Práctica Alternativa al Examen: Búsqueda Ramificada con Momentos

Práctica Alternativa al Examen: Búsqueda Ramificada con Momentos

David Cabezas Berrido

Índice

Introducción

Inspiración

Idea general

Descripción de la Metaheurística

Resumen

Decisión de la acción

Truncamiento de la solución

Ramificación de la solución

Avance de la solución

Invocación del algoritmo

Contenido

Introducción

Inspiración

Idea general

Descripción de la Metaheurística

Resumen

Decisión de la acción

Truncamiento de la solución

Ramificación de la solución

Avance de la solución

Invocación del algoritmo

Inspiración

Diseñaremos una metahurística inspirándonos en un fenómeno físico, la conservación del momento lineal o del movimiento.

Cuando un objeto se desprende de otro que se está moviendo, conserva su momento. Por ejemplo, esto se manifiesta cuando un paracaidista salta de un avión o se desprenden fragmentos de un meteorito.

Idea general

- ▶ Nuestra metaheurística, **Búsqueda Ramificada con Momentos**, pretende "lanzar" soluciones que se muevan por el espacio.
- Cada solución tendrá asociado un vector velocidad (momento), que determina la dirección en la que se mueve.
- Las soluciones se ramifican o dividen en otras de forma que las soluciones resultantes conserven la inercia de la solución de la que partieron.
- Necesitamos definir un algoritmo de trayectoria para las soluciones que le dé sentido al momento.

Contenido

Introducción

Inspiración

Idea general

Descripción de la Metaheurística

Resumen

Decisión de la acción

Truncamiento de la solución

Ramificación de la solución

Avance de la solución

Invocación del algoritmo

Resumen

Cada solución S cuenta con un impulso $\lambda \in \mathbb{R}^+$, un vector momento μ y un número de evaluaciones restantes evals. En cada iteración hace una de las siguientes acciones.

- La solución desaparece, es truncada.
- La solución se divide en dos, que "saldrán disparadas" en direcciones opuestas. Las soluciones generadas conservan la inercia de la original.
- ▶ La solución se "desvía" hacia un vecino con mejor fitness y luego se actualiza usando su momento. La regla es: $S \leftarrow S + \lambda \mu$. La solución pierde cierta cantidad de impulso.

Descripción de la Metaheurística

Decisión de la acción

Acción a realizar

- Queremos truncar soluciones con escasas opciones de superar a la mejor encontrada hasta el momento. Truncaremos cuando la diferencia de fitness sea alta y el impulso bajo o queden pocas evaluaciones por hacer.
- Queremos ramificar soluciones prometedoras, pero queremos que exista variedad entre las soluciones. Dividiremos soluciones con diferencia de fitness baja y número de evaluaciones suficiente para que las soluciones generadas puedan prosperar. Conviene dejar que las soluciones resultantes de una ramificación se separen antes de volver a ramificarlas, no queremos ramificar ni muy pronto (poca variedad) ni muy tarde (pocas evaluaciones restantes).
- ► En la mayoría de ocasiones, la solución se limita a avanzar.

No hay una mejor forma de concretar estas ideas. A continuación ofrecemos nuestra implementación.

Decisión de la acción

Algorithm 1: Branch: Búsqueda Ramificada: Bucle Principal.

```
Input: Una solución: vector de flotantes S
Input: Su momento: vector de flotantes \mu
Input: Su impulso: escalar positivo \lambda
Input: Evaluaciones a realizar: entero positivo evals
fitness \leftarrow eval(S)
                           // Supondremos la función de evaluación siempre
 disponible
evals \leftarrow evals - 1
best \leftarrow \min(best, fitness)
while evals > 0 do
    D \leftarrow fitness - best
                                     // Suponemos accesible la mejor fitness
     obtenida hasta el momento
    \hat{D} \leftarrow \frac{D}{1 + D}
                                             // Diferencia normalizada en [0,1]
    p \leftarrow U[0,1]
                            // Flotante aleatorio en [0,1], elegido según la
     distribución uniforme
    if (p < P_{vanish} \stackrel{D}{\searrow} and evals \leq MaxEvalsTruncate) or \lambda < MinImpulse
     then

    La solución es truncada.

    else if p > P_{split} \frac{D}{\lambda} and MinImpulseSplit \leq \lambda \leq MaxImpulseSplit
     and evals > MinEvalsSplit then
     La solución se divide en dos.
    else
        La solución avanza.
```

Práctica Alternativa al Examen: Búsqueda Ramificada con Momentos

Descripción de la Metaheurística

Truncamiento de la solución

Truncamiento

Truncamos la solución con un simple break para el bucle.

Acumulamos las evaluaciones restantes para que no se desperdicien:

 $spareEvals \leftarrow spareEvals + evals$

Ramificación

- Se generan dos soluciones con empujes opuestos desde S y se acumulan los momentos: $\mu_1 = \mu + M$, $\mu_2 = \mu M$, donde M es el empuje.
- Los impulsos se recargan en cierta proporción del impulso perdido desde el inicial (λ_0) : $\lambda_1 = \lambda_2 = \lambda + SplitImpulse \cdot (\lambda_0 \lambda)$.
- ▶ En la mayoría de ocasiones, la solución se limita a avanzar.
- Las evaluaciones pendientes se reparten equitativamente entre las dos soluciones generadas. Se rescata la evaluación sobrante en caso de que el número de evaluaciones sea impar.
- La solución es destruida, ya que se queda sin evaluaciones.

Ramificación de la solución

Algorithm 2: Split: Ramificación de una solución S como la de entrada de BRANCH.

```
modification \leftarrow vector aleatorio, componentes según una U[0, 1]
\mu_1 \leftarrow \mu + modification // Las soluciones salen en direcciones
 opuestas
\mu_2 \leftarrow \mu - modification
\lambda_1 \leftarrow \lambda + SplitImpulse \cdot (\lambda_0 - \lambda) // Se recarga parcialmente el
 impulso
\lambda_2 \leftarrow \lambda + SplitImpulse \cdot (\lambda_0 - \lambda)
S_1 \leftarrow S + \lambda_1 \mu_1
S_2 \leftarrow S + \lambda_2 \mu_2
\operatorname{clip}(S_1) // Si alguna componente se sale del rango, se fija en
 el borde
\operatorname{clip}(S_2)
if evals \%2 = 1 then
    spareEvals \leftarrow spareEvals + 1
                                                                // Para evitar perder
      evaluaciones
\operatorname{branch}(S_1, \mu_1, \lambda_1, evals/2)
\operatorname{branch}(S_2, \mu_2, \lambda_2, evals/2)
break
                                                      // Esta solución desaparece
```

Avance

- ▶ Se buscan vecinos aleatorios en un entorno de la solución. En nuestro caso hemos elegido radio $\sqrt{\lambda}$.
- Si se encuentra un vecino mejor en un determinado número de intentos, éxito. De lo contrario, fracaso.

En caso de éxito:

- Se modifica el momento de la solución desviándolo (más o menos, según la mejora) hacia la dirección del vecino.
- ▶ Se desplaza la solución usando el momento y el impulso: $S \leftarrow S + \lambda \mu$.
- ► Se reduce ligeramente el impulso.

En caso de fracaso (posible máximo local):

Se reduce moderadamente el impulso.

Descripción de la Metaheurística

Avance de la solución

else

Algorithm 3: ADVANCE: Avance de la solución S.

while no se encuentre un vecino mejor and no se excedan ImproveLimit intentos and evals > 0 do

 $modification \leftarrow \text{vector aleatorio}, \text{ componentes según una } U[-\sqrt{\lambda}, \sqrt{\lambda}]$

```
S' \leftarrow S + modification
                                                                     // Vecino aleatorio
    clip(S')
    neighbor\_fitness \leftarrow eval(S')
    evals \leftarrow evals - 1
if el vecino S' mejora la fitness de S then
    best \leftarrow \min(best, neighbor\_fitness)
    D \leftarrow fitness - neighbor\_fitness
    \hat{D} \leftarrow \frac{D}{1+D}
                                                       // Mejora normalizada en [0,1]
    neighbor\_weight \leftarrow BaseWeight + (1 - BaseWeight) \cdot \hat{D}
    \mu \leftarrow (1 - neighbor\_weight)\mu + neighbor\_weight \cdot modification
                                                                                        // Se
     desvía la inercia de la solución hacia el vecino mejor
    S \leftarrow S + \lambda \mu
                                     // La solución se desplaza en su dirección
    clip(S)
    fitness \leftarrow eval(S)
    evals \leftarrow evals - 1
    best \leftarrow \min(best, fitness)
    \lambda \leftarrow DecreaseSuccess \cdot \lambda // Éxito: se reduce ligeramente el impulso
```

 $\lambda \leftarrow DecreaseFail \cdot \lambda$ // Fracaso: se reduce moderadamente el impulso

Invocación del algoritmo

Aplicamos el algoritmo como una búsqueda de trayectoria múltiple.

Algorithm 4: MAIN: Llamadas sucesivas al algoritmo de búsqueda Ramificada con Momentos hasta consumir todas las evaluaciones disponibles.

 $best \leftarrow$ un valor mayor que cualquier posible evaluación $spareEvals \leftarrow 10000 \cdot$ dimensión del espacio de soluciones

while spareEvals > 0 do

 $evals \leftarrow spareEvals \\ spareEvals \leftarrow 0 \\ \vdots$

 $S \leftarrow$ vector aleatorio, componentes según una U[-100, 100] $\mu \leftarrow$ vector aleatorio, componentes según una U[-1, 1]branch $(S, \mu, \lambda_0, evals)$ // spareEvals puede verse incr

 ${\rm branch}(S,\mu,\lambda_0,evals)$ // spareEvals puede verse incrementada durante la ejecución

Contenido

Introducción

Inspiración

Idea general

Descripción de la Metaheurística

Resumen

Decisión de la acción

Truncamiento de la solución

Ramificación de la solución

Avance de la solución

Invocación del algoritmo

Valor de los parámetros en nuestra experimentación

Parámetro	Tipo / Rango	Valor
λ_0	Real	1
MaxEvalsTruncate	Entero menor que 10000 · dim	$1200 \cdot \dim$
MinImpulse	Real menor que λ_0	$0.01 \cdot \lambda_0$
MinImpulseSplit	Real menor que λ_0	$0.1 \cdot \lambda_0$
MaxImpulseSplit	Real en $]MinImpulseSplit, \lambda_0[$	$0,7 \cdot \lambda_0$
MinEvalsSplit	Entero menor que 10000 · dim	$400 \cdot \dim$
SplitImpulse	Proporción (real en [0,1])	0.5
ImproveLimit	Entero menor que 10000 · dim	$10 \cdot \dim$
BaseWeight	Proporción en [0, 1[0.2
DecreaseSuccess	Proporción en]0,1[0.99
Decrease Fail	Proporción en]0, DecreaseSuccess[0.9