Krylov Linear Solvers and Quasi Monte Carlo Methods for Transport Simulations

Sam Pasmann, a C. T. Kelley, b and Ryan McClarren*, a

^aDepartment of Aerospace and Mechanical Engineering University of Notre Dame Fitzpatrick Hall, Notre Dame, IN 46556

^bNorth Carolina State University, Department of Mathematics 3234 SAS Hall, Box 8205 Raleigh NC 27695-8205

*Email: rmcclarr@nd.edu

Number of pages: 7 Number of tables: 2 Number of figures: 2

Abstract

 $\mathrm{QMC}\,+\,\mathrm{Krylov}$

 $\mathbf{Keywords}$ — Quasi Monte Carlo Methods, Krylov Linear Solvers

I. INTRODUCTION

II. COMPUTATIONAL RESULTS

In this section we consider an example from [1]. The formulation of the transport problem is taken from [2]. The equation for the angular flux ψ is

$$\mu \frac{\partial \psi}{\partial x}(x,\mu) + \Sigma_t(x)\psi(x,\mu) = \frac{1}{2} \left[\Sigma_s(x) \int_{-1}^1 \psi(x,\mu') \, d\mu' + q(x) \right] \text{ for } 0 \le x \le \tau$$
 (1)

The boundary conditions are

$$\psi(0,\mu) = \psi_l(\mu), \mu > 0; \psi(\tau,\mu) = \psi_r(\mu), \mu < 0.$$

II.A. Source Iteration and Linear Solvers

Source iteration is Picard iteration for the fixed point problem

$$\phi = \mathcal{S}(\phi, q, \psi_l, \psi_r)$$

To use other solvers we must convert to a linear system via

$$\mathcal{K}(\phi) = \mathcal{S}(\phi, 0, 0, 0)$$
 and $f = \mathcal{S}(0, q, \psi_l, \psi_r)$

to get

$$A\phi \equiv (I - \mathcal{K})\phi = f$$

which we can send to a linear solver.

In the computations we use the problem from [1]

$$\tau = 5, \Sigma_s(x) = \omega_0 e^{-x/s}, \Sigma_t(x) = 1, q(x) = 0, \psi_l(\mu) = 1, \psi_r(\mu) = 0,$$

and consider two cases s=1 and $s=\infty$

II.B. QMC and Krylov Linear Solvers

The linear and nonlinear solvers come from the Julia package SIAMFANLEQ.jl [3]. The documentation for these codes is in the Julia notebooks [4] and the book [5] that accompany the package.

We solve the QMC linear problem with N=1000 and Nx= 100. We use two krylov methods [6], GMRES [7] and Bi-CGSTAB [8]. Figures 1 and 2 show that the Krylov iterations take fewer than half of the number of transport sweeps that Picard iteration required.

Fig. 1. s = 1

Fig. 2. $s = \infty$

II.C. Validation and calibration study

We conclude this section with a validation study. We compare the QMC results with the results from [1]. The results in [1] are exit distributions and are accurate to six figures. We have duplicated those results with an Sn computation on a fine angular and spatial mesh.

Sam, Ryan, should we use more or different values of N and Nx?

For N = 1000 and Nx = 100 we obtain the cell-average fluxes from the QMC approximation. We then use a single Sn transport sweep to recover the exit distributions from the QMC cell-average fluxes. We report the results and the corresponding results from [1] in Tables I and II.

The exit distributions, as is clear from Table I can vary by five orders of magnitude. Even so, the results from QMC agree with the benchmarks to roughly two figures.

TABLE I Exit Distributions: s = 1

	Garcia/Siewert		$_{ m QMC}$	
μ	$\psi(0,-\mu)$	$\psi(\tau, -\mu)$	$\psi(0,-\mu)$	$\psi(\tau, -\mu)$
5.00e-02	5.89664e-01	6.07488e-06	5.71197e-01	5.85487e-06
1.00e-01	5.31120e-01	6.92516 e-06	5.22137e-01	6.66741 e-06
2.00e-01	4.43280 e-01	9.64232 e-06	4.41567e-01	9.25261 e-06
3.00e-01	3.80306e-01	1.62339e-05	3.81029e-01	1.54416e-05
4.00e-01	3.32964 e-01	4.38580 e-05	3.34673e-01	4.09691e-05
5.00e-01	2.96090e-01	1.69372e-04	2.98224 e-01	1.57373e-04
6.00 e-01	2.66563e-01	5.73465e-04	2.68871e-01	5.35989e-04
7.00e-01	2.42390 e-01	1.51282 e-03	2.44749e-01	1.42448e-03
8.00e-01	2.22235 e-01	3.24369 e-03	2.24583e-01	3.07431e-03
9.00e-01	2.05174e-01	5.96036e-03	2.07478e-01	5.67991e-03
1.00e+00	1.90546e-01	9.77123e-03	1.92789e-01	9.35351e-03

III. CONCLUSION

	Garcia/Siewert		QMC	
$\overline{\mu}$	$\psi(0,-\mu)$	$\psi(\tau, -\mu)$	$\psi(0,-\mu)$	$\psi(\tau,-\mu)$
5.00e-02	8.97798e-01	1.02202e-01	8.47454e-01	1.00663e-01
1.00e-01	8.87836e-01	1.12164 e-01	8.52822 e-01	1.10325 e-01
2.00e-01	8.69581 e-01	1.30419e-01	8.47710e-01	1.29064 e-01
3.00e-01	8.52299 e-01	1.47701e-01	8.35879 e- 01	1.46849 e-01
4.00e-01	8.35503 e-01	1.64497e-01	8.22291 e-01	1.64034 e-01
5.00e-01	8.18996 e-01	1.81004 e-01	8.08044 e-01	1.80827e-01
6.00e-01	8.02676 e-01	1.97324 e-01	7.93459e-01	1.97336e-01
7.00e-01	7.86493e-01	2.13507e-01	7.78672e-01	2.13625 e-01
8.00e-01	7.70429e-01	2.29571e-01	7.63768e-01	2.29725 e-01
9.00e-01	7.54496e-01	2.45504 e-01	7.48818e-01	2.45642e-01
1.00e+00	7.38721e-01	2.61279 e - 01	7.33889e-01	2.61361e-01

ACKNOWLEDGMENTS

The research of CTK was supported by Department of Energy grant DE-NA003967, and National Science Foundation Grants DMS-1745654, and DMS-1906446.

REFERENCES

- [1] R. GARCIA and C. SIEWERT, "Radiative transfer in finite inhomogeneous plane-parallel atmospheres," J. Quant. Spectrosc. Radiat. Transfer, 27, 141 (1982).
- [2] J. WILLERT, C. T. KELLEY, D. A. KNOLL, and H. K. PARK, "Hybrid Deterministic/Monte Carlo Neutronics," SIAM J. Sci. Comp., 35, S62 (2013).
- [3] C. T. Kelley, "SIAMFANLEquations.jl," https://github.com/ctkelley/SIAMFANLEquations.jl (2020); 10.5281/zenodo.4284807., URL https://github.com/ctkelley/SIAMFANLEquations.jl, julia Package.
- [4] C. T. Kelley, "Notebook for Solving Nonlinear Equations with Iterative Methods: Solvers and Examples in Julia," https://github.com/ctkelley/NotebookSIAMFANL (2020); 10.5281/zenodo.4284687., URL https://github.com/ctkelley/NotebookSIAMFANL, iJulia Notebook.
- [5] C. T. Kelley, "Solving Nonlinear Equations with Iterative Methods: Solvers and Examples in Julia," (2020)Unpublished book ms, under contract with SIAM.
- [6] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, no. 16 in Frontiers in Applied Mathematics, SIAM, Philadelphia (1995).
- [7] Y. SAAD and M. SCHULTZ, "GMRES a generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. Stat. Comp., 7, 856 (1986).
- [8] H. A. VAN DER VORST, "Bi-CGSTAB: A fast and smoothly converging variant to Bi-CG for the solution of nonsymmetric systems," SIAM J. Sci. Statist. Comput., 13, 631 (1992).