A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 2EN

Bookmark

Show all steps: (

ON

Problem

Let *G* be a finite group, and *K* a *p*-Sylow subgroup of *G*. Let *X* be the set of all the conjugates of *K*. See Exercise M2. If C_1 , $C_2 \in X$, let $C_1 \sim C_2$ iff $C_1 = aC_2a^{-l}$ for some $\alpha \in K$

For each $C \in X$, prove that the number of elements in [C] is a divisor of |K|. (HINT: Use Exercise I10 of Chapter 14.) Conclude that for each $C \in X$, the number of elements in [C] is either 1 or a power of p.

Step-by-step solution

Step 1 of 4

Assume that G is a finite group and K a p-Sylow subgroup of G. Consider the set X as the set of all the conjugates of K. Define an equivalence relation as:

If $C_1, C_2 \in X$, let $C_1 \approx C_2$ if and only if $C_1 = aC_2a^{-1}$ for some $a \in K$.

Objective is to prove that for each $C \in X$, the number of elements in [C] is a divisor of |K|.

Comment

Step 2 of 4

Before proving the above statement, consider the following result:

Let K be any subgroup of G. Let $K^* = \{Na : a \in K\}$ and $X_K = \{aHa^{-1} : a \in K\}$. The defined set X_K is in one-one correspondence with K^* . And the number of element in X_K is a divisor of |K|.

By the previous result, one knows that every conjugate of K is also a p-Sylow subgroup of G. So, the set X contains the p-Sylow subgroups of G. Now, by the above result, it directly implies that the number of elements in [C] is a divisor of |K|, where

$$[C] = \{aCa^{-1} : a \in K\}.$$

Step 3 of 4	
K will be some	-Sylow subgroup of G , or can say maximal p -subgroup of G . Therefore, the order e power of p . Since the number of elements in C is a divisor of $ K $, so the ments will be the divisors of some power of p .
Note that iden identity eleme	tity element has order as $ e =p^0$, that is, 1. So, in trivial case, $\begin{bmatrix} C\end{bmatrix}$ may have only nt.
Comment	
	Step 4 of 4
Hence, the nu	Step 4 of 4 mber of elements in $\begin{bmatrix} C \end{bmatrix}$ is either 1 or a power of p .