Setting Up Uranium Sphere Problem

1. Remove the Vacuum in the Middle while keeping the original volume

Old Dimensions	New Dimensions
$r_i = 2.686$	
$r_o = 13.25$	$r_u = 13.213$
$r_{s1} = 15.00$	$r_{ss1} = 14.971$
$r_{s2} = 21.5$	$r_{ss2} = 21.486$

For Uranium

$$\frac{4}{3}\pi r_o^3 - \frac{4}{3}\pi r_i^3 = V_u \tag{26}$$

$$\frac{4}{3}\pi r_o^3 - \frac{4}{3}\pi r_i^3 = V_u$$

$$\left(\frac{3}{4\pi}V_u\right)^{1/3} = r_u = 13.213$$
(26)

For Stainless (S1)

$$\frac{4}{3}\pi r_{s1}^3 - \frac{4}{3}\pi r_o^3 = V_{s1} \tag{28}$$

$$\left[\frac{3}{4\pi}\left(V_{s1} + \frac{4}{3}\pi r_u^3\right)\right]^{1/3} = r_{ss1} = 14.971\tag{29}$$

For Stainless (S2)

$$\frac{4}{3}\pi r_{s2}^3 - \frac{4}{3}\pi r_{s1}^3 = V_{s2} \tag{30}$$

$$\left[\frac{3}{4\pi}\left(V_{s2} + \frac{4}{3}\pi r_{ss1}^3\right)\right]^{1/3} = r_{ss1} = 21.486\tag{31}$$

2. Get Chemistry

Layer	Material	Radius	Mass	Density (ρ)
1	$ U^{235} 36\% $	13.213 cm	177997 g	18.4213 g/cm^3
2	Stainless	14.971 cm	32860 g	7.4805 g/cm^3
3	Stainless	21.486 cm	208500 g	7.5837 g/cm^3

3. Determine the Composition Uranium

• 36.6% U-235

• 63.4% U-238

${\bf Stainless}$

 \bullet 0.3% Carbon

• 0.1 % Silicon

• 0.3 % Copper

 $\bullet~0.4\%$ Manganese

• 0.3% Chromium

• 98.6 % Iron

4. Calculate the Approximations

•
$$D_g = 1/(3\Sigma_t)$$

$$\bullet \ \Sigma_a = \Sigma_t - \Sigma_s$$

$$\bullet \ \Sigma_r = \Sigma_a + \Sigma_s - \Sigma_{s,gg}$$