Special Topics in Management Science 26:711:685

Convex Analysis and Optimization

Fall 2023 Rutgers University Prof. Eckstein

Solutions to Homework 6

- 1. (a) $f^*(y) = \sup_{x \in \mathbb{R}} \{xy \frac{1}{2}x^2\}$. The supremand is a differentiable concave function, so we just set $\frac{\partial}{\partial x}(xy \frac{1}{2}x^2) = 0$ obtaining y x = 0, that is, x = y. Substituing x = y into $xy \frac{1}{2}x^2$, we have $f^*(y) = y^2 \frac{1}{2}y^2 = \frac{1}{2}y^2$. Thus, in this case, $f^* = f$. Aside: in \mathbb{R}^n , $f(x) = \frac{1}{2} \|x\|^2$ is the unique function for which $f^* = f$.
 - (b) In this case, we have

$$f^*(y) = \sup_{x \in [a,b]} \{xy - 0\}$$

$$= \begin{cases} ay, & \text{if } y < 0 \\ 0, & \text{if } y = 0 \\ by, & \text{if } y > 0 \end{cases}$$

$$= \max\{ay, by\}.$$

Note: this example is a special case of problem 2(b) below.

(c) Here, we have $f^*(y) = \sup_{x \in \mathbb{R}} \{xy - e^x\}$. Note that if y < 0, then we have $\lim_{x \to -\infty} (xy - e^x) = +\infty$, and so the supremum is $+\infty$. For y = 0, we have $f^*(0) = \sup_{x \in \mathbb{R}} \{-e^x\} = 0$ (although this sup is not attained). For y > 0, we note that we are maximizing a differentiable concave function, and so try setting the derivative of the supremand to 0:

$$\frac{\partial}{\partial x}(xy - e^x) = 0 \quad \Leftrightarrow \quad y - e^x = 0 \quad \Leftrightarrow \quad y = e^x \quad \Leftrightarrow \quad x = \log y,$$

where log denotes the natural logarithm. Substituting $x = \log y$ into $xy - e^x$, we obtain $f^*(y) = (\log y)y - e^{\log y} = y \log y - y$. Summarizing,

$$f^*(y) = \begin{cases} y \log y - y, & y > 0, \\ 0, & y = 0, \\ +\infty, & y < 0. \end{cases}$$

Note: using L'Hôpital's rule, it is possible to show that $\lim_{y\downarrow 0} (y\log y - y) = 0$, so f^* is right-continuous at 0; however, it turns out that f^* is not differentiable at 0, nor does it have any subgradients there, which is a result of the sup in the conjugate formula not being attained. Essentially, as $y\downarrow 0$, the function $y\log y - y$ approaches 0, but its slope becomes vertical and its derivative approaches $-\infty$. The function $y\log y$ is well known in physics and statistics, and is often known as the Gibbs entropy function.

1

2. (a) Note that epi f is a cone if and only if, for any $\alpha \geq 0$,

$$z \ge f(x) \implies \alpha z \ge f(\alpha x).$$

If f(0) = 0, the above is clearly true whenever $\alpha = 0$. And if $f(\alpha x) = \alpha f(x)$ for $\alpha > 0$, the above is also true whenever $\alpha > 0$ since we have that $z \ge f(x)$ implies $\alpha z \ge \alpha f(x) = f(\alpha x)$. Thus, positive homogeneity of f implies that epi f is a cone.

Conversely, suppose epi f is a cone and f is proper. Since epi f must be nonempty and we define nonempty cones to always contain 0, we have $(0,0) \in \text{epi } f$ and hence $f(0) \leq 0$. But if f(0) < 0, we have from epi f being a cone that all points of the form $(\alpha \cdot 0, \alpha f(0)) = (0, \alpha f(0)) \in \text{epi } f$ for $\alpha > 0$, implying $f(0) = -\infty$ and contradicting that it is supposed to be a proper function mapping $\mathbb{R}^n \to (-\infty, +\infty]$. So f(0) = 0.

Next consider any $x \in (\text{dom } f) \setminus \{0\}$ and $\alpha > 0$. We have $(x, f(x)) \in \text{epi } f$, and so epi f being a cone implies $(\alpha x, \alpha f(x)) \in \text{epi } f$ and thus $f(\alpha x) \leq \alpha f(x)$. But we also have $(\alpha x, f(\alpha x)) \in \text{epi } f$ and hence $(\frac{1}{\alpha}\alpha x, \frac{1}{\alpha}f(\alpha x)) = (x, \frac{1}{\alpha}f(\alpha x)) \in \text{epi } f$, implying $f(x) \leq \frac{1}{\alpha}f(\alpha x)$, that is, $\alpha f(x) \leq f(\alpha x)$. It follows that $f(\alpha x) = \alpha f(x)$. Finally, consider $x \notin \text{dom } f$ and $\alpha > 0$. Then $(x, z) \notin \text{epi } f$ for any $z \in \mathbb{R}$. Then we cannot have $(\alpha x, w) \in \text{epi } f$ for any $w \in \mathbb{R}$, because otherwise from epi f being a cone we would have $\frac{1}{\alpha}(\alpha x, w) = (x, \frac{w}{\alpha}) \in \text{epi } f$, a contradiction. Thus, if $f(x) = \infty$, we also have $f(\alpha x) = \infty$ and $f(\alpha x) = \alpha f(x)$ holds in this case too.

We conclude that f is positively homogeneous.

(b) We have $\delta_X^*(y) = \sup_{x \in \mathbb{R}^n} \{\langle x, y \rangle - \delta_X(x) \}$, but since $\delta_X(x) = \infty$ for $x \notin X$, the supremand is $-\infty$ whenever $x \notin X$, so we can restrict the "sup" to $x \in X$. For $x \in X$, we also have $\delta_X(x) = 0$, reducing the supremand to $\langle x, y \rangle$. In summary, $\delta_X^*(y) = \sup_{x \in X} \{\langle x, y \rangle\}$. Since X is nonempty, we clearly have $\delta_X^*(0) = \sup_{x \in X} \{\langle x, 0 \rangle\} = 0$. Finally, we note that for $\alpha > 0$,

$$\delta_X^*(\alpha y) = \sup_{x \in X} \{\langle x, \alpha y \rangle\} = \sup_{x \in X} \{\alpha \langle x, y \rangle\} = \alpha \sup_{x \in X} \{\langle x, y \rangle\} = \alpha \delta_X^*(\alpha y),$$

establishing that δ_X^* is positively homogeneous.

(c) Suppose f is positively homogeneous. Then $f^*(y) = \sup_{x \in \mathbb{R}^n} \{\langle x, y \rangle - f(x) \} \ge \langle x, 0 \rangle - f(0) = 0$, and f^* must be nonnegative everywhere. Now, if $f^*(y) > 0$, it means that there exists an $x \in \mathbb{R}^n$ with $\langle x, y \rangle - f(x) > 0$. Applying positive homogeneity, we have for any $\alpha > 0$ that $\langle \alpha x, y \rangle - f(\alpha x) = \alpha \langle x, y \rangle - \alpha f(x) = \alpha \langle x, y \rangle - f(x)$. By taking $\alpha \to \infty$, we obtain $f^*(y) = \sup_{z \in \mathbb{R}^n} \{\langle z, y \rangle - f(z) \} \ge \sup_{\alpha > 0} \{\langle \alpha x, y \rangle - f(\alpha x)\} = \sup_{\alpha > 0} \{\alpha (\langle x, y \rangle - f(x))\} = +\infty$.

Thus, f^* can only take the values 0 or $+\infty$, meaning that it is the indicator function of the set $C = \text{dom } f^*$. Being a conjugate function, f^* is convex and closed, and therefore C, being one of f^* 's level sets, must be convex and closed. Note: it is also straightforward to show that $C = \partial f(0)$.

(d) Suppose $y \in K^*$. Then, using the formula from part (b), we know that $\delta_K^*(y) = \sup_{x \in K} \{\langle x, y \rangle\} = 0$ because every member of $\{\langle x, y \rangle \mid x \in K\}$ must be nonpositive, and setting $x = 0 \in K$ yields a value of 0. Conversely, if $y \notin K^*$, there exists

 $\bar{x} \in K$ such that $\langle \bar{x}, y \rangle > 0$, and since K is a cone, we have $\alpha \bar{x} \in K$ for all $\alpha \geq 0$. Letting $\alpha \to \infty$ then shows that $\delta_K^*(y) = \sup_{x \in K} \{\langle x, y \rangle\} \geq \sup_{\alpha \geq 0} \{\langle \alpha \bar{x}, y \rangle\} = \sup_{\alpha \geq 0} \{\alpha \langle \bar{x}, y \rangle\} = +\infty$. Thus, $\delta_K^*(y)$ is 0 for $y \in K^*$ and $+\infty$ for $y \notin K^*$, that is, $\delta_K^* = \delta_{K^*}$.

3. The Fenchel dual takes the form $\min_{y \in \mathbb{R}^m} g^*(y) + f^*(-M^\top y)$. So, we need to compute f^* and g^* . For f^* , we have

$$\begin{split} f^*(y) &= \sup_{x \in \mathbb{R}^n} \left\{ \langle x, y \rangle - f(x) \right\} \\ &= \sup_{x \geq 0} \left\{ \langle x, y \rangle - \langle x, c \rangle \right\} \\ &= \sup_{x \geq 0} \left\{ \langle x, y - c \rangle \right\} \\ &= \begin{cases} 0, & \text{if } y \leq c \\ +\infty, & \text{otherwise.} \end{cases} \end{split}$$

The last equality is because, if $y_j > c_j$ for any index j, then the sup can be driven to $+\infty$ by taking $x_j \to \infty$ and thus $(y_j - c_j)x_j \to \infty$. If every element of y - c is nonpositive, on the other hand, the largest possible value is zero, attained at x = 0.

Finding g^* is a special case of problem 2b with $X = \{b\}$, so we have

$$g^*(w) = \sup_{x=b} \{\langle w, b \rangle\} = \langle w, b \rangle.$$

So, the dual function $g^*(y) + f^*(-M^{\mathsf{T}}y) = g^*(y) + f^*(-A^{\mathsf{T}}y)$, takes the form

$$g^*(y) + f^*(-A^{\scriptscriptstyle \top} y) = \begin{cases} \langle b, y \rangle + 0, & \text{if } -A^{\scriptscriptstyle \top} y \le c \\ +\infty, & \text{otherwise,} \end{cases}$$

which means that minimizing it is equivalent to the problem

$$\begin{aligned} \min_{y \in \mathbb{R}^m} & b^{\scriptscriptstyle \top} y \\ \mathrm{ST} & -A^{\scriptscriptstyle \top} y \leq c, \end{aligned}$$

which is turn equivalent to

$$\max_{y \in \mathbb{R}^m} \quad -b^{\top} y$$

ST
$$-A^{\top} y \le c.$$

Making the substitution u = -y we obtain the further equivalent problem

$$\begin{aligned} \max_{u \in \mathbb{R}^m} & b^{\top} u \\ \mathrm{ST} & A^{\top} u \leq c. \end{aligned}$$