TASK #1: PLOT INTERACTIVE BOX PLOT USING PLOTLY **EXPRESS**

In [2]: # The plotly Python package empowers anyone to create, manipulate and render graphical figures. # The figures are represented by data structures referred to as figures. # The rendering process uses the Plotly.js JavaScript library under the hood but you never need to use Java directly. # Figures can be represented in Python either as dictionaries or as instances of the plotly.graph objects # Note: # Plotly Express is the recommended entry-point into the plotly package # PLotly Express is the high-level plotly.express module that consists of Python functions which r eturn fully-populated plotly.graph objects. Figure objects. # plotly.express module contains functions that can create interactive figures using a very few li nes of code # Plotly Express is refered to as px. # Plotly Express is a built-in part of the plotly library # Plotly Express function uses graph objects internally and returns a plotly.graph objects.Figure instance. # check out the documentation here: https://plotly.com/python/plotly-express/ # A box plot is a statistical representation of numerical data through their quartiles. # The ends of the box represent the lower and upper quartiles, while the median (second quartile) is marked by a line inside the box. import plotly.express as px import pandas as pd import numpy as np In [3]: # Import Cancer data drom the Sklearn library cancer df = pd.read csv("cancer.csv") In [4]: # Check out the head of the dataframe cancer df.head(5)

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst texture	w perim
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	 17.33	184.60
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	 23.41	158.80
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	 25.53	152.50
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	 26.50	98.87
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	 16.67	152.20

5 rows × 31 columns

MINI CHALLENGE #1:

• Plot the boxplot for Mean Perimeter, use points = "all"

TASK #2: PLOT INTERACTIVE HISTOGRAMS

In [8]: cancer_df

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst texture	per
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419	0.07871	 17.33	184.
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812	0.05667	 23.41	158.
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069	0.05999	 25.53	152.
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.2597	0.09744	 26.50	98.8
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809	0.05883	 16.67	152.
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623	 26.40	166.
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533	 38.25	155.
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648	 34.12	126.
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016	 39.42	184.
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884	 30.37	59.1
569 r	ows × 31	columns										

MINI CHALLENGE #2:

- Plot the histogram for the mean permieter for the entire dataset
- Plot the histogram for the mean perimeter for each of the class independantly

TASK #3: PLOT INTERACTIVE HISTOGRAMS WITH MARGINAL PLOTS

MINI CHALLENGE #3:

• Plot the histogram for the mean perimeter using 40 bins and explore a new marginal plot

TASK #4: PLOT INTERACTIVE DENSITY MAP

In [19]:

A 2D histogram, also known as a density heatmap, is the 2-dimensional generalization of a histogram which resembles a heatmap but is computed by grouping a set of points specified by their x and y coordinates into bins,

and applying an aggregation function such as count or sum (if z is provided) to compute the color of the tile representing the bin.

This kind of visualization (and the related 2D histogram contour, or density contour) is often u sed to manage over-plotting, or situations where showing large data sets as scatter plots would re sult in points overlapping each other and hiding patterns.

fig = px.density_heatmap(cancer_df, x = 'mean radius', y = 'mean texture')
fig.show()

In [20]: # read univeristy_admission.csv dataset
university_df = pd.read_csv('university_admission.csv')
university_df

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65
495	496	332	108	5	4.5	4.0	9.02	1	0.87
496	497	337	117	5	5.0	5.0	9.87	1	0.96
497	498	330	120	5	4.5	5.0	9.56	1	0.93
498	499	312	103	4	4.0	5.0	8.43	0	0.73
499	500	327	113	4	4.5	4.5	9.04	0	0.84

500 rows \times 9 columns

MINI CHALLENGE #4:

- Plot density map between GRE Score vs. Chance of admission
- Plot density map between GPA vs. Chance of admission

TASK #5: PLOT INTERACTIVE SCATTER MATRIX

In [25]: university_df

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65
495	496	332	108	5	4.5	4.0	9.02	1	0.87
496	497	337	117	5	5.0	5.0	9.87	1	0.96
497	498	330	120	5	4.5	5.0	9.56	1	0.93
498	499	312	103	4	4.0	5.0	8.43	0	0.73
499	500	327	113	4	4.5	4.5	9.04	0	0.84
500 r	ows × 9 colu	mns							

MINI CHALLENGE #5:

- Plot the scatter matrix for cancer data, including only the following features: mean radius, mean area, mean perimeter, and mean texture
- Plot the scatter matrix for cancer data while color coding the two classes (malignant vs. benign), including only the following features: mean radius, mean area, mean perimeter, and mean texture
- · What do you infer from this plot

TASK #6: PLOT INTERACTIVE VIOLIN PLOT


```
Interactive Statistical Data Project
In [36]:
        # Show data points
        fig = px.violin(cancer_df, y = 'mean radius', points = 'all')
        fig.show()
                 30
                 25
            mean radius
                 20
                 15
                 10
```


MINI CHALLENGE #6:

- Plot violin plot for GRE Score in university admission dataset
- Using the violin plot, what is the median value of the GRE Score? verify your answer
- Calculate the mean value for GRE score and compare it to the median

In [41]: university_df.describe()

dtype: float64

Research Chance of Admit 1.00

0.72

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.00000	500.000000	500.000000	500.00000
mean	250.500000	316.472000	107.192000	3.114000	3.374000	3.48400	8.576440	0.560000	0.72174
std	144.481833	11.295148	6.081868	1.143512	0.991004	0.92545	0.604813	0.496884	0.14114
min	1.000000	290.000000	92.000000	1.000000	1.000000	1.00000	6.800000	0.000000	0.34000
25%	125.750000	308.000000	103.000000	2.000000	2.500000	3.00000	8.127500	0.000000	0.63000
50%	250.500000	317.000000	107.000000	3.000000	3.500000	3.50000	8.560000	1.000000	0.72000
75%	375.250000	325.000000	112.000000	4.000000	4.000000	4.00000	9.040000	1.000000	0.82000
max	500.000000	340.000000	120.000000	5.000000	5.000000	5.00000	9.920000	1.000000	0.97000
1110070	000.00000	0.0.00000	0.00000	0.00000	0.00000	0.0000	0.02000		0.01.000

TASK #7: PLOT INTERACTIVE 2D HISTOGRAM CONTOUR PLOT

In [42]:

A 2D histogram contour plot, also known as a density contour plot, is a 2-dimensional generaliza tion of a histogram which resembles a contour plot but is computed by grouping a set of points spe cified by their x and y coordinates into bins,

and applying an aggregation function such as count or sum (if z is provided) to compute the valu e to be used to compute contours.

This kind of visualization (and the related 2D histogram, or density heatmap) is often used to m anage over-plotting, or situations where showing large data sets as scatter plots would result in points overlapping each other and hiding patterns.

fig = px.density_contour(cancer_df, x = 'mean radius', y = 'mean texture') fig.show()

MINI CHALLENGE #7:

- Plot the density contour plot for the university admission showing GRE Score vs. TOEFL Score
- Repeat the plot to show continiously colored data

MINI CHALLENGE SOLUTIONS:

MINI CHALLENGE #1 SOLUTION:

• Plot the boxplot for Mean Perimeter, use points = "all"

```
In [23]: fig = px.box(cancer_df, x = "target", y = "mean perimeter", points = "all")

180
160
160
100
80
60
40
0 1
target
```

MINI CHALLENGE #2 SOLUTION:

- Plot the histogram for the mean permieter for the entire dataset
- Plot the histogram for the mean perimeter for each of the class independantly

```
In [24]: # A histogram is representation of the distribution of numerical data, where the data are binned a
   nd the count for each bin is represented.

fig = px.histogram(cancer_df, x = "mean perimeter", nbins = 60)
fig.show()

# You can also add the color attribute. This will show the distribution of both classes
fig = px.histogram(cancer_df, x = "mean perimeter", color = 'target', nbins = 60)
fig.show()
```


mean perimeter

MINI CHALLENGE #3 SOLUTION:

• Plot the histogram for the mean perimeter using 40 bins and explore a new marginal plot

MINI CHALLENGE #4 SOLUTION:

- Plot density map between GRE Score vs. Chance of admission
- Plot density map between GPA vs. Chance of admission

MINI CHALLENGE #5 SOLUTION:

- Plot the scatter matrix for cancer data, including only the following features: mean radius, mean area, mean perimeter, and mean texture
- Plot the scatter matrix for cancer data while color coding the two classes (malignant vs. benign), including only the following features: mean radius, mean area, mean perimeter, and mean texture
- · What do you infer from this plot

```
In [27]:
         fig = px.scatter_matrix(cancer_df, dimensions = ['mean radius', 'mean area', 'mean perimeter', 'me
         an texture'])
         fig.show()
                  30
             mean radius
                  20
                  10
          mean texturemean perimeter
                2000
                1000
                 200
                 150
                 100
                  50
                  40
                  30
                  20
                  10
                                          30
                                                             2000
                          mean radius
                                                    mean area
                                                                           mean perimeter
                                                                                                       mean texture
```


MINI CHALLENGE #6 SOLUTION:

- Plot violin plot for GRE Score in university admission dataset
- Using the violin plot, what is the median value of the GRE Score? verify your answer
- Calculate the mean value for GRE score and compare it to the median

```
In [29]: # You can also plot multiple violin plots as follows:
    # Median GRE Score = 317
    # Mean GRE Score = 316.47
    fig = px.violin(university_df, y = "GRE Score", box = True, points = "all", hover_data = university_df.columns)
    fig.show()
    university_df.median()
    university_df.describe()
```


	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
count	500.000000	500.000000	500.000000	500.000000	500.000000	500.00000	500.000000	500.000000	500.00000
mean	250.500000	316.472000	107.192000	3.114000	3.374000	3.48400	8.576440	0.560000	0.72174
std	144.481833	11.295148	6.081868	1.143512	0.991004	0.92545	0.604813	0.496884	0.14114
min	1.000000	290.000000	92.000000	1.000000	1.000000	1.00000	6.800000	0.000000	0.34000
25%	125.750000	308.000000	103.000000	2.000000	2.500000	3.00000	8.127500	0.000000	0.63000
50%	250.500000	317.000000	107.000000	3.000000	3.500000	3.50000	8.560000	1.000000	0.72000
75%	375.250000	325.000000	112.000000	4.000000	4.000000	4.00000	9.040000	1.000000	0.82000
max	500.000000	340.000000	120.000000	5.000000	5.000000	5.00000	9.920000	1.000000	0.97000

In []:

MINI CHALLENGE #7 SOLUTION:

- Plot the density contour plot for the university admission showing GRE Score vs. TOEFL Score
- · Repeat the plot to show continiously colored data

EXCELLENT JOB!