

DEKRA DIGITAL

Training ISO/SAE 21434

CONTENT

- 1. Automotive Security Motivation
- 2. Automotive Security Challenges
- 3. Introduction to Automotive Security Standards and UNECE Regulations
- 4. Structure of ISO/SAE 21434
- 5. Summary

1. AUTOMOTIVE SECURITY MOTIVATION

What do you understand from this picture?

Connected Vehicles

Vehicles are getting more and more connected to the world by different communication channels

Vehicle systems need:

- Secured access by authorized parties
- Secured data for driver assistance or autonomous driving systems
- Data integrity
- Protection against misuse or manipulation

Safety and Security Correlation in Automotive

Safety protects humans and environment from the machines, and security protects machines from maliciously acting humans

- A cyber attack on the car's safety functions may result in the change of control parameters or the deactivation of some sensor signals
- Human safety may be put at risk
- As a result, cybersecurity and functional safety must be considered in parallel

2. AUTOMOTIVE SECURITY CHALLENGES

Managing the Security Opens a new Dimension of Complexity

The customers expect

- Intelligent, comfortable, secure and safe vehicles easy to use
- High dependability and availability

Without security, the customer's expectations cannot be fulfilled

The vehicle manufacturer (OEM) must manage the security aspects along

- The complete lifecycle of a vehicle from the OEM side
- The supply chain including also all service providers for the vehicle operation phase

from the current point of view as a writer of specifications and integrator of E/E Systems

The supplier and service provider have

- Either to develop a secure component/system
- Or/and to guarantee security and integrity of data transmission and/or related software apps

Both to manage the security from their corresponding point of view

Cybersecurity Cannot be Guaranteed!

- Principle of risk minimization
- "Secure" technologies
- Additional protective measures
- Cybersecurity test strategy penetration testing, vulnerability scan, fuzzing
- "Mature organization" for development, production, operation, maintenance and repair
- Continuous market and product monitoring, incident detection and response
- Extended V-model

Risk Based Approach

- Identification of assets
- Identification of threats and attack paths
- Analysis of vulnerabilities
- Risk determination

Cybersecurity Management

- Manage risks and change of risks
- Define mitigations to minimize risks
- Observe the remaining risks by monitoring product and environment
 - Detect and identify new threats / new vulnerabilities
 - Define countermeasures to reduce risks
 - Implement & test CS solutions
 - Rollout CS solutions into the products
- Cyclic process, valid for the whole product life cycle

3. INTRODUCTION TO AUTOMOTIVE SECURITY STANDARDS AND UNECE REGULATION

Drivers for Automotive CS Unification since ~2015

- SAE Society of Automotive Engineers
- NHTSA National Highway Traffic Safety Administration
- ENISA European Union Agency for Network and Information Security
- European Commission Cybersecurity Act
- ISO International Standardization Organization
 - ISO/SAE 21434 "Road vehicles Cybersecurity engineering"
 - ISO/DIS 24089 "Road vehicles Software update engineering"
 - ISO/PAS 5112 "Road vehicles Guidelines for auditing cybersecurity engineering"
- UN World Forum for Vehicle Regulation, Task Force on Cybersecurity and OTA
 - Regulation UN ECE R155 "Cybersecurity"
 - Regulation UN ECE R156 "Software update" (including Over-The-Air, OTA)
- VDA-QMC Redbook Auditing a CSMS

UNECE R155 and R156

- Regulation only for OEMs and only for the products to be sold in UNECE 1958 Agreement member states
- Regulations developed by the Working Party 29 of the UNECE (also named WP.29 Regulations)
 https://unece.org/un-regulations-addenda-1958-agreement
- R155 Cyber Security and Cyber Security Management System (CSMS)
 https://unece.org/transport/documents/2021/03/standards/un-regulation-no-155-cyber-security-and-cyber-security
- R155 Interpretation document CSMS
 https://wiki.unece.org/download/attachments/109346976/TFCS ahID4-03rev3 %28Chair%29 Interpretation document CS clean final.docx?api=v2
- R156 Software Update and Software Update Management System (SUMS)
 https://unece.org/transport/documents/2021/03/standards/un-regulation-no-156-software-update-and-software-update
- R156 Interpretation document SUMS
 https://wiki.unece.org/download/attachments/106300750/ECE-TRANS-WP29-GRVA-2020-29e.docx?api=v2

UNECE R155: Cybersecurity and Cybersecurity Management System

Regulation for the OEM

Concerned are vehicles of categories M, N, O (if equipped with at least one ECU),
 L6 and L7 if equipped with ADAS level 3 or higher

Part 1:

- Each OEM must establish and maintain a Cyber Security Management System (CSMS)
 - for organizational processes, responsibilities, and governance
 - to treat risk from cyber threats to vehicles and to protect vehicles from cyber attacks
 - which includes complete lifecycle of a car
 - and which must be certified as a precondition for future type approval

Part 2:

- Each OEM must identify vehicle technology-related risks and to protect the vehicle against them
- This must be demonstrated at type approval

UNECE R156: Software Update and Software Update Management

Regulation for the OEM

Concerned are vehicles of categories M, N, O, R, S, T with software update capabilities

Part 1:

- Each OEM must establish and maintain a Software Update Management System (SUMS)
 - for organizational processes, responsibilities and governance of software packages
 - to deliver and document software updates to vehicles (including OTA)
 - which includes complete life cycle of a car
 - and which must be certified as a precondition for future type approval

Part 2:

- Each OEM must guarantee software integrity and a secure and safe update
- This must be demonstrated at type approval

UNECE world forum for vehicle regulations WP29Contracted countries (Dark)

UNECE R156: Software Update and Software Update Management

Role of Suppliers and Service Providers

OEMs may require their suppliers to meet all the UNECE regulatory requirements by demonstrating compliance with national/international standard frameworks, which can then be used to demonstrate compliance with the WP.29

Part 1 of R155: CSMS

Part 1 of R155: CSMS - Example of OEM CS Processes

Part 2 of R155: CS for a Vehicle Type

For vehicle type approval the vehicle manufacturer (OEM) ...

- Shall have a valid certification of his CSMS (July 2024 at the latest)
- Shall identify and manage supplier-related CS risks for the vehicle type
- Shall perform an exhaustive risk assessment for the vehicle type and manage all the identified risks appropriately:
 - Including individual elements of the vehicle types and their interactions
 - Including interactions with any external systems (external communication)
 - Considering a given list of known threats & mitigations (see "Annex 5") as well as any other relevant risk
- Must protect the vehicle type against all identified risks under consideration of the list of all known mitigations (see "Annex 5")

R155 Requirements Summary

Requirements for CSMS

- CSMS applies all lifecycle phases of a vehicle
- OEM demonstrates process capability within CSMS
- Ability of the OEM to detect and resolve cybersecurity issues and continuous monitoring for all vehicles
- Manage dependencies with suppliers and third party

Requirements for vehicle type

- Managing supplier related risks for the vehicle type approved
- Extensive risk assessment on individual elements of vehicle types
- Appropriate security controls against common attack vectors
- Sufficient testing and verification of effectiveness of security measures
- Process to report outcome of monitoring activities

Introduction_3. Introduction to Automotive Security Standards and UNECE Regulation

How can the UNECE R155 requirements be met?

ISO/SAE 21434

Managing the complexity of cybersecurity requires a common understanding of the following:

- Security engineering
- Clear responsibilities
- Comparable approaches for risk determination and corresponding mitigations
- Similar processes with a high degree of maturity by all parties involved

An international standard for automotive cybersecurity engineering (ISO/SAE 21434) is a basis for common understanding and for limiting the remaining product liability risk.

UNECE Regulation vs. ISO Standard

UNECE: Harmonization of vehicle regulations

- National authorities create laws based on the UNECE documents
- Fulfillment mandatory, by law

ISO: Standardization committee

- Technical reference, basis for common understanding
- "State of Technology" = insurance concerning product liability
- Recommended, but not mandatory
- OEMs force fulfillment in the supply chain

4. STRUCTURE OF ISO/SAE 21434

Structure of ISO/SAE 21434

Overall & project specific management processes (similar to ISO 26262)

- Management systems
- Policies
- Preparation for assessment

Distributed CS activities

• Define interfaces between customer, supplier, third parties.

Continuous CS activities

- Requirements for continuous monitoring of CS relevant information
- Framework for analysis and management of vulnerabilities

Concept, development and post-development

- Add-on of CS relevant activities during concept and development
 - Establishment of CS goals and requirements
 - TARA and vulnerability analysis during development
- Consideration of post-development requirements (during or after production, decommissioning ...)
- Definition of post-development processes (production, incident response, update)

TARA (Threat Analysis and Risk Assessment)

- Describes the steps to perform a robust risk analysis on the system
- Complex process to be performed multiple times and for multiple assets

5. SUMMARY

Training Overview ISO/SAE 21434

Part 1, Duration: 4hrs

Introduction

Organizational Management Activities

Project Dependent Management Activities

Distributed Cybersecurity Activities

Part 2, Duration: 4hrs

Threat Analysis and Risk Assessment Methods (TARA)

CS Related Topics and Case Study

Part 3, Duration: 4hrs

Continual Cybersecurity Activities

Concept

Product Development

Cybersecurity Validation

Part 4, Duration: 4hrs

Production

Operations and Maintenance

End of Cybersecurity Support and Decommissioning

Final Questions / Knowledge Test (if considered in this training)

^{*} intermediate break to be decided by trainer and participants on an hourly basis

DEKRA DIGITAL

innovating safety

That's all of

INTRODUCTION

Thank you!