

13

Text Indexing – Searching entire genomes

26 January 2026

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 13: Text Indexing

- 1. Know and understand methods for text indexing: *inverted indices*, *suffix trees*, (*enhanced*) *suffix arrays*
- 2. Know and understand generalized suffix trees
- **3.** Know properties, in particular *performance characteristics*, and limitations of the above data structures.
- **4.** Design (simple) *algorithms based on suffix trees*.
- **5.** Understand *construction algorithms* for suffix arrays and LCP arrays.

Outline

13 Text Indexing

- 13.1 Motivation
- 13.2 Suffix Trees
- 13.3 Applications
- 13.4 Longest Common Extensions
- 13.5 Suffix Arrays
- 13.6 Linear-time suffix sorting: Induced sorting and merging
- 13.7 Linear-Time Suffix Sorting: The DC3 Algorithm
- 13.8 The LCP Array
- 13.9 LCP Array Construction

13.1 Motivation

Text indexing

- ► *Text indexing* (also: *offline text search*):
 - ightharpoonup case of string matching: find P[0..m) in T[0..n)
 - ▶ but with *fixed* text \rightarrow preprocess T (instead of P)
 - \rightarrow expect many queries P, answer them without looking at all of T
 - → essentially a data structuring problem: "building an *index* of T"

Latin: "one who points out"

- application areas
 - web search engines
 - online dictionaries
 - online encyclopedia
 - ► DNA/RNA data bases
 - ... searching in any collection of text documents (that grows only moderately)

Inverted indices

- same as "indexes"
- ▶ original indices in books: list of (key) words → page numbers where they occur
- assumption: searches are only for whole (key) words
- → often reasonable for natural language text

Inverted index:

- ightharpoonup collect all words in T
 - ► can be as simple as splitting *T* at whitespace
 - actual implementations typically support stemming of words goes → go, cats → cat
- ▶ store mapping from words to a list of occurrences → how?

Tries

- efficient dictionary data structure for strings
- ▶ name from retrieval, but pronounced "try"
- tree based on symbol comparisons
- ► **Assumption:** stored strings are *prefix-free* (no string is a prefix of another)
 - strings of same length
- some character $\notin \Sigma$
- strings have "end-of-string" marker \$
- Example:

{aa\$, aaab\$, abaab\$, abb\$, abbab\$, bba\$, bbab\$, bbb\$}

Compact tries

compress paths of unary nodes into single edge

=1 child

▶ nodes store *index* of next character to check

- → searching slightly trickier, but same time complexity as in trie
- ▶ all nodes \geq 2 children \rightsquigarrow #nodes \leq #leaves = #strings \rightsquigarrow linear space

Tries as inverted index

fast lookup

- search part of a word
- search phrase (sequence of words)

what if the 'text' does not even have words to begin with?!

biological sequences

binary streams

→ need new ideas

13.2 Suffix Trees

Suffix trees – A 'magic' data structure

Appetizer: Longest common substring problem

▶ Given: strings S_1, \ldots, S_k

Example: S_1 = superiorcalifornialives, S_2 = sealiver

► Goal: find the longest substring that occurs in all *k* strings

→ alive

Can we do this in time $O(|S_1| + \cdots + |S_k|)$? How??

Enter: suffix trees

- versatile data structure for index with full-text search
- ▶ linear time (for construction) and linear space
- ▶ allows efficient solutions for many advanced string problems

"Although the longest common substring problem looks trivial now, given our knowledge of suffix trees, it is very interesting to note that in 1970 Don Knuth conjectured that a linear-time algorithm for this problem would be impossible." [Gusfield: Algorithms on Strings, Trees, and Sequences (1997)]

Suffix trees – Definition

- suffix tree T for text T = T[0..n) = compact trie of all suffixes of T\$ (set <math>T[n] := \$)
- except: in leaves, store start index (instead of copy of actual string)

Example:

T = bananaban\$

- ▶ also: edge labels like in compact trie
- (more readable form on slides to explain algorithms)

Suffix trees – Construction

- ► T[0..n] has n + 1 suffixes (starting at character $i \in [0..n]$)
- ▶ We can build the suffix tree by inserting each suffix of T into a compressed trie. But that takes time $\Theta(n^2)$. \longrightarrow not interesting!

same order of growth as reading the text!

Amazing result: Can construct the suffix tree of T in $\Theta(n)$ time!

- algorithms are a bit tricky to understand
- but were a theoretical breakthrough
- and they are efficient in practice (and heavily used)!

→ for now, take linear-time construction for granted. What can we do with them?

13.3 Applications

Applications of suffix trees

▶ In this section, always assume suffix tree \Im for T given.

Recall: T stored like this:

but think about this:

- ▶ Moreover: assume internal nodes store pointer to *leftmost leaf in subtree*.
- Notation: $T_i = T[i..n]$ (including \$)

Application 1: Text Indexing / String Matching

- ▶ P occurs in T \iff P is a prefix of a suffix of T
- ▶ we have all suffixes in T!
- - 1. we get stuckat internal node (no node with next character of P)or inside edge (mismatch of next characters)→ P does not occur in T
 - 2. we run out of patternreach end of *P* at internal node *v* or inside edge towards *v*→ *P* occurs at all leaves in subtree of *v*
 - 3. we run out of tree reach a leaf ℓ with part of P left \leadsto compare P to ℓ .

This cannot happen when testing edge labels since $\$ \notin \Sigma$, but needs check(s) in compact trie implementation!

► Finding first match (or NO_MATCH) takes O(|P|) time!

Examples:

- ightharpoonup P = ann
- ▶ P = baa
- ightharpoonup P = ana
- ightharpoonup P = ba
- ightharpoonup P = briar

Application 2: Longest repeated substring

▶ **Goal:** Find longest substring $T[i..i + \ell]$ that occurs also at $j \neq i$: $T[j..j + \ell] = T[i..i + \ell]$.

- → ∃ internal node with path label 'a'
 - here single edge, can be longer path
- → longest repeated substring = longest common prefix (LCP) of two suffixes
 - actually: adjacent leaves

- ► Algorithm:
 - 1. Compute string depth (=length of path label) of nodes
 - 2. Find internal nodes with maximal string depth
- ▶ Both can be done in depth-first traversal \rightsquigarrow $\Theta(n)$ time

Generalized suffix trees

- ▶ longest *repeated* substring (of one string) feels very similar to longest *common* substring of several strings $T^{(1)}, \ldots, T^{(k)}$ with $T^{(j)} \in \Sigma^{n_j}$
- can we solve that in the same way?
- ightharpoonup could build the suffix tree for each $T^{(j)}$... but doesn't seem to help
- → need a *single/joint* suffix tree for *several* texts

Enter: generalized suffix tree

- ▶ Define $T := T^{(1)} \$_1 T^{(2)} \$_2 \cdots T^{(k)} \$_k$ for k new end-of-word symbols
- ightharpoonup Construct suffix tree T for T
- \Rightarrow \$j-edges always leads to leaves \Rightarrow \exists leaf (j,i) for each suffix $T_i^{(j)} = T^{(j)}[i..n_j]$

Generalized Suffix Tree – Example

$$T^{(1)} = \operatorname{bcabcac}, \quad T^{(2)} = \operatorname{aabca}, \quad T^{(3)} = \operatorname{bcaa}$$

Application 3: Longest common substring

- ▶ With that new idea, we can find longest common substrings:
 - **1.** Compute generalized suffix tree T.
 - **2.** Store with each node the *subset of strings* that contain its path label:
 - **2.1**. Traverse T bottom-up.
 - **2.2.** For a leaf (j, i), the subset is $\{j\}$.
 - 2.3. For an internal node, the subset is the union of its children.
 - 3. In top-down traversal, compute *string depths* of nodes. (as above)
 - **4.** Report deepest node (by string depth) whose subset is $\{1, \ldots, k\}$.
- ▶ Each step takes time $\Theta(n)$ for $n = n_1 + \cdots + n_k$ the total length of all texts.

"Although the longest common substring problem looks trivial now, given our knowledge of suffix trees, it is very interesting to note that in 1970 Don Knuth conjectured that a linear-time algorithm for this problem would be impossible." [Gusfield: Algorithms on Strings, Trees, and Sequences (1997)]

Longest common substring – Example

$$T^{(1)}=\mbox{bcabcac}, \quad T^{(2)}=\mbox{aabca}, \quad T^{(3)}=\mbox{bcaa}$$

13.4 Longest Common Extensions

Application 4: Longest Common Extensions

▶ We implicitly used a special case of a more general, versatile idea:

The *longest common extension* (*LCE*) data structure:

```
► Given: String T[0..n)
```

▶ **Goal:** Answer LCE queries, i. e., given positions i, j in T, how far can we read the same text from there? formally: LCE $(i, j) = \max\{\ell : T[i..i + \ell) = T[j..j + \ell)\}$

$$\rightsquigarrow$$
 use suffix tree of $T!$

(length of) longest common prefix
of *i*th and *j*th suffix

► In
$$\mathfrak{T}$$
: LCE $(i,j) = \text{LCP}(T_i,T_j) \rightsquigarrow \text{ same thing, different name!}$

$$= \text{string depth of } lowest common ancester (LCA) \text{ of } leaves [i] \text{ and } [j]$$

▶ in short: $LCE(i, j) = LCP(T_i, T_j) = stringDepth(LCA(i, j))$

Efficient LCA

How to find lowest common ancestors?

- ► Could walk up the tree to find LCA \rightsquigarrow $\Theta(n)$ worst case
- ► Could store all LCAs in big table \longrightarrow $\Theta(n^2)$ space and preprocessing

Amazing result: Can compute data structure in $\Theta(n)$ time and space that finds any LCA in **constant(!) time**.

- ▶ a bit tricky to understand
- but a theoretical breakthrough
- ▶ and useful in practice

and suffix tree construction inside . . .

- \rightsquigarrow for now, use O(1) LCA as black box.
- \rightarrow After linear preprocessing (time & space), we can find LCEs in O(1) time.

Application 5: Approximate matching

k-mismatch matching:

- ▶ **Input:** text T[0..n), pattern P[0..m), $k \in [0..m)$
- ► Output: "Hamming distance ≤ k"
 - ightharpoonup smallest i so that T[i..i+m) are P differ in at most k characters
 - ightharpoonup or NO MATCH if there is no such i
- → searching with typos
- ► Adapted brute-force algorithm \rightsquigarrow $O(n \cdot m)$
- Assume longest common extensions in $T \$_1 P \$_2$ can be found in O(1)
 - → generalized suffix tree T has been built
 - → string depths of all internal nodes have been computed

Kangaroo Algorithm for approximate matching


```
procedure kMismatch(T[0..n-1], P[0..m-1]):

// build LCE data structure

for i := 0, \ldots, n-m-1 do

mismatches := 0; t := i; p := 0

while mismatches \le k \land p < m do

\ell := LCE(t, p) // jump over matching part

t := t + \ell + 1; p := p + \ell + 1

mismatches := mismatches + 1

if p == m then

return i
```

- ▶ **Analysis:** $\Theta(n + m)$ preprocessing + $O(n \cdot k)$ matching
- \rightsquigarrow very efficient for small k
- ► State of the art
 - $O(n^{\frac{k^2 \log k}{m}})$ possible with complicated algorithms
 - ightharpoonup extensions for edit distance $\leq k$ possible

Application 6: Matching with wildcards

- ► Allow a wildcard character in pattern stands for arbitrary (single) character
- unit* P in_unit5_we_will T
- ▶ similar algorithm as for *k*-mismatch \rightsquigarrow $O(n \cdot k + m)$ when *P* has *k* wildcards

* * *

Many more applications, in particular for problems on biological sequences

20+ described in Gusfield, Algorithms on strings, trees, and sequences (1999)

Suffix trees – Discussion

► Suffix trees were a threshold invention

linear time and space

suddenly many questions efficiently solvable in theory

construction of suffix trees: linear time, but significant overhead

construction methods fairly complicated

many pointers in tree incur large space overhead

13.5 Suffix Arrays

Putting suffix trees on a diet

- ► **Observation:** order of leaves in suffix tree = suffixes lexicographically *sorted*
- ▶ Idea: only store list of leaves L[0..n]
- Sufficient to do efficient string matching!
 - **1.** Use binary search for pattern *P*
 - **2.** check if *P* is prefix of suffix after position found
- **Example:** P =ana
- \rightsquigarrow L[0..n] is called *suffix array*:

L[r] = (start index of) rth suffix in sorted order

▶ using L, can do string matching with $\leq (\lg n + 2) \cdot m$ character comparisons

Digression: Recall BWT

BWT ↓

Burrows-Wheeler Transform

- **1.** Take all cyclic shifts of *S*
- 2. Sort cyclic shifts
- 3. Extract last column

S = alf_eats_alfalfa\$
B = asff\$f_e_lllaaata

alf_eats_alfalfa\$ lf_eats_alfalfa\$a f_eats_alfalfa\$al "ēats"ālfalfa\$alf eats, alfalfa\$alf, ats,,alfalfa\$alf,,e ts_alfalfa\$alf,ea s..alfalfa\$alf..eat _alfalfa\$alf_eats ālfalfa\$alf, ēats,, lfalfa\$alf,,eats,,a falfa\$alf,.eats,.al alfa\$alf,.eats,.alf lfa\$alf_ēats_ālfa fa\$alf_eats_alfal a\$alf, eats, alfalf \$alf,.eats,.alfalfa

\$alf_eats_alfalfa ,,alfalfa\$alf_eats _eats_alfalfā\$al**f** a\$alf, eats, alfalf alf,,eats,,alfalfa\$ alfa\$alf_eats_alf alfalfa\$alf.,eats.. ats,,alfalfa\$alf,,e eats alfalfa\$alf. f,,eats,,alfalfa\$at fa\$alf,,eats,,alfal falfa\$alf_eats_al lf,,eats,,alfalfa\$a lfā\$alf_eats_alfa lfalfa\$alf_eats_a s,,alfalfa\$alf,,eat ts.alfalfa\$alf.ea

 $\sim \rightarrow$

sort

Digression: Computing the BWT

How can we compute the BWT of a text efficiently?

- ightharpoonup cyclic shifts S = suffixes of S
 - comparing cyclic shifts stops at first \$
 - ▶ for comparisons, anything after \$ irrelevant!
- ► BWT is essentially suffix sorting!
 - $\blacktriangleright B[i] = S[L[i] 1]$
 - ▶ where L[i] = 0, B[i] = \$
- \rightsquigarrow Can compute *B* in O(n) time from *L*

```
alf, eats, alfalfa$
lf_eats_alfalfa$a
f,,eats,,alfalfa$al
,,eats,,alfalfa$alf
eats_alfalfa$alf_
ats,,alfalfa$alf,,e
ts.,alfalfa$alf.,ea
sualfalfa$alfueat
_alfalfa$alf_eats
alfalfa$alf_eats_
lfalfa$alf_eats_a
falfa$alf,.eats,.al
alfa$alf_eats_alf
lfa$alf,.eats,.alfa
fa$alf,.eats,.alfal
a$alf_eats_alfalf
$alf,_eats,_alfalfa
```

```
\downarrow L[r]
r
   $alf, eats, alfalfa
   _alfalfa$alf_eats
                         8
   _eats_alfalfa$alf
   a$alf,,eats,,alfalf
   alf_eats_alfalfa$
   alfa$alf_eats_alf
   alfalfa$alf.eats...
   ats_alfalfa$alf_e
                         5
   eats, alfalfa$alf.
   fueatsualfalfa$al
   fa$alf_eats_alfal
11
   falfa$alf,.eats,.al
                         11
   lf_eats_alfalfa$a
   lfa$alf..eats..alfa
                        13
   lfalfa$alf,.eats..a
                         10
   s.,alfalfa$alf.,eat
15
   ts,,alfalfa$alf,,ea
```

Suffix arrays – Construction

How to compute L[0..n]?

- ▶ from suffix tree
 - possible with traversal . . .
 - $\hfill \Box$ but we are trying to avoid constructing suffix trees!
- ▶ sorting the suffixes of *T* using general purpose sorting method
 - trivial to code!
 - ▶ but: comparing two suffixes can take $\Theta(n)$ character comparisons
 - $\Theta(n^2 \log n)$ time in worst case
- ▶ We can do better!

Fat-pivot radix quicksort – Example

Fat-pivot radix quicksort

details in §5.1 of Sedgewick, Wayne Algorithms 4th ed. (2011), Pearson

- **partition** based on *d*th character only (initially d = 0)
- \rightarrow 3 segments: smaller, equal, or larger than dth symbol of pivot
- recurse on smaller and large with same d, on equal with d + 1
 - → never compare equal prefixes twice

for random strings

 \sim can show: $\sim 2 \ln(2) \cdot n \lg n \approx 1.39 n \lg n$ character comparisons on average

- simple to code
- efficient for sorting many lists of strings

random string

• fat-pivot radix quicksort finds suffix array in $O(n \log n)$ expected time

but we can do O(n) time worst case!

13.6 Linear-time suffix sorting: Induced sorting and merging

Inverse suffix array: going left & right

▶ to understand the fastest algorithm, it is helpful to define the *inverse suffix array*:

►
$$R[i] = r \iff L[r] = i$$
 $L = leaf array$
 \iff there are r suffixes that come before T_i in sorted order
 \iff T_i has (0-based) $rank \ r \rightsquigarrow call \ R[0..n]$ the $rank \ array$

i	R[i]	T_i	right	r	L[r]	$T_{L[r]}$
0	6 th	bananaban\$	R[0] = 6	0	9	\$
1	$4^{ ext{th}}$	ananaban\$	K[0] = 0	1	5	aban\$
2	9 th	nanaban\$		2	7	an\$
3	3^{th}	anaban\$		3	3	anaban\$
4	8 th	naban\$		4	1	ananaban\$
5	$1^{ m th}$	aban\$. 1	5	6	ban\$
6	5 th	ban\$		6	0	bananaban\$
7	2^{th}	an\$	$_{1}L[8] = 4$	7	8	n\$
8	$7^{ m th}$	n\$	left	8	4	naban\$
9	0^{th}	\$		9	2	nanaban\$

sort suffixes

Linear-time suffix sorting

DC3 / Skew algorithm

not a multiple of 3

- **1.** Compute rank array $R_{1,2}$ for suffixes T_i starting at $i \not\equiv 0 \pmod{3}$ recursively.
- **2.** Induce rank array R_3 for suffixes T_0 , T_3 , T_6 , T_9 , ... from $R_{1,2}$.
- 3. Merge $R_{1,2}$ and R_0 using $R_{1,2}$.
 - \rightarrow rank array R for entire input

▶ We will show that steps 2. and 3. take $\Theta(n)$ time

$$ightharpoonup$$
 Total complexity is $n + \frac{2}{3}n + \left(\frac{2}{3}\right)^2 n + \left(\frac{2}{3}\right)^3 n + \cdots \le n \cdot \sum_{i \ge 0} \left(\frac{2}{3}\right)^i = 3n = \Theta(n)$

- ▶ **Note:** *L* can easily be computed from *R* in one pass, and vice versa.
 - → Can use whichever is more convenient.

DC3 / Skew algorithm – Step 2: Inducing ranks

► **Assume:** rank array $R_{1,2}$ known:

$$R_{1,2}[i] = \begin{cases} \text{rank of } T_i \text{ among } T_1, T_2, T_4, T_5, T_7, T_8, \dots & \text{for } i = 1, 2, 4, 5, 7, 8, \dots \\ \text{undefined} & \text{for } i = 0, 3, 6, 9, \dots \end{cases}$$

- ▶ **Task:** sort the suffixes T_0 , T_3 , T_6 , T_9 , . . . in linear time (!)
- ▶ Suppose we want to compare T_0 and T_3 .
 - Characterwise comparisons too expensive
 - **b** but: after removing first character, we obtain T_1 and T_4
 - ▶ these two can be compared in *constant time* by comparing $R_{1,2}[1]$ and $R_{1,2}[4]!$

```
T_0 comes before T_3 in lexicographic order iff pair (T[0], R_{1,2}[1]) comes before pair (T[3], R_{1,2}[4]) in lexicographic order
```

DC3 / Skew algorithm – Inducing ranks example

T = hannahbansbananasman\$\$ (append 3 \$ markers) hannahbansbananasman\$\$\$ nahbansbananasman\$\$\$ annahbansbananasman\$\$\$ $R_{1,2}[22] = 0$ T_{22} bansbananasman\$\$\$ nnahbansbananasman\$\$\$ $R_{1,2}[20] =$ \$\$\$ sbananasman\$\$\$ ahbansbananasman\$\$\$ $R_{1,2}[4] =$ ahbansbananasman\$\$\$ nanasman\$\$\$ hbansbananasman\$\$\$ $R_{1,2}[11] =$ ananasman\$\$\$ asman\$\$\$ · ansbananasman\$\$\$ $R_{1,2}[13] =$ anasman\$\$\$ $sman$$$ = T_{16}$ annahbansbananasman\$\$\$ an\$\$\$ nsbananasman\$\$\$ T_{10} $R_{1,2}[7] =$ ansbananasman\$\$\$ bananasman\$\$\$ T_{11} ananasman\$\$\$ bananasman\$\$\$ anasman\$\$\$ $R_{1,2}[5] =$ hbansbananasman\$\$\$ nasman\$\$\$ $R_{1,2}[17] =$ man\$\$\$ T_0 T_3 T_6 T_9 T_{12} T_{15} T_{18} T_{21} h05 n\$\$\$ sman\$\$\$ $R_{1.2}[19] = 10$ $R_{1,2}[16] = 14$ n 02 man\$\$\$ nasman\$\$\$ b06 n\$\$\$ $R_{1,2}[2] = 12$ nnahbansbananasman\$\$\$ s 07 $R_{1,2}[8] = 13 T_8$ nsbananasman\$\$\$ T_{20} \$\$\$ $R_{1,2}[16] = 14 T_{16}$ n 04 T_{22} sman\$\$\$ a 14 $R_{1,2}$ (known) a 10 \$00 \$00 $R_0[21] = 0$ T_{18} T_{15} T_{6} T_{0} T_{12} T_{12} T_{13} a 10 $R_0[18] = 1$ sorting of pairs doable in O(n) time radix sort a 14 $R_0[15] = 2$ by 2 iterations of counting sort b 06 $R_0[6] = 3$ h 05 $R_0[0] = 4$ n 02 $R_0[3] = 5$ Obtain R_0 in O(n) time n 04 $R_0[12] = 6$ s 07 $R_0[9] = 7$

DC3 / Skew algorithm – Step 3: Merging

```
\begin{array}{lll} T_{21} & \$\$ \\ T_{18} & \verb"an\$\$\$ \\ \hline T_{15} & \verb"asman\$\$\$ \\ T_{6} & \verb"bansbananasman\$\$\$ \\ T_{0} & \verb"hannahbansbananasman\$\$\$ \\ nahbansbananasman\$\$\$ \\ T_{12} & \verb"nanasman\$\$\$ \\ T_{9} & \verb"sbananasman\$\$\$ \end{array}
```

► Have:

► sorted 1,2-list: T₁, T₂, T₄, T₅, T₇, T₈, T₁₀, T₁₁,...

► sorted 0-list: *T*₀, *T*₃, *T*₆, *T*₉, . . .

- ► Task: Merge them!
 - use standard merging method from Mergesort
 - but speed up comparisons using $R_{1,2}$
 - \rightsquigarrow O(n) time for merge

```
T_{22} $ T_{21} $$ T_{20} $$$ T_4 ahba
         ahbansbananasman$$$
         an$$$
    Compare T_{15} to T_{11}
    Idea: try same trick as before
    T_{15} = asman$$
         = asman$$$
                              can't compare T_{16}
                              and T_{12} either!
         = aT_{16}
    T_{11} = ananasman$$
         = ananasman$$$
         = aT_{12}
\rightarrow Compare T_{16} to T_{12}
    T_{16} = sman$$
                            always at most 2 steps
         = sman$$$
                            then can use R_{1,2}!
         = sT_{17}
    T_{12} = nanasman$$
         = aanasman$$$
         = aT_{13}
```

13.7 Linear-Time Suffix Sorting: The DC3

Algorithm

DC3 / Skew algorithm – Fix recursive call

- **b** both step 2. and 3. doable in O(n) time!
- ▶ But: we cheated in 1. step! "compute rank array R_{1,2} recursively"
 - ► Taking a *subset* of suffixes is *not* an instance of the same problem!
 - \rightarrow Need a single *string* T' to recurse on, from which we can deduce $R_{1,2}$.

How can we make *T'* "skip" some suffixes?

- redefine alphabet to be triples of characters abo

$$\rightsquigarrow$$
 suffixes of $T^{\square} \iff T_0, T_3, T_6, T_9, \dots$

$$\rightsquigarrow$$
 suffixes of $T^{\square} \iff T_0, T_3, T_6, T_9, \dots$

► $T' = T[1..n)^{\square}$ [\$\$\$] $T[2..n)^{\square}$ [\$\$\$] $\iff T_i \text{ with } i \neq 0 \pmod{3}$.

 \sim Can call suffix sorting recursively on T' and map result to $R_{1,2}$

T = bananaban\$\$

ana ban \$\$\$

ban \$\$\$ \$\$\$

 \rightarrow $T^{\square} = \text{ban ana ban } \$\$$

DC3 / Skew algorithm – Fix alphabet explosion

- Still does not quite work!
 - **Each** recursive step *cubes* σ by using triples!
 - → (Eventually) cannot use linear-time sorting anymore!
- ▶ But: Have at most $\frac{2}{3}n$ different triples abc in T'!
- → Before recursion:
 - **1.** Sort all occurring triples. (using counting sort in O(n))
 - **2.** Replace them by their *rank* (in Σ).
- \sim Maintains σ ≤ n without affecting order of suffixes.

DC3 / Skew algorithm – Step 3. Example

$$T' = T[1..n)^{\square}$$
 \$\$\$ $T[2..n)^{\square}$ \$\$\$

- $T = \text{hannahbansbananasman} \quad T_2 = \text{nnahbansbananasman} \\ T' = \text{annahbansbananasman}$
- Occurring triples:

anniahbansbananasmanss \$\$\$ nnahbansb nasman

Sorted triples with ranks:

T'= anniahbansbananasman\$\$\$ \$\$\$ mnahbansbananasman\$\$\$ T''= 03 01 04 05 02 12 08 00 10 06 11 02 09 07 00

Suffix array – Discussion

simple and fast $O(n \log n)$ construction

 \bigcap more involved but optimal O(n) construction

supports efficient string matching

 \bigcap string matching takes $O(m \log n)$, not optimal O(m)

Cannot use more advanced suffix tree features e.g., for longest repeated substrings

13.8 The LCP Array

String depths of internal nodes

- ► Recall algorithm for longest repeated substring in **suffix tree**
 - **1.** Compute *string depth* of nodes
 - 2. Find path label to node with maximal string depth
- ► Can we do this using **suffix** *arrays*?

Yes, by **enhancing** the suffix array with the *LCP array*! LCP[1..n] LCP[r] = LCP($T_{L[r]}$, $T_{L[r-1]}$)

length of longest common prefix of suffixes of rank r and r-1

 \rightarrow longest repeated substring = find maximum in LCP[1..n]

LCP array and internal nodes

 \rightarrow Leaf array L[0..n] plus LCP array LCP[1..n] encode full tree!

13.9 LCP Array Construction

LCP array construction

- ightharpoonup computing LCP[1..n] naively too expensive
 - ightharpoonup each value could take $\Theta(n)$ time
 - $\Theta(n^2)$ in total
- ▶ but: seeing one large (=costly) LCP value → can find another large one!
- ► Example: *T* = Buffalo_buffalo_buffalo\$
 - first few suffixes in sorted order:

```
\begin{array}{l} T_{L[0]} = \$ \\ T_{L[1]} = {\rm alo}_{\tt u} {\rm buffalo} \$ \\ T_{L[2]} = {\rm alo}_{\tt u} {\rm buffalo}_{\tt u} {\rm buffalo} \$ \\ & {\rm alo}_{\tt u} {\rm buffalo}_{\tt u} {\rm buffalo} \Longrightarrow {\rm LCP[3]} = {\rm 19} \\ T_{L[3]} = {\rm alo}_{\tt u} {\rm buffalo}_{\tt u} {\rm buffalo}_{\tt u} {\rm buffalo} \$ \end{array}
```

 \rightarrow **Removing first character** from $T_{L[2]}$ and $T_{L[3]}$ gives two new suffixes:

```
\begin{split} T_{L[?]} &= \text{lo\_buffalo\_buffalo} \\ &\quad \text{lo\_buffalo\_buffalo} & \leadsto \text{ LCP[?]} = 18 \\ T_{L[?]} &= \text{lo\_buffalo\_buffalo\_buffalo} \\ &\quad \text{unclear where.} \end{split}
```


Shortened suffixes might *not* be *adjacent* in sorted order! \rightarrow no LCP entry for them!

Kasai's algorithm – Example

- ► Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

i	R[i]	T_i	r	L[r	$T_{L[r]}$	LCP[r]
0	6 th	bananaban\$	0	9] \$	_
1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	0
2	9 th	nanaban\$	2	7	an\$	1
3	3^{th}	anaban\$	3	3	anaban\$	2
4	8^{th}	naban\$	4	1	ananaban\$	3
5	$1^{ m th}$	aban\$	5	6	ban\$	0
6	5 th	ban\$	6	0	bananaban\$	3
7	2^{th}	an\$	7	8	n\$	0
8	$7^{ m th}$	n\$	8	4	naban\$	1
9	0^{th}	\$	9	2	nanaban\$	2

Kasai's algorithm – Code

```
procedure compute LCP(T[0..n], L[0..n], R[0..n]):
       // Assume T[n] = \$, L and R are suffix array and inverse
       \ell := 0
       for i := 0, ..., n-1 // Consider T_i now
            r := R[i]
5
           // compute LCP[r]; note that r > 0 since R[n] = 0
           i_{-1} := L[r-1]
7
           while T[i + \ell] == T[i_{-1} + \ell] do
                \ell := \ell + 1
9
           LCP[r] := \ell
10
            \ell := \max\{\ell - 1, 0\}
11
       return LCP[1..n]
12
```

- remember length ℓ of induced common prefix
- ▶ use *L* to get start index of suffixes

Analysis:

- dominant operation: character comparisons
- ► separately count those with outcomes "=" resp. "≠"
- each ≠ ends iteration of for-loop≤ n cmps
- ▶ each = implies increment of ℓ , but $\ell \le n$ and decremented $\le n$ times $\Rightarrow \le 2n$ cmps
- \rightarrow $\Theta(n)$ overall time

Back to suffix trees

We can finally look into the black box of linear-time suffix-array construction!

- **1.** Compute suffix array for *T*.
- **2.** Compute LCP array for *T*.
- **3.** Construct T from suffix array and LCP array.

Conclusion

- ► (*Enhanced*) *Suffix Arrays* are the modern version of suffix trees
 - ▶ directly simulate suffix tree operations on *L* and LCP arrays
- can be harder to reason about
- can support same algorithms as suffix trees
- but use much less space
- simpler linear-time construction

Outlook:

- ▶ enhanced suffix arrays still need original text *T* to work
- ► a *self-index* avoids that
 - can store T in compressed form and support operations like string matching
- → Advanced Data Structures