COMING DIMERIMA

Course Code	BCA10050 Program Foundation				
Course Category					
Course Title	Linear Algebra				
Teaching Scheme	Lectures	Tutorials	Laboratory/Practical	Project	Total
Weekly Load Hrs.	2	-			2
Credits	2	-			2
Assessment Schema Code	TT1				

Course Objectives:

This course provides an introduction to linear algebra topics. Emphasis is placed on the development of abstract concepts and explications for vectors, systems of equations, matrices, determinants, vector spaces, multi-dimensional linear transformations, genvectors, eigenvalues, diagonalization and orthogonality.

Course Outcomes:

After the completion of this course students will

- 1. Use analytical and graphical representations to apply vector operations in multiple dimensions.
- Solve systems of linear equations using multiple manual and technology-based methods; these methods will include but are not limited to Gaussian and Gauss-Jordan.
- 3. Use eigenvalues, eigenvectors and diagonalization to solve problems in appropriate situations. 4. Use matrix operations and linear transformations to solve problems in appropriate situations.

Course Contents:

Unit 1: Matrix Algebra [6]

- · Matrix Operations,
- The Inverse of a Matrix
- · Characterizations of Invertible Matrices,
- Determinants

Unit 2: Systems of Linear Equations [6]

- · Row Reduction and Echelon Forms
- Vector equations
- The Matrix equation Ax = b
- Solution Sets of Linear Systems
- Applications of Linear Systems
- Linear Independence
- Linear Transformations. Applications of linear transformation
- Linear Models

Unit 3: Vector Spaces [6]

- Vector Spaces and Subspaces
- Null, Column, and Row Spaces
- Basis
- Coordinate Transformations
- Dimension: Rank of a Matrix

Unit 4: Eigenvalues and Eigenvectors [6]

MIT-WPU, PUNE-38.
APPROVED BY
U.5 JUN 2024

- Eigenvalues and Eigenvectors
- The Characteristic Equation
- Diagonalization
- Applications Quadratic forms

Unit 5: Orthogonality [6]

- · Inner Product, Length, and Orthogonality
- Orthogonal Sets
- Orthogonal Projections

Learning Resources:

Text Books/Reference Books::

Elementary Linear Algebra by Stanley I. Grossman.
Introduction to Linear Algebra by SERGE LANG, Springer Verlag
Linear Algebra A Geometric Approach by S. KUMARESAN, Prentice Hall of India Private Limited

Web Resources

Weblinks:

Pedagogy:

- Participative Learning,
- Discussion
- Demonstrations
- Practical
- Assignment