Keio University

Research presentation:

High performance silicon AWG with geometrically improved interface between slab and waveguide array

Tsuda Hiroyuki's Laboratory
School of integrated design engineering

Santacatterina Simon 81923479

Agenda

Introduction

Aim of research

Research method and results

Conclusion

Introduction

Framework of AWGs

- One of the most used photonic component in optical networks: increase capacity of transmission and flexibility
- Optical wavelength de/multiplexer Appli.
 - modulator, photodiode, WDM device, optical coupler/splitter
- Compact device, single-mask planar waveguide technology
- At first in Silica, now being developed using Silicon to increase integration density and performances

Data center

Router in Optical networks

Issues

Physical characteristics

Structure:

Physical principles:

1st slab: diffraction of input signal, copy to each arrayed waveguides

Arrayed waveguides: constant length difference ΔL introducing delays between signals

2nd slab: interference of beamsSpatial division of wavelength

Silicon photonics

Guiding mechanism

 $heta_{r_max} = \cos^{-1}(n_{clad}/n_{core})$ with $n_{Si} = 3.47, n_{SiO_2} = 1.44, n_{Ge-SiO_2} = 1.45$

Better waveguiding mechanism for Silicon

Optical confinement

TIR : total internal reflection

Core area 500 times smaller

Bending radius 2000 times smaller

- Increase integration density
- Compact : energy efficient
- CMOS compatible and robust

Drawbacks

High n waveguides :

- Extremely sensitive to phase errors
- Reduce margin of error of both the design and fabrication
- increase the overall crosstalk
 - Higher propagation losses
 - Scattering/transition losses
- Increase the overall crosstalk

Aim of research

Goal: High performance Si AWG

By reducing:

Loss

Loss variation

Crosstalk

Method

Introducing new modifications

Optimization methods

Loss

Loss variation

Physical quantities representation

Crosstalk

Research Method

Proposal of new AWG structure

New improvements

Background

New taper structure : 2 stages

Smoother transition

Tapers: mode-size converter to reduce planar waveguide and single mode waveguide mismatching

Etching: suppressing multimode generation and the scattering due to the optical field mismatch effect

Wavefront Matching Method (WMM)

Measurement setup and metrics

Geometrical Setup

Crosstalk

Power

Metrics

Efficiency η in mode m

$$\eta = \frac{1}{4P_m P_{\rm src}} \left| \iint_A d\mathbf{A} \cdot \mathbf{E} \times \mathbf{H}_m^* \right|^2$$

Optimize for fundamental mode (Overlap integral)

Power S(t) crossing the measurement site

$$S(t) = \frac{1}{S_0} \operatorname{Re} \left[\int_A \left[\mathbf{E}(\mathbf{r}, t) \times \mathbf{H}^*(\mathbf{r}, t) \right] \cdot dA. \right]$$

Compute Crosstalk and Loss

*Measurement planes in green in following slides

Taper two stages optimization

2nd stage of optimization

1st stage of optimization Parabolic 2D view 3D view Linear 3D view 2D view

Taper two stages optimization (cont.)

Optimization parameters :

Parameter symbol	physical meaning
L	length of taper
Lrib	length of rib structure
Wmid	width of rib waveguide
d	pitch of the parabolic taper

Fixed:

- Taper input width (Win)
- Single mode waveguide width (Wout)
- Gaps

Etching optimization

Artistic view

Layout Y-cut

Optimization parameters :

Parameter symbol	physical meaning
detch	etching distance relative to the slab interface
letch	length in z-direction of the etching area
wetch	width in x-direction of the etching area

Find detch, letch and wetch by maximizing the metrics under minimum resolution constraints

Overall AWG characteristics

9 steps including:

- FullWave FDTD
- Fourier transform
- Custom algorithm

Simulation and Results

First stage: Taper optimization

3D FDTD Overlap data

Better Transmission

First stage: Taper optimization

 Taper length is optimized to give better output characteristics for various Wmid (0.8um, 1um)

 Parabolic taper's slope d can be tuned to improve the overlap and power at the output

 Parabolic taper exhibits better characteristics than linear tapers

First stage is optimized with:

- L = 2.8um
- d = 0.1
- Parabolic taper
- *Wmid* = 1um

Second stage

• Second stage optimized in the same way, given first stage best L, d, Wmid and parabolic:

Slab etching: 3 parameters optimization

Index profile showing simulated interface

3D FDTD simulations: higher power intensity

Slab etching: 3 parameters optimization

Power

Power

wetch = 0.2um

Final values

Optimal design or parameters	Value
Optimal structure	2 stage design
Optimal taper	parabolic
Optimal L	2 μm
Optimal <i>Lrib</i>	$2.8 \mu m$
Optimal Wmid	1 μm
Optimal d	0.1
Optimal letch	$0.4~\mu m$
Optimal detch	$0.5~\mu m$
Optimal wetch	0.2 μm

Overall AWG characteristics results

9 steps including:

- FullWave FDTD
- Fourier transform
- Custom algorithm

Input

- Solving mode by FEM
- Launching at input waveguide
- FDTD computation
- FPR input beam

Input beam

Input beam after taper

First FPR: diffracting beam

Diffraction direction

Enclosed direction

Beam diffraction along x-axis in first FPR

Fraunhofer diffraction

Slab enclose beam y-axis in first FPR

Coupling to Array

- Diffracted beam reaches waveguide array
- Measuring profile

Arrayed Waveguides

Field sampled by the waveguide array

Power and Ex in each waveguide

Arrayed Waveguides (cont.)

Field sampled by the waveguide array

Second FPR input

Second FPR

- Diverging beams summed
- Coupling to output wgs
- Repeat process

FPR2 summed diverging beam

Final values

Design parameters	Value
Operational wavelength λ_0	1550 nm
Channel spacing Δ_{CH}	3.2 nm
Frequency channel spacing Δv	400 GHz
Number of channels N _{CH}	1 × 8
Δλ (FSR)	25.6 nm
Free spectral range (FSR)	$1.5 \times 25.6 = 38.4 \text{ nm}$
Focal length of slab waveguide (L_f)	88.803 μm
Number of arrayed waveguides (N)	25
Path difference of arrayed waveguides Δl	26.8998 μm
Separation between the input/output d_{wg}	2 μm
Gap between the waveguide gap	0.2 μm
Separation between the arrayed waveguides	2 μm
Central output loss	0.3 dB
Roughly approximated crosstalk	-25 dB

Conclusion

Conclusion

1st optimization using tapers design

- 2nd optimization by etching in the slab
- Overall AWG characteristics computed

Optimal design or parameters	Value
Optimal structure	2 stage design
Optimal taper	parabolic
Optimal L	2 μm
Optimal Lrib	2.8 μm
Optimal Wmid	1 μm
Optimal d	0.1
Optimal letch	0.4 µm
Optimal detch	0.5 μm
Optimal wetch	0.2 μm

Design parameters	Value
Operational wavelength λ_0	1550 nm
Channel spacing Δ_{CH}	3.2 nm
Frequency channel spacing Δv	400 GHz
Number of channels N_{CH}	1 × 8
Δλ (FSR)	25.6 nm
Free spectral range (FSR)	$1.5 \times 25.6 = 38.4 \text{ nm}$
Focal length of slab waveguide (L_f)	88.803 μm
Number of arrayed waveguides (N)	25
Path difference of arrayed waveguides Δl	26.8998 μm
Separation between the input/output d_{wg}	2 μm
Gap between the waveguide gap	0.2 μm
Separation between the arrayed waveguides	2 μm
Central output loss	0.3 dB
Roughly approximated crosstalk	-25 dB

Thank you

References

- 1. Cisco Global Cloud Index, 2016-2021.
- 2. An Overview on Traditional Data Center Outsourcing Service Providers, https://www.isg-one.de/research/articles/an-overview-on-traditional-data-center-outsourcing-service-providers, Shashank Rajmane.
- 3. Meint K. Smit and Cor van Dam, "PHASAR-Based WDM-Devices: Principles, Design and Applications", IEEE Journal of selected topics in quantum electronics, Vol. 2, No. 2, June.
- 4. Dong-Hak Choi, Hideaki Hiro-Oka, Kimiya Shimizu, Kohji Ohbayashi, "Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second", December 2012, Biomedical Optics Express 3(12):3067-86.
- 5. Tong Ye, Yunfei Fu, Lei Qiao, and Tao Chu, "Low-crosstalk Si arrayed waveguide grating with parabolic tapers", Optics Express 31899, Vol. 22, No. 26, 29 Dec 2014.

References

- 6. Christopher Richard Doerr and Katsunari Okamoto, "Advances in Silica Planar Lightwave Circuits", Journal Of Lightwave Technology, Vol. 24, No. 12, December 2006.
- 7. Katsunari Okamoto and Kenzo Ishida, "Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors", Optics Letters, Vol. 38, No. 18, September 15, 2013
- 8. http://photonics.intec.ugent.be/research/topics.asp?ID=132, Ghent University research team on AWG, main researcher: Shibnath Pathak.
- 9. Koji Yamada, Tai Tsuchizawa, Hidetaka Nishi, Rai Kou, Tatsurou Hiraki, Kotaro Takeda, Hiroshi Fukuda, Yasuhiko Ishikawa, Kazumi Wada and Tsuyoshi Yamamoto, "High-performance silicon photonics technology for telecommunications applications", Science and Technology of Advanced Materials, Vol. 15, No. 2, 23 April 2014.
- 10. Tsuda Hiroyuki, Keio University.
- 11. Jaegyu park, Gyungock Kim, Hyundai Park, Jiho Joo, Sanggi Kim, and Myung-Joon Kwack, "Performance improvement in silicon arrayed waveguide grating by suppression of scatteringnear the boundary of a star coupler", Applied Optics, Vol. 54, No. 17, June 10, 2015