

(Program Curriculum)

Note: This curriculum is subject to change based on inputs from IIITB and Industry

COURSE	MODULE NAME	SESSION	SESSION NAME	
		UNDERSTANDING UPGRAD CODING CONSOLE	INTRODUCTION UNDERSTANDING PRIMARY ACTIONS UNDERSTANDING STATUSES & IMPORTANT POINTERS	
	INTRODUCTION TO PYTHON	DATA STRUCTURES IN PYTHON	INTRODUCTION GETTING STARTED - INSTALLATION INTRODUCTION TO JUPYTER NOTEBOOK THE BASICS LISTS TUPLES DICTIONARIES	
	FOR DATA ANALYSIS	CONTROL STRUCTURES & FUNCTIONS	SETS IF-ELIF-ELSE LOOPS & CONDITIONAL STATEMENTS COMPREHENSIONS FUNCTIONS EXCEPTION HANDLING MAP, FILTER & REDUCE	
		INTRODUCTION TO NUMPY	INTRODUCTION NUMPY BASICS CREATING NUMPY ARRAYS STRUCTURE AND CONTENT OF ARRAYS SUBSET, SLICE, INDEX AND ITERATE THROUGH ARRAYS MULTIDIMENSIONAL ARRAYS PYTHON LISTS VS NUMPY ARRAYS	
	PYTHON FOR DATA SCIENCE	OPERATIONS ON NUMPY ARRAYS	INTRODUCTION BASIC OPERATIONS OPERATIONS ON ARRAYS BASIC LINEAR ALGEBRA OPERATIONS	
		INTRODUCTION TO PANDAS	INTRODUCTION PANDAS BASICS INDEXING AND SELECTING DATA MERGE AND APPEND GROUPING AND SUMMARIZING DATAFRAMES LAMBDA FUNCTION & PIVOT TABLES	
		INTRODUCTION TO PANDAS	INTRODUCTION READING DELIMITED AND RELATIONAL DATABASES READING DATA FROM WEBSITES GETTING DATA FROM APIS READING DATA FROM PDF FILES CLEANING DATASETS	
		GETTING AND CLEANING DATA	INTRODUCTION READING DELIMITED AND RELATIONAL DATABASES READING DATA FROM WEBSITES GETTING DATA FROM APIS READING DATA FROM PDF FILES	
		INTRODUCTION TO PANDAS	CLEANING DATASETS INTRODUCTION READING DELIMITED AND RELATIONAL DATABASES READING DATA FROM WEBSITES	
		EIGENVALUES AND EIGENVECTORS	CALCULATING EIGENVALUES AND EIGENVECTORS EIGENDECOMPOSITION OF A MATRIX EIGENVECTORS: WHAT ARE THEY? DETERMINANTS	
	MATH FOR MACHINE LEARNING	LINEAR TRANSFORMATIONS AND MATRICES	INVERSE, RANK, COLUMN AND NULL SPACE LINEAR TRANSFORMATIONS MATRICES: THE BASICS MATRIX OPERATIONS SYSTEM OF LINEAR EQUATIONS CRITICAL POINTS, MAXIMA AND MINIMA	
CONTENT		MULTIVARIABLE CALCULUS	DIFFERENTIATION FUNCTIONS AND DERIVATIVES FUNCTIONS: PRIMER MULTIVARIABLE FUNCTIONS TAYLOR SERIES AND LINEARISATION (OPTIONAL) THE HESSIAN THE JACOBIAN	
PREPARATOR		VECTORS AND VECTOR SPACES	VECTOR-VALUED FUNCTIONS DOT PRODUCT - EXAMPLE APPLICATION INTRODUCTION TO LINEAR ALGEBRA SUMMARY VECTOR OPERATIONS - THE DOT PRODUCT VECTOR SPACES VECTORS: THE BASICS	
PRE	DATA VISUALISATION IN PYTHON	BASICS OF VISUALISATION	COMPONENTS OF A PLOT DATA VISUALISATION TOOLKIT FUNCTIONALITIES OF PLOTS SUB-PLOTS INTRODUCTION	
		PLOTTING CATEGORICAL AND TIME-SERIES DATA	PLOTTING AGGREGATE VALUES ACROSS CATEGORIES PLOTTING DISTRIBUTIONS ACROSS CATEGORIES BIVARIATE DISTRIBUTIONS - PLOTTING PAIRWISE RELATIONSHIPS VECTOR SPACES VECTORS: THE BASICS INTRODUCTION	
		PLOTTING DATA DISTRIBUTIONS	UNIVARIATE DISTRIBUTIONS UNIVARIATE DISTRIBUTIONS - RUG PLOTS	
	DATA ANALYSIS USING SQL	BASICS OF SQL	AN INTRODUCTION TO RDBMS AND SQL BASICS OF SQL DATA RETRIEVAL WITH SQL PATTERN MATCHING WITH WILDCARDS BASICS OF SORTING SESSION SUMMARY	
		ADVANCED SQL	ORDER BY CLAUSE AGGREGATE FUNCTIONS GROUP BY CLAUSE HAVING CLAUSE NESTED QUERIES INNER JOIN MULTI JOIN OUTER JOIN SUMMARY	
		DATABASE DESIGN	INTRODUCTION DEFINING DATA WAREHOUSE STRUCTURE OF DATA WAREHOUSE OLAP VS. OLTP STAR SCHEMA	
		UPDATING TABLE	HOW TO USE A STAR SCHEMA - A DEMONSTRATION DATA WAREHOUSE SCHEMA- INDUSTRY EXAMPLE INTRODUCTION ADDING AND DELETING COLUMNS CHANGING COLUMN NAME AND DATA TYPE CREATING TABLE FROM EXISTING TABLE CHANGING CONSTRAINTS (FOREIGN KEY) STRING MANIPULATION	
	ADVANCED SQL	WINDOW FUNCTIONS	DATE MANIPULATION INTRODUCTION INTRODUCTION TO WINDOWING FUNCTIONS FRAMES NAMED WINDOWS WINDOW FUNCTIONS' RESTRICTIONS	
		USER DEFINED FUNCTIONS AND STORED PROCEDURES	INTRODUCTION INTRODUCTION TO USER DEFINED FUNCTIONS INTRODUCTION TO STORED PROCEDURES STORED PROCEDURES (APPLICATION)	
		OLIEDY ODTIMISATION	INTRODUCTION OPTIMISATION IN SELECT CLAUSE	

OPTIMISATION IN WHERE CLAUSE

OPTIMISATION IN JOINS

OPTIMISATION IN GROUP BY AND ORDER BY

OPTIMISATION IN WINDOW FUNCTION

QUERY OPTIMISATION

(Program Curriculum)

Note: This curriculum is subject to change based on inputs from IIITB and Industry

COURSE	MODULE NAME	SESSION	SESSION NAME
	ANALYTICS PROBLEM SOLVING	THE CRISP-DM FRAMEWORK	INTRODUCTION DEFINE THE BUSINESS PROBLEM - BUSINESS UNDERSTANDING OWNING AN IPL TEAM - BUSINESS UNDERSTANDING PREPARING DATA FOR ANALYSIS THE HEART OF DATA ANALYSIS: MODELLING MODEL EVALUATION AND DEPLOYMENT
	INVESTMENT ASSIGNMENT	INVESTMENT ASSIGNMENT	INTRODUCTION DOWNLOADS CHECKPOINTS - PART 1 CHECKPOINTS - PART 2 EVALUATION RUBRIC FINAL SUBMISSION
	INFERENTIAL STATISTICS	BASICS OF PROBABILITY	INTRODUCTION: INFERENTIAL STATISTICS INTRODUCTION: BASICS OF PROBABILITY RANDOM VARIABLES PROBABILITY DISTRIBUTIONS - I PROBABILITY DISTRIBUTIONS - II EXPECTED VALUE - I EXPECTED VALUE - II
		DISCRETE PROBABILITY DISTRIBUTIONS	PRACTICE QUESTIONS
		CONTINUOUS PROBABILITY DISTRIBUTIONS	INTRODUCTION: CONTINUOUS PROBABILITY DISTRIBUTIONS PROBABILITY DENSITY FUNCTIONS - II PROBABILITY DENSITY FUNCTIONS - II NORMAL DISTRIBUTION STANDARD NORMAL DISTRIBUTION
		CENTRAL LIMIT THEOREM	PRACTICE QUESTIONS INTRODUCTION: CENTRAL LIMIT THEOREM SAMPLES SAMPLING DISTRIBUTIONS PROPERTIES OF SAMPLING DISTRIBUTIONS SAMPLING DISTRIBUTIONS CENTRAL LIMIT THEOREM
			PRACTICE QUESTIONS - PART I ESTIMATING MEAN USING CLT CONFIDENCE INTERVAL - EXAMPLE PRACTICE QUESTIONS - PART II
NTIAL		CONCEPTS OF HYPOTHESIS TESTING - I	INTRODUCTION UNDERSTANDING HYPOTHESIS TESTING NULL AND ALTERNATE HYPOTHESES MAKING A DECISION CRITICAL VALUE METHOD CRITICAL VALUE METHOD - EXAMPLES
SESSE	HYPOTHESIS TESTING	CONCEPTS OF HYPOTHESIS TESTING - II	INTRODUCTION P-VALUE METHOD P-VALUE METHOD - EXAMPLES TYPES OF ERRORS
STATISTIC		INDUSTRY DEMONSTRATION OF HYPOTHESIS TESTING	INTRODUCTION T DISTRIBUTION TWO-SAMPLE MEAN TEST TWO-SAMPLE PROPORTION TEST A/B TESTING DEMONSTRATION INDUSTRY RELEVANCE
		HYPOTHESIS TESTING - ADDITIONAL RESOURCES	HYPOTHESIS TESTING IN PYTHON INTRODUCTION Z-TEST T-TEST CHI-SQUARE TEST P-VALUE APPROACH F-TEST
			F-TEST
	EXPLORATORY DATA ANALYSIS	DATA SOURCING	INTRODUCTION TO EDA INTRODUCTION PUBLIC AND PRIVATE DATA PRIVATE DATA PUBLIC DATA PUBLIC DATA EXERCISE
		DATA CLEANING	INTRODUCTION FIXING ROWS AND COLUMNS MISSING VALUES STANDARDISING VALUES INVALID VALUES FILTERING DATA
		UNIVARIATE ANALYSIS	INTRODUCTION DATA DESCRIPTION UNORDERED CATEGORICAL VARIABLES - UNIVARIATE ANALYSIS ORDERED CATEGORICAL VARIABLES - UNIVARIATE ANALYSIS QUANTITATIVE VARIABLES - UNIVARIATE ANALYSIS
		SEGMENTED UNIVARIATE	QUANTITATIVE VARIABLES - SUMMARY METRICS INTRODUCTION INTRODUCTION TO SEGMENTED UNIVARIATE ANALYSIS BASIS OF SEGMENTATION QUICK WAY OF SEGMENTATION COMPARISON OF AVERAGES COMPARISON OF OTHER METRICS
		BIVARIATE ANALYSIS	INTRODUCTION BIVARIATE ANALYSIS ON CONTINUOUS VARIABLES BUSINESS PROBLEMS INVOLVING CORRELATION PRACTICE QUESTIONS BIVARIATE ANALYSIS ON CATEGORICAL VARIABLES
		DERIVED METRICS	INTRODUCTION WHAT ARE DERIVED METRICS? TYPES OF DERIVED METRICS: TYPE DRIVEN METRICS TYPES OF DERIVED METRICS: BUSINESS DRIVEN METRICS PRACTICE QUESTIONS TYPES OF DERIVED METRICS: DATA DRIVEN METRICS
	GROUP PROJECT	LENDING CLUB CASE STUDY	LENDING CLUB CREDIT DEFAULT ANALYSIS USING EDA CONCEPTS

(Program Curriculum)

Note: This curriculum is subject to change based on inputs from IIITB and Industry

COURSE	MODULE NAME	SESSION	SESSION NAME
			INTRODUCTION TO MACHINE LEARNING
		INTRODUCTION TO SIMPLE LINEAR REGRESSION	REGRESSION LINE
			BEST FIT LINE STRENGTH OF SIMPLE LINEAR REGRESSION
			INTRODUCTION
			ASSUMPTIONS OF SIMPLE LINEAR REGRESSION READING AND UNDERSTANDING THE DATA
		SIMPLE LINEAR REGRESSION IN PYTHON	HYPOTHESIS TESTING IN LINEAR REGRESSION
			RESIDUAL ANALYSIS AND PREDICTIONS
			LINEAR REGRESSION USING SKLEARN INTRODUCTION
		MULTIPLE LINEAR REGRESSION	MOTIVATION: WHEN ONE VARIABLE ISN'T ENOUGH
	LINEAR REGRESSION		MOVING FROM SLR TO MLR: NEW CONSIDERATIONS MULTICOLLINEARITY
			DEALING WITH CATEGORICAL VARIABLES MODEL ASSESSMENT AND COMPARISON
			FEATURE SELECTION
			INTRODUCTION DATA UNDERSTANDING AND PREPARATION
			INITIAL STEPS BUILDING THE MODEL
		MULTIPLE LINEAR REGRESSION IN PYTHON	RESIDUAL ANALYSIS AND PREDICTIONS
			VARIABLE SELECTION USING RFE SUMMARY
			INTRODUCTION
			LINEAR REGRESSION: REVISION PREDICTION VS PROJECTION
		INDUSTRY RELEVANCE OF LINEAR REGRESSION	EXPLORATORY DATA ANALYSIS IN LINEAR REGRESSION MEDIA COMPANY CASE STUDY
			MODEL BUILDING
			ASSESSING THE MODEL INTERPRETING THE RESULTS
	LINEAR REGRESSION		PROBLEM STATEMENT - PART I PROBLEM STATEMENT - PART II
	ASSIGNMENT	ASSIGNMENT- LINEAR REGRESSION	EVALUATION RUBRIC
			FINAL SUBMISSION
			INTRODUCTION: UNIVARIATE LOGISTIC REGRESSION
			BINARY CLASSIFICATION SIGMOID CURVE
			FINDING THE BEST FIT SIGMOID CURVE SUMMARY
			INTRODUCTION
		MULTIVARIATE LOGISTIC	MULTIVARIATE LOGISTIC REGRESSION - TELECOM CHURN EXAMPLE
		REGRESSION - MODEL BUILDING	DATA CLEANING AND PREPARATION BUILDING YOUR FIRST MODEL
<u>-</u>	LOGISTIC REGRESSION		FEATURE ELIMINATION USING RFE
ڻ ع			CONFUSION MATRIX AND ACCURACY MANUAL FEATURE ELIMINATION
Z		MULTIVARIATE LOGISTIC REGRESSION - MODEL EVALUATION	INTRODUCTION METRICS BEYOND ACCURACY: SENSITIVITY & SPECIFICITY
EAR			FINDING THE OPTIMAL THRESHOLD USING ROC CURVE
<u> </u>			METRICS BEYOND ACCURACY: PRECISION & RECALL MAKING PREDICTIONS
Z		I	INTRODUCTION
S H		LOGISTIC REGRESSION - INDUSTRY APPLICATIONS - PART I	GETTING FAMILIAR WITH LOGISTIC REGRESSION IN THE INDUSTRY
∀ ∑			NUANCES OF LOGISTIC REGRESSION - SAMPLE SELECTION, SEGMENTATION, AND VARIABLE TRANSFORMATION
		LOGISTIC REGRESSION:INDUSTRY APPLICATIONS - PART II	INTRODUCTION COMMONLY FACED CHALLENGES IN IMPLEMENTATION OF
			LOGISTIC REGRESSION MODEL EVALUATION (A SECOND LOOK)
			MODEL VALIDATION AND IMPORTANCE OF STABILITY TRACKING OF MODEL PERFORMANCE OVER TIME
			TRACKING OF MODEL PERFORMANCE OVER TIME
		BAYES THEOREM AND ITS BUILDING BLOCKS	INTRODUCTION: NAIVE BAYES
			CONDITIONAL PROBABILITY AND ITS INTUITION BAYES' THEOREM
	NAIVE BAYES		INTRODUCTION NAIVE BAYES -WITH ONE FEATURE
		NAIVE BAYES FOR CATEGORICAL DATA	CONDITIONAL INDEPENDENCE IN NAIVE BAYES
			DECIPHERING NAIVE BAYES INTRODUCTION - NAIVE BAYES FOR TEXT CLASSIFICATION
			DOCUMENT CLASSIFIER - PRE PROCESSING STEPS DOCUMENT CLASSIFIER - WORKED OUT EXAMPLE
		NAIVE BAYES FOR TEXT CLASSIFICATION	LAPLACE SMOOTHING
			QUICK INTRODUCTION TO BERNOULLI NAIVE BAYES PYTHON LAB - EDUCATION OR CINEMA ?
			PYTHON LAB - SMS SPAM HAM CLASSIFIER : BERNOULLI PYTHON LAB - SMS SPAM HAM CLASSIFIER : MULTINOMIAL
			COMPREHENSION - NAIVE BAYES FOR TEXT CLASSIFICATION
			INTER OF CONTROL
			INTRODUCTION INTRODUCTION TO MODEL SELECTION
	MODEL SELECTION		MODEL AND LEARNING ALGORITHM SIMPLICITY COMPLEXITY AND OVEREITTING
		PRINCIPLES OF MODEL SELECTION	SIMPLICITY, COMPLEXITY AND OVERFITTING BIAS-VARIANCE TRADEOFF
			COMPREHENSION - BIAS VARIANCE TRADEOFF
			COMPREHENSION - BIAS VARIANCE TRADEOFF REGULARIZATION
		MODEL EVALUATION	INTRODUCTION
			REGULARIZATION AND HYPERPARAMETERS MODEL EVALUATION AND CROSS VALIDATION
			MODEL EVALUATION: PYTHON DEMONSTRATION CROSS-VALIDATION: MOTIVATION
			CROSS-VALIDATION: MOTIVATION CROSS-VALIDATION: PYTHON DEMONSTRATION
			CROSS-VALIDATION: HYPERPARAMETER TUNING

(Program Curriculum)

Note: This curriculum is subject to change based on inputs from IIITB and Industry

COURSE	MODULE NAME	SESSION	SESSION NAME
			INTRODUCTION
	ADVANCED REGRESSION	GENERALIZED LINEAR REGRESSION	GENERALIZED REGRESSION GENERALIZED REGRESSION FRAMEWORK-I GENERALIZED REGRESSION FRAMEWORK-II SYSTEMS OF LINEAR EQUATIONS GENERALIZED REGRESSION FRAMEWORK-III GENERALIZED REGRESSION IN PYTHON
		REGULARIZED REGRESSION	INTRODUCTION REGULARIZED REGRESSION RIDGE AND LASSO REGRESSION RIDGE AND LASSO REGRESSION IN PYTHON MODEL SELECTION CRITERI FEATURE SELECTION
			COMPREHENSION - MODEL SELECTION PARAMETERS COMPREHENSION: FEATURES' SUBSET SELECTION - BEST SUBSET SELECTION COMPREHENSION: FEATURES' SUBSET SELECTION - STEPWISE SELECTION OPTIONAL ASSIGNMENT
		SVM - MAXIMAL MARGIN CLASSIFIER	INTRODUCTION INTRODUCTION TO SVM CONCEPT OF A HYPERPLANE IN 2D CONCEPT OF A HYPERPLANE IN 3D MAXIMAL MARGIN CLASSIFIER INTRODUCTION
	SUPPORT VECTOR MACHINE (OPTIONAL)	SVM - SOFT MARGIN CLASSIFIER	THE SOFT MARGIN CLASSIFIER THE SLACK VARIABLE COMPREHENSION-1: NOTION OF SLACK VARIABLES COST OF MISCLASSIFICATION SVM PYTHON-LAB
	(OPTIONAL)	KERNELS	INTRODUCTION INTRODUCTION TO KERNELS MAPPING NONLINEAR DATA TO LINEAR DATA FEATURE TRANSFORMATION THE KERNEL TRICK PYTHON LAB - KERNELS SHINY APP - TYPES OF KERNELS CHOOSING A KERNEL FUNCTION
			LETTER RECOGNITION USING SVM
		INTRODUCTION TO DECISION TREES	INTRODUCTION INTRODUCTION TO DECISION TREES INTERPRETING A DECISION TREE COMPREHENSION - DECISION TREE CLASSIFICATION IN PYTHON REGRESSION WITH DECISION TREES INTRODUCTION
LEARNING		ALGORITHMS FOR DECISION TREE CONSTRUCTION	CONCEPT OF HOMOGENEITY GINI INDEX ENTROPY AND INFORMATION GAIN COMPREHENSION - INFORMATION GAIN SPLITTING BY R-SQUARED INTRODUCTION
MACHINE	TREE MODELS	TRUNCATION AND PRUNING	ADVANTAGES AND DISADVANTAGES TREE TRUNCATION TREE PRUNING BUILDING DECISION TREES IN PYTHON CHOOSING TREE HYPERPARAMETERS IN PYTHON
		RANDOM FORESTS	COMPREHENSION - HYPERPARAMETERS INTRODUCTION ENSEMBLES COMPREHENSION - ENSEMBLES CREATING A RANDOM FOREST COMPREHENSION - OOB (OUT-OF-BAG) ERROR RANDOM FORESTS LAB
		BAYES THEOREM AND ITS BUILDING BLOCKS	INTRODUCTION: NAIVE BAYES CONDITIONAL PROBABILITY AND ITS INTUITION BAYES' THEOREM INTRODUCTION
	MODEL SELECTION - PRACTICAL CONSIDERATIONS	NAIVE BAYES FOR CATEGORICAL DATA	NAIVE BAYES -WITH ONE FEATURE CONDITIONAL INDEPENDENCE IN NAIVE BAYES DECIPHERING NAIVE BAYES
		NAIVE BAYES FOR TEXT CLASSIFICATION	INTRODUCTION - NAIVE BAYES FOR TEXT CLASSIFICATION DOCUMENT CLASSIFIER - PRE PROCESSING STEPS DOCUMENT CLASSIFIER - WORKED OUT EXAMPLE LAPLACE SMOOTHING QUICK INTRODUCTION TO BERNOULLI NAIVE BAYES PYTHON LAB - EDUCATION OR CINEMA ?
			PYTHON LAB - SMS SPAM HAM CLASSIFIER : BERNOULLI PYTHON LAB - SMS SPAM HAM CLASSIFIER : MULTINOMIAL COMPREHENSION - NAIVE BAYES FOR TEXT CLASSIFICATION
	BOOSTING	INTRODUCTION TO BOOSTING AND ADABOOST	INTRODUCTION TO BOOSTING WEAK LEARNERS ADABOOST ALGORITHM ADABOOST DISTRIBUTION AND PARAMETER CALCULATION ADABOOST LAB
		GRADIENT BOOSTING	UNDERSTANDING GRADIENT BOOSTING GRADIENT IN GRADIENT BOOSTING GRADIENT BOOSTING ALGORITHM XGBOOST KAGGLE PRACTICE EXERCISE
		INTRODUCTION TO CLUSTERING	INTRODUCTION UNDERSTANDING CLUSTERING PRACTICAL EXAMPLE OF CLUSTERING - CUSTOMER SEGMENTATION INTRODUCTION
	UNSUPERVISED LEARNING: CLUSTERING	K MEANS CLUSTERING	STEPS OF THE ALGORITHM K MEANS ALGORITHM K MEANS AS COORDINATE DESCENT VISUALISING THE K MEANS ALGORITHM PRACTICAL CONSIDERATION IN K MEANS ALGORITHM
		EXECUTING K MEANS IN PYTHON	CLUSTER TENDENCY INTRODUCTION DATA PREPARATION MAKING THE CLUSTERS LET'S HAVE SOME FUN OTHER BEHAVIOURAL SEGMENTATION TYPES INTRODUCTION
		HIERARCHICAL CLUSTERING	HIERARCHICAL CLUSTERING ALGORITHM INTERPRETING THE DENDROGRAM TYPES OF LINKAGES CUTTING THE DENDROGRAM & ANALYZING THE CLUSTERS INDUSTRY INSIGHTS
		OTHER FORMS OF CLUSTERING	LET'S HAVE SOME FUN INTRODUCTION K-MODE CLUSTERING K-MODE IN PYTHON K-PROTOTYPE IN PYTHON DB SCAN CLUSTERING GAUSSIAN MIXTURE MODEL
		PRINCIPAL COMPONENT ANALYSIS	INTRODUCTION THE WHY'S AND WHAT'S OF PCA BUILDING BLOCKS OF PCA ILLUSTRATION - FINDING PRINCIPAL COMPONENTS COMPREHENSION - CALCULATING THE PRINCIPAL COMPONENTS
	UNSUPERVISED LEARNING: PRINCIPAL COMPONENT ANALYSIS	PRINCIPAL COMPONENT ANALYSIS	SINGULAR VALUE DECOMPOSITION SVD EXAMPLE - IMAGE COMPRESSION INTRODUCTION PCA: PYTHON IMPLEMENTATION PRACTICAL CONSIDERATIONS AND ALTERNATIVES OPTIONAL ASSIGNMENT (MNIST DATASET) COMPREHENSION: PCA, SVD AND EIGENVECTORS
	UNSUPERVISED LEARNING:		PROBLEM STATEMENT

EVALUATION RUBRIC

SUBMISSION

UNSUPERVISED LEARNING:

PRINCIPAL COMPONENT ANALYSIS

TELECOM CHURN CASE STUDY

(Program Curriculum)

Note: This curriculum is subject to change based on inputs from IIITB and Industry

COURSE	MODULE NAME	SESSION	SESSION NAME
			NLP: AREAS OF APPLICATION
	LEXICAL PROCESSING	INTRODUCTION TO NLP	UNDERSTANDING TEXT TEXT ENCODING
	LEXICAL PROCESSING	INTRODUCTION TO NEP	REGULAR EXPRESSIONS: QUANTIFIERS, REGULAR EXPRESSIONS, ANCHORS, WILDCARDS,COMMONLY USED
			RE FUNCTIONS,GROUPING,USE CASES GREEDY VERSUS NON-GREEDY SEARCH
			WORD FREQUENCIES AND STOP WORDS
			TOKENISATION BAG-OF-WORDS REPRESENTATION
		BASIC LEXICAL PROCESSING	STEMMING AND LEMMATIZATION
			TF-IDF REPRESENTATION BUILDING A SPAM DETECTOR
			CANONICALISATION PHONETIC HASHING
		ADVANCED LEXICAL PROCESSING	EDIT DISTANCE
			POINTWISE MUTUAL INFORMATION
			THE WHAT AND WHY OF SYNTACTIC PROCESSING PARSING
			PARTS-OF-SPEECH
			DIFERENT APPROACHES TO POS TAGGING LEXICON AND RULE-BASED POS TAGGING
			STOCHASTIC PARSING
		INTRODUCTION TO SYNTACTIC PROCESSING	THE VITERBI HEURISTIC MARKOV CHAIN AND HMM
	SYNTACTIC PROCESSING		EXPLANATION PROBLEM
			LEARNING HMM MODEL PARAMETERS HMM AND THE VITERBI ALGORITHM: PSEUDOCODE AND PYTHON IMPLEMENTATION
			DEEP LEARNING BASED POS TAGGERS
			WHY SHALLOW PARSING IS NOT SUFFICIENT CONSTITUENCY GRAMMARS
		PARSING	TOP-DOWN PARSING
			BOTTOM-UP PARSING PROBABILISTIC CFG
			UNDERSTANDING THE ATIS DATA INFORMATION EXTRACTION
			POS TAGGING
		INFORMATION EXTRACTION	RULE-BASED MODELS PROBABILISTIC MODELS FOR ENTITY RECOGNITION
			NAIVE BAYES CLASSIFIER FOR NER DECISION TREE CLASSIFIERS FOR NER
			HMM AND IOB LABELLING
			CRFS - ANOTHER PROBABILISTIC APPROACH CRF MODEL ARCHITECTURE
		CONDITIONAL RANDOM FIELDS	TRAINING A CRF MODEL
			PREDICTING USING CRF PYTHON IMPLEMENTATION OF CRF
	SYNTACTIC PROCESSING	ASSIGNMENT - SYNTACTIC ANALYSIS	PROBLEM STATEMENT EVALUATION RUBRIC
	-ASSIGNMENT	ASSIGNMENT - SYNTACTIC ANALYSIS	FINAL SUBMISSION
를 L			
			CONCEPTS AND TERMS ENTITY AND ENTITY TYPES
		INTRODUCTION TO SEMANTIC PROCESSING	ARITY AND REIFICATION
			SCHEMA SEMANTIC ASSOCIATIONS
			DATABASES - WORDNET AND CONCEPTNET
			WORD SENSE DISAMBIGUATION - NAIVE BAYES, LESK ALGORITHM LESK ALGORITHM IMPLEMENTATION
			OCCURRENCE MATRIX
			CO-OCCURRENCE MATRIX WORD VECTORS
		DISTRIBUTIONAL SEMANTICS	WORD EMBEDDINGS
		DISTRIBUTIONAL SEMANTICS	LATENT SEMANTIC ANALYSIS (LSA) WORD2VEC AND GLOVE IN PYTHON
			BASICS OF TOPIC MODELLING WITH ESA
	SEMANTIC PROCESSING		INTRODUCTION TO PROBABILISTIC LATENT SEMANTICS ANALYSIS (PLSA)
			THE OUTPUT OF A TOPIC MODEL DEFINING A TOPIC
			MATRIX FACTORISATION BASED TOPIC MODELLING
			PROBABILISTIC MODEL PROBABILISTIC LATENT SEMANTIC ANALYSIS (PLSA)
		TOPIC MODELLING	EXPECTATION MAXIMIZATION IN PLSA
			COMPREHENSION - MULTINOMIAL DISTRIBUTION IN TOPIC MODELLING
			LATENT DIRICHLET ALLOCATION (LDA) LDA - AN EXTENSION OF PLSA
			USE LDA TO GENERATE A CORPUS PADAMETED ESTIMATION LISING GIBBS SAMPLING
			PARAMETER ESTIMATION USING GIBBS SAMPLING LDA IN PYTHON
		SOCIAL MEDIA OPINION MINING - SEMANTIC	THE PROBLEM STATEMENT PROJECT PIPELINE
		PROCESSING CASE STUDY	PYTHON CODE
			BUILDING CHATBOTS WITH RASA INSTALLATION GUIDE - RASA
			NATURAL LANGUAGE UNDERSTANDING (NLU)
			TRAINING THE NLU MODEL DIALOGUE-FLOW MANAGEMENT
		BUILDING CHATBOTS WITH RASA	CREATING CONVERSATIONAL STORIES & DEFINING ACTIONS
	BUILDING CHATBOTS WITH RASA		TRAINING THE DIALOGUE MANAGEMENT MODEL INTERACTIVE LEARNING
			CHATBOT DEPLOYMENT
		<u> </u>	ML AND AI IN BUSINESS

NLP COURSE PROJECT - BUILDING A CHATBOT

PROBLEM STATEMENT

EVALUATION RUBRIC

FINAL SUBMISSION

(Program Curriculum)

Note: This curriculum is subject to change based on inputs from IIITB and Industry

GESTURE RECOGNITION

DEEP LEARNING COURSE PROJECT -

GESTURE RECOGNITION

	riculum is subject to change based on inputs from IIIIB and Industry			
COURSE	MODULE NAME	SESSION	SESSION NAME	
	INTRODUCTION TO NEURAL NETWORKS	STRUCTURE OF NEURAL NETWORKS	NEURAL NETWORKS - INSPIRATION FROM THE HUMAN BRAIN INTRODUCTION TO PERCEPTRON BINARY CLASSIFICATION USING PERCEPTRON PERCEPTRONS - TRAINING MULTICLASS CLASSIFICATION USING PERCEPTRONS WORKING OF A NEURON INPUTS AND OUTPUTS OF A NEURAL NETWORK PARAMETERS AND HYPERPARAMETERS OF NEURAL NETWORK	
		FEED FORWARD IN NEURAL NETWORKS	ACTIVATION FUNCTIONS FLOW OF INFORMATION IN NEURAL NETWORKS - BETWEEN 2 LAYERS INFORMATION FLOW - IMAGE RECOGNITION COMPREHENSION - COUNT OF PIXELS LEARNING THE DIMENSIONS WEIGHT MATRICES FEEDFORWARD ALGORITHM VECTORIZED FEEDFORWARD IMPLEMENTATION UNDERSTANDING VECTORIZED FEEDFORWARD IMPLEMENTATION	
		BACKPROPAGATION IN NEURAL NETWORKS	WHAT DOES TRAINING A NETWORK MEAN? COMPLEXITY OF THE LOSS FUNCTION COMPREHENSION - TRAINING A NEURAL NETWORK UPDATING THE WEIGHTS AND BIASES SIGMOID BACKPROPAGATION BATCH IN BACKPROPAGATION TRAINING IN BATCHES	
	SYNTACTIC PROCESSING	MODIFICATIONS TO NEURAL NETWORKS	REGULARIZATION DROPOUTS BATCH NORMALIZATION INTRODUCTION TO KERAS	
		HYPERPARAMETER TUNING IN NEURAL NETWORKS	LOSS FUNCTION MINIBATCH GRADIENT DESCENT GRADIENT DESCENT MOMENTUM BASED METHODS DROPOUTS -THE BAYESIAN APPROACH VANISHING AND EXPLODING GRADIENTS	
			INITIALIZATIONS	
	NEURAL NETWORKS - ASSIGNMENT	INFORMATION EXTRACTION	UNDERSTANDING THE ATIS DATA INFORMATION EXTRACTION POS TAGGING	
	CONVOLUTIONAL NEURAL NETWORKS -INDUSTRY APPLICATIONS	BUILDING CNNS WITH PYTHON AND KERAS	APPLICATIONS OF CNNS UNDERSTANDING THE VISUAL SYSTEM OF MAMMALS INTRODUCTION TO CNNS READING DIGITAL IMAGES VIDEO ANALYSIS UNDERSTANDING CONVOLUTIONS	
		ASSIGNMENT - SYNTACTIC ANALYSIS	STRIDE AND PADDING IMPORTANT FORMULAS WEIGHTS OF A CNN FEATURE MAPS POOLING PUTTING THE COMPONENTS TOGETHER BUILDING CNNS IN KERAS - MNIST	
		INTRODUCTION TO SEMANTIC PROCESSING	COMPREHENSION - VGG16 ARCHITECTURE CIFAR-10 CLASSIFICATION WITH PYTHON OVERVIEW OF CNN ARCHITECTURES ALEXNET AND VGGNET GOOGLENET RESIDUAL NET	
			INTRODUCTION TO TRANSFER LEARNING USE CASES OF TRANSFER LEARNING TRANSFER LEARNING WITH PRE-TRAINED CNNS PRACTICAL IMPLEMENTATION OF TRANSFER LEARNING TRANSFER LEARNING IN PYTHON AN ANALYSIS OF DEEP LEARNING MODELS	
		STYLE TRANSFER AND OBJECT DETECTION		
		INDUSTRY DEMO:USING CNNS WITH FLOWERS IMAGES	EXAMINING THE FLOWERS DATASET DATA PREPROCESSING: SHAPE, SIZE AND FORM DATA PREPROCESSING: NORMALISATION DATA PREPROCESSING: AUGMENTATION DATA PREPROCESSING: PRACTICE EXERCISE SOLUTIONS RESNET: ORIGINAL ARCHITECTURE AND IMPROVEMENTS BUILDING THE NETWORK ABLATION EXPERIMENTS HYPERPARAMETER TUNING TRAINING AND EVALUATING THE MODEL	
		INDUSTRY DEMO:USING CNNS WITH X-RAY IMAGES	EXAMINING X-RAY IMAGES CXR DATA PREPROCESSING - AUGMENTATION CXR: NETWORK BUILDING CXR: FINAL RUN	
	RECURRENT NEURAL NETWORKS	WHAT MAKES ANEURAL NETWORK RECURRENT?	WHAT ARE SEQUENCES? WHAT MAKES THE NETWORK RECURRENT ARCHITECTURE OF AN RNN FEEDING SEQUENCES TO RNNS COMPREHENSION: RNN ARCHITECTURE TYPES OF RNNS TRAINING RNNS	
		VARIANTS OF RNNS	VANISHING AND EXPLODING GRADIENTS IN RNNS BIDIRECTIONAL RNNS LONG, SHORT-TERM MEMORY NETWORKS CHARACTERISTICS OF AN LSTM CELL STRUCTURE OF AN LSTM CELL LSTM NETWORK: FEEDFORWARD EQUATIONS GRUS AND OTHER VARIANTS POS TAGGING USING RNN	
		BUILDING RNNS IN PYTHON	GENERATING C CODE	
			RNNS IN PYTHON	
	NEURAL NETWORKS PROJECT -	DEEP LEARNING COURSE PROJECT -	PROBLEM STATEMENT TWO ARCHITECTURES: 3D CONVS AND CNN-RNN STACK UNDERSTANDING GENERATORS	

STARTER CODE WALKTHROUGH

EVALUATION RUBRIC

FINAL SUBMISSION

(Program Curriculum)

Note: This curriculum is subject to change based on inputs from IIITB and Industry

COURSE	MODULE NAME	SESSION	SESSION NAME
	CLASSICAL REINFORCEMENT LEARNING	MARKOV DECISION PROCESS	INTRODUCTION WHAT IS REINFORCEMENT LEARNING? AGENT-ENVIRONMENT INTERACTION STATE VECTORS
			OBJECTIVE OF RL AGENT ACTIONS & POLICY EXPLORATION VS EXPLOITATION MARKOV STATE
			MARKOV DECISION PROCESS (MDP) VALUE FUNCTION OPTIMAL POLICY MODEL OF THE ENVIRONMENT RL VS SUPERVISED LEARNING
		FUNDAMENTAL EQUATIONS IN RL	INVENTORY MANAGEMENT (MDP) INTRODUCTION RL EQUATIONS - STATE VALUE FUNCTION RL EQUATIONS - ACTION VALUE FUNCTION UNDERSTANDING THE RL EQUATIONS BELLMAN EQUATIONS OF OPTIMALITY POLICY IMPROVEMENT
		MODEL-BASED METHOD - DYNAMIC PROGRAMMING	INTRODUCTION DYNAMIC PROGRAMMING POLICY ITERATION - ALGORITHM POLICY EVALUATION - PREDICTION POLICY IMPROVEMENT - CONTROL POLICY ITERATION - GRIDWORLD
			VALUE ITERATION GENERALISED POLICY ITERATION (GPI) AD PLACEMENT OPTIMIZATION (DEMO) INTRODUCTION
		MODEL-FREE METHODS	INTUITION BEHIND MONTE-CARLO METHODS MONTE-CARLO PREDICTION & DEMO MONTE-CARLO CONTROL OFF POLICY TEMPORAL DIFFERENCE
			Q-LEARNING WITH PSEUDOCODE CLIFF WALKING DEMO AD PLACEMENT OPTIMIZATION DEMO -Q LEARNING OPENAI GYM -TAXI V2
		INVENTORY MANAGEMENT DEMO	INTRODUCTION PROBLEM STATEMENT MDP CODE Q-LEARNING CODE
			RESULTS
	ASSIGNMENT -CLASSICAL REINFORCEMENT LEARNING	ASSIGNMENT - TIC-TAC-TOE	PROBLEM STATEMENT EVALUATION RUBRIC FINAL SUBMISSION
EARNING		ARCHITECTURES OF DEEP Q LEARNING	INTRODUCTION ARCHITECTURES OF DEEP Q NETWORK DQN ARCHITECTURE II - VISUALISATION DQN DEMO - CARTPOLE ENVIRONMENT
EMENT	DEEP REINFORCEMENT LEARNING		DOUBLE DQN - A DQN VARIATION INTRODUCTION WHY DEEP REINFORCEMENT LEARNING? PARAMETERISED REPRESENTATION GENERALIZABILITY IN DEEP RL
EINFORCE		DEEP Q LEARNING	DEEP Q LEARNING TRAINING IN DEEP REINFORCEMENT LEARNING REPLAY BUFFER GENERATE DATA FOR TRAINING TARGET IN DQN
~			WHEN TO STOP TRAINING? ATARI GAME INTRODUCTION INTRODUCTION TO POLICY GRADIENT METHODS
		POLICY GRADIENT METHODS	THE INTUITION OF POLICY-BASED METHODS COMPARING DQN AND POLICY-BASED METHODS PATH PROBABILITY OBJECTIVE FUNCTION GRADIENT OF THE OBJECTIVE FUNCTION
			THE UPDATE RULE STEP-BY-STEP UPDATE INTRODUCTION THE NEED FOR ACTOR-CRITIC METHODS ADDRESSING THE PROBLEM OF VARIANCE
		ACTOR-CRITIC METHODS	ADDRESSING THE PROBLEM OF VARIANCE JUSTIFICATION FOR ADDING THE BASELINE REDUCING VARIANCE USING THE BASELINE APPROPRIATE CHOICE OF THE BASELINE POLICY GRADIENT (REINFORCE)
			ACTOR-CRITIC METHODS: TRAINING TRAINING PROCESS: SUMMARY ILLUSTRATION: DEFINING THE STATE SPACE
	REINFORCEMENT LEARNING PROJECT	REINFORCEMENT LEARNING PROJECT	PROBLEM STATEMENT EVALUATION RUBRIC FINAL SUBMISSION

(Program Curriculum)

COURSE	MODULE NAME	SESSION	SESSION NAME
	DEPLOYMENT		INTRODUCTION
			UNDERSTANDING THE ML PIPLELINE
			CONVERT YOUR JUPYTER NOTEBOOK TO A PRODUCTION LEVEL CODE
#		DEPLOYMENT	LEARN ABOUT CI/CD PIPELINES
ZO		DEPLOYMENT	CREATE AN APPLICATION FOR YOUR MODEL
			DEPLOY YOUR MODEL TO A PAAS
S			INTRODUCTION TO DOCKER
4			LEARN HOW TO DOCKERIZE YOUR MODEL APP
Ö			
	CAPSTONE		INTRODUCTION
		DEDLOVA JENIE	PROBLEM STATEMENT
		DEPLOYMENT	RUBRICS
			FINAL SUBMISSION