Real Analysis

Alec Zabel-Mena

 $\mathrm{June}\ 11,\ 2023$

Contents

1	$Th\epsilon$	e Real Numbers	5
	1.1	The Field of Real Numbers	
	1.2	The Topology of \mathbb{R}	
	1.3	Sequences in \mathbb{R}	7

4 CONTENTS

Chapter 1

The Real Numbers

1.1 The Field of Real Numbers

1.2 The Topology of \mathbb{R}

Definition. We call a set U of \mathbb{R} **open** proveded for all $x \in U$, there exists an r > 0 for which the open interval $(x - r, x + r) \subseteq U$.

Example 1.1. For a < b the open interval (a,b) is open in \mathbb{R} . Let $x \in (a,b)$ and take $r = \min\{x - a, b - x\}$, then $(x - r, x + r) \subseteq (a,b)$. Similarly the intervals (a, ∞) , $(-\infty, b)$, and $(-\infty, \infty)$ are also open in \mathbb{R} .

Lemma 1.2.1. The set \mathbb{R} of real numbers forms a topology under the open sets of \mathbb{R} .

Lemma 1.2.2. Every nonempty open set in \mathbb{R} is the disjoint union of a countable collection of open sets in \mathbb{R} .

Proof. Let U be a nonempty open set in \mathbb{R} , and take $x \in U$. There there is a y > x for which $(x,y) \subseteq U$, and a z < x for which $(z,x) \subseteq U$. Now, define

$$a_x = \inf \{ z : (z, x) \subseteq U \}$$

$$b_x = \sup \{ y : (x, y) \subseteq U \}$$

and take

$$I_x = (a_x, b_x)$$

Then I_x is an open interval containing x. Now, we claim that $I_x \subseteq U$, but that $a_x, b_x \notin U$. Indeed, take $w \in I_x$, with $x < w < b_x$, then there is a y > w for which $(x, y) \subseteq U$, so that $w \in U$.

Now, suppose that $b_x \in U$, then for some r > 0, $(b_x - r, b_x + r) \subseteq U$, so that $(x, b_x + r) \subseteq U$, which contradicts that b_x is a least upper bound. Similar reasoning yields that $a_x \notin U$.

Now, consider the collection $\{I_x\}_{x\in U}$. Then we have that

$$U = \bigcup I_x$$

moreover, this union is disjoint since $a_x, b_x \notin U$ for each x. Now, observe that by the density of \mathbb{Q} in \mathbb{R} , there exists a rational $q_x \in \mathbb{Q}$ for which $q_x \in I_x$. This gives us a 1–1 correspondence of the collection $\{I_x\}$ onto \mathbb{Q} , which makes $\{I_x\}$ countable.

Definition. For a set E of real numbers, we call a point $x \in \mathbb{R}$ a **limit point** of E provided every open interval containing x contains a point in E. We call the set of all limit points of E, together with E the **closure** of E and denote it C. We call C **closed** if C if C is a contain C if C is a contain C in C is a contain C in C

Lemma 1.2.3. For every set E of \mathbb{R} , the closure of E is closed. Morevoer, $\operatorname{cl} E$ is the smallest closed set containing E.

Proof. Let x be a limit point of cl E, and consider an open interval I_x containing x. Then there exists an $x' \in cl E \cap I_x$. Since x' is a limit point of E, and $x' \in I_x$, we get a $x \in E \cap I_x''$. Therefore every open interval that contains x also contains a point of E. This makes $x \in cl E$, and hence cl E is closed.

Lemma 1.2.4. A set of \mathbb{R} is open if and only if its complement in \mathbb{R} is closed.

Proof. Suppose that $E \subseteq \mathbb{R}$ is open, and let x be a limit point of $\mathbb{R} \setminus E$. Then $x \notin E$, since otherwise there is an open interval containing x, contained in E, and hence disjoint from $\mathbb{R} \setminus E$. Therefore $x \in \mathbb{R} \setminus E$ which makes $\mathbb{R} \setminus E$ closed.

Corollary. A set \mathbb{R} is closed if, and only if its complement in \mathbb{R} is open.

Proof. By DeMorgan's laws.

Definition. We call a collection $\{E_{\lambda}\}$ of sets of \mathbb{R} a **cover** for a set E of \mathbb{R} if $E \subseteq_{\lambda}$. If each E_{λ} is open, we call the collection $\{E_{\lambda}\}$ an **open cover**. We call a set E of \mathbb{R} **compact** if each open cover of E has a finite subcover of E.

Theorem 1.2.5 (Heine-Borel). If F is a closed bounded set in \mathbb{R} , then F is compact.

Proof. Consider first the case where F = [a, b], for a < b, the closed bounded interval from a to b. Let \mathcal{F} be an open cover of [a, b], and define

 $E = \{x \in [a, b] : [a, x] \text{ can be covered by a finite subcollection of } \mathcal{F}\}$

Notice then that $a \in E$, so that E is nonempty. Moreover, E is bounded above, so by the completeness of \mathbb{R} , $c = \sup E$ exists in [a, b]. Now, then, there exists a set U in F such that $c \in U$. Since U is open (well F is an open cover), there exists an $\varepsilon > 0$ for which the interval $(c - \varepsilon, c + \varepsilon) \subseteq U$. Now, $c - \varepsilon$ is not an upperbound of E by definition of C, so there is an $x \in E$ with $c - \varepsilon < x$. Now, there is a finite subcollection $\{U_i\}_{i=1}^k$ of open sets in F covering [a, x], consequently the collectuion $\{U_i\} \cup U$ covers $[a, c + \varepsilon]$, so that c = b. That is [a, b] has a finite subcover of F, so that [a, b] is compact.

Now, let F be any closed and bounded set, and let \mathcal{F} be an open cover of F. Since F is bounded, we have $F \subseteq [a,b]$ for some a < b, and the set $U = \mathbb{R} \setminus F$ is open. Now, let $\mathcal{F}' = \mathcal{F} \cup U$. Since \mathcal{F} covers F, \mathcal{F}' covers [a,b]. By the compactness of [a,b], we obtain the compactness of F.

Theorem 1.2.6 (The Nested Set Theorem). Let $\{F_n\}$ a countable descending collection of closed sets of \mathbb{R} , for which F_1 is bounded. Then the intersection

$$\bigcap F_n$$

is nonempty.

Proof. Suppose to the contrary that the intersection $F = \bigcap F_n$ is empty. Then for every $x \in \mathbb{R}$, there is an $n \in \mathbb{Z}^+$ for which $x \notin F_n$. That is, $x \in U_n = \mathbb{R} \setminus F_n$, and $\mathbb{R} = \bigcup U_n$. Now, since each F_n is closed, each U_n is open, making $\{U_n\}$ an open cover of \mathbb{R} , and hence F_1 . Then by the theorem of Heine-Borel, F_1 is compact, and there is an $N \in \mathbb{Z}^+$ for which

$$F_1 \subseteq \bigcup_{n=1}^N U_n$$

since $\{F_n\}$ is a descending collection, the collection of open sets $\{U_n\}$ is an ascending collection. Thus we have

$$\bigcup_{n=1}^{N} U_n = U_n = \mathbb{R} \backslash F_N$$

making $F_1 \subseteq \mathbb{R} \backslash F_N$, which contradicts that $F_n \subseteq F_1$ is nonempty

Definition. Let X be a set. We call a collection \mathcal{A} of subsetes of X a σ -algebra of X provided

- (1) $X \in \mathcal{A}$ and $\emptyset \in \mathcal{A}$.
- (2) \mathcal{A} is closed under complements in X.
- (3) \mathcal{A} is closed under countable unions.

Example 1.2. The collections $\{\emptyset, X\}$ and 2^X are σ -algebras on X.

Lemma 1.2.7. Let \mathcal{F} be a collection of subsets of a set X. Then the intersection \mathcal{A} of all σ -algebras of X containing \mathcal{F} is a σ -algebra containing \mathcal{F} . Moreover, it is the smallest such σ -algebra of X containing \mathcal{F} .

Definition. We define the collection \mathcal{B} of **Borel sets** of \mathbb{R} to be the smallest σ -algebra of \mathbb{R} containing all open sets of \mathbb{R} .

1.3 Sequences in \mathbb{R}

Definition. We define a **sequence** of real numbers to be a real-valued function $f: \mathbb{Z}^+ \to \mathbb{R}$ where $f(n) = a_n$, for some $a_n \in \mathbb{R}$. We denote sequences by $\{a_n\}$. We call a sequence $\{a_n\}$ of real numbers **bounded** provided there exists an $M \geq 0$ for which $|a_n| \leq M$ for all $n \in \mathbb{Z}^+$. We say the sequence $\{a_n\}$ is **monotone increasing** if $a_n \leq a_{n+1}$ for all $n \in \mathbb{Z}^+$, and we call it **monotone decreasing** if the sequence $\{-a_n\}$ is monotone increasing.

Definition. We say a sequence $\{a_n\}$ of real numbers **converges** to a real numbers a $in\mathbb{R}$ if for every $\varepsilon > 0$, there is an $N \in \mathbb{Z}^+$ for which

$$|a_n - a| < \varepsilon$$
 whenever $n \ge N$

and we write $\{a_n\} \to a$ as $n \to \infty$, or

$$\lim_{n \to \infty} a_n = a$$

We call a the **limit** of the sequence.

Lemma 1.3.1. Suppose a sequence $\{a_n\}$ of real numbers converges to some $a \in \mathbb{R}$. Then this limit is unique and $\{a_n\}$ is bounded. Moreover, for every $M \in \mathbb{R}$, if $a_n \geq M$, then $a \geq M$.

Theorem 1.3.2 (The Monotone Convergence Theorem). A monotone sequence of real numbers converges if, and only if it is bounded.

Proof. Suppoe, without loss of generality, that $\{a_n\}$ is a monotone increasing function; and that $\{a_n\} \to a$ as $n \to \infty$. Then by lemma 1.3.1, $\{a_n\}$ must be bounded.

Conversely, suppose that $\{a_n\}$ is monotone increasing and bounded. By the completeness of \mathbb{R} , we have the set

$$\mathcal{S} = \{a_n : n \in \mathbb{Z}^+\}$$

has a least upper bounde $a = \sup \mathcal{S}$. Now, let $\varepsilon > 0$, then since \mathcal{S} has a least upper bound, $a_n \leq a$ for all $n \in \mathbb{Z}^+$, and $a - \varepsilon$ is not an upper bound of \mathcal{S} . Hence, there is an $N \in \mathbb{Z}^+$ for which $A_N > a - \varepsilon$. Since $\{a_n\}$ is monotone increasingm we gave $a_n > a - \varepsilon$ for all $n \geq N$, so that

$$|a - a_n| < \varepsilon$$

this makes $\{a_n\} \to a$.

Theorem 1.3.3 (Bolzano-Weierstrass). Every bounded sequence of real numbers has a convergent subsequence.

Proof. Let $\{a_n\}$ be a bounded sequence of real numbers. Choose an M>0 for which $|a_n|\leq M$, for all $n\in\mathbb{Z}^+$. Now, define

$$E_n = \operatorname{cl} \{a_j\}_{j \ge n}$$

Then $E_n \subseteq [-M, M]$, moreover, each E_n is closed and $\{E_n\}$ is a descending collection of closed sets in which E_1 is bounded. Therefore by the nested set theorem, the intersection

$$E = \bigcap E_n$$

is nonempty. Choose then a point $a \in E$. Then for every $k \in \mathbb{Z}^+$, a is a limiti point of E_k , and hence for infinitely many $j \geq n$, we have $A_j \in (a - \frac{1}{k}, a + \frac{1}{k})$. Hence, proceeding inductively, choose a strictly increasing sequence $\{n_k\}$ such that

$$|a - a_{n_k}| < \frac{1}{k}$$

By the Archimedean principle of \mathbb{R} , $\{a_{n_k}\} \to a$ as $k \to \infty$.

Definition. We call a sequence $\{a_n\}$ of real numbers **Cauchy** if for every $\varepsilon > 0$, there is an $N \in \mathbb{Z}^+$ for which

$$|a_m - a_n| < \varepsilon$$
 whenever $m, n \ge N$

Theorem 1.3.4 (Cauchy's Convergence Criterion). A sequence of real numbers converges if, and only if it is Cauchy.

Proof. SUppose that $\{a_n\} \to a$. Then observe that for all $m, n \in \mathbb{Z}^+$, that

$$|a_m - a_n| \le |a_m - a| + |a - a_n|$$

now, let $\varepsilon > 0$ and choose $N \in \mathbb{Z}^+$ for whic $|a_n - a| M < \frac{\varepsilon}{2}$ whenever $n \geq N$. Then observe that whenever $m, n \geq N$, we get

$$|a_m - a_n| \le |a_m - a| + |a - a_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

which makes $\{a_n\}$ Cauchy.

Conversely, suppose the sequence $\{a_n\}$ is Cauchy. We claim that $\{a_n\}$ is bounded. Let $\varepsilon = 1$ and choose $N \in \mathbb{Z}^+$ such that if $m, n \geq N$, then $|a_m - a_n| < 1$. Notice then that

$$|a_n| \le |a_n - a_N| + |a_N| \le 1 + |a_N|$$
 for all $n \ge N$

Now, define $M = \max\{|a_1|, \ldots, |a_N|\}$. Then $|a_n| \leq M$ for all $n \in \mathbb{Z}^+$ and $\{a_n\}$ is bounded. By the theorem of Bolzano-Weierstrass, $\{a_n\}$ has a convergent subsequence $\{a_{n_k}\} \to a$. Now, let $\varepsilon > 0$; since $\{a_n\}$ is Cauchy, choose an $N \in \mathbb{Z}^+$ such that $|a_m - a_| < \frac{\varepsilon}{2}$ whenever $m, n \geq N$. In particular, we have whenever $n_k \geq N$,

$$|a_n - a_{n_k}| < \frac{\varepsilon}{2}$$

so that

$$|a_n - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \varepsilon$$

which makes $\{a_n\} \to a$.

Theorem 1.3.5. Let $\{a_n\}$ and $\{b_n\}$ be convergent sequences of real numbers, with $\{a_n\} \to a$ and $\{b_n\} \to b$. The for all $\alpha, \beta \in \mathbb{R}$, we have the sequence $\{\alpha a_n + \beta b_n\}$ is convergent, and

$$\lim_{n \to \infty} \alpha a_n + \beta b_n = \alpha a + \beta b$$

Moreover, if $a_n \leq b_n$ for all n, then $a \leq b$.

Proof. Observe that

$$|(\alpha a_n + \beta b_n) - (\alpha a + \beta b)| \le |\alpha||a_n - a| + |\beta||b_n - b|$$

for all $n \in \mathbb{Z}^+$. Let $\varepsilon > 0$ and choose $N \in \mathbb{Z}^+$ such that

$$|a - a_n| < \frac{\varepsilon}{2 + 2|\alpha|}$$
 and $|b - b_n| < \frac{\varepsilon}{2 + 2|\beta|}$ for all $n \ge N$

Then

$$|(\alpha a_n + \beta b_n) - (\alpha a + \beta b)| < \varepsilon$$

Now, suppose that $a_n \leq b_n$ for all $n \in \mathbb{Z}^+$, and consider the sequence c_n where $c_n = b_n - a_n$, and let c = b - a. Then $c_n \geq 0$, and by the inearity proved above, $\{c_n\} \to c$. Now, let $\varepsilon > 0$, then there is an $N \in \mathbb{Z}^+$ such that $-\varepsilon < c - c_n < \varepsilon$ for all $n \geq N$. In particular, $0 \leq c_N < c + \varepsilon$, and since $c > -\varepsilon$, we get that $c \geq 0$.

Definition. We say a sequence $\{a_n\}$ converges to infinity if for every $M \in \mathbb{R}$, there is an $N \in \mathbb{Z}^+$ for which

$$a_n \geq M$$
 for all $n \geq N$

and we write $\{a_n\} \to \infty$. We say that $\{a_n\}$ converges to minus infinity if the sequence $\{-a_n\}$ converges to infinity, and we write $\{a_n\} \to -\infty$.

Definition. Let $\{a_n\}$ be a sequence of real numbers. We define the **limit superior** of $\{a_n\}$ to be

$$\limsup \{a_n\} = \lim_{n \to \infty} (\sup \{a_k : k \ge n\})$$

Similarly, we define the **limit inferior** of $\{a_n\}$ to be

$$\lim\inf\left\{a_n\right\} = \lim_{n \to \infty} \left(\inf\left\{a_k : k \ge n\right\}\right)$$

Lemma 1.3.6. Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers. Then the following are true.

- (1) $\limsup \{a_n\} = l \in \mathbb{R}$ if, and only if there is infinitely many $n \in \mathbb{Z}^+$ for which $a_n > l \varepsilon$ and only finitely many $n \in \mathbb{Z}^+$ for which $a_n > l + \varepsilon$.
- (2) $\limsup \{a_n\} = \infty$ if and only if $\{a_n\}$ is not bounded above.
- (3) $\limsup \{a_n\} = -\liminf \{-a_n\}$
- (4) $\{a_n\} \to a \in \mathbb{R}_{\infty}$ if and only if

$$\limsup \{a_n\} = \liminf \{a_n\} = a$$

(5) If $a_n \leq b_n$ for all $n \in \zeta^+$, then

$$\limsup \{a_n\} \le \liminf \{b_n\}$$

Definition. Let $\{a_n\}$ be a sequence of real numbers. We define the *n*-th partial sum of $\{a_n\}$ to be

$$s_n = \sum_{k=1}^n a_k$$

We call a sum $\sum a_n$ summable to a sum $s \in \mathbb{R}$ if the sequence $\{s_n\} \to s$; that is the sequence of *n*-th partial sums of the sequence $\{a_n\}$ converges to s as $n \to \infty$.

Lemma 1.3.7. Let $\{a_n\}$ be a sequence of areal numbers. The following are true.

(1) The sum $\sum a_n$ is summable if, and only if for every $\varepsilon > 0$, there is an $N \in \mathbb{Z}^+$ such that

$$\left|\sum_{n=1}^{m+n} a_k\right| < \varepsilon \text{ for all } n \geq N \text{ and some } m \in \mathbb{Z}^+$$

- (2) If the sum $\sum |a_n|$ is summable, then so is $\sum a_n$.
- (3) If $a_n \geq 0$, then $\sum a_n$ is summable if, and only if the sequence of n-th partial sums of $\{a_n\}$ is bounded.

1.4 Contiunous Real-valued Functions

Bibliography

- [1] D. Dummit, Abstract algebra. Hoboken, NJ: John Wiley & Sons, Inc, 2004.
- [2] I. N. Herstein, Topics in algebra. New York: Wiley, 1975.