PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-223317

(43) Date of publication of application: 22.08.1995

(51)Int.CI.

B41J 2/06

(21)Application number: 06-036446

B41J 2/205

(71)Applicant: FUJI XEROX CO LTD

(22) Date of filing: 09.02.1994

(72)Inventor: MARUYAMA NORIKO

HIRAGATA SUSUMU ANDOU SHIGEHITO

KODERA TETSUO ADACHI KOJI OKAMOTO TORU

ABE KEIZO

MARUYAMA KAZUO

(54) INK-JET RECORDING DEVICE

(57)Abstract:

PURPOSE: To provide a static attraction type ink-jet recording device which performs speeding up of a printing speed and is free from occurrence of misdirection.

CONSTITUTION: An ink chamber 22 is filled with a hot-melt ink 21, an orifice 24 is opened in an orifice plate 23 which is constituted as a sumit part wall of the ink chamber 22 and a needlelike control electrode 25 is arranged by exposing on its center. An intermediate transfer body 15 arranged by facing on the orifice 24 is formed of a metallic roll to which fixed voltage is applied. The hot-melt ink 21 is heated by an ink heater 26 and in a molten state. When driving voltage is applied to a space between electrodes by image information and the ink is discharged, though consumed ink is refilled by hydrostatic pressure, propelling force other than the hydrostatic pressure is imparted to the ink by surface tension of the needlelike control electrode through which refilling of an ink meniscus shortening a refilling time is helped.

LEGAL STATUS

[Date of request for examination]

16.11.1999

[Date of sending the examiner's decision of rejection]

08.10.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-223317

(43)公開日 平成7年(1995)8月22日

	2/06 2/205	識別記号	庁内整理番号	FΙ	技術表示箇所			
	2,200			B 4 1 J	3/ 04	103	G	
						103	X	
					未請求	請求項の数 6	FD	(全 6 頁)
(21)出願番号		特顯平6-36446		(71)出顧人	000005496			
					富士ゼロ	コックス株式会社	生	
(22)出顧日		平成6年(1994)2		東京都港区赤坂三丁目3番5号				
			(72)発明者	丸山 のり子				
					神奈川県川崎市麻生区万福寺1丁目2番2			
					号新百台	今21ビル 富士	ピロック	ス株式会社
					内			
				(72)発明者	平温	色		
					神奈川リ	具海老名市本娜2	274番地	富士ゼロ
					ックスを	朱式会社内		
				(74)代理人	弁理士	石井 康夫	(外1名)
							最	終頁に続く

(54) 【発明の名称】 インクジェット記録装置

(57)【要約】

【目的】 印字速度を高速化し、ミスディレクションを 起こすことのない静電吸引方式のインクジェット記録装 置を提供する。

【構成】 インク室22には、ホットメルトインク21が充填され、インク室22の頂部壁として構成されるオリフィス板23には、オリフィス24が開口され、その中心に、針状制御電極25が露出して配設されている。オリフィス24に対向配置されている中間転写体15は、金属ロールから形成され、一定の電圧が印加されている。ホットメルトインク21は、インクヒータ26によって加熱され溶融状態となっている。画像情報によって、電極間に駆動電圧が印加されインクが吐出されると、消費されたインクは、静水圧によって再供給されるが、オリフィスの中心に設けられた針状制御電極の表面張力によってインクに静水圧以外の推進力を与え、再供給の時間を短縮するインクメニスカスのリフィルを助ける。

【特許請求の範囲】

【請求項1】 記録ヘッドの記録電極と対向配置された対向電極との間に画像情報に応じて変化する電位差を与えることにより生ずる静電吸引力によってインクを対向電極側へ飛翔させる静電吸引方式のインクジェット記録装置において、前記記録ヘッドは少なくともインクを吐出するオリフィス部を有し、かつ、各オリフィスの中心に針状部材を設けたことを特徴とする静電吸引方式のインクジェット記録装置。

1

【請求項2】 室温で固体であり加熱することにより溶 10 融するホットメルトインクを用い、該ホットメルトインクが充填された記録へッドは、前記ホットメルトインクを加熱、溶融させる加熱手段を持ち、前記記録へッドの記録電極と対向配置された対向電極との間に画像情報に応じて変化する電位差を与えることにより生ずる静電吸引力によって前記ホットメルトインクを対向電極側へ飛翔させる静電吸引方式のインクジェット記録装置において、前記記録へッドは、少なくとも、インクを吐出するオリフィス部、インクを溶融状態で保持するインク室を有し、かつ、各オリフィスの中心に針状部材を設けたこ 20とを特徴とする静電吸引方式のインクジェット記録装置。

【請求項3】 前記針状部材が、針状の記録電極であることを特徴とする請求項1または2に記載の静電吸引方式のインクジェット記録装置。

【請求項4】 前記針状部材が、絶縁性の針状部材であることを特徴とする請求項1または2 に記載の静電吸引方式のインクジェット記録装置。

【請求項5】 室温で固体であり加熱することにより溶融するホットメルトインクを用い、該ホットメルトインクが充填された記録へッドは、前記ホットメルトインクを加熱、溶融させる加熱手段を持ち、前記記録へッドの記録電極と対向配置された対向電極との間に画像情報に応じて変化する電位差を与えることにより生ずる静電吸引力によって前記ホットメルトインクを対向電極側へ飛翔させる静電吸引方式のインクジェット記録装置において、前記記録へッドは、少なくとも、インクを吐出するオリフィス部、インクを溶融状態で保持するインク室を有し、かつ、各オリフィス近傍に第1記録電極および各オリフィスの中心に針状部材を用いた第2記録電極を設けたことを特徴とする静電吸引方式のインクジェット記録装置。

【請求項6】 前記針状部材が、インクに対する濡れ性の良好な材料、または、インクに対する濡れ性の良好な被膜が施された部材であることを特徴とする請求項1ないし5のいずれか1項に記載の静電吸引方式のインクジェット記録装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、静電吸引力により記録 50 クを吐出するオリフィス部を有し、かつ、各オリフィス

ヘッドからインクが飛翔してインク画像を形成する静電 吸引方式のインクジェット記録装置の改良に関するもの である。

[0002]

【従来の技術】インクジェット記録方式の中でも、記録 ヘッド内に充填されたインクに静電吸引力を作用させて 被記録媒体または中間転写体上へ飛翔させる静電吸引方 式の記録装置は、記録ヘッドの構造が簡単であるため、 記録紙幅のヘッドの作製が容易であり、パルス幅を変調 させることでドット径の制御を行なうこともでき、高階 調度の画像が得られることで注目されている。このよう な静電吸引方式の記録装置は、特開平5-57907号 公報に開示されているように、インクに電圧がかけられ るとオリフィス先端のインクメニスカス(半球状凸面) より曳糸が発生し、インクが被記録媒体や中間転写体上 に飛翔して画像を形成する。しかし、飛翔によって消費 されたインクが静水圧により再供給され、初期メニスカ スの高さに戻るのに時間を要するので、髙周波数での記 録に限界を生じること、また、従来はメニスカス周辺に のみ制御電極を設けていたが、髙周波数化に伴い、メニ スカス頂点への電荷の注入が間に合わず、高周波数で限 界を生じることがあった。

【0003】このような場合、高い周波数では画像に抜けを生じるか、また、抜けを生じない周波数でも、初期メニスカスの高さに戻る前に電圧がかかると、曳糸がメニスカスの頂点から発生せずに偏ってインクが飛び出す、いわゆるミスディレクションを起こしやすく、与えられた画像情報とは異なった位置にドットを形成してしまい、画質が低下するという問題が起きた。

[0004]

【発明が解決しようとする課題】本発明は、上述した事情に鑑みてなされたもので、静電吸引方式のインクジェット記録装置において、印字速度を高速化し、インクの飛翔方向が常に安定し、所定の位置にドットが形成されて画質の優れた画像を得ることができる静電吸引方式記録装置を提供することを目的として、印字動作とインクの飛翔状況を鋭意に検討した結果、インクメニスカスの応答性を改善し、再供給の促進を図るためには、メニスカスのリフィルに静水圧以外の推進力を加えること、さらに、ミスディレクションをなくすには、常にメニスカスの頂点からインクを飛翔させることを、実現する必要があることが分かった。

[0005]

【課題を解決するための手段】本発明は、請求項1に記載の発明においては、記録ヘッドの記録電極と対向配置された対向電極との間に画像情報に応じて変化する電位差を与えることにより生ずる静電吸引力によってインクを対向電極側へ飛翔させる静電吸引方式のインクジェット記録装置において、前記記録ヘッドは少なくともインクを吐出するオリフィス部を有し、かつ、冬オリフィス

3

の中心に針状部材を設けたことを特徴とするものであり、請求項2に記載の発明においては、室温で固体であり加熱することにより溶融するホットメルトインクを用い、該ホットメルトインクが充填された記録へッドは、前記ホットメルトインクを加熱、溶融させる加熱手段を持ち、前記記録へッドの記録電極と対向配置された対向電極との間に画像情報に応じて変化する電位差を与えることにより生ずる静電吸引力によって前記ホットメルトインクを対向電極側へ飛翔させる静電吸引方式のインクジェット記録装置において、前記記録へッドは、少なくとも、インクを吐出するオリフィス部、インクを溶融状態で保持するインク室を有し、かつ、各オリフィスの中心に針状部材を設けたことを特徴とするものである。

【0006】請求項3に記載の発明においては、請求項1または2に記載の静電吸引方式のインクジェット記録装置において、前記針状部材が、針状の記録電極であることを特徴とするものであり、請求項4に記載の発明においては、請求項1または2に記載の静電吸引方式のインクジェット記録装置において、前記針状部材が、絶縁性の針状部材であることを特徴とするものである。

【0007】請求項5に記載の発明においては、室温で固体であり加熱することにより溶融するホットメルトインクを用い、該ホットメルトインクが充填された記録へッドは、前記ホットメルトインクを加熱、溶融させる加熱手段を持ち、前記記録へッドの記録電極と対向配置された対向電極との間に画像情報に応じて変化する電位差を与えることにより生ずる静電吸引力によって前記ホットメルトインクを対向電極側へ飛翔させる静電吸引方式のインクジェット記録装置において、前記記録へッドは、少なくとも、インクを吐出するオリフィス部、イン 30 クを溶融状態で保持するインク室を有し、かつ、各オリフィス近傍に第1記録電極および各オリフィスの中心に針状部材を用いた第2記録電極を設けたことを特徴とするものである。

【0008】請求項6に記載の発明においては、請求項1ないし5のいずれか1項に記載の静電吸引方式のインクジェット記録装置において、前記針状部材が、インクに対する濡れ性の良好な材料、または、インクに対する濡れ性の良好な被膜が施された部材であることを特徴とするものである。

[0009]

【作用】インクが画像情報に応じて印字されるときのメ ニスカスの状態は、

- ① 初期メニスカスの半球状態から、
- ② 電圧がかけられて、円錐状に変化し、
- ③ 曳糸が飛翔して被記録媒体や中間転写体にドットが 形成され、
- **④** 電圧が切れると、インクが消費されたために偏平な 状態になり、
- ⑤ その後インクが静水圧により再供給されてもとの状 50 転写を行なう。クリーナ18は、中間転写体15上の残

態、すなわち、①の状態に戻る。

【0010】本発明においては、単数または複数で構成されたインクを吐出するオリフィスの中心に針状部材を設けることにより、表面張力によってインクが針状部材を伝って、インクに静水圧以外の推進力を与えることができる。この推進力は、メニスカスのリフィルを助け、インクメニスカスの再供給に要する時間が減少し、印字周波数が高速化され、また、曳糸が確実にメニスカス頂点から飛翔するので、ミスディレクションを起こすことなく被記録媒体や中間転写上の正確な位置にドットが形成できる。

【0011】 このようなインクジェット記録装置に使用されるインクとしては、液状のインクを用いることができる。また、室温で固体であるホットメルトインクを用いて、これを加熱して溶融し、飛翔させることもできる。ホットメルトインクを用いると、滲みが生じることがなく、普通紙に印字可能となるため便利である。

【0012】また、オリフィスの中心に設けられる針状 部材を記録電極とすることにより、対向電極との間の電 20 界強度を高めることができる。針状部材として、インク に対する濡れ性の良好な材料、または、インクに対する 濡れ性の良好な被膜が施された部材を用いることによって、インクメニスカスの再供給に要する時間を、より減少させることができる。

[0013]

【実施例】図1は、本発明が適用された静電吸引方式の インクジェット記録装置の概略構成図である。図中、1 0は記録ヘッド、11はブラック用ヘッド、12はイエ ロー用ヘッド、13はマゼンダ用ヘッド、14はシアン 用ヘッド、15は中間転写体、16は記録媒体、17は 背面ロール、18はクリーナである。この実施例では、 記録へッドとして、ブラック用へッド11、イエロー用 ヘッド12、マゼンタ用ヘッド13、シアン用ヘッド1 4からなるカラー印字のため4色のヘッドを有する記録 ヘッド10を用いた。しかし、他の配色のヘッドを用い ることもできるし、単色、例えば、ブラック用ヘッドの みを用いるようにしてもよい。また、後述するように、 インクは、実施例では、ホットメルトインクを用いた が、常温で液状のインクを用いてもよいことはもちろん 40 である。常温で液状のインクを用いた場合には、中間転 写体を用いることなく、記録媒体に直接印字を行なうよ うにする。

【0014】画像情報によって各ヘッドが駆動されると、ホットメルトインクがクーロン力により飛翔して、対向配置された中間転写体15に付着する。付着したインクは、中間転写体15に付着した後、急速に固化する。記録媒体16には、中間転写体15上のインクによる画像が転写される。背面ロール17は、記録媒体16を搬送し、中間転写体15に記録媒体16を押し付け、転写を行なる。なりにより20は、中間転写体15に記録媒体16を押し付け、転写を行なる。なりにより20は、中間転写体15上の様

留インクや紙粉,異物,ゴミ等を除去する構成となって いる。

【0015】図2は、本発明のインクジェット記録装置における記録ヘッドの一実施例の構成図である。図中、10は記録ヘッド、15は中間転写体、21はホットメルトインク、22はインク室、23はオリフィス板、24はオリフィス、25は針状制御電極、26はインクヒータ、27は制御電極、28は絶縁支持層である。

【0016】記録ヘッド10は、1つのヘッドのみを図 示した。インク室22には、室温で固体であり加熱する ことによって溶融するホットメルトインク21が充填さ れている。とのインク室22の頂部壁として構成される オリフィス板23には、中間転写体15の面と垂直な方 向にオリフィス24が開口され、オリフィス24の中心 には、中間転写体15の面と垂直な方向に、針状制御電 極25が露出して配設されている。また、インク室22 には、そこに充填されているホットメルトインク21を 溶融するための加熱手段として、インクヒータ26が配 設されている。さらに、上記オリフィス24の近傍に は、制御電極27が配置されており、制御電極27と針 20 状制御電極25には、図示しないホストコンピュータか らの画像信号に応じた制御電圧が印加されるようになっ ている。メニスカスは、図示しない静水圧ポンプにより 一定に保持されている。

【0017】一方、オリフィス24に対向配置されている中間転写体15は、アルミニウムを用いた金属ロールから形成され、インクメニスカスから曳糸が飛び出さない程度に一定の電圧が常に印加されるようになっている。常時印加する電圧は、高いほど応答性が良いが、飛翔電圧近くになると、制御電圧なしでも、インクが飛びやすくなり、コントラストが低下するので、この実施例では-1000V程度を印加した。

【0018】針状制御電極25は、絶縁支持層28によって支持され、オリフィス24から長く露出しているが、導電性の中間転写体15に近づきすぎると、スパークを起こす恐れがあるので、オリフィス24の開口面に対して、メニスカス直径、すなわち、メニスカスのエッジを保持するオリフィス直径、または、ノズル直径の0以上1/2以下の高さが望ましい。

【0019】ホットメルトインク21は、インクヒータ26によって加熱され、溶融状態となっている。画像情報によって、電極間に駆動電圧が印加され、インクが吐出されると、針状制御電極25の近傍のインクが消費される。消費された量に見合うインクは、静水圧によってリフィルされるが、オリフィスの中心に設けられた針状制御電極の表面張力によってインクが針状制御電極を伝って、インクに静水圧以外の推進力を与え、メニスカスのリフィルを助け、インクメニスカスの再供給に要する時間を減少させることができる。また、針状電極から対向電極におろした垂線が両電極の最短距離となるため、

もっとも強い電界が形成されるので、前記垂線上にある メニスカス頂点から、曳糸が確実に飛翔するので、ミス ディレクションを起こすこともない。

【0020】図3は、図2で説明した実施例における針状制御電極部分の拡大図である。図中、図2と同様な部分には同じ符号を付して説明を省略する。29はパターン電極である。針状制御電極部分は、絶縁支持層28とパターニングされたパターン電極29と針状電極25により構成されている。パターン電極29は、絶縁支持層28上に、銅などの金属箔を接着するか、あるいは、真空蒸着やスパッタリングやメッキ法などにより、全面に金属層を形成した後、フォトリソグラフィーとウェットエッチングやドライエッチング、あるいは、レーザ描画や放電描画等によって、金属層をパターニングして形成される。針状制御電極25は、パターン電極29上に、電解メッキあるいは無電解メッキ等の手段によって金属材料を積層し、複数本形成されている。

【0021】絶縁支持層28を形成する材料としては、SiO,,Al,O,,SiN,AlN,TiO,、TaN等の絶縁性セラミック材や、ポリイミド,ポリイミドアミド,ポリエステル,エポキシレジンなどの絶縁性樹脂が適している。

【0022】針状制御電極を形成する材料としては、A l, Cu, Cr, Zn, Fe, Mo, W, Ru, Re, Ta, Ti, Zr, Rh, Ni, ステンレス、および、それらの成分を含有する合金材料等からなる耐摩耗性に優れた硬質金属や、硬質で直径 0.1μ m $\sim 5\mu$ mの微粒子であるAl, O, , BN, SiC, B, C, NiO, Cr, O, , Si, N, , TiC, TiO, , WC, WSi, , ZrO, , ZrB, , ZrC, Cr, C, , TaC, MgO, CaO, ThO, 等の合金材料を混入させた金属あるいは導電性セラミック材の1つまたは2種類以上の混合体等が好ましい。

【0023】との実施例の具体例では、80μmのオリフィス径の中心に、Niを電解メッキにより、直径20μmの針電極をオリフィスの開口面から30μm突出した形に形成した。また、各パターン電極は、オリフィス周辺の各記録電極に導通している。

【0024】との実施例で使用したインクは、直鎖ポリエチレンワックス(BASF社製、商品名:酸化ポリエチレンワックスOA2)に対して、カーボンブラック(キャボット社製、商品名:R330)を6重量%と、界面活性剤のアルギリトルメチルアンモニウムクロライド(Armour and Co.社製、商品名:Arquard112)を2重量%とを配合し、ボールミキサーを用いて、80℃で10分間攪拌し、ホットメルトインクを調整した。

【0025】以下に示す条件、すなわち、

200spi(2.54センチあたり200ドット)対

50 応

飛翔繰り返し最大周波数	10KHz
ヘッド温度	100℃
オリフィス直径	8 O μ m
オリフィス配列	2列千鳥
針状制御電極直径	$20 \mu m$
針状制御電極露出長	$40 \mu m$
制御電圧	200V
針状制御電極印加電圧	200V
パルス幅	1. 0 m s
中間転写体バイアス電圧	- 1 0 0 0 V
ヘッド表面から被記録媒体までの距離	$200 \mu m$
静水圧	10 mm H ₂ O
の条件で画像記録を行なったところ、	1000Hzの印
字周波数においても、メニスカス形成の	の遅れがなく、同
一径のドットを印字することができ、	ミスディレクショ
ンも、100ドット中、σ=5μm、i	最大ズレ10μm
以内に抑えることができた。	
【0096】オリファスに針状制御電	応を設置した いへ

7

【0026】オリフィスに針状制御電極を設置しないへッドを用意し、これを実施例と同じ印字装置に設置して印字してみたところ、実施例と同じ飛翔繰り返し周波数 20では、ドット抜けやミスディレクションによるむらが目立ち、100ドット中、σ=15μm、最大ズレ50μmで、ドット抜けを起こさない最大印字周波数は、200Hzであった。

【0027】上述した実施例では、オリフィスの中心に 針状の電極を設けたが、これに制御電圧を印加すること なく、単に、金属製の針状部材として構成することもで きる。また、絶縁性の針状部材を用いてもよく、これら 針状部材による表面張力によって、インクに推進力を付* *加することができる。また、針状部材として、インクに対する濡れ性の良好な材料、または、インクに対する濡れ性の良好な被膜が施された部材を用いることにより、より大きな推進力を付加することができる。

[0028]

【発明の効果】以上の説明から明らかなように、本発明によれば、印字速度を髙速化し、インクの飛翔方向が常に安定し、所定の位置にドットが形成されて画質の優れた画像を作ることができる静電吸引方式のインクジェットプリントヘッドを提供できるという効果がある。また、カラー印字に適用した場合には、インクの色ずれを効果的に防止することが可能である。

【図面の簡単な説明】

【図1】 本発明が適用された静電吸引方式のインクジェット記録装置の概略構成図である。

【図2】 本発明のインクジェット記録装置における記録へッドの一実施例の構成図である。

【図3】 図2で説明した実施例における針状制御電極部分の拡大図である。

0 【符号の説明】

10…記録ヘッド、11…ブラック用ヘッド、12…イエロー用ヘッド、13…マゼンダ用ヘッド、14…シアン用ヘッド、15…中間転写体、16…記録媒体、17…背面ロール、18…クリーナ、21…ホットメルトインク、22…インク室、23…オリフィス板、24…オリフィス、25…針状制御電極、26…インクヒータ、27…制御電極、28…絶縁支持層、29…パターン電極。

【図1】

【図2】

【図3】

フロントページの続き

(72)発明者 安東 滋仁

神奈川県海老名市本郷2274番地 富士ゼロ

ックス株式会社内

(72)発明者 小寺 哲郎

神奈川県海老名市本郷2274番地 富士ゼロ

ックス株式会社内

(72)発明者 足立 康二

神奈川県海老名市本郷2274番地 富士ゼロ

ックス株式会社内

(72)発明者 岡本 徹

神奈川県海老名市本郷2274番地 富士ゼロ

ックス株式会社内

(72)発明者 阿部 敬三

神奈川県海老名市本郷2274番地 富士ゼロ

ックス株式会社内

(72)発明者 丸山 和雄

神奈川県海老名市本郷2274番地 富士ゼロ

ックス株式会社内