# AE667-Assignment2

# Manoj Bhadu 170010036

# February 2021

## Contents

| 1        | Status of program                                                                                                                    | 1 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------|---|
| 2        | Starting Data 2.1 Drone Design Parameters                                                                                            | ] |
| 3        | Approach, Theory and Implementation 3.1 Version 1: Without the Prandtl Tip Loss model 3.2 Version 2: With the Prandtl Tip Loss model | 4 |
| 4        | Results and discussion                                                                                                               | ( |
|          | Status of program ogram is working fine.                                                                                             |   |
| <b>2</b> | Starting Data                                                                                                                        |   |
| 2.       | 1 Drone Design Parameters                                                                                                            |   |
|          | • Weight of 4 motor and blades: 2.5kg                                                                                                |   |
|          | • Weight of Propeller: 1kg                                                                                                           |   |
|          | • Weight of Battery: 3.5kg                                                                                                           |   |
|          | • structural weight: 3kg                                                                                                             |   |
|          | • Radius of motor: 0.3m                                                                                                              |   |
|          | • Number of blades: 3                                                                                                                |   |
|          | • Thrust: 220N                                                                                                                       |   |

- a: 5.75
- $C_l = a\alpha$
- $C_d = 0.0113 + 1.25\alpha^2$

#### 2.2 Assumptions

- We will be using Blade Element Momentum theory for power and thrust calculations here so all assumptions in momentum theory are taken here too
- Apply Momentum Theory on a strip of the disk and Apply BE theory on the strips of the blades and combining them
- The atmospheric condtions are normal without large disturbance
- No Swirl
- compressibility effects and stalling are ignored

#### 3 Approach, Theory and Implementation

#### Version 1: Without the Prandtl Tip Loss model 3.1

- 1. We started program with defining parameters such as density, Forward velocity, no. of blades and rpm. Then we defined blade dimension Radius, Root cut out and cord length.
- 2. Defined Taper, Twist and solidity functions such that we can vary them linearly by giving slope and initial value. We can set them constant too by setting slope to zero.
- 3. Defined lamda function for calculating value of  $\lambda$  for given any r value.

where 
$$\lambda = \sqrt{\left(\frac{\sigma a}{16} - \frac{\lambda_c}{2}\right)^2 + \frac{\sigma a \theta r}{8R}} - \left(\frac{\sigma a}{16} - \frac{\lambda_c}{2}\right)$$

$$\lambda = \frac{V+v}{\Omega R}$$

$$\lambda_c = \frac{V}{\Omega R}$$

$$\sigma \text{ is solidity}$$

$$\lambda_c = \frac{V}{\Omega R}$$

a is lift curve slope

 $\theta$  is twist value

For  $\sigma$  and  $\theta$  calculation we use the function defined in point 1 and 2. our function take r as input and lambda (r) return  $\lambda$  value at that r

#### 4. defining function for calculating lambda

```
#Will return the value of lambda for given r
def lamda(r):
    lambda_c = V/(omega*R) #lambda_c value
    temp1 = a*solidity(r)/16 - lambda_c/2
    temp2 = (solidity(r)*a*linear_twist(r)*r)/(8*R)
    temp3 = solidity(r)*a/16 - lambda_c/2
    ans = (temp1**2 + temp2)**0.5 - temp3
    return ans
```

4. Defined functions for calculating the Lift and Drag coefficients named as Cl and Cd.

```
C_l = a\alpha_{effective}
C_d = C_{d(min)} + \epsilon \alpha_{effective}^2
where \alpha_{effective} = \theta - atan(\frac{\lambda R}{r})
For Calculating C_l and C_r we need r value and t
```

For Calculating  $C_l$  and  $C_d$  we need r value and functions for calculation of  $\lambda$  and  $\theta$  which are defined above

5. Next we defined function for calculation of Thrust and Torque calculation on element of blade named as dT and dQ respectively.

```
dT = b * 0.5 * \rho * (U_T^2 + U_P^2) * c * (C_l Cos(\phi) - C_d Sin(\phi))
dQ = b * 0.5 * \rho * r * (U_T^2 + U_P^2) * c * (C_d Cos(\phi) + C_l Sin(\phi))
Where U_T = \Omega r, U_P = \lambda R\Omega and \phi = atan(\frac{\lambda R}{r})
```

For other calculations such as  $C_l$ ,  $C_d$ ,  $\lambda$ , c we have used functions defined above named as Cl, Cd, lamda, linear-taper respectively for given value of r Code Snippet

```
#Function for calculating Thrust on element of blade at r

def dT(r):|
    U_T = omega*r
    U_P = lamda(r)*R*omega
    theta_r = linear_twist(r)
    C_r = linear_taper(r)
    phi = math.atan(lamda(r)*R/r)
    ans = 0.5*rho*b*(U_T**2 + U_P**2)*C_r*(Cl(r)*math.cos(phi) - Cd(r)*math.sin(phi))
    return ans

#Function for calculating Torque on element of blade at r

def dQ(r):
    U_T = omega*r
    U_P = lamda(r)*R*omega
    theta_r = linear_twist(r)
    C_r = linear_taper(r)
    phi = math.atan(lamda(r)*R/r)
    ans = 0.5*rho*r*b*(U_T**2 + U_P**2)*C_r*(Cl(r)*math.cos(phi) + Cd(r)*math.sin(phi))
    return ans
```

6. For calculating Total Thrust and Total Torque we have used the quad function from scipy.integrate for integrating dT and dQ respectively.

We integrated dT and dQ for variable r from Rrc to R using quad fucntion

after calculating total torque and thrust we have calculated  $C_T$  and  $C_Q$  using the fromula as:

$$C_T=rac{T}{
ho\pi\Omega^2R^4}$$
  $C_Q=rac{Q}{
ho\pi R^5\Omega^2}$  Now for Total power P we have  $P=\Omega Q$  and  $C_P=C_Q$ 

7. Now for calculating  $C_T$  and  $C_Q$  for any given value of twist(theta0) we just have defined parameters named: rho, V, blades, rpm, R, Rrc, chord length=C0(for constant taper(C1=0)), C0 and C1(for linear taper), a, Cdmin, eps and then run the point number 1 to 7 under Part a: Without the Prandtl Tip loss Model.

For linear twist we have to specify the value of theta1 also which is slope of theta vs r with all these parameters.

#### 3.2 Version 2: With the Prandtl Tip Loss model

- 1. Point number 1 and 2 will remain same as defined for above part(Without Tip Loss model)
- 2. We defined two functions named f and Factor for calcualting the value for f and F for any given value of r and lamda (which is value of  $\lambda$  in previous iteration.

Expression of f and F are:

$$F = \left(\frac{2}{\pi}\right) * \cos^{-1}(e^{-f})$$
$$f = \frac{b}{2} \frac{\left(1 - \frac{r}{R}\right)}{\lambda}$$

for calculating f and F we need to give value of r and  $\lambda$  (as real number which is  $\lambda$  value in previous iteration)

3. This part is the main difference between Tip loss and without Tip loss model. In this part we defined the function for calculating the value of  $\lambda$  for given r value.

Here expression for the  $\lambda$  is:

Here expression for the 
$$\lambda$$
 is:  

$$\lambda = \sqrt{\left(\frac{\sigma a}{16F} - \frac{\lambda_c}{2}\right)^2 + \frac{\sigma a \theta r}{8RF}} - \left(\frac{\sigma a}{16F} - \frac{\lambda_c}{2}\right)$$

$$\lambda = \frac{V + v}{\Omega R}$$

$$\lambda_c = \frac{V}{\Omega R}$$
 $\sigma$  is solidity

a is lift curve slope

 $\theta$  is twist value

For calculating we have used iterative approach. We have defined the function find\_lamda\_r(r) which is give the value of  $\lambda$  at given r for Tip loss model.

Approach: We have defined some starting  $\lambda$  value lambda0 as 10(arbitrary value) and F value 1. Using this F value we have calculated new  $\lambda$  named as temp\_lamda. Now if difference between lambda0 and temp\_lambda is more than  $10^{-8}$  we will calculate the F value using temp\_lambda and set lambda0 as temp\_lambda. Now we will iterate this till the value of lambda0 and temp\_lambda will have same eight decimal digits. if we encounter the zero value of temp\_lambda we will break loop with output given as zero.

#### **Code Snippet**

- 4. Now we have defined the function for calculating the value for  $C_l$ ,  $C_d$ , dT and dQ at any given r value named as Cl\_tip\_loss(r), Cd\_tip\_loss(r), dT\_tip\_loss(r) and dQ\_tip\_loss(r). These functions are remains same as we defined in above part except the value of  $\lambda$  which will be replaced by  $\lambda$  calculated using tip loss model as described in point 3.
- 5. Now for calculating Total Thrust and Total Torque we have used the quad function from scipy.integrate for integrating dT and dQ respectively. for dT and dQ we use the function defined in the point 4 which are dT\_tip\_loss(r) and dQ\_tip\_loss(r) respectively.  $C_T$  and  $C_Q$  expression also remains same as we defined for without Tip Loss model but here expression of  $\lambda$  is changed which indirectly appear in  $C_T$  and  $C_Q$  expression due its effect on total thrust and torque calculation.

### 4 Results and discussion

#### 1. $C_T$ vs $\theta_0$ Plots



#### • Observations

- As we can see the value of  $C_T$  taken from reference paper after modification is nearly the same with out Tip loss as well as without Tip loss model
- After taking the Tip loss into account we know that the total Thrust will reduce so same can be seen here as the without Tip loss model is bit above the Tip loss model
- There is no case of stalling is seen because we haven't consider it in the our program.
- As we increase the Twist value the Thrust will increase due to this the CT curve as we can see have positive slope
- $C_T$  estimated from our program is little high from experimental value because we ignores the swirl losses and vibration of blade
- At zero Twist the value of  $C_T$  from paper as well from both of our model is zero due to nearly symmetric airfoil
- Blade element momentum theory turns out to be a better approximation for Reynolds Number near the blade tip of about 105 106 but tip loss correction improves the program value and results are more close to the actual experimental values as compared to CT values without tip loss correction

### 2. $C_Q$ vs $\theta_0$ Plots



#### • Observations

- As we can see the value of  $C_Q$  taken from reference paper after modification is nearly the same with out Tip loss as well as without Tip loss model
- CQ value for zero geometric angle of attack is positive because of the interaction of air with rotor blade surface which lead to skin friction drag which amounts to torque
- As geometric angle of increases the pressure drag will increase so the  $\mathcal{C}_Q$  values
- When geometric angle of attack increases, blades will create a wake region for the blade after it. due to this the decrease in drag encountered by rotor blades
- Some error is due to above mentioned phenomena in values of  $C_Q$  as we haven't considered the wake phenomena in our program

#### 3. Sectional Thrust Generation



Figure 1: Sectional Thrust vs r

#### • Observation

- For sub-figure 1 at zero twist there is no Thrust generation so there is no effect of Tip loss correction
- As we know the value of Prandtl Tip loss factor value is 1 till the r/R value is around 0.8-0.85 so the value of sectional Thrust is almost same for Tip loss and without Tip loss model after that the value of Tip loss factor decreases so the Thrust generation will also reduces as we approach the end of blades
- As angle of attack increases, sectional thrust per unit span and total thrust generated also increases & effect of tip loss model increases same we can see in the above graphs
- Total Thrust generation will also less for Tip loss model as compared to without Tip loss model.
- Maximum value of sectional Thrust is at near the end od blade.

# 4. Variation Performance of rotor with Twist, Taper, and Solidity

Expression for the above quantities:

Twist =  $\theta_0$  + Twist Slope\*(r-Rrc)

Taper =  $C_0$  + Taper Slope\*(r-Rrc)

Solidity which is  $\sigma = \frac{b*c}{\pi R}$ ; here only quantity which we can vary is c and we know c is linearly varying so will be solidity. We don't need to check separately for solidity after checking for taper.

For visualizing the effect of Taper and Twist we have to consider the variation of four quantities which are  $\theta_0$ , Twist Slope,  $C_0$ , Taper slope. We will set  $C_0$  constant to 0.08 such that there is no overlap at root position. SO Now we have see effect of changing one variable keeping other 2 constant.

#### • Taper

Taper =  $C_0$  + Taper Slope\*(r-Rrc)

As stated earlier we set the  $C_0$  to 0.08. Now we have see how  $C_T, C_Q$  and Power varies with changing slope.

For analysing the performance we set other variable to some constant values(not optimized but reasonable) and ovary only Taper slope

Other variables:

R = 0.3, Rrc=0.05, RPM=3000, Number of blades = 3,  $\theta_0 = 12$  and Twist slope  $= \theta_1 = -3$ .

#### Plots

#### (a) $C_T$ vs Taper slope

**Observation:** We can see from the plot that as Taper slope increases the value of CT increases but for choosing the optimum taper slope we will consider those value of taper which have more change of rate of  $C_T$ . In the below plot, we can see that rate of change of slope is getting saturated after taper value of 0.1. So we have to choose the value of taper slope between the -0.1 to 0.1 because in this range the plot is above best fit.



### (b) $C_P$ or $C_Q$ vs Taper slope

**Observation:** From the plot below we can see the  $C_P$  value is increases with increase in taper value. As we seen from previous plot that Thrust also increases with increase in taper slope. So we will choose value of taper slope such that it is between -0.1 to 0.1, produce 55N thrust and have minimum value of  $C_P(\text{Min Power})$ . so the value of taper slope for our rotor is around -0.05(also depends on the what we choose the value of twist)



### (c) Power vs Taper slope

Similar to above only difference of constant multiplication



#### • Twist

Same as taper case we will set  $C_0$  to 0.08. Now we have to see the effect of  $\theta_0$  and Twist slope on performance. So first we keep  $\theta_0$  constant and vary Twist slope and later we will do the opposite. Now other parameters we will used as deifned for Taper. We will also choose  $C_1$ (Taper slope)=0.055(some reasonable value) Now we will see the effect of Twist slope effect on  $C_T$ ,  $C_P$  and Power.

#### Changing Twist Slope Plots

 $\theta_0 = 12$ 

**Observations:** From the plots (a),(b),(c),(d) that increase in the value of Twist slope will leads to increase in all quantities  $(C_T, C_P, C_T/C_P)$  and power). So for choosing the value of twist slope we will choose that minimum value which gives the lowest Power requirement as well as produce 55N(12kg Payload)

As the twist increases, lift at sections increase which increase thrust and CT.

### (a) $C_T$ vs Twist slope



#### (b) $C_P$ or $C_Q$ vs Twist slope



### (c) Power vs Twist slope



### (d) CP/CT vs Twist slope



### Changing $\theta_0$ Value Plots

**Observations:** From below plots (a) and (b) We can see as we increase the value of  $\theta_0$ , value of  $C_T$  as well power increase. so we want to choose low value of  $\theta_0$  but if we choose low value of  $\theta_0$  the thrust value is also low at low Twist slope value. So we can see there is trade of between the  $\theta_0$  and Twist slope, we can only choose the low value for one variable. So I have chosen the Twist value low because that is giving the minimum power.

## (a) $C_T$ vs $\theta_0$ slope



# (b) Power vs $\theta_0$ slope



#### 5. Design parameters converged for the UAV rotor

| Parameters                     | Value     |
|--------------------------------|-----------|
| Density                        | 1.225     |
| R                              | 0.3       |
| $\operatorname{Rrc}$           | 0.05      |
| RPM                            | 3000      |
| Number of blades               | 3         |
| a                              | 5.75      |
| $Cd_{min}$                     | 0.0113    |
| eps                            | 1.25      |
| C0(Taper at root)              | 0.08      |
| C1(Taper slope)                | -0.05     |
| $\theta_0$                     | 14 degree |
| $\theta_1(\text{Twist slope})$ | -4        |
| Total Thrust                   | 220N      |
|                                |           |

#### How to converge to above mentioned Parameters

- We have taken radius value from previous assignment
- We have choosen RPM such that tip mach number would be less then 0.3
- Rrc and C0 such that there is no overlap at root
- $C_{d(min)}$  ,a and epsilon i have choosen from the paper given for reference
- Now we have to choose the Taper slope(C1), Twist Slope( $\theta_1$ ) and  $\theta_0$  values.
- $\bullet$  From last assignment we know that we will need total thrust fo 220N so 55N for one rotor.
- Now we have to choose the ramining parameters such that there is minimum power requirement for producing 55N Thurst.
- From the plots mentioned in point 5 above we can see that value of taper slope should be between -0.1 to 0.1.
- We know that if we increase the Twist slope or  $\theta_0$  keeping other constant the Thrust, CT and Power requirement all will increase. so we will try different combination such that our Power requirement will be minimum.
- For minimizing power we will some taper slope between -0.1 to 0.1 and change the theta0 and Twist slope so that we can generate 55N thrust. so there are not much combination. like first we fix taper slope and then some  $\theta_0$  then there are only 1-2 value of

Twist slope s.t. we can generate 55N Thrust. we will repeat this same changing  $\theta_0$  and then again taper slope.

• I have tried different combination and below is the table consist of those parameters which generate 55N. We will choose those parameters which are feasible as well as require minimum power.

| $C_0$ | Taper slope | $\theta_0$ | Twist slope | Power | Thrust |
|-------|-------------|------------|-------------|-------|--------|
| 0.08  | 0.05        | 10         | 13          | 786   | 55     |
| 0.08  | 0.05        | 12         | 2           | 773   | 55     |
| 0.08  | 0.05        | 13         | -4          | 756   | 55     |
| 0.08  | 0.05        | 14         | -10         | 747   | 55     |
| 0.08  | 0.08        | 10         | 11.5        | 790   | 55     |
| 0.08  | 0.08        | 12         | 0.5         | 770   | 55     |
| 0.08  | 0.08        | 13         | -5          | 760   | 55     |
| 0.08  | 0.08        | 14         | -11         | 752   | 55     |
| 0.08  | 0.1         | 10         | 11          | 793   | 55     |
| 0.08  | 0.1         | 12         | -0.3        | 772   | 55     |
| 0.08  | 0.1         | 13         | -6          | 762   | 55     |
| 0.08  | 0.1         | 14         | -11.6       | 755   | 55     |
| 0.08  | -0.05       | 12         | 7.4         | 758   | 55     |
| 0.08  | -0.05       | 13         | 1.8         | 751   | 55     |
| 0.08  | -0.05       | 14         | -4          | 742   | 55     |
| 0.08  | -0.1        | 12         | 11.5        | 760   | 55     |
| 0.08  | -0.1        | 13         | 5.7         | 750   | 55     |
| 0.08  | -0.1        | 14         | -0.1        | 745   | 55     |

• We can Power minimizes at the Values of:  $C_0=0.08,\,C_1=-0.05,\,\theta_0=14$  degree and Twist slope=-4

# 6. Variation in performance of propeller by varying twist, taper, and solidity Expression for the above quantities:

Twist =  $\theta_0$  + Twist Slope\*(r-Rrc)

Taper =  $C_0$  + Taper Slope\*(r-Rrc)

Solidity which is  $\sigma = \frac{b*c}{\pi R}$ ; here only quantity which we can vary is c and we know c is linearly varying so will be solidity. We don't need to check separately for solidity after checking for taper.

For visualizing the effect of Taper and Twist we have to consider the variation of four quantities which are  $\theta_0$ , Twist Slope,  $C_0$ , Taper slope. We will set  $C_0$  constant to 0.08 such that there is no overlap at root position. Twist slope also we have set to zero for propeller blades. SO Now we have see effect of changing one variable keeping other one constant.

We have to optimize only  $\theta_0$  value and Taper slope.

#### • Taper Variation

Taper =  $C_0$  + Taper Slope\*(r-Rrc)

As stated earlier we set the  $C_0$  to 0.08. Now we have see how  $C_T, C_Q$  and Power varies with changing slope.

For analysing the performance we set other variable to some constant values (not optimized but reasonable) and ovary only Taper slope

Other variables:

R = 0.3, Rrc=0.05, RPM=1500, Number of blades = 2,  $\theta_0 = 45$  and Twist slope =  $\theta_1 = 0$ .

#### Plots

#### (a) CT vs Taper slope

**Observation:** From the plot below we can see that negative taper slope has more rate of change of  $C_T$ . So Taper value is chosen between -0.1 to 0

Also we can observe that CT increases with increase in taper slope as at twist = 45 the effective angle of attack is positive near the half end of the blade which mainly contribute to positive thrust and CT value.

So we will chose that value of Taper slope which produce required thrust and have lowest negative value.



#### (b) CP vs Taper slope

**Observation:** The value of power is increases linearly with increase in Taper slope that is expected so no such information in chosing the Taper slope.



### (c) CT/CP vs Taper slope

**Observation:** This plot and  $C_T$  plots are most important plots for choosing Taper slope. As we can see that for positive Taper slope CT/CP ratio is very low so positive value are discarded by both the plots. From plot it seems like Taper slope around -0.2 is very good but at this slope the Thrust requirement is not satisfied. So we want to choose the minimum value of Taper slope which satisfies our Thrust requirement as well as minimises the Power.



#### (d) Power vs Taper slope



#### • Twist variation Plots

### (a) CT vs $\theta_0$

**Observation:** Plot is as expected the value of Thrust produce is increases with increase in  $\theta_0$ . The curve is approximate linear so there is not much information about choosing the value of  $\theta_0$ .



### (b) CT/CP vs $\theta_0$

**Observation:** This is most important plot for choosing the value of  $\theta_0$ . We can see that CT/CP value is increasing upto certain  $\theta_0$  then saturates. so we will  $\theta_0$  value for which out Thrust requirement meets and CT/CP curve is start saturating. From curve we can see that  $\theta_0$  value is between 42-46 degree.



#### (c) Power vs $\theta_0$



#### 7. Design parameters converged on for the UAV propeller

| Parameters                     | Value     |
|--------------------------------|-----------|
| Density                        | 1.225     |
| R                              | 0.3       |
| Rrc                            | 0.05      |
| RPM                            | 1500      |
| Number of blades               | 2         |
| a                              | 5.75      |
| $Cd_{min}$                     | 0.0113    |
| eps                            | 1.25      |
| C0(Taper at root)              | 0.08      |
| C1(Taper slope)                | -0.039    |
| $\theta_0$                     | 45 degree |
| $\theta_1(\text{Twist slope})$ | 0         |
| Total Thrust                   | 40N       |
|                                |           |

#### How to converge to above mentioned Parameter

- We have taken radius value from previous assignment
- We have choosen RPM such that tip mach number would be less then 0.15
- Rrc and C0 such that there is no overlap at root
- $C_{d(min)}$  ,a and epsilon i have choosen from the paper given for reference
- Now we have to decide parameters for twist and taper
- This time it is quite easy then rotor design due to nature of curve of CT/CP vs  $\theta_0$  as well as Taper slope. From plot CT/CP vs taper slope(in above point 6) we can see that as we go towards the positive taper slope the CT/CP decreasing sharply. so now we have to choose some negative value of taper slope such that

- the Thrust generation is around 20N for each motor(total 40N). So I have taken -0.039 as taper slope.
- for choosing  $\theta_0$ ; from plot CT/CP we can see that after increasing  $\theta_0$  to some value the CT/CP value saturates. so we have to chosse the minimum value of  $\theta_0$  such that for taper slope -0.039 the Thrust generation is around 20N.
- So we have choosen value of  $\theta_0$  as 45 degree for which Thrust is 20N and the Power requirement is 600W.

#### Comparison

| Parameters                     | Rotor     | Propeller |
|--------------------------------|-----------|-----------|
| Density                        | 1.225     | 1.225     |
| R                              | 0.3       | 0.3       |
| Rrc                            | 0.05      | 0.05      |
| RPM                            | 3000      | 1500      |
| Number of blades               | 3         | 2         |
| a                              | 5.75      | 5.75      |
| $Cd_{min}$                     | 0.0113    | 0.0113    |
| eps                            | 1.25      | 1.25      |
| C0(Taper at root)              | 0.08      | 0.08      |
| C1(Taper slope)                | -0.05     | -0.039    |
| $\theta_0$                     | 14 degree | 45 degree |
| $\theta_1(\text{Twist slope})$ | -4        | 0         |
| Total Thrust                   | 220N      | 40N       |

- RPM is taken 1500 with considering Tip Mach number smaller than 0.16 to operate in a regime in which compressibility effects are negligible and no shock is formed at blade tip at that RPM for propeller but for Rotor it is taken 3000 so that tip mach number smaller less then 0.3
- Twist for rotor blade decreases with increase in r whereas it is constant for propeller blade
- Value of taper slope is different because of requirement of Thrust as well as different variation of CP/CT
- Number of blades is 2 for propeller and 3 for rotor
- Due to difference in Twist variation the effective angle for the rotor blade has always positive value so rotor will generate positive sectional thrust per unit span at every point on the blade except at R Rrc where sectional thrust per unit span is 0
- While Propeller blade as both negative and positive effective angle of attack so there is negative sectional thrust per unit span

near the root cut off and positive sectional thrust per unit span near the end of the blade

• R, Rrc and C0 are same for both

### References

- [1] https://ntrs.nasa.gov/api/citations/19930081433/downloads/19930081433.pdf
- [2] https://www.uavos.com/products/vtols/uvh-25el-helicopter
- [3] http://medcraveonline.com/AAOAJ/AAOAJ-02-00047.pdf
- [4] Blade Element Momentum Theory Slide from Course AE667: Prof. Dhwanil Shukla