ND-A165 416

COMMERCIALLY IMPORTANT MEROPLANKTON OF THE LOWER CHESAPEAKE BRY AND PROPO...(U) OLD DOMINION UNIV MORFOLK VA APPLIED MARINE RESEARCH LAB A J BUTT ET AL. JAN 85 P/G 13/2 NL.



WELLER STATES CONTRACTOR

MICROCOPY RESOLUTION TEST CHART

APPLIED MARINE RESEARCH LABORATORY OLD DOMINION UNIVERSITY NORFOLK, VIRGINIA



# AD-A165 416

COMMERCIALLY IMPORTANT MEROPLANKTON OF THE LOWER CHESAPEAKE BAY AND PROPOSED NORFOLK DISPOSAL SITE. I: BLUE CRABS, ROCK CRABS AND OYSTERS

BY

Arthur J. Butt Raymond W. Alden III and Robert J. Young

Supplemental Contract Report For the Period Ending September, 1984

Prepared for the Department of the Army Norfolk District, Corps of Engineers Fort Norfolk, 803 Front Street Norfolk, Virginia 23510

Under Contract DACW65-81-C-0051







Report B-37

January 1985

5 p

|                                 | المارة | ፟ፙኯቔኯቔኯቔኯቔኯቔ <b>ኯ</b> ቔዹቔ                         | 6.76.036.08.08.08.08.09.00.00                                          | ericanistica de como   |                                           |             |                     |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------|------------------------|-------------------------------------------|-------------|---------------------|
| Unclassii                       |                                                                                                                 |                                                   | ~                                                                      | AD-                    | A 165                                     | 416         | mila an monomorphis |
| المراقيريين اسافي               |                                                                                                                 |                                                   | REPORT DOCU                                                            | <del></del>            |                                           |             |                     |
| 1a. REPORT SE                   | CURITY CLASS                                                                                                    | IFICATION                                         |                                                                        | 16. RESTRICTIVE        | MARKINGS                                  |             | <del></del>         |
|                                 | CLASSIFICATIO                                                                                                   | N AUTHORITY                                       | <del></del>                                                            | 3. DISTRIBUTION        | /AVAILABILITY O                           | F REPORT    | <del></del>         |
| 2b. DECLASSIF                   | ICATION / DOW                                                                                                   | NGRADING SCHEDU                                   | LE                                                                     | Approved unlimited     | •                                         | release,    | distribution        |
| 4. PERFORMIN                    | IG ORGANIZAT                                                                                                    | ION REPORT NUMBE                                  | R(S)                                                                   | 5. MONITORING B-37     | ORGANIZATION R                            | EPORT NUMB  | BER(S)              |
| Old Domin                       | PERFORMING<br>ion Univer<br>search Lai                                                                          | <b>ORGANIZATION</b><br>rsity, Applied<br>boratory | 6b. OFFICE SYMBOL<br>(If applicable)                                   | U.S. Arm               | ONITORING ORGA<br>TY Corps of<br>District |             | · ·                 |
| 6c ADDRESS                      | City, State, and                                                                                                | ·                                                 |                                                                        |                        | ty, State, and ZIP                        | Code)       |                     |
| 8a. NAME OF<br>ORGANIZA         | FUNDING/SPO                                                                                                     | NSORING<br>Army Corps                             | 8b. OFFICE SYMBOL (If applicable)                                      | 9. PROCUREMEN          | Virginia<br>T INSTRUMENT ID               |             |                     |
|                                 |                                                                                                                 | folk District                                     | NAOPL; NAOEN                                                           | <u> </u>               | 81-C-0051                                 |             | <del></del>         |
| 8c. ADDRESS (                   | City, State, and                                                                                                | I ZIP Code)                                       |                                                                        | PROGRAM<br>ELEMENT NO. | PROJECT<br>NO.                            | TASK<br>NO. | WORK UNIT           |
|                                 |                                                                                                                 | 23510-1096                                        |                                                                        |                        |                                           |             |                     |
| Commercial Site.I: 12. PERSONAL | Blue Crabs . AUTHOR(S)                                                                                          |                                                   |                                                                        | Chesapeake I           | Bay and Prop                              | osed Norf   | olk Disposal        |
| i <b>3a. TYPE OF</b><br>Final   |                                                                                                                 | 13b. TIME CO                                      |                                                                        | 14. DATE OF REPO       |                                           | Day) 15. PA | AGE COUNT           |
| 16. SUPPLEME                    | NTARY NOTAT                                                                                                     | TION                                              |                                                                        |                        |                                           |             |                     |
| 17.                             | COSATI                                                                                                          |                                                   | 18. SUBJECT TERMS (                                                    |                        |                                           |             |                     |
| FIELD                           | GROUP                                                                                                           | SUB-GROUP                                         | Bay, Norfolk                                                           | Disposal Sit           | e, blue cra                               | b, rock c   | c, Chesapeake       |
| 19 ABSTRACT                     | (Continue on                                                                                                    | reverse if necessary                              | and identify by block                                                  | number)                | abundance.                                | SDALIAL     | distribution.       |
| vae rema                        | re megalop<br>ined in bo                                                                                        | oe concentrate<br>Ottom waters a                  | e summer at Bay<br>in nueston lay<br>t Bay mouth and<br>found seaward. | er prior to r          | e-invasion                                | of Bav.     | Rock crah lar-      |
|                                 |                                                                                                                 |                                                   | • • • •                                                                |                        |                                           |             |                     |

|                                                      | 21. ABSTRACT SECURITY CLASSIFICATION                    |
|------------------------------------------------------|---------------------------------------------------------|
| ☐ UNCLASSIFIED/UNLIMITED 🔯 SAME AS RPT. ☐ DTIC USERS | Unclassified                                            |
| 22a. NAME OF RESPONSIBLE INDIVIDUAL                  | 22b. TELEPHONE (Include Area Code)   22c. OFFICE SYMBOL |
| Craig L. Sel+, -                                     | (804) 441-3767/827-3767 NAOPL-R                         |

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

| المداد المتادة | algeri. | PARTINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***       |
|----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                |         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| i              | 18.     | temporal distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [ /       |
| P.             | 10.     | temporar distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| Ž              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 5              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 3              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Ì              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Ţ              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 3              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| ,              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • •     |
|                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 5              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                |         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| •              |         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| ì              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | بسندن     |
| ļ              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |
| •.             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| -              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| .~             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| ·<br>-         |         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •••••     |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| -              |         | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| •              |         | $\cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| •              |         | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ليهيدا    |
| ·!             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( , )     |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| ì              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Į              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | أسيبا     |
| -              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Ž              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Ì              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| ī.             |         | $\cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| `              |         | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|                |         | ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| ļ              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |
|                |         | $ar{ar{\zeta}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| b<br>i         |         | ki<br>Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | مُراءً عر |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| •              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •         |
|                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| !              |         | <u>l</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1         |
| •              |         | $\overline{\cdot}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
|                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| والمرازي       |         | land and the field of the field of the land of the field of the same of the sa |           |

APPLIED MARINE RESEARCH LABORATORY OLD DOMINION UNIVERSITY NORFOLK, VIRGINIA

COMMERCIALLY IMPORTANT MEROPLANKTON OF THE LOWER CHESAPEAKE BAY AND PROPOSED NORFOLK DISPOSAL SITE. I: BLUE CRABS, ROCK CRABS AND OYSTERS

ВΥ

CONTROL OF THE PROPERTY OF THE

Arthur J. Butt Raymond W. Alden III and Robert J. Young

Supplemental Contract Report For the Period Ending September, 1984

Prepared for the Department of the Army Norfolk District, Corps of Engineers Fort Norfolk, 803 Front Street Norfolk, Virginia 23510



Under Contract DACW65-81-C-0051

В



Submitted by the Old Dominion University Research Foundation P.O. Box 6369
Norfolk, Virginia 23508

January 1985

Approved for public released of Distribution Unlimited

# TABLE OF CONTENTS

|                                                                                                  | PAGE     |
|--------------------------------------------------------------------------------------------------|----------|
| INTRODUCTION                                                                                     | 1        |
| Blue Crabs and Rock Crabs                                                                        | 3<br>7   |
| METHOD                                                                                           | 11       |
| Study Area                                                                                       | 11<br>11 |
| RESULTS                                                                                          | 15       |
| Blue Crabs and Rock Crabs                                                                        |          |
| DISCUSSION                                                                                       | 33       |
| CONCLUSION                                                                                       | 36       |
| ACK NOWLEDGEMENTS                                                                                | 37       |
| REFERENCES                                                                                       | 38       |
| APPENDIX: Abundance Tables by Station                                                            | 19       |
| LIST OF TABLES                                                                                   |          |
| TABLE                                                                                            |          |
| Spawning seasons in Virginia of 23 species of bivalves (Chanley and Andrews, 1971)               | 3        |
| James River public oyster production based on dockside landings and estimate values (VMRC, 1984) | 9        |

# LIST OF FIGURES

| FIGURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PAGE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1 Study area - lower Chesapeake Bay, Chesapeake Bay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12   |
| mouth and proposed Norfolk Disposal Site (NDS)  2 Abundance (*/m³) of Callinectes sapidus zoea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12   |
| from oblique tows (355 u mesh) at the Bay mouth Stations: east of the Bridge Tunnel - 1 (a), 2 (b), 3 (c), 8 (d), 9 (e), 10 (f); offshore - NDS (g); and the inner Stations - 4 (h), 5 (i), 6 (j), and 7 (k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19   |
| Abundance (#/m <sup>3</sup> ) of <u>Callinectes sapidus</u> megalopa from oblaique tows (355 u mesh) at the Bay mouth Stations: east of the Bridge Tunnel - 1 (a), 2 (b), 3 (c), 8 (d), 9 (e), 10 (f); offshore - NDS (g); and the inner Stations - 4 (h), 5 (i), and 7 (k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22   |
| Abundance (#/m³) of <u>Cancer irroratus</u> zoea from oblique tows (355 u mesh) at the Bay mouth Stations: east of the Bridge Tunnel - 1 (a), 2 (b), 3 (c), 8 (d), 9 (e), 10 (f); offshore - NDS (g); and the inner Stations - 4 (h), 5 (i), and 7 (k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25   |
| Abundance (#/m³) of <u>Crassostrea virginica</u> from oblique tows (153 u mesh) at the Bay mouth Stations: east of the Bridge Tunnel - 2 (a) and 3 (b); and inner Stations - 4 (c), 5 (d), 6 (e), and 7 (f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28   |
| Vertical distribution of <u>Callinectes</u> <u>sapidus</u> zoea from oblique and neuston tows (355 u mesh) from Stations 8 (a), 9 (b), 10 (c), and NDS (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30   |
| Vertical distribution of <u>Callinectes</u> <u>sapidus</u> zoea from oblique and neuston tows (355 u mesh) from Stations 8 (a), 9 (b), 10 (c), and NDS (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31   |
| Vertical distribution of <u>Cancer irroratus</u> zoea from oblique and neuston tows (355 u mesh) from Stations 8 (a), 9 (b), 10 (c), and NDS (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32   |
| Accompanie de la Companie de la Comp | 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |



# COMMERCIALLY IMPORTANT MEROPLANKTON OF THE LOWER CHESAPEAKE BAY AND PROPOSED NORFOLK DISPOSAL SITE. I: BLUE CRABS, ROCK CRABS AND OYSTERS

Ву

\*Arthur J. Butt, \*\*Raymond W. Alden III, and \*\*\*Robert J. Young

#### INTRODUCTION

Meroplankters are an essential component to the aquatic community structure. In Chesapeake Bay they are typified by larval forms belonging to many benthic and epibenthic species. These include mostly gastropod and pelecypod molluscs, polychaete annelids, decapod crustaceans and fishes. Several of the shellfish are of commercial importance such as oysters (Crassostrea virginica), blue crab (Callinectes sapidus), and possibly, the rock crab (Cancer irroratus).

A very important aspect to any coastal study is the relative abundance, diversity and distribution of such organisms and the impact that urbanization may have on commercially important forms. This impact is of particular interest in a port such as Hampton Roads where the economy is strongly influenced by aspects of commerce, defense and fisheries.

<sup>\*</sup>Operations Manager, Applied Marine Research Laboratory, Old Dominion University, Norfolk, VA.

<sup>\*\*</sup>Director, Applied Marine Research Laboratory, Old Dominion University, Norfolk, VA.

<sup>\*\*\*</sup>Research Associate, Applied Marine Research Laboratory, Old Dominion University, Norfolk, VA.

The present study was designed to provide a descriptive evaluation of the population dynamics of commercially important invertebrate meroplankton of the Hampton Roads, lower Chesapeake Bay and proposed Norfolk Disposal Site (NDS). These invertebrate populations from representative stations in these regions were sampled with respect to age, abundance, and spatial and temporal distributions.

#### Blue Crabs and Rock Crabs

Two crab species with commercial importance are collected in or around Chesapeake Bay. The blue crab, <u>Callinectes sapidus</u> is the Bay's dominant fisheries crab. The 1983 dockside landings of this species exceeded \$11 million, representing one of Virginia's most important fisheries. The Chesapeake Bay industry alone produces between 40-50% of the total United States catch. This fishery is split into two types, based on season (winter vs. summer) and migration of the species. The other, less common, species is the rock crab, <u>Cancer irroratus</u>. Although its monetary value is difficult to estimate, its potential harvestable value warrants consideration. Because of the migratory life histories of these two species, the lower Chesapeake Bay and offshore regions along the Virginia coast are believed to be among the most important spawning and recruitment centers in the Mid-Atlantic Bight.

The biology, life history and distributions of the blue crab has been described by many authors. However, the generally accepted consensus was presented by Van Engle (1958). Mating occurs from May to October in the mid-Bay. Spawning follows the female migration to a region of the Bay mouth between Cape Henry and Cape Charles. The females prefer deep water associated with the channels and a significant number of crabs also occur outside the Bay mouth.

Two major spawning periods are noted. The first occcurs in May - June and a second in August - September. The spring spawnings are from females that mated and matured the previous fall. They may spawn a second time at summers end. The females reaching maturity in May spawn in August. By mid-September no female spawners are found. Post-spawning crabs are thought to move to deeper waters of the bay or the coastal zone and re-invade the estuaries as "ocean" crabs the following year (Van Engle, 1958).

A two week development is generally required between egg laying and hatching (Van Engel, 1958). Growth is rapid and complete metamorphosis is reached within 40 days of hatching (Costlow and Bookhout, 1959). The larvae develop through as many as eight zoea stages and a megalopae during this period.

The larvae hatch synchronously with the tidal cycle just prior to maximum ebb (Provenzano et al., 1983). Provenzano et al. (1983), and McConaugha et al. (1983) reported maximum first stage zoea concentrations in the surface layers of waters near the mouth the of Bay where they are transported offshore. The megalopae molt into an early crab stage which may re-invade the Bay through winddriven surface circulations.

The rock crab is caught commercially in the colder waters of the Northeast (Krouse, 1972). In the Mid-Atlantic Bight, <u>C. irroratus</u> is a common epibenthic species along the continental shelf and

inshore waters (Musick and McEachran, 1972); however, they are caught incidentally in other fisheries. Large numbers of rock crabs are caught in the winter dredge fishery for blue crabs that extends from December through March each year. They may appear in the markets along with blue crabs although dredgers generally avoid areas of rock crab abundance. Since they are underexploited, the life history and biology of the rock crab off Virginia is not well known. A review of the available data on these crabs is given by Bigford (1979).

Larvae are produced from early spring through the summer (Connolly, 1923; Sandifer, 1972). Sastry (1970, 1971) reported growth rates for the five zoea and one megalopae stages to be comparable to those for the blue crab (37-58 days in a constant temperature culture regime). Sandifer (1972) and Goy (1976) reported larval abundance of the rock crabs during April and May. The greatest catches were associated with their more seaward stations just outside the Bay mouth. Previous reports has been made of large numbers of larvae in the surface waters (Fish, 1925; Smyth, 1980); however, Sandifer and Goy found that 55% and 72%, respectively, of the larvae they collected to be in the bottom collections.

Bigford (1979b) concluded from laboratory data that late stage zoea and megalopae are epibenthic; however, Johnson (1982) found an opposite trend for megalopae. He reported the megalopae

inhabiting the neuston in stratified water columns, while a mixed vertical distribution did occur in homogeneous water columns.

#### Bivalves and Oysters

Bivalve larvae constitute a major portion of the marine plankton community (Thorson, 1946). In fact, during bivalve spawning periods, their abundance in the water column may dominate the other plankters. Unfortunately, proper identifications of many planktonic bivalve larvae are lacking since true definitive characteristics and meristic distributions common to the mature stage are often logistically difficult, if not impossible to detect.

Chesapeake Bay serves as a major habitat for many bivalves (Table 1); several of which are of commercial value. The hard and soft clams, Mercenaria mercenaria and Mya arenaria, respectively, experience moderate exploitation. The oyster, Crassostrea virginica has the largest commercial value for mollusc harvested in the Bay, with a 1982-83 landing exceeding \$1 million for the James River (Table 2). Its development is well documented and the larvae are distinct (Chanley and Andrews, 1971).

The harvest of oysters from the lower Chesapeake Bay and James River is composed of two fisheries: 3" market and seed market. The standard beds are tonged for the adults (3" market) and are sold by the bushel as "clean cull". Unique to the James River oyster farming is the seed market. It is important as the source of seed-oysters for the entire oyster industry of Virginia.

TABLE 1. Spawning seasons in Virginia of 23 species of bivalves from Chanley and Andrews, 1971.

| Species                 | Jan    | Feb | Mar              | Apr                                     | May    | Jun                                     | Jul             | Aug         | Sep       | Oct         | Nov     | Dec   |
|-------------------------|--------|-----|------------------|-----------------------------------------|--------|-----------------------------------------|-----------------|-------------|-----------|-------------|---------|-------|
| Aequipecten irradians   |        |     |                  |                                         |        | 1 1                                     | 1               | 1<br>       |           |             |         |       |
| Anadara transversa      |        |     |                  |                                         | 1      | ;<br>;<br>;                             | 1               | 1<br>1<br>1 | l<br>l    |             |         |       |
| Anomia simplex          |        |     |                  |                                         | i<br>i | )<br>                                   | ;               | 1           |           | 1<br>1      |         |       |
| Barnea truncata         |        |     |                  |                                         | <br>   | 1                                       | ,               | 1 1 1       | 1 1 1     | 1           | 1 1 1 1 |       |
| Crassostrea virginica   |        |     |                  |                                         | 1 1    | ;<br>!<br>!<br>!                        |                 |             |           | 1           |         |       |
| Cyrtopleura costata     |        |     |                  | 1<br>1<br>1                             | 1 1    | t<br>1<br>1<br>1                        | -               | 1 1         | 1         | 1 1         | 1<br>;  |       |
| Donax variabilis        |        |     |                  |                                         |        |                                         |                 | 1           |           | 1 1 1       |         |       |
| Ensis directus          |        | 1   |                  | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |        |                                         |                 |             |           |             |         |       |
| Gemma gemma             |        |     | )<br>(           | 1 1 1                                   | 1      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | )<br> <br> <br> | 1<br>1<br>1 | 1         | ı           |         |       |
| Laevicardium mortoni    |        |     | 1<br>1<br>1      | !<br>!<br>!<br>!                        | 1      | <br>                                    | )<br>           | 1           | 1 1 1 1 1 | 1<br>1<br>1 |         |       |
| Lyonsia hyalina         |        |     | j<br>1<br>1<br>1 | 1 1                                     | f<br>f | t<br>1<br>1                             |                 |             |           |             |         |       |
| Mercenaria mercenaria   |        |     |                  |                                         | 1      | 1 1 1 1 1 1 1                           | 1 1             | 1           | 1         |             |         |       |
| Modiolus demissus       |        |     |                  |                                         | <br>   | 1 1 1                                   | 1               |             |           | 1           |         |       |
| Mulinia latervalis      |        |     | 1 1 1            | 1                                       | 1      | 1 1 1                                   |                 |             | f<br>I    | 1 1         |         |       |
| Mya arenaria            |        |     | 1 1              | 1 1                                     | 1 1    |                                         |                 |             | <br>      |             | 1       | )<br> |
| Mytilus edulis          | i<br>i | 1 1 | 1 1              | ;                                       | i<br>i | <br>                                    | 1               | 1 1         | 1         | i<br>i      | 1       | 1     |
| Noetia ponderosa        |        |     |                  |                                         |        |                                         | 1               | ,           |           | 1           |         |       |
| Petricola pholadiformis |        |     | 1 1 1            | 1                                       | 1      | 1 1 1                                   | 1               | !           | 1         | 1 1         | 1 1     |       |
| Pitar morrhuana         |        |     |                  |                                         |        | 1 1                                     | 1               | 1 1         |           |             |         |       |
| Spisula solidissima     |        |     | 1 1              |                                         |        | 1                                       |                 |             | 1         | i<br>1      | 1 1     |       |
| Tellina agilis          |        |     |                  | 1                                       | f      | f<br>1                                  | :               | 1 1         | ı         |             |         |       |
| Teredo navalis          |        |     |                  |                                         |        |                                         | <br>            |             | ;         | ;           |         |       |

- - - - = Estimated

James River Public Oyster production based on dockside landings and estimate values (VMRC, 1984). TABLE 2.

ALL STREET COLORS BOOKS BOOKS

| Total Total Seed & Clean Cull Clean Cull Value Value | \$ 746,704 \$1,801,495 | 1,773.844 2,810,907 | 1,912,462 2,442,755 | 2,070,099 2,834,058 | 392,598 1,053,790 | 463,911 1,151,836 | 401,806 1,114,449 | 372,035 881,980 | 450,286 1,152,398 | 321,181 1,076,261 | 69,639 878,618 | 478,808 1,356,044 | 156,572 754,135 | 31,877 871,082 | 11,091 646,036 | 66,009 760,400 | 232,517 1,178,039 | 357,748 1,188,696 | 676,247 1,164,880 | 197,508 1,108,800 | 104,767 1,119,079 |
|------------------------------------------------------|------------------------|---------------------|---------------------|---------------------|-------------------|-------------------|-------------------|-----------------|-------------------|-------------------|----------------|-------------------|-----------------|----------------|----------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Clean Cull<br>Average<br>Price/Bushel                | \$4.25                 | 4.25                | 4.25                | 4.24                | 2.35              | 2.55              | 2.55              | 2.59            | 2.64              | 2.48              | 2.54           | 2.57              | 2.54            | 2.18           | 3.36           | 5.00           | 5.45              | 5.23              | 4.97              | 7.92              | 8.52              |
| # Bushels<br>Clean Cull*                             | 175,695                | 417,375             | 449,991             | 487,937             | 166,989           | 182,020           | 157,669           | 143,778         | 170,844           | 129,716           | 27,389         | 186,290           | 61,601          | 14,633         | 3,302          | 13,192         | 42,670            | 68,354            | 135,967           | 24,924            | 12,301            |
| Total Seed<br>\$ Value                               | \$1,054,791            | 1,037,063           | 530,293             | 763,959             | 661,192           | 687,925           | 712,643           | 509,945         | 702,112           | 755,080           | 808,979        | 877,236           | 597,563         | 839,205        | 634,945        | 694,391        | 945,522           | 830,948           | 488,633           | 911,292           | 1,014,312         |
| Seed Average<br>Price/Bushel                         | \$1.25                 | 1.25                | 1.25                | 1.25                | 1.24              | 1.42              | 1.46              | 1.93            | 1.53              | 1.88              | 2.04           | 2.35              | 1.89            | 1.88           | 1.51           | 1.98           | 2.25              | 2.38              | 2.28              | 2.24              | 2.08              |
| # Bushels<br>Seed                                    | 843,833                | 829,650             | 424,234             | 611,167             | 532,590           | 483,690           | 486,536           | 264,203         | 458,637           | 400,593           | 396,169        | 372,537           | 317,002         | 446,121        | 420,403        | 350,419        | 419,465           | 349,538           | 214,313           | 406,042           | 487,438           |
| Fiscal Year<br>Oct - Jun                             | 1962-63                | 1963-64             | 1964-65             | 1965-66             | 1966-67           | 1967-68           | 1968-69           | 1969-70         | 1970-71           | 1971-72           | o 1972-73      | 1973-74           | 1974-75         | 1975-76        | 1976-77        | 1977-78        | 1978-79           | 1979-80           | 1980-81           | 1981-82           | 1982-83           |

<sup>\*</sup> Clean cull = 3" + market size

Information accumulated over the past seven decades indicates that larvae of <u>Crassostrea virginica</u> migrate in conduction with current and tidal oscillations. Oyster larvae are generally retained within the spawning area of the estuary and may settle in areas upstream from the major spawning population. Such is the case in the James River where larvae along the northeast shoal and deeper channels are transported upstream. Those larvae in the southwest shoal waters are carried seaward (Wood and Hargis, 1971).

Nelson (1911) first hypothesized that oyster larvae control their vertical distribution by rising and sinking in the tidal streams. Numerous studies have confirmed that the larvae are not being transported passively, but, in fact, selectively swim in to maximize horizontal distributions.

The data suggest that their behavior is correlated with salinity and tidal movement. In studies where sharp salinity stratification was reported, the greatest abundance of the larvae was found just above the zone of greatest salinity change during flood tide. Large or older oyster larvae tend to rest near or on the bottom during ebb, and actively rise in the water on the flood. This allows for maximum distribution in the tidal headwaters during a tidal cycle. Where a halocline was not reported the oyster larvae were found in the vicinity of the fastest current (see Carriker, 1981, and Woods and Hargis, 1971, for reviews).

#### **METHODS**

#### Study Area

Chesapeake Bay and its tributaries constitute the largest estuary in the United States. It is characterized by a two-layer circulation pattern with a net outflow of low salinity surface water layered over a net inflow of more dense, higher salinity bottom water (Pritchard, 1955; Boicourt, 1981). There is an inflow of shelf water at the Chesapeake Channel and North Channel. Due to the Bay's size, the Coriolis force helps confine this higher salinity water to the western shore. The major fresh water sources experience an outflow toward the southern channel. This pronounced low salinity plume has a general southerly drift (Boicourt, 1973, 1981; Johnson, 1976). Once outside the Bay mouth, this water flows with the southerly drift of shelf water; however, it is highly susceptible to directional changes caused by prevailing seasonal winds.

#### Sampling Regime

Ten stations were sampled in the lower Chesapeake Bay and one station offshore at the proposed Norfolk Disposal Site (NDS) during 1982 and 1983 (Figure 1). The lower bay stations extended from the southern channel at Cape Henry along Thimble Shoal Channel to the river mouths of the James and Elizabeth Rivers and their confluence. Three additional stations were sampled across the Bay mouth at the middle (Chesapeake Channel) and upper (North



COLUMN TO THE PROPERTY OF THE

Figure 1. Study Area - Lower Chesapeake Bay, Chesapeake Bay Mouth and Proposed Norfolk Disposal Site (NDS).

Channel) navigational channels. The NDS station was placed 27 km east of the Bay mouth in the center of the proposed dredged material disposal site.

A monthly sampling was maintained for the Bay mouth transect (stations 8, 9 and 10) and NDS. The two southern channels of the Bay mouth were sampled semi-monthly (stations 1, 2 and 3). The four inner most stations (4, 5, 6 and 7) were sampled monthly during October through April and semi-monthly from May through September. The semi-monthly sampling was deemed necessary in order to monitor the changes in population dynamics during the more active spawning periods and depict any major population shifts associated with Bay plume affects.

Plankton samples were collected with oblique bongo tows from approximately one meter above the bottom to the surface. Each station was sample, with a replicate tow. The duplicate sequence repeated with a different mesh net producing a total of 8 samples per station. The smaller 153 u mesh was used for bivalve larvae and the large 355 u mesh for larval decapods. A one-meter neuston net (355 u) was deployed at stations 8, 9, 10 and NDS. Four neuston tows were made per station, of five minutes duration each. Mechanical flow meters were used in each net during all samples collected. Abundances were calculated as #/m³ and plotted on a log +1 scale.

Field parameters measured included salinity, temperature, conductivity and dissolved oxygen. Readings were made at each station one meter below the surface and one meter above the bottom. These supplementary data are available from the authors.

#### RESULTS

Abundance analysis for all stations sampled shows significant spatial and temporal patterns for the three larval species studied. Blue crab larvae exhibit more dynamic larval dispersal and recruitment mechanisms. The rock crab and oysters retain spawning behavior that allows the retention of larval in an environment endemic to the parental stock. Spawning of blue crabs and oysters occurs during the summer month, while the rock crab spawns during cooler periods.

#### Blue Crab

Spawning of blue crabs over the two year study was concentrated around the Bay mouth and offshore (NDS) (Fig. 2). Initial low level spawning activities were evident by late May - early June at the lower Bay mouth (Stations 1, 2 and 10). By late June, July and August, major spawning peaks occurred throughout the Bay mouth. Greatest zoeal abundances were from the deeper channels at the Bay mouth and NDS stations with concentrations exceeding 300 larvae/m³ in July (Station 9, 1982) and August (Station 1, 1983). The single largest recorded abundance was at NDS on August 11, 1982 when over 700 crab larvae/m³ were collected. Blue crab larvae were found as late as November at NDS; however, the Bay mouth concentrations appeared to have ended by September.

Blue crab larvae were collected during the summer months from the

James River/Elizabeth River (Stations 6 and 7, respectively). However, larval abundances declined sharply with distance inland from the Bay Mouth (Fig. 2 h, i, j, & k).

Megalopae of the blue crab were present at Stations 1, 3 and NDS during July and August; however, their numbers were low in the oblique tows (Fig. 3). Few were collected at the otter Bay mouth or inner stations.

#### Rock Crab

Rock crab larvae were absent from the plankton during the summer months (Fig. 4). Larvae were reported in oblique tows as early as August and extended through May with peak abundances at NDS during April for both years studied. The Bay mouth showed substantially lower numbers; of those sampled, Stations 1, 2, 3 and 10 were the popular areas. Only a few zoea were collected at the the James River and Elizabeth River stations.

The megalopae were rarely captured; (see Appendix tables), however, they appeared to remain with the zoea in the offshore shelf waters.

## Oysters and Bivalve Larvae

Oyster larvae contribute little to the total bivalve population outside their parental habitats of the James/Elizabeth Rivers mouth confluence (Fig. 5). Oyster larvae were seldom collected

east of the Chesapeake Bay Bridge Tunnel (Stations 2 and 3). Abundance values for oysters at the Bay mouth stations (Stations 1, 8, 9 and 10) and the NDS are not shown due to such low abundances. The bivalve population in general was highly variable over the two years, with highest concentrations noticed in April through July. This is a brief span considering the abundance of benthic bivalves spawning during the summer months (Table 1). Otherwise no noticeable trend could be seen.

Near the inner most stations (4, 5, 6 and 7) the oyster larvae abundance was very patchy (high variability). During the summer spawning of oysters, their larvae accounted for most of the bivalve larvae in the plankton, particularly near the inner stations along the James River oyster beds. There was a peak abundance of oyster larvae during July and August in 1982; however, a bimodal distribution was evident the following year. There was an initial peak in June and July, followed by a decline in mid-August and a resurgence in early September. The bivalve larvae in general showed a similar trend.

## Vertical Distribution

No definitive pattern of vertical stratification was noticed for blue crab zoea at the Bay mouth and NDS stations over the two year study (Fig. 6). Station 8 showed no difference between neuston and obliques in 1982, however, zoea abundances were substantially higher in obliques in 1983. A similar pattern was noticed for

Station 9. They dominated the neuston in late summer at Station 10 in 1982; however, the reverse was noticed the following year. There was no distinction between obliques and neuston at NDS for 1982. In 1983, the zoea appeared in the neuston early in the season; however, by the end of the summer (September and October) the larvae were throughout the water column. Blue crab megalopae showed a definite preference for surface waters at the offshore station (NDS) (Fig. 7). Megalopae concentrations at NDS were robust during 1982, but were significantly reduced the following year.

Rock crab zoeae were seldom collected in the neuston layer, whereas the oblique tows showed higher concentration at NDS (Fig. 8). This indicates a selective preference for the colder, bottom waters. This zone is characteristic of higher saline coastal waters influenced by a surface layer of less dense estuarine waters. The numbers of megalopae collected were too few for any definiative comparison (see Appendix).

Figure 2. Abundance  $(\#/m^3)$  of <u>Callinectes sapidus</u> zoea from oblique tows (355 u mesh) at the Bay mouth stations: east of the Bridge Tunnel - 1(a), 2(b), 3(c), 8(d), 9(e), 10(f); offshore - NDS (g); and the inner stations - 4(h), 5(i), 6(j), and 7(k).























がは、一般などのないのでは、一般などのないである。



を見る カスカラス 大人 自己 がん ここと かい 自己 いいいいかん マル 自己









#### DISCUSSION

Periods of reproductive activity are often correlated with physical environmental factors. These parameters often include, but may not be limited to temperature, salinity, photoperiod, suitable food (Thorson, 1946) and favorable seasonal current patterns (Knudsen, 1960; Effort, 1970; Rimmer and Phillips, 1979). Among these seasonal temperature change is considered dominant (Kinne, 1970; Giese and Pearse, 1974).

Meroplankton typically reproduce during the warmer months in boreal and temperate waters. In Chesapeake Bay, spawning of blue crabs and oysters occurred during the summer months as expected. Provenzano et al. (1983) suggested a synchronized hatching of blue crab larvae (Stage I) with the tidal cycle, and associated vertical stratification. The majority of the Stage I zoea were collected in the neuston layer during ebb tides, particularly during the evening hours. The present study showed no definitive vertical stratification of early stage zoea in the neuston (300 u size class counts). The seaward transport of these early stage larvae and offshore development is indicated by the increased abundance of both zoea and megalopae at NDS some 27 km east of the Bay mouth. As a result, the early stage zoea must concentrate in the low salinity surface waters associated with the Bay plume and its offshore transport. Similar studies from Florida to North Carolina support the contention that larval development of

<u>Callinectus sapidus</u> larvae occurs offshore (Nichols and Kenney, 1963; Dudley and Judy, 1971; Smyth, 1980). There is a subsequent re-invasion of the estuary by the megalopae and juvenile stages. This re-invasion is believed to be made possible by the prevailing wind and surface current patterns present off the Bay mouth during the late summer months (Hester, 1983; Johnson <u>et al.</u>, 1983). The megalopae concentrate in the neuston offshore, however, the mechanism for blue crab recruitment to the Bay is not clear. Their vertical distribution probably changes as the megalopae molt to the juvenile stage. The currents are towards the Bay in late summer and autumn, and may aid the invasion process.

The oyster larvae were most abundant from July through September at the stations located near the mouths of the James and Elizabeth Rivers. Although the abundance were highly variable by date, peaks occurred in July and August in 1982. A definite bimodal distribution was recorded the following year with a decline in mid-August and a second peak in early September. Although oyster larvae were found in the vicinity of the Bay mouth, their counts were too low to indicate any major seaward transport. The oyster larvae tended to remain endemic to the parent populations and the literature supports the upriver transport in many instances. There was a paucity of planktonic bivalves at the inner stations. This implies that oysters are more successful due to less competition in the highly variable euryhaline environment.

The rock crab believed to be boreal in origin inhabit the continental shelf and slope waters from Labrador to South Carolina (Rathbun, 1930; Squires, 1966; Williams, 1965; Nations, 1975).

The crab occurs in shallow waters at its northern range (Williams, 1965; Templeman, 1966) and is found in the deeper, colder offshore waters along the more southern extention (MacKay, 1943). Along the Mid-Atlantic Bight it may be found in the inlets and bays as an adult. The larvae are hatched offshore; however, zoea are reported nearshore. In Chesapeake Bay the larvae occur during the colder months (October to May) near the Bay mouth. Their lack of abundance in the neuston collections supports previous studies for a preference for the cooler bottom waters.

#### CONCLUSION

Peak abundance of blue crab larvae occurs in mid to late summer at the deeper channels of the Chesapeake Bay mouth and NDS stations. Although no vertical stratification was noticed for early stage larvae, a seaward migration is indicated. Larval development occurs offshore where megalopae concentrate in the neuston layer prior to re-invasion of the Bay.

Larval rock crabs were collected throughout the colder winter months at the Bay mouth and NDS stations. Although peak abundances occurred in May offshore, larvae were also collected in early fall. The larvae tended to remain in the higher salinity and cooler bottom waters, as did the later stage megalopae.

Oyster larvae tended to remain in the vicinity of the James and Elizabeth Rivers confluence and infrequently occurred seaward. Most larvae occurred in the plankton during July and August. In 1983, a bimodal distribution was observed with a second peak as late as September. Bivalve larvae were very abundant at the outer stations; however, declined sharply at the inner stations. Oysters comprised a significant proportion of the total bivalve larvae present at these inner stations.

#### **ACKNOWLEDGEMENTS**

The authors wish to thank the taxonomists for their extended dedication to the long hours with the microscopes. Particular thanks go to Ken Kimidy, Donna Van Keuren and Jean Stankovich. Additional thanks are given to the field crews of the R/V Zoea and NOAA vessel R/V Laidly, who challenged the elements year round. The final results were made possible due to the computer operators who managed the massive data sets and the ever dying main frame. They are John Seibel, David Wade and Dennis Lundberg.

This research was funded by the U.S. Army Corps of Engineers, Norfolk District under Contract DACW65-81-C-0051.

#### REFERENCES

- Boicourt, W.C. 1973. The circulation of water on the continental shelf from Chesapeake Bay to Cape Hatteras. Ph.D. Thesis, The Johns Hopkins University, Baltimore, MD. 183 pp.
- Boicourt, W.C. 1981. Circulation in the Chesapeake Bay entrance region: Estuary-Shelf Interaction. In: Chesapeake Bay Plume Study (Eds: J.W. Campbell and J.P. Thomas) NASA Conference Publication 2188, NOAA/NEMP II 8L ABCDEFG 0042, U.S. Dept. of Commerce, pp. 61-78.
- Carriker, M.R. 1951. Ecological observations on the distribution of oyster larvae in New Jersey estuaries. Ecol. Monogr. 21:19-38.
- Chanley, P. and J.D. Andrews. 1971. Aids for identification of bivalve larvae of Virginia. Malaeologia 1161:45-119.
- Connolly, C.J. 1923. The larval stages and megalopae of <u>Cancer</u> amoenus (Herbst.) Contrib. Can. Biol. (New Ser.) 1:335-352.
- Costlow, J.D., and Bookhout, C.G. 1959. The larval development of Callinectes sapidus Rathbun reared in the laboratory. Biol. Bull. 116:373-396.
- Dudley D.L. and M.H. Judy. 1971. Occurrence of larval, juvenile, and mature crabs in the vicinity of Beaufort Inlet, North Carolina. U.S. Department of Commerce. NOAA Technical Report NMFS SSRF-637, 10 pp.
- Fish, C.J. 1925. Seasonal distribution of the plankton of the Woods Hole region. Bull. U.S. Bur. Fish., 41:1-91.
- Giese, A.C. and J.S. Pearse. 1974. Introduction: General principles. In: A.C. Giese and J.S. Pearse, eds. Reproduction of marine invertebrates. Academic Press, New York. 49 pp.
- Goy, J.W. 1976. Seasonal distribution and the retention of some decapod crustacean larvae within the Chesapeake Bay, Virginia. M.S. Thesis, Old Dominion University, Norfolk, VA. 334 pp.
- Hester, B.S. 1983. A model of the population dynamics of the blue crab in Chesapeake Bay. Technical Report No. 83-6, Old Dominion University Research Foundation, Norfolk, VA. 116 pp.

- Johnson, D.F. 1982. A comparison of recruitment strategies among brachyuran crustecean megalopae of the York River, Lower Chesapeake Bay and adjacent shelf waters. Ph.D. Dissertation, Old Dominion University, Norfolk, VA. 97 pp.
- Johnson, D.R., B.S. Hester and J.R. McConaugha. 1983. Studies of a wind mechanism influencing the recruitment of blue crabs in the Middle Atlantic Bight. Technical Report No. 83-5, Old Dominion University Research Foundation, Norfolk, VA. 52 pp.
- Johnson, R.E. 1976. Circulation study near Cape Henry, Virginia, using Lagrangian Techniques. Institute of Oceanography Tech. Rept. No. 21, Old Dominion University, Norfolk, VA. 80 pp.
- Krouse, J.S. 1972. Some life history aspects of the rock crab, Cancer irroratus, in the Gulf of Maine. J. Fish. Res. Bd. Canada 29:1479-1482.
- MacKay, D.C.G. 1943. Temperature and the world distribution of crabs of the genus Cancer. Ecology 24:113-115.
- McConaugha, J.R., Provenzano, A.J. 1980. Distribution and migration of blue crab larvae in the lower Chesapeake Bay USA and adjacent coastal waters: Am. Zool. 20(40):888.
- Musick, J.A., and J.D. McEachran. 1972. Autumn and winter occurrence of decapod crustaceans in Chesapeake Bight, USA Crustaceana 33:190-200.
- Nations, J.D. 1975. The genus <u>Cancer</u> (Crustacea: Brachyura):
  Systematics, biogeography and fossil record. Nat. Hist. Mus.
  Los Ang. Cty., Sci. Bull. 23:1-104.
- Nelson, J. 1911. Report of the biologist. Rept. Biol. Dept. N.J. Agr. Coll. Exp. Sta. for 1910:183-218.
- Nichols, P.R. and P.M. Kiney. 1963. Crab larvae (<u>Callinectes</u>) in plankton collections from M/V Theodore N. Gill, South Atlantic Coast of the United States, 1953-54. U.S. Fish and Wildlife Service SSRF No. 448. 1-14 pp.
- Provenzano, A.J., J.R. McConaugha, K.B. Philips, D.F. Johnson, J. Clark. 1983. Vertical distribution of first stage larvae of the blue crab, <u>Callinectes sapidus</u>, at the mosth of the Chesapeake Bay: Estuarine Coastal and Shelf Science, 16: 489-499 pp.
- Rathbun, J.J. 1930. The cancroid crabs of American of the families Euryalidae, Portunidae, Atelecyclidae, Cancridae and Xanthidae. U.S. Natl. Mus. Bull. 152, 609 pp.

- Sandifer, P.A. 1972. Morphology and ecology of Chesapeake Bay decapod crustacean larvae. Ph.D. Disertation, Univ. of Virginia (unpublished). 532 pp.
- Sandifer, P.A. 1975. The role of pelagic larvae in recruitment to populations of adult decapod crustaceans in the York River estuary and adjacent lower Chesapeake Bay, Virginia. Estuarine and Coastal Marine Science 3, 269-279.
- Sastry, A.N. 1970. Culture of brachyaran crab larvae using a recirculating sea water system in the laboratory. Helgel. Wiss. Meeresunters 20:406-416.
- Sastry, A.N. 1971. Culture of brachyaran larvae under controlled conditions. Proc. Joint Oceanogr. Assembly (Tokyo), VIII, Abstr. Contrib. Pap.: 475-477.

recepted I deposited. Response Bendance consideration

- Smyth, P.O. 1980. <u>Callinectes</u> (Decapode: Portunnidue) larvae in the middle Atlantic Bight, 1975-1977. Fishery Bulletin, 78: 251-265.
- Squires, H.J. 1966. Distribution of decapod Crustacea in the northwest Atlantic. American Geographical Society, Serial Atlas of the Marine Environment, Folio 12.
- Templeman, W. 1966. Marine resources of Newfoundland. Fish. Res. Board Can., Bull. 154, 170 pp.
- Thorson, G. 1946. Reproduction and larval development of Danish marine bottom invertebrates, with special reference to the planktonic larvae in the sound (Oresund). (With a section on lamellibranch larvae by C.B. Jorgensen). Medd. Komm. Danm. Fiskeri-og Havunders., Serie: Plankton 4:1-523.
- Van Engle, W.A. 1958. The blue crab and its fishery in Chesapeake Bay. Part I. Reproduction, early development, growth and migration. Comm. Fish. Rev. 20:6-17.
- Virginia Marine Resources Commission. Personal Communication. 1984.
- Williams, A.B. 1965. Marine decapod crustaceans of the Carolinas Fishery Bulletin 65:1-298.
- Wood, L. and W.J. Hargis. 1971. Transport of bivalve larvae in a tidal estuary. In: Fourth European Marine Biology Symposium (Ed: D.J. Crisp) Cambridge Univ. Press: 29-44.

APPENDIX ABUNDANCE TABLES BY STATION \*\*\*\*\*\*\*\*\*

# MOLLUSCS SUMMARY OF TOWS AT STATION 1 MEAN OF 4 153 MICRON OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

| ********       | *************************************** |         | ****** |         | ***** |
|----------------|-----------------------------------------|---------|--------|---------|-------|
| DATE           | All                                     |         |        |         |       |
| U., L          | 8 i val ve s                            |         | Oyst   | ers     |       |
|                | 3772773                                 | -       | 5,3.   |         |       |
|                |                                         |         |        |         |       |
| 16FEB82        | 442.21 ( 2                              | 275.02) | 0.00   | ( • )   |       |
| 09MAR82        | 7.03 (                                  | 3.431   | 0.00   | ( . )   |       |
| 03APR82        | 106.61 (                                | 61.45)  | 0.01   | ( 0.01) |       |
| 30APR82        | 1034.20 ( 3                             | 370.40) | 0.00   | ( . )   |       |
| 24MAY82        |                                         | 387.281 | 0.00   | ( - )   |       |
| 30MAY82        | 52639.88 (524                           | 19.00)  | 0.00   | ( . )   |       |
| 08JUN82        | 338.24 ( )                              | 138.17) | 0.00   | ( . )   |       |
| 21JUN82        | 1729.09 ( 4                             | 06.771  |        | ( . )   |       |
| 12JUL82        | 165.87 (                                | 28.15)  | 1.44   | ( 0.77) |       |
| 30JUL82        | 948.33 ( 3                              | 113.88) | 1.10   | ( 0.70) |       |
| 04AUG82        | 57.52 (                                 | 28.60)  | 0.58   | ( 0.51) |       |
| 18AUG82        | 49.45 (                                 | 5.12)   | 1.69   | ( 0.36) |       |
| 30AUG82        | 128.76 (                                | 36.84)  | 0.08   | ( 0.08) |       |
| 16SEP82        | 220.55 (                                | 78.321  | 0.58   | ( 0.38) |       |
| 245 EP 82      | 75.96 (                                 | 9.37)   |        | ( 0.36) |       |
| 070CT82        | 59.23 (                                 | 5.48)   | 2.78   | ( 0.97) |       |
| 150CT82        | 166.86 (                                | 38.47)  | 0.08   | ( 0.08) |       |
| 290CT82        | 151.08 (                                | 15.06)  |        | ( . )   |       |
| 11NOV82        | 276.65 (                                | 79.11)  |        | ( . )   |       |
| 24NOV82        | 275.99 (                                | 82.08)  | C.00   | ( . )   |       |
| 100 EC82       | 2923.71 ( 24                            | 93.081  | 0.00   | ( • )   |       |
| 21UEC82        |                                         | 37.431  | 0.00   | ( • )   |       |
| 24JAN83        | 160.85 (                                | 42.89)  | C.00   | ( . )   |       |
| 31JAN83        | 310.35 ( 1                              | 19.49)  | 0.00   | ( . )   |       |
| 09FEB83        | 217.75 (                                | 79.60)  | 0.00   | ( • )   |       |
| 21FE383        | 1412.91 ( 2                             | 88.70)  |        | ( . )   |       |
| LOMAR83        | 162.52 (                                | 44.35)  | 0.00   | ( • )   |       |
| 28MAR83        | 54.15 (                                 | 12.52)  | 0.00   | ( . )   |       |
| 11APR83        | 207.97 (                                | 31.91)  | 0.00   | ( . )   |       |
| 27APR83        | 16.16 (                                 | 2.55)   | 0.00   | ( . )   |       |
| 11MAY83        | 330.36 (                                | 60.87)  | 0.00   | ( • )   |       |
| 31MAY83        | 730.00 ( 1                              | 10.53)  | 0.00   | ( . )   |       |
| 24JUN83        | 161.17 (                                | 66.86)  | 0.10   | ( 0.10) |       |
| 13JUL83        | 647.55 (                                | 54.24)  | 0.00   | ( . )   |       |
| 28JUL83        | 256.83 ( 1                              | .09.88) | 0.00   | ( . )   |       |
| 09AUG83        | 73.43 (                                 | 42.40)  | 0.00   | ( . )   |       |
| 26AUG83        | 163.42 (                                | 81.19)  | 0.00   | t . )   |       |
| 12SEP83        | 176.37 (                                | 50.30)  | 0.68   | ( 0.54) |       |
| <b>030CT83</b> | 294.84 (                                | 92.921  |        | ( 2.54) |       |
| 13GCT 83       | 183.80 ( ]                              | .21.131 | 0.67   | ( 0.14) |       |
| 11DEC83        | 84.41 (                                 | 24.44)  | 0.00   | ( . )   |       |
|                |                                         |         |        |         |       |

## MOLLUSCS SUMMARY OF TOWS AT STATION 2 MEAN OF 4 153 MICRON OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

| DATE      | Al         | ı         |         |       |
|-----------|------------|-----------|---------|-------|
|           | Bival      | ves       | Oysters |       |
|           |            |           |         |       |
| 16FEB82   | 193.53 (   | 61.44)    | 0.00 (  | . )   |
| U9MAR82   | 4.52 (     | 2.21)     | 0.00 (  | . )   |
| 22APR82   | 46904.54 ( | 27308.31) | 0.00 (  | . )   |
| 29APR82   | 685.77 (   | 399.791   | 0.00 (  | . )   |
| 24MAY82   | 185.34 (   | 74.11)    | 0.00 (  | . )   |
| 30MAY82   | 1856.09 (  | 1510.27)  | 0.00 (  | • )   |
| SBNULBO   | 266.09 (   | 73.46)    | C.00 (  | . )   |
| 21JUN82   | 157.55 (   | 41.53)    | 0.00 (  | . )   |
| 12JUL82   | 1402.51 (  | 1266.39)  | 0.95 (  | 0.47) |
| 30JUL82   | 33.61 (    | 15.84)    | 3.04 (  | 1.86) |
| 04AUG82   | 122.21 (   | 97.531    | 3•22 (  | 2.581 |
| 18AUG82   | 29.43 (    | 16.40)    | 2.02 (  | 0.97) |
| 30AUG82   | 28.75 (    | 11.01)    | 3.45 (  | 2.59) |
| 165 EP 82 | 160.31 (   | 74.26)    | 4.16 (  | 3.36) |
| 24SEP82   | 59.36 (    | 4.51)     | 5.57 (  | 1.95) |
| 070CT82   | 94.19 (    | 32.28)    | 0.33 (  | 0.191 |
| 150CT82   | 43.86 (    | 6.19)     | 0.56 (  | 0.341 |
| 290CT82   | 10.62 (    |           | 0.00 (  | . )   |
| 11NCV82   | 109.79 (   | 34.86)    | 0.00 (  | • )   |
| 24NOV82   | 105.11 (   | 57.40)    | 0.00 (  | . )   |
| 100EC82   | 50.41 (    | 21.42)    | G.00 (  | . )   |
| 220EC82   | 55.30 (    | 11.02)    | 0.00 (  | . )   |
| 31JAN83   | 1784.21 (  | 251.93)   | 0.00 (  | • )   |
| 09FEB83   | 151.33 (   | 56.49)    | 0.00 (  | • )   |
| ∠1FE883   | 31.15 (    |           | 0.00 (  | • )   |
| 10MAR83   | 391.38 (   | 139,191   | C. 00 ( | . )   |
| 28MAR83   | 13.44 (    | 6.231     | 0.00 (  | . )   |
| 11APR83   | 381.12 (   | 128.50)   | 0.00 (  | . )   |
| 27APR83   | 7.81 (     | 3.86)     | 0.00 (  | • )   |
| 11MAY83   | 1974.74 (  | 574.70)   | 0.00 (  | • )   |
| SIMAY83   | 379.97 (   | 80.40)    | 0.00 (  | • )   |
| 24JUN83   | 985.64 (   | 451.03)   | 0.11 (  | 0.11) |
| 13JUL83   | 742.65 (   | 262.141   | 0.00 (  | • )   |
| 28JUL83   | 574.55 (   | 355.721   | 2.12 (  | 1.55) |
| 09AUG83   | 85.62 (    | 14.47)    | 0.00 (  | . )   |
| 26AUG83   | 65.97 (    | 23.74)    | 0.12 (  | 0.071 |
| 12SEP83   | 1046.04 (  | 171.68)   | 1.22 (  | 0.08) |
| U3UCT83   | 180.99 (   |           | 1.12 (  | 0.25) |
| 130CT83   | 35.69 (    |           | 0.31 (  | 0.16) |
| 280CT83   | 14.05 (    | 3.70)     | C.OO (  | • 1   |
| 18NOV83   | 0.16 (     | 0.06)     | 0.00 (  | • 1   |
| 02DEC83   | 3.16 (     | 0.64)     | 0.00 (  | • )   |
|           |            |           |         |       |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

## MOLLUSCS SUMMARY OF TOWS AT STATION 3 MEAN OF 4 153 MICRON OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

| DATE     | A         | 1 1        |      |      |       |  |
|----------|-----------|------------|------|------|-------|--|
|          | Biva      | l ve s     | Oyst | ters |       |  |
|          |           |            |      |      |       |  |
| 16FEB82  | 281.73    | ( 125.99)  | 0.00 | (    | . )   |  |
| 09MAR82  | 0.93      | ( 0.11)    | 0.00 | (    | . )   |  |
| 22APR82  | 90617.47  | (26261.10) | 0.00 | (    | . )   |  |
| 29APR82  | 107478.03 | (95958.41) |      | (    | . )   |  |
| 24MAY82  | 311.67    | ( 85.98)   | 0.00 | (    | • )   |  |
| 30MAY82  | 1550.78   |            | 0.00 | (    | • )   |  |
| GBJUN82  | 228.23    |            | 0.03 |      | 0.03) |  |
| 21JUN82  | 24.67     | ( 12.98)   | C.00 | (    | . )   |  |
| 12JUL82  | 123.27    | ( 49.19)   | C.16 | (    | 0.16) |  |
| 301UL82  | 14.97     | ( 5.21)    | 0.66 |      | 0.52) |  |
| G4AUG82  | 17.05     | ( 3.16)    | 0.00 |      | . )   |  |
| 18AUG82  | 25.37     | ( 8.08)    | 2.39 | (    | 1.291 |  |
| 30AUG82  | 36.63     | ( 5.78)    | 2.74 | (    | 0.84) |  |
| 16SEP82  |           | ( 89.62)   | 1.67 |      | 0.65) |  |
| 245EP82  |           | ( 3.28)    | 1.07 |      | 0.09) |  |
| 07GCT82  |           | ( 8.91)    | 1.31 |      | 0.18) |  |
| 150CT82  | _         | ( 7.02)    |      | (    | • )   |  |
| 490CT82  | 22.53     |            |      | i    | • )   |  |
| 11N0V82  | 178.29    | -          | 0.00 | i    | . )   |  |
| 24NOV82  | 177.02    |            |      | i    | . )   |  |
| 10DEC82  | 229.28    |            |      | ĺ    | • )   |  |
| 220 EC82 | 35.73     |            |      | (    | • )   |  |
| 31JAN83  | 389.56    |            | C.00 | Ċ    | . )   |  |
| U9FE383  | 203.48    |            |      | (    | • )   |  |
| 21FEB83  | 732.32    |            |      | (    | • ) ` |  |
| 10MAR83  | 31.96     |            |      | (    | . )   |  |
| 28MAR83  | 39.85     |            |      | į (  | • )   |  |
| 11APR83  | 449.22    |            | 0.00 | ĺ    | • )   |  |
| 27APR83  | 10.83     |            | 0.00 | i    | . )   |  |
| 11MAY83  | 1772.92   |            | 0.00 | (    | . )   |  |
| 31MAY83  | 1047.53   |            |      | i    | • )   |  |
| 24JUN83  | 184.86    |            | 0.76 |      | 0.76) |  |
| 13JUL83  | 8819.65   |            |      | (    | • )   |  |
| 28JUL83  | 132.40    |            | 0.55 |      | 0.551 |  |
| U9AUG83  | 46.87     |            |      |      | 0.221 |  |
| 26AUG83  | 160.75    | ( 50.55)   | 0.21 |      | 0.09) |  |
| 125EP83  | 461.66    |            | 0.32 | -    | 0.19) |  |
| 03UCT83  | 24.94     |            | =    |      | 0.23) |  |
| 1300783  | 117.37    |            |      |      | 0.23) |  |
| 280CT83  | 6.02      |            |      | (    | • )   |  |
| 18NOV83  | 6.58      |            | C.00 | (    | • )   |  |
| 02DEC83  | 9.60      |            | 0.00 | -    | • )   |  |
|          |           |            |      |      |       |  |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### MOLLUSCS SUMMARY OF TOWS AT STATION 4 MEAN OF 4 153 MICRON OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

DATE AII Bivalves Oysters 0.00) 04MAR82 0.53 ( 0.671 -0.00 ( 8169.13 ( 5284.92) 22APR82 0.00 ( 0.00 ( 29APR82 10941.57 ( 9681.72) 0.00 ( 24MAY82 161.79) 450.17 ( 85232.82 (79260.74) 0.00 ( 30MAY82 **284UL80** 19817.98 (19763.09) 347.23 ( 346.70) **21JUN82** 37.77 ( 13.17) 0.27 ( 0.271 3.23 ( 1.50) 12JUL82 125.15 ( 50.191 143.21 ( 301UL82 31.371 6.28 ( 1.46) 3.95) 2.88 ( 04AUG82 40.53 ( 1.231 18AUG82 24.07 ( 2.88) 0.63 ( 0.211 30AUG82 154.62 ( 28.711 6.24 ( 4.461 16SEP82 62.61 ( 37.341 3.20 ( 1.63) 24SEP82 21.74 ( 0.47) 2.67 ( 0.13) 73.971 0.64 ( 0.221 07UCT82 225.16 ( 0.35 ( 150CT82 39.93 ( 0.35) 17.331 290CT82 0.11 ( 0.11) 3.60 ( 0.34) 11N0V82 44.17 ( 7.41) 0.00 ( 100EC82 20.54) 38.42 ( 0.00 ( 31JAN83 109.34 ( 27.021 0.00 ( **U9FEB83** 116.12 ( 38.791 0.00 ( 10MAR83 2.60 ( 1.10) 0.00 11APR83 2968.54 ( 423.40) 0.00 ( 27APR83 0.47 ( 0.171 0.00 ( 11MAY83 363.11 ( 210.631 0.00 ( 31MAY83 62.24 ( 47.13) 0.00 ( 24JUN83 69.21 ( 4.581 0.00 ( 13JUL83 11.66 ( 2.81) 0.25 ( 29JUL83 196.80 ( 77.601 3.38 ( 09AUG83 4.17 ( 1.36) 0.00 (

14.46)

19.851

4.17)

1.44)

4.561

0.871

108.241

74.65 (

77.67 (

52.69 (

2.24 (

14.56 (

2.53 (

169.69 (

26AUG83

12SEP83

**030CT83** 

13UCT83

**280CT83** 

1800483

16DEC83

0.84 (

8.83 (

0.66 (

0.61 (

0.00 (

C. 00 (

0.00 (

0.26)

3.591

0.271

0.261

)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

# MOLLUSCS SUMMARY OF TOWS AT STATION 5 MEAN OF 4 153 MICRON OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| DATE     | A      | AT I | ļ       |        |     |         |  |
|----------|--------|------|---------|--------|-----|---------|--|
|          | Biva   | ı,   | /es     | Oyst   | ter | s       |  |
|          |        |      |         |        |     |         |  |
| 0/44000  | 2.20   |      |         | 0.00   |     | •       |  |
| 04MAR82  | 0.29   |      | 0.03)   | 0.00   |     | . )     |  |
| 26MAR82  | 0.42   |      | 0.15)   |        | (   | 0.02)   |  |
| 29APR82  |        | (    | 69.411  | 0.00   | (   | • )     |  |
| 23MAY82  | 391.25 | (    | 129.371 | 0.00   | (   | • )     |  |
| 29MAY82  | 129.24 | (    | 38.621  | 0.00   | (   | • )     |  |
| 11JUN82  | 20.02  | (    | 3.691   | 0.00   | (   | • )     |  |
| 22JUN82  | 26.75  | (    | 6.89)   | 0.00   | (   | • )     |  |
| 12JUL82  | 114.38 | (    | 44.77)  | 24.87  | (   | 16.53)  |  |
| 30JUL 82 | 130.10 | (    | 62.581  | 19.45  | (   | 10.94)  |  |
| 06AUG82  | 28.96  | (    | 12.06)  | 2.42   | l   | 1.10)   |  |
| 18AUG82  | 59.96  | (    | 22.921  | 5.51   | (   | 0.70)   |  |
| 31AUG82  | 71.63  | (    | 17.63)  |        | (   | 1.59)   |  |
| 17SEP82  | 95.03  | (    | 13.03)  | 4.06   | (   | 0.861   |  |
| 23SEP82  | 98.52  | (    | 21.54)  | 13.94  | (   | 6.81)   |  |
| 06UCT82  | 74.49  | (    | 15.371  | 5.41   | (   | 3.451   |  |
| 14UCT82  | 70.46  | (    | 17.86)  | 12.61  | (   | 12.49)  |  |
| 280CT82  | 9.16   | (    | 1.69)   | 0.00   | (   | • )     |  |
| 12NOV82  |        | (    | 3.171   | 0.00   | (   | • 1     |  |
| 09DEC82  | 4.00   | (    | 1.00)   | 0.00   | (   | • )     |  |
| 18JAN83  | 5.55   | (    | 1.46)   | 0.00   | (   | • )     |  |
| 07FEB83  | 60.60  | (    | 7.571   | 0.00   | (   | • )     |  |
| 10MAR83  | 3.46   | (    | 1.21)   | 0.00   | (   | • )     |  |
| 11APR83  | 792.73 | (    | 175.451 | 0.00   | (   | . )     |  |
| 29APR83  | 2.51   | (    | 2.18)   | 0.00   | (   | • )     |  |
| 26MAY83  | 0.80   | (    | 0.28)   | 0.00   | (   | • )     |  |
| 30MAY83  | 0.78   | (    | 0.40)   | C.00   | (   | • )     |  |
| 21JUN83  | 104.19 | (    | 38.53)  | 0.00   | (   | . )     |  |
| 12JUL83  | 731.91 | (    | 616.28) | 205.98 | (   | 164.72) |  |
| 29JUL83  | 83.56  | (    | 19.30)  | 21.51  | (   | 5.61)   |  |
| 12AUG83  | 23.15  | (    | 6.77)   | 11.69  | (   | 2.41)   |  |
| 25AUG83  | 84.19  | (    | 20.691  | 1.57   | (   | 0.891   |  |
| 13SEP83  | 21.26  | (    | 14.10)  | 2.16   | (   | 0.751   |  |
| 26SEP83  | 4.20   | (    | 0.451   | 0.39   | (   | 0.261   |  |
| 14UCT83  | 50.65  | l    | 31.53)  | C.00   | (   | . )     |  |
| 2800183  | 1.46   | (    | 0.731   | 0.00   | (   | . )     |  |
| 23NOV83  | 0.59   | l    | 0.391   | 0.00   | (   | . )     |  |
| 16UEC83  |        | (    | 0.19)   | C.00   | (   | . )     |  |
|          |        |      |         |        |     |         |  |

MOLLUSCS
SUMMARY OF TOWS AT STATION 6
MEAN OF 4 153 MICRON OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

DATE AII Bivalves Oysters 05MAR82 0.06 ( 0.031 0.00 ( **26MAR82** 0.30 ( 0.271 0.00 ( 29APR82 0.00 ( 27.92 ( 13.38) 0.00 ( 29MAY82 207.55 ( 69.911 11JUN82 3.77 ( 1.501 0.00 ( **22JUN82** 10.26 ( 8.45) 0.07 ( 0.071 12JUL82 48.52 ( 9.241 17.78 5.241 31JUL82 150.27 ( 34.561 65.05 20.18) 06AUG82 28.73 ( 3.861 5.641 18.66 19AUG82 129.03 ( 22.431 34.75 ( 15.631 31AUG82 899.54 ( 831.421 31.45 ( 2.121 20SEP82 22.52 ( 4.84) 8.74 l 3.13) 235EP82 1.93 ( 7.91 ( 1.421 0.861 0.16) 0600182 7.38 ( 0.82 ( 2.661 140CT82 50.44 ( 7.681 0.72 ( 0.41) 28UCT82 1.60 ( 0.501 0.02 0.011 12N0V82 0.991 5.23 ( 0.01 0.01) 09DEC82 0.97) 2.14 ( 0.05 ( 0.051 18JAN83 8.82 ( 0.58) 0.00 ( . ) 07FE883 0.00 ( 0.00 ( ) 08MAR83 24.05 ( 5.781 0.06 [ 0.061 **06APR83** 0.00 ( 141.54 ( 25.84) ) 29APR83 0.00 ( 0.00 ( 1 26MAY83 2.47 ( 1.001 0.00 ( 30MAY83 1.08 ( 105.0 0.00 ( **21JUN83** 51.90 ( 4.291 0.00 ( 12JUL83 113.49 ( 27.631 93.57 27.981 ( 29JUL83 56.42 ( 14.43) 53.27 ( 14.51) 12AUG83 21.31 ( 4.081 8.281 11.22 ( 25AUG83 162.91 ( 149.211 1.47 ( 0.121 78.01 ( 13SEP83 28.601 18.93 ( 7.221 265EP83 15.74 ( 4.951 2.46 ( 0.641 14UCT83 4.22 ( 1.84) C. 00 ( ) **260CT83** 0.491 0.00 ( ) 2.37 ( 23N0V83 0.041 0.00 ( ) 0.33 ( 16DEC83 0.20 ( 0.201 0.00 (

\*\*\*\*\*\*\*\*\*\*\*\*\*

# MOLLUSCS SUMMARY OF TOWS AT STATION 7 MEAN OF 4 153 MICRON OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

| DATE      | Ali      | ]       |              |    |        |   |
|-----------|----------|---------|--------------|----|--------|---|
|           | Bival    |         | Oyst         | er | s      |   |
|           |          |         | •            |    |        |   |
| U5MAR82   | 0.12 (   | 0.02)   | <b>C.</b> 00 | (  | . )    |   |
| 29APR82   | 7.60 (   | 6.15)   | 0.02         | (  | 0.021  |   |
| 23MAY82   | 60.74 (  | 21.89)  | 0.00         | (  | . )    |   |
| 29MAY82   | 3.55 (   | 1.48)   | 0.00         | (  | . )    | ` |
| 15JUN82   | 2.10 (   | 1.251   | 0.00         | {  | . )    |   |
| 22JUN82   | 1.21 (   | 0.21)   | 0.00         | {  | . )    |   |
| 13JUL82   | 43.03 (  | 23.43)  | 19.17        | (  | 12.05) |   |
| 31 JUL 82 | 46.64 (  | 12.021  | 23.66        | (  | 5.86)  |   |
| O6AUG82   | 55.33 (  | 28.83)  | 21.10        | (  | 11.51) |   |
| 19AUG82   | 42.25 (  | 3.51)   | 10.13        | (  | 2.621  |   |
| 31AUG82   | 36.22 (  | 7.041   | 13.15        | (  | 6.721  |   |
| 17SEP82   | 17.45 (  | 6.921   | 9.55         | ſ  | 3.901  |   |
| 23SEP82   | 13.54 (  | 9.97)   | 7.99         | (  | 6.81)  |   |
| 060CT82   | 7.94 (   | 1.17)   | 0.75         | (  | 0.07)  |   |
| 14UCT82   | 6.27 (   | 3.80)   | 0.06         | (  | 0.04)  |   |
| 28UCT82   | 2.17 (   | 0.18)   | 0.00         | (  | . )    |   |
| 12NOV82   | 2.99 (   | 1.83)   | 0.00         | (  | . 1    |   |
| 09DEC82   | 1.31 (   | 0.491   | 0.00         | ł  | •. }   |   |
| L8JAN83   | 0.70 (   | 0.15)   | 0.00         | (  | . )    |   |
| 07FEB83   | 3.52 (   | 2.08)   | 0.00         | (  | • )    |   |
| 08MAR83   | 28.01 (  | 5.351   | 0.00         | (  | . )    |   |
| 06APR83   | 2.48 (   | 0.70)   | 0.00         | (  | . )    |   |
| 26MAY83   | 0.57 (   | 0.30)   | 0.00         | (  | . )    |   |
| 30MAY83   | 0.94 (   | 0.261   | 0.00         | (  | . )    |   |
| 21JUN83   | 26.61 (  | 15.90)  | 0.00         | (  | . )    |   |
| 12JUL83   | 85.68 (  | 50.13)  | 62.25        | (  | 43.41) |   |
| 29JUL83   | 216.47 ( | 163.09) | 31.81        | (  | 13.45) |   |
| 12AUG83   | 19.05 (  | 3.08)   | 6.18         | (  | 0.41)  |   |
| 25AUG83   | 17.08 (  | 3.25)   | 1.67         | (  | 0.441  |   |
| 13SEP83   | 148.85 ( | 29.321  | 38.85        | (  | 13.481 |   |
| 26SEP83   | 4.19 (   | 1.45)   | 0.70         | (  | 0.33)  |   |
| 14UCT83   | 6.34 (   | 2.44)   | 0.00         | (  | . )    |   |
| 260CT83   | 2.40 (   | 0.68)   | C.00         | (  | • )    |   |
| 23NOV83   | 0.50 (   | 0.32)   | C.00         | (  | • )    |   |
| 16DEC83   | 0.39 (   | 0.291   | C.00         | (  | • )    |   |
|           |          |         |              |    |        |   |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

# MOLLUSCS SUMMARY OF TOWS AT STATION 8 MEAN OF 4 153 MICRON OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| DATE    | A I 1          |       |      |     |      |    |  |
|---------|----------------|-------|------|-----|------|----|--|
| ·       | Bivalves       |       | Oyst | ers |      |    |  |
|         |                |       |      |     |      |    |  |
| 200CT82 | 0.00 (         | . )   | 0.00 | (   | •    | )  |  |
| 18NOV82 | 614.32 ( 179   | ).51) | 0.00 | (   | •    | )  |  |
| 30NOV82 | 229.65 ( 85    | .84)  | C.00 | l   | •    | )  |  |
| 26JAN83 | 55.17 ( 12     | 2.06) | 0.00 | (   | •    | )  |  |
| 09FEB83 | 43.14 ( 24     | .92)  | 0.00 | (   | •    | )  |  |
| 30MAR83 | 138.28 ( 26    | .651  | 000  | (   | •    | )  |  |
| 21APR83 | 60.67 ( 23     | 1.491 | 0.00 | (   | •    | )  |  |
| 19MAY83 | 736.77 ( 180   | .78)  | 0.00 | (   | •    | )  |  |
| 16JUN83 | 574.Q4 ( 54    | .36)  | 0.00 | (   | •    | )  |  |
| 08JUL83 | 3558.09 ( 2069 | 1.69) | 0.00 | (   | •    | }  |  |
| 11AUG83 | 121.43 ( 14    | 40)   | 0.00 | (   | •    | )  |  |
| 20SEP83 | 75.55 ( 13     | 3.521 | 1.89 | (   | 0.40 | )) |  |
| 02NQV83 | 182.40 ( 60    | 0.531 | 0.00 | (   | •    | )  |  |
| 23NOV83 | 20.41 ( 7      | 7.281 | 0.00 | (   | •    | 3  |  |
| 10DEC83 | 197.02 ( 70    | .82)  | 0.00 | (   | •    | }  |  |
|         |                |       |      |     |      |    |  |

# MOLLUSCS SUMMARY OF TOWS AT STATION 9 MEAN OF 4 153 MICRON OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

ALI

DATE

|          | Bivalv    | es      | Oysters  |        |      |
|----------|-----------|---------|----------|--------|------|
| 30JUN82  | 268.48 (  | 248.461 | 0.00 (   | . )    |      |
| 22JUL82  | 0.00 (    | . )     | 0.00 (   | . )    |      |
| 12AUG82  | 0.00 (    | . ;     | 0.00 (   | . )    |      |
| 09SEP82  | 0.00 (    | . }     | 0.00 (   | . )    |      |
| 20UCT82  | 0.04 (    | 0.04)   | . 0.00 ( | . )    |      |
| 18NOV82  | 429.93 (  | 105.851 | 0.00 (   | . )    |      |
| 24NOV82  | 71.36 (   | 4.92)   | 0.00 (   | . )    |      |
| 30NOV82  | 143.66 (  | 32.27)  | 0.00 (   | . • )  |      |
| 22DEC82  | 75.00 (   | 10.25)  | 0.00 (   | . )    |      |
| 26JAN83  | 32.53 (   | 2.74)   | 0.00 (   | . )    |      |
| 21FEB83  | 198.31 (  | 44.39)  | 0.00 (   | . 1    |      |
| 30MAR83  | 102.71 (  | 30.131  | 0.00 (   | . )    | •    |
| 21APR83  | 28.09 (   | 15.971  | 0.00 (   | • · )  |      |
| 27APR83  | 27.97 (   | 22.661  | 0.00 (   | . )    |      |
| 19MAY83  | 4513.06 ( | 391.14) | 0.00 (   | . )    |      |
| 16JUN83  | 65.38 (   | 11.67)  | 0.00 (   | . )    |      |
| 08JUL83  | 1084.64 ( | 477.751 | 0.00 (   | . )    |      |
| 28JUL83  | 1483.93 ( | 233.471 | 1.38 (   | 1.38)  |      |
| 11AUG83  | 153.67 (  | 8.421   | 0.00 (   | . )    |      |
| 26AUG83  | 1156.85 ( | 314.99) | 3.09 (   | 1.22)  |      |
| 20SEP83  | 50.00 (   | 10.33)  | 5.06 (   | 1.65)  |      |
| 03UCT83  | 81.17 (   | 9.67)   | 0.07 (   | 0.07)  |      |
| 02NQV83  | 45.80 (   | 14.71)  | 0.00 (   | . )    |      |
| 18NOV83  | 56.41 (   | 20.931  | 0.00 (   | . )    |      |
| 23NDV83  | 25.80 (   | 6.391   | 0.00 (   | . 1    |      |
| 10DEC83  | 6.02 (    | 2.85)   | 0.00 (   | • 1    |      |
| ******** |           | *****   |          | ****** | **** |

\*\*\*\*\*\*\*\*\*\*\*\*\*

# MOLLUSCS SUMMARY OF TOWS AT STATION 10 MEAN OF 4 153 MICRUN OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

DATE AII Bivalves Bysters 20UCT82 0.00 ( 0.00 ( 18NOV82 478.09 ( 120.241 0.00 ( 30N0V82 163.58 ( 54.991 0.00 ( 12.66 ( 5.11) 0.00 ( **26JAN83** 36.64 ( 10.61) 0.00 ( **JOMAR83** 216.76 ( 23.721 0.00 ( 21APR83 10019.61 ( 3198.93) C.00 ( 19MAY83 16JUN83 82.93 ( 38.28) 0.00 ( 08JUL83 308.53 ( 122.58) 0.00 ( 11AUG83 118.17 ( 24.391 0.00 ( 57.94 ( 7.121 2.74 ( 20SEP83

0.00 (

0.00 (

5.21)

22.501

25.66 (

101.34 (

02NOV83 11DEC83

# MOLLUSCS SUMMARY OF TOWS AT STATION DS MEAN OF 4 153 MICRON OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

| DATE    | A!<br>Bival |          | Oysters |   |   |
|---------|-------------|----------|---------|---|---|
| 19UCT82 | 0.00 (      | . )      | 0.00 (  | • | ) |
| 17NOV82 | 14991.65 (  | 5390.91) | 0.00 (  | • | ) |
| 30NOV82 | 4206.17 (   | 1302.301 | 0.00 (  | • | ) |
| 08FEB83 | 186.42 (    | 53.951   | 0.00 (  | • | ) |
| 29MAR83 | 151.05 (    | 31.77)   | 0.00 (  | • | ) |
| 23APR83 | 2.98 (      | 0.94)    | 0.00 (  | • | ) |
| 18MAY83 | 17.89 (     | 7.16)    | 0.00 (  | • | ) |
| 14JUN83 | 1342.67 (   | 322.10)  | 0.00 (  | • | ) |
| 07JUL83 | 5120.14 (   | 3039.71) | 0.00 (  | • | ) |
| 10AUG83 | 388.66 (    | 211.56)  | 0.00 (  | • | ) |
| 195EP83 | 17.85 (     | 1.09)    | 0.00 (  | • | ) |
| 10DEC83 | 86.13 (     | 22.25)   | 0.00 (  | • | • |

COMMERCIAL CRUSTACEANS
SUMMARY OF TOWS AT STATION 1
MEAN OF 4 353 U OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

| *******   | ***********  | *****           | ************  | ********     |
|-----------|--------------|-----------------|---------------|--------------|
| DATE      | Callinectes  | Callinectes     | Cancer irror  | Cancer Irror |
|           | sp. Megalopa | sp. Zoea        | atus zoea     | atus Megalop |
| U3APR82   | 0.00 ( . )   | 0.00 ( . )      | 0.01 ( 0.01)  | 0.00 ( . )   |
| 30APK82   | 0.00 ( . )   | 0.00 ( 0.00)    | 14.02 ( 2.13) | 0.00 ( . )   |
| JOHAY 82  | 0.00 ( . )   | 1.02 ( 0.40)    | 0.01 ( 0.01)  | 0.00 ( 0.00) |
| 08JUN82   | 0.00 ( 0.00) | 16.61 ( 2.64)   | 0.02 ( 0.02)  | 0.00 ( 0.00) |
| 21JUN82   | 0.00 ( . )   | 1.37 ( 0.66)    | 0.00 ( . )    | 0.00 ( . )   |
| 12JUL82   | 0.00 ( . )   | 39.64 ( 15.43)  | 0.00 ( . )    | 0.00 ( , )   |
| 30JUL82   | 0.10 ( 0.03) | 16.07 ( 3.89)   | 0.00 ( . )    | 0.00 ( . )   |
| 04AUG82   | 0.07 ( 0.05) | 127.90 ( 40.44) | 0.00 ( . )    | 0.00 ( . )   |
| 18AUG82   | 1.69 ( 0.39) | 151.52 ( 27.46) | 0.20 ( 0.07)  | 0.00 ( . )   |
| 30AUG82   | 0.48 ( 0.16) | 181.25 ( 72.98) | 0.07 ( 0.07)  | 0.03 ( 0.03) |
| 165 EP 82 | 0.09 ( 0.05) | 2.55 ( 1.49)    | 0.30 ( 0.24)  | 0.00 ( . )   |
| 245EP82   | 0.00 ( . )   | 6.39 ( 3.63)    | 5.05 ( 2.98)  | 0.00 ( . )   |
| u7uCT82   | 0.00 ( . )   | 0.00 ( . )      | 0.17 ( 0.05)  | 0.00 ( . )   |
| 150CT82   | 0.00 ( . )   | 0.00 ( . )      | 0.77 ( 0.36)  | 0.00 ( . )   |
| 290CT82   | 0.00 ( . )   | 0.00 ( . )      | 0.27 ( 0.04)  | 0.00 ( . )   |
| 11NQV82   | 0.00 ( . )   | 0.00 ( . )      | 1.10 ( 0.24)  | 0.00 ( . )   |
| 10DEC82   | 0.00 ( . )   | 0.01 ( 0.01)    | 0.00 ( . )    | 0.00 ( . )   |
| 21DEC82   | 0.00 ( . )   | 0.00 ( . )      | 0.00 ( 0.00)  | 0.00 ( . )   |
| 314AN83   | 0.00 ( . )   | 0.01 ( 0.01)    | 0.01 ( 0.01)  | 0.00 ( . )   |
| 21FE883   | 0.00 ( . )   | 0.00 ( . )      | 0.01 ( 0.01)  | 0.00 ( . )   |
| 10MAR83   | 0.00 ( . )   | 0.00 ( . )      | 0.46 ( 0.07)  | 0.00 ( , )   |
| 28MAR83   | 0.00 ( . )   | 0.00( . )       | 1.15 ( 0.25)  | 0.00 ( . )   |
| 11APR83   | 0.00 ( . )   | 0.00 ( . )      | 59.04 ( 9.61) | 0.00 ( . )   |
| 27APR83   | 0.00 ( . )   | 0.00 ( . )      | 26.99 ( 4.11) | 0.00 ( . )   |
| LIMAY83   | 0.00 ( . )   | 0.00 ( . )      | 5.29 ( 0.23)  | 0.00 ( . )   |
| JIMAY83   | 0.01 ( 0.00) | 0.00 ( . )      | 1.15 ( 0.21)  | 0.00 ( . )   |
| 24JUN83   | 0.00 ( . )   | 2.65 ( 1.11)    | 0.00 ( . )    | 0.00 ( . )   |
| 13JUL83   | 0.00 ( . )   | 139.76 ( 60.04) | 0.00 ( . )    | 0.00 ( . )   |
| 28JUL83   | 0.00 ( . )   | 29.43 ( 8.79)   | 0.00 ( . )    | 0.00 ( . )   |
| J9AUG83   | 0.06 ( 0.03) | 22.77 ( 9.75)   | 0.01 ( 0.01)  | 0.00 ( . )   |
| 26AUG83   | 0.14 ( 0.14) | 499.26 ( 30.00) | 0.00 ( . )    | 0.00 ( . )   |
| 125EP83   | 0.04 { 0.04} | 12.63 ( 4.38)   | 0.00 ( . )    | 0.00 ( . )   |
| 030CT83   | 0.01 ( 0.01) | 0.00 ( . )      | 0.45 ( 0.16)  | 0.00 ( . )   |
| 130CT83   | 0.10 ( 0.04) | 0.00 ( . )      | 0.00 ( . )    | 0.00 ( . )   |
| JINOV83   | 0.00 ( . )   | 0.00 ( . )      | 0.15 ( 0.12)  | 0.00 ( . )   |
| 1900783   | 0.00 ( . )   | 0.00 ( . )      | 0.12 ( 0.04)  | 0.00 ( 0.00) |
| 11DEC83   | 0.00 ( . )   | 0.00 ( . )      | 0.01 ( 0.01)  | 0.00 ( . )   |
|           |              | 3000            | 3002          | 3 · .        |

#### COMMERCIAL CRUSTACEANS SUMMARY OF TOWS AT STATION 2 MEAN OF 4 353 U OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

| DATE      | Callinectes  | Callinectes     | Cancer irror                 | Cancer irror |  |
|-----------|--------------|-----------------|------------------------------|--------------|--|
|           | sp. Megalopa | sp. Zoea        | atus zoea                    | atus Megalop |  |
| 6044363   | 0.10.4       |                 | 0.07.4.0.0(1)                | 2 22 4       |  |
| G9MAR82   | 0.00 ( . )   | 0.00 ( . )      | 0.07 ( 0.06)<br>0.66 ( 0.09) | 0.00 ( . )   |  |
| 22APR82   |              |                 |                              | *            |  |
| 29APR82   |              |                 | 96.72 ( 47.19)               | 0.00 ( . )   |  |
| 24MAY82   | 0.00 t       | 0.47 ( 0.10)    | 0.00 ( . )                   | 0.00 ( . )   |  |
| 30MAY82   | 0.00 ( . )   | 0.39 ( 0.24)    | 0.00 ( . )                   | 0.00 ( . )   |  |
| 0810N85   | *****        | 8.15 ( 2.25)    | 0.00 ( . )                   | 0.00 ( . )   |  |
| 21JUN82   | 0.00 ( . )   | 3.48 ( 1.38)    | 0.00 ( . )                   | 0.00 ( . )   |  |
| 1230182   | 0.03 ( 0.03) | 27.24 ( 10.01)  | 0.00 ( . )                   | 0.00 ( . )   |  |
| 3010F85   | 0.06 ( 0.03) | 88.69 ( 23.84)  | 0.00 ( . )                   | 0.00 ( . )   |  |
| JANUG82   | 0.02 ( 0.01) | 236.64 ( 44.16) | 1.92 ( 0.89)                 | 0.01 ( 0.01) |  |
| LOAUU82   | 0.00 ( . )   | 5.03 ( 4.84)    | 1.47 ( 1.17)                 | 0.00 ( . )   |  |
| 30AU382   | 0.01 ( 0.01) | 1.37 ( 0.79)    | 1.24 ( 1.18)                 | 0.00 ( . )   |  |
| 165 EP 82 | 0.03 ( 0.02) | 0.66 ( 0.31)    | 0.00 ( . )                   | 0.00 ( . )   |  |
| 245EP82   | 0.06 ( 0.04) | 0.23 ( 0.08)    | 0.53 ( 0.36)                 | 0.00 ( . )   |  |
| J70CT82   | 0.03 ( 0.02) | 0.00 ( . )      | 5.91 ( 1.10)                 | 0.00 ( . )   |  |
| 15UCT82   | 0.00( . )    | 0.00 ( . )      | 0.27 ( 0.05)                 | 0.04 ( 0.02) |  |
| 290CT82   | 0.00 ( . )   | 0.00 ( . )      | 0.79 ( 0.12)                 | 0.00 ( . )   |  |
| 11NOV82   | 0.00 ( . )   | 0.00 ( . )      | 0.79 ( 0.10)                 | 0.07 ( 0.07) |  |
| 10DEC82   | 0.00 ( . )   | 0.00 ( . )      | 0.02 ( 0.02)                 | 0.00 ( . )   |  |
| 220EC82   | 0.00 ( . )   | 0.00 ( . )      | 0.06 ( 0.06)                 | 0.00 ( . )   |  |
| SBNALIC   | 0.00 ( . )   | 0.00( . )       | 0.01 ( 0.01)                 | 0.00 ( . )   |  |
| U9FE380   | 0.00 ( . )   | 0.00( . )       | 0.01 ( 0.01)                 | 0.00 ( . )   |  |
| TOWAK83   | 0.30 ( . )   | 0.00 ( . )      | 0.08 ( 0.06)                 | 0.00 ( . )   |  |
| 28MAR83   | 0.01 ( 0.01) | 0.00 ( . )      | 0.16 ( 0.06)                 | 0.00 ( . )   |  |
| 717bx83   | 0.00 ( . )   | 0.00( . )       | 2.36 ( 0.35)                 | 0.00 ( . )   |  |
| ∠7APR83   | 0.00 ( . )   | 0.00 ( . )      | 0.10 ( 0.07)                 | 0.00 ( . )   |  |
| 11MAY83   | 0.00 ( . )   | 0.00( . )       | 0.91 ( 0.58)                 | 0.00 ( . )   |  |
| 1MAY83    | 0.00 ( . )   | 0.00 ( 0.00)    | 0.77 ( 0.43)                 | 0.00 ( . )   |  |
| 24JUN83   | 0.00 ( . )   | 2.42 ( 1.04)    | 0.00 ( . )                   | 0.00 ( . )   |  |
| 13JUL83   | 0.00 ( . )   | 9.63 ( 3.82)    | 0.00 ( . )                   | 0.00 ( . )   |  |
| 48JUL83   | 0.00 ( . )   | 167.84 ( 51.59) | 0.02 ( 0.02)                 | 0.00 ( . )   |  |
| U9AUG83   | 0.02 ( 0.02) | 30.98 ( 2.05)   | 0.00 ( . )                   | 0.00 ( . )   |  |
| 26AUG83   | 0.12 ( 0.06) | 16.25 ( 4.41)   | 0.00 ( . )                   | 0.00 ( . )   |  |
| 125EP83   | 0.29 ( 0.20) | 0.01 ( 0.01)    | 0.13 ( 0.09)                 | 0.00 ( . )   |  |
| 28GCT83   | 0.00 ( . )   | 0.00 ( . )      | 0.21 ( 0.08)                 | 0.00( . )    |  |
| T940A83   | 0.00( . )    | 0.01 ( 0.01)    | 0.00 ( . )                   | 0.00( . )    |  |
| U20EC83   | 0.00 ( . )   | 0.04 ( 0.03)    | 0.00 ( . )                   | 0.00 ( . )   |  |
|           |              |                 |                              |              |  |

COMMERCIAL CRUSTACEANS
SUMMARY OF TOWS AT STATION 3
MEAN OF 4 353 U OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

| *******     | ************* | ************   | ************  | ***********  |
|-------------|---------------|----------------|---------------|--------------|
| DATÉ        | Callinectes   | Callinectes    | Cancer irror  | Cancer irror |
|             | sp. Megalopa  | sp. Zoea       | atus zoea     | atus ≝egalop |
| 22APR82     | 0.00 ( . )    | 0.00 ( . )     | 0.18 ( 0.07)  | 0.00 ( . )   |
| 29APR82     | 0.00 ( 0.00)  | 0.00 ( . )     | 41.38 ( 5.40) | 0.00 ( . )   |
| 24MAY82     | 0.00 ( . )    | 0.67 ( 0.67)   | 0.07 ( 0.07)  | 0.00 ( . )   |
| S8 YA MOL   | 0.00( . )     | 0.40 ( 0.15)   | 0.00 ( . )    | 0.00 ( . )   |
| 08JUN82     | 0.00 ( . )    | 0.47 ( 0.44)   | 0.00 ( . )    | 0.00 ( . )   |
| 21JUN82     | 0.00 ( . )    | 0.90 ( 0.80)   | 0.00 ( . )    | 0.00 ( . )   |
| 12JUL82     | 0.00 ( 0.00)  | 2.80 ( 1.09)   | 0.00 ( . )    | 0.00 ( . )   |
| 26JUL02     | 0.03 ( 0.02)  | 74.57 ( 41.90) | 0.00( . )     | 0.00 ( . )   |
| 18AUG82     | 1.03 ( 0.62)  | 63.92 ( 43.75) | 0.00 ( . )    | 0.01 ( 0.01) |
| 30AUG82     | 1.36 ( 0.80)  | 4.83 ( 0.38)   | 0.00 ( . )    | 0.00 ( . )   |
| 102 5 6 8 5 | 0.07 ( 0.04)  | 0.30 ( 0.19)   | 0.43 ( 0.39)  | 0.00 ( . )   |
| 245EP82     | 0.00 ( . )    | 0.14 ( 0.14)   | 0.00 ( . )    | 0.00 ( . )   |
| U7UCT82     | 0.07 ( 0.05)  | 0.00 ( . )     | 0.65 ( 0.32)  | 0.00 ( . )   |
| 1500182     | 0.00 ( . )    | 0.04 ( 0.04)   | 0.22 ( 0.07)  | 0.00 ( . )   |
| 11NOV82     | 0.00 ( . )    | 0.00 ( . )     | 0.42 ( 0.08)  | 0.00 ( . )   |
| TODEC85     | 0.00 ( . )    | 0.00( . )      | 0.05 ( 0.02)  | 0.00 ( . )   |
| EBNAL1E     | 0.00 ( . )    | 0.00( . )      | 0.05 ( 0.03)  | 0.00 ( . )   |
| 21FE883     | 0.00 ( . )    | 0.00( . )      | 0.04 ( 0.01)  | 0.00 ( . )   |
| 10MAK83     | 0.00 ( . )    | 0.00( . )      | 0.05 ( 0.04)  | 0.00 ( . )   |
| 28MAK83     | 0.00 ( . )    | 0.00( . )      | 0.29 ( 0.17)  | 0.00 ( . )   |
| LLAPK83     | 0.00 ( . )    | 0.00 ( . )     | 1.72 ( 0.09)  | 0.00( . )    |
| 47APRB3     | 0.00 ( . )    | 0.00 ( . )     | 0.64 ( 0.23)  | 0.00 ( . )   |
| 11may83     | 0.00 ( . )    | 0.00( . )      | 0.68 ( 0.14)  | 0.02 ( 0.02) |
| SBYAMIE     | 0.00 ( . )    | 0.00 ( . )     | 0.32 ( 0.09)  | 0.00 ( . )   |
| 24JUH83     | 0.00 ( . )    | 4.57 ( 0.55)   | 0.00( . )     | 0.00 ( . )   |
| 13JUL83     | 0.00 ( . )    | 24.49 ( 1.64)  | 0.00 ( . )    | 0.00 ( . )   |
| 28JUL83     | G.00 ( . )    | 15.15 ( 1.77)  | 0.00( . )     | 0.00 ( . )   |
| U9AUG83     | 0.01 ( 0.01)  | 7.66 ( 1.73)   | 0.00( . )     | 0.00 ( . )   |
| ∠6AUG83     | 1.16 ( 0.33)  | 75.44 ( 17.98) | 0.00( . )     | 0.00 ( . )   |
| 12SEP83     | 3.95 ( 2.95)  | 2.80 ( 1.48)   | 0.00 ( . )    | 0.00 ( . )   |
| U30CT83     | 0.00 ( . )    | 0.02 ( 0.02)   | 10.28 ( 1.67) | 0.00 ( . )   |
| 13GCT83     | 0.03 ( 0.03)  | 0.00 ( . )     | 0.77 ( 0.49)  | 0.00 ( . )   |
| 280CT83     | 0.00( . )     | 0.00( . )      | 0.05 ( 0.05)  | 0.00 ( . )   |
| 29DCT83     | 0.00 ( . )    | 0.00( . )      | 0.07 ( 0.03)  | 0.00 ( . )   |
| UZDEC83     | 0.00( . )     | 0.00( . )      | 0.02 ( 0.02)  | 0.00 ( . )   |
|             |               |                |               |              |

COMMERCIAL CRUSTACEANS
SUMMARY OF TOWS AT STATION 4
MEAN OF 4 353 U OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

| DATE                | Callinectes  | Callinectes    | Cancer irror | Cancer irror |
|---------------------|--------------|----------------|--------------|--------------|
|                     | sp. Megalopa | sp. Zoea       | atus zoea    | atus Megalop |
| 22APK82             | 0.00 ( 0.00) | 0.00( . )      | 0.04 ( 0.04) | 0.00 ( . )   |
| 29APR82             | 0.00 ( . )   | 0.00( . )      | 7.50 ( 1.09) | 0.00 ( . )   |
| 24MAY82             | 0.00 ( . )   | 0.00( . )      | 0.04 ( 0.04) | 0.00 ( . )   |
| 30MAY82             | 0.00 ( . )   | 0.84 ( 0.31)   | 0.06 ( 0.06) | 0.00 ( . )   |
| 28 <i>N</i> U L B O | 0.00( . )    | 8.30 ( 2.47)   | 0.00( . )    | 0.00 ( . )   |
| 21JUN82             | 0.01 ( 0.01) | 1.78 ( 1.01)   | 0.00 ( . )   | 0.00 ( . )   |
| 1210182             | 0.00 ( . )   | 13.47 ( 3.62)  | 0.00 ( . )   | 0.00 ( . )   |
| 30JUL32             | 0.04 ( 0.04) | 30.37 ( 19.14) | 0.00 ( . )   | 0.00 ( . )   |
| U4AU582             | 0.23 ( 0.22) | 11.31 ( 6.46)  | 0.00 ( . )   | 0.00 ( . )   |
| 1840662             | 0.01 ( 0.01) | 0.50 ( 0.29)   | 0.00 ( . )   | 0.00 ( . )   |
| 282UA0c             | 0.00 ( . )   | 2.80 ( 1.42)   | 0.00 ( . )   | 0.00 ( . )   |
| 165EP82             | 0.00 ( . )   | 0.60 ( 0.50)   | 0.00( . )    | 0.00 ( . )   |
| 245EP82             | 0.00 ( . )   | 0.06 ( 0.06)   | 0.00 ( . )   | 0.00 ( . )   |
| J70CT82             | 0.02 ( 0.02) | 0.00( . )      | 0.37 ( 0.37) | 0.00 ( . )   |
| 15uCT82             | 0.00( . )    | 0.00( . )      | 0.02 ( 0.02) | 0.00 ( . )   |
| 290CT82             | 0.00 ( . )   | 0.00( . )      | 0.01 ( 0.01) | 0.00 ( . )   |
| 1100482             | 0.00( . )    | 0.04 ( 0.02)   | 0.00 ( . )   | 0.00 ( . )   |
| 100EC82             | 0.00 ( . )   | 0.00( . )      | 0.03 ( 0.02) | 0.00 ( . )   |
| 10MAR83             | 0.00 ( . )   | 0.00( . )      | 0.12 ( 0.12) | 0.00 ( . )   |
| 11APR83             | 0.00 ( . )   | 0.00( . )      | 0.16 ( 0.08) | 0.00 ( . )   |
| 27APR83             | 0.00 ( . )   | 0.00 ( . )     | 0.09 ( 0.06) | 0.00 ( . )   |
| L1MAY83             | 0.00 ( . )   | 0.00 ( . )     | 0.01 ( 0.01) | 0.00 ( . )   |
| JLEAY83             | 0.00( . )    | 0.00 ( . )     | 1.27 ( 0.44) | 0.00 ( . )   |
| 24JUN83             | 0.00 ( . )   | 0.72 ( 0.12)   | 0.00 ( . )   | 0.00 ( . )   |
| 131UL83             | 0.00( . )    | 16.52 ( 1.82)  | 0.00 ( . )   | 0.00 ( . )   |
| <b>68JUL9</b> 3     | 0.00( . )    | 15.18 ( 8.34)  | 0.00 ( . )   | 0.00 ( . )   |
| U9AUG83             | 0.00 ( . )   | 63.62 ( 1.70)  | 0.00 ( . )   | 0.00 ( . )   |
| 26AUG83             | 0.77 ( 0.55) | 7.96 ( 5.15)   | 0.00 ( . )   | 0.00 ( . )   |
| 12SEP83             | 0.00 ( . )   | 0.12 ( 0.07)   | 0.00 ( . )   | 0.00 ( . )   |
| U3UCT83             | 0.00( . )    | 0.00( . )      | 0.75 ( 0.67) | 0.00 ( . )   |
| 1366783             | 0.03 ( 0.03) | 0.00( . )      | 0.14 ( 0.05) | 0.00 ( . )   |
| 280CT83             | 0.00( . )    | 0.00 ( . )     | 0.03 ( 0.02) | 0.00 ( . )   |

COMMERCIAL CRUSTACEANS
SUMMARY OF TOWS AT STATION 5
MEAN OF 4 353 U OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

#### Cancer irror DATE Callinectes Callinectes Cancer irror sp. Megalopa sp. Zoea atus zoea atus Megalop 23MAY82 0.00 ( 0.03 ( 0.03) 0.22 ( 0.22) 0.00 ( 29MAY82 0.00 ( 0.02 ( 0.021 0.00 ( 0.00 ( 12JUL82 0.00 ( 0.91 ( 0.35) 0.00 ( 0.00 ( 0.01) 0.00 ( 30JUL82 0.02 ( 0.73 ( 0.331 0.00 ( ) 2.56 ( U6AUG82 0.04 ( 0.02) 1.50) 0.00 ( 0.00 ( 18AUG82 0.06 ( 0.021 0.14 ( 0.08) 0.00 ( 0.00 ( 0.40 ( 0.00 ( ) 31AUG82 0.23 ( 0.131 0.231 0.00 ( 175EP82 0.17 ( 0.061 0.10) 0.00 ( 0.00 ( 0.03) 23SEP82 0.07 ( 0.04) 0.00 ( . ) 0.03 ( 0.00 ( 0.01) 0.01 ( **466CT82** 0.02 ( 0.01) 0.00 ( 0.00 ( 14uCT82 0.00 ( 0.00 ( 0.01 ( 0.01) 0.00 ( • 28uCT82 0.00 ( 0.00 ( 0.16 ( 0.14) 0.00 ( 1 12NOV82 0.00 ( 0.01 ( 0.01) 0.00 ( 0.00 ( 0.00 ( 0.01 ( 0.00 ( £8JAN83 0.00 ( 0.01) 0.01) **U7FEB83** 0.00 ( 0.00 ( 0.03 ( 0.00 ( 11APR83 0.00 ( 0.00 ( 0.31 ( 0.15) 0.02 ( 0.021 29APR83 0.00 ( 0.01 ( 0.00 ( 0.01) 0.00 ( 26MAY83 0.00 ( 0.00 ( ) 0.07 ( 0.04) 0.00 ( **EBYANOE** 0.00 ( ) 0.02 ( 0.01) 0.00 ( 0.00 ( 21JUN83 0.00 ( 0.21 ( 0.21) 0.00 ( 0.00 ( 2.40 ( 12JUL83 0.00 ( 1.86) 0.00 ( } 0.00 ( 29JUL83 0.02 ( 0.02) 1.73 ( 0.621 0.00 ( 1 0.00 ( 12AUJ83 0.01 ( 0.01) 0.01 ( 0.01) 0.00 ( . ) 0.00 ( 25AUG83 0.25 ( 0.071 3.10 ( 1.72) 0.00 ( 0.00 ( 135EP83 0.20 ( 0.071 0.34 ( 0.12) 0.00 ( 0.00 ( 265EP83 0.04 ( 0.02) 0.28 ( 0.17) 0.00 ( 0.00 ( LOUCT83 0.02 ( 0.02) 0.00 ( 0.04 ( 0.04) 0.00 (

COMMERCIAL CRUSTACEANS
SUMMARY OF TOWS AT STATION 6
MEAN OF 4 353 U OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

| DATE     | Callinectes  | Callinectes  | Cancer irror | Cancer irror |
|----------|--------------|--------------|--------------|--------------|
|          | sp. Megalopa | sp. Zoea     | atus zoea    | atus Megalop |
| 29MAY82  | 0.00 ( . )   | 0.00 ( 0.00) | 0.00 ( . )   | 0.00 ( . )   |
| 11JUN82  | 0.00 ( . )   | 0.01 ( 0.01) | 0.00 ( . )   | 0.00 ( . )   |
| 22JUN82  | 0.00( . )    | 0.00 ( . )   | 0.06 ( 0.06) | 0.00 ( . )   |
| 12JUL82  | 0.00 ( . )   | 0.27 ( 0.10) | 0.00 ( . )   | 0.00 ( . )   |
| 31JUL82  | 0.02 ( 0.01) | 0.16 ( 0.07) | 0.00 ( . )   | 0.00 ( . )   |
| 06AUG82  | 0.00 ( . )   | 1.04 ( 0.49) | 0.00 ( . )   | 0.00 ( . )   |
| JIAUG82  | 0.27 ( 0.24) | 0.08 ( 0.08) | 0.00 ( . )   | 0.00 ( . )   |
| 20SEP82  | 0.10 ( 0.06) | 0.66 ( 0.38) | 0.00 ( . )   | 0.00 ( . )   |
| 23SEP82  | 0.00 ( . )   | 0.45 ( 0.44) | 0.00 ( . )   | 0.00 ( . )   |
| C60CT82  | 0.02 ( 0.01) | 0.00 ( . )   | 0.00 ( . )   | 0.00 ( . )   |
| 1400182  | 0.01 ( 0.01) | 0.00( . )    | 0.00 ( . )   | 0.00( . )    |
| 12NGV82  | 0.00 ( . )   | 0.00( . )    | 0.02 ( 0.01) | 0.00 ( . )   |
| J6APR83  | 0.00 ( . )   | 0.00 ( . )   | 0.08 ( 0.08) | 0.00 ( . )   |
| 20MAY83  | 0.00 ( . )   | 0.01 ( 0.01) | 0.00 ( . )   | 0.00 ( . )   |
| 29JUL83  | 0.00 ( . )   | 0.44 ( 0.31) | 0.00 ( . )   | 0.00( . )    |
| 12AUG83  | 0.00 ( . )   | 0.68 ( 0.39) | 0.00 ( . )   | 0.00 ( . )   |
| 25AUG83  | 0.12 ( 0.06) | 0.63 ( 0.63) | 0.92 ( 0.39) | 0.00 ( . )   |
| 13SEP83  | 1.09 ( 0.32) | 0.00 ( . )   | 0.06 ( 0.04) | 0.00 ( . )   |
| 265EP83  | 0.04 ( 0.04) | 0.06 ( 0.03) | 0.00 ( . )   | 0.00 ( . )   |
| 140CT83  | 0.00 ( . )   | 0.03 ( 0.02) | 0.00 ( . )   | 0.00 ( . )   |
| 260 CT83 | 0.00 ( . )   | 0.00 ( . )   | 0.05 ( 0.03) | 0.00 ( . )   |

## COMMERCIAL CRUSTACEANS SUMMARY OF TOWS AT STATION 7 MEAN OF 4 353 U OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

| DATE     | Callinectes  | Callinectes  | Cancer irror | Cancer irror |
|----------|--------------|--------------|--------------|--------------|
|          | sp. Megalopa | sp. Zoea     | atus zoea    | atus Megalop |
| 29APR82  | 0.00 ( . )   | 0.00 ( . )   | 0.06 ( 0.05) | 0.00 ( . )   |
| 29MAY82  | 0.00 ( . )   | 0.00( . )    | 0.01 ( 0.01) | 0.00 ( . )   |
| 284UL22  | 0.00 ( . )   | 0.24 ( 0.24) | 0.00 ( . )   | 0.00 ( . )   |
| 13JUL82  | 0.00 ( . )   | 0.62 ( 0.33) | 0.00( . )    | 0.00 ( . )   |
| 31JUL82  | 0.00 ( . )   | 0.37 ( 0.18) | 0.00( . )    | 0.00( . )    |
| 06AUG82  | 0.00 ( . )   | 1.97 ( 0.23) | 0.00 ( . )   | 0.00 ( . )   |
| 19AUG82  | 0.01 ( 0.01) | 1.45 ( 0.79) | 0.00 ( . )   | 0.00 ( . )   |
| 31AUG82  | 0.03 ( 0.02) | 0.26 ( 0.16) | 0.00 ( . )   | 0.00 ( . )   |
| 17SEP82  | 0.00 ( . )   | 0.21 ( 0.07) | 0.00 ( . )   | 0.00 ( . )   |
| 23SEP82  | 0.00 ( . )   | 0.03 ( 0.02) | 0.00 ( . )   | 0.00 ( . )   |
| 58T21000 | 0.00 ( . )   | 0.00 ( . )   | 0.07 ( 0.07) | 0.00 ( . )   |
| 28LCT82  | 0.00 ( . )   | 0.00 ( . )   | 0.01 ( 0.01) | 0.00 ( . )   |
| £8XAM8u  | 0.00 ( . )   | 0.00 ( . )   | 0.01 ( 0.01) | 0.00 ( . )   |
| U6APR83  | 0.00 ( . )   | 0.00 ( . )   | 0.02 ( 0.02) | 0.00 ( . )   |
| 26MAY83  | 0.00 ( . )   | 0.00 ( . )   | 0.02 ( 0.02) | 0.00 ( . )   |
| 12JUL83  | 0.00 ( . )   | 0.31 ( 0.22) | 0.00 ( . )   | 0.00 ( . )   |
| 29JUL83  | 0.00 ( . )   | 3.00 ( 0.63) | 0.00 ( . )   | 0.00 ( . )   |
| 12AUG83  | 0.00 ( . )   | 0.52 ( 0.32) | 0.00 ( . )   | 0.00 ( . )   |
| 25AUG83  | 0.00 ( . )   | 0.00( . )    | 0.66 ( 0.19) | 0.00 ( . )   |
| 13SEP83  | 0.03 ( 0.03) | 0.84 ( 0.18) | 0.00 ( . )   | 0.00 ( . )   |
| 26SEP83  | 0.00 ( . )   | 0.14 ( 0.09) | 0.00 ( . )   | 0.00 ( . )   |
| 1466183  | 0.00 ( . )   | 0.07 ( 0.07) | 0.00 ( . )   | 0.00 ( . )   |

## COMMERCIAL CRUSTACEANS SUMMARY OF TOWS AT STATION 8 MEAN OF 4 353 U OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

| DATE            | Callinectes  | Callinectes    | Cancer irror | Cancer irror |
|-----------------|--------------|----------------|--------------|--------------|
|                 | sp. Megalopa | sp. Zoea       | atus zoea    | atus Megalop |
| 17MAR82         | 0.00 ( . )   | 0.00 ( . )     | 0.01 ( 0.01) | 0.00 ( . )   |
| 30MAK82         | 0.00 ( . )   | 0.00 ( . )     | 0.05 ( 0.05) | 0.00 ( . )   |
| 22APR82         | 0.00 ( . )   | 0.00( . )      | 0.70 ( 0.35) | 0.00 ( . )   |
| 19MAY82         | 0.00 ( . )   | 0.00( . )      | 0.02 ( 0.02) | 0.00 ( . )   |
| <b>SBAULO</b> E | 0.00 ( . )   | 13.76 ( 9.90)  | 0.11 ( 0.11) | 0.00 ( . )   |
| 22JUL82         | 0.28 ( 0.04) | 26.44 ( 6.20)  | 0.00 ( . )   | 0.00 ( . )   |
| 12AUG82         | 0.12 ( 0.05) | 12.98 ( 6.93)  | 0.00 ( . )   | 0.00 ( . )   |
| U9\$ EP 82      | 0.37 ( 0.05) | 3.27 ( 1.00)   | 0.00 ( . )   | 0.00 ( . )   |
| 20GCT82         | 0.01 ( 0.01) | 0.00( . )      | 0.00 ( . )   | 0.00 ( . )   |
| 14NGV82         | 0.02 ( 0.02) | 0.00 { . }     | 0.00 ( . )   | 0.00 ( . )   |
| ESMALO2         | 0.00 ( . )   | 0.00( . )      | 0.00 ( . )   | 0.01 ( 0.01) |
| LBARMUC         | 0.00( . )    | 0.00( . )      | 0.49 ( 0.32) | 0.00 ( . )   |
| 21APR83         | 0.00 ( . )   | 0.00( . )      | 0.28 ( 0.04) | 0.00 ( . )   |
| 19may 83        | 0.00 ( . )   | 0.00 ( . )     | 0.03 ( 0.02) | 0.00 ( . )   |
| 1610/83         | 0.00 ( . )   | 11.57 ( 8.09)  | 0.04 ( 0.04) | 0.00 ( . )   |
| 0810183         | 0.00( . )    | 74.90 ( 21.38) | 0.00 ( . )   | 0.00 ( . )   |
| 11AUG83         | 0.00 ( . )   | 133.48 ( 8.24) | 0.00 ( . )   | 0.00 ( . )   |
| 20SEP83         | 0.05 ( 0.02) | 1.00 ( 0.20)   | 0.00 ( . )   | 0.00 ( . )   |
| UZNQV83         | 0.00 ( . )   | 0.00 ( . )     | 0.34 ( 0.16) | 0.00 ( . )   |
| 10DEC83         | 0.00 ( . )   | 0.00 ( . )     | 0.22 ( 0.14) | 0.00 ( . )   |

•••••••••••••••••

**,** 

\_

•

COMMERCIAL CRUSTACEANS
SUMMARY OF TOWS AT STATION 8
MEAN OF 4 353 U NEUSTON TOWS IN NOS PER METER CUBED (STO ERROR)

DATE Callinectes Callinectes Cancer Irror Cancer irror sp. Megalopa sp. Zoea atus zoea atus Megalop 0.00 ( 17MAK82 0.00 ( 0.00 ( 0.02 ( 0.02) ZZAPR8Z 0.00 ( 0.00 ( 0.03 ( 0.02) 0.00 ( 19MAY82 0.00 ( 0.00 ( 0.01 ( 0.01) 0.00 ( 30JUN82 0.00 ( 29.77 ( 14.29) 0.00 ( • ) 0.00 ( 1.57 ( 0.75) 22JUL82 3.51 ( 1.61) 0.00 ( 0.00 ( 12AUG82 0.14 ( 0.05) 14.03 [ 2.64) 0.00 ( 0.00 ( 095EP82 0.24 ( 0.56 ( 0.12) 0.00 ( 0.00 ( 0.11) 206 CT82 0.011 0.00 ( 0.00 ( 0.01 ( 0.00 ( . 1 1800487 0.00 ( 0.00 ( 0.02 ( 0.02) 0.00 ( 30NCV82 0.021 0.00 ( 0.031 0.04 ( 0.02 ( 0.10 ( J9FE883 0.00 ( • } 0.00 ( 0.00 ( 0.00) 0.00 ( LBAAROL 0.00 ( 0.00 0.04) 0.00 ( 0.10 ( 0.01) LIAPK83 0.00 ( 0.00 ( 0.00 1 ) ) 0.02 ( L9MAY83 0.02 ( 0.01) 0.00 ( 0.09 ( 0.04) 0.00 ( • 1 . 1 -6JUN83 0.00 ( 0.68 ( 0.341 0.00 ( 0.00 ( **U8JUL83** 0.00 ( 19.26 ( 5.311 0.00 ( 0.00 ( 11AUG83 0.01 ( 0.01) 1.09 ( 0.821 0.64 ( 0.461 0.00 ( 0.01 ( 0.00 ( 20\$EP83 0.01) 0.00 ( 0.00 ( . } . ) U2N0V83 0.00 ( 0.00 ( 0.00 ( 0.001 0.00 ( ) 0.00 ( 23NDV83 0.00 ( 0.00 ( 0.001 ) 0.00 ( . 1 100EC83 0.00 ( 0.00 ( 0.01 ( 0.01) 0.00 (

## COMMERCIAL CRUSTACEANS SUMMARY OF TOWS AT STATION 9 MEAN UF 4 353 U OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR)

| *******   | ***********  | *************   | *******      | ************ |
|-----------|--------------|-----------------|--------------|--------------|
| DATE      | Callinectes  | Callinectes     | Cancer irror | Cancer irror |
|           | sp. Megalopa | sp. Zoea        | atus zoea    | atus Megalop |
| 19MAY82   | 0.00 ( . )   | 0.00 ( . )      | 0.07 ( 0.07) | 0.00 ( . )   |
| 30JUN82   | 0.00 ( . )   | 3.11 ( 0.36)    | 0.00 ( . )   | 0.00( . )    |
| 22 JUL 82 | 0.00( . )    | 317.43 (122.71) | 0.07 ( 0.07) | 0.00 ( . )   |
| 12AUG82   | 0.04 ( 0.04) | 110.15 ( 16.60) | 0.00 ( . )   | 0.00 ( . )   |
| 09SEP82   | 0.19 ( 0.09) | 0.18 ( 0.18)    | 0.23 ( 0.11) | 0.00 ( . )   |
| 200CT82   | 0.00( . )    | 0.00( . )       | 0.25 ( 0.12) | 0.00 ( . )   |
| 18N0782   | 0.00 ( . )   | 0.00( . )       | 0.01 ( 0.01) | 0.00 ( . )   |
| 24NOV82   | 0.00 ( . )   | 0.00 ( . )      | 0.02 ( 0.01) | 0.01 ( 0.01) |
| 30NGV82   | 0.00 ( . )   | 0.00 ( . )      | 0.01 ( 0.01) | 0.00 ( . )   |
| U9FEB83   | 0.00 ( . )   | 0.00 ( . )      | 0.03 ( 0.02) | 0.00( .)     |
| 21FE383   | 0.00 ( . )   | 0.00 ( . )      | 0.13 ( 0.05) | 0.00 ( . )   |
| FBYAMDE   | 0.00 ( . )   | 0.00 ( . )      | 1.96 ( 0.28) | 0.00 ( . )   |
| 21APR83   | 0.00 ( . )   | 0.00 ( . )      | 0.08 ( 0.07) | 0.00 ( . )   |
| 27APR83   | 0.00 ( . )   | 0.00 ( . )      | 0.57 ( 0.16) | 0.00 ( . )   |
| 19MAY83   | 0.00 ( . )   | 0.06 ( 0.03)    | 0.00 ( . )   | 0.00 ( . )   |
| EBNUL01   | 0.00 ( . )   | 2.81 ( 1.28)    | 0.12 ( 0.12) | 0.00( . )    |
| 081NF83   | 0.00 ( . )   | 212.65 ( 58.19) | 0.00 ( . )   | 0.00 ( . )   |
| 28JUL83   | 0.00 ( . )   | 75.07 ( 26.20)  | 0.09 ( 0.09) | 0.00 ( . )   |
| 11AUG83   | 0.03 ( 0.01) | 273.04 ( 63.21) | 0.00 ( . )   | 0.00( . )    |
| 26AUG83   | 0.90 ( 0.59) | 16.22 ( 3.21)   | 0.00 ( . )   | 0.00 ( . )   |
| 205EP83   | 0.00 ( . )   | 5.09 ( 1.19)    | 0.26 ( 0.26) | 0.00 ( . )   |
| 03UCT83   | 0.04 ( 0.04) | 0.05 ( 0.03)    | 0.00 ( . )   | 0.00( . )    |
| U2N0V83   | 0.00 ( . )   | 0.00( . )       | 0.07 ( 0.04) | 0.02 ( . )   |
| 1800483   | 0.00 ( . )   | 0.00( . )       | 0.03 ( 0.02) | 0.00 ( . )   |
| 23NOV83   | 0.00 ( . )   | 0.00 ( . )      | 0.00 ( . )   | 0.04 ( 0.03) |
| TOPEC83   | 0.00 ( . )   | 0.02 ( 0.02)    | 0.00 ( . )   | 0.00 ( . )   |

MEAN OF 4 353 U NEUSTON TOWS IN NOS PER METER CUBED (STD ERROR) SUMMARY OF TOWS AT STATION 9 COMMERCIAL CRUSTACEANS

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| DATE      | Calline<br>sp. Meg | sctes<br>Jalopa | Callinectes<br>sp. Zoea | Cancer irror<br>atus zoea | Cancer Irror<br>atus Megalop |
|-----------|--------------------|-----------------|-------------------------|---------------------------|------------------------------|
| 30M AR 82 | 0.00               | •               | 0.00 (                  | _                         | 0.00                         |
| 19MAY82   | 00.0               | •               | 0.00 (                  | 0.02 ( 0.00)              | 0.00                         |
| 30JUN82   | 00.0               | •               | _                       | 0.00                      | 0.00                         |
| 22JUL82   | 2.47 (             | 1.94)           | 267.81 ( 93.76)         | 0.00                      | 0.00                         |
| 12AUG82   | 0.03 (             | 0.031           | _                       | 0.00                      | • 00.0                       |
| 095EP82   | 0.98               | 0.311           | _                       | 0.00                      | 0.00                         |
| 20UCT 82  | 0.07 (             | 0.03)           | 0.00 (                  | 0.09 ( 0.03)              | 0.00                         |
| 30M AR 83 | 00.0               | •               | 0.00 (                  | _                         | 0.00                         |
| 21APR83   | 00.0               | •               | 0.00                    | 0.22 ( 0.06)              | 0.00                         |
| L9MAY83   | 0.01               | 0.01)           | 0.00                    | _                         |                              |
| 16JUN83   | 00.0               | 00.00           | 11.12 ( 0.99)           | 0.00.0                    | 0.00                         |
| 08JUL83   | 00.0               | •               | 400.03 (178.32)         | 0.00                      | . , 00.0                     |
| 11AUG83   | 0.46               | 0.28)           | 8.63 ( 3.19)            | 0.00                      | 0.00                         |
| 205EP83   | 00.0               | •               | ( • ) 00°0              | 0.25 ( 0.15)              | 0.00                         |
| 02NDV83   | 0.00               | •               | (00.0 ) 00.0            | 0.00                      | • 00.0                       |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

MEAN OF 4 353 U OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR) SUMMARY OF TOWS AT STATION 10 COMMERCIAL CRUSTACEANS

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

CONTRACTOR STREET

| DATE       | Caliinec<br>sp. Mega | ectes<br>galopa |   | Callinectes<br>sp. Zoea | inec<br>Zoea | s<br>e | Cancer<br>atus z | ancer irror<br>tus zoea |          | Cancer<br>atus Me | Te g | trror<br>galop |   |
|------------|----------------------|-----------------|---|-------------------------|--------------|--------|------------------|-------------------------|----------|-------------------|------|----------------|---|
| 17MAR82    | 00.0                 | •               | _ | 00.00                   |              | •      | 00.00            | 00.00                   | =        | 0.00              | _    | •              | _ |
| 22APR82    | 00.0                 | •               | _ | 00.0                    |              | -      | 0.99             | 0.31)                   | ~        | 0.00              | J    | •              | _ |
| 19MAY82    | 00.0                 | •               | _ | 00.0                    |              | •      | 1.01 (           | 0.20                    | =        | 00.0              | _    | •              | - |
| 30 J UN 82 | 00.0                 | •               | _ | 14.96                   |              | 5.711  | 0.05 (           | 0.05                    | =        | 00.0              | _    | •              | _ |
| 26JAN83    | 00.0                 | •               | _ | 00.0                    |              | -      | 0.09             | 0.04                    | ~        | 00.00             | _    | •              | _ |
| 09FEB83    | 00.0                 | •               | _ | 00.0                    |              | ~<br>• | 0.11 (           | 0.05                    | =        | 0.00              | _    | •              | _ |
| 30MAR83    | 00.0                 | •               | _ | 00.0                    |              | •      | 0.18 (           | 0.12                    | -<br>-   | 00.00             | _    | •              | _ |
| 21APR83    | 00.0                 | •               | _ | 00.0                    | _            | -      | 8.72 (           | 1.97                    |          | 00.0              | _    | •              | _ |
| 19M AY 83  | 00.0                 | •               | - | 00.0                    |              | -      | 0.93 (           | 0.52                    | <b>a</b> | 00.0              | _    | •              | _ |
| 16JUN83    | 00.0                 | •               | _ | 54.18                   | 9            | 1.951  | 0.05             | 0.05                    | <b>.</b> | 00.0              | _    | •              | _ |
| 08JUL83    | 00.0                 | •               | _ | 86.32                   | 7            | 2.00)  | 00.0             | •                       | _        | 00.0              | J    | •              | _ |
| 11AUG83    | 00.0                 | •               | _ | 64.32                   | 7            | 28.581 | 00.0             | •                       | ~        | 0.00              | _    | •              | _ |
| 20SEP83    | 00.0                 | •               | _ | 0.04                    | _            | 0.04)  | 00.0             | •                       | _        | 00.0              | _    | •              | _ |
| 11DEC83    | 00.0                 | •               | _ | 00.0                    |              | -      | 0.03 (           | 0.031                   | =        | 0.00              | _    | •              | _ |
|            |                      |                 |   |                         |              |        |                  |                         |          |                   |      |                |   |

4 353 U NEUSTUN TOWS IN NOS PER METER CUBED (STD ERROR) SUMMARY OF TOWS AT STATION 10 COMMERCIAL CRUSTACEANS MEAN OF

カンショー こくさいじょう こうこうじゅう こうくつこくご

| ****      | ***                  |       | *************************************** | ****                      | ****                         | * |
|-----------|----------------------|-------|-----------------------------------------|---------------------------|------------------------------|---|
| DATE      | Callinec<br>sp. Mega | sctes | Callinectes<br>sp. Zoea                 | Cancer Irror<br>atus zoea | Cancer Irror<br>atus Megalop |   |
| 22APR82   | 9                    | •     | 0.00                                    | 34 (                      | •0                           | _ |
| 19MAY82   |                      | •     | 0                                       |                           | • 0                          | _ |
| 30JUN82   | 00.0                 | •     | 1 4.7                                   | 0.00                      | 0.00 (                       | _ |
| 22 JUL 82 | 0.08 (               | 0.07) | 7.50 ( 3.91)                            | 0.00                      | 0.00 (                       | _ |
| 12AUG82   | 0.08                 | 0.08) | 88.21 ( 28.69)                          | 0.00                      | 0.00 (                       | _ |
| 09SEP82   | 00.0                 | •     | ( 3.3                                   | 04 (                      | 0.00 (                       | _ |
| 200CT82   | 0.01 (               | 0.01) | 0.00 (                                  | 02 ( 0.                   | _                            | _ |
| 18NOV82   | 00.0                 | •     | 0.00                                    | 00 ( 0.                   | •                            | _ |
| 30NDV82   | 0.01 (               | 0.01) | 0.00 (                                  | 20 (                      | •                            | _ |
| 30MAR83   | 00.0                 | •     | 0.00 (                                  | 33 ( 0.                   | •                            | _ |
| 21APR83   | 00.0                 | •     | •                                       | 01 ( 0.                   | •0                           | _ |
| 19MAY83   | 0.01                 | 0.01) | 0                                       | 11 ( 0.                   | •0                           | _ |
| 16JUN83   | 00.0                 | -     | 3.31 ( 2.13)                            | • 00.0                    | 0.00 (                       | _ |
| 08JUL83   | 0                    | •     | .82 (                                   | 0.00                      | ( • ) 00.00 (                | _ |
| 11AUG83   | 0                    | •     | 15.47 ( 5.39)                           | . , 00.0                  | 0.00 (                       | _ |
| 20SEP83   | 0                    | -     | ) 50.                                   | • 00.0                    | 0.00 (                       | _ |
| 02NOV83   | •                    | •     | 0.01 ( 0.01)                            | 0.00                      | 0                            | _ |
| 19N0V83   | 00.0                 | •     | 0.00                                    | 0.06 ( 0.02)              | 0.00 (                       | _ |
|           |                      |       |                                         |                           |                              |   |

MEAN OF 4 353 U OBLIQUE TOWS IN NOS PER METER CUBED (STD ERROR) COMMERCIAL CRUSTACEANS SUMMARY OF TOWS AT STATION DS

THE STATE OF THE PARTY OF THE P

Contractor Contractors ASSESSED

| Sp. Meg | ectes<br>galopa | Callinectes sp. Zoea | Cancer irror<br>atus zoea | irror<br>oea | Cance | r irror<br>Megalop |
|---------|-----------------|----------------------|---------------------------|--------------|-------|--------------------|
| 00      | -               | ) 00-0               | _                         | 0-03)        | 00.0  | •                  |
| 000     |                 |                      | _                         | 179-931      | 00.00 |                    |
| . 00    |                 | 0 1 60               | ) 99*0                    | 0.051        | 000   |                    |
| •       | •               | _                    | 00.0                      | •            | 00.00 | •                  |
| •       | 0.08)           | 7 ) 62.              | 0                         | •            | 00.00 | •                  |
| •       | 0.18)           | .32 (176             | .0                        | •            | 00.00 | •                  |
| •       | 0.11)           |                      | 00.0                      | •            | 00.00 | •                  |
| •       | 0.051           | 0.00                 | 0.14 (                    | 0.08)        | 00.00 | •                  |
|         | •               |                      | ) 19.0 (                  | 0.34)        | 0.04  | 0.04               |
| 0.00    | •               | 0.0 1 40.            | 1 80.08 (                 | 0.05)        | 00.00 | •                  |
| •       | •               |                      | ) 0.72 (                  | 0.16)        | 00.00 | •                  |
| •       | •               | • 00.0               | 11.75 (                   | 2.27)        | 00.00 | •                  |
| •       | •               |                      | 136.21 (                  | 16.13)       | 00.00 | •                  |
| •       | 0.02)           | •                    | 7.88 (                    | 2.33)        | 00.00 | •                  |
| •       | 0.01)           | ) 60.                | 0.10 (                    | 0.06)        | 00.00 | •                  |
| •       | •               | _                    |                           | •            | 00.00 | •                  |
| •       | •               | .84 (                | 0.0                       | -            | 00.00 | •                  |
| •       | 0.26)           | 71.52 ( 2.47         | 00.00                     | •            | 00.00 | •                  |
| •       | -               | 0.00                 | ) 20.0                    | 0.02)        | 00.00 | •                  |

DS SUMMARY OF TOWS AT STATION CRUSTACEANS COMMERCIAL

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| DATE     | Cailine | ပ      | Calline | ctes  | Cancer | Irror | ance    | Irror |
|----------|---------|--------|---------|-------|--------|-------|---------|-------|
|          | p. Me   | galopa | sp. 20e | æ     | tus z  | oea   | atus Me | galop |
| IA       | 00.00   | •      | 0.00    | -     | 0.45 ( | 0.16) | 0.00    | •     |
| 8MAY8    | 0       | •      | 0       | -     | 0      | 0.05) | 0.00    | 00.0  |
| 29JUN82  | 0.00    | 0      | 19.23 ( | 0     | 00.0   | 00.00 | 00.0    | 00.0  |
| 21JUL82  | 8 · 9   | 49.151 |         | m.    | 00.0   | •     | 0.01    | 0.01  |
| 11AUG82  | .7      | 4      | •       | ~     | 00.0   | •     | 00.0    | 00.0  |
| U8SEP82  | 2.6     | 6.     | •       | 0     | 00.0   | -     | 00.00   | •     |
| 190CT82  |         | 0      | •       | •     | 1.54 ( | 0.59  | 00.00   | •     |
| 17N0V82  | 0.01    | 0      | 0.01    | 0.01) | 0.09 ( | 0.07) | 1.11 (  | 90.0  |
| 30NDV 82 | 0       | •      | •       | •     | 0.22 ( | 0.09) | 00.0    | •     |
| 08FEB83  | 0       | •      | •       | •     | 0.19 ( | 0.04) | 00.0    | •     |
| 29MAR83  | 0       | •      | •       | •     | 1.35 ( | 0.80) | 00.0    | •     |
| 23APR83  | 0       | •      | •       | -     | 0.02 ( | 0.01) | 00.0    | 0.00  |
| 18MAY83  | 0       | •      | 0.00    | -     | 0.23 ( | 0.051 | 00.0    | •     |
| 14JUN83  | 0       | 0.01)  | •       | _     | 0.01 ( | 0.01) | 00.0    | •     |
| 07JUL83  | 0       | 00.0   | _       | 7     | 0      | -     | 0       | •     |
| 10AUG83  | 0       | 00.0   | _       | _     | 0      | •     | 00.0    | •     |
| 9        | 3.69 (  | 0.621  | 3.53 (  | 5     | 00.0   | -     | 0       | •     |
| 100FCR3  | 0       | -      | •       | -     |        |       |         | 1     |

86 

and an income source and expense.