Seminar

Reporter: Lichuang Huang

2022-07-07

Supervisor: Gang Cao

- 1 RNA-seq analysis
- 2 AHR and Kidney
- 3 MCnebula in Website
- 4 Next Schedule

RNA-seq analysis

RNA-seq analysis

• 0 0 0 0 0 0 0 0 0 0 0 0 0

Literature and Guidances

limma:

Linear Models for Microarray and RNA-Seq Data User's Guide

Gordon K. Smyth, Matthew Ritchie, Natalie Thorne, James Wettenhall, Wei Shi and Yifang Hu Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia

> First edition 2 December 2002 Last revised 14 November 2021

Figure 1: limma guidance

RNA-seq analysis

0000000000000

Literature and Guidances

Figure 2: design matrix

RNA-seg analysis

0000000000000

Literature and Guidances

RNA-seg analysis is easy as 1-2-3 with limma, Glimma and edgeR

Charity Law¹, Monther Alhamdoosh², Shian Su³, Xuevi Dong³, Luvi Tian¹, Gordon K. Smyth4 and Matthew E. Ritchie5

17 December 2018

Figure 3: RNA-sea

¹The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Melbourne, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia

²CSL Limited, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia

³The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Melbourne, Australia

⁴The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Melbourne, Australia: School of Mathematics and Statistics. The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia

⁵The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Melbourne, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia; School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia

Analysis route

- Data packaging
 - Reading in count-data
 - Organising sample information
 - Organising gene annotations
 - 2 Data pre-processing
 - Transformations from the raw-scale
 - Removing genes that are lowly expressed
 - Normalising gene expression distributions
 - Unsupervised clustering of samples
 - 3 Differential expression analysis
 - Creating a design matrix and contrasts
 - Removing heteroscedascity from count data
 - Fitting linear models for comparisons of interest

Limma Workflow: read data

Raw counts data

Table 1: Raw counts

MCnebula in Website

	10_6_5_11	9_6_5_11	purep53	JMS8-2	JMS8-3
497097	1	2	342	526	3
100503874	0	0	5	6	0
100038431	0	0	0	0	0
19888	0	1	0	0	17
20671	1	1	76	40	33
27395	431	771	1368	1268	1564

Reporter: Lichuang Huang

Limma Worklow: gene annotations

Table 2: Gene annotations

SYMBOL	TXCHROM
Xkr4	chr1
Gm19938	NA
Gm10568	NA
Rp1	chr1
Sox17	chr1
Mrpl15	chr1
	Xkr4 Gm19938 Gm10568 Rp1 Sox17

Limma Worklow: filter and normalization

Table 3: Normalization

	10_6_5_11	9_6_5_11	purep53	JMS8-2
497097	-4.309973	-3.851299	2.5254857	3.298898
100503874	-5.894935	-6.173227	-3.4350428	-3.040952
100038431	-5.894935	-6.173227	-6.8944744	-6.741392
19888	-5.894935	-4.588264	-6.8944744	-6.741392
20671	-4.309973	-4.588264	0.3629134	-0.401542
27395	3.858281	4.418296	4.5239053	4.567516

Reporter: Lichuang Huang

Design matrix to create linear model

Table 4: Design matrix

MCnebula in Website

Basal	LP	ML	laneL006	laneL008
0	1	0	0	0
0	0	1	0	0
1	0	0	0	0
1	0	0	1	0
0	0	1	1	0
0	1	0	1	0

Reporter: Lichuang Huang

Figure 4: Single factor

Figure 5: multiple factor

Figure 6: covariate: time series

Figure 7: covariate: complex model

Limma Worklow: fit linear model

Binary comparison: basal.vs.ml

Table 5: Fitting

ENTREZID	SYMBOL	TXCHROM	logFC	AveExpr
242505	Rasef	chr4	-6.545602	5.117962
12521	Cd82	chr2	-4.699399	7.069340
20661	Sort1	chr3	-4.941593	6.704161
53624	Cldn7	chr11	-5.515495	6.295139
71740	Nectin4	chr1	-5.595622	5.164669
12759	Clu	chr14	-4.697829	8.856284

Reporter: Lichuang Huang

AHR and Kidney

Analysis route

Figure 8: Route

Figure 9: Route-ahr.sig

Table 6: GSE siries

Accession	Title	Series Type	Taxonomy	Sample Count
GSE18	•	Expre	Homo	_
GSE18	AhR a	Expre	Homo	15
GSE18	Activ	Expre	Homo	16
GSE18	Rutae	Expre	Homo	6
GSE18	circR	Expre	Homo	6
GSE15	Activ	Expre	Homo	36
GSE16	Trans	Expre	Homo	33

Reporter: Lichuang Huang

MCnebula mount at:

RNA-seq analysis

MCnebula

MCnebula has been published at https://cao-lab-zcmu.github.io/MCnebula/. Guidance for MCnebula application: MCnebula_workflow.

Figure 10: Website

Long documentation: vignette

MCnebula workflow for LC-MS/MS dataset analysis

Lichuang Huang; Lu Wang; Qiyuan Shan; Qiang Lv; Keda Lu; Gang Cao

Introduction

This vignette descrip a classified visualization method, called MCnebula, for the analysis of untargeted LC-MS/MS datasets. MCnebula utilizes the state-of-the-art computer prediction technology, SIRIUS workflow (SIRIUS, ZODIAC, CSI:fingerID, CANOPUS), for compound formula prediction, structure retrieve and classification prediction. MCnebula integrates an abundance-based class selection algorithm into compound annotation. The benefits of molecular networking, i.e. intuitive visualization and a large amount of integratable information, were incorporated into MCnebula visualization. With MCnebula, we can switch from untargeted to targeted analysis, focusing precisely on the compound or chemical class of interest to the researcher.

R and other softs Setup

Figure 11: vignette

Long documentation: vignette

Raw data processing

For MZmine2 processing, an XML batch file outlined the example parameters for waters Qtof could be find in https://github.com/Cao-lab-zcmu/research-supplementary.

MCnebula in Website

0000

SIRIUS computation workflow

Here we prepared some example files for this vignette to better illustrate MCnebula workflow.

```
eg.path <- system.file("extdata", "raw instance.tar.gz", package = "MCnebula")
tmp <- tempdir()
utils::untar(eq.path, exdir = tmp)
mgf.path <- paste0(tmp, "/", "instance5.mgf")
### show details of .mgf
data.table::fread(mgf.path, header = F, sep = NULL)
#> 1: BEGIN IONS
#> 3: PEPMASS=468.29557911617
#> 4: CHARGE=+1
#> 5: MSLEVEL=1
```

Figure 12: vignette.2

Next Schedule

Gene informatics analysis

- GEO datasets analysis
- . . .