Guilherme Akira Demenech Mori

November 25, 2022

Abstract

1 Modelagem dos problemas

Consideramos dois casos do problema de localização de facilidades com capacidade limitada (*Capacitated Facility Location Problem*, CFLP): com fonte única (*single-source*, SS) e com múltiplas fontes (*multi-source*, MS).

1.1 Problema de localização de facilidades com capacidade limitada e fonte única

No caso de fonte única, a limitação de capacidade é um valor só s fixado para todas as facilidades. O custo fixo f de abertura também é o mesmo para todas. O conjunto de facilidades é dado por I e o de clientes por J. A formulação adotada traz a demanda p_{ij} do cliente $j \in J$ se for atendido pela facilidade $i \in I$, sendo possível que o cliente j não possa ser atendido pela facilidade i. O custo de transporte g_{ij} da facilidade $i \in I$ para o cliente $j \in J$ é referente à toda a demanda, não ao transporte de cada unidade (ou medida) requerida.

 x_{ij} indica se a facilidade $i \in I$ atenderá a demanda do cliente $j \in J$ e a variável binária y_i indica se a facilidade $i \in I$ será aberta ou não.

São aplicadas as restrições de capacidade das facilidades (1) e de satisfação da demanda (2).

$$\sum_{j \in J} x_{ij} p_{ij} \le y_i s \quad \forall i \in I \tag{1}$$

$$\sum_{i \in I} x_{ij} \ge 1 \quad \forall j \in J \tag{2}$$

As variáveis devem ser binárias (3) e o objetivo é minimizar os custos de abertura e transporte (4).

$$x_{ij}, y_i \in \{0, 1\} \quad \forall i \in I, j \in J \tag{3}$$

$$\min \sum_{i \in I} (fy_i + \sum_{j \in J} g_{ij} x_{ij}) \tag{4}$$

A relaxação linear das variáveis x (da forma $x_{ij} \in [0,1]$) transformaria esse caso em um problema com múltiplas fontes, o modelo, porém, se tornaria bastante estranho: demandas p_{ij} diferentes poderiam ser parcialmente atendidas, satisfazendo uma demanda mista não-planejada.

1.2 Problema de localização de facilidades com capacidade limitada e múltiplas fontes

No caso de fontes múltiplas, para o conjunto de facilidades I e de clientes J, a capacidade s_i e o custo fixo de abertura f_i não são necessariamente os mesmos para todas as facilidades $i \in I$, enquanto a demanda d_j do cliente $j \in J$ é a mesma independente de qual (ou quais) facilidade(s) a satisfaça(m). O custo de transporte c_{ij} , por unidade, da facilidade $i \in I$ para o cliente $j \in J$ existe para todos os pares.

No modelo utilizado, é introduzido o conjunto $\Gamma \subseteq J^2$ de pares incompatíveis $\{j_1, j_2\} \in \Gamma$, nos quais os clientes $j_1, j_2 \in J$ não podem ser atendidos simultaneamente por uma mesma facilidade $i \in I$.

Nesse caso, x_{ij} indica quantas unidades a facilidade $i \in I$ suprirá ao cliente $j \in J$ e, novamente, a variável binária y_i indica se a facilidade $i \in I$ será aberta ou não.

A disjunção dos pares de clientes incompatíveis pode ser perfeitamente formulada pela técnica $big\ M$ (5), uma vez que o limitante superior s_i é garantido para todo x_{ij} .

$$x_{ij_1} \le \lambda_{ij_1j_2} s_i, \ x_{ij_2} \le (1 - \lambda_{ij_1j_2}) s_i \quad \forall i \in I, \ \{j_1, j_2\} \in \Gamma$$
 (5)

Da mesma forma que o caso anterior, são aplicadas as restrições de capacidade das facilidades (6) e de satisfação da demanda (7).

$$\sum_{j \in J} x_{ij} \le y_i s_i \quad \forall i \in I \tag{6}$$

$$\sum_{i \in I} x_{ij} \ge d_j \quad \forall j \in J \tag{7}$$

As variáveis de disjunção $big\ M$ e abertura devem novamente ser binárias, enquanto o atendimento deve ser inteiro (8) e o objetivo é minimizar os custos de abertura e transporte (9).

$$y_i, \lambda_{ij_1j_2} \in \{0, 1\}, \ x_{ij} \ge 0, \ x_{ij} \in \mathbb{Z} \quad \forall i \in I, j \in J, \ \{j_1, j_2\} \in \Gamma$$
 (8)

$$\min \sum_{i \in I} (f_i y_i + \sum_{j \in J} c_{ij} x_{ij}) \tag{9}$$

Alternativamente, podemos definir as restrições de pares incompatíveis (5) para conjuntos incompatíveis $u_k \in \Gamma'$ (10). Também é razoável utilizar d_j como limitante superior, já que a minimização dos custos não-negativos torna

a demanda do cliente $j \in J$ o máximo desejável para o atendimento x_{ij} da facilidade $i \in I$.

$$x_{ij_1} \le \lambda_{ij_t k} d_{j_t} \quad \forall i \in I, \ j_t \in u_k, \ u_k = \{j_1, j_2 ... j_n\}, \ u_k \in \Gamma'$$
 (10)

A disjunção seria generalizada para os conjuntos de n clientes limitando a n-1 clientes incompatíveis $j_t \in u_k$ atendidos pela mesma facilidade $i \in I$ (11).

$$\sum_{j_t \in u_k} \lambda_{ij_t k} \le n - 1 \quad \forall i \in I, \ u_k = \{j_1, j_2 ... j_n\}, \ u_k \in \Gamma'$$
(11)

Generalizamos o conjunto de conjuntos de clientes incompatíveis para $\Gamma'\subseteq\{B/B\subseteq J\}$ e adaptamos a variável binária $\lambda_{ij_tk}\in\{0,1\}$.