

DNA 4326F-2

PHOTOGRAMMETRY OF THE PART TRAJECTORIES ON DIPOLE WEST SHOTS 8, 9, 10 AND,11 PHOTOGRAMMETRY OF THE PARTICLE

Volume II - Shot 9

University of Victoria British Columbia Canada V8W 2Y2

October 1977

Final Report for Period 15 May 1977—30 September 1977

CONTRACT No. DNA 001-77-C-0305

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B342077464 N99QAXAA11114 H2590D.

Prepared for

Director DEFENSE NUCLEAR AGENCY Washington, D. C. 20305

Destroy this report when it is no longer needed. Do not return to sender.

1 . 4

(18) DNA, SBIE 1 (19) 4326F-2, AD-E3\$\$165 |

UNCLASSIFIED

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS
1. REPORT NUMBER	2. GOVT ACCESSION NO	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
DNA 4326F-2	6	
4. TITLE (and Substitle)	(4)	5. TYPE OF REPORT & PERIOD COVERED
PHOTOGRAMMETRY OF THE PARTIC	LE	Final Report for Period
TRAJECTORIES OF DIPOLE WEST	SHOTS 8,	15 May 2 - 30 Sep 77
9, 10, AND 11.		6. PERFORMING ORG. REPORT NUMBER
Volume II Shot 9	The second secon	8. CONTRACT OR GRANT NUMBER(s)
J. M. Dewey,		Par Telcery
D. J. McMillin	(15	DNA 001-77-C-030500
D. /Trill		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
University of Victoria British Columbia	/_	NWED Subtask
Canada V8W 2Y2	/ 16	N99QAXAA111-14
11. CONTROLLING OFFICE NAME AND ADDRESS	-1/5	12. REPORT DATE
General Electric Company — TEM		Loctober 1977/
7800 Marble Avenue, NE, Suite		13. NUMBER OF PAGES
Albuquerque, New Mexico 8711		114 (12) 112p
14. MONITORING AGENCY NAME & ADDRESS(it different	nt from Controlling Office)	15. SECURITY CLASS (of this report)
Defense Nuclear Agency		UNCLASSIFIED
Washington, D.C. 20305		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
A	1: -+-: h+: on	mlimited
Approved for public release; 17. DISTRIBUTION STATEMENT (of the abstract entered		€ C
7	efense Nuclean	r Agency under RDT&E
18. SUPPLEMENTARY NOTES This work sponsored by the De RMSS Code B342077464 N99QAXA.	efense Nuclean	r Agency under RDT&E
18. SUPPLEMENTARY NOTES This work sponsored by the De RMSS Code B342077464 N99QAXA. 19. KEY WORDS (Continue on reverse side if necessary as Photogrammetric Analysis	efense Nuclean	r Agency under RDT&E
18. SUPPLEMENTARY NOTES This work sponsored by the De RMSS Code B342077464 N99QAXA. 19. KEY WORDS (Continue on reverse side if necessary as Photogrammetric Analysis Particle Trajectories	efense Nuclean	r Agency under RDT&E
18. SUPPLEMENTARY NOTES This work sponsored by the De RMSS Code B342077464 N99QAXA. 19. KEY WORDS (Continue on reverse side if necessary as Photogrammetric Analysis	efense Nuclean All114 H2590D	r Agency under RDT&E
18. SUPPLEMENTARY NOTES This work sponsored by the Den RMSS Code B342077464 N99QAXA. 19. KEY WORDS (Continue on reverse side if necessary as Photogrammetric Analysis Particle Trajectories Air Particle Tracers Simultaneous Detonations Multiburst Detonations	efense Nuclear All114 H2590D.	a Agency under RDT&E
18. SUPPLEMENTARY NOTES This work sponsored by the Derection RMSS Code B342077464 N99QAXA. 19. KEY WORDS (Continue on reverse side if necessary as Photogrammetric Analysis Particle Trajectories Air Particle Tracers Simultaneous Detonations Multiburst Detonations 20. ABSTRACT (Continue on reverse side if necessary as a particle Tracers Simultaneous Detonations Multiburst Detonations	efense Nuclear Allll4 H2590D and identify by block number of identify by block number	a Agency under RDT&E
18. SUPPLEMENTARY NOTES This work sponsored by the Derent RMSS Code B342077464 N99QAXA. 19. KEY WORDS (Continue on reverse side if necessary as Photogrammetric Analysis Particle Trajectories Air Particle Tracers Simultaneous Detonations Multiburst Detonations Multiburst Detonations 20. ABSTRACT (Continue on reverse side if necessary as Volume 2 of this report descriptions	efense Nuclear All114 H2590D Indidentify by block number and identify by block number and identify by block numbers	r Agency under RDT&E
18. SUPPLEMENTARY NOTES This work sponsored by the Derection RMSS Code B342077464 N99QAXA. 19. KEY WORDS (Continue on reverse side if necessary as Photogrammetric Analysis Particle Trajectories Air Particle Tracers Simultaneous Detonations Multiburst Detonations 20. ABSTRACT (Continue on reverse side if necessary as Volume 2 of this report descriptions of the particle trajectories	efense Nuclear All114 H2590D Indidentify by block number or identify by block number ribes the phot in blast waye	a Agency under RDT&E togrammetry and analysis produced by the simul-
18. SUPPLEMENTARY NOTES This work sponsored by the Derection RMSS Code B342077464 N99QAXA. 19. KEY WORDS (Continue on reverse side if necessary as Photogrammetric Analysis Particle Trajectories Air Particle Tracers Simultaneous Detonations Multiburst Detonations 20. ABSTRACT (Continue on reverse side if necessary as Volume 2 of this report descriptions of the particle trajectories taneous detonation of two spirits.	efense Nuclear Alll14 H2590D Indidentify by block number ribes the photo in blast wave herical 1080-1	Agency under RDT&E togrammetry and analysis es produced by the simul- togrammetry Pentolite
18. SUPPLEMENTARY NOTES This work sponsored by the Derent RMSS Code B342077464 N99QAXA. 19. KEY WORDS (Continue on reverse side if necessary as Photogrammetric Analysis Particle Trajectories Air Particle Tracers Simultaneous Detonations Multiburst Detonations 20. ABSTRACT (Continue on reverse side if necessary as Volume 2 of this report descriptions of the particle trajectories taneous detonation of two specharges, (Dipole West Shot 9) at a height of 15 ft (4.6 m)	efense Nuclear Alll14 H2590D Indidentify by block number ribes the photo in blast wave herical 1080-1 One of the	togrammetry and analysis es produced by the simultoned ground and the second
18. SUPPLEMENTARY NOTES This work sponsored by the Derection of the Barbard of t	efense Nuclear All114 H2590D Indidentify by block number ribes the photo in blast wave herical 1080- One of the above smooth he first. Pho	togrammetry and analysis es produced by the simultonarges was positioned ground and the second otogrammetrical measure-
18. SUPPLEMENTARY NOTES This work sponsored by the Derection RMSS Code B342077464 N99QAXA. 19. KEY WORDS (Continue on reverse side if necessary as Photogrammetric Analysis Particle Trajectories Air Particle Tracers Simultaneous Detonations Multiburst Detonations 20. ABSTRACT (Continue on reverse side if necessary as Volume 2 of this report description of the particle trajectories taneous detonation of two spicharges, (Dipole West Shot 9)	efense Nuclear All114 H2590D Indidentity by block number ribes the phot in blast wave herical 1080- One of the above smooth he first. Pho	togrammetry and analysises produced by the simulto (491-kg) Pentolite charges was positioned ground and the second otogrammetrical measurement particle flow tracers

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

ABSTRACT (Continued)

ranging from 3 ft (0.92 m) to 58 ft (17.7 m) above the ground and at radial distances ranging from 25 ft (7.6 m) to 85 ft (25.9 m) from the vertical axis through the charges. From the measured particle trajectories, calculations were made of the particle velocities, densities, hydrostatic overpressures, and dynamic pressures throughout the blast wave, at times ranging from 3 ms to 60 ms after detonation of the charges. The shock front timesof-arrival were also determined from the photogrammetrical measurements for the primary shock from each of the two charges; for the Mach stems produced above and below the interaction plane midway between the two charges; and for the Mach stem produced at the ground surface. From the shock front times-of-arrival, cal-culations were made of the shock velocities, and, in turn, the peak particle velocities, air densities and hydrostatic overpressures immediately behind each shock. Calculations were also made of the variation with time of the particle velocity, density, hydrostatic overpressure and dynamic pressure at several fixed points. Results are presented both graphically and in tables, and are compared to results previously calculated for the same experiment using shock front photogrammetry and refractive image analysis. The analytical procedures used were similar to those used for Dipole West Shot 10, which were described in Volume I (Dewey, et \al, 1977).

NTIS		Vibita Sc	otion 😿
DDC		S.H. Sac	tion []
UNANI	CUNCTO		
JUSTIF	ICATION		
DISTR	BUTTER	WILEEN	11113
Dist.	-	5,64 / 107	SPECIAL.

SUMMARY

Owing to the quantity of material to be presented, this report is divided into several volumes. Volume 1 introduced the series and presented and discussed the results for Shot 10.

Volume 2 presents and discusses the results for Shot 9.

Subsequent volumes will present and discuss the results for Shots 8 and 11. The method of analysis is common to all four experiments and is described in detail in Volume 1 only.

So that the results from the four experiments may be easily compared, they have been scaled to remove the effects of varying atmospheric conditions. (Results are scaled to a 1 kg charge weight and a standard atmosphere of dry air at 15°C at sea level.) For the most part, only scaled results are presented. Exceptions include some derived pressure-time histories, which may be compared to actual gauge measurements made in the experiment.

Results are presented in SI units, even though the experiments were originally laid out in British units. Only distance and time measurements are affected, however, as velocity density, and pressure results are presented as dimensionless ratios. A distance units conversion scale is included on page 3 to convert between SI units (meters scaled to a 1 kg charge) and British units (feet scaled to a 1 lb charge), plus a time scale factor and scale factors to convert pressure ratios to both British and SI pressure units. Scale factors

which may be used to compute the distance and time values actually observed under the ambient conditions of each shot are also provided. Dimensional pressure units are used for the results presented at gauge locations.

Unit conversion and scaling factors

FEET (SCALING TØ 1 LB CHARGE)

METERS (SCALING TO 1 KG CHARGE)

For feet scaled to a 1000 lb charge, multiply the top scale by 10.

For time scaled to a 1000 lb charge, multiply time scaled to a 1 kg charge by 8.683.

pressure in psi, multiply the pressure ratio by 14.696. To convert kPa to psi, divide For pressure in kPa, multiply a pressure ratio (in atmospheres) by 101.325. For

values in this report by 8.111. To obtain the observed distance values in feet, multiply To obtain distance values actually observed for Shot 9, in meters, multiply scaled the reported scaled values by 26.611. To obtain observed time values, multiply scaled time values by 8.1069. For observed pressures in kPa, multiply by 93.02; for observed pressures in psi, multiply by 13.49.

PREFACE

The authors gratefully acknowledge the opportunity offered by the Defence Research Establishment Suffield and the Defense Nuclear Agency to participate in the experiments described in this report. The analyses described here were carried out under contract with the Canadian General Electric Company, and with additional financial support from a research grant by the National Research Council (A 2952). The advice and assistance of Mr. A.P. Lambert, C.G.E. Project Officer at DRES, and Mr. J. Keefer, of the Ballistic Research Laboratory, is also gratefully acknowledged.

TABLE OF CONTENTS

		page
	Summary Unit Conversion and Scaling Factors Preface Table of Contents List of Illustrations List of Tables	1 3 4 5 6 8
	CHAPTER 1, SHOT 9 ANALYSIS	
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Introduction Description of Shot 9 Camera Calibration and Data Reduction Data Scaling and Trajectory Fitting Regionalization and Shock Strength Calculations Particle Velocity Calculations Density and Hydrostatic Overpressure Calculations Surface Representation	9 11 13 16 17 17
	CHAPTER 2, SHOT 9 RESULTS	
2.1 2.2 2.3 2.4 2.5 2.6 2.7	Times of Shock Front Arrival Shock Strengths Particle Velocity Fields Density and Hydrostatic Overpressure Fields Times-of-Arrival Surface Field Surface Contours Time Histories	18 19 20 21 21 23 24
	CHAPTER 3, DISCUSSION	
3.1 3.2 3.3 3.4	Particle Trajectory Analysis, Shot 9 Primary Shock Strength of Upper Charge Comparison of Mach Shocks over Different Surfaces Resolution of Time Histories	26 26 27 28
	References	31

LIST OF ILLUSTRATIONS

	page
1. Plan view of test site	32
2. Field of view of camera	33
3. Camera calibration	34
4. Smoke puff grid	35
5. Particle trajectories	36
6. Regions definition	37
7. Shock trajectories (Figs. 7.1 through 7.3)	38-40
8. Shock strengths, method 1 (Figs. 8.1 through 8.3)	41-43
9, 10 and 11 (Deleted: see footnote next page)	
12. Particle velocity fields (Figs. 12.1 through 12.7)	44-50
13. Density fields (Figs. 13.1 through 13.4)	51-54
14. Time-of-arrival surface	55
15. Shock front shapes	56
16. A shock strength surface	5 7
17. Shock strength contours	58
18. Particle velocity contours	59
19. Density contours	60
20. Hydrostatic overpressure contours	61
21. Dynamic pressure contours	62
22. Time history stations	63

LIST OF ILLUSTRATIONS (cont'd)

		page
23.	Particle velocity histories (23.1 through 23.4)	64-67
24.	Density histories (24.1 through 24.4)	68-71
25.	Hydrostatic overpressure histories (25.1 through 25.4)	72-75
26.	Dynamic pressure histories (26.1 through 26.4)	76-79
27.	Pressure histories at gauge locations (27.1 thru 27.7)	80-86

Footnote:

To assist in the comparison between volumes, similar figures have been numbered identically. For this reason, figures numbers 9, 10 and 11 are not used in this volume.

LIST OF TABLES

		page
1.	Survey data list	87
2.	Photogrammetrics	88
3.	Film timing data	89
4.	Times of arrival	90
5.	Shock front data (5.1 through 5.5)	92-96
6.	(Deleted: see footnote)	
7.	Particle velocity fields (7.1 through 7.6)	97-102
8.	Density fields (8.1 through 8.3)	103-105
9.	Hydrostatic overpressure fields (9.1 through 9.3)	106-108

Footnote:

To assist in the comparison between volumes, similar tables have been numbered identically. For this reason table number 6 is not used in this volume.

CHAPTER 1, SHOT 9 ANALYSIS

1.1 Introduction

This is the second volume in a series which presents the particle trajectory analysis results from four experiments (Dipole West Shots 8, 9, 10 and 11) carried out to obtain information on the interaction of spherical blast waves with real and ideal reflecting surfaces. A general description of the project can be found in Volume 1. The results presented in this volume are for Shot 9, in which the same charge configuration was used as in Shot 10 (reported in volume 1), but which was carried out over a smoother ground surface. In each experiment, photogrammetrical studies were made of the shock fronts (refractive image analysis, RIA), and of the motions of smoke puff particle tracers (particle trajectory analysis, PTA). The refractive image analysis results were reported by Dewey et al. (1975) and results of the particle trajectory analysis are presented in this report. The method of particle trajectory analysis, common to all four shots is described in detail in Volume 1 only.

1.2 Description of Shot 9

Dipole West Shot 9 was fired on October 22nd, 1973 by the Ballistics Research Laboratories at the Defence Research Establishment Suffield, in Alberta, Canada. Two 1080 lb (491 kg) spheres of Pentolite were detonated simultaneously, to within 5 microseconds, at nominal charge heights of 15 and 45ft (4.6 and 13.7m) over a relatively smooth ground surface.

Particle trajectory data were gathered by photographing the movement of smoke puffs formed in a vertical plane running out from ground zero at 6.7° south of west. A WF5 camera operating at about 3400 frames per second was positioned 30ft (9.2m) above ground level at a position 600ft (183m) due south of ground zero (GZ), the point on the ground vertically beneath the charges.

Table 1 gives the field survey data for the event, and Figure 1 shows a plan view of the layout. The dashed line represents the approximate line of sight of the WF5 camera. Figure 2 shows the field of view of this camera.

The smoke puff grid was made up of 9 columns of 12 puffs each, hung vertically on strings. The vertical spacing of puffs was 5ft, beginning 3ft above ground level and ending at a height of 58ft. The horizontal spacing of the columns of puffs was 10, 7 or 5ft, depending on the distance from ground zero, beginning at about 25ft and ending at about 85ft from GZ. Of the possible 108 smoke puffs, 106 detonated successfully. A good film record was obtained, except that the detonation zero timing mark was not recorded, which means that the results cannot be related to the detonation pulse to the charges with an accuracy better than ±0.15 ms.

This report describes the analysis of the smoke puff data collected for Shot 9, and presents and discusses some of the results of that analysis.

1.3 Camera calibration and data reduction

The calculated camera position coordinates and orientation angles for Shot 9 are presented in Table 2, together with the positions of photomarkers transformed from one frame of the film just before detonation to an object plane defined as passing through ground zero and being normal to the camera orientation axis. The differences ("shifts") between the object plane positions of the transformed calibration points and their positions computed from the field survey data are given in Table 2. The object plane positions of the calibration points computed in these two ways are also shown in Figure 3.

The camera calibration procedure, described in detail in Volume 1, ensured that selected photomarker images (Pl to P5) transformed to the object plane in a way which matched them exactly to the positions computed using the survey data. These reference photomarkers for Shot 9 are indicated in Figure 3 using large circles: namely, Pl = Wl, P2 = W3, and P3 = 300W2. The separation distance between P4 = P3 = 300 WZ and P5 = W2 was also used as a calibration parameter. The probable reasons for the shifts seen for photomarkers VPlA

and VPlB was discussed in Volume 1.

The image positions of two reference photomarkers (VP3B and 300W2) and all smoke puffs were measured frame-by-frame over a time interval corresponding to the approximate duration of the positive phase of the blast waves (film frames 9 to 200), and were transformed to distances in the object plane by matching the reference marker positions to their positions transformed from the calibration frame. These data were again transformed from the object plane to the smoke puff plane which was assumed to pass through "corrected" ground zero; to be vertical, and to run 6.7° south of west from GZ.

The x-y coordinate system in the smoke puff plane was the same for Shot 9 as for Shot 10 except that the corrected value for ground zero was displaced 1.0 ft from the surveyed ground zero, in a direction approximately 46° south of east. The corrected ground zero was defined to have the same elevation as the surveyed ground zero, but was located directly under the midway point between the two charge centers. As for Shot 10, all data in the output plane are plotted with the x coordinate reflected, i.e. with positive values of x to the right hand side, as if the smoke grid had run to the right of the charges rather than to the left as seen in the film images.

A time was assigned to each film frame using the 1 ms timing marks placed on the film during its exposure. The film timing method was described in Volume 1, and the complete

set of film timing data used for Shot 9 is provided in Table 3. In the absence of a zero time pulse on the film, zero time was determined using the static zero calibration distance for the camera plus one-half a frame length. Because the static zero distance is at most a frame length less than the actual zero distance measured from any moving film, the error in frame times can be at most one-half frame (about 0.15 ms).

Figure 4 shows the positions of the 106 detonated smoke puffs at a time prior to the detonation of the two charges. These positions are in the plane of the charges and the smoke puff grid, as described above. The smoke puff plane was not exactly parallel to the camera image and object planes (Figures 2 and 3), and various geometrical corrections were applied to make the transformation between them. The puffs enclosed in parentheses were not visible in the earlier film frames, but were seen later when they were illuminated by the light of the fireball. Charge positions in the figures are plotted as if they were positioned exactly above the corrected ground zero origin. The data shown in Figure 4 have not been scaled.

1.4 Data scaling and trajectory fitting

The position-time histories of individual smoke puffs were extracted from the frame-by-frame positions of the smoke puff grid, and then scaled to standard atmospheric conditions

and charge weight. A change to SI units was made at this point in the analysis. The resulting trajectories were edited, and then smoothed by fitting polynomial functions.

Particle trajectory data were scaled by dividing all distances by Sachs scaling factor $S = \sqrt[3]{(WP_O)/(W_OP)}$ and multiplying all times by the factor $C/(C_OS)$, where C is the ambient sound speed computed for Shot 9. Data used to compute C and S, and define the scaled event, are listed below with the computed values of C and S.

Ambient temperature,	T = 14.17 °C	(57.5 °F)
Ambient pressure,	P = 93.02 kPa	(13.491 PSI)
Relative humidity,	RH = 55.0%	
Computed vapour pressure,	VP = 0.89 kpa	(6.7 mm Hg)
Ambient sound speed,	C = 340.469 m/s	(1117 ft/s)
Charge weight,	W = 489.9 kg	(1080 lbs)
Sachs scaling factor,	S = 8.1111	
Standard charge weight,	$W_0 = 1.0 \text{ kg}$	(2.2 lbs)
Standard pressure,	$P_{O} = 101.325 \text{ kpa}$	(14.7 PSI)
Standard temperature	$T_O = 15 ^{\circ}C$	(59 °F)
Standard sound speed, (dry air)	$C_{O} = 340.292 \text{ m/s}$	(1116 ft/s)

The results presented in this report therefore apply to a scaled event which is the detonation of two 1 kg charges in a standard atmosphere. The scaled heights of burst for Shot 9 were 0.571 m and 1.707 m, and the charge separation divided by two, scaled, was 0.568 m. These figures may be compared to the scaled charge height and half-separation distances for Shot 10 which were 0.563 and 0.575 m respectively.

Figure 5 shows the scaled particle trajectory data for

Shot 9 in the smoke puff plane with positions measured horizontally
and vertically from corrected ground zero. Approximately

9350 puff positions are represented. As represented, the raw
trajectory data have not been smoothed.

The raw particle trajectory data were edited to remove obvious data processing errors, such as a single point widely displaced from its trajectory for one or two frames. The trajectory of each puff in turn was then smoothed by least squares fitting simple polynomial expressions separately to both the x and y coordinate data, these being discrete functions of frame time. The adequacy of each fit was determined by examining on the same graphical output, plots of both the raw trajectory data and the fitted curve. For Shot 9 this meant examining and adjusting 212 such plots, at least two or three times each.

For a given puff, the first step in fitting the raw trajectory data was to set the time of arrival of the shock front first hitting the puff. The data at subsequent times were fitted with polynomial functions, as described in Volume 1, paragraph 2.5. The first derivatives of the fitted functions were also calculated at a series of times for use in later calculations of particle velocity.

1.5 Regionalization and shock strength calculations

Five regions were defined in the smoke puff plane on the basis of the shock front which first struck the puffs in a particular region. These are shown in Figure 6. The regions were bounded by the triple point trajectories measured using refractive image analysis (Dewey et al., 1975). Regions 1 and 2 are those in which the smoke puffs were first hit by a spherical primary shock front, and regions 3, 4, and 5 are those in which the puffs were first hit by a Mach stem.

In each of the five regions, the shock trajectory data obtained from the first movement of the smoke puffs were fitted to a function of the form

$$r(t) = A + Bt + C \log (1 + t) ,$$

where r is the shock radius, t is the time after detonation, and A, B, and C are the fitted coefficients. The shock velocities were calculated by differentiating this function.

The peak particle velocity, $V_{\rm S}$, peak density, ${\rm D}_{\rm S}$, and peak hydrostatic overpressure, ${\rm P}_{\rm S}$, as functions of shock radius in each of the five regions, were calculated from the shock velocity using extensions of the Rankine-Hugoniot equation. Details of the shock radius calculations etc. are described in Volume 1, paragraph 2.6.

1.6 Particle velocity calculations

Particle velocities were computed using the methods described in Volume 1, paragraph 2.7.

1.7 Density and hydrostatic overpressure calculations

Densities and hydrostatic overpressures in the smoke puff plane were calculated by the method described in Volume 1, paragraph 2.8. Results in both cases represent average values over cells defined by four adjacent smoke puffs.

1.8 Surface representation

Surfaces were fitted to the times of shock front arrival and to the fields of particle velocity, density and hydrostatic overpressure at a sequence of times. All data were interpolated onto a common regular Euleurian grid. Fields of dynamic pressure were computed from surface-interpolated particle velocity and density results. Contour plots were generated for all surfaces at selected times, and time histories computed at several fixed locations. The methods used were identical to those described for Shot 10 in Volume 1, Chapter 3.

CHAPTER 2. SHOT 9 RESULTS

2.1 Times of shock front arrival

The measured initial puff positions, the times of first shock arrival, and the peak particle velocities obtained by differentiating the functions fitted to the particle trajectories are presented in Table 4. Puff position is given relative to corrected ground zero as origin with horizontal and vertical axes. Puff position and the time of arrival of the first shock are given both as observed and scaled. Particle velocities listed are derivatives of the fitted puff trajectories at the times of shock arrival, and are expressed in Mach units. Expressed this way, the particle velocities are the same scaled as unscaled. Also listed are the initial radial puff positions (scaled) and region codes.

Shock front data determined from the first movement of the smoke puffs, i.e. calculated from the time-of-arrival data in Table 4, are listed in Tables 5.1 - 5.5. Each table corresponds to one of the 5 regions used. Listed are the observed and fitted unscaled shock trajectory data, the scaled fitted shock trajectory data, and the computed shock velocities and peak parameters associated with shock strength: peak hydrostatic overpressure in atmospheres and in kilopascals, peak particle velocities in Mach units, and

peak density ratios. Given as ratios, these peak parameters are the same scaled as unscaled. Pressure given in kilopascals in the tables refers to the unscaled (observed) case only.

The shock front radius versus time data derived using particle trajectory analysis (PTA) are also shown in Figures 7.1 - 7.3 for the two primary fronts, the two Mach stems at the interaction plane, and the ground Mach stem, respectively. They are compared to corresponding data derived from refractive image analysis (RIA) reported by Dewey et al (1975). The refractive image analysis results were obtained using photogrammetry against a striped canvas backdrop and they describe the shock as it travelled in a direction almost diametrically opposite to the direction of the smoke puff grid.

2.2 Shock strengths

Peak particle velocities calculated from shock front velocities are shown in Figure 8.1 - 8.3 for the primary fronts, interaction Mach stems, and the ground Mach stem. This method of determining peak particle velocities has been labelled method 1, and the data plotted correspond to those listed in Tables 5.1 - 5.5. The results in the figures are compared with those previously obtained using refractive image analysis (RIA). In the case of the primary shock fronts, results are also compared to those of Brode (1957) for TNT.

In Volume 1 other methods of determining shock strengths in the various regions were described. It was demonstrated that method 1 was clearly the most accurate, and in the present volume shock strengths calculated using methods 2 and 3 are not reported. For this reason Figures 9, 10 and 11 and Table 6 do not appear in this volume.

2.3 Particle velocity fields

The calculated particle velocities in the plane of the smoke puffs are shown as vectors in Figures 12.1 through 12.7, for various times after the detonation. All times and positions are scaled to a 1 kg charge in a standard atmosphere. The particle velocity vectors represent the derivatives of the smoothed particle trajectories, and their magnitudes may be judged using the standard vector shown on each figure. All velocites are measured in Mach units, relative to the standard sound speed. Puffs not yet struck by a shock wave are represented by small circles (zero velocity).

Numerical data corresponding to Figures 12.1 - 12.7 are listed in Tables 7.1 through 7.6, along with scaled radial positions of the puffs, and region codes as defined in Figure 6. Conversion factors are given at the foot of each table, which may be used to convert the scaled data in the tables and figures back to their original unscaled values.

2.4 Density and hydrostatic overpressure fields

Calculated average relative densities throughout the smoke puff plane are depicted graphically in Figures 13.1 - 13.4, for various times after the detonation. All time values are scaled. Cell positions are scaled and are given relative to the corrected ground zero as origin with horizontal and vertical axes. The calculated densities may be judged using the density shading scale shown on each figure. Density is given as a ratio, relative to ambient density. Cells not yet struck by a shock wave and cells in which the density has dropped to a value less than ambient density are shown blank.

Corresponding numerical data are listed in Tables 8.1 - 8.3 along with radial cell positions computed according to the regions defined previously. Numerical data describing the fields of hydrostatic overpressure are similarly listed in Tables 9.1 - 9.3. The pressure results for a given cell were obtained by multiplying the density results for that cell by a factor determined by the strength of the shock which first traversed the cell and which then remained constant, i.e. by assuming isentropic flow after the first shock.

2.5 Times-of-arrival surface

Figure 14 shows a perspective view of the surface fitted to the original smoke puff positions and the observed times of first shock front arrival, i.e., to the data listed in

Table 4. The grid mesh size is 0.1 by 0.1 meters (scaled), about 2.5 feet square (unscaled), or about ½ that of the original smoke puff grid. The charge positions are indicated on the vertical distance axis.

The times-of-arrival surface is smooth enough to permit contouring, the contours in this case (isochrones) representing shock front shapes at different times, as shown in Figure 15, but the surface is not smooth enough to permit the calculation of gradient vectors which could be used to compute shock velocity vectors and shock strengths over the new grid.

Two attempts were made to obtain contours of shock strength. In the first, the times-of-arrival surface was smoothed by least-squares fitting low-order, one-dimensional polynomial functions to the time-of-arrival data along each grid row and column separately, and computing the derivatives of the fitted functions to obtain the associated components of the surface gradient vectors. Shock velocity vectors were obtained from the time-of-arrival gradients, and from these peak particle velocities were computed. The peak particle velocity (shock strength) surface is shown in Figure 16. The contours of this surface (not shown) did not exhibit any discontinuities across the boundaries of the shock front regions, as they would if surfaces were fitted to the time of arrival in each region separately.

The results of a second method used to compute shock strength contours are shown in Figure 17. These were obtained by interpolating shock radius at each value of peak particle velocity shown, for each shock front region in turn, using the peak particle velocity versus radius curves shown in Figure 8. Arcs of circles with these radii, centered on the appropriate points along the vertical charge axis, were then drawn in the regions to represent shock strength contours.

These peak value contours are discontinuous across triple point locii and other region boundaries. As a result, some horizontal lines are crossed twice by the same contour or, in other words, identical shock strengths can be found at two locations the same vertical distance from a reflecting surface, but at different radial distances from the vertical charge axis.

2.6 Field surface contours

Contours of equal particle velocity, density, hydrostatic overpressure, and dynamic pressure in the blast waves were determined for a series of times, using surfaces fitted to the various measured data fields at those times. Sample results are shown in Figures18 through 21 at scaled times of 2.5 ms and 4.0 ms. The shock fronts shown in these figures are obtained from the time-of-arrival surface (as were those in Figure 15). Field contours such as those shown can be drawn for any scaled time between 0.5 ms and 7.0 ms.

It should be re-stated that all of these results were obtained from the photography of the smoke puffs only and do not rely on the results obtained using the refractive image analysis (Dewey et al., 1975).

2.7 Time histories

By mapping the physical properties of the blast waves at short time intervals it was possible to determine the time histories of these properties at any selected fixed position within the smoke puff grid. This was done at 12 fixed locations, three in the two primary regions and three in each of the three Mach stem regions, as shown in Figure 22. At each distance from the axis of the charges in the Mach stem regions, each of the time history stations is the same distance from either the interaction plane or the ground plane. Particle velocity time histories could be interpolated closest to the ground level because these were measured at puff locations, whereas the density and pressure data were measured at cell centers.

Time histories of particle velocity, density, hydrostatic and dynamic overpressure at these locations are given in Figures 23 to 26.

Also plotted with the time histories are the interpolated values of the time of arrival of the first shock front at the stations. The height of this time-of-arrival line represents a peak value derived from the shock velocity analysis.

Time histories for hydrostatic and dynamic pressure are also plotted in Figure 27.1 to 27.7 for stations at the nominal positions of field-mounted pressure gauges on the "60 foot gun barrel". The gauges on this gun barrel were mounted at nominal elevations of 10, 15, 20, 27, 30, 33, and 40 feet. The time histories at these locations are given in unscaled units in order to facilitate comparisons with the gauge measurements.

The dynamic pressures plotted in figures 26 and 27 are maximum values, computed using both the x and y components of particle velocity. Similar plots were made of the horizontal components of dynamic pressure, but the differences were not significant since the y components of particle velocity at these locations were small. Other locations could have been chosen at which the y components would not have been insignificant.

CHAPTER 3, DISCUSSION

3.1 Particle trajectory analysis, Shot 9

The methods used to analyze the smoke puff trajectories on Shot 9 were identical to those used for Shot 10 and described in detail in Volume 1 of this report. However, the results for Shot 10 clearly indicated the superiority of one of several methods of analyzing shock strength, and only the results of the superior method were reported for Shot 9.

The rate of smoke puff failure was greater for Shot 9 than for Shot 10 (there were no failures for Shot 10), but the incompleteness of the Shot 9 particle trajectory grid did not greatly interfere with the analysis of the blast wave within the smoke puff region. The extra interpolation required for Shot 9, however, will undoubtedly correspond to some slight decrease in the accuracy of the calculated blast parameters compared with those for Shot 10.

3.2 Primary shock strength of upper charge

The refractive image analysis of the shock fronts described by Dewey et al, 1975 did not provide any information about the primary spherical shocks from the upper charges, and it was assumed that these charges had detonated satisfactorily. This assumption has now been validated for Shot 9 by the analysis of the particle trajectory time-of-arrival measurements.

In Figure 7.1 the shock radii are plotted versus time for the upper and lower charges, and the two curves appear to be identical. Unfortunately, the relatively small charge separation in this experiment made it impossible to observe the primary shocks over a sufficient distance to calculate accurately the variation of shock strength with distance. The limited results which were obtained for shock strength versus distance are plotted in Figure 8.1, compared to Brode's (1957) calculations.

3.3 Comparison of Mach shocks over different surfaces
The refractive image analysis (Dewey et al, 1975) has
shown what appears to be a significant difference between
the strengths of the Mach shocks over the smooth ground
and beneath the interaction plane between the two charges.
The results of the particle trajectory analysis given in
Figures 8.2 and 8.3 do not indicate the same difference.
However, in the RIA case measurements were made as close
as possible to the reflecting surfaces, 0.5m above the
ground plane and 0.2m below the interaction plane, whereas
in the PTA case the results represent an average of
measurements made at puff positions which were not so close
to those surfaces, at heights ranging between 1.0 and 4.5m.
The results shown in Figures 8.2 and 8.3 therefore merely
indicate that the difference in shock strength over the

ground compared with that at the interaction plane may be dependent on the height above the ground at which the measurements are made - not an unexpected result. Determination of Mach shock strength from measurements made at various heights is also made difficult because an assumption must be made about the exact shape of the Mach shock front, in order to correctly assign shock radius values to smoke puffs in the PTA case. At or near a reflecting surface the problem of shape is not so important. Details of the problem in the PTA case and the manner in which the problem was dealt with for Shots 9 and 10 are described in Volume 1 of this report.

3.4 Resolution of time histories

The time histories of density and pressure shown in Figures 24 and 25 do not always show a sharp rise at the time of shock front arrival. This slow rising is not a real effect but one inherent to the method of particle trajectory analysis, which does not permit a high resolution of density in space or in time. The finite spacing of the smoke puffs does not permit the average density of the air within a rectangular cell defined by four smoke puffs to be calculated accurately until the shock has completely traversed the cell. (The time of complete traversal may be as much as 5 ms.)

For the same reason the calculated time histories often anticipate the time of shock front arrival or, in other words, because a cell lies partly in front of the shock front during the time of traversal, the value of average density calculated at a point ahead of the shock may rise before the arrival of the shock. Also for the above reason, time histories calculated by the particle trajectory analysis method do not resolve any weaker shocks subsequent to the first, although these shocks may be detected occasionally in the calculated histories as a rounded bump in the normally exponentially decaying curve. Efforts are being made to see if this resolution can be improved.

The lack of resolution close to the shock front does not occur in the case of particle velocity, which can be measured with reasonable accuracy as soon as the shock has traversed the relatively small space represented by an individual smoke puff. This effect of improved resolution is manifested also in the dynamic pressure histories since although this parameter depends on measured density, it also depends on particle velocity squared. The squared term is able to exert the greater influence.

In the subsequent volume of this report hydrostatic overpressure and total head pressure histories determined from the particle trajectory analysis will be compared

directly with gauge measurements. The total head pressure will be calculated from the dynamic pressure using appropriate compressibility corrections. Pressure impulse curves will be included.

References

- Dewey, J.M., Classen, D.F., and McMillin, D.J. Photogrammetry of the Shock Front Trajectories on Dipole West Shots 8, 9, 10 and 11. Univ. of Victoria Res. Rept., UVic PF 1-75, 1975.
- Dewey, J.M., McMillin, D.J. and Trill, D. Photogrammetry of the Particle Trajectories on Dipole West Shots 8, 9, 10 and 11. Volume 1, Shot 10. Univ. of Victoria Res. Rept. UVic PF 1-77, 1977.
- Dewey, J.M. 1971. Proc. Roy. Soc. Lond. A324, 275-299.
- Dewey, J.M. 1964. Proc. Roy. Soc. Lond. A279, 366-385.
- Brode, H.L. 1957. U.S. Air Force Res. Memo. ASTIA document AD 144302.

Fig. 1. Plan view of test site, Dipole West/9

Fig. 2. Field of view of camera, Dipole West/9

ID = PHOTOMARKER POSITION IN OBJECT PLANE CALCULATED FROM SURVEY DATA @ = PHOTOMARKER POSITION IN OBJECT PLANE TRANSFORMED FROM FILM IMAGE

Fig. 3 CAMERA CALIBRATION, DIPOLE WEST/9

VERTICAL DISTANCE (F1)

Fig. 4 SMOKE PUFF GRID, DIPOLE WEST/9

PARTICLE TRAJECTORIES, DIPOLE WEST/9

8. 6 REGIONS DEFINITION, DIPOLE WEST/9

VERTICAL DISTANCE SCALED

Fig. 7.1 SHOCK TRAJECTORIES, DIPOLE WEST/9

.8. 7.2 SHOCK TRAJECTORIES, DIPOLE WEST/9

Fig. 7.3 SHOCK TRAJECTORIES, DIPOLE WEST/9

Fig. 8.1 SHOCK STRENGTH, METHOD 1

PEAK PARTICLE VELOCITY

(MACH UNITS)

Fig. 8.2 SHOCK STRENGTH, METHOD 1

Fig. 8.3 SHOCK STRENGTH, METHOD 1

PARTICLE VELOCITY FIELD, DIPOLE WEST/9 Fig. 12.1

PARTICLE VELOCITY FIELD, DIPOLE WEST/9 Fig. 12.2

(W)

VERTICAL DISTANCE SCALED

PARTICLE VELOCITY FIELD, DIPOLE WEST/9 Fig. 12.3

Fig. 12.4 PARTICLE VELOCITY FIELD, DIPOLE WEST/9

PARTICLE VELOCITY FIELD, DIPOLE WEST/9 Fig. 12.5

Fig. 12.6 PARTICLE VELOCITY FIELD, DIPOLE WEST/9

Fig. 12.7 PARTICLE VELOCITY FIELD, DIPOLE WEST/9

Fig. 13.1 DENSITY FIELD, DIPOLE WEST/9

Fig. 13.2 DENSITY FIELD, DIPOLE WEST/9

Fig. 13.3 DENSITY FIELD, DIPOLE WEST/9

Fig. 13.4 DENSITY FIELD, DIPOLE WEST/9

(W)

VERTICAL DISTANCE SCALED

Fig. 14 Time-of-arrival surface, Dipole West/9

FIB. 15 SHOCK FRONT SHAPES, DIPOLE WEST/9

Fig. 16 A shock strength surface, Dipole West/9

L SCULED (M)

DIPOLE WEST/9

SHOCK STRENGTH CONTOURS,

Fig. 18 DIPOLE WEST/9 PARTICLE VELOCITY

Fig. 19 DIPOLE WEST/9 DENSITY

Fig. 20 DIPOLE WEST/9 HYDROSTATIC OVERPRESSURE

Fig. 21 DIPOLE WEST/9 DYNAMIC PRESSURE

STATIONS, DIPOLE WEST/9 TIME HISTORY Fig. 22

Fig. 23.1 DIPOLE WEST/9 PARTICLE VELOCITY

Fig. 23.2 DIPOLE WEST/9 PARTICLE VELOCITY

Fig. 23.3 DIPOLE WEST/9 PARTICLE VELOCITY

Fig. 23.4 DIPOLE WEST/9 PARTICLE VELOCITY

Fig. 24.1 DIPOLE WEST/9 DENSITY

Fig. 24.2 DIPOLE WEST/9 DENSITY

Fig. 24.3 DIPOLE WEST/9 DENSITY

Fig. 24.4 DIPOLE WEST/9 DENSITY

71

Fig. 25.1 DIPOLE WEST/9 HYDROSTATIC OVERPRESSURE

Fig. 25.2 DIPCLE WEST/9 HYDROSTATIC OVERPRESSURE

Fig. 25.3 DIPOLE WEST/9 HYDROSTATIC OVERPRESSURE

Fig. 25.4 DIPOLE WEST/9 HYDROSTATIC OVERPRESSURE
75

(XO, YO) = 1.5, 0.5 NO DATA

Fig. 26.1 DIPOLE WEST/9 DYNAMIC PRESSURE

(x0, y0) = 2.5, 1.5 NO DATA

Fig. 26.2 DIPOLE WEST/9 DYNAMIC PRESSURE

Fig. 26.3 DIPOLE WEST/9 DYNAMIC PRESSURE

DIPOLE WEST/9

DIFFELE MEST/S DYMBRIC

HYDROSTATIC OVERPRESSURE

DIPOLE WEST/9 HYDROSTATIC OVERPRESSURE

DIPOLE MEST/S DINNWIC PRESSURE

DIPOLE WEST/9 HYDROSTATIC OVERPRESSURE

DIPOLE WEST/9 DINNHIC PRESSURE

PRESSURE RATIO

DIPOLE WEST/9 HYDROSTATIC OVERPRESSURE

DIPOLE WEST/9 DINAMIC PRESSURE

DIPOLE WEST/9 HYDROSTATIC OVERPRESSURE

PRESSURE RESULTS BY DRUCE PRSITTEN (KB. YOLK BD FT, 30FT

DIPOLE WEST/9 DYNAMIC PRESSURE

DIPOLE WEST/9 HYDROSTATIC OVERPRESSURE

PRESSURE RESULTS AT CRUCE POSITION (XO, YO) = 60 FT, 33 FT

Figure 27.6

DIPOLE WEST/9 DYNAMIC PRESSURE

PRESSURE ARTIO

DIPOLE WEST/9 HYDROSTATIC OVERPRESSURE

DIPOLE WEST/9 DYNAMIC PRESSURE

PRESSURE RESULTS AT GAUGE POSITION (XO.YO) = 60 FT. 40 FT Figure 27.7

Table 1

SURVEY DATA LIST	¥ .	51.79				
	PT. NAME	BEARI	ISTA	COORD	COURD	DRD.
	ZERO	Ö	0	00.000	000	316.32
	G. ZERO B	• 36	1.063	. 22	00	316,32
	CHABG	67.36.1	20	60000000	96.866	316.32
	CHARG	165.33.40	10035	200.25	00.656	361,74
	CP	80. 2.4	071	998.28	401.29	313.75
	WF 5/295			515.75	385.14	341.65
	10	3.00.0	0000	40.000	0.000 0.000 0.000	348 R2
	. 0	317.56.24	121,925	918.42	000000000000000000000000000000000000000	348.64
	5	7.48.5	22.40	917.99	090.87	383.60
	9	5.18.5	49019	878.44	086,51	348.37
	9	5.12.3	49014	878.27	JA6,17	383.34
		7.20.5	5.58	965.25	952.28	318.15
		40000	2000	2000	400000000000000000000000000000000000000	318001
	3	3 3 3 8 6	14,78	070		CC - / TC
	ZM 00	7 . 40 . 4	0.02	95 p. 56	582.94	330.28
	-20.1	4. 7.3	9.87	019.77	002.00	326.36
	-20.1	3.52.2	9086	019075	00200	331.37
	-22.62	4.12.4	99 88	019.79	001.96	336.38
	20.00	3.53.3	4000	010010	00.2° 0.8	343,35
	200	0000		010	2000	340
	200	4 4 4	C. 81	2000		10 6 7 7 5 6
	30.1	9.25	6.0	027.17	010000	3000
	30.1	8.48.1	99 89	027.87	010.79	331.40
	3: .2	8.23.	6.22	027.91	011005	336.46
	33.2	8.52.3	9,87	027.88	010.72	343.44
	30,3	3.54.2	So 87	027.88	010.72	346.47
	30.3	8.52.5	66.63	027.95	010.71	349.43
	1		- 1	66.770	010	356.02
	GEARING A COORDING A TANGREDING A	N DEGREES. M NO DISTANCE ES EAST AND POINTS LIST	INUTES AND S FROM G. ZERO NORTH AND EL	ECONDS, AND UNLESS NOT EVATION IN F	DISTANCE IN ED OTHERWISE FET	FEET
	O YROND	A LIST		4		
	SCALCULAGE CALCU	F. PH 13. MISTANCE B DISTANCE B DISTANCE B	S PSI ALL S CLAS CON BOOK BOOK BOOK BOOK BOOK BOOK BOOK BO	€ 100 •	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1380.0 LBS 117 FT/MSEC 236 FEET CH 222 FEET GS 047 FEET
	1 0 1	וויאקראי דו	KED 22 UCT	3. SIMULTAN	SOO	

/A7704C4

CAMERA POSITION IS 2002.8 FEET EAST, 1385.1 FEET NORTH AND 2341.7 FEET ELEVATION OPTICAL AXIS IS ORIENTED -6.763 DEGREES EAST OF NORTH AND 6.555 DEGREES UPWARD OBJECT PLANE INCLUDES 6.ZERO C AND IS 609.6 FEET FROM CAMERA ALONG OPTICAL AXIS

CALIBRATION DATA TRANSFORMED TO THE OBJECT PLANE IN FEET

	-0.179	-0.142			AVERAGES
	-	-		1 1 1 1 1 1 1 1 1 1 1 1	-
	• 29	. 70	5.73	1.95	30.5
	934	. 74	2.67	1.95	
	000	1.38	. 85	26.7	
	900	0.41	6.83	6.13	4 .
	0041	0.45	. 15	9.74	23.3
	• 5 9	. 38	600	69.6	23.3
	0.30	0.38	3.97	9.74	20.00
	0.43	0.35	10.74	89.771	1-20.20
	.51	. 42	15064	64.6	20.1
	0.27	0.52	20,69	36.6	20.1
EFEREN	.97	000	27,36	1.82	O W2
REFERENCE	000	000	28.01	4.27	
EFEREN	000	000	0.29	5.54	۳,
	0.39	600	29048	3.73	× 2
REFERENC	00.0	000	9050	4.36	
	.03	.16	90 86	86 . 7	9
	0.17	640	0003	4.60	m d
	.00	40.	4:0	. 86	2
	.02	.01	0006	0.57	N
	.12	.50	E	7.38	- a
	600	. 51	0.33	7.50	10
	0.00	.03	119	4.17	· CHARG
		0.053	0	6	CHARG
	SHIFT	SHIFT	COORD. Y	COURD. X	DI NAME

PS

963 9

PPOINT E POINT

 \mathbf{w}

X-AXIS IS PARALLEL TO HORIZONTAL PLANE WITH ORIGIN WHERE OPTICAL AXIS INTERSECTS OBJECT PLANE. SHIFTS GIVE POINT POSITIONS WHICH ARE CALCULATED DIRECTLY FROM SURVEY DATA

MAXIMUM CALIBRATION ERROR SCALED= 0.086 FEET
MAXIMUM CAMERA ORIENTATION ERROR= 0.011 FEET
TOTAL ERRORS IN THE OBJECT PLANE= 0.091 FEET

/A770404

AMBIENT TEMPERATURE TS 14-17 DEGREES CELSIUS
AMBIENT PRESSURE PS 93.2 KILOPASCALS
AMBIENT PRESSURE PS 93.2 KILOPASCALS
VAROUN PRESSURE VE 99 KILOPASCALS
AMBIENT SPEED OF SOUND CS 342.469 METERS/SECOND
CHARGE REIGHT WE 463 METERS
CHARGE REIGHT WE 463 METERS
SECHELING FACTOR SS 8-1111
1-0 KILOGRAMS WF 5/295 DIPOLE WEST/9 TIMES OF ARRIVAL

FITTING	REGION	3																																m																			
TRAJECTORY	R-SCAL	2000	9000	(0.945	0,975	C. 581	0.613	0.944	0,955	C. 532	C. 954	10.017	1.382	10344	1 . 323	103)2	10313	1.275	1,258	10308	1,290	1.266	1.283	1,413	1.704	1.675	1,0555	1,658	10721	1.649	10673	1.652	1.0651	10694	1.79	0.60	0 0 0 0	1000	1.000	033	1001	410	4000	400	000	1000	1000	000	N. 100	00000	200	2000	•
DERIVED BY TR.	PARTICLE	,	0. 4.24	2.629	3.514	2.178	3.411	1 68	2.295	3.207	2.257	1.428	0.694	1,388	0.472	1.531	1.114	1.719	1.548	10677	0.983	1,167	0.822	1.698	1.279	10122	0.924	1.658	1.541	1.963	1.503	1.128	1.168	1.520	1.298	1000	000	V4000	20.00	10607	1.177	1001	1.078	1.083	1000	4000	0000	100	0 0	000		010	1.5261
S	TOY/OH W		-	1002	00-	101	7.0	0.5	0.6	-1.4	1000	-1.4	0.1	0.0	100	-6.2	100-	10.5	001	100	0.0	10.4	0.0	10.2	E • J	C . 2	3.	00	2	1001	4.01	001	0	500	000	000	000		100	1001	100	100	0	10							, ,		•
ARTICLE VELOCITIE	F0/×0=0	1.347	2000	2.618	3.514	1.730	3,324	0.894	2.190	20877	2.164	0.267	0.666	1 . 359	C • 4 4 5	1.513	1.036	1.643	1.048	1.677	6460	1.396	0.618	1.684	1.234	1.101	E 66 0	1.649	1.541	1.956	1.422	1.008	1.186	1.421	1.000	10000	0 0	1.481	2000	10601	1.154	10149	10163	10473	10314	101	200	000	000	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200	0 0 0 0	1.664
PEAK PART	T-SCAL MSFC	0.525	00417	0.417	66400	0,453	6.489	00453	0.417	0.417	C. 417	0.453	C3 8 23	0.850	0.178	C. 778	0,778	C. 778	0.742	0.778	0.742	00.100	0.736	5660	10391	10293	1.247	1,211	10319	1.211	10211	1070	10201	1.283	1.403	1 670	100	1.751	1.715	13617	1.009	1,499	1.571	1.679	1000	100		2	20100	1000	000	0 0	1.074
AND	Y-SCAL METERS	20150	1.971	1.771	1.581	1.392	1.208	1.038	0,851	0.664	20300	0.105	2.148	1.983	1.773	1 . 582	10417	1.229	1.035	0.846	0.674	6440	405.00	0.131	2.175	1.978	1.176	1.396	10 244	10024	0.822	5/0.0	0000	692.0	000	1000	1070	000	1.415	1.246	1.56	0. 872	0.697	484	0000	0110	20161	000	1 775	1000	1 4 1 3	0 - 0 - 0	10701
- ARRIVAL.	X-SCAL METERS	86.0	-	4	9	0	-	7	=	S	-	-	=	-	2	0	æ	1	0	-	5	0	0	9	7	5.1	501		7	4	4.	4	1 1	71	- 6	00	110	7 6	4	22	-	00	0	2	10	4	ıı	1				2 4	0
TIMES OF	T-08S	4.258	3.378	3,378	3.964	3.671	3.964	3.571	3.378	3,378	3.378	3.671	6.895	0.895	6 30 6	6 30 6	6.339	6.309	0.00	6.339	9110	5.723	5. 723	90.00	11.279	10.403	1001	9.819	0000	0.00	n .	•		10.403	000	7.6	00	0	. C.	3.02	2.15	2.15	2.73	3.61	3.02	3.00	7.68	7.08		90	36	200	00000
SITIONS.	NETERS	17.44	15.98	14.36	12.82	11.29	9.79	8. 42	6.00	5.38	2.48	C. 85	17042	10.08	D	12.83	11.49	9. 90	8.39	000	0 40	000	2.40	0	17.64	40.0	4	11.32	000	90	5.0	010	200	40.00	200	000	4. 7.	100	11.48	10.11	8.56	7.07	5.65	3.03	2.41	0	17.52	16.94	10. 20	2 00	11.45	0	
PUFF PO	X-08S	0:00	7.874	7.046	7.846	7.538	7.385	7.012	7.404	7.523	7.633	7.335	10.022	2000	10.721	10000	10.397	13,316	100100	1.0373	10000	1000	001.01	7	13.285	4.4.4	115001	000	00000	13.341	7.	15.575		2000		10.00	200	15.00	15.747	15.037	15.532	15.374	15.441	10.01	15.596	15.760	17 - 5 JA	17.6.31	17.17.	17.550	17.500		
INITIAL	NUMBER		v	•	4	0	01	1	10	0.	11	1.2	13	•	0.1	01	11	D		77	77	77		* *	57	0 7	27		7.7	100	7.	7 7	* 11	0 4	0 10	17			,	4.2	**	**	4.5	0+	1.1			7.4		200			

ቀቀቀ መጠጠ መመመው ቀቀቀ መጠጠ መመመው መቀቀቀ መጠጠ መመመመ መመቀቀቀ መጠጣ መመመ መመው መቀ	44888
######################################	L S 1
	8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
$\begin{array}{c} \mathbf{u}_{11}\mathbf{u}_{11}\mathbf{u}_{22}\mathbf{u}_{13}\mathbf{u}_{14}\mathbf{u}_{02}\mathbf{u}_{02}\mathbf{u}_{02}\mathbf{u}_{02}\mathbf{u}_{03}\mathbf{u}_{14}\mathbf{u}_{14}\mathbf{u}_{12}\mathbf{u}_{02}\mathbf{c}_{03}\mathbf{u}_{00}\mathbf{u}_$	00000000000000000000000000000000000000
	0.128 0.0128 0.012 0.0250 0.0250 0.084 M.M. M.M. METERS/ M.M. M.
$\begin{array}{c} Haller(\mathcal{G}) = Hal$	00m/v
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
00000000000000000000000000000000000000	1
$\begin{array}{c} u_{u}}}}}}}}}$	NEW WE WE WITH A MANUAL TO SO THE STATE OF T
$\begin{array}{c} Little of the constraints of the constrain$	196900 GRAND THE TOTAL THE
$\begin{array}{c} \Phi \wedge \Psi \wedge$	######################################
	ANNAN HITTANAN TERMINAN MARKET AN ANANA MARKET ANANA MARKETANA MARKET ANANA MARKETANA MARKETANA MARKET ANANA MARKETANA MARKETANA MARKETANA MARKETANA MARKETANA MA
# MANHEC # # 4 M M M M M M M M M M M M M M M M M	ANNO OR STATE OF THE STATE OF T

WF 5/295 DIPOLE WEST/9 DATA SHOCK FRONT

SMOKE PUFF GRID 1209

/A770404

2

PRIMARY FRONT FROM LOWER CHARGE

THE PRESENCE THE 14-17 DEGREES CELSIUS
ALGERIA PRESENCE TO 93.02 KILOPASCALS
KILOPASCALS
ALGORAN PRESENCE TO THE RESPONDENCE TO

PAGGA FRONT DATA COMPUTED FROM PARTICLE TRAJECTORY TIMES OF ARRIVAL

1 × 5 & C	RETERS STEPS	METERS	DIFFERENCE	T-SCAL MSEC	R-SCAL METERS	SHOCK	PRESSURE PATIO	PRESSURE KPA	PARTICLE VELOCITY	DE
4.1.4	7.730	7.734				1				
	0000	07/0	210.01	0.417	0.953	3,997	16.640	1547-816	3,042	
おとけるだ	7.744	7.726	-0.018	0.417	0.953	70002	16-647	7.0 2.7	1000	
田本門・門	7.560	7.726	6-166	717	E 40 0	1000		0100110	30 746	
	6.36.9		200	- 1	0000	7000	10.040	154/0816	3.042	
4 1 2 4 2	NC 7 . D	0 1 10	11001	0.453	0.00 C	3.678	140616	1350,500	2. 0.0	
54743	000000	12,265	-0.143	50706	1.266	2.636	040	200000000000000000000000000000000000000		
日本 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	140.047	10.266	000	100		000	0 1	100000	1.841	
を は ・ 車 作		00000	2000	0000	1.200	2.636	6.943	6450574	1.88.1	
0.000	410.01	13.523	60000	00 742	1.297	2.5.7	202.3	000		
N + 3 - 6	014.70	17-71	01160	110	000		1	つんんのんのつ	1. /80	
			301	0	10.20	20000	5,813	540.749	1 o F C B	
****	13.392	13.365	90000	1 2 2 4 7	1.650	1.700	2.003	E 30 . 000	000	
10.0111	13,399	13.386	-0-013	1.247	1.650	1	000	000000000000000000000000000000000000000	0000	
					200	000	50202	2040953	0.926	
T 15 T148-CF-4001VA	CF - 4001 VAL	0 0 0 0	AND DISCOUNTS OF BOOK		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1				
		֡				֡				

9.2

NUMBER

ENSITY RATIO

180000000

A RADIAL POSITION. RADIOS VALUES ARE FITTED USING RFIT=A+8*T+C*LOG(1+T).

ARE EXPRESSED IN MACH UNITS, RELATIVE TO THE AMBIENT SOUND SPEED C ABOVE.

AND PERK OVERPRESSURE (PMAK-P) IN KILOPASSALS OBSERVED.

AND PERK OVERPRESSURE (PMAK-P) IN KILOPASSALS OBSERVED.

BENSITY IS EXPRESSED AS A RATIO. RELATIVE TO THE AMBIENT DENSITY D.

OBSERVED TIME MULTIPLIED BY (C/CO)/S, WHERE CO= 340.292 METERS/SECOND CONTROL OF (W/WO)*(PO/P).

STANDARD CHARGE WO IN ATMOSPHERE WHERE CO AND PO ARE AMBIENT (TO= 15 DEGREES CELSIUS).

Table 5.2

T IS TIME-GE-ARRIVAL AND R IS RADIAL PUFF POSITION. RADIUS VALUES APE FITTED USING RFIT=A+8*T+C*LOG(1+T).
SMOCK AND PARTICLE VELOCITIES ARE EXPRESSED IN MACH UNITS, RELATIVE TO THE AMBIENT SOUND SPEED C ABOVE.
PRESSURE IS PARK OVERFRESSURE RATIO (MAX-P)/P, AND PEAK OVERPRESSURE (PMAX-P) IN KILOPASCALS OBSERVED.
#HERE P IS AMBIENT PRESSURE. DENSITY IS EXPRESSED AS A RATIO. RELATIVE TO THE AMBIENT DENSITY D.

SCALED TIME OBSERVED TIME MULTIPLIED BY (C/CO)/S, WHERE CO= 340.292 METERS/SECOND
AND SCALED DISTANCE ORSERVED DISTANCE DIVIDED BY S= CUGE ROOT OF (W/WG)*(PO/P).

MHERE PD= 101.325 KILOPASCALS. (W. WO. AND P ARE DEFINED ABOVE.)

MHERE PD= 101.325 KILOPASCALS. (W. WO. AND P ARE DEFINED ABOVE.)

VELECTITY, PRESSURE, AND DENSITY. EXPRESSED AS RATIOS, ARE INVARIANT UNDER SCALING.

MANUALLY SERVICES OF SERVICES

Table 5.3

RA /A 170404

PUFF GRID 1209

SMOKE

WF5/295

DIPOLE WEST/9

SHOCK FRONT DATA

AMBIENT SPECO OF SOUND CENTRAL OF SOUND CENTRAL OF MEIGHT ME 4669 M	GHT WE ABO	1959 KILUGRANS ND C= 340.469 METERS 189.9 KILOGRAMS 4.63 METERS	S9 METERS/SECOND	QNO						
SACHS SCALING PS	ACTOR	S= 9.1111 16HT WO=	1.0 KILDGRAMS	(0						
SHOCK FRON	SHOCK FRONT DATA COMPUTED	FROM	PARTICLE TRAJECTORY TIMES	CTORY TIME	ES OF ARRIVAL	AL				
T-085	R-08S METERS	METERS	DIFFERENCE	T-SCAL MSEC	R-SCAL METERS	SHOCK	PRESSURE RATIO	PRESSURE	PARTICLE VELOCITY	DENSITY
3.071	7.656	7,581	-0.075	C. 453	6.935	6	556	15426.393	3.035	12-4
6.010	10.203	12.274	0.070	3.742	1.267	2.974	9.155	851.588	2.199	3.834
6.816	13.508	13.644	0.076	10211	1.682	32	15	4790549	1.582	3.12
5.019	13,373	13.644	0.271	10211	1.682	32	.15	479.549	1.582	3.12
12.154	15.526	15.434	-0.122	6646	1.899	-	. 35	3770422	10370	2.83
12.154	15.546	15.404	-0.142	10499	1,899	-	.05	377,422	1.370	2.83
12.737	15.853	15.820	-0.633	10571	1.950	1	.85	358.481	1.327	2.77
15.358	17.795	17.599	561.00	10804	20170	92	.15	293,161	10170	2.55
BCC . C.	566.71	17.599	9100	10894	2.170	92	• 12	293,161	1.170	2.55
10.100	576.0	665.	500	10894	2.170	61	.15	293e 161	1.170	2.55
0000		400	m v 000	2,325	20 440	18	. 55	237.360	1.0.21	2.33
0.00	23.056	30000	0.	20.425	2.440	0	55	237.360	1.021	2.33
07000	2000	220.00	11.	23390	484	9	100	230 238	1.001	2.30
22.612	2000	220.113	- M	20700	41.0	0 0		220.00	906.0	2.16
2000	044.10	22.00	100	707	4.7.0	0	0.10	200000	0000	2.10
20.057	24.300	24.260	10000	2000	0000	0 0	10	220000	0.00	2010
734	22.032	2000	200	000	46.00	0	000	1000000	418.0	20.03
	1000	603047	10000	00000	26602	0	98	10% 838	0.914	2.53
10000	041.	607.42		3,288	2.092	. 60	. 82	109.838	00814	2.03
20.07	25.642	25.358	9	30537	3,126	.57	.70	158,916	0.777	1.98
50.00	25.379	25.358	-0.021	3 537	3.126	57	100	158.916	0.777	1.95
505.607	52.549	25,511	850.01	30573	30145	• 56	1.693	157.494	0.772	1.97

NUMBER

Table 5.4

		E DENSITY PUFF	6 4.593	3,919 1	3.218	2.706	201.00	3 2.677	2.572 5	4 2.572 5	2.525	2223	2,287	2.287 6	7 2.271 6	20.00	20113	2.089	2.CA9 7	20.65	2021	7001	1.952	1.943	1.508 8	1.900	1.9.3	1000	*****	2000	1.612	
4		PARTICLE VELOCITY	.15	. 28	. 65	000	24	1.256	.18	.18	.15	10	8 5	. 98	160	60	900	. 85	. R.S	. 83	10	77	075	.75	.72	• 72	12		. 4		.65	
RS /A77040		PRESSURE	58.5	13.4	19.6	200	37.1	328.701	98.7	58.7	85.6	-	25.7	25.7	2109	0.00	86.4	81.1	81.1	1002	200	200	53.1	5103	4405	4209	200	000	44.0	28.6	26.1	
OT 10N PLANE		PRESSURE	.82	. 82	0 -	0	62	3,534	. 21	- 21	000	200	42	.42	.38	010	000	76.	76.	100	d	689	64	.62	55	200	200	200	4 4	38	.35	2000
GRID 1239 BOVE INTERACTION	AL	SHOCK	.03	90	4 M	30	000	2.007	. 93	600	6.6	0 7 0	. 75	• 75	.74		.64	.63	.63	0	200	500	. 55	.54	. 52		000		4	47	.47	
SMOKE PUFF GI	MES OF ARRIV	R-SCAL METERS	91	622	0 0	9.0	O	2.050	17	41.	510	9 4	46	940	48	0 4	100	074	4		0 0	90	66.		0.0	-:	-	1 4	22	620	. 32	
	JECTORY TI	T-SCAL MSEC	0.489	-	-	66.	170	.75	. 89	989	000	3	9.39	.39	643	100	. 82	. 89	9 4 9		10	200	. 35	6:0	. 53	000	200	64	. 78	. 92	60.	
WF5/295 REES CELSI SCALS SCALS SCALS SCALS SCALS ON THOGRA	RTICLE TRA	DIFFERENCE			200	5	. 52	0.52	10	1200	0 0	2011	100	0.01	• 55	10	S	0.03	200		0.22	0.02	0.02	.03	2000	000	000	13	000	.25	. 25	20
	UTED FROM PA	METERS	1	100	4	5.82	6.43	03	7.41	1001	25. 25	0.60	6.95	9. 95	51.0	1 80	1.90	2.29	2000	3.24	4.01	4.01	4.32	4.47	5.07	22.00	5.50	5.52	6.11	69.9	96 .0	24 0 25 0 014
	F DATA COMPUT	R-ORS METERS	1	3	3.05	5.66	2.90	01	7.57	1.00		9.72	C.02	0000	000	107	1.96	2.25	200	3.25	4.24	4.73	4.34	4.50	0 1	ישר	5.50	5.38	6.05	6.44	6.78	
	SHOCK FRONT	T-0BS MSEC	3.904	2	0	3.02	3.90	0	5.35	000		9.84	2005	7.45	7	200	2.90	3.48	9 4	5.23	6.65	6.65	7.63	7.52	000	000	200	9.53		1.83	2.41	T 15 TIME

T IS TIME-OF-ARRIVAL AND R IS RADIAL PUFF POSITION, RADIUS VALUES ARE FITTED USING RFIT=A+B*T+C*LOG(1+T).
SHOCK AND PARTILLE VELOCITIES ARE EXPRESSED IN MACH UNITS, RELATIVE TO THE AMBIENT SOUND SPEED C ABOVE.
SHESSURE (SPEAK OVERFRESSURE RATIO (PMX-P)/P), AND PEAK OVERPRESSURE (FOUND SPEED C ABOVE.)
HERE P IS AMBIENT PRESSURE.
SCALED TIME OBSERVED TIME MULTIPLIED BY (C/CO)/S, WHERE CO= 340,292 METERS/SECOND
AND SCALED DISTANCE ORSERVED DISTANCE DIVIDED BY S= CUBF ROOT OF (W/WO)*(PO/P).
HERE POS IL1,325 KILDPASCALS. (M. WO. AND P ARE POFINED ABOVE.)
HERE POS IL1,325 KILDPASCALS. (M. WO. AND ARE PRESSURE AMBIENT (TO= 15 DEGREES CELSIUS).
VELOCITY, PRESSURE, AND DENSITY, EXPRESSED AS RATIOS, ARE INVARIANT UNDER SCALING.

Table 5.5

				DENSITY	3.877	3.371	3.148	2.993	2.993	2.922	2.732	2.7.3	2.648	20434	20413	2.413	2.198	2.199	2,153	2.009	2.300	2.009	1.922	1.922	1.903
*0				PARTICLE VELOCITY	2.173	1.781	1.603	1.485	1.485	1.433	1.296	1.276	1.237	1.689	1.074	1.074	7.927	0.927	0.896	20.797	0.797	0.797	3.737	0.737	0.723
R3 /A770404				PRESSURE	833.694	5P7.068	493.439	431,486	431,486	400.534	345,101	336.448	320.255	261.891	256.570	255.570	205.121	205-121	195.042	164.663	164,600	164.633	147,309	147.309	143.477
	FACE			PRESSURE RATIO	8.963																				
GRID 1209	AT GROUND SURFACE		,	SHOCK	2.947	2.532	2.349	2.231	2.231	2.179	2.045	2.025	1.999	1.848	1.834	1.834	1.700	1.700	10673	1.596	1.586	1.586	1.535	1.535	1.524
MOKE PUFF G	MACH STEM AT		IES OF ARRIVAL	R-SCAL METERS	1.411	1.678	1.827	1.939	1,939	1,993	2.147	20172	2.221	2.431	20454	2.454	2.711	20711	2.772	5.989	2.989	2.989	3.140	3.140	3.177
S	2	Q Z	CTORY TIM	T-SCAL MSEC	566.0	1.283	1.463	10607	1.637	1.679	1.894	1.930	2.00.2	2,325	20360	20307	2.789	2.799	2,896	3.288	3,288	3.288	3,573	3,573	30 644
WF5/295		AMBIENT TEMPERATURE T= 14.17 DEGREES CELSIUS AMBIENT PRESSURE P= 93.02 KILOPASCALS ELETIVE HUMIDITY RH= 55.2 FR CENT VAPCUK PRESSURE VP= 0.89 KILOFASCALS AMBIENT SPEED OF SOUND C= 340.449 METERS/SECOND CHARGE HEIGHT M= 48.99 KILOFASMS CHARGE HEIGHT M= 4.61 METERS SACH KAS SCALING +2 HS= 4.61 METERS SACH SCALING +2 HS= 4.61 METERS	PARTICLE TRAJECTORY TIMES	DIFFERENCE	-0.016	-0 -134	0.392	-0.068	-0.045	0.061	-0.212	0.063	-0.068	0.022	0.029	-0.241	0.086	-0.228	0.400	6.239	-0-127	601.0	-0.134	-0.371	0.160
DIPOLE WEST/9		93.32 KILOPA 93.32 KILOPA 93.92 KILOPA 90.89 KILOGE 90.90 KILOGRAM 90.90 KILOGRAM 90.90 KILOGRAM 90.90 KILOGRAM	UTED FROM PA	METERS	11,0442																				
		SOURCE TO SOURCE	DATA COMP	R-OBS METERS	11.459	13.743	14.427	15.795	15.772	16.103	17.630	17.557	18.084	15.697	19.872	20.102	21.901	22.215	22.080	24.006	24.365	24.136	25.604	25.771	25.610
SHOCK FRONT DATA		AAABARARARARARARARARARARARARARARARARARA	SHOCK FRONT DATA COMPUTED	T-08S MSEC	8.000	10.403	11.062	13.029	13.029	13.611	15.356	15.049	16.431	18.845	19.135	18.135	24.012	22.012	23.490	20.057	26.657	26.057	20.503	26.503	29.538

PUFF

T IS TIME-OF-ARRIVAL AND R IS RADIAL PUFF POSITION. RADIUS VALUES ARE FITTED USING RFIT=A+R*T+C*LOG(1+T).
SHOCK AND PARTICLE VELOCITIES ARE EXPRESSED IN MACH UNITS, RELATIVE TO THE AMBIENT SOUND SPEED C ABOVE.
PRESSURE IS PRAX. DOING RATIO CHMAX-P)/P. AND PEAK OVERPRESSURE (PMAX-P) IN KILOPASCALS OBSERVED.
HERE P IS AMBIENT PRESSURE. DENSITY IS EXPRESSED AS A RATIO, RELATIVE TO THE AMBIENT DENSITY D.

SCALED TIME OBSERVED TIME WULTIPLIED BY (C/CO)/S. WHERE CO= 340.292 METEPS/SECOND
AND SCALED DISTANCE OBSERVED DISTANCE DIVIDED RY S= CURE ROOT OF (W/WO)*(PO/P).
HERE PO= 10.1325 KILOPASCALS. (W. WO. AND P ARE DEFINED ABOVE.)
MACHED EVALT= STANARE OCHARGE WO IN ATMOSPHERE WHERE CO AND PO ARE AMBIENT (TO= 15 DEGREES CELSIUS).
VELOCITY, PRESSURE. AND DENSITY. EXPRESSED AS RATIOS, ARE INVARIANT UNDER SCALING.

Table 7.1

X = TERS	REGN N=-SCAL N=-SCA
New York	REGN RETERS
2273	REGN NET CONTROL OF STATE OF S
2234 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	REGN N=574 1
2254 5 2 10-230	REGN NET CONTROL OF STATE OF S
22913 4 4 11822 1989 2 1889 2 1882 1 1899 2 1899 3	REGN 1-6435 1-6435 1-6436 1-643
1945 1945	REGN X = SCAL 1
SCAL Y	REGEN X - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TECAL CODE METERS METER	PEGN X
100 100	1000 1000
TERRORN NETTERS CONTRICTOR NETTE	THE TERM NETTERS NOT SET 1 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SCAL REGN METERS	PEGN X - SCAL WETERS METERS METERS METERS METERS METERS METERS METERS METERS MACH NO VELOCITY MACH NO VELOCI
New Year	REGN WETERS METERS METERS METERS METERS METERS MACH NO VELOCITY 2 2 3 3 2 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
METERS MACH NO VECOCITY METERS	METERS METERS MACH NO VELOCITY MACH NO VELOCITY MACH NO VELOCITY MACH NO VELOCITY MACH NO MACH NO
706 2 2 2 2 2 1 6 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 7 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7.77 2 2 2.010 1.998 2 0.994 0.227 0.994 0.227 0.998 2 2.008 1.248	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
721 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2008 1.629 1.629 0.649 1.329 0.649 1.639 6.699 6.699 1.639 6.699 6.699 1.639 6.699 6.699 1.639 6.699 6.699 1.639 6.699 6.699 1.639 6.699 6.699 1.639 6.699 6.699 1.639 6.699 6.699 1.639 6.699 6.699 1.639 6.699 6.699 1.639 6.699 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7058	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7668 4 4 22.786 0.834 1.00 0.04 11.01 2.10 0.04 1.00 0.04 1.00 0.04 1.00 0.04 1.00 0.04 1.00 0.04 1.00 0.04 1.00 0.04 1.00 0.00 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
772 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
911 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
914 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
9911 2 2 2 2 2 2 2 3 2 8 1 2 2 3 2 8 1 3 2 8 1 3 3 8 2 3 3 8 3 3 8 3 3 8 3 3 8 3 3 8 3 3 3 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
996 2 2-092 0-129 1-52 0-92 1-015 0-92 1-015 2-991 5 2-264 1-649 1-629 0-71 1-098 2-2 2-0164 4 2-268 1-228 1-15 0-078 1-150 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-2 2-	2 2.092 0.129 1.032 0.502 1.015 2.02 1.035 0.503 1.035 0.503 1.035 0.503 1.035 0.503 1.035 0.503 1.035 0.045 1.035 0.045 1.035 0.045 1.035 0.045 1.035 0.045 1.035 0.045 1.035 0.045 1.035 0.045 1.035 0.045 1.035 0.045 1.035 0.045 0.045 1.035 0.045 0.045 1.035 0.045
991 5 20178 10608 1025 0050 10342 2020 0933 5 20208 1028 1009 0008 10108 2020 0005 4 22207 10263 1010 -0.011 10109 2020 0990 3 22181 00563 1010 -0.011 10109 2020 0990 3 00563 1010 -0.011 10109 2020	5 2.27
9983 5 2-204 1-413 1-09 0-01 1-085 2-2 9004 4 2-208 1-228 1-15 -0.08 1-150 2-2 9079 4 2-2196 0-858 1-12 -0.23 1-109 2-2 9096 3 2-2191 0-664 1-04 -0-19 1-056 2-2	5 2.204 1.413 1.009 0.0.1 1.0085 2.207 1.028 1.10 0.008 4 2.207 1.028 1.10 0.008 4 2.207 1.008 1.10 0.028 3 2.106 0.858 1.10 0.023 1.0145 3 2.173 0.277 1.005 0.008 3 2.173 0.277 1.005 0.008 6.114 0.99 0.006 0.994 6.115 0.099 0.006 0.099 0.006 0.0994
0.05 4 2.208 1.228 1.15 -0.08 1.150 2.2 0.05 4 2.207 1.003 1.10 -0.11 1.10 2.2 0.079 4 2.196 0.858 1.12 -0.23 1.145 2.2 0.996 3 2.181 0.664 1.04 -0.19 1.056 2.2	4 2.22/3 1.228 1.15 -0.078 1.155 4 2.22/3 1.10 -0.011 1.109 4 2.22/3 1.10 -0.21 1.109 3 2.21/3 0.858 1.32 -0.21 1.109 3 2.21/3 0.854 1.004 -0.21 1.005 3 2.106 0.114 0.99 0.06 0.994
-0055 4 2-297 1-063 1-10 -0-11 1-109 2-2 -979 4 2-181 0-664 1-04 -0-19 1-055 2-2 -996 3 2-2181 0-664 1-04 -0-19 1-055 2-2	4 2-297 1-203 1-10 -0-11 11-109 4 2-2196 0-858 1-12 -0-13 1-104 3 2-2181 0-664 1-04 -0-19 1-0-56 3 2-173 0-277 1-0-5 0-21 1-0-73 2-196 0-114 0-99 0-0-6 0-994 FES
996 3 20181 C-664 1-014 -C-19 1-056 2-2	A 22.195 0.459 1.12 -0.23 1.145 3 22.173 0.277 1.05 0.21 1.073 2 2.174 0.99 0.06 0.994
•996 3 2-181 C-664 1-04 -6-19 1-056 2-2	3 2.181 C.664 1.04 -6.19 1.056 3 2.173 C.277 1.05 C.21 1.073 3 2.196 C.114 C.99 C.C6 C.994 1F.S.
	3 2-173 0-277 1-05 0-21 1-073 3 2-196 0-114 0-99 0-06 0-994 F.S.
0001 3 20173 00277 1005 0021 10073 201	3 2.196 C.114 C.99 C.6 C.994 DES
988 3 2-196 C-114 0-99 0-06 0-994 2-1	ALUES ALIES

		REGN	•		'n	·	00	4	4	4			0		ď	ď	2	o co	9	4	4	-) W	0.00	. 5	2		2	4	4	4	~) [m	
		R-SCAL	2.414	20.53	2,525	2.486	2,503	2.509	2.525	2.543	2.558	2.493	2.553	2.705	20677	2000	2000	20614	0000	2.650	20075	2000	2000	2000	2.821	20807	20770	20765	2.759	2.760	2.766	20807	2.811	2.766	2.752	
•		PARTICLE	990	6.5	57	56	63	66	67	76	82	7.1	76	84	77	75	69	67	77	74	8	8 8	8	8	77	85	.74	.89	. 92	79	89	0	101	70	87	
/A777404		TO/YO=V	0.2	-	-	-	<	-	C	:	c.	0	7	2	2	-	c	-	C	c	0	C	0	C	m	-	2	0	C	-	:	0	0		-	
		TO/XO=0	ئ																										•		•					
		Y-SCAL																																		
PUFF GRID 1209		X-SCAL MF TF RS	2. 3A	770	46	440	50	.5.	.50	648	150	47	.50	.56	.58	.61	662	190	68	6.63	643	000	.61	.62	690	.72	.73	.75	.75	.75	.75	.76	.76	.75	.75	
SMOKE		REGN		2	2	S	S	4	4	m	٣	~	2	2	S	S	4	4	4	n	m	m	2	2	S	S	S	S	4	4	4	m	6	٣	8	σ • •
	MS	R-SCAL	1,817	10840	10836	1.888	1.800	1,911	1.975	1.96	1,942	20096	20127	2.071	2.197	20190	20236	2.237	20147	2.191	20244	2.256	20270	2.297	2,355	2.394	2.433	2,371	2.366	2,381	2,399	20423	2.386	2,378	2.406	LED VALUES LED VALUE. R SCALING.
WF5/295	3,000	PARTICLE VELOCITY	C. 20	.21	. 22	.27	. 26	.32	.23	. 27	.34	.36	. 43	. 21	95.	. 45	. 51	.43	.26	.31	.47	.58	. 55	69	.57	Ú1.	. 54	. 55	. 55	• 56	. 54	.59	.63	• 66	. 69	TIMES SCALE TIMES SCALE IANT UNDER
E WEST/9	SCALED TIME	V=DY/DT	0.13	0.10	90.0	60.0	0.11	0.16	2.10	90.0	0.08	0.13	0.17	0.02	0.12	0.13	0.10	0.02	3.08	-0.05	0.07	0.01	0.25	0.18	0.17	0.15	0.11	90.0	0.05	40.0	-0.03	00.0-	00.0-	00.00	9.29	8-1111 8-1069 ARE INVAR
DIPOLE	4	MACH NO	ò	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	E VALUESE TE VALUE =
TY FIELD	E VELOCITIES	Y-SCAL ME TERS	2.314	2.145	1.844	1.020	1.413	925	0.732	0.444	0.222	2.334	2.120	1.873	1.534	1.290	1.032	0.785	0.091	15400	0.357	0.137	2.42	2.076	1.458	1.713	1 . 493	1.258	1 .030	0.637	C.017	964.0	0.315	0.120	2.232	D DISTANCE
VELOCITY	PART ICLE	X-SCAL METERS	1.714	1.787	1.828	1.866	1.700	55001	1.940	7.910	7000	5.000	4.087	2.064	20105	2.185	2.231	5.209	2.100	2.143	2.210	2.252	2.207	2.257	2.542	2.324	4.377	2.368	5.304	2.301	2.344	50000	2.305	20375	2.348	AND CESE

D TIME = 4
2 × 1

/A770434

SMOKE PUFF GRID 1239

WF 5/295

DIPOLE WEST/9

VELOCITY FIELD

PARTICLE VELOCITIES AT SCALED TIME= 5,000 MS

ል ር ጠር አጠየመው የ4 4 ቀ ພ ພ ພ የ መ የ መ የ ተ 4 ቀ ພ ພ ພ የ መ የ መ የ መ የ መ የ መ የ መ የ መ የ መ የ	
$\begin{array}{c} \alpha \mathbf{x} \\ \square \mathbf{m} \\ \square \mathbf{u} \\ \mathbf{u} \\ \square \mathbf{u} \\ \mathbf{u} \\ \square \mathbf{u} \\ $	
7 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 ×	
\	
A C C C C C C C C C	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c} \times \mathbf{X} \\ Imbunubunubunubunubununununununununununun$	
ፍር ጠር 20 Σጠሪካ የርዕ ተቀቀመ መስመ የመመቀቀቀመ መስመ የመመቀቀቀመ የመመ እስከ የመመመ የመመቀቀቀመ የመመመ የመመቀቀቀመ የመመመ እስከ የመመመመ የመመመመ የመመመመ የመመመመ የመመመመ የመመመመ የመመመመመ የመመመመመ የመመመመ የመመመ የመመመመ የመመመመ የመመመ የመመ የመ የ	
$\begin{array}{c} \mathbf{A}\mathbf{x} \\ + \mathbf{m} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} u$	RED V
ごには留着になるものもなるとなるようなできます。 といっぱい とっぱい とっぱい とっぱい とっぱい とくりょう アンドラ とっぱい とっぱい とっぱい といっぱい といっぱい といっぱい といい といい といい といい といい といい といい といい といい と	SSCA
4 W 4 >	FFE
H	8-1111 TIM 8-1069 TIM ARE INVARIAN
+0.00000000000000000000000000000000000	E VALUES BOILL TIME VALUE A.1069 TIME VALUE A.1069 TIMES SAGE INVARIAN
N	STANCE VALUES 8.1111 TIM TIME VALUE = 8.1069 TIM LUES AS SHOWN ARE INVARIAN

v	1
_	:
(v
7	TO
E	דם

VELOCITY F	VELOCITY FIELD	0110	DIPOLE WEST/9	WF5/295		SMOKE PUF	PUFF GRID 1209			/A770404			
PARTICLE	E VELOCITIES	H	SCALED TIM	E= 6.000	MS								
SH	Y-SCAL METERS	MACH NO	WACH NO	PARTICLE VELOCITY	R-SCAL METERS	O O O O	X-SCAL METERS	Y- SCAL	MACH ON	MACH NOT	PARTICLE	R-SCAL METERS	CODE
0	2.186	0.0	0.16	o	2.859		17	0.896	C	o	0	3.187	4
2010	000	000			2.891	ın u	200	0.739	0	C.10	0.232	3.294	41
	1.527	200	90.0		20000	ı: w	200	0000	., e.	0		3.325	יו מי
æ	1.292	00	0010		2.820	r. w)	90	00100	00			2036	n 14
0	1.140	0.2	0.10		2.843	S	5.2	2.273	. 0			3.451	'n
0	106.0		0000		20844	4	. 25	2.112	0			3.400	9
	0.650		0		2.887	4	17	1.895	u	•		3,388	2
	5000	0.5	0000		3.020	2	. 34	1.675	0			3.389	Ø
4.014			10.00		2.837	m	4 5	1 3 4 7 9	0	•		3.360	S
206.2		0.0	0.15		3.081	S	38	1.256	0	•	•	3. 382	2
0.00			500		3.065	ıc ı	35	1.083	0	•	•	3.358	4
2000			0.0		2000	C u	40	0.00	٠,	•	•	3.426	4
2000			2000		2000	n u	7 4	6000		•	•	3.465	41
2.979		0	0		20000	0.4	1 4	0000	, ,	•	•	30 474	.) L
2.961			20.0		2.972	1	4	2 - 2 3 2		9 4		3.500	n (
30,63		0.5	2.12		3.106	4	43	2.064				3,555	o co
3.137		0	0.02		30170	r.	.43	1.853	0	•		3.508	0
0000		000	50.00		3.024	m	45	1.655	C	•		3.495	S
0000			0.05		30048	m	940	1.476		•		3.479	2
100					3000	n	10	1.255	٠.	•		3.499	2
0000			1.		3000	n	000	10101		•		3,553	4
300						n	01	010	,	•	•	3.545	4
20110			0.0		300	0.0	300	0.687		•	•	3,586	4
200			***			•		0.490		•		3.614	n
20100		•	10.00		3.189	9	. 56	0.271	•	•	•	3.602	m
3.100		• • •	0.10		3.166	4	• 59	0.092	0	•	•	3.596	m
AND OBSERVE	SERVED TIME V	ALUES	S= 8.1111 = 8.1069	TIMES SC TIMES SC	ALED VALUES ALED VALUE.	v •							
					,	•							

Table 7.6

SMOKE PUFF GRID 1209

WF5/295

DIPOLE WEST/9

VELOCITY FIELD

PARTICLE VELOCITIES AT SCALED TIME= 7.000 MS

PARTICL	E VELOCI	PARTICLE VELOCITIES AT SCALED TIME=	CALED TIM	7.000	NS								
X-SCAL			V=0Y/0T	-	R-SCAL	REGN	X-SCAL	Y-SCAL	_	V=DY/DT		B-SCAL	NOUG
METERS		MAM	MACH NO	ELOC	METERS	CODE	METERS	METERS	MACH	MACH	VELOCITY	METERS	1000
2.567			0.07	0.130	3.157	Ç.	3, 326	2.150	0.2	0.0		3.476	
20000			-0.01	9. 183	30134	2	3,364	1.923	0.23	V-0-0	0.239	30454	v
30.25			0.10	0.273	3.090	S	7.46.57	1.698	0.31	0.08	00 305	3.452	·
35.00			0.21	0.337	3.059	c	30405	1.506	0.32	0.12	0 340	3.425	יער
30,30			-0.07	0.0	3.038	4	3.450	1.286	0000	100	0000	2000	n u
566.2	1.487	50.0-	-C.13	(.137	3.010	4	30424	1.115	0.24	-0-01	0.230	3.424	0 4
7.41.0			10.0	9.186	3,159	4	3.490	0.969	910	-0-12	C. 164	404	•
3.151		0.15	-0.01	0.149	3.223	m	3.504	0.732	6.18	0.00	0.182	3.527	. 4
3.037		5-5	90.0	0.176	30057	3	3.512	0.498	61.5	9.00	0.156	3.547	
3.085		20.0	0.05	3,382	3.088	9	3,525	0.273	0.16	-0.02	6.157	3,535	
3.105	4.181	90.0	40.0	0.396	3,332	v,	3.484	2.279	0.17	0.14	0.217	3000	·
3.188		0.22	0.38	0.234	3.297	s.	3.5.2	20103	6.18	0.12	0.214	3.632	u
3.198		0.22	0.17	0.274	3,253	വ	3.488	1.877	0.12	0.02	0-126	3,565) '(
3. 231		0.37	0.20	0.416	3.255	s.	3.515	1.677	0.14	6500	09100	3.556	יי
3.538			0.11	0.326	3.264	2	3,519	1.497	0.15	0.06	0 1 68	30537	ייי
3.230		0.19	-0.02	0.190	3.236	4	3.557	1.287	0.16	0.13	C. 202	3.560	
3. 231		8000	-0-13	0.152	3.239	4	3.628	1.147	0.14	C. 12	0.182	30628	יער
3.336		0.24	-0.32	0.239	3.358	4	3.614	0.946	9.16	0.00	0.165	3.010	٠
20000		0.11	-0.03	0.109	3.379	6	3.630	0.705	0.19	0.01	0.188	3.656	4
30364		0.16	40.0-	C. 160	3,334	6	3,665	0.504	0.20	2000	6-200	30706	. ~
3.271		40.0	-0.01	0.043	3.273	3	3.672	0.278	0.14	0.00	64140	2000	۳ (
3.329		0.24	60.0	0.256	3,529	2	3.677	0.086	0.18	-0.01	0.184	3.678	m
OBSERVE	D DISTAN	CE VALUES:	8.1111	TIMES	0	54							
AND CBS	ERVED TI	AND GBSERVED TIME VALUE = 8.	8.1009	TIMES SCALE	0) 0							
VELOCIT	Y VALUES	AS SHOWN	ARE INVARI	TANT	SCALING.	•							

	FIELD												
DENSITY		0410	LE WEST/9	WF5/295		SMOKE	PUFF GRID	1209		TA1	A770404		
AVERAGE !	DENSITI	ES AT SCAL	LED TIME=	1.000 MS									
AX THE THE THE THE THE THE THE THE THE THE	METERS 1.075 1.075 2.075 2.079	DENSITY 1 + 796 1 + 955 1 + 955 1 + 791 1 + 203	MATS 11-140 11-1	M0 20 20 20 20 20	METS METS METS 100524 100534 100531 100531 100531	METERS 11.8885 11.1346 0.931	DEN S S S S S S S S S S S S S S S S S S S	A Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	80 00 00 00 00 00 00 00 00 00 00 00 00 0	METSCAL 1.55177 1.5522 1.5532	X 2000 000 000 000 000 000 000 000 000 0	DENSITY 1-311 1-350 1-253	R-SCAL METERS 1.517 1.535 1.576
AVERAGE I	DENSIT!	ES AT SCAL	LED TIME=	2.000 MS									
AX 112 112 112 112 112 112 112 112 112 11	A V V V V V V V V V V V V V V V V V V V	DE	######################################	MO NO NO NO NO NO NO NO NO NO NO NO NO NO	XX	Y X	DEN 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	XX	80 00 20 20 20 20 20 20 20 20 20 20 20 20	T W 4 W D W D W D W D W D W D W D W D W D	X X X X X X X X X X X X X X X X X X X	DEN 200 100 100 100 100 100 100 100 100 100	TX
.015 .997 EAAGE	727 570 1570	2.07 2.07 ES AT S	1 000	3.000 MS	• • •	0.00	500	000	4 4 M	9	. 19	. 0 •	m .
THE TARREST OF THE TA	A	A T M T M T M T M T M T M T M T M T M T	A A A A A A A A A A	0	### ### ##############################	# M M M M M M M M M M M M M M M M M M M	DEN	######################################	αρ ΩΩ ΣΠ0444μμααααααααααααααααααααααααααααααααα	XX X X X X X X X X X X X X X X X X X X	*** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *	A	AX 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SMOKE PUFF GRID 1239

WF5/295

DIPOLE WEST/9

DENSITY FIELD

31	T Y	ATI	TER	Z 0000	X-SCAL METERS	Y-SCAL METERS	DENSITY	R-SCAL METERS	CODE	X-SCAL METERS	Y-SCAL METERS	DENSITY	R-SCAL METERS	CODE
	2.034	0.863	20.57	~ 4	66	0.0	. 20	01	ທູ	0:	000	79.	3.00	
0	00	90.	16	4	69	.8.	0 0	.77	ທ	10	5.0	4 2	10	מיני
5	39	95.	.10	n	070	.58	000	073	S	0.05	.32	. 76	0.5	O.
1	5	. B	.28	2	071	.37	.48	.72	S)	.05	4 4	.66	60.	2
5.	4 .	. 53	. 41	S	73	91.	. 48	.73	S	5.5	. 95	047	900	4
0	9		4.	v.	74	96	.28	• 74	4	10.	077	060	.10	4
0	25	66.	4	4	14	.74	.31	.77	4	00	. 56	. 7C	.14	4
	2	16.	4	4	0 10	. 55	• 15	. 95	m	90	.35	.7C	0.	3
77	28	.87	.38	4	78	. 36	.59	. 80	n	6.0	016	077	67.	m
3	4	.24	.45	m	00	017	• 26	86.	2	500	100	.73	.23	5
04	97	.00	9 40	m	984	160	.38	960	S	12	000	071	.21	2
47	N	. 25	. 47	2	85	076	.52	. 92	ഗ	1 4	69.	.71	61.	2
2	5	600	.61	2	.87	. 55	36	260	S	15	. 50	.60	117	5
14	82	003	(00	S	883	5:5	.24	999	S	117	30	. 85	17	140
553	63	.19	.60	ď	.89	.16	10	.89	S	18	. 12	.79	8	4
9	38	. 21	.59	v.	689	.95	35	000	4	0	00	57	0	4
95	17	.62	.58	2	55	.77	47	46	4	0	.76	4 8	2	4
83	96	66.	. S. B	4	0.5	57	20	0	4		2 2	4	ייי	
00	73	. 81	09	4	00	34	14	01	· m	10	יוני	000	000	* **
17)	54	40	99		00	117	1	0 0	, ~				000	30
* 1	+	.23	.04	1 171	96	13	14	.12	n v.					1
AGE	DENSITI	ES AT SCA	LED TIME	5.003	S									
_	SC	SIT	SCA	w	-SCA	-SCA	SIT	-SCA	E	- SCA	- SCA	517	478-	u
s	175	FATI	ETER	CODE	TER	TER	RATI	FER	CODE	a u	TER	RATI	T E	
37	2	.01	090		690	. 21	100	3.09		4010	0.07	4 6	91.10	3
0	0	96.	600	S	694	-	10	10	0.00	53	79	. 1	200	1 4
5 5	9	-07	59.	2	960	.83	.31	03	ın	25	0	100	1 1	4
67	0	200	19.	4	66.	. 59	900		O	25	30	el F	27	
25	-	.72	065	4	650	.38	000	00	v.	5	.16	3	26	
5	.5	.23	176	4	66.	.18	989	300	S	25	. 12	5	0	140
10	4	.00	.75	m	000	05.	40.	000	4	12	400		36	100
25		00.	66.	S	470	64.	.36	00.	4	29	. 73	. 53	34	1 10
7,	3		. B.B	2	600	. 59	0.1	. 14	4	C	5.7	12	23) u
25	20	.02	.87	2	600	0 30	. 14	-	m	23	35	42	3.5	יטינ
2	0	.85	. 84	2	900	910	. 21	70	m	12	1 4	200	ייי	מי נ
5	4	.27	.82	2	000	.17	75.	25	· ·	17	98	-	30	1 4
67	-:	.33	.82	5	011	16.	.34	. 22	S	37	. 78	113	20	4
50	0	.24	.83	4	110	.76	. 23	20	LC.	a r	200	200	4 4	4
48		.15	.87	4	016	50	017	019	2	39	30	200	9	. (*
5.8	0.576	6.924	2.08:	đ	3,191	1.361	1.334	50199	LC:	3.4.3	0 1 67	1.285	3.407	
11	-	. 4	-											1

DENSITY IS AVERAGED OVER THE AREA OF THE CELL AND IS EXPRESSED AS A RATIO TO THE AMBIENT DENSITY.

OBSERVED DISTANCE VALUES= 8.1111 TIMES SCALED VALUES AND OBSERVED TIME VALUE = 8.1069 TIMES SCALED VALUE. DENSITY VALUES AS SHOWN ARE INVARIANT UNDER SCALING.

Table 8.3

DENSITY FIEL	FIELD	0100	DIPOLE WEST/9	9 WF5/295		SMCKE	PUFF GRID 1219	1219		147	/A770404			
AVERAGE		DENSITIES AT SCALED TIME=	LED TIME	SM C000-9 =										
X-SCAL	Y-SCAL	DENSITY	A-SCAL	N N N N N N N N N N N N N N N N N N N	X-SCAL	Y-SCAL	DENSITY	R-SCAL	200	X-SCAL	Y-SCAL	DENSITY	R-SCAL	REGN
2.816	2.093			;	2		0000	2000	3		N L L L	000		CODE
2.866	1.887			2	1		900	47005	0.4	1 10	0.440	1016	2000	4 <
2.870	1.046			ď	2	0	1.368	3.141	t		378	0 0	2 . 4 . 5	* 1"
418.7	1.419			2	α		r.847	30229	4	. 1	200	98	3000	n 4
5.899	1.208			ıc.	a		6860)	3,204	m	10	2000	1016	3.460) U
505.5	1.008			4	3		58600	30141	m	1	1.772	200	3.443	יטר
2.927	0.787			4	9		1.297	3.341	u,	1 4	10570	1000	3000	יט ר
3.014	0.599			4	6	. 0	1.254	3,315	S	4	1.347		3000) u
2.902	0.432			m	2		10000	30201	ď	4	9101	0 0	3.000	טי
3.018	2.063			S	4		1.00.2	30275	ď	4	9	900	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	0 4
3.038	1.846			5	9		1.100	3.277	ď	4	0 0		200	*
3.053	1.017	0.958		S	0		10144	3.260	ď	ď		400	100	
3,003	1.404	0.961		v:	1	•	1,053	3.280	14	3.521	0.377	1.018	3.541	t M
AV ER AGE		DENSITIES AT SCALED TIME	LEQ TIME	= 7.000 MS										
X-SCAL	Y-SCAL	90	R-SCAL	BER	4	408-	VENATIV	1478-8	, u	1		:	٠	ι
METERS	METERS	RATIO	METERS	CODE	METERS	METERS	RATIO	METERS	3000 3000	100	METER	DAT	70 31 42	200
3.083	5.099		3,229		28	1.83	1.0048	3.360	1	, ,	10	- 0	1 1	•
3.104	1.875		3.191		3	62	1.659	30.344		3.442	70	35	3.00	י ני
3,120	1.0043		3.160		33	1 4 .	1.246	3.349	S	3.461	6	2	3.401	ט ני
3-1-5	1.004		3.128		33	.21	1.133	3.339	9	3.482	30	10	3.402	יש
3.181	0.840		30195		34	.02	0.958	3,342	7	3.514	2	4	3.515	u
3.245	0.037		3.293		30	. 65	1.0033	7040E	4	3.542	5	0	3.543	14
3.232	. 39	2.947	3.254		42	.62	1.066	3.461	7	3.560	8	0	3.572	14
3.175	0.420	416.0	3,183		42	.38	0.985	3.444	۳۱	3.576	0	0	3.616	1 4
3.262	5.50	1.234	3,389		47	. 53	1.063	3.575	S	3.593	38	0.852	3.614	3
DENSITY		LOCATE THE CENTER OF IS AVERAGED OVER THE	AA	PLANE QUADRILAT	ERAL AND 1	WHICH I	S A CELL D	F & NE	IGHBOURING SMOK	SMOKE PUFFS.	8			

DENSITY IS AVERAGED OVER THE AREA OF THE CELL AND IS EXPRESSED AND GASERVED DISTANCE VALUES: 8-1111 TIMES SCALED VALUES AND GASERVED TIME VALUE: 9-10-69 TIMES SCALED VALUE: DENSITY VALUES AS SHOWN ARE INVARIANT UNDER SCALING.

105

	٠
-	4
a	
u	•
0	U
-	
1	3
	d
	~

NOUND	N C A P C C C C C C C C C C C C C C C C C
Z= 2.000 MS MS TERS No. 2	AT SCALED 11 SCA
PESSURE REFES METERS M	NA CARE CONTROL OF THE CARE CARE CARE CARE CARE CARE CARE CAR
331 (981 12.67.36 (981 12.67.36 13.67	SCALED 1 1
10.00 10.00	1 SCALED 1 ME
36 11-528 11-984 2-1558 11-528	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1943 1947 1987 2915 2915 2915 2915 2915 2915 2915 2915	4 201
48 0.946 2.355 2.15 33 (6.750 2.218 7.16 27 0.575 3.428 7.16 27 0.399 3.236 2.16	4 201 4 201 4 201 T SCALED TIME
25 0.575 3.414 2.19 27 0.399 3.236 2.16	4 2-1 4 2-1 T SCALED TIME
2000	T SCALED TIME=
2000	
AL Y-SCAL PRESSURE R-SCA RS METERS PATIO METER	A I I I I I I I I I I I I I I I I I I I
30 1-146 0-762 2-43	2.43
25 0.731 0.487 2.45	2.45
33 6-547 1-871 2-49	200
32 Ce391 1e528 2e46	20.43
94 1.948 1.541 2.62	2.49
257 1-757 1-010 2-50	2.52
51 1-339 1-478 2-55	2.55
65 1.137 1.677 2.56	2.56
68 0.944 1.502 2.57	2,55
AC 0-547 1-270 2-63	2.53
67 0.360 1.654 2.59	2.50
79 2.090 1.110 2.77	2.60
43 1-934 1-728 2-75	2.64
80 1.523 1.679 2.	69

OVERPRESSORE IS AVERAGED OVER THE AREA OF THE CELL AND IS EXPRESSED AS A RATIO TO THE AMBIENT PRESSURE.

DOSERVED DISTANCE VALUES 8.1111 TIMES SCALED VALUES
AND GESERVED TIME VALUE = 9.10.09 TIMES SCALED VALUE.
PRESSURE VALUES AS SHOWN ARE INVARIANT UNDER SCALING.

c	•	ı
_		•
C	,	١
(1	J
-		4
4	1	
2	۰	۰

/A770404

SMOKE PUFF GRID 1209

WF 5/295

DIPCLE WEST/9

PRESSURE FIELD

	REGN	יי יי	2	2	2	4	4	1 t	ייני	טנ	יו מ	ייי	S	2	4	4	4	4	2	(ח)	•		O	8		4	4	M	n	2	S	2	S	6	0	4	4	4 r	יוני	า	
	R-SCAL METERS	-			0	0	-	-	1	, ,	,,	-	-	-	-	-	N	2	2	01			SCA	ETER	61.	. 25	30	.27	. 26	. 39	.36	.34	. 33	.33	0.10	• 36	3.393	*		4	
	PRESSURE	9 1	.72	. 20	-	8 9	400	270		10	20	0	0	40	450	96.	81	010	40.	4.			SUR	ATI	026	. 52	.71	. 55	.53	35	5.	. 89	54	07.	2 4	77	0.200	1 4	10	*	
	Y-SCAL METERS			•	•	•	•	•	•					•	•	•		•	•	•			SCAL	TER	16.	.79	.58	.36	.16	.12	· 94	.73	. 53	4	4 (10	181	9 10		•	9
	X-SCAL METERS	000	0.3	5.1	0	5.4	20	, ,		C	12	14	1.5	1.1	.19	119	610	25	.20	.19			U	111	-	N	N	C	S	N	S	Q I	m	7	0 1	20	40000	7 1) 4	*	SMOKE PUFF
	CODE	n (n	2	ഗ	nı	o •		‡ 1*	י ר	, <u>.</u> c) w	, so	S	S	v.	4	4	4	3	m	S		REGN	8	2	S	ß	2	u:	S	7	4	d I	2 1	7 4	nu	n u	n ur) u	'n	GHBOURING
	R-SCAL METERS	900	.77	13	10	13	1 5	- a	000	96	96	92	36.	98	88	06.	76.	000	.97	.93	12		SCA	ETER	500	.07		00	000		000	900	4:		0	000	000	10	0	3.194	F 4 NE IGH
	RESSURE PATIO	. 4						9 6	•	4		6	.5	4		ູ		4		-			SUR	ATI	e 15	.31	.55	.16		. 08	- 1 3	400	000			0 0	0 0	19	100	C • 367	A CELL D
4, COC MS	METERS	000	. B .	. 58	000	0	100		1	17	16	.76	. 55	• 35	.16	. 95	.77	.57	.34	.17		5.00 MS	SCAL P	ET	•	•		•	•		•	•	•	•	•	•		•	•	1.166	WHICH IS
TIME = 4	X-SCAL METERS	0 0	6	~ 1	-1	-1	- 1	- 1	٠.	. 00	ဏ	B	æ	0	8	8	0	0	o	O	0	TIME	S	ETE	•	6	6	0	0	5					, (-	-	: -	3.194	ILATERAL
T SCALED	N III	14	4	m	V U	nu		, 4	4	8	n	2	2	c)	2	2	2	4	4	3	m	T SCALED	N.S.	DE	2	c.	2	4	4	41	~ .	n	nu	n u	טי	n u	n 4	4	4	m	E QUADR
SES A	S C R		2		0 0	0.0				_	-	·c	•	_	_		0	•	_	0	9	RES A	L RE	Ū	_	0	0	~	_	*	v	0.0	nc			• 0	• •				PLAN
PRESSUR	METERS	-	-			* <		4	m	4	4	4	9	9	9	2	.5	2	9	0	•	PRESSUR	SC	E - E	0	9	9	9	01	•	•		0	• 0		• a	0 0	0	0	2.937	R OF A
ATIC OVER	PPESSURE	4	3	0.00		2000	70	17	0.	.66	.25	440	.20	.15	. 45	.49	. 18	.13	. 15	. 85	.57	ATIC OVER	PRESSURE	-	60.	100	. 24	000	.21	000	**		000	-	200		0 4	34	001	. 18	THE CENTE
HYDROST	METERS	C. 820	0.625	1650		1 4 5	920	0.735	0.598	0.445	0.268	2.209	Z.010	1 . 829	1.635	1.382	1.173	6.965	0.732	0.547	0.410	PYDROST	Y-SCAL	U	0	ъ	9	0	-	ο.	1	v:	20	0 4) 4		.0	1	S	1	LOCATE
AV ERA GE	X-SCAL METERS	?=	3	:		9			m	4	4	3			. 5	3	0	2	5	0	•	AVERAGE	S	п.		•	•		•	:				•						2.911	X AND X

A AND Y LOCATE THE CENTER OF A PLANE QUADRILATERAL WHICH IS A CELL OF A NEIGHBOURING SMOKE PUFFS.

OVERPRESSORE IS AVERAGED OVER THE AREA OF THE CELL AND IS EXPRESSED AS A RATIO TO THE AMBIENT PRESSURE,
AND OBSERVED DISTANCE VALUES 8 1111 TIMES SCALED VALUES
AND OBSERVED TIME VALUE B 8.1069 TIMES SCALED VALUE
PRESSURE VALUES AS SHOWN ARE INVARIANT UNDER SCALING.

107

Table 9.3

PRESSURE	FIELD	DIPOLE	LE WEST/9	9 WF5/295		SMOKE	PUFF GRID 120	1209		/A7	/A770404			
AVERAGE	HYDROSTATIC	ATIC OVERPR	ESSURE	S AT SCALED	TIME=	6.000 MS	S							
X-SCAL YETERS	Y-SCAL	PRESSURE	R-SCAL	REGN	X-SCAL METERS	Y-SCAL METERS	PRESSURE RATIO	R-SCAL	REGN	X-SCAL MFTFRS	Y-SCAL	PRESSURE	R-SCAL	REGEN
010	2.093	0.229	16	5	3.068	1,	2	0	3	. 6	, 6	100	2 4 4 C K	200
000	1.487	C. C. C.	90	တ	3.670	0	۲.	1.	4		15	-	2000	14
37.	1.046	-0.1A2	5	v.	3,125	ċ	0	4	4		3	-	1000	
476	1.419	75400	88	2	3.18B	٥	1	N	4		1		2000	שמ
550	1.208	C. 837	89	2	3.182	ċ.	3	0	m		0	27	2000	י ני
503	1.00	0010	9	4	30134	0		4	m		77	2	30405	שמ
257	0.787	0.345	9	4	3.162	2	3	4	S		57	8	2.420	ט מ
114	665.0	-0.155	9	4	3.195	2.	0	=	4		1	2	4.00	שר
385	0.402	1.417	5	2	30224	-	0	0	0		16	0	3000	ט ני
118	2.053	0.285	15	so.	3,243	-	0	1	2		15	5	3.471) 4
030	1.846	0.380	-	S	30268			1	ď		1			* *
. 53	1 .017	0.002	5	S	3.269		J	4			2		2 . 5 . 5	*
.63	1.434	600.0	07	S	3.277	0	0	30	. 4		37	90	3.541	* 10
AVERAGE	HYDROSTATIC	OVER	PRESSURE	S AT SCALED	TIME=	7.000 MS	s							
X-SCAL	Y-SCAL	PRESSURE	R-SCAL	REGN	X-SCAL	SCA	PRESSURE	SC	REGN	X-SCAL	0	SUR	V	REGN
2	MEICHS	01.44	1	CODE	L	ETER	Œ	ETER	8	ET	ш	ATI	ETER	CODE
20	A. C. C.	6410		2	28	83	C	.36	2	3.421	C	16	53	3
4	1 . 075	0.214	7	S.	31	62	C	34	r.	3,442	-	S. S.	2	ייי
5.	1.0043	-0.072	-	3	33	4 1	٥	34	2	3.461	u	200	0	י נ
53	1.004	-0.135	7	4	33	2.5		33	0	3.482	11	37	0	ישר
10	C . 840	C.867	-	4	34	0.22	1	.34	4	3.514		-	2	יש מ
3.245	037	-0.277	10	4	39	85	0	040	4	0000			2) (
3.432	0.331	10000	"	٣	4 2	62		46	4	39.50	1 4		2 4	* <
3.175	0.220	-0.050	7	m	42	4		44		3.576	, 4		5	* •
3.202	2.056	0.399	1.1	S.	3.411	2.209		57	S	3.593	0.388	-0.171	3.614	t m
OVERPHES	LOCATE SURE IS	AVERAGED	OVER T	PLANE QUADRILAT	LATERAL HE CELL	WHICH I	S A CELL DI EXPRESSED	F & NE IGHE	NINOCAIN	SMOKE PUF	FS. PRESSURE.			
SERVE	DISTANCE	VALUE	S= 8.1111 = 8.1069	TIMES SC	ALED VALUES	UES								
SUR	VALUES	S SHOW	ARE I	AIANT UND	(0)	.07								

DISTRIBUTION LIST

DEPARTMENT OF THE ARMY (Continued)

Program Manager

BMD Program Office

DEPARTMENT OF DEFENSE

Defense Advanced Rsch. Proj. Agency

Director

ATTN: Strategic Tech. Office ATTN: DACS-BMZ-D, Julian Davidson ATTN: DACS-BMZ Defense Communication Engineer Center ATTN: DACS-BMT, Clifford E. McLain ATTN: Code 720, John Worthington ATTN: DACS-BMT, John Shea Director Defense Communications Agency ATTN: NMCSSC, Code 510 Dep. Chief of Staff for Rsch. Dev. & Acq. ATTN: NCB Division Deputy Chief of Staff for Ops. & Plans Defense Documentation Center ATTN: Dir. of Nuc. Plans & Policy Cameron Station 12 cy ATTN: TC Commander Harry Diamond Laboratories ATTN: DELHD-MP, Francis N. Wimenitz ATTN: DRXDO-RBH, James H. Gwaltney ATTN: DELHD-NP, Louis J. Belliveau ATTN: DRXDO-TF, Robert B. Oswald, Jr. Director Defense Intelligence Agency ATTN: DI-7D ATTN: DT-1C, Nuc. Eng. Branch ATTN: DT-2, Wpns. & Sys. Div. Commander Director Picatinny Arsenal ATTN: Al Loeb ATTN: Louis Avrami, SARPA-FR-E ATTN: Henry Opat, SMUPA-MD ATTN: Donald Miller, SARPA-ND-C-T Defense Nuclear Agency ATTN: SPSS ATTN: STSP ATTN: SPAS ATTN: DDST ATTN: TISI, Archives 3 cy ATTN: TITL, Tech. Library Director TRASANA ATTN: R. E. Dekinder, Jr. Under Secretary of Def. for Rsch. & Engrg. ATTN: S&SS (OS) Director U.S. Army Ballistic Research Labs. ATTN: DRXBR-X, Julius J. Meszaros ATTN: Robert E. Eichelberger Commander, Field Command Defense Nuclear Agency ATTN: FCTMD ATTN: FCPR ATTN: FCTMOF 3 cy ATTN: DRDAR-BLE, J. H. Keefer Commander U.S. Army Missile Command ATTN: FCTMOT ATTN: Troy Smith ATTN: DRS-RKP, W. B. Thomas ATTN: DRSMI-RRR, Bud Gibson ATTN: DRSMI-XS, Chief Scientist ATTN: DRCPM-PE-EA, Wallace O. Wagner Director Joint Strat. Tgt. Planning Staff, JCS ATTN: JPTP ATTN: JLTW-2 ATTN: JPTM Commander U.S. Army Nuclear Agency ATTN: MONA-WE Livermore Division, Field Command, DNA Lawrence Livermore Laboratory ATTN: FCPRL U.S. Army Research Office DEPARTMENT OF THE ARMY ATTN: Technical Library Director DEPARTMENT OF THE NAVY BMD Advanced Tech. Ctr. Chief of Naval Operations Huntsville Office ATTN: CRDABH-S, William C. Loomis ATTN: Marcus Whitfield ATTN: ATC-T, Melvin T. Capps ATTN: OP 981 ATTN: OP 62 ATTN: Robert A. Blaise ATTN: Code 604C3, Robert Piacesi Commander BMD System Command Chief of Naval Research ATTN: BDMSSC-TEB, R. Simpson ATTN: BDMSC-TEN, Noah J. Hurst ATTN: Code 464, Thomas P. Quinn

DEPARTMENT OF THE NAVY (Continued)

Director

Naval Research Laboratory

ATTN: Gerald Cooperstein, Code 7770 ATTN: Mario A. Persechino, Code 5180 ATTN: Code 2600, Tech. Lib.

Commander Naval Sea Systems Command ATTN: Code 0351 ATTN: ORD-0333A

Officer-In-Charge

Naval Surface Weapons Center

ATTN: Code 322, Victor C. Dawson
ATTN: Code WA07, W. Carson Lyons
ATTN: Code WA501, Navy Nuc. Prgms. Off.
ATTN: Code WR10, Joseph Petes

Commanding Officer Naval Weapons Evaluation Facility

ATTN: Lawrence R. Oliver ATTN: Peter Hughes

Director

Strategic Systems Project Office ATTN: NSP-273 ATTN: NSP-272

DEPARTMENT OF THE AIR FORCE

Commandant

AF Flight Dynamics Laboratory, AFSC

ATTN: FXG

AF Materials Laboratory, AFSC

ATTN: LTM ATTN: T. Nicholas ATTN: MAS

AF Rocket Propulsion Laboratory, AFSC ATTN: RTSN, G. A. Beale

AF Weapons Laboratory, AFSC

ATTN: Al Sharp ATTN: DYS,

DYS,

ATTN: SAB

ATTN: SUL ATTN: DYV

ATTN: DYT

Headquarters

Air Force Systems Command ATTN: SOSS ATTN: XRTO

Commander

4 cy ATTN: EWFS, D. Ward

Commander

Foreign Technology Division, AFSC ATTN: TDPTN ATTN: TDFBD, J. D. Pumphrey

Hq. USAF/RD

RDQSM ATTN:

ATTN: RDQ

ATTN:

DEPARTMENT OF THE AIR FORCE (Continued)

Hq. USAF/XO

ATTN: XOOSS

SAMSO/DY

ATTN: DYS

SAMSO/MN

ATTN: MNNH ATTN: MNNR

SAMSO/RS

ATTN: RSSE

ATTN: RSS

Commander in Chief

Strategic Air Command

ATTN: XOBM ATTN: XPQM

DEPARTMENT OF ENERGY

Division of Military Application

ATTN: Doc. Con. for Res. & Dev. Branch

University of California

Lawrence Livermore Laboratory
ATTN: Joseph E. Keller, Jr., L-125
ATTN: G. Staihle, L-24
ATTN: C. Joseph Taylor, L-92
ATTN: Joseph B. Knox, L-216
ATTN: Larry W. Woodruff, L-96

Los Alamos Scientific Laboratory
ATTN: Doc. Con for R. S. Thurston
ATTN: Doc. Con. for Richard A. Gentry

ATTN: Doc. Con. for J. W. Taylor ATTN: Doc. Con. for John McQueen

ATTN: Doc. Con. for T. Talley

Sandia Laboratories

Livermore Laboratory
ATTN: Doc. Con. for C. S. Hoyle
ATTN: Doc. Con. for 8131, H. F. Norris, Jr.
ATTN: Doc. Con. for T. Gold

Sandia Laboratories

ATTN: Doc. Con. for Thomas B. Cook ATTN: Doc. Con. for Albert Chabai

ATTN: Doc. Con. for M. L. Merritt

DEPARTMENT OF DEFENSE CONTRACTORS

Acurex Corporation

ATTN: J. Huntington ATTN: J. Courtney ATTN: C. Nardo

Aerospace Corporation

ATTN: W. Mann ATTN: R. Allen

ATTN: Richard Crolius, A2-Rm1027

ATTN: Robert L. Strickler ATTN: R. Mortensen

Analytic Services, Inc. ATTN: Jack Selig

ARO, Incorporated

ATTN: John C. Adams

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Avco Research & Systems Group
ATTN: John Gilmore, J400
ATTN: George Weber, J230
ATTN: John F. Stevens, J100
ATTN: William G. Reinecke, K 100
ATTN: Doc. Control
ATTN: George J. Davis
ATTN: William Broding
ATTN: J. Patrick

Battelle Memorial Institute ATTN: Merwyn R. Vanderlind ATTN: Richard Castle

The Boeing Company
ATTN: William Crist
ATTN: Brian Lempriere
ATTN: Ed York
ATTN: Robert Holmes
ATTN: Robert Dyrdahl

Boeing Wichita Company ATTN: T. Swaney

Brown Engineering Company, Inc. ATTN: Ronald Patrick

California Research & Technology, Inc. ATTN: Ken Kreyenhagen

Calspan Corporation
ATTN: M. S. Holden
ATTN: Romeo A. Deliberis
ATTN: M. G. Dunn

University of Dayton
ATTN: Hallock F. Swift
ATTN: D. Gerdiman

University of Denver Denver Research Institute 3 cy ATTN: John Wisotski

Effects Technology, Inc. ATTN: Robert Wengler

Ford Aerospace & Communications Operations ATTN: P. Spangler

GARD, Incorporated
ATTN: Marion J. Balcerzak

General Dynamics Corp. Fort Worth Division ATTN: R. Shemensky

General Electric Company
Space Division
ATTN: B. M. Maguire
ATTN: G. Harrison
ATTN: A. Martellucci
ATTN: C. Kyriss
ATTN: Daniel Edelman
ATTN: Phillip Cline

General Electric Company
TEMPO-Center for Advanced Studies
3 cy ATTN: DASIAC
ATTN: A. P. R. Lambert (Canada)

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

GE-TEMPO ATTN: L. W. Kennedy

General Research Corporation ATTN: T. Stathacopoulos

Institute for Defense Analyses ATTN: IDA Librarian ATTN: Joel Bengston

ION Physics Corporation
ATTN: Robert D. Evans

Kaman AviDyne
Division of Kaman Sciences Corp.
ATTN: Ray Reutinick
ATTN: Norman P. Hobbs
ATTN: F. S. Criscione

Kaman Sciences Corporation
ATTN: R. Keefe
ATTN: Donald C. Sachs
ATTN: Thomas Meagher
ATTN: Frank H. Shelton
ATTN: John Keith

Lockheed Missiles & Space Co., Inc. ATTN: R. Walz, Dept. 81-14

Lockheed Missiles & Space Co. ATTN: T. R. Fortune

Martin Marietta Aerospace

Lockheed Missiles & Space Co., Inc. ATTN: F. G. Borgardt

Orlando Division
ATTN: Gene Aiello
ATTN: James M. Potts, MP-61
ATTN: Laird Kinnaird
ATTN: William A. Gray, MP-61

McDonnell Douglas Corporation ATTN: J. F. Garibotti ATTN: L. Cohen ATTN: R. J. Reck

Northrop Corporation ATTN: Don Hicks

Pacific-Sierra Research Corp. ATTN: Gary Lang

Physics International Company
ATTN: Doc. Con. for James Shea

Prototype Development Associates, Inc. ATTN: John Slaughter ATTN: John McDonald

R&D Associates
ATTN: Harold L. Brode
ATTN: Jerry Carpenter
ATTN: F. A. Field
ATTN: Cyrus P. Knowles

Science Applications, Inc. ATTN: Carl Swain ATTN: Lyle Dunbar

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Science Applications, Inc. ATTN: John Warner ATTN: G. Ray ATTN: R. Fisher ATTN: Dwane Hove

Science Applications, Inc. ATTN: William R. Seebaugh ATTN: William M. Layson

ATTN: John Cockayne

Stanford Research Institute

ATTN: George R. Abrahamson ATTN: Herbert E. Lindberg ATTN: Donald Curran ATTN: Philip J. Dolan

Stanford Research Institute ATTN: Harold Carey

Systems, Science and Software, Inc. ATTN: G. A. Gurtman ATTN: Russell E. Duff

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

TRW Defense & Space Sys. Group
ATTN: W. W. Wood
ATTN: D. H. Baer, R1-2136
ATTN: R. K. Plebuch, R1-2078
ATTN: Peter Brandt, E1-2006
ATTN: Peter K. Dai, R1/2170
ATTN: Jorg Arenguren

TRW Defense & Space Sys. Group

San Bernardino Operations

ATTN: L. Berger ATTN: V. Blankenship

ATTN: William Polich

University of Victoria
Department of Physics
100 cy ATTN: Prof. John Dewey
ATTN: D. J. McMillin
ATTN: D. Trill

Defence Research Establishment, Suffield 3 cy ATTN: R. M. Heggie