Accelerating Automotive Aerodynamics Analysis

Liam McManus - Siemens Digital Industries Software Erich Jehle-Graf - Mercedes-Benz Ian Pegler - NVIDIA

Vehicle Manufacturers face more challenges than ever before.

Environmental Impact

Broad commitment to carbon-neutrality from OEMs, Suppliers, and Fleets

Accelerated Growth

BEVs are now 21% of sales in China

Regulations

2035 ICE banned in EU & many US states

Market Saturation

By 2025, 74 different EV models in North America

Sustainability

70% of Americans say climate change is important

To compete and stay relevant automotive companies must ...

Accelerate

the development cycle while engineering the most competitive vehicles

Maximize

performance, range, safety, and driving pleasure

Optimize

development processes for maximum return on invest and sustainable resource usage

Accelerating Aerodynamics Analysis

Dr. Erich Jehle-Graf

Mercedes-Benz

Aerodynamic Development Process (Drag and Lift): The early phase is 100% virtual but overall, 40% still is wind tunnel testing

Aerodynamics CFD-process (drag and lift): GPU: Large potential for a reduction of the computational footprint

Aerodynamics CFD-process description:

- **Geometrical input:** complete 3D CAD data → approx. 36.000 parts
- Meshing (Simcenter STAR-CCM+): Surface wrapping and volume meshing → 250-300 Mio. fluid cells
- **Solving (Simcenter STAR-CCM+):** Coupled iterative finite volume solver → up to 3500 iterations on 700 CPU-cores
- Overall process time → 5 h meshing + 5 h solving
- Fully automated "black box" Process → 50+ Users, including test engineers

Overall computational effort for one car model:

Up to 300 single model runs + full model DOE's \rightarrow in the order of 1000 simulations per car model

→ Over 3 Mio. CPU(core)-hours over one car development cycle

To be at the forefront of the BEV revolution, interior noise comfort is an important factor for customer satisfaction.

Mercedes-Benz claims to lead in passenger car comfort with a low interior noise level

In early stages of development, no physical hardware is available for interior noise measurements

But early production prototypes arrive too late to have a significant impact on development

To enable future optimization processes, turn around times must be significantly shortened

Today, reliable and highly precise aeroacoustics simulations are available

Immense computing power required (several weeks on HPC CPUs)

While posing huge opportunities such simulations come at a price...

The automotive simulation engineering challenge

Engineers must model the complexity...

...while going faster

The GPU revolution for CFD has truly arrived

The arrival of widespread GPU usage for CFD

V100:

- Released 2017
- 80 SMs (Streaming Multiprocessors)
- 32GB HBM2 memory

A100:

- Released 2020
- 108 SMs
- 80GB HBM2 memory

H100:

- Released2023
- 114 SMs
- 80GB HBM2 memory

H200:

- Released2024
- 141GB HBM3

memory

SIEMENS

Simcenter STAR-CCM+: Building a production ready GPU-native CFD code

Simcenter STAR-CCM+: Building a production ready GPU-native CFD code Application focussed approach

Go faster Model the complexity

2022.1
Unsteady
Vehicle
Aerodynamics

2210
Aeroacoustics
High Fidelity
Aerodynamics
Heat Transfer

2306
Steady
Aerodynamics
Industrial
Combustion
Gas Turbine
Aerodynamics

2310
Hypersonic
Aerodynamics
Gas Turbine Heat
Transfer

2402

Multi-timescale heat transfer

Simcenter STAR-CCM+: Building a production ready GPU-native CFD code Unified codebase

```
83template <class Var t>
                                                                                         83template <class Var t>
84void
                                                                                         84void
85GaussGradientEquation<Var_t>::
86accumulateGrad(FvRegion const &region, bool const &useRecon) const
    Field <GradVar<Var_t >, FaceCell>
                                               gradPhi(region, this->gradVar());
                     const, FaceCellRecon<3> > phi_f(region, useRecon, this->var());
    Field <Var_t
                                                                                             Field <Var_t
                                                 phi_c(region, this->var());
                     const, FaceCell>
    Field <Var t
                                                                                             Field <Var t
    Field <Volume
                     const, FaceCell>
                                                vol (region);
                                                                                             Field <Volume
    Field <Area<3>
                     const, Face>
                                                       (region);
                                                                                             Field <Area<3>
93
                                                                                         93
94
    FieldLoop begin(f, FaceCellRecon<3>, region)
95
                                                                                         95
96
                                                                                         96
      Real const phi_av = (vol[f](1)*phi_f[f](0)
                                                                                         97
97
98
                           vol[f](0)*phi_f[f](1))/vol[f].sum();
                                                                                         98
99
100
      gradPhi[f](0) += (phi av - phi c[f](0))*A[f];
      gradPhi[f](1) = (phi av - phi c[f](1))*A[f];
101
102
                                                                                         102
    FieldLoop_end();
                                                                                             FieldLoop_end();
```

```
85GaussGradientEquation<Var_t>::
86accumulateGrad(FvRegion const &region, bool const &useRecon) const
   Field <GradVar<Var_t >, FaceCell>
                                               gradPhi(region, this->gradVar());
                                                phi_f(region, useRecon, this->var());
                    const, FaceCellRecon<3> >
                    const, FaceCell>
                                                phi_c(region, this->var());
                    const, FaceCell>
                                               vol (region);
                    const, Face>
                                                      (region);
   FieldLoop begin(f, FaceCellRecon<3>, region)
     Real const phi_av = (vol[f](1)*phi_f[f](0)
                          vol[f](0)*phi_f[f](1))/vol[f].sum();
     gradPhi[f](0) += (phi av - phi c[f](0))*A[f];
     gradPhi[f](1) = (phi_av - phi_c[f](1))*A[f];
```

CPU

GPU

Accelerated Aerodynamics and Aeroacoustics - Mercedes EQE

Simcenter STAR-CCM+ on NVIDIA GPUs

Accelerated AerodynamicsMercedes EQE

CPU: 32 core dual socket, 2.4GHz clock speed, 256MB L3 cache

Accelerated Aerodynamics

Mercedes EQE – Results consistency

Accelerated Aerodynamics

Estimated savings

Cost estimates using NVIDIA pricing, energy estimates using listed TDP values of each configuration

Accelerated Aerodynamics

Hardware generational comparison – single node 115M cells

<u>GPU (SXM)</u>	<u>Memory (GB)</u>	<u>Memory</u> <u>Bandwidth</u> (TB/s)
A100	80 (HBM2)	2.04
H100	80 (HBM2e)	3.35
H200	141 (HBM3e)	4.50

- Expected Speed-Up to A100 (memory bandwidth)
- Real Speed-Up to A100

Accelerated AeroacousticsMercedes EQE

CPU: 32 core dual socket, 2.8GHz clock speed, 256MB L3 cache

Total time to solution estimated assuming 65,000 timesteps per simulation based on 100 timesteps sampled data

Simulation and a comprehensive digital twin is the key enabler

Transform Engineering

Drive productivity, empower innovation

Production ready

Mercedes EQE aerodynamics and aeroacoustics

Cost & energy efficient

Upto 3x cost reduction and 4x energy reduction

Go faster

Increasing throughput – 85 designs in 24h

Consistency

Simcenter STAR-CCM+ - hardware agnostic

Contact

Published by Siemens 2024

Liam McManusTechnical Product Manager

liam.mcmanus@siemens.com

Back-up slides

Component level analysis Don't forget the workstation GPUs!

GPU	RAM (GB)	Estimated maximum no. of cells	
		Segregated	Coupled
Quadro RTX4000	8	6.4M	3.2M
Quadro RTX6000	24	19M	9.6M
RTX A6000 / RTX 6000 Ada Generation	48	38M	19.2M

GPUs for Simulation

Example application: Wall-Modeled LES with H100s

H100 GPUs are supported from Simcenter STAR-CCM+ 2302

- Latest HPC GPU card available from NVIDIA
- Shows a good performance improvement relative to A100
- 4s modelled time in 7.3 hours on 4 x H100 cards

CPU: 16 nodes dual socket 32-Core Processor CPUs (1024 CPU cores), 2.4 GHz, 256 GB RAM per node

GPU: A100, PCIe 80GB configuration with AMD EPYC 7763, 2.45 GHz CPU. H100, SXM 80GB configuration with Intel Platinum 8380, 2.3 GHz. Simcenter STAR-CCM+ 2402

