17-04-2021

11000 11110

Last time - mxm matrix A

(Basic, G.E. amounts to find lower A'r matrices L1,..., Lm-1
erus privot Such that
is nonzers
invertible
invertible
matrix.

Lm-1 · L2 L1 A = U (upper A^r). :- A = LU.

Pa, ..., Pmy Such that

 $\int L_{m_1} P_{m_1} \cdot L_2 P_2 L_1 P_1 A = U$

$$\begin{bmatrix} a_{11} & * & * \\ * & * & * \end{bmatrix} \xrightarrow{P_1 A} \begin{bmatrix} * & * & * \\ * & * & * \end{bmatrix} \xrightarrow{L_1(P_1A)} \begin{bmatrix} * & * & * \\ 0 & * & * \\ * & * & * \end{bmatrix}$$

$$\begin{bmatrix} * & * & * \\ * & * & * \end{bmatrix}$$

$$\begin{bmatrix} * & * & * \\ * & * & * \end{bmatrix}$$

$$\begin{bmatrix} * & * & * \\ * & * & * \end{bmatrix}$$

$$\begin{bmatrix} * & * & * \\ * & * & * \end{bmatrix}$$

$$\begin{bmatrix} * & * & * \\ * & * & * \end{bmatrix}$$

$$\begin{bmatrix} * & * & * \\ * & * & * \end{bmatrix}$$

(ii) GECP: amounts to -

Lm-1Pm-1··· L2 P2 L, P1, A Q1 Q2 ··· Qm-1 = U

Theorem	Let A be n×n nonsingular matrix. A has an LU factorization => det Δ _k ≠0 for each 1≤ k ≤ n.
***************************************	A has an LU factorization => det 1/2 to for each
	Moreover, this factorization $\Delta_k = k \times k \text{ top-left}$ Submatrix of A $= (a_{11} \cdots a_{1k})$
	is unique.
	$= \begin{pmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \ddots \\ \vdots & \ddots & \ddots \\ \end{pmatrix}$
	(air - akk)
Proof:	If A: LU is an LU factorization,
	Then $\det\left(\Delta_{k}^{A}\right) = \det\left(\Delta_{k}^{L}\right) \cdot \det\left(\Delta_{k}^{L}\right) \neq 0$.
	Conversely we proceed by induction on k-
	Conversely, we proceed by induction on k-
	k=1: an =0, we can choose P1 = I
	(Enough to Show that $P_k = I$)
	Suppose P1,, Pk-1 = I, so that Lk-1 Lk-2 L1 A = Ak
	kxh. kxh
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{vmatrix} x & x \\ a_{k1} & -a_{kk} \end{vmatrix} = \begin{vmatrix} a_{kk} & x \\ a_{kk} & x \end{vmatrix}$
	(* 1) (*) / * /
	<u>'</u>
	$0 \neq \det \Delta_{k} = a_{11} - \ldots (a_{kk})$
	so akk to, so it can be
	chosen as pivot.
	· Pk=I
	D .
	·