МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Липецкий Государственный Технический Университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

Лабораторная работа по основам электроники и схемотехники №1 "Базовые электронные элементы RLC-цепочки"

Студент		Станиславчук С. М.
	(подпись, дата)	
Группа АС-21-1		
Руководитель		Болдырихин О. В.
	(подпись, дата)	
Лопент, к.т.н		

Цель работы

Цель работы — изучение свойств и характеристик основных полупроводниковых элементов: диода и транзистора. Исследование режимов работы транзистора, построение и исследование комбинационных и последовательностных схем из транзисторов.

1. Задание 1 (UC)

1.1. Схема RC-цепочки

Т.к. значение постоянной RC=50k с. Примем R=50 кОм, а C = 1 м Φ . Заряжаем конденсатор от источника постоянного тока с напряжением 12B.

Построенная цепь в редакторе:

1.2. Составление и решение уравнения RC-цепочки.

Составим уравнение цепи:

$$U_c + U_R = E$$

т.к.
$$U_R = IR \Rightarrow U_c + IR = E$$

$$U_{c} = \frac{q}{C}$$

$$U'_{c} = \frac{I}{C}$$

$$CU'_{c} = I$$

$$U_{c} + RCU'_{c} = E$$

$$U'_{c} + \frac{U_{c}}{RC} = \frac{E}{RC}$$

$$U'_{c} + \frac{1}{RC}U_{c} = \frac{E}{RC}$$

Подставим наши значения RC = 50 кОм и E = 12~B в полученное уравнение:

$$U'_C + \frac{1}{50}U_C = \frac{12}{50}$$
$$U'_C + 0.02U_C = 0.24$$

Решим это уравнение:

$$y'+P(x)y=Q(x)$$
, где $y=U_c$, а Р и Q — функции x .
$$y=uv$$

$$y'=u'v+uv'$$

$$u'v+uv'+P(x)uv=Q(x)$$

$$u'v+u(v'+P(x)v)=Q(x)$$

Для v поставим следующее условие:

$$v'+P(x)v=0$$
 $v=e^{-\int P(x)\,dx}$ $u'e^{-\int P(x)\,dx}=Q(x)$ $u'=e^{-\int P(x)\,dx}=Q(x)$ $u'=e^{-\int P(x)\,dx}Q(x)$ $u=\int Q(x)e^{\int P(x)\,dx}\,dx+C$ $y=uv=(\int Q(x)e^{\int P(x)\,dx}\,dx+C)\,e^{-\int P(x)\,dx}$ Подставляем $y=U_C$, $P=0,02$, $Q=0,2$ $=>$ $e^{\int P(t)\,dt}=e^{0,02}$ $U_C=(0,24\int e^{0,02t}dt+C)e^{-0,02t}=12+Ce^{-0,02t}$ Т.к. $U_C(0)=0$ (разряжен), то $C=U_C-E=-12$ $U_C=12(1-e^{-0,02t})$

1.3. Результаты исследования процесса заряда конденсатора.

Заряд конденсатора

№	Время от начала процесса t, c	Напряжение на конденсаторе расчетное $U_{(Cp)}$, B	Напряжение на конденсаторе измеренное $U_{(CH)}$, B	Абсолютная погрешность измерения $\Delta U_{(C)}$	Относительная погрешность измерения $\Delta U_{(C)}/U_{(Rp)}$	Приведенная погрешность измерения $\Delta U_{(R)}/U_{(Rmax)}$
1	0	0,00000	0,00000	0,00000	0,00000	0,00000
2	5	1,14195	1,14000	0,00195	0,00171	0,00018
3	10	2,17523	2,18000	0,00477	0,00219	0,00043
4	15	3,11018	3,11000	0,00018	0,00006	0,00002
5	20	3,95616	3,96000	0,00384	0,00097	0,00035
6	25	4,72163	4,72000	0,00163	0,00035	0,00015
7	30	5,41426	5,42000	0,00574	0,00106	0,00052
8	40	6,60805	6,61000	0,00195	0,00030	0,00018
9	50	7,58545	7,59000	0,00455	0,00060	0,00041
10	60	8,38567	8,39000	0,00433	0,00052	0,00039
11	80	9,57724	9,58000	0,00276	0,00029	0,00025
12	100	10,37598	10,38000	0,00402	0,00039	0,00036
13	200	11,78021	11,78000	0,00021	0,00002	0,00002
14	300	11,97025	11,97000	0,00025	0,00002	0,00002

График зависимости заряда U_C от t

Разряд конденсатора

		Harragavava				
№	Время от начала процесса	Напряжение на конденсаторе расчетное	Напряжение на конденсаторе измеренное	Абсолютная погрешность измерения $\Delta U_{(C)}$	Относительная погрешность измерения	Приведенная погрешность измерения
	t, c	$U_{(Cp)}, B$	U _(Си) , В	ΔU _(C)	$\Delta U_{(C)}/U_{(Rp)}$	$\Delta U_{(R)}/U_{(Rmax)}$
1	0,01	12,00000	12,00000	0,00000	0,00000	0,00000
2	5	10,85805	10,86000	0,00000	0,00018	0,00000
3	10	9,82477	9,82000	0,00195	0,00049	0,00018
4	15	8,88982	8,89000	0,00477	0,00002	0,00043
5	20	8,04384	8,04000	0,00018	0,00048	0,00002
6	25	7,27837	7,28000	0,00384	0,00022	0,00035
7	30	6,58574	6,59000	0,00163	0,00065	0,00015
8	40	5,39195	5,39000	0,00426	0,00036	0,00039
9	50	4,41455	4,41000	0,00195	0,00103	0,00018
10	60	3,61433	3,61000	0,00455	0,00120	0,00041
11	80	2,42276	2,42000	0,00433	0,00114	0,00039
12	100	1,62402	1,62000	0,00276	0,00248	0,00025
13	200	0,219788	0,22000	0,00402	0,00096	0,00036
14	300	0,029745	0,03000	0,00021	0,00018	0,00002

График зависимости разряда U_{C} от t

2. Задание 2 (UC, RC = 0,006c)

2.1. Схема RC-цепочки.

RC=0,006с. Пусть R=6 кОм, C=1 мкФ. Длина импульсов: 0,06.

2.2. Составление и решение уравнения RC-цепочки.

В данной схеме циклично происходят 2 процесса — зарядка конденсатора в первой половине периода и разрядка во второй половине. Тогда для моментов времени $T \in [i; i+0.03], i = 0.1.2...$ Напряжение на резисторе будет изменяться по формуле (задание 1):

$$U_C = E - U_R = 12 - 12e^{-\frac{1}{0,006}(t-0,06i)}$$

Во второй половине периода, т.е. когда $T \in [i+0,03; i+0,06]$, i=0,1,2... конденсатор будет разряжаться, т.е.

$$U_C = E - U_R = 12 - 12e^{-166,6(t-0,06i-0,03)}$$

2.3. Результаты исследования.

№	Время от начала процесса t, c	Напряжение на конденсаторе расчетное $U_{(Cp)}$, B	Напряжение на конденсаторе измеренное $U_{(Cn)}$, B	Абсолютная погрешность измерения $\Delta U_{(C)}$	Относительная погрешность измерения $\Delta U_{(C)}/U_{(Cp)}$	Приведенная погрешность измерения $\Delta U_{(C)}/U_{(Cmax)}$
1	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000
2	0,00050	0,95909	0,96000	0,00091	0,00095	0,00008
3	0,00100	1,84154	1,84000	0,00154	0,00084	0,00014
4	0,00150	2,65346	2,65000	0,00346	0,00130	0,00031
5	0,00200	3,40048	3,40000	0,00048	0,00014	0,00004
6	0,00300	4,72018	4,72000	0,00018	0,00004	0,00002
7	0,00500	6,78308	6,78000	0,00308	0,00045	0,00028
8	0,01000	9,73198	9,73000	0,00198	0,00020	0,00018
9	0,01500	11,01399	11,00000	0,01399	0,00127	0,00127
10	0,02000	11,57134	11,60000	0,02866	0,00248	0,00260
11	0,03000	11,91898	11,90000	0,01898	0,00159	0,00172
12	0,03050	11,92546	11,00000	0,92546	0,07760	0,08383
13	0,03500	5,21690	5,18300	0,03390	0,00650	0,00307
14	0,03600	4,41630	4,38800	0,02830	0,00641	0,00256
15	0,03700	3,73860	3,71400	0,02460	0,00658	0,00223
16	0,03800	3,16490	3,14400	0,02090	0,00660	0,00189

17	0,04000	2,26800	2,25300	0,01500	0,00661	0,00136
18	0,04500	0,98600	0,97980	0,00620	0,00629	0,00056
19	0.05000	0.42860	0.42600	0.00260	0.00607	0.00024

Показания осциллографа

График диапазона значений разряда и заряда конденсатора

3. Задание 3 (U_L - ?; LC = $50 c^2$)

3.1. Схема RLC-цепочки

$$LC = 50 \text{ c}^2$$
. Пусть $C = 0.5 \Phi$, $L = 100 \Gamma$ н, $R = 1 \text{ Om}$.

3.2. Составление и решение уравнения RLC-цепочки.

$$U_C + U_L + U_R = 0;$$

$$U_C = \frac{q}{C}$$
;

$$U_L = L \frac{dI}{dt};$$

$$U_R = IR;$$

$$\frac{q}{c} + L\frac{dI}{dt} + IR = 0;$$

$$\frac{I}{C} + L\frac{d^2I}{dt^2} + R*\frac{dI}{dt} = 0;$$

$$\ddot{I} + \frac{R}{L}\dot{I} + \frac{1}{LC} * I = 0$$

Подставляя наши значения, получаем уравнение цепи:

$$\ddot{I}$$
+0.01 \dot{I} +0.02 I = 0;

Введем следующие обозначения:

$$\frac{R}{2L} = \delta = 0,005,$$

$$\omega = 2\pi f = \frac{2\pi}{T} = \frac{1}{\sqrt{LC}} = 0.14$$

$$\ddot{I} + 2\delta \dot{I} + \omega^2 I = 0$$

$$\lambda_{1,2}^2 = \frac{\lambda^2 + 2\delta\lambda + \omega^2 = 0}{2}$$

$$\lambda_{1,2} = \frac{-2\delta \pm \sqrt{4\delta^2 - 4\omega^2}}{2} = -\delta \pm \sqrt{\delta^2 - \omega^2}$$

$$\delta^2 - \omega^2 < 0$$

корни характеристического уравнения — комплексно-сопряженные. В этом случае RLC-цепочка является колебательным контуром.

$$x_1 = I$$
,

$$x_2 = \dot{I}$$
.

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -\omega^2 x_1 - 2\delta x_2. \end{cases}$$

$$\dot{X} = AX, \dot{X} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, A = \begin{bmatrix} 0 & 1 \\ -\omega^2 & -2\delta \end{bmatrix}.$$

$$det(A - E\lambda) = 0, \begin{vmatrix} -\lambda & 1 \\ -\omega^2 & -2\delta - \lambda \end{vmatrix} = 0,$$

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = C_1 \begin{bmatrix} x_{11} \\ x_{21} \end{bmatrix} + C_2 \begin{bmatrix} x_{12} \\ x_{22} \end{bmatrix} = C_1 \begin{bmatrix} \alpha_{11} e^{\lambda_1 t} \\ \alpha_{21} e^{\lambda_1 t} \end{bmatrix} + C_2 \begin{bmatrix} \alpha_{12} e^{\lambda_2 t} \\ \alpha_{22} e^{\lambda_2 t} \end{bmatrix}.$$

Для λ_1 :

$$A - E\lambda_1 = \begin{bmatrix} \delta - \sqrt{\delta^2 - \omega^2} & 1 \\ -\omega^2 & -2\delta + \delta - \sqrt{\delta^2 - \omega^2} \end{bmatrix} = \begin{bmatrix} \delta - \sqrt{\delta^2 - \omega^2} & 1 \\ -\omega^2 & -\delta - \sqrt{\delta^2 - \omega^2} \end{bmatrix}.$$

$$(\delta - \sqrt{\delta^2 - \omega^2})\alpha_{11} + \alpha_{21} = 0. \Rightarrow$$

$$\alpha_{21} = (-\delta + \sqrt{\delta^2 - \omega^2})\alpha_{11}.$$

Полагаем, что

$$\alpha_{11} = 1 \Rightarrow$$

$$\alpha_{21} = -\delta + \sqrt{\delta^2 - \omega^2}, \, \alpha_{21} = \lambda_1.$$

Для λ_2 :

$$A - E\lambda_1 = \begin{bmatrix} \delta + \sqrt{\delta^2 - \omega^2} & 1 \\ -\omega^2 & -2\delta + \delta + \sqrt{\delta^2 - \omega^2} \end{bmatrix} = \begin{bmatrix} \delta + \sqrt{\delta^2 - \omega^2} & 1 \\ -\omega^2 & -\delta + \sqrt{\delta^2 - \omega^2} \end{bmatrix}.$$

Полагаем, что
$$\alpha_{12}=1. \Rightarrow \alpha_{22}=-\delta-\sqrt{\delta^2-\omega^2}, \alpha_{22}=\lambda_2.$$

Таким образом, получаем решение в следующем виде:

$$\begin{cases} x_1 = C_1 e^{(-\delta + \sqrt{\delta^2 - \omega^2})t} + C_2 e^{(-\delta - \sqrt{\delta^2 - \omega^2})t}, \\ x_2 = C_1 (-\delta + \sqrt{\delta^2 - \omega^2}) e^{(-\delta + \sqrt{\delta^2 - \omega^2})t} + C_2 (-\delta - \sqrt{\delta^2 - \omega^2}) e^{(-\delta - \sqrt{\delta^2 - \omega^2})t}. \end{cases}$$

$$x_1(0) = x_{10} = 0,$$

$$x_2(0) = x_{20} = \frac{u_{c0}}{L}$$

Найдя константы и использовав формулу Эйлера, получим решение:

$$\begin{split} x_1 &= \frac{x_{10}}{2} e^{-\delta t} (e^{\sqrt{\delta^2 - \omega^2} t} + e^{-\sqrt{\delta^2 - \omega^2} t}) + \frac{x_{10}}{2} \frac{\delta}{\sqrt{\delta^2 - \omega^2}} e^{-\delta t} (e^{\sqrt{\delta^2 - \omega^2} t} - e^{-\sqrt{\delta^2 - \omega^2} t}) + \\ &+ \frac{x_{20}}{2} \frac{1}{\sqrt{\delta^2 - \omega^2}} e^{-\delta t} (e^{\sqrt{\delta^2 - \omega^2} t} - e^{-\sqrt{\delta^2 - \omega^2} t}) \\ &= x_{10} e^{-\delta t} \cos(\sqrt{\omega^2 - \delta^2} t) + x_{10} \frac{\delta}{\sqrt{\omega^2 - \delta^2}} e^{-\delta t} \sin(\sqrt{\omega^2 - \delta^2} t) + \\ &+ x_{20} \frac{1}{\sqrt{\omega^2 - \delta^2}} e^{-\delta t} \sin(\sqrt{\omega^2 - \delta^2} t). \end{split}$$

$$X_L = 2\Pi f L = 2\Pi * 50 \Gamma * 100 \Gamma H = 31415,92$$

Для данной цепи решение примет вид:

$$i(t) = x_1 = \frac{12}{100} \cdot 7.14e^{-0.005t} \sin(0.14t) = 0.857e^{-0.005t} \sin(0.14t), A$$

 $U_L = i(t) \cdot X_L = 0.857e^{-0.005t} \sin(0.14t) * X_L, B$

3.3 Результаты исследования

№	Время от начала	Напряжение расчетное	Напряжение измеренное	Абсолютная погрешность	Относительная погрешность	Приведенная погрешность
	процесса t, с	U(Lp), B	U(Lи), В	измерения $\Delta U(L)$	измерения $\Delta U(L)/U(Lp)$	измерения $\Delta U(L)/U(Lmax)$
1	0,01	12	12	0,000000	0,000000	0,000000
2	10	-1,403243	-1,40	0,003243	-0,00232	0,002948
3	20	-0,568433	-0,57	0,001567	-0,00275	0,001425
4	30	1,099454	1,10	0,000546	0,000496	0,000496
5	40	0,854435	0,85	0,004435	0,005218	0,004032
6	50	-0,743234	-0,74	0,003234	-0,00437	0,00294
7	60	-0,975443	-0,98	0,004557	-0,00465	0,004143
8	70	0,374353	0,37	0,004353	0,011765	0,003957
9	80	1,004053	1,00	0,004053	0,004053	0,003685
10	90	-0,034535	-0,03	0,004535	-0,15117	0,004123
11	100	-0,923435	-0,92	0,003435	-0,00373	0,003123
12	110	-0,235674	-0,24	0,004326	-0,01803	0,003933
13	120	0,755464	0,76	0,004536	0,005968	0,004124
14	130	0,435464	0,44	0,004536	0,010309	0,004124
15	140	-0,554357	-0,55	0,004357	-0,00792	0,003961

16	150	-0,564211	-0,56	0,004211	-0,00752	0,003828
17	160	0,326784	0,33	0,003216	0,009745	0,002924
18	170	0,609870	0,61	0,00013	0,000213	0,000118
19	180	-0,123677	-0,12	0,003677	-0,03064	0,003343
20	190	-0,593210	-0,59	0,00321	-0,00544	0,002918
21	200	-0,062201	-0,06	0,002201	-0,03668	0,002001
22	210	0,513499	0,51	0,003499	0,006861	0,003181
23	220	0,213110	0,21	0,00311	0,01481	0,002827
24	230	-0,403983	-0,40	0,003983	-0,00996	0,003621
25	240	-0,314094	-0,31	0,004094	-0,01321	0,003722
26	250	0,266901	0,27	0,003099	0,011478	0,002817
27	260	0,355832	0,36	0,004168	0,011578	0,003789
28	270	-0,134595	-0,13	0,004595	-0,03535	0,004177
29	280	-0,366549	-0,37	0,003451	-0,00933	0,003137
30	290	0,013456	0,01	0,003456	0,3456	0,003142
31	300	0,331345	0,33	0,001345	0,004076	0,001223
32	310	0,083245	0,08	0,003245	0,040563	0,00295
33	320	-0,272345	-0,27	0,002345	-0,00869	0,002132
34	330	-0,164095	-0,16	0,004095	-0,02559	0,003723
35	340	0,205903	0,20	0,005903	0,029515	0,005366
36	350	0,213985	0,21	0,003985	0,018976	0,003623
37	360	-0,125498	-0,12	0,005498	-0,04582	0,004998
38	370	-0,223545	-0,22	0,003545	-0,01611	0,003223
39	380	0,039857	0,04	0,000143	0,003575	0,00013
40	390	0,208737	0,21	0,001263	0,006014	0,001148
41	800	0,012485	0,01	0,002485	0,2485	0,002259

Напряжение измеренное U(Lи), В

График измеренных значений напряжения катушки индуктивности

График расчетных значений напряжения катушки индуктивности

Задание 4

4.1. Схема RLC-цепочки.

 $LC \approx 0{,}0001~c^2$. Пусть $C = 0{,}01~\Phi,\, L = 0{,}01~\Gamma_H,\, R = 0{,}01~O_M$

Схема:

Схема RLC – цепочки с малой постоянной LC.

4.2-4.3 Составление и решение уравнения RLC-цепочки и результаты исследования

$$T = 2\Pi\sqrt{LC} = 2 * 3,14 * \sqrt{0,01 * 0,01} = 0,0628$$

$$\delta = \frac{R}{2L} = \frac{0,01}{2*0,01} = 0,5$$

$$\omega = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0,01 * 0,01}} = 100$$

$$\omega_{\delta} = \sqrt{\frac{1}{LC} - (\frac{R}{2L})^2} = \sqrt{\frac{1}{0,01 * 0,01} - (\frac{0,01}{2*0,01})^2} = 99,99875$$

$$T_{\delta} = \frac{2Pi}{\omega_{\delta}} = 0,0628326$$

$$A = U_{C0} * e^{-\delta t} = 0,635226e^{-0,5t} = 0,436584$$

$$A \approx 0,2 * 2 = 0,4 \text{ B}$$

$$T \approx 70 \text{ MC} = 0,070 \text{ C}$$

Показатели осциллографа.

Вывод: при выполнении лабораторной работы я научился создавать схемы RC- и RLC-цепочек с источником постоянного напряжения. Научился исследовать работу схем с помощью вольтметра и амперметра, а также составлять и решать уравнения цепи.