Started on	Wednesday, 21 February 2024, 7:59 AM
State	Finished
Completed on	Friday, 23 February 2024, 8:08 PM
Time taken	2 days 12 hours
Grade	10.00 out of 10.00 (100 %)

Question ${\bf 1}$

Correct

Mark 1.00 out of 1.00

PDF of a Gaussian RV is

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)}{2\sigma^2}}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{|(x-\mu)|}{2\sigma^2}}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma}}$$

Your answer is correct.

The correct answer is:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Question ${\bf 2}$

Correct

Mark 1.00 out of 1.00

PDF of a Gaussian random vector is

$$\frac{1}{\sqrt{(2\pi)^n |\mathbf{R}|}} e^{-\frac{1}{2}(\bar{\mathbf{x}} - \bar{\boldsymbol{\mu}})^T \mathbf{R}^{-1}(\bar{\mathbf{x}} - \bar{\boldsymbol{\mu}})}$$

$$\bigcirc \quad \frac{1}{\sqrt{(2\pi)^n |\mathbf{R}|}} e^{-\frac{1}{2}(\overline{\mathbf{x}} - \overline{\boldsymbol{\mu}})^T \mathbf{R}(\overline{\mathbf{x}} - \overline{\boldsymbol{\mu}})}$$

$$\frac{1}{\sqrt{(2\pi)^n\mathbf{R}}}e^{-\frac{1}{2}(\overline{\mathbf{x}}-\overline{\boldsymbol{\mu}})^T\mathbf{R}^{-1}(\overline{\mathbf{x}}-\overline{\boldsymbol{\mu}})}$$

$$\bigcirc \frac{1}{\sqrt{(2\pi)^n\mathbf{R}}}e^{-\frac{1}{2}(\overline{\mathbf{x}}-\overline{\boldsymbol{\mu}})^T\mathbf{R}(\overline{\mathbf{x}}-\overline{\boldsymbol{\mu}})}$$

Your answer is correct.

$$\frac{1}{\sqrt{(2\pi)^n|\mathbf{R}|}}e^{-\frac{1}{2}(\bar{\mathbf{x}}-\overline{\boldsymbol{\mu}})^T\mathbf{R}^{-1}(\bar{\mathbf{x}}-\overline{\boldsymbol{\mu}})}$$

Question $\boldsymbol{3}$

Correct

Mark 1.00 out of 1.00

The mean and covariance matrix of the multivariate Guassian are defined as

$$E\{\overline{\mathbf{x}}\} = \mu, E\{(\overline{\mathbf{x}} - \overline{\boldsymbol{\mu}})^T(\overline{\mathbf{x}} - \overline{\boldsymbol{\mu}})\} = \mathbf{R}$$

$$E\{\bar{\mathbf{x}}\} = \mu, E\{\bar{\mathbf{x}}\bar{\mathbf{x}}^T\} = \mathbf{R}$$

•
$$E\{\overline{\mathbf{x}}\} = \overline{\mathbf{\mu}}, E\{(\overline{\mathbf{x}} - \overline{\mathbf{\mu}})(\overline{\mathbf{x}} - \overline{\mathbf{\mu}})^T\} = \mathbf{R}$$

Your answer is correct.

The correct answer is:

$$E\{\overline{\mathbf{x}}\} = \overline{\mathbf{\mu}}, E\{(\overline{\mathbf{x}} - \overline{\mathbf{\mu}})(\overline{\mathbf{x}} - \overline{\mathbf{\mu}})^T\} = \mathbf{R}$$

Question 4

Correct

Mark 1.00 out of 1.00

The multivariate Gaussian PDF for parameters below is

$$\overline{\mu} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\mathbf{R} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$

$$\frac{1}{\sqrt{12\pi}}e^{-\frac{1}{3}(x_1^2+x_2^2-x_1-x_2-x_1x_2+1)}$$

$$\frac{1}{\sqrt{12\pi}}e^{-\frac{1}{3}(x_1^2+x_2^2+3x_1+3x_2-x_1x_2-3)}$$

Your answer is correct.

$$\frac{1}{\sqrt{12\pi}}e^{-\frac{1}{3}(x_1^2+x_2^2-3x_1-3x_2+x_1x_2+3)}$$

Question ${\bf 5}$

Correct

Mark 1.00 out of 1.00

In Gaussian discriminant analysis, we **choose** \mathcal{C}_0 if

$$p(\bar{\mathbf{x}}; \mathcal{C}_0) > p(\bar{\mathbf{x}}; \mathcal{C}_1)$$

$$p(\bar{\mathbf{x}}; \mathcal{C}_0) = p(\bar{\mathbf{x}}; \mathcal{C}_1)$$

$$p(\bar{\mathbf{x}}; \mathcal{C}_0) > 0$$

Your answer is correct.

The correct answer is:

$$p(\bar{\mathbf{x}}; \mathcal{C}_0) > p(\bar{\mathbf{x}}; \mathcal{C}_1)$$

Question 6

Correct

Mark 1.00 out of 1.00

The Gaussian discriminant classifier can be simplified as Choose c_0 if

$$\bar{\mathbf{h}}^T(\bar{\mathbf{x}} - \widetilde{\boldsymbol{\mu}}) \ge 0, \, \widetilde{\boldsymbol{\mu}} = \frac{1}{2}(\overline{\boldsymbol{\mu}}_0 + \overline{\boldsymbol{\mu}}_1), \, \bar{\mathbf{h}} = \mathbf{R}^{-1}(\overline{\boldsymbol{\mu}}_0 - \overline{\boldsymbol{\mu}}_1)$$

$$^{\bigcirc} \quad \bar{h}^{\mathit{T}}(\bar{x}-\widetilde{\mu})<0,\, \widetilde{\mu}=\tfrac{1}{2}(\overline{\mu}_{0}-\overline{\mu}_{1}),\, \bar{h}=R^{-1}(\overline{\mu}_{0}-\overline{\mu}_{1})$$

$$\bar{\mathbf{h}}^T(\bar{\mathbf{x}} - \widetilde{\boldsymbol{\mu}}) \geq 0, \, \widetilde{\boldsymbol{\mu}} = \frac{1}{2}(\overline{\boldsymbol{\mu}}_0 - \overline{\boldsymbol{\mu}}_1), \, \bar{\mathbf{h}} = (\overline{\boldsymbol{\mu}}_0 - \overline{\boldsymbol{\mu}}_1)$$

$$\ \, ^{\bigcirc} \quad \bar{\mathbf{h}}^T(\overline{\mathbf{x}}-\widetilde{\boldsymbol{\mu}}) \geq 0, \, \widetilde{\boldsymbol{\mu}} = \frac{1}{2}(\overline{\boldsymbol{\mu}}_0 + \overline{\boldsymbol{\mu}}_1), \, \bar{\mathbf{h}} = (\overline{\boldsymbol{\mu}}_0 - \overline{\boldsymbol{\mu}}_1)$$

Your answer is correct.

$$\bar{\mathbf{h}}^T(\bar{\mathbf{x}}-\widetilde{\boldsymbol{\mu}}) \geq 0, \, \widetilde{\boldsymbol{\mu}} = \frac{1}{2}(\overline{\boldsymbol{\mu}}_0 + \overline{\boldsymbol{\mu}}_1), \, \bar{\mathbf{h}} = \mathbf{R}^{-1}(\overline{\boldsymbol{\mu}}_0 - \overline{\boldsymbol{\mu}}_1)$$

Question 7	
Correct	
Mark 1.00 out of 1.00	
The Gaussian discriminant classifier for both classes with identical covariances is	
Ellipsoidal	
 Spherical 	
Linear	✓
Conical	
Your answer is correct.	
The correct answer is:	
Linear	
Question 8	
Correct	
Mark 1.00 out of 1.00	
For the special case R = σ^2 I , the classifier reduces to	
rol the special case R = 0-1, the classifier reduces to	
$igcup$ Hyperplane parallel to $\overline{\mu}_0$ and $\overline{\mu}_1$	
Perpendicular bisector of $\overline{\mu}_0$ and $\overline{\mu}_1$	~
Sphere at center with mid-point of $\overline{\mu}_0$ and $\overline{\mu}_1$	
$^{\circ}$ Ellipsoid with semi-major axis along line joining $\overline{\mu}_0$ and $\overline{\mu}_1$	
Your answer is correct.	
The correct answer is:	
Perpendicular bisector of $\overline{\mu}_0$ and $\overline{\mu}_1$	

Question **9**

Correct

Mark 1.00 out of 1.00

Gaussian discriminant classifier is shown by the picture

Your answer is correct.

Question 10

Correct

Mark 1.00 out of 1.00

Consider the two classes \mathcal{C}_0 , \mathcal{C}_1 distributed as below and determine when the classifier chooses \mathcal{H}_0

$$\mathcal{C}_0 \sim N\left(\begin{bmatrix} -4 \\ -2 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}\right), \mathcal{C}_1 \sim N\left(\begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}\right)$$

- $2x_1 x_2 \le -1$
- $x_1 + 2x_2 \le 1$
- $0 x_1 + 2x_2 \ge -1$
- $0 \quad 2x_1 + x_2 \le 1$

Your answer is correct.

$$x_1 + 2x_2 \le 1$$