Fast Searching The Densest Subgraph And Decomposition With Local Optimality

Yugao Zhu¹, Shenghua Liu¹, Wenjie Feng², Xueqi Cheng¹

¹Institute of Computing Technology, Chinese Academic of Sciences, Beijing, China

²Institute of Data Science, National University of Singapore, Singapore

zhuyugao22@mails.ucas.ac.cn, liushenghua@ict.ac.cn, wenjie.feng@nus.edu.sg, cxq@ict.ac.cn

I. APPENDIX

Proof of Corollary 1. For DkS, we set |S| = k, it has an upper bound as follows:

$$\begin{split} \rho(\mathcal{S}) &= \frac{\sum_{e \in \mathcal{E}(\mathcal{S})} w_e}{|\mathcal{S}|} = \frac{\sum_{e = (u,v),\, u,v \in \mathcal{S}} f_e(u) + f_e(v)}{|\mathcal{S}|} \\ &\leq \frac{\sum_{e = (u,v),\, u,v \in \mathcal{S}} \left(f_e(u) + f_e(v)\right) + \sum_{e = (u,v),\, u \in \mathcal{S},v \not\in \mathcal{S}} f_e(u)}{|\mathcal{S}|} \\ &= \frac{\sum_{u \in \mathcal{S}} \sum_{e \ni u} f_e(u)}{|\mathcal{S}|} = \frac{\sum_{u \in \mathcal{S}} l_u}{|\mathcal{S}|} \\ &= \frac{\sum_{i = 0}^{j-1} \lambda_i * |B_i| + (k - |B_{j-1}|) * \lambda_j}{k} \end{split}$$

Therefore, result 2 holds up. As for result 1, if $k = |B_j|$, according to property 3 the equivalency condition in line 2 holds up because $f_e(u) = 0$ if $u \in \mathcal{S}$ and $v \notin \mathcal{S}$, then result 1 holds up. These results also hold up for DalkS because if |S| > k, it will add more nodes into \mathcal{S} with lower upper bounds on their loads.

Before proofs of Lemma 2, we introduce the definition of k-core from [?]: k-core is the maximal subgraph G_k in graph G, the degree of where any vertex v in G_k is satisfied with $d_{G_k}(v) \geq k$.

proof of Lemma 2. The Greedy algorithm just moves any node whose degree is the lowest in the remaining graph \mathcal{H} . Let us remark A(k) as the nodeset of k-core for specific k. We claim that when deleting a node $u \in A(k)$, there mustn't be any node $v \notin A(k)$ in the remaining graph \mathcal{H} . We prove it by way of contradiction, w.l.o.g, we set u as the first node to be deleted in A(k) in Greedy, therefore u has the lowest degree in \mathcal{H} and $d_{\mathcal{H}}(v) \geq d_{\mathcal{H}}(u) \geq d_{A(k)}(u) \geq k$ for any node v in \mathcal{H} , which produces a k-core subgraph with a larger size, and it leads to a contradiction.

Proof of Theorem 5. We set $\mathcal{H}_k(k>0)$ is the remaining graph after k iterations in Algorithm 2 and \mathcal{H}_0 is the initial

whole graph, $\mathcal{H}_{k+1}^{'}$ is the nodeset to be deleted in k+1 iteration. Therefore, $\mathcal{H}_{k+1} = \mathcal{H}_k \setminus \mathcal{H}_{k+1}^{'}$ Then:

$$\begin{split} \rho(\mathcal{H}_{k+1}) &= \rho(\mathcal{H}_k \setminus \mathcal{H}_{k+1}^{'}) \\ &= \frac{\mathcal{W}(\mathcal{E}(\mathcal{H}_k)) - \mathcal{W}(\mathcal{E}(\mathcal{H}_{k+1}^{'}))}{|\mathcal{H}_k| - |\mathcal{H}_{k+1}^{'}|} \\ &\geq \frac{\rho(\mathcal{H}_k) \cdot |\mathcal{H}_k| - \sum_{v \in \mathcal{H}_{k+1}^{'}} \mathrm{d}_{\mathcal{H}_k}(v)}{|\mathcal{H}_k| - |\mathcal{H}_{k+1}^{'}|} \\ &> \frac{\rho(\mathcal{H}_k) \cdot |\mathcal{H}_k| - \sum_{v \in \mathcal{H}_{k+1}^{'}} \rho(\mathcal{H}_k)}{|\mathcal{H}_k| - |\mathcal{H}_{k+1}^{'}|} \\ &= \frac{\rho(\mathcal{H}_k) \cdot |\mathcal{H}_k| - \rho(\mathcal{H}_k) \cdot |\mathcal{H}_{k+1}^{'}|}{|\mathcal{H}_k| - |\mathcal{H}_{k+1}^{'}|} \\ &= \rho(\mathcal{H}_k) \end{split}$$

That means the density of graph $\mathcal H$ monotonically increases in iterations, then any deleted node has a lower degree (when it is being deleted) than the final density, i.e., δ . Therefore, the remaining graph $\mathcal H$ is a δ -core and it is the graph of some time of the greedy search according to Lemma 2.

We claim that the process before getting the δ -core is a monotonic increasing phase of density in Greedy. We can confirm two facts:

- 1. During Greedy, if there is a node $u \in \mathcal{H}_1'$ existing in the remaining graph, the deletion in Greedy will increase the density of the remaining graph. That's because if Greedy deletes a node $v \notin \mathcal{H}_1'$, then $d_{\mathcal{H}}(v) \leq d_{\mathcal{H}}(u) < \rho(\mathcal{G}) \leq \rho(\mathcal{H})$. $\rho(\mathcal{H})$ will increase and $\rho(\mathcal{G}) \leq \rho(\mathcal{H})$ still holds up. If Greedy deletes the node u, now that $d_{\mathcal{H}}(u) \leq \rho(\mathcal{H})$, then $\rho(\mathcal{H})$ will also increase and $\rho(\mathcal{G}) \leq \rho(\mathcal{H})$ holds up.
- 2. During Greedy, if there is a node $u \in \mathcal{H}'_{k+1}$ existing in the remaining graph $\mathcal{H} > \mathcal{H}_k$, and there isn't any node belonging to \mathcal{H}'_k . Then: $\rho(\mathcal{H}) \geq \rho(\mathcal{H}_k)$ because we delete more nodes with lower degrees. Therefore, when we deletes a node $v \notin \mathcal{H}'_{k+1}$, then $d_{\mathcal{H}}(v) \leq d_{\mathcal{H}}(u) < \rho(\mathcal{G}) \leq \rho(\mathcal{H}_k) \leq \rho(\mathcal{H})$, then $\rho(\mathcal{H})$ will increase and $\rho(\mathcal{G}) \leq \rho(\mathcal{H})$ holds up. If Greedy deletes the node u, now that $d_{\mathcal{H}}(v) \leq \rho(\mathcal{H})$, $\rho(\mathcal{H})$ will also increase and $\rho(\mathcal{G}) \leq \rho(\mathcal{H})$ holds up.

Therefore, the density monotonically increases in Greedy before getting δ -core.

TABLE I DATASET SOURCE AND DENSITY OF ALGORITHMS

Dataset	Source	Туре	Pruning w_app		exact DLL		uw_Pruning+DLL	
ca-HepPh	Stanford's SNAP database	scholar collaboration network	119	119	119	119	119	
comm-EmailEnron	Stanford's SNAP database	communication	37.316	37.344	37.344	37.337	37.337	
ca-AstroPh	Stanford's SNAP database	scholar collaboration network	28.481	29.616	32.11	29.552	29.552	
PP-Pathways	Stanford's SNAP database	protein interaction network	74.159	77.995	77.995	77.995	77.995	
soc-Twitter_ICWSM	konect	social network	25.678	25.683	25.69	25.686	25.685	
soc-sign_slashdot	Stanford's SNAP database	social network	39.376	42.132	42.132	42.132	42.132	
rating-StackOverflow	konect	social network	20.209	20.209	20.21	20.209	20.209	
soc-sign_epinion	Stanford's SNAP database	social network	80.168	85.599	85.637	85.589	85.589	
ego-twitter	Stanford's SNAP database	social network	59.281	68.414	69.622	68.414	68.414	
soc-Youtube	Stanford's SNAP database	social network	45.545	45.58	45.599	45.576	45.577	
comm-WikiTalk	Stanford's SNAP database	communication	114.139	114.139	114.139	114.139	114.139	
nov_user_msg_time	We own it privately.	social network	278.815	278.815	278.815	278.815	278.815	
cit-Patents	AMiner scholar datasets	scholar collaboration network	132.776	135.706	137.261	135.706	135.706	
soc-Twitter_ASU	ASU	social network	593.847	593.847	593.847	593.847	593.847	
soc-Livejournal	Livejournal	social network	104.596	104.601	104.609	104.603	104.603	
soc-Orkut	Stanford's SNAP database	social network	227.861	227.872	227.874	227.872	227.872	
soc-SinaWeibo	Network Repository	social network	164.967	165.193	165.415	165.196	165.191	
wang-tripadvisor	konect	rating network	13.442	13.873	14.082	_	-	
rec-YelpUserBusiness	Network Repository	rating network	87.825	87.912	87.921	_	_	
bookcrossing	konect	rating network	92.148	92.322	92.374	_	_	
librec-ciaodvd-review	konect	rating network	233.553	233.59	233.597	_	_	
movielens-10m	konect	rating network	1351.35	1351.35	1351.35	_	_	
epinions	konect	rating network	595.302	595.314	595.316	_	_	
libimseti	konect	social network	1645.71	1645.73	1645.73	_	_	
rec-movielens	Network Repository	rating network	1801.16	1801.16	1801.16	_	_	
yahoo-song	konect	rating network	46725.2	46725.2	46725.2			

note: Pruning (w_Pruning,uw_Pruning). w_app: approximation algorithms on weighted graph(Priority Tree,Pruning+Priority Tree,BBST). exact: exact algorithms(maxflow,w_Pruning+maxflow). DLL:Doubly-linked list.

 $\begin{tabular}{l} TABLE~II\\ Comparison~between~LOWD~and~baselines~without~the~pruning. \end{tabular}$

	Running time				The number of iteration rounds					
Dataset	LOWD	Greedy++	FW	FISTA	MWU	LOWD	Greedy++	FW	FISTA	MWU
ca-HepPh	0.0168	0.0159	0.0208	0.0411	0.0161	1	1	2	2	1
comm-EmailEnron	0.1516	0.0714	0.5551	4.9384	0.3012	19	2	88	255	46
ca-AstroPh	0.3158	0.8396	2.312	4.4843	0.6593	36	33	343	211	92
PP-Pathways	0.1174	0.0333	0.3214	2.8722	1.7086	9	1	28	79	164
soc-Twitter_ICWSM	1.8343	30.6654	96.3405	43.7426	6.1467	49	114	2816	401	175
soc-sign_slashdot	0.2275	0.0704	0.7881	9.033	1.1051	11	1	44	162	64
rating-StackOverflow	2.1887	1.0537	10.0728	227.1931	18.7819	32	2	178	1266	341
soc-sign_epinion	0.3213	1.4706	1.1853	8.0435	0.9581	9	12	40	90	33
ego-twitter	1.6001	2.9768	22.0971	51.1176	1.7266	34	21	550	384	41
soc-Youtube	6.5253	133.3086	82.3855	812.4268	22.0866	46	129	612	1792	161
comm-WikiTalk	4.6758	1.984	118.307	1942.7338	414.9261	15	1	407	2022	1386
nov_user_msg_time	341.1144	4464.4998	2581.9086	>16117.208	718.8805	97	174	624	>1200	177
cit-Patents_AMINER	291.4452	846.3628	837.8446	2172.7049	1523.2698	104	56	259	196	471
soc-Twitter_ASU	120.8906	19.2912	511.3170	15208.9590	2047.9598	40	1	156	1244	603
soc-Livejournal	_	_	_	_	_	-	-	_	-	-
soc-Orkut	_	_	_	_	_	l –	-	_	-	-
soc-SinaWeibo_NETREP	_	_	_	_	_	l –	-	_	-	-
wang-tripadvisor	0.6686	23.6761	30.209	-	15.6705	93	187	3894	-	2007
rec-YelpUserBusiness	0.4621	24.5879	5.1698	_	2.1192	54	228	626	_	239
bookcrossing	1.5177	92.9406	27.4916	_	8.877	78	259	1398	_	448
librec-ciaodvd-review	4.2248	75.7599	231.5822	_	38.6405	79	143	4635	_	773
movielens-10m	49.2341	2.7029	129.6344	-	60.719	159	1	450	_	211
epinions	30.4071	3957.2229	4302.242	_	743.6429	64	688	8893	_	1582
libimseti	25.7101	5276.5399	751.3750	_	146.2627	39	710	1196	_	234
rec-movielens	50.4427	6928.9143	306.0513	_	148.2539	54	733	355	_	172
yahoo-song		_	_	_		_		_	-	-

note: We ignore some datasets which are very large.">1200" and ">16117.208" means we run 1200 iterations(running time: 16117.208s) and can't still detect the densest subgraph.

Fig. 1. densest

Algorithm 1: Greedy DSPSolver

```
Input: Undirected graph G; density metric \rho(\cdot)
    Output: S^*: the nodeset of the densest subgraph of G.
 1~\mathcal{S},\,\mathcal{S}^* \leftarrow \mathcal{V}
2 while \mathcal{S} \neq \emptyset do
          \triangleright find the vertex u^* with the lowest degree in \mathcal S
3
          u^* \leftarrow \arg\min_{u \in \mathcal{S}} \mathrm{d}_{\mathcal{S}}(u))
 4
          Remove u^* and all its adjacent edges from \mathcal{G}.
 5
          \triangleright S \setminus \{u\}: the remaining nodeset without u
          \mathcal{S} \leftarrow \mathcal{S} \setminus \{u\}
 7
          if \rho(\mathcal{S}) > \rho(\mathcal{S}^*) then
 8
10 return S^*.
```


Fig. 2. Exponential decrease in the number of deleted nodes.