Ш. Множиний t-метод. Нехай M — кількість a priori обраних для аналізу контрастів. (Зазвичай контрасти вибирають для дослідження після експерименту.) Тоді наближена довірча область для множини цих вибраних контрастів $\left\{\sum_{i=1}^{I} c_i^{(j)} a_i\right\}_{j=1}^{M}$ з рівнем довіри, не менше ніж $(1-\gamma), \gamma > 0$, задається системою довірчих інтервалів для кожного контрасту $\sum_{i=1}^{I} c_i^{(j)} a_i$ з рівнем довіри $\left(1-\frac{\gamma}{M}\right), \gamma > 0$ і визначається таким чином:

$$\left| \sum_{i=1}^{I} c_{i}^{(j)} a_{i} - \sum_{i=1}^{I} c_{i}^{(j)} \overline{y}_{i} \right| \leq \sqrt{\overline{S}_{e}} \left(\sum_{i=1}^{I} \frac{\left(c_{i}^{(j)}\right)^{2}}{N_{i}} \right) t_{\frac{\gamma}{2M}} \left(N - I \right) = \Delta_{3}^{j}, j = \overline{1, M}, \tag{18}$$

де $t_{\gamma}(v) - 100\gamma$ відсоткова точка t-розподілу Стьюдента з v ступенями свободи.

рівнем довіри $(1-\gamma)$, $\gamma > 0$, в результаті чого отримали (для методів Шеффе та Тьюкі) відповідний довірчий інтервал виду $\left[\hat{k} - \Delta_i, \hat{k} + \Delta_i\right]$, $\Delta_i > 0$, $i = \overline{1,2}$, де $\hat{k} = \sum_{i=1}^{I} c_i \overline{y}_i$.

Це дозволяє на другому кроці область прийняття гіпотези (13) для цих методів записати в такому вигляді:

$$(\hat{k} - \Delta_i)(\hat{k} + \Delta_i) \le 0 \iff \hat{k}^2 \le \Delta_i^2 \iff |\hat{k}| \le \Delta_i, i = 1, 2,$$

тобто справедливість останньої нерівності означає, що відповідний контраст слід вважати таким, що незначимо відхиляється від нуля із

статистичної точки зору з рівнем значущості $\gamma > 0$, у протилежному випадку його треба вважати таким, що істотно відхиляється від нуля.

Остаточно область прийняття відповідної гіпотези матиме такий вигляд:

І. для методу Шеффе з урахуванням (15) одержуємо

$$\left|\sum_{i=1}^{I} c_{i} \overline{y}_{i}\right| \leq \sqrt{\overline{S}_{e} \left(\sum_{i=1}^{I} \frac{c_{i}^{2}}{N_{i}}\right) (I-1) F_{\gamma} \left(I-1, N-I\right)} = \Delta_{1},$$

II. для методу Тыокі, якщо взяти до уваги (17), отримуємо

$$\left|\sum_{i=1}^{I} c_{i} \overline{y}_{i}\right| \leq \frac{1}{2} \sum_{i=1}^{I} \left|c_{i}\right| \sqrt{\frac{\overline{S}_{e}}{N_{0}}} q_{\gamma} \left(I, N-I\right) = \Delta_{2},$$

Ш. для множинного t-методу врахування (19) дозволяє записати

$$\left|\sum_{i=1}^{I} c_i^{(j)} \overline{y}_{i \star}\right| \leq \sqrt{\overline{S}_e \left(\sum_{i=1}^{I} \frac{\left(c_i^{(j)}\right)^2}{N_i}\right)} t_{\frac{\gamma}{2M}} \left(N-I\right) = \Delta_3^j, j = \overline{1, M}.$$

 п - залежна кількісна скалярна змінна, а незалежні якісні скалярні змінні:

 ζ_1 - фактор A, який набуває своїх значень з I_1 градацій,

 $\zeta_2^{
m I}$ - фактор B, який набуває своїх значень з I_2 градацій.

Необхідно за спостереженнями над залежною змінною η при активних різних сполученнях градацій незалежних змінних ζ_1 та ζ_2 побудувати математичну модель залежності змінної η від змінних ζ_1 та ζ_2 .

Фон: Приклад 2: η — врожайність зернової культури, ζ_1 — сорт зернової культури, всього I_1 сортів, ζ_2 — вид добрива, всього I_2 видів добрива.

Нехай при активному сполученні i-ї градації змінної ζ_1 та j-ї градації змінної ζ_2 доступно N_{ij} спостережень y_{ijk} над $\eta,\ i=\overline{1,I_1},\ j=\overline{1,I_2},\ k=\overline{1,N_{ij}}\ \left(N_{ij}\geq 1\right)$. Тоді математичну модель двофакторного дисперсійного аналізу будемо шукати в такому вигляді:

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}, \quad i = \overline{1, I_1}, j = \overline{1, I_2}, k = \overline{1, N_{ij}} \ (N_{ij} \ge 1), (20)$$

де

 $y_{ijk} - k$ -те спостереження над η при активному сполученні i-ї градації змінної ζ_1 та j-ї градації змінної ζ_2 ,

μ – загальне середнє всіх спостережень у деякому розумінні,

 α_i — кількісний вираз відносного впливу *і-*ї градації змінної ζ_1 на η відносно μ (або, іншими словами, головний ефект *i-*го рівня фактора A),

 β_j — кількісний вираз відносного впливу j -ї градації змінної ζ_2 на η відносно μ (або, іншими словами, головний ефект j -го рівня фактора B),

 γ_{ij} – кількісний вираз відносного впливу взаємодії і-ї градації змінної ζ_1 та j-ї градації змінної ζ_2 на η відносно μ (або, іншими словами, взаємодія i-го рівня фактора A та j-го рівня фактора B),

 e_{ijk} — похибка моделі k-го спостереження над η при активному сполученні i-ї градації змінної ζ_1 та j-ї градації змінної ζ_2 .

Причому всього спостережень доступно в кількості

$$N = \sum_{i=1}^{I_1} \sum_{j=1}^{I_2} N_{ij}$$
.

У свою чергу, кількісний вираз абсолютного впливу і-ї градації змінної ζ_1 на η дорівнює

$$a_i = \mu + \alpha_i, \quad i = \overline{1, I_1},$$

кількісний вираз абсолютного впливу j-ї градації змінної ζ_2 на η має вигляд

$$b_j = \mu + \beta_j, \quad j = \overline{1, I_2},$$

а кількісний вираз абсолютного впливу взаємодії i-ї градації змінної ζ_1 та j-ї градації змінної ζ_2 на η визначається як

$$c_{ij} = \mu + \gamma_{ij}, \quad i = \overline{1, I_1}, j = \overline{1, I_2}.$$

Припустимо, що похибки e_{ijk} моделі (20) є:

- $e_{ijk} \sim \mathcal{N}(0,\sigma^2), \sigma^2 > 0, \forall i, j, k;$
- $\{e_{ijk}\}$ незалежні.

Необхідно за доступними скалярними спостереженнями $\left\{y_{ijk},\ i=\overline{1,I_1},\ j=\overline{1,I_2},\ k=\overline{1,N_{ij}}\left(N_{ij}\geq 1\right)\right\}$ знайти оцінки невідомих параметрів:

$$\mu,$$
 $\alpha_{1}, \alpha_{2}, \dots, \alpha_{I_{1}},$
 $\beta_{1}, \beta_{2}, \dots, \beta_{I_{2}},$
 $\gamma_{11}, \gamma_{12}, \dots, \gamma_{1I_{2}},$
 $\gamma_{21}, \gamma_{22}, \dots, \gamma_{2I_{2}},$
 \dots
 $\gamma_{I_{1}1}, \gamma_{I_{1}2}, \dots, \gamma_{I_{1}I_{2}}$
(21)

математичної моделі (20). Шукаємо за допомогою МНК. Загальна кількість невідомих параметрів буде дорівнювати

$$1 + I_1 + I_2 + I_1 I_2 = (1 + I_1)(1 + I_2).$$

Далі ехема розв'язання задачі двофакторного дисперсійного аналізу повністю аналогічна процедурі розв'язання задачі однофакторного дисперсійного аналізу.

Спочатку модель (20) переписується, як і раніше, а саме:

$$y = X\alpha + e$$
,

причому

y – вектор-стовичик з усіх спостережень y_{ijk} ,

α – вектор-стовпчик з усіх невідомих параметрів (21),

X — матриця відповідної розмірності, елементи кожного рядка якої всі дорівнюють нулю, окрім першого та трьох інших, що відповідають місцезнаходженню відповідних параметрів головних ефектів та попарної взаємодії у векторі α ,

е – вектор-стовпчик з усіх похибок моделі

$$\left\{e_{ijk}, i = \overline{1, I_1}, j = \overline{1, I_2}, k = \overline{1, N_{ij}} \left(N_{ij} \ge 1\right)\right\}.$$

У цьому випадку матриця X буде мати неповний ранг. Тому, щоб скористатися МНК при визначенні оцінок вектора α , необхідно врахувати додаткові лінійні обмеження, які справедливі для нього.

Дійсно, враховуючи зміст невідомих параметрів (21), можна стверджувати, що:

$$\exists \{v_{i}\}_{i=1}^{I_{1}}, \{w_{j}\}_{j=1}^{I_{2}} : \forall i \ v_{i} > 0, \forall j \ w_{j} > 0,
\begin{cases}
\sum_{i=1}^{I_{1}} v_{i} \alpha_{i} = 0, \\
\sum_{j=1}^{I_{2}} w_{j} \beta_{j} = 0, \\
\sum_{j=1}^{I_{1}} v_{i} \gamma_{ij} = 0, \quad j = \overline{1, I_{2}}, \\
\sum_{j=1}^{I_{2}} w_{j} \gamma_{ij} = 0, \quad i = \overline{1, I_{1}}.
\end{cases}$$
(22)

Визначення вагових коефіцієнтів $\{v_i\}_{i=1}^{I_1}$ та $\{w_j\}_{j=1}^{I_2}$ здійснюється відповідно до змісту конкретної постановки задачі.

Врахування лінійних обмежень (22) дозволяє однозначно визначити оцінку $\hat{\alpha}$ методом найменших квадратів у математичній моделі (20) за спостереженнями $\left\{y_{ijk}, i=\overline{1,I_1},\ j=\overline{1,I_2},\ k=\overline{1,N_{ij}}\ \left(N_{ij}\geq 1\right)\right\}$.

Окрім цього, цікавою є перевірка на значимість параметрів моделі двофакторного дисперсійного аналізу, і насамперед — перевірка з деяким рівнем значущості $\gamma > 0$ таких гіпотез:

$$H_0^A: \alpha_1 = \alpha_2 = \dots = \alpha_{I_1} = 0,$$
 (23)

$$H_0^B: \beta_1 = \beta_2 = \dots = \beta_{I_2} = 0,$$
 (24)

$$H_0^{AB}: \gamma_{ij} = 0, \quad i = \overline{1, I_1}, j = \overline{1, I_2}.$$
 (25)

Для розв'язання цих задач достатньо використати той самий математичний апарат, що й при розв'язанні відповідних задач в однофакторному дисперсійному аналізі. Проте формули стануть більш громіздкіми. Для їх спрощення наведемо розв'язок для випадку, коли справедливо

$$N_{ii} = N_0 (N_0 \ge 1), \quad i = \overline{1, I_1}, j = \overline{1, I_2},$$
 (26)

а відповідні вагові коефіцієнти $\{v_i\}_{i=1}^{I_1}, \{w_j\}_{i=1}^{I_2}$ усі однакові

$$v_i = \frac{1}{I_1}, \quad i = \overline{1, I_1}; \qquad w_j = \frac{1}{I_2}, \quad j = \overline{1, I_2}.$$
 (27)

Тепер загальна кількість спостережень визначатиметься таким чином: $N = I_1 I_2 N_0$.

У результаті використання методу найменших квадратів для визначення невідомих параметрів (21) у математичній моделі (20) за наявності лінійних обмежень (22) при справедливості припущень (26), (27) отримуємо такі їх оцінки:

$$\hat{\mu} = \overline{y},$$

$$\hat{\alpha}_{i} = \overline{y}_{i..} - \overline{y}, \quad i = \overline{1, I_{1}},$$

$$\hat{\beta}_{j} = \overline{y}_{.j.} - \overline{y}, \quad j = \overline{1, I_{2}},$$

$$\hat{\gamma}_{ij} = \overline{y}_{ij.} - \overline{y}_{i..} - \overline{y}_{.j.} + \overline{y}, \quad i = \overline{1, I_{1}}, j = \overline{1, I_{2}},$$

$$\overline{y} = \frac{1}{N} \sum_{i=1}^{I_{1}} \sum_{j=1}^{I_{2}} \sum_{k=1}^{N_{0}} y_{ijk},$$

$$\overline{y}_{ij.} = \frac{1}{N_{0}} \sum_{k=1}^{N_{0}} y_{ijk}, \quad i = \overline{1, I_{1}}, j = \overline{1, I_{2}},$$

$$\overline{y}_{i..} = \frac{1}{I_{2}N_{0}} \sum_{j=1}^{I_{2}} \sum_{k=1}^{N_{0}} y_{ijk}, \quad i = \overline{1, I_{1}},$$

$$\overline{y}_{.j.} = \frac{1}{I_{N_{0}}} \sum_{i=1}^{I_{1}} \sum_{k=1}^{N_{0}} y_{ijk}, \quad j = \overline{1, I_{2}}.$$

Таблиця двофакторного дисперсійного аналізу

Проведемо аналіз повної суми квадратів відхилень спостережень y_{ijk} від загального середнього \overline{y} . Дійсно,

$$\begin{split} \sum_{i=1}^{I_1} \sum_{j=1}^{I_2} \sum_{k=1}^{N_0} & \left(y_{ijk} - \overline{y} \right)^2 = \sum_{i=1}^{I_1} \sum_{j=1}^{I_2} \sum_{k=1}^{N_0} \left[\left(y_{ijk} - \overline{y}_{ij \bullet} \right) + \right. \\ & \left. + \left(\overline{y}_{ij \bullet} - \overline{y}_{i \bullet \bullet} - \overline{y}_{\bullet j \bullet} + \overline{y} \right) + \left(\overline{y}_{i \bullet \bullet} - \overline{y} \right) + \left(\overline{y}_{\bullet j \bullet} - \overline{y} \right) \right]^2 = \\ & = \sum_{i=1}^{I_1} \sum_{j=1}^{I_2} \sum_{k=1}^{N_0} \left(y_{ijk} - \overline{y}_{ij \bullet} \right)^2 + \\ & \left. + N_0 \sum_{i=1}^{I_1} \sum_{j=1}^{I_2} \left(\overline{y}_{ij \bullet} - \overline{y}_{i \bullet} - \overline{y}_{\bullet j \bullet} + \overline{y} \right)^2 + \right. \\ & \left. + I_2 N_0 \sum_{i=1}^{I_1} \left(\overline{y}_{i \bullet} - \overline{y} \right)^2 + I_1 N_0 \sum_{i=1}^{I_2} \left(\overline{y}_{\bullet j \bullet} - \overline{y} \right)^2. \end{split}$$
(Ha c/p)

Останнє перетворення справедливо в силу того, що в усіх подвійних добутках квадратні дужки дорівнюють нулеві. Отриманий результат скорочено можна записати таким чином:

$$S = S_e + S_A + S_B + S_{AB}, (28)$$

де

$$\begin{split} S &= \sum_{i=1}^{I_1} \sum_{j=1}^{I_2} \sum_{k=1}^{N_0} \left(y_{ijk} - \overline{y} \right)^2, S_e = \sum_{i=1}^{I_1} \sum_{j=1}^{I_2} \sum_{k=1}^{N_0} \left(y_{ijk} - \overline{y}_{ij} \right)^2, \\ S_A &= I_2 N_0 \sum_{i=1}^{I_1} \left(\overline{y}_{i..} - \overline{y} \right)^2, S_B = I_1 N_0 \sum_{j=1}^{I_2} \left(\overline{y}_{.j} - \overline{y} \right)^2, \\ S_{AB} &= N_0 \sum_{i=1}^{I_1} \sum_{j=1}^{I_2} \left(\overline{y}_{ij} - \overline{y}_{i..} - \overline{y}_{.j} + \overline{y} \right)^2. \end{split}$$

Отже, для S, повної суми квадратів відхилень спостережень y_{ijk} від загального середнього \overline{y} , у випадку двофакторної моделі дисперсійного аналізу отримали розклад (28), аналогічний розкладу (12), отриманому для однофакторної моделі.

Результати двофакторного дисперсійного аналізу також заносять у відповідну таблицю 2.1 двофакторного дисперсійного аналізу.

Таблиця 2.1 двофакторного дисперсійного аналізу

Кількість Середня Джерело F_{-} ступенів сума $\gamma_{\rm max}$ статистика варіації квадратів свободи ефекти $S_A + I_1 - I_1$ головні фактора Aголовні ефекти фактора Bвзаємодії факторів A та B $I_1 I_2 (N_0 - 1)$ $\overline{S}_e = \frac{S_e}{I_1 I_2 (N_0 - 1)}$ помилки

S

N-1

В останньому рядку табл. 2.1, таблиці двофакторного дисперсійного аналізу, наведено суми по другому та третьому стовпчикам відповідно. Зауважимо, що результат у другому стовпчику збігається з уже отриманим результатом (28). Підраховані в таблиці значення $\gamma_A, \gamma_B, \gamma_{AB}$ — значення максимальних рівнів значущості γ , за яких гіпотези (23), (24), (25) будуть справедливі, а використання статистик F_A, F_B, F_{AB} дозволяє записати області прийняття гіпотез H_0^A, H_0^B, H_0^{AB} , відповідно:

для гіпотези H_0^A :

$$F_A < F_{\gamma} (I_1 - 1, I_1 I_2 (N_0 - 1)),$$

для гіпотези H_0^B :

$$F_{B} < F_{\gamma} (I_{2} - 1, I_{1}I_{2} (N_{0} - 1)),$$

для гіпотези H_0^{AB} :

$$F_{AB} < F_{\gamma} ((I_1 - 1)(I_2 - 1), I_1 I_2 (N_0 - 1)),$$

де $F_{\gamma}(\upsilon_1,\upsilon_2)-100\gamma$ відсоткова точка F -розподілу з параметрами υ_1 та υ_2 .

Багатофакторний дисперсійний аналіз

Ι

...

Самостійна робота №6. З навчального посібника «Слабоспицький О.С. Дисперсійний аналіз даних, 2013» пропрацювати матеріал наведений у Розділі 3.: «Багатофакторний дисперсійний аналіз».

(пропустити 5 стор.)

Коваріаційний аналіз

Приклад 1. Залежна змінна $\eta - \frac{\text{кількісний}}{\text{показник ризику}}$ зараження та важкість перебігу COVID-19, незалежна якісна змінна $\zeta_1 - \text{група крові пацієнта}$, незалежна якісна змінна $\zeta_2 - \text{раса пацієнта}$, незалежна якісна змінна $\zeta_3 - \text{стать пацієнта}$, незалежна кількісна змінна $\xi_1 - \text{вік}$, незалежна кількісна змінна $\xi_2 - \text{рівень цукру у крові}$,

незалежна кількісна змінна ξ_3 — середня кількість викурених сигарет за добу, . . .

					ŀ	1	No	170	1											-					Section 1
							- (
Kobl	ap	day	luit	uu	l	a	ни	ell	j	_		P	01	9%	(as	ea	Щ	iy		90	RH	u	<i>C</i>	
l Kuu		ga	ui	eQ6	2780	il	/	hog	49	wbi	occ		ll	a	ue	M	QU	u	Up-	ell,	K		Ш	zelir	eu
10101	hee	ix	Je	6.81	xi6	2	u	uir	ri		za	ul)	щ	OA	0	K	ill	sk	ich	eet	0	gr	w	RHE	40
7	n	ea		bek	Typ	au		H	eje	rel	en	yel	ex		eli	uer	ee	V	6	jel	cir	en	te	v	
	5	2	nu	2	E	ews,	900	eu		H	eja	ell	24	щ	щ		KI	il	ble	ici	u	es			
p	ш	itli	Ш	X		3)		de	re	eee		pol	48	sle	0	exe	ai	uj	y	9	ai	ш	ov -	
		00 6	The second		2	2		4	- 2	2 3		1				9					- 1		1 3		
		ear	2 27			de la	***																		-
					-		F	014	ok	DE	,		-	0.5	7/										
						0	OCH	40	00	Rex		-/-	They	Pa	u										

Herau MRG populary ch a chociepeneurul Moglillo Kotopiaysusan MOTEMA TUTHO neogs' macynthe bernelly. atlany MORRALLE Xg (k) dg + X (k) d + e(k), K= I, W Bayloneenenel. рорийрнесть 90/016HER 1106 wo амьдра-де perpecopito MOG gopibutos kilokoeri He bigolly Do july puch ceto gueneperition hap aulleipit d, ell nonce zon big xg(1) Xd x97(1) e11) X (1) e(N) KOOO Maghirelle Culil cle Velle affailes Mulenyageril KOBOTOTAY/CIHOTO AHRAUJY] MIDANTHORO e ~ N(0, 0° En) 630 враховани менени 200x (/g/= Od ellneltefue) rank (X 3 d 9 6 6

