Домашнее задание 7

Дедлайн: 2024-11-01.

Здесь $\mathbb{H}(Y\mid X)$ — это условная энтропия, а $\mathbb{H}(X,Y)$ — совместная энтропия. Будьте осторожны, некоторые авторы используют обозначение $\mathbb{H}(X,Y)$ для кросс-энтропии.

1. Распределение вектора (X,Y) задано таблицей

	Y = 1	Y = 2	Y = 3
X = 0	0.2	0.2	0.1
X = 1	0.5	0	0

- а) Найдите энтропии $\mathbb{H}(X)$, $\mathbb{H}(Y)$, $\mathbb{H}(X,Y)$.
- б) Найдите $\mathbb{H}(Y \mid X)$.
- в) Какое максимальное значение может принимать условная энтропия $\mathbb{H}(Y\mid X)$, если X принимает два значения, а Y три?
- 2. Рассмотрим равномерное распределение на отрезке [0;1].
 - а) Найдите энтропию равномерного распределения на отрезке [0;1].
 - б) Докажите, что равномерное распределение имеет максимальную энтропию среди всех распределений на отрезке [0;1], имеющих функцию плотности.

Рассмотим распределение с функцией плотности $f(x) = \exp(-x^2/2)/\sqrt{2\pi}$ на числовой прямой. Кстати, оно называется *стандартным нормальным*.

- в) Найдите математическое ожидание и дисперсию данного распределения.
- г) Найдите энтропию стандартного нормального распределения.
- д) Докажите, что стандартное нормальное распределение имеет максимальную энтропию среди всех распределений с функцией плотности с нулевым математическим ожиданием и единичной дисперсией.

Подсказка: можно без доказательства пользоваться тем, что $\int_{-\infty}^{+\infty} f(x) dx = 1$.

- 3. Для дискретных величин X и Y докажите или опровергните утверждения:
 - a) $\mathbb{H}(X) + \mathbb{H}(Y \mid X) = \mathbb{H}(X, Y)$;
 - 6) $\mathbb{H}(X,Y) \geq \mathbb{H}(X)$;
 - $\mathbf{B)} \ \mathbb{H}(X^2) = \mathbb{H}(X);$