CH08-320201

Algorithms and Data Structures ADS

Lecture 15

Dr. Kinga Lipskoch

Spring 2019

Operations

- Querying
 - Search/Minimum & Maximum/Successor & Predecessor
 - Just as in normal BST
 - ▶ O(lg n)
- Modifying
 - ▶ Tree-Insert/Tree-Delete $\rightarrow O(\lg n)$
 - But, need to guarantee red-black tree properties:
 - must change color of some nodes
 - change pointer structure through rotation

Rotations (1)

- ▶ Right-Rotate(T, y):
 - node y becomes right child of its left child x.
 - new left child of y is former right child of x.
- ► Left-Rotate(T,x):
 - node x becomes left child of its right child y.
 - new right child of x is former left child of y.

Rotations (2)

BST property is preserved:

- (left): $key(\alpha) \le x.key \le key(\beta) \le y.key \le key(\gamma)$
- (right): $key(\alpha) \le x.key \le key(\beta) \le y.key \le key(\gamma)$

Rotation: Example

Rotation Pseudocode

Time complexity: O(1)

```
LEFT-ROTATE (T, x)
   y = x.right
                               /\!\!/ set y
 2 x.right = y.left
                               # turn y's left subtree into x's right subtree
 3 if y.left \neq T.nil
        y.left.p = x
 5 v.p = x.p
                               // link x's parent to y
 6 if x.p == T.nil
         T.root = y
    elseif x == x.p.left
        x.p.left = v
10 else x.p.right = y
11 y.left = x
                               /\!\!/ put x on y's left
12 x.p = y
```

Insertion

```
TREE-INSERT(T, z)
    v = NIL
    x = T.root
    while x \neq NIL
       v = x
       if z. key < x. key
            x = x.left
        else x = x.right
    z.p = y
    if y == NIL
10
        T.root = z
11
    elseif z. key < y. key
12
        y.left = z
13
    else y.right = z
```

```
RB-INSERT(T, z)
    v = T.nil
    x = T.root
    while x \neq T.nil
       v = x
     if z. key < x. key
            x = x.left
        else x = x.right
    z.p = y
    if v == T.nil
10
        T.root = z
11
    elseif z. key < y. key
12
   v.left = z
    else y.right = z
14 z.left = T.nil
15 z.right = T.nil
16 \quad z.color = RED
17
    RB-INSERT-FIXUP(T, z)
```

Fixing Red-Black Tree Properties

- ▶ We are inserting a **red** node to a valid red-black tree.
- Which properties may be violated?
 - 1. Duh: Cannot be violated. ✓
 - 2. RooB: Violated if inserted node is root. X
 - 3. LeaB: Inserted node is not a leaf, i.e., no violation. ✓
 - 4. BredB: Violated if parent of inserted node is red. X
 - 5. BH: Not affected by red nodes, i.e., no violation. ✓

Fixing BredB

- ▶ BredB for node z is violated, if z.p is red.
- ▶ Then, z.p.p is black. (BredB property)
- ▶ We need to consider different cases depending on the uncle y of z, i.e., the child of z.p.p that is not z.p.
- ► There are 6 cases:
 - z.p is left child of z.p.p
 - ▶ y is red (Case 1)
 - ▶ y is black
 - z is right child of z.p (Case 2)
 - z is left child of z.p (Case 3)
 - ► z.p is right child of z.p.p
 - ▶ y is red (symmetric to Case 1)
 - ▶ y is black
 - z is right child of z.p (symmetric to Case 2)
 - z is left child of z.p (symmetric to Case 3)

Case 1 (Red Uncle)

Case 2 (Black Uncle, z Right Child)

9 **else if** z = z.p.right10 z = z.p11 Case 2

Case 3 (Black Uncle, z Left Child)

12

13 14 z.p.color = BLACK z.p.p.color = REDRIGHT-ROTATE(T, z.p.p)

Case 3

Putting It All Together

- We need to put the 3 cases (and the 3 symmetric cases) together.
- Moreover, we need to propagate the considerations upwards (see Case 1).
- ► Finally, we have to fix RooB.

```
RB-INSERT-FIXUP(T, z)
    while z.p.color == RED
        if z.p == z.p.p.left
             y = z.p.p.right
            if v.color == RED
                 z.p.color = BLACK
                 v.color = BLACK
                                          Case 1
                 z..p.p.color = RED
                 z = z..p.p
            else if z == z.p.right
10
                     z = z.p
                                          Case 2
11
                     LEFT-ROTATE(T, z)
12
                 z..p.color = BLACK
13
                 z.p.p.color = RED
                                          Case 3
14
                 RIGHT-ROTATE(T, z, p, p)
15
        else (same as then clause
                 with "right" and "left" exchanged)
16
    T.root.color = BLACK
```

Insert Example

Time Complexity

- ▶ In worst case, we have to go all the way from the leaf to the root along the longest path within the tree.
- ▶ Hence, running time is $O(h) = O(\lg n)$ for the fixing of the red-black tree properties.
- ▶ Overall, running time for insertion is $O(h) = O(\lg n)$.
- Example for building up a red-black tree by iterated node insertion:

http://www.youtube.com/watch?v=vDHFF4wjWYU

Deletion (Remember BST)

```
(a)
TREE-DELETE (T, z)
    if z. left == NIL
         TRANSPLANT(T, z, z.right)
                                               (b)
    elseif z.right == NIL
         TRANSPLANT(T, z, z. left)
    else y = \text{Tree-Minimum}(z.right)
6
         if y.p \neq z
                                               (c)
             TRANSPLANT(T, y, y.right)
8
             y.right = z.right
9
             y.right.p = y
10
         TRANSPLANT(T, z, y)
11
         y.left = z.left
                                               (d)
12
         y.left.p = y
                                                                               NIL
```

Deletion (RB) (1)

```
TREE-DELETE (T, z)
    if z. left == NIL
        TRANSPLANT(T, z, z, right)
    elseif z.right == NIL
        TRANSPLANT(T, z, z. left)
    else y = \text{TREE-MINIMUM}(z.right)
        if y.p \neq z
             TRANSPLANT(T, v, v.right)
             v.right = z.right
 9
             v.right.p = v
10
        TRANSPLANT(T, z, y)
        y.left = z.left
11
12
        y.left.p = y
```

```
RB-DELETE(T,z)
    v = z
   v-original-color = v.color
    if z, left == T, nil
        x = z.right
         RB-TRANSPLANT(T, z, z, right)
    elseif z.right == T.nil
        x = z.left
         RB-TRANSPLANT(T, z, z, left)
    else y = \text{TREE-MINIMUM}(z.right)
10
         v-original-color = v.color
        x = v.right
12
        if v, p == z
13
            x.p = y
         else RB-TRANSPLANT(T, v, v.right)
14
15
             v.right = z.right
16
             y.right.p = y
17
         RB-TRANSPLANT(T, z, y)
18
        y.left = z.left
19
        v.left.p = v
20
         v.color = z.color
    if y-original-color == BLACK
         RB-DELETE-FIXUP(T, x)
```

ADS Spring 2019 17 / 47

Deletion (RB) (2)

node y

- either removed (a/b)
- or moved in the tree (c/d)
- v-original-color

node x

- the node that moves into y's original position
- x.p points to y's original parent (since it moves into y's position, note special case in 12/13)

```
RB-DELETE(T, z)
    y-original-color = y.color
    if z. left == T.nil
        x = z.right
         RB-TRANSPLANT(T, z, z, right)
 5
    elseif z.right == T.nil
         x = z.left
         RB-TRANSPLANT(T, z, z, left)
    else y = \text{TREE-MINIMUM}(z.right)
10
         v-original-color = v.color
11
        x = y.right
12
         if v, p == z
13
             x.p = y
14
         else RB-TRANSPLANT(T, v, v.right)
15
             v.right = z..right
16
             y.right.p = y
         RB-TRANSPLANT(T, z, y)
17
18
         y.left = z.left
19
         v.left.p = v
20
         v.color = z..color
21
    if y-original-color == BLACK
22
         RB-DELETE-FIXUP(T, x)
```

Deletion (RB) (3)

```
    y-original-color == red

                         (with z's color
                                                 v (with z's color)
```

```
RB-DELETE(T, z)
    v = z
    v-original-color = v.color
    if z. left == T. nil
        x = z.right
         RB-TRANSPLANT(T, z, z, right)
    elseif z.right == T.nil
        x = z.left
         RB-TRANSPLANT(T, z, z, left)
    else y = \text{TREE-MINIMUM}(z.right)
        y-original-color = y.color
        x = y.right
        if y.p == z
             x.p = v
         else RB-TRANSPLANT(T, y, y.right)
15
             y.right = z.right
16
             v.right.p = v
17
         RB-TRANSPLANT(T, z, y)
18
         y.left = z.left
19
         y.left.p = y
20
         y.color = z.color
    if y-original-color == BLACK
         RB-DELETE-FIXUP(T, x)
```

<□▶ <**□**▶ < 클▶ < 클▶ = 9٩♡

Deletion (RB) (4)

- y-original-color == red
 - no problem
- y-original-color == black
 - violations might occur (2,4,5)
 - main idea to fix
 - x gets an "extra black" & needs to get rid of it
 - 4 cases


```
RB-DELETE(T, z)
    v = z
    y-original-color = y.color
    if z. left == T. nil
         x = z.right
         RB-TRANSPLANT(T, z, z. right)
    elseif z. right == T.nil
         x = z..left
         RB-TRANSPLANT(T, z, z, left)
    else v = \text{TREE-MINIMUM}(z, right)
10
         y-original-color = y.color
11
         x = y.right
         if y.p == z.
13
             x.p = v
         else RB-TRANSPLANT(T, y, y.right)
14
15
             v.right = z.right
16
             y.right.p = y
         RB-TRANSPLANT(T, z, y)
18
         v.left = z..left
19
         v.left.p = v
20
         v.color = z.color
21
    if y-original-color == BLACK
22
         RB-DELETE-FIXUP(T, x)
```

イロト イラト イミト イロト

Fixing Red-Black Tree Properties (1)

Case 1: x's sibling w is red.

Transform to Case 2, 3, or 4 by left rotation and changing colors of nodes B and D.

x = node with extra black w = x's sibling if w.color == RED w.color == BLACK x.p.color == RED LEFT-ROTATE(T, x.p)w = x.p.right

Fixing Red-Black Tree Properties (2)

Case 2: x's sibling w is black and the children of w are black. Set color of w to red and propagate upwards.

x = node with extra black
w = x's sibling
c = color of the node

if w.left.color == BLACK and w.right.color == BLACK w.color = REDx = x.p

Fixing Red-Black Tree Properties (3)

Case 3: x's sibling w is black and the left child of w is red, while the right child of w is black.

Transform to Case 4 by right rotation and changing colors of nodes C and D.

Fixing Red-Black Tree Properties (4)

Case 4: x's sibling w is black and the right child of w is red. Perform a left-rotate and change colors of B, D, and E. Then, the loop terminates.

w.color = x.p.color x.p.color = BLACK w.right.color = BLACKLEFT-ROTATE(T, x.p)

Fixing Red-Black Tree Properties (5)

```
RB-DELETE-FIXUP(T, x)
    while x \neq T.root and x.color == BLACK
        if x == x.p.left
             w = x.p.right
            if w.color == RED
                 w.color = BLACK
                                                                    // case 1
                 x.p.color = RED
                                                                    // case 1
                 LEFT-ROTATE(T, x, p)
                                                                    // case 1
                 w = x.p.right
                                                                   // case 1
            if w.left.color == BLACK and w.right.color == BLACK
10
                 w.color = RED
                                                                   // case 2
                                                                    // case 2
                 x = x.p
12
            else if w.right.color == BLACK
13
                     w.left.color = BLACK
                                                                   // case 3
14
                     w \ color = RED
                                                                    // case 3
15
                     RIGHT-ROTATE (T, w)
                                                                   // case 3
                     w = x.p.right
                                                                   // case 3
16
17
                 w.color = x.p.color
                                                                    // case 4
18
                 x.p.color = BLACK
                                                                    // case 4
19
                 w.right.color = BLACK
                                                                   // case 4
20
                 LEFT-ROTATE(T, x, p)
                                                                   // case 4
21
                 x = T.root
                                                                   // case 4
22
        else (same as then clause with "right" and "left" exchanged)
    x.color = BLACK
```

Time complexity: $O(h) = O(\lg n)$

Conclusion

Modifying operations on red-black trees can be executed in $O(\lg n)$ time.

Direct Access Table

ADS

- ► The idea of a direct access table is that objects are directly accessed via their key.
- ▶ Assuming that keys are out of $U = \{0, 1, ..., m-1\}$.
- ▶ Moreover, assume that keys are distinct.
- ▶ Then, we can set up an array T[0..m-1] with

$$T[k] = \begin{cases} x & \text{if } x \in K \text{ and } key[x] = k \\ \text{NIL} & \text{otherwise.} \end{cases}$$

- Time complexity: With this set-up, we can have the dynamic-set operations (Search, Insert, Delete, ...) in Θ(1).
- ▶ Problem: *m* is often large. For example, for 64-bit numbers we have 18, 446, 744, 073, 709, 551, 616 different keys.

Spring 2019

27 / 47

Hash Function

▶ Use a function h that maps U to a smaller set $\{0, 1, ..., m-1\}$.

- Such a function is called a hash function.
- ▶ The table *T* is called a hash table.
- If two keys are mapped to the same location, we have a collision.

Resolving Collisions

► Collisions can be resolved by storing the colliding mappings in a (singly-)linked list.

▶ Worst case: All keys are mapped to the same location. Then, access time is $\Theta(n)$.

Average Case Analysis (1)

- ► Assumption (simple uniform hashing): Each key is equally likely to be hashed to any slot of the table, independent of where other keys are hashed.
- ▶ Let *n* be the number of keys.
- ▶ Let *m* be the number of slots.
- ▶ The load factor $\alpha = n/m$ represents the average number of keys per slot.

Average Case Analysis (2)

Theorem:

In a hash table in which collisions are resolved by chaining, an unsuccessful search takes average-case time $\Theta(1+\alpha)$ under the assumption of simple uniform hashing.

Proof:

- ▶ Any key *k* not already stored in the table is equally likely to hash to any of the *m* slots.
- ▶ The expected time to search unsuccessfully for a key k is the expected time to search to the end of list T[h(k)].
- Expected length of the list is $E[n_{h(k)}] = \alpha$.
- ▶ Time for computing $h(k) = O(1) \Rightarrow$ overall time $\Theta(1 + \alpha)$.

Average Case Analysis (3)

- ▶ Runtime for unsuccessful search: The expected time for an unsuccessful search is $\Theta(1+\alpha)$ including applying the hash function and accessing the slot and searching the list.
- What does this mean?
 - $m \sim n$, i.e., if $n = O(m) \Rightarrow \alpha = n/m = O(m)/m = O(1)$
 - ▶ Thus, search time is O(1)
- A successful search has the same asymptotic bound.

Choosing a Hash Function (1)

- ▶ What makes a good hash function?
 - ► The goal for creating a hash function is to distribute the keys as uniformly as possible to the slots.
- Division method
 - ▶ Define hashing function $h(k) = k \mod m$.
 - ▶ Deficiency: Do not pick an m that has a small divisor d, as a prevalence of keys with the same modulo d can negatively effect uniformity.
 - **Example:** if m is a power of 2, the hash function only depends on a few bits: If k = 1011000111011010 and $m = 2^6$, then h(k) = 011010.

Choosing a Hash Function (2)

- ► Division method (continue)
 - blueCommon choice: Pick m to be a prime not too close to a power of 2 or 10 and not otherwise prominently used in computing environments.
 - ▶ Example: n = 2000; we are OK with average 3 elements in our collision chain $\Rightarrow m = 701$ (a prime number close to 2000/3), $h(k) = k \mod 701$.

Choosing a Hash Function (3)

► Multiplication method

- Assume all keys are integers, $m = 2^r$, and the computer uses w-bit words.
- ▶ Define hash function $h(k) = (A \cdot k \mod 2^w) >> (w r)$, where ">>" is the right bit-shift operator and A is an odd integer with $2^{w-1} < A < 2^w$.
- Note that these operations are faster than divisions.
- Example: $m = 2^3 = 8$ and w = 7.

Resolving Collisions by Open Addressing

- ▶ No additional storage is used.
- ▶ Only store one element per slot.
- Insertion probes the table systematically until an empty slot is found.
- ▶ The hash function depends on the key and the probe number, i.e., $h: U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$.
- ► The probe sequence < h(k,0), h(k,1), ..., h(k,m-1) > should be a permutation of $\{0,1,...,m-1\}$.

Insert Example

Search Example

- ▶ Search key k = 496
 - Search uses the same probe sequence, terminating successfully if it finds the key and unsuccessfully if it encounters an empty slot (or made it all the way through the list)
- What about delete?
 - ▶ Have a special node type: DELETED
 - lacktriangle Note though: search times no longer depend on load factor lpha
 - ► Chaining more commonly used when keys must also be deleted

Probing Strategies (1)

Linear probing:

- ► Given an ordinary hash function h'(k), linear probing uses the hash function $h(k, i) = (h'(k) + i) \mod m$.
- ▶ This is a simple computation.
- However, it may suffer from primary clustering, where long runs of occupied slots build up and tend to get longer.
 - empty slot preceded by i full slots gets filled next with probability (i+1)/m

Probing Strategies (2)

Quadratic probing:

- ▶ Quadratic probing uses the hash function $h(k, i) = (h'(k) + c_1 \cdot i + c_2 \cdot i^2) \mod m$.
- Offset by amount that depends on quadratic manner, works much better than linear probing
- But, it may still suffer from secondary clustering: If two keys have initially the same value, then they also have the same probe sequence
- ▶ In addition c_1 , c_2 , and m need to be constrained to make full use of the hash table

Probing Strategies (3)

Double hashing:

- ▶ Given two ordinary hash functions $h_1(k)$ and $h_2(k)$, double hashing uses the hash function $h(k, i) = (h_1(k) + i \cdot h_2(k))$ mod m.
- ▶ The initial probe goes to position $T[h_1(k)]$; successive probe positions are offset by $h_2(k) \rightarrow$ the initial probe position, the offset, or both, may vary
- ▶ This method generates excellent results, if $h_2(k)$ is "relatively prime" to the hash-table size m,

ADS Spring 2019 41 / 47

Probing Strategies (4)

Double hashing (continue):

- ▶ e.g., by making m a power of 2 and design h₂(k) to only produce odd numbers.
- ▶ or let m be prime and design h₂ such that it always returns a positive integer less than m, e.g. let m' be slightly less than m:

$$h_1(k) = k \mod m$$

$$h_2(k) = 1 + (k \mod m')$$

$$h_1(k) = k \mod 13$$

 $h_2(k) = 1 + (k \mod 11)$
 $-> k=14; h_1(k)=1, h_2(k)=4$

-> k=27; h₁(k)=1, h₂(k)=6

Analysis of Open Addressing (1)

Theorem:

- Assume uniform hashing, i.e., each key is likely to have any one of the *m*! permutations as its probe sequence.
- Given an open-addressed hash table with load factor $\alpha = n/m < 1$.
- ▶ The expected number of probes in an unsuccessful search is, at most, $1/(1-\alpha)$.

Analysis of Open Addressing (2)

Proof:

- At least, one probe is always necessary.
- ▶ With probability n/m, the first probe hits an occupied slot, i.e., a second probe is necessary.
- ▶ With probability (n-1)/(m-1), the second probe hits an occupied slot, i.e., a third probe is necessary.
- ▶ With probability (n-2)/(m-2), the third probe hits an occupied slot, i.e., a fourth probe is necessary.
- **...**

Analysis of Open Addressing (3)

Given that
$$\frac{n-i}{m-i} < \frac{n}{m} = \alpha$$
 for $i = 1, 2, ..., n$.

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\cdots \left(1 + \frac{1}{m-n+1} \right) \cdots \right) \right) \right)$$

$$\leq 1 + \alpha \left(1 + \alpha \left(1 + \alpha \left(\cdots \left(1 + \alpha \right) \cdots \right) \right) \right)$$

$$\leq 1 + \alpha + \alpha^2 + \alpha^3 + \cdots$$

$$= \sum_{i=0}^{\infty} \alpha^i$$

$$= \frac{1}{1-\alpha}.$$

Analysis of Open Addressing (4)

- ► The successful search takes less number of probes pected number is $1/\alpha \ln(1/(1-\alpha))$.
- We conclude that if α is constant, then accessing an open-addressed hash table takes constant time.
- ▶ For example, if the table is half full, the expected number of probes is 1/(1-0.5) = 2.
- ▶ Or, if the table is 90% full, the expected number of probes is 1/(1-0.9) = 10.

Summary

- ▶ Dynamic sets with queries and modifying operations.
- Array: Random access, search in $O(\lg n)$, but modifying operations O(n).
- ▶ Stack: LIFO only. Operations in O(1).
- ▶ Queue: FIFO only. Operations in O(1).
- ▶ Linked list: Modifying operations in O(1), but search O(n).
- ▶ BST: All operations in O(h).
- ▶ Red-black trees: All operations in $O(\lg n)$.
- ▶ Heap: All operations in $O(\lg n)$.
- ▶ Hash tables: Operations in O(1), but additional storage space.