multivariable calculus

MIT18.02,fall2007

1 Dot Product

x+2y+3z=0 equation of a plane Let $\overrightarrow{OP}=(x,y,z), \overrightarrow{A}=(1,2,3)$, then $\overrightarrow{OP}\cdot\overrightarrow{A}=0\Rightarrow P$ on a plane going through the origin point (O). Remember to use vectors in multivariable calculus!

2 Deteminants

2.1 In a plane

Area of a triangle:

$$\pm Area = \frac{1}{2} \left| \overrightarrow{A} \right| \cdot \left| \overrightarrow{B} \right| \sin \theta = \frac{1}{2} \left| \overrightarrow{A'} \right| \cdot \left| \overrightarrow{B} \right| \cos \theta' = \frac{1}{2} \overrightarrow{A'} \cdot \overrightarrow{B} = \frac{1}{2} (-a_2, a_1) \cdot (b_1, b_2)$$
$$= \frac{1}{2} (a_1 b_2 - a_2 b_1) = \det(A, B) = \frac{1}{2} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

 $(\overrightarrow{A'}:\overrightarrow{A} \text{ rotated by } 90^{\circ} \text{ anticlockwise})$

2.2 In a space

2.2.1 volume of solids

Theorem Geometrically, $det(\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C}) = \pm V$ olume of parallelepiped cross product of 2 vectors in 3d space:

Def

$$\overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \hat{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \hat{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \hat{k} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

 $(3\times3 \text{ only for remembering})$

In particular, $\overrightarrow{A} \times \overrightarrow{B} = -\overrightarrow{B} \times \overrightarrow{A}$, and $\overrightarrow{A} \times \overrightarrow{A} = 0$

 $|\overrightarrow{A} \times \overrightarrow{B}|$ is the area of the parallelogram spanned by $|\overrightarrow{A}|$ and $|\overrightarrow{B}|$. $|\overrightarrow{A}| \times |\overrightarrow{B}|$ is perpendicular to the plane of the parallelogram.

use **right-hand rule** to determine the direction of the cross product. For example, $\hat{i} \times \hat{j} = \hat{k}$

Another loook at volumn:

$$Volumn = area(base) \cdot height = \left| \overrightarrow{B} \times \overrightarrow{C} \right| \cdot (\overrightarrow{A} \cdot \overrightarrow{n}) = \left| \overrightarrow{B} \times \overrightarrow{C} \right| \cdot (\overrightarrow{A} \cdot \frac{\overrightarrow{B} \times \overrightarrow{C}}{\left| \overrightarrow{B} \times \overrightarrow{C} \right|})$$
$$= \overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C}) = det(\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C})$$

which makes sense with formulas.

To decide that P is on the plane $P_1P_2P_3$:

$$Volumn = det(\overrightarrow{P_1P}, \overrightarrow{P_1P_2}, \overrightarrow{P_1P_3}) = 0$$

Other solution(\overrightarrow{N} is a normal vector of the plane.):

$$\overrightarrow{P_1P} \perp \overrightarrow{N}$$

How to find a normal vector? Use the cross product of 2 vectors on the plane!

$$\overrightarrow{N} = \overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3}$$

So the two solutions are equivalent. (triple product=det.)

$$\overrightarrow{P_1P}\cdot(\overrightarrow{P_1P_2}\times\overrightarrow{P_1P_3})=\det(\overrightarrow{P_1P},\overrightarrow{P_1P_2},\overrightarrow{P_1P_3})=0$$

3 Matrices

Ex. exchange of coordinate systems. multiplying matrices

(AB)X

 $AB{\rm represents}:$ do transformation B first, then do transformation A. Identity matrix I

Example:in the plane, rotation by 90° counterclockwise:

$$use \quad R = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Inverse matrix: for a square matrix $A,AA^{-1}=A^{-1}A=I$ So a linear system AX=bcan be solved. To find the invert matrix: adjoint matrix is introduced.

Ť

4 Square Systems