Noninvasive imaging of the brain with diffusing light pulses

Alex Barnett

Courant Institute

Collaborators (NMR Center, Mass. Gen. Hosp., Boston)

David Boas

Joe Culver

Gregory Sorensen

Anders Dale

Big picture

What can access optically, from outside the body?

DOT: 'Diffuse Optical Tomography'

Big picture

What can access optically, from outside the body?

DOT: 'Diffuse Optical Tomography'

Tissue is highly scattering (blurring)

Get spatial maps

absorption scattering

at some wavelength(s)?

Outline

- motivation
- background & history
- light in tissue: physics & numerics
- inverse problem
- piecewise homogeneous model
 - · anatomy from MRI
 - · results inferring 6 params ('baby' problem)

Outline

- motivation
- background & history
- light in tissue: physics & numerics
- inverse problem
- piecewise homogeneous model
 - · anatomy from MRI
 - · results inferring 6 params ('baby' problem)

Omit...

- true 'images', regularization...
- details of optimization/sampling

Brain: what interested in?

CLINICAL

- Cerebral oximetry (e.g. neonatal):
 absolute oximetry hard
- Imaging stroke (local lack of O_2), hemorrhage

Brain: what interested in?

CLINICAL

- Cerebral oximetry (e.g. neonatal):
 absolute oximetry hard
- Imaging stroke (local lack of O_2), hemorrhage

FUNCTIONAL

- Organization of brain:

 neural response as func of space & time
- functional disorders: seizure, depression

Brain: what interested in? CLINICAL

- Cerebral oximetry (e.g. neonatal):
 absolute oximetry hard
- Imaging stroke (local lack of O_2), hemorrhage

FUNCTIONAL

- Organization of brain:

 neural response as func of space & time
- functional disorders: seizure, depression

[also breast tumors, arthritis, muscle oximetry...]

Functional imaging: why blood?

Detect neural firing

microelectrodes — ouch!

MEG — costly, low resolution

'Hemodynamic Response Function'

Neural activation \rightarrow increased blood flow 1990s: functional MRI revolution (brain mapping)

Optical spectroscopy of the body

Near IR 'window' 700-900 nm:

- absorption μ_a low
- hemoglobin dominates μ_a

HbR - deoxy $HbO_2 - oxy$

Optical spectroscopy of the body

Near IR 'window' 700-900 nm:

- absorption μ_a low
- hemoglobin dominates μ_a

HbR - deoxy $HbO_2 - oxy$

von Vierordt 1876:

Millikan 1940:

Aoyagi 1970s:

Jobsis 1980s:

1990s:

spectroscope, light through finger

wartime fighter pilot oximeter

pulse oximetry → clinical

first noninvasive brain activation

functional brain mapping

Current DOT apparatus

State of the art...

- 32 S by 32 D
- single photon counting
- time-resolution of 100 ps
- several wavelengths

Compare DOT vs fMRI

	fMRI	DOT
space		1–2 cm, not deep
time	1–2 s	10–100 ms
portable	no	yes
cost	$> 10^6	$\leq 10^5
sens	HbR only	HbO ₂ and HbR

Compare DOT vs fMRI

	fMRI	DOT
space	2–4 mm	1–2 cm, not deep
time	1–2 s	10–100 ms
portable	no	yes
cost	$> 10^6	$\leq \$10^5$
sens	HbR only	HbO ₂ and HbR

Ongoing:

- validate DOT/fMRI
- neural $\stackrel{?}{\leftrightarrow}$ vascular
- what fMRI measures?

Photon migration

Incoherent light \rightarrow ballistic transport of $f(\mathbf{r}, \Omega, t)$:

$$\frac{1}{c}\dot{f} = -\mathbf{\Omega} \cdot \nabla f \qquad \text{flow}$$

$$-\left[\mu_a(\mathbf{r}) + \mu_s(\mathbf{r})\right]f \qquad \text{leaving}$$

$$+ \int d\mathbf{\Omega}' S(\mathbf{r}; \mathbf{\Omega}, \mathbf{\Omega}') f(\mathbf{r}, \mathbf{\Omega}') \qquad \text{arriving}$$

$$+ Q(\mathbf{r}, \mathbf{\Omega}) \qquad \text{source}$$

speed c, absorption μ_a , scattering $\mu_s = \int d\Omega S$

Photon migration

Incoherent light \rightarrow ballistic transport of $f(\mathbf{r}, \Omega, t)$:

$$\frac{1}{c}\dot{f} = -\mathbf{\Omega}\cdot\nabla f$$
 flow
$$-\left[\mu_{a}(\mathbf{r}) + \mu_{s}(\mathbf{r})\right]f$$
 leaving
$$+\int d\mathbf{\Omega}' S(\mathbf{r};\mathbf{\Omega},\mathbf{\Omega}') f(\mathbf{r},\mathbf{\Omega}')$$
 arriving
$$+Q(\mathbf{r},\mathbf{\Omega})$$
 source

speed c, absorption μ_a , scattering $\mu_s = \int d\Omega S$

• Legendre $f(\mathbf{r}, \Omega) = \phi(\mathbf{r}) + \mathbf{j}(\mathbf{r}) \cdot \Omega + \text{ignored.}...$

j small, relaxes (fast) to $\propto \nabla \phi$ ϕ diffuses (slow), coeff $\kappa = 1/3\mu_s'$ 'reduced scatt' $\mu_s' = (1 - \langle \cos \theta \rangle_S)\mu_s$

Diffusion approximation

Needed:
$$\mu_a \ll \mu'_s$$
, length scales $\gg \frac{1}{\mu'_s}$

$$\frac{1}{c}\dot{\phi} = \nabla \cdot (\kappa(\mathbf{r})\nabla\phi) - \mu_a(\mathbf{r})\phi + q(\mathbf{r},t)$$

$$\phi$$
 = fluence

Diffusion approximation

Needed:
$$\mu_a \ll \mu'_s$$
, length scales $\gg \frac{1}{\mu'_s}$

$$\frac{1}{c}\dot{\phi} = \nabla \cdot (\kappa(\mathbf{r})\nabla\phi) - \mu_a(\mathbf{r})\phi + q(\mathbf{r},t)$$

$$\phi = \text{fluence}$$

Robin boundary condition:

$$\partial \phi/\partial n = -\phi/d_{\rm ext}$$

Source:
$$q(t=0) = \delta(\mathbf{r} - \mathbf{r}_s)$$

 $\mathbf{r}_s = \text{dist } 1/\mu_s' \text{ below surface}$

Detector: measures $\partial \phi / \partial n$

Geometry

tissue	$\mu_a (\mathrm{mm}^{-1})$	μ_s' (mm ⁻¹)	shape
scalp	0.015	0.8	7 mm layer
skull	0.01	1.0	7 mm layer
CSF	0.0004	0.01	folded 1–3 mm sheet
brain	0.018	1.3	$\sim 1 \text{ cm folds}$

Forward model numerics

Diffusion in time = parabolic

- finite difference, Forward Euler
- accuracy $O(\Delta x^2)$, $O(\Delta t)$
- stiff: stability \Rightarrow effort $O(\Delta x^{-5})$
- 3×10^4 nodes, $\Delta x = 2$ mm, $\approx 10^3$ timesteps in 8 s CPU
- Robin BCs with crude normal

Seek better method!

- smooth surface info \rightarrow better BCs, $\overline{S/D}$ models
- implicit, adaptive timesteps...

Crank-Nicholson: not L-stable

$$\mathbf{x} \equiv \{\mu_a(\mathbf{r}), \mu_s'(\mathbf{r})\} \stackrel{\mathbf{f}}{\longrightarrow} \mathbf{y} = \mathbf{f}(\mathbf{x})$$
parameter vector expected signal vector

$$\mathbf{x} \equiv \{\mu_a(\mathbf{r}), \mu_s'(\mathbf{r})\} \xrightarrow{\mathbf{f}} \mathbf{y} = \mathbf{f}(\mathbf{x})$$
parameter vector expected signal vector

$$\mathbf{x} \equiv \{\mu_a(\mathbf{r}), \mu_s'(\mathbf{r})\} \xrightarrow{\mathbf{f}} \mathbf{y} = \mathbf{f}(\mathbf{x})$$
parameter vector expected signal vector

$$\mathbf{x} \equiv \{\mu_a(\mathbf{r}), \mu_s'(\mathbf{r})\} \xrightarrow{\mathbf{f}} \mathbf{y} = \mathbf{f}(\mathbf{x})$$
parameter vector expected signal vector

$$\mathbf{x} \equiv \{\mu_a(\mathbf{r}), \mu_s'(\mathbf{r})\} \xrightarrow{\mathbf{f}} \mathbf{y} = \mathbf{f}(\mathbf{x})$$
parameter vector expected signal vector

$$\mathbf{x} \equiv \{\mu_a(\mathbf{r}), \mu_s'(\mathbf{r})\} \stackrel{\mathbf{f}}{\longrightarrow} \mathbf{y} = \mathbf{f}(\mathbf{x})$$
parameter vector expected signal vector

Nonlinear N-dim optimization problem

$$\det(\frac{\partial f_m}{\partial x_n}) \to 0$$
: 'ill-posed' (many x equally good)

Bayesian statistical method

Incomplete info on $\mathbf{x} \to probability density function$

 $\overline{\text{Entire model}} = \text{joint PDF } p(\mathbf{x}, \mathbf{y})$

Bayesian statistical method

Incomplete info on $\mathbf{x} \to probability density function$

Entire model = joint PDF $p(\mathbf{x}, \mathbf{y})$

Bayesian inference

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{x},\mathbf{y})$$

$$= p(\mathbf{y}|\mathbf{x}) \cdot p(\mathbf{x})$$
posterior likelihood prior

Bayesian statistical method

Incomplete info on $\mathbf{x} \to probability density function$

Entire model = joint PDF $p(\mathbf{x}, \mathbf{y})$

Bayesian inference

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{x},\mathbf{y})$$

$$= p(\mathbf{y}|\mathbf{x}) \cdot p(\mathbf{x})$$
posterior likelihood prior

- embraces ill-posedness
- rigorous, assumptions explicit, no overfitting
- need explore N-dim posterior: many f(x) evals.

Measure 'baseline' μ_a and μ_s'

Small system (2 S, 4 D). Model: homogeneous tissues

 $\mathbf{x} \equiv \mu_a, \mu_s'$ for scalp, skull, brain (N = 6: grapple with full PDF)

- meas *absolute* values is hard
- needed for brain imaging

Measure 'baseline' μ_a and μ_s'

Small system (2 S, 4 D). Model: homogeneous tissues

 $\mathbf{x} \equiv \mu_a, \mu_s'$ for scalp, skull, brain (N = 6: grapple with full PDF)

- meas *absolute* values is hard
- needed for brain imaging

SIMULATED SIGNALS

choose flat prior $p(\mathbf{x})$ (no regularization)

Realistic noise model

Each signal component $m=1\cdots M$ independent. Photons Poissonian: gaussian approx $\sigma(f)=f^{1/2}$ E.g. 10^6 photons = 0.1% frac error But: we do not trust forward model to 0.1%!

Realistic noise model

Each signal component $m=1\cdots M$ independent. Photons Poissonian: gaussian approx $\sigma(f)=f^{1/2}$ E.g. 10^6 photons = 0.1% frac error But: we do not trust forward model to 0.1%!

• ε = fractional forward model error *e.g.* 10% (errors: physics, segmentation, calibration...)

Results: posterior

Marginal distributions

Gaussian approx to PDF

pancake: $a_{\text{max}}/a_{\text{min}} = 50$

 10^6 detected photons gives 5% in μ_a , 20% in μ'_s

for $\varepsilon = 10\%$

Results: posterior

Marginal distributions

Gaussian approx to PDF

pancake: $a_{\text{max}}/a_{\text{min}} = 50$

Conditional (slices)

shows nonlinearity

 10^6 detected photons gives 5% in μ_a , 20% in μ'_s

for $\varepsilon = 10\%$

Results: posterior

Marginal distributions

Gaussian approx to PDF

pancake: $a_{\text{max}}/a_{\text{min}} = 50$

Conditional (slices)

shows nonlinearity

Sampling exact PDF

Markov chain Monte Carlo (Metropolis walk) validates Gaussian approx

 10^6 detected photons gives 5% in μ_a , 20% in μ'_s

for $\varepsilon = 10\%$

Results: confidence intervals

Allows optimal experimental design

 $N_p = \text{total detected}$ photons

Results: robust to forward error

Simulate signals ($\Delta x = 1 \text{ mm}$) Inference ($\Delta x = 2 \text{ mm}$)

up to 50% errors (S/D models)

Avoids committing 'inverse crime'

$$N_p \approx 10^7$$
 $\varepsilon = 20\%$ represents typ forward errors

- improved DOT via modeling correct anatomy
 - · new sensible noise model
 - · inferred baseline tissue parameters
 - · needed for quantitative brain imaging

- improved DOT via modeling correct anatomy
 - · new sensible noise model
 - · inferred baseline tissue parameters
 - · needed for quantitative brain imaging
- Bayes → understand full PDF on unknowns
 - · maximal use of information
 - predict errorbars, correlations

- improved DOT via modeling correct anatomy
 - · new sensible noise model
 - · inferred baseline tissue parameters
 - · needed for quantitative brain imaging
- Bayes → understand full PDF on unknowns
 - · maximal use of information
 - predict errorbars, correlations
- Directions:

experimental data

- improved DOT via modeling correct anatomy
 - · new sensible noise model
 - · inferred baseline tissue parameters
 - · needed for quantitative brain imaging
- Bayes → understand full PDF on unknowns
 - · maximal use of information
 - predict errorbars, correlations
- Directions:

experimental data imaging activation, cortex $\sim 10^3$ unknowns

- improved DOT via modeling correct anatomy
 - · new sensible noise model
 - · inferred baseline tissue parameters
 - · needed for quantitative brain imaging
- Bayes → understand full PDF on unknowns
 - · maximal use of information
 - predict errorbars, correlations
- Directions:

experimental data imaging activation, cortex $\sim 10^3$ unknowns large N optimization, fast gradient $\frac{\partial f_m}{\partial x_n}$

- improved DOT via modeling correct anatomy
 - · new sensible noise model
 - · inferred baseline tissue parameters
 - · needed for quantitative brain imaging
- Bayes → understand full PDF on unknowns
 - · maximal use of information
 - predict errorbars, correlations
- Directions:

experimental data imaging activation, cortex $\sim 10^3$ unknowns large N optimization, fast gradient $\frac{\partial f_m}{\partial x_n}$ forward model improvement, CSF clear layer?

- improved DOT via modeling correct anatomy
 - · new sensible noise model
 - · inferred baseline tissue parameters
 - · needed for quantitative brain imaging
- Bayes → understand full PDF on unknowns
 - · maximal use of information
 - predict errorbars, correlations
- Directions:

experimental data imaging activation, cortex $\sim 10^3$ unknowns large N optimization, fast gradient $\frac{\partial f_m}{\partial x_n}$ forward model improvement, CSF clear layer? best S/D placement, Bayesian calibration...