Задание на практику для студентов:

Науменко Кирилл Николаевич

Вычисление интеграла методом трапеций

Для функции, являющейся полиномом степени не выше p

$$f(x) = c_0 x^p + c_1 x^{p-1} + \dots + c_{p-1} x + c_p$$

требуется точно и приближенно вычислить $I = \int_a^b f(x) dx$ (a < b), задаваясь абсолютной величиной допустимой относительной погрешности ε . Для приближенных расчетов использовать метод трапеций, в соответствии с которым

$$I \approx I_n = \left(\frac{f_0 + f_n}{2} + \sum_{j=1}^{n-1} f_j\right) h,$$

где $n \in \mathbb{N}$ — количество частей, но которые разбивается отрезок [a,b]; h=(b-a)/n — длина каждого подотрезка; $f_j=f(x_j)=f(a+jh)$ — значение функции в соответствующей точке. Провести расчеты для n=2 и затем удваивая каждый раз n до тех пор, пока не будет выполнено условие

$$(\delta_n < \varepsilon) \vee (|I_{n/2} - I_n| < 10^{-10}),$$

где величина δ_n дает оценку точности приближения интеграла значением I_n

$$\delta_n = \left| \frac{I_{n/2} - I_n}{4I_n - I_{n/2}} \right| < \varepsilon.$$

В ответе для каждого из трех значений ε , заданных по убыванию, указать полученное количество подотрезков n, приближенное значение интеграла, абсолютную и относительную погрешности (если относительную погрешность вычислить не удается, указать вместо ее значения 0).

Структура исходных данных:

Структура результата:

	<< точное значение интеграла
n1 I1 E1 e1	<< число подотрезков, приближенное
n2 I2 E2 e2	значение интеграла, абсолютная
n3 I3 E3 e3	и относительная погрешность