Heejin Park

Division of Computer Science and Engineering
Hanyang University

Contents

- Introduction
- Assembly-line scheduling
- Rod cutting
- Matrix-chain multiplication
- Elements of dynamic programming
- Longest common subsequence

- Dynamic programming solves a problem by partitioning the problem into subproblems.
 - The subproblems are *independent*: divide-and-conquer method.
 - The subproblems are *not independent*: dynamic programming.

divide-and-conquer

Dynamic Programming

• A dynamic programming algorithm solves every subproblem just once and *saves its answer in a table* and then reuse it.

Dynamic programming is typically to solve optimization problems.

Optimization problems

- There can be many possible solutions.
- Each solution has a value.
- We find a solution with *the* optimal (minimum or maximum) value.
- Such a solution is called *an* optimal solution to the problem.
 - Shortest path example

- The development of a dynamic-programming algorithm can be broken into a sequence of four steps.
 - 1. Characterize the structure of an optimal solution.
 - 2. Recursively define the value of an optimal solution.
 - 3. Compute the value of an optimal solution in a bottom-up fashion.
 - 4. Construct an optimal solution from computed information.

Contents

- o Introduction
- Assembly-line scheduling
- Rod cutting
- Matrix-chain multiplication
- Elements of dynamic programming
- Longest common subsequence

assembly line

• The problem: Determine the fastest assembly time

line 1

line 1

line 2

line 1

line 2

Transfer time: $t_{i,j}$

Brute-force approach

- Enumerate all possible ways and find a fastest way.
- There are 2^n possible ways: Too many.

- Step 1: The structure of the fastest way through the factory
 - Optimal substructure
 - An optimal solution to a problem contains within it an optimal solution to subproblems. □
 - For example, shortest path problem in a graph.

- In this case, the fastest way to $S_{1,4}$ contains the fastest way through either $S_{1,3}$ or $S_{2,3}$.
- Generally, the fastest way through station $S_{i,j}$ contains the fastest way through either $S_{1,j-1}$ or $S_{2,j-1}$.

Step 2: A recursive solution

- $f_i[j]$ denotes the fastest time to finish station $S_{i,j}$.
 - $f_1[4]$ is the fastest time to finish the 4th station in line 1.
 - $f_2[3]$ is the fastest time to finish the 3th station in line 2.
- f* denotes the fastest time to finish all stations.

- $o f_i[j] \text{ for } j=1$
 - $f_1[1] = e_1 + a_{1,1}$
 - $f_2[1] = e_2 + a_{2,1}$
- $f_i[j]$ for j > 1
 - $f_1[j] = \min(f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j})$
 - $f_2[j] = \min(f_2[j-1] + a_{2,j}, f_1[j-1] + t_{1,j-1} + a_{2,j})$

$$f* = \min(f_1[n] + x_1, f_2[n] + x_2)$$

- Step 3: Computing the fastest times
 - Simple recursive solution
 - The running time is $\Theta(2^n)$.
 - Let $r_i(j)$ be the number of references made to $f_i[j]$.
 - $r_i(j)$ for j = n $r_1(n) = r_2(n) = 1$
 - $r_i(j)$ for j < n
 - $r_i(j) = 2^{n-j}$ $r_1(j) = r_2(j) = r_1(j+1) + r_2(j+1)$
 - $f_1[1]$ and $f_2[1]$ are referred 2^{n-1} times, respectively.

• Dynamic programming

Running time

• We can compute the fastest time in $\Theta(n)$ time.

Step 4: Constructing the fastest way through the factory

• The $l_i[j]$ values help us trace a fastest way.

$$l^* = 1$$

					IVI
	2	3	4	5	6
$l_1[j]$	1	2	1	1	2
$l_2[j]$		2	1	2	2
	D				H

Space consumption

- Table f: 2n
- Table *l*: 2*n*-2

Space reduction

- Table f
 - \bullet $2n \rightarrow 4$
- Table *l*
 - \bullet $2n-2 \rightarrow 0$
 - If table f table is preserved. \bigcirc

Contents

- Introduction
- Assembly-line scheduling
- Rod cutting
- Matrix-chain multiplication
- Elements of dynamic programming
- Longest common subsequence

The *rod-cutting problem*: Given a rod of length n inches and a table of prices p_i for i = 1, 2, ..., n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

length i	1	2	3	4	5	6	7	8	9	10	
price p_i	1	5	8	9	10	17	17	20	24	30	

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

```
CUT-ROD (p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))

6 return q
```


$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$

$$T(n) = 2^n$$

MEMOIZED-CUT-ROD (p, n)

- 1 let r[0 ... n] be a new array
- 2 **for** i = 0 **to** n
- $3 r[i] = -\infty$
- 4 return MEMOIZE-CUT-ROD-AUX (p, n, r)

```
MEMOIZED-CUT-ROD-AUX (p, n, r)
   if r[n] \ge 0
     return r[n]
  if n == 0
     q = 0
   else q = -\infty
     for i = 1 to n
       q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r)
   r[n] = q
   return q
```

```
BOTTOM-UP-CUT-ROD (p, n)

1 let r[0 ... n] be a new array

2 r[0] = 0

3 for j = 1 to n

4 q = -\infty

5 for i = 1 to j

6 q = \max(q, p[i] + r[j - i])

7 r[j] = q

8 return r[n]
```

Subproblem graphs


```
EXTENDED-BOTTOM-UP-CUT-ROD (p, n)
    let r[0 ... n] and s[0 ... n] be new arrays
 2 r[0] = 0
    for j = 1 to n
    q = -\infty
 5 for i = 1 to j
        if q < p[i] + r[j - i]
          q = p[i] + r[j - i]
          S[j] = i
      r[j] = q
10
    return r and s
```

PRINT-CUT-ROD-SOLUTION(p, n)

- 1 (r, s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
- 2 **while** n > 0
- 3 print s[n]
- 4 n = n s[n]

i	0	1	2	3	4	5	6	7	8	9	10	
r[i]	0	1	5	8	10	13	17	18	22	25	30	N.
s[i]												

Contents

- o Introduction
- Assembly-line scheduling
- Rod cutting
- Matrix-chain multiplication
- Elements of dynamic programming
- Longest common subsequence

Matrix-chain multiplication

• Multiplying two matrices A and B

- We can multiply them if they are compatible: the number of columns of *A* must equal the number of rows of *B*.
- If A is a $p \times q$ matrix and B is a $q \times r$ matrix, the resulting matrix is a $p \times r$ matrix.

$$\begin{array}{ccc}
(A 2x3) & X & OOO \\
(B 3x2) & (C 2x2)
\end{array}$$

- \circ The number of scalar multiplications to multiply A and B.
 - It is *pqr* because we compute *pr* elements and computing each element needs *q* scalar multiplications.

The order of multiplications

- The order of multiplications does not change *the value of the product* because matrix multiplication is associative.
- For example, whether the left multiplication is done first or the right multiplication is done first does not matter.

$$(A_1 \cdot A_2) \cdot A_3 = A_1 \cdot (A_2 \cdot A_3)$$

• However, the order of multiplication affects *the number of scalar multiplications* needed to compute the product.

- The order of multiplications affects the number of scalar multiplications.
 - Computing $A_1A_2A_3$ where A_1 : 10×100 A_2 : 100×5 A_3 : 5×50
 - $(A_1 A_2) A_3$
 - $(A_1 A_2) = 10*100*5 = 5000$, $(10 \times 5) A_3 = 10*5*50 = 2500$ =>5000 + 2500 = **7,500**
 - $A_1(A_2A_3)$
 - $(A_2 A_3) = 100*5*50 = 25000$, $A_1(100 \times 50) = 10*100*50 = 50000$ =>25000 + 50000 = **75,000**
 - Computing $(A_1 A_2) A_3$ is 10 times faster.

Matrix-chain multiplication problem

- Given a chain $A_1, A_2, ..., A_n$ of n matrices, where matrix A_i has dimension $p_{i-1} \times p_i$, find the order of matrix multiplications minimizing the scalar multiplications to compute the product.
- That is, to fully parenthesize the product of matrices minimizing scalar multiplications.

The product $A_1 A_2 A_3 A_4$ can be fully parenthesized in five distinct ways.

$$A_1(A_2(A_3 A_4)), A_1((A_2 A_3) A_4),$$
 \square $(A_1 A_2)(A_3 A_4),$ $(A_1(A_2 A_3))A_4,$ $((A_1 A_2) A_3)A_4.$

- Solutions of the matrix-chain multiplication problem
 - Brute-force approach
 - Enumerate all possible parenthesizations.
 - Compute the number of scalar multiplications of each parenthesization.
 - Select the parenthesization needing the least number of scalar multiplications.

- The Brute-force approach is inefficient.
 - The number of parenthesizations of a product of n matrices, denoted by P(n), is as follows.

$$P(n) = \begin{cases} 1 & \text{if } n=1\\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2 \end{cases}$$

• The number of enumerated parenthesizations is $\Omega(4^n/n^{3/2})$.

- Dynamic programming
- Optimal substructure
 - m[i,j]: The minimum number of scalar multiplications for computing $A_i A_{i+1} ... A_i$.

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i, k] + m[k+1, j] + p_{i-1} p_k p_j\} & \text{if } i < j \end{cases}$$

- matrix $A_i: p_{i-1} \times p_i$
- computing $A_{i\cdots k} A_{k+1\cdots j}$ takes $p_{i-1} p_k p_j$ scalar multiplications.
- s[i, j] stores the optimal k for tracing the optimal solution.

i j	1	2	3	4	5	6
1	0	15750	7875	9375	11875	15125
2		0	2625	4375	7125	10500
3			0	750	2500	5375
4				0	1000	3500
5					0	5000
6						0

i\j	2	3	4	5	6
1	1	1	3	3	3
2		2	3	_3	3
3	Z		13	3	3
4				4	5
5			1		5

m

 $m[2,5] = \min \begin{cases} m[2,2] + m[3,5] + p_1 p_2 p_5 \neq 0 + 2500 + 35 \cdot 15 \cdot 20 = 13000, \\ m[2,3] + m[4,5] + p_1 p_3 p_5 = 2625 + 1000 + 35 \cdot 5 \cdot 20 = 7125, \\ m[2,4] + m[5,5] + p_1 p_4 p_5 = 4375 + 0 + 35 \cdot 10 \cdot 20 = 11375 \end{cases}$

$$i=2, j=5, i \le k < j$$

matrix dimension

$$A_1 = 30 \times 35$$

$$A_2$$
 35×15

$$A_3 = 15 \times 5$$

$$A_4$$
 5×10

$$A_6 = 20 \times 25$$

Running time

- $O(n^3)$ time in total
 - $\Theta(n^2)$ subproblems
 - \circ O(n) time for each subproblem

Space consumption

• $\Theta(n^2)$ space to store the *m* and *s* tables.

Contents

- o Introduction
- Assembly-line scheduling
- Rod cutting
- Matrix-chain multiplication
- Elements of dynamic programming
- Longest common subsequence

- Elements of dynamic programming
 - Optimal substructure
 - Overlapping subproblems

Subtleties

- Unweighted longest simple path problem
 - Does it have optimal substructure?

$$q \rightarrow r \rightarrow t$$

Overlapping subproblems

• When a recursive algorithm revisits the same problem over and over again, the optimization problem has *overlapping subproblems*.

Matrix chain multiplication: top-down vs. bottom-up

Memoization

- Recursive solution but solve each subproblem only once.
- Fills the table in recursive way.
- In most cases, it is slower than dynamic programming.
- It is useful when only a part of subproblems are solved.

- The running time of a dynamic-programming algorithm depends on the product of two factors.
 - The number of subproblems overall.
 - How many choices each subproblem has.
 - Assembly line scheduling
 - $\Theta(n)$ subproblems $\cdot 2$ choices = $\Theta(n)$
 - Matrix chain multiplication
 - $\Theta(n^2)$ subproblems $\cdot (n-1)$ choices = $O(n^3)$

Contents

- o Introduction
- Assembly-line scheduling
- Rod cutting
- Matrix-chain multiplication
- Elements of dynamic programming
- Longest common subsequence

Definition

- Character
- Alphabet: A set of characters
 - English alphabet: $\{A, B, ...Z\}$
 - Korean alphabet: { ¬, ∟, ... = , ⊢, ... | }
- String (or sequence): A list of characters from an alphabet
 - ex> strings over $\{0,1\}$: Binary strings
 - ex> strings over $\{A,C,G,T\}$: DNA sequences

- Substring
 - CBD is a substring of ABCBDAB
- Subsequence
 - BCDB is a subsequence of ABCBDAB
- Common subsequence
 - BCA is a common subsequence of X=ABCBDAB and Y=BDCABA

- Longest common subsequence (LCS)
 - BCBA is the longest common subsequence of X and Y

$$X = A B C B D A B$$

$$/ | | |$$

$$Y = B D C A B A$$

- LCS problem
 - Given two sequences $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ to find an LCS of X and Y.

Brute force approach

- Enumerate all subsequences of *X* and check each subsequence if it is also a subsequence of *Y* and find the longest one.
- Infeasible!
 - The number of subsequences of X is 2^m .

Dynamic programming

- The *i*th *prefix* X_i of X is $X_i = \langle x_1, x_2, ..., x_i \rangle$.
- If $X = \langle A, B, C, B, D, A, B \rangle$
 - $X_4 = < A, B, C, B >$
 - $X_0 = <>$

Optimal substructure

- Let $X = x_1, x_2, ..., x_m$ and $Y = y_1, y_2, ..., y_n$ be sequences, and let $Z = z_1, z_2, ..., z_k$ be any LCS of X and Y.
- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, Z is an LCS of X_{m-1} and Y or an LCS of X and Y_{n-1} .

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
 - Suppose $z_k \neq x_m$.
 - Then, we could append $x_m = y_n$ to Z to obtain a common subsequence of X and Y of length k+1, Thus, $z_k = x_m$.

$$X = A B C B D A B$$

$$Y = B D C A B$$

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
 - Since $z_k = x_m$, Z_{k-1} is a common subsequence of X_{m-1} and Y_{n-1} .
 - We show Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} by contradiction.
 - Suppose that there is a common subsequence W of X_{m-1} and Y_{n-1} with length greater than k-1.
 - Then, appending $x_m = y_n$ to W produces a common subsequence of X and Y whose length is greater than k.

$$X = A B C B D A B$$

$$Y = B D C A B$$

2. If $x_m \neq y_n$, Z is an LCS of X_{m-1} and Y or an LCS of X and Y_{n-1} .

$$X = A B C B D A B$$

$$X = A B C B D A B$$

$$Y = BDCAA$$

$$Y = BDCAA$$

- c[i,j]: The length of an LCS of the sequences X_i and Y_j .
- If either i = 0 or j = 0, so the LCS has length = 0.

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i, j-1], c[i-1, j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

	j	0	$\frac{1}{2}$	2	3	4	5 B	6
i		y_j	(B)	D	(C)	A	B	A
0	x_i	0	0	0	0	0	0	0
1	\boldsymbol{A}	0	$\hat{0}$	\downarrow	\downarrow	\\ \ 1	← 1	1
2	$\bigcirc B$	0	1	1	← 1	Î	2	2
3	\bigcirc	0		\uparrow	2	$\frac{\leftarrow}{2}$	$\frac{1}{2}$	$\stackrel{\uparrow}{2}$
4	$\bigcirc B$	0	1	$\bigcap_{i=1}^{n}$	$\hat{2}$	$\frac{\uparrow}{2}$	3	<i>←</i> 3
5	D	0	1	2	$\frac{\uparrow}{2}$	$\frac{\uparrow}{2}$	$\frac{\uparrow}{3}$	$\frac{1}{3}$
6	\bigcirc A	0	1	$\frac{1}{2}$	$\frac{1}{2}$	3	↑ 3	40
7	В	0	1	$\frac{1}{2}$	$\frac{1}{2}$	1 3	40	$\frac{\uparrow}{4}$

- Computation time: $\Theta(mn)$
- Space: $\Theta(mn)$
- Space reduction: min(m,n)+1