Tutorial 2: Sequence2,3, Series 1

- 1. Let $a_1 = 1$, $a_2 = 3$, $a_3 = 7$, and define $a_{n+3} = \frac{a_n + a_{n+1} + a_{n+2}}{3}$, for $n \ge 1$. Is (a_n) convergent?
- 2. Let $S \neq \emptyset$ and (a_n) be a decreasing sequence of upper bounds of S. Let $a_n \to a$. Show that a is an upper bound.
- 3. Test for convergence: (a_n) where $a_1 = 2$, $a_{n+1} = \sqrt{2a_n 1}$ for $n \in \mathbb{N}$.
- 4. There are two particles A and B, placed at 0 and 1, on day 1, respectively. On day n + 1, particle A moves right by one tenth of the distance between the particles on the nth day and particle B moves left by two tenth of the distance between the particles on nth day. Do you think they will meet eventually? If so, where?

Let us randomize it a little bit. On n + 1th day a coin is tossed.

- (a) If it is 'head', then A moves right by one tenth of the distance between the particles on the nth day and particle B moves left by two tenth of the distance between the particles on nth day.
- (b) If it is 'tail', then A moves right by two tenth of the distance between the particles on the nth day and particle B moves left by four tenth of the distance between the particles on nth day.

Now, what is your answer and how do you argue?

- 5. Is $\sum \frac{n! \ln n}{n^n}$ convergent?
- 6. Is $\sum \frac{n!^{2n}}{n^{n^2}}$ convergent?
- 7. Is $\sum \frac{e^{n\pi}}{\pi^{ne}}$ convergent?
- 8. Is $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^2}$ convergent?
- 9. Is $\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{\ln n^2}$ convergent?
- 10. Is $\sum \frac{\cos(n\pi)}{n\sqrt{n}}$ convergent?

- 11. Fix $x \in \mathbb{R}$. We already know that $a_n = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!}$ converges and the limit is defined as $\exp x$. We also know that $a_n = (1 + \frac{1}{n})^n$ converges and the limit is e.
 - (a) Let (n_k) be a sequence of natural numbers diverging to ∞ . Then $\lim_{k\to\infty} (1+\frac{1}{n_k})^{n_k} = e$.
 - (b) Let $a_k > 0$ be a sequence of rationals diverging to ∞ . Show that $\lim_{k \to \infty} (1 + \frac{1}{a_k})^{a_k} \to e$.
 - (c) Show that, for any rational number $x = \frac{p}{q} > 0$, $e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$.
 - (d) Let x > 0 be a rational. Show that $\exp x = e^x$. (Put $s_n = \left(1 + \frac{x}{n}\right)^n$, $t_n = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$ and $r_k = \binom{n}{0} + \binom{n}{1} \frac{x}{n} + \dots + \binom{n}{k} \frac{x^k}{n^k}$. Let $\alpha > 0$. Show that $\exists k$ such that $\forall n > k$ we have $r_{k-1} \leq s_n \leq r_{k-1} + \alpha$.)
 - (e) Conclude that $\lim \left(1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}\right) = e$.

positive integer. Can it be?)

(f) [irrationality of e] Conclude that e is irrational. (Assume that $e = \frac{p}{q}$, gcd(p,q) = 1. Then $q!e - q!(1 + 1 + \frac{1}{2!} + \cdots + \frac{1}{q!})$ must be a