

HALL EFFECT SETUP

Determination of Hall Coefficient and carrier type for a Pemi-conducting, material.

AIM: To determine the ball coefficient of the given n-type or p-type semiconductor.

APPARATUS REQUIRED:

Hall brobe (n type or p type), Hall effect setup,

Electromagnet, constant current bower supply,

gauss meter etc.

FORMULAE: is Hall coefficient $(R_{H}) = \frac{V_{H} \cdot t}{IH} \times 10^{8} \text{ cm}^{3}\text{C}^{-1}$

where: VH = Hall voltage (volt)

t = thickness of sample (c

I = current (Ampere) H = Magnetic field (Gauss)

ij Carrier density (n)

1 cm⁻³
R_H. 9 where: R_H = Hall Coefficient

9 = charge of election or ho

iii > Carrier mobility (u) = RH. 6 cm2 V-15-1

where: Ry = Hall Coefficient Com"

6 = Conductivity (CV 5 cm')

Teacher's Signature

MEASUREMENT OF HALL COEFFICIENT: 8Current in Hall effect setup (I) = 2 mA

	Current in Constant current hower supply (A)	Magnetic field (H) (Gauss)	Fall Voltage (VH) (millivolts)	Hall Coefficient $(R_{H}) = \frac{V_{H} \times t}{T H} \times 10^{8}$ $(cm^{3} C^{-1})$
1.	1.0	1320	12.5	$\frac{12.5 \times 0.05}{2 \times 1320} \times 10^8 = 2.3674 \times 10^4$
2.	1.5	1940	18.1	18.1 x005 2 x 1940 x 108 = 2.3325 x 104
3.	2.0	2620	23.2	$\frac{23.1 \times 0.05}{2 \times 2620} \times 10^8 = 2.2137 \times 10^4$
4.	2.5	3040	27.4	$\frac{27.4 \times 0.05}{2 \times 3040} \times 10^8 = 2.2533 \times 10^4$
5.	3.0	3600	31.2	$\frac{31.2 \times 0.05}{2 \times 3600} \times 10^8 = 2.1667 \times 10^4$
6.	3.5	4390	35.6	35.6 × 0.05 2 × 4390 × 108 = 2.0273 × 104

Observations and Calculations:

- 1. Thickness of the sample (t) = 0.05 cm
- 2. Resistivity of the sample (φ) = 10 Vc'scm
- 3. Conductivity of the sample (o) = 0.1 CV's cm'
- 4. The charge of electron or hole (9) = 1.6 × 10-19 C

Page No./ 2
Date./

Calculation :-

$$R_{H_{1}} = \frac{12.5 \times 0.05}{2 \times 1320} \times 10^{8} = \frac{0.625}{2640} \times 10^{8} = 2.3674 \times 10^{4} \text{ cm}^{3}\text{c}^{-1}$$

$$R_{H_{2}} = \frac{18.1 \times 0.05}{2 \times 1940} \times 10^{8} = \frac{0.905}{3880} \times 10^{8} = 2.3325 \times 10^{4} \text{ cm}^{3}\text{c}^{-1}$$

$$R_{H_{3}} = \frac{23.1 \times 0.05}{2 \times 2620} \times 10^{8} = \frac{1.155}{5240} \times 10^{8} = 2.2137 \times 10^{4} \text{ cm}^{3}\text{c}^{-1}$$

$$R_{H_{4}} = \frac{27.4 \times 0.05}{2 \times 3640} \times 10^{8} = \frac{1.37}{6080} \times 10^{8} = 2.2533 \times 10^{4} \text{ cm}^{3}\text{c}^{-1}$$

$$R_{H_{5}} = \frac{31.2 \times 0.05}{2 \times 3600} \times 10^{8} = \frac{1.56}{7200} \times 10^{8} = 2.1667 \times 10^{4} \text{ cm}^{3}\text{c}^{-1}$$

$$R_{H_{5}} = \frac{35.6 \times 0.05}{2 \times 4390} \times 10^{8} = \frac{1.78}{8780} \times 10^{8} = 2.0273 \times 10^{4} \text{ cm}^{3}\text{c}^{-1}$$

5. Hall coefficient of sample =
$$R_H = \frac{V_H \times t}{\Gamma H} \times 10^{8} \text{ cm}^{3} \text{c}^{-1}$$
(mean)

$$= \frac{(2.3674 + 2.3325 + 2.2137 + 2.2533 + 2.1667 + 2.0273) \times 10^{44}}{6}$$

$$= \frac{2.2268 \times 10^{4} \text{ cm}^{3} \text{ C}^{-1}}{6}$$

6. The carrier density of sample =
$$n = \frac{1}{R_{W}.9} = \frac{1}{2.2268 \times 10^{4} \times 1.6 \times 10^{-19}}$$

= 2.8067×10^{4} carriers/cm³

Teacher's Signature

ORD"

Page No./ 3.
Date./

PRINCIPLE:

Hall effect 3 When a current carrying conductor is placed in a transverse magnetic field, a forestial difference is developed across the conductor in a direction perpendicular to the direction of both current and magnetic field.

RESULT :

- 1. The Hall coefficient of the given semi-conducting material (RH) = 2.2268 × 104 cm³C⁻¹
- 2. The carrier density (n) = 2.8067 x 10" carriers /cm3
- 3. The carrier mobility = 2226.8 cm²/volt see.

10