

Airline Passenger Satisfaction

PRESENTED BY:

Wenyi Zhao & Celine(Xi) Zhang

Overview

01

Task

1.train a binary classifier for airline passenger satisfaction using supervised machine learning 2.predict satisfaction: satisfied OR neutral satisfaction/dissatisfied 3.airline satisfaction factors evaluation

Air Travel Consumer Report: Consumer Complaints Against Airlines Rise More Than 300 Percent Above Pre-Pandemic Levels

Thursday, June 23, 2022

OST 20-22

Contact: pressoffice@dot.gov

02

Data

whether a customer is satisfied with the airlines or not after travelling with them.

03

Method: Model

KNN

XGBoost

Random forest

Data

dtypes:category(18),float64(1),int64(3),object(2)

dtypes: float64(1), int64(19), object(6)

object: satisfaction& ind(deleted) int64, float64: numerical variables category: category variables

https://www.kaggle.com/datasets/teejmahal20/airline-passenger-satisfaction

	Unnamed: 0	id	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arrival time convenient
0	0	19556	Female	Loyal Customer	52	Business travel	Eco	160	5	4
1	1	90035	Female	Loyal Customer	36	Business travel	Business	2863	1	1
2	2	12360	Male	disloyal Customer	20	Business travel	Eco	192	2	0
3	3	77959	Male	Loyal Customer	44	Business travel	Business	3377	0	0
4	4	36875	Female	Loyal Customer	49	Business travel	Eco	1182	2	3

5 rows × 26 columns

Data Size: neutral or dissatisfied: 73452, satisfied: 56428, already split into train set (80%) and test set (20%)

Data

2	Gender	129880 non-null object
3	Customer Type	129880 non-null object
4	Age	129880 non-null int64
5	Type of Travel	129880 non-null object
6	Class	129880 non-null object
7	Flight Distance	129880 non-null int64
8	Inflight wifi service	129880 non-null int64
9	Departure/Arrival time convenien	t 129880 non-null int64
10	Ease of Online booking	129880 non-null int64
11	Gate location	129880 non-null int64
12	Food and drink	129880 non-null int64
13	Online boarding	129880 non-null int64
14	Seat comfort	129880 non-null int64
15	Inflight entertainment	129880 non-null int64
16	On-board service	129880 non-null int64
17	Leg room service	129880 non-null int64
18	Baggage handling	129880 non-null int64
19	Checkin service	129880 non-null int64
3	Arrival Delay in Minutes	129487 non-null float64

Satisfied

Data

Categorical Data

- Binary: assign 1 and 0
- Non-Binary: assign one binary column per category per categorical feature.
- Example:
- Gender: 0 and 1
- Class: Business: 0 and 1

Eco Plus: 0 and 1

Eco: 0 and 1

Final Preprocessed Data Shape: 125899 rows × 92 columns

Age	Flight Dista nce	Depar ture Delay in Minut es	Gend er	Custo mer Type	Type of Travel	Class _Busin ess	Class _Eco	Class _Eco Plus	Infligh t wifi servic e_O	•••	Infligh t servic e_3	Infligh t servic e_4	Infligh t servic e_5	Clean liness _O	Clean liness _1	Clean liness _2	Clean liness _3	Clean liness _4	Clean liness _5
- 0.220 161	1.8813 60	- 0.386 329	0	1	1	1	0	0	•	•••	0	1	0	0	0	0	0	0	1

Model

type of model	KNN(K nearest neighbors)
parameters	n_neighbors = [range(1, 15)]
accuracy	0.939005(n_neighb ors=8,10)
run time	43.9s

The best K value should be 8 or 10

type of model	Random Forest Classifier
parameters	n_estimators = [500,1000] random_state = 42 criterion = "entropy" max_depth = 5
accuracy	0.961631(n_est = 1000, random_state = 42)
feature importance	type of travel
run time	1m 18.6s

Model

The fourth try shows the best performance, with n_estimators = 1000

type of model	XGBoost(Extreme Gradient										
Type of model	Boosting)classifier										
	n_estimators = [25,50,100,150,250,500,1000]										
	eval_metric = ['rmse', 'logloss']										
	objective=['binary:hinge', 'binary:logistic']										
	max_depth= 10,										
	learning_rate= 0.1 ,										
	gamma= 0.8,										
parameters	reg_lambda= 2 ,										
	reg_alpha= 2 ,										
	scale_pos_weight= 2 ,										
	subsample= 0.8,										
	colsample_bytree= 0.8										
accuracy	0.964289(n_estimator=100, default)										
feature											
importance	Online boarding_5										
run time	9.9s										

Model

when n_estimators >=
100, with the increase of
of n_estimators, the
accuracy decreases

Model Comparison

	Random Forest Classifier	KNN	XGB Classifier
parameter	n_estimators = 1000, random_state = 42	n_neighbors = 8 or 10	Default
accuracy	0.961631	0.939005	0.964289 🛱
runtime	lm 18.6s	43.9s	9.9s 🕁

Error Analysis -- Examples of where the model fails

- XGB Classifier
- 887 failed predictions out of 24838 test data
- Examples

row	Age	Flight Distanc e	Departu re Delay in Minutes	(j ender				Class_E co				Inflight service_ 5	Cleanli				Cleanli ness_4			predict class
4	0.6369 47	0.0569 42	- 0.3863 29	0	1	1	o	1	o	0	 •	0	•	0	0	0	1	0	1	o
25960	- 1.07726 9	- 0.7407 66	- 0.3863 29	o	o	1	0	1	0	o	 1	0	o	1	o	0	0	0	o	1

whole dataset

failed dataset

- 1. Systematically fine-tune
- 2. Data Distribution
- 3. More advanced model
- 4. Combination of different models
- 5. Data preprocessing methods
- 6. Overfitting? Validation data

