2D Arrays

7 June Feiday

TABLE OF CONTENTS

- 1. Basics of 2D arrays
- 2. Print row-wise sum
- 3. Print column-wise sum
- 4. Print diagonal elements
- 5. Print all elements diagonally from right to left
- 6. Transpose of a matrix
- 7. Rotate a matrix by 90°

2D away

• int arr[N][M] , total number of elements \rightarrow

How is it actually stored?

< **Question** >: Given arr[N][M], print row-wise sum.

• arr [3][4]
$$\rightarrow$$

• o 1 2 3

no of laws

• 1 9 5 -1 8 \rightarrow 2 1

2 3 11 15 20 \rightarrow 4 9

usually sow => (i)

 $col \Rightarrow j$

</>
</>
Code

void printRow-wise sum(int arr[N][M]){

for $(i: O \rightarrow N-1)$ NSum = Ofor $(j: O \rightarrow M-1)$ NI sum f = au(i)(j)y

print (sum) TC: O(NM) SC: O(1)

< **Question** >: Given arr[N][M], print column-wise sum.

arr [3][4] →

	0	1	2	3
0	10	2	7	3
1	9	5	- 1	8
2	3	11	15	20
	1	1	1	1
	22	18	21	31

</> </> Code

void printColumn-wise sum(int arr[N][M]){ $fol(j: O \rightarrow M-1)$ Sum = O $fol(i: O \rightarrow N-0)$ Sum f = auliJ(j) y print(Jum) y j=0 1, 0

< **Question** >: Given arr[N][N]

Square motrix

	0	1	2	3
0	1	5	8	7
1	2	N	3	9
2	15	20	-3	18
3	3 0	4 0	5 0	60

main diagnol 4*4

0,0 1,1 2,2 3,3

for(i: 0 -> N-1) C l print (arr [i] si)
y

0	1	2	3
1	5	8	7
2	11	3	9
15	20	- 3	18
30	40	50	60
	1 2	1 5 2 11 15 20	1 5 8 2 11 3 15 20 -3

anti diagnol 4*4
0,3
1,2
2,1
3,0

i=0 j=n-1
while(i<N)(
print(au(i)(j))
i++
j--

< Question > : Given arr[N][N]. Print all the elements diagonally from right to left.

arr [4][5] →

$$0,0$$
 $0,1$
 $1,0$
 $0,2$
 $1,1$
 $2,0$
 $0,3$
 $1,2$
 $2,1$
 $3,0$
 $0,4$
 $1,3$
 $2,2$
 $3,1$
 $1,4$
 $2,3$
 $3,2$
 $2,4$
 $3,3$
 $3,4$

$$N=4$$
 $M=5$
 $diag = 8$
 $diag = N+M-1$

</> </> Code

```
void printAllDiagonals(int arr[N][M]){
                                  0, 2 1,1 2,0
 //print the diagonals starting from 0th row
  for(j: 0 → M-1) c
          sow = 0
          col = j
         while ( now < N && col 7,0) {
             print (all [row] [col])
                low to
                 col - -
) //print the diagonals starting from last column
 fol(i:1-)n-1) [
                                       214 33
        row = i
        col = m-1
        while ( now < N && col 7,0) {
             print (all [row] (col])
              Sow +f
                              TC: NM
```


Transpose of a Square Matrix

	U	1	2	3
0	1	2	3	4
1	5	6	7	8
2	9	10	11	12
	1.0	1.4	1.5	1.6

Γι	^r a	n	S	p	0	S	e

0,1 E			2,3
0,3 63	3,	0	
1,2 (2,1		
13	3,1	2	3

0	1	5	9	13
1	2	6	10	14
2	3	7	11	15
3	4	8	12	16

for
$$(i: O \rightarrow n-1) \mathcal{L}$$

for $(j: i+1 \rightarrow n-1) \mathcal{L}$
 $\{ \text{swap}(\text{ass}(i)) \}$
 $\{ \text{TC} : O \}$

Rotate a mat[N][N]

	0	1	2	3
0	1	2	3	4
1	5	6	6 7	
2	9	10	11	12
3	13	14	15	16

Rotate by
90° Clockwise

0	1	2	3
13	9	5	1
14	10	6	2
15	11	7	3
16	12	8	4

Step 1
$$\Rightarrow$$
 Greate a trampose

1 2 3 4 1
5 6 7 8 2
9 10 11 12 \Rightarrow 3
13 14 15 16

2 6 10 14 3 7 /1 15 4 8 12 16

seulse deach