SEQUENCE LISTING

```
<110> DUSCH, Nicole
          THOMAS, Hermann
          THIERBACH, Georg
    <120> PROCESS FOR THE FERMENTATIVE PREPARATION OF D-PANTOTHENOIC
    ACID USING CORYNEFORM BACTERIA
    <130> 21354US0X
    <150> DE 10048604.5
    <151>
          2000-09-30
    <150> DE 10117085.8
    <151>
          2001-04-06
    <160>
          14
ŧ.
    <170> PatentIn version 3.1
ŧij.
eri
    <210>
in the
    <211> 2160
TÇ.
    <212> DNA
Harry
Marie
    <213> Corynebacterium glutamicum
    <220>
    <221> CDS
    <222>
          (327)..(2063)
    <223>
27
    <220>
    <221> -35 signal
    <222> (227)..(232)
    <223>
    <220>
    <221> -10 signal
          (256)..(261)
    <222>
    <223>
    <400>
    ttagaggcga ttctgtgagg tcactttttg tggggtcggg gtctaaattt ggccagtttt
         60
    cgaggcgacc agacaggcgt gcccacgatg tttaaatagg cgatcggtgg gcatctgtqt
        120
```

ttggtttcga cgggctgaaa ccaaaccaga ctgcccagca acgacggaaa tcccaaaagt

He street with street the street that the stre

9999	catco 240	cct g	gtttg	ggtad	cc ga	agtad	cca	c cc	gggc	ctga	aact	caat	tgg (caggo	cgggcg
aago	300	gca a	acaa	ctgga	aa tt	taag	gagca	a caa	attga	aagt	cgca	accaa	agt (aggo	caacac
aata	agcca 353	ata a	acgtt	gagg	ga gt	tcaç									a tta 1 Leu
	401			gaa											
Ile	Asp	Thr	Leu	Glu	Ala 15	Gln	Gly	Val	Lys	Arg 20	Ile	Tyr	Gly	Leu	Val 25
ggt	gac 449	agc	ctt	aat	ccg	atc	gtg	gat	gct	gtc	cgc	caa	tca	gat	att
Gly		Ser	Leu	Asn	Pro	Ile	Val	Asp	Ala	Val	Arg	Gln	Ser	Asp	Ile
				30					35					40	
gag	tgg 497	gtg	cac	gtt	cga	aat	gag	gaa	gcg	gcg	gcg	ttt	gca	gcc	ggt
Glu		Val	His	Val	Arg	Asn	Glu	Glu	Ala	Ala	Ala	Phe	Ala	Ala	Gly
			45					50					55		
gcg	gaa 545	tcg	ttg	atc	act	9 99	gag	ctg	gca	gta	tgt	gct	gct	tct	tgt
Ala		Ser	Leu	Ile	Thr	Gly	Glu	Leu	Ala	Val	Cys	Ala	Ala	Ser	Cys
		60					65					70			
ggt	cct 593	gga	aac	aca	cac	ctg	att	cag	ggt	ctt	tat	gat	tcg	cat	cga
Gly		Gly	Asn	Thr	His	Leu	Ile	Gln	Gly	Leu	Tyr	Asp	Ser	His	Arg

aat ggt gcg aag gtg ttg gcc atc gct agc cat att ccg agt gcc cag 641

	Asn	Gly	Ala	Lys	Val	Leu	Ala	Ile	Ala	Ser	His	Ile	Pro	Ser	Ala	Gln
	90					95					100					105
	att	ggt 689	tcg	acg	ttc	ttc	cag	gaa	acg	cat	ccg	gag	att	ttg	ttt	aag
	Ile	Gly	Ser	Thr	Phe	Phe	Gln	Glu	Thr	His	Pro	Glu	Ile	Leu	Phe	Lys
					110					115					120	
	gaa	tgc 737	tct	ggt	tac	tgc	gag	atg	gtg	aat	ggt	ggt	gag	cag	ggt	gaa
	Glu		Ser	Gly	Tyr	Cys	Glu	Met	Val	Asn	Gly	Gly	Glu	Gln	Gly	Glu
				125					130					135		
er er	cac	att	tta	cat	Cac	aca	255	asa	t a a	200	- - -	~~~				
24.07		785						cag								
7	Arg	TTE		His	His	Ala	Ile	Gln	Ser	Thr	Met	Ala	Gly	Lys	Gly	Val
and the heat test			140					145					150			
r =	tcg	gtg 833	gta	gtg	att	cct	ggt	gat	atc	gct	aag	gaa	gac	gca	ggt	gac
Total Period	Ser		Val	Val	Ile	Pro	Gly	Asp	Ile	Ala	Lys	Glu	Asp	Ala	Gly	Asp
n 14.00 H		155					160					165				
	ggt	act 881	tat	tcc	aat	tcc	act	att	tct	tct	ggc	act	cct	gtg	gtg	ttc
	Gly		Tyr	Ser	Asn	Ser	Thr	Ile	Ser	Ser	Gly	Thr	Pro	Val	Val	Phe
	170					175					180					185
	ccg	gat 929	cct	act	gag	gct	gca	gcg	ctg	gtg	gag	gcg	att	aac	aac	gct
	Pro		Pro	Thr	Glu	Ala	Ala	Ala	Leu	Val	Glu	Ala	Ile	Asn	Asn	Ala
					190					195					200	
	aag	tct 977	gtc	act	ttg	ttc	tgc	ggt	gcg	ggc	gtg	aag	aat	gct	cgc	gcg
	Lys	Ser	Val	Thr	Leu	Phe	Cys	Gly	Ala	Gly	Val	Lys	Asn	Ala	Arg	Ala
				205					210					215		

	cag 1	gtg 1025	ttg	gag	ttg	gcg	gag	aag	att	aaa	tca	ccg	atc	ggg	cat	gcg
	Gln	Val	Leu	Glu	Leu	Ala	Glu	Lys	Ile	Lys	Ser	Pro	Ile	Gly	His	Ala
			220					225					230			
	ctg 1	ggt .073	ggt	aag	cag	tac	atc	cag	cat	gag	aat	ccg	ttt	gag	gtc	ggc
	Leu	Gly	Gly	Lys	Gln	Tyr	Ile	Gln	His	Glu	Asn	Pro	Phe	Glu	Val	Gly
		235					240					245				
	atg 1	tct 121	ggc	ctg	ctt	ggt	tac	ggc	gcc	tgc	gtg	gat	gcg	tcc	aat	gag
= 1	Met	Ser	Gly	Leu	Leu	Gly	Tyr	Gly	Ala	Cys	Val	Asp	Ala	Ser	Asn	Glu
ness grap gans gans	250					255					260					265
in dank mark	gcg 1	gat 169	ctg	ctg	att	cta	ttg	ggt	acg	gat	ttc	cct	tat	tct	gat	ttc
F	Ala	Asp	Leu	Leu	Ile	Leu	Leu	Gly	Thr	Asp	Phe	Pro	Tyr	Ser	Asp	Phe
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					270					275					280	
må må må	ctt	cct .217	aaa	gac	aac	gtt	gcc	cag	gtg	gat	atc	aac	ggt	gcg	cac	att
už už			Lys	Asp	Asn	Val	Ala	Gln	Val	Asp	Ile	Asn	Gly	Ala	His	Ile
				285					290					295		
	ggt 1	cga .265	cgt	acc	acg	gtg	aag	tat	ccg	gtg	acc	ggt	gat	gtt	gct	gca
			Arg	Thr	Thr	Val	Lys	Tyr	Pro	Val	Thr	Gly	Asp	Val	Ala	Ala
			300					305					310			
	aca	atc	gaa	aat.	att	tta	cct	cat	ata	nss	na a	222	303	ant.	aat	± a.a
	1	.313														
	III		GIU	Asn	Ile	Leu	Pro	His	Val	Lys	Glu	Lys	Thr	Asp	Arg	Ser
		315					320					325				
	ttc	ctt	gat	cgg	atg	ctc	aag	gca	cac	gag	cgt	aag	ttg	agc	tcg	gtg

		.361 Leu	Asp	Arg	Met	Leu	Lys	Ala	His	Glu	Arg	Lys	Leu	Ser	Ser	Val
	330					335					340					345
							200	~+~	~~~	224	ant	~+~	aat	2++	a2a	aat
	_	gag [409	acg	tac	aca	cat	aac	gte	gag	aag	Cat	gug	CCL	all	Cac	CCC
			Thr	Tyr	Thr	His	Asn	Val	Glu	Lys	His	Val	Pro	Ile	His	Pro
					350					355					360	
	_	tac 1457	gtt	gcc	tct	att	ttg	aac	gag	ctg	gcg	gat	aag	gat	gcg	gtg
			Val	Ala	Ser	Ile	Leu	Asn	Glu	Leu	Ala	Asp	Lys	Asp	Ala	Val
				365					370					375		
		act L505	gtg	gat	acc	ggc	atg	tgc	aat	gtg	tgg	cat	gcg	agg	tac	atc
1			Val	Asp	Thr	Gly	Met	Cys	Asn	Val	Trp	His	Ala	Arg	Tyr	Ile
in The			380					385					390			
Hart offer the			ccg	gag	gga	acg	cgc	gac	ttt	gtg	ggt	tca	ttc	cgc	cac	ggc
[]		L553 Asn	Pro	Glu	Gly	Thr	Arg	Asp	Phe	Val	Gly	Ser	Phe	Arg	His	Gly
521 521		395					400					405				
in a																
	_	_	gct	aat	gcg	ttg	cct	cat	gcg	att	ggt	gcg	caa	agt	gtt	gat
	-	1601 Met	Ala	Asn	Ala	Leu	Pro	His	Ala	Ile	Glv	Ala	Gln	Ser	Val	asp
											_					_
	410					415					420					425
	_	aac 1649	cgc	cag	gtg	atc	gcg	atg	tgt	ggc	gat	ggt	ggt	ttg	ggc	atg
	Arg	Asn	Arg	Gln	Val	Ile	Ala	Met	Cys	Gly	Asp	Gly	Gly	Leu	Gly	Met
					430					435					440	
		ctg 1697	ggt	gag	ctt	ctg	acc	gtt	aag	ctg	cac	caa	ctt	ccg	ctg	aag
			Gly	Glu	Leu	Leu	Thr	Val	Lys	Leu	His	Gln	Leu	Pro	Leu	Lys

gct gtg gtg ttt aac aac agt tct ttg ggc atg gtg aag ttg gag atg
1745
Ala Val Val Phe Asn Asn Ser Ser Leu Gly Met Val Lys Leu Glu Met
460
465
470

ctc gtg gag gga cag cca gaa ttt ggt act gac cat gag gaa gtg aat 1793
Leu Val Glu Gly Gln Pro Glu Phe Gly Thr Asp His Glu Glu Val Asn
475
480
485

ttc gca gag att gcg gcg gct gcg ggt atc aaa tcg gta cgc atc acc 1841

Phe Ala Glu Ile Ala Ala Ala Gly Ile Lys Ser Val Arg Ile Thr

490

495

505

gat ccg aag aaa gtt cgc gag cag cta gct gag gca ttg gca tat cct
1889

Asp Pro Lys Lys Val Arg Glu Gln Leu Ala Glu Ala Leu Ala Tyr Pro
510
520

- L

gga cct gta ctg atc gat atc gtc acg gat cct aat gcg ctg tcg atc 1937
Gly Pro Val Leu Ile Asp Ile Val Thr Asp Pro Asn Ala Leu Ser Ile
525
530
535

cca cca acc atc acg tgg gaa cag gtc atg gga ttc agc aag gcg gcc 1985
Pro Pro Thr Ile Thr Trp Glu Gln Val Met Gly Phe Ser Lys Ala Ala
540 545 550

acc cga acc gtc ttt ggt gga gga gta gga gcg atg atc gat ctg gcc 2033

Thr Arg Thr Val Phe Gly Gly Val Gly Ala Met Ile Asp Leu Ala 555

560

565

```
cgt tcg aac ata agg aat att cct act cca tgatgattga tacacctgct
  Arg Ser Asn Ile Arg Asn Ile Pro Thr Pro
   570
                       575
  gttctcattg accgcgagcg cttaactgcc aacatttcca ggatggcagc tcacgccggt
      2143
  gcccatgaga ttgccct
      2160
  <210>
         2
   <211>
          579
   <212>
         PRT
   <213>
         Corynebacterium glutamicum
<400>
🌃 Met Ala His Ser Tyr Ala Glu Gln Leu Ile Asp Thr Leu Glu Ala Gln
[ 1
                                       10
III Gly Val Lys Arg Ile Tyr Gly Leu Val Gly Asp Ser Leu Asn Pro Ile
                                   25
  Val Asp Ala Val Arg Gln Ser Asp Ile Glu Trp Val His Val Arg Asn
           35
                               40
  Glu Glu Ala Ala Phe Ala Ala Gly Ala Glu Ser Leu Ile Thr Gly
  Glu Leu Ala Val Cys Ala Ala Ser Cys Gly Pro Gly Asn Thr His Leu
   65
                                                                80
   Ile Gln Gly Leu Tyr Asp Ser His Arg Asn Gly Ala Lys Val Leu Ala
                   85
                                       90
                                                            95
   Ile Ala Ser His Ile Pro Ser Ala Gln Ile Gly Ser Thr Phe Phe Gln
               100
                                   105
```

:2 , E. .. F

###

11 å = 1

115

Glu Thr His Pro Glu Ile Leu Phe Lys Glu Cys Ser Gly Tyr Cys Glu

```
Gln Val Met Gly Phe Ser Lys Ala Ala Thr Arg Thr Val Phe Gly Gly 545

Gly Val Gly Ala Met Ile Asp Leu Ala Arg Ser Asn Ile Arg Asn Ile 575

Pro Thr Pro

C210 > 3
C211 > 875
C212 > DNA
C213 > Corynebacterium glutamicum

C400 > 3
```

Handy Acres Charles Handy Acres Charles Handy Acres Charles	<400> 3 tgcgagatgg 60	tgaatggtgg	tgagcagggt	gaacgcattt	tgcatcacgc	gattcagtcc
Heady speed threat.	accatggcgg 120	gtaaaggtgt	gtcggtggta	gtgattcctg	gtgatatcgc	taaggaagac
mad house flam and H	gcaggtgacg 180	gtacttattc	caattccact	atttcttctg	gcactcctgt	ggtgttcccg
A HATT ATTE	gatcctactg 240	aggctgcagc	gctggtggag	gcgattaaca	acgctaagtc	tgtcactttg
good g g g g g ggta Lat adla	ttctgcggtg 300	cgggcgtgaa	gaatgetege	gcgcaggtgt	tggagttggc	ggagaagatt
	aaatcaccga 360	tcgggcatgc	gctgggtggt	aagcagtaca	tccagcatga	gaatccgttt
	gaggteggea 420	tgtctggcct	gcttggttac	ggcgcctgcg	tggatgcgtc	caatgaggcg
	gatctgctga 480	ttctattggg	tacggatttc	ccttattctg	atttccttcc	taaagacaac
	gttgcccagg 540	tggatatcaa	cggtgcgcac	attggtcgac	gtaccacggt	gaagtatccg
	gtgaccggtg 600	atgttgctgc	aacaatcgaa	aatattttgc	ctcatgtgaa	ggaaaaaaca
	gategtteet	teettgateg	gatgctcaag	gcacacgagc	gtaagttgag	ctcggtggta

```
gagacgtaca cacataacgt cgagaagcat gtgcctattc accctgaata cgttgcctct
  attttgaacg agctggcgga taaggatgcg gtgtttactg tggataccgg catgtgcaat
      780
  gtgtggcatg cgaggtacat cgagaatccg gagggaacgc gcgactttgt gggttcattc
      840
  cgccacggca cgatggctaa tgcgttgcct catgc
  <210>
         4
         3248
  <211>
  <212>
         DNA
         Corynebacterium glutamicum
  <213>
  <220>
         CDS
  <221>
         (802)..(2538)
The street
  <222>
  <223>
100
H
  <400>
11
# gctctcgcag caacaagagc ccacgcagtt ggagcaaacg cagcaccaag tgaagcgatt
        60
i i
ccgaaaatgc tcaagcccat gaggaacatc cggcggtggc cgattttgtc acccaaagtg
224
---
ccggtaccca aaagaaggcc cgccatgagc aggggatatg cgttgatgat ccacaacgct
ž r i
       180
   tgggtttcgg tggctgcgag ctgttcacgc agcagaggga gtgcggtgta gagaatcgag
       240
   ttgtctacac cgatcagaaa gagaccaccg ctgataacgg cgaggaaagc ccaacgttgg
   gttttcgtag gcgcttgcgc ctgtaaggtt tctgaagtca tggatcgtaa ctgtaacgaa
   tggtcggtac agttacaact cttttgttgg tgttttagac cacggcgctg tgtggcgatt
       420
   taagacgtcg gaaatcgtag gggactgtca gcgtgggtcg ggttctttga ggcgcttaga
       480
   ggcgattctg tgaggtcact ttttgtgggg tcggggtcta aatttggcca gttttcgagg
       540
```

```
cgaccagaca ggcgtgccca cgatgtttaa ataggcgatc ggtgggcatc tgtgtttgqt
  ttcgacggc tgaaaccaaa ccagactgcc cagcaacgac ggaaatccca aaagtgggca
  tecetgtttg gtacegagta cecaceeggg cetgaaacte eetggeagge gggegaageg
      720
  tggcaacaac tggaatttaa gagcacaatt gaagtcgcac caagttaggc aacacaataq
  ccataacgtt gaggagttca g atg gca cac agc tac gca gaa caa tta att
                           Met Ala His Ser Tyr Ala Glu Gln Leu Ile
                           1
                                            5
                                                                10
[]
  gac act ttg gaa gct caa ggt gtg aag cga att tat ggt ttg gtg ggt
£.5
Asp Thr Leu Glu Ala Gln Gly Val Lys Arg Ile Tyr Gly Leu Val Gly
m
15
                                        20
                                                            25
Ü
Hanne
Hanne
  gac age ett aat eeg ate gtg gat get gte ege caa tea gat att gag
  Asp Ser Leu Asn Pro Ile Val Asp Ala Val Arq Gln Ser Asp Ile Glu
               30
                                   35
                                                        40
  tgg gtg cac gtt cga aat gag gaa gcg gcg gcg ttt gca gcc ggt gcg
  Trp Val His Val Arg Asn Glu Glu Ala Ala Ala Phe Ala Ala Gly Ala
           45
                               50
                                                    55
  gaa tog ttg atc act ggg gag ctg gca gta tgt gct gct tct tgt ggt
      1023
  Glu Ser Leu Ile Thr Gly Glu Leu Ala Val Cys Ala Ala Ser Cys Gly
       60
                           65
                                                70
   cct gga aac aca cac ctg att cag ggt ctt tat gat tcg cat cga aat
      1071
   Pro Gly Asn Thr His Leu Ile Gln Gly Leu Tyr Asp Ser His Arg Asn
```

. .

dull dull there 1=4

75

85

90

ggt gcg aag gtg ttg gcc atc gct agc cat att ccg agt gcc cag att 1119 Gly Ala Lys Val Leu Ala Ile Ala Ser His Ile Pro Ser Ala Gln Ile 95 100 105 ggt tcg acg ttc ttc cag gaa acg cat ccg gag att ttg ttt aag gaa Gly Ser Thr Phe Phe Gln Glu Thr His Pro Glu Ile Leu Phe Lys Glu 120 110 115 tgc tct ggt tac tgc gag atg gtg aat ggt ggt gag cag ggt gaa cgc Cys Ser Gly Tyr Cys Glu Met Val Asn Gly Gly Glu Gln Gly Glu Arg Ų) 125 130 135 4 m Series of the se H att ttg cat cac gcg att cag tcc acc atg gcg ggt aaa ggt gtg tcg N Ile Leu His His Ala Ile Gln Ser Thr Met Ala Gly Lys Gly Val Ser 145 150 į, np 140 [] [] gtg gta gtg att cct ggt gat atc gct aag gaa gac gca ggt gac ggt 125 Val Val Val Ile Pro Gly Asp Ile Ala Lys Glu Asp Ala Gly Asp Gly 155 160 165 170 act tat tcc aat tcc act att tct tct ggc act cct gtg gtg ttc ccg Thr Tyr Ser Asn Ser Thr Ile Ser Ser Gly Thr Pro Val Val Phe Pro 175 180 185 gat cct act gag gct gca gcg ctg gtg gag gcg att aac aac gct aag Asp Pro Thr Glu Ala Ala Ala Leu Val Glu Ala Ile Asn Asn Ala Lys 190 195 200 tct gtc act ttg ttc tgc ggt gcg gtg aag aat gct cgc gcg cag

1455 Ser Val Thr Leu Phe Cys Gly Ala Gly Val Lys Asn Ala Arg Ala Gln 210 215 205 gtg ttg gag ttg gcg gag aag att aaa tca ccg atc ggg cat gcg ctg Val Leu Glu Leu Ala Glu Lys Ile Lys Ser Pro Ile Gly His Ala Leu 225 230 220 ggt ggt aag cag tac atc cag cat gag aat ccg ttt gag gtc ggc atg 1551 Gly Gly Lys Gln Tyr Ile Gln His Glu Asn Pro Phe Glu Val Gly Met 240 245 250 235 tet gge etg ett ggt tae gge gee tge gtg gat geg tee aat gag geg 1599 Ser Gly Leu Leu Gly Tyr Gly Ala Cys Val Asp Ala Ser Asn Glu Ala 260 265 255 gat ctg ctg att cta ttg ggt acg gat ttc cct tat tct gat ttc ctt Asp Leu Leu Ile Leu Leu Gly Thr Asp Phe Pro Tyr Ser Asp Phe Leu 270 275 280 cct aaa gac aac gtt gcc cag gtg gat atc aac ggt gcg cac att ggt Pro Lys Asp Asn Val Ala Gln Val Asp Ile Asn Gly Ala His Ile Gly 290 295 285 cga cgt acc acg gtg aag tat ccg gtg acc ggt gat gtt gct gca aca 1743 Arg Arg Thr Thr Val Lys Tyr Pro Val Thr Gly Asp Val Ala Ala Thr 305 300 310 atc gaa aat att ttg cct cat gtg aag gaa aaa aca gat cgt tcc ttc 1791 Ile Glu Asn Ile Leu Pro His Val Lys Glu Lys Thr Asp Arg Ser Phe

320

330

[]] (i) Part I Į, z į, ... į. 101 4.4 . . [] 315

aat eeg gag gga aeg ege gae ttt gtg ggt tea tte ege eae gge aeg Asn Pro Glu Gly Thr Arg Asp Phe Val Gly Ser Phe Arg His Gly Thr 410 atg gct aat gcg ttg cct cat gcg att ggt gcg caa agt gtt gat cga Met Ala Asn Ala Leu Pro His Ala Ile Gly Ala Gln Ser Val Asp Arg 415 420 425 aac ege cag gtg ate geg atg tgt gge gat ggt ggt ttg gge atg etg Asn Arg Gln Val Ile Ala Met Cys Gly Asp Gly Gly Leu Gly Met Leu 430 435 440

ctg ggt gag ctt ctg acc gtt aag ctg cac caa ctt ccg ctg aag gct Leu Gly Glu Leu Leu Thr Val Lys Leu His Gln Leu Pro Leu Lys Ala 445 450 455 gtg gtg ttt aac aac agt tct ttg ggc atg gtg aag ttg gag atg ctc 2223 Val Val Phe Asn Asn Ser Ser Leu Gly Met Val Lys Leu Glu Met Leu 460 465 470 gtg gag gga cag cca gaa ttt ggt act gac cat gag gaa gtg aat ttc 2271 Val Glu Gly Gln Pro Glu Phe Gly Thr Asp His Glu Glu Val Asn Phe 475 480 485 221 490 i. 4D 🏢 gca gag att gcg gcg gct gcg ggt atc aaa tcg gta cgc atc acc gat 2319 Ala Glu Ile Ala Ala Ala Gly Ile Lys Ser Val Arq Ile Thr Asp 495 500 505 Ξ ļ. Œ) ccg aag aaa gtt cgc gag cag cta gct gag gca ttg qca tat cct qqa Pro Lys Lys Val Arg Glu Gln Leu Ala Glu Ala Leu Ala Tyr Pro Gly å=h 11 ļ, 510 515 520 ect gta etg ate gat ate gte aeg gat eet aat geg etg teg ate eea 2415 Pro Val Leu Ile Asp Ile Val Thr Asp Pro Asn Ala Leu Ser Ile Pro 525 530 535 cca acc atc acg tgg gaa cag gtc atg gga ttc agc aaq qcq qcc acc 2463 Pro Thr Ile Thr Trp Glu Gln Val Met Gly Phe Ser Lys Ala Ala Thr 540 545 550 cga acc gtc ttt ggt gga gga gta gga gcg atg atc gat ctg gcc cgt 2511 Arg Thr Val Phe Gly Gly Val Gly Ala Met Ile Asp Leu Ala Arg tcg aac ata agg aat att cct act cca tgatgattga tacacctgct 2558 Ser Asn Ile Arg Asn Ile Pro Thr Pro

575

gttctcattg accgcgagcg cttaactgcc aacatttcca ggatggcagc tcacgccggt 2618

gcccatgaga ttgccctgcg tccgcatgtg aaaacgcaca aaatcattga aattgcgcag 2678

atgcaggtcg acgccggtgc ccgagggatc acctgcgcaa ccattggcga ggcggaaatt 2738

tttgccggcg caggttttac ggacatcttt attgcatatc cgctgtatct aaccgatcat 2798

gcagtgcaac gcctgaacgc gatccccgga gaaatttcca ttggcgtgga ttcggtagag 2858

atggcacagg cgacggcggg tttgcgggaa gatatcaagg ctctgattga agtggattcg 2918

ggacatcgta gaagtggagt cacggcgact gcttcagaat tgagtcagat ccgcgaggcg 2978

ctgggcagca ggtatgcagg agtgtttact tttcctgggc attcttatgg cccgggaaat 3038

ggtgagcagg cagcagctga tgagcttcag gctctaaaca acagcgtcca gcgacttgct 3098

ggcggcctga cttctggcgg ttcctcgccg tctgcgcagt ttacagacgc aatcgatgag 3158

atgcgaccag gcgtgtatgt gtttaacgat tcccagcaga tcacctcggg agcatgcact 3218

gagaagcagg tggcaatgac ggtgctgtct 3248

<210> 5

12.

1

ĮĮ.

den den Sur Sen Sur Sen

The first

The strate of th

į.

111

ļank

<211> 579

<212> PRT

<213> Corynebacterium glutamicum

<400> 5

Met Ala His Ser Tyr Ala Glu Gln Leu Ile Asp Thr Leu Glu Ala Gln 1 5 10 15

Gly Val Lys Arg Ile Tyr Gly Leu Val Gly Asp Ser Leu Asn Pro Ile 20 25 30

Val Asp Ala Val Arg Gln Ser Asp Ile Glu Trp Val His Val Arg Asn 35 40 45

Glu Glu Ala Ala Ala Phe Ala Ala Gly Ala Glu Ser Leu Ile Thr Gly 50 55 60

Glu Leu Ala Val Cys Ala Ala Ser Cys Gly Pro Gly Asn Thr His Leu 65 70 75 80

Ile Gln Gly Leu Tyr Asp Ser His Arg Asn Gly Ala Lys Val Leu Ala 85 90 95

Ile Ala Ser His Ile Pro Ser Ala Gln Ile Gly Ser Thr Phe Phe Gln
100 105 110

Glu Thr His Pro Glu Ile Leu Phe Lys Glu Cys Ser Gly Tyr Cys Glu 115 120 125

Met Val Asn Gly Gly Glu Gln Gly Glu Arg Ile Leu His His Ala Ile 130 135 140

Gln Ser Thr Met Ala Gly Lys Gly Val Ser Val Val Val Ile Pro Gly
145 150 155 160

Asp Ile Ala Lys Glu Asp Ala Gly Asp Gly Thr Tyr Ser Asn Ser Thr 165 170 175

Ile Ser Ser Gly Thr Pro Val Val Phe Pro Asp Pro Thr Glu Ala Ala 180 185 190

Ala Leu Val Glu Ala Ile Asn Asn Ala Lys Ser Val Thr Leu Phe Cys

195 200 205

Gly Ala Gly Val Lys Asn Ala Arg Ala Gln Val Leu Glu Leu Ala Glu Lys Ile Lys Ser Pro Ile Gly His Ala Leu Gly Gly Lys Gln Tyr Ile Gln His Glu Asn Pro Phe Glu Val Gly Met Ser Gly Leu Leu Gly Tyr Gly Ala Cys Val Asp Ala Ser Asn Glu Ala Asp Leu Leu Ile Leu Leu Gly Thr Asp Phe Pro Tyr Ser Asp Phe Leu Pro Lys Asp Asn Val Ala Gln Val Asp Ile Asn Gly Ala His Ile Gly Arg Arg Thr Thr Val Lys there is Tyr Pro Val Thr Gly Asp Val Ala Ala Thr Ile Glu Asn Ile Leu Pro [] His Val Lys Glu Lys Thr Asp Arg Ser Phe Leu Asp Arg Met Leu Lys [] å=⊾ Ala His Glu Arg Lys Leu Ser Ser Val Val Glu Thr Tyr Thr His Asn Val Glu Lys His Val Pro Ile His Pro Glu Tyr Val Ala Ser Ile Leu Asn Glu Leu Ala Asp Lys Asp Ala Val Phe Thr Val Asp Thr Gly Met Cys Asn Val Trp His Ala Arg Tyr Ile Glu Asn Pro Glu Gly Thr Arg

Asp Phe Val Gly Ser Phe Arg His Gly Thr Met Ala Asn Ala Leu Pro

His Ala Ile Gly Ala Gln Ser Val Asp Arg Asn Arg Gln Val Ile Ala 420 425 430

Met Cys Gly Asp Gly Gly Leu Gly Met Leu Leu Gly Glu Leu Leu Thr 435 440 445

Val Lys Leu His Gln Leu Pro Leu Lys Ala Val Phe Asn Asn Ser 450 455 460

Ser Leu Gly Met Val Lys Leu Glu Met Leu Val Glu Gly Gln Pro Glu 465 470 475 480

Phe Gly Thr Asp His Glu Glu Val Asn Phe Ala Glu Ile Ala Ala 485 490 495

Ala Gly Ile Lys Ser Val Arg Ile Thr Asp Pro Lys Lys Val Arg Glu 500 505 510

Gln Leu Ala Glu Ala Leu Ala Tyr Pro Gly Pro Val Leu Ile Asp Ile 515 520 525

Val Thr Asp Pro Asn Ala Leu Ser Ile Pro Pro Thr Ile Thr Trp Glu 530 540

Gln Val Met Gly Phe Ser Lys Ala Ala Thr Arg Thr Val Phe Gly Gly 545 550 550 560

Gly Val Gly Ala Met Ile Asp Leu Ala Arg Ser Asn Ile Arg Asn Ile 565 570 575

Pro Thr Pro

1]

Hand the then

10.10 11.10

11

ļ.

<210> 6

<211> 475

<212> DNA

<213> Corynebacterium glutamicum

```
<400>
  getetegeag caacaagage ceaegeagtt ggageaaaeg cageaceaag tgaagegatt
       60
  ccgaaaatgc tcaagcccat gaggaacatc cggcggtggc cgattttgtc acccaaagtg
      120
  ccggtaccca aaagaaggcc cgccatgagc aggggatatg cgttgatgat ccacaacgct
  tgggtttcgg tggctgcgag ctgttcacgc agcagaggga gtgcggtgta gagaatcgag
      240
  ttgtctacac cgatcagaaa gagaccaccg ctgataacgg cgaggaaagc ccaacgttgg
      300
  gttttcgtag gcgcttgcgc ctgtaaggtt tctgaagtca tggatcgtaa ctgtaacgaa
  tggtcggtac agttacaact cttttgttgg tgttttagac cacggcgctg tgtggcgatt
420
ŧĮį.
ζŗì
  taagacgtcg gaaatcgtag gggactgtca gcgtgggtcg ggttctttga ggcgc
475
71)
17
  <210>
         7
<211>
         613
() <212> DNA
() <213>
         Corynebacterium glutamicum
<400>
gcgtccgcat gtgaaaacgc acaaaatcat tgaaattgcg cagatgcagg tcgacgccgg
   tgcccgaggg atcacctgcg caaccattgg cgaggcggaa atttttgccg gcgcaggttt
   tacggacatc tttattgcat atccgctgta tctaaccgat catgcagtgc aacgcctgaa
       180
   cgcgatcccc ggagaaattt ccattggcgt ggattcggta gagatggcac aggcgacggc
       240
   gggtttgcgg gaagatatca aggctctgat tgaagtggat tcgggacatc gtagaagtgg
   agtcacggcg actgcttcag aattgagtca gatccgcgag gcgctgggca gcaggtatgc
       360
   aggagtgttt acttttcctg ggcattctta tggcccggga aatggtgagc aggcagcagc
       420
```

```
tgatgagett caggetetaa acaacagegt ccagegactt getggeggee tgacttetgg
      480
  cggttcctcg ccgtctgcgc agtttacaga cgcaatcgat gagatgcgac caggcgtgta
      540
  tgtgtttaac gattcccagc agatcacctc gggagcatgc actgagaagc aggtggcaat
      600
  gacggtgctg tct
      613
  <210>
         8
  <211>
         20
  <212> DNA
  <213> Artificial Sequence
< 220>
√ <223>
         synthetic DNA
1 <400> 8
🗓 atgaggaaca teeggeggtg
T
       20
in the
<210>
C <211>
         48
□ <212> DNA
<213> Artificial Sequence
<sup>1</sup>/<sub>2</sub> <220>
  <223> synthetic DNA
  <400>
         9
  gagaacagca ggagtatcaa tcatcactga actcctcaac gttatggc
  <210>
         10
  <211>
  <212> DNA
  <213> Artificial Sequence
  <220>
         synthetic DNA
  <223>
  <400>
         10
  tgatgattga tacacctgct gttctc
       26
```

```
<210>
         11
  <211>
         20
         DNA
  <212>
         Artificial Sequence
  <213>
  <220>
         synthetic DNA
  <223>
        11
  <400>
  tcattgccac ctgcttctca
       20
  <210>
         12
  <211>
         1422
  <212>
         DNA
         Corynebacterium glutamicum
  <213>
√0 <400>
atgaggaaca tccggcggtg gccgattttg tcacccaaag tgccggtacc caaaagaagg
m
       60
100
  cccgccatga gcaggggata tgcgttgatg atccacaacg cttgggtttc ggtggctgcg
u
71
       120
Sandi
Sandi
  agetqttcac qcaqcagagg gagtgcggtg tagagaatcg agttgtctac accgatcaga
1
2 × 1
[]
  aagagaccac cgctgataac ggcgaggaaa gcccaacgtt gggttttcgt aggcgcttgc
ļ.
       240
[.]
  qcctqtaaqq tttctgaagt catggatcgt aactgtaacg aatggtcggt acagttacaa
       300
  ctcttttgtt ggtgttttag accacggcgc tgtgtggcga tttaagacgt cggaaatcgt
  aggggactgt cagcgtgggt cgggttcttt gaggcgctta gaggcgattc tgtgaggtca
  ctttttgtgg ggtcggggtc taaatttggc cagttttcga ggcgaccaga caggcgtgcc
       480
  cacgatgttt aaataggcga tcggtgggca tctgtgtttg gtttcgacgg gctgaaacca
       540
   aaccaqactq cccaqcaacg acggaaatcc caaaagtggg catccctgtt tggtaccgag
   tacceacceg ggcctgaaac teeetggeag gegggegaag egtggeaaca actggaattt
```

aagagcacaa ttgaagtcgc accaagttag gcaacacaat agccataaag ttgaggagtt 720 cagtgatgat tgatacacct gctgttctca ttgaccgcga gcgcttaact gccaacattt ccaggatggc agctcacgcc ggtgcccatg agattgccct gcgtccgcat gtgaaaacgc 840 acaaaatcat tgaaattgcg cagatgcagg tcgacgccgg tgcccgaggg atcacctgcg 900 caaccattgg cgaggcggaa atttttgccg gcgcaggttt tacggacatc tttattgcat 960 atccgctgta tctaaccgat catgcagtgc aacgcctgaa cgcgatcccc ggagaaattt ccattggcgt ggattcggta gagatggcac aggcgacggc gggtttgcgg gaagatatca 1080 aggctctgat tgaagtggat tcgggacatc gtagaagtgg agtcacggcg actgcttcag 1140 aattgagtca gatccgcgag gcgctgggca gcaggtatgc aggagtgttt acttttcctg ggcattetta tggcccggga aatggtgage aggcagcage tgatgagett caggetetaa acaacagcgt ccagcgactt gctggcggcc tgacttctgg cggttcctcg ccgtctgcgc 1320 agtttacaga cgcaatcgat gagatgcgac caggcgtgta tgtgtttaac gattcccagc 1380 agatcacctc gggagcatgc actgagaagc aggtggcaat ga 1422 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic DNA <400> 13 tgcgagatgg tgaatggtgg 20

<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic DNA
<400> 14
gcatgaggca acgcattagc
20