Задача 0.1. Нека $\Sigma = \{x\}$ е еднобуквена азбука. За естествени числа $a, d \in \mathbb{N}$ дефинираме:

$$\mathcal{L}_{a.d} = \{ x^{a+nd} \mid n \in \mathbb{N} \}.$$

- 1. Да се докаже, че $\mathcal{L}_{a,d}$ е регулярен за всеки две $a,d \in \mathbb{N}$.
- 2. Да се формулира свойство P=P(L,n) на език L и естетвено число n така, че твърдението:

$$L$$
 е регулярен $\Rightarrow \exists n P(L, n)$

да е (тавтологично) еквивалентно на лемата за разрастване за регулярни езици.

3. Нека $L \subseteq \{x\}^*$ и P(L,n) е вярно. За естествено число $i \le n$ дефинираме:

$$K_i^+ = \{k \in \mathbb{N} \mid \forall d > 0(x^{k+id} \in L)\}, \ a \ K_i = \{k \in \mathbb{N} \mid \forall d > -1(x^{k+id} \in L)\}.$$

Да се докаже, че $K_i^+ \setminus K_i$ е крайно за всяко $i \leq n$.

- 4. Да се докаже, че ако P(L,n) е вярно за някое n, то L е обединение от краен брой езици $L_{a,d}$.
- 5. Да се докаже, че ако P(L,n) е вярно за някое n, то L е регулярен.
- 6. Заключете, че език $L \subseteq \{x\}^*$ е регулярен точно тогава, когато е обединение на краен брой езици от вида $L_{a,d}$, точно тогава, когато L удовлетворява заключението на лемата за разрастване $\exists n P(L,n)$.

Задача 0.2. ¹ *Нека* $w = a_1 \dots a_n \in \Sigma^n$ *е дума.*

- 1. Да се построи минимален краен детерминиран автомат $\mathcal{A} = \langle \Sigma, Q, \{s\}, \delta, F \rangle$ с език $\mathcal{L}(\mathcal{A}) = \{w\}$. Колко състояния има той? Колко от тях са достижими и колко са ко-достижими? Колко са финалните състояния на \mathcal{A} ?
- 2. Нека $f:\{1,2,\ldots,n\}\to\{0,1,\ldots,n-1\}$ е функцията, за която f(i)< i е възможно най-голямо, че $a_1a_2\ldots a_{f(i)}$ е суфикс на $a_1a_2\ldots a_i$. Да се докаже, че:

$$f(1) = 0$$

 $f(f(i)) < f(i)$
 $f(i+1) = f(i) + 1 \text{ aro } a_{f(i)+1} = a_{i+1}.$

3. Нека $q_i = \delta^*(s, a_1 \dots a_i)$ за $i = 0, 1, \dots, n$. Дефинираме $Q' = \{q_0, q_1, \dots, q_n\}$ и δ' : $Q' \times \Sigma \to Q'$ и fail: $Q' \to Q'$ индуктивно по i:

$$\begin{split} \delta'(q_0,a) &= \begin{cases} q_0, \ a\kappa o \ a \neq a_1 \\ q_1, \ una \forall e \end{cases}, \quad fail(q_1) = q_0 \\ \delta'(q_i,a) &= \begin{cases} \delta'(fail(q_i,a)), \ a\kappa o \ a \neq a_{i+1} \\ q_{i+1}, \ una \forall e \end{cases} \quad fail(q_{i+1}) = \delta'(fail(q_i), a_{i+1}) \end{split}$$

Да се докаже, че δ' е тотална и за всяко $1 \le i \le n$ е изпълнено, че $fail(q_i) = q_{f(i)}$.

4. Кой е езикът, който разпознава автоматът $\mathcal{A}'=\langle \Sigma,Q',\{q_0\},\delta',\{q_n\}\rangle$?

 $^{^1\}Pi$ о същество това е алгоритъмът на Knuth-Morris-Pratt.

5. Да се докаже, че \mathcal{A}' е минимален.

Задача 0.3. 2 Нека с DET бележим конструкцията за детерминизация на крайни автомати (без ε -преходи) от Задача 1, Детерминизация на крайни автомати, седмица 2.

Hека c REV бележим конструкцията за обръщане на краен автомат от 3адача 6, Eзици и крайни автомати, cедмица 1.

Hека $A=\langle \Sigma,Q,S,\Delta,F \rangle$ е краен автомат с $\Delta\subseteq Q\times \Sigma\times Q$ и език L(A)=L.

$$\begin{array}{rcl} A' & = & \operatorname{REV}(A) \\ A'_D & = & \operatorname{DET}(A') \\ A'' & = & \operatorname{REV}(A'_D) \\ A_D & = & A". \end{array}$$

- 1. Да се докаже, че $\mathcal{L}(A_D) = L$.
- 2. Да се докаже, че за всеки две различни състояния p,q на A'', $L_{A''}(p) \cap L_{A''}(q) = \emptyset$.
- 3. Да се докаже, че A_D е минимален тотален краен детерминиран автомат с език L^{rev} .

 $^{^2}$ По същество това е алгоритъмът на $\overline{\mathrm{Brzozowski}}$ за минимизация на крайни автомати.

Улътване 0.1. Относно крайността на $K_i\setminus K_i^+$ забележете, че ако $k_1,k_2\in K_i^+,\ k_1>k_2$ и $k_1\equiv k_2\pmod i$, то $k_1\in K_i$. Заключете, че за всяко $0\le j< i$ има най-много едно $k\in K_i^+\setminus K_i$, за което $k\equiv j\pmod i$.

Упътване 0.2. За точка 3 разсъждавайте индуктивно по i. За точка 4, индуктивно по i покажете, че ако $q_0 \stackrel{u}{\to}^* q_i$, то $u \in \Sigma^* a_1 \dots a_i$ и i е най-голямото с това свойство.

Упътване 0.3. 1. Приложете резултатите за REV и DET.

- 2. Използвайте, че A'_D е детерминиран и свойството на Rev. Тогава, ако $u \in L_{A''}(p)$, съобразете, че в A'_D има път от началното състояние до p с етикет u.
- 3. Използвайте Задача 1 от Езици и крайни автомати, седмица 1, свойството на DET и точка 2, за да покажете, че за всеки две състояния $p \neq q$ на A_D , $\mathcal{L}_{A_D}(p) \neq \mathcal{L}_{A_D}(q)$.