Numerical Computations - Chapter #5: Interpolation and Polynomial Approximation

Numerical Computations

Hamid Sarbazi-Azad & Samira Hossein Ghorban

Department of Computer Engineering Sharif University of Technology (SUT) Tehran, Iran

(c) H Sarbazi-Azad & S Hossein Ghorbar

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Overview

The Taylor polynomial is designed to approximate a given function f well at one point.

In this chapter, we are going to talk about polynomial approximation where the agreement with f is not all focused at only one point, but is spread over a number of points.

Chapter's Topics

- What is interpolation?
- Linear Interpolation
- Polynomial Interpolation (Lagrange's Method)
- Accuracy of Interpolation
- Nevill's Method
- Divided Difference

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation What is Interpolation? Assume that results of a census of the population which was taken every 10 years from 1950 to 2000, are listed as follows: 1990 1950 1970 1980 1960 2000 Year 151,326 179,323 203,302 226,542 249,633 281,422 Population (in thousands) In reviewing these data, it might be asked to provide a reasonable estimate of the population, for instance in 1975, or even in the year 2020. Using a function that fits the given data might predict the population, 1950 1960 1970 1980 1990 2000 say, in 1975 or 2020. Table: These data has been depicted The process is called interpolation.

Numerical Computations - Chapter #5: Interpolation and Polynomial Approximation

The Problem of Interpolation

Let a function y = f(x) be given by a table:

$$y_0 = f(x_0), \ y_1 = f(x_1) \ , \ , y_n = f(x_n).$$

The problem of interpolation is to find the polynomial

$$p(x) = p_n(x)$$

of degree at most n, such that

$$p(x_i) = f(x_i)$$

for i = 0,1,2,...,n.

Geometrically, this means that one has to find an algebraic curve of the form $y = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$ that passes through the given set of points (x_i, y_i) , for $i = 0, 1, \dots, n$.

Lagrange's Method

Joseph-Louis (Giuseppe Luigi), comte de Lagrange (1736-1813)

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Linear Interpolation

The linear interpolation polynomial is a simple case where the values of f(x) at two points, say x_0 and x_1 ,are given.

The problem is to obtain a polynomial of degree one which passes through the distinct points $(x_0, f(x_0))$ and $(x_1, f(x_1))$.

The unique straight line which passes through theses points is:

$$P_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$$

which can be written as:

$$P_1(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1).$$

Numerical Computations - Chapter #5: Interpolation and Polynomial Approximation

Linear Interpolation (cont'd)

Let
$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 and $L_1(x) = \frac{x - x_0}{x_1 - x_0}$.

The linear Lagrange Interpolating Polynomial through $(x_0, f(x_1))$ and $(x_1, f(x_1))$ is:

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1)$$

Note that:

$$L_0(x_0) = 1, L_0(x_1) = 0, L_1(x_0) = 0, L_1(x_1) = 1$$

which implies that:

$$P(x_0) = 1 \cdot f(x_0) + 0 \cdot f(x_1) = f(x_0)$$

$$P(x_1) = 0 \cdot f(x_0) + 1 \cdot f(x_1) = f(x_1)$$

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Linear Interpolation (cont'd)

Remark. Without loss of generality, suppose that $x_0 < x_1$. Let f(x) be a continuous on $[x_0, x_1]$ and differentiable in (x_0, x_1) .

By the mean value theorem, there $y \in (x_0, x_1)$ such that:

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = f'(y).$$

Hence, the first-degree polynomial $p_1(x)$ may be expressed as follows:

$$P_1(x) = f(x_0) + (x - x_0)f'(y).$$

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Linear Interpolation (cont'd)

Remark (cont'd). If x_0 is kept fixed and let x_1 tend to x_0 , then:

$$\lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f'(x_0)$$

And consequently, $P_1(x)$ becomes precisely the Taylor Polynomial.

Note that the main purpose of constructively $P_1(x)$ is to give an approximation to f(x) for each x between x_0 and x_1 .

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Polynomial Interpolation

Now, our aim is to generalize the result of the last section to the case where the values of f(x) are given at n+1 distinct points x_0, x_1, \dots, x_n .

We are supposed to find a polynomial

$$P_n(x) = a_0 + a_1 x + \dots + a_n x^n$$

such that

$$P_n(x_0) = f(x_0), \dots, P_n(x_n) = f(x_n).$$

Consequently we might think about $P_n(x)$ as the following form:

$$P_n(x) = c_0(x - x_1)(x - x_2) \cdots (x - x_n) f(x_0) + c_1(x - x_0)(x - x_2) \cdots (x - x_n) f(x_1) + \cdots + c_n(x - x_0)(x - x_1) \cdots (x - x_{n-1}) f(x_n)$$

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Polynomial Interpolation (cont'd)

For each $0 \le i \le n$, let:

$$L_i(x) = c_i(x - x_0) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n).$$

As a result we must determine c_i such that:

$$L_i(x) = \begin{cases} 1, & x = x_i \\ 0, & x \neq x_i. \end{cases}$$

Since $L_i(x_i) = 1$, we have:

$$c_i = \frac{1}{(x_i - x_0) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}.$$

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Polynomial Interpolation (cont'd)

Therefore, we can write:

$$L_i(x) = \frac{(x - x_0) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}$$

Thus, we have:

$$P_n(x) = L_0(x)f(x_0) + \dots + L_n(x)f(x_n)$$

which for each $0 \le i \le n$, we have:

$$P_n(x_i) = f(x_i)$$

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Polynomial Interpolation (cont'd)

Claim. The polynomial P(x) is a unique polynomial which agrees with the supposed requirement.

Proof. Consider any polynomial $Q_n(x)$ of degree at most n such that

$$Q_n(x_i) = f(x_i).$$

Consider polynomial:

$$Q_n(x) - p_n(x) = T_n(x).$$

Thus, $T_n(x_i) = 0$ for $0 \le i \le n$.

 $T_n(x)$ is zero in n+1 points. But a polynomial of degree at most n has no more than n zero points unless it is zero at any points. So:

$$T_n(x) = 0 \implies Q_n(n) = p_n(n)$$

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Polynomial Interpolation (cont'd)

Example. Write the Lagrange's interpolation polynomial for the function f(x) given in tabular form below:

i	0	1	2	3
x_i	0	0.1	0.3	0.5
$f(x_i)$	-0.5	0	0.2	1

Solution. We have

$$L_i(x) = \frac{(x - x_0) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}$$

$$p_3(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2) + L_3(x)f(x_3)$$

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Polynomial Interpolation (cont'd)

Solution (cont'd).

$$L_0(x) = \frac{(x - 0.1)(x - 0.3)(x - 0.5)}{(-0.1)(-0.3)(-0.5)} = -\frac{x^3 - 0.9x^2 + 0.23x - 0.015}{0.015}$$

$$L_2(x) = \frac{x(x - 0.1)(x - 0.5)}{0.3 \times 0.2(-0.2)} = -\frac{x^3 - 0.6x^2 + 0.05x}{0.012}$$

$$L_3(x) = \frac{x(x - 0.1)(x - 0.3)}{0.5 \times 0.4 \times 0.2} = \frac{x^3 - 0.4x^2 + 0.03x}{0.04}.$$

$$p_3(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2) + L_3(x)f(x_3)$$

$$= \frac{x^3 - 0.9x^2 + 0.23x - 0.015}{0.015} \times 0.5 - \frac{x^3 - 0.6x^2 + 0.05x}{0.012} \times 0.2$$
$$+ \frac{x^3 - 0.4x^2 + 0.03x}{0.04} \times 1 = \frac{125}{3}x^3 - 30x^2 + \frac{73}{12}x - 0.5$$

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Accuracy of interpolation

In this section the aim is examining the accuracy of the interpolating polynomial $P_n(x)$ as an approximation of f(x).

In other words, the remainder term or a bound for error must be calculated.

Note that it is not possible to examine the exact value of

$$R_n(x) = f(x) - P_n(x).$$

Numerical Computations - Chapter #5: Interpolation and Polynomial Approximation

Accuracy of interpolation (cont'd)

Based on the knowledge of the values of f(x) at $x_0, x_1 \dots x_n$, as it is shown in the below figure, we are free to draw any curve which passes through these n+1 points.

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Accuracy of interpolation (cont'd)

Hence we might face to arbitrarily large $f(x)-P_n(x)$ values at any x except for x_0,x_1,\ldots,x_n where $f(x)-P_n(x)=0$.

Thus, we require more information about f(x). The error estimation is obtainable in term of the $(n+1)^{th}$ derivative of f, if exists.

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Accuracy of interpolation (cont'd)

Theorem. Let $x_0, x_1, ..., x_n$ be distinct points in the interval [a,b]. If $f,f^1,...,f^n$ exist and be continuous on [a,b] and f^{n+1} exists on (a,b), then for each $x \in [a,b]$, there exists a number $\mu(x)$ (generally unknown) between $x_0, x_1, ..., x_n$ and hence in (a,b), such that

$$R_n(x) = f(x) - P_n(x) = \frac{f^{n+1}(\mu(x))}{(n+1)!}(x - x_0) \cdots (x - x_n)$$

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Accuracy of interpolation (cont'd)

Proof. Let

$$g(x) = f(x) - P_n(x) + \mu(x - x_0) \dots (x - x_n)$$

where μ is any constant.

g(x) have zeros at the n+1 points $x_0, x_1, ..., x_n$. We wish to estimate the error at point $x=\alpha\in [a,b]$ and $\alpha\neq x_0, x_1, ..., x_n$, by choosing μ such that $g(\alpha)=0$. So

$$0 = f(\alpha) - P_n(\alpha) + \mu(\alpha - x_0) \dots (\alpha - x_n)$$

Thus:

$$\mu = -\frac{f(\alpha) - P_n(\alpha)}{(\alpha - x_0) \dots (\alpha - x_n)}.$$

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Accuracy of interpolation (cont'd)

Proof. With $\mu = -\frac{f(\alpha) - P_n(\alpha)}{(\alpha - x_0) ... (\alpha - x_n)}$, we have

$$g(x) = f(x) - P_n(x) - \frac{f(\alpha) - P_n(\alpha)}{(\alpha - x_0) \dots (\alpha - x_n)} (x - x_0) \dots (x - x_n).$$

Consequently, g(x) is zero at the n+2 distinct points x_0, x_1, \dots, x_n and $x=\alpha$ at not less than n+2 points.

By using Mean value theorem, g'(x) has at least n+1 zeros. Then, we apply the mean value theorem on g'', and so g''(x) has at least n zeros.

By repeating this process, we obtain $g^{n+1}(x)$ has at least one zero, say $\mu(\alpha)$.

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Accuracy of interpolation (cont'd)

Proof. Differentiatly n + 1 times gives:

$$g^{n+1}(x) = f^{n+1}(x) - \frac{(n+1)!}{(\alpha - x_0)...(\alpha - x_n)} (f(\alpha) - P_n(\alpha))$$

Thus:

$$0 = g^{n+1}(\mu(\alpha)) = f^{n+1}(\mu(\alpha)) - \frac{(n+1)!}{(\alpha - x_0)...(\alpha - x_n)} (f(\alpha) - P_n(\alpha))$$

$$f(\alpha) - P_n(\alpha) = (\alpha - x_0) \cdots (\alpha - x_n) \frac{f^{(n+1)}(\mu(\alpha))}{(n+1)!}$$

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Accuracy of interpolation (cont'd)

Example. Suppose ln 2.1 = 0.7419 and ln 2.2 = 0.7885.

- i. By interpolation on these two values, estimate ln 2.14.
- ii. Estimate the error in linear interpolation

Solution.

i) By interpolation

$$P_1(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1)$$

$$P_1(2.14) = \left(\frac{2.14 - 2.2}{2.1 - 2.2}\right) \times 0.7419 + \left(\frac{2.14 - 2.1}{2.2 - 2.1}\right) \times 0.7885$$

$$= 0.76054.$$

Only for comparison, ln 2.14 = 0.76081 to the decimal places

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Accuracy of interpolation (cont'd)

Solution. (cont'd)

ii)

$$f(x) - P_1(x) = (x - x_0)(x - x_1) \frac{f''(\mu(x))}{2!}.$$

Also,

$$f(x) = \ln x$$
, $f'(x) = \frac{1}{x}$, $f''(x) = \frac{-1}{x^2}$.

Thus:

$$f(2.14) - P_1(2.14) = \frac{-(0.04)(-0.06)}{2\mu(2.14)^2}.$$

Since $2.1 \le \mu(2.14) \le 2.2$, thus the error is between 0.00024 and 0.00025.

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Nevilles Method

In this section, we talk about Neville's method in which interpolating polynomial approximations are recursively generated.

The theorem, as follows, describes this method for recursively generating language polynomial approximations.

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Nevilles Method (cont'd)

Theorem. Assume that the value of f are given at n+1 points $x_0, x_1, ..., x_n$.

Let x_j and x_i be two distinct numbers in the set $\{x_0, x_1, \dots, x_n\}$ then $P_n(x) = \frac{(x-x_j)P_{0,1,\dots,j-1,j+1,\dots,n}(x) - (x-x_i)P_{0,1,\dots,i-1,i+1,\dots,n}(x)}{(x_i-x_j)}$

where $P_n(x)$, $P_{0,1,\dots,j-1,j+1,\dots,n}(x)$ and $P_{0,1,\dots,i-1,i+1,\dots,n}(x)$ are Lagrange polynomial of degree $n,\,n-1,\,n-1$, respectively such that these polynomial interpolates f(x) at the points x_0,x_1,\dots,x_n , and

 $x_0, x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_n$, and $x_0, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n$, respectively.

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Nevilles Method (cont'd)

Proof. Let $Q \equiv P_{0,1,\dots,j-1,j+1,\dots,n}$ and $\bar{Q} \equiv P_{0,1,\dots,i-1,i+1,\dots,n}$ and

$$p(x) = \frac{\left(x - x_j\right)Q(x) - \left(x - x_i\right)\overline{Q}(x)}{\left(x_i - x_j\right)}.$$

We have

i.
$$\deg(Q) \le n - 1$$
, $\deg(\bar{Q}) \le n - 1$, $\deg(p) \le n$.

ii.
$$\bar{Q}(x_i) = f(x_i)$$
 (why?) implies that

$$p(x_j) = \frac{(x_j - x_j)Q(x_j) - (x_j - x_i)\bar{Q}(x_j)}{(x_i - x_j)} = \bar{Q}(x_j) = f(x_i).$$

iii.
$$Q(x_i) = f(x_i)$$
 implies $p(x_i) = f(x_i)$.

iv. For each
$$x_r \in \{1,\dots,n\}\backslash\{i,j\}$$
 , $Q(x_r)=\bar{Q}(x_r)=f(x_r)$, and $p(x_r)=f(x_r)$.

By uniqueness of Lagrange polynomial of degree at most n which agrees with f at x_0, x_1, \dots, x_n ,we have $p(x) = P_n(x)$.

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Nevilles Method (cont'd)

Example. The interpolating polynomial at 5 points x_0, x_1, x_2, x_3, x_4 can be generated recursively as follows:

$$P_4(x) = P_{0,1,2,3,4} = \frac{(x - x_4)P_{0,1,2,3}(x) - (x - x_0)P_{1,2,3,4}(x)}{(x_4 - x_0)}$$

x_0	P_0				
x_1	P_1	$P_{0,1}$			
x_2	P_2	P _{1,2}	$P_{0,1,2}$		
x_3	P_3	$P_{2,3}$	$P_{1,2,3}$	$P_{0,1,2,3}$	
x_4	P_4	$P_{3,4}$	$P_{2,3,4}$	$P_{1,2,3,4}$	$P_{0,1,2,3,4}$

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Nevilles Method (cont'd)

Remark. The interpolating polynomial at 5 points x_0, x_1, x_2, x_3, x_4 can be generated recursively as follows:

$$P_4(x) = P_{0,1,2,3,4} = \frac{(x - x_4)P_{0,1,2,3}(x) - (x - x_0)P_{1,2,3,4}(x)}{(x_4 - x_0)}$$

$$P_{0,1,2,3}(x) = \frac{(x - x_3)P_{1,2,3}(x) - (x - x_0)P_{0,1,2}(x)}{(x_3 - x_0)}$$

$$P_{1,2,3,4}(x) = \frac{(x - x_4)P_{1,2,3}(x) - (x - x_1)P_{2,3,4}(x)}{(x_4 - x_1)}$$

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Nevilles Method (cont'd)

Remark(cont'd).

$$P_{0,1,2}(x) = \frac{(x - x_2)P_{0,1}(x) - (x - x_0)P_{1,2}(x)}{(x_2 - x_0)}$$

$$P_{1,2,3}(x) = \frac{(x - x_3)P_{1,2}(x) - (x - x_1)P_{2,3}(x)}{(x_3 - x_1)}$$

$$P_{2,3,4}(x) = \frac{(x - x_4)P_{2,3}(x) - (x - x_2)P_{3,4}(x)}{(x_4 - x_2)}$$

Numerical Computations - Chapter #5: Interpolation and Polynomial Approximation

Nevilles Method (cont'd)

Remark(cont'd).

$$P_{0,1}(x) = \frac{(x - x_0)P_1 - (x - x_1)P_0}{x_1 - x_0}$$

$$P_{1,2}(x) = \frac{(x - x_1)P_2 - (x - x_2)P_1}{x_2 - x_1}$$

$$P_{2,3}(x) = \frac{(x - x_2)P_3 - (x - x_3)P_2}{x_3 - x_2}$$

$$P_{3,4}(x) = \frac{(x - x_3)P_4 - (x - x_4)P_3}{x_4 - x_3}$$

where $P_i = f(x_i)$ for $0 \le i \le 4$.

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Divided Differences

Suppose the nth Lagrange polynomial $P_n(x)$ whose values in n+1 distinct points x_0, x_1, \dots, x_n are equal to values of f(x), i.e., $P_n(x_i) = f(x_i)$ for $0 \le i \le n$.

We know that this polynomial is unique. In this section, our aim is to express $P_n(x)$ based on the divided differences of f with respect to x_0, x_1, \ldots, x_n . This algebraic representation is useful in certain situations.

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Divided Differences

As you may remember, the following viewpoint is used to construct a Lagrange polynomial.

$$P_n(x) = c_0(x - x_1)(x - x_2) \cdots (x - x_n) f(x_0) + c_1(x - x_0)(x - x_2) \cdots (x - x_n) f(x_1) + \cdots + c_n(x - x_0)(x - x_1) \cdots (x - x_{n-1}) f(x_n)$$

To express $P_n(x)$ based on the divided differences of f(x) with respect to $x_0, x_1, ..., x_n$, the following expression is used

$$P_n(x) = a_0 + (x - x_0)a_1 + (x - x_0)(x - x_1)a_2 + \cdots + (x - x_0)(x - x_1) \dots (x - x_{n-1})a_n$$

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Divided Differences (cont'd)

By substituting $x=x_0,x_1,\ldots,x_n$ in turn into $P_n(x)$, we have

$$f(x_0) = a_0$$

$$f(x_1) = a_0 + (x_1 - x_0)a_1$$

$$f(x_2) = a_0 + (x_2 - x_0)a_1 + (x_2 - x_0)(x_2 - x_1)a_2$$
:

$$f(x_n) = a_0 + (x_n - x_0)a_1 + (x_n - x_0)(x_n - x_1)a_2 + \dots + (x_n - x_0)(x_n - x_1)\dots(x_n - x_{n-1})a_n$$

Numerical Computations - Chapter #5: Interpolation and Polynomial Approximation

Divided Differences (cont'd)

Consequently, values for $a_0, a_1, a_2, \dots, a_n$ are determined uniquely. We obtain

$$a_0 = f(x_0)$$

$$a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Now, we define the <u>divided-difference</u> notation. Denote $f[x_i]$ as the value of f at x_i : $f[x_i] = f(x_i)$

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Divided Differences (cont'd)

Recursively, the remaining divided differences. Denote the first divided differences of f with respect to x_i and x_{i+1} by $f[x_i, x_{i+1}]$ and define as follows:

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$$

The second divided difference, $f[x_i, x_{i+1}, x_{i+2}]$, is defined as

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Divided Differences (cont'd)

So, after finding the (k-1)th divided differences as follows:

$$f[x_i, x_{i+1}, ..., x_{i+k-1}],$$

$$f[x_{i+1}, x_{i+2}, ..., x_{i+k-1}, x_{i+k}].$$

The kth divided difference relative to x is denoted as:

$$f[x_i,x_{i+1},\dots,x_{i+k-1},x_{i+k}] = \frac{f[x_{i+1},x_{i+2},\dots,x_{i+k}] - f[x_i,x_{i+1},\dots,x_{i+k-1}]}{x_{i+k}-x_i}$$

The above process ends with the single nth divided difference

$$f[x_0, x_1, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}$$

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Divided Differences (cont'd)

Thus

$$a_0 = f[x_0]$$

$$a_1 = \frac{f(x_1) - f(x_0)}{x_n - x_0} = \frac{f[x_1] - f[x_0]}{x_n - x_0} = f[x_0, x_1]$$

$$f[x_2] - f[x_0] = (x_2 - x_0)f[x_0, x_1] + (x_2 - x_0)(x_2 - x_1)a_2$$

$$a_2 = \frac{f[x_2] - f[x_0] - (x_2 - x_0)f[x_0, x_1]}{(x_2 - x_0)(x_2 - x_1)}$$

$$= \frac{f[x_2] - f[x_0]}{(x_2 - x_0)(x_2 - x_1)} - \frac{f[x_0, x_1]}{x_2 - x_1}$$

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Divided Differences (cont'd)

$$a_{2} = \frac{f[x_{2}] - f[x_{0}]}{(x_{2} - x_{0})(x_{2} - x_{1})} - \frac{f[x_{0}, x_{1}]}{x_{2} - x_{1}}$$

$$= \frac{f[x_{0}, x_{2}]}{x_{2} - x_{1}} - \frac{f[x_{0}, x_{1}]}{x_{2} - x_{1}}$$

$$= \frac{f[x_{2}, x_{0}] - f[x_{0}, x_{1}]}{x_{2} - x_{1}}$$

$$= f[x_{0}, x_{1}, x_{2}]$$

Inductively, $a_k = f[x_0, x_1, x_2, ..., x_k]$ for k = 0, 1, ..., n thus

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, x_2, \dots, x_k](x - x_0)(x - x_1)(x - x_2) \dots (x - x_{k-1})$$

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Divided Differences (cont'd)

Remark. It is shown that the value of $f[x_0, x_1, ..., x_k]$ is independent of the order of the numbers $x_0, x_1, ..., x_k$.

The following table despite the outline of the generation of the divided difference.

(c) H Sarb	(c) H Sarbazi-Azad & S Hossein Ghorban		Numerical Computations – Chapter #5: In	terpolation and Polynomial Approximation
D	ivide	d Differe	nces (cont'd)	
	x	f(x)	First divided differences	Second Divided differences
	x_0	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	$f[x_1, x_2] - f[x_0, x_1]$
	x_1	$f[x_1]$	_ ~	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$ $f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$
	x_2	$f[x_2]$	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	$x_3 - x_1$ $f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2}$
	x_3	$f[x_3]$	$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3}$	$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5 - x_3}$
	x_4 x_5	$f[x_4]$ $f[x_5]$	$f[x_4, x_5] = \frac{f[x_5] - f[x_4]}{x_5 - x_4}$	

Divided Differences (cont'd)			
Second divided differences	Third divided differences		
$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$		
$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	$f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_4 - x_1}$		
$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2}$	$f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4]}{x_5 - x_2}$		
$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5 - x_3}$	75 72		

Numerical Computations - Chapter #5: Interpolation and Polynomial Approximation

Divided Differences (cont'd)

Example. The upward velocity of a rocket is given as a function of time in as following table.

x (s)	f(x) (m/s)
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Divided Differences (cont'd)

Determine the value of the velocity at t=16 seconds with third order polynomial interpolation using divided difference polynomial method.

Solution.

$$f(t) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) +$$

$$f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2)$$

$$= 227.04 + 27.148(x - 10) + 0.7532(x - 10)(x - 15)$$

$$+ 0.2316(x - 10)(x - 15)(x - 20)$$

$$f(16) = 388.87$$

 $x_4 = 30$

 $f[x_4] = 901.67$

Divided Differences (cont'd) $f[x_i]$ $f[x_0, x_1, x_2]$ $f[x_i,x_i]$ $x_0 = 10$ $f[x_0] = 227.04$ $f[x_0, x_1] = 27.148$ $x_1 = 15$ $f[x_0, x_1, x_2] = 0.753$ $f[x_1] = 362.78$ $f[x_1, x_2] = 30.914$ $f[x_0, x_1, x_2, x_3] = 0.232$ $x_2 = 20$ $f[x_1, x_2, x_3] = 1.336$ $f[x_0, x_1, x_2, x_3, x_4] = -0.041$ $f[x_2] = 517.35$ $f[x_2, x_3] = 34.248$ $f[x_1, x_2, x_3, x_4] = -0.078$ $x_3 = 22.5$ $f[x_2, x_3, x_4] = 0.743$ $f[x_3] = 602.97$

(c) H Sarbazi-Azad & S Hossein Ghorban Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Newton's Divided-Difference Formula

 $f[x_3, x_4] = 39.826$

The divided difference method on equally spaced points is due to Isaac Newton.

Let $x_j = x_0 + jh$, $0 \le j \le n$ where h > 0 denoted the equal spacing between the distinct points $x_0, x_1, ..., x_n$.

Thus the distinct points are represented by parameters x_0 , h_1 and n+1.

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Newton's Divided-Difference Formula

In this setting, finite differences are defined as follows:

- Finite differences of first order $\Delta^1 f_i = f_{i+1} f_i$
- Finite differences of second order $\Delta^2 f_i = \Delta f_{i+1} \Delta f_i$
- Finite differences of kth order $\Delta^k f_i = \Delta^{k-1} f_{i+1} \Delta^{k-1} f_i$ where $f_i = f(x_i)$ for each $0 \le i \le n$.

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Newton's Divided-Difference Formula (cont'd)

We seek the polynomial:

$$P_n[x] = f[x_0] + (x - x_0)f[x_0, x_1]$$

$$+ (x - x_0)(x - x_1)f[x_0, x_1, x_2] + \cdots$$

$$+ (x - x_0) \dots (x - x_{n-1})f[x_0, x_1, \dots, x_n]$$

Newton's Divided-Difference Formula (cont'd)

We have
$$f[x_i, x_{i+1}] = \frac{f(x_{i+1}) - f(x_i)}{h} = \frac{\Delta f_i}{h}$$

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{\Delta f_{i+1} - \Delta f_i}{x_{i+2} - x_i} = \frac{\Delta^2 f_i}{2h^2}$$

$$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}] = \frac{\frac{\Delta^2 f_{i+1} - \Delta^2 f_i}{2h^2}}{x_{i+3} - x_i} = \frac{\Delta^2 f_{i+1} - \Delta^2 f_i}{(3h)(2h^2)} = \frac{\Delta^3 f_i}{3! h^2}$$

$$f[x_i, x_{i+1}, \dots, x_{i+k}] = \frac{\Delta^k f_i}{k! h^k}$$

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Newton's Divided-Difference Formula (cont'd)

Thus

$$P_n(x) = f_0 + \frac{\Delta f_0}{h}(x - x_0) + \frac{\Delta^2 f_0}{2! h^2}(x - x_0)(x - x_1) + \dots + \frac{\Delta^n f_0}{n! h^n}(x - x_0) \dots (x - x_{n-1})$$

Newton's Divided-Difference Formula (cont'd)

Let
$$\frac{x-x_0}{h} = q$$
. Thus

$$x - x_0 = hq$$

$$x - x_1 = x - x_0 - h = hq - h = (q - 1)h$$

$$\begin{vmatrix} x - x_0 = hq \\ x - x_1 = x - x_0 - h = hq - h = (q - 1)h \\ x - x_2 = x - x_0 - 2h = hq - 2h = (q - 2)h \end{vmatrix}$$

$$x - x_{n-1} = x - x_0 - (n-1)h = hq - (n-1)h = (q-n+1)h$$

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Newton's Divided-Difference Formula (cont'd)

As a result:

$$P_n(x_0 + qh) = f_0 + q\Delta f_0 + \frac{q(q-1)}{2!}\Delta^2 f_0 + \dots + \frac{q(q-1)\dots(q-n+1)}{n!}\Delta^n f_0$$

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Newton's Divided-Difference Formula (cont'd)

Divided differences with equally spaced points are expressed in the following table:

x	f_i	Δf_i	$\Delta^2 f_i$	$\Delta^3 f_i$
x_0 x_1 x_2 x_3	f_0 f_1 f_2 f_3	Δf_0 Δf_1 Δf_2	$\Delta^2 f_0$ $\Delta^2 f_1$	$\Delta^3 f_0$

(c) H Sarbazi-Azad & S Hossein Ghorban

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Newton's Divided-Difference Formula (cont'd)

In this relation, the interpolating polynomial error is equal to:

$$R(x_0 + qh) = h^{n+1} \frac{q(q-1) \dots (q-n)}{(n+1)!} f^{(n+1)}(\eta)$$

Where η is some internal point of the least interval containing all the points x_i , $0 \le i \le n$ and the point $x_0 + qh$.

Remark. It is shown that if there is an additional point x_{n+1} , we can use the following formula for practical computation

$$R(x_0 + qh) \approx \frac{\Delta^{n+1} f_0}{(n+1)!} q(q-1) \dots (q-n)$$

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Newton's Divided-Difference Formula (cont'd)

Example. Given a table of the values of the function $y = \log x$, find $\log 1001$.

x	f(x)	Δf	$\Delta^2 f$	$\Delta^3 f$
1000	3.0000000	0.0043214	-0.0000426	0.0000008
1010	3.0043214	0.0042788	-0.0000418	0.0000009
1020	3.0086002	0.0042370	-0.0000409	0.0000008
1030	3.0128372	0.0041961	-0.0000401	
1040	3.0170333	0.0041560		
1050	3.0211893			

$$f(x) = f_0 + q\Delta f_0 + \frac{q(q-1)}{2!}\Delta^2 f_0 + \dots + \frac{q(q-1)(q-2)}{3!}\Delta^3 f_0$$

(c) H Sarbazi-Azad & S Hossein Ghorbar

Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation

Newton's Divided-Difference Formula (cont'd)

Solution.

For x = 1001 we have q = 0.1. Thus

$$\log 1001 = 3.0000000 + 0.1 \times 0.0043214 + \frac{0.1 \times 0.9}{2} 0.0000426 + \frac{0.1 \times 0.9 \times 1.9}{6} 0.0000008 = 3.0004341$$

$$R_3(x) = h^4 \frac{q(q-1)(q-2)(q-3)}{4!} f^4(\varepsilon)$$

where 1000< ε <1030

Since
$$\mathbf{f}(\mathbf{x}) = \log x$$
 , we have $f^{(4)}(x) = -\frac{3!}{x^4} \log e$

$$|f^{(4)}(\varepsilon)| = \frac{3!}{(1000)^4} \log e$$

For h = 10 and q = 0.1, we finally get

$$|R_3(1001)| < \frac{0.1 \times 0.9 \times 1.9 \times 2.9 \times 10^4 \log e}{4 \times (1000)^4} \approx 0.5 \times 10^{-9}$$

(c) H Sarbazi-Azad & S Hossein Ghorban	Numerical Computations – Chapter #5: Interpolation and Polynomial Approximation
ANY	QUESTIONS?