Chapter 3

正则表达式

3.1 正则表达式

- 有穷自动机
 - 通过机器装置描述正则语言
 - 用计算机编写相应算法, 易于实现
- 正则表达式
 - 通过表达式描述正则语言, 代数表示方法, 使用方便
 - 应用广泛
 - * grep 工具 (Global Regular Expression and Print)
 - * Emacs / Vim 文本编辑器
 - * lex / flex 词法分析器
 - * 各种程序设计语言 Python / Perl / Haskull / · · ·

3.1.1 语言的运算

设L和M是两个语言,那么

并
$$L \cup M = \{w \mid w \in L \ \text{或} \ w \in M\}$$
 连接
$$L \cdot M = \{w \mid w = xy, \ x \in L \ \text{且} \ y \in M\}$$

$$L^0 = \{\varepsilon\}$$

$$L^1 = L$$

$$L^n = L^{n-1} \cdot L$$

$$3 - 1$$

克林闭包
$$L^* = \bigcup_{i=0}^{\infty} L^i$$

例 1. 若有语言 $L = \{0, 11\}$ 和 $M = \{\varepsilon, 001\}$, 那么

$$L \cup M =$$
 $L^0 =$ $LM =$ $L^1 =$ $ML =$ $L^2 =$

例 2. 对于空语言 ∅

$$\emptyset^0 = \{\varepsilon\}$$

$$\forall n \ge 1, \quad \emptyset^n = \emptyset$$

$$\emptyset^* = \{\varepsilon\}$$

四则运算表达式的递归定义:

- 1. 任何数都是四则运算表达式;
- 2. 如果 a 和 b 是四则运算表达式, 那么

$$a+b, a-b, a \times b, a \div b \not \vdash b (a)$$

都是四则运算表达式.

3.1.2 正则表达式的递归定义

定义. 如果 Σ 为字母表, 则 Σ 上的正则表达式递归定义为:

- 1. \emptyset 是一个正则表达式,表示空语言; ε 是一个正则表达式,表示语言 $\{\varepsilon\}$; $\forall a \in \Sigma$, \mathbf{a} 是一个正则表达式,表示语言 $\{a\}$;
- 2. 如果正则表达式 r 和 s 分别表示语言 R 和 S, 那么

$$r + s$$
, rs , $r^* \not = (r)$

都是正则表达式,分别表示语言

$$R \cup S$$
, $R \cdot S$, $R^* \not = R$.

此外正闭包定义为 $\mathbf{r}^+ = \mathbf{r}\mathbf{r}^*$, 显然 $\mathbf{r}^* = \mathbf{r}^+ + \boldsymbol{\varepsilon}$. 而且 $\mathbf{r}^* = \mathbf{r}^+$ 当且仅当 $\boldsymbol{\varepsilon} \in \mathbf{L}(\mathbf{r})$.

3.1.3 运算符的优先级

正则表达式中三种运算以及括号的优先级:

- 1. 首先,"括号"优先级最高;
- 2. 其次, "星"运算: r*;
- 3. 然后, "连接"运算: rs, r·s;
- 4. 最后, "加"最低: $\mathbf{r} + \mathbf{s}, \mathbf{r} \cup \mathbf{s}$;

例 3.

$$egin{aligned} \mathbf{1} + \mathbf{0} \mathbf{1}^* &= \mathbf{1} + (\mathbf{0} (\mathbf{1}^*)) \\ &
eq \mathbf{1} + (\mathbf{0} \mathbf{1})^* \\ &
eq (\mathbf{1} + \mathbf{0} \mathbf{1})^* \\ &
eq (\mathbf{1} + \mathbf{0}) \mathbf{1}^* \end{aligned}$$

3.1.4 正则表达式示例

例 4.

E
 L(E)

 a + b
 L(a)
$$\cup$$
 L(b) = $\{a\}$ \cup $\{b\}$ = $\{a,b\}$

 bb
 L(b) \cdot L(b) = $\{b\}$ \cdot $\{b\}$ = $\{bb\}$

 (a + b)(a + b)
 $\{a,b\}$ $\{a,b\}$ = $\{aa,ab,ba,bb\}$

 (a + b)*(a + bb)
 $\{a,b\}^*\{a,bb\}$ = $\{a,b\}^*\{a\}$ \cup $\{a,b\}^*\{bb\}$ = $\{w \in \{a,b\}^* \mid w \not\in \{a,b\}^* \mid w \not\in \{a,b\}^* \mid w \not\in \{a,b\}^*\}$

 1 + (01)*
 $\{1,\varepsilon,01,0101,010101,\ldots\}$

 (0 + 1)*01(0 + 1)*
 $\{x\,01y \mid x,y \in \{0,1\}^*\}$

例 5. 给出正则表达式 $(aa)^*(bb)^*b$ 定义的语言.

$$\mathbf{L}((\mathbf{a}\mathbf{a})^*(\mathbf{b}\mathbf{b})^*\mathbf{b}) = \mathbf{L}((\mathbf{a}\mathbf{a})^*) \cdot \mathbf{L}((\mathbf{b}\mathbf{b})^*) \cdot \mathbf{L}(\mathbf{b})$$
$$= (\{a\}\{a\})^*(\{b\}\{b\})^*\{b\}$$

$$= \{a^2\}^* \{b^2\}^* \{b\}$$
$$= \{a^{2n}b^{2m+1} \mid n \ge 0, m \ge 0\}$$

例 6. Design regular expression for $L = \{w \mid w \text{ consists of 0's and 1's, and the third symbol from the right end is 1.}$

$$(0+1)^*1(0+1)(0+1)$$

例 7. Design regular expression for $L = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ has no pair of consecutive 0's.} \}$

$$\mathbf{1}^*(\mathbf{011}^*)^*(\mathbf{0}+\varepsilon)$$
 或 $(\mathbf{1}+\mathbf{01})^*(\mathbf{0}+\varepsilon)$

- 例. Write a regular expression for the set of strings that consist of alternating 0's and 1's.
- 例. Design regular expression for $L = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ contains } 01\}.$
- 例. Write a regular expression for $L = \{w \in \{0,1\}^* \mid 0 \text{ and } 1 \text{ alternate in } w\}$.
- 例. Find a regular expression for the set $\{a^nb^m \mid (n+m) \text{ is odd }\}$.
- 例. Give regular expression for the complement of $L = \{a^n b^m \mid n \geq 3, m \leq 4\}$.
- 例. Write a regular expression for the set of all C real numbers.

3.2 有穷自动机和正则表达式

DFA, NFA, ε -NFA 和正则表达式的等价性

3.2.1 由 DFA 到正则表达式, 递归表达式法

定理 3. 若 $L = \mathbf{L}(A)$ 是某 DFA A 的语言, 那么存在正则表达式 R 满足 $L = \mathbf{L}(R)$.

证明: 对 DFA A 的状态编号, 令 1 为开始状态, 即

$$A = (\{1, 2, \dots, n\}, \Sigma, \delta, 1, F),$$

设正则表达式 $R_{ij}^{(k)}$ 表示从 i 到 j 但中间节点不超过 k 全部路径的字符串集:

 $R_{ij}^{(k)} = \{x \mid \hat{\delta}(i,x) = j, x$ 经过的状态除两端外都不超过 $k\}$.

那么与 $A = (\{1, 2, ..., n\}, \Sigma, \delta, 1, F)$ 等价的正则表达式为

$$\bigcup_{j \in F} R_{1j}^{(n)}$$

且递归式为

$$R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$$

$$R_{ij}^{(0)} = \begin{cases} \{a \mid \delta(q_i, a) = q_j\} & i \neq j \\ \{a \mid \delta(q_i, a) = q_j\} \cup \{\varepsilon\} & i = j \end{cases}$$

下面对 k 归纳, 证明可用以上递归式求得 $R_{ij}^{(k)}$.

归纳基础: 当 $i \neq j$, k = 0时, 即i到j没经过任何中间节点

• 没有 i 到 j 的状态转移

• 有一个i到j的状态转移

$$\underbrace{i} \xrightarrow{a} \underbrace{j} \qquad \qquad R_{ij}^{(0)} = \mathbf{a}$$

• 有多个 i 到 j 的状态转移

$$\begin{array}{c}
a_1 \\
\vdots \\
a_t
\end{array}$$

$$R_{ij}^{(0)} = \mathbf{a}_1 + \mathbf{a}_2 + \dots + \mathbf{a}_t$$

归纳基础 (续): 当 i=j, k=0 时, 即从 i 到自身没经过任何中间节点

状态 i 没有到自己的转移

$$R_{ii}^{(0)} = \varepsilon$$

• 状态 i 有一个到自身的转移

$$(i)$$
 $\Rightarrow a$ $R_{ii}^{(0)} = \mathbf{a} + \boldsymbol{\varepsilon}$

• 状态 i 有多个到自身的转移

归纳假设: 已知 $R_{ij}^{(k-1)}$ 是从 i 到 j 但中间节点不超过 k-1 的全部路径, 同理已知 $R_{ik}^{(k-1)}$, $R_{kk}^{(k-1)}$ 和 $R_{kj}^{(k-1)}$.

归纳递推: 那么 $R_{ij}^{(k)}$ 中全部路径, 可用节点 k 分为两部分

• 从 到 不经过 的

$$\begin{array}{ccc}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

从 i 到 j 经过 k 的

$$i) \sim \sim (k) \sim \sim (k) \sim (j)$$

$$R_{ij}^{(k)} = R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$$

因此
$$R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$$
.

例 8. 将如图 DFA 转换为正则表达式.

• 计算 $R_{ij}^{(0)}$

$$egin{array}{ccc} R_{ij}^{(k)} & k=0 \ \hline R_{11}^{(0)} & oldsymbol{arepsilon} + \mathbf{1} \ R_{12}^{(0)} & \mathbf{0} \ R_{21}^{(0)} & oldsymbol{\varnothing} \ R_{22}^{(0)} & oldsymbol{arepsilon} + \mathbf{0} + \mathbf{1} \end{array}$$

• 计算 $R_{ij}^{(1)} = R_{ij}^{(0)} + R_{i1}^{(0)} (R_{11}^{(0)})^* R_{1j}^{(0)}$

• 几个基本的化简规则

如果r和s是两个正则表达式

$$(\varepsilon + \mathbf{r})^* = \mathbf{r}^*$$

 $(\varepsilon + \mathbf{r})\mathbf{r}^* = \mathbf{r}^*$
 $\mathbf{r} + \mathbf{r}\mathbf{s}^* = \mathbf{r}\mathbf{s}^*$
 $\emptyset \mathbf{r} = \mathbf{r}\emptyset = \emptyset$ (零元)
 $\emptyset + \mathbf{r} = \mathbf{r} + \emptyset = \mathbf{r}$ (单位元)

• 化简 $R_{ij}^{(1)}$

• 计算 $R_{ij}^{(2)} = R_{ij}^{(1)} + R_{i2}^{(1)} (R_{22}^{(1)})^* R_{2j}^{(1)}$

• 化简 $R_{ij}^{(2)}$

• 因只有 q_2 是接受状态, 所以该 DFA 正则表达式为

$$R_{12}^{(2)} = \mathbf{1}^* \mathbf{0} (\mathbf{0} + \mathbf{1})^*.$$

例 9. 将如图 DFA 转换为正则表达式.

	k=0	k = 1	k = 2
$R_{11}^{(k)}$	arepsilon	arepsilon	(00)*
$R_{12}^{(k)}$	0	0	$0(00)^*$
$R_{13}^{(k)}$	1	1	0^*1
$R_{21}^{(k)}$	0	0	$0(00)^*$
$R_{22}^{(k)}$	arepsilon	arepsilon + 00	$(00)^{*}$
$R_{23}^{(k)}$	1	1 + 01	0^*1
$R_{31}^{(k)}$	Ø	Ø	$(0+1)(00)^*0$
$R_{32}^{(k)}$	0+1	0+1	$({f 0}+{f 1})({f 00})^*$
$R_{33}^{(k)}$	arepsilon	arepsilon	$oldsymbol{arepsilon} + (0 + 1) 0^* 1$

仅状态 2 和 3 是接受状态:

$$\begin{split} R_{12}^{(3)} &= R_{12}^{(2)} + R_{13}^{(2)}(R_{33}^{(2)})^* R_{32}^{(2)} \\ &= \mathbf{0}(\mathbf{00})^* + \mathbf{0}^* \mathbf{1}(\varepsilon + (\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1})^* (\mathbf{0} + \mathbf{1})(\mathbf{00})^* \\ &= \mathbf{0}(\mathbf{00})^* + \mathbf{0}^* \mathbf{1}((\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1})^* (\mathbf{0} + \mathbf{1})(\mathbf{00})^* \\ R_{13}^{(3)} &= R_{13}^{(2)} + R_{13}^{(2)}(R_{33}^{(2)})^* R_{33}^{(2)} \\ &= \mathbf{0}^* \mathbf{1} + \mathbf{0}^* \mathbf{1}(\varepsilon + (\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1})^* (\varepsilon + (\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1}) \\ &= \mathbf{0}^* \mathbf{1}((\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1})^* \\ R_{12}^{(3)} + R_{13}^{(3)} &= \mathbf{0}^* \mathbf{1}((\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1})^* (\varepsilon + (\mathbf{0} + \mathbf{1})(\mathbf{00})^*) + \mathbf{0}(\mathbf{00})^*. \end{split}$$

3.2.2 由 DFA 到正则表达式, 状态消除法

- 从 DFA 中逐个删除状态
- 用标记了正则表达式的新路径替换被删掉的路径
- 保持"自动机"等价.

- 更一般的情况如图
- 若要删除状态 S, 需添加相应路径

要为被删除的状态 S 的每个"入"和"出"路径的组合,补一条等价的新路径,结点上的循环用闭包表示. 保持新路径与被删掉的路径集合等价.

例 10. 利用状态消除法, 构造下图自动机的正则表达式.

1. 利用空转移, 添加新的开始 s 和结束状态 f:

2. 消除状态 q_1 , 添加路径 $q_0 \rightarrow q_2$ 和 $q_2 \rightarrow q_2$:

3. 消除状态 q_0 , 添加路径 $s \rightarrow q_2$ 和 $q_2 \rightarrow q_2$:

4. 消除状态 q_2 , 添加路径 $s \to f$:

$$\operatorname{start} \longrightarrow s \underbrace{ 1^*00^*1(00^*1 + 11^*00^*1)^*}_{}$$

5. 因此该自动机的正则表达式为

$$1*00*1(00*1 + 11*00*1)*.$$

3.2.3 由正则表达式到 ε -NFA

定理 4. 正则表达式定义的语言, 都可被有穷自动机识别.

由正则表达式构造 ε -NFA

任何正则表达式 **e**, 都存在与其等价的 ε -NFA A, 即 $\mathbf{L}(A) = \mathbf{L}(\mathbf{e})$, 并且 A 满足:

- 1. 仅有一个接收状态;
- 2. 没有进入开始状态的边;
- 3. 没有离开接受状态的边.

归纳基础:

1. 对于 ∅, 有 ε-NFA:

2. 对于 ϵ , 有 ϵ -NFA:

start
$$\overbrace{\hspace{1cm}}^{\varepsilon}$$

3. $\forall a \in \Sigma$, 对于 **a**, 有 ε-NFA:

归纳递推: 若 \mathbf{r} 和 \mathbf{s} 为正则表达式,则它们对应的 ε-NFA 分别为 R 和 S

则正则表达式 $\mathbf{r} + \mathbf{s}$, \mathbf{rs} 和 \mathbf{r}^* , 可由 R 和 S 分别构造如下:

1. 对于 $\mathbf{r} + \mathbf{s}$, 有 ε-NFA:

2. 对于 **rs**, 有 ε-NFA:

3. 对于 \mathbf{r}^* , 有 ε-NFA:

因此任何结构的正则表达式, 都可递归构造出等价的 ε -NFA.

例 11. 正则表达式 (0+1)*1(0+1) 构造为 ε-NFA.

思考题

正则表达式到 ε -NFA 构造方法中的 3 个限制条件, 都有必要吗?

3.3 正则表达式的代数定律

3.3.1 基本的代数定律

定义. 含有变量的两个正则表达式,如果以任意语言替换其变量,二者所表示的语言仍然相同,则称这两个正则表达式等价. 在这样的意义下,正则表达式满足一些代数定律.

• 并运算

$$(L+M)+N=L+(M+N)$$
 (结合律)
 $L+M=M+L$ (交换律)
 $L+L=L$ (幂等律)
 $\emptyset+L=L+\emptyset=L$ (单位元 \emptyset)

• 连接运算

$$(LM)N = L(MN)$$
 (结合律)
 $\varepsilon L = L\varepsilon = L$ (单位元 ε)
 $\emptyset L = L\emptyset = \emptyset$ (零元 \emptyset)
 $LM \neq ML$

• 分配率

$$L(M+N) = LM + LN$$
 (左分配律)
 $(M+N)L = ML + NL$ (右分配律)

• 闭包运算

$$(L^*)^* = L^*$$
 $\emptyset^* = \varepsilon$
 $\varepsilon^* = \varepsilon$
 $L^* = L^+ + \varepsilon$
 $(\varepsilon + L)^* = L^*$

3.3.2 发现与验证代数定律

检验方法

要判断表达式 E 和 F 是否等价, 其中变量为 L_1, \ldots, L_n :

- 1. 将变量替换为具体表达式, 得正则表达式 \mathbf{r} 和 \mathbf{s} , 例如, 替换 L_i 为 \mathbf{a}_i ;
- 2. 判断 $\mathbf{L}(\mathbf{r}) \stackrel{?}{=} \mathbf{L}(\mathbf{s})$, 如果相等则 E = F, 否则 $E \neq F$.

例 12. 判断 $(L+M)^* = (L^*M^*)^*$.

- 1. 将 L 和 M 替换为 a 和 b;
- 2. $(\mathbf{a} + \mathbf{b})^* \stackrel{?}{=} (\mathbf{a}^* \mathbf{b}^*)^*$;
- 3. 因为 $L((\mathbf{a} + \mathbf{b})^*) = L((\mathbf{a}^*\mathbf{b}^*)^*);$
- 4. 所以 $(L+M)^* = (L^*M^*)^*$.

例 13. 判断 L + ML = (L + M)L.

- 1. 将 L 和 M 替换为 a 和 b;
- 2. 判断 $\mathbf{a} + \mathbf{b}\mathbf{a} \stackrel{?}{=} (\mathbf{a} + \mathbf{b})\mathbf{a}$;
- 3. 因为 $aa \notin \mathbf{a} + \mathbf{ba}$ 而 $aa \in (\mathbf{a} + \mathbf{b})\mathbf{a}$;
- 4. 所以 $\mathbf{a} + \mathbf{b}\mathbf{a} \neq (\mathbf{a} + \mathbf{b})\mathbf{a}$;
- 5. $\mathbb{P} L + ML \neq (L+M)L$.

注意

这种方法仅限于判断正则表达式, 否则可能会发生错误.

例 14. 若用此方法判断 $L \cap M \cap N \stackrel{?}{=} L \cap M$, 以 $\mathbf{a}, \mathbf{b}, \mathbf{c}$ 替换 L, M, N, 有

$$\{a\}\cap\{b\}\cap\{c\}=\emptyset=\{a\}\cap\{b\},$$

而显然

$$L \cap M \cap N \neq L \cap M$$
.

例.

- $(L+M)^* = (L^*M^*)^*$
- $(\varepsilon + L)^* = L^*$
- $L^* \stackrel{?}{=} L^*L^*$ 由 $\mathbf{a}^* = \mathbf{a}^*\mathbf{a}^*$ 得 $L^* = L^*L^*$ 成立.

- $(L+M)^*M\stackrel{?}{=}(L^*M)^*$ 替换得 $(\mathbf{a}+\mathbf{b})^*\mathbf{b}\stackrel{?}{=}(\mathbf{a}^*\mathbf{b})^*$,因为 $\varepsilon \not\in (\mathbf{a}+\mathbf{b})^*\mathbf{b}$ 且 $\varepsilon \in (\mathbf{a}^*\mathbf{b})^*$,所以不相等.
- $(R+S)^* \stackrel{?}{=} R^* + S^*$
- $(RS+R)^*R \stackrel{?}{=} R(SR+R)^*$
- $(RS + R)^*RS \stackrel{?}{=} (RR^*S)^*$
- $(R+S)^*S \stackrel{?}{=} (R^*S)^*$