Robust Stochastic Portfolio Optimization: A Data-driven Clustering Approach

Investigator: Tianyu Wang, SEM. Advisor: Chun Wang, SEM. Email: wangty.17@sem.tsinghua.edu.cn

Keywords: Robust Optimization, Portfolio Control, CVaR

Introduction

Optimal portfolio selection has received attention since Markowitz (1952). And one important criterion among this is to **minimize CVaR (conditional value-at-risk)**. However in real problems future returns vary greatly due to uncertainty. **Distributionally robust optimization** is to optimize out-of-sample performance by estimated worst-case distribution. Our work intends to gain **mean-covariance information** by clustering from history data, thus can remain computational tractability in real datasets with **side information**.

Problem Formulations

Notations *x* decision weight.

r random variable for assets return.

s different scenarios.

 (μ_s, Σ_s) mean-covariance for each scenario

Model Clustering information can easily be done by K-Means. Consider the **ambiguity sets**

$$\mathcal{F}(\mu, \Sigma) = \begin{cases} \mathbb{P} \in \mathcal{P}_0\left(\mathbb{R}^{I_r} \times [S]\right) & (\vec{r}, \vec{s}) \sim \mathbb{P} \\ \mathbb{E}_{\mathbb{P}}[\vec{r}_s] = \mu_s & \forall s \in [S] \\ \mathbb{E}_{\mathbb{P}}\left[(\vec{r} - \mu_s)(\vec{r} - \mu_s)^{\mathsf{T}}\right] = \Sigma_s & \forall s \in [S] \end{cases} \\ \mathbb{P}[\vec{s} = s] = p_s & \forall s \in [S] \end{cases}$$

As the curse of dimensionality of K-means, we further choose **Fama-French three-factor as side information** for clustering and compute values.

Target By minimizing worst-case CVaR model under distribution F we can realize optimal portfolio selection: $\inf_{x,v} \left\{ v + \tfrac{1}{\epsilon} \sup_{v \sim v} \mathbb{E}_{\mathbb{P}} \left[(-\tilde{r}'x - v)^+ \right] \right\}$

Similar transformations like Popescu (2007) can convert it to the following:

$$\inf_{x,v} \left\{ v + \frac{1}{2\epsilon} \sum_{s=1}^K p_s (-\mu_s' x - v + \sqrt{x' \Sigma_s x + (\mu_s' x + v)^2}) \right\}$$

It reduces conservativeness and can change to **SOCP**, guaranteeing its computational tractability.

Benchmark Below are other policies for evaluation:

Method	Target	Parameter
1/N Policy	$x = (\frac{1}{N}, \frac{1}{N},, \frac{1}{N})^T$	NA
Markowitz	$\sup_{x} \left\{ \mu' x - \tfrac{\gamma}{2} x' \Sigma x \right\}$	$\gamma = 0.5$
CVaR (SAA)	$\inf_{x,v} \left\{ v + \frac{1}{\epsilon} \frac{1}{M} \sum_{i \in [M]} \left(-r_i' x - v \right)^+ \right\}$	$\epsilon = 0.05$
F-CVaR (Popescu)	$\inf_{x,v} \left\{ v + \tfrac{1}{2\epsilon} [(-\mu'x-v) + \sqrt{x'\Sigma x + (\mu'x+v)^2}] \right\}$	$\epsilon = 0.05$

Computational Experiments

Method	Sharpe ratio	VaR	CVaR	Datasets
1/N Policy	0.1460	0.5560	0.0481	10 Industry
larkowitz (0.5)	0.1226	0.5614	0.0397	2012 - 2017
CVaR (SAA)	0.1454	0.6198	0.0397	
CVaR (Popescu)	0.1304	0.6112	0.0392	Method
aR (2 cls, 3 factor)	0.1773	0.5306	0.0416	rolling window
aR (3 cls, 3 factor)	0.1935	0.4891	0.0461	5 days
aR (4 cls, 3 factor)	0.1953	0.4799	0.0460	Criteria
'aR (2 cls, return)	0.1692	0.5263	0.0409	
'aR (3 cls, return)	0.1589	0.5571	0.0453	Sharpe ratio
'aR (4 cls, return)	0.1531	0.5639	0.0473	VaR / CVaR

Clustering approach especially three-factor performs better compared with benchmarks.

Extensions and Conclusion

Extensions

Even if we consider transaction costs in, clustering approach performs better.

Conclusion Compared with other DRO approaches, clustering approach is more **tractable**. Moreover, it can form the framework for various **side information**.

Traditional DRO

Assets return

Side information
(factor/market...)

Clustering Approach

Acknowledgement and References

The mathematical programs in numerical experiments are solved using Gurobl 8.1.0 in Python 3.7. The datasets are from the Kenneth R. French – Data Library website and the work is supervised by Melvyn Sim from NUS too. Markowitz, H. 1952. Portfolio selection. J. Finance 7(1) 77–91.

Popescu, Ioana. 2007. Robust mean-covariance solutions for stochastic optimization. Operations Research 55(1) 98 - 112.