习题 3.35

习题 3.35

e. 最优配置是否值得考虑

读入第五周作业中抽取的分层样本数据(按比例配置),并计算每一层中变量 logsal 和 pitcher 的样本标准差,代码如下:

```
library(dplyr)
baseball = read.csv('baseball.csv', header=FALSE)
baseball_team = data.frame(team=baseball[[1]])
baseball_prop = read.csv('baseball_StS.csv')

by_team_raw = group_by(baseball_team, team)
by_team_sample = group_by(baseball_prop, team)
stats_baseball = by_team_raw %>% summarise(N_h=n())
stats_baseball$\mathbb{W}_h = stats_baseball$\mathbb{N}_h / sum(stats_baseball$\mathbb{N}_h)

# logsal $\pi$ pitcher 的层内样本标准差
sd_df = by_team_sample %>%
summarise(s_h_logsal=sd(logsal), s_h_pitcher=sd(pitcher))
stats_baseball = merge(stats_baseball, sd_df, by='team')
```

将比例配置和最优配置的估计量方差进行比较,有公式

$$V_{\text{prop}}(\bar{y}_{str}) - V_{\text{Neyman}}(\bar{y}_{str}) = \frac{1}{n} \left[\sum_{h=1}^{H} W_h S_h^2 - \left(\sum_{h=1}^{H} W_h S_h \right)^2 \right]$$

分别对变量 logsal 和 pitcher 采用上述公式计算两种配置方法的方差之差,代码如下:

```
attach(stats_baseball)
n = dim(baseball_prop)[1]
logsal_Vdiff = (sum(W_h*s_h_logsal^2) - (sum(W_h*s_h_logsal))^2) / n # logsal
pitcher_Vdiff = (sum(W_h*s_h_pitcher^2) - (sum(W_h*s_h_pitcher))^2) / n # pitcher
detach(stats_baseball)
```

计算结果如表 1 所示。由此可见,比例配置和 Neyman 配置的方差之差非常有限,所以没有必要采用 Neyman 配置,直接使用比例配置即可。

表 1: logsal 和 pitcher 两种配置方法的方差之差

变量名	$V_{\text{prop}}(\bar{y}_{str}) - V_{\text{Neyman}}(\bar{y}_{str})$
logsal	6.768×10^{-4}
pitcher	6.806×10^{-5}

习题 3.35 2

f. 对样本采用最优配置

每一层的抽样成本相等,则最优配置的样本量计算公式为 $\frac{n_h}{n} = \frac{W_h S_h}{\sum_{l=1}^H W_l S_l}$;

分别对估算变量 logsal 和 pitcher 均值计算其最优配置的各层样本量,代码和结果如下:

	team	logsal_n_h	$pitcher_n_h$
1	ANA	6	5
2	ARI	7	6
3	ATL	5	6
4	BAL	5	4
5	BOS	5	5
6	CHA	7	4
7	CHN	5	6
8	CIN	4	6
9	CLE	4	6
10	COL	1	6
11	DET	6	5
12	FLO	5	4
13	HOU	2	0
14	KCA	5	6
15	LAN	2	5
16	MIL	4	5
17	MIN	6	5
18	MON	5	6
19	NYA	6	5
20	NYN	5	5
21	OAK	5	6
22	PHI	6	4
23	PIT	4	6
24	SDN	5	4
25	SEA	5	5
26	SFN	8	6
27	SLN	6	5
28	TBA	3	4
29	TEX	6	5
30	TOR	6	5

所以,变量 logsal 和 pitcher 的最优配置都和比例配置较为接近(比例配置每层的样本容量为 5)。