

Finanzas en R

Actividad 3

Sebastián Egaña Santibáñez Nicolás Leiva Díaz

Actividad 3

R y SQL

Veremos un ejemplo simple de conexión entre R y SQL; en este caso utilizamos SQLite.

Librerías y conexión

Se establece la conexión con:

con <- dbConnect(SQLite())</pre>

Escritura de tabla y schema

4 30.4

Escribimos una tabla en base al set de prueba mtcars

```
dbWriteTable(con, "mtcars_sql", mtcars)
```

Dos maneras para inspeccionar el schema y las tablas son los siguientes:

```
tables <- dbListTables(con)
schema <- dbGetQuery(con, "PRAGMA table_info(mtcars_sql)")</pre>
```

El primero nos permite ver las tablas en el schema en donde estamos trabajando y el segundo nos permite inspeccionar las carácteristicas de la tabla especificada. ## Lectura usando SQL

Una primera manera es utilizar la query relacionada con la conexión de SQL que estamos utilizando:

```
data_01 <- dbGetQuery(con, 'SELECT MPG, CYL FROM mtcars_sql WHERE MPG > 30')

mpg cyl
1 32.4     4
2 30.4     4
3 33.9     4
4 30.4     4
```

Otra forma es "estorear" la query para después hacer la búsqueda:

```
get_data_02 <- dbSendQuery(con, "SELECT MPG, CYL FROM mtcars_sql WHERE MPG > 30")
data_02 <- dbFetch(get_data_02)

mpg cyl
1 32.4     4
2 30.4     4
3 33.9     4</pre>
```

La otra manera es convertir la tabla de sql a un dataframe en base a dplyr. Después usamos los comandos propios de R para lograr el mismo resultado anterior:

```
tabla_cars <- tbl(con, 'mtcars_sql')</pre>
```

Warning: Closing open result set, pending rows

```
tabla_cars %>%
    select(mpg, cyl) %>%
    filter(mpg>30) %>%
    arrange(mpg)
# Source:
             SQL [4 x 2]
             sqlite 3.41.2 []
# Database:
# Ordered by: mpg
   mpg
         cyl
  <dbl> <dbl>
1 30.4
2 30.4
3 32.4
4 33.9
           4
```

¿Cómo se vería esto en una query? Preguntemosle a R:

```
tabla_cars %>%
    select(mpg, cyl) %>%
    filter(mpg>30) %>%
    arrange(mpg) %>%
    show_query()

<SQL>
SELECT `mpg`, `cyl`
FROM `mtcars_sql`
WHERE (`mpg` > 30.0)
ORDER BY `mpg`
```

Obtener datos financieros

Ejemplo 1

```
# Load necessary libraries
library(quantmod)
library(DBI)
library(RSQLite)
# Define a function to fetch financial data
fetch_financial_data <- function(symbol, start_date, end_date) {</pre>
  # Fetch data using quantmod
  data <- getSymbols(symbol, from = start_date, to = end_date, auto.assign = FALSE)</pre>
  return(data)
# Define your SQLite database file
sqlite_file <- "financial_data.db"
# Connect to SQLite database
conn <- dbConnect(SQLite(), sqlite_file)</pre>
# Define the symbol and time frame
symbol <- "AAPL"
start_date <- "2020-01-01"
end_date <- Sys.Date() # Today's date</pre>
# Fetch financial data
financial_data <- fetch_financial_data(symbol, start_date, end_date)</pre>
# Convert xts object to data frame
financial_data_df <- data.frame(date = index(financial_data), coredata(financial_data))</pre>
# Write data to SQLite database
dbWriteTable(conn, "stock_data_01", financial_data_df, overwrite = TRUE)
# Close the database connection
data_financial <- dbGetQuery(conn, 'SELECT * FROM stock_data')</pre>
data_financial %>% head()
```

```
date AAPL.Open AAPL.High AAPL.Low AAPL.Close AAPL.Volume AAPL.Adjusted
1 18263
        74.0600
                  75.1500 73.7975
                                    75.0875
                                              135480400
                                                            73.05943
        74.2875
2 18264
                  75.1450 74.1250
                                    74.3575 146322800
                                                            72.34914
3 18267
       73.4475
                  74.9900 73.1875
                                    74.9500 118387200
                                                            72.92564
                  75.2250 74.3700
4 18268 74.9600
                                    74.5975 108872000
                                                            72.58267
5 18269
       74.2900
                  76.1100 74.2900
                                    75.7975
                                                            73.75025
                                              132079200
                  77.6075 76.5500
6 18270 76.8100
                                    77.4075 170108400
                                                            75.31676
```

Reflexionemos sobre el paso a paso.

Ejemplo 2

```
# Load necessary libraries
library(quantmod)
library(DBI)
library(RSQLite)
# Define a function to fetch financial data
fetch_financial_data <- function(symbol, start_date, end_date) {</pre>
  # Fetch data using quantmod
  data <- getSymbols(symbol, from = start_date, to = end_date, auto.assign = FALSE)
  return(data)
# Define your SQLite database file
sqlite_file <- "financial_data.db"
# Connect to SQLite database
conn <- dbConnect(SQLite(), sqlite_file)</pre>
# Define the symbol and time frame
symbol <- "AAPL"
start_date <- "2020-01-01"
end_date <- Sys.Date() # Today's date</pre>
# Fetch financial data
financial_data <- fetch_financial_data(symbol, start_date, end_date)</pre>
# Convert xts object to data frame
financial_data_df <- data.frame(date = index(financial_data), coredata(financial_data))</pre>
```

```
# Define SQL command to create table
  create_table_sql <- "</pre>
  CREATE TABLE IF NOT EXISTS stock_data (
      date TEXT PRIMARY KEY,
      open REAL,
      high REAL,
      low REAL,
      close REAL,
      volume REAL,
      adjusted REAL
  );
  # Execute SQL command to create table
  dbExecute(conn, create_table_sql)
[1] 0
  # Prepare data for insertion
  insert_values_sql <- "INSERT OR REPLACE INTO stock_data VALUES (?, ?, ?, ?, ?, ?)"</pre>
  # Insert data into table row by row
  for (i in 1:nrow(financial_data_df)) {
    row_values <- unname(as.list(financial_data_df[i, ]))</pre>
    dbExecute(conn, insert_values_sql, params = row_values)
  dbWriteTable(conn, "stock_data_02", financial_data_df, overwrite = TRUE)
  financial_data_df %>% head()
       date AAPL.Open AAPL.High AAPL.Low AAPL.Close AAPL.Volume AAPL.Adjusted
              74.0600
                         75.1500 73.7975
1 2020-01-02
                                             75.0875
                                                       135480400
                                                                      73.05943
2 2020-01-03
              74.2875
                         75.1450 74.1250
                                             74.3575
                                                       146322800
                                                                      72.34915
3 2020-01-06
              73.4475
                         74.9900 73.1875
                                          74.9500
                                                      118387200
                                                                      72.92564
                        75.2250 74.3700
4 2020-01-07
              74.9600
                                             74.5975
                                                                      72.58266
                                                      108872000
                        76.1100 74.2900 75.7975 132079200
              74.2900
5 2020-01-08
                                                                      73.75025
```

Veamos de nuevo el schema:

76.8100

6 2020-01-09

77.4075

170108400

75.31674

77.6075 76.5500

Hacemos un gráfico simple:

```
# Load necessary libraries
library(ggplot2)

# Convert xts object to data frame
financial_data_df <- data.frame(date = index(financial_data), coredata(financial_data))

# Convert date to Date class
financial_data_df$date <- as.Date(financial_data_df$date)

# Plot line chart
ggplot(financial_data_df, aes(x = date)) +
    geom_line(aes(y = AAPL.Close, color = "Close")) +
    geom_line(aes(y = AAPL.Open, color = "Open")) +
    geom_line(aes(y = AAPL.High, color = "High")) +
    geom_line(aes(y = AAPL.Low, color = "Low")) +
    scale_color_manual(values = c("Close" = "blue", "Open" = "red", "High" = "green", "Low"
    labs(x = "Date", y = "Price", title = "Apple Share Prices") +
    theme_minimal()</pre>
```

