احصاء اور تخلیلی جیومیٹری

خالد خان يوسفز. كي

جامعه کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

V																																													اچہ	ويبا
vii																																								چ	د يبا.	ب کا	لتاب	ہیلی سے پہلی سے	ِی بُ	مير
1																																					•••	<i>></i>	,	,				بتداؤ 1 1		1
15	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•		ر در	2) (2 - "	••و • • •		ز اوا س	مراد :ط.	ں اع) 		1.1		
22	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•		U	,,	7.	ور	ל ו	حسو	ر، ا	خد ناعا		1.2		
32	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	نتقا		ں ہرے	تھا •• س		1.3		
54																																														
74			•		•	•	•						•	•		•								•			•		•									. (عل	تفا	نياتى	تکو:		1.5		
95																																												عدود		2
95																																				حد	ور	ح ا	شر	کی	ىلى	تبد		2.1		
113	3.																																		إعد	ے ق		نے	کر۔	ن	تلاث	حد		2.2		
126	5.																															,	في_	زب	;	ر ک	٠.	اور	نیں	قيمتا	وبہ	مطل		2.3		
146	6.		•																																		ē	وسي	لى تو	د ک	ر ح	تصو		2.4		
15:	5																																									٠	رو•	ضميميه	,	1

ويباجيه

یہ کتاب اس امید سے لکھی گئی ہے کہ ایک دن اردو زبان میں انجینئری پڑھائی جائے گی۔اس کتاب کا مکمل ہونااس سمت میں ایک اہم قدم ہے۔ طبعیات کے طلبہ کے لئے بھی یہ کتاب مفید ثابت ہو گی۔

اس کتاب کو Ubuntu استعال کرتے ہوئے XeLatex میں تفکیل دیا گیا ہے جبکہ سوالات کے جوابات wxMaxima اور کتاب کی آخر میں جدول Libre Office Calc کی مدد سے حاصل کیے گئے ہیں۔

درج ذیل کتاب کو سامنے رکھتے اس کو لکھا گیا ہے

Advanced Engineering Mathematics by Erwin Kreyszig

جبکه اردو اصطلاحات چننے میں درج ذیل لغت سے استفادہ کیا گیا۔

- $\bullet \ \ \, \text{http://www.urduenglishdictionary.org}\\$
- $\bullet \ \, \rm http:/\!/www.nlpd.gov.pk/lughat/$

آپ سے گزارش ہے کہ اس کتاب کو زیادہ سے زیادہ طلبہ و طالبات تک پہنچائیں اور کتاب میں غلطیوں کی نشاندہی میرے برقی پیتہ پر کریں۔میری تمام کتابوں کی مکمل XeLatex معلومات

 $https:/\!/www.github.com/khalidyousafzai$

سے حاصل کی جا سکتی ہیں جنہیں آپ مکمل اختیار کے ساتھ استعال کر سکتے ہیں۔ میں امید کرتا ہوں کہ طلبہ و طالبات اس کتاب سے استفادہ ہوں گے۔

خالد خان يوسفر. ئي

5 نومبر <u>2018</u>

میری پہلی کتاب کادیباچہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلی تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلٰی تعلیم کا نظام انگریزی زبان میں رائح ہے۔دنیا میں شخیقی کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کرتے ہیں۔

ہمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے برخصنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہتے۔ایے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر الیا کرنے کی کوئی خاطر خواہ کوشش نہیں گی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ کچھ کرنے کی نیت رکھنے کے باوجود کچھ نہ کر سکتا تھا۔میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور یوں بیہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں کلھی گئی ہے۔کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال ہونے والے تکنیکی الفاظ ہی استعال کئے جائیں۔ جہاں ایسے الفاظ موجود نہ تھے وہاں روز مرہ میں استعال ہونے والے الفاظ یئے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظام اکائی استعمال کی گئے ہے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظام تعلیم کی نصابی کتابوں میں رائح ہیں۔ یوں اردو میں لکھی اس کتاب اور انگریزی میں اسی مضمون پر لکھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ بیہ کتاب ایک دن خالصتاً اردو زبان میں انجنیئر نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں برقی انجنیئر نگ کی مکمل نصاب کی طرف بیر پہلا قدم ہے۔ اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے بی سر زد ہوئی ہیں البتہ انہیں درست کرنے میں بہت لوگوں کا ہاتھ ہے۔ میں ان سب کا شکر یہ ادا کرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور مکمل ہونے پر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورٹی اور ہائر ایجو کیشن کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہو تھی۔

خالد خان يوسفر كي

2011 كتوبر 2011

2.4 تصور حد کی توسیع

اس حصے میں ہم حد کی تصور کو وسعت دیتے ہیں۔

- x بائیں ہاتھ حد x عاصل ہو گا۔ ای طرح جب x فقطہ x تک بائیں ہاتھ سے پنچنے کی کوشش کرے تب بائیں ہاتھ حد x عاصل ہو گا۔ فقطہ x تک دائیں ہاتھ سے x کا کوشش کرے تب دائیں ہاتھ حد x عاصل ہو گا۔
- 2. لانتنائی صد۔ اگرچہ یہ حقیقی صد نہیں ہے لیکن یہ ان نفاعل کا رویہ بیان کرنے میں مدد دیتی ہے جن کی قیمت بہت زیادہ، مثبت یا منفی، ہو جاتی ہو۔

یک طرفه حد

تفاعل کم کا فقط a پر حداص صورت L کے برابر ہو گا جب a کے دونوں اطراف کم معین ہو اور a کے دونوں اطراف سے نزدیک تر بہنچتی ہو۔ای لئے عام حد کو بعض او قات دو طوف، حد و بھی کہتے ہیں۔

عین ممکن ہے کہ صرف بائیں ہاتھ یا صرف دائیں ہاتھ ہے a کے نزدیک تر ہونے ہے f کا حد پایا جاتا ہو۔ ایک صورت میں ہم کہتے ہیں کہ a کا a کی طرفہ (بائیں ہاتھ یا دائیں ہاتھ) حد پایا جاتا ہے۔ اگر x نقطہ صفر تک دائیں ہاتھ سے پہنچنے کی کوشش کرے تب نفاعل کا حد a ہوگا (شکل 2.42)۔ $f(x) = \frac{x}{|x|}$

تریف: دائیں ہاتھ اور بائیں ہاتھ حدکی غیر رسمی تعریف

فرض کریں کہ وقفہ کے اندر سے a < b ہے ، پہ تفاعل f(x) معین ہے۔ اگر اس وقفہ کے اندر سے a < b ویکنے کی کوشش کرتی ہو تب ہم کہتے ہیں کہ $a \neq b$ کا **دائیں ہاتھ حد** $a \neq b$ کا **دائیں ہاتھ حد** $a \neq b$ کا میں ہاتھ حد $a \neq b$ کو ہم درج ذیل کھاتے ہیں۔

$$\lim_{x \to a^+} f(x) = L$$

فرض کریں کہ وقفہ کے اندر ہے a کب x کینے کی f(x) معین ہے۔اگراں وقفہ کے اندر ہے a کب کینے کی کوشش کرنے ہے f(x) کی بیاتھ حد a کبینے کی کوشش کرنے ہے a کی بیاتھ حد a کا بائیں ہاتھ حد a کی کوشش کرنے ہے جس کو جم درج ذیل کھاتے ہیں۔

$$\lim_{x \to a^{-}} f(x) = M$$

left-handed limit⁷ right-handed limit⁸ two-sided limit⁹ 2.4. تصور حــ کی توسیع 2.4

شکل 2.42: مبدا پر بائیں ہاتھ حد اور دائیں ہاتھ حد مختلف ہیں۔

$$f(x)=rac{x}{|x|}$$
 ين نفاعل $f(x)=rac{x}{|x|}$ ين نفاعل $f(x)=rac{x}{|x|}$

$$\lim_{x \to a^+} f(x) = 1$$
, $\lim_{x \to a^-} f(x) = -1$

a ے مراد ہے کہ a تی قیت a ہے بڑی رہتی ہے۔ ای طرح $x \to a^-$ ہے مراد ہے کہ $a \to a^+$ تک بیٹیتے ہوئے $x \to a^+$ کی قیت a ہے چھوٹی رہتی ہے۔

دائرہ کار کے آخری سروں پر تفاعل کا سادہ حد نہیں ہو سکتا ہے البتہ دائرہ کار کے آخری سروں پر تفاعل کا یک طرفہ حد ہو سکتا ہے۔

مثال 2.24: تفاعل $f(x) = \sqrt{4-x^2}$ کا دائرہ کار [-2,2] ہے۔ تفاعل کی ترسیم نصف دائرہ ہے جس کو شکل 2.43 مثال دکھیا گیا ہے۔ دائرہ کار کے آخری سروں پر یک طرفہ حد درج ذیل ہیں۔

$$\lim_{x \to -2^+} \sqrt{4 - x^2} = 0, \quad \lim_{x \to 2^-} \sqrt{4 - x^2} = 0$$

x=-2 پر تفاعل کا بائیں ہاتھ حد نہیں پایا جاتا ہے۔ای طرح x=2 پر اس کا دائیں ہاتھ حد نہیں پایا جاتا ہے۔ x=-2 اور x=-2 پر نفاعل کے سادہ دو طرفہ حد نہیں پائے جاتے ہیں۔

مسئلہ 2.1 کے تمام خواص پر یک طرفہ حد پورا اترتا ہے۔دو تفاعل کے مجموعے کا دائیں ہاتھ حد ان تفاعل کے انفرادی دائیں ہاتھ حد کا مجموعہ ہو گا، وغیرہ وغیرہ۔کثیر رکنی اور ناطق تفاعل کے حد کے مسئلوں اور مسئلہ نچ پر بھی یک طرفہ حد پورا اترتا ہے۔

یک طرفہ اور دو طرفہ حد کا تعلق درج ذیل مئلہ پیش کرتا ہے جس کواس ھے کے آخر میں ثابت کیا گیا ہے۔

مئله 2.5: یک طرفه بالمقابل دو طرفه حد

متغیر x کا c کا c نزدیک تر تفاعل f(x) کا حد اس صورت پایا جاتا ہے جب اس نقطے پر تفاعل کا بائیں ہاتھ اور دائیں ہاتھ حد پائے جاتے ہوں اور سے حد ایک دوسرے کے برابر ہوں:

$$\lim_{x \to c} f(x) = L \quad \Leftrightarrow \quad \lim_{x \to c^{-}} f(x) = L \quad \text{if} \quad \lim_{x \to c^{+}} f(x) = L$$

مثال 2.25: درج ذیل تمام فقرے شکل 2.44 میں ترسیم شدہ تفاعل کے لئے درست ہیں۔

) موجود خبيل بيں۔ $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} f(x)$ اور $\lim_{x \to 0^{+}} f(x) = 1$. $\lim_{x \to 0$

 $\lim_{x \to 1^+} f(x) = 1$ ہے۔ $\lim_{x \to 1^+} f(x) = 0$ ہے۔ $\lim_{x \to 1^-} f(x) = 0$ ہے۔ $\lim_{x \to 1^-} f(x) = 0$ ہو جبہ السری ہیں۔) $\lim_{x \to 1} f(x)$

 $\lim_{x \to 2^+} f(x) = 1$ ي $\lim_{x \to 2^+} f(x) = 1$ اور $\lim_{x \to 2^+} f(x) = 1$ ي $\lim_{x \to 2^-} f(x) = 1$ ي $\lim_{x \to 2^-} f(x) = 1$ ي $\lim_{x \to 2^+} f(x) = 1$ ي $\lim_{x \to 2^+} f(x) = 1$

 $\lim_{x\to 3^-} f(x) = \lim_{x\to 3^+} f(x) = \lim_{x\to 3} f(x) = f(3) = 2 : 4 = 3$

 $\lim_{x \to 4} f(x)$ اور $\lim_{x \to 4^{+}} f(x)$ ہے۔ $\lim_{x \to 4^{+}} f(x) = 1$ اور $\lim_{x \to 4^{-}} f(x) = 1$ اور $\lim_{x \to 4^{-}} f(x) = 1$ برجود نہیں ہیں۔ (نقطہ $\lim_{x \to 4^{+}} f(x)$ جائیں جائیں جائیں ہیں۔ نقطہ $\lim_{x \to 4^{+}} f(x) = 1$ ہوجود نہیں ہیں۔ نقطہ $\lim_{x \to 4^{+}} f(x) = 1$ ہوجود نہیں ہیں۔

اس کے علاوہ [0,4] میں ہر نقطہ a پر حد f(a) پایا جاتا ہے۔

x=0 اب تک تمام مثالوں میں جس نقطے پر تفاعل کا حد موجود نہیں تھا وہاں اس کا یک طرفہ حد موجود تھا۔ درج ذیل مثال میں ماسوائے نقطہ x=0 نقاط ہر نقطہ پر معین ہے لیکن x=0 بر اس کا نہ دائیں ہاتھ اور ناہی ہائیں ہاتھ حد پایا جاتا ہے۔

مثال 2.26: وکھائیں کہ متغیر x کا دونوں اطراف سے صفر کے نزدیک تر ہونے سے تفاعل $y = \sin \frac{1}{x}$ کا کوئی یک طرفہ حد حاصل نہیں ہوتا ہے (شکل 2.45)۔

 2.4. تصور حــ د کي توسيع

شكل 2.24: ترسيم برائه مثال 2.25

لا متناہی حد

آئیں تفاعل $x \to 0^+$ پر غور کرتے ہیں جس کو گزشتہ مثال میں استعال کیا گیا ہے۔ چیسے جیسے جسے ہوتا ہے ویسے ویسے ویسے ویسے فقاعل $f(x) = \frac{1}{x}$ ہوتا ہے ویسے ویسے فقاعل $f(x) = \frac{1}{x}$ ہوتا ہے کہ بڑا عدد $f(x) = \frac{1}{x}$ ہوتا ہے ہیں بڑا عدد $f(x) = \frac{1}{x}$ ہوتا ہے ہیں ہڑا ہوگا رہ کہ گرا ہوگا رہ کہ کہتے ہیں کہ $f(x) = \frac{1}{x}$ کا رہ ہے گیا ہے۔ کہ کہتے ہیں کہ $f(x) = \frac{1}{x}$ کہتے ہیں کہتے ہیں کہتے ہیں کہتے ہیں کہتے ہیں کہ ورزی والے کرنے کے خوالے کہتے ہیں کہتے ہیں کہتے ہیں کہ کہتے ہیں کہ کرنے کے خوالے کرنے کے خوالے کرنے کے خوالے کی کے خوالے کیا کہ کے خوالے کرنے کے خوالے کی کے خوالے کی کے خوالے کی کے خوالے کیا کہ کے خوالے کی کے خوالے کہنے کہ کہنے ہیں کہ کہتے ہیں کہ کرنے کے خوالے کہنے کہ کہنے کہنے کرنے کے خوالے کے خوالے

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{x} = \infty$$

یہ کھتے ہے ہم ہر گزیہ نہیں کہتے ہیں کہ نفاعل کا حد موجود ہے اور نا ہی ہم کہتے ہیں کہ کوئی حقیقی عدد ∞ پایا جاتا ہے چونکہ ایسا کوئی عدد $x \to 0^+$ کہتے ہیں کہ $\frac{1}{x}$ کی قیمت کی جونکہ $x \to 0^+$ کرنے ہے $\frac{1}{x}$ کی قیمت کی جب کہتے ہیں کہ گئیت کی شیت بڑے عدد ہے زیادہ بڑی ہو گی۔

کی قیت کی بھی منفی بڑی عدد سے زیادہ بڑی منفی ہوگی (یہاں بڑی سے مراد مطلق مقدار $f(x)=rac{1}{x}$ کی قیت کی بھی دیے گئے منفی حقیقی عدد a=-1 کی قیت کی بھی دیے گئے منفی حقیقی عدد a=-1 کے ایروں a=-1 کی قیت کی بھی دیے گئے منفی حقیقی عدد a=-1 کے ایروں منفی ہوگی (شکل 2.46)۔ ہم درج ذیل لکھتے ہیں۔

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{1}{x} = -\infty$$

یہاں بھی ہم ہر گز نہیں کہتے ہیں کہ حد موجود ہے اور عدد ∞ کے برابر ہے اور نا ہی کہتے ہیں کہ کوئی حقیقی منفی عدد ∞ پایا جاتا ہے چونکہ ایسا کوئی عدد نہیں پایا جاتا ہے۔ہم اس تفاعل کا روبہ بیان کرنا چاہتے ہیں جس کی قیمت 0 \times کرنے سے کسی بھی بڑی منفی عدد سے زیادہ منفی ہوگی (یہاں بڑی کا لفظ عدد کی مطلق قیمت کے لئے استعال کیا گیا ہے)۔

شكل 2.27: ترسيم برائے مثال 2.27

شکل 2.46: تفاعل کی قیمت ہر مثبت یا مفی عدد سے تجاوز کرتی ہے۔

 $y=rac{1}{x-1}$ علی: توسیمی حل: نفاعل $y=rac{1}{x}$ کے ترسیم کو y=1 اکائی دائیں ننقل کرنے سے $y=rac{1}{x-1}$ کی ترسیم حاصل ہوتی ہے (شکل $y=rac{1}{x-1}$ کی ترسیم حل: نیا ہوں گے۔ $y=rac{1}{x}$ کا روبیہ کی طرح ہو گا۔یوں درج ذیل ہوں گے۔ (2.47)

$$\lim_{x \to 1^+} \frac{1}{x - 1} = \infty, \quad \lim_{x \to 1^-} \frac{1}{x - 1} = -\infty$$

اور $(x-1) o 0^+ o 0^+$ اور $(x-1) o 0^+$ اور ال $(x-1) o 0^+$ اور $(x-1) o 0^+$ اور $(x-1) o 0^-$ اور $(x-1) o 0^-$ اور $(x-1) o 0^-$ اور $(x-1) o 0^+$ او

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{x^2} = \infty$$

 $g(x) = \frac{1}{(x+3)^2}$ کی ترسیم کو 3 اکائیاں بائیں منتقل کرنے سے $g(x) = \frac{1}{(x+3)^2}$ کی ترسیم حاصل ہوتا ہے (شکل $f(x) = \frac{1}{x^2}$ لیاں بائیں منتقل کرنے سے g(x) کا رویہ g(x) کا رویہ g(x) کا رویہ کی طرح ہوگا۔

$$\lim_{x \to -3} g(x) = \lim_{x \to -3} \frac{1}{(x+3)^2} = \infty$$

2.4. تصور حـد كى توسيع

ي ترتيم (مثال $g(x) = \frac{1}{(x+3)^2}$ کی ترتیم (مثال 2.28)

 $f(x) = \frac{1}{x^2}$ کی ترسیم (مثال £ 2.48) کی ترسیم (مثال (2.28)

 $x \to 0$ کرنے سے نفاعل $y = \frac{1}{x}$ کا رویہ ثابت قدم نہیں رہتا ہے۔ $x \to 0^+$ کرنے سے $x \to 0$ کا رویہ ثابت قدم نہیں رہتا ہے۔ اس کے $x \to 0^+$ کرنے سے $x \to 0$ موجود نہیں ہے۔ اس کے $x \to 0^-$ کرنے سے $x \to 0$ کا رویہ ثابت قدم ہے۔ صفر کے دونوں اطراف سے $x \to 0$ کو قریب لانے سے $x \to 0$ کا رویہ ثابت قدم ہے۔ صفر کے دونوں اطراف سے $x \to 0$ کو قریب لانے سے $x \to 0$ کا رویہ ثابت قدم ہے۔ صفر کے دونوں اطراف سے $x \to 0$ کو قریب لانے سے $x \to 0$ کا رویہ ثابت قدم ہے۔ $x \to 0$ کو تریب لانے سے $x \to 0$ کا رویہ ثابت قدم ہے۔ $x \to 0$ کا رویہ ثابت قدم ہے۔

مثال 2.29: ناطق تفاعل کے نب نما کے صفر کے قریب تفاعل کے مخلف رویہ دیکھنے کو ملتے ہیں

$$\lim_{x \to 2} \frac{(x-2)^2}{x^2 - 4} = \lim_{x \to 2} \frac{(x-2)^2}{(x-2)(x+2)} = \lim_{x \to 2} \frac{x-2}{x+2} = 0 \tag{()}$$

$$\lim_{x \to 2} \frac{x-2}{x^2 - 4} = \lim_{x \to 2} \frac{x-2}{(x-2)(x+2)} = \lim_{x \to 2} \frac{1}{x+2} = \frac{1}{4}$$
 (.)

$$\lim_{x \to 2^+} \frac{x-3}{x^2 - 4} = \lim_{x \to 2^+} \frac{x-3}{(x-2)(x+2)} = -\infty$$
 (3)

$$\lim_{x \to 2^{-}} \frac{x-3}{x^2 - 4} = \lim_{x \to 2^{-}} \frac{x-3}{(x-2)(x+2)} = \infty$$
 (5)

$$\lim_{x \to 2} \frac{x-3}{x^2 - 4} = \lim_{x \to 2} \frac{x-3}{(x-2)(x+2)}$$
(5)

$$\lim_{x \to 2} \frac{2 - x}{(x - 2)^3} = \lim_{x \to 2} \frac{-(x - 2)}{(x - 2)^3} = \lim_{x \to 2} \frac{-1}{(x - 2)^2} = -\infty$$
 (5)

جزو (۱) اور (ب) میں x=2 پر نسب نما کا صفر شار کنندہ کے صفر کے ساتھ کٹ جاتا ہے لہذا غیر متناہی حد پایا جاتا ہے۔ جزو (۵) میں ایسا نہیں ہے جہاں کٹنے کے بعد بھی نسب نما میں صفر باقی رہتے ہیں۔

(2.1)

یک طرفه حد کی با ضابطه تعریف

دو طرفہ حد کی با ضابطہ تعریف کو تبدیل کرتے ہوئے یک طرفہ حد کی تعریف حاصل کی جاسکتی ہے۔

 $\lim_{x \to x_0^+} f(x) = L$

بائیں ہاتھ حد $z = \frac{1}{2} \sum_{x} x + \frac{1}{2}$

2.4. تصور حـد کې توسيع

شكل 2.52: لا متنابى حد كى تعريف

یک طرفه اور دو طرفه حد کا آپس میں تعلق

ماوات 2.1 اور ماوات 2.2 میں δ عدم ماوات ہے x_0 منفی کرنے سے یک طرفہ اور دو طرفہ حد کا تعلق حاصل ہوتا ہے۔دائیں ہاتھ حد کے لئے، x_0 منفی کرنے سے درج ذیل حاصل ہو گا۔

$$(2.3) 0 < x - x_0 < \delta \implies |f(x) - L| < \epsilon$$

بائیں ہاتھ حد کے لئے منفی کرنے سے درج ذیل حاصل ہو گا۔

$$(2.4) -\delta < x - x_0 < 0 \implies |f(x) - L| < \epsilon$$

مباوات 2.3 اور مباوات 2.4 بھی وہی بات کرتے ہیں جو دو طرفہ حد کے لئے درست ہے لینی:

$$(2.5) 0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon$$

یوں x_0 پر f کا حدال صورت L ہوگا اگر x_0 پر f کا بائیں ہاتھ حد L اور دائیں ہاتھ حد x_0

لا متناہی حد کی با ضابطہ تعریف

جائے یہ کہ x_0 کے کافی قریب تمام x کے لئے ہم کہیں کہ f(x) کی قیت عدد L کے قریب سے قریب تر ہو، لا شناہی حد کی تعریف میں ہم کہتے ہیں کہ مبدا سے f(x) کا فاصلہ کی بھی دیے عدد سے زیادہ ہو۔اس کے علاوہ حد کی تعریف میں استعال ہونے والی زبان میں کوئی فرق نہیں پیا جاتا ہے۔ شکل 2.52 کو دیکھ کر درج ذیل تعریف پڑھیں۔

تعريف: لامتناسي حد

ا) اگر ہر مثبت حقیقی عدد B کے لئے ایبا مطابقتی عدد $\delta>0$ پایا جاتا ہو کہ $\delta>0$ میں تمام x کے لئے (1)

ہو تب ہم کہتے ہیں کہ چیسے جیسے x کی قیمت x_0 کے نزدیک تر ہوتی جاتی ہے ویسے ویسے f(x)>B کی قیمت لامتنائی کے نزدیک تر ہوتی جاتی ہے۔ اس کو درج ذیل لکھا جاتا ہے۔

$$\lim_{x \to x_0} f(x) = \infty$$

(x) اگر ہر منفی حقیقی عدد (x) = -2 گئے ایسا مطابقتی عدد (x) = -3 پایا جاتا ہو کہ (x) = -3 بین تمام (x) = -3 کی قیمت (x) = -3 کی قیمت (x) = -3 ہو تب ہم کہتے ہیں کہ جیسے جیسے جم کی قیمت (x) = -3 کی قیمت منفی لا متناہی کے نزدیک تر ہوتی جاتی ہے۔ اس کو درج ذیل کھا جاتا ہے۔

$$\lim_{x \to x_0} f(x) = -\infty$$

یک طرفہ حد کی با ضابطہ تعریف بالکل ای طرح ہے۔اس تعریف کو سوالات میں پیش کیا گیا ہے۔

سوالات

حد بذريعم ترسيم

سوال 1: درج ذیل فقروں میں سے کون سے فقرے شکل میں دیے گئے تفاعل y=f(x) کے لئے درست ہیں۔

ضمیمه د وم

156 ميسدوم