▼ BPL_TEST2_Fedbatch script with PyFMI

The key library PyFMI is installed.

After the installation a small application BPL_TEST2_Fedbatch is loaded and run. You can continue with this example if you like.

```
!lsb release -a # Actual VM Ubuntu version used by Google
     No LSB modules are available.
     Distributor ID: Ubuntu
     Description: Ubuntu 22.04.2 LTS
                       22.04
     Release:
     Codename:
                       jammy
%env PYTHONPATH=
     env: PYTHONPATH=
!wget https://repo.anaconda.com/miniconda/Miniconda3-py310_23.1.0-1-Linux-x86_64.sh
!chmod +x Miniconda3-py310_23.1.0-1-Linux-x86_64.sh
!bash ./Miniconda3-py310 23.1.0-1-Linux-x86 64.sh -b -f -p /usr/local
import sys
sys.path.append('/usr/local/lib/python3.10/site-packages/')
     --2023-09-26 07:25:15-- <a href="https://repo.anaconda.com/miniconda/Miniconda3-py310_23.1.0-1-Linux-x86_64.sh">https://repo.anaconda.com/miniconda/Miniconda3-py310_23.1.0-1-Linux-x86_64.sh</a> Resolving repo.anaconda.com (repo.anaconda.com)... 104.16.131.3, 104.16.130.3, 2606:4700::6810:8303, ...
     Connecting to repo.anaconda.com (repo.anaconda.com) | 104.16.131.3 | :443... connected.
     HTTP request sent, awaiting response... 200 OK
     Length: 74403966 (71M) [application/x-sh]
     Saving to: 'Miniconda3-py310_23.1.0-1-Linux-x86_64.sh'
     Miniconda3-py310_23 100%[============] 70.96M
     2023-09-26 07:25:16 (244 MB/s) - 'Miniconda3-py310_23.1.0-1-Linux-x86_64.sh' saved [74403966/74403966]
     PREFIX=/usr/local
     Unpacking payload ...
     Installing base environment...
     Downloading and Extracting Packages
     Downloading and Extracting Packages
     Preparing transaction: done
     Executing transaction: done
     installation finished.
!conda update -n base -c defaults conda --yes
```

```
Preparing transaction: done
Verifying transaction: done
Frequency transaction done

!conda --version
!python --version

conda 23.7.4
Python 3.10.13
```

!conda install -c conda-forge pyfmi --yes # Install the key package

```
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
```

→ BPL_TEST2_Fedbatch setup

Now specific installation and the run simulations. Start with connecting to Github. Then upload the two files:

- FMU BPL_TEST2_Fedbatch_linux_om_me.fmu
- Setup-file BPL_TEST2_Fedbatch_explore.me.py

```
%%bash
git clone https://github.com/janpeter19/BPL_TEST2_Fedbatch
    Cloning into 'BPL_TEST2_Fedbatch'...
%cd BPL_TEST2_Fedbatch
    /content/BPL_TEST2_Fedbatch
run -i BPL_TEST2_Fedbatch_explore.py
    Linux - run FMU pre-comiled OpenModelica 1.21.0
    Model for bioreactor has been setup. Key commands:
                   change of parameters and initial valueschange initial values only
     - init()
     - simu()
                    - simulate and plot
     - newplot()
                   - make a new plot
     - show()
                    - show plot from previous simulation
                    - display parameters and initial values from the last simulation
     - disp()
     - describe() - describe culture, broth, parameters, variables with values/units
    Note that both disp() and describe() takes values from the last simulation
    and the command process_diagram() brings up the main configuration
    Brief information about a command by help(), eg help(simu)
    Key system information is listed with the command system_info()
%matplotlib inline
plt.rcParams['figure.figsize'] = [25/2.54, 20/2.54]
import warnings
warnings.filterwarnings("ignore")
```

▼ BPL_TEST2_Fedbatch - demo

process_diagram()

describe('culture'); print(); #describe('liquidphase')

Pump schedule parameter

Simplified text book model - only substrate S and cell concentration X

Simulation with default values of the process
newplot(plotType='TimeSeries')
simu(20)


```
disp(mode='long')
```

```
bioreactor.V_0 : V_0 : 1.0
bioreactor.m_0[1] : VX_0 : 1.0
bioreactor.m_0[2] : VS_0 : 10.0
bioreactor.culture.Y : Y : 0.5
bioreactor.culture.Ys : Y : 0.5
bioreactor.culture.Ks : Ks : 0.1
feedtank.c_in[2] : feedtank.S_in : 300.0
feedtank.V_0 : feedtank.V_0 : 10.0
dosagescheme.mu_feed : mu_feed : 0.1
dosagescheme.t_start : t_start : 3.0
dosagescheme.F_start : F_start : 0.001
dosagescheme.F_max : F_max : 0.3
```

A more typical feed scheme for the culture at hand newplot(plotType='TimeSeries') par(t_start=4, F_start=0.008, mu_feed=0.2, F_max=0.1) simu(20)

