Laboratorio 7 – Teoría de la Computación

Problema 2: Simplificación de CFG y FNC

Indicaciones

Para cada gramática se aplican, en orden:

- 1. Eliminación de producciones ε .
- 2. Eliminación de producciones unitarias.
- 3. Eliminación de símbolos inútiles (no productores / no alcanzables).
- 4. Conversión a Forma Normal de Chomsky (FNC / CNF).

Cuando el lenguaje admite la cadena vacía, se introduce un nuevo símbolo inicial S_0 con $S_0 \rightarrow S \mid \varepsilon$.

Gramática 1

Original

$$\begin{split} S &\to 0A0 \mid 1B1 \mid BB \\ A &\to C \\ B &\to S \mid A \\ C &\to S \mid \varepsilon \end{split}$$

1) Eliminación de ε

Anulables: $C \Rightarrow \varepsilon \Rightarrow A$ es anulable $(A \Rightarrow C)$, B es anulable $(B \Rightarrow A \circ B \Rightarrow S \text{ con } S$ anulable), y S es anulable $(S \Rightarrow BB \text{ con } B \text{ anulable})$. Por tanto, $\{S, A, B, C\}$ son anulables. Generando variantes (sin introducir el vacío como producción explícita):

$$S \rightarrow 0A0 \mid 00 \mid 1B1 \mid 11 \mid BB \mid B$$

$$A \rightarrow C$$

$$B \rightarrow S \mid A$$

$$C \rightarrow S$$

2) Eliminación de unitarias

Las unitarias: $A \to C$, $B \to S$, $B \to A$, $C \to S$, $S \to B$ (esta última por $S \to B$ ya presente). Por clausura unitaria, S, A, B, C heredan las no unitarias de S:

$$\{0A0, 00, 1B1, 11, BB\}.$$

Eliminando unitarias, una forma consistente es:

$$\begin{split} S &\to 0A0 \mid 00 \mid 1B1 \mid 11 \mid BB \\ A &\to 0A0 \mid 00 \mid 1B1 \mid 11 \mid BB \\ B &\to 0A0 \mid 00 \mid 1B1 \mid 11 \mid BB \\ C &\to 0A0 \mid 00 \mid 1B1 \mid 11 \mid BB \end{split}$$

3) Símbolos inútiles

Productores: hay producciones a terminales (00, 11), por lo que todos pueden derivar terminales.

Alcanzables desde S: se alcanzan A y B por cuerpos; C no aparece ya en los cuerpos tras quitar unitarias \Rightarrow se elimina C.

$$S \to 0A0 \mid 00 \mid 1B1 \mid 11 \mid BB$$

 $A \to 0A0 \mid 00 \mid 1B1 \mid 11 \mid BB$
 $B \to 0A0 \mid 00 \mid 1B1 \mid 11 \mid BB$

4) Conversión a FNC (CNF)

Reemplazamos terminales en cuerpos de longitud ≥ 2 :

$$X_0 \to 0$$
, $X_1 \to 1$.

Factorizamos pares terminal—no terminal:

$$Y_{A0} \to AX_0, \qquad Y_{B1} \to BX_1.$$

Una CNF válida (recordando que el lenguaje original admite ε ; añadimos S_0):

$$S_{0} \to S \mid \varepsilon$$

$$S \to X_{0} Y_{A0} \mid X_{1} Y_{B1} \mid B B \mid X_{0} X_{0} \mid X_{1} X_{1}$$

$$A \to X_{0} Y_{A0} \mid X_{1} Y_{B1} \mid B B \mid X_{0} X_{0} \mid X_{1} X_{1}$$

$$B \to X_{0} Y_{A0} \mid X_{1} Y_{B1} \mid B B \mid X_{0} X_{0} \mid X_{1} X_{1}$$

$$X_{0} \to 0, \quad X_{1} \to 1, \quad Y_{A0} \to A X_{0}, \quad Y_{B1} \to B X_{1}$$

Gramática 2

Original

$$\begin{split} S &\rightarrow aAa \mid bBb \mid \varepsilon \\ A &\rightarrow C \mid a \\ B &\rightarrow C \mid b \\ C &\rightarrow CDE \mid \varepsilon \\ D &\rightarrow A \mid B \mid ab \end{split}$$

(E aparece pero no tiene producciones propias.)

1) Eliminación de ε

Anulables: $C \Rightarrow \varepsilon \Rightarrow A, B$ anulables $(A \Rightarrow C, B \Rightarrow C)$. Además $D \Rightarrow A$ o B, por lo que D también puede anularse. S es anulable por $S \rightarrow \varepsilon$.

Quitamos ε explícitas y generamos variantes:

- $S \to aAa$ produce aAa y aa (si A anula). $S \to bBb$ produce bBb y bb (si B anula). $S \to \varepsilon$ se elimina.
- $A \to C \mid a$ se mantiene (sin ε directo en A).

- $B \to C \mid b$ se mantiene.
- $C \to CDE$ con C, D anulables y E no definido (no anulable): genera $CDE \mid DE \mid CE \mid E$. Se quita $C \to \varepsilon$.
- $D \to A \mid B \mid ab$ se mantiene.

$$\begin{split} S &\rightarrow aAa \mid aa \mid bBb \mid bb \\ A &\rightarrow C \mid a \\ B &\rightarrow C \mid b \\ C &\rightarrow CDE \mid DE \mid CE \mid E \\ D &\rightarrow A \mid B \mid ab \end{split}$$

2) Eliminación de unitarias

Unitarias: $A \to C, B \to C, D \to A, D \to B,$ y dentro de C está $C \to E$ (unitaria).

- A hereda no unitarias de C: CDE, DE, CE, E; y conserva a.
- \blacksquare B hereda lo mismo y conserva b.
- \blacksquare D hereda de A (a, y también C-expansiones) y de B (b, y C-expansiones), además de ab.
- En C, eliminamos la unitaria a E y conservamos CDE, DE, CE.

$$\begin{split} S &\rightarrow aAa \mid aa \mid bBb \mid bb \\ A &\rightarrow a \mid CDE \mid DE \mid CE \\ B &\rightarrow b \mid CDE \mid DE \mid CE \\ C &\rightarrow CDE \mid DE \mid CE \\ D &\rightarrow ab \mid a \mid b \mid CDE \mid DE \mid CE \end{split}$$

3) Símbolos inútiles

Productores: E no tiene producciones propias \Rightarrow cualquier regla que contenga E no puede derivar sólo terminales. Por tanto, C (cuyas reglas requieren E en CDE, DE, CE) no produce terminales. Eliminamos E y C y todas las reglas que los mencionen.

$$\begin{array}{c} S \rightarrow aAa \mid aa \mid bBb \mid bb \\ A \rightarrow a \\ B \rightarrow b \\ D \rightarrow ab \mid a \mid b \end{array}$$

Alcanzables desde S: aparecen A y B en los cuerpos de S. D ya no es alcanzable (no aparece desde S) \Rightarrow se elimina D.

4) Conversión a FNC (CNF)

Introducimos variables para terminales en cuerpos de longitud ≥ 2 :

$$T_a \to a$$
, $T_b \to b$.

Factorizamos pares terminal—no terminal y triples:

$$Y_{Aa} \rightarrow A T_a$$
, $Y_{Bb} \rightarrow B T_b$,

y descomponemos aAa y bBb en binarias:

$$S \to T_a Y_{Aa} \mid T_a T_a \mid T_b Y_{Bb} \mid T_b T_b$$

$$A \to a$$

$$B \to b$$

$$Y_{Aa} \to A T_a, \qquad Y_{Bb} \to B T_b, \qquad T_a \to a, T_b \to b$$

Como la gramática original tenía $S \to \varepsilon$, si queremos preservar ε en CNF, añadimos S_0 :

$$S_0 \to S \mid \varepsilon$$
.

Gramática 3

Original

$$S \to ASA \mid aB$$

$$A \to B \mid S$$

$$B \to b \mid \varepsilon$$

1) Eliminación de ε

Anulables: $B \Rightarrow \varepsilon \Rightarrow A$ es anulable $(A \Rightarrow B)$. S no es anulable (siempre produce al menos una a por aB, o mantiene S dentro de ASA).

Generamos variantes (sin vacío):

$$S \rightarrow ASA \mid SA \mid AS \mid aB \mid a$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

2) Eliminación de unitarias

Unitarias: $A \to B$ y $A \to S$. Sustituyendo:

$$A \Rightarrow \{b\} \cup \{ASA, SA, AS, aB, a\}.$$

$$S \rightarrow ASA \mid SA \mid AS \mid aB \mid a$$

$$\Rightarrow A \rightarrow ASA \mid SA \mid AS \mid aB \mid a \mid b$$

$$B \rightarrow b$$

3) Símbolos inútiles

Productores: $B \to b$; A produce a o b; S produce a. **Alcanzables desde** S: se alcanzan A y B. No hay símbolos inútiles.

4) Conversión a FNC (CNF)

Introducimos variable para a en cuerpos binarios y agrupamos pares:

$$T_a \to a, \qquad X_{AS} \to A S.$$

Convertimos ASA a binario en dos pasos $(ASA \Rightarrow (AS)A \Rightarrow X_{AS}A)$:

$$S \rightarrow X_{AS} A \mid SA \mid AS \mid T_a B \mid a$$

$$A \rightarrow X_{AS} A \mid SA \mid AS \mid T_a B \mid a \mid b$$

$$B \rightarrow b$$

$$X_{AS} \rightarrow AS, \qquad T_a \rightarrow a$$

Todas las producciones son del tipo variable \rightarrow variable o variable \rightarrow terminal. Aquí $\varepsilon \notin L$, así que no hace falta S_0 .

Observación final

En FNC se permiten únicamente reglas $V \to V_1 V_2$ (dos variables) o $V \to t$ (terminal), y opcionalmente $S_0 \to \varepsilon$ si la cadena vacía pertenece al lenguaje. Cuando un terminal aparece en un cuerpo de longitud ≥ 2 , se introduce una variable que lo produzca (p.ej. $T_a \to a$) y se usa en su lugar.