FINANCIAL TRADING WITH DEEP CONVOLUTIONAL NEURAL NETWORKS: APPLE STOCK

KEVIN SEAN HANS L.
GEREND CHRISTOPHER

LATAR BELAKANG

- In this era of globalization, understanding of stocks is being increasingly explored by both academics and practitioners.
- **Technical indicators** related to stocks are used to analyze historical stock price data.
- With the high availability of data, algorithmic trading has been developed to automate stock buying and selling processes.
- Deep Learning has emerged as one of the predictive models for stock price movements.
- Technical indicators are applied to Convolutional Neural Networks (CNN) in hopes of improving prediction accuracy.

METHODOLOGY - DATA

Daily stock price data is labeled as **Buy**, **Sell**, or **Hold** based on peak and trough points within a sliding window:

- Buy = Lowest price in the window.
- Sell = Highest price in the window.
- Hold = All other points.

Label Encoding:

- Sell = 0
- Buy = I
- Hold = 2

METHODOLOGY - TECH INDICATOR

- Technical Indicators
 - Relative Strength Index (RSI)
 - William %R
 - Money Flow Index (MFI)
 - Rate of Change (ROC)
 - Chaikin Money Flow (CMF)
 - Chande Momentum Oscillator (CMO)
 - Simple Moving Average (SMA)

- Technical Indicators
 - Exponential Moving Average (EMA)
 - Weighted Moving Average (WMA)
 - Hull Moving Average (HMA)
 - Triple Exponential Average (TRIX)
 - Commodity Channel Index (CMI)
 - Detrended Price Oscillator (DPO)
 - Directional Moving Indicator (DMI)

METHODOLOGY - CNN

Convolutional Neural Networks (CNNs) are a specialized form of neural networks designed to process data with grid-like topology (e.g., images, time-series).

Key Concepts:

I. Convolution:

- A specialized linear operation where a **filter** (e.g., a matrix for image data) is applied across the entire input.
- Extracts local features (e.g., edges, textures) through sliding-window computations.

2. Fully Connected Layer:

- After convolution, features are passed to fully connected layers for **high-level reasoning** (e.g., classification).

METHODOLOGY - CNN

RESULT

Batch Size: 80

Epoch: 400

LR: le-4

Optimasi Adam ($\beta_1 = 0.9, \beta_2 = 0.999$)

Loss: Categorical Loss Enthropy

Acc 0.8514

Val Acc 0.6664

Loss 0.2136

Val Loss 1.1462

FI Score 0.8514

FI Val 0.6652

Prediction Buy Sell Hold Sell 15 49 Actual Buy 37 0 31 146 Hold 170 752

RESULT

Total Accuracy: 0.67			
	Sell	Buy	Hold
Recall	0.23	0.54	0.70
Precision	0.09	0.18	0.90
FI-Score	0.13	0.27	0.79

DISCUSSION

Training Fluctuation Plot

Accuracy and Loss Trends: Both metrics show fluctuations, but overall improve as epochs increase.

Accuracy Improvement

Training accuracy and validation accuracy rise with epochs, but the gap between them widens, indicating potential overfitting.

Loss Reduction

Training loss consistently decreases, while validation loss increases—a clear sign of overfitting.

Data Imbalance Issues

- Overfitting Persists: Despite using class weights, the model overfits due to significant data imbalance.
- Impact of Imbalance: Minority class data becomes harder to learn and contains more noise.

SUGGESTION

Data Imbalance:

The dataset exhibits significant class imbalance across the "sell", "buy", and "hold" labels.

Practical Implications:

While this model has practical real-world applications, it carries a substantial risk of overfitting.

Overfitting Issue:

The model demonstrates a strong tendency to overfit, primarily due to the data imbalance.

Overfitting Mitigation Strategies:

One promising approach to address overfitting is data augmentation.

- Data augmentation can effectively balance the dataset by increasing samples in minority classes.
- This technique helps reduce model bias toward majority classes while improving generalization.

REFERENCE

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

- Narkhede, S. (2021, June 15). *Understanding confusion matrix*. Medium. https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
- Nayak, A. (2020). Stock trading with CNNS: Time series to image conversion. Medium. https://towardsdatascience.com/stock-market-action-prediction-with-convnet-8689238feae3
- Sezer, O. B., & Ozbayoglu, A. M. (2018). Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach. Applied Soft Computing, 70, 525-538.

THANK YOU