Act-3000 Théorie du risque - Méthode des rectangles et la méthode d'agrégation par discrétisation.

avec Christopher Blier-Wong et Ihsan Chaoubi

Illustrations numériques

Étienne Marceau

École d'actuariat Université Laval, Québec, Canada

2018-11-30

Agenda

1 Méthode des rectangles

2 Méthode d'agrégation par discrétisation

- 3 Copules et marginales exponentielles
 - Copule de Clayton
 - Copule de Gumbel

Soit un couple de v.a. continues positives (X_1, X_2) , avec $S = X_1 + X_2$. On s'intéresse à la fonction de répartition de S. On a

$$Pr(S \le s) = Pr(X_1 + X_2 \le s)$$
$$= Pr(X_2 \le s - X_1).$$

On trace le graphique de $X_2 \le s - X_1$ et on veut calculer l'aire sous le graphique.

On obtient un triangle. Par contre, le seul outil qu'on a pour calculer l'aire sous ce triangle est la fonction de répartition bivariée, qui forme un rectangle dans le graphique.

⇒ La méthode des rectangles consiste à approximer le triangle en utilisant plusieurs rectangles.

Pour faire l'estimation de la fonction de répartition, on sépare l'intervalle [0,s] en 2^m régions.

La méthode *lower* des rectangles: La notation de l'estimation de $F_S(s)$ par la méthode *lower* est $A_S^{(l,m)}$.

$$A_S^{(l,m)} = \sum_{i=1}^{2^m - 1} \left(F_{X_1, X_2} \left(\frac{i}{2^m} s, \frac{2^m - i}{2^m} s \right) - F_{X_1, X_2} \left(\frac{i - 1}{2^m} s, \frac{2^m - i}{2^m} s \right) \right)$$

La méthode upper des rectangles: La notation de l'estimation de $F_S(s)$ par la méthode upper est $A_S^{(u,m)}$.

$$A_S^{(u,m)} = \sum_{i=1}^{2^m} \left(F_{X_1,X_2} \left(\frac{i}{2^m} s, \frac{2^m + 1 - i}{2^m} s \right) - F_{X_1,X_2} \left(\frac{i - 1}{2^m} s, \frac{2^m + 1 - i}{2^m} s \right) \right)$$

- La méthode lower sous-estime la fonction de répartition (et sur-estime la VaR, sur-estime l'espérance). On remarque qu'il faut calculer 2^m – 1 rectangles.
- La méthode upper sur-estime la fonction de répartition (et sous-estime la VaR, sous-estime l'espérance). On remarque qu'il faut calculer 2^m rectangles.

$$\lim_{m\to\infty} A_S^{(l,m)} = \lim_{m\to\infty} A_S^{(u,m)} = F_S(s).$$

Agenda

- 2 Méthode d'agrégation par discrétisation
- 3 Copules et marginales exponentielles
 - Copule de Clayton
 - Copule de Gumbel

Méthode d'agrégation par discrétisation

On considère un couple de v.a. continues et positives (X_1,X_2) dont la structure de dépendance est définie par

$$F_{X_1,X_2}(x_1,x_2) = C(F_{X_1}(x_1),F_{X_2}(x_2)).$$

où C est une copule.

On définit $S = X_1 + X_2$ et on veut évaluer $F_S(s)$ pour $s \in \mathbb{R}^+$. La fonction de densité conjointe est donnée par

$$f_{X_1,X_2}(x_1,x_2) = c(F_{X_1}(x_1),F_{X_2}(x_2)) f_{X_1}(x_1) f_{X_2}(x_2).$$

et la fonction de densité de S s'écrit

$$f_S(s) = \int_0^s f_{X_1, X_2}(x_1, s - x_1) dx_1.$$

De plus, on déduit que $F_S(s) = \int_0^s f_S(t) dt$.

Méthode d'agrégation par discrétisation

L'idée est d'évaluer approximativement les v.a. continues et positives X_1 et X_2 par des v.a. discrètes $\widetilde X_1$ et $\widetilde X_2$ où

$$\widetilde{X}_i \in \{0h, 1h, 2h, \dots\},$$

pour i=1,2 et pour un pas de discrétisation h>0. La fonction de répartition conjointe $F_{\widetilde{X}_1,\widetilde{X}_2}$ de $\left(\widetilde{X}_1,\widetilde{X}_2\right)$ est définie en fonction de la même copule C que celle qui est associée à F_{X_1,X_2} et des fonctions de répartition marginales $F_{\widetilde{X}_i}\left(x_i\right)$ de \widetilde{X}_i $\left(i=1,2\right)$:

$$F_{\widetilde{X}_1,\widetilde{X}_2}(k_1h,k_2h) = C\left(F_{\widetilde{X}_1}(k_1h),F_{\widetilde{X}_2}(k_2h)\right),\,$$

pour k_1 , $k_2 \in \mathbb{N}$.

Méthode d'agrégation par discrétisation

Les valeurs de la fonction de masse de probabilité de $\left(\widetilde{X}_1,\widetilde{X}_2\right)$ sont déterminées comme suit.

Pour $k_1 = 0, k_2 = 0$, on a

$$f_{\widetilde{X}_1,\widetilde{X}_2}\left(0,0\right) = F_{\widetilde{X}_1,\widetilde{X}_2}\left(0,0\right).$$

Pour $k_1 \in \mathbb{N}^+$ et $k_2 = 0$, on a

$$f_{\widetilde{X}_{1},\widetilde{X}_{2}}(k_{1}h,0) = F_{\widetilde{X}_{1},\widetilde{X}_{2}}(k_{1}h,0) - F_{\widetilde{X}_{1},\widetilde{X}_{2}}((k_{1}-1)h,0).$$

Pour $k_1 = 0$ et $k_2 \in \mathbb{N}^+$, on a

$$f_{\widetilde{X}_{1},\widetilde{X}_{2}}(0,k_{2}h) = F_{\widetilde{X}_{1},\widetilde{X}_{2}}(0,k_{2}h) - F_{\widetilde{X}_{1},\widetilde{X}_{2}}(0,(k_{2}-1)h).$$

Enfin, pour $k_1 \in \mathbb{N}^+$ et $k_2 \in \mathbb{N}^+$, on a

$$\begin{split} f_{\widetilde{X}_{1},\widetilde{X}_{2}}\left(k_{1}h,k_{2}h\right) &= F_{\widetilde{X}_{1},\widetilde{X}_{2}}\left(k_{1}h,k_{2}h\right) \\ &- F_{\widetilde{X}_{1},\widetilde{X}_{2}}\left(k_{1}h,\left(k_{2}-1\right)h\right) \\ &- F_{\widetilde{X}_{1},\widetilde{X}_{2}}\left(\left(k_{1}-1\right)h,k_{2}h\right) \\ &+ F_{\widetilde{X}_{1},\widetilde{X}_{2}}\left(\left(k_{1}-1\right)h,\left(k_{2}-1\right)h\right). \end{split}$$

On approxime la v.a. S par la $\widetilde{S}=\widetilde{X}_1+\widetilde{X}_2\in\{0h,1h,2h,\ldots\}.$ La fonction de masse de probabilité de \widetilde{S} est donnée par

$$f_{\widetilde{S}}(kh) = \sum_{j=0}^{k} f_{\widetilde{X}_1,\widetilde{X}_2}(jh,(k-j)h),$$

pour $k \in \mathbb{N}$.

Ensuite, il est aisé de calculer $F_{\widetilde{S}}(kh)$ et toutes fonctions de \widetilde{S} , notamment les mesures de risque $VaR_{\kappa}(\widetilde{S})$ et $TVaR_{\kappa}(\widetilde{S})$.

Agenda

- 2 Méthode d'agrégation par discrétisation
- 3 Copules et marginales exponentielles
 - Copule de Clayton
 - Copule de Gumbel

Copules et marginales exponentielles

Soit un couple de v.a. (X_1,X_2) avec $F_{X_1,X_2}\in\mathcal{CF}\left(F_1,F_2\right)$ où $F_i\left(x\right)$ = $1-e^{-x}$, i = 1,2.

La fonction de répartition de (X_1, X_2) est donnée par

$$F_{X_1,X_2}(x_1,x_2) = C(F_1(x_1),F_2(x_2)),$$

pour $(x_1,x_2) \in [0,\infty)^2$, où C est une copule. On définit

$$S = X_1 + X_2.$$

Copules et marginales exponentielles

On définit

$$\pi_{\kappa} = \Pr(X_2 > VaR_{\kappa}(X_2) | X_1 > VaR_{\kappa}(X_1))$$
$$= \Pr(X_1 > VaR_{\kappa}(X_1) | X_2 > VaR_{\kappa}(X_2))$$

pour $\kappa \in (0,1)$.

On définit

$$\zeta_{(a_1,b_1]\times(a_2,b_2]} = \Pr((X_1,X_2) \in (a_1,b_1] \times (a_2,b_2])
= \Pr(a_1 \le X_1 \le b_1, a_2 \le X_2 \le b_2)$$

pour $0 \le a_i < b_i \le \infty$, i = 1,2.

On suppose que C est la copule de Clayton avec un paramètre de dépendance $\alpha=3$.

Figure: La courbe de $F_{X_1,X_2}(x_1,x_2)$, pour $(x_1,x_2) \in [0,\infty)^2$.

κ	π_{κ}
0.9	0.308589949
0.99	0.038836781
0.999	0.003988038
0.9999	0.000399880

$$\zeta_{(1,3]\times(1,3]} = 0.186775.$$

■ En utilisant la méthode des rectangles avec m = 1,2,5,8, on calcule les bornes de $\overline{F}_S(x)$, pour différentes valeurs de x.

On fixe m = 20 pour les approximations suivantes.

Utiliser la méthode de discrétisation avec $h = \frac{1}{10}$ et $\frac{1}{100}$, pour calculer les bornes de $\overline{F}_S(x)$, pour différentes valeurs de x.

■ En utilisant la méthode de discrétisation avec $h = \frac{1}{100}$, on obtient

$$\rho_p(X_1, X_2) = 0.5532102.$$

■ En utilisant la méthode de discrétisation et en fixant $\rho_p(X_1, X_2) = 0.3$, on obtient

$$\alpha_{0.3}(X_1, X_2) = 1.047839.$$

Copule de Gumbel

On suppose que ${\cal C}$ est la copule de Gumbel.

