# Blood Gases and Acid Base Balance

No, not that kind of gas.....



### **Acids and Bases**

- An acid by any other name would be....?

■ Bronstead-Lowry

■ Proton donor

$$H_3C$$
 $H_3C$ 
 $H_3C$ 

- Lewis
  - Electron pair acceptor



### **Acid and Bases**

- Acid/Base parameter
  - pH scale
    - pH= -log[H+]
    - 7 in the center is neutral

- Ref. Range: 7.35-7.45
  - >7.45 = alkalosis
  - <7.35 = acidosis</p>



### **Acids and Bases**

- Buffer systems
  - Weak acids or bases that act to resist changes in pH
    - WEAK = does not fully dissociate in solution



### **Acids and Bases**





- Bicarbonate and Carbonic Acid H<sub>2</sub>CO<sub>3</sub>/HCO<sub>3</sub><sup>-1</sup>
  - CO2 formed by cells can:
    - Remain in plasma
      - Dissolve only a small amount
      - Hydrated to carbonic acid → Bicarb & H<sup>+</sup>
      - Bind to proteins making carbamino compounds
    - Diffuse into RBCs
      - Dissolve only a small amount
      - More than half (65%) is hydrated, major buffer, transported to lungs without changing pH
      - Bind to hemoglobin forming carbamino compounds













































CO<sub>2</sub> leaving, pH rising









- Phosphate Buffer
  - HPO<sub>4</sub> & H<sub>2</sub>PO<sub>4</sub>
- Proteins
  - Can accept or donate H<sup>+</sup> depending on pH
- Hemoglobin
  - Oxyhemoglobin = stronger acid deoxy-weaker

### **NEXT LEVEL Buffers**

- Henderson Hasselbalch Equation
- $pH = pK_a + log([base]/[acid])$ 
  - pK<sub>a</sub> dissociation constant
  - For the Bicarb/Carbonic Acid buffer
    - pH = pK<sub>a</sub> + log([HCO<sub>3</sub>-]/[H<sub>2</sub>CO<sub>3</sub>])
      - pK<sub>a</sub> at body temp is 6.1
    - H<sub>2</sub>CO<sub>3</sub> is more of a concept
    - $H_2CO_3 \propto (0.031 \times pCO_2)$

$$pH = 6.1 + log \frac{[HCO3 -]}{0.031 \cdot pCO_2}$$

### **NEXT LEVEL Buffers**

#### Base Excess

- Calculated parameter
  - Indication of increased (or decreased) buffering capacity against acid
  - Normal BE = o
  - ◆BE = metabolic alkalosis
  - BE = metabolic acidosis
- WHY?
  - How much base or acid to give the patient to return pH to 7.40

### **Blood Gas Parameters**

#### Measured!

- pH 7.35-7.45
- pCO<sub>2</sub> (35-45 mmHg)
  - Inversely related to ventilation
  - Inversely related to pH
- pO<sub>2</sub> (80-110 mmHg)

- pO<sub>2</sub>
  - Ability of lungs to oxygenate blood
  - sO<sub>2</sub> is oxygen saturation
    - % of functional hemoglobin saturated with oxygen
    - 93-99% in arterial blood













### How do we do it? Analytical Mthds

 Blood gas analyzers use electrodes as sensing devices to measure pH, pO<sub>2</sub>, pCO<sub>2</sub>, Electrolytes, Glucose and Lactate.



### Potentiometric electrodes

- pH is determined using a glass membrane surrounding a Ag-AgCl electrode.
- pCO2 is determined using a modified pH electrode, called a Severinghaus electrode.
- Electrolytes (Na+, K+, Ionized Ca++) are determined using Ion Selective Electrodes

### Sensitive Glass Membranes



### Sensitive Glass Membranes



## Potentiometric Electrodes

Severinghaus electrode



### **Amperometric Electrodes**

- Clark Electrode AMPEROMETRIC (we apply voltage)
  - O2 allows for flow of electrons from anode to cathode, as represented by current



### **Blood Gas Parameters**

#### CALCULATED!!!

- Bicarbonate- Using H&H equation
- Base Excess- uses pCO<sub>2</sub>, HCO<sub>3</sub>-, Hbg, pHO<sub>2</sub>% sat to calculate
- %Sat- CAN be calculated from pO2 BE pH assuming normally shaped curves and that all Hgb can carry O2 (co-oximeter measures directly)

### Calibration of Blood Gas results

- pH
  - 2 buffers that are NIST traceable are used for 1 &
     2 pt calibrations
- PCO<sub>2</sub> and PO<sub>2</sub>
  - Will measure the partial pressure of a gas "solution"
  - Gases have known CO<sub>2</sub> an O<sub>3</sub> concentrations
    - Gases behave differently, the O<sub>2</sub> electrode accounts for this with a correction factor since the gas diffuses across the membrane more quickly

## Control of Blood Gas Analyzers

- Difficult to find ideal control
  - thick matrix (whole blood)
  - unstable analytes (dissolved gases)
- Commercial controls
  - Aqueous buffers that are sealed in vials
    - does not behave like patient specimen no protein or surface tension
    - contaminated by air quickly (single use)

## Control of Blood Gas Analyzers

- Fluorocarbon-based controls
  - high oxygen carrying capacity
  - temperature sensitive
  - long shelf life
  - STILL not whole blood

# Control of Blood Gas Analyzers

- Tonometer
  - whole blood is placed into container with antifoaming agent
  - gas bubbled into blood for 15-20 minutes
  - similar to specimens
  - cheap
  - PO2 PCO2 are controllable
  - YOU WOULD BE NUTS TO USE THIS



# Assessing Blood Gas results

- First things first!
  - Always look at pH first
    - >7.45 alkalosis
    - <7.35 acidosis</p>
  - Next we will want to know WHY they are the way the are...
    - is it a metabolic issue? kidney
    - is it a respiratory issue? lungs

- HCO<sub>3</sub><sup>-</sup> the metabolic component
  - If the bicarb is out of normal range in the same direction as the pH, it is the cause and it is either metabolic acidosis or alkalosis

i.e. 
$$pH = 7.47$$
  $pH = 7.25$   
 $HCO_3^- = 30 \text{ mmol/L } (22-26) \text{  $HCO_3^- = 17$ }$   
metabolic alkalosis metabolic acidosis

- pCO<sub>2</sub> the respiratory component
  - If the pCO<sub>2</sub> is the opposite of the pH, then the condition is a respiratory acidosis/alkalosis

```
i.e. pH = 7.49 pH = 7.25

pCO_2 = 28 \text{ mmHg} (35-45) pCO_2 = 58 \text{ mmHg}

respiratory alkalosis respiratory acidosis
```

|                 | рН       | pCO2     | HCO <sub>3</sub> |
|-----------------|----------|----------|------------------|
| Resp. Acidosis  | <b>\</b> | <b>↑</b> | norm             |
| Resp. Alkalosis | <b>↑</b> | <b>\</b> | norm             |
| Met. Acidosis   | <b>\</b> | norm     | <b>↓</b>         |
| Met. Alkalosis  | <b>↑</b> | norm     | <b>↑</b>         |

- If the body is out of acid base balance it tries to compensate
  - if the problem is respiratory (lungs) the kidneys will compensate-smoke, emphysema etc
  - if the problem is metabolic (kidneys) the lungs will compensate-DKA, kidney disease etc
- The cure is the opposite of the issue
  - solution for metabolic acidosis (low bicarb)?
    - respiratory alkalosis (low pCO<sub>2</sub> via hyperventilation)

- If fully compensated the pH will return to the normal range
  - respiratory compensation is fast
  - metabolic compensation is slow

#### Case studies

 A 53 year old sustained major trauma in a motor vehicle accident. A blood gas was collected and the results follow:

pH: 7.53

HCO3: 34 mmo/L

pCO2: 42 mmHg



- Alkaline pH
- Increased HCO3=Metabolic Cause
- Normal pCO<sub>2</sub>=No Respiratory compensation
- Answer: Metabolic Alkalosis, Uncompensated

 A 20 year old developed acute renal failure after aminoglycide therapy. An arterial blood gas revealed:

pH: 7.36

HCO3: 16 mmol/L

pCO2: 30 mmHg

- Acidic pH
- Decreased HCO<sub>3</sub>=Metabolic Cause
- Decreased pCO2=Respiratory compensation
- Is the patient fully compensated?
- Answer: Metabolic Acidosis, Fully compensated

 A 60 year old man was admitted to a hospital with severe abdominal pain. The ABG showed:

pH: 7.65

pCO2: 25 mmHg

HCO3: 7 mmol/L

- Alkaline pH
- Decreased pCO2=Respiratory cause
- Decreased HCO<sub>3</sub>=Renal compensation
- Is the patient fully compensated?
- Answer: Respiratory Alkalosis, Partially compensated

 A hospitalized 72 year old with COPD and an upper respiratory infection showed an arterial blood gas:

pH: 7.30

pCO2: 60 mmHg

HCO3: 22 mmol/L

- Acidic pH
- Increased pCO2=Respiratory Cause
- Normal HCO3=Renal Status Quo
- Answer: Uncompensated Respiratory Acidosis

# **END**

- Any questions?
  - Anyone?
    - Bueller?

