Package 'MSML'

November 20, 2023
Title Model selection based on Machine Learning (ML)
Version 1.0.0.0
Description Model selection based on Machine Learning (ML) following modified Recursive feature elimination (RFE).
License `use_mit_license()`, `use_gpl3_license()` or friends to pick a license
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2
Depends R (>= 2.10)
LazyData true
R topics documented: data_test
To sto of PRCs for test dataset and torrest phyriating
Description A dataset containing 7 sets of PRSs for test dataset and target phenotype

Usage

data_test

2 data_train

Format

A data frame for test dataset:

V1 PRS1, for bin1

V2 PRS2, for bin1

V3 PRS3, for bin1

V4 PRS4, for bin1

V5 PRS5, for bin1

V6 PRS6, for bin1

V7 PRS7, for bin1

target Target Phenotype, value

data_train

7 sets of PRSs for training data set and target phenotype

Description

A dataset containing 7 sets of PRSs for training data set and target phenotype

Usage

data_train

Format

A data frame for training dataset:

V1 PRS1, for bin1

V2 PRS2, for bin1

V3 PRS3, for bin1

V4 PRS4, for bin1

V5 PRS5, for bin1

V6 PRS6, for bin1

V7 PRS7, for bin1

target Target Phenotype, value

data_valid 3

data_valid

7 sets of PRSs for validation dataset and target phenotype

Description

A dataset containing 7 sets of PRSs for validation dataset and target phenotype

Usage

```
data_valid
```

Format

A data frame for validation dataset:

V1 PRS1, for bin1

V2 PRS2, for bin1

V3 PRS3, for bin1

V4 PRS4, for bin1

V5 PRS5, for bin1

V6 PRS6, for bin1

V7 PRS7, for bin1

target Target Phenotype, value

model_combination

model_combination function This function will generate PRS based on all possible combinations of model. The total number of models required to explore the combinations of these 'n' features can be calculated by summing the combinations for each possible number of features, ranging from 1 to 'n' (?C(n,i)). where C(n,k) represents the binomial coefficient or "n choose k," with n denoting the total number of features and k indicating the number of features to include in each model.

Description

model_combination function This function will generate PRS based on all possible combinations of model. The total number of models required to explore the combinations of these 'n' features can be calculated by summing the combinations for each possible number of features, ranging from 1 to 'n' (?C(n,i)). where C(n,k) represents the binomial coefficient or "n choose k," with n denoting the total number of features and k indicating the number of features to include in each model.

Usage

```
model_combination(data_train, data_valid, data_test, mv)
```

4 model_evaluation

Arguments

data_train This is the matrix for training dataset
data_valid This is the matrix for validation dataset
data_test This is the matrix for test dataset

mv The total number of columns in data_train/data_valid/data_test

Value

This function will generate all possible model outcomes for validation and test dataset

Examples

```
data_train <- data_train
data_train <- data_train
data_test <- data_test
mv=8
model_combination(data_train, data_valid, data_test, mv)</pre>
```

model_evaluation model_evaluation function

Description

This function will identify best model in validation and test dataset.

Usage

```
model_evaluation(dat, mv, tn, prev)
```

Arguments

dat This is the matrix for all the combinations of model

mv The total number of columns in data_train/data_valid/data_test

tn The total no of best models to be identified prev The prevalance of disease in the data

Value

This function will generate all possible model outcomes for validation and test dataset

Examples

```
data_train <- data_train
mv=8
tn=15
prev=0.047
model_evaluation(dat,mv,tn,prev)</pre>
```

Index

```
*Topic All
    {\tt model\_combination}, 3
*Topic Identify
    model_evaluation, 4
*Topic best
    model\_evaluation, 4
*Topic combinations
    model_combination, 3
*Topic datasets
    {\tt data\_test, 1}
    data\_train, 2
    data_valid, 3
*Topic models
    model\_evaluation, 4
*Topic model
    model\_combination, 3
*Topic possible
    model\_combination, 3
C(n,i), 3
{\tt data\_test}, 1
data_train, 2
data\_valid, 3
model\_combination, 3
model\_evaluation, 4
```