CSE7850/CX4803 Machine Learning in Computational Biology

Lecture 11: Unsupervised Learning (Clustering & Dimensionality Reduction)

Yunan Luo

Week	Date	Topic	Contents
1	01/08	Introduction	Introduction & Logistics
1	01/10		Molecular biology
2	01/15		No class (MLK day)
2	01/17	Basics in computational biology ML foundations	Sequence alignment I
3	01/22		Sequence alignment II
3	01/24	computational biology ML foundations Learning from sequence data Learning from	No Class (PyTorch video + exercise)
4	01/29		Regression & Gradient descent
4	01/31		Classification & Toolbox for Applied ML
5	02/05		Neural networks
5	02/07		Deep learning
6	02/12	Learning from	Deep learning for Protein/DNA sequences
6	02/14	sequence data	Large language models (LLMs)
7	02/19	Learning from	Clustering and dimensionality reduction
7	02/21	high-dim data	Generative AI
8	02/26	Learning from	Network basics & ML for graphs
8	02/28		Graph neural network
9	03/04	Learning from structure data	Protein structure prediction & generation (AlphaFold, diffusion models)

High-dim data

Structure

Supervised vs Unsupervised learning

- Supervised learning: Given (x_i, y_i) , i = 1, ..., n, learn a function $f: X \to Y$.
 - Categorical Y: classification
 - Continuous Y: regression
- Unsupervised learning: Given only (x_i) , i = 1, ..., n, can we infer the underlying structure of X?

Why do unsupervised learning?

- Raw data cheap. Labeled data expensive.
- Save memory/computation.
- Reduce noise in high-dimensional data.
- Useful in exploratory data analysis.
- Often a pre-processing step for supervised learning.

This lecture

- Clustering
 - K-means
- Dimensionality Reduction
 - o PCA
 - Auto-encoder

Finding hidden structure in data

Expression analysis

Single-cell expression analysis

Image segmentation

http://people.cs.uchicago.edu/ pff/segment

Discovering Structure in Digits

MNIST dataset

Network clustering

- Basic idea: group together similar instances
- Example: 2D point patterns

Basic idea: group together similar instances

• Example: 2D point patterns

- Basic idea: group together similar instances
- Example: 2D point patterns

- Basic idea: group together similar instances
- Example: 2D point patterns

- What could "similar" mean?
 - One option: small Euclidean distance $\operatorname{dist}(\vec{x}, \vec{y}) = ||\vec{x} \vec{y}||_2^2$
 - Clustering results are crucially dependent on the measure of similarity (or distance)
 between "points" to be clustered

Clustering Problem

Given: N unlabeled examples $X = [x_1, x_2, ..., x_N]$; the number of partitions K

Goal: Group the examples into *K* partitions

The only information clustering uses is the similarity between examples Clustering groups examples based of their mutual similarities

- Initialize: Pick K random points as cluster centers
- Repeat:
 - a. Assign data points to closest cluster center
 - Change the cluster center to the average of its assigned points
- Stop when no points' assignments change

- Initialize: Pick K random points as cluster centers
- Repeat:
 - a. Assign data points to closest cluster center
 - b. Change the cluster center to the average of its assigned points
- Stop when no points' assignments change

- Initialize: Pick K random points as cluster centers
- Repeat:
 - a. Assign data points to closest cluster center
 - b. Change the cluster center to the average of its assigned points
- Stop when no points' assignments change

- Initialize: Pick K random points as cluster centers
- Repeat:
 - a. Assign data points to closest cluster center
 - b. Change the cluster center to the average of its assigned points
- Stop when no points' assignments change

- Initialize: Pick K random points as cluster centers
- Repeat:
 - a. Assign data points to closest cluster center
 - b. Change the cluster center to the average of its assigned points
- Stop when no points' assignments change

Input: N examples $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ $(\mathbf{x}_n \in \mathbb{R}^D)$; the number of partitions K **Initialize:** K cluster centers μ_1, \dots, μ_K . Several initialization options:

- Randomly initialized anywhere in \mathbb{R}^D
- Choose any K examples as the cluster centers

Iterate:

• Assign each of example \mathbf{x}_n to its closest cluster center

$$C_k = \{n: k = \arg\min_{k} ||\mathbf{x}_n - \mu_k||^2\}$$

 $(C_k$ is the set of examples closest to μ_k)

• Recompute the new cluster centers μ_k (mean/centroid of the set C_k)

$$\mu_k = \frac{1}{|\mathcal{C}_k|} \sum_{n \in \mathcal{C}_k} \mathbf{x}_n$$

Repeat while not converged

Properties of K-means algorithm

- Guaranteed to converge in a finite number of iterations
- Running time per iteration:
 - Assign data points to closest cluster center O(KN) time
 - Change the cluster center to the average of its assigned points O(N) time

K-Means Convergence

Objective

$$\min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$$

1. Fix μ , optimize C:

optimize C:
$$\min_{C} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2 = \min_{C} \sum_{i=1}^{n} \left| x_i - \mu_{x_i} \right|^2$$

Assign data points to closest cluster center

2. Fix C, optimize μ :

$$\min_{\mu} \sum_{i=1}^k \sum_{x \in C_i} |x - \mu_i|^2$$

- Take partial derivative of μ_i and set to zero, we have

$$\mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

Step 2 of kmeans

Change the cluster center to the average of its assigned points

Kmeans takes an alternating optimization approach, each step is guaranteed to decrease the objective – thus guaranteed to converge

How to choose *K*?

How to choose *K*?

- Gap statistic
- Cross-validation: Partition data into two sets. Estimate prototypes on one and use these to compute the loss function on the other.
- Stability of clusters: Measure the change in the clusters obtained by resampling or splitting the data.
- Non-parametric approach: Place a prior on K.

K=2 K=3 K=10 Original

K-Means for image compression

Impact of initialization

- Initialize: Pick K random points as cluster centers
- Repeat:
 - a. Assign data points to closest cluster center
 - Change the cluster center to the average of its assigned points
- Stop when no points' assignments change

Impact of initialization

- Initialize: Pick K random points as cluster centers
- Repeat:
 - a. Assign data points to closest cluster center
 - b. Change the cluster center to the average of its assigned points
- Stop when no points' assignments change

Trying to find good optima

- Idea 1: Be careful about where you start
 - K-Means++
- Idea 2: Do many runs of k-means, each from a different random start configuration

A local optimum:

When will K-Means fail?

Non-convex/non-round-shaped clusters: Standard K-means fails!

Clusters with different densities

Hierarchical clustering

A hierarchical approach can be useful when considering versatile cluster shapes:

10-means

By first detecting many small clusters, and then merging them, we can uncover patterns that are challenging for partitional methods.

- Start with every point as a single cluster
- Repeat
 - Find "most similar" pair of clusters
 - Merge them into a "super point"
- Stop when there is only one cluster left

Produces not one clustering, but a family of clusterings represented by a **dendrogram**

- Start with every point as a single cluster
- Repeat
 - Find "most similar" pair of clusters
 - Merge them into a "super point"
- Stop when there is only one cluster left

- Start with every point as a single cluster
- Repeat
 - Find "most similar" pair of clusters
 - Merge them into a "super point"
- Stop when there is only one cluster left

- Start with every point as a single cluster
- Repeat
 - Find "most similar" pair of clusters
 - Merge them into a "super point"
- Stop when there is only one cluster left

- Start with every point as a single cluster
- Repeat
 - Find "most similar" pair of clusters
 - Merge them into a "super point"
- Stop when there is only one cluster left

We need a notion of similarity between clusters.

Cluster Distance

Closest pair (single-link)	$CD(X,Y)=min_{x \in X, y \in Y} D(x,y)$	def
Furthest pair (complete-link)	$CD(X,Y)=max_{x \in X, y \in Y}D(x,y)$	d e
average-link	$CD(X,Y)=avg_{x \in X, y \in Y}D(x,y)$	d e h
centroids method	CD(X,Y)=D(avg(X) , avg(Y))	de h

Clustering Behavior

Mouse tumor data from [Hastie et al.]

Application to breast cancer expression data

A comparison of the clustering algorithms in scikit-learn

This lecture

- Clustering
 - K-means
- Dimensionality Reduction
 - o PCA
 - Auto-encoder

Gene expression matrix

dim(features) >> num(samples)

High-dimensional data

High-dimensional data

Each sample has a large number of features/attributes

Why is high-dimension a problem? The curse of dimensionality:

- Volume of space increases exponentially so data becomes very sparse; sparsity
- Increases the effort of searching drastically
- Makes it harder to calculate (accurate) distances between samples
- Redundancy of data
- A large number of training data samples is required to train a model for high-dim data
- Overfitting

Overfitting

 $p(\text{number of parameters}) \gg n(\text{number of data points})$

A solution: dimensionality reduction

Benefits:

- Reducing redundancy of data
- Identifying the most relevant information (find and filter noise) & Clean the data
- Reducing computational complexity & Speeding up subsequent learning task
- Building simpler model later
- Visualizing, exploring and understanding the data

Dimensionality reduction: approaches

- Linear transformation:
 - o PCA
 - NMF
- Non-linear transformation
 - Autoencoder, VAE
 - MDS
 - tSNE
 - UMAP
- Different methods have different *objectives*

Principal Component Analysis

Component analysis

How to understand the main signals from the data?

Key assumptions

- Low-rank assumption: High-dimensional data lies on a lower dimensional space (a.k.a, manifold)
- 2. Projections in the lower-dimensional space describes major properties of the data

Slides credit: CS598JP, UIUC, 2020

Principal Component Analysis (PCA)

Goal: Find a projection of the data onto directions that maximize variance of the original data

 Intuition: those are directions in which most information is encoded

Definition: Principal Components (PC) are orthogonal directions that capture most of the variance in the data

Figure credit: Le Song

PCA: Finding principal components

1st PC:

 Projection of data points along 1st PC discriminates data most along any one direction

2nd PC:

- Next orthogonal direction of greatest variability
- 3rd PC...

Figure credit: Le Song

PCA notation

- Input data points: matrix $X = [x_1, x_2, ..., x_N]$ of size $D \times N$
- x_i is the *i*-th column, i.e., the *i*-th example
- x_{ii} is the *j*-th feature of example *i*
- We assume the data is centered, i.e., $\frac{1}{N}\sum_{i=1}^N x_i = \overrightarrow{0}$ o If not centered, replace x_i by x_i μ , where $\mu = \frac{1}{N}\sum_{i=1}^N x_i$

Finding the 1st PC

Given N data points, $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N]_{D \times N}$, $\mathbf{x}_i \in \mathbb{R}^D$, find a direction \mathbf{w} where $\|\mathbf{w}\| = 1$, such that the variation of the data along direction \mathbf{w} is maximized.

• The sample variance on the projected on vector w is $\sum_{i=1}^{n} (w^T x_i)^2 = w^T X X^T w$

Find the 1st PC by solving the following optimization problem

$$\max_{oldsymbol{w}} oldsymbol{w}^T oldsymbol{X} oldsymbol{X}^T oldsymbol{w}$$
 such that: $\|oldsymbol{w}\| = 1$

Finding the 1st PC

$$\max_{oldsymbol{w}} oldsymbol{w}^T oldsymbol{X} oldsymbol{X}^T oldsymbol{w}$$
 such that: $\|oldsymbol{w}\| = 1$

Construct Lagrange multiplier

$$\max_{\boldsymbol{w}} \boldsymbol{w}^T \boldsymbol{X} \boldsymbol{X}^T \boldsymbol{w} - \lambda(\|\boldsymbol{w}\| - 1)$$

• Take the derivative with respect to w and set it to $0 \Rightarrow$ solutions are vectors w such that

$$XX^Tw = \lambda w$$

The eigenvalue problem

For a given matrix A

$$Aw = \lambda w$$

 \boldsymbol{w} is the eigenvector and $\boldsymbol{\lambda}$ is the eigenvalue

- There are multiple solutions $w_1, w_2, ...,$ with different (or same) eigenvalues $\lambda_1, \lambda_2, ...$
- The eigenvectors are orthonormal (symmetric, positive semi-definite)

$$o w_i^T w_i = 0, w_i^T w_i = 1$$

Let A=XX^T and find the eigenvectors and eigenvalues of A

PCA formally

- If we rank eigenvalues from large to small
 - The 1st PC is the eigenvector of XX^T associated with the largest eigenvalue
 - The 2nd PC is the eigenvector of XX^T associated with the 2nd largest eigenvalue
 - 0 ...
- The eigenvalue $\lambda_i / \sum \lambda_i$ denotes the percentage of variance accounted for by the i-th PC \mathbf{w}_i

Q1: how to find eigenvalues/eigenvectors?

Singular value decomposition (SVD)

The SVD is a factorization of a $m \times n$ matrix into

$$A = U \Sigma V^T$$

SVD in Python:

from scipy import linalg
U, s, Vh = linalg.svd(A)

where U is a $m \times m$ orthogonal matrix, V^T is a $n \times n$ orthogonal matrix and Σ is a $m \times n$ diagonal matrix.

$$\boldsymbol{A} = \begin{pmatrix} \vdots & \dots & \vdots \\ \boldsymbol{u}_1 & \dots & \boldsymbol{u}_n \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \begin{pmatrix} \dots & \mathbf{v}_1^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & \mathbf{v}_n^T & \dots \end{pmatrix}$$

Singular value decomposition (SVD)

Theorem: if a square matrix S is a real and symmetric matrix, then its SVD can be represented as

$$S = V\Lambda V^{\mathsf{T}}$$

where columns of ${\bf V}$ are eigenvectors of ${\bf S}$ and diagonal elements of ${\bf \Lambda}$ are eigenvalues of ${\bf S}$

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_m), \ \lambda_i \ge \lambda_{i+1}$$

Q2: how many PCs

- The eigenvalue λ_i denotes the amount of variability captured along dimension w_i
- Can ignore the components of lower variance (less significant)
- Choose the first K PCs such that the majority of variance (90%) can be explained

Alternative interpretation 1: residual minimization

PCA finds vectors **v** such that projection on to these vectors minimizes reconstruction error

(image source)

Alternative interpretation 2: low-rank approximation

PCA seeks the best rank-k approximation to the matrix A in the least-squares sense, by solving

minimize
$$||A - Z||_F^2$$

subject to $\operatorname{Rank}(Z) \leq k$,

with variable $Z \in \mathbf{R}^{m \times n}$. Here, $\|\cdot\|_F$ is the Frobenius norm of a matrix, *i.e.*, the square root of the sum of the squares of the entries.

Example: Tissue-specific gene expression

Summary: PCA

- What you should know:
 - Goal: Find a projection of the data onto directions that maximize variance of the original data
 - Optimization objective & algorithm
- Pros
 - Eigenvector method
 - No tuning of parameters
 - No local optima
- Cons
 - Only based on covariance (2nd order statistics)
 - Limited to linear projections
- Next: Nonlinear dimensionality reduction

Autoencoder

Autoencoders

- A neural network to find latent space representation of the original data
 - Unsupervised method (with no labeled training data)
- To make this non-trivial, we add a bottleneck layer whose dimension is much smaller than the input

Autoencoders: approach

- Goal: Find the latent space representation that best represent the important information in the original data
 - Recall PCA: maximize the variance
- Approach: bottleneck layer
 - Forces the network to create a compressed representation of the input data (dimensionality reduction)
 - Forces the network to remove redundancy and noise
- Objective: reconstruction error $\mathcal{L}(\mathbf{x}, \tilde{\mathbf{x}}) = \|\mathbf{x} \tilde{\mathbf{x}}\|^2$
 - Can add regularization term to avoid overfitting (identity mapping)

Why autoencoders?

- Map high-dimensional data to 2D for visualization
- Compression
- Learn abstract features in an unsupervised way so you can apply them to a supervised task
- Learn a semantically meaningful representation where you can, e.g., interpolate between different images.

Autoencoders: connection to PCA

Loss function: $\mathcal{L}(x,\widetilde{x})$ (reconstruction error)

Mean square error (MSE):

$$\frac{1}{D} \sum_{i} \|x_i - \widetilde{x}_i\|^2$$

What if we remove non-linearity in NN?

When we remove the non-linearity term in neural network (activation function), (and force encoder and decoder to have the same weights) autoencoder is equivalent to PCA:

$$\widehat{w} = \arg\min_{w} \mathbb{E}[\|x - w^T w x\|^2]$$

$$\widehat{x}$$

 \mathbf{w}^{T}

decoder

encoder

W

PCA

$$\mathbf{Z}_{(rxN)} = \mathbf{W}^{\mathsf{T}}_{(rxD)} \mathbf{X}_{(DxN)}$$

A different objective function:

min ||
$$X - WZ ||^2$$

$$= \min || X - WW^TX ||^2$$

Autoencoders: connection to PCA

Autoencoders learn to project the data, not onto a subspace, but onto a nonlinear manifold

Linear vs nonlinear dimensionality reduction

Image source: https://www.jeremyjordan.me/autoencoders/

Conclusion

- Unsupervised learning
 - No labels
 - Aim to discover underlying structure of data
- Clustering
 - K-Means
- PCA
 - Linear dimensionality reduction
 - Maximize variance
- Autoencoders
 - Nonlinear dimensionality reduction
 - Minimize reconstruction error