2 Proof a Sum tormula using Induction
1. Prove the base case n=1
1-11-1-
$\frac{1}{1(1+1)} = \frac{1}{1+1} = \frac{1}{2} = \frac{1}{2}$
2. Prove the Induction Step
1-20/1001
ASSUME Statement BTrue for N=M Prove for N=m+1
So for n=m we have \(\sum m(m+1) \) m+1
To check for no m+1 we can take 1- min and add
1 - m + 1 + (m + 1)(2m + 1) + 1
1 - m + 1 (m + 1)(m + 1) + 1
$= 1 + \frac{1}{m+1} + \frac{1}{(m+1)(m+2)}$
= 1 + (m+1)(m+2) (m+1)(m+2)
-10-2+1 = 1+(m+1)(m+2)
-m-1 = 1 - m+1 = 1 - m+2 = 1 - m+2+1
$=1+(m+1)(m+2) \qquad (m+2)(m+2)$