

Universidade do Minho Mestrado em Engenharia Informática 1^{o} ano - 2^{o} Semestre

Programação Cíber-física

TPC1 - CSS e equivalências

A85635 - André Nunes

1.1

$$A = a.b.0$$

1.2

$$B = A + a.0$$

1.3

$$\mathbf{C} = (\mathbf{B} \mid \mathbf{c.d.A}) \backslash \{d\}$$

2.1

Temos que,

Logo, A é simulado por B, uma vez que B consegue replicar todas as transições de A, como podemos perceber no cálculo acima descrito.

2.2

Temos que,

Logo, B não é simulado por A, uma vez que A não consegue replicar todas as transições de B, como podemos perceber no cálculo acima descrito.

2.3

Por 2.1 e 2.2 podemos concluir que A não é bissimilar a B, uma vez que embora A seja simulado por B (por 2.1), o seu converso não é verdade (por 2.2), facto estritamente necessário para que a bissimulação seja verdadeira. Pois dois processos A e B são bissimilares se e só se A simula B e B simula A.

Temos que provar que P+Q é bissimilar a Q+P. Para tal P+Q tem que simular Q+P e o seu converso deve também ser verdade. Com isto em mente, decidi decompor estes processos e usar as regras de CSS (sum1 e sum2) lecionadas nas aulas desta unidade curricular, para verificar que ambos os processos produzem as mesmas transições e assim provar a sua bissimilaridade.

Assim,

$$R = \{ < P + Q , Q + P > \} \qquad R^o = \{ < Q + P , P + Q > \}$$

Usando regras de CSS (sum1 e sum2) nas transições descritas acima, temos que:

Figura 1: Transições possíveis para P+Q

Figura 2: Transições possíveis para Q+P

Deste modo podemos concluir que P+Q é bissimilar a Q+P, uma vez que Q+P simula P+Q e o seu converso também é verdade. Facto que podemos comprovar porque ambos os processos produzem as mesmas transições.

4.1

 $\mathbf{T}=\overline{t}.\mathbf{T}$

 $\mathbf{H}=\overline{h}.\mathbf{H}$

 $\mathbf{C}=\overline{c}.\mathbf{C}$

 ${\rm O}={\rm t.h.c.}\overline{d}.{\rm O}$

 $\mathbf{D} = \mathrm{d.displays.D}$

4.2

 $S = (T|H|C|O|D).S \setminus \{display\}$

$$\begin{split} \mathbf{H} &= \overline{h}.\mathbf{H} \\ \mathbf{T} &= \mathbf{h}.\overline{t}.\mathbf{T} \\ \mathbf{C} &= \mathbf{t}.\overline{d}.\mathbf{C} \\ \mathbf{D} &= \mathbf{d}.\mathbf{display}.\mathbf{D} \end{split}$$
 Logo temos,
$$\mathbf{S2} &= (\mathbf{T}|\mathbf{H}|\mathbf{C}|\mathbf{D}).\mathbf{S2} \setminus \{\mathbf{display}\} \end{split}$$

Notas

- Por abreviação nas figuras temos que $\overline{x} = x$.
- $\bullet\,$ Nas árvores de derivação em 4.1 e 4.2 usei também a regra (Res).
- $\bullet\,$ No sistema de transição em 4.3, na seta S, deveria estar s.