

인공지능과 수학적 배경

Linear Regression Housing price prediction

◆ Supervised regression problem: Predict the price (continuous value) of houses given existing data features/properties (house size).

What is the price for a house of size 125m²? Supervised regression predicts 280K\$.

Linear Regression Formalization

◆ Supervised regression as an example of supervised learning:

Linear Regression Training set

- ightharpoonup All supervised learning techniques use a training set to design the prediction function f.
- Notations:
 - n=number of training data, here n=8
 - x=input variable/feature, here x=size
 - y=output variable/label, here y=price

• One training data/sample is identified as (x_i,y_i) where i is the index of the training data. Examples: $(x_1,y_1)=(31,124), (x_2,y_2)=(54,156)$.

Linear Regression Linear regression

◆ What is the simplest model representation to regress the data? Straight line.

What is the price for a house of size 125m²? Supervised regression predicts 265K\$.

Linear Regression Model representation

 \bullet How to represent the prediction function f?

$$y = f(x)$$

Non-linear function

Example: Neural networks

♦ Case of linear regression:

$$y = f(x)$$

Linear function

Linear Regression Linear representation

 \bullet Predictor function f as a straight line:

Linear predictive function/ Linear regression model with one single variable x

Linear Regression

Prediction function parameters

• Prediction function: $f_w(x)$

$$w(x) = w_0 + w_1 x$$

Model parameters

• Influence of different parameter values (w_0, w_1) on the prediction:

♦ How to find the best possible straight line (w_0, w_1) that fits all data? A fitness measure is required ⇒ Loss function.

Linear Regression How to choose the parameters?

• Idea: Choose parameters (w_0, w_1) such that $f_w(x_i)$ is close to y_i for all training data (x_i, y_i) , that is

Linear Regression Formalization

• Find parameters (w_0, w_1) by solving a minimization problem:

♦ Remarks:

- Generic optimization problem in supervised learning (f is not specified here).
- Loss function is also called cost function.
- This loss function is called mean square error (most used regression loss).

Linear Regression Linear regression loss

◆ From generic to linear regression task

$$\min_{w=(w_0,w_1)} \frac{1}{n} \sum_{i=1}^{n} \left(f_w(x_i) - y_i \right)^2$$

$$\min_{w=(w_0,w_1)} \frac{1}{n} \sum_{i=1}^{n} \left(w_0 + w_1 x_i - y_i \right)^2$$

$$L(w_0, w_1)$$

Linear regression loss

• **Prediction function:**
$$f_w(x) = w_0 + w_1 x$$

Parameters:
$$w_0, w_1$$

Loss function:
$$L(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i \right)^2$$

• Optimization:
$$\min_{w=(w_0,w_1)} L(w_0,w_1)$$

• Let us simplify with a single parameter: $w_0 = 0$, $w_1 = w$

$$f_w(x) = wx$$

$$\min_{w} L(w) = \frac{1}{n} \sum_{i=1}^{n} (wx_i - y_i)^2$$

Prediction function $f_w(x)$

Data feature

$$f_w(x) = x(w = 1)$$

Loss function L w

Prediction parameter

$$L(w)$$

$$L(w = 1) = \frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2$$

$$\frac{1}{3} ((1-1)^2 + (2-2)^2 + (3-3)^2) = 0$$

$$L(w = 1) = 0$$

No error in prediction \Rightarrow loss=0

Prediction function $f_w(x)$

Data feature

$$f_w(x) = x, w = 0.5$$

Loss function L(w)

Prediction parameter

$$L(w)$$

$$L(w = 1) = \frac{1}{n} \sum_{i=1}^{n} (0.5x_i - y_i)^2$$

$$\frac{1}{3} ((0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2) = 1.16$$

$$L(w = 0.5) = 1.16$$

Prediction function $f_w(x)$

Data feature

$$f_w(x) = x, \quad w = 1.5$$

Loss function L w

Prediction parameter

$$(w) = \frac{1}{n} \sum_{i=1}^{n} (wx_i - y_i) \Rightarrow w = 1$$

Parameter w = 1 provides a perfect prediction function for all training data.

Linear Regression

Loss function with 2 parameters

• **Prediction function:**
$$f_w(x) = w_0 + w_1 x$$

Parameters:
$$w_0, w_1$$

Loss function:
$$L(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i \right)^2$$

• Optimization:
$$\min_{w=(w_0,w_1)} L(w_0,w_1)$$

 $w_0 = 2.9$ $w_1 = -0.5$

Linear Regression

Loss function with 2 parameters

Loss is represented by a 3D surface. It is called the landscape.

Contours of *L*

- **◆ Level sets/iso-contours** = curves with the same loss values.
- ◆ They offer a 2D visualization of the 3D loss surface.

Linear Regression

Loss function with 2 parameters

♦ How to find the value of the parameters (w_0, w_1) that minimize the loss? \Rightarrow Gradient descent.

Continuation Continuation Cont

• **Prediction function:** $f_w(x) = w_0 + w_1 x$

• Parameters: w_0, w_1

Loss function: $L(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i \right)^2$

• Optimization: $\min_{w=(w_0,w_1)} L(w_0,w_1)$

