Bayesian Efficient Multiple Kernel Learning

Mehmet Gönen mehmet.gonen@aalto.fi http://users.ics.aalto.fi/gonen Helsinki Institute for Information Technology HIIT, Department of Information and Computer Science, Aalto University

Motivation

- To obtain a better similarity measure and to integrate information from different sources
- To develop a computationally feasible Bayesian MKL algorithm without sampling

Existing Bayesian Methods

- Nonconjugacy between Dirichlet and normal distributions requires a sampling method
- Nonlinear dependency between random variables when calculating prediction scores

Proposed Method

- Combination is formulated in a novel way
- Intermediate outputs are introduced as auxiliary variables
- Kernel weights are assumed to be normally distributed without any constraints
- Sample- and kernel-level sparsities can be adjusted using gamma priors on precisions

Graphical Model

Probabilistic Model

Inference Using Variational Bayes

- Full conjugacy allows us to develop a very efficient variational approximation
- Closed-form update equations for all variables
- Proposed method can combine hundreds or thousands of kernels

Large-Margin Learning

• $\nu > 0$ corresponds to placing a **margin** between two classes

Extensions

- Multiclass learning is done by sharing kernel weights in one-versus-all classification
- Semi-supervised learning using truncated normals is left for future research

Illustration on a Toy Data Set

Benchmark Data Sets

- 8 benchmark data sets from UCI repository
- Inference takes **less than a minute** with large numbers of kernels, from 91 to 793

	sparse	non-sparse
pima	N = 537	P = 117
Training Time (sec)	21.15 ± 0.23	20.94 ± 0.22
Test Accuracy (%)	75.02 ± 2.28	74.96 ± 2.08
Selected Kernel (#)	23.20 ± 2.02	79.55 ± 2.93

MKL Data Sets

- 4 comparison data sets for MKL methods
- Protein fold recognition data set

Method	Test Acc.
Damoulas & Girolami (2008)	68.1±1.2
BEMKL (one-versus-all)	$\textbf{71.5} {\pm} \textbf{0.1}$
BEMKL (multiclass)	71.2±0.2

Oxford Flowers102 data set

Method		EER	
Titsias & Lázaro-Gredilla (2011)	0.952	0.107	40.0
BEMKL (one-versus-all)	0.969	0.068	67.0
BEMKL (multiclass)	0.969	0.069	68.9

Conclusions

- A Bayesian MKL framework with a novel kernel combination formulation is introduced
- Fully conjugate probabilistic model leads to a very efficient variational approximation
- Matlab implementation is available at http://users.ics.aalto.fi/gonen/bemkl

References

Damoulas, T. and Girolami, M. A. Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection. *Bioinformatics*, 24(10):1264–1270, 2008. Titsias, M. K. and Lázaro-Gredilla, M. Spike and slab variational inference for multi-task and multiple kernel learning. In *Advances in Neural Information Processing Systems 24*, 2011.