Planche nº 33. Matrices (partie II)

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

La totalité des exercices de la planche n° 26 (matrices, partie I) ont été reproduits dans cette planche. On devra le chercher à nouveau avec un éclairage nouveau.

Exercice nº 1: (**T)

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique $\mathscr{B}=(e_1,e_2,e_3)$ de \mathbb{R}^3 est

$$M = \left(\begin{array}{ccc} 2 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{array}\right).$$

- 1) Déterminer $f(2e_1 3e_2 + 5e_3)$.
- 2) Déterminer Ker(f) et Im(f).
- 3) Calculer M^2 et M^3 .
- 4) Déterminer Ker (f²) et Im (f²).
- 5) Calculer $(I_3 M)(I_3 + M + M^2)$ et en déduire que $I_3 M$ est inversible. Préciser $(I_3 M)^{-1}$.

Exercice nº 2: (**)

Pour x réel, on pose

$$A(x) = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}.$$

Déterminer $(A(x))^n$ pour x réel et n entier relatif.

Exercice no 3: (***T)

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique $\mathscr{B}=(e_1,e_2,e_3)$ de \mathbb{R}^3 est

$$M = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{array}\right).$$

- 1) Montrer que f est un automorphisme de \mathbb{R}^3 et déterminer f^{-1} .
- 2) Déterminer une base $\mathscr{B}'=(\mathfrak{u}_1,\mathfrak{u}_2,\mathfrak{u}_3)$ de \mathbb{R}^3 telle que $f(\mathfrak{u}_1)=\mathfrak{u}_1,\,\mathfrak{u}(\mathfrak{u}_2)=\mathfrak{u}_1+\mathfrak{u}_2$ et $\mathfrak{u}(\mathfrak{u}_3)=\mathfrak{u}_2+\mathfrak{u}_3$.
- 3) Déterminer P la matrice de passage de \mathscr{B} à \mathscr{B}' ainsi que P^{-1} .
- 4) En déduire $f^n(e_1)$, $f^n(e_2)$ et $f^n(e_3)$ pour n entier relatif.

Exercice n° 4: (**T)

$$\begin{array}{cccc} \mathrm{Soit} & f \ : & \mathbb{R}_n[X] & \to & \mathbb{R}_{n+1}[X] \\ & P & \mapsto & Q = e^{X^2} (Pe^{-X^2})' \end{array}.$$

- 1) Vérifier que $f \in (\mathcal{L}(\mathbb{R}_n[X], \mathbb{R}_{n+1}[X]).$
- 2) Déterminer la matrice de f relativement aux bases canoniques de $\mathbb{R}_n[X]$ et $\mathbb{R}_{n+1}[X]$.
- 3) Déterminer Ker(f) et rg(f).

Exercice no 5: (***I)

Soit f un endomorphisme de \mathbb{R}^3 , nilpotent d'indice 2. Montrer qu'il existe une base de \mathbb{R}^3 dans laquelle la matrice de f s'écrit $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Exercice nº 6: (*)

$$\operatorname{Soit} A = \left(\begin{array}{cccc} 0 & 0 & \dots & 0 & 1 \\ 0 & & & 1 & 0 \\ \vdots & & & & \vdots \\ 0 & 1 & 0 & & 0 \\ 1 & 0 & \dots & \dots & 0 \end{array} \right) \in \mathscr{M}_p(\mathbb{R}). \text{ Calculer } A^n \text{ pour } n \text{ entier relatif.}$$

Exercice no 7: (**)

Montrer que $\left\{\frac{1}{\sqrt{1-x^2}}\begin{pmatrix}1&x\\x&1\end{pmatrix},\ x\in]-1,1[\right\}$ est un groupe pour la multiplication des matrices (on pourra poser $x=\operatorname{th}\alpha$).

Exercice nº 8: (***)

- 1) Montrer qu'une matrice triangulaire supérieure est inversible si et seulement si ses coefficients diagonaux sont tous non nuls.
- 2) Montrer que toute matrice triangulaire supérieure est semblable à une matirce triangulaire inférieure.

Exercice no 9: (***)

$$\mathrm{Soient}\ I = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \ \mathrm{et}\ J = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \ \mathrm{puis}\ E = \left\{M(x,y) = xI + yJ,\ (x,y) \in \mathbb{R}^2\right\}.$$

- 1) Montrer que E est un sous-espace vectoriel de $(\mathcal{M}_2(\mathbb{R}),+,.)$. Déterminer une base de E et sa dimension.
- 2) Montrer que $(E, +, \times)$ est un anneau commutatif.
- 3) Quels sont les inversibles de cet anneau?
- 4) Résoudre dans E les équations suivantes :

a)
$$X^2 = I$$
 b) $X^2 = 0$ c) $X^2 = X$.

5) Calculer $(M(x,y))^n$ pour n entier naturel non nul.

Exercice no 10: (***)

Soient $A \in \mathcal{M}_{3,2}(\mathbb{R})$ et $B \in \mathcal{M}_{2,3}(\mathbb{R})$ telles que

$$AB = \left(\begin{array}{ccc} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{array}\right).$$

Montrer l'existence d'au moins un couple (A,B) vérifiant les conditions de l'énoncé puis calculer BA. (Indication. Calculer $(AB)^2$ et utiliser le rang.)

Exercice no 11: (***)

Soit $A=(\mathfrak{a}_{\mathfrak{i},\mathfrak{j}})_{1\leqslant\mathfrak{i},\mathfrak{j}\leqslant\mathfrak{n}}\ (\mathfrak{n}\geqslant2)$ définie par

$$\forall i \in [\![1,n]\!], \ \alpha_{i,j} = \left\{ \begin{array}{l} i \ \mathrm{si} \ i = j \\ 1 \ \mathrm{si} \ i > j \\ 0 \ \mathrm{si} \ i < j \end{array} \right..$$

Montrer que A est inversible et calculer son inverse.

Exercice no 12: (***I)

Déterminer l'ensemble des éléments de $\mathcal{M}_n(\mathbb{K})$ qui commutent avec tous les éléments de $\mathcal{M}_n(\mathbb{K})$ (utiliser les matrices élémentaires).

Exercice no 13: (***T)

Déterminer le rang des matrices suivantes :

1)
$$\begin{pmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & m \end{pmatrix}$$
 2) $\begin{pmatrix} 1 & 1 & 1 & 1 \\ b+c & c+a & a+b \\ bc & ca & ab \end{pmatrix}$ 3) $\begin{pmatrix} 1 & a & 1 & b \\ a & 1 & b & 1 \\ 1 & b & 1 & a \\ b & 1 & a & 1 \end{pmatrix}$
4) $(i+j+ij)_{1\leqslant i,j\leqslant n}$ 5) $(\sin(i+j))_{1\leqslant i,j\leqslant n}$ 6) $\begin{pmatrix} a & b & 0 & \dots & 0 \\ 0 & a & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \ddots & \ddots & b \\ b & 0 & \dots & 0 & a \end{pmatrix}$, $(a,b) \in \mathbb{C}^2$.

Exercice no 14: (****)

Montrer que tout hyperplan de $\mathcal{M}_n(\mathbb{K})$ $(n \ge 2)$ contient au moins une matrice inversible.

Exercice nº 15: (***I) (Théorème de HADAMARD).

Soit $A \in \mathscr{M}_n(\mathbb{C})$ telle que : $\forall i \in [1, n], \ |a_{i,i}| > \sum_{i \neq i} |a_{i,j}|$. Montrer que A est inversible.

Exercice nº 16: (***I) (Matrice de VANDERMONDE des racines n-ièmes de l'unité).

Soit $\omega = e^{2i\pi/n}$, $(n \geqslant 2)$. Soit $A = (\omega^{(j-1)(k-1)})_{1 \leqslant j,k \leqslant n}$. Montrer que A est inversible et calculer A^{-1} (calculer d'abord $A\overline{A}$).

Exercice no 17: (***I)

$$\mathrm{Soit}\ A = (\alpha_{i,j})_{1\leqslant i,j\leqslant n+1}\ \mathrm{d\acute{e}finie}\ \mathrm{par}\ \alpha_{i,j} = 0\ \mathrm{si}\ i>j\ \mathrm{et}\ \alpha_{i,j} = \binom{i-1}{j-1}\ \mathrm{si}\ i\leqslant j.$$

Montrer que A est inversible et déterminer son inverse. (Indication : considérer l'endomorphisme de $\mathbb{R}_n[X]$ qui à un polynôme P associe le polynôme P(X+1)).

Exercice no 18: (**I)

On pose $u_0 = 1$, $v_0 = 0$, puis, pour $n \in \mathbb{N}$, $u_{n+1} = 2u_n + v_n$ et $v_{n+1} = u_n + 2v_n$.

- 1) Soit $A=\left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right)$. Pour $n\in\mathbb{N},$ calculer $A^n.$ En déduire \mathfrak{u}_n et \mathfrak{v}_n en fonction de n.
- 2) En utilisant deux combinaisons linéaires intéressantes des suites u et v, calculer directement u_n et v_n en fonction de n.

Exercice no 19: (**)

Soient
$$A \in \mathcal{M}_n(\mathbb{C})$$
 puis B l'élément de $\mathcal{M}_{np}(\mathbb{C})$ défini par $B = \begin{pmatrix} A & 0 & \dots & 0 \\ 0 & A & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & A \end{pmatrix}$. Déterminer le rang de B en fonction

du rang de A.