Intro to R for Epidemiologists

Lab 8 (3/5/15)

Data

This lab will use the combined male and female diabetes dataset (from Homework 2). The full dataset can be found on the website under lab 8 as "diabetes.csv". This dataset also contains diabetes status as computed in homework 2.

Part 1. Multiple logistic regression

- 1. Read in the dataset "diabetes.csv"
- 2. Use multiple logistic regression (one regression model) to estimate the associations between a set of variables (total cholesterol, hdl cholesterol, age, height, and weight) and diabetes status.
- 3. Create a data frame as below of the variable name, odds ratio from multiple logistic regression, corresponding p-value from the regression, and lower and upper confidence bounds for a 95% confidence interval.

```
# Load libraries
# 1. Read in data
diabetes <- read.csv("diabetes.csv", stringsAsFactors = F)</pre>
# 2. Perform multiple logistic regression
glm1 <- glm(diab1 ~ chol + hdl + age + weight + height, data = diabetes,</pre>
  family = "binomial")
# 3. Create data frame
# a. get odds ratios
MLR_OR <- exp(glm1$coef)[-1]
# b. get p-values
sum_glm <- summary(glm1)$coef[-1, ]</pre>
MLR_pval <- sum_glm[, 4]</pre>
# c. get 95% confidence interval
confint1 <- exp(confint(glm1))[-1, ]</pre>
# d. get names of variables
Variable <- rownames(sum_glm)</pre>
# Create output data frame
OR_df <- data.frame(Variable, MLR_OR, MLR_pval, confint1)</pre>
# Name columns, not rows
colnames(OR_df)[-1] <- c("OR", "p-value", "LB", "UB")</pre>
rownames(OR_df) <- NULL
OR df
```

```
## Variable OR p-value LB UB
## 1 chol 1.0111629 1.422292e-03 1.0044689 1.0183326
## 2 hdl 0.9765422 2.421062e-02 0.9553714 0.9959181
## 3 age 1.0605720 1.032982e-07 1.0385658 1.0847577
## 4 weight 1.0118751 5.496561e-03 1.0034372 1.0204154
## 5 height 1.0125684 7.739832e-01 0.9297465 1.1031758
```

Part 2. Plotting regression results

Create the plot displaying the odds ratios from Part 1 and corresponding 95% confidence intervals as shown on the following page. The colors for this plot can be specified using: cols <- c("blue", "red", "seagreen4", "slateblue", "sienna3").

- 1. Plot the odds ratios. Be sure to label your axes.
 - Specify ylim = c(0.92, 1.11) and axes = F).
 - Your x values will be 1:5 and your y values will be the odds ratios.
- 2. Add the correct axes using the R function axis
- 3. Add a box around the plot using box().
- 4. Add confidence intervals to each point using segments.
- 5. Add a horizontal dashed grey line (Hint: specify lty = 2)

```
# 1. First create empty plot
cols <- c("blue", "red", "seagreen4", "slateblue", "sienna3")
plot(1: 5, MLR_OR, xlab = "Covariate", ylab = "Odds ratio",
    main = "Associations between covariates and diabetes", pch = 16,
    axes = F, ylim = c(0.92, 1.11), col = cols)

# 2. Add axes
axis(2)
axis(1, at = 1: 5, labels = c("Cholesterol", "HDL", "Age", "Weight",
    "Height"))

# 3. Add box
box()

# 3. Add confidence intervals
segments(1: 5, confint1[, 1], 1: 5, confint1[, 2], col = cols)

# 4. Add a horizontal grey line with lty
abline(h = 1, lty = 2, col = "grey50")</pre>
```

Associations between covariates and diabetes

Part 3. Kaplan-Meier Curves

For this part, we will use the kidney dataset in the survival package, which gives recurrence times to infection for kidney patients.

- 1. Create a survival object for the data using Surv for time followed until recurrence.
- 2. Plot the Kaplan-Meier curves for time until recurrence by disease type.

```
library(survival)
# 1. Create survival object
surv_kidney <- Surv(time = kidney$time, event = kidney$status)

# 2. Get Kaplan-Meier estimates
surv1 <- survfit(surv_kidney ~ disease, data = kidney)

# 3. Plot curves
cols <- c("slateblue", "forestgreen", "black", "darkred")</pre>
```

```
plot(surv1, main = "Survival Estimates for Kidney patients", xlab = "Time",
    ylab = "Proportion not recurred", col = cols)
# Get strata names
names1 <- sapply(strsplit(names(surv1$strata), "="), function(x) x[[2]])
# add legend
legend("topright", legend = names1, lty = 1, col = cols,
    title = "Disease type")</pre>
```

Survival Estimates for Kidney patients

