Plan du cours

- O/ Probabilités, statistiques comme outils informatiques.
- Rappels de probabilités
- Génération aléatoire (principes et méthodes). ON EST ICI.
- 3/ Rappels et éléments de statistiques.
- 4/ Evaluation de performances.
- 5/ Modèles mathématiques et analyse.
- Simulation.
- 7/ Méthodologie de l'évaluation de performances

Génération aléatoire

Génération aléatoire

- Introduction & motivations.
- 2 Les premiers exemples.
- Les générateurs à k pas.
- Générateur de loi uniforme.

Intro & motivations

Utilisations de nbr aléatoires

- jeux, simulations
- crypto
- autres ...

Intro & motivations

Utilisations de nbr aléatoires

- jeux, simulations
- crypto
- autres ...

Deux types

- Physique (pièce de monnaie, courte-paille, aiguille de Buffon, quantique, ...)
- Algorithmique (fonctions RAND, RANDOM, ...). **ON EST IC!!**.

Intro & motivations

Utilisations de nbr aléatoires

- jeux, simulations
- crypto
- autres ...

Deux types

- Physique (pièce de monnaie, courte-paille, aiguille de Buffon, quantique, ...)
- Algorithmique (fonctions RAND, RANDOM, ...). ON EST ICI!.

Le but principal est de produire des résultats imprévisibles.

L'algorithme de

Von Neumann Middle-square-method

L'idée est (i) de prendre un chiffre sur *n* digits, (ii) de calculer son carré, de prendre (iii) les digits du milieu de ce carré et ainsi de suite ...

Les problèmes du MSM de Von Neumann

- (m.q.) les chiffres obtenus sont périodiques
- Parfois, ces périodes sont très courtes

Les problèmes du MSM de Von Neumann

- (m.g.) les chiffres obtenus sont périodiques
- Parfois, ces périodes sont très courtes

Exemple!

Avec comme valeur initiale 3792, on trouve $3792^2 = 14379264$.

Les problèmes du MSM de Von Neumann

- (m.q.) les chiffres obtenus sont périodiques
- Parfois, ces périodes sont très courtes

Exemple!

Avec comme valeur initiale 3792, on trouve $3792^2 = 14379264$.

• les périodes n'excèdent pas 10ⁿ!

Cependant, cette idée a fonctionné pendant assez longtemps car les "erreurs" sont souvent spéctaculaires et étaient faciles à détecter!!!!!

La méthode BBS [BLUM, BLUM, SHUB 1986]

Algo BBS

$$\mathbf{x}_{\mathsf{n}+\mathsf{1}} = \mathbf{x}_\mathsf{n}^\mathsf{2} \; \mathsf{MOD} \; (\mathsf{pq})$$

où p et q sont de très grand nombres premiers particuliers .

La méthode BBS [Blum, Blum, Shub 1986]

Algo BBS

$$\mathbf{x}_{\mathsf{n}+\mathsf{1}} = \mathbf{x}_\mathsf{n}^\mathsf{2} \; \mathsf{MOD} \; (\mathsf{pq})$$

où p et q sont de très grand nombres premiers particuliers.

Inconvénient majeur

Cet algorithme est très lent et n'a pas d'applications pratiques à part en cryptographie.

Générateurs à k pas

Définition

Ce sont les générateurs de la forme

$$x_n = f(x_{n-1}, x_{n-2}, \cdots, x_{n-k}).$$

où x_0, x_1, x_{k-1} sont des conditions initiales.

Générateurs à k pas

Définition

Ce sont les générateurs de la forme

$$x_n = f(x_{n-1}, x_{n-2}, \cdots, x_{n-k}).$$

où x_0, x_1, x_{k-1} sont des conditions initiales.

Deux exemples fameux

Le générateur linéaire à k pas:

$$x_0, x_1, x_{k-1}; x_{n+k} = \sum_{j=0}^{k-1} c_j x_{n+j}$$

Générateurs à k pas

Définition

Ce sont les générateurs de la forme

$$x_n = f(x_{n-1}, x_{n-2}, \cdots, x_{n-k}).$$

où x_0, x_1, x_{k-1} sont des conditions initiales.

Deux exemples fameux

Le générateur linéaire à k pas:

$$x_0, x_1, x_{k-1}; x_{n+k} = \sum_{j=0}^{k-1} c_j x_{n+j}$$

Le congruentiel linéaire

$$x_0; x_{n+1} = ax_n + b \text{ MOD } m$$

Dans l'exemple précédent, on s'aperçoit qu'on va travailler sur \mathbb{Z}_m . On se pose alors la question : comment choisir les paramètres pour optimiser le générateur?

Dans l'exemple précédent, on s'aperçoit qu'on va travailler sur \mathbb{Z}_m . On se pose alors la question : comment choisir les paramètres pour optimiser le générateur?

Définition

Soit F un ens. fini non vide. Soit $x_0 \in F$ et $f : F \to F$ une application. Un générateur à un pas est donné par le triplet (F, f, x_0) .

Dans l'exemple précédent, on s'aperçoit qu'on va travailler sur \mathbb{Z}_m . On se pose alors la question : comment choisir les paramètres pour optimiser le générateur?

Définition

Soit F un ens. fini non vide. Soit $x_0 \in F$ et $f : F \to F$ une application. Un générateur à un pas est donné par le triplet (F, f, x_0) .

Caractéristiques d'un générateur à un pas

- (i) La suite $(x_n)_{n>0}$ est périodique.
- (ii) Il existe $\mu \in \overline{\mathbb{N}}$ et λ tels que $\forall n \geq \mu$ et $k \geq 0$ alors

$$X_n = X_{n+k\lambda}$$
.

Dans l'exemple précédent, on s'aperçoit qu'on va travailler sur \mathbb{Z}_m . On se pose alors la question : comment choisir les paramètres pour optimiser le générateur?

Définition

Soit F un ens. fini non vide. Soit $x_0 \in F$ et $f : F \to F$ une application. Un générateur à un pas est donné par le triplet (F, f, x_0) .

Caractéristiques d'un générateur à un pas

- (i) La suite $(x_n)_{n\geq 0}$ est périodique.
- (ii) Il existe $\mu \in \overline{\mathbb{N}}$ et λ tels que $\forall n \geq \mu$ et $k \geq 0$ alors

$$x_n = x_{n+k\lambda}$$
.

Autrement dit, les valeurs de la suite (x_n) sont dans un ensemble

$$\{x_j, 0 \le j \le \mu + \lambda - 1\}$$
.

qu'on appele **ORBITE** du générateur.

Exemples

On peut calculer (exo de TDs) les valeurs suivantes :

Grain	fonction	orbite
0	$f(x) = x^*x + x + 1 \text{ MOD } 41$	{0,1,3,13,19,12,34,2,7,16,27}
5	f	{5,31,9}
8	f	{8,32}
14	f	{14,6,2,7,16,27,19,12,34}

Exemples

On peut calculer (exo de TDs) les valeurs suivantes :

Grain	fonction	orbite
0	$f(x) = x^*x + x + 1 \text{ MOD } 41$	{0,1,3,13,19,12,34,2,7,16,27}
5	f	{5,31,9}
8	f	{8,32}
14	f	{14,6,2,7,16,27,19,12,34}

Définition

Une suite (x_n) est ultimement périodique ssi il existe un rang N à partir duquel elle est périodique.

$$\exists N, \exists t > 0, \forall n \geq Nx_{n+t} = x_n$$
.

Exemples

On peut calculer (exo de TDs) les valeurs suivantes :

Grain	fonction	orbite
0	$f(x) = x^*x + x + 1 \text{ MOD } 41$	{0,1,3,13,19,12,34,2,7,16,27}
5	f	{5,31,9}
8	f	{8,32}
14	f	{14,6,2,7,16,27,19,12,34}

Définition

Une suite (x_n) est **ultimement périodique** ssi il existe un rang N à partir duquel elle est périodique.

$$\exists N, \exists t > 0, \forall n \geq Nx_{n+t} = x_n$$
.

Autrement dit, la suite peut s'écrire comme

$$(\cdots(x_N,x_{N+1}\cdots x_{N+t-1})^{\infty})$$

Algorithme de Brent

On procède aux comparaisons suivantes

<i>x</i> ₀	<i>X</i> ₁	 x_{2^k-1}	
<i>X</i> ₁	X_2, X_3	 $X_{2^k}, \cdots X_{2^{k+1}-1}$	

jusqu'à trouver une coïncidence $x_{2^\ell-1}=x_m$ avec $m\in \left[2^\ell,\cdots,2^{\ell+1}-1\right]$. Celle-ci se produit dès que $2^\ell-1\geq e$ (indice d'entrée dans le cycle qui est inconnu) et que $2^\ell\geq \lambda$. On connait alors $\lambda=m-(2^\ell-1)$.

Algorithme de Brent

On procède aux comparaisons suivantes

<i>x</i> ₀	<i>X</i> ₁	 x_{2^k-1}	
<i>X</i> ₁	X_2, X_3	 $X_{2^k}, \cdots X_{2^{k+1}-1}$	

jusqu'à trouver une coïncidence $x_{2^\ell-1}=x_m$ avec $m\in \left[2^\ell,\cdots,2^{\ell+1}-1\right]$. Celle-ci se produit dès que $2^\ell-1\geq e$ (indice d'entrée dans le cycle qui est inconnu) et que $2^\ell\geq \lambda$. On connait alors $\lambda=m-(2^\ell-1)$.

On peut donc procéder aux comparaisons

<i>x</i> ₀	<i>X</i> ₁	 x_k	
x_{λ}	$x_{\lambda+1}$	 $x_{\lambda+k}$	

en sachant que la première a lieu pour k = e.

Algorithme de Floyd

On procède aux comparaisons

<i>x</i> ₀	<i>X</i> ₁	 Xd	
<i>X</i> ₁	<i>X</i> ₂	 <i>X</i> _{2<i>k</i>}	

la première coı̈ncidence se produit pour k multiple de λ qui dépasse e. L'indice k trouvé est forcément un multiple de λ et on procède alors aux comparaisons suivantes

<i>x</i> ₀	<i>X</i> ₁	 x_{ℓ}	
X _d	x_{d+1}	 $x_{d+\ell}$	

Algorithme de Floyd

On procède aux comparaisons

<i>x</i> ₀	<i>X</i> ₁	• • •	Xd	
<i>X</i> ₁	<i>X</i> ₂		<i>X</i> _{2<i>k</i>}	• • •

la première coı̈ncidence se produit pour k multiple de λ qui dépasse e. L'indice k trouvé est forcément un multiple de λ et on procède alors aux comparaisons suivantes

<i>x</i> ₀	<i>X</i> ₁	 \pmb{X}_ℓ	
X _d	x_{d+1}	 $x_{d+\ell}$	

La première coı̈ncidence se produit pour $\ell=\mu$. On finit en déterminant λ par

<i>X</i> ₀	<i>X</i> ₁		Xd	
<i>X</i> ₁	<i>X</i> ₂	• • •	<i>X</i> 2 <i>k</i>	• • •

Algorithme de Floyd

On procède aux comparaisons

<i>x</i> ₀	<i>X</i> ₁	 Xd	
<i>X</i> ₁	<i>X</i> ₂	 <i>X</i> _{2<i>k</i>}	

la première coïncidence se produit pour k multiple de λ qui dépasse e. L'indice k trouvé est forcément un multiple de λ et on procède alors aux comparaisons suivantes

<i>x</i> ₀	<i>X</i> ₁	 \pmb{X}_ℓ	• • •
X _d	x_{d+1}	 $x_{d+\ell}$	

La première coïncidence se produit pour $\ell=\mu$. On finit en déterminant λ par

<i>x</i> ₀	<i>X</i> ₁	 X _d	• • •
<i>X</i> ₁	<i>X</i> ₂	 <i>X</i> 2 <i>k</i>	

Le premier k qui donne une égalité est $k = \lambda$.

Générateurs congruentiels linéaires

Ils sont de la forme

$$x_0; x_{n+1} = ax_n + b \text{ MOD } m$$

Ils sont ceux qui sont le plus souvent utilisés dans divers systèmes et langages. En voici quelques exemples

		$(0 \rightarrow 1 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 8 \rightarrow 6 \rightarrow 7 \rightarrow 2)^{\infty}$
$x_0 = 0$	$x_{n+1} = 2x_n + 1 \text{ MOD } 5$	$(0 \rightarrow 1 \rightarrow 3 \rightarrow 2)^{\infty}$
$x_0 = 4$	$x_{n+1} = 2x_n + 1 \text{ MOD } 5$	$(4 \rightarrow)^{\infty}$

Exemple d'exo/projet

Utiliser Brent ou Floyd pour trouver la période de votre générateur préféré!

Un résultat de caractérisation

Théorème. Hull, Dobell 1966

Pour qu'un GCL $x_{n+1} = ax_n + b$ MOD m soit de période maximale, IL FAUT ET IL SUFFIT que:

- (i) b soit inversible MOD m (ils sont premier entre eux);
- (ii) $a \equiv 1 [p]$ pour tout p premier diviseur de m;
- (iii) Si 4 divise m alors $a \equiv 1$ [4].

Preuve. Le sens "période maximale" \rightarrow critère.

On a
$$x_n = a^n x_0 + [n]_a .b$$

Un résultat de caractérisation

Théorème. Hull, Dobell 1966

Pour qu'un GCL $x_{n+1} = ax_n + b$ MOD m soit de période maximale, IL FAUT ET IL SUFFIT que:

- (i) b soit inversible MOD m (ils sont premier entre eux);
- (ii) $a \equiv 1 [p]$ pour tout p premier diviseur de m;
- (iii) Si 4 divise m alors $a \equiv 1$ [4].

Preuve. Le sens "période maximale" \rightarrow critère.

On a
$$x_n = a^n x_0 + [n]_a . b$$

S'il y a une période maximale, elle passe par zéro.

Un résultat de caractérisation

Théorème. Hull, Dobell 1966

Pour qu'un GCL $x_{n+1} = ax_n + b \text{ MOD } m$ soit de période maximale, IL FAUT ET IL SUFFIT que:

- (i) b soit inversible MOD m (ils sont premier entre eux);
- (ii) $a \equiv 1 [p]$ pour tout p premier diviseur de m;
- (iii) Si 4 divise m alors $a \equiv 1$ [4].

Preuve. Le sens "période maximale" → critère.

On a
$$x_n = a^n x_0 + [n]_a . b$$

S'il y a une période maximale, elle passe par zéro. On pose $y_0 = x_{n_0} = 0$, on a $y_n = [n]_a$.b et la période est max pour y_n . Il existe n_1 tel que $[n_1]_a$.b = 1 d'òu (i).

Preuve (suite)

Soit p un diviseur de m. Si la période est maximale dans \mathbb{Z}_m alors elle l'est aussi dans \mathbb{Z}_p .

Si $a \dashv 1$ [p] on a dans \mathbb{Z}_p le point fixe $\frac{b}{1-a}$ ce qui est incompatible avec la période maximale. D'où (ii).

Si 4 divise m, comme $a \equiv 1$ [2] on a $a \equiv 1,3$ [4]. Si $a \equiv 3 \equiv -1$ [4] on a $x_{n+2} = -(-x_n + b) + b = x_n$, il n'y a donc pas de période maximale d'où (iii).

Preuve (sens inverse)

On écrit $m = \prod_p p^{\alpha(p)}$, il suffit de démontrer que la période est maximale dans tous les $\mathbb{Z}_{p^{\alpha}}$.

On regarde le cycle de 0 engendré par $y_0 = 0$;

on a $y_n \equiv [n]_a . b [m]$. Puisque b est inversible modulo m, il suffit de m. q le critère entraine $[n]_a$ est de période m dans \mathbb{Z}_m .

On montre que la période de $[n]_a$ est maximale à l'aide de l'id. $[sq]_a = [s]_a$. $[q]_{a^s}$.

Bons et mauvais exemples

$$15x + 3 \text{ MOD } 7 ???$$

$$8x + 3 \text{ MOD } 7 ???$$

$$7x + 4 \text{ MOD } 11 ???$$