Beyond Occam's Razor in System Identification: Double-Descent when Modeling Dynamics

Antônio H. Ribeiro¹, Johannes N. Hendriks², Adrian G. Wills², Thomas B. Schön¹

¹Uppsala University, Sweden

²The University of Newcastle, Australia

Neural network performance vs size

Figure: Model Size vs. imagenet accuracy.

Double-descent

(a) U-shaped MSE

Figure: **Perform in CE8 Benchmark.** We show one-step-ahead prediction error in test and training data for a nonlinear ARX model in the CE8 benchmark.

Double-descent

Figure: **Perform in CE8 Benchmark.** We show one-step-ahead prediction error in test and training data for a nonlinear ARX model in the CE8 benchmark.

Random Fourier features, random forest and shallow networks:

Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proceedings of the National Academy of Sciences, 116(32), 15849–15854.

- Random Fourier features, random forest and shallow networks:
 - Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proceedings of the National Academy of Sciences, 116(32), 15849–15854.
- Transformer and convolutional network model:

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., and Sutskever, I. (2020). Deep Double Descent: Where Bigger Models and More Data Hurt. Proceedings of the 8th International Conference on Learning Representations (ICLR)

Random Fourier features, random forest and shallow networks:

Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proceedings of the National Academy of Sciences, 116(32), 15849–15854.

Transformer and convolutional network model:

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., and Sutskever, I. (2020). Deep Double Descent: Where Bigger Models and More Data Hurt. Proceedings of the 8th International Conference on Learning Representations (ICLR)

Linear regression (with theoretical guarantees):

Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R.J.(2019). Surprises in High-Dimensional Ridgeless LeastSquares Interpolation. arXiv:1903.08560.

Bartlett, P.L., Long, P.M., Lugosi, G., and Tsigler, A.(2020). *Benign overfitting in linear regression*. Proceedings of the National Academy of Sciences

Random Fourier features, random forest and shallow networks:

Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proceedings of the National Academy of Sciences, 116(32), 15849–15854.

Transformer and convolutional network model:

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., and Sutskever, I. (2020). Deep Double Descent: Where Bigger Models and More Data Hurt. Proceedings of the 8th International Conference on Learning Representations (ICLR)

Linear regression (with theoretical guarantees):

Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R.J.(2019). Surprises in High-Dimensional Ridgeless LeastSquares Interpolation. arXiv:1903.08560.

Bartlett, P.L., Long, P.M., Lugosi, G., and Tsigler, A.(2020). Benign overfitting in linear regression. Proceedings of the National Academy of Sciences

Random feature (with theoretical guarantees):

Mei, S. and Montanari, A. (2019). The generalization error of random features regression: Precise asymptotics and double descent curve. arXiv:1908.05355.

Our contribution

Experimentally show the phenomena in the system identification setting: input-output data from a dynamical system.

Motivation example

$$\begin{split} y_t &= \left(0.8 - 0.5 e^{-y_{t-1}^2}\right) y_{t-1} - \left(0.3 + 0.9 e^{-y_{t-1}^2}\right) y_{t-2} \\ &+ \underbrace{u_{t-1}}_{t-1} + 0.2 \underbrace{u_{t-2}}_{t-2} + 0.1 \underbrace{u_{t-1}}_{u_{t-2}} + v_t, \\ v_t &\sim & \mathcal{N}(0, \sigma_v^2) \end{split}$$

Figure: System with process noise. Input in blue and output in red.

Chen, S., Billings, S.A., and Grant, P.M. (1990). Non-Linear System Identification Using Neural Networks. International Journal of Control, 51(6), 1191–1214.

Linear-in-the-parameters: Predicted output

$$\hat{\mathbf{y}}_t = \boldsymbol{\theta}^\mathsf{T} \mathbf{z}_t.$$

• $\hat{y}_t \leadsto \text{predicted output}$

Linear-in-the-parameters: Predicted output

$$\hat{\mathbf{y}}_t = \boldsymbol{\theta}^\mathsf{T} \mathbf{z}_t.$$

- $\hat{y}_t \leadsto \text{predicted output}$
- $\theta \leadsto$ parameters being estimated

Linear-in-the-parameters: Predicted output

$$\hat{\mathbf{y}}_t = \boldsymbol{\theta}^\mathsf{T} \mathbf{z}_t.$$

- $\hat{y}_t \leadsto \text{predicted output}$
- $\theta \leadsto$ parameters being estimated

Nonlinear feature map:

$$z_t = \left(\begin{array}{c} \begin{bmatrix} u_{t-1} \\ u_{t-2} \\ y_{t-1} \\ y_{t-2} \end{bmatrix} \right)$$

Linear-in-the-parameters: Predicted output

$$\hat{\mathbf{y}}_t = \boldsymbol{\theta}^\mathsf{T} \mathbf{z}_t.$$

- $\hat{y}_t \leadsto \text{predicted output}$
- $\theta \leadsto$ parameters being estimated

Nonlinear feature map:

$$z_{t} = \left(W \begin{bmatrix} u_{t-1} \\ u_{t-2} \\ y_{t-1} \\ y_{t-2} \end{bmatrix} \right)$$

• $W \rightsquigarrow Matrix$ with dimension $m \times 4$

Linear-in-the-parameters: Predicted output

$$\hat{\mathbf{y}}_t = \boldsymbol{\theta}^\mathsf{T} \mathbf{z}_t.$$

- $\hat{y}_t \leadsto$ predicted output
- $\theta \leadsto$ parameters being estimated

Nonlinear feature map:

$$z_{t} = \sigma \left(W \begin{bmatrix} u_{t-1} \\ u_{t-2} \\ y_{t-1} \\ y_{t-2} \end{bmatrix} \right)$$

- $W \rightsquigarrow Matrix$ with dimension $m \times 4$
- $\sigma \leadsto$ activation function (element-wise)

Random matrix: (set in advance)

$$W = \begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} & w_{1,3} \\ w_{2,1} & w_{2,2} & w_{2,3} & w_{2,3} \\ w_{3,1} & w_{3,2} & w_{3,3} & w_{3,3} \\ \vdots & \vdots & \vdots & \vdots \\ w_{m,1} & w_{m,2} & w_{m,3} & w_{m,3} \end{bmatrix} \right\} m$$

Random matrix: (set in advance)

$$W = \begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} & w_{1,3} \\ w_{2,1} & w_{2,2} & w_{2,3} & w_{2,3} \\ w_{3,1} & w_{3,2} & w_{3,3} & w_{3,3} \\ \vdots & \vdots & \vdots & \vdots \\ w_{m,1} & w_{m,2} & w_{m,3} & w_{m,3} \end{bmatrix} \right\} m$$

where each entry is i.i.d.:

$$\mathbf{w}_{i,j} \sim \mathcal{N}(0,\gamma)$$

Random matrix: (set in advance)

$$W = \begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} & w_{1,3} \\ w_{2,1} & w_{2,2} & w_{2,3} & w_{2,3} \\ w_{3,1} & w_{3,2} & w_{3,3} & w_{3,3} \\ \vdots & \vdots & \vdots & \vdots \\ w_{m,1} & w_{m,2} & w_{m,3} & w_{m,3} \end{bmatrix} \right\} m$$

where each entry is i.i.d.:

$$\mathbf{w}_{i,j} \sim \mathcal{N}(\mathbf{0}, \gamma)$$

Rahimi, A. and Recht, B. (2008). Random Features for Large-Scale Kernel Machines. Advances in Neural Information Processing Systems 20, 1177–1184

Model estimation

Estimated parameter: using train dataset (u_t, y_t) , $t = 1, \dots, n$:

Model estimation

Estimated parameter: using train dataset $(\mathbf{u_t}, \mathbf{y_t})$, $t = 1, \dots, n$:

Underparametrized:

$$\min_{\theta} \sum_{t} (y_i - \theta^{\mathsf{T}} z_t)^2$$

Model estimation

Estimated parameter: using train dataset $(\mathbf{u_t}, \mathbf{y_t})$, $t = 1, \dots, n$:

Underparametrized:

$$\min_{\theta} \sum_{t} (y_i - \theta^{\mathsf{T}} z_t)^2$$

Overparametrized:

$$\min_{ heta} \lVert heta
Vert_2^2$$
 subject to $y_t = heta^\mathsf{T} z_t$ for every $t = 1, \cdots, n$

Results

Figure: Double-descent performance curve.

Ridge regression

$$\min_{\theta} \sum_{t} (y_i - \theta^{\mathsf{T}} z_t)^2 + \lambda \|\theta\|^2$$

Ridge regression

$$\min_{\theta} \sum_{t} (y_i - \theta^{\mathsf{T}} z_t)^2 + \lambda \|\theta\|^2$$

Tends to the minimum-norm solution when $\lambda \rightarrow 0+$

Ridge regression

$$\min_{\theta} \sum_{t} (y_i - \theta^{\mathsf{T}} z_t)^2 + \lambda \|\theta\|^2$$

Tends to the minimum-norm solution when $\lambda \rightarrow 0+$

Figure: Ridge regression with vanishing values of λ .

- ▶ $m \leadsto \#$ features.

- n → # datapoints.
- ▶ m \infty # features.
- ▶ If m > n, pick $S \in \{1, \dots, m\}$ with n elements and solve the linear system:

$$y_t = \sum_{i \in \mathcal{S}} heta_i z_{t,i} ext{ for all } i \in \mathcal{S}$$

- n √→ # datapoints.
- ▶ m \infty # features.
- ▶ If m > n, pick $S \in \{1, \dots, m\}$ with n elements and solve the linear system:

$$y_t = \sum_{i \in \mathcal{S}} \theta_i z_{t,i}$$
 for all $i \in \mathcal{S}$

Repeat B times for different sets.

- n √→ # datapoints.
- $m \rightsquigarrow \# features.$
- ▶ If m > n, pick $S \in \{1, \dots, m\}$ with n elements and solve the linear system:

$$y_t = \sum_{i \in \mathcal{S}} \theta_i z_{t,i}$$
 for all $i \in \mathcal{S}$

- Repeat B times for different sets.
- Take the average

Figure: Ensembles after the interpolation threshold.

Coupled Electric Drives

Figure: Illustration of the CE8 coupled electric drives system

Wigren, T. and Schoukens, M. (2017). Coupled electric drives data set and reference models. Technical Report. Uppsala Universitet, 2017

Double-descent in the CE8 benchmarks

(a) U-shaped MSE

Figure: **Double-descent in CE8 Benchmark.** We show one-step-ahead prediction error in test and training data for a nonlinear ARX model in the CE8 benchmark.

Double-descent in the CE8 benchmarks

Figure: **Double-descent in CE8 Benchmark.** We show one-step-ahead prediction error in test and training data for a nonlinear ARX model in the CE8 benchmark.

▶ Not all nonlinear feature basis necessarily yields this behaviour!

- Not all nonlinear feature basis necessarily yields this behaviour!
- For instance, I would not expect it, for instance, for a polynomial basis.

- Not all nonlinear feature basis necessarily yields this behaviour!
- For instance, I would not expect it, for instance, for a polynomial basis.
- Additional experiments: Examples with Random Forest and Radial basis function (RBF) network.

- Not all nonlinear feature basis necessarily yields this behaviour!
- For instance, I would not expect it, for instance, for a polynomial basis.
- Additional experiments: Examples with Random Forest and Radial basis function (RBF) network.
- Studying double descent for nonlinear ARMAX, output error and other types of models that can handle more general noise types.

Thank you!

To appear in the 19th IFAC Symposium in System Identification.

Paper: https://arxiv.org/abs/2012.06341

Thank you!

To appear in the 19th IFAC Symposium in System Identification.

Paper: https://arxiv.org/abs/2012.06341

Code: https://github.com/antonior92/narx-double-descent

Thank you!

To appear in the 19th IFAC Symposium in System Identification.

Paper: https://arxiv.org/abs/2012.06341

Code: https://github.com/antonior92/narx-double-descent

Contact: antonio.horta.ribeiro@it.uu.se