Sliced Inverse Regression For Dimension Reduction (Ker-Chau Li)

Xuelong Wang

January 10, 2018

- A Model for dimension reduction
- Inverse Regression
- 4 Sliced Inverse Regression Method
- Simulation

0

- Study the relationship of a response variable y and its explanatory variable x
- Use the information of x to explain y
- Parametric model
 - Linear Regression model
- Nonparametric model
 - Local smoothing (kNN)

- When the dimension of x gets higher, observations are far away from each other
- Standard methods probably will break down due to the sparseness of data
- We need to reduce the dimension of x so that it's easier for visualizing data and fitting models

Sliced Inverse Regression Method

A Model for dimension reduction

Model Settings

Introduction

$$y = f(\beta_1 x, \dots, \beta_k x, \epsilon)$$

x is explanatory variable, column vectors on \mathcal{R}^p , $\beta's$ are unknown row vectors, ϵ is independent of x,

- $(\beta_1 x, \dots, \beta_k x)'$ is the projection of the $x \in \mathbb{R}^p$ into \mathbb{R}^K . K < p
- Captures all we need to know about y

f is an arbitrary unknown function on \mathbb{R}^{p+1}

A Model for dimension reduction

Effective dimension-reduction

- Effective dimension-reduction directions (e.d.r)
 - Any Linear combination of $\beta's$
- \bigcirc A Linear space \mathcal{B} :
 - Spanned by $\beta' s \Leftrightarrow Span(\beta)$
 - Since f is arbitrary, only the \mathcal{B} can be identified
 - Inverse Regression one of the methods of estimating the Effective dimension-reduction directions

Inverse Regression

- Regress x against of y
- Use the information of y to explain x
- From one p-dimension problem to p One-dimension regression problems

Inverse Regression Curve

$$E(x|y) \in \mathcal{R}^p$$

Centered Inverse Regression Curve

$$E(x|y) - E(x)$$

- E[E(x|y)] = E(x) is the center
- With certain conditions, the centered inverse curve is related with the e.d.r.!

Conditions

Introduction

Condition 1.1

Conditional Independence

$$y = f(\beta_1 x, \dots, \beta_k x, \epsilon) \Leftrightarrow y | \beta x \perp x$$

Condition 3.1

For any b in \mathbb{R}^p ,

$$E(b\mathbf{x}|\beta_1\mathbf{x}=\beta_1x,\ldots,\beta_k\mathbf{x}=\beta_kx)=c_0+c_1\beta_1x,\ldots,c_k\beta_kx$$

Centered Inverse Regression Curve and e.d.r

Theorem 3.1

Under the previous Conditions,

$$E(x|y) - E(x) \subset Span(\beta_k \Sigma_{xx}), k = 1, ..., K$$

The centered inverse regression curve is contained in the linear subsapce spanned by $\beta_k \Sigma_{xx}$

Centered Inverse Regression Curve and e.d.r

Corollary 3.1

$$z = \Sigma_{xx}^{-1/2} [x - E(x)]$$

x is the standardized

$$f(\beta_1 x, \ldots, \beta_k x, \epsilon) \Rightarrow f(\eta_1 z, \ldots, \eta_k z, \epsilon) \Rightarrow \beta_k = \eta_k \Sigma_{xx}^{-1/2}$$

$$E(z|y) - E(z) \subset Span(\eta_k), k = 1, \dots, K$$

An Important consequence

Covariance matrix is the key

- The Covariance matrix Cov(E(z|y)) is degenerated in any direction which is orthogonal to η's
- η_k's (k = 1,..., K) associated with largest K eigenvalues of Cov(E(z|y))

How to estimate the Cov(E(z|y))

That leads to Sliced Inverse Regression Method

Standardize x

•
$$z_i = \sum_{xx}^{-1/2} (x_i - \bar{x})(i = 1, ..., n)$$

2 Divide the range of y into H slices, I_1, \ldots, I_H

•
$$\hat{p}_h = (1/n) \sum_{i=1}^n (I_{y_i \in I_h})$$

Calculate the sample mean for each slice

$$\bullet \hat{m}_h = (1/n\hat{p}_h) \sum_{y_i \in I_h} z_i$$

Conduct a Principal Component Analysis on the estimated Covariance matrix

•
$$\hat{V} = \sum_{h=1}^{H} \hat{p}_h \hat{m}_h \hat{m}'_h$$

Select the K largest eigenvectors (row vectors)

•
$$\hat{\eta}_k(k = 1, ..., K)$$

- Transform the eigenvectors back to original scale
 - $\hat{\beta}_k = \hat{\eta}_k \hat{\Sigma}_{xx}^{-1/2}$

Simulation 1

Introduction

Simulation settings

$$y = x_1 + x_2 + x_3 + x_4 + 0x_5 + \epsilon$$

- n = 100
- Only one component $\beta = (1, 1, 1, 1, 0)$
- Normalized target $\beta^* = (0.5, 0.5, 0.5, 0.5, 0.5, 0)$
- The number of slice H = (5, 10, 20)

Simulation 1 results

Table 1. Mean and Standard Deviation* of $\hat{\beta}_1 = (\hat{\beta}_{11}, ..., \hat{\beta}_{15})$ for the linear model (6.1), n = 100; the Target is (.5, .5, .5, .5, 0)

Н	\hat{eta}_{11}	\hat{eta}_{12}	\hat{eta}_{13}	β ₁₄	\hat{eta}_{15}
5	.505	.498	.494	.488	.002
	(.052)	(.049)	(.056)	(.056)	(.066)
10	.502	.500	.492	.491	.001
20	(.046)	(.045)	(.055)	(.049)	(.060)
	.500	.502	.497	.487	003
	(.048)	(.046)	(.053)	(.054)	(.060)

^{*}Numbers in parentheses represent standard deviations.

- Repeat the simulation 100 times to generate the empirical distribution of $\hat{\beta}'$ s
- Since we want to compare two directions, β and $\hat{\beta}$ are

Simulation 2

Introduction

Simulation settings

$$y = x_1(x_1 + x_2 + 1) + \sigma \cdot \epsilon$$
$$y = \frac{x_1}{0.5 + (x_2 + 1.5)^2} + \sigma \cdot \epsilon$$

- n = 400
- $\sigma = (0.5, 1)$
- The number of slice H = (5, 10, 20)
- Two component $\beta_1 = (1, 0, 0, 0, 0), \beta_2 = (0, 1, 0, 0, 0)$

Sliced Inverse Regression Method

Evaluate the effectiveness of estimated e.d.r direction

Criterion of one direction

$$R^{2}(\hat{b}) = \max_{\beta \in \mathcal{B}} \frac{(\hat{b}\Sigma_{xx}\beta')^{2}}{\hat{b}\Sigma_{xx}\hat{b}' \cdot \beta\Sigma_{xx}\beta'}$$

Squared correlation coefficient between the bx and $\beta_1 x, \dots, \beta_k x$ Invariant under affine transformation of x

Criterion of the subspace B

$$R^{2}(\hat{\mathcal{B}}) = \frac{\sum_{k=1}^{K} R^{2}(\hat{b}_{k})}{K}$$

Simulation 2 results

Introduction

Table 2. Mean and Standard Deviation of $R^2(\hat{\beta}_1)$ and $R^2(\hat{\beta}_2)$ for the Quadratic Model (6.2), p=10, n=400

	$\sigma = 0.5$		$\sigma = 1$	
н	$R^2(\hat{\beta}_1)$	$R^2(\hat{\beta}_2)$	$R^2(\hat{\beta}_1)$	R²(β̂₂)
5	.91	.75	.88	.52
	(.05)	(.15)	(.07)	(.21)
10	.92	.80	.89	(.21) .55
			(80.)	(.24)
20	(.04) .93	(.13) .77	.88	(.24) .49
	(.04)	(.15)	(80.)	(.26)

• Repeat the simulation 100 times to generate the empirical distribution of β 's

Simulation 3 results

Introduction

Table 3. Mean and Standard Deviation of $R^2(\hat{\beta}_1)$ and $R^2(\hat{\beta}_2)$ for the Rational Function Model (6.3), p=10, n=400

	$\sigma = 0.5$		$\sigma = 1$	
н	$R^2(\hat{\beta}_1)$	$R^2(\hat{\beta}_2)$	$R^2(\hat{\beta}_1)$	$R^2(\hat{\beta}_2)$
5	.96	.83	.89	.51
	(.02)	(80.)	(.06)	(.23) .56
10	.96	.88	.90	
	(.02)	(.06)	(.06)	(.23) .53
20	.96	.89	.90	.53
	(.02)	(.06)	(.06)	(.24)

• Repeat the simulation 100 times to generate the empirical distribution of β 's

Reference

Introduction

Tonglin Zhang, Baijian Yang. 2016. "Big Data Dimension Reduction Using Pca."