# 第一章 电路分析方法

1.4 节点分析法

# 节点分析法

- 节点分析法步骤
- 特殊情况处理



## 节点分析法步骤

- (设电路有n个节点)
- 以节点电压为独立变量
- 用节点电压表示支路电流
- 围绕(n-1)个独立节点列写KCL方程

• 方程整理求解

优势

## 惠斯通电桥

#### 元件约束:

电压源:  $V_s$ =常数

电阻元件: V=R\*I

#### 电路拓扑结构约束:

KCL

**KVL** 

$$\sum_{i=1}^{N} I_i = 0 \qquad \sum_{i=1}^{N} V_i = 0$$



- (电路有n=4个基本节点)
- 以节点电压为独立变量

$$V_1$$
  $V_2$   $V_3$ 

•  $V_4 = 0$ 



• 用节点电压表示支路电流

$$I_{1\to 4} = \frac{V_1 - V_s}{R_s} = -I_{4\to 1}$$

$$I_{1\to 2} = \frac{V_1 - V_2}{R_x} = -I_{2\to 1}$$

$$I_{1\to 3} = \frac{V_1 - V_3}{R_1} = -I_{3\to 1}$$



• 用节点电压表示支路电流

$$I_{2\to 3} = \frac{V_2 - V_3}{R_G} = -I_{3\to 2}$$

$$I_{3\to 4} = \frac{V_3 - V_4}{R_2} = \frac{V_3}{R_2} = -I_{4\to 3}$$

$$I_{2\to 4} = \frac{V_2 - V_4}{R_0} = \frac{V_2}{R_0} = -I_{4\to 2}$$



- 围绕(n-1)个独立节点列写KCL方程
- 节点①

$$I_{1\to 4} + I_{1\to 2} + I_{1\to 3} = 0$$

$$\rightarrow \left(\frac{1}{R_s} + \frac{1}{R_x} + \frac{1}{R_1}\right) V_1 - \frac{1}{R_x} V_2 - \frac{1}{R_1} V_3 = \frac{V_s}{R_s}$$





$$I_{1\to 3} = \frac{V_1 - V_3}{R_1} = -I_{3\to 1}$$

 $I_{1\to 4} = \frac{V_1 - V_s}{R_s} = -I_{4\to 1}$ 

- 围绕(n-1)个独立节点列写KCL方程
- 节点②

$$\begin{split} -I_{1\to 2} + I_{2\to 3} + I_{2\to 4} &= 0 \\ \to -\frac{1}{R_x} V_1 + \left(\frac{1}{R_x} + \frac{1}{R_G} + \frac{1}{R_0}\right) V_2 - \frac{1}{R_G} V_3 &= 0 \end{split}$$



- 围绕(n-1)个独立节点列写KCL方程
- 节点③

$$\begin{split} I_{1\to 3} + I_{2\to 3} - I_{3\to 4} &= 0 \\ \to -\frac{1}{R_1} V_1 - \frac{1}{R_G} V_2 + \left( \frac{1}{R_2} + \frac{1}{R_G} + \frac{1}{R_1} \right) V_3 &= 0 \end{split}$$



• 围绕(n-1)个独立节点列写KCL方程

$$\left(\frac{1}{R_s} + \frac{1}{R_x} + \frac{1}{R_1}\right)V_1 - \frac{1}{R_x}V_2 - \frac{1}{R_1}V_3 = \frac{V_s}{R_s}$$

$$-\frac{1}{R_x}V_1 + \left(\frac{1}{R_x} + \frac{1}{R_G} + \frac{1}{R_0}\right)V_2 - \frac{1}{R_G}V_3 = 0$$

$$-\frac{1}{R_1}V_1 - \frac{1}{R_G}V_2 + \left(\frac{1}{R_2} + \frac{1}{R_G} + \frac{1}{R_1}\right)V_3 = 0$$

- 方程整理&求解
  - 1.5介绍

$$\begin{bmatrix} \frac{1}{R_s} + \frac{1}{R_x} + \frac{1}{R_1} & -\frac{1}{R_x} & -\frac{1}{R_1} \\ -\frac{1}{R_x} & \frac{1}{R_x} + \frac{1}{R_G} + \frac{1}{R_0} & -\frac{1}{R_G} \\ -\frac{1}{R_1} & -\frac{1}{R_G} & \frac{1}{R_2} + \frac{1}{R_G} + \frac{1}{R_1} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} V_s / R_s \\ 0 \\ 0 \end{bmatrix}$$

#### 特性情况处理

- 存在电阻串联独立电压源支路
- 存在独立电流源支路
- 存在独立电压源支路
- 存在受控源支路

#### 电阻串联独立电压源支路处理

• 独立变量  $V_1$   $V_2$   $V_3$ 

$$I_1 = \frac{V_1 - V_5}{R_1}$$

$$V_5 = V_2 + V_{s1}$$

$$I_{1} = \frac{V_{1} - V_{2} - V_{s1}}{R_{1}}$$



# 独立电流源支路处理

• 独立变量  $V_1$   $V_2$   $V_3$ 

$$I_2 = -I_s$$



# 独立电压源支路处理

• 独立变量  $V_1$   $V_2$   $V_3$ 

增加变量/<sub>3</sub>,
 同时增加约束方程

$$V_2 = V_{s1}$$



## 受控源支路处理

- 压控电流源
- 独立变量  $V_1$   $V_2$   $V_3$

$$V_b = V_2 - V_3$$

$$\Rightarrow I_4 = -0.4(V_2 - V_3)$$



## 受控源支路处理

- 其它类型电流源:流控电压源
- 独立变量  $V_1$   $V_2$   $V_3$
- 增加变量/<sub>5</sub>,
   同时增加约束方程

$$I_a = \frac{V_s - V_1}{R_1}$$

$$\Rightarrow V_3 = 2 \frac{V_s - V_1}{R_1}$$



#### 除压控电流源的受控源:

增加一个流过受控源的电流变量,同时增加一个约束方程。

# 小结

- 节点分析法步骤
- 特殊情况处理