4. Sturm-Liouville BVP

1. For which values of λ does the boundary value problem (BVP)

$$y'' - 2y' + (1 + \lambda)y = 0$$
, $y(0) = 0$, $y(1) = 0$

has non-trivial solutions?

2. Write the following ODEs in the form, $(r(x)y')' + (q(x) + \lambda p(x))y = 0$

(a)
$$xy'' + (1-x)y' + x^2y + \lambda y = 0$$

(b)
$$(1-x^2)y'' - 2xy' + n(n+1)y = 0$$

(c)
$$x^2y'' - 2x^3y + y\sin x + \lambda y\cos x = 0$$
.

(d)
$$(\sin^2 x)y'' + (\cos x)y' + g(x)y = 0$$
.

3. Determine whether the given boundary value problem is self-adjoint or not.

(a)
$$y'' + y' + 2y = 0$$
, $y(0) = 0$, $y(1) = 0$

(b)
$$y'' + y = \lambda y$$
, $y(0) - y'(1) = 0$, $y'(0) - y(1) = 0$

(c)
$$(1+x^2)y'' + 2xy' + y = 0$$
, $y'(0) = 0$, $y(1) + 2y'(1) = 0$

(d)
$$(1+x^2)y'' + 2xy' + y = \lambda(1+x^2)y$$
, $y(0) - y'(1) = 0$, $y'(0) + 2y(1) = 0$

(e)
$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(\pi) + y'(\pi) = 0$.

(Hint: Try to write the above ODEs in $L(y) + \lambda p(x)y = 0$, where L(y) = (r(x)y')' + q(x)y and use Lagrange's Identity with the help of the given boundary conditions)

4. Find the eigenvalues and eigenfunctions of the following boundary value problems:

(a)
$$(e^{2x}y)' + e^{2x}(1+\lambda)y = 0$$
, $y(0) = 0$, $y(\pi) = 0$

(b)
$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(1) = 0$

(c)
$$x^2y'' + xy' + \lambda y = 0$$
, $y(1) = 0$, $y(\ell) = 0$

5. Determine the normalised eigenfunctions of the BVP

$$y'' + \lambda y = 0, \ y(0) = 0, \ y(1) = 0.$$