

NISTIR 5100

Thermophysical Properties of Mixtures of Natural Gas Components: A Bibliography of Experimental Data

D.E. Diller J.W. Magee

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Thermophysical Properties of Mixtures of Natural Gas Components: A Bibliography of Experimental Data

D.E. Diller J.W. Magee Physical and Chemical Properties Division Chemical Science and Technology Laboratory

October 2000

U.S. Department of Commerce Norman Y. Mineta, Secretary

Technology Administration

Dr. Cheryl L. Shavers, Under Secretary of Commerce for Technology

National Institute of Standards and Technology Raymond G. Kammer, Director

		397

CONTENTS

1.	Introd	luction	1
	1.1 1.2 1.3 1.4	Objective Scope Organization References	
2.	Exper	rimental Properties	
	2.1	PHASE EQUILIBRIA	
	2.2	VOLUMETRIC PROPERTIES	
	2.3	CALORIMETRIC PROPERTIES	
	2.4	VISCOSITYBibliography - Viscosity	
	2.5	THERMAL CONDUCTIVITY	
		List of Tables	
Table 1.		ription of phase equilibria data by system	
Table 2.		ription of volumetric properties data by system	
Table 3.		ription of calorimetric properties data by system	
Table 4.		ription of viscosity data by system	
rame 3.	LIZESCI	IDDION OF DICTION CONDUCTIVITY ONLY DV SVSICIII	

THERMOPHYSICAL PROPERTIES OF MIXTURES OF NATURAL GAS COMPONENTS: A BIBLIOGRAPHY OF EXPERIMENTAL DATA

D.E. Diller and J.W. Magee

Physical and Chemical Properties Division Chemical Science and Technology Laboratory National Institute of Standards and Technology Boulder, Colorado 80305-3328

We have prepared a bibliography of references to experimental data for thermophysical properties of mixtures of natural gas components. The bibliography is based on a search of Chemical Abstracts citations from January 1980 to May 1998. The search includes mixtures containing methane, ethane, propane, isobutane, n-butane, isopentane, n-pentane, hydrogen, nitrogen, carbon monoxide, carbon dioxide, or water. The physical properties searched were phase equilibria, volumetric, and calorimetric properties, viscosity, and thermal conductivity. The properties are organized in five sections, each with a self-contained list of references.

Key words: bibliography; calorimetric; hydrocarbon; methane; mixture; natural gas; phase equilibria; thermal conductivity; viscosity; volumetric

1. Introduction

1.1 Objective

The purpose of this bibliography is to provide design engineers, data analysts, and experimentalists with a complete reference compilation to currently available data for experimental thermophysical properties of mixtures of natural gas components.

1.2 Scope

This bibliography includes references to experimental data for phase equilibria, volumetric, and calorimetric properties, viscosity, and thermal conductivity. Only articles containing original experimental data are referenced in each category. Articles containing only derived property values are excluded. The mixtures considered contain methane, ethane, propane, isobutane, normal butane, isopentane, normal pentane, hydrogen, nitrogen, carbon monoxide, carbon dioxide, or water. Mixtures containing each hydrocarbon with at least one other hydrocarbon were searched first. Mixtures containing each hydrocarbon with at least one nonhydrocarbon were searched second. Every attempt was made to ensure that all references published between January 1980 and May 1998 have been included.

The present work supplements and updates two extensive bibliographies [1,2] prepared previously in the NBS/NIST laboratories. Combined, the previous editions included references published between 1870 and January 1980. They covered an extensive list of gas mixtures, including natural gases and light gases such as helium-3, helium-4, deuterium, hydrogen deuteride, oxygen, fluorine, argon, krypton, xenon, and hydrogen sulfide. A list of eight categories of experimental data were included in the earlier editions, including vapor-liquid, solid-vapor, solid-liquid, gas-gas, gas hydrate, and liquid-liquid equilibria. This edition drops all phase equilibria except vapor-liquid equilibria and adds the categories of viscosity and thermal conductivity.

In addition to Chemical Abstracts citations, other references were taken from the Ph.D. dissertation of E. W. Lemmon [3]. This work describes a mixture model based on the Helmholtz energy for natural gas mixtures and gives comparisons to the experimental data. Additional volumetric data for the binary constituents of natural gas systems can be found in a Groupe Européen de Rechérches Gazieres (The European Gas Research Group or GERG) monograph [4] which contains several thousand data points.

1.3 Organization

The bibliography is arranged in five sections by thermophysical property. Each section is independent and contains a list of references alphabetized by author. Information on the temperature range, the pressure range, and the composition range are given where appropriate.

1.4 References

- [1] Hiza, M. J.; Kidnay, A. J.; Miller, R. C. Equilibrium Properties of Fluid Mixtures: A Bibliography of Data on Fluids of Cryogenic Interest. New York: Plenum Press; 1975.
- [2] Hiza, M. J.; Kidnay, A. J.; Miller, R. C. Equilibrium Properties of Fluid Mixtures-2: A Bibliography of Experimental Data on Selected Fluids. New York: Plenum Press; 1982.
- [3] Lemmon, E. W. A Generalized Model for the Prediction of the Thermodynamic Properties of Mixtures Including Vapor-Liquid Equilibrium. Ph.D. Dissertation. University of Idaho; 1996.
- [4] Jaeschke, M; Humphreys, A. E. The GERG Databank of High Accuracy Compressibility Factor Measurements. GERG Technical Monograph 4; 1990.

- 2. Experimental Properties2.1 PHASE EQUILIBRIA

	,		
			*

PHASE EQUILIBRIA BINARY SYSTEMS

Table 1. Description of phase equilibria data by system.

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	REFERENCE
Nitrogen-Methane	32	140 to 160	0.65 to 4.9	Kremer (1982)
Nitrogen-Methane	10	123	0.42 to 2.6	Jin, Liu, and Sheng (1993)
Nitrogen-Ethane	32	120 to 133	0.64 to 3.6	Kremer (1982)
Nitrogen-Ethane	73	117 to 132	Up to 4.1	Llave, Luks, and Kohn (1985)
Nitrogen-Ethane	26	220 to 270	0.49 to 12	Brown, Sloan, and Kidnay (1989)
Nitrogen-Propane	17	120 to 127	0.69 to 6.2	Kremer (1982)
Nitrogen-Propane	127	188 to 343	0.08 to 5.8	Hudziak, Kahvand, Yassele, and Leipziger (1984)
Nitrogen-Propane	37	117 to 132	Up to 4.1	Llave, Luks and Kohn (1985)
Nitrogen-n-Butane	31	339 to 380	1.2 to 22	Kohn and Luks (1981)
Nitrogen-n-Butane	50	240 to 310	0.16 to 6.9	Hudziak, Kahvand, Yassele, and Leipziger (1984)
Nitrogen-n-Butane	52	250 to 344	0.04 to 16	Brown, Niesen, Sloan, and Kidnay (1989)
Nitrogen-n-Butane	31	339 to 380	1.2 to 22	Malewski and Sandler (1989)
Nitrogen-n-Butane	23	311 to 411	0.36 to 29	Shibata and Sandler (1989)

PHASE EQUILIBRIA BINARY SYSTEMS

Table 1. (continued)

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	REFERENCE
Carbon Dioxide-Methane	32	219 to 270	0.58 to 8.5	Al-Sahhaf, Kidnay, and Sloan (1983)
Carbon Dioxide-Ethane	136	207 to 270	0.29 to 3.6	Brown, Kidnay, and Sloan. (1988)
Carbon Dioxide-Ethane	13	260	1.7 to 2.8	Clark and Stead (1988)
Carbon Dioxide-Ethane	32	284 to 297	4.7 to 6.3	Goodwin and Moldover (1997)
Carbon Dioxide-Propane	289	211 to 350	0.06 to 5.9	Acosta, Hevla, and Leipzinger (1984)
Carbon Dioxide-Propane	06	311 to 361	Up to 6.7	Niesen and Rainwater (1990)
Carbon Dioxide-Isobutane	69	310 to 394	Up to 7.4	Weber (1984)
Carbon Dioxide-n-Butane	57	310 to 394	Up to 7.8	Weber (1984)
Carbon Dioxide-n-Butane	109	311 to 396	Up to 8.1	Niesen (1989)
Carbon Dioxide-n-Butane	140	278 to 419	Up to 8.2	Pozo de Fernandez, Zollweg, and Streett (1989)
Carbon Dioxide-n-Pentane	88 e	252 to 458	Up to 10	Cheng, Pozo de Fernandez, Zollweg, and Streett (1989)
Methane-n-Pentane	99	311 to 411	Up to 16	Reiff, Peters-Gerth, and Lucas (1987)

PHASE EQUILIBRIA BINARY SYSTEMS

Table 1. (continued)

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	REFERENCE
Ethane-Propane	151	195 to 276	Up to 2	Blanc and Settler (1988)
Ethane-n-Butane	43	303 to 363	Up to 5	Lhotak and Wichterle (1981)
Propane-n-Butane	29	303 to 363	Up to 3	Beranek and Wichterle (1981)

PHASE EQUILIBRIA TERNARY SYSTEMS

Table 1. (continued)

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	REFERENCE
Nitrogen-Methane-Ethane	42	116 to 160	Up to 6.1	Llave, Luks, and Kohn (1987)
Nitrogen-Methane-Propane	102	116 to 160	Up to 6.1	Llave, Luks, and Kohn (1987)
Nitrogen-Methane-Propane	54	200	Up to 12.0	Trappehl and Knapp (1988)
Nitrogen-Methane-n-Butane	107	117 to 175	Up to 6.3	Merrill, Luks, and Kohn (1984b)
Nitrogen-Methane-n-Pentane	68	164 to 194	Up to 5.1	Merrill, Luks, and Kohn (1984a)
Nitrogen-Methane-n-Hexane	137	164 to 194	Up to 5.1	Merrill, Luks, and Kohn (1984a)
Nitrogen-Methane-n-Heptane	117	169 to 192	Up to 5.1	Chen, Llave, Luks, and Kohn (1989)
Nitrogen-Ethane-n-Butane	73	169 to 192	Up to 5.1	Chen, Llave, Luks, and Kohn (1989)
Carbon Monoxide-Methane-Nitrogen	23	120 to 140	Up to 4.0	Kremer and Knapp (1983)
Carbon Dioxide-Methane-Hydrogen	37	223 to 250	Up to 27.6	Freitag and Robinson (1986)
Carbon Dioxide-Methane-n-Butane	30	274 to 333	Up to 36	Pan, Yang and Guo (1995)
Carbon Dioxide-Methane-n-Hexane	113	190 to 200	4.2 to 5.6	Merrill, Luks, and Kohn (1983)

PHASE EQUILIBRIA TERNARY SYSTEMS

Table 1. (continued)

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	REFERENCE
Carbon Dioxide-Methane-n-Hexadecane	69	293 to 423	Up to 50	Daridon, Saint-Guirons, Lagourette, and Xans (1993)
Carbon Dioxide-n-Butane-n-Decane	49	344	Up to 12	Nagarajan, Gasem, and Robinson (1990)
Methane-Ethane-Propane	36	144 to 245	Up to 7.2	Parikh, Bukacek, Graham, and Leipziger (1984)
Methane-Ethane-Propane	17	200	Up to 4.0	Trappehl and Knapp (1988)

Bibliography - Phase Equilibria

- Acosta, J. C., Hevla, E.; Leipziger, S. Dew and bubble point measurements for carbon dioxide-propane mixtures. J. Chem. Eng. Data 29: 304-309; 1984.
- Al-Sahhaf, T. A.; Kidnay, A. J; Sloan, E. D. Liquid + vapor equilibria in the N₂ + CO₂ + CH₄ system. Ind. Eng. Chem. Fundam. 22: 372-380; 1983.
- Beranek, P.; Wichterle, I. Vapour-liquid equilibria in the propane-n-butane system at high pressures. Fluid Phase Equilib. 6(3): 279-282; 1981.
- Blanc, C. J.; Settler, J. B. Vapor-liquid equilibria for the ethane-propane system at low temperature. J. Chem. Eng. Data 33: 111-115; 1988.
- Brown, T. S.; Kidnay, A. J.; Sloan, E. D. Vapor-liquid equilibria in the carbon dioxide-ethane system. Fluid Phase Equilib. 40: 169-184; 1988.
- Brown, T. S.; Niesen, V. G.; Sloan, E. D.; Kidnay, A. J. Vapor-liquid equilibria for the binary systems of nitrogen, carbon dioxide, and n-butane at temperatures from 220 to 344 K. Fluid Phase Equilib. 53: 7-14; 1989.
- Brown, T. S.; Sloan, E. D.; Kidnay, A. J. Vapor-liquid equilibria in the nitrogen + carbon dioxide + ethane system. Fluid Phase Equilib. 51: 299-313; 1989.
- Chen, W. L.; Llave, F. M.; Luks, K. D.; Kohn, J. P. Three-phase liquid-liquid-vapor equilibria in the nitrogen + ethane + n-butane system, 169 to 192K, up to 5.1 MPa. J. Chem. Eng. Data 34(2): 233-235; 1989.
- Chen, W. L.; Luks, K. D.; Kohn, J. P. Three-phase liquid-liquid-vapor equilibria in the nitrogen + methane + n-heptane system. J. Chem. Eng. Data. 34(3): 312-14; 1989.
- Cheng, H.; Pozo de Fernandez, M. E.; Zollweg, J. A.; Street, W. B. Vapor-liquid equilibrium in the system carbon dioxide + n-pentane from 252 to 458 K at pressures to 10 MPa. J. Chem. Eng. Data. 34(3): 319; 1989.
- Clark, A. Q.; Stead, K. (Vapour + liquid) phase equilibria of binary, ternary, and quaternary mixtures of CH₄, C₂H₆, C₃H₈, C₄H₁₀, and CO₂. J. Chem. Thermodyn. 20: 413-428; 1988.
- Daridon, J. L.; Saint-Guirons, H.; Lagourette, B.; Xans, P. Density and phase behavior of the ternary system methane carbon dioxide hexadecane between 293 and 423 K and up to 50 MPa. Study of the effect of adding water. Ber. Bunsen-Ges. Phys. Chem. 97(2): 246-251; 1993.
- Freitag, N. P.; Robinson, D. B. Equilibrium phase properties of the hydrogen-methane-carbon dioxide, hydrogen-carbon dioxide-n-pentane and hydrogen-n-pentane systems. Fluid Phase Equilib. 31(2): 183-201; 1986.

- Goodwin, A. R. H.; Moldover, M. R. Phase border and density determinations in the critical region of (carbon dioxide + ethane) determined from dielectric permittivity measurements. J. Chem Thermodyn. 29(12): 1481-1494; 1997.
- Hudziak, J. A.; Kahvand, H.; Yassale, M.; Leipziger, S. Dew point measurements for nitrogen-propane and nitrogen-butane mixtures. J. Chem. Eng. Data 29: 296-301; 1984.
- Jin, Z.-Li; Liu, K-Y.; Sheng, W.-W. Vapor-liquid equilibrium in binary and ternary mixtures of nitrogen, argon and methane. J. Chem. Eng. Data. 38: 353-355; 1993.
- Kohn, J. D.; Luks, K. D. Liquid-Liquid-Vapor Equilibria in Cryogenic LNG Mixtures. RR-49. Tulsa: Gas Processors Association; 1981.
- Kremer, H. Experimentelle untersuchung und berechnung von hochdruck-flussigkeits-dampf und flussigkeits-flussigkeits-dampf-gleichgewichten für tiefsiedende gemische. Ph.D. Dissertation, University of Berlin; 1982.
- Kremer, H.; Knapp, H. Vapor-liquid equilibria in ternary mixtures of H₂, N₂, CO and CH₄. Fluid Phase Equilib. 11: 289-310; 1983.
- Lhotak, V.; Wichterle, I. Vapour-liquid equilibria in the ethane-n-butane system at high pressures, Fluid Phase Equilib. 6(3): 229-235; 1981.
- Llave, F. M.; Luks, K. D.; Kohn, J. P. Three-phase liquid-liquid-vapor equilibria in the binary systems nitrogen + ethane and nitrogen + propane. J. Chem. Eng. Data 30(4): 435-438; 1985.
- Llave, F. M.; Luks, K. D.; Kohn, J. P. Three-phase liquid-liquid-vapor equilibria in the nitrogen-methane-ethane and nitrogen-methane-propane systems. J. Chem. Eng. Data 32(1): 14-17; 1987.
- Malewski, M. K. F.; Sandler, S. I. High-pressure vapor-liquid equilibria of the binary mixtures nitrogen + n-butane and argon + n-butane. J. Chem. Eng. Data 34: 424-426; 1989.
- Merrill, R. C., Jr.; Luks, K. D.; Kohn, J. P. Three-phase liquid-liquid-vapor equilibria in the methane + n-pentane + n-octane, methane + n-hexane + n-octane, and methane + n-hexane + carbon dioxide systems. J. Chem. Eng. Data 28(2): 210-215; 1983.
- Merrill, R. C., Jr.; Luks, K. D.; Kohn, J. P. Three-phase liquid-liquid-vapor equilibria in the methane + n-hexane + nitrogen and methane + n-pentane + nitrogen systems. J. Chem. Eng. Data 29(3): 272-276; 1984.
- Merrill, R. C., Jr.; Luks, K. D.; Kohn, J. P. Three-phase liquid-liquid-vapor equilibria in the methane + n-butane + nitrogen system. Adv. Cryo. Eng. 29: 949-955; 1984.
- Nagarajan, N.; Gasem, K. A. M.; Robinson, R. L., Jr. Equilibrium phase compositions, phase densities, and interfacial tensions for carbon dioxide + hydrocarbon systems. 6. Carbon dioxide + n-butane + n- decane. J. Chem. Eng. Data 35(3): 228-31; 1990.

- Niesen, V. G. (Vapor + liquid) equilibria and coexisting densities of (carbon dioxide + n-butane) at 311 to 395 K. J. Chem. Thermodyn. 21(9): 915-923; 1989.
- Niesen, V. G.; Rainwater, J. C. Critical locus, (vapor + liquid) equilibria, and coexisting densities of (carbon dioxide + propane) at temperatures from 311 K to 361 K. J. Chem. Thermodyn. 22(8): 777-795; 1990.
- Pan, H.-Q.; Yang, T.; Guo, T.-M. Measurement and prediction of the bubble/dew point locus in the near-critical region and of the compressed fluid densities of the methane-carbon dioxide-n-butane ternary system. Fluid Phase Equilib. 105(2): 259-271; 1995.
- Parikh, J. S.; Bukacek, R. F.; Graham, L.; Leipziger, S. Dew and bubble point measurements for a methane-propane mixture. J. Chem. Eng. Data 29: 301-303; 1984.
- Pozo de Fernandez, M. E.; Zollweg, J. A.; Streett, W. B. Vapor-liquid equilibrium in the binary system carbon dioxide + n-butane. J.Chem. Eng. Data. 34(3): 324; 1989.
- Reiff, W. E.; Peters-Gerth, P.; Lucas, K. A static equilibrium apparatus for (vapour+liquid) equilibrium measurements at high temperatures and pressures. Results for (methane+n-pentane). J. Chem. Thermodyn. 19: 467-477; 1987.
- Shibata, S. K.; Sandler, S. I. High-pressure vapor-liquid equilibria involving mixtures of nitrogen, carbon dioxide and n-butane. J. Chem. Eng. Data 34(3): 291; 1989.
- Trappehl, G.; Knapp, H. Vapour-liquid equilibria in the ternary mixtures N₂-CH₄-C₃H₈ and CH₄-C₂H₆-C₃H₈. Cryogenics 28(6): 398-405; 1988.
- Weber, L. A. Simple apparatus for vapor-liquid equilibrium measurements with data for the binary systems of carbon dioxide with n-butane and isobutane. J. Chem. Eng. Data 34: 171-175; 1989.

2.2 VOLUMETRIC PROPERTIES

Table 2. Description of volumetric properties data by system.

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	COMPOSITION RANGE, MOLE FRACTION	REFERENCE
Carbon Dioxide-Nitrogen	256	323 to 348	49 to 274	0.25 to 0.74 CO ₂	Hacura, Yoon, and Baglin (1988)
Carbon Dioxide-Nitrogen	196	300 to 320	0.21 to 10.6	0.11 to 0.91 CO ₂	Brugge, Hwang, Rogers, Holste, Hall, Lemming, Esper, Marsh, and Gammon (1989)
Carbon Dioxide-Nitrogen	79	250 to 330	2.3 to 33.1	$0.98\mathrm{CO}_2$	Ely, Haynes, and Bain (1989)
Carbon Dioxide-Nitrogen	152	209 to 320	0.09 to 48.4	0.45 CO ₂	Esper, Bailey, Holste, and Hall (1989)
Carbon Dioxide-Nitrogen	41	293	0.60 to 5.18	0.27 to 0.70 CO ₂	Jiang, Wang and Shi (1990)
Nitrogen-Methane	478	82 to 320	0.59 to 35.6	$0.29 ext{ to } 0.68 ext{ N}_2$	Straty and Diller (1980)
Nitrogen-Methane	85	150 to 320	1.0 to 16.4	0.29 to $0.68~\mathrm{N}_2$	Haynes and McCarty (1983)
Nitrogen-Methane	330	323	1.0 to 34	0.10 to $0.86~\mathrm{N_2}$	Achtermann, Bose, Rogener, and St-Arnaud (1986)

Table 2. (continued)

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	COMPOSITION RANGE, MOLE FRACTION	REFERENCE
Nitrogen-Methane	39	280 to 300	0.22 to 10.5	0.50	Brugge, Hwang, Marsh, Holste, Hall, and Savidge (1989)
Nitrogen-Methane	896	270 to 353	0.32 to 28.6	0.20 to 0.75 N ₂	Jaeschke and Hinze (1991)
Nitrogen-Methane	43	673	Up to 100	0.10 to $0.90~\mathrm{N}_2$	Seitz and Blencoe (1996)
Nitrogen-Methane	190	323 to 573	Up to 100	0.10 to $0.90\mathrm{M}_2$	Seitz, Blenco, and Bodnar (1996)
Nitrogen-Ethane	488	270 to 350	0.20 to 28.7	$0.25 \text{ to } 0.75 \text{ N}_2$	Achtermann, Bose, Rogener, and St-Arnaud (1991)
Carbon Monoxide-Methane	Ξ	116 to 125	Up to 128	0.29 to 0.79 CO	Calado, Guedes, DaPonte, and Streett (1984)
Carbon Dioxide-Methane	91	225 to 400	2.1 to 36	0.98 CO ₂	Magee and Ely (1988)
Carbon Dioxide-Methane	119	206 to 320	0.08 to 48.3	$0.48\mathrm{CO}_2$	Esper, Bailey, Holste, and Hall (1989)

Table 2. (continued)

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	COMPOSITION RANGE, MOLE FRACTION	REFERENCE
Carbon Dioxide-Methane	155	300 to 320	0.08 to 0.48	0.10 to 0.90 CO ₂	Brugge, Hwang, Rogers, Holste, Hall, Lemming, Esper. Marsh, and Gammon (1989)
Carbon Dioxide-Methane	108	250 to 400	1.8 to 34.9	0.90 CO ₂	Magee, Howley, and Ely (1994)
Carbon Dioxide-Methane	44	673	Up to 100	0.10 to 0.90 CO ₂	Seitz and Blencoe (1996)
Carbon Dioxide-Methane	194	323 to 573	Up to 100	0.10 to 0.90 CO ₂	Seitz, Blencoe, and Bodnar (1996)
Carbon Dioxide-Methane	228	225 to 350	Up to 35	0.10 to 0.90 CO ₂	Hwang, Iglesias-Silva, Holste, Hall, Gammon, and Marsh (1997)
Carbon Dioxide-Ethane	234	240 to 350	1.5 to 35.3	0.25 to 0.90 CO ₂	Lau (1986)
Carbon Dioxide-Ethane	255	300 to 320	0.03 to 6.83	0.10 to 0.90 CO ₂	Lemming (1989)

Table 2. (continued)

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	COMPOSITION RANGE, MOLE FRACTION	REFERENCE
Carbon Dioxide-Ethane	94	245 to 400	2.8 to 34.8	0.99 CO ₂	Sherman, Magee, and Ely (1989)
Carbon Dioxide-Ethane	206	300 to 320	0.10 to 6.83	0.10 to 0.90 CO ₂	Brugge, Hwang, Rogers, Holste, Hall, Lemming, Esper, Marsh and Gammon, (1989)
Carbon Dioxide-Ethane	131	303 to 333	0.68 to 6.15	0.36 to 0.67 CO ₂	McElroy, Dowd, and Battino. (1990)
Carbon Dioxide-Ethane	253	290 to 320	0.14 to 12.2	0.25 to 0.74 CO ₂	Weber (1992)
Carbon Dioxide-Ethane	188	240 to 450	Up to 35	0.25 to 0.90 CO ₂	Lau, Hwang, Holste, Hall, Gammon, and Marsh (1997)
Carbon Dioxide-Ethane	115	292	Up to 6.2	0.06 to 0.98 CO ₂	Wormald and Hodgetts (1997)
Carbon Dioxide-Propane	187	311 to 361	Up to 6.7	0 to 0.77 CO ₂	Niesen and Rainwater (1990)
Carbon Dioxide-n-Butane	601	311 to 395	Up to 8.1	0 to 0.94 CO ₂	Niesen (1989)
Methane-Propane	426	152 to 327	1.94 to 65.4	0.95 CH ₄	Arai and Kobayashi (1980)

Table 2. (continued)

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	COMPOSITION RANGE, MOLE FRACTION	REFERENCE
Methane-Ethane	414	100 to 320	1.67 to 35.9	0.35 to 0.69 CH ₄	Haynes, McCarty, Eaton, and Holste (1985)
Ethane-Propane	315	283 to 322	2.76 to 9.65	0.30 to 0.95 C ₂ H ₆	Parrish (1984)
Ethane-Propane	423	204 to 400	0.3 to 34.6	0.11 to $0.80~\mathrm{C_2H_6}$	Holcomb, Magee, and Haynes (1995)
Propane-i-Butane	341	200 to 400	1.2 to 35.1	0.30 to 0.70 C ₃ H ₈	Duarte-Garza and Magee (1999)
Propane-n-Butane	513	283 to 333	0.28 to 9.65	0.10 to 0.75 C ₃ H ₈	Parrish (1986)
Propane-n-Butane	198	236 to 414	0.06 to 34.9	0.16 to 0.82 C ₃ H ₈	Holcomb, Magee, and Haynes (1995)
n-Butane-n-Pentane	82	241 to 410	0.01 to 2.5	0.15 to 0.78 C ₄ H ₁₀	Holcomb, Magee, and Haynes (1995)
Methane-Water	176	398 to 498	Up to 12	0.1 to 0.5 CH ₄	Joffrion and Eubank (1989)
Methane-Water	102	523 to 653	Up to 64	0.15 to 0.95 CH ₄	Abdulagatov, Bazaev, and Remazanova (1993)
Methane-Water	88	430 to 699	Up to 30	0.08 to 0.68 CH ₄	Fenghour, Wakeham, and Watson (1996

Table 2. (continued)

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	COMPOSITION RANGE, MOLE FRACTION	REFERENCE
Aethane-Hydrogen	160	273 to 600	0.3 to 72	0.80 CH ₄	Magee, Pollin, Martin, and Kobayashi (1985)
Methane-Hydrogen	170	140 to 273	1.0 to 70	$0.80~\mathrm{CH_4}$	Magee and Kobayashi (1986)
Methane-Hydrogen	296	130 to 159	1.7 to 107	0.09 to 0.92 CH ₄	Machado and Street (1988)

Table 2. (continued)

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	REFERENCE
Nitrogen-Carbon Dioxide-Methane	39	245 to 400	3.5 to 33.0	Magee, Howley, and Ely (1994)
Nitrogen-Carbon Dioxide-Methane	242	323 to 573	Up to 100	Seitz (1994)
Nitrogen-Carbon Dioxide-Methane	271	323 to 573	Up to 100	Seitz, Blencoe, and Bodnar 1996)
Nitrogen-Methane-Ethane	101	275 to 345	Up to 60	Staby and Mollerup (1991)
Carbon Dioxide-Methane-n-Butane	132	274 to 310	Up to 12	Pan, Yang, and Guo (1995)
Carbon Dioxide-Methane-n-Hexadecane	389	293 to 423	Up to 50	Daridon, Saint-Guirons, Lagourette, and Xans (1993)
Carbon Dioxide-Ethene-Propane	681	294 to 311	Up to 12	Ashcroft and Shearn (1985)
Carbon Dioxide-Propane-Methanol	185	323 to 398	Up to 40	Galicia-Luna, Richon, and Renon (1994)
Carbon Dioxide-n-Butane-n-Decane	30	344	Up to 12	Nagarajan, Gasem, and Robinson (1990)

Bibligraphy - Volumetric Properties

- Abdulagatov, I. M.; Bazaev, A. R.; Ramazanova, A. E. Volumetric properties and virial coefficients of water + methane. J. Chem. Thermodyn. 25(2): 249-259; 1993.
- Achtermann, H. J.; Bose, T. K.; Rogener, H.; St-Arnaud, J. M. Precise determination of the compressibility factor of methane, nitrogen, and their mixtures from refractive index measurements. Int. J. Thermophys. 7(3): 709-721; 1986.
- Arai, K.; Kobayashi, R. Measurement of isochoric P-V-T behavior of a nominal 95 mol.% methane-5 mol.% propane mixture from near-ambient to cryogenic temperatures. Adv. Cryo. Eng. 25: 640-653; 1980.
- Ashcroft, S. J.; Shearn, R. B. High pressure volumetric properties of ethene-carbon dioxide-propane at 294 K and 311 K. Chem. Eng. Res. Des. 63(5): 283-290, 1985.
- Bailey, D. M.; Esper, G. J.; Holste, J. C.; Hall, K. R.; Eubank, P. T.; Marsh, K. M.; Rogers, W. J. Properties of CO₂ mixtures with N₂ and with CH₄. RR-122. Tulsa: Gas Processors Association; 1989.
- Brugge, H. B.; Hwang, C.-A.; Marsh, K. N.; Holste, J. C.; Hall, K. R.; Savidge, J. L. Experimental density measurements for a methane + nitrogen mixture: effect of composition uncertainties. Proc., 1989 International Gas Research Conference, Tokyo. Cramer, T. L., ed. Rockville:Government Institutes, Inc.; 1989. 271-278.
- Brugge, H. B.; Hwang, C. A.; Rogers, W. J.; Holste, J. C.; Hall, K. R.; Lemming, W.; Esper, G. J.; Marsh, K. N.; Gammon, B. E. Experimental cross virial coefficients for binary mixtures of carbon dioxide with nitrogen, methane and ethane at 300 and 320 K. Physica A, 156, 382-416; 1989.
- Calado, J. C. G.; Guedes, H. J. R.; Nunes Da Ponte, M.; Streett, W. B. Thermodynamic properties of liquid mixtures of carbon monoxide and methane. Fluid Phase Equilib.16: 185-204; 1984.
- Daridon, J. L.; Saint-Guirons, H.; Lagourette, B.; Xans, P. Density and phase behavior of the ternary system methane carbon dioxide hexadecane between 293 and 423 K and up to 50 MPa.Study of the effect of adding water. Ber. Bunsen-Ges. Phys. Chem. 97(2): 246-251; 1993.
- Duarte-Garza, H. A.; Magee, J. W. Isochoric $p-\rho-T$ and Heat Capacity C_v Measurements on $\{x C_3H_8 + (1-x) i-C_4H_{10}, x\approx 0.7, 0.3\}$ from 200 to 400 at Pressures to 35 MPa. J. Chem. Eng. Data 44 (5) 1048-1054; 1999.
- Ely, J. F., Haynes, W. M.; Bain, B. C., Isochoric p, V_m , T Measurements on CO_2 and on 0.982 CO_2 + 0.01 N_2 From 250 to 330 K at Pressures to 35 MPa, J. Chem. Thermodyn., 21: 879-894; 1989.
- Esper, G. J.; Bailey, D. M.; Holste, J. C.; Hall, K. R. Volumetric behavior of near-equimolar mixtures for carbon dioxide + methane and carbon dioxide + nitrogen. Fluid Phase Equilib. 49: 35-47; 1989.

- Fenghour, A.; Wakeham, W. A.; Watson, J. T. R. Densities of water + methane in the temperature range 430 K to 699 K and at pressures up to 30 MPa. J. Chem. Thermodyn. 28(4): 447-458; 1996.
- Galicia-Luna, L. A.; Richon, D.; Renon, H. New loading technique for a vibrating tube densimeter and measurements of liquid densities up to 39.5 MPa for binary and ternary mixtures of the carbon dioxide-methanol-propane system. J. Chem. Eng. Data 39(3): 424-431; 1994.
- Galicia-Luna, L. A.; Richon, D.; Renon, H. New loading technique for a vibrating tube densimeter and measurements of liquid densities up to 39.5 MPa for binary and ternary mixtures of the carbon dioxide-methanol-propane system. Erratum to document cited in CA121:43241. J. Chem. Eng. Data 40(2): 528-529; 1995.
- Hacura, A.; Yoon, J. H.; Baglin, F. G. Density values of carbon dioxide and nitrogen mixtures from 500 to 2500 bar at 323 and 348 K. J. Chem. Eng. Data 33(2): 152-154; 1988.
- Haynes, W. M.; McCarty, R. D. Low-density isochoric pressure-volume-temperature measurements on nitrogen + methane. J. Chem. Thermodyn. 15(9): 815-819; 1983.
- Haynes, W. M.; McCarty, R. D.; Eaton, B. E.; Holste, J. C. Isochoric *p*, *V_m*, *x*, *T* measurements on methane + ethane from 100 to 320 K at pressures to 35 MPa. J. Chem. Thermodyn. 17(3): 209-232; 1985.
- Holcomb, C. D.; Magee, J. W.; Haynes, W. M. Density Measurements on Natural Gas Liquids. RR-147. Tulsa: Gas Processors Association; 1995.
- Hwang, C.; Iglesias-Silva, G. A.; Holste, J. C.; Hall, K. R.; Gammon, B. E.; Marsh, K. N. Densities of carbon dioxide + methane mixtures from 225 K to 350 K at pressures up to 35 MPa. J. Chem. Eng. Data 42(5): 897-899; 1997.
- Jaeschke, M.; Hinze, H. M. Ermittlung des realgasverhaltens von methan und stickstoff und deren gemische im termperaturebereich von 270 K bis 353 K und drucken bis 30 MPa. Fortschritt-Berichte VDI, Series 3, Number 262, 1991.
- Jaeschke, M.; Humphreys, A. E. The GERG databank of high accuracy compressibility factor measurements. GERG Technical Monograph 4, Verlag des Vereins Deutscher Ingenieure, Dusseldorf, Germany; 1990.
- Jiang, S.; Wang, Y.; Shi, J. Determination of compressibility factors and virial coefficients for the systems containing N₂, CO₂ and CHClF₂ by the modified Burnett method. Fluid Phase Equilib. 57(1-2): 105-117; 1990.
- Joffrion, L. L.; Eubank, P. T. Compressibility factors, densities and residual thermodynamic properties for methane-water mixtures. J. Chem. Eng. Data 34(2): 215-220; 1989.
- Lau, W. A continuously weighed pycnometer providing densities for carbon dioxide + ethane mixtures between 240 and 350 K at pressures up to 35 MPa. Ph.D. Dissertation, Texas A&M University; 1986.

- Lau, W.; Hwang, C.; Holste, J. C.; Hall, K. R.; Gammon, B. E.; Marsh, K. N. Densities of carbon dioxide + ethane mixtures from 240 K to 450 K at pressures up to 35 MPa. J. Chem. Eng. Data 42(5): 900-902; 1997.
- Lemming, W. Experimentelle bestimmung akustischer und thermischer virialkoeffizienten von arbeitsstoffen der energietechnik. Fortschritt-Berichte VDI, 19: 32; 1989.
- Machado, J. R. S.; Streett, W. B. *PVT* measurements of hydrogen/methane mixtures at high pressures. J. Chem. Eng. Data 33: 148-152; 1988.
- Magee, J. W.; Pollin, A. G.; Martin, R. J.; Kobayashi, R. Burnett-isochoric *P-V-T* measurements of a nominal 20 mol% hydrogen 80 mol% methane mixture at elevated temperatures and pressures. Fluid Phase Equilib. 22: 155-173; 1985.
- Magee, J. W.; Kobayashi, R. Isochoric (p, ρ_w T) measurements on (0.2005 H₂ + 0.7995 CH₄) at temperatures from 140 to 273.15 K and pressures to 70 MPa. J. Chem. Thermodyn. 18: 847-858; 1986.
- Magee, J. W.; Ely, J. F. Isochoric p, v, T measurements on CO_2 and $0.98 CO_2 + 0.02 CH_4$ from 225 to 400 K and pressures to 35 MPa. Int. J. Thermophys. 9(4): 547-557; 1988.
- Magee, J. W.; Howley, J; Ely, J. F. A Predictive Model for the Thermophysical Properties of Carbon Dioxide Rich Mixtures. RR-136. Tulsa: Gas Processors Association; 1994.
- McElroy, P. J.; Dowd, M. K.; Battino, R. Compression-factor measurements on ethane and ethane + carbon dioxide using a direct method. J. Chem. Thermodyn. 22(5): 505-512; 1990.
- Nagarajan, N.; Gasem, K. A. M.; Robinson, R. L., Jr. Equilibrium phase compositions, phase densities, and interfacial tensions for carbon dioxide + hydrocarbon systems. 6. Carbon dioxide + n-butane + n-decane. J. Chem. Eng. Data 35(3): 228-231; 1990
- Niesen, V. G. Vapor + liquid equilibria and coexisting densities of carbon dioxide + n-butane at 311 to 395 K. J. Chem. Thermodyn. 21(9): 915-923; 1989.
- Niesen, V. G.; Rainwater, J. C. Critical locus, vapor + liquid equilibria, and coexisting densities of carbon dioxide + propane at temperatures from 311 K to 361 K. J. Chem. Thermodyn. 22(8): 777-795; 1990.
- Pan, H.-Q.; Yang, T.; Guo, T.-M. Measurement and prediction of the bubble/dew point locus in the near-critical region and of the compressed fluid densities of the methane-carbon dioxide-n-butane ternary system. Fluid Phase Equilib. 105(2): 259-271; 1995.
- Parrish, W. R. Compressed liquid densities of ethane-propane mixtures between 10 and 49°C at pressures up to 9.6 MPa. Fluid Phase Equilib. 18: 279-297; 1984.

- Parrish, W. R. Compressed liquid densities of propane-normal butane mixtures between 10 and 60°C at pressures up to 9.6 MPa. Fluid Phase Equilib. 25: 65-90; 1986.
- Seitz, J. C. Experimental determination of the volumetric properties for the system CO₂-CH₄-N₂ at 100-1000 bars and 50-300 C. Diss. Abstr. Int. B 1994, 55(3): 783; Univ. Microfilms Int., Order No. DA9422535, 114 pp., 1994.
- Seitz, J. C.; Blencoe, J. G. Volumetric properties for $(1-x)CO_2 + xCH_4$, $(1-x)CO_2 + xN_2$, and $(1-x)CH_4 + xN_2$ at the pressures 19.94, 29.94, 39.94, 59.93, 79.93, and 99.93 MPa and the temperature 673.15 K. J. Chem. Thermodyn. 28, (11): 1207-1213; 1996.
- Seitz, J. C.; Blencoe, J. G.; Bodnar, R. J. Volumetric properties for (1-x)CO₂+xCH₄, (1-x)CO₂+xN₂, and (1-x)CH₄+xN₂ at the pressures 9.94, 19.94, 29.94, 39.94, 59.93, 79.93, and 99.93 MPa and temperatures 323.15, 373.15, 473.15,and 573.15 K. J. Chem. Thermodyn. 28(5): 521-538; 1996.
- Seitz, J. C.; Blencoe, J. G.; Bodnar, R. J. Volumetric properties for x₁CO₂+x₂CH₄+(1-x₁-x₂N₂) at the pressures 19.94, 39.94, 59.93, and 99.93 MPa and temperatures 323.15, 373.15, 473.15, and 573.15 K. J. Chem. Thermodyn. 28, No. 5): 539-550; 1996.
- Sherman, G. J., Magee, J. W. and Ely, J. F. PVT Relationships in a carbon dioxide-rich mixture with ethane. Int. J. Thermophys. 10(1):47-59; 1989.
- Staby, A.; Mollerup, J. M. Measurement of the volumetric properties of a nitrogen-methane-ethane mixture at 275, 310, and 345 K at pressures to 60 MPa. J. Chem. Eng. Data 36(1): 89-91; 1991.
- Straty, G. C. and Diller, D. E. P,V,T of compressed and liquefied nitrogen + methane, J. Chem. Thermodyn. 12(10): 937-953; 1980.
- Weber, L. A. Measurements of the virial coefficients and equation of state of the carbon dioxide + ethane system in the supercritical region. Int. J. Thermophys. 13(6): 1011-1032; 1992.
- Wormald, C. J.; Hodgetts, R. W. Excess enthalpies and volumes for carbon dioxide + ethane at T = 291.6 K, close to the minimum in the critical locus. J. Chem. Thermodyn. 29(1): 75-85; 1997.

2.3 CALORIMETRIC PROPERTIES

CALORIMETRIC PROPERTIES BINARY SYSTEMS

Table 3. Description of calorimetric properties data by system.

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	COMPOSITION RANGE, MOLE FRACTION	REFERENCE	REMARKS
Nitrogen- Carbon Dioxide	9	250 to 350	0.52 to 10.3	0.50 N ₂	Younglove, Frederick, and McCarty (1993)	Sound Speed
Nitrogen-Methane	63	173 to 298	200 to 750	0.50 N ₂	Zhang and Schouten (1992)	Sound Speed
Nitrogen-Methane	265	250 to 350	0.09 to 11	$0.05 \text{ to } 0.29 \text{ N}_2$	Younglove, Frederick, and McCarty (1993)	Sound Speed
Nitrogen-Propane	09	241 to 393	0.1	0.30 to 0.70 N ₂	Wormald, Hutchings, and Lewis (1996)	Enthalpy
Nitrogen-n-Butane	40	241 to 393	0.1	0.30 to 0.70 N ₂	Wormald, Hutchings, and Lewis (1996)	Enthalpy
Carbon Dioxide- Methane	09	293 to 313	Up to 4.6	0.20 to 0.80 CO ₂	Barry, Kaliaguine, and Ramalho (1982)	Enthalpy
Carbon Dioxide- Methane	241	250 to 350	0.45 to 11	0.05 to 0.30 CO ₂	Younglove, Frederick, and McCarty (1993)	Sound Speed
Carbon Dioxide- Ethane	199	248 to 308	Up to 11	0 to 0.95 CO ₂	Wormald and Eyears (1988)	Enthalpy
Carbon Dioxide- Ethane	79	230 to 350	Up to 18	0.10 to 0.90 CO ₂	Moller, Gammon, Marsh, Hall, and Holste (1993)	Enthalpy

CALORIMETRIC PROPERTIES BINARY SYSTEMS

Table 3. (continued)

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	COMPOSITION RANGE, MOLE FRACTION	REFERENCE	REMARKS
Carbon Dioxide- Ethane	260	220 to 340	Up to 35	0.25 to 0.74 CO ₂ Magee (1995)	Magee (1995)	$C_{\rm v}$
Carbon Dioxide- Ethane	115	292	Up to 6.2	0.06 to 0.98 CO ₂	0.06 to 0.98 CO ₂ Wormald and Hodgetts (1997)	Enthalpy
Carbon Dioxide- n-Butane	20	231	Up to 2	0.15 to 0.85 CO ₂	0.15 to 0.85 CO ₂ Guedes, Zollweg, and Streett (1991)	Enthalpy
Methane-Ethane	979	101 to 328	Up to 25	0.35 to 0.69 CH ₄	0.35 to 0.69 CH ₄ Mayrath and Magee (1988)	$C_{ m c}$
Methane-Ethane	392	250 to 350	Up to 11	0.35 to 0.95 CH ₄	Younglove, Frederick, and McCarty (1993)	Sound Speed
Methane-Propane	92	250 to 350	0.48 to 10.4	$0.90~\mathrm{CH_4}$	Younglove, Frederick, and McCarty (1993)	Sound Speed
Propane-i-Butane	135	203 to 342	3.3 to 33.0	0.30 to $0.70 C_3H_8$	0.30 to 0.70 C ₃ H ₈ Duarte-Garza and Magee (1988) $C_{\rm v}$	Ç

CALORIMETRIC PROPERTIES TERNARY SYSTEMS

Table 3. (continued)

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	REFERENCE	REMARKS
				Down Volioning and Ramalho	Enthalov
Carbon Dioxide-Hydrogen Sulfide-Methane	39	293 to 313	Up to 1.5	(1983)	
		000 4- 010	110 to 3 4	Gaone, Kaliaguine, and Ramalho	Enthalpy
Carbon Dioxide-Methane-	36	293 to 313	F.C 01 dO	(1986)	
Ethlylene	4.0				

CALORIMETRIC PROPERTIES AQUEOUS SYSTEMS

Table 3. (continued)

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	COMPOSITION RANGE MOLE FRACTION	REFERENCE	REMARKS
Methane-Water	62	Up to 698	Up to 12.6	0.5 H ₂ 0	Wormald and Colling (1984)	Enthalpy
Methane-Water	69	373 to 423	0.1	0.26 to 0.49 H ₂ 0	Smith, Sellars, Yerlett, and Wormald (1983)	Enthalpy
Methane-Water	15	314 to 704	Up to 28	;	Hnedkovsky and Wood (1997)	Cp
Ethane-Water	40	363 to 393	0.1	0.32 to 0.70 C ₂ H ₈	Lancaster and Wormald (1985)	Enthalpy
Propane-Water	40	363 to 393	0.1	0.35 to 0.70 C ₃ H ₈	Lancaster and Wormald (1986)	Enthalpy
Propane-Water	102	468 to 698	Up to 13.7	$0.50~\mathrm{C_3H_8}$	Lancaster and Wormald (1987)	Enthalpy

Bibliography - Calorimetric Properties

- Barry, A. O.; Kaliaguine, S. C.; Ramalho, R. S. Ternary system methane-carbon dioxide-hydrogen sulfide. Excess enthalpy data by flow calorimetry. J. Chem. Eng. Data 28(4): 375-381; 1983.
- Duarte-Garza, H. A.; Magee, J. W. Isochoric p- ρ -T and heat capacity C_v measurements on $\{x \ C_3H_8 + (1-x) \ i$ -C4H10, $x \approx 0.7, 0.3\}$ from 200 to 400 at pressures to 35 MPa. J. Chem. Eng. Data 44 (5): 1048-1054; 1999.
- Gagne, C.; Kaliaguine, S. C.; Ramalho, R. S. Excess enthalpy data for the ternary system methaneethylene-carbon dioxide by flow calorimetry. Can. J. Chem. Eng. 64(3): 478-485; 1986.
- Guedes, H. J. R.; Zollweg, J. A.; Streett, W. B. Enthalpy of mixing of liquid carbon dioxide + ethane at the temperature 230.8 K and of liquid carbon dioxide + n-butane at 221.4 K and 241.4 K. J. Chem. Thermodyn. 23(3): 239-245; 1991.
- Hnedkovsky, L.; Wood, R. H. Apparent molar heat capacities of aqueous solutions of CH₄, CO₂, H₂S, and NH₃ at temperatures from 304 K to 704 K at a pressure of 28 MPa. J. Chem. Thermodyn. 29(7): 731-747; 1997.
- Lancaster, N. M.; Wormald, C. J. The excess molar enthalpies of x water +(1-x)ethane and x water +(1-x)ethene. J. Chem. Thermodyn. 17(3): 295-299; 1985.
- Lancaster N. M; Wormald, C. J. Excess molar enthalpies for water + propene, + propane, and + butane, J. Chem. Thermodyn. 18(6): 545-550; 1986.
- Lancaster, N. M.; Wormald, C. J. The excess molar enthalpies of water-propane $(0.5H_2O + 0.5C_3H_8)$ (g) and water-butane $(0.5H_2O + 0.5C_4H_{10})$ (g) mixtures at high temperatures and pressures. J. Chem. Thermodyn. 19(9): 1001-1006; 1987.
- Magee, J. W. Molar heat capacity at constant volume for $xCO_2 + (1 x)C_2H_6$ from 220 to 340 K at pressures to 35 MPa, J. Chem. Eng. Data 40(2): 438-442; 1995.
- Mayrath, J. E.; Magee, J. W. Measurements of molar heat capacity at constant volume $C_{v,m}$ xCH₄ + (1-x)C₂H₆, T = 100 to 320 K, p < 35 MPa. J. Chem. Thermodyn, 21: 499-513; 1989.
- Moller, D.; Gammon, B. E.; Marsh, K. N.; Hall, K. R.; Holste, J. C. Enthalpy-increment measurements from flow calorimetry of carbon dioxide and of carbon dioxide-ethane xCO₂ +(1-x)C₂H₆ from pressures of 15 MPa to 18 MPa between the temperatures 230 K and 350 K. J. Chem. Thermodyn. 25(10), 1273-1279; 1993.
- Smith, G.; Sellars, A.; Yerlett; T. K.; Wormald, C. J. The excess enthalpy of water + hydrogen vapor and water + methane vapor. J. Chem. Thermodyn. 15(1): 29-35; 1983.
- Wormald, C. J.; Colling, C. N. Excess enthalpies for water + methane vapor up to 698.2 K and 12.6 MPa. AIChE J. 30(3): 386-393; 1984.
- Wormald, C. J.; Eyears, J. M. Excess enthalpies and excess volumes of 0.5 carbon dioxide + 0.5 ethane in the supercritical region. J. Chem. Soc., Faraday Trans. 1. 84(5): 1437-1445; 1988.

- Wormald, C. J.; Eyears, J. M. Excess molar enthalpies and excess molar volumes of carbon dioxide mixtures with ethane $xCO_2 + (1-x)C_2H_6$ up to 308.4 K and 11.0 MPa. J. Chem. Thermodyn. 20(3): 323-331; 1988.
- Wormald, C. J.; Hodgetts, R. W. Excess enthalpies and volumes for carbon dioxide + ethane at T 291.6 K, close to the minimum in the critical locus. J. Chem. Thermodyn. 29(1): 75-85; 1997.
- Wormald, C. J.; Hutchings, D. J.; Lewis, E. J. The excess molar enthalpy and cross-term second virial coefficients of nitrogen + propane and nitrogen + butane from T = 241.2 to 393.4 K. J. Chem. Thermodyn. 28(4), 371-378; 1996.
- Younglove, B.A.; Frederick, N.V.; McCarty, R. D. Speed of Sound Data and Related Models for Mixtures of Natural Gas Constituents. Natl. Inst. Stand. Technol. Monograph 178; 1993.
- Zhang, W.; Schouten, J. A. The sound velocity of a mixture of CH₄ and N₂ from 2 kbar to 8 kbar and from 173 K to 298 K. Physica, A. 493-502; 1992.

2.4 VISCOSITY

VISCOSITY BINARY SYSTEMS

Table 4. Description of viscosity data by system.

SYSTEM	NUMBER OF POINTS	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	COMPOSITION RANGE, MOLE FRACTION	3E, REFERENCE
Carbon Monoxide-Methane	ine 5	298 to 473	0.1	0.33 to 0.68 CO	Kestin and Ro (1983)
Nitrogen-Methane	306	100 to 300	Up to 30	$0.29 \text{ to } 0.68 \text{ N}_2$	Diller (1982)
Carbon Dioxide-Ethane	64	210 to 320	Up to 30	0.25 to 0.74 CO ₂	Diller, Van Poolen, and Dos Santos (1988)
Carbon Dioxide-Ethane	74	320 to 500	Up to 30	0.25 to 0.74 CO ₂	Diller and Ely (1989)
Carbon Dioxide-Ethane	224	298 to 625	0.1	0.25 to 0.74 CO ₂	Hendl and Vogel (1993)
Methane-Ethane	324	100 to 300	Up to 30	0.25 to 0.74 CO ₂	Diller (1984)

Bibliography - Viscosity

- Diller, D. E. Measurements of the viscosity of compressed gaseous and liquid nitrogen + methane mixtures. Int. J. Thermophys. 3(3): 237-249; 1982.
- Diller, D. E. Measurements of the viscosity of compressed gaseous and liquid methane + ethane mixtures. J. Chem. Eng. Data 29(2): 215-221; 1984.
- Diller, D. E.; Ely, J. F. Measurements of the viscosities of compressed gaseous carbon dioxide, ethane, and their mixtures, at temperatures up to 500 K. High Temp. High Pressures 21(6): 613-620; 1989.
- Diller, D. E.; Van Poolen, L. J.; Dos Santos, F. V. Measurements of the viscosities of compressed fluid and liquid carbon dioxide + ethane mixtures. J. Chem. Eng. Data 33(4): 460-464; 1988.
- Hendl, S.; Vogel, E. Temperature and initial density dependence of viscosity of binary mixtures: carbon dioxide-ethane. High Temp.-High Pressures 25(3): 279-289; 1993.
- Kestin, J.; Ro, S. T. The viscosity of carbon monoxide mixtures with four gases in the temperature range 25-200.degree.C. Supplement Ber. Bunsen-Ges. Phys. Chem. 87(7): 600-602; 1983.

2.5 THERMAL CONDUCTIVITY

THERMAL CONDUCTIVITY BINARY SYSTEMS

Table 5. Description of thermal conductivity data by system.

SYSTEM	NUMBER OF POINTS	BER	TEMPERATURE RANGE, K	PRESSURE RANGE, MPa	COMPOSITION RANGE, MOLE FRACTION	REFERENCE
Carbon Dioxide - Nitrogen	rogen 82		321 to 473	1.0 to 30.8	0.29 to 0.84 CO ₂	Johns, Rashid, Rowan, Watson, and Clifford (1988)
Carbon Monoxide-Methane	ethane 41		301	Up to 12	0.23 to 0.75 CO	Imaishi and Kestin (1984)
Nitrogen-Methane	55		301	Up to 8	0.23 to 0.64 N ₂	Kestin, Nagasaka and Wakeham (1982)
Carbon Dioxide-Methane	nane 48		301	Up to 6	0.21 to 0.73 CO ₂	Kestin, Ro, and Nagasaka (1982)
Carbon Dioxide-Ethane	ne 62		298 to 308	Up to 9	0.10 to 0.88 CO ₂	Yorizane, Yoshimura, Masuoka and Yoshida (1983)
Carbon Dioxide-Ethane	ne 15		302 to 308	Up to 9	0.25 to 0.58 CO ₂	Mostert, van den Berg, Van der Gulik and Sengers (1992)
Methane-Ethane	24	2476	140 to 330	0.1 to 70	0.35 to 0.69 CH ₄	Roder and Friend (1985)
Methane-Ethane	09		257 to 311	6.2 to 16.2	0.5 CH ₄	Sakonidou, van den Berg, and ten Seldam (1998)

Bibliography - Thermal Conductivity

- Imaishi, N., Kestin, J. Thermal conductivity of methane with carbon monoxide. Physica Amsterdam. 126A3: 301-307; 1984.
- Johns, A. I.; Rashid, S.; Rowan, L.; Watson, J. T. R.; Clifford, A. A. The thermal conductivity of pure nitrogen and mixtures of nitrogen and carbon dioxide at elevated temperatures and pressures. Int. J. Thermophys. 9(1): 3-19; 1988.
- Kestin, J., Nagasaka, Y.; Wakeham, W. A. The thermal conductivity of mixtures of nitrogen with methane. Ber. Bunsenges. Phys. Chem. E. 867: 632-636; 1982.
- Kestin, J., Ro, S. T.; Nagasaka, Y. The thermal conductivity of mixtures of methane with carbon dioxide. Ber. Bunsenges. Phys. Chem. 86(10): 945-948, 1982.
- Mostert, R.; van den Berg, H. R.; van der Gulik, P. S.; Sengers, J. V. The thermal conductivity of carbon dioxide-ethane mixtures in the critical region. High Temp. High Pressures. 24(4): 469-474; 1992.
- Roder, H. M.; Friend, D. G. Experimental thermal conductivity values for mixtures of methane and ethane. Nat. Bur. Stand. (U.S.) NBSIR 85-3024; 1985.
- Sakonidou, E. P.; van den Berg, H. R.; ten Seldom, C. A. The thermal conductivity of an equimolar methane-ethane mixture in the critical region. J. Chem. Phys. 109(2): 717-736; 1998.
- Yorizane, M. V., Yoshimura, S.; Masuoka, H.; Yoshida, H. Thermal conductivities of binary gas mixtures at high pressures:nitrogen-oxygen, nitrogen-argon, carbon dioxide-argon, and carbon dioxide-methane. Ind. Eng. Chem. Fundam. 22(4): 458-463; 1983.

	**			

ч		