Лабораторная работа 3.4.5 Петля гистерезиса

Кагарманов Радмир Б01-106 14 ноября 2022 г. **Цель работы:** при помощи осциоллографа исследовать предельные петли гистерезиса и начальные кривые намагничивания для нескольких ферромагнитных образцов; определить магнитные характеристики материалов, чувствительность каналов X и Y осциоллографа и постоянную времени τ интегрирующей цепочки.

В работе используются: автотрансформатор, понижающий трансформатор, интегрирующая ячейка, амперметр и вольтметр(мультиметры), резистор, делитель напряжения, электронный осциоллограф, тороидальные образцы с двумя обмотками.

Теория

К ферромагнетикам принадлежат железо, никель, кобальт, гадолиний, их многочисленные сплавы с другими металлами. К ним примыкают ферриты - диэлектрики со структурой антиферромагнетика.

Магнитная индукция B и напряжённость магнитного поля H в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряжённости, но и от предыстории образца. Связь между индукцией и напряжённостью поля типичного ферромагнетика иллюстрирует рис. 1.

Рис. 1: Петля гистерезиса

Экспериментальная установка

Схема установки представлена на рис. 2. Напряжение от сети (220 В, 50 Γ ц) с помощью трансформаторного блока T, состоящего из регулировочного автотрансформатора (или реостата R_1 , включённого как потенциометр), подаётся на намагниченную обмотку N_0 исследуемого образца.

В цепь намагничивающей катушки, на которую подаётся напряжение $U_0=6,3\,\mathrm{B},$ последовательно включены амперметр A и резистор с сопротивлением $R_0.$

Напряжение на R_0 , равное $U_R = R_0 I_0$, подаётся на канал X электронного осциоллографа(ЭО). Связь между напряжённостью H в образце и током I_0 рассчитываются по теореме о циркуляции.

Рис. 2: Петля гистерезиса

Для измерения магнитной индукции B с измерительной обмотки $N_{\rm u}$ на вход интегрирующей RC-цепочки подаётся входное напряжение $U_{\rm u}=U_{\rm bx}$, пропорциональное производной dB/dt, а с выхода цепочки снимается напряжение $U_{\rm c}=U_{\rm bbx}$, пропорциональное величине B, и подаётся на канал Y Θ O. Значение индукции поля B рассчитывается по формуле:

$$|B| = \frac{\tau_{\text{H}}}{SN} U_{\text{Bbix}},\tag{1}$$

где $\tau_{\rm u} = R_{\rm u} C_{\rm u}$ - постоянная времени RC-цепочки. SN - площадь и количество витков.

Постоянную времени RC-цепочки можно определить экспериментально. С обмотки 6,3 В на вход интегрирующей цепочки подаётся синусоидальное напряжение $U_{\rm BX}$ с частотой $\nu=\omega/2\pi=50$ Гц. На канал Y ЭО или на цифровой вольтметр поочерёдно подаются сигнала со входа $(U_{\rm BX})$ и выхода $(U_{\rm BX})$ RC-цепочки. Измерив амплитуды этих сигналов, можно рассчитать постоянную времени по формуле:

$$\tau = RC = \frac{U_{\text{bx}}}{\omega U_{\text{Bbix}}} \tag{2}$$

Обработка результатов

1. Посчитаем коэффициенты преобразования отклонений по осям ЭО в напряжённость и индукцию.

$$H = \frac{IN_0}{2\pi R} \tag{3}$$

$$B = \frac{R_{\rm u}C_{\rm u}}{SN_{\rm u}}U_{\rm \scriptscriptstyle Bbix} \tag{4}$$

Получаем:

Кремнистое железо: $k_H = 350$, $k_B = 9, 52$. Феррит 1000нн: $k_H = 140$, $k_B = 3, 33$. Пермаллой: $k_H = 145, 8$, $k_B = 4, 78$. **2.** Для каждого образца рассчитаем коэрцитивное поле H_c и остаточную индукцию B_r .

Кремнистое железо:
$$H_c=32,6$$
 $\frac{\rm A}{\rm m},B_r=0,90$ Тл. Феррит 1000нн: $H_c=4,4$ $\frac{\rm A}{\rm m},B_r=0,33$ Тл. Пермоллой: $H_c=19,6$ $\frac{\rm A}{\rm m},B_r=0,81$ Тл.

3. По начальным кривым намагничивания оценим начальные и максимальные значения дифференциальной магнитной проницаемости $\mu_{\text{диф}} = dB/dH$.

Занесём все результаты в таблицу, для некоторых величин будет записано табличное значение в скобочках.

Амплит.	Fe-Ni	Fe-Si	Феррит
$H_c, \frac{A}{M}$	19,6(4)	32,6(40)	4,4(4-100)
B_s , Тл	0,81(1,05)	0,90(1,95)	0,33(0,3-0,4)
$\mu_{ ext{hay}}$	_	-	-
μ_{makc}	21	4	-

Вывод: в данной лабораторной работе мы исследовали предельные петли гистерезиса для трёх образцов, определили магнитные характеристики этих образцов, проверили чувствительность каналов осциоллографа.