

Soluciones (puede haber diferentes maneras correctas de responder a las preguntas)

- 1. (a) Sí. La aplicación será inyectiva si $\operatorname{Ker}(f) = \{0\}$. Sea $v \in \operatorname{Ker}(f)$. Sean $\lambda_i \in \mathbb{R}$ tal que $v = \sum_{i=1}^n \lambda_i e_i$. Entonces $0 = f(v) = \sum_{i=1}^n \lambda_i f(e_i)$. Como f(B) es un conjunto de vectores linealmente independiente, entonces $\lambda_i = 0$, para todo i y por tanto, v = 0.
 - (b) No. Sea V un espacio vectorial cualquiera, B y B' bases (distintas) de V y f el endomorfismo definido por $f(e_i) = e'_i$, $1 \le i \le n$. Entonces $f \ne \text{Id}$ pues $B \ne B'$ pero M(f, B, B') = I.
 - (c) Primero se prueba que $\operatorname{Ker}(f) \subset \operatorname{an}(\operatorname{Im}(f^t))$ y luego que $\operatorname{dim}(\operatorname{Ker}(f)) = \operatorname{dim}(\operatorname{an}(\operatorname{Im}(f^t)))$ (usaremos $V^{**} = V$). Sea $v \in \operatorname{Ker}(f)$. Tomamos $\varphi \in \operatorname{Im}(f^t)$ y hay que probar que $v(\varphi) = 0$, es decir, $\varphi(v) = 0$. Como $\varphi \in \operatorname{Im}(f^t)$, existe $\varphi' \in V'^*$ tal que $f^t(\varphi') = \varphi$. Por tanto,

$$\varphi(v) = f^t(\varphi')(v) = \varphi'(f(v)) \stackrel{\text{(1)}}{=} \varphi'(0) = 0,$$

donde en (1) se ha usado que $v \in \text{Ker}(f)$.

Por otro lado, si $n = dim(V) = dim(V^*)$, se tiene

$$\dim(\operatorname{an}(\operatorname{Im}(f^t))) = n - \dim(\operatorname{Im}(f^t)) \stackrel{(1)}{=} n - \dim(\operatorname{Im}(f)) \stackrel{(2)}{=} \dim(\operatorname{Ker}(f)),$$

donde en (1) se usa que $r(f) = r(f^t)$ y en (2) que $n = \dim(\operatorname{Ker}(f)) + r(f)$.

2. Como sólo hay una ecuación cartesiana de U, entonces $\dim(U) = 2$ y una base de U es $\{(-1,2,0),(0,0,1)\}$. Ampliamos a una base de \mathbb{R}^3 : $B = \{(-1,2,0),(0,0,1),(0,1,0)\}$, pues al poner los tres vectores en una matriz, su determinante no es cero (es justamente 1). Se define f mediante

$$f(-1,2,0) = f(0,0,1) = (0,0,0), f(0,1,0) = (1,0,0).$$

Entonces

$$(-1,2,0),(0,0,1)\in \mathrm{Ker}(f)\Rightarrow U=<(-1,2,0),(0,0,1)>\subset \mathrm{Ker}(f)$$

y dim(Ker(f)) ≥ 2 . Por otro lado,

$$(1,0,0) = f(0,1,0) \in \text{Im}(f) \Rightarrow <(1,0,0) > \subset Im(f)$$

y así $\dim(\operatorname{Im}(f)) \geq 1$. Como $\dim(\mathbb{R}^3) = 3 = n(f) + r(f)$, entonces n(f) = 2, r(f) = 1 y tenemos igualdades en todas las inclusiones anteriores. De paso, una base de $\operatorname{Im}(f)$ es $\{(1,0,0)\}$.

Para hallar la matriz, sólo hay que calcular f(1,0,0). Hallando las coordenadas de este vector respecto de B, obtenemos que son: (-1/2,0,1/2), luego

$$f(1,0,0) = -\frac{1}{2}f(-1,2,0) + \frac{1}{2}f(0,1,0) = (\frac{1}{2},0,0).$$

Por tanto,

$$M(f,B_u) = \left(egin{array}{ccc} rac{1}{2} & 1 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight).$$

3. Si $B_u^* = \{\omega_1, \omega_2, \omega_3, \omega_4\}$, y como la ecuación cartesiana de U respecto de B_u es x + y - z = 0, entonces una base de an(U) es $\{(1, 1, -1, 0)\}$, escrito el vector en coordenadas respecto de B_u^* , es decir, $\{\omega_1 + \omega_2 - \omega_3\}$.

Si escribimos este vector en coordenadas respecto de B_u^* y ampliamos hasta una base de \mathbb{R}^4 , obtenemos las coordenadas de vectores de \mathbb{R}^{4*} respecto de B_u^* que forman una base de \mathbb{R}^{4*} . Basta con tomar: $\{(1,1,-1,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\}$, es decir, $B' = \{\omega_1 + \omega_2 - \omega_3, \omega_2, \omega_3, \omega_4\}$.

Sea $B' = B^* = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ y $B' = \{e'_1, e'_2, e'_3, e'_4\}$. Escribimos $e'_1 = (a, b, c, d)$ y aplicamos a e'_1 los elementos de B':

$$a+b-c=1, b=0, c=0, d=0.$$

Resolviendo, queda $e'_1 = (1,0,0,0)$. Del mismo modo se hace para los demás vectores, obteniendo: $e'_2 = (-1,1,0,0)$, $e'_3 = (1,0,1,0)$ y $e'_4 = (0,0,0,1)$.

4. Se tiene $\text{Ker}(f) = \{(x, y, z) \in \mathbb{R}^3; x + y = 0, y + z = 0\}$. Como las dos ecuaciones son linealmente independientes, entonces $\dim(\text{Ker}(f)) = 3 - 2 = 1$. Dando valores a z, obtenemos un vector del núcleo, que constituirá, por tanto, una base del mismo: Ker(f) = <(1, -1, 1)>.

Hallamos $f^t(\varphi)$.

$$f^{t}(\varphi)(x, y, z) = \varphi(f(x, y, z)) = \varphi(x + y, y + z) = x + y - 2(y + z) = x - y - 2z.$$

Por tanto, si $B_u = \{e_1, e_2, e_3\}$ y $B_u^* = \{\omega_1, \omega_2, \omega_3\}$, las coordenadas de $f^t(\varphi)$ son (1, -1, -2).

Observaciones:

En el ejercicio 1. (a), como f(B) es un sistema de generadores de Im(f), entonces f(B) es una base de Im(f). Esto prueba que $\dim(V) = \dim(Im(f))$. Por la fórmula de las dimensiones, se tiene $\dim(Ker(f)) = 0$, es decir, f es inyectiva.

En el ejercicio 4, segundo apartado, podemos escribir $f^t(\varphi) = a\omega_1 + b\omega_2 + c\omega_3$. Aplicando a ambos lados la base B_u , se tiene

$$a = f^{t}(\varphi)(e_1), b = f^{t}(\varphi)(e_2), c = f^{t}(\varphi)(e_3).$$

Por la definición de f^t , f y φ , se concluye

$$a = f^t(\varphi)(e_1) = \varphi(f(e_1)) = \varphi(1,0) = 1$$

$$b = f^{t}(\varphi)(e_2) = \varphi(f(e_2)) = \varphi(1, 1) = -1$$

$$c = f^t(\varphi)(e_3) = \varphi(f(e_3)) = \varphi(0,1) = -2$$

y las coordenadas son (1, -1, -2), es decir, $f^t(\varphi) = \omega_1 - \omega_2 - 2\omega_3$.