

UNIVERSITE MOULAY ISMAIL MEKNES/UNIVERSITE HASSAN II CASABLANCA ECOLES NATIONALES SUPERIEURES D'ARTS ET METIERS-MEKNES/CASABLANCA

Concours d'entrée en Première année de l'ENSAM - Meknès et de l'ENSAM - Casablanca Filières : Sciences Mathématiques A et B

Epreuve de Physique Durée : 2h 30 min

24 Juillet 2015

L'épreuve contient 6 pages

- Répondre dans la feuille « Fiche des réponses » à rendre seule avec la feuille d'examen

Physique I : Mécanique (cette partie de l'épreuve contient 4 parties indépendantes : I, II, III et IV) N.B : Chaque question est sur 2 points, la partie IV est un QCM. On donne : $g=10 \text{ m/s}^2$.

I. Un mobile se déplace le long d'un rail rectiligne avec une accélération constante γ . Pour mesurer sa vitesse, on utilise deux portes optiques PO1 et PO2 (permettant de capter la valeur de la vitesse quand un objet passe devant elle) distantes d'une distance d. Le mobile est lâché (sans vitesse initiale) à une distance d_0 à gauche de la première porte optique. Il franchît la distance d en un temps T, sa vitesse devant la deuxième porte est v_2 .

1. Exprimer la vitesse v_1 du mobile devant la première porte, et son accélération γ en fonction de T, d et v_2 .

2. Calculer la distance D entre le point de départ et la première porte pour $T=0.5s,\,v_2=1.5$ m/s et d=0.5 m.

II. Soit le système composé de deux blocs de masses respectives M_1 et M_2 , attachés par une corde de masse négligeable et qui passe, sans glissement, à travers une poulie de rayon R et de moment d'inertie J par rapport à son axe de rotation (Oy). Le bloc M_1 repose sur son support (plan incliné) faisant un angle α par rapport à l'horizontale (Fig.2). Le système est abandonné sans vitesse initiale.

Cas d'étude I - Absence du frottement

- 3. Déterminer l'accélération γ des deux blocs en fonction de $M_1,\,M_2,\,$ $J,\,R,\,\alpha$ et g,
- 4. Déterminez les tensions T_1 et T_2 dans la corde en fonction de M_1 , M_2 , $J,\,R,\,\alpha$ et g.

<u>Cas d'étude II</u>-Présence du frottement: le bloc M_1 repose sur son support en présence du frottement. On note \vec{R} la force de réaction du support sur la masse M_1 , avec $\vec{R} = \vec{N} + \vec{T}$ (N étant normale au plan de contact et T est parallèle à celui-ci) telle que : si le bloc M_1 est au *repos*, on a : $|T| \le \mu N$, si le bloc est en mouvement, on a : $|T| = \mu N$, où μ est un coefficient (positif) appelé coefficient de frottement. On rappelle que le sens de la composante T est dans le sens contraire du mouvement du solide par rapport à son support.

Dans ce cas d'étude II, on considère la simplification suivante : $M_1=M_2=M$ et $J=MR^2/2$.

- 5. Exprimer l'inégalité à vérifier par α et μ pour que le système reste immobile (équilibre statique), en déduire l'équation traduisant l'angle α maximal pour que le système reste en équilibre statique.
- 6. Lors de son mouvement, déterminer l'équation horaire de M_1 en fonction de g, α , μ et t.

<u>Cas d'étude III</u>: on considère le montage de la figure 3, le bloc M_1 est posé sur un bloc de masse M_3 avec frottement de coefficient μ . Le contact du bloc M_3 sur son support (plan horizontal) se fait sans frottement. Le système se met en mouvement après avoir lâché le bloc M_2 .

7. Dessiner sur des schémas séparés les deux bilans des forces appliquées sur les blocs M_1 et M_3 .

- 8. En considérant : $M_1=M_2=M$, $M_3=4M$, J=0, déterminer les accélérations γ_1 et γ_3 des blocs M_1 et M_3 en fonction de g et µ.
- 9. Sous les mêmes conditions (question 8), si le bloc M_1 parcourt une distance d, calculer la distance xparcourue par le bloc M_3 en fonction de d et μ . Pour quelle valeur de μ , les deux blocs M_1 et M_3 parcourent la même distance.

III. Une masse ponctuelle m est *poussée* contre un ressort de raideur k au moyen d'une trappe puis lâchée du repos, la masse n'est pas liée au ressort, mais, elle est juste en contact avec celui-ci avant le départ. Son chemin est composé d'un rail horizontal et d'un rail de forme circulaire de rayon intérieur R situé dans un plan vertical (Fig.4). Une fois la particule entre dans le chemin circulaire, elle y sera tout le temps. Les frottements sont négligés sauf indication. Soit $\theta(t)$ l'angle qui décrit la position angulaire de la particule quand elle est sur son chemin circulaire.

- 10. Exprimer la composante normale R_N de la force de réaction du rail sur la masse m en fonction de m, g, v, R et θ , où v est la vitesse instantanée de m. Déterminer l'accélération tangentielle γ_t de m en fonction de g et θ .
- 11. Déterminer la plus petite vitesse possible v_0 de la masse m au point le plus haut de la trajectoire pour qu'elle puisse traverser son chemin en fonction de R et g.

- 12. Déterminer le raccourcissement minimal x_0 du ressort correspondant en fonction de m, g, R et k.
- 13. Pour une position quelconque, exprimer l'énergie mécanique E_m de la particule en fonction de m, g, R, θ .
- 14. Déterminer l'équation du mouvement de la particule, exprimer la période du mouvement pour les petites oscillations en fonction de g et R.
- 15. Dans cette question, le chemin de la particule est graissé et a donné lieu à une force de frottement, ayant la forme $\vec{f}=-2\lambda m\vec{v}$ (où \vec{v} est la vitesse instantanée de m, λ est une constante donnée), appliquée sur la particule de la part du rail, exprimer l'équation du mouvement de cette particule. En admettant que l'équation horaire du mouvement de la particule est de la forme : $\theta(t) = e^{-\lambda t} \left[A e^{\omega_t t} + B e^{-\omega_t t} \right]$, où $\omega_1 = \sqrt{\lambda^2 - \omega_0^2}$, déterminer les constantes A et B telles que : $\theta(0) = \theta_0$ et une vitesse initiale nulle.

IV. Répondre aux questions suivantes en cochant la bonne réponse (attention : 2 points pour une réponse juste, (-1 pt) pour une réponse fausse et (0 pt) pour le cas sans réponse) :

- 16.0n fait tourner une bille au bout d'une corde selon une trajectoire circulaire dans le plan vertical, la corde se brise (coupure de la corde) lorsqu'elle est horizontale, la trajectoire de la bille sera :
 - a. Parabolique
- **b.** circulaire
- **c.** droite
- d. quelconque (imprévisible)
- 17. Un système de levage soulève au moyen d'un câble une masse verticalement. La masse subit deux forces lors de son mouvement vers le haut: son poids P et la tension T du câble. Ces deux forces effectuent respectivement les travaux WP et WT, lequel des énoncés suivants est vrai :
- **b.** $W_P < 0$ et $W_T < 0$ **c.** $W_P < 0$ et $W_T > 0$ **d.** $W_P > 0$ et $W_T < 0$

- 18. Une particule se déplace dans le plan (Oxy) selon ses coordonnées : $(x(t)=2-4t \text{ et } y(t)=-3t+t^3)$, le temps (t) est en (s) et la position est en cm. A l'instant t=2 s, le module de sa vitesse vaut :
- **b.** $|\vec{V}| = \sqrt{97} \text{ cm/s}$
- $\vec{V} = 3 \, \text{cm/s}$
- **d.** $|\vec{V}| = \sqrt{13} \text{ cm/s}$

L'orientation de sa vitesse par rapport à l'axe ($O\vec{x}$) est à (en radian):

- **a.** $\pi/2 + \arctan(4/9)$ **b.** $\arctan(4/9)$
- d. $\pi/2$ -arctar(4/9)

Soit une piste lisse en forme de quart de cercle (P1, P2), de rayon égal à 6 m, située dans un plan vertical (Fig.5). Une masse ponctuelle qui pèse 4 N se déplace de P_1 à P_2 sous l'action de la force F1 qui est toujours orientée selon l'horizontale et sa grandeur est constante et vaut (47/6)N.

19. La somme des travaux des forces appliquées sur la particule est :

- **b.** 71 J
- 47√2 J
- d. -23 J

20. Sachant que la vitesse en P_1 était de 4 m/s sa vitesse en P_2 est :

- **a.** $\sqrt{131}$ m/s
- \mathbf{b} . 0 m/s
- c. $3\sqrt{7}$ m/s
- **d.** $2\sqrt{10}$ m/s

Physique II : Electricité (cette partie de l'épreuve contient un problème et un QCM)

N.B. Chaque question est notée sur deux points.

Problème: Le circuit, schématisé sur la figure ci-contre, comporte:

- Un générateur de tension continue : E = 10V;
- Une bobine idéale : L
- Deux condensateurs : C₁ et C₂;
- Trois résistances : R_1 , R_2 et R_3 ;
- Six interrupteurs : K_0 , K_1 , K_2 , K_3 , K_4 et K_5 .

Première expérience: A l'instant $t_0 = 0$, on ferme l'interrupteur K_0 et K_2 . Tous les autres interrupteurs sont ouverts.

- 1. Donner l'équation différentielle qui caractérise la tension $U_1(t)$.
- 2. Quelle est la constante du temps (τ) du circuit?
- 3. Etant donné que $U_1(0) = 0$, quelle est la durée nécessaire, en fonction de τ , pour que la tension U_1 soit égale à 9.5 V?

Au bout d'un certain temps t_1 , la tension U_1 atteint une valeur permanente.

- 4. Quelle est la valeur permanente du courant traversant la résistance R_1 ?
- 5. Quelle est la valeur de la tension $U_1(t_1)$?
- 6. Quelle est l'énergie emmagasinée par le condensateur à l'instant t_1 en fonction de la tension $U_1(t_1)$?

Deuxième expérience: A l'instant $t_0 = 0$, on ferme les interrupteurs K_0 et K_3 . Tous les autres interrupteurs sont ouverts. Les tensions $U_1(t)$ et $U_2(t)$ atteignent leurs valeurs permanentes.

- 7. Quelle sera la valeur permanente de la tension U_1 , si l'on suppose que $U_1(t_0) = dU_2(t_0) = 0 V$?
- 8. Quelle sera la valeur permanente de la tension U_2 , si l'on suppose que $U_2(t_0) = U_{20} \neq 0$ V et que $U_1(t_0) = 0$ V?

Troisième expérience : On suppose que tous les interrupteurs sont ouverts, et que $U_2 = 10V$. On ferme l'interrupteur K_4 . L'interrupteur K_5 étant toujours ouvert.

- 9. Donner l'équation différentielle qui caractérise le courant I₃ traversant la résistance R₃.
- 10. Quelle sera la valeur permanente de la tension U_2 ?

Partie QCM: Questions à choix multiples

1. Trois bobines identiques, d'inductances L et de résistances internes R, sont mises en parallèle entre les points A et B.

Le dipôle AB est alors équivalent à :

- a. Une bobine d'inductance L et de résistance interne R.
- b. Une bobine d'inductance 3L et de résistance interne R/3.
- c. Une bobine d'inductance L/3 et de résistance interne 3R.
- d. Une bobine d'inductance 3L et de résistance interne 3R.

- 2. La capacité équivalente de 5 condensateurs, de capacité C, mises en série est :
 - a. Toujours supérieure à C.
 - b. Egale à C.
 - c. Toujours inférieure à C.
 - d. Egale à 5 C.
- 3. On essaie de déduire la valeur du courant I à l'aide d'un oscilloscope à deux voies. Cette valeur :

- a. Ne peut jamais être déduite à l'aide d'un oscilloscope.
- b. Est proportionnelle à la mesure sur la voie 1.
- c. Est proportionnelle à la mesure sur la voie 2.
- d. Est proportionnelle à la mesure sur la voie 1 et la voie 2.

- 4. Un condensateur de capacité *C*, initialement déchargé, se charge à travers une résistance *R*. La tension permanente à ses bornes est égale à **20V**. L'instant ou la tension aux bornes de la résistance a égalé **7**. **4V** est :
 - a. RC
- b. 3 RC/2.
- c. 3 RC
- d. 0.5 RC
- 5. Une résistance R et une bobine d'inductance L sont en parallèle. La tension à leurs bornes est sinusoïdale de pulsation ω . Pour quelle valeur de R, le courant efficace traversant la résistance est le double du courant efficace traversant la bobine ?
 - a. $L\omega/2$
- b. $L\omega/4$
- c. 2Lw
- d. 4Lω
- 6. Pour mesurer expérimentalement la capacité C d'un condensateur initialement déchargé, on le charge à courant constant d'intensité I=2mA. Au bout de t=5s, on mesure aux bornes du condensateur une tension U=10V. Il est à déduire alors que la capacité est égale à :
 - a. 5 mF
- b. 1 mF
- c. 0.5 mF
- d. 0.1 mF
- 7. On observe, à l'aide d'un oscilloscope, l'évolution temporelle d'une grandeur y(t) dès lors qu'on bascule le commutateur en position 2.

La grandeur y(t) doit être :

- a. Le courant traversant le circuit RLC.
- b. La tension aux bornes de la résistance.
- c. La tension aux bornes du condensateur.
- d. L'énergie emmagasinée par la bobine.

8. La résistance équivalente entre les points : A et B obéit à la relation de récurrence :

a.
$$R_n = r(3r + 3R_{n-1})/(3r + R_{n-1})$$

b.
$$R_n = r(r/3 + R_{n-1})/(3r + R_{n-1})$$

c.
$$R_n = r(r + 3R_{n-1})/(3r + R_{n-1})$$

d.
$$R_n = r(2r + R_{n-1})/(3r + R_{n-1})$$

Indication: Essayer pour une cellule puis pour une seconde.

- 9. Sur les arrêtes d'un cube, on a placé des résistances identiques de $\mathbf{6} \Omega$. La résistance équivalente entre les points \mathbf{A} et \mathbf{G} vaut :
 - a. 5Ω
- b.15 Ω
- d. 18 Ω

Indication : pour des raisons de symétrie, on a le même potentiel aux points B, E et D, et le même potentiel aux points C, F et H. les points ayant le même potentiel peuvent être joints par des fils sans changer la résistance équivalente

c. 6 Ω

10. On désire mesurer la valeur d'une résistance. Pour ce faire, on mesure la tension et le courant comme mentionné sur le schéma ci-contre.

On applique après la loi d'ohm pour déterminer la valeur de *R*.

- a. Cette valeur est précise.
- b. Cette valeur est imprécise suite à une imprécision au niveau de I et de U.
- c. Cette valeur est imprécise suite à une imprécision au niveau de U.
- d. Cette valeur est imprécise suite à une imprécision au niveau de I.

Cette feuille ne doit porter **aucun signe indicatif ni signature** Filières SM A et B

FICHE DES REPONSES (Physique I) : Questions 1 à 20							
1. Vitesse	· v ₁ =		γ=				
2. Distano	ce <i>D</i> =						
3. L'accél	ération		4. Tensions				
γ=		T ₁ =	T ₂ =				
5. Inégal	ité :		Equation :				
6. L'équa	tion horaire $x(t)$ =						
7. Schém (bilan de	1	(Marine	T.V.	l			
8. Les acc	célérations :						
γ ₁ =			γ3=	9			
9. Distan	ce parcourue x =		Valeur de μ :				
10. Comp	oosante R _N =		Accélération t	Accélération tang. γ _t =			
11. Vites	se v_0 =						
12. Racco	ourcissement minima	$1 x_0 =$					
13. Energ	gie mécanique \mathbf{E}_m =						
14. Equa	tion du mouvement :		Période : T	= .			
15. Equa	tion du mouvement :		A=	B=			
e L				t) pour le cas sans réponse	-		
	6. a	b	C	d			
her la boréponse	7. a	b b	С	d d			
rép	8. a	b	C	d	Note		
20 1	9. a	b	С	d			
	(0. a	b	С	d			

Cette feuille ne doit porter **aucun signe indicatif ni signature** Filières SM A et B

Physique II: Fiche des réponses

Problème. Une réponse juste : + 2, Une réponse fausse ou pas de réponse : 0.

	Problème	Chaque question est notée sur 2 points			
		Réponse	Note		
1.	l'équation différentielle qui caractérise la tension $m{U_1(t)}$				
2.	Quelle est la valeur de la constante du temps (au) du circuit	τ =			
3.	La durée nécessaire pour que $U_1 = 9.5 V$	T =			
4.	La valeur permanente du courant traversant la résistance $m{R_1}$	$I(\infty) =$			
5.	La valeur de la tension $oldsymbol{U_1(t)}$ à l'instant $oldsymbol{t_1}$	$U_1(t_1) =$			
6.	L'énergie emmagasinée par le condensateur à l'instant t 1	E =			
7.	La valeur permanente de la tension $U_1(t)$	$U_1(\infty) =$			
8.	La valeur permanente de la tension $oldsymbol{U_2(t)}$	$U_2(\infty) =$			
9.	L'équation différentielle qui caractérise le courant I_3 traversant la résistance R_3 .				
10.	La valeur permanente de la tension $m{U_2}$	$U_2(\infty) =$			

Partie QCM:

Une réponse juste : + 2, Pas de réponse : 0, Une réponse fausse ou plus d'une seule réponse : -1.

	QCM								
		Note							
1.	□ a	□b	□с	□ d					
2.	□a	□b	□ с	□ d					
3.	□ a	□ b	□с	□ d					
4.	□а	□b	□ с	□ d					
5.	□а	□ b	□с	□ d					
6.	□ a	□ b	□ c	□ d					
7.	□а	□b	□с	□ d					
8.	□а	□ b	□с	□ d					
9.	□ а	□b	□с	□ d					
10.	□а	□b	□с	□ d					

Note :	
	/40

Cette feuille ne doit porter aucun signe indicatif ni signature Filières SM A et B

FICHE DES REPONSES (Physique I): Questions 1 à 20 1. Vitesse $v_1 = \frac{2d}{T} - v_2$ 2. Distance: $D = \frac{v_1^2}{2\gamma} = 1/16m$ 3. L'accélération $Y = \frac{M_1 \sin \alpha + M_2}{M_1 + M_2 + J/R^2}g$ 5. Inégalité: $1 + \cos \alpha \le \mu \sin \alpha$ 6. L'équation horaire: $x(t) = \frac{1 + \sin \alpha - \mu \cos \alpha}{5}gt^2$ 7. Schémas (bilan des forces) 7. Schémas (bilan des forces) 7. Distance parcourue $x = \frac{\mu d}{4(1 - \mu)}$ 7. Ocomposante $R_N = mv^2/R + mg \cos \theta$ 10. Composante $R_N = mv^2/R + mg \cos \theta$ 11. Vitesse $v_0 = \sqrt{Rg}$								
3. L'accélération $\gamma = \frac{M_1 \sin \alpha + M_2}{M_1 + M_2 + J/R^2}g$ $T_2 = \frac{M_1 \sin \alpha + M_2}{M_1 + M_2 + J/R^2}g$ $T_2 = \frac{M_2 g}{M_1 (1 + \sin \alpha) + J/R^2 \sin \alpha}{M_1 + M_2 + J/R^2}$ 5. Inégalité: $1 + \cos \alpha \le \mu \sin \alpha$ Equation: $1 + \cos \alpha = \mu \sin \alpha$ 6. L'équation horaire: $x(t) = \frac{1 + \sin \alpha - \mu \cos \alpha}{5}gt^2$ 7. Schémas (bilan des forces) $\gamma_1 = \frac{1 - \mu}{2}g$ $\gamma_2 = \frac{\mu d}{4(1 - \mu)}$ Valeur de $\mu = 2/3$ 10. Composante $R_N = mv^2/R + mg \cos \theta$ Accélération tang. $\gamma_1 = g \sin \theta$								
3. L'accélération $\gamma = \frac{M_1 \sin \alpha + M_2}{M_1 + M_2 + J/R^2}g$ $T_2 = \frac{M_1 \sin \alpha + M_2}{M_1 + M_2 + J/R^2}g$ $T_2 = \frac{M_2 g}{M_1 (1 + \sin \alpha) + J/R^2 \sin \alpha}{M_1 + M_2 + J/R^2}$ 5. Inégalité: $1 + \cos \alpha \le \mu \sin \alpha$ Equation: $1 + \cos \alpha = \mu \sin \alpha$ 6. L'équation horaire: $x(t) = \frac{1 + \sin \alpha - \mu \cos \alpha}{5}gt^2$ 7. Schémas (bilan des forces) $\gamma_1 = \frac{1 - \mu}{2}g$ $\gamma_2 = \frac{\mu d}{4(1 - \mu)}$ Valeur de $\mu = 2/3$ 10. Composante $R_N = mv^2/R + mg \cos \theta$ Accélération tang. $\gamma_1 = g \sin \theta$								
3. L'accélération $\gamma = \frac{M_1 \sin \alpha + M_2}{M_1 + M_2 + J/R^2}g$ $T_2 = \frac{M_1 \sin \alpha + M_2}{M_1 + M_2 + J/R^2}g$ $T_2 = \frac{M_2 g}{M_1 (1 + \sin \alpha) + J/R^2 \sin \alpha}{M_1 + M_2 + J/R^2}$ 5. Inégalité: $1 + \cos \alpha \le \mu \sin \alpha$ Equation: $1 + \cos \alpha = \mu \sin \alpha$ 6. L'équation horaire: $x(t) = \frac{1 + \sin \alpha - \mu \cos \alpha}{5}gt^2$ 7. Schémas (bilan des forces) $\gamma_1 = \frac{1 - \mu}{2}g$ $\gamma_2 = \frac{\mu d}{4(1 - \mu)}$ Valeur de $\mu = 2/3$ 10. Composante $R_N = mv^2/R + mg \cos \theta$ Accélération tang. $\gamma_1 = g \sin \theta$								
5. Inégalité: $1 + \cos \alpha \le \mu \sin \alpha$ Equation: $1 + \cos \alpha = \mu \sin \alpha$ 6. L'équation horaire: $x(t) = \frac{1 + \sin \alpha - \mu \cos \alpha}{5} gt^2$ 7. Schémas (bilan des forces) N1 T1 M3 M2 N2 T M3 M2 8. Les accélérations: $\gamma_1 = \frac{1 - \mu}{2} g$ 9. Distance parcourue $x = \frac{\mu d}{4(1 - \mu)}$ Valeur de $\mu = 2/3$ 10. Composante $R_N = mv^2/R + mg \cos \theta$ Accélération tang. $\gamma_t = g \sin \theta$ 11. Vitesse $\nu_0 = \sqrt{Rg}$								
6. L'équation horaire : $x(t) = \frac{1 + \sin \alpha - \mu \cos \alpha}{5} gt^2$ 7. Schémas (bilan des forces) N1								
7. Schémas (bilan des forces) N1 N2 T M3 M2g 8. Les accélérations: $\gamma_1 = \frac{1-\mu}{2}g$ 9. Distance parcourue $x = \frac{\mu d}{4(1-\mu)}$ Valeur de $\mu = 2/3$ 10. Composante $R_N = mv^2/R + mg\cos\theta$ Accélération tang. $\gamma_i = g\sin\theta$ 11. Vitesse $\nu_0 = \sqrt{Rg}$								
(bilan des forces) The state of the state								
8. Les accélérations : $\gamma_1 = \frac{1-\mu}{2}g$ $\gamma_3 = \frac{\mu}{4}g$ 9. Distance parcourue $x = \frac{\mu d}{4(1-\mu)}$ Valeur de $\mu = 2/3$ 10. Composante $R_N = mv^2/R + mg\cos\theta$ Accélération tang. $\gamma_t = g\sin\theta$								
9. Distance parcourue $x = \frac{\mu d}{4(1-\mu)}$ Valeur de $\mu = 2/3$ 10. Composante $R_N = mv^2/R + mg\cos\theta$ Accélération tang. $\gamma_t = g\sin\theta$ 11. Vitesse $\nu_0 = \sqrt{Rg}$								
10. Composante $R_N = mv^2/R + mg\cos\theta$ Accélération tang. $\gamma_t = g\sin\theta$ 11. Vitesse $\nu_0 = \sqrt{Rg}$								
11. Vitesse $v_0 = \sqrt{Rg}$								
12. Raccourcissement minimal $_{Y} = \sqrt{\frac{6mRg}{m}}$								
$\sim 0 - \sqrt{\frac{k}{k}}$								
13. Energie mécanique $E_m = \frac{mR^2\dot{\theta}^2}{2} + mgR(1-\cos\theta)$								
14. Equation du mouvement : $\ddot{\theta} + g / R \sin \theta = 0$								
15. Equation du mouvement : $\ddot{\theta} + 2\lambda\dot{\theta} + g/R\sin\theta = 0$ $A = \frac{\theta_0(\omega_1 + \lambda)}{2\omega_1}$ et $B = \frac{\theta_0(\omega_1 - \lambda)}{2\omega_1}$								
2 points pour une réponse juste, (-1 pt) pour une réponse fausse et (0 pt) pour le cas sans réponse								
16. a b c d 17. a b c d 18. a b c d 19. a b c d 19. a b c d								
o v 17. a b c d								
17. a b c d 18. a b c d 18. a b c d 10. a d								
19. a b c d								
20. a b c d								

Physique II: science math

Problème. Une réponse juste: +2, Une réponse fausse ou pas de réponse: 0.

	Problème	Chaque question est notée sur 2 points				
	9	Réponse				
1.	l'équation différentielle qui caractérise la tension $U_1(t)$	$E = (R_1 + R_2) C_1 \frac{dU_1}{dt} + U_1$				
2.	Quelle est la valeur de la constante du temps (au) du circuit	$\tau = (R_1 + R_2) C_1$				
3.	La durée nécessaire pour que $U_1=9.5\ V$	T=3 au				
4.	La valeur permanente du courant traversant la résistance $R_{f 1}$	$I(\infty) = 0 A$				
5.	La valeur de la tension $\mathit{U}_1(t)$ à l'instant t_1	$U_1(t_1) = 10 V$				
6.	L'énergie emmagasinée par le condensateur à l'instant t_1	$E = \frac{1}{2} C_1 U_1(t_1)^2$				
7.	La valeur permanente de la tension $U_1(t)$	$U_1(\infty) = \frac{C_2 E}{C_1 + C_2}$				
8.	La valeur permanente de la tension $U_2(t)$	$U_2(\infty) = \frac{C_1}{C_1 + C_2} E + \frac{C_2}{C_1 + C_2} U_{20}$				
9.	L'équation différentielle qui caractérise le courant I_3 traversant la résistance R_3 .	$\frac{d^2I_3}{dt^2} + \frac{R_3}{L} \frac{dI_3}{dt} + \frac{1}{LC_2} I_3 = 0$				
10.	La valeur permanente de la tension U_2	$U_2(\infty) = 0 V$				

Partie QCM

Une réponse juste: +2, Pas de réponse: 0, Une réponse fausse ou plus d'une seule réponse: -1.

	QCM										Total :	
		Réponse										40
1.												
2.						С						4
3.				b								
4.		a										
5.		a										
6.				b								
7.						c						
8.								d				
9.		a										
10.								d				