	Vemen	edč 23/10/2021
SUCCE.	SSIONI	
DEFINIZI	OVÉ: Una Successione è una	<u>funktione</u> il mi dominio e N spure un
	suo sottoinsieme illimitato.	J "
· Es : Sun	rivo: Om = \m'+1, intendo la fu	minime (definita come) $1 \mapsto \sqrt{1^2 + 1} = \sqrt{2}$
		2 → 2 ² +1 =√5
	De la implicave la successi	one posso anche sociuer:
	$\alpha_1, \alpha_2, \alpha_3, \dots$	
	(c) {an} melv	
	(3) { a _m }	
(graficam	nente:) $\left(\left\{\alpha_{m}\right\}_{m \in \mathbb{N}} = \sqrt{m^{2} + 1}\right)$	(:0
	$\left(\left\{ a_{m} \right\}_{m \in \mathbb{N}} = \left\{ m^{2} + 1 \right\} \right)$	De il dominio è Roun
	<u> </u>	suo sottoinsieme la successione
	Wo	Si chiama <u>Successione reale</u> .
	J5	
	VZ	
	1 2 3	
DEFLUIZI	OUE: Data fam? si a	lice the lime an = l & R se Y intorns
00112101	di l. 7 (/= (N+0)	intorno di + so tale he a, EV Vn E V1 N,
	avois Vm7N.	
	1	
	4 2	2 3 4 // [3
· <u>es</u> : a	$m = \frac{(-1)^m}{m}, owere : -1, \frac{1}{2},$	$-\frac{1}{3}$, $\frac{1}{4}$, $-\frac{1}{5}$,
	M	3 4

DEFINIZIONE: Diviamo che { am} e limitata se 3 M 70 tale che lam! = M, Vn e IN. • Es: am = (-1) ^m , a m = sim(m) somo limitate. M	UE: Se {and ha limite finito (l & Ph), allora diciamo che an e' convergente
PROPOSITIONE: Se {am} & convergente, allora & limitata (binostra dea casa) DEFINIZIONE ALTERNATIVA DI LIMITE: Se le Re dicionno che lim am = l se V & 70, 3 N 70 tale che lam-ll < & Vm e N Com m 7 N asservazione: M! = m(m-1km-2)3.2.1 DEFINIZIONE: M! = m(m-1km-2)3.2.1 2! = 2.1 = 2	NE: Divamo che { an } e limitata se 3 M 70 tale che lan = M, Vn = IN.
PROPOSITIONE: Se {am} & convergente, allora & limitata (binostra dea casa) DEFINIZIONE ALTERNATIVA DI LIMITE: Se le Re dicionno che lim am = l se V & 70, 3 N 70 tale che lam-ll < & Vm e N Com m 7 N asservazione: M! = m(m-1km-2)3.2.1 DEFINIZIONE: M! = m(m-1km-2)3.2.1 2! = 2.1 = 2	м
DEFINIZIONE ALTERNATIVA DI LIMITE: Se le R dicionno che lin an = l se V e 70, 3 N 70 tole che lan-lI < e Vm e N COM M 7 N OSSERVAZIONE: M! = M(M-1)(M-2)3.2.1 OSS: O! = 1 1! = 1 2! = 2.1 = 2	n = n² mon e limitata.
Se $l \in \mathbb{R}$ diciomo che lim $a_m = l$ se $\forall e$ 70, $\exists U$ 70 tale che $ a_m - l < e$ $\forall m \in \mathbb{N}$ com $m \neq U$ OSSERUAZIONE: $M! = m(m-1)(m-2)3.2.1$ DEFINIZIONE: $M! = m(m-1)(m-2)3.2.1$ 2! = 2.1 = 2 2! = 2.1 = 2	10 NE: Se {am} & convergente, allora & limitata (DINOSTRA PER CASA)
DEFINIZIONE: M! = M(M-1)(M-2)3.2.1 1! = 1 2! = 2.1 = 2 2! = 2.1 = 2	R dicioumo che lim $a_m = l$ se $\forall \mathcal{E}$ 70, $\exists \mathcal{U}$ 70 tale che $ a_m - l < \mathcal{E}$ $\forall m \in \mathbb{N}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
> Chiavamente, lim n! = +00	Chiaramente, lim n! = +00
$\frac{1}{1000} \cdot \frac{1}{1000} \cdot \frac{1}{10000} \cdot \frac{1}{100000} \cdot \frac{1}{100000} \cdot \frac{1}{10000000} \cdot \frac{1}{100000000} \cdot \frac{1}{10000000000} \cdot \frac{1}{10000000000000000000000000000000000$	$n = \frac{m^{\frac{1}{N}}}{m!}$, $k \in \mathbb{N}$, converge? Ovio. $\lim_{m \to +\infty} m^{\frac{1}{N}} = +\infty$, $\lim_{m \to +\infty} m! = +\infty$.
Chi tra nh e n! va a + oo più rapidamente? Vince m!.	
$Q_{M} = \underbrace{M \cdot M \cdot \cdot M}_{M(M-1) \cdot \cdot 3 \cdot 2 \cdot 1} = \underbrace{M \cdot M \cdot M \cdot \cdot M}_{M(M-1) \cdot (M-2)} \cdot \underbrace{M \cdot 1}_{M-M+1} \cdot \underbrace{L \cdot \cdot J \cdot M}_{M-M+1} \cdot \underbrace{1}_{M-M-1}$	M(M-1) 3.2.1 $M(M-1)$ $(M-2)$ $M-H+1$ $M-H$ 1
$\frac{\text{OSSC}_{\text{FWOKNOMe}}: M}{M} < \frac{M}{M-1} < \cdots < \frac{M}{M-H+1} = 1 + \frac{H-1}{M-H+1} \leq 1 + \frac{H-1}{M-1} = H$	<u>servacione</u> : <u>M</u> < <u>M</u> < < <u>M</u> = 1 + <u>H-1</u> < 1 + H-1 = H

$\frac{1}{m} = \frac{1}{m} \left(\cos \left(\frac{1}{m} \right) \right) = \frac{2}{m} $
Ossowo the: $\lim_{X \to +\infty} \cos\left(\frac{1}{X}\right) = \lim_{y \to 0} \cos(y) = 1 = 7 \lim_{M \to +\infty} \cos\left(\frac{1}{M}\right) = 1$
$\lim_{n \to +\infty} \frac{n^2 - 3n + 2}{-2n^2 + n - 4} = -\frac{1}{2} \left(\text{lo so fare con } x^{-2} \text{ losto di } n^{-4} \right)$
• EZ: $\lim_{M \to +\infty} M \sin(\frac{1}{M}) = \lim_{M \to +\infty} \frac{\sin(\frac{1}{M})}{m} = \lim_$
POSSO AUCHE SCAIVERE:
$\lim_{M \to +\infty} \frac{\operatorname{Sim}(\frac{1}{M})}{\frac{1}{M}} = \lim_{M \to +\infty} \frac{\operatorname{Sim} y}{y \neq 0} = 1$
D Teoremi di: 1) PERMANENZA DEL SEGNO 2) CONFRONTO 3) Z CARABINIERI
Volgomo anche por le successioni.
PROPOSITIONE: Ogni successione momotoma (crescente o decrescente) ha limite. Ad esempio, una successione crescente ha limite finito o + 00, ma non quo' non avere limite.
21

·ES: (-1) mon ha limite; ed infatti non è monotona. (Grafia)
(Saya)

· Es: La successione geometrica M, ore $\tilde{R} = Ragione$ della successione. $\lim_{M \to +\infty} \pi = \int_{0}^{\infty} + \infty \qquad \text{Se } \kappa \neq 1$ $\int_{0}^{\infty} \int_{\infty} \kappa = 1$ $\int_{0}^{\infty} \int_{0}^{\infty} \kappa = 1$ $\int_{0}^{\infty} \int_{0}^{\infty} \kappa = 1$ $\int_{0}^{\infty} \int_{0}^{\infty} \kappa = 1$ Si può comfrantare com: $\lim_{x \to +\infty} b^x = \begin{cases} +\infty & \text{se } b > 1 \\ 0 & \text{se } 0 < b < 1 \end{cases}$ (GRAFICAMENTE:) (m, n 71) (02 x 21) (-12×20) BONUS: IL COEFFICIENTE BINOMIALE $\begin{pmatrix} M \end{pmatrix} = \frac{M!}{H!(M-H)!}$

Pierluigi Covone - 29.10.2021