National University of Computer & Emerging Sciences (NUCES) Islamabad, Department of Computer Science

DATA STRUCTURES — FALL 2021

LAB 04

Learning Outcomes

In this lab you are expected to learn the following:

- Sorting and Searching Algorithms
- Multidimensional Arrays

Objective

To implement various sorting and searching algorithms and apply them on multidimensional arrays.

Task 1:

Eric loves puzzle making. One night he went to sleep after completing his puzzle only to wake up and find his puzzle had been messed up. Help Eric in **sorting** the puzzle pieces back to correct form.

- The first row of puzzle has to be sorted using **insertion sort**
- The second row of puzzle has to be sorted using **selection sort**
- The third row of puzzle has to be sorted using **bubble sort**

Unsorted Puzzle

32	30	39	34	37	35	33					
50	48	54	59	47	49	52	51	55	53	57	58
9	3	6	5	12							

Sorted Puzzle

30	32	33	34	35	37	39					
47	48	49	50	51	52	53	54	55	57	58	59
3	5	6	9	12							

Note: You can create a separate class in which you implement the required sorting algorithms.

Task 2:

You are given a crossword puzzle in the form of 2D-Array.

С	E	М
В	Α	0
Х	W	Т

Your task is to find the indices of the characters of the word: CAT.

Let us walk through this example:

You have a crossword puzzle(2D-character Array) and the word(1D- character array). While you traverse the crossword puzzle you have to **search(linear)** whether the character at the current index is a character from the word. If yes then store the row index and column index of that particular character. In the end you have to return a 2D-array of indices of the said characters. The first row of resultant 2D-array should represent the row indices and the second row should represent the column indices.

Output:

row index of 'C'	row index of 'A'	row index of 'T'
0	1	2
0	1	2

column index of 'C' column index of 'A' column index of 'T'

Task 3:

A **Markov Matrix** is the one in which the sum of each row is equal to 1. You are required to implement a function that checks whether a matrix is Markov matrix or not.

Markov Matrix

0.1	0.6	0.3
0.3	0.4	0.3
0.5	0.0	0.5

Not a Markov Matrix

0.1	0.9	0.3
0.5	0.4	0.3
0.5	0.9	0.5