6.003: Signals and Systems

Continuous-Time Systems

Previously: DT Systems

Verbal descriptions: preserve the rationale.

"Next year, your account will contain p times your balance from this year plus the money that you added this year."

Difference equations: mathematically compact.

$$y[n+1] = x[n] + py[n]$$

Block diagrams: illustrate signal flow paths.

Operator representations: analyze systems as polynomials.

$$(1 - p\mathcal{R})Y = \mathcal{R}X$$

Analyzing CT Systems

Verbal descriptions: preserve the rationale.

"Your account will grow in proportion to the current interest rate plus the rate at which you deposit."

Differential equations: mathematically compact.

$$\frac{dy(t)}{dt} = x(t) + py(t)$$

Block diagrams: illustrate signal flow paths.

Operator representations: analyze systems as polynomials.

$$(1 - p\mathcal{A})Y = \mathcal{A}X$$

Differential Equations

Differential equations are mathematically precise and compact.

Solution methodologies:

- general methods (separation of variables; integrating factors)
- homogeneous and particular solutions
- inspection

Today: new methods based on **block diagrams** and **operators**, which provide new ways to think about systems' behaviors.

Block Diagrams

Block diagrams illustrate signal flow paths.

DT: adders, scalers, and delays – represent systems described by linear difference equations with constant coefficents.

CT: adders, scalers, and integrators – represent systems described by a linear differential equations with constant coefficients.

Operator Representation

CT Block diagrams are concisely represented with the A operator.

Applying A to a CT signal generates a new signal that is equal to the integral of the first signal at all points in time.

$$Y = \mathcal{A}X$$

is equivalent to

$$y(t) = \int_{-\infty}^{t} x(\tau) \, d\tau$$

for all time t.

Evaluating Operator Expressions

As with \mathcal{R} , \mathcal{A} expressions can be manipulated as polynomials.

$$W = (1 + \mathcal{A}) X$$
$$Y = (1 + \mathcal{A}) W = (1 + \mathcal{A}) (1 + \mathcal{A}) X = (1 + 2\mathcal{A} + \mathcal{A}^2) X$$

Evaluating Operator Expressions

Expressions in A can be manipulated using rules for polynomials.

- Commutativity: A(1-A)X = (1-A)AX
- Distributivity: $A(1-A)X = (A-A^2)X$
- Associativity: $((1-\mathcal{A})\mathcal{A})(2-\mathcal{A})X = (1-\mathcal{A})(\mathcal{A}(2-\mathcal{A}))X$

Check Yourself

$$\dot{y}(t) = \dot{x}(t) + p\ddot{y}(t)$$

$$\dot{y}(t) = x(t) + py(t)$$

$$\dot{y}(t) = px(t) + py(t)$$

Which best illustrates the left-right correspondences?

5. none

Check Yourself

$$\dot{y}(t) = \dot{x}(t) + p\ddot{y}(t)$$

$$\dot{y}(t) = x(t) + py(t)$$

$$X \longrightarrow \bigoplus P$$

$$\dot{y}(t) = px(t) + py(t)$$

Which best illustrates the left-right correspondences? 4

2. •

3. • •

4. • •

5. none

Elementary Building-Block Signals

Elementary DT signal: $\delta[n]$.

$$\delta[n] = \begin{cases} 1, & \text{if } n = 0; \\ 0, & \text{otherwise} \end{cases}$$

- shortest possible duration (most "transient")
- useful for constructing more complex signals

What CT signal serves the same purpose?

Elementary CT Building-Block Signal

Consider the analogous CT signal.

$$w(t) = \begin{cases} 0 & t < 0 \\ 1 & t = 0 \\ 0 & t > 0 \end{cases}$$

Is this a good choice as a building-block signal?

Elementary CT Building-Block Signal

Consider the analogous CT signal.

$$w(t) = \begin{cases} 0 & t < 0 \\ 1 & t = 0 \\ 0 & t > 0 \end{cases}$$

$$w(t) \longrightarrow \int_{-\infty}^{t} (\cdot) dt \longrightarrow 0$$

Is this a good choice as a building-block signal? No

$$w(t) \longrightarrow \int_{-\infty}^{t} (\cdot) dt \longrightarrow 0$$

The integral of w(t) is zero!

Unit-Impulse Signal

The unit-impulse signal acts as a pulse with unit area but zero width.

Unit-Impulse Signal

The unit-impulse function is represented by an arrow with the number 1, which represents its area or "weight."

It has two seemingly contradictory properties:

- ullet it is nonzero only at t=0, and
- its definite integral $(-\infty, \infty)$ is one!

Both of these properties follow from thinking about $\delta(t)$ as a limit:

Unit-Impulse and Unit-Step Signals

The indefinite integral of the unit-impulse is the unit-step.

$$u(t) = \int_{-\infty}^{t} \delta(\lambda) d\lambda = \begin{cases} 1; & t \ge 0 \\ 0; & \text{otherwise} \end{cases}$$

Equivalently

$$\delta(t) \longrightarrow \mathcal{A} \longrightarrow u(t)$$

Impulse Response of Acyclic CT System

If the block diagram of a CT system has no feedback (i.e., no cycles), then the corresponding operator expression is "imperative."

$$Y = (1 + A)(1 + A)X = (1 + 2A + A^{2})X$$

If
$$x(t) = \delta(t)$$
 then

$$y(t) = (1 + 2\mathcal{A} + \mathcal{A}^2) \,\delta(t) = \delta(t) + 2u(t) + tu(t)$$

Find the impulse response of this CT system with feedback.

Find the impulse response of this CT system with feedback.

Method 1: find differential equation and solve it.

$$\dot{y}(t) = x(t) + py(t)$$

Linear, first-order difference equation with constant coefficients.

Try
$$y(t) = Ce^{\alpha t}u(t)$$
.

Then
$$\dot{y}(t) = \alpha C e^{\alpha t} u(t) + C e^{\alpha t} \delta(t) = \alpha C e^{\alpha t} u(t) + C \delta(t)$$
.

Substituting, we find that $\alpha Ce^{\alpha t}u(t) + C\delta(t) = \delta(t) + pCe^{\alpha t}u(t)$.

Therefore $\alpha = p$ and $C = 1 \rightarrow y(t) = e^{pt}u(t)$.

Find the impulse response of this CT system with feedback.

Method 2: use operators.

$$Y = \mathcal{A}(X + pY)$$
$$\frac{Y}{X} = \frac{\mathcal{A}}{1 - p\mathcal{A}}$$

Now expand in ascending series in A:

$$\frac{Y}{X} = \mathcal{A}(1 + p\mathcal{A} + p^2\mathcal{A}^2 + p^3\mathcal{A}^3 + \cdots)$$

If $x(t) = \delta(t)$ then

$$y(t) = \mathcal{A}(1 + p\mathcal{A} + p^2\mathcal{A}^2 + p^3\mathcal{A}^3 + \cdots) \,\delta(t)$$
$$= (1 + pt + \frac{1}{2}p^2t^2 + \frac{1}{6}p^3t^3 + \cdots) \,u(t) = e^{pt}u(t).$$

$$y(t) = (\mathbf{A} + p\mathbf{A}^2 + p^2\mathbf{A}^3 + p^3\mathbf{A}^4 + \cdots) \delta(t)$$

$$y(t) = (\mathcal{A} + p\mathcal{A}^2 + p^2\mathcal{A}^3 + p^3\mathcal{A}^4 + \cdots) \delta(t)$$

$$y(t) = (\mathcal{A} + p\mathcal{A}^2 + p^2\mathcal{A}^3 + p^3\mathcal{A}^4 + \cdots) \delta(t)$$

$$y(t) = (\mathcal{A} + p\mathcal{A}^2 + p^2\mathcal{A}^3 + p^3\mathcal{A}^4 + \cdots) \delta(t)$$

$$y(t) = (A + pA^{2} + p^{2}A^{3} + p^{3}A^{4} + \cdots)\delta(t)$$
$$= (1 + pt + \frac{1}{2}p^{2}t^{2} + \frac{1}{6}p^{3}t^{3} + \cdots)u(t)$$

$$y(t) = (A + pA^{2} + p^{2}A^{3} + p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 + pt + \frac{1}{2}p^{2}t^{2} + \frac{1}{6}p^{3}t^{3} + \cdots) u(t)$$

$$y(t) = (A + pA^{2} + p^{2}A^{3} + p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 + pt + \frac{1}{2}p^{2}t^{2} + \frac{1}{6}p^{3}t^{3} + \cdots) u(t)$$

$$y(t) = (A + pA^{2} + p^{2}A^{3} + p^{3}A^{4} + \cdots)\delta(t)$$
$$= (1 + pt + \frac{1}{2}p^{2}t^{2} + \frac{1}{6}p^{3}t^{3} + \cdots)u(t)$$

$$y(t) = (A + pA^{2} + p^{2}A^{3} + p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 + pt + \frac{1}{2}p^{2}t^{2} + \frac{1}{6}p^{3}t^{3} + \cdots) u(t) = e^{pt}u(t)$$

Making p negative makes the output converge (instead of diverge).

$$y(t) = (A - pA^{2} + p^{2}A^{3} - p^{3}A^{4} + \cdots)\delta(t)$$
$$= (1 - pt + \frac{1}{2}p^{2}t^{2} - \frac{1}{6}p^{3}t^{3} + \cdots)u(t)$$

$$y(t) = (A - pA^{2} + p^{2}A^{3} - p^{3}A^{4} + \cdots)\delta(t)$$
$$= (1 - pt + \frac{1}{2}p^{2}t^{2} - \frac{1}{6}p^{3}t^{3} + \cdots)u(t)$$

$$y(t) = (A - pA^{2} + p^{2}A^{3} - p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 - pt + \frac{1}{2}p^{2}t^{2} - \frac{1}{6}p^{3}t^{3} + \cdots) u(t)$$

$$y(t) = (A - pA^{2} + p^{2}A^{3} - p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 - pt + \frac{1}{2}p^{2}t^{2} - \frac{1}{6}p^{3}t^{3} + \cdots) u(t)$$

$$y(t) = (A - pA^{2} + p^{2}A^{3} - p^{3}A^{4} + \cdots)\delta(t)$$
$$= (1 - pt + \frac{1}{2}p^{2}t^{2} - \frac{1}{6}p^{3}t^{3} + \cdots)u(t)$$

$$y(t) = (A - pA^{2} + p^{2}A^{3} - p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 - pt + \frac{1}{2}p^{2}t^{2} - \frac{1}{6}p^{3}t^{3} + \cdots) u(t) = e^{-pt}u(t)$$

Convergent and Divergent Poles

The fundamental mode associated with p diverges if p>0 and converges if p<0.

Convergent and Divergent Poles

The fundamental mode associated with p diverges if p>0 and converges if p<0.

CT Feedback

In CT, each cycle adds a new integration.

$$y(t) = (A + pA^{2} + p^{2}A^{3} + p^{3}A^{4} + \cdots) \delta(t)$$
$$= (1 + pt + \frac{1}{2}p^{2}t^{2} + \frac{1}{6}p^{3}t^{3} + \cdots) u(t) = e^{pt}u(t)$$

Feedback in DT Systems

In DT, each cycle creates another sample in the output.

$$y[n] = (1 + p\mathcal{R} + p^2\mathcal{R}^2 + p^3\mathcal{R}^3 + p^4\mathcal{R}^4 + \cdots)\delta[n]$$

= $\delta[n] + p\delta[n-1] + p^2\delta[n-2] + p^3\delta[n-3] + p^4\delta[n-4] + \cdots$

Comparison of CT and DT representations

Locations of convergent poles differ for CT and DT systems.

Use the A operator to solve the mass and spring system.

Factor system functional to find the poles.

$$\frac{Y}{X} = \frac{\frac{K}{M}\mathcal{A}^2}{1 + \frac{K}{M}\mathcal{A}^2} = \frac{\frac{K}{M}\mathcal{A}^2}{(1 - p_0\mathcal{A})(1 - p_1\mathcal{A})}$$

$$1 + \frac{K}{M}A^2 = 1 - (p_0 + p_1)A + p_0p_1A^2$$

The sum of the poles must be zero.

The product of the poles must be K/M.

$$p_0 = j\sqrt{\frac{K}{M}} \quad p_1 = -j\sqrt{\frac{K}{M}}$$

Alternatively, find the poles by substituting $\mathcal{A} \to \frac{1}{s}$. The poles are then the roots of the denominator.

$$\frac{Y}{X} = \frac{\frac{K}{M}\mathcal{A}^2}{1 + \frac{K}{M}\mathcal{A}^2}$$

Substitute $\mathcal{A} \to \frac{1}{s}$:

$$\frac{Y}{X} = \frac{\frac{K}{M}}{s^2 + \frac{K}{M}}$$

$$s = \pm j\sqrt{\frac{K}{M}}$$

The poles are complex conjugates.

The corresponding fundamental modes have complex values.

fundamental mode 1: $e^{j\omega_0 t} = \cos \omega_0 t + j \sin \omega_0 t$

fundamental mode 2: $e^{-j\omega_0 t} = \cos \omega_0 t - j \sin \omega_0 t$

Real-valued inputs always excite combinations of these modes so that the imaginary parts cancel.

Example: find the impulse response.

$$\frac{Y}{X} = \frac{\frac{K}{M}A^2}{1 + \frac{K}{M}A^2} = \frac{\frac{K}{M}}{p_0 - p_1} \left(\frac{A}{1 - p_0A} - \frac{A}{1 - p_1A} \right)$$

$$= \frac{\omega_0^2}{2j\omega_0} \left(\frac{A}{1 - j\omega_0A} - \frac{A}{1 + j\omega_0A} \right)$$

$$= \frac{\omega_0}{2j} \left(\frac{A}{1 - j\omega_0A} \right) - \frac{\omega_0}{2j} \left(\frac{A}{1 + j\omega_0A} \right)$$
makes mode 1 makes mode 2

The modes themselves are complex conjugates, and their coefficients are also complex conjugates. So the sum is a sum of something and its complex conjugate, which is real.

The impulse response is therefore real.

$$\frac{Y}{X} = \frac{\omega_0}{2j} \left(\frac{\mathcal{A}}{1 - j\omega_0 \mathcal{A}} \right) - \frac{\omega_0}{2j} \left(\frac{\mathcal{A}}{1 + j\omega_0 \mathcal{A}} \right)$$

The impulse response is

$$h(t) = \frac{\omega_0}{2j} e^{j\omega_0 t} - \frac{\omega_0}{2j} e^{-j\omega_0 t} = \omega_0 \sin \omega_0 t; \quad t > 0$$

Alternatively, find impulse response by expanding system functional.

$$\frac{Y}{X} = \frac{\omega_0^2 A^2}{1 + \omega_0^2 A^2} = \omega_0^2 A^2 - \omega_0^4 A^4 + \omega_0^6 A^6 - + \cdots$$

$$y(t) = \omega_0^2 t - \omega_0^4 \frac{t^3}{3!} + \omega_0^6 \frac{t^5}{5!} - + \cdots , \ t \ge 0$$

Look at successive approximations to this infinite series.

$$\frac{Y}{X} = \frac{\omega_0^2 \mathcal{A}^2}{1 + \omega_0^2 \mathcal{A}^2} = \omega_0^2 \mathcal{A}^2 \sum_{l=0}^{\infty} \left(-\omega_0^2 \mathcal{A}^2 \right)^l$$

$$y(t) = \sum_{l=0}^{\infty} \omega_0^2 \left(-\omega_0^2\right)^l \mathcal{A}^{2l+2} \delta(t)$$
$$= \omega_0^2 t$$

Look at successive approximations to this infinite series.

$$\frac{Y}{X} = \frac{\omega_0^2 \mathcal{A}^2}{1 + \omega_0^2 \mathcal{A}^2} = \omega_0^2 \mathcal{A}^2 \sum_{l=0}^{\infty} \left(-\omega_0^2 \mathcal{A}^2 \right)^l$$

If
$$x(t) = \delta(t)$$
 then

$$y(t) = \sum_{l=0}^{\infty} \omega_0^2 \left(-\omega_0^2\right)^l \mathcal{A}^{2l+2} \delta(t)$$
$$= \omega_0^2 t - \omega_0^4 \frac{t^3}{3!}$$

Look at successive approximations to this infinite series.

$$\frac{Y}{X} = \frac{\omega_0^2 \mathcal{A}^2}{1 + \omega_0^2 \mathcal{A}^2} = \omega_0^2 \mathcal{A}^2 \sum_{l=0}^{\infty} \left(-\omega_0^2 \mathcal{A}^2 \right)^l$$

If
$$x(t) = \delta(t)$$
 then

$$y(t) = \sum_{l=0}^{\infty} \omega_0^2 \left(-\omega_0^2 \right)^l \mathcal{A}^{2l+2} \delta(t)$$
$$= \omega_0^2 t - \omega_0^4 \frac{t^3}{3!} + \omega_0^6 \frac{t^5}{5!}$$

Look at successive approximations to this infinite series.

$$\frac{Y}{X} = \frac{\omega_0^2 \mathcal{A}^2}{1 + \omega_0^2 \mathcal{A}^2} = \omega_0^2 \mathcal{A}^2 \sum_{l=0}^{\infty} \left(-\omega_0^2 \mathcal{A}^2 \right)^l$$

If
$$x(t) = \delta(t)$$
 then

$$y(t) = \sum_{l=0}^{\infty} \omega_0^2 \left(-\omega_0^2\right)^l \mathcal{A}^{2l+2} \delta(t)$$
$$= \omega_0^2 t - \omega_0^4 \frac{t^3}{3!} + \omega_0^6 \frac{t^5}{5!} - \omega_0^8 \frac{t^7}{7!}$$

Look at successive approximations to this infinite series.

$$\frac{Y}{X} = \frac{\omega_0^2 \mathcal{A}^2}{1 + \omega_0^2 \mathcal{A}^2} = \omega_0^2 \mathcal{A}^2 \sum_{l=0}^{\infty} \left(-\omega_0^2 \mathcal{A}^2 \right)^l$$

$$y(t) = \sum_{l=0}^{\infty} \omega_0^2 \left(-\omega_0^2 \right)^l \mathcal{A}^{2l+2} \delta(t)$$

= $\omega_0^2 t - \omega_0^4 \frac{t^3}{3!} + \omega_0^6 \frac{t^5}{5!} - \omega_0^8 \frac{t^7}{7!} + \omega_0^{10} \frac{t^9}{9!}$

Look at successive approximations to this infinite series.

$$\frac{Y}{X} = \frac{\omega_0^2 A^2}{1 + \omega_0^2 A^2} = \omega_0^2 A^2 \sum_{l=0}^{\infty} \left(-\omega_0^2 A^2 \right)^l$$

$$y(t) = \sum_{l=0}^{\infty} \omega_0^2 \left(-\omega_0^2 \right)^l \mathcal{A}^{2l+2} \delta(t)$$

$$= \omega_0^2 t - \omega_0^4 \frac{t^3}{3!} + \omega_0^6 \frac{t^5}{5!} - \omega_0^8 \frac{t^7}{7!} + \omega_0^{10} \frac{t^9}{9!} - + \cdots$$

Look at successive approximations to this infinite series.

$$\frac{Y}{X} = \frac{\omega_0^2 \mathcal{A}^2}{1 + \omega_0^2 \mathcal{A}^2} = \omega_0^2 \mathcal{A}^2 \sum_{l=0}^{\infty} \left(-\omega_0^2 \mathcal{A}^2 \right)^l$$

$$y(t) = \sum_{l=0}^{\infty} \omega_0^2 \left(-\omega_0^2\right)^l \mathcal{A}^{2l+2} \delta(t)$$

$$= \omega_0^2 t - \omega_0^4 \frac{t^3}{3!} + \omega_0^6 \frac{t^5}{5!} - \omega_0^8 \frac{t^7}{7!} + \omega_0^{10} \frac{t^9}{9!} - + \cdots$$

Look at successive approximations to this infinite series.

$$\frac{Y}{X} = \frac{\omega_0^2 \mathcal{A}^2}{1 + \omega_0^2 \mathcal{A}^2} = \omega_0^2 \mathcal{A}^2 \sum_{l=0}^{\infty} \left(-\omega_0^2 \mathcal{A}^2 \right)^l$$

$$y(t) = \sum_{l=0}^{\infty} \omega_0^2 \left(-\omega_0^2\right)^l \mathcal{A}^{2l+2} \delta(t)$$

$$= \omega_0^2 t - \omega_0^4 \frac{t^3}{3!} + \omega_0^6 \frac{t^5}{5!} - \omega_0^8 \frac{t^7}{7!} + \omega_0^{10} \frac{t^9}{9!} - + \cdots$$

Look at successive approximations to this infinite series.

$$\frac{Y}{X} = \frac{\omega_0^2 \mathcal{A}^2}{1 + \omega_0^2 \mathcal{A}^2} = \omega_0^2 \mathcal{A}^2 \sum_{l=0}^{\infty} \left(-\omega_0^2 \mathcal{A}^2 \right)^l$$

$$y(t) = \sum_{l=0}^{\infty} \omega_0^2 \left(-\omega_0^2 \right)^l \mathcal{A}^{2l+2} \delta(t)$$

$$= \omega_0^2 t - \omega_0^4 \frac{t^3}{3!} + \omega_0^6 \frac{t^5}{5!} - \omega_0^8 \frac{t^7}{7!} + \omega_0^{10} \frac{t^9}{9!} - + \cdots$$

Look at successive approximations to this infinite series.

$$\frac{Y}{X} = \frac{\omega_0^2 \mathcal{A}^2}{1 + \omega_0^2 \mathcal{A}^2} = \omega_0^2 \mathcal{A}^2 \sum_{l=0}^{\infty} \left(-\omega_0^2 \mathcal{A}^2 \right)^l$$

$$y(t) = \sum_{l=0}^{\infty} \omega_0^2 \left(-\omega_0^2 \right)^l \mathcal{A}^{2l+2} \delta(t)$$

$$= \omega_0^2 t - \omega_0^4 \frac{t^3}{3!} + \omega_0^6 \frac{t^5}{5!} - \omega_0^8 \frac{t^7}{7!} + \omega_0^{10} \frac{t^9}{9!} - + \cdots$$

Look at successive approximations to this infinite series.

$$\frac{Y}{X} = \frac{\omega_0^2 \mathcal{A}^2}{1 + \omega_0^2 \mathcal{A}^2} = \omega_0^2 \mathcal{A}^2 \sum_{l=0}^{\infty} \left(-\omega_0^2 \mathcal{A}^2 \right)^l$$

$$y(t) = \sum_{l=0}^{\infty} \omega_0^2 \left(-\omega_0^2 \right)^l \mathcal{A}^{2l+2} \delta(t)$$

$$= \omega_0^2 t - \omega_0^4 \frac{t^3}{3!} + \omega_0^6 \frac{t^5}{5!} - \omega_0^8 \frac{t^7}{7!} + \omega_0^{10} \frac{t^9}{9!} - + \cdots$$

Look at successive approximations to this infinite series.

$$\frac{Y}{X} = \frac{\omega_0^2 \mathcal{A}^2}{1 + \omega_0^2 \mathcal{A}^2} = \omega_0^2 \mathcal{A}^2 \sum_{l=0}^{\infty} \left(-\omega_0^2 \mathcal{A}^2 \right)^l$$

$$y(t) = \sum_{l=0}^{\infty} \omega_0^2 \left(-\omega_0^2\right)^l \mathcal{A}^{2l+2} \delta(t)$$

$$= \omega_0^2 t - \omega_0^4 \frac{t^3}{3!} + \omega_0^6 \frac{t^5}{5!} - \omega_0^8 \frac{t^7}{7!} + \omega_0^{10} \frac{t^9}{9!} - + \cdots$$

Look at successive approximations to this infinite series.

$$\frac{Y}{X} = \frac{\omega_0^2 \mathcal{A}^2}{1 + \omega_0^2 \mathcal{A}^2} = \omega_0^2 \mathcal{A}^2 \sum_{l=0}^{\infty} \left(-\omega_0^2 \mathcal{A}^2 \right)^l$$

$$y(t) = \sum_{l=0}^{\infty} \omega_0^2 \left(-\omega_0^2 \right)^l \mathcal{A}^{2l+2} \delta(t)$$

$$= \omega_0^2 t - \omega_0^4 \frac{t^3}{3!} + \omega_0^6 \frac{t^5}{5!} - \omega_0^8 \frac{t^7}{7!} + \omega_0^{10} \frac{t^9}{9!} - + \dots = \omega_0 \sin \omega_0 t$$

Comparison of CT and DT representations

Important similarities and important differences.

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.