Funkcje

- 1. Def: Relację $R \subseteq X \times Y$ nazywamy funkcją, jeśli $\forall_{x \in X} \forall_{y_1, y_2 \in Y} x R y_1 \wedge x R y_2 \implies y_1 = y_2$ Gdy relacja jest funkcją często zamiasy x R y piszemy y = R(x). Element x nazywamy argumentem funkcji R, zaś y wartością R dla argumentu x
- 2. Def: Zbiór $D_r = \{x \in X: \exists_{y \in Y} R(x) = y\}$ nazywamy **dziedziną** funkcji R. Jeśli $D_R = X$, to oznaczamy $R: X \to Y$
- 3. Def: Jeśli przeciwdziedzina jest równa zbiorowi wartosci, to mówimy, że funkcja jest "na", lub że jest surjekcją
- 4. Twiedzenie Złożenie dwóch funkcji jest funkcją
- 5. Uwaga: Relacja odwrotna do funkcji nie musi być funkcja
- 6. Def: Funkcję $f: X \to Y$ nazywamy **różnowartościową**, lub **iniekcją**, jeśli $\forall_{x_1, x_2 \in X} x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$
- 7. Twierdzenie: Jeśli $f:X\to Y$ jest iniekcją to jej relacja odwrotna jest funkcją
- 8. Uwaga: Jeśli funkcja f jest **na** zbiór Y, to piszemy $f^{-1}:Y\to X$
- 9. Twierdzenie: Niech $f: X \to Y$ oraz $f^{-1}: Y \to X$. Wtedy $f \circ f^{-1} = id_Y = \{(y,y): y \in Y\}, f^{-1} \circ f = id_X = \{(x,x): x \in X\}$
- 10. Funkcja która jest iniekcją i surjekcją nazywamy bijekcją
- 11. Niech $f:X\to Y$ oraz $Z\subseteq X$. Funkcję $g=f_{/Z}=f\cap Z\times Y$ nazywamy obcięciem funkcji f do zbioru Z
- 12. Niech $f_i: X_i \to Y$ dla $i \in I$ oraz dla każdego $i \neq j \in I$ $X_i \cap X_j = \emptyset$. Wtedy $f = f_1 \cup \cdots \cup f_n$ jest funkcją i $f: \bigcap_{i \in I} X_i \to Y$
- 13. Niech X, Y, Z, T zbiory oraz $f: X \to Y, g: Y \to Zh: Z \to T$ funkcje
 - (a) $f: X \stackrel{1-1}{\to} Y, g: Y \stackrel{1-1}{\to} Z \implies g \circ f: X \stackrel{1-1}{\to} Z (1-1)$ różnowartościowe
 - (b) $f: X \stackrel{na}{\to} Y, g: Y \stackrel{na}{\to} Z \implies g \circ f: X \stackrel{na}{\to} Z$
 - (c) $f: X \stackrel{bijekcja}{\rightarrow} Y, q: Y \stackrel{bijekcja}{\rightarrow} Z \implies q \circ f: X \stackrel{bijekcja}{\rightarrow} Z$
 - (d) $h \circ (g \circ f) = (h \circ g) \circ f$
 - (e) Składanie funkcji nie jest przemienne
 - (f) $f \circ id_x = f$, $id_y \circ f = f$
 - (g) $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$
- 14. Def: Niech $f: X \to Y$, $A \subseteq X$, $B \subseteq Y$. Zbiór $f[A] = \{y \in Y : \exists_{x \in A} y = f(x)\} = \{f(x) : x \in A\} \subseteq Y$ nazywamy **obrazem** zbioru A funkcji f Zbiór $f^{-1}[B] = \{x \in X : f(x) \in B\} \subseteq X$ nazywamy **przeciwobrazem** funkcji f
- 15. Twierdzenie: $f: X \to Y$ $A_1, A_2 \subseteq X$ $A: I \to P(X)$ (rodzina indeksowana). Wtedy:
 - (a) $f[\emptyset] = \emptyset$
 - (b) $A_1 \subseteq A_2 \implies f[A_1] \subseteq f[A_2]$
 - (c) $f[\bigcup_{i \in I} A_i] = \bigcup_{i \in I} f[A_i]$
 - (d) $f[\bigcap_{i \in I} A_i] \subseteq \bigcap_{i \in I} f[A_i]$
 - (e) Jeśli f jest iniekcją to we własności (d) mamy równość
- 16. Twierdzenie: $f: X \to Y, B_1, B_2 \subseteq Y, B: I \to P(Y)$ (rodzina indeksowana). Wtedy:
 - (a) $f^{-1}[\emptyset] = \emptyset$
 - (b) $B_1 \subseteq B_2 \implies f^{-1}[B_1] \subseteq f^{-1}[B_2]$
 - (c) $f^{-1}[\bigcup_{i \in I} B_i] = \bigcup_{i \in I} f^{-1}[B_i]$
 - (d) $f^{-1}[\bigcap_{i \in I} B_i] = \bigcap_{i \in I} f^{-1}[B_i]$
- 17. Twierdzenie: $f: X \to Y, A \subseteq X, B \subseteq Y$
 - (a) $A \subseteq f^{-1}[f[A]]$
 - (b) $f[f^{-1}[B]] \subseteq B$
 - (c) Jeśli f jest iniekcją to w 1 zachodzi równość
 - (d) Jeśli f jest surjekcją to w 2 zachodzi równość 2