

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Cornélio Procópio

AULA 3

TRENS DE ENGRENAGENS

Professor: Dr. Paulo Sergio Olivio Filho

CONTEÚDO DA AULA

TRENS DE ENGRENAGEM

- Trem de engrenagem simples.
- 2. Trem de engrenagem composto.
- 3. Trem de engrenagem automotivo.
- 4. Trem de engrenagem planetário
- 5. Relação de Velocidade de trens de engrenagem

INTRODUÇÃO

Engrenagens são utilizadas para transmitir movimento de um eixo rotativo para outro ou de um eixo rotativo para outro que translada (rotação em relação a um eixo no infinito, exemplo: cremalheira)

Transmissão de movimento com razão de velocidade angular constante.

LEI FUNDAMENTAL DE ENGRENAMENTO

$$\frac{\omega_A}{\omega_B} = \frac{AO}{BO}$$

•Para um par de engrenagens transmitir uma razão de velocidade angular constante, a forma dos perfis de contato deve ser de tal forma que a normal comum passe através de um ponto fixo na linha dos centros (P).

ENGRENAGENS RETAS

Superfícies cilíndricas;

• Dentes retos e paralelos aos eixos.

• Transmitem potência entre eixos paralelos;

ENGRENAGENS RETAS

- •Diâmetro primitivo D é o diâmetro da circunferência primitiva;
- •Passo frontal é a distância de um ponto de um dente até o ponto correspondente no próximo dente medido ao longo da circunferência primitiva;
- •O `diametral pitch´ (passo diametral) P é usado com sistema de unidades inglesas e é a razão do número de dentes em uma engrenagem e o diâmetro primitivo em polegadas.

$$P = \frac{N}{D}$$

Exemplo de engrenagem de passo diametral P = 2, N = 20 e N = 40 respectivamente.

Exemplo de engrenagem de passo diametral P = 2 e 4, respectivamente, N = 20.

No sistema SI, usa-se o módulo m.

Razão entre o diâmetro (D) em milímetros e o número de dentes.

$$m = \frac{D}{N}$$

Exemplo de engrenagem de módulo m = 1, N = 20 e N = 40 respectivamente.

Exemplo de engrenagem de módulo m = 1 e m = 2, respectivamente, para N = 20.

TABLE 8-3 Standard modules

Module (mm)	Equivalent P_d	Closest standard P _d (teeth/in)
0.3	84.667	80
0.4	63.500	64
0.5	50.800	48
0.8	31.750	32
1	25.400	24
1.25	20.320	20
1.5	16.933	16
2	12.700	12
2.5	10.160	10
3	8.466	8
4	6.350	6
5	5.080	5
6	4.233	4
8	3.175	3
10	2.540	2.5
12	2.117	2
16	1.587	1.5
20	1.270	1.25
25	1.016	1

Como

$$p = \frac{\pi D}{N}$$

$$p = \frac{\pi (m N)}{N} = \pi m$$

- •Tanto o passo frontal, módulo ou **diametral pitch** é uma medida do tamanho dos dentes.
- •Altura da cabeça ou saliência: é a distância radial da circunferência primitiva à circunferência de cabeça;
- •Profundidade ou altura de pé: é a distância radial da circunferência primitiva à circunferência de pé;

- •Profundidade de trabalho (h_k): é a profundidade total de um dente (soma de addendum e dedendum);
- Folga do fundo do dente: é a quantidade na qual o dedendum(profundidade) excede o addendum (saliência);
- •Espessura do dente é a espessura do dente medida ao longo do círculo pitch;
- •Distância entre-centros C: é a distância dos centros das engrenagens;

$$C = \frac{D_{\rm p1} + D_{\rm p2}}{2}$$

- Jogo primitivo (Backlash): é a quantidade na qual a espessura do dente em uma engrenagem excede a espessura do dente na outra engrenagem
- Deveria ser zero, mas não é para evitar **jamming** do dente devido a erros de fabricação e expansão térmica.
- Pinhão: a menor das duas engrenagens;
- Engrenagem: a maior das duas engrenagens.

$$\frac{\omega_2}{\omega_3} = \frac{D_3}{D_2} = \frac{N_3}{N_2}$$
 razão de engrenamento

Para um pinhão 2 acionando uma coroa 3, a velocidade tangencial no contato vale:

$$v = \omega_2 . r_2 = -\omega_3 . r_3$$

sendo:
$$\omega_2 = \frac{2 \cdot \pi \cdot n_2}{60}$$
 e $\omega_3 = \frac{2 \cdot \pi \cdot n_3}{60}$

$$\frac{2.\pi.n_2}{60}.r_2 = -\frac{2.\pi.n_3}{60}.r_3$$

$$n_2.r_2 = -n_3.r_3$$

$$e = -\frac{n_2}{n_3} = \frac{r_3}{r_2} = -\frac{\omega_2}{\omega_3}$$

e - Relação de transmissão(ou razão de engrenamento)

ou ainda:

$$e = \frac{N_3}{N_2} = \frac{d_3}{d_2}$$

Sendo:

n = velocidade ou rotação N = número de dentes d = diâmetro primitivo

Transmitir movimento de um eixo a outro usando engrenagens.

TRENS DE ENGRENAGENS ORDINÁRIOS TRENS SIMPLES

Apenas uma engrenagem em cada eixo

$$n_2 \cdot r_2 = -n_3 \cdot r_3$$

$$e = -\frac{n_2}{n_3} = \frac{r_3}{r_2} = -\frac{\omega_2}{\omega_3}$$

ou ainda:

$$e = \frac{N_3}{N_2} = \frac{d_3}{d_2}$$

e - Relação de transmissão(ou razão de engrenamento)

Sendo:

n = velocidade ou rotação

N = número de dentes

d = diâmetro primitivo

TRENS SIMPLES

Apenas uma engrenagem em cada eixo.

$$n_2.r_2 = -n_3.r_3$$

$$e = -\frac{n_2}{n_3} = \frac{r_3}{r_2} = -\frac{\omega_2}{\omega_3}$$

ou ainda:

$$e = \frac{N_3}{N_2} = \frac{d_3}{d_2}$$

e - Relação de transmissão(ou razão de engrenamento)

Sendo:

n = velocidade ou rotação

N = número de dentes

d = diâmetro primitivo

TRENS SIMPLES

O módulo usado no SI é a relação entre o diâmetro primitivo e o número de dentes.

$$m = \frac{D}{N}$$

$$\boxed{D_2 = m N_2} \qquad \boxed{D_3 = m N_3}$$

$$D_3 = m N_3$$

$$\frac{\omega_3}{\omega_2} = \frac{m N_2 / 2}{m N_3 / 2} = \frac{N_2}{N_3}$$

$$\frac{\omega_A}{\omega_B} = \frac{N_B}{N_A}$$

$$\left| \frac{\omega_C}{\omega_D} = \frac{N_D}{N_C} \right|$$

$$\frac{\omega_B}{\omega_C} = \frac{N_C}{N_B}$$

$$\frac{\omega_D}{\omega_E} = \frac{N_E}{N_D}$$

$$VR = \frac{\omega_A}{\omega_E} = \frac{\omega_A}{\omega_B} \frac{\omega_B}{\omega_C} \frac{\omega_C}{\omega_D} \frac{\omega_D}{\omega_E} = \frac{N_B}{N_A} \frac{N_C}{N_B} \frac{N_D}{N_C} \frac{N_E}{N_D}$$

•VR: razão de velocidade angular ou relação de transmissão.

$$VR = \frac{\omega_A}{\omega_E} = \frac{N_E}{N_A}$$

- •Sinal de VR:
- + ; se a primeira e última engrenagem giram no mesmo sentido.
- ; se elas giram em sentidos opostos.

- •A relação de transmissão é ditada apenas pelo número de dentes da primeira e última engrenagens.
- •Engrenagens intermediárias: **IDLER GEARS**: usadas para conectar engrenagens onde a distância entre centros é grande e controlar a questão do sentido de rotação requerido.

Determinar a relação de transmissão para o conjunto abaixo, onde o diâmetro do pinhão é 50 mm, e o diâmetro da engrenagem é 150 mm. Determinar a velocidade angular da engrenagem, se a velocidade do pinhão é de 1000 RPM. Se o torque de entrada for 10 N.m, qual o torque de saída?

$$VR = \frac{\omega_2}{\omega_3} = \frac{N_3}{N_2}$$

$$VR = \frac{\omega_2}{\omega_3} = \frac{R_3}{R_2}$$

$$\omega_3 = \omega_2 \frac{R_2}{R_3}$$

$$\omega_3 = 1000 \, RPM \, \frac{50 \, mm}{150 \, mm} = 333,33 \, RPM$$

$$T = F R$$

$$F = \frac{T_2}{R_2} = \frac{T_3}{R_3}$$

$$T_3 = T_2 \frac{R_3}{R_2}$$

$$T_3 = 10 \, Nm \, \frac{150 \, mm}{50 \, mm} = 30 \, Nm$$

TREM DE ENGRENAGEM COMPOSTO

Limite prático da relação de transmissão para um par de engrenagens: 10:1. Para obter maiores valores, combiner duas engrenagens no mesmo eixo.

- •Relações maiores do que 10:1.
- •Redução ocorre em estágios.
- Cada estágio possui seu próprio módulo.
- •Sentido de rotação:
 - núm. par de estágios=>mesmo sentido;
 - •núm. ímpar de estágios=>inversão.

TREM COMPOSTO REVERSO

A primeira e a última engrenagens são coaxiais.

Trem composto em que os eixos de entrada e de saída são alinhados.

Condição geométrica a ser satisfeita: mesma distância entre centros

Usadas em automotiva, redutores de velocidades industriais, relógios (eixo dos minutos e horas são coaxiais).

TREM DE ENGRENAGEM COMPOSTO

$$\omega_1 . r_1 = -\omega_2 . r_2$$

$$\omega_3 . r_3 = -\omega_4 . r_4$$

$$\omega_5.r_5 = -\omega_6.r_6$$

mas:
$$\omega_2 = \omega_3$$
 e $\omega_4 = \omega_5$

$$\omega_1 = \left(-\frac{r_6}{r_5}\right) \left(-\frac{r_4}{r_3}\right) \left(-\frac{r_2}{r_1}\right) \omega_6$$

$$\frac{\omega_1}{\omega_6} = \left(-\frac{r_6}{r_5}\right) \left(-\frac{r_4}{r_3}\right) \left(-\frac{r_2}{r_1}\right)$$

ou

$$\frac{\omega_1}{\omega_6} = \left(-\frac{N_6}{N_5}\right) \left(-\frac{N_4}{N_3}\right) \left(-\frac{N_2}{N_1}\right)$$

TREM DE ENGRENAGEM COMPOSTO

• Para um redutor de velocidades simples, a relação de transmissão sempre será maior do que 1, e será calculada por:

$$e = \frac{n_{motora}}{n_{movida}} = \frac{N_{movida}}{N_{motora}}$$

• Para um redutor de velocidades composto, a relação de transmissão será:

$$e = \frac{produto\ do\ n\'umero\ de\ dentes\ das\ engrenagens\ movidas}{produto\ do\ n\'umero\ de\ dentes\ das\ engrenagens\ motoras}$$

- Isto vale também para trens mistos, conforme exemplo anterior.
- O sentido de rotação deverá ser avaliado separadamente.

TRENS DE ENGRENAGEM COMPOSTOS

EXEMPLO 2

• Tem-se mais de uma engrenagem em um dos eixos.

Determine a razão de velocidade para o trens de engrenagem composto sabendo que que a engrenagem **A** gira a 1600 rpm .

$$\omega_B = \omega_A \frac{N_A}{N_B} = 1600 \frac{30}{50} = -960$$

$$\omega_C = \omega_B$$

$$\omega_D = \omega_E = \frac{20}{40} \omega_C = \frac{20}{40} (960) = 480$$

$$\omega_F = \frac{18}{36} \omega_E = \frac{18}{36} 480 = -240$$

$$VR = \frac{50 \cdot 40 \cdot 36}{30 \cdot 20 \cdot 18} = 6,66$$

$$VR = \frac{\omega_A}{\omega_F} = -\frac{1600}{240} = -6,66$$

$$VR = \frac{produto\,do\,n\'umerodedentes\,das\,movidas}{produto\,do\,n\'umerodedentes\,das\,motoras}$$

Determinar a relação de transmissão para o conjunto abaixo, onde o número de dentes de cada engrenagem encontra-se a seguir em milímetros e a velocidade angular de A é 1000 RPM:

$$\omega_B = \omega_A \frac{R_A}{R_B} = 1000 \frac{20}{40} = -500 \, RPM$$

$$|\omega_C = \omega_B = -500 \, RPM$$

$$\omega_D = \omega_C \frac{10}{60} = 500 \frac{10}{60} = 83,33 \, RPM$$

$$\omega_E = \omega_D \frac{R_D}{R_E} = 83,33 \frac{60}{30} = 166,66 RPM$$

$$\omega_G = \omega_F \frac{R_F}{R_G} = 166,66 \frac{45}{50} = 150 \, RPM$$

$$VR = \frac{\omega_A}{\omega_G} = \frac{1000}{150} = 6,66$$

$$VR = \frac{produto do número de dentes das movidas}{produto do número de dentes das motoras} = \frac{40 \cdot 60 \cdot 30 \cdot 50}{20 \cdot 10 \cdot 60 \cdot 45}$$

TRANSMISSÃO AUTOMOTIVA - EXEMPLO 4 UTPR

- A: engrenagem motora.
- •D, E, F e G: giram juntas
- •H: intermediária
- •B e C: deslizam axialmente;
- •Figura atual: posição neutra.

1ª relação de transmissão:

•Engrenagem C é deslocada para a esquerda ligando-se a F.

$$\omega_D = \frac{14}{31} \omega_A$$

$$\omega_F = \omega_D$$

$$\omega_C = \frac{18}{27} \omega_D = \frac{18}{27} \cdot \frac{14}{31} \omega_A$$

$$VR = \frac{\omega_A}{\omega_C} = \frac{31}{14} \frac{27}{18} = 3,32$$

2ª relação de transmissão:

•Engrenagem B é deslocada para a direita, ligando-se a E.

$$VR = \frac{\omega_A}{\omega_C} = \frac{31}{14} \frac{20}{25} = 1,77$$

3ª relação de transmissão:

•Engrenagem B é deslocada para a esquerda, conectandose ao eixo do motor por meio de uma embreagem.

$$VR = 1$$

Reversa:

•Engrenagem C é deslocada para a direita conectando-se com H.

$$VR = \frac{31}{14} \cdot \frac{14}{14} \cdot \frac{27}{14} = -4,27$$

São trens de engrenagens em que os eixos de uma ou mais engrenagens se movem relativamente à estrutura.

- Trens de engrenagens Planetárias ou epicíclicas permitem que os eixos que transferem o movimento permaneçam alinhados.
- Engrenagem Sol possui centro fixo
- Engrenagem planeta possui eixo móvel.
- Transportador do planeta ou braço conduz o eixo do planeta relativamente ao eixo do Sol.
- Possui dois graus de Liberdade (i.e. duas entradas)

APLICAÇÕES

- Parafusadeira elétrica;
- Tratores;
- Aviação;
- •Máquinas de lavar roupas;
- •Transmissões automotivas, etc...

RELAÇÃO DE TRANSMISSÃO

A relação de transmissão é obtida em relação ao braço.

$$e = \frac{n_L - n_A}{n_F - n_A}$$

em que n_F = rev/min da primeira engrenagem no trem planetário n_L = rev/min da última engrenagem no trem planetário n_A = rev/min do braço

ELEMENTOS BÁSICOS

- Supondo que a rotação da engrenagem sol seja nula em relação ao braço, o fato do braço girar uma volta produz uma volta completa na engrenagem, mesmo ela estando parada em relação ao braço.
- Uma volta do braço produz no mínimo uma volta na engrenagem
- (neste caso, anti-horário)

- •Suponha que a engrenagem B tenha o **dobro** do tamanho de A. (relação de transmissão entre A e B = 2).
- •Se o braço der uma volta completa no sentido antihorário: A engrenagem **A** dá 3 voltas completas no sentido anti-horário.
- 1 volta devido ao braço;
- 2 em relação ao braço.

Método da superposição dos efeitos

•As revoluções resultantes ou voltas de qualquer engrenagem podem ser encontradas tomando o número de voltas que faz com o braço mais o número de voltas relativas ao braço.

Membro	Braço	A	В
Trem travado, braço dá uma volta +	1	1	1
Braço fixo, B dá uma volta -	0	2	-1
Resultante	1	3	0

EXEMPLO 5

• Neste caso, A é conectada ao eixo motor, C é a engrenagem fixa.

C fixo;

Braço acoplado ao eixo movido

Membro	Braço	А	В	С
Trem travado, braço dá uma volta +	1	1	1	1
Braço fixo, C dá uma volta -	0	(+105/45*45/15)	-2 1/3	-1
Resultante	1	8	-1 1/3	0

EXEMPLO 6

C fixo;

B e D integrais;

C e E engrenagens internas;

A é o eixo motor;

$$e = -\frac{N_{anel} + Nso_l}{N_{sol}}$$

Membro	Braço	A	В	С	D	Е
Trem travado, braço dá uma volta +	1	1	1	1	1	1
Braço fixo, C dá uma volta -	0	(+140/60*60/20)	(-140/60)	-1	(-140/60)	(-140/60*40/120)
Resultante	1	8	(-4/3)	0	(-4/3)	(+2/9)

No trem de engrenagem, as engrenagens A e B têm módulo 2,5 mm e as engrenagens C e D módulo de 2 mm. Determinar o número de dentes em cada engrenagem se a razão de velocidades é 11,4 aproximadamente. O número de dentes em cada engrenagem é para ser um mínimo, mas não menos do que 24.

$$\boxed{\frac{D_A}{N_A} = \frac{D_B}{N_B}}$$

$$D_A = D_B \frac{N_A}{N_B}$$

Mas:

$$D_A + D_B = 300$$

$$m = \frac{D}{N}$$

$$m N_A + m N_B = 300$$

$$|2,5(N_A + N_B)| = 300$$

$$(N_A + N_B) = 120$$

Mas:

$$V_R = \frac{\omega_A}{\omega_D} = \frac{N_B}{N_A} \frac{N_D}{N_C} = 11,4$$

Inicial:

$$D_A = 80mm$$

$$N_A = \frac{D_A}{m} = \frac{80 \, mm}{2,5 mm} = 32$$

$$D_B = 300mm - 80mm = 220mm$$

$$N_B = \frac{D_B}{N} = 32 \frac{220}{80} = 88$$

$$V_R = \frac{\omega_A}{\omega_D} = \frac{88}{32} \frac{N_D}{N_C} = 11,4$$
 $\frac{N_D}{N_C} = 4,1454$

$$m N_C + m N_D = 300$$

$$2(N_C + N_D) = 300 | (N_C + N_D) = 150$$

$$(N_C + N_D) = 150$$

$$N_D = 4,1454 N_C$$

$$(N_C + 4,1454N_C) = 150$$
 $(5,1454N_C) = 150$

$$(5,1454N_C)=150$$

$$N_C = 29,15$$

$$N_C = 29$$

$$N_D = 150 - 29 = 121$$

$$V_R = \frac{88}{32} \frac{N_D}{N_C} = \frac{88}{32} \frac{121}{29} = 11,47$$

$$D_C = mN_C = 2.5 \cdot 29 = 72.5 \, mm$$

$$D_D = mN_D = 2.5 \cdot 121 = 302.5 \, mm$$

Refazendo para N = 24:

$$N_A = 24$$

$$D_A = m N_A = 2.5 \cdot 24 = 60 \, mm$$

$$D_B = 300mm - 60mm = 240mm$$

$$N_B = N_A \frac{D_B}{D_A} = 24 \frac{240}{60} = 96$$

$$V_R = \frac{\omega_A}{\omega_D} = \frac{96}{24} \frac{N_D}{N_C} = 11,4$$
 $\frac{N_D}{N_C} = 2,85$

$$mN_C + mN_D = 300$$
 $2(N_C + N_D) = 300$ $(N_C + N_D) = 150$

$$2(N_C + N_D) = 300$$

$$(N_C + N_D) = 150$$

$$N_D = 2,85 N_C$$

$$(N_C + 2.85N_C) = 150$$

$$(3.85N_C) = 150$$

$$N_C = 38,96$$

$$|N_C = 39|$$

$$N_D = 150 - 39 = 111$$

$$V_R = \frac{88}{32} \frac{N_D}{N_C} = \frac{96}{24} \frac{111}{39} = 11,38$$

$$D_C = mN_C = 2,5 \cdot 39 = 97,5 \, mm$$

$$D_D = mN_D = 2.5 \cdot 111 = 277.5 \, mm$$

$$N_T = 270$$

EXERCÍCIO - ENTREGAR

1. Determine a rotação da engrenagem 6 e a razão de engrenamento **e** do trem de engrenagem composto.

$$N_2 = 300 \text{ rpm}$$

$$n_6 = ?$$

$$e = ?$$

EXERCÍCIO - ENTREGAR

2. Aplique o método da superposição e construa a tabela de relação de velocidade para o sistema planetário. Calcule a redução para um sistema composto de 3 planetárias.

EXERCÍCIO - ENTREGAR

- 3. Crie um programa em python que calcule a relação de engrenamento em um sistema de engrenamento simples e composto de um conjunto de até 4 engrenagens dado o diâmetro primitivo (Dp), número de dentes (N) e velocidade angular (ω) .
- 4. De forma semelhante, crie um programa em python que calcule o diâmetro primitivo (Dp) e o número de dentes (N), sabendo a relação de engrenamento final para um sistema de engrenamento composto de um conjunto de até 4 engrenagens. Usar exemplo do livro do Norton ou Shigley.