Title these

Pourquoi faire une these?

Aghiles Djoudi¹², Rafik Zitouni², Nawel Zangar¹ and Laurent George¹

¹LIGM/ESIEE Paris & ²ECE Research Lab Paris

18 décembre 2014

- 1. Introduction
- 2. Academic Survey
- Industrial Survey
- FCM for LoRa setting
- Testbed
- 6. Conclusion

Massive IoT devices

Emergence of new IoT devices that need a wide area wireless communications

Figure 1. Diversity of IoT devices [1].

```
    2012: Sigfox
    2015: Long Range (LoRa)
        → Open access
    2016: Narrow Band-Internet of Things (NB-IoT)
```

1. Introduction 1/35

IoT wireless communication

Wireless communication offers different Quality of Service (QoS) performances

- 1) Cellular networks:
 - ⇒ 2G, ..., 5G
- 2) Short range networks:
 - Jigbee, Bluetooth, Wifi
- 3) Long range networks:
 - LoRa, Sigfox, NB-IoT

Figure 2. Short range, Cellular and Long range networks.

1. Introduction 2/35

IoT wireless communication

Wireless communication performance need to be evaluated to match applications requirements

Figure 3. LPWAN comparison.

1. Introduction 3/35

Applications diversification

Each application has its own communication requirements

 Medical Assisted
 8
 90
 100-200

 Safety Monitoring
 2
 95
 100-200

Table 1. Applications requirements in IoT [2], [3]

PR

[pkt/day]

10

11

10

24

192

100

5

8

PS

[Byte]

10-20

10-20

10-20

10-20

50-100

50-100

50-100

100-200

PDR

min [%]

90

90

80

60

80

70

90

85

Figure 4. IoT applications [2].

1. Introduction 4/35

Applications

Wearables

Smart Grid

Smart Bicycle

Environmental

Animal Tracking

Smoke Detectors

Waste Management

Water/Gas Metering

Applications diversification

Each application has its own communication requirements

		6
1	Transportation	
Healthcare		Industry
Agriculture	Application Domain Independent Services (Horizontal Market)	Market
Smart home		School WO
Domain Specific Applications (Vertical Market)	Vehicles 1	Raw data to the cloud Action based on analytics
Figure 4.	o Tapplicat	Intra-domain sensor/actuator communication
HOWID		

		· · · · · · · · · · · · · · · · · · ·		
Applications	PR [pkt/day}	min [%]	PS [Byte]	
Wearables	1000	90	10-20	
Smoke Detectors	25 ⁶ 11	90	10-20	
Smart Grid	10	80	10-20	
Waste Management	24	60	10-20	
Smart Bicycle	192	80	50-100	
Animal Tracking	100	70	50-100	
,Environmental	5	90	50-100	
Water/Gas Metering	8	85	100-200	
Medical Assisted	8	90	100-200	
Safety Monitoring	2	95	100-200	

Table 1. Applications requirements in IoT [2], [3]

1. Introduction 4/3

- 2. Academic Survey

- 1. Genetic algorithm
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5. Marcov Chain
- 6. Best Response Dynamics
- 7. Fictitious Paly
- 8. Reinforcement Learning

- 9. Joint Utility Strategy
- 10.Trial and Error Learning
- 11 Regret Matching Learning
- 12Jmitation Learning
- 13.Clustering

- 2. Academic Survey

1. Genetic algorithm

Genetic algorithm

- $G = [g_{11}, ..., g_{nc}], g_{ij} \in [0, 1], 1 \le i \le n, 1 \le j \le c.$
- → n: received packets, c: applications.
- $G_0 = [g_{11}, ..., g_{nc}], \quad g_{ij} = q_{ij} / \sum_{l=1}^{c} q_{il}, \forall i,j.$ ⇒ $q_{ij} = random(\mathbb{R}), \forall i,j.$
- $G_t = [g_1, ..., g_n]$

→ Selection (roulette wheel):

- 1) $f(r_i) = \beta(1-\beta)^{r_i-1}$ * $\beta \in [0,1]$ biggest section probability allowed.
- * $r_i \in [1, n]$ rank of q_i
- 2) $\overline{g_x} = \{g_{x^1}, ..., g_{x^2}\}, F(r_{i-1}) \le h_{x^e} \le F(r_i), 1 \le e \le z \le n, \forall i$
 - $*h_{x^e} \in [0,1], h \sim Uniform$
 - * z: number of selected packets.

→ Fitness/Crossover/Clustering:

- * $\overline{g_x}$ =FCM(**X**)
- → Mutation: v ~P
 - * b is the mutation threshold (0.001).

$$\overline{g_x} = \begin{cases} \overline{g_x} & v \ge b \\ \overline{q_{xj}} / \sum_{l=1}^{c} \overline{q_{xl}}, \text{ with } \overline{q_{xj}} = random(\mathbb{R}), \forall j. & otherwise \end{cases}$$

- 1) The Fuzzy C-Means Clustering algorithm takes in parameter a matrix of n packets received by the gateway by each end-devices with their p metrics (RSSI, ToA, BER, ...). 2) The algorithm builds two other matrices, U which contains the membership degree of each packet to the
- c applications, and V, which contains the optimal p metrics that best fit the c applications. 3) The genetic algorithm starts by randomly generating a matrix with the same dimensions as matrix U.
- 4) The algorithm selects z packets and applies the Fuzzy C-Means Clustering algorithm on these z packets.
- 5) β is a parameter that represents the biggest probability that a packet could have to be selected.
- 6) r is a parameter that defines its rank, a packet of rank 1 has the probability β to be selected, a packet of rank r has a probability f(r) to be selected.
- 7) F(r) is the cumulative function of f(r),
- 8) To select a set of packets to be sent to th FCM, a random variable between 0 and 1 is generated for each packet received. The probability to select packets decrease progressively until achieving all the packets.
- 9) Once the selected packets are chosen, we apply the FCM algorithm on the selected packets.

2. Academic Survey | 1. Genetic algorithm

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. FCM for LoRa setting
- 5 Testhed
- 6 Conclusion

- . Genetic algorithm
- 2. Game Theory
 - Multi-Arm Bandit
- 4. Q-Learning
- 5 Marcov Chair
 - Best Response Dyna
 - 7. Fictitious Palv
 - 8 Reinforcement Learning
 - D. Reimorcement Lea
 - 9. Joint Utility Strategy
 - 0.Trial and Error Learning
 - 11 Regret Matching Lea
 - 2Jmitation Learning
 - 3.Clustering

Game theory

- $P = \{p_1, ..., p_n\}, p_i \in \mathbb{N}, 1 \le i \le n.$
 - → n: number of players.
- $S = \{s_1, ..., s_n\}, 1 \le i \le n$
 - \Rightarrow s_i is the strategy set of the i^{th} player.
- $r_i(s_i, s_{-i}) = u_k : S \longrightarrow R_+$
 - \Rightarrow $s_{-i} = (s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_n) \in S_1 \times \dots \times S_{i-1} \times S_{i+1} \times \dots \times S_n$

- 1. Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. FCM for LoRa setting
- 5 Testhed
- 6 Conclusion

- Genetic algorithm
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5 Marcov Chai
 - 6 Roet Roeponeo
 - . Dest nesponse D
 - Fictitious Paly
 - Reinforcement Learning
 - 9. Joint Utility Strategy
 - 10 Trial and Error Loars
 - u.mai and Error Learning 1 Pogret Metobing Learning
 - 2 Imitation Learning
 - 2.Imitation Learning
 - 3.Clustering

Multi-Armed-Bandit Algorithm

```
For each step t = 1, ..., T
```

- → Arms: K = 1, ..., K
- Reward: X_t^k with $\mu_t^k = E[X_t^k]$
 - ⇒ Bernoulli rewards: $X_{k_t} \sim B(\mu_{k_t,t})$ ⇒ Best reward: X^* with $\mu^* = \max_{t \in K} \mu^k$, $k \in K$
 - ⇒ Best reward: X_t^* with $\mu_t^* = \max \mu_t^k$, k∈K ⇒ The reward k_t is revealed $x_{k_t} \in [0,1]$
- Minimize the pseudo regret:
 - $\rightarrow R(T) = \sum_{t=1}^{T} \mu_t^{\star} \mathbb{E}\left[\sum_{t=1}^{T} x_{k_t}\right]$
 - → where
 - $* \mu_t^* = \max_k \mu_{k,t}$

Bandit Algorithm

Growing number of Thompson Sampling fi.t:

i denotes the starting time

→ t the current time.
Let P(f i,t) be the probability at time t of the Thompson sampling starting at time i.

- Initialization: $\mathbb{P}(f_{1,1}) = 1, t = 1, 2$ $\forall k \in K\alpha_{k,f_{1,1}} \leftarrow \alpha_{0}, \beta_{k,f_{1,1}} \leftarrow \beta_{0}$
- Decision process: at each time t: $\forall i < t, \forall k : \theta_{k,f_{i,t}} \sim \text{Beta}\left(\alpha_{k,f_{i,t}}, \beta_{k,f_{i,t}}\right)$
 - → Play (Bayesian Aggregation):
 - * $k_t = \arg\max_k \sum_{i < t} \mathbb{P}(f_{i,t}) \theta_{k,f_{i,t}}$
- Instantaneous gain update:

$$\forall i < t \mathbb{P}\left(x_{t} | f_{i,t}\right) = \begin{cases} \frac{\alpha_{k,f_{i,t}}}{\beta_{k,f_{i,t}} + \alpha_{k,f_{i,t}}} & \text{if } x_{k_{t}} = 1\\ \frac{\beta_{k,f_{i,t}} + \alpha_{k,f_{i,t}}}{\beta_{k,f_{i,t}} + \alpha_{k,f_{i,t}}} & \text{if } x_{k_{t}} = 0 \end{cases}$$

Arm hyper parameters update:

$$\forall i < t \begin{cases} \alpha_{k, f_{i,t}} = \alpha_{k, f_{i,t}} + 1 & \text{if } x_{k_t} = 1 \\ \beta_{k, f_{i,t}} = \beta_{k, f_{i,t}} + 1 & \text{if } x_{k_t} = 0 \end{cases}$$

Distribution of experts update:

2. Academic Survey | 3. Multi-Arm Bandits

(1)

(2)

Bandit Algorithm

THOMPSON SAMPLING (TS)

⇒ success counter: $\alpha_{k} = \#(x_{k_{l}} = 1) + \alpha_{0}$ ⇒ failure counter: $\beta_{k} = \#(x_{k_{l}} = 0) + \beta_{0}$ ⇒ At each t: $\# \theta_{k} \sim \text{Beta}(\alpha_{k}, \beta_{k})$ $\# k_{l} = \text{arg max}_{k} \theta_{k}$ $\# \begin{cases} \alpha_{k} = \alpha_{k} + 1 & \text{if } x_{k_{l}} = 1 \\ \beta_{k} = \beta_{k} + 1 & \text{if } x_{k_{l}} = 0 \end{cases}$

SWITCHING ENVIRONMENT

$$\mu_{k,t} = \left\{ \begin{array}{ll} \mu_{k,t-1} & \text{probability } 1 - \rho \\ \mu_{n\text{ow}} \sim \textit{U}(0,1) & \text{probability } \rho \end{array} \right. \tag{3}$$

2. Academic Survey | 3. Multi-Arm Bandits

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. FCM for LoRa setting
- 5 Testhed
- 6 Conclusion

- . Genetic algorithm
- 2. Game Theory
- 3. Multi-Arm Bandits
- 4. Q-Learning
- 5 Marcov Chair
- 5. Marcov Chair
- 6. Best Response Dynamics
- 7. Fictitious Pal
- 8. Reinforcement Learning
- 9. Joint Utility Strategy
- 10 Trial and Error Loor
- 1 Regret Matching Learni
- 12 Imitation Learning
- 12 Imitation Learning
- 13.Clustering

Q Learning

$$Q(s_{t+1}, a_t) = Q(s_t, a_t) + \gamma (R(s_t, a_t) - Q(s_t, a_t))$$

- $Q(s_{t+1}, a_t) = \text{new Q-Value}$
- $Q(s_t, a_t) = \text{old Q-Value}$
- γ = learning constant
- $R(s_t, a_t)$ = immediate reward received after executing action a in state s at time t

2. Academic Survey | 4. Q-Learning 11/35

- 2. Academic Survey

- 5. Marcov Chain

Marcov chain

$$V(s,\pi) = \mathbb{E}_{s}^{\pi} \left(\sum_{k=0}^{\inf} \gamma^{k} \cdot r(s_{k}, a_{k}) \right), s \in \mathbb{S}$$

$$\tag{4}$$

$$r(s_k, a_k) = G_k \cdot PRR(a_k) \tag{5}$$

$$\pi^* = \arg\max_{\pi} V(s, \pi) \tag{6}$$

Marcov chain

Learning iterative steps:

- **Choose** action $a_k(t) \sim \pi_k(t)$
- Observe game outcome
 - $\rightarrow a_{\underline{k}}(t)$ $\rightarrow u_k(a_k(t), a_k(t))$
- \implies Improve $\pi_k(t+1)$

Thus, we can expect that $\forall k \in K$

$$\pi_{k(t)} \xrightarrow{t \to \infty} \pi_k^* \tag{7}$$

$$U_k(\pi_k(t), \pi_{\underline{k}}(t)) \xrightarrow{t \to \infty} U_k(\pi_k^*, \pi_{\underline{k}}^*)$$
 (8)

Where:

$$\pi^* = (\pi_1^*, ..., \pi_k^*)$$
 is the NE strategy profile

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. FCM for LoRa setting
- 5 Testhed
- 6 Conclusion

- . Genetic algorithm
- 2. Game Theory
- 3. Multi-Arm Band
- 4. Q-Learning
- 5 Marcov Chair
- 6. Best Response Dynamics
 - . Fictitious Pal
- 7. I lottilous I aly
- O. Reinforcement Lea
 - Joint Utility Strategy
- OTrial and Error Learn
- 1 Regret Matching Learn
- 2Jmitation Learning
- 2.Imitation Learning
- 13.Ciustering

- 2. Academic Survey

- 7. Fictitious Paly

- 2. Academic Survey

- 8. Reinforcement Learning

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. FCM for LoRa setting
- 5 Testhed
- 6 Conclusion

- Genetic algorithm
- 2. Game Theory
 - Multi-Arm Bandits
- 4. Q-Learning
- 5. Marcov Chair
- 6. Best Response Dynamics
- 7. Fictitious Pal
- 8. Reinforcement Learning
- 9. Joint Utility Strategy
 - 0.Trial and Error Learning
 - Regret Matching Learning
 - 2.Imitation Learning
 - 3.Clustering

- 2. Academic Survey

- 10.Trial and Error Learning

- 2. Academic Survey

- 11 Regret Matching Learning

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. FCM for LoRa setting
- 5 Testhed
- 6 Conclusion

- . Genetic algorithm
- 2. Game Theory
 - Multi-Arm Bandits
- 4. Q-Learning
- 5. Marcov Chair
 - 6. Best Response Dynamics
 - 7. Fictitious Palv
- 8 Reinforcement Learning
- 9. Joint Utility Strategy
- . Julii Utility Strategy
- U.Iriai and Error Learning

 1.Regret Matching Learning
- 12Jmitation Learning

13.Clusterina

- 1. Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. FCM for LoRa setting
- 5 Testhed
- 6 Conclusion

- . Genetic algorithm
- 2. Game Theory
 - Multi-Arm Bandits
- 4. Q-Learning
- 5 Marcov Chair
 - 6. Best Response Dynamics
 - 7. Fictitious Palv
- 8 Reinforcement Learning
- 3. Reinforcement Lea
- Joint Utility Strategy
- O.Trial and Error Learn
- 11 Regret Matching Lear
- 12Jmitation Learning
- 13.Clustering

Clustering

	mutual info	v measure	adjusted rand	completeness	fowlkes mallows	homogeneity
Agglomerative						
MeanShift						
AffinityProp						
DBSCAN						
OPTICS						
FeatureAgg						
Spectral						
MiniKMeans						
KMeans						
SpectralBi						
SpectralCo						
Birch						
FCM						

2. Academic Survey | 13. Clustering 14/35

- Introduction
- Academic Survey
- 3. Industrial Survey
- 4. FCM for LoRa setting
- 5. Testbed
- Conclusion

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. FCM for LoRa setting
- 5. Testbed
- 6 Conclusion

- 1. Problem statement
- 2. Approach
- 3. Experiments
- 4. Results

- 1. Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. FCM for LoRa setting
- 5. Testbed
- 6. Conclusion

- 1. Problem statement
- 2. Approach
- Experiments
 - . Results

LoRa parameters selection

How to select the optimal configuration

Parameters:

- → Bandwidth (BW)
- → Spreading Factor (SF)
- → Coding Rate (CR)
- → Transmission Power (P^{tx})
- → Payload size (PS)
- → Signal Noise Rate (SNR)

Metrics:

- → Data Rate (DR)
- → Time on Air (ToA)
- → Payloadsize(PS)_{max}
- → Received Signal Strength Indication (RSSI)

15 / 35

→ Bit Error Rate (BER)

Setting	Values	Rewards	Costs
BW	7.8 → 500 <i>kHz</i>	DR	RSSI, Range
SF	2 ⁶ → 2 ¹²	RSSI, Range	DR, SNR, PS _{max} , P ^{tx}
CR	4/5 ➡ 4/8	SNR	PS _{max} , P ^{tx} , ToA
P ^{tx}	-4 ⇒ 20 <i>dBm</i>	SNR	P ^{tx}
PS	59 → 230 <i>B</i>	PS	P^{tx} , ToA

Table 2. LoRa parameters selection [4]

QoS metrics

⇒ Time on Air (ToA)
⇒ ToA_{GFSK} =
$$\frac{8}{DR}$$
 (NP + SW + PL + 2CRC)
⇒ ToA_{LoRa} = $\frac{2^{SF}}{BW}$ ((NP + 4.25) + $\left(SW + \max\left(\left\lceil \frac{8PS - 4SF + 28 + 16CRC - 20IH}{4(SF - 2DE)}\right\rceil (CR + 4), 0\right)\right)\right)$

Receiver Sensitivity (RS)

$$\Rightarrow$$
 RS_[dBm] = -174 + 10 log₁₀ BW + NF + SNR

Path loss (PL)

$$\rightarrow$$
 PL_[B] = |RSSI| + SNR + P_{TX} + G_{RX}

→ Signal Noise Rate (SNR)

$$\rightarrow$$
 SNR_[dB] = 20.log($\frac{RS}{RS}$)

→ Bit Rate (BR)

$$\Rightarrow BR[bps] = SF * \frac{\frac{4}{4+CR}}{\frac{2SF}{RW}}$$

- Bit Error Rate (BER)
 - → BER[bps] =

$$\frac{8}{15} \cdot \frac{1}{16} \cdot \sum k = 216 - 1^k \left(\frac{16}{k}\right) e^{20.SINR\left(\frac{1}{k} - 1\right)}$$

Where:

- NP = 8, if LoRa . 5, if GFSK
- ⇒ SW = 8, if LoRa . 3, if GFSK
- CRC = 0 if downlink packet. 1 if uplink packet
- IH = 0 if header. 1 if no header present
- → DE = 1 if data rate optimization. 0 if not
- PS = PHY Payload bytes
- ⇒ SF = 7, 8, 9, 10, 11, 12
- BW = bandwidth
- CR = Indicates the Coding Rate

LoRa Frame

Sync msg

PHY Header

PHDR-CRC

Preamble

Modulation	length	Sync msg	PHY Header	PHDR-CRC	MAC Header					
Modulation	length	Sync msg	PHY Header	PHDR-CRC	МТуре	RFU	Major			
Modulation	length	Sync msg	PHY Header	PHDR-CRC	МТуре	RFU	Major	Dev Address		
Modulation	length	Sync msg	PHY Header	PHDR-CRC	МТуре	RFU	Major	NwkID	NwkAddr	ADR
0	1	2	3	4	5	6	7	8	9	10
	PHY Payload						CR	RC		
	MAC Payload MIC						MIC	CRC Type	Polynomial	

Frame Header						FPort	Frame Payload	MIC	CRC Type
FCtrl			FCnt	FOpts	FPort	Frame Payload	MIC	CRC Type	
ADRACKReq	ACK	FPending /RFU	FOptsLen	FCnt	FOpts	FPort	Frame Payload	MIC	CRC Type
11	12	13	14	15	16	17	18	19	20

Figure 5. LoRa Frame.

Polynomial
Polynomial
21

LoRa Frame

Prea	mble	Sync msg	PHY Header	PHDR-CRC						
Modulation	length	Sync msg	PHY Header	PHDR-CRC	MAC Header					
Modulation	length	Sync msg	PHY Header	PHDR-CRC	МТуре	RFU	Major			
Modulation	length	Sync msg	PHY Header	PHDR-CRC	МТуре	RFU	Major	Dev Address		
Modulation	length	Sync msg	PHY Header	PHDR-CRC	МТуре	RFU	Major	NwkID	NwkAddr	ADK
0	1	2	3	4	5	6	7	8	9	10
										,
	DUV Payland						CT.			

PHY Payload									CRC	
MAC Payload									CRC Type	Polynomial
							Frame Payload	MIC	CRC Type	Polynomial
FCtrl				FCnt	FOpts	FPort	Frame Payload	MIC	CRC Type	Polynomial
ADRACKReq	ACK	FPending /RFU	FOptsLen	FCnt	FOpts	FPort	Frame Payload	MIC	CRC Type	Polynomial
11	12	13	14	15	16	17	18	19	20	21

Figure 5. LoRa Frame.

1 Decklem statement

LoRa Frame

- → Modulation:
 - → Lora: 8 Symbols, 0x34 (Sync Word)
 - → FSK: 5 Bytes, 0xC194C1 (Sync Word)
- 1) Length:
- 2) Sync msg:
- 3) PHY Header : It contains:
 - The Payload length (Bytes)
 - The Code rate
 - Optional 16bit CRC for payload
- 4) Phy Header: CRC It contains CRC of Physical Layer Header
- 5) MType: is the message type (uplink or a downlink)
 - whether or not it is a confirmed message (regst ack)
 - → 000 Join Request
 - 001 Join Accept
 - 010 Unconfirmed Data Up
 - 011 Unconfirmed Data Down
 - → 100 Confirmed Data Up
 - → 101 Confirmed Data Down
 - → 101 Confirmed Data Down
 → 110 RFU
 - → 111 Proprietary
 - III Flophetary
- 6) RFU: Reserved for Future Use
- 7) Major: is the LoRaWAN version; currently, only a value of zero is valid
 - → 00 LoBaWAN B1
 - → 01-11 RFU
- 8) NwkID: the short address of the device (Network ID): 31th to 25th
- NwkAddr: the short address of the device (Network Address): 24th to 0th
- ADR: Network server will change the data rate through appropriate MAC commands
 - 1 To change the data rate
 - 0 No change

- 11) ADRACKReq: (Adaptive Data Rate ACK Request): if network doesn't respont in 'ADR-ACK-DELAY' time, end-device switch to next lower data rate.
 - → 1 if (ADR-ACK-CNT) >= (ADR-ACK-Limit)
 → 0 otherwise
- 12) ACK: (Message Acknowledgement): If end-device is the sender then gateway will send the ACK in next receive window else if gateway is the sender then end-device will send the ACK in next transmission.
 - 1 if confirmed data message
 - 0 otherwise
- FPending | /RFU |: (Only in downlink), if gateway has more data pending to be send then it asks end-device to open another receive window ASAP
 - 1 to ask for more receive windows
 - → 0 otherwise
- 14) FOptsLen: is the length of the FOpts field in bytes ă 0000 to 1111
- 15) FCnt: 2 type of frame counters
 - FCntUp: counter for uplink data frame, MAX-FCNT-GAP
 FCntDown: counter for downlink data frame, MAX-FCNY-GAP
- 16) FOpts: is used to piggyback MAC commands on a data message
- 17) FPort : a multiplexing port field
 - 0 the payload contains only MAC commands
 - 1 to 223 Application Specific
 - ⇒ 224 & 225 RFU
- 18) FRMPayload: (Frame Payload) Encrypted (AES, 128 key length) Data
- 19) MIC: is a cryptographic message integrity code
 - computed over the fields MHDR, FHDR, FPort and the encrypted FRMPayload.
- CRC: (only in uplink),
 - \Rightarrow CCITT $x^{16} + x^{12} + x^5 + 1$
 - \Rightarrow IBM $x^{16} + x^{15} + x^5 + 1$

- 1. Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. FCM for LoRa setting
- 5. Testbed
- 6 Conclusion

- 1. Problem statement
- 2. Approach
- Experiments
 - . Results

Machine Learning

- Labels: Supervised learning
 - 1) Categorical data: Classification
 - 2) Quantitative data: Regression
- No labels: Unsupervised learning
- 1) Hard clustering
 - → Binary memberships
 - 2) Fuzzy clustering
 - Fuzzy membership degree of each object
 - 3) Hierarchical clustering
 - Hierarchical membership degree of each object

Figure 6. 3 types of clustering.

Fuzzy C-Means Clustering

- 1) **Input:** $X = [x_{11}, ..., x_{np}]$, with $x_{ik} \in \mathbb{R}$, $1 \le k \le p$, $1 \le i \le n$
 - **X:** Set of received packets with their performance metrics.
 - n: received packets, p: performance metrics, c: applications.
- 2) Method:
 - Objective function:

$$\min_{(\mathbf{U}, \mathbf{V})} \left\{ F_m(\mathbf{U}, \mathbf{V}) = \sum_{j=1}^c \sum_{i=1}^n \mathbf{u}_{ij}^m d(\mathbf{x}_i, \mathbf{v}_j)^2 \right\}$$
* Constraint:
$$\sum_{j=1}^c \mathbf{u}_{ij} = 1, \forall i$$
* Distance:
$$d(\mathbf{x}_i, \mathbf{v}_i) = \|\mathbf{x}_i - \mathbf{v}_i\|$$

- * Degree of fuzzification: $m \ge$
- Fuzzy membership matrix: U

$$\rightarrow \mathbf{u}_{ij} = \left[\sum_{j'=1}^{c} \left(\frac{d(\mathbf{x}_i, \mathbf{v}_j)}{d(\mathbf{x}_i, \mathbf{v}_{j'})} \right)^{\frac{2}{m-1}} \right]^{-1}, \forall j, i \sim \mathbf{U}_t = F_{\partial}(\mathbf{V}_{t-1})$$
(1)

Clusterheads matrix: V

$$\rightarrow \mathbf{v}_{j} = \left(\sum_{i=1}^{n} \mathbf{u}_{ij}^{m} \mathbf{x}_{i} / \sum_{i=1}^{n} \mathbf{u}_{ij}^{m}\right), \forall j \sim \mathbf{V}_{t} = G_{\hat{\mathbf{0}}} \left(\mathbf{U}_{t-1}\right)$$
(2)

- 3) **Output:** $\mathbf{U} = [u_{11}, ..., u_{nc}], \ \mathbf{V} = [v_{11}, ..., v_{cp}], \ \text{with} \ u_{ij}, v_{jk} \in [0, 1], \ 1 \le j \le c, \ 1 \le i \le n, \ 1 \le k \le p$
 - ▼ V: Clusterheads matrix.
 - U: Fuzzy membership matrix.
- 4) Validation: (Performance Index)
 - $\Rightarrow \min_{(c)} \left\{ P(c) = \sum_{j=1}^{c} \sum_{i=1}^{n} \mathbf{u}_{ij}^{m} \left(d(\mathbf{x}_{i}, \mathbf{v}_{j})^{2} \|\mathbf{v}_{j} \overline{\mathbf{x}}\|^{2} \right) \right\}, \ \overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$

Fuzzy C-Means Clustering

Initialization:

- Fuzzy C-Means Clustering
 - → c: number of applications
 - → m: weighting exponent (Fuzziness degree)
- Iteration
 - → T: maximum number of iterations (Typ.: 100)
 - → e: termination threshold (Typ. 0.01)

Algorithm 1: FCM

Input: $X = [x_{11}, ..., x_{np}]$

Output: (U, V)

t=0

while $F_m(\mathbf{U}_t, \mathbf{V}_t) \ge e$ do

t = t + 1Update \mathbf{U}_t from Equation 1 Update \mathbf{V}_t from Equation 2

 $(\mathbf{U},\mathbf{V})=(\mathbf{U}_t,\mathbf{V}_t)$

Input:

	metric ₁		metric _p
conf ₁	[X ₁₁		x_{1p}
X =	:	٠.	:
conf _n	x _{n1}		x_{np}

→ Output:

$$\mathbf{U} = \begin{array}{cccc} & app_1 & \dots & app_c \\ conf_1 & u_{11} & \dots & u_{1c} \\ \vdots & \ddots & \vdots \\ conf_n & u_{n1} & \dots & u_{nc} \end{array}$$

	metric ₁		metric _p
арр	1 V ₁₁		v_{1p}
V = :	1 :	٠.	:
ann	Vot		Von

- 1. Introduction
- 2. Academic Survey
- Industrial Survey
- 4. FCM for LoRa setting
- 5. Testbed
- 6 Conclusion

- 1. Problem statement
- 2. Approach
- 3. Experiments
- 4. Results

Experiments

Simulation settings

Setting	Values
BW _[kHz]	[125,250,500]
SF _[#]	[7,8,9,10,11,12]
PS _[B]	[60, 230]
SNR _[dbm]	[-40,-30,-20,-10,0]

Table 3. LoRa transmission parameters

- Transmission settings: (SNR, PS, SF, BW)
 - → Environment: Signal Noise Rate (SNR)
 - → Application: Payload size (PS).
 - → Radio: Spreading Factor (SF), Bandwidth (BW), (Coding Rate (CR)).
- QoS metrics: (SNR, PS, SF, BW) -> (ToA, BER, RSSI)
 - → Time on Air (ToA)
 - → Bit Error Rate (BER)
 - → Received Signal Strength Indication (RSSI)
- ➡ Clustering: (ToA, BER, RSSI) -> (U1, U2, U3)

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. FCM for LoRa setting
- 5. Testbed
- 6 Conclusion

- 1. Problem statement
- 2. Approach
- 3. Experiments
- 4. Results

- Cluster 2 have RSSI values between -135 dBm and -110 dBm, and BER lower than 0.2%.
- Cluster 1 could be used for applications with a high sensitivity to BER and lower sensitivity to RSSI.
- Cluster 0 has the worst RSSI compared to the two other clusters and also the worst BER.

Figure 7. RSSI vs ToA and BER.

- Cluster 2 have RSSI values between -135 dBm and -110 dBm, and BER lower than 0.2%.
- Cluster 1 could be used for applications with a high sensitivity to BER and lower sensitivity to RSSI.
- Cluster 0 has the worst RSSI compared to the two other clusters and also the worst BER.

Figure 8. RSSI vs ToA and BER.

- The best candidate settings that match applications with high QoS requirements are the green points and they are scattered for all SF levels [7,12].
- when we increase the SF, settings are more mapped to cluster 1 and 2, this is mainly due to the short transmission delay (ToA).
- Settings with a high BER are mapped to cluster 0 when SF is close to 7, the reason is that SF 7 is more vulnerable to noise (SNR).

Figure 9. SF vs ToA and BER.

- The best candidate settings that match applications with high QoS requirements are the green points and they are scattered for all SF levels [7,12].
- when we increase the SF, settings are more mapped to cluster 1 and 2, this is mainly due to the short transmission delay (ToA).
- Settings with a high BER are mapped to cluster 0 when SF is close to 7, the reason is that SF 7 is more vulnerable to noise (SNR).

Figure 10. SF vs ToA and BER.

Results Comparison

BW	SF	PS	SNR	BER	RSSI	ToA	C ₂	C ₁	\mathbf{C}_0
125	11	30	-20	0	-137	0.39	0.91	0.045	0.045
125	7	10	-10	0.05	-127	0.02	0.015	0.492	0.492
125	11	70	0	0	-117	0.46	0.492	0.492	0.015
250	12	70	-20	0.03	-137	0.92	0.734	0.153	0.113
250	11	10	-10	0	-127	0.33	0.104	0.791	0.104
250	12	90	-20	0	-134	0.46	0.965	0.004	0.030
500	7	50	-20	0.5	-131	0.00	0.003	0.030	0.965
500	12	10	-20	0	-131	0.16	0.003	0.965	0.030
250	12	110	-20	0.1	-134	0.52	0.469	0.061	0.469
500	12	110	-20	0.1	-131	0.26	0.113	0.734	0.153

Table 4. Samples of membership values of LoRa transmission settings

Performance metrics: value time (s): 0.0102 homogeneity score: 0.984 mutual info score: 0.9729

Table 5. Clustering performance

- Introduction
- 2. Academic Survey
- 3. Industrial Survey
- 4. FCM for LoRa setting
- 5. Testbed
- 6. Conclusion

- 1. Problem statement
- 2. Contagion process
- 3. Experimentation
- 4. Results exploitation
- 5. Discussion

- 1. Introduction
- 2. Academic Survey
- Industrial Survey
- 4. FCM for LoRa setting
- 5. Testbed
- Conclusion

1. Problem statement

- 2. Contagion process
- Experimentation
- 4. Results exploitation
- . Discussion

Problem statement

Introduction

Figure 11. .

- Introduction
- 2. Academic Survey
- Industrial Survey
- FCM for LoRa setting
- 5. Testbed
- Conclusion

- 1. Problem statement
- 2. Contagion process
- Experimentation
- 4. Results exploitation
- . Discussion

... (step 1)
Methods

5. Testbed | 2. Contagion process

... (step 2)
Methods

5. Testbed | 2. Contagion process

... (step 3)
Methods

5. Testbed | 2. Contagion process

... (step 4)
Methods

⇒ E

Table 6

- Introduction
- 2. Academic Survey
- Industrial Survey
- 4. FCM for LoRa setting
- 5. Testbed
- Conclusion

- 1. Problem statement
- Contagion process
- 3. Experimentation
- 4. Results exploitation
 - . Discussion

Experimentation

Experimentation

Figure 12. .

- 1. Introduction
- 2. Academic Survey
- Industrial Survey
- FCM for LoRa setting
- 5. Testbed
- Conclusion

- I. Problem statement
- Contagion process
- Experimentation
- 4. Results exploitation
- 5. Discussion

Comparison

■ 8

Figure 13. .

- 1. Introduction
- 2. Academic Survey
- Industrial Survey
- FCM for LoRa setting
- 5. Testbed
- 6. Conclusio

- 1. Problem statement
- 2. Contagion process
- Experimentation
- 1 Results exploitation
- 5. Discussion

Discussion

Figure 14. .

5. Testbed | 5. Discussion 34/35

- Introduction
- 2. Academic Survey
- Industrial Survey
- FCM for LoRa setting
- Testbed
- 6. Conclusion

Conclusion

- The main challenge of this work was to build a tool that can easily be plugged in LoRaWAN network servers to map transmission settings to applications requirements.
- Our contribution was to test the effectiveness of applying the FCM clustering algorithm to select the transmission setting that best fit a given application requirement.
- Each cluster **represents** a set of applications with the same QoS requirements.
- The proposed process has been developed to present and design a solution that consider radio parameters (SF,BW and PS), environment conditions (SNR) and performance metrics (ToA, BER and RSSI) required by applications.
- We plan to integrate this approach in one of the open source LoRaWAN network servers like the ChirpStack network server to test their performance in a real environment.

6. Conclusion 35 / 35

Conclusion

- The main challenge of this work was to build a tool that can easily be plugged in LoRaWAN network servers to map transmission settings to applications requirements.
- Our contribution was to test the effectiveness of applying the FCM clustering algorithm to select the transmission setting that best fit a given application requirement.
- Each cluster **represents** a set of applications with the same QoS requirements.
- The proposed process has been developed to present and design a solution that consider radio parameters (SF,BW and PS), environment conditions (SNR) and performance metrics (ToA, BER and RSSI) required by applications.
- We plan to integrate this approach in one of the open source LoRaWAN network servers like the ChirpStack network server to test their performance in a real environment.

Thank you!

6. Conclusion 35 / 35

7. Appendix

References

[1]

[3]

- C. Perera, P. P. Jayaraman, A. Zaslavsky, P. Christen, and D. Georgakopoulos, MOSDEN: An Internet of Things Middleware for Resource Constrained Mobile Devices,, Oct. 15, 2013. arXiv: 1310.4038 [cs].
- [2] L. Feltrin, C. Buratti, E. Vinciarelli, R. De Bonis, and R. Verdone, LoRaWAN: Evaluation of Link- and System-Level Performance, IEEE Internet of Things Journal, vol. 5, no. 3, Jun. 2018.
 - M. Rizzi, P. Ferrari, A. Flammini, and E. Sisinni, Evaluation of the IoT LoRaWAN Solution for Distributed Measurement Applications, IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 12, Dec. 2017.
- [4] Marco Cattani, Carlo Boano, and Kay Rômer, An Experimental Evaluation of the Reliability of LoRa Long-Range Low-Power Wireless Communication, Journal of Sensor and Actuator Networks, vol. 6, no. 2, Jun. 15,