Learning when, where, and by how much, things change

Gavin Simpson
New York R Meetup • June 22 2020

Use statistics to learn from data in presence of noise

Learning from data...?

Estimate parameters for a theoretical model

Compare theory with observation

Progress with little or no theory

∸ Franki Chamaki

Learning from data

Learning involves trade-offs

ingilpeon

JAKE-CLARK.TUMBLR

Generalized Additive Models

Source: GAMs in R by Noam Ross

GAMs fit wiggly functions

Wiggly things

Basis Expansions

Example

HadCRUT4 time series

Polynomials

Not that basis expansion

Splines formed from basis functions

Weight basis functions ⇒ spline

How do GAMs learn from data?

Maximise penalised log-likelihood $\Rightarrow \beta$

Avoid overfitting our sample

Use a wiggliness penalty—avoid fitting too wiggly models

Example

HadCRUT4 time series

OK some math

How wiggly?

$$\int_{\mathbb{R}} [f'']^2 dx = oldsymbol{eta}^\mathsf{T} \mathbf{S} oldsymbol{eta}$$

Penalised fit

$$\mathcal{L}_p(oldsymbol{eta}) = \mathcal{L}(oldsymbol{eta}) - rac{1}{2} \lambda oldsymbol{eta}^\mathsf{T} \mathbf{S} oldsymbol{eta}$$

Fitted GAM

MSCV

Fitting GAMs in mgcv

Wrap a variable in s() to get a smooth

```
m ← gam(Temperature ~ s(Year), data = gtemp, method = "REML")
```

Fit using REML or ML (method = "ML") smoothness selection

GCV can undersmooth but it's the default!

Climate change affecting lake temperatures?

Blelham Tarn, UK

Data: Woolway et al (2019) Climate Change 155, 81–94 <u>doi: 10/c7z9</u>

Why worry about minimum temperatures?

Why worry about minimum temperatures?

Annual minimum temperature is a strong control on many in-lake processes (eg Hampton *et al* 2017)

Extreme events can have long-lasting effects on lake ecology — mild winter in Europe 2006–7 (eg Straile *et al* 2010)

Reduction in habitat or refugia for cold-adapted species

- Arctic charr (Salvelinus alpinus)
- Opossum shrimp (Mysis salemaai)

Hampton et al (2017). Ecology under lake ice. Ecology Letters 20, 98–111. doi: 10/f3tpzh

Straile et al (2010). Effects of a half a millennium winter on a deep lake — a shape of things to come? Global Change Biology 16, 2844–2856. doi: 10/bx6t4d

Multiple time series ⇒ HGAM

Central Limit Theorem

Annual minimum temperature

Block Minima

Fisher-Tippett-Gnedenko theorem

The maximum of a sample of *iid* random variables after proper renormalization can only converge in distribution to one of three possible distributions; the *Gumbel* distribution, the *Fréchet* distribution, or the *Weibull* distribution.

Block Minima...?

Highly Technical Fix

Negate the minima ⇒ maxima

plus some jiggery-pokery after model fitting

Three Distributions...?

Generalised extreme value distribution

In 1978 Daniel McFadden demonstrated the common functional form for all three distributions — the GEVD

$$G(y) = \exp \left\{ - \left[1 + \xi \left(rac{y - \mu}{\sigma}
ight)
ight]_+^{-1/\xi}
ight\}$$

Three parameters to estimate

- location μ ,
- scale σ , and
- shape *ξ*

Three distributions

- Gumbel distribution when $\xi = 0$,
- Fréchet distribution when ξ > 0, &
- Weibull distribution when ξ < 0

Fit HGAMLSS using GEV for response

HGAMLSS...?

Model μ , σ , ξ with smooths of Year

Estimated smooths

Model code

Provide a list of formulas

bs = "fs" is a factor-smooth interaction

- like a ransom slope & intercept but for a spline
- one spline per lake
- one smooth parameter

Observed vs fitted

Estimated minimum temperature

Summary

- Lake minimum surface water temperatures have increased by on the order of 1–3 degrees over the last 60 years
- Evidence that the distribution of annual minima has changed in many lakes — implications for future extreme events which have long-term knock-on effects
- HGAMLSS with the GEV distribution are a good way of modelling common trends in environmental extremes

DYMS

Fully Bayes

mgcv fits empirical Bayesian models with REML or ML smoothness selection

Improper Gaussian priors — we don't penalise the linear bits of the basis

We can fit fully Bayesian models using *brms* with (almost) all the smooths from *mgcv*

Can't use te() or ti() for tensor product smooths (smooth interactions)

Can use t2() though

Microcystin

Microcystin

A liver toxin produced by cyanobacteria

Frequent cause of negative human health effects, kills dogs, etc

Cyanobacteria can bloom under the right conditions — HABs

Increases in HABs globally driven by nutrient pollution & climate change

11 years of bi-weekly data from Qu'Appelle Valley in Saskatchewan, Canada

Hayes, N.M. et al, 2020. Limnol. Oceanogr. Let. 58, 1736.

https://doi.org/10.1002/lol2.10164

Non-detects

Fitting GAMs in brms non-censored version in *mgcv*

censored version in brms

Fitted Microcystin

Fitted Microcystin

Fitted Microcystin

Probability of exceeding thresholds

Probability of exceeding thresholds

Posterior predictive checks

Papers

Modelling Palaeoecological Time Series Using Generalised Additive Models

Gavin L. Simpson*

Institute of Environmental Change and Society, University of Regina, Regina, SK, Canada

Simpson (2018) Frontiers in Ecology & Evolution

doi: 10/gfrc4p

Hierarchical generalized additive models in ecology: an introduction with mgcv

Eric J. Pedersen^{1,2}, David L. Miller^{3,4}, Gavin L. Simpson^{5,6} and Noam Ross⁷

- Northwest Atlantic Fisheries Center, Fisheries and Oceans Canada, St. John's, NL, Canada
- ² Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
- ³ Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
- School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland, UK
- ⁵ Institute of Environmental Change and Society, University of Regina, Regina, SK, Canada
- Department of Biology, University of Regina, Regina, SK, Canada
- EcoHealth Alliance, New York, NY, USA

Pedersen et al (2019) PeerJ

doi: 10/c6wz

Acknowledgements

Funding

Data

- Microcystin data from QULTER Peter Leavitt (U Regina)
- Iestyn Woolway and colleagues for archiving the lake surface water data

Slides

- HTML Slide deck <u>bit.ly/nyr-gam</u> © Simpson (2020) @_____
- RMarkdown <u>Source</u>