EXERCICE 1C.1

On a donné les valeurs exactes du sinus et cosinus de quelques angles remarquables entre 0 et 90°.

Point								Ī	A	В	C	J				
$x(^{\bullet})$								0	30	45	60	90				
x (rad)	$-\frac{5\pi}{6}$	$-\frac{3\pi}{4}$	$-\frac{2\pi}{3}$	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
cos x								1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0				
sin x								0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1				

- a. Retrouver le point qui correspond à chaque angle.
- **b.** En déduire les valeurs exactes des cosinus et sinus de tous les angles du tableau.

EXERCICE 1C.2 Calculer dans ch	EXERCICE 1C.2 Calculer dans chaque cas l'expression pour la valeur de x donnée :									
$f(x) = -2\sin x \qquad \text{pour } x = \frac{\pi}{2}$	$f(x) = 5\cos x + 3\sin x \text{pour } x = \frac{\pi}{3}$	$f(x) = 3\cos^2 x \qquad \text{pour } x = \pi$								
$f(x) = \cos x \sin x$ pour $x = \frac{\pi}{2}$	$f(x) = \sin^2 x \text{pour } x = \frac{\pi}{3}$	$f(x) = \cos 3x$ pour $x = -\frac{\pi}{2}$								
$f(x) = x \sin x$ pour $x = -\frac{\pi}{6}$	$f(x) = \frac{\cos x - \sin x}{2}$ pour $x = \frac{\pi}{4}$	$f(x) = \cos^2 x \times \sin x$ pour $x = \frac{2\pi}{3}$								

On rappelle les valeurs remarquables des sinus et cosinus :

x (rad)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
<i>x</i> (*)	0	30°	45°	60°	90°
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Les exercices suivants seront résolus <u>sans utiliser la machine</u>.

Mais il est conseillé d'utiliser la figure ci-contre \rightarrow

EXERCICE 1D.1

a. Compléter:

$$\cos 30^{\circ} = \dots$$

$$\sin 45^{\circ} = \dots$$

$$\cos 60^{\circ} = \dots$$

$$\sin 90^\circ = \dots$$

$$\cos 180^{\circ} = \dots$$

$$\sin 120^{\circ} = \dots$$

$$\cos 150^{\circ} = \dots$$

$$\sin 210^{\circ} = \dots$$

$$\cos 330^{\circ} = \dots$$

$$\sin 225^{\circ} = \dots$$

$$\cos 135^{\circ} = \dots$$

$$\sin 270^{\circ} = \dots$$

b. Compléter :

$$\cos\frac{\pi}{4} = \dots$$

$$\sin\frac{\pi}{6} = \dots$$

$$\cos 0 = \dots$$

$$\sin\frac{\pi}{3} = \dots$$

$$\cos\left(-\frac{\pi}{4}\right) = \dots$$

$$\sin\left(-\frac{\pi}{6}\right) = \dots$$

$$\cos \pi = \dots$$

$$\sin\left(-\frac{\pi}{3}\right) = \dots$$

$$\cos\frac{2\pi}{3} = \dots$$

$$\sin\frac{5\pi}{6} = \dots$$

$$\cos \frac{3\pi}{4} = \dots$$

$$\sin\left(-\frac{3\pi}{4}\right) = \dots$$

$$\cos\left(-\frac{5\pi}{3}\right) = \dots$$

$$\sin\left(-\frac{3\pi}{6}\right) = \dots$$

$$\cos\frac{\pi}{2} = \dots$$

$$\sin\left(-\frac{3\pi}{2}\right) = \dots$$

EXERCICE 1D.2

a. Compléter:

$$\cos x = \frac{\sqrt{3}}{2} \operatorname{donc} x = \dots ^{\circ} \operatorname{ou} \dots ^{\circ}$$

$$\sin x = \frac{\sqrt{2}}{2} \operatorname{donc} x = \dots^{\circ} \operatorname{ou} \dots^{\circ}$$

$$\cos x = \frac{1}{2} \operatorname{donc} x = \dots^{\circ} \operatorname{ou} \dots^{\circ}$$

$$\sin x = 1 \text{ donc } x = \dots^{\circ} \text{ ou } \dots^{\circ}$$

$$\cos x = \frac{\sqrt{2}}{2} \operatorname{donc} x = \dots \circ \operatorname{ou} \dots \circ$$

$$\sin x = 0$$
 donc $x = \dots^{\circ}$ ou \dots°

$$\cos x = -\frac{\sqrt{3}}{2} \operatorname{donc} x = \dots^{\circ} \operatorname{ou} \dots^{\circ}$$

$$\sin x = -\frac{\sqrt{2}}{2} \text{ donc } x = \dots ^{\circ} \text{ ou } \dots ^{\circ}$$

$$\cos x = -1 \text{ donc } x = \dots^{\circ} \text{ ou } \dots^{\circ}$$

$$\sin x = -\frac{1}{2} \operatorname{donc} x = \dots^{\circ} \operatorname{ou} \dots^{\circ}$$

$$\cos x = 0$$
 donc $x = \dots \circ$ ou $\dots \circ$

$$\sin x = -\frac{\sqrt{3}}{2}$$
 donc $x = \dots \circ$ ou $\dots \circ$

b. Déterminer une mesure en radians de l'angle dont on connaît le cosinus et le sinus

$$\cos x = \frac{\sqrt{3}}{2} \text{ et } \sin x = -\frac{1}{2} \text{ donc } x = \dots$$

$$\cos x = -\frac{\sqrt{2}}{2}$$
 et $\sin x = -\frac{\sqrt{2}}{2}$ donc $x = \dots$

$$\cos x = 1$$
 et $\sin x = 0$ donc $x = \dots$

$$\cos x = 0$$
 et $\sin x = -1$ donc $x = \dots$

$$\cos x = -\frac{\sqrt{3}}{2} \operatorname{et} \sin x = -\frac{1}{2} \operatorname{donc} x = \dots$$

$$\cos x = -\frac{1}{2} \operatorname{et} \sin x = -\frac{\sqrt{3}}{2} \operatorname{donc} x = \dots$$

Exercice 1E.1:

 $\overline{\text{À l'aide de la formule }} \cos^2 x + \sin^2 x = 1$

- 1) Déterminer $\cos x$ sachant que $\sin x = \frac{2}{3}$ et $x \in \left[0; \frac{\pi}{2}\right]$.
- 2) Déterminer $\sin x$ sachant que $\cos x = -\frac{1}{5}$ et $x \in [-\pi; 0]$.

Exercice 1E.2:

Démontrer que pour tout réel x, on a :

- a) $(\cos x + \sin x)^2 + (\cos x \sin x)^2 = 2$
- b) $(\cos x + \sin x)^2 (\cos x \sin x)^2 = 4\cos x \sin x$

Exercice 1E.3:

On donne $\cos \frac{\pi}{5} = \frac{1+\sqrt{5}}{4}$.

- 1) Calculer la valeur exacte de $\sin \frac{\pi}{5}$.
- 2) En déduire les valeurs exactes du sinus et du cosinus des réels $\frac{4\pi}{5}$ et $\frac{9\pi}{5}$.

Exercice 1E.4:

On donne $\cos \frac{\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4}$.

- 1) Calculer la valeur exacte de $\sin \frac{\pi}{12}$.
- 2) A l'aide du cercle trigonométrique, en déduire $\cos \frac{11\pi}{12}$ et $\sin \frac{11\pi}{12}$.

EXERCICE 2A.1

Placer les points suivants sur le cercle en fonction du réel qui leur est associé :

$$A(\pi)$$

$$B\left(\frac{\pi}{12}\right)$$

$$C\left(\frac{\pi}{3}\right)$$

$$D\left(\frac{3\pi}{4}\right)$$

$$E\left(\frac{-\pi}{6}\right)$$

$$F\left(\frac{2\pi}{3}\right)$$

$$G\left(\frac{\pi}{2}\right)$$

$$H\left(\frac{-3\pi}{2}\right)$$

EXERCICE 2A.2

Placer les points suivants sur le cercle en fonction du réel qui leur est associé :

$$A(5\pi)$$

$$B\left(\frac{-5\pi}{2}\right)$$

$$C\left(\frac{11\pi}{3}\right)$$

$$D\left(\frac{-11\pi}{4}\right)$$

$$E\left(\frac{13\pi}{6}\right)$$

$$F\left(\frac{-5\pi}{3}\right)$$

$$G\left(-534\pi\right)$$
 $H\left(\frac{-99\pi}{2}\right)$

EXERCICE 2A.3

Associer entre eux les nombres qui correspondent au même point du cercle :

$$\pi$$

$$\frac{\pi}{2}$$

$$\frac{3\pi}{4}$$

$$-\frac{\pi}{4}$$

$$\frac{3\pi}{2}$$

$$\frac{\pi}{3}$$

$$6\pi$$

$$-\frac{4\pi}{3}$$

$$\frac{9\pi}{4}$$

$$-\frac{14\pi}{3}$$

$$14\pi$$

$$-\frac{8\pi}{3}$$

$$\frac{\bullet}{5\pi}$$

$$\frac{\bullet}{\pi}$$

$$3\pi$$

$$\frac{\bullet}{7\pi}$$

$$-\frac{\pi}{2}$$

$$\frac{2\pi}{3}$$

$$-\frac{5\pi}{4}$$

$$\frac{\bullet}{7\pi}$$

EXERCICE 2A.4 Retrouver 4 autres longueurs d'arcs (2 positives, 2 négatives) correspondant au même point.

EXERCICE 211.4	Renouver 4 daties longueurs a dies (2	positives, 2 negatives) ee	mespondant au meme poi
$\mathbf{a.} \; \frac{3\pi}{2} \; \boldsymbol{\rightarrow}$		$\mathbf{b.} - \frac{\pi}{4} \rightarrow$	
c. $\frac{2\pi}{2}$		$\mathbf{d.} - \frac{5\pi}{12} \Rightarrow$	

EXERCICE 2A.5

a. A l'aide du tableau, retrouver la longueur de l'arc associé à l'angle (en degré).

a: A i aide da diolead, letrod ver la fongueur de i are associe à i angle (en degre).										
Degrés	180	15	30	90	135	150				
Longueur de l'arc	π									

h. A l'aide du tableau, retrouver l'angle (en degrés) associé à l'arc.

6. A 1 and du tableau, retrouver 1 angle (chi degres) associe à 1 arc.										
Longueur de l'arc	π	$\frac{5\pi}{12}$	$\frac{5\pi}{6}$	$\frac{2\pi}{3}$	$\frac{9\pi}{4}$	$\frac{5\pi}{2}$				
Degrés	180									

Notre Dame de La Merci – Montpellier

Mesures principales d'angles en radians

MODELES: Mesures principales des angles suivants:

$$\frac{33\pi}{13}$$
? On utilise le fait que $2\pi = \frac{26\pi}{13}$: Ainsi: $\frac{33\pi}{13} = \frac{26\pi}{13} + \frac{7\pi}{13} = \frac{7\pi}{13} + 2\pi$ avec $\frac{7\pi}{13} \in]-\pi;\pi]$

$$-\frac{19\pi}{4} ? \text{ On a : } 2\pi = \frac{8\pi}{4} : \text{ Ainsi : } -\frac{19\pi}{4} = -\frac{8\pi}{4} - \frac{8\pi}{4} - \frac{3\pi}{4} = -\frac{3\pi}{4} - 2\pi - 2\pi \text{ avec } \frac{-3\pi}{4} \in \left] -\pi;\pi\right]$$

$$\frac{31\pi}{6} ? \quad \text{On a: } 2\pi = \frac{12\pi}{6} : \quad \text{Ainsi: } \frac{31\pi}{6} = \frac{12\pi}{6} + \frac{12\pi}{6} + \frac{7\pi}{6} = \frac{7\pi}{6} + 2 \times 2\pi \qquad \underline{\text{MAIS}} \quad \frac{7\pi}{6} \notin \left] -\pi;\pi\right]$$

$$\frac{31\pi}{6} = \frac{12\pi}{6} + \frac{12\pi}{6} + \frac{12\pi}{6} - \frac{5\pi}{6} = -\frac{5\pi}{6} + 3 \times 2\pi \quad \text{avec} \quad \frac{-5\pi}{6} \in \left] -\pi;\pi\right]$$

$$-\frac{29\pi}{5} ? \text{ On a : } 2\pi = \frac{10\pi}{5} : \text{ Ainsi } -\frac{29\pi}{5} = -\frac{10\pi}{5} - \frac{10\pi}{5} - \frac{9\pi}{5} = -\frac{9\pi}{5} - 2 \times 2\pi \quad \underline{\text{MAIS}} \quad \frac{-9\pi}{6} \notin \left] -\pi;\pi\right]$$
$$-\frac{29\pi}{5} = -\frac{10\pi}{5} - \frac{10\pi}{5} - \frac{10\pi}{5} + \frac{1\pi}{5} = \frac{\pi}{5} - 3 \times 2\pi \quad \text{avec} \quad \frac{\pi}{5} \in \left] -\pi;\pi\right]$$

Exercice 2B.1: Quelles sont les mesures principales des angles suivants :

$$\frac{19\pi}{3} ? \text{ On a } 2\pi = \frac{\dots \pi}{3} : \text{ Ainsi : } \frac{19\pi}{3} = \frac{\dots \pi}{3} + \frac{\dots \pi}{3} + \frac{\dots \pi}{3} + \frac{\dots \pi}{3} = \frac{\dots \pi}{3} + 3 \times 2\pi , \frac{\dots \pi}{3} \in \left] -\pi;\pi\right]$$

$$\frac{33\pi}{6} ? \text{ On a } 2\pi = \frac{\dots \pi}{6} : \text{ Ainsi : } \frac{33\pi}{6} = \frac{\dots \pi}{6} + \frac{\dots \pi}{6} + \frac{\dots \pi}{6} = \frac{\dots \pi}{6} + 2 \times 2\pi \quad \underline{\text{MAIS}} \quad \frac{\dots \pi}{6} \neq \left] -\pi; \pi\right]$$

$$\frac{33\pi}{6} = \frac{\dots \pi}{6} + \frac{\dots \pi}{6} + \frac{\dots \pi}{6} - \frac{\dots \pi}{6} = -\frac{\dots \pi}{6} + 3 \times 2\pi \quad , \quad \dots \frac{\pi}{2} \in \left] -\pi; \pi\right]$$

$$\frac{-23\pi}{9}$$
 ?

$$\frac{-25\pi}{7}$$
 ?

Exercice 2B.2:

Pour chaque mesure d'angle, en radians, donner la mesure principale θ_i (i variant de 1 à 12), puis placer le point M_i correspondant sur un cercle trigonométrique :

$$\frac{7\pi}{4}; \frac{5\pi}{4}; \frac{75\pi}{4}; \frac{13\pi}{3}; \frac{-13\pi}{3}; \frac{19\pi}{5}; -124\pi; 125\pi; \frac{341\pi}{12}; -379\pi; \frac{325\pi}{4}; -\frac{1023\pi}{6}$$

Pour mémoire :

x (en radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0

Exercice 3A.1 : Exprimer A, B, C en fonction de $\cos x$ et $\sin x$ en détaillant les différentes étapes de calcul

$$A = 2\cos(-x) + \cos(\pi - x) + 5\sin\left(\frac{\pi}{2} - x\right) - 3\cos(\pi + x)$$

$$B = \sin\left(\frac{\pi}{2} + x\right) - 5\cos(\pi - x) + 4\cos(3\pi + x) + \cos\left(\frac{\pi}{2} + x\right)$$

$$C = \cos\left(x + \frac{5\pi}{2}\right) - 2\sin(3\pi + x) + 4\sin\left(x + \frac{\pi}{2}\right)$$

$$D = 5\cos(x + \pi) - 7\sin(\pi - x) + 3\cos\left(x + \frac{\pi}{2}\right) - 4\sin\left(\frac{\pi}{2} - x\right)$$

Ex 3A.2:

Exprimer en fonction de $\cos x$ et/ou $\sin x$:

$$A = \sqrt{2}\cos\left(x + \frac{\pi}{4}\right) + \sqrt{2}\sin\left(x + \frac{\pi}{4}\right)$$

$$B = \sin\left(\frac{\pi}{3} + x\right) - \sin\left(\frac{\pi}{3} - x\right)$$

$$C = \cos\left(x + \frac{2\pi}{3}\right) + \cos\left(x + \frac{4\pi}{3}\right)$$

Ex 3A.3:

Vérifier que
$$\frac{5\pi}{12} = \frac{\pi}{6} + \frac{\pi}{4}$$

puis calculer
$$\cos \frac{5\pi}{12}$$
 et $\cos \frac{7\pi}{12}$

Ex 3A.4:

Le réel x est tel que
$$\cos x = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 et $0 < x < \frac{\pi}{2}$

calculer cos 2x et en déduire la valeur de x

Ex 3A.5:

Soit
$$x \neq \frac{k\pi}{2}$$
 ($k \in \mathbb{Z}$); calcular $\frac{\sin 3x}{\sin x} - \frac{\cos 3x}{\cos x}$