Analysis 2 Hausaufgabenblatt Nr. 9

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: December 21, 2023)

Problem 1. Sei M eine Menge mit $\#M = \infty$. Ein Menge $A \subset M$ sei als offen definiert, falls $M = \emptyset$ oder $M \setminus A$ endlich ist. Zeigen Sie, dass dies tatsächlich eine Topologie definiert. Ist diese Topologie metrisierbar?

Proof. (i) \varnothing ist per Definition offen.

- (ii) $M \setminus M = \emptyset$, was endlich ist, also M ist offen.
- (iii) Sei $A_i, i \in I$ offene Mengen. Es gilt

$$M \setminus \bigcup_{i \in I} A_i \subseteq M \setminus A_j$$

für alle $j \in I$. Da $M \setminus A_j$ endlich ist, ist auch $\bigcup_{i \in I} A_i$ offen.

(iv) Sei $A_i, i \in \{1, ..., n\} := I$ offene Mengen. Es gilt

$$M \setminus \bigcap_{i \in I} A_i \subseteq \bigcup_{i \in I} (M \setminus A_i).$$

Weil I endlich ist, und alle Mengen $M \setminus A_i$ endlich sind, ist $\bigcap_{i \in I} A_i$ offen.

Es ist aber nicht metrisierbar, weil es nicht Hausdorff ist. Sei $x,y\in M,\ x\neq y$. Wir nehmen an, dass es offene Mengen U,V gibt, so dass $U\cap V=\varnothing$ und $x\in U,y\in V$. Weil $U\cap V=\varnothing$, ist $V\subseteq M\backslash U$, also V ist endlich. Aber $M\backslash V$ ist dann unendlich, also V ist nicht offen, ein Widerspruch.

Problem 2. Zeigen Sie, dass

$$M = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right)^T | x \in (0, 1) \right\} \cup \{0\} \times [-1, 1]$$

zusammenhängend, aber nicht wegzusammenhängend in \mathbb{R}^n ist.

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Proof. Sei

$$M_1 = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right)^T \middle| x \in (0, 1) \right\}$$
$$M_2 = \{0\} \times [-1, 1]$$

 M_1 und M_2 sind offenbar wegzusammenhängend (und daher zusammenhängend). Wir fahren per Widerspruch fort: Nehme an, dass es U, V offen gibt, so dass $U \cup V = M$. Es muss gelten, dass M_1 und M_2 Teilmengen von entweder U oder V sind, sonst wäre M_1 oder M_2 nicht zusammenhängend. Die beide müssen in unterschiedliche Mengen sein, also oBdA $M_1 \subseteq U$ und $M_2 \subseteq V$, sonst wäre die andere Menge leer.

Wir betrachten $(0,0) \in M_2 \subseteq V$. Weil V offen ist, gibt es einen Kugel $B_r((0,0)) \subseteq V$. Per Definition von U und V ist $B_r((0,0)) \cap M_1 = \emptyset$. Wir zeigen, dass dies nicht der Fall ist. Es gilt

$$M_1 = \left\{ \left(\frac{1}{x}, \sin x \right)^T \middle| x \in (1, \infty) \right\}.$$

Es gibt N, so dass $\frac{1}{N} < r$. Weil $\sin x$ unendlich viele Nullstellen hat, gibt es einen Nullstelle nach N, also es gibt ein Punkt $(x,0) \in \mathbb{R}^2$ mit x < r, also $(x,0) \in B_r((0,0))$, ein Widerspruch.

Jetzt zeigen wir: M ist nicht wegzusammenhängend. Wir zeigen, dass es keinen Wegzuschen M_2 und $(1, \sin 1)$ gibt. Falls es einen solchen Weg gibt, gibt es $t_1 \geq 0$, so dass $\gamma(t) \notin M_2 \ \forall t \geq t_1$, also wir nehmen oBdA an, dass $\gamma(0) \in M_2$ und $\gamma(t) \in M_1 \ \forall t \in (0, 1]$. Sei $\gamma(0) = (0, a)$.

Weil $\operatorname{im}(\gamma) \subseteq M$, muss dann gelten, dass $\gamma((0,1]) = M_1$. Sei $B_r((0,a))$ ein offener Kugel um (0,a) bzw. $\gamma(0)$, mit r hinreichend klein, so dass |1-a| > r oder |r| < |a| gilt (also der Kugel enthält keine Punkte von der Form (x,1) oder (x,0)).

Sei [0, x) ein offener Kugel von [0, 1] um 0. Wie vorher gibt es dann mindestens ein Punkt (eigentlich unendlich viel) t, so dass $\gamma(t) = (x, 1)$ bzw. (x, 0) für $x \in [0, 1]$, also $B_x(0) \not\subseteq B_r((0, a))$. Dann kann K nicht wegzusammenhängend sein.

Problem 3. Es seien $x_0, x_1 \in \mathbb{R}^n$ sowie r > 0. Wir betrachten die Menge $K := \{x_0\} \cup K_r(x_1)$ und die konvexe Hülle dieser Menge ist gegeben durch

$$\operatorname{conv} K := \{ tx_0 + (1-t)x | t \in [0,1], x \in K_r(x_1) \}.$$

Zeigen Sie, dass conv K kompakt ist.

Hinweis: Wählen Sie geschickt eine stetige Funktion auf einer kompakten Menge.

Proof. Wir betrachten $K' \subseteq \mathbb{R}^{2n+1}$ mit

$$K' = \{(x, x_0, t) | x \in K_r(x_1) \text{ und } t \in [0, 1]\}.$$

Als Produkt kompakte Mengen ist K'kompakt. Sei $f:\mathbb{R}^{2n+1}\to\mathbb{R}^n$ mit

$$f(x, x_0, t) = tx_0 + (1 - t)x.$$

f ist stetig und das Bild von K' ist K. Daraus folgt: K ist kompakt.