

Brain-Inspired Learning Machines From Biological Neural Networks to Artificial Neural Networks

Emre Neftci

Department of Cognitive Sciences, UC Irvine,

October 27, 2016

Intrinsic Variability of Neurons

Yarom and Hounsgaard, Physiological Reviews, 2011

Stochastic I&F Neurons: the effect of noise on neural activations

```
code/brian2_activation_function.py
```

from brian2 import *

Cm = 50*pF; gl = 1e - 9*siemens; taus = 20*ms Vt = 10*mV; Vt = 0*mV; sigma = 0./sqrt(ms)*mV eqs = "

iext : amp

P = NeuronGroup(100, eqs, threshold='v>Vt', reset='v = Vr', refractory=0*ms, method='milstein')

P.v = Vr #Set initial V to reset voltage P.iext = np.linspace(-.2, .8, 100)*.1*nA

 $s_mon = SpikeMonitor(P)$

run(5.0 * second)

How to model noise?

Two common approaches to modeling stochasticity in neurons:

- Mean-field models Solve the stochastic differential equation (SDE) of the integrate & fire neuron exactly
 - + Exact under some reasonable assumptions
 - Solution only for very special cases of the neuron dynamics
 SDF's are hard!
- Spike Response Model Consider deterministic dynamics for the neuron and link the probability intensity of emitting a spike with a non-linear function of the state variable.
 - Can be fitted to neuron (experimental) neuron models with excellent accuracy
 - Approximate and limited to linear differential equations
 - + Mathematically tractable

Stochastic I&F Neurons: Additive Noise

$$C_m rac{\mathrm{d}}{\mathrm{d}t} V_m = -g_L V + I_{syn} + I_{ext} + \sigma \xi(t)$$
 if $V_m > V_t$: elicit spike, and $V_m \leftarrow V_r$ during au_{arp}

where $\xi(t) \sim N(0,1)$ is Brownian white noise (= uncorrelated)

$$\nu(I) = \left(\tau_{ARP} + \tau_m \sqrt{\pi} \int_{\frac{V_r - V_0}{\sigma_V}}^{\frac{\theta - V_0}{\sigma_V}} \exp(x^2) (1 + \operatorname{erf}(x)) dx\right)^{-1}$$

$$V_0 = \frac{I}{g_L}$$

$$\sigma_V = \sqrt{\frac{\sigma^2}{g_L C_m}}$$
(2)

Gerstner, Kistler, Naud, and Paninski,, 2014

"In the Spike Response Model (SRM) the neuron model is interpreted in terms of a membrane filter (κ) as well as a function describing the shape of the spike (η) "

$$V_m(t) = V_r + \int_0^\infty \kappa(s)I(t-s)\mathrm{d}s + \underbrace{\sum_{\{t_j\}} \eta(t-t_j)}_{\text{effect of self-spiking}} \tag{3}$$

$$u(t) = f(V_m(t) - V_t)$$
 (firing rate)

f is called a linking function

Linking function and Escape Noise

Exponential linking function:

$$f(V_m(t) - V_t) \propto \exp(\beta(V_m(t) - V_t))$$

$$P(spike \in [t, t + \Delta t]|V_m) \cong f(V_m(t) - V_t)\Delta t$$

Jolivet, Rauch, Lüscher, and Gerstner, Journal of computational neuroscience, 2006

Mensi, Naud, and Gerstner, Advances in Neural Information Processing Systems, 2011

point-process model

$$P(spike \in [t, t + \Delta t]|V_m[t]) \cong \exp(\beta(V_m[t] - V_t))\Delta t$$

Simulating an LNP model (assuming α and β known)

- Compute $V_m[t]$ using SRM filters
- Compute $P[t] = \alpha \exp(\beta (V_m[t] V_t)) \Delta t$
- Spike if u < P[t], where $u \in \mathit{Uniform}[0,1]$ (= flip a biased coin)