CAAM 336 · DIFFERENTIAL EQUATIONS

Problem Set 8

Posted Monday 22 October 2012. Due Monday 29 October 2012, 5pm. Corrected 25 October 2012.

1. [50 points]

Consider the following three matrices:

(i)
$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 (ii) $\mathbf{A} = \begin{bmatrix} -50 & 49 \\ 49 & -50 \end{bmatrix}$ (iii) $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

(a) For each of the matrices (i)–(iii), compute the matrix exponential $e^{t\mathbf{A}}$.

You may use eig for the eigenvalues and eigenvectors, but please construct the matrix exponential "by hand" (not with expm). For diagonalizable $\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^{-1}$, recall the formula $e^{t\mathbf{A}} = \mathbf{V}e^{t\Lambda}\mathbf{V}^{-1}$. If you encounter a complex eigenvalue $\lambda = \alpha + i\beta$, you may use the formula

$$e^{\lambda} = e^{\alpha + i\beta} = e^{\alpha}(\cos(\beta) + i\sin(\beta)).$$

- (b) Use your answers in part (a) to explain the behavior of solutions $\mathbf{x}(t)$ to the differential equation $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t)$ as $t \to \infty$, given that $\mathbf{x}(0) = [2, \ 0]^T$ (e.g., specify and explain exponential growth, exponential decay, or neither) for each of the three matrices (i)–(iii).
- (c) For the matrix (ii), describe how large one can choose the time step Δt so that the forward Euler method applied to $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t)$,

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{A} \mathbf{x}_k,$$

will produce a solution that qualitatively matches the behavior of the true solution (i.e., the approximations \mathbf{x}_k should grow, decay, or remain of the same size as the true solution does). Answer the same question for the backward Euler method

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{A} \mathbf{x}_{k+1}.$$

(d) For the matrix in (iii), describe how the forward Euler method behaves for all Δt as $k \to \infty$ for $\mathbf{x}(0) = [1,1]^T$. Now describe how the backward Euler method must behave as $k \to \infty$ for the same matrix and initial condition.

2. [50 points]

There exist a host of alternatives to the forward and backward Euler methods for approximating the solution of the differential equation $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t)$. For example, the trapezoid method has the form

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \frac{1}{2}\Delta t \mathbf{A} (\mathbf{x}_k + \mathbf{x}_{k+1}),$$

where $\Delta t > 0$ is the time-step, and $\mathbf{x}_k \approx \mathbf{x}(t_k)$ for $t_k = k\Delta t$.

- (a) Like backward Euler, the trapezoid method is an *implicit* technique: \mathbf{x}_{k+1} appears on both the right and left hand side of the formula above that defines it. Describe how to find \mathbf{x}_{k+1} given \mathbf{x}_k . In particular, what linear system of algebraic equations needs to be solved at each step? (For comparison, the backward Euler method requires the solution of the system $(\mathbf{I} \Delta t \mathbf{A})\mathbf{x}_{k+1} = \mathbf{x}_k$ for the unknown \mathbf{x}_{k+1} at each step.)
- (b) Consider the matrix and initial condition

$$\mathbf{A} = \begin{bmatrix} -1 & 10 \\ 0 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Approximate the solution to $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t)$ on the interval $t \in [0,5]$ for time step $\Delta t = .05$. Produce a semilogy plot showing $t_k = k\Delta t$ versus $\|\mathbf{x}_k\|$ for k = 0, ..., 100. (Use the norm command in MATLAB to compute $\|\mathbf{x}_k\|$.)

- (c) We wish to understand how the error in our approximation at time t=1 improves as we run the simulation with smaller and smaller Δt values. Produce a loglog plot showing Δt versus the error in the trapezoid rule and backward Euler approximations for the matrix and initial condition in part (b) at time t=1. To compute the error, first find the exact solution $\mathbf{x}(1)=\mathrm{e}^{\mathbf{A}}\mathbf{x}(0)$ using the expm command, then compute the norms $\|\widehat{\mathbf{x}}-\mathbf{x}(1)\|$, where $\widehat{\mathbf{x}}$ denotes your approximation to $\mathbf{x}(1)$ from the trapezoid or backward Euler methods. Start your plot with $\Delta t=1/2$ and use sufficiently many smaller values of Δt to make the trend in your plot clear. For which method does the error decay more rapidly as $\Delta t \to 0$?
- (d) Forward Euler iterates can be written as $\mathbf{x}_k = (\mathbf{I} + \Delta t \mathbf{A})^k \mathbf{x}_0$, while backward Euler iterates can be written as $\mathbf{x}_k = (\mathbf{I} \Delta t \mathbf{A})^{-k} \mathbf{x}_0$.

Work out a similar formula for the iterates \mathbf{x}_k generated by the trapezoid method.

Suppose $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ is symmetric, and all of its eigenvalues λ_j , j = 1, ..., n, are negative. How must you choose the time step Δt to ensure that the iterates \mathbf{x}_k generated by the trapezoid method converge to zero, $\|\mathbf{x}_k\| \to 0$, as $k \to \infty$?