Going Deep

Kate Farrahi

ECS Southampton

February 21, 2019

Let $\psi:\mathbb{R}\to\mathbb{R}$ be a nonconstant, bounded, and continuous function.

Let $\psi : \mathbb{R} \to \mathbb{R}$ be a nonconstant, bounded, and continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$.

Let $\psi:\mathbb{R}\to\mathbb{R}$ be a nonconstant, bounded, and continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$. The space of real-valued continuous functions on I_m is denoted by $C(I_m)$.

Let $\psi:\mathbb{R}\to\mathbb{R}$ be a nonconstant, bounded, and continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$. The space of real-valued continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\epsilon>0$ and any function $f\in C(I_m)$, there exist an integer N, real constants $v_i,b_i\in\mathbb{R}$ and real vectors $w_i\in\mathbb{R}^m$ for $i=1,\ldots,N$, such that we may define:

 $F(x) = \sum_{i=1}^{N} v_i \psi(w_i^T x + b_i)$ as an approximate realization of the function f; that is,

Let $\psi:\mathbb{R}\to\mathbb{R}$ be a nonconstant, bounded, and continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$. The space of real-valued continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\epsilon>0$ and any function $f\in C(I_m)$, there exist an integer N, real constants $v_i,b_i\in\mathbb{R}$ and real vectors $w_i\in\mathbb{R}^m$ for $i=1,\ldots,N$, such that we may define:

 $F(x) = \sum_{i=1}^{N} v_i \psi(w_i^T x + b_i)$ as an approximate realization of the function f; that is,

$$|F(x) - f(x)| < \epsilon$$
 for all $x \in I_m$.

Then Why Go Deep?

- There are functions you can compute with a deep neural network that shallow networks require exponentially more hidden units to compute.
- ▶ The following function is more efficient to implement using a deep neural network: $y = x_1 \oplus x_2 \oplus x_3 \oplus \cdots \oplus x_n$

► The vanishing and exploding gradient problem is a difficulty found in training NN with gradient-based learning methods and backpropagation.

- ► The vanishing and exploding gradient problem is a difficulty found in training NN with gradient-based learning methods and backpropagation.
- In training, the gradient may become vanishingly small (or large), effectively preventing the weight from changing its value (or exploding in value).

- ► The vanishing and exploding gradient problem is a difficulty found in training NN with gradient-based learning methods and backpropagation.
- In training, the gradient may become vanishingly small (or large), effectively preventing the weight from changing its value (or exploding in value).
- ▶ This leads to the neural network not being able to train.

- The vanishing and exploding gradient problem is a difficulty found in training NN with gradient-based learning methods and backpropagation.
- In training, the gradient may become vanishingly small (or large), effectively preventing the weight from changing its value (or exploding in value).
- ▶ This leads to the neural network not being able to train.
- ► This issue affects many-layered networks (feed-forward), as well as recurrent networks.

Issues with Going Deep

➤ One of the most effective ways to resolve the vanishing gradient problem is with residual neural networks (ResNets)¹.

¹K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," CVPR, Las Vegas, NV, 2016, pp. 770-778.

- ➤ One of the most effective ways to resolve the vanishing gradient problem is with residual neural networks (ResNets)¹.
- ResNets are artificial neural networks that use skip connections to jump over layers.

¹K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," CVPR, Las Vegas, NV, 2016, pp. 770-778.

- ➤ One of the most effective ways to resolve the vanishing gradient problem is with residual neural networks (ResNets)¹.
- ResNets are artificial neural networks that use skip connections to jump over layers.
- ► The vanishing gradient problem is mitigated in ResNets by reusing activations from a previous layer.

¹K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," CVPR, Las Vegas, NV, 2016, pp. 770-778.

Figure 2. Residual learning: a building block.².

²K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," CVPR, Las Vegas, NV, 2016, pp. 770-778.

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

³K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," CVPR, Las Vegas, NV, 2016, pp. 770-778.

Figure 6. Training on CIFAR-10. Dashed lines denote training error, and bold lines denote testing error. Left: plain networks. The error of plain-110 is higher than 60% and not displayed. Middle: ResNets. Right: ResNets with 110 and 1202 layers.

⁴K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," CVPR, Las Vegas, NV, 2016, pp. 770-778.

▶ Neural networks with a large number of parameters (and hidden layers) are powerful, however, overfitting is a serious problem in such systems.

- ▶ Neural networks with a large number of parameters (and hidden layers) are powerful, however, overfitting is a serious problem in such systems.
- Dropout is a form of regularization

- Neural networks with a large number of parameters (and hidden layers) are powerful, however, overfitting is a serious problem in such systems.
- Dropout is a form of regularization
- The key idea in dropout is to randomly drop neurons, including all of the connections, from the neural network during training.

⁵Image from: https://www.researchgate.net/figure/ Dropout-neural-network-model-a-is-a-standard-neural-network-b-is-the-s fig3_309206911

▶ In the learning phase, we stochastically remove hidden units by setting a dropout probability for each layer in the network. We then randomly decide wether or not a neuron in a given layer is removed stochastically.

We define a random binary mask $m^{(I)}$ which is used to remove neurons, and note, $m^{(I)}$ changes for each iteration of the backpropagation algorithm.

- ▶ We define a random binary mask $m^{(I)}$ which is used to remove neurons, and note, $m^{(I)}$ changes for each iteration of the backpropagation algorithm.
- ▶ For layers, l = 1 to L 1, for the forward pass of backpropagation, we then compute

$$a^{(l)} = \sigma(w^{(l)}a^{(l-1)} + b^{(l)}) \odot m^{(l)}$$
 (1)

- ▶ We define a random binary mask $m^{(I)}$ which is used to remove neurons, and note, $m^{(I)}$ changes for each iteration of the backpropagation algorithm.
- ▶ For layers, l = 1 to L 1, for the forward pass of backpropagation, we then compute

$$a^{(l)} = \sigma(w^{(l)}a^{(l-1)} + b^{(l)}) \odot m^{(l)}$$
 (1)

For layer L,

$$a^{(L)} = \sigma(w^{(L)}a^{(L-1)} + b^{(I)})$$
 (2)

- ▶ We define a random binary mask $m^{(I)}$ which is used to remove neurons, and note, $m^{(I)}$ changes for each iteration of the backpropagation algorithm.
- ▶ For layers, l = 1 to L 1, for the forward pass of backpropagation, we then compute

$$a^{(l)} = \sigma(w^{(l)}a^{(l-1)} + b^{(l)}) \odot m^{(l)}$$
 (1)

For layer L,

$$a^{(L)} = \sigma(w^{(L)}a^{(L-1)} + b^{(I)})$$
 (2)

▶ For the backward pass of the backpropagation algorithm,

$$\delta^{L} = \Delta_{a} J \odot \sigma'(z^{L}) \tag{3}$$

- We define a random binary mask $m^{(I)}$ which is used to remove neurons, and note, $m^{(I)}$ changes for each iteration of the backpropagation algorithm.
- ▶ For layers, l = 1 to L 1, for the forward pass of backpropagation, we then compute

$$a^{(l)} = \sigma(w^{(l)}a^{(l-1)} + b^{(l)}) \odot m^{(l)}$$
 (1)

► For layer *L*,

$$a^{(L)} = \sigma(w^{(L)}a^{(L-1)} + b^{(I)})$$
 (2)

▶ For the backward pass of the backpropagation algorithm,

$$\delta^{L} = \Delta_{a} J \odot \sigma'(z^{L}) \tag{3}$$

$$\delta^{l} = ((w^{l+1})^{T} \delta^{l+1}) \odot \sigma^{\prime}(z^{l}) \odot m^{(l)}$$

$$\tag{4}$$

Why Does Dropout Work?

 Neurons cannot co-adapt to other units (they cannot assume that all of the other units will be present)

Why Does Dropout Work?

- ▶ Neurons cannot co-adapt to other units (they cannot assume that all of the other units will be present)
- By breaking co-adaptation, each unit will ultimately find more general features