

## **Exploratory Data Analysis**



## **EDA- Exploratory Data Analysis**

- Measures of Central tendency
- Measures of dispersion
- Covariance
- Correlation







## Mean (Arithmetic Mean)

(continued)

- The most common measure of central tendency
- Affected by extreme values (outliers)





## 1

### Median

- Robust measure of central tendency
- Not affected by extreme values



- In an ordered array, the median is the "middle" number
  - If n or N is odd, the median is the middle number
  - If n or N is even, the median is the average of the two middle numbers

### Mode

- A measure of central tendency
- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical data
- There may be no mode
- There may be several modes





## Shape of a Distribution

- Describes how data is distributed
- Measures of shape
  - Symmetric or skewed









DataCrux Insights @2018 ,All Rights Reserved





Skew = 
$$\frac{n}{(n-1)(n-2)} \sum_{i=1}^{n} \left( \frac{x_i - \overline{x}}{s} \right)^3$$

**Kurtosis** = 
$$\left\{ \frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum \left( \frac{x_j - \overline{x}}{s} \right)^4 \right\} - \frac{3(n-1)^2}{(n-2)(n-3)}$$



The coefficient of Skewness is a measure for the degree of symmetry in the variable distribution.



Negatively skewed distribution or Skewed to the left Skewness <0



Normal distribution Symmetrical Skewness = 0



Positively skewed distribution or Skewed to the right Skewness > 0

#### Kurtosis

The coefficient of Kurtosis is a measure for the degree of peakedness/flatness in the variable distribution.



Platykurtic distribution Low degree of peakedness Kurtosis <0



Normal distribution Mesokurtic distribution Kurtosis = 0



Leptokurtic distribution High degree of peakedness Kurtosis > 0







### Measures of Variation



# 1

### Range

- Measure of variation
- Difference between the largest and the smallest observations:

$$\mathsf{Range} = X_{\mathsf{Largest}} - X_{\mathsf{Smallest}}$$

Ignores the way in which data are distributed





### **Comparing Standard Deviations**





# Features of Correlation Coefficient

- Unit free
- Ranges between -1 and 1
- The closer to −1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker any positive linear relationship

# Scatter Plots of Data with Various Correlation Coefficients



$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

$$r = \frac{Covariance(x,y)}{S.D.(x)S.D.(y)}$$

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$