Tutorial 1 (week 1)

Exercise 0.2

5. If
$$f(x) = 2x^3 - x$$
, find $f(-1)$, $f(0)$, $f(x^2)$, $f(\sqrt{x})$, and $f(\frac{1}{x})$.

7. If
$$f(x) = \begin{cases} x^2 + 1 & \text{if } x \le 0 \\ \sqrt{x} & \text{if } x > 0 \end{cases}$$

find f(-2), f(0), and f(1).

In Exercise 15-26, find the domain of the function.

21.
$$f(x) = \sqrt{x-2} + \sqrt{4-x}$$

23.
$$f(x) = \frac{\sqrt{x+2} + \sqrt{2-x}}{x^3 - x}$$

28. Refer to the graph of the function f in the following figure,

- a. Find f(7).
- b. Find the values of x corresponding to the point(s) on the graph of f located at a heigh of 5 units above the x-axis.
- c. Find the point on the x-axis at which the graph of f crosses it. What is f(x) at this point?
- d. Find the domain and range of f.

In Exercise 31-38, find the domain and sketch the graph of the function. What is its range?

37.
$$f(x) = \begin{cases} -x+1 & \text{if } x \le 1 \\ x^2 - 1 & \text{if } x > 1 \end{cases}$$

Exercise 0.4

In Exercise 5-8, find f \circ *g and g* \circ *f, and give their domains.*

5.
$$f(x) = x^2$$
, $g(x) = 2x + 3$

5.
$$f(x) = x^2$$
, $g(x) = 2x + 3$ 7. $f(x) = \frac{1}{x}$, $g(x) = \frac{x+1}{x-1}$

11. Let
$$f(x) = \begin{cases} x+1 & \text{if } x < 0 \\ x-1 & \text{if } x \ge 0 \end{cases}$$

and let g $(x) = x^2$. Find

- a. g o f, and sketch its graph
- b. f o g, and sketch its graph

In Exercise 17-22, find function f and g such that h = $g \circ f$. (Note: The answer is not unique.)

17.
$$h(x) = (3x^2 + 4)^{3/2}$$

19.
$$h(x) = \frac{1}{\sqrt{x^2 - 4}}$$

25. Use the following table to evaluate each composite function.

a.
$$(f \circ g)(1)$$
 b. $(g \circ f)(2)$

c.
$$f(g(2))$$
 d. $g(f(0))$

e.
$$f(f(2))$$
 f. $g(g(1))$

x	0	1	2	3	4	5
f(x)	1	$\sqrt{2}$	2	4	3	1
g(x)	2	3	5	6	7	9