PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-073157

(43)Date of publication of application: 12.03.2003

(51)Int.CI.

C04B 24/26 C04B 24/06 C04B 28/02 C08F216/16 C08F220/04 C08F222/00 C08F290/06 // C04B103:40

(21)Application number: 2001-266836

(71)Applicant: NIPPON SHOKUBAI CO LTD

(22)Date of filing:

04.09.2001

(72)Inventor: YAMASHITA AKIHIKO

TANAKA HIROMICHI HIRATA TAKESHI

(54) CEMENT ADMIXTURE AND METHOD OF EXECUTION OF CEMENT COMPOSITION (57)Abstract:

PROBLEM TO BE SOLVED: To provide a cement admixture having high dispersibility, and imparting a hardened cement excellent strength and durability, capable of preventing degradation of fluidity at high temperatures, and to provide a method of execution of a cement composition using the admixture.

SOLUTION: The cement admixture contains a copolymer (A) for the cement admixture and an oxicarboxylic acid compound (B) as essential ingredients in a ratio of 10/90-99.9/0.1 (in wt.%), the copolymer (A has a monomer unit (I) derived from an unsaturated polyalkylene glycol ether monomeric substance (a), represented by general formula (1): YO(R10)nR2...(1) and monomer unit (II) derived from an unsaturated carboxylic acid monomeric substance (b) as essential ingredients, and monomer units (I) and (II) occupy among total monomer units by $\geq 1\%$, and the monomer unit (I) occupies in ratio of ≤ 50 mol % of total monomer units.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-73157 (P2003-73157A)

(43)公開日 平成15年3月12日(2003.3.12)

(51) Int.Cl.7	識別記号	F I	テーマコート*(参考)
C 0 4 B 24/26		C 0 4 B 24/26	B 4G012
			E 4J027
			H 4J100
24/06	,	24/06	Α
28/02		28/02	
	審査請求	未請求 請求項の数4 〇	L (全 13 頁) 最終頁に続く
(21)出願番号	特願2001-266836(P2001-266836)	(71)出願人 000004628	
		株式会社日	本触媒
(22)出顧日	平成13年9月4日(2001.9.4)	大阪府大阪	市中央区高麗橋4丁目1番1号
		(72)発明者 山下 明彦	ŧ
		大阪府吹田	市西御旅町5番8号 株式会社
		日本触媒内	I
		(72)発明者 田中 宏道	Ì
		大阪府吹田	市西御旅町5番8号 株式会社
		日本触媒内	
	•	(74)代理人 100086586	
		弁理士 安	富康男 (外1名)
			最終頁に続く

(54) 【発明の名称】 セメント混和剤及びセメント組成物の施工方法

(57)【要約】

【課題】 高い分散性能を有し、強度及び耐久性に優れたセメント硬化物を与え、しかも、高温時の流動性低下の防止が可能であるセメント混和剤及びこれを用いたセメント組成物の施工方法を提供する。

【解決手段】 セメント混和剤用共重合体(A)とオキシカルボン酸系化合物(B)とを10/90~99.9/0.1の比率(重量%)で必須成分として含むセメント混和剤であって、該セメント混和剤用共重合体(A)は、下記一般式(1);

 $YO(R^1O)nR^2$

(1)

で表される不飽和(ポリ)アルキレングリコールエーテル系単量体(a)由来の構成単位(I)と不飽和カルボン酸系単量体(b)由来の構成単位(II)とを必須の構成単位として有し、かつ、構成単位(I)と構成単位(II)とが各々全構成単位中の1重量%以上を占め、構成単位(I)の占める割合が全構成単位中の50モル%以下であるセメント混和剤。

【特許請求の範囲】

【請求項1】 共重合体(A)とオキシカルボン酸系化 合物(B)とを10/90~99.9/0.1の比率 (重量%)で必須成分として含むセメント混和剤であっ て、該共重合体(A)は、下記一般式(1); $YO(R^1O)nR^2$ (1)

(式中、Yは、炭素原子数5~8のアルケニル基を表 す。R¹Oは、同一若しくは異なって、炭素原子数2~ 18のオキシアルキレン基を表す。nは、オキシアルキ レン基の平均付加モル数であり、1~500の数を表 す。R² は、水素原子又は炭素原子数1~30の炭化水 素基を表す。)で表される不飽和(ポリ)アルキレング リコールエーテル系単量体(a)由来の構成単位(I) と不飽和カルボン酸系単量体(b)由来の構成単位(I 1)とを必須の構成単位として有し、かつ、構成単位 (1)と構成単位(11)とが各々全構成単位中の1重 量%以上を占め、構成単位(1)の占める割合が全構成 単位中の50モル%以下であることを特徴とするセメン ト混和剤。

【請求項2】 前記不飽和カルボン酸系単量体(b)由 20 来の構成単位(11)は、下記一般式(2); 【化1】

$$\begin{array}{c|c}
R^4 & R^5 \\
 & | & | \\
 C - C - C - \\
 R^3 & COOX
\end{array}$$
(2)

(式中、R³、R⁴及びR⁵は、同一若しくは異なっ て、水素原子、メチル基又は-(CH2)pCOOX基 を表す。Xは、同一若しくは異なって、水素原子、一価 30 金属原子、二価金属原子、アンモニウム基又は有機アミ ン基を表す。pは、0~2の整数を表す。COOX基が 2個存在する場合には、2個の-COOX基により-C OOCO-基が形成されていてもよい。) で表されると とを特徴とする請求項1記載のセメント混和剤。

【請求項3】 前記一般式(1)におけるYは、下記一 般式(3);

[{£2}

(式中、R[®]、R⁷及びR[®]は、同一若しくは異なっ て、水素原子又はメチル基を表す。但し、R⁶、R⁷及 びR®は、すべてメチル基となることはない。R®は、 前記一般式(1) における-O(R¹O) n R² との結 合点であって、-CH,-、-(CH,),-又は-C (CH,), -を表す。R[®]、R⁷、R[®]及びR[®]中の合 計炭素原子数は、3である。)で表されることを特徴と する請求項1又は2記載のセメント混和剤。

【請求項4】 請求項1、2又は3記載のセメント混和 剤、セメント及び水を必須成分とするセメント組成物を 20℃以上の温度で施工することを特徴とするセメント 組成物の施工方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、セメント混和剤及 びこれを用いたセメント組成物の施工方法に関する。 [0002]

【従来の技術】セメント組成物は、強度及び耐久性に優 れたセメント硬化物を与えることから、建築物外壁材、 建築物構造体等の用途に広く用いられている。このよう なセメント組成物としては、セメントに水を添加したセ メントペーストや、これに細骨材である砂を混合したモ ルタル、更に粗骨材である小石を混合したコンクリート 等が挙げられ、通常、空気連行性や流動性を高めるため に、セメント混和剤が加えられているが、近年、その重 要性が認識され、技術革新が盛んに行われている。

【0003】セメント混和剤の任務は、セメント組成物 を減水しても充分な分散性を発揮してその流動性及び施 工性を確保でき、減水による耐久性及び強度向上を実現 すると同時に、経時的に安定した分散性を保持して良好 なセメント組成物を獲得するところにある。そして昨今 のコンクリート業界では、このような性能を実現するコ ンクリートが強く求められており、これを達成するには 単位水量の低減と共に、流動性低下の防止が重要な課題 となっている。

【0004】特開昭62-68806号公報には、セメ ント混和剤に用いることができる水溶性共重合体が開示 されている。また、特開平10-236858号公報に は、不飽和(ポリ)アルキレングリコールエーテル系単 量体(Ⅰ)、マレイン酸系単量体(ⅠⅠ)及びこれらの 単量体と共重合可能なその他の単量体(III)を特定 重量割合で重合して得られる共重合体(A)を含むセメ ント分散剤に関し、特開2000-7403号公報に は、ポリアルキレングリコール3-メチル-ブテニルエ ーテル系単量体(I)、マレイン酸系単量体(II)、 及びこれらの単量体と共重合可能なその他の単量体(I 40 II)を重合して得られる共重合体(A)を含むセメン ト添加剤に関し、遅延剤と組み合わせて使用してもよい ことが開示されている。

【0005】特開平8-283350号公報には、オキ シアルキレングリコール-アルケニルエーテル及び不飽 和ジカルボン酸誘導体をベースとするコポリマーがセメ ント用添加剤として用いることができることが開示され ている。

【0006】特開平9-241055号公報には、ポリ オキシアルキレン化合物を必須成分とするセメント分散 50 剤に関し、特開平10-194808号公報には、特定

10

のポリオキシアルキレン鎖を有するアルケニルアルコールと不飽和カルボン酸系化合物とを必須構成単位とする 共重合体からなるセメント分散剤に関し、また、特開平 11-106247号公報には、アルケニルアルコール のエチレンオキサイドとプロピレンオキサイドの付加物 又はそのアルキルエーテル化物を必須構成単位とする共 重合体からなるセメント用分散剤に関し、遅延剤と組み 合わせて使用してもよいことが開示されている。

【0007】しかしながら、これらの技術では、セメント組成物を用いて施工する際に、セメント組成物の流動 10性が低下することを充分に防止するための工夫の余地があった。すなわちセメント組成物の施工中に、セメントと水とによる水和反応が進行してセメント硬化物が部分的に形成されるに従って、セメント組成物の流動性を向上させるためのセメント混和剤が該セメント硬化物中に取り込まれ、その作用を発揮することができなくなることから、セメント組成物の施工における作業性をより向上させるための工夫の余地があった。特に、高温の環境でセメント組成物を施工する場合には、セメント組成物の流動性の低下を防止して作業性を向上させ、セメント組成物の流動性の低下を防止して作業性を向上させ、セメント組成物の流動性の低下を防止して作業性を向上させ、セメント硬化物の性能を発揮させることが望まれている。

【発明が解決しようとする課題】本発明は、上記現状に鑑みてなされたものであり、高い分散性能を有し、強度及び耐久性に優れたセメント硬化物を与え、しかも、高温時の流動性低下の防止が可能であるセメント混和剤及びこれを用いたセメント組成物の施工方法を提供することを目的とするものである。

[0009]

【課題を解決するための手段】本発明者らは、セメント 混和剤について鋭意検討の結果、特定の構造単位を有す る共重合体(A)が高い分散性能を有し、強度及び耐久 性に優れたセメント硬化物を与えることにまず着目し た。そしてこのような共重合体(A)を含むセメント混 和剤を用いてセメント組成物を施工する場合、共重合体 (A)に対して特定量のオキシカルボン酸系化合物

(B)を併用すると、高い分散性能等が維持され、しかも、高温時の流動性低下の防止が可能となることを見いだし、上記課題をみごとに解決することができることに 40 想到し、本発明を完成するに到った。

【0010】すなわち本発明は、共重合体(A)とオキシカルボン酸系化合物(B)とを10/90~99.9/0.1の比率(重量%)で必須成分として含むセメント混和剤であって、上記共重合体(A)は、下記一般式(1);

$$YO(R^{1}O)nR^{2}$$
 (1)

(式中、Yは、炭素原子数5~8のアルケニル基を表す。R'Oは、同一若しくは異なって、炭素原子数2~18のオキシアルキレン基を表す。nは、オキシアルキ 50

レン基の平均付加モル数であり、1~500の数を表す。R² は、水素原子又は炭素原子数1~30の炭化水素基を表す。)で表される不飽和(ポリ)アルキレングリコールエーテル系単量体(a)由来の構成単位(I)と不飽和カルボン酸系単量体(b)由来の構成単位(I)とを必須の構成単位として有し、かつ、構成単位(I)と構成単位(I)とが各々全構成単位中の1重量%以上を占め、構成単位(I)の占める割合が全構成単位中の50モル%以下であるセメント混和剤である。【0011】本発明はまた、上記セメント混和剤、セメント及び水を必須成分とするセメント組成物を20℃以上の温度で施工するセメント組成物の施工方法でもある。以下に本発明を詳述する。

【0012】本発明によるセメント混和剤は、共重合体 (A)とオキシカルボン酸系化合物(B)とを10/9 0~99. 9/0. 1の比率 (重量%)で必須成分とし て含む。上記共重合体(A)は、セメント混和剤用共重 合体であり、セメント組成物中で高い分散性能を発揮 し、強度及び耐久性に優れたセメント硬化物を与えると とができるものである。また、上記オキシカルボン酸系 化合物(B)は、セメント組成物を用いて施工する際 に、セメントと水とによる水和反応が進行してセメント 硬化物が部分的に形成されるに従って、セメント組成物 の流動性を向上させるための共重合体(A)等が該セメ ント硬化物中に取り込まれ、その作用を発揮することが できなくなることに起因してセメント組成物の流動性が 低下することを充分に防止するために、セメント組成物 中で硬化を遅延する作用を有するものである。これら共 重合体(A)とオキシカルボン酸系化合物(B)とを組 30 み合わせることにより、セメント組成物の施工におい て、共重合体(A)の作用効果を充分に発揮させること が可能となり、しかも、髙温時の流動性低下の防止が可 能となる。

【0013】本発明で用いられるオキシカルボン酸系化合物(B)としては、例えば、グルコン酸、グルコヘプトン酸、アラボン酸、リンゴ酸、クエン酸や、これらのナトリウム、カリウム、カルシウム、マグネシウム、アンモニウム、トリエタノールアミン等の無機塩又は有機塩等が挙げられる。中でも、グルコン酸を用いることが好ましい。これらは単独で用いてもよく、2種以上を併用してもよい。

【0014】上記共重合体(A)とオキシカルボン酸系化合物(B)との比率、すなわち固形分換算での重量割合(重量%)としては、10/90~99、9/0、1である。10/90よりも共重合体(A)の割合が少なくなると、セメント組成物の硬化を効率的に行うことができなくなり、99、9/0、1よりも共重合体(A)の割合が多くなると、セメント組成物を施工する間、その分散性を維持することができなくなる。上記比率の好ましい範囲としては、30/70~99/1である。よ

50

り好ましくは、60/40~97/3である。 【0015】本発明では、上記セメント混和剤、セメン ト及び水を必須成分とするセメント組成物を20°C以上 の温度で施工することになる。これにより、共重合体 (A)を必須とするセメント混和剤を用いる場合におけ るセメント組成物の流動性の低下を防止して効率的にか つ容易にセメント組成物の施工を行うことができる。こ のようなセメント組成物の施工方法もまた、本発明の1

つである。

【0016】上記セメント組成物の施工方法において、 共重合体(A)を必須とするセメント混和剤を用いる場 合、セメント組成物が流動性に優れたものとなることか ら、セメント組成物を用いた作業を効率的にかつ容易に 行うことができるが、施工温度が20℃以上であると、 共重合体(A)による作用効果が低下することになる。 本発明では、共重合体(A)とオキシカルボン酸系化合 物(B)とを組み合わせることにより、施工温度が20 *C以上であっても、共重合体(A)による作用効果の低 下を防止して、セメント組成物の施工における作業を効 率的にかつ容易に行うことが可能となる。本発明の好ま 20 しい形態としては、夏場等の施工において適用されるこ とであり、例えば、施工温度が25℃以上の場合に適用 することである。より好ましくは、30℃以上である。 尚、本発明において施工とは、セメント組成物を調製し た後に、該セメント組成物を硬化させようとするまでの 工事等における工程を意味し、例えば、セメント組成物 をアジテーター車(生コンクリートミキサー車)により 輸送したりポンプ等により移送したり型枠等に充填した りする工程等が挙げられる。また施工温度とは、セメン ト組成物を施工する際のセメント組成物の温度を意味す る。

【0017】以下に、共重合体(A)やセメント組成物 について説明する。上記共重合体(A)は、上記一般式 (1)で表わされる不飽和(ポリ)アルキレングリコー ルエーテル系単量体(a)由来の構成単位(I)と不飽 和カルボン酸系単量体(b)由来の構成単位(II)と を必須の構成単位として有する重合体である。尚、共重 合体(A)は、後述の単量体(c)由来の構成単位(I II)を有していてもよい。これらの構造単位はそれぞ れ1種であってもよく、2種以上であってもよい。

【0018】上記共重合体(A)において、構成単位 (1)と構成単位(11)とが各々全構成単位中の1重 量%以上を占め、構成単位(Ⅰ)の占める割合が全構成 単位中の50モル%以下である。上記構成単位(1)の 割合が1重量%未満では、共重合体(A)中に存在する 不飽和(ポリ)アルキレングリコールエーテル系単量体 (a) 由来のオキシアルキレン基の割合が少なすぎ、ま た、上記構成単位(I I) の割合が 1 重量%未満では、 共重合体(A)中に存在する不飽和カルボン酸系単量体 (b) 由来のカルボキシル基の割合が少なすぎ、充分な

分散性を発揮し得ないこととなる。一方、構成単位 (1) の占める割合は、不飽和 (ポリ) アルキレングリ コールエーテル系単量体(a)の重合性が低いことか ら、分散性の高い共重合体(A)を高収率で得るため に、全構成単位中の50モル%以下であることが重要で ある。尚、構成単位(1)の占める割合としては、5重 量%以上が好ましく、10重量%以上がより好ましく、 20重量%以上が更に好ましく、4.0重量%以上が最も 好ましい。また、共重合体(A)における構成単位

(|) と構成単位(| |) との合計の比率(重量%) と しては、共重合体(A)全体の50~100重量%が好 ましく、70~100重量%がより好ましい。

【0019】上記共重合体(A)においては、該重合体

(A)中のカルボキシル基を未中和型に換算した該共重 合体(A)lg当りのカルボキシル基のミリ当量数(m eq/g)が0.2~5.0となるように、各構成単位 の比率を設定することが好ましい。上記カルボキシル基 のミリ当量数 (meg/g) としては、0.3~4.5 がより好ましく、0.3~4.0が更に好ましく、0. 4~3.5が特に好ましく、0.4~3.0が最も好ま しい。カルボキシル基のミリ当量数が大きくなるとスラ ンプ保持性が低下傾向となり、他方、小さくなると初期 の分散性が低下傾向となる。尚、構成単位(II)の比 率の上限は、共重合体(A)中のカルボキシル基を未中 和型に換算したときのカルボキシル基のミリ当量数が上

【0020】上記共重合体(A)において、不飽和カル ボン酸系単量体(b)由来のカルボキシル基を有する構 成単位(II)以外に、その他のカルボキシル基をもつ 構成単位を有していてもよいことから、共重合体(A) の上記カルボキシル基のミリ当量数は、構成単位(] 1) に由来するカルボキシル基に起因するとは限られな 41

記範囲となるように設定すればよい。

【0021】上記「共重合体(A)中のカルボキシル基 を未中和型に換算した該共重合体(A)lg当りのカル ボキシル基のミリ当量数(meg/g)」とは、共重合 体(A)が塩を形成する場合を考慮したものであり、酸 の場合と塩を形成した場合の計算方法を以下に挙げる。 尚、以下の計算では、構成単位(I I) 由来のカルボキュ シル基のみを例示しているが、カルボキシル基を有する その他の構成単位を含む場合には、これもカルボキシル 基のミリ当量数に含めなければならない。

【0022】(計算例1):単量体(b)としてアクリ ル酸を用い、単量体(a)/単量体(b)=90/10 (重量%)の組成比の共重合体が得られた場合、アクリ ル酸の分子量は72であるので、単量体(b)に由来す るカルボキシル基を未中和型に換算した該重合体1g当 りのカルボキシル基のミリ当量数(meg/g)= (0.1/72)×1000=1.39となる。

【0023】(計算例2):単量体(b)としてアクリ

ル酸ナトリウムを用い、単置体(a)/単量体(b) = 80/20(重量%)の組成比の共重合体が得られた場合、アクリル酸ナトリウムの分子量は94、アクリル酸の分子量は72であるので、単量体(b)に由来するカルボキシル基を未中和型に換算した該重合体1g当りのカルボキシル基のミリ当量数(meq/g)=(0.2×72/94)/72×1000=2.23となる。尚、重合時にはアクリル酸を用い、重合後にアクリル酸に由来するカルボキシル基を水酸化ナトリウムで完全に中和した場合も、この10計算例と同様となる。

【0024】(計算例3)単量体(b)としてマレイン酸を用い、単量体(a)/単量体(b)=90/10(重量%)の組成比で共重合した場合、マレイン酸の分子量は116であり、かつ、マレイン酸は1分子中に2個のカルボキシル基を有する2価の酸であるので、単量体(b)に由来するカルボキシル基を未中和型に換算した該重合体1g当りのカルボキシル基のミリ当量数(meq/g)=0.1/(0.9+0.1)/(116/2)×1000=1.72となる。

【0025】上記カルボキシル基のミリ当量数(meq/g)は、上記のような単量体に基づいた計算法で算出する以外に、共重合体(A)のカルボキシル基の対イオンの種類を考慮した上で、該共重合体(A)の酸価を測定することによって算出することもできる。

【0026】上記共重合体(A)は、例えば、構成単位(I)を与える不飽和(ポリ)アルキレングリコールエーテル系単量体(a)及び構成単位(II)を与える不飽和カルボン酸系単量体(b)を必須成分として含む単量体成分を共重合して製造することができるが、これに限定されない。例えば、単量体(a)の代わりに、アルキレンオキシドを付加する前の単量体、すなわち3-メチル-3-ブテン-1-オール等の不飽和アルコールを用い、これを重合開始剤の存在下で単量体(b)と共重合させた後、アルキレンオキシドを平均1~500モル付加する方法によっても得ることができる。尚、単量体成分を共重合する際には、必要に応じ、上記単量体と共重合可能なその他の単量体を更に共重合させてもよい。

【0027】上記不飽和(ポリ)アルキレングリコールエーテル系単量体(a)を表す一般式(1)において、オキシアルキレン基R¹Oの炭素原子数としては、2~18が適当であるが、2~8が好ましく、2~4がより好ましい。また、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、スチレンオキシド等の中から選ばれる任意の2種類以上のアルキレンオキシド付加物については、ランダム付加、ブロック付加、交互付加等のいずれの形態であってもよい。尚、親水性と疎水性とのバランス確保のため、オキシアルキレン基中にオキシエチレン基を必須成分として有することが好ましく、50モル%以上がオキシエチレン基であることがより好まし

く、90モル%以上がオキシエチレン基であることが更 に好ましく、95モル%以上がオキシエチレン基である ことが最も好ましい。

【0028】上記一般式(1)におけるオキシアルキレン基の平均付加モル数mは、1~500であることが適当である。好ましくは2~500、より好ましくは5~500、更に好ましくは10~500、特に好ましくは15~500、最も好ましくは20~300である。平均付加モル数が小さいほど、得られる重合体の親水性が低下して分散性能が低下する傾向があり、一方、500を超えると、共重合反応性が低下する傾向となる。尚、平均付加モル数とは、単量体1モル中において付加している当該有機基のモル数の平均値を意味する。

【0029】上記一般式(1)におけるR²は、水素原子又は炭素原子数 $1\sim30$ の炭化水素基であればよく、酸炭素原子数 $1\sim30$ の炭化水素基としては、例えば、炭素原子数 $1\sim30$ のアルキル基(脂肪族アルキル基又は脂環族アルキル基)、炭素原子数 $6\sim30$ のフェニル基、アルキルフェニル基、フェニルアルキル基、(アルキル)フェニル基で置換されたフェニル基、ナフチル基等のベンゼン環を有する芳香族基等が挙げられる。R²においては、炭化水素基の炭素原子数が増大するに従って疎水性が大きくなり、分散性が低下するため、R²が炭化水素基の場合の炭素原子数としては、 $1\sim22$ が好ましく、 $1\sim18$ がより好ましく、 $1\sim12$ が更に好ましく、 $1\sim4$ が特に好ましく、そしてR²が水素原子の場合が最も好ましい。

【0030】上記一般式(1)におけるYで表されるアルケニル基の炭素原子数としては、5~8が適当であるが、炭素原子数5のアルケニル基が好ましい。また、上記一般式(1)におけるYは、下記一般式(3);

[0031]

【化3】

20

【0032】(式中、R[®]、R⁷及びR[®]は、同一若し 40 くは異なって、水素原子又はメチル基を表す。但し、R[®]、R⁷及びR[®]は、すべてメチル基となることはない。R[®]は、上記一般式(1)における-O(R¹O)nR²との結合点であって、-CH₁-、-(CH₁)₂-又は-C(CH₃)₁-を表す。R[®]、R⁷、R[®]及びR[®]中の合計炭素原子数は、3である。)で表されることが好ましい。このようなアルケニル基としては、例えば、3-メチル-3-ブテニル基、3-メチル-2-ブテニル基、2-メチル-3-ブテニル基、2-メチル-2-ブテニル基、1、1-ジメチル-2-プロベニル基 9が挙げられるが、3-メチル-3-ブテニル基が好ま

しい。

【0033】上記一般式(1)で表される不飽和(ボリ)アルキレングリコールエーテル系単量体(a)としては、例えば、3-メチル-3-ブテン-1-オール、3-メチル-2-ブテン-1-オール、2-メチル-2-ブテン-1-オール等の不飽和アルコールにアルキレンオキシドを1~500モル付加して製造することができるが、具体的には、(ボリ)エチレングリコール3-メチル-3-ブテニルエーテル、(ボリ)エチレン(ボリ)プロピレングリコール3-メチル-3-ブテニルエーテル等が挙げられる。本発明では、構成単位(I)を与える単量体(a)として、これらの1種を単独で使用できるほか、2種以上を併用することができる。

【0034】本発明で用いられる不飽和カルボン酸系単量体(b)としては、下記一般式(2):

[0035]

[化4]

$$\begin{array}{c|c}
R^4 & R^5 \\
 & | & | \\
 C & C \\
 & | & | \\
 R^3 & COOX
\end{array}$$
(2)

【0036】(式中、R3、R4及びR5は、同一若し くは異なって、水素原子、メチル基又は-(CH2)p COOX基を表す。Xは、同一若しくは異なって、水素 原子、一価金属原子、二価金属原子、アンモニウム基又 は有機アミン基を表す。pは、0~2の整数を表す。-COOX基が2個存在する場合には、2個の-COOX 30 基により-COOCO-基が形成されていてもよい。) で表わされる構成単位(II)を与える単量体が好まし い。すなわち上記不飽和カルボン酸系単量体(b)由来 の構成単位(I I) は、上記一般式(2)で表されるこ とが好ましい。上記一般式(2)において、2個の-C OOX基により-COOCO-基が形成される場合に は、不飽和カルボン酸系単量体(b)は無水物となる。 【0037】上記不飽和カルボン酸系単量体(b)の具 体例として、不飽和モノカルボン酸系単量体としては、 アクリル酸、メタクリル酸、クロトン酸及びこれらの金 属塩、アンモニウム塩、アミン塩等が挙げられ、不飽和 ジカルボン酸系単量体としては、マレイン酸、イタコン 酸、シトラコン酸、フマル酸、又はこれらの金属塩、ア ンモニウム塩、アミン塩等が挙げられ、更にこれらの無 水物としては、無水マレイン酸、無水イタコン酸、無水 シトラコン酸等が挙げられる。中でも不飽和カルボン酸 系単量体(b)としては、(メタ)アクリル酸及びこれ らの塩、マレイン酸及びこれらの塩、並びに、無水マレ イン酸からなる群より選ばれる1種以上の単量体を必須 とするのが好ましく、特に硬化遅延性を小さくするため

には、(メタ)アクリル酸又はその塩を必須とするのが 好ましく、アクリル酸又はその塩を必須とするのが特に 好ましい。尚、これら単量体(b)は、2種類以上併用 してもよい。

【0038】上記共重合体(A)において、必須の構成 単位を与える単量体成分以外に、その他の共重合可能な 単量体(c)を用いることができる。このような単量体 (c) により構成単位(I I I) が形成されることにな る。上記構成単位(III)を与える単量体(c)とし ては、単量体(a)及び/又は単量体(b)と共重合可 能な単量体であり、例えば、下記のもの等が挙げられ、 これらの1種又は2種以上を用いることができる。 【0039】マレイン酸、無水マレイン酸、フマル酸、 イタコン酸、シトラコン酸等の不飽和ジカルボン酸類と 炭素原子数1~30のアルコールとのハーフエステル、 ジエステル類;上記不飽和ジカルボン酸類と炭素原子数 1~30のアミンとのハーフアミド、ジアミド類:上記 アルコールやアミンに炭素原子数2~18のアルキレン オキシドを1~500モル付加させたアルキル(ポリ) 20 アルキレングリコールと上記不飽和ジカルボン酸類との ハーフエステル、ジエステル類:上記不飽和ジカルボン 酸類と炭素原子数2~18のグリコール又はこれらのグ リコールの付加モル数2~500のポリアルキレングリ コールとのハーフエステル、ジエステル類;メチル(メ タ) アクリレート、エチル (メタ) アクリレート、プロ ピル(メタ)アクリレート、グリシジル(メタ)アクリ レート、メチルクロトネート、エチルクロトネート、プ ロビルクロトネート等の不飽和モノカルボン酸類と炭素 原子数1~30のアルコールとのエステル類;炭素原子 数1~30のアルコールに炭素原子数2~18のアルキ レンオキシドを1~500モル付加させたアルコキシ (ポリ) アルキレングリコールと (メタ) アクリル酸等 の不飽和モノカルボン酸類とのエステル類; (ポリ) エ チレングリコールモノメタクリレート、(ポリ)プロピ レングリコールモノメタクリレート、(ポリ) ブチレン グリコールモノメタクリレート等の、(メタ)アクリル 酸等の不飽和モノカルボン酸類への炭素原子数2~18 のアルキレンオキシドの1~500モル付加物類:マレ アミド酸と炭素原子数2~18のグリコール又はこれら、 のグリコールの付加モル数2~500のポリアルキレン グリコールとのハーフアミド類。

【0040】トリエチレングリコールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、(ポリ)エチレングリコール(ポリ)プロピレングリコールジ(メタ)アクリレート等の(ポリ)アルキレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパン

ト類:トリエチレングリコールジマレート、ポリエチレ ングリコールジマレート等の(ポリ)アルキレングリコ ールジマレート類;ビニルスルホネート、(メタ)アリ ルスルホネート、2-(メタ)アクリロキシエチルスル ホネート、3-(メタ)アクリロキシプロピルスルホネ ート、3-(メタ)アクリロキシ-2-ヒドロキシプロ ピルスルホネート、3-(メタ)アクリロキシ-2-ヒ ドロキシプロピルスルホフェニルエーテル、3-(メ タ)アクリロキシ-2-ヒドロキシプロピルオキシスル ホベンゾエート、4-(メタ) アクリロキシブチルスル 10 ホネート、(メタ) アクリルアミドメチルスルホン酸、 (メタ) アクリルアミドエチルスルホン酸、2-メチル プロパンスルホン酸(メタ)アクリルアミド、スチレン スルホン酸等の不飽和スルホン酸類、並びに、それらの 一価金属塩、二価金属塩、アンモニウム塩及び有機アミ ン塩:メチル(メタ)アクリルアミドのように不飽和モ ノカルボン酸類と炭素原子数1~30のアミンとのアミ ド類;スチレン、α-メチルスチレン、ビニルトルエ ン、p-メチルスチレン等のビニル芳香族類;1,4-ブタンジオールモノ (メタ) アクリレート、1,5-ペ 20 ンタンジオールモノ (メタ) アクリレート、1,6-ヘ キサンジオールモノ (メタ) アクリレート等のアルカン ジオールモノ (メタ) アクリレート類; ブタジエン、イ ソプレン、2-メチル-1、3-ブタジエン、2-クロ ルー1,3-ブタジエン等のジエン類。

ルアルキルアミド、N-メチロール (メタ) アクリルア ミド、N, N-ジメチル (メタ) アクリルアミド等の不 飽和アミド類; (メタ) アクリロニトリル、α-クロロ アクリロニトリル等の不飽和シアン類;酢酸ビニル、プ 30 ロピオン酸ビニル等の不飽和エステル類; (メタ)アク リル酸アミノエチル、 (メタ) アクリル酸メチルアミノ エチル、(メタ)アクリル酸ジメチルアミノエチル、 (メタ) アクリル酸ジメチルアミノプロピル、(メタ) アクリル酸ジブチルアミノエチル、ビニルピリジン等の 不飽和アミン類;ジビニルベンゼン等のジビニル芳香族 類;トリアリルシアヌレート等のシアヌレート類;(メ タ) アリルアルコール、グリシジル(メタ) アリルエー テル等のアリル類;メトキシポリエチレングリコールモ ノビニルエーテル、ポリエチレングリコールモノビニル 40 エーテル、メトキシポリエチレングリコールモノ (メ タ)アリルエーテル、ポリエチレングリコールモノ (メ タ)アリルエーテル、等のビニルエーテル或いはアリル エーテル類;ポリジメチルシロキサンプロピルアミノマ レインアミド酸、ポリジメチルシロキサンアミノプロピ レンアミノマレインアミド酸、ポリジメチルシロキサン - ピス- (プロピルアミノマレインアミド酸)、ポリジ メチルシロキサン-ビス-(ジプロピレンアミノマレイ ンアミド酸)、ポリジメチルシロキサン-(1-プロピ ルー3-アクリレート)、ポリジメチルシロキサン-

【0041】(メタ)アクリルアミド、(メタ)アクリ

(1-プロピル-3-メタクリレート)、ボリジメチルシロキサン-ビス-(1-プロピル-3-アクリレート)、ボリジメチルシロキサン-ビス-(1-プロビル-3-メタクリレート)等のシロキサン誘導体。

【0042】本発明における共重合体(A)を得るに は、重合開始剤を用いて上記単量体成分を共重合させれ ばよい。共重合は、溶液重合や塊状重合等の公知の方法 で行うことができる。溶液重合は回分式でも連続式でも 行うことができ、その際に使用される溶媒としては特に 限定されず、例えば、水;メチルアルコール、エチルア ルコール、イソプロピルアルコール等のアルコール;ベ ンゼン、トルエン、キシレン、シクロヘキサン、n-ヘ キサン等の芳香族或いは脂肪族炭化水素:酢酸エチル等 のエステル化合物; アセトン、メチルエチルケトン等の ケトン化合物; テトラヒドロフラン、ジオキサン等の環 状エーテル化合物等が挙げられるが、原料単量体及び得 られる重合体の溶解性から、水及び炭素数1~4の低級 アルコールよりなる群から選ばれた少なくとも1種を用 いることが好ましく、その中でも水を溶媒に用いるの が、脱溶剤工程を省略できる点で更に好ましい。

【0043】上記共重合体(A)を製造するために水溶 液重合を行なう場合には、ラジカル重合開始剤として、 水溶性の重合開始剤、例えば、過硫酸アンモニウム、過 硫酸ナトリウム、過硫酸カリウム等の過硫酸塩;過酸化 水素;2,2'-アゾビス-2-メチルプロピオンアミ ジン塩酸塩等のアゾアミジン化合物、2,21-アゾビ ス-2-(2-イミダゾリン-2-イル) プロパン塩酸 塩等の環状アゾアミジン化合物、2-カルバモイルアゾ イソブチロニトリル等のアゾニトリル化合物等の水溶性 アゾ系開始剤等が使用され、この際、亜硫酸水素ナトリ ウム等のアルカリ金属亜硫酸塩、メタ二亜硫酸塩、次亜 燐酸ナトリウム、モール塩等のFe(I I)塩、ヒドロ キシメタンスルフィン酸ナトリウム二水和物、ヒドロキ シルアミン塩酸塩、チオ尿素、L-アスコルビン酸 (塩)、エリソルビン酸(塩)等の促進剤を併用すると ともできる。中でも、過酸化水素とL-アスコルビン酸 (塩)等の促進剤との組み合わせが好ましい。 これらの ラジカル重合開始剤や促進剤はそれぞれ単独で用いても よく、2種以上を併用してもよい。

40 【0044】また低級アルコール、芳香族若しくは脂肪族炭化水素、エステル化合物、又は、ケトン化合物を溶媒とする溶液重合を行う場合には、ベンゾイルバーオキシド、ラウロイルパーオキシド、ナトリウムバーオキシド等のパーオキシド;tーブチルハイドロパーオキシド、クメンハイドロパーオキシド等のハイドロバーオキシド;アゾビスイソブチロニトリル等のアゾ化合物等がラジカル重合開始剤として用いられる。この際アミン化合物等の促進剤を併用することもできる。更に、水一低級アルコール混合溶媒を用いる場合には、上記の種々のラジカル重合開始剤、又は、ラジカル重合開始剤と促進

剤の組み合わせの中から適宜選択して用いることができ る。

【0045】更に塊状重合を行う場合には、ラジカル重 合開始剤として、ベンゾイルパーオキシド、ラウロイル パーオキシド、ナトリウムパーオキシド等のパーオキシ ド; t-ブチルハイドロパーオキシド、クメンハイドロ パーオキシド等のハイドロパーオキシド;アゾビスイソ ブチロニトリル等のアゾ化合物等を用い、50~200 ℃の温度で行われる。

【0046】上記共重合体(A)の分子量調整のため、 連鎖移動剤を用いることができる。連鎖移動剤としては 特に限定されず、例えば、メルカプトエタノール、チオ グリセロール、チオグリコール酸、2-メルカプトプロ ピオン酸、3-メルカプトプロピオン酸、チオリンゴ 酸、チオグリコール酸オクチル、3-メルカプトプロピ オン酸オクチル、2-メルカプトエタンスルホン酸等の チオール系連鎖移動剤等が挙げられる。これらは単独で 用いてもよく、2種以上を併用してもよい。更に、共重 合体(A)の分子量調整のためには、単量体(c)とし て(メタ)アリルスルホン酸(塩)類等の連鎖移動性の 20 高い単量体を用いることも有効である。

【0047】上記共重合体(A)は、そのままでもセメ ント混和剤の主成分として用いられるが、必要に応じ て、更にアルカリ性物質で中和して用いてもよい。この ようなアルカリ性物質としては特に限定されず、例え ば、一価金属又は二価金属の水酸化物や炭酸塩等の無機 塩;アンモニア;有機アミン等の1種又は2種以上を用 いることが好ましい。また、反応終了後、必要ならば濃 度調整を行うこともできる。

【0048】上記共重合体(A)の重量平均分子量とし ては、ゲルパーミエーションクロマトグラフィー(以下 「GPC」ともいう) によるポリエチレングリコール換 算で1000~50000が適当であるが、5000 ~30000が好ましく、10000~150000 がより好ましい。このような重量平均分子量の範囲を選 ぶことで、より高い分散性能を発揮するセメント混和剤 が得られる。

【0049】本発明のセメント混和剤は、共重合体 (A)とオキシカルボン酸系化合物(B)とを必須成分 として含むものであるが、水溶液の形態でそのままセメ ント混和剤の主成分として使用してもよいし、乾燥させ て粉体化して使用してもよい。尚、セメント混和剤をセ メント組成物に添加する場合、予め共重合体(A)とオ キシカルボン酸系化合物(B)とを混合したセメント混 和剤を添加してもよいし、共重合体(A)とオキシカル ボン酸系化合物(B)とを別々に添加してもよい。

【0050】本発明のセメント混和剤は、各種水硬性材 料、すなわちセメントや石膏等のセメント組成物やそれ 以外の水硬性材料に用いることができる。このような水 14

に必要に応じて細骨材(砂等)や粗骨材(砕石等)を含 む水硬性組成物の具体例としては、セメントペースト、 モルタル、コンクリート、プラスター等が挙げられる。 【0051】上記水硬性組成物の中では、水硬性材料と してセメントを使用するセメント組成物が最も一般的で あり、該セメント組成物は、本発明のセメント混和剤、 セメント及び水を必須成分として含んでなる。このよう なセメント組成物は、本発明の好ましい実施形態の1つ である。

【0052】上記セメント組成物において使用されるセ メントとしては、特に限定はない。例えば、ポルトラン ドセメント(普通、早強、超早強、中庸熱、耐硫酸塩及 びそれぞれの低アルカリ形)、各種混合セメント(高炉 セメント、シリカセメント、フライアッシュセメン ト)、白色ポルトランドセメント、アルミナセメント、 超速硬セメント(1クリンカー速硬性セメント、2クリ ンカー速硬性セメント、リン酸マグネシウムセメン ト)、グラウト用セメント、油井セメント、低発熱セメ ント(低発熱型高炉セメント、フライアッシュ混合低発 熱型高炉セメント、ビーライト高含有セメント)、超高 強度セメント、セメント系固化材、エコセメント(都市 ごみ焼却灰、下水汚泥焼却灰の一種以上を原料として製 造されたセメント)等が挙げられ、更に、高炉スラグ、 フライアッシュ、シンダーアッシュ、クリンカーアッシ ュ、ハスクアッシュ、シリカヒューム、シリカ粉末、石 灰石粉末等の微粉体や石膏を添加してもよい。また、骨 材としては、砂利、砕石、水砕スラグ、再生骨材等以外 に、珪石質、粘土質、ジルコン質、ハイアルミナ質、炭 化珪素質、黒鉛質、クロム質、クロマグ質、マグネシア 質等の耐火骨材が使用可能である。

【0053】上記セメント組成物においては、その1m ³ あたりの単位水量、セメント使用量及び水/セメント 比には特に制限はなく、単位水量100~185kg/ m³、使用セメント量250~800kg/m³、水/ セメント比(重量比)=0.1~0.7、好ましくは単 位水量120~175 kg/m³、使用セメント量27 0~800kg/m³、水/セメント比(重量比)= 0.2~0.65が推奨され、貧配合~富配合まで幅広 く使用可能であり、単位セメント量の多い高強度コンク・ リート、単位セメント量が300kg/m³以下の貧配 合コンクリートのいずれにも有効である。

【0054】上記セメント組成物における本発明のセメ ント混和剤の配合割合については、特に限定はないが、 水硬セメントを用いるモルタルやコンクリート等に使用 する場合には、固形分換算でセメント重量の0.01~ 5. 0%、好ましくは0. 02~2. 0%、より好まし くは0.05~1.0%となる比率の量を添加すればよ い。このような添加量により、単位水量の低減、強度の 増大、耐久性の向上等の各種の好ましい諸効果がもたら 硬性材料と水と本発明のセメント混和剤とを含有し、更 50 される。上記配合割合が0.01%未満では、性能的に 充分とはならないおそれがあり、逆に5.0%を超える 多量を使用しても、その効果は実質上頭打ちとなり経済 性の面からも不利となる。

15

【0055】上記セメント組成物は、ポンプ圧送性にも 優れ、施工時の作業性を著しく改善し、高い流動性を有 していることから、レディーミクストコンクリート、コ ンクリート2次製品(プレキャストコンクリート)用の コンクリート、遠心成形用コンクリート、振動締め固め 用コンクリート、蒸気養生コンクリート、吹付けコンク リート等に有効であり、更に、中流動コンクリート(ス ランプ値が22~25cmの範囲のコンクリート)、髙 流動コンクリート(スランプ値が25cm以上で、スラ ンプフロー値が50~70cmの範囲のコンクリー ト)、自己充填性コンクリート、セルフレベリング材等 の高い流動性を要求されるモルタルやコンクリートにも 有効である。

【0056】上記セメント組成物は、例えば、以下に記 載するようなセメント分散剤を含有することができる。 リグニンスルホン酸塩;ポリオール誘導体;ナフタレン スルホン酸ホルマリン縮合物:メラミンスルホン酸ホル 20 マリン縮合物;ポリスチレンスルホン酸塩;特開平1-113419号公報に記載の如くアミノアリールスルホ ン酸-フェノールーホルムアルデヒド縮合物等のアミノ スルホン酸系;特開平7-267705号公報に記載の 如く(a)成分として、ポリアルキレングリコールモノ (メタ) アクリル酸エステル系化合物と(メタ) アクリ ル酸系化合物との共重合体及び/又はその塩と、(b) 成分として、ポリアルキレングリコールモノ (メタ) ア リルエーテル系化合物と無水マレイン酸との共重合体及 び/若しくはその加水分解物、並びに/又は、その塩 と、(c)成分として、ポリアルキレングリコールモノ (メタ) アリルエーテル系化合物と、ポリアルキレング リコール系化合物のマレイン酸エステルとの共重合体及 び/又はその塩とを含むセメント分散剤;特許第250 8113号明細書に記載の如くA成分として、(メタ) アクリル酸のポリアルキレングリコールエステルと (メ タ) アクリル酸(塩) との共重合体、B成分として、特 定のポリエチレングリコールポリプロピレングリコール 系化合物、C成分として、特定の界面活性剤からなるコ ンクリート混和剤;特開昭62-216950号公報に 40 記載の如く(メタ)アクリル酸のポリエチレン(プロピ レン)グリコールエステル若しくはポリエチレン(プロ ピレン) グリコールモノ (メタ) アリルエーテル、(メ タ) アリルスルホン酸(塩)、並びに、(メタ) アクリ ル酸(塩)からなる共重合体。

【0057】特開平1-226757号公報に記載の如 く(メタ)アクリル酸のポリエチレン(プロピレン)グ リコールエステル、(メタ)アリルスルホン酸(塩)、 及び、(メタ)アクリル酸(塩)からなる共重合体:特

ル酸のポリエチレン (プロピレン) グリコールエステ ル、(メタ) アリルスルホン酸(塩) 若しくはp-(メ タ) アリルオキシベンゼンスルホン酸(塩)、並びに、 (メタ)アクリル酸(塩)からなる共重合体;特開平4 -149056号公報に記載の如くポリエチレングリコ ールモノ(メタ)アリルエーテルとマレイン酸(塩)と の共重合体:特開平5-170501号公報に記載の如 く(メタ)アクリル酸のポリエチレングリコールエステ ル、(メタ)アリルスルホン酸(塩)、(メタ)アクリ ル酸(塩)、アルカンジオールモノ(メタ)アクリレー ト、ポリアルキレングリコールモノ(メタ)アクリレー ト、及び、分子中にアミド基を有する α 、 β - 不飽和単 量体からなる共重合体;特開平6-191918号公報 に記載の如くポリエチレングリコールモノ (メタ) アリ ルエーテル、ポリエチレングリコールモノ (メタ) アク リレート、(メタ)アクリル酸アルキルエステル、(メ タ)アクリル酸(塩)、並びに、(メタ)アリルスルホ ン酸(塩)若しくはp-(メタ)アリルオキシベンゼン スルホン酸(塩)からなる共重合体;特開平5-432 88号公報に記載の如くアルコキシボリアルキレングリ コールモノアリルエーテルと無水マレイン酸との共重合 体、若しくは、その加水分解物、又は、その塩;特公昭 58-38380号公報に記載の如くポリエチレングリ コールモノアリルエーテル、マレイン酸、及び、これら の単量体と共重合可能な単量体からなる共重合体、若し くは、その塩、又は、そのエステル。

【0058】特公昭59-18338号公報に記載の如 くポリアルキレングリコールモノ (メタ) アクリル酸エ ステル系単量体、(メタ)アクリル酸系単量体、及び、 これらの単量体と共重合可能な単量体からなる共重合 30 体;特開昭62-119147号公報に記載の如くスル ホン酸基を有する(メタ)アクリル酸エステル及び必要 によりこれと共重合可能な単量体からなる共重合体、又 は、その塩;特開平6-271347号公報に記載の如 くアルコキシポリアルキレングリコールモノアリルエー テルと無水マレイン酸との共重合体と、末端にアルケニ ル基を有するポリオキシアルキレン誘導体とのエステル 化反応物:特開平6-298555号公報に記載の如く アルコキシポリアルキレングリコールモノアリルエーテ ルと無水マレイン酸との共重合体と、末端に水酸基を有 するポリオキシアルキレン誘導体とのエステル化反応 物。これらセメント分散剤は単独で用いてもよく、2種 以上を併用してもよい。

【0059】上記セメント分散剤を用いる場合には、上 記共重合体(A)と上記セメント分散剤との比率、すな わち固形分換算での重量割合(重量%)としては、上記 共重合体(A)と上記セメント分散剤との性能バランス によって最適な比率は異なるが、1/99~99/1が 好ましく、5/95~95/5がより好ましく、10/ 公平5-36377号公報に記載の如く(メタ)アクリ 50 90~90/10が最も好ましい。また上記セメント組

カルシウム等のギ酸塩;アルカノールアミン;アルミナ セメント;カルシウムアルミネートシリケート等。

18

(5)鉱油系消泡剤:燈油、流動パラフィン等。

(6)油脂系消泡剤:動植物油、どま油、ひまし油、と れらのアルキレンオキシド付加物等。

(7) 脂肪酸系消泡剤:オレイン酸、ステアリン酸、と れらのアルキレンオキシド付加物等。

(8) 脂肪酸エステル系消泡剤: グリセリンモノリシノ レート、アルケニルコハク酸誘導体、ソルビトールモノ ス等。

【0063】(9)オキシアルキレン系消泡剤:(ボ リ) オキシエチレン(ボリ) オキシプロピレン付加物等 のポリオキシアルキレン類;ジエチレングリコールヘブ **チルエーテル、ポリオキシエチレンオレイルエーテル** ポリオキシプロピレンブチルエーテル、ポリオキシエチ レンポリオキシプロピレン2-エチルヘキシルエーテ ル、炭素原子数12~14の髙級アルコールへのオキシ エチレンオキシプロピレン付加物等の(ポリ)オキシア ルキルエーテル類;ポリオキシプロピレンフェニルエー テル、ポリオキシエチレンノニルフェニルエーテル等の (ポリ) オキシアルキレン (アルキル) アリールエーテ ル類;2,4,7,9-テトラメチル-5-デシン-4, 7-ジオール、2, 5-ジメチル-3-ヘキシン-2, 5-ジオール, 3-メチル-1-ブチン-3-オー ル等のアセチレンアルコールにアルキレンオキシドを付 加重合させたアセチレンエーテル類:ジエチレングリコ ールオレイン酸エステル、ジエチレングリコールラウリ ル酸エステル、エチレングリコールジステアリン酸エス テル等の(ポリ)オキシアルキレン脂肪酸エステル類; ポリオキシエチレンソルビタンモノラウリン酸エステ ル、ポリオキシエチレンソルビタントリオレイン酸エス テル等の(ポリ)オキシアルキレンソルビタン脂肪酸エ ステル類;ポリオキシプロピレンメチルエーテル硫酸ナ トリウム、ポリオキシエチレンドデシルフェノールエー テル硫酸ナトリウム等の(ポリ)オキシアルキレンアル キル(アリール)エーテル硫酸エステル塩類:(ポリ) オキシエチレンステアリルリン酸エステル等の(ポリ) オキシアルキレンアルキルリン酸エステル類:ポリオキ シエチレンラウリルアミン等の(ポリ)オキシアルキレ ンアルキルアミン類;ポリオキシアルキレンアミド等。 【0064】(10)アルコール系消泡剤:オクチルア ルコール、ヘキサデシルアルコール、アセチレンアルコ ール、グリコール類等。

(11) アミド系消泡剤: アクリレートポリアミン等。 (12) リン酸エステル系消泡剤:リン酸トリプチル、 ナトリウムオクチルホスフェート等。

(13)金属石鹸系消泡剤:アルミニウムステアレー ト、カルシウムオレエート等。

(14)シリコーン系消泡剤:ジメチルシリコーン油、

成物は、以下の(1)~(20)に例示するような他の 公知のセメント添加剤(材)を含有することができる。 【0060】(1)水溶性高分子物質:ポリアクリル酸 (ナトリウム)、ポリメタクリル酸(ナトリウム)、ポ リマレイン酸(ナトリウム)、アクリル酸・マレイン酸 共重合物のナトリウム塩等の不飽和カルボン酸重合物: ポリエチレングリコール、ポリプロピレングリコール等 のポリオキシエチレンあるいはポリオキシプロピレンの ポリマー又はそれらのコポリマー;メチルセルロース、 エチルセルロース、ヒドロキシメチルセルロース、ヒド 10 ラウレート、ソルビトールトリオレエート、天然ワック ロキシエチルセルロース、カルボキシメチルセルロー ス、カルボキシエチルセルロース、ヒドロキシプロピル セルロース等の非イオン性セルロースエーテル類;メチ ルセルロース、エチルセルロース、ヒドロキシエチルセ ルロース、ヒドロキシプロビルセルロース等の多糖類の アルキル化又はヒドロキシアルキル化誘導体の一部又は 全部の水酸基の水素原子が、炭素数8~40の炭化水素 鎖を部分構造として有する疎水性置換基と、スルホン酸 基又はそれらの塩を部分構造として有するイオン性親水 性置換基で置換されてなる多糖誘導体;酵母グルカンや 20 キサンタンガム、 $\beta - 1.3$ グルカン類(直鎖状、分岐 鎖状の何れでも良く、一例を挙げれば、カードラン、パ ラミロン、パキマン、スクレログルカン、ラミナラン 等)等の微生物醗酵によって製造される多糖類;ポリア クリルアミド;ポリビニルアルコール;デンプン;デン プンリン酸エステル;アルギン酸ナトリウム;ゼラチ ン;分子内にアミノ基を有するアクリル酸のコポリマー 及びその四級化合物等。

【0061】(2) 高分子エマルジョン: (メタ) アク リル酸アルキル等の各種ビニル単量体の共重合物等。

(3) オキシカルボン酸系化合物 (B) 以外の硬化遅延 剤:グルコース、フラクトース、ガラクトース、サッカ ロース、キシロース、アピオース、リボース、異性化糖 等の単糖類や、二糖、三糖等のオリゴ糖、又はデキスト リン等のオリゴ糖、又はデキストラン等の多糖類、これ らを含む糖蜜類等の糖類:ソルビトール等の糖アルコー ル; 珪弗化マグネシウム; リン酸並びにその塩又はホウ 酸エステル類;アミノカルボン酸とその塩;アルカリ可 溶タンパク質;フミン酸;タンニン酸;フェノール;グ リセリン等の多価アルコール; アミノトリ (メチレンホ スホン酸)、1-ヒドロキシエチリデン-1、1-ジホ スホン酸、エチレンジアミンテトラ(メチレンホスホン 酸)、ジエチレントリアミンペンタ(メチレンホスホン 酸)及びこれらのアルカリ金属塩、アルカリ土類金属塩 等のホスホン酸及びその誘導体等。

【0062】(4)早強剤・促進剤:塩化カルシウム、 亜硝酸カルシウム、硝酸カルシウム、臭化カルシウム、 ヨウ化カルシウム等の可溶性カルシウム塩;塩化鉄、塩 化マグネシウム等の塩化物:硫酸塩:水酸化カリウム: 水酸化ナトリウム;炭酸塩;チオ硫酸塩;ギ酸及びギ酸 50

シリコーンペースト、シリコーンエマルジョン、有機変性ポリシロキサン(ジメチルポリシロキサン等のポリオルガノシロキサン)、フルオロシリコーン油等。

【0065】(15) AE剤: 樹脂石鹸、飽和あるいは不飽和脂肪酸、ヒドロキシステアリン酸ナトリウム、ラウリルサルフェート、ABS(アルキルベンゼンスルホン酸)、LAS(直鎖アルキルベンゼンスルホン酸)、アルカンスルホネート、ポリオキシエチレンアルキル(フェニル)エーテル、ポリオキシエチレンアルキル(フェニル)エーテル硫酸エステル又はその塩、ポリオ 10キシエチレンアルキル(フェニル)エーテルリン酸エステル又はその塩、蛋白質材料、アルケニルスルホコハク酸、αーオレフィンスルホネート等。

【0066】(16)その他界面活性剤:オクタデシル アルコールやステアリルアルコール等の分子内に6~3 0個の炭素原子を有する脂肪族1価アルコール、アビエ チルアルコール等の分子内に6~30個の炭素原子を有 する脂環式1価アルコール、ドデシルメルカプタン等の 分子内に6~30個の炭素原子を有する1価メルカプタ ン、ノニルフェノール等の分子内に6~30個の炭素原 20 子を有するアルキルフェノール、ドデシルアミン等の分 子内に6~30個の炭素原子を有するアミン、ラウリン 酸やステアリン酸等の分子内に6~30個の炭素原子を 有するカルボン酸に、エチレンオキシド、プロピレンオ キシド等のアルキレンオキシドを10モル以上付加させ たポリアルキレンオキシド誘導体類;アルキル基又はア ルコキシ基を置換基として有しても良い、スルホン基を 有する2 個のフェニル基がエーテル結合した、アルキル ジフェニルエーテルスルホン酸塩類;各種アニオン性界 面活性剤;アルキルアミンアセテート、アルキルトリメ 30 チルアンモニウムクロライド等の各種カチオン性界面活 性剤;各種ノニオン性界面活性剤;各種両性界面活性剤 等。

【0067】(17)防水剤:脂肪酸(塩)、脂肪酸エステル、油脂、シリコン、パラフィン、アスファルト、ワックス等。

- (18)防錆剤:亜硝酸塩、リン酸塩、酸化亜鉛等。
- (19)ひび割れ低減剤:ポリオキシアルキルエーテル 等。
- (20) 膨張材;エトリンガイト系、石炭系等。

【0068】その他の公知のセメント添加剤(材)としては、セメント湿潤剤、増粘剤、分離低減剤、凝集剤、乾燥収縮低減剤、強度増進剤、セルフレベリング剤、防錆剤、着色剤、防カビ剤等を挙げることができる。これら公知のセメント添加剤(材)は単独で用いてもよく、2種以上を併用してもよい。

【0069】上記セメント組成物において、セメント及び水以外の成分についての特に好適な実施形態としては、次の(1)~(4)が挙げられる。

(1) ①本発明のセメント混和剤、及び、②オキシアル 50 XL+GUARD COLUMN

キレン系消泡剤の2成分を必須とする組み合わせ。尚、 ②のオキシアルキレン系消泡剤の配合重量比としては、 ②のセメント混和剤に対して0.001~10重量%の 範囲が好ましい。

【0070】(2) ②本発明のセメント混和剤、及び、②材料分離低減剤の2成分を必須とする組み合わせ。材料分離低減剤としては、非イオン性セルロースエーテル類等の各種増粘剤、部分構造として炭素数4~30の炭化水素鎖からなる疎水性置換基と炭素数2~18のアルキレンオキシドを平均付加モル数で2~300付加したポリオキシアルキレン鎖とを有する化合物等が使用可能である。尚、②のセメント混和剤と②の材料分離低減剤との配合重量比としては、10/90~99.99/0.1がより好ましい。この組み合わせのセメント組成物は、高流動コンクリート、自己充填性コンクリート、セルフレベリング材として好適である。

【0071】(3) ①本発明のセメント混和剤、及び、②分子中にスルホン酸基を有するスルホン酸系分散剤の2成分を必須とする組み合わせ。スルホン酸系分散剤としては、リグニンスルホン酸塩、ナフタレンスルホン酸ホルマリン縮合物、メラミンスルホン酸ホルマリン縮合物、ポリスチレンスルホン酸塩、アミノアリールスルホン酸ーフェノールーホルムアルデヒド縮合物等のアミノスルホン酸系の分散剤等が使用可能である。尚、①のセメント混和剤と②の分子中にスルホン酸基を有するスルホン酸系分散剤との配合重量比としては、5/95~95/5が好ましく、10/90~90/10がより好ましい。

【0072】(4) ①本発明のセメント混和剤、及び、 ②リグニンスルホン酸塩の2成分を必須とする組み合わせ。尚、①のセメント混和剤と②のリグニンスルホン酸塩との配合重量比としては、5/95~95/5が好ましく、10/90~90/10がより好ましい。 【00731

【実施例】以下に実施例を挙げ、本発明をさらに具体的 に説明するが、本発明はこれらに限定されるものではな い。尚、特にことわりのない限り、「%」は重量%を、 「部」は重量部を表すものとする。

10 【0074】<重量平均分子量測定条件>

機 種: Waters LCMl

検出器:示差屈折計(RI)検出器(Waters410)

溶離液:種類 0.05M酢酸ナトリウム、アセトニトリル/イオン交換水溶液=40/60(vol%)、酢酸でpH6.0に調整

流量 0.6ml/分

カラム: 種類 東ソー (株) 製、TSK-GEL G4 000SWXL+G3000SWXL+G2000SW YL+GUARD COLUMN

各 7. 8×300mm、6. 0×40mm 温度 40℃

検量線:ポリエチレングリコール基準

【0075】製造例1

温度計、撹拌機、滴下ロート、窒素導入管及び還流冷却 器を備えたガラス製反応容器に、イオン交換水1291 部、3-メチル-3-ブテン-1-オールにエチレンオ キシドを平均50モル付加した不飽和ポリアルキレング リコールエーテル1812部、マレイン酸188部を仕 込み、撹拌下に反応容器内を窒素置換し、窒素雰囲気下 10 算のカルボン酸量=1.00 (meq/g) であった。 で60℃に昇温した。NC-32W(日宝化学社製 2, 2'-アゾビス-2メチルプロピオンアミジン塩酸 塩の87%品)の15%水溶液50部を加え、7時間60 ℃に温度を維持し、さらに温度を80℃まで上昇後1時 間攪拌して重合反応を完結させた。その後、重合反応温 度以下の温度で水酸化ナトリウム水溶液を用いて反応溶 液をpH7に中和し、重量平均分子量27000の重合 体水溶液である本発明の共重合体(A)に相当する共重 合体(A-1)を得た。また、3-メチル-3-ブテン - 1 - オールにエチレンオキサイドを50モル付加した 20 不飽和ポリアルキレングリコールエーテルとマレイン酸 の残存量を液体クロマトグラフィー(LC)により測定 し、重合率を求めたところ、該不飽和ポリアルキレング リコールエーテルの重合率は、90.0%、マレイン酸 の重合率は90.1%であった。従って、共重合組成比 は不飽和ポリアルキレングリコールエーテル/マレイン 酸=87.5/12.5(重量%)=32.7/67. 3 (モル%)、未中和型共重合体換算のカルボン酸量= 1. 62 (meq/g) であった。

【0076】製造例2

温度計、攪拌機、滴下ロート、窒素導入管及び還流冷却 器を備えたガラス製反応容器に、イオン交換水72.2 6部、3-メチル-3-ブテン-1-オールにエチレン オキサイドを50モル付加した不飽和ポリアルキレング リコールエーテル127.74部を仕込み、65℃に昇 温した後、そこへ過酸化水素30%水溶液0.38部を 添加した。次に、アクリル酸40%水溶液19.83部 を反応容器内に3時間かけて滴下し、それと同時に、3 -メルカプトプロピオン酸0.35部を3時間、L-ア スコルビン酸2. 1%水溶液6. 99部を3. 5時間か けて反応容器内に滴下した。その後、60分間引き続い て65℃に温度を維持して重合反応を完結させ、温度を 50℃以下に降温し水酸化ナトリウム5.0%水溶液7 9. 12部でpH7になるように中和し、重量平均分子 量27,000の重合体水溶液である本発明の共重合体 (A) に相当する共重合体 (A-2) を得た。また、3

-メチル-3-ブテン-1-オールにエチレンオキサイ ドを50モル付加した不飽和ポリアルキレングリコール エーテルとアクリル酸の残存量を液体クロマトグラフィ ー(LC)により測定し、重合率を求めたところ、該不 飽和ポリアルキレングリコールエーテルの重合率は、7 8. 4%、アクリル酸の重合率は98. 4%であった。 従って、共重合組成比は不飽和ポリアルキレングリコー ルエーテル/アクリル酸=90.8/9.2 (重量%) = 28.8/71.2 (モル%)、未中和型共重合体換 【0077】<硬化遅延剤>オキシカルボン酸系化合物 (B) 及び硬化遅延剤(C) として下記のものを用い

(B-1)グルコン酸ナトリウム

(B-2) リンゴ酸

た。

30

(C-1) リン酸水素ニカリウム

【0078】<コンクリート試験>

(コンクリート組成物の調製) セメントとして普通ポル トランドセメント(太平洋セメント社製)、細骨材とし て大井川水系産陸砂、粗骨材として青海産砕石、混練水 として水道水を用い、下記の配合でコンクリート組成物 を調製した。尚、コンクリート組成物の温度が30℃又 は15℃の試験温度になるように、試験に使用する材 料、強制練りミキサー、測定器具類を上記の試験温度雰 囲気下で調温し、混練及び各測定は上記の試験温度雰囲 気下で行った。また、コンクリート組成物中の気泡がコ ンクリート組成物の流動性に及ぼす影響を避ける為に、 必要に応じて市販のオキシアルキレン系消泡剤を用い、 空気量が1.0±0.3%となるように調整した。

(配合) セメント: 320 kg/m³、水: 176 kg /m³、細骨材:822kg/m³、粗骨材:892k g/m³、細骨材率(細骨材/細骨材+粗骨材)(容積 比):48%、水/セメント比(重量比)=0.55 【0079】上記条件下に強制練りミキサーを用いて混 練時間2分間でコンクリートを製造し、スランプ値、凝 結時間(終結時間)及び空気量を測定した。尚、スラン ブ値、凝結時間(終結時間)及び空気量の測定は、それ ぞれJIS-A-1101、JIS-A-6204 附 属書1、JIS-A-1128に準拠して行った。尚、 40 表中の共重合体(A)及び/又はオキシカルボン酸系化 合物(B)又は硬化遅延剤(C)の添加量は、セメント に対する固形分の重量%を示し、初期スランブ値が20 ±1cmになるように添加量を調整して比較した。試験 結果を表1に示す。

[0080]

【表1】

-	-

		実施例1	実施例2	実施例3	実施例4	実施例5	実施例6	実施例7	比較例1	比较例2	比较例3	比較例4	比较例5
試験温	實(℃)	30	30	30	30	30	15	15	30	30	30	30	30
配	合	A-1+B-1	A-1+B-1	A-2+B-1	A-1+B-2	A-2+B-2	A-1+B-1	A-2+B-l	A-l	A-2	B-1	B-2	A-1+C-1
添加量 (wt%)	(A)	0.12	0.12	0.08	0.12	0.08	0.12	0.08	0.13	0.10			0.13
	(B)	0.014	0.060	0.040	0.060	0.040	0.060	0.040	_	-	1.000	1.000	_
	(C)	1	1	-			-	_	_	+	_	_	0.060
配合比 (%)	(A)	89.6	66.7	66.7	66.7	66.7	66.7	66.7	_	_	_	_	68.4
	(B)	10.4	33.3	33.3	33.3	33.3	33.3	33.3			_		_
	(C)	-	ı	-		_	_		_	_	_	_	31.6
添加量	合計	0.134	0.180	0.120	0.180	0.120	0.180	0.120	0.130	0.100	1.000	1.000	0.190
	5分後	20.0	20.5	20.0	20.5	20.0	19.0	19.5	20.0	20.5	9.0	8.5	20.0
スランプ値 (cm)	30分後	19.0	20.0	19.0	20.0	19.0	20.5	19.5	18.0	1,8.0	-		19.0
	60分後	17.5	19.0	18.0	19.0	17.5	20.0	19.0	15.0	14.0	_		16.0
	90分後	15.0	17.5	16.5	17.0	16.0	19.5	18.5	11.0	10.0		_	12.0
挺結時間	明(分)	380	420	460	395	430	760	800	370	365	24時間後 未硬化	24時間後 未硬化	390

【0081】表1に示すように、試験温度が30℃において、共重合体(A-1)又は(A-2)をそれぞれ単独で用いた場合、オキシカルボン酸系化合物以外の無機系の硬化遅延剤を用いた場合の何れの場合も経時による流動性の低下が大きく、他方、オキシカルボン酸系化合物(B-1)又は(B-2)をそれぞれ単独で用いた場合は充分な流動性が得られなかった。一方、共重合体(A-1)又は(A-2)とオキシカルボン酸系化合物(B-1)又は(B-2)とを併用した本発明のセメント混和剤を用いた場合、試験温度が15℃では、経時に*

* よる流動性の低下は小さいが硬化が遅くなったのに対し、試験温度が30℃では、経時による流動性の低下は小さく、かつ、硬化も早かった。

[0082]

【発明の効果】本発明のセメント混和剤をセメント組成物に添加すれば、夏場等の高温時においても長時間にわたって流動性の低下が防止可能となり、セメント組成物をポンプ等により移送したり型枠等に充填したりする工程での作業性が改善される。

フロントページの続き

(51)Int.Cl.'	識別記 号	FΙ	テーマコード(参考)
CO8F 216/16	•	CO8F 216/16	
220/04		220/04	
222/00		222/00	
290/06		290/06	
// C 0 4 B 103:40		C 0 4 B 103:40	
			•

(72)発明者 枚田 健

大阪府吹田市西御旅町5番8号 株式会社 日本触媒内 F ターム(参考) 4G012 PA04 PB17 PB31 PC03 PC05 PC12 PC14 4J027 AC01 AC02 AC03 AC07 BA04 BA06 CC02 CD00 4J100 AE01P AE18P AE26P AJ01Q AJ02Q AJ08Q AJ09Q AK01Q AK04Q AK18Q AK29Q AK31Q BA02P BA03P BA04P BA32Q

CA04 JA67

THIS PAGE BLANK (USPTO)