

DCC 096 - Introdução à Computação

Aula 02 - Introdução à Área de Computação

Prof. Mário S. Alvim msalvim@dcc.ufmg.br www.dcc.ufmg.br/~msalvim

Sistemas computacionais: Introdução

Sistemas computacionais: A lógica por trás da tecnologia

- Nesta aula abordaremos vários pontos relacionados a sistemas computacionais:
 - O que são sistemas computacionais?
 - Quais seus componentes essenciais (hardware vs. software)?
 - Quem os cria e mantém?
 - Como avaliamos sua qualidade?
 - Exemplos do cotidiano e do futuro.
 - Desafios e questões éticas.

O que é um Sistema Computacional?

Definição:

Um sistema computacional é um conjunto integrado de hardware, software e dados que trabalham juntos para executar tarefas e processar informações.

- Analogia da "Mente e Corpo":
 - Hardware: O "corpo" do sistema. É a parte física e tangível que executa as ações.
 - **Software:** A "mente" do sistema. É o conjunto de instruções e lógicas que dão ordens ao hardware.

É a parte que você chuta, chacoalha, ou joga no chão.

É a parte que você xinga.

O que é um Sistema Computacional?

Organização

- Processos de negócio
- Cultura organizacional
- Objetivos e metas

Tecnologia

- Hardware
- Software
- Comunicação/rede

Pessoas

- Conhecimentos
- Capacidades

Fonte: Sistemas de Informações Gerenciais. Kenneth Laudon, Jane Laudon.

Figura 1.3 Sistemas de informação são mais do que computadores

Para usar os sistemas de informação com eficiência, é preciso entender as dimensões organizacional, humana e tecnológica que os formam. Um sistema de informação oferece soluções para importantes problemas ou desafios organizacionais que a empresa enfrenta.

Utilidade de sistemas computacionais.

- Informações destinadas a:
 - Apoiar a tomada de decisões.
 - Dar suporte a operação de uma organização.
- Permitem analisar problemas/situações, visualizar "coisas" complexas e propor a criação de novas soluções e produtos.

- Papel dos Sistemas Computacionais em uma empresa:
 - Atingir excelência operacional (produtividade, eficiência, ...)
 - Desenvolver novos produtos e serviços.
 - Estreitar relacionamento com clientes e fornecedores.
 - Melhorar a tomada de decisão (precisão e rapidez).
 - Promover vantagem competitiva.
 - Assegurar a sobrevivência.

Os componentes de um sistema: Hardware

- A "Tríade Dourada" de um Computador:
 - CPU (Unidade Central de Processamento): O cérebro do sistema. Executa as instruções dos programas.
 - Memória RAM: O espaço de trabalho temporário e rápido. Onde os dados estão enquanto o computador está ligado.
 - Armazenamento (SSD/HD): A memória de longo prazo. Onde os dados são salvos permanentemente.

- Outros Componentes Essenciais:
 - Placa-mãe: Conecta todos os componentes do sistema.
 - Dispositivos de Entrada/Saída (I/O):
 Permitem a interação com o sistema (teclado, mouse, monitor, etc.).

Os componentes de um sistema: Software

- Sistema Operacional (SO): O "maestro" do sistema, gerenciando o hardware e fornecendo a plataforma para outros softwares.
 - Exemplos: Windows, macOS, Linux, Android.
- Software de Aplicação: Os programas que usamos para tarefas específicas.
 - Exemplos: Navegadores de internet, jogos, editores de texto, aplicativos de fotos.
- Dados: A informação bruta ou processada pelo sistema.
 - Exemplos: Arquivos de texto, fotos, vídeos, números em uma planilha.

Como avaliar a qualidade de sistemas computacionais?

• Qualidade do Hardware:

- Durabilidade: Quão robusto o equipamento é?
- Eficiência: O quão bem ele gerencia a energia e o calor?
- Desempenho: A velocidade e a capacidade de processamento.

Qualidade do Software:

- Confiabilidade: O software funciona sem erros ou travamentos?
- Usabilidade: É fácil e intuitivo para o usuário?
- Segurança: Ele protege os dados contra acessos não autorizados?
- Escalabilidade: Ele pode suportar mais usuários e dados no futuro?

Como avaliar a qualidade de sistemas computacionais?

TABLE 1.2 Characteristics of quality information

Characteristic	Definition
Accessible	Information should be easily accessible by authorized users so they can obtain it in the right format and at the right time to meet their needs.
Accurate	Accurate information is error free. In some cases, inaccurate information is generated because inaccurate data is fed into the transformation process. This is commonly called garbage in, garbage out.
Complete	Complete information contains all the important facts. For example, an investment report that does not include all important costs is not complete.
Economical	Information should also be relatively economical to produce. Decision makers must always balance the value of information with the cost of producing it.
Flexible	Flexible information can be used for a variety of purposes. For example, information on how much inventory is on hand for a particular part can be used by a sales representative in closing a sale, by a production manager to determine whether more inventory is needed, and by a financial executive to determine the amount of money the company has invested in inventory.
Relevant	Relevant information is important to the decision maker. Information showing that lumber prices might drop is probably not relevant to a computer chip manufacturer.
Reliable	Reliable information can be trusted by users. In many cases, the reliability of the information depends on the reliability of the data-collection method. In other instances, reliability depends on the source of the information. A rumor from an unknown source that oil prices might go up may not be reliable.
Secure	Information should be secure from access by unauthorized users.
Simple	Information should be simple, not complex. Sophisticated and detailed information might not be needed. In fact, too much information can cause information overload, whereby a decision maker has too much information and is unable to determine what is really important.
Timely	Timely information is delivered when it is needed. Knowing last week's weather conditions will not help when trying to decide what coat to wear today.
Verifiable	Information should be verifiable. This means that you can check it to make sure it is correct, perhaps by checking many sources for the same information.

Fonte: Fundamentals of Information
Systems. Ralph M.
Stair, George W.
Reynolds.

Sistemas computacionais: Exemplos comuns

- Smartphone: Um sistema completo de hardware (tela, processador, câmera) e software (SO, apps) em suas mãos.
- Caixa Eletrônico: Usa hardware especializado para ler cartões e dispensar dinheiro, controlado por software seguro.
- Sistemas de E-commerce: Softwares complexos que gerenciam estoque, processam pagamentos e rastreiam produtos, rodando em servidores físicos (hardware).
- Sistemas de GPS: Combinam hardware (sensores de GPS) e software (mapas, rotas) para guiar o motorista.
- Redes Sociais: Plataformas complexas (software) que rodam em servidores (hardware) e gerenciam milhões de usuários e dados.

Sistemas computacionais: Exemplos menos comuns

- U F <u>m</u> G
- Sistemas de Irrigação Inteligente: Usam sensores de umidade (hardware) para coletar dados e um software que decide quando e quanto irrigar uma plantação.
- Robôs de Limpeza Autônomos: Combinam hardware (sensores, motores, bateria)
 com software de navegação para mapear ambientes e executar tarefas.
- Sistemas de Rastreamento de Fauna: Pequenos dispositivos com GPS (hardware) instalados em animais, enviando dados para um software que analisa seus movimentos.
- Relógios Inteligentes (Smartwatches): Pequenos sistemas de computação no pulso que coletam dados de saúde e exibem notificações.
- Equipamentos de Diagnóstico Médico: Equipamentos como ressonância magnética que usam software para analisar imagens do corpo e auxiliar em diagnósticos.

Questões éticas em sistemas computacionais

- Privacidade e Dados: A quem pertencem os dados coletados pelos sistemas?
- Viés Algorítmico: Um software de contratação pode, sem intenção, discriminar candidatos com base em dados enviesados?
- Impacto no Trabalho: A automação e a inteligência artificial podem tornar profissões obsoletas?
- Acessibilidade e Exclusão Digital: Sistemas podem ser projetados de forma a excluir pessoas com deficiências ou que não têm acesso à tecnologia.
- Responsabilidade e Autonomia: Quem é responsável quando um sistema autônomo, como um carro sem motorista, causa um acidente?
- Transparência e Explicabilidade: Como um sistema de inteligência artificial chegou a uma determinada decisão? Muitas vezes, isso é um "mistério" (caixa-preta).

A importância de sistemas computacionais

- Imagine que uma tempestade solar extraordinária ocorra e desative todos os sistemas computacionais do mundo.
- A sociedade moderna, totalmente dependente de tecnologia, enfrentaria um colapso em praticamente todas as áreas.

Distribuição de alimentos e logística

- Colapso da Cadeia de Suprimentos: A logística moderna, desde o rastreamento de produtos até a gestão de estoque, é totalmente digital.
 Supermercados ficariam sem reposição de produtos em dias, pois os sistemas de armazéns, transporte e pedidos online parariam.
- Fome em Grande Escala: Sem a capacidade de coordenar a colheita, o transporte e a distribuição de alimentos, a produção agrícola em grande escala entraria em colapso. A população urbana, que depende inteiramente de cadeias de suprimentos, seria a mais afetada.

Cuidados médicos e hospitalares

- Paralisação de Equipamentos: Equipamentos médicos vitais, como respiradores, monitores cardíacos, máquinas de diálise e tomógrafos, são controlados por sistemas de computação e ficariam inoperantes.
- Falta de Prontuários e Medicamentos: A gestão de prontuários eletrônicos e o controle de estoque de medicamentos nas farmácias e hospitais seriam impossíveis. A falta de informações sobre pacientes e a impossibilidade de coordenar a distribuição de remédios causaria um enorme número de mortes.

A importância de sistemas computacionais

- Imagine que uma tempestade solar extraordinária ocorra e desative todos os sistemas computacionais do mundo.
- A sociedade moderna, totalmente dependente de tecnologia, enfrentaria um colapso em praticamente todas as áreas.

Economia e Finanças

- Aniquilação do Sistema Financeiro: Todas as transações financeiras, bolsas de valores, sistemas bancários e até mesmo o dinheiro digital deixariam de existir. A economia global pararia completamente, resultando em uma perda incalculável de riqueza.
- Comércio Paralisado: Sem a capacidade de processar pagamentos, emitir faturas ou gerir estoques, o comércio, tanto local quanto internacional, cessaria. A sociedade retornaria ao escambo ou a uma economia de subsistência.

Comunicação e sociedade

- Isolamento Global: Sem internet, telefonia, GPS, rádio ou televisão, a comunicação em longa distância seria impossível. As pessoas estariam completamente isoladas e sem acesso a informações sobre o que está acontecendo no mundo.
- Aumento da Criminalidade e Desordem: A quebra da lei e da ordem seria um problema imediato e generalizado. Sem sistemas de vigilância, comunicação policial ou controle de serviços básicos, o caos social poderia se instalar rapidamente.

Desafios para o futuro

- Segurança Cibernética: Proteger sistemas e dados contra ameaças cada vez mais sofisticadas.
- Gerenciamento de Big Data: Lidar com o enorme volume de dados gerados diariamente e extrair valor deles.
- Ética em IA: Garantir que os sistemas autônomos tomem decisões seguras e justas.
- Sustentabilidade: Reduzir o consumo de energia de data centers e o lixo eletrônico.

Os profissionais de computação

Quem projeta e mantém sistemas computacionais? UF MG

Profissionais de hardware:

- **Engenheiros de Hardware**: Projetam e testam os componentes físicos (chips, placas-mãe).
- **Técnicos em Eletrônica**: Realizam a montagem, o reparo e a manutenção dos equipamentos.

Profissionais de software:

- **Engenheiros de** Software/Desenvolvedores: Escrevem e depuram o código.
- **Arquitetos de Sistemas**: Planejam a estrutura geral e como todas as partes interagem.
- Administradores de Sistemas: Garantem a segurança e o bom funcionamento de redes e servidores.

O quão úteis são os profissionais de computação?

Boas notícias

- Aumento na utilização desses sistemas.
- Muitas ofertas de emprego.
- Bons salários.

Más notícias

- Grandes projetos cancelados antes da conclusão.
- Projetos com orçamento excedido.
- Projetos concluídos com menos funcionalidades.
- Não atendem às necessidades dos usuários.

O quão úteis são os profissionais de computação?

Como a UFMG pode me ajudar a entrar no mercado de computação?

Formar profissionais que resolvem os problemas que ninguém sabe como resolver!

Matemática

Ciência

Filosofia

O caminho para uma boa formação universitária

O Tronco Comum em Computação

Atividades extra-curriculares

UF MG

- Iniciação científica
- Empresas Júnior
- Maratona de programação
- Monitoria
- **Eventos**
- **Palestras**
- Cursos

Synergia

Carreira em CC vs. em SI

Ciência da Computação (CC)

- Objetivo final: Criar novas tecnologias e soluções computacionais inovadoras.
- Formação: Ênfase em fundamentos teóricos da computação, algoritmos, estrutura de dados, matemática e desenvolvimento de software.
- Perfil profissional: Especialistas em desenvolvimento, pesquisa e inovação tecnológica.
- Mercado de trabalho: Desenvolvimento de software, ciência de dados, pesquisa, segurança da informação, entre outras áreas mais técnicas.

Sistemas de Informação (SI)

- Objetivo final: Utilizar tecnologias existentes para resolver problemas organizacionais e melhorar a gestão da informação.
- Formação: Ênfase na aplicação da tecnologia no contexto empresarial, com foco em análise de sistemas, gestão de TI e processos organizacionais.
- Perfil profissional: Agentes com visão de negócios e tecnologia, atuando como ponte entre as áreas técnicas e administrativas.
- Mercado de trabalho: Análise de sistemas, consultoria em TI, gestão de projetos e suporte a decisões empresariais com base em dados.

Relatório

Relatórios: Instruções Gerais

- 1. Os enunciados dos relatórios são passados em cada aula expositiva, conforme cronograma da disciplina.
- 2. Atente para o prazo de entrega de cada relatório determinado no cronograma de atividades do curso. Submissões serão aceitas no Moodle até as 23:59 da segunda-feira imediatamente seguinte à aula correspondente ao relatório. Não serão aceitos envios fora do prazo.
- 3. Você deve escrever suas respostas à mão, seja no papel para depois digitalizá-las ou fotografá-las, seja diretamente em algum aplicativo que permita desenho à mão livre. Suas respostas devem ser dadas no modelo de relatório entregue em sala ou disponível na seção de material da disciplina.
- 4. Cada relatório, mesmo que tenha múltiplas folhas, deve ser submetido em <u>um único arquivo</u> <u>necessariamente em formato PDF</u>. Outros tipos de arquivos não serão considerados para avaliação (por exemplo, fotos em .jpeg ou .png, ou múltiplos arquivos para uma mesma lista de exercícios).

Relatório II: Introdução à área de computação

Questão 01

Dê um exemplo de um sistema computacional de que você depende hoje (direta ou indiretamente), mas que não existia quando você nasceu.

Questão 02

Descreva pelo menos mais duas consequências de uma falha global em todos os sistemas computacionais, como os discutidos nesta aula.

Questão 03

Qual das disciplinas descritas para o Tronco Comum você tem mais interesse em cursar? Por que?