1.22 Theorem. If a natural number is divisible by 3, then, when expressed in base 10, the sum of its digits is divisible by 3.

Proof. Let $n \in \mathbb{N}$ be given such that n is divisible by 3. Since $3 \mid n, n \equiv 0 \pmod{3}$. By Thm 1.21, $n \equiv m \pmod{3}$ where m = (sum of n 's digits). By Thm 1.10, $m \equiv n \pmod{3}$. Since $n \equiv 0 \pmod{3}$, $m \equiv 0 \pmod{3}$ by Thm 1.11. Thus, the sum of its digits is divisible by 3.