Définition 17.1 - fraction rationnelle

Dans $\mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0\})$ On définit la relation d'équivalence \mathcal{R} en posant :

$$(P,Q)\mathcal{R}(R,S)$$

- $\Leftrightarrow P/Q = R/S$ (Cette étape n'est qu'à titre explicatif dans la mesure où l'opération / n'est pas définie)
- $\Leftrightarrow PS = RQ$

On appelle fraction rationnelle à coefficients dans \mathbb{K} toute classe d'équivalence pour la relation \mathcal{R} . La classe de (P,Q) est alors notée $\frac{P}{Q}$. On a donc :

$$\frac{P}{Q} = \{(R, S) \in \mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0\}), PS = RQ\}$$

On dit que (P,Q) est un représentant de la fraction $\frac{P}{Q}$. L'ensemble des fractions rationnelles est noté $\mathbb{K}(X)$ et la relation \mathcal{R} est appelée égalité des fractions rationnelles.

Proposition 16.4 - structure de $\mathbb{K}(X)$

 $(\mathbb{K}(X), +, \times)$ est un corps commutatif et $(\mathbb{K}(X), +, \times, \cdot)$ (où \cdot est la loi externe) est une \mathbb{K} -algèbre commutative.

L'application $\varphi : \mathbb{K}[X] \to \mathbb{K}(X)$ définie par $\varphi(P) = \frac{P}{1}$ est un morphisme d'algèbres injectif.

Définition 17.7 - représentant irréductible

Soit $F = \frac{P}{Q}$ une fraction. On dit que $\frac{P}{Q}$ est un représentant irréductible lorsque $P \wedge Q = 1$ et que Q est unitaire. Toute fration rationnelle de $\mathbb{K}(X)$ admet un unique (dénominateur unitaire) représentant irréductible.

Théorème 17.34 - décomposition en éléments simples

Soit $F = \frac{A}{B}$ une fraction sous forme irréductible, et $B = \prod_{i=1}^k P_i^{\alpha_i}$ sa décomposition en produit de polynômes irréductibles. Il existe des polynômes $(U_i)_{i \in [\![1,k]\!]}$ tels que

$$F = E + \sum_{i=1}^{k} \frac{U_i}{P_i^{\alpha_i}} \quad \text{avec deg}(\frac{U_i}{P_i}) < 0$$

De plus, pour $n \in \mathbb{N}^*$, Si $T \in \mathcal{I}_{\mathbb{K}[X]}$ et $\deg(\frac{A}{T^n}) < 0$, alors il existe des polynômes V_1, \ldots, V_n tels que

$$\frac{A}{T^n} = \sum_{k=1}^n \frac{V_k}{T^k} \quad \text{avec deg}(\frac{V_k}{T^k}) < 0$$

Finalement, Il existe des polynômes $(U_{i,j})_{i \in [\![1,k]\!],j \in [\![1,\alpha_i]\!]}$ tels que

$$F = E + \sum_{i=1}^{k} \sum_{j=1}^{\alpha_i} \frac{U_{i,j}}{P_i^j}$$
 avec $\deg(\frac{U_{i,j}}{P_i}) < 0$

Cette décomposition est unique.

Proposition 17.40 - cas d'un pôle d'ordre $n \in \mathbb{N}^*$ pour une fraction de $\mathbb{C}(X)$

Si $a \in \mathbb{C}$ est un pôle d'ordre de multiplicité $n \in \mathbb{N}^*$ de $F \in \mathbb{C}(X)$, alors la partie polaire de F relative à a est, en posant $H = (X - a)^n F$:

$$P_F(a) = \sum_{k=1}^n \frac{H^{(k-1)}(a)}{(X-a)^k} = \frac{H(a)}{X-a} + \frac{H'(a)}{(X-a)^2} + \dots + \frac{H^{(n-1)}(a)}{(X-a)^n}$$

Remarque 17.51 - primitives d'éléments simples de première espèce

Un élément simple de première espèce est de la forme $\frac{1}{(X-a)^n}$, avec $n\in\mathbb{N}^*$.

$$\int_{-\infty}^{x} \frac{1}{(t-a)^n} dt = \begin{cases} \ln|x-a| & \text{si } n=1\\ \frac{-1}{(n-1)(x-a)^{n-1}} & \text{si } n>1 \end{cases}$$

Remarque 17.51 - primitives d'éléments simples de deuxième espèce

Un élément simple de seconde espèce est de la forme $\frac{aX+b}{(X^2+pX+c)^n}$, avec $n\in\mathbb{N}^*$. On ne traite que le cas n=1:

$$\begin{split} \frac{aX+b}{X^2+pX+q} &= \frac{\frac{a}{2}2X}{X^2+pX+q} + \frac{b}{X^2+pX+q} \quad \text{On fait apparaître la dérivée du trinôme au numérateur} \\ &= \frac{\frac{a}{2}(2X+p-p)}{X^2+pX+q} + \frac{b}{X^2+pX+q} \\ &= \frac{\frac{a}{2}(2X+p)}{X^2+pX+q} + \frac{b-\frac{a}{2}p}{X^2+pX+q} \\ &= \frac{\frac{a}{2}(2X+p)}{X^2+pX+q} + \frac{b-\frac{a}{2}p}{(X+\frac{p}{2})^2+\frac{4q-p^2}{4}} \quad \text{On passe le dénominateur sous forme canonique} \\ &= \frac{\frac{a}{2}(2X+p)}{X^2+pX+q} + \frac{(b-\frac{ap}{2})(\frac{4}{4q-p^2})}{\frac{4}{4q-p^2}(X+\frac{p}{2})^2+1} \quad \text{On divise par } 4q-p^2 > 0 \text{ pour avoir une forme } \alpha \frac{u'}{u^2+1} \\ &= \frac{\frac{a}{2}(2X+b)}{X^2+bX+q} + \frac{(b-\frac{ap}{2})(\frac{4}{4q-p^2})}{(\frac{2}{\sqrt{4q-p^2}}X+\frac{p}{\sqrt{4q-p^2}})^2+1} \quad \text{On fait rentrer } \frac{4}{4q-p^2} > 0 \text{ dans } u \text{ avec } x \mapsto \sqrt{x} \end{split}$$

$$\frac{aX+b}{X^2+pX+q} = \frac{\frac{a}{2}(2X+b)}{X^2+pX+q} + \frac{\frac{2}{\sqrt{4q-p^2}}}{(\frac{2}{\sqrt{4q-p^2}}X+\frac{p}{\sqrt{4q-p^2}})^2+1}\frac{2b-ap}{\sqrt{4q-p^2}}$$

Passage au calcul intégral:

$$\int_{0}^{x} \frac{at+b}{t^{2}+pt+q} dt = \frac{a}{2} \ln|x^{2}+px+q| + \frac{2b-ap}{\sqrt{4q-p^{2}}} \arctan(\frac{2x+p}{\sqrt{4q-p^{2}}})$$