

Mean

- The most widely used measure
- It is a computed value therefore it is affected by all the values
- It is possible that Mean is not the part of data which it represents
- Its value is affected by extreme value, so in case of skewness in data, mean is not a good measure of central tendency
- It can not be computed from an open-ended distribution

Mean for Ungrouped Data

- Mean
- Population Mean = $\mu = \frac{\sum X}{N}$
- Sample Mean = X-bar = $\frac{\sum X}{n}$
- o Find the Mean for 25, 30, 40, 45

X

25

30

40

45

Total

140

Average 140/4

Average

35

Mode

- The most repeated value
- Used for Nominal Data
- It is not widely used
- It is not affected by extreme value
- o There can be no mode or more than one mode

Mode for Ungrouped Data

- In the class there are 20 boys and 35 girls, what is the mode
 - o _____(20, 35, Boy, Girl, None of them)
- Find the mode for the data set given below
- 2, 5, 7, 4, 2, 8, 7, 12, 5, 2, 8, 102
- Is it Possible for a data to have more than one mode
 Yes

Median

- It is easy to define and easy to understand
 - It is the Middle Value of the arranged data
- It is affected by the number of observations, but not by the value of observation
- Extreme value does not affect it
- It is used when data is skewed
- It may be computed for an open-ended distribution

If Odd Number of Data Points are there Median Position is the $\frac{n+1}{2}$

Median

If Even Number of Data Points are there Median Position is the $\frac{n}{2}$ and $\frac{n+2}{2}$ Median is the average of these two

Median for the Ungrouped Data

Compute Median for these values

Step 1: Arrange the Data 2, 2, 3, 4, 6, 6, 7, 8, 9

Step 2: Find whether Odd or Even Number of Observations

9 observations, so it is odd number of observations

Step 3: Find the Median Position and Value

Median position = $\frac{n+1}{2} = \frac{9+1}{2} = 5^{th}$ Which is 6

Median for the Ungrouped Data

- Compute Median for these values
 - 28, 18, 76, 56, 34, 25, 30, 45

Step 1: Arrange the Data 18, 25, 28, 30, 34, 45, 56, 76

Step 2: Find whether Odd or Even Number of Observations 8 observations, so it is Even number of observations

Step 3: Find the Median Position and Value

Median positions = $\frac{n}{2}$ and $\frac{n+2}{2}$ = $\frac{8}{2}$, $\frac{10}{2}$ = 4th and 5th

Median = average of 4^{th} and 5^{th} Values = (30+34)/2 = 32

Mean for the Grouped Data

$$Mean = \frac{\sum fXm}{\sum f}$$

Xm is the midpoint of Class Interval

Class Interval	Frequency	Xm	F Xm
15	2	3	6
610	4	8	32
1115	6	13	78
1620	5	18	90
2125	3	23	69
2630	2	28	56
Total	22		331

Mean =
$$\frac{331}{22}$$
 = 15.04

Mode for the grouped Data

$$Mode = l + h \left\{ \frac{fm - f1}{2fm - f1 - f2} \right\}$$

Modal Group: fm Group with Highest Frequency

Class Interval	Class Boundary	Frequency
15	0.55.5	2
610	5.510.5	4
1115	10.515.5	6
1620	15.520.5	5
2125	20.525.5	3
2630	25.530.5	2
Total		22

Preceding Modal Group: f1

Proceeding Modal Group: f2

$$Mode = 10.5 + 5 \left\{ \frac{6 - 4}{2(6) - 4 - 5} \right\}$$

t is the lower class boundary for modal group h is the height of Modal Class = 15.5 - 10.5 = 5

$$Mode = 13.83$$

Median For the Grouped Data

$$Median = l + \frac{h}{f} \left\{ \frac{N}{2} - C \right\}$$
 Now Finding the Values for Formula

h = 15.5 - 10.5

Find Cumulative Frequency

Class Interval	Class Boundary	Frequency	Cumulative Freq < Upper CB	
15	0.55.5	2	2	
610	5.510.5	4	6	
1115	10.515.5	6	1 12	
1620	15.520.5	1 5	17	
2125	20.525.5	3	20	
2630	25.530.5	2	22	
Total		22		
l'= 1	0.5	f = 6	C = 6	

Find Median Group Group which is containing the middle value 22/2 = 11 is the middle value

Where is the 11th Value

7th to 12th are there in group Shown in Red

$$Median = 10.5 + \frac{5}{6} \left\{ \frac{22}{2} - 6 \right\} = 14.66$$

In the Same Way Quartile, Decile, Percentile Can Be Calculated

Qi=
$$l+\frac{h}{f}\left\{\frac{iN}{4}-C\right\}$$
 Explained Explained i = 1, 2 and 3

Q1= $l+\frac{h}{f}\left\{\frac{N}{4}-C\right\}$

Q2= $l+\frac{h}{f}\left\{\frac{2N}{4}-C\right\}$ = Median

Q3= $l+\frac{h}{f}\left\{\frac{3N}{4}-C\right\}$

Quartiles

СВ	F	С
0.510.5	2	2
10.520.5	4	6
20.530.5	3	9
30.540.5	6	15
40.550.5	5	20
50.560.5	7	27
60.570.5	4	31
70.580.5	7	38
80.590.5	4	42
90.5100.5	6	48
100.5110.5	5	53
110.5120.5	4	57
120.5130.5	3	60
Total	60	

Find Quartile Positions through N

Q1 is at N/4 which is 15

Q2 is at N/2 which is 30

Q2 is at 3N/4 which is 45

$$Q1 = l + \frac{h}{f} \left\{ \frac{N}{4} - C \right\}$$

$$Q1 = 30.5 + \frac{10}{6} \left\{ \frac{60}{4} - 9 \right\}$$

$$Q1 = 40.5$$

$$Q2 = l + \frac{h}{f} \left\{ \frac{N}{2} - C \right\}$$

$$Q2 = 60.5 + \frac{10}{4} \left\{ \frac{60}{2} - 27 \right\}$$

$$Q2 = 67.5$$

$$Q3 = l + \frac{h}{f} \left\{ \frac{3N}{4} - C \right\}$$

$$Q3 = 90.5 + \frac{10}{6} \left\{ \frac{180}{4} - 42 \right\}$$

$$Q3 = 95.5$$

Range

- Easy to Measure and Compute
- It Emphasizes only the extreme values so it gives a very distorted picture

Range

- Find the Range for the given data
- o Data Set: 25, 30, 40, 45
- \circ Range = Max Min = 45 25 = 20

Standard Deviation

- It is the most frequently used measure of dispersion
- It is a computed measure whose value is affected by every value
- Its value may be distorted by extreme values
- It can not be computed from an open-ended distribution

Standard Deviation and Variance for Ungrouped Data

Find the Standard Deviation for the given data Data Set: 25, 30, 40, 45

Defining Formula

$$\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}}$$

$$S = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

Computing Formula
$$\sigma = \sqrt{\frac{\sum x^2}{N} - \mu^2}$$

$$S = \sqrt{\frac{\sum x^2}{n-1} - \frac{n\bar{x}^2}{n-1}}$$

Calculating Standard Deviation Through Defining Formula

X	$(x-\mu)^2$	$(x-\mu)^2$
25	$(25-35)^2$	100
30	$(30 - 35)^2$	25
40	$(40 - 35)^2$	25
45	$(45 - 35)^2$	100
140	250	250

$$\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}}$$

Total

$$\sigma = \sqrt{\frac{250}{4}}$$

$$\sigma$$
 = 7.905

$$S = 9.128$$

Calculate Standard Deviation Through Computing Formula

X	X^2
25	625
30	900
40	1600
45	2025
140	5150

Total

$$S = \sqrt{\frac{\sum x^2}{n-1} - \frac{nx^2}{n-1}} = \sqrt{\frac{5150}{4-1} - \frac{4(35)^2}{4-1}} = 9.128$$

$$\sigma = \sqrt{\frac{\sum x^2}{N}} - \mu^2$$

$$\sigma = \sqrt{\frac{5150}{4} - 35^2}$$

$$\sigma = 7.90564$$

Standard Deviation For Grouped Data

Defining Formula

$$\sigma = \sqrt{\frac{\sum f(x-\mu)^2}{N}} \qquad \qquad \mathsf{S} = \sqrt{\frac{\sum f(x-x)^2}{n-1}}$$

$$S = \sqrt{\frac{\sum f(x-x)^2}{n-1}}$$

Computing Formula

$$\sigma = \sqrt{\frac{\sum f x^2}{N}} - \mu^2 \qquad S = \sqrt{\frac{\sum f x^2}{n-1}} - \frac{(\sum f x)^2}{n(n-1)}$$

Standard Deviation For the Grouped Data

Class Interval	f	Xm	F Xm	F Xm	Xm^2	fXm^2
15	2	3	6	6	9	18
610	4	8	32	32	64	256
1115	6	13	78	78	169	1014
1620	5	18	90	90	329	1620
2125	3	23	69	69	529	1587
2630	2	28	56	56	784	1568
Total	22		331	331		6063

$$\sigma = \sqrt{\frac{\sum f x^2}{N} - \mu^2} = \sqrt{\frac{6063}{22} - (15.04)^2} = 7.023 \qquad \mu = \frac{\sum f x}{\sum f}$$

$$S = \sqrt{\frac{\sum f x^2}{n-1} - \frac{(\sum f x)^2}{n(n-1)}} = \sqrt{\frac{6063}{22-1} - \frac{(331)^2}{22(22-1)}} = 7.181$$

Variance

• Variance = σ^2

Coefficient of Variation

- If means are same and Standard Deviation are different then the data with less standard deviation is more stable
- But if means are different and Standard deviation are different than how will compare the deviation?
- Suppose

$$\overline{X}_1 = 50$$
 $\sigma_1 = 10$

$$\overline{X}_2 = 70$$
 $\sigma_2 = 15$

Quartiles

Q1 = 40.5

Already discussed along Median

Q2 = 67.5

Inter Quartile Range

$$Q3 = 95.5$$

$$\circ$$
 IQR = Q₃ - Q₁

- Quartile Deviation = $\frac{Q_3 Q_1}{2}$
- Find IQR and Quartile Deviation

Quartile Deviation

- It is very much similar to Range
- It is the Range of 50% middle value
- It is used for skewed data set
- It may be computed in open-ended distribution

Outliers

Observation which fall well outside the overall pattern of the data

Detecting Outliers

Lower Limit = $Q_1 - 1.5 IQR$

Upper Limit = $Q_3 + 1.5 IQR$

Values Lying outside the lower and upper limits are outliers

Reason for Outliers & Decisions

Measurement or any other Error

Remove Outlier

There is no error

Decision is difficult

Box Plot is a visual summary which is produced with the help of 5 Number Summary

Box and Whiskers Display

Construction of Box Plot

Box Plot

Modified Box Plot

- 1. Determine five Number summary
- 2. Mark these values on X-axis
- 3. Connect the quartile to form box and then connect the box with minimum & Maximum

- 1. Determine the Quartiles
- 2. Determine the adjacent values & potential outliers
- 3. Mark the values on X-axis
- 4. Connect the values
- 5. Plot each potential outlier with a asterisk

СВ	F	С
0.510.5	2	2
10.520.5	4	6
20.530.5	3	9
30.540.5	6	15
40.550.5	5	20
50.560.5	7	27
60.570.5	4	31
70.580.5	7	38
80.590.5	4	42
90.5100.5	6	48
100.5110.5	5	53
110.5120.5	4	57
120.5130.5	3	60
Total	60	

Box Plot

$$Q1 = 40.5$$
 $Q2 = 67.5$ $Q3 = 95.5$

$$Min = 0.5$$
 $Max = 130.5$

95.5

3.83

- Data
- 88, 85, 90, 81, 67, 82, 63, 96, 64, 39, 89, 100, 76, 75, 90, 70, 86, 34, 84, 96
- Arranged Data
- 34, 39, 63, <u>64, 67, 70, 75, 76, 81, 82, 84, 85, 86, 88, 89, 90,</u> 90, 96, 96, 100

Min =
$$34$$
 Max = 100

$$n = 20$$

Position
$$Q_1 = 5.25$$

Position
$$Q_2 = 10.5$$

Position
$$Q_2 = 10.5$$
 | Position $Q_3 = 15.75$

$$Q_2 = Avg(10^{th}, 11^{th})$$

$$Q_1 = 67.375$$

$$Q_2 = 83$$

$$Q_2 = 89.75$$

Modified Box Plot

$$IQR = Q_3 - Q_1$$

$$IQR = 22.38$$

$$UV = Q_3 + 1.5 IQR$$

$$UV = 89.75 + 1.5 (22.38)$$

$$UV = 123.2$$

$$LV = Q_1 - 1.5 IQR$$

$$LV = 67.37 - 1.5 (22.38)$$

$$LV = 34$$

Lower Adjacent Value = 39

Upper Adjacent Value = 100

Outlier = 34

<u>Skewness</u>

- Measures asymmetry of data
 - Positive or right skewed: Longer right tail
 - Negative or left skewed: Longer left tail

Let $x_1, x_2, ... x_n$ be *n* observations. Then,

Skewness =
$$\frac{\sqrt{n}\sum_{i=1}^{n}(x_i - \overline{x})^3}{\left(\sum_{i=1}^{n}(x_i - \overline{x})^2\right)^{3/2}}$$

Kurtosis

 Measures peakedness of the distribution of data. The kurtosis of normal distribution is 0.

Let $x_1, x_2, ... x_n$ be *n* observations. Then,

$$Kurtosis = \frac{n \sum_{i=1}^{n} (x_i - \bar{x})^4}{\left(\sum_{i=1}^{n} (x_i - \bar{x})^2\right)^2} - 3$$

Common distribution shape

Comparison of Mean, Median, Mode

Skewness with Quartile & BoxPlot

