# GRANIČNA VREDNOST FUNKCIJE

7. mart 2023.

Definicija granične vrednosti funkcije

#### Definicija

Neka su dati metrički prostori  $(X, d_X)$  i  $(Y, d_Y)$ . Neka je  $a \in X$  tačka nagomilavanja za oblast definisanosti  $D \subset X$  funkcije  $f: D \to Y$ . Za  $A \in Y$  kažemo da je **granična vrednost funkcije** f **u tački** a ako

$$(\forall \varepsilon > 0)(\exists \delta > 0) \ f(L(a,\delta) \cap (D \setminus \{a\})) \subset L(A,\varepsilon),$$

tj.

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in D \setminus \{a\})(d_X(a, x) < \delta \Rightarrow d_Y(A, f(x)) < \varepsilon).$$

Pišemo da je 
$$\lim_{x\to a} f(x) = A$$
, ili  $f(x) \to A$ ,  $x \to a$ .

Dakle, za svaku  $\varepsilon$ -okolinu tačke A, postoji  $\delta$ -okolina tačke a koja se sva, izuzev tačke a, preslikava u  $\varepsilon$ -okolinu tačke A.

Primetimo da u tački a funkcija ne mora da bude definisana, a ako je i definisana, A ne mora da bude f(a), jer u definiciji granične vrednosti isključena je tačka a iz okoline  $L(a, \delta)$ .



#### Napomena

Kod što kod nizova  $n_0$  zavisi od  $\varepsilon$ , tako i ovde  $\delta$  zavisi od  $\varepsilon$ . Kako se  $\varepsilon$  menja tako se i  $\delta$  menja.

#### Napomena

Kao i kod nizova, kada je reč o realnim funkcijama ili funkcijama jedne ili više realnih promenljivih, uvek ćemo posmatrati metrički prostor  $\mathbb{R}$ , odnosno  $\mathbb{R}^n$  i to posebno nećemo naglašavati.

• Za graničnu vrednost realne funkcije jedne realne promenljive, tj. gde je  $X=Y=\mathbb{R},$  definiciju  $\lim_{x\to a}f(x)=A$  možemo zapisati u obliku

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in D \setminus \{a\})(|x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon).$$

• Za graničnu vrednost realne funkcije n realnih promenljivih, tj. gde je  $X=\mathbb{R}^n,\ Y=\mathbb{R},$  definiciju  $\lim_{x\to a}f(x)=A,$   $x=(x_1,x_2,...,x_n),\ a=(a_1,a_2,...,a_n)$  možemo zapisati u obliku  $(\forall \varepsilon>0)(\exists \delta>0)(\forall x\in D\backslash \{a\}\subset \mathbb{R}^n)(d(x,a)<\delta\Rightarrow |f(x)-A|<\varepsilon),$  gde je  $d(x,a)=\sqrt{(x_1-a_1)^2+...+(x_n-a_n)^2}.$ 

└Veza granične vrednosti funkcije i granične vrednosti niza

Važi **Hajneova**<sup>1</sup> **teorema** (veza granične vrednosti funkcije i granične vrednosti niza)

### Tvrđenje

Neka su  $(X, d_X)$  i  $(Y, d_Y)$  metrički prostori i neka je data funkcija  $f: D \to Y, D \subset X$ . Tada  $f(x) \to A \in Y, x \to a \in X$  ako i samo ako za svaki niz  $\{x_n\} \subset D \setminus \{a\}$  koji konvergira ka a, sledi da niz  $\{f(x_n)\}$ , konvergira ka A.

<sup>&</sup>lt;sup>1</sup>Hajne, E. (Eduard Heine, 1821-1881) - nemački matematičar € ト ⋅ € ト ⋅ € ⋅ √ ○

└Veza granične vrednosti funkcije i granične vrednosti niza

Dokaz. ( $\Rightarrow$ ) Pretpostavimo da iz  $x \to a$ , imamo da  $f(x) \to A$ . Tada važi:

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \delta \in \mathbb{R}^+)(\forall x \in D \setminus \{a\})(d_X(a,x) < \delta \Rightarrow d_Y(A,f(x)) < \varepsilon).$$

Ako niz  $\{x_n\} \subset D \setminus \{a\}$  teži ka a, tada

$$(\exists n_0 \in \mathbb{N})(\forall n \geq n_0) \ d_X(a, x_n) < \delta.$$

Tada za sve  $n \ge n_0$  važi da je

$$d_Y(A, f(x_n)) < \varepsilon,$$

pa sledi da niz  $\{f(x_n)\}$  teži ka A.

( $\Leftarrow$ ) Dokažimo obrnut stav. Pretpostavimo da f(x) ne teži ka A, kada  $x \to a$ . Tada

$$(\exists \varepsilon \in \mathbb{R}^+)(\forall n \in \mathbb{N})(\exists x_n \in D \setminus \{a\})(x_n \in L\left(a, \frac{1}{n}\right) \Rightarrow f(x_n) \notin L(A, \varepsilon)).$$

S obzirom da niz  $\{x_n\} \in D \setminus \{a\}$ , teži ka a to prema pretpostavci sledi da i niz  $\{f(x_n)\}$ , teži ka A, što je nemoguće po konstrukciji samog niza, jer otvorena lopta  $L(A,\varepsilon)$  ne sadrži ni jedan član niza  $\{f(x_n)\}$ .

Na osnovu Hajneove teoreme se može dokazati kao i kod granične vrednosti nizova, da ako funkcija  $f:D\to Y$  ima graničnu vrednost A u tački a, da je ta granična vrednost jednoznačno određena.

#### Primeri:

**1.** Ako je  $f:D\to Y$  konstantna funkcija, tj. f(x)=c, za svako  $x\in D$ , tada je

$$\lim_{x\to a} f(x) = c.$$

2.

$$\lim_{x\to 1}(2x+1)=3,$$

jer za proizvoljno  $\varepsilon>0$ , birajući  $\delta(\varepsilon)=\frac{\varepsilon}{2},$  imamo da je

$$|(2x+1)-3|=|2x-2|=2|x-1|<\varepsilon \Leftrightarrow |x-1|<\frac{\varepsilon}{2}.$$

U ovom primeru imamo da je funkcija definisana u tački a, tj. f(1)=3, i postoji  $\lim_{x\to 1} f(x)=3$  i ta granična vrednost je jednaka baš vrednosti funkcije u toj tački.

#### 3. Za funkciju

$$f(x) = \begin{cases} 2x+1, & x \neq 1 \\ 0, & x = 1 \end{cases}$$

je

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} (2x + 1) = 3.$$

Dakle,

- funkcija je definisana u tački 1, tj. f(1) = 0;
- postoji  $\lim_{x \to 1} f(x) = 3$ ;
- granična vrednost nije jednaka vrednosti funkcije u datoj tački.

#### 4. Funkcija

$$f(x) = x \sin \frac{1}{x}$$

nije definisana u tački 0, a ima graničnu vrednost. Zaista, kako za proizvoljno  $\varepsilon>0$ , birajući  $\delta=\varepsilon$ , imamo

$$\left|x\sin\frac{1}{x} - 0\right| = \left|x\sin\frac{1}{x}\right| \le |x| = |x - 0| < \varepsilon,$$

to važi da je

$$\lim_{x\to 0} x \sin\frac{1}{x} = 0.$$

# 5. Neka je



Funkcija nije definisana za x = 0.

Ne postoji ni  $\lim_{x\to 0}\sin\frac{1}{x}$ . Ako bi A bila granična vrednost funkcije f u tački 0, tada

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \delta \in \mathbb{R}^+)(\forall x \in \mathbb{R} \setminus \{0\})(|x| < \delta \Rightarrow |f(x) - A| < \varepsilon).$$

S obzirom da za svako  $\alpha \in \mathbb{R}^+ \cup \{0\}$  niz  $\{a_n(\alpha)\}$ , gde je

$$a_n(\alpha) = \frac{1}{\alpha + 2n\pi}$$

teži ka nuli i

$$f(a_n(\alpha)) = \sin(\alpha + 2n\pi) = \sin \alpha$$

pa bi u zavisnosti od  $\alpha$  imali različite granične vrednosti, što je nemoguće, jer je granična vrednost jedinstveno određena.

#### 6. Neka je

$$f(x) = \begin{cases} \sin\frac{1}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}.$$

Tada je funkcija f definisana za x=0, f(0)=1, ali ne postoji  $\lim_{x\to 0} f(x) = \lim_{x\to 0} \sin\frac{1}{x}.$ 

#### **7.** Funkcija $f: \mathbb{R}^2 \to \mathbb{R}$ definisana sa

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases},$$

nema graničnu vrednost u tački O(0,0). Posmatrajmo niz

$$a_n(k) = \left(\frac{1}{n}, \frac{k}{n}\right).$$

 $\lim_{n\to\infty} a_n(k) = (0,0)$ , a  $\lim_{n\to\infty} f(a_n(k))$  ne postoji jer je

$$f(a_n(k)) = \frac{k}{1+k^2}.$$

#### Granične vrednosti nad skupom



8. Za funkciju f datu sa

$$f(x) = \begin{cases} 2x + 1, & x \le 1 \\ -2x + 3, & x > 1 \end{cases},$$

vidimo da  $\lim_{x\to 1} f(x)$  ne postoji. Ovde ima smisla ispitati ponašanje funkcije za x>1 i za  $\overline{x}$  x<1, tj. posmatrati funkciju f i sa leve i sa desne strane tačke 1.

Vidimo kada  $x \to 1$ , pri čemu je x > 1, da  $f(x) \to 1$ , a kada  $x \to 1$ , pri čemu je x < 1, da  $f(x) \to 3$ .

#### **9.** Ako posmatramo funkciju $f: \mathbb{R} \to \mathbb{R}$ definisanu sa

$$f(x) = \left\{ \begin{array}{ll} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{array} \right.,$$

vidimo da funkcija f nema graničnu vrednost ni u jednoj tački  $a \in \mathbb{R}$ . Međutim, restrikcija  $f_{\mathbb{Q}}$  funkcije f ima graničnu vrednost u svakoj tački  $a \in \mathbb{R}$ .

Ovi primeri daju nam povod da definišemo graničnu vrednost funkcije f u tački a dok x pripada skupu E, gde je E podskup oblasti definisanosti funkcije f, za koji je a tačka nagomilavanja.

### Definicija

Neka su  $(X, d_X)$  i  $(Y, d_Y)$  dati metrički prostori i neka je E neprazan podskup oblasti definisanosti D funkcije  $f: D \to Y$ . Ako restrikcija  $f_E$  funkcije f ima graničnu vrednost  $A \in Y$  u tački  $a \in X$ , onda kažemo da funkcija f ima **graničnu vrednost** A **u** tački nagomilavanja a skupa E dok  $x \in E$  i pišemo da je

$$\lim_{x \to a} f(x) = A.$$

$$x \in E$$

Specijalno, ako je

$$D \subset \mathbb{R} = X \text{ i } E = (a, \infty) \cap D \quad (E = (-\infty, a) \cap D)$$

i ako funkcija f ima graničnu vrednost A u tački a dok  $x \in E$ , onda kažemo da funkcija f u tački a ima **desnu** (**levu**) **graničnu vrednost** A i pišemo da je

$$\lim_{x \to a^+} f(x) = f(a^+) = A \quad (\lim_{x \to a^-} f(x) = f(a^-) = A).$$

Koriste se i oznake

$$\lim_{x \to a+} f(x) = f(a+0) \quad (\lim_{x \to a-} f(x) = f(a-0)).$$

Leva, odnosno desna granična vrednost se jednim imenom zovu jednostrane granične vrednosti.

- ullet Ako funkcija  $f:D o\mathbb{R},\,D\subset\mathbb{R}$  u tački a ima graničnu vrednost A, tada
- postoji bar jedna jednostrana granična vrednost koja je jednaka broju A, tj. graničnoj vrednosti funkcije f u tački a;
- ako postoje obe jednostrane granične vrednosti, one su jednake graničnoj vrednosti funkcije u tački *a*, tj.

$$\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = \lim_{x\to a} f(x) = A.$$

• Ako funkcija f u tački a ima obe jednostrane granične vrednosti, ona će imati graničnu vrednost samo onda ako su jednostrane granične vrednosti jednake, tj.  $\lim_{x\to a} f(x)$  postoji ako

$$\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = A$$

i tada je  $\lim_{x \to a} f(x) = A$ .

Kao što smo videli u primeru **8**. postoji leva granična vrednost u tački x=1, tj.  $\lim_{\substack{x\to 1^-\\ x\to 1^-}} f(x)=f(1^-)=3$ , kao i desna granična vrednost u tački x=1, tj.  $\lim_{\substack{x\to 1^+\\ y\to 1^+}} f(x)=f(1^+)=1$ , ali one nisu jednake, pa funkcija u tački x=1 nema graničnu vrednost.

#### 10. Ako posmatramo funkciju

$$f(x) = \sqrt{\frac{x}{x-1}},$$

vidimo da u tački x = 0 funkcija nema desnu graničnu vrednost, jer nije definisana nad intervalom (0,1]. Međutim ovde je

$$\lim_{x \to 0} f(x) = \lim_{x \to 0^{-}} f(x) = 0.$$

#### 11. Za funkciju

$$f(x) = \arctan\left(1 + \frac{1}{x}\right)$$

je

$$\lim_{x \to 0^+} f(x) = \frac{\pi}{2} \quad \text{i} \quad \lim_{x \to 0^-} f(x) = -\frac{\pi}{2},$$

pa funkcija nema graničnu vrednost u tački 0.

# **12.** Posmatrajmo funkciju

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases},$$

iz primera **7.** i uzmimo da je  $E = \{(x, 2x) : x \in \mathbb{R}\}$ . Tada važi

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in E}} f(x,y) = \lim_{x\to 0} \frac{2x^2}{x^2 + 4x^2} = \frac{2}{5}.$$

#### Tvrđenje

Neka su  $(X, d_X)$  i  $(Y, d_Y)$  metrički prostori i neka je a  $\in X$  tačka nagomilavanja za definicioni skup  $D \subset X$  funkcije  $f : D \to Y$ . Tada važi

- a) Ako funkcija f ima graničnu vrednost  $A \in Y$  u tački a i ako je a tačka nagomilavanja za neprazan skup  $E \subset D$ , tada postoji lim f(x) i važi jednakost lim  $f(x) = \lim_{x \to a} f(x)$ .  $x \to a$   $x \in E$   $x \in E$
- b) Neka je a tačka nagomilavanja svakog od skupova  $E_1,...,E_n\subset D$  koji vrše particiju skupa  $D\setminus \{a\}$ . Tada ako postoje granične vrednosti  $\lim_{X\to a} f(x)$ , za svako i=1,...,n i pri tome su  $x\to a$   $x\in E_i$

međusobno jednake, tada postoji  $\lim_{x\to a} f(x)$  i važi jednakost

$$\lim_{x \to a} f(x) = \lim_{x \to a} f(x), za \ i = 1, ..., n.$$

$$x \in E_i$$

Ako za neko  $k \in \mathbb{R} \setminus \{0\}$  uzmemo  $E = \{(x, kx) : x \in \mathbb{R}\}$ , tada za funkciju f iz primera **7.** važi:

$$\lim_{\substack{(x,y)\to(0,0)\\x\in E}} f(x,y) = \frac{k}{1+k^2}.$$

S obzirom da za svako k ove granične vrednosti nisu jednake, to ne postoji  $\lim_{(x,y)\to(0,0)} f(x,y)$ , kao što smo i pre videli.

# Definicija

Neka je (X,d) metrički prostor i neka je  $a \in X$  tačka nagomilavanja za definicioni skup  $D \subset X$  realne funkcije

 $f:D\to\mathbb{R}$ . Tada

• funkcija f(x) teži ka  $\infty$ , tj.  $f(x) \to \infty$ ,  $x \to a$ , ako i samo ako

$$(\forall K \in \mathbb{R}^+)(\exists \delta \in \mathbb{R}^+)(\forall x \in D \setminus \{a\})(x \in L(a, \delta) \Rightarrow f(x) > K).$$

• funkcija f(x) teži ka  $-\infty$ , tj.  $f(x) \to -\infty$ ,  $x \to a$ , ako i samo ako

$$(\forall K \in \mathbb{R}^-)(\exists \delta \in \mathbb{R}^+)(\forall x \in D \setminus \{a\})(x \in L(a, \delta) \Rightarrow f(x) < K).$$

Ponekad se piše da  $\lim_{x\to a} f(x) = \infty$ , odnosno  $\lim_{x\to a} f(x) = -\infty$ .

Ako posmatramo funkciju  $f(x) = \frac{1}{x^2}$ , vidimo da  $\frac{1}{x^2} \to \infty$ , kada  $x \to 0$ , jer za svako K > 0, postoji  $\delta = \frac{1}{\sqrt{K}}$ , tako da je

$$\frac{1}{x^2} > K \Leftrightarrow x^2 < \frac{1}{K} \Leftrightarrow |x| < \frac{1}{\sqrt{K}}.$$

Za funkciju  $f(x) = -\frac{1}{x^2}$ , imamo da  $f(x) \to -\infty$ , kada  $x \to 0$ , jer za svako K < 0, postoji  $\delta = \frac{1}{\sqrt{-K}}$ , tako da je

$$-\frac{1}{x^2} < K \Leftrightarrow \frac{1}{x^2} > -K \Leftrightarrow x^2 < -\frac{1}{K} \Leftrightarrow |x| < \frac{1}{\sqrt{-K}}.$$







Ako posmatramo funkciju  $f(x) = \frac{1}{x}$ , vidimo da f(x) ne teži ni  $\infty$ , ni  $-\infty$ , kada  $x \to 0$ , tj. ne postoji okolina 0 koja se čitava, izuzevši 0, preslika, iznad (ispod) prave y = K, gde je K > 0 (K < 0), jer sa leve strane tačke x = 0 je f(x) < 0, a sa desne strane tačke x=0je f(x) > 0. Vidimo da  $f(x) \rightarrow$  $\infty$ ,  $x \to 0^+$ , a  $f(x) \to -\infty$ ,  $x \to 0^-$ .

Uopšte, ako je  $a \in X$  tačka nagomilavanja podskupa E, definicionog skupa  $D \subset X$ , realne funkcije  $f: D \to \mathbb{R}$  i ako restrikcija  $f_E$  funkcije f, teži  $\infty$ , odnosno  $-\infty$ , kada  $x \to a$ , tada kažemo da  $f(x) \to \infty$ , odnosno  $f(x) \to -\infty$ , kada  $x \to a$ , dok  $x \in E$ .

Specijalno, ako je  $D \subset \mathbb{R}$ ,  $f: D \to \mathbb{R}$ ,  $E = (a, \infty) \cap D \neq \emptyset$ , tada  $f(x) \to \infty$ , kad  $x \to a^+$  ako

$$(\forall K \in \mathbb{R}^+)(\exists \delta \in \mathbb{R}^+)(\forall x \in D)(x \in (a, a + \delta) \Rightarrow f(x) > K),$$

odnosno  $f(x) \to -\infty$ , kada  $x \to a^+$  ako

$$(\forall K \in \mathbb{R}^-)(\exists \delta \in \mathbb{R}^+)(\forall x \in D)(x \in (a, a + \delta) \Rightarrow f(x) < K).$$

Slično, ako je  $D\subset\mathbb{R},\ f:D\to\mathbb{R},\ E=(-\infty,a)\cap D\neq\emptyset,$  tada  $f(x)\to\infty,$  kada  $x\to a^-$  ako

$$(\forall K \in \mathbb{R}^+)(\exists \delta \in \mathbb{R}^+)(\forall x \in D)(x \in (a - \delta, a) \Rightarrow f(x) > K),$$

odnosno  $f(x) \to -\infty$ , kada  $x \to a^-$  ako

$$(\forall K \in \mathbb{R}^-)(\exists \delta \in \mathbb{R}^+)(\forall x \in D)(x \in (a-\delta,a) \Rightarrow f(x) < K).$$

#### Primeri:

1. Za funkciju  $f(x) = e^{\frac{1}{x}}$  je

$$\lim_{x\to 0^+}e^{\frac{1}{x}}=+\infty,\quad \lim_{x\to 0^-}e^{\frac{1}{x}}=0.$$

2. 
$$g(x) = \begin{cases} \frac{1}{x^2}, & x \in (0, \infty) \cap Q \\ -\frac{1}{x^2}, & x \in (0, \infty) \cap (R \setminus Q) \end{cases}$$

3. 
$$h(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ 10, & x = 0 \end{cases}$$

# Ponašanje funkcije f(x) kada $x \to \pm \infty$

# Definicija

Neka je (Y, d) metrički prostor i neka je  $D \subset \mathbb{R}$  definicioni skup funkcije  $f: D \to Y$ , za koji važi da je  $(\forall a \in \mathbb{R})$   $(a, \infty) \cap D \neq \emptyset$ . Tada

1°) Kažemo da funkcija f(x) ima graničnu vrednost  $A \in Y$ , kada  $x \to \infty$ , ako je

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \Delta \in \mathbb{R}^+)(\forall x \in D)(x > \Delta \Rightarrow f(x) \in L(A, \varepsilon)),$$

odnosno za  $Y=\mathbb{R},$  važi

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \Delta \in \mathbb{R}^+)(\forall x \in D)(x > \Delta \Rightarrow |f(x) - A| < \varepsilon).$$

i to zapisujemo sa  $\lim_{x\to\infty} f(x) = A$ .

#### Definicija

Neka je (Y, d) metrički prostor i neka je  $D \subset \mathbb{R}$  definicioni skup funkcije  $f: D \to Y$ , za koji važi da je  $(\forall a \in \mathbb{R}) (a, \infty) \cap D \neq \emptyset$ .

2°) Ako je  $Y=\mathbb{R},$  kažemo da  $f(x)\to\infty,$  kada  $x\to\infty$  ako

$$(\forall K \in \mathbb{R}^+)(\exists \Delta \in \mathbb{R}^+)(\forall x \in D)(x > \Delta \Rightarrow f(x) > K).$$

3°) Ako je 
$$Y = \mathbb{R}$$
, kažemo da  $f(x) \to -\infty$ , kada  $x \to \infty$ , ako  $(\forall K \in \mathbb{R}^-)(\exists \Delta \in \mathbb{R}^+)(\forall x \in D)(x > \Delta \Rightarrow f(x) < K)$ .

Ponekad se umesto

$$f(x) \to \infty$$
, odnosno  $f(x) \to -\infty$ , kada  $x \to \infty$ ,

#### Primer

Ako za proizvoljno  $\varepsilon>0$ , uzmemo da je  $\Delta=\frac{1}{\varepsilon}-1$ , to za x>0, važi

$$\begin{split} \left| \frac{x}{x+1} - 1 \right| < \varepsilon &\iff \frac{1}{|x+1|} < \varepsilon \\ &\Leftrightarrow |x+1| > \frac{1}{\varepsilon} \\ &\Leftrightarrow x+1 > \frac{1}{\varepsilon} \\ &\Leftrightarrow x > \frac{1}{\varepsilon} - 1 \end{split}$$

pa je

$$\lim_{x \to \infty} \frac{x}{x+1} = 1.$$

### Primer

Za funkciju

$$f(x) = \left(\frac{1}{x}, \frac{x-1}{x^2-1}\right), \ x \in \mathbb{R} \setminus \{-1, 0, 1\}$$

je

$$\lim_{x\to\infty}f(x)=(0,0).$$

## Definicija

Neka je (Y,d) metrički prostor i neka je  $D \subset \mathbb{R}$  definicioni skup funkcije  $f:D \to Y$ , za koji važi

$$(\forall a \in \mathbb{R}) \ (-\infty, a) \cap D \neq \emptyset.$$

Tada

1°) Funkcija f(x) ima graničnu vrednost  $A \in Y$  kada  $x \to -\infty$ , ako

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \Delta \in \mathbb{R}^-)(\forall x \in D)(x < \Delta \Rightarrow f(x) \in L(A, \varepsilon)),$$

odnosno za  $Y = \mathbb{R}$ , važi

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \Delta \in \mathbb{R}^-)(\forall x \in D)(x < \Delta \Rightarrow |f(x) - A| < \varepsilon),$$

i to zapisujemo sa  $\lim_{x\to -\infty} f(x) = A$ .



#### Posmatrajmo funkciju

$$f(x) = \left\{ \begin{array}{ll} 1 & , & x \in Q \\ 0 & , & x \in R \setminus Q \end{array} \right.$$

Da li ona ima graničnu vrednost kada  $x \to \infty$ , tj. da li postoji  $\lim_{x \to \infty} f(x)$ ?

Da li ona ima graničnu vrednost kada  $x \to \infty$ , dok x pripada skupu racionalnih brojeva, tj. da li postoji  $\lim_{x \to \infty, x \in \mathbb{O}} f(x)$ ?

### Definicija

Neka je (Y, d) metrički prostor i neka je  $D \subset \mathbb{R}$  definicioni skup funkcije  $f: D \to Y$ , za koji važi  $(\forall a \in \mathbb{R}) (-\infty, a) \cap D \neq \emptyset$ . Tada

2°) Ako je  $Y=\mathbb{R},$  kažemo da  $f(x)\to\infty,$  kada  $x\to-\infty,$  ako

$$(\forall K \in \mathbb{R}^+)(\exists \Delta \in \mathbb{R}^-)(\forall x \in D)(x < \Delta \Rightarrow f(x) > K).$$

3°) Ako je  $Y=\mathbb{R},$  kažemo da  $f(x)\to -\infty,$  kada  $x\to -\infty,$  ako

$$(\forall K \in \mathbb{R}^-)(\exists \Delta \in \mathbb{R}^-)(\forall x \in D)(x < \Delta \Rightarrow f(x) < K).$$

Ponekad se umesto

$$f(x) \to \infty$$
, odnosno  $f(x) \to -\infty$  kada  $x \to -\infty$ ,

piše

$$\lim_{x \to -\infty} f(x) = \infty \text{ odnosno } \lim_{x \to -\infty} f(x) = \infty$$

## I ovde (uvek!) važi Hajneova teorema:

### Tvrđenje

Neka su  $(X, d_X)$  i  $(Y, d_Y)$  metrički prostori i neka je data funkcija  $f: D \to Y, D \subset X$ . Tada važi

- a) Ako je  $Y = \mathbb{R}$ , tada  $f(x) \to \pm \infty$ ,  $x \to a$  ako i samo ako za svaki niz  $\{x_n\} \subset D \setminus \{a\}$ , koji konvergira ka a, sledi da niz  $\{f(x_n)\}$  teži  $\infty$ , odnosno  $-\infty$ ,  $n \to \infty$ .
- b) Ako je  $X = \mathbb{R}$ , tada  $f(x) \to A \in Y$ ,  $x \to \pm \infty$  ako i samo ako za svaki niz  $\{x_n\} \subset D$ , koji teži ka  $\pm \infty$ , sledi da niz  $\{f(x_n)\}$  konvergira ka A.
- c) Ako je  $X = Y = \mathbb{R}$ , tada  $f(x) \to \infty$   $(f(x) \to -\infty)$ ,  $x \to \pm \infty$  ako i samo ako za svaki niz  $\{x_n\} \subset D$  koji teži  $\pm \infty$ , sledi da niz  $\{f(x_n)\}$  teži  $\infty$   $(-\infty)$ ,  $n \to \infty$ .

- Može se i ovde pokazati da ako postoji granična vrednost, da je ona jednoznačno određena.
- Ako posmatramo funkciju  $f(x) = \cos x$ , vidimo da
- 1) f(x) ne teži ni  $\infty$ , ni  $-\infty$ , kada  $x \to \infty$  jer  $-1 \le f(x) \le 1$ .
- 2) Ne postoji  $\lim_{x\to\infty} f(x)$ . Ako bi postojao  $\lim_{x\to\infty} f(x) = A$ , tada bi po definiciji granične vrednosti, sledilo da

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \Delta \in \mathbb{R}^+)(\forall x \in \mathbb{R})(x > \Delta \Rightarrow |\cos x - A| < \varepsilon).$$

Ako posmatramo niz  $\{a_n\}$  sa opštim članom  $a_n=\alpha+2n\pi, \ \alpha\in\mathbb{R}$  vidimo da  $a_n\to\infty$ , kada  $n\to\infty$ , pa u svakom intervalu  $(a,\infty)$  su skoro svi članovi datog niza. Kako je  $\cos a_n=\cos\alpha$ , to bi sledilo da je  $A=\cos\alpha$ , što je kontradikcija, jer, ako postoji granična vrednost ona je jednoznačno određena.

Ponekad sa

$$f(x) \to \pm \infty$$
, kada  $x \to a$ ,

označavamo da

$$f(x) \to \infty$$
 ili  $f(x) \to -\infty$  kada  $x \to a$ 

i često pišemo

$$\lim_{x \to a} f(x) = \pm \infty.$$

Slično, ako

$$f(x) \to A \text{ kada } x \to \infty \text{ ili } x \to -\infty,$$

često pišemo

$$f(x) \to A, x \to \pm \infty,$$

odnosno

$$\lim_{x\to\pm\infty}f(x)=A.$$

Računske operacije sa graničnim vrednostima funkcija

# Računske operacije sa graničnim vrednostima funkcija

## Tvrđenje

Neka je  $(X, d_X)$  metrički prostor i neka je a tačka nagomilavanja za definicioni skup  $D \subset X$  funkcija  $f : D \to \mathbb{R}(\mathbb{C})$  i  $g : D \to \mathbb{R}(\mathbb{C})$ . Tada važi

a) Ako je 
$$\lim_{x \to 2} f(x) = A i \lim_{x \to 2} g(x) = B$$
, to je

1°) 
$$\lim_{x\to a} (f(x)\pm g(x)) = \lim_{x\to a} f(x) \pm \lim_{x\to a} g(x) = A\pm B$$
,

$$2^{\circ}) \lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = A \cdot B,$$

3°) 
$$\lim_{x \to a} (c \cdot f(x)) = c \cdot \lim_{x \to a} f(x) = c \cdot A$$
,

$$4^{\circ}) \ \ \textit{za} \ \textit{g}(\textit{x}) \neq 0 \ \textit{i} \ \textit{B} \neq 0, \ \lim_{\textit{x} \to \textit{a}} \frac{1}{\textit{g}(\textit{x})} = \frac{1}{\lim \textit{g}(\textit{x})} = \frac{1}{\textit{B}},$$

5°) 
$$za \ g(x) \neq 0 \ i \ B \neq 0, \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{A}{B}.$$

## Tvrđenje

Neka je  $(X, d_X)$  metrički prostor i neka je a tačka nagomilavanja za definicioni skup  $D \subset X$  funkcija  $f: D \to \mathbb{R}$  i  $g: D \to \mathbb{R}$ . Tada važi

- **b**) Ako  $f(x) \to \infty$ , kada  $x \to a$  i  $g(x) \to B$   $(B \in \mathbb{R} \cup \{\infty\})$ , kada  $x \to a$ , tada
  - 1°)  $(f(x) + g(x)) \rightarrow \infty$ , kada  $x \rightarrow a$ ,
  - 2°)  $(f(x) \cdot g(x)) \to \infty$ , za B > 0, odnosno  $(f(x) \cdot g(x)) \to -\infty$ , za B < 0.
- c) Ako  $f(x) \to -\infty$ , kada  $x \to a$  i  $g(x) \to B$   $(B \in \mathbb{R} \cup \{-\infty\})$ , kada  $x \to a$ , tada
  - 1°)  $(f(x) + g(x)) \rightarrow -\infty$ , kada  $x \rightarrow a$ ,
  - 2°)  $(f(x) \cdot g(x)) \to -\infty$ , za B > 0, odnosno  $(f(x) \cdot g(x)) \to \infty$ , za B < 0.
- d) Ako je  $X = \mathbb{R}$ , tada osobine **a**), **b**) i **c**) važe i kada  $x \to \infty$ , odnosno  $x \to -\infty$ .

Dokaz. Dokaz sledi iz Hajneove teoreme i odgovarajućih osobina nizova. Ovde ćemo ipak, radi ilustracije, dati dokaz da je  $\lim_{x \to a} (f(x) + g(x)) = A + B$ , ne koristeći Hajneovu teoremu.

S obzirom da je  $\lim_{x \to a} f(x) = A$  i  $\lim_{x \to a} g(x) = B$ , to za proizvoljno  $\varepsilon \in \mathbb{R}^+$ , postoje  $\delta_f, \delta_g \in \mathbb{R}^+$ , tako da za sve  $x \in D \setminus \{a\}$ , važi

$$d_X(a,x) < \delta_f \Rightarrow |f(x) - A| < \frac{\varepsilon}{2},$$
  
 $d_X(a,x) < \delta_g \Rightarrow |g(x) - B| < \frac{\varepsilon}{2}.$ 

Neka je  $\delta_{f+g} = \min\{\delta_f, \delta_g\}$ . Tada važi:

$$|(f(x)+g(x))-(A+B)|\leq |f(x)-A|+|g(x)-B|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,$$

za  $0 < d_X(a,x) < \delta_{f+g}$ , odakle sledi dato tvrđenje.

Računske operacije sa graničnim vrednostima funkcija

### Napomena

U formulaciji teoreme smo pretpostavili da je a tačka nagomilavanja za zajednički definicioni skup D funkcija f i g, jer iz

$$\lim_{x\to a} f(x) = A \ i \ \lim_{x\to a} g(x) = B,$$

ne sledi uvek da je

$$\lim_{x\to a}(f(x)+g(x))=A+B,$$

što se vidi iz sledećeg primera.

#### Primer

Neka su date funkcije f i g sa

$$f(x) = \sqrt{x}, \quad g(x) = \sqrt{-x}.$$

Vidi se da je

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0,$$

а

$$\lim_{x\to 0}(f(x)+g(x))$$

ne postoji, jer je 0 izolovana tačka, za definicioni skup funkcije f+g.

Računske operacije sa graničnim vrednostima funkcija

## Napomena

Tvrđenje teoreme pod a) važi i kada su u pitanju kompleksne funkcije.

#### Primer

Neka su date funkcije

$$f(x) = \begin{cases} \sin^2 \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases},$$

$$g(x) = \begin{cases} \cos^2 \frac{1}{x}, & x \neq 0 \\ 10, & x = 0 \end{cases}.$$

Njihova granična vrednost u x = 0, ne postoji, dok je

$$\lim_{x \to 0} (f(x) + g(x)) = \lim_{x \to 0} 1 = 1.$$

### Tvrđenje

Neka je dat metrički prostor (X,d) i neka je a tačka nagomilavanja za definicioni skup  $D \subset X$  funkcija  $f: D \to \mathbb{R}$  i  $g: D \to \mathbb{R}$ . Tada, ako je  $f(x) \leq g(x)$  i

$$\lim_{x\to a} f(x) = A$$

i

$$\lim_{x\to a}g(x)=B,$$

tada je i  $A \leq B$ .

### Tvrđenje

Neka je dat metrički prostor (X,d) i neka je a tačka nagomilavanja za definicioni skup  $D \subset X$  funkcija  $f: D \to \mathbb{R}$  i  $g: D \to \mathbb{R}$ . Tada

a) Ako za funkciju h :  $D \to \mathbb{R}$ , važi

$$f(x) \le h(x) \le g(x)$$

i ako je

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = A,$$

to je i

$$\lim_{x\to a}h(x)=A.$$

b) Slična osobina važi i za slučaj kada je  $X = \mathbb{R}$  i kada  $x \to \infty$ , odnosno  $x \to -\infty$ .

Dokaz. Sledi iz Hajneove teoreme i slične osobine za nizove.

#### Primer

Na osnovu prethodne i Hajneove teoreme sledi da je

$$\lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^x = \lim_{x \to -\infty} \left( 1 + \frac{1}{x} \right)^x = e,$$

kao i da je

$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e.$$

#### Primer

Važi da je

$$\lim_{x\to 0}\frac{\sin x}{x}=1$$

#### Dokaz:



Za x > 0, sa slike vidimo da je

$$P_{\triangle OCA} < P_{\angle OCA} < P_{\triangle OCD}$$

tj.

$$\frac{1}{2}\sin x < \frac{x}{2} < \frac{1}{2}tgx,$$

ра је

$$\cos x < \frac{\sin x}{x} < 1.$$

Odavde je na osnovu prethodne teoreme  $\lim_{x\to 0^+}\frac{\sin x}{x}=1.$ 

Iz parnosti funkcije  $\frac{\sin x}{x}$  sledi  $\lim_{x\to 0^-} \frac{\sin x}{x} = 1$ . Dakle,

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

#### Beskonačno male i beskonačno velike veličine

Neka je (X, d) metrički prostor i funkcija  $f: D \to \mathbb{R}, \emptyset \neq D \subset X$ .

## Definicija

Za funkciju f(x) kažemo da je **beskonačno mala veličina** kada  $x \to a$ , ako je

$$\lim_{x\to a} f(x) = 0.$$

## Definicija

Za funkciju f(x) kažemo da je beskonačno velika veličina kada  $x \to a$ , ako

$$|f(x)| \to \infty$$
, kada  $x \to a$ .

Očigledno je da je recipročna vrednost beskonačno male veličine, beskonačno velika veličina i obrnuto.

- Posmatrajmo dve beskonačno male veličine f(x) i g(x) kada  $x \to a$ , gde je  $g(x) \ne 0$  u nekoj okolini tačke x = a.
- 1) Ako je  $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$  ili što je ekvivalentno sa  $|\frac{g(x)}{f(x)}| \to \infty$  kada  $x \to a$ , onda kažemo da je f(x) beskonačno mala veličina višeg reda od g(x) kada  $x \to a$ , odnosno da je g(x) beskonačno mala veličina nižeg reda od f(x), kada  $x \to a$ . Kažemo još i da f(x) brže teži nuli od g(x) kada  $x \to a$ , odnosno da g(x) sporije teži nuli od f(x), kada  $x \to a$ .

Na primer, funkcija  $f(x)=1-\cos x$  brže teži nuli od funkcije g(x)=x, kada  $x\to 0$ , jer je

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x} = 0.$$

2) Ako je  $\lim_{x\to a} \frac{f(x)}{g(x)} = C \neq 0$ , onda kažemo da su f(x) i g(x) beskonačno male veličine istog reda kada  $x\to a$ .

Specijalno, ako je C=1, tj. ako je  $\lim_{x\to a} \frac{f(x)}{g(x)}=1$ , onda kažemo da su f(x) i g(x) ekvivalentne beskonačno male veličine, kada  $x\to a$  i to zapisujemo sa

$$f(x) \sim g(x)$$
, kada  $x \to a$ .

Takođe kažemo da se funkcije f(x) i g(x) **isto ponašaju**, kada  $x \to a$ .

#### Primer

Funkcija  $f(x) = \sin \alpha x$ ,  $\alpha \neq 0$  i funkcija g(x) = x su beskonačno male veličine istog reda, kada  $x \to 0$ , jer je  $\lim_{x \to 0} \frac{\sin \alpha x}{x} = \alpha$ . Ako je  $\alpha = 1$ , tada je  $\sin x \sim x$ , kada  $x \to 0$ .

3) Ako ne postoji ni  $\lim_{x\to a} \frac{f(x)}{g(x)}$ , ni  $\lim_{x\to a} \frac{g(x)}{f(x)}$ , tada se beskonačno male veličine f(x) i g(x) ne mogu porediti, kada  $x\to a$ , tj. f(x) i g(x) su neuporedive beskonačno male veličine, kada  $x\to a$ .

Na primer, funkcije

$$f(x) = \frac{1}{x} i g(x) = \frac{1}{x(2 + \sin x)}$$

su neuporedive beskonačno male veličine, kada  $x \to \infty$ , jer ne postoji ni

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} (2 + \sin x),$$

ni

$$\lim_{x \to \infty} \frac{g(x)}{f(x)} = \lim_{x \to \infty} \frac{1}{2 + \sin x}.$$

- Posmatrajmo dve beskonačno velike veličine f(x) i g(x), kada  $x \to a$ , tj.  $|f(x)| \to \infty$  i  $|g(x)| \to \infty$ , kada  $x \to a$ .
- 1) Ako je

$$\lim_{x\to a}\frac{f(x)}{g(x)}=0,$$

odnosno

$$\left| \frac{g(x)}{f(x)} \right| \to \infty$$
, kada  $x \to a$ ,

gde je  $g(x) \neq 0$ , tada kažemo da je g(x) beskonačno velika veličina višeg reda od f(x), kada  $x \to a$ , odnosno da je f(x) beskonačno velika veličina nižeg reda od g(x), kada  $x \to a$ .

Beskonačno male i beskonačno velike veličine

2) Ako je  $\lim_{x\to a} \frac{f(x)}{g(x)} = \alpha \neq 0$ , onda kažemo da su f(x) i g(x) beskonačno velike veličine istog reda, kada  $x\to a$ .

Specijalno, ako je  $\alpha=1$ , tj.  $\lim_{x\to a}\frac{f(x)}{g(x)}=1$ , onda kažemo da su f(x) i g(x) ekvivalentne beskonačno velike veličine, kada  $x\to a$  ili da su f(x) i g(x) asimptotski jednake, kada  $x\to a$ . Tada pišemo da je

$$f(x) \sim g(x)$$
, kada  $x \to a$ .

Na primer, polinomi

$$P_n(x) = a_n x^n + ... + a_1 x + a_0, \quad Q_n(x) = a_n x^n, \ a_n \neq 0, \ n \in \mathbb{N},$$
su asimptotski jednaki, kada  $x \to \infty$ , jer je

$$\lim_{x\to\infty}\frac{P_n(x)}{Q_n(x)}=1.$$

Kažemo i da se polinom ponaša kao njegov najstariji (vodeći) član kada  $x \to \infty$ .

3) Ako ne postoji ni  $\lim_{x\to a} \frac{f(x)}{g(x)}$ , ni  $\lim_{x\to a} \frac{g(x)}{f(x)}$ , onda kažemo da se beskonačno velike veličine f(x) i g(x) ne mogu uporediti, kada  $x\to a$ , odnosno da su f(x) i g(x) neuporedive beskonačno velike veličine, kada  $x\to a$ .

Na primer, funkcije f(x) = x i  $g(x) = x(2 + \sin x)$  su neuporedive beskonačno velike veličine, kada  $x \to \infty$ , jer ne postoji ni

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{1}{2 + \sin x},$$

ni

$$\lim_{x \to \infty} \frac{g(x)}{f(x)} = \lim_{x \to \infty} (2 + \sin x).$$

### Napomena

Analogne definicije za beskonačno male i beskonačno velike veličine mogu se dati i kada  $x \to a^+,$  odnosno kada  $x \to a^-,$   $a^-$