Math 623 Fall 2016

Problem Set # 2

- (1) Suppose that $A \subset E \subset B$ where A and B are measurable sets of finite measure. Show that if m(A) = m(B), then E is measurable.
- (2) An alternative definition of measurability for a set E is: "E is measurable if for any $\varepsilon > 0$ there is a **closed** set $F \subset E$ with $m_*(E F) < \varepsilon$ ". Prove that this definition of measurability is equivalent to the one in the text.
- (3) Suppose E is a given set, and \mathcal{O}_n is the open set:

$$\mathcal{O}_n := \{x : d(x, E) < 1/n\}$$

Provide a proof for the following two assertions:

- (a) If E is compact, then $m(E) = \lim_{n \to \infty} m(\mathcal{O}_n)$.
- (b) The conclusion in (a) may be false for E closed and unbounded; or E open and bounded.
- (4) Given a collection of sets F_1, F_2, \ldots, F_n , construct another collection of sets $F_1^*, F_2^*, \ldots, F_N^*$ wit $N = 2^n 1$, so that

$$\bigcup_{k=1}^{n} F_k = \bigcup_{j=1}^{N} F_j^*$$

so that the collection $\{F_j^*\}_j$ is made out of pairwise disjoint sets and such that for any k we have $F_k = \bigcup_{F_j^* \subset F_k} F_j^*$ for every k.

(5) (The Borel-Cantelli Lemma). Suppose $\{E_k\}_{k=1}^{\infty}$ is a countable family of measurable subsets of \mathbb{R}^d and that

$$\sum_{k=1}^{\infty} m(E_k) < \infty$$

Show that $E := \limsup E_k$ is a measurable set and that m(E) = 0.

Hint: Note that
$$\limsup E_k = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$$
.

(6) Let $E \subset \mathbb{R}^2$ be a measurable set with $m(E) < \infty$. For every $t \in \mathbb{R}$, define

$$E_t := E \cap \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \le t\}$$

Then

- 1) Show that the function $f(t) := |E_t|$ is a continuous for every $t \in \mathbb{R}$
- 2) Justify the limits $\lim_{t\to -\infty} f(t) = 0$, $\lim_{t\to \infty} f(t) = m(E)$
- 3) Show that for every number $c \in (0, m(E))$ there exists t_c such that $m(E_{t_c}) = c$.

1

- (7) Suppose $E_i \subset \mathbb{R}^2$ (i = 1, 2) are a pair of nonempty compact sets with $E_1 \subset E_2$ and $0 < m(E_1) < m(E_2)$. Prove: $\forall c$ such that $m(E_1) < c < m(E_2) \exists E$ such that $E_1 \subset E \subset E_2$ and m(E) = c.
- (8) Show any open set $E \subset \mathbb{R}^d$ can be written as the union of closed cubes, so that $E = \bigcup Q_i$ with the following properties
 - (a) The Q_i are non-overlaping, i.e. their interiors are disjoint.
 - (b) There are positive constants 0 < c < C so that

$$cm(Q_i)^{1/d} \le d(Q_i, E^c) \le Cm(Q_i)^{1/d}$$

(Note that for a cube Q, $m(Q)^{1/d}$ is the same as length of any of its edges). Hint: Review the proof in Stein Shakarchi for the fact that any open set is a union of almost disjoint closed cubes.

(9) Let $E \subset \mathbb{R}$ be a measurable set with $0 < m(E) < \infty$. Show that for every $\alpha \in (0,1)$ there is an open interval I such that

$$m(E \cap I) \ge \alpha m(I).$$

- (10) * Let $f : \mathbb{R} \to \mathbb{R}$ be a function having a continuous derivative, show that its graph, that is the set $\{(x,y) \in \mathbb{R}^2 \mid y = f(x)\}$ is a subset of the plane with measure zero.
- (11) * Show that a σ -algebra with infinitely many sets cannot be countable. Hint: Show first that if the σ -algebra is infinite then it contains a countable sequence of pairwise disjoint sets. Then recall how one can show [0,1] is uncountable by using a binary representation.
- (12) * Suppose that E is measurable with $m(E) < \infty$ and

$$E = E_1 \bigcup E_2, \quad E_1 \bigcap E_2 = \emptyset$$

Suppose that $m(E) = m_*(E_1) + m_*(E_2)$, then show E_1, E_2 are both measurable.

Note: In particular, this would show that if $E \subset Q$, where Q is a finite cube, then E is measurable if and only if $m(Q) = m_*(E) + m_*(Q \setminus E)$.

(13) * Construct a measurable subset $E \subset [0,1]$ such that for every subinterval I, both $E \cap I$ and $I \setminus E$ have positive measure. Hint: Take a Cantor-type subset of [0,1] with positive measure (see previous problem), and on each subinterval of the complement of this set, construct another such set, and so on.