Counting subsets

Counting subsets is different from permutations in that

permutations — order matters (sequential)

ex: (Joshua, Karen, Ingrid) and (Karen, Ingrid, Joshua)

are two different permutations

subsets - order doesn't matter (non sequential)

ex: {Joshua, Karen, Ingrid} and {Karen, Ingrid, Joshua}

are the same subset

<u>r-subset</u> or <u>r-combination</u> is a subset of size r

Using the K-to-1 rule to count subsets

I subset can map to K permutations ex: $\{a_1b_1c_3\}$ can map $\{a_1b_1c_3\}$ can map $\{a_1b_1c_3\}$ (a,c,b), $\{a_1c_1b_3\}$, $\{a_1c_1b_3\}$, $\{a_1b_1c_3\}$, $\{a_1c_1b_3\}$, $\{$

one r-subset maps to r! permutations r-subset = r! r-permutations

if we know the # of r-permutations, we can divide the total # of r-permutations to get the total # of r-subsets

of r-permutation of = $P(n,c) = \frac{n!}{(n-r)!}$

of r-subsets =
$$\left[\frac{n!}{(n-r)!}\right]\left[\frac{r!}{r!}\right] = \frac{n!}{n!}$$

of r-subsets = $\left[\frac{n!}{(n-r)!}\right]\left[\frac{r!}{r!}\right] = \frac{n!}{n!}$

To determine
$$\binom{n}{n-r} = \binom{n}{n-r} = \frac{n!}{(n-r)!} = \frac{n!}{($$

* there is a bijection blw r-subsets of S and (n-r)-subsets of S.