A generalization of Itô calculus and large deviations theory

Sudip Sinha

2019-04-05

Advisors

Prof. Hui-Hsiung Kuo

Prof. Padmanabhan Sundar

Outline

1	History of probability theory	3
2	Introduction and motivation	8
3	A Generalization of Itô calculus	15

Section 1 History of probability theory

History: The classical interpretation of probability theory

- 1. 1564: Gerolamo Cardano published Liber de ludo aleae (Book on Games of Chance).
- 2. 1654: Pascal and Fermat corresponded about the *problem of points* floated by the gambler Chevalier de Méré.
 - This is understood to be the origin of systematic study of probability.
- 3. 1657: Christiaan Huygens published a book.
- 4. 1800s: Pierre Laplace completed what is today considered the classic interpretation.
- 5. Applications in annuities, statistics of mortality, life insurance, models for assessing evidence, etc.

History: Brownian motion and axiomatization

- 1. 1827: Discovered by the biologist Robert Brown while studying pollen particles floating in water in the microscope.
- 2. 1900: Louis Bachelier used Brownian motion to model financial markets in his PhD thesis *The theory of speculation*.
- 3. 1904: Henri Lebesgue published what is now knows as the Lebesgue integral. The idea was generalized into abstract integrals (over arbitrary spaces).
- 4. 1905: Albert Einstein tried to explain Brownian motion using a probabilistic model for diffusion transport.
- 5. 1923: Norbert Wiener constructed the Brownian motion, proving its existence.

Brownian motions in one dimension

Figure 1

History: Modern probability theory and stochastic analysis

- 1. 1933: Andrey Kolmogorov published *Foundations of the Theory of Probability*, an axiomatic approach which unified the dichotomous theories of discrete and continuous probability (and other cases).
 - This established probability theory as a field of study within mathematics, in particular, analysis.
- 2. 1944: Kiyosi Itô published his integral w.r.t. a Brownian motion [Itô44].
- 3. 1973: Black and Scholes used Brownian motion and the Itô integral to model the stock market.

Section 2 Introduction and motivation

Axiomatic probability theory

Definition A probability space is a triple $(\Omega, \mathcal{F}, \mathbb{P})$, where

- \triangleright Ω is a set containing the elementary outcomes.
- $\triangleright \mathcal{F} \subseteq 2^{\Omega}$ is a σ -algebra on Ω , i.e.
 - \circ $\emptyset \in \mathcal{F}$,
 - $\circ \quad E \in \mathcal{F} \Longrightarrow E^{\mathbb{C}} \in \mathcal{F}, and$
 - $\circ \quad (E_n)_{n\in\mathbb{N}} \subset \mathcal{F} \Longrightarrow \bigcup E_n \in \mathcal{F}.$
- \triangleright $\mathbb{P}:\mathcal{F}\to [0,1]$ is the probability measure on the measurable space (Ω,\mathcal{F}) , i.e.
 - $\circ \mathbb{P}(\emptyset) = 0,$
 - $(\sigma$ -additivity) If $(E_n)_{n\in\mathbb{N}}\subset\mathcal{F}$ are a disjoint sequence of sets in \mathcal{F} , then $\mathbb{P}(\bigcup E_n)=\sum P(E_n)$, and
 - (probability measure) $\mathbb{P}(\Omega) = 1$.

Remarks

Elements of \mathcal{F} (sets) are the *events* to which we can assign a *probability* in a meaningful way.

Thus, the σ -algebra represents "information" in the system.

The finer the σ -algebra, the more information we have.

Martingales

- ightharpoonup A random variable is a \mathcal{F} -measurable function $X:\Omega \to \mathbb{R}$.
- ightharpoonup A stochastic process is a *parameterized family* of random variables $(X_t)_{t\in[0,T]}$ defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and assuming values in \mathbb{R} . We usually think of t as time and (X_t) as the process evolving in time.
- \triangleright A filtration is an increasing *parameterized family* $(\mathcal{F}_t)_{t \in [0,T]}$ of *σ*-algebras. We think of the system evolving in time, so it has more information as time passes.
- ▷ Let $0 \le s \le t \le T$. Then a stochastic process $(X_t)_t$ is called a martingale if $\mathbb{E}(X_t \mid \mathcal{F}_s) = X_s$. Martingales represent *fair games*.
 - Example: A fair coin is tossed at each unit of time. I win 1\$ if heads turn up and lose 1\$ when tails turn up. Then my wealth is a martingale, because at any point in time my conditional expected fortune after the next trial, given the history, is equal to their present fortune.
- \triangleright A stochastic process $(X_t)_t$ is called adapted to the filtration $(\mathcal{F}_t)_t$ if X_t is \mathcal{F}_t -measurable $\forall t$.

Brownian motion

- 1. A Brownian motion $(B_t)_{t \in [0,T]}$ is a stochastic process which has the following properties:
 - 1. Starts at 0 (a.s.)
 - 2. Has independent increments
 - 3. $B_t B_s \sim \mathcal{N}(0, t s)$
 - 4. Has continuous sample paths (a.s.)
- 2. Other properties of Brownian motion (B_t)
 - 1. It is a.s. nowhere differentiable
 - 2. It has unbounded linear variation \odot , so naive integration w.r.t. B_t is not possible
 - 3. It has bounded quadratic variation ©
 - 4. (B_t) a martingale
 - 5. $(B_t^2 t)$ is a martingale

Trying to integrate stochastic processes

Description: $\int_0^T B_t \, dB_t \stackrel{?}{=}$ Since B_t is continuous, let us try the Riemann–Stieltjes integral. Consider a sequence of partitions Δ_n such that $\|\Delta_n\| \to 0$. Then

$$\int_{0}^{T} B_t \, \mathrm{d}B_t = \lim_{j=0}^{n-1} B_{t_j^*} \Delta B_j.$$

 \triangleright Choosing different endpoints for t_j^* gives us different results.

t_j^*	$\int_0^t B_s \mathrm{d}B_s$	Intuitive?	E	Martingale?	Theory
left	$\frac{1}{2}\left(B_t^2 - t\right)$		0		Itô
mid	$\frac{1}{2}\left(B_t^2\right)$		$\frac{1}{2}t$		Stratonovich
right	$\frac{1}{2}\left(B_t^2 + t\right)$		t		

> Which one do we choose?

Itô integral [Itô44] for (X_t) with continuous paths

- \triangleright Definition of the integral: $\int_0^T X_t dB_t = \lim \sum_{j=0}^{n-1} X_{t_j} \Delta B_j$, where $\Delta B_j = B_{t_{j+1}} B_{t_j}$.
- > Properties of the integral:
 - Linear.
 - Mean 0 and variance $||f||_{L^2[0,T]}^2$ (Itô isometry).
- \triangleright Properties of the associated process $I_{\bullet} = \int_0^{\bullet} X_t dB_t$:
 - continuity
 - martingale
- \triangleright Example: $\int_0^t B_u dB_u = \frac{1}{2}(B_t^2 t) \quad \forall t$.
- ▶ Remark: We can only integrate over processes which are adapted.

Multiple integrals

- ➤ Question: How do we define the double integral?
- Naive idea: $\int_0^t \int_0^t dB_u dB_v = \int_0^t dB_u \int_0^t dB_v = B_t^2$. But $\mathbb{E}B_t^2 = t \neq 0$, so no martingale property.
- ▶ Itô's idea: remove the diagonal to get

$$\int_{0}^{t} \int_{0}^{t} dB_{u} dB_{v} = 2 \int_{0}^{t} \int_{0}^{v} dB_{u} dB_{v} = 2 \int_{0}^{t} B_{v} dB_{v} = B_{t}^{2} - t.$$

Theorem ([Itô51]) Let $f \in L^2([0,T]^n)$ and \hat{f} be its symmetrization. Then

$$\int_{[0,T]^n} f(t_1,...,t_n) dB_{t_1} \cdots dB_{t_n} = n! \int_0^T \cdots \int_0^{t_{n-2}} \left(\int_0^{t_{n-1}} \hat{f}(t_1,...,t_n) dB_{t_n} \right) dB_{t_{n-1}} \cdots dB_{t_1}.$$

> Feels non-intuitive ②.

Section 3 A Generalization of Itô calculus

Motivation

- ▶ Iterated integrals: Consider the iterated integral $\int_0^t \int_0^t dB_u dB_v = \int_0^t B_t dB_v \stackrel{?}{=} B_t^2$.
- Note that $\mathbb{E}(B_t^2) = t \neq 0$, so no martingale property \mathfrak{S} .
- ▶ Problem: We want to define $\int_0^T Z(\cdot) dB_t$, where $Z(\cdot)$ is not (necessarily) adapted.
- > Some approaches:
 - Enlargement of filtration $\mathcal{G}_{\bullet} = \mathcal{F}_{\bullet} \vee \sigma(B_T)$, with Itô's decomposition of integrand [Itô78] $B_t = \left(B_t \int_0^t \frac{B_T B_s}{T s} \, \mathrm{d}s\right) + \int_0^t \frac{B_T B_s}{T s} \, \mathrm{d}s$.
 - White noise theory
 - Malliavin calculus

The new integral [AK08; AK10]: Idea

- A process Y and filtration \mathcal{F}_{\bullet} are called instantly independent if Y^t and \mathcal{F}_t are independent $\forall t$. Example: The process $(B_T B_{\bullet})$ is instantly independent of the filtration generated by B_{\bullet} .
- Idea
 - 1. Decompose the integrand into adapted and instantly independent parts.
 - 2. Evaluate the adapted and the instantly independent parts at the left and right endpoints.
- Consider two continuous stochastic processes, X_t adapted and Y^t instantly independent w.r.t. \mathcal{F}_{\bullet} . Then the integral $\int_0^T X_t Y^t dB_t$ is defined as

$$\int_{0}^{T} X_{t} Y^{t} dB_{t} \triangleq \lim_{\|\Delta_{n}\| \to 0} \sum_{j=0}^{n-1} X_{t_{j}} Y^{t_{j+1}} \Delta B_{j},$$

provided that the limit exists in probability.

A simple example

 \triangleright In the following, lim is the limit in L^2 .

$$\int_{0}^{t} B_{T} dB_{t} = \int_{0}^{t} (B_{t} + (B_{T} - B_{t})) dB_{t} = \int_{0}^{t} B_{t} dB_{t} + \int_{0}^{t} (B_{T} - B_{t}) dB_{t}$$

$$= \lim_{t \to 0} \sum_{j=0}^{n-1} B_{t_{j}} \Delta B_{j} + \lim_{t \to 0} \sum_{j=0}^{n-1} (B_{T} - B_{t_{j+1}}) \Delta B_{j}$$

$$= \lim_{t \to 0} \sum_{j=0}^{n-1} (B_{T} - \Delta B_{j}) \Delta B_{j}$$

$$= B_{T} \lim_{t \to 0} \sum_{j=0}^{n-1} \Delta B_{j} - \lim_{t \to 0} \sum_{j=0}^{n-1} (\Delta B_{j})^{2} = B_{T} B_{t} - t$$

- \triangleright In general, $\mathbb{E} \int_0^t Z(s) dB_s = 0$.
- ➤ This motivates the definition of the *near-martingale* property, which we shall not cover.

APPENDIX

Thank you!

Bibliography

