	MATH 407
	2/21/18
	Thm If A (# Ø) SN then A is range of finite or infinite strictly increasing sequence.
	infinite strictly increasing sequence.
	Pf. Let A, = A and a, = min (A,)
	Induction Step:
	Suppose
	a, La, Coo. Cak
	have been found so that it a ∈ A _{k+1} = A,\§a,,,ak}
-	Then a > ak.
	Define and = min (April) if April 70.
	& Evatosthenes Sieve
	1 1 1 2 1 1 5 . 3
	[Let N' = N / 813
	Let P = 2 = min (N')
	107 M3= M1/D M
	Let P2 = 3 = min (N2)
	Industion step:
	Sugares.
	P, < P2 (< Prate primes and any remaining Prime P) PK. Let NK+=NK/PKN Prime P) PK. Let NK+=NK/PKN
_	Prime P) PK. Let N= 12/1/PK
-	i) II N k+1 = Ø, stop
	1 / ^ /
	¿P.,, Ph3 are all primes
	Else NK+1 + Ø, Fr ENK+1 p. Xn
	any 1 Sijk

PK+1 = mir (Nk+1) is prime

* thm (Enclid) There are infinitely many primes.

n = P. P2000 Pk-1

We have 1 = (P1...Pk) Pi+ (-1) n

=> (n.P1) = 1

* The (Fundamental Theorem of Arithmetic) Every nEN' may be uniquely rexpressed as qui, ..., que where qui are distinct primes

N=P, Pz...Pk...P=1

Where rie Z+ all i

Ultinately, ri=O all i

Pi= I such i

Pf. Induction on nEN'

Suppose the proposition is true 4 m Ln

n has a prime factor P; some i

Let m = n < n . If m = 1, done. n = P; TT p;

=> m = p; p; ... p; ...

> m = p; p; ... p; ...