Due sfere metalliche cariche di raggio R_1 e $R_2 = R_1 / 4$ hanno densità superficiali di carica rispettivamente σ_1 e σ_2 = 20 σ_1 .

- ▶ Calcola il rapporto tra le cariche Q_1 e Q_2 delle due sfere. In seguito, tutta la carica della sfera 1 viene spostata sulla sfera 2 e la densità di carica superficiale diventa $\sigma_2' = 2.0 \times 10^{-7} \text{ C/m}^2$.
- ► Calcola quanto valeva la carica Q_1 se R_1 = 2,5 cm.

 $[4/5; 4,4 \times 10^{-11} \text{ C}]$

Una sfera conduttrice di raggio R = 14 cm, carica e isolata, genera nel vuoto un campo elettrico che sulla sua superficie vale E(R) = 1.5 kV/m.

Calcola il potenziale sulla superficie della sfera.

Determina la carica elettrica depositata sulla sfera. $[2.1 \times 10^2 \text{ V}; 3.3 \text{ nC}]$ $E(R) = \frac{1}{4\pi \xi_0} \frac{Q}{R^2}$ $V = \frac{1}{4\pi \xi_0} \frac{Q}{R}$ $V = E(R) \cdot R = (1.5 \times 10^3 \text{ V}) \left(14 \times 10^{-2} \text{ m}\right) = 210 \text{ V} = \begin{bmatrix} 2.1 \times 10^2 \text{ V} \\ 2.1 \times 10^2 \text{ V} \end{bmatrix}$ $V = K_0 \frac{Q}{R} \implies Q = \frac{V \cdot R}{K_0} = \begin{bmatrix} 2.1 \times 10^2 \text{ V} \\ 3.3 \times 10^3 \frac{M \cdot m^2}{C^2} \end{bmatrix}$

= 3,27...×10⁻³ C ~ 3,3 mC