## Review 2.3 - 2.5

Liang Ling E02201210...

MATH@NUS

September 8, 2018

### Table of Contents

Inverses of Square Matrices

2 Elementary Matrices

3 Determinants

## Definition of Inverse Matrix

- To solve ax = b we know if  $a \neq 0$  then  $x = a^{-1}b$ .
- How about AX = B? (Matrix Case).
- We want  $X = A^{-1}B$ . So we need to define  $A^{-1}$ .

#### **Definition**

Let A be a square matrix of order n. Then A is said to be invertible if there exists a square matrix B of order n such that

$$AB = BA = I$$
.

Such a matrix B is called an inverse of A. A square matrix is called *singular* if it has no inverse.



### Cancellation Law for Matrices

• If A is invertible matrix of order m, then

$$AB_1 = AB_2 \quad \Rightarrow \quad B_1 = B_2,$$

and

$$C_1A = C_2A \quad \Rightarrow \quad C_1 = C_2,$$

if the matrix multiplications are defined.

If A is sigular, the cancellation law may not hold.

# Uniqueness of Inverse

#### Theorem,

If B and C are inverses of a square matrix A, then B = C.

#### Proof.

B is inverse of A, we have

$$BA = I$$
,  $AB = I$ .

C is inverse of A, we have

$$CA = I$$
,  $AC = I$ .

So

$$AB = I \quad \Rightarrow \quad CAB = CI \quad \Rightarrow \quad IB = C \quad \Rightarrow \quad B = C.$$

# Properties of Inverse Matrix

#### Theorem

Let A, B be two invertible matrices of the same size and c a nonzero scalar. Then

- cA is invertible and  $(cA)^{-1} = \frac{1}{c}A^{-1}$ .
- ②  $A^{T}$  is invertible and  $(A^{T})^{-1} = (A^{-1})^{T}$ .
- **3**  $A^{-1}$  is invertible and  $(A^{-1})^{-1} = A$ .
- AB is invertible and  $(AB)^{-1} = B^{-1}A^{-1}$ .

See Q2.

### Table of Contents

Inverses of Square Matrices

2 Elementary Matrices

3 Determinants

## Multiply the *i*th row of *A* by *k*

• Let A be a  $m \times n$  matrix, and define the matrix  $E_i(k)$  of order m as

- Multiply the *i*th row of A by  $k \Leftrightarrow \text{pre-multiply } E$  to A, which is  $E_i(k)A$ .
- $E_i(k)$  is invertible, the inverse of  $E_i(k)$  is simply replace k in (1) by  $\frac{1}{k}$ , which is  $E_i(\frac{1}{k})$ .

## Interchange the *i*th row and the *j*th row

• Let A be a  $m \times n$  matrix, and define the matrix  $E_{ij}$  of order m as

- Interchange the *i*th row and the *j*th row  $\Leftrightarrow$  pre-multiply  $E_{ij}$  to A, which is  $E_{ij}A$ .
- The matrix  $E_{ij}$  is invertible and  $E_{ij}^{-1} = E_{ij}$ .

# Add k times of ith row to the jth row (i < j)

• Let A be a  $m \times n$  matrix, and define the matrix  $E_{ij}(k)$  of order m as

- Add k times of ith row to the jth row  $(i < j) \Leftrightarrow \text{pre-multiply } E_{ij}(k)$  to A, which is  $E_{ij}(k)A$ .
- The matrix  $E_{ij}(k)$  is invertible and  $E_{ij}(k)^{-1} = E_{ij}(-k)$ .



# Elementary Matrices

We can find that,  $E_i(k)$ ,  $E_{i,j}$  and  $E_{ij}(k)$  can be obtained by doing the corresponding elementary row operations to the identity matrix.

#### Definition

A square matrix is called an **elementary matrix** if it can be obtained from an identity matrix by performing a **single** elementary row operation.

Note: All elementary matrices are invertible and their inverse are also elementary matrices (as indicated by the above).

## Part of Main Theorem on Inverse Matrices

**Thinking**: If A is invertible then for Ax = b we have  $x = A^{-1}b$ . Since the inverse of matrix A is unique, so  $x = A^{-1}b$  is also unique. Now look at the reduced row-echelon form of this linear system:

$$(A|b) 
ightarrow egin{pmatrix} 1 & & 0 & * \ & \ddots & & dots \ 0 & & 1 & * \end{pmatrix}$$

#### Theorem

If A is a square matrix, then the following statements are equivalent:

- A is invertible.
- 2 The linear system Ax = 0 has only the trivial solution.
- 3 The reduced row-echelon form of A is an identity matrix.
- A can be expressed as a product of elementary matrices.



# Practical Method for Computing the Inverse of a Matrix

• Let A be an invertible matrix of order n. They by the above theorem, we can perform elementary row operations to reduced A to its reduced row-echelon form, which is the identity matrix. Which says that there exist elementary matrices  $E_1, E_2, \dots, E_k$  such that

$$E_k E_{k-1} \cdots E_2 E_1 A = I$$
.

• Post-multiply  $A^{-1}$  on the both sides of the above, we get

$$E_k E_{k-1} \cdots E_2 E_1 A A^{-1} = I A^{-1} = A^{-1} \implies E_k E_{k-1} \cdots E_2 E_1 = A^{-1}.$$

• So we only need to perform elementary row operations to (A|I), then we can get the inverse matrix.

$$E_k E_{k-1} \cdots E_2 E_1(A|I) = (E_k E_{k-1} \cdots E_2 E_1 A|E_k E_{k-1} \cdots E_2 E_1 I) = (I|A^{-1})$$

• See Q1, Q3 and Q4.

### Table of Contents

Inverses of Square Matrices

2 Elementary Matrices

Oeterminants

## **Definition of Determinants**

#### Definition

Let  $A = (a_{ij})_{n \times n}$ , and  $M)_{ij}$  be an  $(n-1) \times (n-1)$  matrix obtained from A by deleting the ith row and jth column. Then the determinant of A is defined as

$$det(A) = \begin{cases} a_1 1 & \text{if } n = 1 \\ a_{11}A_{11} + a_{12}A_{12} + \dots + a_{1n}A_{1n} & \text{if } n > 1 \end{cases}$$
 (4)

where

$$A_{ij}=(-1)^{i+j}det(M_{ij}).$$

The number  $A_{ij}$  is called the (i,j)-cofactor of A. The about definition of determinant is called the **cofactor expansion**.

See Q5.

