« Embedded Systems » Processeur – FPGA → EPXA1

rene.beuchat@epfl.ch LAP/I&C/EPFL Chargé de cours

> LSN/EIG Prof. HES

Objectives

- A specific FPGA with hardcore processor architecture description
- ARM9 processor architecture
- Use of the Amba bus
- Bridges between bus Amba-Avalon
- Example with the Altera-EPXA FPGA
- Caution : *old obsolete* component, but interesting general architecture

EPXA, architecture globale

Embedded Processor Stripe

PLD

EPXA1

Interface/Memory decoding space

Elements	EPXA1	EPXA4	EPXA10		
Internal registers	16kB				
Internal SRAM	64kB	128kB	256kB		
Internal DPSRAM	16kB	64kB	128kB		
External Bus Interface EBI 03	4 x 16kB to 32 MB				
SDRAM	16kB 256MB				
PLD 03	16kB 2GB				

EPXA1

SRAM	Static RAM
	(Random Access Memory)
DPSRAM	Dual Port SRAM
EBI	External Bus Interface
SDRAM	Synchronous Dynamic RAM
PLD	Programmable Logic Device

EPXA1, processeur ARM9

EPXA1, processeur ARM9

- Instructions cache 8 kB
- Data cache 8 kB
- Instruction MMU (Memory Management Unit)
- Data MMU
- Embedded Trace Module (ETM)
- Amba bus interface

Internal / external Bus

AHB1:

- > ARM 922T
- > Interrupt Ctrl
- Watch-Dog
- > SRAM/DPSRAM/
- SDRAM Ctrl
- ➤ Bridge → AHB2

AHB2 :

- Hardware stripe
- PLL/Reset/Timer
- > UART, EBI
- SDRAM Ctrl
- ➤ AHB bridges ↔ PLD

Bus AHB1

- 1 Masters:
 - ➤ ARM 922T
- 8 Slaves
 - > Memories
 - > Interfaces

ÉDÉRALE DE LAUSANNE

Stripe Bridge AHB1←→AHB2

Embedded Stripe Bridge

Internal / external Bus

AHB1:

- ➤ ARM 922T
- > Interrupt Ctrl
- Watch-Dog
- > SRAM/DPSRAM/
- > SDRAM Ctrl
- ➤ Bridge → AHB2

AHB2 :

- Hardware stripe
- PLL/Reset/Timer
- > UART, EBI
- > SDRAM Ctrl
- ➤ AHB bridges ↔ PLD

AHB2

12 Slaves

>AHB1

to SDR SDRAM/

SDRAM DDR

to Flash

SDRAM

Controller

EBI

Ctrl DRAM

COLE POLYTECHNIQUE

ÉDÉRALE DE LAUSANNE

EBI

Ctrl EBI

EBI

EBI Port on ARM Stripe Symbol

COLE POLYTECHNIQUE ÉDÉRALE DE LAUSANNE

Cycles EBI, examples

EBI Read 0 wait

EBI Write 0 wait

UART serial interface

Interruptions

from AHB (11 sources) or PLD (6 sources)

Interruptions Control registers

Stripe Bridge AHB1←→AHB2

Embedded Stripe Bridge

ÉDÉRALE DE LAUSANNE

Direct Writing

Writing through FIFO

Multi bridge, writing

Table 1. Bridge Write Transaction Throughput from the Embedded Processor to a PLD Slave

Transaction Number	AHB1-2 Bridge	Stripe-to-PLD Bridge	Throughput (Mbytes per Second)
1	Write-posting enabled	Write-posting enabled	194.9
2	Write-posting enabled	Write-posting disabled	44.4
3	Write-posting disabled	Write-posting enabled	75.6
4	Write-posting disabled	Write-posting disabled	33

Multi-bridge, reading

Table 2. Bridge Read Transaction Throughput from SRAM to a PLD Master

Transaction Number	Slave_hclk Frequency (PLD Clock Domain)	AHB2 Frequency	PLD-to-Stripe Bridge	Throughput (Mbytes per Second)
1	100 MHz	100 MHz	Pre-fetching enabled	100.4
2	100 MHz	100 MHz	Pre-fetching disabled	41.4
3	50 MHz	100 MHz	Pre-fetching enabled	98.5
4	50 MHz	100 MHz	Pre-fetching disabled	33.1

Burst transfers, comparison

Acces latency

Master PLD → bridge AHB2

PLD → Stripe

Signal	Source	Description
SLAVE_HCLK	PLD	Times all bus transfers. Signal timings are related to its rising edge clock
SLAVE_HADDR[310]	PLD	32-bit system address bus
SLAVE_HTRANS[10]	PLD	The type of the current transfer
SLAVE_HWRITE	PLD	When high, this signal indicates a write transfer; when low, a read transfer
SLAVE_HSIZE[10]	PLD	Indicates the size of transfer
SLAVE_HBURST[20]	PLD	Indicates whether the transfer forms part of a burst
SLAVE_HWDATA[310]	PLD	Used to transfer data from the master to the bus slaves during writes
SLAVE_HREADYI	PLD	When high, this signal indicates that a transfer has finished on the bus.
		Slaves on the bus need SLAVE_HREADY as both an input and output signal
SLAVE_HREADYO	Stripe	When high, this signal indicates that a transfer has finished on the bus.
		Slaves on the bus need SLAVE_HREADY as both an input and output signal
SLAVE_HRESP[10]	Stripe	Additional information on the status of a transfer
SLAVE_HRDATA[310]	Stripe	Used to transfer data from bus slaves to the master during reads
SLAVE_HMASTLOCK	PLD	When high, indicates that the master requires locked access to the bus
SLAVE_BUSERRINT	Stripe	Interrupt signifying a bus error
SLAVE_HSELREG	PLD	Register selection signal
SLAVE_HSEL	PLD	Interface selection signal

Slave PLD ← Bridge

Stripe → PLD

Signal	Source	Description
MASTER_HCLK	PLD	Times all bus transfers. Signal timings are related to its rising edge clock
MASTER_HADDR[310]	Stripe	32-bit system address bus
MASTER_HTRANS[10]	Stripe	Type of the current transfer
MASTER_HWRITE	Stripe	When high, this signal indicates a write transfer; when low, a read transfer
MASTER_HSIZE[10]	Stripe	Indicates the size of transfer
MASTER_HBURST[20]	Stripe	Indicates whether the transfer forms part of a burst
MASTER_HWDATA[310]	Stripe	Used to transfer data from the master to the bus slaves during writes
MASTER_HREADY	PLD	When high, this signal indicates that a transfer has finished on the bus
MASTER_HRESP[10]	PLD	Additional information on the status of a transfer
MASTER_HRDATA[310]	PLD	Used to transfer data from bus slaves to the master during reads
MASTER_HLOCK	Stripe	When high, indicates that the master requires locked access to the bus
MASTER_HBUSREQ	Stripe	A signal from the master to the arbiter, requesting the bus

Stripe Registers

Configurations are specified by programmable interfaces

Register Name	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9	8 7 6	5 4 3	2 1	0	Address
AHB12B_CR	NW NP					Base + 100H
AHB12B_SR		HBURST	HSIZE	HRTN	WF	Base + 800H
AHB12B_ADDRSR	HADDR				Base + 804H	
PLDSB_CR				NV	NP	Base + 110H
PLDSB_SR		HBURST	HSIZE	HRTN	WF	Base + 114H
PLDSB_ADDRSR	HADDR					Base + 118H
PLDMB_CR				NW	/ NP	Base + 120H
PLDMB_SR		HBURST	HSIZE	HRTN	WF	innaccessible
PLDMB_ADDRSR	HADDR					innaccessible

Registre Memory Map

Register Name	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1	0	Address
MMAP_xxx		NW	NP	Base + nnn

Multi-master, example

Multiplexed Bus

Address + ctrl

Multiplexed Bus,

data read → Masters

Multiplexed Bus,

Masters → data write

PLD interface

- Hardware bridge : AMBA
- NIOS processors → Avalon bus
- Need AMBA ←→ Avalon bridge

- Use of SOPC Builder™:
 - >Automatic system generation
 - ➤ Cross Development for software

