Lab 11: Process Mining

Process Discovery

Event Log

- Event logs contain the executed activities of process model that related to process instance.
- Format (case id , task\ activity name)

Alpha Algorithm

Definitions

Let T be a set of tasks - activities and T be the set of all sequnces or arbitrary lengths over T, it shall:

- \circ $\sigma \in T^*$ is called an execution sequence, if all activities in σ belong to the same process instance
- $W \subset T^*$ is called workflow log

Assumptions

- In a process model each activity occurs at most once
- Any direct neighborhood relation between activities is observed at least once

Relations

- Direct follower: $a >_w b$ are in execution sequence iff b directly follows a.
- Causality: $a \rightarrow_w b$ iff $a >_w b$ but not $b >_w a$
- Parallelism : $a \parallel_{W} b$ iff $a >_{W} b$ and $b >_{W} a$
- Exclusiveness: a #w b iff not a >w b and not b >w a

Representation of relation in petri net

α-Algorithm

- 1. $T_{W} = \{ t \in T \mid \exists_{\sigma \in W} t \in \sigma \}$ Set of distinct activities in W
- 2. $T_i = \{ t \in T \mid \exists_{\sigma \in W} t = first(\sigma) \}$ Set of start activities, first element in each trace in W
- 3. $T_0 = \{ t \in T \mid \exists_{\sigma \in W} t = last(\sigma) \}$ Set of end activities, last element in each trace in W
- 4. $X_W = X_L = \{ (A,B) \mid A \subseteq T_W \land B \subseteq T_W \land \forall_{a \in A} \forall_{b \in B} a \rightarrow_W b \land \forall_{a1,a2 \in A} a_1 \#_W a_2 \land \forall_{b1,b2 \in B} b_1 \#_W b_2 \}$ set of (A,B) where $a \in A$ and $b \in B$ are in causality relation, all activities in A are independent relation and same for B
- 5. $Y_W = \{ (A,B) \in X \mid \forall_{(A',B') \in X} A \subseteq A' \land B \subseteq B' \Rightarrow (A,B) = (A',B') \}$ Delete (A,B) from X_W that are not maximal
- 6. $P_{W} \{ p_{(A,B)} \mid (A,B) \in Y_{W} \} \cup \{i_{W},o_{W}\}$ set of places
- 7. $F_{W} = \{ (a, p_{(A,B)}) \mid (A,B) \in Y_{W} \land a \in A \} \cup \{ (p_{(A,B)},b) \mid (A,B) \in Y_{W} \land b \in B \} \cup \{ (i_{W},t) \mid t \in T_{A} \} \cup \{ (t,o_{W}) \mid t \in T_{A} \}, \text{ set of arcs}$
- 8. $a(W) = (P_w, T_w, F_w)$. Finally construct petri net

Examples

Example 1

Case id	Activity
1	Α
1	В
2	Α
2	С
1	D
2	D

Applying alpha steps

- 1. $T_w = \{A, B, C, D\}$
- 2. $T_1 = \{A\}$
- 3. $T_o = \{D\}$
- 4. X_w : { ({A},{B}), ({A},{C}),({A},{B,C}), ({B},{D}), ({C},{D}) , ({B,C},{D}) }
- 5. Y_w : { ({A},{B,C}), ({B,C},{D}) }
- 6. P_w : { $P_{(\{A\},\{B,C\})}$, $P_{(\{B,C\},\{D\})}$, i_w , o_w }
- 7. F_w : {(i_w, A), (A, P_({A},{B,C})), (P_({A},{B,C}),B), (P_({A},{B,C}),C),(B,P_({B,C},{D})), (C, P_({B,C},{D})), (P_({B,C},{D})), (D, o_w)}
- 8. $a(W) = (P_W, T_W, F_W)$.

Example 2

Case id	Activity	Case id	Activity
0	А	3	А
0	В	3	В
0	С	3	С
1	А	4	Α
1	D	4	D
1	E	4	E
0	E	4	F
0	F	4	G
0	G	4	Н
0	Н	3	E
1	G	3	G
1	F	3	F
1	Н	3	Н
2	A	5	А
2	D	5	В
2		5	С
2	E	5	E
2	F	5	G
2	G	5	F
2	Н	5	Н

Cairo University

Faculty of computers and information

System Analysis and Design 2

	A	В	С	D	Е	F	G	Н
A	#	\rightarrow	#	\rightarrow	#	#	#	#
В	←	#	\rightarrow	#	#	#	#	#
С	#	←	#	#	\rightarrow	#	#	#
D	←	#	#	#	\rightarrow	#	#	#
Е	#	#	←	←	#	\rightarrow	\rightarrow	#
F	#	#	#	#	←	#		\rightarrow
G	#	#	#	#	←		#	\rightarrow
Н	#	#	#	#	#	←	←	#

Applying alpha steps

- 1. $T_w=\{A,B,C,D,E,F,G,H\}$
- 2. $T_1 = \{A\}$
- 3. $T_o = \{H\}$
- 4. $X_w = \{(\{A\},\{B\}),(\{A\},\{D\}),(\{A\},\{B,D\}),(\{B\},\{C\}),(\{C\},\{E\}),(\{D\},\{E\}),(\{C,D\},\{E\}),(\{E\},\{F\}),(\{E\},\{G\}),(\{F\},\{H\}),(\{G\},\{H\})\}$
- 5. $Y_w = \{(\{A\}, \{B,D\}), (\{B\}, \{C\}), (\{C,D\}, \{E\}), (\{E\}, \{F\}), (\{E\}, \{G\}), (\{F\}, \{H\}), (\{G\}, \{H\})\}\}$
- 6. $P_{w} = \{P_{(\{A\},\{B,D\})}, P_{(\{B\},\{C\})}, P_{(\{C,D\},\{E\})}, P_{(\{E\},\{F\})}, P_{(\{E\},\{G\})}, P_{(\{F\},\{H\})}, P_{(\{G\},\{H\})}, i_{w}, o_{w}\}\}$
- $\begin{array}{lll} 7. & F_{w} = \{(i_{w} \ , \ A), \ (A, \ P_{(\{A\},\{B,D\})}) \ , \ (P_{(\{A\},\{B,D\})},B), (P_{(\{A\},\{B,D\})},D), \ (B, \ P_{(\{B\},\{C\})}), \ (P_{(\{B\},\{C\})},C), (C, \\ & P_{(\{C,D\},\{E\})}) \ , (D, \ P_{(\{C,D\},\{E\})}), (P_{(\{C,D\},\{E\})},E), \ (E, \ P_{(\{E\},\{F\})}), \ (P_{(\{E\},\{F\})},F) \ , \ (E, \ P_{(\{E\},\{G\})}), \ (P_{(\{E\},\{G\})},G) \ , \\ & (F, \ P_{(\{F\},\{H\})}), \ (P_{(\{F\},\{H\})},H) \ , \ (G, \ P_{(G\},\{H\})}), \ (P_{(\{G\},\{H\})},H), \ (H, \ o_{w})\} \end{array}$
- 8. $a(W) = (P_W, T_W, F_W)$.

Example 3

Case id	Activity
0	Α Α
0	В
0	D
1	Α
1	С
1	G
1	Н
0	Е
0	F
0	Н
2	Α
2	С
2	G
3	Α
3	С
2	Н
3	G
3	Н
4	A
4	В
4	E
4	D
4	F
4	Н

Direct				
follower				
A > B				
A > C				
B > D				
B > E				
C > G				
D > E				
D > F				
E > D				
E > F				
F > H				
G > H				

Causality
$A \rightarrow B$
$A \rightarrow C$
$B \rightarrow D$
$B \rightarrow E$
$C \rightarrow G$
$D \rightarrow F$
$E \rightarrow F$
$F \rightarrow H$
$G \rightarrow H$

Parallel D || E

Exclusive	Exclusive			
ness	ness			
A # E A # F A # H B # F B # H	C#E C#F C#H D#H D#H E#H F#G			

	Α	В	С	D	E	F	G	Н
Α	#	\rightarrow	\rightarrow	#	#	#	#	#
В	←	#	#	\rightarrow	\rightarrow	#	#	#
С	←	#	#	#	#	#	\rightarrow	#
D	#	←	#	#		\rightarrow	#	#
Е	#	←	#		#	\rightarrow	#	#
F	#	#	#	←	←	#	#	\rightarrow
G	#	#	←	#	#	#	#	\rightarrow
Н	#	#	#	#	#	←	←	#

Applying alpha steps

- 1. $T_w=\{A,B,C,D,E,F,G,H\}$
- 2. $T_1 = \{A\}$
- 3. $T_0 = \{H\}$
- 4. $X_w = \{(\{A\}, \{B\}), (\{A\}, \{C\}), (\{A\}, \{B, C\}), (\{B\}, \{D\}), (\{B\}, \{E\}), (\{C\}, \{G\}), (\{D\}, \{F\}), (\{F\}, \{H\}), (\{F\}, \{H\}), (\{F\}, \{H\}))\}$
- 5. $Y_w = \{(\{A\}, \{B,C\}), (\{B\}, \{D\}), (\{B\}, \{E\}), (\{C\}, \{G\}), (\{D\}, \{F\}), (\{E\}, \{F\}), (\{F,G\}, \{H\})\}\}$
- 6. $P_w = (P_{(\{A\},\{B,C\})}, P_{(\{B\},\{D\})}, P_{(\{B\},\{E\})}, P_{(\{C\},\{G\})}, P_{(\{D\},\{F\})}, P_{(\{E\},\{F\})}, P_{(\{F,G\},\{H\})})$
- 7. $F_{w} = \{(i_{w}, A), (A, P_{(\{A\},\{B,C\})}), (P_{(\{A\},\{B,C\})},B), (P_{(\{A\},\{B,C\})},C), (C, P_{(\{C\},\{G\})}), (P_{(\{C\},\{G\})},G), (B, P_{(\{B\},\{D\})}), (P_{(\{B\},\{D\})},D), (D, P_{(\{D\},\{F\})}), (P_{(\{D\},\{F\})},F), (B, P_{(\{B\},\{E\})}), (P_{(\{B\},\{E\})},E), (E, P_{(\{E\},\{F\})}), (P_{(\{E\},\{F\})},F), (F, P_{(\{F,G\},\{H\})}), (G, P_{(\{F,G\},\{H\})}), (P_{(\{F,G\},\{H\})},H), (H, o_{w})\}$
- 8. $a(W) = (P_W, T_W, F_W)$.

Prom

Prom is tool used for process mining techniques

Alpha algorithm in prom

Faculty of computers and information System Analysis and Design 2

```
<?xml version="1.0" encoding="UTF-8" ?>
□<log xes.version="1.0" >
   <trace>
     <event>
       <string key="concept:name" value="A"/>
     </event>
     <event>
       <string key="concept:name" value="B"/>
     </event>
     <event>
       <string key="concept:name" value="D"/>
     </event>
   </trace>
   <trace>
     <string key="concept:name" value="1"/>
       <string key="concept:name" value="A"/>
     </event>
     <event>
       <string key="concept:name" value="C"/>
     </event>
     <event>
       <string key="concept:name" value="D"/>
   </trace>
  </log>
```

Applying alpha algorithm on imported event log

System Analysis and Design 2

