Exp.no 6 **Title:**Load and implement the Face Detection method in OpenCV using python

Aim:

To design and train an object detection model using the YOLOv8 (You Only Look Once version 8) architecture on a public or custom dataset, and evaluate its performance.

Procedure:

- 1. Install Required Libraries:
 - Install ultralytics which provides the YOLOv8 model.
- 2. Import Required Libraries:
 - Import functions from the ultralytics package.
- 3. Load a Pretrained Model:
 - Load a YOLOv8 pretrained model (yolov8n.pt, nano version for lightweight training).
- 4. Prepare the Dataset:
 - Use a dataset like coco128.yam1 (tiny version of COCO dataset) or a custom dataset in YOLO format.
- 5. Train the Model:
 - Set hyperparameters such as batch size, learning rate, epochs, image size.
 - Train the model using the dataset.

- 6. Validate the Model:
 - Perform validation to check mAP, precision, recall, etc.
- 7. Predict Using the Model:
 - Test the model by providing new images or a folder of images.
- 8. Save and Visualize Results:
 - Save prediction outputs and visualize bounding boxes.

Code:

```
# Step 1: Install the ultralytics library
!pip install ultralytics
# Step 2: Import the YOLO class from ultralytics
from ultralytics import YOLO
# Step 3: Load a pretrained YOLOv8 model (Nano version - lightweight
and faster)
model = Y0L0('yolov8n.pt')
# Step 4: Train the model on the dataset
# coco128.yaml is a sample dataset configuration (can replace with
your custom YAML file)
model.train(
    data='coco128.yaml', # Dataset YAML file
```

```
epochs=10, # Number of epochs
              # Image size (input resolution)
   imgsz=640,
                     # Batch size
   batch=16,
   workers=4,
               # Number of data loading workers
   device=0 # 0 for GPU, 'cpu' for CPU
)
# Step 5: Validate the model
metrics = model.val() # Evaluates the model on the validation set
# Step 6: Predict using the trained model
results = model.predict(
   source='path_to_your_test_images/', # Provide folder path or
image path
   save=True, # Save predictions
   imgsz=640
               # Image size
)
```

Expected Output:

Result:

• This model was successfully trained for object detection. The trained model was able to predict and localize objects with high accuracy on new images