Topics in Computer Graphics Chap 3: Linear Interpolation spring, 2014

University of Seoul School of Computer Science Minho Kim

Table of contents

Linear Interpolation

Piecewise Linear Interpolation

Menelaos' Theorem

Blossoms

Barycentric Coordinates in the Plane

Tessellations

Linear Interpolation

Piecewise Linear Interpolation

Menelaos' Theorem

Blossoms

Barycentric Coordinates in the Plane

Tessellations

Linear Interpolation

Let $\mathbf{a}, \mathbf{b} \in \mathbb{E}^3$. The set of all points $\mathbf{x} \in \mathbb{E}^3$ of the form

$$\mathbf{x} = \mathbf{x}(t) = (1 - t)\mathbf{a} + t\mathbf{b}, \quad t \in \mathbb{R}$$

is called the *straight line* through a and b.

- ► See Figure 3.1
- For t = 0, $\mathbf{x}(0) = \mathbf{a}$: the line passes through \mathbf{a} .
- For t = 1, $\mathbf{x}(1) = \mathbf{b}$: the line passes through \mathbf{b} .
- For $0 \le t \le 1$, the point x is between a and b.
- For t < 0 or t > 1, the point is outside.
- \mathbf{x} is represented as a barycentric combination of two points in \mathbb{E}^3 .
 - \rightarrow The three points $\mathbf{a}, \mathbf{x}, \mathbf{b}$ in \mathbb{E}^3 are an affine map of the three 1D points 0, t, 1.
 - \rightarrow Linear interpolation is an affine map of the real line onto a straight line in \mathbb{E}^3 .

Linear Interpolation (cont'd)

Linear interpolation is affinely invariant.

$$\Phi \mathbf{x} = \Phi ((1 - t)\mathbf{a} + t\mathbf{b}) = (1 - t)\Phi \mathbf{a} + t\Phi \mathbf{b}$$

• Can be applied to vectors as well: The vector $\vec{v}:=d-c\in\mathbb{R}$ is mapped to the vector $\mathbf{l}(\vec{v})=\mathbf{l}(d)-\mathbf{l}(c)\in\mathbb{R}^3$ by the linear interpolation 1. (Figure 3.2)

Linear Interpolation and Barycentric Combination

For any three conlinear points $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{E}^3$, the barycentric coordinates of \mathbf{b} w.r.t. \mathbf{a} and \mathbf{c} is

$$\mathbf{b} = \alpha \mathbf{a} + \beta \mathbf{c}, \quad \alpha = \frac{\text{vol}_1(\mathbf{b}, \mathbf{c})}{\text{vol}_1(\mathbf{a}, \mathbf{c})}, \beta = \frac{\text{vol}_1(\mathbf{a}, \mathbf{b})}{\text{vol}_1(\mathbf{a}, \mathbf{c})}.$$

- $ightharpoonup vol_1$: signed distance between two points
- ratio($\mathbf{a}, \mathbf{b}, \mathbf{c}$) = $\frac{\text{vol}_1(\mathbf{a}, \mathbf{b})}{\text{vol}_1(\mathbf{b}, \mathbf{c})} = \frac{\beta}{\alpha}$
- The barycentric coordinates of a point do not change under affine maps.

$$ratio(\Phi \mathbf{a}, \Phi \mathbf{b}, \Phi \mathbf{c}) = \frac{\beta}{\alpha}$$

- → Affine maps are ratio preserving.
- \rightarrow Every map that takes straight lines to straight lines and its ratio preserving is an affine map.

Affine Domain Transformation

The straight line

$$\mathbf{x}(t) = (1 - t)\mathbf{a} + t\mathbf{b}$$

for $t \in [0,1]$ is the same as the straight line

$$\mathbf{x}(u) = \frac{b-u}{b-a}\mathbf{a} + \frac{u-a}{b-a}\mathbf{b}$$

for $u \in [a, b]$ with t = (u - a)/(b - a).

- \rightarrow Linear interpolation is invariant under affine domain transformation.
 - Affin domain transformation: An affine map of the real line onto itself.

Linear Interpolation

Piecewise Linear Interpolation

Menelaos' Theorem

Blossoms

Barycentric Coordinates in the Plane

Tessellations

Piecewise Linear Interpolation

- Let $\mathbf{b}_0, \dots, \mathbf{b}_n \in \mathbb{E}^3$ form a polygon \mathbf{B} . $\to \mathbf{B}$ is the *piecewise linear interpolant* \mathcal{PL} to the points \mathbf{b}_i .
- If the points b_I lie on a curve c
 → B is a piecewise linear interpolant to c:

$$\mathbf{B} = \mathcal{P} \mathcal{L} \mathbf{c}$$
.

Piecewise linear interpolation is affinely invariant.:

$$\mathcal{P}\mathcal{L}\Phi\mathbf{c} = \Phi\mathcal{P}\mathcal{L}\mathbf{c}.$$

Variation diminishing property (Figure 3.3):

$$cross(\mathcal{PL}\mathbf{c}) \leqslant cross \mathbf{c}.$$

Linear Interpolation

Piecewise Linear Interpolation

Menelaos' Theorem

Blossoms

Barycentric Coordinates in the Plane

Tessellations

Melelaos' Theorem

Let

$$\mathbf{b}[0, t] = (1 - t)\mathbf{b}_0 + t\mathbf{b}_1$$

$$\mathbf{b}[s, 0] = (1 - s)\mathbf{b}_0 + s\mathbf{b}_1$$

$$\mathbf{b}[1, t] = (1 - t)\mathbf{b}_1 + t\mathbf{b}_2$$

$$\mathbf{b}[s, 1] = (1 - s)\mathbf{b}_1 + s\mathbf{b}_2$$

and

$$\mathbf{b}[s, t] = (1 - t)\mathbf{b}[s, 0] + t\mathbf{b}[s, 1]$$

$$\mathbf{b}[t, s] = (1 - s)\mathbf{b}[0, t] + s\mathbf{b}[t, 1].$$

Then

$$\mathbf{b}[s,t] = \mathbf{b}[t,s].$$

- Figure 3.4
- Menelaus' Theorem @Wikipedia

Linear Interpolation

Piecewise Linear Interpolation

Menelaos' Theorem

Blossoms

Barycentric Coordinates in the Plane

Tessellations

Blossoms

A blossom is an n-variate function $\mathbf{b}[t_1, \dots, t_n]$ from \mathbb{R}^n into \mathbb{E}^2 or \mathbb{E}^3 satisfying the following three properties:

Symmetry:

$$\mathbf{b}[t_1,\ldots,t_n]=\mathbf{b}[\pi(t_1,\ldots,t_n)]$$

where $\pi(t_1, \ldots, t_n)$ denotes a permutation of the arguments t_1, \ldots, t_n .

- → The order of the arguments does not matter
- → Menelaos' theorem
- Multiaffinity

$$\mathbf{b}[(\alpha r + \beta s), *] = \alpha \mathbf{b}[r, *] + \beta \mathbf{b}[s, *], \quad \alpha + \beta = 1$$

- → Affine w.r.t. any argument.
- Diagonality

$$\mathbf{b}[t, \dots, t] = \mathbf{b}[t^{< n >}]$$

When all the n arguments are the same, it traces out a polynomial curve of degree n.

Blossoms with Vector Argument

With
$$\vec{h} := b - a$$
,

$$\mathbf{b}[\vec{h}, *] = \mathbf{b}[b - a, *] = \mathbf{b}[b, *] - \mathbf{b}[a, *]$$

 \rightarrow If (at least) one of the blossom arguments is a vector, then the blossom value is a vector.

Leibniz Formula

$$\mathbf{b}[(\alpha r + \beta s)^{< n>}] = \sum_{i=0}^{n} \binom{n}{i} \alpha^{i} \beta^{n-i} \mathbf{b}[r^{< i>}, s^{< n-i>}]$$

Alternative formula

$$\mathbf{b}[(\alpha r + \beta s)^{< n>}] = \sum_{\substack{i+j=n\\i,j\geqslant 0}} \binom{n}{i,j} \alpha^i \beta^{n-i} \mathbf{b}[r^{< i>}, s^{< j>}]$$

where

$$\binom{n}{i,j} := \frac{n!}{i!j!}.$$

Linear Interpolation

Piecewise Linear Interpolation

Menelaos' Theorem

Blossoms

Barycentric Coordinates in the Plane

Tessellations

Barycentric Coodinates in the Plane

Considering a triangle with vertices $\mathbf{a}, \mathbf{b}, \mathbf{c}$ in \mathbb{E}^2 , any point $\mathbf{p} \in \mathbb{E}^2$ can be represented as a barycentric combination of $\mathbf{a}, \mathbf{b}, \mathbf{c}$:

$$\mathbf{p} = u\mathbf{a} + v\mathbf{b} + w\mathbf{c}$$
, where $u + v + w = 1$.

- ▶ Figure 3.5
- ▶ Is (u, v, w) is unique? → The coefficients $\mathbf{u} := (u, v, w)$ is the *barycentric coordinates* of \mathbf{p} w.r.t. $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
- Applying the Cramer's rule,

$$u = \frac{\operatorname{area}(\mathbf{p}, \mathbf{b}, \mathbf{c})}{\operatorname{area}(\mathbf{a}, \mathbf{b}, \mathbf{c})}, \quad v = \frac{\operatorname{area}(\mathbf{a}, \mathbf{p}, \mathbf{c})}{\operatorname{area}(\mathbf{a}, \mathbf{b}, \mathbf{c})}, \quad w = \frac{\operatorname{area}(\mathbf{a}, \mathbf{b}, \mathbf{p})}{\operatorname{area}(\mathbf{a}, \mathbf{b}, \mathbf{c})}.$$

- \rightarrow Requires area $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \neq 0$.
- Barycentric coordinates are affinely invariant.
- Ceva's theorem (Fig. 3.5)
- ▶ Location of ${\bf p}$ according to the signs of its barycentric coordinates \rightarrow Fig. 3.6

Bivariate Linear Interpolation

Given three points $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \in \mathbb{E}^3$, any point of the form

$$\mathbf{p} = \mathbf{p}(\mathbf{u}) = \mathbf{p}(u, v, w) = u\mathbf{p}_1 + v\mathbf{p}_2 + w\mathbf{p}_3, \quad u + v + w = 1$$

lies in the plane spanned by p_1, p_2, p_3 .

 Can be generalized to higher dimensions, e.g., a barycentric coordinates w.r.t. a tetrahedron.

Linear Interpolation

Piecewise Linear Interpolation

Menelaos' Theorem

Blossoms

Barycentric Coordinates in the Plane

Tessellations

Tessellations

- Bivariate piecewise linear interpolation requires triangulation of a plane.
 - → related to the concept of tessellation
- Dirichlet tessellation (a.k.a. Voronoi diagram)
 - "...we associate with each point p_k a tile T_k consisting of all points p that are closer to p_k than to any other point p_i . The collection of all these tiles is called the Dirichlet tessellation of the given point set."

Linear Interpolation

Piecewise Linear Interpolation

Menelaos' Theorem

Blossoms

Barycentric Coordinates in the Plane

Tessellations

- A triangulation $\mathcal T$ of a set of 2D points $\{\mathbf p_i\}$ is a collection of triangles such that
 - The vertices of the triangles consist of the p_i.
 - The interiors of any two triangles do not intersect.
 - If two triangles are not disjoint, then they share either a vertex or an edge.
- Delaunay triangulation
 - Dual of the Voronoi diagram
 - Satisfies the maxmin criterion.
 - Given a point set, is its Delaunay triangulation unique?
- Piecewise linear interpolation on a plane