Universidade da Beira Interior

Faculdade de Engenharia — Departamento de Informática

Laboratório Final

UC Redes e Serviços Internet

versão 1

13 de Maio de 2023

1 Introdução

Este trabalho é o exercício final da disciplina de Redes e Serviços a realizar em grupo no fim do semestre. Use a experiência laboratorial adquirida e aplique-a para resolver as tarefas a realizar na secção 6.

2 Infraestruturas

O Laboratório Final é composto pelas infraestruturas seguintes conforme indicado na rede descrita na Fig. 1.

- **gigapix** Ponto de Troca de Tráfego (Internet Exchange Point) português. Este assegura a qualidade das interligações das redes em Portugal e evita recorrer a recursos internacionais para trânsito de pacotes IP com origem e destino em Portugal. Está representado na rede pelos nós de Lisboa e do Porto (gigapix-lisboa e gigapix-porto) conectados com fibra óptica gigabit e que também asseguram a interligação internacional.
- **isp-x** ISP (Internet Service Provider) com três nós em Lisboa, Porto e Braga contratado pela empresa abc para disponibilizar acesso à rede.
- **isp-y** ISP (Internet Service Provider) apenas com um nó em Lisboa disponibiliza serviços de acesso para clientes residenciais. Aqui representados por casa/pc1-casa.
- **rossiya/isp-z** Ponto de acesso nacional russo e ISP (Internet Service Provider) através dos nós rossiya e isp-z disponibiliza acesso para clientes locais representados por dom-x/kompyuter-x.
- **abc** Empresa abc que utiliza os serviços de rede disponibilizados pelo ISP isp-x tem escritórios em Braga e Lisboa.

- **google** Serviços Google de email, DNS e de pesquisa disponíveis.
- **INTERNET** Representa a Internet na topologia de modo a interligar as várias infraestruturas e serviços em frame-relay.

3 Avaliação

Da avaliação do trabalho constam 18 tarefas a executar e 4 tarefas adicionais que possibilitam obter pontos extra. O trabalho é realizado em grupo de três alunos, mas é esperado que cada aluno possa explicar qualquer uma das tarefas realizadas com o detalhe adequado. A pontuação obtida em cada tarefa depende do que foi efetivamente conseguido e implementado e da apresentação. Apesar do trabalho ser realizado em grupo, os elementos do grupo podem ter notas diferentes. A classificação individual será calculada com base na soma da pontuação das tarefas realizadas, na avaliação da destreza no trabalho realizado e no grau de certeza das respostas que der às perguntas que forem colocadas individualmente durante a avaliação. Esta tem a duração média de 30 minutos e é efetuada num computador do Laboratório onde estará o ficheiro submetido pelo grupo. Quem não se submeter à avaliação terá forçosamente uma nota de zero valores na parte prática. Esteja preparado para no final da apresentação, propor uma nota de autoavaliação ao docente.

4 Submissão e prazos

O grupo deve submeter no Moodle até à data e hora indicada (4ªf 31 de Maio até às 23h59m) o ficheiro do packet tracer e o relatório. As datas de avaliação do trabalho serão no turno onde o maior número de alunos estiver inscrito. As avaliações ocorrem na 5ªfeira dia 1 de Junho às 9h, 14h, 16h e 18h e 6ªf dia 2 de Junho às 9h, 11h, 14h, 16h e 18h. Na semana seguinte as avaliações decorrem na 4ªf dia 7 de Junho e 6ªf dia 9 de Junho nos mesmos horários com exceção do horário das 11h na 4ªf que será a frequência.

5 Informações adicionais

Implementar no Packet Tracer a rede indicada de acordo com a Fig. 1 assegurando que as ligações são efetuadas de maneira correta. Verifique se os equipamentos são adequados e se possuem os interfaces necessários. Verificar depois também as interligações utilizando os protocolos adequados.

Cabos — Usar a cablagem de acordo com a especificação do Packet Tracer e que consta na Fig. 1. A rede é constituída por ligações em cabo série, cabo de fibra ótica, cabo de cobre direto e cruzado e também cabo série.

Equipamentos — Recomenda-se a utilização de equipamentos de rede do tipo empty e adicionar os interfaces que precisar. Em alternativa pode usar os equipamentos pré definidos que já contenham os

Figura 1: Esquema da topologia da rede a implementar.

todos os interfaces necessários, ou então, usar equipamentos pré-definidos e adicionar os interfaces que precisar.

Empresa abc — A Empresa abc tem instalações em Braga e Lisboa, ligadas à rede através de um contrato com o Internet Service Provider A (isp-x). A rede da empresa abc tem 3 VLANs (duas estão referenciadas na Fig. 1, a VLAN 1 (default) e as VLAN 10 e 11 (exibidas). O servidor de DHCP dhcp-abc em Lisboa é usado para configurar todos os PC da empresa e a empresa utiliza o servidor de DNS do seu ISP, o isp-x regista os nomes dos servidores públicos da empresa.

Email — Um computador em cada rede deve ter configurado uma conta de correio eletrónico no gmail.com e ou no mail.abc.pt e um cliente com POP e SMTP no computador indicado de modo a enviar e receber emails de e para os dois servidores.

WWW — Os servidores Web devem estar acessíveis de qualquer pc.

DNS — O nomes dos servidores públicos da empresa abc devem estar registados no DNS do ISP isp-x o servidor dns-isp-x. A servidor web público ligado ao ISP isp-z regista o nome no servidor de DNS dns-z. Cada servidor de DNS local resolve os nomes aí registados para o respetivo endereço IP, mas o servidor de DNS (8.8.8.8) também sabe consegue resolver. Os servidores na tabela Tab. **??** têm endereços privados estáticos que devem ser registados nos servidores de DNS caso seja necessário. O computador do ISP isp-y-lisboa deve usar o DNS 8.8.8.8.

DHCP — O servidor dhcp-abc é utilizado na empresa abc para configurar todos os pc's. Os routers isp-z e casa também possuem uma um serviço de DHCP para configurarem os computadores das suas redes.

INTERNET — A interligação entre as várias redes é efetuada por dispositivo "Cloud"que representa a interligação à Internet de várias redes através de circuitos DLCI em Frame-Relay conforme assinalados na tabela Tab. 1.

Tabela 1: circuitos DLCI

gigapix-porto — google gigapix-porto — rossiya gigapix-lisboa — google gigapix-lisboa — rossiya rossiya — gigapix-lisboa rossiya — google

Routing — O protocolo de routing entre os dois routers gigapix-lisboa e gigapix-porto é o OSPF e nos restantes deve usar RIP v2. Assegure que implementa corretamente a redistribuição das redes OSPF sobre RIP e vice-versa, de modo a que os routers consigam fazer convergir as suas tabelas de routing. **Endereçamento** — Faça a gestão dos endereços IPv4 de forma adequada, utilizando a informação das tabelas e também a sua perceção sobre qual será a solução de endereçamento quando esta não esteja indicada explicitamente. Na tabela Tab. 2 estão descriminadas as redes de interligação de cada e a rede. Onde estiver assinalado uma rede com (*) deve criar uma sub rede para cada ligação (subnetting). Por exemplo no caso do endereço 10.0.0.0/24, ele representa uma rede IP com 256 endereços

disponíveis dos quais só 254 podem ser atribuídos. Uma sub-rede possível seria 10.0.0.0/26 com endereços válidos de 10.0.0.1 a 10.0.0.62. Isto significa que vai ter que gerir o espaço de endereços disponível para atribuir diferentes redes IP a cada uma das ligações indicadas. No caso de estar assinalado (**) significa que pode atribuir a rede que achar mais adequada.

- Ligações entre routers ver Tab. 2.
- Redes e Vlans ver Tab. 3.
- Servidores com endereços públicos ver Tab. 4.
- Servidores com endereços privados ver Tab. 5.

Tabela 2: Endereçamento entre routers

Router	Ligado a	Rede
gigapix-lisboa gigapix-lisboa gigapix-lisboa gigapix-lisboa	gigapix-porto isp-x-lisboa INTERNET isp-y-lisboa	10.0.0.0/24 (*)
gigapix-porto gigapix-porto gigapix-porto gigapix-porto	isp-x-porto gigapix-lisboa isp-x-braga INTERNET	10.0.0.0/24 (*)
google	INTERNET	(**)
isp-y-lisboa isp-y-lisboa	gigapix-lisboa casa	10.0.100.0/24 (*)
rossiya rossiya	INTERNET isp-z	178.210.92.0/30 178.210.93.0/24
isp-z	rossiya	178.210.91.0/30
isp-x-lisboa isp-x-lisboa isp-x-lisboa	isp-x-porto r1-abc gigapix-lisboa	10.0.200.0/24 (*)
isp-x-porto isp-x-porto isp-x-porto	isp-x-lisboa isp-x-braga gigapix-porto	10.0.200.0/24 (*)
isp-x-braga isp-x-braga isp-x-braga	isp-x-porto r2-abc gigapix-porto	10.0.200.0/24 (*)
r2-abc r1-abc	isp-x-braga isp-x-lisboa	10.0.50.0/30 (*)

Tabela 3: Redes e Vlans

Rede/Vlan	ligação	endereço
Rede da Casa	ligada router casa)	192.168.0.0/24
Rede da Dom-x	ligada router dom-x)	192.168.0.0/24
VLAN 1	ligada router r1-abc)	10.50.1.0/24
VLAN 10	ligada router r1-abc)	10.50.10.0/24
VLAN 11	ligada router r1-abc)	10.50.11.0/24
VLAN 1	ligado router r2-abc)	10.51.1.0/24
VLAN 10	ligada router r1-abc)	110.51.10.0/24
VLAN 11	ligada ao router r1-abc)	10.51.11.0/24

Tabela 4: Lista de servidores com endereços públicos

Servidor	Identificador	Endereço
Servidor DNS	8.8.8.8	8.8.8.8
Servidor Email	gmail.com	142.250.200.133
Servidor Web	www.google.com	142.250.201.68
Servidor Email	mail.abc.pt	193.140.2.100
Servidor Web	www.abc.pt	193.140.2.200
Servidor Web	www.kompaniya.ru	62.122.170.171

6 Tarefas

Lista das tarefas a executar. Inclui 18 obrigatórias e 4 opcionais. A soma das cotações individuais nunca pode ultrapassar os 200 pontos.

Lista da tarefas — Total de pontos são 200.

- 1. Adicionar todos os equipamentos à topologia da Fig. 1 [15].
- 2. Ligar todos os equipamentos entre si utilizando a cablagem indicada na Fig. 1 [20].
- 3. Configurar os endereços de forma eficiente e seguindo as indicações dadas, apresentando os respetivos mapas de endereços [20].
- 4. Configurar os endereços IP fixos em todos os servidores [10].
- 5. Configurar as rotas OSPF entre os routers GigaPix [20].

Tabela 5: Lista de servidores com endereços privados

Servidor	Identificador	Endereço
Servidor DHCP	dhcp-abc	10.0.50.254
Servidor DNS	dns-isp-x	10.200.8.8
Servidor DNS	dns-z	178.210.90.1

- 6. Configurar os circuitos Frame-Relay na Internet Cloud [10].
- 7. Configurar as VLANs nos vários switches [5].
- 8. Configurar os servidores de DNS para funcionarem de forma hierárquica com duas camadas (sendo a de topo constituída pelo servidor DNS 8.8.8.8) [15].
- 9. Configurar os servidores Web para HTTP, cada um dos servidores com uma página index.html distinta [5].
- 10. Configure o servidor de Web www.abc.pt para responder também a HTTPS [5].
- 11. Defina Gateway of Last Resort no router gigapix-porto [10].
- 12. Configure os servidores de email [10].
- 13. Configurar contas de correio em pelo menos um pc de cada rede [10].
- 14. Nos locais com um Access Point e um equipamento portátil com acesso Wi-Fi, configure uma senha WEP para permitir acesso através da rede Wi-Fi [10].
- 15. Configurar a ligação por Cabo de Consola para gerir o router isp-x-lisboa [5].
- 16. Configurar as passwords de login e de acesso aos routers no gigapix-porto e gigapix-lisboa como "gpix" e "xipg" [5].
- 17. Configurar a partilha de rotas entre RIP e OSPF [15].
- 18. Escreva um pequeno relatório no formato PDF, a submeter com o ficheiro do Packet Tracer, incluindo as configurações efetuadas via CLI em cada router e nos switches, bem como as tabelas de endereços. [10]

Tarefas adicionais — Pontos bónus são mais 40 pontos a adicionar se realizar estas tarefas corretamente sendo a pontuação máxima mantida a 200 pontos.

- 1. Implementar NAT no router rossiya (pode usar a gama de endereços públicos 195.0.0.0/26 para este fim) [10].
- 2. Implementar listas de acesso (ACL) no isp-x que impeçam o acesso ao servidor www.kompaniya.ru a partir dos computadores da empresa abc [10].
- 3. Implementar comunicações com ipv6 para clientes do isp-y-lisboa [15].
- 4. Configurar o switch s1-x e o router isp-x com endereços IP de modo a permitir acesso remoto [5].

Referências

Learning Network CISCO basic commands

Cisco IOS Cheat Sheet