- (1 P) a) eines dünnen Stabes mit homogener Dichte der Länge L und Masse $M_{\rm S}$ bezogen auf eine Achse, die den Stab im Verhältnis 3:1 teilt und senkrecht zum Stab steht. Fertigen Sie eine Skizze an, aus der die verwendeten Größen hervorgehen.
- (1 P) b) eines Hohlzylinders der Masse $M_{\rm HZ\bullet}$ mit Innenradius $R_{\rm i}$ und Außenradius $R_{\rm a}$ bezogen auf die Symmetrieachse.
- (2 P) c) eines Zylinders mit radiusabhängiger Dichte $\rho(r) \propto r$, Masse $M_{\rm Z}$ und Radius R bezogen auf die Symmetrieachse.

Die Ergebnisse sollen nur die Größen L, $M_{\rm S}$ bzw. $M_{\rm HZ}$, $R_{\rm i}$, $R_{\rm a}$ bzw. $M_{\rm Z}$, R enthalten.

my h= m J= Jrdn = 12100 = 1 [12] + (2)] = 12 [27 + 1 GA] > 2 PL = 4x Mol2 $\sigma = \frac{M_{H2}}{7R_{\perp}^{1} - 3R_{\perp}^{2}}$ M_{N2} P) J- 1 dm = $\sum_{n} \sigma \left(\frac{r^4}{4} \right)^{R_n}$ = 70 R4-R4 = 24 MM2 (Ra Ri) (Ru+ Ri) = 4 MM2 (Ru+ Ri) Jun Wei Tan Cyprian Long Nicolas Braun

$$\rho = K($$

$$M_{z} = \int_{0}^{R} dx$$

$$= \int_{0}^{R} kr(2\pi r) dr$$

$$= 2\pi k \int_{0}^{R} r^{2} dx$$

$$= 2\pi k \int_{0}^{R} r^{2} dx$$

$$k = \frac{314}{2\pi R^{3}}$$

$$Z = \int r^{3}M$$

$$= \int r^{4}R r dr$$

$$= \int r^{4$$