Triangulation in genetic genealogy

Statistical methods in genetic relatedness and pedigree analysis

NORBIS course, 13th – 17th of June 2022, Oslo Magnus Dehli Vigeland

Triangulation in genealogy

Who is Mr X?

Pair	Segments (cM)
X-A	10, 30.3, 7.4, 21.8, 10.7, 23.8, 11.3, 15.7, 45.7, 9.4
X-B	7.4, 15.7, 17.7, 20.5, 18.3, 11.1

Recap: Recombination and IBD

Estimation of pairwise relatedness

1) Marker-based MLE (Thompson 1975)

Estimation of pairwise relatedness

2) IBD segments

- Compare observed data with simulated distributions from a range of relationships.
- Naive Bayes classification

Shiny app:

https://magnusdv.shinyapps.io/ibdClassifier/

Relationship classifier based on IBD segments

Relationship classifier based on IBD segments

1. Great-great-grandp (mmm) P = 13.7%

Relationship	Posterior
Great-great-grandp (mmm)	0.14
Half first cousins (ppm)	0.14
Half first cousins (ppp)	0.12
Half first cousins (mpm)	0.10
1st cousins 1r (ppp)	0.09
Great-great-grandp (pmm)	0.09

2. Half first cousins (ppm)

3. Half first cousins (ppp)

Туре	Posterior
Half first cousins	0.49
Great-great-grandp	0.28
1st cousins 1r	0.22
2nd cousins	0.01

Kinship	Posterior
1/32	0.99
1/64	0.01

For triangulation: Joint estimation

Pair	Segments (cM)
X-A	10, 30.3, 7.4, 21.8, 10.7, 23.8, 11.3, 15.7, 45.7, 9.4
X-B	7.4, 15.7, 17.7, 20.5, 18.3, 11.1

Procedure

- Simulate IBD patterns for the entire pedigree (ibdsim2)
- For each individual Y:
 - Shared segments A-Y and B-Y
 - Empirical distributions
 - Compare with observed data
 - Posterior triangulation probability

For triangulation: Joint estimation

Pair	Segments (cM)
X-A	10, 30.3, 7.4, 21.8, 10.7, 23.8, 11.3, 15.7, 45.7, 9.4
X-B	7.4, 15.7, 17.7, 20.5, 18.3, 11.1

Procedure

- Simulate IBD patterns for the entire pedigree
- For each individual Y:
 - Shared segments A-Y and B-Y
 - Empirical distributions
 - Compare with observed data
 - Posterior triangulation probability

Triangulation power

Triangulation power - different Mr. X

(Cutoff: 0 cM. Training sims: 1000)

(Cutoff: 7 cM. Training sims: 1000)

• Other meanings of triangulation in genealogy

Triangulation 2: Support specific ancestor

Requires overlapping segments between 3 or more individuals

Triangulation 3: What is the third relationship?

the exercises!