

دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران) دانشکده مهندسی کامپیوتر

گزارش پروژه نهایی درس طراحی سیستمهای قابل بازپیکربندی

طراحی و شبیهسازی شبکه عصبی CNN با هدف تشخیص ارقام دستنویس بهوسیله HLS

نگارش رضا آدینه پور

استاد درس جناب آقای دکتر صاحبالزمانی

بهمن ۳ ۱۴۰

سپاس

از استاد گرانقدر خود، جناب آقای دکتر صاحبالزمانی، به خاطر ارائههای بینظیرشان در طول ترم خالصانه تشکر و قدردانی مینمایم. همچنین از جناب آقای دکتر ملکوتی، تدریسیار محترم درس نیز به دلیل راهنماییهای بینظیر و حمایتهای بیدریغ ایشان در طول این پروژه، صمیمانه تشکر مینمایم. بازخوردها و کمکهای سازنده ایشان نقش بسزایی در شکلگیری این پروژه داشته است.

شبکههای عصبی پیچشی یکی از پرکاربردترین مدلها در حوزه یادگیری عمیق هستند که در بسیاری از کاربردها مانند شناسایی تصاویر و پردازش دادههای بصری مورد استفاده قرار میگیرند. با توجه به نیاز روزافزون به پردازش سریع و بهینه، استفاده از سختافزارهایی مانند FPGA به دلیل قابلیت پردازش موازی و توان مصرفی پایین، گزینهای ایدهآل برای پیادهسازی این شبکهها محسوب می شود.

در این پروژه، هدف پیادهسازی یک شبکه عصبی پیچشی برای شناسایی ارقام دستنویس بر روی FPGA با استفاده از روش سنتز سطحبالا است. فرآیند پیادهسازی شامل دو فاز اصلی بود: در فاز نرمافزاری، شبکه مورد نظر آموزش داده شد و وزنهای آن ذخیره گردید. سپس در فاز سختافزاری، وزنهای ذخیرهشده به FPGA نظر آموزش داده های ورودی به شبکه ارسال شدند. نتایج خروجی به منظور ارزیابی عملکرد و صحت شناسایی پردازش شدند. این پیادهسازی ترکیبی از کارایی بالا و انعطافپذیری FPGA را با قدرت یادگیری عمیق ادغام کرده و امکان بهرهوری بیشتر در کاربردهای عملی را فراهم میکند.

كليدواژهها: شبكههاي عصبي، يادگيري عميق، شبكه عصبي پيچشي، FPGA

فهرست مطالب

۱۰ تعریف مسئله	۱ مق
	-1
۳۰۰۰۰۰۰ هداف پژوهش پریکند کورون ک	- 1
5-55,	- 1
۴۰ ساختار پژوهش ۲۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	-1
*	مراجع

فهرست جداول

	••	**	•
ا م		, **	_ A C
ر و پ	ىصا	سب	
J., J		ست	75

فصل ١

مقدمه

۱-۱ تعریف مسئله

طبقهبندی این از مسائل اصلی در حوزه یادگیری ماشین است که هدف آن تخصیص ورودی ها به یکی از دسته های از پیش تعریف شده می باشد. شبکه های عصبی پیچشی (CNN) به دلیل توانایی بالای خود در استخراج ویژگی های سلسله مراتبی از داده های خام، در بسیاری از مسائل طبقه بندی، از جمله شناسایی تصاویر عملکرد بسیار خوبی داشته اند. مسئله طبقه بندی ارقام دست نویس به عنوان یک مسئله مرجع، نقش مهمی در نشان دادن توانایی شبکه های عصبی در پردازش داده های بصری دارد و به طور گسترده برای ارزیابی روش ها و مدل های مختلف استفاده می شود.

شکل ۱-۱: مسئله طبقهبندی [۳]

 $^{^{1}{\}rm Classification}$

²Machine Learning

³Convolutional Neural Network

با این حال، اجرای مدلهای CNN در کاربردهای عملی چالشهایی مانند پیچیدگی محاسباتی بالا و نیاز به منابع سختافزاری کارآمد را به همراه دارد. در حالی که GPUها به دلیل توان عملیاتی بالا گزینهای مناسب برای آموزش و استنتاج مدلها هستند، مصرف انرژی بالا و محدودیتهای آنها در کاربردهای نهفته و محیطهایی با منابع محدود، آنها را برای برخی کاربردها نامناسب میسازد. در مقابل، FPGAها با قابلیت پردازش موازی، مصرف انرژی کمتر و قابلیت بازپیکربندی گزینهای ایدهآل برای پیادهسازی مدلهای CNN در کاربردهایی هستند که نیاز به پردازش بیدرنگ و بهرهوری بالا دارند.

نیازهای کلی این لوازم از دیدگاه طراحی از زوایای مختلف قابل بررسی میباشند، اما به طور کلی میتوان موارد زیر را به صورت خلاصه بیان کرد:

- سیستم پردازش
- روشهای انتقال اطلاعات
 - تامین توان مورد نیاز

در تمامی موارد ذکر شده استفاده از روشهایی جهت بهینه سازی در راستای افزایش کارایی و در دسترس بودن سیستم انجام پذیرفته است. این موضوع به دلیل رشد کندتر قطعات با قابلیت ذخیره انرژی مانند ابرخازنها و باتریها با سرعت کمتری انجام شده است. لذا یکی از مهمترین مسائل در سیستمهای IoT خصوصاً نمونههای بدون دسترسی مستقیم به شبکه برق، تامین پایدار توان مصرفی آنها میباشد. این موضوع از جهات دیگری نیز قابل بررسی است، به عنوان مثال با رشد کاربرد سیستمهای IoT و کاربرد وسیع آنها، در صورت وجود توان مصرفی بالا و نیاز به تعویض سریع باتریها، مشکلات تولیدی و زیست محیطی فراوانی ایجاد خواهد گردید. همچنین قابلیت اطمینان چنین سیستمهایی به دلیل مشکل تامین توان پایدار مورد نیاز بسیار پایین خواهد بود.

۲-۱ اهمیت پژوهش

بدون شک، بحث توان در سیستمهای IoT از اهمیت ویژهای برخوردار است. با توجه به رشد روزافزون فناوریهای اینترنت اشیا و نیاز مبرم به دستگاههای کممصرف ۱۰ و خودمختار ۱۱، استفاده از منابع انرژی

 $^{^4}$ Inference

⁵Embedded

⁶Reconfigurability

⁷Real-Time

⁸High Performance

⁹Supercapacitor

 $^{^{10}}$ Low Power

¹¹Autonomous

محیطی برای تأمین انرژی این دستگاهها نقش حیاتی دارد. این امر نه تنها به کاهش هزینههای عملیاتی و افزایش طول عمر مفید^{۱۲} شبکههای حسگر بیسیم کمک میکند، بلکه باعث کاهش اثرات زیستمحیطی ناشی از استفاده از باتریهای سنتی میشود. پژوهش در این زمینه میتواند به توسعه راهکارهای نوآورانه برای افزایش بهرهوری انرژی، بهبود پایداری و کارایی سیستمهای IoT و در نهایت ارتقای کیفیت زندگی انسانها منجر شود.

۱ – ۳ اهداف یژوهش

در این نوشته سعی میگردد که در ابتدا مسائل موجود در سیستمهای IoT که مرتبط با توان مصرفی هستند مورد بررسی کوتاهی قرار گیرد و سپس راه حل های موجود برای هر مورد معرفی گردند. سپس به مسئله اصلی تامین توان مصرفی سیستمهای IoT و قابل حمل با استفاده از تکنیکهای برداشت انرژی از محیط پرداخته می شود و با مقایسه روشهای موجود و بهرهوری هر یک نتایج حاصله ارائه می گردد. در انتها نیز به چند روش جدیدتر تامین توان با استفاده از برداشت انرژی از محیط پرداخته می شود. برخی راهکارهای پیشنهادی و نمونههای عملی حاصل از تحقیق در این خصوص نیز ارائه می گردد.

۱-۴ ساختار یژوهش

اینن پژوهش در ۴ فصل انجام شده است. در فصل ۱ به مقدمه و اهمیت موضوع پژوهش پرداخته شده است. در فصل ؟؟ به مفاهیم اولیه و پیشنیاز ها پرداخته شده است. در ادامه در فصل ؟؟ پژوهش به بررسی کارهای پیشین انجام شده در این زمینه پرداخت شده است. و در فصل پایانی، جمعبندی و نتیجه گیری پژوهش ارائه شده است.

 $^{^{12}\}mathrm{Remaining}$ Useful Life

Bibliography

- [1] M. Prauzek, J. Konecny, M. Borova, K. Janosova, J. Hlavica, and P. Musilek. Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. *Sensors*, 18(8):2446, 2018.
- [2] F. Deng, X. Yue, X. Fan, S. Guan, Y. Xu, and J. Chen. Multisource energy harvesting system for a wireless sensor network node in the field environment. *IEEE Internet of Things Journal*, 6(1):918–927, 2019.
- [3] A. Vidhya. Beginner-friendly project: Cat and dog classification using cnn, 2021. Accessed: 2025-01-23.
- [4] A. El Hakim. Internet of things (iot) system architecture and technologies. White Paper, 10, 2018.
- [5] A. Taivalsaari and T. Mikkonen. A taxonomy of iot client architectures. *IEEE Software*, 35(3):83–88, 2018.
- [6] Stm32l552re. https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-ultra-low-power-mcus/stm32l5-series/stm32l5x2/stm32l552re.html. Accessed: 2020-07-11.
- [7] H. Elahi, K. Munir, M. Eugeni, S. Atek, and P. Gaudenzi. Energy harvesting towards self-powered iot devices. *Energies*, 13(21):5528, 2020.
- [8] B. Briones. Wiley encyclopedia of electrical and electronics engineering. *The Charleston Advisor*, 21:51–54, 2019.
- [9] B. Maamer, A. Boughamoura, A. M. Fath El-Bab, L. A. Francis, and F. Tounsi. A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes. *Energy Conversion and Manage*ment, 199:111973, 2019.

- [10] B. K. Kanaujia, N. Singh, and S. Kumar. Rectenna: Wireless Energy Harvesting System. Springer, 2021.
- [11] A. Paidimarri and A. P. Chandrakasan. A wide dynamic range buck converter with sub-nw quiescent power. *IEEE Journal of Solid-State Circuits*, 52(12):3119–3131, 2017.
- [12] R. Chéour, S. Khriji, M. abid, and O. Kanoun. Microcontrollers for iot: Optimizations, computing paradigms, and future directions. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), pages 1–7, 2020.
- [13] J. L. Hennessy and D. A. Patterson. Computer Architecture, Sixth Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2017.
- [14] M. Capra, R. Peloso, G. Masera, M. Ruo Roch, and M. Martina. Edge computing: A survey on the hardware requirements in the internet of things world. Future Internet, 11(4):100, 2019.
- [15] L. Baldanzi, L. Crocetti, S. Di Matteo, L. Fanucci, S. Saponara, and P. Hameau. Crypto accelerators for power-efficient and real-time on-chip implementation of secure algorithms. In 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pages 775–778, 2019.
- [16] V. Mangal and P. R. Kinget. Sub-nw wake-up receivers with gate-biased self-mixers and time-encoded signal processing. *IEEE Journal of Solid-State Circuits*, 54(12):3513–3524, 2019.
- [17] R. A. Kjellby et al. Self-powered iot device based on energy harvesting for remote applications. In 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), pages 1–4, 2018.
- [18] M. Grossi. Energy harvesting strategies for wireless sensor networks and mobile devices: a review. *Electronics*, 10(6):661, 2021.
- [19] S. Boisseau, G. Despesse, and B. A. Seddik. Electrostatic conversion for vibration energy harvesting. In *Small-Scale Energy Harvesting*. IntechOpen, London, United Kingdom, 2012.
- [20] C. Xia, D. Zhang, W. Pedrycz, K. Fan, and Y. Guo. Human body heat based thermoelectric harvester with ultra-low input power management system for wireless sensors powering. *Energies*, 12(20):3942, 2019.

- [21] Y. Xin, J. Zhou, and G. Lubineau. A highly stretchable strain-insensitive temperature sensor exploits the seebeck effect in nanoparticle-based printed circuits.

 Journal of Materials Chemistry A, 7(42):24493–24501, 2019.
- [22] K. W. Choi et al. Simultaneous wireless information and power transfer (swipt) for internet of things: Novel receiver design and experimental validation. *IEEE Internet of Things Journal*, 7(4):2996–3012, 2020.
- [23] X. Liu, X. Yang, D. Ma, N. Jin, X. Lai, and H. Tang. A novel simultaneous wireless information and power transfer system. In 2019 IEEE Wireless Power Transfer Conference (WPTC), pages 212–215, 2019.
- [24] T. D. P. Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas, and J. Li. Simultaneous wireless information and power transfer (swipt): Recent advances and future challenges. *IEEE Communications Surveys Tutorials*, 20(1):264–302, 2017.
- [25] D. W. K. Ng, T. Q. Duong, C. Zhong, and R. Schober, editors. Wireless information and power transfer: theory and practice. John Wiley Sons, 2019.
- [26] A. Eid, J. Hester, and M. Tentzeris. 5g as a wireless power grid. *Sci Rep*, 11:636, 2021.
- [27] K. Shafique et al. Energy harvesting using a low-cost rectenna for internet of things (iot) applications. *IEEE Access*, 6:30932–30941, 2018.
- [28] M. U. Hoque, D. Kumar, Y. Audet, and Y. Savaria. Design and analysis of a 35 ghz rectenna system for wireless power transfer to an unmanned air vehicle. *Energies*, 15(1):320, 2022.

Abstract

Convolutional Neural Networks (CNNs) are among the most widely used models in the field of deep learning, particularly in applications such as image recognition and visual data processing. Given the growing demand for fast and efficient processing, hardware platforms like FPGA have become an ideal choice for implementing these networks due to their parallel processing capabilities and low power consumption.

In this project, the goal was to implement a Convolutional Neural Network for handwritten digit recognition on an FPGA using High-Level Synthesis (HLS). The implementation process consisted of two main phases: In the software phase, the network was trained, and its weights were stored. In the hardware phase, the stored weights were transferred to the FPGA, and the input data was fed into the network. The outputs were then processed to evaluate the performance and accuracy of recognition. This implementation combines the high efficiency and flexibility of FPGA with the power of deep learning, enabling enhanced productivity in practical applications.

Keywords: Neural Networks, Deep Learning, CNN, FPGA

Amirkabir University of Technology (Tehran Polytechnic)

Department of Computer Engineering

Reconfigurable Systems Design Final Project Report

Design and Simulation of CNN Neural Network for Hand Written Digit Recognition Using HLS

By:

Reza Adinepour

Supervisor:

Prof. Saheb Zamani

Jan 2025