$\Delta V_S^{n+1} = \sigma \alpha_S^n \beta^+ \cdot (1 - \partial V_S^n) \cdot |R^n|$ $\overline{\Delta V_S^{n+1}} = \sigma \alpha_S^n \beta^- \cdot (1 + \partial V_S^n) \cdot |R^n|$

 α_i^n = associability of the CS *i* on trial *n*. β = Learning rate parameter for the US, where β^+ (excitatory) ; β^- (in-

hibitory)

 λ_i^n = intensity of the US with stimuli i at trial n.

 $V_{i,j}^n$ = associative strength of the CS i on trial n.

ciation.

Le Pelley model equations:

 $\overline{V_{i,i}^{n+1}}$ = inhibitory associative strength of the CS *i* on trial n+1.

 $\sigma = \text{salience associability multiplicative factor}$

R = Reinforcing value (excitatory/inhibitory)

(1)

(2)

 $\partial V_S^n = V_S$ - $\overline{V_S}$ Difference between the excitatory and inhibitory CS-US asso-