Problem 13 [14 Points]: Consider the following network. With the indicated link costs, use Dijkstra's shortest-path algorithm to compute the shortest path from A to all network nodes. Show how the algorithm works by computing the table below.

MCV					
Step N' $D(B), p(B)$	D(C), p(C)	D(D), p(D)	D(E), p(E)	D(F), p(F)	D(G), p(G)
1 A 10 A 2 AC 9 C 3 ACG 7 B 4 ACGF	2 A 8 O	Sie	844	111	77

Problem 14 [15 Points]: Consider three nodes, A, B, and C, that use slotted ALOHA protocol to contend for a broadcast channel. Suppose that the retransmission probabilities of node A, B, and C, are 0.1, 0.2, and 0.3, respectively. What are the probabilities of a slot being idle, successful, and collision, respectively?