

MBE Author-Subject Index

Volume 16

ABAD, J. P., 1341
 ABE, H., 1046
Abpa, 1192
 ACHTMAN, M., 1496
Acropora, 1607, 1812
 actin, 275, 876
 actin genes, 165
Adh, 1086, 1816
Adh gene, 1439
Adhr gene, 1439
Aedes aegypti, 760, 1675
 African bovids, 1724
Agelaius phoeniceus, 1599
 AGUDO, M., 1341
 ALBÀ, M. M., 1641
 Alcelaphini, 1724
 alcohol dehydrogenase, 23, 491,
 1439
 allele size constraint, 1166
 allozymes, 525
Alu, 760, 880
 ÁLVAREZ, Y., 1061
 ÁLVAREZ-TEJADO, M., 2
 AMADOR, A., 1439
 amino acid composition, 590
 amino acid repeats, 627, 1558
 aminolevulinate acid synthase, 383
 aminolevulinate synthase, 383
 amitochondriate amoebae, 1270
 amphioxus, 410, 1231
 amplification, 311
 AN, S. S., 275
 anaerobic eukaryotes, 1280
 ancestral function, 1231
 ancestral selection graph, 246
 ancient DNA, 1466
 ANDERSSON, J. O., 1178
 ANDERSSON, S. G. E., 987, 1178
 ANDREWS, R. H., 1135
 androgen-binding protein, 1192
 angiosperm evolution, 1006
 Antarctic fish, 885
 anthocyanin, 266
 anthophytes, 1006
 antigens, 627
Antirrhinum, 1474
 ANTONOV, A., 1006
 anurid larva, 646
 ANXOLABÉHÈRE, D., 1503
 AP endonuclease, 793, 1256
APETALA1, 1037
APETALA3, 1037
 aphids, 1586
Arabidopsis lyrata, 1037
Arabidopsis thaliana, 826, 1037
 Araceae, 1155
 Archaea, 817
 ARCTANDER, P., 1724
 ARNAIZ-VILLENA, A., 2
 array size constraint, 960
 arthropods, 502
 artiodactyl, 1046
 ascidians, 646
 ascomycetes, 1799
Ascomycota, 1799
 ASO, K., 544
 Asteraceae, 1329
 asymmetric introgression, 655
 ATCHLEY, W. R., 1654
 AUFRAY, C., 479
 AUSTIN, A. D., 298
 avian constraint hypothesis, 1575
 BACHMANN, K., 1329
 BACHTROG, D., 602
Bacillus, 1785
Bacillus subtilis, 1125, 1219
 background selection, 1633
 bacteria, 817
 BADGER, J. H., 512
 BADRANE, H., 975
 BAILEY, J. F., 1410
 BAKER, A. J., 1300
 balanced polymorphism, 1816
 balancing selection, 1599
 BALDO, A. M., 1511
 BALDWIN, B. G., 1105
 BANDELT, H.-J., 37
 BANKS, J. A., 544
 BARBROOK, A. C., 573
 BARGELLONI, L., 885
 BARKER, S. C., 732
 BARNETT, J. L., 194
 BARRIER, M., 1105
 base composition skew, 719
 basic helix-loop-helix domain, 1654
 BAUMANN, P., 1586
 BAUTISTA, J. M., 1061
 Bayesian statistics, 750
 BEACHAM, I. R., 23
 BEGUN, D. J., 1816
 BÉNASSI, V., 347
 BENDER, C. A., 1457
 BERNOT, A., 479
 BERTRANPETIT, J., 880
 BETANCOURT, A. J., 1816
 Betulaceae, 441
 BHARATHAN, G., 553
 BHATTACHARYA, D., 275
 BIÉMONT, C., 1251
 BIERMANN, C. H., 724
 biodiversity, 1614
 birds, 2, 479, 1575
 birth-and-death evolution, 147
 BISHOP, J. D. D., 397
 BLANCA, J. M., 880
 BLÁZQUEZ, M., 397
 BLOMSTER, J., 1011
 BOÉDA, B., 1503
 Boltzmann statistics, 173
Bombyx, 165
 bone morphogenetic proteins, 634
 BONNETON, F., 253
Boophilus microplus, 732
 BOORE, J. L., 410
 bootstrap, 218
 BORISJUK, N. V., 311
 BOSMA, P. T., 397
 BOULÉTREAU, M., 1711
 BOUSQUET, J., 441
 BRADNAM, K. R., 666
Branchiostoma, 410
Brassica, 1614
 BREDEN, F., 567
 BREM, G., 602
 BRINDLEY, P. J., 1256
 BRINKMAN, H., 429, 817
 BROWN, A. H. D., 354
 BROWN, W. M., 410
 brown bear, 676
 BRUNO, W. J., 564
 bryophytes, 1027
Buchnera, 83, 1586
Buchnera aphidicola, 1820
 BUCKLER, E. S. IV, 1037
 BURKE, W. D., 502, 793
 BURMEISTER, T., 1809
 BUSH, R. M., 1457
 cadmium toxicity, 967
 CAG repeats, 1641
 CALCO, V., 54
 CAMPBELL, N. J. H., 732
 canaries, 2
 CAÑIZARES, J., 880
 CAPASSO, C., 885
 CAPELLI, C., 1466
 CAPY, P., 1198
 CARGINALE, V., 885
 CARPENTER, G. A., 773
 CATZEFIS, F. M., 577
CAULIFLOWER, 1037
 CAVALIER-SMITH, T., 321
 cave bear, 1466
 CCR5, 1145
Ceratopteris, 544
 cercopithecine, 1410
 Cercozoa, 321
 CERFF, R., 429
 cetacean, 1046
 CHAKRABORTY, R., 1166
 CHANCE, P. F., 1019
 CHAPMAN, R. L., 1774
 characterization of species, 1391
 Charcot-Marie-Tooth disease, 1019
 CHARLES, H., 1820

CHARLESWORTH, B., 246
 CHARLESWORTH, D., 1474
 CHAW, S.-M., 1774
 CHEUNG, B., 23
 CHIANG, T.-Y., 1622
 chimpanzees, 1357
Chironomus, 1809
 CHIU, J., 826
 chlorarachniophytes, 321
 chloroplast, 1006
 CHO, Y., 1155
 chordate, 410
 chordate evolution, 397
 chromosome, 666
 CIARALLO, A., 1410
 Ciliophora, 234
 Circe, 1341
 CLARK, C. G., 1740
 CLARK, G. D. P., 1369
 CLARK, M. A., 1586
 class II MHC, 611
 CLEGG, M. T., 1086
 cline, 1568
 clonal divergence, 1496
 c-myb, 502
 Cnidaria, 423, 1812
 coalescence, 1166
 coalescence times, 1791
 coalescent, 1423
 coalescent theory, 953
 coding sequence prediction, 512
 codon bias, 83
 codon usage, 627, 1125, 1484, 1645
 codon-anticodon interaction, 1752
 co-double, 1369
 COLLINS, M. A., 397
 COLSON, I. B., 1410
 comparative phylogeography, 1724
 competence, 1219
 complete genome, 332, 1125
 compositional bias, 573, 1400
 concerted evolution, 157, 1117,
 1558
 confidence limit of tree topology,
 1114
 CONTE, C., 54
 control region, 676
 convergence, 1061
 convergent evolution, 372
Coprinus cinereus, 975
 copy number, 1251
 coral, 1607, 1812
 CORNELL, N. W., 383
 CORNUET, J.-M., 898
 CORUZZI, G., 826
 cotton, 491
 COUTELLEC-VRETO, M.-A., 1724
 covariation, 573
 covariotide, 573
 COX, N. J., 1457
cox1, 1155
 cpDNA phylogeny, 1329
 CRANDALL, K. A., 372
 CRAWFORD, D. L., 194
Crocodylus niloticus, 1521
 CROTHER, B. I., 876
 cryptomonad, 1308
 Ctenophora, 423
 CTL, 1420
 cuckoos, 1300
 Culicidae, 1300
 CUNNINGHAM, C. W., 423
 CXC chemokines, 180
 cyanobacteria, 429
Cyanophora paradoxa, 1308
 cyclical and directional dynamics,
 960
 Cycloidea, 1474
Cyprinodon spp., 363
 cytochrome *b*, 1061, 1575
 cytochrome oxidase II, 1645
 cytochrome oxidase isoforms, 619
 cytoskeletal actin genes, 646
 d_s/d_n , 711
 DA SILVA, J., 1420
 DAEHLER, L. L., 410
 DALLINGER, R., 967
 DANCHIN, A., 1219
Daphnia pulex, 1208
 Darwinian selection, 1192
 DASTUGUE, B., 54
 DAVIDSON, E. H., 634
 DE CASTRO, M., 880
 DE FRUTOS, R., 880
 DEANE, J. A., 1308
 Death Valley pupfish, 363
 DEHEER, C. J., 525
 DEKA, R., 1166
 deletions, 1178
 demographic history, 453
 demographic parameters, 1791
 DENG, H.-W., 1098
 dengue virus, 405
 DEPAULIS, F., 347
 DERAGON, J.-M., 1614
 Dermaptera, 1645
 DESALLE, R., 826
 DESCHAVANNE, P. J., 1391
 DESSET, S., 54
 DEUTSCH, M., 1528
 development, 553
 developmental genes, 253
 developmental switch, 1011
 DEWILDE, S., 1208
 diagnostic amino acids, 876
 diagnostic marker, 898
 DIAMOND, L. S., 1740
 dicodon bias, 512
 DIMITRI, P., 54
 diplomonads, 1484
 directional selection, 194
 divergence time, 467, 849
 diversity, 1622
 D-loop, 1357
 DNA, 1135
 DNA base composition, 719
 DNA repeats, 1219
 DNA sequence variation, 1474,
 1816
 DNA sequences, 1098
 DNA slippage, 253
 DOCHERTY, K., 397
 DONOVAN, G. M., 773
 DOOLITTLE, W. F., 218, 1315
 DOUGLAS, S. E., 1308
 DOUZERY, E. J. P., 577
 DOVER, G. A., 253
 DOWTON, M., 298
 DOYLE, J. J., 354
 DOYLE, J. L., 354
 DQB, 611
 DREW, A. C., 1256
 drift, 83
Drosophila, 472, 931, 1117, 1341,
 1511, 1675, 1809
Drosophila buzzatii, 909
Drosophila community, 1711
Drosophila funebris, 1439
Drosophila melanogaster, 54, 347,
 602, 724, 1251, 1568, 1816
Drosophila montium subgroup,
 1503
Drosophila simulans, 724, 1251
 DROUIN, G., 397, 1369
 drug resistance, 372
 drug therapy, 372
 DUMONT, S., 1251
 DUNCAN, R., 383
 duplication, 1231
 duplication polymorphism, 1439
 DURKIN, J. M. H., 567
 DUVERNELL, D. D., 363
ee, 12
 EANES, W. F., 724
 EASTEAL, S., 1, 23
 EDWARDS, S. V., 1599
 effective population size, 1633
 EICKBUSH, T. H., 502, 793
 ELL, M., 1369
 elongation factor 1 α , 218, 234, 286
 EMBLEY, T. M., 1280
Endolimax, 1740
 endosymbionts, 83
 endosymbiosis, 1586
 ENRIGHT, M. C., 1687
Entamoeba, 1740
 Entamoebidae, 1740
Enteromorpha, 1011
 enteropathogenic *Escherichia coli*,
 12
 envelope gene, 1198

enzyme electrophoresis, 1135
Escherichia coli, 1125
Escherichia coli O157:H7, 12
 ESTOUP, A., 898
 euglenozoa, 429
 eukaryotes, 817
 eukaryotic evolution, 218
 eukaryotic phylogeny, 234
 evolution, 98, 208, 275, 383, 410,
 553, 567, 577, 741, 760, 826,
 885, 1198, 1208, 1238, 1270,
 1341, 1415, 1457, 1675, 1740,
 1763, 1799
 evolution of development, 646
 evolution of intron-exon structures,
 1528
 evolution of oxygenic photosynthesis, 573
 evolutionary rate(s), 266, 1575,
 1586
 EWING, N., 646
 EXCOFFIER, L., 1357
 exon duplication, 1548
 exon emergence, 1535
 exonic co-conversion, 1155
 expression pattern, 1231
 EY, P. L., 1135
 FAGGART, M. A., 383
 FAGOT, G., 1391
 FALUSH, D., 960
 FARRÉ, M., 931
 FAST, N. M., 1415
 FAY, J. C., 1003
Fbp2, 347
 FEIL, E. J., 1496
 FELDMAN, M. W., 453, 1791
 fern, 544
 FERRE, S., 2
 FERTIL, B., 1391
 fertilization, 839
 FIGGE, R. M., 429
 FITCH, W. M., 1457
 flavonoids, 266
 FLEURY, F., 1711
 FONTDEVILA, A., 909, 931
 FORSTER, P., 37
 FOUILLET, P., 1711
 frequencies of oligonucleotides,
 1391
 Friedreich ataxia, 880
 fruitbats, 1061
 fucosyltransferase, 1535
 FUERST, P., 987
 FUKAMI, H., 1607
Funaria hygrometrica, 127
 functional divergence, 1664
 FUNK, D. J., 67
 GAA repeats, 880
 GAD, 397
 gamete recognition, 839
 gamma-amino-butyric acid, 397
 gamma distribution, 1357
 GARCÍA-DE-LA-TORRE, C., 2
 GARCIA-VALLVÉ, S., 1125
 GARRIDO-PERTIERRA, A., 1061
 GARRIGAN, D., 1599
 GAUT, B. S., 1086
 GC content, 719, 1086, 1820
 GC3(s) variation, 1484
 G+C content, 666
 gene arrangement, 1812
 gene cluster, 1117
 gene conversion, 23, 147, 165, 479,
 585, 1086, 1117, 1369
 gene duplication, 23, 275, 383,
 1439, 1548, 1664
 gene evolution, 165, 1535
 gene family, 544, 1474
 gene family evolution, 127, 1664
 gene introgression, 1607
 gene order, 732
 gene organization, 298
 gene phylogeny, 127
 gene regulation, 23
 gene size, 1820
 gene transfer, 429
 gene tree(s), 67, 1406
 genetic admixture, 898
 genetic differentiation, 363
 genetic distance, 467
 genetic divergence, 1575
 genetic instability, 54
 genetic structure, 525
 genetic transformation, 1687
 genome, 410, 666, 760
 genome evolution, 602
 genome rearrangement, 1019
 genomic location, 1166
 genomic signature, 1391
 genome structure, 332
 genomics, 419, 512
 genotype, 1622
 genotype screening, 967
Giardia, 1135
Giardia lamblia, 1484
 GIRON, A., 1391
 Gliridae, 715
 globin, 1208
 globin gene structure, 1208
 glutamate receptor, 826
 glutamic acid decarboxylase, 397
 glutamine repeats, 1641
 glyceraldehyde-3-phosphate dehydrogenase, 429, 1406
Glycine subgenus *Glycine*, 354
 glycosyl hydrolases, 1125
Gnetum gnemon, 1006
 GOJOBORI, T., 49, 332, 590, 1315
 GOLDMAN, N., 1292, 1696
 GOLDSTEIN, D. B., 453
 GOLDSTEIN, R. A., 173
 GONÇALVES, I., 1820
Goniomonas truncata, 1308
 GONZALEZ, P., 938
 GONZÁLEZ-CABO, P., 880
 GOODMAN, M., 619
Gossypium, 491
 grass, 208
 GRASSO, A. M., 1785
 GRAUR, D., 49
 GREEN, B. R., 321
 green algae, 275, 1011
 green turtle, 784
 GREENWOOD, A. D., 1466
 GROSSMAN, L. I., 619
 ground sloth, 1466
 group I intron, 1155
 group I ribozymes, 114
 group selection, 472
 GU, X., 147, 1664
 GUANGYUN, S., 1166
Guillardia theta, 1308
 GUYOMARD, R., 898
 gymnosperms, 1006
 gypsy, 909
 Hadamard conjugation, 694
 HAGERMAN, P. J., 1812
 HALL, B. D., 1270, 1799
 HALPERN, A. L., 564
 HANCOCK, J. M., 253, 1641
 HANKELN, T., 1809
 HANSEN, A., 1006
 HANSEN, G., 1011
 HANSMANN, S., 1006
 HARRIS, E., 1423
 HARRISON, R. G., 1575
 HARVEY, P. H., 953
 HASEBE, M., 544
 HASEGAWA, M., 1114
 HATTA, M., 1607
 HAYASHIBARA, T., 1607
 heat stress, 1568
 HEDGES, R. E. M., 1410
Helicoverpa, 165
 HELLBERG, M. E., 839
 Helotiales, 114
 hemagglutinin, 1457
 hemisphere, 2
 HEMLEBEN, V., 311
 hemoglobin, 1809
 HENNEBERG, M., 1410
 hepatitis D virus, 1622
 HEY, J., 1423
 HICKEY, D., 1117
 hidden Markov model, 1664, 1696
 HILL, J. J., 1675
 HINK-SCHAUER, C., 1308
 HIRT, R. P., 1280
 HISLOP, N. R., 1812
 histone H3, 354
 hitchhiking, 1687

HIV evolution, 711
 HIV-1, 953, 1420
HIV-1 env gene, 711
 HIV-1 evolution, 173
 HIV-1 subtype, 173
 HLA, 1420
 hoatzin, 1300
 HOELZEL, A. R., 611
 HOELZER, G. A., 1400
 HOLMES, E. C., 405, 741, 773, 953
 HOLMES, R. S., 23
 HOLST-JENSEN, A., 114
 homeobox, 544, 553
 homeothermy, 1521
Homo sapiens, 1003
 homoeology, 491
 homogenization, 975
 homoplasy, 898, 1406
 horizontal gene transfer, 1125
 horizontal transfer, 98, 472, 938,
 1155, 1219
 horizontal transmission, 1711
 HORNER, D. S., 1280
 housekeeping genes, 627, 773
 HOWE, C. J., 573
hsr-omega, 1568
 HUANG, Y.-H., 1622
 HUCHON, D., 577
 HUGALL, A., 157
 HUGHES, A. L., 627, 1420, 1558
 HUGHES, J. M., 1300
 HUGHES, S., 1521
human evolution, 1003, 1791
human immunodeficiency virus,
 372
human mitochondrial DNA, 37
human origins, 1423
human ZFX and ZFY genes, 1633
humans, 1357
 HUNER, O., 1548
hybrid, 157
hybridization, 354, 898, 1607
hydrogen bonds, 1752
hydrogenosomes, 1280
hydrophobic amino acid, 590
Hymenoptera, 298
 I factor, 1675
 IBÁÑEZ, C., 1061
Idefix, 54
image, 1391
 IMAMICHI, H., 372
immune escape, 1622
immune evasion, 627
 INA, Y., 1607
inconsistency, 685
indel, 441
inflorescence, 1105
influenza, 1457
insect(s), 165, 253, 1645
insect retroviruses, 909
 insertion sequence, 332
 insertions, 1178
 integration, 502, 1219
 interallelic recombination, 1406
 interchromosomal recombination,
 1329
 intergenic sequences, 1812
 interlocus genetic exchange, 479
 interlocus recombination, 147
 interruption, 567
 interspecies divergence, 1633
 interspecies recombination, 773,
 1687
 interspecific hybridization, 931
 interspersed repeats, 760
 interspersed sequences, 1535
 intimin, 12
 intracellular symbiosis, 1820
 intraspecies heterogeneity, 1484
 intron(s), 706, 1599, 1809
 intron evolution, 1086, 1558
 intron loss, 1528
 intron mobility, 114
 intron phase, 1528
 intron secondary structure, 441
 inversion, 298
 invertebrate, 298
 ion channel, 826
 IRWIN, D. M., 1548
 ISHIDA, K., 321
 isochore, 666
 isochore evolution, 1521
 ITOH, T., 49, 332
 IWASA, Y., 960
 Ixodida, 732
 JANSEN, B.-J., 553
 JARUZELSKA, J., 1633
 JEFFREY, W. R., 646
 JOHANSEN, C., 1724
 JOHANSEN, S., 114
 JONES, J. P., 502
 JORDAN, I. K., 419
 JUAN, E., 1439
 JULIEN, R., 1535
 JUSTE B., J., 1061
 KARN, R. C., 1192
 KATO, M., 544, 1027
 KEELING, P. J., 1308
 KELLER, L., 525
 KELLER, M. P., 1019
 KELLOGG, E. A., 553
 KELSEY, C. R., 372
 KIM, J., 423
 KIM, W., 423
 KIMMEL, M., 1166
 Kimura's distance, 1068
 KING, L. T., 1256
 Kishino-Hasegawa test, 1114
 KIYAMA, R., 922
 KÖRTING, C., 1427
 KOSHI, J. M., 173
 KRAMEROV, D., 715
 KRIEGER, M. J. B., 525
 KUMAZAWA, Y., 784
 KURLAND, C. G., 987
 KUSAKABE, T., 646
 LABATE, J. A., 724
 LABRADOR, M., 909, 931
 LABUDA, D., 1633
 LAFAY, B., 1484
 Lagomorpha, 577
 LAM, H.-M., 826
 land plants, 127, 1027, 1774
 LANE, C. H., 372
 LANGLEY, C. H., 1816
 LARGET, B., 750
 LARKUM, A. W. D., 573
 LAROCHE, J., 441
 LAWTON-RAUH, A. L., 1037
 LE GUELLEC, R., 1645
 LE GUYADER, H., 234
 least-squares, 806
 LENOIR, A., 1614
 LEPEIT, D., 1251, 1711
 LERAT, E., 1198
 LES, D. H., 1511
 LESKINEN, L., 1011
 LESSIOS, H. A., 938
 leucine zipper, 544
 LEVY, L., 1503
 LI, J., 12, 1098
 LI, J.-L., 1098
 LI, W.-H., 1068
likelihood, 685
likelihood ratio test(s), 849, 868,
 1292
lineage sorting, 354
LINEs, 1238
LINE-like element, 363
linked markers, 898
 LIÒ, P., 1696
 LIU, Y. J., 1799
 LOBRY, C., 719
 LOBRY, J., 1820
 LOBRY, J. R., 719
 LOCKHART, P. J., 573
LogDet distance, 1068
 LOGSDON, J. M. Jr., 1415
 LONG, M., 1528
long-branch attraction, 234, 423,
 429, 694, 1270
long-branch attraction artifact, 817
long branches attract, 564
 LOSADA, A., 1341
LTR retrotransposons, 909, 931
 LYONS-WEILER, J., 1400
lysin, 839
Macaca sylvanus, 1410
 MCCOLL, G., 1568
 McDONALD, J. F., 419

MCDONALD, J. H., 1785
 MCFADDEN, G. I., 1308
 McGRAW, E. A., 12
 MCKECHNIE, S. W., 1568
 MADS-box, 1037, 1105
 MAGGS, C. A., 1011
 MAGOULAS, C., 1117
 MAIDEN, M. C. J., 741, 1496
 MAIER, U.-G., 1308
 major histocompatibility complex, 479, 1558, 1599
 MALIK, H. S., 502, 793
 mammalian phylogeny, 1114
 mammals, 180, 577, 1575
 mammoth, 1466
 MANGÉ, A., 165
Manihot esculenta, 1406
 MANN, D. G., 1011
 MANO, T., 676
 Markov chain Monte Carlo, 750
 Markov models, 1292
 MARTIN, A. P., 996
 MARTIN, W., 1006
 MARTÍNEZ-ARIAS, R., 880
 MARTINEZ-LASO, J., 2
 masculinization, 655
 mass spawning, 1607
Mastigamoeba, 1270
 MASUDA, R., 676
 mathematical model, 719
 MATSUHASHI, T., 676
 MATSUOKA, Y., 208
 maximum likelihood, 286, 405, 423, 694, 953, 1079, 1292, 1347, 1696
 maximum-likelihood tree, 784
 maximum parsimony, 694
 MAY, G., 975
 MAYRHOFER, G., 1135
 MEGHLAOUI, G. K., 347
 MEISEL, L., 826
 MERCIER, D., 1535
 metabolic pathways, 266
 metabolic rate hypothesis, 1575
 metallothioneins, 885
 Metazoa, 423
Methanococcus, 1785
metK, 1178
 Metropolis kinetics, 173
Metropolis-Hastings algorithm, 750
 MHC polymorphism, 147
 MICOL, J. L., 634
 microsatellite(s), 453, 525, 567, 602, 898, 960, 1763
 microsatellite variation, 467
Microseris, 1329
 microsporidia, 1415
mid-depth method, 953
 MILLER, D. J., 1812
 MILLER, R. E., 266
 MINCHELLA, D. J., 1256
 MINDELL, D. P., 173
 minimum evolution, 806
 minisatellite evolution, 1406
 Miocene, 2
 mitochondria, 410, 619, 1280
 mitochondrial DNA, 2, 298, 655, 676, 1155, 1357, 1410, 1575, 1724
 mitochondrial DNA sequences, 67
 mitochondrial genome, 732
 mitochondrial insertions, 1466
 mitochondrial phylogeny, 590
 MIYA, M., 1238
 mobile element, 441
 model comparison, 1292
 MODI, W. S., 180
 modular evolution, 1654
 MOENS, L., 1208
 mole skink, 784
 molecular chaperone, 127
 molecular clock, 849, 868, 1068, 1586
 molecular coevolution, 253, 619
 molecular domestication, 472, 1503
 molecular evolution, 23, 173, 311, 544, 611, 719, 724, 868, 975, 987, 1145, 1178, 1292, 1511, 1654, 1696, 1774
 molecular phylogenetics, 1011
 molecular phylogeny, 397, 784, 817, 1280, 1347, 1645
 molecular polymorphism, 347
 molecular systematics, 67, 1135
 MOLTÓ, M. D., 880
 MONIS, P. T., 1135
 Monte Carlo simulation, 953
 MÖPPS, B., 275
 MORAN, N. A., 83, 1586
 MOREIRA, D., 234
 MORGENTERN, B., 1654
 MORI, H., 332
 MORITZ, C., 157
 morphological homoplasy, 1061
 MORTON, B. R., 1086
 mosaic gene structure, 12
mosaic genes, 1687
 most likely unresolved tree, 564
 most recent common ancestor, 1791
 MOUCHIROUD, D., 1521, 1820
 mtDNA, 525, 784, 1645, 1812
 multigene families, 147, 876, 1369
 multilocus sequence typing, 1496
 multiple alignment, 1315
 multiple comparisons, 1114
 multiple hits, 1098
 multiple local maxima, 1079
 multiplicity of testings, 1114
 MÜNSTERMANN, E., 1231
Mus domesticus, 1763
Mus musculus, 1192
 muscle, 856
 muscle actin genes, 646
Musophagidae, 1300
 mutation, 567, 1496
 mutation bias, 467
 mutation rate of sex chromosomes, 1633
 mutation rate variation, 1357
 mutational bias, 1586
Myomorpha, 715
Mytilus, 655
Myxozoa, 423
 NACHMAN, M. W., 1192, 1763
 NADH5, 1410
 natural selection, 347, 1420, 1528
 NAYLOR, G. J. P., 1347
 negative selection, 1315
 NEI, M., 147
 neighbor-joining, 806
Neisseria meningitidis, 741, 1496
Neisseria species, 773
Neochlamisus, 67
 networks, 37, 405
 neural-specific, 1231
 neurotransmitter, 397
 neutral theory, 655, 1192
 new intron, 1503
 NICKRENT, D. L., 1774
Nicotiana tabacum, 311
 NIEDERSTÄTTER, H., 967
 NIELSEN, R., 711
 NIKAIDO, M., 1046
 NISHIDA, M., 784
 NISHIYAMA, T., 1027
 nodulation, 98
 non-LTR, 1675
 non-LTR retrotransposon, 363, 1427
 nonstationary nucleotide frequencies, 1068
 nonsynonymous nucleotide substitution, 1420
 nonsynonymous substitution(s), 711, 1315
 nonuniform processes, 1068
Nosema locustae, 1415
 NOUAUD, D., 1503
 nuclear, 996
 nuclear DNA, 1466
 nucleolar dominance, 311
 nucleomorph, 321, 1308
 nucleotide divergence rates, 793
 nucleotide diversity, 491, 1633
 nucleotide sequences, 1079
 nucleotide substitution, 996
 nucleotide substitution rate, 849
 O'BRIEN, S. J., 611
 OGAWARA, I., 1238
 OHSHIMA, K., 1046, 1238
 OKADA, N., 1046, 1238
 OLSEN, G. J., 512

OLSEN, K. M., 1406
OMORI, M., 1607
 OOTA, S., 856
OPADIYA, G. B., 967
 operon, 332
OPHIR, R., 49
Opisthocomus hoazin, 1300
 organelle, 996
 organelle evolution, 429
OTTONELLO, S., 1752
OULMOUDEN, A., 1535
 oxidoreductase, 1280
 oxygen transport, 1809

P element, 472, 1503
P14, 114
PAÄBO, S., 1466
PALAU, F., 880
PALAU, J., 1125
PALMER, J. D., 1155
PANCHUK, I. I., 311
PANTAZIDIS, A., 909
Papilio, 286
Papio hamadryas, 23
 paralinear distance, 1027
 parallel evolution, 372
 parameter estimation, 1347
 parametric bootstrap, 1347
 parasitoids, 1711
PARISI, E., 885
 parity rules, 719
 parsimony, 37, 685, 1098
 parthenogenesis, 157
 passerines, 2
PATARNELLO, T., 885
 paternal inheritance, 655
 pathogenicity islands, 12
 PCR, 715

Pearson linear correlation coefficient, 1125
PEARSON, W. R., 806
PEEK, A. S., 1086
PEETERS, K., 1208
PENNY, D., 573
PERCUDANI, R., 1752
PEREZ-LEZAUN, A., 1791
 permutation test, 1400
PETERSON, K. J., 634
PETIT, J.-M., 1535
 pheromone, 1192
PHILIPPE, H., 218, 234, 817
 phylogenetic(s), 685, 1270, 1292, 1400
 phylogenetic analysis, 147
 phylogenetic congruence, 98
 phylogenetic inference, 573
 phylogenetic reconstruction, 806
 phylogenetic signal, 1400
 phylogenetic tree, 694, 1079, 1315
 phylogenies, 423

phylogeny, 67, 180, 218, 275, 286, 298, 354, 372, 405, 553, 567, 577, 750, 773, 849, 856, 876, 987, 1027, 1046, 1061, 1135, 1145, 1155, 1415, 1420, 1427, 1622, 1654, 1696, 1711, 1740, 1774, 1799
 phylogeny congruence tests, 114
 phylogeny construction, 37
 pinnipeds, 611
PISTILLATA, 1037
Placozoa, 423
 plant(s), 275, 553, 826
 plasmid, 98
Plasmodium, 627
 plastid origins, 573
 plastids, 1027
 Pleistocene, 2
Poecilia, 567
 polymerase chain reaction, 967
polymorphism, 676, 724, 1423
 polyploid, 157
polyploidy, 311, 491
PONCE, M. R., 634
 population bottleneck, 1003, 1423
 population demography, 1724
population genetic structure, 363
 population genetics, 724, 1724
population growth, 1791
 population size, 83
population structure, 741
Porifera, 423
positive selection, 706, 711, 1315, 1457
positively misleading, 564
POSSNERT, G., 1466
POUSTKA, A., 1231
PRAT, F., 1369
 presequence evolution, 619
PRIEDE, I. G., 397
 primate evolution, 1019
 primates, 706, 880, 1145
PRITCHARD, J. K., 1791
 process partition, 286
proglucagon, 1548
 prokaryotes, 1219
 promoter(s), 253, 1511
 protamine, 706
 protein adaptation, 1785
 protein-coding genes, 49
 protein secondary structure, 839
 protein structure, 1696
 proteobacteria, 429
PRUDHOMME, J.-C., 165
PRZEWORSKI, M., 246
 pseudogenes, 49, 646, 1178, 1329
 purifying selection, 49, 246
PURUGGANAN, M. D., 1037, 1105
PYBUS, O. G., 953
pyruvate : ferredoxin, 1280

quantitative PCR, 1568
 quartet, 685, 694
QUESADA, H., 655

rab GDI, 1231
RAHBE, Y., 1820
RAMBAUT, A., 405
 range constraints, 467
 RAPDs, 525
RASA, 1400
 rate constancy, 1068
 rate heterogeneity, 441, 1347
 rate variation across sites, 590
 rate variation among sites, 868
RAUSHER, M. D., 266
rbcL, 1155
rDNA ITS sequences, 1011
RECIO, M. J., 2
 recombination, 12, 405, 419, 741, 975, 1496, 1599, 1622
 recombinational replacement sizes, 1687
 recurrence, 1061
 redwinged blackbirds, 1599
REED, R. D., 286
 regulatory evolution, 1548
 regulatory region, 856
REICH, D. W., 453
REITO, L. K., 1785
 relative-rate test, 849
 relative rates, 1521
 repeat interruption, 1641
 repetitive sequence, 676
reptiles, 784
 reptilian genome, 1521
reticulate evolution, 1607
 retroelements, 419
retroposition, 1238
 retroposon(s), 1046, 1614
retrotransposon(s), 419, 502, 793, 938, 1198, 1341, 1256, 1675
retrotransposons/retrovirus, 54
 retroviruses, 1198
reverse transcriptase, 208, 502, 793, 909, 938, 1256, 1427
rhizobia, 98
 ribosomal DNA, 311
Rickettsia, 987, 1178
RIEDMANN, A., 967
RIGINOS, C., 1763
RILEY, M. A., 98
 ring-necked pheasant, 479
RNase H, 793
RNA polymerase II, 1799
 Robertsonian translocation, 1763
ROBICHAUX, R. H., 1105
ROBINS, G., 806
ROCHA, E. P., 1219
 rodent evolution, 715
 rodents, 577
ROGER, A. J., 218, 383

ROGERS, J. S., 1079
 RÖHL, A., 37
 ROLLINSON, D., 1256
 Roman archaeology, 1410
 ROMEU, A., 1125
 ROONEY, A. P., 706
 ROSS, K. G., 525
 ROUSSET, F., 898
RPB2, 1799
 rRNA genes, 987
 RTE family, 1427
 RUÍZ-DEL-VALLE, V., 2
runt, 724
 RYBURN, J. A., 491
 RYDER, O. A., 1145
 12S rRNA, 1410
 16S rDNA, 967
 16S rRNA, 1061
 16S rRNA gene, 773
 16S-like rDNA, 1740
 18S rDNA, 423, 1774
Saccharomyces cerevisiae, 419, 1280
 SAITOU, N., 856
Salmonella typhimurium, 512
 SALZMAN, N. P., 372
 SAMIGULLIN, T., 1006
 sampling, 67
 SÁNCHEZ, M. I., 880
 SANDBLOM, O., 218
 SANTIBÁÑEZ-KOREF, M. F., 1641
 Sawyer, 1369
 SCHARTL, M., 1427
Schistosoma mansoni, 1256
 SCHLÖTTERER, C., 602
 SCHMIDT, T. R., 619
 SCHUBERT, M., 429
 SCHUMACHER, T., 114
 SCHWEIZER, D., 311
 Sciuridae, 715
 Selerotiniaceae, 114
 SCUDIERO, R., 885
 sea urchin embryogenesis, 634
sea urchins, 938
 secondary endosymbiosis, 321
 SEDLACEK, Z., 1231
 SEGAL, J. A., 194
 SEIELSTAD, M. T., 1791
 SEIFRIED, B. A., 1019
 SELANDER, R. K., 12
 selection, 975
selection bias, 1114
 SEOIGHE, C., 666
SequEdit, 1369
 sequence alignment, 1654
sequence analysis, 512
 SERDOBOVA, I., 715
Serinus, 2
 sexual compatibility genes, 975
 sexual selection, 1192
 sharks, 996
 SHARP, P. M., 666, 1484
 SHAW, P. J., 253
 SHEEN, I.-J., 1622
 SHIMAMURA, M., 1046
 SHIMELD, S. M., 1231
 SHIMODAIRA, H., 1114
 SHIMOIKE, K., 1607
 SHIUE, W.-K., 1622
 SHOEMAKER, D. D., 525
 short interspersed repetitive element (SINE), 1046
 short retroposon analysis, 715
signal recognition particle, 817
 SILBERMAN, J. D., 1740
 similarity index, 467
 SIMON, D. L., 750
simple sequence(s), 602, 1641
 simulation, 849, 1079, 1347
 SINE(s), 715, 760, 1238
 SINHA, N., 553
sister chromatid exchange, 960
 site-specific profile, 1664
size-dependent mutability, 960
 SKIBINSKI, D. O. F., 655
slippage, 960
 SLUIMAN, H. J., 1011
 SMALL, R. L., 491
 small-subunit rRNA phylogeny, 321
 SMELSER, D., 1166
 SMITH, N. H., 773
 SOGIN, M. L., 1740
Solenopsis invicta, 525
 SOLTIS, D. E., 1774
 SOLTIS, P. S., 1774
solution space sampling, 806
 SORHANNUS, U., 849
speciation, 931, 1614, 1763
 species sampling effects, 218
 SPERLING, F. A. H., 286
 sperm, 839
 sperm competition, 706
 sperm proteins, 706
 spirochetes, 429
 splice site conservation, 1528
 spliceosomal intron, 1415
split decomposition, 405, 741, 773
 SpI, 194
 SPRATT, B. G., 773, 1496, 1687
 SSU rRNA, 1270
 STANHOPE, M. J., 1011
 STANLEY, S. E., 1575
 STANTON, J., 157
 stationarity, 1347
 STEPHAN, W., 1816
 STEPHENS, J. C., 611
stepwise mutation, 1166
 stepwise mutation model, 453
 STILLER, J. W., 1270
 STOTHARD, D. R., 987
 STRAUSBAUGH, L. D., 1511
 structure-function relationship, 826
 structure of genome, 1391
 STURMBAUER, C., 967
 substitution, 441
 substitution models, 868
 SUGIYAMA, T., 1607
 SULLIVAN, J., 1347
 SUZUKI, K., 922
 SUZUKI, Y., 1315
 SW1, 363
 SWALLA, B. J., 646
 SWEENEY, K., 1427
Swimmer 1, 363
 SWOFFORD, D. L., 1079, 1347
 SYKES, B., 1410
synonymous substitution(s), 711, 1315
systematics, 1511
 SYU, W.-J., 1622
 TABARES, E., 1061
 tadpole larva, 646
 TAKEMOTO, K., 332
 TAKEZAKI, N., 590
 TAN, I. H., 1011
 tandem repeats, 732
 TATA-less, 194
 TATOUT, C., 1614
 taxonomic sampling, 234
 TAYLOR, J. S., 567
Tegula, 839
 teleost, 363
 teleost evolution, 1427
tenascin, 1558
 TFIID, 1415
TGF- β superfamily, 634
 thermophile, 1785
 TIFFIN, P., 266
 total evidence, 286
 TOURASSE, N. J., 1068
Trachemys scripta elegans, 1521
 tracheophytes, 1027
 transcription, 194, 479
 transcription factors, 1654
 transfer RNA, 298, 732
 transition/transversion bias, 868
translational accuracy, 1752
 translational efficiency, 1752
translational selection, 1484
 translocation, 298
transmembrane proteins, 1696
 transposable element(s), 472, 1198, 1251
 transposition rate, 931
transposon, 1503
 tree-making methods, 590
tree reconstruction, 750
 tree superimposition, 856
tree symmetry, 234
 tri-nucleotide diseases, 1166
tri-nucleotide expansion, 880
trnF(GAA), 1329

TRUDEAU, V. L., 397
 trypsin genes, 1117
 TSUNEWAKI, K., 208
 TU, Z., 760, 1675
Tubifex, 967
 Tubificidae, 967
 tubulin, 1308
turacos, 1300
 TURNER, B. J., 363
Ty elements, 419
 Tyl-copia group retrotransposon,
 208
 typological concept, 876
Ulva, 1011
 Ulvophyceae, 321
 UPGMA, 1098
Ursus arctos, 676
 URWIN, R., 741
 UTZET, F., 931
 VAAGE, M., 114
 VACQUIER, V. D., 839
 VAN BELL, C., 849
 VAN HAUWAERT, M.-L., 1208
 VAN OPPEN, M. J. H., 1812
 van Willebrand Factor (vWF), 577
 VANFLETEREN, J., 1208
 VARELA, P., 2
 variable mutation rates, 1098
 VASSETZKY, N., 715
 VAURY, C., 54
 VAVRE, F., 1711
 VERRA, F., 627
vertebrate evolution, 1231
 vertical transmission, 938
 VEUILLE, M., 347, 1645
 VIARI, A., 1219
 VIEIRA, C., 1251
 VIEIRA, C. P., 1474
 VIEIRA, J., 1474
 VIERLING, E., 127
 VIJVERBERG, K., 1329
 VILAIN, J., 1391
 VILLASANTE, A., 1341
virus, 1457
 VNTRs, 1406
 VOLFF, J.-N., 1427
 VOLKOV, R. A., 311
 WADA-KIYAMA, Y., 922
 WALL, J. D., 246
 WANG, S., 1117
 WANG, S.-W., 1622
 WANG, W., 1607
 WARWICK, S., 1614
 WATERS, E. R., 127
 weak selection, 246
 WEBER, K., 275
 WEISS, S., 602
 WENDEL, J. F., 491
 WENNE, R., 655
 WERNEGREEN, J. J., 83, 98
 WHELAN, S., 1292, 1799
 WHITE, M. E., 876
 WHITTAM, T. S., 12
 WIERINCKX, A., 1535
 WILLSON, S. J., 685, 694
 WIRTH, T., 1645
 WITHERSPOON, D. J., 472
 WITZELL, H., 479
 wobble, 1752
Wolbachia, 1711
 WOLF, P. G., 1774
 WOLFE, K. H., 666
 WOROBAY, M., 405
 WU, C.-I., 1003
 WU, J.-C., 1622
Xiphophorus, 1427
Y chromosome, 1791
 YANG, Z., 1357
 yeast, 666
 yeast genome, 1752
 YOSHIDA, M. C., 676
 YOSHIMURA, T., 180
 YOUSON, J. H., 1548
 ZAM, 54
 ZANGERL, B., 602
 ZELUS, D., 1521
 ZHANG, J., 706, 868
 ZHANG, T., 806
 ZHANG, Y.-P., 1145
 ZHANG, Y.-W., 1145
 ZHIVOTOVSKY, L. A., 467
 ZHONG, Y., 1166
 ZIĘTKIEWICZ, E., 1633
 Zimbabwe population, 1816
 zinc fingers, 502
 ZOOROB, R., 479

