

Faculty of Engineering and Technology Electrical and Computer Engineering Department Communication Laboratory ENEE4113

Prelab Exp6: Pulse Amplitude Modulation (Sampling)

Prepared by:

Arwa Doha

11906324

Instructor: Dr. Ashraf Rimawi

Assistant: Eng.Mohammed Battat

Section: 6

Date: Nov 2, 2023

Software Prelab

♣ Part 1: Generate a pulse train in Time and Frequency

○ Block Diagram: → using the pulse generator

Fig1: Block diagram of Generate a pulse train

- o In time Doman:-
- We have discrete rectangular pulses.

Fig2: Time-Domain Representation of Pulse Train

- We have series of impulse functions, and 1 kHz from impulse to another.

Fig3: Freq-Domain Representation of Pulse Train

 \rightarrow RBW= 9.766, Sample rate =10KHz

♣ Part 2: Natural Sampling (PAM1) with demodulation

- - o Block Diagram:

Fig4: Block diagram of PAM1

o In Freq-Domain:

Fig5: Freq-Domain of PAM1

o In time Doman:-

➤ Message signal and the sampled signal with duty cycle at 50

Fig6: Time-Domain of message signal and the sampled signal with 50 duty cycle

➤ Message signal and the sampled signal with duty cycle at 10

Fig7: Time-Domain of message signal and the sampled signal with 10 duty cycle

↓ 2.2 Demodulation of Natural Sampling

Block Diagram:

Fig8: Block diagram of Demodulation of Natural Sampling

Fig9: Demodulated Signal in Time Domain using Natural Sampling

Fig10: Freq-Domain Demodulated Signal using Natural Sampling

Through the process of demodulation, we successfully recovered the original message signal operating at a frequency of 500 Hz. By employing a low-pass filter, and as we note the frequency domain of demodulated signal in fig10 we note that dem-signal have the same freq of massage-signal.

♣ Part 3: Flat-top(Hold) Sampling (PAM2) with demodulation

o Block Diagram:

Fig11: Block diagram of Flat-top Sampling (PAM2) with demodulation

♣ 3.1 PAM2 with 10% duty cycle

Fig12: Sample and Hold Sampling in Time-Domain with 10% duty cycle

Fig13: Freq-Domain with 10% duty cycle

♣ 3.2 PAM2 with 30% duty cycle

Fig14: Sample and Hold Sampling in Time-Domain with 30% duty cycle

Fig15: Freq-Domain with 30% duty cycle

♣ Part 4: Demodulation Natural Sampling

Block Diagram:

Fig16: Block diagram of demodulation Natural Sampling

Fig17: Time-Domain demodulation Natural Sampling

Fig18: Freq-Domain demodulation Natural Sampling

Much like the earlier demodulation process, employing a low-pass filter once again enables the successful retrieval of the message signal. In this instance, observing the frequency domain reveals the presence of two impulse functions at [500Hz & -500Hz], affirming the effectiveness of our demodulation process. This dual impulse pattern validates the accuracy \rightarrow success of our demodulated output.