Task 1

The temperature profile in the ground varies as a function of time because of the time dependent solar irradiation. The temperature profile is modeled by the following equation

$$\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2} \text{ with}$$

$$T(t,0) = 0, \ T(t,1) = \sin(10\pi t) \text{ and}$$

$$T(0,x) = 0.$$

- Modify the program from Task 4 of the last sheet and integrate with N=100 and $\Delta t=2\times 10^{-5}$ until t=2. Afterwards continue integrating for $^{1}/_{4}$, $^{1}/_{2}$ and $^{3}/_{4}$ period of the external temperature variation. Plot the spatial temperature variation for those times.
- Repeat the task for $T(t, 1) = \sin(50\pi t)$.

Task 2

A hot metal sphere with radius r_0 is quenched in cold water of temperature T_W . The metal has the thermal diffusivity κ and an initial temperature of T_0 . The cooling process is described by the radial symmetric temperature profile T(t,r), with the following equations:

$$\frac{\partial T}{\partial t} = \kappa \nabla^2 T$$

$$T(t, r_0) = T_W, \ T(0, r) = T_0$$

The Laplacian in spherical coordinates for radially symmetric T is:

$$\nabla^2 T = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial T}{\partial r}), \ \vec{e_r} \cdot \nabla T = \frac{\partial T}{\partial r}$$

- Write the problem in dimensionless variables, so that the water temperature becomes $T_W = 0$, the initial temperature $T_0 = 1$ and the radius $r_0 = 1$. In addition the diffusion equation should be free of parameters.
- \bullet Formulate the problem *entirely* in spherical coordinates. How must the point r=0 be handled?
- Use, like in the last exercise, the FTCS-scheme with N=100 and $\Delta t=2\times 10^{-5}$. Plot the solution after 10^3 , 5×10^3 and 10^4 steps. Do this for first and second order schemes at the boundaries.
- Use the program to test how large the largest time step can be.

• For Earth one can assume that $r_0 = 6.4 \times 10^6 \mathrm{m}$ and $\kappa = 10^{-6} \mathrm{m}^2 \, \mathrm{s}^{-1}$. Assume as well that Earth was for the most part covered by water and that it had after creation a temperature of 6000K above the water temperature. Nowadays a temperature gradient near the surface of $\mathrm{d}T/\mathrm{d}r = -0.033 \mathrm{K} \, \mathrm{m}^{-1}$ can be observed. How old would the earth be if it had reached this surface gradient only by diffusive cooling?