ECE 115C Final Project Report Team #14: Lana Lim, Maria Campo Martins, Jared Velasquez

Phase	1	2	3	
Analytical D(critical path)	39.79	N/A	55.71	
Simulation D(critical path)	N/A	312.300615	559.40115	
Analytical Energy	41.31	N/A	9.55	
Simulation Energy	N/A	-0.99336	-0.2277408	

Total Energy Reduction [%]	Contribution from sizing	Contribution from Vdd	
Analytical model [%]	47.44	29.44	
Simulation model [%]	19.79342836	57.28026094	
Total delay increase [%]	Contribution from sizing	Contribution from Vdd	
Analytical model [%]	18.4	21.6	
Simulation model [%]	-8.124999049	48.124999049	

Tables 1 and 2. Summary metrics.

Figure 1. Top-level diagram with highlighted critical path.

Gate	XOR0	XOR3	INV	СМРО	CMP1	CMP2	СМР3	CMP Cout
PMOS		778.09120	1009.0472	2617.0682	3394.0904	4401.4059	5708.1167	7402.4415
TMOS		35	9	13	88	81	25	82
		224.95903	144.84940	237.63250	262.92365	374.34747	702.07767	1910.3683
	600	93	27	98	65	52	06	58

NMOS		518.72746	672.69819	1744.7121	2262.7269	2934.2706	3805.4111	4934.9610
TUNOS		9	33	42	92	54	5	54
		149.97269	96.566268	158.42167	175.28243	249.56498	468.05178	1273.5789
	400	2 9	48	3	77	34	04	06
TGATE		518.72746						
		9						
		149.97269						
	400	29						

Table 3. Baseline sizing in red. Optimal sizing in blue.

Critical path practical worst case delay:

- x=1011, t=0010 with transitions at x0: 0->1 and t2: 1->0. Switching t2 does not affect critical path but allows us to measure the output transition more clearly.
- Test starts at 35ns.

Design decisions and rationale:

- Initially, we minimized the number of transistors by choosing optimal logic gates. E.g., transmission gate instead of CMOS XOR, comparators instead of full adders.
- Then we used truth tables to minimize the logic. E.g. adding 0001 does not actually require full adders. Since the input is fixed, we can simplify the logic down to 1 AND and 1 XOR gate for the non-fixed inputs.
- Finally, we identified points in the critical path where we could save time. E.g., by switching the order of inputs in an XOR gate, we could have the critical path going through a shorter stage.

Trade-offs to achieve design goals:

- Size vs. VDD: increasing sizing and decreasing width to make our energy consumption a lot lower but consequently increases our delay.
- Optimizing for the critical path vs. optimizing for the rest of the circuit: we didn't want to increase the delay of the other paths by so much that they would in turn become the critical path.