AB Geometrie & Topologie

Stephan Stadler Phillip Grass Markus Nöth

Analysis einer Variablen

KLAUSUR

1. Wir verwenden vollständige Induktion. Für n=1 gilt

$$1 = \left(\frac{1 \cdot (1+1)}{2}\right)^2. \tag{+1}$$

Damit ist der Induktionsanfang bewiesen. Induktionsschritt:

$$\sum_{k=1}^{n+1} k^3 = \left(\frac{n \cdot (n+1)}{2}\right)^2 + (n+1)^3$$

$$= \frac{(n+1)^2}{4} (n^2 + 4(n+1)) = \left(\frac{(n+1) \cdot (n+2)}{2}\right)^2.$$
(+3)

- 2. (a) Die Reihe $\sum_{n=0}^{\infty} a_n$ konvergiert genau dann, wenn die Folge ihrer Partialsummen $(s_m)_{m\in\mathbb{N}}$ mit $s_m = \sum_{n=0}^m a_n$ konvergiert. (+2)
 - (b) Wegen $\lim_{n\to\infty}\frac{n}{n+1}=1$ und der Stetigkeit der Quadratwurzel, folgt $\lim_{n\to\infty}\sqrt{\frac{n}{n+1}}=1. \tag{+2}$

Die Formel von Euler für den Konvergenzradius R einer Potenzreihe liefert also, dass R = 1 gilt. (+2)

Also konvergiert $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{\sqrt{n}}$ für alle $x \in (-1,1)$ absolut und divergiert für alle $x \in \mathbb{R} \setminus [-1,1]$. (+2)

Wir untersuchen die Randpunkte gesondert.

Für x=1 wird die Reihe zu $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$. Die Folge $(\frac{1}{\sqrt{n}})_{n\in\mathbb{N}}$ ist eine streng monoton fallende Nullfolge, denn $(\frac{1}{n})_{n\in\mathbb{N}}$ ist streng monoton fallende Nullfolge und die Quadratwurzel ist stetig und monoton. (+2)

Aus dem Leibniz-Kriterium folgt, dass die Reihe für x=1 konvergiert. (+2)

Für x=-1 wird die Reihe zu $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$. Diese Reihe divergiert, denn für alle $n \in \mathbb{N}$ gilt $\frac{1}{\sqrt{n}} \geq \frac{1}{n}$. Würde sie konvergieren, dann würde nach dem Majorantenkriterium auch die Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ konvergieren. Alternativ kann man hier auch auf die Übungen verweisen. (+2)

- 3. (a) f heißt stetig in $x_0 \in I$, wenn für jedes $\epsilon > 0$ ein $\delta > 0$ existiert, so dass für alle $x \in I$ mit $|x x_0| < \delta$ gilt $|f(x) f(x_0)| < \epsilon$. (+4)
 - (b) Weil $\sin : \mathbb{R} \to \mathbb{R}$ und $g : \mathbb{R} \setminus \{0\} \to \mathbb{R}; x \mapsto \frac{1}{x}$ stetig sind, folgt dass f stetig ist in allen Punkten $x \neq 0$. (+4) f ist jedoch nicht stetig in $x_0 = 0$: Die Folge $(\frac{1}{\frac{\pi}{2} + 2\pi n})_{n \in \mathbb{N}}$ ist eine Nullfolge und es gilt $\lim_{n \to \infty} f(\frac{1}{\frac{\pi}{2} + 2\pi n}) = \lim_{n \to \infty} \sin(\frac{\pi}{2} + 2\pi n) = \lim_{n \to \infty} 1 = 1 \neq 0 = f(0).$ (+2)
- 4. (a) Seien a < b und $f : [a, b] \to \mathbb{R}$ eine stetige Funktion, die im offenen Intervall (a, b) differenzierbar ist. Erfüllt sie f(a) = f(b), so existiert ein Punkt $x_0 \in (a, b)$ mit $f'(x_0) = 0$. (+6)
 - (b) Lösung 1:

Betrachte die Funktion $g: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}$ mit

$$g(x) = \begin{cases} 0 & \text{für } x = -\frac{\pi}{2} \\ f \circ \tan(x) & \text{für } x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \\ 0 & \text{für } x = \frac{\pi}{2}. \end{cases}$$

Weil f und tan differenzierbar sind, ist g auf $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ nach der Kettenregel differenzierbar. (+2)

Wegen $\lim_{x \searrow -\frac{\pi}{2}} f \circ \tan(x) = \lim_{x \to -\infty} f(x) = 0$ und $\lim_{x \nearrow \frac{\pi}{2}} f \circ \tan(x) = \lim_{x \to \infty} f(x) = 0$. ist q auch in den Punkten $-\frac{\pi}{2}$ und $\frac{\pi}{2}$ stetig. (+2)

Also liefert der Satz von Rolle ein $x_0 \in (-\frac{\pi}{2}, \frac{\pi}{2})$ mit $(f \circ \tan)'(x_0) = 0$.

(+2) Mit der Kettenregel folgt $0 = f'(\tan(x_0)) \cdot \tan'(x_0)$.

Wegen $\tan'(x) = 1 + \tan^2(x) > 0$ für alle $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$, muss $f'(\tan(x_0)) = 0$ gelten. (+2)

Lösung 2:

Angenommen $f'(x) \neq 0$ für alle $x \in \mathbb{R}$. Dann folgt aus dem Satz von Rolle, dass f injektiv ist. (+2)

Sei $y \in \mathbb{R}$ ein Punkt mit $f(y) \neq 0$. Wir können annehmen, dass f(y) > 0, sonst betrachten wir die Funktion -f. Nach Annahme existiert ein $n \in \mathbb{N} \cap (y, \infty)$ mit $f(n) < \frac{f(y)}{2}$ und $f(-n) < \frac{f(y)}{2}$. (+4)

Nach dem Zwischenwertsatz finden wir $z^+ \in (y, n)$ und $z^- \in (-n, y)$ mit $f(z^+) = f(z^-) = \frac{f(y)}{2}$. Dies widerspricht der Injektivität von f. Also muss ein Punkt $x_0 \in \mathbb{R}$ existieren mit $f'(x_0) = 0$. (+2)

- 5. (a) f heißt differenzierbar im Punkt $x_0 \in I$, wenn der Grenzwert $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ existiert. (+2)
 - (b) Weil $\sin(x)$ und x^2 auf \mathbb{R} differenzierbar sind, ist nach der Kettenregel auch $\sin^2(x)$ auf \mathbb{R} differenzierbar. (+2)

Weil $\ln(x)$ auf $(0, \infty)$ differenzierbar ist und x+1 auf \mathbb{R} differenzierbar ist, folgt mit der Kettenregel, dass $\ln(1+x)$ auf $(-1, \infty)$ differenzierbar ist. (+2)

Wegen $\ln(1+x) \neq 0$ für $x \neq 0$ folgt aus der Quotientenregel, dass $\frac{\sin^2(x)}{\ln(1+x)}$ differenzierbar ist auf $(-1,\infty) \setminus \{0\}$, also insbesondere auf $(-1,1) \setminus \{0\}$. (+2)

Wir diskutieren die Differenzierbarkeit in x = 0. Weil $\sin(x)$ differenzierbar ist, gilt $\lim_{h\to 0} \frac{\sin(h)}{h} = \sin'(0) = \cos(0) = 1$. (+2)

Weiter gilt $\lim_{h\to 0} \sin(h) = \lim_{h\to 0} \ln(1+h) = 0$ und $\ln'(1+h) = \frac{1}{1+h} \neq 0$ für $h \in (-1,1)$. (+2)

Wegen $\lim_{h\to 0} \frac{\cos(h)}{\frac{1}{1+h}} = \cos(0) = 1$ erhalten wir mit der Regel von l'Hospital $\lim_{h\to 0} \frac{\sin(h)}{\ln(1+h)} = 1$. (+2)
Also folgt

$$\lim_{h \to 0} \frac{\frac{\sin^2(h)}{\ln(1+h)}}{h} = (\lim_{h \to 0} \frac{\sin(h)}{h}) \cdot (\lim_{h \to 0} \frac{\sin(h)}{\ln(1+h)}) = 1.$$

Also ist f differenzierbar in 0 mit f'(0) = 1. (+2)

6. (a) Für $n \in \mathbb{N}$ sei die Treppenfunktion $\tau_n : [0,1] \to \mathbb{R}$ definiert durch

$$\tau_n(x) = \begin{cases} (\frac{k}{n})^3 & \text{für } x \in \left[\frac{k}{n}, \frac{k+1}{n}\right) \text{ und } k \in \{0, \dots, n-1\} \\ 1 & \text{für } x = 1. \end{cases}$$

(+2)

Weil x^3 streng monoton steigend ist, gilt für $x \in \left[\frac{k}{n}, \frac{k+1}{n}\right]$ und $k \in \{0, \dots, n-1\}$: $|\tau_n(x) - x^3| = |(\frac{k}{n})^3 - x^3| \le (\frac{k+1}{n})^3 - (\frac{k}{n})^3 = \frac{3k^2 + 3k + 1}{n^3} < \frac{3(k+1)^2}{n^3} \le \frac{3}{n}$. Weil die Abschätzung unabhänging von k ist, gilt sie für alle $x \in [0, 1]$. (+2)

Also folgt $0 \le \limsup \|\tau_n - x^3\| \le \lim_{n \to \infty} \frac{3}{n} = 0$ und $(\tau_n)_{n \in \mathbb{N}}$ konvergiert auf [0,1] gleichmäßig gegen x^3 . (+2)

(b) Es gilt
$$\int_0^1 \tau_n(x) dx = \sum_{k=0}^{n-1} \frac{1}{n} (\frac{k}{n})^3 = \frac{1}{n^4} \sum_{k=1}^{n-1} k^3 = \frac{1}{n^4} \left(\frac{n(n-1)}{2} \right)^2 = \frac{(n-1)^2}{4n^2}.$$
 (+2)

Es folgt
$$\int_0^1 x^3 dx = \lim_{n \to \infty} \int_0^1 \tau_n(x) dx = \lim_{n \to \infty} \frac{(n-1)^2}{4n^2} = \frac{1}{4}.$$
 (+2)