About Me (Tim Rodgers)

- Postdoctoral Fellow with Prof. Amanda Giang in IRES
- Undergrad University of Waterloo Environmental Engineering (2016)
- Graduate UofT Chemical Engineering
 - Began my MASc. in 2016
 - Switched to a PhD, graduated in 2021
- Research chemicals transport & fate
 - Particular interest in contaminant transport through stormwater
 - Publications under: Timothy F. M. Rodgers
 - Email: tim.rodgers@ubc.ca

Carbon Neutral Infrastructure Biodiversity and Infrastructure (Healthy Environments)

Tim Rodgers

Postdoctoral Fellow, IRES

Urban Water Cycles

Traditional Approach

Green Infrastructure (GI) /Low Impact Development (LID)

Activity: Traditionalists vs LIDers

Recap & Discussion

Urban Water Cycles

- Wastewater
 - People & industry produce a lot of waste
 - Cholera, E.Coli (Walkerton)
- Stormwater Runoff
 - Quantity & Quality

Traditional Approach: Urban Water as a Nuisance

https://thetyee.ca/News/2020/08/20/Metro-Vancouver-Sewage-Plant-Upgrade/

Problems with the Traditional Approach

Wastewater:

- Carbon emissions
- Expensive, high energy intensity
- Continuing water quality issues
 - Difficult to remove pharmaceuticals, increased temperature, BOD, etc.

Stormwater

- Urbanization increases runoff
- Combined Sewer Overflows (CSOs)
- Water quality issues (e.g. road salt)
- "Urban stream syndrome"

Urban Stream Syndrome

Traditional Approach (Redux)

- Stormwater Detention:
 - Reduce peak flow rate
 - Delay time to peak
 - Allow suspended particles to settle
 - Reduce Combined Sewer Overflows

- Examples:
 - "Dry" stormwater management ponds
 - "Wet" stormwater management ponds
 - Storage tanks/facilities

Traditional Approach (Redux)

Thames Tideway Tunnel

https://londonist.com/2015/08/what-is-the-thames-tideway-tunnel

Green Infrastructure/Low-Impact Development

- Distributed systems to treat stormwater at-source
- Two goals:
 - Restore pre-development hydrology
 - Improve water quality

The Promise:

Rain Garden or Bioretention Cell https://upload.wikimedia.org/wikipedia/commons/5/5c/Rain_Garden_%2815455930908%29.jpg

Green Roof
https://upload.wikimedia.org/wikipedia/commons/4/41/British_Horse_Society_Head_Quarters_and_Green_Roof.jpg

The Problems:

- Maintenance:
 - Lots of distributed systems = Lots to keep track of!

- Many systems designed for "First Flush"
 - Still need traditional infrastructure for large events
- Doesn't effectively treat hydrophilic compounds
 - Potential for groundwater contamination
- Slow Adoption
 - Municipalities can be slow-moving and risk averse

https://www.conteches.com/DesktopModules/DigArticle/MediaHandler.ashx?portalid=0&moduleid=635&mediaid=279&width=800&height=600

Promising Developments:

- Policy tools to encourage better stormwater m
 - "Runoff Volume Control Targets"
 - Stormwater fees tax paid based on impervious ar
- Combining ecosystem services e.g. "Horizont
 - Horizontal Levee –Water treatment + storm surge

Activity: Traditionalists vs LID-ers

- Two hypothetical developments in the Lower Mainland need a Stormwater & Flood Management Plan
 - City of Vancouver National Yard
 - Langley Pagoda Ridge Golf Course

- Two groups for each development:
 - Traditional/Hard Infrastructure
 - LID/Green Infrastructure
- First in your groups fill in the front-side of the handout
- Second meet with another group on the same development & decide on an overall plan
- Third Regroup, discuss final plans

Vancouver National Yard

1. Storm Surge

2. Combined Sewer Overflow

3. Brownlands Contamination

Pagoda Ridge Golf Course

Chemical Applicability of LIDs:

- Log $D_{OC} < 2.75$
 - Not captured, very mobile
- $2.75 \le \text{Log D}_{OC} \le 3.75$
 - Fate is sensitive to hydrology, diffusion
- Log $D_{OC} > 3.75$
 - Mostly captured, not mobile

Legend

- Volatilization
- Water Advection
- Sorption

Rodgers et al. (2022, currently finishing revisions)