PRACOWNIA FIZYCZNA 1

Instytut Fizyki - Centrum Naukowo Dydaktyczne Politechnika Śląska

P1-E5. Składanie drgań harmonicznych przy pomocy oscyloskopu (krzywe Lissajous)*

Zagadnienia

Drgania harmoniczne. Składanie drgań prostopadłych. Krzywe Lissajous. Metoda wyznaczania częstotliwości drgania składowego (metoda przecięć).

1 Wprowadzenie

Krzywe Lissajous otrzymuje się w wyniku złożenia dwóch drgań prostopadłych. Kształt otrzymanej krzywej zależy od stosunku częstotliwości składanych drgań i od ich różnicy w fazie. Krzywe Lissajous stają się tym bardziej skomplikowane, im większe liczby całkowite określają stosunek częstotliwości prostopadłych drgań składowych. Wszystkie krzywe mieszczą się w prostokącie (lub kwadracie) o bokach równych podwojonym amplitudom wychylenia (napięcia) drgań składowych. Stosunek częstotliwości drgań składowych równy jest stosunkowi liczby przecięć krzywej Lissajous z dwiema prostymi prostopadłymi. Proste te nie mogą przechodzić przez punkty węzłowe krzywej ani nie mogą być do niej styczne. Szukaną częstotliwość f_y sygnału, którego źródłem jest generator, wyznacza się ze wzoru

$$f_y = f_x \frac{N_x}{N_y},\tag{1}$$

gdzie N_x i N_y oznaczają odpowiednio liczby przecięć krzywej z prostą równoległą do osi X i z prostą równoległą do osi Y, f_x i f_y są częstotliwościami składanych drgań.

2 Układ pomiarowy

Stanowisko pomiarowe składa się z oscyloskopu dwukanałowego i dwóch generatorów przebiegów zmiennych.

Fig. 1: Schemat układu pomiarowego

^{*}Opracowanie: dr inż. Alina Domanowska

3 Pomiary

- 1. Przygotować oscyloskop do trybu pracy dwukanałowej. Ustawić przełącznik AC-GND-DC w położenie AC (sygnał przemienny). Przełącznik VERT MODE ustawić w pozycję DUAL.
- 2. Wyłączyć podstawę czasu oscyloskopu, ustawiając przełącznik TIME/DIV w położenie X-Y.
- 3. Doprowadzić sygnał U_x z pierwszego generatora do kanału 1 oscyloskopu (CH1). Sygnał ten jest sygnałem osi poziomej X.
- 4. Doprowadzić sygnał U_y z drugiego generatora do kanału 2 oscyloskopu (CH2). Sygnał ten powoduje odchylanie wiązki elektronów wzdłuż osi pionowej Y.
- 5. Pokrętła VOLTS/DIV napięć U_x i U_y ustawić w takim położeniu, aby obraz wypełniał prawie cały ekran.
- 6. Ustawić dowolną częstotliwość f_x drgań U_x . Znaleźć taką częstotliwość f_y aby

$$\frac{f_x}{f_y} = \frac{N_y}{N_x} = \frac{1}{2}.$$

Krzywą przenieść na papier milimetrowy. Zanotować wartości f_x , f_y oraz N_x i N_y .

Lp.	f_x , Hz	f_y , Hz	N_x	N_y

7. Przeprowadzić obserwacje krzywych Lissajous dla innych przypadków, dla których stosunek częstotliwości składanych drgań, wyrażony jest przez niewielkie liczby naturalne

$$\frac{f_x}{f_y} = \frac{2}{3}; \frac{3}{4}; \frac{1}{1}; \frac{6}{5}; \frac{5}{4}; \frac{4}{3}; \frac{3}{2}; \frac{2}{1}; \frac{3}{1}.$$

i przenieść krzywe na wykresy. Za każdym razem notować wartości f_x , f_y oraz N_x i N_y .

Fig. 2: Przykładowe krzywe Lissajous i metoda przecięć

4 Opracowanie wyników pomiarów

- 1. Posługując się metodą przecięć (rys. 2), obliczyć częstotliwości drgań f'_y napięcia U_y , dla wszystkich sporządzonych wykresów krzywych Lissajous.
- 2. Sporządzić krzywą skalowania generatora $f_y'=f(f_y)$. Skomentować wynik.