CMPUT 367

Roderick Lan

Contents

1	Optima		
	1.1	Propositions	3
2	Exp	Family, GLM	4

Lecture 8 - Feb 6

1 Optima

Definition 1.0.1: Global Optimum (min)

x is a global optimum of f iff $\forall y \in \text{dom}_f, f(y) \geq f(x)$

Definition 1.0.2: Local Optimum (min)

x is a local optimum of f iff

 $\exists \epsilon > 0, \forall y \in \text{dom}_f \text{ if } ||y - x|| < \epsilon \text{ then } f(y) \ge f(x)$

or

 $\forall y \text{ in the neighborhood of } x \ (N_{\epsilon}(x)), \ f(y) \geq f(x)$

Thm 1.0.1

Let f be a convex function

A local optimum of f, x, is a global optimum

There must exist some ϵ s.t. $\forall z \in N_{\epsilon}(x), f(z) \geq f(x)$

Fix such ϵ for further use

Consider any $y \in \text{dom}_f$

Case 1: $||y - x|| < \epsilon$

 $f(y) \ge f(x)$ already known by local optimality

Case 2: $||y - x|| \ge \epsilon$

(z should be halfway b/w x and ϵ boundary)

Pick
$$\lambda = \frac{\|y - x\| - \frac{1}{2}\epsilon}{\|y - x\|}$$

$$z = \lambda x + (1 - \lambda)y$$

Then,¹

$$\begin{split} \|z - x\| &= \left\| \frac{\|y - x\| - \frac{1}{2}\epsilon}{\|y - x\|} x + \frac{\frac{1}{2}\epsilon}{\|y - x\|} y - x \right\| \\ &= \left\| \frac{-\frac{1}{2}\epsilon}{\|y - x\|} x + \frac{\frac{1}{2}\epsilon}{\|y - x\|} y \right\| = \frac{1}{2}\epsilon \end{split}$$

$$\begin{split} &\lambda f(x) + (1-\lambda)f(y) \geq f(z) \geq f(x) \\ &\lambda f(x) + (1-\lambda)f(y) \geq f(x) \\ &f(y) \geq f(x) \end{split}$$

 $^{^{1}28}$ min for feb 6 Lecture

1.1 Propositions

- 1. If f is a convex function, $\nabla f(x)$ exists at x_0 , and $\nabla f(x_0) = 0$ Then x is a local/global optimum
- 2. For a differentiable function f, the gradient descent

$$w^{(\text{new})} = w^{(\text{old})} - \alpha \nabla f(w^{(\text{old})})$$

If $\nabla f(w^{(\mathrm{old})}) \neq 0$ and $\alpha > 0$ is small enough, then

$$f(w^{\text{(new)}}) < f(w^{\text{(old)}})$$

Proof 1.1

Prove via taylor expansion.

$$\begin{split} f(\boldsymbol{w}^{(\text{new})}) &= f(\boldsymbol{w}^{(\text{old})}) + [\nabla f(\boldsymbol{w}^{(\text{old})})]^\top (\boldsymbol{w}^{(\text{new})} - \boldsymbol{w}^{(\text{old})}) + \text{h.o.t} \\ &= f(\boldsymbol{w}^{(\text{old})}) + [\nabla f(\boldsymbol{w}^{(\text{old})})]^\top (-\alpha \nabla f(\boldsymbol{w}^{\text{old}})) \end{split}$$

 ∇f is a descending direction

 $M\nabla f(x)$ if $M \geq 0^a$

 a52 min in feb 6 lecture

2 Exp Family, GLM

Discussed topics: Linear, Logistic, Softmax All of them have probabilistic assumption \Rightarrow Loss function \Rightarrow Optimization

$$(y_i - t_i)x_i$$

Exponential Family and Generalized Linear models

Definition 2.0.1: Exponential Family

 $x \sim \text{EXP}(\eta)$ if

$$p(x; \eta) = h(x) \exp(\eta^{\top} T(x) - A(\eta))$$

T(x) - sufficient statistics; features of x

 η - natural parameter

h(x) - unparameterized residual ^a

 $A(\eta)$ - normalization term

h(x) can be controlled (ie. how residual calculated)

T(x) can be controlled^b

 a62 min feb 6 lec

^b66 min feb 6 lec

$$\int h(x) \exp(\eta^{\top} T(x) - A(\eta)) dx = 1$$
$$\int h(x) \frac{\exp(\eta^{\top} T(x))}{\exp(A(\eta))} dx = 1$$
$$A(\eta) = \ln \int h(x) \exp(\eta^{\top} T(x)) dx$$

"Logged Linear Model"

Example 2.0.1

$$p(x_i; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(x - \mu)^2\right\}$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}x^2 + \frac{1}{\sigma^2}x\mu - \frac{1}{2\sigma^2}\mu^2\right\}$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2}x^2 + \frac{1}{\sigma^2}x\mu - \frac{1}{2\sigma^2}\mu^2 + \ln\frac{1}{\sigma}\right\}$$

$$= h(x) \exp\{\eta^{\top}T(x) - A(\eta)\}$$

 σ cant be in h(x) since h(x) must be unparameterized

$$T(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix}$$

The quantities that involve the params μ and σ^2

$$\eta = \begin{bmatrix} \frac{\mu}{\sigma^2} \\ -\frac{1}{2\sigma^2} \end{bmatrix}$$

Example 2.0.2: Bernoulli

 $x \sim \text{Bernoulli}(\pi)$ $x \sim \pi \langle 1 \rangle + (1 - \pi) \langle 0 \rangle$

$$p(x;\pi) = \pi^{\mathbb{1}\{x=1\}} \cdot (1-\pi)^{\mathbb{1}\{x=0\}}$$

Gaussian (linear) and Bernoulli (classification) distribution both part of exponential function family