MA 1101: Mathematics I

Satvik Saha, 19MS154 August 22, 2019

Solution 1.

Let R be a relation on \mathbb{R}^2 such that

$$(x_1, x_2) R(y_1, y_2)$$
 if $x_1 = y_1$.

(i) For an arbitrary $(x,y) \in \mathbb{R}^2$, (x,y) R(x,y), since x=x. Therefore, R is reflexive.

For $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$, if $(x_1, x_2) R(y_1, y_2)$, we can write $x_1 = y_1 \Rightarrow y_1 = x_1$. Thus, we have $(y_1, y_2) R(x_1, x_2)$. Therefore, R is symmetric.

For $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in \mathbb{R}^2$, if $(x_1, x_2) R(y_1, y_2)$ and $(y_1, y_2) R(z_1, z_2)$, we can write $x_1 = y_1$ and $y_1 = z_1$, from which we have $x_1 = z_1 \Rightarrow (x_1, x_2) R(z_1, z_2)$. Therefore, R is transitive.

Hence, R is an equivalence relation.

(ii) For $(x_1, x_2) \in \mathbb{R}^2$, we have

$$[(x_1, x_2)] = \{(y_1, y_2) \in \mathbb{R}^2 : (x_1, x_2) R (y_1, y_2)\}$$
$$= \{(y_1, y_2) \in \mathbb{R}^2 : x_1 = y_1\}$$
$$= \{(x_1, y) : y \in \mathbb{R}\}$$

Therefore, the quotient set of R is given by

$$\mathbb{R}/R = \{L_x : x \in \mathbb{R}\},\$$

where $L_x = \{(x, y) : y \in \mathbb{R}\}$. Clearly, each equivalence class $L_x \in \mathbb{R}/R$ is a vertical line in the Cartesian plane, passing through (x, 0).

Solution 2.

Let R be a relation on \mathbb{R}^2 such that

$$(x_1, x_2) R(y_1, y_2)$$
 if $x_1^2 + x_2^2 = y_1^2 + y_2^2$

(i) For an arbitrary $(x,y) \in \mathbb{R}^2$, (x,y) R(x,y), since $x^2 + y^2 = x^2 + y^2$. Therefore, R is reflexive.

For $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$, if $(x_1, x_2) R(y_1, y_2)$, we can write $x_1^2 + x_2^2 = y_1^2 + y_2^2 \Rightarrow y_1^2 + y_2^2 = x_1^2 + x_2^2$. Thus, we have $(y_1, y_2) R(x_1, x_2)$. Therefore, R is symmetric.

For (x_1, x_2) , (y_1, y_2) , $(z_1, z_2) \in \mathbb{R}^2$, if $(x_1, x_2) R(y_1, y_2)$ and $(y_1, y_2) R(z_1, z_2)$, we can write $x_1^2 + x_2^2 = y_1^2 + y_2^2$ and $y_1^2 + y_2^2 = z_1^2 + z_2^2$, from which we have $x_1^2 + x_2^2 = z_1^2 + z_2^2 \Rightarrow (x_1, x_2) R(z_1, z_2)$. Therefore, R is transitive

Hence, R is an equivalence relation.

(ii) For $(x_1, x_2) \in \mathbb{R}^2$, we have

$$[(x_1, x_2)] = \{(y_1, y_2) \in \mathbb{R}^2 : (x_1, x_2) R(y_1, y_2)\}$$
$$= \{(y_1, y_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = y_1^2 + y_2^2\}$$

Clearly, each equivalence class is a circle of radius $r = \sqrt{x_1^2 + x_2^2}$ centred at the origin. Such a circle can be denoted by $C_r = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = r^2\}$. Therefore, the quotient set of R is given by

$$\mathbb{R}/R = \{C_r : r \ge 0\}.$$

Solution 5.

Let $n \in \mathbb{N}$ and X be a set of n elements. An arbitrary relation R on X is a subset of the Cartesian product $X \times X = X^2$. Note that for $(a,b) \in X^2$, a can be any of the n elements in X, and b can be independently any of the n elements in X. Thus, we have a total of n^2 elements in X^2 .

- (i) Since R is any subset $R \subseteq X^2$, we can say that a relation on X is any $R \in \mathcal{P}(X^2)$. Thus, the total number of possible relations R is the number of elements in $\mathcal{P}(X^2)$, i.e., 2^{n^2} .
- (ii) Let $D = \{(x, x) : x \in X\}$ be the set of the diagonal elements of X^2 . Clearly, there are n elements in D. A reflexive relation R must have $D \subseteq R$. Thus, of the n^2 elements of X^2 , the n diagonal elements are fixed the remaining $n^2 n$ elements can be chosen to be or not to be in R, giving us a total of 2^{n^2-n} such relations.
- (iii) Since $xRy \Rightarrow yRx$ if x = y, each of the n diagonal elements of X^2 may or may not be present in a symmetric relation R on X. Also, the presence of $(x,y) \in X^2 \setminus D$ in R forces the presence of (y,x) in R. Thus, we have $(n^2 n)/2$ choices for the non-diagonal elements, giving a total of $2^n \cdot 2^{(n^2 n)/2} = 2^{(n^2 + n)/2}$ such relations.
- (iv) As before, we have $(n^2 n)/2$ choices for non-diagonal elements to fulfil symmetry. The remaining diagonal elements are fixed to fulfil reflexivity, giving a total of $2^{(n^2-n)/2}$ such relations.