Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский университет ИТМО

Факультет программной инженерии и компьютерной техники

Вычислительная математика
Лабораторная работа №2
Вариант № 1

Выполнил: студент группы Р3208, Васильев Н. А.

Преподаватель: Машина Е.А.

Текст задания

Численное решение нелинейных уравнений и систем.

Цель работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов

Описание метода, расчётные формулы

Метод половинного деления:

$$x_i = \frac{a_i + b_i}{2}$$

Метод секущих:

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$

Метод хорд:

$$x_i = a_i - \frac{b_i - a_i}{f(b_i) - f(a_i)} f(a_i)$$

Метод Ньютона:

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

Метод секущих:

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$

Вычислительная реализация задачи:

1 часть. Решение нелинейного уравнения

1. Отделить корни заданного нелинейного уравнения графически.

$$2,74x^3 - 1,93x^2 - 15,28x - 3,72$$

2. Определить интервалы изоляции корней.

Определение интервалов изоляции корней нелинейного уравнения — это процесс нахождения отрезков, на которых содержится ровно один корень уравнения.

Найдем точки пересечения графика с осью x: $x_1 \approx -1,88$; $x_2 \approx -0,25$; $x_3 \approx 2,84$.

Найдем интервалы изоляции корней:

x	f(x)
-2,50	-20,40
-2,25	-10,32
-2,00	-2,80
-1,75	2,43
-1,50	5,61
-1,25	7,01
-1,00	6,89
-0,75	5,50
-0,50	3, 10
-0,25	-0,06

-3,72
-7,62
-11,50
-15,11
-18,19
-20,48
-21,73
-21,69
-20,08
-16,66
-11,17
-3,35
7,05
20,29
36,64

Интервалы изоляции корней: (-2,00; -1,75), (-0,50; -0,25) и (2,75; 3,00).

3. Уточнить корни нелинейного уравнения с точностью $\varepsilon = 10^{-2}.$

$$x_1 \approx -1.01$$

$$x_2 \approx 1,99$$

$$x_3 \approx 2,841$$

4. Используемые методы для уточнения каждого из 3-х корней многочлена.

Метод половинного деления – крайний правый корень.

$$x_i = \frac{a_i + b_i}{2}$$

№ шага	а	b	х	f(a)	f(b)	f(x)	a-b
1	2,750	3,000	2,875	-3,350	7,050	1,510	0,250
2	2,750	2,875	2,813	-3,350	1,510	-0,985	0,125
3	2,813	2,875	2,844	-0.985	1,510	0,242	0,062
4	2,813	2,844	2,829	-0.985	0,242	-0,376	0,031
5	2,829	2,844	2,837	-0,376	0,242	-0,058	0,016
6	2,837	2,844	2,841	-0.058	0,242	0,101	0,008

Метод секущих – крайний левый корень.

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$

№ шага	x_{k-1}	x_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
1	2,750	3,000	2,831	-0,295	0,169
2	3,000	2,831	2,837	-0,024	0,007

Метод простой итерации – центральный корень.

Найдем производную функции $f(x) = 2,74x^3 - 1,93x^2 - 15,28x - 3,72$

$$f'(x) = 8.22x^2 - 3.86x - 15.28$$

На границах интервала производная равна:

$$f'(-0,50) = -11,295$$

$$f'(-0,25) = -13,801$$

$$\lambda = \frac{1}{\max(|f'(-0,50)|, |f'(-0,25)|)} = \frac{1}{13,801}$$

$$\varphi(x) = x + \lambda f(x) = x + \frac{2,74x^3 - 1,93x^2 - 15,28x - 3,72}{13,801}$$

$$\varphi'(x) = 1 + \lambda f'(x) = 1 + \frac{8,22x^2 - 3,86x - 15,28}{13,801}$$

$$\varphi'(-0,50) = -0,116$$

$$\varphi'(-0,25) = -0,074$$

$$x_{i+1} = \varphi(x_i)$$

№ шага	x_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
1	-0,500	-0,276	0,293	0,224
2	-0,276	-0,256	0,019	0,020

_					
	3	-0,256	-0,255	0,0001	0,001

2 часть. Решение системы нелинейных уравнений

$$\begin{cases}
\sin(x+1) - y = 1,2 \\
2x + \cos y = 2
\end{cases}$$

В привычном виде получаем:

$$\begin{cases} y = 1, 2 - \sin(x+1) \\ x = \frac{\cos y - 2}{2} \end{cases}$$

Области изоляции корней:

$$G \begin{bmatrix} 0 < x < 1 \\ -1 < y < 0 \end{bmatrix}$$

Проверим выполнение условия сходимости:

$$\begin{aligned} \max_{G} \max_{i} \sum_{j=1}^{n} \left| \frac{\partial \varphi_{i}(x)}{\partial x_{j}} \right| &\leq q < 1 \\ \left| \frac{\partial \varphi_{1}}{\partial x} \right| &= 0, \left| \frac{\partial \varphi_{2}}{\partial x} \right| = \left| \cos(x+1) \right| \\ \left| \frac{\partial \varphi_{1}}{\partial y} \right| &= \left| \frac{1}{2} \cos y \right|, \left| \frac{\partial \varphi_{2}}{\partial y} \right| = 0 \\ \left| \frac{\partial \varphi_{1}}{\partial x} \right| &+ \left| \frac{\partial \varphi_{2}}{\partial x} \right| &= \left| \cos(x+1) \right| \leq 0,540 < 1 \\ \left| \frac{\partial \varphi_{1}}{\partial y} \right| &+ \left| \frac{\partial \varphi_{2}}{\partial y} \right| &= \left| \frac{1}{2} \cos y \right| \leq 0,421 < 1 \end{aligned}$$

Следовательно, условие сходимости на области G выполнено, и метод простых итераций будет сходиться.

Возьмем начальное приближение в центре G: x = 0.500; y = -0.500

$$\begin{cases} x^{(k+1)} = \varphi_1(x, y) \\ y^{(k+1)} = \varphi_2(x, y) \end{cases}$$

№ итерации	x_k	x_{k+1}	$ x_{k+1}-x_k $	y_k	y_{k+1}	$ y_{k+1}-y_k $
1	0,500	0,561	0,061	-0,500	-0,202	0,297
2	0,561	0,510	0,051	-0,202	-0,200	0,002
3	0,510	0,510	0,0001	-0,200	-0,202	0,002

Листинг программы

```
def method_of_chords(f, a, b, epsilon, max_iter=1000):
    if not verificator.check_root(f, a, b):
        return None
    x0, x1 = a, b
    for _ in range(max_iter):
        f0, f1 = f(x0), f(x1)
        if abs(f1 - f0) < 1e-12:
            break
        x2 = x1 - f1 * (x1 - x0) / (f1 - f0)
        if abs(x2 - x1) < epsilon:
            plots.plot_function(f, a, b)
            return x2, f(x2), +1
        x0, x1 = x1, x2
    plots.plot_function(f, a, b)
    return max_iter
def newtons_method(f, df, x0, epsilon, max_iter=1000):
    for _ in range(max_iter):
        f0, df0 = f(x0), df(f, x0)
        if abs(df0) < 1e-12:
            break
        x1 = x0 - f0 / df0
        if abs(x1 - x0) < epsilon:
            plots.plot_function_without_points(f, x0)
            return x1, f(x1), _ + 1
        x0 = x1
    plots.plot_function_without_points(f, x0)
    return max_iter
def simple_iterations(f, phi, x0, epsilon, max_iter=1000):
   x = x0
    for _ in range(max_iter):
        x_next = phi(f, x)
        if abs(x_next - x) < epsilon:</pre>
            plots.plot_function_without_points(f, x0)
            return x_next, f(x_next), _ + 1
```

```
x = x_next
    plots.plot_function_without_points(f, x0)
    return max_iter
def newton_system_method(f, J, x0, epsilon, max_iter=1000):
    x = np.array(x0)
    errors = []
    for _ in range(max_iter):
        F = np.array([fi(x) for fi in f])
        J_{matrix} = J(f, x)
        try:
            J_inv = np.linalg.inv(J_matrix)
        except np.linalg.LinAlgError:
            return None
        delta = np.dot(J_inv, F)
        x_next = x - delta
        error = np.linalg.norm(x_next - x)
        errors.append(error)
        if error < epsilon:</pre>
            plots.plot_functions_system(f[0], f[1], x0)
            return x_next, _, errors
        x = x_next
    return max_iter
```

Примеры и результаты работы программы

Пример №1. Решение уравнения 2.74 * x**3 - 1.93 * x**2 - 15.28 * x - 3.72 методом хорд с точностью 0,01, границы [-0.5; 1]:

Вывод:

Корень: -0.2545898431759913

Значение функции: -0.00017614244687402802

Количество итераций: 3

Пример №2. Решение уравнения $\cos(x) + 3 * x^4 - 2$ методом Ньютона с точностью 0,01, начальное приближение 0:

Вывод:

Не удалось найти корень за 1000 итераций.

Пример №3. Решение уравнения $x^5 - 10 * x^3 + 4 * x^2 - 7$ методом простых итераций с точностью 0,1, начальное приближение 1:

Вывод:

Корень: -3.3274839281065893

Значение функции: -2.211954634076349

Количество итераций: 15

Пример №4. Решение системы уравнений f1(x, y) = sin(x + y) - 1.4x, $f2(x, y) = x^2 + y^2 - 1$ методом ньютона с точностью 0,01, начальное приближение x=0, y=1:

Вывод:

Решение системы: [0.70555676 0.70866245]

Количество итераций: 3

Погрешности: [0.9787986992925334, 0.3503284549711896, 0.08470979029734955,

0.0035781018495097726]

Вывод

В процессе выполнения лабораторной работы я вычислил корни нелинейных уравнений и систем нелинейных уравнений, а также программно реализовал несколько методов для нахождения корней нелинейных уравнений и систем нелинейных уравнений. В частности, были рассмотрены следующие методы: метод хорд, метод Ньютона, метод простых итераций, метод половинного деления и метод секущих.

Я создал программу на языке Python, которая решает задачи нахождения корней нелинейных уравнений и систем с использованием популярных методов. В процессе решения задачи была добавлена возможность визуализации результатов с помощью matplotlib, а также функциональность для записи результатов в файл или вывода их в консоль.