WILLIAM H. BROWN THOMAS POON

www.wiley.com/college/brown

CHAPTER ONE

Covalent Bonding and Shapes of Molecules

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved

Organic Chemistry

- Organic chemistry: The study of the compounds of carbon.
- Over 10 million organic compounds have been identified.
 - About 1000 new ones are discovered or synthesized and identified each day!
- C is a small atom
 - It forms single, double, and triple bonds.
 - It is intermediate in electronegativity (2.5).
 - It forms strong bonds with C, H, O, N, S, the halogens, and some metals.

WILEY

Copyright @ 2014 John Wiley & Sons, Inc. All rights reserved.

1-3

Electronic Structure of Atoms • Figure 1.1 Schematic of an Atom 10⁻¹⁰ m (a) - A small dense nucleus, diameter $10^{-14} - 10^{-15}$ m, which contains positively charged protons, neutrons, and most of Nucleus Space the mass of the atom. (protons and occupied by neutrons) electrons - Extranuclear space, Proton diameter 10⁻¹⁰ m, which Neutron contains negatively charged electrons.

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Electronic Structure of Atoms

- Shells are divided into subshells called orbitals, which are designated by the letters s, p, d,...
 - -s (one per shell)
 - -p (set of three per shell 2 and higher)
 - d (set of five per shell 3 and higher) ...

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Electronic Structure of Atoms

- Problem: Write the ground-state electron configuration of each element, given its atomic number, and describe the relationship between an atom's ground-state electron configuration and its position in the Periodic Table.
 - (a) Mg (12) and Ar(18)
 - (b) P(15) and CI (17)

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

1-9

Lewis Structures

- Gilbert N. Lewis
- Valence shell: The outermost electron shell of an atom.
- Valence electrons: Electrons in the valence shell of an atom. These electrons are used in forming chemical bonds.
- Lewis structure of an atom
 - The symbol of the atom represents the nucleus and all inner shell electrons.
 - Dots represent electrons in the valence shell of the atom.

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Lewis Model of Bonding

- Atoms bond together so that each atom in the bond acquires the electron configuration of the noble gas nearest it in atomic number.
 - An atom that gains electrons becomes an anion.
 - An atom that loses electrons becomes a cation.
 - lonic bond: A chemical bond resulting from the electrostatic attraction of an anion and a cation.
 - Covalent bond: A chemical bond resulting from two atoms sharing one or more pairs of electrons.
- We classify chemical bonds as ionic, polar covalent, and nonpolar covalent based on the difference in electronegativity between the bonded atoms.

WILEY

Copyright @ 2014 John Wiley & Sons, Inc. All rights reserved.

ElectronegativityElectronegativ

- Electronegativity: A measure of the force of an atom's attraction for the electrons it shares in a chemical bond with another atom.
- Pauling scale

WILEY

- Increases from left to right within a period.
- Increases from bottom to top in a group.

Ionic Bonds

 An ionic bond forms by the transfer of electrons from the valence shell of an atom of lower electronegativity to the valence shell of an atom of higher electronegativity.

$$\operatorname{Na}(1s^2\ 2s^2\ 2p^6\ 3s^1\) \ + \ \operatorname{F}(1s^2\ 2s^2\ 2p^5\) \ \longrightarrow \ \operatorname{Na}^+(1s^22s^22p^6) \ + \ \operatorname{F}^-(1s^22s^2\ 2p^6\)$$

$$\operatorname{Copyright}\circ\operatorname{John\,Wiley\,\&\,Sons,\,Inc.\,All\,rights\,reserved.}$$

 We show the transfer of a single electron by a single-headed (barbed) curved arrow.

WILEY

Copyright @ 2014 John Wiley & Sons, Inc. All rights reserved.

Covalent Bonds

- A covalent bond forms when electron pairs are shared between two atoms whose difference in electronegativity is 1.9 or less.
 - An example is the formation of a covalent bond between two hydrogen atoms.
 - The shared pair of electrons completes the valence shell of each hydrogen.

```
\label{eq:hammon} \begin{array}{lll} H \cdot & + \cdot H & \longrightarrow & H - H \\ & \Delta H^{\,0} & = -435 \text{ kJ/mol (} -104 \text{ kcal/mol)} \end{array} Copyright ^{\circ} John Wiley & Sons, Inc. All rights reserved.
```

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved

1-17

Polar Covalent Bonds

- In a polar covalent bond:
 - The more electronegative atom has a partial negative charge, indicated by the symbol δ –.
 - The less electronegative atom has a partial positive charge, indicated by the symbol δ +.
- In an electron density model:
 - Red indicates a region
 - of high electron density.
 - Blue indicates a region
 - of low electron density.

H-

WILEY

Copyright @ 2014 John Wiley & Sons, Inc. All rights reserved.

Drawing Lewis Structures

- To draw a Lewis structure:
 - Determine the number of valence electrons in the molecule or ion.
 - Determine the connectivity (arrangement) of atoms.
 - Connect the atoms by single line between atoms.
 - Arrange the remaining electrons so that each atom has a complete valence shell.
 - Show bonding electrons as single lines.
 - Show nonbonding electrons as pairs of dots.
 - Atoms share 1 pair of electrons in a single bond, 2 pairs in a double bond, and 3 pairs in a triple bond.

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Lewis Structures

- In neutral molecules containing C, H, N, O, and halogen
 - Hydrogen has one bond.
 - Carbon has 4 bonds and no unshared electrons.
 - Nitrogen has 3 bonds and 1 unshared pair of electrons.
 - Oxygen has 2 bonds and 2 unshared pairs of electrons.
 - Halogen has 1 bond and 3 unshared pairs of electrons.

WILEY

Copyright @ 2014 John Wiley & Sons, Inc. All rights reserved.

Formal Charge

- Formal charge: the charge on an atom in a molecule or polyatomic ion.
 - Write a Lewis structure for the molecule or ion.
 - Assign each atom all its unshared (nonbonding) electrons and one-half its shared (bonding) electrons.
 - Compare this number with the number of valence electrons in the neutral, unbonded atom.
 - If the number is less than that assigned to the unbonded atom, the atom has a positive formal charge.
 - If the number is greater, the atom has a negative formal charge.

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

1-23

Lewis Structures

- Problem: Draw a Lewis structure for each molecule or ion and show all formal charges.
- (a) NH_4^+ (b) CO (c) NO_2^+

- (d) CH_3^+ (e) N_3^- (f) $CH_3NH_3^+$ (g) BF_4^- (h) CH_3^- (i) $CH_3OH_2^+$

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Lewis Structures

- Problem: Which is an acceptable Lewis structure (formal charges are not shown) for carbon monoxide, CO? For an acceptable structure, assign formal charges as appropriate.
 - (a) C≡O:
- (c) C=0
- **(b)** :C≡O:
- (\mathbf{d}) : C-O

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

1-25

Valence-shell Electron-Pair Repulsion

- VSEPR is based on two concepts.
 - Atoms are surrounded by regions of electron density.
 - Regions of electron density repel each other.

WILEY

Copyright @ 2014 John Wiley & Sons, Inc. All rights reserved.

• Shapes of Methane, Ammonia, and Water molecules. Unshared electron pairs 109.5° Copyright © John Wiley & Sons, Inc. All rights reserved. Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Shapes of Molecules • Shapes of carbon dioxide and acetylene. a triple bond is treated as a single region of electron density Carbon dioxide o = c = oSide view End view (b) Acetylene $H-C \equiv C-H$ Side view End view Copyright © John Wiley & Sons, Inc. All rights reserved. 1-29 WILEY Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

VSEPR

- Problem: Draw a Lewis structure and predict all bond angles for these molecules and ions.
 - (a) NH_4^+
- (b) CH₃NH₂
- (c) CH₃OH

- (d) $CH_3CH = CH_2$
- (e) H_2CO_3
- (f) HCO₃⁻

- (g) CH₃CHO
- (g) CH₃COOH
- (h) BF₄-

WILEY

Copyright @ 2014 John Wiley & Sons, Inc. All rights reserved.

Shapes of Molecules

 Problem: Following is a structural formula of benzene, C₆H₆, which we will study in Chapter 9.

- (a) Using VSEPR, predict each H-C-C and C-C-C bond angle in benzene.
- (b) Predict the shape of a benzene molecule.

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

1-31

Polar and Nonpolar Molecules

- A molecule is polar if:
 - It has polar bonds and
 - The vector sum of its bonds dipoles is zero (that is, the bond dipoles cancel each other).
 - Carbon dioxide has two polar covalent bonds and because of its geometry, is a nonpolar molecule.

WILEY

Polar and Nonpolar Molecules

 A water molecule has two polar bonds and, because its geometry, is a polar molecule.

Polar and Nonpolar Molecules

 An ammonia molecule has three polar covalent bonds, and because of its geometry, is a polar molecule.

1-35

Chloromethane and formaldehyde are polar molecules. Acetylene is a nonpolar molecule. Cliph H H C = C - H Chloromethane (polar) Chloromethane (polar) Chloromethane (polar)

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Resonance

- Linus Pauling 1930s
 - Many molecules and ions are best described by writing two or more Lewis structures.
 - Individual Lewis structures are called contributing structures.
 - Connect individual contributing structures by a double-headed (resonance) arrow.
 - The molecule or ion is a hybrid of the various contributing structures.

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

1-37

Resonance

 Figure 1.12 The carbonate ion as a hybrid of three equivalent contributing structures.
 Curved arrows show the redistribution of valence electrons between one contributing structure and the next.

Copyright © John Wiley & Sons, Inc. All rights reserved

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Resonance

- Curved arrow: A symbol used to show the redistribution of valence electrons.
- In using curved arrows, there are only two allowed types of electron redistribution:
 - from a bond to an adjacent atom.
 - from an atom to an adjacent bond.
- Electron pushing by the use of curved arrows is a survival skill in organic chemistry.
 - learn it well!

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

1-39

Resonance

- All acceptable contributing structures must:
- 1. Have the same number of valence electrons.
- 2. Obey the rules of covalent bonding.
 - No more than 2 electrons in the valence shell of H.
 - No more than 8 electrons in the valence shell of a 2nd period element.
 - 3rd period elements may have up to 12 electrons in their valence shells.
- 3. Differ only in distribution of valence electrons.
- 4. Have the same number of paired and unpaired electrons.

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Resonance

 Examples of ions and a molecule best represented as resonance hybrids. Draw contributing structures for each resonance hybrid.

carbonate ion $CO_3^{2^-}$ acetate ion CH_3COO^- acetone CH_3COCH_3

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

1-41

Resonance

- Problem: Nitrous oxide, N₂O, laughing gas, is a colorless, nontoxic, tasteless, and odorless gas. Because it is soluble in vegetable oils (fats), it is used as a propellant in whipped toppings.
 - (a) How many valence electrons are present in nitrous oxide?
 - (b) Write two equivalent contributing structures for this molecule. The connectivity is N—N—O. Be certain to show formal charges, if any are present.
 - (c) Explain why the following is not an acceptable contributing structure.

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Shapes of Atomic Orbitals

- All s orbitals have the shape of a sphere, with its center at the nucleus.
 - Of the s orbitals, a 1s orbital is the smallest, a 2s orbital is larger, and a 3s orbital is larger still.

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

1-43

Shapes of Atomic Orbitals

- A p orbital consists of two lobes arranged in a straight line with the center at the nucleus.
- -p orbitals come in sets of three: $2p_x$, $2p_y$, and $2p_z$.

WILEY

Copyright @ 2014 John Wiley & Sons, Inc. All rights reserved.

Orbital Overlap Model of Bonding

- A covalent bond forms when a portion of an atomic orbital of one atom overlaps a portion of an atomic orbital of another atom.
 - In forming the covalent bond in H–H, for example, there is overlap of the 1s orbitals of each hydrogen.

formed by overlap

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

1-45

Hybrid Orbitals

- The Problem:
 - Overlap of 2s atomic orbitals of one atom and 2p atomic orbitals of another atom would give bond angles of approximately 90°.
 - Instead we observe bond angles of approximately 109.5°, 120°, and 180°.
- A Solution
 - Hybridization of atomic orbitals.
 - 2nd row elements use sp^3 , sp^2 , and sp hybrid orbitals for bonding.

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Hybrid Orbitals

- We study three types of hybrid atomic orbitals:
 - sp³ (one s orbital + three p orbitals give four sp³ hybrid orbitals).
 - $-sp^2$ (one s orbital + two p orbitals give three sp^2 hybrid orbitals).
 - sp (one s orbital + one p orbital give two sp hybid orbitals).
- Overlap of hybrid orbitals can form two types of bonds, depending on the geometry of the overlap:
 - $-\sigma$ bonds are formed by "direct" overlap.
 - $-\pi$ bonds are formed by "parallel" overlap.

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

1-47

*sp*³ Hybrid Orbitals

- Each sp³ hybrid orbital has two lobes of unequal size.
- The four sp³ hybrid orbitals are directed toward the corners of a regular tetrahedron at angles of 109.5°.
- Figure 1.16 sp^3 hybrid orbitals.

WILEY

Copyright @ 2014 John Wiley & Sons, Inc. All rights reserved.

*sp*² Hybrid Orbitals

- A single *sp*² hybrid orbital has two lobes of unequal size.
 - The three sp^2 hybrid orbitals are directed toward the corners of an equilateral triangle at angles of 120°.
 - The unhybridized 2p orbital is perpendicular to the plane of the three sp^2 hybrid orbitals.

sp Hybrid Orbitals

- A single sp hybrid orbital has two lobes of unequal size.
 - The two sp hybrid orbitals lie in a line at an angle of 180°.
 - The two unhybridized 2p orbitals are perpendicular to each other and to the line through the two sp hybrid orbitals.

WILEY

1-53

sp Hybrid Orbitals

– Figure 1.22 Covalent bonding in acetylene. A carbon-carbon triple bond consists of one sigma (σ) bond and two pi (π) bonds.

Hybrid Orbitals

Groups Bonded to Carbon	Orbital Hybridization	Predicted Bond Angles	Types of Bonds to Carbon	Example	Name
4	sp³	109.5°	four sigma bonds	$\begin{array}{ccc} H & H \\ & \\ H-C-C-H \\ & H \end{array}$	ethane
3	sp^2	120°	three sigma bonds and one pi bond	H $C=C$ H	ethylene
2	sp	180°	two sigma bonds and two pi bonds	н-с=с-н	acetylene

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

1-55

Functional Groups

Copyright © John Wiley & Sons, Inc. All rights reserved.

- Functional Group: An atom or group of atoms within a molecule that shows a characteristic set of physical and chemical properties.
- Functional groups are important for three reasons, they are:
 - The units by which we divide organic compounds into classes.
 - The sites of characteristic chemical reactions.
 - The basis for naming organic compounds.

WILEY

Copyright @ 2014 John Wiley & Sons, Inc. All rights reserved.

Functional Groups

 Alcohol: A compound that contains an –OH (hydroxyl group) bonded to a tetrahedral carbon atom.

Functional Groups

- Amine: A compound that contains an amino group—a nitrogen atom bonded to one, two, or three carbon atoms.
 - Amines are classified as 1°, 2°, and 3° according to the number of carbon atoms bonded directly to the nitrogen atom.

