MÓDULO 1 Fundamentos básicos del sistema de entrada/salida (E/S)

- ☐ Tema 1.- Arquitectura del sistema de entrada/salida
- ☐ Tema 2.- Mecanismos de sincronización
- ☐ Tema 3.- Métodos de transferencia de datos
- ☐ Tema 4: Análisis, selección y evaluación de computadores

Actualizado: 28 enero 2019

TEMA 1: Arquitectura del sistema de E/S

- ☐ La E/S en el computador
- ☐ Conexión entre dispositivos de E/S, memoria y procesador
- □ Elementos básicos de la E/S
 - Interfaces
 - Periféricos
- ☐ El sistema operativo y los dispositivos de E/S
- Operaciones de E/S
 - Direccionamiento de la E/S
 - Decodificador de direcciones
 - Protocolos de comunicación
- ☐ Clasificación de los dispositivos periféricos
- ☐ Casos de estudio: puertos de E/S en el IBM-PC
- **□** Bibliografía:
 - Capítulo 7: Stallings, William, "Organización y Arquitectura de Computadores", Prentice Hall, 2006
 - Capítulo 6: Patterson, D. and Hennessy, J., "Estructura y Diseño de Computadores. La Interfaz Hardware/Software", Ed. Reverté, 2011

La E/S en el computador

- ☐ Componentes básicos de la arquitectura Von-Neumann
 - Unidad Central de Proceso (CPU)
 - Unidad de control + registros + unidades funcionales
 - Función: Ejecuta las instrucciones
 - Memoria
 - Almacenamiento de instrucciones y datos
 - Sistema de entrada/salida
 - Interfaz con el exterior.
 - Permite el intercambio de información con dispositivos externos.
 - Conectar varios computadores entre sí
 → computadores en red
- ☐ Sistema de interconexión de los componentes
 - Buses de interconexión
 - Organización jerarquía de los buses para mejorar prestaciones del sistema.

Conexión entre dispositivos de E/S, procesador y memoria

☐ Interconexión de los componentes

- Conexión a través de buses
- Bus: Canal de comunicación compartido, que utiliza un conjunto de cables o vías de comunicación para conectar múltiples subsistemas.
- Aspectos a tener en cuenta: rendimiento, expansibilidad y resistencia a fallos.
 - Múltiples buses organizados jerárquicamente para mejorar las prestaciones

Un solo bus compartido

Interrupts Processor Cache Memory-I/O bus I/O I/O I/O controller controller controller Main memory Network Graphics Disk output

Jerarquía de buses

Arquitectura North/South bridge: Intel 430HX Pentium (1996)

82439HX TXC Simplified Block Diagram

Intel core i processors, Coffeelake (oct, 2017): $3xx \rightarrow Z370$

Cambios respecto a generación anterior:

- Incremento a 6 cores (i5-i7)
- L3 más grande
- Incremento frecuencia turbo (+ 400MHz)
- DDR4 2666 MHz.. 2400 MHz.
- No compatibilidad con DDR3
- Memoria Optane

Coffeelake chipsets 8^a generación FC-LGA1151

Z370, H310, B360, H3710,...

Direct Media Interface:

DMI 3.0 → 3,93 GB/s (4 lanes) Chipset z370 → Hasta 24 Pci-Express 3.0 6 SATA 3.0

10 USB 3.0

TEMA 1: Arquitectura del sistema de E/S

- ☐ La E/S en el computador
- ☐ Conexión entre dispositivos de E/S, memoria y procesador
- ☐ Elementos básicos de la E/S
 - Interfaces
 - Periféricos
- ☐ El sistema operativo y los dispositivos de E/S
- **□** Operaciones de E/S
 - Direccionamiento de la E/S
 - Decodificador de direcciones
 - Protocolos de comunicación
- ☐ Clasificación de los dispositivos periféricos
- ☐ Casos de estudio: puertos de E/S en el IBM-PC

Elementos básicos de la E/S

☐ Dos componentes básicos:

- Interfaz (o controlador) y periférico
- ☐ Interfaz (o módulo de E/S, [Stalling-2011])
 - Sistema mixto hardware/software que permite la conexión del periférico a los buses del sistema para establecer la comunicación con el procesador y/o memoria.
 - De complejidad variable acorde a la aplicación y prestaciones del computador. Denominaciones:
 - Controlador de E/S (microcomputadores) \rightarrow Interfaz de E/S \rightarrow canal de E/S (grandes computadores)
 - Ejemplo: Controlador de teclado \rightarrow Interfaz externa RS-232C \rightarrow sist. almacenamiento altas prestaciones

□ Periférico

- Dispositivo hardware (electrónico, mecánico u óptico) que posibilita la comunicación del computador con el mundo externo (un humano u otra máquina).
 - E/S de datos: teclado, pantalla, ratón, impresora, joystick, ...
 - Almacenamiento: disco, flash, cinta, ...

☐ La conexión del sistema de E/S lleva asociado el estudio de:

- Cronogramas y mecanismos de sincronización de las señales
- Estructura y programación de los interfaces
 - Los periféricos no se conectan directamente al bus del sistema: necesitan de un interfaz
- Capas de software del Sistema Operativo orientadas al manejo de dispositivos de E/S (drivers).

Esquema general

- Reconoce y genera direcciones
- Visible al programador como un conjunto de registros
- Complejidad variable según prestaciones del computador
 - Controlador → procesador de E/S
- Permite, conjuntamente con el Sistema Operativo, una visión simplificada del periférico

- Una operación de E/S consiste en:
 - Comprobar si el dispositivo está listo (leer registro de estado)
 - Enviar parámetros de la operación (registro de control)
 - Transferir el dato (registro de datos)
 - Terminación (registro de control/estado)

Arquitectura y estructura de un interfaz de E/S

- Protocolos comunicación
- Sincronización y temporización
- Direccionamiento reg. controlador
- Decodificación de órdenes
- -Transferencias de datos
- Información de estado

- Comunicación con el procesador
- Comunicación con los dispositivos periféricos
- Almacenamiento temporal de datos para amortiguar diferencias de velocidad entre CPU y periférico
- Detección de errores. Eventos y generación de interrupciones
- Otras:
 - Conversión de longitud y formato de los datos.
 - Adaptación de señales eléctricas
 - Protocolos de comunicación

- Tipo de interfaz: Serie o paralelo
- Sincronización: síncrono o asíncrono
- Bus compartido vs punto a punto
- Intercambio de:
 - Órdenes
 - Datos
 - Estado
- etc...

Periférico

□ Características generales

- Dispositivo físico desarrollado usando una o múltiples tecnologías
 - Eléctrica, electrónica, mecánica, química, etc...
- Permite el intercambio de datos entre el computador y el exterior
- Conexión al computador a través del interfaz o bus de E/S adecuado

□ Transductor

 Convierte las señales eléctricas asociadas al dato a otra forma de energía en el caso de la salida, y viceversa, en el caso de una entrada.

□ Ejemplos:

- Salida: Impresora de impacto (agujas)
 - conversión de energías??
- Entrada: Ratón
 - conversión de energías??

Modelo de dispositivo externo

... al controlador de E/S

... señales específicas del periférico Ej: cabezal impresora

Ejemplo: Controlador de teclado y display de 7-seg

TEMA 1: Arquitectura del sistema de E/S

- ☐ La E/S en el computador
- Conexión entre dispositivos de E/S, memoria y procesador
- ☐ Elementos básicos de la E/S
 - Interfaces
 - Periféricos
- ☐ El sistema operativo y los dispositivos de E/S
- **□** Operaciones de E/S
 - Direccionamiento de la E/S
 - Decodificador de direcciones
 - Protocolos de comunicación
- ☐ Clasificación de los dispositivos periféricos
- ☐ Casos de estudio: puertos de E/S en el IBM-PC

El sistema operativo y los dispositivos de E/S

- **☐** Objetivos básicos de un sistema operativo (SO)
 - Comodidad
 - Hace que el computador sea más fácil y cómodo de utilizar
 - Eficiencia
 - Permite un uso eficiente de los recursos del computador.
- ☐ El SO juega un papel muy importante en la entrada/salida de un computador.
 - Actúa como interfaz entre el hardware y el programa que pide E/S.
 - Se encarga del conjunto particular de instrucciones y señales de control que necesita un dispositivo de E/S para que funcione correctamente.
 - El programador puede pensar simplemente en términos de lecturas y escrituras (printf(), read(), write(), ...) sin preocuparse del control a bajo nivel de los dispositivos.
- ☐ Otras áreas en las que el SO proporciona servicios
 - Creación de programas
 - Ejecución de programas
 - Acceso controlado a los ficheros
 - Acceso al sistema y gestión y control de usuarios
 - Detección de errores y respuestas
 - Contabilidad y estadísticas

Características básicas de los sistemas de E/S

☐ Sistema compartido

• El sistema de E/S de un computador es compartido por múltiples programas que utilizan el procesador

☐ Uso de interrupciones

- Los sistemas de E/S utilizan, con frecuencia, interrupciones para solicitar la atención del procesador (sincronización).
- Las interrupciones deben ser tratadas por el SO y hacen que el procesador cambie al modo supervisor o kernel.

Complejidad del bajo nivel

- El control a bajo nivel de un dispositivo de E/S es complejo
- Gestión de un conjunto de eventos concurrentes
- Los requerimientos para el correcto control son con frecuencia muy detallados
 - Cronogramas de señales de control, datos y estado

Soporte del Sistema Operativo al sistema de E/S

- 1. Proporcionar protección a los recursos de E/S compartidos
 - Garantiza que un programa de usuario sólo pueda acceder a partes de un dispositivo de E/S en las que el usuario tiene derechos.
- 2. Proporcionar abstracciones (capas de software) para acceder a los dispositivos a través de rutinas (drivers) que tratan las operaciones de bajo nivel de los dispositivos.
- 3. Manejar las interrupciones generadas por los dispositivos de E/S (de igual forma que trata las posibles excepciones generadas por los programas)
- 4. Proporcionar acceso equitativo a los recursos de E/S compartidos
- 5. Planificar los accesos con el fin de mejorar la productividad del sistema.

Comunicación entre el SO y los dispositivos de E/S

Básicamente, se distinguen los siguientes niveles de comunicación:

- ☐ Envío de órdenes a los dispositivos de E/S
 - Direccionamiento de los dispositivos de E/S
 - Como puertos de E/S o como memoria (memory-mapped I/O)
- Sincronización
 - Es necesario la sincronización entre procesador y periférico debido a las diferencias de velocidad de los mismos.
 - El dispositivo de E/S debe notificar al SO cuando ha completado una operación o ha encontrado un error.
 - Métodos de sincronización:
 - Consulta (polling)
 - Interrupciones
- ☐ Transferencia de datos entre memoria y dispositivos de E/S
 - Métodos de transferencia
 - Por programa
 - Acceso directo a memoria (DMA)
 - Procesadores especializados de E/S

TEMA 1: Arquitectura del sistema de E/S

- ☐ La E/S en el computador
- ☐ Conexión entre dispositivos de E/S, memoria y procesador
- □ Elementos básicos de la E/S
 - Interfaces
 - Periféricos
- ☐ El sistema operativo y los dispositivos de E/S
- **□** Operaciones de E/S
 - Direccionamiento de la E/S
 - Decodificador de direcciones
 - Protocolos de comunicación
- ☐ Clasificación de los dispositivos periféricos
- ☐ Casos de estudio: puertos de E/S en el IBM-PC

Operaciones de E/S

- □ Desde la programación a bajo nivel, los dispositivos de E/S se ven como un conjunto de registros a través de los que realizamos las operaciones E/S.
- **☐** Aspectos involucrados en una operación de E/S:
 - Direccionamiento
 - Cada registro del módulo de E/S o controlador/interfaz tiene asignada una dirección
 - A estos registros se les suele llamar PUERTOS (ports)
 - Para realizar una operación de lectura o escritura en un puerto es necesario enviar, previamente, la dirección del puerto al bus de direcciones del sistema.
 - La dirección nos permite seleccionar el puerto para realizar una operación
 - Tipo de operación
 - Lectura, escritura, lectura-modificación-escritura
 - El tipo de operación se indica con las señales de control del bus
 - Temporización
 - La transferencia de información se realiza de acuerdo al diagrama de tiempos o cronograma y el protocolo que fije el bus o interfaz al que se realiza la conexión.

Operaciones de E/S: Direccionamiento de puertos de E/S (I)

- **☐** Puertos mapeados como E/S (port-mapped I/O)
 - Los espacios de memoria y de E/S están separados
 - El procesador dispone de una señal de control que indica cuando se accede a uno u otro espacio. Por ejemplo, el bus de sistema del uP8086 dispone de la señal M/IO' (1: espacio de memoria; 0: espacio de E/S).
 - Tipos de instrucciones para acceder a los espacios de memoria y de E/S

Operaciones de E/S: Direccionamiento de puertos de E/S (II)

- ☐ Puertos mapeados como memoria (memory-mapped I/O)
 - No se distingue entre los espacios de memoria y de E/S
 - Los registros de los controladores de E/S se direccionan como posiciones de memoria.
 - Instrucciones de "Load y Store" para acceder tanto a memoria como a los puertos de E/S.

Operaciones de E/S:

UNIVERSIDAD DE LAS PALMAS

Mecanismo de decodificación de direcciones

☐ Señal "chip select"

- En general, todo dispositivo que se conecta al bus del sistema se le asigna una dirección y dispone de una señal de entrada (chip select, cs).
- Cuando la señal "chip select" se activa, el dispositivo se conecta al bus y se puede intercambiar información entre dispositivo y la CPU/memoria.
- La señal "chip select" la genera un decodificador de direcciones.

☐ Decodificador de direcciones: múltiples soluciones.

- Decodificación centralizada mediante decodificadores u otros dispositivos conectados al bus del sistema.
- Cada interfaz puede disponer de "jumpers" o puentes que permiten definir la dirección donde se ubican los diferentes registros internos del interfaz del dispositivo.

Decodificador centralizado

Decodificador en interfaz (local)

Operaciones de E/S:

Protocolos de comunicación en buses

□ Protocolo

- El intercambio de información se realiza de acuerdo a unas reglas que exige la activación de las diferentes señales de los buses de acuerdo a una temporización para que cada dispositivo pueda enviar y recibir información de forma comprensible.
- Funciones
 - Poner en atención al otro dispositivo
 - Identificar/direccionar componente
 - Transferir datos y solicitar retransmisión de datos erróneos
 - Finalizar una operación de transferencia

☐ Tipos de protocolos

- Síncronos
 - Se incluye una señal de reloj. Las transferencias se realizan relativas al reloj.
 - Los dispositivos tienen que adaptarse a la velocidad que fije el reloj.
- Asíncronos
 - No se incluye señal de reloj.
 - Las transferencias se realizan de acuerdo a un proceso de "handshake" que determina el momento en el que los dispositivos están preparados para el intercambio de información.
 - Puede acomodar a dispositivos de diferentes velocidades.
- Semisíncronos
 - Funcionamiento síncrono pero permite la introducción de estados de "wait" para adaptarse a pequeños retrasos en las respuestas de los dispositivos.

Ejemplo: Protocolo asíncrono

Puerto paralelo: Interfaz Centronics

RAM dinámica

Ejemplo: Protocolo síncrono

TEMA 1: Arquitectura del sistema de E/S

- ☐ La E/S en el computador
- ☐ Conexión entre dispositivos de E/S, memoria y procesador
- □ Elementos básicos de la E/S
 - Interfaces
 - Periféricos
- ☐ El sistema operativo y los dispositivos de E/S
- Operaciones de E/S
 - Direccionamiento de la E/S
 - Decodificador de direcciones
 - Protocolos de comunicación
- □ Rendimiento de la E/S
- ☐ Clasificación de los dispositivos periféricos
- ☐ Casos de estudio: puertos de E/S en el IBM-PC

Clasificación de los dispositivos de E/S

- ☐ Características útiles para la clasificación de los periféricos
 - Comportamiento
 - Entrada (teclado, ratón,...)
 - Salida (impresora, pantalla, ...)
 - Lectura y escritura o almacenamiento (discos y cintas magnéticas)
 - Compañero
 - Según quien introduzca o lea los datos en el otro extremo del periférico
 - Máquina
 - Humano
 - Frecuencia de datos
 - Frecuencia máxima a la que pueden ser transferidos los datos entre procesador y periférico o entre memoria y periférico.

Ejemplos de dispositivos de entrada/salida

Características

- Existe una gran variedad de dispositivos
- Características de funcionamiento diferentes
- Diferentes velocidades de transferencia de datos: lentos/rápidos
- Formatos y tamaños de palabra diferentes
 - Serie, paralelo, síncrono, asíncrono, codificación, ...
- Requieren de un módulo de E/S para la conexión al bus del sistema

Dispositivo	Comportamiento	Compañero	Frecuencia de datos KB/seg
Teclado	Entrada	Humano	0.01
Ratón	Entrada	Humano	0.02
Entrada de voz	Entrada	Humano	0.02
Escáner	Entrada	Humano	400
Salida de voz	Salida	Humano	0.6
Impresora de línea	Salida	Humano	1
Impresora láser	Salida	Humano	200
Pantalla gráfica	Salida	Humano	60000
Red-LAN	Entrada/salida	Máquina	500-6000
Modem	Entrada/salida	Máquina	2-8
Disco flexible	Almacenamiento	Máquina	100
Disco óptico	Almacenamiento	Máquina	1000
Cinta magnética	Almacenamiento	Máquina	2000
Disco magnético	Almacenamiento	Máquina	2000-10000

Otros ejemplos: Ancho de banda de periféricos

Device	Data rate	
Keyboard	10 bytes/sec	
Mouse	100 bytes/sec	
56K modem	7 KB/sec	
Telephone channel	8 KB/sec	
Dual ISDN lines	16 KB/sec	
Laser printer	100 KB/sec	
Scanner	400 KB/sec	
Classic Ethernet	1.25 MB/sec	
USB (Universal Serial Bus)	1.5 MB/sec	
Digital camcorder	4 MB/sec	
IDE disk	5 MB/sec	
40x CD-ROM	6 MB/sec	
Fast Ethernet	12.5 MB/sec	
ISA bus	16.7 MB/sec	
EIDE (ATA-2) disk	16.7 MB/sec	
FireWire (IEEE 1394)	50 MB/sec	
XGA Monitor	60 MB/sec	
SONET OC-12 network	78 MB/sec	
SCSI Ultra 2 disk	80 MB/sec	
Gigabit Ethernet	125 MB/sec	
Ultrium tape	320 MB/sec	
PCI bus	528 MB/sec	
Sun Gigaplane XB backplane	20 GB/sec	

Ejemplo: Ratón

- Dispositivo que permite controlar la posición de un cursor en pantalla
- ☐ Construcción sencilla
 - Una bola al desplazar el ratón se mueve y hace contacto con ruedas ubicadas en los ejes X e Y y las hace girar. Este giro se detecta y permite actualizar unos contadores de filas y columnas.
 - En una interfaz de pulsos existen cuatro tipo de pulsos: +X, -X, +Y, -Y. El ratón genera el número apropiado de pulsos por estas líneas para comunicar su movimiento.

Ejemplo: Discos magnéticos

- ☐ Características
 - Almacenamiento no volátil
 - Altas capacidades de almacenamiento, barato y relativa lentitud
 - Nivel más bajo de la jerarquía de memoria
- ☐ Tipos de discos
 - Flexibles
 - Duros
- **□** Partes fundamentales
 - Plato giratorio revestido de una superficie magnética
 - Disco duro: Plato metálico (aluminio o vidrio)
 - Disco flexible: Plástico
- ☐ Ventajas del disco duro frente al flexible
 - Puede ser mayor porque es rígido
 - Mayor densidad de almacenamiento
 - Gira más rápido (5000-7000 rpm) -> Mayor velocidad de transferencia
 - Pueden incorporar más de un plato

Discos magnéticos

Organización del disco duro

- Platos/discos
- Pistas
 - 500 2000 pistas por superficies
- Sectores
 - Mínima unidad que se puede leer (32-512 sectores por pista).
- Cilindros
 - Conjunto de pistas bajo los brazos o cabezas en un punto determinado de todas las superficies

Características de los discos

☐ Tiempo de búsqueda

Tiempo para posicionar la cabeza sobre la pista deseada

Latencia rotacional

• Tiempo necesario para que el sector deseado pase por debajo de la cabeza una vez está posicionada en la pista correcta (latencia media: tiempo para girar 0.5 vuelta)

☐ Tiempo de transferencia

Tiempo para la transferencia de un bloque de bits (un sector).

☐ Tiempo de controlador

Tiempo que añade el controlador del dispositivo para realizar la E/S.

□ Valores típicos

- Latencia rotacional
 - Velocidad de giro : 3600 7200 rpm
 - 16 8 ms por revolución o vuelta
 - Latencia rotacional media (0.5 vuelta): 8 (3600 rpm) 4 ms (7200 rpm).
- Tiempo de transferencia depende de:
 - Tamaño del sector
 - Velocidad de giro
 - Densidad de almacenamiento
 - Diámetro de los discos
 - Valores típicos: 2 12 MB/seg

Tiempo de acceso al disco

□ Ejemplo

Tamaño del sector: 512 bytes

Velocidad: 5400 rpm

Tiempo de búsqueda: 12 ms

Tiempo de transferencia: 4 MB/seg

Tiempo de controlador: 1 ms

☐ ¿Tiempo de acceso al disco?

TACC= T. búsqueda + T. latencia + T. de transferencia + T. controlador

TACC=
$$12 \text{ ms} + 0.5*60/5400 + 512/(4*1024*1024) + 1$$

TACC=
$$12 \text{ ms} + 5.5 \text{ ms} + 0.1 \text{ ms} + 1 \text{ ms} = 18.6 \text{ ms}$$

TEMA 1: Arquitectura del sistema de E/S

- ☐ La E/S en el computador
- ☐ Conexión entre dispositivos de E/S, memoria y procesador
- ☐ Elementos básicos de la E/S
 - Interfaces
 - Periféricos
- ☐ El sistema operativo y los dispositivos de E/S
- **□** Operaciones de E/S
 - Direccionamiento de la E/S
 - Decodificador de direcciones
 - Protocolos de comunicación
- □ Rendimiento de la E/S
- ☐ Clasificación de los dispositivos periféricos
- ☐ Casos de estudio: puertos de E/S en el IBM-PC

Mapa de E/S en el IBM PC/AT

I/O Map

Table 35. I/O Map

Address (hex)	Size	Description	
0000 - 000F	16 bytes	DMA controller 1	
0020 - 0021	2 bytes	Interrupt controller 1	
002E - 002F	2 bytes	Super I/O controller configuration registers	
0040 - 0043	4 bytes	Counter/Timer 1	
0048 - 004B	4 bytes	Counter/Timer 2	
0060	1 byte	Keyboard controller	
0061	1 byte	NMI, speaker control	
0064	1 byte	Keyboard controller	
0070 - 0071	2 bytes	Real time clock controller	
0080 - 008F	16 bytes	DMA page registers	
00A0 - 00A1	2 bytes	Interrupt controller 2	
00B2 - 00B3	2 bytes	APM control	
00C0 - 00DE	31 bytes	DMA controller 2	
00F0 - 00FF	16 bytes	Numeric processor	
0170 - 0177	8 bytes	Secondary IDE controller	
01F0 - 01F7	8 bytes	Primary IDE controller	
0200 - 0207	8 bytes	Audio / game port / joy stick	
0220 - 022F	16 bytes	Audio (Sound Blaster compatible)	
0228 - 022F	8 bytes	LPT3	
0278 - 027F	8 bytes	LPT2	
02E8 - 02EF	8 bytes	COM4/Video (8514A)	
02F8 - 02FF	8 bytes	COM2	
0330 - 0331	2 bytes	MPU-401 (MIDI)	
0376 - 0377	2 bytes	Secondary IDE controller	
0120 - 0127	8 bytes	Audio controller	
0274 - 0277	4 bytes	I/O read data port for ISA Plug and Play enumerator	
0378 - 037F	8 bytes	LPT1	
0388 - 038D	6 bytes	AdLib† (FM synthesizer)	
03B0 - 03BB	12 bytes	Video (monochrome)	
03C0 - 03DF	32 bytes	Video (VGA†)	
03E8 - 03EF	8 bytes	COM3	
03F0 - 03F5, 03F7	7 bytes	Diskette controller	
03F6	1 byte	Primary IDE controller	
03F8 - 03FF	8 bytes	COM1	
04D0 - 04D1	2 bytes	Edge/level triggered PIC	
0530 - 0537	8 bytes	Windows Sound System	
LPTn + 400h	8 bytes	ECP port, LPTn base address + 400h	
0CF8 - 0CFF*	8 bytes	PCI configuration registers	
0CF9**	1 byte	Turbo and reset control register	

DWORD access only

Byte access only

Puertos en el PC: Placa base y chipset

Table 4.59 Motherboard and Chipset-Based Device Port Addresses

Address (Hex)	Size	Description
0000-000F	16 bytes	Chipset – 8237 DMA 1
0020-0021	2 bytes	Chipset – 8259 interrupt controller 1
002E-002F	2 bytes	Super I/O controller configuration registers
0040-0043	4 bytes	Chipset – Counter/Timer 1
0048-004B	4 bytes	Chipset – Counter/Timer 2
0060	1 byte	Keyboard/Mouse controller byte – reset IRQ
0061	1 byte	Chipset – NMI, speaker control
0064	1 byte	Keyboard/Mouse controller, CMD/STAT byte
0070, bit 7	1 bit	Chipset – Enable NMI
0070, bits 6:0	7 bits	MC146818 – Real-time clock, address
0071	1 byte	MC146818 – Real-time clock, data
0078	1 byte	Reserved – Board configuration
0079	1 byte	Reserved – Board configuration
0080-008F	16 bytes	Chipset – DMA page registers
00A0-00A1	2 bytes	Chipset – 8259 interrupt controller 2
00B2	1 byte	APM control port
00B3	1 byte	APM status port
00C0-00DE	31 bytes	Chipset – 8237 DMA 2
00F0	1 byte	Math Coprocessor Reset Numeric Error

Puertos en el PC: Dispositivos orientados a bus

Table 4.60 Bus-Based Device Port Addresses

lable 4.00	Bus-Basea	Device Port Addr	esses
Address (He	x)	Size	Description
0168-016F		8 bytes	Fourth ATA interface
0170-0177		8 bytes	Secondary ATA interface
01E8-01EF		8 bytes	Third ATA interface
01F0-01F7		8 bytes	Primary ATA interface
0200-0207		8 bytes	Game port or joystick adapter
0210-0217		8 bytes	IBM XT expansion chassis
0220-0233		20 bytes	Creative Labs Sound Blaster 16 audio (default)
0240-0253		20 bytes	Creative Labs Sound Blaster 16 audio (alternate)
0260-0273		20 bytes	Creative Labs Sound Blaster 16 audio (alternate)
0270-0273		4 bytes	Plug and Play I/O read ports
0278-027F		8 bytes	Parallel port 2 (LPT2)
0280-0293		20 bytes	Creative Labs Sound Blaster 16 audio (alternate)
02E8-02EF		8 bytes	Serial port 4 (COM4)
02EC-02EF		4 bytes	Video, 8514, or ATI standard ports
02F8-02FF		8 bytes	Serial port 2 (COM2)
0300-0301		2 bytes	MPU-401 MIDI port (secondary)
0320-0323		4 bytes	XT (8-bit) hard disk controller
0330-0331		2 bytes	MPU-401 MIDI port (default)
0366		1 byte	Fourth ATA command port
0367, bits 6:0		7 bits	Fourth ATA status port
0370-0375		6 bytes	Secondary floppy controller
0376		1 byte	Secondary ATA command port
0377, bit 7		1 bit	Secondary floppy controller disk change
0377, bits 6:0		7 bits	Secondary ATA status port
0378-037F		8 bytes	Parallel Port 1 (LPT1)
0388-038B		4 bytes	Audio – FM synthesizer
03B0-03BB		12 bytes	Video, Mono/EGA/VGA standard ports
03BC-03BF		4 bytes	Parallel port 1 (LPT1) in some systems
03BC-03BF		4 bytes	Parallel port 3 (LPT3)
03C0-03CF		16 bytes	Video, EGA/VGA standard ports
03D0-03DF		16 bytes	Video, CGA/EGA/VGA standard ports
03E6		1 byte	Third ATA command port

Address (Hex)	Size	Description
03E7, bits 6:0	7 bits	Third ATA status port
03E8-03EF	8 bytes	Serial port 3 (COM3)
03F0-03F5	6 bytes	Primary floppy controller
03F6	1 byte	Primary ATA command port
03F7, bit 7	1 bit	Primary floppy controller disk change
03F7, bits 6:0	7 bits	Primary ATA status port
03F8-03FF	8 bytes	Serial port 1 (COM1)
04D0-04D1	2 bytes	Edge/level triggered PCI interrupt controller
0530-0537	8 bytes	Windows sound system (default)
0604-060B	8 bytes	Windows sound system (alternate)
0678-067F	8 bytes	LPT2 in ECP mode
0778-077F	8 bytes	LPT1 in ECP mode
OCF8-OCFB	4 bytes	PCI configuration address registers
OCF9	1 byte	Turbo and reset control register
OCFC-OCFF	4 bytes	PCI configuration data registers
FF00-FF07	8 bytes	ATA bus master registers
FF80-FF9F	32 bytes	Universal serial bus
FFA0-FFA7	8 bytes	Primary bus master ATA registers
FFA8-FFAF	8 bytes	Secondary bus master ATA registers

FIN

¿Preguntas?

Puerto paralelo del IBM-PC Lectura voluntaria!!!

☐ Índice de la presentación

- Introducción
- Conectores y señales
- Arquitectura del interfaz
- Puertos bidireccionales
- El puerto paralelo como entrada de 8 bits de datos
- Modos del puerto paralelo en la BIOS

Introducción al puerto paralelo del IBM-PC

☐ Puerto paralelo: Baja velocidad

- Conjuntamente con los puertos serie constituyen las conexiones de baja velocidad del PC.
- Actualmente estos puertos (legacy ports) han sido sustituidos por puertos con velocidades más altas.
 - USB y FireWire
- Las conexiones paralelas tienen problemas de "skew" y de ciertas inestabilidades en las señales que dificultan su uso cuando se aumenta la frecuencia de transmisión y las distancias.

☐ Utilizado para comunicaciones paralelas de entrada/salida

- Impresoras
 - Originalmente, hasta 3 puertos: LPT1, LPT2, LPT3
 - Actualmente 1 (o ninguno)
- Y otros dispositivos específicos
 - Aplicaciones de control
 - Programadores
 - Dispositivos externos específicos

Modos de funcionamiento: Norma IEEE 1284 (primera versión, 1994)

- **☐** Modo estándar SPP (o Centronics)
 - Usa el hardware estándar disponible en el puerto paralelo original
 - Envío de información en una sola dirección
 - Velocidad: 50-150 KB/seg
 - El modo estándar también es conocido como el modo "Centronics". Sólo puede enviar información en una dirección.
- **☐** Modo nibble o byte
 - Permite la lectura o entrada de datos
 - Nibble: entradas de 4 bits
 - Byte: entrada de 8 bits (modo bidireccional)
- ☐ Modos Enhanced Parallel Port (EPP) y Extended Capabilities Port (ECP)
 - Requieren hardware adicional encargado de implementar el "handshake"
 - Sólo es necesario las instrucciones de E/S. El protocolo es implementado en hardware
 - El ECP puede usar canales DMA y buffers tipo FIFO
 - Más rápidos : 0,5-2,7 MB/seg
 - Mantienen la compatibilidad hacia atrás

Hardware: Conectores

☐ Tres tipos de conectores de acuerdo a la norma IEEE 1284

- 1284 Type A: conector D-Type 25 pines ubicado en el conector del computador
- 1284 Type B: Conector Centronics de 36 pines ubicado en la impresora
- 1284 Type C: Similar al tipo B pero más pequeño, mejores propiedades eléctricas y más fácil de ensamblar

Hardware: Señales del conector D-Type 25

Señales conector DB-25

Pin (DB25)	Nombre Señal	Dirección	Registro-bit		Negada por hardware
1	nstrobe	out	CO'	0	SI
2	Data0	In/Out	D0	1	NO
3	Data1	In/Out	D1	1	NO
4	Data2	In/Out	D2	1	NO
5	Data3	In/Out	D3	1	NO
6	Data4	In/Out	D4	1	NO
7	Data5	In/Out	D5	1	NO
8	Data6	In/Out	D6	1	NO
9	Data7	In/Out	D7	1	NO
10	nAck	In	S6	1	NO
11	Busy	In	S7'	0	SI
12	Paper-out	In	S5	1	NO
13	Select	In	S4	1	NO
14	LineFeed	Out	C1'	0	SI
15	nerror	In	S3	1	NO
16	nInitialize	Out	C2	1	NO
17	nSelectPrinter	Out	C3'	0	SI
18-25	Ground				

Dn, Cn y Sn: Bit n de los registros de Datos, Control y Estado nseñal: la n delante de la señal significa que es activa a nivel bajo

Conector DB-25

Direcciones de puertos

- ☐ Cada puerto LPT tiene asignadas 3 direcciones de entrada/salida que se corresponden con registros internos del interfaz:
 - Reg. DATOS (dirección base)
 - Reg. ESTADO (dirección base +1)
 - Reg. CONTROL (dirección base +2)

Address	Notes:
3BCh - 3BFh	Used for Parallel Ports which were incorporated in to Video Cards and now, commonly an option for Ports controlled by BIOS Doesn't support ECP addresses.
378h - 37Fh	Usual Address For LPT 1
278h - 27Fh	Usual Address For LPT 2

BIOS y puertos LPTn

- ☐ La BIOS, tras el arranque deposita la dirección asignada en memoria
- □ La BIOS en el arranque inicia una exploración secuencial de puertos paralelos en orden: 3BCh → 378h → 278h
 - Según los encuentra los va asignando a LPT1, LPTn
 - Guarda esa asignación en memoria a partir de la dirección 0000:0408

Start Address	Function
0000:0408	LPT1's Base Address
0000:040A	LPT2's Base Address
0000:040C	LPT3's Base Address
0000:040E	LPT4's Base Address (Note 1)

Registros internos del interfaz paralelo: Modo SPP

REGISTRO DE DATOS

- □ 8 bits (salida)
- **☐** Posibles direcciones
 - 3BCh --- 378h --- 278h

Offset	Name	Read/Write	Bit No.	Properties
Base + 0	Data Port	Write (Note-1)	Bit 7	Data 7 (Pin 9)
			Bit 6	Data 6 (Pin 8)
			Bit 5	Data 5 (Pin 7)
			Bit 4	Data 4 (Pin 6)
			Bit 3	Data 3 (Pin 5)
			Bit 2	Data 2 (Pin 4)
			Bit 1	Data 1 (Pin 3)
			Bit 0	Data 0 (Pin 2)

Registros internos del interfaz paralelo: Modo SPP

REGISTRO DE ESTADO

- ☐ 5 bits (entrada)
- **☐** Posibles direcciones
 - 3BDh --- 379h --- 279h

Base + 1	Status Port	Read Only	Bit 7	Busy
			Bit 6	Ack
			Bit 5	Paper Out
			Bit 4	Select In
			Bit 3	Error
			Bit 2	IRQ (Not)
			Bit 1	Reserved
			Bit 0	Reserved

Registros internos del interfaz paralelo: Modo SPP

REGISTRO DE CONTROL

- ☐ 4 señales (salida)
- **☐** Posibles direcciones
 - 3BEh --- 37Ah --- 27Ah

Base + 2	Control	Read/Write	Bit 7	Unused
	Port		Bit 6	Unused
			Bit 5	Enable bi-directional Port
			Bit 4	Enable IRQ Via Ack Line
			Bit 3	Select Printer
			Bit 2	Initialize Printer (Reset)
			Bit 1	Auto Linefeed
			Bit 0	Strobe

Centronics:

UNIVERSIDAD DE LAS PALMA DE GRAN CANARIA

Envío de datos a la impresora

- Estándar para enviar datos a la impresora usado por la mayoría de las impresoras de interfaz paralelo.
- Protocolo implementado por software a través del interfaz
- Pasos para imprimir un byte:
 - 1 Obtener la dirección base
 - 2 Seleccionar la impresora (línea SLCT IN#)
 - 2 Leer el estado. Mientras esté ocupada no actuar
 - ✓ Salvo que alguna de las otras líneas revele un estado erróneo o inactivo
 - 3 Enviar el byte de datos
 - 4 Activar/desactivar STROBE#
 - 5 Esperar reconocimiento (ACKNLG#)

Puertos bidireccionales

IOR Base

Bit 5 del registro de control: habilita o deshabilita la función bidireccional del puerto paralelo.

Bit $5 = 1 \rightarrow$ pines *Data0-7* en alta impedancia \rightarrow se pueden leer datos de entrada

Standard Parallel Port Bi-Directional Operation

ISA D0 Q0 ISA D1 Q1 ISA D2 Q2Data2 (4) ISA D3 ISA D4 Data4 (6) ISA D5 Data5 (7) ISA D6 Data6 (8) ISA D7 Data7 (9) Control Bit 5 OE IOW Base CLK 74LS374 TY1 1AI 1Y2 1A2 1Y3 1A3 1Y4 1A4 2A.I 2Y2 2A2

2Y3

2Y4

G 74LS244 2A3

2A4

Periféricos e Interfaces

El puerto paralelo como entrada de 8 bits

- ☐ Si las líneas de datos (Data7-0) no son bidireccionales aún tenemos otra forma de realizar la entrada de 8 bits
 - Uso de los puertos de estado (4 bits) y control (4 bits, open collector)
 - Enviar previamente al puerto de control el valor "xxxx0100" para que la lectura sea correcta.

```
outportb (CONTROL, inportb (CONTROL) & 0xF0 | 0x04);
a = (inportb(STATUS) & 0xF0); /* Read MSnibble */
a = a | (inportb(CONTROL) & 0x0F); /* Read LSnibble */
a = a ^ 0x84; /* Toggle Bit 2 & 7 */
                                                  11 Busv ←
                                                   10 Ack ←
                                              12 Paper Out ◆
                                                 13 Select ←
                                                                                                   8 Inputs
                                           17 Select Printer
                                                                                      ◆ D3
                                                    16 Init •
                                                                                      ◆ D2
                                           14 Auto Linefeed
                                                                                       ◆D1
                                                  1 Strobe •
                                                                                      D0
                                                                74LS05 Hex Inverter
                                                                   Open Collector
```

Selección del modo de funcionamiento del puerto paralelo y la BIOS

- ☐ Hoy en día, la mayoría de los puertos paralelos del PC son multimodos
- ☐ Puertos configurables por software a través de la BIOS
- **☐** Modos típicos o frecuentes en las BIOS
 - Modo impresora SPP (Centronics), estándar, por defecto, normal, ...
 - Bit 5 del puerto de control sin efecto
 - Modo Estándar & bidireccional. Compatible SPP
 - Bit 5 del puerto de controla la bidireccionalidad del puerto
 - Modo EPP (Enhanced Parallel Port). Compatible SPP
 - Se añaden registros (EPP) al interfaz. Un hardware específico se encarga del protocolo.
 - Modo ECP (Extended Capabilities Port). Mantiene compatibilidad con los anteriores
 - Registro de control ECR para especificar el modo de trabajo, añade hardware específico, capacidades de DMA, buffers FIFO, soporta direccionamiento de dispositivos.

Modo EPP: Enhanced Parallel Port

Address	Port Name	Read/Write
Base + 0	Data Port (SPP)	Write
Base + 1	Status Port (SPP)	Read
Base + 2	Control Port (SPP)	Write
Base + 3	Address Port (EPP)	Read/Write
Base + 4	Data Port (EPP)	Read/Write
Base + 5	Undefined (16/32bit Transfers)	-
Base + 6	Undefined (32bit Transfers)	-
Base + 7	Undefined (32bit Transfers)	-

Table 2 EPP Registers

Modo ECP: Extended Capabilities Port

Address	Port Name	Read/Write
Base + 0	Data Port (SPP)	Write
	ECP Address FIFO (ECP MODE)	Read/Write
Base + 1	Status Port (All Modes)	Read/Write
Base + 2	Control Port (All Modes)	Read/Write
Base + 400h	Data FIFO (Parallel Port FIFO Mode)	Read/Write
	Data FIFO (ECP Mode)	Read/Write
	Test FIFO (Test Mode)	Read/Write
	Configuration Register A (Configuration Mode)	Read/Write
Base + 401h	Configuration Register B (Configuration Mode)	Read/Write
Base + 402h	Extended Control Register (Used by all modes)	Read/Write

Table 2: ECP Registers

Bit	Function		
7:5	Selects Current Mode of Operation		
	000	Standard Mode	
	001	Byte Mode	
	010	Parallel Port FIFO Mode	
	011	ECP FIFO Mode	
	100 EPP Mode		
	101 Reserved		
	110	FIFO Test Mode	
	111 Configuration Mode		
4	ECP Ir	nterrupt Bit	
3	DMA Enable Bit		
2	ECP Service Bit		
1	FIFO Full		
0	FIFO E	Empty	

Table 3 ECR - Extended Control Register