Competidor(a):			
Número de inscrição:	(opcional)		

Este Caderno de Tarefas não pode ser levado para casa após a prova. Após a prova entregue este Caderno de Tarefas para seu professor guardar. Os professores poderão devolver os Cadernos de Tarefas aos competidores após o término do período de aplicação das provas (01 de setembro de 2023).

Olimpíada Brasileira de Informática Competição Feminina - OBI2023

Caderno de Tarefas

Modalidade Programação • Nível Júnior • Fase Única

01 de setembro de 2023

A PROVA TEM DURAÇÃO DE 3 HORAS

Promoção:

Sociedade Brasileira de Computação

Apoio: Coordenação:

Instruções

LEIA ATENTAMENTE ESTAS INSTRUÇÕES ANTES DE INICIAR A PROVA

- Este caderno de tarefas é composto por 8 páginas (não contando a folha de rosto), numeradas de 1 a 8. Verifique se o caderno está completo.
- A prova deve ser feita individualmente.
- É proibido consultar a Internet, livros, anotações ou qualquer outro material durante a prova. É permitida a consulta ao *help* do ambiente de programação se este estiver disponível.
- As tarefas têm o mesmo valor na correção.
- A correção é automatizada, portanto siga atentamente as exigências da tarefa quanto ao formato da entrada e saída de seu programa; em particular, seu programa não deve escrever frases como "Digite o dado de entrada:" ou similares.
- Não implemente nenhum recurso gráfico nas suas soluções (janelas, menus, etc.), nem utilize qualquer rotina para limpar a tela ou posicionar o cursor.
- As tarefas não estão necessariamente ordenadas, neste caderno, por ordem de dificuldade; procure resolver primeiro as questões mais fáceis.
- Preste muita atenção no nome dos arquivos fonte indicados nas tarefas. Soluções na linguagem C devem ser arquivos com sufixo .c; soluções na linguagem C++ devem ser arquivos com sufixo .cc ou .cpp; soluções na linguagem Java devem ser arquivos com sufixo .java e a classe principal deve ter o mesmo nome do arquivo fonte; soluções na linguagem Python 3 devem ser arquivos com sufixo .py; e soluções na linguagem Javascript devem ter arquivos com sufixo .js.
- Na linguagem Java, **não** use o comando *package*, e note que o nome de sua classe principal deve usar somente letras minúsculas (o mesmo nome do arquivo indicado nas tarefas).
- Você pode submeter até 50 soluções para cada tarefa. A pontuação total de cada tarefa é a melhor pontuação entre todas as submissões. Se a tarefa tem sub-tarefas, para cada sub-tarefa é considerada a melhor pontuação entre todas as submissões.
- Não utilize arquivos para entrada ou saída. Todos os dados devem ser lidos da entrada padrão (normalmente é o teclado) e escritos na saída padrão (normalmente é a tela). Utilize as funções padrão para entrada e saída de dados:
 - em C: scanf, getchar, printf, putchar;
 - em C++: as mesmas de C ou os objetos cout e cin.
 - em Java: qualquer classe ou função padrão, como por exemplo Scanner, BufferedReader, BufferedWriter e System.out.println
 - em Python: read, readline, readlines, input, print, write
 - em Javascript: scanf, printf
- Procure resolver a tarefa de maneira eficiente. Na correção, eficiência também será levada em conta. As soluções serão testadas com outras entradas além das apresentadas como exemplo nas tarefas.

Conversa dos Pinguins

Nome do arquivo: pinguins.c, pinguins.cpp, pinguins.java, pinguins.js ou pinguins.py

Ally e Billy são pinguins muito tecnológicos e adoram jogar jogos, assistir vídeos e conversar pela Internet. Mesmo morando longe um do outro, eles trocam mensagens todos os dias utilizando o Icebook, que é a rede social mais popular entre os pinguins.

Um dos seus assuntos favoritos é a temperatura do local onde cada um está. Ally teve a ideia de até mesmo transformar isso em um jogo: todos os dias, exatamente ao meio-dia, os dois pinguins utilizam seus Termômetros Oficiais de Pinguim (TOPs) para medir a temperatura. TOPs utilizam uma escala de temperatura especial desenvolvida pelos mais brilhantes pinguins cientistas e são usados por todos os pinguins. O pinguim que estiver no lugar mais frio ganha um ponto.

Passeando recentemente pela Antártida, os dois conheceram exploradores de diversos países e ficaram surpresos ao descobrir que os seres humanos também inventaram escalas de temperatura. Fascinados com a novidade, Ally e Billy perguntaram para os exploradores se aceitariam fazer uma troca de presentes: TOPs por termômetros humanos. Entre os termômetros que ganharam, eles notaram que alguns utilizam uma escala chamada Celsius e outros utilizam uma escala chamada Fahrenheit. Os exploradores explicaram que as duas escalas se relacionam utilizando a seguinte fórmula, onde C é a temperatura na escala Celsius e F é a temperatura na escala Fahrenheit:

$$C = (F - 32) \times 5/9$$

Billy então sugeriu que fizessem uma modificação em seu jogo: primeiro, cada um falaria a escala do termômetro humano que utilizaram para fazer a medição. Em seguida, cada um falaria a temperatura do local onde cada um está. Utilizando a fórmula da explicação dos exploradores, eles descobririam então quem ganhou o ponto.

A sua tarefa é fazer um programa para ajudar Ally e Billy a descobrir quem vai ganhar o ponto.

Entrada

A primeira linha da entrada contém dois caracteres, E_A e E_B , representando a escala de temperatura utilizada por Ally e Billy, respectivamente. Os possíveis valores são "C" (sem aspas) para a escala Celsius e "F" (sem aspas) para a escala Fahrenheit.

A segunda linha da entrada contém dois números inteiros, T_A e T_B , representando as temperaturas medidas por Ally e Billy, respectivamente.

Saída

Sua saída deve conter o caractere "A" (sem aspas) se Ally estiver no local mais frio ou "B" (sem aspas) se Billy estiver no local mais frio. É garantido que a temperatura nunca será igual nos dois locais.

Restrições

- $-130 \le T_A, T_B \le 68$
- $E_A, E_B \in \{C, F\}$

Informações sobre a pontuação

• Em um conjunto de casos de teste somando 7 pontos, tanto Ally quanto Billy utilizam a escala Celsius.

- Em um conjunto de casos de teste somando 7 pontos, tanto Ally quanto Billy utilizam a escala Fahrenheit.
- Em um conjunto de casos de teste somando 14 pontos, Ally sempre utiliza a escala Celsius e Billy sempre utiliza a escala Fahrenheit.
- Em um conjunto de casos de teste somando 14 pontos, Ally sempre utiliza a escala Fahrenheit e Billy sempre utiliza a escala Celsius.
- Em um conjunto de casos de teste somando 58 pontos, nenhuma restrição adicional.

Exemplo de entrada 1	Exemplo de saída 1
СС	A
-10 10	
Exemplo de entrada 2	Exemplo de saída 2
C F	В
-10 5	
Exemplo de entrada 3	Exemplo de saída 3
F C	A
0 0	

Estante de Livros

Nome do arquivo: estante.c, estante.cpp, estante.java, estante.js ou estante.py

A princesa Jujuba encontrou 3 pilhas em uma sala secreta de seu castelo. A primeira pilha tem X livros, a segunda pilha tem Y livros e a terceira pilha tem Z livros. Jujuba quer colocar seus livros na sua estante, que tem N prateleiras.

Cada prateleira pode conter infinitos livros, mas como ela é organizada, é preciso que todas as prateleiras tenham a mesma quantidade de livros. Como nem sempre isso é possível, Jujuba quer saber qual a menor quantidade de livros L que terão de ficar fora da sua estante.

Um exemplo seria as pilhas terem 2, 5 e 9 livros e sua estante ter 3 prateleiras. Jujuba poderia colocar 1 livro em cada prateleira, deixando 13 livros de fora. Mas a melhor resposta seria Jujuba colocar 5 livros em cada prateleira, deixando apenas 1 livro de fora.

Você consegue ajudar a princesa Jujuba?

Entrada

A única linha de entrada contém quatro inteiros X, Y, Z e N, descritos no enunciado.

Saída

Seu programa deve produzir uma única linha contendo um único inteiro L.

Restrições

• $1 < X, Y, Z, N < 10^{18}$

Informações sobre a pontuação

- $X, Y, Z, N \le 10^6$ (73 pontos)
- Sem mais restrições (27 pontos)

Exemplo de entrada 1	Exemplo de saída 1
2 5 9 3	1

Exemplo de entrada 2	Exemplo de saída 2
1 2 3 4	2

Suco Radioativo

Nome do arquivo: suco.c, suco.cpp, suco.java, suco.js ou suco.py

Letícia estava com muita sede e decidiu fazer um suco de abacaxi, seu favorito, para que ela pudesse tomar. Como sua última experiência não foi muito boa, ela fez um suco estragado, ela pede a você que determine quantos copos de suco ela pode tomar. Ela só irá tomar os copos que não estão contaminados.

Um suco é dito como contaminado se e somente se ele não é de abacaxi com hortelã e possui "pedacinhos" nele. Para cada copo é dado dois valores "A" e "B". "A" indica se o suco é de abacaxi com hortelã ou não e "B" indica se o suco tem pedaços nele. Sendo assim, determine quantos copos de suco ela poderá tomar.

Entrada

A primeira linha contém um inteiro N que representa a quantidade de copos de suco disponíveis. As próximas N linhas contém cada uma dois inteiros A e B, respectivamente. O valor A indicará se o i^{th} suco é de abacaxi ou não e o valor B indicará se o suco possui pedaços nele.

A irá valer 1 caso o suco seja de abacaxi com hortelã e 0 caso contrário. B irá valer 1 caso o suco tenha pedaços e 0 caso contrário.

Saída

Imprima um inteiro representando a quantidade de copos de suco que ela pode tomar, ou seja que não estão estragados.

Restrições:

- $1 \le N \le 5 \cdot 10^5$
- $0 \le A \le 1$
- 0 < B < 1

Informações sobre a pontuação:

- N = 1 (16 pontos)
- Sem mais restrições (84 pontos)

Entrada	Saida
5	3
11	
0 0	
10	
0 1	
0 1	

Entrada	Saida
3	2
0 0	
0 1	
1 0	

A Grande Casquinha

Nome do arquivo: casquinha.c, casquinha.cpp, casquinha.java, casquinha.js ou casquinha.py

Samyra gosta muito de sorvete e quer montar uma casquinha gigante com o máximo de bolas possíveis! Porém, ela é uma garota muito enjoada, então se ela já pegou uma bola com certo sabor de sorvete ela se recusará a pegar outra bola com o mesmo sabor.

Como a sorveteria da cidade anda muito cheia, eles criaram uma regra:

Você pode entrar no balcão da sorveteria em qualquer posição e andar para a direita pegando uma bola de cada pote de sorvete pelo qual você passar, mas no momento que você recusar pegar o sorvete de um pote você tem que finalizar sua casquinha e se dirigir ao caixa. (Para evitar que pessoas indecisas fiquem ocupando o balcão).

Entrada

A primeira linha da entrada contém um inteiro N, o número de potes de sorvete no balcão. A segunda linha contém um inteiro S, número máximo de sabores distintos de sorvete. As próximas N linhas contém cada uma um inteiro X_i , o sabor do i-ésimo sorvete.

Saída

Seu programa deve produzir uma única linha, contendo um único inteiro, o número de bolas na maior casquinha que Samyra pode montar.

Restrições

- $1 \le N \le 120\ 000$
- $1 \le S \le 10\ 000\ 000$
- $1 \le X_i \le S, 1 \le i \le N$

Informações sobre a pontuação

- Em um conjunto de teste valendo 11 pontos, S=2.
- \bullet Em um conjunto de teste valendo 12 pontos, S=4.
- $\bullet\,$ Em um conjunto de teste valendo 14 pontos, $1\leq N\leq 200.$
- $\bullet\,$ Em um conjunto de teste valendo 19 pontos, $1 \leq S \leq 100.$
- $\bullet\,$ Em um conjunto de teste valendo 17 pontos, $1 \leq N \leq 5$ 000.
- Em um conjunto de teste valendo 27 pontos, sem retrições adicionais.

Exemplo de entrada 1	Exemplo de saída 1
3	2
2	
1	
2	
1	

Exemplo de entrada 2	Exemplo de saída 2
6	3
3	
1	
1	
2	
3	
2	
3	