EE 264 SIST, ShanghaiTech

Parameter Estimation III

YW 8-1

Contents

Parameter Estimation for DPM

Parameter Estimation for B-SPM

Adaptive Observer

Parameter Estimation III 8-2

Theorem: Assume that a rational function G(s) of the complex variable $s=\sigma+j\omega$ is real for real s and is not identically zero for all s. Let n^* be the relative degree of $G(s)=\frac{Z(s)}{R(s)}$. Then, G(s) is SPR if and only if

- (i) $|n^*| \leq 1$ and G(s) is analytic in $\mathrm{Re}[s] \geq 0$
- (ii) $\operatorname{Re}[G(j\omega)] > 0, \forall \omega \in (-\infty, \infty)$
- (iii) (a) When $n^*=1, \lim_{|\omega|\to\infty}\omega^2\operatorname{Re}[G(j\omega)]>0$
 - (b) When $n^* = -1$, $\lim_{|\omega| \to \infty} \frac{G(j\omega)}{j\omega} > 0$.

Theorem: Assume that a rational function G(s) of the complex variable $s=\sigma+j\omega$ is real for real s and is not identically zero for all s. Let n^* be the relative degree of $G(s)=\frac{Z(s)}{R(s)}$. Then, G(s) is SPR if and only if

- (i) $|n^*| \le 1$ and G(s) is analytic in $\mathrm{Re}[s] \ge 0$
- (ii) $\operatorname{Re}[G(j\omega)] > 0, \forall \omega \in (-\infty, \infty)$
- (iii) (a) When $n^* = 1$, $\lim_{|\omega| \to \infty} \omega^2 \operatorname{Re}[G(j\omega)] > 0$
 - (b) When $n^* = -1$, $\lim_{|\omega| \to \infty} \frac{G(j\omega)}{j\omega} > 0$.

Theorem: Assume that a rational function G(s) of the complex variable $s=\sigma+j\omega$ is real for real s and is not identically zero for all s. Let n^* be the relative degree of $G(s)=\frac{Z(s)}{R(s)}$. Then, G(s) is SPR if and only if

- (i) $|n^*| \le 1$ and G(s) is analytic in $\mathrm{Re}[s] \ge 0$
- (ii) $\operatorname{Re}[G(j\omega)] > 0, \forall \omega \in (-\infty, \infty)$
- (iii) (a) When $n^*=1, \lim_{|\omega|\to\infty}\omega^2\operatorname{Re}[G(j\omega)]>0$
 - (b) When $n^* = -1$, $\lim_{|\omega| \to \infty} \frac{G(j\omega)}{j\omega} > 0$.

Theorem: Assume that a rational function G(s) of the complex variable $s=\sigma+j\omega$ is real for real s and is not identically zero for all s. Let n^* be the relative degree of $G(s)=\frac{Z(s)}{R(s)}$. Then, G(s) is SPR if and only if

- (i) $|n^*| \le 1$ and G(s) is analytic in $\text{Re}[s] \ge 0$
- (ii) $\operatorname{Re}[G(j\omega)] > 0, \forall \omega \in (-\infty, \infty)$
- (iii) (a) When $n^*=1,\lim_{|\omega|\to\infty}\omega^2\operatorname{Re}[G(j\omega)]>0$
 - (b) When $n^* = -1, \lim_{|\omega| \to \infty} \frac{G(j\omega)}{j\omega} > 0.$

Example:
$$G(s) = \frac{1}{s+\alpha}$$

Theorem: Assume that a rational function G(s) of the complex variable $s=\sigma+j\omega$ is real for real s and is not identically zero for all s. Let n^* be the relative degree of $G(s)=\frac{Z(s)}{R(s)}$. Then, G(s) is SPR if and only if

- (i) $|n^*| \le 1$ and G(s) is analytic in $\mathrm{Re}[s] \ge 0$
- (ii) $\operatorname{Re}[G(j\omega)] > 0, \forall \omega \in (-\infty, \infty)$
- (iii) (a) When $n^*=1, \lim_{|\omega|\to\infty}\omega^2\operatorname{Re}[G(j\omega)]>0$
 - (b) When $n^* = -1, \lim_{|\omega| \to \infty} \frac{G(j\omega)}{j\omega} > 0.$

Corollary:

- (i) G(s) is SPR if and only if 1/G(s) is SPR.
- (ii) If G(s) is SPR, then, $|n^*| \leq 1$, and the zeros and poles of G(s) lie in ${\rm Re}[s] < 0$

Example: (i)
$$G_1(s) = \frac{s-1}{(s+2)^2}$$
 (ii) $G_2(s) = \frac{1}{(s+2)^2}$

(iii)
$$G_3(s) = \frac{s+3}{(s+1)(s+2)}$$

For $G_3(s)$, we have that

$$\operatorname{Re}\left[G_3(j\omega)\right] = \frac{6}{(2-\omega^2)^2 + 9\omega^2} > 0, \quad \forall \omega \in (-\infty, \infty)$$

which together with the stability of $G_3(s)$ implies that $G_3(s)$ is

PR. However $G_3(s)$ violates (iii)(a) of Theorem, it is not SPR.

Corollary:

- (i) G(s) is SPR if and only if 1/G(s) is SPR.
- (ii) If G(s) is SPR, then, $|n^*| \leq 1$, and the zeros and poles of G(s) lie in $\mathrm{Re}[s] < 0$

Example: (i)
$$G_1(s)=\frac{s-1}{(s+2)^2}$$
 (ii) $G_2(s)=\frac{1}{(s+2)^2}$

(iii)
$$G_3(s) = \frac{s+3}{(s+1)(s+2)}$$

For $G_3(s)$, we have that

$$\operatorname{Re}\left[G_3(j\omega)\right] = \frac{6}{(2-\omega^2)^2 + 9\omega^2} > 0, \quad \forall \omega \in (-\infty, \infty)$$

which together with the stability of $G_3(s)$ implies that $G_3(s)$ is

PR. However $G_3(s)$ violates (iii)(a) of Theorem, it is not SPR

Corollary:

- (i) G(s) is SPR if and only if 1/G(s) is SPR.
- (ii) If G(s) is SPR, then, $|n^*| \le 1$, and the zeros and poles of G(s) lie in $\mathrm{Re}[s] < 0$

Example: (i)
$$G_1(s)=\frac{s-1}{(s+2)^2}$$
 (ii) $G_2(s)=\frac{1}{(s+2)^2}$

(iii)
$$G_3(s) = \frac{s+3}{(s+1)(s+2)}$$

For $G_3(s)$, we have that

Re
$$[G_3(j\omega)] = \frac{6}{(2-\omega^2)^2 + 9\omega^2} > 0, \quad \forall \omega \in (-\infty, \infty)$$

which together with the stability of $G_3(s)$ implies that $G_3(s)$ is

PR. However $G_3(s)$ violates (iii)(a) of Theorem, it is not SPR.

Lemma: (Lefschetz-Kalman-Yakubovich (LKY) Lemma) Given a stable matrix A, a vector B such that (A,B) is controllable, a vector C and a scalar $d \geq 0$, the transfer function defined by

$$G(s) = d + C^{\top}(sI - A)^{-1}B$$

is SPR if and only if for any positive definite matrix L, there exist a symmetric positive definite matrix P, a scalar $\nu>0$ and a vector q such that

$$A^{\top}P + PA = -qq^{\top} - \nu L$$
$$PB - C = \pm q\sqrt{2d}$$

Example: Consider the system

$$y = G(s)u$$

where $G(s)=\frac{s+3}{(s+1)(s+2)}.$ We would like to verify whether G(s) is

SPR by using LKY. The system has the state space representation

$$\dot{x} = Ax + Bu$$

$$y = C^{\top} x$$

where

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

The controllable requirement is relaxed by the next lemma.

Example: Consider the system

$$y = G(s)u$$

where $G(s)=\frac{s+3}{(s+1)(s+2)}$. We would like to verify whether G(s) is SPR by using LKY. The system has the state space representation

$$\dot{x} = Ax + Bu$$

$$y = C^{\top} x$$

where

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

The controllable requirement is relaxed by the next lemma

Example: Consider the system

$$y = G(s)u$$

where $G(s)=\frac{s+3}{(s+1)(s+2)}.$ We would like to verify whether G(s) is

 SPR by using LKY. The system has the state space representation

$$\dot{x} = Ax + Bu$$

$$y = C^{\top} x$$

where

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

The controllable requirement is relaxed by the next lemma.

MKY

Lemma: (Meyer-Kalman-Yakubovich (MKY) Lemma) Given a stable matrix A, vectors B,C and a scalar $d\geq 0$, we have the following: If

$$G(s) = d + C^{\top}(sI - A)^{-1}B$$

is SPR, then for any given $L=L^{\top}>0$, there exists a scalar $\nu>0$, a vector q and a $P=P^{\top}>0$ such that

$$A^{\top}P + PA = -qq^{\top} - \nu L$$
$$PB - C = \pm q\sqrt{2d}$$

Note, for strictly proper transfer function G(s), we have d=0 that is PB=C.

MKY

Lemma: (Meyer-Kalman-Yakubovich (MKY) Lemma) Given a stable matrix A, vectors B,C and a scalar $d\geq 0$, we have the following: If

$$G(s) = d + C^{\top}(sI - A)^{-1}B$$

is SPR, then for any given $L=L^{\top}>0$, there exists a scalar $\nu>0$, a vector q and a $P=P^{\top}>0$ such that

$$A^{\top}P + PA = -qq^{\top} - \nu L$$
$$PB - C = \pm q\sqrt{2d}$$

Note, for strictly proper transfer function G(s), we have d=0 that is PB=C.

MKY

Lemma: (Meyer-Kalman-Yakubovich (MKY) Lemma) Given a stable matrix A, vectors B,C and a scalar $d\geq 0$, we have the following: If

$$G(s) = d + C^{\top}(sI - A)^{-1}B$$

is SPR, then for any given $L=L^{\top}>0$, there exists a scalar $\nu>0$, a vector q and a $P=P^{\top}>0$ such that

$$A^{\top}P + PA = -qq^{\top} - \nu L$$
$$PB - C = \pm q\sqrt{2d}$$

Note, for strictly proper transfer function G(s), we have d=0, that is PB=C.

Consider

$$z = W(s)\theta^{*\top}\psi$$

Since θ^* is a constant vector, the DPM may be written as

$$z = W(s)L(s)\left[\theta^{*\top}\phi\right]$$

where $\phi=L^{-1}(s)\psi, L(s)$ is chosen so that $L^{-1}(s)$ is a proper stable transfer function, and W(s)L(s) is a proper SPR transfer function. We form the normalized estimation error

$$\varepsilon = z - \hat{z} - W(s)L(s) \left[\varepsilon n_s^2\right] \\ = W(s)L(s) \left[-\tilde{\theta}^\top \phi - \varepsilon n_s^2\right]$$

where n_s is designed so that $\frac{\phi}{m_s} \in \mathcal{L}_{\infty}$ for $m_s^2 = 1 + n_s^2$

Consider

$$z = W(s)\theta^{*\top}\psi$$

Since θ^* is a constant vector, the DPM may be written as

$$z = W(s)L(s)\left[\theta^{*\top}\phi\right]$$

where $\phi=L^{-1}(s)\psi, L(s)$ is chosen so that $L^{-1}(s)$ is a proper stable transfer function, and W(s)L(s) is a proper SPR transfer function. We form the normalized estimation error

$$\varepsilon = z - \hat{z} - W(s)L(s) \left[\varepsilon n_s^2\right] = W(s)L(s) \left[-\tilde{\theta}^{\top}\phi - \varepsilon n_s^2\right]$$

where n_s is designed so that $\frac{\phi}{m_s} \in \mathcal{L}_{\infty}$ for $m_s^2 = 1 + n_s^2$

Consider

$$z = W(s)\theta^{*\top}\psi$$

Since θ^* is a constant vector, the DPM may be written as

$$z = W(s)L(s)\left[\theta^{*\top}\phi\right]$$

where $\phi=L^{-1}(s)\psi, L(s)$ is chosen so that $L^{-1}(s)$ is a proper stable transfer function, and W(s)L(s) is a proper SPR transfer function. We form the normalized estimation error

$$\varepsilon = z - \hat{z} - W(s)L(s) \left[\varepsilon n_s^2 \right] = W(s)L(s) \left[-\tilde{\theta}^\top \phi - \varepsilon n_s^2 \right]$$

where n_s is designed so that $\frac{\phi}{m_s} \in \mathcal{L}_{\infty}$ for $m_s^2 = 1 + n_s^2$

Consider

$$z = W(s)\theta^{*\top}\psi$$

Since θ^* is a constant vector, the DPM may be written as

$$z = W(s)L(s)\left[\theta^{*\top}\phi\right]$$

where $\phi=L^{-1}(s)\psi, L(s)$ is chosen so that $L^{-1}(s)$ is a proper stable transfer function, and W(s)L(s) is a proper SPR transfer function. We form the normalized estimation error

$$\varepsilon = z - \hat{z} - W(s)L(s)\left[\varepsilon n_s^2\right] = W(s)L(s)\left[-\tilde{\theta}^{\top}\phi - \varepsilon n_s^2\right]$$

where n_s is designed so that $\frac{\phi}{m_s} \in \mathcal{L}_{\infty}$ for $m_s^2 = 1 + n_s^2$.

Since W(s)L(s) is strictly proper, there exists a Hurwitz ${\cal A}_c$

$$\dot{e} = A_c e + b_c \left(-\tilde{\theta}^{\top} \phi - \varepsilon n_s^2 \right)$$
$$\varepsilon = c_c^{\top} e$$

where $W(s)L(s)=c_c^{\top}\,(sI-A_c)^{-1}\,b_c$. According to MKY lemma, there exist matrices $P_c=P_c^{\top}>0, L_c=L_c^{\top}>0$, a vector q, and a scalar v>0 such that

$$P_c A_c + A_c^{\top} P_c = -q q^{\top} - v L_c$$

 $P_c b_c = c_c$

Parameter Estimation III 8-22

Since W(s)L(s) is strictly proper, there exists a Hurwitz A_c

$$\dot{e} = A_c e + b_c \left(-\tilde{\theta}^{\top} \phi - \varepsilon n_s^2 \right)$$
$$\varepsilon = c_c^{\top} e$$

where $W(s)L(s)=c_c^{\top}\,(sI-A_c)^{-1}\,b_c$. According to MKY lemma, there exist matrices $P_c=P_c^{\top}>0, L_c=L_c^{\top}>0$, a vector q, and a scalar v>0 such that

$$P_c A_c + A_c^{\top} P_c = -q q^{\top} - v L_c$$
$$P_c b_c = c_c$$

Parameter Estimation III 8-23

The adaptive law for $\boldsymbol{\theta}$ is then can be generated using the Lyapunov-like function

$$V = \frac{e^{\top} P_c e}{2} + \frac{\tilde{\theta}^{\top} \Gamma^{-1} \tilde{\theta}}{2}$$

where $\Gamma = \Gamma^{\top} > 0$. The time derivative

$$\dot{V} = -\frac{1}{2}e^{\top}qq^{\top}e - \frac{v}{2}e^{\top}L_ce + e^{\top}P_cb_c\left(-\tilde{\theta}^T\phi - \varepsilon n_s^2\right) + \tilde{\theta}^{\top}\Gamma^{-1}\dot{\tilde{\theta}}$$

Since $e^{\top}P_cb_c=e^{\top}c_c=\varepsilon$, it follows that by choosing $\dot{\tilde{\theta}}=\dot{\theta}$ as

$$\dot{\theta} = \Gamma \varepsilon \phi$$

we ge

$$\dot{V} = -\frac{1}{2}e^{\top}qq^{\top}e - \frac{v}{2}e^{\top}L_ce - \varepsilon^2 n_s^2 \le 0$$

The adaptive law for $\boldsymbol{\theta}$ is then can be generated using the Lyapunov-like function

$$V = \frac{e^{\top} P_c e}{2} + \frac{\tilde{\theta}^{\top} \Gamma^{-1} \tilde{\theta}}{2}$$

where $\Gamma = \Gamma^{\top} > 0$. The time derivative

$$\dot{V} = -\frac{1}{2}e^{\top}qq^{\top}e - \frac{v}{2}e^{\top}L_ce + e^{\top}P_cb_c\left(-\tilde{\theta}^T\phi - \varepsilon n_s^2\right) + \tilde{\theta}^{\top}\Gamma^{-1}\dot{\tilde{\theta}}$$

Since $e^{\top}P_cb_c=e^{\top}c_c=\varepsilon$, it follows that by choosing $\dot{\hat{\theta}}=\dot{\theta}$ as

$$\dot{\theta} = \Gamma \varepsilon \phi$$

we get

$$\dot{V} = -\frac{1}{2}e^{\top}qq^{\top}e - \frac{v}{2}e^{\top}L_{c}e - \varepsilon^{2}n_{s}^{2} \le 0$$

Convergence Properties: The gradient-based adaptive law for DPM guarantees that

- (i) $\varepsilon, \theta \in \mathcal{L}_{\infty}$ and $\varepsilon, \varepsilon n_s, \dot{\theta} \in \mathcal{L}_2$ independent of the boundedness properties of ϕ .
- (ii) If $n_s,\phi,\dot{\phi}\in\mathcal{L}_\infty$ and ϕ is PE, then $heta(t) o heta^*$ exponentially

Proof can be found in Robust Adaptive Control Section 4.8

Example Consider the previous plant:

$$y = \frac{b_1 s + b_0}{s^2 + 3s + 2}v$$

Convergence Properties: The gradient-based adaptive law for DPM guarantees that

- (i) $\varepsilon, \theta \in \mathcal{L}_{\infty}$ and $\varepsilon, \varepsilon n_s, \dot{\theta} \in \mathcal{L}_2$ independent of the boundedness properties of ϕ .
- (ii) If $n_s, \phi, \dot{\phi} \in \mathcal{L}_{\infty}$ and ϕ is PE, then $\theta(t) \to \theta^*$ exponentially fast.

Proof can be found in Robust Adaptive Control Section 4.8.

Example Consider the previous plant:

$$y = \frac{b_1 s + b_0}{s^2 + 3s + 2} u$$

Convergence Properties: The gradient-based adaptive law for DPM guarantees that

- (i) $\varepsilon, \theta \in \mathcal{L}_{\infty}$ and $\varepsilon, \varepsilon n_s, \dot{\theta} \in \mathcal{L}_2$ independent of the boundedness properties of ϕ .
- (ii) If $n_s, \phi, \dot{\phi} \in \mathcal{L}_{\infty}$ and ϕ is PE, then $\theta(t) \to \theta^*$ exponentially fast.

Proof can be found in Robust Adaptive Control Section 4.8.

Example Consider the previous plant:

$$y = \frac{b_1 s + b_0}{s^2 + 3s + 2} u$$

We rewrite the plant as

$$y = \frac{1}{(s+1)(s+2)} \theta^{*\top} \psi$$

where $\theta^* = [b_1, b_0]^{\mathsf{T}}$, $\psi = [\dot{u}, u]^{\mathsf{T}}$. We then choose L(s) = s + 2 so that $W(s)L(s) = \frac{1}{s+1}$ is SPR and rewrite PM as

$$y = \frac{1}{s+1} \theta^{*\top} \phi, \quad \phi = \left[\frac{s}{s+2} u, \frac{1}{s+2} u \right]^{\top}$$

Next, apply the adaptive law

$$\dot{\theta} = \Gamma \varepsilon \phi$$

where
$$\varepsilon = y - \frac{1}{s+1} \left(\theta^\top \phi + \varepsilon n_s^2 \right), n_s = \alpha \phi^\top \phi, \alpha > 0$$

Parameter Estimation III

We rewrite the plant as

$$y = \frac{1}{(s+1)(s+2)} \theta^{*\top} \psi$$

where $\theta^* = [b_1, b_0]^\top$, $\psi = [\dot{u}, u]^\top$. We then choose L(s) = s+2 so that $W(s)L(s) = \frac{1}{s+1}$ is SPR and rewrite PM as

$$y = \frac{1}{s+1} \theta^{*\top} \phi, \quad \phi = \left[\frac{s}{s+2} u, \frac{1}{s+2} u \right]^{\top}$$

Next, apply the adaptive law

$$\dot{\theta} = \Gamma \varepsilon \phi$$

where
$$\varepsilon = y - \frac{1}{s+1} \left(\theta^\top \phi + \varepsilon n_s^2 \right), n_s = \alpha \phi^\top \phi, \alpha > 0$$

Parameter Estimation III

We rewrite the plant as

$$y = \frac{1}{(s+1)(s+2)} \theta^{*\top} \psi$$

where $\theta^* = [b_1, b_0]^\top$, $\psi = [\dot{u}, u]^\top$. We then choose L(s) = s+2 so that $W(s)L(s) = \frac{1}{s+1}$ is SPR and rewrite PM as

$$y = \frac{1}{s+1} \theta^{*\top} \phi, \quad \phi = \left[\frac{s}{s+2} u, \frac{1}{s+2} u \right]^{\top}$$

Next, apply the adaptive law

$$\dot{\theta} = \Gamma \varepsilon \phi$$

where
$$\varepsilon = y - \frac{1}{s+1} \left(\theta^{\top} \phi + \varepsilon n_s^2 \right), n_s = \alpha \phi^{\top} \phi, \alpha > 0.$$

Contents

Parameter Estimation for DPM

Parameter Estimation for B-SPM

Adaptive Observer

Parameter Estimation III 8-32

Consider the B-SPM

$$z = \rho^* (\theta^{*\top} \phi + z_0)$$

where z, z_0 are available for measuring and ρ^*, θ^* are unknown parameters. But the sign of ρ^* is assumed to be known.

The estimation error is generated as

$$\varepsilon = \frac{z - \hat{z}}{m_s^2}, \quad \hat{z} = \rho(t) \left(\theta(t)^{\top} \phi + z_0 \right)$$

where $\rho(t), \theta(t)$ are the estimates of ρ^*, θ^* , respectively, at time t and where m_s is designed to bound ϕ, z_0 from above. An example of m_s with this property is $m_s^2 = 1 + \phi^\top \phi + z_0^2$.

Consider the B-SPM

$$z = \rho^* (\theta^{*\top} \phi + z_0)$$

where z,z_0 are available for measuring and ρ^*,θ^* are unknown parameters. But the sign of ρ^* is assumed to be known.

The estimation error is generated as

$$\varepsilon = \frac{z - \hat{z}}{m_s^2}, \quad \hat{z} = \rho(t) \left(\theta(t)^{\top} \phi + z_0 \right)$$

where $\rho(t), \theta(t)$ are the estimates of ρ^*, θ^* , respectively, at time t and where m_s is designed to bound ϕ, z_0 from above. An example of m_s with this property is $m_s^2 = 1 + \phi^\top \phi + z_0^2$.

Let us consider the cost

$$J(\rho,\theta) = \frac{\varepsilon^2 m_s^2}{2} = \frac{\left(z - \rho \xi - \rho^* \theta^\top \phi - \rho^* z_0 + \rho^* \xi\right)^2}{2m_s^2}$$

where $\xi=\theta^{\top}\phi+z_0$ is available for measurement. Applying the gradient method yields

$$\dot{ heta} = -\Gamma_1
abla J_{ heta} = \Gamma_1 arepsilon
ho^* \phi, \quad \dot{
ho} = -\gamma
abla J_{
ho} = \gamma arepsilon \xi$$

where $\Gamma_1 = \Gamma_1^{\top} > 0, \gamma > 0$ are the adaptive gains. We bypass the unknown ρ^* by employing the equality

$$\Gamma_1 \rho^* = \Gamma_1 |\rho^*| \operatorname{sgn}(\rho^*) = \Gamma \operatorname{sgn}(\rho^*)$$

where $\Gamma = \Gamma_1 \left| \rho^* \right|$

Let us consider the cost

$$J(\rho, \theta) = \frac{\varepsilon^2 m_s^2}{2} = \frac{\left(z - \rho \xi - \rho^* \theta^\top \phi - \rho^* z_0 + \rho^* \xi\right)^2}{2m_s^2}$$

where $\xi=\theta^{\rm T}\phi+z_0$ is available for measurement. Applying the gradient method yields

$$\dot{ heta} = -\Gamma_1
abla J_{ heta} = \Gamma_1 arepsilon
ho^* \phi, \quad \dot{
ho} = -\gamma
abla J_{
ho} = \gamma arepsilon \xi$$

where $\Gamma_1 = \Gamma_1^{\top} > 0, \gamma > 0$ are the adaptive gains. We bypass the unknown ρ^* by employing the equality

$$\Gamma_1 \rho^* = \Gamma_1 |\rho^*| \operatorname{sgn}(\rho^*) = \Gamma \operatorname{sgn}(\rho^*)$$

where $\Gamma = \Gamma_1 |\rho^*|$

Let us consider the cost

$$J(\rho, \theta) = \frac{\varepsilon^2 m_s^2}{2} = \frac{\left(z - \rho \xi - \rho^* \theta^\top \phi - \rho^* z_0 + \rho^* \xi\right)^2}{2m_s^2}$$

where $\xi=\theta^\top\phi+z_0$ is available for measurement. Applying the gradient method yields

$$\dot{\theta} = -\Gamma_1 \nabla J_{\theta} = \Gamma_1 \varepsilon \rho^* \phi, \quad \dot{\rho} = -\gamma \nabla J_{\rho} = \gamma \varepsilon \xi$$

where $\Gamma_1 = \Gamma_1^{\top} > 0, \gamma > 0$ are the adaptive gains. We bypass the unknown ρ^* by employing the equality

$$\Gamma_1 \rho^* = \Gamma_1 |\rho^*| \operatorname{sgn}(\rho^*) = \Gamma \operatorname{sgn}(\rho^*)$$

where $\Gamma = \Gamma_1 |\rho^*|$.

The adaptive laws for θ, ρ now be written as

$$\dot{\theta} = \Gamma \varepsilon \phi \operatorname{sgn}(\rho^*) \quad \theta(0) = \theta_0 \in \mathbb{R}^{n-1}$$
$$\dot{\rho} = \gamma \varepsilon \xi, \qquad \rho(0) = \rho_0 \in \mathbb{R}$$

Theorem: The gradient-based adaptive law for B-SPN guarantees that

- (i) $\varepsilon, \varepsilon m_s, \dot{\theta}, \dot{\rho} \in \mathcal{L}_2 \cap \mathcal{L}_{\infty}$ and $\theta, \rho \in \mathcal{L}_{\infty}$
- (ii) If $\frac{\xi}{m_s}\in\mathcal{L}_2$, then $\rho(t)\to \bar{\rho}$ as $t\to\infty$, where $\bar{\rho}$ is a constant.
- (iii) If $rac{\xi}{m_s}\in\mathcal{L}_2$ and $rac{\phi}{m_s}$ is PE, then $heta(t) o heta^*$ as $t o\infty$.

For unknown $\mathrm{sgn}(\rho)$ case, refer to Robust Adaptive Control 4.5

Nussbaum Gain.

The adaptive laws for θ, ρ now be written as

$$\dot{\theta} = \Gamma \varepsilon \phi \operatorname{sgn}(\rho^*) \quad \theta(0) = \theta_0 \in \mathbb{R}^{n-1}$$
$$\dot{\rho} = \gamma \varepsilon \xi, \qquad \rho(0) = \rho_0 \in \mathbb{R}$$

Theorem: The gradient-based adaptive law for B-SPM guarantees that

- (i) $\varepsilon, \varepsilon m_s, \dot{\theta}, \dot{\rho} \in \mathcal{L}_2 \cap \mathcal{L}_{\infty}$ and $\theta, \rho \in \mathcal{L}_{\infty}$
- (ii) If $\frac{\xi}{m_s} \in \mathcal{L}_2$, then $\rho(t) \to \bar{\rho}$ as $t \to \infty$, where $\bar{\rho}$ is a constant.
- (iii) If $\frac{\xi}{m_s} \in \mathcal{L}_2$ and $\frac{\phi}{m_s}$ is PE, then $\theta(t) \to \theta^*$ as $t \to \infty$.

For unknown $\mathrm{sgn}(\rho)$ case, refer to Robust Adaptive Control 4.5

Nussbaum Gain

The adaptive laws for θ, ρ now be written as

$$\dot{\theta} = \Gamma \varepsilon \phi \operatorname{sgn}(\rho^*) \quad \theta(0) = \theta_0 \in \mathbb{R}^{n-1}$$

$$\dot{\rho} = \gamma \varepsilon \xi, \qquad \rho(0) = \rho_0 \in \mathbb{R}$$

Theorem: The gradient-based adaptive law for B-SPM guarantees that

- (i) $\varepsilon, \varepsilon m_s, \dot{\theta}, \dot{\rho} \in \mathcal{L}_2 \cap \mathcal{L}_{\infty}$ and $\theta, \rho \in \mathcal{L}_{\infty}$
- (ii) If $\frac{\xi}{m_s} \in \mathcal{L}_2$, then $\rho(t) \to \bar{\rho}$ as $t \to \infty$, where $\bar{\rho}$ is a constant.
- (iii) If $\frac{\xi}{m_s} \in \mathcal{L}_2$ and $\frac{\phi}{m_s}$ is PE, then $\theta(t) \to \theta^*$ as $t \to \infty$.

For unknown $\mathrm{sgn}(\rho)$ case, refer to Robust Adaptive Control 4.5

Nussbaum Gain.

Summary

SPM

- Gradient-based for instantaneous cost function
- Gradient-based for integral cost function
- Recursive LS and Modified (Projected) recursive LS
- Pure LS and Modified(Resetting) pure LS

DPM

SPR-Lyapunov designed

B-SPM

Gradient-based for instantaneous cost function

Parameter Estimation III 8-41

Contents in the sequel are supplementary

Parameter Estimation III 8-42

Contents

Parameter Estimation for DPM

Parameter Estimation for B-SPM

Adaptive Observer

Parameter Estimation III 8-43

Consider the LTI SISO plant

$$\dot{x} = Ax + Bu, \quad x(0) = x_0$$
$$y = C^{\top} x$$

In the case A,B,C are known, the *Luenberger observer* is in the form of

$$\dot{\hat{x}} = A\hat{x} + Bu + K(y - \hat{y}), \quad \hat{x}(0) = \hat{x}_0$$
$$\hat{y} = C^{\top}\hat{x}$$

where K is chosen such that $A-KC^{\top}$ is Hurwitz, guarantees that $\hat{x} \to x$ exponentially fast. The existence of K is ensured by the observability of pair (A,C^{\top})

Consider the LTI SISO plant

$$\dot{x} = Ax + Bu, \quad x(0) = x_0$$
$$y = C^{\top} x$$

In the case A,B,C are known, the Luenberger observer is in the form of

$$\dot{\hat{x}} = A\hat{x} + Bu + K(y - \hat{y}), \quad \hat{x}(0) = \hat{x}_0$$
$$\hat{y} = C^{\top}\hat{x}$$

where K is chosen such that $A-KC^{\top}$ is Hurwitz, guarantees that $\hat{x} \to x$ exponentially fast. The existence of K is ensured by the observability of pair (A,C^{\top})

Idea:
$$(A,B,C) o G(s) o \hat{G}(s) o (\hat{A},\hat{B},\hat{C})$$

mapping of the 2n estimated parameters of G(s) to the n^2+2n parameters of A,B,C is not uniqueunless (A,B,C) is in a observer canonical form, i.e., the plant is represented as

$$\dot{x}_o = \left[-a_p \mid \frac{I_{n-1}}{0} \right] x_o + b_\rho u$$
$$y = [1, 0, \dots, 0] x_o$$

where $a_p = [a_{n-1}, a_{n-2}, \dots, a_0]^{\top}$ and $b_p = [b_{n-1}, b_{n-2}, \dots, b_0]^{\top}$ are the coefficients of the transfer function

$$G(s) = \frac{y(s)}{u(s)} = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_0s}{s^n + a_{n-1}s^{n-1} + a_{n-2}s^{n-2} + \dots + a_0s}$$

Idea: $(A,B,C) \to G(s) \to \hat{G}(s) \to (\hat{A},\hat{B},\hat{C})$

mapping of the 2n estimated parameters of G(s) to the n^2+2n parameters of A,B,C is not uniqueunless (A,B,C) is in a

observer canonical form, i.e., the plant is represented as

$$\dot{x}_o = \left[-a_p \mid \frac{I_{n-1}}{0} \right] x_o + b_\rho u$$
$$y = [1, 0, \dots, 0] x_o$$

where $a_p = [a_{n-1}, a_{n-2}, \dots, a_0]^{\top}$ and $b_p = [b_{n-1}, b_{n-2}, \dots, b_0]^{\top}$ are the coefficients of the transfer function

$$G(s) = \frac{y(s)}{u(s)} = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_0s}{s^n + a_{n-1}s^{n-1} + a_{n-2}s^{n-2} + \dots + a_0s}$$

Idea: $(A,B,C) \to G(s) \to \hat{G}(s) \to (\hat{A},\hat{B},\hat{C})$

mapping of the 2n estimated parameters of G(s) to the n^2+2n parameters of A,B,C is not uniqueunless (A,B,C) is in a observer canonical form, i.e., the plant is represented as

$$\dot{x}_o = \left[-a_p \mid \frac{I_{n-1}}{0} \right] x_o + b_\rho u$$
$$y = [1, 0, \dots, 0] x_o$$

where $a_p = [a_{n-1}, a_{n-2}, \dots, a_0]^{\top}$ and $b_p = [b_{n-1}, b_{n-2}, \dots, b_0]^{\top}$ are the coefficients of the transfer function

$$G(s) = \frac{y(s)}{u(s)} = \frac{b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_0s}{s^n + a_{n-1}s^{n-1} + a_{n-2}s^{n-2} + \dots + a_0s}$$

Then the adaptive observer is given by

$$\dot{\hat{x}} = \hat{A}(t)\hat{x} + \hat{b}_p(t)u + K(t)(y - \hat{y}), \quad \hat{x}(0) = \hat{x}_0
\hat{y} = [1, 0, \dots, 0]\hat{x}$$

where \hat{x} is the estimate of x_0 and

$$\hat{A}(t) = \left[-\hat{a}_p(t) \mid \frac{I_{n-1}}{0} \right], \quad K(t) = a^* - \hat{a}_p(t)$$

 $\hat{a}_p(t)$ and $\hat{b}_p(t)$ are the estimates of the vectors a_p and b_p , respectively. $a^* \in \mathcal{R}^n$ is chosen so that

$$A^* = \left[-a^* | \frac{I_{n-1}}{0} \right]$$

is a Hurwitz matrix

Then the adaptive observer is given by

$$\dot{\hat{x}} = \hat{A}(t)\hat{x} + \hat{b}_p(t)u + K(t)(y - \hat{y}), \quad \hat{x}(0) = \hat{x}_0
\hat{y} = [1, 0, \dots, 0]\hat{x}$$

where \hat{x} is the estimate of x_0 and

$$\hat{A}(t) = \left[-\hat{a}_p(t) \mid \frac{I_{n-1}}{0} \right], \quad K(t) = a^* - \hat{a}_p(t)$$

 $\hat{a}_p(t)$ and $\hat{b}_p(t)$ are the estimates of the vectors a_p and b_p , respectively. $a^*\in\mathcal{R}^n$ is chosen so that

$$A^* = \left[-a^* | \frac{I_{n-1}}{0} \right]$$

is a Hurwitz matrix.

Theorem: The adaptive Luenberger observer with gradient-based algorithm guarantees the following properties:

- (i) If choose $u \in \mathcal{L}_{\infty}$ and A is a stable matrix, all signals are bounded.
- (ii) Furthermore, if choose u is sufficiently rich of order 2n, then the state observation error $|\hat{x}-x_o|$ and the parameter estimation error $\tilde{\theta}$ converge to zero exponentially fast.

Brief Proof. (i) The observer equation may be written as

$$\dot{\hat{x}} = A^* \hat{x} + \hat{b}_p(t)u + \left(\hat{A}(t) - A^*\right)x_0$$

(ii) The state observation error $\tilde{x} = \hat{x} - x_o$ satisfies

Parameter Estimation III $\dot{\tilde{x}} = A^* \tilde{x} + \tilde{b}_n u - \tilde{a}_n$

Theorem: The adaptive Luenberger observer with gradient-based algorithm guarantees the following properties:

- (i) If choose $u \in \mathcal{L}_{\infty}$ and A is a stable matrix, all signals are bounded.
- (ii) Furthermore, if choose u is sufficiently rich of order 2n, then the state observation error $|\hat{x}-x_o|$ and the parameter estimation error $\tilde{\theta}$ converge to zero exponentially fast.

Brief Proof. (i) The observer equation may be written as

$$\dot{\hat{x}} = A^* \hat{x} + \hat{b}_p(t)u + \left(\hat{A}(t) - A^*\right)x_o$$

(ii) The state observation error $\tilde{x} = \hat{x} - x_o$ satisfies

$$\dot{\tilde{x}} = A^* \tilde{x} + \tilde{b}_n u - \tilde{a}_n y$$