Übung 4.1. Man zeige: Eine stetig differenzierbare Abbildung von einer offenen Teilmenge eines endlichdimensionalen reellen Raums in einen weiteren endlichdimensionalen reellen Raum hat offenes Bild, wenn ihr Differential an jeder Stelle surjektiv ist. Ist unsere stetig differenzierbare Abbildung zusätzlich injektiv, so liefert sie einen Diffeomorphismus unserer offenen Teilmenge mit ihrem Bild.

Sei Ve Rm f: U = Rh stehig diff bar.

1) 3: Wenn dof surjehtiv f.a. pe U, dann hat f offenes Bild, also f(U) @ R4.

Bew.

Nach Del. ist def eine (hxm)-Matrix.

dpf surj. Es gibt h Spalten von dpf, die das Bild ezeugen.

Seien dies o.B.d.A. die ersten 6 Spalten von f. Wir def. j. Rh -> Rm,

(x,...,x4) -> p+ (x,...,x4,0,...,0). Dann gilt

 $d_o(f \circ j) = d_p f \circ d_o j = d_p f \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{3m-6}^{k}$, also $d_o(f \circ j)$ bijektiv.

Nach dem Conhebratz ist foj dann lokaler Diffeomorph. zwischen einer

Umgebung VeIRh von O und einer Umgebung Z ERh von (foj)(0) = f(p)

2)		Sei	f	иc	14	۷۷	sätä	zlid	1	inje	Gh'c	/ .													
	E٢	inner	ung:	Pa	op. (4.2.	.15:	U	e R	jug I	L :	<i>U</i> -	→ R	sł	ehig	di	CP '60		lph s	orj.	f.a.	pe	U.		
								Dai	44	ist	ι	<u>-</u> 1(c)	m-6	(– di	m o nsi	ional	e L	lannigt	Galtig	4e;t	f.a.	CE	R4.	
	2 :	+	? li	ele	Ļ	Dif	reom	orpl	ทริน	nυS.															
	B	W.	<u>:</u>																						
			_				^(c)))=(C	f	.a.	C ,		do	١	f	inj	ebtiv							
			m=					C ,		. 4.4						0	C		1,			1			
																		au dh	61	eati	8	st .			
	Nα	ds	den	, ()mu.	ehrso	x+2	ίζι	} ·	t o	lauu		loKa k	er ()	sitteo	morp	hisu	υς.							
	W	ic	def.	ſ,	·1 :	f(U) -	- ∪ ,	, 1	۱ (م)	•	p	(u	0041	de1.	do	a <i>f</i>	ز ان	eGhi)						
	Do	, <i>1</i>	? (ohal.	e D	i ffeo	morp	h.	f.a.	γe	υ,	ı.	5 +	f ⁻¹	dit	P'ba	ır.								
	f, f	, -1	sin	d	9/86	5 0	l;FF'	bare	e	Inve	rse														\Box

$Ubung$ 4.2 (Mannigfaltigkeiten als Graphen in Koordinaten). Man zeige: Gegeben eine k -dimensionale Mannigfaltigkeit $M \subset \mathbb{R}^n$ gibt es für jeden Punkt $p \in M$ eine offene Umgebung $U \circledcirc \mathbb{R}^n$ und eine Permutation $\sigma \in \mathcal{S}_n$ derart, daß $M \cap U$ unter der entsprechenden Permutation der Koordinaten dem Graph einer C^1 -Abbildung $f : \mathbb{R}^k \circledcirc W \to \mathbb{R}^{n-k}$ entspricht. Hinweis: Man gehe vom Satz über implizite Funktionen aus.
Sei MCRn L-dimensionale Mannigfultiqueit.
3: Upe M BUGIR", oesu: Mau = [(f: R4 -> R4-4).
Erianerung:
Satz 4.3.4 (üser implizite Funktionen, geometrische Fassung) liefet für X= Rª,Y=Rª.
$M \subset \mathbb{R}^{n} \times \mathbb{R}^{n-n}$, $(p,q) \in M$. Liefet $\pi : \mathbb{R}^{n} \times \mathbb{R}^{n-n} \longrightarrow \mathbb{R}^{n}$ eine Surjehtion
Tipiqi M -> X, so ist M lokal ein C'-Graph um (piq).
Bew.:
Es gilt din TpM = 4, TpM c Rn.
Wir hönnen eine Basis (vi)ie [1,h] von TpM finden. Der Rang der
Zusammengesetzen Matrix der Basisvektoren (v, 1 1v4) ist dann 4:
La Company of the Com
Es ex. also 4 Zeilen, s.d. die entsprechende Untermatrix bijeutiv ist. Seien
dies o.B.d.A. die ersten 4 Zeilen.
Sei T: In - In die Projektion über die ersten 4 Koordinaten. Dann
liefert IT eige Surjehtion $T_pM \rightarrow \mathbb{R}^4$, weil $\pi(v_j) = \begin{pmatrix} v_{j_1} \\ \vdots \\ v_{j_k} \end{pmatrix}$.
Mit Satz 4.3.4 folgt dann sofort die Behauptung.

Übung 4.3. Ist V ein endlichdimensionaler reeller Vektorraum und $\langle \ , \ \rangle$ eine Bilinearform auf V und $c \neq 0$ eine reelle Konstante, so ist $\{v \in V \mid \langle v,v \rangle = c\}$ eine Hyperfläche in V. Hinweis: Man verwende die Formel für das Differential bilinearer Abbildungen 2.6.5, die in der Vorlesung nicht bewiesen wurde.

Sei V and lichdim. \mathbb{R} - $V\mathbb{R}$, \langle , \rangle eine \mathbb{R} ilinear form and V, $c \neq 0$, $X := \{v \in V \mid \langle v, v \rangle = c\}$ $\underline{\mathfrak{F}}: X$ Hyperfläche in V, also $\operatorname{codim}(X) = 1$.

Bew.:

Sei UEV. Wir del. h: U > R, v - (4, v), D: V - VXV, v - (4, v),

b: V×V → R, (v,w) → (v,w). Dana gilt 4 = 60 Δ.

Die A65. \triangle ist dann linear, also $d\triangle = \triangle$. Weiter gilt nach 2.6.5 $d_{(x)}b(v',w') = b(v',w) + b(v,w') = \langle v',w \rangle + \langle v,w' \rangle.$

Es folgt

 $d_{\nu}h(\omega) = d_{(z)}b \circ \Delta(\omega) = d_{(z)}b(\omega,\omega) = \langle \nu, \omega \rangle + \langle \omega, \nu \rangle$

Sei nun U = {veV | (uv > + 0}. Insbesonder ist XCU

duh ist dans surjelitiv F.a. ve U, da duhlu) = 2 < v, v > + 0

Nach Prop. 4.2.15 ist X = h'(c) down m-1-dimensionale Maunigfaltiqueit, also

П

Hyperfläche in V.

Übung 4.4. Man bestimme in den beiden vorhergehenden Übungen die Tangentialräume von $\Gamma(f)$ beziehungsweise $\{v \in V \mid \langle v, v \rangle = c\}$.

Es ail+
$$\Gamma(f) = \{(x,y) \mid y = f(x)\} \subset \mathbb{R}^n$$
, sowie

Außerdem ist
$$dim\Gamma(f) = dim T_{\rho}\Gamma(f) = h$$
 (nach 4.2).

Sei
$$\partial_j(t) := (x_1, ..., x_j + t, ..., x_k, f(x_1, ..., x_j + t, ..., x_k)) \in \Gamma(f)$$
. Dunn ist

$$\partial_{j}(0) = \left(\underbrace{\mathcal{O}_{1}, \ldots, \mathcal{O}_{1}}_{j-1}, \underbrace{\mathcal{O}_{1}, \ldots, \mathcal{O}_{1}}_{\lambda-j}, \underbrace{\frac{\partial f_{1}}{\partial x_{j}}}_{\lambda}(x), \underbrace{\frac{\partial f_{2}}{\partial x_{j}}}_{\lambda x_{j}}(x), \ldots, \underbrace{\frac{\partial f_{k}}{\partial x_{3}}}_{\lambda x_{3}}(x) \right).$$