$\mathbf{Midterm}~\#2$

Name:		
StudentID:		
 Major:		
Time: 60 minutes		

Time: 60 minutes.

Date: Thursday, 17th March 2011.

Justify your solutions and show all your steps. Write down the formulae used.

Number	1	2	3	4	5	\sum
Possible Points	10	7	8	5	10	40
Points						

- 1. Let $f(x) = x^3 3x$. Let G_f be its graph. The goal is to sketch the graph. Hint: $\sqrt{3} \sim 1.7$
 - (a) Find the first three derivatives of the function.
 - (b) Find the y-intercepts and the x-intercepte (zeros).
 - (c) Find the zeros of the first derivative.
 - (d) Use this to find critical points. Determine if they are maxima or minima or neither.
 - (e) Determine where the graph is increasing and where decreasing.
 - (f) Find the zeros of the second derivative.
 - (g) Use this to find possible inflection points. Use the third derivative to make sure you really found an inflection point.
 - (h) Determine by using the first derivative if it's a saddle point.
 - (i) Use your information to graph the function.

Continued.

2. Find the horizontal and vertical asymptotes for

$$f(x) = \frac{2x^2 - 2x - 4}{x^2 - 4x + 3}.$$

3. Find the derivative of

$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

4. Find the slope of the tangent at (2,2) to the curve

$$x^2 - 4x + 2y^2 - 4 = 0.$$

5. The area of a circle is changing at a rate of $1cm^2/sec$. At what rate is its radius changing when the radius is 2 cm? Hint: The area of a circle is given by $r^2\pi$.