Name:	Reg #:	Section:
-------	--------	----------

National University of Computer and Emerging Sciences, Lahore Campus

Course: Natural Language Processing Program: BS(Computer Science)

Duration: 60 Minutes
Paper Date: 12-April-18
Section: ALL

Exam: Midterm 2 Solution

Course Code: CS 535
Semester: Spring 2018
Total Marks: 24
Weight 13%

Weight 13% Page(s): 5

Q1) A sentence can easily have more than one parse tree that is consistent with a given CFG. How do PCFGs and non-probability-based CFGs differ in terms of handling parsing ambiguity? [2 Marks]

Answer:

PCFGs define probability of each rule which can be used to find probability of parse tree. Tree with maximum probability is selected.

Q2) Which of the following is a false statement about PCFGs: [2 Marks]

- a) The rules impose independence assumptions that effect poor modeling of structural dependency across the tree.
- b) The rules do not model syntactic facts about particular words, which causes a variety of problems.
- c) The joint probability of a sentence, S, and a parses of it, T, is the same as the probability of the parse, T.

Answer: They are true

Q3) a) Which of the following trees is a lexicalized tree? [1 Mark]

Tree 1

Tree 2

Solution: Tree2

b) For the trees above, when you count and estimate the probability for rules, which tree is most likely to encounter sparseness problem? [2 Marks]

Tree2

c) How can you alleviate sparseness problem encountered in estimating probability for parse trees? [2 Marks]

Name:	Reg #:	Section:
smoothing		
$S \rightarrow NP VP$	nar with the following rules (assume that S	is the start symbol):
$NP \rightarrow DT NN$ $NP \rightarrow NP PP$ $PP \rightarrow IN NP$		
$VP \rightarrow VB NP$ $DT \rightarrow the$ $NN \rightarrow man$		
$NN \rightarrow dog$ $NN \rightarrow cat$		
$NN \rightarrow park$ $VB \rightarrow saw$ $IN \rightarrow in$		
$IN \rightarrow III$ $IN \rightarrow with$ $IN \rightarrow under$		

How many parse trees for "the man saw the dog in the park with the cat"? Draw all the parse trees for this sentence. [5 Marks]

Two parse trees, parse tree 1:

Two parse trees, parse tree 2:

Section:

Q3) Consider a trigram HMM, as introduced in class. We saw that the

Viterbi algorithm could be used to find $\max_{y_1, \dots, y_{n+1}} p(x_1, \dots, x_n; y_1, \dots, y_{n+1})$

where the max is taken over all sequences y_1, \ldots, y_{n+1} such that $y_i \in K$ for $i = 1, \ldots, n$, and $y_{n+1} = STOP$. (Recall that K is the set of possible tags in the HMM.) In a trigram tagger we assume that p takes the form

$$p(x1,xn; y1,yn+1) = \prod_{i=1}^{n+1} q \dot{i} \dot{i}$$

Recall that we have assumed in this definition that $y_0 = y_{-1} = y_{-2} = *$, and $y_{n+1} = STOP$. The Viterbi algorithm is shown in figure below.

Input: A sentence x1,xn, paramters q(s|u, v) and e(x|s)

Dedinitions: Define K to be the set of possible tags. Define $K_{-1} = K_0 = \{*\}$, and $K_k = \{*\}$

K for k = 1 ...n.

Initialization: *Set* π (0,*,*) = 1

Algorithm: For $k = 1 \dots n$,

For
$$u \in K_{k-1}$$
, $v \in K_k$

$$\pi(k,u,v) = max_w \in K_{k-2} (\pi(k-1,w,u) \times q(v \mid w,u) \times e(x_k)$$

| v))

Return $max_u \in K_{n-1}$, $v \in K_n$ $(\pi(n,u,v) \times q(STOP \mid u,v))$

Now consider a four-gram tagger, where p takes the form

$$p(x1,xn; y1,yn+1) = \prod_{i=1}^{n+1} qii$$

We have assumed in this definition that $y_0 = y_{-1} = y_{-2} = *$, and $y_{n+1} = STOP$. In the box on next page, give a version of the Viterbi algorithm that takes as input a sentence $x_1, ..., x_n$, and finds $max_{y_1, ..., y_{n+1}} p(x_1, ..., x_n; y_1, ..., y_{n+1})$ for a four-gram tagger, as defined above equation. [10 Marks]

Name:	

Reg #: _____

Section:

Input: A sentence x1,xn, paramters q(w|t, u, v) and e(x|s)

Dedinitions: Define *K* to be the set of possible tags. Define $K_{-2} = K_{-1} = K_0 = \{*\}$, and

 $K_k = K \text{ for } k = 1 ...n.$

Initialization: *Set* π (0,*,*) = 1

Algorithm: For $k = 1 \dots n$,

For
$$t \in K_{k-2}$$
, $u \in K_{k-1}$, $v \in K_k$,
 $\pi(k,t, u, v) = \max_{w \in K_{k-3}} (\pi(k-2, w, t, u) \times q(v \mid w, t, u) \times q(v \mid w, t, u))$

 $e(x_k \mid v))$

Return $max_t \in K_{n-2}$, $u \in K_{n-1}$, $v \in K_n$ $(\pi(n, t, u, v) \times q(STOP \mid t, u, v))$