Boolean network modeling

(a) Network structure

(b) Boolean functions

$$B_1(\sigma_1, \sigma_3) = \sigma_1 \text{ OR NOT } \sigma_3$$

$$B_2(\sigma_1, \sigma_3) = \sigma_1 \text{ AND } \sigma_3$$

$$B_3(\sigma_2) = \sigma_2$$

(c) Truth tables

(d) State transition graph

Dynamical behavior of the system

Images from Wang et al. 2012, Phys Biol, doi:10.1088/1478-3975/9/5/055001

Global control of cell-cycle transcription by coupled CDK and network oscillators

David A. Orlando^{1,2}, Charles Y. Lin¹, Allister Bernard³, Jean Y. Wang¹, Joshua E. S. Socolar⁴, Edwin S. Iversen⁵, Alexander J. Hartemink³ & Steven B. Haase¹

Image from Bloom and Cross, doi:10.1038/nrm2105

Figure 1 | **Dynamics of periodic transcripts in wild-type and cyclin-mutant cells.** Heat maps depicting mRNA levels of periodic genes for wild-type (a) and cyclin-mutant (b) cells. Each row in a and b represents data for the same gene (Supplementary Table 1). Transcript levels are expressed as a log₂-fold change relative to mean expression. Transcript levels at each point in the time series were mapped onto a cell-cycle timeline (see Methods). The S and G2/M phases of the cyclin-mutant timeline are shaded, indicating that, by conventional definitions, cyclin-mutant cells arrest at the G1/S-phase border.

a Initial Regulatory Logic Choice

TF	Activation Rule
MBF	CLN3
SBF	(CLN3 ∨ MBF) ∧ ¬(YOX1 ∧ YHP1)
YOX1	MBF ∧ SBF
HCM1	MBF ∧ SBF
YHP1	MBF ∨ SBF
SFF	SBF ∧ HCM1
ACE2	SFF
SWI5	SFF
CLN3	$ (SWI5 \land ACE2) \land \neg (YOX1 \land YHP1) $