Intrinsic variability in exponentially growing systems

June 9, 2022

The simple birth (Yule) process

We consider a pure birth Markov process with $B_n = \mu n$.

The master equation for this process has a solution $P_{ij}(t)$ (prob. that a system initialized in state i is in state j at time t):

$$P_{ij}(t) = \frac{\mu(i+j-1)!}{(i-1)!(j-1)!} e^{-it\mu} (1 - e^{-\mu t})^{j-1}, \quad \text{if } j > i$$

and

$$P_{jj}(t) = \mu j e^{\mu jt}$$
.

The first-passage time distribution $\tau_{ij}(t)$ of times at which a system initialized in state i first reaches state j is related to $P_{ij}(t)$ according to the renewal equation:

$$P_{ij}(t) = \int_0^t P_{jj}(t') \tau_{ij}(t-t') \mathrm{d}t'.$$

For large j, $\tau_{ii}(t) \approx P_{ii}(t)$.

Growth rates across two different experiments

Growth rates are collected from every replicate and from every inoculum size

experiment 3

experiment 4 (aerobic growth)

Poisson noise

In our experiments, each replicate is inoculated by a micropipette containing some small volume of a solution extracted from a dilute mixture of *E. coli*, leading to Poisson distributed inoculum sizes.

Modeling Poisson noise

The distribution of inoculum sizes follows a Poisson distribution: for an average inoculum size i, the probability that a replicate's inoculum size is k is

 $\frac{e^{-i}i^k}{k!}$.

If the growth dynamics following inoculation are deterministic, $P_{ij}^{\text{Pois,det}}(t)$ is simply the probability of drawing the "rewound" state $je^{-\mu t}$ from the inoculum's Poisson distribution:

$$P_{ij}^{\mathsf{Pois},\mathsf{det}}(t) = rac{e^{-i} i^{je^{-\mu t}}}{je^{-\mu t}}.$$

Modeling Poisson and intrinsic noise

The solution to the simple birth process (delta function inoculation, intrinsic noise) is

$$P_{ij}(t) = \frac{\mu(i+j-1)!}{(i-1)!(j-1)!} e^{-it\mu} (1 - e^{-\mu t})^{j-1}.$$

If the inoculum size is Poisson distributed, the resulting solution will simply become

$$P_{ij}^{\mathsf{Pois}}(t) = \sum_{k=1}^{\infty} \frac{\mathsf{Pois}(k;i)}{1 - \mathsf{Pois}(0;i)} P_{kj}(t) = \sum_{k=1}^{\infty} \frac{e^{-i}i^k}{k!(1 - e^{-i})} P_{kj}(t)$$

Temporal spread of replicate trajectories

We are interested in the temporal spread of replicate trajectories $SD(\tau_{ij}(t))$, evaluated at a large j (\sim 10000). Specifically,

$$\langle au_{ij}(t)
angle = \int_0^\infty \mathrm{d}t \, t \, au_{ij}(t),$$

$$\sigma^2(au_{ij}(t)) = \int_0^\infty \mathsf{d}t \, (t - \langle au_{ij}(t)
angle)^2 \, au_{ij}(t),$$

and

$$SD(\tau_{ij}(t) = \sqrt{\sigma^2(\tau_{ij}(t))}.$$

This quantity can be calculated analytically for $P_{ij}(t)$, and numerically for $P_{ij}^{Pois}(t)$ and $P_{ij}^{Pois,det}(t)$.

Previous experiment (5/15/22)

Recent experiment (5/31/22)

All experiments together

"Good" experiments together

Why does deterministic growth from Poisson IC have max effect at inoculum size \sim 5?

strength of noise $\sim \#$ doublings between low and high ends of distribution

Calculating π with bacteria

The standard deviation of the temporal spread in trajectories originating from a single individual is

$$\mathsf{SD}(au_{1,\infty}(t)) = rac{\pi}{\sqrt{6}\mu}.$$

Our measured values:

$$SD(au_{1,\infty}(t)) = 75$$
 minutes $\mu = 0.014$ / minute

$$\implies \pi = 2.6$$

(big if true)