

Problem 2

Setup:

Let X_1, \ldots, X_n be i.i.d. random variable with pdf $f_{ heta}$ defined as follows:

$$f_{ heta}\left(x
ight)= heta x^{ heta-1} \, \mathbf{1} \, (0 \leq x \leq 1)$$

偶函数一定没有反函数 这个函数换一下,发现有反函数

where $oldsymbol{ heta}$ is some positive number.

(a)

1/1 point (graded) Is the parameter $oldsymbol{ heta}$ identifiable?

● Yes □

O No

Solution:

Yes it is identifiable. If $heta_1
eq heta_2$, then the pdfs $f_{ heta_1}\left(x
ight)
eq f_{ heta_2}\left(x
ight)$.

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

(b)

2.0/2.0 points (graded)

Compute the maximum likelihood estimator $\hat{m{ heta}}$ of $m{ heta}$.

(Enter $\operatorname{Sigma_i(g(X_i))}$ for the sum $\sum_{i=1}^n g(X_i)$, e.g. enter $\operatorname{Sigma_i(X_i^2)}$ for $\sum_{i=1}^n X_i^2$, enter $\operatorname{Sigma_i(In(X_i))}$ for $\sum_{i=1}^n \ln(X_i)$. Do not forget any necessary n in your answer, e.g. \overline{X}_n will need to be entered as $\operatorname{Sigma_i(X_i)/n}$. Do not worry about the parser not rendering correctly, as the grader will still work independently. If you would like proper rendering, enclose $\sum_i (g(X_i))$ in parentheses i.e. use $(\sum_i (g(X_i)))$.)

Maximum likelihood estimator $\hat{\boldsymbol{\theta}} = -n/(\text{Sigma_i}(\ln(X_i)))$ \Box Answer: -n/Sigma_i($\ln(X_i)$)

STANDARD NOTATION

Solution:

The likelihood of X_1,\ldots,X_n given a parameter $oldsymbol{ heta}$ is

$$L\left(X_{1},\ldots,X_{n}; heta
ight).= heta^{n}\prod_{i=1}^{n}X_{i}^{ heta-1}.$$

Taking the logarithm we find that log-likelihood

$$\ell_{n}\left(heta
ight)=n\ln\left(heta
ight)+\left(heta-1
ight)\sum_{i=1}^{n}\ln\left(X_{i}
ight).$$

Setting $oldsymbol{\ell}'\left(heta
ight)=0$ we find that

$$\hat{ heta} = rac{-n}{\sum_{i=1}^n \ln X_i}.$$

This is the unique maximum as

$$\ell_{n}^{\prime\prime}\left(heta
ight) =rac{-n}{ heta^{2}}<0.$$

提交

你已经尝试了2次(总共可以尝试3次)

☐ Answers are displayed within the problem

(c)

2.0/2.0 points (graded)

Compute the Fisher information.

STANDARD NOTATION

Solution:

By definition, the Fisher information is defined as

$$I\left(heta
ight) =-\mathbb{E}\left[\ell^{\prime\prime}\left(X; heta
ight)
ight]$$

where $\ell\left(\theta\right)=\ln L\left(X;\theta\right)$ is the log-likelihood defined using a sample of size 1. The likelihood of X given a parameter θ is

$$L\left(X; heta
ight) = heta\left(X^{ heta-1}
ight) .$$

Taking the logarithm we find that log-likelihood

$$\ell\left(heta
ight) = \ln\left(heta
ight) + \left(heta-1
ight)\ln\left(X_i
ight).$$

Taking the second derivative we find that

$$\ell''\left(heta
ight)=rac{-1}{ heta^2}$$

and therefore we have that

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

(d)

1/1 point (graded)

What kind of distribution does the distribution of $\sqrt{n}\hat{\theta}$ approach as n grows large?

- Bernoulli
- Poisson
- Normal
- Exponential

Solution:

The theorem for MLE applies in this example as the following conditions hold:

- θ is identifiable
- $I(\theta)$ is invertible
- Support of $f_{ heta}$ does not depend on heta

Hence $\hat{m{ heta}}$ is asymptotically normal:

$$\sqrt{n}\left(\hat{ heta}- heta
ight) \stackrel{(d)}{\longrightarrow} \mathcal{N}\left(0,I^{-1}\left(heta
ight)
ight).$$

This means that as n grows large,

$$\hat{ heta} \overset{ ext{approx}}{\sim} \mathcal{N}\left(heta, rac{I^{-1}\left(heta
ight)}{n}
ight)$$

and hence $\sqrt{n}\hat{ heta}$ is also approximately normal.

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

(e)

1.0/1 point (graded)

What is the asymptotic variance $V\left(\hat{ heta}
ight)$ of $\hat{ heta}$?

To avoid double jeopardy, you may use I for the Fisher information $I(\theta)$ evaluated at θ , or you may enter your answer without using I.

$$V(\hat{m{ heta}}) = egin{bmatrix} 1/I & & \Box & Answer: theta^2 \end{bmatrix}$$

STANDARD NOTATION

Solution:

By the theorem for the MLE the asymptotic variance of the estimator is $I(\theta)^{-1} = \frac{1}{a^2}$.

提交

你已经尝试了1次 (总共可以尝试3次)

☐ Answers are displayed within the problem

(f)

2.0/2.0 points (graded)

Using the MLE $\hat{m{ heta}}$, find the shortest confidence interval for $m{ heta}$ with asymptotic level 85% using the plug-in method.

To avoid double jeopardy, you may use V for the appropriate estimator of the asymptotic variance $V(\hat{\theta})$, and/or I for the Fisher information $I(\hat{\theta})$ evaluated at $\hat{\theta}$, or you may enter your answer without using V or I.

(Enter **hattheta** for $\hat{\theta}$. If applicable, enter **Phi(z)** for the cdf $\Phi(z)$ of a normal variable Z, **q(alpha)** for the quantile q_{α} for any numerical value α . Recall the convention in this course that $\mathbf{P}(Z \leq q_{\alpha}) = 1 - \alpha$ for $Z \sim \mathcal{N}(0,1)$.)

 $\mathcal{I}_{ ext{plug-in}} = [A,B]$ where

$$A = hattheta - (q((1-0.85)/2))/sqrt(n*I)$$

☐ **Answer:** hattheta-q(0.075)*sqrt(V/n)

$$B = \int_{-\infty}^{\infty} hattheta + (q((1-0.85)/2))/sqrt(n*I)$$

☐ **Answer:** hattheta+q(0.075)*sqrt(V/n)

STANDARD NOTATION

Solution:

Using the previous question on the asymptotic normality of the MLE it follows that

$$\lim_{n o\infty}\mathbf{P}\left[\hat{ heta}\in[heta-1.44rac{ heta}{\sqrt{n}}, heta+1.44rac{ heta}{\sqrt{n}}
ight]
ight]=.85.$$

Therefore it follows that

$$\lim_{n o\infty}\mathbf{P}\left[heta\in[\hat{ heta}-1.44rac{ heta}{\sqrt{n}},\hat{ heta}+1.44rac{ heta}{\sqrt{n}}
ight]
ight]=.85$$

and since $\hat{m{ heta}}$ approaches $m{ heta}$ almost surely we get the confidence interval

$$[\hat{ heta}-1.44rac{\hat{ heta}}{\sqrt{n}},\hat{ heta}+1.44rac{\hat{ heta}}{\sqrt{n}}]$$

via the plug-in method.

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

显示讨论