

UTAustinX: UT.7.10x Foundations of Data Analysis - Part 1

▶ Important Pre-

Course Survey

Week 4: Bivariate Distributions (Categorical Data) > Lecture Videos > Graphing the Contingency Table

■ Bookmark

- Graphing the Contingency Table
- Contact Us
- How To Navigate the Course
- Discussion Board
- Office Hours
- Week 1: Introduction to Data
- Week 2: Univariate Descriptive Statistics
- Week 3: Bivariate Distributions
- Week 4:
 Bivariate
 Distributions
 (Categorical
 Data)

Readings

Reading Check due Mar 15, 2016 at 18:00 UTC

Lecture Videos

Comprehension Check due Mar 15, 2016 at 18:00 UTC

srt

Download transcript

SPEAKER: MICHAEL J. MAHOMETA, Ph.D.

So now that we know that there's a relationship between our two

categorical variables by showing the disparity

between the marginal and conditional probabilities of an

Comprehension Check

Is there an association between car color and marital status? Below are data collected to address this question.

	Red	Black/White/Silver	Other
Married	40	22	19
Unmarried	45	10	12

(6/6 points) **R Tutorial Videos** Using the contingency table above, solve for each of the following probabilities. (Report as proportions rounded to 3 decimal places.) Pre-Lab Pre-Lab due Mar 15, 2016 at 18:00 UTC 1) P (black/white/silver) Lab Lab due Mar 15, 2016 0.216 **Answer: 0.216** at 18:00 UTC **Problem Set** 0.216 Problem Set due Mar 15, 2016 at 18:00 UT 🗹 2) P (married) ▶ Week 5: Linear Answer: .547 0.547 **Functions** 0.547 3) P (unmarried and black/white/silver car) Answer: .068 0.068 0.068 4) P (red car | married) 0.494 Answer: .494 0.494 5) P (married | red car) 0.471 Answer: .471 0.4716) What ratio would you use to solve for P(red car | unmarried) using the contingency table? 40/148 40/81 45/85 45/67

Now solve for P (red car | unmarried) using the formula below. (*Probabilities should be reported as proportions rounded to 3 decimal places*.)

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = X$$

$$P(B) = Y$$

$$P(A \mid B) = \mathbf{Z}$$

(3/3 points)

7) **X**

0.304

0.304

8) **Y**

0.453

0.453

9) **Z**

0.671

0.671

(3/3 points)

Using the above formula, solve for these three values. (*Report each as a proportion rounded to three decimal places*.)

10) P (red)

0.574 **✓ Answer**: .574

0.574

0.494	✓ Answer: .494
0.494	•
2) P (red unmarried)	
0.671	✓ Answer: .672
0.671	
2/2 points) 3) If car color and marital	l status are independent, what should be true?
O P(red married) = P((married red)
O P(red) = P(married)	
P(red) = P(red mar	ried) 🗸
O P(red) = P(married	red)
4) Do car color and marit	al status appear to be independent?
 Yes, because the pro everyone. 	bbability of having a red car is identical for
 Yes, because there a the sample. 	are more married people and more red cars in
•	eople drive red cars than other colored cars. dependent of marital status.
•	bability of having a red car is different for people, though the difference is small.

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

