EE288 – Final Project 10 bit – 1.5 bit/stage Pipeline ADC

(using 45nm CMOS Technology)

Muhammad Aldacher Enrique Hernandez

Overview

- 1) Project Target
- 2) Circuits from HW6
 - Comparator
 - Sub-ADC Logic
 - Switches
- 3) OpAmp Design for the MDAC
 - Circuit
 - AC responses
- 4) Whole System simulations
 - Normal Mode
 - 2x Gain Mode
- 5) Corner Simulations
- 6) VerilogA Blocks

(1) Project Target

Target

```
Typical corner (TT, 1.8V, 27C)
Vin = 0.8Vpp (Full scale signal)
fin = (cycles/N) * fs where cycles=7 and N=64
Fs = 50 MSPS
Real switches & Real opamp
ideal_clock, ideal_bias, and ideal voltages
Target: 10-bit ENOB at 2x gain mode with Vin=0.8Vpp
```

```
Worst case ENOB > 7-bit for 2x gain mode, Vin=0.8Vpp
TT, 1.8V, 0C, 27C, 70C
TT, 27C, 1.7V, 1.8V, 1.9V
27C, 1.8V, TT, FF, SS
SS, 1.7V, 70C
```

(2) Circuits from HW6

A- Comparator

Size of the NMOS & PMOS of the TGs here (m) = 3

PreAmp

Device	Size (in terms of fingers, m)	
M1, M2	5	
M3, M4, M5, M6	1	
Mc	2	
Mcx	1	
Ideal Current Source	8.8 uA	

Regenerative Latch

RS Latch

Overdrive test Waveforms

B- Switches

Transmission Gate

Device	Size (in terms of fingers, m)
Mn1	7
Mp2	7

Bootstrap Switch

Device	Size (in terms of fingers, m)
MnSW	30
Mn1	20
Mp2	1
Mn3,Mn5 Mp4,Mp6	1
Mn7,Mn8	28

C- Sub ADC Logic

Logic Circuits used

NAND Gate Circuit

Inverter Circuit

(3) OpAmp Design

Target

 For the Gain Error < ¼ LSB (Gain Requirement):

Resolution	Full Scale	Beta	Gain (dB)	Gain (dB)
N	V _{FS} (Volt)	β	$2 \cdot 2^{N} (N) / (\beta \cdot V_{FS})$	20log(x)
10	8.0	1	5120	74
10	8.0	0.5	10240	80
11	0.8	1	10240	80
11	8.0	0.5	20480	86

 For the Settling Error < ½ LSB (Unity BW Requirement):

Resolution	Full Scale	Beta	Sampling Rate	UGB
N	V _{FS} (Volt)	β	fs	fu
10	0.8	1	5.00E+07	1.25E+08
10	8.0	0.5	5.00E+07	2.50E+08
11	0.8	1	5.00E+07	1.36E+08
11	0.8	0.5	5.00E+07	2.72E+08

NMOS-input, Single-Ended Output, Folded-Cascode OpAmp

PMOS-input, Single-Ended Output, Folded-Cascode OpAmp

Testbench for the Single-Ended-Output OpAmps

AC Response (NMOS)

AC Response (PMOS)

Fully-Differential Gain-Boosted Telescopic OpAmp

Testbench for the Boosted-Gain OpAmp

AC Response

(4) System Simulations

(Under Typical Conditions: TT, 27°, 1.8VDD, Signal Amp = 0.4v)

Testbench for the 1 stage 1.5bit/stage ADC

1- Normal Mode

1- Normal Mode

If Vin < Vrefm → Vout = 2*Vin + Vfs

1- Normal Mode

2) <u>If Vrefm < Vin < Vrefp</u> → Vout = 2*Vin

1- Normal Mode

If Vin > Vrefp → Vout = 2*Vin - Vfs

2- 2x Gain Mode

2- 2x Gain Mode

2- 2x Gain Mode (Sig Amp = 0.4v)

2- 2x Gain Mode (Sig Amp = 0.2v)

2- 2x Gain Mode (Sig Amp = 0.1v)

(5) Corner Simulations

(For 2x Gain Mode)

Simulation Results TT, 1.8VDD, 27°

Simulation Results TT, 1.8VDD, 0°

Simulation Results TT, 1.8VDD, 70°

Simulation Results TT, 1.7VDD, 27°

Simulation Results TT, 1.9VDD, 27°

SS, 1.8VDD, 27°

FF, 1.8VDD, 27°

Simulation Results SS, 1.7VDD, 70°

Summary

• OpAmps' AC responses:

AC Responses									
NMOS single-ended			PMOS single-ended			Boosted-Gain OpAmp			
Gain	PM	fu	Gain	PM	fu	Gain	PM	fu	
22.2 dB	86.45°	73.9 MHz	25.3 dB	87.87°	60.8 MHz	90.9 dB	49.2°	372.2 MHz	

Power Consumption & FOM:

Circuit	Power consumtion
Comparators	2 * 439.74 uW
Sub-ADC Logic	3.569 uW
Bootstrap Switches	10 * 6.806 uW
OpAmp	1051.74 uW
Total	2.0124 mW
$FOM = \frac{10 x P}{2^{ENOB} x f_S}$	0.5179 pJ

Summary

Corners & Different input amplitudes:

Cond	itions	ENOB	SNR	
TT, 1.8VDD, 27°	, SigAmp = 0.4v	9.602 bits	59.567 dB	
TT 1.8VDD	Sig Amp = 0.2v	8.886 bits	55.258 dB	
27°	Sig Amp = 0.1v	8.136 bits	50.742 dB	
TT 1.8VDD	Temp = 0°	8.431 bits	52.520 dB	
SigAmp = 0.4v	Temp = 70°	7.941 bits	49.567 dB	
TT 27°	VDD = 1.7v	9.413 bits	58.427 dB	
SigAmp = $0.4v$	VDD = 1.9v	9.344 bits	58.013 dB	
1.8VDD 27°	SS	7.340 bits	45.951 dB	
SigAmp = $0.4v$	FF	7.013 bits	43.982 dB	
SS, 1.7VDD, 70°	, SigAmp = 0.4v	7.106 bits	44.538 dB	

Corners

Worst Case

(6) VerilogA Blocks

(Extra Points)

VerilogA: 1 stage 1.5 bit/stage ADC

```
// VerilogA for EE288, One_stage_pipleline_ADC, veriloga
'include "constants.vams"
'include "disciplines.vams"
module One_stage_pipleline_ADC(vdd,vss, vin,vrefm,vrefp,Vout,ph1,ph2,D0,D1,vcm);
input vrefm, vrefp, ph1, ph2, vcm, vin;
inout vss,vdd;
output vout, D0, D1;
electrical vin,out,vss,vdd,vrefm,vrefp,ph1,ph2,b0,b1,vcm;
parameter real clk_vth = 0.5, delay = 0, ttime = 1p;
real v,c1,c2;
analog begin
 @(cross(V(ph1) - clk_vth,+1)) begin
    if((V(vin) > V(vrefp)))
      begin
      c1 = 2;
      c2 = 2;
       v= 0;
       end
     else
       if((V(vin) > V(vrefm))) begin
         c2 = 0;
        v= 0:
         end
       else begin
         c1 = 0;
         c2 = 0;
        v= 0;
      end
    end
```

```
@(cross(V(ph2) - clk_vth,+1)) begin

if(c2 >=V(vdd)) begin

v = (V(vin)-0.9)*2 -1;
end
else begin
if(c1 >=V(vdd)) begin

v = (V(vin)- 0.9)*2;
end
else begin
v = (V(vin)- 0.9)*2 + 1;
end
end

end

V(vout) <+ transition(v,delay,ttime);
V(D0) <+ transition(c1,delay,ttime);
v(D1) <+ transition(c2,delay,ttime);
end
end
end
```

Testbench

1- Normal Mode

1) If $Vin < Vrefm \rightarrow Vout = 2*Vin + Vfs$

1- Normal Mode

2) <u>If Vrefm < Vin < Vrefp</u> → Vout = 2*Vin

1- Normal Mode

2-2x Gain Mode

VerilogA: Half Adder

```
// VerilogA for EE288, half_adder, veriloga
                                                        analog begin
                                                         if( (V(A)>=0.5) && (V(B)>=0.5) ) begin
'include "constants.vams"
                                                           carri = 1;
'include "disciplines.vams"
                                                            end
                                                          else begin
module half_adder(A,B,Cout,VDD,VSS,S);
                                                            carri = 0;
                                                            end
input A, B;
                                                         if( (((V(A) \ge 0.5) && (V(B) \ge 0.5))|| ((V(A) < 0.5) && (V(B) < 0.5)))) begin
                                                            sum =0;
output Cout,S;
                                                            end
                                                          else begin
inout VDD, VSS;
                                                            sum = 1;
parameter real delay = 0, ttime = 1p;
                                                            end
real carri, sum;
                                                        V(Cout) <+ transition(carri,delay,ttime);
                                                        V(S) <+ transition(sum,delay,ttime);
electrical A, B, Cout, S, VSS, VDD;
                                                        enD
                                                        endmodule
```

Test Bench:

VerilogA: Full Adder

```
// VerilogA for EE288, Full_Adder, veriloga
                                                                                if( (V(A)>=0.9) && (V(B)>=0.9) ) begin
'include "constants.vams"
                                                                                   AND1 = 1;
'include "disciplines.vams"
                                                                                   end
module Full_Adder(A,B,Cout,VDD,VSS,S,Cin );
                                                                                 else begin
input A, B,Cin;
                                                                                   AND1 = 0;
output Cout,S;
                                                                                   end
inout VDD, VSS;
                                                                                  if( (xor1>=0.9) && (V(Cin)>=0.9) ) begin
parameter real delay = 0, ttime = 1p;
                                                                                   AND2 = 1;
real carri, sum,xor1,AND1,AND2;
                                                                                   end
electrical A, B, Cout, S, VSS, VDD, Cin;
                                                                                 else begin
analog begin
                                                                                   AND2 = 0;
   if( ((V(A)>=0.9 && (V(B)>=0.9))||(V(A)<=0.5 && (V(B)<=0.5)))) begin
                                                                                   end
    xor1=1;
                                                                                 if((AND1 \ge 0.9) | |(AND2 \ge 0.9)) begin
    end
                                                                                   carri= 1.0;
  else begin
                                                                                   end
    xor1 = 0:
                                                                                 else begin
    end
                                                                                   carri = 0.0;
  if( ((V(Cin)>=0.9 && (xor1>=0.9))||(V(Cin)<=0.5 && (xor1<=0.5)))) begin
                                                                                   end
    sum=1;
                                                                               V(Cout) <+ transition(carri,delay,ttime);
    end
                                                                               V(S) <+ transition(sum,delay,ttime);
  else begin
                                                                               end
    sum = 0;
                                                                               endmodule
    end
```

Test Bench

Verilog A: D_Flip_Flop

```
// VerilogA for EE288, D_Flip_Flop, veriloga
`include "constants.vams"
'include "disciplines.vams"
module D_Flip_Flop(D,CLK,Q);
input D, CLK;
output Q;
parameter real clk vth = 0.5, delay = 0, ttime = 1p;
real out;
electrical D, CLK, Q;
analog begin
@(cross(V(CLK) - clk_vth,+1)) begin
  out = V(D);
  end
V(Q) <+ transition(out,delay,ttime);
end
endmodule
```

Test Bench

Verilog A: Two Bit Flash ADC. veriloga Two Bit Flash ADC. veriloga

```
// VerilogA for ADC_Comparator, Two_Bit_Flash_ADC, veriloga
                                                                                     c3 = 0;
'include "constants.vams"
                                                                                     c2 = V(VDD);
                                                                                                                              else begin
'include "disciplines.vams"
                                                                                     c1 = V(VDD);
                                                                                                                                      if (c1 \ge V(VDD)) begin
module Two Bit Flash ADC(ph1, ph2, Vrefp, Vrefm, Vin, VDD, D0, D1);
                                                                                     d1 = 0;
                                                                                                                                         d1 = 0;
                                                                                     d0 = 0;
                                                                                                                                         d0 = V(VDD);
input ph1, ph2, Vrefp, Vrefm, Vin;
                                                                                                                                         end
                                                                                    if((V(Vin)) > (V(Vrefp)-V(Vrefm))/8) begin
                                                                                                                                       else begin
inout VDD;
                                                                                     c3 = 0;
                                                                                                                                         d1 = 0;
                                                                                     c2 = 0;
                                                                                                                                         d0 = 0;
output D0,D1;
                                                                                     c1 = V(VDD);
                                                                                                                                         end
                                                                                     d1 = 0;
                                                                                                                                    end
electrical ph1, ph2, Vrefp, Vrefm, Vin, VDD, D0, D1;
                                                                                     d0 = 0;
                                                                                                                                  end
                                                                                     end
                                                                                                                                end
parameter real clk th = 0.5, delay=0, ttime = 1p;
                                                                             else begin
                                                                                                                              V(D0) <+ transition(d0,delay,ttime);
                                                                                     c3 = 0;
                                                                                                                              V(D1) <+ transition(d1,delay,ttime);
real c1, c2, c3, d1, d0;
                                                                                     c2 = 0;
                                                                                                                              end
                                                                                     c1 = 0;
                                                                                                                              endmodule
analog begin
                                                                                     d1 = 0;
                                                                                     d0 = 0;
  @(cross(V(ph1) - clk_th,+1)) begin
                                                                                   end
                                                                                 end
    if ((V(Vin)) > (V(Vrefp)-V(Vrefm))/2) begin
                                                                               enD
        c2 = V(VDD);
                                                                            @(cross(V(ph2) - clk_th,+1)) begin
        c1 = V(VDD);
                                                                                 if(c3 >= V(VDD)) begin
        c3 = V(VDD);
                                                                                   d1 = V(VDD);
        d1 = 0;
                                                                                   d0 = V(VDD);
        d0 = 0;
                                                                                   end
       end
                                                                                 else begin
     else begin
                                                                                   if(c2 \ge V(VDD)) begin
                                                                                     d1 = V(VDD);
                                                                                     d0 = 0;
                                                                                     end
```

Test Bench

