

Inferência Estatística

COMPONENTES DE UM MODELO PROBABILÍSTICO

Variáveis Aleatórias

Resultado numérico da observação de um fenômeno aleatórios

Discreta

Contínuas

MODELOS PROBABILÍSTICOS

Parâmentro

Variável que é parte da distribuição de probabilidade

Discreta

Contínuas

INTRODUÇÃO A INFERÊNCIA ESTATÍSTICA

População

Característica

Amostra

Característica

População representada por meio de uma distribuição de probabilidade.

A partir da amostra queremos estimar os parametros populacionais

PROBLEMA: Conhecer o parametro do modelo probabilistico

-> conseguimos caracterizar a V.A.

= dizer a prob. de ocorrência de cada um dos seus potenciais valores

INFERÊNCIA ESTATÍSTICA

Contextualização:

• Qual a proporção da população que desenvolveu ainticorpos contra a Dengue?

O que temos que identificar

- Variável aleatória
- Valores que a v.a pode assumir
- Qual a distribuição de probabilidade do espaço amostral?

$$P(Y = y) = p^{y}(1-p)^{1-y}$$

Censo (p-

populacional)

PENSAMENTO ESTATÍSTICO

Determinar *p*

Amostra (*p –* amostral) A proporção obtida na amostra é diferente da população.

- Incerteza associada ao valor da proporção devido a termos apenas uma amostra.
- Como tomar uma decisão baseada apenas na amostra?

Descrição probabilística da estatística de interesse -> Distribuição amostral.

ESPECIFICANDO O PROBLEMA

- Y: desenvolveu anticorpos (v.a.).
- Modelo: $Y \sim Ber(p)$.
- Informação sobre *p* por meio de uma amostra da população.
- Objetivos da inferência estatística:
 - Estimar p baseado apenas na amostra -> Estimativa pontual
 - Medir a precisão do valor estimado -> Estimativa intervalar

ESPECIFICANDO O PROBLEMA

- Dado: uma amostra (n=10), temos que 6 pessoas apresentaram anticorpos para dengue.
- Qual valor o parâmetro p?
- Assumindo observações independentes: Bernoulli -> n = 10 -> Binomial
- Qual a probabilidade de observar y = 6 para um valor de p = 0.7

P(Y = 6 | n = 10; p = 0,7) =
$$\binom{10}{6}$$
 0, 7^6 $(1 - 0, 7)^{10-6}$ = 0,14

ESPECIFICANDO O PROBLEMA

Pode-se obter a probabilidade para qual quer outro valor de *p* :

P(Y = 6 | n = 10; p) =
$$\binom{10}{6}$$
 p^6 $(1-p)^{10-6}$

A função de verossimilhança pode ser obtida ao variarmos p :

$$L(p) \equiv P(Y = 6 \mid n = 10; p) = {10 \choose 6} p^6 (1-p)^{10-6}$$

Queremos saber qual a probabilidade de obter os resultados da amostra dado um determinado valor de p.

VEROSSIMILHANÇA

Função de verossimilhança: probabilidade da amostra ser obtida dado diferentes valores de p:

- Melhor estimador e estimativa;
- Incerteza associada à estimativa obtida;
- Conjunto de valores razoavelmente compatíveis com a amostra;
- Decidir entre dois valores qual é o mais compatível com a amostra;
- Decidir se a amostra é compatível com certo valor de p de interesse.

VEROSSIMILHANÇA

- Quanto um valor particular de um parâmetro é compatível com a minha amostra.
- Estimativa pontual: Qual o valor mais compatível (máximo)
- Estimativa intervalar:
 Valores que são
 razoavelmente compatíveis
 com minha amostra

ESTIMADOR DE MÁXIMA VEROSSIMILHANÇA

Função de verossimilhança:

L(p)
$$\equiv P_p[Y = 6] = \binom{10}{6} p^6 (1-p)^{10-6}$$

Função de log-verossimilhança:

$$I(\theta) = \log(L(p)) = \log\binom{10}{6} + 6\log p + (10 - 6)\log(1 - p)$$

Derivando em relação a p (função escore):

$$U(p) = \frac{6}{p} - \frac{10-6}{1-p}$$

ESTIMADOR DE MÁXIMA VEROSSIMILHANÇA

Igualando a zero, temos:

$$\widehat{p} = \frac{6}{10} = 0,6$$

Estimativa de máxima verossimilhança:

$$\widehat{p} = \frac{y}{n}$$

Estimador de máxima verossimilhança:

$$\widehat{p} = \frac{Y}{n}$$

Estatística Frequentista

PENSAMENTO FREQUENTISTA

- Quando o experimento é repetido um grande número de vezes . Termos um p para cada realização. Logo, p estimado é uma variável aleatória.
- Em uma Variável aleatória temos que seu comportamento é dado pela distribuição de probabilidade.
- Definição da distribuição, e seus parâmetros

EXEMPLIFICANDO COMPUTACIONALMENTE

- Considerando p = 0.7 existe uma probabilidade considerável de observarmos "apenas" 6 pessoas imunizadas entre 10 pessoas.
- A incerteza associada ao valor de p no caso de apenas 10 observações é grande.

DIMINUIR A INCERTEZA

AUMENTAR A AMOSTRA

EXEMPLIFICANDO COMPUTACIONALMENTE

INTERVALO DE CONFIANÇA

Qual o intervalo em que p estimado tem uma probabilidade, digamos $(1-\alpha)$ de pertencer. Valores comuns de α : 5% e 1%.

ESTATÍSTICA FREQUENTISTA

Inviabilidade de realizar replicações em termos práticos

Estimador é função da variável aleatória

Distribuição de Probabilidade

A distribuição amostral do estimador pode ser utilizada para estudar o resultado de múltiplas replicações do estudo.

Dificuldade em obter a distribuição exata de um estimador

O Teorema central do limite oferece uma aproximação para amostras grandes (assintótica).

TEOREMA CENTRAL DO LIMITE(TCL)

Teorema de Lindeberg-Levy:

Seja Y₁, Y₂,..., Y_n uma amostra i.i.d com E(Y_i) = μ e Var(Y_i) = $\sigma^2 < \infty$: $\sqrt{n} \left(\frac{\overline{Y} - \mu}{\sigma} \right) \rightarrow Z \sim N(0, 1)$, para $n \rightarrow \infty$

Ou seja, para todo $y \in \mathbb{R}$

$$P(Y_n \le y) \to \Phi(y)$$
 quando $n \to \infty$

$$\Phi(y) = \int_{-\infty}^{y} \phi(z) dz$$

$$e \phi(z) = \frac{1}{\sqrt{2\pi}} exp\left(-\frac{1}{2}z^{2}\right)$$

$$\overline{Y} \sim N(\mu, \sigma^{2}/n)$$

APLICANDO O T.C.L. PARA A BINOMIAL

Estimador de máxima verossimilhança:

$$\widehat{p} = \frac{Y}{n}$$

Aplicando as propriedade da distribuição binomial temos:

$$E(\widehat{p}) = \frac{Y}{n} = \frac{1}{n}E(Y) = \frac{np}{n} = p$$

$$\operatorname{Var}(\widehat{p}) = \operatorname{Var}\left(\frac{Y}{n}\right) = \frac{1}{n^2} \operatorname{Var}(Y) = \frac{np(1-p)}{n^2} = \frac{p(1-p)}{n}$$

Utilizando o TCL, temos:

$$\widehat{p} \sim N(p, \frac{p(1-p)}{n})$$

APLICAÇÃO COMPUTACIONAL

INTERVALO DE CONFIANÇA PARA A MÉDIA COM VARIÂNCIA CONHECIDA

I.C PARA A MÉDIA QUANDO σ^2 É CONHECIDO

Seja $Y_i \sim N(\mu, \sigma^2)$ e suponha que σ^2 é conhecido.

Logo, temos que:

$$\overline{Y} \sim N(\mu, \sigma^2/n)$$
 ou $\frac{\overline{Y} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$

Fixando uma probabilidade $1-\alpha$, podemos encontrar \overline{y}_{LI} e \overline{y}_{LS} , tal que :

$$P(\overline{y}_{LI} < \mu < \overline{y}_{LS}) = 1 - \alpha$$

 $Fonte: https://pt.wikipedia.org/wiki/Intervalo_de_confian\%C3\%A7a$

OBTENDO UM INTERVALO PARA μ

Definimos limites Z na distribuição amostral padronizada

$$P(z_{LI} < \frac{\overline{y} - \mu}{\sigma / \sqrt{n}} < z_{LS}) = 1 - \alpha$$

Isolamos μ ,

$$P(\overline{y} - z_{LI} \frac{\sigma}{\sqrt{n}} < \mu < \overline{y} + z_{LS} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

Como deseja-se intervalos simétricos, então abs (z_{LI}) = abs (z_{LS}) = $z_{\alpha/2}$. Assim,

$$P(\overline{y} - z_{LI} \frac{\sigma}{\sqrt{n}} < \mu < \overline{y} + z_{LS} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

 $z_{lpha/2}$ é o quantil da distribuição normal padrão para o valor de 1-lpha

MARGEM DE ERRO E NÍVEL DE CONFIANÇA

A margem de erro pode ser definida por : $\mathbf{e} = \mathbf{z}_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$

Onde:

 $z_{lpha/2}$ é chamado de valor crítico.

 $1 - \alpha$ é o nível de confiança do intervalo.

EXEMPLO

Y: Idade dos alunos de pós graduação // Sendo: y = (40,35,30,28,27)

$$Y \sim N(\mu, \sigma^2) -> \sigma^2 = 4^2$$

- $\bar{y} = 32$
- Ao nível de 95% de confiança : $1 \alpha = 0.95$; $\alpha/2 = 0.025$
- Valor z : $z_{\alpha/2}$ = 1.96
- Margem de erro: $e = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} = 1.96 \cdot \frac{4}{\sqrt{5}} = 3.51$

I.C. (95%):
$$\bar{y} \pm z_{\alpha/2}$$
. $\frac{\sigma}{\sqrt{n}} = 32 \pm 3.51 \rightarrow IC_{95\%}(\mu)$: (28.5, 35.5)

ENTENDIMENTO DO INTERVALO DE CONFIANÇA

Se repetirmos o experimento N vezes, e calculássemos o IC, 95% desses intervalos irão conter o verdadeiro parâmetro populacional

FONTE: https://fernandafperes.com.br/blog/intervalo-de-confianca/

INTERPRETAÇÃO DO INTERVALO DE CONFIANÇA

Considerando um intervalo de confiança: $IC_{95\%}(\mu)$: $[\bar{y}_{LI}; \bar{y}_{LS}]$

Interpretação Errada

• Temos 95% de confiança de que a média populacional(μ) se encontra entre \overline{y}_{LI} e \overline{y}_{LS} .

Interpretação Certa

• Temos 95% de confiança que o intervalo entre \bar{y}_{LI} e \bar{y}_{LS} contém a média populacional(μ).

Aparentemente podem parecer iguais, porém é crucial observar que: o intervalo é aleatório e o parâmetro é fixo.

INTERVALO DE CONFIANÇA PARA A MÉDIA COM VARIÂNCIA DESCONHECIDA

IC PARA A MÉDIA QUANDO σ^2 É DESCONHECIDO

Seja $Y_i \sim N(\mu, \sigma^2)$ e suponha que σ^2 é desconhecido. Logo, temos que:

$$\mathsf{t} = \frac{\overline{Y} - \mu}{\sigma / \sqrt{n}} \sim t_{n-1}$$

Em que t_{n-1} é uma distribuição t-Student com n-1 graus de liberdade. Fixando uma probabilidade $1-\alpha$, podemos encontrar \overline{y}_{LI} e \overline{y}_{LS} , tal que :

$$P(\overline{y} - t_{\alpha/2} \cdot \frac{s}{\sqrt{n}} < \mu < \overline{y} + t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}) = 1 - \alpha$$

Onde s é o desvio padrão amostral

EXEMPLIFICANDO

Dado uma amostra de 15 empregados cujo salário médio desta amostra é de R\$5.900,00 e o desvio padrão é de R\$ 3.058,00. Calcule o IC com 95% de confiança.

Temos que $t_{\alpha/2} = t_{0,025} = 2$, 145 e com 15-1 = 14, graus de Liberdade.

Logo o interval de confiança é dado por $\approx (R$4.206,4; R$7.593,6)$

$$IC_{1-0.95}(\mu) = \left(5.900 - 2.145 \cdot \frac{3.058}{\sqrt{15}} < \mu < 5.900 + 2.145 \cdot \frac{3.058}{\sqrt{15}}\right)$$

RESUMO DO MÉTODO

Verificação das suposições

- Amostra aleatória simples.
- ► Estimativa de s.
- ► A população tem distribuição Normal ou n>30

Determine o nível de confiança $1-\alpha$, e encontre o valor crítico $t(\alpha/2)$. Calcular a margem de erro. Calcular o IC

INTERVALO DE CONFIANÇA PARA PROPORÇÃO

INTERVALO DE CONFIANÇA PARA PROPORÇÃO

Seja $Y_i \sim Ber(p)$. Pelo teorema Central do limite temos que: Logo, temos que:

$$\widehat{p} \approx N\left(p, \frac{p(1-p)}{n}\right)$$

Para o parâmetro p, temos que:

$$\mathsf{P}\bigg(\widehat{p}-z_{\frac{\alpha}{2}}.\sqrt{\frac{\widehat{p}\,(1-\widehat{p})}{n}}$$

INTERVALO DE CONFIANÇA PARA PROPORÇÃO

Um fato que deve ser observada é que não conhecemos o verdadeiro valor de p(populacional) para calcular o IC.

Para resolver esse problema podemos:

- lacksquare Utilizar o \widehat{p} -> estimativa Otimista
- \Box Considerar p = 0.5 -> estimativa conservadora.

Quando p = 0.5 o termo p(1-p) terá o valor máximo

р	(1-p)	p(1-p)
0.1	0.9	0.01
0.3	0.7	0.21
0.5	0.5	0.25
0.6	0.4	0.24
0.8	0.2	0.16

EXEMPLO

Uma amostra com 1500 brasileiros foi selecionada para entender se eles acreditavam ou não na cura do câncer. 1.050 responderam que sim.

Calcule o IC com 95% de confiança para :

- \Box Estimativa Otimista -> p = p estimado
- \square Estimativa conservadora. -> p = 0.5

EXEMPLO

- \Box Estimativa pontual: $\hat{p} = \frac{1.050}{1.500}$
- ☐ Intervalo 1: Otimista $\approx (0,677,0,723)$

$$IC_{95\%}(p) = \left(0.7 - 1.96 \cdot \sqrt{\frac{0.7(1-0.7)}{1.500}}$$

☐ Intervalo 2: Conservador $\approx (0,675,0,725)$

$$IC_{95\%}(p) = \left(0.7 - 1.96 \cdot \sqrt{\frac{0.5(1 - 0.5)}{1.500}}$$

RESUMO DO MÉTODO

Verificação das suposições

- Amostra aleatória simples.
- Dois resultados possíveis ("sucesso", "fracasso")
- Premissas da dist. binomial:
 - -Tentativas independentes
 - p constante

Determine o nível de confiança 1- α , e encontre o valor crítico z(α /2) .

Calcular a margem de erro com p=p estimado ou p=0.5

Calcular o IC

BOOTSTRAP

DEFINIÇÃO DE BOOTSTRAP

DEFINIÇÃO DE BOOTSTRAP

- Técnica de reamostragem
- Sorteamos dados de uma amostra e formamos novas amostras.
- Reamostragem com reposição

População
Amostra (θ)

Por conta do desenvolvimento tecnológico tem sido cada vez mais utilizada. Uma vez que demanda uma grande quantidade de reamostragens.

Amostra $(\hat{\theta})$ Amostra $(\hat{\theta})$.

Amostra($\hat{\theta}$)

REAMOSTRAGEM ALEATÓRIA COM REPETIÇÃO

Sabendo que temos 5 fichas na sacola "A", "B", "C", "D", "E" Podemos extrair n amostras com reposição de tamanho 5:

- A,B,B,C,D
- A,B,C,A,E
- E,D,D,E,C

Espera-se um comportamento paramétrico próximo da amostra mestre.

Ilustração de como funciona o bootstrap: Criamos um conjunto de mesmo tamanho da minha amostra a partir de seleção de amostra com reposição.

TIPOS DE BOOTSTRAP

Paramétrico

Bootstrap

Conhece-se a distribuição geradora das amostras. Parâmetros são estimados a partir da amostra original (AO) usada para estimar o chamado vício ou viés e corrigí-lo.

Não paramétrico Dispensa o analista de premissas paramétricas para realizar inferências e fornece respostas a problemas para os quais não há soluções analíticas.

Reamostragem

Seleção de várias reamostras com reposição

Amostra Mestre

Amostra Original

ETAPAS

Estudos nas amostras

Estimativas pontuais , intervalos de confiança

Estimativa

Cálculo das estatísticas de interesse em cada reamostra

ESTATÍSTICAS

$$VI\acute{E}S = \overline{\hat{\theta}} - \hat{\theta}$$

Requisito fundamental é que cada reamostra deve ser uma amostra independente e identicamente distribuída da distribuição empírica da amostra original

Amostra Original (AO)

$$x_1, x_2, x_3, \dots, x_n \rightarrow \hat{\theta}$$

Reamostragem:

$$x_1^1, x_2^1, x_3^1, ..., x_n^1 \rightarrow \hat{\theta}^1$$

 $x_1^2, x_2^2, x_3^2, ..., x_n^2 \rightarrow \hat{\theta}^2$

$$x_1^k, x_2^k, x_3^k, ..., x_n^k \to \hat{\theta}^k$$

 $\overline{\widehat{\Theta}}$

 $S_{\widehat{\theta}}$

VIÉS

O vicio permite verificar se a distribuição bootstrap está centrada na estatística AO.

INTERVALO DE CONFIANÇA COM O BOOTSTRAP

Técnicas para estimar o intervalo de confiança via bootstrap:

- Bootstrap t
- Bootstrap percentil
- Bootstrap BCPB com correção de vies
- Bootstrap BCa com correção de viés acelerado

Se o viés e assimetria são muito fortes , recomendam-se métodos de correção

INTERVALOS DE CONFIANÇA COM BOOTSTRAP

BOOTSTRAP T

 $IC \theta = \bar{\theta} \pm t_c . s_{\theta}$

Aplicável para estimativa de locação:

- Média
- Mediana
- Quartis

Funciona bem quando a distribuição da estatística Bootstrap é aproximadamente normal e a estatística tem viés baixo

BOOTSTRAP PERCENTIL 1º FORMA

 $IC \theta = 95\% de conf. percentil 2,5 e 97,5$

Funciona bem quando o viés baixo

$$x_{1}^{1}, x_{2}^{1}, x_{3}^{1}, ..., x_{n}^{1} \rightarrow \hat{\theta}^{1}$$
 $x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, ..., x_{n}^{2} \rightarrow \hat{\theta}^{2}$
 $p_{2,5}$
 $p_{2,5}$
 $p_{2,5}$
 $p_{2,5}$

BOOTSTRAP PERCENTIL 2ª FORMA

$$IC \ \theta = \hat{\theta} - pd_{97,5} \ ; \hat{\theta} - pd_{2,5}$$

Funciona bem quando o viés baixo

$$x_{1}^{1}, x_{2}^{1}, x_{3}^{1}, ..., x_{n}^{1} \rightarrow \hat{\theta}^{1} - \hat{\theta} = d_{1}$$

$$x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, ..., x_{n}^{2} \rightarrow \hat{\theta}^{2} - \hat{\theta} = d_{2}$$

$$\vdots$$

$$x_{1}^{k}, x_{2}^{k}, x_{3}^{k}, ..., x_{n}^{k} \rightarrow \hat{\theta}^{k} - \hat{\theta} = d_{k}$$

$$pd_{2,5}$$

$$pd_{97,5}$$

BOOTSTRAP BCPB - COM CORREÇÃO DE VIÉS

Distribuição simulada a partir da reamostragem

BOOTSTRAP BCPB - COM CORREÇÃO DE VIÉS

Com z_0 , conseguiremos calcular os percentis ajustados (β_1 e β_2)

Sem desvio

BOOTSTRAP BCPB - COM CORREÇÃO DE VIÉS

Para nível de confiança de 95% : ajustar os percentis 2,5% e 97,5%, a fim de corrigir o viés e assimetria

- 1) Ordenar de forma crescente $\hat{\theta}^1$, $\hat{\theta}^2$, $\hat{\theta}^3$
- 2) Calcular a probabilidade $p_0 = P(\hat{\theta}^n \leq \hat{\theta})$ para n = 1,2,, n
- 3) Calcular o vício pela inversa da normal no ponto $p_{
 m 0}$

$$z_0 = \emptyset^{-1}(p_0)$$

4) Calcular os percentis β_1 e β_2

$$\beta_1 = \emptyset(2. z_0 - 1,96) e \beta_2 = \emptyset(2. z_0 - 1,96)$$

Calcular o intervalo de confiança com PI e OS dos valores $\hat{\theta}^1$, $\hat{\theta}^2$, $\hat{\theta}^3$

$$P_{\beta_1} \longrightarrow P_{\beta_2}$$

BOOTSTRAP BCa - CORREÇÃO DE VIÉS ACELERADO

Obtido da mesma forma que o BCPB com os limites de P eta_1 e P eta_2 , adotandose uma constante de aceleração

$$\beta_1 = \emptyset(z_0 - \frac{z_0 + 1,96}{1 - a(z_0 + 1,96)}); \beta_2 = \emptyset(z_0 + \frac{z_0 + 1,96}{1 - a(z_0 + 1,96)})$$

Se a = 0 -> volta-se ao método BCPB

Se $z_0 = 0$ e a = 0-> volta-se para o método de percentil

BOOTSTRAP BCa - CORREÇÃO DE VIÉS ACELERADO

Pode-se estimar a quando as v.a observadas são I.I.D

$$a = \frac{\sum_{i=1}^{n} (\hat{\theta}_{(.)} - \hat{\theta}_{(i)})^{3}}{6 \cdot \left[\sum_{i=1}^{n} (\hat{\theta}_{(.)} - \hat{\theta}_{(i)})^{2}\right]^{\frac{3}{2}}}$$

 $\hat{\theta}_i$: O valor das estimativas do parâmetro estudado para cada amostra i

 $\hat{\theta}_i$: Media dos valores de $\hat{\theta}_i$

BOOTSTRAP BCa - CORREÇÃO DE VIÉS ACELERADO

Esse método faz três correções

- 1) Para não normalidade : através da função inversa de β_1 e β_2
- 2) Para o viés : através de z_0
- 3) Para o erro padrão não constante : através de a