Brandon Amos

☑ bda@fb.com
 ● bamos.github.io
 ● in bdamos
 ● ¥ brandondamos
 ○ bamos
 ● Last updated on January 15, 2022

Current Position

Research Scientist, Facebook AI, New York City 2019 – Present

Education

Ph.D. in Computer Science, Carnegie Mellon University (0.00/0.00)

Differentiable Optimization-Based Modeling for Machine Learning

Advisors: J. Zico Kolter (2016 – 2019), Mahadev Satyanarayanan (2014 – 2016)

B.S. in Computer Science, Virginia Tech (3.99/4.00)

2011 – 2014

Research Internships

Intel Labs, Santa Clara (Host: Vladlen Koltun)	2018
Google DeepMind, London (Hosts: Misha Denil and Nando de Freitas)	2017
Adobe Research, San Jose (Host: David Tompkins)	2014

Honors & Awards

NSF Graduate Research Fellowship Nine undergraduate scholarships

2016 - 2019 2011 - 2014

Roanoke County Public Schools Engineering, Salem–Roanoke County Chamber of Commerce, Papa John's, Scottish Rite of Freemasonry, VT Intelligence Community Conter for Academic Excellence, VT Pamplin Leader, VT Benjamin F. Bock, VT Gay B. Shober, VT I. Luck Gravett

Publications [Google Scholar]

Representative publications that I am a primary author on are highlighted.

2021

- 1. On the model-based stochastic value gradient for continuous reinforcement learning [code] [slides] Brandon Amos, Samuel Stanton, Denis Yarats, and Andrew Gordon Wilson L4DC 2021 (Oral)
- 2. Riemannian Convex Potential Maps [code] [slides]
 Samuel Cohen*, Brandon Amos*, and Yaron Lipman
 ICML 2021
- CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints [code]
 Anselm Paulus, Michal Rolínek, Vít Musil, Brandon Amos, and Georg Martius
 ICML 2021
- Scalable Online Planning via Reinforcement Learning Fine-Tuning
 Arnaud Fickinger, Hengyuan Hu, Brandon Amos, Stuart Russell, and Noam Brown NeurlPS 2021
- Aligning Time Series on Incomparable Spaces [code] [slides]
 Samuel Cohen, Giulia Luise, Alexander Terenin, Brandon Amos, and Marc Peter Deisenroth AISTATS 2021
- Learning Neural Event Functions for Ordinary Differential Equations [code] Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel ICLR 2021

 Neural Spatio-Temporal Point Processes [code]
 Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel ICLR 2021

8. Improving Sample Efficiency in Model-Free Reinforcement Learning from Images [code] Denis Yarats, Amy Zhang, Ilya Kostrikov, **Brandon Amos**, Joelle Pineau, and Rob Fergus AAAI 2021

 Neural Fixed-Point Acceleration for Convex Optimization [code] Shobha Venkataraman* and Brandon Amos* ICML AutoML 2021

10. Sliced Multi-Marginal Optimal Transport

Samuel Cohen, Alexander Terenin, Yannik Pitcan, **Brandon Amos**, Marc Peter Deisenroth, and K S Sesh Kumar

NeurIPS OTML 2021

11. Input Convex Gradient Networks

Jack Richter-Powell, Jonathan Lorraine, and **Brandon Amos** NeurlPS OTML 2021

12. Cross-Domain Imitation Learning via Optimal Transport
Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos
NeurlPS DeepRL 2021

Imitation Learning from Pixel Observations for Continuous Control
 Samuel Cohen, Brandon Amos, Marc Peter Deisenroth, Mikael Henaff, Eugene Vinitsky, and Denis Yarats

NeurIPS DeepRL 2021

MBRL-Lib: A Modular Library for Model-based Reinforcement Learning [code]
 Luis Pineda, Brandon Amos, Amy Zhang, Nathan Lambert, and Roberto Calandra arXiv 2021

2020.....

15. The Differentiable Cross-Entropy Method [code] [slides]

Brandon Amos and Denis Yarats
ICML 2020

 Objective Mismatch in Model-based Reinforcement Learning Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra L4DC 2020

17. QNSTOP: Quasi-Newton Algorithm for Stochastic Optimization [code]

Brandon Amos, David Easterling, Layne T. Watson, William Thacker, Brent Castle, and

Michael Trosset ACM TOMS 2020

18. Neural Potts Model

Tom Sercu, Robert Verkuil, Joshua Meier, **Brandon Amos**, Zeming Lin, Caroline Chen, Jason Liu, Yann LeCun, and Alexander Rives MLCB 2020

Deep Riemannian Manifold Learning
 Aaron Lou, Maximilian Nickel, and Brandon Amos
 NeurlPS Geo4dl 2020

2019.....

20. Differentiable Optimization-Based Modeling for Machine Learning [code]

Brandon Amos

Ph.D. Thesis 2019

21. Differentiable Convex Optimization Layers [code]

Akshay Agrawal*, **Brandon Amos***, Shane Barratt*, Stephen Boyd*, Steven Diamond*, and J. Zico Kolter*

NeurIPS 2019

22. The Limited Multi-Label Projection Layer [code]

Brandon Amos, Vladlen Koltun, and J. Zico Kolter arXiv 2019

23. Generalized Inner Loop Meta-Learning [code]

Edward Grefenstette, **Brandon Amos**, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska Meier, Douwe Kiela, Kyunghyun Cho, and Soumith Chintala arXiv 2019

2018

24. Learning Awareness Models

Brandon Amos, Laurent Dinh, Serkan Cabi, Thomas Rothörl, Sergio Gómez Colmenarejo, Alistair Muldal, Tom Erez, Yuval Tassa, Nando de Freitas, and Misha Denil ICLR 2018

- 25. Differentiable MPC for End-to-end Planning and Control [code] Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob Sacks, Byron Boots, and J. Zico Kolter NeurIPS 2018
- 26. Depth-Limited Solving for Imperfect-Information Games
 Noam Brown, Tuomas Sandholm, and **Brandon Amos**NeurlPS 2018
- Enabling Live Video Analytics with a Scalable and Privacy-Aware Framework
 Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman Sadeh, and
 Mahadev Satyanarayanan
 ACM TOMM 2018

2017

- 28. OptNet: Differentiable Optimization as a Layer in Neural Networks [code] [slides]

 Brandon Amos and J. Zico Kolter
 ICML 2017
- 29. Input Convex Neural Networks [code] [slides]
 Brandon Amos, Lei Xu, and J. Zico Kolter
 ICML 2017
- Task-based End-to-end Model Learning [code]
 Priya L. Donti, Brandon Amos, and J. Zico Kolter
 NeurlPS 2017
- 31. Quasi-Newton Stochastic Optimization Algorithm for Parameter Estimation of a Stochastic Model of the Budding Yeast Cell Cycle

Minghan Chen, **Brandon Amos**, Layne T. Watson, John Tyson, Yang Cao, Cliff Shaffer, Michael Trosset, Cihan Oguz, and Gisella Kakoti IEEE/ACM TCBB 2017

- 32. You can teach elephants to dance: agile VM handoff for edge computing
 Kiryong Ha, Yoshihisa Abe, Thomas Eiszler, Zhuo Chen, Wenlu Hu, **Brandon Amos**,
 Rohit Upadhyaya, Padmanabhan Pillai, and Mahadev Satyanarayanan
 SEC 2017
- 33. An Empirical Study of Latency in an Emerging Class of Edge Computing Applications for Wearable Cognitive Assistance

Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, **Brandon Amos**, Guanhang Wu, Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai, Roberta Klatzky, Daniel Siewiorek, **and** Mahadev Satyanarayanan

SEC 2017

34. A Scalable and Privacy-Aware IoT Service for Live Video Analytics [code] Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman Sadeh, and Mahadev Satyanarayanan ACM MMSys 2017 (Best Paper)

2016.....

- 35. OpenFace: A general-purpose face recognition library with mobile applications [code] Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan CMU 2016
- Collapsed Variational Inference for Sum-Product Networks
 Han Zhao, Tameem Adel, Geoff Gordon, and Brandon Amos
 ICML 2016
- Quantifying the impact of edge computing on mobile applications
 Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, Brandon Amos, Zhuo Chen, Padmanabhan Pillai,
 and Mahadev Satyanarayanan
 ACM SIGOPS 2016
- 38. Privacy mediators: helping IoT cross the chasm
 Nigel Davies, Nina Taft, Mahadev Satyanarayanan, Sarah Clinch, and Brandon Amos
 HotMobile 2016

2015 and earlier.....

Edge Analytics in the Internet of Things
 Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen, Kiryong Ha,
 Wenlu Hu, and Brandon Amos
 IEEE Pervasive Computing 2015

40. Bad Parts: Are Our Manufacturing Systems at Risk of Silent Cyberattacks?

Hamilton Turner, Jules White, Jaime A. Camelio, Christopher Williams, **Brandon Amos**, and Robert Parker

IEEE Security & Privacy 2015

- 41. Early Implementation Experience with Wearable Cognitive Assistance Applications
 Zhuo Chen, Lu Jiang, Wenlu Hu, Kiryong Ha, **Brandon Amos**, Padmanabhan Pillai,
 Alex Hauptmann, and Mahadev Satyanarayanan
 WearSys 2015
- 42. The Case for Offload Shaping

Wenlu Hu, **Brandon Amos**, Zhuo Chen, Kiryong Ha, Wolfgang Richter, Padmanabhan Pillai, Benjamin Gilbert, Jan Harkes, and Mahadev Satyanarayanan HotMobile 2015

43. Are Cloudlets Necessary?

Ying Gao, Wenlu Hu, Kiryong Ha, **Brandon Amos**, Padmanabhan Pillai, and Mahadev Satyanarayanan

CMU 2015

44. Adaptive VM handoff across cloudlets

Kiryong Ha, Yoshihisa Abe, Zhuo Chen, Wenlu Hu, **Brandon Amos**, Padmanabhan Pillai, and Mahadev Satyanarayanan

CMU 2015

45. Global Parameter Estimation for a Eukaryotic Cell Cycle Model in Systems Biology
Tricity Andrew, **Brandon Amos**, David Easterling, Cihan Oguz, William Baumann, John Tyson, and
Layne T. Watson

SummerSim 2014

46. Applying machine learning classifiers to dynamic Android malware detection at scale [code] Brandon Amos, Hamilton Turner, and Jules White IWCMC 2013

Repositories

facebookresearch/theseus ★203 Differentiable non-linear optimization library	2021
facebookresearch/mbrl-lib ★547 Model-based reinforcement learning library	2021
facebookresearch/dcem ★96 The Differentiable Cross-Entropy Method	2020
facebookresearch/higher \star 1.3k PyTorch higher-order gradient and optimization library	2019
bamos/thesis ★259 Ph.D. Thesis LaTeX source code	2019
cvxgrp/cvxpylayers ★1.2k Differentiable Convex Optimization Layers	2019
locuslab/mpc.pytorch ★512 Differentiable Model-Predictive Control	2018
locuslab/icnn ★233 Input Convex Neural Networks	2017
locuslab/optnet ★377 OptNet experiments	2017
locuslab/qpth ★513 Differentiable PyTorch QP solver	2017
bamos/densenet.pytorch ★735 PyTorch DenseNet implementation	2017
bamos/block ★259 Intelligent block matrix constructions	2017
bamos/setGPU ★98 Automatically use the least-loaded GPU	2017
bamos/dcgan-completion.tensorflow ★1.3k Image completion with GANs	2016
cmusatyalab/openface ★14.3k Face recognition with deep neural networks	2015
bamos/zsh-history-analysis ★169 Analyze and plot your zsh history	2014
bamos/cv ★339 Source for this CV: Creates LaTeX/Markdown from YAML/BibTeX	2013
bamos/dotfiles ★233 Linux, mutt, xmonad, vim, emacs, zsh	2012

Invited Talks

Columbia University	2021
IBM Research	2021
Max Planck Institute for Intelligent Systems (Tübingen) Seminar	2020
Montreal Institute for Learning Algorithms Seminar	2020
ECCV Deep Declarative Networks Tutorial	2020
CVPR Deep Declarative Networks Workshop	2020
Caltech CS 159, Guest Lecture	2020
SIAM MDS Minisymposium on Learning Parameterized Energy Minimization Models	2020
New York University CILVR Seminar	2019
INFORMS Session on Prediction and Optimization	2019
Facebook AI Research	2019
ISMP Session on Machine Learning and Optimization	2018
Google Brain	2018

Bosch Center for AI	2018
Waymo Research	2018
Tesla Al	2018
NVIDIA Robotics	2018
Salesforce Research	2018
OpenAI	2018
NNAISENSE	2018
UC Berkeley	2018

Interns and Students

Eugene Vinitsky (visiting FAIR from Berkeley)	2021 - 2022
Arnaud Fickinger (visiting FAIR from Berkeley)	2021 - 2022
Samuel Cohen (visiting FAIR from UCL)	2021 – 2022
Aaron Lou (visiting FAIR from Cornell and Stanford)	2020 - 2022
Ricky Chen (visiting FAIR from Toronto, now: scientist at FAIR)	2020
Paul Liang (visiting FAIR from CMU)	2020
Phillip Wang (at CMU, now: CEO at Gather)	2018

Professional Activities

Reviewing: AAAI, ICML	., NeurIPS,	, ICLR*, ICCV	, CVPR, ICRA	*Outstanding reviewer
-----------------------	-------------	---------------	--------------	-----------------------

NeurIPS Learning Meets Combinatorial Optimization Workshop Organizer	2020
CVPR Deep Declarative Workshop Organizer	2020
ECCV Deep Declarative Tutorial Organizer	2020
CMU CSD MS Admissions	2014 - 2015

Teaching

Graduate AI (CMU 15-780), TA	S2017
Distributed Systems (CMU 15-440/640), TA	S2016
Software Design and Data Structures (VT CS2114), TA	S2013

Skills

 $Programming \quad C, \ C++, \ Fortran, \ Haskell, \ Java, \ Lua, \ Make, \ Mathematica, \ Python, \ R, \ Scala$

Frameworks JAX, NumPy, Pandas, PyTorch, SciPy, TensorFlow, Torch7 Tools Linux, emacs, vim, evil, org, mu4e, xmonad, git, tmux, zsh