Assumptions in hypothesis testing

HYPOTHESIS TESTING IN R

Richie Cotton

Data Evangelist at DataCamp

Randomness

Assumption

The samples are random subsets of larger populations.

Consequence

Sample is not representative of population.

How to check this

- Understand how your data was collected.
- Speak to the data collector/domain expert.

¹ Sampling techniques are discussed in "Sampling in R".

Independence of observations

Assumption

Each observation (row) in the dataset is independent.

Consequence

Increased chance of false negative/positive error.

How to check this

Understand how your data was collected.

Large sample size

Assumption

The sample is big enough to mitigate uncertainty, and so that the Central Limit Theorem applies.

Consequence

- Really wide confidence intervals.
- Increased chance of false negative/positive error.

How to check this

It depends on the test.

Large sample size: t-test

One sample

• At least 30¹ observations in the sample.

$$n \ge 30$$

n: sample size

Paired samples

• At least 30 pairs of observations across the samples.

Number of rows in your data ≥ 30

Two samples

• At least 30 observations in each sample.

$$n_1 \ge 30, n_2 \ge 30$$

 n_i : sample size for group i

ANOVA

 At least pairs of 30 observations in each sample.

 $n_i \geq 30$ for all values of i

¹ Sometimes you can get away with less than 30; the important thing is that the null distribution appears normal.

Large sample size: proportion tests

One sample

• Number of successes in sample is greater than or equal to 10.

$$n imes \hat{p} \geq 10$$

• Number of failures in sample is greater than or equal to 10.

$$n imes (1-\hat{p}) \geq 10$$

n: sample size

 \hat{p} : proportion of successes in sample

Two samples

 Number of successes in each sample is greater than or equal to 10.

$$n_1 imes \hat{p}_1 \geq 10$$

$$n_2 imes \hat{p}_2 \geq 10$$

• Number of failures in each sample is greater than or equal to 10.

$$n_1 imes (1-\hat{p}_1)\geq 10$$

$$n_2 imes (1-\hat{p}_2) \geq 10$$

Large sample size: chi-square tests

• The number of successes in each group in greater than or equal to 5.

$$n_i imes \hat{p}_i \geq 5$$
 for all values of i

• The number of failures in each group in greater than or equal to 5.

$$n_i imes (1-\hat{p}_i) \geq 5$$
 for all values of i

 n_i : sample size for group i

 \hat{p}_i : proportion of successes in sample group i

Sanity check

If the bootstrap distribution doesn't look normal, assumptions likely aren't valid.

Let's practice!

HYPOTHESIS TESTING IN R

The "There is only one test" framework

HYPOTHESIS TESTING IN R

Richie Cotton

Data Evangelist at DataCamp

Imbalanced data

```
stack_overflow_imbalanced %>%
  count(hobbyist, age_cat, .drop = FALSE)
```

A sample is *imbalanced* if some groups are much bigger than others.

Hypotheses

 H_0 : The proportion of hobbyists under 30 is **the same as** the proportion of hobbyists at least 30.

 H_A : The proportion of hobbyists under 30 is **different from** the proportion of hobbyists at least 30.

alpha <- 0.1

Proceeding with a proportion test regardless

```
stack_overflow_imbalanced %>%

prop_test(
  hobbyist ~ age_cat,
  order = c("At least 30", "Under 30"),
  success = "Yes",
  alternative = "two.sided",
  correct = FALSE
)
```

A grammar of graphics

Plot type	base-R	ggplot2
Scatter plot	plot(, type = "p")	<pre>ggplot() + geom_point()</pre>
Line plot	plot(, type = "l")	<pre>ggplot() + geom_line()</pre>
Histogram	hist()	<pre>ggplot() + geom_histogram()</pre>
Box plot	<pre>boxplot()</pre>	<pre>ggplot() + geom_boxplot()</pre>
Bar plot	<pre>barplot()</pre>	<pre>ggplot() + geom_bar()</pre>
Pie plot	pie()	<pre>ggplot() + geom_bar() + coord_polar()</pre>

A grammar of hypothesis tests

- Allen Downey's There is only one test framework.
- Implemented in R in the infer package.
- generate() makes simulated data.
 - Computationally expensive.
 - Robust against small samples or imbalanced data.

```
null_distn <- dataset %>%
  specify() %>%
  hypothesize() %>%
  generate() %>%
  calculate()
```

```
obs_stat <- dataset %>%
  specify() %>%
  calculate()
```

get_p_value(null_distn, obs_stat)

¹ Allen Downey teaches "Exploratory Data Analysis in Python".

Specifying the variables of interest

specify()

```
specify() selects the variable(s) you want to test.
```

- For 2 sample tests, use
 response ~ explanatory.
- For 1 sample tests use response ~ NULL.

```
stack_overflow_imbalanced %>%
  specify(hobbyist ~ age_cat, success = "Yes")
```

```
Response: hobbyist (factor)
Explanatory: age_cat (factor)
# A tibble: 1,231 x 2
  hobbyist age_cat
  <fct>
          <fct>
1 Yes
          At least 30
          At least 30
2 Yes
          At least 30
3 Yes
4 Yes
          Under 30
          At least 30
5 Yes
6 Yes
          At least 30
          Under 30
7 No
# ... with 1,224 more rows
```

hypothesize()

hypothesize() declares the type of null hypothesis.

- For 2 sample tests, use "independence" or "point".
- For 1 sample tests, use "point".

```
stack_overflow_imbalanced %>%
  specify(hobbyist ~ age_cat, success = "Yes") %>%
  hypothesize(null = "independence")
```

```
Response: hobbyist (factor)
Explanatory: age_cat (factor)
Null Hypothesis: independence
# A tibble: 1,231 x 2
 hobbyist age_cat
 <fct>
          <fct>
          At least 30
1 Yes
          At least 30
2 Yes
3 Yes
          At least 30
4 Yes
          Under 30
          At least 30
5 Yes
6 Yes
          At least 30
7 No
          Under 30
# ... with 1,224 more rows
```

Let's practice!

HYPOTHESIS TESTING IN R

Continuing the infer pipeline

HYPOTHESIS TESTING IN R

Richie Cotton

Data Evangelist at DataCamp

Recap: hypotheses and dataset

 H_0 : The proportion of hobbyists under 30 is the same as the prop'n of hobbyists at least 30.

 H_A : The proportion of hobbyists under 30 is different from the prop'n of hobbyists at least 30.

```
alpha <- 0.1
```

```
stack_overflow_imbalanced %>%
count(hobbyist, age_cat, .drop = FALSE)
```

Recap: workflow

get_p_value(null_distn, observed_stat)

```
null_distn <- dataset %>%
   specify() %>%
   hypothesize() %>%
   generate() %>%
   calculate()

observed_stat <- dataset %>%
   specify() %>%
   calculate()
```

```
stack_overflow_imbalanced %>%
  specify(hobbyist ~ age_cat, success = "Yes") %>%
  hypothesize(null = "independence")
```

```
Response: hobbyist (factor)
Explanatory: age_cat (factor)
Null Hypothesis: independence
# A tibble: 1,231 x 2
 hobbyist age_cat
          <fct>
 <fct>
1 Yes
         At least 30
2 Yes
        At least 30
3 Yes
        At least 30
4 Yes
         Under 30
5 Yes
        At least 30
6 Yes
         At least 30
7 No
          Under 30
# ... with 1,224 more rows
```

Motivating generate()

 H_0 : The proportion of hobbyists under 30 is the same as the prop'n of hobbyists at least 30.

If H_0 is true, then

- In each row, the hobbyist value could have appeared with either age category with equal probability.
- To simulate this, we can permute (shuffle) the hobbyist values while keeping the age categories fixed.

```
stack_overflow_imbalanced
```

```
bind_cols(
   stack_overflow_imbalanced %>%
     select(hobbyist) %>%
     slice_sample(prop = 1),
   stack_overflow_imbalanced %>%
     select(age_cat)
)
```

```
# A tibble: 1,231 x 2
 hobbyist age_cat
 <fct>
          <fct>
1 Yes
       At least 30
2 Yes
      At least 30
       At least 30
3 Yes
4 Yes
       Under 30
5 Yes
     At least 30
     At least 30
6 Yes
7 No
         Under 30
# ... with 1,224 more rows
```

```
# A tibble: 1,231 x 2
hobbyist age_cat
  <fct> <fct>
1 Yes         At least 30
2 Yes         At least 30
3 No         At least 30
4 No         Under 30
5 Yes         At least 30
6 Yes         At least 30
7 Yes         Under 30
# ... with 1,224 more rows
```

Generating many replicates

generate()

generate() generates simulated data reflecting the null hypothesis.

- For "independence" null hypotheses, set type to "permute".
- For "point" null hypotheses, set type to "bootstrap" or "simulate".

```
stack_overflow_imbalanced %>%
  specify(hobbyist ~ age_cat, success = "Yes") %>%
  hypothesize(null = "independence") %>%
  generate(reps = 5000, type = "permute")
```

```
Response: hobbyist (factor)
Explanatory: age_cat (factor)
Null Hypothesis: independence
# A tibble: 6,155,000 x 3
# Groups: replicate [5,000]
 hobbyist age_cat replicate
 <fct>
         <fct>
                       <int>
         At least 30
1 Yes
2 Yes
         At least 30
3 Yes
         At least 30
4 Yes
         Under 30
5 Yes
         At least 30
6 Yes
         At least 30
         Under 30
7 Yes
# ... with 6,154,993 more rows
```

Calculating the test statistic

calculate()

calculate() calculates a distribution of test statistics known as the *null distribution*.

```
null_distn <- stack_overflow_imbalanced %>%
 specify(
    hobbyist ~ age_cat,
    success = "Yes"
 ) %>%
 hypothesize(null = "independence") %>%
 generate(reps = 5000, type = "permute") %>%
 calculate(
    stat = "diff in props",
    order = c("At least 30", "Under 30")
```

```
# A tibble: 5,000 x 2
  replicate
             stat
      <int> <dbl>
         1 0.0896
1
2
         2 0.0896
3
         3 - 0.180
         4 0.157
4
5
         5 0.0896
6
         6 -0.113
         7 0.0221
# ... with 4,993 more rows
```

¹ The ?calculate help page lists all possible test statistics.

Visualizing the null distribution

visualize(null_distn)

null_distn %>% count(stat)


```
# A tibble: 9 x 2
     stat
              n
    <dbl> <int>
1 - 0.383
2 - 0.315
3 - 0.248
             63
4 -0.180
            246
5 -0.113
          641
6 -0.0454
           1132
  0.0221
           1453
  0.0896
           1063
  0.157
            378
```

Calculating the test statistic on the original dataset

Observed statistic: specify() %>% calculate()

```
obs_stat <- stack_overflow_imbalanced %>%
  specify(hobbyist ~ age_cat, success = "Yes") %>%
  # hypothesize(null = "independence") %>%
  # generate(reps = 5000, type = "permute") %>%
  calculate(
    stat = "diff in props",
    order = c("At least 30", "Under 30")
)
```

```
# A tibble: 1 x 1
    stat
    <dbl>
1 0.157
```

Visualizing the null distribution vs the observed stat

```
visualize(null_distn) +
  geom_vline(
    aes(xintercept = stat),
    data = observed_stat,
    color = "red"
)
```

Simulation-Based Null Distribution

Get the p-value

```
get_p_value(
  null_distn, obs_stat,
  direction = "two sided"  # Not alternative = "two.sided"
)
```

```
# A tibble: 1 x 1
    p_value
    <dbl>
1 0.151
```

Let's practice!

HYPOTHESIS TESTING IN R

Non-parametric ANOVA and unpaired t-tests

HYPOTHESIS TESTING IN R

Richie Cotton

Data Evangelist at DataCamp

Non-parametric tests

A *non-parametric test* is a hypothesis test that doesn't assume a probability distribution for the test statistic.

There are two types of non-parametric hypothesis test:

- 1. Simulation-based.
- 2. Rank-based.

t_test()

```
H_0: \mu_{child} - \mu_{adult} = 0 H_A: \mu_{child} - \mu_{adult} > 0
```

```
library(infer)
stack_overflow %>%

t_test(
    converted_comp ~ age_first_code_cut,
    order = c("child", "adult"),
    alternative = "greater"
)
```

Calculating the null distribution

Simulation-based pipeline

```
null_distn <- stack_overflow %>%
  specify(converted_comp ~ age_first_code_cut) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 5000, type = "permute") %>%
  calculate(
    stat = "diff in means",
    order = c("child", "adult")
)
```

t-test, for comparison

```
library(infer)
stack_overflow %>%
  t_test(
    converted_comp ~ age_first_code_cut,
    order = c("child", "adult"),
    alternative = "greater"
)
```

Calculating the observed statistic

Simulation-based pipeline

```
obs_stat <- stack_overflow %>%
  specify(converted_comp ~ age_first_code_cut) %>%
  calculate(
    stat = "diff in means",
    order = c("child", "adult")
)
```

t-test, for comparison

```
library(infer)
stack_overflow %>%
  t_test(
    converted_comp ~ age_first_code_cut,
    order = c("child", "adult"),
    alternative = "greater"
)
```

Get the p-value

Simulation-based pipeline

```
get_p_value(
  null_distn, obs_stat,
  direction = "greater"
)
```

t-test, for comparison

```
library(infer)
stack_overflow %>%
  t_test(
    converted_comp ~ age_first_code_cut,
    order = c("child", "adult"),
    alternative = "greater"
)
```

Ranks of vectors

```
x \leftarrow c(1, 15, 3, 10, 6)
```

rank(x)

1 5 2 4 3

A Wilcoxon-Mann-Whitney test (a.k.a. Wilcoxon rank sum test) is (very roughly) a t-test on the ranks of the numeric input.

Wilcoxon-Mann-Whitney test

```
wilcox.test(
  converted_comp ~ age_first_code_cut,
  data = stack_overflow,
  alternative = "greater",
  correct = FALSE
)
```

```
Wilcoxon rank sum test

data: converted_comp by age_first_code_cut

W = 967298, p-value <2e-16

alternative hypothesis: true location shift is greater than 0
```

¹ Also known as the "Wilcoxon rank-sum test" and the "Mann-Whitney U test".

Kruskal-Wallis test

Kruskal-Wallis test is to Wilcoxon-Mann-Whitney test as ANOVA is to t-test.

```
kruskal.test(
  converted_comp ~ job_sat,
  data = stack_overflow
)
```

```
Kruskal-Wallis rank sum test

data: converted_comp by job_sat
Kruskal-Wallis chi-square = 81, df = 4, p-value <2e-16</pre>
```

Let's practice!

HYPOTHESIS TESTING IN R

Congratulations!

HYPOTHESIS TESTING IN R

Richie Cotton

Data Evangelist at DataCamp

You learned things

Chapter 1

- Workflow for testing proportions vs. a hypothesized value.
- False negative/false positive errors.

Chapter 2

- Testing differences in sample means between two groups using t-tests.
- Extending this to more than two groups using ANOVA and pairwise t-tests.

Chapter 3

- Testing differences in sample proportions between two groups using proportion tests.
- Using chi-square independence/goodness of fit tests.

Chapter 4

- Reviewing assumptions of parametric hypothesis tests.
- Examined nonparametric alternatives when assumptions aren't valid

More courses

Inference

Statistical Inference with R skill track

Bayesian statistics

Fundamentals of Bayesian Data Analysis in R

Applications

A/B Testing in R

Let's practice!

HYPOTHESIS TESTING IN R

