The Saturn model

Consider the non-linear barotropic or reduced gravity model

$$\partial_t \boldsymbol{u} + f \underline{\boldsymbol{u}} + \boldsymbol{\nabla} h = -\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} \quad , \quad \partial_t h + c^2 \boldsymbol{\nabla} \cdot \boldsymbol{u} = -\boldsymbol{\nabla} \cdot h \boldsymbol{u}$$
 (1)

with the Coriolis parameter f, the gravity wave speed c^2 , and the layer velocity \boldsymbol{u} . The layer thickness perturbation η was re-scaled to $h=g\eta$ with reduced gravity g such that $c^2=g\bar{\eta}$, with the mean thickness $\bar{\eta}$. The vector \boldsymbol{u} denotes anticlockwise rotation of the vector \boldsymbol{u} by $\pi/2$, i.e. $\boldsymbol{u}=(-v,u)$ for $\boldsymbol{u}=(u,v)$.

Scaling

Using the beta plane f(y) = f(0) + f'y, the scaling $h \sim fUL$ from geostrophy, $x, y \sim L$, and the wave scaling $t \sim 1/f$, a scaled version of Eq. (1) becomes

$$\partial_t \boldsymbol{u} + (\tilde{f} + \beta y) \underline{\boldsymbol{u}} + \boldsymbol{\nabla} h = -Ro \, \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} \quad , \quad \partial_t h + \tilde{c}^2 \boldsymbol{\nabla} \cdot \boldsymbol{u} = -Ro \, \boldsymbol{\nabla} \cdot h \boldsymbol{u}$$
 (2)

with the Rossby number Ro = U/(fL) and $\tilde{c} = L_r/L = Ro/F$ where $L_r = c/f$ denotes the Rossby radius, with the Froude number F = U/c, and $\beta = L/a \ll 1$, where a denotes the Earth radius. $\tilde{f} = 1$ is kept for reference. For Ro = 1 and $f = \tilde{f}$, $\beta = f'$, $c = \tilde{c}$ this becomes the dimensional version again and thus we drop the tilde for f and c from now.

Total, kinetic, and potential energy and potential voticity

Using the relation $\nabla u^2/2 + \underline{u}\nabla \cdot u = u \cdot \nabla u$, the system Eq. (2) can be written as

$$\partial_t \boldsymbol{u} + q \underline{\boldsymbol{U}} + \boldsymbol{\nabla}(h + Ro K) = 0 \quad , \quad \partial_t h + \boldsymbol{\nabla} \cdot \boldsymbol{U} = 0$$
 (3)

with total thickness $H = c^2 + Ro h$, volume transport U = Hu, kinetic energy $K = u^2/2$ and potential vorticity $q = (f + Ro \nabla \cdot u)/H$. Kinetic energy K is given by

$$\partial_t K + \boldsymbol{u} \cdot \boldsymbol{\nabla} h = -Ro\,\boldsymbol{u} \cdot \boldsymbol{\nabla} K \tag{4}$$

the term $\boldsymbol{u} \cdot \boldsymbol{\nabla} h$ is the exchange with potential energy. Total energy T is given by

$$T = Ro^2 HK + H^2/2 (5)$$

obtained by adding Ro^2H times the kinetic energy equation and ϵH times the thickness equation which yields

$$\partial_t T + Ro \nabla \cdot (H + Ro^2 K) U = 0 \tag{6}$$

Total energy is conserved since it holds that

$$\int dA \partial_t T = Ro \int dA \left(Ro \mathbf{U} \cdot \partial_t \mathbf{u} + (H + Ro^2 K) \partial_t h \right) = 0$$
 (7)

Figure 1: The staggered grid arrangement.

Linear discrete equations

Omitting the non-linear terms by setting Ro = 0 for the moment, rewrite Eq. (2) as

$$\partial_t u = fv - \partial_x h$$
 , $\partial_t v = -fu - \partial_y h$, $\partial_t h = -c^2 (\partial_x u + \partial_y v)$ (8)

For discretisation we use the C-grid arrangement shown in Fig. 1 which yields

$$\frac{du_{j,k}}{dt} = f \overline{v_{j,k}}^{j+k-} - \delta_x^+ h_{j,k} , \quad \frac{dv_{j,k}}{dt} = -f \overline{u_{j,k}}^{j-k+} - \delta_y^+ h_{j,k} , \quad \frac{dh_{j,k}}{dt} = -c^2 \left(\delta_x^- u_{j,k} + \delta_y^- v_{j,k} \right)$$
(9)

with the finite differencing operators

$$\delta_x^+ h_{j,k} = (h_{j+1,k} - h_{j,k})/\Delta_x \quad , \quad \delta_x^- h_{j,k} = (h_{j,k} - h_{j-1,k})/\Delta_x$$
 (10)

$$\delta_y^+ h_{j,k} = (h_{j,k+1} - h_{j,k})/\Delta_y \quad , \quad \delta_y^- h_{j,k} = (h_{j,k} - h_{j,k-1})/\Delta_y$$
 (11)

and with the finite averaging operators

$$\overline{h_{j,k}}^{j+} = (h_{j,k} + h_{j+1,k})/2 , \quad \overline{h_{j,k}}^{j-} = (h_{j,k} + h_{j-1,k})/2
\overline{h_{j,k}}^{k+} = (h_{j,k} + h_{j,k+1})/2 , \quad \overline{h_{j,k}}^{k-} = (h_{j,k} + h_{j,k-1})/2$$
(12)

$$h_{j,k}^{\kappa^{+}} = (h_{j,k} + h_{j,k+1})/2 , \quad h_{j,k}^{\kappa^{-}} = (h_{j,k} + h_{j,k-1})/2$$
 (13)

Non-linear discrete equations

For the discrete non-linear system of Eq. (2), we use the momentum equation in the form

$$\partial_t \boldsymbol{u} + q \boldsymbol{U} = -\boldsymbol{\nabla}(h + Ro K) , \ \partial_t h + \boldsymbol{\nabla} \cdot \boldsymbol{U} = 0$$
 (14)

and discretise it using the energy conserving scheme by Sadourny (1975). The volume transport $\boldsymbol{U} = (U, V) = H\boldsymbol{u}$ with total thickness $H = c^2 + Roh$ is defined at $u_{j,k}$ and $v_{j,k}$ points

$$U_{j,k} = u_{j,k}\overline{H}^{j+}$$
, $V = v_{j,k}\overline{H}^{k+}$ $\rightarrow \frac{dh_{j,k}}{dt} = -\delta_x^- U_{j,k} - \delta_y^- V_{j,k}$ (15)

Potential vorticity q is defined at grid corners as

$$q_{j,k} = (f + \delta_x^+ v_{j,k} - \delta_y^+ u_{j,k}) / \overline{\overline{H}}^{j+k+}$$
(16)

The gradient force in momentum equation is given by

$$p_{j,k} = (h + Ro K)_{j,k} = h_{j,k} + Ro \left(\overline{u_{j,k}^2}^{j} - + \overline{v_{j,k}^2}^{k} \right) / 2$$
(17)

and the momentum equation is then discretized as

$$\frac{du_{j,k}}{dt} = \overline{q_{j,k}} \overline{V_{j,k}}^{j+k-} - \delta_x^+ p_{j,k} \quad , \quad \frac{dv_{j,k}}{dt} = -\overline{q_{j,k}} \overline{U_{j,k}}^{k+j-} - \delta_y^+ p_{j,k}$$
 (18)

It can be shown for the discrete equations that total energy T is indeed conserved by this scheme. However, it is much easier to check this in the code.