Aula do dia 08 de dezembro de 2023

Autor: Rodrigo Bissacot Proença

Transcrito para LaTeXpor: Lucas Amaral Taylor

9 de dezembro de 2023

Definição de continuidade

 $X\subseteq \mathbb{R}$ e $f:X\to \mathbb{R}$. Dado $x_0\in X,$ dizemos que f é contínua em x_0 quando:

$$\forall \varepsilon > 0, \exists \delta = \delta(x_0, \varepsilon) > 0 \text{ tal que } (x \in X \text{ e } |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon)$$

Exemplo

 $X=[0,1)\cup(2,2]$

$$f(x) = \begin{cases} x, \text{ se } 0 \le x < 1\\ x + 1, \text{ se } 1 < x \le 2 \end{cases}$$

Exercício

Mostre que f é contínua usando ε e δ .

Exemplo

 $f: \mathbb{R} \to \mathbb{R}$

 $x\longmapsto f(x)=x^2$ é contínua em todo ponto de $\mathbb{R}.$

Prova

Fixado $x_0 \in \mathbb{R}$. Para cada $\varepsilon > 0$, queremos mostrar que:

$$|f(x) - f(x_0)| = |x^2 - x_0^2| = |x + x_0| \cdot |x - x_0| < \varepsilon$$

Quando $x \in X = \mathbb{R}$ e $|x - x_0| < \delta$ para algum $\delta > 0$ adequado.

Por exemplo: $\delta = \frac{\varepsilon}{2}$ será que funciona? Temos:

$$|f(x) - f(x_0)| = |x + x_0| \cdot |x - x_0| \cdot \frac{\varepsilon}{2} < \varepsilon$$
 (?)

Uma pequeno lembrete que é necessário levar em conta:

$$|x| - |y| \le ||x| - |y|| \le |x + y|$$

$$|x| - |y| \le ||x| - |y|| \le |x - y|$$

Para qualquer ponto de \mathbb{R}

Continuando o exemplo apresentado...

$$||x| - |x_0|| \le |x + x_0||$$

Sem perda de generalidade, vamos tomar $0 < \delta < 1$. Daí:

$$|x| - |x_0| \le |x - x_0| < \delta < 1$$

$$\implies |x| - |x_0| < 1 \implies |x| < 1 + |x_0|$$

Ou seja,

$$|x| < 1 + |x_0|$$
 quando $|x - x_0| < \delta$ para $(0 < \delta < 1)$ (1)

Observe que:

$$|f(x) - f(x_0)| = |x + x_0| \cdot |x - x_0|$$

Pela desigualdade triangular, vem:

$$(|x| + |x_0|) \cdot |x - x_0|$$

Por 1, temos que:

$$(|x| + |x_0|) \cdot |x - x_0| < (1 + |x_0| + |x_0|) \cdot |x - x_0|$$

Conclusão

Dado $\varepsilon > 0$,

$$|f(x) - f(x_0)| \le (1 + 2|x_0|)|x - x_0| < (1 + 2|x_0|)\frac{\varepsilon}{1 + 2|x_0|} = \varepsilon$$

Quando 0 < $\delta < 1$ e $|x-x_0| < \delta$

Tomamos

$$\delta(\varepsilon, x_0) = \delta = \min\left\{\frac{\varepsilon}{(1+2|x_0|)}, \frac{1}{2}\right\} > 0$$

Provamos que: Dado $\varepsilon > 0$ e $x_0 \in \mathbb{R}$. Tomando $\delta = \min\left\{\frac{\varepsilon}{(1+2|x_0|)}, \frac{1}{2}\right\} > 0$ vale que $|f(x) - f(x_0)| = |x^2 - x_0^2| < \varepsilon$. Ou seja, $f(x) = x^2$]e contínua em x_0 .

Exercício (muito importante)

$$f: [0, +\infty] \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x) = \sqrt{x}$$

Mostre que f é contínua usando ε e δ .

Dica: Trate separadamente $x_0 = 0$. e $x_0 \neq 0$.

Exemplo

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = 5x$$

Prova

Dados $\varepsilon > 0$ e $x_0 \in \mathbb{R}$

$$|f(x) - f(x_0)| = |5x - 5x_0| = 5 \cdot |x - x_0| < 5\frac{\varepsilon}{5} = \varepsilon$$

Tome $\delta = \frac{\varepsilon}{5} > 0$.

Exercício

Mostre que dado $a \in \mathbb{R}$ a função $f : \mathbb{R} \to \mathbb{R}$, $f(x) = a \cdot x$ em contínua em dado ponto $x_0 \in \mathbb{R}$ (usando ε e δ). Mostre que SEMPRE podemos escolher δ dependendo apenas de ε e não de x_0 .

Definição de ponto isolado

Seja $X \subseteq \mathbb{R}$. Dizemos que $x_0 \in X$ é um **ponto isolado de** X quando existe $\varepsilon_{x_0} > 0$ tal que $B_{\varepsilon_{x_0}} \cap X = \{x_0\}$

Exercício

Seja $X \subseteq \mathbb{R}$ tal que todos os pontos de X são isolados. Mostre que X é enumerável.

Exercício

Seja $f: X \to \mathbb{R}$ uma função. $X \subseteq \mathbb{R}$ e $x_0 \in X$ é isolado. Mostre que f é contínua em x_0 .

0.1 Exemplo

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \longmapsto f(x) = \chi_{\mathbb{Q}}(x) = \begin{cases} 1, \text{ se } x \in \mathbb{Q} < \\ 0, \text{ se } x \notin \mathbb{Q} \end{cases}$$

Prova

Seja $x_0 \in \mathbb{Q}$. A mostrar: $\exists \varepsilon > 0$ tal que $\forall \delta > 0$. $|f(x) - f(x_0)| > \varepsilon$

Por fim, temos que:

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ tal que}$$

$$x \in X \text{ e } |x-x| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

$$\exists \varepsilon > 0, \forall \delta > 0$$

Vale que existe $x_{\delta} \in X$ tal que

$$|x_{\delta} - x_0| < \delta \in |f(x_{\delta}) - f(x_0)| \geqslant \varepsilon$$