www.vishay.com

Vishay Semiconductors

Standard Recovery Diodes, 165 A to 230 A (INT-A-PAK Power Modules)

INT-A-PAK

PRIMARY CHARACTERISTICS						
I _{F(AV)}	165 A to 230 A					
Туре	Modules - diode, high voltage					
Package	INT-A-PAK					
Circuit configuration	Single diode, two diodes common anode, two diodes common cathode, two diodes doubler circuit					

FEATURES

· High voltage

- 3500 V_{RMS} isolating voltage
- Industrial standard package
- High surge capability
- Glass passivated chips
- Modules uses high voltage power diodes in four basic configurations
- · Simple mounting
- UL approved file E78996

- Designed and qualified for multiple level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- · DC motor control and drives
- Battery chargers
- Welders
- Power converters

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL	CHARACTERISTICS	CHARACTERISTICS VSK.166 VSK.196		VSK.236	UNITS			
1		165	195	230	Α			
I _{F(AV)}	T _C	100	100	100	°C			
I _{F(RMS)}		260	305	360				
	50 Hz	4000	4750	5500	Α			
I _{FSM}	60 Hz	4200	4980	5765				
l ² t	50 Hz	80	113	151	kA ² s			
I-t	60 Hz	73	103	138	KA-S			
I ² √t		798	1130	1516	kA²√s			
V _{RRM}		400 to 1600 V						
T _J	Range	-40 to +150 °C						

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS									
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} AT 150 °C mA					
	04	400	500						
VS-VSK.166	08	800	900						
VS-VSK.196	12	1200	1300	20					
VS-VSK.236	14	1400	1500						
	16	1600	1700						

www.vishay.com

FORWARD CONDUCTION									
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES			UNITS	
PARAMETER	STIVIBUL		VSK.166	VSK.196	VSK.236	ONITO			
Maximum average on-state	I _{F(AV)}	180° conduct	tion, half sine wa	ave	165	195	230	Α	
current at case temperature	'F(AV)	100 Conduct	tion, nan sine w	ave	100	100	100	°C	
Maximum RMS on-state current	I _{F(RMS)}				260	305	360		
		t = 10 ms	No voltage		4000	4750	5500	1	
Maximum peak, one-cycle		t = 8.3 ms	reapplied		4200	4980	5765	Α	
on-state, non-repetitive surge current	I _{FSM}	t = 10 ms	100 % V _{RRM} reapplied	Sine half wave,	3350	4000	4630		
S		t = 8.3 ms			3500	4200	4850		
	l ² t	t = 10 ms	No voltage	initial $T_J = T_J$ maximum	80	113	151	kA ² s	
Marriagues 12t for fusion		t = 8.3 ms	reapplied		73	103	138		
Maximum I ² t for fusing		t = 10 ms	100 % V _{RRM}		56	80	107		
		t = 8.3 ms	reapplied		52	73	98		
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms to	10 ms, no volta	ge reapplied	798	1130	1516	kA ^{2√} s	
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π x	$I_{F(AV)} < I < \pi \times I_{F}$	(AV), T _J maximum	0.73	0.69	0.7	1/	
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)}),$	0.88	0.78	0.83	V			
Low level value on-state slope resistance	r _{t1}	(16.7 % x π x I _{F(AV)} < I < π x I _{F(AV)}), T _J maximum			1.5	1.3	1.2	mΩ	
High level value on-state	r _{t2}	$(I > \pi \times I_{F(AV)}), T_J$ maximum			1.26	1.2	1.07		
Maximum forward voltage drop	V _{FM}	,	_{/)} , T _J = 25 °C, 18 ver = V _{F(TO)} x I _{F(A}	80° conduction $_{\text{V})} + r_{\text{f}} \times (I_{\text{F(RMS)}})^2$	1.43	1.38	1.46	V	

BLOCKING											
PARAMETER	SYMBOL	TEST CONDITIONS	VSK.166	VSK.196	VSK.236	UNITS					
Maximum peak reverse and off-state leakage current	I _{RRM}	T _J = 150 °C		20		mA					
RMS insulation voltage	V _{INS}	50 Hz, circuit to base, all terminals shorted, t = 1 s		3500		V					

THERMAL AND MECHANICAL SPECIFICATIONS									
PARAMETER	SYMBOL	TEST CONDITIONS		UNITS					
PANAMETER		VSK.166	VSK.196	VSK.236	UNITS				
Maximum junction operating and storage temperature range	T _J , T _{Stg}		-40 to +150)	ç			
Maximum thermal resistance, junction to case per junction	R _{thJC}	DC operation	0.2	0.16	0.14	K/W			
Maximum thermal resistance, case to heatsink per module	R _{thCS}	Mounting surface smooth, flat and greased		0.05		K⁄ VV			
Mounting IAP to heatsink		A mounting compound is recommended and	4 to 6			Nm			
torque ± 10 % busbar to IAP		the torque should be rechecked after a period	4 10 6			INITI			
Approximate weight		of 3 hours to allow for the spread of		200		g			
Approximate weight		the compound. Lubricated threads.	7.1		OZ.				
Case style				INT-A	-PAK				

www.vishay.com

Vishay Semiconductors

△R CONDUCTION PER JUNCTION											
DEVICES	SINUSOIDAL CONDUCTION AT T _J MAXIMUM RECTANGULAR CONDUCTION AT T _J MAXIMUM								N	UNITS	
	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	
VSK.166	0.025	0.03	0.038	0.055	0.089	0.018	0.031	0.041	0.057	0.089	
VSK.196	0.016	0.019	0.024	0.034	0.053	0.012	0.02	0.026	0.035	0.054	K/W
VSK.236	0.009	0.010	0.014	0.018	0.025	0.008	0.012	0.015	0.019	0.025	

Note

Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Fig. 1 - Current Ratings Characteristics

Fig. 2 - Current Ratings Characteristics

Fig. 3 - On-State Power Loss Characteristics

Fig. 4 - On-State Power Loss Characteristics

www.vishay.com

Fig. 5 - Maximum Non-Repetitive Surge Current

Fig. 6 - Maximum Non-Repetitive Surge Current

Fig. 7 - On-State Power Loss Characteristics

Fig. 8 - On-State Power Loss Characteristics

www.vishay.com

Fig. 9 - On-State Power Loss Characteristics

Fig. 10 - Current Ratings Characteristics

Fig. 12 - On-State Power Loss Characteristics

Fig. 11 - Current Ratings Characteristics

Fig. 13 - On-State Power Loss Characteristics

www.vishay.com

Fig. 14 - Maximum Non-Repetitive Surge Current

Fig. 15 - Maximum Non-Repetitive Surge Current

Fig. 16 - On-State Power Loss Characteristics

Fig. 17 - On-State Power Loss Characteristics

www.vishay.com

Fig. 18 - On-State Power Loss Characteristics

Fig. 19 - Current Ratings Characteristics

Fig. 21 - On-State Power Loss Characteristics

Fig. 20 - Current Ratings Characteristics

Fig. 22 - On-State Power Loss Characteristics

www.vishay.com

Cycle Current Pulse (A)
Fig. 23 - Maximum Non-Repetitive Surge Current

Fig. 24 - Maximum Non-Repetitive Surge Current

Fig. 25 - On-State Power Loss Characteristics

Fig. 26 - On-State Power Loss Characteristics

www.vishay.com

Fig. 27 - On-State Power Loss Characteristics

Instantaneous On-State Voltage (V)
Fig. 28 - On-State Voltage Drop Characteristics

Fig. 30 - On-State Voltage Drop Characteristics

Fig. 31 - Thermal Impedance Z_{thJC} Characteristics

Fig. 32 - Thermal Impedance ZthJC Characteristics

Fig. 33 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Circuit configuration

Current rating: I_{F(AV)}

Voltage code x 100 = V_{RRM}

5 - PbF = Lead (Pb)-free

Note

• To order the optional hardware go to www.vishay.com/doc?95172

www.vishay.com

CIRCUIT CONFIGURATION		
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING
		VSKD
		~ + -
Two diodes doubler circuit	D	
		VSKC
		+
Two diodes common cathode	С	
		VSKJ
		- + +
Two diodes common anode	J	
		VSKE
		ō
Single diode	E	

LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95254				

Vishay Semiconductors

INT-A-PAK DBC

DIMENSIONS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.