ENGINEERING TEST REPORT

Card Reader Model No.: CRCSRM1 FCC ID: WSSCRCSRM1

Applicant:

Mitech R&D Services Inc.

219 Robert Hicks Drive Toronto, Ontario Canada M2R 3R3

In Accordance With

Federal Communications Commission (FCC) Part 15, Subpart C Unlicensed Low Power Transmitter Operating in the Band 13.110-14.010 MHz

UltraTech's File No.: MTRD-002F15C225

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs

Date: November 7, 2008

Report Prepared by: Dan Huynh Tested by: Mr. Wayne Wu, EMC Technician

Issued Date: November 7, 2008 Test Dates: October 9, 14-15, 2008

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

0685

31040/SIT

C-1376

200093-0

SL2-IN-E-1119R

TABLE OF CONTENTS

FXHIBII	1. INTRODUCTION	1
1.1. 1.2. 1.3.	SCOPE	1
EXHIBIT	2. PERFORMANCE ASSESSMENT	2
2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	CLIENT INFORMATION EQUIPMENT UNDER TEST (EUT) INFORMATION EUT'S TECHNICAL SPECIFICATIONS LIST OF EUT'S PORTS ANCILLARY EQUIPMENT GENERAL TEST SETUP	3
EXHIBIT	3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	5
3.1. 3.2.	CLIMATE TEST CONDITIONSOPEPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	
EXHIBIT	4. SUMMARY OF TEST RESULTS	6
4.1. 4.2. 4.3.	LOCATION OF TESTS	6
EXHIBIT	5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	7
5.1. 5.2. 5.3. 5.4. 5.5. 5.6.	TEST PROCEDURES. MEASUREMENT UNCERTAINTIES	7 7 8
5.7. 5.8.	[47 CFR 15.225 (a) to (d)]	13 14
EXHIBIT	6. TEST EQUIPMENT LIST	17
EXHIBIT	7. MEASUREMENT UNCERTAINTY	18
7.1. 7.2	LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	

EXHIBIT 1. INTRODUCTION

1.1. **SCOPE**

Reference:	FCC Part 15, Subpart C, Sec. 15.225 - Operation within the band 13.110 – 14.010 MHz.
Title:	Title 47, Code of Federal Regulations (CFR), Part 15, Subpart C
Purpose of Test:	To gain FCC Certification Authorization for Section 15.225 - Operation within the Band 13.110 - 14.010 MHz.
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	Residential Commercial, industrial or business environment

RELATED SUBMITTAL(S)/GRANT(S) 1.2.

None.

1.3. NORMATIVE REFERENCES

Publication	Year	Title
FCC 47 CFR 15	2008	Code of Federal Regulations – Telecommunication
ANSI C63.4	2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz
CISPR 22 EN 55022	2008-09, Edition 6.0 2006	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT		
Name:	Mitech R&D Services Inc.	
Address:	219 Robert Hicks Drive Toronto, ON Canada M2R 3R3	
Contact Person:	Mr. Michael Stepanov, President Phone #: 416-667-1307 Fax #: 416-667-1307 Email Address: mitech@rogers.com	

MANUFACTURER		
Name:	Mitech R&D Services Inc.	
Address:	219 Robert Hicks Drive Toronto, ON Canada M2R 3R3	
Contact Person:	Mr. Michael Stepanov, President Phone #: 416-667-1307 Fax #: 416-667-1307 Email Address: mitech@rogers.com	

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Mitech R&D
Product Name:	Card Reader
Model Name or Number:	CRCSRM1
Serial Number:	Test sample
Type of Equipment:	Low Power Transceiver, Rx Verified
Input Power Supply Type:	24 VAC from AC adaptor
Operating Voltage:	24 VAC
Primary User Functions of EUT:	Washer/dryer card reader and controller (CRC). This device is harnessed inside a washer or dryer machine whose task is to communicate with the card and to start the respective machine in a card based electronic payment system for laundry

2.3. EUT'S TECHNICAL SPECIFICATIONS

Transmitter		
Equipment Type:	Mobile	
Intended Operating Environment:	ResidentialCommercial, light industry & heavy industry	
Power Supply Requirement:	5 VDC	
Field Strength:	31.81 dBµV/m at 10 m	
Operating Frequency Range:	13.56 MHz	
RF Output Impedance:	50 Ohms	
26 dB Bandwidth:	11.22 kHz	
Modulation Type:	ASK	
Oscillator Frequencies:	13.56 MHz, 14.7456 MHz	
Antenna Connector Type:	Type: Integral PCB	

2.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	Digital serial I/O port	1	Rectangular - Headers, Male Pin, Series MTA-156, from Tyco-Amp	Non shielded

2.5. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1		
Description:	AC Adaptor	
Brand name:	ATC Frost	
Model Name or Number:	FPS2024	
FCC Certification:	n/a	
Serial Number:	9610020	
Connected to EUT's Port:	Power Port	

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

2.6. GENERAL TEST SETUP

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	24 VAC via AC Adaptor

3.2. OPEPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	The EUT was set to transmit continuously for testing purpose only.
Special Test Software:	None
Special Hardware Used:	None
Transmitter Test Antenna:	Integral

Transmitter Test Signals:			
Frequency:	13.56 MHz		
Transmitter Wanted Output Test Signals:			
RF Power Output (measured maximum output power):	31.81 dBµV/m at 10 m		
Normal Test Modulation:	ASK		
Modulating signal source:	Internal		

File #: MTRD-002F15C225 November 7, 2008

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the
 Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and
 found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site
 measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC
 File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date of
 Site Calibration: May 17, 2009.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Regulations	Test Requirements	Compliance (Yes/No)
15.203 & 15.204	The transmitter shall use a transmitting antenna that is an integral part of the device	Yes
	26 dB & 99% Bandwidth	Yes
15.225(a) – (d)	Field Strength of Emissions Inside and Outside the Permitted Band 13.110 - 14.010 MHz	Yes
15.225(e)	Frequency Stability	Yes
15.107 & 15.207	Class B - Power Line Conducted Emissions	Yes
15.109(a)	Class B - Radiated Emissions from Unintentional Radiator	Yes

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

November 7, 2008

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.4 and ULTR-P001-2004.

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document LAB 34 with a confidence level of 95%. Please refer to Exhibit 6 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1-1.

5.4. COMPLIANCE WITH FCC PART 15 – GENERAL TECHNICAL REQUIREMENTS

FCC Section	FCC Rules	
15.203	Described how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.	Integral PCB antenna
	The exception is in those cases where EUT must be professionally installed. In order to demonstrate that professional installation is required, the following 3 points must be addressed: • The application (or intended use) of the EUT	
	 The installation requirements of the EUT The method by which the EUT will be marketed 	
15.204	Provided the information for every antenna proposed for use with the EUT: (a) type (e.g. Yagi, patch, grid, dish, etc), (b) manufacturer and model number (c) gain with reference to an isotropic radiator	Only furnished integral antenna will be used in the EUT.

5.5. OCCUPIED BANDWIDTH

5.5.1. Limits

The bandwidth shall show bandedge compliance.

5.5.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4 for measurement methods

5.5.3. Test Data

Test Frequency (MHz)	Occupied Bandwidth (kHz)			
rest Frequency (MHZ)	26 dB BW	99 % BW		
13.56	11.22	13.83		

Plot 5.5.3.1 26 dB Bandwidth Test Frequency: 13.56 MHz

Plot 5.5.3.2 99% Occupied Bandwidth Test Frequency: 13.56 MHz

FCC ID: WSSCRCSRM1

5.6. FIELD STRENGTH OF EMISSIONS INSIDE & OUTSIDE THE PERMITTED BAND 13.110-14.010 MHz [47 CFR 15.225 (a) to (d)]

5.6.1. Limits

- (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110 14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

47 CFR 15.209(a) - Radiated Emission Limts; general requirements

Frequency (MHz)	Field Strength Limits (microvolts/m)	Distance (Meters)
0.009 - 0.490	2,400 / F (KHz)	300
0.490 - 1.705	24,000 / F (KHz)	30
1.705 - 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

5.6.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4 for measurement methods

Applies to harmonics/spurious that fall in the restricted bands listed in Section 15.205, the maximum permitted average field strength is listed in Section 15.209. A Pre-Amp and high-pass filter are used for this measurement.

- For measurements from 9 KHz to 150 KHz, set RBW = 200 Hz, VBW > RBW, SWEEP=AUTO.
- For measurements from 150 KHz to 30 MHz, set RBW = 10 KHz, VBW > RBW, SWEEP=AUTO.
- For measurements from 30 MHz to 1 GHz, set RBW = 100 KHz, VBW > RBW, SWEEP=AUTO.
- For measurement above 1 GHz, set RBW = 1 MHz, VBW = 1 MHz, SWEEP=AUTO.

If the emission is pulsed, modified the unit for continuous operation, then use the settings above for measurements, then correct the reading by subtracting the peak-average correction factor derived from the appropriate duty cycle calculation. See Section 15.35(b) and (c).

File #: MTRD-002F15C225

November 7, 2008

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

5.6.3. Test Data

Remarks:

- Radiated spurious emissions measurements were performed at 10 m distance, from 10 MHz 10th harmonic
 of the fundamental and all spurious emissions that are in excess of 20 dB below the specified limit shall be
 recorded.
- For frequencies below 30 MHz, the results measured at 10 m distance shall be extrapolated to 30 m distance using an extrapolation factor of 40 dB/decade (40*log(10/30)).
- For frequencies at or above 30 MHz, the results measured at 10 m distance shall be extrapolated to 3 m distance using an extrapolation factor of 20 dB/decade (20*log(10/3)).

5.6.3.1. Field Strength of Emissions Inside the Permitted Band

Frequency (MHz)	Measured Field Strength @ 10 m (dBμV/m)	Detector Used (Peak/QP)	Antenna Plane (H/V)	Field Strength 30 m Extrapolated Value (dBµV/m)	§ 15.225 Field Strength Limits	Margin (dB)
13.56	21.63	Peak	V	2.5	84.0	-81.5
13.56	31.81	Peak	Н	12.7	84.0	-71.3

5.6.3.2. Field Strength of Emissions Outside the Permitted Band

Frequency (MHz)	Measured Field Strength @ 10 m (dBμV/m)	Detector Used (Peak/QP)	Antenna Plane (H/V)	Field Strength @ 3 m Extrapolated Value (dBµV/m)	§ 15.209 Field Strength Limits	Margin (dB)
67.80	21.91	Peak	V	32.4	40.0	-7.6
67.80	15.80	Peak	Н	26.3	40.0	-13.7
81.36	22.47	Peak	V	32.9	40.0	-7.1
81.36	13.00	Peak	Н	23.5	40.0	-16.5

November 7, 2008

5.7. FREQUENCY STABILITY [47 CFR 15.225(e)]

5.7.1. Limits

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

5.7.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004.

5.7.3. Test Data

Frequency Band:	13.56 MHz
Center Frequency:	13.56 MHz
Frequency Tolerance Limit:	<u>+</u> 0.01% (<u>+</u> 1356 Hz)
Max. Frequency Tolerance Measured:	81 Hz
Input Voltage Rating:	24 VAC nominal

	Frequency Drift (Hz)					
Ambient Temperature (°C)	Supply Voltage (Nominal) 24 VAC	Supply Voltage (85 % of Nominal) 20.4 VAC	Supply Voltage (115% of Nominal) 27.6 VAC			
-30	-66					
-20	+39					
-10	+57					
0	+48					
+10	+30					
+20	-18	-18	-18			
+30	-24					
+40	-60					
+50	-81					
+60	-66					

AC POWERLINE CONDUCTED EMISSIONS [47 CFR 15.107(a) & 15.207] 5.8.

5.8.1. Limits

The equipment shall meet the limits of the following table:

Test Frequency Range	Class B Li	mits (dBμV)	Magazzina Bandwidth
(MHz)	Quasi-Peak	Average	Measuring Bandwidth
0.15 to 0.5	66 to 56*	56 to 46*	RBW = 9 kHz VBW <u>></u> 9 kHz for QP VBW = 1 Hz for Average
0.5 to 5	56	46	RBW = 9 kHz VBW <u>></u> 9 kHz for QP VBW = 1 Hz for Average
5 to 30	60	50	RBW = 9 kHz VBW <u>></u> 9 kHz for QP VBW = 1 Hz for Average

^{*} Decreasing linearly with logarithm of frequency

Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4 for measurement methods

File #: MTRD-002F15C225 November 7, 2008

5.8.3. Test Data

Plot 5.8.3.1 AC Power Line Conducted Emission Line Tested: Hot Line Voltage 120 VAC 60 Hz

Current Graph

Current List

Frequency MHz	Peak dBuV		Delta QP-QP Limit dB	Avg dBuV	Delta Avg-Avg Limit dB	Trace Name
0.295	49.4	42.2	-19.6	6.8	-45.0	Hot Trace
0.366	44.1	35.2	-24.5	7.4	-42.4	Hot Trace
0.503	30.1	22.4	-33.6	5.0	-41.0	Hot Trace

Plot 5.8.3.2 AC Power Line Conducted Emission Line Tested: Neutral Line Voltage 120 VAC 60 Hz

Current Graph

Current List

Frequency MHz	Peak (Avg dBuV		Trace Name
0.207 0.301 0.447	51.7 4 47.7 4 33.5 2	40.3	-21.3	7.5	-44.2	Neutral Trace Neutral Trace Neutral Trace

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schwarz	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz
Loop Antenna	EMCO	6502	2611	10 kHz - 30 MHz
EMI Receiver System/ Spectrum Analyzer with built-in Amplifier	Hewlett Packard	HP 8546A	3520A00248	9KHz-5.6GHz, 50 Ohms
Biconilog Antenna	EMCO	3143	1029	20 MHz to 2 GHz
Spectrum Analyzer/ EMI Receiver	Hewlett Packard	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
Transient Limiter	Hewlett Packard	11947A	310701998	9 kHz – 200 MHz 10 dB attenuation
L.I.S.N.	EMCO	3825/2	89071531	9 kHz – 200 MHz 50 Ohms / 50 μH
RF Shielded Chamber	RF Shielding			
Temperature & Humidity Chamber	Envirotronics	SSH32C	11994847-S- 11059	-60o to +177 o C range
Digital Multimeter	Tenma	72-6202	2080027	DC-100 KHz
Power Supply	HP	6439B	0K0322	DC 0-60 V, 0-15A.
Attenuator	Weinschel Corp	48-30-34	BM5354	DC – 18 GHz
Power Supply	Elgar	SW5250A-2-3-2	554	0 - 312 VAC/DC 13A

File #: MTRD-002F15C225 November 7, 2008

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and LAB 34.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (dB)	
(Line Conducted)	DISTRIBUTION	9-150 kHz	0.15-30 MHz
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
LISN coupling specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
Cable and Input Transient Limiter calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5
Mismatch: Receiver VRC Γ_1 = 0.03 LISN VRC Γ_R = 0.8(9 kHz) 0.2 (30 MHz) Uncertainty limits 20Log(1± $\Gamma_1\Gamma_R$)	U-Shaped	<u>+</u> 0.2	<u>+</u> 0.3
System repeatability	Std. deviation	<u>+</u> 0.2	<u>+</u> 0.05
Repeatability of EUT			
Combined standard uncertainty	Normal	<u>+</u> 1.25	<u>+</u> 1.30
Expanded uncertainty U	Normal (k=2)	<u>+</u> 2.50	<u>+</u> 2.60

Sample Calculation for Measurement Accuracy in 450 kHz to 30 MHz Band:

$$u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)} = \pm \sqrt{(1.5^2 + 1.5^2)/3 + (0.5/2)^2 + (0.05/2)^2 + 0.35^2} = \pm 1.30 \text{ dB}$$

$$U = 2u_c(y) = + 2.6 dB$$

RADIATED EMISSION MEASUREMENT UNCERTAINTY 7.2.

CONTRIBUTION	CONTRIBUTION PROBABILITY		UNCERTAINTY (<u>+</u> dB)	
(Radiated Emissions)	DISTRIBUTION	3 m	10 m	
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0	
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5	
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
Antenna Directivity	Rectangular	+0.5	+0.5	
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5	
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2	
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25	
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4	
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0	
Mismatch: Receiver VRC Γ_1 = 0.2 Antenna VRC Γ_R = 0.67(Bi) 0.3 (Lp) Uncertainty limits 20Log(1± $\Gamma_1\Gamma_R$)	U-Shaped	+1.1 -1.25	<u>+</u> 0.5	
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5	
Repeatability of EUT		-	-	
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72	
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44	

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k = 2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$$
 And $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$