ECE 3544: Digital Design I
Project 3 (Part A) – Design and Synthesis of a Magnitude Comparator System

Student Name:	_Jacob Abel					
Honor Code Pledg	e: I have neither given nor received unauthorized assistance on this assignment.					
Grading: The des	ign project will be graded on a 100 point basis, as shown below:					
Manner of Present	ation (30 points)					
Com	apleted cover sheet included with report (5 points)					
•	anization: Clear, concise presentation of content; Use of appropriate, well-organized ions (15 points)					
Mec	hanics: Spelling and grammar (10 points)					
Technical Merit (7	0 points)					
	eral discussion: Did you describe the objectives in your own words? Did you discuss your clusions and the lessons you learned from the assignment? (5 points)					
	ign discussion: Did you discuss the approach you took to designing any original modules? you discuss the approach you took to assembling the top-level module? (10 points)					
	ting discussion: What was your approach to formulating your test benches? How did you fy the correctness of the modules you designed? (5 points)					
Sup	porting figures: Waveforms showing correct operation of the top-level module. (10 points)					
decl	porting files: Do the modules pass any tests applied by the grading staff? Modules whose arations do not conform to the requirements of the project specification cannot be tested, will receive no credit. (15 points)					
	dation of the final design on the DE1-SOC board (25 points): Modules that exhibit the ect behavior but do not represent the correct implementation will receive no credit.					
Pro	ject Grade					

ECE 3544: Digital Design I
Project 3A Validation Sheet

Jacob Abel Student's Name

GTA Validation Instructions:

Program the FPGA on the DE1-SoC Nano board with the student's implementation of the comparator system. When the programming has successfully completed, perform the set of tests described in the table below. For each case, indicate whether or not the student' design demonstrates the behavior described.

Procedure and Expected Result	Correct Operation (Yes or No)		
Set SW[7:4] = 0000, set SW[3:0] = 0000.			
HEX4 should display "0". HEX3 should display "0". HEX[2:0] should display "001".			
Set SW[7:4] = 1011, set SW[3:0] = 0101.			
HEX4 should display "b". HEX3 should display "5". HEX[2:0] should display "100".			
Set $SW[7:4] = 0011$, set $SW[3:0] = 1000$.			
HEX4 should display "3". HEX3 should display "8". HEX[2:0] should display "010".			
Set SW[7:4] = 1111, set SW[3:0] = 1111.			
HEX4 should display "f". HEX3 should display "f". HEX[2:0] should display "001".			
Set SW[7:4] = 1100, set SW[3:0] = 0110.			
HEX4 should display "c". HEX3 should display "6". HEX[2:0] should display "100".			
Set SW[7:4] = 1110, set SW[3:0] = 1111.			
HEX4 should display "e". HEX3 should display "f". HEX[2:0] should display "010".			
GTA Printed Name and Signature:	<u> </u>		
Date and Time of Validation:			

Project 3A ECE3544 CRN:82989

Jacob Abel

November 4, 2018

Objective

The objective of this project is to demonstrate a capability to synthesise designs onto a real world system such as an FPGA and produce the same output as the simulated designs. Additionally, this project demonstrates basic competence utilising the Quartus IDE.

Module Design

The design process was rather straight forward. The pins were matched with the corresponding values using the manual. Once the board was functioning and designs were exportable, the module was implemented. As it was relatively straightforward, an enable bit was added to the hc85 module along with some self explanatory dataflow Verilog and the primary module was implemented using structural Verilog. The test bench was more or less a reimplementation of the hc85 test bench with some slight modifications. The 7-segment display driver module had previously been designed with a corresponding test bench. The entire module is essentially a large case block containing each possible display value and was a trivial design.

Once the primary module was implemented, the test bench was checked and the equivalence bit suggested that the design was functional. At this point the design was synthesised and the same tests as in the test bench were run on a DE1 board.

ECE3544Project3a Module Simulation

/tb_project3a/eq	StX								
/tb_project3a/eq_gt	x								
/tb_project3a/eq_lt	x								
/tb_project3a/eq_eq	х								
tb_project3a/eq_led	xxx	-(3ff							
/tb_project3a/en	1								
/tb_project3a/o_led	1xx	1ef) 1fe	1ce	lec l) 18c) 1c8	(108	(008
/tb_project3a/o_a	xx	(06	(0e	(46	(06	(00)	46	(40	
/tb_project3a/o_b	xx	(0e	(06		46		(00		
/tb_project3a/o_gt	xx	40	79	(40	79	(40	79	(40	
/tb_project3a/o_lt	xx	79	(40	79	(40	79	(40	79	(40
/tb_project3a/o_eq	xx	40							
/tb_project3a/i_a	x	(e), f)(c	(e	(8)(c	χο	
/tb_project3a/i_b	x	⟨f	(e)(c		(8)		
/tb_project3a/i_lt	x								
/tb_project3a/i_gt	x								
/tb_project3a/i_eq	x								
/tb_project3a/i	xxxx	(0000	(0001	(0010	(0011	(0100	(0101	(0110	(0111
/tb_project3a/icmp_a	000	000000101	11111 00000000	101111 00000000	001011 0000000	0000010			
/tb_project3a/icmp_b	000	000000011	11111 00000000	011111 00000000	000111 0000000	0000001			
/tb_project3a/icmp_gt	000	000000000	00000						
/tb_project3a/icmp_lt	000	000000000	00000						
/tb_project3a/icmp	000	000000000							
/tb_project3a/cmp_gt	000	000000101							
tb_project3a/cmp_lt	000	000000010							
tb_project3a/cmp_eq		000000000							
/tb_project3a/digit0	40	40	-						
tb_project3a/digit1	79	79							
- Di Ojeccod/digici	,,,	<i>'''</i>							

This simulation demonstrates that all the basic inputs produce the correct outputs. The en and i_values are the inputs that compose the switch input values and the o_values are the outputs as 7 segment display values. The eq_wires demonstrate equivalence on each output pin and the eq wire demonstrates equivalence on all outputs. The equivalences are computed using an XNOR against expected results.

Conclusion

This project demonstrated the equivalence of Verilog simulations and real world FPGA module synthesis. Despite starting this project late, the project went remarkably smoothly and very little of the time was spent debugging. As such the project can easily be considered a success with the exception of the scheduling failure that resulted in it being started late.