МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа биологической и медицинской физики

Лабораторная работа по общей физике

5.4.1 Определение энергии α —частиц по величине их пробега в воздухе

Выполнили студенты группы Б06-103: Фитэль Алена Флоренская Лидия **Цель работы:** измерить пробег α-частиц в воздухе двумя способами: с помощью торцевого счетчика Гейгера и синтиляционного счетчика, – по полученным данным определить энергию частиц.

1 Теоретическое введение

При α -распаде исходное родительское ядро испускает ядро гелия и превращается в дочернее ядро, число протонов и число протонов уменьшается на две единицы. Функциональная свзязь между энергией α -частицы E и периодом полураспада радиоактивного ядра $T_{1/2}$:

$$\lg T_{1/2} = \frac{a}{\sqrt{E}} + b.$$

Для описания связи между энергией α -частицы и ее пробегом пользуются эмпирическими соотношениями. В диапазоне энергий α -частиц от 4 до 9 МэВ эта связь хорошо описывается выражением:

$$R = 0.32E^{3/2} \tag{\star}$$

2 Экспериментальная установка

В данной работе в качестве источника α -частиц используется 239Pu с периодом полураспада $T_{1/2}=2,44\cdot 10^4$ лет. Альфа-частицы, испускаемые 239Pu состоят их трех моноэнергетических групп, различие между которыми лежит в пределах 50 кэВ. При той точности, которая достигается в наших опытах, их можно считать совпадающими по энергии, равной 5,15 МэВ.

Пробег α -частиц в воздухе будем определяеть треями способами:

- 1. С помощью счетчика Гейгера рис. 1а;
- 2. С помощью сцинтилляционного счетчика рис. 1b;
- 3. С помощью ионизационной камеры рис. 1с.

Рисунок 1: Экспериментальные установки: (a) - счетчик Гейгера, (b) - сцинтилляционный счетчик, (c) - ионизационная камера.

2.1 Счётчик Гейгера

Для определения пробега α -частиц с помощью счетчика радиоактивный источник помещается на дно стальной цилиндрической бомбы, в которой может перемещаться торцевой счетчик Гейгера. Его чувствительный объем отделен от наружной среды тонким слюдяным окошком, сквозь которое могут проходить α -частицы.

Импульсы, возникающие в счетчике, усиливаются и регистрируются пересчетной схемой. Путь частиц в воздухе зависит от расстояния между источником и счетчиком. Перемещение счетчика производится путем вращения гайки, находящейся на крышке бомбы. Расстояние между счетчиком и препаратом измеряется по шкале, нанесенной на держатель счетчика.

2.2 Сцинтилляционный счётчик

Установка состоит из цилиндрической камеры, на дне которой находится исследуемый препарат. Камера герметично закрыта стеклянной пластинкой, на которую с внутренней стороны нанесен слой люминофора. С наружной стороны к стеклу прижат фотокатод фотоумножителя. Оптический контакт ФЭУ-стекло обеспечивается тонким слоем вазелинового масла.

Сигналы с фотоумножителя через усилитель поступают на пересчетную установку. Расстояние между препаратом и люминофором составляет 9 см, так что α -частицы не могут достигнуть люминофора при обычном давлении. Определение пробега сводится к измерению зависимости интенсивности счета от давления в камере.

2.3 Иниозационная камера

Ионизационная камера — прибор для количественного измерения ионизации, произведенной заряженными частицами при прохождении через газ. Камера представляет собой наполненный газом сосуд с двумя электродами. Сферическая стенка прибора служит одним из электродов, второй электрод вводится в газ через изолирующую пробку. К электродам подводится постоянное напряжение от источника ЭДС. Заполняющий сосуд газ сам по себе не проводит электрический ток, возникает он только при прохождении быстрой заряженной частицы, которая рождает в газе на своем пути ионы.

Поместим на торец внутреннего электрода источник ионизирующего излучения, заполним объем камеры воздухом. Зависимость силы тока, протекающего через камеру, от приложенной разности потенциалов представлен на рисунке. Плато в зависимости объясняется отсутствием рекомбинации ионов на своём пути, то есть ионы доходят до противоположного электрода.

Прохождение тока через камеру регистрируется посредством измерения напряжения на включенном в цепь камеры сопротивлении R. При изменении давления в камере ионизационный ток меняется так, как это показано на рисунке. При небольших давлениях газа α -частицы передают часть энергии стенкам камеры. По достижении давления P_0 все они заканчивают свой пробег внутри газа, и дальнейшее возрастание тока прекращается. Для определения давления P_0 чаще всего пользуются методом экстраполяции, продолжая наклонный и горизонтальный участки кривой до пересечения. Найденный таким образом пробег затем должен быть приведен к нормальному давлению и температуре $15\ ^{\circ}C$.

3 Ход работы

3.1 Исследование пробега α -частиц с помощью счетчика Гейгера

Проведем измерение зависимости скорости счета N от расстояния x между источником и счетчиком (Таблица 1).

Построим график N(x) и $\frac{dN}{dx}(x)$ (Рисунок 2). Найдем значения $R_{\mathfrak{p}}$ и R_{cp} :

1. Аппроксимируем нормальным распределением зависимость $\frac{dN}{dx}(x)$ и определим по ней пик:

$$x_0 = 8.56 \pm 0.5$$
 mm

2. Проведем аппроксимацию центральной части графика N(x) линейной прямой:

$$N = ax + b$$

$$a = -2.1 \pm 0.4 \frac{1}{_{\rm MM}} \qquad b = 26.7 \pm 2.4$$

- 3. Из графиков получаем:
 - $R_{\rm cp} = x_0 = (8.6 \pm 0.5)$ мм из аппроксимации Гауссом производной;
 - $R_{
 m s}=(12.5\pm2.3)$ мм- из линейной аппроксимации (точка пересечения с осью абцисс).

При плотности воздуха $\rho=1{,}17\cdot10^{-3}~\frac{\Gamma}{{\rm cm}^3}~(P=99{,}3~{\rm к\Pi a},\,t=22~{\rm ^{\circ}C})$:

•
$$R'_{\rm cp} = (1.01 \pm 0.06) \cdot 10^{-3} \frac{\Gamma}{{\rm cm}^2};$$

•
$$R'_{\text{9}} = (1.5 \pm 0.2) \cdot 10^{-3} \frac{\Gamma}{\text{cm}^2}$$
.

Соответствующая энергия:

- $E_{\rm cp} = (1.93 \pm 0.24) \text{ M}{\circ}\text{B};$
- $E_9 = (2.48 \pm 0.21) \text{ M}_9\text{B}.$

Как видим, результаты совпадают по порядку с истинным значением $E=5{,}15$ МэВ. Расхождение объясняется тем, что часть энергии α -частиц тратится на преодоление слюдяной пластинки.

x, MM	σ_x , MM	N_0	t, c	N, c^{-1}	$\sigma_N, \mathrm{c}^{-1}$	$\epsilon(N), \%$
40.00		19	107	0.18	0.04	21
35.00		38	213	0.18	0.03	16
30.00		26	185	0.14	0.03	19
25.00		36	219	0.16	0.03	17
20.00		30	121	0.25	0.04	17
15.00		24	156	0.15	0.03	21
10.00		30	78	0.38	0.06	17
5.00		202	13	15.5	1.1	7
0.00	0.25	201	14	14.4	1.0	7
2.00	0.20	639	45	14.2	0.6	4
1.25		327	20	16.4	0.9	6
3.75		322	21	15.3	0.9	6
6.25		549	39	14.1	0.6	4
7.00		340	27	12.6	0.7	5
8.00		189	21	9.0	0.7	7
9.00		126	47	2.7	0.2	9
8.50		183	26	7.0	0.5	8
7.50		140	12	11.7	1.0	9

Таблица 1: Зависимость скорости счет N от расстояния x.

Рисунок 2: График зависимости N(x)

3.2 Определение пробега α -частиц с помощью сцинтилляционного счетчика

Проведем измерение зависимости скорости счета N от давления p в камере(Таблица 2). Построим график N(p) (Рисунок 3). Найдем значения $p_{\mathfrak{d}}$ и $p_{\mathfrak{cp}}$:

1. Аппроксимируем нормальным распределением зависимость $\frac{dN}{dp}(p)$ и определим по ней пик:

$$p_0 = 174 \pm 5 \text{ ropp}$$

2. Проведем аппроксимацию центральной части графика N(p) линейной прямой:

$$N = ap + b$$

$$a = -2.12 \pm 0.06 \frac{1}{\text{Topp}} \qquad b = (57.9 \pm 1.2) \cdot 10$$

3. Из графиков получаем:

• $p_{\rm cp} = p_0 = 174 \pm 5$ торр - из аппроксимации графика производной $\frac{dN}{dp}(p)$ Гауссом;

•

• $p_{\text{\tiny 9}} = 270 \pm 10$ торр - из линейной аппроксимации (точка пересечения с осью абцисс).

Это давления, при которых длина свободного пробега равна расстоянию от источника для люминофора $L=9~\mathrm{cm}.$

Пересчитаем длину свободного пробега для нормальных условий (P=760 торр, t=15 °C):

$$R_{\mathfrak{I}} = L \frac{P_{\mathfrak{I}}}{P_0},$$

где $P_0 = 760$ торр. Тогда:

• $R_{\rm cp} = (2.06 \pm 0.06) \text{ cm};$

• $R_9 = (3.20 \pm 0.11) \text{ cm}.$

При плотности воздуха $\rho = 1.17 \cdot 10^{-3} \frac{\Gamma}{\text{см}^3} \ (P = 99.3 \text{ кПа, } t = 22 \text{ °C})$:

• $R'_{\rm cp} = (2.41 \pm 0.07) \cdot 10^{-3} \frac{\Gamma}{{\rm cm}^2};$

 $\bullet \ R_{\rm s}' \ = (3.74 \pm 0.14) \cdot 10^{-3} \ \frac{\rm r}{{\rm cm}^2}. \label{eq:rate}$

Соответствующая энергия:

• $E_{\rm cp} = (3.46 \pm 0.02) \text{ M}{\circ}\text{B};$

• $E_9 = (4.64 \pm 0.04) \text{ M}_9\text{B}.$

Результаты совпадают по порядку с истинным значением.

$P_{\text{изм}}$, торр	σ_p , ropp	N_0	$P = P_0 - P_{\text{изм}}$, торр	t, c	N, c^{-1}	σ_N, c^{-1}	$\epsilon(N)\%$,
0		52	737	157	0.33	0.05	15
720		8111	17	21	386	4	1.04
700		9030	37	25	361	4	1.1
680		6594	57	20	330	4	1.2
660		5990	77	20	300	4	1.3
640		5419	97	20	271	4	1.5
620		4574	117	20	229	3	1.3
600		5442	137	30	181	2	1.1
580		2809	157	21	134	3	2
560	5	1931	177	20	97	2	2
540		1265	197	21	60.2	1.7	3
520		692	217	21	33	1.3	4
500		349	237	22	15.9	0.8	5
480		384	257	25	15.4	0.8	5
460		203	277	28	7.3	0.5	7
440		205	297	78	2.63	0.18	7
400		57	337	189	0.30	0.04	13
350		52	387	143	0.36	0.05	14
300		38	437	105	0.36	0.06	17
200		28	537	85	0.33	0.06	18

Таблица 2: Зависимость скорости счет N от давления p.

Рисунок 3: График зависимости N(p)

3.3 Определение пробега α -частиц с помощью ионизационной камеры

1. Проведем измерения зависимости тока от давления(Таблица 1). Построим график зависимости I(P) (Рисунок 4), по которому определим $P_{\mathfrak{I}}$ как пересечение двух прямых,

продолженных на прямолинейных участках графика:

$$P_9 = (614 \pm 8) \text{ Topp.}$$

При найденном давлении длина свободного пробега равна расстоянию между внутренним и внешним электродами:

 $L = \frac{10 - 0.5}{2}$ cm = 4,75 cm.

Пересчитаем длину свободного пробега для нормальных условий:

$$R_{
m s} = L rac{P_{
m s}}{P_0}, \; {
m rge} \; P_0 = 760 \; {
m topp}.$$

Тогда:

$$R_9 = (3.84 \pm 0.05) \text{ cm}.$$

$$R'_{\rm s} = (4.49 \pm 0.06) \cdot 10^{-3} \; \frac{\Gamma}{\text{cm}^2}.$$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D mon	σ fon	$P = P_0 - P_{\text{изм}}, \text{ тор}$	І, пА	σ- πΛ
710 27 37 700 37 55 680 57 86 660 77 117 640 97 147 620 117 180 600 137 216 580 157 245 560 177 278 540 197 314 520 217 347 500 237 385 480 257 413 460 277 452 440 297 485 420 317 527 400 337 563 380 357 605 340 397 684 320 417 727 300 437 766 280 457 815 260 477 854 240 497 901 220 517 936	$P_{\text{изм}}$, тор	σ_p , бар			σ_I , пА
700 37 55 680 57 86 660 77 117 640 97 147 620 117 180 600 137 216 580 157 245 560 177 278 540 197 314 520 217 347 500 237 385 480 257 413 460 277 452 440 297 485 420 317 527 400 337 663 380 357 605 340 397 647 340 397 684 320 417 727 300 437 766 280 457 815 260 477 854 240 497 901 220 517 936					
680 57 86 660 77 117 640 97 147 620 117 180 600 137 216 580 157 245 560 177 278 540 197 314 520 217 347 500 237 385 480 257 413 460 277 452 440 297 485 420 317 527 400 337 563 380 357 605 340 397 684 320 417 727 300 437 766 280 457 815 260 477 854 240 497 901 220 517 936 557 1003 577 1015 140 597					
660 77 117 640 97 147 620 117 180 600 137 216 580 157 245 560 177 278 540 197 314 520 217 347 500 237 385 480 257 413 460 277 452 440 297 485 420 317 527 400 337 563 380 357 605 340 397 684 320 417 727 300 437 766 280 457 815 260 477 854 240 497 901 220 517 936 200 537 975 180 557 1015 40 597 1024 <					
640 97 147 620 117 180 600 137 216 580 157 245 560 177 278 540 197 314 520 217 347 500 237 385 480 257 413 460 277 452 440 297 485 380 357 605 380 357 605 340 397 684 320 417 727 300 437 766 280 457 815 260 477 854 240 497 901 220 517 936 200 537 975 180 557 1003 160 577 1015 140 597 1024 120 617 1020					
620 117 180 600 137 216 580 157 245 560 177 278 540 197 314 520 217 347 500 237 385 480 257 413 460 277 452 440 297 485 420 317 527 400 337 563 380 357 605 340 397 684 320 417 727 300 437 766 280 457 815 260 477 854 240 497 901 220 517 936 200 537 975 180 557 1003 160 577 1015 140 597 1024 120 617 1020					
600 137 216 580 157 245 560 177 278 540 197 314 520 217 347 500 237 385 480 257 413 460 277 452 440 297 485 420 317 527 400 337 563 380 357 605 340 397 684 320 417 727 300 437 766 280 457 815 260 477 854 240 497 901 220 517 936 200 537 975 180 557 1003 160 577 1015 140 597 1024 120 617 1020 100 637 1015 80 657 1013 60 677 <					
580 157 245 560 177 278 540 197 314 520 217 347 500 237 385 480 257 413 460 277 452 440 297 485 420 317 527 400 337 563 380 357 605 340 397 684 320 417 727 300 437 766 280 457 815 260 477 854 240 497 901 220 517 936 200 537 975 180 557 1003 160 577 1015 140 597 1024 120 617 1020 100 637 1013 60 677 1005					
560 177 278 540 197 314 520 217 347 500 237 385 480 257 413 460 277 452 440 297 485 420 317 527 400 337 563 380 357 605 340 397 684 320 417 727 300 437 766 280 457 815 260 477 854 240 497 901 220 517 936 200 537 975 180 557 1003 160 577 1015 140 597 1024 120 617 1020 100 637 1015 80 657 1013 60 677 1005 40 697 1000 10 727 997					
540 197 314 520 217 347 500 237 385 480 257 413 460 277 452 440 297 485 420 317 527 400 337 563 380 357 605 340 397 684 320 417 727 300 437 766 280 457 815 260 477 854 240 497 901 220 517 936 200 537 975 180 557 1003 160 577 1015 140 597 1024 120 617 1020 100 637 1015 80 657 1013 60 697 1000 40 697 1000 10 727 997					
520 217 347 500 237 385 480 257 413 460 277 452 440 297 485 420 317 527 400 337 563 380 357 605 340 397 684 320 417 727 300 437 766 280 457 815 260 477 854 240 497 901 220 517 936 200 537 975 180 557 1003 160 577 1015 140 597 1024 120 617 1020 637 1015 80 657 1013 60 697 1000 40 697 1000 727 997					
500 237 385 480 257 413 460 277 452 440 297 485 420 317 527 400 337 563 380 357 605 340 397 684 320 417 727 300 437 766 280 457 815 260 477 854 240 497 901 220 517 936 200 537 975 180 557 1003 160 577 1015 40 617 1020 60 677 1005 40 697 1000 727 997					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
360 377 647 340 397 684 320 417 727 300 437 766 280 457 815 260 477 854 240 497 901 220 517 936 200 537 975 180 557 1003 160 577 1015 140 597 1024 120 617 1020 100 637 1015 80 657 1013 60 677 1005 40 697 1000 10 727 997					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
240 220 517 936 200 537 975 180 557 1003 160 577 1015 140 597 1024 120 617 1020 100 637 1015 80 657 1013 60 677 1005 40 697 1000 10 727 997					
220 517 936 200 537 975 180 557 1003 160 577 1015 140 597 1024 120 617 1020 100 637 1015 80 657 1013 60 677 1005 40 697 1000 10 727 997					
200 537 975 180 557 1003 160 577 1015 140 597 1024 120 617 1020 100 637 1015 80 657 1013 60 677 1005 40 697 1000 10 727 997					
180 557 1003 160 577 1015 140 597 1024 120 617 1020 100 637 1015 80 657 1013 60 677 1005 40 697 1000 10 727 997	220			936	
160 577 1015 140 597 1024 120 617 1020 100 637 1015 80 657 1013 60 677 1005 40 697 1000 10 727 997				975	
140 597 1024 120 617 1020 100 637 1015 80 657 1013 60 677 1005 40 697 1000 10 727 997	180		557	1003	
120 100 80 60 40 10 727 997	160		577	1015	
100 637 1015 80 657 1013 60 677 1005 40 697 1000 10 727 997	140		597	1024	
80 657 1013 60 677 1005 40 697 1000 10 727 997	120		617	1020	
60 677 1005 40 697 1000 10 727 997	100		637	1015	
40 10 697 1000 727 997	80		657	1013	
10 727 997	60		677	1005	
	40		697	1000	
	10		727	997	
	0				

Таблица 3: Зависимость тока I от давления p.

Рисунок 4: График зависимости I(P)

Посчитаем энергию α -частиц:

$$E = (5,239 \pm 0,013) \text{ M} \cdot \text{B}$$

В этот раз значение чрезвычайно близко к истинному $E=5{,}15~{\rm M}{
m sB}.$

4 Обсуждение результатов и выводы.

	Счетчик Гейгера	Сцинтилляционный счетчик	Ионизационная камера
$R_{\rm 9}$, см	1.25 ± 0.23	3.20 ± 0.06	3.84 ± 0.05
$R_{\rm cp},{ m cm}$	0.86 ± 0.05	2.06 ± 0.06	_
$R_{\rm s}',10^{-3}~{\rm r/cm^2}$	1.5 ± 0.2	3.74 ± 0.14	4.49 ± 0.06
$R'_{\rm cp}, 10^{-3} \ {\rm r/cm^2}$	1.01 ± 0.06	2.41 ± 0.07	-
$E_{\mathfrak{d}}, \mathrm{M}\mathfrak{d}\mathrm{B}$	2.48 ± 0.21	4.64 ± 0.04	5.239 ± 0.013
$E_{\rm cp},{ m M}$ эВ	1.93 ± 0.24	3.46 ± 0.02	_

В данной работе мы измерили пробег α -частиц в воздухе. Получили достаточно много разных значений, неслабо отличающихся друг от друга. Однако они все оказываются одного порядка и даже того же порядка, что и истинное значение. Это же верно и для найденных энергий α -частиц. Значения, найденные с помощью счетчика Гейгера и сцинтилляционного счетчика, занижены по сравнению с реальным значением. Лучше всего к действительности подобрался способ с ионизационной камерой: $E=5.239\pm0.013$ МэВ; в то время как настоящее значение E=5,15 МэВ. Заниженные значения в первых двух методах объясняется несовершенством методики: α -частицы тратят свою энергию на преодоление дополнительных препятствий.