DATA 8 Summer 2023

Sample Exam.

FINAL EXAM

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn't work, by emailing course staff with your solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as some students may be taking the exam in a different time zone.

For questions with circular bubbles , you should select exactly <i>one</i> choice.
○ You must choose either this option
Or this one, but not both!
For questions with square checkboxes , you may select <i>multiple</i> choices.
☐ You could select this choice.
☐ You could select this one too!
You may start your exam now. Your exam is due at <deadline> Pacific Time. Go to the next page to begin.</deadline>

Preliminaries

ne.

1. (13 points) D8 on Snackpass

The table orders contains information about food orders that members of Data 8 Course Staff have made this semester.

The first few rows are shown below:

Use	er Restaurant	Total	Receiver	Rating	With Friends
w3ndyk1m	Sharetea	5.40	stephanieke	em 10) True
s_kw33	Riceful	10.24	haileyyebon	jung 2	False
nikkyp	La Burrita	14.98	wfurtaco	7	True
sonyaki55	Poke Parlor	12.86	oskibear	8	False

... (46 rows omitted)

The table has 6 columns:

- User: (string) username of the user who purchased the order
- Restaurant: (string) restaurant name of the order
- Total: (float) total amount spent on the order, in dollars
- Receiver: (string) username of the user who received the order
- Rating: (int) how the user rated their order on a scale of 1-10 (10 being most satisfied)
- With Friends: (boolean) whether or not the user placed the order with friends

((a)) ((3	points)
А	a	, ,	v	pomb

Complete the	following ?	line of cod	de to	visualize	the i	relationship	between	how	much	the	order	\mathbf{costs}	versus
how the user	rated the	e order us	sing a	a scatter	plot.								

ord	ers(A)((B),(C))
i.	(1 pt) Fill in blank (A)
ii.	(1 pt) Fill in blank (B)
iii.	(1 pt) Fill in blank (C)

/1 \		(0	• , \
(b)) (h	points)
(\sim)	, ,	. •	POLITION

Assign the variable usually_friends to	True if ordering	with friends is more	common than not ordering
with friends and False otherwise.			

	<pre>with_friends = orders(A)(B), True).nu without_friends =(C)(D)(E)</pre>	
	usually_friends = with_friends(F) without_friends	
i.	i. (1 pt) Fill in blank (A)	
ii.	ii. (1 pt) Fill in blank (B)	
iii.	iii. (1 pt) Fill in blank (C)	
iv.	iv. (1 pt) Fill in blank (D)	
v.	v. (1 pt) Fill in blank (E)	
vi.	vi. (1 pt) Fill in blank (F)	

(c)	(4	points)
()	`	1

(4 points)	
Assign the variable $frugal_user$ to the name of the $user$ who has spent the $least$ over the entire semestructure.	ester:
<pre>frugal_user = (orders.group((A),(B))</pre>	
i. (1 pt) Fill in blank (A)	
ii. (1 pt) Fill in blank (B)	
iii. (1 pt) Fill in blank (C)	
iv. (1 pt) Fill in blank (D)	

2. (9 points) Berkeley Restaurants

For this problem we are considering restaurants around Berkeley. The restaurant table contains information about specific restaurants including their distance from campus in miles. There are no duplicate restaurants in this table.

Restaurant 7	Type Dist	ance from Campus
Round Table	Pizza	2.2
Panera	Bagels	2.3
Feng Cha	Boba	0.13
Boba Guys	Boba	1.5
Berkeley Thai House	e Thai	0.15

... (306 rows omitted)

The transport table contains informations about how long it takes to get to each restaurant using various modes of transportation. Each restaurant may appear multiple times in this table with different modes of transportation and time in minutes.

Restaurant	Transportation	Time
Panera	Bus	27
La Burrita	Walk	5
Panera	Walk	62
Boba Guys	Drive	10
Panera	Drive	12

 $\dots (1492 \ rows \ omitted)$

For all of the following questions you may assume you are given the function:

```
def first(some_array):
    return some_array.item(0)
```

(a) (3 pt) Which code snippet would produce a table containing the fastest transportation method to get to each restaurant?

(b)	(3 pt) Which code snippet would produce a table containing the fastest time for any type of food (e.g., Pizza, Bagels, Boba)?
	<pre>(restaurant .join("Restaurant", transport, "Restaurant") .select("Type", "Time") .group("Type", min))</pre>
	<pre>(transport .select("Type", "Time") .group("Type", min))</pre>
	<pre>(restaurant</pre>
	<pre>(restaurant .join("Restaurant", transport, "Restaurant") .pivot("Type", "Time"))</pre>
(c)	(3 pt) Which code snippet would produce a table with columns corresponding to each unique transportation mode (e.g., "Bus", "Drive",), rows corresponding to each unique restaurant type (e.g., Pizza, Bagels, Boba) and the cells containing the minimum travel time.
	<pre>(restaurant .join("Restaurant", transport, "Restaurant") .pivot("Time", "Type", "Transportation", first))</pre>
	<pre>(restaurant .join("Restaurant", transport, "Restaurant") .select("Transportation", "Type", "Time") .group("Transportation", "Type", min))</pre>
	<pre>(restaurant .join("Restaurant", transport, "Restaurant") .pivot("Transportation", "Type", "Time", min))</pre>
	<pre>(restaurant</pre>

3. (10 points) Ski Trip

The skiers table below contains information about the preferences of several skiers from a convenience sample of Data 8 staff.

Name	Sport	Height (in)	Downhill Time (s)	Favorite Resort
James	Ski	71	90.52	Vail
Eunice	Ski	66	93.64	Beaver Creek
Oscar	Snowboar	d 69	89.77	Heavenly
Rebecca	Snowboar	d 68	91.01	Palisades
Ciara	Ski	70	101.34	Park City

 \dots (40 rows omitted)

(a) (5 points)

Fill in the blanks to generate the following bar chart showing the popularity of everyone's **Favorite Resort** given in the **skiers** table. You may find the axis labels helpful.

favorite_counts = skiers.___(A)____(B)___)
____(C)_____(D)___(E)____)

i.	(1 pt) Fill in blank (A)
ii.	(1 pt) Fill in blank (B)
iii.	(1 pt) Fill in blank (C)
iv.	(1 pt) Fill in blank (D)
v.	(1 pt) Fill in blank (E)

(:	3 points)	
F	ill in the blanks to generate the following histogram:	
C)kuXvGi.png	
	i. (1 pt) Fill in blank (A)	
	: (1 mt) Fill in blank (D)	
1	i. (1 pt) Fill in blank (B)	
ii	i. (1 pt) Fill in blank (C)	

iv.	(2 pt) Based on the histogram above, would it be appropriate to conclude that, among students at UC Berkeley, skiers are generally faster than snowboarders?
	○ Yes, because there is sufficient spread in the data.
	○ Yes, because everyone is equally likely to be a skier or snowboarder.
	○ No, because this is a convenience sample.
	No. because the difference in the two histograms is not big enough.

4. (15 points) Python Practice

1	(a)	١	(9	points)
ı	a	, ,	U	pomies

For each of the Python expressions below, write the output when the expression is evaluated. If the expression evaluates to an array, you should format your answer like so: array([..., ..., ...]). You may assume the standard imports:

```
from datascience import *
import numpy as np
 i. (2 pt)
   sum(make_array(1, 2, 12) >= 2)
ii. (2 pt)
   make_array(2, 3, 4) - make_array(1, 2, 3)
iii. (3 pt)
   x = 1
   for i in make_array(3, 2, -1):
        x = x * i
   print(x)
iv. (2 pt)
    'data' + str(round(8.2))
```

(b) (3 pt) Which of the following functions correctly returns the number of occurrences of a specific value in a given array? For example, count_arr_occurences(make_array(0,1,0,5,1), 1) should evaluate to 2 and count_arr_occurences(make_array("a", "b", "c"), "c") should evaluate to 1.

```
def count_arr_occurences(arr, value):
       count = 0
      for x in arr:
          if x == value:
              count = count + 1
      return count
def count_arr_occurences(arr, value):
      return arr == value
def count_arr_occurences(arr, value):
      return np.sum(arr = value)
def count_arr_occurences(arr, value):
      count = 0
      for i in np.arange(value):
          if arr.item(i) == value:
             count = count + 1
      return count
```

(c) (3 pt) Which of the following will be output by running the following block of code?

```
if x == 0:
    x = 1

if x == 1:
    x = 2
elif x < 3:
    x = 3
else:
    x = 0

print("x is", x)
    x is 0
    x is 1
    x is 2
    x is 3</pre>
```

x = 0

5. (13 points) Pop vs. Rock

You want to investigate whether rock songs are less *danceable* than pop songs. A song's *danceability* is described as "...how easy it is to dance to, based on a combination of musical elements...". You collect a **random** sample of both rock and pop songs from Spotify's streaming platform and store the data in the songs table.

The songs table is shown below:

	Title	Genre	Dan	ceability
We W	ill Rocl	x You	rock	42.4
Uptow	n Funk	:	pop	88.5

... (1994 rows omitted)

The table has 3 columns:

- Title: (string) the name of the song
- Genre: (string) the genre of the song which is either pop or rock
- Danceability: (float) a danceability rating between 0 and 100 (higher means more danceable)

songs.hist("Danceability",	<pre>group="Genre"</pre>	, bins=np.ara	nge(0, 101, 5	5))	
Note: All bars are visible in the	histogram.				
15Da0D3.png					
Which of the following stateme that apply.	nts are valid con-	clusions, just b	ased on the hist	togram above?	Select
☐ The most danceable song in	the songs table	was a pop song	g.		
☐ Slightly more than 5% of po	p songs had a da	anceability ratio	ng between 80 a	nd 90.	
☐ Roughly the same number of	of pop and rock se	ongs have a da	nceability rating	g between 60 an	nd 65.
☐ In this sample, rock and pop	o songs have diffe	erent empirical	distributions of	danceability ra	tings.
- /	~			•	_

(b)	(2 pt) Suppose you want to test whether rock songs have lower danceability ratings that average. Which of the following is the most appropriate null hypothesis?	n pop songs, on
	\bigcirc In the population of all rock and pop songs on Spotify, rock songs have lower danceabil pop songs, on average.	ity ratings than
	\bigcirc In the sample, rock songs have lower danceability ratings than pop songs, on average.	
	O In the population of all rock and pop songs on Spotify, danceability ratings for both songs are drawn from a uniform distribution between 0 and 100.	n pop and rock
	\bigcirc In the sample, the distribution of danceability ratings is the same for pop songs as for	rock songs.
	O In the population of all rock and pop songs on Spotify, the distribution of danceabilit same for pop songs as for rock songs.	y ratings is the
(c)	(2 pt) Suppose you want to test whether rock songs have lower danceability ratings that average. Which of the following is the best alternate hypothesis?	n pop songs, on
	O In the population of all rock and pop songs on Spotify, rock songs have lower danceabil pop songs, on average.	ity ratings than
	○ In the sample, rock songs have lower danceability ratings than pop songs, on average.	
	O In the population of all rock and pop songs on Spotify, danceability ratings for both songs are drawn from a uniform distribution between 0 and 100.	ı pop and rock
	\bigcirc In the sample, the distribution of danceability ratings is the same for pop songs as for	rock songs.
	O In the population of all rock and pop songs on Spotify, the distribution of danceabilit same for pop songs as for rock songs on average.	y ratings is the

(d)	(3 pt) Suppose you decide to use the difference of means between each group as your test statistic, defined as:					
	average danceability rating for rock songs - average danceability rating for pop songs					
	You first calculate your test statistic on your sample and save this as the <code>obs_stat</code> variable. Then, you simulate under the null hypothesis 10,000 times and record your simulated test statistics in an array called <code>sim_stats</code> . You plot both simulated and observed test statistics, as shown below:					
	s4H5asg.png					
	Write a single line of code that evaluates to the empirical p-value of your test.					
(e)	 (3 pt) Suppose you calculate your empirical p-value to be 0.003. Using a 1% p-value cutoff, which of the following are valid conclusions you can make about your test? Select all that apply. □ The data are consistent with the null hypothesis. □ The data are consistent with the alternative hypothesis. 					
	☐ There is a 0.3% chance that the null hypothesis is true.					
	☐ If the null were true, there is a 1% chance that the null hypothesis would be incorrectly rejected. ☐ None of these.					

6. (21 points) Ocean Animals

When asked to chose their favorite ocean animal out of dolphins, sea turtles, whales, and octopuses, 40% of UC Berkeley students selected dolphins, 32% selected sea turtles, 19% selected whales, and 9% chose octopuses.

The Data 8 staff selected a random sample of 500 data science majors and calculated the proportion of favorite ocean animals:

Animal	Proportion
dolphin	0.37
sea turtle	0.3
whale	0.23
octopus	0.1

We are interested in whether the distribution of favorite ocean animals for data science majors differs from the distribution of all UC Berkeley students.

1.	(2 pt) Complete the null hypothesis: The distribution of favorite ocean animals of data science majors
	is different from the distribution of all UC Berkeley students.
	\bigcirc has exactly the same proportions as the distribution of all UC Berkeley students.
	\bigcirc is like a random sample of size 500 from a uniform distribution with a 1/4 chance for each animal.
	\bigcirc is like a random sample of size 500 from the distribution of all UC Berkeley students.
ii.	(2 pt) Complete the alternative hypothesis: The distribution of favorite ocean animals of data science majors
	\bigcirc is different from the distribution of all UC Berkeley students.
	\bigcirc has exactly the same proportions as the distribution of all UC Berkeley students.
	\bigcirc is like a random sample of size 500 from a uniform distribution with a 1/4 chance for each animal
	\bigcirc is like a random sample of size 500 from the distribution of all UC Berkeley students.
iii.	(2 pt) Which of the following would be the best test statistic to test whether the distribution is different for data science students and UC Berkeley students? Assume that all_students = make_array(0.4, 0.32, 0.19, 0.09) and ds_majors = make_array(0.37, 0.3, 0.23, 0.1).
	<pre> np.mean(all_students) - np.mean(ds_majors)</pre>
	<pre> np.sum(all_students - ds_majors)</pre>
	<pre> np.sum(np.abs(all_students - ds_majors))</pre>
	<pre> np.mean(all_students - ds_majors)</pre>

(b) (8 points)

Fill in the blanks below so that the code correctly performs a hypothesis test by simulating 10,000 times under the null hypothesis. Assume that we have defined test_statistic() correctly to compute a valid test statistic.

	students = make_array(0.4, 0.32, 0.19, 0.09) ajors = make_array(0.37, 0.30, 0.23, 0.10)
	stat = test_statistic(all_students, ds_majors)
for	<pre>lated_stats =(A) i in(B): one_sample =(C)((D), all_students) test_stat = test_statistic(all_students, one_sample) simulated_stats = np.append((E), test_stat)</pre>
p_va p_va	lue = np.count_nonzero((F) >=(G)) /(H) lue
i. ((1 pt) Fill in blank (A)
ii. ((1 pt) Fill in blank (B)
iii. ((1 pt) Fill in blank (C)
iv. ((1 pt) Fill in blank (D)
v. ((1 pt) Fill in blank (E)
vi. ((1 pt) Fill in blank (F)

vii.	(1 pt) Fill in blank (G)
viii.	(1 pt) Fill in blank (H)

(c)	(2 pt) Considering that 10,000 simulations under the null hypothesis were run, which of the following is true about the p-value?
	\bigcirc The p-value must be 0.05 or smaller.
	\bigcirc According to statistical conventions, if the p-value is less than 50%, it is considered small and the result is "statistically significant."
	○ A p-value close to 0 means the data is consistent with the null hypothesis.
	O The p-value is the probability that you conclude that the data is consistent with the null hypothesis when the alternative is actually true.
	O If the p-value is exactly .001, then 10 of the simulations produced test statistics more extreme than the one observed in the data, in the direction of the alternative hypothesis.
(d)	(3 pt) Suppose the result of running the above code leads to p_value = 0.052. Which of the following conclusions could be justified? Select all that apply.
	\square If we use a p-value cutoff of 5%, we should reject the null hypothesis.
	\square There is a 5.2% chance that the null hypothesis is true.
	\square Using a p-value cut-off of 5%, you can reasonably conclude that the distribution of favorite ocean animals of data science majors has the same distribution as the UC Berkeley student population.
	☐ Using a p-value cut-off of 5%, you can reasonably conclude that the distribution of favorite ocean animals of data science majors has a different distribution as the UC Berkeley student population.
	☐ None of these
(e)	(2 pt) Suppose we increased the number of simulations from 10,000 to 50,000. What should we expect to happen to the p-value?
	\bigcirc It should be about the same (i.e., it remains pretty close to 0.0527).
	\bigcirc It should be about 5x larger (i.e., around 0.2635).
	\bigcirc It should be about 5x smaller (i.e., around 0.01054).

	Draw a picture of your experience taking this exam!	
o)	If there was any question on the exam that you thought was ambiguous and required clarifi-	cation
	If there was any question on the exam that you thought was ambiguous and required clarificanswerable, please identify the question (including the title of the section) and state your ass	sumpt
	answerable, please identify the question (including the title of the section) and state your ass Note: We only plan to consider this information if we agree that the question was erroneous or	sumpt
	answerable, please identify the question (including the title of the section) and state your ass	sumpt
	answerable, please identify the question (including the title of the section) and state your ass Note: We only plan to consider this information if we agree that the question was erroneous or	sumpt
	answerable, please identify the question (including the title of the section) and state your ass Note: We only plan to consider this information if we agree that the question was erroneous or	sumpt
	answerable, please identify the question (including the title of the section) and state your ass Note: We only plan to consider this information if we agree that the question was erroneous or	sumpt
	answerable, please identify the question (including the title of the section) and state your ass Note: We only plan to consider this information if we agree that the question was erroneous or	sumpt
	answerable, please identify the question (including the title of the section) and state your ass Note: We only plan to consider this information if we agree that the question was erroneous or	sumpt
	answerable, please identify the question (including the title of the section) and state your ass Note: We only plan to consider this information if we agree that the question was erroneous or	sumpt
	answerable, please identify the question (including the title of the section) and state your ass Note: We only plan to consider this information if we agree that the question was erroneous or	sumpt
	answerable, please identify the question (including the title of the section) and state your ass Note: We only plan to consider this information if we agree that the question was erroneous or	sumpt

No more questions.