MONETIZING BIG DATA

Introduction to Database Systems Fall 2024, Lecture 12:
Big Data Management

Lecture Outline

Learning Outcome 6: Discuss the pros and cons of different classes of data systems for modern analytics and data science applications

- Characteristics of Big Data
- Classes of Big Data Processing Systems
- Example: MapReduce, Spark

Lecture Outline

Learning Outcome 6: Discuss the pros and cons of different classes of data systems for modern analytics and data science applications

- Characteristics of Big Data
- Classes of Big Data Processing Systems
- Example: MapReduce, Spark

Beyond Small Data

Online Transactional Processing (OTLP)

- Build great interactive applications
- → "Small" data

This class: beyond small data

- Keep track of all the history
- Keep track of all interactions, also low-level
- Keep track of all data: media, user input, logs
- → "Big Data"

Characteristics of Big Data

Five Vs of Big Data describe key dimensions of big data

Volume ***

Definition: The amount of data generated, stored and processed.

Significance: Data management system must be scale to given data volume.

Volume

AIRBNB GUESTS BOOK 747 STAYS AMAZON SHOPPERS SPEND \$455K

X
USERS SEND
360K
TWEETS

6.3M
SEARCHES
HAPPEN ON
GOOGLE

WHATSAPP

USERS SEND

41.6M MESSAGES

LINKEDIN USERS SUBMIT

6,060

RESUMES

VIEWERS WATCH

43 YEARS
OF STREAMING

CONTENT

3,720
USERS DOWNLOAD
INSTAGRAM
THREADS

(Q.)

HD

EVERY MINUTE

01:00OF THE DAY

CYBER-CRIMINALS

LAUNCH 30 DDOS ATTACKS

=3

INSTAGRAM

USERS SEND

694K REELS VIA DM

DOORDASH

DINERS PLACE

CHATGPT

USERS SEND

6,944 PROMPTS

HICEDS HIVE

Volume

Rivian electric vehicles generate multiple TB of data per day

Volume

301,722 Datasets Available YEARS OF DATA.GOV

Growth of Data Globally

Source: Reinsel, Gantz, Rydning; The Digitization of the World from Edge to Core; IDC White Paper 2018

Definition: The speed at which data is generated, collected, and processed.

Significance: Requirement on the system to process data at given speed.

Variety

Definition: The diversity of data types and sources. Data can come in **structured**, **semi-structured**, **or unstructured** formats.

Significance: Challenge of managing different types of data. Choose data management system for your use case.

Structured data

- Highly regular structure, repeating patterns
- Example: relational data

ID	Name
1	Pinar
2	Veronika
3	Dovile
4	Zoi
5	Martin
6	Eleni

Semi-structured data

- Some structure, changes over time
- Examples: logs, comment threads, graphs

Common Log Format*

127.0.0.1 alice Alice [06/May/2021:11:26:42 +0200] "GET / HTTP/1.1" 200 3477

Same log line in JSON

```
{
  "ip_address": "127.0.0.1",
  "user_id": "alice",
  "username": "Alice",
  "timestamp": "06/May/2021:11:26:42 +0200",
  "request_method": "GET",
  "request_url": "/",
  "protocol": "HTTP/1.1",
  "status_code": 200,
  "response_size_bytes": 3477
}
```


PHONES OUT

Advantages of JSON over Common Log Format

https://www.menti.com/al2n6oqco3vf

Common Log Format

127.0.0.1 alice Alice [06/May/2021:11:26:42 +0200] "GET / HTTP/1.1" 200 3477

Same log line in JSON

```
{
   "ip_address": "127.0.0.1",
   "user_id": "alice",
   "username": "Alice",
   "timestamp": "06/May/2021:11:26:42 +0200",
   "request_method": "GET",
   "request_url": "/",
   "protocol": "HTTP/1.1",
   "status_code": 200,
   "response_size_bytes": 3477
}
```


Unstructured data

- Little structure
- Examples: photos, videos, music

Definition: The accuracy and trustworthiness of data.

Significance: Data quality varies, and not all collected data can be trusted. It's essential to filter, clean, and validate data to ensure accurate insights.

Only 3% of Companies' Data Meets Basic Quality Standards

by Tadhg Nagle, Thomas C. Redman, and David Sammon

September 11, 2017

Source: Only 3% of Companies' Data Meets Basic Quality
Standards, Harvard Business Review

Veracity

A 2016 study by IBM is even more eye-popping. IBM found that poor data quality strips \$3.1 trillion from the U.S. economy annually due to lower productivity, system outages and higher maintenance costs, to name only a handful of the bad outcomes that result from poor data quality.

Source: Flying Blind: How Bad Data Undermines Business, Forbes

Definition: The accuracy and trustworthiness of data.

Significance: Data quality varies, and not all collected data can be trusted. It's essential to filter, clean, and validate data to ensure accurate insights.

Value

Definition: The ability to turn data into insights for decision making and creating business value.

Significance: Big data is only beneficial if it delivers insights.

- Businesses: more effective operations, stronger customer relationships, \$\$\$
- Science: new discoveries
- Public sector: better serving people

Only half a joke: data marketplaces are a thing!

MONETIZING BIG DATA

Proh@Dataeds

Snowflake Data Sharing & Marketplace

DATA SHARING¹

36%

of customers¹ have at ≥1 stable edge¹

MARKETPLACE LISTINGS¹

2,946

26% Y/Y Growth

Source: Snowflake Investor Presentation, October 31, 2024

Characteristics of Big Data

Five Vs of Big Data describe key dimensions of big data

Lecture Outline

Learning Outcome 6: Discuss the pros and cons of different classes of data systems for modern analytics and data science applications

- Characteristics of Big Data
- Classes of Big Data Processing Systems
- Example: MapReduce, Spark

Big Data Processing Overview

Pipelines

Access Patterns to Big Data

Data collections typically consists of many millions of files of data

- Too large for a single server
 Distributed storage
- Reading large amounts of data Sequential scans

Online Analytical Processing (OLAP)

Processing Requirements

Apply filters to reduce data quantity

Like SQL execution with predicates

Run complex processing pipelines

- Periodic tasks & triggered tasks upon new data
- User-defined functions (UDFs)
- Server-side applications (Python, ML)

Too large for a single server → Distributed processing

Big Data Processing System

"Big Data Processing System"

OLAP Database System

- Distributed storage for exabytes of data
- Distributed compute, typically using large, sequential scans
- Large ecosystem of tools for complex data analysis tasks

Classes of Big Data Processing Systems

Relational Database Systems

Strengths

- SQL programming API
- Huge SQL ecosystem
- ACID transactions
- Complex query processing

Weaknesses

- Little support for unstructured data
- Little support for machine learning training and serving

Classes of Big Data Processing Systems

MapReduce Systems

Strengths

Weaknesses

- Distributed storage
- Great scalability
- Able to process great variety of data sets (structured, semistructured, unstructured)

revealed later

Key-value Stores

Strengths

- Distributed storage
- Great scalability
- Short latency for single items
- Quick, "out of the box" way to store data

- Limited storage model (only key, value pairs)
- Limited query interface (no SQL)
- No means to scan and filter data

Document Databases

Strengths

- Store objects / XML / JSON in hierarchical form
- Good integration with objectoriented languages and JavaScript

- Limited query interface (no SQL)
- No ACID guarantees
- Not designed for scans (very related to key-value stores)

Graph Databases

Strengths

- Capture graph relationships, e.g. knowledge graphs, social networks
- Fast at traversing edge chains, no joins needed

- Specific to graph applications
- Not many such use cases
- Relational databases outperform graph databases these days

Data Lakehouses

Strengths

- Data storage in open data formats (Apache Parquet + Apache Iceberg) in the cloud
- Great ML support, e.g. training, but also Python-based notebooks

- Typical API is Apache Spark, less versatile and supported than SQL
- However: Lakehouses are moving to SQL

Lecture Outline

Learning Outcome 6: Discuss the pros and cons of different classes of data systems for modern analytics and data science applications

- Characteristics of Big Data
- Classes of Big Data Processing Systems
- Example: MapReduce, Spark

MapReduce Overview

Early tools to deal with Big Data

- MapReduce by Google in 2003
- Open-source Apache Hadoop based on MapReduce

Interface

- Map (k1, v1) \rightarrow list (k2, v2)
- Reduce $(k2, list(v2)) \rightarrow (k2, v3)$

MapReduce Framework

Framework

- Read lots of data (e.g. text documents)
- Map: process a data item
- Sort and shuffle
- Reduce: aggregate
- Write results

Map and Reduce functions are user-specified

MapReduce Phases

Map Phase

- Input: (k1, v1)
- Output: list (k2, v2)
- Independent for every key-value pair
 - → mapping processes run in parallel

Shuffle Phase: intermediate results are shuffled through the network

Reduce Phase

- Input: (k2, list(v2))
- Output: (k2, v3)
- Independent per group
 - → reducer processes can run in parallel (per group)

MapReduce Illustration

MapReduce Illustration

MapReduce Illustration

Wordcount Example

Given a text document, output the count for each word.

MapReduce interface

- Map (k1, v1) \rightarrow list (k2, v2)
- Reduce $(k2, list(v2)) \rightarrow (k2, v3)$

MapReduce implementation

- Map (filename, text) \rightarrow {word, 1}
- Reduce (word, [1,1,...]) \rightarrow (word, count)

Once upon a time, long, long ago a king and queen ruled over a distant land.

Initial file

Map Phase

Reduce Phase

Pseudocode

Pseudocode

MapReduce

```
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, "1");

reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
        Source: Dean, Ghemawat; MapReduce: Simplified
        Data Processing on Large Clusters; OSDI'2004
```

SQL

select word, count(*) from docs group by word

MapReduce Summary

Early tool to operate on Big Data

- Invented by Google in 2003
- Initially great tool for distributed processing of large amounts of data
- Used to build the web page index, many other applications
- Google moved away in 2010, killed it in 2014
- Apache Hadoop's market share on significant decline

MapReduce Systems

Strengths

- Distributed storage
- Great scalability
- Able to process great variety of data sets (structured, semistructured, unstructured)

Weaknesses

https://www.menti.com/al2n6oqco3vf

Hadoop Critique

March 13, 2017

Hadoop Has Failed Us, Tech Experts Say

Alex Woodie

The Hadoop dream of unifying data and compute in a distributed manner has all but failed in a smoking heap of cost and complexity, according to technology experts and executives who spoke to *Datanami*.

"I can't find a happy Hadoop customer. It's sort of as simple as that," says Bob Muglia, CEO of Snowflake Computing, which develops and runs a

cloud-based relational data warehouse offering. "It's very clear to me, technologically, that it's not the technology base the world will be built on going forward."

Why bother?

Teaches foundational concepts in distributed systems

- Parallel computing: MapReduce divides data processing tasks into small, parallelizable units
- Data processing: Easy to understand data flow through the system
- Fault tolerance: internal mechanism to recover from failures
- Scalability: demonstrates how to scale "horizontally" (across many servers)

Lecture Outline

Learning Outcome 6: Discuss the pros and cons of different classes of data systems for modern analytics and data science applications

- Characteristics of Big Data
- Classes of Big Data Processing Systems
- Example: MapReduce, Spark

Improvement over MapReduce, developed in 2012

Data model: Resilient Distributed Datasets (RDDs)

- Transform one RDD to another via operators
- Lady execution optimizations

Write programs in terms of distributed datasets and operations on them

Working with RDDs

Example Transformations

Example Actions

Spark Wordcount Example

```
file = sc.textFile("hdfs://...")
counts = file.flatMap(lambda line: line.split(" "))
             .map(lambda word: (word, 1))
             .reduceByKey(lambda a, b: a + b)
counts.saveAsTextFile("hdfs://...")
```


Take Aways

Learning Outcome 6: Discuss the pros and cons of different classes of data systems for modern analytics and data science applications

- Data sizes and requirements on systems continue to grow
- Many systems to process big data initially built to solve difficult problems (e.g. MapReduce for large, distributed data manipulation)
- SQL systems mostly caught up, pushed specialized systems out
- Pattern repeating (LLM training, vector databases)

Recommended reading

 Michael Stonebraker, Andrew Pavlo, What Goes Around Comes Around... And Around..., SIGMOD Record, June 2024
 https://db.cs.cmu.edu/papers/2024/whatgoesaround-sigmodrec2024.pdf