

Trabajo Práctico N°1: Polinomios

- Dados $F(x) = 2x^4 8x + x^3$, $G(x) = 2x^3 x^2$, $H(x) = -2x + x^3 2x^4 + 1$, calcular:
 - a) H(x) + F(x) G(x)
- b) 3.F(x) G(x).H(x)
- c) $[G(x)]^2$
- Calcular el cociente y el resto en las siguientes divisiones. En caso de ser posible aplicar la regla de Ruffini. Para cada inciso, expresar $A(x) = B(x) \cdot C(x) + R(x)$. Siendo A(x) el dividendo, B(x) el divisor, C(x) el cociente y R(x) el resto de la división.
 - a) $\left(-9x^5 + \frac{1}{5}x^2 + 2x^4 6\right) : (-3x^2)$
- d) $(3x^3 + 2x^2 19x + 7)$: (x + 3)
- b) $(7x^3 + 6x^2 + 21x + 20)$: $(x^2 + 3)$
- e) $\left(-37 + \frac{1}{5}x^3 + \frac{1}{2}x^2\right) : (x 5)$

c) $(3x^4 - 2x^2)$: (2x + 2)

- f) $\left(4x^3 + x^6 x \frac{1}{16}x^4 + 2\right)$: $\left(2x^2 \frac{1}{2}x\right)$
- 3) Analizar si A(x) es divisible por B(x). En caso de ser posible, escribir A(x) en forma factorizada.
 - a) $A(x) = x^3 23x 28$

B(x) = x + 4

b) $A(x) = -6x + 9x^2 - 5$

B(x) = x - 1

c) $A(x) = x^3 - 8$

- B(x) = x + 2
- d) $A(x) = -3.1.x^2 + 0.16x + \frac{9}{50} + 3x^3$ $B(x) = (x + \frac{1}{5})$
- Indicar cuáles son las raíces de los siguientes polinomios y el orden de multiplicidad de ellas. 4)

Polinomio	Raíces	Multiplicidad
P(x) = 3(x - 2)(x - 3)		
$Q(x) = (x+5)(x-4)^2$		
$R(x) = x(x+6)^4(x-7)^3$		

- Expresar cada trinomio cuadrado perfecto como el cuadrado de un binomio.
 - a) $9a^2 + 6ab + b^2$
- c) $\frac{1}{2}x^2 + 5x + \frac{25}{2}$
- e) $-\frac{2}{9} + \frac{2}{3}x x^2$

b) $x^2 - x + \frac{1}{4}$

- d) $4x^8y^{12} + \frac{1}{9}z^{12} \frac{4}{3}x^4y^6z^6$
- Factorizar aplicando diferencias de cuadrados:
 - a) $-16 + m^4$

c) $y^6z^2 - x^4$

b) $81n^4 - \frac{9}{4}$

- d) $3x^{14} 5v^{10}$
- Factorizar los siguientes polinomios:
 - a) $P(x) = x^3 + 2x^2 4x 8$, que tiene por raíz a x = 2.
 - b) $P(x) = x^4 + x^3 5x^2 + 3x$, que tiene por raíz a x = 1
 - c) $P(x) = -x^3 9x^2 15x + 25$, que tiene por raíz doble a x = -5
 - d) $P(x) = x^4 + 2x^3 15x^2 32x 16$, que tiene por raíz doble a x = -1

8) Utilizando el Teorema de Gauss, hallar todas las posibles raíces racionales de los siguientes polinomios, y de ser necesario, combinar con alguna otra técnica para escribirlos como producto de polinomios primos o irreducibles en ℝ.

a)
$$P(x) = -x^3 + 4x^2 - x - 6$$

c)
$$S(x) = \frac{1}{2}x^5 - \frac{5}{2}x^3 + x^2 + 3x - 2$$

b)
$$R(x) = -4x^4 + 12x^3 - 7x^2 - 3x + 2$$

d)
$$P(x) = -6x^3 + \frac{99}{5}x^2 + \frac{21}{5}x$$

9) Expresar cada P(x) como producto de polinomios primos o irreducibles en \mathbb{R} , usando todas las técnicas desarrolladas.

a)
$$P(x) = 3x^3 - 12x$$

d)
$$P(x) = -x^4 + 3x^3 - \frac{9}{4}x^2$$

b)
$$P(x) = x^6 - \frac{1}{16}x^2$$

e)
$$P(x) = 2x^3 - x^2 + 6x - 3$$

c)
$$P(x) = x^3 - x^2 - \frac{9}{4}x + \frac{9}{4}$$

f)
$$P(x) = x^6 - 9x^4 + 6x^2 - 54$$

10) Simplificar las siguientes expresiones algebraicas:

a)
$$\frac{x^2+9-6x}{x^2-9}$$

b)
$$\frac{2x-2x^2}{x^3-2x^2+x}$$

c)
$$\frac{12x^2-3}{x^2+\frac{1}{2}x}$$

d)
$$\frac{x^3+15x^2+75x+125}{x+5}$$

11) Completar cuadrados:

a)
$$x^2 + 4x + 3$$

c)
$$4x + x^2$$

f)
$$x^2 + 2xh + 5h^2$$

b)
$$-2x + 4 + x^2$$

d)
$$x^2 - 2xh + h^2$$

c)
$$-x^2 - 8 - 6x$$

e)
$$x^2 - 2xh$$