Lec. l Basic Electrical / Electronic Circuit Components

1

Circuit Components

Passive Components: Resistors, Capacitors, Inductors, transformer etc.

Active Components: Power sources (voltage/current),

Transistors (BJT/ MOSFET),

Diodes (LEDs, Photodiodes),

Generators etc

Linear Time Invariant Passive Elements

$$v = Ri$$

 $v = \frac{d(Cv)}{dt}$

 $v = \frac{d(Li)}{dt}$

Linear Resistor

Linear Capacitor

Linear Inductor

For <u>linear time-invariant</u> capacitors and inductors, i = C(dv/dt) and v = L(di/dt) respectively.

Steady State and Transient Behaviour

5

Capacitor

A capacitor stores energy in the form of an electric field

Current-voltage relationship $i = C \frac{dv}{dt}$, $v = \frac{1}{C} \int i dt$

In DC the capacitor acts as an open circuit

The capacitance C represents the efficiency of storing charge.

The unit of capacitance is the Farad (F). 1 Farad=1Coulomb/1Vol

Typical capacitor values are in the mF (10^{-3} F) to pF (10^{-12} F)

The energy stored in a capacitor is $E = \frac{1}{2}Cv^2$ Joules

Large capacitors should always be stored with shorted leads.

$$i = C \frac{dv}{dt}$$
 (1)

Integrating Eq.1

$$\int_{-\infty}^{t} idt = \int_{-\infty}^{t} C \frac{dv}{dt} dt$$

$$v = \frac{1}{C} \int_{-\infty}^{t} i dt$$

$$= \frac{1}{C} \int_{0}^{t} i dt + v(0)$$

$$v(0) = q(0)/C$$

The constant of integration v(0) represents the voltage of the capacitor at time t=0. The presence of the constant of integration v(0) is the reason for the memory properties of the capacitor.

7

Inductor

A inductor stores energy in a magnetic field

Current-voltage relationship
$$v = L \frac{di}{dt}$$
, $i = \frac{1}{L} \int v dt$

The energy stored in an inductor is $E = \frac{1}{2}Li^2$ Joules

In DC the inductor behaves like a short circuit

The inductance L represents the efficiency of storing magnetic flux.

$$v = L \frac{di}{dt}$$
 (2)

On integrating Eq. 2

$$\int_{-\infty}^{t} v dt = \int_{-\infty}^{t} L \frac{di}{dt} dt$$

$$i = \frac{1}{L} \int_{-\infty}^{t} v dt$$

$$= \frac{1}{L} \int_{0}^{t} v dt + i(0)$$

The constant i(0) represents the current through the inductor at time t=0. (Note that we have also assumed that the current at $t=-\infty$ was zero.)

9

Q. 1.

Calculate the energy stored in the capacitor of the circuit to the right under DC conditions.

And from the voltage divider formed by the $1k\Omega$ and the $2k\Omega$ resistors the voltage v is 12Volts. Therefore the energy stored in the capacitor is

$$Ec = \frac{1}{2}Cv^2 = \frac{1}{2}1 \times 10^{-6} \times 12^2 = 72 \,\mu\text{Joules}$$

11

H.W.

If the capacitor is replaced by an inductor (1mH) then how much energy is stored by it.

Basic Lissajous Curves

Lissajous figures are created by the combination of two sine waves

$$V_h = A \sin(\omega t)$$

 $V_v = B \sin(\omega t + \emptyset)$

$$\emptyset = 180 - \frac{\sin^{-1}(x_1/x_2)}{\sin^{-1}(x_1/x_2)} \qquad \emptyset = \sin^{-1}(x_1/x_2)$$

$$\emptyset = 180 + \sin^{-1}(x_1/x_2) \qquad \emptyset = 360 - \sin^{-1}(x_1/x_2)$$

15

Materials

Classification:- In terms of Electrical Conductivity

- Conductor
- Insulator
- Semiconductor

Si-crystal (semiconductor)

Intrinsic (pure):

Extrinsic (doped):

- p-type (trivalent doping ions e.g. B) and
- n-Type (pentavalent doping ions e.g. P)

17

Electron concentration gradient

- $n = n_{n0}$ (*n*-side) > $n = np_0$ (*p*-side)
- ⇒Electrons *diffuse* towards the left and enter the *p*-region and recombine with the holes (majority carriers)
- \Rightarrow The *p*-side near the junction becomes <u>depleted of majority carriers</u> and has exposed negative acceptors of concentration N_a .

Hole concentration gradient

- $p = p_{p0}$ (p-side) > $p = p_{n0}$ (n-side)
- ⇒Holes diffuse towards the right and enter the n-region and recombine with the electrons (majority carriers) in this region.
- \Rightarrow The *n*-side near the junction becomes <u>depleted of majority carriers</u> and has exposed positive donors of concentration N_d .

Light Emitting Diodes

- A light emitting diode (LED) is a pn junction diode typically made from a direct bandgap semiconductor in which the electron hole pair recombination results in the emission of a photon.
- Emitted photon energy

$$h \, \nu \! pprox E_g$$
 Δ Bandgap energy

21

Light Wavelength and Equivalent Semiconductor Bandgap

Colour	Wavelength (nm)	Band Gap Energy, E (eV)
Infrared	λ>760	E<1.63
Red	610<λ<760	1.63 <e<2.03< td=""></e<2.03<>
Orange	590<λ<610	2.03 <e<2.10< td=""></e<2.10<>
Yellow	570<λ<590	2.10 <e<2.18< td=""></e<2.18<>
Green	500<λ<570	2.18 <e<2.48< td=""></e<2.48<>
Blue	450<λ<500	2.48 <e<2.76< td=""></e<2.76<>
Violet	400<λ<450	2.76 <e<3.10< td=""></e<3.10<>
Ultraviolet	λ<400	3.1 <e< td=""></e<>

Di	ffe	ren	t l	ΙFΙ	D'c	Co	lour
$\boldsymbol{\mathcal{L}}$	116		16 1		$\boldsymbol{\mathcal{L}}$		Juli

Typical LED Characteristics							
Semiconductor Material	Wavelength	Colour	V _F @ 20mA				
GaAs	850-940nm	Infra-Red	1.2v				
GaAsP			1.8v				
GaAsP	605-620nm	Amber	2.0v				
GaAsP:N	585-595nm	Yellow	2.2v				
AlGaP	550-570nm	Green	3.5 v				
SiC	430-505nm	Blue	3.6v				
GaInN	450nm	White	4.0v				

LED's Advantages

Normal incandescent lamps and bulbs generate large amounts of heat when illuminated.

The light emitting diode produces a "cold" generation of light which leads to high efficiencies than the normal "light bulb" because most of the generated energy radiates away within the visible spectrum.

LEDs are solid-state devices:

- can be extremely small
- durable and
- provide much longer lamp life than normal light sources.

