Applications of almost compatible functions for limited information strategies in infinite length games

BEST 2015 - San Francisco State University

Steven Clontz http://stevenclontz.com

Auburn, AL

June 16, 2016

Definition

A topological space X is Menger if for every sequence $\langle \mathcal{U}_0, \mathcal{U}_1, \ldots \rangle$ of open covers of X there exists a sequence $\langle F_0, F_1, \ldots \rangle$ such that F_n is covered by some finite subcollection of \mathcal{U}_n and $X = \bigcup_{n < \omega} F_n$.

Proposition

X is σ -relatively-compact \Rightarrow *X* is Menger \Rightarrow *X* is Lindelöf.

Menger's property and game

Game

Let $Men_{C,F}(X)$ denote the $Menger\ game\$ with players $\mathscr{C},\mathscr{F}.$

 \mathscr{F} wins the game if $X = \bigcup_{n \leq \omega} F_n$, and \mathscr{C} wins otherwise.

Theorem (Hurewicz 1926 [1])

X is Menger if and only if $\mathscr{C} \not \upharpoonright Men_{C,F}(X)$.

Theorem (Telgarsky 1984 [5], Scheepers 1995 [4])

Let X be metrizable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if X is σ -compact.

Theorem (Fremlin, Miller 1988 [2])

There are ZFC examples of non- σ -compact subsets of the real line which are Menger.

Assume κ is an uncountable cardinal.

Example

Let $\kappa^\dagger = \kappa \cup \{\infty\}$, with κ discrete and neighborhoods of ∞ being co-countable. Then $\mathscr{F} \uparrow \mathit{Men}_{C,F}\left(\kappa^\dagger\right)$ but κ^\dagger is not σ -compact.

Definition

A perfect information strategy uses full information of the previous moves of the opponent. ($\mathscr{A} \uparrow G$)

Definition

A k-tactical strategy only uses the last k previous moves of the opponent. ($\mathscr{A} \uparrow G$)

Definition

A k-Markov strategy only uses the last k previous moves of the opponent and the round number. ($\mathscr{A} \ \uparrow \ G$)

If omitted, assume k = 1.

Considering such strategies allows us to factor out Scheepers's proof characterizing σ -compact metrizable spaces with the Menger game.

Lemma

 $\mathscr{F} \uparrow \underset{mark}{\mathsf{Men}_{C,F}}(X)$ if and only if X is σ -relatively-compact.

Lemma

Let X be second-countable. $\mathscr{F} \uparrow Men_{C,F}(X)$ if and only if

$$\mathscr{F} \uparrow_{\mathit{mark}} \mathit{Men}_{C,F}(X)$$

Since metrizable + Lindelöf \Leftrightarrow regular + second countable, we again have Telgarsky/Scheepers's result for metrizable spaces.

Example

$$\mathscr{F}\uparrow \mathit{Men}_{\mathit{C},\mathit{F}}\left(\kappa^{\dagger}\right)$$
, but $\mathscr{F}\uparrow_{\mathsf{mark}}^{\prime} \mathit{Men}_{\mathit{C},\mathit{F}}\left(\kappa^{\dagger}\right)$.

Proposition

$$\mathscr{F} \underset{(k+2)\text{-mark}}{\uparrow} Men_{C,F}(X)$$
 if and only if $\mathscr{F} \underset{2\text{-mark}}{\uparrow} Men_{C,F}(X)$.

Example

$$\mathscr{F} \underset{\text{2-mark}}{\uparrow} \textit{Men}_{\textit{C},\textit{F}} \left(\omega_{\textit{1}}^{\dagger} \right)$$

What about for $\kappa > \omega_1$? As we'll see, this question is not answerable in *ZFC*.

The game $Men_{C,F}(\kappa^{\dagger})$ essentially involves choosing countable and finite subsets of κ , such as in this game due to Scheepers [3]:

Game

Let $Sch_{C,F}^{\cup,\subset}(\kappa)$ denote Scheepers's *strict countable-finite game* in which each round $\mathscr C$ chooses $C_n \in [\kappa]^{\leq \omega}$ such that $C_n \supseteq \bigcup_{i < n} C_i$, followed by $\mathscr F$ choosing $F_n \in [C_n]^{<\omega}$. $\mathscr F$ wins if $\bigcup_{n < \omega} F_n = \bigcup_{n < \omega} C_n$, and $\mathscr C$ wins otherwise.

 $Sch_{C,F}^{\cup,\subset}(\kappa)$ is more restrictive than the Menger game, but this is easily remedied.

Game

Let $Sch_{C,F}^{1,\subseteq}(\kappa)$ denote the *initial countable-finite game* in which each round $\mathscr C$ chooses $C_n \in [\kappa]^{\leq \omega}$ such that $C_n \supseteq \bigcup_{i < n} C_i$, followed by $\mathscr F$ choosing $F_n \in [C_n]^{<\omega}$.

 \mathscr{F} wins if $\bigcup_{n<\omega}F_n\supseteq C_0$, and \mathscr{C} wins otherwise.

Theorem

$$\mathscr{F} \underset{k\text{-mark}}{\uparrow} \mathsf{Sch}_{C,F}^{1,\subseteq}(\kappa) \text{ if and only if } \mathscr{F} \underset{k\text{-mark}}{\uparrow} \mathsf{Men}_{C,F}\left(\kappa^{\dagger}\right).$$

Perhaps this game is too dissimilar to the original. One may prefer to investigate either of these variants as well:

Game

Let $Sch_{C,F}^{\cup,\subseteq}(\kappa)$ denote the *nonstrict countable-finite game* in which each round $\mathscr C$ chooses $C_n \in [\kappa]^{\leq \omega}$ such that $C_n \supseteq \bigcup_{i < n} C_i$, followed by $\mathscr F$ choosing $F_n \in [C_n]^{<\omega}$. $\mathscr F$ wins if $\bigcup_{n < \omega} F_n \supseteq \bigcup_{n < \omega} C_n$, and $\mathscr C$ wins otherwise.

Game

Let $Sch_{C,F}^{\cap}(\kappa)$ denote the *intersection countable-finite game* in which each round $\mathscr C$ chooses $C_n \in [\kappa]^{\leq \omega}$, followed by $\mathscr F$ choosing $F_n \in [C_n]^{<\omega}$. $\mathscr F$ wins if $\bigcup_{n < \omega} F_n \supseteq \bigcap_{n < \omega} C_n$, and $\mathscr C$ wins otherwise.

Witold Hurewicz

Über eine Verallgemeinerung des Borelschen Theorems.

Math. Z., 24(1):401-421, 1926.

Arnold W. Miller and David H. Fremlin.

On some properties of Hurewicz, Menger, and Rothberger.

Fund. Math., 129(1):17-33, 1988.

Marion Scheepers.

Concerning *n*-tactics in the countable-finite game.

J. Symbolic Logic, 56(3):786-794, 1991.

Marion Scheepers.

A direct proof of a theorem of Telgársky.

Proc. Amer. Math. Soc., 123(11):3483-3485, 1995.

Rastislav Telgársky.

On games of Topsøe.

Math. Scand., 54(1):170-176, 1984.

Questions?