- 2. Let T: P₃(ℝ) → P₃(ℝ) be defined by T(f(x)) = f'(x) + f''(x). Determine whether T is diagonalizable, and if so, find a basis β for P₃(ℝ) such that [T]_β is a diagonal matrix.
 Togonalizability (Existence of eigenbasis
- eigenvalue $T(f(x)) = C \cdot f(x)$ Comparity the degree, we have C = 0. f'(x) + f''(x) Why don't we are f(x) = 0 as e^{-2} ? Poll.
- $f'(x) = -f''(x) \Rightarrow Again comparing the degree, we get <math>f'(x) = 0 \Rightarrow f(x) = d$.
- "There is only 1-dim't eigenspace, so the linear transformation is

NOT diagonalizable. $\sum M_{q}(\lambda_{\bar{1}}) = 1 < 4.$

is diagonalizable, then T^{-1} is diagonalizable. T=QDQ-· Diagonalizability (> Existence of eigenbasis T=2000-1 · If o = v solisties Tv= lv for some l, then $T^{-1}T v = T' \lambda v = \lambda \cdot T^{-1}v$: V : eigenvector for T-1. $\Rightarrow \lambda^{-1} \cdot v = \tau^{-1} v$ · Suppose ? U., ..., Un? is an eigenbasis for T. Then, 3v., --, vn9 is a Gasis + eigenvectors for T (T2+1) v = (12+1). " 7-1 Hence, ?V,,--, Vn9 is on eigenbosis for T.

4. Let T be an invertible linear operator on a finite dimensional vector space V. Prove that if T

2. Find the general solution to the following system: $x_1'(t) = -x_1(t) - x_2(t) + 3x_3(t)$

 $\begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} -(& -(& 3) \\ (& (& -(& 3) \\ -(& -(& 3) \\ \chi_3 \end{pmatrix})$

 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} c_1 e^{2t} + c_2 e^{t} + c_3 \\ c_2 e^{t} - c_3 \\ c_1 e^{2t} + c_2 e^{t} \end{pmatrix}$

Where C1, C2, C3 E(R)

 $x_2'(t) = x_1(t) + x_2(t) - x_3(t)$ $x_3'(t) = -x_1(t) - x_2(t) + 3x_3(t).$

=> dim ker(A-0:I)=1.

· A is not invertible, dim in A= 2

 \Rightarrow (!) gives an eigenvalue 1.

o the left one is 2. eigenvector=(0)

 $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2$

• 6 + A = Sum of eigenvalues = 3.

o you entries add up to 1.

1. If v_1 and v_2 are eigenvectors of a linear operator T with eigenvalues λ_1 and λ_2 and $\lambda_1 \neq \lambda_2$, show that the T-cyclic subspace generated by $v_1 + v_2$ is 2-dimensional. T-cyclic subspace generated by $V = Span ? V_1 T V_1 T^2 V_1 \cdots ?$

For
$$v = v_1 + v_2$$
, $T(v) = \lambda v_1 + \lambda_2 v_2 \in Span (v_1, v_2)$.

Induction maybe.

For $v = v_1 + v_2$, $T(v) = \lambda v_1 + \lambda_2 v_2 \in Span v_1, v_2$.

In fact, $T(v_1) = \lambda_1 v_1 \in Span v_1, v_2$ $\Rightarrow T^n(v_1 + v_2) \in Span v_1, v_2$ $\Rightarrow T^n(v_1 + v_2) \in Span v_1, v_2$ $\Rightarrow T^n(v_1 + v_2) \in Span v_1, v_2$.

Moreover,
$$\{V_1+V_2, T(V_1+V_2)\}$$
 is (inearly independent b/c $C_1(V_1+V_2)+C_2(\lambda_1V_1+\lambda_2V_2)=0 \implies C_1+C_2\lambda_1=0$

 $C_{1}(V_{1}+V_{2})+C_{2}(\lambda_{1}V_{1}+\lambda_{2}V_{2})=0 \Rightarrow C_{1}+C_{2}\lambda_{1}=0$ and $\lambda_{1}\neq\lambda_{2}\Rightarrow C_{1}=C_{2}=0$. $C_{1}+C_{2}\lambda_{2}=0$ and $C_{1}\neq\lambda_{2}\Rightarrow C_{1}=C_{2}=0$.

g(t). What is the condidate of for U=g(T)? st. V= Spanju, Tu, ---, Thoug. Only thing given is one vector v Candidate. Multiplying v to U: Uv EV $\therefore \exists Q_0, \dots, Q_{n-1} \in F \text{ s.t. } \bigcup v = Q_0 v + Q_1 \tau v + \dots + Q_{n-1} \tau^n \cdot v = g(\tau) \cdot v.$ Claim. $(U-g(T))\cdot w=0$ for all $w\in V$. Pf. w∈V can be expressed as

2. Let V be a finite-dimensional space and let $T, U \in \mathcal{L}(V, V)$. Suppose further that V is a T-cyclic subspace of itself. Show that TU = UT if and only if U = g(T) for some polynomial

Pf. WEV Can be expressed as $C_0 U + C_1 TU + \cdots + C_{n-1} T^{n-1}U = f(T) \cdot U$ Where $f(x) = C_0 + C_1 X + C_2 X^2 + \cdots + C_{n-1} X^{n-1}$ But, $f(T) \cdot (U - g(T)) \cdot V = U$ from the definal g.

Out $f(T) \cdot U = U \cdot f(T)$ by $f(T) \cdot U = U$ $f(T) \cdot U = U$.

Out $f(T) \cdot U = U \cdot f(T)$ by $f(T) \cdot U = U$ $f(T) \cdot U = U$.

- 1. (True/False Jeopardy) Supply convincing reasoning for your answer.
 - that $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of T. If $m_a(\lambda_1) + \cdots + m_a(\lambda_n) = \dim V$, then T is diagonalizable.

(a) T F Suppose that $T: V \to V$ is a linear transformation, and that dim $V < \infty$. Suppose

- (b) T F If a linear operator T is diagonalizable, it must have distinct eigenvalues.
- (c) T F If $T:V\to V$ is a linear transformation and g(t) is a polynomial such that
- q(T) = 0, then the characteristic polynomial of T divides q. (d) T F Let W_1 and W_2 be the T-cyclic subspaces generated by v_1 and v_2 respectively. If
- $v_1 \in W_2$, then $W_1 \subseteq W_2$. (a) False. $\binom{1}{0}: \mathbb{R}^2 \to \mathbb{R}^2$
- Jimkar (01) = 2-1=1 #2.
- $\mathcal{T}_{\mathcal{V}}: \mathcal{V} \longrightarrow \mathcal{V}$
- Iv, 9(6)=t-1.

- $k m_{\alpha}(\lambda_{1})=m_{\beta}(\lambda_{1})$
- VI CW2 $TV_1 \in T(W_2) \subseteq W_2$
 - T({ V2, TV2, T2, ... }) = Span { TV2, T (TV2), }
- Ur= lin.combo. of VIEWS implies **νε, Τυ**ε, ···
 - of TU, TU, ...
- Spanjv, TV, ... & Spanjv, TV, ... 9

linear transformation; i.e., $T^n = 0$ for some n > 0. Prove that if T is nonzero, it cannot be diagonalizable.

2. Suppose that V is a finite dimensional vector space, and that $T:V\to V$ is a nilpotent

Proof by Contradiction: Suppose Tis diagonalizable.

= an eigenbasis ?V., ---, W.

However, $T \cdot V_i = \lambda_i \cdot V_i$ gives $T^n \cdot V_i = \lambda_i \cdot V_i$ ~~ /i=0 This implies that $T.V_i = 0$ for all i = 1, -.., n. T. (lin. cmb. of V;) =0 => Tis Zero.

all the vectors in V. So, ne get a curtifation and so T is NOT diagonalizable.