Equações Diferenciais Ordinárias

Pedro H A Konzen

9 de março de 2020

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados temas introdutórios sobre Equações Diferenciais Ordinárias (EDOs). Como ferramenta computacional de apoio, exemplos de aplicação de códigos Python são apresentados, mais especificamente, com suporte da biblioteca de matemática simbólica SymPy.

Agradeço aos(às) estudantes e colegas que assiduamente ou esporadicamente contribuem com correções, sugestões e críticas em prol do desenvolvimento deste material didático.

Pedro H A Konzen

Sumário

Capa Licença Prefácio Sumário		i				
		ii iii iv				
			1	1.1	rodução Equações diferenciais	1 1 5
			R	Respostas dos Exercícios		
\mathbf{R}	Referências Bibliográficas					

Capítulo 1

Introdução

1.1 Equações diferenciais

Equação Diferencial (ED) é o nome dado a qualquer equação que tenha pelo menos um termo envolvendo a diferenciação (derivação) de uma incógnita.

Exemplo 1.1.1. São exemplos de equações diferenciais:

a) Modelo de queda de um corpo com resistência do ar.

$$\frac{dv}{dt} = g - \frac{k}{m}v^2. (1.1)$$

Nesta equação, temos a velocidade v=v(t) (v função de t) como **incógnita**. O tempo é descrito por t como uma variável independente. As demais letras correspondem a parâmetros dados (constantes). Mais especificamente, g corresponde à gravidade, k à resistência do ar e m à massa do corpo.

b) Equação de Verhulst (Equação Logística)

$$\frac{dy}{dt} = r\left(1 - \frac{y}{K}\right)y. \tag{1.2}$$

Esta equação é um clássico modelo de crescimento populacional. Aqui, y = y(t) é o tamanho da população (incógnita) no tempo t (variável independente). As demais letras correspondem a parâmetros dados.

c) Equação de Schrödinger.

$$-\frac{\hbar}{2m}\frac{d^2\psi}{dx^2} + \frac{kx^2}{2}\psi = E\psi. \tag{1.3}$$

Esta equação modela a função de onda ψ (incógnita) de uma partícula em função de sua posição x (modelo unidimensional). Neste modelo quântico, \hbar , m, k e E são parâmetros.

d) Modelagem da corrente em um circuito elétrico.

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}I = E. \tag{1.4}$$

Aqui, a incógnita é função corrente I em função do tempo. O modelo refere-se a um circuito elétrico com os seguintes parâmetros: L indutância, R resistência, C capacitância e E voltagem do gerador.

e) Equação do calor.

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}. (1.5)$$

Esta equação modela a distribuição de temperatura (incógnita) u=u(t,x) como função do tempo e da posição (variáveis independentes). O parâmetro é o coeficiente de difusão térmica α .

Equação Diferencial Ordinária (EDO) é aquela em a incógnita é função apenas de uma variável independente. Desta forma, todas as derivadas que aparecem na equação são ordinárias. No Exemplo 1.1.1, as equações diferenciais a), b), c) e d) são ordinárias. A equação e) não é ordinária, pois a incógnita u = u(t,x) é função das varáveis independentes t e x, portanto, os termos diferenciais são parciais (derivadas parciais). Equações como esta são chamadas de equações diferenciais parciais.

Toda EDO pode ser escrita na seguinte forma geral

$$F(t, y, y', y'', \dots, y^{(n)}) = 0.$$
 (1.6)

Aqui, F é uma função envolvendo a variável independente t e a variável dependente y=y(t) (incógnita, função de t) e pelo menos uma derivada ordinária de y em relação a t^1 . O índice n corresponde a **ordem** da derivada

¹Lembre-se que $y' = \frac{dy}{dt}$, $y'' = \frac{d^2y}{dt^2}$ e assim por diante.

de maior ordem que aparece na equação, sendo $n \ge 1$. Quando F é função linear das variáveis $y, y', \dots, y^{(n)}$, então a EDO é dita ser **linear**, caso contrário, é **não linear**. Quando F não dependente explicitamente de t, a equação é dita ser **autônoma**.

Exemplo 1.1.2. Vejamos os seguintes casos:

a) A equação

$$y'' + y = 0 \tag{1.7}$$

é uma EDO de ordem 2, linear e autônoma. Aqui, temos F(y, y'') = y'' + y.

- b) As equações (1.1) e (1.2) são EDOs de **primeira ordem** (de ordem 1), autônomas e não lineares.
- c) A Equação de Schrödinger (1.3) é uma EDO de **segunda ordem**, linear e não autônoma.

Uma solução de uma EDO (1.6) é uma função y = y(t) que satisfaça a equação para todos os valores de t^2 .

Exemplo 1.1.3. As funções $y_1(t) = e^t$ e $y_2(t) = e^{-t}$ são soluções da equação diferencial ordinária

$$y'' - y = 0. (1.8)$$

De fato, tomando $y = y_1(t) = e^t$, temos $y'' = e^t$ e

$$y'' - y = e^t - e^t = 0 (1.9)$$

para todo t. Também, tomando $y = y_2(t) = e^{-t}$, temos $y'' = e^{-t}$ e

$$y'' - y = e^{-t} - e^{-t} = 0, \quad \forall t.$$
 (1.10)

Exercícios resolvidos

ER 1.1.1. Determine a ordem e diga se a seguinte EDO é linear ou autônoma. Justifique suas respostas.

$$t^{2}\frac{dy}{dt} + (1+y^{2})\frac{d^{2}y}{dt} + y = e^{t}.$$
 (1.11)

 $^{^2{\}rm Em}$ várias situações o domínio de interesse de t é também informado junto com a equação. Veremos isso mais adiante.

Solução.

a) Ordem 2.

A equação tem ordem 2, pois o termo diferencial de maior ordem é uma derivada de segunda ordem.

b) EDO é não linear.

A equação tem um termo $y^2 \frac{d^2y}{dt}$, o qual não é linear em y.

c) EDO não é autônoma.

A equação não é autônoma, pois a variável independente t aparece explicitamente. A saber, no primeiro termo do lado esquerdo e no termo fonte da equação.

 \Diamond

 ${\bf ER}\,$ 1.1.2. Determine os valores de r para os quais $y=e^{rt}$ é solução da equação

$$y'' - y = 0. (1.12)$$

ER 1.1.3. Para que $y=e^{rt}$ seja solução da equação dada, devemos ter

$$y'' - y = 0 \Rightarrow (e^{rt})'' - e^{rt} = 0$$
 (1.13)

$$\Rightarrow r^2 e^{rt} - e^{rt} = 0 \tag{1.14}$$

$$\Rightarrow (r^2 - 1) \cdot \underbrace{e^{rt}}_{>0} = 0 \tag{1.15}$$

$$\Rightarrow r^2 - 1 = 0 \tag{1.16}$$

$$\Rightarrow r = \pm 1. \tag{1.17}$$

Exercícios

E 1.1.1. Determine quais das seguintes são EDOs. Justifique sua resposta.

a) y = y''.

b)
$$\frac{\partial y}{\partial t} = \frac{1}{2} \frac{\partial y}{\partial x}$$
.

c)
$$y \cdot \frac{d^5y}{dx^5} = x \ln(y) + \frac{d}{dx}e^{x^2}$$
.

d) $u_{tt} = \alpha^2 u_{xx}$, sendo α um parâmetro.

E 1.1.2. Determine a ordem das seguintes EDOs. Justifique sua resposta.

a)
$$t^2y' = e^t$$
.

$$b) \frac{d^2y}{dt^2} = \frac{d^3y}{dt^3}.$$

c)
$$y \cdot y'' - 3y'' = y - y'$$
.

d)
$$\left(\frac{d^2y}{dt^2}\right)^2 = e^t$$
.

E 1.1.3. Determine quais das equações do Exercício 1.1.2 não são autônomas. Justifique sua resposta.

E 1.1.4. Determine quais das equações do Exercício 1.1.2 são lineares. Justifique sua resposta.

E 1.1.5. Para cada equação a seguir, calcule os valores de r para os quais $y = e^{rt}$ seja solução da equação.

a)
$$y'' + y' - 6y = 0$$
.

b)
$$y''' = 3y''$$
.

 ${\bf E}$ 1.1.6. Calcule os valores de α para os quais $y=t^{\alpha},\,t>0,$ seja solução da equação

$$t^2y'' = 2y. (1.18)$$

1.2 Problemas de valores iniciais e de valores de contorno

Uma Equação Diferencial Ordinária (EDO) pode ter infinitas soluções.

Exemplo 1.2.1. A EDO

$$y' = 1 \tag{1.19}$$

tem soluções

$$\int y' dt = \int 1 \cdot dt \Rightarrow y = t + c, \tag{1.20}$$

onde c é uma constante indeterminada.

Afim de fixar uma solução única para tais EDOs, comumente define-se uma **condição inicial** apropriada, i.e. o valor da solução para um dado valor da variável independente. O problema de resolver uma EDO com condição inicial dada é chamado de **Problema de Valor Inicial** (PVI).

Exemplo 1.2.2. No exemplo anterior, t é a variável independente. Assim, por exemplo,

$$y(t_0) = y(0) = 1 (1.21)$$

é um exemplo de uma condição inicial. Neste caso, determinamos a constante $c\ \mathrm{com}$

$$y(t) = t + c \Rightarrow y(0) = 0 + c = 1$$
 (1.22)

$$\Rightarrow c = 1. \tag{1.23}$$

Ou seja, a solução deste problema de valor inicial é y(t) = t + 1.

EDOs de segunda ordem podem requer duas condições iniciais.

Exemplo 1.2.3. Consideramos o seguinte problema de valores iniciais

$$y'' = 1, (1.24)$$

$$y(1) = 0, \quad y'(1) = 1.$$
 (1.25)

Integrando a EDO, obtemos

$$\int y'' dt = \int 1 \cdot dt \Rightarrow y' = t + c_1. \tag{1.26}$$

Integrando novamente

$$\int y' dt = \int t + c_1 dt \Rightarrow y = \frac{t^2}{2} + c_1 t + c_2.$$
 (1.27)

Com isso, obtemos a chamada **solução geral** desta EDO

$$y(t) = \frac{t^2}{2} + c_1 t + c_2. (1.28)$$

Agora, aplicando as condições de contorno, obtemos

$$y(1) = 0 \Rightarrow \frac{1}{2} + c_1 + c_2 = 0 \tag{1.29}$$

$$y'(1) = 1 \Rightarrow 1 + c_1 = 1. \tag{1.30}$$

Da segunda condição, obtemos $c_1 = 0$. Logo, da primeira, obtemos $c_2 = -\frac{1}{2}$. Portanto, a solução deste PVI de ordem 2 é:

$$y(t) = \frac{t^2}{2} - \frac{1}{2}. (1.31)$$

Observação 1.2.1. Observe que o número de condições iniciais é igual à ordem da EDO.

No caso de EDOs de ordem 2, também podemos fixar uma solução através da aplicação de **condições de contorno**. Neste caso, estamos interessados em obter a solução para valores da variável independente restritos a um intervalo fechado $[t_0, t_1]$. A solução é fixada pela determinação de seus valores nos pontos t_0 e t_1 . O problema de encontrar a solução de uma EDO com condições de contorno, é chamado de **Problema de Valor de Contorno** (**PVC**).

Exemplo 1.2.4. Consideramos o seguinte problema de valores de contorno

$$y'' = 1, \quad 0 < t < 1, \tag{1.32}$$

$$y(0) = 1, \quad y(1) = \frac{1}{2}.$$
 (1.33)

Integrando duas vezes a EDO, obtemos a solução geral

$$y(t) = \frac{t^2}{2} + c_1 t + c_2. (1.34)$$

7

Agora, aplicando as condições de contorno, obtemos

$$y(0) = 1 \Rightarrow c_2 = 1,$$
 (1.35)

$$y(1) = \frac{1}{2} \Rightarrow \frac{1}{2} + c_1 = \frac{1}{2} \Rightarrow c_1 = 0.$$
 (1.36)

Desta forma, temos que a solução do PVC é

$$y(t) = \frac{t^2}{2} + 1. (1.37)$$

Observação 1.2.2. O número de constantes indeterminadas na solução geral está relacionado à ordem da EDO.

Exercícios resolvidos

ER 1.2.1. Encontre a solução do seguinte problema de valor inicial (PVI)

$$y' = t + 1, \quad t > 0, \tag{1.38}$$

$$y(0) = 2. (1.39)$$

Solução. Integrando a EDO obtemos

$$\int y' \, dt = \int t + 1 \, dt \Rightarrow y(t) = \frac{t^2}{2} + t + c, \tag{1.40}$$

a qual é a solução geral da EDO.

Então, aplicando a condição inicial y(0) = 2, obtemos

$$c = 2. (1.41)$$

Logo, a solução do PVC é $y(t) = \frac{t^2}{2} + t + 2$.

 \Diamond

ER 1.2.2. Encontre a solução do seguinte problema de valor de contorno (PVC)

$$y'' = t + 1, \quad -1 < t < 1, \tag{1.42}$$

$$y(-1) = y(1) = 0. (1.43)$$

Solução. Integrando duas vezes a EDO, obtemos

$$y'' = t + 1 \Rightarrow \int y'' dt = \int t + 1 dt$$
 (1.44)

$$\Rightarrow y' = \frac{t^2}{2} + t + c_1 \tag{1.45}$$

$$\Rightarrow \int y' dt = \int \frac{t^2}{2} + t + c_1 dt \tag{1.46}$$

$$\Rightarrow y(t) = \frac{t^3}{6} + \frac{t^2}{2} + c_1 t + c_2. \tag{1.47}$$

Obtida a solução geral da EDO, aplicamos as condições de contorno

$$y(-1) = 0 \Rightarrow -\frac{1}{6} + \frac{1}{2} - c_1 + c_2 = 0$$
 (1.48)

$$y(1) = 0 \Rightarrow \frac{1}{6} + \frac{1}{2} + c_1 + c_2 = 0.$$
 (1.49)

Ou seja, precisamos resolver o seguinte sistema linear

$$-c_1 + c_2 = -\frac{1}{3}$$

$$c_1 + c_2 = \frac{2}{3}.$$
(1.50)

$$c_1 + c_2 = \frac{2}{3}. (1.51)$$

Resolvendo, obtemos $c_1 = \frac{1}{2}$ e $c_2 = \frac{1}{6}$.

 \Diamond

Exercícios

E 1.2.1. Resolva o seguinte PVI

$$y' = 0, \quad y(-1) = 1.$$
 (1.52)

E 1.2.2. Resolva o seguinte PVI

$$y' = t, \quad y(-1) = 1.$$
 (1.53)

E 1.2.3. Resolva o seguinte PVC

$$y'' = 1, (1.54)$$

$$y(0) = 1, \quad y(1) = -1.$$
 (1.55)

E 1.2.4. Resolva o seguinte PVC

$$y'' = \operatorname{sen}(t), \tag{1.56}$$

$$y(-\pi) = y(\pi) = 0. (1.57)$$

Resposta dos Exercícios

- **E** 1.1.1. a), c)
- **E 1.1.2.** a) 1; b) 3; c) 2; d) 2.
- **E** 1.1.3. a), d).
- **E** 1.1.4. a), b).
- **E 1.1.5.** a) $\{-3, 2\}$; b) $\{0, 3\}$
- **E** 1.1.6. $\{-1, 2\}$.
- **E** 1.2.1. y(t) = 1.
- **E** 1.2.2. $y(t) = \frac{t^2}{2} + \frac{1}{2}$.
- **E** 1.2.3. $y(t) = \frac{t^2}{2} \frac{5}{2}t + 1$.
- **E** 1.2.4. $y(t) = -\sin(t)$.

Referências Bibliográficas

- [1] W.E. Boyce and R.C. DiPrima. Equações diferenciais elementares e problemas de valores de contorno. LTC, 10. edition, 2017.
- [2] E.C. Oliveira and J.E. Maiorino. *Introdução aos métodos de matemática aplicada*. Unicamp, 2. edition, 2013.