RSA

1. Schlüssel anlegen

Bob wählt zwei große Primzahlen p und q.

Berechnet $n := p \cdot q$

Wähle eine von $\phi(n)$ teilerfremde Zahl d. $(\phi(n) = (p-1) \cdot (q-1))$

 \Rightarrow Es gibt ein Inverses i von d in $|\mathbb{Z}_n^*|$

 $d \cdot i \equiv 1 \pmod{\phi(n)}$

Anmerkung: i kann mit dem erweiterten euklidischen Algorithmus errechnet wer-

n,i werden öffentlich bekannt gegeben.

2. Alice: $m \in$

 $mathbb{Z}_n$ Nachricht

 $c:=m^i \mod n$ (Al Kaschi)

c wird an Bob geschickt.

3. Entschlüsseln: Bob berechnet $c^d \mod n$

Behauptung: $m \equiv c^d \pmod{\mathbf{n}}$ $c^d = (m^i)^d = m^{i \cdot d} \equiv m^{1 + n \cdot \phi(n)} \mod{\mathbf{n}}$ $id \equiv 1 \mod{\phi(n)}, m^{\phi(n)} \equiv 1 \pmod{\mathbf{n}}$