

Comparative assessment of the speed and accuracy performances of numerical solvers for complex naval applications.

CSI meeting

Théo DESCAMPS (1,2)

- (1) Ecole Centrale Nantes,
- (2) Bureau Veritas Solutions Marine&Offshore

30 / 09 / 2020

Background

Context

Objectives

Seakeeping response of ship with complex sea states

Wave added resistance

Hull form optimisation

Means

Development of a methodology with existing solutions

Improvement of these solutions

Improvement of computational time (Industrial context)

New developments

Internal tools

foamStar

Internally developed by Centrale Nantes and Bureau Veritas Marine & Offshore

- C++ code based on open-source library OpenFOAM
- Finite volume
- RANSE

HOS-Ocean / HOS-NWT

- Complex irregular see states simulations using High Order Spectral (HOS) method
- Potential flow code = fast

Grid2Grid

Reconstruct volumic field from HOS modal decomposition

External tools

CAD

Rhinoceros 3D

Mesh generators

- Hexpress
- STAR-CCM+ mesh generator
- OpenFOAM mesh tools: "blockMesh", "snappyHexMesh"

Spectral Wave Explicit Navier Stokes (SWENSE)

SWENSE

SWENSE model

- ⇒Decompose the fileds
 - ⇒Incident field pre-solved
 - ⇒Complementary filed (CFD computation)

$$\mathbf{u} = \mathbf{u}_I + \mathbf{u}_C$$
$$P = P_I + P_C$$

Accurate simulation of sea states (HOS)

Better wave propagation with coarse meshes

Computational cost reduced

SWENSE backgroung

ICARE: The first SWENSE CFD solver

• Single phase solver

P. Ferrant et. al., A potential/RANSE approach for regular water wave diffraction about 2-D structures (2003)

Two phase solver based on OpenFOAM

• First two phase solver implementation

V. Vukcevic, Numerical Modelling of Coupled Potential and Viscous Flow for Marine Applications (2016)

foamStar-SWENSE

- Internal development
- Several studies on SWENSE already carried out
- Z. Li, Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions (2018)
- Y.M. Choi, Two-way coupling between potential and viscous flows for a marine application (2019)
- Y.J. Kim Influence of interface treatment in wave propagation in CFD (2018)

foamStar-SWENSE

Total field = RANS equations

$$\begin{split} \nabla \bullet \mathbf{u} &= 0 \\ \frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \bullet (\rho \mathbf{u} \mathbf{u}) - \nabla \bullet (\mu_{\mathrm{eff}} (\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}})) = - \nabla p_{\mathrm{d}} + gz \nabla \rho \end{split}$$

Incident field = Euler equations

$$abla oldsymbol{u}_{
m I} = 0$$

$$\frac{\partial (
ho_{
m water} oldsymbol{u}_{
m I})}{\partial t} +
abla ullet (
ho_{
m water} oldsymbol{u}_{
m I} oldsymbol{u}_{
m I}) = -
abla p_{
m I} +
ho_{
m water} oldsymbol{g}$$

Complementary field

$$\mathbf{u}_C = \mathbf{u} - \mathbf{u}_I$$
$$P_C = P - P_I$$

$$\frac{\partial(\rho\mathbf{u}_{\mathrm{C}})}{\partial t} + \nabla \bullet (\rho\mathbf{u}\mathbf{u}_{\mathrm{C}}) + \rho\mathbf{u}_{\mathrm{C}} \bullet \nabla\mathbf{u}_{\mathrm{I}} = -\nabla p_{\mathrm{C}} - \frac{p_{\mathrm{I}}}{\rho_{\mathrm{I}}} \nabla \rho + \nabla \bullet (\mu_{\mathrm{eff}}(\nabla\mathbf{u}_{\mathrm{C}} + \nabla\mathbf{u}_{\mathrm{C}}^{\mathrm{T}}))$$

Wave generation 1st step

Background

• 2D foamStar and foamStar SWENSE wave propagation already studied by Z. Li, YM. Choi and YJ. Kim

Objective

To study it in the naval application context:

Take into account the forward speed

Use the naval mesh generator used by ECN and BVS M&O

Optimise the mesh generation: Accuracy + computation time

4 examples extracted from the Young Myung Choi Ph.D.

- Particularities: ⇒Constant horizontal refinement.
 - ⇒Using refinement gradient
- To apply it to naval study implies:
 - ⇒Large number of cells for 3D meshes
 - ⇒refinement gradientnot available with used naval mesh generator

Naval mesh structure:

ZONES:

- $(1) \Delta Z = 2H$
- (2) $Zmin = \lambda/4$
- (3) Zmin = $\lambda/2$
- (4) $Zmin = \lambda$

Zones		1		2	3	}		4
	Δz	Δχ	Δz	Δχ	Δz	Δχ	Δz	Δχ
H15L62	H/15	L/62						
H15-4x3L62x4	H/15	L/62	H/4	L/62	H/4	L/62	H/4	L/62
H15-1x3L62x4	H/15	L/62	H/1	L/62	H/1	L/62	H/1	L/62
H15-1-p5L62x2-31	H/15	L/62	H/1	L/62	H/0.5	L/31		
H15-2-1L124x2-62	H/15	L/124	H/2	L/124	H/1	L/62		

Mesh refinement by zone

2D mesh dedicated to wave propagation analysis ($\lambda = 3.9 \text{ m}$; H=0.062 m)

Results

	foamStar			FoamStar-SWENSE		
	D_{bow}	D _{rudder}	D _{domain}	D_{bow}	D _{rudder}	D _{domain}
H15L62	18.20%	28.50%	46.70%			
H15-4x3L62x4	7.70%	12.60%	21.80%	5.35%	9.33%	16.20%
H15-1x3L62x4	7.68%	12.60%	21.70%	5.35%	9.32%	16.20%
H15-1-p5L62x2-31	7.70%	12.60%	21.80%	5.36%	9.34%	16.20%
H15-2-1L124x2-62	3.40%	0.50%	9.57%	1.65%	2.91%	5.50%

Conclusions

- ⇒Fast vertical mesh expansion is possible
- ⇒Horizontal unrefinement far from the free surface is possible
- ⇒foamStar SWENSE provides better results than foamSTAR

Deepen analysis to be done

- ⇒Wave damping remain significant anlong the domain even with SWENSE
- ⇒Forward speed influence?
- ⇒Impact on naval application ?

Naval mesh generation

Mesh generation

Mesh refinement zones

Objective: Adapt the mesh refinement to the phenomena scale in specific region.

Meshing method generally provided by guidelines (Hexpress and STAR-CCM+)

Mesh quality

Skewness and Orthogonality

Cells aspect impact the numerical model accuracy

- ⇒Increase of the errors
- ⇒Instabilities

Keep a "good" mesh quality remains difficult

KCS; attempt of very fine mesh (11M cells)

Mesh quality

Mesh verification

Tools provided by OpenFOAM libraries: "checkMesh"

Boundary openness (-7.8372767e-17 2.3320955e-14 6.4269804e-17) OK.

Max cell openness = 3.3379624e-16 **OK**.

Max aspect ratio = 128.00029 **OK.**

Minimum face area = 1.721246e-08. Maximum face area = 1.0235389. Face area magnitudes **OK.**

Min volume = 6.9813407e-12. Max volume = 1.0355145. Total volume = 12055.8. Cell volumes OK.

Mesh non-orthogonality Max: 88.210091 average: 6.9040656

*Number of severely non-orthogonal (> 70 degrees) faces: 1108

Non-orthogonality check OK.

Face pyramids OK.

***Max skewness = 4.240074, 3 highly skew faces detected which may impair the quality of the results

<< Writing 3 skew faces to set skewFaces

Example of mesh verification done using checkMesh tool

- ⇒ Large amount of time spent on mesh generation
- ⇒ To improve foamStar stability risking to reduce the accuracy?

foamStar vs foamStar-SWENSE naval application

Study case

Tokyo 2015 workshop: KRISO Container Ship (KCS)

Main particulars	Full	Model
Length $(L_{PP} [m])$	230	6.0702
Breadth (B_{WL}) [m]	32.2	0.8498
Depth (D) [m]	19.0	0.5015
Draft (T) [m]	10.8	0.2850
Volume (Δ) [m ³]	52030	0.9571
Wetted surface (S_W) [m ²]	9539	6.6978
Horizontal buoyancy center (L_{CB}) [m]	111.5	2.944
Vertical Center of Gravity (K_G) [m]	14.32	0.378
Moment of Inertia $(\frac{K_{xx}}{B})$	0.40	0.40
$(rac{K_{yy}}{L_{PP}}, rac{K_{yy}}{L_{PP}})$	0.250	0.252

Surge	Sway	Heave	Roll	Pitch	Yaw
Towing	Fixed	Free	Fixed	Free	Fixed

Ship speed (U_0) [m.s ⁻¹]	Fr	Re
2.017	0.261	$1.074 \cdot 10^7$

Case	λ [m]	$\frac{\lambda}{\mathrm{L_{PP}}}$	H [m]	T [s]	ε
<i>C1</i>	3.949	0.651	0.062	1.591	0.016
<i>C</i> 2	5.164	0.851	0.078	1.819	0.015
<i>C3</i>	6.979	1.150	0.123	2.115	0.018
C4	8.321	1.371	0.149	2.309	0.018
<i>C</i> 5	11.840	1.951	0.196	2.754	0.017

Regula wave conditions

- Model scale
- Head regular wave with small steepness

Study case

Numerical domain

Numerical schemes

Spatial discretisation:

Second order schemes

Temporal discretisation:

First order schemes

⇒ Second order shemes and Crank Nicolson schemes was tried.

⇒ Strong instability for both foamStar and foamStar SWENSE

 \Rightarrow A key point to improve for future work

Results

⇒ Motions amplitude slightly underestimated by foamStar

Future work:

- ⇒ Error an uncertainties
- ⇒ Mesh convergence in order to evaluate the computation time gain using SWENSE

Irregular waves with foamStar-SWENSE Naval application

Study case

Ship: Same KCS model scale

Sea sate:

Scale	$\mathbf{H}_{\mathbf{s}}$ [m]	T _{p} [s]	H_s/λ_p
Full	5.0	12.4	0.021
Model	0.132	2.0145	0.021

- First trial of ship seakeeping with irregular waves
- Stability issue
 - ⇒ Impossibility to compute long time simulations
 - ⇒ Impossibility to do a rigorous spectral analysis of the ship response

Irregular wave generation

Work objective:

- To generate complex sea states with HOS-Ocean usable with foamStar and foamStar-SWENSE
 - ⇒Try to generate a crossed sea state with spreading

Cross Sea state characteristics.

Sea State	Scale factor	Spectrum	Hs (m) Tp (s)		3D spreading
<i>SS4</i>			0,0496	1,4296	
<i>SS6</i>	37,89	Jonswap	0,132	2,0145	10°
Crossed SS6 and SS4	37,09	$\gamma = 1$	Hs _{SS4} =0,0496 Hs _{SS6} = 0,132	Tp _{SS4} =0,0496 Tp _{SS6} =2,0145	10

Irregular wave generation

HOS-Ocean crossed wave implementation

The grid represent the modal discretization.

Crossed SS6 and SS4 (-22.5°; +22.5°); Spectral amplitude HOS-Ocean output

Irregular wave generation

More development needed before naval application with foamStar

- ⇒ In spite of the "light" parameters chosen in terms of modal discretization, the mono-processor HOS wave generation is quite "slow" for 3D seastates generation.
- \Rightarrow A parallelised process have to be implemented.

	2D SS6	3D SS6 (10° of spreading)	Crossed SS6 and SS4
Duration (h)	0.5	15.5	5.25
Number of simulate peak periods (Tp)	200	20	1
Output frequency (per Tp)		20	
SWENSE Output file size (GB)	0.37	7.0	1.8