Theory of Computation CS-202 Finite Automata

Finite Automata

-Deterministic Finite Accepters

-Non Deterministic Finite Accepters

Nondeterministic Finite Accepters

A nondeterministic finite accepter or nfa is defined by the quintuple $M = (Q, \Sigma, \delta, q_0, F)$

where Q is a finite set of internal states,

 Σ is a finite set of symbols called the input alphabet,

 $q_0 \in Q$ is the initial state,

 $F \subseteq Q$ is a set of final states.

$$\delta: Q \times \Sigma \rightarrow 2^Q$$

∀ NFA ∃ a DFA

$$\Rightarrow$$
 DFA \subseteq NFA

Conversion from NFA to DFA

- In NFA, when a specific input is given to the current state, the machine goes to multiple states. It can have zero, one or more than one move on a given input symbol.
- On the other hand, in DFA, when a specific input is given to the current state, the machine goes to only one state. **DFA has only one move on a given input symbol.**
- Let, $M = (Q, \sum, \delta, q_0, F)$ is an NFA which accepts the language L(M). There should be equivalent DFA denoted by $M' = (Q', \sum', q_0', \delta', F')$ such that L(M) = L(M').

Steps for converting NFA to DFA:

Step 1: Initially $Q' = \phi$

Step 2: Add q_0 of NFA to Q'. Then find the transitions from this start state.

Step 3: In Q', find the possible set of states for each input symbol. If this set of states is not in Q', then add it to Q'.

Step 4: In DFA, the final state will be all the states which contain F(final states of NFA)

Example-1

Convert the given NFA to DFA

Solution: For the given transition diagram we will first construct the transition table.

State	0	1
→q0	{q0, q1}	{q1}
*q1	ф	{q0, q1}

Solution:

State	0	1
→q0	{q0, q1}	{q1}
*q1	ф	{q0, q1}

Now we will obtain δ' transition for state q_0 .

$$\delta'([q_0], 0) = \{q_0, q_1\}$$

$$= [q_0, q_1] \quad \text{(new state)}$$

$$\delta'([q_0], 1) = \{q_1\} = [q_1]$$

Solution:

State	0	1
→q0	{q0, q1}	{q1}
*q1	ф	{q0, q1}

Now we will obtain δ' transition for state q_1 .

$$\delta'([q1], 0) = \phi$$
, $\delta'([q1], 0) = q_2$ (new state)
 $\delta'([q1], 1) = [q0, q1]$

Solution:

State	0	1
→q0	{q0, q1}	{q1}
*q1	ф	{q0, q1}

Note: for $\delta'([q_1], 0) = \varphi$, we need to create a new state (called dead state) say q_2 Now we will obtain δ' transition for state q_2 .

$$\delta'([q_2], 0) = q_2$$

 $\delta'([q_2], 1) = q_2$

Solution:

State	0	1
→q0	{q0, q1}	{q1}
*q1	ф	{q0, q1}

Now we will obtain δ' transition on [q0, q1].

```
\delta'([q0, q1], 0) = \delta(q0, 0) \cup \delta(q1, 0)
= \{q0, q1\} \cup \phi
= \{q0, q1\}
= [q0, q1]
\delta'([q0, q1], 1) = \delta(q0, 1) \cup \delta(q1, 1)
= \{q1\} \cup \{q0, q1\}
= \{q0, q1\}
= [q0, q1]
```

• As in the given NFA, q_1 is a final state, then in DFA wherever, q_1 exists that state becomes a final state. Hence in the DFA, final states are $[q_1]$ and $[q_0, q_1]$.

• Therefore set of final states $F = \{[q_1], [q_0, q_1]\}.$

• The transition table for the constructed DFA will be:

State	0	1
→[q0]	[q0, q1]	[q1]
*[q1]	[92]	[q0, q1]
*[q0, q1]	[q0, q1]	[q0, q1]
q' ₂	q 2	[92]

The Transition diagram for DFA will be:

ε –NFA or Epsilon NFA

ε –NFA or Epsilon NFA

It is an extended version of NFA, which makes the designing of NFA much easier.

An ε –NFA is defined using the quintuple

$$M=(Q, \Sigma, q0, \delta, F)$$

where Q is a finite set of internal states,

 Σ is a finite set of symbols called the input alphabet,

 $q_0 \in Q$ is the initial state,

 $F \subseteq Q$ is a set of final states.

$$\delta: Q \times (\Sigma \cup \varepsilon) \rightarrow 2^Q$$

Examples

Design an ε NFA for the language
 L={0ⁿ1^m, n,m≥0}

Design an ε NFA for the language
 L={0ⁿ1^m, n,m≥0}

2. Design an ε NFA for the language L={ $a^mb^nc^p$, m,n,p \geq 0}

first design DFA

DFA

2. Design an ε NFA over $\Sigma = \{a,b,c\}$ for the language

$$L=\{a^mb^nc^p, m,n,p\geq 0\}$$

ε NFA a ε ·

even

3. Design an ε NFA for the language L={0^m1ⁿ, m+n=odd}

odd

Ddd

3. Design an ε NFA for the language

 $L=\{0^{m}1^{n}, m+n=odd\}$

0 0 1 Rejected **Input Strings** Accepted 0 1 $q_{\scriptscriptstyle 4}$ 0 3 q_1 3 q_5 q_7 0

 q_6

 q_8