Braided equivariant crossed modules and cohomology of Γ-modules

NGUYEN. T. QUANG^{1,*}, CHE. T. K. PHUNG², PHAM. T. CUC³

Abstract

If Γ is a group, then braided Γ -crossed modules are classified by braided strict Γ -graded categorial groups. The Schreier theory obtained for Γ -module extensions of the type of an abelian Γ -crossed module is a generalization of the theory of Γ -module extensions.

2010 Mathematics Subject Classification: 18D10, 20J05, 20J06, 20E22 **Keywords:** braided Γ-crossed module, braided strict graded categorical group, Γ-module extension, symmetric cohomology

1 Introduction

Crossed modules have been used widely, and in various contexts, since their definition by Whitehead [21] in his investigation of the algebraic structure of second relative homotopy groups. Brown and Spencer [4] showed that crossed modules are determined by \mathcal{G} -groupoids (or strict categorial groups), and hence crossed modules can be studied by the theory of category. Thereafter, Joyal and Street [14] extended the result in [4] for braided crossed modules and braided strict categorial groups. A braided strict categorial group is a braided categorical group in which the unit, associativity constraints are strict and every object is invertible ($x \otimes y = 1 = y \otimes x$).

A brief summary of researches related to crossed modules was given in [6] by Carrasco et al. Results on the category of *abelian* crossed modules appeared in this work. Previously, the notion of abelian crossed module was characterized by that of the *center* of a crossed module in the paper of Norrie [16].

In [12], Fröhlich and Wall introduced the notion of graded categorical group. Thereafter, Cegarra and Khmaladze constructed the abelian (symmetric) cohomology of Γ -modules which was applied on the classification for braided (symmetric) Γ -graded categorical groups in [9] ([8]).

¹Department of Mathematics, Hanoi National University of Education, Vietnam

²Department of Mathematics and Applications, Saigon University, Vietnam

³Natural Science Department, Hongduc University, Vietnam

^{*} Corresponding author. *Email adrdresses:* cn.nguyenquang@gmail.com (Nguyen. T. Quang), kimphungk25@yahoo.com (Che. T. K. Phung), cucphamhd@gmail.com (Pham. T. Cuc)

The purpose of this paper is to study kinds of crossed modules which are defined by braided strict Γ -graded categorical groups. This result is an extension of the result of Joyal and Street mentioned above. After this introductory Section 1, Section 2 is devoted to recalling some necessary fundamental notions and results of braided (symmetric) graded categorical groups and factor sets of braided graded categorical groups. In Section 3 we show that the category \mathbf{BrGr}^* of braided strict categorical groups and regular symmetric monoidal functors is equivalent to the category $\mathbf{BrCross}$ of braided crossed modules (Theorem 3.6). Each morphism in the category $\mathbf{BrCross}$ consists of a homomorphism $(f_1, f_0) : \mathcal{M} \to \mathcal{M}'$ of braided crossed modules and an element of the group of abelian 2-cocycles $Z_{ab}^2(\pi_0\mathcal{M}, \pi_1\mathcal{M}')$ in the sense of [11]. This result is a continuation of the result in [14] (Remark 3.1). It is obtained as a consequence of Classification Theorem 4.10.

In Section 4 we extend the result in Section 3 to graded structures by introducing the notions of braided Γ -crossed module and braided strict Γ -graded categorical group to classify braided Γ -crossed modules (see [15]). Theorem 4.10 states that the category Γ BrGr* of braided strict Γ -graded categorical groups and regular Γ -graded symmetric monoidal functors is equivalent to the category Γ BrCross of braided Γ -crossed modules. Each morphism in the category Γ BrCross consists of a homomorphism (f_1, f_0) : $\mathcal{M} \to \mathcal{M}'$ of braided Γ -crossed modules and an element of the group of symmetric 2-cocycles $Z_{\Gamma,s}^2(\pi_0\mathcal{M}, \pi_1\mathcal{M}')$ in the sense of [9].

The problem of group extensions of the type of a crossed module has been mentioned in [19, 10, 3]. In Section 5 we show a treatment of the similar problem for Γ -module extensions of the type of an abelian Γ -crossed module. The Schreier theory for such extensions (Theorem 5.3) is presented by means of graded symmetric monoidal functors, and therefore we obtain the classification theorem of Γ -module extensions of the type of an abelian Γ -crossed module (Theorem 5.4).

The case of (non-braided) Γ -cossed modules is studied by Quang and Cuc in [17]. The results generalizes both the theory of group extensions of the type of a crossed module and the one of equivariant group extensions.

2 Preliminaries

2.1 Braided (symmetric) graded categorical groups

Let Γ be a fixed group, which we regard as a category with exactly one object, say *, where the morphisms are the members of Γ and the composition law is the group operation. A *grading* on a category $\mathbb G$ is then a functor, say $gr:\mathbb G\to\Gamma$. For any morphism u in $\mathbb G$ with $gr(u)=\sigma$, we refer to σ as the *grade* of u. The grading gr is said to be *stable* if for any $X\in\mathrm{Ob}\mathbb G$ and any $\sigma\in\Gamma$ there exists an isomorphism u in $\mathbb G$ with domain X such that $gr(u)=\sigma$.

A braided Γ -graded monoidal category [9] $\mathbb{G} = (\mathbb{G}, gr, \otimes, I, \mathbf{a}, \mathbf{r}, \mathbf{l}, \mathbf{c})$ consists of a category \mathbb{G} , a stable grading $gr : \mathbb{G} \to \Gamma$, graded functors $\otimes : \mathbb{G} \times_{\Gamma} \mathbb{G} \to \mathbb{G}$ and $I : \Gamma \to \mathbb{G}$, and graded natural equivalences defined by isomorphisms of grade 1 $\mathbf{a}_{X,Y,Z} : (X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z), \mathbf{l}_X : I \otimes X \xrightarrow{\sim} X, \mathbf{r}_X : X \otimes I \xrightarrow{\sim} X$ and $\mathbf{c}_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X$ satisfying the following coherence conditions:

$$\mathbf{a}_{X,Y,Z\otimes T}\mathbf{a}_{X\otimes Y,Z,T}=(id_X\otimes \mathbf{a}_{Y,Z,T})\mathbf{a}_{X,Y\otimes Z,T}(\mathbf{a}_{X,Y,Z}\otimes id_T),$$

$$(id_X \otimes \mathbf{l}_Y)\mathbf{a}_{X,I,Y} = \mathbf{r}_X \otimes id_Y,$$

$$(id_Y \otimes \mathbf{c}_{X,Z})\mathbf{a}_{Y,X,Z}(\mathbf{c}_{X,Y} \otimes id_Z) = \mathbf{a}_{Y,Z,X}\mathbf{c}_{X,Y \otimes Z}\mathbf{a}_{X,Y,Z}, \tag{1}$$

$$(\mathbf{c}_{X,Z} \otimes id_Y)\mathbf{a}_{X,Z,Y}^{-1}(id_X \otimes \mathbf{c}_{Y,Z}) = \mathbf{a}_{Z,X,Y}^{-1}\mathbf{c}_{X \otimes Y,Z}\mathbf{a}_{X,Y,Z}^{-1}.$$
 (2)

A braided Γ -graded categorical group [9] is a braided Γ -graded monoidal groupoid such that, for any object X, there is an object X' with an arrow $X \otimes X' \to 1$ of grade 1. If the braiding \mathbf{c} is a symmetric constraint, that is, it satisfies the condition $\mathbf{c}_{Y,X} \circ \mathbf{c}_{X,Y} = id_{X\otimes Y}$ (in this case the relation (2) coincides with the relation (1)), then \mathbb{G} is called a symmetric Γ -graded categorical group or a graded Picard category [8]. Then the subcategory Ker \mathbb{G} (whose objects are the objects of \mathbb{G} and morphisms are the morphisms of grade 1 in \mathbb{G}) is a braided categorical group (a Picard category, respectively).

Let (\mathbb{G}, gr) and (\mathbb{G}', gr') be two (braided symmetric) Γ -graded categorical groups. A graded symmetric monoidal functor from (\mathbb{G}, gr) to (\mathbb{G}', gr') is a triple (F, \widetilde{F}, F_*) , where $F: (\mathbb{G}, gr) \to (\mathbb{G}', gr')$ is a Γ -graded functor, $\widetilde{F}_{X,Y}: FX \otimes FY \to F(X \otimes Y)$ are natural isomorphisms of grade 1 and $F_*: I' \to FI$ is an isomorphism of grade 1, such that the following coherence conditions hold:

$$\widetilde{F}_{X,Y\otimes Z}(id_{FX}\otimes\widetilde{F}_{Y,Z})\mathbf{a}_{FX,FY,FZ} = F(\mathbf{a}_{X,Y,Z})\widetilde{F}_{X\otimes Y,Z}(\widetilde{F}_{X,Y}\otimes id_{FZ}),$$

$$F(\mathbf{r}_X)\widetilde{F}_{X,I}(id_{FX}\otimes F_*) = \mathbf{r}_{FX}, \ F(\mathbf{l}_X)\widetilde{F}_{I,X}(F_*\otimes id_{FX}) = \mathbf{l}_{FX},$$

$$\widetilde{F}_{Y,X}\mathbf{c}_{FX,FY} = F(\mathbf{c}_{X,Y})\widetilde{F}_{X,Y}.$$

Let $(F, \widetilde{F}, F_*), (F', \widetilde{F}', F_*')$ be two graded symmetric monoidal functors. A graded symmetric monoidal natural equivalence $\theta: F \xrightarrow{\sim} F'$ is a graded natural equivalence such that, for all objects X, Y of \mathbb{G} , the following coherence conditions hold

$$\widetilde{F}'_{X,Y}(\theta_X \otimes \theta_Y) = \theta_{X \otimes Y} \widetilde{F}_{X,Y}, \ \theta_I F_* = F'_*, \tag{3}$$

that is, a monoidal natural equivalence.

2.2 Braided (symmetric) graded categorical groups of type (M, N) and the theory of obstructions

Let \mathbb{G} be a braided Γ -graded categorical group. We write $M=\pi_0(\operatorname{Ker}\mathbb{G})=\pi_0\mathbb{G}$ for the abelian group of 1-isomorphism classes of the objects in \mathbb{G} and $N=\pi_1(\operatorname{Ker}\mathbb{G})=\pi_1\mathbb{G}$ for the abelian group of 1-automorphisms of the unit object of \mathbb{G} . Then \mathbb{G} induces Γ -module structures on M,N and a normalized 3-cycocle $h\in Z^3_{\Gamma,ab}(M,N)$ in the sense of [9]. From these data, the authors of [9] constructed a braided Γ -graded categorical group, denoted by $\mathbb{G}(h)$ (or $\int_{\Gamma}(M,N,h)$), which is equivalent to \mathbb{G} . Below, we briefly recall this construction.

The objects of $\mathbb{G}(h)$ are the elements $s \in M$ and their arrows are pairs $(a, \sigma) : r \to s$ consisting of an element $a \in N$ and an element $\sigma \in \Gamma$ with $\sigma r = s$.

The composition of two morphisms $(r \xrightarrow{(a,\sigma)} s \xrightarrow{(b,\tau)} t)$ is defined by

$$(b,\tau)\circ(a,\sigma)=(b+\tau a+h(r,\tau,\sigma),\tau\sigma).$$

The graded tensor product is defined by

$$(r \stackrel{(a,\sigma)}{\to} s) \otimes (r' \stackrel{(b,\sigma)}{\to} s') = (rr' \xrightarrow{(a+sb+h(r,r',\sigma),\sigma)} ss').$$

The unit constraints are strict, $\mathbf{l}_s = (0,1) = \mathbf{r}_s : s \to s$. The associativity and braiding constraints are, respectively, given by

$$\mathbf{a}_{r,s,t} = (h(r,s,t),1) : (rs)t \to r(st),$$

$$\mathbf{c}_{r,s} = (h(r,s),1) : rs \to sr.$$

The stable Γ -grading is defined by $gr(a, \sigma) = \sigma$. The unit graded functor $I: \Gamma \to \mathbb{G}(h)$ is defined by

$$I(* \xrightarrow{\sigma} *) = (1 \xrightarrow{(0,\sigma)} 1).$$

We call $\mathbb{G}(h)$ a reduced braided Γ -graded categorical group of \mathbb{G} . In the case when \mathbb{G} is a Γ -graded Picard category, then $h \in Z^3_{\Gamma,s}$ in the sense of [8] and $\mathbb{G}(h)$ is a Γ -graded Picard category.

Let \mathbb{G} , \mathbb{G}' be Γ -graded Picard categories, and let $\mathbb{G}(h) = \int_{\Gamma}(M, N, h)$, $\mathbb{G}'(h') = \int_{\Gamma}(M', N', h')$ be their reduced Γ -graded Picard categories, respectively. A graded functor $F : \mathbb{G}(h) \to \mathbb{G}'(h')$ is said to be of type (φ, f) if

$$F(s) = \varphi(s), \quad F(a, \sigma) = (f(a), \sigma), \quad s \in M, \ a \in N, \ \sigma \in \Gamma,$$

where $\varphi: M \to M'; \ f: N \to N'$ are homomorphisms of Γ -modules. Then the function

$$k = \varphi^* h' - f_* h$$

is called an *obstruction* of the functor F.

Based on the results on monoidal functors of type (φ, f) presented in [18], we obtain the following results with some appropriate modifications.

Proposition 2.1. Let \mathbb{G} , \mathbb{G}' be braided Γ -graded categorical groups, and let $\mathbb{G}(h)$, $\mathbb{G}'(h')$ be their reduced braided Γ -graded categorical groups, respectively.

- i) Any graded symmetric monoidal functor $(F, \widetilde{F}) : \mathbb{G} \to \mathbb{G}'$ induces a graded symmetric monoidal functor $\mathbb{G}(h) \to \mathbb{G}'(h')$ of type (φ, f) .
- ii) Any graded symmetric monoidal functor $\mathbb{G}(h) \to \mathbb{G}'(h')$ is a graded functor of type (φ, f) .

Proposition 2.2 ([8], Theorem 3.9). The graded functor (F, \widetilde{F}) : $\mathbb{G}(h) \to \mathbb{G}'(h')$ of type (φ, f) is realizable, that is, there are isomorphisms $\widetilde{F}_{x,y}$ so that (F, \widetilde{F}) is a graded symmetric monoidal functor, if and only if its obstruction \overline{k} vanishes in $H^3_{\Gamma,s}(M, N')$. Then, there is a bijection

$$\operatorname{Hom}_{(\varphi,f)}[\mathbb{G}(h),\mathbb{G}'(h')] \leftrightarrow H^2_{\Gamma,s}(M,N'),$$

where $\operatorname{Hom}_{(\varphi,f)}[\mathbb{G}(h),\mathbb{G}'(h')]$ denotes the set of homotopy classes of graded symmetric monoidal functors of type (φ,f) from $\mathbb{G}(h)$ to $\mathbb{G}'(h')$.

Note that
$$H^2_{\Gamma,s}(M,N') = H^2_{\Gamma,ab}(M,N')$$
.

2.3 Factor sets in braided graded categorical groups

According to the definition of a factor set with coefficients in a monoidal category [7], we now establish the following terminology.

Definition 2.3. A symmetric factor set \mathcal{F} on Γ with coefficients in a braided categorical group \mathbb{G} (or a pseudofunctor from Γ to the category of braided categorical groups in the sense of Grothendieck [13]) consists of a family of symmetric monoidal auto-equivalences $F^{\sigma}: \mathbb{G} \to \mathbb{G}, \sigma \in \Gamma$, and isomorphisms between symmetric monoidal functors $\theta^{\sigma,\tau}: F^{\sigma}F^{\tau} \to F^{\sigma\tau}, \sigma, \tau \in \Gamma$ satisfying the conditions:

- i) $F^1 = id_{\mathbb{G}}$,
- ii) $\theta^{1,\sigma} = id_{F^{\sigma}} = \theta^{\sigma,1}, \ \sigma \in \Gamma,$
- iii) for all $\sigma, \tau, \gamma \in \Gamma$, the following diagram commutes

$$F^{\sigma}F^{\tau}F^{\gamma} \xrightarrow{\theta^{\sigma,\tau}F^{\gamma}} F^{\sigma\tau}F^{\gamma}$$

$$F^{\sigma}\theta^{\tau,\gamma} \downarrow \qquad \qquad \downarrow \theta^{\sigma\tau,\gamma}$$

$$F^{\sigma}F^{\tau\gamma} \xrightarrow{\theta^{\sigma,\tau\gamma}} F^{\sigma\tau\gamma}.$$

We write $\mathcal{F} = (\mathbb{G}, F^{\sigma}, \theta^{\sigma, \tau})$, or simply (F, θ) .

The following lemma comes from an analogous result on graded monoidal categories [7] or a part of Theorem 1.2 [20]. We sketch the proof since we need some of its details.

Lemma 2.4. Any braided Γ -graded categorical group (\mathbb{G}, gr) determines a symmetric factor set \mathcal{F} on Γ with coefficients in a braided categorical group $\operatorname{Ker} \mathbb{G}$.

Proof. For each $\sigma \in \Gamma$, we construct a symmetric monoidal functor $F^{\sigma} = (F^{\sigma}, \widetilde{F}^{\sigma}) : \operatorname{Ker} \mathbb{G} \to \operatorname{Ker} \mathbb{G}$ as follows. For any $X \in \operatorname{Ker} \mathbb{G}$, since the grading gr is stable, there is an isomorphism $\Upsilon_X^{\sigma} : X \xrightarrow{\sim} F^{\sigma}X$, where $F^{\sigma}X \in \operatorname{Ker} \mathbb{G}$, and $gr(\Upsilon_X^{\sigma}) = \sigma$. In particular, if $\sigma = 1$ we set $F^1X = X$ and $\Upsilon_X^1 = id_X$. For any morphism $f: X \to Y$ of grade 1 in $\operatorname{Ker} \mathbb{G}$, a morphism $F^{\sigma}(f)$ in $\operatorname{Ker} \mathbb{G}$ is determined by

$$F^{\sigma}(f) = \Upsilon_Y^{\sigma} \circ f \circ (\Upsilon_X^{\sigma})^{-1}.$$

Natural isomorphisms $\widetilde{F}_{X,Y}^{\sigma}: F^{\sigma}X \otimes F^{\sigma}Y \xrightarrow{\sim} F^{\sigma}(X \otimes Y)$ are determined by

$$\widetilde{F}_{X,Y}^{\sigma} = (\Upsilon_X^{\sigma} \otimes \Upsilon_Y^{\sigma}) \circ (\Upsilon_{X \otimes Y}^{\sigma})^{-1}.$$

Moreover, for any pair $\sigma, \tau \in \Gamma$, there is an isomorphism between monoidal functors $\theta^{\sigma,\tau}: F^{\sigma}F^{\tau} \xrightarrow{\sim} F^{\sigma\tau}$, where $\theta^{1,\sigma} = id_{F^{\sigma}} = \theta^{\sigma,1}$, which is determined by

$$\theta_X^{\sigma,\tau} = \Upsilon_{F^\tau X}^\sigma \circ \Upsilon_X^\tau \circ (\Upsilon_X^{\sigma\tau})^{-1},$$

for all $X \in Ob \mathbb{G}$.

The pair (F, θ) determined above is a symmetric factor set.

3 Braided crossed modules

We first recall that a *crossed module* [21] (B, D, d, ϑ) consists of groups B, D, group homomorphisms $d: B \to D$, $\vartheta: D \to \text{Aut}B$ satisfying

$$C_1$$
. $\vartheta d = \mu$,

$$C_2$$
. $d(\vartheta_x(b)) = \mu_x(d(b)), \ x \in D, b \in B$,

where μ_x is an inner automorphism given by conjugation with x.

In this paper, the crossed module (B, D, d, ϑ) is sometimes denoted by $B \stackrel{d}{\to} D$, or by $d: B \to D$. For convenience, we write the addition for the operation in B and the multiplication for that in D.

The notion of braided crossed module over a groupoid was originally introduced by Brown and Gilbert in [2]. Later, the notion of braided crossed module over groups appeared in the work of Joyal and Street [14] (Remark 3.1).

Definition 3.1 ([14]). A braided crossed module \mathcal{M} is a crossed module (B, D, d, ϑ) together with a map $\eta : D \times D \to B$ satisfying the following conditions:

$$C_3$$
. $\eta(x,yz) = \eta(x,y) + \vartheta_y \eta(x,z)$,

$$C_4$$
. $\eta(xy,z) = \vartheta_x \eta(y,z) + \eta(x,z)$,

$$C_5. d\eta(x,y) = xyx^{-1}y^{-1},$$

$$C_6$$
. $\eta(d(b), x) + \vartheta_x b = b$,

$$C_7$$
. $\eta(x,d(b)) + b = \vartheta_x b$,

where $b \in B$, $x, y, z \in D$.

A braided crossed module is called a *symmetric* crossed module (see Aldrovandi and Noohi [1]) if $\eta(x,y) + \eta(y,x) = 0$ for all $x,y \in D$. In this case, the conditions C_3 and C_4 coincide, the conditions C_6 and C_7 coincide.

The following properties follow from the definition of a braided crossed module.

Proposition 3.2. Let \mathcal{M} be a braided crossed module.

- i) $\eta(x,1) = \eta(1,y) = 0$.
- ii) Ker d is a subgroup of Z(B).
- iii) Coker d is an abelian group.
- iv) The homomorphism ϑ induces the identity on Ker d, and hence the action of Coker d on Ker d, given by

$$sa = \vartheta_x(a), \quad a \in \operatorname{Ker} d, \ x \in s \in \operatorname{Coker} d,$$

is trivial.

The abelian groups $\operatorname{Ker} d$ and $\operatorname{Coker} d$ are also denoted by $\pi_1 \mathcal{M}$ and $\pi_0 \mathcal{M}$, respectively.

Example 3.3. Let N be a normal subgroup of a group G so that the quotient group G/N is abelian, in other words, let N be a normal subgroup in G which contains the derived group (or the commutator subgroup) of G. Then, $(N, G, i, \mu, [,])$ is a braided crossed module, where $i: N \to G$ is an inclusion, $\mu: G \to \operatorname{Aut} N$ is defined by conjugation and $\eta: G \times G \to N$, $\eta(x, y) = [x, y] (= xyx^{-1}y^{-1})$.

According to Joyal and Street [14], each braided crossed module is determined by a braided strict categorical group. We now classify the category of braided crossed modules.

Definition 3.4. A homomorphism of braided crossed modules $(B, D, d, \vartheta, \eta)$ and $(B', D', d', \vartheta', \eta')$ consists of group homomorphisms $f_1 : B \to B', f_0 : D \to D'$ such that:

```
H_1. \ f_0d = d'f_1, \\ H_2. \ f_1(\vartheta_x b) = \vartheta'_{f_0(x)}f_1(b), \\ H_3. \ f_1(\eta(x,y)) = \eta'(f_0(x), f_0(y)), \\ \text{for all } x, y \in D, \ b \in B.
```

Therefore, a homomorphism of braided crossed modules is that of crossed modules which satisfies H_3 .

We determine the category

BrCross

whose objects are braided crossed modules and whose morphisms are triples (f_1, f_0, φ) , where $(f_1, f_0) : (B \xrightarrow{d} D) \to (B' \xrightarrow{d'} D')$ is a homomorphism

of braided crossed modules and $\varphi \in Z^2_{ab}(\operatorname{Coker} d, \operatorname{Ker} d')$. The composition with the morphism $(f'_1, f'_0, \varphi') : (B' \xrightarrow{d'} D') \to (B'' \xrightarrow{d''} D'')$ is given by

$$(f_1', f_0', \varphi') \circ (f_1, f_0, \varphi) = (f_1'f_1, f_0'f_0, (f_1')_*\varphi + (f_0)^*\varphi').$$
 (4)

Definition 3.5. A symmetric monoidal functor $(F, \widetilde{F}) : \mathbb{G} \to \mathbb{G}'$ is termed regular if

$$B_1. \ F(x) \otimes F(y) = F(x \otimes y),$$

 $B_2. \ F(b) \otimes F(c) = F(b \otimes c),$
 $B_3. \ \widetilde{F}_{x,y} = \widetilde{F}_{y,x},$
for $x, y \in \text{Ob}\mathbb{G}, \ b, c \in \text{Mor}\mathbb{G}.$

Denote by

\mathbf{BrGr}^*

the category of braided strict categorical groups and regular symmetric monoidal functors and denote by $p:D\to \operatorname{Coker} d$ a canonical projection, we obtain the following classification result.

Theorem 3.6 (Classification Theorem). There exists an equivalence

$$\begin{array}{cccc} \Phi: \mathbf{BrCross} & \to & \mathbf{BrGr}^*, \\ B \to D & \mapsto & \mathbb{G}_{B \to D} \\ (f_1, f_0, \varphi) & \mapsto & (F, \widetilde{F}) \end{array}$$

where
$$F(x) = f_0(x), F(b) = f_1(b), \widetilde{F}_{x,y} = \varphi(px, py), \text{ for } x, y \in D, b \in B.$$

Proof. The proof of this theorem is a particular case of Theorem 4.10 in the next section. \Box

Remark 3.7. Denote by BrCross the subcategory of BrCross whose morphisms are homomorphisms of braided crossed modules ($\varphi = 0$) and denote by BrGr* the subcategory of BrGr* whose morphisms are strict monoidal functors ($\widetilde{F} = id$). Then, these two categories are equivalent via Φ .

4 Braided Γ-crossed modules

The main objective of this section is to classify braided Γ -crossed modules by means of strict braided graded categorical groups. First, observe that if B is a Γ -group, the group Aut B of all automorphisms of B is also a Γ -group under the action

$$(\sigma f)(b) = \sigma(f(\sigma^{-1}b)), \ b \in B, \ f \in \text{Aut } B, \ \sigma \in \Gamma.$$

Then, the map $\mu: B \to \operatorname{Aut} B, b \mapsto \mu_b$ (μ_b is an inner automorphism of B given by conjugation with b) is a homomorphism of Γ -groups.

Definition 4.1. Let B and D be Γ-groups. A braided (symmetric) Γ-crossed module, is a braided (symmetric) crossed module $\mathcal{M} = (B, D, d, \vartheta, \eta)$ in which $d: B \to D$, $\vartheta: D \to \operatorname{Aut}B$ are Γ-group homomorphisms satisfying the following conditions:

$$\Gamma_1. \ \sigma(\vartheta_x(b)) = \vartheta_{\sigma x}(\sigma b),$$

 $\Gamma_2. \ \sigma\eta(x,y) = \eta(\sigma x,\sigma y),$
where $\sigma \in \Gamma, \ x,y \in D \ \text{and} \ b \in B.$

Braided (symmetric) Γ -crossed modules are also called braided (symmetric) equivariant crossed modules by Noohi [15].

The following properties are implied from the definition of a braided Γ -crossed module.

Proposition 4.2. Let \mathcal{M} be a braided Γ -crossed module.

- i) Ker d is a Γ -submodule of Z(B).
- ii) Coker d is a Γ -module under the action

$$\sigma s = [\sigma x], x \in s \in \text{Coker } d, \sigma \in \Gamma.$$

Example 4.3. In Example 3.3, if G and N are Γ -groups, then $(N, G, i, \mu, [,])$ is a braided Γ -crossed module.

Example 4.4. Let $d: B \to D$ be a morphism of Γ -module and let D act trivially on B. Let $\eta: D \times D \to Kerd$ be a biadditive function satisfies Γ_2 and

$$\eta|_{Imd\times D} = 0 = \eta|_{D\times Imd}$$
.

Then, $(B, D, d, 0, \eta)$ is a braided Γ -crossed module.

We now show that braided Γ -crossed modules are determined by braided strict Γ -graded categorical groups. First, we say that a symmetric factor set (F,θ) on Γ with coefficients in a braided categorical group \mathbb{G} is regular if F^{σ} is a regular symmetric monoidal functor and $\theta^{\sigma,\tau} = id$, for all $\sigma, \tau \in \Gamma$.

Definition 4.5. A braided Γ-graded categorical group (\mathbb{G}, gr) is called *strict* if

- i) Ker G is a braided strict categorical group,
- ii) \mathbb{G} induces a regular symmetric factor set (F, θ) on Γ with coefficients in Ker \mathbb{G} .

Equivalently, a braided Γ -graded categorical group (\mathbb{G}, gr) is *strict* if it is a Γ -graded extension of a braided strict categorical group by a regular symmetric factor set.

• Constructing the braided strict Γ -graded categorical group $\mathbb{G} = \mathbb{G}_{\mathcal{M}}$ associated to a braided Γ -crossed module $\mathcal{M} = (B, D, d, \vartheta, \eta)$.

Objects of \mathbb{G} are the elements of the group D, a σ -morphism $x \to y$ is a pair (b, σ) , where $b \in B$, $\sigma \in \Gamma$ such that $\sigma x = d(b)y$. The composition of two morphisms is given by

$$(x \xrightarrow{(b,\sigma)} y \xrightarrow{(c,\tau)} z) = (x \xrightarrow{(\tau b + c, \tau \sigma)} z). \tag{5}$$

Since B is a Γ -group, the composition is associative and unitary.

For each morphism (b, σ) in \mathbb{G} , we have

$$(b,\sigma)^{-1} = (-\sigma^{-1}b,\sigma^{-1}),$$

and hence G is a groupoid.

The tensor operation on objects is given by the addition in the group D and, for two morphisms $(x \stackrel{(b,\sigma)}{\to} y), (x' \stackrel{(c,\sigma)}{\to} y')$ in \mathbb{G} , we define

$$(x \xrightarrow{(b,\sigma)} y) \otimes (x' \xrightarrow{(c,\sigma)} y') = (xx' \xrightarrow{(b+\vartheta_y c,\sigma)} yy').$$
 (6)

The functoriality of the tensor operation is implied from the compatibility of the action ϑ with the Γ -action and from the conditions in the definition of a braided Γ -crossed module.

Associativity and unit constraints of the tensor operation are strict. The braiding constraint \mathbf{c} is defined by

$$\mathbf{c}_{x,y} = (\eta(x,y), 1) : xy \to yx.$$

By the relation C_5 , $\mathbf{c}_{x,y}$ is actually a morphism in \mathbb{G} . Due to the conditions C_3 , C_4 , the braiding constraint \mathbf{c} is compatible with the associativity constraint \mathbf{a} . The naturality of \mathbf{c} follows from the conditions Γ_2 , C_1 , C_3 , C_4 , C_6 , C_7 .

The Γ -grading $gr: \mathbb{G} \to \Gamma$ is given by

$$(b,\sigma)\mapsto\sigma.$$

The unit graded functor $I:\Gamma\to\mathbb{G}$ is defined by

$$I(* \xrightarrow{\sigma} *) = (1 \xrightarrow{(0,\sigma)} 1).$$

Since $Ob\mathbb{G} = D$ is a group and $x \otimes y = xy$, every object of \mathbb{G} is invertible, and hence $Ker\mathbb{G}$ is a braided strict categorical group.

We now show that \mathbb{G} induces a regular symmetric factor set (F, θ) on Γ with coefficients in Ker \mathbb{G} . For any $x \in D$, $\sigma \in \Gamma$, we set $F^{\sigma}(x) = \sigma x$, $\Upsilon_x^{\sigma} = (x \xrightarrow{(0,\sigma)} \sigma x)$. Then, according to the proof of Lemma 2.4, we have $F^{\sigma}(b,1) = (\sigma b,1)$ and $\theta^{\sigma,\tau} = id$. From the braided Γ -crossed module structure of \mathcal{M} , it follows that F^{σ} is a regular symmetric monoidal functor on Ker \mathbb{G} .

• Constructing the braided Γ -crossed module associated to a braided strict Γ -graded categorical group \mathbb{G} .

Set

$$D = \operatorname{Ob} \mathbb{G}, \ B = \{x \xrightarrow{b} 1 \mid x \in D, \ gr(b) = 1\}.$$

The operations in D and B are given by

$$xy = x \otimes y, \quad b + c = b \otimes c,$$

respectively. Then D becomes a group in which the unity is 1 and the inverse of x is x^{-1} ($x \otimes x^{-1} = 1$), B is group in which the zero element is the morphism (1 $\xrightarrow{id_1}$ 1) and the inverse of ($x \xrightarrow{b}$ 1) is the morphism ($x^{-1} \xrightarrow{\overline{b}} 1$)($b \otimes \overline{b} = id_1$). Since \mathbb{G} has a regular symmetric factor set (F, θ) , D and B are Γ -groups under the actions

$$\sigma x = F^{\sigma}(x), \ x \in D, \sigma \in \Gamma,$$

 $\sigma b = F^{\sigma}(b), \ b \in B,$

respectively. The correspondences $d: B \to D$ and $\vartheta: D \to \operatorname{Aut} B$ are, respectively, given by

$$d(x \xrightarrow{b} 1) = x,$$

$$\vartheta_{y}(x \xrightarrow{b} 1) = (yxy^{-1} \xrightarrow{id_{y} + b + id_{y} - 1} 1).$$

Since B and D are Γ -groups, d and ϑ are Γ -group homomorphisms.

The map $\eta: D \times D \to B$ is defined by

$$\eta(x,y) = \mathbf{c}_{x,y} \otimes id_{x^{-1}} \otimes id_{y^{-1}} : xyx^{-1}y^{-1} \to 1.$$

Now we will classify the category of braided Γ -crossed modules.

Definition 4.6. A homomorphism $\mathcal{M} \to \mathcal{M}'$ of braided Γ -crossed modules is a homomorphism (f_1, f_0) of braided crossed modules, where f_1, f_0 are Γ -group homomorphisms.

Remark on notations. Each morphism $x \xrightarrow{(b,\sigma)} y$ in $\mathbb{G}_{\mathcal{M}}$ is written in the form

$$x \xrightarrow{(0,\sigma)} \sigma x \xrightarrow{(b,1)} y$$
,

and then each graded symmetric monoidal functor $(F, \widetilde{F}): \mathbb{G}_{\mathcal{M}} \to \mathbb{G}_{\mathcal{M}'}$ defines a function $f: D^2 \cup (D \times \Gamma) \to B'$ by

$$(f(x,y),1) = \widetilde{F}_{x,y}, \quad (f(x,\sigma),\sigma) = F(x \stackrel{(0,\sigma)}{\to} \sigma x).$$
 (7)

Lemma 4.7. Let $(f_1, f_0) : \mathcal{M} \to \mathcal{M}'$ be a homomorphism of braided Γ -crossed modules. Then there is a graded symmetric monoidal functor $(F, \widetilde{F}) : \mathbb{G}_{\mathcal{M}} \to \mathbb{G}_{\mathcal{M}'}$ such that $F(x) = f_0(x)$, $F(b, 1) = (f_1(b), 1)$, if and only if $f = p^*\varphi$, where $\varphi \in Z^2_{\Gamma,s}(\operatorname{Coker} d, \operatorname{Ker} d')$, and $p : D \to \operatorname{Coker} d$ is a canonical projection.

Proof. Since f_0 is a homomorphism and $Fx = f_0(x)$, $\widetilde{F}_{x,y} : FxFy \to F(xy)$ is a morphism of grade 1 in \mathbb{G}' if and only if df(x,y) = 1', or $f(x,y) \in \text{Ker } d' \subset Z(B')$.

Also, since f_0 is a Γ -homomorphism, $Fx \xrightarrow{(f(x,\sigma),\sigma)} F\sigma x$ is a morphism of grade σ in \mathbb{G}' if and only if $df(x,\sigma) = 1'$, or $f(x,\sigma) \in \text{Ker } d' \subset Z(B')$.

• The condition so that F preserves the composition of two morphisms. Since f_1 is a group homomorphism, F preserves the composition of two morphisms of grade 1. F preserves the composition of two morphisms in terms of $(0, \sigma)$,

$$(x \xrightarrow{(0,\sigma)} y \xrightarrow{(0,\tau)} z),$$

if and only if

$$\tau f(x,\sigma) + f(\sigma x,\tau) = f(x,\tau\sigma). \tag{8}$$

- ullet The condition so that $\widetilde{F}_{x,y}$ is natural.
- For morphisms of grade 1, we consider the diagram

$$F(x)F(y) \xrightarrow{\widetilde{F}_{x,y}} F(xy)$$

$$F(b,1)\otimes F(c,1) \qquad \qquad \downarrow F[(b,1)\otimes (c,1)]$$

$$F(x')F(y') \xrightarrow{\widetilde{F}_{x',y'}} F(x'y')$$

Since f_1 , f_0 are homomorphisms satisfying the condition H_2 ,

$$F(b,1)\otimes F(c,1)=F[(b,1)\otimes (c,1)].$$

Then since f(x,y), $f(x',y') \in Z(B')$, the above diagram commutes if and only if

$$f(x,y) = f(x',y'),$$

for x = d(b)x', y = d(c)y'. Thus, \widetilde{F} defines a function $\varphi : \operatorname{Coker}^2 d \to \operatorname{Ker} d'$,

$$\varphi(r,s) = f(x,y), r = px, s = py.$$

- For morphisms in terms of $(0, \sigma)$, we consider a diagram

$$F(x)F(y) \xrightarrow{\widetilde{F}_{x,y}} F(xy)$$

$$F(0,\sigma)\otimes F(0,\sigma) \qquad \qquad \downarrow F[(0,\sigma)\otimes (0,\sigma)]$$

$$F(\sigma x)F(\sigma y) \xrightarrow{\widetilde{F}_{\sigma x,\sigma y}} F(\sigma x)(\sigma y) = F\sigma(xy).$$

According to Proposition 4.2, the above diagram commutes if and only if

$$\sigma f(x,y) + f(xy,\sigma) = f(x,\sigma) + f(y,\tau) + f(\sigma x,\sigma y). \tag{9}$$

• Since the following square commutes

and f_1 is a Γ -group homomorphism, we have $f(x, \sigma) = f(y, \sigma)$, for x = d(b)y. This determines a function φ : Coker $d \times \Gamma \to \operatorname{Ker} d'$,

$$\varphi(r,\sigma) = f(x,\sigma), \ r = px.$$

Therefore, we obtain a function

$$\varphi : \operatorname{Coker}^2 d \cup \operatorname{Coker} d \times \Gamma \to \operatorname{Ker} d'.$$

The function φ is normalized in the sense that

$$\varphi(1,r) = \varphi(s,1) = 0 = \varphi(s,1_{\Gamma}).$$

The first two equalities follow from the property F(1) = 1' and the compatibility of (F, \widetilde{F}) with unit constraints. The final equality holds owing to $f(x, 1_{\Gamma}) = 0$ (following from the relation (8)).

By Proposition 4.2, the compatibility of (F, \widetilde{F}) with associativity constraints is equivalent to

$$f(y,z) + f(x,yz) = f(x,y) + f(xy,z).$$
(10)

The compatibility of (F, \widetilde{F}) with the braiding constraints implies

$$f(x,y) + f_1(\eta(x,y)) = \eta'(f_0(x), f_0(y)) + f(y,x).$$

By the fact that $f(x,y) \in \text{Ker } d' \subset Z(B')$ and by the condition H_3 , one has

$$f(x,y) = f(y,x). (11)$$

From the relations (8)–(11), it follows that $\varphi \in Z^2_{\Gamma,s}(\operatorname{Coker} d, \operatorname{Ker} d')$.

We define the category

$_{\Gamma}$ BrCross

whose objects are braided Γ -crossed modules and whose morphisms are triples

 (f_1, f_0, φ) , where $(f_1, f_0) : (B \xrightarrow{d} D) \to (B' \xrightarrow{d'} D')$ is a homomorphism of braided Γ -crossed modules, and $\varphi \in Z^2_{\Gamma,s}(\operatorname{Coker} d, \operatorname{Ker} d')$. The composition is given by (4).

Note that a braided strict Γ -graded categorical group \mathbb{G} induces Γ -actions on the group D of objects and on the group B of morphisms of grade 1, we state the following definition.

Definition 4.8. A graded symmetric monoidal functor $(F, \widetilde{F}) : \mathbb{G} \to \mathbb{G}'$ is termed regular if

```
B_1. F(x) \otimes F(y) = F(x \otimes y),

B_2. F(b) \otimes F(c) = F(b \otimes c),

B_3. \widetilde{F}_{x,y} = \widetilde{F}_{y,x},

B_4. F(\sigma x) = \sigma F(x),

B_5. F(\sigma b) = \sigma F(b),
```

where $x, y \in \text{Ob}\mathbb{G}$, b, c are morphisms of grade 1 in $\mathbb{G}, \sigma \in \Gamma$.

The graded symmetric monoidal functor mentioned in Lemma 4.7 is regular.

Lemma 4.9. Let \mathbb{G} , \mathbb{G}' be corresponding braided strict Γ -graded categorical groups associated to braided Γ -crossed modules \mathcal{M} , \mathcal{M}' , and let (F, \widetilde{F}) : $\mathbb{G} \to \mathbb{G}'$ be a regular graded symmetric monoidal functor. Then, the triple (f_1, f_0, φ) , where

- i) $f_0(x) = F(x), (f_1(b), 1) = F(b, 1), \sigma \in \Gamma, b \in B, x \in D,$
- ii) $p^*\varphi = f$, where f is defined by (7),

is a morphism in the category $_{\Gamma}\mathbf{BrCross}$.

Proof. Due to the conditions B_1 and B_4 , f_0 is a Γ-group homomorphism. By the assumption that F preserves the composition of two morphisms of grade 1 and by the condition B_5 , f_1 is a Γ-group homomorphism. Any $b \in B$ can be considered as a morphism $(db \stackrel{(b,1)}{\to} 1)$ in \mathbb{G} , and hence $(f_0(db) \stackrel{(f_1(b),1)}{\to} 1')$ is a morphism in \mathbb{G}' , that is, the relation H_1 holds. The relation H_2 follows from the condition B_2 and the homomorphism property of f_1 .

According to the proof of Lemma 4.7, the compatibility of (F, \widetilde{F}) with braiding constraints and the condition B_3 lead to the relation H_3 . So, (f_1, f_0) is a homomorphism of braided crossed Γ -modules. Thus, by Lemma 4.7, the function f determines a function $\varphi \in Z^2_{\Gamma,s}(\operatorname{Coker} d, \operatorname{Ker} d')$ such that $f = p^*\varphi$, where $p : D \to \operatorname{Coker} d$ is a canonical projection. Therefore, (f_1, f_0, φ) is a morphism in Γ BrCross.

Denote by

$_{\Gamma}\mathrm{BrGr}^{*}$

the category of braided strict Γ -graded categorical groups and regular graded symmetric monoidal functors, we obtain the following result which is an extension of Theorem 3.6.

Theorem 4.10 (Classification Theorem). There exists an equivalence

$$\begin{array}{cccc} \Phi: {}_{\mathbf{\Gamma}}\mathbf{BrCross} & \to & {}_{\mathbf{\Gamma}}\mathbf{BrGr^*}, \\ B \to D & \mapsto & \mathbb{G}_{B \to D} \\ (f_1, f_0, \varphi) & \mapsto & (F, \widetilde{F}) \end{array}$$

where
$$F(x) = f_0(x)$$
, $F(b,1) = (f_1(b),1)$, $F(x \overset{(0,\sigma)}{\to} \sigma x) = (\varphi(px,\sigma),\sigma)$, $\widetilde{F}_{x,y} = (\varphi(px,py),1)$, for $x \in D, b \in B, \sigma \in \Gamma$.

Proof. Suppose that \mathbb{G}, \mathbb{G}' are braided strict Γ -graded categorical groups associated to braided Γ -crossed modules $B \to D, B' \to D'$, respectively. By Lemma 4.7, the correspondence $(f_1, f_0, \varphi) \mapsto (F, \widetilde{F})$ determines an injection on the homsets

$$\Phi: \mathrm{Hom}_{\mathbf{\Gamma}\mathbf{BrCross}}(B \to D, B' \to D') \to \mathrm{Hom}_{\mathbf{\Gamma}\mathbf{BrGr}^*}(\mathbb{G}, \mathbb{G}').$$

According to Lemma 4.9, Φ is surjective.

If \mathbb{G} is a braided strict Γ -graded categorical group, and $\mathcal{M}_{\mathbb{G}}$ is its an associated braided Γ -crossed module, then $\Phi(\mathcal{M}_{\mathbb{G}}) = \mathbb{G}$ (not only isomorphic). Therefore, Φ is an equivalence.

Remark 4.11. In the above theorem, if $B \to D$ is a symmetric Γ -crossed module, then $\mathbb{G}_{B\to D}$ is a symmetric strict Γ -graded categorical group. Let Γ -SymCross denote the full subcategory of the category Γ -BrCross whose objects are symmetric crossed Γ -modules, and let Γ -PiGr* denote the full subcategory of the category Γ -BrGr* whose objects are symmetric strict Γ -graded categorical groups. Then these two subcategories are equivalent and the following diagram commutes

$$\Gamma \text{SymCross} \xrightarrow{\Phi} \Gamma \text{PiGr}^*$$

$$\int_{J} \int_{J^*} \int_{\Gamma} J^*$$

$$\Gamma \text{BrCross} \xrightarrow{\Phi} \Gamma \text{BrGr}^*,$$

where J, J^* are full embedding functors.

Remark 4.12. When $\Gamma = 1$ is a trivial group, then the categories $_{\Gamma}$ BrCross and $_{\Gamma}$ BrGr* are the categories BrCross and BrGr*, respectively. Therefore, we obtain Theorem 3.6.

5 Classification of Γ-module extensions of the type of an abelian Γ-crossed module

In this section, we present the theory of Γ -module extension of the type of an abelian Γ -crossed modules, which is analogous to the theory of group extension of the type of a crossed module [19, 10, 3].

In [6], if $d: B \to D$ is a homomorphism of abelian groups and D acts trivially on B, then (B, D, d, 0) is called an *abelian crossed module*. Let us note that any abelian crossed module is defined by a strict Picard category,

that is, a symmetric categorical group in which $\mathbf{a} = id$, $\mathbf{c} = id$, $\mathbf{l} = id = \mathbf{r}$ and for each object x, there is an object y such that $x \otimes y = 1$).

By an abelian Γ -crossed module, we shall mean a braided Γ -crossed module

 $(B, D, d, \vartheta, \eta)$ that $\vartheta = 0$, $\eta = 0$. Then d is a homomorphism of Γ -modules. According to the construction in Section 4, each abelian Γ -crossed module $\mathcal{M} = (B, D, d)$ defines a Γ -graded category $\mathbb{G}_{\mathcal{M}}$ whose Ker \mathbb{G} is a strict Picard category. In this case, we say that $\mathbb{G}_{\mathcal{M}}$ is a strict Γ -graded Picard category. A homomorphism $(f_1, f_0) : (B, D, d) \to (B', D', d')$ of abelian Γ -crossed modules consists of Γ -module homomorphisms $f_1 : B \to B'$ and $f_0 : D \to D'$ such that

$$f_0 d = d' f_1$$
.

Note that in this section, since B and D are abelian groups, we write + for the operations on B, D.

Definition 5.1. Let $\mathcal{M} = (B, D, d)$ be an abelian Γ-crossed module, and let Q be a Γ-module. A Γ-module extension of B by Q of type \mathcal{M} , denoted by $\mathcal{E}_{d,Q}$, is a short exact sequence of Γ-module homomorphisms,

$$\mathcal{E}: 0 \to B \xrightarrow{j} E \xrightarrow{p} Q \to 0,$$

and a homomorphism of abelian Γ -crossed modules $(id, \varepsilon): (B \to E) \to (B \to D)$.

Two extensions $\mathcal{E}_{d,Q}$ and $\mathcal{E}'_{d,Q}$ are said to be *equivalent* if the following diagram commutes

$$\mathcal{E}: 0 \longrightarrow B \xrightarrow{j} E \xrightarrow{p} Q \longrightarrow 0, \qquad E \xrightarrow{\varepsilon} D$$

$$\parallel \qquad \qquad \downarrow^{\alpha} \qquad \parallel$$

$$\mathcal{E}: 0 \longrightarrow B \xrightarrow{j'} E' \xrightarrow{p'} Q \longrightarrow 0, \qquad E \xrightarrow{\varepsilon'} D$$

and $\varepsilon'\alpha = \varepsilon$. Obviously, α is an isomorphism of Γ -modules.

Each extension $\mathcal{E}_{d,Q}$ induces a Γ -module homomorphism $\psi: Q \to \operatorname{Coker} d$ such that $\psi p = q\varepsilon$, where $q: D \to \operatorname{Coker} d$ is a canonical projection. Moreover, ψ is dependent only on the equivalence class of the extension $\mathcal{E}_{d,Q}$, and then we say that $\mathcal{E}_{d,Q}$ induces ψ . The set of equivalence classes of extensions $\mathcal{E}_{d,Q}$ inducing $\psi: Q \to \operatorname{Coker} d$ is denoted by

$$\operatorname{Ext}_{\mathbb{Z}\Gamma}^{\mathcal{M}}(Q,B,\psi).$$

Now, in order to study this set we apply the obstruction theory for graded symmetric monoidal functors between strict Γ -graded Picard categories $\operatorname{Dis}_{\Gamma,s} Q$ and $\mathbb{G}_{B\to D}$, where the discrete Γ -graded Picard category $\operatorname{Dis}_{\Gamma,s} Q$ is defined by (see Subsection 2.2)

$$\operatorname{Dis}_{\Gamma,s} Q = \int_{\Gamma} (Q, 0, 0).$$

It is just the strict Γ -graded Picard category associated to the abelian Γ -crossed module (0, Q, 0) (see Section 4).

Lemma 5.2. Let $\mathcal{M} = (B, D, d)$ be an abelian Γ -crossed module, Q be a Γ -module and $\psi : Q \to \operatorname{Coker} d$ be a Γ -module homomorphism. Then for each graded symmetric monoidal functor $(F, \widetilde{F}) : \operatorname{Dis}_{\Gamma,s} Q \to \mathbb{G}_{\mathcal{M}}$ which satisfies F(0) = 0 and induces the pair of Γ -module homomorphisms $(\psi, 0) : (Q, 0) \to (\operatorname{Coker} d, \operatorname{Ker} d)$, there exists an extension $\mathcal{E}_{d,Q}$ inducing ψ .

Such an extension $\mathcal{E}_{d,Q}$ is called associated to the graded symmetric monoidal functor (F, \widetilde{F}) .

Proof. Suppose that (F, \widetilde{F}) : $\operatorname{Dis}_{\Gamma,s} Q \to \mathbb{G}_{\mathcal{M}}$ is a graded symmetric monoidal functor. Then (F, \widetilde{F}) determines a function $f: Q^2 \cup (Q \times \Gamma) \to B$ by (7),

$$(f(u,v),1) = \widetilde{F}_{u,v}, \quad (f(u,\sigma),\sigma) = F(u \xrightarrow{(0,\sigma)} \sigma u).$$

The function f is "normalized" in the sense that

$$f(u, 1_{\Gamma}) = 0, f(u, 0) = 0 = f(0, v).$$

Since F preserves the identity morphism, one has the first equality. The later equalities follow from the assumption F(0) = 0 and the compatibility of (F, \widetilde{F}) with unit constraints. It follows from the definition of a morphism in \mathbb{G} that

$$\sigma F(u) = df(u, \sigma) + F(\sigma u), \tag{12}$$

$$F(u) + F(v) = df(u, v) + F(u + v).$$
(13)

The function f defined as above is just a 2-cocycle in $Z^2_{\Gamma,s}(Q,B)$.

From the 2-cocycle f, we construct an exact sequence of Γ -modules

$$\mathcal{E}_F: 0 \to B \stackrel{j_0}{\to} E_0 \stackrel{p_0}{\to} Q \to 0,$$

where E_0 is the crossed product extension $B \times_f Q$ and $j_0(b) = (b, 1)$, $p_0(b, u) = u$, for $b \in B, u \in Q$. The Γ -module structure of E_0 is given by

$$(b, u) + (c, v) = (b + c + f(u, v), u + v),$$

$$\sigma(b, u) = (\sigma b + f(u, \sigma), \sigma u).$$

Now we determine Γ -module homomorphism $\varepsilon: E_0 \to D$. By the assumption, (F, \widetilde{F}) induces a Γ -module homomorphism $\psi: Q \to \operatorname{Coker} d$ by $\psi(u) = [Fu] \in \operatorname{Coker} d$. Thus, the element Fu is a representative of $\operatorname{Coker} d$ in D. Then for $(b, u) \in E_0$, we set

$$\varepsilon(b, u) = db + Fu. \tag{14}$$

Therefore, ε is a Γ -module homomorphism thanks to the relations (12) and (13). It is easy to see that $\varepsilon \circ j_0 = d$. Further, this extension induces Γ -module homomorphism $\psi : Q \to \operatorname{Coker} d$, since

$$\varepsilon(b, u) = q(db + Fu) = q(Fu) = \psi(u) = \psi p_0(b, u),$$

for all
$$u \in Q$$
.

Theorem 5.3 (Schreier Theory for Γ -module extensions of the type of an abelian Γ -crossed module). Let $\mathcal{M} = (B, D, d)$ be an abelian Γ -crossed module, and let $\psi : Q \to \operatorname{Coker} d$ be a Γ -module homomorphism. There exists a bijection

$$\Omega: \operatorname{Hom}_{(\psi,0)}[\operatorname{Dis}_{\Gamma,s}Q,\mathbb{G}_{\mathcal{M}}] \to \operatorname{Ext}_{\mathbb{Z}\Gamma}^{\mathcal{M}}(Q,B,\psi).$$

Proof. Step 1: Graded symmetric monoidal functors (F, \widetilde{F}) , (F', \widetilde{F}') are homotopic if and only if the corresponding associated extensions $\mathcal{E}_{d,Q}, \mathcal{E}'_{d,Q}$ are equivalent.

Suppose that F, F': $\operatorname{Dis}_{\Gamma,s} Q \to \mathbb{G}_{\mathcal{M}}$ are homotopic by a homotopy $\alpha : F \to F'$. Then, there is a function $g : Q \to B$ such that $\alpha_u = (g(u), 1)$, that is,

$$F(u) = dg(u) + F'(u). \tag{15}$$

The naturality and the coherence condition (3) of the homotopy α lead to g(0) = 0 and

$$f(u,\sigma) + g(\sigma u) = \sigma g(u) + f'(u,\sigma), \tag{16}$$

$$f(u,v) + q(u+v) = q(u) + q(v) + f'(u,v).$$
(17)

According to Lemma 5.2, there exist the extensions $\mathcal{E}_{d,Q}$ and $\mathcal{E}'_{d,Q}$ associated to F and F', respectively. Then, thanks to the relations (16) and (17), the map

$$\alpha^*: E_F \to E_{F'}, \quad (b, u) \mapsto (b + q(u), u)$$

is a homomorphism of Γ -modules. Further, α^* is an isomorphism. The equality $\varepsilon'\alpha^* = \varepsilon$ is implied from the relations (14) and (15):

$$\varepsilon'\alpha^*(b,u) = \varepsilon'(b+g(u),u) = d(b+g(u)) + F'u$$
$$= d(b) + d(g(u)) + F'u = d(b) + Fu = \varepsilon(b,u).$$

Therefore, two extensions $\mathcal{E}_{d,Q}$ and $\mathcal{E}'_{d,Q}$ are equivalent.

Now, suppose that $\mathcal{E}_{d,Q}$ and $\mathcal{E}'_{d,Q}$ are two extensions associated to (F, \widetilde{F}) and (F', \widetilde{F}') , respectively. If $\alpha^* : E_F \to E_{F'}$ is an equivalence of these extensions, then it is straightforward to see that

$$\alpha^*(b, u) = (b + q(u), u),$$

where $g: Q \to B$ is a function with g(0) = 0. By retracing our steps, $\alpha_u = (g(u), 1)$ is a homotopy between (F, \widetilde{F}) and (F', \widetilde{F}') .

Step 2: Ω is surjective.

Assume that $\mathcal{E} = \mathcal{E}_{d,Q}$ is an extension of type \mathcal{M} . We prove that \mathcal{E} defines a graded symmetric monoidal functor (F, \widetilde{F}) : $\mathrm{Dis}_{\Gamma,s} Q \to \mathbb{G}_{\mathcal{M}}$. For any $u \in Q$, choose a representative $e_u \in E$ such that $p(e_u) = u$, $e_0 = 0$. Each element of E can be represented uniquely as $b + e_u$ for $b \in B, u \in Q$. The representatives $\{e_u\}$ induce a normalized function $f: Q^2 \cup (Q \times \Gamma) \to B$ by

$$e_u + e_v = f(u, v) + e_{u+v},$$
 (18)

$$\sigma e_u = f(u, \sigma) + e_{\sigma u}. \tag{19}$$

Now, we construct a graded symmetric monoidal functor (F, \widetilde{F}) : $\operatorname{Dis}_{\Gamma,s} Q \to \mathbb{G}_{\mathcal{M}}$ as follows. Since $\psi(u) = \psi p(e_u) = q\varepsilon(e_u)$, $\varepsilon(e_u)$ is a representative of $\psi(u)$ in D. Thus, we set

$$F(u) = \varepsilon(e_u), \ F(u \xrightarrow{\sigma} \sigma u) = (f(u, \sigma), \sigma), \ \widetilde{F}_{u,v} = (f(u, v), 1).$$

The relations (18) and (19) show that $F(\sigma)$ and $\widetilde{F}_{u,v}$ are morphisms in \mathbb{G} , respectively. The associativity and commutativity laws and the Γ -group property of B show that $f \in Z^2_{\Gamma,s}(Q,B)$, and hence (F,\widetilde{F}) is a graded symmetric monoidal functor of type $(\psi,0)$.

Now, let \mathcal{E}_F be an extension associated to (F, \widetilde{F}) , then $\mathcal{E}_F \cong \mathcal{E}$ by $\alpha : (b, u) \mapsto b + e_u$.

Let \mathbb{G} be a Γ -graded Picard category associated to an abelian Γ -crossed module $B \stackrel{d}{\to} D$. Since $\pi_0 \mathbb{G} = \operatorname{Coker} d$ and $\pi_1 \mathbb{G} = \operatorname{Ker} d$, it follows from Subsection 2.2 that the reduced Γ -graded Picard category $\mathbb{G}(h)$ of \mathbb{G} is of the form

$$\mathbb{G}(h) = \int_{\Gamma} (\operatorname{Coker} d, \operatorname{Ker} d, h), \ h \in Z^3_{\Gamma, s}(\operatorname{Coker} d, \operatorname{Ker} d).$$

Then Γ -module homomorphism $\psi: Q \to \operatorname{Coker} d$ induces an obstruction

$$\psi^* h \in Z^3_{\Gamma,s}(Q,\operatorname{Ker} d).$$

We now use this notion of obstruction to state and prove the following theorem.

Theorem 5.4. Let $\mathcal{M} = (B, D, d)$ be an abelian Γ -crossed module, and let $\psi : Q \to \operatorname{Coker} d$ be a homomorphism of Γ -modules. Then, the vanishing of $\overline{\psi^*h}$ in $H^3_{\Gamma,s}(Q,\operatorname{Ker} d)$ is necessary and sufficient for there to exist an extension $\mathcal{E}_{d,Q}$ of type \mathcal{M} inducing ψ . Further, if $\overline{\psi^*h}$ vanishes, then the set of equivalence classes of such extensions is bijective with $H^2_{\Gamma,s}(Q,\operatorname{Ker} d)$.

Proof. By the assumption $\overline{\psi^*h}=0$, it follows from Proposition 2.2 that there is a graded symmetric monoidal functor $(\Psi,\widetilde{\Psi}): \operatorname{Dis}_{\Gamma,s}Q \to \mathbb{G}(h)$. Then the composition of $(\Psi,\widetilde{\Psi})$ and the canonical graded symmetric monoidal functor $(H,\widetilde{H}):\mathbb{G}(h)\to\mathbb{G}$ is a graded symmetric monoidal functor $(F,\widetilde{F}): \operatorname{Dis}_{\Gamma,s}Q\to\mathbb{G}$, and hence by Lemma 5.2, we obtain an associated extension $\mathcal{E}_{d,Q}$.

Conversely, suppose that

$$\mathcal{E}: 0 \to B \xrightarrow{j} E \xrightarrow{p} Q \to 0$$

is a Γ -module extension of type \mathcal{M} inducing ψ . Let \mathbb{G}' be a strict Γ -graded Picard category associated to the abelian Γ -crossed module (B,E,j). Then, according to Proposition 4.7, there is a graded symmetric monoidal functor $F:\mathbb{G}'\to\mathbb{G}$. Since the reduced Γ -graded Picard category of \mathbb{G}' is $\mathrm{Dis}_{\Gamma,s}\,Q$, it follows from Proposition 2.1 that F induces a graded symmetric monoidal functor of type $(\psi,0)$ from (Q,0,0) to $(\mathrm{Coker}\,d,\mathrm{Ker}\,d,h)$. Now, thanks to Proposition 2.2, the obstruction of the pair $(\psi,0)$ vanishes in $H^3_{\Gamma,s}(Q,\mathrm{Ker}\,d)$, i.e., $\overline{\psi^*h}=0$.

The final assertion of Theorem 5.4 is obtained from Theorem 5.3. First, there is a natural bijection

$$\operatorname{Hom}[\operatorname{Dis}_{\Gamma,s}Q,\mathbb{G}] \leftrightarrow \operatorname{Hom}\operatorname{Dis}_{\Gamma,s}Q,\mathbb{G}(h)].$$

Then, since $\pi_0(\operatorname{Dis}_{\Gamma,s} Q) = Q, \pi_1\mathbb{G}(h) = \operatorname{Ker} d$, the bijection

$$\operatorname{Ext}_{\mathbb{Z}\Gamma}^{\mathcal{M}}(Q,B,\psi) \leftrightarrow H_{\Gamma_{s}}^{2}(Q,\operatorname{Ker} d)$$

follows from Theorem 5.3 and Proposition 2.2.

We now consider the special case when $\mathcal{M} = (B, \operatorname{Aut} B, 0)$ is an abelian Γ -crossed module. Then, each Γ -module extension of type \mathcal{M} inducing $\psi: Q \to \operatorname{Aut} B$ is just an extension of Γ -modules,

$$0 \to B \to E \to Q \to 0$$
,

inducing ψ . Thus, Theorem 5.4 leads to the following consequence.

Corollary 5.5 ([8], Theorem 2.4). Let B, Q be Γ -modules, and let $\psi : Q \to \operatorname{Aut} B$ be a Γ -module homomorphism. Then, there is an obstruction class $\overline{k} \in H^3_{\Gamma,s}(Q,B)$ whose vanishing is necessary and sufficient for there to exist a Γ -module extension of B by Q inducing ψ . Further, if \overline{k} vanishes, then there exists a bijection

$$\operatorname{Ext}_{\mathbb{Z}\Gamma}(Q, B, \psi) \leftrightarrow H^2_{\Gamma, s}(Q, B).$$

References

- [1] E. Aldrovandi and B. Noohi, Butterflies I; Morphisms of 2-group stacks, *Adv. Math.* **221** (2009), no. 3, 687–773.
- [2] R. Brown and N. D. Gilbert, Algebraic models of 3-types and automorphism structures for crossed modules, *Proc. London Math. Soc.* **59** (1989), 51–73.
- [3] R. Brown and O. Mucuk, Covering groups of non-connected topological groups revisited, *Math. Proc. Camb. Phil. Soc.* **115** (1994), 97–110.
- [4] R. Brown and C. Spencer, G-groupoids, crossed modules and the fundamental groupoid of a topological group, *Proc. Konn. Ned. Akad. v. Wet.* **79** (1976), 296–302.
- [5] M. Calvo, A. M. Cegarra and Nguyen T. Quang, Higher cohomologies of modules, Algebr. Geom. Topol. 12 (2012), 343–413.
- [6] P. Carrasco, A. M. Cegarra and A. R.-Grandjean, (Co)homology of crossed modules, Category theory 1999 (Coimbra), J. Pure Appl. Algebra 168 (2002), no. 2-3, 147–176.
- [7] A. M. Cegarra, A. R. Garzón and J. A. Ortega, Graded extensions of monoidal categories, *J. Algebra* **241** (2001), no. 2, 620–657.
- [8] A. M. Cegarra and E. Khmaladze, Homotopy classification of graded Picard categories, *Adv. Math.* **213** (2007), no. 2, 644–686.
- [9] A. M. Cegarra and E. Khmaladze, Homotopy classification of braided graded categorical groups, J. Pure and Applied Algebra 209 (2007), no. 2, 411–437.
- [10] P. Dedecker, Les foncteurs Ext_{Π} , H_{Π}^2 et H_{Π}^2 non abéliens, *C. R. Acad. Sci. Paris* **258** (1964), 4891–4894.
- [11] S. Eilenberg and S. MacLane, Cohomology theory of abelian groups and homotopy theory, I, II, III, Proc. Nat. Acad. Sci. USA 36 (1950), 443–447, 657–663, 37 (1951), 307–310.
- [12] A. Fröhlich and C. T. C. Wall, Graded monoidal categories, Compos. Math. 28 (1974), 229–285.
- [13] A. Grothendieck, Catégories fibrées et déscente, (SGA I, exposé VI), Lecture Notes in Math. 224, 145–194, Springer, Berlin, 1971.
- [14] A.Joyal and R.Street, Braided tensor categories, Adv. Math.82 (1991), no. 1, 20–78.

- [15] B. Noohi, Group cohomology with coefficients in a crossed-module, *Journal of the Inst. of Math. of Jussieu*, Volume **10** No 2, (2011), 359–404.
- [16] K. Norrie, Actions and automorphisms of crossed modules, *Bull. Soc. Math. France* **118** (1990), no. 2, 129–146.
- [17] Nguyen T. Quang and Pham T. Cuc, Equivariant crossed modules and cohomology of group with operators, arXiv: 1302.4573v1 [math.CT], 19 Feb 2013.
- [18] Nguyen. T. Quang, Nguyen. T. Thuy and Pham. T. Cuc, Monoidal functors between (braided) Gr-categories and their applications, *East-West J. of Mathematics* **13**(2011), no. 2, 170–193.
- [19] R. L. Taylor, Compound group extensions I, *Trans. Amer. Math. Soc.* **75** (1953), 106–135.
- [20] K.-H. Ulbrich, On cohomology of graded group categories, Compos. Math., tome **63**, No. 3 (1987), 409-417.
- [21] J. H. C. Whitehead, Combinatorial homotopy II, *Bull. Amer. Math. Soc* **55** (1949), 453–496.