Problem Set 2023-3 Physics 265 First Semester, AY 2023- 2024 Release Date: 22 September 2023

Due: 6 January 2024 Ten points per number

1. Homogeneous dielectric film 1 (see Born & Wolf Section 1.6.4 and Fig 1.17 for schematic). Generate the reflectivity plots (similar to Figure 1.18, normal incidence, 512 data points) of the film within the optical thickness range: $0 \le nh \le \lambda_0$ for incident wavelength $\lambda_0 = 400$ nm, 550 nm, 750 nm, and 1100 nm if applicable for your assigned materials. Additional information: index of layer 1 = 1.0, index of layer $2 = n_1$, index of layer $3 = n_2$.

At what $\lambda_{\text{o}}\text{-value}$ would the film best function as a beam splitter. Explain.

2. Homogeneous dielectric film 2. Generate the reflectivity plots (normal incidence) of the film within the optical thickness range: $0 \le nh \le \lambda_0$ for incident wavelength λ_0 = 400 nm, 550 nm, 750 nm, and 1100 nm. Additional information: index of layer 1 = 1.0, index of layer 2 = n_2 , index of layer 3 = n_1 .

At what λ_0 -value would the film best function as a beam splitter. Which performs better as a beam splitter, film 1 or film 2? Explain.

- 3. Quarter-wave film 1 (optical thickness = $\lambda_o/4$). Generate the reflectivity plot (see Figure 1.19, normal incidence, 512 data points) of the film versus $n(\lambda_o)$ within the range: 400 nm $\leq \lambda_o \leq$ 800 nm. Additional information: index of layer 1 = 1.3, index of layer 2 = n_1 , index of layer 3 = n_2 .
- 4. Quarter-wave film 2. Generate the reflectivity plot (normal incidence) of the film versus $n(\lambda_o)$ within: 400 nm $\leq \lambda_o \leq 800$ nm. Additional information: index of layer 1 = 1.3, index of layer 2 = n_2 , index of layer 3 = n_1 .

Which performs better as an anti-reflective coating, film 1 or film 2? Explain.

END