CHAPTER 1

RINGS AND ALGEBRAS

1.0 Recap of Set Theory

Definition 1.0.1. Let X be a set. Then, the *powerset of* X is the set of subsets of X, and is denoted by $\mathcal{P}(X)$.

Definition 1.0.2. Let X be a set, and let $(X_i)_{i \in I}$ be a collection of subsets of X, for some indexing set I. We define the *union* to be:

$$\bigcup_{i \in I} X_i = \{ x \in X \mid \exists i \in I \text{ s.t. } x \in X_i \}.$$

Similarly, we define the *intersection* to be:

$$\bigcap_{n=1}^{\infty} A_n = \{ x \in X \mid \forall i \in I \text{ s.t. } x \in X_i \}.$$

Definition 1.0.3. Let X be a set, and let $A \subseteq X$. We define the *complement* of A to be:

$$A^c = X \setminus A = \{ x \in X \mid x \notin A \}.$$

Proposition 1.0.4 (De Morgan Law). Let A and B be sets. Then,

$$(A \cup B)^c = A^c \cap B^c, \qquad (A \cap B)^c = A^c \cup B^c.$$

In general, for a collection of sets $(A_i)_{i\in I}$, where I is an index set,

$$\left(\bigcup_{i\in I} A_i\right)^c = \bigcap_{i\in I} A_i^c, \qquad \left(\bigcap_{i\in I} A_i\right)^c = \bigcup_{i\in I} A_i^c.$$

Definition 1.0.5. Let S be a set. We say that S is countable if either S is empty, or there exists a surjective function $f: \mathbb{Z}_{>1} \to S$. If so, we can denote

$$S = \{f(1), f(2), f(3), \dots\}.$$

Proposition 1.0.6. Let S be a countable set, and let $T \subseteq S$. Then, T is countable.

Proposition 1.0.7. Let S be a countably infinite set. Then, there exists a bijective function $f: \mathbb{Z}_{\geq 1} \to S$.

Proposition 1.0.8. Let S and T be countable sets. Then, their union $S \cup T$ is countable.

Proposition 1.0.9. Let $(S_n)_{n=1}^{\infty}$ be a sequence of countable sets. Then, their union

$$\bigcup_{n=1}^{\infty} S_n$$

is countable.

Proposition 1.0.10. Let S and T be countable sets. Then, the product $S \times T$ are countable.

Corollary 1.0.11. The set \mathbb{Q} is countable.

Proposition 1.0.12. The set [0,1] is not countable.

Definition 1.0.13. Let A and B be sets. We say that |A| = |B| if there exists a bijection $f: A \to B$. If there exists an injective function $f: A \to B$, then we say that $|A| \le |B|$.

1.1 Rings and Algebras

Definition 1.1.1. Let X be a set. We say that $\mathcal{R} \subseteq \mathcal{P}(X)$ is a *ring* (of subsets of X) if:

- $\varnothing \in \mathcal{R}$:
- for all $A, B \in \mathcal{R}$, the difference $A \setminus B \in \mathcal{R}$;
- for all $A, B \in \mathcal{R}$, the union $A \cup B \in \mathcal{R}$.

Proposition 1.1.2. Let X be a set, and let $\mathcal{R} \subseteq \mathcal{P}(X)$ be a ring. Then, for $A, B \in \mathcal{R}$, the intersection $A \cap B \in \mathcal{R}$.

Definition 1.1.3. Let X be a set. We say that $A \subseteq \mathcal{P}(X)$ is an algebra (of subsets of X) if A is a ring with $X \in A$.

Proposition 1.1.4. Let X be a set, and $A \subseteq \mathcal{P}(X)$. Then, A is an algebra if and only if:

- $\varnothing \in \mathcal{A}$;
- for all $A \in \mathcal{A}$, the complement $A^c \in \mathcal{A}$; and
- for all $A, B \in \mathcal{A}$, the union $A \cup B \in \mathcal{A}$.

Definition 1.1.5. Let X be a set. We say that $A \subseteq \mathcal{P}(X)$ is a σ -algebra (of subsets of X) if A is an algebra such that for all $(A_n)_{n=1}^{\infty}$ in A, the union

$$\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}.$$

Proposition 1.1.6. Let X be a set, and $A \subseteq \mathcal{P}(X)$. Then, A is a σ -algebra if and only if:

- $\varnothing \in \mathcal{A}$;
- for all $A \in \mathcal{A}$, the complement $A^c \in \mathcal{A}$; and
- for a sequence $(A_n)_{n=1}^{\infty}$ in \mathcal{A} , the union

$$\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}.$$

Proposition 1.1.7. Let X be a set, and $A \subseteq \mathcal{P}(X)$ be a σ -algebra. Then, for a sequence $(A_n)_{n=1}^{\infty}$ in A, the intersection

$$\bigcap_{n=1}^{\infty} A_n \in \mathcal{A}.$$

1.2 Borel Sets

Definition 1.2.1. We define $\mathcal{E}(\mathbb{R})$ to be the set containing all finite unions of intervals in \mathbb{R} .

Proposition 1.2.2. The set $\mathcal{E}(\mathbb{R})$ is a ring.

Definition 1.2.3. Let $n \in \mathbb{Z}_{\geq 1}$. We define $\mathcal{E}(\mathbb{R}^n)$ to be the set containing all finite union of intervals in \mathbb{R}^n , where an interval in \mathbb{R}^n is a product of n intervals in \mathbb{R} .

Proposition 1.2.4. The set $\mathcal{E}(\mathbb{R}^n)$ is a ring.

Definition 1.2.5. We define the *Borel set* $\mathcal{B}(\mathbb{R})$ to be the σ -algebra generated by $\mathcal{E}(\mathbb{R})$.

Proposition 1.2.6. Let $A \in \mathcal{B}(\mathbb{R})$ and $x \in \mathbb{R}$. Then,

$$x + A = \{x + a \mid a \in A\} \in \mathcal{B}(\mathbb{R}).$$

1.3 Measure on Algebra

Definition 1.3.1. Let X be a set and \mathcal{R} be a ring of subsets of X. We say that $\mu \colon \mathcal{R} \to [0, \infty]$ is an additive set function if:

- $\mu(\varnothing) = 0$ and
- for all $A, B \in \mathcal{R}$ with $A \cap B = \emptyset$, $\mu(A \cup B) = \mu(A) + \mu(B)$.

Definition 1.3.2. Let X be a set and \mathcal{R} be a ring of subsets of X. We say that $\mu \colon \mathcal{R} \to [0, \infty]$ is a *measure* if:

- $\mu(\varnothing) = 0$ and
- for a sequence $(A_n)_{n=1}^{\infty}$ in \mathcal{R} of pairwise disjoint sets, if $\bigcup_{n=1}^{\infty} A_n \in \mathcal{R}$, then

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n).$$

Definition 1.3.3. Let X be a set, \mathcal{R} a ring of subsets of X, and $\mu \colon \mathcal{R} \to [0, \infty]$ be an additive set function. We say that μ is σ -finite if there exists a sequence $(A_n)_{n=1}^{\infty}$ in \mathcal{R} such that $\mu(A_n) < \infty$ for all $n \in \mathbb{Z}_{\geq 1}$, and

$$X = \bigcup_{n=1}^{\infty} A_n.$$

If we have $X \in \mathcal{R}$ with $\mu(X) < \infty$, then μ is finite.

Proposition 1.3.4. Let X be a set, \mathcal{R} a ring of subsets of X, and $\mu \colon \mathcal{R} \to [0,\infty)$ be a measure. Then, the following are equivalent:

- μ is countably additive (i.e. a measure);
- If $(A_n)_{n=1}^{\infty}$ is a sequence in \mathbb{R} with $A_n \subseteq A_{n+1}$ for all $n \in \mathbb{Z}_{\geq 1}$ with

$$A = \bigcup_{n=1}^{\infty} A_n \in \mathcal{R},$$

then

$$\mu(A) = \lim_{n \to \infty} \mu(A_n).$$

• If $(A_n)_{n=1}^{\infty}$ is a sequence in \mathbb{R} with $A_n \supseteq A_{n+1}$ for all $n \in \mathbb{Z}_{\geq 1}$ with

$$\bigcap_{n=1}^{\infty} A_n = A,$$

then

$$\mu(A) = \lim_{n \to \infty} \mu(A_n).$$

• If $(A_n)_{n=1}^{\infty}$ is a sequence in \mathbb{R} with $A_n \supseteq A_{n+1}$ for all $n \in \mathbb{Z}_{\geq 1}$ with

$$\bigcap_{n=1}^{\infty} A_n = \emptyset,$$

then

$$\lim_{n \to \infty} \mu(A_n) = 0 = \mu(\emptyset).$$

Definition 1.3.5. We define the *Lebesgue measure* $\lambda \colon \mathcal{E}(\mathbb{R}) \to [0, \infty]$ as the extension of $\lambda(I) = \sup I - \inf I$, for some interval I.

Lemma 1.3.6. Let $A \in \mathcal{E}(\mathbb{R})$ with $\lambda(A) > 0$. Then, for all $\delta \in (0,1)$, there exists a closed $A' \in \mathcal{E}(\mathbb{R})$ such that $A' \subseteq A$ and $\lambda(A') = (1 - \delta)\lambda(A)$. In particular, for every $\varepsilon > 0$, there exists a closed $A' \in \mathcal{E}(\mathbb{R})$ such that $\lambda(A \setminus A') < \varepsilon$

Theorem 1.3.7. The Lebesgue measure $\lambda \colon \mathcal{E}(\mathbb{R}) \to [0, \infty]$ is a measure.

1.4 Outer Measure

Definition 1.4.1. Let X be a set, \mathcal{R} a ring, and a measure $\mu \colon \mathcal{R} \to [0, \infty]$. Then, we define $\mu^* \colon \mathcal{P}(X) \to [0, \infty]$ by:

$$\mu^*(A) = \inf \left\{ \sum_{j=1}^{\infty} \mu(E_j) \mid (E_j)_{j=1}^{\infty} \text{ in } \mathcal{R}, A \subseteq \bigcup_{j=1}^{\infty} E_j \right\}$$

and $\mu^*(A) = \infty$ if there is no $(E_j)_{j=1}^{\infty}$ in \mathcal{R} containing A.

Lemma 1.4.2. Let X be a set, \mathcal{R} a ring, and a measure $\mu \colon \mathcal{R} \to [0, \infty]$. Then,

- $\mu^*(\emptyset) = 0;$
- for $A \subseteq B \subseteq X$, $\mu^*(A) \le \mu^*(B)$;
- for all $A \in \mathcal{R}$, $\mu^*(A) = \mu(A)$;
- for a sequence $(A_n)_{n=1}^{\infty}$ in X,

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n).$$

Definition 1.4.3 (Caratheodory's Condition). Let X be a set, \mathcal{R} a ring, a measure $\mu \colon \mathcal{R} \to [0, \infty]$, and $A \subseteq X$. We say that A is μ^* -measurable if for all $S \subseteq X$,

$$\mu^*(S) = \mu^*(S \cap A) + \mu^*(S \cap A^c).$$

We denote by \mathcal{M}_{μ^*} the set of μ^* -measurable sets of X.

Proposition 1.4.4. Let X be a set, \mathcal{R} a ring, and a measure $\mu \colon \mathcal{R} \to [0, \infty]$. Then,

- $\mathcal{R} \subseteq \mathcal{M}_{u^*}$;
- \mathcal{M}_{u^*} is an algebra;
- M_{u*} is a σ-algebra;
- μ^* is a measure on \mathcal{M}_{μ^*} .

Proposition 1.4.5 (Caratheodory Extension Theorem). Let X be a set, \mathcal{R} a ring, and a measure $\mu \colon \mathcal{R} \to [0, \infty]$. Then, μ extends to a measure on the σ -algebra $\mathcal{A}(\mathcal{R})$ generated by \mathcal{R} .

Proposition 1.4.6. The Lebesgue measure $\lambda \colon \mathcal{E}(\mathbb{R}) \to [0, \infty]$ extends to a unique measure $\lambda^* \colon \mathcal{B}(\mathbb{R}) \to [0, \infty]$.

Proposition 1.4.7. Let $x \in \mathbb{R}$ and $A \in \mathcal{B}(\mathbb{R})$. Then,

$$\lambda(x+A) = \lambda(A).$$