

Global United Technology Services Co., Ltd.

Report No.: GTSE14040048101

FCC REPORT

Applicant: Wing Hing Electronics Industrial Ltd.

Address of Applicant: Room 1902-03, 19/F., Enterprise Square One, Tower 3, 9

Sheung Yuet Road, Kowloon Bay, Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: Alarm Clock Radio

Model No.: CR-232, CR-232BT, CR-410, CR-410BT, CR-420, CR-420BT,

81012BT(WESTCLOX)

Trade Mark: WINEC

FCC ID: 2AAOLCR232BT

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.249:2013

Date of sample receipt: May 05, 2014

Date of Test: May 05-08, 2014

Date of report issued: May 08, 2014

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	May 08, 2014	Original

Prepared By:	hank. year	Date:	May 08, 2014	
	Project Engineer			
Check By:	Homs. Hu	Date:	May 08, 2014	
	Reviewer	<u> </u>		

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
_		
3	3 CONTENTS	3
4	4 TEST SUMMARY	4
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	
	5.2 GENERAL DESCRIPTION OF EUT	
	5.3 TEST MODE	7
	5.4 DESCRIPTION OF SUPPORT UNITS	7
	5.5 TEST FACILITY	7
	5.6 TEST LOCATION	
	5.7 OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
6	6 TEST INSTRUMENTS LIST	8
7	7 TEST RESULTS AND MEASUREMENT DATA	9
	7.1 ANTENNA REQUIREMENT:	9
	7.2 CONDUCTED EMISSIONS	
	7.3 RADIATED EMISSION METHOD	
	7.3.1 Field Strength of The Fundamental Signal	
	7.3.2 Spurious emissions	
	7.3.3 Bandedge emissions	
8	8 TEST SETUP PHOTO	23
9	9 EUT CONSTRUCTIONAL DETAILS	25

Shenzhen, China 518102

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Field strength of the fundamental signal	15.249 (a)	Pass
Spurious emissions	15.249 (a) (d)/15.209	Pass
Band edge	15.249 (d)/15.205	Pass
20dB Occupied Bandwidth	15.215 (c)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Wing Hing Electronics Industrial Ltd.
Address of Applicant:	Room 1902-03, 19/F., Enterprise Square One, Tower 3, 9 Sheung Yuet Road, Kowloon Bay, Kowloon, Hong Kong.
Manufacturer:	Wing Hing Electronics Industrial Ltd.
Address of Manufacturer:	Room 1902-03, 19/F., Enterprise Square One, Tower 3, 9 Sheung Yuet Road, Kowloon Bay, Kowloon, Hong Kong.

5.2 General Description of EUT

Product Name:	Alarm Clock Radio
Model No.:	CR-232, CR-232BT, CR-410, CR-410BT, CR-420, CR-420BT, 81012BT(WESTCLOX)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, Pi/4DQPSK, 8DPSK
Antenna Type:	PCB Antenna
Antenna gain:	0dBi (declare by Applicant)
Power supply:	Model:WHP18F-05020 Input: 100-240V 50/60Hz 0.45A Max Output: DC 5V 1.8A Or DC 3.0V (2*1.5V "AAA" SIZE Battery)

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Operation	Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz		
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz		
		:							
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz		
20	2421MHz	40	2441MHz	60	2461MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode with modulation.

Remark: 1.During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

2. Worst case GFSK modulation

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	Х	Y	Z
Field Strength(dBuV/m)	92.48	93.95	91.37

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup":

Y axis (see the test setup photo)

5.4 Description of Support Units

N/A

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

5.7 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Radi	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 29 2013	Mar. 28 2015			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Dec. 05 2013	Dec. 04 2014			
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 02 2013	Jul. 01 2014			
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Feb. 23 2014	Feb. 22 2015			
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 28 2013	June 27 2014			
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 28 2014	Mar. 27 2015			
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 29 2014	Mar. 28 2015			
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 29 2014	Mar. 28 2015			
11	Coaxial cable	GTS	N/A	GTS210	Mar. 29 2014	Mar. 28 2015			
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 29 2014	Mar. 28 2015			
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 02 2013	Jul. 01 2014			
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 02 2013	Jul. 01 2014			
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 28 2013	June 27 2014			
16	Band filter	Amindeon	82346	GTS219	Mar. 29 2014	Mar. 28 2015			

Con	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 07 2013	Sep. 06 2015				
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jul. 02 2013	Jul. 01 2014				
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jul. 02 2013	Jul. 01 2014				
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	Jul. 02 2013	Jul. 01 2014				
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jul. 02 2013	Jul. 01 2014				
6	Coaxial Cable	GTS	N/A	GTS227	Jul. 02 2013	Jul. 01 2014				
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

Gen	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Barometer	ChangChun	DYM3	GTS257	July 09 2013	July 08 2014			

7 Test results and Measurement Data

7.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 0dBi

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
,							
Test Method:	ANSI C63.4:2003						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto					
Limit:	Frequency range (MHz)	Limit (c	dBuV)				
	, , ,	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30 * Decreases with the logarithm	60	50				
Toot ootun.		of the frequency.					
Test setup:	Reference Plane		-				
	AUX Equipment Under Test LISN In Impedence Stabilization Network Test table height=0.8m						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted 						
	interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be change according to ANSI C63.4: 2003 on conducted measurement.						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						
	•						

Measurement data:

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

: FCC PART15 CLASSB QP LISN-2013 LINE Condition

Job No. Test mode : 0481RF

: Bluetooth mode

Test Engineer: Qing

	Freq	Read Level	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu₹	dB	dBu₹	dBuV	dB	
1 2 3 4 5	0.233 0.444	26.77 22.65 14.12	10.13 10.15	37. 03 32. 90 24. 39	64.50 62.35 56.98	-27.47 -29.45 -32.59	QP QP QP
6		15.11 13.29					-

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Neutral:

Trace: 36

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 0481RF

Test mode : Bluetooth mode

Test Engineer: Qing

	Freq	Read Level	Cable Loss				Remark
	MHz	dBuV	d₿	dBuV	dBuV	dB	
1 2 3 4 5 6	0. 176 0. 216 0. 259 0. 641	28. 90 26. 63 23. 30 20. 21 17. 62 10. 19	10.12 10.13 10.14 10.17	36. 82 33. 49 30. 41 27. 86	64.68 62.96 61.47 56.00	-27.86 -29.47 -31.06 -28.14	QP QP QP QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.3 Radiated Emission Method

ietiiou							
FCC Part15 C S	Section 15.209	9					
ANSI C63.4:200	03						
30MHz to 25GH	łz						
Measurement D	Distance: 3m						
Frequency	Detector	RBW	VBW	Remark			
30MHz- 1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
Above 1GHz	Above 1GHz Peak		3MHz 10Hz	Peak Value Average Value			
	For field strength test, the RBW and VBW were set to 3MHz ar Pk detector for PK result and AV detector for AV result.						
Freque	ency	· · · · · · · · · · · · · · · · · · ·		Remark			
2400MHz-24	2400MHz-2483.5MHz 94.00 114.00			Average Value Peak Value			
30MHz-8 88MHz-2 216MHz-9 960MHz-	8MHz 16MHz 60MHz -1GHz	40.0 43.5 46.0 54.0 54.0	0 0 0 0	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Average Value Peak Value			
harmonics, shall fundamental or	ll be attenuate to the genera	ed by at least I radiated emi	50 dB belo	w the level of the			
Turn Table Ground Plane	4m		Sea	arch			
	FCC Part15 C S ANSI C63.4:200 30MHz to 25GH Measurement D Frequency 30MHz- 1GHz Above 1GHz For field streng Pk detector for D Frequency 2400MHz-24 88MHz-22 216MHz-9 960MHz- Above 1 Emissions radia harmonics, shall fundamental or whichever is the Below 1GHz	FCC Part15 C Section 15.209 ANSI C63.4:2003 30MHz to 25GHz Measurement Distance: 3m Frequency Detector 30MHz- Quasi-peak 1GHz Peak Peak For field strength test, the R Pk detector for PK result and Frequency 2400MHz-2483.5MHz Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Emissions radiated outside of harmonics, shall be attenuate fundamental or to the general whichever is the lesser attention Below 1GHz Below 1GHz	FCC Part15 C Section 15.209 ANSI C63.4:2003 30MHz to 25GHz Measurement Distance: 3m Frequency Detector RBW 30MHz-1GHz Peak 1MHz For field strength test, the RBW and VBW Pk detector for PK result and AV detector	ANSI C63.4:2003 30MHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VBW 30MHz- Quasi-peak 120KHz 300KHz 1GHz Peak 1MHz 3MHz Above 1GHz Peak 1MHz 10Hz For field strength test, the RBW and VBW were set Pk detector for PK result and AV detector for AV result for AV result and AV detector for AV result			

	Report No.: GTSE14040048101
	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table A A A A A A A A A A A A A A A A A A
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement data:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.3.1 Field Strength of The Fundamental Signal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	89.56	27.58	5.39	30.18	92.35	114.00	-21.65	Vertical
2402.00	90.00	27.58	5.39	30.18	92.79	114.00	-21.21	Horizontal
2441.00	90.36	27.55	5.43	30.06	93.28	114.00	-20.72	Vertical
2441.00	89.65	27.55	5.43	30.06	92.57	114.00	-21.43	Horizontal
2480.00	90.89	27.52	5.47	29.93	93.95	114.00	-20.05	Vertical
2480.00	89.70	27.52	5.47	29.93	92.76	114.00	-21.24	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	78.37	27.58	5.39	30.18	81.16	94.00	-12.84	Vertical
2402.00	80.68	27.58	5.39	30.18	83.47	94.00	-10.53	Horizontal
2441.00	80.17	27.55	5.43	30.06	83.09	94.00	-10.91	Vertical
2441.00	80.04	27.55	5.43	30.06	82.96	94.00	-11.04	Horizontal
2480.00	79.98	27.52	5.47	29.93	83.04	94.00	-10.96	Vertical
2480.00	79.22	27.52	5.47	29.93	82.28	94.00	-11.72	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.3.2 Spurious emissions

■ Below 1GHz

	O. 12							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
38.89	48.99	15.30	0.65	32.06	32.88	40.00	-7.12	Vertical
47.33	48.33	15.41	0.74	31.98	32.50	40.00	-7.50	Vertical
90.86	46.93	14.07	1.12	31.72	30.40	43.50	-13.10	Vertical
97.46	47.26	15.00	1.17	31.75	31.68	43.50	-11.82	Vertical
103.81	45.90	14.78	1.22	31.78	30.12	43.50	-13.38	Vertical
364.26	44.09	16.46	2.69	31.99	31.25	46.00	-14.75	Vertical
52.95	41.94	15.11	0.80	31.95	25.90	40.00	-14.10	Horizontal
104.17	46.02	14.78	1.23	31.78	30.25	43.50	-13.25	Horizontal
123.70	50.02	11.90	1.39	31.88	31.43	43.50	-12.07	Horizontal
143.33	51.40	10.22	1.53	31.96	31.19	43.50	-12.31	Horizontal
240.83	47.46	14.09	2.08	32.16	31.47	46.00	-14.53	Horizontal
351.71	48.50	16.30	2.63	32.02	35.41	46.00	-10.59	Horizontal

■ Above 1GHz

Test channel: Lowest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	42.56	31.78	8.60	32.09	50.85	74.00	-23.15	Vertical
7206.00	32.22	36.15	11.65	32.00	48.02	74.00	-25.98	Vertical
9608.00	31.91	37.95	14.14	31.62	52.38	74.00	-21.62	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	43.78	31.78	8.60	32.09	52.07	74.00	-21.93	Horizontal
7206.00	33.08	36.15	11.65	32.00	48.88	74.00	-25.12	Horizontal
9608.00	32.26	37.95	14.14	31.62	52.73	74.00	-21.27	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	31.15	31.78	8.60	32.09	39.44	54.00	-14.56	Vertical
7206.00	24.48	36.15	11.65	32.00	40.28	54.00	-13.72	Vertical
9608.00	25.04	37.95	14.14	31.62	45.51	54.00	-8.49	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	30.81	31.78	8.60	32.09	39.10	54.00	-14.90	Horizontal
7206.00	24.41	36.15	11.65	32.00	40.21	54.00	-13.79	Horizontal
9608.00	24.23	37.95	14.14	31.62	44.70	54.00	-9.30	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test chann	el:	Middle channel
------------	-----	----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	42.56	31.85	8.67	32.12	50.96	74.00	-23.04	Vertical
7323.00	32.22	36.37	11.72	31.89	48.42	74.00	-25.58	Vertical
9764.00	31.91	38.35	14.25	31.62	52.89	74.00	-21.11	Vertical
12205.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	43.78	31.85	8.67	32.12	52.18	74.00	-21.82	Horizontal
7323.00	33.08	36.37	11.72	31.89	49.28	74.00	-24.72	Horizontal
9764.00	32.26	38.35	14.25	31.62	53.24	74.00	-20.76	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	29.98	31.85	8.67	32.12	38.38	54.00	-15.62	Vertical
7323.00	22.91	36.37	11.72	31.89	39.11	54.00	-14.89	Vertical
9764.00	24.76	38.35	14.25	31.62	45.74	54.00	-8.26	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	31.34	31.85	8.67	32.12	39.74	54.00	-14.26	Horizontal
7323.00	22.83	36.37	11.72	31.89	39.03	54.00	-14.97	Horizontal
9764.00	23.68	38.35	14.25	31.62	44.66	54.00	-9.34	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test channel: Highest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	42.56	31.93	8.73	32.16	51.06	74.00	-22.94	Vertical
7440.00	32.22	36.59	11.79	31.78	48.82	74.00	-25.18	Vertical
9920.00	31.91	38.81	14.38	31.88	53.22	74.00	-20.78	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	43.78	31.93	8.73	32.16	52.28	74.00	-21.72	Horizontal
7440.00	33.08	36.59	11.79	31.78	49.68	74.00	-24.32	Horizontal
9920.00	32.26	38.81	14.38	31.88	53.57	74.00	-20.43	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	33.87	31.93	8.73	32.16	42.37	54.00	-11.63	Vertical
7440.00	25.47	36.59	11.79	31.78	42.07	54.00	-11.93	Vertical
9920.00	25.92	38.81	14.38	31.88	47.23	54.00	-6.77	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	34.53	31.93	8.73	32.16	43.03	54.00	-10.97	Horizontal
7440.00	24.97	36.59	11.79	31.78	41.57	54.00	-12.43	Horizontal
9920.00	25.08	38.81	14.38	31.88	46.39	54.00	-7.61	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

7.3.3 Bandedge emissions

All of the restriction bands were tested, and only the data of worst case was exhibited.

Test channel:	Lowest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	40.29	27.59	5.38	30.18	43.08	74.00	-30.92	Horizontal
2400.00	56.70	27.58	5.39	30.18	59.49	74.00	-14.51	Horizontal
2390.00	40.59	27.59	5.38	30.18	43.38	74.00	-30.62	Vertical
2400.00	58.46	27.58	5.39	30.18	61.25	74.00	-12.75	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	31.42	27.59	5.38	30.18	34.21	54.00	-19.79	Horizontal
2400.00	42.51	27.58	5.39	30.18	45.30	54.00	-8.71	Horizontal
2390.00	31.18	27.59	5.38	30.18	33.97	54.00	-20.03	Vertical
2400.00	43.91	27.58	5.39	30.18	46.70	54.00	-7.30	Vertical

Test channel:	Highest channel	

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	42.08	27.53	5.47	29.93	45.15	74.00	-28.85	Horizontal
2500.00	41.75	27.55	5.49	29.93	44.86	74.00	-29.14	Horizontal
2483.50	42.49	27.53	5.47	29.93	45.56	74.00	-28.44	Vertical
2500.00	42.50	27.55	5.49	29.93	45.61	74.00	-28.39	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	34.22	27.53	5.47	29.93	37.29	54.00	-16.71	Horizontal
2500.00	32.59	27.55	5.49	29.93	35.70	54.00	-18.30	Horizontal
2483.50	35.21	27.53	5.47	29.93	38.28	54.00	-15.72	Vertical
2500.00	32.30	27.55	5.49	29.93	35.41	54.00	-18.59	Vertical

Remark:

Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

7.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.249/15.215
Test Method:	ANSI C63.4:2003
Limit:	Operation Frequency range 2400MHz~2483.5MHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

Test channel	20dB bandwidth(MHz)	Result
Lowest	1.035	Pass
Middle	1.038	Pass
Highest	1.031	Pass

Test plot as follows:

Project No.: GTSE140400481RF

Lowest channel

Middle channel

Highest channel

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

-----End-----