(2020)An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

김승철

Contents

- 01 Multi Head Attention
- 02 ViT Concept
- 03 Results of training with CIFAR10

Multi Head Self Attention

컴퓨터는 숫자로 모든 것을 판단하기 때문에, Word Embedding을 통해 문장을 숫자로 바꿔주는 작업이 필요하다.

Word Embedding? 문장 내의 N개의 단어들을 각각 D dimension의 벡터들로 표현하는 것. 그러면 Input 문장은 $\mathbb{R}^{N \times D}$ 의 matrix가 되고, 이 matrix를 Transformer의 입력으로 넣는다.

하지만 기존의 seq2seq, RNN, GRU와 같은 구조들과 다르게, Self Attention 계산은 Input을 한 번에 dot product로 처리하기 때문에, 위치정보를 보존하기가 힘들다.

이에 위에서 Word Embedding을 거친 문장에 인위적으로 위치 정보를 넣어준다.

이 논문(ViT)에서는 fixed positional encoding을 사용한다.

Multi Head Self Attention

Positional Encoding의 수식은 아래와 같다.

```
PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})

PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})
```

Multi Head Self Attention

Multi Head Self Attention 를 구성하고 있는 Scaled Dot-Product Attention(Self Attention) 을 보자.

- Q. 이름이 왜 "Self" Attention 인가?
- A. 자기 자신과의 연산들을 통해, 문장 내의 어떤 단어에 주의를 기울여야 하는지를 계산하기 때문.

(Query, Key, Value라 붙인 이유는 모르겠음)

Multi Head Self Attention

Input으로 $\mathbb{R}^{N \times D}$ 의 matrix를 받고, W^Q , W^K , $W^V \in \mathbb{R}^{D \times D}$ 라는 weight matrix를 통해서 Input matrix를 각각 Query, Key, Value로 만든다.(왜 query, key, value인지는 모름)

오른쪽 그림과 같이, Query와 Key를 Matrix Multiplication 해주고, Scale 해준다음, softmax를 거친다. 이 과정의 결과를 Attention score라 한다.

MatMul
SoftMax
Mask (opt.)
Scale
MatMul
Q K V

Attention Score와 Value를 마찬가지로 Matrix Multiplication해주면 Self Attention 계산은 끝이다.

Multi Head Self Attention

수학적으로 계산하면 아래와 같다.

Input $S \in \mathbb{R}^{N \times D}$, Transformer의 hidden layer의 dim을 D' 이라고 하면,

$$S \cdot W^Q = Q \in \mathbb{R}^{N \times D'}, \quad S \cdot W^K = K \in \mathbb{R}^{N \times D'}, \quad S \cdot W^V = V \in \mathbb{R}^{N \times D'}(W^Q, W^K, W^V \in \mathbb{R}^{D \times D'})$$

$$SA(Q, K, V) = AttnScore(Q, K) \cdot V = \frac{Q \cdot K^{T}}{\sqrt{D'}} \cdot V \in \mathbb{R}^{N \times D'}$$

Multi Head Self Attention

어떻게 Attention 연산이 similarity를 표현하는가?

내적(Dot Product) 연산 자체가 similarity를 표현함.(Cosine Similarity)

좀 직관적으로 보면,

$$D = (2,2), D = (2,2)$$
 의 dot product는 8.

$$D = (2, 2), C = (-2, -2)$$
의 dot product는 -8.

$$D = (2,2), E = (2,-2)$$
 dot product 0.

Multi Head Self Attention

어떻게 Attention 연산이 similarity를 표현하는가?

내적(Dot Product) 연산 자체가 similarity를 표현한

$$a \cdot b = |a||b|\cos\theta$$
 이고, $\cos\theta = \frac{a \cdot b}{|a||b|}$ 이다. (여기

좀 직관적으로 보면,

$$D = (2,2), D = (2,2)$$
 의 dot product는 8.

$$D = (2, 2), C = (-2, -2)$$
의 dot product는 -8.

$$D = (2,2), E = (2,-2)$$
 dot product 0.

Multi Head Self Attention

Multi Head Self Attention은 아까 Input을 weight $W^{Q,K,V}$ 를 이용해서 projection 시켜 줄 때, weight $W^{Q,K,V} \in \mathbb{R}^{D \times D'}$ 의 D'을 Head의 개수로 나눠주고, 나중에 D''(D''/h)를 기준으로 Concat 하면 된다.

Transformer의 hidden dim을 D'이라 하고, Head의 개수를 h라 하면,

 $MHSA(Q, K, V) = Concat(head_1, ..., head_h)W^o, (W^o \in \mathbb{R}^{h \cdot D'' \times D})$ where $head_i = Att(Q = S \cdot W_i^Q, K = S \cdot W_i^K, V = S \cdot W_i^V)$ & $(W_i^Q, W_i^K, W_i^V \in \mathbb{R}^{D \times D''})$ & D'' = D'/h

$$head_i = Att(Q, K, V) = AttScore(Q, K) \cdot V = \frac{Q \cdot K^T}{\sqrt{D'}} \cdot V \in \mathbb{R}^{N \times D''}$$

 $MHSA(Q,K,V) \in \mathbb{R}^{N \times D}$

02 ViT Concept

ViT의 전체 구조는 오른쪽 그림과 같고, 수식으로는 그림 아래와 같다.

아래 순서대로 ViT를 설명 할 것이다.

- 1 Split Patches
- 2 Linear Projection of Flattened Patches
- ③ Patch + Positional Embedding with class embedding
- **4** Transformer Encoder
- **(5) MLP Head for Classification**

$$\mathbf{z}_{0} = [\mathbf{x}_{\text{class}}; \, \mathbf{x}_{p}^{1}\mathbf{E}; \, \mathbf{x}_{p}^{2}\mathbf{E}; \cdots; \, \mathbf{x}_{p}^{N}\mathbf{E}] + \mathbf{E}_{pos}, \qquad \mathbf{E} \in \mathbb{R}^{(P^{2} \cdot C) \times D}, \, \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D}$$

$$\mathbf{z}'_{\ell} = \text{MSA}(\text{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1}, \qquad \qquad \ell = 1 \dots L$$

$$\mathbf{z}_{\ell} = \text{MLP}(\text{LN}(\mathbf{z}'_{\ell})) + \mathbf{z}'_{\ell}, \qquad \qquad \ell = 1 \dots L$$

$$\mathbf{y} = \text{LN}(\mathbf{z}_{L}^{0})$$

ViT Concept - ① Split Patches

Input Image $\mathbb{R}^{H \times W \times C}$ 를 N개의 patch P ($\mathbb{R}^{p \times p \times c}$) 로 분할한다. 분할 후 하나의 Image에 대한 shape은 $\mathbb{R}^{N \times p \times p \times c}$ 가 된다.

 $img: x \in \mathbb{R}^{H \times W \times C}$

 $\mathsf{patch}: P \in \mathbb{R}^{p \times p \times c}$

ViT Concept - ① Split Patches

Input Image $\mathbb{R}^{H \times W \times C}$ 를 N개의 patch P ($\mathbb{R}^{p \times p \times c}$) 로 분할한다. 분할 후 하나의 Image에 대한 shape은 $\mathbb{R}^{N \times p \times p \times c}$ 가 된다.

 $img: x \in \mathbb{R}^{H \times W \times C}$

 $\mathsf{patch}: P \in \mathbb{R}^{p \times p \times c}$

ViT Concept - ② Linear Projection of Flattened Patches

Multi Head Attention은 Natural Language와 같은 Sequence Data에서 작동되도록 설계하였기 때문에 원본 Image 그대로 Multi Head Attention을 적용하는 것은 쉽지 않다.

그래서 Image를 Patch로 분할하고 $N \times (p \times p \times c)$ shape으로 Flatten 한 후 Dimension D로 projection 한다.

Projection 후 shape은 다음과 같다. $\Rightarrow proj \in \mathbb{R}^{N \times D}$

ViT Concept - ③ Patch + Positional Embedding with Class Embedding

이제 projection 된 patch $\in \mathbb{R}^{N \times D}$ 에 Class Embedding 을 concat해준다. Class Embedding은 Learnable 해야하므로(논문), torch.nn.Parameter로 Class Embedding을 만들고 기존의 Patch와 Class Embedding을 concat 한다. Concat한 Tensor에 Positional Embedding을 더한다.

※ torch.stack(dim=d) 과 torch.cat(dim=d)의 차이점?
torch.stack은 dim=d 에 새로운 Dimension을 추가하여 Tensor들을 결합
torch.cat은 기존 차원 dim=d 을 확장하여 Tensor들을 결합

ViT Concept - ③ Patch + Positional Embedding with Class Embedding

이제 projection 된 patch $\in \mathbb{R}^{N \times D}$ 에

```
Class En def positional encoding(n, d):
Class En
           pe = torch.rand((n, d))
           for i in range(n):
torch.nnl
               for j in range(d):
기존의 Pd
                   if j % 2 == 0:
Concat한
                       pe[i][j] = np.sin(i/(10000 ** (j / d)))
                   else:
                        pe[i][j] = np.cos(i/(10000 ** ((j-1) / d)))
torch.
           return pe
  torch.cat는 기존 사원 alm=a 글 왹징이어 Tensor글글 걸입
```

ViT Concept - ③ Patch + Positional Embedding with Class Embedding

```
class ClassEmbedding(nn.Module):
      def init (self, args):
C
          super(). init ()
          self.d = args.hidden dim
C
          self.device = args.device
to
기
          self.cls tensor = torch.rand(1, 1, self.d)
          self.cls emb = nn.Parameter(self.cls tensor)
C
      def forward(self, x):
          \# x.shape = (b, n, d)
          # breakpoint()
          b, n, d = x. shape
          cls emb = self.cls emb.expand(b, -1, -1)
X
          concat = torch.cat([cls emb, x], dim=1)
                 = positional encoding(n+1, d).unsqueeze(0).expand(b, n+1, d).to(self.device)
          pe
          return concat + pe # shape = (b, n+1, d)
```

ViT Concept - 4 Transformer Encoder

Embedded Patch를 Transformer Encoder Block에 입력. 오른쪽 그림의 화살표대로 Train이 이루어진다.

Encoder 내부에 Encoder Layer가 여러 개 있으므로(Hyperparameter), torch.nn.ModuleList를 이용하여 Encoder Layer를 List로 쌓은 다음, for문을 이용하여 model을 만든다.

Transformer Encoder

ViT Concept - 4 Transformer Encoder

```
class TransformerEncoder(nn.Module):
    def init (self, args):
        super(). init ()
                                                                                orm
        self.encoder = nn.ModuleList([
            TransformerEncoderLayer(args) for _ in range(args.num_enc_layers)+)
            1)
                                                                                -Head
                                                                                ntion
        self.ln = nn.LayerNorm(args.hidden dim)
                                                                                brm
    def forward(self, x):
        out = x
                                                                                edded
                                                                                ches
        for layer in self.encoder:
            out = layer(out)
        output = self.ln(out)
        return output # output.shape = (b, n+1, d)
```

Transformer Encoder

Lx

02 ViT Co

Embedded Patch를 오른쪽 그림의 화살표

Encoder 내부에 Enc torch.nn.ModuleLis for문을 이용하여 mo

```
class TransformerEncoderLayer(nn.Module):
    def init (self, args):
       super(). init ()
       self.mha = nn.MultiheadAttention(embed dim
                                                  = args.hidden dim,
                                                   = args.num heads,
                                        num heads
                                                   = args.dropout rate,
                                        dropout
                                        batch first = True)
       self.ln1 = nn.LayerNorm(args.hidden dim)
       self.ln2 = nn.LayerNorm(args.hidden dim)
       self.ffn1 = nn.Linear(in features = args.hidden dim,
                            out features = args.mlp size)
       self.ffn2 = nn.Linear(in features = args.mlp size,
       out features = args.hidden dim)
       self.act = nn.GELU()
   def forward(self, x):
              = x # shape = (b, n+1, d)
              = self.ln1(inp)
       mha, = self.mha(ln, ln, ln)
              = mha + inp
       ln
              = self.ln2(x)
       ffn1 = self.ffn1(ln) # shape = (b, n+1, mlp size)
              = self.act(ffn1)
       act
       ffn2 = self.ffn2(act) # shape = (b, n+1, d)
              = x + ffn2
       out
       return out # shape = (b, n+1, d)
```

Transformer Encoder

ViT Concept - ⑤ MLP Head for Classification

```
class FeedForwardNet(nn.Module):
          def init (self, args):
마지막
              super(). init ()
MLP H
              self.linear = nn.Linear(in features = args.hidden dim,
                                       out features = args.num classes)
              self.act
                        = nn.GELU()
Tenso
              self.dropout = nn.Dropout(args.dropout rate)
Classit
              self.ln = nn.LayerNorm(args.num classes)
out = x
          def forward(self, x):
out을 I
              inp = x # shape = (b, n+1, d)
out \in
              x = self.linear(inp)
                 = self.act(x)
마지막
                  = self.dropout(x)
                  = x[:, 0, :] # shape = (b, num classes)
              out = self.ln(x)
              return out # shape = (b, num classes)
```

02 ViT Concept - ⑤ MLP Head for Classification

전체적인 모델 코드는 다음과 같다.

```
class ViTModel(nn.Module):
    def init (self, args):
       super(). init ()
       self.patch
                                = Img2Patch(args)
                                                           n
       self.projection
                                = Projection layer(args)
       self.class embedding
                                = ClassEmbedding(args)
       self.transformer encoder = TransformerEncoder(args)
       self.feedforwardnet = FeedForwardNet(args)
   def forward(self, x):
       # x.shape = (b, 3, 32, 32)
       patches = self.patch(x)
       # patches.shape = (b, n, c, p, p)
       proj
               = self.projection(patches)
       # proj.shape = (b, n, hidden dim)
       cls emb = self.class embedding(proj)
       # cls emb.shape = (b, n+1, hidden dim)
               = self.transformer encoder(cls emb)
       te
       # te.shape = (n, n+1, hidden dim)
       ffn
               = self.feedforwardnet(te)
       return ffn # ffn.shape = (b, num classes)
```

02 ViT Concept - ⑤ MLP Head for Classification

모델 summary를 해봤을 때, 다음과 같다.

Layer (type:depth-idx)	Input Shape	Output Shape	Param # 	
—————————————————————————————————————	[-1, 3, 32, 32]	[-1, 16, 3, 8, 8]		
Unfold: 2-1	[-1, 3, 32, 32]	[-1, 192, 16]		
Projection layer: 1-2	[-1, 16, 3, 8, 8]	[-1, 16, 1024]		
Linear: 2-2	[-1, 16, 192]	[-1, 16, 1024]	197,632	
-ClassEmbedding: 1-3	[-1, 16, 1024]	[-1, 17, 1024]	1,024	
TransformerEncoder: 1-4	[-1, 17, 1024]	[-1, 17, 1024]		
└ModuleList: 2	[]	[]		
TransformerEncoderLayer: 3-1	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-2	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-3	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-4	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-5	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-6	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-7	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-8	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
LTransformerEncoderLayer: 3-9	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-10	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-11	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
LTransformerEncoderLayer: 3-12	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
☐ ☐ TransformerEncoderLayer: 3-13	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-14	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-15	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-16	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-17	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-19	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-20	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-22	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-23	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
TransformerEncoderLayer: 3-24	[-1, 17, 1024]	[-1, 17, 1024]	12,596,224	
LayerNorm: 2-3	[-1, 17, 1024]	[-1, 17, 1024]	2,048	
FeedForwardNet: 1-5	[-1, 17, 1024]	[-1, 10]		
Linear: 2-4	[-1, 17, 1024]	[-1, 17, 10]	10,250	
LGELU: 2-5	[-1, 17, 10]	[-1, 17, 10]		
L_Dropout: 2-6	[-1, 17, 10]	[-1, 17, 10]		
LayerNorm: 2-7	[-1, 10]	[-1, 10]	20	

cation

otal params: 302,520,350 rainable params: 302,520,350 Mon-trainable params: 0

otal mult-adds (M): 906.53 _____

nput size (MB): 0.01

orward/backward pass size (MB): 22.70

arams size (MB): 1154.02

stimated Total Size (MB): 1176.74

하지만 ViT의 단점도 존재한다.

첫 번째로,

Original Image를 Patch로 분할하고 독립적으로 처리하기 때문에, 인접해 있는 Patch간의 local information을 학습하지 못하는 문제가 있다.

물론 CNN 과 비교했을 때, ViT가 Global information을 잘 처리하지만, CNN처럼 local info는 처리하지 못한다.

두 번째로, 이미지의 resolution이 크면 연산량이 증가한다는 단점이 있다.

FLOPs(FLoating point OPerations) 는 초당 부동소수점연산을 의미하는데, 이는 FLOPs가 높을수록 모델의 연산량이 높다는 뜻이다. (FLOPS=FLoating point Operations Per Second 와 다름)

두 번짜	Method Type	Network	#Param. (M)	image size	FLOPs (G)	ImageNet top-1 (%)	Real top-1 (%)	V2 top-1 (%)
이는 FI (FLOP	Convolutional Networks	ResNet-50 [15] ResNet-101 [15] ResNet-152 [15]	25 45 60	224^{2} 224^{2} 224^{2}	4.1 7.9 11	76.2 77.4 78.3	82.5 83.7 84.1	63.3 65.7 67.0
		ViT-B/16 [11] ViT-L/16 [11]	86 307	384^{2} 384^{2}	55.5 191.1	77.9 76.5	83.6 82.2	
	Transformers	DeiT-S [30][arxiv 2020] DeiT-B [30][arxiv 2020]	22 86	224^{2} 224^{2}	4.6 17.6	79.8 81.8	85.7 86.7	68.5 71.5
		PVT-Small [34][arxiv 2021] PVT-Medium [34][arxiv 2021] PVT-Large [34][arxiv 2021]	25 44 61	224^{2} 224^{2} 224^{2}	3.8 6.7 9.8	79.8 81.2 81.7		_
		T2T-ViT _t -14 [41][arxiv 2021] T2T-ViT _t -19 [41][arxiv 2021] T2T-ViT _t -24 [41][arxiv 2021]	22 39 64	224^{2} 224^{2} 224^{2}	6.1 9.8 15.0	80.7 81.4 82.2	-	
		TNT-S [14][arxiv 2021] TNT-B [14][arxiv 2021]	24 66	224 ² 224 ²	5.2 14.1	81.3 82.8	_	
	Convolutional Transformers	Ours: CvT-13 Ours: CvT-21 Ours: CvT-13 _{↑384} Ours: CvT-21 _{↑384}	20 32 20 32	224^{2} 224^{2} 384^{2} 384^{2}	4.5 7.1 16.3 24.9	81.6 82.5 83.0 83.3	86.7 87.2 87.9 87.7	70.4 71.3 71.9 71.9
		Ours: CvT-13-NAS	18	224 ²	4.1	82.2	87.5	71.3

세 번째로,

충분히 많은 데이터가 없을 때는(예를들어 ImageNet) ViT가 잘 동작하지 않는다는 단점이 있다. (논문 Abstract에 언급되어 있음.)

이는 Transformer가 Inductive bias가 부족해서 나타나는 결과라고 한다.

Inductive bias? : ML Model이 학습과정에서 새로운 데이터에 대해 잘 일반화 할 수 있도록 돕는 가정

모델이 학습 할 때 우리가 세우는 가정들

CNN: 인접한 픽셀끼리는 서로 관련이 있다는 가정을 함

Linear Regression : 데이터들이 Linear한 관계에 있음을 가정

이 단점들을 해결하기 위해

Swin Transformer, Convolution Vision Transformer(CvT), Pyramid Vision Transformer(PVT), DeiT(Training data-efficient image transformers & distillation through attention)

등이 발표되었다.

Results of training with CIFAR10

Parameter는 다음과 같이 설계하였다.

Results of training with CIFAR10

```
training device: lab
Parameter epochs: 800
        dataset dir: /Data_RTX4090_server/datasets/cifar10/
        batch size: 512
         learning rate: 5e-07
         optimizer: Adam
         act fn: GeLU
         device: cuda
         dropout rate: 0.1
         random seed: 123
        model_summary_dir: model_summary.txt
         result dir: ./result dir/20240826 1747/
         classification report dir: classification report.txt
         now epochs: 1
        patch size: 8
         num enc layers: 24
        mlp size: 4096
        hidden dim: 1024
         num heads: 16
         num classes: 10
```

Results of training with CIFAR10

Results of training with CIFAR10

감사합니다

0

0

O

