

Metrology and Sensing

Lecture 10-1: Measurement of basic system properties

2021-01-19

Herbert Gross

Content

- Autocollimation
- Focal length
- Basic system properties

Alignment Telescope

Measurement of small lateral displacements

$$x' = m \cdot x$$

 Zero measurement with target cross and crossing hairs

Alignment Telescope

- Deviation in measurement eyepiece quantitatively
- Achievable accuracy depends on focal length
- Accuracy of a few arc seconds possible

Autocollimation Principle

Institute of
Applied Physics
Friedrich-Schiller-Universität Jena

- Spherical test surface:
 - incoming and outgoing wavefront spherical
 - concentric waves around center of curvature: autocollimation

Aspherical test surface

Autocollimation

- Measurement of tilt errors (plane or spherical surface) in autocollimation
- Projection of the cross
- Observation of lateral shift in Fourier plane

$$x = f \cdot 2\varphi$$

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Measurement of Focal Length with Collimator

- Collimated incident light
- Calibrated collimator with focal length f_c and test chart with size y
- Selection of sharp image plane
- Analysis of image size

$$f' = -f'_c \cdot \frac{y'}{y}$$

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Measurement of Focal Length According to Gauss

- Setup with distance object-image L > 4f
- Known location of the principal plane P of the system distance d_P between principal planes
- Selection of two system locations with sharp image
- Relative axial shift D between the two setups

$$f = \frac{L - d_P}{4} - \frac{D^2}{4(L - d_P)}$$

Institute of Applied Physics

Friedrich-Schiller-Universität Jena

Measurement of Focal Length with Focometer

- Telecentric movable measurement microscope with offset y: Abbe focometer
- Focusing of two different test charts with sizes y₁ and y₂
- Determination of the focal length by

$$\tan u = \frac{y}{f} = \frac{y_2 - y_1}{e}$$

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Measurement of Focal Length by Confocal Setup

- Setup with fiber and plane mirror for autocollimation
- Change of distance between test lens and fiber
- Analysis of the recoupled power into the fiber (confocal) gives the focal point

Measurement of Focal Length by Moire Deflectometry Applied Physics Friedrich-Schiller-Universität Jena

- Setup with collimator and two Ronchi rulings
- System under test is inserted
- Grating period d and azimuthal angle θ between the gratings
- Moire pattern is rotated by angle α , if test lens acts as focussing element
- Radius of curvature R or focal length

$$R = \frac{d}{\theta \cdot \tan \alpha}$$

Determination of Best Focus

- Criteria for best focus:
- 1. Paraxial centre of curvature for the paraxial spherical wave of an on axis object point.
- 2. Maximum of the Strehl ratio
- 3. Smallest rms-value of the wave aberration
- 4. Highest contrast of the modulation of an object feature of given spatial frequency
- 5. Highest value of the slope of an edge
- 6. Highest value of the entropy of the detected digital image
- Requirements for focus detection procedure
- 1. Steep curve dependency to get high accuracy
- 2. Robust definition to deliver a large dynamic range
- 3. Suppression of side lobe effects to guarantee an unambiguous solution
- 4. High frequency pre-filtering to be noise insensitive

Determination of Best Focus

Blur of defocussed plane

Minimum of image entropy (w_i is intensity in pixel No j)

$$E = -\sum_{j} w_{j} \cdot \log_{2} w_{j}$$

Maximum of image contrast

Determination of Best Focus

- Measurement by image analysis:
- 1. Maximum gradient of edges

$$g = |\nabla I(x, y)| = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$

2. Power of gradients

$$G = \iint |\nabla I(x, y)|^2 dx dy$$

3. Laplacian

$$L = \iint \left| \nabla^2 I(x, y) \right|^2 dx \, dy$$

Measurement of Transmission

- Reasons for reduced system transmission:
 - 1. Absorption in the bulk material of the components
 - 2. Scattering in the bulk materials by inclusions or finite scattering parameters
 - 3. Absorption in the coatings of the surfaces
 - 4. Partial reflection or transmission at the coatings at transmissive or reflective surfaces
 - 5. Blocking of light via mechanical or diaphragm parts of the system due to vignetting
 - 6. Scattering of light by local surface imperfections or non-perfect polished surfaces
 - 7. Deflection of light by diffraction of the light at edges
 - 8. Deflection of light in unwanted higher orders of diffractive elements
- Usually strong dependency on:
 - 1. field position
 - 2. wavelength of light
 - 3. used pupil location
 - 4. polarization
- Critical:
 - 1. absolute values for test lens
 - 2. influence of auxiliary components
 - 3. change of vignetting and incidence angles

Measurement of Transmission

- Measurement of transmission:
 - a) Calibration setup

 $T = \frac{P_{out}}{P_{in}}$

- Reasons for measurement errors:
 - 1. Absorption in the component materials
 - 2. Absorption in the coatings
 - 3. Finite reflectivity of the coatings
 - 4. Vignetting of the aperture bundle for oblique chief rays
 - 5. Natural vignetting according for oblique chief rays and projection of tilted planes
 - 6. False light from surrounding light sources, which reach the image plane
 - 7. Scattering of light at components of the system mechanical design
 - 8. False light due to ghost images or narcissus in infrared systems

Pulfrich-Refractometer for Index Measurement

- Testsample plate on prism
- Near gracing incidence, measurement of total internal reflection at interface
- Sharp shadow boundary of transmitted light beam
- Evaluation

$$\sin \theta = n_2 \cdot \cos \varphi$$

$$n = n_2 \cdot \sin \varphi$$

$$n = \sqrt{n_2^2 - \sin^2 \theta}$$

Abbe Refractometer

- Measurement of the refractive index of a liquid
- Thin film of test liquid between prisms, adjustment of total internal reflection
- Special setup with direct sight prisms, no color fringes

Töplers Method for Striae Measurement

- Measurement of striae and index inhomogeneities at a plane plate
- Dark field method:
 - direct light blocked
 - deviated and scattered light reaches the camera

