COL703: Logic for Computer Science (Aug-Nov 2022)

Lectures 5 & 6 (Normal Forms, Propositional Resolution)

Kumar Madhukar

madhukar@cse.iitd.ac.in

August 25th and 29th, 2022

Semantic equivalence, Satisfiability, Validity

For propositional logic formulas ϕ and ψ , we say that they are semantically equivalent (denoted as $\phi \equiv \psi$) iff $\phi \vDash \psi$ and $\psi \vDash \phi$ hold.

 ϕ is said to be valid if $\models \phi$ (tautologies are exactly the valid formulas)

 ϕ is said to be satisfiable if it has a valuation in which it evaluates to true.

Semantic equivalence, Satisfiability, Validity

For propositional logic formulas ϕ and ψ , we say that they are semantically equivalent (denoted as $\phi \equiv \psi$) iff $\phi \vDash \psi$ and $\psi \vDash \phi$ hold.

 ϕ is said to be valid if $\models \phi$ (tautologies are exactly the valid formulas)

 ϕ is said to be satisfiable if it has a valuation in which it evaluates to true.

 ϕ is satisfiable iff $\neg \phi$ is not valid.

Distributivity and De Morgan's Laws

Normal Forms

Negation Normal Form (NNF)

A well-formed formula (wff) is in NNF if it uses only \vee , \wedge , and *literals*.

- Every wff is logically equivalent to a wff in NNF.
- Exercise: convert $\neg(p \rightarrow (p \land q))$ into NNF.

Normal Forms

Disjunctive Normal Form (DNF)

A well-formed formula (wff) is in DNF if it is a disjunction of one or more terms, where each term is a conjunction of one or more literals.

Note: p, $(p \land q \land \neg r)$, and $(p \lor q)$ are all in DNF.

- Every wff is logically equivalent to a wff in DNF.
 How? From the truth-table, or using logical equivalences.
- Exercise: convert $\neg(p \rightarrow (p \land q))$ into DNF.

Normal Forms

Conjunctive Normal Form (CNF)

A well-formed formula (wff) is in CNF if it is a conjunction of one or more terms, where each term is a disjunction of one or more literals.

- Every wff is logically equivalent to a wff in CNF.
 How? From the truth-table, or using logical equivalences.
- Exercise: convert $\neg(p \rightarrow (p \land q))$ into CNF.

From truth tables

\boldsymbol{A}	B	C	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Figure 1: Truth table for F

Why care about CNF formulas?

validity checking is easy (it otherwise takes time exponential in the no. of atoms)

consider
$$(\neg q \lor p \lor r) \land (\neg p \lor r) \land q$$

$$\models (\neg q \lor p \lor r) \land (\neg p \lor r) \land q \text{ holds iff}$$

$$\models (\neg q \lor p \lor r), \quad \models (\neg p \lor r), \quad \models q \quad \text{all three hold}$$

but that is easy to check:

a disjunction of literals is valid iff they have a pair of complementary literals

Propositional Resolution

- set representation of CNF formulas
- proof rule: $(\neg p \lor \phi), (p \lor \psi)$ resolve to give $(\phi \lor \psi)$
- derivation of □ gives a refuation
- refutation is the way proofs are done
- e.g. $(x \vee \neg y), (y \vee z), (\neg x \vee \neg y \vee z) \vdash z$
 - is proved by deriving \square from $\{\{x, \neg y\}, \{y, z\}, \{\neg x, \neg y, z\}, \{\neg z\}\}$ using resolution

Resolution Lemma

Let F be a CNF formula represented as a set of clauses. Suppose R is a resolvent of two clauses C_1 and C_2 in F, then $F \equiv F \cup \{R\}$.

Soundness

If there is a derivation of \square from F then F is unsatisfiable.

Completeness

If F is unsatisfiable then there is a derivation of \square from F.

Lecture notes on Resolution

https://www.cs.ox.ac.uk/people/james.worrell/lec6-2015.pdf

Next week

- Hilbert's proof system
- SAT solving

Thank you!