Trajectory Mapping Results Analysis Europe10 300 particles

Cecilia Valenzuela

22 March, 2021

Deme configuration

deme	division	country	region	exclude_country	min_date	max_date
China		China	Asia		2019-12-24	2020-01-23
France		France	Europe		2020-01-23	2020-03-08
Germany		Germany	Europe		2020-01-28	2020-03-08
Italy		Italy	Europe		2020-01-29	2020-03-08
OtherEuropean		•	Europe	France, Germany, Italy, Spain	2020-01-29	2020-03-08
Spain		Spain	Europe		2020-02-24	2020-03-08

ECDC Case count data

Table 2: Total number of cases reported to ECDC on March 8, 2020

deme	c19od	ecdc	owid
China	80904	80768	80222
France	963	613	948
Germany	902	684	799
Italy	6007	4636	5883
OtherEuropean	2184	1561	1760
Spain	1136	764	500

Figure 1: ECDC case counts for each deme from the beginning of the pandemic to March $8,\,2020$

Epidemic trajectory data

From the Stochastic Trajectory Mapping analysis, we sample with importance sampling one epidemic trajectory per set of parameters + typed node tree from the set of simulated trajectories.

The processing of the trajectory data includes the generation of two different datasets:

- states: We have the total number of inferred cases by trajectory, deme and time.
- events: We have each event that happened in a epidemic trajectory, with its type (origin, birth, death or migration), the source/destination deme and time.

Epidemic trajectory data

We use the events dataset to compute quantities of interest:

- B: transmissions (births) events
- D: becoming unifectious (deaths) events
- IM: migrations into the deme
- OM: migrations out of the deme
- S: sampling events
- 0: origin
- u: origin
- in_pop: origin + transmissions + incoming migrations
- out_pop: deaths + outgoing migration + sampling events
- active_pop: origin + transmissions + incoming migrations (deaths + outgoing migration + sampling events)

Epidemic trajectory data

Table 3: Trajectories dataset

var	deme	partner	date	value	cumvalue
active_pop	China		2019-11-29	1	1
in_pop	China		2019-11-29	1	1
0	China		2019-11-29	1	1
active_pop	China		2019-11-30	1	2
В	China		2019-11-30	1	1
	active_pop in_pop O active_pop	active_pop China in_pop China O China active_pop China	active_pop China in_pop China O China active_pop China	active_pop China 2019-11-29 in_pop China 2019-11-29 O China 2019-11-29 active_pop China 2019-11-30	active_pop China 2019-11-29 1 in_pop China 2019-11-29 1 O China 2019-11-29 1 active_pop China 2019-11-30 1

To have a feasible time of analysis of the epidemic trajectories we take a random subsample of 500 trajectories.

To facilitate visualization and summarise the results, we take a grid time of 1 day and summarise the number of events that day as the sum of the events in the corresponding time interval; and the number of inferred cases as the maximum of the interval.

Summarised epidemic trajectories

Inferred case counts - China

var	D
deme	China
l95_cumvalue	29697
h95_cumvalue	55959
median_cumvalue	42514.
mean_cumvalue	42510.6
total_confirmed	80768
Itimes	0.37
htimes	0.69
mtimes	0.53

Inferred case counts - France

var deme France l95_cumvalue 6346 h95 cumvalue 1027122 median_cumvalue 98153.5 mean_cumvalue 272263.5 total_confirmed 613 Itimes 10.35 htimes 1675.57 mtimes 160.12

Inferred case counts - Germany

var Germany l95_cumvalue 4474 h95 cumvalue 755948 median_cumvalue 88391 mean_cumvalue 186982.6 total_confirmed 684 Itimes 6.54 htimes 1105.19 mtimes 129.23

Inferred case counts - Italy

D	var
Italy	deme
6018	l95_cumvalue
5515	h95_cumvalue
2282	median_cumvalue
26966.	mean_cumvalue
4636	total_confirmed
1.3	Itimes
11.9	htimes
4.92	mtimes

Inferred case counts - OtherEuropean

OtherEuropean

var	D
deme	OtherEuropean
l95_cumvalue	5507
h95_cumvalue	695816
median_cumvalue	81533.5
mean_cumvalue	182092
total_confirmed	1561
Itimes	3.53
htimes	445.75
mtimes	52.23

Inferred case counts - Spain

var deme Spain l95_cumvalue 5718 h95 cumvalue 924839 median_cumvalue 65295.5 mean_cumvalue 328947.4 total_confirmed 764 7.48 Itimes htimes 1210.52 mtimes 85.47

First introduction

First introduction into Europe, location

First 10 introductions into Europe, location

First introductions into each country, source

First 10 introductions into each country, source

Local transmission vs imported cases

Migrations - Period 1

NULL

NULL

Migrations - Period 2

NULL

NULL

Migrations - Period 3

NULL

NULL

Daily flight passengers vs daily imported cases

Weekly confirmed cases proportion

Weekly incidence population

Events timing

