

LINGUAGENS FORMAIS E AUTÓMATOS / COMPILADORES

LINGUAGENS REGULARES, EXPRESSÕES REGULARES E GRAMÁTICAS REGULARES

> Artur Pereira <artur@ua.pt>, Miguel Oliveira e Silva <mos@ua.pt

> > DETI, Universidade de Aveiro

SUMÁRIO

- LINGUAGENS REGULARES
- EXPRESSÕES REGULARES
- GRAMÁTICAS REGULARES
- EQUIVALÊNCIA ENTRE EXPRESSÕES REGULARES E GRAMÁTICAS REGULARES

Definição de linguagem regular

A classe das **linguagens regulares** sobre o alfabeto *A* define-se indutivamente da seguinte forma:

- O conjunto vazio, ∅, é uma linguagem regular (LR).
- ② Qualquer que seja o $a \in A$, o conjunto $\{a\}$ é uma LR.
- **③** Se L_1 e L_2 são linguagens regulares, então $L_1 \cup L_2$ é uma LR.
- Se L_1 e L_2 são linguagens regulares, então $L_1.L_2$ é uma LR.
- **Se** L_1 é uma linguagem regular, então $(L_1)^*$ é uma LR.
- Nada mais é linguagem regular.
 - Note que $\{\varepsilon\}$ é uma LR, uma vez que $\{\varepsilon\} = \emptyset^*$.
- Q Qualquer linguagem finita é uma LR. Mostre-o com base nesta definição
- Q Com base nesta definição, mostre que o conjunto dos números binários começados em 1 e terminados em 0 é uma LR sobre o alfabeto A = {0,1}

DEFINIÇÃO DE EXPRESSÃO REGULAR

O conjunto das **expressões regulares** sobre o alfabeto *A* define-se indutivamente da seguinte forma:

- () é uma expressão regular (ER) que representa a LR {}.
- ② Qualquer que seja o $a \in A$, a é uma ER que representa a LR $\{a\}$.
- **③** Se e_1 e e_2 são ER representando respectivamente as LR L_1 e L_2 , então $(e_1|e_2)$ é uma ER representando a LR $L_1 \cup L_2$.
- Se e₁ e e₂ são ER representando respectivamente as LR L₁ e L₂, então (e₁ e₂) é uma ER representando a LR L₁.L₂.
- Se e₁ é uma ER representando a LR L₁, então e₁* é uma ER representando a LR (L₁)*.
- Nada mais é expressão regular.
 - É habitual representar-se por ε a ER ()*. Representa a linguagem $\{\varepsilon\}$.

PROJETO DE UMA EXPRESSÃO REGULAR

Q Determine uma ER que representa o conjunto dos números binários começados em 1 e terminados em 0.

$$R 1(0|1)*0$$

Determine uma ER que represente as sequências definidas sobre o alfabeto A = {a,b,c} que satisfazem o requisito de qualquer b ter um a imediatamente à sua esquerda e um c imediatamente à sua direita.

$$\mathcal{R}$$
 (a|abc|c)*

Q Determine uma ER que represente as sequências binárias com um número par de zeros.

$$\mathcal{R}$$
 1*(01*01*)*

PROPRIEDADES DAS EXPRESSÕES REGULARES (1)

OPERAÇÃO DE ESCOLHA — |

- comutativa: $e_1 | e_2 = e_2 | e_1$
- associativa: $e_1 | (e_2 | e_3) = (e_1 | e_2) | e_3 = e_1 | e_2 | e_3$
- existência de elemento neutro: $e_1 \mid () = () \mid e_1 = e_1$
- idempotência: $e_1 \mid e_1 = e_1$

OPERAÇÃO DE CONCATENAÇÃO — .

- associativa: $e_1(e_2e_3) = (e_1e_2)e_3 = e_1e_2e_3$
- existência de elemento neutro: $e_1 \varepsilon = \varepsilon e_1 = e_1$
- existência de elemento absorvente: $e_1() = ()e_1 = ()$
- não goza da propriedade comutativa

PROPRIEDADES DAS EXPRESSÕES REGULARES (2)

OPERAÇÕES DE ESCOLHA E CONCATENAÇÃO

- distributiva à esquerda da concatenação em relação à escolha:
 e₁(e₂ | e₃) = e₁e₂ | e₁e₃
- distributiva à direita da concatenação em relação à escolha:
 (e₁ | e₂)e₃ = e₁e₃ | e₂e₃

OPERAÇÃO DE FECHO

- $(e^*)^* = e^*$
- $\bullet \ (e_1^* \mid e_2^*)^* = (e_1 \mid e_2)^*$
- $(e_1 \mid e_2^*)^* = (e_1 \mid e_2)^*$
- $(e_1 \mid e_2)^* \neq e_1^* \mid e_2^*$
- $(e_1e_2)^* \neq e_1^*e_2^*$

SIMPLIFICAÇÃO NOTACIONAL

- Na escrita de expressões regulares assume-se que a operação de fecho (*) tem precedência em relação à operação de concatenação e que esta tem precedência em relação à operação de escolha (|).
- O uso destas precedências em conjunto com as propriedades associativas da concatenação e da escolha permite a queda de alguns parêntesis e consequentemente uma notação simplificada.

Exemplo:

$$e_1|e_2.e_3^*=e_1|(e_2.(e_3^*))$$

SIMPLIFICAÇÃO NOTACIONAL

Q Determine uma ER que representa o conjunto dos números binários começados em 1 e terminados em 0.

$$\mathcal{R}$$
 1(0|1)*0 = (1((0|1)*))0

Q Determine uma ER que represente as sequências definidas sobre o alfabeto A = {a,b,c} que satisfazem o requisito de qualquer b ter um a imediatamente à sua esquerda e um c imediatamente à sua direita.

$$R$$
 (a|abc|c)* = ((a|((ab)c))|c)*

Q Determine uma ER que represente as sequências binárias com um número par de zeros.

$$\mathcal{R}$$
 1*(01*01*)* = (1*)((((0(1*))0)(1*)))*)

SIMPLIFICAÇÃO NOTACIONAL

 ${\it Q}~$ Sobre o alfabeto A = {0,1} construa uma expressão regular que reconheça a linguagem

$$L = \{\omega \in A^* : \#(0, \omega) = 2\}$$

 $\ensuremath{\mathcal{Q}}$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\cdots,\mathtt{z}\}$ construa uma expressão regular que reconheça a linguagem

$$L = \{ \omega \in A^* : \#(a, \omega) = 3 \}$$

$$\mathcal{R}$$
 (b|c|···|z)*a(b|c|···|z)*a(b|c|···|z)*

EXTENSÕES NOTACIONAIS (1)

uma ou mais ocorrências:

$$e^+ = e.e^*$$

uma ou nenhuma ocorrência:

$$e$$
? = $(e|\varepsilon)$

um símbolo do sub-alfabeto dado:

$$[a_1 a_2 a_3 \cdots a_n] = (a_1 | a_2 | a_3 | \cdots | a_n)$$

um símbolo do sub-alfabeto dado:

$$[a_1-a_n]=(a_1\mid \cdots \mid a_n)$$

um símbolo do alfabeto fora do conjunto dado:

$$[a_1 a_2 a_3 \cdots a_n]$$

um símbolo do alfabeto fora do conjunto dado:

$$[a_1-a_n]$$

EXTENSÕES NOTACIONAIS (2)

n ocorrências de:

$$e\{n\} = \underbrace{e.e.\cdots.e}_{n}$$

de n₁ a n₂ ocorrências:

$$e\{n_1,n_2\} = \underbrace{e.e.\cdots.e}_{n_1,n_2}$$

• n ou mais ocorrências:

$$e\{n,\} = \underbrace{e.e.\cdots.e}_{n,}$$

EXTENSÕES NOTACIONAL

 ${\it Q}~$ Sobre o alfabeto A = {0,1} construa uma expressão regular que reconheça a linguagem

$$L = \{\omega \in A^* : \#(0, \omega) = 2\}$$

$$\mathbb{R}$$
 1*01*01* = (1*0){2}1*

 $\ensuremath{\mathcal{Q}}$ Sobre o alfabeto A = {a,b,...,z} construa uma expressão regular que reconheça a linguagem

$$L = \{ \omega \in A^* : \#(a, \omega) = 3 \}$$

$$\mathcal{R} (b|c|\cdots|z)^*a(b|c|\cdots|z)^*a(b|c|\cdots|z)^*a(b|c|\cdots|z)^* = ([b-z]^*a)\{3\}[b-z]^*$$

EXTENSÕES NOTACIONAIS (3)

EXPRESSÕES REGULARES ESPECIAIS FREQUENTES

- . um símbolo qualquer diferente de \n
- palavra vazia no início de linha
- \$ palavra vazia no fim de linha
- \< palavra vazia no início de palavra</p>
- √ palavra vazia no fim de palavra

GRAMÁTICAS REGULARES

DEFINIÇÃO DE GRAMÁTICA

Uma gramática é um quádruplo G = (T, N, P, S), onde

- T é um conjunto finito n\u00e3o vazio de s\u00eambolos terminais;
- N, sendo $N \cap T = \emptyset$, é um conjunto finito não vazio de símbolos não terminais;
- P é um conjunto de produções (ou regras de rescrita), cada uma da forma α → β;
- $S \in N$ é o símbolo inicial.
- $\alpha \in (N \cup T)^*N(N \cup T)^*$
- $\beta \in (N \cup T)^*$
- As restrições a α e β definem uma taxonomia das linguagens (gramáticas)

GRAMÁTICAS REGULARES

 \mathcal{D} Uma gramática G = (T, N, P, S) diz-se **regular** se, para qualquer produção $(\alpha \to \beta) \in P$, as duas condições seguintes são satisfeitas

$$\alpha \in \mathbf{N}$$
 $\beta \in \mathbf{T}^* \cup \mathbf{T}^* \mathbf{N}$

- A linguagem gerada por uma gramática regular é regular
 - Logo, é possível converter uma gramática regular numa expressão regular que represente a mesma linguagem e vice-versa
- As gramáticas regulares são fechadas sob as operações de reunião, concatenação, fecho, intersecção e complementação.

REUNIÃO DE GRAMÁTICAS REGULARES

 \mathcal{D} Sejam $G_1=(T_1,N_1,P_1,S_1)$ e $G_2=(T_2,N_2,P_2,S_2)$ duas gramáticas regulares quaisquer, com $N_1\cap N_2=\emptyset$. A gramática G=(T,N,P,S) onde

$$T = T_1 \cup T_2$$

$$N = N_1 \cup N_2 \cup \{S\} \text{ com } S \notin (N_1 \cup N_2)$$

$$P = \{S \to S_1, S \to S_2\} \cup P_1 \cup P_2$$

é regular e gera a linguagem $L = L(G_1) \cup L(G_2)$.

• Para i = 1, 2, a nova produção $S \rightarrow S_i$ permite que G gere a linguagem $L(G_i)$

 $\mathcal Q$ Sobre o conjunto de terminais $\mathcal T=\{a,b,c\}$, determine uma gramática regular que represente a linguagem

$$L = L1 \cup L_2$$

sabendo que

$$L_1 = \{a\omega : \omega \in T^*\}$$
$$L_2 = \{\omega a : \omega \in T^*\}$$

Comece por obter as gramáticas regulares que representam L_1 e L_2 .

$rac{\mathcal{R}}{\mathcal{S}_1} ightarrow $ a X_1	$S_2 ightarrow$ a S_2	$S o S_1 \ \ S_2$
$egin{array}{l} X_1 ightarrow \mathtt{a} & X_1 \ X_1 ightarrow \mathtt{b} & X_1 \end{array}$	$egin{array}{lll} S_2 ightarrow ext{b} & S_2 \ S_2 ightarrow ext{c} & S_2 \end{array}$	$egin{array}{l} S_1 ightarrow ext{a} & X_1 \ X_1 ightarrow ext{a} & X_1 \mid ext{b} & X_1 \mid ext{c} & X_1 \end{array}$
$X_1 \to c X_1$ $X_1 \to \varepsilon$	$\mathcal{S}_2 o$ a	$egin{array}{lll} X_1 ightarrow arepsilon \ S_2 ightarrow ext{a} & S_2 ightarrow ext{b} & S_2 ightarrow ext{c} & S_2 \ S_2 ightarrow ext{a} & \end{array}$

CONCATENAÇÃO DE GRAMÁTICAS REGULARES

 \mathcal{D} Sejam $G_1 = (T_1, N_1, P_1, S_1)$ e $G_2 = (T_2, N_2, P_2, S_2)$ duas gramáticas regulares quaisquer, com $N_1 \cap N_2 = \emptyset$. A gramática G = (T, N, P, S) onde

$$\begin{array}{lcl} T & = & T_{1} \ \cup \ T_{2} \\ N & = & N_{1} \ \cup \ N_{2} \\ P & = & \{A \rightarrow \omega S_{2} \ : \ (A \rightarrow \omega) \in P_{1} \ \land \ \omega \in T_{1}^{*}\} \\ & & \cup \{A \rightarrow \omega \ : \ (A \rightarrow \omega) \in P_{1} \ \land \ \omega \in T_{1}^{*}N_{1}\} \\ & & \cup P_{2} \\ S & = & S_{1} \end{array}$$

é regular e gera a linguagem $L = L(G_1) \cdot L(G_2)$.

- As produções da primeira gramática do tipo $\beta \in T^*$ ganham o símbolo inicial da segunda gramática no fim
- As produções da primeira gramática do tipo $\beta \in T^*N$ mantêm-se inalteradas
- As produções da segunda gramática mantêm-se inalteradas

 ${\cal Q}$ Sobre o conjunto de terminais ${\cal T}=\{a,b,c\}$, determine uma gramática regular que represente a linguagem

$$L = L_1 \cdot L_2$$

sabendo que

$$L_1 = \{a\omega : \omega \in T^*\}$$
$$L_2 = \{\omega a : \omega \in T^*\}$$

FECHO DE KLEENE DE GRAMÁTICAS REGULARES

 \mathcal{D} Seja $G_1 = (T_1, N_1, P_1, S_1)$ uma gramática regular qualquer. A gramática G = (T, N, P, S) onde

$$T = T_1$$

$$N = N_1 \cup \{S\} \text{ com } S \notin N_1$$

$$P = \{S \to \varepsilon, S \to S_1\}$$

$$\cup \{A \to \omega S : (A \to \omega) \in P_1 \land \omega \in T_1^*\}$$

$$\cup \{A \to \omega : (A \to \omega) \in P_1 \land \omega \in T_1^*N_1\}$$

é regular e gera a linguagem $L = (L(G_1))^*$.

- As produções que terminam num não terminal mantêm-se inalteradas
- As produções que só têm terminais ganham o símbolo inicial no fim
- As novas produções S → ε e S → S₁ garante que (L(G₁))ⁿ ⊆ L(G), para qualquer n ≥ 0

Q Sobre o conjunto de terminais $T = \{a,b,c\}$, determine uma gramática regular que represente a linguagem

$$L=L_1^*$$

sabendo que

$$L_1 = \{a\omega : \omega \in T^*\}$$

Comece por obter a gramática regular que representa L_1 .

 \mathcal{R}

INTERSECÇÃO DE GRAMÁTICAS REGULARES

 \mathcal{D} Sejam $G_1 = (T_1, N_1, P_1, S_1)$ e $G_2 = (T_2, N_2, P_2, S_2)$ duas gramáticas regulares quaisquer, com $N_1 \cap N_2 = \emptyset$. A gramática G = (T, N, P, S) onde

$$T = T_1 \cap T_2$$

 $N = N_1 \times N_2$
 $P = \cdots$
 $S = (S_1, S_2)$

é regular e gera a linguagem $L = L(G_1) \cap L(G_2)$.

•
$$(N_1,N_2)
ightarrow$$
a $(N_1',N_2')
ightarrow P$ sse $N_1
ightarrow$ a $N_1'
ightarrow P_1$ \wedge $N_2
ightarrow$ a $N_2'
ightarrow P_2$ • $(N_1,N_2)
ightarrow$ a $ightarrow P$ sse $N_1
ightarrow$ a $ightarrow P_1$ \wedge $N_2 \stackrel{*}{\Rightarrow}$ a \lor $N_2
ightarrow$ a $ightarrow P_2$ \wedge $N_1 \stackrel{*}{\Rightarrow}$ a

 ${\cal Q}$ Sobre o conjunto de terminais ${\cal T}=\{a,b,c\}$, determine uma gramática regular que represente a linguagem

$$L=L_1\cap L_2$$

sabendo que

$$L_1 = \{a\omega : \omega \in T^*\}$$
$$L_2 = \{\omega a : \omega \in T^*\}$$

CONVERSÃO DE UMA ER EM UMA GR

- Basta obter GR para as expressões regulares primitivas e aplicar as operações regulares sobre GR
- A GR para a ER ε é dada por

A GR para a ER a, qualquer que seja o a, é dada por

$$\mathcal{S}
ightarrow a$$

Q Obtenha uma GR equivalente à ER $e = (a|b|c)^*(bb|cc)(a|b|c)^*$

CONVERSÃO DE UMA GR EM UMA ER

Seja G = (T, N, P, S) uma gramática regular qualquer. Uma ER que represente a mesma linguagem que a gramática G pode ser obtida por um processo de transformação de equivalência.

ALGORITMO DE CONVERSÃO

Converte-se a gramática G = (T, N, P, S) no conjunto de triplos seguinte:

$$\mathcal{E} = \{(E, \varepsilon, S)\}$$

$$\cup \{(A, \omega, B) : (A \to \omega B) \in P \land B \in N\}$$

$$\cup \{(A, \omega, \varepsilon) : (A \to \omega) \in P \land \omega \in T^*\}$$

com $E \notin N$.

② Removem-se, por transformações de equivalência, um a um, todos os símbolos de N, até se obter um único triplo da forma (E, e, ε) . O valor de e é a expressão regular pretendida.

Remoção dos símbolos de N

- Para cada símbolo B ∈ N
 - Substituir todos os triplos da forma (A, β_i, B) por um único (A, ω_1, B) , onde $\omega_1 = \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$
 - Substituir todos os triplos da forma (B, α_i, B) por um único (B, ω_2, B) , onde $\omega_2 = \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_m$
 - Substituir todos os triplos da forma (B, γ_i, C) por um único (B, ω_3, C) , onde $\omega_3 = \gamma_1 \mid \gamma_2 \mid \cdots \mid \gamma_k$
 - Substituir o triplo de triplos $((A, \omega_1, B), (B, \omega_2, B), (B, \omega_3, C))$ pelo triplo $(A, \omega_1\omega_2^*\omega_3, C)$

Q Obtenha uma ER equivalente à gramática regular seguinte

$$S
ightarrow$$
 a $S \mid$ b $S \mid$ c $S \mid$ aba X $X
ightarrow$ a $X \mid$ b $X \mid$ c $X \mid$ $arepsilon$

 \mathcal{R}

$$\mathcal{E} = \{ (E, \varepsilon, S), (S, a, S), (S, b, S), (S, c, S), (S, aba, X), \\ (X, a, X), (X, b, X), (X, c, X), (X, \varepsilon, \varepsilon) \}$$

$$= \{ (E, \varepsilon, S), (S, a|b|c, S), (S, aba, X), \\ (X, a, X), (X, b, X), (X, c, X), (X, \varepsilon, \varepsilon) \}$$

$$= \{ (E, (a|b|c)^* aba, X), \\ (X, a, X), (X, b, X), (X, c, X), (X, \varepsilon, \varepsilon) \}$$

$$= \{ (E, (a|b|c)^* aba, X), (X, (a|b|c), X), (X, \varepsilon, \varepsilon) \}$$

$$= \{ (E, (a|b|c)^* aba(a|b|c)^*, \varepsilon) \}$$