Analyzing 2^{K-p} Fractional Factorial Experiments

- We have seen that 2^{K-p} fractional factorial designs are a clever alternative to full 2^K designs for purposes of factor screening.
 - They still explore K factors, but in just a fraction of the conditions required by a full 2^K design.
 - This is made possible by aliasing and reliance on the principle of effect sparsity.
 - However, this aliasing causes *confounding* which can complicate conclusions.
 - We try to mitigate the negative side-effects of confounding by choosing designs with maximum resolution and minimum aberration.
- It turns out that the analysis of a 2^{K-p} fractional factorial design is not very different from the analysis of a full 2^K factorial design.
 - We visually summarize effects of interest via main and interaction effect plots
 - Regression models are used to test hypotheses of the form

$$H_0: \beta = 0$$

to determine whether a given effect is significantly different from zero

HOWEVER!

- Now we have to deal with confounding. Recall: two effects that are **confounded** cannot be separately estimated.
 - Just 2^{K-p} effects (and hence β 's) can be estimated
 - Each of these β 's jointly quantifies 2^p different effects
 - It is therefore important to know the complete aliasing structure of the design so as to be fully aware of which effects are confounded
- Accounting for this confounding is particularly important when interpreting effect estimates and evaluating their significance.
 - The 2_{III}⁵⁻² Example: Suppose we find that the main effect of factor A is significant. What can we conclude?

• The uncertainty surrounding this interpretation motivates why we avoid confounding effects that are likely to be significant with other ones that are also likely to be significant.

The Chehalem Example

- Here we consider an example from Montgomery (2019) in which a 2⁸⁻⁴ fractional factorial experiment was used in the production of wine to study the influence of a variety of factors on a particular vintage of Pinot Noir.
- In this experiment K=8 factors were investigated each at two levels (the factors and their levels are shown in the table below) which, if a full factorial experiment was used, would have required 256 conditions.

Factor	Low (-)	High (+)
Pinot Noir clone (A)	Pommard	Wadenswil
Oak type (B)	Allier	Troncias
Age of barrel (C)	Old	New
Yeast/skin contact (D)	Champagne	Montrachet
Stems (E)	None	All
Barrel toast (F)	Light	Medium
Whole cluster (G)	None	10%
Fermentation temperature (H)	Low $(75^{\circ}F \text{ max})$	High $(92^{\circ}F \text{ max})$

- ullet To keep the experiment as small as possible a 2_{IV}^{8-4} fractional factorial experiment was performed that required only 16 conditions.
- The response variable in this case is the rating of the wine as determined by 5 raters.
- Thus, 16 different wines were produced (based on the 16 unique combinations of these factors' levels) and n = 5 raters tasted and rated each of them (low scores are good, large scores are bad). The design matrix and a summary of the response is provided in the table below.

Condition	A	В	С	D	Е	F	G	Н	Average Rating
1	-1	-1	-1	-1	-1	-1	-1	-1	9.6
2	+1	-1	-1	-1	-1	+1	+1	+1	10.8
3	-1	+1	-1	-1	+1	-1	+1	+1	12.6
4	+1	+1	-1	-1	+1	+1	-1	-1	9.2
5	-1	-1	+1	-1	+1	+1	+1	-1	9.0
6	+1	-1	+1	-1	+1	-1	-1	+1	15.0
7	-1	+1	+1	-1	-1	+1	-1	+1	5.0
8	+1	+1	+1	-1	-1	-1	+1	-1	15.2
9	-1	-1	-1	+1	+1	+1	-1	+1	2.2
10	+1	-1	-1	+1	+1	-1	+1	-1	7.0
11	-1	+1	-1	+1	-1	+1	+1	-1	8.8
12	+1	+1	-1	+1	-1	-1	-1	+1	2.8
13	-1	-1	+1	+1	-1	-1	+1	+1	4.6
14	+1	-1	+1	+1	-1	+1	-1	-1	2.4
15	-1	+1	+1	+1	+1	-1	-1	-1	9.2
16	+1	+1	+1	+1	+1	+1	+1	+1	12.6

- Because the response variable in this setting is continuous, we use linear regression to analyze the data from this experiment.
- Because only $2^4 = 16$ conditions were used, we can only fit a model with 16 regression coefficients. In the context of a full 2^4 factorial experiment, this would be the model with 4 main effects, 6 two-factor interactions, 4 three-factor interactions and 1 four-factor interaction:

Estimate Sto	d. Error t	value Pr(>	> t)		
(Intercept)	8.5000	0.2658	31.985 < 2e-16 ***		
Α	0.8750	0.2658	3.293 0.001619 **	- · K	
В	0.9250	0.2658	3.481 0.000906 ***	E = BLD	
C	0.6250	0.2658	2.352 0.021772 *		AE, BED
D	-2.3000	0.2658	-8.655 2.27e-12 ***		Mr. Mer
A:B	-0.3500	0.2658	-1.317 0.192532	F=ACD	•
A:C	1.3000	0.2658	4.892 7.07e-06 ***	(= 4 = 1)	~
B:C	0.4500	0.2658	1.693 0.095261 .		OF= CD
A:D	-0.8750	0.2658	-3.293 0.001619 **	G=ABC	M /
B:D	1.2250	0.2658	4.610 1.98e-05 ***	01-400	
C:D	0.3750	0.2658	1.411 0.163063		Q6: BC
A:B:C	1.5750	0.2658	5.927 1.35e-07 ***	. 1	• =
A:B:D	-0.3000	0.2658	-1.129 0.263168	H= ABD	AH= BD
A:C:D	-1.0000	0.2658	-3.763 0.000367 ***	11 130	(4,1, N)
B:C:D	1.1000	0.2658	4.139 0.000104 ***		
A:B:C:D	0.4750	0.2658	1.787 0.078613 .	L AR (NEE [- \ 1
				TERBUDEF 6	$\mathfrak{I}[$
					•

- But this output does not involve the factors E, F, G or H it only directly references factors A, B, C and D.
- This is because of confounding.
 - The BCD interaction estimate also corresponds to the main effect of E
 - The ACD interaction estimate also corresponds to the main effect of F
 - The ABC interaction estimate also corresponds to the main effect of G
 - The ABD interaction estimate also corresponds to the main effect of H
- While we cannot technically separate these effects, we assume that the three-factor interactions are neglibible, and hence any significant effect observed is due to the aliased main effect.
- The same model summary from above is shown below, but this time with factors E, F, G and H referenced instead of the three-factor interactions.

Estimate Std.	Error t v	alue Pr(>	t)		
(Intercept)	8.5000	0.2658	31.985	< 2e-16	***
A	0.8750	0.2658	3.293	0.001619	**
В	0.9250	0.2658	3.481	0.000906	***
C	0.6250	0.2658	2.352	0.021772	*
D	-2.3000	0.2658	-8.655	2.27e-12	***
E	1.1000	0.2658	4.139	0.000104	***
F	-1.0000	0.2658	-3.763	0.000367	***
G	1.5750	0.2658	5.927	1.35e-07	***
H	-0.3000	0.2658	-1.129	0.263168	
A:B	-0.3500	0.2658	-1.317	0.192532	
A:C	1.3000	0.2658	4.892	7.07e-06	***
A:D	-0.8750	0.2658	-3.293	0.001619	**
A:E	0.4750	0.2658	1.787	0.078613	
A:F	0.3750	0.2658	1.411	0.163063	
A:G	0.4500	0.2658	1.693	0.095261	
A:H	1.2250	0.2658	4.610	1.98e-05	***

• The figures below depict main effect plots for all eight factors.

• The figures below depict the interaction effect plots for the three significant interactions.

Introduction to Response Surface Methodology

• Effective experimentation is sequential

- Information gained in one experiment can help to inform future experiments
 - This is the philosophy of **response surface methodology**
- We have seen that the primary purpose of screening experiments is to identify which among a large number of factors are the ones that significantly influence the response variable
- Now we discuss how screening experiments may be followed-up by further experiments whose primary purpose is response optimization
 - We use the **method of steepest ascent/descent** and **response surface designs** to locate optimal settings of the factors that were identified as significant in the screening phase.

Overview of Response Optimization

Coded Factors

- Here we consider $K' \leq K$ design factors which are a subset of the K factors investigated during the screening phase.
- The set of possible values these factors can take on is referred to as the region of operability
 - It is this region that we explore and in which we run our experiments to determine the *optimal* operating condition
- Although this region specifies acceptable factor values in their natural units (such as dollars, minutes, percent, etc.), we typically work on a transformed scale.
- Just like in the regression models used in the experiments, we represent each factor by a coded variable x that takes on the values -1 and +1 when the factor is at its low and high levels
 - When the factor is categorical this coding is arbitrary
 - When the factor is numeric the coding arises through the following transformation

$$x = \frac{U - (U_H + U_L)/2}{(U_H - U_L)/2}$$

- This equation may also be inverted allowing for conversion from the coded units back to the natural units as follows:

$$U = x \times \frac{(U_H - U_L)}{2} + \frac{(U_H + U_L)}{2}$$

• Adopting this notation, the objective of response optimization may be stated as determining the value of $\mathbf{x} = (x_1, x_2, \dots, x_{K'})^T$ (and hence $\mathbf{U} = (U_1, U_2, \dots, U_{K'})^T$) at which we expect the response to be optimized.

The Models

- The goal of response optimization may be achieved via **response surface experimentation** where one seeks to characterize the relationship between the expected response E[Y] and the K' design factors
- In the case of a continuous response, we may write this relationship generally as

$$\mathrm{E}[Y] = f(x_1, x_2, \dots, x_{K'})$$

and in the case of a binary response

$$\log\left(\frac{\mathrm{E}[Y]}{1-\mathrm{E}[Y]}\right) = f(x_1, x_2, \dots, x_{K'}).$$

- In both cases, the function $f(x_1, x_2, \dots, x_{K'})$ respresents the true but unknown response surface
- Because $f(\cdot)$ is unknown, we must fit models that approximate this surface. As usual, we use linear and logistic regression.
- Although many different models may be used to approximate the response surface we exploit Taylor's Theorem and use low-order polynomials:
 - First Order model:

$$\eta = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{K'} x_{K'}$$

- First Order + Interaction model:

$$\eta = \beta_0 + \sum_{j=1}^{K'} \beta_j x_j + \sum_{j< l} \beta_{jl} x_j x_l$$

- Second Order model:

$$\eta = \beta_0 + \sum_{j=1}^{K'} \beta_j x_j + \sum_{j$$

8

• Examples of such response surfaces (for K'=2) are visualized below:

- We must acknowledge that the approximation of $f(x_1, x_2, ..., x_{K'})$ by η (regardless of whether η is first or second order) is likely to be poor when considered across the entire x-space.
 - However, in the small localized region of an experiment, such low-order polynomials should well-approximate $f(\cdot)$.

- Which model is appropriate is dictated by the goal of the experiment.
 - In the context of factor screening we saw that first-order and first-order-plus-interaction models suited our needs
 - But in order to identify maxima/minima we require the second-order model as it is capable of modeling concavity/convexity

Finding the Optimum

• Supposing that sufficient data is collected and the second order model may be fitted, we obtain the estimated response surface

$$\widehat{\eta} = \widehat{\beta}_0 + \sum_{j=1}^{K'} \widehat{\beta}_j x_j + \sum_{j< l} \widehat{\beta}_{jl} x_j x_l + \sum_{j=1}^{K'} \widehat{\beta}_{jj} x_j^2$$

• This expression may be re-written in vector-matrix notation as

$$\widehat{\eta} = \widehat{\beta}_0 + \mathbf{x}^T \mathbf{b} + \mathbf{x}^T \mathbf{B} \mathbf{x}$$

where

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{K'} \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} \widehat{\beta}_1 \\ \widehat{\beta}_2 \\ \vdots \\ \widehat{\beta}_{K'} \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} \widehat{\beta}_{11} & \frac{1}{2}\widehat{\beta}_{12} & \cdots & \frac{1}{2}\widehat{\beta}_{1K'} \\ \frac{1}{2}\widehat{\beta}_{12} & \widehat{\beta}_{22} & \cdots & \frac{1}{2}\widehat{\beta}_{2K'} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2}\widehat{\beta}_{1K'} & \frac{1}{2}\widehat{\beta}_{2K'} & \cdots & \widehat{\beta}_{K'K'} \end{bmatrix}$$

- In order to find the value of $\mathbf{x} = (x_1, x_2, \dots, x_{K'})^T$ that maximizes/minimizes the expected response, we must find the **stationary point** of the estimated response surface.
- The stationary point is

$$\mathbf{x}_s = -\frac{1}{2}\mathbf{B}^{-1}\mathbf{b}$$

which is found by solving

$$\frac{d\widehat{\eta}}{d\mathbf{x}} = \mathbf{b} + 2\mathbf{B}\mathbf{x} = \mathbf{0}$$

Bo+ X5 b + X8 BX

• The optimal expected response is

$$\widehat{\eta}_s = \widehat{\beta}_0 + \frac{1}{2} \mathbf{x}_s^T \mathbf{b}$$

in the case of linear regression and

$$\frac{e^{\widehat{\eta}_s}}{1+e^{\widehat{\eta}_s}} = \frac{e^{\widehat{\beta}_0 + \frac{1}{2}\mathbf{x}_s^T\mathbf{b}}}{1+e^{\widehat{\beta}_0 + \frac{1}{2}\mathbf{x}_s^T\mathbf{b}}}$$

in the case of logistic regression

• For practical implementation of this solution, the stationary point \mathbf{x}_s must be translated into optimal operating conditions in natural units \mathbf{U}_s using the following conversion formula:

$$U = x \times \frac{(U_H - U_L)}{2} + \frac{(U_H + U_L)}{2}$$

BUT!

- For us to be confident that \mathbf{x}_s indeed optimizes $f(\cdot)$, we must be confident that $\widehat{\eta}$ and, in particular, that $\widehat{\eta}$ adequately represents $f(\cdot)$
 - Since we only expect the second-order approximation to be adequate in a small localized region,
 it is important that this small localized region contains the true optimum
 - It is quite unlikely that the values of $x_1, x_2, \ldots, x_{K'}$ considered in the screening phase are close to the optimum
 - This is why we needed the method of steepest ascent/descent
 - \ast This intermediate phase of experimentation helped us determine roughly where the region of the optimum lies

Optional Exercises:

• Calculations: 11, 12, 14, 15

• R Analysis: 12(b)-(d), 21(b)-(c), 26(b)

• Communication: 1(g)