Mobile network hacking — All-over-IP edition BlackHat EU, Dec 4 2019, London

Luca Melette <luca@srlabs.de> Sina Yazdanmehr <sina@srlabs.de>

Mobile networks are evolving, and research is hardly keeping up

935/15/15/15

3000E

GOOGLE IS FINALLY TAKING CHARGE OF THE RCS ROLLOUT

Google will provide RCS Chat directly to any

Android user... eventually

By Dieter Bohn | @backlon | Jun 17, 2019, 3:00pm EDT

Research question After several decades of intercept attacks (A5/1, SS7, IMSI catchers), will RCS finally protect text messages?

agreed to replace SMS with a new RCS standard AT&T, Verizon, Sprint, and T-Mobile have finally

There will be a new app

By Dieter Bohn | @backlon | Oct 24, 2019, 7:19pm EDT

Agenda

1. Mobile attack recap

- 2. Attacks on new technologies
- 3. Mitigations

> Security Research Labs

Known mobile network attacks can be categorized into 5 classes

Attack impact	Attack scope	Attack details
Intercept	Local	 Passively sniff and crack weak encryption (A5/1, A5/2), run IMSI catcher
calls and texts	Remote	 Reroute voice flows enabling call forwarding via SS7
Impersonate	Local	 Grab TMSIs over-the-air, spoof originating call or SMS via radio interface
user identity	Remote	Send SMS or USSD code on behalf of another user via SS7
F (Local	 Collect IMSIs from the radio interface, verify user presence with silent SMS
III IIIdek üsels	Remote	 Globally locate mobile subscribers by requesting serving tower via SS7
	No charge	 Disable call barrings and prepaid data limits via SS7
Conduct Haud	Charge others	 Spoof calls and SMS to premium numbers, steal bank OTP codes in SMS
DoS users or	Subscriber	 Make users unreachable via detach message (radio) or cancel location (SS7)
network	Network	Exhaust MSC/HLR resources via SS7 requests (RESET, PRN, ATI, PSI)

Only some parts of a telco networks have been publicly dissected by security researchers

Several vulnerabilities have been identified in these telco components:

- .. Malicious applications can be remotely installed in SIM cards
- Weak radio encryption allow call/SMS and data to be intercepted
- Can provide privileged access to core nodes
- D. Hackers can remotely intercept calls/SMS and track users because of missing authentication
- E. Like point D, but for data connections

Legacy standards are being replaced by new technologies: IMS (VoLTE, VoWiFi) and RCS

Voice calls are moving from dedicated channels to voice-over-IP (VoIP)

Security Research Labs

WHUAWEI INTEX SAMSUNG

RCS is already implemented by at least 100 mobile operators

Active RCS deployments span 67 countries, while a few others are conducting trials

- 1. Mobile network attack recap
- 2. Attacks on new technologies
- 3. Mitigations

What attacks are possible in RCS?

Example hacking goal	l Example method using RCS	Attack scope
Track users	A Get IP address of victim / verify if user is online	These hacks should
Impersonate users (B Caller-ID spoofing in calls / messages	work against many RCS deployments as they do not require
Conduct fraud	C Inject traffic / hijack session if victim is behind the same NAT	secret information about the victim; they do rely on configuration issues
Website DDoS	D Send file attachment forcing auto-preview on victim	in the network
Intercept texts (E Connect to RCS with user credentials or hijack user session	Requires victim's config file or DNS MITM capabilities

A User presence and coarse location can be disclosed by replies to SIP OPTIONS requests

B Missing verification of user supplied heat SBC allows caller-ID spoofing

C Traffic injection is possible if victim and attacker share the same public IP address

D Automatic media preview of malicious links enables DDoS and sensitive info leaks

RCS can send media content

The Message Session Relay Protocol is used to share files (images, videos, audio) between RCS users. This protocol is similar to SIP and HTTP, and carries content metadata in XML format.

3- SIP/MSRP message including media transfer

Scenario 1 - Leverage RCS clients to DDoS a website

- .. Attacker identifies a large file on a target website
- Attacker crafts an XML message where the thumbnail URL (indicated as a small file) points to target large file
- Attacker sends the crafted XML message as a SIP/MSRP message to many thousands of subscribers
- 4. Each RCS client automatically attempts to download the file overloading the target website

Scenario 2 - User tracking

- . The attacker starts a web server on a public IP
- The attacker sends an RCS message including preview-able contents hosted on that server
- The victim attempts to download the content disclosing their IP address

Scenario 3 - Account takeover

- The attacker conducts the attack as in scenario 2, and collects headers sent by the victim
- If an RCS session token is included, the attacker can impersonate the victim sending messages and starting calls

E Intercept can be achieved abusing RCS signaling in multiple ways

Attack scenario 1

Set call forwardings abusing the XCAP interface

Implementation issues (vendor dependent)

identity when interacting with the server, thus enabling XCAP settings manipulation We found some buggy XCAP implementation that does not properly validate the

Configuration issues (network dependent)

If the XCAP server uses password authentication instead of the secure SIM-based authentication, the password could be brute-forced

Attack scenario 2

Steal the config file so you can provision on behalf of the victim

Malicious apps

F

- 2 Mobile hotspot sharing
- 3 Malicious open WiFi with captive portal
- 4 Brute force identity/OTP via web

Attack scenario 3

SIP MITM via DNS spoofing

5 Redirect SIP traffic to a rogue P-CSCF

Security Research Labs

E 1+2 Malicious app or rogue hotspot can get in the middle of RCS provisioning

Attack scenario (1) Malicious app

- The app uses victim's LTE connection to fetch config file

The app is installed on victim's device

If the app has SMS_READ permission, it can retrieve even OTP code, for networks that require it

Attack scenario (2) Mobile hotspot sharing

- Attacker uses victim's LTE connection via hotspot sharing
- Attacker can request config file through victim's connection, and retrieve it

E 3 Rogue WiFi can steal victim's config file injecting JavaScript code

Attack sequence

- Victim tries to access a website through a rogue AP
- The rogue AP retrieves the content of the website requested by the victim and forwards it back injecting malicious JavaScript. Immediately after, the AP pushes back the victim to LTE, terminating the WiFi access
- The malicious JavaScript code retrieves the RCS config file via LTE connection
- 4) The malicious JavaScript code uploads the retrieved XML config file to the attacker's server on the internet

-Demo-

(E) (4) Some networks requiring OTP verification are prone to user account brute force

		Request	Payload	Status
	Get cookie (invalid IMSI)	618	2006926662	200
Dorform OFT Over	YOU GET!!	274	9905718604	200
religilii dei ovei	TIIF 40A	1000	2339995484	403
1) HTTP supplying a	Get cookie (valid IMSI)	666	5301958639	403
Internation IMSI until		866	3019582052	403
_	HTTP 200 + Cookie	266	6318945582	403
a 200 is returned		RCS duto 996	2346086272	403
	config	config server 995	9642808511	403
		994	9233382889	403
				Correct OIP Iound
		Request	Payload	Status A
Brute force OTP		47	364188	200
	Get config (IMSI, cookie, OTP1)	46	321886	400
Quickly pertorm		45	860405	400
GET over HTTPS	HTTP 40X	44	902309	400
(2)		43	990086	400
trying all possible	Get contig (IMSI, cookie, OTP2)		807303	400
OTP values (up to	STATE IN ANY COCK CITTLE	41	525721	400
Attacker (Attacker	HIIP 200 + XIVIL CONTIG	RCS auto 40	201573	400
ด นาซิเว)	config	config server 39	070424	400
		38	601133	400

E 1-4 Intercept first step: Login using victim's RCS account, activate SMS-over-IP in HSS

> Security Research Labs

[3] 1-4] Intercept second step: Wait for SMS delivery

-Demo-

E 5 Local DNS spoofing enables MITM attacks against default Android RCS implementation

TLS certificates allows hackers to fully hijack RCS sessions with any valid SSL certificate The lack of strict domain matching between initial RCS config parameters and actual

Attacker uses a valid cert for pcscf.attacker.io

Attack sequence Victim's RCS client tries to resolve the IP address of the P-CSCF

The rogue AP replies with a fake response that points to a fake P-CSCF

controlled by the attacker

(a) Victim's RCS client successfully establishes a TLS connection with the fake P-CSCF (valid certificate)

4 The fake P-CSCF transparently forwards all RCS traffic between the victim user and the legitimate P-CSCF

Legitimate P-CSCF					TLS connection to legitimate P-CSCF	
Fake P-CSCF						
Victim access point	DNS: SRV pcscf.operator.com?	2 DNS: 5060, pcscf.attacker.io	3a TLS hello	3b TLS hello (valid cert)	Trusted TLS connection to the attacker 4 SIP REGISTER	

Security Research Labs

Agenda

- 1. Mobile network attack recap
- 2. Attacks on new technologies
- 3. Mitigations

> Security Research Labs

MNOs and RCS vendors can mitigate these issues by applying 7 best practices

	Area	Best practice	Implementation details	Affected components
■ Not all RCS		Authenticate using SIM / secure element	User authentication should be GBA/BSF based	RCS configuration server
deployments are vulnerable to all	Client provisioning	Use strong OTPverification codes	OTP should be at least 8 alphanumeric characters	RCS configuration server
in this presentation		Apply rate limiting	Limit OTP validity to 5 minutes and 3 HTTP request attempts	RCS configuration server, SBC/P-CSCF
We found some networks vulnerable to each		Validate client identity	Validate SIP session using state (e.g. source IP, cookie,)	SBC/P-CSCF
of the attacks To mitigate	RCS services	Avoid information leakage	Strip sensitive information from SIP requests	SBC/P-CSCF, RCS client
attacks, seven countermeasures can improve RCS		Filter uploaded contents	Check/restrict content-type and size provided by clients	SBC/P-CSCF, FT server
deployments	RCS client	Enforce chain of trust	Connect only to trusted domains, validate certificates	RCS client, DNS

Take aways

Questions?

Luca Melette <luca@srlabs.de>, Sina Yazdanmehr <sina@srlabs.de>

