

Prova de Estática - ITA

 ${f 1}$ - (ITA-13) Num certo experimento, três cilindros idênticos encontram-se em contato pleno entre si, apoiados sobre uma mesa e sobre a ação de uma força horizontal F, constante, aplicada na altura do centro de massa do cilindro da esquerda, perpendicularmente ao seu eixo, conforme a figura. Desconsiderando qualquer tipo de atrito, para que os três cilindros permaneçam em contato entre si, a aceleração a provocada pela força deve ser tal que:

- a) $g/(3\sqrt{3}) \le a \le g/\sqrt{3}$ b) $2g/(3\sqrt{2}) \le a \le 4g/\sqrt{2}$ c) $g/(2\sqrt{3}) \le a \le 4g/(3\sqrt{3})$ d) $2g/(3\sqrt{2}) \le a \le 3g/(4\sqrt{2})$ e) $g/(2\sqrt{3}) \le a \le 3g/(4\sqrt{3})$
- **2** (ITA-13) Duas partículas de massas m e M, estão respectivamente fixadas nas extremidades de uma barra de comprimento L e massa desprezível. Tal sistema é então apoiado no interior de uma casca hemisférica de raio r, de modo a se ter equilíbrio estático com m posicionado na borda P da casca e M, num ponto Q, conforme mostra a figura. Desconsiderando forças de atrito, a razão m/M entre as massas é igual a

- a) $(L^2 2r^2) / (2r^2)$ b) $(2L^2 3r^2) / (2r^2)$ c) $(L^2 2r^2) / (r^2 L^2)$ d) $(2L^2 3r^2) / (r^2 L^2)$ e) $(3L^2 2r^2) / (L^2 2r^2)$
- **3** (ITA-97) Um antigo vaso chinês está a uma distância d da extremidade de um forro sobre uma mesa. Essa extremidade, por sua vez, se encontra a uma distância D de uma das bordas da mesa, como mostrado na figura. Inicialmente tudo está em repouso. Você apostou que consegue puxar o forro com uma aceleração constante a (veja figura) de tal forma que o

vaso não caia da mesa. Considere que ambos os coeficientes de atrito, estático e cinético, entre o vaso e o forro tenham o valor μ e que o vaso pare no momento que toca na mesa. Você ganhará a aposta se a magnitude da aceleração estiver dentro da faixa:

- **4 -** (ITA-95) Uma massa m_1 em movimento retilíneo com velocidade de 8,0.10 $^ ^2$ m/s colide frontal e elasticamente com outra massa m_2 em repouso e sua velocidade passa a ser 5,0.10 $^ ^2$ m/s. Se a massa m_2 adquire a velocidade de 7,5.10 $^ ^2$ m/s podemos afirmar que a massa m_1 é:
- a) 10 m_2 b) 3.2 m_2 c) 0.5 m_2 d) 0.04 m_2 e) 2.5 m_2
- **5** (ITA-93) Entre as armaduras de um capacitor plano com as placas horizontais, existe uma diferença de potencial V. A separação entre as armaduras é d. Coloca-se uma pequena carga Q, de massa m entre as armaduras e esta fica em equilíbrio. A aceleração da gravidade é g. Qual é o valor da carga Q?
- a) $Q = m^2 g d^{-1}/V$. b) Q = V d / m. c) Q = m g d / V. d) Q = V g d / m. e) Q = g d / (V m).
- **6** (ITA-93) Duas esferas condutoras, de massa m, bem pequenas, estão igualmente carregadas. Elas estão suspensas num mesmo ponto, por dois longos fios de seda, de massas desprezíveis e de comprimentos iguais a L. As cargas das esferas são tais, que elas estarão em equilíbrio quando a distância entre elas for igual a <u>a</u> (a << L). Num instante posterior, uma das esferas é descarregada. Qual será a nova distância <u>b</u> (b << L) entre as esferas, quando após se tocarem, o equilíbrio entre elas for novamente restabelecido?
- a) b = a/2 b) b = $a\sqrt{2}/2$ c) b = $a\sqrt{3}/2$ d) b = $a/\sqrt[3]{2}$ e) b = $a/\sqrt[3]{4}$
- **7 -** (ITA-90) Para que a haste AB homogênea de peso P permaneça em equilíbrio suportada pelo fio BC, a força de atrito em A deve ser:

a) P/4 b) P/2 c) P $\sqrt{2}/2$ d) P $\sqrt{2}/4$ e) outro valor

8 - (ITA-84) Uma partícula de massa M \cong 10,0g e carga q = -2,0 . 10 6 C é acoplada a uma mola de massa desprezível. Este conjunto é posto em oscilação e seu período medido é: P = 0,40 π s. É fixada a seguir uma outra partícula de carga q' = 0,20 . 10 6 C a uma distância d da posição de equilíbrio 0 do sistema massa-mola (ver figura 10). O conjunto é levado lentamente até a nova posição de equilíbrio distante x \cong 40 cm da posição de equilíbrio inicial 0. O valor de d é:

$$\text{\'e} \ \mathsf{dado:} \ \frac{1}{4\pi_{\epsilon_0}} = 9 \ x \ 10^9 \ \frac{N \ m^2}{C^2}$$

OBS: Considerar as duas cargas puntiformes.

A) 56 cm

B) 64 cm

C) 60 cm

D) 36 cm

E) Nenhuma das alternativas.

GABARITO

1	Α
2	Α
3	E
4	E
5	С
6	E
7	Α
8	В

