Exploring Transfer from Synthetic Images for Semantic

Vashisht Madhavan

Segmentation of Driving Scenes

Motivation

- Games are very realistic these days
- Easy to obtain full pixel labels
- Collecting and labeling real world data is expensive

Problem Statement

- Source model trained on synthetic data
- We have some real world data level of supervision varies
- What is the best method of transfer to real world data
 - O How much supervision is needed?
 - Why do current methods fail to transfer well?
 - Can we leverage raw data from the real domain?

Data

GTA - 25k Images

SYNTHIA - 9k Images

Cityscapes(**Real**) - 5k Images

Label Set

Group	Classes
flat	road · sidewalk · parking + · rail track +
human	person*·rider*
vehicle	car* · truck* · bus* · on rails* · motorcycle* · bicycle* · caravan*+ · trailer*+
construction	building · wall · fence · guard rail + · bridge + · tunnel +
object	pole · pole group + · traffic sign · traffic light
nature	vegetation · terrain
sky	sky
void	ground ⁺ · dynamic ⁺ · static ⁺

Supervised Approach

Fine Tuning with various amounts of labeled examples

Object

Nature

Dilation FCN from <u>Yu and Koltun</u>

C Full

Flat

Experiment

Very Low = 75 Labels Low = 450 Labels Medium = 1000 Labels High = 2500 Labels

Experiment	1 Idt	IVA	iui C	Object	•	Jivy	Constituction	Human	V CI IICI	C Mican
G Baseline	0.737	0.7	15 (0.022	C	0.676	0.606	0.363	0.652	0.539
S Baseline	0.218	0.4	62	0.076	C	0.665	0.335	0.516	0.483	0.394
Experiment	Flat		Nature	e Obje	ct	Sky	Construction	Human	Vehicle	Mean
G+C FT Very Low	0.95	9	0.86	0.318	8	0.841	0.826	0.554	0.791	0.736
G+C FT Low	0.96	7	0.874	0.38	5	0.883	0.853	0.617	0.825	0.772
G+C FT Medium	0.97	'1	0.883	0.443	3	0.889	0.865	0.645	0.845	0.792
G+C FT High	0.97	'1	0.885	0.436	6	0.884	0.866	0.648	0.848	0.791
S+C FT Very Low	0.9	61	0.866	0.43	1	0.84	0.827	0.644	0.797	0.766
S+C FT Low	0.9	73	0.892	0.523	3	0.889	0.871	0.718	0.861	0.818
S+C FT Medium	0.9	76	0.898	0.538	3	0.906	0.884	0.725	0.874	0.829
S+C FT High	0.9	76	0.899	0.568	3	0.909	0.884	0.736	0.878	0.836

0.977 0.902 0.547 0.909

Skv

Construction Human Vehicle Mean

0.882

0.89

SYNTHIA has lower baseline but higher accuracy with Supervision!

GTA has representations that don't play well with cityscapes

Unsupervised Approach

- Hoffman and Wang (CVPR '17 Submission)
- Domain Adversarial Loss to align representations

Tzeng + Hoffman ICCV '15

Domain Shift

Global Domain Shift - Image Level Differences between Datasets

Domain	Linear SVM	Poly Kernel SVM	Max Mean Discrepancy
GTA	92%	94.5%	0.459495
SYNTHIA	96.5%	96%	0.72624

Classifier accuracy between of conv5 features of VGG-16 pretrained on PASCAL

Category-Specific Shift - Distribution and Appearance Differences for Objects

Domain	Road	Building	Pole	Traffic Light	Traffic Sign	Person	Car
GTA	10.172	6.08	0.27	0.68	5.037	4.14	12.08
SYNTHIA	14.78	10.72	0.204	0.51	4.02	0.68	12.6

KL Divergence between histograms of proportion of object in image

Results

SYNTHIA Fine Tuning

Ground Truth Baseline Very Low Supervision

Results

GTA Fine Tuning

Ground Truth Baseline Very Low Supervision