

Vorlesung Computational Intelligence

Teil 4: Evolutionäre und Memetische Algorithmen

4.5 Klassische Evolutionäre Algorithmen

Ralf Mikut, Wilfried Jakob, Markus Reischl

Institut für Automation und angewandte Informatik (IAI) / Campus Nord

4.5 Klassische Evolutionäre Algorithmen

Übersicht:

- Übersicht über die klassischen EAs
- Evolutionsstrategie
- Genetische Algorithmen
- Strategieparameter Populationsgröße

Klassische EAs – Übersicht

Übersicht (1):

Parallele Entwicklung der EAs in den USA und Deutschland

Evolutionsstrategie (ES)

Mitte der 60-iger, Rechenberg und Schwefel [Rec73, Schw95]

- Chromosom aus reellen Zahlen (Entscheidungsvariable + Strategieparameter)
- verwendet adaptive Mutation
- vergleichsweise weit fortgeschrittene Theorie
- Anwendungen: vor allem numerische aber auch kombinatorische Optimierung

Genetische Algorithmen (GA)

Anfang der 70-iger, Holland [Hol75]

- Chromosom besteht aus Bitstrings (später auch: real-coded GAs)
- verwendete anfangs fitnessproportionale Selektion
- Bit-Codierung bringt Vorteile bei der Theoriebildung. Ergebnisse aber umstritten
- Anwendungen: numerische und kombinatorische Optimierung, maschinelles Lernen (LCS learning classifier systems)

Klassische EAs – Übersicht

Übersicht (2):

Evolutionäre Programmierung (EP)

Mitte der 60-iger, Fogel, Owens und Walsh [Fog66]

- Chromosomenstruktur nicht festgelegt, anfangs Repräsentation endlicher Automaten, später Erweiterung auf reellwertige Variable
- basiert im Wesentlichen auf Mutation einschließlich selbstadaptierender Mutation
- in der reellwertigen Variante Ähnlichkeiten zur ES
- Genetische Programmierung (GP)

Ende der 80-iger, Koza [Koza89]

- Chromosome repräsentieren Computerprogramme als Baum (z.B. LISP) oder Maschinencode, Ziel ist die Erstellung von Computerprogrammen
- Crossover und Mutation:
 - Crossover wegen der Baumstruktur mächtiger als bei GAs oder der ES.
 - Mutation mit Reparaturmechanismen
- Anwendungen: maschinelles Lernen, Elektronikentwicklung, Sortier- und Suchalgorithmen, ...

Evolutionsstrategie:

Chromosom = reellwertiger Vektor bestehend aus

- \blacksquare n zu optimierenden Entscheidungsvariablen x_i , $1 \le i \le n$
- n Mutationsschrittweiten σ_j , $1 \le j \le n' \le n$ Meist entweder eine einheitliche Mutationsschrittweite σ oder für jede Entscheidungsvariable ein eigenes σ_i .

Beide Parametersätze unterliegen der Evolution

- → Optimierung auf der Problemebene UND der Ebene der Schrittweiten
- → Anpassung der Suche an den Suchraum (Selbstadaption)
 Gefahr, an lokalen Optima hängen zu bleiben oder größere undefinierte Gebiete (implizite Restriktionen) nicht überspringen zu können.

Vorteil: schnellere Suche

Ablaufschema:

(siehe auch Folie 4, Kapitel 4.4)

1. Initialisierung der Startpopulation Zufällige Wahl der μ Individuen, (eher zu große) Vorbelegung der Schrittweiten

2. Partnerwahl

Zufällige Wahl der Eltern für λ Kinder. λ sollte deutlich größer als μ sein. Empfehlung von Schwefel und Bäck: $\lambda = 7 \cdot \mu$ oder mehr bei starker Multimodalität.

Warum?

3. Erzeugung eines Nachkommens

Rekombination mit anschließender Mutation der Schrittweiten und danach der Entscheidungsvariablen:

- 1. Intermediäre Rekombination der Schrittweiten
- 2. Mutation der Schrittweiten, liefert σ'_{i} .
- 3. Diskrete Rekombination der Entscheidungsvariablen
- 4. Mutation der Entscheidungsvariablen mit den geänderten Schrittweiten σ'_{j}

f(x)

3. Erzeugung eines Nachkommens (2):

Schritt 2: Mutation der Schrittweiten

$$\sigma'_j = \sigma_j \cdot e^{\left(N(0,1) + N_j(0,1)\right)}$$

mit: N(0,1) normalverteilte Zufallsgröße mit Erwartungswert 0 und Standardabweichung 1

N(0,1) gilt allgemein, $N_i(0,1)$ wird für jedes σ'_i

Wirkung: kleine Änderungen wahrscheinlich, große weniger, sehr große unwahrscheinlich, aber möglich

Schritt 4: Mutation der Entscheidungsvariablen mit den geänderten Schrittweiten σ'_i :

$$x'_j = x_j + N_j(\mathbf{0}, \sigma'_j)$$

Institut für Automation und angewandte Informatik (IAI) / CN

4. Akzeptanzregel

Zwei unterschiedliche Strategien: (siehe auch Folie 18, Kap. 4.4)

- (μ+λ)-Strategie (Plus-Strategie):
 Auswahl der μ besten aus Eltern <u>und</u> Nachkommen zur Bildung der Folgegeneration (elitär).
- \triangleright (μ , λ)–Strategie (Komma-Strategie): Die μ besten Nachkommen ersetzen die Elterngeneration vollständig.

5. Abbruchkriterium

Geringe Fitnessunterschiede in der Population gelten als Stagnationsindikator (Schwefel):

$$fitness_{max} - fitness_{min} < \varepsilon, \quad \varepsilon > 0$$

Weitere Abbruchkriterien, wie Erreichen einer Zielfitness, eines Zeit- oder Generationenlimits, ...

Besonderheiten der Evolutionsstrategie:

- Adaptive Schrittweitensteuerung
- auslöschende Selektion (schlechte Individuen haben keine Chance zur Reproduktion): vor allem durch die Komma-Strategie
- Die Populationsgröße μ darf wegen des starken Selektionsdrucks nicht zu klein sein. Geeignete Werte für μ sind anwendungsabhängig.

Weitere Eigenschaften:

- Plus-Strategie: Neigung zu vorzeitiger Konvergenz an einem Suboptimum
- Explizite Beschränkungen: Letalmutation. Eventuell durch geschickte Codierung vermeidbar.
- Implizite Beschränkungen können je nach Größe und aktuellen Schrittweiten nicht übersprungen werden. Gegenmaßnahmen:
 - > μ deutlich größer als Anzahl der Beschränkungen
 - ➤ Möglichst gleichmäßige Verteilung der Startpopulation im Suchraum
- ES sehr gut zur Optimierung kontinuierlicher Probleme geeignet.

Linsendemo I.Rechenberg

Strategieparameter:

- lacksquare Populationsgröße $oldsymbol{\mu}$
- Anzahl der Nachkommen pro Generation A
- Komma- oder Plus-Strategie
- Anzahl der adaptierten Schrittweiten
- Parameter der Schrittweitensteuerung
- Parameter von alternativen Selektions- oder Akzeptanzverfahren

Evolutionsstrategie und kombinatorische Probleme:

- Ganzzahlige Entscheidungsvariable statt reellwertige
- angepasste Mutationsoperatoren
- Beibehaltung der adaptiven Schrittweitensteuerung
- Einige erfolgreiche Anwendungen:
 - Traveling Salesman Problem (TSP), alle Arten von Tourenplanung
 - **Magisches Quadrat**

Quelle: I.Rechenberg

- Rubik's Cube
- Hochwasserspeichersystem (Kombination verschiedener Becken)

Albrecht Dürer, Melancholie, 1514

Weiterentwicklungen der ES:

- geschachtelte Evolutionsstrategie
 Spezielles Migrationsmodell basierend auf sich eine Zeit lang getrennt entwickelnden Unterpopulationen (Variante des Inselmodells)
- CMA-ES (Covariance Matrix Adaptation Evolution Strategy)
 - Die Kovarianzmatrix der mehrdimensionalen Normalverteilung der Schrittweiten beschreibt die paarweisen Abhängigkeiten zwischen den Variablen
 - derandomisiertes Verfahren zur Adaption der Kovarianzmatrix
 - Idee: Erhöhung der Wahrscheinlichkeit von vormals erfolgreichen Schritten, Verbesserte Anpassung der Schrittweitensteuerung gegenüber der ES
 - gut geeignet für "schwierige" Aufgaben der kontinuierlichen Optimierung

[Hansen]

Anpassung der Verteilung der Nachkommen im Verlauf der Evolution:

Klassische Genetische Algorithmen:

Chromosom = Bitstring

- Codierung: Abbildung der Entscheidungsvariablen auf Bitabschnitte Anzahl der Bits Entscheidungsvariable je nach Wertebereich oder gewünschter Präzision
- **Decodierung zur Fitnessberechnung notwendig**

Anordnung der Entscheidungsvariable wie bisher: Chromosom = $(P_1, P_2, ..., P_n)$

- Jede Entscheidungsvariable wird binär codiert.
- Wertigkeit der Bits bei ganzen Zahlen: 2ⁿ, ..., 2¹, 2⁰ (umgekehrte Reihenfolge!)

Ermöglicht neutrale genetische Operatoren, die ohne phänotypischen Zusammenhang wirken (müssen).

Vereinfacht die Implementierung

Nachteil: Anwendungsbezogene genetische Operatoren schwierig

zu implementieren

Codierungsbeispiel:

Chromosom = $(P_1, P_2, ..., P_n)$

Wertigkeit der Bits bei ganzen Zahlen: 2ⁿ, ..., 2¹, 2⁰

Beispiel für drei ganzzahlige und eine boolesche Variable P_4 :

$$0 \le P_1 \le 60$$
, $5 \le P_2 \le 30$, $-12 \le P_3 \le 14$

Anzahl der Bits pro Variable: P_1 : 6 P_2 : 5

Also insgesamt 17 Bits

Beispiel eines Chromosoms: 0 1 0 1 1 0 1 1 0 0 1

$$P_1 = 2^4 + 2^2 + 2^1 = 22$$

Negative Zahl: 2er-Komplement!

Ablaufschema:

(siehe auch Folie 4, Kapitel 4.4)

- 1. Initialisierung der Startpopulation Zufällige Wahl der µ Individuen oder Vorbelegung einiger.
- 2. Partnerwahl fitness-proportionale Selektion der Eltern
- 3. Erzeugung eines Nachkommens 1-Punkt-Crossover ($P_c > 0.6$) mit anschließender Mutation beider Offspring. Mutation: Invertierung eines jeden Bits mit P_m (z.B. $P_m=0.0001$).
- 4. Akzeptanz

Die so erzeugten μ Nachkommen ersetzen die Elterngeneration vollständig. (generational replacement)

5. Abbruchkriterium Zeit, Evaluationen, Generationen. Besser: Erreichte Fitness oder Stagnation

Das Crossover ist der Hauptoperator. Die zweitrangige Mutation soll der Fixierung von Allelwerten entgegenwirken.

Viele Variationen:

- Rangbasierte Selektion wie Lineares Ranking (auch bekannt als roulette wheel selection).
- Wettkampfselektion
 - **Z**ufällige Auswahl von n_m Individuen, die gegeneinander antreten.
 - Das jeweils Beste kommt in die Elterngruppe.
 - Zufällige Bestimmung der Eltern aus dieser Elterngruppe
- 2-Punkt- oder Uniform-Crossover anstelle des 1-Punkt-Crossover Liefern im Allgemeinen bessere Ergebnisse. Uniform-Crossover: Zufällige Wahl des das Bit liefernde Elter pro Bit.
- Steady State GA

Schrittweise Erzeugung von Nachkommen, die das jeweils schlechteste Mitglied der Population ersetzen, sofern sie sich von allen unterscheiden. Es gibt keine Population von Nachkommen.

- Förderung des Erhalts der genotypischen Varianz

Kritik der binären Codierung:

- Erschwert die Formulierung problembezogener genetischer Operatoren
- Keine starke Kausalität bei Änderungen zwischen Geno- und Phänotyp Ziel: Kleine Änderung, kleine Wirkung; große Änderung, große Wirkung

Stattdessen:

Anderung eines niederwertigen Bits gleichwahrscheinliche Anderung mit sehr unterschiedlichen gleich wahrscheinlich wie die eines hochwertigen Auswirkungen!

Einige benachbarte Integerwerte unterscheiden sich in ihrer Bitrepräsentation erheblich! Beispiele: alle Paare 2ⁿ-1 und 2ⁿ

große Änderung mit sehr geringen Auswirkungen!

Abhilfe: Graycodes

(Codes bei denen sich benachbarte Zahlen nur in einem Bit unterscheiden)

Weitere Varianten:

- Real-coded GAs
 - Bei kontinuierlichen Problemen weitaus bessere Ergebnisse als klassische GAs
 - Beibehaltung von Selektions- und Akzeptanzmechanismen
 - Eigentlich ein eigenständiger EA
- Der Grouping Genetic Algorithm arbeitet mit Gengruppen und Chromosomen variabler Länge. Für kombinatorische Probleme wie Bin Packing oder Clusteranalyse.

- - -

Anwendungsgebiete:

- kombinatorische Probleme wie Scheduling, TSP, Rucksackproblem, ...
- ganzzahlige Optimierungsprobleme
- kontinuierliche Optimierung (insbesondere real-coded GAs)

Strategieparameter:

- Populationsgröße häufig $30 \le \mu \le 200$
- **Mutationsrate**
- Crossoverrate
- Anzahl der Nachkommen pro Paarung oder Generation
- Parameter von alternativen Selektions- oder Akzeptanzverfahren
- Wahl zwischen alternativen Operatoren

Strategieparameter Populationsgröße

Allgemeines Thema einer Suche basierend auf Metaheuristiken:

- Balance zwischen exploration und exploitation
 - Durch Wahl eines geeigneten Selektionsdrucks (u.a. Partnerwahl, Akzeptanz)
 - Auch die Populationsgröße μ beeinflusst den Selektionsdruck.
 - → Wahl einer geeigneten Populationsgröße
 - zu klein: Gefahr vorzeitiger Konvergenz
 - zu groß: Verschwendung von Rechenzeit

Populationsgröße μ

