Machine Vision

Lecture Set – 07

Contours

Huei-Yung Lin

Robot Vision Lab

5/11/2023

- Homework #5 will be given later.
- Homework #4 due TODAY

Contours

- What is a contour in computer vision?
 - Edges must be linked into a representation for a region boundary
 - They can be open or closed
 - Closed contours correspond to region boundaries, the pixels inside can be found by region filling
 - Open contours could be part of region boundaries, or line segments of drawing or handwriting, etc.
 - Gaps on region boundaries mainly caused by low contrast between regions (thus no edges detected)

Representation of Contours

- Criteria for good contour representations
 - Efficiency: A simple, compact representation
 - Accuracy: Fit the image features accurately
 - Effectiveness: Suitability for the operations performed in later stages of the applications
- The accuracy of a contour representation is determined by
 - The form of curve used to model the contour
 - The performance of the curve fitting algorithm
 - The accuracy of the estimates of edge location

Contour Representation

- Two contour representations:
 - Ordered list of edges
 - A very simple representation
 - As accurate as the location estimates for the edges
 - Not compact, may not provide effective representation for further image analysis
 - Fitting curve
 - Gives more accuracy (reduce errors by averaging)
 - More efficient for further processing
 - □ Determine the orientation and length, etc.

Some Definitions

- Interpolation and approximation
 - A curve interpolates a list of points if the curve passes through them
 - Approximation is fitting a curve to a list of points with the curve passing close to the points, but not necessarily passing exactly through the points
- An edge list is an ordered set of edge points or fragments
- A contour is an edge list or the curve that has been used to represent the edge list
- A boundary is the closed contour that surrounds a region

Geometry of Curves

- Planar curves can be represented by
 - The explicit form: y = f(x)
 - The implicit form: f(x,y) = 0
 - The parametric form: (x(u),y(u)) for some u
- For the parametric form, let $\mathbf{p}_1 = (x(u_1), y(u_1))$ and $\mathbf{p}_2 = (x(u_2), y(u_2))$ be two points on a curve, then
 - The length of the curve is given by $\int_{u_1}^{u_2} \sqrt{\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2} du$
 - The unit tangent vector is given by $\mathbf{t}(u) = -$
 - The normal to the curve is given by $\mathbf{n}(u) = \mathbf{p}''(u)$

Digital Curves

- Difficult to compute a digital curve's slope and curvature due to 45 degrees increments
- One way: via the non-adjacent points in the edge list
 - Let $\mathbf{p}_i = (x_i, y_i)$ be the coordinates of edge *i* in the edge list
 - *k*-slope: the direction vector between points that are *k* edge points apart
 - Left k-slope: from \mathbf{p}_{i-k} to \mathbf{p}_i
 - Right *k*-slope: from \mathbf{p}_i to \mathbf{p}_{i+k}
 - *k*-curvature: the difference between the left and right *k*-slopes
- Length of digital curve is given by

$$S = \sum_{i=2}^{n} \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2}$$

Chain Codes

- Chain codes:
 - Used to record the list of edge points along a contour
 - Specifies the direction of a contour at each edge in the edge list
- The chain code: an edge list by the coordinates of the first edge and the list of chain codes leading to subsequent edges
- Properties of chain codes
 - n×45° rotation of object: Adding n mode 8 to original chain code
- Chain code's directions:

2	3	4
1		5
8	7	6

Slope Representation

- Slope representation of a contour: Ψ-s plot
 - s is the segment
 - Ψ is the slope angle

- Slope Density Function
 - The histogram of the slopes along a contour
 - It can be used for recognition
 - Correlating the slope density function of a model contour with the slope density function extracted from an image
 - This gives the orientation of the object

Curve Fitting

- Curve models for fitting edge points
 - Line segments
 - Used for the scene consisting of straight lines
 - Circular arcs
 - Used for estimating curvature
 - Conics sections
 - Used to represent lines, circular, elliptic and hyperbolic arcs
 - Cubic splines
 - Used to model smooth curves
- Two problems in fitting algorithms
 - What method?
 - How accurate?

Error Measures for Curve Fitting

- Let d_i be the distance of edge point i from a line
- Commonly used "measures" for curve fitting algorithms:
 - Maximum absolute error $MAE = \max_{i} |d_{i}|$
 - Measures how much the points deviate in the worst case
 - Mean squared error (MSE) MSE = $\frac{1}{n} \sum_{i=1}^{n} d_i^2$
 - Gives an overall measure of the deviation
 - Normalized maximum error $\varepsilon = \frac{\max_{i} |d_{i}|}{S}$
 - The ratio of the MAE to the length of the curve
 - Number of sign changes in the error
 - Indicates <u>how appropriate</u> the curve model is (how?)
 - Ratio of curve length to end point distance
 - Measures <u>how complex</u> the curve is (why?)

Polyline Representation

- Polyline representation
 - A sequence of <u>line segments</u> joined end to end
 - Fits the edge list of the contour with a sequence of line segments
 - Interpolates a selected <u>subset</u> of edge points in the edge list
 - The ends of each line segment are edge points in the edge list
 - A polyline algorithm takes as input an ordered list of edge points $\{(x_1, y_1), ..., (x_n, y_n)\}$
- There are two approaches to fitting polylines:
 - Top-down splitting
 - Bottom-up merging

Polyline Splitting

- The top-down splitting algorithm recursively adds vertices, starting with an initial curve
- Splitting method for polylines:
 - Normalized maximum error and threshold

Segment splitting is also called recursive subdivision

Segment Merging

- In segment merging, edge points are added to line segment as the edge list is traversed
- New segments are started when the edge points deviate too far from the line segment
 - Sequential least-squares measure

■ The merge approach is also called bottom-up approach to polyline fitting

Spilt and Merge

- The top-down method of recursive subdivision and the bottom-up method of merging can be combined as the split and merge algorithm
- The basic idea is to interleave split and merge process
 - After recursive subdivision, replace adjacent segments by a single one with less normalized error
 - After segment merging, split the new segment if necessary

Hop-Along Algorithm

- Hop-Along algorithm for polyline fitting
 - Start with the first k edges from the list
 - Fit a line segment between the first and last edges
 - If the error is too large, shorten the sublist to the point of maximum error, return to step 2
 - If the line fit succeeds, compare the orientation of the current line segment with that of the previous line segment
 - If the lines have similar orientations, replace the two line segments with a single one
 - Make the current line segment the previous segment and advance the window of edges so that there are *k* edges in the sublist, return to step 2
- The algorithm considers only a "short run" of edges, thus it is more efficient

Line Fitting

- What is line fitting?
 - Used to find straight line features in an image
- Why use line fitting?
 - Output of "Hough transform" often not accurate enough
- How?
 - Follows edge extraction and linking
 - Use as an initial guess for fitting

Fitting Lines

Fitting Lines

Fitting Lines

Parameterizing Lines

- Most popular line fitting algorithms minimize vertical point-to-line distance
- For our purposes lines in the image will be parameterized by a vector of 3 numbers (m_x, m_y, m_z) where: $m_x^2 + m_y^2 = 1$
 - Normal vector
- Points on the line are defined by the equation: $m_x x + m_y y + m_z = 0$
 - It may be a different coordinate system

Least Squares Fitting

- Given a set of points (x_i, y_i) , the goal of the fitting procedure is to find the parameters (m_x, m_y, m_z) which represent the best line
- The best fit is defined in terms of the parameters which minimize the sum of the squared residuals

Huei-Yung Lin Machine Vision Robot Vision Lab

Least Squares Fitting

- Step I
 - Compute the centroid of the point set
 - Change coordinates such that the new centroid is (0,0)

$$\bar{x} = \frac{1}{n} \sum x_i, \bar{y} = \frac{1}{n} \sum y_i$$
$$x_i' = x_i - \bar{x}, y_i' = y_i - \bar{y}$$

- Step II
 - Solve for (m_x, m_y) by minimizing the following quadratic form

$$\operatorname{err}(m_{x}, m_{y}) = \sum_{i} (m_{x} x_{i}' + m_{y} y_{i}')^{2}$$

$$= (m_{x} \quad m_{y}) \begin{pmatrix} \sum_{i} x_{i}'^{2} & \sum_{i} x_{i}' y_{i}' \\ \sum_{i} x_{i}' y_{i}' & \sum_{i} y_{i}'^{2} \end{pmatrix} \begin{pmatrix} m_{x} \\ m_{y} \end{pmatrix}$$

• Solve for m_z

$$m_z = -(m_x \bar{x} + m_y \bar{y})$$

Issues

 The main problem with least squares fitting techniques is that they are heavily influenced by outliers

- Solutions to this problem include
 - Robust weighting measures
 - Iteratively re-weighted least squares
 - Least median squares

Fitting Ellipses

An ellipse is a type of conic section defined by the equations

 $ax^{2} + bxy + cy^{2} + dx + ey + f = 0$ $b^{2} - 4ac < 0$

 One approach to fitting ellipses is to find a choice of parameters which minimizes the sum of squares of the residuals

$$e = \sum_{i} \left(ax_{i}^{2} + bx_{i}y_{i} + cy_{i}^{2} + dx_{i} + ey_{i} + f \right)^{2}$$

More will be told after Active Contours (if time permitted)

Circular Arcs

- Line segments from approximation of edge lists can be replaced by circular arcs
 - Fitting circular arcs through the end points of two or more line segments, i.e. fitting the vertices of polyline
 - This gives piecewise constant curvature
- The implicit equation for a circle with radius r and center (x_0, y_0) is given by $(x-x_0)^2 + (y-y_0)^2 = r^2$
- The center (x_0, y_0) and radius r are uniquely determined by three points $\mathbf{p}_1 = (x_1, y_1)$, $\mathbf{p}_2 = (x_2, y_2)$, $\mathbf{p}_3 = (x_3, y_3)$
- The <u>error</u> in fitting is defined as the distance to the circular arc

Goodness of Circular Fitting

- When to use circular fitting instead of polyline?
- If the ratio of the length of the contour to the distance between the first and last end points is more than a threshold

 The circular arc is fit between the first and last end points and one other point

Methods for Circular Fitting

- Methods for circular fitting depend on "how the middle point is chosen"
 - Use the polyline vertex that is farthest from the line joining the first and last end points
 - Use the edge point that is farthest from the line joining the first and last end points
 - Use the polyline vertex that is in the middle of the sequence of vertices between the first and last end points
 - Use the edge point that is in the middle of the list of edges between the first and last end points

Criteria for Circular Fitting Result

■ The maximum absolute error (MAE) between edge points and circular arcs is below a threshold

■ The number of sign changes for the errors is large

Conic Sections

- Line segments can also be replaced by conic sections
 - The implicit form: $f(x, y) = ax^2 + 2hxy + by^2 + 2ex + 2gy + c = 0$
 - Defined geometrically by intersecting a cone with a plane
 - Three different types: hyperbola, parabola, ellipse
- Conics can be fit between three vertices in the polyline
 - Knot: the locations where conics are joined
 - Conic spline: a sequence of conics that are joined end to end, with "equal tangents"

at the knots

Conic Approximation

- Each conic section in a conic spline is defined by 2 end points (V_i, V_{i+2}) , 2 tangents, 1 additional point
 - Knots K_i , K_{i+1} are defined as $K_i = (1-\nu_i) V_i + \nu_i V_{i+1}$, where $0 \le \nu_i \le 1$
 - The additional point Z_i is defined as $Z_i = \gamma_i V_{i+1} + (1-\gamma_i) (K_i + K_{i+1})/2$
- Special cases:
 - If $v_{i+1} = 0$, then the segment $(K_i, K_{i+1}) = (K_i, V_{i+1})$
 - If $v_i = 1$ and $v_{i+1} = 0$, then $K_i = K_{i+1} = V_{i+1}$ $\Rightarrow \text{There is a corner!}$

Conic Fitting Algorithm

- Starting with a polyline and classified the vertices as corners, soft vertices, or knots
 - Soft vertices:
 - Have angles near 180° (i.e., almost a straight line!)
 - The adjacent line segments may be replaced with a conic section
 - Corners:
 - Have vertex angles above $180^{\circ} + T$ or below $180^{\circ} T$
 - Adjacent line segments will not be replaced with a conic
 - Knots:
 - On a line segment and determined by soft vertices at both ends
 - Two conic sections must be joined at the knot

Spline Curves

- Spline
 - A function represented using piecewise polynomials
 - Also made from any class of functions joined end to end
 - Examples: line segments, circular arcs, conic sections
 - The most common form: cubic spline
 - Uses both positions and orientations of (edge) points
- Applications of spline
 - Used to fit data points in data analysis
 - Used to represent free-form curve in CG and CAD
 - Used for curve representation in CV if no simpler model is adequate

Geometric & Parametric Equivalences

- Geometric equivalence
 - Two curves are geometrically equivalent if they trace the same set of points (or correspond to the same shape)
- Parametric equivalence
 - Two curves are parametrically equivalent if their equations are identical (same parametric representation)
- Parametric equivalence is stronger than geometric equivalence
 - Two curves can be geometrically equivalent but have different parametric representations! (noise, etc.)
 - Very similar curve shapes do not imply the same (or very close parametric representation)
 - Geometric equivalence must be used for object-model comparison or recognition

Curve Approximation

- Curve fitting interpolates the curve through a subset of the edges
 - Polyline, circular arcs, conic sections, spline curves
- Curve approximation does not force curve to pass through particular edges and gives higher accuracy
 - Least-squares regression
 - When the data points (edge points) are very reliable
 - Robust regression
 - When the data points could contain some grouping error
 - Cluster analysis techniques: Hough transform
 - When the grouping of edges is very unreliable (scattered edge points)

Curve Fitting

■ The curve fitting problem is a <u>regression problem</u> with the curve modeled by the equation with *p* parameters:

$$f(x, y; a_1, a_2, \dots, a_p) = 0$$

- The problem is to fit the curve model to a set of edge points $\{(x_1,y_1), (x_2,y_2), ..., (x_n,y_n)\}$
- p unknown curve parameters can be solved by p equations with p data points for noise-free case
- In real applications, more data points and equations will be used to solve the overdetermined system
- Least-squares regression: errors are normally distributed
- Robust regression: data points contain some outliers

Detecting Lines

- What is the difference between line detection and edge detection?
 - Edges = local
 - Lines = non-local
- Line detection usually performed on the output of an edge detector

Detecting Lines

- Several different approaches:
 - For each possible line, check whether the line is present: "brute force"
 - Given detected edges, record lines to which they might belong: "Hough transform + voting"
 - Given guess for approximate location of a line, refine that guess: "fitting"
- Second method (Hough transform) is efficient for finding unknown lines, but not always accurate

Line Detection

Mathematical model of a line:

$$y_1 = mx_1 + n$$

$$y_2 = mx_2 + n$$

$$y_N = mx_N + n$$

Image and Parameter Spaces

Image Space

Parameter Space

Line in Image Space ~ Point in Parameter Space

Huei-Yung Lin Machine Vision Robot Vision Lab

Looking at it Backwards ...

Image space

Fix
$$(m,n)$$
, vary (x,y) - Line

Fix
$$(x_1,y_1)$$
, vary (m,n) – Lines thru a Point

$$y = mx + n$$

$$y_1 = mx_1 + n$$

Looking at it Backwards ...

Parameter space

$$y_1 = mx_1 + n$$
 Can be re-written as: $n = -x_1m + y_1$

Huei-Yung Lin Machine Vision Robot Vision Lab

Image & Parameter Spaces

- Image Space
 - Lines
 - Points
 - Collinear points

- Parameter Space
 - Points
 - Lines
 - Intersecting lines

Hough Transform

- General idea: transform from image coordinates to parameter space of features
 - Map a difficult pattern problem into a simple peak detection problem
 - Need parameterized model of features
 - For each pixel, determine all parameter values that might have given rise to that pixel; vote
 - At end, look for peaks in parameter space
- This approach is a voting scheme based on accumulating evidence in a parameter space

Hough Transform for Lines

- Each input measurement indicates its contribution to a globally consistent solution
- Here this problem is under constrained
 - Generic line: y = ax + b
 - Parameters: a and b

Hough Transform Technique

- Given an edge point, there is an infinite number of lines passing through it (vary *m* and *n*)
 - These lines can be represented as a line in parameter space

Parameter Space

5/25/2023

No Class Next Tuesday.

Hough Transform Technique

- Given a set of collinear edge points, each of them have associated a line in parameter spaces
 - These lines intersect at the point (m,n) corresponding to the parameters of the line in the image space

Hough Transform Technique

- At each point of the (discrete) parameter space, count how many lines pass through it
 - Use an array of counters
 - Can be thought as a "parameter image"
- The higher the count, the more edges are collinear in the image space
 - Find a peak in the counter array
 - This is a "bright" point in the parameter image
 - It can be found by thresholding

Practical Issues

- The slope of the line is $-\infty < m < \infty$
 - The parameter space is infinite
- The representation y = mx + n does not express lines of the form x = k

Huei-Yung Lin Machine Vision Robot Vision Lab

Solution

■ Use the "normal" equation of a line:

$$\rho = x \cos \theta + y \sin \theta$$

 θ is the line orientation

 ρ is the distance between the origin and the line

Huei-Yung Lin Machine Vision Robot Vision Lab

New Parameter Space

- Use the parameter space (ρ, θ)
- The new space is finite
 - $0 < \rho < D$, where D is the image diagonal
 - $0 < \theta < 2\pi$
- The new space can represent all lines
 - y = k is represented with $\rho = k$, $\theta = 90^{\circ}$
 - x = k is represented with $\rho = k$, $\theta = 0^{\circ}$
- A Point in Image Space is now represented as a sinusoid
 - $\rho = x \cos \theta + y \sin \theta$

Hough Transform Algorithm

- Input is an edge image (E(i, j) = 1 for edgels)
 - Discretize θ and ρ in increments of θ_d and ρ_d
 - Let A(R,T) be an array of integer accumulators, initialized to 0
 - For each pixel E(i, j) = 1 and h = 1, 2, ... T do
 - $\rho = i \cos(h \theta_d) + j \sin(h \theta_d)$
 - Find closest integer k of the element of ρ_d , corresponding to ρ
 - Increment counter A(h,k) by one
 - Find all local maxima in A(R,T) >threshold
- Output is a set of pairs (ρ_d, θ_d) describing the lines detected in E in polar form

Hough Transform Speed Up

- If we know the orientation of the edge usually available from the edge detection step
 - We fix θ in the parameter space and increment only one counter!
 - We can allow for orientation uncertainty by incrementing a few counters around the "nominal" counter

Huei-Yung Lin Machine Vision Robot Vision Lab

Example

Example

Real Example

Real Example

Demo

- https://www.aber.ac.uk/~dcswww/Dept/Teaching/CourseNotes/current/CS34110/hough.html
- https://gmarty.github.io/hough-transform-js/
- http://liquiddandruff.github.io/hough-transformvisualizer/

Reading

■ Chapter 6 of Jain's book