DATE: / /

Assignment - 3

 $P(y) = E(y - (\infty))^2 = S(y - (0))^2 \rho(x, y) dx dy$

p(x,y) = Joint probability distribition of x (input) and x (output)

1) For optimal Function [for = organin E[(x-(l(x)))2]

as we want to minimize the expected Risk forour optional function also, p(30,4) = p(31), p(0)

P(1) = [(y-for)2 p(1,y) dy doc

=> \[(4 - \langle 0.)^2 p(81) \) poor dy dre

=> \[(5-100)^2 p(y100) dy pour du

 $E[(Y-\{(x)\}^2/x=x_c] = \int (y-(\delta y)^2)^2 p(y|x_c) dy$

 $R(\beta) = \int \left[E(x - \beta(x))^2 / x = 20 \right] p(x) dx$

: P(2) > 0 so to minimize P(f) we con minimize E((x-(x))2/x=)

hence $f^*(s) = \operatorname{argmin} E[(Y-f(x))^2/x = x]$

=) [(x-fax)2 p(8136) dy

to find minimum to minimize - d (E(Y-101) 1x=17)=0

d (y-la) 2 p(ym) dy] = 0 2 (9-fow) x (+1) p (9100) dy = 0 -> d2 d(foo)2 f (y-100) p/9/30) dy =0 f y ρ(1)) dy = f f(s) ρ(y/s) dy it is indeed minimizer Jy p(312) dy = for J p(3/20) dy for = fy p(5/3c) dy 1 P* 60 = E[8/x=2c] ... The optimal function that minimizes true risk R(f)=> $f^*(x) = E[Y/X=x]$

2) In terms of conditional distribution p(y/s), the optimal function of X (or represents conditional expectation of X for given X=se. It represents the expected value of output Y for given input X under conditional distribution P(y/se).

3) Vorionce = $E \left[(\hat{l}(0) - E(\hat{l}(0)))^2 \right]$ $\hat{l}(0) = 1.9 \times 2 + 3.5 = 7.3$

$$\int_{2}^{2} (2) = 2.1 \times 2 + 3.2 = 7.4$$

$$\int_{3}^{2} (2) = 2 \times 2 + 3.4 = 7.4$$

 $E(\hat{\gamma}(2)) = 2 \times 2 + 3.367 = 7.367$

Vorionce of (21=2) = 1 [(7.3-7.367)2+ (7.4-7.367)2+ (4.4-7.367)]

Vorionce
$$(x=2) = \int_{3}^{2} (0.004489 + 0.001089 + 0.001089)$$

= $\int_{3}^{2} \times 0.006667 \approx 0.0022$ (approx)

Espected Square Error = E[(for - for)2] 4) f(x) = 2x + 3 = 3 f(2) = 2x2 + 3 = 7P(0) = 1.9xx+3.5 => P(0) = 1.9x2+3.5 = 7.3 P201= 2.131+3.2 = P2021= 2.1x2+3.2 = 7.4 P361=21+3.4 = P3 (a)=2×2+3.4 =7.4 ESE (2) = [(P,60-160) 2+ (P260-100) 2+ (P300-100) 2] = [(7.3-7)2+(7.4-7)2+(7.4-7)2] = 1 [(0.3)2+ (0.4)2+(0.4)2] $= \int_{0}^{\pi} \left[0.09 + 0.16 + 0.16 \right] = \int_{0}^{\pi} x_{0}.41 = 0.136$ Using Bios-Varione Decomposition - $ESE = E[[f(n - f(n))^2] = B(x)^2 + Vorion(x + \sigma^2)$ $= (E[f(n) - f(n))^2 + E[f(n) - E[f(n))]^2 + E^2$ [E ~ N(0,0.1) = 0.2 = 0.1] = (0.367)2 + 0.0022+ 0. Both the values one similar but there are difference of [0.1] The difference between ESE(2) and what we get from Bies Vocione decomposition is due to irreducible noise difference = 0.1 = 02 (votionce of noise)