2 Functional Analysis over Cones

2.5 Continuity Notions of Multifunctions

Ryota Iwamoto

June 5, 2023

We use the book; Variational Methods in Partially Ordered Spaces (author: A.Gopfert, H.Riahi, C.Tammer, and C.Zalinescu).

p.51

In this section X and Y are separated (in the sense of Hausdorff) topological spaces and $\Gamma: X \rightrightarrows Y$ a multifunction. When mentioned explicitly, Y is a separeated topological vector space (s.t.v.s).

" \rightrightarrows " is one of symbols that mean multifunction. Also, " \twoheadrightarrow " and " $X \to 2^X$ " have the same meaning.

Definition 2.5.1 —

Let $x_0 \in X$. We say that

(a) Γ is upper continuous (u.c.) at x_0 if

$$\forall D \subset Y, D \text{ open}, \Gamma(x_0) \subset D, \exists U \in \mathcal{V}_X(x_0) \text{ s.t. } \forall x \in U, \Gamma(x) \subset D,$$
 (2.33)

i.e., $\Gamma^{+1}(D)$ is a neighborhood of x_0 for each open set $D \subset Y$ such that $F(x_0) \subset D$;

(b) Γ is lower continuous (l.c.) at x_0 if

$$\forall D \subset Y, D \text{ open, } \Gamma(x_0) \cap D \neq \emptyset, \exists U \in \mathcal{V}_X(x_0) \text{ s.t. } \forall x \in U, \Gamma(x) \cap D \neq \emptyset, \quad (2.34)$$

i.e., $\Gamma^{-1}(D)$ is a neighborhood of x_0 for each open set $D \subset Y$ such that $\Gamma(x) \cap D \neq \emptyset$.

- (c) Γ is continuous at x_0 if Γ is u.c. and l.c. at x_0 .
- (d) Γ is upper continuous (lower continuous, continuous) at x_0 if Γ is so at every $x \in X$;
- (e) Γ is lower continuous at $(x_0, y_0) \in X \times Y$ if

$$\forall V \in \mathcal{V}_Y(y_0), \exists U \in \mathcal{V}_X(x_0) \text{ s.t. } \forall x \in U, \Gamma(x) \cap D \neq \emptyset.$$

It follows from the definition that $x_0 \in \operatorname{int} (\operatorname{dom} \Gamma)$ and $y_0 \in \operatorname{cl} (\Gamma(x_0))$ if Γ is l.c. at (x_0, y_0) and Γ is l.c. at $x_0 \in \operatorname{dom} \Gamma$ if and only if Γ is l.c. at every (x_0, y_0) with $y \in \Gamma(x_0)$; moreover, Γ is l.c. at every $x_0 \in X \setminus \operatorname{dom} \Gamma$. If $x_0 \in X \setminus \operatorname{dom} \Gamma$, then Γ is u.c. at x_0 if and only if $x_0 \in \operatorname{int} (X \setminus \operatorname{dom} \Gamma)$. So, if Γ is u.c., then $\operatorname{dom} \Gamma$ is closed, while if Γ is l.c., then $\operatorname{dom} \Gamma$ is open. The next result follows immediately from the definitions.

It means that below.

Note Note

- (i) Γ : l.c. at $(x_0, y_0) \Rightarrow x_0 \in \operatorname{int} (\operatorname{dom} \Gamma), y_0 \in \operatorname{cl} (\Gamma(x_0))$
- (ii) Γ : l.c. at $x_0 \in \text{dom } \Gamma \Leftrightarrow \Gamma$: l.c. at $\forall (x_0, y)$ with $y \in \Gamma(x_0)$
- (iii) Γ : l.c. at $\forall x_0 \in X \setminus \text{dom } \Gamma$
- (iv) Γ : u.c. at $x_0 \in X \setminus \text{dom } \Gamma \Leftrightarrow x_0 \in \text{int } (X \setminus \text{dom } \Gamma)$
- (v) Γ : u.c. \Rightarrow dom Γ : closed
- (vi) Γ : l.c. \Rightarrow dom Γ : open

Proof. Coming soon...

Proposition 2.5.2

- (i) Γ : u.c. $\Leftrightarrow \forall D \subset Y$: open, $\Gamma^{+1}(D)$: open
- (ii) Γ : l.c. $\Leftrightarrow \forall D \subset Y$: open, $\Gamma^{-1}(D)$: open

Proof. Coming soon...

Definition (limit inferior and limi superior)

The limit inferior of Γ at $x_0 \in X$ is defeined by

$$\liminf_{x \to x_0} \Gamma(x) := \{ y \in Y \mid \forall V \in \mathcal{V}_Y(y), \exists U \in \mathcal{V}_X(x_0) \text{ s.t. } \forall x \in U^{\bullet}, \Gamma(x) \cap D \neq \emptyset \},$$

while the limit superior of Γ at $x_0 \in X$ is defined by

$$\lim \sup_{x \to x_0} \Gamma(x) := \{ y \in Y \mid \forall V \in \mathcal{V}_Y(y), \forall U \in \mathcal{V}_X(x_0), \exists x \in U^{\bullet} \text{ s.t. } \Gamma(x) \cap D \neq \emptyset \},$$

$$= \bigcap_{U \in \mathcal{V}_X(x_0)} \operatorname{cl} \left(\Gamma(U^{\bullet}) \right),$$

where for $U \in \mathcal{V}_X(x_0)$, $U^{\bullet} := U \setminus \{x_0\}$.