a middleboxed internet

Overview

- Testing new extensions/protocols:
 - Simulator
 - Controlled environment
 - In the wild (req. patching endpoints)
 - "stateless" testing

Encapsulation

Reference **Experimental TCP** non-UDP UDP Example use IΡ cases: IΡ UDP IΡ • UDP: QUIC, PLUS Extra Header TCP **Custom Header** Non-UDP: DCCP, Clear headers SCTP, any IΡ IΡ Data **TCP TCP** Tunneled headers Data Data

Architecture

Architecture

Features:

- Flow scheduling
- Network layer (IPv4, IPv6, IPv4 vs IPv6)
- Linux,
 FREEBSD,
 NetBSD,
 PlanetLab

Use Case: UDP for Internet Transport Evolution

Measurement Setup:

- UDP with no extra header
- 93 PlanetLab nodes (IPv4), 6 Digital Ocean nodes (IPv6)
- 53, 443, 8008, 12345, 33435, 34567, 54321
- Flow sizes: 1 TCP IW, 3, 30, 300, 1500
- 1.6M IPv4, 32K IPv6 flows

UDP for Internet Transport Evolution: Blocking

- +1: all UDP succeeded, all TCP failed.
- -1: all UDP failed, all TCP succeeded.

UDP for Internet Transport Evolution: Blocking

- +1: all UDP succeeded, all TCP failed
- -1: all UDP failed, all TCP succeeded
- Access-Network
 linked
 impairments

UDP for Internet Transport Evolution: Throughput

$$throughput_bias = \frac{throughput_udp}{min(throughput_tcp}, throughput_udp) *100$$

UDP for Internet Transport Evolution: Throughput

 Consistent with connectivity
 bias

UDP for Internet Transport Evolution: Initial Latency

$$RTT_bias = \frac{RTT_udp^{-}RTT_tcp}{min(RTT_tcp^{-},RTT_udp^{-})} * 100$$

UDP for Internet Transport Evolution: Loss

 No substantial differences

UDP for Internet Transport Evolution: Summary

Dataset	Throughput (kB/s)				Latency (ms)				Connectivity		
	< 200		> 200		< 50		> 50		# Probes		No UDP Connectivity
	# flows	median	# flows	median	# flows	median	# flows	median	total	failed	% of probes
PlanetLab	740,721	0.05	34,896	0.16	745,947	0.00	29,370	-1.65	30,778	825	2.66%
DO v4	12,563	0.03	3,637	-0.37	9,381	-0.02	6,819	-0.44	135	0	0.00%
DO v6	15,459	0.07	224	-0.16	15,656	0.00	27	3.63	135	0	0.00%

Table 1: Raw number of bias measurements (throughput and initial latency) per sub dataset ("DO" stands for Digital Ocean). The 50ms cut-off roughly corresponds to inter-continental versus intra-continental latency. Global overview of UDP blocking is also provided.

- 2.66% UDP blocking, access-network based. In those cases, a UDP-based protocol would need a fallback mechanism.
- Initial latency and throughput biases are small and access-network based.

Lessons Learned

- UDP is a viable common basis for new transport protocols, but only if an alternative exists
- The vast majority of UDP impairments are accessnetwork linked, subtle impairment is rare.

More

- copycat
 - https://github.com/mami-project/copycat

- Using UDP for Internet Transport Evolution:
 - https://arxiv.org/abs/1612.07816

