INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

7 - ESTRUTURAS ALGÉBRICAS

- 7.1) Operações Binárias
- 7.2) Semigrupos
- 7.3) Produtos e Quocientes de Semigrupos
- 7.4) Grupos
- 7.5) Produtos e Quocientes de Grupos

PRODUTOS E QUOCIENTES DE SEMIGRUPOS

Modos de obter novos semigrupos a partir de outros existentes.

▶ Teorema: Se (S,*) e (T,*') são semigrupos, então:

• $(S \times T, *'')$ é um semigrupo

• com *" dado por: (s_1,t_1) *" $(s_2,t_2) = (s_1*s_2, t_1*'t_2)$

Prova: ??

© Corolário: se S e T são monóides com identidades e_S e e_T :

• $S \times T$ é um monóide com identidade (e_S, e_T)

- Como um semigrupo não é simplesmente um conjunto:
 - certas relações de equivalência sobre um semigrupo ajudam a conhecer a sua estrutura.

• Uma relação de equivalência R sobre um semigrupo (S,*) é chamada de **Relação de congruência** se:

$$a R a' \quad \mathbf{e} \quad b R b' \quad \Longrightarrow \quad (a * b) R (a' * b')$$

- **Exemplo 1(/3):** Seja o semigrupo $(\mathbb{Z}, +)$,
 - e seja a relação de equivalência R sobre \mathbb{Z} :
 - a R b se e somente se 2 divide a b ou: $a \equiv b \pmod{2}$
 - sejam: $a \equiv b \pmod{2}$ e $c \equiv d \pmod{2}$
 - então 2 divide tanto a-b como c-d, de modo que:

$$a-b=2m$$
 e $c-d=2n$
 $\Rightarrow (a-b)+(c-d)=2m+2n$

$$\Rightarrow (a+c) - (b+d) = 2(m+n)$$

$$\Rightarrow a + c \equiv b + d \pmod{2}$$

logo: R é uma relação de congruência.

- **Exemplo 2(/3):** Seja $A = \{0, 1\}$,
 - **s** considere o semigrupo livre (A^*, \cdot) gerado por A
 - ullet seja a seguinte relação sobre A^* :
 - $m{\square}$ α R β sse α e β possuem o mesmo nro de 1s
 - R é uma relação de equivalência:
 - 1. $\alpha R \alpha$, $\forall \alpha \in A^*$
 - 2. se $\alpha R \beta$, α e β têm o mesmo nro de 1s, logo: $\beta R \alpha$
 - 3. se $\alpha R \beta$ e $\beta R \gamma$, tanto α e β como β e γ têm o mesmo nro de 1s, logo: α e γ têm o mesmo nro de 1s e $\alpha R \gamma$
 - R também é uma relação de congruência:
 - ightharpoonup suponha que temos: $\alpha R \alpha'$ e $\beta R \beta'$
 - $m{\square}$ então tanto α e α' como β e β' possuem o mesmo nro de 1s

 - ullet logo: $(\alpha \cdot \beta) R (\alpha' \cdot \beta')$

- **Exemplo 3(/3):** Seja o semigrupo $(\mathbb{Z}, +)$,
 - seja: $f(x) = x^2 x 2$
 - e seja a relação sobre Z:
 - a R b se e somente se f(a) = f(b)
 - ullet fácil notar que R é uma relação de equivalência sobre $\mathbb Z$
 - no entanto, R não é uma relação de congruência sobre \mathbb{Z} , pois:
 - -1 R 2 (f(-1) = f(2) = 0)
 - $-2 R 3 \quad (f(-2) = f(3) = 4)$
 - mas: -3 R 5
 - pois: f(-3) = 10 e f(5) = 18

Relembrando:

- ullet a relação de equivalência R sobre o semigrupo (S,*) determina uma partição de S
- [a] = R(a) é a classe de equivalência que contém a
- $oldsymbol{\circ}$ S/R denota o conjunto de todas as classes de equivalência

Teorema:

- Seja R uma relação de congruência sobre o semigrupo (S,*).
- E seja a relação ③ , de $S/R \times S/R$ para S/R, dada por: ([a], [b]) está relacionado com [a*b] $(a, b \in S)$
- Então:
 - ullet \circledast é uma função de S/R imes S/R para S/R
 - · usual: " \circledast ([a],[b])" denotado por "[a] \circledast [b]"
 - · ou seja: $[a] \circledast [b] = [a * b]$
 - $(S/R, \circledast)$ é um semigrupo.
- ightharpoonup Prova: \Rightarrow

Prova:

- suponha que ([a], [b]) = ([a'], [b'])
- então a R a' e b R b', de modo que: a * b R a' * b' (pois R é relação de congruência)
- portanto [a*b] = [a'*b']
 - ou seja,

 é uma função
 - ullet ou seja, \circledast é uma operação binária sobre S/R
- além disto:

$$[a] \circledast ([b] \circledast [c]) = [a] \circledast [b * c]$$

$$= [a * (b * c)]$$

$$= [(a * b) * c)] \quad \text{(associatividade de * em S)}$$

$$= [a * b] \circledast [c]$$

$$= ([a] \circledast [b]) \circledast [c] \quad \text{(associatividade de *)}$$

ullet portanto, S/R é um semigrupo

- S/R: Semigrupo Quociente ou Semigrupo Fator.
- ightharpoonup Note que \circledast é uma espécie de "relação binária quociente" sobre S/R
 - ullet construída a partir da relação binária original * sobre S
 - pela relação de congruência R

Corolário:

- Seja R uma relação de congruência sobre o monóide (S,*).
- Defina a operação \circledast em S/R por [a]*[b] = [a*b].
- Então $(S/R, \circledast)$ é um monóide.
- **Prova:** Se e é a identidade em (S, *):
 - [e] é a identidade em $(S/R, \circledast)$.

Exemplo:

- Considere o exemplo já visto:
 - monóide (A^*, \cdot) gerado por $A = \{0, 1\}$
 - R sobre A^* : $\alpha R \beta$ sse α e β possuem mesmo nro de 1s
- Como R é uma relação de congruência sobre $S=(A^*,\cdot)$:
 - concluímos que $(S/R, \odot)$ é um monóide, aonde:

$$[\alpha] \odot [\beta] = [\alpha \cdot \beta] \qquad \Box$$

Exemplo(1/2):

- Seja a relação sobre o semigrupo $(\mathbb{Z},+)$: a R b sse $n \mid (a-b)$
- R é uma relação de equivalência escrita como " $\equiv (mod \ n)$ "
 - ho assim: $2 \equiv 6 \pmod{4}$, pois: $4 \mid (2-6)$
- Classes de equivalência determinadas por " $\equiv (mod \ 4)$ " sobre \mathbb{Z} :

$$[0] = \{\dots, -8, -4, 0, 4, 8, 12, \dots\} = [4] = [8] = \dots$$

$$[1] = \{\ldots, -7, -3, 1, 5, 9, 13, \ldots\} = [5] = [9] = \cdots$$

$$[2] = \{\dots, -6, -2, 2, 6, 10, 14, \dots\} = [6] = [10] = \dots$$

$$[3] = \{\ldots, -5, -1, 3, 7, 11, 15, \ldots\} = [7] = [11] = \cdots$$

- Estas são todas as classes de equivalência que formam o "conjunto quociente" $\mathbb{Z}/\equiv (mod\ 4)$.
- O conjunto quociente $\mathbb{Z}/\equiv (mod\ n)$ é denotado por \mathbb{Z}_n
- $oldsymbol{\square}_n$ é um monóide com operação igoplus e identidade [0]

Exemplo(2/2):

ullet Tabela de adição para o semigrupo \mathbb{Z}_4 com operação \oplus :

\oplus	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

■ Elementos da tabela obtidos de: $[a] \oplus [b] = [a+b]$

Arr exemplo: [2] + [3] = [2+3] = [5] = [1]

Em geral:

• \mathbb{Z}_n tem n classes de equivalência: $[0], [1], [2], \ldots, [n-1]$

 $m{\square}$ [a] + [b] = [r], aonde r é o resto da divisão de a+b por n

■ Há uma conexão entre as estruturas do semigrupo (S, *) e do semigrupo quociente $(S/R, \circledast)$.

Teorema:

- Sejam:
 - R uma relação de congruência sobre um semigrupo (S,*)
 - ullet $(S/R,\circledast)$ o semigrupo quociente correspondente
- Então:
 - a função $f_R: S \to S/R$, definida por $f_R(a) = [a]$,
 - é um homomorfismo sobrejetivo
 - chamado de homomorfismo natural
- ▶ Prova: ⇒

Prova:

- f_R é uma função sobrejetiva:
 - se $[a] \in S/R$, então $f_R(a) = [a]$
- f_R é um homomorfismo:
 - ullet se a e b são elementos de S, então:

$$f_R(a * b) = [a * b]$$

$$= [a] \circledast [b]$$

$$= f_R(a) \circledast f_R(b)$$

Teorema (Fundamental do Homomorfismo):

- Sejam:
 - $f: S \to T$ um homomorfismo do semigrupo (S, *) sobre o semigrupo (T, *')
 - $m{\wp}$ R a relação sobre S definida por $a\ R\ b$ sse f(a)=f(b)
 - · (R definida com base no homomorfismo)
- Então:
 - (a) R é uma relação de congruência
 - (b) (T,*') e o semigrupo quociente $(S/R,\circledast)$ são isomórficos

▶ Prova: ⇒

Prova da parte (a):

- (i) R é uma relação de equivalência:
 - ullet $a \ R \ a, \ \forall a \in S, \ \mathsf{pois} \ f(a) = f(a)$
 - ullet se $a\ R\ b$, então f(a)=f(b), de modo que $b\ R\ a$
 - ullet se $a\ R\ b$ e $b\ R\ c$:
 - \cdot então: f(a) = f(b) e f(b) = f(c)
 - · de modo que: f(a) = f(c) e, portanto: a R c
- (ii) R é uma relação de congruência:
 - ullet suponha que $a\ R\ a_1$ e $b\ R\ b_1$
 - ho então: $f(a)=f(a_1)$ e $f(b)=f(b_1)$ $ightharpoonup f(a)*'f(b)=f(a_1)*'f(b_1)$
 - $\Rightarrow f(a*b) = f(a_1*b_1)$ (pois f é um homomorfismo)
 - **●** logo: $(a*b) R (a_1*b_1)$

Prova da parte (b): Seja a relação de S/R para T:

$$\overline{f} = \{ ([a], f(a)) \mid [a] \in S/R \}$$

- \overline{f} é uma função: suponha que [a] = [a']:
 - ullet então: a R a' e f(a) = f(a')
 - ullet logo, \overline{f} é a função $\overline{f}:S/R \to T$, aonde: $\overline{f}([a])=f(a)$
- **●** \overline{f} é injetiva: suponha que $\overline{f}([a]) = \overline{f}([a'])$:
- **●** \overline{f} é sobrejetiva: suponha que $b \in T$:

 - ullet então: $\overline{f}([a]) = f(a) = b$
- **●** \overline{f} preserva a estrutura das operações \circledast e *':

$$\overline{f}([a] \circledast [b]) = \overline{f}([a * b]) = f(a * b) = f(a) *' f(b) = \overline{f}([a]) *' \overline{f}([b])$$

• Logo: \overline{f} é um isomorfi smo.

Exemplo:

- Considere o semigrupo livre A^* gerado por $A = \{0, 1\}$ sob concatenação
 - ullet note que A^* é um monóide, aonde a identidade é Λ
- Seja N o conjunto dos inteiros não-negativos
 - ightharpoonup então (N,+) é um semigrupo
- A seguinte função $f:A^* \to N$ é um homomorfi smo: $f(\alpha) = \text{número de 1s em } \alpha$
- Seja R a seguinte relação sobre A^* : $\alpha R \beta \text{ sse } f(\alpha) = f(\beta)$
- Segundo o Teorema: $A^*/R \simeq N$
 - sob o isomorfi smo $\overline{f}:A^*/R\to N$ defi nido por:

$$\overline{f}([\alpha]) = f(\alpha) = \text{número de 1s em } \alpha$$

- Teorema (Fundamental do Homomorfismo): (relembrando)
 - Sejam:
 - $f: S \to T$ um homomorfismo de (S, *) sobre (T, *')
 - R a relação sobre S definida por a R b sse f(a) = f(b)
 - Então:
 - (a) R é uma relação de congruência
 - (b) (T,*') e o semigrupo quociente $(S/R,\circledast)$ são isomórficos
- A parte (b) pode ser descrita pelo diagrama a seguir (⇒)

- $m{P}$ f_R é o homomorfismo natural
- ullet $\overline{f}\circ f_R=f$ pois:

$$(\overline{f} \circ f_R)(a) = \overline{f}(f_R(a))$$

= $\overline{f}([a]) = f(a)$

PRODUTOS E QUOCIENTES DE SEMIGRUPOS

Final deste item.

Dica: fazer exercícios sobre Produtos e Quocientes de Semigrupos...