

提纲

- 深度学习之图像的卷积及其作用
- 图数据及其分析需求
- 深度神经网络用于图数据的处理
- 图卷积神经网络、实践

• 图数据回顾

没有权重

有权重

无向

Undirected edge

有向

Directed edge

- 图数据回顾
 - 分子结构→表示为图

- 图数据回顾
 - 戏剧人物关系→表示为图

 π

NAME AND SECULAR AND SECURAR AND SECULAR AND SECULAR AND SECULAR AND SECURAR AND SECULAR AND SECURAR A

- 图数据回顾
 - 更多的应用场景里的实体及其关系→表示为图

- 深度学习之图像的卷积及其作用
 - 目标图像的某个像素
 - 为原图像该像素,及其周围其他像素的加权和
 - 权重矩阵称为卷积核

PENNING OF CHINA

- 深度学习之图像的卷积及其作用
 - 通过一个实例看卷积核的作用
 - 卷积核是训练出来的
 - 不同的卷积核识别图像的不同特征

10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	0		10	10	0	0
0	0		10	10	0	0
0	0		10	10	0	0
0	0		10	10	0	0
0	0		10	10	0	0
0	0	Г	10	10	0	0

这个卷积核识别纵向的 边缘线

- 深度学习之图像的卷积及其作用
 - 用多个卷积核进行卷积,平面的叠加

HIVERS/77 OR CHINAL

- 深度学习之图像的卷积及其作用: 构造全连接神经网络
 - 可以通过一系列卷积层
 - 加上最后一个全连接层
 - 构造神经网络,完成预测功能(比如分类)

- 卷积神经网络在图像处理、音频、以及文本处理中,已经取得了巨大成功
- 图像是一种二维的矩阵, CNN的核心能力在于使用小窗口的过滤器, 在图片上平移并且对准, 通过卷积的方式来提取特征

 π

- · 卷积神经网络(CNN, Convolution Neural Network)
 - 卷积神经网络是一种特殊类型的前向反馈神经网络,特别适合于图像识别、语音分析等应用领域
 - 卷积神经网络由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数,降低了网络参数选择的复杂度
 - 该优点在网络的输入是图像时表现的更为明显,可以使用图像直接作为网络的输入,避免了传统识别算法中复杂的特征提取过程
 - 并且,在一个映射面生共享权值,使得图像的特征被检测出来,而不管它的 位置(Location)是否发生移动

 π

BENNING OF CHINA

- 图数据及其分析需求
 - 图数据无处不在

example from Jure's slides

HIVERS/77 OR CHINA

- 图数据及其分析需求
 - 应用场景: 节点分类
 - 作者、论文、发表会议的领域分类

HIVERS/77 OR CHINAL

- 图数据及其分析需求
 - 应用场景: 异常检测 (节点分类)
 - 捕捉节点与整体之间的相似关系,检测不一样的节点

 π

A SINCERS/77 OF CHINA

- 图数据及其分析需求
 - 应用场景: 推荐系统 (链接预测)
 - 基于用户和商品的历史交互行为, 给用户推荐新商品

- 图数据及其分析需求
 - 应用场景:知识图谱补全(链接预测)
 - 利用邻居节点与关系信息对节点进行表示, 再对未知关系进行预测

- ▶ 知识图谱的例子, 其中节点代表实体, 边代表关系
- ▶ 虚线部分代表需要补全的关系

ANNOR CHINA

- 图数据及其分析需求
 - 应用场景: 药物设计 (全图分类)
 - 提取分子的特征,用于药物性质预测等

分子可表示成图结构

 π

- 深度神经网络在文本、音频、图像等数据的处理中,表现出强大的处理 能力
 - 一 文本、音频、图像、视频等媒体完成数字化以后,都可以表达成向量或 者张量的形式,有利于深度神经网络的后续处理
 - 人们就思考,能否借助深度神经网络,对图数据(社交网络)进行处理呢?
- 一个新的研究热点—图神经网络(Graph Neural Networks, GNN)应运 而生
 - GNN具备对图中的节点间关系进行建模的强大功能
 - 近年来,GNN在社交网络(狭义)、知识图谱、推荐系统等领域,得到了 越来越广泛的应用

- 深度神经网络用于图数据的处理
 - 深度神经网络的能力: 归纳偏置
- 归纳偏置在深度学习中无处不在
 - 卷积神经网络CNN
 - 空间相近的神经元有强相关性
 - 循环神经网络RNN
 - 时间相近的神经元有强相关性
 - 图神经网络GNN
 - 有边相连的节点有强相关性

从具体例子中寻找共性,泛化为通用的模型偏好

- 图神经网络
- 是直接进行图数据处理的神经网络,包括
 - 图卷积神经网络(Graph Convolution Network)
 - 图注意力神经网络(Graph Attention Network)
 - 图自编码器(Graph Auto encoders)
 - 图生成式神经网络(Graph Generative Network)
 - 以及图时空神经网络(Graph Spatial-Temporal Network)等

 π

• GNN的应用

- Node classification: for example predict the labels of nodes by considering the labels of their neighbors
- Link prediction: from example prediction connections for social networks
- Graph clustering: This involves dividing the nodes of a graph into clusters.
- Graph classification: This entails classifying a graph into a category.
- Computer vision: for example The scene generation model then identifies objects in the image and the semantic relationship between them

- 图神经网络,与图嵌入(也称为网络嵌入)研究密切相关
 - 图嵌入,旨在通过保留图的网络拓扑结构和节点内容信息,将图中的顶点表示为低维稠密向量,以便使用传统的机器学习算法(比如支持向量机分类器等)、以及深度学习算法,对其进行处理
 - 图嵌入算法主要是一些无监督方法,可以分为三类
 - 包括矩阵分解
 - 随机游走
 - 和深度学习方法等

GCN兼具图数据的直接处理和图嵌 入的功能

 \mathcal{H}

- 图卷积神经网络、实践:从CNN到Graph CNN
 - Graph convolution neural network 与传统convolution neural network的区别
 - 在图像为代表的欧式空间中,结点的邻居数量都是固定的;卷积操作是用固定大小可学习的卷积核来抽取像素的特征
 - 图数据卷积的难点: **邻居结点数量不固定**;解决思路:找出一种**可处理变长邻居结点**的卷积核 在图上抽取特征

- 图卷积神经网络、实践: CNN→GCN
 - GCN是受到CNN启发而提出的一种神经网络结构
 - 它的目的和CNN网络是类似的,即对图数据进行特征提取
 - 这些提取的特征,可以用于下游任务
 - 比如节点分类(Node Classification)
 - 图分类(Graph Classification)
 - 链路预测(Link Prediction)等
 - 也可以得到图的嵌入表示(Graph Embedding)
 - 然后用传统机器学习方法实现后续任务

A SINCERS/77 OF CHINA

- 图卷积神经网络、实践:一个例子
 - 假设G=(V, E), V是节点的集合,包含N个节点(Node)
 - 每个节点有自己的特征(D维)
 - 这些节点的特征构成N*D维的矩阵,称为X
 - 节点间的关系
 - 形成一个N*N的<mark>邻接矩阵A</mark>(Adjacency Matrix)
 - X和A是GCN的输入

- 图卷积神经网络、实践:一个例子
 - 假设G=(V, E), V是节点的集合,包含N个节点(Node)
 - 单层的图神经网络,其计算过程表示为: $f(H^l) = \delta (H^lW^l)$,其中 $H^0 = X$, σ是非线性激活函数
 - 而GCN的计算过程表示为: f(H^I, A) = δ (AH^IW^I) , 多了一个A邻接矩阵
 - 下面通过剖析实例,以获得直观的认识


```
A=nx.adjacency_matrix(g).todense()
```

- 图卷积神经网络、实践:一个例子
 - 假设G=(V, E), V是节点的集合,包含N个节点(Node)
 - GCN的计算过程表示为: $f(H^l, A) = δ(AH^lW^l)$, 多了一个A邻接矩阵
 - 下面通过剖析实例,以获得直观的认识
 - 假设X为图中各个节点的属性

- X: $X \in \mathbb{R}^{n \times d}$ 特征矩阵,每一列为 定义在所有节点上一个信号
- 这里每个节点用一个2维行向量表示

```
import numpy as np
X = np. matrix([
              \begin{bmatrix} i, -i \end{bmatrix}
              for i in range (A. shape [0])
         ], dtype=float)
matrix([[0., 0.],
         [1., -1.],
         [ 2., -2.],
         [3., -3.],
         [4., -4.],
         [5., -5.]
```

- 图卷积神经网络、实践:一个例子
 - 假设G=(V, E), V是节点的集合,包含N个节点(Node)
 - GCN的计算过程表示为: $f(H^I, A) = δ(AH^IW^I)$, 多了一个A邻接矩阵
 - 下面通过剖析实例,以获得直观的认识
 - 假设X为图中各个节点的属性
 - H¹是每一层的特征,对于输入层的话,H⁰就是X,即H⁰为X,有AX

```
[[0, 1, 0, 0, 1, 1],

[1, 0, 0, 0, 1, 0],

[0, 0, 0, 1, 0, 0],

[0, 0, 1, 0, 0, 1],

[1, 1, 0, 0, 0, 0],

[1, 0, 0, 1, 0, 0]]
```

```
[[ 0., 0.],
[ 1., -1.],
[ 2., -2.],
[ 3., -3.],
[ 4., -4.],
[ 5., -5.]]
```

3., -3.

- h 由此可以看出,AX实际上是对邻接节点进行Sum操作
- 这种操作对特征的提取,是对节点的度的倾向性进行聚合,也就是节点的度越大,聚合的信息就越大

A*X表示,最简单的无参卷积方式,将所有邻居节点的隐藏 状态加和,来更新当前节点的隐藏状态

HAVERS/77 OR CHINA

- 图卷积神经网络、实践:一个例子
 - 假设G=(V, E), V是节点的集合,包含N个节点(Node)
 - A为邻接矩阵, X为节点属性
 - AX的解释如下
- 在2维图像的CNN操作中,我们可以把一个像素看作一个图的一个节点,它的邻居是根据过滤器的窗口大小确定的
- 以浅灰色节点作为基准点进行2维 卷积(3*3卷积核),是对邻居节点 进行加权求和
- 所有的邻居节点,因为是固定大 小窗口内的像素,可以认为(邻居) 节点的数量是固定的,节点是有 序的

二维图像上的邻域和网络结构里的邻域

- 图卷积神经网络、实践:一个例子
 - 假设G=(V, E), V是节点的集合,包含N个节点(Node)
 - A为邻接矩阵, X为节点属性
 - AX的问题
 - A中不包含Self-Loop信息(自己到自己的边)
 - 上述节点的聚合表示,不包括它自己的特征,只是邻居节点特征的聚合
 - 但是具有自循环的节点,应该在聚合中包含自己的特征

我们设计一个Â=A+I, I为单位矩阵,来解决这个问题

HENNY OF CHINA

- 图卷积神经网络、实践:一个例子
 - 假设G=(V, E), V是节点的集合,包含N个节点(Node)
 - A为邻接矩阵, X为节点属性; 现在A改为Â
 - 计算过程表示为 $f(H^l, A) = δ(\hat{A}H^lW^l)$
 - 公式还有一个问题
- 度数大的节点在其特征表征中将具有较大的值,度数小的节点将具有较小的值,这可能会导致梯度消失或梯度爆炸,会影响随机梯度下降算法的效果
- 随机梯度下降算法通常用于训练此类网络,对每个输入特征的尺度(或值域范围)敏感
- 我们通过对特征表征进行归一化处理来解决这个问题;通过将邻接矩阵 A 与度矩阵 D 的逆相乘,对 其进行变换,从而通过节点的度对特征表征进行归 一化

度矩阵的计算公式为 $D_{ii} = \sum_{j} \hat{A}_{ij}$

- 图卷积神经网络、实践:一个例子
 - 假设G=(V, E), V是节点的集合,包含N个节点(Node)
 - A为邻接矩阵, X为节点属性; 现在A改为Â
 - 这时候,计算过程表示为 $f(H^l, A) = δ(D^{-1}\hat{A}H^lW^l)$

计算D⁻¹Â使得 矩阵的每一行是归一化的 结果,即每一行的和是1

规范化使得每一行的权重加起来为1

- 图卷积神经网络、实践:一个例子
 - 假设G=(V, E), V是节点的集合,包含N个节点(Node)
 - A为邻接矩阵, X为节点属性
 - 也可以尝试进行对称归一化,比如 $f(H^l, A) = \delta (D^{-\frac{1}{2}} \hat{A} D^{-\frac{1}{2}} H^l W^l)$
 - · 这就是完整的GCN层与层之间传播公式的由来
 - 下图解释了各个成分的含义

H^{l+1} .	= .	δ.	[₀	$D^{-\frac{1}{2}}\hat{A}D^{-\frac{1}{2}}$	H ¹ W ¹ .]
4, Output to next layer/	ø	3, Nonlinearity	P	1, Normalize graph structure	2, Multiply node properties and	
result .					weights	

 π

• 图卷积神经网络实践

名称	类型	大小	修改日期	
01graph convolution neural network.ipynb	IPYNB 文件	157 KB	2021/11/17 20:26	

 π

- 图卷积神经网络实践
 - 我们利用GCN对karate_club_graph图数据集进行处理,使用随机初始化的GCN进行特征提取,得到各个Node的Embedding表示
 - 然后根据Node的类别可视化,效果如图所示
 - 可见,在原数据中不同类别的Node,经过GCN提取出的Embedding,在空间上自动聚在一起,验证了图卷积神经网络的处理能力

• 图卷积神经网络总结:图卷积框架

- 图卷积神经网络总结:图卷积框架
 - 根据归一化的邻接矩阵聚合邻居信息
 - 参数用来做特征转换
 - $H^{(l+1)} = \sigma(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)})$
 - $\tilde{A} = A + I_N$, A:邻接矩阵, I_N :单位矩阵, \tilde{A} : 考虑节点自己到自己的连接
 - $\widetilde{D}_{ii} = \sum_{j} \widetilde{A}_{ij}$,度矩阵
 - $W^{(l)} \in \mathbb{R}^{D^{(l)} \times D^{(l+1)}}$,第I层的权重矩阵
 - $H^{(l)} \in \mathbb{R}^{N \times D^{(l)}}$,第I层的节点的隐藏状态
 - H⁽⁰⁾ = X, 初始特征

• GCN的目标函数:一个简单的GCN

旧传导式

$$Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right)$$

- $\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$
- 假设有3类(F),有4个节点(yL)
- Y为实际标签,4个节点有4个标签
- Z为神经网络输出
 - X1, X2, X3, X4四个节点经过网络传播以后分别得到z1,z2,z3,z4
 - 它们都是3维向量,因为总共有3个类
- · 左边的式子为y和z两者的交叉熵

/		
节 点	Y	Z
X1	100	0.8 0.1 0.1
X2	010	0.2 0.6 0.2
Х3	010	0.2 0.5 0.3
X4	001	0.2 0.2 0.6

П

