Project Carbon Cycle

Rahmat Saeedi Michael Browne Cole Fichter

Objective

Simulate carbon moving through the forest ecosystem

Glossary

- Litter
- Humus
- Stable humus charcoal

Glossary

- Humification
- Carbonization

 Calculate the amount of carbon trapped in litter at any given time

- Begin with zero litter (after a ground fire)
- Litter falls at a constant rate
- Carbon exits litter by respiration and humification as litter is composted

Model: one differential equation

$$x'(t) = z - k^*x(t)$$

Assume z=240, k=0.4

Model: one differential equation

$$x'(t) = 240 - 0.4*x(t)$$
, and $x(0) = 0$

Specific Solution

$$x(t) = 600 - 600 \exp(-0.4t)$$

x(t) = 600 - 600*exp(-0.4t)

Grams of Carbon per Square Meter

Steady States

- Assume z = 240, k = 0.4
- Equilibrium occurs when x'(t) = 0
- x'(t) = -0.4(x(t) 600)

Graphical Stability Analysis

The Carbon Cycle

Given Data

		Tropical	Temperate	Grass-	Agri-	Human	Tundra
		forest	forest	land	cultural	area	and semi-
					area		desert
	Carbon entering						
	System						
Z	z (Gt C/yr)	27.8	8.7	10.7	7.5	0.2	2.1
L	Partition						
	coefficients						
p .	p_1 (Leaves)	0.3	0.3	0.6	0.8	0.3	0.5
P ₁ P ₂ P ₃	p_2 (Branches)	0.2	0.2	0.0	0.0	0.2	0.1
p_3^2	p_3 (Stems)	0.3	0.3	0.0	0.0	0.3	0.1
P_4	p_4 (Roots)	0.2	0.2	0.4	0.2	0.2	0.3
	Flows						
k ₁₅	Leaves to litter	1.0	0.5	1.0	1.0	1.0	1.0
k ₂₅	Branches to litter	0.1	0.1	0.1	0.1	0.1	0.1
k ₃₅	Stems to litter	0.033	0.0166	0.02	0.02	0.02	0.02
k ₄₆	Roots to humus	0.1	0.1	1.0	1.0	0.1	0.5
k ₅₆ +k ₅₀	Leaving litter	1.0	0.5	0.5	1.0	0.5	0.5
k ₆₇ +k ₆₀	Leaving humus	0.1	0.02	0.025	0.04	0.02	0.02
k ₇₀	Charcoal to	0.002	0.002	0.002	0.002	0.002	0.002
	atmosphere						
h	Humification h	0.4	0.6	0.6	0.2	0.5	0.6
c	Carbonization c	0.05	0.05	0.05	0.05	0.05	0.05
A	Areas $(10^{12}m^2)$	36.1	17.0	18.8	17.4	2.0	29.7

•
$$X'_1(t) = p_1 z - k_{15} X_1$$

Leaves Atm. To Litter

•
$$X'_{2}(t) = p_{2}z - k_{25}X_{2}$$

Branches Atm. To Litter

•
$$X'_3(t) = p_3 z - k_{35} X_3$$

Stems Atm. To Litter

•
$$X'_4(t) = p_4 z - k_{46} X_4$$

Roots Atm. To Litter

$$X'_1(t) = p_1 z - k_{15} X_1$$

Leaves

Atm.

To Litter

•
$$X'_{2}(t) = p_{2}z - k_{25}X_{2}$$

Branches

Atm.

To Litter

•
$$X'_3(t) = p_3 z - k_{35} X_3$$

Stems

Atm.

To Litter

•
$$X'_4(t) = p_4 z - k_{46} X_4$$

Roots

Atm.

To Litter

•
$$X'_1(t) = p_1 z - k_{15} X_1$$

Leaves

Atm.

To Litter

$$X'_{2}(t) = p_{2}z - k_{25}X_{2}$$

Branches

Atm.

To Litter

•
$$X'_3(t) = p_3 z - k_{35} X_3$$

Stems

Atm.

To Litter

•
$$X'_4(t) = p_4 z - k_{46} X_4$$

Roots

Atm.

To Litter

•
$$X'_1(t) = p_1 z - k_{15} X_1$$

Leaves Atm. To Litter

•
$$X'_{2}(t) = p_{2}z - k_{25}X_{2}$$

Branches Atm. To Litter

$$X'_{3}(t) = p_{3}z - k_{35}X_{3}$$

Stems Atm. To Litter

•
$$X'_{4}(t) = p_{4}z - k_{46}X_{4}$$

Roots Atm. To Litter

$$X_{5}'(t) = k_{15}X_{1} + k_{25}X_{2} + k_{35}X_{3} - k_{56}X_{5} - k_{50}X_{5}$$

Litter Leaves Branches Stems Humus Atm.

$$X'_{6}(t) = k_{46}X_{4} + k_{56}X_{5} - k_{67}X_{6} - k_{60}X_{6}$$

Humus Roots Litter Charcoal Atm.

$$X'_{7}(t) = k_{67}X_{6} - k_{70}X_{7}$$

Charcoal Humus Atm.

$$X_{5}(t) = k_{15}X_{1} + k_{25}X_{2} + k_{35}X_{3} - k_{56}X_{5} - k_{50}X_{5}$$

Litter Leaves Branches Stems Humus Atm.

$$X'_{6}(t) = k_{46}X_{4} + k_{56}X_{5} - k_{67}X_{6} - k_{60}X_{6}$$

Humus Roots Litter Charcoal Atm.

$$X'_7(t) = k_{67}X_6 - k_{70}X_7$$

Charcoal Humus Atm.

Matrix Representation of DE

$$\mathbf{A} = \begin{bmatrix} -k_{15} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -k_{25} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -k_{35} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -k_{46} & 0 & 0 & 0 & 0 \\ k_{15} & k_{25} & k_{35} & 0 & -k_{50} - k_{56} & 0 & 0 \\ 0 & 0 & 0 & k_{46} & k_{56} & -k_{60} - k_{67} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & k_{67} & -k_{70} \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} p_1 z \\ p_2 z \\ p_3 z \\ p_4 z \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$b = \begin{bmatrix} p_1 z \\ p_2 z \\ p_3 z \\ p_4 z \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$X' = AX + b$$

$$X' = AX + b$$

Diagonal of A
 Multiset of Eiganvalues

• Fixed Points: X' = 0

$$0 = AX + b$$

$$AX = -b$$

Fixed Point of The Ecosystems

Solution

- Analytical
 - Maple
 - Matrix Exponential
 - X' = AX + b
 - $X = c_1 e^{At} b/A$
- Numerical
 - Matlab
 - Euler Method

$$X(n+1) = X(n) + \delta t X'(n)$$

Ecosystems

- 1. Tropical Forests
- 2. Grasslands
- 3. Agricultural Lands

Tropical Forest: First 225 Years

Tropical Forest: First 2500 Years

Grassland: First 5 Years

Grasslands: First 3000 Years

Agricultural Land: First 15 Years

Agricultural Land: First 3000 Years

Time To Attain 95% of Fixed Point Concentration

Time To Attain 95% of Fixed Point Concentration

Analytical Stability Analysis

 After Converting the system into its Matrix form, the stability was found from the matrix's Eigenvalues •Since all of the Eigenvalues were negative, it can be show that ANY fixed point is stable

- Since these Eigenvalues are linear, it can be shown that they are also not sensitive to change
- This means that the only way for instability in the system to occur, is for the flows in one subsection to reverse

Criticisms of the Model

- •Like any mathematical model, there are errors made when creating a model for a system
- The main contributor for these errors in general is a lack of model variables

•For this model, the equations had not taken into account that the number of trees change with respect to how much atmospheric carbon dioxide there is

- •Furthermore, this system is considered in isolation
- There are different types of trees in a given ecosystem and thus the values for the parameters for each part of the tree are actually functions of how many of each tree there are

Thanks for Your Attention

Questions

Backups: Numerical Error Propagation

Backups: Equilibrium Density of Carbon

	Tropical	Temperat	Grass	Agricultur	Human	Tundra
\times_{1}	231	307	341	345	30	35
× ₂	1540	1024	0	0	200	71
X ₃	7001	9249	0	0	1500	354
X_4	1540	1024	228	86	200	42
X ₅	616	819	683	345	160	99
X_6	4004	17400	17302	3879	3000	2545
X ₇	10011	8700	10814	3879	1500	1273

Backups: 95% Time

	Tropical	Temperate	Grass	Agricultural	Human	Tundra
X ₁	3	6	3	3	3	3
X ₂	30	30	0	0	30	30
X ₃	90.8	180.5	0	0	149.8	149.8
X_4	30	30	3	3	30	6
X ₅	62.4	123.4	7.4	4.7	102.8	55.2
X ₆	64.1	199.7	121.8	76.4	187.5	165
X ₇	1521.6	1574.9	1541.5	1525	1570.8	1558.4