算法分析与设计

Analysis and Design of Algorithm

Lesson 14

要点回顾

- 回溯法适用条件
 - 多米诺性质及其作用
- 回溯法两种实现
 - 递归实现(回溯最优子结构性质)
 - 迭代实现(回溯贪心选择性质)
- 回溯法几个实例
 - 装载问题
 - ■图着色问题
- 分支限界法(开端)

分支限界法

- 分支限界: 一种与回溯法类似的算法
 - 将问题建模为搜索解空间树
 - 通常用代价函数估算每个分支的最优值
 - 优先选择当前看来最好的分支
 - 搜索策略一般采用宽度优先搜索
 - 搜索过程中剪枝
- 分支限界的剪枝函数
 - 不满足约束条件
 - 代价函数值不优于当前的界

- 计算位置: 搜索树的结点
- 估值:极大化问题是以该点为根的子树所有可行 解的值的上界(极小化问题则为下界)
- 性质:对极大化问题父节点代价不小于子结点的 代价(极小化问题则相反)

界

- 含义: 当前得到可行解的目标函数最大值 (极小化问题则相反)
- 初值: 极大化问题初值为0(极小化问题则 为最大值)
- 更新: 得到更好的可行解时

界 \subset 代价函数, 即: F ≥ B

■ 停止分支回溯父节点的依据

- 1. 不满足约束条件
- 2. 对于极大化问题,代价函数值小于当前界(对于极小化问题是大于界)

■ 界的更新

对极大化问题,如果一个新的可行解的优化函数值大于(极小化问题为小于)当前的界,则把界更新为该可行解的值

4

分支限界解组合优化问题

■背包问题

背包限重为10

物品 <i>i</i> 属性	1	2	3	4
价值v _i	1	3	5	9
重量 w_i	2	3	4	7

$$\max x_1 + 3x_2 + 5x_3 + 9x_4$$

$$\begin{cases}
2x_1 + 3x_2 + 4x_3 + 7x_4 \le 10 \\
x_i \in \mathbb{N}, i = 1, 2, 3, 4
\end{cases}$$

代价函数的设定

- 对结点 $\langle x_1, x_2, ..., x_k \rangle$,估计以该结点为根的子树中可行解的上界
- 按单位重量的价值v_i/ w_i从大到小排序
- 代价函数=已装入价值+△
 - Δ: 还可以继续装入最大价值的上界
 - Δ =背包剩余重量 $\times v_{k+1}/w_{k+1}$ (可装)
 - △=0 (不可装)

实例: 背包问题

$$\max x_1 + 3x_2 + 5x_3 + 9x_4$$

$$s.t. \begin{cases} 2x_1 + 3x_2 + 4x_3 + 7x_4 \le 10 \\ x_i \in \mathbb{N}, i = 1, 2, 3, 4 \end{cases}$$

对变元重新排序使得
$$\frac{v_i}{w_i} \ge \frac{v_{i+1}}{w_{i+1}}$$

排序后

$$\max 9x_1 + 5x_2 + 3x_3 + x_4$$

$$s.t. \begin{cases} 7x_1 + 4x_2 + 3x_3 + 2x_4 \le 10 \\ x_i \in \mathbb{N}, i = 1, 2, 3, 4 \end{cases}$$

代价函数与分支策略

• 结点 $\langle x_1, x_2, ..., x_k \rangle$ 的代价函数F

若对某个
$$j > k$$
有 $b - \sum_{i=1}^{k} w_i x_i \ge w_j$

$$\mathbf{F} = \sum_{i=1}^{k} v_i x_i + (b - \sum_{i=1}^{k} w_i x_i) \frac{v_{k+1}}{w_{k+1}}$$

否则
$$\mathbf{F} = \sum_{i=1}^{k} v_i x_i$$

分支策略——深度优先+代价函数优先

0-1背包问题

实例

- \blacksquare 4种物品,重量 w_i 和价值 v_i 分别为
- $v_1 = 1, v_2 = 3, v_3 = 5, v_4 = 10$
- $w_1 = 2, w_2 = 3, w_3 = 6, w_4 = 7$
- 背包重量限制为10

■ 建模:

最大化
$$x_1 + 3x_2 + 5x_3 + 10x_4$$

满足约束条件
$$\begin{cases} 2x_1 + 3x_2 + 6x_3 + 7x_4 \le 10 \\ x_i \in \{0,1\}, & i = 1,2,3,4 \end{cases}$$

4

0-1背包问题—代价函数

• 按 v_i/w_i 从大到小排序, $i=1,2,\cdots,n$

■ 假设位于结点 $\langle x_1, x_2, \cdots, x_k \rangle$

- 代价函数=已装入价值+Δ
 - Δ: 还可继续装入最大价值的上界
 - Δ =背包剩余重量 $\times v_{k+1}/w_{k+1}$ (可装)
 - Δ=0 (不可装)

0-1背包问题—分支限界法

- ■基本思想
 - 1. 将物品按 v_i/w_i 从大到小排序,确定解空间树
 - 2. 从空集Ø和仅含空集Ø的优先队列开始
 - 3. 选择计算节点队列中代价值最高的节点并扩展
 - 4. 若扩展出节点不被剪枝,将节点插入节点队列
 - 5. 反复2~3步,直到优先队列为空时为止
- 代价函数
 - ■已装入价值+**Δ**
- ■剪枝函数
 - ■与回溯法相同

0-1背包问题—分支限界法

最大化 $10x_1 + 3x_2 + 5x_3 + x_4$

代价函数计算的值

满足 $7x_1 + 3x_2 + 6x_3 + 2x_4 \le 10$; $x_i \in \{0,1\}$, i = [1, 2, 3, 4]

TSP问题

输入: 城市集 $C = \{c_1, c_2, ..., c_n\}$,距离 $d(c_i, c_j) = d(c_j, c_i)$

解: 1,2,...,n的排列 $k_1,k_2,...,k_n$ 使得

$$\min \left\{ \sum_{i=1}^{n-1} d(c_{k_i}, c_{k_{i+1}}) + d(c_{k_n}, c_{k_1}) \right\}$$

算法设计

- 解向量为: $\langle 1, i_1, i_2, ..., i_{n-1} \rangle$, 其中 $i_1, i_2, ..., i_{n-1} \rangle$, 其中 $i_1, i_2, ..., i_{n-1} \rangle$
- 搜索空间为排列树,结点 $\langle i_1, i_2, ..., i_k \rangle$ 表示得到 k步路线
- 约束条件: �O= $\{i_1, i_2, ..., i_k\}$ 则 $i_{k+1} \in \{2, 3, ..., n\}$ -O, 即每个结点只能访问一次

- 界: 当前得到的最短巡回路线长度
- 代价函数:设顶点 c_i 出发的最短边长度为 l_i , d_i 为选定巡回路线中第j段的长度

4

代价函数

$$L = \sum_{j=1}^{k} d_j + l_{i_k} + \sum_{i_j \notin B} l_{i_j}$$

部分路线<1,3,2>

- 9+13为走过的路径长度
- 后两项分别为从结点2及结点4出发的最短边长

搜索树

深度优先遍历搜索树

- · 第1个界: <1,2,3,4>, B=29
- 第2个界: <1,2,4,3>, B=23
- 结点<1,3,2>:代价函数值26>23,不再搜索,返回<1,3>, 右子树向下
- 结点<1,3,4>,代价函数值9+7+2+2=20<23,继续,得到可行解<1,3,4,2>,长度23
- 回溯到结点<1>,沿<1,4>向下

・ … →最优解: <1,2,4,3>或<1,3,4,2>,长度23

算法分析

- 搜索树的树叶个数: O((n-1)!), 每片树叶对应1条路径, 每条路径有个n个结点
- 每个结点代价函数计算时间O(1),每条路 径的计算时间O(n)
- 最坏情况下算法的时间O(n!)

一个关于巡回演唱会的例子

- 薛之谦2019演唱会
 - 地点:北京、上海、广州、深圳、南京、杭州、武汉、成都、重庆、雄安
 - 线路:从北京出发,跑遍 各大城市,回到北京
- 目标:考虑机票价格,确定票价最少的线路

票价	北京	上海	广州	•••••
北京	0	500	600	••••
上海	100	0	800	••••
广州	1000	200	0	
	•••••	•••••	•••••	

非对称旅行商问题

■ 问题定义

■ 城市集合: $C = \{c_1, c_2, \dots c_n\}$

■ 城市距离: $d(c_i, c_j)$

■ 距离不对称: $d(c_i, c_j) \neq d(c_j, c_i)$

■ 目标: 求遍历所有城市(不重复)的最短路径

道路拥堵情况下 的送快递问题

考虑城市单行线 的送快递问题

全国巡回演唱会的路线安排问题

非对称旅行商问题的解空间

■ 实例

票价	北京	上海	广州	南京
北京	0	500	600	100
上海	100	0	800	500
广州	1000	200	0	2000
南京	400	400	100	0

■最优解

■ 解的表示: ⟨1,4,3,2⟩

■ 路线:北京→南京→广州→上海→北京

■ 总票价: 100+100+200+100=500

	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

回溯法

■ 深度优先遍历解空间树

■ 剪枝函数:比较当前解与当前最优解

