OBJECTIFS 3

- Déterminer une équation de droite à partir de deux points, un point et un vecteur directeur ou un point et la pente.
- Déterminer la pente ou un vecteur directeur d'une droite donnée par une équation ou une représentation graphique.
- Tracer une droite connaissant son équation cartésienne ou réduite.
- Déterminer si deux droites sont parallèles ou sécantes.
- Résoudre un système de deux équations linéaires à deux inconnues, déterminer le point d'intersection de deux droites sécantes.

1

Équations d'une droite

1. Vecteur directeur

EXERCICE 1

On se place dans le repère cartésien ci-contre. Pour chaque droite, donner les coordonnées d'un vecteur directeur.

1. (*d*₁):

2. (*d*₂):

3. (*d*₃):

✓ Voir la correction : https://mes-cours-de-maths.fr/cours/seconde/droites/#correction-1.

2. Équation cartésienne

EXEMPLE

Un vecteur directeur de la droite (d_1) de l'exercice précédent est $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Son équation cartésienne est donc de la forme x-y+c=0. Or, le point A(0;1) appartient à cette droite, donc $0-1+c=0 \iff c=1$. Une équation cartésienne de (d_1) est donc x+y+1=0.

EV	ED	\sim 1	CE) 📑

1. Déterminer une équation cartésienne de la droite passant par $A(-1;2)$ et de vecteur directeur $\vec{u} \begin{pmatrix} 1 \\ 4 \end{pmatrix}$.
2. Le point $B(0;6)$ appartient-il à cette droite?

Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/droites/#correction-2.

3. Équation réduite

À RETENIR 90

EXERCICE 3

On considère la droite (*d*) d'équation réduite $y = -\frac{2}{3}x + 2$.

- 2. Représenter (d) dans le repère ci-contre.

─ Voir la correction : https://mes-cours-de-maths.fr/cours/seconde/droites/#correction-3.

INFORMATION |

Remarque

Il y a un lien fort entre ce concept et celui des fonctions affines : la représentation graphique d'une fonction affine $x \mapsto mx + p$ est la droite d'équation réduite y = mx + p. Réciproquement, toute droite non parallèle à l'axe des ordonnées est la représentation graphique d'une fonction affine.

✓ Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/droites/#correction-4.

Intersection de deux droites

1. Parallélisme

À RETENIR 👀

Propriété

Soient (d_1) et (d_2) deux droites. On note :

- $-a_1x + b_1y + c_1 = 0$ une équation cartésienne et $m_1x + p_1 = 0$ une équation réduite de (d_1) .
- $-a_2x + b_2y + c_2 = 0$ une équation cartésienne et $m_2x + p_2 = 0$ une équation réduite de (d_2) .

On a les relations suivantes.

Position des droites	Vecteurs directeurs	Équations cartésiennes	Équations réduites
Parallèles	Colinéaires	$a_1 = k \times a_2 \text{ et } b_1 = k \times b_2$	$m_1 = m_2$
Confondues	Colinéaires et de même origine	$a_1 = k \times a_2, b_1 = k \times b_2$ et $c_1 = k \times c_2$	$m_1 = m_2 \text{ et } p_1 = p_2$
Sécantes	Non colinéaires	Pas de proportionnalité	$m_1 \neq m_2$

EXERCICE 5 🗷	
Étudier les positions relatives des droites (d_1) et (d_2) et $-2x + y + 3 = 0$	
	Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/droites/#correction-5

2. Coordonnées du point d'intersection

EXERCICE 6

Vérifier que (-3;5) est solution du système

$$\begin{cases} 2x + 3y - 9 = 0 \\ -x + 2y - 13 = 0 \end{cases}$$

.....

Voir la correction : https://mes-cours-de-maths.fr/cours/seconde/droites/#correction-6

EXERCICE 7

Que peut-on dire des droites (d_1) et (d_2) d'équations cartésiennes respectives $2x + 3y - 9 = 0$ et $-x + 2y - 13 = 0$?
13 – 0;

Voir la correction : https://mes-cours-de-maths.fr/cours/seconde/droites/#correction-7.

À RETENIR 50

EXERCICE 8

Résoudre le système $\begin{cases} 4x - 3y + 1 = 0 \\ -2x + y + 3 = 0 \end{cases}$ par substitution.

✓ Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/droites/#correction-8.

ÀRETENIR ®

EXERCICE 9

Résoudre le système $\begin{cases} 3x - 2y + 1 = 0 \\ -2x + 4y = 3 \end{cases}$ par combinaison.

