1.1

a.

$$NLL(D, w) = -\sum_{i=1}^{N} [(1 - y_i) \log (1 - \sigma(w^T x_i)) + y_i \log \sigma(w^T x_i)]$$

$$= -\sum_{i=1}^{N} [\frac{\partial}{\partial w_j} (1 - y_i) \log (1 - \sigma(w^T x_i)) + \frac{\partial}{\partial w_j} y_i \log \sigma(w^T x_i)]$$

$$= -\sum_{i=1}^{N} [-\frac{(1 - y_i)}{1 - \sigma(w^T x_i)} + \frac{y_i}{\sigma(w^T x_i)}] \frac{\partial}{\partial w_j} \sigma(w^T x_i)$$

$$= -\sum_{i=1}^{N} [-\frac{(1 - y_i)}{1 - \sigma(w^T x_i)} + \frac{y_i}{\sigma(w^T x_i)}] \sigma(w^T x_i) (1 - \sigma(w^T x_i)) x_i$$

$$= -\sum_{i=1}^{N} [\frac{y_i - \sigma(w^T x_i)}{\sigma(w^T x_i)[1 - \sigma(w^T x_i)]}] \sigma(w^T x_i) (1 - \sigma(w^T x_i)) x_i$$

$$\frac{\partial NLL(w)}{\partial (w)} = -\sum_{i=1}^{N} x_i [-\sigma(w^T x_i) + y_i]$$

1.2

a.

$$l(w) = (1 - y_t) \log(1 - \sigma(w^T x_t)) + y_t \log \sigma(w^T x_t)$$

b.

$$w_t = n(x_t(-\sigma(w_{t-1}^T x_t) + y_t)) + w_{t-1}$$

c.

If x_t is very sparse, then the time complexity will be O(n) (or close to O(1)), where n are (x_t, y_t) pairs.

d.

With a large n we can cover more ground with fewer iterations. But a large n has a greater probability of missing the convergence/lowest point since the slope of the hill is changing constantly. With a very small n, we can move in the direction of the negative gradient since we are recalculating it repeatedly. A low n is more precise but calculating the gradient and to also to get to the lowest point will be time consuming.

$$\frac{\partial (l-\mu \|\mathbf{w}\|_{2}^{2})}{\partial (w)} = -2\mu w + x_{t}(-\sigma(w^{T}x_{t}) + y_{t})$$

$$w_{t} = n(x_{t}(-\sigma(w_{t-1}^{T}x_{t}) + y_{t})) + w_{t-1} - 2n\mu w_{t-1}$$

The time complexity of \boldsymbol{w}_t with n dimensions will be O(n).

2.1

Metric	Deceased patients	Alive patients
Event Count		
1. Average Event Count	1027.7385229540919	683.1552587646077
2. Max Event Count	16829	12627
3. Min Event Count	2	1
Encounter Count		
1. Average Encounter Count	24.839321357285428	18.695492487479132
2. Max Encounter Count	375	391
3. Min Encounter Count	1	1
Record Length		
1. Average Record Length	157.04191616766468	194.70283806343906
2. Median Record Length	25.0	16.0
3. Max Record Length	5364	3103
4. Min Record Length	0	0
Common Diagnosis	DIAG320128	DIAG320128
	DIAG319835	DIAG319835
	DIAG313217	DIAG317576
	DIAG197320	DIAG42872402
	DIAG132797	DIAG313217
Common Laboratory Test	LAB3009542	LAB3009542
	LAB3023103	LAB3000963
	LAB3000963	LAB3023103
	LAB3018572	LAB3018572
	LAB3016723	LAB3007461
Common Medication	DRUG19095164	DRUG19095164
	DRUG43012825	DRUG43012825
	DRUG19049105	DRUG19049105
	DRUG956874	DRUG19122121
	DRUG19122121	DRUG956874

2.3 The below ROC curves indicates that when regularization parameter gets larger then the Area Under the Curve (AUC) gets smaller and as the learning rate increases the ROC becomes smoother. From the below models, the highest AUC 0.65, which could be considered a better model when compared to the rest.

2.4 c. Ensemble methods combine multiple models thus yielding a better predictive performance with reduced variance and bias. It is surprising to see that with the default values the performance reduced when compared to the previous model. This could be because ensemble techniques typically involve using several models (not just a few) and here, we just have 5 which might not be enough. But with the number of models increased to 60, the performance increased significantly compared to the previous model.

