

Ingeniería informática

UT3_TFU: Diseño y UML

Asignatura: Análisis y Diseño de Aplicaciones

Docentes: Glauco Javier Yannone, Rodrigo Lujambio 14 de mayo de 2024

Parte 1

Identifique los requisitos del problema.

Requisitos:

- Sistema automatizado: Se necesita un sistema que pueda manejar de forma automática los competidores y sus puntuaciones. Lo crucial sería que fuera rápida y confiable.
- **Gestor multidisciplinario**: El sistema debe poder gestionar todas las disciplinas olímpicas. Cada una con sus propias categorías, modalidades y sistemas de puntuación.
- Manejo de puntuaciones: El sistema tiene que poder registrar los resultados de todos los eventos. Incluidos tiempos, distancias, puntajes, entre otros de manera precisa y organizada.
- Cálculo de puntuaciones: Para las disciplinas que lo requiera el sistema debe ser capaz de realizar el cálculo de las puntuaciones tomando en cuenta los criterios de cada disciplina.
- Manejo de grupos de edad y categorías: El sistema debe ser capaz de gestionar las información de los participantes para que cada uno pueda participar en una competencia justa.
- Visualización de los resultados: El sistema debe permitir mostrar los resultados de manera clara y accesible para el público y para el personal del evento, a través de un sistema amigable y sencillo.
- **Escalabilidad y adaptabilidad**: El sistema debe ser maleable de forma de poder cambiar en competencias futuras, incluyendo posibles cambios en las reglas y adición de nuevas disciplinas, así como escalable para manejar grandes volúmenes de datos durante eventos multitudinarios.

Parte 2

Utilizado las herramientas de modelado vistas en la unidad, especifique una solución al problema planteado. Justifique la utilización de cada uno de los diagramas.

Solución:

Diagramas para representar la solución:

Diagrama de casos de uso:

Este diagrama puede mostrar las diferentes interacciones entre los usuarios y el sistema. Cada caso de uso representaría una funcionalidad específica, como registrar resultados, calcular puntuaciones, visualizar resultados, etc. De esta forma podemos representar requisitos funcionales.

Diagrama de clases:

Este diagrama puede mostrar las clases principales del sistema, como Atleta, Disciplina, Evento, Puntuación, etc, y las relaciones entre ellas. Esto ayudaría a entender la estructura de datos del sistema y cómo se relacionan entre sí las diferentes clases que ponen el mismo.

Diagrama de secuencia:

Este diagrama puede mostrar la secuencia de interacciones entre los diferentes componentes del sistema o externos para realizar una tarea específica, como registrar resultados de un evento o calcular puntuaciones para una disciplina particular. Esto ayudaría a ver cómo colaboran los distintos objetos, permitiéndonos ver el comportamiento del escenario de la puntuación de un competidor.

EJEMPLO COMPETENCIA GENERAL

- 1. El juez detecta un movimiento del competidor y revisa el sistema de clasificación para obtener su métrica de puntajes.
- El sistema de clasificación compara el movimiento con la bd de movimientos y le asigna tipo especifico¹.
 El sistema de clasificación devuelve la métrica.
 El juez puntúa al participante objetivamente y lo registra en el sistema de puntos.

- 5. El sistema de puntos agrega una nueva entrada para el participante con el puntaje.
- La tabla de posiciones es actualizada con la nueva entrada.
- 7. Por ultimo, se manda las tablas a ser presentadas por el sistema de visualización.
- ¹ En la base de datos hay diferentes tipos de movimientos, los cuales tienen asignados una métrica para ser evaluados.

Diagrama de actividad:

Este diagrama es perfecto para poder mostrar el flujo del trabajo de la puntuación en las competencias, y de cómo estos se van registrando en el sistema. Sus elementos, como los timers, tomas decisiones, y carriles, nos permiten representar de una forma visual como se pretenden que sean los procesos y/o procedimientos para registrar y transmitir los puntajes.

Nos permiten en un único diagrama contener las diferentes posibilidades de categorías que se evalúen por distintos aspectos, o que tengan incluso un tiempo límite. Además las bifurcaciones nos permiten mostrar el procesamiento en paralelo de algunas actividades lo cual es vital para entender claramente la solución propuesta.

Diagrama de despliegue:

Este diagrama puede mostrar la estructura física del sistema, incluyendo los diferentes servidores, dispositivos y redes involucradas. Esto ayudaría a comprender cómo se despliega el sistema en un entorno de producción y cómo interactúa con otros sistemas o dispositivos externos.

Como dato no poco importante se debe aclarar que en algunos de los diagramas se pueden encontrar con notas que continúan la justificación de decisiones y representaciones de las que se hicieron uso en dichos sistemas.