Statistics I

Homework 2

학 과	응용수학과
교수님	김경수 교수님
학 번	2014110374
이 름	정상만
제출일	2018. 6. 18.

13.5 Problem)

- a) : 잡은 오타의 수 라 하면, C Bin(10,0.7) M : 놓친 오타의 수 라 하면, M Bin(10,0.3)
- b) $M=3)= {10 \atop 3} 0.3) (0.7)^7 = (120)(0.027)(0.08235) = 0.2668.$ 3 이상인 경우에 이항분포표를 이용하면 P(M=3)=0.6172.

13.11 Problem)

- a) 이항분포의 기댓값(평균) 은 $\mu = np = (1520)(0.31) = 471.2$ 표준편차는 $\sigma = -np(1-p) = \sqrt{1520(0.31)(1-0.31)} = 18.0313$
- b) np = 471.2 10 이고 n(1-p) = (1520)(0.69) = 1048.8 10 이므로, n은 정규분포로 근사하기에 충분한 크기를 갖는다. 대학에선 475명을 모집하므로 모집 수가 이보다 클 때의 이항확률은 다음과 같다. $P(X = 476) = P Z = \frac{476 471.2}{18.0313} = P(Z = 0.27) = 0.3936.$
- c) 정확한 확률은 0.4045이므로, 정규근사는 0.0109 정도 낮다.

14.1 Problem)

a)
$$\frac{\sigma}{\sqrt{n}} = \frac{34}{\sqrt{51000}} = 0.1506$$

- b) 표본평균 x에 대하여 95%는 μ 의 $2\sigma = 2(0.1506) = 0.3012$ 내에 위치한다.
- c) 95% 신뢰구간은 153 ± 0.3012 혹은 (152.7, 153.3) 이다.

14.8 Problem)

a) 신뢰수준
$$z^*$$
값 90% 95% 99% 1.645 1.960 2.576

위의 신뢰수준을 참조하여 세 개 신뢰구간을 구한다. $\overline{x} = 26.8, \ \sigma = 7.5 \ n = 654 \ \ \ \ \,$ 전 전 전 문 포하는 모집단을 가지는 표본분포이므로 90% 신뢰구간은 $26.8 \pm (1.645) \frac{7.5}{\sqrt{654}} = 26.8 \pm 0.4824$ 95% 신뢰구간은 $26.8 \pm (1.960) \frac{7.5}{\sqrt{654}} = 26.8 \pm 0.5748$ 99% 신뢰구간은 $26.8 \pm (2.576) \frac{7.5}{\sqrt{654}} = 26.8 \pm 0.7555$

b) a) 에서 구한 신뢰구간의 오차한계는 아래와 같다.

신뢰수준 z^* 에 따른 오차한계

90%	95%	99%
0.4824	0.5748	0.7555

표본의 크기와 모표준편차가 동일하다면 오직 * 값에 영향을 받고, z^* 값이 커지면 그만큼 오차한계가 점점 증가하게 된다.

14.9 Problem)

- a) 14.8 Problem에서 100명의 단순 무작위 표본을 가진다고 하면 95% 신뢰구간에 대한 오차한계는 1.960) $\frac{7.5}{100} = 1.4700$ 이다.
- b) a) 와 마찬가지로, n=400, n=1600인 경우 95% 신뢰구간에 대한 오차한계를 구하면 $n=400 \qquad 1.96 \frac{7.5}{\sqrt{400}} = 0.7350, \; n=1600 \qquad 1.96 \frac{7.5}{\sqrt{1600}} = 0.3675 \;\; \text{이다}.$

c)

95% 신뢰수준에서 n에 따른 오차한계

100	400	1600
1.4700	0.7350	0.3675

동일한 신뢰수준과 모표준편차를 가질 때 표본크기가 점점 커지면 오차한계는 감소한다.

15.9 Problem)

- a) 뽑은 표본의 크기가 18이므로 모표준편차가 60일 때 모집단이 정규분포를 따르고, $\mu=0$ 이라 가정했으므로 표본평균의 분포는 $0, \frac{\sigma}{\sqrt{18}} = N(0,14.1421)$ 이다.
- b) 양측 검정이므로 P값은 P = 2P(x 17) = 2P Z $17 0 \ 14.1421$ = 0.2302이다.

15.15 Problem)

: 나쁜 소식을 접한 고객들이 주는 팁의 평균 백분율이라 가정하자.

가설은 : =20 대 H_1 : $\mu < 20$ 라 하자.

x의 표준편차는 $\frac{2}{20}=0.4472$ 이므로, 따라서 검정 통계량은 $z=\frac{18.19-20}{0.4472}=-4.05$.

가설 H_1 에 의하면 단측검정이므로, P값은 P(Z -4.05) 0이다.

P값이 거의 0에 가까우므로, H_0 을 기각, 따라서 나쁜 소식을 접했을 때 팁의 평균백분율이 전체 팁의 백분율보다 낮다는 강력한 증거가 된다.

15.17 Problem)

검정통계량 z=1.876이므로 표 C에서 $z^*=(1.645,1.960)$ 사이에 위치한다.

- 이 때 P-값은 $H_a:\mu$ 0이므로 양측검정이고, 따라서 P-value:(0.05,0.10) 내에 위치한다. 그러므로
- 이 검정은 유의수준 5%, 1% 에서 모두 유의하지 않다.

16.5 Problem)

아니다. 신뢰구간은 \bar{x} 장래값의 범위를 설명하지 못한다.

16.9 Problem)

문제에 의하면 H_0 : $\mu = 5.0$ 대 H_1 : $\mu < 5.0$, $\sigma = 0.5$, $\overline{x} = 4.8$.

a)

각 n 에 대한 검정통계량 z 에서의 P-value (Z z)

n	z	P
5	-0.89	0.1867
15	-1.55	0.0606
40	-2.53	0.0057

b) R 프로그램(R studio)을 이용하여 정규분포를 그려보면 다음과 같은 분포를 갖는다.

[n=5, n=15, n=40 에 대한 정규분포]

[n의 모든 경우에 따른 정규분포]

16.14 Problem)

- a) 검사력(power)=1-제 2종 오류의 확률
- b) 검사력, 즉 귀무가설을 기각할 확률이 0.24이므로, 대립가설이 참이라 주장하기 어렵다. 즉, 귀무가설을 기각하는데 실패할 확률이 높으므로 제 2종 오류를 범할 가능성이 높다. 따라서 전도성이 10.15인 강철봉을 판매하는 것인 대립가설을 적절하게 보호하지 못한다.

16.15 Problem)

- a) 더 많아야 한다.
- b) 유의 수준이 작아질수록 귀무가설을 기각할 확률이 낮아진다. (P-값에 의하면) 반대로 유의수준이 높아질수록 귀무가설을 기각할 확률이 높아진다. 따라서 유의수준이 높아질수록 검정력이 증가한다.
- c) 10.2는 이전에 언급한 10.15 보다 더 큰 차이가 나므로 검사력이 증가한다.

18.3 Problem)

- a) 유의수준 = 0.05에서 t(4) 분포에 기초한 단측검정의 임계값 $t^* = 2.132$
- b) t(26)분포에 기초한 98% 신뢰구간에 대한 임계값 $t^*=2.479$

18.7 Problem)

스템 플롯을 보면 왼쪽으로 기울어짐을 알 수 있고, 이탈값은 존재하지 않는다.

그런데 표본 수가 적으므로 정규성에 벗어난다고 볼 수 없다.

$$t^*$$
= 1.860, (자유도는 8) 90% 신뢰구간은 $59.5889 \pm 1.860 \frac{6.2553}{9} = (55.71\%, 63.47\%).$

따라서 고대 공기 중에 질소의 평균 백분율은 55.71%와 63.47% 사이에 위치한다고 90% 신뢰한다.

18.10 Problem)

$$n = 9$$
, $x = 59.5889$, $\frac{s}{\sqrt{n}} = \frac{6.2553}{\sqrt{9}} = 2.0851$

1. 가설 :
$$\mu = \mu_0 = 78.1$$
 대 $H_a: \mu = \mu_0$

2. 검정통계치 :
$$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} = \frac{59.5889 - 78.1}{2.0851} = -8.8778$$

3. 기각역 :
$$R$$
 : $|T| > t_{0.0005}(8) = 5.041$ R : $\{T > 5.041, T < -5.041\}$

4. 결론 : $t=-8.8778<-t_{0.0005}(8)=-5.041$ 이므로 t는 기각역에 속한다. 따라서 H_0 을 기각할 수 있다. 즉, 유의수준 0.001에서 고대 공기에 함유된 질소의 백분율은 현재의 78.1% 과 다르다고 주장할 수 있다.

19.7 Problem)

신뢰구간을 구하자. 우선 =17.50, $\overline{x_2}=13.67$, 표준오차 E=1.813이다. 자유도 df=9-1=8 로 두면, 이 경우에 임계값 $t^*=3.355$ 가 된다. 따라서 벌목이 이루어지지 않은 구획과 벌목이 이루어진 구획에서 나무종류의 평균 숫자 차이에 대한 99% 신뢰구간은 $(\overline{x_1}-\overline{x_2})\pm t^*SE=(-2.253,9.913)$.

19.9 Problem)

향기가 없는 경우	향기가 있는 경우
9 8	6
3 2 2	7
965	7 6
4 4	8
7 7 6 5	8 8 9
3 2 2 2 1	9 2 3 4
8 6	9 5 7 8
3 1	10 1 2 3 4
9776	10 5 5 6 6 7 8 8 9 9 9
	11 4
8 5	11 6
1	12 1 4
	12 6 9
	13
	13 7
'	1

a)

다음 스템 플롯에서 보면 정규성에 벗어나지 않고 적당하게 정규분포하는 것 처럼 보인다. 앞선 논의에 의하면, 자료를 독립적인 단순 무작위 표본으로 취급하는 것을 정당화할 수 있다. 따라서 t 절차를 사용할 수 있다. μ_1,μ_2 를 각각 향기가 없는 경우 음식점에서 보낸 모집단 평균시간, 향기가 있는 경우 음식점에서 보낸 모집단 평균시간이라고 하자. 가설은 $H_0:\mu_1=\mu_2$ 대 $H_a:\mu_1<\mu_2$ 이다. $\overline{x_1}=91.27, \overline{x_2}=105.700, s_1=14.930, s_2=13.105,$

$$n_1=30,\; n_2=30$$
 이고, 표준오차 $SE=$ $\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}=3.627$ 및 $t=\frac{\overline{x_1}-\overline{x_2}}{SE}=-3.98$ 이 된다.

이제 자유도 df=29 로 두면, (30-1 과 30-1 중 작은 수) 표 C에서 P값은 P < 0.0005 가 된다. 따라서 라벤다 향기가 있는 경우 고객들은 음식점에서 평균적으로 더 많은 시간을 보낸다는 매우 강한 증거가 있다.

향기가 없는 경우		향기가 있는 경우
9	12	
	13	
	14	
9999999999999	15	
	16	
	17	
55555555555	18	5555555555
	19	
5	20	7
9	21	5599999999
	22	3558
	23	
	24	99
5	25	59

지출 자료에 대한 스템 플롯을 만들면, 분포가 한쪽으로 기울어졌으며 많은 틈새가 존재한다.

가설은 $\mu_1 = \mu_2$ 대 $H_a: \mu_1 < \mu_2$ 이다. 여기서 μ_1, μ_2 를 각각 향기가 없는 경우 음식점에서 지출한 모집단 평균 총액, 향기가 있는 경우 음식점에서 지출한 모집단 평균 총액이라 하자.

$$x_1 = 17.5133, \overline{x_2} = 21.1233, \ s_1 = 2.3588, \ s_2 = 2.3450, \ n_1 = 30, \ n_2 = 30$$
 이고, 표준오차 $SE = \frac{s_1^2}{n_1} + \frac{s_2^2}{n_2} = 0.6073$

및 $t=\frac{\overline{x_1}-\overline{x_2}}{SE}=-5.95$ 이 된다. 자유도를 마찬가지로 df=29로 두면, 표 C에서 P값은 P<0.0001 이 된다.

따라서 라벤다 향기가 있는 경우 고객들은 음식점에서 평균적으로 더 많은 금액을 지출한다는 매우 강한 증거가 있다.

20.3 Problem)

- a) 평균이 p=0.70 및 표준편차 $\frac{0.70(1-0.70)}{1500}=0.0118$ 을 갖는 근사한 정규분포이다.
- b) 평균이 p=0.70 및 표준편차 $\sqrt{\frac{0.70(1-0.70)}{6000}}=0.0059$ 을 갖는 근사한 정규분포이다.

이 때, 표본크기가 네 배가 되면 p의 표준편차는 절반으로 줄어든다.

20.5 Problem)

- a) 이 표본조사는 거주지 전화번호가 없거나 무선 전화만을 사용하는 사람들뿐만 아니라 북쪽 지역 주민들을 배제하였다.
- b) $\hat{p} = \frac{1288}{1505} = 0.8558$, $SE_p = \frac{\hat{p}(1-\hat{p})}{n} = 0.009055$ 이므로, 95% 신뢰구간은 $0.8558 \pm (1.96)(0.009055) = (0.8381, 0.8736)$ 이 된다.

20.9 Problem)

- a) $=\frac{20}{20}=1$ 이므로, 따라서 E=0이다. 그러므로 오차한계는 신뢰수준에 관계없이 0이 된다. 이와 같은 크기가 큰 표본 방법에 의하면 유용하지 못한 신뢰구간 (1,1)을 얻게 된다.
- b) 플러스 4 추정값은 $\tilde{p}=\frac{22}{24}=0.9167$, $SE_{\tilde{p}}=0.0564$ 이다. 이제 p에 대한 95% 신뢰구간을 구하면 $0.9167\pm1.96(0.0564)=(0.8062,1.0272)$ 이 된다. 비율은 1을 초과할 수 없기 때문에 p에 대한 95% 신뢰구간은 (0.8061,1) 이 된다.

20.11 Problem)

$$n=\left(rac{z^*}{m}
ight)^2 p^*(1-p^*) = \left(rac{1.645}{0.04}
ight)^2 (0.75)(1-0.75) = 317.1$$
 이다. 따라서 $n=318$ 로 택하면 된다.

20.13 Problem)

p: 얼굴 생김새가 가장 좋은 입후보자가 당선되는 횟수의 비율이라 하자.

가설은 $H_0: p=0.50$ 대 $H_a: p>0.50$. 표본은 32번의 시도로 구성되기 때문에 16번의 성공(얼굴 생김새가 가장 좋은 입후보자가 당선되는경우)과 16번의 실패(당선되지 않는 경우)를 기대하게 된다. 표본은 \hat{p} 의 표본분포를 설명하기 위해서 정규분포로의 근사를 사용할 만큼 충분히 크다. 또한 표본이 단순 무작위 표본이라고 가정하자.

그러면
$$\hat{p} = \frac{22}{32} = 0.6875$$
, $SE_{\hat{p}} = \frac{0.50(1-0.50)}{32} = 0.0884$, $z = \frac{\hat{p}-p_0}{SE} = \frac{0.6875-0.50}{0.0884} = 2.12$, $P = 0.0170$ 이다. 따라서 얼굴 생김새가 가장 좋은 입후보자가 당선되는 횟수의 비율이 0.50 을 초과한다는 강한 증거가 존재한다.

21.3 Problem)

 p_1 은 권장 수준에 부합되는 남학생의 비율을 나타내고 p_2 는 여학생의 비율을 나타낸다. 두 개 표본 모두에서 많은 성공과 실패를 갖고 있어서 크기가 큰 표본 방법을 사용하는 것이 합리적이다. $p_1=\frac{3594}{7881}=0.4560, \ \hat{p_2}=\frac{2261}{8164}=0.2769$, SE=0.0075이고 오차한계는 (2.576)(SE)=0.0193이다. 신체 화동의 권장 수준에 부합되는 남학생과 여학생 사이 비율의 차이에 대한 99% 신뢰구간은 0.1598 부터 0.1984 까지, 또는 16.0% 부터 19.8% 까지이다.

21.7 Problem)

가설은 $H_0: p_1=p_2$ 대 $H_a: p_1< p_2$ 가장 작은 횟수가 96이므로 유의성 검정 절차가 타당하다. $\hat{p_1}=\frac{96}{578}=0.1661$, $\hat{p_2}=\frac{656}{2992}=0.2193$, $\hat{p}=\frac{96+656}{578+2992}=0.2106$, $SE=\sqrt{\hat{p}(1-\hat{p})\Big(\frac{1}{578}+\frac{1}{2992}\Big)}=0.01853$, $z=\frac{0.1661-0.2193}{SE}=-2.87$, 따라서 P=0.0021. 머리 부상을 입은 알펜 스키어와 스노보더는 머리 부상을 입지 않은 알펜 스키어와 스노보더보다 헬멧을 착용한 가능성이 더 적다는 강한 증거가 있다. $(\alpha=0.01\ \text{수준에서 유의하다.})$