

Graph Neural Networks: introduction

Piotr Gaiński

Jagiellonian University

Table of Content

- 1. What are graphs?
- 2. How to embed a graph?
- 3. Message Passing Neural Networks.
- 4. Transformers as Graph Neural Networks.
- 5. Expressivity of Message Passing.
- 6. *Symmetries: Equivariant Deep Learning.
- 7. *Worth reading.

What are graphs?

Definition of a graph

$$G=(V,E)$$

$$V = \{v_i : i \in \{1, 2, ..., N\}\}$$

$$E \subseteq \{(v_i, v_j) : v_i, v_j \in V\}$$

Many Types of Graphs

Image credit: Medium

Image credit: Science

Image credit: Lumen Learning

Many Types of Graphs

NH₂

Image credit: ResearchGate

Image credit: MDPI

Image credit: Wikipedia

Code Graphs

Molecules

3D Shapes

Graphs are complex!

How to embed a graph?

Embedding Space

Embedding Space

Node Encodings

Node Encodings

Graph Neural Network

How shouldn't GNN look like?

How should GNN look like?

- 1. GNN should be permutation-equivariant.
- 2. GNN should deal with the graph structure given by edges.

Message Passing Neural Networks

General:

$$m_{ji} = \psi(x_j, x_i)$$

$$m_{ji} = Wx_j$$

General:

$$m_{ji} = \psi(x_j, x_i)$$

$$m_i = \prod_{j \in N(i)} m_{ji}$$

$$m_{ji} = Wx_j$$

$$m_i = \sum_{j \in N(i)} m_{ji}$$

General:

$$m_{ji} = \psi(x_j, x_i)$$

$$m_i = \prod_{j \in N(i)} m_{ji}$$

$$x_i' = \rho(x_i, m_i)$$

$$m_{ji} = Wx_j$$

$$m_i = \sum_{j \in N(i)} m_{ji}$$

$$x_i' = W_1 x_i + W_2 m_i$$

General:

$$m_{ji} = \psi(x_j, x_i)$$

$$m_i = \prod_{j \in N(i)} m_{ji}$$

$$x_i' = \rho(x_i, m_i)$$

$$x_i' = \rho(x_i, \square_{j \in N(i)} \psi(x_j, x_i))$$

$$m_{ji} = Wx_j$$

$$m_i = \sum_{j \in N(i)} m_{ji}$$

$$x_i' = W_1 x_i + W_2 m_i$$

$$x'_i = \rho(x_i, \Box_{j \in N(i)} \psi(x_j, x_i))$$
 $x'_i = W_1 x_i + W_2 \sum_{j \in N(i)} W_3 x_j$

Information Propagation

$$x_i^{t+1} = \rho(x_i^t, \square_{j \in N(i)} \psi(x_j^t, x_i^t))$$

group of machine Glearning research

- 1. MPNN is permutation-equivariant.
- 2. MPNN deals with the graph structure given by edges.

group of machine Glearning research

Examples

$$\mathbf{x}_i' = h_{\mathbf{\Theta}} \left((1 + \epsilon) \cdot \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \mathbf{x}_j
ight)$$

GCN:

$$\mathbf{x}_i' = \mathbf{\Theta}^ op \sum_{j \in \mathcal{N}(i) \cup \{i\}} rac{e_{j,i}}{\sqrt{\hat{d}_j \hat{d}_i}} \mathbf{x}_j$$

GraphSAGE:

$$\mathbf{x}_i' = \mathbf{W}_1 \mathbf{x}_i + \mathbf{W}_2 \cdot \mathrm{mean}_{j \in \mathcal{N}(i)} \mathbf{x}_j$$

GAT:

$$\mathbf{x}_i' = lpha_{i,i} \mathbf{\Theta}_s \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} lpha_{i,j} \mathbf{\Theta}_t \mathbf{x}_j,$$

What are the issues?

Long-range dependencies

Oversquashing

Oversmoothing

Layer 1

Expressivity

Transformers as GNNs

group of machine Glearning research

- 1. Transformer is permutation-equivariant.
- 2. Transformer cannot deal with the graph structure given by edges by default :<

- 1. It can be done with structural/positional encodings (e.g. Random Walk).
- 2. Or it can be than with MPNN! (GraphGPS)

Issues

Transformers deal with long-range dependencies and oversquashing.

Expressivity of Message Passing

Can MPNN distinguish all graphs?

MPNN cannot distinguish all graphs!

The most powerful MPNN

- Let us assume that all nodes in a graph have the same initial encodings.
- Let us denote node embeddings as colors. Different color -> different embedding.
- MPNN can only return different colors for nodes with different neighborhood.
- Our coloring MPNN always returns different color for nodes with different neighbors.

WL test

- Our coloring MPNN works very similar to Weisfeiler-Lehman graph isomorphism test.
- No MPNN is more powerful than WL test.

k-WL test

- We can easily generalize the WL test and obtain k-WL test. (k+1)-WL test is strictly more powerful than k-WL test (for k>1).
- There is k-GNN model which mimics the k-WL test and is O(n^k).
- There is an IGN model as powerful as 3-WL and O(n^2).
- But we can escape the k-WL classification...

Beyond k-WL classifiation

Examples of non-isomorphic graphs that cannot be distinguished by 1-WL but can be distinguished by 3-WL due to its capability of counting triangles.

Beyond k-WL classifiation

We can simply count triangles and enrich the node encodings!

Symmetries: Equivariant Deep Learning

Permutation Equivariance

Permutation Equivariance

Equivariance

- f G-equivariant function
- g operation from group G defined in input space
- g' operation from group G' defined in embedding space corresponding to G

Rotation Equivariance

Deep Equivariant Learning

- Some node-level prediction tasks requires equivariance with respect to e.g. rotations.
- Equivariance can be used to incorporate invariance.
- Deep Equivariant Learning is a fast growing field. It definitely requires its own course.

GNNs are great!

Recommended course

Machine Learning in Drug Discovery

by Sabina Smusz and Tomasz Danel

Inspirations

LoGG reading group: vt channel

Geometric Deep Learning: The Erlangen Programme of ML: video

Group Equivariant Deep Learning: yt series

Machine Learning in Drug Discovery: UJ lectures and <u>labs</u>

Machine Learning with Graphs course from Stanford: webpage

Worth reading

- MPNNs:
 - GAT: <u>Graph Attention Networks</u>
 - GraphSAGE: <u>Inductive Representation Learning on Large Graphs</u>
 - GIN: <u>How Powerful are Graph Neural Networks?</u>
- Transformers:
 - MAT: <u>Molecule Attention Transformer</u> (GMUM)
 - GraphGPS: Recipe for a General, Powerful, Scalable Graph Transformer
 - SAN: <u>Rethinking Graph Transformers with Spectral Attention</u>
- k-WL GNNs:
 - k-GNN: Weisfeiler and Leman go neural: Higher-order graph neural networks
 - IGN: <u>Convergence of Invariant Graph Networks</u>

Worth reading

- Geometric GNNs:
 - SGCN: <u>Spatial Graph Convolutional Networks</u> (GMUM)
 - Geometric Transformer: <u>Geometric Transformer for End-to-End Molecule Properties</u>
 <u>Prediction</u>
- Equivariant GNNs:
 - EGNN: <u>E(n) Equivariant Graph Neural Networks</u>
 - SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
- Symmetry-breaking GNNs:
 - ChIRo: <u>Learning 3D Representations of Molecular Chirality with Invariance to Bond</u> <u>Rotations</u>
 - ChiENN: <u>Embracing Molecular Chirality with Graph Neural Networks</u> (GMUM)
- Random:
 - Understanding convolution on graphs via energies

Thanks for your attention!