Observations	47
Variables	11

	Simple Statistics							
	Age	Ed	Ex0	LF	M	N	NW	
Mean	138.5744681	105.6382979	85.00000000	561.1914894	983.0212766	36.61702128	101.1276596	
StD	12.5676339	11.1869985	29.71897359	40.4118140	29.4673654	38.07118801	102.8288187	

Simple Statistics							
	U1	U2	W	X			
Mean	95.46808511	33.97872340	525.3829787	194.0000000			
StD	18.02878262	8.44544992	96.4909442	39.8960606			

				C	Correlat	ion Mat	trix				
	Age	Ed	Ex0	LF	M	N	NW	U1	U2	W	X
Age	1.0000	5302	5057	1609	0287	2806	0.5932	2244	2448	6701	0.6392
Ed	5302	1.0000	0.4830	0.5612	0.4369	0172	6649	0.0181	2157	0.7360	7687
Ex0	5057	0.4830	1.0000	0.1215	0.0338	0.5263	2137	0437	0.1851	0.7872	6305
LF	1609	0.5612	0.1215	1.0000	0.5136	1237	3412	2294	4208	0.2946	2699
M	0287	0.4369	0.0338	0.5136	1.0000	4106	3273	0.3519	0187	0.1796	1671
N	2806	0172	0.5263	1237	4106	1.0000	0.0952	0381	0.2704	0.3083	1263
NW	0.5932	6649	2137	3412	3273	0.0952	1.0000	1565	0.0809	5901	0.6773
U1	2244	0.0181	0437	2294	0.3519	0381	1565	1.0000	0.7459	0.0449	0638
U2	2448	2157	0.1851	4208	0187	0.2704	0.0809	0.7459	1.0000	0.0921	0.0157
W	6701	0.7360	0.7872	0.2946	0.1796	0.3083	5901	0.0449	0.0921	1.0000	8840
X	0.6392	7687	6305	2699	1671	1263	0.6773	0638	0.0157	8840	1.0000

	Eigenvalues of the Correlation Matrix								
	Eigenvalue	Difference	Proportion	Cumulative					
1	4.46699135	2.17472428	0.4061	0.4061					
2	2.29226707	0.49290960	0.2084	0.6145					
3	1.79935747	0.95506483	0.1636	0.7781					
4	0.84429264	0.29537868	0.0768	0.8548					
5	0.54891395	0.23116974	0.0499	0.9047					
6	0.31774422	0.08323077	0.0289	0.9336					
7	0.23451344	0.02270468	0.0213	0.9549					
8	0.21180877	0.08302014	0.0193	0.9742					
9	0.12878863	0.03795696	0.0117	0.9859					

Eigenvalues of the Correlation Matrix						
	Eigenvalue	Difference	Proportion	Cumulative		
10	0.09083167	0.02634089	0.0083	0.9941		
11	0.06449078		0.0059	1.0000		

					Eige	envectors					
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8	Prin9	Prin10	Prin11
Age	360083	202052	023821	0.280333	0.437093	0.604564	0.198909	347243	0.165242	063955	0.047705
Ed	0.412649	201179	0.021906	0.024890	0.069270	0.120185	0.440819	0.485458	0.558524	0.148122	070897
Ex0	0.333346	0.245893	245985	0.375312	0.354161	166331	319844	0.015903	0.219065	568308	0.020907
LF	0.216510	432770	019098	0.422942	501450	198616	0.278542	417126	027027	204431	0.039818
M	0.161412	305691	0.477670	0.453784	0.119909	0.087151	463341	0.199381	211443	0.281507	214580
N	0.096028	0.423702	367382	0.334714	449058	0.524315	028367	0.164744	151113	0.144061	127119
NW	355977	0.130789	162528	0.465262	0.240490	442682	0.416851	0.288919	267347	0.174650	016473
U1	0.054270	0.299353	0.626794	0.044940	071474	0.187414	0.299433	0.184749	232219	419871	0.343962
U2	0.010990	0.529168	0.376451	0.142102	029661	177801	0.085052	432598	0.398736	0.282410	303873
W	0.439177	0.103624	104899	0.042769	0.229726	003169	0.021190	247690	154656	0.465774	0.654298
X	429102	022454	0.054178	0.206375	307636	087908	315643	0.191087	0.485978	0.075559	0.538001

We performed a PCA on all the possible predictors. We can see that we could keep first four components to retain 80% of the total variation from the original variables. We also could keep first three components(have eigenvalues greater than 1) based on the average eigenvalue(=1), and scree plot says says that we could keep first four components, since the plot becomes very flat starting at 5 for me. Exercise 1b):

For component 1, on the positive side, W(wealth) and Ed(education level) have a little more impact than Ex0(police expenditure), LF(labor force), M(# of males). But none of them have important relationship to principal component 1. On the negative side, X(income inequality) has more impact than Age and NW(# of non-whites). But none of them are highly important.

For component 2, on the positive side, U2 and N(state population size) have a little more impact than U1 and Ex0. On the negative side, LF and M are more important.

For component 3, on the positive side, U1 has more impact than M and U2. On the negative side, N and X0 have a similar impact.

For component 4, we have only positive coefficients. M, LF, Ex0 and NW have similar impact on principal component 4. If one of them goes up, principal component 4 gets higher.

Exercise 1c):

The first plot shows that states 35, 20 and 29 have higher crime rates in general. And state 37 has lowest. From the second plot we can see that states 45, 31 and 24 have higher values in component 3. While in the third plot, we see that states 24 and 31 have also high values in component 3, but near average in component 2. State 29 has the lowest value in component 3 and has higher value component 2. In the fourth plot, we see that state 37, 4 and 26 have higher values in component 4. But state 37 has the lowest values for component 1 and states 4 and 26 have higher values for component 1. In the fifth plot states 37 and 26 have higher values in component 4 and states 20, 29, 35 higher in component 2. State 4 has higher rate in general. Sixth plot shows that states 4, 37, 26 have higher crime rates for component 4 and states 24, 31 have higher rates for component 3.

Exercise 2a):

Observations	47
Variables	11

	Simple Statistics							
	Age	Ed	Ex0	LF	M	N	NW	
Mean	138.5744681	105.6382979	85.00000000	561.1914894	983.0212766	36.61702128	101.1276596	
StD	12.5676339	11.1869985	29.71897359	40.4118140	29.4673654	38.07118801	102.8288187	

Simple Statistics							
U1 U2 W							
Mean	95.46808511	33.97872340	525.3829787	194.0000000			
StD	18.02878262	8.44544992	96.4909442	39.8960606			

	Covariance Matrix							
	Age	Ed	Ex0	LF	M	N	NW	
Age	157.94542	-74.54857	-188.89130	-81.74283	-10.62118	-134.27521	766.59898	
Ed	-74.54857	125.14894	160.56522	253.70120	144.02960	-7.33719	-764.84413	
Ex0	-188.89130	160.56522	883.21739	145.91304	29.56522	595.45652	-653.08696	
LF	-81.74283	253.70120	145.91304	1633.11471	611.56105	-190.27290	-1417.91628	
M	-10.62118	144.02960	29.56522	611.56105	868.32562	-460.66559	-991.76364	
N	-134.27521	-7.33719	595.45652	-190.27290	-460.66559	1449.41536	372.50648	
NW	766.59898	-764.84413	-653.08696	-1417.91628	-991.76364	372.50648	10573.76596	
U1	-50.83996	3.65125	-23.41304	-167.13506	186.94635	-26.16466	-290.03932	
U2	-25.98751	-20.37743	46.45652	-143.60453	-4.65171	86.94820	70.26364	
W	-812.55088	794.46762	2257.45652	1148.88159	510.68733	1132.41073	-5855.07169	
X	320.50000	-343.06522	-747.56522	-435.13043	-196.43478	-191.82609	2778.65217	

	Covariance Matrix								
	U1	U2	W	X					
Age	-50.83996	-25.98751	-812.55088	320.50000					
Ed	3.65125	-20.37743	794.46762	-343.06522					
Ex0	-23.41304	46.45652	2257.45652	-747.56522					
LF	-167.13506	-143.60453	1148.88159	-435.13043					
M	186.94635	-4.65171	510.68733	-196.43478					
N	-26.16466	86.94820	1132.41073	-191.82609					
NW	-290.03932	70.26364	-5855.07169	2778.65217					
U1	325.03700	113.57539	78.03423	-45.91304					
U2	113.57539	71.32562	75.03006	5.28261					

Covariance Matrix								
	U1	U2	W	X				
W	78.03423	75.03006	9310.50231	-3403.04348				
X	-45.91304	5.28261	-3403.04348	1591.69565				

Total Variance 26989.493987

	Eigenvalues of the Covariance Matrix									
	Eigenvalue	Difference	Proportion	Cumulative						
1	17813.6423	12786.3209	0.6600	0.6600						
2	5027.3214	3212.3413	0.1863	0.8463						
3	1814.9801	772.8587	0.0672	0.9135						
4	1042.1214	431.5081	0.0386	0.9522						
5	610.6133	374.3341	0.0226	0.9748						
6	236.2792	18.6489	0.0088	0.9835						
7	217.6303	85.9636	0.0081	0.9916						
8	131.6667	78.3670	0.0049	0.9965						
9	53.2997	23.1296	0.0020	0.9984						
10	30.1701	18.4004	0.0011	0.9996						
11	11.7697		0.0004	1.0000						

	Eigenvectors										
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8	Prin9	Prin10	Prin11
Age	066773	022074	0.055475	030043	035107	0.113536	070427	413522	0.883506	0.129021	0.061333
Ed	0.067385	0.003307	0.084723	000591	014361	078415	085480	042748	174040	0.904764	0.351985
Ex0	0.128054	0.285116	003663	0.052509	0.141915	0.310785	715726	0.489327	0.156746	0.033306	073694
LF	0.117411	084716	0.752092	0.533170	135361	177699	0.100278	0.229490	0.118405	048506	011472
M	0.066817	125546	0.444409	198342	0.666035	0.104547	221007	417963	217547	125524	0.042207
N	0.034286	0.330353	363113	0.729070	0.336752	158376	019723	291905	045830	005662	0.009066
NW	682176	0.650578	0.265959	151145	029342	107219	0.045715	022939	052581	0.007784	002559
U1	0.014474	033491	075003	184701	0.541863	455184	0.259584	0.392193	0.276874	0.205150	343767
U2	000395	0.028379	072403	056234	0.207548	101175	0.123999	0.277081	0.145372	281779	0.863015
W	0.647310	0.588453	0.114513	200486	030831	0.190212	0.371730	069522	0.022700	0.001565	027199
X	265693	121175	004809	0.202167	0.254147	0.742751	0.439486	0.198029	0.006241	0.154780	034652

We now performed a covariance-based PCA on all the possible predictors. We can see that we could keep first two components to retain 80% of the total variation from the original variables. We also could keep first two components(have eigenvalues greater than 2453.590362) based on the average eigenvalue(=2453.590362), and scree plot says says that we could keep first two components, since the plot becomes very flat starting at 3 for me.

Exercise 2b):

For component 1, on the positive side, W(wealth) has the highest impact and NW(# of non-whites) has the lowest impact. For component 2, on the positive side, W and NW have the highest impact. On the negative side, M and X have the similar coefficient, however none of them are highly important to principal component 2.

Exercise 2c):

The score plot shows that state 22 has the lowest crime rate for component 1. While it is slighly above average for component 2. In the correlation results, we had chosen 4 principal components, while in the covariance case, we had only 2 components to retain 80%. This is because some of the variables will have more impact than others.

Exercise 3a):

The CLUSTER Procedure Average Linkage Cluster Analysis

The CLUSTER Procedure Average Linkage Cluster Analysis

From dendrogram plot we can see that we may have 2 distinct clusters. From the plot CCC, it is suggested we have higher value if there are 2 clusters. The same holds for Pseudo F plot, peak at 2. The pseudo t-squared has low points at 2, 3 and 7. So, overall we can say that 2 clusters might be a good choice.

Exercise 3b):

The MEANS Procedure

CLUSTER=1

Variable	N	Mean	Std Dev	Minimum	Maximum
LF	28	576.6071429	36.0856381	519.0000000	641.0000000
U1	28	95.5714286	17.3705340	70.0000000	142.0000000
U2	28	33.6071429	9.0690327	20.0000000	58.0000000
W	28	590.1785714	51.8795282	486.0000000	689.0000000
X	28	168.2500000	20.7981926	126.0000000	215.0000000

CLUSTER=2

Variable	N	Mean	Std Dev	Minimum	Maximum
LF	19	538.4736842	36.1361137	480.0000000	638.0000000
U1 U2	19	95.3157895	19.4423725	72.0000000	135.0000000
U2	19	34.5263158	7.6403056	24.0000000	53.0000000
W X	19	429.8947368	60.0063837	288.0000000	513.0000000
X	19	231.9473684	29.4514170	166.0000000	276.0000000

Cluster 1 includes states that tend to have higher LF(labor force) than Cluster 2. U1 is almost identical in both clusters. U2 in cluster 2 is slightly higher than in cluster 1. W(wealth) is higher for cluster 1 than for cluster 2. Cluster 2 consists of states that have higher X(income inequality) than Cluster 1. We have 28 observations in cluster 1 and 19 in cluster 2. States in Cluster 1 tend to have higher crime rates than in Cluster 2.

Exercise 4a):

The CLUSTER Procedure Average Linkage Cluster Analysis

The CLUSTER Procedure Average Linkage Cluster Analysis

From dendrogram plot we can see that we may have 4 or 5 distinct clusters. From the plot CCC it is suggested we have higher value if there are 3 and 5 clusters. The same holds for Pseudo F plot, peak at 3 or 5. The pseudo t-squared has low points at 3, 5 and 6. So, overall we can say that 5 clusters might be a good choice.

Exercise 4b):

The MEANS Procedure

CLUSTER=1

Variable	N	Mean	Std Dev	Minimum	Maximum
LF	20	584.6500000	35.2991352	521.0000000	641.0000000
U1	20	84.4000000	10.5899655	70.0000000	103.0000000
U2	20	27.4000000	4.5814270	20.0000000	36.0000000
W	20	504.7500000	63.8970183	382.0000000	593.0000000
X	20	205.2000000	28.7046668	144.0000000	254.0000000

CLUSTER=2

Variable	N	Mean	Std Dev	Minimum	Maximum
LF	14	560.2857143	35.7457444	519.0000000	631.0000000
U1	14	94.2142857	12.0586935	77.0000000	113.0000000
U2	14	35.7857143	5.2795479	22.0000000	43.0000000
W	14	624.7857143	40.0464703	559.0000000	689.0000000
X	14	155.7142857	13.5897505	126.0000000	170.0000000

CLUSTER=3

Variable	N	Mean	Std Dev	Minimum	Maximum
LF	6	543.6666667	21.5561283	523.0000000	574.0000000
U1	6	125.3333333	13.1097928	107.0000000	142.0000000
U2	6	43.6666667	8.7330789	35.0000000	58.0000000
W	6	527.8333333	64.0481590	453.0000000	626.0000000
X	6	172.6666667	14.6241809	158.0000000	200.0000000

CLUSTER=4

Variable	N	Mean	Std Dev	Minimum	Maximum
LF	6	516.1666667	13.4077092	497.0000000	533.0000000
U1	6	98.8333333	11.1070548	86.0000000	116.0000000
U2	6	38.8333333	5.6715665	33.0000000	47.0000000
W	6	371.1666667	54.9451241	288.0000000	427.0000000
X	6	258.1666667	10.9802854	247.0000000	276.0000000

CLUSTER=5

Variable	N	Mean	Std Dev	Minimum	Maximum
LF	1	480.0000000		480.0000000	480.0000000
U1	1	135.0000000		135.0000000	135.0000000
U2	1	53.0000000		53.0000000	53.0000000
W	1	457.0000000		457.0000000	457.0000000
X	1	249.0000000		249.0000000	249.0000000

Cluster 1 includes states that tend to have higher values of LF. Cluster 5 has higher U1 values. However note that it has only one observation, so we might merge this cluster with another one. Cluster 5 also has higher U2 value as well. Cluster 2 includes states which have higher values of W. Cluster 4 consists of states that have high value of X. Cluster 1 has 20 observations, Cluster 2 has 14, Cluster 3 and 4 have both 6, and Cluster 5 only one observation. States in Cluster 2 have higher crime rates in general comparing to the states in other clusters.

Regarding the comparison, we can see that using standardized variables has led us to have more clusters, with one cluster having only one observation.