

简单机械

日期:	时间:	姓名:	
Date:	Time:	Name:	

初露锋芒

	1. 理解并掌握杠杆平衡条件							
	2. 理解定滑轮、动滑轮的作用,知道滑轮在生产实际中的应用							
学习目标	3. 理解功和功率的概念,能用实例解释功的含义,会用公式公式进行简单的计算							
&	4. 知道机械能,能举例说明动能与势能以及它们之间的相互转化							
重难点	1. 杠杆 杠杆平衡条件							
	2. 滑轮 功 功率							
	3. 动能 势能 机械能							
根深蒂區								
杠杆								
杠杆: 在力的作用	下绕转动的硬棒叫做杠杆。							
1、杠杆五要素:	lacksquare $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$							
支点: 杠杆线	·着转动的点,即定义中的;一般用表示,在中即"△";说明:							
支点一定在_								
动力:使杠杆								
阻力:	杠杆转动的力,一般用表示;							
动力臂:从_	到的距离,一般用表示;							
阻力臂:从_								
2、杠杆的平衡条	'4:							
杠杆平衡是指	: 杠杆或绕支点。							
杠杆的平衡多	件(或杠杆原理):							
公式是	,也可写成:。							
3、杠杆的应用:								
由杠杆的平衡	f 条件 $F_1 \times L_1 = F_2 \times L_2$,按照力臂的不同可分为:							
当 L ₁ I	2时, F ₁ F ₂ , 省力杠杆, 应用举例:。							

当 L₁_____L₂时, F₁_____F₂, 等臂杠杆,应用举例:_____。

当 L₁____L₂时, F₁_____F₂, 费力杠杆,应用举例:_____。

_	运 <i></i>
<u> </u>	/H'#/

_,	滑轮 <u>//////</u>
	滑轮:周边有,能绕着轴的小轮。
	1、定滑轮: 使用时, 轴
	定滑轮可以看作是一个杠杆。
	定滑轮的轴是杠杆的,动力臂和阻力臂都等于定滑轮的。
	使用定滑轮不能,但可以改变。
	对理想的定滑轮(不计轮轴间摩擦)动力 F 等于;
	绳子自由端移动距离 S_F (或速度 V_F)重物移动的距离 S_G (或速度 V_G)
	2、动滑轮: 使用时, 轴随物体一起
	动滑轮可以看作是一个 $_{}$ 杠杆。 $_{}$
	动滑轮的支点为 O, 滑轮的轴是的作用点,被提升的重物对轴的作用力是,绳对轮
	的作用力是, 动力臂等于动滑轮的, 阻力臂等于动滑轮的。
	提升重物时如果两边绳子平行,动力臂为阻力臂的倍,动滑轮平衡时,动力为阻力的,
	能,但不能改变,向上拉绳才能将重物提起。
	对理想的动滑轮(不计轮轴间摩擦和动滑轮重力)动力 F 等于; 只忽略轮轴间的摩擦则拉力
	等于
	$ m V_G)_\circ$
三、	机械功 功率
	1、机械功:一个力作用在物体上,且物体沿的方向通过了一段,物理学上称这个力对物体做
	了,简称做了。
	做功的两个必要因素: 一是; 二是。
	计算: 力对物体所做的功 W 等于作用力 F 与物体在的方向上移动的距离 s 的。公式:
	单位:在 SI 制中,功的单位,简称,符号用表示。
	2、功率:物理学中,把内所做的叫做功率,用它来表示物体。
	计算公式:
	单位:在 SI 制中,功率的单位是,简称,符号是。工程技术上还常用和
	作为功率的单位,符号分别是和
	1 瓦=

四、机械能

能量:一个物体能够做功,我们就说这个物体具有, , 简称, 。

1、势能:

重力势能和弹性势能统称为。

- 3、动能和势能的转化:

能量转化的多少可以用_____多少来量度,能的单位与____的单位相同,也是___。

枝繁叶茂

一、简单机械

知识点一: 杠杆分类及应用

【例1】使用杠杆可以为我们的生活带来方便,下列杠杆的使用能够省距离的是 ()

A. 开瓶器

B. 镊子

C. 钳子

D. 自行车手闸

知识点二: 杠杆平衡计算

【例2】某杠杆的阻力臂是动力臂的3倍,阻力是60牛,求杠杆平衡时动力为多大?

知识点三:探究杠杆平衡条件实验

【例 3】小森在"探究杠杆平衡条件"的实验中:

- (1) 把杠杆挂在支架上,观察到杠杆左端下沉,当他去调螺母时,发现两侧螺母已丢失,聪明的小森在 ("左"或"右")侧末端缠些透明胶就使杠杆在水平位置平衡了。
- (2) 某次测量中,如图所示的杠杆已处于平衡状态。若小森在两边钩码下方各拿走两个钩码,杠杆 ("左"或"右")端将下沉。为使杠杆恢复水平平衡,小森应将左侧剩余的两个钩码移至 处。

【例 4】在探究杠杆平衡条件的实验中:

- (1) 如图 a 所示,要使杠杆在水平位置平衡,可将杠杆右端的平衡螺母向______调节(选填"左"或"右")。
- (2) 如图 b 所示,调节平衡后,左侧挂上钩码,在右侧用弹簧测力计(图中未画出)拉杠杆,使其在水平位置平衡,为便于测量力臂,应使弹簧测力计拉力的方向_____。
- (3) 甲同学测出了一组数据后就得出了"动力×动力臂=阻力×阻力臂"的结论,乙同学认为他的做法不合理,理由是。
- (4) 如图 c 所示, 弹簧测力计由竖直方向逐渐向左转动, 杠杆始终保持水平平衡, 则弹簧测力计的示数将 (选填"变大"、"变小"或"不变")。

知识点四:滑轮应用

1、杠杆可以分为三类: 省力杠杆、费力杠杆、等臂杠杆(定滑轮是等臂 杠杆, 动滑轮是省力杠杆);

2、杠杆平衡条件: $F_1 \times L_1 = F_2 \times L_2$, 计算过程中, 分别找出杠杆的五要素, 搞清楚变量和不变量再进行计算。

二、机械功 功率

知识点一: 机械功 功率计算

【例1】小张用50牛的水平推力使一个重为20牛的物体沿水平面前进了6米,放手后,物 体继续滑行了 1.5 米,则小张对物体做的功为 ()

- A. 75焦 B. 120焦
- C. 300焦
- D. 375焦

【例 2】一工人用 100N 的水平拉力将 300N 重的木箱在水平地面上匀速拉动了 10m, 用时 10s, 然后又扛 着木箱走了10m,用时20s,随后扛着木箱上了3m高的二楼放下木箱,用时20s,问这个工人对木箱做了 多少功?这个工人的功率是多少?

1、功的公式: W=FS (判断力是否做功, 就看是否在力的方向上有距离),

三种不做功的情况:有力无距离,有距离无力,力与距离相互垂直;

2、功率的公式: P=W/t

三、机械能

知识点一: 机械能

【例1】在空中飞行的小鸟,动能是12J,势能是18J,那么小鸟的机械能为 J;水平地面上滚动的 皮球,有100J的动能,而势能为零,则机械能是 J;举在空中静止的杠铃,其重力势能为200J, 机械能是 J。

【例 2】游乐场中,过山车被提升到最高处,使过山车具有很大的,然后过山车沿轨道自由 滑下,速度越来越快,此时______转化为_____,到了最低点时,具有最大的_____ 然后过山车又沿轨道向上冲,高度越来越高,此时, 转化 ,游客们充分体验了 速度与高度的刺激。(均选填"动能"或"重力势能")

机械能是动能和势能的总称。影响动能大小的因素是质量和速度。 重力势 能和弹性势能统称为势能,影响重力势能大小的因素是质量和高度,弹性 势能大小的弹性形变程度。

随堂检测

- 1、下列关于杠杆的说法中,错误的是 (
 - A. 杠杆可以是直的,也可以是弯的
 - B. 杠杆的长度等于动力臂和阻力臂之和
 - C. 支点可以在杠杆的端点,也可以在力的作用线之间
 - D. 动力、阻力使杠杆转动方向相反,但他们的方向不一定相反
- 2、如图所示,轻质杠杆可绕 O 转动,在 A 点始终受一垂直作用于杠杆的力,在从 A 转动到 A'位置时,力 F 将 ()
 - A. 变大

- B. 变小
- C. 先变大, 后变小
- D. 先变小, 后变大

- 3、同一物体沿相同水平地面被匀速拉动,如图所示,拉力分别为 F_#、F_z,不计滑轮与轻绳间的摩擦,比 较它们的大小,则 ()
 - A. $F \neq F_{7}$
- B. $F_{\#} > F_{Z}$
- C. 不能确定
- D. $F = F_{z}$

- 4、如图所示, 当拉力 F=100N 时, 物体在水平面上匀速运动, 则物体所受的摩擦力 f 为 (
 - A. 100N B. 200N C. 50N D. 150N

5、在图中, OA 是轻质杠杆,已知 OB=2AB,B 点所挂重物的重力为 6 牛,A 端竖直向上拉着,杠杆处于静 止状态,则力F的大小为 牛。这时的杠杆是 杠杆(选填"省力"或"费力")。保持作用点不变, 当力 F 向左倾斜时,为使杠杆仍然保持静止,则力的大小需 (选填"增大"、"不变"或"减小")。

- 6、关于功和功率,下列说法正确的是 ()

 - A. 机器做功少, 功率一定小 B. 功率小的机器做功不一定慢

 - C. 功率大的机器做功一定快 D. 功率大的机器一定比功率小的机器做功多
- 7、重50牛的的物体在水平支持面上做匀速直线运动,所受的阻力是20牛,则它受到的水平拉力是 牛,若物体在水平方向上移动30米,则拉力对物体做了焦的功,重力对物体做了焦的功。
- 8、把一根横卧在地面上的长6m、质量为20kg 的粗细均匀的铁管子竖直立起来,需要对它做功 焦。
- 9、如图所示,卫星在绕地球运行,当卫星由近地点向远地点运行时,转化为转化为(选填"动 能"或"势能"),在远地点,动能,势能,当卫星由远地点向近地点运行时, 转化为______,在近地点,动能______,势能_____

10、在下列各图中将支点、动力、阻力、动力臂、阻力臂补画完整。

11、如图所示,在相同的时间内,将质量相等的甲、乙两物体分别沿两个坡度不同的光滑斜面匀速推到平台上,则 ()

- A. 到达平台时,物体甲的重力势能等于物体乙的重力势能
- B. 到达平台时, 物体甲的动能等于物体乙的动能
- C. 到达平台时,物体甲的重力势能大于物体乙的重力势能
- D. 到达平台时, 物体甲的重力势能小于物体乙的重力势能

12、如图所示,若两物体所受重力均为 20 牛且匀速上升 1 米,不计摩擦和滑轮重力,试问:

- (2) 力 F₂的大小是多少?
- (3) 在此过程中, F₁所做的功是多少?

13、重为20牛的木块,在大小为5牛的水平拉力作用下,沿水平面匀速前进了6米。请分别求出此过程中木块受到拉力做的功 \mathbf{W}_{\imath} 和重力做的功 \mathbf{W}_{\imath} 。

可以改

14、为了探究滑轮在不同工作情况时的使用特点,某小组同学利用不同的滑轮将重为 10 牛的物体匀速提起,滑轮的工作情况和实验数据如下表所示。

实验序号	1	2	3	4	5	6	7	8	9
定滑轮			动滑轮						
滑轮工作情况									
滑轮重(牛)	1	1	1	1	2	3	3	3	3
拉力(牛)	10	10	10	5.5	6.0	6.5	7.2		8.0

①分析比较实验序号	可得出的初步结论是:	使用定滑轮匀速提升重物时	,不改变力的大小,
变用力方向。			
②分析比较实验序号4、5	和 6 可得出的初步结论是:		0
③分析比较实验序号6、7	和 9 可以得到的结论是:		0
④依据第③小题的结论可	推断实验序号8中拉力大小的	 り范围为	牛。

瓜熟蒂落

- 1、一把刻度准确的杆秤,若水果商贩将标准秤砣换成较轻的秤砣卖给小芳1kg 水果,则水果实际质量 ()
 - A. 大于1kg
- B. 小于1kg
- C. 等于1kg
- D. 可能大于1kg, 也可能小于1kg
- 2、如图所示,把一根均匀的米尺,在中点 O 支起,两端各挂四个钩码和两个钩码,恰好使米尺平衡,按下列方式增减钩码或移动钩码,下列几种方式仍能保持米尺平衡的是 ()
 - A. 两边各加一个钩码
 - B. 两边钩码各向外移动一格
 - C. 左边增加一个钩码, 右边向外移动一格
 - D. 左右两边的钩码各减少一个

3、如图所示,用三个滑轮分别拉同一个物体,沿同一水平面做匀速直线运动,所用的拉力分别是 F₁、F₂、F₃, 比较它们的大小应是 ()

- A. $F_1 > F_2 > F_3$ B. $F_1 < F_2 < F_3$ C. $F_2 > F_1 > F_3$ D. $F_2 < F_1 < F_3$

- 4、如图所示, F的方向始终竖直向上, 在匀速提升重物 G的过程中 (
 - A. F 大小不变

B. F 逐渐变大

- C. F 逐渐变小
- D. F 先逐渐变小后逐渐变大

5、如图所示, 理想动滑轮下面挂一个重 G=20N 的物体, 挂物体的绳子承受 N 的力, 拉力 F= N (动滑轮的重力及摩擦不计)。

6、如图所示,不计动滑轮的重力及转动摩擦,当竖直向上的拉力 F=10N 时,恰能使重物 G 匀速上升,则重物 G=_____N,绳固定端的拉力为_____N,重物上升10cm,拉力F向上移动____cm。

- 7、如图所示,不计滑轮重及摩擦,分别用力 F_1 、 F_2 匀速提升同一重物,若力 F_1 、 F_2 在相等时间内对物体所做 的功相等,则力 F_1 、 F_2 及其功率 P_1 、 P_2 的大小关系为 ()
 - A. $F_1 > F_2$: $P_1 < P_2$
- B. $F_1 > F_2$; $P_1 > P_2$
- C. $F_1 > F_2$; $P_1 = P_2$
- D. $F_1 < F_2$; $P_1 < P_2$

)

- 8、滚摆运动过程中,每次上升的高度逐渐降低,对此以下说法中正确的是 (
 - A. 滚摆运动过程中,重力势能和动能相互转化,但机械能不断减小
 - B. 滚摆下落过程中,它的重力势能转化为动能,机械能不变
 - C. 滚摆运动到最高处时,它的动能为零,重力势能最大,机械能不变
 - D. 滚摆运动过程中,它的重力势能不变
- 9、在如图中的装置中,放在水平地面上的物体质量为 10kg,在拉力 F=10N 的力作用下以 0.4m/s 的速度匀速运动。求:
- (1) 物体受到的摩擦力多大?
- (2) 在 10s 内拉力 F 做了多少功?
- (3) 拉力 F 的功率多大?

10、小龙同学学习了杠杆知识后,运用杠杆平衡原理制作了一个能称一根头发丝质量的"小天平",如图所示。取一根细长的饮料吸管,在其左端朝上剪出一个小缺口,右端朝上剪出多个小缺口,然后在它的左端附近穿过一缝衣针,并在左端插入一个小螺丝钉,将吸管放在支架上。仔细调节螺丝钉在吸管中的位置,使吸管在支架上保持水平平衡,这样一个简易"小天平"就制成了。

测量时在左端缺口处挂一段质量已知的细铜丝,右端缺口处放上一根头发丝。

- (1) "小天平"中的小螺丝钉的作用相当于 (选填"平衡螺母"、"砝码"或"游码")。
- (2) 在测量过程中,当头发丝放在3号缺口处时发现吸管右端高左端低,此时应将头发丝调到号缺口处(选填"1或2"、"2或4"或"4或5")。
- (3) 为了计算头发丝的质量,他还需要用 测出

11、重力为80牛的物体在50牛的水平拉力作用下沿水平面做匀速直线运动,10秒内前进了6米,拉力做功的功 率为 瓦,在此过程中物体的机械能将 (选填"变大"、"不变"或"变小"),重力对物体做功 为_____焦。

- 12、甲、乙两人质量之比为5:4,他们沿静止的自动扶梯匀速跑上楼的功率之比为3:2,甲跑上楼所用的时间是 t₁, 当甲站在自动扶梯上不动, 开动自动扶梯把甲送上楼所用的时间是 t₂, 那么, 当乙用原来的速度沿向上开 动的扶梯跑上楼时, 所用的时间为 (
 - A. $\frac{6t_1t_2}{6t_1 + 5t_2}$ B. $\frac{t_1t_2}{t_1 + t_2}$ C. $\frac{5t_1t_2}{3t_1 + 4t_2}$ D. $\frac{2t_2}{3}$

- 13、如图所示,小王站在高 3 米、长 6 米的斜面上,将重 200 牛的木箱 A 沿斜面匀速从底端拉上顶端,拉力 大小恒为 120 牛, 所花时间是 10 秒。求:
- ①木箱 A 沿斜面方向的运动速度。
- ②小王对木箱做功的功率。

14、图甲是研究"物体动能的大小与哪些因素有关"的实验装置,实验中让同一钢球从斜面上不同的高度由静 止滚下,碰到同一木块上,图乙是研究"牛顿第一定律"的实验装置,实验中让同一钢球从斜面上相同的高度 由静止滚下,在粗糙程度不同的平面上运动。

请回答以下问题:

(1)设计甲实验的	目的是研究钢球动能的	大小与_		的关系;	设计乙实验	的目的是	是研究运动的	的钢球
与所受	的关系。							
(2) 甲实验是通过	被推动木块	的大小	、 说明钢玛	对木块做	功的多少,从	人而判断	钢球动能的	大小;
乙实验是通过钢球	在粗糙程度不同的平	面上运	动的远近,	推理得出	: 在理想情	况下,	运动的物体	*如果
	,将做匀速直线	栈运动。						
(3) 我们知道影响	物体动能大小的因素有	两个, 隊	除了上述研究	究的因素外	、,请在下面	的横线上	上写出研究特	勿体的
动能与另一个因素的	的关系的实验方案:							