

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC160371

1 of 92 Page:

FCC Radio Test Report FCC ID: 2AEP6XM-JPIDG1

Original Grant

Report No. TB-FCC160371

HangZhou XiongMai Technology CO., LTD. **Applicant**

Equipment Under Test (EUT)

EUT Name SMART VIDEO DOORBELL

Model No. XM-JPIDG1

Series Model No. N/A

Brand Name N/A

Receipt Date 2018-06-08

2018-06-09 to 2018-07-05 **Test Date**

Issue Date 2018-07-06

Standards FCC Part 15: 2017, Subpart C(15.247)

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

Ray Lai

The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Page: 2 of 92

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Data	
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	
	5.5 Test Data	
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 EUT Operating Condition	
	6.5 Test Data	
7.	BANDWIDTH TEST	
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	
8.	PEAK OUTPUT POWER TEST	21
V .	8.1 Test Standard and Limit	
	8.2 Test Setup	

Page: 3 of 92

		(21)
	8.3 Test Procedure	
	8.4 EUT Operating Condition	21
	8.5 Test Data	21
9.	POWER SPECTRAL DENSITY TEST	22
	9.1 Test Standard and Limit	22
	9.2 Test Setup	
	9.3 Test Procedure	22
	9.4 EUT Operating Condition	22
	9.5 Test Data	22
10.	ANTENNA REQUIREMENT	23
	10.1 Standard Requirement	23
	10.2 Antenna Connected Construction	
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
ATT	ACHMENT B RADIATED EMISSION TEST DATA	28
ATT	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	54
ATT	ACHMENT D BANDWIDTH TEST DATA	74
ATT	ACHMENT E PEAK OUTPUT POWER TEST DATA	82
ATT	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	85

Page: 4 of 92

Revision History

Report No.	Version	Description	Issued Date
TB-FCC160371	Rev.01	Initial issue of report	2018-07-06
MODY	10		
	1000	The same	
a Million	ON WOLL		Eller.
D. T.	3	CON TO	000
TO THE	3 6	OBI GODE	THE PERSON NAMED IN
	(108)	TO BE THE	
			MON WOR
	7000	The same of the sa	
a min		TODAY	The state of the s
	3	4000	
Bur	33		

Page: 5 of 92

1. General Information about EUT

1.1 Client Information

Applicant : HangZhou XiongMai Technology CO., LTD.		HangZhou XiongMai Technology CO., LTD.
Address : 9th Floor, Building 9, Yinhu Innovation Center, No.9 FuXian Road, YinHu Street, Hangzhou, China		
Manufacturer		HangZhou XiongMai Technology CO., LTD.
Address	:	No2 Dongqiao Rd Dongzhou Functional Zone, Dongzhou Street Fuyang District, Hangzhou, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	SMART VIDEO DOOR	BELL		
Models No.	•	XM-JPIDG1			
Model Difference		N/A			
1000		Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz		
		Number of Channel:	802.11b/g/n(HT20):11 channels see note(3) 802.11n(HT40): 7 channels see note(3)		
Product		RF Output Power:	802.11b: 17.32 dBm 802.11g: 15.74 dBm 802.11n (HT20): 13.85 dBm 802.11n (HT40): 13.54 dBm		
Description		Antenna Gain:	3dBi PIFA Antenna		
		Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM, 64QAM)		
		Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6 Mbps 802.11n:up to 150Mbps		
Power Supply		DC 5V by USB Cable. DC 3.7V by Li-ion Batte			
Software Version		N/A			
Hardware Version	:	N/A			
Connecting I/O Port(S)	7	Please refer to the User's Manual			

Note:

- (1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v04.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or

Page: 6 of 92

the User's Manual.

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

Note:CH 01~CH 11 for 802.11b/g/n(HT20) CH 03~CH 09 for 802.11n(HT40)

- (4) The Antenna information about the equipment is provided by the applicant.
- 1.3 Block Diagram Showing the Configuration of System Tested

Charging + TX Mode

TX Mode

Page: 7 of 92

1.4 Description of Support Units

Equipment Information						
Name	Model	FCC ID/VOC	Manufacturer	Used "√"		
AC/DC Adapter	TEKA012	VOC	TEKA	1		
AC/DC Adapter: Input:100~240V, 50/60Hz, 0.2A. Output: 5V, 1A						
Cable Information						
Number Shielded Type Ferrite Core Length Note						
Cable 1	YES	YES	1.2M	- WO 52		

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode	Description				
Mode 1	Charging with TX B Mode				
	For Radiated Test				
Final Test Mode Description					
Mode 2	TX Mode B Mode Channel 01/06/11				
Mode 3	TX Mode G Mode Channel 01/06/11				
TX Mode N(HT20) Mode Channel 01/06/11					
Mode 5 TX Mode N(HT40) Mode Channel 03/06/09					

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps) 802.11n (HT40) Mode: MCS 0 (13 Mbps)

(2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.

Page: 8 of 92

(3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel&Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version		N/A	THU!
Channel	CH 01	CH 06	CH 11
IEEE 802.11b DSSS	DEF	DEF	DEF
IEEE 802.11g OFDM	DEF	DEF	DEF
IEEE 802.11n (HT20)	DEF	DEF	DEF
	CH 03	CH 06	CH 09
IEEE 802.11n (HT40)	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 9 of 92

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 92

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2						
Standa FCC	rd Section IC	Test Item	Judgment	Remark		
15.203	1	Antenna Requirement	PASS	N/A		
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A		
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A		
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A		
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	PASS	N/A		
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A		
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A		
15.247(d)& 15.209	RSS 247 5.5	Transmitter Radiated Spurious Emission	PASS	N/A		

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 11 of 92

3. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 20, 2017	Jul. 19, 2018
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 20, 2017	Jul. 19, 2018
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 20, 2017	Jul. 19, 2018
LISN	Rohde & Schwarz	ENV216	101131	Jul. 21, 2017	Jul. 20, 2018
Radiation Emission	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 20, 2017	Jul. 19, 2018
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 03, 2018	Jul. 02, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.17, 2018	Mar. 16, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.17, 2018	Mar. 16, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.17, 2018	Mar. 16, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducte	d Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 20, 2017	Jul. 19, 2018
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Oct. 26, 2017	Oct. 25, 2018
DE Dower Sanaar	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Oct. 26, 2017	Oct. 25, 2018
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Oct. 26, 2017	Oct. 25, 2018

Page: 12 of 92

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Eronio monthi	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 92

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 14 of 92

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m (dBuV/m)				
(MHz)	Peak	Average			
Above 1000	74	54			

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Page: 15 of 92

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 92

Above 1GHz Test Setup

5.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

Page: 17 of 92

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 92

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.247(d)

FCC Part 15.209

FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)				
Band (MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Page: 19 of 92

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.

Page: 20 of 92

7. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210						
Test Item Limit Frequency Range(MH						
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5				

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 92

8. Peak Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210						
Test Item Limit Frequency Range(MH						
Peak Output Power	1 Watt or 30 dBm	2400~2483.5				

8.2 Test Setup

8.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 DTS Meas Guidance v04. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 92

9. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)						
Test Item Limit Frequency Range(MHz)						
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5				

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak(7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 92

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 3dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is a PIFA Antenna. It complies with the standard requirement.

Antenna Type				
Time Control	Permanent attached antenna	THE PARTY		
a Time	⊠Unique connector antenna			
D	Professional installation antenna	MILE.		

Page: 24 of 92

Attachment A-- Conducted Emission Test Data

Page: 25 of 92

26 of 92 Page:

Temperature:	25 ℃	Rela	tive Humidity:	55%	TOTAL STATE
Test Voltage:	AC 240V/60Hz	9	CHILLIAN STREET		A River
Terminal:	Line	Vienn	61	4.77	
Test Mode:	Charging with TX B	Mode			Marin Land
Remark:	Only worse case is re	eported	ALI DE	a W	A Liberton
-10 0.150	0.5	(MHz)	5	QP: AVG:	peak AVG
No. Mk. Fr	•	_	asure- ent Limit	Over	
M	Hz dBuV	dB dB	BuV dBuV	dB	Detector
1 0.22	260 38.07	9.58 47	.65 62.59	-14.94	QP
2 0.22	260 32.73	9.58 42	.31 52.59	-10.28	AVG
3 0.33	339 34.78	9.59 44	.37 59.35	-14.98	QP
4 0.33	339 30.17	9.59 39	.76 49.35	-9.59	AVG
5 0.4	540 39.54	9.60 49	.14 56.80	-7.66	QP
6 * 0.4	540 31.72	9.60 41	.32 46.80	-5.48	AVG
7 0.56	660 35.64	9.60 45	.24 56.00	-10.76	QP
8 0.56	660 28.05	9.60 37	.65 46.00	-8.35	AVG
9 0.69	540 32.95	9.61 42	.56 56.00	-13.44	QP
10 0.69	540 24.09	9.61 33	.70 46.00	-12.30	AVG
11 1.00	020 32.88	9.60 42	.48 56.00	-13.52	QP
12 1.00	020 25.33	9.60 34	.93 46.00	-11.07	AVG
Emission Levels	= Read Level+ Correc	t Factor			

Page: 27 of 92

Page: 28 of 92

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

empe	erature	e:	25 °	C			C'III	Relati	ve Hu	ımidity	/ :	55%	1
est V	oltage	:	DC 3	3.7V					8:1	100		600	1:30
nt. P	ol.		Horiz	zonta				alla			A	1872	100
est N	lode:		TX B	Mod	de 24	112M	Hz		16	11/13			3 W
Rema	rk:		Only	wors	se ca	ase is	reported				P		19
80.0 d	BuV/m												
										(RF)F(C 15C 3	BM Radiati	
											4	Margin 5	-
-							1 *	2 3 * 1			1 7	× ,	
30					-					سلم	1	A Late	
<u> </u>							lm.			m	TI WIT	Al ^t h Nuth	IR Mary
w	h		1		www	1~^ I	My ha	M)	N Or				
	~~~	MM	hil	v~~	who	יי אט							
20													
30.000	40	50	60 7	70 80			(MHz)		300	400	500	600 70	0 1000.000
							0	Mana					
No	. Mk.	Fre	eq.		ead Leve	_	Correct Factor			Limi	it	Over	r
- 110		M			dBu\			dBu\		dBu\	//m	dB	Detecto
4		148.4					dB/m						
1					57.7		-21.60	36.		43.		-7.3	
2		216.7	828		55.2	20	-19.03	36.	17	46.	00	-9.8	<u>'</u>
		247.6	819	,	56.1	9	-17.31	38.	88	46.	00	-7.12	2 peal
3					-1 1	2	-9.21	42.	21	46.	00	-3.79	9 peal
3	*	547.0	977	,	51.4	_							
	,	547.0 595.1			51.4 50.1		-8.59	41.	51	46.	00	-4.49	9 peal
4	İ		326	;		0		41. 42.		46. 46.		-4.49 -3.8	



Page: 29 of 92

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	Militia				
Ant. Pol.	Vertical	131	THE			
Test Mode:	TX B Mode 2412MHz					
Remark:	Only worse case is repor	ted	The same of the sa			
80.0 dBuV/m						



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		33.3278	48.31	-15.50	32.81	40.00	-7.19	peak
2		148.4410	52.83	-21.60	31.23	43.50	-12.27	peak
3		346.8091	49.97	-14.69	35.28	46.00	-10.72	peak
4	İ	547.0977	52.44	-9.21	43.23	46.00	-2.77	peak
5	į	595.1326	51.82	-8.59	43.23	46.00	-2.77	peak
6	*	869.1299	48.49	-4.79	43.70	46.00	-2.30	peak

^{*:}Maximum data x:Over limit !:over margin



Page: 30 of 92

# **Above 1GHz**

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX B Mode 2412MHz						
Remark:	No report for the emission	No report for the emission which more than 10 dB below the prescribed					
	limit.	1					



No.	Mk	Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.826	45.92	13.56	59.48	74.00	-14.52	peak
2	*	4823.969	37.67	13.56	51.23	54.00	-2.77	AVG



Page: 31 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		- W				
Ant. Pol.	Vertical		133				
Test Mode:	TX B Mode 2412MH	TX B Mode 2412MHz					
Remark:	No report for the em prescribed limit.	ission which more than 10 dB	below the				
90.0 dRuV/m							



No	o. N	Иk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		4824.030	35.25	13.56	48.81	54.00	-5.19	AVG
2			4824.070	45.39	13.56	58.95	74.00	-15.05	peak



Page: 32 of 92

1	Temperature:	25 ℃	Relative Humidity:	55%		
3	Test Voltage:	DC 3.7V				
	Ant. Pol.	Horizontal				
	Test Mode:	TX B Mode 2437MHz				
	Remark:	No report for the emission which more than 10 dB below the prescribed limit.				



N	lo.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	,	k	4874.011	38.75	13.86	52.61	54.00	-1.39	AVG
2			4874.099	47.13	13.86	60.99	74.00	-13.01	peak



Page: 33 of 92

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX B Mode 2437MHz	TX B Mode 2437MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					



N	o. MI	k. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4873.990	36.90	13.86	50.76	54.00	-3.24	AVG
2		4874.011	45.01	13.86	58.87	74.00	-15.13	peak



Page: 34 of 92

Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V	Miles			
Ant. Pol.	Horizontal				
Test Mode:	TX B Mode 2462MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.				



	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4924.030	36.91	14.15	51.06	54.00	-2.94	AVG
2	2		4924.034	46.19	14.15	60.34	74.00	-13.66	peak



Page: 35 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX B Mode 2462MHz	TX B Mode 2462MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							



No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4923.990	36.13	14.15	50.28	54.00	-3.72	AVG
2		4924.030	45.69	14.15	59.84	74.00	-14.16	peak



1000.000 3550.00

6100.00

8650.00

Report No.: TB-FCC160371

Page: 36 of 92

Temperature:		<b>25</b> ℃		Relative Humidity:		55%		
Test Voltage	DC 3.7V							
Ant. Pol.	Horizontal							
Test Mode:		TX G Mode 2412MHz						
Remark:			ort for the oed limit.	emission	which more that	n 10 dE	B below the	
90.0 dBuV/m								
						(RF) FCC	PART 15C (PEAK)	
	2 X					(RF) FC	C PART 15C (AVG)	
40	1 X							
70								
			_					

N	lo.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4823.500	28.70	13.56	42.26	54.00	-11.74	AVG
2			4824.420	42.99	13.56	56.55	74.00	-17.45	peak

11200.00 13750.00 16300.00

18850.00

21400.00

26500.00 MHz



Page: 37 of 92

í	Temperature:	25 ℃	Relative Humidity:	55%				
	Test Voltage:	DC 3.7V	OC 3.7V					
	Ant. Pol.	Vertical						
	Test Mode:	TX G Mode 2412MHz						
Remark: No report for the emission which more than 10 dB below the prescribed limit.								



-	No. MI	k. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.962	42.84	13.56	56.40	74.00	-17.60	peak
2	*	4823.962	28.61	13.56	42.17	54.00	-11.83	AVG



Page: 38 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:							
Ant. Pol.	Horizontal						
Test Mode:	TX G Mode 2437M	Hz					
Remark:	Remark: No report for the emission which more than 10 dB below the prescribed limit.						
90.0 dBuV/m							



No.	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.975	43.61	13.86	57.47	74.00	-16.53	peak
2	*	4874.092	29.26	13.86	43.12	54.00	-10.88	AVG



Page: 39 of 92

Temperature:	25 ℃	Relative Humidity:	55%						
Test Voltage:	DC 3.7V	DC 3.7V							
Ant. Pol.	Vertical	Vertical							
Test Mode:	TX G Mode 2437MHz	TX G Mode 2437MHz							
Remark:	No report for the emission which more than 10 dB below the prescribed limit.								
90.0 dBuV/m									



N	lo. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4873.541		13.86	42.88	54.00	-11.12	AVG
2		4873.803	44.03	13.86	57.89	74.00	-16.11	peak



Page: 40 of 92

_							
٦	Temperature:	25 ℃	Relative Humidity:	55%			
٦	Гest Voltage:	DC 3.7V					
Ant. Pol. Horizontal							
٦	Test Mode:	de: TX G Mode 2462MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							
ı	-						



No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.933	43.20	14.15	57.35	74.00	-16.65	peak
2	*	4924.092	29.15	14.15	43.30	54.00	-10.70	AVG



Page: 41 of 92

_					
Tempera	ature:	25 ℃	Relative Humidity:	55%	
Test Vol	tage:	DC 3.7V	THU THE	- W	
Ant. Pol		Vertical		The second	
Test Mo	de:	TX G Mode 2462MHz			
Remark: No report for the emission which more than 10 dB below the prescribed limit.					



N	o. I	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	r	4924.235	29.16	14.15	43.31	54.00	-10.69	AVG
2			4924.338	44.54	14.15	58.69	74.00	-15.31	peak



Page: 42 of 92

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	OC 3.7V						
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX N(HT20) Mode 2412	ИНz						
Remark: No report for the emission which more than 10 dB below the prescribed limit.								



No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.817	43.43	13.56	56.99	74.00	-17.01	peak
2	*	4824.459	28.67	13.56	42.23	54.00	-11.77	AVG



Page: 43 of 92

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX N(HT20) Mode	TX N(HT20) Mode 2412MHz						
Remark: No report for the emission which more than 10 dB below the prescribed limit.								
90.0 dBuV/m								



No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4823.602	29.01	13.56	42.57	54.00	-11.43	AVG
2		4824.361	43.50	13.56	57.06	74.00	-16.94	peak



Page: 44 of 92

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX N(HT20) Mode 2	TX N(HT20) Mode 2437MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							
90.0 dBuV/m								



No	o. N	Λk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		4873.663	29.01	13.86	42.87	54.00	-11.13	AVG
2		•	4874.082	42.98	13.86	56.84	74.00	-17.16	peak



Page: 45 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical						
Test Mode:	TX N(HT20) Mode 2437M	TX N(HT20) Mode 2437MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						



No	No. Mk. Freq.		Reading Correct Measure- eq. Level Factor ment			Limit Over		
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.697	43.65	13.86	57.51	74.00	-16.49	peak
2	*	4873.908	29.00	13.86	42.86	54.00	-11.14	AVG



Page: 46 of 92

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V		- W					
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX N(HT20) Mode	TX N(HT20) Mode 2462MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							
90.0 dBuV/m								



No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.565	43.58	14.15	57.73	74.00	-16.27	peak
2	*	4923.745	29.11	14.15	43.26	54.00	-10.74	AVG



1000.000 3550.00

6100.00

8650.00

11200.00

Report No.: TB-FCC160371

Page: 47 of 92

Ter	nperature	):	25 ℃			Relative Hu	ımidity:	55%		
Tes	st Voltage	:	DC 3.7\	GM	33	- OIII	1100	- N		
An	t. Pol.		Vertical	ATT		11.0	CIL	1133		
Tes	st Mode:		TX N(H	T20) Mod	de 2462MH	lz	V			
Re	mark:		No repo		emission	ssion which more than 10 dB below the				
90.0	) dBuV/m									
							(RF) FCC	PART 15C (PEAK)		
		2 X					(RF) FCC	PART 15C (AVG)		
40		1 ×								

N	o. N	Иk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		4923.724	29.12	14.15	43.27	54.00	-10.73	AVG
2			4923.922	43.66	14.15	57.81	74.00	-16.19	peak

13750.00 16300.00

**Emission Level= Read Level+ Correct Factor** 

26500.00 MHz

21400.00

18850.00



Page: 48 of 92

Temperature:	25 ℃	Relative Humidity:	55%						
Test Voltage:	DC 3.7V	DC 3.7V							
Ant. Pol.	Horizontal	Horizontal							
Test Mode:	TX N(HT40) Mode 2422MHz								
Remark: No report for the emission which more than 10 dB below the prescribed limit.									
90.0 dBuV/m									



No	No. Mk. Freq.		Reading Correct Measure- Mk. Freq. Level Factor ment		Limit Over			
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4843.897	44.37	13.68	58.05	74.00	-15.95	peak
2	*	4844.398	29.29	13.68	42.97	54.00	-11.03	AVG



Page: 49 of 92

í	Temperature:	25 ℃	Relative Humidity:	55%				
	Test Voltage:	DC 3.7V Vertical						
	Ant. Pol.							
	Test Mode:	TX N(HT40) Mode 2422M	Hz					
	Remark: No report for the emission which more than 10 dB below the prescribed limit.							
				ļ.				



No. Mk.		Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4843.798	44.03	13.68	57.71	74.00	-16.29	peak
2	*	4843.827	29.25	13.68	42.93	54.00	-11.07	AVG



Page: 50 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX N(HT40) Mode 2437M	1Hz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
1.							



ı	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4873.966	29.32	13.86	43.18	54.00	-10.82	AVG
2			4874.425	43.87	13.86	57.73	74.00	-16.27	peak



Page: 51 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V Vertical						
Ant. Pol.							
Test Mode:	TX N(HT40) Mode 2437M	Hz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						



No. Mk.		Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.615	44.05	13.86	57.91	74.00	-16.09	peak
2	*	4873.887	29.33	13.86	43.19	54.00	-10.81	AVG



Page: 52 of 92

emperature:	25 ℃	Relative Humidity:	55%				
est Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal						
est Mode:	TX N(HT40) Mode 2452MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
90.0 dBuV/m							
		(RF) FCC F	PART 15C (PEAK)				
1 ×		(RF) FCC	PART 15C (AVG)				
2 X			,				

-10											
1000	0.000 355	50.00	6100	).00 86	50.00 112	200.00 137	50.00 163	00.00 1885	0.00 2140	00.00	26500.00 MHz

No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4903.759	43.43	14.03	57.46	74.00	-16.54	peak
2	*	4903.949	29.30	14.03	43.33	54.00	-10.67	AVG



Page: 53 of 92

Temperature:	25 °C Relative Humidity: 55%					
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode: TX N(HT40) Mode 2452MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					
90.0 dBuV/m						
	(RF) FCC PART 15C (PEAK					



No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4904.217	43.72	14.03	57.75	74.00	-16.25	peak
2	*	4904.398	29.31	14.03	43.34	54.00	-10.66	AVG



Page: 54 of 92

## **Attachment C-- Restricted Bands Requirement Test Data**

## (1) Radiation Test





Page: 55 of 92





Page: 56 of 92

,	Temperature:	25 ℃	Relative Humidity:	55%
ì	Test Voltage:			
	Ant. Pol.	Horizontal	31 - 0	
Ì	Test Mode:	TX B Mode 2462MHz		
d	Remark:	N/A	MIDE	a library
		•		



No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2462.700	91.84	1.08	92.92	Fundamental	I Frequency	AVG
2	Χ	2463.400	96.65	1.08	97.73	Fundamental	I Frequency	peak
3		2483.500	49.33	1.17	50.50	74.00	-23.50	peak
4		2483.500	36.91	1.17	38.08	54.00	-15.92	AVG



Page: 57 of 92





Page: 58 of 92





Page: 59 of 92

Temperature:	<b>25</b> ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		13
Ant. Pol.	Vertical		
Test Mode:	TX G Mode 2412MHz		
Remark:	N/A	WILD S	J. Hilliam
440.0 10.44			



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	50.51	0.77	51.28	74.00	-22.72	peak
2		2390.000	37.96	0.77	38.73	54.00	-15.27	AVG
3	X	2408.300	95.46	0.85	96.31	Fundamental	Frequency	peak
4	*	2409.100	85.10	0.85	85.95	Fundamental	Frequency	AVG



Page: 60 of 92

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P	
Ant. Pol.	Horizontal		
Test Mode:	TX G Mode 2462MHz		
Remark:	N/A	WILD S	



No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2464.500	84.21	1.08	85.29	Fundamenta	l Frequency	AVG
2	X	2466.700	94.71	1.10	95.81	Fundamenta	l Frequency	peak
3		2483.500	49.10	1.17	50.27	74.00	-23.73	peak
4		2483.500	37.35	1.17	38.52	54.00	-15.48	AVG



Page: 61 of 92





Page: 62 of 92





Page: 63 of 92





Page: 64 of 92

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		13
Ant. Pol.	Horizontal		Tibs .
Test Mode:	TX N(HT20) Mode	2462MHz	
Remark:	N/A	MILES	2 1111
110.0 dBuV/m			
	2		



No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2465.100	83.74	1.09	84.83	Fundamental F	requency	AVG
2	Χ	2465.200	94.75	1.09	95.84	Fundamental F	requency	peak
3		2483.500	49.67	1.17	50.84	74.00	-23.16	peak
4		2483.500	37.61	1.17	38.78	54.00	-15.22	AVG



Page: 65 of 92





Page: 66 of 92





No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	48.77	0.77	49.54	74.00	-24.46	peak
2		2390.000	36.08	0.77	36.85	54.00	-17.15	AVG
3	X	2419.700	90.35	0.89	91.24	Fundamental	Frequency	peak
4	*	2420.200	79.64	0.89	80.53	Fundamental	Frequency	AVG



Page: 67 of 92





Page: 68 of 92





Page: 69 of 92







70 of 92 Page:

## (2) Conducted Test







Page: 71 of 92







Page: 72 of 92







Page: 73 of 92





Page: 74 of 92

## **Attachment D-- Bandwidth Test Data**

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		1139
Test Mode:	TX 802.11B Mode		
Channel frequence	y 6dB Bandwidth	99% Bandwidth	Limit
(MHz)	(MHz)	(MHz)	(MHz)
2412	9.244	12.8220	
2437	8.673	12.8456	>=0.5
2462	9.245	12.9383	
	*		•

### 802.11B Mode

#### 2412 MHz





75 of 92 Page:





Page: 76 of 92

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Test Mode:	TX 802.11G Mode		
Channel frequence	y 6dB Bandwidth	99% Bandwidth	Limit
(MHz)	(MHz)	(MHz)	(MHz)
2412	16.411	16.4630	
2437	16.450	16.4391	>=0.5
2462	16.416	16.4195	
	802.11G	Mode	

#### .....

### 2412 MHz





Report No.: TB-FCC160371 Page: 77 of 92





Page: 78 of 92

nperature:	25 ℃	Relative Humidity:	55%
st Voltage:	DC 3.7V		
st Mode:	TX 802.11N(HT20) Mode	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	1139
annel frequenc	cy 6dB Bandwidth	99% Bandwidth	Limit
(MHz)	(MHz)	(MHz)	(MHz)
2412	16.735	17.5466	
2437	16.484	17.5376	>=0.5
2462	16.524	17.5474	
	802.11N(HT	20) Mode	
	2412 N	MHz	
Occupied Bar	,	Trig Free	Center Freq 41200000 GHz
Occupied Bar	•	Trig Free 2.	Center Freq 41200000 GHz
Center 2  Ref 20 dBm #Peak Log	2.412000000 GHz  Atten 30 dB	Trig Free 2.	Center Freq 41200000 GHz Start Freq 39200000 GHz
Center 2  Ref 20 dBm #Peak Log 10 dB/	Atten 30 dB	Trig Free 2.	Center Freq 41200000 GHz Start Freq 39200000 GHz Stop Freq 43200000 GHz
Center 2  Ref 20 dBm #Peak Log 10 dB/	2.412000000 GHz  Atten 30 dB	Trig Free 2.	Center Freq 41200000 GHz  Start Freq 39200000 GHz  Stop Freq 43200000 GHz  CF Step 000000000 MHz
Center 2  Ref 20 dBm #Peak Log 10 dB/	Atten 30 dB	Trig Free 2.	Center Freq 41200000 GHz  Start Freq 39200000 GHz  Stop Freq 43200000 GHz  CF Step 00000000 MHz to Man  Freq Offset
Center 2  Ref 20 dBm #Peak Log 10 dB/	Atten 30 dB	Trig Free 2.	Center Freq 41200000 GHz  Start Freq 39200000 GHz  Stop Freq 43200000 GHz  CF Step 000000000 MHz to Man
Center 2.412 #Res BW 100	Atten 30 dB  Atten 30 dB  GHz  HVBW 300 kHz	Trig Free 2  2  Span 40 MHz Sweep 4.144 ms (401 pts)	Center Freq 41200000 GHz  Start Freq 39200000 GHz  Stop Freq 43200000 GHz  CF Step 00000000 MHz to Man  Freq Offset .00000000 Hz  Signal Track



Report No.: TB-FCC160371 Page: 79 of 92





Page: 80 of 92

perature:	25 ℃	Relative	Humidity:	55%
: Voltage:	DC 3.7V	3 _ 6	(1)	
: Mode:	TX 802.11N(HT40)	Mode	6.01	1139
nnel frequenc	y 6dB Bandw	ridth 99% E	Bandwidth	Limit
(MHz)	(MHz)	(1	MHz)	(MHz)
2422	36.448	35	5.9100	
2437	36.475	35	5.8669	>=0.5
2452	36.444	35	5.8946	
	802.1	11N(HT40) Mode		
		2422 MHz		
Occupied Bar			Trig Free	eq/Channel Center Freq 42200000 GHz
Occupied Bar	·		Trig Free 2.4	Center Freq
Center 2  Ref 20 dBm #Peak Log	ndwidth		Trig Free 2.	Center Freq 42200000 GHz Start Freq
Occupied Bar Center 2 Ref 20 dBm #Peak	Atten 30 dB		Trig Free 2.4	Center Freq 42200000 GHz  Start Freq 38200000 GHz  Stop Freq 46200000 GHz  CF Step 000000000 MHz
Center 2  Ref 20 dBm #Peak Log 10 dB/ Center 2.422	Atten 30 dB  GHz	•	Trig Free 2.4 2.5 2.6 2.7 2.7 8.0 Au Span 80 MHz 0.	Center Freq 42200000 GHz  Start Freq 38200000 GHz  Stop Freq 46200000 GHz  CF Step 000000000 MHz
Center 2  Ref 20 dBm #Peak Log 10 dB/ Center 2.422 #Res BW 100	Atten 30 dB  GHz	00 kHz Sweep 8.288 m	Trig Free 2.4  2.3  2.4  8.Au  Span 80 MHz 15 (401 pts)	Center Freq 42200000 GHz  Start Freq 38200000 GHz  Stop Freq 46200000 GHz  CF Step 00000000 MHz to Man  Freq Offset .00000000 Hz  Signal Track



Report No.: TB-FCC160371 Page: 81 of 92





Page: 82 of 92

# **Attachment E-- Peak Output Power Test Data**

Test Conditions	: Continuous transm	itting Mode	
Temperature:	<b>25</b> ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Mode	Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)
	2412	17.26	
802.11b	2437	17.32	
	2462	17.27	
	2412	15.54	
802.11g	2437	15.63	
	2462	15.74	30
802.11n	2412	13.69	30
(HT20)	2437	13.85	
(11120)	2462	13.74	
802.11n	2422	13.35	
(HT40)	2437	13.46	
(11170)	2452	13.54	
	Resi	ult: PASS	

	Duty Cycle	
Mode	Channel frequency (MHz)	Test Result
	2412	
802.11b	2437	
	2462	
	2412	
802.11g	2437	
	2462	<b>&gt;000</b> /
000 44	2412	>98%
802.11n (HT20)	2437	
	2462	
000 44	2422	
802.11n	2437	
(HT40)	2452	



Page: 83 of 92





Report No.: TB-FCC160371 Page: 84 of 92





Page: 85 of 92

# **Attachment F-- Power Spectral Density Test Data**

perature:	<b>25</b> ℃		Relative Hu	midity: 55%	1 1
Voltage:	DC 3.7V	The same		Citties.	9
: Mode:	TX 802.11	B Mode	The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa	1 130	
Channel Fred	quency	Power	Density	Liı	mit
(MHz)		(dBm	/3 kHz)	(dBm	/3 kHz
2412		-11	1.71		
2437		-11	1.94		8
2462		-1′	1.14		
		802.11	B Mode		
		2412	2 MHz		
* Agilent				Peak Se	aarch
Def 00 dD	A44	20.40	Mkr1 2.41	270 GHz	earch
Ref 20 dBm #Peak	Atten :	SU GIB	-11.	71 dBm Meas	: Tools <b></b> ▶
Log   10			+		
dB/				Nex	t Peak
		1	<u> </u>		
Ma	ırker			Next Pk	k Right
2.4	12697500	GHz			
-11	.71 dBm			Next F	Pk Left
M1 S2					
S3 FC AA				Min S	Search
				Pk-Pk S	Search
	2011				More
Center 2.41 #Res BW 3		#VBW 10 kHz	Span 1: Sweep 1.595 s (4	3.95 MHz	1 of 2



Report No.: TB-FCC160371 Page: 86 of 92







Page: 87 of 92

M. M.		100	1.1.1.1		ALL DE
erature:	25 ℃		Tempera	ture:	25 ℃
/oltage:	DC 3.7V	TO PARTY	OH!	No.	-1
Mode:	TX 802.11	IG Mode	500	Call	1:33
hannel Freq	uency	Power D	ensity		Limit
(MHz)		(dBm/3	kHz)	(0	dBm/3 kHz
2412		-13.	82		
2437		-13.	24		8
2462		-13.	21		
		802.11G	Mode		
		2412	MHz		
* Agilent				P	eak Search
Ref 20 dBm	Atten	30 dB	Mkr1 2.41 -13.	040 GHz 82 dBm	
#Peak	7				Meas Tools
10					
dB/					Next Peak
		1 2			L. (DL D'ala
Ma	rker/www	nonimph my	More Modern March		lext Pk Right
	103 <mark>99927</mark> .8 <b>2</b> dBm	GHz	<u> </u>		Next Pk Left
	.og ubili		η,	<b>\</b>	TOXET R LOT
M1 S2 S3 FC	<u>/</u>			Ww.	Min Search
S3 FC					
				PI	k-Pk Search
0.004.00 0.440	GHz		Span 2	4.62 MHz	More
Center 2.412 #Res BW 3 k		#VBW 10 kHz	Sweep 2.815 s (4		1 of 2



88 of 92 Page:





Page: 89 of 92

Test Voltage:         DC 3.7V           Test Mode:         TX 802.11N(HT20) Mode           Channel Frequency (MHz)         Power Density (dBm/3 kHz)         Lim (dBm/2)           2412         -12.81         -12.66         8	
Channel Frequency Power Density Lin (MHz) (dBm/3 kHz) (dBm/ 2412 -12.81	
(MHz) (dBm/3 kHz) (dBm/ 2412 -12.81	
2412 -12.81	
10.00	3 kHz)
2427 -12.66	
2437 -12.00	)
2462 -13.06	
802.11N(HT20) Mode	
2412 MHz	





Report No.: TB-FCC160371 Page: 90 of 92





91 of 92 Page:

perature:	25 ℃				Te	empe	rature	):	<b>25</b> ℃
Voltage:	DC 3.	7V	TST.			6	AIL		
Mode:	TX 80	2.11N(H	1T40) N	/lode				e	miles.
Channel Fre	quency		Pov	wer D	ensi	ty			Limit
(MHz	)		(d	Bm/3	kHz	)			(dBm/3 kHz
2422				-15.8	32				
2437	,			-14.4	49				8
2452				-14.9	90				
			802.11	N(HT	40) N	/lode			
			2	2422 [	ИHz				
* Agilent									Peak Search
Ref 20 dBi	m A	Atten 30 dB				Mkr1	2.41858 -15.82		
		WOULD OF GE							
#Peak									Meas Tools▶
Log 10									Meas Tools [▶]
Log									Meas Toolsh Next Peak
Log 10			į						Next Peak
Log 10 dB/		~~#~~\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	μ [*] ***********************************	Mary Mary	allow to House	MuMeruni	Au.		
Log 10 dB/	arker 4185830	000 GH	r Ž	Mary Mary	alwa/Alfalfa	h-phylogon	<b>*</b>		Next Peak  Next Pk Right
Log 10 dB/		000 GH	lz	MULTINA MARIE	ગુભારમાં મુખ	^M V/PW-YMI	May .		Next Peak
Log 10 dB/ M 2. -1	arker 4185830	000 GH m	r P	Marayana.	-Ams-A-A-A	Mydragos	***************************************		Next Peak  Next Pk Right  Next Pk Left
Log 10 dB/	arker 4185830 5.82 dB	000 GH m	yruş duğu	ward an		May de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguina de la seguin			Next Peak  Next Pk Right
Log 10 dB/ M1 2. -1 M1 S2 S3 FC	arker 4185830 5.82 dB	000 GH	łz	produce.	almoratografi	**************************************		W/~ Mp-1	Next Peak  Next Pk Right  Next Pk Left  Min Search
Log 10 dB/ M1 2. -1 M1 S2 S3 FC	arker 4185830 5.82 dB	000 GH m	yraybuag IZ	- Marcala Marca	alwa-N-N-A	May Markey May		W/V~/Mp-1	Next Peak  Next Pk Right  Next Pk Left
Log 10 dB/ M1 2. -1 M1 S2 S3 FC	arker 4185830 5.82 dB	000 GH	Iz	war war	almortolical				Next Peak  Next Pk Right  Next Pk Left  Min Search



Report No.: TB-FCC160371 Page: 92 of 92



----END OF REPORT----