SUMMER 2025 READING GROUP ON ERGODIC THEORY

LECTURE 1 (SAMY LAHLOU): CRASH COURSE ON MEASURE THEORY, PART I

Given a set X, our goal is to define a map $\mu: \mathcal{P}(X) \to [0, \infty]$ that assigns to each subset $A \subseteq X$ a measure $\mu(A) \in [0, \infty]$ that 'behaves like the volume of A'. This turns out to be impossible in full generality (and we shall see using ergodic-theoretic methods that this impossibility is for good reason), so we instead restrict to special subsets of X with a nice algebraic (think: 'constructible') structure.

Further reading. [Anu23, Lectures 1 to 5] and [Fol99, Chapter 1].

Definition 1. Let X be a set. A σ -algebra on X is a collection $\mathcal{B} \subseteq \mathcal{P}(X)$ of subsets of X containing \emptyset and is closed under complements and countable unions. More precisely:

- 1. (Non-trivial). $\emptyset \in \mathcal{B}$.
- 2. (Closure under complements). For any $A \in \mathcal{B}$, we have $X \setminus A \in \mathcal{B}$.
- 3. (Closure under countable unions). For any countable family $\{A_n \in \mathcal{B} : n \in \mathbb{N}\}$, we have $\bigcup_n A_n \in \mathcal{B}$.

Definition 2. If \mathcal{B} is a σ -algebra on a set X, the pair (X,\mathcal{B}) is said to be a measurable space.

A useful way to construct a σ -algebra is to start with an arbitrary family $\mathcal{C} \subseteq \mathcal{P}(X)$ and close¹ it under the above three conditions. Abstractly:

Definition 3. The σ -algebra generated by $\mathcal{C} \subseteq \mathcal{P}(X)$ is $\langle \mathcal{C} \rangle_{\sigma} := \bigcap \{\mathcal{B} : \mathcal{B} \supseteq \mathcal{C} \text{ is a } \sigma\text{-algebra on } X\}.$

Note that $\langle \mathcal{C} \rangle_{\sigma}$ is indeed a σ -algebra on X since the intersection of σ -algebras is again a σ -algebra.

Definition 4. Let X be a topological space. The *Borel* σ -algebra on X is $\mathcal{B}(X) := \langle \mathcal{T} \rangle_{\sigma}$, where \mathcal{T} is the topology on X. The elements of $\mathcal{B}(X)$ are called the *Borel sets* of X.

Intuitively, for any topological space X, one would like to 'measure' the Borel sets. This is justified since if one wants a measure compatible with the topology, then one must be able to measure the open sets, and hence also closed sets, countable unions of closed sets (called F_{σ} sets), countable intersections of open sets (called G_{δ} sets), countable intersections of F_{σ} sets, countable unions of F_{δ} sets, and so on².

Definition 5. A measure on a measurable space (X, \mathcal{B}) is a map $\mu : \mathcal{B} \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and $\mu(\bigsqcup_{n \in \mathbb{N}} A_n) = \sum_{n \in \mathbb{N}} \mu(A_n)$ for any pairwise disjoint family $\{A_n \in \mathcal{B} : n \in \mathbb{N}\}.$

The triple (X, \mathcal{B}, μ) is then called a *measure space*. A *Borel measure* is a measure defined on some Borel σ -algebra.

Example 6 (Lebesgue). Equip \mathbb{R} with its usual topology. There is³ a unique measure $\lambda : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ on \mathbb{R} , called the *Lebesgue measure*, such that $\lambda([a, b]) = b - a$ for each a < b.

Example 7 (Bernoulli). Equip $2 = \{0,1\}$ with the discrete topology and consider the product topology on $2^{\mathbb{N}}$. For each $p \in [0,1]$, is a unique measure $\mu_p : \mathcal{B}(2^{\mathbb{N}}) \to [0,\infty]$ on $2^{\mathbb{N}}$, called the *Bernoulli* (p) measure, such that for each word $w \in 2^{<\mathbb{N}}$, we have $\mu_p([w]) = p^{n_1}(1-p)^{n_0}$ where n_i is the number of $i \in \{0,1\}$ in w and [w] is the set of all sequences in $2^{\mathbb{N}}$ containing w as a prefix.

Date: May 7, 2025.

¹This 'closure' operation can be made precise as follows. Starting with $C_0 := C$, throw in all the subsets of X that is necessary to satisfy Definition 1 relativized to C_0 to obtain C_1 (that is, let C_1 contain \varnothing and such that if $A \in C_0$, then $X \setminus A \in C_1$, and similarly for condition 3). Then, let C_2 be defined by throwing in all the countable unions and complements of sets in C_1 . Doing so infinitely-many times and taking the union $\bigcup_{\alpha} C_{\alpha}$ will give us $\langle C \rangle_{\sigma}$, but beware that this process must proceed into the transfinite up to $\alpha < \omega_1$, where ω_1 is the first uncountable ordinal; ask your local set theorist why.

²This goes up the *Borel hierarchy*, studied in *Descriptive Set Theory*; see [Kec95].

³We will not prove this fact, but it is an application of Carathéodory's Extension Theorem; see [Anu23, Lecture 4].

If p = 0 (similarly if p = 1), then $\mu_p(\xi) \in \{0, 1\}$, and we have $\mu_p(\xi) = 1$ iff $(p, p, p, ...) \in \xi$. Thus, all of the measure is concentrated at (p, p, p, ...). Measures in which this occurs are called *Dirac measures*.

Example 8 (Dirac). Let X be a set and fix $x \in X$. The Dirac measure concentrated at x is the measure $\delta_x : \mathcal{P}(X) \to \{0,1\}$ defined by $\delta_x(A) := 1$ iff $x \in A$, and $\delta_x(A) := 0$ iff $x \notin A$.

Definition 9. A measure μ on (X, \mathcal{B}) is said to be *finite* if $\mu(X) < \infty$, a probability measure if $\mu(X) = 1$, and σ -finite if there is a partition $X = \bigsqcup_{n \in \mathbb{N}} X_n$ such that $X_n \in \mathcal{B}$ and $\mu(X_n) < \infty$ for all $n \in \mathbb{N}$.

Unless otherwise stated, all measures are assumed to be σ -finite. In fact, we will usually only deal with probability measures, since we can also normalize a finite measure to a probability measure by $\mu \mapsto \mu/\mu(X)$.

Lastly, even though μ is only defined on the σ -algebra \mathcal{B} , we can slightly extend μ to a larger σ -algebra.

Definition 10. Let (X, \mathcal{B}, μ) be a measure space. A subset $Z \subseteq X$ is said to be μ -null if there exists some $Z' \in \mathcal{B}$ such that $Z \subseteq Z'$ and $\mu(Z') = 0$. We write Null_{μ} for the set of all μ -null subsets of X. A subset $A \subseteq X$ is said to be μ -conull if $X \setminus A$ is μ -null.

Definition 11. Let (X, \mathcal{B}, μ) be a measure space. A subset $A \subseteq X$ is μ -measurable⁴ if there exists some $B \in \mathcal{B}$ and some μ -null set Z such that $A = B \cup Z$. We write Meas_{μ} for the set of all μ -measurable sets.

It is an exercise that $\operatorname{Meas}_{\mu} = \langle \mathcal{B} \cup \operatorname{Null}_{\mu} \rangle_{\sigma}$. Moreover, μ admits a unique extension to a map $\overline{\mu} : \operatorname{Meas}_{\mu} \to [0, \infty]$, called the *completion* of μ , and this measure satisfies $\operatorname{Meas}_{\overline{\mu}} = \operatorname{Meas}_{\mu}$. Hint: $\overline{\mu}(B \cup Z) := \mu(B)$.

Definition 12. A measure μ is *complete* if $\overline{\mu} = \mu$.

For convenience, we will always assume that measures are complete. Neither measures λ nor μ_p in Examples 6 and 7 are complete, so we tacitly extend them.

References

- [Anu23] Anush Tserunyan, Advanced Real Analysis 1, available at https://www.math.mcgill.ca/atserunyan/Courses/2023F. Math564.Analysis1/.
- [Fol99] Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, 2nd ed., Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, John Wiley & Sons, 2013, 1999.
- [Kec95] Alexander S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Springer New York, NY, 1995.

⁴Very confusing terminology. One might think that elements of \mathcal{B} are the 'measurable' ones, but this removes μ from the picture. In general, there are much more μ -measurable sets that there are sets in \mathcal{B} . Indeed, there are 2^{\aleph_0} -many Borel sets on \mathbb{R} , but there are $2^{2^{\aleph_0}}$ -many λ -measurable sets!