Chapitre 3

Estimation Ponctuelle

3.1 Généralités (Cas réel $\theta \in \Theta \subset \mathbb{R}$)

Définition 1 Soit $\rho = (\varkappa, \mathcal{B}, \{P_{\theta}, \theta \in \Theta\})$ un modèle statistique associé à une observation x d'une $v.a \ X$ de loi P_{θ} . Soit :

$$g:\Theta\subset\mathbb{R}^p\to\mathbb{R}^k$$
$$\theta\leadsto g\left(\theta\right)$$

On appelle estimateur de g (θ) toute statistique :

$$T: \quad \varkappa \to g(\Theta) \subset \mathbb{R}^k$$

$$x \leadsto T(x)$$

T(x) est l'estimateur de $g(\theta)$.

Définition 2 Un estimateur T de $g(\theta)$ est dit sans biais ssi :

$$E\left[T\left(X\right)-g\left(\theta\right)\right]=0\Leftrightarrow E\left[T\left(X\right)\right]=g\left(\theta\right).\forall\theta\in\Theta.$$
 où, $E\left(T\left(X\right)\right)-g\left(\theta\right)$ est appelé le biais.

Définition 3 Une suite d'estimateurs $(T_n)_{n\in\mathbb{N}}$ de la fonction $g(\theta)$ est dite asymptotiquement sans biais ssi :

$$\lim_{n} E(T_{n}(X)) = g(\theta).$$

Exemple : Trouver un E.S.B apporté par n ech de $X \leadsto N(m, \sigma^2)$.

Remarques : i/ Si $E(T) = g(\theta) + a$: T n'est pas un ESB de $g(\theta) \Rightarrow T' = T - a$ est un ESB de $g(\theta)$.

ii/ Si $E\left(T\right)=ag\left(\theta\right)$: T
 n'est pas un ESB de $g\left(\theta\right)\Rightarrow T'=$ est un ESB de $g\left(\theta\right)$.

Définition 4 Une suite d'estimateurs $(T_n)_{n\in\mathbb{N}}$ est dite convergente en probabilité (resp. PS, m,q) si :

$$T_n \xrightarrow{proba}_{P,S} g(\theta)$$
.

3.2 Méthodes d'estimation paramétrique

3.2.1 Méthode des moments

Elle consiste à égaler les moments empiriques d'un n échantillon ou d'une v.a avec les moments théoriques du même ordre. (Si on a k paramètres à estimer, on obtient un système de k équations).

Exemple : Estimer les paramètres de la v.a X qui suit les lois suivantes :

1°.
$$X \leadsto \mathcal{B}(p)$$
.

$$2^{\circ}$$
. $X \leadsto \mathcal{E}(\lambda)$.

$$3^{\circ}. X \leadsto \mathcal{N}(m, \sigma^2).$$

$$4^{\circ}. X \leadsto \mathcal{U}_{[\theta_1, \theta_2]}.$$

3.2.2 Méthode de maximum de vraisemblance

a/ Statistique du maximum de vraisemblance

Définition 5 On appelle statistique du maximum de vraisemblance la statistique $\widehat{\theta}$ $(x_1, ..., x_n)$ telle que :

$$\mathcal{L}\left(\widehat{\theta}\left(x_{1},...,x_{n}\right),\underline{x}\right)=\underset{\theta}{\operatorname{max}}\mathcal{L}\left(\theta,\underline{x}\right)$$

La maximisation de cette fonction est réécrite comme suit :

$$\max_{\theta} \mathcal{L}\left(\theta, \underline{x}\right) = \mathcal{L}\left(\widehat{\theta}, \underline{x}\right) \Leftrightarrow \max \log \mathcal{L}\left(\theta, \underline{x}\right) = \log \mathcal{L}\left(\widehat{\theta}, \underline{x}\right)$$

Cette dernière fournit les équations dites de maximum de vraisemblance :

$$\left\{ \begin{array}{l} \frac{\partial}{\partial \theta} \mathcal{L}\left(\theta,\underline{x}\right) = 0 e t \frac{\partial^{2}}{\partial \theta^{2}} \mathcal{L}\left(\theta,\underline{x}\right) < 0 \Leftrightarrow \frac{\partial}{\partial \theta} \log \mathcal{L}\left(\theta,\underline{x}\right) = 0 \\ \frac{\partial^{2}}{\partial \theta^{2}} \log \mathcal{L}\left(\theta,\underline{x}\right) < 0 \end{array} \right. .$$

Définition 6 On appelle Esitimateur du maximum de vraisemblance de paramètre θ , un estimateur donné par la statistique du maximum de vraisemblance.

Exemple : Trouver l'e.m.v des paramètres des v.a suivantes :

$$1^{\circ}. X \leadsto \mathcal{B}(p).$$

$$2^{\circ}$$
. $X \leadsto \mathcal{U}_{[0,\theta]}$.

$$3^{\circ}$$
. $X \leadsto \mathcal{N}(m, \sigma^2)$.

Proposition 7 (Invariance fonctionnelle) $Soit: g: \Theta \rightarrow \Theta$

$$\theta \leadsto g(\theta)$$
.

Alors, l'e.m.v de $g(\theta)$ noté $\widehat{g(\theta)} = g(\widehat{\theta})$ où $\widehat{\theta}$ est un e.m.v de θ .

Exemple : Soit $X \leadsto \mathcal{P}(\lambda)$. Trouver l'e.m.v de $\lambda e^{-\lambda} = P(X = 1)$?

3.3 Estimation non paramétrique

Théorème 8 Soit X une v.a admettant des moments d'ordre r et $(X_1, ..., X_n)$ un n éch de $X \Rightarrow \frac{1}{n} \sum_{i=1}^{n} X_i^k$ est un ESB, convergent P.S, de $E(X^k) \ \forall k \leq r$.

Théorème 9 Si X admet un moment d'ordre 2. Alors : $S_n'^2 = \frac{1}{n-1} \sum (x_i - \overline{x})^2$ est un ESB, cv p.s de $\sigma^2 = var(X)$.

Démonstration : en cours.

Remarque : S_n^2 n'est pas un ESB de σ^2 .

Théorème 10 Soit (X,Y) un couple de v.a admettant des moments d'ordre 2 et soit (X_1,Y_1) , ..., (X_n,y_n) un n éch de (X,Y).

Alors:
$$S_{X,Y}^{\prime 2} = \frac{1}{n-1} \sum (x_i - \overline{x}) (y_i - \overline{y})$$
 est un ESB cv ps de $cov(X,Y) = C_{X,Y}$.

Démonstration : en cours.

Théorème 11 La fréquence $F_n(A) = \frac{1}{n} \sum_{i=1}^n 1_A(x_i)$ est un ESB cv ps de $P(X \in A)$.

Démonstration : en cours.

3.4 Estimation sans biais

3.4.1 Ordre sur les estimateurs

Soit
$$g: \Theta \subset \mathbb{R}^p \to \mathbb{R}$$

 $\theta \leadsto g(\theta)$

et T un estimateur de $g(\theta)$.

Définition 12 (Fonction perte) On définit la fonction perte quadratique par :

$$L(T(x), \theta) = ||T(x) - g(\theta)||^{2}$$

Définition 13 (Fonction risque) On appelle fonction risque associée à l'estimateur T de $g(\theta)$ relativement à la fonction perte L, la fonction :

$$R:\Theta\to\mathbb{R}$$

$$\theta \leadsto R(T, \theta) = E_{\theta}[L(T(X), \theta)]$$

Par exemlpe, la fonction risque quadratique est donnée par :

$$R(T, \theta) = E_{\theta} \left(\left(T(X) - g(\theta) \right)^{2} \right)$$

Remarques : i/ La fonction risque est définie si T admet un moment d'ordre deux.

ii/ Si T est un estimateur sans biais de $g(\theta)$, $E(T(X)) = g(\theta)$, on a :

$$R(T,\theta) = E\left(\left(T(X) - E(T(X))\right)^2\right) = var\left(T(X)\right).$$

Définition 14 Un estimateur T est dit meilleur qu'un autre estimateur T' relativement à la fonction risque R si $R(T, \theta) \le R(T', \theta) \ \forall \theta \in \Theta$.

Si T et T' sont des ESB de $g(\theta)$. Alors : $varT \leq varT'. \forall \theta \in \Theta$. Remarque : Si $R(T, \theta) \leq R(T', \theta) \Leftrightarrow R(T, \theta) = \min_{T'} R(T', \theta). \forall \theta \in \Theta$ et $\forall T'$ un estimateur de $g(\theta)$.

3.4.2 Estimateur sans biais à variance minimum (E.S.B.V.U.M)

Théorème 15 (Rao-Blackwell) Soit T un ESB de $g(\theta)$ et soit S une statistique exhaustive pour θ . Alors :

$$i/T' = E_{\theta}(T/S)$$
 est un ESB de $g(\theta)$ (meilleur que T).

$$ii/var_{\theta}(T') \leq var_{\theta}(T) . \forall \theta \in \Theta.$$

Théorème 16 (Lehman-Sheffé) Soit T un ESB de $g(\theta)$ et soit S une statistique exhaustive et complète pour θ . Alors :

$$E_{\theta}(T/S)$$
 est l'unique E.S.B.V.U.M de $g(\theta)$.

Remarque: L'estimateur est nécessairement une fonction de S.

Exemples: 1°. $X \rightsquigarrow N(m, \sigma^2)$: Donner l'ESBVUM de m.

2°. $X \leadsto U_{[0,\theta]}$: Donner l'ESBVUM de θ .

3.4.3 Estimateurs efficaces

Théorème 17 (Inégalité de Fréchet-Darmois-Cramer-Rao) Sous les hypothèses de régularité pour la définition de l'information de Fisher: i/ hyp de Fisher.

$$ii/E(T^2) \exists \forall T.$$

$$iii / \left. \frac{\partial}{\partial \theta} \int_{\varkappa} T(x) f(\theta, x) dx = \int_{\varkappa} \frac{\partial}{\partial \theta} T(x) f(\theta, x) dx \right. \left. et \int_{\varkappa} \left| T(x) \frac{\partial}{\partial \theta} f(\theta, x) \right| < +\infty.$$

On a:

i/g est dérivable sur Θ .

$$ii/\forall T \ un \ ESB \ de \ g\left(\theta\right), \ varT \ge \frac{\left(g'\left(\theta\right)\right)^{2}}{I_{n}\left(\theta\right)}, \forall \theta \in \Theta.$$

Remarque: Parmi toute les condistions citées précédemment, on ne vérifera que la plus importante, à savoir:

le support de $f(\theta, x)$ est indépendant de θ .

Définition 18
$$\frac{(g'(\theta))^2}{I_n(\theta)} = B.C.R$$
 "Borne de Cramer-Rao".

Définition 19 T ESB de $g(\theta)$ est dit efficace ssi : var(T) = BCR

Théorème 20 T estimateur efficace de $g(\theta)$ ssi :

$$\frac{\partial}{\partial \theta} \log \mathcal{L}(\theta, \underline{x}) = k(\theta) [T(x) - g(\theta)]$$

Théorème 21 La BCR ne peut être atteinte que si la loi de X est de la forme exponentielle. Sous cette condition, il n'existe qu'une seule fonction $g(\theta)$ qui puissent être estimer efficacement $g(\theta) = -\frac{\beta'(\theta)}{\alpha'(\theta)}$. L'estimateur de $g(\theta)$ est alors $\frac{1}{n} \sum_{i=1}^{n} a(x_i)$ et la variance minimale est telle que : $V(T) = \frac{g'(\theta)}{n\alpha'(\theta)}$. If $(X, \theta) = C(\theta) \exp[a(x_i) + a(x_i)] \ln(x_i)$ and $(X, \theta) = a(x_i) d(\theta) + a(x_i) + a(x_i) d(\theta)$. Exemple : $(X, \theta) = a(x_i) d(\theta) + a(x_i) + a(x_i) d(\theta)$.

3.5 Cas vectoriel

- Pour les mêmes raisons dans le cas où θ est réel, on ne peut trouver un estimateur optimal pour $g(\theta)$. On se limitera alors aux estimateurs sans biais de $g(\theta)$. Càd : $E(T_i(x)) = g_i(\theta)$, $\forall i = 1, ..., p$. Au quelle cas : $R(T, \theta) = \sum_{i=1}^p var(T_i)$.
 - \bullet Un estimateur T sera dit meilleur qu'un autre estimateur T' si :

$$R(T, \theta) \le R(T', \theta) \Leftrightarrow \sum_{i=1}^{p} var(T_i) = \sum_{i=1}^{p} var(T'_i)$$

 $\Leftrightarrow tr \ v^T \leq tr \ v^{T'}, \forall \theta \in \Theta$, où v^T est la matrice de var-cov de T.

Remarques : i/ Pour avoir les relations précédentes, il est nécessaire que la matrice $v^{T'} - v^{T}$ soit symétrique définie positive.

ii/T est meilleur que T' ssi : $v^{T'} = v^T$ est semi définie positive.

• E.S.B.V.U.M:

 $i/T' = E_{\theta}(T/S)$ meilleur que $T: v^{E_{\theta}(T/S)} \leq v^T \Leftrightarrow v^T - v^{E_{\theta}(T/S)}$ est semi définie positive, $\forall \theta \in \Theta$.

ii/T ESB de $g\left(\theta\right)\Leftrightarrow E\left(T_{i}\right)=g_{i}\left(\theta\right)$. Dans ce cas : $B.C.R.=J.I_{n}^{-1}\left(\theta\right)J',$ où J est la matrice Jacobienne de $g:J=\left(\frac{\partial}{\partial\theta_{j}}g_{i}\left(\theta\right)\right)_{1\leq i\leq p,1\leq j\leq k}$.

• Estimateur efficace :

$$i/\;\forall T$$
ESB de $g\left(\theta\right)$: $v^{T}>J.I_{n}^{-1}\left(\theta\right)J^{\prime}.$

$$ii/T$$
 efficace $\Leftrightarrow v^T = J.I_n^{-1}(\theta) J'.$

• Cas particulier:

Si
$$g(\theta) = \theta \Rightarrow J = I$$
. Dans ce cas : $B.C.R = I_n^{-1}(\theta) = n^{-1}I^{-1}(\theta)$.

Exemple: n ech de $X \rightsquigarrow N(m, \sigma^2)$ avec m, σ^2 inconnus. Trouver l'E.S.B.V.U.M de (m, σ^2) .

• Efficacité

Définition 22 On appelle efficacité d'un ESB de $g(\theta)$ le nombre noté e_T défini par :

$$e_T = \frac{BCR}{var\left(T\right)}.$$

Remarque : $0 < e_T \le 1$.

Définition 23 Soit T et T' deux ESB de $g(\theta)$. On appelle efficacité de T par rapport à T' $e_{T/T'}$ la quantité :

$$e_{T/T'} = \frac{varT'}{varT} = \frac{e_T}{e_{T'}}.$$

Remarque : Si $e_{T/T'} < 1 \Leftrightarrow T'$ meilleur que T.