MATH 444 Problem Set Week 1

- 1. Prove the statement: The composition of any two isometries is an isometry.
- 2. Determine if each of the following map $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a isometry or not, justify your answer. Can you recognize each map as a translation, reflection, rotation, dilation, or any composition of two or more of these basic transformations?

(a)
$$(x, y) \mapsto (-x - 1, y + 2)$$

(b)
$$(x,y) \mapsto (-y,x)$$

(c)
$$(x,y) \mapsto (x-y,x+y)$$

(d)
$$(x,y) \mapsto \left(\frac{x-y}{\sqrt{2}}, \frac{x+y}{\sqrt{2}}\right)$$

(e)
$$(x, y) \mapsto (x - y, y - x)$$

(f)
$$(x,y) \mapsto (x^2, xy)$$

3. Prove the general matrix formula for the reflection about the line L_{θ} that makes an angle θ with the x-axis at O:

$$\bar{r}_{L_{\theta}} \text{ or } \bar{r}_{\theta} : \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

(Hint: express $\bar{r}_{L_{\theta}}$ as a conjugation.)

- 4. Let P=(1,2), and ℓ is the line $y=\sqrt{3}x+4$, find an explicit formula for the following isometries, you may write it in terms of vectors and matrices.
 - (a) The rotation $R_{\pi/6,P}$.
 - (b) The reflection \bar{r}_{ℓ} .

5.