1º Teste de ÁLGEBRA LINEAR para a Engenharia

Licenciatura em Engenharia Informática/ Mestrado Integrado em Engenharia Informática 31 de outubro de 2022 Duração: **1h50m**

Nome :	$ ule{N^{0}}$	Curso	

Relativamente às questões seguintes notar que nas suas respostas:

- i) devem ser apresentados os cálculos essenciais e uma justificação da resposta, nos espaços indicados.
- ii) a resolução de sistemas de equações lineares deve ser feita pelo método de Gauss, de Gauss- Jordan ou pela regra de Cramer;
- iii) o cálculo de determinantes deve ser feito por aplicação do teorema de Laplace e/ou através da condensação de Gauss.

1. Sejam
$$A = \begin{bmatrix} -1 & 1 & 3 & 2 \\ 0 & -2 & 2 & 1 \\ 1 & -1 & 1 & -3 \end{bmatrix}, B = \begin{bmatrix} 3 \\ 3 \\ 6 \end{bmatrix}$$
 e $M = [m_{ij}]_{3 \times 4}$ tal que $m_{ij} = \begin{cases} i - 2j & \text{se } i \geq j \\ j - i & \text{se } i < j \end{cases}$

- (a) Verifique se (1,0,2,-1) e 3(5,1,1,1) são soluções do sistema AX = B e se A = M.
- (b) Classifique o sistema AX=0 e diga se são soluções do sistema homogéneo AX=0 os elementos do conjunto $C=\{\alpha(1,0,2,-1)-3\beta(5,1,1,1):\alpha,\beta\in\mathbb{R}\}.$

2. Considere as matrizes
$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1/2 \end{bmatrix}$$
 e $B = \begin{bmatrix} 1 & 2 & 1 \\ -2 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.

- (a) Verifique que A e B são matrizes invertíveis e calcule as respetivas inversas.
- (b) Resolva a equação matricial $AX = (A+B)^2 (A^2+B^2)$ cuja incógnita é a matriz X.

3. (a) Classifique e calcule o conjunto das soluções do seguinte sistema de quatro equações lineares, de coeficientes reais, nas incógnitas x, y, z e w:

$$\begin{cases}
-x & +y & +z & -3w & = & 0 \\
x & -z & +4w & = & 1 \\
-y & +w & = & -1 \\
-x & +2y & +z & -2w & = & 1
\end{cases}$$

(b) Sendo A a matriz dos coeficientes do sistema, diga se existem duas matrizes coluna distintas, X_1 e X_2 , tais que $AX_1 = AX_2$. Em caso afirmativo, dê um exemplo de matrizes X_1 e X_2 que verifiquem esta igualdade.

4. Sejam
$$A = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 2 & 4 & 1 \\ 1 & 3 & 1 & 1 \\ 0 & 0 & -2 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix}$ e $C = \begin{bmatrix} -1 & -1 & 5 & 0 \\ 0 & 2 & 4/3 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -1/3 \end{bmatrix}$.

- (a) Calcule os determinantes: $|A| \in |2(B^TB)^3|$.
- (b) Calcule $|A^3C^{-1}|$. Diga, justificando, se a matriz A^3C^{-1} é invertível e se existe uma matriz X tal que $X^2=A^3C^{-1}$.