Теория групп. Лекция 2

Штепин Вадим Владимирович

12 сентября 2019 г.

1 Нормальные подгруппы и их свойства

<u>Опр.</u> В случае конечной группы число левых смежных классов равно числу правых смежных классов и называется **индексом группы** -|G/H|

Утв. Пусть G—группа (конечная или бесконечная). Тогда $G/H \simeq H \backslash G$

Доказательство Пусть $aH \in G/H$. Тогда $(aH)^{-1} = Ha^{-1}$ ($H^{-1} = H$) так как H — подгруппа. Операция взятия обратного элемента в группе инволютивна (обратна сама себе и в квадрате равна тождественному отображению), то полученное соответствие между левыми и правыми смежными классами - биекция.

Замечание Из этого утверждения не следует, что если aH = bH, то Ha = Hb. Контрпример: $G = S_3 = \{e, (12), (13), (23), (123), (132)\}$, $H = \langle (12) \rangle$. Тогда (13)H = (123)H, так как $(13)H = \{(13), (123)\}$ (123)H = (13)H, так как $(123) \in (13)H$ (первое свойство левых смежных классов). Однако $H(13) \neq H(123)$, так как $H(13) = \{(13), (132)\}$, $H(123) = \{(123), (23)\}$.

Упражнение: Доказать, что для конечной группы $G \ K \leq H \leq G,$ то |G:K| = |G:H||H:K|

<u>Опр.</u> Пусть $H \leq G$. H — нормальная группа (нормальный делитель, инвариантная подгруппа), если левостороннее разложение G по H совпадает с правосторонним: $\bigcup_{i \in I} x_i H = \bigcup_{i \in J} H y_i$, то есть разбиения состоят из одних и тех же подмножеств.

Условимся для нормальной подгруппы, говоря о смежных классах, опускать слова "левый" и "правый".

Обозначение $H \triangleleft G$

Теорема (критерий нормальности) Пусть $H \leq G$. Тогда $H \triangleleft G \Leftrightarrow \forall x \in G \ xH = Hx \Leftrightarrow x^{-1}Hx = H \Leftrightarrow xHx^{-1} = H$

Доказательство

- 1. Необходимость. $\forall x \in G \ \exists i \in I \ x \in x_iH; \ \exists j \in J \ x \in Hy_j$. В силу нормальности H, класс Hy_j является так же некоторым левым классом смежности. Так как $Hy_j \cap x_iH \neq \varnothing$, то по свойствам смежных классов они совпадают. Так как смежный класс порождается любым своим элементом: $xH = x_iH$, $Hx = Hy_j$. Значит, xH = Hx.
- 2. Достаточность. $\forall x \in G \ xH = Hx$, значит левостороннее и правостороннее разложения совпадают, и группа является нормальной.

Следствие. Во всякой абелевой группе всякая подгруппа является нормальной.

Следствие. Если |G:H|=2, то $H \triangleleft G$

Доказательство Левостороннее разложение состоит из двух классов: eH = H и $G \setminus H$ (разность множеств). Правостороннее разложение (аналогично) : He = H и $G \setminus H$. Очевидно, эти разложения совпадают.

Примеры (нормальных подгрупп):

- 1. $A_n \triangleleft S_n$, так как $|S_n:A_n|=\frac{|S_n|}{|A_n|}=2$, так как есть поровну четных и нечетных подстановок.
- 2. $SL_n(F) \triangleleft GL_n(F)$

Доказательство Пусть $A \in SL_n(F)$, $X \in GL_n(F)$. $x^{-1}AX \in SL_n(F)$, так как $det(X^{-1}AX) = det(X^{-1})det(A)det(X) = det(A) = 1$. По критерию нормальности, $SL_n(F)$ — нормальная.

3. Пусть au — транспозиция из S_3 . Тогда $\langle au \rangle \not | S_3$

Доказательство Транспозиции не коммутируют: $(ab)(bc) = (abc) \neq (acb) = (bc)(ab)$. Пусть $\sigma \in S_3$ — произвольная транспозиция, тогда $\sigma * \langle \tau \rangle \neq \langle \tau \rangle * \sigma$. По критерию нормальности $\langle \tau \rangle \not A S_3$, так как $\langle \tau \rangle = \{e, \tau\}$.

Утв. Если $H_1 \triangleleft G$, $H_2 \triangleleft G$, то $H_1 \cap H_2 \triangleleft G$

Доказательство Очевидно, что $H_1 \cap H_2 \leq G$ (по критерию подгруппы). Пусть $h \in H_1 \cap H_2$ — произвольный. Проверим, что $x^{-1}hx \in H_1 \cap H_2$. Если H_1, H_2 — нормальные, то $x^{-1}hx \in H_1$ и $x^{-1}hx \in H_2$. Значит, $x^{-1}hx \in H_1 \cap H_2$.

Теорема (о произведении нормальной подгруппы на подгруппу) Пусть G группа, $H \triangleleft G, K \leq G$, тогда $HK \leq G$. А если $K \triangleleft G$, то $HK \triangleleft G$.

Доказательство

- 1. Замкнутость относительно умножения. HKHK = (HH)(KK) = HK замкнуто, так $KH = \bigcup_{k \in K} kH = \bigcup_{k \in K} Hk = HK$, так как H нормальная подгруппа.
- 2. Замкнутость относительно взятия обратного: $(HK)^{-1} = K^{-1}H^{-1} = KH = HK$, так как $K, H \leq G$
- 3. Пусть $K \triangleleft G$. $\forall x \in G$ $x^{-1}HKx = x^{-1}Hxx^{-1}Kx = HK$, так как $H, K \triangleleft G$. Значит, $HK \triangleleft G$

Замечание: Доказанная теорема верна и в случае умножения подгруппу на нормальную подгруппу.

2 Сопряжение в группе и его свойства

Опр. Пусть $a,x\in G$, тогда $a^x=x^{-1}ax-{\bf conряженный}$ к a.

Утв. (свойства операции сопряжения)

- 1. $a^{(xy)} = (a^x)^y$
- 2. $a^x b^x = (ab)^x$
- 3. Операции сопряжения и взятия обратного элемента коммутируют $(a^x)^{-1} = (a^{-1})^x$

Доказательство

- 1. $a^{(xy)} = (xy)^{-1}a(xy) = y^{-1}x^{-1}axy = y^{-1}a^xy = (a^x)^y$
- 2. $a^x b^x = x^{-1} a x x^{-1} b x = x^{-1} a b x = (ab)^x$
- 3. $(a^{-1})^x a^x = (a^{-1}a)^x = e^x = e$. В силу единственности обратного элемента, $(a^{-1})^x = (a^x)^{-1}$

Замечание Отношение сопряженности в группе — это отношение эквивалентности $a \sim b \Leftrightarrow \exists x \in G \ a = b^x$

Доказательство

- 1. Рефлексивность: $a^e = a$
- 2. Симметричность: $a \sim b \Rightarrow \exists x \in Ga = b^x$. Тогда $b = a^{x^{-1}}$ и $b \sim a$
- 3. Пусть $a \sim b, b \sim c \Rightarrow \exists x, y \in G \ a = b^x, \ b = c^y \Rightarrow a = c^{xy} \Rightarrow a \sim c$

По теореме о классах эквивалентности, группа G разбивается в дизъюнктное объединение классов эквивалентности по отношению сопряженности.

<u>Опр.</u> Полученные классы называются **классами сопряженных элементов**. Опр. $a^G = \{a^x \mid x \in G\}$ — класс сопряженных элементов, порожденный a

Пример (описание классов сопряженных элементов в S_n)

1. Пусть $\sigma \in S_n$ и $\sigma = (a_1...a_k)(b_1...b_l)....$ —произведение непересекающихся (независимых циклов) Пусть $\rho \in S_n$. $\rho^{-1}\sigma\rho = \rho^{-1}(a_1...a_k)\rho\rho^{-1}(b_1...b_l)\rho....\rho$ Посмотрим, как действует сопряжение на цикл длины k.

Покажем, что $\rho^{-1}(a_1...a_k)\rho = (\rho^{-1}(a_1)...\rho^{-1}(a_k))$

Доказательство

Пусть $a_i \in \{1, ..., n\}$.

 $\rho^{-1}(a_1...a_k)\rho(\rho^{-1}(a_i))=\rho^{-1}(a_1...a_k)(a_i)=\rho^{-1}(a_{i+1})=(\rho^{-1}(a_1)...\rho^{-1}(a_i))(\rho^{-1}(a_i)), \text{ если } a_i$ присутствует в цикле. Иначе, если a_i не лежит в цикле, то $\rho^{-1}(a_1...a_k)\rho(\rho^{-1}(a_i))=\rho^{-1}(a_i)=(\rho^{-1}(a_1)...\rho^{-1}(a_k))(\rho^{-1}(a_i))$

То есть, сопряжение не изменяет тип цикла (количество элементов, которые цикл не переводит в самих себя). Если a имеет некоторый циклический тип (это определяется типами циклов в разложении a), то a^{S_n} состоит из всех подстановок такого циклического типа.

Замечание. Пусть P(n)X — число классов сопряженных элементов. Тогда оно равно числу разбиений n в сумму натуральных слагаемых (без учета порядка). Это верно, так как слагаемые в разбиении задают циклический тип (длины циклов в разбиении).

3 Гомоморфизм групп

Пусть $(G_1,*), (G_2,\circ)$ — группы. <u>Опр.</u> $\phi: G_1 \to G_2$ — **гомоморфизм**, если $\phi(a*b) = \phi(a) \circ \phi(b)$ **Утв.**

- 1. При гомоморфизме $\phi(e_1) = e_2$, где e_1, e_2 нейтральные элементы групп
- $2. \ \phi$ коммутирует со взятием обратного элемента

Доказательство

- 1. $\phi(e_1*e_1)=\phi(e_1)\circ\phi(e_1)=\phi(e_1)$. Умножим последнее равенство на $\phi(e_1)^{-1}$. Получаем $\phi(e_1)=e_2$
- 2. $\phi(a^{-1}) = \phi(a_1)^{-1}$, так как $\phi(a^{-1}) * \phi(a) = \phi(a^{-1}a) = \phi(e_1) = e_2$. В силу единственности обратного элемента $\phi(a^{-1}) = \phi(a_1)^{-1}$

Опр.

- 1. $Ker(\phi) = \{a \in G_1 \mid \phi(a) = e_2\}$
- 2. $Im(\phi) = \{\phi(a) \mid a \in G_1\}$

Утв. Пусть G_1, G_2 — мультипликативные группы (операция — произведение) и $\phi: G_1 \to G_2$ — гомоморфизм. Тогда:

- 1. $Im(\phi) \leq G_2$
- 2. $Ker(\phi) \triangleleft G_1$

Доказательство

- 1. Пусть $x, y \in Im(\phi) \Rightarrow \exists a, b \in G_1 \ \phi(a) = x, \ \phi(b) = y \Rightarrow xy = \phi(ab) \Rightarrow xy \in Im(\phi)$. Если $x \in Im(\phi) \Rightarrow \exists a \ \phi(a) = x \Rightarrow \phi(a^{-1}) = x^{-1} \Rightarrow x^{-1} \in Im(\phi)$
- 2. Пусть $a, b \in Ker(\phi) \Rightarrow \phi(a) = \phi(b) = e_2 \Rightarrow \phi(ab) = e_2 \Rightarrow ab \in Ker(\phi)$. Если $a \in Ker(\phi) \Rightarrow \phi(a) = e_2 \Rightarrow \phi(a^{-1}) = e_2^{-1} = e_2 \Rightarrow a^{-1} \in Ker(\phi)$ Проверим, что $Ker(\phi) \triangleleft G_1$. Пусть $x \in G_1, a \in Ker(\phi)$. Тогда $\phi(x^{-1}ax) = \phi(x^{-1})e_2\phi(x) = e_2 \Rightarrow x^{-1}ax \in Ker(\phi) \Rightarrow Ker(\phi) \triangleleft G_1$

Замечание Критерий нормальности можно сформулировать так: $H \triangleleft G \Leftrightarrow$ вместе с каждым элементом она содержит все его сопряженные: $\forall x \in G \ a \in H \Rightarrow a^x \in H$

Следствие Если
$$\phi:G_1\to G_2$$
— гомоморфизм и $H\le G_1$, то $\phi(H)\le G_2$ Доказательство $\phi\upharpoonright_H:H\to G_2$ — гомоморфизм $\Rightarrow \phi(H)=Im(\phi\upharpoonright_H)\le G_2$

Упражнение Верно ли, что $H \triangleleft G_1$, то $\phi(H) \triangleleft G_2$?