(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年10 月14 日 (14.10.2004)

PCT

(10) 国際公開番号 WO 2004/087809 A1

(51) 国際特許分類7: C08L 2

C08L 25/04, 71/12, C08K 5/51

(21) 国際出願番号:

PCT/JP2004/004337

(22) 国際出願日:

2004年3月26日(26.03.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

Љ

(30) 優先権データ:

特願2003-090859 特願2003-356211 2003年3月28日(28.03.2003) JP

2003年10月16日(16.10.2003)

特願 2003-357404

2003年10月17日(17.10.2003) JP

(71) 出願人(米国を除く全ての指定国について): PSジャパン株式会社 (PS JAPAN CORPORATION) [JP/JP]; 〒1120002 東京都文京区小石川一丁目4番1号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 遠藤 茂 (ENDO, Shigeru) [JP/JP]; 〒 1110024 東京都台東区今戸 2-24-3-903 Tokyo (JP).

(74) 代理人: 浅村 皓、外(ASAMURA, Kiyoshi et al.); 〒 1000004 東京都千代田区大手町2丁目2番1号 新大手 町ピル331 Tokyo (JP).

(81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU,

/続葉有/

(54) Title: FLAME-RETARDANT STYRENE RESIN COMPOSITION

(54) 発明の名称: スチレン系難燃樹脂組成物

(57) Abstract: A flame-retardant styrene resin composition which comprises (A) 100 parts by weight of a styrene resin having a weight retention after heating at 500°C of less than 20% and (B) 0.5 to 50 parts by weight of a flame retardant ingredient containing no halogenated compounds, wherein the ingredient (B) has a molecular weight of 200 to 2,000, has been dispersed as circular or elliptic particles having an area-average particle diameter of 0.01 to 3 μm in the ingredient (A), and has a weight retention after heating at 500°C of 20% or higher and a melting point of 100 to 400°C.

(57) 要約: 本発明によって、(A)500℃における加熱重量減少残さが20%未満のスチレン系樹脂100重量部、及び(B)ハロゲン化合物を含有しない難燃成

ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY,

CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

WO 2004/087809

PCT/JP2004/004337

1

明 細 書

スチレン系難燃樹脂組成物

5 技術分野

本発明は、ハロゲン化合物を含有しない難燃性に優れた難燃樹脂組成物に関する。更に詳しくは、難燃性、剛性、耐熱性、流動性、面衝撃強度、外観バランスに優れ、更に離型性、耐金型汚染性に優れた難燃樹脂組成物に関する。 背景技術

10 従来、スチレン系樹脂は耐衝撃性、成形加工性、剛性等の良好なバランスを有する安価な汎用樹脂として、電気・電子機器、OA機器や食品包装材料に広く使用されている。これらの製品のうち、電気・電子機器、OA機器等に関しては難燃化が要求されることが多く、スチレン系樹脂と難燃剤を混合したスチレン系難燃樹脂が多く使用されている。スチレン系樹脂の難燃化方法としては、従来よりハロゲン系難燃剤が広く使用されてきたが、現在は環境問題や腐食性ガスの発生を嫌うことなどからノンハロゲン系の難燃剤を使用するスチレン系難燃樹脂の要求が強くなっている。

さらに、電気・電子機器はTVや複写機などの大型の形状や、比較的小型の形状である事務機内部部品やオーディオ機器など外装部材でも薄肉で複雑な形状を 20 有するものも多く、成形が難しいものが多くなってきている。従ってこれらの製品に用いるために、ノンハロゲン系スチレン系難燃樹脂材料には、一般的な難燃性、耐衝撃性、耐熱性、剛性、流動性に加え、成形品離型時のかじりや表面に傷がつかない良好な離型性、良好な外観、薄肉で成形片であっても成形できる薄肉流動性、薄肉成形片であっても割れが発生しない面衝撃強度や耐金型腐食性が要 25 求されている。

また、一般的に製品肉厚が薄くなると樹脂の難燃性は悪化することから、薄肉であっても自消性のあるスチレン系難燃樹脂材料が求められる。特に、従来のハロゲン系スチレン系V-2難燃樹脂は滴下物は直ぐに自消する傾向にあるが、ノンハロゲン系スチレン系V-2難燃樹脂の場合には自消能力の低さから滴下物が

15

そのまま燃え続けることが多かった。従って、ノンハロゲン系スチレン系V-2 難燃樹脂においても、滴下物が自消することが求められる。

このような要求に対し、ポリフェニレンエーテル、ポリカーボネートを利用した難燃樹脂が多く開発されている。ポリフェニレンエーテル、ポリカーボネートは燃焼時比較的多くのチャー(炭化物)を形成し、表面を被覆するため樹脂内部で発生する分解ガスの燃焼場への供給を遅延させることにより、難燃性を付与できる。これらの樹脂は、リン系難燃剤やシリコン系難燃剤の添加により、一層の難燃効果を発揮する。しかしながら、ポリフェニレンエーテルは流動性に劣り、難燃樹脂組成物にした時、成形性に劣るという欠点をもつ。また、ポリカーボネートも成形性に劣るとともに、加水分解性があるため、リサイクル性に劣るという欠点を有する。

一方で燃焼時にチャーを形成しない樹脂はそれ自身が易燃焼性であり、一般に ハロゲン化合物を使用せずに(すなわち、ノンハロゲン系難燃剤を用いて)樹脂 を難燃化する場合には、難燃剤を大量に添加する必要がある。そのため、樹脂組 成物の難燃性と物性バランスを両立するのは困難である。例えばスチレン系樹脂 は、燃焼時のチャー形成能力が少なく、それ自体の難燃性は非常に低い。これら の樹脂は従来ハロゲン系難燃剤を用いて難燃化しており、ハロゲン系難燃剤を用 いずに難燃化することには困難を伴う。ハロゲン系難燃剤を用いずに難燃化する 従来技術としては、赤リンを添加する方法、有機リン系難燃剤を添加する方法、

20 ポリフェニレンエーテルやポリカーボネートを添加する方法、無機系難燃剤を添加する方法、シリコン系難燃剤を添加する方法等がある。このうち、赤リンを添加する場合にはホスフィンガスが発生する為安全性に問題があり、また製品の外観が悪くなる欠点がある。一般的な有機リン系難燃剤を添加する場合には耐熱性や剛性が低下すること、ポリフェニレンエーテルを添加する場合には成形性が低ですること、ポリカーボネートを添加する場合には成形性やリサイクル性が低下すること、無機系難燃剤を添加する場合には難燃性が不十分で耐衝撃性が低下すること、シリコン系難燃剤を添加する場合には、難燃性が十分に得られないことや原料コストが大きくなる等の欠点を有する。

特に製品の薄肉化に関しては、剛性の向上に寄与する可能性のある無機系難燃

剤の添加が効果的と考えられる。しかし、従来の無機系難燃剤は、難燃性が不十分で耐衝撃性や外観が極度に低下する欠点があった。

また、一般的に様々な難燃剤を加える難燃組成物は離型性が悪化する傾向にある。この問題を解決するため、従来から、比較的多量の高級脂肪酸の金属塩や脂肪族アミド化合物等の離型剤を添加してきたが、添加した離型剤による物性低下や金型汚染性の問題も存在していた。

これらの問題に対し、特開2002-155179号公報では、スルホン酸基を有するスチレン系樹脂を中心とした、特定性状を有する難燃成分を含有した難燃樹脂組成物を開示している。この組成物は、耐衝撃性、耐熱性、流動性、外観に優れた効果を示しているが、スルホン酸基を有するスチレン系樹脂の製造が汎用的ではなく、また剛性、離型性、耐金型汚染性に関する記述もない。

特開平05-163288号公報、USP4162278号公報、特開2002-037973号公報では、耐熱性に非常に優れたリン系難燃剤を含有するスチレン系難燃樹脂組成物を開示している。しかし、特開平05-163288号 公報におけるスチレン系難燃樹脂組成物は、ポリフェニレンエーテルを多く使用した例が開示されているのみで、該樹脂組成物の流動性(特に薄肉流動性)が低下することが予想され、また外観、離型性や耐金型汚染性に関する記述もない。また、USP4162278号公報、特開2002-037973号公報では、ポリスチレン系樹脂を主体とした該リン系難燃剤を含有するスチレン系難燃樹脂20組成物を開示している。しかし、通常該リン系難燃剤を、ポリスチレン系樹脂を主体とした樹脂に添加する場合、耐衝撃性低下の度合いが激しくなるが、上記公報においてはその改良方法に関する記述は無く、また剛性、外観、薄肉流動性、離型性や耐金型汚染性に関する記述も無い。

一方、特表2002-526585号公報において、特開2002-0379 73号公報、特開平05-163288号公報、USP4162278号公報と 同様の耐熱性と難燃性に優れたスチレン系の難燃性熱可塑性重合体組成物の開示 がある。しかし、スチレン系樹脂に難燃剤を加えることによる耐衝撃性の低下が 激しく、また流動性(特に薄肉流動性)、剛性、離型性、外観に関する記述も ない。 このように、従来の技術において、スチレン系樹脂のようなチャー形成能の低い易燃焼性樹脂に対して、ノンハロゲン系難燃剤により難燃性を付与し、かつ上記の諸物性バランスがとれた難燃樹脂組成物を得ることは困難であった。 発明の開示

5 従って、本発明の一つの目的は、スチレン系樹脂のようなチャー形成能の低い 易燃焼性樹脂に対して、ハロゲン化合物を含有しない難燃成分によって難燃性を 付与し、且つ難燃性、耐熱性、流動性、耐衝撃性の物性バランスに優れ、さらに 離型性と耐金型汚染性に優れえた難燃樹脂組成物を得ることである。

本発明の他の目的は、スチレン系樹脂のようなチャー形成能の低い易燃焼性樹 10 脂に対して、ハロゲン化合物を含有しない難燃成分によって難燃性を付与し、且 つ高い剛性を有し、滴下難燃性、耐衝撃性、耐熱性、流動性及び外観の物性バラ ンスに優れた難燃樹脂組成物を得ることである。

本発明の更なる他の目的は、ゴム変性スチレン系樹脂を主体とした易燃焼性樹脂に対して、ハロゲン化合物を含有しない難燃成分によって難燃性を付与し、且つ剛性、耐熱性、薄肉流動性、面衝撃強度及び外観の物性バランスに優れ、更に離型性、耐金型汚染性が良好なスチレン系難燃樹脂組成物を得ることである。

本発明者が鋭意検討を重ねた結果、チャー形成能の低いスチレン系樹脂に、難燃成分であって、(i)特定範囲の分子量を有し、(ii)燃焼時にチャーを形成し且つ特定の温度範囲で溶融し、(iii)ハロゲン化合物を含有しない該難20燃成分を、特定範囲の面積平均粒子径に微分散させてなるスチレン系難燃樹脂組成物により、上記課題が達成されることを見出し本発明に至った。また、ゴム変性スチレン系樹脂中に分散するゴム状重合体粒子の面積平均粒子径と難燃成分粒子の面積平均粒子径の比が特定範囲に入ることにより、更に良好なスチレン系難燃樹脂組成物が得られ、上記課題が達成されることを見出し本発明に至った。

- 25 即ち、本発明は以下の構成を有する。
 - [1] (A) 500℃における加熱重量減少残さが20%未満のスチレン系樹脂100重量部、及び
 - (B) ハロゲン化合物を含有しない難燃成分0.5~50重量部、を含むスチレン系難燃樹脂組成物であって、

成分(B)は、その分子量が200~2000であり、成分(A)中に面積平均粒子径 $0.01~3~\mu$ mで円または楕円粒子状に分散しており、500 Cにおける加熱重量減少残さが20%以上であり、且つ溶融点が100 C~400 Cである、上記スチレン系難燃樹脂組成物。

5 「2] 成分(A) がゴム変性スチレン系樹脂であり、

成分 (A) 中に分散するゴム状重合体の面積平均粒子径が $0.1\sim2.5\,\mu\,\mathrm{m}$ であって、且つ下記式 (1)

0. $0.1 \le (D f/D r) \le 1.0$ (1)

(式中、Dfは成分(B)の面積平均粒子径、Drは成分(A)中に分散するゴ 10 ム状重合体の面積平均粒子径を表わす。)

を満たす、上記[1]記載のスチレン系難燃樹脂組成物。

[3] 成分(A) がゴム変性スチレン系樹脂であり、

成分(A) 100重量部、及び成分(B) 0.5~20重量部を含む、上記[1] 又は[2] 記載のスチレン系難燃樹脂組成物。

15 [4]成分(A)がゴム変性スチレン系樹脂であり、

成分(A)100重量部、及び成分(B)0.5~10重量部を含み、

成分 (A) 中に分散するゴム状重合体の面積平均粒子径が $0.1\sim2.5~\mu$ m であり、且つ下記式 (2)

0. $0.4 \le (Df/Dr) \le 1.0$ (2)

20 (式中、D f は成分(B)の面積平均粒子径、D r は成分(A)中に分散するゴム状重合体の面積平均粒子径を表わす。)

を満たす、上記 [1] ~ [3] のいずれか1項に記載のスチレン系難燃樹脂組成物。

[5] 成分(A) がゴム変性ポリスチレン系樹脂及びポリフェニレンエーテルの 25 ブレンド体からなるゴム変性スチレン系樹脂であり、

該ブレンド体中のゴム変性ポリスチレン系樹脂の量が70重量%以上である、上記 $[1] \sim [4]$ のいずれか1項に記載のスチレン系難燃樹脂組成物。

[6] 成分(A) が、ゴム変性ポリスチレン系樹脂100重量部及びポリフェニレンエーテル0.1~45重量部のブレンド体からなり、

成分(B)の含有量が0.5~20重量部であり、

成分 (A) 中に分散するゴム状重合体の面積平均粒子径が 0.3~2.5 μ mである、上記 [5] 記載のスチレン系難燃樹脂組成物。

[7] 成分(A)のゴム変性スチレン系樹脂が、ゴム変性ポリスチレン系樹脂1
 00重量部及びポリフェニレンエーテル0.1~8重量部のプレンド体からなり、成分(B)の含有量が0.5~10重量部である、上記[5]又は[6]に記載のスチレン系難燃樹脂組成物。

[8] 成分(A) 中のポリフェニレンエーテル添加部数(X) と成分(B) の添加部数(Y) が、下記式(3)

10 0. $4 \le (Y/X) \le 2.0$ (3)

を満たす、上記 [5] \sim [7] のいずれか1項に記載のスチレン系難燃樹脂組成物。

[9] 更に成分(B) 以外のハロゲン化合物を含有しない難燃成分(C)を0. 1~40重量部含む、上記[1]~[8]のいずれか1項に記載のスチレン系難 15 燃樹脂組成物。

[10] 成分(C)を0.1~10重量部含む、上記[9]記載のスチレン系難燃樹脂組成物。

[11] 成分(C)の含有量が成分(B)の含有量以下である、上記[9]又は [10] に記載のスチレン系難燃樹脂組成物。

20 [12] 更に相溶化剤として、極性基を有する構造単位を必須単位とした重合体成分(D)0.2~10重量部を含む、上記[1]~[11]のいずれか1項に記載のスチレン系難燃樹脂組成物。

[13] 成分(B) が下記式(4):

25

(式中、RおよびR'は同一もしくは異なってもよく、炭素数 $1\sim1$ 2のアルキル基、炭素数 $5\sim1$ 0 のシクロアルキル基、炭素数 $7\sim2$ 0 のアラルキル基又は

炭素数6~15のアリール基を示す。)

で表されるリン系難燃剤である、上記 $[1] \sim [12]$ のいずれか1項に記載のスチレン系難燃樹脂組成物。

[14]式(4)中のRおよびR,がベンジル基である、上記[13]記載のス 5 チレン系難燃樹脂組成物。

[15] 成分(B) が下記式(5):

(式中、RおよびR'は同一もしくは異なってもよく、炭素数1~12のアルキ10 ル基、炭素数5~10のシクロアルキル基、炭素数7~20のアラルキル基又は 炭素数6~15のアリール基を示す。)

で表されるリン系難燃剤である、上記 $[1] \sim [12]$ のいずれか1項に記載のスチレン系難燃樹脂組成物。

[16] 成分(C)が下記式(6):

$$A_{1}-O-P - O-R-P - O-A_{4} - O-A_{5}$$

$$OA_{2} - O-R-P - O-A_{5}$$

$$OA_{3} - O-A_{4}$$
(6)

(式中、nは $1\sim10$ の正数であり、 $A_1\sim A_4$ は各々独立に、フェニル基、トリル基またはキシリル基である。また、nが2以上の場合、複数ある A_3 は各々同一でも異なってもよい。またRは下記式(R1) \sim (R4)から選ばれる基で20 ある。);

$$(R1)$$

$$(R2)$$

$$(R3)$$

$$-\dot{c}$$

$$\dot{c}$$

$$(R4)$$

の化合物を含む、上記 $[7] \sim [15]$ のいずれか 1 項に記載のスチレン系難燃 樹脂組成物。

5 [17]成分(A)がゴム変性ポリスチレン系樹脂であって、

該ゴム変性ポリスチレン系樹脂中のゴム状重合体の含有量(a)が $3\sim15$ 重量%であり、該ゴム変性ポリスチレン系樹脂中の溶剤不溶分の割合(b)が $10\sim30$ 重量%であり、 $[(b)/(a)]\leq3.5$ であり、且つゴム変性ポリスチレン系樹脂のトルエン中での膨潤指数が $9.0\sim11.5$ である、

10 上記 [1] ~ [16] のいずれか1項に記載の難燃性ゴム変性スチレン系樹脂 組成物。

[18] 成分(A) がシス1, 4結合を90モル%以上含んで構成されるハイシスポリブタジエンを含むゴム変性スチレン系樹脂であって、

該ゴム変性スチレン系樹脂中のゴム状重合体の含有量(a)が $3\sim15$ 重量% であり、該ゴム変性ポリスチレン系樹脂中の溶剤不溶分の割合(b)が $10\sim3$ 0重量%であり、 $2.0\leq[$ (b)/(a) $]\leq3.5$ であり、該ゴム変性スチレン系樹脂中に分散しているゴム状重合体の面積平均粒子径が $0.8\sim2.5$ μmであり、且つゴム変性スチレン系樹脂のトルエン中での膨潤指数が $9.0\sim11.0$ である、

20 上記 [1] ~ [17] のいずれか1項に記載のスチレン系難燃樹脂組成物。

[19] UL94規格のV-2を満たす電気・電子機器内部部品用である、上記 $[1]\sim[18]$ のいずれか1 項に記載のスチレン系難燃樹脂組成物。

[20] UL94規格のV-2を満たす平均肉厚2mm以下の電気・電子機器内部部品用である、上記[19] に記載のスチレン系難燃樹脂組成物。

[21] UL94 規格のV-2 を満たす電気・電子機器外装用である、上記 $[1]\sim[18]$ のいずれか1 項に記載のスチレン系難燃樹脂組成物。

[22] UL94規格のV-2を満たす平均肉厚2mm以下の電気・電子機器外装用である、上記[21]に記載のスチレン系難燃樹脂組成物。

5 [23] UL94規格のV-0を満たす電気・電子機器外装用である、上記 [1] ~ [18] のいずれか1項に記載のスチレン系難燃樹脂組成物。

[24] UL94規格の5Vを満たす電気・電子機器外装用である、上記[1] ~ [18] のいずれか1項に記載のスチレン系難燃樹脂組成物。

尚、上記「500℃における加熱重量減少残さ」は、後述する具体的な実施例 10 等の記載における「成分(B)の分析値: (a)加熱重量減少残さ」での定義 を意味する。

本発明において、重要なことはスチレン系樹脂を含む樹脂組成物中にチャー形成能の高い難燃成分を微分散させることである。スチレン系樹脂と適度な相溶性を有するチャー形成能の高い難燃成分を樹脂組成物中に微分散させることにより、ポリフェニレンエーテルを多量に添加した時のような成形性の低下を招かず、耐熱性の低下も少なくなる。また100~~400℃の範囲に溶融点を有することにより、燃焼時にチャー化した分散成分が連結し表面を均一に被覆する効果が高まり、結果的に難燃性の効果が高まると考えられる。更に、本発明においては、チャー形成能の高い難燃成分はゴム変性スチレン系樹脂中のゴム状重合体粒子の面積平均粒子径との比が特定範囲になるよう微分散させることが重要である。

チャー形成能の高い難燃成分の分子量を比較的小さくし、且つ混練方法や相溶 化剤によって分散状態を制御することにより、より均一に樹脂組成物中に微分散 するようになる。その結果、樹脂組成物の剛性と難燃性、耐衝撃性が向上するも のと考えられる。また、ゴム変性スチレン系樹脂中のゴム状重合体と微分散した 該難燃成分の各粒子径を最適範囲にすることにより、樹脂組成物の面衝撃強度を 高いレベルで維持できる。メカニズムは明らかではないが、樹脂組成物が破壊す る時に、ゴム状重合体粒子のクレーズ発生領域と該難燃成分の位置の関係がクレ ーズからクラックへの進行を妨げるものと考えられる。また、微分散した難燃成 分が、樹脂組成物の表面近傍に多数存在することにより、金型との密着性が低減 され離型性が向上するものと考えられる。その結果、従来使用してきた離型剤の 添加量を少なく抑えることができるため、樹脂組成物の離型性、耐金型汚染性の バランスが向上するものと考えられる。また、難燃成分が適当な溶融点を持つこ とにより、混練及び/又は成形過程中に実質的に一旦溶融し、その後、微小な球 状または楕円状の粒子となり表面近傍に流動方向に配向する。その結果、通常の ゴム粒子や無機粒子に見られる表面近傍での突出が無くなるため、製品の外観に 悪影響を及ぼさないものと考えられる。

また、更に少量のポリフェニレンエーテルを添加することにより、成形性の低下を殆ど招かず、耐熱性の低下もなく、また、難燃成分が上記範囲の溶融点を持つことにより燃焼時にチャー化した分散成分が連結し表面を均一に被覆する効果が高まり、結果的に滴下物の自消性の効果が高まった滴下自消性の難燃組成物をつくることができる。

すなわち、本発明によれば、難燃性に優れ、且つ剛性、耐熱性、薄肉流動性、 面衝撃強度、外観の物性バランスに優れ、更に離型性、耐金型腐食性が良好なス チレン系難燃樹脂組成物の達成が可能となる。

図面の簡単な説明

図1

15

後述する本発明の実施例2に相当するゴム状重合体及び成分(B)の粒状構造を示した透過型電子顕微鏡写真(右下隅の「一」は1μmの長さを示す。)。図 1中、黒く染色された粒子が成分(A)中に含まれるゴム状重合体であり、白く抜けた穴が微分散している難燃成分(B)である。

図2

後述する本発明の実施例4に相当するゴム状重合体及び成分(B)の粒状構造を示した透過型電子顕微鏡写真(右下隅の「-」は1 μ mの長さを示す。)。

25 図3

後述する本発明の比較例3に相当するゴム状重合体及び成分(B)の粒状構造を示した透過型電子顕微鏡写真(右下隅の「-」は1 μ mの長さを示す。)。 発明を実施するための最良の形態

以下、本発明について詳細に説明する。

まず、本明細書及び本明細書に添付の特許請求の範囲における「(A) 500 ℃における加熱重量減少残さが20%未満のスチレン系樹脂」(以下、単に(A) 成分と言うこともある)とは、特に限定されるものではないが、非ゴム変性スチレン系樹脂、ゴム変性スチレン系樹脂、(非)ゴム変性スチレン系樹脂等のスチレン系樹脂とのブレンド体が含まれる。非ゴム変性スチレン系樹脂はスチレン系単量体を重合させることにより製造することができる。ゴム変性スチレン系樹脂は、非ゴム変性スチレン系樹脂マトリクス中にゴム状重合体粒子が分散しており、ゴム状重合体の存在下にスチレン系単量体を重合させることにより製造することができる。

10 本発明におけるスチレン系単量体としては、スチレンの他、αーメチルスチレン、αーメチルーpーメチルスチレン、οーメチルスチレン、mーメチルスチレン、pーメチルスチレン、ビニルトルエン、エチルスチレン、イソブチルスチレン、tーブチルスチレンあるいはブロモスチレン、クロロスチレン、インデンなどが例示できるが、スチレンが好ましい。これらのスチレン系単量体は一種もしくは二種以上使用することができる。

また、必要に応じ、スチレン系単量体と共重合可能な他の不飽和単量体と組み合わせて使用しても良い。共重合可能な他の不飽和単量体としては、アクリル酸、メタクリル酸などの不飽和カルボン酸やアクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、アクリル酸ブチル等の(メタ)アクリル酸エステルなどの不飽和カルボン酸のアルキルエステル、更にアクリロニトリル、メタクリロニトリル、無水マレイン酸、フェニルマレイミドなどがあげられる。これらは、2種以上組み合わせて使用することができる。これら、スチレン系単量体と共重合可能な不飽和単量体は、スチレン系単量体と不飽和単量体の合計重量に対して50重量%以下であることが好ましい。

25 ゴム状重合体とは、ポリブタジエン、ポリイソプレン、天然ゴム、ポリクロロ プレン、スチレンーブタジエン共重合体、アクリロニトリルーブタジエン共重合 体などを使用することができるが、中でもポリブタジエンまたはスチレンーブタ ジエン共重合体が好ましい。ポリブタジエンは、シス含有率の高いハイシスポリ ブタジエン、シス含有率の低いローシスポリブタジエンの双方を用いることがで

きる。また、スチレンーブタジエン共重合体は、ランダム構造、ブロック構造の 双方を用いることができる。これらのゴム状重合体は一種もしくは二種以上使用 することができる。また、ブタジエン系ゴムを水素添加した飽和ゴムを使用する こともできる。

5 スチレン系樹脂がゴム変性ポリスチレン系樹脂(ハイインパクトポリスチレン (HIPS))の場合、これらのゴム状重合体の中で特に好ましいのは、シス1,4結合を90モル%以上含んで構成されるハイシスポリブタジエンである。該ハイシスポリブタジエンを使用することにより、スチレン系難燃樹脂組成物の面衝撃強度が良好になる。該ハイシスポリブタジエンは、ビニル1,2結合を6モル %以下含んで構成されていることが好ましく、3モル%以下含んで構成されていることが好ましく、3モル%以下含んで構成されていることが特に好ましい。また該ハイシスポリブタジエンの構成単位に関する異性体であるシス1,4、トランス1,4、ビニル1,2結合を有するものの含有率は、赤外分光光度計を用いて測定し、モレロ法によりデータ処理することにより算出できる。また、該ハイシスポリブタジエンは、公知の製造法、例えば有機アルミニウム化合物とコバルトまたはニッケル化合物を含んだ触媒を用いて、1,3ブタジエンを重合して容易に得ることができる。

また、ゴム変性スチレン系樹脂がアクリロニトリルを含むアクリロニトリルーブタジエンースチレン (ABS) 系樹脂の場合は、乳化重合にて得られるポリブタジエンゴム、スチレンーブタジエン共重合体、アクリロニトリルーブタジエン共重合体ゴムが好んで用いられるが、このうちポリブタジエンゴムが特に好ましい。乳化重合にて得られるゴムの場合、ゴムのミクロ構造はシス含有率の低いローシスポリブタジエンになる。

スチレン系樹脂中のゴム状重合体の含有量(a)は3 \sim 20重量%が好ましく、 更に好ましくは3 \sim 15重量%である。

25 特にスチレン系樹脂がゴム変性ポリスチレン系樹脂の場合、ゴム状重合体の含有量は3~15重量%が好ましく、更に好ましくは4~10重量%である。ゴム状重合体の含有量が3重量%より少ないと樹脂組成物の耐衝撃性が低下し、また15重量%を越えると剛性が低下する。また、ABS系樹脂の場合、5~20重量%が好ましく、更に好ましくは10~15重量%である。

WO 2004/087809 PCT/JP2004/004337

ゴム状重合体粒子は、スチレン系樹脂マトリクス中に粒子状に分散している。 ゴム状重合体粒子の面積平均粒子径は $0.1\sim2.5\mu$ mの範囲にあることが好ましい。特に、スチレン系樹脂がゴム変性ポリスチレン系樹脂の場合、該平均粒子径は $0.3\sim2.5\mu$ m、特には $0.8\sim2.5\mu$ mの範囲にあることが好ましい。該平均粒子径が 0.3μ m未満では、樹脂組成物の耐衝撃性が低下し、又 2.5μ mを超えると外観、剛性、難燃性が低下することがある。また、スチレン系樹脂がABS系樹脂の場合には該平均粒子径が $0.1\sim0.4\mu$ mの範囲にあることが特に好ましい。該平均粒子径が 0.1μ m未満では、樹脂組成物の耐衝撃性が低下し、又 0.4μ mを超えると外観、剛性、難燃性が低下することが

ゴム変性スチレン系樹脂中の溶剤不溶分の割合(b)は、溶剤にはメチルエチルケトン/メタノール混合溶液を用い、不溶分割合10~30重量%が好ましく、より好ましくは15~26重量%である。その割合(b)が10重量%より少ないと樹脂組成物の耐衝撃性が低下し、また30重量%を越えると剛性が低下する。また、ABS系樹脂の場合、溶剤にはアセトンを用い、不溶分割合10~26重量%が好ましく、より好ましくは15~20重量%である。尚、上記「ゴム変性スチレン系樹脂中の溶剤不溶分の割合(b)」は、後述する具体的な実施例等の記載における「成分(A)の分析値: (3)溶剤不溶分の割合(%)(ゲル含量と定義)」での定義を意味する。

20 また、ゴム変性スチレン系樹脂中のゴム状重合体含有量(a)と上記溶剤不溶分の割合(b)は、[(b)/(a)]≦3.5であることが樹脂組成物の耐衝撃性にとって好ましく、更に好ましくは2.0≦[(b)/(a)]≦3.5の範囲である。

ゴム変性スチレン系樹脂のトルエン中での膨潤指数は9.0~11.5の範囲 25 が好ましく、9.0~10.5が更に好ましい。9.0未満であると、樹脂組成 物の耐衝撃性が低下し、11.5を超えると樹脂組成物の面衝撃強度及びその保持率、光沢値及びその保持率、剛性が低下することがある。

尚、上記「ゴム変性ポリスチレンのトルエン中での膨潤指数」は、後述する具体的な実施例等の記載における「成分(A)の分析値:(6)ゴム変性ポリスチ

レンのトルエン中での膨潤指数」での定義を意味する。

本発明において、成分(A)のスチレン系樹脂としてゴム変性スチレン系樹脂 を用いる場合に、最も樹脂組成物の耐衝撃性、流動性の物性バランスが良好な範 囲は、上記効果の組み合わせにより、以下の通りである。すなわち、ゴム変性ス チレン系樹脂中のゴム状重合体含有量(a)が3~20重量%であり、ゴム変性 スチレン系樹脂中の溶剤不溶分の割合(b)が10~30重量%であり、 [(b)/(a)]≦3.5であり、ゴム変性スチレン系樹脂中に分散している ゴム状重合体の面積平均粒子径が 0.1~2.5μmであって、且つゴム変性ス チレン系樹脂のトルエン中での膨潤指数が9.0~11.5になることである。

- ゴム変性スチレン系樹脂がゴム変性ポリスチレン系樹脂の場合では、最も樹脂 10 組成物の耐衝撃性、流動性バランスが良好な範囲は、上記効果の組み合わせによ り、ゴム変性スチレン系樹脂中のゴム状重合体の含有量(a)が3~15重量% であり、ゴム変性ポリスチレン系樹脂中の溶剤不溶分の割合(b)が10~30 重量%であり、[(b)/(a)]≦3.5であり、ゴム変性ポリスチレン系樹 脂中に分散しているゴム状重合体の面積平均粒子径が 0.3~2.5 μ mであっ 15 て、且つゴム変性ポリスチレン系樹脂のトルエン中での膨潤指数が9.0~11. 5になることである。更に好ましくは、ゴム変性ポリスチレン系樹脂中のゴム状 重合体の含有量(a)が4~10重量%であり、ゴム変性ポリスチレン系樹脂中 の溶剤不溶分の割合(b)が15~26重量%であり、2.0≦[(b)/ (a)] ≤3.5であり、ゴム変性ポリスチレン系樹脂中に分散しているゴム状
- また、ゴム変性スチレン系樹脂がABS系樹脂の場合、最も樹脂組成物の耐衝 撃性、流動性バランスが良好な範囲は、ABS樹脂中のゴム状重合体の含有量 (a) が5~20重量%であり、ABS樹脂中の溶剤不溶分の割合(b)が10 25 ~26重量%であり、[(b)/(a)]≦2.0であり、且つABS樹脂中に 分散しているゴム状重合体の面積平均粒子径が 0.1~0.4μmになることで ある。

重合体の面積平均粒子径が $0.8\sim2.5\mu$ mであって、且つゴム変性ポリスチ

レン系樹脂トルエン中での膨潤指数が9.0~10.5になることである。

本発明の(A)成分であるスチレン系樹脂の分子量は、還元粘度で0.4~0.

8 d 1 / gの範囲にあることが好ましく、更に好ましくは0.45~0.7 d 1 / gの範囲である。還元粘度の測定条件は、ポリスチレン系樹脂の場合トルエン 溶液中で30℃、濃度0.5 g / d 1 の条件で、また不飽和ニトリルースチレン 系共重合体の場合メチルエチルケトン溶液中で30℃、濃度0.5 g / d 1 の条5 件にて測定する。

ゴム変性スチレン系樹脂の製造方法は特に制限されるものではないが、ゴム状 重合体の存在下、スチレン系単量体(および溶媒)を重合する塊状重合(または 溶液重合)によって製造することができる。または反応途中で懸濁重合に移行す る塊状一懸濁重合、またはゴム状重合体ラテックスの存在下、スチレン系単量体 10 を重合する乳化グラフト重合にて製造することができる。塊状重合においては、 ゴム状重合体とスチレン系単量体および必要に応じて有機溶媒、有機過酸化物、 連鎖移動剤を添加した混合溶液を、完全混合型反応器または槽型反応器と複数の 槽型反応器を直列に連結し構成される重合装置に連続的に供給することにより製 造することができる。

15 本発明の(A)成分として用いられるスチレン系樹脂と他樹脂とのブレンド体の製造方法は特に限定されない。一般に、単軸、特殊単軸押出機あるいは2軸押出機で溶融混練する方法や、スチレン系樹脂の重合工程において他樹脂を溶解して得る方法などがあげられる。

本発明における好ましいスチレン系樹脂と他樹脂とのブレンド体にはゴム変性 ポリスチレン系樹脂とポリフェニレンエーテルのブレンド体があげられる。本発明に使用するポリフェニレンエーテルは、ポリ(2,6ージメチルー1,4ーフェニレンエーテル)やポリ(2,6ージメチルフェノールと2,3,6ートリメチルフェノールとの共重合体などがあげられる。ポリフェニレンエーテルの製造方法は特に限定されるものではないが、例えば2,6キシレノールを酸化重合することにより製造できる。ポリフェニレンエーテルの分子量は、還元粘度で0.2~0.7 d1/gの範囲にあることが好ましく、更に好ましくは0.3~0.6 d1/gの範囲である。ここで還元粘度の測定条件は、クロロホルム溶液中で30℃、濃度0.5 g/d1の条件である。

該ブレンド体中のゴム変性スチレン系樹脂の量は、該ブレンド体の合計重量に

対して70重量%以上であることが好ましく、更に好ましくは80重量%以上である。ゴム変性スチレン系樹脂の量が70重量%未満であると、樹脂組成物の流動性が低下して好ましくない。特に、スチレン系難燃樹脂組成物がUL規格V-2を要求される場合、ポリフェニレンエーテルの添加量はゴム変性スチレン系樹脂100重量部に対して、0~8重量部が好ましい。更に、樹脂組成物について滴下物の自消性、高い面衝撃強度が求められる場合には、ポリフェニレンエーテルを0.1~8重量部添加することが好ましい。添加量が0.1重量部を未満であると樹脂組成物の滴下自消性が低下し、8重量部を超えると、薄肉流動性が悪化する。

10 また、スチレン系難燃樹脂組成物がUL規格V-1以上を要求される場合、ポリフェニレンエーテルの添加量は該ブレンド体中10~40重量%が好ましく、 更に好ましくは、15~30重量%である。10重量%を下回ると、V-1以上の難燃性水準を維持するのが困難になる。

20 また、成分(A)中に分散するゴム状重合体の面積平均粒子径(Dr)と成分(B)の面積平均粒子径(Df)との間に、下記式(1)の関係を持つことにより、樹脂組成物の面衝撃強度を更に良好にすることができる。

0.
$$0.1 \le (D f/D r) \le 1.0$$
 (1)

(式中、Dfは成分(B)の面積平均粒子径、Drは成分(A)中のゴム状重合 25 体粒子の面積平均粒子径を表わす。)

更に好ましい (Df/Dr) の範囲は、0.04以上、1.0以下、特に好ましくは0.06以上、0.5以下の範囲である。 (Df/Dr) の値が0.01を下回ると、樹脂組成物の面衝撃強度、耐熱性の低下傾向があり、1.0を上回ると面衝撃強度、特にベース樹脂の面衝撃強度と比較した時の保持率が低下し、また

剛性、外観、難燃性の物性バランスが悪化する。

特に、スチレン系難燃樹脂組成物がUL規格V-2を要求される場合、好ましい (Df/Dr) の範囲は 0. 0 4以上、1. 0以下である。また、少量のポリフェニレンエーテルを添加し、滴下物の自消性を高めたV-2難燃性組成物の場合に好ましい (Df/Dr) の範囲は 0. 0 1以上、1. 0以下である。このような両者の好ましい範囲の違いは、ポリフェニレンエーテル添加による、難燃成分(B) の相溶性の変化によるものと考えられる。

また、成分(B)の500℃における加熱重量減少残さが20%以上であることが好ましく、更に好ましくは加熱重量残さが30%以上である。加熱重量残さが20%未満であると樹脂組成物の難燃性能が低下する。また、成分(B)は100℃~400℃に溶融点を持つことが好ましく、更に好ましくは100℃~300℃に溶融点を持つことである。溶融点が100℃未満であると樹脂組成物の耐熱性が低下し、また400℃より高いと面衝撃強度、外観が低下する。また、成分(B)の分子量は200~2000であることが好ましく、分子量が200を下回ると金型汚染が発生し易くなり、2000を超えると樹脂組成物の離型性、流動性が低下する。

成分(B)は、上記を満足するものであれば特に限定されない。例としては、 下記式(4)、(5)であらわされるリン系難燃剤があげられる。

20

10

15

(式中、RおよびR'は同一もしくは異なってもよく、炭素数 $1 \sim 12$ のアルキル基、炭素数 $5 \sim 10$ のシクロアルキル基、炭素数 $7 \sim 20$ のアラルキル基又は炭素数 $6 \sim 15$ のアリール基を示す。)

$$R \longrightarrow O \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow P \longrightarrow O \longrightarrow R' \qquad (5)$$

(式中、RおよびR'は同一もしくは異なってもよく、炭素数 $1\sim12$ のアルキル基、炭素数 $5\sim10$ のシクロアルキル基、炭素数 $7\sim20$ のアラルキル基又は炭素数 $6\sim15$ のアリール基を示す。)

式(4)、(5)における、R、R'の例としては、炭素数1~12のアルキル基としては、メチル、エチル、プロピル、イソプロピル、nーブチル、tーブチル、ネオペンチル等が挙げられる。炭素数5~10のシクロアルキル基としては、シクロヘキシル、シクロオクチル等が挙げられる。炭素数7~20のアラルキル基としては、ベンジル、フェネチル、フェニルプロピル、ナフチルメチル、2ーフェニルイソプロピル等が挙げられる。炭素数6~15のアリール基としては、フェニル、ナフチル、アントラニル、キシリル、トリメチルフェニル、ジーtーブチルフェニル、ジーtーブチルフェニル、ジーtーブチルフェニル、ジーtーブチルフェニル等が挙げられる。

これらの中でも、式 (4) であらわされるリン系難燃剤が特に好ましく、更に 15 R、R'がメチル、エチル、プロピル、イソプロピル、nーブチル、tーブチル やシクロヘキシル、ベンジル、フェネチル、フェニルプロピル、2ーフェニルイ ソプロピルであることが好ましく、更に好ましくはベンジル及びフェネチルであ り、適度な相溶性及び難燃性の点で最も好ましくはベンジルである。

式 (4) により表されるの難燃剤の製法は、一般的に隣接ジオール骨格に例え はR、R'に相当するアルキル、シクロアルキル、アラルキルまたはアリールホスホン酸ジクロリドを反応させることにより得られる。これらの反応は、例えば特開昭54-157156号公報、特開昭53-39698号公報に開示されている。具体的には、ペンタエリスリトールに、メチルホスホン酸ジクロリド、フェニルホスホン酸ジクロリド、ベンジルホスホン酸ジクロリド等を反応させることにより得られる。

また、式(5)により表されるの難燃剤の製法は、一般的に隣接ジオール骨格にオキシ3塩化リンを反応させた後に、例えばR、R'に相当するフェノール性

水酸基等を反応させることにより得られる。これらの反応は、例えば特開平9-183786号公報やJ. Org. Chem.、24巻、630~635ページ (1959) に記載されている方法がある。具体的には、ペンタエリスリトール にオキシ3塩化リンを反応させた後、フェノール、2,6-ジメチルフェノール、クレゾール等を反応させることによって得られる。

本発明の難燃樹脂組成物は成分(A)、成分(B)の他、成分(C)を補助的 な難燃剤として用いることにより更に難燃性及び機械的物性バランスが好ましく なる。成分(C)として用いる難燃剤は成分(B)以外のリン系難燃剤や無機系 難燃剤、シリコン系難燃剤があげられるが特に制限はない。リン系難燃剤として は、有機リン、赤リン、無機系リン化合物があげられる。有機リンの例としては、 10 例えば、ホスフィン、ホスフィンオキシド、ビホスフィン、ホスホニウム塩、ホ スフィン酸塩、リン酸エステル、亜リン酸エステル等を挙げることができる。よ り具体的には、トリメチルホスフェート、トリエチルホスフェート、トリプロピ ルホスフェート、トリプチルホスフェート、トリペンチルホスフェート、トリヘ キシルホスフェート、トリシクロヘキシルホスフェート、トリフェニルホスフェー 15 ート、トリクレジルホスフェート、トリキシレニルホスフェート、ジメチルエチ ルホスフェート、メチルジブチルホスフェート、エチルジプロピルホスフェート、 ヒドロキシフェニルジフェニルホスフェート、トリスノニルフェニルホスフェー トなどのリン酸エステルやメチルネオペンチルホスファイト、ペンタエリスリト ールジエチルジホスファイト、ジネオペンチルハイポホスファイト、フェニルピ 20 ロカテコールホスファイトなどを挙げることができる。

縮合リン酸エステル系難燃剤は、下記式(6)の化合物が挙げられ、式(6)の具体例としては、ビスフェノールAビス(ジフェニルホスフェート)、ビスフェノールAビス(ジー2,6ージキシレニルホスフェート)、ビスフェノールA ビス(ジクレジルホスフェート)、レゾルシノールビス(ジフェニルホスフェート)、レゾルシノールビス(ジー2,6ージキシレニルホスフェート)等が挙げられる。

$$A_{1}-O-P-O-R-P-O-A_{4}$$

$$OA_{2} O-R-P-O-A_{3} O-A_{4}$$
(6)

(式中、nは $1\sim10$ の正数であり、 $A_1\sim A_4$ は各々独立に、フェニル基、トリル基またはキシリル基である。また、nが2以上の場合、複数ある A_3 は各々同一でも異なってもよい。またRは下記式(R1) \sim (R4)から選ばれる基である。);

$$(R1)$$

$$(R2)$$

$$(R3)$$

$$- \dot{C}H_3$$

$$(R4)$$

赤リンとは、一般の赤リンの他に、表面をあらかじめ、水酸化アルミニウム、 10 水酸化マグネシウム、水酸化亜鉛、水酸化チタンより選ばれる金属水酸化物の被膜で被覆処理されたもの、水酸化アルミニウム、水酸化マグネシウム、水酸化亜鉛、水酸化チタンより選ばれる金属水酸化物及び熱硬化性樹脂よりなる被膜で被覆処理されたもの、水酸化アルミニウム、水酸化マグネシウム、水酸化亜鉛、水酸化チタンより選ばれる金属水酸化物の液膜の上に熱硬化性樹脂の被膜で二重に 15 被覆処理されたものなども好適に用いることができる。

本発明において使用する上記無機系リン化合物は、ポリリン酸アンモニウムが代表的である。

これらリン系難燃剤は単独または2種類以上を併用して用いることができる。 無機系難燃剤としては、水酸化アルミニウム、水酸化マグネシウム、ドロマイ 20 ト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、塩基性炭酸マグ ネシウム、水酸化ジルコニウム、酸化スズの水和物等の無機金属化合物の水和物、

15

ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、炭酸亜鉛、炭酸マグネシウム、 ムーカルシウム、炭酸カルシウム、炭酸バリウム、酸化マグネシウム、酸化 モリブデン、酸化ジルコニウム、酸化スズ、酸化アンチモン等が挙げられる。これらは、1種でも2種以上を併用してもよい。この中で特に、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、ハイドロタルサイトからなる群から選ばれたものが好ましい。

更に、シリコン系難燃剤としては、例えば、RSiOを含む化合物が挙げられ、 Rは例えば、フェニル基、キシリル基等のアリール基、メチル基、プロピル基等 のアルキル基、また、アルケニル基等がある。一般的になシリコン系難燃剤とし ては、ポリオルガノシロキサン類があげられる。

これらハロゲン化合物を含有しない難燃成分(C)の中でも特に好ましいのは、式(6)で表される縮合リン酸エステルであり、特に好ましい化合物はビスフェノールAビス(ジフェニルホスフェート)、ビスフェノールAビス(ジー2,6 ージキシレニルホスフェート)、レゾルシノールビス(ジフェニルホスフェート)、レゾルシノールビス(ジフェニルホスフェート)である。

本発明においては、成分(A)中のゴム状重合体粒子と成分(B)である難燃成分の分散粒子径の各々の制御、及び両者の関係(面積平均粒子径についての所定の比率)が重要である。

成分(A)であるゴム変性スチレン系樹脂中のゴム状重合体粒子の粒子径のコントロールは公知の方法で実施できる。例えば、ゴム変性スチレン系樹脂を塊状重合(または溶液重合)や塊状ー懸濁重合する場合は、重合の進行に伴ってゴム状重合体粒子を相転作用によって作り出す際、系の粘度や反応器の攪拌回転数による操作、開始剤等によるグラフト反応の操作、あるいはこれらの組み合わせにより、ゴム状重合体粒子径を所望の範囲にコントロールすることができる。また、ゴム状重合体ラテックスの存在下、スチレン系単量体を重合する乳化グラフト重合にて製造する場合は、初期のゴム状重合体ラテックスの粒子径によってゴム状重合体粒子径をコントロールすることができる。

これらのゴム状重合体の粒子径は、単分散に近い形態、粒子径分布の広い形態、 2山分布を有する形態いずれも可能であるが、中でも粒子径分布の広い形態、2

山分布を有する形態が面衝撃強度が強くなり特に好ましい。

一方、成分(B)である難燃成分の分散状態は、成分(A)であるゴム変性スチレン系樹脂中のゴム状重合体粒子の分散との関係により、樹脂組成物の面衝撃強度を向上させる上において重要である。また、それ自身においては、樹脂組成物の滴下難燃性、剛性、外観を良好に保つために重要である。即ち、より適度に微分散させることが必要である。成分(B)の分散粒径のコントロールは、混練による方法、及び/または相溶化剤による方法があげられる。混練により成分(B)の分散粒子を所望の範囲に微粒子化する方法は、2軸押出機を用いること、混練温度を成分(B)の溶融温度付近の温度にし、混練時のせん断によりコントロールする方法などが挙げられる。

また、相溶化剤成分(D)により成分(B)の分散粒径をコントロールすることもできる。相溶化剤としては、極性基を有する構造単位を必須単位とした重合体成分(単独重合体又は共重合体成分)であることが好ましい。極性基を有する構造単位を必須単位とした重合体成分とは、例えば(メタ)アクリル酸単位、

- 15 (メタ) アクリル酸アルキルエステル単位、(メタ) アクリロニトリル単位、無水マレイン酸単位、N-フェニルマレイミド単位、エポキシ基を有する単位、アミド基を有する単位等が挙げられ、これらは単独に用いても、2つ以上を共重合させた重合体としても良い。また、スチレン系単位等の非極性単位との共重合体とすることも可能である。
- 20 これらの中でも、(メタ)アクリル酸アルキルエステル単位からなる重合体、および該単位とスチレンとの共重合体、アクリロニトリルとスチレンとの共重合体が好ましい。(メタ)アクリル酸アルキルエステル単位からなる重合体の場合、ブチルアクリレート、メチルメタクリレート、2ーエチルヘキシルアクリレートの単独重合体及び共重合体、またはスチレンとの共重合体が好ましい。アクリロニトリルとスチレンの共重合体の場合、スチレン/アクリロニトリルの組成比(重量比)を、100/1~30の範囲で広く有し、且つ平均アクリロニトリル含量が5~20重量%である共重合体が相溶性の点から好ましい。共重合の形は、ポリスチレンに極性成分がブロックまたはグラフト重合した重合体のいずれも可能である。

成分 (D) の重量平均分子量は1000~5000の範囲にあることが好ましい。

各成分の添加量は、成分(A)100重量部に対し、成分(B)0.5~50 重量部が好ましく、特には2~30重量部が好ましい。成分(B)の添加量が0. 5 重量部未満であると樹脂組成物の難燃性が悪化し、50重量部より多いと耐衝 撃性が低下する。成分(C)を使用する場合0.1~40重量部添加するのが好ましい。樹脂組成物中の成分(C)の含有量は成分(B)の含有量以下であることが好ましい。

特に、スチレン系難燃樹脂組成物がUL規格V-2を要求される場合、好ましい各成分の添加量は、成分(A)100重量部に対し、成分(B)0.5~10重量部が好ましく、更に好ましくは成分(B)が1~7重量部である。成分(B)の添加量が0.5重量部未満であると樹脂組成物の滴下難燃性が悪化し、10重量部より多いと耐衝撃性、外観、滴下難燃性が低下傾向になる。この時、成分(C)を使用する場合0.1~10重量部添加するのが好ましく、特には10~7重量部添加するのが好ましい。

また、滴下物の自消性を高めたV-2難燃性樹脂組成物にする場合、好ましい各成分の添加量は、成分(A) ゴム変性ポリスチレン系樹脂100重量部に対し、ポリフェニレンエーテル0.1~8重量部、成分(B)0.5~10重量部が好ましく、更に好ましくはポリフェニレンエーテルが0.5~5重量部、成分(B)が1~7重量部の組み合わせである。ポリフェニレンエーテルの添加量が0.1重量部未満であると樹脂組成物の滴下自消性、面衝撃強度が低下し、8重量部より多いと薄肉流動性が低下する。成分(B)の添加量が0.5重量部未満であると樹脂組成物の滴下難燃性が悪化し、10重量部より多いと面衝撃強度が低下傾向になる。この時、成分(C)を使用する場合0.1~8重量部添加するのが好ましく、特には1~6重量部添加するのが好ましい。成分(C)が0.1 重量部未満だと樹脂組成物の難燃性が向上せず、又8重量部を超えると耐衝撃性が低下する。

更に、より難燃性を高めたUL規格V-1以上の難燃性樹脂組成物にする場合、 好ましい各成分の添加量は、成分(A)ゴム変性ポリスチレン系樹脂とポリフェ ニレンエーテルのブレンド体を使用し、ポリフェニレンエーテルの添加量は該ブレンド体中10~40重量%であって、該ブレンド体100重量部に対して成分(B)5~20重量部が好ましく、更に好ましくは、ポリフェニレンエーテルの添加量が該ブレンド体中15~30重量%であって、該ブレンド体100重量部に対して成分(B)10~15重量部である。ポリフェニレンエーテルの添加量が10重量%未満であると樹脂組成物のV-1以上の難燃性を維持するのが難しくなり、40重量%を超えると流動性が低下する。成分(B)の添加量が5重量部未満であると樹脂組成物の難燃性が悪化し、20重量部より多いと面衝撃強度が低下傾向になる。この時、成分(C)を使用する場合2~20重量部添加するのが好ましく、特には5~15重量部配合するのが好ましい。成分(C)が2重量部未満だと樹脂組成物の難燃性が向上せず、又20重量部を超えると耐衝撃性、耐熱性が低下する。

これらの成分(A)中にポリフェニレンエーテルを添加する系においては、ポリフェニレンエーテルの添加部数(X)と成分(B)の添加部数(Y)が、0.

15 $4 \le (Y/X) \le 2$. 0の関係を満たしていることが、樹脂組成物の難燃性、耐衝撃性及び流動性(特に薄肉流動性)の物性バランスの観点から好ましい。(Y/X)が 0.4を下回ると樹脂組成物の薄肉流動性が低下傾向になり、また 2.0を超えると耐衝撃性が低下傾向になる。

本発明の難燃樹脂組成物の製造方法としては、特に制限はないが、例えば成分 20 (A)、(B)(及び必要に応じ成分(C))を一括ブレンドし、2軸押出機で溶融混練する方法や成分(A)、(B)をブレンドし、2軸押出機で溶融混練する途中で必要に応じ成分(C)をサイドフィードする方法、また同様に成分(A)を溶融混練する途中で成分(B)(及び必要に応じ成分(C))をサイドフィードする方法、更には、成分(A)+(B)の一部をブレンドし、2軸押出 25 機で溶融混練する途中で成分(B)の残分(及び必要に応じ成分(C))をサイドフィードする方法などがあげられる。

また、ゴム変性スチレン系樹脂を製造する過程で、ポリフェニレンエーテルや成分(B)及び/又は成分(C)を直接第1の反応機に供給する方法や、反応機と反応機の連結ラインから注入する方法、更には最終反応機からペレット化する

出した。

までのラインから注入する方法もとることも可能である。

なお、本発明のゴム変性スチレン系樹脂組成物を得るにあたり、必要に応じ、本発明の効果を損なわない限りにおいて、シリコンオイル、ミネラルオイル、可塑剤、潤滑剤、酸化防止剤等の添加剤を重合過程の任意の位置で添加することができ、また、押出機で溶融混練する際に添加することも可能である。

参考例1~13、実施例1~65及び比較例1~20

以下、参考例、実施例及び比較例に基づき本発明を詳細に説明する。なお、本 発明は実施例により何ら限定されるものではない。以下に用いる部数は全て重量 部とする。また、以下に示す%は、特に断らない限りは重量%を意味する。

- 10 尚、実施例等における物性の測定、評価方法は以下のとおりである。 <成分(A)の分析値>
 - (1) ゴム状重合体中のシス1, 4結合量(%) 赤外分光光度計を用いて測定し、モレロ法によりデータ処理することにより算

15 (2) スチレン系樹脂中のゴム状重合体の含有量(%) (ゴム含量と定義) ブタジエンセグメントの結合様式を踏まえた上で、熱分解ガスクロマトグラフィーを用いてブタジエンセグメント量を求め、そこからゴム状重合体の含有量を 第出した。

- (3) 溶剤不溶分の割合(%) (ゲル含量と定義)
- 20 ゴム変性スチレン系樹脂約1g(W)を精秤し、樹脂がゴム変性ポリスチレン 樹脂の場合メチルエチルケトン/メタノール混合溶媒(混合重量比90/10) を、樹脂がABS樹脂の場合はアセトンを20ミリリットル加え、振とう機に6 0分かけ溶解させる。次に、R20A2型ローターを備えたhimacCR20 型遠心分離機(日立製作所製)を用い、0℃、20,000rpmで60分遠心 分離後、上澄み液をデカンテーションにより除去し、沈殿した不溶分重量を精秤 する(Wc)。ゲル含量は以下の式により求める。

ゲル含量 (b) =Wc/W×100

- (4) ゴム含量に対するゲル含量の割合
 - (2) より求めたゴム含量(a)と(3)より求めたゲル含量(b)により、

次の式により求めた。

ゴム含量に対するゲル含量の割合= [(b)/(a)]

(5) ゴム状重合体の面積平均粒子径

四酸化オスミウムで染色した難燃性ゴム変性スチレン系難燃樹樹脂組成物から 厚さ75nmの超薄切片を作成、電子顕微鏡撮影し、倍率10000倍の写真 (図1参照) にした。写真中、黒く染色された粒子が成分(A) 中に含まれるゴム状重合体である。写真から成分(A) 中のゴム状重合体粒子の粒子径を測定し、以下の数式(N1)により面積平均粒子径を算出した。

面積平均粒子径=ΣniDri³/ΣniDri² (N1)

10 (ここで、niは写真中の粒子径Driのゴム状重合体粒子の個数、また、粒子径Driは写真中の粒子面積から円相当径とした時の粒子径である。)

本測定は、写真を200dpiの解像度でスキャナーに取り込み、画像解析装置IP-1000(旭化成社製)の粒子解析ソフトを用いて測定した。

- (6) ゴム変性スチレン系樹脂のトルエン中での膨潤指数
- ゴム変性スチレン系樹脂約1gを遠心分離用沈殿管に入れ、トルエン20ミリリットルを加え、振とう機に60分かけ溶解させる。次に、R20A2型ローターを備えたhimacCR20型遠心分離機(日立製作所製)を用い、0℃、20,000rpmで60分遠心分離後、上澄み液をデカンテーションにより除去し、膨潤したトルエン不溶分重量を精秤する(Ws)。次に、膨潤したトルエン不溶分を真空乾燥機に入れ、130℃、1時間常圧乾燥した後、30分真空乾燥し、乾燥後のトルエン不溶分重量を精秤する(Wd)。膨潤指数は以下の式により求める。

膨潤指数=Ws/Wd

(7) 還元粘度 ·

25 還元粘度はスチレン系樹脂の分子量の指標となる。上記(3)にて得られる遠心分離後の上澄み液にメタノールを添加し、スチレン系樹脂を析出させる。濾過後、乾燥させ試料とし、トルエン溶液中で30℃、濃度0.5g/d1の条件で測定した。

<成分(B)の分析値>

(a) 加熱重量減少残さ

熱重量天秤試験 (TGA法) を用いて測定し、チャー形成能力の指標とした。 熱重量測定装置TGA-50 (島津製作所製) を用い、窒素20m1/分の気流 下、10℃/分にて昇温し、500℃での残量(%) を加熱重量減少残さとした。

5 (b)溶融点

示差熱試験 (DSC法) を用いて測定した。熱流東示差走査熱量計DSC-5 0 (島津製作所製) を用い、窒素20ml/分の気流下、10℃/分にて昇温し、 ベースラインと吸熱ピーク立ち上がり部の各接線の交点を溶融点とした。

(c) 面積平均粒子径

- 10 四酸化オスミウムで染色した難燃性ゴム変性スチレン系樹脂組成物から厚さ7 5nmの超薄切片を作成、電子顕微鏡撮影し、倍率10000倍の写真(図1参 照)とした。写真中、黒く染色された粒子が成分(A)中に含まれるゴム状重合 体であり、グレー色に染色されている粒子及び白く抜けた穴が(B)成分である。
- (B) 成分は超薄切片作成時、切片から脱離する場合があり、その場合白く抜け た穴となる。従って、測定対象の(B) 成分は、グレー色に染色されている粒子 及び白く抜けた穴とする。写真から(B) 成分の粒子径を測定し、数式(N2) により面積平均粒子径を算出した。

面積平均粒子径=ΣniDfi³/ΣniDfi² (N2)

(ここで、niは写真中の粒子径Dfiの(B)成分粒子の個数、また、粒子 20 径Dfiは写真中の粒子面積から円相当径とした時の粒子径である。)

本測定は、写真を200dpiの解像度でスキャナーに取り込み、画像解析装置IP-1000(旭化成社製)の粒子解析ソフトを用いて測定した。

<難燃性ゴム変性スチレン系樹脂組成物の性能評価方法>

各種物性の評価方法については以下に示すとおりである。剛性は曲げ弾性率で、 25 耐衝撃性はシャルピー衝撃強度及び面衝撃強度で、耐熱性は加熱変形温度で、流 動性はメルトフローレートで、外観は光沢値及び光沢値の低下度合いを測定する ことにより評価した。

(1)シャルピー衝撃強度

ペレットを成形機J100E-P(日本製鋼社製)で、シリンダー温度220

 \mathbb{C} 、金型温度 $4.5\mathbb{C}$ (ISO 2.9.4-1 の条件) にて成形し、試験は ISO 1.7 9に基づき実施した。

(2) 面衝撃強度及び面衝撃強度保持率

成形機IS-55EPN(東芝機械社製)で、金型温度を45℃、シリンダー 温度220℃の条件にて、70mm×150mm×2mm厚みの試験片を作成した。試験はデュポン式ダート試験機(東洋精機社製)を用い、撃心受け台直径9.4mm、撃心突端の直径6.2mm、荷重1kgの条件で、試験片中央部に対してミサイルを落下させ、試験片が50%破壊を示す荷重により、破壊エネルギーを求め、これを面衝撃強度とした。なお、測定上限界は100kg・cmである。 10 面衝撃強度保持率は、相当する成分(A)のみの標準組成物の面衝撃強度値に対し、難燃成分(B)を加えた組成物の面衝撃強度値の保持率(%)とした。

- (3) 曲げ弾性率
 - ISO178に基づき測定した。
- (4) 加熱変形温度
- 15 (1)で得られるISO試験片を用い、ISO75-2に基づき測定した。
 - (5) メルトフローレート

ISO1133に基づき200℃にて測定した。

(6) スパイラルフロー

スパイラルフローは薄肉流動性の指標となる。厚さ $2 \,\mathrm{mm}$ のスパイラル状のキ $20 \,\,$ ャビティを有する金型を使用し、射出成形機 $\mathrm{J}\,1\,0\,0\,\mathrm{E}-\mathrm{P}$ (日本製鋼社製) にて、温度 $2\,2\,0\,^{\circ}$ 、金型温度 $4\,0\,^{\circ}$ 、射出圧力 $7\,7\,0\,\mathrm{kg/cm}^2$ の条件にて射出成形し、成形されたスパイラルの長さを測定し、スパイラルフローとした。

- (7) 光沢値及び光沢保持率
- 上記(1)で得られるISO試験片を用い、JISK7015に準じ、流動末25 端箇所を60度角度にて光沢値を測定した。光沢保持率は、相当する成分(A)のみの標準組成物試験片の光沢値に対し、難燃成分(B)を加えた組成物試験片の光沢値の保持率(%)とした。
 - (8) 離型性

離型性の評価は、射出成形時に成形品を取り出す際、成形品内部に生じる離型

WO 2004/087809

抵抗の大きさにより発生する傷の程度により判断した。具体的には、外形で縦50mm、横90mm、深さ40mm、肉厚2mmの箱状の成形品でかつ、横の位置に30mm間隔で厚さ1mmのリブを2枚有する金型を用いた。射出成形は成形機J100E-P(日本製鋼社製)で、温度220℃、金型温度45℃にて実施した。離型性の評価は、成形品内部に生じた離型時の傷の程度を以下の基準に従って行った。尚、該評価は傷を目視で判定するのに分かりやすいように黒色に着色して実施した。

◎:傷は全く発生しない

〇:成形品内部のコーナー部分に点状にわずかに傷が確認できる。

10 Δ :成形品内部のコーナー部分に $2\,\mathrm{mm}$ 以下の線状の傷がわずかに確認できる。

×:成形品内部のコーナー部分に2mmより大きな傷が線状に確認できる。

(9) 耐金型汚染性試験

成形機IS55EPN (東芝機械社製)を用い、金型温度を45℃、シリンダー温度220℃の条件にて、50mm×100mm×2.5mmのプレートを連続成形した。耐金型汚染性として1000ショット成形後の金型の状態を以下の基準で目視判定した。

〇:金型付着物なし。

15

△: わずかに、白色固形物あるいは透明付着物が付着している。

×:白色固形物あるいは透明付着物が多量に付着している。

20 (10) 難燃性及び滴下自消性

米国アンダーライターズ・ラボラトリー・インコーポレーションより出版された「UL94安全規格:機器の部品用プラスチック材料の燃焼試験」の $7\sim10$ 項目に記載の94V-2(以下「V-2」)基準に従い、3.0mm、1.5mm短冊試験片にて難燃性(UL94難燃性)を測定した。

25 また、滴下自消性はV-2試験時、一回目接炎での燃焼している滴下物が落下 した時間からそれが消火するまでの時間とした。滴下自消性の評価は、滴下物の 自消時間により、以下の基準を設け行った。

◎:消炎時間10秒未満

(1) : 消炎時間10秒以上30秒未満

△:消炎時間30秒以上60秒未満

×:消炎時間60秒以上

<実施例、比較例で用いた原材料>

(1) ゴム変性スチレン系樹脂

5 ゴム変性スチレン系樹脂(HIPS1~HIPS10)は参考例1~10の方 法にて製造した。

[参考例1] HIPS1の製造方法

スチレン単量体85重量%にローシスポリブタジエンゴム(残留不飽和結合が 1, 4-シス結合36%、1, 4-トランス結合52%、1, 2-ビニル結合1 2%で、ムーニー粘度が55、5%スチレン溶液粘度が165センチポイズのも 10 の)を2.0重量%溶解した溶液に、エチルベンゼン12重量%、1、1-ビス (tーブチルパーオキシ) 3, 3, 5-トリメチルシクロヘキサン(日本油脂社 製:商品名パーヘキサ3Μ) 0.03重量%、αーメチルスチレンダイマー0. 10重量%および酸化防止剤0.05重量%を加えた原料液を、内容積6リット ルの攪拌機付き槽型第1反応器に連続的に2リットル/hr. にて供給し、第1 反応器出口の固形分濃度が30%となるよう、槽内温度を調節し、相転換を完了 させ粒子を形成させた。また、第1反応機の攪拌数は、ゴム状重合体粒子径が所 望の範囲になるよう適宜調整した。更に、内容積6リットルの攪拌器付き槽型第 2 反応器、及び同型、同容量の第3 反応器にて重合を継続させた。その際、第2、 第3反応器出口の固形分濃度が各々50~60%、70~79%になるよう槽内 20 温度を調整した。次いで、230℃の真空脱揮装置に送り未反応スチレン単量体 および溶媒を除去し、押出機にて造粒し、ゴム変性スチレン系樹脂組成物を得た。 該HIPSの分析値は表1に示すとおりである。

[参考例2] HIPS2の製造方法

25 参考例1において、ローシスポリブタジエンゴムの使用量、1、1ービス(tーブチルパーオキシ)3,3,5ートリメチルシクロヘキサンとαーメチルスチレンダイマーの添加量、及び第1反応機の攪拌数を適宜調整して、表1に示す物性を有するHIPS2を得た。

[参考例3] HIPS3の製造方法

参考例1において、使用するゴムをハイシスポリブタジエンゴム(残留不飽和結合が1,4ーシス結合96%、1,4ートランス結合2%、1,2ービニル結合2%で、ムーニー粘度が43、5%スチレン溶液粘度135センチポイズのもの)に変更し、1、1ービス(tーブチルパーオキシ)3,3,5ートリメチルシクロヘキサンとαメチルスチレンダイマーの添加量、及び第1反応機の攪拌数を適宜調整し、また押出機の温度を参考例1より高くして、表1に示す物性を有するHIPS3を得た。

[参考例4、5] HIPS4、5の製造方法

参考例3において、押出機の温度を調整してHIPSの膨潤指数を調整した以 10 外は、参考例1と同様にして、表1に示す物性を有するHIPS4、5を得た。 [参考例6、7] HIPS6、7の製造方法

参考例1において、ローシスポリブタジエンゴムの使用量、1、1ービス(tーブチルパーオキシ)3,3,5ートリメチルシクロヘキサンとαーメチルスチレンダイマーの添加量、及び第1反応機の攪拌数を適宜調整して、表1に示す物 性を有するHIPS6,7を得た。

[参考例8、9] HIPS8、9の製造方法

20 [参考例10] HIPS10の製造方法

スチレン単量体 7 5 重量%にハイシスポリプタジエンゴム (残留不飽和結合が 1,4-シス結合 9 6%、1,4-トランス結合 2%、1,2-ビニル結合 2% で、ムーニー粘度が 4 0、5%スチレン溶液粘度 6 0 センチポイズのもの)を 1 0 重量%溶解した溶液に、エチルベンゼン 1 4 重量%、1、1-ビス(t-ブチールパーオキシ)3,3,5-トリメチルシクロヘキサン(日本油脂社製:商品名パーヘキサ 3 M)0.04 重量%、α-メチルスチレンダイマー0.20 重量% および酸化防止剤 0.05 重量%を加えた原料液を、内容積 6 リットルの攪拌機付き槽型第 1 反応器に連続的に 2 リットル/ hr.にて供給し、第 1 反応器出口の固形分濃度が 3 5%になるよう、槽内温度を調節し、相転換を完了させ粒子を

形成させた。この時の第1反応器の攪拌数を90回転/毎分とした。更に、内容積6リットルの攪拌器付き槽型第2反応器、及び同型、同容量の第3反応器にて重合を継続させた。その際、第2、第3反応器出口の固形分濃度が各々55~60%、68~73%になるよう槽内温度を調整した。次いで、230℃の真空脱類装置に送り未反応スチレン単量体および溶媒を除去し、押出機にて造粒し、ゴム強化スチレン系樹脂組成物(HIPS10)を得た。該HIPS10の分析値は表1に示すとおりであった。

[参考例11] ABS1の製造方法

ポリブタジエンラテックス(重量平均粒子径 0.32ミクロン)固形分30部、10 イオン交換水100部を10リットル反応器に入れ、気相部を窒素置換した後、この初期溶液を70℃に昇温した。次に、以下に示す組成からなる水溶液(A)と単量体混合液(B)を反応器に8時間にわたり連続的に添加して重合した。添加終了後、1時間70℃に保ち、反応を完結させた。水溶液(A)の組成は次のとおりである。

15 硫酸第一鉄 0.005部

ソジウムホルムアルデヒドスルホキシラート (SFS) 0.1部 エチレンジアミンテトラ酢酸二ナトリウム (EDTA) 0.05部 イオン交換水 50部

単量体混合液(B)の組成は次のとおりである。

20 アクリロニトリル 21部

スチレン 49部

t-ドデシルメルカプタン(t-DM) 0.8部 クメンハイドロパーオキサイド(CHP) 0.1部

このようにして得られたABSラテックスに、酸化防止剤を添加した後、硫酸 アルミニウムをラテックス中のポリマー分に対し1.0部加え、凝固させた。更 に、十分な脱水、水洗を行った後、乾燥させグラフト重合体粉末(C)を得た。 これに、スチレン70%、アクリロニトリル30%からなる単量体混合物を溶液 重合して得られた共重合体を混合し、ゴム含量が15%になるように、押出機に て混練、ペレット化した。得られたABS1のその他分析値は、ゲル含量22.

5%、ゲル含量/ゴム含量は1.5、面積平均粒子径0.25μm、還元粘度は0.5であった。

「参考例12] ABS2の製造方法

参考例11において、ポリブタジエンラテックスを重量平均粒子径0.12ミ 5 クロンとした以外は参考例10と同様に実施した。得られたABS2の分析値は、 ゴム含量15%、ゲル含量21%、ゲル含量/ゴム含量は1.4、面積平均粒子 径0.1μm、還元粘度は0.5であった。

(2) ポリフェニレンエーテル

ポリフェニレンエーテル(PPE)は参考例13の方法により製造した。

酸素吹き込み口を反応機底部に有し、内部に冷却用コイル、撹拌羽根を有する

10 [参考例13]

ステンレス製反応機の内部を窒素で充分置換したのち、臭化第2銅54.8g、ジーnーブチルアミン1110g及びトルエン20リットル、nーブタノール16リットル、メタノール4リットルの混合溶媒に2,6ーキシレノール8.75 kgを溶解して反応機に仕込んだ。撹拌しながら反応機内部に酸素を吹き込み続け、内温を30℃に制御しながら180分間重合を行った。重合終了後、析出したポリマーを濾別した。これにメタノール/塩酸混合液を添加し、ポリマー中の残存触媒を分解し、さらにメタノールを用いて充分洗浄した後乾燥し、粉末状のポリフェニレンエーテルを得た(PPEと称する)。還元粘度ηspは0.55 d1/gであった。

(3)成分(B)

25

式 (4) で表される成分 (B) $(B-1\sim B-4)$ は表 2 に示す R、R の置換基を有するものを使用した。また、式 (5) で表わされる成分 (B) (B-5) についても表 2 に示す R、R の置換基を有するものを使用した。これらの物性について表 2 に記した。

また、(B-6)は以下の方法で製造した。即ち、重量平均分子量43000、 固形分22%のスチレン-p-スチレンスルホン酸ナトリウム塩共重合体(スチレン/p-スチレンスルホン酸ナトリウム塩のモル比50%/50%)水溶液1000g中にテトラフェニルホスフィンクロライド250gを添加し、撹拌下9 0℃に加熱反応させ、ホスホニウム化を実施した。次に、80℃の温水で洗浄し、ナトリウムイオン、クロライドイオンを除去した後、100℃にて減圧乾燥させた。得られたサンプルはスチレンーpースチレンスルホン酸テトラフェニルホスホニウム塩共重合体であり、物性を表2に記した。

5 (4) 成分(C)

成分(C)として以下のものを使用した。

C-1:市販のトリフェニルホスフェートを使用した。

C-2:下記式 (7) の化合物 (大八化学 (株) 製、商品名CR733S) を 用いた。ここで、nはn=1のものが65重量%、 $n \ge 2$ が35重量%であった。

10

15

C-3:下記式(8)の化合物(大八化学(株)製、商品名CR741)を用いた。ここで、nはn=1のものが85重量%、 $n \ge 2$ が13重量%であった。 500 Cにおける加熱重量残さは4%、常温で液体であり、分子量(平均値)は 739 である。

C-4:下記式(9)の化合物(大八化学(株)製、商品名PX200)を用いた。500℃における加熱重量残さは4%、融点は96℃であり、分子量は620 86である。

$$\begin{pmatrix}
 & CH_3 & O & O & H_3C \\
 & O & P & O & P & O \\
 & CH_3 & C & O & P & O & P & O
\end{pmatrix}_{\mathbf{H}_3\mathbf{C}} (9)$$

(5) 成分(D)

成分(D) としては以下のものを使用した。

D-1:スチレンとアクリル酸エステル化合物との共重合体として、のARUFON/XFM-920 (東亞合成社製) (Tg=51℃、重量平均分子量3800)を使用した。

D-2:ブチルアクリレートと2エチルヘキシルアクリレートの共重合体として、ARUFON/UP-1021(東亞合成社製)(Tg=-71 $^{\circ}$ C、重量平均分子量1600)を使用した。

10 [比較例1~2]

表3の組成比の成分(A)、(B)、及び離型剤としてステアリン酸亜鉛0.2部を、一括混合し、二軸押出機(ウエルナー社製ZSK25mm、L/D=42)を用い、250℃で溶融押出を行い、ペレットを得た。この際、スクリュー回転数は300rpm、吐出量は10kg/hrであった。このようにして得られたペレットを前述の射出成形機を用い、各成形試験片を作成し、物性及び難燃性評価を実施した。結果を表3に示す。比較例1では成分(B)を含有しないため難燃性を持たず、比較例2では成分(B)を含有しているものの添加量が少なく滴下難燃性が悪化する。

[実施例1]

20 成分(B)を表3に示す量に変更した以外は、比較例2と同様の方法で押出、 成形、試験を実施した。結果を表3に示す。いずれも、良好な物性バランス、離 型性、耐金型汚染性、UL規格V-2難燃性能を有していた。

「実施例2~6]

表3に記した組成にて、混練条件を変更した以外は実施例1と同様の方法で押25 出、成形、試験を実施した。混練条件により成分(B)の分散粒子径が変化し、粒子径比(Df/Dr)が小さい実施例2が最も物性、難燃性のバランスが良く、粒子径比が1を超えた実施例4は、難燃性、離型性が幾分低下した。また、実施例2,3、5では、滴下物の自消性が高くなり好ましくなっている。

[実施例7~15]

使用するゴム変性ポリスチレン系樹脂を表4、表5に記したHIPSに変更し、 その他該表に記した組成、混練条件に変更した以外は実施例1と同様の方法で押 出、成形、試験を実施した。ハイシスポリブタジエンゴムのHIPS3を使用し た実施例7、8は、ローシスポリブタジエンを使用したものより、樹脂組成物の 面衝撃強度と剛性のバランスに優れ特に好ましくなっている。実施例8において は、滴下物の自消性が高くなり特に好ましくなっている。実施例9,10はハイ シスポリブタジエンゴムを用いているが、膨潤指数が高いHIPS4を用いた実 施例9では、樹脂組成物の面衝撃強度及びその保持率と光沢値、剛性が幾分低下 し、また、膨潤指数が低いHIPS5を用いた実施例10では、シャルピー衝撃 強度、面衝撃強度が幾分低下した。実施例12は、混練条件により難燃成分の分 10 散粒子径が大きくなり、その結果粒子径比(Df/Dr)が大きくなったため、樹 脂組成物の面衝撃強度保持率と光沢値及び光沢保持率が幾分低下した。実施例1 4は、使用したHIPS8の[ゲル含量/ゴム含量] ((b)/(a))が大き いため、樹脂組成物の面衝撃強度、曲げ弾性率が幾分低下した。また、実施例1 5は、使用したHIPS9のゴム状重合体の面積平均粒子径が大きいため、樹脂 15 組成物の光沢値及び光沢保持率が幾分低下した。

[比較例3、4]

表4、表6に記した混練条件に変更した以外は実施例1と同様の方法で押出、成形、試験を実施した。本比較例においては、押出し温度が成分(B)の溶融点 に比較しかなり低い混練条件となっている。その結果、難燃成分の分散粒子径が大きくなり、本発明の範囲を超えてしまったため、樹脂組成物の面衝撃強度、光沢及び保持率、難燃性、離型性が悪化した。

[実施例16~18]

使用するゴム変性スチレン系樹脂に参考例10~11により製造したABS1 25 及びABS2を使用し、混練条件を表5に記した条件に変更した以外は、実施例 1と同様の方法で押出、成形、試験を実施した。粒子径比(Df/Dr)が比較的 大きくなった実施例14では、面衝撃強度、剛性、光沢保持率、難燃性がやや低 下した。

「実施例19~23]

使用する難燃成分(B)、混練条件を表6に記したとおり変更した以外は、実施例1と同様の方法で押出、成形、試験を実施した。実施例23においては、難燃成分の分散粒子径がやや大きくなったため、面衝撃強度保持率と光沢保持率、難燃性がやや低下した。それ以外の実施例では、良好な物性バランス、良好な難燃性を有しており、特に実施例21においては、滴下物の自消性が高くなり好ましくなっている。

[比較例5]

10

15

分子量が本発明の範囲からはずれる難燃成分B-6を使用した比較例5においては、面衝撃強度、離型性、光沢及び光沢保持率、難燃性が低下した。結果を表6に記す。

「比較例6~7]

本発明の難燃成分(B)を使用せずに、表7記載の400℃以下の溶融点を持たない難燃成分を用いた以外は、実施例1と同様の方法で一括混合、押出、成形、試験を実施した。比較例6では、光沢、難燃性が悪い。比較例7では、難燃成分は非常に細かく微分散するものの、難燃成分の特徴が本発明の範囲をはずれるため、難燃性が悪かった。

[比較例8~10]

表7記載の組成の成分(A)及び離型剤としてステアリン酸亜鉛0.2部を混合し、また成分(C)は押出し機途中からサイドフィードして230℃で溶融押20 出を行った。その他は実施例1と同様の方法で成形、試験を実施した。これらの比較例においては、難燃剤は樹脂中に分散せず、加熱変形温度、難燃性が悪化した。

「比較例11]

表7記載の組成の各成分を一括混合し、その他は実施例1と同様の方法で押出、 25 成形、試験を実施した。本比較例においては、難燃剤は樹脂中に分散せず、加熱 変形温度、難燃性が悪化した。

[実施例24~28]

表7~8の組成の成分(A)~(D)を一括混合し、押出し条件を表7~8に 記載した温度に変更した以外は、実施例1と同様の方法で押出、成形、試験を実 施した。いずれの実施例においても、良好な機械的物性バランス、良好な難燃性能を有していた。分散粒子径が小さくなり、粒子径比(Df/Dr)が非常に小さくなった実施例28においては、加熱変形温度及び難燃性がやや低下した。

[実施例29~33]

5 表8記載の組成、押出条件に変更した以外は、実施例1と同様の方法で押出、 成形、試験を実施した。実施例30~32においては、成分(C)は押し出し機 途中からサイドフィードした。いずれの実施例においても、良好な物性バランス、 難燃性能を有していた。

[実施例34~37]

10 表9に示すとおり、ポリフェニレンエーテル(PPE)を少量添加し、その他は表9に示すとおりに変更した以外は、実施例1と同様の方法で押出、成形、試験を実施した。結果を表9に示す。いずれの実施例においても、良好な物性バランス、離型性、耐金型汚染性を示し、また滴下物の自消性を有していた。特に、成分(B)の分散粒子径が小さい実施例34~36は各種物性バランスが非常にりましい。混練条件により、成分(B)の分散粒子径がやや大きくなり、粒子径比(Df/Dr)が1を超えた実施例37では、面衝撃強度が幾分低下した。

「比較例12]

表9に記した混練条件に変更した以外は実施例1と同様の方法で押出、成形、 試験を実施した。本比較例においては、混練条件により難燃成分の分散粒子径が 20 大きくなり、本発明の範囲を超えてしまったため、面衝撃強度、光沢及び保持率、 難燃性、離型性が悪化した。

[比較例13]

25

難燃成分(B)を添加せず、その他表9に記した以外は実施例1と同様の方法で押出、成形、試験を実施した。本比較例においては、難燃成分(B)を含有しないため、難燃性が悪化した。

[実施例38~42]

使用するゴム変性スチレン系樹脂(A)を表9、表10に記したものに変更した以外は実施例1と同様の方法で押出、成形、試験を実施した。いずれの実施例においても、良好な難燃性能を有している。特に、実施例38~41においては、

5

各種物性バランスが非常に好ましい。

[実施例43~49]

使用する難燃成分(B)、混練条件を表11に記したとおり変更した以外は、 実施例1と同様の方法で押出、成形、試験を実施した。いずれの実施例において も、良好な物性バランス、良好な難燃性を有しており非常に好ましい。

[実施例50~52]

成分(A)、成分(B)の添加量を表12に記したとおり変更した以外は、実施例1と同様の方法で一括混合、押出、成形、試験を実施した。実施例50、52では、添加するPPEの量を増量させているため、滴下物の自消性は非常に良好であるが、一方で流動性(スパイラルフロー)がやや低下した。実施例51では、難燃成分(B)の添加量を増量させているため、滴下物の自消性は非常に良好であるが、一方で耐衝撃性(シャルピー衝撃強度、面衝撃強度)はやや低下した。

[実施例53、54]

15 表13記載の組成の成分(A)、(B)及び離型剤としてステアリン酸亜鉛0. 2部を混合し、また成分(C)は押出し機途中からサイドフィードして250℃ で溶融押出を行った。その他は実施例1と同様の方法で成形、試験を実施した。 いずれの実施例においても、良好な物性バランス、良好な難燃性を有しており非 常に好ましい。

20 [実施例55、57]

表13記載の組成の成分(A)、(B)、(C)及び離型剤としてステアリン酸亜鉛0.2部を一括混合し、その他は実施例1と同様の方法で成形、試験を実施した。いずれの実施例においても、良好な物性バランス、良好な難燃性を有しており非常に好ましい。

25 [比較例14]

表13記載の組成の成分(A)及び離型剤としてステアリン酸亜鉛0.2部を混合し、また成分(C)は押出し機途中からサイドフィードして250 $^{\circ}$ で溶融押出を行った。その他は実施例1と同様の方法で成形、試験を実施した。本比較例においては、難燃成分(B)を含有していないため難燃性が悪化した。

[実施例56]

表13記載の組成の成分(A)、(B)及び離型剤としてステアリン酸亜鉛0.2部を混合し、また成分(C)は押出し機途中からサイドフィードして250 で溶融押出を行った。その他は実施例1と同様の方法で成形、試験を実施した。

5 成分(C)の添加量が成分(B)の添加量に対し過剰になると耐衝撃性、耐熱性 がやや低下した。

[実施例58、59]

表13記載の組成で一括混合した以外は、実施例1と同様の方法で押出、成形、 試験を実施した。いずれの実施例においても、良好な物性バランス、難燃性を有 していた。

[実施例60~65]

10

成分(A)としてのPPEを増量し、表14の記載の組成、押出条件にした以外は、実施例1と同様の方法で押出、成形、試験を実施した。尚、実施例62においては、成分(C)は押出機途中からサイドフィードした。結果を表14に示す。いずれの実施例においても、良好な機械的物性バランス、離型性、耐金型汚染性に優れ、V-1、V-0を満たす高度な難燃性能を有していた。

[比較例15]

成分(A)としてのPPEを増量し、表14の記載の組成、押出条件にした以外は、実施例1と同様の方法で押出、成形、試験を実施した。本比較例において20 は、押出し温度が成分(B)の溶融点に比較しかなり低く且つせん断の指標となる回転数も低い混練条件となっている。その結果、成分(B)の分散粒子径が本発明の範囲より大きくなり、面衝撃強度、光沢及び光沢保持率、離型性、難燃性が悪化した。

[比較例16]

25 成分(B)の代わりに、表15に示す成分(C)を添加した以外は実施例62 と同様の方法で押出、成形、試験を実施した。結果を表15に示す。本比較例に おいては、難燃剤は樹脂中に粒子状に分散せず、成分(B)添加の場合(例えば 実施例63)と比べて、離型性、耐金型汚染性、難燃性が低下した。

「比較例17]

比較例16において、離型剤としてステアリン酸亜鉛1.0重量部を添加した 以外は比較例16と同様の方法で押出、成形、試験を実施した。結果を表15に 示す。本比較例においては、離型性は向上するが耐金型汚染性が低下した。

[比較例18]

5 成分(A)中のPPEの含有量を45重量%まで増量させた以外は実施例1と 同様の方法で押出、成形、試験を実施した。結果を表15に示す。本比較例にお いては、加熱変形温度、難燃性能は良好であるが、離型性、流動性が極端に低下 した。

[比較例19]

10 分子量が本発明の範囲からはずれる難燃成分B-6を使用する以外は、実施例 1と同様の方法で押出、成形、試験を実施した。結果を表15に示す。本比較例 においては、離型性、流動性が低下した。

[比較例20]

PPEを用いず、分子量が本発明の範囲からはずれる難燃成分B-6を多量に 15 使用する以外は、実施例1と同様の方法で押出、成形、試験を実施した。結果を 表15に示す。本比較例においては、離型性、面衝撃強度が極度に低下した。

表1

	参考例									
	1	2	3	4	5	6	7	8	9	10
	HIPS									
	1	2	3	4	5	6	7	8	9	10
シス 1,4 結合量(%)	35	35	98	98	98	35	35	98	98	98
(a)ゴム 含量(%)	3	5	8	8	8	6	10	8	8	12
(b)ゲル 含量(%)	15	15	25	25	25	20	28	32	28	30
(b)/(a)	5.0	3.0	3.1	3.1	3.1	3.3	2.8	4.0	3.5	2.5
面積平均 粒子径 Dr(µm)	1.6	1.3	1.2	1.2	1.2	0.52	1.3	1.5	2.6	1.4
膨潤指数	10.0	10.5	10.0	12.0	8.0	9.5	11.0	10.5	12.0	11.0
還元粘度 (dl/g)	0.7	0.7	0.7	0.7	0.7	0.7	0.53	0.7	0.7	0.53

	B-1	B-2	B-3	B-4	B-5	B-6
式(5)中の R、R'	ベンジル	フェニル	メチル	フェネチル	-	
式(6)中の R、R'	-	_	_	_	フェニル	
500℃重量減少 残さ(%)	29	32	28	26	35	36
溶融点 (℃)	255	265	248	250	194	192
分子量	317	303	241	345	335	43000

表 3			ada da bat	etette Ini	eterte (E)	electric trail	実施例	実施例
	比較例	比較例	実施例	実施例	実施例 3	実施例 4	美爬列 5	美胞例
	1	· 2	1	2		- 4		
(A) 成分								
HIPS 種	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2	HIPS1
添加量(重量部)	100	100	100	100	100	100	100	100
加熱重量減少残さ(%)	2	2	2	2	2	2	2	2
(B) 成分			n 1	n 1	h	B-1	B-I	B-1
種類	無し	B-1 0.3	B-1 3	B-1 7	B-1 7	Б-1 7	15	3
添加量(重量部)		0.3	3		 			
混練条件 押出し温度(℃)	250	250	250	250	250	220	250	250
押田し温度(C) 回転数 (rpm)	300	300	300	300	200	200	300	300
(B) 成分の面積平均								
粒子径Df(µm)	-	0.12	0.15	0.25	1.2	1.4	1.5	0.12
	1	0.00	0.12	0.19	0.92	1.1	1.2	0.08
粒子径比(Df/Dr)	_	0.09	0.12	0.19	0.92	1	1.2	0.00
物性値								
シャルピー衝撃強度	10	10	9	6	5	5	3	5
$(k J/m^2)$	į	l	Į				_	i l
面衝撃強度(kg·cm)	20	20	20	16 80	14 70	11 55	7 35	14 93
面衝擊強度保持率(%)	-	100	100	80	/0	33	33	5
曲げ弾性率 (MPa)	2,530	2,540	2,630	2,770	2,700	2,680	3,070	2,900
田() 神注华(IVLra)	2,550	2,5 .0]	,				
Leady extraction for (00)	74	74	75	76	76	75	76	76
加熱変形温度(℃)	/4	/-	"	"	1 "	"		
メルトフローレート	7	7	7	8	8	8	10	8
(g/10min)	İ							
	1	42	45	50	48	48	54	50
スパイラルフロー(cm)	43	43	45	30	40	1	"	~~
光沢(%)	78	78	78	77	73	69	68	76
光沢保持率(%)	-	100	100	99	94	88	87	100
離型性	1 0	0	0	0	0	0	0	0
耐金型汚染性	0	0	0	0	0	0	0	0
UL94 難燃性(3.0mm)				7	***	17.0	V-2	V-2
	不適合	不適合	V-2	V-2	V-2	V-2	V-2	V-2
UL94 難燃性(1.5mm)	不適合	不適合	V-2	V-2	V-2	不適合	V-2	V-2
滴下物の消炎時間	小週百 X	/ 不適古	X	1 0	1 0	Δ	0	×
THE TAMPS THE SCHOOL IN	^			<u> </u>				

表 4					and the Arrit	chate to	ctz+/c/pi	dath ha
	実施例	比較例	実施例	実施例	実施例	実施例	実施例	実施例
	7	3	8	9	10	11	12	13
(A) 成分								
HIPS 種	HIPS3	HIPS3	HIPS3	HIPS4	HIPS5	HIPS6	HIPS6	HIPS7
添加量(重量部)	100	100	100	100	100	100	100	100
1	2	2	2	2	2	2	2	2
加熱重量減少残さ(%)								
(B) 成分	B-1	B-1	B-1	B-1	B-1	B-1	B-1	B-1
種類	B-1	7	7	7	7	3	3	3
添加量(重量部)								
混練条件	250	180	260	260	260	250	200	250
押出し温度(℃)	300	250	250	250	250	300	300	300
回転数 (rpm)			 				l	
(B) 成分の面積平均	0.11	4.0	0.2	0.2	0.2	0.12	1.0	0.12
粒子径Df(μm)				0.17	0.17	0.29	1.92	0.09
粒子径比(Df/Dr)	0.09	3.33	0.17	0.17	0.17	0.29	1.92	0.05
				├	<u> </u>	 		
物性值	.,	5	8	10	6	8	7	12
シャルピー衝撃強度	12)	•	10	"		\	
(k J / m ²)	45	15	40	25	28	24	18	38
面衝撃強度(kg·cm)	100	33	89	56	62	80	60	86
面衝擊強度保持率(%)	1 ***				Į.		\	
曲げ弾性率(MPa)	2,400	2,310	2,480	2,350	2,540	2,700	2,600	2,200
四0 净压平(M a)					1	1	1	
加熱変形温度 (℃)	74	73	75	75	75	75	74	73
74,112,12	1] _	1 _	_	
メルトフローレート	7	7	7	7	7	7	7	9
(g/10min)				l	1] _,	50	45
スパイラルフロー(cm)	40	45	48	47	50	51	50	43
1			72	66	74	88	75	72
光沢(%)	75 100	45 60	73	88	99	100	85	99
光沢保持率(%)				0	0	0	0	
離型性	(O		0					"
TIA THAT SHIP.	1 	10	10	10	10	10	0	10
耐金型汚染性		1	1	1	1	_		
THE STATE OF THE S	 	+	 		 	-		
UL94 難燃性(3.0mm)	V-2	不適合	V-2	V-2	V-2	V-2	V-2	V-2
THE OA ## WAS LILE (1 5)	+	1.766.17	+	+	+			
UL94 難燃性(1.5mm)	V-2	V-2	V-2	V-2	V-2	V-2	V-2	V-2
滴下物の消炎時間	\ ×	×	0	0	10	×	×	×
個下物の行列で可則	1 ^	^	1				1 _	

表 5

表 5					
	実施例	実施例	実施例	実施例	実施例
	14	15	16_	17	18
(A) 成分					
HIPS 種	HIPS8	HIPS9	ABS1	ABS1	ABS2
添加量(重量部)	100	100	100	100	100
加熱重量減少残さ(%)	2	2	4	4	4
(B) 成分					
種類	B-1	B-1	B-1	B-1	B-1
添加量(重量部)	7	7	3	3	3
混練条件	0.00	060	200	250	250
押出し温度(℃)	260 250	260 250	300	300	300
回転数 (rpm)	250	250			
(B) 成分の面積平均 粒子径Df(μm)	0.2	0.2	0.35	0.12	0.10
· ·	0.13	0.08	1.4	0.48	1.0
粒子径比(Df/Dr)	0.13	0.06	17	0.40	
物性値					
シャルピー衝撃強度	6	8	15	21	9
(k J ∕m²)	i			50	16
面衝擊強度(kg·cm)	35 70	40 70	35 65	50 92	85
面衝擊強度保持率(%)	l ′	1 /	05	~~	"
曲げ弾性率(MPa)	2,210	2,310	2,800	2,910	2,980
m1) 3712 - (ML u)				1	
加熱変形温度 (℃)	74	69	78	80	81
14199-1-1	6	7	2	2	2
メルトフローレート (g / 10min)	1	1 '	_	_	
(g / romm)		ļ			į į
スパイラルフロー(cm)	38	35	15	14	13
	72	51	86	96	99
光沢(%)	73 97	85	89	100	100
光沢保持率(%) 雕型性	0	Δ	0	0	0
	<u> </u>				
耐金型汚染性	0	0	0	0	0
			<u> </u>		
UL94 難燃性(3.0mm)	V-2	V-2	不適合	V-2	V-2
UL94 難燃性(1.5mm)	1-2	+	1 1/2 1/1	 	
しレンチ 天正/パーエ (1.2月11117)	V-2	不適合	V-2	V-2	V-2
滴下物の消炎時間	0	Δ	×	×	×
	1			<u> </u>	

表 6						educates froil	11. dale (m)
	比較例	実施例	実施例	実施例	実施例	実施例 23	比較例 5
	4	19	20	21	2 2	23	— " —
(A) 成分							YYYDGO
HIPS 種	HIPS2	HIPS2	HIPS2	HIPS3	HIPS2	HIPS3	HIPS3
添加量(重量部)	100	100	100	100	100	100	100
加熱重量減少残さ(%)	2	2	2	2	2	2	2
(B) 成分						_	4
種類	B-2	B-2	B-3	B-3	B-4	B-5	B-6
添加量(重量部)	5	5	5	7	5	7	10
混練条件	100	0.60	250	260	250	220	220
押出し温度(℃)	180 250	260 300	250 300	250	300	250	250
回転数 (rpm)	250	300				<u> </u>	
(B)成分の面積平均	3.2	0.2	0.25	0.4	0.09	2.0	1.7
粒子径Df (μm)			0.19	0.33	0.07	1.67	1.41
粒子径比(Df/Dr)	2.46	0.15	0.19	0.55	0.07	1.07	1
			 	<u> </u>			
シャルピー衝撃強度	4	7	7	7	8	6	6
$(k J/m^2)$							
面衝擊強度(kg·cm)	8	18	17	32	20	22 49	13 29.
面衝擊強度保持率(%)	40	90	85	71	100	49	29.
11 . 12 TV Lot - to . (2 . CD.)	2,600	2,650	2,650	2,380	2,680	2,330	2,320
曲げ弾性率(MPa)	2,000	2,050	2,050	2,500	2,000		
加熱変形温度 (℃)	72	73	73	75	72	74	70
7,	1	1			1 _		1
メルトフローレート	8	8	8	6	9	8	10
(g/10min)		1	49	42	52	45	56
スパイラルフロー(cm)	48	46	49	42	32	3	1 30
光沢(%)	50	76	75	68	78	61	58
光沢保持率(%)	64	97	96	91	100	81	77
離型性	0	0	0	0	0	0	×
,	<u> </u>					 	
耐金型汚染性	0	0	0	0	-	<u> </u>	0
UL94 難燃性(3.0mm)	V-2	V-2	V-2	V-2	V-2	V-2	V-2
UL94 難燃性(1.5mm)	· · -	1					
227 / XXXIII (210122)	不適合	V-2	V-2	V-2	V-2	V-2	不適合
滴下物の消炎時間	Δ	Δ	Δ	0			×
	<u> </u>	<u> </u>					

表 7

42 /				11 44 640	11. the Mil	Liste Asi	etatie (El	\$# \\\ /\$
	比較例	比較例	比較例	比較例	比較例	比較例	実施例	実施例
	6	7	8	9	10	11	24	25
(A) 成分		1					1	
HIPS 種	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2	HIPS3
添加量(重量部)	100	100	100	100	100	100	100	100
加熱重量減少残さ(%)	2	2	2	2	2	2	2	2
(B) 成分								
種類	*1	*2	無し	無し	無し	無し	B-1	B-5
添加量(重量部)	10	5					3	7
(C) 成分					0.3	C 4	Arre. 1	無し
種類	無し	無し	C-1 7	C-2 7	C-3 7	C-4 7	無し	無し
添加量(重量部)								
(D) 成分	Arre 1	無し	無し	無し	無し	無し	D-1	D-1
種類	無し	無し	無し				2	5
添加量(重量部)								
混練条件 押出し温度 (℃)	230	250	230	230	230	230	250	220
押田 U値度 (C) 回転数 (rpm)	300	300	300	300	300	300	300	250
難燃成分の面積平均								
粒子径Df(μm)	2.3	0.02	_	l –		_	0.10	1.2
粒子径比(Df/Dr)	1.8	0.02	_	_	-	_	0.08	1.0
在1座和 (51) 51)								
物性値							_	
シャルピー衝撃強度	3	5	7	7	7	8	7	8
$(k J / m^2)$								
面衝撃強度(kg·cm)	5	17	18	17	18	17 85	20 100	27 60
面衝擊強度保持率(%)	25	85	90	85	90	85	1 100	00
W	2 200	2 000	2,600	2,610	2,620	2,650	2,650	2,500
曲げ弾性率(MPa)	3,200	2,900	2,000	2,010	2,020	2,030	2,030	2,500
加熱変形温度 (℃)	78	76	66	64	67	68	72	72
加熱変が温及(こ)	1			1		ļ		
メルトフローレート	5	8	14	15	13	12	9	10
(g/10min)							ļ	
スパイラルフロー(cm)	17	38	68	65	61	59	51	52
	I			70	70	70	78	72
光沢(%)	35	73 94	78 100	78 100	78 100	78 100	100	96
光沢保持率(%)	45					0	100 ©	0
離型性	×	0	\ \ \ \ \ \ \ \ \		 	1 0	1 0	 5
耐金型汚染性	0	0				不適合	V-2	V-2
UL94 難燃性 (3.0mm)	不適合	不適合	V-2 V-2	▼ V-2	不適合	小週日 V-2	V-2	V-2 V-2
UL94 難燃性(1.5mm)	不適合	不適合	+				X	0
滴下物の消炎時間	×	×	×	×	×	×		

- *1 水酸化マグネシウム (キスマ 5 B、平均 2 次粒子径0.8 μ m、協和化学工業社製)
- - (*1、*2は400℃以下の溶融点を持たない。)

1 /4//07 / /4//07 /		実施例	実施例	実施例	
26 27 28 2		30	3 1	3 2	実施例 3 3
	29	30	31	- 5 2	
(A) 成分 HIPS2 HIPS2 HIPS2 H	IIPS2	HIPS2	HIPS2	HIPS3	HIPS2
HIPS 框 III 52 I	1	ì	100	100	100
你加重(重重部) 100 100 100	100	100		2	2
加熱重量減少残さ(%) 2 2 2	2	2	2		
(B) 成分	.		B-1	B-1	B-1
世典 しん こ ー	B-1 2	B-1 2	2	5	2
松加重 (軍車向)	-				
(C) 成分 種類 無し 無し 無し	C-1	C-2	C-3	C-3	C-4
添加量(重量部)	2	2	2	3	2
(D) 成分					
種類 D-2 D-2 D-2 #	無し	無し	無し	無し	無し
添加量 (重量部) 2 2 4					
混練条件 250 250 250	250	250	250	260	250
押出し温度(じ) 200 200 300	300	300	300	250	300
回転数 (rpm)					
(B) 成分の面積平均 粒子径Df (μm) 0.10 0.20 0.04	0.20	0.21	0.21	0.20	0.22
	0.16	0.16	0.16	0.15	0.17
粒子径比(Df/Dr) 0.08 0.15 0.03	0.15	0.10	0.10	0.15	0.17
物性値					
シャルピー衝撃強度 7. 6 6	6	6	7	9	7
(k J / m ²)					
面衝擊強度(kg·cm) 19 17 19	18	19 95	18 90	41 91	19 95
面衝撃強度保持率(%) 95 85 95	90	93	1 30) "	"
曲片磁性率 (MPa) 2,650 2,600 2,550	2,650	2,600	2,610	2,520	2,620
曲げ弾性率 (MPa) 2,650 2,600 2,550	_,===				
加熱変形温度 (℃) 73 72 68	72	70	71	71	72
	11	11	10	10	و ا
ייייין	11	11	1 "	1]
(g/10min) スパイラルフロー(cm) 45 47 48	49	49	48	55	50
277 770 1 - (cm) 43 1 11					
光沢(%) 78 75 78	78	78	78 100	75 100	78 100
光沢保持率(%) 100 96 100	100	100		 	100 ©
離型性 ◎ ◎ ◎	<u> </u>	<u> </u>	<u> </u>	1 %	
金型汚染性 〇 〇 〇	Δ	0_	 	 	+
UL94	V-2	V-2	V-2	V-2	V-2
UL94 難燃性(1.5mm) V-2 V-2 不適合	V-2	V-2	V-2	V-2	V-2
V-2 V-2 不適合 滴下物の消炎時間 × ×	× ×	×	×	$\frac{1}{\Delta}$	×
		1 ''	1		1

表 9

	ctz+/- /6	実施例	実施例	実施例	比較例	比較例	実施例
	実施例 3 4	美旭例 35	多题列	37	1 2	1 3	3 8
(1)	34	3 3	30				
(A) 成分	·	TIMO O	TIMOO	TTIDGO	HIPS2	HIPS2	HIPS2
HIPS 種	HIPS2	HIPS2	HIPS2	HIPS2		1	100
添加量(重量部)	100	100	100	100	100	100	1
PPE添加量(重量部)	3	3	3	3	3	5	5
加熱重量減少残さ(%)	3	3	3	3	3		
(B) 成分	D 1	B-1	B-1	B-1	B-1	無し	B-1
種類	B-1 2	D-1 7	7	7	7		3
添加量(重量部)			 	ļ <u>'</u>			
混練条件	250	250	250	220	180	250	250
押出し温度 (℃)	300	300	200	200	250	300	300
回転数 (rpm) (B) 成分の面積平均							
粒子径Df (μm)	0.15	0.25	1.2	1.4	3.6	-	0.15
			0.00	1,	2.8	_	0.12
粒子径比(Df/Dr)	0.12	0.19	0.92	1.1	2.6		0.12
44 DL Fets							
物性値 シャルピー衝撃強度	10	8	6	5	4	12	10
シャルヒー側撃20度 (k J / m²)	10)			}		
面衝擊強度(kg·cm)	30	22	20	15	11	50	45
HIERALINE WE COM	ł	İ					
曲げ弾性率(MPa)	2,650	2,800	2,750	2,720	2,670	2,650	2,670
	1						
加熱変形温度 (℃)	76	77	77	76	75	77	77
				6	6	5	5
メルトフローレート (g / 10min)	6	6	6	1	46	38	40
スパイラルフロー(cm)	42	48	47	47	40	36	40
Ste Services	78	76	73	71	64	78	77
光沢(%) 光沢保持率(%)	100	97	94	91	82	100	99
離型性	0	0	0	10	Δ	Δ	0
	"						<u> </u>
耐金型汚染性	0	0	0	0	0	0	0
					 	1	
UL94 難燃性(3.0mm)	V-2	V-2	V-2	V-2	不適合	不適合	V-2
					 	┼	
UL94 難燃性(1.5mm)	V-2	V-2	V-2	V-2	V-2	不適合	V-2
	- 	V-2	V-2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 `~	1 75 1	1
 滴下物の消炎時間	0	0	0			×	0
個「物ツノ付沙(中)							1

表10

衣 I U				
	実施例	実施例	実施例	実施例
	3 9	40	41	42
(A)成分				
HIPS 種	HIPS1	HIPS3	HIPS6	HIPS7
添加量(重量部)	100	100	100	100
PPE添加量 (重量部)	5	5	5	5
加熱重量減少残さ(%)	4	4	4	4
(B)成分	2.1	n.	B-1	B-1
種類	B-1 3	B-1 3	3	3
添加量(重量部)			<u> </u>	
混練条件	250	250	250	250
押出し温度 (℃)	300	300	300	300
回転数 (rpm) (B) 成分の面積平均				
粒子径Df (μm)	0.12	0.11	0.12	0.12
粒子径比(Df/Dr)	0.08	0.09	0.29	0.09
是1年2000				
物性値				
シャルピー衝撃強度	6	13	9	15
$(k J/m^2)$		50	15	50
面衝擊強度(kg·cm)	20	50	45	50
曲げ弾性率(MPa)	3,000	2,500	2,800	2,200
曲り弾性学 (Mra)	3,000			
加熱変形温度(℃)	77	76	76	75
	7	5	8	7
メルトフローレート	1 '	1 3		1
(g/10min)				
スパイラルフロー(cm)	42	40	41	39
(cili)				
光沢(%)	75	73	86	70 97
光沢保持率(%)	99	97	98	91
離型性	-	<u> </u>	+	+
 耐金型汚染性				0
UL94 難燃性(3.0mm)	 	1		
CLIT KEKKIL (J.VIIIII)	V-2	V-2	V-2	V-2
UL94 難燃性(1.5mm)				77.0
	V-2	V-2	V-2	V-2
الاعلم ماريان من الاعلام				
滴下物の消炎時間	0			

表11

表 1 1							
	実施例	実施例	実施例	実施例	実施例	実施例	実施例
	4 3	44	4 5	46	47	48	4 9
(A) 成分						ĺ	1
HIPS 種	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2	HIPS2
添加量(重量部)	100	100	100	100	100	100	100
PPE添加量(重量部)	5	5	5	5	5	7	7
加熱重量減少残さ(%)	4	4	4	4	4	5	5
(B) 成分						5	, I
種類	B-2	B-3	B-4	B-5	B-1 7	B-1 3	B-1 10
添加量(重量部)	5	5	5	5	 '	3	10
混練条件	260	250	250	200	220	250	250
押出し温度(℃) 回転数 (rpm)	300	300	300	300	300	300	300
(B) 成分の面積平均							
粒子径Df(µm)	0.2	0.25	0.09	0.35	0.1	0.12	0.10
粒子径比(Df/Dr)	0.15	0.19	0.07	0.27	0.08	0.09	0.08
私子住児(DI/ DI)	0.13	0.15					
物性値						1	
シャルピー衝撃強度	8	8	9	6	9	12	6
(k J /m ²)			0.5	18	30	38	19
面衝擊強度(kg·cm)	23	22	25	18	30	30	19
曲げ弾性率 (MPa)	2,750	2,750	2,780	2,750	2,900	3,010	3,050
		75	74	76	79	81	82
加熱変形温度 (℃)	75	75	/*	,,,	<i>"</i>	1 "	0.2
メルトフローレート	5	5	7	6	6	5	6
(g/10min)					٠	1 40	45
スパイラルフロー(cm)	40	43	42	40	45	40	45
3/43/17/07/	78	77	78	75	76	78	72
光沢(%) 光沢保持率(%)	100	99	100	96	97	100	92
離型性	0	0	0	0	0	0	0
and A with him Side 1 of	 _	0	-	10	1 0	0	10
耐金型汚染性	0						<u> </u>
UL94 難燃性(3.0mm)		7	V-2	V-2	V-2	V-2	V-2
###. 180 1/L / a @	V-2	V-2	V-2	V-2	- V-2	+	+
UL94 難燃性(1.5mm)	V-2	V-2	V-2	V-2	V-2	V-2	V-2
					T		
滴下物の消炎時間	0		0		0		0
	E .			I .	1		. 1

表12

表12			
	実施例	実施例	実施例
	5 0	5 1	5 2
(A)成分			
HIPS 種	HIPS2	HIPS2	HIPS2
ALL 3 種 添加量(重量部)	100	100	100
PPE添加量(重量部)	10	5	10
	6	4	6
加熱重量減少残さ(%)		<u> </u>	
(B) 成分	B-1	B-1	B-1
種類	3	12	10
添加量(重量部)		12	10
混練条件	250	250	250
押出し温度(℃)	250 300	300	300
回転数 (rpm)	300		
(B) 成分の面積平均	0.12	0.30	0.35
粒子径Df(μm)	0.12	i	!
粒子径比(Df/Dr)	0.09	0.23	0.27
物性値			_
シャルピー衝撃強度	12	5	7
$(k J/m^2)$	Į	Į	l [
面衝擊強度(kg·cm)	50	11	18
			2.150
曲げ弾性率(MPa)	3,100	2,880	3,150
	1	70	83
加熱変形温度(℃)	82	78	83
1	4	6	5
メルトフローレート	1	ľ	
(g/10min)			
	30	50	37
スパイラルフロー(cm)	30	1	1 "
N/ 377 (0/)	77	70	68
光沢(%)	99	90	87
光沢保持率(%)	$\frac{1}{\Delta}$	0	
離型性	1 ⁴		
云人形法为丛	0	0	0
耐金型汚染性	+	 	
UL94 難燃性(3.0mm)	V-2	V-2	V-2
The state of the s		 	
UL94 難燃性(1.5mm)	V-2	V-2	V-2
	V-2	+	1
海下肺の消火時間	©	 	0
滴下物の消炎時間			
	_1		

表13

表13				11 this mile	ctotto (CI	etz+#- rel	ete the fall	*#######
	実施例	実施例	実施例 5 5	比較例 14	実施例 5 6	実施例 5 7	実施例 5 8	実施例 5 9
(A) #\	5 3	54	55	7.4	- 0 0		- 0 0	
(A) 成分		****	******	THINGS	HIPS2	HIPS3	HIPS2	HIPS2
HIPS 種	HIPS2	HIPS2	HIPS2	HIPS2				100
添加量(重量部)	100	100	100	100	100	100	100	
PPE添加量(重量部)	2	5 4	5 4	5 4	5 4	10 6	5 4	5 4
加熱重量減少残さ(%)	3	4	4					
(B) 成分 種類	B-1	B-1	B-1	無し	B-1	B-1	B-5	B-5
添加量(重量部)	3	3	3		3	5	5	5
(C)成分						C 2	ATTE 1	Arros 1
種類	C-3 3	C-3 7	C-4 7	C-3 7	C-3 10	C-3 3	無し	無し
添加量(重量部)	3		-	,	10			
(D) 成分 種類	無し	無し	 無し	無し	無し	無し	D-1	D-2
添加量(重量部)		_	_		_	_	2	2
混練条件	 	 						
押出し温度(℃)	250	250	250	250	250	260	250 300	250 300
回転数 (rpm)	300	300	300	300	300	250	300	300
(B) 成分の面積平均	0.20	0.20	0.22		0.21	0.15	0.10	0.11
粒子径Df (μm)	0.20	0.25	0.17	_	0.16	0.13	0.08	0.08
粒子径比(Df/Dr)	0.13	0.13	0.17		0.10			
物性値								
シャルピー衝撃強度	8	6	6	8	4	8	8	8
(k J /m²)	25	20	22	25	15	58	25	27
面衝撃強度(kg·cm)	1 23	20	1		1			
曲げ弾性率(MPa)	2,550	2,440	2,450	2,420	2,380	2,590	2,800	2,750
L= 45 +45 T()= 45 (90)	73	70	. 72	70	68	73	77	76
加熱変形温度(℃)	/3	1 "	/ "	/ /				
メルトフローレート	8	10	8	8	12	9	8	8
(g/10min)	4.5		50	50	55	35	45	45
スパイラルフロー(cm)	45	53	30	30	33	33	1 43	"
)(c)(1)	78	78	78	78	78	75	77	77
光沢(%) 光沢保持率(%)	100	100	100	100	100	96	99	99
離型性	0	0	0	Δ	0	0	0	0
耐金型汚染性	Ŏ	0	Ō	0	Δ	0	0	0
UL94 難燃性(3.0mm)					77.0	77.0	V-2	V-2
	V-2	V-2	V-2	不適合	V-2	V-2	V-2	V-2
UL94 難燃性(1.5mm)	V-2	V-2	V-2	不適合	V-2	V-2	V-2	V-2
	1	† <u> </u>	 	1		1	1	<u> </u>
滴下物の消炎時間	0	0	0	×	0			1 0

表14

衣 1 4							
	実施例	実施例	比較例	実施例	実施例	実施例	実施例
ļ	60	61	1 5	62	63	6 4	6 5
(A) 成分							
HIPS 種	HIPS10	HIPS2	HIPS2	HIPS10	HIPS10	HIPS10	HIPS2
添加量(重量部)	85	85	85	85	85	80	80
PPE添加量(重量部)	15	15	15	15	15	20	20
加熱重量残渣(%)	8	8	8	8	8	12	12
(B) 成分							
種類	B-1	B-1	B-1	B-1	B-1 10	B-1 15	B-1 15
添加量(重量部)	15	15	15	10	10	15	13
(C) 成分 種類	無し	無し	無し	C-3	C-4	無し	無し
添加量(重量部)	- m			, 8	8		_
(D) 成分						_	
種類	無し	無し	無し	無し	無し	無し	D-1 5
添加量(重量部)							
混練条件	260	260	200	260	260	270	270
押出し温度(℃) 回転数(rpm)	250	250	200	250	250	250	250
(B) 成分の面積平均	 	 	 				
粒子径Df (μm)	0.12	0.12	3.3	0.12	0.12	0.12	0.1
粒子径比(Df/Dr)	0.09	0.09	2.53	0.09	0.09	0.09	0.08
物性値							_
シャルピー衝撃強度	7	5	4	8	9	7	8
(k J / m ²)	1 40	28	17	55	58	57	61
面衝撃強度(kg·cm)	48 85	86	84	73	74	90	85
加熱変形温度(℃) メルトフローレート	5	5	4	8	8	3	6
(g/10min)		-					
光沢(%)	65	73	55	66	66	63	68 87
光沢保持率(%)	92	94	71	93	93	89	
離型性	0	0	×	0	.©	0	0
	0	0	0	0	0	0	0
耐金型汚染性	ļ	 	 			 	
UL94 難燃性(3.0mm)	V-1	V-1	不適合	V-0	V-0	V-0	V-0
	4-7	1 ' ~	1 AES (-)				

表15

X 1 0	比較例	比較例	比較例	比較例	比較例
	16	17	18	19	20
(A) 成分			YYYDGG	TANDGO	HIPS3
HIPS 種	HIPS9	HIPS9	HIPS3	HIPS3	
添加量(重量部)	80	80	55	80	100
PPE添加量(重量部)	20	20	45	20	0
加熱重量残渣(%)	12	12	22	12	2
(B) 成分	Anr. 3	ATT. 1	B-1	B-6	B-6
種類	無し	無し	5	10	30
添加量(重量部)					
(C)成分	C-3	C-3	無し	無し	無し
種類 添加量(重量部)	15	15		,,,, o	- ,
(D) 成分					
種類	無し	無し	無し	無し	無し
添加量(重量部)					
混練条件					200
押出し温度(℃)	270	270	280 250	220 250	220 250
回転数(rpm)	250	250	250	230	250
(B) 成分の面積平均			0.1	1.3	2.5
粒子径Df(μm)	_	_	0.1	1.0	1.92
粒子径比(Df/Dr)			0.08	1.0	1.92
物性値シャルピー衝撃強度	8	8	12	7	4
$(k J/m^2)$	_		0.6	33	5
面衝擊強度(kg·cm)	75	80	96 100	78	68
加熱変形温度(℃)	72	70	0.5	4	12
メルトフローレート (g / 10min)	6 70	71	65	65	60
光沢(%)	99	100	87	87	80
光沢保持率(%)	Δ	0	 ×	×	 x
離型性	↓	+ -	 	 	
耐金型汚染性	Δ	×	0	Δ	Δ
UL94 難燃性(3.0mm)	V-1	V-1	V-0	V-0	V-0

^{*)} 比較例16は離型剤としてステアリン酸亜鉛を1.0部添加した

産業上の利用可能性

本発明のスチレン系難燃樹脂組成物は、ハロゲン化合物を含有せず、難燃性に優れ、且つ剛性、耐熱性、薄肉流動性、面衝撃強度、外観バランスに優れ、更に離型性、耐金型腐食性が良好なため、薄肉で複雑な形状の電子・電気機器内部部品として使用されるV-2難燃材料に好適である。またオーディオ、DVD等の複雑で薄肉な形状の電子・電気機器外装用部品として使用されるV-2難燃材料に好適であり、また、TV等の大型で複雑な形状の電気・電子機器外装用部材用V-1、V-0、5V難燃材料に好適である。

請求の範囲

- 1. (A) 500℃における加熱重量減少残さが20%未満のスチレン系樹脂100重量部、及び
- 5 (B) ハロゲン化合物を含有しない難燃成分0.5~50重量部、を含むスチレン系難燃樹脂組成物であって、
- 成分 (B) は、その分子量が $200\sim2000$ であり、成分 (A) 中に面積平均粒子径 $0.01\sim3\mu$ mで円または楕円粒子状に分散しており、500 における加熱重量減少残さが20%以上であり、且つ溶融点が100 ~400 で ある、上記スチレン系難燃樹脂組成物。
 - 2. 成分(A)がゴム変性スチレン系樹脂であり、

成分 (A) 中に分散するゴム状重合体の面積平均粒子径が $0.1\sim2.5\,\mu\,\mathrm{m}$ であって、且つ下記式(1)

0.
$$0.1 \le (D f/D r) \le 1.0$$
 (1)

15 (式中、D f は成分(B)の面積平均粒子径、D r は成分(A)中に分散するゴム状重合体の面積平均粒子径を表わす。)

を満たす、請求項1記載のスチレン系難燃樹脂組成物。

3. 成分(A)がゴム変性スチレン系樹脂であり、

成分(A) 100重量部、及び成分(B) 0.5~20重量部を含む、請求項 20 1又は2記載のスチレン系難燃樹脂組成物。

4. 成分(A)がゴム変性スチレン系樹脂であり、

成分(A)100重量部、及び成分(B)0.5~10重量部を含み、

成分 (A) 中に分散するゴム状重合体の面積平均粒子径が $0.1\sim2.5~\mu$ m であり、且つ下記式 (2)

25 0. $0.4 \le (D f/D r) \le 1.0$ (2)

(式中、Dfは成分(B)の面積平均粒子径、Drは成分(A)中に分散するゴム状重合体の面積平均粒子径を表わす。)

を満たす、請求項1~3のいずれか1項に記載のスチレン系難燃樹脂組成物。

5. 成分(A)がゴム変性ポリスチレン系樹脂及びポリフェニレンエーテル

のブレンド体からなるゴム変性スチレン系樹脂であり、

該ブレンド体中のゴム変性ポリスチレン系樹脂の量が70重量%以上である、 請求項1~4のいずれか1項に記載のスチレン系難燃樹脂組成物。

6. 成分(A)が、ゴム変性ポリスチレン系樹脂100重量部及びポリフェ 5 ニレンエーテル0.1~45重量部のブレンド体からなり、

成分(B)の含有量が0.5~20重量部であり、

成分(A)中に分散するゴム状重合体の面積平均粒子径が0.3~2.5 μ m である、請求項5記載のスチレン系難燃樹脂組成物。

7. 成分(A)のゴム変性スチレン系樹脂が、ゴム変性ポリスチレン系樹脂 10 100重量部及びポリフェニレンエーテル0.1~8重量部のブレンド体からな り、

成分(B)の含有量が0.5~10重量部である、請求項5又は6に記載のスチレン系難燃樹脂組成物。

8. 成分(A)中のポリフェニレンエーテル添加部数(X)と成分(B)の15 添加部数(Y)が、下記式(3)

$$0.4 \le (Y/X) \le 2.0$$
 (3)

を満たす、請求項5~7のいずれか1項に記載のスチレン系難燃樹脂組成物。

- 9. 更に成分(B)以外のハロゲン化合物を含有しない難燃成分(C)を0. 1~40重量部含む、請求項1~8のいずれか1項に記載のスチレン系難燃樹脂 20 組成物。
 - 10. 成分(C)を0.1~10重量部含む、請求項9記載のスチレン系難 燃樹脂組成物。
 - 11. 成分(C)の含有量が成分(B)の含有量以下である、請求項9又は 10に記載のスチレン系難燃樹脂組成物。
- 25 12. 更に相溶化剤として、極性基を有する構造単位を必須単位とした重合体成分(D)0.2~10重量部を含む、請求項1~11のいずれか1項に記載のスチレン系難燃樹脂組成物。
 - 13. 成分(B)が下記式(4):

(式中、RおよびR'は同一もしくは異なってもよく、炭素数1~12のアルキル基、炭素数5~10のシクロアルキル基、炭素数7~20のアラルキル基又は炭素数6~15のアリール基を示す。)

で表されるリン系難燃剤である、請求項1~12のいずれか1項に記載のスチレン系難燃樹脂組成物。

14. 式(4)中のRおよびR,がベンジル基である、請求項13記載のスチレン系難燃樹脂組成物。

10 15. 成分(B)が下記式(5):

(式中、RおよびR'は同一もしくは異なってもよく、炭素数 $1\sim1~2$ のアルキル基、炭素数 $5\sim1~0$ のシクロアルキル基、炭素数 $7\sim2~0$ のアラルキル基又は炭素数 $6\sim1~5$ のアリール基を示す。)

で表されるリン系難燃剤である、請求項 $1\sim12$ のいずれか1項に記載のスチレン系難燃樹脂組成物。

16. 成分(C)が下記式(6):

$$A_{1}-O-P - O-R-P - O-A_{4} - O-A_{2} - O-A_{3} - O-A_{4}$$
(6)

20

15

(式中、nは $1\sim10$ の正数であり、 $A_1\sim A_4$ は各々独立に、フェニル基、トリル基またはキシリル基である。また、nが2以上の場合、複数ある A_3 は各々同一でも異なってもよい。またRは下記式(R1) \sim (R4)から選ばれる基で

ある。);

10

$$(R1)$$

$$(R2)$$

$$(R3)$$

$$CH_3$$

$$CH_3$$

$$(R4)$$

の化合物を含む、請求項7~15のいずれか1項に記載のスチレン系難燃樹脂組 5 成物。

17. 成分(A)がゴム変性ポリスチレン系樹脂であって、

該ゴム変性ポリスチレン系樹脂中のゴム状重合体の含有量(a)が $3\sim15$ 重量%であり、該ゴム変性ポリスチレン系樹脂中の溶剤不溶分の割合(b)が $10\sim30$ 重量%であり、 $[(b)/(a)]\leq3.5$ であり、且つゴム変性ポリスチレン系樹脂のトルエン中での膨潤指数が $9.0\sim11.5$ である、

請求項1~16のいずれか1項に記載の難燃性ゴム変性スチレン系樹脂組成物。

18. 成分(A)がシス1,4結合を90モル%以上含んで構成されるハイシスポリブタジエンを含むゴム変性スチレン系樹脂であって、

該ゴム変性スチレン系樹脂中のゴム状重合体の含有量(a)が3~15重量% であり、該ゴム変性ポリスチレン系樹脂中の溶剤不溶分の割合(b)が10~3 0重量%であり、2.0 \le [(b)/(a)] \le 3.5であり、該ゴム変性スチレン系樹脂中に分散しているゴム状重合体の面積平均粒子径が0.8~2.5 μ mであり、且つゴム変性スチレン系樹脂のトルエン中での膨潤指数が9.0~11.0である、

- 20 請求項1~17のいずれか1項に記載のスチレン系難燃樹脂組成物。
 - 19. UL94規格のV-2を満たす電気・電子機器内部部品用である、請求項1~18のいずれか1項に記載のスチレン系難燃樹脂組成物。
 - 20. UL94規格のV-2を満たす平均肉厚2mm以下の電気・電子機器 内部部品用である、請求項19に記載のスチレン系難燃樹脂組成物。

- 21. UL94規格のV-2を満たす電気・電子機器外装用である、請求項 $1\sim18$ のいずれか1項に記載のスチレン系難燃樹脂組成物。
- 22. UL94規格のV-2を満たす平均肉厚2mm以下の電気・電子機器 外装用である、請求項21に記載のスチレン系難燃樹脂組成物。
- 5 23. UL94規格のV-0を満たす電気・電子機器外装用である、請求項 $1\sim18$ のいずれか1項に記載のスチレン系難燃樹脂組成物。
 - 24. UL94規格の5Vを満たす電気・電子機器外装用である、請求項1 ~18のいずれか1項に記載のスチレン系難燃樹脂組成物。

WO 2004/087809 PCT/JP2004/004337

1/2

FIG. 1

FIG. 2

WO 2004/087809 PCT/JP2004/004337

2/2

FIG. 3

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/004337

A. CLASSIFICA Int.Cl ⁷	TION OF SUBJECT MATTER C08L25/04, 71/12, C08K5/51					
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEAL						
Minimum docum Int . Cl ⁷	entation searched (classification system followed by clas C08L1/00-101/14	ssification symbols)				
	earched other than minimum documentation to the exten					
	ase consulted during the international search (name of da , WPI/L	ata base and, where practicable, search ter	ms used)			
C. DOCUMENT	TS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.			
Y	JP 2002-155179 A (A and M sty Kaisha), 28 May, 2002 (28.05.02),	yrene Kabushiki	1-12,15, 17-24			
	Claims; Par. Nos. [0002], [0007], [0009] to [0012] (Family: none)					
Y	JP 2002-210734 A (Teijin Kase Kaisha), 30 July, 2002 (30.07.02), Claims; Par. Nos. [0002], [00 [0032] (Family: none)		1-4,9-12, 15-24			
	cuments are listed in the continuation of Box C.	See patent family annex.				
"A" document d to be of part "E" earlier appli	gories of cited documents: lefining the general state of the art which is not considered ticular relevance ication or patent but published on or after the international	"T" later document published after the inte date and not in conflict with the applic the principle or theory underlying the in "X" document of particular relevance; the	ation but cited to understand nvention			
filing date "L" document we cited to esta	filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be document of particular relevance; the claimed invention cannot be document of particular relevance; the claimed invention cannot be document of particular relevance; the claimed invention cannot be document of particular relevance; the claimed invention cannot be document of particular relevance; the claimed invention cannot be document of particular relevance; the claimed invention cannot be considered to involve an invention cannot be document of particular relevance; the claimed invention cannot be considered to involve an invention cannot be considered					
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family "Considered to involve an inventive step when the documen combined with one or more other such documents, such combined being obvious to a person skilled in the art document member of the same patent family						
Date of the actual completion of the international search 24 June, 2004 (24.06.04) Date of mailing of the international search report 13 July, 2004 (13.07.04)						
	ng address of the ISA/ se Patent Office	Authorized officer				
Facsimile No. Form PCT/ISA/2	10 (second sheet) (January 2004)	Telephone No.				

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/004337

). DOCUMENTS CONSIDERED TO BE RELEVANT	Delegant to 1.1 37
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 2002-003727 A (Teijin Kasei Kabushiki Kaisha), 09 January, 2002 (09.01.02), Claims; Par. Nos. [0002], [0012] to [0027], [0033] (Family: none)	1-14,16-24
Y	JP 09-227772 A (Daicel Chemical Industries, Ltd.), 02 September, 1997 (02.09.97), Claims; Par. Nos. [0002], [0019] (Family: none)	1-4,9-12, 15-24
Y	JP 2002-020565 A (Toray Industries, Inc.), 23 January, 2002 (23.01.02), Claims; Par. No. [0022] (Family: none)	1-24
Υ .	JP 10-287814 A (Dainippon Ink And Chemicals, Inc.), 27 October, 1998 (27.10.98), Claims; Par. No. [0013] (Family: none)	12-24

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int. Cl⁷ C 0 8 L . 25/04, 71/12, C 0 8 K 5/51

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' CO8L 1/00~101/14

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

CA (STN) WPI/L

C. 関連する						
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号				
Y	JP 2002-155179 A (エー・アンド・エムスチレン株式会社) 2002.05.28,【特許請求の範囲】、【0002】、【0009】~【0012】(ファミリーなし)	1-12, 15, 17-24				
Y	JP 2002-210734 A (帝人化成株式会社) 2002.07.30, 【特許請求の範囲】、【0002】、【0013】~【0019】、【0032】 (ファミリーなし)	1-4, 9-12, 15-24				

|X|| C欄の続きにも文献が列挙されている。

| パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

24.06.2004

国際調査報告の発送日

13.7.2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) 佐々木 秀次 4 J | 3 2 3 6

電話番号 03-3581-1101 内線 3455

国際調査報告

C (続き). 引用文献の	関連すると認められる文献	関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
. Y	JP 2002-003727 A (帝人化成株式会社) 200 2. 01. 09, 【特許請求の範囲】、【0002】、【001 2】~【0027】、【0033】 (ファミリーなし)	1-14, 16-24
Y	JP 09-227772 A (ダイセル化学工業株式会社) 19 97.09.02, 【特許請求の範囲】、【0002】、【001 9】 (ファミリーなし)	1-4, 9-12, 15-24
Y	JP 2002-020565 A (東レ株式会社) 2002.0 1.23, 【特許請求の範囲】、【0022】 (ファミリーな し)	1-24
Y	JP 10-287814 A (大日本インキ化学工業株式会社) 1998.10.27, 【特許請求の範囲】、【0013】 (ファ ミリーなし)	12-24
		·
	·	!
		1