PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-154310

(43) Date of publication of application: 27.05.2003

(51)Int.CI.

B05D 7/14 B05D 1/38 B05D 7/24 B32B 15/08 B32B 15/20 CO9C 1/64 C09C 3/10 5/00 CO9D C09D 5/03 CO9D 5/08 CO9D 5/29

CO9D163/00

(21)Application number : 2001-356432

(71)Applicant: TOYOTA MOTOR CORP

KANSAI PAINT CO LTD KUBOKOU PAINT KK

(22)Date of filing:

21.11.2001

(72)Inventor: KAWAZU KENJI

KAWAZU KENJI

NAKAMURA MASAHIRO

OGOSHI TOSHIO TAKEDA HIROKI KATO YOSHIAKI

HARADA MASAYOSHI

IMOSE MANABU

(54) METHOD FOR FORMING COATING FILM ON ALUMINUM PRODUCT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method for forming a coating film on an aluminum product, by which a double layered coating film with reliable corrosion resistance, weatherability and superb design properties can be obtained and no organic solvent is discharged at all despite a double layered coating film forming step.

SOLUTION: A thermoset epoxy resin powdery primer coating material (1), at least one kind of a thermoset powdery luster color base coating material (2) containing a sheening agent selected from the group consisting of a resin- coated aluminum flake pigment, a colored aluminum flake pigment, a mica pigment, a metallic titanium flake, an alumina flake, a silica flake, a graphite, a stainless flake and a plate-like iron oxide and a thermoset powdery clear coating material (3) are applied for powder coating in that order, on the surface of an aluminum product. Thus the bright double layered coating film is formed.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP),

·(12)公開特許公報(A)

(11)特許出願公開番号

特開2003-154310

(P2003-154310A) (43)公開日 平成15年5月27日(2003.5.27)

(51) Int. Cl. 7	識別記号		FΙ					テー	ムコート.	(参考)
B05D 7/14	101		B05D	7/14		101	С	4D075		
1/38				1/38				4F100		
7/24	301			7/24		301	Α	4J037		
						301	R	4J038		
	302					302	U			
		審査請求	未請求	請求	項の数8	OL	(全14)	頁) 占	最終頁	に続く
(21)出願番号	特願2001-356432(P2001	1 — 356432)	(71)出	願人	00000320					
(22)出顧日	平成13年11月21日(2001.1	11.21)			トヨタ自愛知県豊	田市ト		番地		
			(71)出	顧人	00000140		.			
					関西ペイ					
			(-)		兵庫県尼		崎町33番	\$ 1 号		
			(71)出	願人	59103830)3				
					久保孝ペ	イント	株式会社	Ł		
					大阪府大	阪市東海	定川区西	海淡路3	丁目15	番27
					문					

(74)代理人 100067828

弁理士 小谷 悦司 (外2名)

最終頁に続く

(54) 【発明の名称】アルミニウム製品の塗膜形成方法

(57)【要約】

【課題】 耐食性、耐候性及び意匠性に優れた光輝性を 有する複層塗膜を得ることができ、かつ、複層塗膜形成 工程であるにも拘わらず、有機溶剤を全く排出しない塗 膜形成方法を提供する。

【解決手段】 アルミニウム製品の表面に、熱硬化性エポキシ樹脂系粉体プライマー塗料(1)、樹脂コーティングしたアルミニウムフレーク顔料、着色アルミニウムフレーク顔料、マイカ顔料、金属チタンフレーク、アルミナフレーク、シリカフレーク、グラファイト、ステンレスフレーク及び板状酸化鉄よりなる群から選ばれる少なくとも一種の光輝材を含有する熱硬化性粉体光輝性カラーベース塗料(2)、及び熱硬化性粉体クリヤー塗料(3)を、この順で、粉体塗装して、光輝性を有する複層塗膜を形成する塗膜形成方法。

【特許請求の範囲】

層塗膜を形成する塗膜形成方法。

【請求項1】アルミニウム製品の表面に、熱硬化性エポ キシ樹脂系粉体プライマー塗料 (1)、樹脂コーティン グしたアルミニウムフレーク顔料、着色アルミニウムフ レーク顔料、マイカ顔料、金属チタンフレーク、アルミ ナフレーク、シリカフレーク、グラファイト、ステンレ スフレーク及び板状酸化鉄よりなる群から選ばれる少な くとも一種の光輝材を含有する熱硬化性粉体光輝性カラ ーペース塗料(2)、及び熱硬化性粉体クリヤー塗料 (3)を、この順で、粉体塗装して、光輝性を有する複 10

【請求項2】アルミニウム製品の表面に、熱硬化性エポ キシ樹脂系粉体プライマー塗料 (1)、熱硬化性粉体光 輝性カラーベース塗料(2)、及び熱硬化性粉体クリヤ 一塗料(3)を、この順で、塗装した後に、これらの3 層の塗料を、同時に焼付けして、複層塗膜を形成する請 求項1に記載の塗膜形成方法。

【請求項3】アルミニウム製品の表面に、熱硬化性エポ キシ樹脂系粉体プライマー塗料(1)を塗装し、該粉体 プライマー塗料の溶融温度以上で、かつ、硬化反応が開 20 始しない温度で加熱溶融し、さらに、熱硬化性粉体光輝 性カラーベース塗料 (2) を塗装し、該粉体光輝性カラ ーベース塗料の溶融温度以上で、かつ、硬化反応が開始 しない温度で加熱溶融し、さらに、熱硬化性粉体クリヤ ー塗料(3)を塗装し、次いで、上記(1)、(2)及 び(3)の粉体塗料が硬化する温度で、これらの3層の 塗料を同時に焼付けて、複層塗膜を形成する請求項1に 記載の塗膜形成方法。

【請求項4】アルミニウム製品の表面に、熱硬化性エポ キシ樹脂系粉体プライマー塗料(1)を塗装した後に、 該粉体プライマー塗料の硬化する温度で焼付け、さら に、熱硬化性粉体光輝性カラーベース塗料(2)を塗装 した後に、加熱しないか、又は、該粉体光輝性カラーベ ース塗料の溶融温度以上で、かつ、硬化反応が開始しな い温度で加熱溶融し、さらに、熱硬化性粉体クリヤー塗 料(3)を塗装し、次いで、上記(2)及び(3)の粉 体塗料が硬化する温度で焼付けて、複層塗膜を形成する 請求項1に記載の塗膜形成方法。

【請求項5】アルミニウム製品の表面に、熱硬化性エポ キシ樹脂系粉体プライマー塗料(1)を塗装した後に、 該粉体プライマー塗料(1)が硬化する温度で焼付け、 さらに、熱硬化性粉体光輝性カラーベース塗料 (2) を 塗装した後に、該粉体光輝性カラーベース塗料 (2) が 硬化する温度で焼付け、次いで、熱硬化性粉体クリヤー 塗料(3)を塗装し、該粉体クリヤー塗料(3)が硬化 する温度で焼付けて、複層塗膜を形成する請求項1に記 載の塗膜形成方法。

【請求項6】熱硬化性粉体光輝性カラーベース塗料

(2)が、熱硬化性ポリエステル樹脂粉体塗料又は熱硬 化性アクリル樹脂粉体塗料である、請求項1~5のいず 50 形成することによって、複層塗膜形成工程であるにも拘

れかに記載の塗膜形成方法。

【請求項7】熱硬化性粉体クリヤー塗料(3)が、熱硬 化性ポリエステル樹脂粉体塗料又は熱硬化性アクリル樹 脂粉体塗料である、請求項1~6のいずれかに記載の塗 膜形成方法。

【請求項8】アルミニウム製品が、アルミニウムホイー ルである、請求項1~7のいずれかに記載の塗膜形成方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、アルミニウム製品 に光輝性を有する複層塗膜を形成する方法に関する。

[0002]

【従来の技術】チューブやタイヤなどの取付け部材であ る自動車用ホイールとして、スチールホイールやアルミ ニウムホイールなどが使用されている。そのうち、軽量 化、耐食性及び意匠性などにすぐれたアルミニウムホイ ールが多く用いられている。このアルミニウムホイール 等のアルミニウム製品には、保護と美観のために、通 常、例えば、プライマー塗料として、熱硬化性粉体塗料 又は熱硬化性有機溶剤型塗料を塗装し、焼付けした後、 さらに熱硬化性溶剤型カラーベース塗料を塗装し、次い で、焼付けし、又は焼付けしないで、上塗り塗料とし て、熱硬化性アクリル樹脂系有機溶剤クリヤー塗料を塗 装している。

【0003】このような複層塗膜形成工程の塗装におい て、使用される溶剤型塗料から排出される有機溶剤の地 球環境に与える影響が問題とされていた。そのために、 有機溶剤を全く含まない粉体塗料を、複層塗膜形成工程 30 の一部に適用している例があるが、環境保護の観点から は、必ずしも十分ではない状況にあった。また、各工程 に使用される塗料の組合せによっては、アルミニウム製 品を塗装する重要な目的である耐食性、耐候性及び意匠 性が不十分であるという問題もあった。更に、プライマ 一層に用いる塗料が、ポリエステル樹脂塗料又はアクリ ル樹脂塗料である場合には、耐食性が劣るという問題も あった。

[0004]

[0005]

【発明が解決しようとする課題】本発明の目的は、前記 40 従来技術の諸問題を解消し、耐食性、耐候性及び意匠性 が優れた光輝性を有する複層塗膜を得ることができ、か つ、複層塗膜形成工程であるにも拘わらず、有機溶剤を 全く排出しない塗膜形成方法を提供することにある。

【課題を解決するための手段】本発明者は、アルミニウ ム製品の表面に、熱硬化性エポキシ樹脂系粉体プライマ 一塗料(1)、特定の光輝材を含有する熱硬化性粉体光 輝性カラーベース塗料(2)、及び熱硬化性粉体クリヤ 一塗料(3)を、この順で、粉体塗装して、複層塗膜を

4 (3) が硬化する温度で焼付けて、複層塗膜を形成する 前記項1に記載の塗膜形成方法。

【0012】6. 熱硬化性粉体光輝性カラーベース塗料 (2) が、熱硬化性ポリエステル樹脂粉体塗料又は熱硬化性アクリル樹脂粉体塗料である、前記項1~5のいずれかに記載の塗膜形成方法。

【0013】7. 熱硬化性粉体クリヤー塗料(3)が、 熱硬化性ポリエステル樹脂粉体塗料又は熱硬化性アクリ ル樹脂粉体塗料である、前記項1~6のいずれかに記載 の塗膜形成方法。

【0014】8. アルミニウム製品が、アルミニウムホイールである、前記項1~7のいずれかに記載の塗膜形成方法。

[0015]

【発明の実施の形態】以下、本発明の塗膜形成方法について、更に詳細に説明する。

【0016】被塗物

本発明の塗膜形成方法を適用する被塗物は、アルミニウム製品である。アルミニウム製品としては、乗用車、オートバイ、トラック及びワゴン車などの自動車用チューブやタイヤなどの取付け部材であるアルミニウムホイールなどが挙げられる。

【0017】アルミニウム製品の材質としては、通常は、アルミニウムを主成分とし、更にマグネシウムやケイ素などを含む合金からなっている。アルミニウム製品の形状としては、軽量化及び意匠性などの目的で、任意の形状に成型加工したものが適用できる。また、ショットプラストした凹凸状の鋳肌面や切削した平滑面などが混在するアルミニウム製品も包含される。

【0018】アルミニウム製品は、本発明の塗膜形成方法を行うのに先立って、クロム酸塩またはリン酸塩などで、その表面をあらかじめ化成処理しておくことが好ましい。

【0019】本発明の塗膜形成方法で使用する熱硬化性 エポキシ樹脂系粉体プライマー塗料(1)、熱硬化性粉 体光輝性カラーベース塗料(2)及び熱硬化性粉体クリ ヤー塗料(3)の構成成分について、以下に説明する。

【0020】熱硬化性エポキシ樹脂系粉体プライマー塗料(1)

プライマーとして用いる粉体塗料は、熱硬化性エポキシ 樹脂系粉体塗料である。このプライマー塗料を用いるこ とにより、得られる複層塗膜の耐食性を向上せしめるこ とができる。

【0021】熱硬化性エポキシ樹脂系粉体プライマー塗料は、エポキシ樹脂を主成分とし、更に、エポキシ樹脂中の架橋性官能基であるエポキシ基と反応して硬化塗膜を形成する架橋剤を含有する。

【0022】エポキシ樹脂としては、1分子中に平均約 2個以上、好ましくは、平均約2~500個のエポキシ 50基を有する液状又は固体状のものが使用できる。具体的

わらず、有機溶剤を全く排出せず、かつ、耐食性、耐候性及び意匠性に優れた光輝性を有する複層塗膜を得ることができることを見出し、これに基づき、本発明を完成するに至った。

【0006】即ち、本発明は、以下の塗膜形成方法に係る。

【0007】1.アルミニウム製品の表面に、熱硬化性 エポキシ樹脂系粉体プライマー塗料(1)、樹脂コーティングしたアルミニウムフレーク顔料、着色アルミニウムフレーク顔料、マイカ顔料、金属チタンフレーク、ア 10 ルミナフレーク、シリカフレーク、グラファイト、ステンレスフレーク及び板状酸化鉄よりなる群から選ばれる少なくとも一種の光輝材を含有する熱硬化性粉体光輝性カラーベース塗料(2)、及び熱硬化性粉体クリヤー塗料(3)を、この順で、粉体塗装して、光輝性を有する複層塗膜を形成する塗膜形成方法。

【0008】2.アルミニウム製品の表面に、熱硬化性 エポキシ樹脂系粉体プライマー塗料(1)、熱硬化性粉 体光輝性カラーベース塗料(2)、及び熱硬化性粉体ク リヤー塗料(3)を、この順で、塗装した後に、これら の3層の塗料を、同時に焼付けして、複層塗膜を形成す る、前記項1に記載の塗膜形成方法。

【0009】3.アルミニウム製品の表面に、熱硬化性 エポキシ樹脂系粉体プライマー塗料(1)を塗装し、該 粉体プライマー塗料の溶融温度以上で、かつ、硬化反応 が開始しない温度で加熱溶融し、さらに、熱硬化性粉体 光輝性カラーベース塗料(2)を塗装し、該粉体光輝性 カラーベース塗料の溶融温度以上で、かつ、硬化反応が 開始しない温度で加熱溶融し、さらに、熱硬化性粉体クリヤー塗料(3)を塗装し、次いで、上記(1)、

(2)及び(3)の粉体塗料が硬化する温度で、これらの3層の塗料を同時に焼付けて、複層塗膜を形成する前記項1に記載の塗膜形成方法。

【0010】4. アルミニウム製品の表面に、熱硬化性 エポキシ樹脂系粉体プライマー塗料(1)を塗装した後に、該粉体プライマー塗料の硬化する温度で焼付け、さらに、熱硬化性粉体光輝性カラーベース塗料(2)を塗装した後に、加熱しないか、又は、該粉体光輝性カラーベース塗料の溶融温度以上で、かつ、硬化反応が開始しない温度で加熱溶融し、さらに、熱硬化性粉体クリヤー 40 塗料(3)を塗装し、次いで、上記(2)及び(3)の 粉体塗料が硬化する温度で焼付けて、複層塗膜を形成する前記項1に記載の塗膜形成方法。

【0011】5. アルミニウム製品の表面に、熱硬化性 エポキシ樹脂系粉体プライマー塗料(1)を塗装した後 に、該粉体プライマー塗料(1)が硬化する温度で焼付 け、さらに、熱硬化性粉体光輝性カラーベース塗料

(2)を塗装した後に、該粉体光輝性カラーベース塗料

(2) が硬化する温度で焼付け、次いで、熱硬化性粉体クリヤー塗料(3)を塗装し、該粉体クリヤー塗料

には、商品名として、例えば、エピコート812、エピコート815、エピコート828、エピコート820、エピコート834、エピコート1001、エピコート1002、エピコート1004、エピコート1007(以上、油化シェルエポキシ(株)製)、アラルダイト502、アラルダイト6005、アラルダイトGY-6084、アラルダイト6097、アラルダイトGT7004(以上、チバ・ガイギー製)、DER-662、DER-664、DER-667(以上、ダウ・ケミカル製)等のピスフェノールーエピクロルヒドリン型エポキシ樹10脂、EPPN-201、EPPN-202、EOCN-1020、EOCN-1025(以上、日本化薬(株)製)等のノボラック型エポキシ樹脂等を使用する。

【0023】架橋剤としては、カルボキシル基を有するポリカルボン酸、ポリカルボン酸の無水物、及びポリカルボン酸のジヒドラジド等の硬化剤を使用する。 上記ポリカルボン酸としては、ドデカン二酸、エイコサン二酸、セバシン酸、アジピン酸、トリメリット酸等が挙げられる。

【0024】また、必要に応じて、イミダゾール類等の 20 重合開始剤、カルボキシル基を有するポリエステル樹脂 等を含有していてもよい。

【0025】粉体プライマー塗料(1)には、必要に応じて、顔料、硬化触媒、紫外線吸収剤、紫外線安定剤、酸化防止剤、表面調整剤、ワキ防止剤等の添加剤を配合することができる。

【0026】顔料としては、例えば、有機顔料、無機顔料、炭素系顔料、メタリック顔料、パール顔料、防錆顔料等を使用する。

【0027】有機顔料としては、例えば、キナクリドン 30 等のキナクリドン系顔料、ピグメントレッド等のアゾ系 顔料、フタロシアニンブルー等のフタロシアニン系顔料 等が挙げられる。

【0028】無機顔料としては、例えば、酸化チタン、 炭酸カルシウム、バリタ、クレー、タルク、シリカ等が 挙げられる。

【0029】炭素系顔料としては、例えば、カーボンブラック、グラファイト等が挙げられる。

【0030】メタリック顔料としては、例えば、アルミニウム等が挙げられる。

【0031】パール顔料としては、例えば、雲母状酸化 鉄、着色雲母状酸化鉄等が挙げられる。

【0032】防錆顔料としては、例えば、ベンガラ、ストロンチウムクロメート、リン酸亜鉛等が挙げられる。

【0033】硬化触媒としては、ジブチル錫ジアセテート、ジブチル錫ジラウレート、トリエチルアミン、ジエタノールアミン等を使用する。

【0034】紫外線吸収剤としては、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリシレート系化合物、蓚酸アニリド系化合物等を使用する。

【0035】紫外線安定剤としては、ヒンダードアミン系化合物等を使用する。

【0036】酸化防止剤としては、フェノール系化合物、有機イオウ系化合物、ホスファイト系化合物等を使用する。

【0037】上記粉体塗料は、従来公知の方法、例えば、上記各成分を配合し、ミキサーでドライブレンドした後、加熱溶融混練し、冷却、粗粉砕、微粉砕又は濾過することにより製造できる。

【0038】<u>熱硬化性粉体光輝性カラーペース塗料</u> (2)

カラーベースに用いる粉体塗料としては、熱硬化性ポリエステル樹脂粉体塗料又は熱硬化性アクリル樹脂粉体塗料のいずれかを用いるのが、得られる複層塗膜の耐候性の観点から好ましい。

【0039】(2-1)熱硬化性ポリエステル樹脂粉体 光輝性カラーベース塗料は、架橋性官能基として、水酸 基又はカルボキシル基を有するポリエステル樹脂を主成 分とし、更に、該官能基と反応して硬化塗膜を形成する 架橋剤と、光輝材を含有する。

【0040】ポリエステル樹脂としては、ポリエステルポリカルボン酸樹脂、水酸基含有ポリエステル樹脂等を使用する。

【0041】ポリエステルポリカルボン酸樹脂としては、酸価(KOHmg/樹脂1g)約10~100、好ましくは、約20~80、平均分子量約500~50,000、軟化温度約60~150℃の粉体樹脂が使用できる。酸価が約10未満になると、硬化性が低下し、耐食性、耐候性等の性能が悪くなる。一方、酸価が約100を上回ると、塗膜の耐水性、耐候性等が低下する。平均分子量が約500を下回ると、塗膜の耐水性、加工性等が低下する。一方、平均分子量が約50,000を上回ると、塗膜の平滑性等が低下するため、好ましくない。軟化温度が約60℃を下回ると塗料の耐プロッキング性が低下する。一方、軟化温度が約150℃を上回ると、塗膜の平滑性等が低下するので好ましくない。

【0042】該ポリエステルポリカルボン酸樹脂は、主に多塩基酸又はそのメチルエステルと、多価アルコールとのエステル化物である。例えば、フタル酸、イソフタル酸、テトラヒドロフタル酸、テトラヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、イソフタル酸ジメチル、テレフタル酸ジメチル等の芳香族又は脂環族ジカルボン酸化合物、及び、必要に応じて、アジピン酸、セパシン酸、マレイン酸、無水マレイン酸、トリメリット酸、無水トリメリット酸等のその他のポリカルボン酸化合物等の多塩基酸と、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、プタンジオール、1,6-ヘキサンジオール等のポリオール化合物とを、カルボキシル基を有するようにエステル化反応させたものが使用でき

る。

【0043】水酸基含有ポリエステル樹脂としては、水 酸基価(KOHmg/樹脂1g)約40~300、好ま しくは、50~200、数平均分子量約400~20, 000、好ましくは1,000~5,000、軟化温度 約30~140℃、好ましくは、35~120℃の樹脂 が使用できる。

【0044】水酸基含有ポリエステル樹脂の水酸基価 が、約40未満になると、塗料の硬化性等が劣り、約3 00を上回ると、塗膜の耐水性等が悪くなる。数平均分 10 子量が約400未満になると、塗膜の耐久性等が悪くな り、一方、約20,000を上回ると、塗膜の平滑性が 悪くなる。軟化温度が約30℃未満になると、塗料の耐 ブロッキング性が劣り、一方、約140℃を上回ると塗 膜の平滑性が劣る。

【0045】架橋剤としては、ポリエステル樹脂が有す る架橋性官能基が水酸基の場合は、アミノ基を有するア ミノ樹脂、ブロックポリイソシアネート基を有するブロ ックイソシアネート化合物等の硬化剤を使用する。

【0046】アミノ基を有するアミノ樹脂としては、へ 20 キサメトキシメラミン樹脂等が挙げられる。

【0047】また、ブロックイソシアネート化合物とし ては、ヘキサメチレンジイソシアネート、トリメチレン ジイソシアネート、イソホロンジイソシアネート、水素 添加キシリレンジイソシアネート等の脂肪族又は脂環族 ポリイソシアネート化合物を、フェノール類、ラクタム 類、アルコール類、オキシム類等の化合物によりイソシ アネート基をブロック化したもの等が挙げられる。

【0048】ポリエステル樹脂が有する架橋性官能基が カルボキシル基の場合は、エポキシ基を有するポリエポ 30 キシド及びβ-ヒドロキシエチルアルキルアミド等の硬 化剤を使用する。

【0049】エポキシ基を有するポリエポキシドとして は、トリグリシジルイソシアネート、アクリル系ポリエ ポキシド等が挙げられる。

【0050】アクリル系ポリエポキシドとしては、例え ば、グリシジルアクリレート、グリシジルメタアクリレ ート、3、4-エポキシシクロヘキシルメチルアクリレ ート、3,4-エポキシシクロヘキシルメチルメタアク 同重合体、該エポキシ基含有不飽和モノマーとその他の 不飽和モノマーとのラジカル共重合体等が挙げられる。

【0051】上記その他の不飽和モノマーとしては、例 えば、メチルアクリレート、メチルメタアクリレート、 エチルアクリレート、エチルメタアクリレート、シクロ ヘキシルアクリレート、シクロヘキシルメタアクリレー ト等のアクリル酸又はメタアクリル酸のアルキル又はシ クロアルキルエステル類;ヒドロキシエチルアクリレー ト、ヒドロキシエチルメタアクリレート等の水酸基含有 不飽和モノマー類;スチレン等の芳香族化合物類;アク 50

リルニトリル、メタアクリルニトリル等のニトリル化合 物類等が挙げられる。

【0052】(2-2)熱硬化性アクリル樹脂粉体光輝 性カラーベース塗料は、架橋性官能基として、エポキシ 基又は水酸基を有するアクリル樹脂を主成分とし、更 に、該官能基と反応して硬化塗膜を形成する架橋剤と、 光輝材を含有する。

【0053】エポキシ基を有するアクリル樹脂として は、例えば、グリシジルアクリレート、グリシジルメタ アクリレート、3, 4-エポキシシクロヘキシルメチル アクリレート、3,4-エポキシシクロヘキシルメチル メタアクリレート等のエポキシ基含有不飽和モノマーの ラジカル同重合体、該エポキシ基含有不飽和モノマーと その他の不飽和モノマーとのラジカル共重合体等を使用 する。

【0054】上記その他の不飽和モノマーとしては、例 えば、メチルアクリレート、メチルメタアクリレート、 エチルアクリレート、エチルメタアクリレート、シクロ ヘキシルアクリレート、シクロヘキシルメタアクリレー ト等のアクリル酸又はメタアクリル酸のアルキル又はシ クロアルキルエステル類;ヒドロキシエチルアクリレー ト、ヒドロキシエチルメタアクリレート等の水酸基含有 不飽和モノマー類; スチレン等の芳香族化合物類; アク リルニトリル、メタアクリルニトリル等のニトリル化合 物類等が挙げられる。

【0055】水酸基を有するアクリル樹脂としては、例 えば、水酸基含有ラジカル重合性不飽和モノマー、ガラ ス転移温度が40℃以上の硬質アクリルモノマーに、必 要に応じて、ガラス転移温度が40℃未満の軟質アクリ ルモノマー、アクリルモノマー以外のラジカル重合性不 飽和モノマー、上記水酸基以外の官能基含有ラジカル重 合性不飽和モノマー等を、ラジカル共重合反応させて得 られる水酸基含有アクリル樹脂等を使用する。

【0056】水酸基含有ラジカル重合性不飽和モノマー としては、ヒドロキシエチルアクリレート、ヒドロキシ エチルメタアクリレート、ヒドロキシプロピルアクリレ ート、ヒドロキシプロピルメタアクリレート等が挙げら れる。

【0057】ガラス転移温度が40℃以上の硬質アクリ リレート等のエポキシ基含有不飽和モノマーのラジカル 40 ルモノマーとしては、メチルメタクリレート、エチルメ タクリレート、isoープチルメタクリレート、ter t-プチルメタクリレート、tert-プチルアクリレ ート等が挙げられる。

> 【0058】ガラス転移温度が40℃未満の軟質アクリ ルモノマーとしては、メチルアクリレート、エチルアク リレート、nープチルメタクリレート、isoープチル アクリレート、2-エチルヘキシルアク リレート、2-エチルヘキシルメタアクリレート、ステアリルメタクリ レート等が挙げられる。

> 【0059】アクリルモノマー以外のラジカル重合性不

飽和モノマーとしては、スチレン、ピニルトルエン、α -メチルスチレン、アクリルニトリル、メタアクリルニ トリル、アクリルアミド、メタアクリルアミド等が挙げ られる。

【0060】上記水酸基以外の官能基含有ラジカル重合 性不飽和モノマーとしては、グリシジルアクリレート、 グリシジルメタアクリレート、メチルグリシジルアクリ レート、メチルグリシジルメタアクリレート等が挙げら れる。

【0061】架橋剤としては、アクリル樹脂が有する架 10 化合物、蓚酸アニリド系化合物等を使用する。 橋性官能基がエポキシ基の場合は、1分子中に2個以上 のカルボキシル基を有する化合物、好ましくは、二塩基 酸を使用する。二塩基酸としては、ドデカン2酸、アジ ピン酸、アゼライン酸、セバシン酸、コハク酸、グルタ ル酸、ピメリン酸、プラシリン酸、イタコン酸、マレイ ン酸、シトラコン酸、エイコサン二酸及びこれらの無水 物などの脂肪酸などが挙げられる。これらは、1種又は 2種以上が使用できる。

【0062】アクリル樹脂が有する架橋性官能基が水酸 基の場合は、アミノ基を有するアミノ樹脂、ブロックポ 20 リイソシアネート基を有するプロックイソシアネート化 合物等の硬化剤を使用する。

【0063】アミノ樹脂としては、ヘキサメトキシメラ ミン樹脂等が挙げられる。

【0064】また、ブロックポリイソシアネート基を有 するプロックイソシアネート化合物としては、ヘキサメ チレンジイソシアネート、トリメチレンジイソシアネー ト、イソホロンジイソシアネート、水素添加キシリレン ジイソシアネート等の脂肪族又は脂環族ポリイソシアネ ート化合物を、フェノール類、ラクタム類、アルコール 30 類、オキシム類等の化合物により、イソシアネート基を ブロック化したもの等が挙げられる。

【0065】熱硬化性粉体光輝性カラーベース塗料

(2)に使用する光輝材としては、樹脂コーティングし たアルミニウムフレーク顔料、着色アルミニウムフレー ク顔料、マイカ顔料、金属チタンフレーク、アルミナフ レーク、シリカフレーク、グラファイト、ステンレスフ レーク及び板状酸化鉄よりなる群から選ばれる一種又は 二種以上を使用する。

【0066】熱硬化性粉体光輝性カラーベース塗料

(2)には、必要に応じて、顔料、硬化触媒、紫外線吸 収剤、紫外線安定剤、酸化防止剤、表面調整剤、ワキ防 止剤等の添加剤を配合することができる。

【0067】顔料としては、例えば、有機顔料、無機顔 料、炭素系顔料等を使用する。

【0068】有機顔料としては、例えば、キナクリドン 等のキナクリドン系顔料、ピグメントレッド等のアゾ系 顔料、又はフタロシアニンブルー等のフタロシアニン系 顔料等が挙げられる。

【0069】無機顔料としては、例えば、酸化チタン、

炭酸カルシウム、バリタ、クレー、タルク、シリカ等が 挙げられる。

【0070】炭素系顔料としては、例えば、カーボンブ ラック、グラファイト等が挙げられる。

【0071】硬化触媒としては、ジブチル錫ジアセテー ト、ジブチル錫ジラウレート、トリエチルアミン又はジ エタノールアミン等を使用する。

【0072】紫外線吸収剤としては、ペンゾフェノン系 化合物、ベンゾトリアゾール系化合物、サリシレート系

【0073】紫外線安定剤としては、ヒンダードアミン 系化合物等を使用する。

【0074】酸化防止剤としては、フェノール系化合 物、有機イオウ系化合物、ホスファイト系化合物等を使 用する。

【0075】上記したそれぞれの粉体塗料は、従来公知 の方法、例えば、上記各成分を配合し、ミキサーでドラ イプレンドした後、加熱溶融混練し、冷却、粗粉砕、微 粉砕又は濾過することにより製造できる。

【0076】熱硬化性粉体クリヤー塗料 (3) クリヤーに用いる粉体塗料としては、熱硬化性ポリエス テル樹脂粉体塗料又は熱硬化性アクリル樹脂粉体塗料の いずれかを用いるのが、得られる複層塗膜の耐候性の観

点から好ましい。

【0077】(3-1) 熱硬化性ポリエステル樹脂粉体 クリヤー塗料は、架橋性官能基として、水酸基又はカル ボキシル基を有するポリエステル樹脂を主成分とし、更 に、該官能基と反応して硬化塗膜を形成する架橋剤を含 有する。

【0078】ポリエステル樹脂としては、ポリエステル ポリカルボン酸樹脂、水酸基含有ポリエステル樹脂等を 使用する。

【0079】ポリエステルポリカルボン酸樹脂として は、酸価(KOHmg/樹脂1g)約10~100、好 ましくは、約20~80、平均分子量約500~50, 000、軟化温度約60~150℃の粉体樹脂が使用で きる。酸価が約10未満になると、硬化性が低下し、耐 食性、耐候性等の性能が悪くなる。一方、酸価が約10 0を上回ると、塗膜の耐水性、耐候性等が低下する。平 40 均分子量が約500を下回ると、塗膜の耐水性、加工性 等が低下する。一方、平均分子量が約50,000を上 回ると、塗膜の平滑性等が低下するため、好ましくな い。軟化温度が約60℃を下回ると塗料の耐ブロッキン グ性が低下する。一方、軟化温度が約150℃を上回る と、塗膜の平滑性等が低下するので好ましくない。

【0080】該ポリエステルポリカルボン酸樹脂は、主 に多塩基酸又はそのメチルエステルと、多価アルコール とのエステル化物である。例えば、フタル酸、イソフタ ル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒ 50 ドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒド

30

11°

ロ無水フタル酸、イソフタル酸ジメチル、テレフタル酸ジメチル等の芳香族又は脂環族ジカルボン酸化合物、及び、必要に応じて、アジピン酸、セバシン酸、マレイン酸、無水マレイン酸、トリメリット酸、無水トリメリット酸等のその他のポリカルボン酸化合物等の多塩基酸と、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、ブタンジオール、1,6-ヘキサンジオール等のポリオール化合物とを、カルボキシル基を有するようにエステル化反応させたものが使用できる。

【0081】水酸基含有ポリエステル樹脂としては、水酸基価(KOHmg/樹脂1g)約40~300、好ましくは、50~200、数平均分子量約400~20,000、好ましくは1,000~5,000、軟化温度約30~140℃、好ましくは、35~120℃の樹脂が使用できる。

【0082】水酸基含有ポリエステル樹脂の水酸基価が、約40未満になると、塗料の硬化性等が劣り、約300を上回ると、塗膜の耐水性等が悪くなる。数平均分子量が約400未満になると、塗膜の耐久性等が悪くなり、一方、約20,000を上回ると、塗膜の平滑性が悪くなる。軟化温度が約30℃未満になると、塗料の耐ブロッキング性が劣り、一方、約140℃を上回ると塗膜の平滑性が劣る。

【0083】架橋剤としては、ポリエステル樹脂が有する架橋性官能基が水酸基の場合は、アミノ基を有するアミノ樹脂、プロックポリイソシアネート基を有するプロックイソシアネート化合物等の硬化剤を使用する。

【0084】アミノ基を有するアミノ樹脂としては、ヘキサメトキシメラミン樹脂等が挙げられる。

【0085】また、ブロックイソシアネート化合物としては、ヘキサメチレンジイソシアネート、トリメチレンジイソシアネート、イソホロンジイソシアネート、水素添加キシリレンジイソシアネート等の脂肪族又は脂環族ポリイソシアネート化合物を、フェノール類、ラクタム類、アルコール類、オキシム類等の化合物により、イソシアネート基をブロック化したもの等が挙げられる。

【0086】ポリエステル樹脂が有する架橋性官能基がカルボキシル基の場合は、エポキシ基を有するポリエポキシド及びβ-ヒドロキシエチルアルキルアミド等の硬 40 化剤を使用する。

【0087】エポキシ基を有するポリエポキシドとしては、トリグリシジルイソシアネート、アクリル系ポリエポキシド等が挙げられる。

【0088】アクリル系ポリエポキシドとしては、例えば、グリシジルアクリレート、グリシジルメタアクリレート、3,4-エポキシシクロヘキシルメチルアクリレート、3,4-エポキシシクロヘキシルメチルメタアクリレート等のエポキシ基含有不飽和モノマーのラジカル同重合体、該エポキシ基含有不飽和モノマーとその他の50

不飽和モノマーとのラジカル共重合体等が挙げられる。 【0089】上記その他の不飽和モノマーとしては、例えば、メチルアクリレート、メチルメタアクリレート、シクロへキシルメタアクリレート、シクロへキシルメタアクリレート等のアクリル酸又はメタアクリル酸のアルキル又はシクロアルキルエステル類;ヒドロキシエチルアクリレート、ヒドロキシエチルメタアクリレート等の水酸基含有不飽和モノマー類;スチレン等の芳香族化合物類;アクリルニトリル、メタアクリルニトリル等のニトリル化合物類等が挙げられる。

【0090】(3-2) 熱硬化性アクリル樹脂粉体クリヤー塗料は、架橋性官能基として、エポキシ基又は水酸基を有するアクリル樹脂を主成分とし、更に、該官能基と反応して硬化塗膜を形成する架橋剤を含有する。

【0091】エポキシ基を有するアクリル樹脂としては、例えば、グリシジルアクリレート、グリシジルメタアクリレート、3、4ーエポキシシクロヘキシルメチルアクリレート、3、4ーエポキシシクロヘキシルメチルメタアクリレート等のエポキシ基含有不飽和モノマーのラジカル同重合体、該エポキシ基含有不飽和モノマーとその他の不飽和モノマーとのラジカル共重合体等を使用する。

【0092】上記その他の不飽和モノマーとしては、例えば、メチルアクリレート、メチルメタアクリレート、エチルアクリレート、エチルメタアクリレート、シクロヘキシルメタアクリレート等のアクリル酸又はメタアクリル酸のアルキル又はシクロアルキルエステル類;ヒドロキシエチルアクリレート、ヒドロキシエチルメタアクリレート等の水酸基含有不飽和モノマー類;スチレン等の芳香族化合物類;アクリルニトリル、メタアクリルニトリル等のニトリル化合物類等が挙げられる。

【0093】水酸基を有するアクリル樹脂としては、例えば、水酸基含有ラジカル重合性不飽和モノマー、ガラス転移温度が40℃以上の硬質アクリルモノマーに、必要に応じて、ガラス転移温度が40℃未満の軟質アクリルモノマー、アクリルモノマー以外のラジカル重合性不飽和モノマー、上記水酸基以外の官能基含有ラジカル重合性不飽和モノマー等を、ラジカル共重合反応させて得られる水酸基含有アクリル樹脂等を使用する。

【0094】水酸基含有ラジカル重合性不飽和モノマーとしては、ヒドロキシエチルアクリレート、ヒドロキシエチルメタアクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタアクリレート等が挙げられる。

【0095】ガラス転移温度が40℃以上の硬質アクリルモノマーとしては、メチルメタクリレート、エチルメタクリレート、isoーブチルメタクリレート、tertーブチルアクリレ

ート等が挙げられる。

【0096】ガラス転移温度が40℃未満の軟質アクリルモノマーとしては、メチルアクリレート、エチルアクリレート、n-ブチルメタクリレート、iso-ブチルアクリレート、2-エチルヘキシルメタアクリレート、ステアリルメタクリレート等が挙げられる。

【0097】アクリルモノマー以外のラジカル重合性不飽和モノマーとしては、スチレン、ピニルトルエン、αーメチルスチレン、アクリルニトリル、メタアクリルニ 10トリル、アクリルアミド、メタアクリルアミド等が挙げられる。

【0098】上記水酸基以外の官能基含有ラジカル重合性不飽和モノマーとしては、グリシジルアクリレート、グリシジルメタアクリレート、メチルグリシジルアクリレート、メチルグリシジルメタアクリレート等が挙げられる。

【0099】架橋剤としては、アクリル樹脂が有する架橋性官能基がエポキシ基の場合は、1分子中に2個以上のカルボキシル基を有する化合物、好ましくは、二塩基 20酸を使用する。二塩基酸としては、ドデカン2酸、アジピン酸、アゼライン酸、セバシン酸、コハク酸、グルタル酸、ピメリン酸、ブラシリン酸、イタコン酸、マレイン酸、シトラコン酸、エイコサン二酸及びこれらの無水物などの脂肪酸などが挙げられる。これらは、1種又は2種以上が使用できる。

【0100】アクリル樹脂が有する架橋性官能基が水酸基の場合は、アミノ基を有するアミノ樹脂、ブロックポリイソシアネート基を有するブロックイソシアネート化合物等の硬化剤を使用する。

【0101】アミノ樹脂としては、ヘキサメトキシメラミン樹脂等が挙げられる。

【0102】また、ブロックポリイソシアネート基を有するブロックイソシアネート化合物としては、ヘキサメチレンジイソシアネート、トリメチレンジイソシアネート、イソホロンジイソシアネート、水素添加キシリレンジイソシアネート等の脂肪族又は脂環族ポリイソシアネート化合物を、フェノール類、ラクタム類、アルコール類、オキシム類等の化合物により、イソシアネート基をブロック化したもの等が挙げられる。

【0103】粉体クリヤー塗料(3)には、必要に応じて、微量の顔料、硬化触媒、紫外線吸収剤、紫外線安定剤、酸化防止剤、表面調整剤、ワキ防止剤等の添加剤を配合することができる。

【0104】硬化触媒としては、ジブチル錫ジアセテート、ジブチル錫ジラウレート、トリエチルアミン又はジエタノールアミン等を使用する。

【0105】紫外線吸収剤としては、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリシレート系化合物、蓚酸アニリド系化合物等を使用する。

【0106】紫外線安定剤としては、ヒンダードアミン系化合物等を使用する。

【0107】酸化防止剤としては、フェノール系化合物、有機イオウ系化合物、ホスファイト系化合物等を使用する。

【0108】上記したそれぞれの粉体塗料は、従来公知の方法、例えば、上記各成分を配合し、ミキサーでドライブレンドした後、加熱溶融混練し、冷却、粗粉砕、微粉砕又は濾過することにより製造できる。

【0109】次に、本発明の塗膜形成方法について、以下に説明する。

【0110】本発明の塗膜形成方法は、上記したプライマー塗料(1)、カラーベース塗料(2)及びクリヤー塗料(3)の順で粉体塗装し、下記塗膜を形成する方法である。

【0111】プライマー層の形成

プライマー層に用いる粉体塗料としては、熱硬化性エポキシ樹脂粉体塗料を使用することが好ましい。熱硬化性エポキシ樹脂粉体塗料の市販品としては、例えば、関西ペイント(株)製の「エバクラッドNo.3600」等がある。

【0112】粉体塗料の塗装は、静電粉体塗装で行う。 静電粉体塗装は、それ自体公知の方法、例えば、静電粉 体塗装、摩擦帯電粉体塗装等で行うことが好ましい。

【0113】プライマー層の膜厚は、硬化塗膜として、一般に30~150μmであり、好ましくは、50~100μmである。30μm未満では、鋳肌等のアルミニウム製品塗装面の粗い素地を十分に被覆することができず、最終的に得られる複層塗膜の意匠性が損なわれ、ま30た150μmを上回ると、塗料使用量の無駄を生じる。プライマー層の焼付は行わなくても良い。粗い素地の隠蔽性を高めて光輝性意匠感をより優れたものにするために、塗装した熱硬化性粉体塗料の溶融温度以上で、かつ、硬化反応が開始しない温度で加熱溶融しても良い。加熱温度としては、一般に80~130℃程度である。更に、粗い素地の隠蔽性を高めるために、塗装した熱硬化性粉体塗料が硬化する温度で焼付けても良い。焼付温度としては、一般に140~200℃程度である。

【0114】光輝性カラーベースコート層の形成 40 光輝性カラーベースコート層に用いる粉体塗料として は、樹脂コーティングしたアルミニウムフレーク顔料、 着色アルミニウムフレーク顔料、マイカ顔料、金属チタ ンフレーク、アルミナフレーク、シリカフレーク、グラ ファイト、ステンレスフレーク及び板状酸化鉄よりなる 群から選ばれる1種又は2種以上の光輝材を含有する、 熱硬化性ポリエステル樹脂光輝性粉体塗料又は熱硬化性 アクリル樹脂光輝性粉体塗料のいずれかを使用すること が好ましい。

【0115】これら以外の塗料、例えば、熱硬化性工ポ 50 キシ樹脂粉体塗料等を使用した場合は、得た塗膜の耐候

性が劣る欠点がある。

【0116】熱硬化性ポリエステル樹脂光輝性粉体塗料の市販品としては、関西ペイント(株)製の「エバクラッドNo.4600M」等がある。熱硬化性アクリル樹脂光輝性粉体塗料の市販品としては、関西ペイント(株)製の「エバクラッドNo.5600M」等がある。

【0117】粉体塗料の塗装は、静電粉体塗装で行う。 静電粉体塗装は、それ自体公知の方法、例えば、静電粉 体塗装、摩擦帯電粉体塗装等で行うことが好ましい。

【0118】光輝性カラーベースコート層の膜厚は、硬 10 化塗膜として、一般に $10\sim100\mu$ mであり、好ましくは $20\sim60\mu$ mである。 10μ m未満では光輝性が損なわれ、また 100μ mを上回ると、塗料使用量の無駄を生じる。光輝性カラーベースコート層の焼付は行わないでも良い。光輝性意匠感をより優れたものにするために、塗装した熱硬化性粉体塗料の溶融温度以上で、かつ、硬化反応が開始しない温度で加熱溶融しても良い。加熱温度としては、一般に $80\sim130$ 程度である。さらに光輝性意匠感を高めるために、塗装した熱硬化性粉体塗料が硬化する温度で焼付けても良い。焼付温度と 20 しては、一般に $140\sim200$ で程度である。

【0119】クリヤー層の形成

クリヤー層に用いる粉体塗料としては、熱硬化性ポリエステル樹脂粉体塗料又は熱硬化性アクリル樹脂粉体塗料のいずれかを使用することが好ましい。

【0120】これら以外の塗料、例えば、熱硬化性エポキシ樹脂粉体塗料等を使用した場合は、得た塗膜の耐候性が劣る欠点がある。

【0121】熱硬化性ポリエステル樹脂粉体塗料の市販品としては、関西ペイント(株)製の「エバクラッドNo.4600」等がある。熱硬化性アクリル樹脂粉体塗料の市販品としては、関西ペイント(株)製の「エバクラッドNo.5600」等がある。

【0122】粉体塗料の塗装は、静電粉体塗装で行う。 静電粉体塗装は、それ自体公知の方法、例えば、静電粉 体塗装、摩擦帯電粉体塗装等で行うことが好ましい。

【0123】0リヤー層の膜厚は、硬化塗膜として、一般に $30\sim150\mu$ mであり、好ましくは $50\sim100$ μ mである。 30μ m未満では、平滑性が充分でなく、また 150μ mを上回ると、塗料使用量の無駄を生じる。0リヤー層の焼付は、塗装した熱硬化性粉体塗料が硬化する温度で焼付ける。焼付温度としては、一般に $140\sim200$ ℃程度である。

【0124】上記各層の焼き付けは、具体的には以下のような方法で行うことができる。

【0125】各層を形成する塗料(粉体プライマー塗料、光輝性カラーベース塗料、クリヤー塗料)を粉体塗装した後、同時に焼き付ける方法;プライマー塗料を塗装した後、硬化反応が開始しない温度でこれを加熱溶融し、かかる状態で光輝性カラーベース塗料を塗装した

後、硬化反応が開始しない温度でカラーベース塗料を加熱溶融し、かかる状態でクリヤー塗料を塗装した後、3層を同時に焼き付ける方法;プライマー塗料を塗装した後、該プライマー塗料が硬化する温度で焼き付け、焼き付けられたプライマー層の上にカラーベース塗料を塗装し、かかる状態でクリアー塗料を塗装し、カラーベース塗料を塗装し、かかる状態でクリアー塗料を塗装し、カラーベース塗料を塗装した後、該プライマー塗料を塗装した後、該プライマー塗料を塗装した後、該カラーベース塗料を塗装し、該カラーベース塗料が硬化する温度で焼き付けられたカラーベース塗料を塗装して、該クリヤー塗料が硬化する温度で焼き付ける方法などが挙げられる。

[0126]

【実施例】以下、実施例及び比較例を挙げて、本発明を より一層具体的に説明する。

【0127】 実施例1

クロム酸クロメート(「AL-1000」、商品名、日本パーカライジング社製)で化成処理を施した 10×7 0×150mmのアルミニウム鋳造板(AC4C)に、プライマーとして、熱硬化性エポキシ樹脂粉体プライマー塗料(「エバクラッドNo.3600」、商品名、関西ペイント(株)製、ドデカン二酸ジヒドラジドを硬化剤とするエポキシ樹脂粉体塗料)を、硬化膜厚が 70μ mになるように塗装した。次いで、熱硬化性粉体光輝性カラーベース塗料として、熱硬化性ポリエステル樹脂光輝性粉体カラーベース塗料(「エバクラッドNo.4600M」、商品名、関西ペイント(株)製、 β -ヒドロキシエチルアヂパミドを硬化剤とし、光輝材として、

「PCF-7670A」(商品名、東洋アルミニウム (株)製、樹脂コーティングアルミニウムフレーク顔料)を含有するポリエステル樹脂粉体塗料)を、硬化膜厚が30μmになるように塗装した。さらに、熱硬化性粉体クリヤー塗料として、熱硬化性アクリル樹脂粉体クリヤー塗料(「エバクラッドNo.5600」、商品名、関西ペイント(株)製、ドデカン二酸を硬化剤とするアクリル樹脂粉体塗料)を、硬化膜厚が80μmになるように、塗装した。次に、塗装した、これらの3層の塗料を、160℃で20分間、同時に焼付けした。

【0128】実施例2

クロム酸クロメート(「AL-1000」、商品名、日本パーカライジング社製)で化成処理を施した10×70×150mmのアルミニウム鋳造板(AC4C)に、プライマーとして、熱硬化性エポキシ樹脂粉体プライマー塗料(「エバクラッドNo.3600」、商品名、関西ペイント(株)製、ドデカン二酸ジヒドラジドを硬化剤とするエポキシ樹脂粉体塗料)を、硬化膜厚が70μmになるように塗装した後に、120℃で10分間加熱50溶融した。次いで、熱硬化性粉体光輝性カラーベース塗

料として、熱硬化性ポリエステル樹脂光輝性粉体カラー ベース塗料(「エパクラッドNo.4600M」、商品 名、関西ペイント(株)製、β-ヒドロキシエチルアチ パミドを硬化剤とし、光輝材として、「PCF-767 0 A」 (商品名、東洋アルミニウム (株) 製、樹脂コー ティングアルミニウムフレーク顔料)を含有するポリエ ステル樹脂粉体塗料)を、硬化膜厚が30μmになるよ うに塗装した後に、120℃で10分間加熱溶融した。 さらに、熱硬化性粉体クリヤー塗料として、熱硬化性ア クリル樹脂粉体クリヤー塗料(「エバクラッドNo. 5 10 600」、商品名、関西ペイント(株)製、ドデカンニ 酸を硬化剤とするアクリル樹脂粉体塗料)を、硬化膜厚 が80μmになるように、塗装した。次に、塗装した、 これらの3層の塗料を、160℃で20分間、同時に焼 付けした。

【0129】実施例3

クロム酸クロメート(「AL-1000」、商品名、日 本パーカライジング社製)で化成処理を施した10×7 0×150mmのアルミニウム鋳造板(AC4C)に、 プライマーとして熱硬化性エポキシ樹脂粉体プライマー 20 塗料 (「エバクラッドNo. 3600」、商品名、関西 ペイント(株)製、ドデカン二酸ジヒドラジドを硬化剤 とするエポキシ樹脂粉体塗料)を、硬化膜厚が70μm になるように塗装した後に、160℃で15分間焼付け た。次いで、熱硬化性粉体光輝性カラーベース塗料とし て、熱硬化性ポリエステル樹脂光輝性粉体カラーベース 塗料(「エバクラッドNo.4600M」、商品名、関 西ペイント (株) 製、 β - ヒドロキシエチルアデパミド を硬化剤とし、光輝材として、「PCF-7670A」 (商品名、東洋アルミニウム(株)製、樹脂コーティン 30 グアルミニウムフレーク顔料) を含有するポリエステル 樹脂粉体塗料)を、硬化膜厚が30μmになるように塗 装した。さらに、熱硬化性粉体クリヤー塗料として、熱 硬化性アクリル樹脂粉体クリヤー塗料(「エバクラッド No. 5600」、商品名、関西ペイント(株)製、ド デカン二酸を硬化剤とするアクリル樹脂粉体塗料)を、 硬化膜厚が80μmになるように、塗装した。次に、塗 装した、上記カラーベース塗料及びクリヤー塗料の2層 の塗料を、160℃で20分間、同時に焼付けした。

【0130】実施例4

クロム酸クロメート (「AL-1000」、商品名、日 本パーカライジング社製)で化成処理を施した10×7 0×150mmのアルミニウム鋳造板(AC4C)に、 プライマーとして熱硬化性エポキシ樹脂粉体プライマー 塗料(「エバクラッドNo.3600」、商品名、関西 ペイント(株)製、ドデカン二酸ジヒドラジドを硬化剤 とするエポキシ樹脂粉体塗料)を、硬化膜厚が70μm になるように塗装した後に、160℃で15分間焼付け た。次いで、熱硬化性粉体光輝性カラーベース塗料とし

塗料(「エバクラッドNo. 4600M」、商品名、関 西ペイント(株)製、β-ヒドロキシエチルアヂパミド を硬化剤とし、光輝材として、「PCF-7670A」 (商品名、東洋アルミニウム(株)製、樹脂コーティン グアルミニウムフレーク顔料)を含有するポリエステル 樹脂粉体塗料)を、硬化膜厚が30μmになるように塗 装した後に、120℃で10分間加熱溶融した。さら に、熱硬化性粉体クリヤー塗料として、熱硬化性アクリ ル樹脂粉体クリヤー塗料(「エバクラッドNo. 560 0」、商品名、関西ペイント(株)製、ドデカン二酸を 硬化剤とするアクリル樹脂粉体塗料)を、硬化膜厚が8 0μmになるように、塗装した。次に、塗装した、上記 カラーベース塗料及びクリヤー塗料の2層の塗料を、1 60℃で20分間、同時に焼付けした。

【0131】実施例5

クロム酸クロメート(「AL-1000」、商品名、日 本パーカライジング社製)で化成処理を施した10×7 0×150mmのアルミニウム鋳造板(AC4C)に、 プライマーとして、熱硬化性エポキシ樹脂粉体プライマ 一塗料(「エバクラッドNo.3600」、商品名、関 西ペイント(株)製、ドデカン二酸ジヒドラジドを硬化 剤とするエポキシ樹脂粉体塗料)を、硬化膜厚が70μ mになるように塗装した後に、160℃で15分間焼付 けた。次いで、熱硬化性粉体光輝性カラーベース塗料と して、熱硬化性ポリエステル樹脂光輝性粉体カラーベー ス塗料(「エバクラッドNo.4600M」、商品名、 関西ペイント (株) 製、 β – ヒドロキシエチルアデパミ ドを硬化剤とし、光輝材として、「PCF-7670 A」(商品名、東洋アルミニウム(株)製、樹脂コーテ ィングアルミニウムフレーク顔料)を含有するポリエス テル樹脂粉体塗料)を、硬化膜厚が30μmになるよう に塗装した後に、160℃で15分間焼付けした。さら に、熱硬化性粉体クリヤー塗料として、熱硬化性アクリ ル樹脂粉体クリヤー塗料(「エバクラッドNo. 560 0」、商品名、関西ペイント(株)製、ドデカン二酸を 硬化剤とするアクリル樹脂粉体塗料)を、硬化膜厚が8 0 µmになるように、この順で塗装した後に、160℃ で20分間焼付けした。

【0132】実施例6~7

プライマー塗料、カラーベース塗料及びクリヤー塗料と して、それぞれ表1に示す塗料を使用して、実施例1と 同様に塗装、焼付して、実施例6~7の複層塗膜を形成 した。

【0133】比較例1

クロム酸クロメート (「AL-1000」、商品名、日 本パーカライジング社製)で化成処理を施した10×7 0×150mmのアルミニウム鋳造板(AC4C)に、 プライマー塗料としてポリエステル樹脂溶剤プライマー **塗料(「アミラックAL SGPグレー」、商品名、関** て、熱硬化性ポリエステル樹脂光輝性粉体カラーベース 50 西ペイント(株)製、ポリエステル樹脂溶剤塗料)を、

硬化膜厚が 50μ mになるように塗装した。次いで、溶剤カラーベース塗料として、アクリル樹脂溶剤カラーベース塗料(「マジクロンALC-2シルバー」、商品名、関西ペイント(株)製、アクリル樹脂溶剤塗料)を、硬化膜厚が 15μ mになるように塗装し、140℃で20分間焼付けた。さらに、溶剤クリヤー塗料としてアクリル樹脂溶剤クリヤー塗料(「マジクロンALC-2クリヤー」、商品名、関西ペイント(株)製、アクリル樹脂溶剤塗料)を、硬化膜厚が 35μ mになるように塗装した後に、140℃で20分間焼付けした。

【0134】比較例2

クロム酸クロメート(「AL-1000」、商品名、日本パーカライジング社製)で化成処理を施した 10×7 0×150mmのアルミニウム鋳造板(AC4C)に、プライマー塗料として、アクリル樹脂粉体プライマー塗料(「エバクラッドNo.5600」、商品名、関西ペイント(株)製、ドデカン二酸を硬化剤とするアクリル樹脂粉体塗料)を、硬化膜厚が 80μ mになるように塗装し、160℃で20分間焼付けた。

【0135】次いで、溶剤カラーベース塗料として、ア 20 クリル樹脂溶剤カラーベース塗料 (「マジクロンALC -2シルバー」、商品名、関西ペイント (株) 製、アク

リル樹脂溶剤塗料)を、硬化膜厚が 15μ mになるように塗装し、140℃で20分間焼付けた。さらに、溶剤クリヤー塗料として、アクリル樹脂溶剤クリヤー塗料(「マジクロンALC-2クリヤー」、商品名、関西ペイント(株)製、アクリル樹脂溶剤塗料)を、硬化膜厚が 35μ mになるように塗装した後に、140℃で20分間焼付けした。

【0136】比較例3

プライマー塗料、カラーベース塗料及びクリヤー塗料と 10 して、それぞれ表1に示す塗料を使用して、比較例2と 同様に塗装、焼付して、比較例3の複層塗膜を形成し た。

【0137】比較例4~5

プライマー塗料、カラーベース塗料及びクリヤー塗料として、それぞれ表1に示す塗料を使用して、実施例1と同様に塗装、焼付して、比較例4~5の複層塗膜を形成した。

【0138】実施例1~7及び比較例1~5の層構成、加熱条件及び焼付条件を、表1及び表2に示す。

[0139]

【表1】

	実施例						
	1	2	3	4	5	6	7
プライマー層	エポキシ樹 脂粉体塗料	エポキシ樹 脂粉体塗料	エポキシ樹 脂粉体塗料	エポキシ樹 脂粉体塗料	エポキシ樹 脂粉体塗料	エポキシ樹 脂粉体塗料	エポキシ樹脂粉体塗料
_	(注1)	(注1)	(注1)	(注1)	(注1)	(注1)	(注1)
プライマー層の 加熱条件又は焼 付条件	なし	120℃ 10分	160℃ 15分	160℃ 15分	160℃ 15分	なし	なし
カラーベースコー ト層	ポリエステ ル樹脂粉体 塗料	ポリエステ ル樹脂粉体 塗料	ポリエステ ル樹脂粉体 <u>塗料</u>	ポリエステ ル樹脂粉体 塗料	ポリエステ ル樹脂粉体 塗 料	ポリエステ ル樹脂粉体 	アクリル樹 脂粉体塗料
	(注2)	(注2)	(注2)	(注2)	(注2)	(注2)	(注5)
カラーベースコー ト層の加熱条件 又は焼付条件	なし	120℃ 10分	なし	120℃ 10分	160℃ 15分	なし	なし
トップクリヤー層	アクリル樹 脂粉体塗料	アクリル樹 脂粉体塗料	アクリル樹 脂粉体塗料	アクリル樹 脂粉体塗料	アクリル樹脂粉体塗料	ポリエステル樹脂粉体	アクリル樹 脂粉体塗料
	(注3)	(注3)	(注3)	(注3)	(注3)	(注4)	(注3)
トップクリヤー層 の焼付条件	160℃ 20分	160℃ 20分	160℃ 20分	160℃ 20分	160℃ 20分	160℃ 20分	160℃ 20分

[0140]

	比較例						
	1	2	3	4	5		
プライマー層	ポリエステ ル樹脂溶剤 塗料	アクリル樹 脂粉体塗料	アクリル樹 脂粉体塗料	エポキシ樹脂粉体塗料	エポキシ樹脂粉体塗料		
	(注6)	(注3)	(注3)	(注1)	(注1)		
プライマー層の 加熱条件又は焼 付条件	なし	160℃ 20分	160℃ 20分	なし	なし・		
カラーベースコー ト暦	アクリル樹 脂溶剤塗料	アクリル樹 脂溶剤塗料	アクリル樹 脂溶剤塗料	エポキシ樹 脂粉体塗料	ポリエステ ル樹脂粉体 塗 料		
	(注7)	(注7)	(注7)	(注9)	(注2)		
カラーベースコート層の加熱条件 又は焼付条件	140℃ 20分	140℃ 20分	140℃ 20分	なし	なし		
トップクリヤー層	アクリル樹脂溶剤塗料	アクリル樹 脂溶剤塗料	アクリル樹 脂粉体塗料	アクリル樹脂粉体塗料	エポキシ樹脂粉体塗料		
	(注8)	(注8)	(注3)	(注3)	(注1)		
トップクリヤー層 の焼付条件	140℃ 20分	140℃ 20分	160℃ 20分	160℃ 20分	160°C 20分		

【0141】実施例及び比較例で用いた塗料(注1)~ (注9)は、それぞれ以下の塗料を示す。

【0142】(注1)熱硬化性エポキシ樹脂粉体プライ マー塗料「エバクラッドNo. 3600」:商品名、関 西ペイント(株)製、ドデカン二酸ジヒドラジドを硬化 剤とするエポキシ樹脂粉体塗料。

【0143】(注2)熱硬化性ポリエステル樹脂光輝性 粉体カラーベース塗料「エバクラッドNo. 4600 Μ」:商品名、関西ペイント(株)製、β-ヒドロキシ エチルアデパミドを硬化剤とし、光輝材として、「PC F-7670A」(商品名、東洋アルミニウム(株) 製、樹脂コーティングアルミニウムフレーク顔料)を含 有するポリエステル樹脂粉体塗料。

【0144】(注3)熱硬化性アクリル樹脂粉体クリヤ 一塗料「エバクラッドNo. 5600」:商品名、関西 ペイント(株)製、ドデカン二酸を硬化剤とするアクリ ル樹脂粉体塗料。

【0145】(注4)熱硬化性ポリエステル樹脂粉体塗 料「エバクラッドNo. 4600」:商品名、関西ペイ ント (株) 製、 β -ヒドロキシエチルアデパミドを硬化 40 良を、それぞれ示す。 剤とするポリエステル樹脂粉体塗料。

【0146】(注5)アクリル樹脂粉体カラーベース塗 料「エバクラッドNo. 5600M」:商品名、関西ペ イント(株)製、樹脂コーティングアルミニウム顔料を 含有し、ドデカン二酸を硬化剤とするアクリル樹脂粉体 塗料。

【0147】(注6)ポリエステル樹脂溶剤プライマー 塗料「アミラックAL SGPグレー」:商品名、関西 ペイント(株)製。

【0148】(注7)アクリル樹脂溶剤カラーベース塗 50 40℃の水に240時間浸漬し、引上げ直後の塗面を目

料「マジクロンALC-2シルバー」:商品名、関西ペ イント (株) 製。

【0149】(注8)アクリル樹脂溶剤クリヤー塗料 「マジクロンALC-2クリヤー」:商品名、関西ペイ ント(株)製。

【0150】(注9) エポキシ樹脂粉体カラーベース塗 料「エバクラッドNo. 3600M」:商品名、関西ペ イント(株)製、樹脂コーティングアルミニウム顔料を 含有し、ドデカン二酸ジヒドラジドを硬化剤とするエポ キシ樹脂粉体塗料。

【0151】実施例1~7及び比較例1~5で得た各塗 装板について、以下の性能試験を行った。

【0152】(1)塗料からの溶剤排出

塗装時における塗料からの溶剤の排出の有無を調べた。 溶剤の排出があった場合は「あり」、溶剤の排出がなか った場合は「なし」と示す。

【0153】(2) 塗膜外観

塗膜の仕上り外観を、ツヤ感及び平滑感から、評価し た。評価基準は、○が良好を、△がやや不良を、×が不

【0154】(3)付着性

カッターナイフで素地に達するように塗膜をクロスカッ トし、大きさ1mm×1mmのゴバン目を100個作 り、その表面に粘着セロハンテープを貼付し、20℃で そのテープを急激に剥離したのちの残存ゴバン目塗膜数 を調べた。評価基準は、○が残存塗膜数100個を、△ が残存塗膜数99~70個を、×が残存塗膜数69個以 下を、それぞれ示す。

【0155】(4)耐水性

視で評価した。評価基準は、○が全く異常なしを、△が 変色少しありを、×が変色多くありを、それぞれ示す。 次いで、1時間室温で乾燥してから、前記付着性試験と 同様に付着性を調べた。

【0156】(5)耐食性

素地に達するように塗膜をクロスカットし、ソルトスプ レー(JIS K5400-9.1)で1000時間試 験し、次いで水洗乾燥してから、クロスカット部分に粘 着セロハンテープを貼付し、20℃で、そのテープを急 激に剥離したのちのカット部からの塗膜の片側の剥離巾 10 付着性試験と同様に付着性を調べた。 又はフクレ巾を調べた。評価基準は、◎が0.5mm以 内を、 \bigcirc が1mm以内を、 \triangle が3mm以上を、 \times が10mm以上を、それぞれ示す。

【0157】(6)耐候性

SWOM(スタンダードウェザオメータ) (JIS K

5400-9.8.1)で、500時間耐候試験後の光 沢を測定し、初期(試験前)光沢に対する光沢保持率を 下記式により、測定した。

【0158】光沢保持率=[(試験後光沢)/(初期光 沢)]×100

その後、40℃の水に120時間浸漬し、引上げ直後の 塗面を目視で評価した。評価基準は、○が全く異常なし を、△がフクレ少しありを、×がフクレ多くありを、そ れぞれ示す。次いで、1時間室温で乾燥してから、前記

【0159】実施例1~7及び比較例1~5の評価結果 を、表3及び表4に、それぞれ示す。

[0160]

【表3】

	実施例							
	1	2	3	4	5	6	7	
塗料からの溶剤排出	なし	なし	なし	なし	なし	なし	なし	
塗膜外観	0	. 0	0	0	0	0	0	
付着性	0	0	0	0	0	0	0	
耐水性	0	0	0	0	0	O	0	
耐食性	0	©	0	0	©	©	0	
耐候性-光沢	98	98	98	98	98	96	96	
耐候性一目視評価	0	0	0	0	0	0	0	
耐候性一付着性	0	0	0	0	0	0	0	

[0161]

【表4】

	比較例							
	1	2	3	4	5			
塗料からの溶剤排出	あり	あり	あり	なし	なし			
塗膜外観	0	0	0	0	0			
付着性	0	0	0	0	0			
耐水性	0	0	0	0	0			
耐食性	0	0	0	0	0			
耐候性一光沢	99	99	98	80	5			
耐候性一目視評価	0	0	0	Δ	×			
耐候性一付着性	0	0	0	Δ	0			

【0162】表3及び表4を比べると、プライマー層と してエポキシ樹脂粉体塗料を用いた場合には、塗装時に ーペースコート層、トップクリヤー層の少なくともいず れか一層に溶剤塗料を用いた場合、塗装時に溶剤の排出 があった(比較例1~3)。また、カラーベースコート 層にエポキシ樹脂粉体塗料を用いた場合には、プライマ 一層及びトップクリヤー層が同じであっても、最終的に 得られる複層塗膜の耐候性が劣っていた(比較例4と実 施例7)。さらに、プライマー層とカラーベースコート

層が同じであっても、トップクリヤー層としてエポキシ 樹脂粉体塗料を用いた場合には、得られる複層塗膜の耐 溶剤の排出は認められなかったが、プライマー層、カラ 40 候試験後の光沢が劣り、また耐候試験後に水に浸漬した 後の塗膜に膨れが認められた(比較例4と実施例6)。 [0163]

> 【発明の効果】本発明の塗膜形成方法によれば、耐食 性、耐候性及び意匠性に優れた光輝性を有する複層塗膜 を形成することができ、また複層塗膜形成工程であるに も拘わらず、地球環境に懸念のある有機溶剤を排出しな い、という効果を奏する。

フロントページの続き

(51) Int. Cl. 7	識別記号	FI	テーマコード(参考)
B 0 5 D	7/24 3 0 3	B 0 5 D 7/24	3 0 3 J
B 3 2 B	15/08	B 3 2 B 15/08	G
			U
	15/20	15/20	
C 0 9 C	1/64	C 0 9 C 1/64	
	3/10	3/10	
C 0 9 D	5/00	C 0 9 D 5/00	D
	5/03	5/03	
	5/08	5/08	
	5/29	5/29	
	163/00	163/00	
		construction and the state of	
(72)発明者	河津 健司	(72)発明者 妹背 学	
	愛知県豊田市トヨタ町1番地 トヨタ自動		京市東淀川区西淡路3丁目15番27
	車株式会社内		をペイント株式会社内 - APAG APAG APAG APAG
(72)発明者	中村 昌博	Fターム(参考) 4D075	AEO3 AEO7 AEIO AEI3 AEI7
	愛知県豊田市トヨタ町1番地 トヨタ自動		BB26Y BB27Y DA23 DB07
	車株式会社内		DC13 EA02 EA19 EA41 EB33
(72)発明者	大越 利雄	45100	ECO2 ECO3 ECO4 EC13 EC23
	愛知県西加茂郡三好町大字莇生字平地1	41100	ARIOC ARIOC ARIOC ACOEC
	関西ペイント株式会社内		ABIOA ABIOC ABI2C ACO5C
(72)発明者	武田 浩希		AD11C AK53B AT00A BA04
	愛知県西加茂郡三好町大字莇生字平地1		BAO7 BA10D CA13C DE02C EJ65B GB32 JB02 JB13C
(- a) 	関西ペイント株式会社内		JB13D JL09 JN00 JN01D
(72)発明者	加藤善紀		• • • • • • • • • • • • • • • • • • • •
	神奈川県平塚市東八幡 4 丁目17番1号 関		JN24C 'AA05 CC00
(= 0) = 0 = 17 de	西ペイント株式会社内		CG141 CH171 DB061 DB071
(72)発明者	原田 雅好	41038	DD051 GA03 HA036 HA066
	大阪府大阪市東淀川区西淡路 3 丁目15番27		HA166 HA446 KAO8 NAO1
	号 久保孝ペイント株式会社内		NAO3 PAO2 PAO7 PA19 PB02
			PB07 PC02