

Data Processing Using Python

Data retrieval and preprocessing of Python

ZHANG Li/Dazhuang

Nanjing University

Department of Computer Science and Technology

Department of University Basic Computer Teaching

Basic Data Processing Procedure

Data Processing Using

Python

CONVENIENT AND
FAST DATA
ACQUISITION

Fetch Data with Python

```
במחר דמחה:
           106.930004
1222002400
           107.01000
1539091800
           104.339991
L539178200
            104.919991
 1539264600
            103.559991
 1539351000
             104.47000
  1539610200
             105.29000
  L539696600
              104.76000
  L539783000
              107.55000:
   1539869400
              106.959999
   L539955800
               104.51999
    L540215000
                101 01000
    L540301400
     1EA0207000
```

How to get local data?

Open, read/write, close of file

- File open
- File read
- File write
- File close

Fetch Data with Python

How to get (crawl) data from net?

Crawl pages and interpret content

- Crawling
 - Urllib built-in module
 - urllib.request
 - Requests

(third party library)

- **Scrapy** framework
- Interpreting
 - BeautifulSoup library
 - re module

Dow Jones Constituent

yaha	ance	Search for ne	ews, symbols	or companie	s	Q
Finance Home	Watchlists	My Portfolio	Screeners	Premium	Markets	Industrie
Oct 04, 2019	112.66	114.53	112.60	114.41	114.41	2,631,306
Oct 03, 2019	112.20	112.96	111.06	112.55	112.55	3,529,300
Oct 02, 2019			0.43 Divi	dend		
Oct 02, 2019	115.76	115.81	112.75	112.86	112.43	4,908,800
Oct 01, 2019	118.70	119.50	116.61	116.70	116.26	2,841,300
Sep 30, 2019	119.05	119.24	118.14	118.28	117.83	2,345,800
Sep 27, 2019	119.13	119.62	117.98	118.59	118.14	2,909,200
Sep 26, 2019	119.31	120.03	118.84	118.91	118.46	3,411,200
Sep 25, 2019	117.86	119.44	117.06	119.12	118.67	2,742,900
	118.89	120.20	117.52	118.17	117.72	5,128,400
Sep 24, 2019						
Sep 24, 2019 Sep 23, 2019	116.36	118.42	116.10	118.24	117.79	5,089,400

dji quotes

Data Format

	price	name	code		
	155.82	3M	MMM	0	
	114.41	American Express	AXP	1	
	227.01	Apple	AAPL	2	
	375.70	Boeing	BA	3	
	121.04	Caterpillar	CAT	4	
	113.85	Chevron	CVX	5	
	47.52	Cisco	CSCO	6	
	54.54	Coca-Cola	KO	7	
	130.27	Disney	DIS	8	
	45.34	Dow Chemical	DOW	9	
	68.97	Exxon Mobil	XOM	10	
	200.80	Goldman Sachs	GS	11	
	227.93	Home Depot	HD	12	
	142.99	IBM	IBM	13	
djidf	50.92	Intel	INTC	14	
ajiai	133.66	Johnson & Johnson	ZNZ	15	
	114.62	JPMorgan Chase	JPM	16	
	211.69	McDonald's	MCD	17	
	85.00	Merck	MRK	18	
	138.12	Microsoft	MSFT	19	
	93.07	Nike	NKE	20	
	35.93	Pfizer	PFE	21	
	124.00	Procter & Gamble	PG	22	
	144.96	Travelers Companies Inc	TRV	23	
	133.21	United Technologies	UTX	24	
	219.80	UnitedHealth	UNH	25	
	59.90	Verizon	VZ	26	
	175.98	Visa	V	27	
	118.16	Wal-Mart	WMT	28	
	52.97	Walgreen	WBA	29	

f		

	close	date	high	low	open	volume
0	106.989998	1539005400	107.230003	105.570000	106.629997	2723400
1	106.660004	1539091800	106.930000	105.940002	106.300003	2604400
2	103.570000	1539178200	107.010002	103.519997	106.959999	4555600
3	101.580002	1539264600	104.339996	101.550003	103.220001	6069300
4	103.000000	1539351000	104.919998	101.709999	104.309998	4855900
5	102.620003	1539610200	103.559998	102.209999	102.849998	2780900
6	104.269997	1539696600	104.470001	102.690002	103.070000	3121000
7	104.339996	1539783000	105.290001	103.919998	104.330002	3792400
8	102.839996	1539869400	104.760002	102.290001	104.529999	4538200
9	106.730003	1539955800	107.550003	104.059998	104.059998	5726300
10	104.510002	1540215000	106.959999	104.449997	106.610001	5003100
11	104.379997	1540301400	104.519997	101.839996	102.410004	4223800
12	101.839996	1540387800	104.949997	101.510002	104.430000	4056700
13	103.599998	1540474200	104.169998	101.800003	102.480003	3378900
14	101.250000	1540560600	102.660004	100.139999	102.540001	5395700
15	101.190002	1540819800	103.250000	100.040001	102.470001	4238700
16	102.080002	1540906200	102.389999	100.410004	101.599998	3778200
17	102.730003	1540992600	103.709999	102.550003	103.059998	4511300
18	104.040001	1541079000	104.269997	103.019997	103.260002	2786800
19	103.709999	1541165400	105.050003	102.889999	104.930000	4322200

quotesdf

, ↓, Download Data

Download Data Directly

 How to easily and rapidly fetch historical data of companies from financial websites?

Time Period: Oct 05, 2018 - Oct 05, 2019

✓ Show: Historical Prices ✓ Frequency: Daily ✓ Apply

Currency in USD

Date	Open	High	Low	Close	Adj Close	Volume
2018/10/5	108.06	108.47	106.72	107.23	105.6803	2399800
2018/10/8	106.63	107.23	105.57	106.99	105.4437	2723400
2018/10/9	106.3	106.93	105.94	106.66	105.1185	2604400
2018/10/10	106.96	107.01	103.52	103.57	102.0732	4555600
2018/10/11	103.22	104.34	101.55	101.58	100.1119	6069300
2018/10/12	104.31	104.92	101.71	103	101.5114	4855900

Read and Write of csv Format

 Store the basic stock information of American Express in the past year into stockAXP.csv.

```
# Filename: to_csv.py
import pandas as pd
...
quotes = retrieve_quotes_historical('AXP')
df = pd.DataFrame(quotes)
df.to csv('stockAXP.csv')
```

Read and Write of Excel Data

```
# Filename: to_excel.py
...
quotes = retrieve_quotes_historical('AXP')
df = pd.DataFrame(quotes)
df.to_excel('stockAXP.xlsx', sheet_name = 'AXP')
```



```
F<sub>ile</sub>
```

```
# Filename: read_excel.py
...

df = pd.read_excel('stockAXP.xlsx', index_col = 'date')
print(df['close'][:3])
```

0 106.9899981 106.6600042 103.570000

Name: close, dtype: float64

Download Data Directly

Get Data Using API


```
>>> import pandas_datareader.data as web
>>> f = web.DataReader('AXP', 'stooq')
>>> f.head(5)
Open High Low Close Volume
Date
2019-10-04 112.62 114.530 112.60 114.41 2753195
2019-10-03 112.52 112.955 111.06 112.55 3549232
2019-10-02 115.76 115.810 112.75 112.86 4931560
2019-10-01 118.70 119.500 116.61 116.70 2857528
2019-09-30 119.05 119.240 118.14 118.28 2353731
```

Using Datasets Module in Sklearn


```
Source Skle
```

```
>>> from sklearn import datasets
>>> iris = datasets.load iris()
>>> iris.feature_names
['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
'petal width (cm)']
>>> iris.data
array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3., 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [6.5, 3., 5.2, 2.]
       [6.2, 3.4, 5.4, 2.3],
       [5.9, 3., 5.1, 1.8]])
```

NLTK library

Easier Approach to Data


```
>>> from nltk.corpus import gutenberg
                                                 brown
>>> import nltk
>>> print(gutenberg.fileids())
['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', 'bible-kjv.txt', 'blake-
poems.txt', 'bryant-stories.txt', 'burgess-busterbrown.txt', 'carroll-alice.txt',
'chesterton-ball.txt', 'chesterton-brown.txt', 'chesterton-thursday.txt', 'edgeworth-
parents.txt', 'melville-moby dick.txt', 'milton-paradise.txt', 'shakespeare-caesar.txt',
'shakespeare-hamlet.txt', 'shakespeare-macbeth.txt', 'whitman-leaves.txt']
>>> texts = gutenberg.words('shakespeare-hamlet.txt')
>>> print(texts)
['[', 'The', 'Tragedie', 'of', 'Hamlet', 'by', ...]
```

Data Processing Using

Python

FUNDAMENTALS OF DYTHON DLOTTING

Matplotlib Plotting

Matplotlib Plotting

Most famous Python 2D plotting library

- High quality
- Convenient plotting modules
 - Plotting API——pyplot module

Line Chart

>>> import matplotlib.pyplot as plt

>>> plt.plot([3, 4, 7, 6, 2, 8, 9])

plt.plot(range(7), [3, 4, 7, 6, 2, 8, 9])

Line Chart – for groups of data

- NumPy array can also be used as a parameter of Matplotlib
- Groups data plotting

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> t=np.arange(0.,4.,0.1)

>>> plt.plot(t, t, t, t+2, t, t**2)

Different plot forms

- >>> import matplotlib.pyplot as plt
- >>> plt.scatter(range(7), [3, 4, 7, 6, 2, 8, 9])
- >>> plt.bar(range(7), [3, 4, 7, 6, 2, 8, 9])

Matplotlib Attributes

Default attributes Matplotlib can control

Color and Style

 Could color, line or style of graph be modified?

plt.plot(x, y, 'g--')

plt.plot(x, y, 'rD')

Color and Style

Character	Color
b	blue
g	green
r	red
С	cyan
m	magenta
Υ	yellow
k	black
W	white

Туре	Description
1_1	solid
''	dashed
''	dash_dot
1.1	dotted
'None'	draw nothing
1.1	draw nothing
11	draw nothing

Mark	Description
"o"	circle
"v"	triangle_down
"s"	square
"p"	pentagon
!! * !!	star
"h"	hexagon1
"+"	plus
"D"	diamond
•••	

Other Attributes

```
# Filename: multilines.py
```

import matplotlib.pyplot as plt import numpy as np

```
plt.figure(figsize = (8, 6), dpi = 100)
t = np.arange(0., 4., 0.1)
```


plt.plot(t, t+2, color='green', linestyle=", marker='*', linewidth=3, label='Line 2') plt.plot(t, t**2, color='blue', linestyle='', marker='+', linewidth=3, label='Line 3') plt.legend(loc = 'upper left')

Words

Add titles: graph, vertical axis and horizontal axis

```
# Filename: title.py
import matplotlib.pyplot as plt

plt.title('Plot Example')
plt.xlabel('X label')
plt.ylabel('Y label')
plt.plot(range(7), [3, 4, 7, 6, 2, 8, 9])
```


Subplots

- The plotting is carried out in the current figure and the current coordinate system (axes) in Matplotlib. By default, the plotting is in a figure No. 1. We can plot in multiple areas of a figure.
- Using subplot()/subplots() and axes() functions respectively.

subplots

plt.subplot(211) plt.subplot(212)

plt.subplot(121) plt.subplot(122)

plt.subplot(221) plt.subplot(222) plt.subplot(223) plt.subplot(224)

subplot()

```
File
```

```
# Filename: subplot.py
import numpy as np
import matplotlib.pyplot as plt
```

```
x = np.linspace(-np.pi, np.pi, 300)
plt.figure(1)  # default
plt.subplot(211)  # first subplot
plt.plot(x, np.sin(x), color = 'r')
plt.subplot(212)  # second subplot
plt.plot(x, np.cos(x), color = 'g')
```


subplots()

```
File
```

Filename: subplots.py
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-np.pi, np.pi, 300)
fig, (ax0, ax1) = plt.subplots(2, 1)
ax0.plot(x, np.sin(x), color = 'r')
ax0.set_title('subplot1')
plt.subplots_adjust(hspace = 0.5)
ax1.plot(x, np.cos(x), color = 'g')
ax1.set_title('subplot2')

subplots-axes

axes([left,bottom,width,height]) Range of parameter: (0,1)

```
# Filename: axes.py
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-np.pi, np.pi, 300)
plt.axes([.1, .1, 0.8, 0.8])
plt.plot(x, np.sin(x), color = 'r')
plt.axes([.3, .15, 0.4, 0.3])
plt.plot(x, np.cos(x), color = 'g')
```


pandas plotting

>>> quotesdf.loc[:9, 'close'].plot()

>>> quotesdf.loc[:9, ['close', 'open']].plot()

pandas plotting

>>> ax = djidf.plot(kind = 'bar', x = 'code', y = 'price', color = 'g'); ax.set(ylabel='Price', title = 'Stock Statistics of ^DJI')

Data Processing Using

DATA CLEAN OF DATA EXPLORATION AND DREDROCESSING

Data **Exploration**

- check data errors
- understand data distribution characteristics and inherent regularities

Data preprocessing

- Data cleaning
- Data integration
- Data transformation
- Data reduction

Missing Value Handling

How to deal with?

- drop
- fill

Missing value handling—DataFrame

```
quotesdf_nan = pd.read_csv('AXP_NaN.csv', index_col = 'Date')
judge missing value: df.isnull()
drop missing value: df.dropna()
fill missing value: df.fillna()
How to fill missing value with mean value?
quotesdf nan.fillna(method='ffill', inplace = True)
```

Outliers

How to observe?

- simple statistics
- plotting
- density-based, knn or cluster algorithm

How to deal with?

- same as missing values
- calculate the local mean (binning)
- do nothing

Data Processing Using

Python

DATA TRANSFORMATION OF DATA PRECESSING

Data Transformation

transform data into the suitable form

common way	Normalization
	Discretization of continuous features
	Binarization

Normalization

What impacts are solved?

- different dimension
- wide range of values

common method

- Min-Max normalization
- Z-Score normalization
- Normalization by decimal scaling

Boston Housing Datasets

```
>>> boston = datasets.load boston()
>>> boston.feature names
array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
   'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7')
>>> boston.target
array([24., 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, ..., ]])
>>> boston df = pd.DataFrame(boston.data[:, 4:7])
>>> boston df.columns = boston.feature names[4:7]
>>> boston df
     NOX RM AGE
    0.538 6.575 65.2
                           4: NOX - nitric oxides concentration (parts per 10 million)
    0.469 6.421 78.9
                           5: RM - average number of rooms per dwelling
    0.469 7.185 61.1
                           6: AGE - proportion of owner-occupied units built prior to 1940
                           MEDV - Median value of owner-occupied homes in $1000's
504 0.573 6.794 89.3
```

505 0.573 6.030 80.8

Min-Max normalization

$$x' = \frac{x - min}{\max - min}$$

(df-df.min())/(df.max()-df.min())

Problems:

- If the number in the future exceeds min and max one, it needs to be redefined.
- If a certain number is large, the normalized values are close and all are close to 0.

	NOX	RM	AGE
0	0.538	6.575	65.2
1	0.469	6.421	78.9
2	0.469	7.185	61.1
3	0.458	6.998	45.8
4	0.458	7.147	54.2
5	0.458	6.430	58.7

	NOX	RM	AGE
0	0.314815	0.577505	0.641607
1	0.172840	0.547998	0.782698
2	0.172840	0.694386	0.599382
3	0.150206	0.658555	0.441813
4	0.150206	0.687105	0.528321
5	0.150206	0.549722	0.574665

Min-Max normalization

from sklearn import preprocessing

min_max_scaler = preprocessing.minmax_scale(df) # [0,1]

Z-Score normalization

$$x' = \frac{x - \bar{x}}{\sigma}$$

(df-df.mean())/df.std()

Features:

- Most frequently used.
- The mean of the processed data is 0, and the standard deviation is 1.

```
NOX RM AGE
0 0.538 6.575 65.2
1 0.469 6.421 78.9
2 0.469 7.185 61.1
3 0.458 6.998 45.8
4 0.458 7.147 54.2
5 0.458 6.430 58.7
```

	NOX	RM	AGE
0	-0.144075	0.413263	-0.119895
1	-0.739530	0.194082	0.366803
2	-0.739530	1.281446	-0.265549
3	-0.834458	1.015298	-0.809088
4	-0.834458	1.227362	-0.510674
5	-0.834458	0.206892	-0.350810

Z-Score normalization

scaler = preprocessing.scale(df)

Normalization by decimal scaling

$$x' = \frac{x}{10^{j}}$$

df/10**np.ceil(np.log10(df.abs().max()))

Features:

- Move the decimal point position.
 The number of moves depends on the maximum value of the features' absolute value.
- Fall between [- 1, 1] commonly.

```
NOX
         RM
              AGE
             65.2
0.538
      6.575
             78.9
0.469
      6.421
            61.1
0.469
      7.185
0.458
      6.998
             45.8
0.458
      7.147
             54.2
0.458
      6.430
             58.7
```

	NOX	RM	AGE
0	0.538	0.6575	0.652
1	0.469	0.6421	0.789
2	0.469	0.7185	0.611
3	0.458	0.6998	0.458
4	0.458	0.7147	0.542
5	0.458	0.6430	0.587

Discretization of Continuous Features

Method

- Binning: equal-width, equal frequency
- Clustering

pd.cut(df.AGE, 5, labels = range(5))
pd.qcut(df.AGE, 5, labels = range(5))

0	65.2
1	78.9
2	61.1
3	45.8
4	54.2
5	58.7

0	3	0	1
1 2 3 4 5	3 2 2 2 2	1	1 2 1 1 1
2	2	2	1
3	2	3	1
4	2	4 5	1
5	2	5	1

Feature Binarization

rating	Label
6	1
4	
7	1
7	1
8	
5	0
3	0
3	0
9	1 0
4	. 0
6	1
7	1
5	1
9	
8	
2 5	0 0
3	
3	0

>>> from sklearn.preprocessing import Binarizer

>>> X = boston.target.reshape(-1,1)

>>> Binarizer(threshold = 20.0).fit transform(X)

Data Processing Using

DATA REDUCTION OF DATA PREPROCESSING

Data Reduction

Purpose:

 The features and values are normalized to obtain a much smaller specification representation than the original dataset, but still close to the integrity of the original data. Mining on the dataset after the specification can produce almost the same analysis results. Feature reduction: forward selection, backward elimination, decision tree, PCA

Way

Value reduction: Parametric method (regression, log linear model), nonparametric method(histogram, clustering, sampling)

Feature Reduction - PCA

>>> from sklearn.decomposition import PCA

>>> X = preprocessing.scale(boston.data)

>>> pca = PCA(n_components=5)

>>> pca.fit(X)

>>> pca.explained_variance_ratio_

array([0.47129606, 0.11025193, 0.0955859, 0.06596732, 0.06421661])

Value Reduction - histogram

Features:

- Show data distribution by forming bins.
- Each bin shows the frequency of data value.

```
array([4, 8, 9, 8, 7, 2, 8, 7, 5, 3, 1, 4, 5, 8, 7, 9, 5, 9, 9, 5, 9, 1, 9, 7, 1, 2, 9, 5, 5, 5, 9, 4, 3, 5, 5, 4, 7, 4, 9, 8, 2, 6, 3, 5, 3, 2, 9, 1, 3, 1])
```

data = np.random.randint(1,10,50)

Value Reduction - histogram

array([4, 8, 9, 8, 7, 2, 8, 7, 5, 3, 1, 4, 5, 8, 7, 9, 5, 9, 9, 5, 9, 1, 9, 7, 1, 2, 9, 5, 5, 5, 9, 4, 3, 5, 5, 4, 7, 4, 9, 8, 2, 6, 3, 5, 3, 2, 9, 1, 3, 1])

plt.hist(data, bins=...)

Value Reduction - sampling

Sampling Random Sampling: without replacement with replacement Cluster sampling Stratified Sampling

Some features:

- Without replacement sampling: <u>Take n</u> <u>samples from N samples of the</u> <u>original dataset D, and get different</u> data each time.
- With replacement sampling: <u>Take n</u>
 samples from the N samples in the
 original dataset D, record them and
 put them back. It is possible to extract
 the same data.
- Stratified sampling: <u>Dataset D is</u> <u>divided into disjoint parts(layers)</u>, and <u>each layer is randomly sampled to get</u> the final result.

Random Sampling

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
24	4.8	3.4	1.9	0.2
81	5.5	2.4	3.7	1.0
145	6.7	3.0	5.2	2.3
115	6.4	3.2	5.3	2.3
136	6.3	3.4	5.6	2.4
98	5.1	2.5	3.0	1.1
79	5.7	2.6	3.5	1.0
143	6.8	3.2	5.9	2.3
87	6.3	2.3	4.4	1.3
107	7.3	2.9	6.3	1.8

Without Replacement:

iris_df.sample(n = 10)
iris_df.sample(frac = 0.3)

With Replacement:

iris_df.sample(n = 10, replace = True)
iris_df.sample(frac = 0.3, replace = True)

Stratified Sampling

>>> A = iris_df[iris_df.target == 0].sample(frac = 0.3)

>>> A.append(B)

Summary

