中国科学院大学 2021 年研究生入学考试高等代数试题

1. 构造一个次数尽可能低的多项式 f(x) 满足下列条件:

$$f(1) = 0, f'(1) = 1, f''(1) = 2, f(0) = 3, f'(0) = -1.$$

2. 计算 $n(n \ge 2)$ 阶行列式

$$\begin{vmatrix} 2 + a_1c_1 + b_1d_1 & a_2c_1 + b_2d_1 & \cdots & a_nc_1 + b_nd_1 \\ a_1c_2 + b_1d_2 & 2 + a_2c_2 + b_2d_2 & \cdots & a_nc_2 + b_nd_2 \\ \vdots & \vdots & & \vdots \\ a_1c_n + b_1d_n & a_2c_n + b_2d_n & \cdots & 2 + a_nc_n + b_nd_n \end{vmatrix}$$

3. 用正交变换将下面二次型化为标准型

$$f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 3x_3^2 - 4x_1x_2 - 4x_2x_3.$$

- 4. 设 A 为 n 阶实对称半正定矩阵,证明: A 的伴随矩阵 A^* 也是实对称半正定矩阵.
- 5. 设 $A = (a_{ij})_{n \times n} \in M_n(\mathbb{C})$ 的秩为 r, 并且 A 的第 r 个顺序主子式不为零,即

$$A\begin{pmatrix} 1 & 2 & \cdots & r \\ 1 & 2 & \cdots & r \end{pmatrix} \neq 0.$$

证明: 如果 r < n, 则对任意 $r < i \le n$, 都存在复数 x_{i1}, \dots, x_{ir} 使得对任意 $1 \le j \le n$, 有 $a_{ij} = x_{i1}a_{1j} + x_{i2}a_{2j} + \dots + x_{ir}a_{rj}$.

- 6. 设 V 是一个有限维复线性空间, $\mathcal{A}:V \longrightarrow V$ 是一个可逆线性变换,如果存在 V 中的一组非零向量 v_1, v_2, \cdots, v_m 使得它们张成线性空间 V,且对所有的 $1 \leq i \leq m$,有 $\mathcal{A}(v_i) \in \{v_1, v_2, \cdots, v_m\}$. 证明: \mathcal{A} 可对角化,并且其特征值都是单位根.
- 7. 设 $M_n(\mathbb{C})$ 为所有 n 阶复方阵构成的线性空间, $T:M_n(\mathbb{C})\longrightarrow \mathbb{C}$ 为线性函数,且满足

$$T(AB) = T(BA), \ \forall A, B \in M_n(\mathbb{C}).$$

证明:存在常数 $c \in \mathbb{C}$ 使得 $T(A) = c \cdot \operatorname{tr}(A), \forall A \in M_n(\mathbb{C}).$

- 8. 设 A, B 为 n 阶实对称矩阵,且 AB = BA, 证明:存在 n 阶正交矩阵 P 使得 $P^{-1}AP$ 与 $P^{-1}BP$ 均为对角矩阵.
- 9. 设 A,B,J 都是 n 阶复方阵,A,B 为可逆矩阵,J 是元素全是 1 的方阵,设 $m\in\mathbb{C}$ 且 $m\neq 1$,用 $\sigma(W)$ 表示矩阵 W 的所有元素之和.
 - (1) 若 A + B = mJ, 证明:

$$[1 - m\sigma(A^{-1})][1 - m\sigma(B^{-1})] = 1.$$

(2) 问结论(1)的逆命题是否成立,若成立,给出证明,若不成立,给出反例.