# Linear regression review

Miaoyan Wang

Department of Statistics UW Madison

#### Another view of T-test

• Recall the simple linear regression (SLR) model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad \varepsilon_i \sim i.i.d. \ N(0, \sigma^2),$$

for all  $i = 1, \ldots, n$ .

Equivalently

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{MVN}(\mathbf{0}, \sigma^2 \mathbf{I}).$$

where 
$$\pmb{X}_{n \times 2} = \left[ egin{array}{ccc} 1 & X_1 \\ \vdots & \vdots \\ 1 & X_n \end{array} 
ight]$$
 denote the  $n \times 2$  design matrix.

- One-sample test is a special case of SLR.
- Two-sample test is also a special case of SLR.



## Equivalence to one-sample test

Let

$$Y_i=\beta_0+\varepsilon_i,\quad \varepsilon_i\sim i.i.d.\ \textit{N}(0,\sigma^2),$$
 for all  $i=1,\ldots,n.$ 

Equivalently

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{MVN}(\mathbf{0}, \sigma^2 \mathbf{I}).$$

where 
$$\pmb{X}_{n\times 1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$
 denote the  $n\times 1$  design matrix, and  $\pmb{\beta} = \beta_0$ .

• The one-sample mean test is equivalent to

$$H_0: \beta_0 = \mu \text{ vs. } H_A: \beta_0 \neq \mu$$



### Equivalence to two-sample test

Let

$$Y_i = \beta_0 \mathbb{1}_i$$
 is in group  $1 + \beta_1 \mathbb{1}_i$  is in group  $2 + \varepsilon_i$ ,  $\varepsilon_i \sim i.i.d.$   $N(0, \sigma^2)$ , for all  $i = 1, ..., n$ .

Equivalently

$$\textbf{\textit{Y}} = \textbf{\textit{X}}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{MVN}(\textbf{0}, \sigma^2 \textbf{\textit{I}}).$$
 where  $\textbf{\textit{X}}_{n \times 2} = \begin{bmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{bmatrix}$  denote the  $n \times 2$  design matrix, and

 $\boldsymbol{\beta} = (\beta_0, \beta_1)'.$ 

• The unpaired two sample mean test is equivalent to

$$H_0: \beta_0 - \beta_1 = 0$$
 vs.  $H_A: \beta_0 - \beta_1 \neq 0$ 

# Multiple Linear Regression Model

The multiple linear regression (MLR) model for the data  $(x_{i1}, x_{i2}, \dots, x_{i,p-1}, y_i)$  is:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_{p-1} X_{i,p-1} + \varepsilon_i,$$

for  $i = 1, 2, \ldots, n$ , where

- $Y_i$  is the *i*th observation of the **response variable**.
- $X_{ik}$  is the *i*th observation of the *k*th **explanatory variable** for k = 1, ..., p 1.
- $\varepsilon_i$  is the *i*th **random error** term.
- The random errors follow a normal distribution with mean zero and variance  $\sigma^2$  and are independent of each other.
- That is,  $\varepsilon_i \sim \text{i.i.d. } N(0, \sigma^2)$ .

#### Model Parameters

- The model parameters are  $\beta_0, \beta_1, \beta_2, \dots, \beta_{p-1}$ , and  $\sigma^2$  (population parameters).
- $\beta_0$  and  $\beta_1, \beta_2, \dots, \beta_{p-1}$ : regression coefficients.
- $\beta_0$ : intercept.
  - $\beta_0$  interpreted as \_\_\_\_\_\_
- $\beta_k$ : **slope** for k = 1, ..., p 1.
  - $\beta_k$  interpreted as\_\_\_\_\_
- $\sigma^2$ : **error variance**, sometimes written as  $\sigma^2_{\varepsilon}$ .

Q: How to estimate the model parameters based on data?

## Example: p = 3

• Example: # of explanatory variables = 2.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i, \quad \varepsilon_i \sim \text{iid } N(0, \sigma^2),$$

for i = 1, ..., n.

• Mean response:

$$\mathbb{E}(Y_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2}.$$

- Interpretation:
  - ▶  $\beta_0$ : Intercept. The mean response  $\mathbb{E}(Y)$  at  $X_1 = X_2 = 0$ .
  - ▶  $\beta_1$ : Slope. The change in the mean response  $\mathbb{E}(Y)$  per unit increase in  $X_1$ , when  $X_2$  is held constant.
  - ▶  $\beta_2$ : Slope. The change in the mean response  $\mathbb{E}(Y)$  per unit increase in  $X_2$ , when  $X_1$  is held constant.

#### Models

• The relationship between the response variable Y and the explanatory variables  $X_1, X_2, \ldots, X_{p-1}$  is

$$E(Y_i|X_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1}$$
  $E(\varepsilon_i) = 0$ 

• Equal variance:

$$Var(Y_i|X_i) = Var(\varepsilon_i) = \sigma^2.$$

• Independence:

$$Cov(Y_i, Y_{i'}|\mathbf{X}_i, \mathbf{X}_{i'}) = Cov(\varepsilon_i, \varepsilon_{i'}) = 0$$
 for  $i \neq i'$ .

Normal distribution:

$$Y_i | \mathbf{X}_i \sim N(\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1}, \sigma^2)$$
  $\varepsilon_i \sim N(0, \sigma^2)$ 



#### Models in matrix form

- Response variable:  $\mathbf{Y}_{n\times 1} = (Y_1, Y_2, \dots, Y_n)'$ .
- Design matrix:

$$\mathbf{X}_{n \times p} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1,p-1} \\ 1 & X_{21} & X_{22} & \cdots & X_{2,p-1} \\ \vdots & \vdots & \vdots & & & \\ 1 & X_{n1} & X_{n2} & \cdots & X_{n,p-1} \end{bmatrix}$$

- Random error:  $\varepsilon_{n\times 1}=(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n)'$ .
- Regression coefficients:  $\beta_{p\times 1} = (\beta_0, \beta_1, \dots, \beta_{p-1})'$ .
- The multiple linear regression model can be written as

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim N(\mathbf{0}_{n\times 1}, \sigma^2 \mathbf{I}_{n\times n}).$$



## Least Squares Estimation

• Consider the least-square cost:

$$Q(\beta) = (Y - X\beta)'(Y - X\beta).$$

ullet We have shown that the least squares estimate of eta is

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y},$$

assuming that the  $p \times p$  matrix X'X is invertible.

#### Fitted Values and Residuals

- Fitted values:  $\hat{\mathbf{Y}} = (\hat{Y}_1, \hat{Y}_2, \dots, \hat{Y}_n)'$ .
- Following the arguments for SLR in matrix terms, we have

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{H}\mathbf{Y}$$
, where  $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ .

The matrix **H** is often referred to as the "hat matrix".

- Residuals:  $\mathbf{e} = (e_1, e_2, \dots, e_n)' \stackrel{\text{def}}{=} \mathbf{Y} \hat{\mathbf{Y}}$ . Sample quantities.
- To be distinguished from the model error  $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \sim \mathcal{MVN}(0, \sigma^2 \mathbf{I})$ , which are population quantities.
- Following the arguments for SLR in matrix terms, we have

$$e \stackrel{\mathsf{def}}{=} \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}} = (\mathbf{I} - \mathbf{H})\mathbf{Y}.$$

### Properties of the hat matrix **H**

- **H** is symmetric and idempotent:
  - $\mathbf{H}^2 = \mathbf{H}$ , and  $Rank(\mathbf{H}) = Tr(\mathbf{H}) = p$ .
- I H is symmetric and idempotent:  $(I - H)^2 = I - H$ , and Rank(I - H) = Tr(I - H) = n - p.

### A geometric interpretation

Recall Least-square cost for linear regression:

$$Q(\beta) = (Y - \beta X)'(Y - \beta X)$$

Normal equation (i.e. gradient):

$$\frac{\partial Q(\beta)}{\partial \beta} = 0 \to \mathbf{X}'(\mathbf{Y} - \beta \mathbf{X}) = 0$$

- $oldsymbol{e}$  Residual  $oldsymbol{e} = oldsymbol{Y} \hat{oldsymbol{eta}} oldsymbol{X}$  are orthogonal to columns of  $oldsymbol{X}$
- $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$  gives the "best" reconstruction of  $\mathbf{Y}$  in the range of  $\mathbf{X}$ .
- Recall the range of a matrix  $X \in \mathbb{R}^{n \times p}$  is the linear space  $\subset \mathbb{R}^p$  spanned by the columns of X.



- ullet Recall "hat matrix":  $oldsymbol{H} = oldsymbol{X}(oldsymbol{X}'oldsymbol{X})^{-1}oldsymbol{X}'$ , and  $\hat{oldsymbol{Y}} = oldsymbol{X}\hat{eta} = oldsymbol{H}oldsymbol{Y}$
- **H** projects **Y** onto the span of **X**.
- I H projects Y onto the space orthogonal to X.

## Estimation of Regression Coefficients

### Distribution of regression coefficients estimates

$$\hat{\boldsymbol{\beta}} \sim \mathcal{MVN}(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}'\boldsymbol{X})^{-1})$$

• The LS estimate  $\hat{\beta}$  is an unbiased estimate of  $\beta$ . That is,

$$\mathbb{E}(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}.$$

• The variance-covariance matrix is

$$\mathsf{Var}(\hat{oldsymbol{eta}}) = \sigma^2(oldsymbol{X}'oldsymbol{X})^{-1} \in \mathbb{R}^{p imes p}$$

where

$$\mathsf{Var}(\hat{\boldsymbol{\beta}}) = \begin{bmatrix} \mathsf{Var}(\hat{\beta}_0) & \mathsf{Cov}(\hat{\beta}_0, \hat{\beta}_1) & \cdots & \mathsf{Cov}(\hat{\beta}_0, \hat{\beta}_{p-1}) \\ \mathsf{Cov}(\hat{\beta}_1, \hat{\beta}_0) & \mathsf{Var}(\hat{\beta}_1) & \cdots & \mathsf{Cov}(\hat{\beta}_1, \hat{\beta}_{p-1}) \\ \vdots & \vdots & \vdots & \vdots \\ \mathsf{Cov}(\hat{\beta}_{p-1}, \hat{\beta}_0) & \mathsf{Cov}(\hat{\beta}_{p-1}, \hat{\beta}_1) & \cdots & \mathsf{Var}(\hat{\beta}_{p-1}) \end{bmatrix}$$

# Inference of Regression Coefficients

• The estimated variance-covariance matrix.

$$\widehat{\mathsf{Var}(\hat{oldsymbol{eta}})} = \hat{\sigma}^2(oldsymbol{\mathcal{X}}'oldsymbol{\mathcal{X}})^{-1}$$

Marginally, we have

$$\frac{\hat{\beta}_k - \beta_k}{\sqrt{\widehat{\mathsf{Var}}(\hat{\beta}_k)}} \sim T_{n-p}, \quad \text{for all } k = 0, 1, \dots, p-1.$$

# Inference of Regression Coefficients

• Thus the  $(1-\alpha)$  confidence interval for  $\beta_k$  is

$$\hat{eta}_k \pm t_{n-p,\alpha/2} \sqrt{\widehat{\mathsf{Var}(\hat{eta}_k)}}.$$

Hypothesis testing:

$$H_0: \beta_k = \beta_k^0 \text{ versus } H_A: \beta_k \neq \beta_k^0.$$

• Under the  $H_0$ , we have

$$T^* = \frac{\hat{\beta}_k - \beta_k^0}{\sqrt{\widehat{\operatorname{Var}(\hat{\beta}_k)}}} \sim T_{n-p}, \quad \text{Why } n - p?$$

# Estimation of Mean Response

- Define a new observation with predictor  $\mathbf{X}_h = (1, X_{h1}, \dots, X_{h,p-1})'$ . Estimate  $\mu_h = \mathbb{E}(\mathbf{X}_h'\boldsymbol{\beta} + \varepsilon_{\text{new}})$ ?
- The estimated mean response corresponding to  $X_h$ :

$$\hat{\mu}_h = \mathbf{X}_h' \hat{\boldsymbol{\beta}}.$$

• Distribution of  $\hat{\mu}_h$ :

$$\hat{\mu}_h \sim N\left( \boldsymbol{X}_h' \boldsymbol{eta}, \sigma^2 \left( \boldsymbol{X}_h' (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}_h \right) \right).$$

- Mean. \_\_\_\_\_\_
- Variance.

# Confidence Intervals for Mean Response

Estimated variance.

$$\widehat{\mathsf{SD}(\hat{\mu}_h)} = \hat{\sigma} \sqrt{ \boldsymbol{X}_h'(\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}_h}.$$

• The  $(1-\alpha)$  confidence interval for  $\hat{\mu}_h$  is

$$\hat{\mu}_h \pm t_{n-p,\alpha/2} \widehat{\mathsf{SD}(\hat{\mu}_h)}$$

• Hypothesis tests on  $\mu_h$  can be carried out similarly.

#### Prediction of New Observation

• The predicted new observation corresponding to  $X_h$ :

$$\widehat{Y}_h = \mathbf{X}_h' \widehat{\boldsymbol{\beta}}.$$

- What is the MSE of  $\widehat{Y}_h$  for predicting  $Y_{h(\text{new})}$ ?
- Prediction error variance:

$$\operatorname{Var}(\widehat{Y}_h - Y_{h(\text{new})}) = \sigma^2 \left( \mathbf{1} + \mathbf{X}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h \right).$$

• Distribution of  $\widehat{Y}_h - Y_{h(\text{new})}$ :

$$\widehat{Y}_h - Y_{h(\mathrm{new})} \sim N\left(0, \sigma^2\left(1 + X_h'(X'X)^{-1}X_h\right)\right).$$

#### Prediction Intervals for New Observation

The estimated prediction error variance is

$$\widehat{\sigma}_{\mathsf{pred}} = \widehat{\sigma} \sqrt{1 + oldsymbol{X}_h'(oldsymbol{X}'oldsymbol{X})^{-1}oldsymbol{X}_h}.$$

• The  $(1-\alpha)$  prediction interval for  $Y_{h(\text{new})}$  is

$$\widehat{Y}_h \pm t_{n-p,\alpha/2} \widehat{\sigma}_{\mathsf{pred}}.$$

Note that

$$\frac{\widehat{Y}_h - Y_{h(\text{new})}}{\widehat{\sigma}_{\mathsf{pred}}} \sim T_{n-p}.$$