

Soutenance du Projet 3 Conception d'application d'aide à la décision pour Santé publique France

Par Flisée TCHANA

> **Mentor** Cyril MONTI

Plan de Soutenance

Objectifs du Projet

Répondre à l'appel à projets lancé par Santé publique France

Trouver une idée innovante d'application en lien avec l'alimentation

Exploitation du jeu de données disponible sur Open Food Fact

Nutrition

Une application qui permet d'avoir une visualisation rapide du Nutri-Score pour un utilisateur n'ayant que quelques informations sur un produit pour une bonne alimentation.

Le score varie de -15 à 40

CentraleSupélec Université PARIS-SACLAY

Data Analysis Workflow

Openfoodfacts

Informations contenues dans le jeu de données

	code	url	creator	created_t	created_datetime	last_modified_t	last_modified_datetime	phylloquinone_100g	beta- glucan_100g	inositol_100g	carnitine_100g
0	00000000000017	http://world- en.openfoodfacts.org/product/0000	kiliweb	1529059080	2018-06- 15T10:38:00Z	1561463718	2019-06-25T11:55:18Z	NaN	NaN	NaN	NeN
1	0000000000031	http://world- en.openfoodfacts.org/product/0000	isagoofy	1539464774	2019- <mark>1</mark> 0- 13T21:06:14Z	1539464817	2018-10-13T21:06:57Z	иви	NaN	NaN	NaN
2	000000000003327985	http://world- en.openfoodfacts.org/product/0000	dawap	1574175736	2019-11- 19T15:02:16Z	1574175737	2019-11-19T15:02:17Z	.) NaN	NaN	NaN	NeN
3	0000000000100	http://world- en.openfoodfacts.org/product/0000	del51	1444572561	2015-10- 11T14:09:21Z	1444659212	2015-10-12T14:13:32Z	NaN	NaN	NaN	NaN
4	00000000001111111111	http://world- en.openfoodfacts.org/product/0000	openfoodfacts- contributors	1560020173	2019-06- 08T18:56:13Z	1560020173	2019-06-08T18:56:13Z	NaN	NaN	NaN	NaN

print('lignes: ',data.shape[0],'\n colonnes: ',data.shape[1])

lignes: 1383645 colonnes: 181

es champs sont séparés en quatre sections :

- Les informations générales sur la fiche du produit : nom, date de modification, etc.
- Un ensemble de tags : catégorie du produit, localisation, origine, etc.
- Les ingrédients composant les produits et leurs additifs éventuels.
- Des informations nutritionnelles : quantité en grammes d'un nutriment pour 100 grammes du produit.

POINTS ALIMENTS SOLIDES

-15 à -1

19 à 40

Informations contenues dans le jeu de données

Somme des points pour les consommations de fruits et légumes, les fibres et les

Aliments solides Boissons Logo

Min à -1 Eaux toujours en A

0 à 2 Min à 1

3 à 10 2 à 5

10 à max

19 à max

- Tous les aliments transformés, excepté les herbes aromatiques, thés, cafés, levures...
- Toutes les boissons, excepté les boissons alcoolisées
- Excepté les produits dont la face la plus grande a une surface inférieure à 25 cm²

www.qucidanrnonassette.fr T.Fiolet Adapté de Julia C, Hercberg S (2017) Nutri-Score: evidence of the effective-ness of the French front-of-pack nutrition label. Emahrungs. Umschau 64(2): 181–187

Nettoyage des données

Etude des individus ayant un Nutri-Score renseigné et un bon taux de remplissage général (ici arbitrairement moins de 80% de NaN)

```
df=df[df['nutriscore score'].notnull()]
df.shape[0]
567328
<class 'pandas.core.frame.DataFrame'>
Int64Index: 567328 entries, 3 to 1383639
Data columns (total 10 columns):
                        Non-Null Count
     Column
     nutriscore score
                        567328 non-null float64
     energy 100g
                        565846 non-null float64
     fat 100g
                        565805 non-null float64
     saturated-fat 100g 565790 non-null float64
     carbohydrates 100g 565544 non-null float64
     sugars 100g
                        565796 non-null float64
    fiber 100g
                        353943 non-null float64
     proteins 100g
                        565808 non-null float64
     salt 100g
                        566208 non-null float64
```

sodium 100g

dtypes: float64(10) memory usage: 47.6 MB On obtient une base de données avec un niveau de remplissage très satisfaisant

Séparation de notre jeu de données en 2 sets distincts : base de données en 2 sets distincts :

- · Un dataset "train" afin de pouvoir entraîner notre futur modèle de prédiction du nutriscore (70% des données)
- Un dataset "test" afin de tester le niveau de précision de notre modèle en " mise en production" (30% des données)

```
train, test = train_test_split(df, test_size=0.3)
train.shape[0]
```

566207 non-null float64

Nettoyage des données

Liste des différentes étapes de cleaning :

Mise à NaN des valeurs < 0g et > 100g

^{*} Une partie de ces valeurs extrêmes devront être traitées via le cleaning cleaning d'outliers multivariés (partie 5)

Nettoyage des données

Mise à NaN des valeurs extrêmes pour l'énergie via la méthode des percentiles

0,995 percentile semble pertinent (3761 Kj) correspondent aux valeurs que l'on peut trouver sur l'huile de cuisson)

Nettoyage des données

Liste des différentes étapes de cleaning :

- Mise à NaN des valeurs < 0g et > 100g
- 2. Mise à NaN des valeurs extrêmes pour l'énergie via la méthode des percentiles
- Suppression des individus ayant plus de 2 NaN par ligne
- 4. Imputation des NaN restants via KNN Imputer
- 5. Suppression des valeurs aberrantes par somme (somme supérieure à 100g)
- 6. Suppression des outliers multivariés par distance euclidienne (KDTree)

CentraleSupélec UNIVERSITÉ PARIS-SACLAY

Nettoyage des données

Distribution de chaque feature du train dataset

CentraleSupélec UNIVERSITÉ PARIS-SACLAY

Analyse et exploitation

Matrice de corrélation (coefficient de Pearson)

Nous pouvons observer une corrélation significative entre les caractéristiques suivantes:

- graisses / graisses saturées (fat/ saturated-fat)
- glucides / sucres (carbohydrates/ sugars)
- sel / sodium (salt/sodium)

Analyse et exploitation

Test de normalité normalité (KosmogorovKosmogorov-Smirn ov)

null hypothesis : studied feature follow a normal distribution.

D= 0.718031325990802 P-value= 0.0

P-value is lower than alpha (0.05) we can reject the null hypothesis => nutriscore score does not follow normal distribution

.

D= 0.9882169779727689

P-value= 0.0

P-value is lower than alpha (0.05) we can reject the null hypothesis

=> energy_100g does not follow normal distribution

D= 0.6546795418476797

P-value= 0.0

P-value is lower than alpha (0.05) we can reject the null hypothesis

=> fat 100g does not follow normal distribution

CentraleSupélec UNIVERSITÉ PARIS-SACLAY

Analyse et exploitation

Test ANOVA

	F	P_value
energy_100g	48402.018888	0.0
fat_100g	29275.871175	0.0
saturated-fat_100g	47963.338632	0.0
carbohydrates_100g	6747.897986	0.0
sugars_100g	18350.684481	0.0
fiber_100g	3257.267355	0.0
proteins_100g	1461.444236	0.0
salt_100g	2663.101043	0.0
sodium_100g	2623.958628	0.0

Objectif: le test d'ANOVA permet d'étudier le comportement d'une variable quantitative à une ou plusieurs variables qualitatives.

P Value= 0 (on peut rejeter l'hypothèse H0 avec 0% de risque, les catégories ont donc une influence sur la distribution des variables étudiées)

*Résultat du test à relativiser, on ne respecte pas la condition normalité de nos données (nécessaire pour un test ANOVA)

Analyse et exploitation

CentraleSupélec université PARIS-SACLAY

Test ACP

On retrouve les mêmes corrélations que dans notre matrice (on pourra les prendre en compte pour la partie prédiction)

D'après cette vue, on pourrait représenter ~95% de nos données uniquement avec 5 features.

Ici, notre nombre de features est déjà suffisamment petit.

Analyse et exploitation

Exploitation:

Création d'une fonction de cleaning similaire au cleaning du train : Liste des différentes étapes de cleaning:

- 1. Mise à NaN des valeurs < 0g et > 100g
- 2. Mise à NaN des valeurs extrêmes pour l'énergie via la méthode des percentiles
- 3. Suppression des individus ayant plus de 2 NaN par ligne
- 4. Imputation des NaN restants via KNN Imputer
- 5. Suppression des valeurs aberrantes par somme (somme supérieure à 100g)
- 6. Suppression des outliers multivariés par distance euclidienne (KDTreeKDTree)

Fitté sur le train dataset

Analyse et exploitation

______ Début de la phase de cleaning ______ Gestion des valeurs inférieures à 0g et supérieures à 100g: 138 valeurs aberrantes mises à NaN Gestion des outliers pour la variable: energy 100g: 850 valeurs aberrantes mises à NaN Remplissage des NaNs via KNN Imputer (fitté sur le train) Les Nans du dataframe ont été imputés via KNNImputer Suppression des lignes avec une somme des macronutriments supérieure à 100g: 11106 lignes supprimées

Suppression outliers multivariés avec KDTree: 2351 lignes supprimées

Analyse et exploitation

b) Exploitation : Prédiction par régression linear multiple

Score de la prédiction (R²) sur train: 0.621~

Score de la prédiction (R²): 0.626"

	prédiction	nutriscore
count	159037.000000	148610.000000
mean	9.220771	9.030186
std	7.111163	8.893977
min	-44.044231	-15.000000
25%	3.660006	1.000000
50%	7.293254	10.000000
75%	13.987662	16.000000
max	58.235002	36.000000

Poids de chaque variable dans la régression:

	Feature	Coef
0	energy_100g	3.099802
1	fat_100g	0.010714
2	saturated-fat_100g	2.877117
3	carbohydrates_100g	-0.724187
4	sugars_100g	3.840426
5	fiber_100g	-1.707929
6	proteins_100g	0.554542
7	salt_100g	2.751464
8	sodium_100g	-1.190483

Analyse et exploitation

Prédiction via régression KNN Regressor :

lci, l'optimisation a été plus poussée

- 1) GridSearchCV va également nous permettre de chercher les paramètres optimum pour notre modèle (ici uniquement le nombre de voisins)
- Etude des features "Très corrélées" (non-concluante)


```
for i in range(len(scoring)):
    grid= GridSearchCV(KNeighborsRegressor(),param grid,cv=5,scoring=scoring[i])
    grid.fit(xtrain, vtrain)
    print('Methode de Scoring: ',scoring[i])
    print('Meilleur score :',grid.best score )
    print('Meilleurs Paramètres :',grid.best params ,'\n
    if i == 0 :
        model 1 = grid.best estimator
    elif i == 1 :
        model 2 = grid.best estimator
    else:
        model 3 = grid.best estimator
Methode de Scoring: r2
Meilleur score: 0.9485970162173958
Meilleurs Paramètres : {'n neighbors': 5}
Methode de Scoring: neg mean absolute error
Meilleur score : -0.921002810035702
Meilleurs Paramètres : {'n neighbors': 1}
Methode de Scoring: neg mean squared error
Meilleur score : -4.062249569922076
Meilleurs Paramètres : {'n neighbors': 5}
```

Analyse et exploitation

2) Etude des features "trop corrélées" (non-concluante):

Suppression pas à pas des variables très corrélées entre elles

Rappel score avec toutes les variables

Methode de Scoring: r2

Meilleur score : 0.9485970162173958

Meilleurs Paramètres : {'n_neighbors': 5}

	col	r2	neg_mean_absolute_error	neg_mean_squared_error
sans saturated fat	saturated-fat_100g	0.923408	-1.259147	-6.052823
sans sugars	sugars_100g	0.932598	-1.124096	-5.326558
sans sodium	sodium_100	0.946746	-0.957152	-4.208524
sans saturated fat & sugars	[saturated-fat_100g, sugars_100g]	0.897964	-1.509248	-8.063685
sans saturated fat & sodium	[saturated-fat_100g, sodium_100g]	0.9221	-1.277486	-6.156246
sans sugars et sodium	[sugars_100g, sodium_100g]	0.931532	-1.144292	-5.410799
sans saturates fat & sugars & sodium	[saturated-fat_100g, sugars_100g, sodium_100g]	0.89735	-1.519647	-8.112165

CentraleSupélec UNIVERSITÉ PARIS-SACLAY

Analyse et exploitation

b. Exploitation:

Prédiction via KNN Regressor :

Score final sur le test dataset (R2): 0,93

Ici, l'optimisation a été plus poussée

- •GridSearchCV va également nous permettre de chercher les paramètres optimum pour notre modèle (ici uniquement le nombre de voisins)
- •Etude des features ayant une forte corrélation

Analyse et exploitation

b) Exploitation : Prédiction par régression linear multiple

Score de la prédiction (R²) sur train: 0.621° Score de la prédiction (R²): 0.626°

prédiction nutriscore

Poids de chaque variable dans la régression:

	Feature	Coef		
0	energy_100g	3.099802		

CentraleSupélec UNIVERSITÉ PARIS-SACLAY

Analyse et exploitation

	nutriscore_score	energy_100g	fat_100g	saturated-fat_100g	carbohydrates_10	0g sugars_	100g fibe	r_100g protei	ins_100g s	salt_100g s	odium_100g
0	-6.0	444.0	0.59	0.0	22	.35	9.41	2.4	3.53	0.22	0.088
1	-6.0	444.0	0.59	0.0	22	.35	NaN	2.4	3.53	0.22	0.088
2	- <mark>6.0</mark>	444.0	0.59	NaN	N	aN	9.41	2.4	3.53	0.22	0.088
3	-6.0	444.0	0.59	0.0	N	aN	NaN	2.4	3.53	NaN	0.088
4	-6.0	NaN	0.59	0.0	N	aN	9.41	2.4	NaN	NaN	0.088
5	-6.0	NaN	NaN	NaN	22	.35	NaN	2.4	3.53	NaN	0.088
6	-6.0	NaN	NaN	NaN	22	.35	9.41	2.4	NaN	NaN	NaN
7	-6.0	NaN	NaN	NaN	N	aN	9.41	NaN	NaN	NaN	0.088
	-8										
1	nutriscore_score	energy_100g	fat_100g	saturated- fat_100g	rbohydrates_100g	sugars_100g	fiber_100g	proteins_100	g salt_100	g sodium_	100g predict
0	-6.0	444.000000	0.590000	0.000000e+00	22.350000	9.41	2.400	3.53000	0.22000	0 0	.088 -6.0
1	-6.0	444.000000	0.590000	0.000000e+00	22.350000	8.43	2.400	3.53000	0.22000	0 0	.088 -6.0
2	-6.0	444.000000	0.590000	-8.881784e-16	22.350000	9.41	2.400	3.53000	0.22000	0 0	.088 -6.0
3	-6.0	444.000000	0.590000	0.000000e+00	22.350000	8.43	2.400	3.53000	0.00000	00 0	.088 -6.0
4	-6.0	185.800000	0.590000	0.000000e+00	12.626667	9.41	2.400	1.54666	7 0.48348	3 0	.088 -3.8
6	-6.0	44.000000	0.590000	-8.881784e-16	22.350000	9.41	2.400	3.53000	0.00000	00 0	.000 -6.0
7	-6.0	638.666667	7.951667	4.581667e+00	17.390000	9.41	0.926	5.28000	0.21733	3 0	.088 3.8

Conclusion

Après le nettoyage des données et l'exploration, certaines variables sont nécessaires pour prédire un Nutri-Score automatique :

- L'Energy
- Le Sucre
- La Graisse
- ·La Graisse Saturée

Merci pour votre attention!!