Komisja Egzaminacyjna dla Aktuariuszy

XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r.

Część I

Matematyka finansowa

Imię i nazwisko osoby egzaminowanej:			

Czas egzaminu: 100 minut

WERSJA TESTU

- 1. Inwestorzy A i B posiadają identyczne portfele lokat denominowanych w PLN o wariancji rocznej stopy zwrotu 50%. Inwestor A całość inwestycji finansuje środkami własnymi (PLN). Inwestor B zaciąga kredyt walutowy w USD na pokrycie p% inwestycji a pozostałe 1-p% pokrywa środkami własnymi w PLN. Kredyt oprocentowany jest na 5% w skali roku i zaciągany przy kursie 1 USD = 4 PLN. Zakładamy, że rozkład kursu USD za rok jest wykładniczy ze średnią 4 PLN. Przy jakim poziomie p wariancja rocznej stopy zwrotu z inwestycji inwestora B jest 4 razy większa od wariancji rocznej stopy zwrotu inwestora A (inwestycja = zaangażowane środki własne, wariancja dotyczy stopy zwrotu w PLN)? Podaj najbliższą wartość.
 - A) 33
 - B) 42
 - C) 52
 - D) 66
 - E) 75

- **2.** Ile wynosi wartość bieżąca nieskończonej renty płatnej na początku kolejnych lat w wysokości 1^3 , 2^3 , 3^3 , 4^3 ,..... przy i = 10% ? Podaj najbliższą wartość.
 - A) 78 320
 - B) 78 753
 - C) 79 438
 - D) 79 981
 - E) 80 465

3. Bieżące kursy walutowe wynoszą : 1 USD = 4 PLN, 1 USD = 0,80 EUR. Oprocentowanie rocznych depozytów i kredytów:

	PLN	EUR	USD
kredyt	10%	6%	4%
depozyt	5%	3%	2%

Inwestor może dokonywać bez kosztów wszelkich operacji według wyżej określonych stawek rynkowych. Przy którym z poniższych kursów terminowych z rozliczeniem za rok jest możliwy arbitraż ?

- A) 1 EUR = 5,30 PLN
- B) 1USD = 4,29 PLN
- C) 1 USD = 0.795 EUR
- D) 1 EUR = 1,19 USD
- E) 1 PLN = 0.20 EUR

- **4.** Zakład ubezpieczeń posiada zobowiązanie w wysokości 100 płatne za rok. W celu wywiązania się z niego zakład inwestuje aktywa o wartości 95 w 50% w obligacje oraz w 50% w akcje. Przyjmujemy założenie, że rozkład stopy zwrotu z akcji w ciągu roku jest równomierny na przedziale (-20%; 50%) a rozkład stopy zwrotu z obligacji w ciągu najbliższego roku jest wykładniczy ze średnią 10%. Ile wynosi prawdopodobieństwo sfinansowania przez zakład zobowiązania na koniec roku? Podaj najbliższą wartość.
 - A) 70%
 - B) 75%
 - C) 80%
 - D) 85%
 - E) 90%

5. Bank oferuje swoim klientom lokatę w PLN wypłacającą po roku również w PLN:

kwota_depozytu * (1 + k * MAX(0; X - MAX(0; Y))), gdzie:

X - zmiana procentowa indeksu giełdowego WWW w ciągu roku,

Y - zmiana procentowa indeksu giełdowego ZZZ w ciągu roku.

Do konstrukcji tej lokaty bank może wykorzystać wyłącznie poniższe instrumenty rynku finansowego:

- a) depozyt w PLN na 12% w stosunku rocznym w innym banku,
- b) roczne europejskie opcje call na indeksy giełdowe:

indeks cena wykonania opcji cena opcji (PLN)
WWW 2 000 250
ZZZ 24 000 2 000

Wypłata z tych opcji jest standardowa i wynosi w PLN równowartość

MAX (0; wartość indeksu za rok - cena wykonania opcji).

1 punkt indeksu odpowiada 1 PLN.

Na opcjach dopuszczalne jest zajmowanie przez Bank zarówno pozycji długich jak i krótkich (nie ma żadnych kosztów poza ceną opcji).

Obecna wartość indeksów: ZZZ = 24 000, WWW = 2 000 punktów.

Jakie najwyższe k może Bank zaoferować klientowi chcącemu zdeponować 1 mln. PLN, aby mieć pewność osiągnięcia zysku na tej lokacie (podaj najbliższą wartość)?

- A) 1,57
- B) 2,56
- C) 3,32
- D) 3,98
- E) 4,45

6. W magazynie znajdują się towary o wartości S(t) w chwili t (t>0). Koszty magazynowania są zależne od czasu w sposób ciągły i płacone są z intensywnością k(t) w chwili t (t>0). Nie zależą one od wartości towarów. Oprocentowanie dla celów dyskontowania jest stałe i wynosi δ w modelu ciągłym. Rozważmy chwilę t_0 , w której wartość bieżąca netto towaru ($S(t_0)$ – zdyskontowane przyszłe koszty) jest maksymalna.

Spośród stwierdzeń:

(i) dla chwili t₀ spełnione jest równanie:

$$S'(t_0) = -k(t_0)e^{-\delta t_0}$$

- (ii) przy założeniu, że $k(t) = 60e^{-0.1t}$ i $\delta = 0.2$ wartość bieżąca netto towaru jest stała w czasie, gdy wartość towaru kształtuje się zgodnie ze wzorem $S(t) = 200e^{-0.1t}$
- (iii) przy założeniu, że $k(t) = 60e^{-0.1t}$ i $\delta = 0.2$ wartość bieżąca netto towaru jest stała w czasie, gdy wartość towaru kształtuje się zgodnie ze wzorem $S(t) = 200e^{-0.3t}$

prawdziwe są:

- A) tylko (i)
- B) tylko (ii)
- C) tylko (iii)
- D) tylko (i) i (iii)
- E) wszystkie

7. Rozważmy dwie renty pewne wieczyste płatne z dołu:

Renta 1

Płatności z tytułu tej renty wynoszą:

$$r_k = \begin{cases} k, & dla \ k = 3i + 3, i = 0, 1, 2, \dots \\ k + 2, & dla \ k = 3i + 1, i = 0, 1, 2, \dots \\ k + 1, & dla \ k = 3i + 2, i = 0, 1, 2, \dots \end{cases}$$

Renta 2

Płatności z tytułu tej renty wynoszą:

$$r_k = 100 \cdot \frac{1.1^k}{k^2}, \quad k = 1, 2, \dots$$

Ile wynosi suma wartości obecnych tych rent, jeżeli roczna nominalna stopa procentowa wynosi i = 10% (podaj najbliższą liczbę)?

- A) 265
- B) 275
- C) 285
- D) 295
- E) 305

8. Inwestor realizuje strategię inwestycyjną typu *spread* (jednocześnie wystawia i kupuje opcje na tę samą akcję). Ma on możliwość zakupu (wystawienia) europejskich opcji put i call o identycznym terminie ważności, po cenach wykonania $0 < K_1 < K_2 < K_3$.

Celem inwestora jest skonstruowanie strategii inwestycyjnej dającej funkcję wypłaty:

$$W(x) = \begin{cases} 0, & x < K_1, \\ x - K_1, & K_1 \le x < K_2, \\ 2 * K_2 - K_1 - x, & K_2 \le x < K_3, \\ 2 * K_2 - K_1 - K_3, & x \ge K_3. \end{cases}$$

gdzie x oznacza cenę akcji w chwili wygaśnięcia opcji.

Rozważmy następujące strategie inwestycyjne:

- (i) pozycja długa call po cenie wykonania K₁, dwie pozycje krótkie call po cenie wykonania K₂, pozycja długa call po cenie wykonania K₃,
- (ii) pozycja długa *put* po cenie wykonania K₁, dwie pozycje krótkie *put* po cenie wykonania K₂, pozycja długa *put* po cenie wykonania K₃,
- (iii) pozycja długa *put* po cenie wykonania K₁, dwie pozycje krótkie *call* po cenie wykonania K₂, pozycja długa *put* po cenie wykonania K₃,
- (iv) pozycja długa *call* po cenie wykonania K₁, dwie pozycje krótkie *put* po cenie wykonania K₂, pozycja długa *call* po cenie wykonania K₃,

Dla wszystkich K_1 , K_2 , K_3 spełniających warunek $0 < K_1 < K_2 < K_3$ powyższą funkcję wypłaty można skonstruować za pomocą strategii:

- A) tylko (i)
- B) tylko (ii)
- C) (i) oraz (ii)
- D) (i), (ii) oraz (iii)
- E) każda powyższa strategia daje żądaną funkcję wypłaty

9. Rozważmy funkcję akumulacji $a_1(t) = (1+t)^{-\frac{1}{t}}$ z intensywnością oprocentowania $\delta_1(t)$ oraz funkcję akumulacji $a_2(t)$, dla której intensywność oprocentowania $\delta_2(t)$ w chwili t wyraża się wzorem:

$$\delta_2(t) = \frac{2t + 2\alpha + 1}{(\alpha + t)(\alpha + t + 1)}.$$

Wyznaczyć efektywną stopę procentową pomiędzy chwilami n i n+1 dla funkcji akumulacji $a_2(t)$, dla $\alpha=\lim_{t\to+\infty}\bigl(\delta_1(t)\bigr)$.

- A) $\frac{1}{n-\ln 2}$
- B) $\frac{2}{n-\ln 2}$
- C) $\frac{2}{n}$
- $D) \ \frac{2}{n+1}$
- E) $\frac{1}{n+e}$

- **10.** Obligacja 100-letnia o wartości wykupu C = 1 000 równej wartości nominalnej płaci roczne kupony (z dołu) równe 5% wartości nominalnej. Obecna rynkowa wartość obligacji wynosi P = 1 100. Jaką kwotę należałoby dziś zainwestować np. w lokatę bankową, aby przy oprocentowaniu równym stopie zwrotu z tych obligacji (YTM) po jednym roku uzyskać taką samą nominalną kwotę odsetek jak uzyskana z posiadanych obligacji przez cały okres inwestycji ? Podaj najbliższą wartość.
 - A) 98 500
 - B) 103 200
 - C) 110 100
 - D) 115 000
 - E) 119 300

Egzamin dla Aktuariuszy z 16 maja 2005 r.

Matematyka finansowa

Arkusz odpowiedzi*

Imię i nazwisko:
Pesel:
OZNACZENIE WERSJI TESTU

Zadanie nr	Odpowiedź	Punktacja⁴
1	В	
2	D	
3	D	
4	A	
5	В	
6	В	
7	C	
8	A	
9	C	
10	С	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.
* Wypełnia Komisja Egzaminacyjna.