Analyse et équations

transport non linéaire

aux dérivées partielles

L'équation de

Question 1/7

Solutions de $\partial_t u + a(u) \partial_x u = 0$, $u_{|t=0} = u_0$ avec a et u_0 de classe \mathcal{C}^1 et $u \in \mathcal{C}^1([0, T[\times \mathbb{R})$

Réponse 1/7

Si
$$||u_0||_{L^{\infty}} + ||u_0'||_{L^{\infty}} < +\infty$$
 et T est tel que $1 + T \inf_{y \in \mathbb{R}} (a'(u_0(y)) \cdot u_0'(y)) > 0^{1}$ alors

l'équation admet une unique solutions dans $\mathcal{C}^1([0,T]\times\mathbb{R})$

1.
$$T = \frac{1}{2} \frac{1}{\|u_0'\|_{L^{\infty}} \times \max_{\|y\| \le \|u_0\|_{L^{\infty}}} (|a(y)|)}$$
 convient

Question 2/7

Solutions faibles de
$$\partial_t u + \partial_x f(u) = 0$$
, $u_{|t=0} = u_0$ avec f de classe \mathcal{C}^1 $u_0 \in L^{\infty}(\mathbb{R})$

Réponse 2/7

$$u$$
 et $f(u)$ sont dans $L^1_{loc}(\mathbb{R}_+ \times \mathbb{R})$ et pour tout $\varphi \in \mathcal{C}^1_c(\mathbb{R}_+ \times \mathbb{R})$, $\int_{\mathbb{R}_+ \times \mathbb{R}} u \, \partial_t \varphi + f(u) \, \partial_x \varphi \, dt dx + \int_{\mathbb{R}} u_0 \varphi(0, \cdot) \, dx = 0$ La solution n'est pas nécessairement unique Si de plus $u \in \mathcal{C}(\mathbb{R}_+, L^1_{loc}(\mathbb{R}))$ alors $u_0 = u(0, \cdot)$ presque partout

Question 3/7

Solutions de
$$\dot{X}(t) = a(u(t, X(t))), X(0) = x_0$$

avec a de classe \mathcal{C}^1 et $u \in \mathcal{C}^1([0, T[\times \mathbb{R})$

Réponse 3/7

$$X$$
 admet une unique solution $X(t) = x_0 + a(u(x_0)) \times t$ (droite caractéristique de $\partial_t u + a(u)\partial_x u = 0$), et $u(t, X(t)) = u_0(x_0)$

Question 4/7

Solutions entropiques de $\partial_t u + \partial_x f(u) = 0$, $u_{|t=0} = u_0$ avec f de classe \mathcal{C}^1 $u_0 \in L^{\infty}(\mathbb{R})$

Réponse 4/7

Pour tout
$$\eta \in \mathcal{C}^2(\mathbb{R}_+ \times \mathbb{R})$$
 telle que $\eta'' > 0$ et q est telle que $q' = \eta' f'$, $\eta(u)$ et $q(u)$ sont dans $L^1_{\text{loc}}(\mathbb{R}_+ \times \mathbb{R})$ et pour tout $\varphi \in \mathcal{C}^1_c(\mathbb{R}_+ \times \mathbb{R})$,
$$\int_{\mathbb{R}_+ \times \mathbb{R}} \eta(u) \, \partial_t \varphi + q(u) \, \partial_x \varphi \, dt dx$$

$$+ \int_{\mathbb{D}} \eta(u_0) \varphi(0, \cdot) \, \mathrm{d}x = 0$$

Question 5/7

Théorème de Kruzkov

Réponse 5/7

Soit $f \in \mathcal{C}^1(\mathbb{R})$ et $u_0 \in L^{\infty}(\mathbb{R})$, il existe une unique solution entropique à $\partial_t u + \partial_x f(u) = 0$, $u_{|t=0} = u_0$ dans la classe $L^{\infty}(\mathbb{R}_+ \times \mathbb{R}) \cap \mathcal{C}(\mathbb{R}_+ \times \mathbb{R})$

De plus, $\inf(u_0) \leqslant u \leqslant \sup(u_0)$ presque partout dans $\mathbb{R}_+ \times \mathbb{R}$

Question 6/7

Théorème d'unicité des slolutions entropiques

Réponse 6/7

Soient $u, v \in L^{\infty}(\mathbb{R}_{+} \times \mathbb{R}) \cap \mathcal{C}(R_{+}, L^{1}_{loc}(\mathbb{R}))$ solutions entropiques de $\partial_t w + \partial_x f(w) = 0$ avec $f \in \mathcal{C}^1(\mathbb{R})$ et pour conditions initiales $u_0, v_0 \in L^{\infty}(\mathbb{R})$. Soient $\alpha, \beta \in \mathbb{R}$ tels que, presque sûrement, $\alpha \leq u(t,x), v(t,x) \leq \beta$ et $M = ||f'||_{\infty,[a,b]}$ alors pour tout $t, R \geqslant 0$, $\int_{-R}^{R} |u(t,x) - v(t,x)| \, \mathrm{d}x \le \int_{-R-Mt}^{R+Mt} |u_0(x) - v_0(x)| \, \mathrm{d}x$ En particulier, si $u_0 = v_0$ alors u = v

Question 7/7

Liens entre solutions entropiques et solutions faibles

Réponse 7/7

Une solution entropique est une solution faible