Indexation des images : descripteures globaux

Exercice 1

Soient 2 images I_1 et I_2 de 4000 pixels chacune. L'image I_1 comporte 2 couleurs C_{11} et C_{12} . L'image I_2 comporte également 2 couleurs C_{21} et C_{22} . On calcule les histogrammes de couleur sur I_1 et I_2 et on range les résultats dans les tableaux H_1 et H_2 .

Cas 1: $H1(C_{11}) = 1000$; $H1(C_{12}) = 3000$; $H2(C_{21}) = 3000$; $H2(C_{22}) = 1000$ Cas 2: $H1(C_{11}) = 2000$; $H1(C_{12}) = 2000$; $H2(C_{21}) = 2000$; $H2(C_{22}) = 2000$ Cas 3: $H1(C_{11}) = 3000$; $H1(C_{12}) = 1000$; $H2(C_{21}) = 1000$; $H2(C_{22}) = 3000$

- 1. On suppose que $C_{11} = C_{21}$ et que $C_{12} = C_{22}$, donner la valeur de la mesure de similarité par intersection d'histogramme dans les trois cas précedents
- 2. Même question avec la distance de Manhattan

Exercice 2 (Examen)

Soient $B=I_1,I_2$ base d'images et I_Q image requête

	1	1	3	3	1		2	2	2	2	2		2	2	1	1	2
	1	1	1	1	3		1	1	2	1	4		2	2	1	1	4
$I_1 =$	3	3	1	1	3	$I_2 =$	4	4	4	4	4	$I_Q = $	4	4	4	4	4
	3	5	4	4	4		4	3	3	3	3		4	3	3	3	3
	4	2	2	2	2		3	2	2	2	2		3	2	2	2	2

Soit h_1 le tableau représentant l'histogramme en intensité de l'image I_1 , formellement $h_1[i]$ est le nombre de pixels ayant l'intensité i.

- 1. Calculer les histogrammes (tableaux de valeurs)
- 2. Donner les valeurs de distance entre les images ci-dessus, on calcule la similarité entre deux images par intersection d'histogrammes de l'intensité et par distance euclidienne
- 3. Quelle(s) est (sont) l'image(s) de la base la (les) plus similaire(s) à l'image requête?
- 4. On définit h_{1c} l'histogramme cumulé en intensité de l'image 1 par

$$h_{1c} = \sum_{k=1}^{i} h_1(k)$$

, Donner la valeur de la similarité entre I_1 et I_2 par intersection des histogrammes cumulés Commenter les résultats

5. On veut maintenant estimer une distance (et non plus une similarité) entre I_1 et I_2 . Etudier la distance de Manhattan sur les histogrammes en intensités, puis sur les histogrammes cumulés. Entre ces deux types d'histogrammes, lequel semble le plus intéressant ? Justifiez votre réponse

Exercice 3 (Examen)

On décide d'implémenter un système de recherche d'images par contenu, spécifiquement, par descripteur de texture. L'idée est de calculer des caractéristiques pour chaque image et de rechercher les images ayant les caractéristiques les plus semblables. on considère les données de l'exercice 2.

- 1. Calculer les matrices de cooccurrences M_1 , M_2 et M_Q d'images I_1 , I_2 et I_Q respectivement, pour distance (pas=1) et direction ($\theta = 45$).
- 2. À partir des ces matrices, calculer descripteur de texture (mesure de Haralick) Uniformité pour les trois images.
- 3. Appliquer la distance euclidienne pour calculer la distance entre les textures de différentes images.
- 4. Quelle(s) est (sont) l'image(s) de la base la (les) plus similaire(s) à l'image requête?

Exercice 4

On dispose d'une image de 4x4 pixels. Ces pixels ont une intensité comprise entre 0 et 3. On identifie une relation spatiale R entre deux pixels P1(x1,y1) et P2(x2,y2) par : x2 = x1 + 1 et y2 = y1. On calcule la matrice de cooccurrence selon cette relation. Pour chaque matrice de cooccurrence suivante, donner un exemple de distribution des intensités dans l'image correspondante, lorsque le cas est possible :

		0	1	2	3			0	1	2	3			0	1	2	3
	0	3	0	0	0		0	0	12	0	0		0	0	2	0	0
$I_1 =$	1	0	3	0	0	$I_2 =$	1	0	0	0	0	$I_3 =$	1	2	0	0	0
	2	0	0	3	0		2	0	0	0	0		2	0	2	0	2
	3	0	0	0	3		3	0	0	0	0		3	0	0	2	0