

Implementing Automatic Resource Fault Prediction and Detection System

Supervisor:

Dr. Harikrishnan
Assistant Professor
Department of ECE

Presented by:
Gopika J(412621106015)
Lathika S(412621106023)
Madhumitha R(412621106025)

ABSTRACT

This smart system monitors lighting, water flow, and fire/smoke conditions in real-time using sensors, machine learning, and IoT (Blynk app). It predicts and detects faults, triggers instant alerts, and ensures better resource management, safety, and reduced manual oversight — making it ideal for modern homes and industries.

APPLICATION

- Smart Homes Real-time monitoring of lighting, water flow, and smoke/fire conditions to enhance safety and resource efficiency.
- **Educational Institutions** Automated detection of faults in lighting, water systems, and fire/smoke hazards across campus buildings.
- **Industrial Facilities** Predictive maintenance and fault detection in electrical systems and pipelines to prevent system breakdowns.
- **Healthcare Centers** Continuous monitoring to ensure uninterrupted lighting and detect smoke/gas leaks, safeguarding patient safety.

CHALLENGES

- 1. Manual Monitoring
- 2. Fault Detection Complexity
- 3. High maintenance cost
- 4. Resource wastage
- 5. Lack of Communication in Fault Scenarios

EXISTING SOLUTIONS FOR CHALLENGES

- 1. No Prediction Capability
- 2. Manual Monitoring
- 3. Lack of Integration
- 4. High Cost for Multi-System Setups
- 5. Limited IoT Integration

OBJCTIVE

- •To design a smart, integrated fault detection system for lighting, water flow, and fire/smoke monitoring.
- To collect real-time environmental data using sensors such as light sensors, water flow sensors, and smoke/fire detectors.
- To preprocess sensor data for accurate input into machine learning models.
- •To train and evaluate multiple machine learning algorithms for fault prediction and detection.
- •To implement instant fault alerts using an IoT-based cloud platform (such as the Blynk app) for quick user notifications.
- •To integrate all three monitoring systems (lighting, water flow, and fire/smoke) into a single, unified unit for efficient resource management and enhanced safety.

EXISTING SYSTEM

- The current systems involve high time consumption and human dependency for fault detection and management, which can lead to inefficiencies and increased risks.
- Traditional systems rely on manual monitoring and basic alert mechanisms, which are dependent on human intervention.
- These systems lack real-time fault prediction and detection capabilities, making them less efficient in identifying issues promptly.
- Existing systems do not incorporate machine learning or AI algorithms for intelligent fault prediction, relying instead on simple threshold-based alerts.
- The current systems are time-consuming and require manual oversight, which increases the chances of delays in fault detection and response.
- There is an absence of an integrated approach that combines multiple resources (lighting, water flow, fire/smoke monitoring) into a unified system for comprehensive management.

PROPOSED METHODOLOGY

- Automated real-time fault detection and prediction for lighting, water flow, and fire/smoke monitoring.
- Sensor-based data collection (light sensors, water flow sensors, smoke/fire detectors).
- algorithms used for fault prediction and detection, leveraging machine learning for accurate results.
- Instant alerts sent via an IoT-based cloud platform (e.g., Blynk app) to notify users in case of faults.
- Integrated system that combines lighting, water flow, and fire/smoke monitoring into a single unified unit for efficient resource management.
- Reduced human intervention and enhanced reliability by automating fault detection and alert generation.

Proposed Methodology

COMPONENTS

- ESP32 Microcontroller
- LDR (Light Dependent Resistor)
- Water Sensor
- MQ-2 Gas Sensor (Smoke Detection)
- Buzzer
- Power Source

BLOCK DIAGRAM

FAULT MANAGEMENT SYSTEM

LITERATURE SURVEY

S.	AUTHOR	PAPER TITLE	KEY	DRAWBACKS	IMPROVEMENT IN OUR
			CONTRIBUTIONS		PROJECT
NO					
1.	M.A.Zamri,M.H.Misran, M.H. F.Rahiman,M.A. M. Ali(2018)	Development of an Early Detection System for Fire Using Wireless Sensor Networks and Arduino	Utilized Wireless sensor networks and Arduino for early detection, ensuring real-time monitoring and improved	Limited to fire detecüor only, lacks predictive capabilities and integration with other fault detection systems.	Integrating IoT sensors for fire, water leakage, and lighting fault detection, along with ML-based predictive maintenance
2.	M. Sadeghioon, N. Metje, D. Chapman, C. Anthony(2018)	Water Pipeline Failure Detection Using Distributed Relative Pressure and Temperature	response times Uses pressure and temperature sensors with anomaly detection	Focuses only on pipeline monitoring, lacks real-time IoT-based alerts.	Our project integrates IoT for real-time alerts and automated fault detection
		Measurements and Anomaly Detection Algorithm	algorithms for water pipeline failure detection.		

	·	1			
4.	KB Deve, GP Hancke, BJ	Design of a Smart Fire	Fire detection using	Relies only on SMS	Integrates water leakage,
	Silva(2018)	Detection System	WSN and GSM with	alerts, no IoT or multi-	fire/smoke, and light fault
			MQ-2 and LM35	fault detection	detection with IoT-based real-
			sensors to reduce		time monitoring.
			false positives.		
5.	S. Thenmozhi, K. Sumathi,	IoT Based Smart	An IoT-based system	Focuses only on water	Our project integrates fire,
	Anju Asokan, B. Priyanka,	Water Leak Detection	for real-time water	leak detection, lacks	smoke, water leakage, and
	R. Maheswar, P.	System for a	leak detection using	integration with other	electrical fault detection into a
	Jayarajan(2019)	Sustainable Future	ATMEGA328	fault detection	single automated system.
			microcontroller,	systems.	
			resistance sensors,		
			and flow sensors,		
			integrated with a		
			mobile application.		
6.	K. S. Ng, P. Chen, Y.	A Design of Automatic	Uses sensor-based	Limited to pipeline	Our project enhances fault
	Tseng(2020)	Water Leak Detection	automation to	leakage detection,	detection with predictive
		Device	improve leak	does not incorporate	analytics and machine learning.
			detection accuracy	predictive analytics.	
			and response time.		
			and response time.		

7.	J. Kang, Y. J. Park, J. Lee, S. H.	Novel Leakage	Implements machine	Complex ML model	We optimize ML
	Wang, D. S. Eom(2020)	Detection by Ensemble	learning models (CNN-	requires high	techniques for low-
		CNN-SVM and Graph-	SVM) and graph-based	computational	power IoT devices,
		Based Localization in	localization for accurate	resources.	ensuring real-time
		Water Distribution	leak detection.		predictions.
		Systems			
8.	Maheswaran S, Ridhish R, Vasikaran	Centralized Monitoring	Uses IoT technology	Focuses only on street	Our project expands
	V, Gomathi R D, Nanthakkumaran S,	System Street Light	and GPS tracking for	lighting faults, does not	fault detection to
	Sumesh S, Poovizhi S, Sasikala	Fault Detection and	real-time street light	include multi-fault	include fire, water
	J(2019)	Location Tracking for	fault detection and	detection like fire or	leakage, and predictive
		Smart City	location tracking.	water leakage.	maintenance using
			Improves urban safety		Machine Learning.
			and energy efficiency.		
9.	Kamoji S, Koshti D, Noronha J,	Deep Learning-based	Uses Deep Learning and	Limited to pollution	Integrates IoT-based
	Arulraj E, Clement E(2021)	Smart Street Lamps–A	IoT for automated	monitoring and street	fire, water leakage, and
		Solution to Urban	smart street lighting	lighting, lacks	predictive maintenance
		Pollution.	and environmental	comprehensive fault	for broader fault
			monitoring.	detection	management.

ROLE OF SENSOR & DEVICES

- **Light Fault Detection:** Uses **LDR sensors** to spot issues with lighting and ML for Prediction.
- Water Leakage Detection: Uses water sensors to find leaks quickly.
- Fire/Smoke Detection: Uses smoke sensors(MQ-2) to detect fire or gas early.
- Data Processing: An ESP32 processes the sensor data.
- Alert System: Sends an alert message via the Blynk IoT app to inform the admin when a fault is detected.

SYSTEM CONFIGURATION

- **Monitoring Environment:** Uses sensors to track lighting, water flow, and smoke levels.
- Sensor Data Collection: Gathers data via LDR, water sensors, and smoke sensors.
- **Data Processing:** The collected data is processed using **ESP8266** for real-time fault analysis.
- Fault Detection Algorithm: Compares sensor readings with predefined thresholds to identify issues.
- Memory Storage: Logs previous fault data for better prediction and analysis.
- Improved Efficiency: Ensures resource conservation and enhances safety through early detection.

DATA ACQUISITION

Role of Data Acquisition & Processing:

- Collect raw data from multiple sources such as sensors, databases.
- Clean and preprocess the data.
- Transform the data into a structured format suitable for ML model training.

SERVER SET-UP

PHASES OF PROJECT

- 1.Problem Identification
- 2. Components Selection and Hardware Design
- 3. Sensor Interfacing and Data Processing
- 4. Machine Learning Model Training
- 5. System Integration
- 6. Testing and Performance Evaluation
- 7. User Notification & Alert Mechanism
- 8. Documentation and Presentation

GOALS

- Efficient fault detection & prediction
- Automated real-time alerts
- Cost-effective & power-efficient design
- Reliable ML-based fault classification

CONCLUSION

- The development and implementation of a real-time fault prediction and detection system for lighting, water flow, and fire/smoke monitoring represents a major advancement in resource management and safety. By integrating sensor data with machine learning models, the system ensures high-accuracy fault prediction and enables instant alerts, significantly enhancing safety while reducing manual intervention.
- This low-cost, scalable solution holds strong potential for widespread use across residential and industrial sectors. With future upgrades such as cloud integration, smart mobile alerts, and enhanced sensor capabilities, the system paves the way for a smarter, more efficient approach to resource management and proactive fault detection.

FUTURE ENHANCEMENT

- •Implement deep learning models for more accurate fault detection and prediction.
- •Enable predictive maintenance to anticipate failures and reduce downtime.
- •Extend the system with sensors like air quality, temperature, and GPS.
- •Add voice-control features for hands-free system interaction and alerts.
- •Integrate automatic communication with emergency services for safety.
- •Optimize energy efficiency through intelligent resource management.

REFERENCES

- 1. Zamri, M. A.Misran, M. H. Rahiman, M. H. F. & Ali, M. A. M. (2018). Development of an Early Detection System for Fire Using Wireless Sensor Networks and Arduino. 2018 International Symposium on Networks, Computers and Communications (ISNCC), IEEE.
- 2. Sadeghioon, M. Metje, N. Chapman, D. & Anthony, C. (2018). Water Pipeline Failure Detection Using Distributed Relative Pressure and Temperature Measurements and Anomaly Detection Algorithm. *Urban Water Journal*, 15(4), 287–295.
- 3. Liu, Y. Ma, X.Li, Y. Tie, Y.Zhang, Y. & Gao, J. (2019). Water Pipeline Leakage etection Based on Machine Learning and Wireless Sensor Networks. *Sensors*, 19(23), 5086.
- 4. Deve, K. B. Hancke, G. P. & Silva, B. J. (2018). Design of a Smart Fire Detection System Using Wireless Sensor Networks and GSM for Real-Time Monitoring. *IEEE Xplore*.
- 5. Thenmozhi, S. Sumathi, K.Asokan, A. Priyanka, B. Maheswar, R.& Jayarajan, P. (2019). IoT-Based Smart Water Leak Detection System for a Sustainable Future. *IEEE Xplore*.

- 6. Ng, K. S. Chen, P.& Tseng, Y. (2020). A Design of Automatic Water Leak Detection Device. *IEEE Xplore*.
- 7. Kang, J. Park, Y. J. Lee, J. Wang, S. H. & Eom, D. S. (2020). Novel Leakage Detection by Ensemble CNN-SVM and Graph-Based Localization in Water Distribution Systems. *IEEE Xplore*.
- 8. Maheswaran, S.Ridhish, R. Vasikaran, V.et al. (2020). Centralized Monitoring System Street Light Fault Detection and Location Tracking for Smart City. *IEEE Xplore*.
- 9. Kamoji, S. Koshti, D. Noronha, J. et al. (2021). Deep Learning-Based Smart Street Lamps—A Solution to Urban Pollution. *IEEE Xplore*.
- 10. Jianfeng, Y. (2020). Design and Practice of an Intelligent Street Lamp Based on Edge Computing. *IEEE Xplore*.

Thank You!