Progress Report

Current work: Using DNS data to find and separate IoT device streams [Nov 2016 onwards]

<u>Summer Intern at Comcast: Analyzing the Attack Surface of Consumer IoT Devices in the Comcast Network [June - Sept 2016]</u>

Active IoT Data Collection: Long term IoT device data collection [Jan - Feb 2016]

SpookyScan [Oct 2015 - June 2016]

<u>PrivacyCon: IoT device active and background state pcap analysis [Oct - Dec 2015/Summer 2015]</u>

MySpeedTest Data Analysis [Dec 2015 - Jan 2016]

<u>Comcast ISP bandwidth project: A Case Study of Traffic Demand Response to Broadband Service-Plan Upgrades [Jan - May 2015/Sept-Oct 2015]</u>

Current work: Using DNS data to find and separate IoT device streams [Nov 2016 onwards]

- Outline: http://www.cs.princeton.edu/~sgrover/reports/Outline.pdf
- Nov 2016: conceived the idea for "DNS data for real time IoT query system" and emailed folks at Comcast to discuss it in Dec 2016.
 - The response of the Comcast team was lukewarm as they were looking for a pure security solution while we presented the idea of a streaming platform. We decided to work on Princeton data from OIT to show our analysis before asking for private DNS data from Comcast again.
- Nov-Dec 2016: Analyzed Comcast data traces that were collected during the summer intern. Code: https://github.com/shahifageer/iot-dns
 - Concocted and tested three hypothesis to identify IoT devices in DNS traces from ISPs.
 - Hypothesis 1: There will not be many homes with IoT related DNS queries, i.e. spatial prevalence of IoT domains is lower in aggregate data and vice versa.
 - Hypothesis 2: Homes with IoTs will have similar query profiles, i.e. spatial correlation of IoT domains among filtered unpopular domains will be higher.
 - Hypothesis 3: Each IoT will perform at least 1 regular DNS lookup (heartbeat)
 - Results showed that our hypothesis worked but the traces were too short for proper testing of Hypothesis 3 (background data). Decided to collect data from OIT at Princeton university.
- Jan-Feb 2017: Collected and analyzed long traces (10 days) of DNS data from Princeton University.
 - Got IRB approval for the project and started collecting data at OIT
 - Created scripts to split and clean up the extremely large traces.
 - Gained access to ns1 cluster and set up an environment where large traces can be analyzed in parallel using spark.
 - Also met with Christine Murphy and started visiting CPS at this time.
- March 2017 onwards: Started analysis of short section of DNS traces. Code: https://github.com/shahifaqeer/oit-dns
 - Analyzed number of DNS domain queries and unique queries per IP address to filter to devices expected to be IoT devices (link to ipynb)
- March-April 2017: Analysis of 1 night of DNS data using pandas in ipython notebook
 - Analyze background DNS data pattern for a fitbit device
 - Extracted time-difference features to distinguish between background queries and bursty queries. However this technique did not work too well and we decided to come up with a better method to find regular DNS queries.
 - o Algorithm tested on 1 night data and short summary of results

Related doc:

http://www.cs.princeton.edu/~sgrover/reports/Summaryof1nightanal ysisforfitbitdevice-April2017.pdf

- April 2017: Frequency and period for DNS domain gueries and feature extraction
 - Previous approach based on time-difference was not applicable to general cases where we want to separate background data (with certain periods) from bursty DNS traffic
 - Proposed an approach to use autocorrelation to find periods, however this didn't work for normal DNS data. Some domains were too sparse, whereas in other cases queries that were a few seconds off could not be captured using autocorrelation. Edge detection to get the right autocorrelated period didn't work.
 - Extracted features for each device to run simple clustering algorithms
 <u>https://github.com/shahifaqeer/oit-dns/blob/master/feature_extraction/pcap-feature-extractor.ipynb</u>

Related doc:

http://www.cs.princeton.edu/~sgrover/reports/FeatureExtractionf orML-April2017.pdf

- Arpit/Joon helped to extract hostdb data to combine with each device features.
 This gives us some ground truth regarding whether the device is a VM, a wireless device, or wired computer.
 - https://github.com/shahifaqeer/oit-dns/tree/master/data extraction
- May 2017: Solved frequency extraction for IoT devices in lab (<u>link</u>) and started working on Machine learning for a 1 hour sample of DNS data
 - As domain timing are not uniform, directly using FFT to find periods is not possible
 - Algorithm to uniformly sample DNS data using binning, and then extracting period using periodogram function
 - Applied algorithm to ACTIVE-DATASET collected earlier in the year.
 - Related doc:

http://www.cs.princeton.edu/~sgrover/reports/Active-dataset-DNS-analysis-May2017.pdf

Read up and tried DBSCAN algorithm over extracted data (no results yet)

Next Steps to complete project:

- Refine frequency/period extraction algorithm to add frequency related features to OIT data [Expected time 1-2 days]
 - Currently can't deal with the case where a device uses phones to communicate with the server. Example: fitbit
- Try DBSCAN to cluster devices using number of domains, timing, and frequency features. Use hostdb and DHCP data as ground truth [Expected time 1 week]
- Apply above filtering and machine learning approach to complete database in Spark with the aim of identifying IoT related domains and their corresponding IP addresses. [Expected time 1 month]

Summer Intern at Comcast: Analyzing the Attack Surface of Consumer IoT Devices in the Comcast Network [June - Sept 2016]

- Final intern report link (do not share):
 http://www.cs.princeton.edu/~sgrover/reports/FinalInternReport-Grover.pdf
- June 2016 obtain DNS traces from ISP edge router
- July 2016
 - o Analyze individual devices and get a refined list of domains to extract DNS data.
 - Use DNS to filter homes with IoTs to collect and analyze only data from these devices
- August 2016
 - Final analysis to find insecure or malicious devices based on communication patterns

Active IoT Data Collection: Long term IoT device data collection [Jan - Feb 2016]

Collected the following long term background traces

	Device	Collection Time	Activity Mode
D01	Nest Thermostat (10.0.0.7)	45 hrs	Normal Home Use
D02	Amazon Echo (10.0.0.4)	16 hrs	Background
D03a	Nest Dropcam (10.0.0.9)	24 hr	Background/No video
D03b	Nest Dropcam	13 hr	Active Video
D03b	Nest Dropcam	2 hr	Active Video + Viewstream
D04a	Sharx Security Camera (10.0.0.8)	24 hr	Background/No video
D04b	Sharx Security Camera	13 hr	Active Video
D04c	Sharx Security Camera	2 hr	Active Video + Viewstream
D05a	SmartThings (10.42.0.89)	4 hrs	Background
D05b	SmartThings + Door Sensor	14 hrs	Background

D05c	SmartThings + SmartSocket	10 hrs	Background
D05d	SmartThings + Door Sensor + SmartSocket	14 hrs	Background

TA for Fog IoT coursera lectures with Prof. Mung Chiang

SpookyScan [Oct 2015 - June 2016]

- Jan 2016: Spooky scan new results and analysis multiple meetings with Paul/Roya
- Feb 2016: worked on paper skeleton for spooky scan with Roya responsible for certain analysis sections
- April 2016: worked on spooky scan for CCS deadline but had some family problems at this time and had to leave for India
- May 2016: hypothesis testing and stationarity analysis
- June 2016: Comcast Intern and progress on spooky scan stalled. Was informed later that the project has been dropped.
- Related code: https://github.com/shahifaqeer/spooky-analyzer

PrivacyCon: IoT device active and background state pcap analysis [Oct - Dec 2015/Summer 2015]

- Link to PrivacyCon 2016 presentation: http://www.cs.princeton.edu/~sgrover/reports/PrivacyCon.pptx
- Oct Dec 2015: Security analysis of short term IoT traces collected in the lab
 - Security bug in nest thermostat updates that might show location data
 - User activity can be easily identified based on throughput even for secure devices
- Summer 2015: buying devices and setting up a collection infrastructure in the lab using a lenovo laptop as a router
 - Helped by Michele Mangili

MySpeedTest Data Analysis [Dec 2015 - Jan 2016]

Analysis of MST data with Ava Chen

Comcast ISP bandwidth project: A Case Study of Traffic Demand Response to Broadband Service-Plan Upgrades [Jan - May 2015/Sept-Oct 2015]

- Apr 2015: Initial results
 http://www.cs.princeton.edu/~sgrover/reports/20150421-comcast-analysis-meeting.pdf
- Submitted to IMC and received a reject in Aug 2015
- Sept-Oct 2015: reanalyze data and fix paper for resubmission http://www.cs.princeton.edu/~sgrover/reports/PAM16_26-grover.pdf
- April 2016: presented at PAM http://www.cs.princeton.edu/~sgrover/reports/grover-Traffic_demand_response.pptx
- Oct 2016: presented at FCC
- Aug 2016: presented at CableLabs