ESPACES FONCTIONNELS COMPLETS

AINSI QUE CERTAINS DE LEURS CAMARADES NON COMPLETS POUR LEUR TENIR COMPAGNIE

Préambulle.

Tout espace vectoriel normé de dimension finie est de Banach (c'est-à-dire, complet).

Rappelle.

Les sous-Banach d'un Banach sont les sous-ev fermés (car les sous-métriques complets d'un complet sont les sous-espaces fermés dans cet espace).

Fée.

Un espace vectoriel normé de fonctions sur un ensemble infini est de dimension infinie indénombrable.

Joli et utile.

Un espace vectoriel normé de dimension infinie dénombrable ne peut être complet (merci Baire). Ainsi aucun espace de polynômes n'est complet.

Espaces venant de l'algèbre

COMPLET	PAS COMPLET
	K[X] pour n'importe quelle norme
$K[[X]]$ complètement métrisable (donc de Baire) pour $d(f,g)=2^{\min{(k,f_k\neq g_k)}}$	
	$K[X,X^{-1}]$ pour n'importe quelle norme

Espaces de fonctions continues, bornées, continues à support compact, continues à support par compact mais presque, etc.

K un corps valué complet.

A un ensemble, X,Y deux espaces métriques, E espace topologique. $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

COMPLET	PAS COMPLET
$\mathcal{F}(A, Y)$ pour $d_u = \min(1, d_\infty)$ $\mathcal{F}(K, K), \mathcal{F}([a, b], K), \mathcal{F}(]a, b[, K)$	$\mathcal{F}([0,1],\mathbb{R}[X])$
Si Y complet alors $B(A,Y)$ pour d_{∞}	
B(K,K),B([a,b],B(]a,b[,K))	
Si Y complet alors $\mathcal{C}_b(X,Y)$ pour d_∞	
$(\mathcal{C}_b(\mathbb{K},\mathbb{K}), . _{\infty})$	
Si Y compact alors $\mathcal{C}(X,Y)$ pour d_{∞}	
Si E compact alors $\mathcal{C}(E, \mathbb{K}), . _{\infty}$	
$\mathcal{C}([0,\!1],\mathbb{R}), . _{\infty}$	

(Remarque : c'est un sem de B)	
	$C([-1,1], \mathbb{R}), . _1$
	$C([-1,1], \mathbb{C}), . _2$

Espaces avec de la régularité tout d'un coup

Mêmes notations.

COMPLET	PAS COMPLET
	$(\mathcal{C}^1([0,1],\mathbb{R}),\ u\ _{\infty})$
$(\mathcal{C}^1([a,b],\mathbb{R}), u \mapsto u _{\infty} + u' _{\infty})$	
$(Lip([0,1],\mathbb{K}),\ \cdot\ _{\infty}+\varepsilon)$	
où $arepsilon(f)$ est le module de continuité de f	

Espaces de la théorie de la mesure <u>quelconque</u>

Par défaut on désigne par L^p les fonctions de X dans \mathbb{K} de puissance p-ième intégrable dans un espace mesuré (X,\mathcal{A},μ) .

COMPLET	PAS COMPLET
$(L^1, . _1)$	
$(L^p, . _p), p \in [1, +\infty]$	
$(L^{\infty} = B(\mathbb{N}, \mathbb{K}), . _{\infty})$	
$(Riesz ext{-}Fischer)$	

Espaces de suites

COMPLET	PAS COMPLET
$(l^1, . _1)$	
$(l^p, . _p), p \in [1, +\infty]$	
$(l^{\infty} = B(\mathbb{N}, \mathbb{K}), . _{\infty})$	
(facile)	

Banach venant de Banach

COMPLET	PAS COMPLET
$\mathcal{L}_c(E,F)$ où F est un Banach	
et E un evn quelconque	