Содержание

1	Линейное пространство над произвольным полем. Ранг и база системы	_
	векторов.	2
2	Изоморфизм линейных пространств.	2
3	Сумма и пересечение линейных пространств.	3
4	Прямая сумма линейных пространств.	3
5	Евклидово и унитарное пространство. Неравенство	J
	Коши-Буняковского.	5
6	Скалярное произведение в ортонормированном базисе. Существование	
	ортонормированного базиса.	6
7	Изометрия.	7
8	Матрица Грама. Критерий линейной независимости.	8
9	Ортогональное дополнение. Ортогональная сумма подпространств. Рас-	
	стояние от вектора до подпространства.	9
10	Ортонормированный базис и унитарные (ортогональные) матрицы.	9
11	Процесс ортогонализации Грама-Шмидта. QR -разложение матрицы.	10

Линейное пространство над произвольным полем. Ранг и база системы векторов.

Опр. Множество V называется линейным пространством над полем \mathbb{P} , если V является аддитивной абелевой группой относительно операции сложения векторов, а операция умножения вектора на число обладает следующими свойствами:

- $(\alpha\beta)v = \alpha(\beta v)$;
- $(\alpha + \beta)v = \alpha v + \beta v$;
- $\alpha(v+u) = \alpha v + \alpha u$;
- 1 * v = v

Эти свойства выполняются для любых чисел $\alpha, \beta \in \mathbb{P}$ и любых векторов $u, v \in V$.

Опр. Рангом системы векторов называется максимальное число линейно независимых векторов системы.

Опр. Базой системы векторов называется базис их линейной оболочки, состоящий из векторов системы.

2 Изоморфизм линейных пространств.

Опр. Гомоморфизмом двух линейных пространств V и W над одним полем \mathbb{P} называется отображение $\varphi: V \to W$ такое, что $\varphi(\alpha v + \beta u) = \alpha \varphi(v) + \beta \varphi(u) \, \forall u, v \in V$. Если отображение φ взаимооднозначно (является биекцией), то оно называется изоморфизмом.

Теорема. Два линейных пространства над одним полем изоморфны тогда и только тогда, когда они имеют одинаковую размерность.

 \mathcal{A} -во. (\Longrightarrow) Пусть линейные пространства V и W над полем \mathbb{P} изоморфны, и $\varphi:V\to W$. Рассмотрим базис $V: v_1, \ldots, v_n$. $\forall y \in W, y \neq \theta \exists x \in V, x \neq 0: \varphi(x) = y$. Далее $\forall x \in V \exists \alpha_1, \ldots, \alpha_n \in \mathbb{P}: x = \alpha_1 v_1 + \cdots + \alpha_n v_n, \ y = \varphi(x) = \alpha_1 \varphi(v_1) + \cdots + \alpha_n \varphi(v_n)$. Значит любой вектор из W линейно выражается через образы базисных векторов V. А так же образы этих векторов линейно независимы. Если бы существовала нетривиальная линейная комбинация этих векторов равная нулю, то $\theta = \beta_1 \varphi(v_1) + \cdots + \beta_n \varphi(v_n) = \varphi(\beta_1 v_1 + \cdots + \beta_n v_n) = \varphi(0)$, получили что векторы v_1, \ldots, v_n линейно зависимы - противоречие. Значит образ базисных векторов в V является базисом в W, а значит их количество совпадает и размерности линейных пространств равны.

 (\Leftarrow) Пусть V, W - линейные пространства над полем \mathbb{P} и $\dim V = \dim W = n, e_1, \ldots, e_n$ - базис V, f_1, \ldots, f_n - базис W. Построим отображение $\varphi: V \to W$, поставим в соответствие каждому вектору $x = \sum_{i=1}^n \alpha_i e_i$ вектор $y = \sum_{i=1}^n \alpha_i f_i \in W$. В силу единственности разложения вектора по базису отображение φ . При этом φ - изоморфизм, так как координаты вектора обладают свойством линейности.

3 Сумма и пересечение линейных пространств.

Опр. Непустое подмножество $L \subseteq V$ называется подпространством линейного пространства V, если оно само является линейным пространством относительно операций, действующих в V. Для этого необходимо и достаточно, чтобы результата этих операций над векторами из L оставался в L.

Опр. Сумма подпространств $L = L_1 + \dots + L_s$ пространства V называется множество вида $L = \{x_1 + \dots + x_s : x_1 \in L_1, \dots, x_s \in L_s\}$, которое так же является подпространством V. Пересечением подпространств L_1, \dots, L_n пространства V называется множество $L = \{x : x \in L_1, \dots, L_n\}$, которое так же является подпространством V.

Теорема (Теорема Грассмана). Пусть L и M - конечно мерные подпространства некоторого линейного пространства. Тогда $\dim(L+M) = \dim L + \dim M - \dim(L\cap M)$.

 \mathcal{A} -во. Рассмотрим базис g_1, \ldots, g_r подпространства $L \cap M$ и дополним его до базисов L и M:

$$g_1, \ldots, g_r, p_1, \ldots, p_k$$
 (базис L) $g_1, \ldots, g_r, q_1, \ldots, q_m$ (базис M).

Заметим, что вектора $p_1, \ldots, p_k, q_1, \ldots, q_m$ линейное независимы, так как если бы они были линейно зависимы, то существовал бы вектор q_i , который выражается через p_1, \ldots, p_k , а значит принадлежит $L \cap M$ - противоречие.

Ясно, что L+M является линейной оболочкой векторов $g_1, \ldots, g_r, p_1, \ldots, p_k, q_1, \ldots, q_m$ и остается лишь установить их линейную независимость. Пусть

$$\alpha_1 g_1 + \dots + \alpha_r g_r + \beta_1 p_1 + \dots + \beta_k p_k + \gamma_1 q_1 + \dots + \gamma_m q_m = 0 \implies$$

$$z := \alpha_1 g_1 + \dots + \alpha_r g_r + \beta_1 p_1 + \dots + \beta_k p_k = -(\gamma_1 q_1 + \dots + \gamma_m q_m) \in L \cap M$$

Будучи элементом из $L \cap M$, вектор z представляется в виде $z = \delta_1 g_1 + \dots + \delta_r g_r \implies$

$$\delta_1 g_1 + \dots + \delta_r g_r + \gamma_1 q_1 + \dots + \gamma_m q_m = 0 \implies \delta_1 = \dots = \delta_r = \gamma_1 = \dots = \gamma_m = 0. \implies$$

$$z = 0 \implies \alpha_1 = \dots = \alpha_r = \beta_1 = \dots = \beta_k.$$

4 Прямая сумма линейных пространств.

Опр. Пусть L - сумма подпространств L_1, \ldots, L_n . Если для любого вектора $x \in L$ компоненты разложения $x_i \in L_i$ определены однозначно, то L называется прямой суммой подпространств L_1, \ldots, L_n . Обозначение: $L = L_1 \oplus \cdots \oplus L_n$.

Теорема (Критерий прямой суммы). Для подпространств L_1, \ldots, L_k конечномерного пространства V следующие утверждения равносильны:

1. Сумма подпространств L_1, \ldots, L_k - прямая;

- 2. Совокупность базисов подпространств L_1, \ldots, L_k линейно независима;
- 3. Совокупность базисов подпространств L_1, \ldots, L_k образует базис суммы $\sum_{i=1}^k L_i$
- 4. dim $\sum_{i=1}^{k} L_i = \sum_{i=1}^{k} \dim L_i$;
- 5. Существует вектор $a \in \sum_{i=1}^{k} L_i$, для которого разложение по подпространствам L_1, \ldots, L_k единственно;
- 6. Произвольная система ненулевых векторов $a_1, ..., a_k$, взятых по одному из каждого подпространства L_i , i = 1, ..., k, линейно независима;
- 7. $L_1 \cap L_2 = \{\theta\} \ (\partial M \ k = 2).$

 \mathcal{A} -60. (1 \Longrightarrow 2) Пусть совокупность $e_1,\ldots,e_m,f_1,\ldots,f_s,\ldots,g_1,\ldots,g_s$ базисов подпространств L_1,\ldots,L_k линейно зависима и

$$\sum_{i=1}^{m} \alpha_i e_i + \sum_{i=1}^{s} \beta_i f_i + \dots + \sum_{i=1}^{t} \gamma_i g_i = \theta.$$

, где $\sum\limits_{i=1}^{m} \alpha_i^2 + \sum\limits_{i=1}^{s} \beta_i^2 + \cdots + \sum\limits_{i=1}^{t} \gamma_i^2 \neq 0$. Положим

$$x_1 = \sum_{i=1}^{m} \alpha_i e_i, \quad x_2 = \sum_{i=1}^{s} \beta_i f_i, \quad \dots, \quad x_k = \sum_{i=1}^{t} \gamma_i g_i.$$

Заметим, что $x_i \in L_i, i = 1, \ldots, k$, причем среди x_1, \ldots, x_k существует $x_i \neq 0$. Тогда можно записать: $\theta = x_1 + \cdots + x_i + \cdots + x_n$. Получили второе разложение вектора θ по подпространствам L_1, \ldots, L_k . Противоречие. Значит совокупность базисов линейно независима.

- $(2 \implies 3)$ Утверждение очевидно если учесть, что сумма подпространств является линейной оболочкой объединения их базисов.
- $(3 \Leftrightarrow 4)$ Эти утверждения отличаются только терминологией.
- $(3 \implies 1)$ Пусть $e_1, \ldots, e_m, f_1, \ldots, f_s, \ldots, g_1, \ldots, g_s$ совокупность базисов подпространств L_1, \ldots, L_k . Тогда $\forall x \in V \exists ! \alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_s, \ldots, \gamma_1, \ldots, \gamma_t$:

$$\sum_{i=1}^{m} \alpha_i e_i + \sum_{i=1}^{s} \beta_i f_i + \dots + \sum_{i=1}^{t} \gamma_i g_i = x$$

, где $\sum_{i=1}^{m} \alpha_i^2 + \sum_{i=1}^{s} \beta_i^2 + \dots + \sum_{i=1}^{t} \gamma_i^2 \neq 0$. Положим

$$x_1 = \sum_{i=1}^{m} \alpha_i e_i, \quad x_2 = \sum_{i=1}^{s} \beta_i f_i, \quad \dots, \quad x_k = \sum_{i=1}^{t} \gamma_i g_i.$$

Заметим, что $x_i \in L_i, i=1,\ldots,k$. Получили, что каждый вектор имеет единственное разложение по подпространствам. Значит сумма L_1,\ldots,L_k прямая.

 $(1 \implies 5)$ Это очевидно.

- $(5 \implies 1)$ Пусть $L_1 + \cdots + L_k$ не прямая сумма. Тогда существует вектор b из этой суммы, для которого имеются два различных разложения. Вычитая эти разложения, получим нетривиальное разложение нулевого вектора. Если сложить его с разложением вектора a, то получиться еще одно разложение вектора a. Противоречие. Значит сумма $L_1 + \cdots + L_k$ прямая.
- $(1\implies 6)$ Пусть система векторов a_1,\ldots,a_k линейно зависима. Тогда существуют числа $\alpha_1,\ldots,\alpha_k\in\mathbb{P}$, одновременно не равные нулю и такие, что $\alpha_1a_1+\cdots+\alpha_ka_k=\theta$. Это равенство дает второе разложение нулевого вектора, отличное от тривиального, что противоречит утверждению 1. $(6\implies 1)$ Пусть $L_1+\cdots+L_k$ не прямая сумма. Тогда существует вектор b, для которого существуют два разложения $b=b_1+\cdots+b_k=b'_1+\cdots+b_{k'},b_i,b'_i\in L_i,\ i=1,\ldots,k$. Вычитая одно из другого, получим, что $a_1+\cdots+a_k=0$, где $a_i=b_i-b'_i,\ a_i\in L_i,\ i=1,\ldots,k$, причем хотя бы одно $a_j\neq \theta$. Пусть a_{i_1},\ldots,a_{i_m} ненулевые вектора из a_1,\ldots,a_k . Система a_{i_1},\ldots,a_{i_m} линейно зависима, а значит и любая система ненулевых векторов, взятых по одному из каждого $L_i,\ i=1,\ldots,k$, содержащая эти векторы линейно зависима. Противоречие. Значит $L_1+\cdots+L_k$ прямая сумма.

$$(4 \Leftrightarrow 7)$$
 Сразу следует из теоремы Грассмана.

Теорема. Линейное пространство является прямой суммой двух своих подпространств тогда и только тогда, когда:

1.
$$\dim V = \dim L_1 + \dim L_2$$
;

2.
$$L_1 \cap L_2 = \{\theta\}$$
.

 \mathcal{A} -во. (\Longrightarrow) Сразу следует из критерия прямой суммы.

(\iff) Из условия 2 следует, что L_1+L_2 - прямая сумма. Положим, что $L=L_1\oplus L_2$. Тогда $\dim L=\dim L_1+\dim L_2=\dim V$. Это означает, что L=V.

5 Евклидово и унитарное пространство. Неравенство Коши-Буняковского.

Опр. Пусть V - вещественное линейное пространство, на котором каждой упорядоченной паре векторов $x, y \in V$ поставлено в соответствие вещественное число (x, y) таким образом, что:

•
$$(x,x) \ge 0 \, \forall x \in V; (x,x) = 0 \Leftrightarrow x = 0;$$

$$\bullet \ (x,y) = (y,x) \, \forall x,y \in V;$$

$$\bullet \ (x+y,z) = (x,z) + (y,z) \, \forall x,y,z \in V;$$

• $(\alpha x, y) = \alpha(x, y) \, \forall \alpha \in \mathbb{R} \, \forall x, y \in V.$

Число(x,y) называется скалярным произведением векторов x,y. Вещественное линейное пространство со скалярным произведение называется евклидовым.

Опр. Пусть V - комплексное линейное пространство, на котором каждой упорядоченной паре векторов $x,y \in V$ поставлено в соответствие комплексное число (x,y) таким образом, что:

- $(x,x) \ge 0 \,\forall x \in V; (x,x) = 0 \Leftrightarrow x = 0;$
- $(x,y) = \overline{(y,x)} \, \forall x,y \in V;$
- $(x + y, z) = (x, z) + (y, z) \forall x, y, z \in V;$
- $(\alpha x, y) = \alpha(x, y) \, \forall \alpha \in \mathbb{C} \, \forall x, y \in V.$

Yucлo(x,y) называется скалярным произведением векторов x,y. Комплексное линейное пространство со скалярным произведение называется унитарным.

Опр. В произвольном евклидовом или унитарном пространстве величина $|x| := \sqrt{(x,x)}$ называется длиной вектора. Равенство достигается в том и только в том случае, когда векторы x и у линейно зависимы.

Теорема (Неравенство Коши-Буняковского-Шварца). Скалярное произведение векторов и их длины связано неравенством $|(x,y)| \le |x||y|$.

 \mathcal{A} -во. Случай (x,y)=0 очевиден. В противном случае запишем $(x,y)=|(x,y)|\xi$, где $\xi=e^{i\phi}$, и рассмотрим функцию вещественного аргумента $F(t)=(x+t\xi y,x+t\xi y)=(x,x)+t\xi\overline{(x,y)}+t\overline{\xi}(x,y)+t^2\xi\overline{\xi}(y,y)=t^2|y|^2+2t|(x,y)|+|x|^2$. В силу свойств скалярного произведения $F(t)\geq 0$ при всех вещественных t. Значит $D\leq 0$, $D=|(x,y)|^2-|x|^2|y|^2\leq 0 \implies |(x,y)|\leq |x||y|$. Равенство означает, что $D=0 \implies (x+t\xi y,x+t\xi y)=0 \implies x+t\xi y=0$.

6 Скалярное произведение в ортонормированном базисе. Существование ортонормированного базиса.

Опр. Система ненулевых векторов x_1, \ldots, x_m называется ортогональной, если $(x_i, x_j) = 0$ при $i \neq j$. Ортогональная система, в которой длина каждого вектора равна 1, называется ортонормированной.

Теорема. Для любой линейно независимой системы векторов a_1, \ldots, a_m существует ортогональная система p_1, \ldots, p_m такая, что $L(p_1, \ldots, p_k) = L(a_1, \ldots, a_k), 1 \le k \le m$.

 \mathcal{A} -во. Положим, что $p_1 = a_1 \implies L(p_1) = L(a_1)$. Предположим, что уже постоена ортогональная система p_1, \ldots, p_{k-1} такая, что $L(p_1, \ldots, p_i) = L(a_1, \ldots, a_i)$ при $1 \le i \le k-1$. Тогда вектор

$$p_k = a_k - \sum_{i=1}^{k-1} \frac{(a_k, p_i)}{(p_i, p_i)} p_i.$$

будет ортогонален каждому из векторов p_1, \ldots, p_{k-1} :

$$(p_k, p_j) = (a_k, p_j) - \left(\sum_{i=1}^{k-1} \frac{(a_k, p_i)}{(p_i, p_i)} p_i, p_j\right) = (a_k, p_j) - \frac{(a_k, p_j)}{(p_j, p_j)} (p_j, p_j) = 0.$$

Кроме того,
$$p_k \in L(p_1, \ldots, p_{k-1}, a_k) = L(a_1, \ldots, a_{k-1}, a_k)$$
 и $a_k \in L(p_1, \ldots, p_{k-1}, p_k) \implies L(p_1, \ldots, p_{k-1}, p_k) = L(a_1, \ldots, a_{k-1}, a_k)$.

Следствие. Для любой линейно независимой системы a_1, \ldots, a_m существует ортонормированная система q_1, \ldots, q_m такая, что $L(q_1, \ldots, q_k) = L(a_1, \ldots, a_k), 1 \le k \le m$.

Следствие. В любом конечномерном пространстве со скалярным произведением существует ортонормированный базис.

7 Изометрия.

Опр. Два линейных пространства V_1 и V_2 со скалярным произведениями называются изометричными, если \exists биективное отображение $\varphi: V_1 \to V_2$, которое сохраняет законы композиции и скалярное произведение, т.е.:

- $\varphi(x+y) = \varphi(x) + \varphi(y) \, \forall x, y \in V_1;$
- $\alpha \varphi(x) = \varphi(\alpha x) \, \forall x \in V_1 \, \forall \alpha \in \mathbb{P};$
- $(\varphi(x), \varphi(y)) = (x, y) \forall x, y \in V_1.$

Само отображение φ при этом называется изометрией.

Теорема. Два пространства со скалярными произведениями изометричны тогда и только тогда, когда равны их размерности.

 \mathcal{A} -во. (\Longrightarrow) Вытекает из изоморфизма изометричных пространств. (\Longleftrightarrow) Пусть V_1 и V_2 - два линейных пространства со скалярными произведениями и $\dim V_1 = \dim V_2 = n.\ e_1, \ldots, e_n$ - базис $V_1, e'_1, \ldots, 2'_n$ - базис V_2 . Построим отображение $\varphi: V_1 \to V_2$, сопоставив каждому вектору $x = \sum\limits_{i=1}^n x_i e_i$ вектор $y = \sum\limits_{i=1}^n x_i e'_i \Longrightarrow$ отображение φ - линейных пространств V_1 и V_2 . Оно сохраняет скалярное произведение, т.к. если $x = \sum\limits_{i=1}^n x_i e_i, \ y = \sum\limits_{i=1}^n y_i e_i, \ \text{то } (x,y) = \sum\limits_{i=1}^n x_i \overline{y_i} = (\varphi(x), \varphi(y)).$

8 Матрица Грама. Критерий линейной независимости.

Теорема (теорема о перпендикуляре). Для любого вектора x в произвольном пространстве со скалярным произведением и любого конечномерного подпространства $L \subset V$ существуют и единственны перпендикуляр h и проекция z такие, что

$$x = z + h, z \in L, h \perp L, |x - z| = |h| \le |x - y| \, \forall y \in L.$$

 \mathcal{A} -во. Если $x\in L$, то полагаем z=x и h=0. Пусть v_1,\ldots,v_k - базис подпространства L. В случае $x\not\in L$ система v_1,\ldots,v_k,x будет линейно независимой. Применив к ней процесс ортогонализации Грама-Шмидта, получим ортонормированную системы q_1,\ldots,q_k,q_{k+1} такую, что $L=L(q_1,\ldots,q_k)$ и $x\in L(q_1,\ldots,q_k,q_{k+1})$, а искомые проекция и перпендикуляр получаются из разложения $x=\alpha_1q_1+\cdots+\alpha_kq_k+\alpha_{k+1}q_{k+1}$ очевидным образом: $z=\alpha_1q_1+\cdots+\alpha_kq_k, h=\alpha_{k+1}q_{k+1}$.

Единственность: если x=z+h=z'+h', где $z,z'\in L$ и $h,h'\perp L$, то $c:=z-z'=h'-h\in L\cap L^\perp\implies v=0$.

Наконец, для любого $y \in L$ находим x-y=(z-y)+h, и, согласно теореме Пифагора, $|x-y|^2=|z-h|^2+|h|^2\geq |h|^2$. Равенство, очевидно, имеет место в том и только в том случае, когда y=z.

Если v_1, \ldots, v_k - произвольный базис подпространства L, то ортогональная проекция $z = x_1v_1 + \cdots + x_kv_k$ вектора x на L однозначно определяется уравнением $x-z \perp L$. Для этого необходимо и достаточно, чтобы вектор x-z был ортогонален каждому из векторов v_1, \ldots, v_k :

$$\begin{cases} (v_1, v_1)x_1 + \dots + (v_k, v_1)x_k = (x, v_1) \Leftrightarrow (x - z, v_1) = 0 \\ (v_1, v_2)x_1 + \dots + (v_k, v_2)x_k = (x, v_2) \Leftrightarrow (x - z, v_2) = 0 \\ \dots \\ (v_1, v_k)x_1 + \dots + (v_k, v_k)x_k = (x, v_k) \Leftrightarrow (x - z, v_k) = 0 \end{cases}$$

Из теоремы о перпендикуляре следует, что эта система линейных алгебраических уравнений имеет и притом единственное решение, определяющее коэффициенты x_1, \ldots, x_k .

Опр. Матрицы $A = [a_{ij}]$ полученной нами системы линейны алгебраических уравнений имеет элементы $a_{ij} = (v_i, v_j)$. Матрица такого вида называется матрицей Грама системы векторов v_1, \ldots, v_k .

Теорема. Для линейно независимой системы матрица Грама невырождена.

 \mathcal{A} -60. Сразу следует из теоремы о перпендикуляре, так как система должна иметь единственное решение.

9 Ортогональное дополнение. Ортогональная сумма подпространств. Расстояние от вектора до подпространства.

Опр. Вектор x называется ортогональным вектору y, если (x,y) = 0, u ортогональным множеству $L \neq \emptyset$, если он ортогональн каждому вектору множества L. Непустые множества M u L называются ортогональными, если $(x,y) = 0 \,\forall x \in L, y \in M$.

Опр. Пусть L - подпространство V. Множество $L^{\perp} = \{x \in V : x \perp L\}$ называется ортогональным дополнением κ L.

Теорема. Ортогональное дополнение κ подпространству является линейным подпространством.

 \mathcal{A} -во. Пусть $y_1, y_2 \in L^{\perp}$, тогда $(y_1, x) = (y_2, x) = 0 \,\forall x \in L$. Складывая эти равенства, получим, что $(y_1 + y_2, x) = 0 \,\forall y_1, y_2 \in L^{\perp}$, т.е. $y_1 + y_2 \in L^{\perp}$. Аналогично, если $(y, x) = 0 \,\forall x \in L$, то $(\alpha y, x) = 0 \,\forall y \in L \,\forall \alpha \in \mathbb{P} \implies \alpha y \in L^{\perp}$. Значит, L^{\perp} - линейное подпространство.

Теорема. Если L - линейное подпространство V, то $E=L\oplus L^{\perp}.$

 \mathcal{A} -во. Если L - тривиальное подпространство, то утверждение очевидно. Пусть L - нетривиальное подпространство. Возьмем e_1,\ldots,e_k - ортонормированный базис L,e_{k+1},\ldots,e_n - ортонормированный базис L^{\perp} . Система векторов e_1,\ldots,e_n образует базис в V. Пусть это не так. Тогда $\exists f \in V: e_1,\ldots,e_n, f$ - линейно независимая система. Применим к ней процесс ортогонализации, получим систему $e_1,\ldots,e_n,e_{n+1}.e_{n+1}$ ортогонален $e_1,\ldots,e_k\Longrightarrow e_{n+1}\in L$. С другой стороны, e_{n+1} ортогонален $e_{k+1},\ldots,e_n\Longrightarrow e_{n+1}\in L^{\perp}$. Значит $e_{n+1}=0$, а значит f выражается через e_1,\ldots,e_n и система была линейно зависимой. Противоречие. Значит e_1,\ldots,e_n - базис. Получили, что $\dim L+\dim L^{\perp}=\dim V$, и, поскольку, $L\cap L^{\perp}=\{\emptyset\}$, то $E=L\oplus L^{\perp}$.

Теорема. Расстояние между вектором f и линейным подпространством L в евклидовом (унитарном) пространстве равно длине перпендикуляра из вектора f на L.

Д-60. Пусть f=g+h, где $g\in L$, $h\in L^\perp$, и y - произвольный вектор из L. Тогда $\rho(f,y)=|f-y|=|(g+h)-y|=|h+(g-y)|=\sqrt{(h+(g-y),h+(g-y))}=\sqrt{(h,h)+(g-y,g-y)}=\sqrt{|h|^2+|g-y|^2}\geq |h|\,\forall y\in L$ и $\rho(f,y)=|h|$, если y=g. Это означает, что $|h|=\inf_{y\in L}\rho(f,y)=\rho(f,L)$.

10 Ортонормированный базис и унитарные (ортогональные) матрицы.

(определение ортонормированности и теорема о существовании ортогонального базиса из 6 вопроса)

Рассмотрим комплексную матрицу $Q = [q_1, \ldots, q_n]$ порядка n и предположим, что ее столбцы q_1, \ldots, q_n ортонормированы относительно естественного скалярного произведения пространства \mathbb{C}^n . Тогда имеет место равенство:

$$(q_i, q_j) = q_i^* q_i = \delta_{ij} \Leftrightarrow Q^* Q = I.$$

Здесь используется символ Кронекера: $\delta_{ij} = 1$ при i = j и $\delta_{ij} = 0$ при $i \neq j$.

Опр. Квадратная комплексная матрица Q называется унитарной, если $Q^*Q = I$. Как видим, свойство унитарности матрицы равносильно ортонормированности ее системы столбцов относительно естественного скалярного произведения. Вещественная унитарная матрица называется ортогональной.

11 Процесс ортогонализации Грама-Шмидта. QR-разложение матрицы.

Теорема. Для любой линейно независимой системы векторов a_1, \ldots, a_m существует ортогональная система p_1, \ldots, p_m такая, что $L(p_1, \ldots, p_k) = L(a_1, \ldots, a_k), 1 \le k \le m$.

 \mathcal{A} -во. Положим, что $p_1=a_1 \Longrightarrow L(p_1)=L(a_1)$. Предположим, что уже постоена ортогональная система p_1,\ldots,p_{k-1} такая, что $L(p_1,\ldots,p_i)=L(a_1,\ldots,a_i)$ при $1\leq i\leq k-1$. Тогда вектор

$$p_k = a_k - \sum_{i=1}^{k-1} \frac{(a_k, p_i)}{(p_i, p_i)} p_i.$$

будет ортогонален каждому из векторов p_1, \ldots, p_{k-1} :

$$(p_k, p_j) = (a_k, p_j) - \left(\sum_{i=1}^{k-1} \frac{(a_k, p_i)}{(p_i, p_i)} p_i, p_j\right) = (a_k, p_j) - \frac{(a_k, p_j)}{(p_j, p_j)} (p_j, p_j) = 0.$$

Кроме того,
$$p_k \in L(p_1, \dots, p_{k-1}, a_k) = L(a_1, \dots, a_{k-1}, a_k)$$
 и $a_k \in L(p_1, \dots, p_{k-1}, p_k) \implies L(p_1, \dots, p_{k-1}, p_k) = L(a_1, \dots, a_{k-1}, a_k)$.

Теорема об ортогонализации содержит, по существу, следующий алгоритм построения ортонормированной системы q_1, \ldots, q_m в линейной оболочке заданной линейно независимой системы a_1, \ldots, a_m :

$$p_k := a_k - \sum_{i=1}^{k-1} (a_k, q_i)q_i, \quad q_k := \frac{p_k}{|p_k|}, \quad k = 1, 2, \dots, m.$$

Этот алгоритм называется процессом ортогонализации Грама-Шмидта.

Пусть матрица A имеет линейно независимые столбцы a_1, \ldots, a_m , а процесс ортогонализации ее столбцов относительно естественного скалярного произведения дает ортонормированные столбцы q_1, \ldots, q_m . Процесс ортогоналиации устроен таким образом, что a_k есть линейная комбинация столбцов q_1, \ldots, q_k :

$$a_k = \sum_{i=1}^k r_{ik} q_i \Leftrightarrow A = QR, \ Q = [q_1, \dots, q_m], \ R = \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1m} \\ & r_{22} & \dots & r_{2m} \\ & & \ddots & \vdots \\ & & & r_{mm} \end{bmatrix}.$$

Опр. Разложение A = QR, где Q имеет ортонормированные столбцы, а R - верхняя треугольная матрица, называется QR-разложением матрицы A. Таким образом, для любой прямоугольной матрицы c линейно независимыми столбцами существует QR-разложение.

Теорема (Теорема о QR-разложении). Любая квадратная комплексная матрица представима в виде произведения унитарной и верхней треугольной матрицы.

 \mathcal{A} -во. Любая квадратная матрица A является пределом последовательности невырожденных матриц $A_k = A - \alpha_k I$, так как заведомо имеется последовательность чисел $\alpha_k \to 0$, отличных от собственных значений матрицы A. Для каждой невырожденной матрицы A_k , как мы уже знаем, существует QR-разложение: $A_k = Q_k R_k$. Последовательность Q_k принадлежит компактному множеству матриц, поэтому из нее можно выделить сходящуюся подпоследовательность $Q_{k_l} \to Q$. Матрица Q будет, конечно, унитарной, а придел последовательности $R_{k_l} = Q_{k_l}^* A_{k_l} \to Q^* A$ является, очевидно, верхней треугольной матрицей.