Week 7: Brandon Mather DSC550-T301

Part 1: PCA and Variance Threshold in a Linear Regression

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import make_scorer, r2_score
from sklearn.metrics import mean_squared_error
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.feature_selection import VarianceThreshold
```

1)Import the housing data as a data frame and ensure that the data is loaded properly.

```
In [2]: train = pd.read_csv("train.csv")
```

2)Drop the "Id" column and any features that are missing more than 40% of their values.

```
In [3]: train.drop(columns=['Id'])
```

Out[3]:	MSSubClass		MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities
	0	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub
	1	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub
	2	60	RL	68.0	11250	Pave	NaN	IR1	LvI	AllPub
	3	70	RL	60.0	9550	Pave	NaN	IR1	LvI	AllPub
	4	60	RL	84.0	14260	Pave	NaN	IR1	LvI	AllPub
	•••	•••	•••	•••	•••			•••	•••	
	1455	60	RL	62.0	7917	Pave	NaN	Reg	LvI	AllPub
	1456	20	RL	85.0	13175	Pave	NaN	Reg	LvI	AllPub
	1457	70	RL	66.0	9042	Pave	NaN	Reg	LvI	AllPub
	1458	20	RL	68.0	9717	Pave	NaN	Reg	LvI	AllPub
	1459	20	RL	75.0	9937	Pave	NaN	Reg	Lvl	AllPub

1460 rows × 80 columns

```
In [4]: limitPer = len(train) * .40
In [5]: train2 = train.dropna(thresh=limitPer, axis=1)
train2
```

Out[5]:		Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	LotShape	LandContour	Utilities
	0	1	60	RL	65.0	8450	Pave	Reg	Lvl	AllPub
	1	2	20	RL	80.0	9600	Pave	Reg	Lvl	AllPub
	2	3	60	RL	68.0	11250	Pave	IR1	Lvl	AllPub
	3	4	70	RL	60.0	9550	Pave	IR1	Lvl	AllPub
	4	5	60	RL	84.0	14260	Pave	IR1	Lvl	AllPub
	•••									•••
	1455	1456	60	RL	62.0	7917	Pave	Reg	Lvl	AllPub
	1456	1457	20	RL	85.0	13175	Pave	Reg	Lvl	AllPub
	1457	1458	70	RL	66.0	9042	Pave	Reg	Lvl	AllPub
	1458	1459	20	RL	68.0	9717	Pave	Reg	Lvl	AllPub
	1459	1460	20	RL	75.0	9937	Pave	Reg	Lvl	AllPub
	1460 r	ows ×	77 columns							

3) For numerical columns, fill in any missing data with the median value.

```
In [6]: train3 = train2.fillna(train2.median())
    train3
```

C:\Users\brand\AppData\Local\Temp\ipykernel_6948\751901305.py:1: FutureWarning: Dropp ing of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

train3 = train2.fillna(train2.median())

Out[6]:	Id N		MSSubClass	MSZoning	LotFrontage	LotArea	Street	LotShape	LandContour	Utilities
	0	1	60	RL	65.0	8450	Pave	Reg	Lvl	AllPub
	1	2	20	RL	80.0	9600	Pave	Reg	Lvl	AllPub
	2	3	60	RL	68.0	11250	Pave	IR1	Lvl	AllPub
	3	4	70	RL	60.0	9550	Pave	IR1	Lvl	AllPub
	4	5	60	RL	84.0	14260	Pave	IR1	Lvl	AllPub
	•••	•••					•••			•••
	1455	1456	60	RL	62.0	7917	Pave	Reg	Lvl	AllPub
	1456	1457	20	RL	85.0	13175	Pave	Reg	Lvl	AllPub
	1457	1458	70	RL	66.0	9042	Pave	Reg	Lvl	AllPub
	1458	1459	20	RL	68.0	9717	Pave	Reg	Lvl	AllPub
	1459	1460	20	RL	75.0	9937	Pave	Reg	Lvl	AllPub

1460 rows × 77 columns

4)For categorical columns, fill in any missing data with the most common value (mode).

In [7]: train3 = train3.apply(lambda x: x.fillna(x.value_counts().index[0]))
 train3

Out[7]:		Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	LotShape	LandContour	Utilities
	0	1	60	RL	65.0	8450	Pave	Reg	Lvl	AllPub
	1	2	20	RL	80.0	9600	Pave	Reg	LvI	AllPub
	2	3	60	RL	68.0	11250	Pave	IR1	LvI	AllPub
	3	4	70	RL	60.0	9550	Pave	IR1	LvI	AllPub
	4	5	60	RL	84.0	14260	Pave	IR1	LvI	AllPub
	•••	•••					•••			
	1455	1456	60	RL	62.0	7917	Pave	Reg	LvI	AllPub
	1456	1457	20	RL	85.0	13175	Pave	Reg	LvI	AllPub
	1457	1458	70	RL	66.0	9042	Pave	Reg	Lvl	AllPub
	1458	1459	20	RL	68.0	9717	Pave	Reg	Lvl	AllPub
	1459	1460	20	RL	75.0	9937	Pave	Reg	Lvl	AllPub
	1460 =	0146	77 columns							

1460 rows × 77 columns

5)Convert the categorical columns to dummy variables.

```
train3 = pd.get_dummies(train3)
In [8]:
In [9]:
          train3
Out[9]:
                       MSSubClass LotFrontage LotArea OverallQual OverallCond YearBuilt YearRemodAdd
                   ld
             0
                    1
                                60
                                            65.0
                                                    8450
                                                                     7
                                                                                  5
                                                                                         2003
                                                                                                          2003
                                            0.08
             1
                    2
                                20
                                                    9600
                                                                     6
                                                                                  8
                                                                                         1976
                                                                                                          1976
             2
                    3
                                60
                                            68.0
                                                                     7
                                                                                  5
                                                                                         2001
                                                                                                          2002
                                                   11250
             3
                    4
                                70
                                            60.0
                                                    9550
                                                                     7
                                                                                  5
                                                                                         1915
                                                                                                          1970
             4
                    5
                                60
                                            84.0
                                                   14260
                                                                     8
                                                                                  5
                                                                                         2000
                                                                                                          2000
                                              •••
                                                                                  •••
          1455 1456
                                60
                                            62.0
                                                    7917
                                                                     6
                                                                                  5
                                                                                         1999
                                                                                                          2000
                                20
                                            85.0
                                                   13175
                                                                                         1978
                                                                                                          1988
          1456 1457
                                                                     6
                                                                                  6
          1457 1458
                                70
                                            66.0
                                                    9042
                                                                     7
                                                                                  9
                                                                                         1941
                                                                                                          2006
          1458 1459
                                20
                                            68.0
                                                    9717
                                                                     5
                                                                                  6
                                                                                         1950
                                                                                                          1996
          1459 1460
                                20
                                            75.0
                                                    9937
                                                                     5
                                                                                  6
                                                                                         1965
                                                                                                          1965
         1460 rows × 277 columns
```

6)Split the data into a training and test set, where the SalePrice column is the target.

```
In [11]:
          y = train3.drop('SalePrice',axis=1)
          x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
In [12]:
         x train = x train.values.reshape(-1, 1)
In [13]:
          x test = x test.values.reshape(-1, 1)
          7)Run a linear regression and report the R2-value and RMSE on the test set.
In [14]:
          reg = LinearRegression().fit(x train, y train)
In [15]:
          r2 = reg.score(x_test, y_test)
         0.0332948591155382
Out[15]:
In [16]:
          pred = reg.predict(x_test)
          rmse = np.sqrt(mean_squared_error(y_test,pred))
In [17]:
          rmse
          919.7997301596483
Out[17]:
```

x = train3.SalePrice

8)Fit and transform the training features with a PCA so that 90% of the variance is retained (see section 9.1 in the Machine Learning with Python Cookbook).

```
In [18]:
          pca = PCA(n components=0.90, whiten=True)
In [19]:
          x_reduced_train = pca.fit_transform(x_train)
          9) How many features are in the PCA-transformed matrix?
          x_reduced_train.shape[1]
In [20]:
Out[20]:
          10) Transform but DO NOT fit the test features with the same PCA.
          x_reduced_test = pca.transform(x_test)
In [21]:
          11) Repeat step 7 with your PCA transformed data.
          reg2 = LinearRegression().fit(x_reduced_train, y_train)
In [22]:
          r2_2 = reg2.score(x_reduced_test, y_test)
In [23]:
          r2_2
          0.03329485911553823
Out[23]:
In [24]:
          pred2 = reg2.predict(x_reduced_test)
          rmse2 = np.sqrt(mean squared error(y test,pred2))
In [25]:
          rmse2
          919.7997301596483
Out[25]:
          12) Take your original training features (from step 6) and apply a min-max scaler to them.
          mmscaler = MinMaxScaler()
In [26]:
          min_max = mmscaler.fit_transform(x_train)
In [27]:
          13) Find the min-max scaled features in your training set that have a variance above 0.1 (see
          Section 10.1 in the Machine Learning with Python Cookbook).
In [28]:
          thresholder = VarianceThreshold()
In [29]:
          min_max_high_variance = thresholder.fit_transform(min_max)
          14) Transform but DO NOT fit the test features with the same steps applied in steps 12 and 13.
          min_max_test = mmscaler.transform(x_test)
In [30]:
```

```
min_max_high_variance_test = thresholder.transform(min_max_test)
In [31]:
          15) Repeat step 7 with the high variance data.
In [32]:
          reg3 = LinearRegression().fit(min_max_high_variance, y_train)
In [33]:
          r2_3 = reg3.score(min_max_test, y_test)
          0.033294859115538256
Out[33]:
          pred_3 = reg3.predict(min_max_test)
In [34]:
          rmse_3 = np.sqrt(mean_squared_error(y_test,pred_3))
In [35]:
          rmse 3
          919.7997301596483
Out[35]:
          16) Summarize your findings.
          The original regression model, the PCA, and the min-max had the same r2 and rmse scores.
```

Part 2: Categorical Feature Selection

```
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix
from sklearn import metrics
from matplotlib import pyplot as plt
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
```

1)Import the data as a data frame and ensure it is loaded correctly.

```
In [37]: mushrooms = pd.read_csv("mushrooms.csv")
mushrooms
```

Out[37]:

	class	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachment	gill- spacing		gill- color	•••	stalk- surface- below- ring	st co abc
0	р	Х	S	n	t	р	f	С	n	k		S	
1	е	Х	S	У	t	a	f	С	b	k		S	
2	е	b	S	W	t	I	f	С	b	n		S	
3	р	х	У	W	t	р	f	С	n	n		S	
4	е	Х	S	g	f	n	f	W	b	k		S	
•••													
8119	е	k	S	n	f	n	а	С	b	у		S	
8120	е	Х	S	n	f	n	а	С	b	У		S	
8121	е	f	S	n	f	n	а	С	b	n		S	
8122	р	k	У	n	f	У	f	С	n	b		k	
8123	е	Х	S	n	f	n	а	С	b	у		S	

8124 rows × 23 columns

2)Convert the categorical features (all of them) to dummy variables.

In [38]: mushrooms = pd.get_dummies(mushrooms)
mushrooms

Out[38]:

•		class_e	class_p	cap- shape_b	cap- shape_c	cap- shape_f	cap- shape_k	cap- shape_s	cap- shape_x	cap- surface_f	cap- surface_g	•••
	0	0	1	0	0	0	0	0	1	0	0	•••
	1	1	0	0	0	0	0	0	1	0	0	•••
	2	1	0	1	0	0	0	0	0	0	0	•••
	3	0	1	0	0	0	0	0	1	0	0	•••
	4	1	0	0	0	0	0	0	1	0	0	•••
	•••											•••
81	19	1	0	0	0	0	1	0	0	0	0	•••
81	20	1	0	0	0	0	0	0	1	0	0	•••
81	21	1	0	0	0	1	0	0	0	0	0	•••
81	22	0	1	0	0	0	1	0	0	0	0	•••
81	23	1	0	0	0	0	0	0	1	0	0	•••

8124 rows × 119 columns

3)Split the data into a training and test set.

```
In [80]:
          X = mushrooms.class e
           Y = mushrooms.drop('class_e',axis=1)
In [81]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2)
In [82]: X_train = X_train.values.reshape(-1, 1)
           X test = X test.values.reshape(-1, 1)
          4) Fit a decision tree classifier on the training set.
           clf = tree.DecisionTreeClassifier()
In [83]:
In [84]:
           decision_tree = clf.fit(X_train, Y_train)
          5) Report the accuracy and create a confusion matrix for the model prediction on the test set.
           predict = clf.predict(X_test)
In [85]:
          metrics.accuracy_score(Y_test, predict)
In [89]:
Out[89]:
           confusion matrix(Y test, predict)
In [105...
          ValueError
                                                      Traceback (most recent call last)
           Input In [105], in <cell line: 1>()
           ----> 1 confusion matrix(Y test, predict)
           File ~\anaconda3\lib\site-packages\sklearn\metrics\_classification.py:309, in confusi
          on_matrix(y_true, y_pred, labels, sample_weight, normalize)
               307 y_type, y_true, y_pred = _check_targets(y_true, y_pred)
               308 if y type not in ("binary", "multiclass"):
           --> 309
                       raise ValueError("%s is not supported" % y type)
               311 if labels is None:
                       labels = unique_labels(y_true, y_pred)
               312
          ValueError: multilabel-indicator is not supported
          6)Create a visualization of the decision tree.
          fig = plt.figure(figsize=(25,20))
In [100...
           _ = tree.plot_tree(clf,
                              feature_names=X,
                               class names=Y,
                              filled=True)
```


7)Use a χ 2-statistic selector to pick the five best features for this data (see section 10.4 of the Machine Learning with Python Cookbook).

```
In [116... chi2_selector = SelectKBest(chi2, k=5)
X_kbest = chi2_selector.fit_transform(X_train, Y_train)
```

```
ValueError
                                           Traceback (most recent call last)
Input In [116], in <cell line: 2>()
      1 chi2_selector = SelectKBest(chi2, k=5)
----> 2 X kbest = chi2 selector fit transform(X train, Y train)
File ~\anaconda3\lib\site-packages\sklearn\base.py:855, in TransformerMixin.fit trans
form(self, X, y, **fit_params)
            return self.fit(X, **fit_params).transform(X)
    852
    853 else:
    854
            # fit method of arity 2 (supervised transformation)
--> 855
            return self.fit(X, y, **fit_params).transform(X)
File ~\anaconda3\lib\site-packages\sklearn\feature_selection\_univariate_selection.p
y:407, in _BaseFilter.fit(self, X, y)
    401 if not callable(self.score_func):
            raise TypeError(
    402
    403
                "The score function should be a callable, %s (%s) was passed."
    404
                % (self.score func, type(self.score func))
    405
--> 407 self. check params(X, y)
    408 score func ret = self.score func(X, y)
    409 if isinstance(score func ret, (list, tuple)):
File ~\anaconda3\lib\site-packages\sklearn\feature selection\ univariate selection.p
y:604, in SelectKBest._check_params(self, X, y)
    602 def _check_params(self, X, y):
            if not (self.k == "all" or 0 <= self.k <= X.shape[1]):</pre>
    603
--> 604
                raise ValueError(
                    "k should be >=0, <= n_features = %d; got %r. "
    605
                     "Use k='all' to return all features." % (X.shape[1], self.k)
    606
    607
ValueError: k should be >=0, <= n features = 1; got 5. Use k='all' to return all feat
8) Which five features were selected in step 7? Hint: Use the get_support function.
9) Repeat steps 4 and 5 with the five best features selected in step 7.
10)Summarize your findings.
```

In []:

In []: