Analisi III

Paolo Bettelini

Contents

1	Successione di funzioni	1
2	Serie di funzioni	3
3	Integrazione	4

1 Successione di funzioni

Definizione Successione di funzioni

Una successione di funzioni è una famiglia di funzioni $\{f_n\}_{n\in\mathbb{N}}$ definite su un dominio comune $f_n\colon D\to\mathbb{R}$.

Definizione Convergenza in un punto

Sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni. La successione converge in un punto x_0 se

$$\lim_{n\to\infty} f_n(x_0) < \infty$$

Definizione Convergenza puntuale

Sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni. La successione converge puntualmente ad una funzione $f\colon D\to\mathbb{R}$ se

$$\forall x \in D, \lim_{n \to \infty} f_n(x) = f(x)$$

Quindi la successione converge in ogni punto, ma la velocità di convergenza può dipenderere dal punto.

Definizione Convergenza uniforme

Sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni. La successione converge uniformemente ad una funzione $f\colon D\to\mathbb{R}$ se

$$\sup_{x \in D} |f_n(x) - f(x)| \to 0$$

per $n \to \infty$.

Oppure possiamo dire che la condizione è che

$$\forall \varepsilon > 0, \exists N \mid \forall n > N, ||f_n - f||_{\infty, E} < \varepsilon$$

Quindi la velocità di convergenza è la stessa in ogni punto. Ogni cosa che converge uniformemente converge puntualmente.

Definizione Convergenza uniformemente di Cauchy

Sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni. La successione è uniformemente di Cauchy se

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \mid \forall n, m > N, \sup_{x \in D} |f_n(x) - f_m(x)| < \varepsilon$$

A partire da un certo indice, tutte le funzioni della successione sono molto vicine tra loro in modo uniforme su tutto D, indipendentemente dalla funzione limite.

Teorema Convergenza uniforme e convergenza uniformemente di Cauchy

Sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni. Se la successione è uniformemente di Cauchy allora è uniformemente convergente.

Teorema

Sia $\{f_n\}$ convergente uniformemente a f in E e sia $x_0 \in E$ un punto di accumulazione di E. Supponiamo che esista

$$\exists \lim_{x \to x_0} f_n(x) = \lambda_n$$

per ognin, allora

1. $\lambda_n \to \lambda$,

2.

$$\lim_{x \to x_0} f(x) = \lambda$$

Proof

1.

$$|\lambda_n - \lambda_m| = \lim_{x \to x_0} |f_n(x) - f_n(x)| \le \lim_{x \to x_0} ||f_n - f_m||_{\infty, E} < \varepsilon$$

dunque è di Cauchy e converge al limite $\lambda_n \to \lambda$.

2.

$$|f(x) - \lambda| \le |f(x) - f_n(x)| + |f_n(x) - \lambda_n| + |\lambda_n - \lambda|$$

$$\le ||f - f_n||_{\infty, E} + |f_n(x) - \lambda_n|$$

dunque se $\overline{n} = \max\{N_1, N_2\}$

$$|f(x) - \lambda| \le 2\varepsilon + |f_{\overline{n}}(x) - \lambda_{\overline{n}}| \le 3\varepsilon$$

quindi

$$f_{\overline{n}}(x) - \lambda_{\overline{n}} \le \varepsilon$$

Quindi, se abbiamo convergenza uniforme,

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \left(\lim_{x \to \infty} f_n(x) \right)$$
$$= \lambda = \lim_{n \to \infty} \lambda_n = \lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right)$$

possiamo scambiare l'ordine.

Corollario

Se f_n sono continue e $f_n \to f$, allora f è continua.

Teorema

Sia $f_n:[a,b]\to\mathbb{R}$ una successione di funzioni R-integrabili dove $f_n\to f$ in [a,b]. Allora f è R-integrabile e

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \lim_{n \to \infty} f_n(x) dx = \int_{a}^{b} f(x) dx$$

Proof

Supponiamo anche che f_n siano continue.

- 1. f è continua e quindi R-integrabile;
- 2. mostriamo che vale l'uguale, cioè $\forall m, n \geq N$,

$$\left| \int_{a}^{b} f_n(x) dx - \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} f_n(x) - f(x) dx$$
$$\le \int_{a}^{b} ||f_n - f||_{\infty, [a, b]} dx \le \varepsilon (b - a)$$

(cioè tende a zero) per $n \geq N$.

Teorema

Sia $f_n: [a,b] \to \mathbb{R}$ una successione di funzioni derivabili. Supponiamo che:

- 1. $\exists x_0 \in [a, b]$ tale che f_n converge in x_0 ;
- 2. f'_n converge uniformemente in g a [a,b].

Allora.

- 1. f_n converge uniformemente a f in [a, b];
- 2. fè derivabile;
- 3. f'(x) = g(x) per ogni $x \in [a, b]$.

2 Serie di funzioni

Definizione Convergenza uniforme

La serie di funzioni $\sum_{n=1}^{\infty} f_n(x)$ converge uniformemente ad una funzione S(x) se la successione delle somme parziali

$$S_N(x) = \sum_{n=1}^N f_n(x)$$

converge uniformemente a S(x), ovvero se

$$\sup_{x \in D} |S_N(x) - S(x)| \to 0$$

per $N \to \infty$.

È più forte della convergenza puntuale.

Definizione Convergenza totale

Una serie di funzioni $\sum_{n=1}^{\infty} f_n(x)$ converge totalmente su un insieme D se la serie di norme

$$\sum ||f_n||_{\infty}$$

converge.

Ricordiamo che in generale la norma

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}}, \quad 1 \le p < \infty$$

e per $p = \infty$ con f limitata

$$||f||_{\infty} = \sup_{x \in D} |f(x)|$$

che è un numero siccome f è limitata

3 Integrazione

Teorema Monotone convergence theorem for non-negative measurable functions

Let (X, Σ, μ) be a measurable space and let

$$f_n: X \to [0; +\infty)$$

be measurable such that $f_n \leq f_{n+1}$. Then,

$$\lim_{n} \int_{X} f_n \, d\mu = \int_{X} (\lim_{n} f_n) \, d\mu$$

Sia per esempio $f_n = \chi_{\{1\}} + \chi_{\{n\}}$. Allora la funzione converge puntualmente in quanto l'1 si sposta sempre più a destra. Abbiamo

$$\int_{\mathbb{N}} f_n \, d\mu = 2 \to 2$$

Se invece $f_n \ge f_{n+1}$ allora $f_n = \chi_{\{n,n+1,\dots\}}$, allora tende a zero. Tuttavia, l'integrale di f_n è infinito in quanto la misura dell'insieme è infinita.

Proof

Abbiamo

$$f_n \le f_{n+1} \dots \le f, \quad f = \lim_n f_n$$

Quindi

$$\int_X f_n \, d\mu \le \int_X f_{n+1} \, d\mu \le \int_X f \, d\mu$$

quindi anchde la successione degli integrali è monotona e ammette limite. Il limite sarà sempre più piccolo dell'ultimo valore.

$$\lim_{n} \int_{X} f_n \, d\mu \le \int_{X} f \, d\mu$$

Facciamo ora il caso \geq . Sia $0 \leq \varphi \leq f$ una funzione semplice

$$\varphi = \sum_{i=1}^{N} \alpha_i \chi_{E_i}, \quad \alpha_i \ge 0$$

e prendiamo $c \in (0,1)$. Considegliamo gli insiemi

$$A_n = \{ f_n \ge c\varphi \}$$

Tali insiemi sono misurabili, in quanto sto moltiplicando una funzione misurabile per una costante e l'insieme $\{f \geq g\}$ è come dire $\{f - g \geq 0\}$. Sappiamo 1. $A_n \in A_{n+1}$ in quanto $c\varphi(x) \leq f_n(x) \leq f_{n+1}(x)$;

- 2. $\bigcup A_n = X$. Sia $x \in X$. Se $\varphi(x) = 0$ allora è in A_n . Se invece $\varphi(x) > 0$, ma siccome $\varphi \leq f$,

$$c\varphi(x) < \varphi(x) \le f(x)$$

La succesione, da un certo posto in poi, è più grande di $c\varphi(x)$ (ne basta uno), quindi $x \in A_n$. Osserviamo che

$$E_i = E_i \cap X$$

$$= E_i \cap (\bigcup A_n)$$

$$= \bigcup (E_i \cap A_n)$$

Quindi $E_i \cap A_n \subseteq E_i \cap A_{n+1}$ è una successione di insiemi che si sta allargando. Quindi, la misura dell'union è il limite.

$$\mu(E_i) = \lim_{n \to \infty} E_i \cap A_n$$

Consideriamo

$$\int_{X} f_n d\mu \ge \int_{A_n} f_n d\mu \ge c \int_{A_n} \varphi d\mu$$
$$= c \int_{X} \varphi \chi_{A_n} d\mu = c \sum_{i=1}^{N} \alpha_i \mu(E_i \cap A_n)$$

Facciamo ora il limite

$$\lim_{n} \int_{X} f_{n} d\mu \ge c \lim_{n} \sum_{i=1}^{N} \alpha_{i} \mu(E_{i} \cap A_{n})$$

$$= c \sum_{i=1}^{N} \alpha_{i} \mu(E_{i}) = c \int_{X} \varphi d\mu$$

Abbiamo quindi ottenuto che

$$\lim_{n} \int_{X} f_n \, d\mu \ge c \int_{X} \varphi \, d\mu$$

vale per tutti i $c \in (0,1)$, e allora possiamo usare il supremum

$$\lim_{n} \int_{X} f_n \, d\mu \ge \int_{X} \varphi \, d\mu$$

Non solo vale per ogni c, ma per ogni funzione semplice tale che $0 \le \varphi \le f$. In particolare anche per il supremum. Il supremum di questi integrali al variare di tutte le funzioni semplici minori di f è l'integrale di f, cioè la definizione

$$\lim_{n} \int_{X} f_n \, d\mu \ge \int_{X} f \, d\mu$$

Mettendo assieme le due cose otteniamo l'uguaglianza

$$\lim_{n} \int_{X} f_n \, d\mu = \int_{X} f \, d\mu$$

Corollario

Allora

$$\sum_{n=1}^{\infty} \int_{X} f_n d\mu = \int_{X} \sum_{n=1}^{\infty} f_n d\mu$$

Proof

Siccome i termini sono tutti positivi, la successione delle serie parziale è monotona.

Lemma Lemma di Fatou

Sia $f_n \colon X \to [0, +\infty)$ misurabili, allora

$$\int_X \liminf f_n \, d\mu \le \liminf \int_X f_n \, d\mu$$

(l'integrale esiste sempre)

Proof

Consideriamo

$$g_n = \inf_{k \ge n} f_k$$

chiaramente $g_n \leq g_{n+1} \to \liminf f_n$ e sono misurabili. Consideriamo allora l'integrale

$$\lim \int_X g_n \, d\mu = \int_X \liminf f_n \, d\mu$$

e per il teorema della convergenza monotona e definizione di lim inf

$$\int_{X} \liminf f_n \, d\mu = \lim_{n} \int_{X} (\inf_{n} k \ge n f_k) \, d\mu$$

$$\le \liminf_{n} \int_{X} f_n \, d\mu$$

Definizione Integrabilità di una funzione positiva

Sia $f\colon X\to [0;+\infty)$ misurabile. Allora f è integrabile su X se

$$\int_X f \, d\mu \le \infty$$

Diciamo che $f\in L^1(\{X,\Sigma,\mu\})$. Per esempio $\{1/n^2\}\in L^1(\mathbb{N})$ ma $\{1/n\}\notin L^1(\mathbb{N})$

Definizione Integrabilità di una funzione

Sia $f: X \to \mathbb{R}$ misurabile. Allora f è integrabile se f^+ e f^- sono integrabili (che sono entrambe funzioni positive).

Dobbiamo tuttavia definire l'integrale di una funzione di segno arbitraria. Sia allora

$$\int_X f \, d\mu = \int_X f^+ \, d\mu - \int_X f^- \, d\mu$$

Consideriamo per esempio

$$f=(1,-\frac{1}{2},\frac{1}{3},-\frac{1}{4})$$

Allora

$$f^+ = (1, 0, \frac{1}{3}, 0)$$

е

$$f^- = (0, \frac{1}{2}, 0, \frac{1}{4})$$

L'integrale non converge in quanto i due integrali non convergono (le serie divergono per confronto asintotico).

Proposition

Siano $f, g \in L^1$.

1. $\alpha f + \beta b \in L^1$ e

$$\int_X (\alpha f + \beta g) \, d\mu = \alpha \int_X f \, d\mu + \beta \int_X g \, d\mu$$

Quindi lo spazio delle funzioni integrabili è uno spazio vettoriale.

2.

$$f \leq g \implies \int_X f \, d\mu \leq \int_X g \, d\mu$$

- 3. $f \in L^1 \iff |f| \in L^1$. Infatti $f^+f^- = |f|$ e per la direzione inserva abbiamo $0 \le f^+ \le |f|$. Ma se l'integrale del modulo è finito allora lo sarà anche quello di f^+ che è più piccolo. Lo stesso vale per la parte negativa.
- 4. Se f è misurabile allora lo è anche |f|, ma il viceversa non è vero. Per esempio sia $X = \{a, b, c\}$ e $\Sigma = \{X, \emptyset, \{a\}, \{b, c\}\}$. Sia allora

$$f = \begin{cases} 1 & x = a \lor x = b \\ -1 & x = c \end{cases}$$

Chiaramente $\{f<0\}=\{c\}$ non è misurabile, ma |f|=1 per tutte le x e le funzioni costanti sono sempre misurabili.

5.

$$\left| \int_X f \, d\mu \right| \le \int_X |f| \, d\mu$$

Infatti

$$\left| \int_X (f^+ - f^-) \, d\mu \right| = \left| \int_X f^+ \, d\mu - \int_X f^- \, d\mu \right|$$

$$\leq \left| \int_X f^+ \, d\mu \right| + \left| \int_X f^- \, d\mu \right|$$

$$= \int_X f^+ \, d\mu + \int_X f^- \, d\mu$$

$$= \int_X (f^+ + f^-) \, d\mu$$

$$= \int_X |f| \, d\mu$$

Teorema Teorema della convergenza dominante

Sia $f_n: X \to \mathbb{R}$ misurabile e sia $f = \lim_n f_n$. Supponiamo che ci sia $g \in L^1$ tale che $|f_n| \leq g$ in X. Allora

$$\lim_{n} \int_{X} f_n \, d\mu = \int_{X} f \, d\mu$$

Proof

 f_n sono integrabili in quanto $|f_n| \leq g$ che è integrabili, quindi sarà finito anche l'integrale del modulo, e f è integrabile perché ciò vale anche per il limite. Allora $|f - f_n| \leq 2g$ quindi $2g - |f - f_n| \geq 0$. Siccome quest'ultima è una successione positiva posso applicare il lemma di Fatou

$$\int_X \liminf (2g - |f - f_n|) \, d\mu \le \liminf \int_X (2g - |f - f_n|) \, d\mu$$

Ma per le proprietà dei lim inf possiamo estrarre la costante

$$\int_{X} 2g - \lim |f - f_n| = \int_{X} 2g$$

$$\leq \liminf \left(\int_{X} 2g \, d\mu - \int_{X} |f - f_n| \, d\mu \right)$$

$$= \int_{Y} 2g \, d\mu - \limsup \int_{Y} |f - f_n| \, d\mu$$

Abbiamo quindi

$$\int_X 2g\,d\mu \le \int_X 2g\,d\mu - \limsup \int_X |f-f_n|\,d\mu$$

$$\limsup \int_X |f-f_n|\,d\mu \le 0$$

Ma quindi questo limite deve essere ed essere uguale a zero

$$\int_X |f - f_n| \, d\mu = 0$$

Infine, usando il modulo

$$\lim \left| \int_X f_n \, d\mu - \int_X f \, d\mu \right| \le \lim \int_X |f_n - f| \, d\mu = 0$$

siccome è tutto positivo deve essere

$$\lim \left| \int_{Y} f_n \, d\mu - \int_{Y} f \, d\mu \right| = 0$$

Se $A \subset X$ con A integrabile e $f: X \to \mathbb{R}$ misurabile, f è integrabile in A se $f\chi_A$ è integrabile. Chiaramente definiamo

$$\int_{A} f \, d\mu = \int_{Y} f \chi_{A} \, d\mu$$

Quindi per vedere se è integrabile nel sottoinsieme la estendiamo su tutto lo spazio con la funzione caratteristica e integriamo.

Costruiamo ora una misura su R (la misura di Lebesuge). Vogliamo che sia invariante per traslazione $\mu(A) = \mu(A+c)$ dove c è una costante. Vorremmo anche che $\mu([b,a]) = b-a$. Tuttavia, non è possibile costruire tale misura su tutto \mathbb{R} . Sia allora I=(a,b) (non cambia se incluso o meno) e denotiamo l(I)=b-a. Sia anche $E\subset\mathbb{R}$. Diamo la misura esterna

$$\mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} l(I_n) \mid E \subset \bigcup_n I_n \right\}$$

Alcune proprietà di questa ipotetica misura

1.
$$\mu^*(\emptyset) = 0$$
;

- 2. $\mu^*(\lbrace x \rbrace) = 0$ dove $\lbrace x \rbrace \subset (x \varepsilon, x + \varepsilon);$
- 3. se E numerabile, allora $\mu^*(E) = 0$

$$E \subset \{x_n\}$$

$$I_n = \left(x_n - \frac{\varepsilon}{2^n}, x_n + \frac{\varepsilon}{2^n}\right)$$

$$E \subset \bigcup I_n$$

$$\sum_{n=1}^{\infty} l(I_n) = \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n-1}}$$
$$= \varepsilon \sum_{n=0}^{\infty} \frac{1}{2^n} = 2\varepsilon$$

- 4. $\mu^*(E+x) = \mu^*(E)$ (invariante per traslazione).
- 5. subadditività

$$\mu^* \left(\bigcup E_n \right) \le \sum_n \mu(E_n)$$

6.
$$\mu^*(I) = b - a$$

Se tutto fosse vero, abbiamo quello che cerchiamo, ma in realtà quando gli insiemi sono disgiunti l'ugualgianza non vale, quindi non esiste tale misura.

Vale sempre $\mu^*(I) \leq b-a$ perché c'è l'inf, c'è sempre un ricoprimento. La misura esterna è almeno quel valore, magari più piccolo, vale lo stesso.