GROWTH SEQUENCES FOR CIRCLE DIFFEOMORPHISMS

NOBUYA WATANABE

ABSTRACT. We obtain results on the growth sequences of the differential for iterations of circle diffeomorphisms without periodic points.

1. Introduction and statement of results

Let $f: S^1 \to S^1$ be a C^1 -diffeomorphism where $S^1 = \mathbb{R}/\mathbb{Z}$. We define the growth sequence for f by

$$\Gamma_n(f) = \max\{\|Df^n\|, \|Df^{-n}\|\}, \quad n \in \mathbb{N},$$

where f^n is the n-th iteration of f and $\|Df^n\| = \max_{x \in S^1} |Df^n(x)|$.

If f has periodic points, then the study of growth sequences reduces to the case of interval diffeomorphisms which was studied in [B],[PS],[W].

If f has no periodic points, then by the theorem of Gottschalk-Hedlund $\Gamma_n(f)$ is bounded if and only if f is C^1 -conjugate to a rotation. Notice that if $\Gamma_n(f)$ is bounded then f is minimal. So it is natural to ask how rapidly could the sequence $\Gamma_n(f)$ grow if it is unbounded.

In this paper we give an answer to this question:

Theorem 1. Let $f: S^1 \to S^1$ be a C^2 -diffeomorphism without periodic points. Then

$$\lim_{n \to \infty} \frac{\Gamma_n(f)}{n^2} = 0.$$

Theorem 2. For any increasing unbounded sequence of positive real numbers $\theta_n = o(n^2)$ as $n \to \infty$ and any $\varepsilon > 0$ there exists an analytic diffeomorphism $f: S^1 \to S^1$ without periodic points such that

$$1 - \varepsilon \le \limsup_{n \to \infty} \frac{\Gamma_n(f)}{\theta_n} \le 1.$$

2. Preliminaries

Given an orientation preserving homeomorphism $f:S^1\to S^1$, its rotation number is defined by

$$\rho(f) = \lim_{n \to \infty} \frac{\tilde{f}^n(x) - x}{n} \mod \mathbb{Z}$$

where \tilde{f} denotes a lift of f to \mathbb{R} . The limit exists and is independent on $x \in \mathbb{R}$ and a lift \tilde{f} .

Put $\alpha = \rho(f)$. Let R_{α} be the rigid rotation by α

$$R_{\alpha}(x) = x + \alpha \mod \mathbb{Z}.$$

For the basic properties of circle homeomorphisms and the combinatorics of orbits of the rotation of the circle, general references are [MS] chapter I and [KH] chapter 11, 12.

By Poincaré the order structure of orbits of f and R_{α} on S^1 are almost same. In particular if $\rho(f) = \frac{p}{q} \in \mathbb{Q}/\mathbb{Z}$ then f has periodic points of period q and every periodic orbits of f have the same order as orbits of $R_{\frac{p}{q}}$ on S^1 . $\rho(f) \in (\mathbb{R} \setminus \mathbb{Q})/\mathbb{Z}$ if and only if f has no periodic points, in this case, if f is of class C^2 then by the well known theorem of Denjoy f is topologically conjugate to R_{α} .

Suppose $\alpha \in (\mathbb{R} \setminus \mathbb{Q})/\mathbb{Z}$. Let

$$\alpha = [a_1, a_2, a_3, \dots] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}} \quad , a_i \ge 1, a_i \in \mathbb{N}$$

be the continued fraction expansion of α , and

$$\frac{p_n}{q_n} = [a_1, a_2, \dots, a_n]$$

be its n-th convergent. Then p_n and q_n satisfy

$$p_{n+1} = a_{n+1}p_n + p_{n-1}, \ p_0 = 0, \ p_1 = 1,$$

$$q_{n+1} = a_{n+1}q_n + q_{n-1}, \ q_0 = 1, \ q_1 = a_1,$$

$$\frac{p_0}{q_0} < \frac{p_2}{q_2} < \frac{p_4}{q_4} < \dots < \alpha < \dots < \frac{p_5}{q_5} < \frac{p_3}{q_3} < \frac{p_1}{q_1}.$$

The sequence of rational numbers $\{\frac{p_n}{q_n}\}$ is the best rational approximation of α . This can be expressed using the dynamics of R_{α} as follows. $R_{\alpha}^{q_n}(0) \in [0, R_{\alpha}^{-q_{n-1}}(0)]$, and if $k > q_{n-1}$, $R_{\alpha}^k(0) \in [R_{\alpha}^{q_{n-1}}(0), R_{\alpha}^{-q_{n-1}}(0)]$ then $k \geq q_n$. Note that for $0 \leq k \leq a_{n+1}, R_{\alpha}^{kq_n}(0) \in [0, R_{\alpha}^{-q_{n-1}}(0)]$, and $R_{\alpha}^{(a_{n+1}+1)q_n}(0) \notin [0, R_{\alpha}^{-q_{n-1}}(0)]$.

For $\alpha \in (\mathbb{R} \setminus \mathbb{Q})/\mathbb{Z}$ the continued fraction expansion is unique. On the other hand for $\beta \in \mathbb{Q}/\mathbb{Z}$ expressions by continued fractions are not unique, $\beta = [b_1, b_2, \dots, b_n + 1] = [b_1, b_2, \dots, b_n, 1]$.

For $\alpha = [a_1, a_2, \ldots]$ and $i, j \in \mathbb{N}, 1 \le i \le j$ we denote $\alpha | [i, j] = [a_i, a_{i+1}, \ldots, a_j]$. In case we emphasize α we denote $a_i(\alpha), p_i(\alpha), q_i(\alpha)$.

For $x \in S^1$, $I_n(x)$ denotes the smaller interval with endpoints x and $f^{q_n}(x)$ and for an interval $J \subset S^1$, |J| the length of J.

The following is well known. See [MS] chapter I section 2a.

Lemma 1. (Denjoy) Let f be a C^1 -diffeomorphism of S^1 without periodic points and $\log Df: S^1 \to \mathbb{R}$ has bounded variation. Then there exists a positive constant $C_1 = C_1(f)$ satisfying the following properties.

(1) For any $0 \le l \le q_{n+1}$ and for every $x_1, x_2 \in I_n(x)$

$$\frac{1}{C_1} \le \frac{Df^l(x_1)}{Df^l(x_2)} \le C_1.$$

(2) (Denjoy inequality) For every $n \in \mathbb{N}$,

$$\frac{1}{C_1} \le ||Df^{q_n}|| \le C_1.$$

As stated in section 1, the growth sequences play a significant role in the problem of the smooth linearization of circle diffeomorphisms, where the arithmetic property of rotation numbers and the regularity of diffeomorphisms are important. This problem has a rich history, see e.g. [A], [H], [Y], [KS], [St], [KO].

In this paper, particularly we need the following improvement of Denjoy inequality which is due to Katznelson and Ornstein. The statement of Lemma 2 is obtained by merging results in [KO], for (1), (1.16), lemma 3.2 (3.6) and proposition 3.3 (a), for (2), theorem 3.7.

Lemma 2. Let f be a C^2 -diffeomorphism of S^1 without periodic points. Set

$$E_n = \max\{\|\log Df^{q_n}\|, \max_{x \in S^1}\{|D\log Df^{q_n}(x)||I_{n-1}(x)|\}\}.$$

Then the following hold.

- $(1) \lim_{n\to\infty} E_n = 0.$
- (2) If f is of class $C^{2+\delta}$, $\delta > 0$ then there exist C > 0 and $0 < \lambda < 1$ such that $\|\log D f^{q_n}\| < C\lambda^n \text{ for any } n \in \mathbb{N}.$

The conclusion of Lemma 2 (2) plus some arithmetic condition of $\rho(f)$ are sufficient to provide the C^1 -linearization of f. We need the following which is a special case of the main theorem in [KO]. For $C^{3+\delta}$ -diffeomorphisms it is originally due to Herman [H].

Corollary of Lemma 2 (2). If f is of class $C^{2+\delta}$ and the rotation number $\alpha = \rho(f)$ is of bounded type i.e. $a_i(\alpha)$ is uniformly bounded then $||Df^n||$ is uniformly bounded.

3. Proof of Theorem 1

Let $f: S^1 \to S^1$ be a C^2 -diffeomorphism without periodic points with the rotation number $\rho(f) = [a_1, a_2, \ldots]$ and its convergents $\{\frac{p_n}{q_n}\}$.

The following crucial and fundamental lemma is due to Polterovich and Sodin ([PS] lemma 2.3).

Lemma 3. (Growth lemma) Let $\{A(k)\}_{k\geq 0}$ be a sequence of real numbers such that for $each \ k > 1$

$$2A(k) - A(k-1) - A(k+1) \le C \exp(-A(k)), \quad C > 0,$$

and A(0) = 0. Then either for each $k \ge 0$

$$A(k) \leq 2\log\left(k\sqrt{\frac{C}{2}}+1\right), \ or \ \liminf_{k \to \infty} \frac{A(k)}{k} > 0.$$

Lemma 4. For $0 \le k \le a_{n+1} + 1$ we set $A_n(k) = \log \|Df^{kq_n}\|$. Then there exists a positive constant C = C(f) independent with n such that for $1 \le k \le a_{n+1}$,

$$2A_n(k) - A_n(k-1) - A_n(k+1) \le CE_n \exp(-A_n(k)).$$

 $2A_n(k)-A_n(k-1)-A_n(k+1)\leq CE_n\exp(-A_n(k)).$ Proof. Let $A_n(k)=\log Df^{kq_n}(x_0)$ and $x_i=f^{iq_n}(x_0).$ Then we have,

$$2A_n(k) - A_n(k-1) - A_n(k+1)$$

$$\leq 2 \log Df^{kq_n}(x_0) - \log Df^{(k-1)q_n}(x_1) - \log Df^{(k+1)q_n}(x_{-1})$$

$$\leq |\log Df^{q_n}(x_0) - \log Df^{q_n}(x_{-1})| = |D\log Df^{q_n}(y_0)||I_n(x_{k-1})|\frac{|I_n(x_{-1})|}{|I_n(x_{k-1})|},$$

where $y_0 \in I_n(x_{-1})$.

Notice that the intervals $I_n(x_{-1}), I_n(x_0), I_n(x_1), \ldots, I_n(x_{a_{n+1}-1})$ are adjacent in this order and $\bigcup_{i=0}^{a_{n+1}-1} I_n(x_i) \subset I_{n-1}(f^{-q_{n-1}}(x_0))$. Since $y_0 \in I_n(x_{-1})$, we have for $1 \le k \le a_{n+1}-1$, $I_n(x_{k-1}) \subset I_{n-1}(f^{-q_{n-1}}(y_0))$. So by Denjoy inequality (Lemma 1 (2)) we have

$$|I_n(x_{k-1})| \le C_1^2 |I_{n-1}(y_0)|,$$

and using lemma 1 (1) we have

$$\frac{|I_n(x_{-1})|}{|I_n(x_{k-1})|} \le C_1 \frac{1}{Df^{kq_n}(x_0)}.$$

Hence we have

$$2A_n(k) - A_n(k-1) - A_n(k+1)$$

$$\leq C_1^3 |D\log Df^{q_n}(y_0)| |I_{n-1}(y_0)| \frac{1}{Df^{kq_n}(x_0)} \leq C_1^3 E_n \exp(-A_n(k)).$$

We extend $A_n(k)$ for $k \ge a_{n+1} + 2$ by $A_n(k) = A_n(a_{n+1} + 1)$. Then by Lemma 1 (2) and the definition of E_n we have

$$2A_{n}(a_{n+1}+1) - A_{n}(a_{n+1}) - A_{n}(a_{n+1}+2)$$

$$\leq \log D f^{(a_{n+1}+1)q_{n}}(x_{0}) - \log D f^{a_{n+1}q_{n}}(x_{0}) \leq \|\log D f^{q_{n}}\|$$

$$\leq E_{n} \exp(-A_{n}(a_{n+1}+1)) \|D f^{(a_{n+1}+1)q_{n}}\|$$

$$\leq E_{n} \exp(-A_{n}(a_{n+1}+1)) \|D f^{q_{n+1}}\| \|D f^{q_{n}}\| \|D f^{-q_{n-1}}\|$$

$$\leq C_{1}^{3} E_{n} \exp(-A_{n}(a_{n+1}+1)).$$

For $k \ge a_{n+1} + 2$, $2A_n(k) - A_n(k-1) - A_n(k+1) = 0$.

Then since $A_n(k)$ satisfy the condition of Lemma 3 with the constant $C = C_1^3$ and obviously $\lim_{k\to\infty} \frac{A_n(k)}{k} = 0$, we have

$$||Df^{kq_n}|| \le \left(\sqrt{\frac{CE_n}{2}}k + 1\right)^2, \ 0 \le k \le a_{n+1}.$$

For $q_n \leq l < q_{n+1}$, we define $0 \leq k_{i+1} \leq a_{i+1}, (i = 0, 1, \dots, n)$ inductively by

$$r_{n+1} = l$$
, $r_{i+1} = k_{i+1}q_i + r_i$, $0 \le r_i < q_i$.

Then, using $\frac{q_{i+1}}{q_i} \ge a_{i+1} \ge k_{i+1}$,

$$\frac{\|Df^l\|}{l^2} \le \frac{\prod_{i=0}^n \|Df^{k_{i+1}q_i}\|}{(k_{n+1}q_n)^2} \le \frac{\prod_{i=0}^n \left(\sqrt{\frac{CE_i}{2}}k_{i+1} + 1\right)^2}{\left(k_{n+1}\prod_{i=0}^{n-1} \frac{q_{i+1}}{q_i}\right)^2}$$
$$\le \left(\sqrt{\frac{CE_n}{2}} + 1\right)^2 \prod_{i=0}^{n-1} \left(\sqrt{\frac{CE_i}{2}} + \frac{q_i}{q_{i+1}}\right)^2.$$

Since $\frac{q_i}{q_{i+2}} < \frac{1}{2}$, for sufficiently small E_i and E_{i+1}

$$\left(\sqrt{\frac{CE_i}{2}} + \frac{q_i}{q_{i+1}}\right) \left(\sqrt{\frac{CE_{i+1}}{2}} + \frac{q_{i+1}}{q_{i+2}}\right) \le \frac{1}{2}.$$

By Lemma 2 (1), $E_n \to 0$ as $n \to \infty$. Consequently we have

$$\lim_{l \to \infty} \frac{\|Df^l\|}{l^2} = 0.$$

For the case $||Df^{-l}||, l > 0$, the argument is the same.

4. Proof of Theorem 2

Let $\{\theta_n\}_{n\geq 1}$ be any increasing unbounded sequence of positive real numbers such that $\theta_n = o(n^2)$ as $n \to \infty$.

We consider the two-parameter family of rational functions on the Riemann sphere $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\},\$

$$J_{a,t}: \hat{\mathbb{C}} \to \hat{\mathbb{C}}, \quad J_{a,t}(z) = \exp(2\pi i t) z^2 \frac{z+a}{az+1}$$

where $a \in \mathbb{R}, a > 3$ and $t \in \mathbb{R}/\mathbb{Z}$.

For each a,t the map $J_{a,t}$ makes invariant the unit circle $\partial \mathbb{D} = \{z \in \mathbb{C}; |z| = 1\}, J_{a,t}(\partial \mathbb{D}) = \partial \mathbb{D}$, moreover the restriction of $J_{a,t}$ to $\partial \mathbb{D}$ is an orientation preserving diffeomorphism. The set of critical points of $J_{a,t}$ consists of four elements containing 0 and ∞ which are fixed by $J_{a,t}$. Notice that if $a \to \infty$ then on a compact tubular neighbourhood of the unit circle in $\mathbb{C} \setminus \{0\}$ $J_{a,t}$ uniformly converges to the rotation $z \mapsto \exp(2\pi i t)z$.

Put $\psi : \mathbb{R}/\mathbb{Z} \to \partial \mathbb{D}, \psi(x) = \exp(2\pi i x)$. Conjugating $J_{a,t}|\partial \mathbb{D}$ by ψ we obtain the family of analytic circle diffeomorphisms $\{f_{a,t}\}$,

$$f_{a,t}: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}, \ f_{a,t}(x) = \psi^{-1} \circ J_{a,t} \circ \psi(x) = f_{a,0}(x) + t \mod \mathbb{Z}.$$

Temporarily we fix a > 3 and abbreviate as $f_{a,t} = f_t$.

The following properties of this family are standard. See e.g. [MS] chapter I, section 4, where Arnold family $x \mapsto x + a \sin(2\pi x) + t$ is mainly dealt with but the argument is valid for our family. Also see [KH] chapter 11, section 1.

The map $F: S^1 \to S^1, t \mapsto \rho(f_t)$ is continuous and monotone increasing. We set

$$K = \{t \in S^1; \rho(f_t) \text{ is irrational}\}.$$

We denote $\mathrm{Cl}(K)$ the closure of K. F|K is a one-to-one map. For $t \in K$ with $F(t) = \alpha$, we denote $f_t = \hat{f}_{\alpha}$. Notice that f_t never conjugate to a rational rotation. Hence for $\frac{p}{q} \in \mathbb{Q}/\mathbb{Z}$, $F^{-1}(\frac{p}{q})$ is a closed interval, say, $[\frac{p}{q}_{-}, \frac{p}{q}_{+}]$.

Moreover, $F^{-1}|(\mathbb{R}\setminus\mathbb{Q})/\mathbb{Z}:(\mathbb{R}\setminus\mathbb{Q})/\mathbb{Z}\to K$ is continuous and

$$\lim_{\alpha \to \frac{p}{q} = 0} F^{-1} |(\mathbb{R} \setminus \mathbb{Q})/\mathbb{Z}(\alpha)| = \frac{p}{q}, \quad \lim_{\alpha \to \frac{p}{q} = 0} F^{-1} |(\mathbb{R} \setminus \mathbb{Q})/\mathbb{Z}(\alpha)| = \frac{p}{q}.$$

Note that for every $\frac{p}{q} \in \mathbb{Q}/\mathbb{Z}$ and every $x \in S^1$, there exists $t \in [\frac{p}{q}_-, \frac{p}{q}_+]$ such that $f_t^q(x) = x$. For $\frac{p}{q} \in \mathbb{Q}/\mathbb{Z}$, put $t_* = \frac{p}{q}_-$. The case $t_* = \frac{p}{q}_+$ is similar. Then the graph

of $f_{t_*}^q(x)$ touches from below to the graph of the identity map, in particular, there exists $x_0 \in S^1$ such that

$$f_{t_{\sigma}}^{q}(x_{0}) = x_{0}, \ Df_{t_{\sigma}}^{q}(x_{0}) = 1.$$

Then the following holds.

Lemma 5. $D^2 f_{t_n}^q(x_0) \neq 0$.

Proof. By contradiction, we suppose $D^2 f_{t_*}^q(x_0) = 0$. Then in our case $D^3 f_{t_*}^q(x_0) = 0$, otherwise x_0 is a topologically transversal fixed point of $f_{t_*}^q$ and persists under perturbation of f_{t_*} , which contradicts $f_{t_*} \in \operatorname{Cl}(K) \setminus K$. Set $f_{t_*} = f_{t_*} \in \operatorname{Cl}(K) \setminus K$. Set $f_{t_*} = f_{t_*} \in \operatorname{Cl}(K) \setminus K$. Set $f_{t_*} = f_{t_*} \in \operatorname{Cl}(K) \setminus K$. Set $f_{t_*} = f_{t_*} \in \operatorname{Cl}(K) \setminus K$. Set $f_{t_*} = f_{t_*} \in \operatorname{Cl}(K) \setminus K$. Set $f_{t_*} = f_{t_*} \in \operatorname{Cl}(K) \setminus K$. Set $f_{t_*} = f_{t_*} \in \operatorname{Cl}(K) \setminus K$. Set $f_{t_*} = f_{t_*} \in \operatorname{Cl}(K) \setminus K$. Set $f_{t_*} = f_{t_*} \in \operatorname{Cl}(K) \setminus K$. Set $f_{t_*} = f_{t_*} \in \operatorname{Cl}(K) \setminus K$. Set $f_{t_*} = f_{t_*} \in \operatorname{Cl}(K) \setminus K$.

$$J_{t_*}^q(z_0) = z_0, \ DJ_{t_*}^q(z_0) = 1, \ D^2J_{t_*}^q(z_0) = D^3J_{t_*}^q(z_0) = 0.$$

So z_0 is a parabolic fixed point for $J_{t_*}^q$ with multiplicity at least four. See [M] chapter 7. By the Laeu-Fatou flower theorem ([M] th.7.2) z_0 has at least three basins of attraction for $J_{t_*}^q$. Let B be one of the immediate attracting basins of z_0 for $J_{t_*}^q$. Then B must contain at least one critical point of $J_{t_*}^q$ ([M] corollary 7.10). So each basin of the cycle $\{z_0, J_{t_*}(z_0), \ldots, J_{t_*}^{q-1}(z_0)\}$ contains at least one critical point of J_{t_*} . But J_{t_*} has exactly four critical points and two of them are fixed points. We obtain a contradiction.

Hence, for example, by comparing a fractional linear transformation (see also [B] thorem 1 (A)), we can see that there exist C > 0 and $\{x_l\}_{l \ge 1} \subset S^1$ with $\lim_{l \to \infty} x_l = x_0$ such that

$$Df_t^{lq}(x_l) \geq Cl^2$$
, for any $l \in \mathbb{N}$.

Since $\theta_n = o(n^2)$, we have

Corollary of Lemma 5. For sufficiently large l, we have $||Df_{t_*}^{lq}|| > \theta_{lq}$.

Remark. For each $k \in \mathbb{N}$ we set

$$U_k = \{t \in \operatorname{Cl}(K); \text{There exist } m \geq k \text{ and } x \in S^1 \text{ such that } Df_t^m(x) > m\sqrt{\theta_m}\}.$$

Obviously U_k is open set in Cl(K). By the corollary and the denseness of preimages of rational numbers by F in Cl(K), U_k is dense in Cl(K). So the following set is a residual subset of Cl(K),

$$\{t \in \mathrm{Cl}(K); \limsup_{n \to \infty} \frac{\Gamma_n(f_t)}{\theta_n} = \infty\}.$$

We seek a desired diffeomorphism in this family $\{f_t\}$ by specifying its rotation number $\alpha_{\infty} = \rho(f_{t_{\infty}}) \in (\mathbb{R} \setminus \mathbb{Q})/\mathbb{Z}$. We will define an increasing sequence of even numbers $0 < n_1 < n_2 < n_3 < \cdots$, and a sequence of positive integers A_1, A_2, A_3, \ldots inductively. The continued fraction expansion of α_{∞} is the following.

$$\alpha_{\infty} = [a_1(\alpha_{\infty}), a_2(\alpha_{\infty}), a_3(\alpha_{\infty}), \ldots]$$

= [1, 1, \ldots, 1, A₁, 1, \ldots, 1, A₂, 1, \ldots, 1, A_k, 1, \ldots]

where if $i = n_k$ then $a_i(\alpha_{\infty}) = A_k$ and if $i \neq n_k$ for any k then $a_i(\alpha_{\infty}) = 1$. For $m, A \geq 1, m, A \in \mathbb{N}$, we set

$$\alpha_m^A = [a_1(\alpha_m^A), a_2(\alpha_m^A), a_3(\alpha_m^A), \ldots]$$

$$= [1, 1, \dots, 1, A_1, 1, \dots, 1, A_{m-1}, 1, \dots, 1, A, 1, 1, 1, \dots]$$

where $a_i(\alpha_m^A) = A_k$ if $i = n_k \le n_{m-1}$ and $a_i(\alpha_m^A) = A$ if $i = n_m$ and $a_i(\alpha_m^A) = 1$ otherwise. Set $\alpha_m = \alpha_m^{A_m}$. Notice that $\alpha_m^A | [1, n_m - 1] = \alpha_\infty | [1, n_m - 1]$ and α_m^A is of bounded type. Unless otherwise stated we use the symbols p_n, q_n as $p_n(\alpha_\infty), q_n(\alpha_\infty)$.

Lemma 6. There exist a sequence of even numbers $0 < n_1 < n_2 < n_3 < \cdots$, and a sequence of positive integers A_1, A_2, A_3, \ldots such that for each $m \geq 1$ the following properties hold.

- (1) For any $j \in \mathbb{Z}$ with $q_{n_m-1} \le |j| \le A_m q_{n_m-1}$, $||D\hat{f}_{\alpha_m}^j|| < \theta_{|j|}$.
- (2) There exists $j_m \in \mathbb{Z}$ such that

$$|q_{n_m-1} \le |j_m| \le (A_m+1)q_{n_m-1}, \ ||D\hat{f}_{\alpha_m^{A_m+1}}^{\hat{j}_m}|| \ge \theta_{|j_m|}.$$

(3) For any $t \in F^{-1}(\alpha)$ with $\alpha|[1, n_{m+1} - 1] = \alpha_m|[1, n_{m+1} - 1]$ and any $j \in \mathbb{Z}$ with $|j| \leq q_{n_m}$,

$$\|Df_t^j\| - 1 \le \|D\hat{f}_{\alpha_m}^j\| \le \|Df_t^j\| + 1.$$

Proof. Let $\alpha_0 = [1, 1, 1, \ldots] = \frac{\sqrt{5}-1}{2}$. Since α_0 is of bounded type by Corollary of Lemma 2 (2) there exists $C_0 > 0$ such that for any $l \in \mathbb{Z}$, $||D\hat{f}_{\alpha_0}^l|| \leq C_0$. Let n_1 be a sufficiently large even number such that if $|i| \geq q_{n_1-1}(\alpha_0)$ then $\theta_{|i|} \geq C_0$.

large even number such that if $|i| \geq q_{n_1-1}(\alpha_0)$ then $\theta_{|i|} \geq C_0$. Let $\beta_1 = \alpha_0|[1, n_1 - 1] = \frac{p_{n_1-1}(\alpha_0)}{q_{n_1-1}(\alpha_0)} = [1, 1, \dots 1] = [1, 1, \dots 1, \infty] \in \mathbb{Q}/\mathbb{Z}$. Then by Corollary of Lemma 5 there exists $d \in \mathbb{N}$ such that $\|Df_{\beta_{1-}}^{dq_{n_1-1}}\| > \theta_{dq_{n_1-1}}$, where $F^{-1}(\beta_1) = [\beta_{1-}, \beta_{1+}]$. Since $\alpha_1^A \to \beta_1 - 0$ as $A \to \infty$, $F^{-1}(\alpha_1^A) \to \beta_{1-}$ as $A \to \infty$. So for sufficiently large A we have $\|D\hat{f}_{\alpha_1^A}^{dq_{n_1-1}}\| > \theta_{dq_{n_1-1}}$. Hence the following is well defined.

$$A_1 = \max\{A; \text{ for any } j \in \mathbb{Z} \text{ with } q_{n_1-1} \le |j| \le Aq_{n_1-1}, \|D\hat{f}^j_{\alpha_i^A}\| < \theta_{|j|}\}.$$

Therefore there exists $j_1 \in \mathbb{Z}$ such that

$$q_{n_1-1} \le |j_1| \le (A_1+1)q_{n_1-1}, \ \|D\hat{f}_{\alpha_1^{A_1+1}}^{j_1}\| \ge \theta_{|j_1|}.$$

Suppose we have $n_1, n_2, \ldots, n_{m-1}$ and $A_1, A_2, \ldots, A_{m-1}$ satisfying conditions of Lemma. Notice that α_{m-1} is of bounded type and that (3) is satisfied by only requiring that $n_m - n_{m-1}$ is sufficiently large. So by the exactly same procedure as above we choose a sufficiently large even number n_m and set

$$A_m = \max\{A; \text{ for any } j \in \mathbb{Z} \text{ with } q_{n_m - 1} \le |j| \le Aq_{n_m - 1}, \ \|D\hat{f}_{\alpha_m^A}^j\| < \theta_{|j|}\}.$$

Lemma 7. Let $\beta_0, \beta_1, \beta_2 \in \mathbb{Q}/\mathbb{Z}$ be

$$\beta_i = [b_1(\beta_i), b_2(\beta_i), \dots, b_{2n}(\beta_i)] = \frac{p_{2n}(\beta_i)}{q_{2n}(\beta_i)}, \ i = 0, 1, 2$$

such that $\beta_0|[1,2n-1] = \beta_1|[1,2n-1] = \beta_2|[1,2n-1]$ and for some $B \ge 1, B \in \mathbb{N}$, $b_{2n}(\beta_i) = B + i$.

Then for any $s_1, s_2 \in F^{-1}((\beta_0, \beta_2))$ and any $x \in S^1$ we have

$$\sum_{i=1}^{q_{2n}(\beta_2)} |(f_{s_1}^i(x), f_{s_2}^i(x))| \le 7.$$

Proof. The argument of the proof is same as the Świątek's of lemma 3 in [Sw]. We recall Farey interval. A Farey interval is an interval $I = (\frac{p}{q}, \frac{p'}{q'}), p, p', q, q' \in \mathbb{Z}, q, q' > 0$ with pq' - p'q = 1. Then the following holds.

(*) All rational in I have the form $\frac{kp+lp'}{kq+lq'}$, $k,l \geq 1, k,l \in \mathbb{N}$.

Since $q_{2n}(\beta_i) = (B+i)q_{2n-1}(\beta_0) + q_{2n-2}(\beta_0)$ and $p_{2n}(\beta_i) = (B+i)p_{2n-1}(\beta_0) + p_{2n-2}(\beta_0)$ two intervals $(\beta_0, \beta_1), (\beta_1, \beta_2)$ are Farey intervals and $q_{2n}(\beta_0) < q_{2n}(\beta_1) < q_{2n}(\beta_2)$ and by (*) the cardinality of the set of rationals in (β_0, β_2) with denominator less than $2q_{2n}(\beta_2)$ is at most six (three if $B \geq 3$).

For given $x \in S^1$ we define

$$t_1 = \sup\{t \in [\beta_{0-}, \beta_{0+}]; f_t^{q_{2n}(\beta_0)}(x) = x\},$$

$$t_2 = \inf\{t \in [\beta_{2-}, \beta_{2+}]; f_t^{q_{2n}(\beta_2)}(x) = x\}.$$

We define a diffeomorphism $G: S^1 \times [t_1, t_2] \to S^1 \times [t_1, t_2]$ by $G(y, t) = (f_t(y), t)$. Then we have

$$DG^i(y,t) = \begin{pmatrix} Df^i_t(y) & \frac{d}{dt}(f^i_t(y)) \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} Df^i_t(y) & 1 + \sum_{k=1}^{i-1} Df^{i-k}_t(f^k_t(y)) \\ 0 & 1 \end{pmatrix}.$$

So G monotonically twists S^1 -direction to the right. More precisely, let $\tilde{G}: \mathbb{R} \times [t_1, t_2] \to \mathbb{R} \times [t_1, t_2], \tilde{G}(\tilde{y}, t) = (\tilde{f}_t(\tilde{y}), t)$ be a lift of G, then for any $i \geq 1$ the slope of the image of a vertical segment $\{\tilde{y}\} \times [t_1, t_2]$ by \tilde{G}^i is everywhere positive finite. Let $P: S^1 \times [t_1, t_2] \to S^1$ be the projection on the first coordinate.

By contradiction we assume $\sum_{i=1}^{q_{2n}(\beta_2)} |(f_{s_1}^i(x), f_{s_2}^i(x))| > 7$. We consider the interval $\gamma = \{x\} \times [t_1, t_2]$ and its images by G^i . Since $[s_1, s_2] \subset (t_1, t_2)$, intervals $P(G^i(\gamma)), 1 \leq i \leq q_{2n}(\beta_2)$ overlap somewhere with multiplicity at least eight. Then, by the twist condition of G there exist distinct natural numbers i_k , $(0 \leq k \leq 7, k \in \mathbb{Z})$ with $1 \leq i_k \leq q_{2n}(\beta_2)$ such that for each k $(1 \leq k \leq 7)$,

$$(\{f_{t_2}^{i_0}(x)\}\times[t_1,t_2])\cap G^{i_k}(\gamma)\neq\emptyset.$$

Moreover, using the preservation of order by $\tilde{f}_t : \mathbb{R} \times \{t\} \to \mathbb{R} \times \{t\}$ and the twist condition of G, we can see that for any $j \geq 0$,

$$(\{f_{t_2}^{i_0+j}(x)\}\times[t_1,t_2])\cap G^{i_k+j}(\gamma)\neq\emptyset.$$

In particular for $j = q_{2n}(\beta_2) - i_0$ by the definition of t_2 we have

$$\gamma \cap G^{i_k + q_{2n}(\beta_2) - i_0}(\gamma) \neq \emptyset.$$

This imply that there exists a parameter value $u_k \in (t_1, t_2)$ such that $f_{u_k}^{q_{2n}(\beta_2) + i_k - i_0}(x) = x$. For each k $(1 \le k \le 7)$ the denominator of $\rho(f_{u_k})$ which divides $q_{2n}(\beta_2) + i_k - i_0$ is less than $2q_{2n}(\beta_2)$. This is a contradiction.

Proof of Theorem 2.

* Lower bound. Let $j_m \in \mathbb{Z}$ be in Lemma 6 (2). Then $|j_m| \leq (A_m + 1)q_{n_{m-1}} < q_{n_m}(\alpha_m^{A_m+2})$. We assume $j_m > 0$. Then since three rational numbers

$$\alpha_m^{A_m}|[1,n_m],\alpha_m^{A_m+1}|[1,n_m],\alpha_m^{A_m+2}|[1,n_m]$$

satisfy the condition of Lemma 7 and

$$\alpha_{\infty} \in (\alpha_m^{A_m}|[1, n_m], \alpha_m^{A_m + 1}|[1, n_m]),$$

$$\alpha_m^{A_m+1} \in (\alpha_m^{A_m+1}|[1,n_m],\alpha_m^{A_m+2}|[1,n_m]),$$

we have for any $x \in S^1$

$$|\log D\hat{f}_{\alpha_{\infty}}^{j_m}(x) - \log D\hat{f}_{\alpha_{\infty}^{A_m+1}}^{j_m}(x)|$$

$$= \left| \sum_{i=1}^{j_m - 1} \log Df_0(\hat{f}_{\alpha_{\infty}}^i(x)) - \sum_{i=1}^{j_m - 1} \log Df_0(\hat{f}_{\alpha_m^{A_m + 1}}^i(x)) \right|$$

$$\leq ||D \log Df_0|| \sum_{i=1}^{j_m-1} |(\hat{f}_{\alpha_\infty}^i(x), \hat{f}_{\alpha_m^{A_m+1}}^i(x))| \leq 7||D \log Df_0||.$$

Since there exists $x_* \in S^1$ such that $|D\hat{f}_{\alpha_m^{Mm+1}}^{j_m}(x_*)| \geq \theta_{j_m}$ we have

$$\frac{\|D\hat{f}_{\alpha_{\infty}}^{j_m}\|}{\theta_{j_m}} \ge \frac{|D\hat{f}_{\alpha_{\infty}}^{j_m}(x_*)|}{|D\hat{f}_{\alpha_{m+1}}^{j_m}(x_*)|} \ge \exp(-7\|D\log Df_0\|).$$

For the case $j_m < 0$, using the chain rule $D\hat{f}_{\alpha}^{j_m}(x) = (D\hat{f}_{\alpha}^{-j_m}(\hat{f}_{\alpha}^{j_m}(x)))^{-1}$ we can obtain the same estimates .

As stated above by making the parameter a sufficiently large we can assume that $||D \log Df_0|| = ||D \log Df_{a,0}||$ is smaller than any given positive value.

* Upper bound. Let $l \in \mathbb{Z}$ with $q_n \leq l < q_{n+1}$. The case $q_n \leq -l < q_{n+1}$ is similar. Let $n_m = \max\{n_i; n_i \leq n\}$. As in the proof of Theorem 1 we expand l as follows,

$$l = k_{n+1}q_n + \dots + k_{n_m+1}q_{n_m} + cq_{n_m-1} + r,$$

where $0 \le k_i \le a_i(\alpha_{\infty}) = 1$ $(n_m + 1 \le i \le n + 1)$ and we choose $c \in \{-1, 0, 1\}$ so that $q_{n_m-1} \le r \le A_m q_{n_m-1}$.

By Lemma 2 (2) and Lemma 6 (1), (3) we have

$$||D\hat{f}_{\alpha_{\infty}}^{l}|| \le ||D\hat{f}_{\alpha_{\infty}}^{q_{n}}|| \cdots ||D\hat{f}_{\alpha_{\infty}}^{cq_{n_{m}-1}}|| ||D\hat{f}_{\alpha_{\infty}}^{r}||$$

$$\leq \exp(C\sum_{i=n_m-1}^n \lambda^i)(1+\|D\hat{f}_{\alpha_m}^r\|) \leq \exp(C\sum_{i=n_m-1}^n \lambda^i)(1+\theta_r).$$

Therefore we have

$$\limsup_{l \to \infty} \frac{\|D\hat{f}_{\alpha_{\infty}}^{l}\|}{\theta_{l}} \le \limsup_{l \to \infty} \frac{\exp(C\sum_{i=n_{m-1}}^{n} \lambda^{i})(1+\theta_{r})}{\theta_{l}} \le 1.$$

References

- [A] V. I. Arnold, Small denominators I, on the mapping of a circle into itself, Izv. Akad. Nauk. serie Math. 25 (1) (1961), 21-86. Translation Amer. Math. Soc. 2nd series, 46,213-284.
- [B] A. Borichev, Distortion growth for iterations of diffeomorphisms of the interval, Geom.Funct.Anal. 14(2004), no.5, 941-964.
- [H] M. R. Herman, Sur la conjugation différentiable des difféomorphismes du cercle à des rotations, Publ. Math. I.H.E.S. 49 (1979), 5-234.
- [KH] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995.
- [KO] Y. Katznelson, D. Ornstein, The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dynam. Systems 9(1989), no.4, 643-680.
- [KS] K. M. Khanin, Ya. G. Sinai, New proof of M. Herman's theorem, Commun. Math. Phys. 112 (1987), 89-101.
- $[M] \quad J. \quad Milnor, \quad Dynamics \quad in \quad one \quad complex \quad variable: \quad Introductory \quad lectures, \quad Math.ArXiv, \\ math.DS/9201272. \quad http://front.math.ucdavis.edu/math.DS/9201272$
- [MS] W. de Melo, S. van Strien, One-dimensional Dynamics. Springer, New York, 1993.
- [PS] L. Polterovich, M. Sodin, A growth gap for diffeomorphisms of the interval, J.Anal.Math. 92(2004), 191-209.
- [St] J. Stark, Smooth conjugacy and renormalization for diffeomorphisms of the circle, Nonlinearity 1 (4) (1988), 541-575.
- [Sw] G. Świątek, Rational rotation numbers for maps of the circle, Commun. Math. Phys. 119 (1988),109-128.
- [T] F. Takens, Normal forms for certain singularities of vector fields, Ann. Inst. Fourier 23, no.2 (1973), 163-195.
- [W] N. Watanabe, Growth sequences for flat diffeomorphisms of the interval, Nihonkai Math.J. 15(2004), no.2, 137-140.
- [Y] J.-C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nomble de rotation vérifie une condition diophantienne, Ann. Sci. École Norm. Sup. 4 17 (1984), 333-359.

Department of Mathematics, School of Commerce, Waseda University, Shinjuku, Tokyo 169-8050, Japan.

 $E ext{-}mail\ address: nobu@waseda.jp}$