Announcements & Such

- Steel Pulse.
- Administrative Stuff
 - HW #4 resubs are still being graded. Stay tuned...
 - **HW** #**5 resubmission is due today** (follow models on handout).
 - HW #6 is posted. Final HW assignment! LMPL Proofs.
 - From now on, my office hours are: 4-6pm Tuesdays.
- Today: Chapter 6 Natural Deductions in LMPL
 - Introduction and Elimination rules for the quantifiers.
 - Sequents and Theorems (SI/TI) for the quantifiers.
 - Lots of proofs in LMPL!
- **Next**: Two-Place predicates (*i.e.*, *binary relations*) "L2PL".

Natural Deduction Proofs in LMPL

- The natural deduction rules for LMPL will *include* the rules for LSL that we already know (viz., Ass., &E, &I, \neg E, \neg I, \sim E, \sim I, DN, \vee E, \vee I, Df.).
- Plus, we will be *adding* 4 new rules. We will need both introduction and elimination rules for each of the two quantifiers ($\exists I, \exists E, \forall I, \forall E$).
- As in LSL, the system will be *sound and complete* (140A!). That is, \vdash will apply to the same sequents that \models does in our semantics for LMPL.
- We begin with the simplest: the introduction rule for \exists (\exists I). Intuitively, if we have proved $\phi\tau$ for some individual constant τ , then we may infer that ϕ is true of *something* (*e.g.*, that $(\exists x)\phi x$).
- *E.g.*, if we've proved 'Pa & Qa', we may validly infer ' $(\exists x)(Px \& Qx)$ '.
- We may also infer ' $(\exists x)(Pa \& Qx)$ ' and ' $(\exists x)(Px \& Qa)$ ' from 'Pa & Qa'.
- These (and similar) considerations lead us to the ∃I rule ...

The Rule of ∃-Introduction

Rule of \exists **-Introduction**: For any sentence $\phi\tau$, if $\phi\tau$ has been inferred at line j in a proof, then at line k we may infer $\lceil(\exists v)\phi v\rceil$, labeling the line 'j \exists I' and writing on its left the numbers that occur on the left of j.

$$a_1, \dots, a_n$$
 (j) $\phi \tau$
 \vdots
 a_1, \dots, a_n (k) $(\exists v) \phi v$ j $\exists I$

Where $\lceil (\exists v) \phi v \rceil$ is obtained syntactically from $\phi \tau$ by:

- Replacing *one or more occurrences* of τ in $\phi \tau$ by a *single* variable ν .
- Note: the variable ν *must not already occur in* the expression $\phi \tau$. [This prevents *double-binding*, *e.g.*, ' $(\exists x)(\exists x)(Fx \& Gx)$ '.]
- And, finally, prefixing the quantifier $\lceil (\exists v) \rceil$ in front of the resulting expression (which may now have both $\lceil v \rceil$'s and $\lceil \tau \rceil$'s occurring in it).

The Rule of \forall -Elimination

Rule of \forall -**Elimination**: For any sentence $\lceil (\forall v)\phi v \rceil$ and constant τ , if $\lceil (\forall v)\phi v \rceil$ has been inferred at a line j, then at line k we may infer $\phi \tau$, labeling the line 'j \forall E' and writing on its left the numbers that appear on the left of j.

$$a_1, \dots, a_n$$
 (j) $(\forall \nu) \phi \nu$
 \vdots
 a_1, \dots, a_n (k) $\phi \tau$ j $\forall E$

Where $\phi \tau$ is obtained syntactically from $\lceil (\forall v) \phi v \rceil$ by:

- Deleting the quantifier prefix $\lceil (\forall \nu) \rceil$.
- Replacing *every occurrence* of ν in the open sentence $\phi\nu$ by *one and the same* constant τ . [This prevents *fallacies*, *e.g.*, $(\forall x)(Fx \& Gx) \not\vdash Fa \& Gb$.]
- Note: since ' \forall ' means *everything*, there are *no* restrictions on *which* individual constant may be used in an application of $\forall E$.

An Example Proof Involving Both ∃I and ∀E

Let's prove that $(\forall x)(Fx \to Gx), Fa \vdash (\exists x)(\sim Gx \to Hx).$

1 2 3 4 1 1,2 1,2,3 1,2,3 1,2,3 1,2,3

(1) (∀x)(Fx→Gx)
(2) Fa
(3) ~Ga
(4) ~Ha
(5) Fa→Ga
(6) Ga
(7) Λ
(8) ~~Ha
(9) Ha
(10) ~Ga→Ha
(11) (∃x)(~Gx→Hx)

Premise
Premise
Assumption
Assumption
1 ∀E
5,2 →E
3,6 ~E
4,7 ~I
8 DN
3,9 →I
10 ∃I

• This example illustrates a typical pattern in quantificational proofs: quantifiers are removed from the premises using elimination rules, sentential (*viz.*, LSL) rules are applied, and then quantifiers are reintroduced using introduction rules to obtain the conclusion.

The Rule of ∀-Introduction: Some Background

- It is useful to think of a universal claim $\lceil (\forall v) \phi v \rceil$ as a *conjunction* which asserts that the predicate expression ϕ is satisfied by *all objects* in the domain of discourse (*i.e.*, the conjunction $\lceil \phi a \& (\phi b \& (\phi c \& ...)) \rceil$ is true).
- So, in order to be able to *introduce* the universal quantifier (*i.e.*, to *legitimately infer* $\lceil (\forall v) \phi v \rceil$ in a proof), we must be in a position to prove $\phi \tau$, for *any* individual constant τ . This is called *generalizable reasoning*.
- Consider the following *legitimate* introduction of a universal claim:

Problem is: $(\forall x)(Fx \rightarrow Gx)$, $(\forall x)Fx \vdash (\forall x)Gx$

1 (1) $(\forall x)(Fx \rightarrow Gx)$ 2 (2) $(\forall x)Fx$ 1 (3) $Fa \rightarrow Ga$ 2 (4) Fa1,2 (5) Ga1,2 (6) $(\forall x)Gx$

Premise 1 ∀E 2 ∀E 3,4 →E

5 **VI**

Premise

The Rule of \forall -Introduction: II

- We can legitimately infer ' $(\forall x)Gx$ ' at line 6 of this proof, because our inference to 'Gb' is *generalizable i.e.*, we could have deduced " $G\tau$ ", for *any* individual constant τ using *exactly parallel* reasoning.
- However, consider the following *il*legitimate "∀-Introduction" step:

1	(1)	$(\forall x)(Fx\rightarrow Gx)$	Premise	
2	(2)	Fb	Premise	
1	(3)	Fb→Gb	1 ∀ E	
1,2	(4)	Gb	2,3 →E	
1,2	(5)	(∀x)Gx	4 VI	NO!!

- This is *not* a valid inference, since $(\forall x)(Fx \rightarrow Gx), Fb \not\models (\forall x)Gx!$
- So, what went wrong? The problem is that the inference to 'Gb' at (4) is *not* generalizable. We can *not* deduce $\lceil G\tau \rceil$ for $any \tau$ from the premises ' $(\forall x)(Fx \to Gx)$ ' and 'Fb'. We can *only* infer 'Gb'.

The Rule of ∀-Introduction: III

Rule of \forall **-Introduction**: For any sentence $\phi\tau$, if $\phi\tau$ has been inferred at a line j, then *provided that* τ *does not occur in any premise or assumption whose line number is on the left at line* j, we may infer $\lceil (\forall v)\phi v \rceil$ at line k, labeling the line 'j \forall I' and writing on its left the same numbers as occur on the left at line j.

$$a_1,..., a_n$$
 (j) $\phi \tau$
 \vdots
 $a_1,..., a_n$ (k) $(\forall v) \phi v$ j $\forall I$

Where $\lceil (\forall v) \phi v \rceil$ is obtained by:

- Replacing *every* occurrence of τ in $\phi \tau$ with ν and prefixing $\lceil (\forall \nu) \rceil$. [Again, 'every' prevents *fallacies*, *e.g.*, $(\forall x)(Fx \to Gx) \not\vdash (\forall x)(\forall y)(Fx \to Gy)$.]
- τ does not occur in any of the formulae a_1, \ldots, a_n . [ensures generalizability]
- v does not occur in $\phi \tau$. [prevents double-binding]

The Rule of \forall -Introduction: Four Examples

• Here are four examples of LMPL sequents involving the three quantifier rules we've learned so far $(\exists I, \forall E, \text{ and } \forall I)$.

(1)
$$(\forall x)(Fx \to Gx) \vdash (\forall x)Fx \to (\forall x)Gx$$

$$(2) \sim (\exists x) (Fx \& Gx) \vdash (\forall x) (Fx \rightarrow \sim Gx)$$

(3)
$$\sim (\forall x) Fx \vdash (\exists x) \sim Fx$$

$$(4) \ (\forall x)[Fx \to (\forall y)Gy] \vdash (\forall x)(\forall y)(Fx \to Gy)$$

Proof of (1)

Problem is: $(\forall x)(Fx \rightarrow Gx) \vdash (\forall x)Fx \rightarrow (\forall x)Gx$

ا 2

1

1

2

1,2

1,C

(1) $(\forall x)(Fx \rightarrow Gx)$

 $(2) (\forall x) Fx$

(3) Fa→Ga

(4) Fa

(5) Ga

 $(6) (\forall x)Gx$

 $(7) \quad (\forall x) Fx \rightarrow (\forall x) Gx$

Premise

Assumption

1 **YE**

2 AE

3,4 →E

5 AI

2,6 →

Proof of (2)

Problem is: $\sim (\exists x)(Fx\&Gx) \vdash (\forall x)(Fx\rightarrow \sim Gx)$

2 3 2,3 2,3

1,2,3

 $(1) \sim (\exists x)(Fx\&Gx)$

(2) Fa

(3) Ga

(4) Fa&Ga

(5) (3x)(Fx&Gx)

(6) Λ

(7) ~Ga

(8) Fa→~Ga

(9) $(\forall x)(Fx \rightarrow \sim Gx)$

Premise

Assumption

Assumption

2,3 &1

4 31

1,5 ~E

3,6 ~1

2,7 →

8 AI

Proof of (3)

Problem is: $\sim (\forall x)Fx + (\exists x) \sim Fx$

 $(1) \sim (\forall x) Fx$

(2) $\sim (\exists x) \sim Fx$

(3) ~Fa

(4) $(3x)\sim Fx$

(5) Λ

(6) ~~Fa

(7) Fa

 $(8) (\forall x) Fx$

(9) A

(10) $\sim \sim (\exists x) \sim Fx$

 $(11) (3x) \sim Fx$

Premise

Assumption

Assumption

IE 8

2,4 ~E

3,5 ~1

6 DN

7 **VI**

1,8 ~E

2,9 ~1

10 DN

Proof of (4)

Problem is: $(\forall x)(Fx \rightarrow (\forall y)Gy) \vdash (\forall x)(\forall y)(Fx \rightarrow Gy)$

(1) $(\forall x)(Fx \rightarrow (\forall y)Gy)$

(2) Fa (3) $Fa \rightarrow (\forall y)Gy$ $(4) (\forall y)Gy$ (5) Gb (6) Fa→Gb

 $(7) (\forall y)(Fa \rightarrow Gy) \qquad 6 \forall I$ (8) $(\forall x)(\forall y)(Fx \rightarrow Gy)$

Premise

Assumption

1 VE

3,2 →E

4 **VE**

2,5 →

7 **VI**

The Rule of ∃-Elimination: Some Background

- It is useful to think of an existential claim $\lceil (\exists v) \phi v \rceil$ as a *disjunction* which asserts that the predicate expression ϕ is satisfied by *at least one* object in the domain (*i.e.*, that the disjunction $\lceil \phi a \lor (\phi b \lor (\phi c \lor ...)) \rceil$ is true).
- In this way, we would expect the elimination rule for \exists to be similar to the elimination rule for \lor . That is, we'd expect the \exists E rule to be similar to the \lor E rule. Indeed, this is the case. It's best to start with a simple example.
- Consider the following *legitimate* elimination of an existential claim:

Problem is: $(\exists x)(Fx\&Gx) + (\exists x)Fx$

 1
 (1) (∃x)(Fx&Gx)
 Premise

 2
 (2) Fa&Ga
 Assumption

 2
 (3) Fa
 2 &E

 2
 (4) (∃x)Fx
 3 ∃I

 1
 (5) (∃x)Fx
 1,2,4 ∃E

The Rule of ∃-Elimination: II

- To derive a sentence using the $\exists E$ rule (with some existential sentence $\lceil (\exists v) \phi v \rceil$), we must first *assume* an *instance* $\phi \tau$ of $\lceil (\exists v) \phi v \rceil$.
- If we can deduce from this assumed instance $\phi \tau$ using generalizable reasoning then we may infer outright.
- It is because our reasoning from the *instance* $\phi \tau$ of $\lceil (\exists v) \phi v \rceil$ to *does* not depend on our choice of constant τ (i.e., that our reasoning from $\phi \tau$ to is *generalizable*) that makes this inference valid.
- When our reasoning is generalizable in this sense, it's as if we are showing that can be deduced from *any* instance $\phi \tau$ of $\lceil (\exists v) \phi v \rceil$.
- As such, this is just like showing that can be deduced from *any disjunct* of the disjunction $\lceil \phi a \lor (\phi b \lor (\phi c \lor ...)) \rceil$. And, this is just like \lor E reasoning (except that \exists E only requires *one* assumption).

NO!!

The Rule of ∃-Elimination: III

• Here's an *il*legitimate "∃-Elimination" step:

1(1) $(\exists x)Fx$ Premise2(2) GaPremise3(3) FaAssumption2,3(4) Fa&Ga2,3 &I2,3(5) $(\exists x)(Fx&Gx)$ 4 \exists I1,2(6) $(\exists x)(Fx&Gx)$ 1,3,5 \exists E

• This is *not* a valid inference: $(\exists x)Fx$, $Ga \not\models (\exists x)(Fx \& Gx)!$

- So, what went wrong here? The problem is that the inference to $(\exists x)(Fx \& Gx)$ at line (5) does *not* use *generalizable* reasoning.
- We can *not* legitimately infer ' $(\exists x)(Fx \& Gx)$ ' at line (5) from an *arbitrary instance* $\ulcorner F\tau \urcorner$ of ' $(\exists x)Fx$ '. We *must* assume 'Fa' in *particular* at line (3) in order to deduce ' $(\exists x)(Fx \& Gx)$ ' at line (5).

The Rule of ∃-Elimination: Official Definition

 \exists -**Elimination**: If $\lceil (\exists v) \phi v \rceil$ occurs at i depending on a_1, \ldots, a_n , an instance $\phi \tau$ of $\lceil (\exists v) \phi v \rceil$ is *assumed* at j, and is inferred at k depending on b_1, \ldots, b_u , then at line m we may infer , with label 'i, j, k \exists E' and dependencies $\{a_1, \ldots, a_n\} \cup \{b_1, \ldots, b_u\}/j$:

$$a_1,\ldots,a_n$$
 (i) $(\exists v)\phi v$
 \vdots
 j (j) $\phi \tau$ Assumption
 \vdots
 b_1,\ldots,b_u (k)
 \vdots
 $\{a_1,\ldots,a_n\} \cup \{b_1,\ldots,b_u\}/j$ (m) $i,j,k \exists E$

Provided that *all four* of the following conditions are met:

- τ (in $\phi \tau$) replaces *every* occurrence of ν in $\phi \nu$. [avoids fallacies]
- τ *does not occur in* $\lceil (\exists v) \phi v \rceil$. [generalizability]
- τ *does not occur in* . [generalizability]
- τ does not occur in any of b_1, \ldots, b_u , except (possibly) $\phi \tau$ itself. [generalizability]

The Rule of ∃-Elimination: Nine Examples

• Here are 9 examples of proofs involving all four quantifier rules.

1.
$$(\exists x) \sim Fx \vdash \sim (\forall x)Fx$$

2.
$$(\exists x)(Fx \to A) \vdash (\forall x)Fx \to A$$

3.
$$(\forall x)(\forall y)(Gy \rightarrow Fx) \vdash (\forall x)[(\exists y)Gy \rightarrow Fx]$$

4.
$$(\exists x)[Fx \rightarrow (\forall y)Gy] \vdash (\exists x)(\forall y)(Fx \rightarrow Gy)$$

5.
$$A \vee (\exists x) Fx \vdash (\exists x) (A \vee Fx)$$

6.
$$(\exists x)(Fx \& \sim Fx) \vdash (\forall x)(Gx \& \sim Gx)$$

7.
$$(\forall x)[Fx \rightarrow (\forall y) \sim Fy] \vdash \sim (\exists x)Fx$$

8.
$$(\forall x)(\exists y)(Fx \& Gy) \vdash (\exists y)(\forall x)(Fx \& Gy)$$

9.
$$(\exists y)(\forall x)(Fx \& Gy) \vdash (\forall x)(\exists y)(Fx \& Gy)$$

$$[p. 203, I. # 19 \Rightarrow]$$

[
$$p. 203$$
, I. # 20 \Leftarrow]

[
$$p$$
. 203, II. # 2 \Leftarrow]

$$[p. 203, I. # 12 \Rightarrow]$$

Proof of (1)

Problem is: $(\exists x) \sim Fx \vdash \sim (\forall x)Fx$

- 2 3 2

- $(1) (\exists x) \sim Fx$
- $(2) (\forall x) Fx$
- (3) ~Fa
- (4) Fa
- (5) Λ
- (6) A
- (7) $\sim (\forall x) Fx$

- **Premise**
- Assumption
- Assumption
- 2 AE
- 3,4 ~E
- 1,3,5 **JE**
- 2,6 ~1

Proof of (2)

Problem is: $(\exists x)(Fx \rightarrow A) \vdash (\forall x)Fx \rightarrow A$

2 3 2

 $(1) (\exists x)(\mathsf{Fx} \rightarrow \mathsf{A})$

 $(2) (\forall x)Fx$

(3) Fa→A

(4) Fa

(5) A

(6) A

(7) $(\forall x)Fx \rightarrow A$

Premise

Assumption

Assumption

2 AE

3,4 →E

1,3,5 **JE**

2,6 →

Proof of (3)

Problem is: $(\forall x)(\forall y)(Gy \rightarrow Fx) \vdash (\forall x)((\exists y)Gy \rightarrow Fx)$

1 2 2

1

1 1,3

1,2

1 1 (1) $(\forall x)(\forall y)(Gy \rightarrow Fx)$

(2) $(\exists y)Gy$

(3) Gb

(4) $(\forall y)(Gy \rightarrow Fa)$

(5) Gb→Fa

(6) Fa

(7) Fa

(8) (∃y)Gy→Fa

(9) $(\forall x)((\exists y)Gy \rightarrow Fx)$

Premise

Assumption

Assumption

1 **YE**

4 **VE**

5,3 →E

2,3,6 JE

2,7 →

8 AI

Proof of (4)

Problem is: $(\exists x)(Fx \rightarrow (\forall y)Gy) \vdash (\exists x)(\forall y)(Fx \rightarrow Gy)$

2 3 2,3

(1) $(\exists x)(\mathsf{Fx} \rightarrow (\forall y)\mathsf{Gy})$

(2) $Fa \rightarrow (\forall y)Gy$

(3) Fa

 $(4) (\forall y)Gy$

(5) Gb

(6) Fa→Gb

(7) $(\forall y)(Fa \rightarrow Gy)$

(8) $(\exists x)(\forall y)(\mathsf{Fx} \rightarrow \mathsf{Gy})$

(9) $(\exists x)(\forall y)(\mathsf{Fx} \rightarrow \mathsf{Gy})$

Premise

Assumption

Assumption

2,3 →E

4 **V**E

3,5 →

9 AI

1,2,8 **3E**

04/22/10

Proof of (5)

Problem is: $A \vee (\exists x) Fx + (\exists x) (A \vee Fx)$

22566

6 5

(1) $A_{\vee}(\exists x)Fx$

(2) A

(3) A_VFa

 $(4) (\exists x)(A \lor Fx)$

(5) (3x)Fx

(6) Fa

(7) A√Fa

 $(x_{4} \rightarrow A)(x_{E})$

 $(9) (\exists x)(A \lor Fx)$

(10) $(\exists x)(A \lor Fx)$

Premise

Assumption

2 \

IE E

Assumption

Assumption

6 vI

7 31

5,6,8 **3E**

1,2,4,5,9 VE

Proof of (6)

Problem is: $(\exists x)(Fx\&\sim Fx) \vdash (\forall x)(Gx\&\sim Gx)$

- 2 3 2 2

- 2

- 2 9 2 2 2

- $(1) (\exists x)(Fx\&\sim Fx)$
- (2) Fa&~Fa
- (3) ~Gb
- (4) ~Fa
- (5) Fa
- (6) A
- (7) ~~Gb
- (8)Gb
- (9)Gb
- (10) ~Gb
- (11) Gb&~Gb
- $(12) (\forall x)(Gx\&\sim Gx)$
- $(13) (\forall x)(Gx\&\sim Gx)$

- Premise
- Assumption
- Assumption
- 2 &E
- 2 &E
- 4,5 ~E
- 3,6 ~1
- **7** DN

Assumption

- 9,6 ~1
- 8,10 &1
- 11 ∀I
- 1,2,12 **3E**

Proof of (7)

Problem is: $(\forall x)(Fx \rightarrow (\forall y) \sim Fy) \vdash \sim (\exists x)Fx$

1 2

2

3

1

1,3

1,3

1,3

1,2

(1) $(\forall x)(Fx \rightarrow (\forall y) \sim Fy)$

(2) (3x)Fx

(3) Fa

(4) Fa→(∀y)~Fy

(5) (∀y)~Fy

(6) ~Fa

(7) A

Λ (8)

(9) $\sim (\exists x) Fx$

Premise

Assumption

Assumption

1 VE

4,3 →E

5 AE

6,3 ~E

2,3,7 **3**E

2,8 ~1

Proof of (8)

Problem is: $(\forall x)(\exists y)(Fx\&Gy) + (\exists y)(\forall x)(Fx\&Gy)$

(1) (∀x)(∃y)(Fx&Gy)
(2) (∃y)(Fa&Gy)
(3) Fa&Gb
(4) (∃y)(Fc&Gy)
(5) Fc&Gd
(6) Fc
(7) Fc
(8) Gb
(9) Fc&Gb
(10) (∀x)(Fx&Gb)
(11) (∃y)(∀x)(Fx&Gy)
(12) (∃y)(∀x)(Fx&Gy)

Premise
1 VE
Assumption
1 VE
Assumption
5 &E
4,5,6 JE
3 &E
7,8 &I
9 VI
10 JI
2,3,11 JE

Proof of (9)

Problem is: $(\exists y)(\forall x)(Fx\&Gy) \vdash (\forall x)(\exists y)(Fx\&Gy)$

 $(1) (\exists y)(\forall x)(\mathsf{Fx\&Gy})$

 $(2) (\forall x)(Fx\&Gb)$

(3) Fa&Gb

(4) (3y)(Fa&Gy)

(5) $(\exists y)(Fa\&Gy)$ 1,2,4 $\exists E$

(6) $(\forall x)(\exists y)(Fx\&Gy)$ 5 $\forall I$

Premise

Assumption

2 AE

IE 8