Bangabandhu Sheikh Mujibur Rahman Science and Technology University

Department of Computer Science and Engineering

1st Year 1st Semester B.Sc. Engineering Examination-2014

Course No: EEE-104

Course Title: Electrical Circuit Analysis

Total marks: 70

Time: 3 hours.

N.B.

- i. Answer SIX questions, taking any THREE from each section.
- ii. All questions are of equal values
- iii. Use separate answer script for each section

SECTION - A

1. (a) What do you mean by 1A current and potential difference of 1V?

0.7

(b) What are the factors that affecting the resistance of a conductor?

2

(c) Using Kirchhoff's voltage law, determine voltage V₁ and V₂ for the following network.

4

(d) Calculate the equivalent resistance R_{ab} in the circuit shown below:

,

2. (a) Given the information provided in the following figure. Determine R_3 , applied voltage E, source $\frac{2}{43}$

current I_s and current I₂.

(b) Using the Kirchhoff's current law, determine the unknown current for the network given below:

3

(c) For the network of figure given below, determine the value of R for maximum power to R, and 4 calculate the power delivered under these conditions.

3. (a) Using mesh analysis, determine the currents of the network given below:

(b) Find the thevenin equivalent circuit for the network external to the resistor R for the network in given $3\frac{2}{3}$ figure below:

(c) Using the superposition theorem, determine the current through the 12Ω resistor of the following 4 figure:

4. (a) Using a Δ -Y or Y- Δ conversion, find the current I for the network of the figure shown below:

- (b) Show that each resistor in the "T" network is the product of the resistors in the two adjacent " π " branches, divided by the sum of the three " π " resistors.
- (c) Give the statement of maximum power transfer theorem with necessary diagram.

SECTION-B

 $5\frac{2}{3}$

2

5. (a) Do you think capacitors have the effect on time constant on the response? Justify your answer.

 $3\frac{2}{3}$

5

5

 $3\frac{2}{3}$

3

- (b) For the circuit in the following figure:
 - i. Find the expression for the transient behavior of V_c, I_c and V_R of position 1 and 2
 - ii. Also plot each waveforms at both position 1 and 2

6. (a) Calculate the equivalent inductance for the inductive ladder network in figure given below:

- (b) If $v = 100 \sin(wt 30^\circ)$ and $i = 10 \sin(wt 60)$. What is the angle of phase different between current and voltage wave? Which wave lead? Show with neat sketch.
- (c) For the following figure, find the expression of voltage, current and powers with neat sketch.

- 7. (a) Given that $v(t) = 120 \cos(377t + 45^\circ)$ and $i(t) = 10 \cos(377t 10^\circ)$. Find instantaneous power and $3\frac{1}{3}$ average power.
 - (b) Find the rms value of current waveform of the following figure:

- (c) A series connected load draws a current $i(t) = 4 \cos(100\pi t + 10^{\circ})$ when the applied voltage is $v(t) = 120 \cos(100\pi t 20^{\circ})$. Find the apparent power and the power factor of the load. Determine the element values that form the series connected load.
- **8.** (a) What do you mean by filter? Explain different types of filters.
 - (b) Draw the circuit diagram of low pass and high pass filter. How can you design a band pass filter from 5 low pass and high pass filter?
 - (c) What are the main parts of a CRT oscilloscope? Also draw the internal structure of it.

5

5

 $3\frac{2}{3}$

3

- (b) For the circuit in the following figure:
 - i. Find the expression for the transient behavior of V_c, I_c and V_R of position 1 and 2
 - ii. Also plot each waveforms at both position 1 and 2

6. (a) Calculate the equivalent inductance for the inductive ladder network in figure given below:

- (b) If $v = 100 \sin(wt 30^\circ)$ and $i = 10 \sin(wt 60)$. What is the angle of phase different between current and voltage wave? Which wave lead? Show with neat sketch.
- (c) For the following figure, find the expression of voltage, current and powers with neat sketch.

- 7. (a) Given that $v(t) = 120 \cos(377t + 45^\circ)$ and $i(t) = 10 \cos(377t 10^\circ)$. Find instantaneous power and average power.
 - (b) Find the rms value of current waveform of the following figure:

- (c) A series connected load draws a current $i(t) = 4 \cos(100\pi t + 10^\circ)$ when the applied voltage is $v(t) = 120 \cos(100\pi t 20^\circ)$. Find the apparent power and the power factor of the load. Determine the element values that form the series connected load.
- 8. (a) What do you mean by filter? Explain different types of filters.
 - (b) Draw the circuit diagram of low pass and high pass filter. How can you design a band pass filter from 5 low pass and high pass filter?
 - (c) What are the main parts of a CRT oscilloscope? Also draw the internal structure of it.