

Universidade de Brasília - UnB Gama

Relatório de Física 1 Experimental

Experimento II - MRU

Gustavo Marocolo Alves de Freitas - 211061823 João Víctor Costa Andrade - 211061977 Raquel Temóteo Eucaria Pereira da Costa - 202045268

Brasí
ia-DF, 01 de Agosto de 2022 $\,$

1 Objetivos

Determinar a velocidade média, levando em consideração a distância e o tempo gasto em cada percurso do carrinho, em Movimento Retilíneo Uniforme.

2 Introdução Teórica

O MRU é um movimento que estuda apenas uma dimensão, sendo essa a distância percorrida pelo carrinho. Outrossim, o movimento retilíneo uniforme ocorre com velocidade constante, ou seja, sem aceleração, em uma trajetória reta. Dessa forma, com base nesse movimento e no experimento, conseguimos analisar a velocidade média do carrinho a partir da posição e do tempo observado. Álem disso, esse experimento auxilia no estudo de propagações de erros e na parte gráfica do sistema do MRU.

A princípio foi utilizado um trilho de ar, com atrito desprezível, como base para analisarmos os tempos do carrinho nas diferentes distâncias e assim determinar a velocidade média. Ademais, foi utilizado uma régua para sabermos a distância, sensores e um cronômetro para descobrirmos o instante de tempo.

3 Parte Experimental

3.1 Material a ser utilizado

- 01 trilho 120 cm;
- 01 cronômetro digital multifunções com fonte DC 12 V;
- 02 sensores fotoelétricos com suporte fixador (S1 e S2);
- 01 eletroímã com bornes e haste;
- 01 Fixador de eletroímã com manípulo;
- 01 chave liga-desliga;
- 01 Y de final de curso com roldana raiada;
- 01 suporte para massas aferidas 19 g (aproximada);
- 01 massa aferida 10g com furo central de 2,5 mm de diâmetro;

- $\bullet\,$ 02 massas aferidas 20
g com furo central de 2,5 mm diâmetro;
- 01 unidade de fluxo de ar;
- 01 cabo de ligação conjugado;
- 01 unidade de fluxouxo de ar;
- 01 cabo de força tripolar 1,5 m;
- 01 mangueira aspirador 1,5 polegadas;
- 01 pino para carrinho para fixá-lo no eletroímã;
- 01 carrinho para trilho cor preta;
- 01 pino para carrinho para interrupção de sensor
- 03 porcas borboletas;
- 07 arruelas lisas;
- 04 manípulos de latão 13 mm;
- 01 pino para carrinho com gancho;

Figura 1: Esquema de ligação de medida de tempo: cronômetro, sensores e chave liga/desliga.

4 Procedimentos

- 1. Averiguamos o eletroímã com a chave liga/desliga, os sensores 1 e 2 do cronômetro e o funcionamento do trilho.
- 2. Inicia-se com o cronômetro na funçao F1, onde se encontra zerado. Assim que acionada, a chave liga/desliga libera o carrinho no qual irá passar pelo primeiro sensor (S1) e o cronômetro será acionado dando início a contagem do intervalo de tempo. Ao passar pelo segundo sensor (S2) a contagem do cronômetro é interrompida e o intervalo de tempo é indicado no cronômetro. O suporte com o peso (de aproximadamente 40 g) colocado na ponta da linha deve ser apoiado em algum tipo de suporte antes que o carrinho passe pelo sensor S1. Isso garantirá que o carrinho entre em movimento retilíneo uniforme aproximadamente no percurso entre os sensores S1 e S2. conforme as figuras abaixo.

figuras

Figura 2: Processo do experimento

- 3. A Posição inicial do sensor S1 é a 40,00 cm da haste vertical do carrinho, presa ao eletroímã. Já o S2 foi posicionado de forma que a distância entre S1 e S2 fosse de 10,00 cm. As medidas foram feitas por uma régua. Apos executar cinco (5) medidas de tempo para o MRU registramos esses intervalos de tempo na Tabela 1.
- 4. Em seguida permanecemos o sensor na mesma posição do item 2 e deslocamos o sensor S2 para a segunda posição de forma que a distância

entre S1 e S2 fosse de 20,00 cm, executamos novamente as cinco (5) medidas de tempo para esse MRU e registramos na tabela. Repitimos esse mesmo procedimento para distâncias de 30,00 cm, 40,00 cm e 50,00 cm.

5 Dados experimentais

Após todos os procedimentosm registramos os dados encontrados e montamos a seguite tabela:

Intervalos	$\Delta x_1 =$	$\Delta x_2 =$	$\Delta x_3 =$	$\Delta x_4 =$	$\Delta x_5 =$
de tempo (s)	10 cm	20 cm	30 cm	$40~\mathrm{cm}$	50 cm
Δt_1	0,103	0,225	0,336	0,418	0,522
Δt_2	0,116	0,225	0,335	0,443	0,531
Δt_3	0,113	0,225	0,333	0,442	0,556
Δt_4	0,114	0,226	0,334	0,441	0,558
Δt_5	0,113	0,226	0,313	0,444	0,560
$\Delta \bar{t}$	0,112	0,225	0,330	0,438	0,545
Erro aleatório	0,00227	0,000245	0,00433	0,00493	0,00787

Tabela 1: Dados registrados e encontrados

A tabela conta também com a média dos tempos (Δt) e os erros aleatórios correspondentes. Tal tabela guiará os demais passos para encontrar a velocidade média.

6 Equação

Inicialmente, usamos a equação para descobrir a velocidade media de cada distancia entre S1 e S2. Onde v_k é a velocidade, k são as medidas 1, 2, 3, 4 e 5, Δx_k são as distancias percorridas de 10, 20, 30, 40 e 50cm e Δt_k são os interválos de tempo.

$$\bar{v}_k = \frac{\Delta x_k}{\Delta \bar{t}_k}$$

Após as cinco medidas de cada distancia (10, 20, 30, 40 e 50cm), foi feita uma media aritmética e calculado seus devidos erros experimentais usando a equação:

Onde $E.\Delta t_k$ é o erro absoluto de determinado momento: Soma do erro instrumental $(E.\Delta t_i)$ e erro aleatório $(E.\Delta t_a)$.

$$\bar{v}_k = \frac{\Delta x_k}{\Delta \bar{t}_k} \pm \frac{\Delta x_k \cdot E \cdot \Delta t_k + 0,05cm \cdot \Delta \bar{t}_k}{(\Delta \bar{t}_k)^2}$$

Como resultados, encontramos os seguintes valores:

Tempos médios (s)	Velocidades médias (cm/s)		
0,112	$89,45\pm 3,06$		
0,225	$88,73 \pm 0,71$		
0,330	$90,85 \pm 1,62$		
0,438	$91,41 \pm 1,35$		
0,545	$91,68 \pm 1,58$		

Tabela 2: Velocidades nos instantes

Em seguida, usando os valores obtidos em cada instante, utilizamos o seguinte cálculo, a fim encontrar uma média:

$$\bar{v_m} = \frac{\bar{v}_1 + \bar{v}_2 + \bar{v}_3 + \bar{v}_4 + \bar{v}_5}{5}$$

Como resultados, obteve-se $v_m = 90,42 \pm 1,67 cm/s$.

7 Gráficos

7.1 Papel milimetrado

A segunda forma para encontrar o valor médio da velocidade foi o metódo do gráfica em papel milimetrado. Construido ao colocar os tempos médios no eixo das abscissas e os valores dos deslocamentos no eixo ordenado. Ao observar os pontos marcados é percebido o alinhamento destes, desse modo, foi traçado uma reta abrangendo o máximo de pontos possíveis. Dessa maneira, é possível calcular o coeficiente da reta desenhada, escolhendo os melhores pontos na reta, foi obtido o valor: 92,59 cm/s. Confira a seguir:

Figura 3: ONDE VOU COLOCAR A FOLHA, NÃO VOU IMPRIMIR

Outra maneira, porém mais eficaz de se obter a v_m é seguindo o metodo da regressão linear.

7.2 Regressão linear

Por fim, usamos a técnica da regressão linear que consiste em um método que utiliza a técnica dos mínimos quadrados para obter a melhor curva de um determinado conjunto de pontos experimentais. Sendo assim, a forma mais eficaz para se obter a v_m .

A melhor reta será descrita por:

$$y = a + bx$$

$$x(t) = x_0 + v_m.t$$

Onde (a) é coeficiente linear da reta e (b) seu coeficiente angular.

Calculando o coeficiente angular da reta desenhada no gráfico obtemos a v_m que ficou aproximadamente 92,67 cm/s e x_0 (coeficiente linear) igual a -0,58cm. Ou seja:

$$x(t) = -0.58cm + (92.67cm/s)t$$

Figura 4: Gráfico da Equação do MRU pela regressão Linear

8 Conclusão

No Movimento Retilíneo Uniforme, a posição em qualquer instante tempo (t) é dada pela função horária da Posição: $x(t)=x_0+V.t$. Logo, conseguimos calcular qualquer posição a partir da velocidade, do tempo e da posição inicial. A partir dessa equação e do experimento, obtivemos o $V_m=92,67cm/s$ pela regressão linear de forma mais , e os outros valores encontrados no papel milimetrado (92,59 cm/s) e pela equação (90,42 ± 1,67cm/s) se aproximam desse resultado. Essa pequena diferença se dá justamente por causa da propagação de erro inerente ao experimento.