수식쓰기 A to Z

권현우

서강대학교

June 19, 2022

수식 조판 들어가기에 앞서

- 수식조판은 LATEX의 강력한 기능 중 하나
- 알아야 할 사항도 많으며, 기호 명령어도 암기해야 할 것이 많다.
- 패키지도 다양하다. (다이어그램 그리기 등)
- 다양한 인자들이 많아서 미세조정의 케이스가 다양함

강의 목표

- 수학 논문에서 사용되는 기본적인 수학기호를 쓸 수 있다.
- 분야별로 사용하는 패키지들을 소개한다.
- 수식과 관련하여 LATEX에서 쓸 수 있는 다양한 것도 알아본다.

Contents

1. 수식입력의 기초

- 2. Mathtools와 여러가지 환경
- 3. 전공별 패키지 살펴보기
- 4. 수식 미세조정과 수식 조판관행
- 5. 수식조판 FAQ

수식의 종류

- 행중 수식(inline style) $\int_a^b f(x)dx$
- 별행 수식(display style)

$$\int_{a}^{b} f(x)dx$$

$$\int_{a}^{b} f(x)dx$$
(1)

```
$\int_a^b f(x) dx$
```

$$[\int_{a}^b f(x)dx]$$

```
\begin{equation}
\int_{a}^b f(x)dx
\end{equation}
```

행중 수식(inline)과 별행수식(display)

$$\int_{a}^{b} f(x)dx$$

$$\int_{a}^{b} f(x)dx$$
(2)

수식 조판 규칙

- 빈 칸과 줄 바꿈을 무시한다. \,, \quad \qquad \hspace{...} 와 같은 명령어로 조절해야 한다.
- 빈 줄은 허용되지 않는다. 하나의 수식을 여러 문단으로 적을 수 없다.
- 각 글자는 변수명으로 간주된다.

\usepackage{amssymb,amsmath}

```
\end{equation} $$ \operatorname{x\in \mathbb{R}}: x^2 \geq 0. $$ (3) $$ \end{equation}
```

수식 조판 규칙

LATEX의 명령어는 파라미터의 규칙에 따라 { } 쌍에 둘러싸인 토큰열 또는 토큰 하나만 받아들인다.

$$a^x + y = a^x a^y$$

$$a^x+y = a^x a^y$$

$$a^{x+y} = a^x a^y$$

$$a^{x+y} = a^x a^y$$

한번 연습해봅시다

```
→ $0=f(0)-p(0)=f(0)-a$0|므로 $a=f(0)$0|고
\[ 0=\lim_{x\to 0} \frac{f(x)-(a+bx)}{x} = \lim_{x\rightarrow 0}

→ \left(\frac{f(x)-f(0)}{x}-b \right)=f'(0)-b \]
```

이므로 \$b=f'(0)\$이다. 따라서 일차 근사다항식 \$p(x)\$\는 바로 접선의 식 \$f(0)+f'(0)x\$이다.

... \$p(x)\$\를 `원점 근방에서 \$f(x)\$의 \textbf{일차 근사다항식}'이라고 부른다. 이 때

- 서울대학교 미적분학I p.120

한번 연습해봅시다

- 서울대학교 미적분학I p.149

여러가지 작성법

• 수평선 \overline, \underline

$$\overline{a+b} = \overline{a} + \overline{b}$$

• 수평 중괄호 \underbrace,\overbrace

$$\underbrace{1+\cdots+1}_{n}$$

• 벡터 \vec,\overrightarrow,\overleftarrow

$$\vec{a} = (3, 0, 0)$$

• 곱셈연산 \cdot

$$\mathrm{id} = \sigma^{-1} \cdot \sigma$$

행렬 입력하기

```
\[\begin{matrix}
                                 A & B & C \\
A B C
                                 d & e & f \\
d e f
                                 1 & 2 & 3 \\
   2 3
                                 \end{matrix}\]
                                 \[\begin{pmatrix}
                                 . . .
                                 \end{pmatrix}\]
                                 \[\begin{bmatrix}
                                 . . .
                                 \end{bmatrix}\]
```

underset, overset

baseline stunder stund

Multiple Limits

```
\sum_{\substack{1 \le i \le p \\ 1 \le j \le q \\ 1 \le k \le r}} a_{ij} b_{jk} c_{ki}
```

```
\sum_{\substack{1\leq i\leq p \\
1\leq j\leq q\\
1\leq k\leq r}
}
a_{ij}b_{jk}c_{ki}
```

text in maths

```
A = \left\{x \in \mathbb{R} \mid x^2 = a, \text{ where $a$ is positive} \right\}. A=\left\{ x\in \mathbb{R} \bigm| x^2=a, \text{ where $a$ is positive} \right\} 
 \E \bigm| \left\{ \text{ where $a$ is positive} \right\} 
 \left\{ \text{ where $a$ is positive} \right\} 
 A=\left\{ x\in \mathbb{R} \middle x^2=a, \text{ where $a$ is positive} \right\}
```

라벨링 및 상호참조(label and cross-references)

LTEX을 사용하는 또 다른 큰 이유 중 하나.

\label{라벨명} \ref{라벨명} \eqref{라벨명} \pageref{라벨명}

라벨링 및 상호참조(label and cross-references)

```
Note that
\begin{equation}\label{eq:1}
A\leq B
\end{equation}
and
\begin{equation}\label{eq:2}
B \leq A.
\end{equation}
So by (ref{eq:1}) and regref{eq:2}, we conclude that $A=B$.
Note that
                                                 A \leq B
and
```

 $B \le A$. (5)

So by (4) and (5), we conclude that A = B.

(4)

컴파일을 했는데 숫자가 안나오고 물음표가 떠요

• 한번 더 컴파일 해보세요.

Contents

- 1. 수식입력의 기초
- 2. Mathtools와 여러가지 환경
- 3. 전공별 패키지 살펴보기
- 4. 수식 미세조정과 수식 조판관행
- 5. 수식조판 FAQ

mathtools: amsmath의 확장판

mathtools는 amsmath의 확장판으로 amsmath에서 발견되었던 버그를 고치고, 이 패키지를 이용하면 기존에 수식조판에서 해결하기 힘들었던 문제들을 손쉽게 해결할 수 있다.

\usepackage[옵션]{mathtools}

옵션의 종류들

- fleqn, leqno, reqno
- · centertags, tbtags,
- sumlimits, nosumlimits, intlimits, ...

다중수식환경(split,aligned)

$$Hf(x) = \text{p.v.} \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(y)}{x - y} dy$$

$$= \lim_{\varepsilon \to 0} \frac{1}{\pi} \int_{|x - y| > \varepsilon} \frac{f(y)}{x - y} dy$$
(6)

```
\begin{equation}
\begin{split}

Hf(x)&=\mathrm{p.v.}\frac{1}{\pi}\int_{\mathbb{R}} \frac{f(y)}{x-y}dy\\
&=\lim_{\varepsilon \rightarrow 0}\frac{1}{\pi}\int_{\x-y|>\varepsilon} \frac{f(y)}{x-y}dy
\end{split}
\end{equation}
```

다중수식환경(split,aligned)

$$Hf(x) = \text{p.v.} \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(y)}{x - y} dy$$

$$= \lim_{\varepsilon \to 0} \frac{1}{\pi} \int_{|x - y| > \varepsilon} \frac{f(y)}{x - y} dy$$
(7)

```
\begin{equation}
\begin{aligned}
Hf(x)&=\mathrm{p.v.}\frac{1}{\pi}\int_{\mathbb{R}} \frac{f(y)}{x-y}dy\\
&=\lim_{\varepsilon \rightarrow 0}\frac{1}{\pi}\int_{\x-y|>\varepsilon}\frac{f(y)}{x-y}dy
\end{aligned}
\end{equation}
```

다중수식환경(align)

$$Hf(x) = \text{p.v.} \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(y)}{x - y} dy$$
 (8)

$$= \lim_{\varepsilon \to 0} \frac{1}{\pi} \int_{|x-y| > \varepsilon} \frac{f(y)}{x - y} dy \tag{9}$$

```
\label{lighteqn} $$ Hf(x)&=\mathrm{p.v.}\frac{1}{\pi c_{1}}\int_{\mathbb{R}} \frac{f(y)}{x-y}dy\\ &=\lim_{\nabla y}\int_{\mathbb{R}} \frac{f(y)}{x-y}dy\\ &=\lim_{\nabla y}dy\\ &=d_{\alpha}$
```

다중수식환경(aligned)

$$Hf(x) = \text{p.v.} \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(y)}{x - y} dy$$

$$= \lim_{\varepsilon \to 0} \frac{1}{\pi} \int_{|x - y| > \varepsilon} \frac{f(y)}{x - y} dy$$
(10)

```
\begin{equation}
\begin{aligned}

Hf(x)&=\mathrm{p.v.}\frac{1}{\pi}\int_{\mathbb{R}} \frac{f(y)}{x-y}dy\\
&=\lim_{\varepsilon \rightarrow 0}\frac{1}{\pi}\int_{\|x-y\|>\varepsilon\} \frac{f(y)}{x-y}dy\\
end{aligned}
\end{equation}
```

align vs flalign

$$a_{11}=b_{11}$$
 $a_{12}=b_{12}$ $a_{21}=b_{21}$ $a_{22}=b_{22}+c_{22}$ align 환경

$$a_{11}=b_{11}$$
 $a_{12}=b_{12}$ $a_{21}=b_{21}$ $a_{22}=b_{22}+c_{22}$ flalign 환경

alignat 환경

align환경이면서 한 행에 부연설명을 하고자 할 때 적합한 환경이다.

$$x = y_1 - y_2 + y_3 - y_5 + y_8 - \dots$$
 by (11)

$$= y' \circ y^*$$
 by (12)

$$= y(0)y'$$
 by Axiom 1. (13)

```
\begin{alignat}{2}%영역을 크게 두 개로 나눔
x& = y_1-y_2+y_3-y_5+y_8-\dots
&\quad& \text{by }\\
& = y'\circ y^* && \text{by }\\
& = y(0) y' && \text {by Axiom 1.}
\end{alignat}
```

$$\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}, \qquad \begin{vmatrix} 1 & 2 \\ -3 & 4 \end{vmatrix}, \qquad \begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}, \quad \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}, \quad \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$$

• Option keys: I, c, r (c: default)

Option keys: I, c, r (c: default)

inline에서 행렬 쓰기: smallmatrix*, ... $\begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix}$

- smallmatrix*, psmallmatrix*, bsmallmatrix*,
- Bsmallmatrix*, vsmallmatrix*, Vsmallmatrix*

과거: amsmath

$$\begin{cases} E = mc^2 & Nothing to see here \\ \int x - 3dx & Integral is text style \end{cases}$$

```
\begin{cases}
E=mc^2 & Nothing to see here\\
\int x -3 dx & Integral is text style
\end{cases}
```

$$\begin{cases} E = mc^2 & Nothing to see here \\ \int x - 3dx & Integral is text style \end{cases}$$

```
\begin{dcases}
E=mc^2 & Nothing to see here\\
\int x -3 dx & Integral is text style
\end{dcases}
```

$$\begin{cases} E = mc^2 & \text{Nothing to see here} \\ \int x - 3dx & \text{Integral is text style} \end{cases}$$

```
\begin{dcases*}
E=mc^2 & Nothing to see here\\
\int x -3 dx & Integral is text style
\end{dcases*}
```

$$E = mc^{2} \quad Nothing to see here$$

$$\int x - 3dx \quad Integral is text style$$

```
\begin{rcases}
E=mc^2 & Nothing to see here\\
\int x -3 dx & Integral is text style
\end{rcases}
```

$$E = mc^{2}$$
 Nothing to see here
$$\int x - 3dx$$
 Integral is text style

```
\begin{rcases*}
E=mc^2 & Nothing to see here\\
\int x -3 dx & Integral is text style
\end{rcases*}
```

$$E = mc^{2}$$
 Nothing to see here
$$\int x - 3dx$$
 Integral is text style

```
\begin{rcases*}
E=mc^2 & Nothing to see here\\
\int x -3 dx & Integral is text style
\end{rcases*}
```

mathtools: 더 정교한 미세조정 가능!

```
\begin{align*}
a&=b \\
&\vdots \\
&c \\
&=c &&=d
\\
end{align*}

\leftarrow \\
\text{hed}{\text{align*}}

\end{align*}
```

mathtools: 더 정교한 미세조정 가능!

mathtools: 더 정교한 미세조정 가능!

• 자세한 미세조정은 맨 마지막에...

Contents

- 1. 수식입력의 기초
- 2. Mathtools와 여러가지 환경
- 3. 전공별 패키지 살펴보기
- 4. 수식 미세조정과 수식 조판관행
- 5. 수식조판 FAQ

공통: amssymb, bbm

특별한 수학적 대상을 표현하고자 할 때 다른 방식으로 표현하는 게 수학에서 관례다. 예를 들어 유리수 전체의 집합을 단순히 Q라 쓰기 보다는 \mathbb{Q} 와 같이 쓴다.

확률론 연구하는 분들 중에서는 A의 특성함수(characterstic function)

$$\mathbb{1}_{A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

와 같이 쓰는 경우가 있다.

공통: amssymb, bbm

수식폰트 스타일

```
ABC, $\mathcal{ABC}$

ABC1, $\mathds{ABC1}$

ABC1, $\mathds{ABC1}$

ABC0cf123, $\mathfrak{ABCdef123}$
```

공통: 대표적인 수식기호 확장 패키지

- MnSymbol
- wasysym
- mathabx
- mathdesign

공통: 수식기호를 어떻게 다 기억하죠?

- 에디터를 적절히 쓴다.
- detexify
- symbols-a4

공통: 잠시 LATEX 프로그래밍을 봅시다

• 명령어를 매번 치려고 하면 상당히 번거롭다. 매크로를 쓰자.

```
\newcommand{\mycommand}[2] { #1 #2}
\renewcommand{\mycommand}[2] {#1 #2}
\newcommand{\bZ}{{\mathbb{Z}}}
\newcommand{\norm}[1]{{\left\Vert #1 \right\Vert}}
```

커맨드를 정의하기 위한 방법: 파라미터 이해

```
파라미터는 매크로에 개수를 넣는 것이다.
\newcommand{이름}[파라미터개수][기본]{내용}
예시:
\newcommand{\mynotes}[2][오늘]{#1은 인문사회계를 위한 라텍 #2입니다.}
...
\mynotes{특강}
\mynotes[내일]{특강}
```

커맨드를 정의하기 위한 방법: 파라미터 이해

• 자세한 것은 6강에서 다룹니다.

```
파라미터는 매크로에 개수를 넣는 것이다.
\newcommand{이름}[파라미터개수][기본]{내용}
예시:
\newcommand{\mynotes}[2][오늘]{#1은 인문사회계를 위한 라텍 #2입니다.}
...
\mynotes[특강}
\mynotes[내일]{특강}
```

관련하여 mathtools 기능

```
\label{limiter} $$ \operatorname{lim}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname{cmd}}_{\operatorname
```

대수와 기하: commutative diagram

대수학, 기하학 전공자라면 빼놓을 수 없는 기능이 Commutative Diagram일 것이다. 현 시점에서는 xy패키지보다 tikz-cd패키지를 추천한다. 설명서는 texdoc tikz-cd

Figure: Galois correspondence of K/\mathbb{Q} and G

대수와 기하: commutative diagram 실습

4강에서 잠시 만져볼 TikZ에 대한 연습을 위해서 다음의 예시를 한번 다루어보자.


```
\usepackage{tikz-cd}
\begin{tikzcd}
G\arrow[r,"\varphi"]\arrow[d,"\pi"] & \varphi(G) \\
G/\ker \varphi\arrow[ur,dotted,"\tilde{\varphi}"] & \end{tikzcd}
```

대수와 기하: commutative diagram 실습

4강에서 잠시 만져볼 TikZ에 대한 연습을 위해서 다음의 예시를 한번 다루어보자.


```
\usepackage{tikz-cd}
\tikzcdset{arrow style=tikz, diagrams={>=stealth}}
\begin{tikzcd}
G\arrow[r,"\varphi"]\arrow[d,"\pi",swap] & \varphi(G) \\
G/\ker \varphi\arrow[ur,dotted,"\tilde{\varphi}",swap] & \end{tikzcd}
```

대수, 기하, 응용수학: algorithm

Algorithm 1 Finding minimal representatives of $C(\mathbb{Z}[\Theta_n])$ when $\mathbb{Z}[\Theta_n]$ is a Dedekind domain

```
1: i = 1:
 2: while i < \#C(\mathbb{Z}[\Theta_n]) do
        for 1 \le d < N do
             for 1 \le c \le d do
                  if f_n(c) \equiv 0 \pmod{d} and \langle \Theta_n - c, d \rangle is not a principal ideal then
                      if i > 1 and [\langle \Theta_n - c_i, d_i \rangle] \neq [\langle \Theta_n - c_i, d_i \rangle] for any 1 \leq i < i
 6:
    then
                          let (c_i, d_i) = (c, d) and i = i + 1:
 7:
                      end if
                      if i = 1 then
                           let (c_i, d_i) = (c, d) and i = i + 1;
10:
                      end if
11:
12.
                 end if
13:
             end for
         end for
15: end while
16: print (1, 1, n):
17: for 1 \le i < \#C(\mathbb{Z}[\Theta_n]) do print (c_i, d_i, n);
18: end for
```

^{*} M. Kim and S. Yamada, Ideal classes and Cappell-Shaneson homotopy 4-spheres, arXiv:1707.03860.

코드를 보다 이쁘게 구현하려면?

• minted / python 필요

\usepackage{minted}

ListLinePlot[Accumulate[RandomReal[{-1, 1}, 1000]]]

Plot3D[$\{x^2 + y^2, -x^2 - y^2\}, \{x, -2, 2\}, \{y, -2, 2\},$

RegionFunction \rightarrow Function[{x, y, z}, $x^2 + y^2 \leftarrow 4$],

BoxRatios -> Automatic]

강력한 수식 조판기능을 가져도...

• TeX이 수식을 처리하는 과정은 다른 조판 프로그램이 흉내를 낼 수 없는 정도다.

$$x + y = \max\{x, y\} + \min\{x, y\}$$
$$x + y = \max\{x, y\} + \min\{x, y\}$$

• 그러나 예외적으로 신경써야 하는 요소들이 있는데, 이 절에서는 수식 미세조정과 수식 조판관행을 소개한다.

정교한 수식교정 (1) 문장부호

• 문장부호는 행중 수식에서는 수식 바깥에서, 별행수식에서는 수식 안에 찍는다.

For x<0, we see that

NOT

For x<0, we see that

.

For x < 0, we see that

$$f(x) < 0.$$

For x < 0, we see that

$$f(x) < 0$$

.

정교한 수식교정 (2) 함수명은 정체로!

• 함수명은 정체로 쓴다.

\arccos	\cos	\csc	/exp	\ker	\label{limsup}	\min	\sinh
\arcsin	\cosh	\deg	\gcd	\lg	\ln	\Pr	\sup
\arctan	\cot	\det	\hom	\lim	\log	\sec	\tan
\arg	\coth	\dim	\inf	\liminf	\max	\sin	\tanh

정교한 수식교정 (2) 함수명은 정체로!

• 함수명은 정체로 쓴다.

```
목록에 없으면?
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator*{\esup}{ess\,sup}
. . .
\sigma)$, \sigma]$, $\esup_{x\in E} f(x)$
\[ \sgn(\sigma) \quad \esup_{x\in E} f(x).\]
sgn(\sigma), ess sup_{x \in F} f(x)
                                             sgn(\sigma)
                                                      \operatorname{ess\,sup} f(x).
                                                        x \in E
```

정교한 수식교정 (3) 공식과 공식의 구획 간격

• 적절히 \quad, \qquad 또는 \hspace{3em} 등의 명령어를 이용하여 공백을 조정한다.

$$F_n = F_{n-1} + F_{n-2}, \qquad n \ge 2.$$

$$F_n = F_{n-1} + F_{n-2}, n \ge 2.$$

\[
$$F_n = F_{n-1}+F_{n-2}$$
, \qquad n\geq 2. \] \[$F_n = F_{n-1}+F_{n-2}$, n\geq 2. \]

정교한 수식교정 (3) 공식과 공식의 구획 간격

```
\def\quad{\hskip1em\relax}
\def\qquad{\hskip2em\relax}
```

* 1em이란 대문자 M의 가로길이

١,	thin space	통상 쿼드 간격의 1/6
\>	thin space	통상 쿼드 간격의 2/9
\;	thick space	통상 쿼드 간격의 5/18
\!	negative thin space	통상 쿼드 간격의 -1/6

Table: 수식 간격 종류

정교한 수식교정 (4) 수식 내부 미세조정

$$\int_{0}^{\infty} f(x) dx \qquad \qquad \int_{0}^{\infty} f(x) dx$$

$$dx dy = r dr d\theta \qquad \qquad dx dy = r dr d\theta$$

$$(2n)! / (n! (n+1)!) \qquad \qquad (2n)! / (n! (n+1)!)$$

$$\sqrt{2}x \qquad \qquad \sqrt{2}x$$

$$\sqrt{\log x} \qquad \qquad \sqrt{\log x}$$

```
\int_0^\infty f(x)\,dx
dx\,dy=r\,dr\,d\theta
(2n)!/\bigl(n!\,(n+1)!\bigr)
\sqrt2\,x
\sqrt{\,\log x}
```

\int_0^\infty f(x)dx
dxdy=rdrd\theta
(2n)!/\bigl(n!(n+1)!\bigr)
\sqrt2x \\
\sqrt{\log x}

정교한 수식교정 (4) 수식 내부 미세조정

$$[0,1) \qquad [0,1) \\ x^2/2 \qquad x^2/2 \\ n/\log n \qquad n/\log n \\ \Gamma_2 + \Delta^2 \qquad \Gamma_2 + \Delta^2 \\ \underline{52!} \qquad \underline{52!} \qquad \underline{52!} \\ 13! \, 13! \, 26! \qquad \boxed{13!13!26!}$$

$$[0,1) \qquad \qquad [0,1) \\ x^2 \vee 1/2 \qquad \qquad x^2/2 \\ n/\vee \log n \qquad \qquad n/\log n \\ \text{Gamma}_{\[]2} + \text{Delta}_{\[]2} \qquad \qquad \text{Gamma}_2 + \text{Delta}_2 \\ \text{frac}_{\[52!\}} \{13! \, \], 13! \, \] 26! \}$$

정교한 수식교정 (5) 생략부호

- ...: \ldots 원소의 곱셈의 나열, 순서쌍의 나열에서 생략할 때: $(1-x)(1-x^2)\dots(1-x^n)$
- \cdots : \cdots 이항연산기호, 관계기호에서 생략할 때: $A_1 \times \cdots \times A_n$

정교한 수식교정 (5) 생략부호

amsmath(mathtools) 패키지에서 제공하는 말줄임표

- \dotsc 쉼표사이
- \dotsb 이항연산기호, 관계기호 사이
- \dotsm 곱셈 나열 사이
- \dotsi 적분기호 사이
- \dotso

Then we have the series A_1,A_2,\ldots , the regional sum $A_1+A_2+\cdots$, the orthogonal product $A_1A_2\cdots$, and the infinite integral $\int_{A_1}\int_{A_2}\cdots$

정교한 수식조정 (6) 괄호

- \left와 \right를 붙이면 수식의 높이에 따라 괄호류의 크기가 자동으로 조정됨
- \left(\right\) . \left\lbrack \right\rbrack \left\langle \right\rangle
- 한 줄에 left가 있으면 반드시 다른쪽에는 right가 있어야 함. 한쪽은 안나오게 하려면 \left. 또는 \right.를 해야 함.

$$\int_{a}^{x} (-1)(-f'(t)) dt$$

$$= \left[-(x-t)f'(t) - \frac{(x-t)^{2}}{2} f''(t) - \frac{(x-t)^{3}}{6} f'''(t) - \dots \right]_{a}^{x}$$

정교한 수식조정 (7) mathtools

```
\label{lim_nto\infty} $\max_{p\geq n} \leq n$$ \lim_{n\to\infty} \sup_{p^2\leq n} \lim_{n\to\infty} \sup_{p\geq n} \sup_{n\to\infty} \lim_{n\to\infty} \sup_{p\geq n} \lim_{n\to\infty} \lim_{n\to\infty}
```

정교한 수식조정 (7) mathtools

정교한 수식조정 (7) mathtools

```
V=\sum_{1\leq i\leq j \leq n} V_{ij}
V=\smashoperator{\sum_{1\leq i\leq j \leq n}} V_{ij}
V=\smashoperator[1]{\sum_{1\leq i\leq j \leq n}} V_{ij}
V=\smashoperator[r]{\sum_{1\leq i\leq j \leq n}} V_{ij}
```

$$V = \sum_{1 \leq i \leq j \leq n} V_{ij}, \quad V = \sum_{1 \leq i \leq j \leq n} V_{ij}, \quad V = \sum_{1 \leq i \leq j \leq n} V_{ij}, \quad V = \sum_{1 \leq i \leq j \leq n} V_{ij}$$

Contents

- 1. 수식입력의 기초
- 2. Mathtools와 여러가지 환경
- 3. 전공별 패키지 살펴보기
- 4. 수식 미세조정과 수식 조판관행
- 5. 수식조판 **FAQ**

수식조판 FAQ

- 이번 절에서는 수식조판과 관련해서 자주 질문이 들어오는 것들을 취합해보았다.
- 모든 것을 다룰 수는 없으므로 이외의 사항들은 mathtools 메뉴얼이나 tex stackexchange, ktug 게시판을 참고하길 바란다.
- \usepackage{mathtools}를 불렀다는 전제하에 소개

수식이 너무 길어서 잘라내기 귀찮아요

mathtools 부른 후 align, alignnat, flalign과 같은 환경을 쓴 경우에는 preamble에 다음을 입력한다. \allowdisplaybreaks

수식 중간에 문장 하나 써야 하는데 환경 닫아내기 귀찮아요

```
\intertext{text}
\shortintertext{text}
\begin{align*}
& =\int_{0}^{\infty}\left|\int_{0}^{1}\frac{g(x(t)+y(t))}right)}
{y^{1-\alpha}}dy\right|^{p}dx.
\intertext{Now by the Minkowski's integral intequality, we get }
\int {0}^{\inftv}\left|\int {0}^{1}\frac{g\left(x\left(1+v\right)\right)}
{v^{1-\alpha}}dv\right|^{p}dx &
\end{align*}
```

수식 중간에 문장 하나 써야 하는데 환경 닫아내기 귀찮아요

$$\int_{0}^{\infty} \left| \int_{0}^{x} \frac{g(x+t)}{|t|^{1-\alpha}} dt \right|^{p} x^{-\alpha p} dx = \int_{0}^{\infty} \left| \int_{0}^{1} \frac{g(x(1+y))}{(xy)^{1-\alpha}} x dy \right|^{p} x^{-\alpha p} dx$$
$$= \int_{0}^{\infty} \left| \int_{0}^{1} \frac{g(x(1+y))}{y^{1-\alpha}} dy \right|^{p} dx.$$

Now by the Minkowski's integral intequality, we get

$$\int_{0}^{\infty} \left| \int_{0}^{1} \frac{g(x(1+y))}{y^{1-\alpha}} dy \right|^{p} dx \le \left[\int_{0}^{1} \left(\int_{0}^{\infty} \left[\frac{g(x(1+y))}{y^{1-\alpha}} \right]^{p} dx \right)^{\frac{1}{p}} dy \right]^{p}$$

$$= \left[\int_{0}^{1} \frac{1}{y^{1-\alpha}} \left(\int_{0}^{\infty} |g(x(1+y))|^{p} dx \right)^{\frac{1}{p}} dy \right]^{p}$$

벡터모양이 구려요

TeX의 기본옵션에 가까운 것으로 '벡터'를 쓰고자 할 때 모양이 이쁘게 안나오는 편이다.

$$\vec{v}$$
 \overrightarrow{AB}

\usepackage[옵션]{esvect}

행중(inline)에서 수식 보여주기(display)처럼 만들고 싶어요

```
f\in L^1(\mathbb{R}^d)이라는 것은 \int_{\mathbb{R}^d}|f(x)|dx<\infty일 때를 말한다. $f\in {L^1(\mathbb{R}^d)}$이라는 것은 $\displaystyle\int_{\mathbb{R}}^d} |f(x)|dx<\infty$일 때를 말한다. f\in L^1(\mathbb{R}^d)이라는 것은 \int_{\mathbb{R}^d}|f(x)|dx<\infty일 때를 말한다.
```

모든 수식을 display 모드처럼 하고 싶어요.

안 하는게 최선이지만 다음과 같은 내용을 preamble에 넣는다.

\lineskiplimit=2pt \lineskip=5pt

\everymath{\displaystyle}

적분의 아래첨자 위 첨자 위치를 위에 두고 싶어요

$$\int_{a}^{b} f(x)dx$$

\int\limits_a^b f(x)dx

모든 적분기호를 위와 같이 쓰고자 한다면 \usepackage[intlimits] {mathtoos}라 쓰면 된다.

수식번호를 로마자로 만들고 싶어요

```
%code by Heiko Oberdiek
\makeatletter
%Roman counter
\newcounter{roem}
\renewcommand{\theroem}{\roman{roem}}
% save the original counter
\newcommand{\c@org@eq}{}
\let\c@org@eq\c@equation
\newcommand{\org@theeq}{}
\let\org@theeq\theequation
```

수식번호를 로마자로 만들고 싶어요

```
%\setroem sets roman counting
\newcommand{\setroem}{
\let\c@equation\c@roem
\let\theequation\theroem}

%\setarab the arabic counting
\newcommand{\setarab}{
\let\c@equation\c@org@eq
\let\theequation\org@theeq}
\makeatother
```

수식번호를 로마자로 만들고 싶어요

$$f(x) = \int \sin x \, dx$$
$$g(x) = \int \frac{1}{x} \, dx$$

 $f(x) = \int \sin x \, \mathrm{d}x$

(\setroem)

$$F(x) = -\cos x$$

(i)

$$G(x) = \ln x$$

(ii)

(14)

(15)

$$= \sin x$$

$$f'(x) = \sin x$$
$$g'(x) = \frac{1}{x}$$

(17)78/85

행렬의 성분의 위 아래가 너무 벌어져서 못생겼어요

한글은 영문에 비해 행간의 간격을 더 넓게 해야 보기가 좋다. 그렇기 때문에 수식은 행간을 줄이도록 명령어를 주는 것이 좋다.

\everydisplay\expandafter{\the\everydisplay\def

\baselinestretch{1.2}\selectfont}

$$\begin{array}{c|cccc}
 & 2 & 3 \\
\hline
 & -1 & 2
\end{array}$$
Before After

행렬의 성분을 이쁘게 정렬하고 싶어요

$$\begin{pmatrix} -2 & 3 \\ 1 & -2 \end{pmatrix}$$

\usepackage{mathtools}

٠.,

\begin{pmatrix*}[r]

-2 & 3\\

1 & -2

\end{pmatrix*}

$$\begin{pmatrix} -2 & 3 \\ 1 & -2 \end{pmatrix}$$

편미분방정식을 이쁘게 쓰고 싶어요

```
\makeatletter
\newcases{PDEcases}{\quad}{%
  \hfil$\m@th\displaystyle{##}$}{{##}\hfil}{\lbrace}{.}
\makeatother
\begin{PDEcases}
-\nu \triangle u +u \cdot \nabla u +\nabla p =f&in $\Omega$\\
\Div u =0% in \Omega
u=0& on $\partial \Omega$,
\end{PDEcases}
                                                  \begin{cases} -\nu\triangle u + u\cdot\nabla u + \nabla p = f & \text{in } \Omega \\ & \text{div } u = 0 & \text{in } \Omega \end{cases}   u = 0 & \text{on } \partial\Omega,
```

편미분방정식을 이쁘게 쓰고 싶어요

```
١/
\left\{
\begin{alignedat}{2}
-\triangle u +\nabla p &=-w\cdot \nabla w +f&&\qquad \mbox{in $\Omega$},\\
\mathbf{div}, u &=0&\& \qquad \mathbb{1}.
u&=0 &&\qquad \mbox{on $\partial \Omega$}.
\end{alignedat} \right.
\1
                                           \begin{cases} -\triangle u + \nabla p = -w \cdot \nabla w + f & \text{in } \Omega, \\ & \text{div } u = 0 & \text{in } \Omega, \\ & u = 0 & \text{on } \partial \Omega, \end{cases}
```

편미분방정식을 이쁘게 쓰고 싶어요

```
\usepackage{empheq}
\begin{empheq}[left = \empheqlbrace]{alignat* = 2}
      -\triangle u +\nabla p & =-w\cdot \nabla w +f &\quad & \text{in } \Omega.\\
      \mathcal{L}_{u \& = 0\&\quad \& \text{in } \Omega_{u} \
u \& =0 \& \& \text{text{on }}\
\end{empheq}
                                              \begin{cases} -\triangle u + \nabla p = -w \cdot \nabla w + f & \text{in } \Omega, \\ & \text{div } u = 0 & \text{in } \Omega, \\ & u = 0 & \text{on } \partial \Omega. \end{cases}
```

등호기호에 숫자를 넣어도 위치조정 안하고 싶어요

```
\begin{align*}
a & = b\\
& \stackrel{\text{(1)}}{=} c\\
& = b\\
& = b
\end{align*}
* 윤종흔(Jongheun YOON)님의 해법
```

Munkres책의 Topology 기호처럼 \mathcal{T} 좀 멋있게 못 써요?

A topology, denoted by \mathcal{T}

TEX의 모든 패키지가 무료는 아니다. mtpro2 패키지를 사야 한다. 그 외에도 유료 수식 패키지가 좀 있다.