La photosynthèse

Phases	Couplages		Commontaines
	Oxydation	Réduction	Commentaires
			Photo-excitation de la chlorophylle A
	4 chlorophylles	2 R	Il faut 1 photon pour exciter 1 molécule de chlorophylle A
	(Membrane thylakoides)	(Stroma)	Conversion énergie lumineuse en énergie chimique : RH ₂ = « pouvoir réducteur »
			Électrons pris en charge par une chaîne de transporteurs dans la membrane des thylakoides jusqu'au stroma.
Photochimique			Photolyse de l'eau
	2 H ₂ O	4 chlorophylles *	Concentration H+ augmente dans lumen -> gradient H+ : lumen fortement concentré / stroma faiblement concentré.
	(Lumen)	(Membrane thylakoides)	Gradient H+ -> force proto motrice -> énergie permettant phosphorylation ADP (ADP + Pi -> ATP) grâce à ATP synthétase située dans la membrane des thylakoides.
			Les chlorophylles retournent à leur état fondamental (réduites)
			Cycle de Calvin: réduction du carbone
Chimique			Nécessite RuBP et enzyme: Rubisco
	12 RH ₂	6 CO ₂	Nécessite un apport d'énergie: hydrolyse de 18 ATP pour 1 glucose produit.
	(Stroma)	(Stroma)	Conversion énergie chimique issue de la phase photochimique (RH $_2$ et ATP) en énergie chimique (glucose: $C_6H_{12}O_6$).
			Régénération ADP et R nécessaires à la phase photochimique.

Sachant qu'une oxydation est une perte d'électrons et qu'une réduction est un gain d'électrons et qu'il y a autant d'électrons échangés que de protons H+, vous pouvez à partir du tableau ci dessus retrouver toutes les équations des couplages oxydoréduction ainsi que les équations bilans.