Using Machine Learning to Improve the Performance of Flying Networks

- Francisco Tuna de Andrade
- Pedro Miguel Ferraz Nogueira da Silva

3/08/2018

INSTITUTO DE ENGENHARIA DE SISTEMAS E COMPUTADORES, TECNOLOGIA E CIÊNCIA

Enquadramento

 Uso de redes baseadas em drones (UAV's) como resposta a eventos temporariamente lotados (TCE's)

Objetivos

 Construção de rede neuronal que preveja as métricas (throughput, delay ou pdr) de uma rede UAV

Trabalho desenvolvido

Dataset

- Posição dos 3 Drones;
- Altitude de 10 metros;
- ➤ WifiCellRange de 100 metros
- WifiChannelNumber: {36,40,44}
- Métricas a analisar (meanRxBitrateMbps,meanDelayMs,meanJitterMs,meanPdr)

Processamento dos dados

```
Linha de comandos - python -i build_model.py
array([[[[ 3.
                                               , ..., 0.
                                    0.
                                               , ..., 0.
                                               , ..., 0.
          0.
                                    0.
                                    0.
                                               , ..., 0.
       [[ 3.02953607, 3.06634492, 2.80236837, ..., 0.43139197,
          0.16931388, 0.07336994],
         [ 2.43830285, 2.4803205 , 2.60391312, ..., -0.02806965,
          -0.37829206, -0.51786329],
         [ 1.84706962, 1.89600158, 2.03895751, ..., -0.37829206,
          -0.8641997 , -1.10909652],
        [-1.10909652, -0.8641997 , -0.51786329, ..., 0.94374563,
          0.7373873 , 0.66460316],
        [-1.70032975, -1.10909652, -1.10909652, ..., 1.31438002,
          1.31438002, 1.25583639],
        [-1.10909652, -1.10909652, -1.70032975, ..., 1.25583639,
          1.84706962, 1.84706962]]],
      [[[ 0.
                                               , ..., 0.
                                    0.
                                    0.
        [ 0.
                                    3.
                                               , ..., 0.
        [ 0.
                                               , ..., 3.
        [ 0.
                                               , ..., 0.
       [[ 7.14390291, 6.14881563, 5.19491291, ..., 4.4517146 ,
          5.19491291, 6.14881563],
        [ 5.47674311, 4.90466431, 3.80958332, ..., 2.9295496 ,
          3.80958332, 4.90466431],
        [ 3.80958332, 3.80958332, 2.54694432, ..., 1.48481447,
          2.54694432, 3.80958332],
        [-4.52621566, -2.85905587, -1.19189607, ..., 0.18922433, 1.48481447, 2.9295496 ],
         [-4.52621566, -2.85905587, -1.19189607, ..., 1.48481447, 2.54694432, 3.80958332],
         [-2.85905587, -2.16849567, -0.79833303, ..., 2.9295496,
          3.80958332, 4.90466431]]])
>>> throughput_train
array([2.689776 , 2.952488 , 2.928736 , ..., 2.805651 , 2.15420875,
       2.665089 1)
```

Fig 2: Dados de treino

```
#Global Variables
SCENARIO_ROWS = 10
SCENARIO COLUMNS = 10
SCENARIO_TOPOLOGIES_NO = 200
SCENARIOS_NO = 10
TOPOLOGIES_TRAINING = 128
TOPOLOGIES_VALIDATION = 32
TOPOLOGIES_TESTING = 40
#SCENARIOS_TRAINING = [1, 2, 4, 6, 7, 10]
#SCENARIOS_VALIDATION = [5, 9]
SCENARIOS_TRAINING = [1, 2, 4, 6, 7, 10, 5, 9]
SCENARIOS VALIDATION = []
SCENARIOS_TEST = [3, 8]
DIVISION_BY_TOPOLOGIES = 0
DISTANCE_ENCODING = 1
NORMALIZE DATA = 1
USE TRANSFORMATIONS = 1
CHANNELS_LAST = 0
VALIDATION_SPLIT = 0
USE_CALLBACKS = 0
TEST_RESULTS = 1
```

Fig 3: Tipos de settings usados

Análise do modelo

Train/Test			12800/3200	0		12800/3200		
Division		Scenarios				Topologies		
		MSE	MAE	MAPE		MSE	MAE	MAPE
	Throughput	0.833	0.762	17.619	Throughput	0.176	0.296	7.976
	Delay	20609.9	388.687	41.118	Delay	39241.7	147.179	18.929
	PDR	0.041	0.172	29.119	PDR	0.003	0.041	6.46

Fig 6: Análise de treino do modelo

Análise do modelo

20

Divisão por Cenários:

model loss

train 4.0 validation 3.5 3.0 2.5 SSO 2.0 1.5 1.0

40

epoch

60

80

Divisão por Topologias:

Throughput Loss

100

0.5

0.0

Análise do modelo

Divisão por Cenários:

Divisão por Topologias:

Análise do modelo

Divisão por Cenários:

Divisão por Topologias:

Comparação com o Ns-3

Model Trained By Division		Scenarios			Topologies			All Data	
	Throughput	Delay	Pdr	Throughput	Delay	Pdr	Throughput	Delay	Pdr
(%)	49	66	25	20	48	12	12		34

Conclusões

No fim deste trabalho conseguimos tirar algumas conclusões importantes para o futuro aprofundamento deste tema:

- o modelo dá bons resultados, mas necessita de mais dados, principalmente cenários, de forma a dar resultados mais próximos da realidade;
- o número de epochs de treino, no caso do delay, deveria ser aumentado. Acreditamos que com mais de 100 epochs o delay melhora substancialmente;
- o modelo dá melhores resultados quando treinado com distance encoding;
- a divisão por topologias nos dados gera um modelo com melhores resultados;

Feedback

★ O que correu bem?

★ O que correu menos bem?

Questões?

