#### LC10: Capteurs électrochimiques

#### Incendie de Notre Dame du 15/04/2019



#### Cellule conductimétrique



À gauche : schéma d'une cellule conductimétrique. À droite : zoom sur les plaques.

## Illustration du lien entre conductivité et concentration en ions





Ajout de sel :  $\sigma$   $\nearrow$ 

C1 - Internal use

# Dosage par étalonnage du plomb dans un échantillon potentiellement pollué $\sigma (mS.m^{-1})$



#### Electrode standard à hydrogène



$$2 H^{+} (aq) + 2 e^{-} = H_{2} (g)$$

Électrode standard à hydrogène (ESH)

#### Electrode au calomel saturée

$$Hg_2Cl_2(s) + 2e^- = 2 Hg(l) + 2 Cl^-(aq)$$



Électrode au calomel saturée (ECS)

### Evolution du potentiel d'électrode en fonction du rapport $R = \frac{[Fe^{3+}]}{[Fe^{2+}]}$



 $\Rightarrow$  On verse de la solution de fer(III) pour varier le rapport  $R = \frac{[Fe^{3+}]}{[Fe^{2+}]}$  et on trace  $E(\log(R))$ :



⇒ On obtient une droite!

#### Titrage potentiométrique des ions $Fe^{2+}$ par les ions $Ce^{4+}$

⇒ Le potentiel de l'électrode de platine est mesuré exactement de la même manière que pour l'expérience précédente



#### Titrage potentiométrique des ions $Fe^{2+}$ par les ions $Ce^{4+}$

