Problems

First day — August 2, 1996

Problem 1. (10 points)

Let for j = 0, ..., n, $a_j = a_0 + jd$, where a_0, d are fixed real numbers. Put

$$A = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_n \\ a_1 & a_0 & a_1 & \cdots & a_{n-1} \\ a_2 & a_1 & a_0 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}.$$

Calculate det(A), where det(A) denotes the determinant of A.

Problem 2. (10 points)

Evaluate the definite integral

$$\int_{-\pi}^{\pi} \frac{\sin nx}{(1+2^x)\sin x} \, dx,$$

where n is a natural number.

Problem 3. (15 points) The linear operator A on the vector space V is called an involution if $A^2 = E$ where E is the identity operator on V. Let dim $V = n < \infty$.

- (i) Prove that for every involution A on V there exists a basis of V consisting of eigenvectors of A.
- (ii) Find the maximal number of distinct pairwise commuting involutions on V.

Problem 4. (15 points)

Let $a_1 = 1$, $a_n = \frac{1}{n} \sum_{k=1}^{n-1} a_k a_{n-k}$ for $n \ge 2$. Show that

- (i) $\limsup_{n\to\infty} |a_n|^{1/n} < 2^{-1/2}$,
- (ii) $\limsup_{n\to\infty} |a_n|^{1/n} \ge 2/3$.

Problem 5. (25 points)

(i) Let a, b be real numbers such that $b \leq 0$ and $1 + ax + bx^2 \geq 0$ for every x in [0, 1]. Prove that

$$\lim_{n \to \infty} n \int_0^1 (1 + ax + bx^2)^n dx = \begin{cases} -\frac{1}{a} & \text{if } a < 0, \\ +\infty & \text{if } a \ge 0. \end{cases}$$

(ii) Let $f:[0,1] \to [0,\infty)$ be a function with a continuous second derivative and let $f''(x) \le 0$ for every x in [0,1]. Suppose that $L = \lim_{n \to \infty} n \int_0^1 (f(x))^n dx$ exists and $0 < L < +\infty$. Prove that f' has a constant sign and $\min_{x \in [0,1]} |f'(x)| = L^{-1}$.

Problem 6. (25 points) Upper content of a subset E of the plane \mathbb{R}^2 is defined as

$$C(E) = \inf \left\{ \sum_{i=1}^{n} \operatorname{diam}(E_i) \right\}$$

where inf is taken over all finite families of sets $E_1, \ldots, E_n, n \in \mathbb{N}$, in \mathbb{R}^2 such that $E \subseteq \bigcup_{i=1}^n E_i$. Lower content of E is defined as

 $K(E) = \sup\{ \operatorname{length}(L) : L \text{ is a closed line segment onto which } E \text{ can be contracted} \}.$

Show that

- (a) C(L) = length(L) if L is a closed line segment;
- (b) $C(E) \ge K(E)$;
- (c) the equality in (b) needs not hold even if E is compact.

Hint. If $E = T \cup T'$ where T is the triangle with vertices (-2, 2), (2, 2) and (0, 4), and T' is its reflexion about the x-axis, then C(E) = 8 > K(E).

Remarks: All distances used in this problem are Euclidean. Diameter of a set E is $\operatorname{diam}(E) = \sup\{\operatorname{dist}(x,y) : x,y \in E\}$. Contraction of a set E to a set E is a mapping $f:E \to F$ such that $\operatorname{dist}(f(x),f(y)) \leq \operatorname{dist}(x,y)$ for all $x,y \in E$. A set E can be contracted onto a set E if there is a contraction E of E to E which is onto, i.e., such that E is defined as the union of the three segments joining its vertices, i.e., it does not contain the interior.