Ovládanie robota Nao pomocou gest

*Note: Sub-titles are not captured in Xplore and should not be used

Ján CABADAJ

Katedra kybernetiky a umelej inteligencie, Fakulta elektrotechniky a informatiky, Technická univerzita v Košiciach

Dominik DUJČÁK

Katedra kybernetiky a umelej inteligencie, Fakulta elektrotechniky a informatiky, Technická univerzita v Košiciach

Damián SEDLÁK

Katedra kybernetiky a umelej inteligencie, Fakulta elektrotechniky a informatiky, Technická univerzita v Košiciach

Abstrakt— Ciel'om zadania je vytvorit' program, ktorý pomocou giest človeka, bude ovládať robota.

Kľúčové slová—humanoidné technológie, rozpoznávanie gest, ovládanie robota

I. ÚVOD DO PROBLEMATIKY

Hlavnou myšlienkou zadania je využiť *Kinect*, ktorý bude snímať gestá človeka na následné ovládanie robota. *Kinect* zosníma a rozpozná gesto, ktoré predviedol človek a následne urobí *Nao* príslušný pohyb alebo sekvenciu pohybov. Toto riešenie je možné použiť na ovládanie robota pri mnohých činnostiach. Keďže *Kinect* a *Nao* spolu komunikujú cez *cloud* môže človek ovládať *Naa* aj bez toho aby s ním bol v jednej miestnosti.

II. POUŽITÉ RIEŠENIE

A. Použité komponenty

Na zrealizovanie nášho zadania sme použili:

- Kinect + počítač,
- Cloudové prostredie Azure,
- Robot Nao.

B. Rozpoznávanie gest

Pomocou *Kinectu* sa rozpoznávajú gestá, ktoré človeka v reálnom čase. Na rozpoznanie sme použili knižnicu *Vitruvius*. Knižnica má zadefinované niektoré základné gestá a obsahuje funkcie na ich rozpoznanie. V zadaní sme použili gestá knižnice, ktoré sme si upravili podľa svojich potrieb. V konečnom riešení rozpoznáva *Kinect* až 9 rôznych giest, ktoré sú ďalej použité na riadenie robota.

C. Použitie cloudu

Jedným z hlavných problémov bolo vyriešenie komunikácie medzi *Kinectom* a Naom nakoľko knižnica pre prácu s Kinectom je v programovacom jazyku *C#* a robot *Nao* funguje v programovacom jazyku *Python*. Pre vyriešenie tohto problému sme sa rozhodli použiť ako medzičlánok *cloudový* priestor. Vytvorili sme jednoduchú webovú aplikáciu, ktorá ukladá prichádzajúce dáta z *Kinectu* reprezentované číselnou hodnotou, ktorej prislúchajú konkrétne pohyby pre *Naa*. Následne webová aplikácia posiela dáta *Naovi*, ktorý s nimi ďalej pracuje v jazyku *Python*. Použitie *cloudu* umožnuje riadiť *Naa* na diaľku z akéhokoľvek miesta na svete bez nutnosti byť s *Naom* v jednej miestnosti.

D. Nao

Poslednou časťou zadania je následné vykonanie úkonov samotným robotom. Po prečítaní dát z *cloudu* urobí *Nao* pohyb, prislúchajúci konkrétnemu gestu, ktoré vykonal človek, a to bolo následne rozpoznané *Kinectom*. Po vykonaní pohybu sa motory robota vypnú, kĺby sa zaseknú a robot čaká na ďalšie rozpoznané gesto.

E. Podobné riešenia

Možnou modifikáciou riešenia rozpoznávania gest je rozšíriť počet rozpoznávaných gest a ich úprava, prípadne použitie inej knižnice. Pri použití knižnice v jazyku Python by bolo možné zjednodušiť riešenie vynechaním cloudu. Negatívom tohto riešenia je obmedzenie možnosti riadiť Naa na diaľku.

Pri modifikácii programu robota je možné rozšíriť škálu používaných pohybov a zlepšiť tak komplexnosť použitia robota na rôzne úlohy.

Po rozšírení riešenia o kameru, ktorá by v reálnom čase prenášala obraz používateľovi

pomocou webovej aplikácie je možné plnohodnotné používanie robota na diaľku.

III. EXPERIMENTY

Pri experimentoch sa človek po spustení programu postaví do vhodnej vzdialenosti pred Kinect, na obrazovke počítača sú vykreslené gestá, ktoré vie program rozoznať. Subjekt urobí gesto a po jeho rozpoznaní urobí robot príslušný pohyb alebo sekvenciu pohybov.

Pri experimentoch vznikal problém s rozpoznávaním gest a to hlavne ak bolo v obraze viac subjektov alebo sa za ním nachádzalo nekonzistentné pozadie. Dôležitým parametrom bola taktiež vzdialenosť subjektu od Kinectu. Po odstránení ostatných osôb

a postavení subjektu pre konzistentné pozadie ako je napríklad biela stena do vhodnej vzdialenosti sa chyba pri čítaní gest výrazne zmenšila.

ZÁVER

Táto implementácia riešenia má množstvo rôznych využití a pri jej vhodnom vylepšení a rozšírení môže byť využívaná na reálne úlohy a každodenné použitie. Výhodou je snímanie gest, čo umožňuje ovládanie robota bez priameho kontaktu. Ďalšou z výhod je použitie webovej aplikácie na komunikáciu medzi Kinectom a robotom, čo umožňuje použitie na diaľku bez nutnosti byť v blízkosti robota.

.