

Centro Federal de Educação Tecnológica de Minas Gerais Campus Timóteo ENGENHARIA DA COMPUTAÇÃO INFORMÁTICA

CIRCUITOS SEQUENCIAIS:

- *ASSÍNCRONO e
- * SINCRONO

CIRCUITOS SEQUENCIAIS: ASSÍNCRONO E SÍNCRONO

CONTADORES:

CIRCUITOS DIGITAIS SEQÜENCIAIS DIGITAIS QUE VARIAM SUAS SAÍDAS, SOB O COMANDO DE UM CLOCK, DE ACORDO COM UMA SEQÜÊNCIA PRÉ-DETERMINADA.

Estados Internos Atuais

Prof. Elder de O. Rodrigues

CIRCUITOS SEQUENCIAIS: ASSÍNCRONO E SÍNCRONO

APLICAÇÕES

- Contagem Crescente ("Up") ou Decrescente ("Down")
- 2. Divisão de frequências
- 3. Medição de tempo/frequência
- 4. Geração de formas de onda
- 5. conversão analógico/digital

CIRCUITOS SEQUENCIAIS: ASSÍNCRONO E SÍNCRONO

ESTRUTURA BÁSICA:

conjunto de flipo-flops ligados de forma conveniente à contagem desejada.

ESTADO: combinação binária presente nas saídas do contador

SEQÜÊNCIA DE CONTAGEM:

estados sucessivos, assumidos pelas saídas do circuito contador em função dos pulsos de sincronismo ("clock")

Módulo:

número total de estados que o contador assume, sendo representado pelo diagrama de estados

M = 2ⁿ n: número de flip-flops que formam o contador

Prof. Elder de O. Rodrigues

Assíncrono ou Ondulação ou "Ripple":

sinal de sincronismo aplicado somente na entrada "clock" do primeiro flip-flop, sendo as outras derivadas das saídas dos flip-flops anteriores.

Freq máx. do "clock"

$$f_{\text{max}} \le \frac{1}{\text{N x t}_{atraso}}$$
 onde: $\frac{\text{N: número de FFs;}}{\text{t}_{\text{pd}}: \text{ atraso de propagação do CLK para Q}}$

Assincrono ou Ondulação ou "Ripple":

Contador Hexadecimal Assincrono Crescente

Diagrama de Estados do Contador Hexadecimal Crescente

Sincrono ou Paralelo:

Contador Hexadecimal síncrono

Todos os FF's do contador são ligados a um mesmo sincronismo

("clock") externo.

Circuito:

$$f_{max} \leftarrow \frac{1}{t_{atraso_FF} + t_{atraso_AND}}$$

PROJETO DE CONTADORES SÍNCRONOS

Em contadores síncronos, todos os flip-flops são disparados ao mesmo tempo. Antes de cada pulso de clock, as entradas Je K de cada flip-flop devem estar no nível correto para garantir que o flip-flop vá para o estado correto. Por exemplo, considere a situação mostrada na Tabela 7-1. Quando ocorrer o próximo pulso de clock, as entradas Je K dos flip-flops devem estar nos níveis corretos para fazer com que o flip-flop C mude de 1 para 0, o flip-flop B de 0 para 1 e o flip-flop A de 1 para 1 (isto é, não mude).

TABELA	7-1
~ ~ ~~~ ~~~ ~	, .

Estado A			PRÓX	IMO Esta	
C	В	A	. <i>C</i>	B	A
1	0	1	0	1	1

PROJETO DE CONTADORES SÍNCRONOS

Tabela de Excitação J-K

Antes de iniciarmos o processo de projetar circuitos decodificadores para cada entrada Je~K, devemos primeiro rever a operação de um flip-flop J.-K usando uma abordagem diferente através da tabela de excitação (Tabela 7-2). A coluna mais à esquerda desta tabela enumera cada transição possível da saída de um flip-flop. A segunda e terceira colunas relacionam o estado atual do flip-flop, simbolizado por Q(N), e o próximo estado simbolizado por Q(N+1), para cada transição. As duas últimas colunas enumeram os níveis lógicos nas entradas Je~K necessários para produzir cada uma das transições. Vamos examinar cada caso.

TABELA 7-2 Tabela de excitação do flip-flop J-K.

Transição na Saída	Estado ATUAL Q(N)	PRÓXIMO Estado $Q(N+1)$	J	K
$0 \rightarrow 0$	0	0	0	x
$0 \rightarrow 1$	0	1	1	x
$1 \rightarrow 0$	1	0	x	1
$1 \rightarrow 1$	1	1	\mathcal{X}	0

PROJETO DE CONTADORES SÍNCRONOS: Exemplo

Passo 1. Determine o número de bits necessários (número de flip-flops) e a sequência de contagem desejada.

Para o nosso exemplo, projetaremos um contador de três bits cuja seqüência de contagem pode ser vista na Tabela 7-3. Observe que esta seqüência não inclui os estados 101, 110 e 111. Vamos nos referir a eles como estados indesejáveis.

TA	RI	ELA	7-	3
1.73	ப	20.00	- / -	. ,

С	В	A
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
0	0	0
0	0	1
	etc.	

Prof. Elder de O. Rodrigues

PROJETO DE CONTADORES SÍNCRONOS: Exemplo

Passo 2. Desenhe o diagrama de transição de estados mostrando **todos** os estados possíveis, incluindo aqueles que não fazem parte da seqüência de contagem desejada.

Para o nosso exemplo, o diagrama de transição de estados pode ser visto na Fig. 7-33. Os estados 000 a 100 estão ligados segundo a seqüência esperada. O que há de novo neste diagrama é a inclusão dos estados indesejáveis. Eles devem ser incluídos em nosso projeto para o caso de o contador ir para um desses estados ao ligar o circuito ou devido ao ruído presente. O projetista pode escolher para cada um dos estados indesejáveis para qual estado ele deve ir mediante aplicação do próximo pulso de clock. Escolhemos que todos eles devem ir para o estado 000 a partir do qual a següência correta de contagem será gerada.

Fig.7-33 - Diagrama de transição de estados para o exemplo de projeto do contador síncrono.

PROJETO DE CONTADORES SÍNCRONOS: Exemplo

Passo 3. Use o diagrama de transição de estados para construir uma tabela que relacione todos os estados ATUAIS e seus PRÓXIMOS estados.

Para o nosso exemplo, esta informação pode ser vista na Tabela 7-4. O lado esquerdo da tabela relaciona *todos* os estados possíveis, mesmo aqueles que não fazem parte da seqüência. Vamos denominá-los estados ATUAIS. O lado direito enumera o PRÓXIMO estado para cada estado ATUAL. Estes podem ser obtidos a partir do diagrama de transição de estados da Fig. 7-33. Por exemplo, a linha 1 mostra que o estado ATUAL 000 tem como PRÓXIMO estado 001, a linha 5 mostra que o estado ATUAL 100 tem como PRÓXIMO estado 000. As linhas 6, 7 e 8 mostram que os estados ATUAIS indesejáveis 101, 110 e 111 têm como PRÓXIMO estado 000.

TABELA	7-4

		Est	tado AT	UAL	PRÓXIMO Estado				
		C	\boldsymbol{B}	A	С	В	A		
Caso:	0	0	0	0	0	0	1		
1	1	0	0	1	0	1	O		
:	2	0	1	0	0	1	1		
	3	0	1	1	1	0	0		
:	4	1	0	0	Ō	Ö	Ö		
	5	1	0	1	0	Ŏ	Ö		
:	6	1	1	Ō	Ö	ŏ	Ö		
Caso:	7	1	1	1	Ö	Ö	O		

PROJETO DE CONTADORES SÍNCRONOS: Exemplo

Passo 4. Acrescente uma coluna a esta tabela para cada entrada J e K. Para cada estado ATUAL, indique os níveis necessários em cada entrada J e K para produzir a transição para o PRÓXIMO estado.

Nosso exemplo utiliza três flip-flops — *C*, *B* e *A* — e cada um deles tem entradas *J* e *K*. Portanto, devemos adicionar seis novas colunas como mostrado na Tabela 7-5. Esta tabela completa é chamada de **tabela de excitação do circuito**. As seis novas colunas são as entradas *J* e *K* de cada flip-flop. Os valores para cada coluna *J* e *K* são obtidos utilizando a Tabela 7-2, que é a tabela de excitação do flip-flop J-K que desenvolvemos anteriormente. Demonstraremos isto para vários casos, e você pode verificar o resto.

Na linha 4 da Tabela 7-5, o estado ATUAL 011 tem como PRÓXIMO estado 100. Para esta transição de estado, o flip-flop C vai de 0 para 1, o que requer que $J_C = 1$ e $K_C = x$. Os flip-flops A e B estão ambos indo de 1 para 0. A tabela de excitação do J-K indica que estes dois flip-flops necessitam de que J = x e K = 1 para que isto ocorra.

Os níveis necessários para todas as outras linhas da Tabela 7-5 podem ser determinados da mesma maneira.

TABELA 7-5 Tabela de excitação do circuito.

		Estado ATUAL			PRÓXIMO Estado								
		C	В	A	С	В	A	J_c	K_c	$J_{\scriptscriptstyle B}$	$K_{\scriptscriptstyle B}$	$J_{\scriptscriptstyle A}$	$K_{\scriptscriptstyle A}$
Caso:	0	0	0	0	0	0	1	0	x	0	x	1	x
:	1	0	0	1	0	1	0	0	x	1	x	x	1
:	2	0	1	0	0	1	1	0	x	x	0	1	3.
:	3	0	1	1	1	0	0	1	x	x	1	x	1
:	4	1	0	0	0	0	0	x	1	0	χ.	0	· ·
:	5	1	0	1	0	0	0	x	1	Ö	x	χ.	1
:	6	1	1	0	0	0	0	x	î	x	1	0	γ.
Caso:	7	1	1	1	0	0	0	x	î	x	1	3*	1

PROJETO DE CONTADORES SÍNCRONOS: Exemplo

Passo 5. Projete os circuitos lógicos que forneçam os níveis necessários para cada entrada J e K.

A Tabela 7-5, que é a tabela de excitação do circuito, relaciona as seis entradas J e K: J_C , K_C , J_B , K_B , J_A e K_A . Devemos considerar cada uma destas entradas como saídas de um circuito lógico próprio cujas entradas são provenientes dos flip-flops C, B e A. Portanto, devemos projetar um circuito lógico para cada uma destas entradas. Vamos projetar o circuito para J_A .

TABELA 7-5 Tabela de excitação do circuito.

		Estado ATUAL			PRÓXIMO Estado								
		\boldsymbol{C}	\boldsymbol{B}	\boldsymbol{A}	С	В	A	J_c	K_c	$J_{\scriptscriptstyle B}$	$K_{\scriptscriptstyle B}$	$J_{\scriptscriptstyle A}$	$K_{\scriptscriptstyle A}$
Caso:	0	0	0	0	0	0	1	0	x	0	x	1	x
1	1	0	0	1	0	1	0	0	x	1	x	x	1
1	2	0	1	0	0	1	1	0	x	x	0	1	x
:	3	0	1	1	1	0	0	1	x	x	1	x	1
:	4	1	0	0	0	0	0	x	1	0	x	0	x.
1	5	1	0	1	0	0	0	x	1	0	x	3.	1
	6	1	1	0	0	0	0	x	1	x	1	0	Y.
Caso:	7	1	1	1	0	0	0	X	1	x	1	x	1

 \overline{C} \overline{X} \overline{X}

 $\overline{C} = \overline{B} \overline{A} \overline{B} A B A B \overline{A}$ $\overline{C} = \overline{C} = \overline{C}$ $\overline{C} = \overline{C}$ $\overline{C} = \overline{C}$ $\overline{C} = \overline{C}$

 \overline{C} \overline{X} \overline{X} \overline{A} \overline{D} \overline{C} \overline{X} \overline{X} \overline{A} \overline{D} \overline{C} \overline{X} \overline{X} \overline{A} \overline{D} \overline{D}

BABABA BA

C X 1 1 X

C X 1 1 X

Fig. 7-35 - Mapas de Karnaugh para os circuitos lógicos

 $J_C = AB$

PROJETO DE CONTADORES SÍNCRONOS: Exemplo

Passo 6. Implemente as expressões finais.

Os circuitos lógicos para cada entrada J e K são implementados a partir das expressões obtidas no mapa de Karnaugh. O circuito completo do contador síncrono projetado está na Fig. 7-36. Observe que todos os flip-flops são disparados pelo mesmo sinal de clock.

Exercício

- 1. Faça o projeto de um contador síncrono com a seqüência $0 \rightarrow 1 \rightarrow 3; \rightarrow 5 \rightarrow 7 \rightarrow 0$; os demais números devem ir para o estado ZERO. Desenvolva todos os passos para o projeto.
- 2. Faça o projeto de um contador síncrono Mod-8 (0 \rightarrow 1 \rightarrow 2 \rightarrow 3; \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 0);
- 3. Faça o projeto de um contador síncrono com a seqüência $0 \rightarrow 2 \rightarrow 4; \rightarrow 6 \rightarrow 7 \rightarrow 0$; os demais números devem ir para o estado ZERO. Desenvolva todos os passos para o projeto.