William Godel, NLP HW1

All code can be found at: https://github.com/wpg205/NLP_HW

Please note all tables contain validation accuracy percentage

As per instructions, I have divided the training data into a 20,000 observation training data set and a 5,000 observation validation set (see HW1). Following this I set about training an initial model. The hyperparameters of this model are as follows:

- Ngram Length = 1
- Embedded Dimensions = 100
- Max sentence length = 200
- Max Vocab = 10000
- Optimizer = Adam
- Learning rate = .01

- Tokenization:
 - Spacy Tokenizer: Text
 - Lowercasing
 - Remove Punctuational = Yes
- Epochs = 2
- Linear Annealing = No

Validation accuracy for this model varied but was around 86%.

1 Lemma

First, I lemmaized the tokens using the same spaCy tokenizer (see HW1_lemma). I continued to lowercase and remove punctuation as it does not seem likely that leaving in either of those features would help the model. I experimented with a variety of learning rates and embedding dimensions, but found no improvement over the basic model.

Figure 1: Performance of the Basic Model

Figure 2: Performance of the Basic Model but with Lemmas Rather Than Text

2 Embedding Dimensions and Learning Rates

I next experimented with different embedding dimensions and learning rates. Below is the performance table. From this analysis, it seems that a larger embedding dimension and lower learning rate are increasing performance, which makes intuitive sense in that a larger embedding size allows for a more complex model. See the chart in "Learning rates and Embedding Dimension" in the HW1 notebook for loss during training.

		Embedding Dimension			
		100	200	500	1000
	.001	86.36	86.96	87.18	87.52
ate	.005	85.98	85.68	84.94	84.64
lg Rê	.01	84.90	84.82	84.64	84.96
Learning Rate	.05	84.76	84.90	83.70	83.42
Le	.1	79.90	82.96	83.28	82.48

3 Optimization and Learning Annealing

I then test SGD versus the Adam Optimizer (with the learning rate and embed dimension of 1000). I also simultaneously tested different rates of learning annealing (specifically torch.optim.lr_scheduler.StepLR). This analysis is in the HW1 file. Adam outperformed SGD at every level of annealing, and showed little variation in performance associated with annealing. I will use a gamma of .1 in the final model due it its superior performance here. For charts, see the end of the HW1 file.

	Annealing Gamma			
Optimizer	1	.5	.1	.01
SGD	65.34	64.20	65.18	64.72
Adam	87.00	87.14	87.24	86.94

4 NGrams Variation

For NGrams, I experimented with NGram of length 2,3,4 (the base model had only length 1). I loaded my Ngrams in the HW1 file, but ran my analysis in HW1_NGRAMS.

	Embedding Dimension			
	100	200	500	1000
Bigrams	85.30	86.06	86.22	86.12
Trigrams	85.94	86.22	86.56	86.02
Quadragrams	85.32	85.40	85.96	85.98

None of the additional Ngrams seemed to add significantly to performance.

5 Max Vocab Size and Max Sentence Length

Finally, I proceeded to vary the vocabulary size and sentence length. I did this only to the base model (see HW1_vocab_sentence) using only unigrams. I would have liked to have tried with bigrams and trigrams, but without a GPU the compute times were simply too slow. Larger vocabs and length were both superior.

	Max Sentence Length		
Vocabulary Size	100	300	500
10,000	82.88	88.02	88.42
50,000	84.02	88.90	89.54

6 Final Model Performance

After varying hyper parameters along all the suggested dimension, and also trying sentence length (unlisted in original assignment), I tried a final model (see HW1_final) with the following characteristics: Adam Optimizer, learning annealing (step LR gamma of .1), unigrams, embedding dimension of 1000, max sentence length of 500, max vocab of 50000, with a base tokenization scheme (no lemmas) with lowercase and punctuation removed. This model achieves:

Final Model Accuracy			
Train	Validation	Test	
98.02	87.62	85.22	

Correct Validation Classifications:

Obviously written for the stage. Lightweight but worthwhile. How can you go wrong with Ralph Richardson, Olivier and Merle Oberon.(true class = pos)

One of my favorite scenes is at the beginning when guests on a private yacht decide to take an impromptu swim - in their underwear! Rather risqué for 1931! (true class = pos)

Go, Igor, go, you are the proof that Slovenian films may, should and must be different. There's soul in it, and this is rare. Don't let anybody put you down! (true class = pos)

Incorrect Validation classifications:

wow...this has got to be the DUMBEST movie I've ever seen. We watched it in english class...and this movie made ABSOLUTELY no sense. I would never, EVER watch this movie again...and my sympathy to those who have ever PAID to see it. (true class = neg)

Summer Phoenix did a great performance where you really feel what she's not able to feel and you just cannot understand what she has on her mind. Besides, she portrays a jewish girl who behaves really confronting the status quo of that century. (true class = pos)

Laughs, adventure, a good time, a killer soundtrack, oscar-worthy acting, and special effects/ animitronics like none other, what else could you want in a movie? If you see this will be on the telly, WATCH IT, otherwise, run out now to RENT IT!!! (true class = pos)