

System Level Evaluation of Rel-14 LTE-V2X PC5 Mode 4 with SAE J3161 Congestion Control

R&D Info Tech Labs

Toyota Motor North America, Inc.

Purpose

 Evaluate the system-level performance of Rel-I4 LTE-V2X PC5 mode 4 with SAE J3 I6 I congestion control and configuration

SAE J3161 Configuration (1/2)

- In the current draft J3161 (v1.0), the following configuration is being proposed:
 - Carrier frequency 5.915 GHz
 - Congestion control using J2945/1 rate control (without J2945/1 power control)
 - 23 dBm max Tx power
 - Antenna pattern same as J2945/I (i.e., Ford's proposal was withdrawn)
 - 20 MHz system bandwidth
 - 10 subchannels per system bandwidth & 10 PRBs per subchannel
 - Always-on HARQ retransmission
 - 100ms fixed resource reservation (with resource skipping in case of congestion control)
 - 80% probability to keep the current resource
 - 5 consecutive skipped resources triggering resource reselection
 - Two priority class (PPPP 2 and 5, where PPPP 2 is higher priority)

SAE J3161 Configuration (2/2)

- In the current draft J3161 (v1.0), the following configuration is being proposed:
 - CBR&PDB-dependent resource selection window size
 - For CBR below 0.25, T2 = 20 ms
 - For 0.25<CBR<0.75, T2 = min(PDB-10,50) [ms]
 - For CBR above 0.75, T2 = PDB-10 [ms]
 - Vehicle-speed-dependent configuration (MCS range, min/max # of subchannels for PSSCH)
 - For below 120 km/h, MCS 5~11 (MCS 8~10 are excluded) & 1~2 subchannels for PSSCH transmission
 - For above 120 km/h, MCS 0~7 & 1~5 subchannels for PSSCH transmission
 - CBR-CRlimit table
 - For CBR<0.65, no CR-limit
 - For CBR>=0.65, 4% CR-limit

Key Questions

- What's the performance difference between LTE-V2X with SAE 3161 and DSRC with SAE J2945/1?
- What's the performance difference between 10 MHz bandwidth and 20 MHz bandwidth?
- What's the performance difference between with and without HARQ retransmission?
- What's the performance difference between with and without J2945/I power control?
- What's the performance impact of the resource selection window size?
- What's the performance impact of the probability to keep the current resource?

To Do

- Implementation of LTE-V2X PC5 mode 4 simulator (ns-3)
 - Implement SAE J3161 congestion control
 - Implement configuration of the latest draft SAE J3161 (v1.0)
 - Implement in-band emission interference
 - Implement PHY link abstraction by cooperating with Javier
- System-level evaluation in freeway scenarios with various vehicle densities
 - 20 MHz bandwidth vs. 10 MHz bandwidth
 - With HARQ retransmission vs. without HARQ retransmission
 - CBR-dependent resource selection window vs. fixed T2 (e.g., 20, 50, 100 ms)
 - Without J2945/I power control vs. with J2945/I power control
 - 80% probability to keep the resource vs. 20% probability
- Documentation on how to use the simulators
- Final presentation at the end of internship

Detailed Procedure of LTE-V2X PC5 Mode 4 (UE Autonomous Mode)

Rel-14 LTE-V2X PC5 Mode 4: Sensing-Based Resource Selection

In case that the <u>retransmission feature</u> is enabled, if some resources (same frequency resources) are available <u>within 15ms</u> from the initial transmission, resources for retransmission are randomly selected among available resources.

Resource Selection for HARQ Retransmission

Randomly select a resource among the best 20% resources within +/- I5ms for 2nd packet*

^{*} If no resource available within +/-15 ms window is available, no resource for 2nd packet is selected.

SAE J3161 Rate Control

Same as SAE J2945/1 rate control except the random offset (in our simulation, we remove the random offset)

SAE J2945/I Power Control

Simulation Scenarios & Channel Model

Congested Freeway Scenarios

Simulation Scenario: Congested Freeway

Change the inter-vehicle distance to evaluate different vehicle density.

Channel Model

Parameter Parameter	Val ue
Scenario	Freeway (5 km long, 3~6 lanes/direction, and 4 m lane width)
Vehicle speed	10 km/h ~ 100 km/h
Inter-vehicle distance	2 sec × vehicle speed [m/s]
Path loss	ITU-R P.1411-9 UHF street canyon LOS (median)
Shadowing	No
Fast fading	Nakagami-m fading (same as last year)
In-band emission (for LTE-V2X)	3GPP TR 36.885

Simulation Parameters

P arameter	V alue
Carrier frequency	5.9 GHz
System bandwidth	20 MHz (J3161), 10 MHz
# of subchannel	10 for 20 MHz (J3161), 5 for 10 MHz BW
Tx power	20 dBm fixed (J3161), 10-20 dBm with J2945/1 power control
Tx and Rx antenna gains	0 dBi
Noise figure	9 dB
Number of Tx and Rx antennas	I Tx antenna and 2 Rx antennas with maximum ratio combining
Antenna pattern	Omni 2D
Tx and Rx antenna heights	1.5 m
Message traffic	Periodic traffic (default: 10 Hz)
PHY payload size	300 bytes (if possible, 300 byte packet, followed by four 190 byte packets)
# of subchannels per PSSCH	2
Modulation and coding scheme	MCS 5~11 (MCS 8~10 are excluded) (MSC11 for 300 byte, MSC5 for 190 byte)
Congestion control	J3161 rate control with/without J2945/1 power control (CBR threshold is -94 dBm per subchannel)
HARQ retransmission	Always-on HARQ (J3161), no HARQ
Probability to keep the current resource	0.8 (J3161), 0.2
Packet Delay Budget (PDB)	100 ms
Resource selection window	CBR-dependent T2 (J3161), fixed T2 (e.g., 20, 50, 100 ms) (T1 = 4 ms)
Resource reservation	100 ms fixed
# of consecutive skipped resources triggering resource reselection	5

CBR and CR in LTE-V2X

- CBR is measured every 100 ms
- CR is not used in our simulation

Metric	Definition
Channel busy ratio (CBR)	 Channel busy ratio (CBR) measured in subframe n is defined as follows: For PSSCH, the portion of sub-channels in the resource pool whose S-RSSI measured by the UE exceed a (pre-)configured threshold (e.g., -94dBm per subchannel *) sensed over subframes [n-100, n-1]; For PSCCH, in a pool (pre)configured such that PSCCH may be transmitted with its corresponding PSSCH in non-adjacent resource blocks, the portion of the resources of the PSCCH pool whose S-RSSI measured by the UE exceed a (pre-)configured threshold sensed over subframes [n-100, n-1], assuming that the PSCCH pool is composed of resources with a size of two consecutive PRB pairs in the frequency domain.
Channel occupancy ratio (CR)	Channel occupancy ratio (CR) evaluated at subframe n is defined as the total number of sub-channels used for its transmissions in subframes $[n-a, n-1]$ and granted in subframes $[n, n+b]$ divided by the total number of configured sub-channels in the transmission pool over $[n-a, n+b]$.

NOTE 1: a is a positive integer and b is 0 or a positive integer; a and b are determined by UE implementation with a+b+1=1000, $a \ge 500$, and n+b should not exceed the last transmission opportunity of the grant for the current transmission.

NOTE 2: CR is evaluated for each (re)transmission.

NOTE 3: In evaluating CR, the UE shall assume the transmission parameter used at subframe n is reused according to the existing grant(s) in subframes [n+1, n+b] without packet dropping.

NOTE 4: The subframe index is based on physical subframe index.

NOTE 5: CR can be computed per priority level

In-Band Emission (IBE) Model for LTE-V2X

IBE model for PC5 LTE-V2X is defined in TR 36.885:

Based on IBE model in PC5 LTE-D2D (TR 36.843):

A.2.1.5 In-band emissions model

A modified version of in-band emissions defined in Section 6.5.2.3 of 3GPP TS 36.101 [5] should be used for simulation purposes for SC-FDMA waveforms. Table 6.5.2.3.1-1 in [5] is modified to:

Table A.2.1.5-1: In-band emissions for simulations

descrip		Unit		Limit (Note 1)	Frequencies
Gener	ral	dB		$\max \left\{ -25 - 10 \cdot \log_{10}(N_{RB} / L_{CRB}) - X, \\ \max \left\{ 20 \cdot \log_{10} EVM - 3 - 5 \cdot \left(\left \Delta_{RB,i} \right - 1 \right) / L_{CRB,i} \right\} - W, i = 1,,num_clusters, \\ -57 dBm / 180kHz - P_{RB} - X \right\}$	Any non-allocated (Note 2)
IQ Image		dB	-28-Y -25-Y	Image frequencies when carrier center frequency < 1 GHz and Output power > 10 dBm Image frequencies when carrier center frequency < 1 GHz and Output power ≤ 10 dBm	Image frequencies (Notes 2, 3)
			-25-Y	Image frequencies when carrier center frequency ≥ 1 GHz	mage requeries (Notes 2, 0)
			-28-Z	Output power > 10 dBm and carrier center frequency < 1 GHz	
			-25-Z	Output power > 10 dBm and carrier center frequency ≥ 1 GHz	
Carrier lea	akage	dBc	-25-Z	0 dBm ≤ Output power ≤10 dBm	Carrier frequency (Notes 4, 5)
			-20-Z	-30 dBm ≤ Output power ≤ 0 dBm	
	1		-10-Z	-40 dBm ≤ Output power < -30 dBm	
NOTE 3: T	allocated RB	le frequer s.	ncies for thi	s limit are those that are enclosed in the reflection of the each allocated RB, based on symmetry with respect to the c RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in a	
NOTE 5: T	The applicab	le frequer	ncies for thi	s limit are those that are enclosed in the RBs containing the DC frequency if $N_{_{RR}}$ is odd, or in the two RBs immedi	ately adjacent to the DC frequency if $N_{\scriptscriptstyle BL}$
NOTE 6: L	s even, but e -CRB,/ is the clusters			ed RB. RBs of the i th cluster in case of multi-cluster transmission. The overall transmission bandwidth L _{CRB} is given as the sur	m of the number of allocated RBs of all
NOTE 7: 1	$N_{\scriptscriptstyle RB}$ is the Transmission Bandwidth Configuration				
NOTE 8:	EVM is the limit specified in Table 6.5.2.1.1-1 for the modulation format used in the allocated RBs.				
NOTE 9:	$\Delta_{\it RB}$ is the	starting fr	equency of	fset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{\it RB}=1~$ or $\Delta_{\it RB}=-1~$ for the first adj	acent RB outside of the any allocated RB.
				fset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1~$ or $\Delta_{RB}=-1~$ for the first adjust 180 kHz in allocated RBs, measured in dBm.	acent RB outside of the any allocated RB.

Example of In-band Emission

PHY Abstraction

PHY abstraction based on MIESM

MIESM: Mutual Information Effective SINR Metrics MMIB: Mean Mutual Information per coded Bit

$$BLER_{MCS} = \frac{1}{2} \left[1 - erf \left(\frac{MMIB - b_{MCS}}{\sqrt{2} \cdot c_{MCS}} \right) \right]$$

Performance Metrics: Definition

Packet Reception Ratio (PRR)

- For one Tx packet, the PRR is calculated by X/Y, where Y is the number of vehicles that located in the range (a,b) from the Tx, and X is the number of vehicles with successful reception among Y. The average PRR is calculated as $(X_1+X_2+X_3+....+X_n)/(Y_1+Y_2+Y_3+....+Y_n)$ where n denotes the number of generated messages in simulation.

Packet Inter-Reception (PIR)

 Time elapsed between two successive successful reception of two different packets transmitted from vehicle A to vehicle B.

Information Age (IA)

- Time between the current measuring timestamp ($i * t_{\text{period}}$) and the packet generation timestamp t_i at a transmitter for last successfully received packet transmitted from vehicle A to vehicle B, where $i = 0, 1, ..., \text{ and } t_{\text{period}} = 100$ ms

End-to-End Latency

 Time difference between the time that a packet generated are delivered from the application layer to MAC layer at the transmitter side and the time that the packet is received by the receiver (for successfully received packets)

Performance Metrics

Packet Reception Ratio (PRR)

- V2V distance vs. average PRR (for V2V distance bins of a=i*20 meters, b=(i+1)*20 meters for i=[0,40])

Packet Inter-Reception (PIR)

- CDF of PIR for different V2V distance bins (samples within range [i*20, (i+1)*20]m with for i = [0, 15])
- V2V distance vs. 95-percentile PIR (for V2V distance bins of a=i*20 meters, b=(i+1)*20 meters for i=[0,40])

Information Age (IA)

- CDF of IA for different V2V distance bins (samples within range [i*20, (i+1)*20]m with for i = [0, 15])
- V2V distance vs. 95-percentile IA (for V2V distance bins of a=i*20 meters, b=(i+1)*20 meters for i=[0,40])

End-to-End Latency

- CDF of E2E latency (samples within range [i*20, (i+1)*20]m with for i = [0, 15])

3GPP Technical Specifications

3GPP Technical Specifications for Rel-14 LTE

Number	Title
3GPPTS 36.201	Evolved Universal Terrestrial Radio Access (E-UTRA); LTE physical layer; General description
3GPPTS 36.211	Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation
3GPPTS 36.212	Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding
3GPPTS 36.213	Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures
3GPPTS 36.321	Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification
3GPPTS 36.322	Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Link Control (RLC) protocol specification
3GPPTS 36.323	Evolved Universal Terrestrial Radio Access (E-UTRA); Packet Data Convergence Protocol (PDCP) specification
3GPPTS 36.331	Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification

Note: These specifications includes the features of Rel-14 LTE-V2X PC5 mode 4

3GPP Technical Report

3GPP Technical Reports for LTE-V2X and NR-V2X

Number	Title
3GPPTR 36.885	Study on LTE-based V2X Services
3GPPTR 37.885	Study on evaluation methodology of new Vehicle-to-Everything (V2X) use cases for LTE and NR
3GPPTR 38.885	Study on NR Vehicle-to-Everything (V2X)