

Description

The VST10N072 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

• V_{DS} =100V, I_D =78A $R_{DS(ON)}$ <8.5m Ω @ V_{GS} =10V

- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST10N072-TC	VST10N072	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	VDS	100	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	78	А
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	60	А
Pulsed Drain Current	I _{DM}	320	Α
Maximum Power Dissipation	P _D	125	W
Derating factor		0.83	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	210	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	Rejc	1.2	°C/W
--	------	-----	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	100		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.5	3.5	4.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =39A	-	7.2	8.5	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =39A	40	-	-	S
Dynamic Characteristics (Note4)	,		•	,		
Input Capacitance	C _{lss}	\/ F0\/\\ 0\/	-	3500	-	PF
Output Capacitance	C _{oss}	V_{DS} =50V, V_{GS} =0V, F=1.0MHz	-	600	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UIVIHZ	-	29	-	PF
Switching Characteristics (Note 4)						•
Turn-on Delay Time	t _{d(on)}	V_{DD} =50V, I_{D} =39A V_{GS} =10V, R_{G} =4.7 Ω	-	12	-	nS
Turn-on Rise Time	t _r		-	45	-	nS
Turn-Off Delay Time	t _{d(off)}		-	31	-	nS
Turn-Off Fall Time	t _f		-	10	-	nS
Total Gate Charge	Qg	V 50VI 00A	-	48		nC
Gate-Source Charge	Q _{gs}	V_{DS} =50V, I_{D} =39A, V_{GS} =10V	-	15		nC
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	8		nC
Drain-Source Diode Characteristics						•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =78A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	78	Α
Reverse Recovery Time	t _{rr}	$T_J = 25$ °C, $I_F = I_S$	-	95		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	110		nC
	~	1				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance