

数字系统综合设计

译码与显示 — 静态显示

设BCD码输入为0111,则BCD译码器abcdefg输出为[填空1],数码管显示的数字为[填空2]。

正常使用填空题需3.0以上版本雨课堂

STY OF SCHOOL

设BCD码输入为0111,如果数码管阴极悬空,则数码管显示为

- A 数字 7
- B 字母 b
- **数字 0**
- □ 熄灭

译码与显示 — 动态显示

译码与显示 — 动态扫描时序

共阴数码管

FPGA开发板EGO1 —位反相驱动

高电平有效 (FPGA输出)

FPGA开发板EGO1

Artix-7 系列的FPGA: XC7A35TCSG324-1

FPGA开发板EGO1

系统时钟 100MHz (P17)

FPGA开发板EGO1 EGO1 — 8个数码管

FPGA开发板EGO1— 发光二极管和开关

FPGA开发板EGO1— USB-UART

FPGA 通过异步串口和PC机进行通信。

FPGA开发板EGO1—蓝牙

FPGA 通过串口和蓝牙模块进行通信。 串口缺省波特率为 9600bps。

FPGA开发板EGO1— 通用扩展IO

从EGO1正面看

注意: 引脚输入电压不能超过3.3V!

对应FPGA引脚C15

FPGA开发板EGO1— 通用扩展IO

从EGO1背面看

管脚约束如下:

2x18 标号	原理图标号	FPGA IO PIN
1	AD2P_15	B16
2	AD2N_15	B17
3	AD10P_15	A15
4	AD10N_15	A16
5	AD3P_15	A13
6	AD3N_15	A14
7	AD11P_15	B18
8	AD11N_15	A18
9	AD9P_15	F13
10	AD9N_15	F14
11	AD8P_15	B13
12	AD8N_15	B14
13	AD0P_15	D14
14	AD0N_15	C14
15	IO_L4P	B11
16	IO_L4N	A11
17	IO_L11P	E15
18	IO_L11N	E16
19	IO_L12P	D15
20	IO_L12N	C15
21	IO_L13P	H16
22	IO_L13N	G16
23	IO_L14P	F15
24	IO_L14N	F16
25	IO_L15P	H14
26	IO_L15N	G14
27	IO_L16P	E17
28	IO_L16N	D17
29	IO_L17P	K13
30	IO_L17N	J13
31	IO_L18P	H17
32	IO_L18N	G17

■ A/D 转换

瑞盟科技股份有限公司 MS9281

✓ 分辨率: 10bits

✓ 转换速率: 80Msps

AIN CLK CLK DATA N-4 \ DATA N-3 \ DATA N-2 \ DATA N-1 \ DATA N

数字输出D9-D0为直接二进制码

2v: 1111111111

1v: 1000000000

0v: 0000000000

■ A/D 转换

A/D转换器	FPGA引脚编号
AD_D0	H16
AD_D1	F16
AD_D2	F15
AD_D3	G14
AD_D4	H14
AD_D5	D17
AD_D6	E17
AD_D7	J13
AD_D8	K13
AD_D9	G17
CLK_AD	H17

D/A 转换

瑞盟科技股份有限公司 **MS9714**

分辨率: 14bits

转换速率: 125Msps

$$V_{DIFF} = K(2 \times Q_7 ... Q_0 - 255)/256$$

D/A转换器	FPGA引脚编号
DA_D0	B11
DA_D1	C14
DA_D2	D14
DA_D3	B14
DA_D4	B13
DA_D5	F14
DA_D6	F13
DA_D7	A18
DA_D8	B18
DA_D9	A14
DA_D10	A13
DA_D11	A16
DA_D12	A15
DA_D13	B17
CLK_DA	B16

实验内容与要求

1. 学号显示 (八位LED数码管动态扫描)

(1) 把 "2022" 显示在左边四位LED数码管上, 且点亮第4个 LED数码管的小数点, 把个人学号最后4位显示在右边四位LED数码管上, 如下图所示;

学号最后4位

扫描时钟产生: 100MHz主频 → 分频 → 10kHz

(2) 先进行仿真:包括功能仿真和综合后仿真。

2. 频率控制字设置的频率值显示

- (1) 频率控制字K (8位二进制) 用左边拨码开关SW7-SW0输入;
- (2) 对应的频率值显示在8位LED数码管上,且点亮第4个LED数码管的小数

点。 $f = \frac{K}{2^N} f_c$

其中 N=8为相位累加器字长, $f_c=10$ MHz为DDS时钟频率。

(3) 显示切换由右边地址开关DIP1-DIP0控制

(a) 00:显示2022.学号最后4位;

(b) 01: 设置的频率值;

CLK

数字系统综合设计— 实验内容与要求

3. 基于DDS的正弦信号产生(0~2MHz,频率步长小于40kHz)

(2) 时钟产生

100MHz主频 → 分频 → 10MHz DDS时钟CLK

(3) 存储器IP核的生成

➤ ROM波形文件 XXX.coe

MEMORY_INITIALIZATION_RADIX=10; MEMORY INITIALIZATION VECTOR= 128,131,134,137,140,144,147,150,153,156,159,162,165,168,171, 174,177,179,182,185,188,191,193,196,199,201,204,206,209,211, 213,216,218,220,222,224,226,228,230,232,234,235,237,239,240, 241,243,244,245,246,248,249,250,250,251,252,253,253,254,254, 250,250,249,248,246,245,244,243,241,240,239,237,235,234,232, 230,228,226,224,222,220,218,216,213,211,209,206,204,201,199, 196,193,191,188,185,182,179,177,174,171,168,165,162,159,156, 153,150,147,144,140,137,134,131,128,125,122,119,116,112,109, 106,103,100,97,94,91,88,85,82,79,77,74,71,68,65, 63,60,57,55,52,50,47,45,43,40,38,36,34,32,30, 28,26,24,22,21,19,17,16,15,13,12,11,10,8,7, 1,2,2,2,3,3,4,5,6,6,7,8,10,11,12, 13,15,16,17,19,21,22,24,26,28,30,32,34,36,38, 40,43,45,47,50,52,55,57,60,63,65,68,71,74,77, 79,82,85,88,91,94,97,100,103,106,109,112,116,119,122, 125;

- (1) 通过示波器测量信号波形与频率值;
- (2) 检查示波器测量得到的频率值是否与设置的频率值一致。

4. 正弦信号频率测量的FPGA实现

- (1) 设计电路,测量外部输入正弦信号(加到A/D转换器)的频率 (范围: 0-2MHz);
- (2) 测量的频率值显示在8位LED数码管上,且点亮第4个LED数码管的小数点;

(3) 检查FPGA测量得到的频率值是否与输入信号频率值一致, 检查0-2MHz范围内的频率测量误差,要求误差绝对值不超过1Hz。

注: 频率测量电路调试时先用开发板产生的正弦信号作为输入,测试/验收时对信号源产生的正弦信号要求同样可以测量频率。

5. 提高部分: 利用串口 (手机蓝牙) 设置正弦信号频率

- (1) 在手机上输入代表频率的7位十进制数字 (0000000-2000000) Hz
- (2) 对应的频率值显示在8位LED数码管上,且点亮第4个LED数码管的小数点。

(3) 使用示波器测量产生的正弦信号频率值,检查是否与设置的频率值一致。

要求1:误差绝对值小于20kHz。

要求2:误差绝对值小于2kHz。

6. 发挥部分: 和本实验内容相关

数字系统综合设计— 考核方式

- ① 学号显示
- ② 频率控制字设置的频率值显示
- ③ 基于DDS的正弦信号产生
- ④ 正弦信号频率测量的FPGA实现
- ⑤ 提高部分
- ⑥ 发挥部分
- ⑦ 实验报告(附Verilog程序) 实验报告符合要求,上面测试成绩才有效

及格

中

良

优

注意:

- ① 所有功能的Verilog HDL 程序需要合在一起运行(否则酌情扣分);
- ② 程序运行后复位信号只能使用一次;
- ③ 没有递交实验报告者,成绩为不及格;
- ④ 成绩以第一次验收为准,验收时要准备好回答问题。