Introducción Objetivos Diseño del Dispositivo de Bio-feedback Diseño de una Arquitectura en Tiempo Real Evaluación de la Arquitectura Propuesta Conclusiones

Sistema de evaluación y Bio-Feedback para balance postural

Héctor Gabriel Peredo Urbina

Noviembre 2016

Agenda

- Introducción.
- Objetivos.
- O Diseño de la Solución (Hardware y Software).
- Resultados
- Conclusiones

Balance Postural

• El mantener la posición bipeda-quieta.

Balance Postural

- El mantener la posición bipeda-quieta.
- Permanecer dentro de los limites de estabilidad (Centro de masa).

Bio-Feedback

Balance Postural

- El mantener la posición bipeda-quieta.
- Permanecer dentro de los limites de estabilidad (Centro de masa).

Bio-Feedback

Obtener información de un ser vivo.

Balance Postural

- El mantener la posición bipeda-quieta.
- Permanecer dentro de los limites de estabilidad (Centro de masa).

Bio-Feedback

- Obtener información de un ser vivo.
- Utilización Sensores.

Balance Postural

- El mantener la posición bipeda-quieta.
- Permanecer dentro de los limites de estabilidad (Centro de masa).

Bio-Feedback

- Obtener información de un ser vivo.
- Utilización Sensores.
- Controlar o mejorar problemas.

Soluciones Presentes para el Estudio del Balance

Figura: Balance SD

Soluciones Presentes para el Estudio del Balance

Figura: Balance SD

Figura: Kistler Force Plate

Sistema de Bio-feedback

• Sistema de Bio-feedback para el Balance Postural.

Objetivos General

Objetivo General

Diseñar e implementar un prototipo de software-hardware basado en un microcontrolador Arduino y un sensor de velocidad angular y acelerometría de 3 ejes, para el registro y representación gráfica del centro de masa y bio-realimentación.

Objetivos Específicos

Objetivos Específicos

 Integrar microcontrolador Arduino con sensor (giroscopio-acelerómetro).

Objetivos Específicos

Objetivos Específicos

- Integrar microcontrolador Arduino con sensor (giroscopio-acelerómetro).
- Diseñar sistema que permita el registro y visualización de todas las variables cinemáticas (posición y velocidad angular) del centro de masa.

Objetivos Específicos

Objetivos Específicos

 Integrar microcontrolador Arduino con sensor (giroscopio-acelerómetro).

Conclusiones

- Diseñar sistema que permita el registro y visualización de todas las variables cinemáticas (posición y velocidad angular) del centro de masa.
- Construcción de un sistema que facilite mediante bio-realimentación la posición del centro de presión (proyección del centro de masa).

• Conexión del Sensor MPU6050 con la placa Arduino.

- Conexión del Sensor MPU6050 con la placa Arduino.
- Establecer comunicación Sensor \leftrightarrow Arduino (I^2C).

- Conexión del Sensor MPU6050 con la placa Arduino.
- Establecer comunicación Sensor \leftrightarrow Arduino (I^2C).

- Conexión del Sensor MPU6050 con la placa Arduino.
- Establecer comunicación Sensor \leftrightarrow Arduino (I^2C).

 Establecer comunicación con el Micro-controlador Arduino (Serial).

- Establecer comunicación con el Micro-controlador Arduino (Serial).
- Obtención y filtrado de las variables cinemáticas.

- Establecer comunicación con el Micro-controlador Arduino (Serial).
- Obtención y filtrado de las variables cinemáticas.
- Despliegue en Tiempo real.

- Establecer comunicación con el Micro-controlador Arduino (Serial).
- Obtención y filtrado de las variables cinemáticas.
- Despliegue en Tiempo real.

- Establecer comunicación con el Micro-controlador Arduino (Serial).
- Obtención y filtrado de las variables cinemáticas.
- Despliegue en Tiempo real.

Flujo de Datos: HTTP Polling

• El servidor no puede iniciar un canal de comunicación sin recibir una solicitud de un cliente.

Figura: Esquema HTTP Polling

Flujo de Datos: HTTP Polling

- El servidor no puede iniciar un canal de comunicación sin recibir una solicitud de un cliente.
- Se envía una respuesta "200 OK" independiente del estado de la solicitud.

Figura: Esquema HTTP Polling

Flujo de Datos: HTTP Polling

- El servidor no puede iniciar un canal de comunicación sin recibir una solicitud de un cliente.
- Se envía una respuesta "200 OK" independiente del estado de la solicitud.
- Desperdicia recursos a medida que las solicitudes aumentan.

Flujo de Datos: Websocket

• Consiste en una apertura de un **Handshake**.

Flujo de Datos: Websocket

- Consiste en una apertura de un **Handshake**.
- Mantiene una conexión Full-Duplex.

Flujo de Datos: Websocket

- Consiste en una apertura de un **Handshake**.
- Mantiene una conexión Full-Duplex.
- Se configura en base al entorno Web que usa generalmente el paradigma solicitud/respuesta.

Introducción

 Presencia de una comunicación HTTP Polling en Agrosense.

- Presencia de una comunicación HTTP Polling en Agrosense.
- Aumento del tiempo de respuesta con alta concurrencia.

- Presencia de una comunicación HTTP Polling en Agrosense.
- Aumento del tiempo de respuesta con alta concurrencia.

 Integración de Websocket en Flujo de Datos.

- Presencia de una comunicación HTTP Polling en Agrosense.
- Aumento del tiempo de respuesta con alta concurrencia.

- Integración de Websocket en Flujo de Datos.
- Desarrollo de servidor con el Framework Node.js.

Figura: Flujo de Datos Websocket

Evaluación de la Solución Propuesta

 Implementación de servidor HTTP Polling con el Framework Node.js.

Evaluación de la Solución Propuesta

- Implementación de servidor HTTP Polling con el Framework Node.js.
- Igualdad de condiciones en términos de lenguaje de programación.

Evaluación de la Solución Propuesta

Figura: Flujo de Datos HTTP Polling

Elección de la métrica adecuada

 Calcular el tiempo de respuesta frente a un alto número de peticiones.

Elección de la métrica adecuada

- Calcular el tiempo de respuesta frente a un alto número de peticiones.
- Promedio del tiempo de respuesta fijado en la duración de la experimentación que son cada 5 minutos.

Elección de la métrica adecuada

- Calcular el tiempo de respuesta frente a un alto número de peticiones.
- Promedio del tiempo de respuesta fijado en la duración de la experimentación que son cada 5 minutos.

$$P_C = \frac{(t_3 - t_2)}{t_{test}}$$

 Tiempo expresado en milisegundos.
CATOLIC

• Tipo de prueba: Prueba de Carga.

- Tipo de prueba: Prueba de Carga.
 - Número esperado de usuarios concurrentes.

- Tipo de prueba: Prueba de Carga.
 - Número esperado de usuarios concurrentes.
 - Realizan cantidades especificas de transacciones durante un tiempo.

- Tipo de prueba: Prueba de Carga.
 - Número esperado de usuarios concurrentes.
 - Realizan cantidades especificas de transacciones durante un tiempo.

Resultados

Conclusiones

Conclusiones

• Los sensores inerciales montados en una placa Arduino genera resultados similares a una plataforma especializada en el estudio del Balance.

Conclusiones

Conclusiones

- Los sensores inerciales montados en una placa Arduino genera resultados similares a una plataforma especializada en el estudio del Balance.
- El bajo coste de la solución propuesta.

Conclusiones

Conclusiones

- Los sensores inerciales montados en una placa Arduino genera resultados similares a una plataforma especializada en el estudio del Balance.
- El bajo coste de la solución propuesta.
- Los resultados expuestos son un buen punto de partida para nuevas investigaciones.

Trabajos Futuros

Trabajos Futuros

Los trabajos futuros que pueden desprenderse de esta tesis son:

• la validación de la solución como un instrumento para el estudio del Balance.

Trabajos Futuros

- la validación de la solución como un instrumento para el estudio del Balance.
- Añadir interfaces para comunicación inalámbrica.

Trabajos Futuros

- la validación de la solución como un instrumento para el estudio del Balance.
- Añadir interfaces para comunicación inalámbrica.
- Mejora de algoritmos y sensores utilizados.

Trabajos Futuros

- la validación de la solución como un instrumento para el estudio del Balance.
- Añadir interfaces para comunicación inalámbrica.
- Mejora de algoritmos y sensores utilizados.
- Generar un sistema empaquetado.

Sistema de evaluación y Bio-Feedback para balance postural

Héctor Gabriel Peredo Urbina

Noviembre 2016

