@Sree Vishnu Varthini

Day - 5

Embedded Systems Programming

SEQUENTIAL LOGIC

Applications:

- Shift Registers
- Flipflops
- Counters
- Registers

RS LATCH

The SR Latch is one of the simplest types of flip-flops used for storing a single bit of data (either 0 or 1). The name "SR" stands for Set and Reset.

Truth Table:

-			
	R	S	Qn+1
	0	0	Forbidden
	0	1	1
	1	0	0
	1	1	Hold

Case 1: Invalid State (R = 0, S = 0)

 $R = 0 \rightarrow \text{Output of the first NAND gate (Q) becomes 1.}$ $S = 0 \rightarrow \text{Output of the second NAND gate (Q')}$ becomes 1.

Both outputs, Q and Q', become 1, which is invalid since Q' should be the inverse of Q. This input should be avoided in practical designs.

Case 2: Set State (R = 0, S = 1)

 $R = 0 \rightarrow$ Output of the first NAND gate (Q) becomes 1. Due to this, Output of the second NAND gate (Q') becomes 0.

Q is set to 1, and so Q' is set to 0.

Case 3: Reset State (R = 1, S = 0)

 $S = 0 \rightarrow Output$ of the second NAND gate (Q') becomes 1.

Due to this, Output of the first NAND gate (Q) becomes 0.

Q' is set to 1, and so Q is set to 0.

Case 4: Hold State (R = 1, S = 1)

Inputs of both NAND gates (S and R) are 1, which results in depending on the previous Q values for output.

The flip-flop remains in its current state, with Q and Q' retaining their previous values.

@Sree Vishnu Varthini

Was it helpful? follow for more!

