Kétdimenziós tömbök (mátrixok)

(n x m nagyságú tömbök)

készítette: Vastag Atila

2016

Sok feladat megoldásához az egydimenziós tömb struktúra már nem elegendő, vagy túl bonyolulttá tenné a kezelést.

Ha például gyűjteni szeretnénk havonként és azon belül naponként a kiadásainkat. A kiadások számok, de a napokhoz rendelt indexek nehézkesek lennének, mert február 1-hez a 32-t, június 1-hez már a 152-es index tartozna. Egyszerűbb, ha a kiadásainkat két indexel azonosítjuk. Az egyik jelentheti a hónapot, a másik a napot.

Ha már az évet is szeretnénk tárolni, akkor egy újabb index bevezetésére van szükségünk.

Meghatározás

- A mátrix olyan kétdimenziós tömb ahol az oszlopok száma nem egyezik a sorok számával.
- Ha a sorok és az oszlopok száma megegyezik, akkor négyzetes mátrixról beszélünk.

1	2	3
2		
3		
4		

1	2	3
2		
3		

Ábrázolás: n x m mátrix

	1. oszlop	j. oszlop		m. oszl	
1. sor	a[0,0]		a[0,j]		a[0,m]
	:		:		•••
i. sor	a[i,0]		a[i,j]		a[i,m]
	•••		•••		•••
n. sor	a[n,0]		a[n,j]		a[n,m]

Kétdimenziós tömb deklarálása

```
//ketetdimeznios egesz szamu tomb
  int[,] matrix = new int[4, 3];
                                              int[,] matrix = new int[,]
                                                      \{1, 2, 3\},\
                                                      {4, 5, 6},
//ketetdimeznios tizedes szamu tomb
                                                      {7, 8, 9}
double[,] matrix = new double[4, 3];
                                                      {10, 11, 12}
//ketetdimeznios szoveges tomb
string[,] matrix = new string[4, 3];
//ketetdimeznios karakter tomb
char[,] matrix = new char[4, 3];
```

Kiírás

• Egy n sort és m oszlopot tartalmazó tömb kiírása:

```
int[,] matrix = new int[4, 3];
int n = 4; //sorok szama
int m = 3; //oszlopok szama
for (int i = 0; i < n; i++)
    for (int j = 0; j < m; j++)
        Console.Write("[\{0\},\{1\}] = \{2\}\setminus t", i, j, matrix[i,j]);
    }
    Console.WriteLine(); //azert hogy a sorokat megkulonboztessuk
```

Beolvasás

• Egy n sort és m oszlopot tartalmazó tömb beolvasása:

```
int[,] matrix = new int[4, 3];
int n = 4; //sorok szama
int m = 3; //oszlopok szama
for (int i = 0; i < n; i++)
    for (int j = 0; j < m; j++)
        Console.Write("[\{0\},\{1\}] = ", i, j);
        matrix[i,j] = int.Parse(Console.ReadLine());
    Console.WriteLine(); //azert hogy a sorokat megkulonboztessuk
```

Kétdimenziós tömbök bejárása

$$j = 0$$
 $j = 1$ $j = 2$ $j = 3$

i = 0	1	2	3	4
i = 1	2	4	6	8
i = 2	3	6	9	12

Minden sora (külső ciklus, i) végiglépkedünk minden oszlopon (belső ciklus, j). Amikor a belső ciklusnak vége, akkor a külső ciklus megnövekszik eggyel és így már a következő soron lépkedünk végig, de ekkor a belső ciklus is az elejétől (0-dik elemtől) indul. Így mindaddig még a mátrix össz elemén nem lépked végig.

```
for (int i = 0; i < 3; i++)
{
    for (int j = 0; j < 4; j++)
    {
        Console.Write("A matrix elleme: [{0},{1}] = ", i, j);
    }

Console.WriteLine(); //azert hogy a sorokat megkulonboztessuk
}</pre>
```

A négyzetes mátrixok nevezetes vonalai: (csak a négyzetesnek van)

•Főátló:

feltétel:

[0,0]	[0,1]	[0,2]	[0,3]	[0,4]	
[1 , 0]	[1,1]	[1,2]	[1,3]	[1,4]	
[2 , 0]	[2 , 1]	[2,2]	[2,3]	[2 , 4]	
[3,0]	[3,1]	[3,2]	[3,3]	[3,4]	
[4,0]	[4 , 1]	[4,2]	[4,3]	[4,4]	

A négyzetes mátrixok nevezetes vonalai:

 Főátló alatti elemek:

i>j

Főátló feletti elemek:

i<j

j					
[0,0]	[0,1]	[0,2]	[0,3]	[0,4]	
[1,0]	[1,1]	[1,2]	[1,3]	[1,4]	
[2,0]	[2,1]	[2,2]	[2,3]	[2,4]	
[3,0]	[3,1]	[3,2]	[3,3]	[3,4]	
[4,0]	[4,1]	[4,2]	[4,3]	[4,4]	

A négyzetes mátrixok nevezetes vonalai:

Mellék átló:

feltétel:

$$i + j = n - 1$$

n – oszlopok sorok száma

j					
[0,0]	[0,1]	[0,2]	[0,3]	[0,4]	
[1 , 0]	[1 , 1]	[1,2]	[1,3]	[1 , 4]	
[2,0]	[2 , 1]	[<mark>2,2</mark>]	[2,3]	[2 , 4]	
[3,0]	[3,1]	[3,2]	[3,3]	[3,4]	
[4,0]	[4,1]	[4,2]	[4,3]	[4,4]	

A négyzetes mátrixok nevezetes vonalai:

 Mellék átló alatti elemek:

Mellék átló feletti elemek:

$$i+j < n-1$$

[0,0]	[0,1]	[0,2]	[0,3]	[0,4]	
[1,0]	[1 , 1]	[1,2]	[1 , 3]	[1,4]	
[<mark>2,0</mark>]	[2 , 1]	[<mark>2,2</mark>]	[2,3]	[2 , 4]	
[3,0]	[<mark>3,1</mark>]	[3,2]	[3,3]	[3,4]	
[4,0]	[4 , 1]	[<mark>4,2</mark>]	[4,3]	[4,4]	

Feladatok

- 1. Hozzunk létre egy 4 x 3 mátrixot, töltsük fel adatokkal (random), majd írjuk ki a mátrixot.
- 2. A felhasználótól kérjük be a mátrix dimenzióit (sor és oszlop), majd ezt a mátrixot töltsük fel adatokkal (random) és írjuk ki.
- 3. A felhasználótól kérjük be a mátrix dimenzióit (sor és oszlop), majd ezt a mátrixot töltsük fel adatokkal (random), írjuk ki és keressük meg a min és max értékeket.

Feladatok

- 4. A felhasználótól kérjük be a mátrix dimenzióit (sor és oszlop), majd ezt a mátrixot töltsük fel adatokkal (random), majd írjuk ki. Keressük ki minden sorban a legnagyobb számot és ezekből a számokból alkossunk egy tömböt.
- **HÁZI FELADAT:** ez előző feladathoz hasonlóan, a tömb elemeit az oszloponkénti min értékek kell hogy alkossák.
- 5. A felhasználótól kérjük be a mátrix dimenzióit (sor és oszlop), majd ezt a mátrixot töltsük fel adatokkal (random), majd írjuk ki. Adjuk össze az egyes sorok elemeit majd a sorok összegéből alkossunk egy új tömböt.
- **HÁZI FELADAT:** a fenti feladat alapján a tömb elemeit az oszlopok különbsége adja meg.

Feladatok

- 6. Számítsuk ki egy négyzetes mátrix főátlóján levő elemeinek összegét
- 7. Számítsuk ki egy négyzetes mátrix mellék átlóján levő elemeinek összegét
- 8. Keressük ki egy négyzetes mátrix főátlója alatti elemeinek a minimumát
- 9. Számítsuk ki egy négyzetes mátrix mellék átlója feletti elemeinek a maximumát
- 10. A felhasználótól kérjük be a mátrix dimenzióit (sor és oszlop), majd ezt a mátrixot töltsük fel adatokkal (random), majd írjuk ki. Rakjuk sorba a mátrix elemeit növekvő sorrendbe.

HÁZI FELADAT: a mátrixot rakjuk csökkenő sorrendbe.

- 11 Indiában monszun időszak kezdődik. A mezőgazdasági minisztérium kutatást végzett, a leesett eső mennyiségéről, ezért mérőhengereket helyeztek el, amit minden nap reggel 6, délután 14 és este 22 órakor ellenőriztek és az esett mennyiséget feljegyezték egy táblázatba (a leolvasott értékek 0 5 $1/m^2$ közt mozogtak, és nem voltak egész értékek). Majd a következő adatokra voltak kíváncsiak:
- A leesett napi átlag csapadékot növekvő sorrendje
- Melyik nap esett a legkevesebb és legtöbb csapadék
- Melyik nap reggelére esett a legtöbb csapadék
- Melyik nap esett a legtöbb csapadék reggel 6 és este 22 óra közt