Data Science II (P8106)

Department of Biostatistics Mailman School of Public Health Columbia University

Methods using derived input directions

- ► A large number of inputs, often correlated
- Use a small number of linear combinations of the original inputs X_j , j = 1, ..., p
 - New predictors Z_m , m = 1, ..., M
 - $ightharpoonup Z_m$ are linear combinations of X_j
- ► Two approaches
 - Principal components regression (PCR)
 - Partial least squares (PLS)

Details

- ➤ Two steps: dimension reduction + regression
- Let Z_1, Z_2, \dots, Z_M represent M < p linear combinations of our original p predictors

$$Z_m = \sum_{j=1}^p \phi_{mj} X_j$$

for some constants $\phi_{m1}, \phi_{m2}, \dots, \phi_{mp}$

▶ We can then fit the linear regression model

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \epsilon_i, i = 1, \dots, n$$
 (1)

using ordinary least squares

Details

Notice that

$$\sum_{m=1}^{M} \theta_m z_{im} = \sum_{j=1}^{p} \beta_j x_{ij},$$

where

$$\beta_j = \sum_{m=1}^M \theta_m \phi_{mj} \tag{2}$$

- ▶ Model (1) is a special case of the original linear regression
- ▶ Dimension reduction serves to constrain the estimated β_j coefficients, since now they must take the form (2)

Principal components regression (PCR)

- We apply principal components analysis (PCA) to define the linear combinations of the predictors
- ► The first PC is the linear combination of the *X* variables that captures as much of the information as possible
- ► The second PC is the linear combination of *X* that captures as much of the information as possible and is uncorrelated with the first PC
- **.**..
- We replace correlated original variables with the first M
 PCs that capture the joint variation
- ► There is no sample covariance between different PCs over the dataset

Example of PCA

Details of PCA

$$\boldsymbol{X} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix} = \begin{pmatrix} \boldsymbol{x}_1^{\mathsf{T}} \\ \boldsymbol{x}_2^{\mathsf{T}} \\ \vdots \\ \boldsymbol{x}_n^{\mathsf{T}} \end{pmatrix}$$

PCR: continued

- ► Choice of *M*: cross-validaton
- ▶ PCR identifies linear combinations that best represent the predictor $X_1, ..., X_p$
- ► The response does not supervise the identification of the principal components
- ▶ Drawback: there is no guarantee that Z_m are the best linear combinations of X_j in predicting the response

Partial least squares (PLS)

- ▶ PLS identifies these new features in a supervised way
- ► Make use of the response *Y* in order to identify new features that not only approximate the old features well, but also **are related to the response**

PLS

- ϕ_{mj} are selected so that Z_m have high variance and high correlation with response
- S is the sample covariance matrix
- ▶ PCR: $\phi_m = (\phi_{m1}, \phi_{m2}, \dots, \phi_{mp})$ solves

$$\max_{\phi} \text{Var}(X\phi)$$
subject to $\|\phi\| = 1, \phi^{\mathsf{T}} S\phi_l = 0, l = 1, \dots, m-1$

▶ PLS: $\phi_m = (\phi_{m1}, \phi_{m2}, \dots, \phi_{mp})$ solves

$$\max_{\phi} \text{Var}(\boldsymbol{X}\phi) \text{Corr}^{2}(\boldsymbol{y}, \boldsymbol{X}\phi)$$
subject to $\|\phi\| = 1, \phi^{\mathsf{T}} S\phi_{l} = 0, l = 1, \dots, m-1$

Details

- Dimension reduction in PLS can be viewed as a supervised dimension reduction procedure; dimension reduction in PCR is an unsupervised procedure
- \triangleright Choice of M?

An example

- ightharpoonup True coefficients (4, 2)
- $\rho = 0.5$

Summary

- ► Linear regression and its cousins
 - Ridge regression
 - ► The lasso
 - Principal components regression
 - Partial least squares
- ► Next lecture: nonlinear models