

| Your Name / Isim Soyisim         | Your Signature / Imza   |
|----------------------------------|-------------------------|
|                                  |                         |
| Student ID # / Öğrenci Numarası  |                         |
|                                  |                         |
| Professor's Name / Öğretim Üyesi | Your Department / Bölüm |
|                                  |                         |

- Kopya çeken veya kopya çekme girişiminde bulunan bir öğrenci sınavdan 0 (sıfır) not almış sayılır.
- Hesap makinesi ve cep telefonunuzu kürsüye bırakınız.
- Bir sorudan tam puan alabilmek için, işlemlerinizi açıklamak zorundasınız. Bir cevapta "gidiş yolu" belirtilmemişse, sonucunuz doğru bile olsa, ya çok az puan verilecek ya da hiç puan verilmeyecek.
- Cevabınızı kutu içine alınız.
- Fazla kağıt ihtiyacınız olursa, boş yerleri kullanabilirsiniz.
- Kapak sayfasını MAVİ tükenmez kalem ile doldurunuz.
- Sınav süresi 75 dakika.

Yandaki tabloya hiçbir şey yazmayınız.

| Soru   | Puan | Puanınız |
|--------|------|----------|
| 1      | 20   |          |
| 2      | 20   |          |
| 3      | 20   |          |
| 4      | 20   |          |
| 5      | 20   |          |
| Toplam | 100  |          |

1. 20 puan  $t > 0 \text{ olmak "üzere } ty' + 2y = t^2 - t + 1, \ y(1) = 2 \text{ başlangıç değer probleminin çözümünü bulunuz.}$ 

**Solution:**  $ty' + 2y = t^2 - t + 1$  denklemi lineer diferansiyel denklemdir. Denklemi  $y' + \frac{2}{t}y = t - 1 + \frac{1}{t}$  şeklinde düzenleyip integrasyon çarpanını bulalım.

$$\lambda(t) = e^{\int \frac{2}{t} dt} = e^{2\ln t} = t^2$$

Denklemi integrasyon çarpanı ile çarpıp çözelim.

$$t^{2}y' + 2ty = t^{3} - t^{2} + t$$

$$\frac{d}{dt}(t^{2}y) = t^{3} - t^{2} + t$$

$$t^{2}y = \int (t^{3} - t^{2} + t)dt = \frac{t^{4}}{4} - \frac{t^{3}}{3} + \frac{t^{2}}{2} + C$$

$$y(t) = \frac{t^{2}}{4} - \frac{t}{3} + \frac{1}{2} + \frac{C}{t^{2}}$$

Keyfi sabiti bulmak için başlangıç koşulunu kullanalım.

$$y(1) = 2 \Rightarrow y(1) = \frac{1}{4} - \frac{1}{3} + \frac{1}{2} + C = 2 \Rightarrow C = \frac{19}{12}$$

Denklemin genel çözümü  $y(t) = \frac{t^2}{4} - \frac{t}{3} + \frac{1}{2} + \frac{19}{12t^2}$  şeklindedir.

2. (a) 5 puan Aşağıda verilen difarensiyel denklemi mertebesini, lineerlik ve homojenlik özelliklerini belirterek sınıflandırınız.

$$\frac{d^3y}{dx^3} + 2e^x \frac{d^2y}{dx^2} = x^3 + 5xy.$$

**Solution:** Verilen denklem üçüncü mertebeden, lineer, homojen olmayan diferansiyel denklemdir.

(b) 15 puan y' = -y(3-y) denkleminin doğrultu alanını çiziniz.



#### **Solution:**

y = 0 ve y = 3 noktalarında y' = 0 olur. Yani y = 0 ve y = 3' da denklemin denge çözümleri bulunur. Ayrıca y' artan veya azalan olduğu aralıklar belirleyerek doğrultu alanını çizelim.

0 < y < 3 ise y' < 0 'dır ve fonksiyon azalandır. y < 0 ve 3 < y ise y' > 0 'dır ve fonksiyon artandır.

March 16, 2017 [16:00-17:15]MATH216 First Midterm Exam / MAT216 Birinci Ara Sınav



March 16, 2017 [16:00-17:15]MATH216 First Midterm Exam / MAT216 Birinci Ara Sınav

Page 4 of 6

3. 20 puan  $(4xy^2 + 4y)dx + (4x^2y + 4x)dy = 0$  denkleminin genel çözümünü bulunuz.

**Solution:**  $M(x,y) = 4xy^2 + 4y$  ve  $N(x,y) = 4x^2y + 4x$  alalım.  $M_y = 8xy + 4 = N_x$  olduğundan verilen denklem tam diferansiyel denklemdir. Yani  $F_x dx + F_y dy = 0$  olacak şekilde bir F(x,y) = 0 fonksiyonu vardır. Buna göre  $F_x = 4xy^2 + 4y$  ve  $F_y = 4x^2y + 4x$  olur.

$$F_x = 4xy^2 + 4y \Rightarrow F(x,y) = \int (4xy^2 + 4y)dx = 2x^2y^2 + 4xy + h(y)$$

$$F_y = 4x^2y + 4x \Rightarrow F_y = 4x^2y + 4x + h'(y) = 4x^2y + 4x \Rightarrow h'(y) = 0 \Rightarrow h(y) = C$$

$$F(x,y) = 2x^2y^2 + 4xy + C = 0$$

March 16, 2017 [16:00-17:15]MATH216 First Midterm Exam / MAT216 Birinci Ara Sınav

Page 5 of 6

- 4.  $(r-1)(r^2+9)=0$  denklemi lineer, homojen ve sabit katsayılı bir diferansiyel denklemin karakteristik denklemi olsun.
  - (a) 5 puan Yukarıda bahsedilen diferansiyel denklemi belirleyiniz.
  - (b) 15 puan Karakteristik denklemi verilen diferansiyel denklemin y(0) = 2, y'(0) = -3, y''(0) = 12 başlangıç koşullarını sağlayan çözümünü bulunuz.

### **Solution:**

(a) 
$$(r-1)(r^2+9) = 0 \Rightarrow r^3 - r^2 + 9r - 9 = 0 \Rightarrow \frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} + 9\frac{dy}{dx} - 9y = 0$$

(b)  $(r-1)(r^2+9)=0 \Rightarrow r_1=1, r_2=3i, r_3=-3i$  bulunur ve verilen diferansiyel denklemin genel çözümü  $y(x)=c_1e^x+c_2\cos 3x+c_3\sin 3x$  olarak bulunur.

Başlangıç koşullarını kullanarak keyfi sabitleri belirleyelim.

$$y(0) = 2 \Rightarrow y(0) = c_1 e^0 + c_2 \cos 0 + c_3 \sin 0 = 2 \Rightarrow c_1 + c_2 = 2$$

$$y'(0) = -3 \Rightarrow y'(x) = c_1 e^x - 3c_2 \sin 3x + 3c_3 \cos 3x \Rightarrow y'(0) = c_1 e^0 - 3c_2 \sin 0 + 3c_3 \cos 0 \Rightarrow c_1 + 3c_3 = -3$$

$$y''(0) = 12 \Rightarrow y''(x) = c_1 e^x - 9c_2 \cos 3x - 9c_3 \sin 3x \Rightarrow y''(0) = c_1 e^0 - 9c_2 \cos 0 - 9c_3 \sin 0 = 12 \Rightarrow c_1 - 9c_2 = 12$$

Elde edilen sistem çözüldüğü zaman  $c_1=3$ ,  $c_2=-1$ ,  $c_3=-2$  olarak hesaplanır. Verilen denklemin özel çözümü  $y(x)=3e^x-\cos 3x-2\sin 3x$ 'dir.

March 16, 2017 [16:00-17:15]MATH216 First Midterm Exam / MAT216 Birinci Ara Sınav

Page 6 of 6

5. 20 puan  $y'' - y' - 2y = -3 + 4t^2$  denkleminin genel çözümünü bulunuz.

**Solution:** Öncelikle y'' - y' - 2y = 0 denkleminin genel çözümünü bulalım. Denklemin karakteristik denklemi ve kökleri

$$r^2 - r - 2 = 0 \Rightarrow (r - 2)(r + 1) = 0 \Rightarrow r_1 = 2, r_2 = -1$$

şeklindedir. Genel çözüm ise  $y_h(t)=c_1e^{2t}+c_2e^{-t}$  olur. İkinci olarak ise tamamlayıcı fonksiyonu Belirsiz Katsayılar Metodunu kullanarak belirleyelim.  $y_p(t)=At^2+Bt+C$  olarak alalım. Buna göre  $y_p'=2At+B$  ve  $y_p''=2A$  bulunur.

$$y_p'' - y_p' - 2y_p = -3 + 4t^2$$

$$2A - (2At + B) - 2(At^2 + Bt + C) = -3 + 4t^2$$

$$-2At^2 + (-2A - 2B)t + (2A - B - 2C) = -3 + 4t^2$$

$$\Rightarrow A = -2, B = 2, C = -\frac{3}{2}$$

$$y_p(t) = -2t^2 + 2t - \frac{3}{2}$$

Verilen denklemin genel çözümü  $y(t)=y_h(t)+y_p(t)=c_1e^{2t}+c_2e^{-t}-2t^2+2t-\frac{3}{2}$ 'dir.