EXPT NO: 5 A python program to implement Multi Layer

DATE: Perceptron With Backpropagation

AIM:

To write a python program to implement Multilayer perceptron with backpropagation.

PROCEDURE:

Implementing Multilayer perceptron with backpropagation using the Keras dataset involve the following steps:

Step 1: Import Necessary Libraries

First, import the libraries that are essential for data manipulation, visualization, and model building.

importing modules

import tensorflow as tf

import numpy as np

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Activation

import matplotlib.pyplot as plt

Step 2: Load the Keras Dataset

The Keras dataset can be loaded.

 $(x_{train}, y_{train}), (x_{test}, y_{test}) = tf.keras.datasets.mnist.load_data()$

OUTPUT:

Step 3: Data Preprocessing

Ensure the data is clean and ready for modeling. Since the Iris dataset is clean, minimal preprocessing is needed.

```
# Cast the records into float values
x_{train} = x_{train.astype}('float32')
x_{test} = x_{test.astype}('float32')
# normalize image pixel values by dividing
# by 255
gray_scale = 255
x_train /= gray_scale
x_test /= gray_scale
print("Feature matrix:", x_train.shape)
print("Target matrix:", x_test.shape)
print("Feature matrix:", y_train.shape)
print("Target matrix:", y_test.shape)
```

OUTPUT:

```
Feature matrix: (60000, 28, 28)
Target matrix: (10000, 28, 28)
Feature matrix: (60000,)
Target matrix: (10000,)
```

Step 4 : Train a Model

```
model = Sequential([
  # reshape 28 row * 28 column data to 28*28 rows
  Flatten(input_shape=(28, 28)),
  # dense layer 1
  Dense(256, activation='sigmoid'),
  # dense layer 2
  Dense(128, activation='sigmoid'),
  # output layer
  Dense(10, activation='sigmoid'),
1)
```

OUTPUT:

```
/usr/local/lib/python3.10/dist-packages/keras/src/layers/reshaping/flatten.py:37: UserWarning: super().__init__(**kwargs)
```

Step 5: Make Predictions

Use the model to make predictions based on the independent variable.

```
model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

model.fit(x_train, y_train, epochs=10,

batch_size=2000,

validation_split=0.2)
```

OUTPUT:

```
→ Epoch 1/10
                              - 5s 115ms/step - accuracy: 0.3546 - loss: 2.1596 - val_accuracy: 0.68
    24/24 -
    Epoch 2/10
                              - 4s 53ms/step - accuracy: 0.7116 - loss: 1.3743 - val_accuracy: 0.820
    24/24 -
    Epoch 3/10
                              - 1s 53ms/step - accuracy: 0.8221 - loss: 0.8221 - val_accuracy: 0.872
    24/24 -
    Epoch 4/10
                              - 3s 65ms/step - accuracy: 0.8720 - loss: 0.5676 - val_accuracy: 0.892
    24/24 -
    Epoch 5/10
                              - 2s 99ms/step - accuracy: 0.8907 - loss: 0.4444 - val_accuracy: 0.902
    24/24 -
    Epoch 6/10
                             - 3s 102ms/step - accuracy: 0.8993 - loss: 0.3852 - val_accuracy: 0.91
    24/24 -
    Epoch 7/10
    24/24 -
                             - 3s 104ms/step - accuracy: 0.9088 - loss: 0.3416 - val accuracy: 0.91
    Epoch 8/10
    24/24 -
                              - 2s 92ms/step - accuracy: 0.9119 - loss: 0.3188 - val_accuracy: 0.922
    Epoch 9/10
                              - 2s 92ms/step - accuracy: 0.9191 - loss: 0.2911 - val_accuracy: 0.926
    24/24 -
    Epoch 10/10
                              - 3s 99ms/step - accuracy: 0.9245 - loss: 0.2704 - val accuracy: 0.925
    <keras.src.callbacks.history.History at 0x7d9ca1406a40>
```

Step 6 : Evaluate the Model

Evaluate the model performance.

```
results = model.evaluate(x_test, y_test, verbose = 0)

print('test loss, test acc:', results)
```

```
fig, ax = plt.subplots(10, 10)
k = 0
for i in range(10):
for j in range(10):
ax[i][j].imshow(x_train[k].reshape(28, 28),
aspect='auto')
k += 1
plt.show()
```

OUTPUT:

→ test loss, test acc: [0.2589016258716583, 0.9277999997138977]

TP1. ' 1.	.4	1 M 1/1 D	
	step process will help us to imption models using the Keras da		
Dackpropaga	non moders using the Keras da	aset and analyze their perior	mance.