Homework 9

Due: 11/19 11:00am

- 1. Let p be an odd prime with $p \equiv 5 \pmod{8}$. Find an explicit solution to the congruence $x^2 \equiv -1 \pmod{p}$. (Hint: You know (2/p) = -1. Apply Euler's criterion.)
- 2. (a) Use the previous problem to find a solution x to the congruence $x^2 \equiv -1 \pmod{541}$. (Reduce modulo p so that 0 < x < 541)
 - (b) Use part (a) to express a multiple of 541 as a sum of squares.
 - (c) Use Fermat's method of descent to express 541 as a sum of squares.
- 3. Let $\alpha = a + bi$ be a Gaussian integer. Show that if $N(\alpha) = a^2 + b^2$ is divisible by an odd prime p with $p \equiv 3 \pmod{4}$, then both a and b are divisible by p.

(Hint: By contradiction, assume a and b are not divisible by p. Then the Legendre symbols $\begin{pmatrix} \frac{a}{p} \end{pmatrix}$ and $\begin{pmatrix} \frac{b}{p} \end{pmatrix}$ are well-defined. Now derive a contradiction.)

- 4. Show how to factor 27007 if you know both 885 and 7816 are square roots of 22 modulo 27007.
- 5. Find the four incongruent solutions of the quadratic congruence $x^2 \equiv 30 \pmod{133}$.
- 6. We have seen that any prime of the form p = 4k + 1 can be expressed as a sum of two squares. Prove that this representation is unique (except for swapping the order of the two summands).

(Hint: Suppose that $p=a^2+b^2=c^2+d^2$, where a,b,c,d are all positive integers. First argue that $a^2d^2\equiv b^2c^2\pmod{p}$, so then $ad\equiv bc\pmod{p}$ or $ad\equiv -bc\pmod{p}$. Next, argue that these two cases imply, respectively, that ad-bc=0 or ad+bc=p. If ad+bc=p, use the product formula to write p^2 as a sum of squares and then use the resulting equation to conclude ac-bd=0. Thus, it follows that either ad=bc or ac=bd. Now draw the rest of the owl.)