Algebra Homework

March 28, 2017

Ex 1.1.

- 1. Prove that if $[K(\alpha):K]$ is odd, then $K(\alpha)=K(\alpha^2)$.
- 2. Given L_1/K and L_2/K with $L_1, L_2 \subseteq L$, show that

$$L_1 \otimes_K L_2$$
 is a field $\iff [L_1L_2:K] = [L_1:K][L_2:K]$

Ex 1.2.

- 1. Prove that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- $2. \ \ \text{Determine} \ \left[\mathbb{Q}\left(\sqrt{3+2\sqrt{2}}\right):\mathbb{Q}\right], \left[\mathbb{Q}\left(\sqrt{3+4i}+\sqrt{3-4i}\right):\mathbb{Q}\right], \left[\mathbb{Q}\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right):\mathbb{Q}\right].$

Ex 1.3. Let R be a PID and $a \in R$. TFAE:

- 1. a is an irrducible element.
- 2. $\langle a \rangle$ is a maximal ideal.
- 3. $\langle a \rangle$ is a prime ideal.
- 4. a is a prime element.

Ex 1.4. Let L/K be algebraic and $\tau:L\to L$ be a monomorphism fixing K. Show that τ is onto. (so τ is isom.)

Ex 1.5.

- 1. Determine the splitting field L for x^4+2 over $\mathbb{Q},\,[L:\mathbb{Q}]$ and $\mathrm{Aut}(L/Q).$
- 2. Determine the splitting field L for $x^6 4$ over \mathbb{Q} , $[L : \mathbb{Q}]$ and $\operatorname{Aut}(L/Q)$.

Ex 1.6. Let $L_1, L_2 \subseteq L$ with $[L_1 : K] < \infty$ and $[L_2 : K] < \infty$. Assume L_1 and L_2 are splitting fields over K. Show that

- 1. L_1L_2 is a splitting fields over K.
- 2. $L_1 \cap L_2$ is a splitting fields over K.

Ex 3.1. Let L/K be a finite extension with [L:K] = n. For any field extension M/K, there are at most n monomorphisms from L to M which fix K.

Ex 3.2.

- 1. If F is a finite field, then F is not algebraically closed.
- 2. Let F be a finite field and $F(\alpha, \beta)/F$ be an algebraic extension. Show that $\exists c \in F(\alpha, \beta)$ s.t. $F(\alpha, \beta) = F(c)$. i.e. $F(\alpha, \beta)/F$ is a simple extension.

Ex 3.3.

- 1. Let F be a finite field and G, H be subgroups of $(F^{\times},\cdot,1)$. If |G|=|H|=n, then G=H.
- 2. If F is a field such that $(F^{\times}, \cdot, 1)$ is cyclic, then F is a finite field.

Ex 3.4.

- 1. For any prime p and any nonzero $a \in \mathbb{F}_p$, prove that $x^p x + a$ is irreducible and separable.
- 2. Show that $f(x) = x^3 + px + q \in K[x]$ is separable $\iff 4p^3 + 27q^2 \neq 0$.

Ex 3.5. Let L/K be a separable extension and $f(x) \in K[x]$ be an irreducible polynomial. Assume that $f(x) = f_1(x) \cdots f_n(x)$ for some $f_i(x) \in L[x]$ $\forall i = 1, ..., n$. Show that if f_i is separable $\forall i$, then f is separable.

Ex 3.6.

- 1. If char $K = p \neq 0$ and $[L:K] < \infty$ with $p \nmid [L:K]$, then L is separable over K.
- 2. Let char $K = p \neq 0$. Show that an algebraic element $\alpha \in L$ is separable over $K \iff K(\alpha) = K(\alpha^{p^n})$ for all $n \geq 1$.

Ex 4.1.

- 1. Determine the Galois group of $f(x) = x^5 4x + 2$ over \mathbb{Q} .
- 2. Determine the Galois group of $f(x) = x^3 3x + 1$ over \mathbb{Q} .

Ex 4.2. Let char K = 0 and F/K be finite, normal. Let $g(x) \in K[x]$ and L be a splitting field of g(x) over F. Show that L/K is a normal extension.

(Note: $g(x) \in K[x]$ but L is over F)

Ex 4.3.

Def 1.

- A character χ of a group G with values in a field L is a homomorphism $\chi: G \to L^{\times}$.
- The characters χ_1, \ldots, χ_n of G are said to be linearly independent over L if there is no nontrivial relation

$$a_1\chi_1 + \cdots + a_n\chi_n = 0$$
, $a_1, \ldots, a_n \in L$ are not all 0

as a function on G.

- 1. Show that if χ_1, \ldots, χ_n are distinct characters of G with values in L, then they are linearly independent over L.
- 2. Show that if $\sigma_1, \ldots, \sigma_n$ are distinct monomorphisms from K to L, then they are linearly independent over L.
- 3. Show that distinct automorphisms of K are linearly independent over K.

Ex 4.4.

- 1. If L/K is Galois, then $\exists f$: irr. in K[x] s.t. L is a splitting field of f(x) over K.
- 2. TFAE
 - (a) L/K is a Galois extension.
 - (b) K is the fixed field of a subgroup of Aut(L).
 - (c) K is the fixed field of Aut(L/K).

Ex 4.5. Find the Galois group of $x^4 - 2$ over \mathbb{Q} . Find all subgroups of this group and find all corresponding intermediate fields between the splitting field of $x^4 - 2$ over \mathbb{Q} and \mathbb{Q} .

Ex 4.6. Find all proper subfields of $\mathbb{Q}\left(\sqrt[3]{5}, \frac{-1+i\sqrt{3}}{2}\right)$ and $\mathbb{Q}\left(i, \sqrt{7}\right)$ respectively.

Ex 5.1.

- 1. Let p be an odd prime with $p \nmid m$. Suppose $a \in \mathbb{Z}$ s.t. $\Phi_m(a) \equiv 0 \pmod{p}$. then $\operatorname{ord}(a) = m$ in $(\mathbb{Z}/p\mathbb{Z})^{\times}$. (hint: $x^m 1 = \prod_{d \mid m} \Phi_d(x)$)
- 2. Let $a \in \mathbb{Z}$. Show that if p is an odd prime dividing $\Phi_m(a)$, then either $p \mid m$ or $p \equiv 1 \pmod{m}$.

Ex 5.2.

- 1. Show that $\left[\mathbb{Q}\left(\zeta_n + \frac{1}{\zeta_n}\right) : \mathbb{Q}\right] = \frac{\varphi(n)}{2}$.
- 2. Find Φ_8, Φ_9 .
- 3. Show that $x^{16} + 1$ is irreducible in $\mathbb{Q}[x]$ and is reducible in $\mathbb{F}_7[x]$ as a product of 4 quartic polynomials.

Ex 5.3. show that p: odd prime, $(\mathbb{Z}/p^e\mathbb{Z})^{\times}$ is cyclic of order $p^{e-1}(p-1)$ and $(\mathbb{Z}/2^e\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{e-2}\mathbb{Z}, e \geq 2$.

Hints:

- 1. Check $(1+p)^{p^{e-1}} \equiv 1 \pmod{p^e}$ but $(1+p)^{p^{e-2}} \not\equiv 1 \pmod{p^e}$. And for $e \ge 3$, $(1+2^2)^{2^{e-2}} \equiv 1 \pmod{2^e}$ but $(1+2^2)^{2^{e-3}} \not\equiv 1 \pmod{2^e}$.
- 2. If each Sylow p-subgroup of G is normal, then G is isomorphic to the product of all sylow p-subgroups.

Ex 5.4.

- (a) Let $\mathbb{C}(t)$ be the field of rational functions over \mathbb{C} and L be a splitting field of x^n-t over $\mathbb{C}(t)$. Find $\mathrm{Gal}(L/\mathbb{C}(t))$.
- (b) Let $\mathbb{F}_p(t)$ be the field of rational functions over \mathbb{F}_p and L be a splitting field of $x^3 2t$ over $\mathbb{F}_p(t)$. Find $\operatorname{Gal}(L/\mathbb{F}_p(t))$.
- **Ex 5.5.** Let char $K \neq 2, 3$ and $f(x) = x^4 + px^2 + qx + r$ be irr. and separable with roots $\alpha_1, \ldots, \alpha_4$. Let $L = K(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ and $G_f = \operatorname{Gal}(L/K) \leq S_4$. Set $\beta_1 = \alpha_1 \alpha_2 + \alpha_3 \alpha_4, \beta_2 = \alpha_1 \alpha_3 + \alpha_2 \alpha_4, \beta_3 = \alpha_1 \alpha_4 + \alpha_2 \alpha_3$.
 - (a) Show that $L^{G_f \cap V} = K(\beta_1, \beta_2, \beta_3)$ and $Gal(K(\beta_1, \beta_2, \beta_3)/K) \cong G_f/G_f \cap V$ where $V = \{1, (12)(34), (13)(24), (14)(23)\} \leq S_4$.
 - (b) Show that there exists i s.t. $\beta_i \in K \iff G_f \leq D_4$.
 - (c) Let $h(x) = (x \beta_1)(x \beta_2)(x \beta_3) \in K[x]$ with discriminant D(h), Show that
 - (1) If h(x) is irr. and $D(h) \notin K^2$, then $G_f \cong S_4$.
 - (2) If h(x) is irr. and $D(h) \in K^2$, then $G_f \cong A_4$.
 - (3) If h(x) splits completely in K[x], then $G_f \cong V$.
 - (4) Let h(x) has one root in K. Then
 - (i) If f(x) is irr. over $K(\beta_1, \beta_2, \beta_3)$, then $G_f \cong D_4$.
 - (ii) If f(x) is reducible over $K(\beta_1, \beta_2, \beta_3)$, then $G_f \cong C_4$.