

Exercise 2.2.9 Let H be the subgroup generated by two elements a, b of a group G. Prove that if ab = ba, then H is an abelian group.

Proof. Since a and b commute, for any $g, h \in H$ we can write $g = a^i b^j$ and $h = a^k b^l$. Then $gh = a^i b^j a^k b^l = a^k b^l a^i b^j = hg$. Thus H is abelian. \square

Exercise 2.3.2 Prove that the products ab and ba are conjugate elements in a group.

Proof. We have that $(a^{-1})ab(a^{-1})^{-1} = ba$.

Exercise 2.4.19 Prove that if a group contains exactly one element of order 2, then that element is in the center of the group.

Proof. Let x be the element of order two. Consider the element $z = y^{-1}xy$, we have: $z^2 = (y^{-1}xy)^2 = (y^{-1}xy)(y^{-1}xy) = e$. So: z = x, and $y^{-1}xy = x$. So: xy = yx. So: x = x is in the center of x = y.

Exercise 2.8.6 Prove that the center of the product of two groups is the product of their centers.

Proof. We have that $(g_1, g_2) \cdot (h_1, h_2) = (h_1, h_2) \cdot (g_1, g_2)$ if and only if $g_1 h_1 = h_1 g_1$ and $g_2 h_2 = h_2 g_2$.

Exercise 2.11.3 Prove that a group of even order contains an element of order 2.

Proof. Pair up if possible each element of G with its inverse, and observe that

$$g^2 \neq e \Longleftrightarrow g \neq g^{-1} \Longleftrightarrow \text{ there exists the pair } (g, g^{-1})$$

Now, there is one element that has no pairing: the unit e (since indeed $e=e^{-1} \iff e^2=e$), so since the number of elements of G is even there must be at least one element more, say $e \neq a \in G$, without a pairing, and thus $a=a^{-1} \iff a^2=e$

Exercise 3.2.7 Prove that every homomorphism of fields is injective.

Proof. Suppose f(a) = f(b), then f(a - b) = 0 = f(0). If $u = (a - b) \neq 0$, then $f(u)f(u^{-1}) = f(1) = 1$, but that means that $0f(u^{-1}) = 1$, which is impossible. Hence a - b = 0 and a = b.

Exercise 3.5.6 Let V be a vector space which is spanned by a countably infinite set. Prove that every linearly independent subset of V is finite or countably infinite.

Proof. Let A be the countable generating set, and let U be an uncountable linearly independent set. It can be extended to a basis B of the whole space. Now consider the subset C of elements of B that appear in the B-decompositions of elements of A. Since only finitely many elements are involved in the decomposition of each element of A, the set C is countable. But C also clearly generates the vector space V. This contradicts the fact that it is a proper subset of the basis B (since B is uncountable).

Exercise 3.7.2 Let V be a vector space over an infinite field F. Prove that V is not the union of finitely many proper subspaces.

Proof. If V is the set-theoretic union of n proper subspaces W_i ($1 \le i \le n$), then $|F| \le n-1$. Proof. We may suppose no W_i is contained in the union of the other subspaces. Let $u \in W_i$, $u \notin \bigcup_{j \ne i} W_j$ and $v \notin W_i$. Then $(v+Fu) \cap W_i = \varnothing$ and $(v+Fu) \cap W_j (j \ne i)$ contains at most one vector since otherwise W_j would contain u. Hence

$$|v + Fu| = |F| \le n - 1.$$

Corollary: Avoidance lemma for vector spaces. Let E be a vector space over an infinite field. If a subspace is contained in a finite union of subspaces, it is contained in one of them.

Exercise 6.1.14 Let Z be the center of a group G. Prove that if G/Z is a cyclic group, then G is abelian and hence G = Z.

Proof. We have that G/Z(G) is cyclic, and so there is an element $x \in G$ such that $G/Z(G) = \langle xZ(G) \rangle$, where xZ(G) is the coset with representative x. Now let $g \in G$ We know that $gZ(G) = (xZ(G))^m$ for some m, and by definition $(xZ(G))^m = x^m Z(G)$. Now, in general, if $H \leq G$, we have by definition too that aH = bH if and only if $b^{-1}a \in H$. In our case, we have that $gZ(G) = x^m Z(G)$, and this happens if and only if $(x^m)^{-1}g \in Z(G)$. Then, there's a $z \in Z(G)$ such that $(x^m)^{-1}g = z$, and so $g = x^m z$.

 $g, h \in G$ implies that $g = x^{a_1}z_1$ and $h = x^{a_2}z_2$, so

$$gh = (x^{a_1}z_1) (x^{a_2}z_2)$$

$$= x^{a_1}x^{a_2}z_1z_2$$

$$= x^{a_1+a_2}z_2z_1$$

$$= \dots = (x^{a_2}z_2) (x^{a_1}z_1) = hg.$$

Therefore, G is abelian.

Exercise 6.4.2 Prove that no group of order pq, where p and q are prime, is simple.

Proof. If |G| = n = pq then the only two Sylow subgroups are of order p and q. From Sylow's third theorem we know that $n_p \mid q$ which means that $n_p = 1$ or $n_p = q$. If $n_p = 1$ then we are done (by a corollary of Sylow's theorem) If $n_p = q$ then we have accounted for q(p-1) = pq - q elements of G and so there is only one group of order q and again we are done.

Exercise 6.4.3 Prove that no group of order p^2q , where p and q are prime, is simple.

Proof. We may as well assume p < q. The number of Sylow q-subgroups is $1 \mod q$ and divides p^2 . So it is 1, p, or p^2 . We win if it's 1 and it can't be p, so suppose it's p^2 . But now $q \mid p^2 - 1$, so $q \mid p + 1$ or $q \mid p - 1$. Thus p = 2 and q = 3. But we know no group of order 36 is simple.

Exercise 6.4.12 Prove that no group of order 224 is simple.

Proof. The following proves there must exist a normal Sylow 2 -subgroup of order 32, Suppose there are $n_2 = 7$ Sylow 2 -subgroups in G. Making G act on the set of these Sylow subgroups by conjugation (Mitt wrote about this but on the set of the other Sylow subgroups, which gives no contradiction), we get a homomorphism $G \to S_7$ which must be injective if G is simple (why?).

But this cannot be since then we would embed G into S_7 , which is impossible since $|G| \nmid 7! = |S_7|$ (why?)

Exercise 6.8.1 Prove that two elements a, b of a group generate the same subgroup as bab^2, bab^3 .

Exercise 6.8.4 Prove that the group generated by x, y, z with the single relation $yxyz^{-2} = 1$ is actually a free group.

Exercise 6.8.6 Let G be a group with a normal subgroup N. Assume that G and G/N are both cyclic groups. Prove that G can be generated by two elements.

Exercise 10.1.13 An element x of a ring R is called nilpotent if some power of x is zero. Prove that if x is nilpotent, then 1 + x is a unit in R.

Proof. If $x^n = 0$, then

$$(1+x)\left(\sum_{k=0}^{n-1}(-1)^kx^k\right) = 1 + (-1)^{n-1}x^n = 1.$$

Exercise 10.2.4 Prove that in the ring $\mathbb{Z}[x], (2) \cap (x) = (2x)$.

Proof. Let $f(x) \in (2x)$. Then there exists some polynomial $g(x) \in \mathbb{Z}$ such that

$$f(x) = 2xg(x)$$

But this means that $f(x) \in (2)$ (because xg(x) is a polynomial), and $f(x) \in (x)$ (because 2g(x) is a polynomial). Thus, $f(x) \in (2) \cap (x)$, and

$$(2x) \subseteq (2) \cap (x)$$

On the other hand, let $p(x) \in (2) \cap (x)$. Since $p(x) \in (2)$, there exists some polynomial $h(x) \in \mathbb{Z}[x]$ such that

$$p(x) = 2h(x)$$

Furthermore, $p(x) \in (x)$, so

$$p(x) = xh_2(x)$$

So, $2h(x) = xh_2(x)$, for some $h_2(x) \in \mathbb{Z}[x]$. This means that h(0) = 0, so x divides h(x); that is,

$$h(x) = xq(x)$$

for some $q(x) \in \mathbb{Z}[x]$, and

$$p(x) = 2xq(x)$$

Thus, $p(x) \in (2x)$, and

$$(2) \cap (x) \subseteq (2x)$$

Finally, $(2) \cap (x) = (2x)$, as required.

Exercise 10.6.7 Prove that every nonzero ideal in the ring of Gauss integers contains a nonzero integer.

Proof. Let I be some nonzero ideal. Then there exists some $z \in \mathbb{Z}[i], z \neq 0$ such that $z \in I$. We know that z = a + bi, for some $a, b \in \mathbb{Z}$. We consider three cases: 1. If b = 0, then z = a, so $z \in \mathbb{Z} \cap I$, and $z \neq 0$, so the statement of the exercise holds. 2. If a = 0, then z = ib. Since $z \neq 0$, we conclude that $b \neq 0$. Since I is an ideal in $\mathbb{Z}[i]$, and $I \in \mathbb{Z}[i]$, we conclude that $I \in I$. Furthermore,

 $iz = -b \in \mathbb{Z}$. Thus, iz is a nonzero integer which is in I. 3. Let $a \neq 0$ and $b \neq 0$. Since I is an ideal and $z \in I$, we conclude that $z^2 \in I$; that is,

$$(a+bi)^2 = a^2 - b^2 + 2abi \in I$$

Furthermore, since $-2a \in \mathbb{Z}[i]$, and $z \in I$ and I is an ideal, $-2az \in I$; that is,

$$-2az = -2a(a+bi) = -2a^2 - 2abi \in I$$

Since I is closed under addition,

$$(a^2 - b^2 + 2abi) + (-2a^2 - 2abi) \in I \Longrightarrow -a^2 - b^2 \in I$$

Notice that $-a^2 - b^2 \neq 0$ since $a^2 > 0$ and $b^2 > 0$, so $-a^2 - b^2 < 0$. Furthermore, it is an integer. Thus, we have found a nonzero integer in I.

Exercise 10.4.6 Let I, J be ideals in a ring R. Prove that the residue of any element of $I \cap J$ in R/IJ is nilpotent.

Proof. If x is in $I \cap J$, $x \in I$ and $x \in J$. $R/IJ = \{r + ab : a \in I, b \in J, r \in R\}$. Then $x \in I \cap J \Rightarrow x \in I$ and $x \in J$, and so $x^2 \in IJ$. Thus

$$[x]^2 = [x^2] = [0]$$
 in R/IJ

Exercise 10.4.7a Let I, J be ideals of a ring R such that I + J = R. Prove that $IJ = I \cap J$.

Exercise 10.5.16 Let F be a field. Prove that the rings $F[x]/(x^2)$ and $F[x]/(x^2-1)$ are isomorphic if and only if F has characteristic 2.

Exercise 10.7.6 Prove that the ring $\mathbb{F}_5[x]/(x^2+x+1)$ is a field.

Exercise 10.7.10 Let R be a ring, with M an ideal of R. Suppose that every element of R which is not in M is a unit of R. Prove that M is a maximal ideal and that moreover it is the only maximal ideal of R.

Exercise 11.2.13 If a, b are integers and if a divides b in the ring of Gauss integers, then a divides b in \mathbb{Z} .

Exercise 11.3.1 Let a, b be elements of a field F, with $a \neq 0$. Prove that a polynomial $f(x) \in F[x]$ is irreducible if and only if f(ax + b) is irreducible.

Exercise 11.3.4 Prove that two integer polynomials are relatively prime in $\mathbb{Q}[x]$ if and only if the ideal they generate in $\mathbb{Z}[x]$ contains an integer.

Exercise 11.4.1b Prove that $x^3 + 6x + 12$ is irreducible in \mathbb{Q} .

Exercise 11.4.6a Prove that $x^2 + x + 1$ is irreducible in the field \mathbb{F}_2 .

Exercise 11.4.6b Prove that $x^2 + 1$ is irreducible in \mathbb{F}_7

Exercise 11.4.6c Prove that $x^3 - 9$ is irreducible in \mathbb{F}_{31} .

Exercise 11.4.8 Let p be a prime integer. Prove that the polynomial $x^n - p$ is irreducible in $\mathbb{Q}[x]$.

Exercise 11.12.3 Prove that if $x^2 \equiv -5 \pmod{p}$ has a solution, then there is an integer point on one of the two ellipses $x^2 + 5y^2 = p$ or $2x^2 + 2xy + 3y^2 = p$.

Exercise 11.13.3 Prove that there are infinitely many primes congruent to -1 (modulo 4).

Exercise 13.4.10 Prove that if a prime integer p has the form $2^r + 1$, then it actually has the form $2^{2^k} + 1$.

Exercise 13.6.10 Let K be a finite field. Prove that the product of the nonzero elements of K is -1.

Proof. Since we are working with a finite field with q elements, anyone of them is a root of the following polynomial

$$x^q - x = 0.$$

In particular if we rule out the 0 element, any $a_i \neq 0$ is a root of

$$x^{q-1} - 1 = 0.$$

This polynomial splits completely in \mathbb{F}_q so we find

$$(x-a_1)\cdots(x-a_{q-1})=0$$

in particular

$$x^{q-1} - 1 = (x - a_1) \cdots (x - a_{q-1})$$

Thus $a_1 \cdots a_{q-1} = -1$.