

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2017/2018

EEE 3076 – POWER ELECTRONICS

(LE, EE, CE, NE)

16 OCTOBER 2017 9:00 AM – 11:00 AM (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 10 pages including cover page with 4 Questions only.
- 2. Answer ALL questions. All questions carry equal marks and the distributions of the marks for each question is given.
- 3. Please print all your answers in the Answer Booklet provided.

a) Using an aid of a BJT driver circuit and its current waveform, briefly explain how the gate/base driver circuit can improve switching speed for a switching power converter.

[7 marks]

b) A Power BJT (Motorola MJ16018 - Appendix A-1 and A-2) is used as a switch for a DC-DC converter connected to a resistive load. The input voltage is 250 V and maximum output current is 5 A. The switch is operated at 25 kHz with 50% duty cycle. Estimate the following for the case temperature of 25°C. (Note that, $\tau_{ON} = t_d + t_r$ and $\tau_{OFF} = t_s + t_f$)

(i) Static Loss

[6 marks]

(ii) Dynamic Loss

[9 marks]

(iii) Total Loss

[3 marks]

Design a full wave rectifier for a 20 kW resistive-inductive load. The application needs variable dc voltage to the load. You may need to select a suitable AC voltage for this application. Available AC voltage is 400V, 50Hz (for 3-phase system) and 230V, 50Hz (for 1-phase system).

a) Sketch the rectifier circuit diagram.

[4 marks]

b) Compute the maximum average load voltage.

[5 marks]

c) Sketch the voltage waveform across one of the switches. (use drawing sheet in appendix)

[6 marks]

d) What should be the minimum current and breakdown voltage for the switch used in the rectifier?

[4 marks]

e) Prove by calculation that the rectifier can produce dc voltage ranging from 200 V to 400 V to the load.

[6 marks]

a) Figure 3 (a) is a buck converter circuit. Design this converter to power a load that consumes 28 W to operate. Assume that the buck converter will be operating in the continuous current mode and all the components are ideal. The load requires a voltage with ripple not more than 1%. Following are other requirements:

Input voltage, $V_d = 10 \text{ V}$, duty cycle, D = 0.5 and switching period, $T_s = 40 \text{ }\mu\text{s}$. [13 marks]

- b) Consider a buck-boost converter as shown in Figure 3 (b) that supplies 120 W at 10 A from a 40 V DC source. The converter operates at the switching frequency of 10 kHz and given the inductor in the circuit is 250 μ H. Determine the following:
 - (i) The duty cycle D.

[3 marks]

(ii) The minimum and maximum inductor current (I_{Lmin} , I_{Lmax}).

[4 marks]

(iii) The average input current.

[2 marks]

(iv) The average diode current.

[1 mark]

(v) Sketch the waveforms of the output voltage and the inductor current.

[2 marks]

a) A pulse width modulated full bridge inverter produces output AC voltage as shown in Figure Q4(a). The inverter is operating at a duty cycle of 55 % with a frequency of 50 Hz. The resistive load is 12Ω .

Figure Q4(a)

i) Calculate the r. m. s. value of output load current (i_{\circ}) and output load voltage (v_{\circ}) for the first, third, and fifth harmonics.

[7 marks]

ii) Show by calculation that the inverter can eliminate the third current harmonics at the load.

[4 marks]

iii) Calculate the total harmonic distortion (THD) of the output current for part (i) and (ii) above.

[8 marks]

b) A resonant inverter shown in Figure Q4(b) has the following circuit parameters: Show by calculation that the inverter operates in non-overlapping mode.

$$R = 2 \Omega$$
, $L = 30 \mu H$, $C = 17 \mu F$, Output frequency = 2 kHz,

[6 marks]

Appendix A-1

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Order this document by MJ16018/D

Designer's™ Data Sheet

NPN Silicon Power Transistors

1.5 kV SWITCHMODE Series

These transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switchmode applications. Features:

Typical Applications:

- Switching Regulators
- Inverters
- Solenoids
- Relay Drivers
- Motor Controls
- **Deflection Circuits**

Collector–Emitter Voltage — VCEV = 1500 Vdc

Fast Turn-Off Times 80 ns Inductive Fall Time — 100°C (Typ) 110 ns Inductive Crossover Time — 100°C (Typ) 4.5 µs Inductive Storage Time — 100°C (Typ)
100°C Performance Specified for:

Reverse-Blased SOA with Inductive Load Switching Times with Inductive Loads Saturation Voltages Leakage Currents

MJ16018* MJW16018*

*Motorola Preferred Device

POWER TRANSISTORS 10 AMPERES 800 VOLTS 125 AND 175 WATTS

MAXIMUM RATINGS

Rating	Symbol	MJ16018 MJW16018		Unit
Collector-Emitter Voltage	VCEO(sus)	. 80	800	
Collector-Emitter Voltage	VCEV	15	00	Vdc
Emitter-Base Voltage	VEB	(3	Vdc
Collector Current — Continuous — Peak(1)	IC ICM	10 15		Adc
Base Current — Continuous — Peak ⁽¹⁾	I _B	8 12		Adc
Total Power Dissipation @ T _C = 25°C @ T _C = 100°C Derate above T _C = 25°C	PD	175 100 1	125 50 1	Watts
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to 200	-55 to 150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max		Unit
Thermal Resistance, Junction to Case	ReJC	1	1	°C/W
Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	TL	2	75	•℃

(1) Pulse Test: Pulse Width = 5 μs, Duty Cycle ≤ 10%.

Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

Preferred devices are Motorola recommended choices for future use and best overall value.

Designer's and SWITCHMODE are trademarks of Motorola, Inc.

REV 1

© Motorola, Inc. 1995

Appendix A-2

MJ16018 MJW16018

ELECTRICAL	CHARACTERISTICS	(Tc = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS(1)					
Collector-Emitter Sustaining Voltage (Table 1) (IC = 50 mA, IB = 0)	VCEO(sus)	800	· -	Í -	Vdc
Collector Cutoff Current (V _{CEV} = 1500 Vdc, V _{BE(off)} = 1.5 Vdc) (V _{CEV} = 1500 Vdc, V _{BE(off)} = 1.5 Vdc, T _C = 100°C)	ICEV	_	=	0.25 1.5	mAdo
Collector Cutoff Current (V _{CE} = 1500 Vdc, R _{BE} = 50 Ω, T _C = 100°C)	CER	_	-	2.5	mAdo
Emitter Cutoff Current (VEB = 6 Vdc, IC = 0)	EBO	_	_	0.1	mAdc
ECOND BREAKDOWN					
Second Breakdown Collector Current with Base Conward Bissed	I I I		See Fie	12	

Second Breakdown Collector Current with Base Forward Biased	ls/b	See Figure 13
Clamped inductive SOA with Base Reverse Biased	RBSOA	See Figure 14

ON CHARACTERISTICS(1)

Collector–Emitter Saturation Voltage	VCE(sat)				Vdc
(IC = 5 Adc, IB = 2 Adc)			-	1	ł
(I _C = 10 Adc, I _B = 5 Adc) (I _C = 5 Adc, I _B = 2 Adc, T _C = 100°C)		_	- '	5	
				1.5	
Base-Emitter Saturation Voltage (I _C = 5 Adc, I _B = 2 Adc) (I _C = 5 Adc, I _B = 2 Adc, T _C = 100°C)	V _{BE(sat)}		=	1.5 1.5	Vdc
DC Current Gain (I _C = 5 Adc, V _{CE} = 5 Vdc)	hFE	4	_	_	_

DYNAMIC CHARACTERISTICS

Output Capacitance (VCB = 10 Vdc, IE = 0, ftest = 1 kHz)	· ·		450	~F	1
Output Outputtance (V[]B = 10 Vuc, 1F = 0, 1665 = 1 km2)	l Cop	 	450	ı pr	
2 1001	-00			F	1

SWITCHING CHARACTERISTICS

Inductive Load (7	able 1)						
Storage Time			t _{sv}	Τ-	4000	8000	ns
Fall Time	Baker Clamped (IC = 5 Adc	(T _J = 25°C)	t _{fi}	-	60	200	1
Crossover Time	IB1 = 2 Adc,		tc	_	90	300	1
Storage Time	VBE(off) = 2 Vdc, VCE(pk) = 400 Vdc) PW = 25 μs (T _J = 100°C)	t _{sv}	T -	4500	9000	1	
Fall Time		tfi	-	80	250	1	
Crossover Time			t _C		110	375	1
Resistive Load (T	able 1)			···			
Delay Time	Baker Clamped		^t d	T -	85	200	ns
Rise Time	(I _C = 5 Adc, V _{CC} = 250 Vdc, I _{B1} = 2 Adc, I _{B2} = 2 Adc, R _{B2} = 3 Ω, PW = 25 μs,		tr		900	2000	1
Storage Time			t _s	-	4500	9000	1.
Fall Time	Duty Cycle ≤ 2%)			_	200	400	1

⁽¹⁾ Pulse Test: PW = 300 μs, Duty Cycle ≤ 2%.

Figure 1. DC Current Gain

Figure 2. Collector Saturation Region

2

Motorola Bipolar Power Transistor Device Data

Examination Formula Sheet (Rev 4.0)

AC-DC Converters

Single Phase Uncontrolled Rectifiers (Half	Single Phase Uncontrolled Rectifiers (Half wave), RL Load
wave), R load	
$V_{o,avg} = \frac{\sqrt{2}V_{S,rms}}{\pi}, V_{o,rms} = \frac{V_{S,rms}}{\sqrt{2}}$	$V_{o,avg} = \frac{\sqrt{2}V_{s,rms}}{2\pi} \left[1 - \cos(\beta)\right]$
	$V_{o,rms} = \frac{V_{s,rms}}{\sqrt{2\pi}} \sqrt{\beta - \frac{\sin 2\beta}{2}} \beta \approx \pi + \theta , \theta = \tan^{-1} \left(\frac{\omega L}{R}\right)$
Single Phase Uncontrolled Rectifiers (Bridge Full wave)	Three Phase Uncontrolled Rectifiers (Half wave)
$V_{o,avg} = \frac{2\sqrt{2}V_{s,rms}}{\pi}, \ V_{o,rms} = V_{s,rms}$	$V_{o_avg} = \frac{3\sqrt{3}V_{l-n}}{\sqrt{2}\pi}, \ V_{o_rms} = 1.19V_{l-n}$
Three Phase Uncontrolled Rectifiers (Full wave)	Single Phase controlled Rectifiers (Half wave)
$V_{0_avg} = \frac{3\sqrt{2}V_{l-l}}{\pi}, \ V_{0_rms} = 0.963 \ V_{l-l}$	$V_{0_{-}avg} = \frac{V_{S,rms}}{\sqrt{2}\pi} (1 + \cos\alpha) \qquad R$
	Load $V_{0_{-avg}} = \frac{V_{S,rms}}{\sqrt{2}\pi} (\cos \alpha + \cos \beta)$ RL Load
Single Phase controlled Rectifiers (Bridge Full wave)	Three Phase controlled Rectifiers (Half wave)
$V_{0_{avg}} = \frac{\sqrt{2}V_{S,rms}}{\pi} (1 + \cos \alpha) \qquad R$	$V_{0_{-}avg} = \frac{3\sqrt{2}}{2\pi} V_{AN} \left(1 + \cos\left(\frac{\pi}{6} + \alpha\right) \right)$
$\operatorname{Load} V_{0_avg} = \frac{2\sqrt{2}V}{\pi} \cos \alpha \qquad \qquad \operatorname{RL}$	
Load	
Three Phase controlled Rectifiers (Full wave)	
$V_{0_{avg}} = \frac{3\sqrt{6}}{\pi} V_{AN} \cos \alpha$	

DC-DC Converters

Buck Converter (CCM)	Buck Converter (DCM)
$V_{o} = DV_{d}$ $I_{L \max} = V_{o} \left[\frac{1}{R} + \frac{(1-D)}{2Lf_{s}} \right]$ $I_{L \min} = V_{o} \left[\frac{1}{R} - \frac{(1-D)}{2Lf_{s}} \right]$	$\frac{V_o}{V_d} = \frac{D}{D + \Delta_1}$ $I_o = \frac{V_d T_s}{2L} D\Delta_1$

Continued...

GR/ZY

DC-DC Converters (cont.)

Boost Converter (CCM)	Boost Converter (DCM)
$V_{o} = \frac{V_{d}}{1 - D}$ $I_{L max} = \frac{V_{d}}{(1 - D)^{2} R} + \frac{V_{d} D T_{s}}{2L}$ $I_{L min} = \frac{V_{d}}{(1 - D)^{2} R} - \frac{V_{d} D T_{s}}{2L}$	$\frac{V_o}{V_d} = \frac{\Delta_1 + D}{\Delta_1}$ $I_o = \frac{V_d T_s}{2L} D\Delta_1$
Buck-Boost Converter (CCM)	Buck-Boost Converter (DCM)
$V_{o} = \frac{V_{d}D}{1-D}$ $I_{L max} = \frac{V_{d}D}{R(1-D)^{2}} + \frac{V_{d}DT_{s}}{2L}$ $I_{L min} = \frac{V_{d}D}{R(1-D)^{2}} - \frac{V_{d}DT_{s}}{2L}$	$\frac{V_o}{V_d} = \frac{D}{\Delta_1}$ $I_o = \frac{V_d D}{2f_s L} (D + \Delta_1) - \frac{DI_o}{\Delta_1}$
Flyback Converter (CCM)	Flyback Converter (DCM)
$\frac{V_{o}}{V_{d}} = \frac{N_{2}}{N_{1}} \frac{D}{1 - D}$ $I_{L_{\text{max}}} = \frac{V_{d}D}{R(1 - D)^{2}} \left[\frac{N_{2}}{N_{1}}\right]^{2} + \frac{V_{d}DT_{s}}{2L_{m}}$	$\frac{V_o}{V_d} = D\sqrt{\frac{R}{2f_s L_m}}$ $I_o = \frac{V_o}{R}$
$I_{L_{\min}} = \frac{V_d D}{R(1-D)^2} \left[\frac{N_2}{N_1} \right]^2 - \frac{V_d D T_s}{2L_m}$	

DC-AC Converters

Single-Phase Half-bridge Inverter with RL load $v_o(\omega t) = \sum_{n=1,3,5,\dots}^{\infty} \frac{2V_s}{n\pi} \sin(n\omega t)$ Resonant Converters $\omega_r = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$ Single-phase full-bridge PWM inverter (Square Wave) $v_o(\omega t) = \sum_{n=1,3,5,\dots}^{\infty} \frac{4V_s}{n\pi} \sin(n\omega t)$ $i(t) = \frac{V_s + V_c}{\omega_r L} e^{-\alpha t} \sin \omega_r t \quad , \quad \alpha = \frac{R}{2L}$ $V_c = V_s \left(\frac{e^{2z} - 1}{e^{2z} + 1}\right), \quad z = \frac{\alpha \pi}{\omega_r}$ Single-phase full-bridge PWM inverter (Quasi Square Wave) $v(\omega t) = \sum_{n=1,3,5,\dots}^{\infty} \frac{4V_s}{n\pi} \sin \frac{nD\pi}{2} \cos n(\omega t - \frac{D\pi}{2})$

Appendix (For Question 2(c))- Please attach to the answer booklet

Student ID: Table No.:.....

End of Paper

GR/ZY 10/10