Lecture 12: Asymptotics

Marco Avellaneda G63.2936.001

Spring Semester 2009

Parabolic fits are not consistent with arbitrage-free pricing

Parabolic fitting requires Delta Truncation!

Fit only volatilities such that -0.2<x<+0.2

$$\sigma_{\text{parabolic}}(x) = 0.16 - 0.34x + 4.45x^{2}$$
$$= 0.16 \times (1 - 2.1x + 27.33x^{2})$$

Out of the money options are not guaranteed to be well-fitted

Using a better spline to fit the data (from SABR)

$$\sigma_{\text{imp}}(x) \approx \frac{\kappa |x|}{\ln \left(\kappa \left| \frac{1 - e^{-\beta x}}{\sigma_0 \beta} \right| + \sqrt{1 + \kappa^2 \left(\frac{1 - e^{-\beta x}}{\sigma_0 \beta}\right)^2}\right)}$$

$$\gamma = \ln\left(\frac{K}{F_0}\right) \qquad \gamma \equiv \text{slope}\left(x = 0\right) = \frac{\beta}{2}$$

Sigma, beta and kappa are adjustable parameters

Formula is derived from a **stochastic volatility model** so it does not violate arbitrage conditions

SPX JUN06 SABR spline

550 QQQQ Zero Call Diff	ron	tial Ge	OM	otry	On	1.973	
1550 QQQQ 06 Jan 36.00 LXUU I	31 G 1 1	ual ₂ Ut		ieu y	all	U .976	
550 QQQQ 06 Jan 37.00 PM		Volati	li4v/	Mac			
1550 QQQQ 06 Jan 37.625 (1/11 A	IICU	VUIALI	IILy	IAIOC	1CIII		
550 QQQQ 06 Jan 38.00 (QQQ AL			1			2.723	

Factor Models and Diffusion Kernels

$$x(t) = (X_1(t),...,X_n(t))$$

$$\mathbf{w}(t) = (W_1(t), \dots, W_m(t))$$

CIR-type setting, X= state variables W= m-dim Brownian motion

$$dX_{i} = \sum_{k=1}^{m} \sigma_{j}^{k} dW_{k} + b_{i} dt, \qquad i = 1, 2, 3, ..., n$$

$$\pi(\mathbf{x}, t; \mathbf{y}, T) = \text{Prob.}\{\mathbf{x}(T) = \mathbf{y} | \mathbf{x}(t) = \mathbf{x}\}$$

Diffusion kernel

$$E\{F(\mathbf{x}(T))|\mathbf{x}(t) = \mathbf{x}\} = \int_{\mathbf{y} \in \mathbb{R}^n} F(\mathbf{y})\pi(\mathbf{x}, t; \mathbf{y}, T)d^n \mathbf{y}$$

Fokker-Planck Equation and Dimensionless Time

$$\frac{\partial \pi}{\partial t} + \frac{1}{2} \sum_{ij=1}^{n} a_{ij} \frac{\partial^{2} \pi}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i} \frac{\partial \pi}{\partial x_{i}} = 0$$

$$\pi(x,T;y,T) = \delta(x-y)$$

$$a_{ij} = \sum_{k=1}^{m} \sigma_i^k \sigma_j^k$$

Covariance matrix of state variables

$$\left(\overline{\sigma}\right)^2 \equiv E\left\{\frac{1}{n}\sum_{i=1}^n a_{ii}\right\}$$

$$\tau \equiv \left(\overline{\sigma}\right)^2 t$$

volatility of S&P=0.15 t=1 yr. corresponds to tau=0.0225<<1

"typical variance" of x

Dimensionless time

Varadhan Asymptotics for the Diffusion Kernel

4550 QQQQ 06 Jan

$$\lim_{\tau \to 0} \tau \ln \pi(\mathbf{x}, 0; \mathbf{y}, T) = -\frac{L^2(\mathbf{x}, \mathbf{y})}{2}; \qquad \tau = (\overline{\sigma})^2 T,$$

L(x, y) = geodesic distance between x and y

$$L(\mathbf{x}, \mathbf{y}) = \inf_{\substack{\gamma(0) = x \\ \gamma(1) = y}} \int_{0}^{1} \left\| \frac{\mathrm{d}\gamma}{\mathrm{d}t} \right\|_{\gamma} dt,$$

$$||v||_{\mathbf{x}}^{2} = \sum_{ij=1}^{n} g_{ij}(\mathbf{x})v_{i}v_{j}$$

$$g_{ij} = (\overline{\sigma})^2 (a^{-1})_{ij}$$

Dimensionless
Riemann tensor

Heuristically: Diffusion Kernels ``resemble" Gaussian Kernels with |x-y| replaced by L(x,y) $21 M O M 7 (L(x,y))^2$ $\pi(x,0;y,T) \approx c(\tau) \cdot e^{-\tau}$ $(dL)^2 = \sum g_{ij}(x)dx_i dx_j$ We shall use this approximation to compute option prices and implied volatilities assuming tau is small

Example 1: Local volatility model

4550 QQQQ 06 Mar 36.00 (0

$$\frac{dF_t}{F_t} = \sigma(F_t, t)dW_t$$

$$x = \ln\left(\frac{F}{F_0}\right)$$

$$dx_{t} = \sigma(x_{t}, t)dW_{t} + (...)dt$$

4550 QQQQ 06 Jan 36.00 (QQQ AJ 36.55 (YIZ A 4550 QQQQ 06 Jan 37.00 (QQQ AK 4550 QQQQ 06 Jan 37.00 (QQQ AK 4550 QQQQ 06 Jan 38.625 (YIZ A 39.6 21/10)
$$\frac{\sigma(x,0)}{\sigma(x,0)}^2 = \frac{\sigma(x,0)^2}{\sigma(x,0)}^2 = \frac{\sigma($$

4550 QQQQ 06 Jan 42.00 (QQQ AP 42 4550 QQQQ 06 Mar 36.00 (QQQ AL
$$(x,y)$$
) =
$$\int_{x}^{y} \frac{du}{\tilde{\sigma}(u)} = |G(y) - G(x)|$$

1-dimensional distances are always `trivial'

Special solvable 2-D case: the CEV Model **Negative beta for Equities (leverage)** Distance= area under the curve X

Equivalent Model with Independent Brownian Motions (SABR)

$$\sigma_t = \sigma_t^{(0)} \exp(\beta x_t)$$
 $x_t = \ln\left(\frac{F_t}{F_0}\right)$

"Parametric leverage" 476 SV for tails

$$\frac{d\sigma_t}{\sigma_t} = \frac{d\sigma_t^{(0)}}{\sigma_t^{(0)}} + \beta dx_t$$

"CEV" with stochastic independent volatility is equivalent to SV model with correlated volatility, from the Riemann viewpoint

$$\begin{cases} dx_{t} = e^{\beta x_{t}} \sigma_{t}^{(0)} dW_{t} \\ \frac{d\sigma_{t}^{(0)}}{\sigma_{t}^{(0)}} = \kappa dZ_{t} \\ E(dW_{t} dZ_{t}) = 0 \end{cases}$$

Riemann Metric for SV / SABR: The Poincare Upper Half-Space Model

$$\eta \stackrel{\text{37}}{=} \kappa \left(\frac{1 - e^{-\beta x}}{21 \beta_{118}^{117}} \right),$$

$$\sigma \equiv \sigma^{(0)}$$

$$dL^{2} = \frac{\overline{\sigma}^{2}}{\kappa^{2}} \cdot \frac{d\eta^{2} + d\sigma^{2}}{\sigma^{2}}$$

Geodesics are half-circles with center on the horizontal axis

$$L(P,Q) = \frac{\overline{\sigma}}{\kappa} \int_{\theta_P}^{\theta_Q} \frac{d\theta}{\sin \theta}$$

Using the asymptotics to compute option prices

$$CALL = \int_{R^n} \max(F(y) - K, 0) \pi(0, 0; y, T) d^n y$$

$$\approx c \int_{R^n} \max(F(y) - K, 0) e^{-\frac{L^2(0, y)}{2\tau}} d^n y$$

$$\approx c \int_{\{y:F(y)>K\}} (F(y)-K)e^{-\frac{L^2(0,y)}{2\tau}} d^n y$$

4550 QQQQ D6 Jan 42.00 (QQQ AP
$$\{y.F(y)>K\}$$
 21/1/02 1 0.35
4550 QQQQ D6 Mar 36.00 (QQQ C) $\approx C \int e^{-\left[\ln\left(\frac{21/4 + 103}{F(y)>K}\right) + \frac{L^2(0,y)}{2\tau}\right]} d^n y$

$$\{y:F(y)>K\}$$

Steepest-descent approximation for computing implied volatilities

$$\int_{e}^{-\left[\ln\left(\frac{1}{F(y)-K}\right)+\frac{L^{2}(0,y)}{2\tau}\right]} d^{n}y \approx e^{-\min_{y:F(y)>K}\left[\ln\left(\frac{1}{F(y)-K}\right)+\frac{L^{2}(0,y)}{2\tau}\right]}$$
{y:F(y)>K}

$$\min_{y:F(y)>K} \left[\ln \left(\frac{1}{F(y)-K} \right) + \frac{L^2(0,y)}{2\tau} \right] = \frac{1}{\tau} \min_{y:F(y)>K} \left[\tau \ln \left(\frac{1}{F(y)-K} \right) + \frac{L^2(0,y)}{2} \right]$$

$$\approx \frac{1}{2\tau} \min \left\{ L^2(0,y) | y: F(y) > K \right\}, \quad \tau << 1$$

Equate formulas for OTM calls with Black-Scholes ...

$$L^*(K) = \min \{L(0,y)|y:F(y)>K\}$$

Minimum distance from 0 to the region {F(y)>0}

$$\ln CALL \approx -\frac{\left(L^*(K)\right)^2}{2\tau}$$

Small-tau asymptotics (model)

$$\ln CALL \approx -\frac{(\ln(K/F_0))^2}{2\sigma_{\text{imp}}^2(K)T} = -\frac{(\ln(K/F_0))^2}{2\left(\frac{\sigma_{\text{imp}}^2(K)}{(\overline{\sigma})^2}\right)\tau}$$

Small-tau asymptotics (Black-Scholes)

Approximation for Implied Volatility for general diffusion model 4550 QQQQ 05 Dec 38 00 $\sigma_{\mathrm{imp}}(K) = \overline{\sigma}$ 4550 QQQQ 06 Mar 36 00 $L_1(x, y) \equiv \min_{\substack{\gamma(0) = x \\ \gamma(1) = y}} \int_{0}^{1} \sqrt{\sum_{ij=1}^{n} (a^{-1})_{ij}} \gamma_i(t) \gamma_j(t) dt$

Berestycki, Busca and Florent, 2001

Example 2: Constant Elasticity of Variance Implied volatility 0.35 0.3 volatility(%) 0.25 0.2 0.15 0.1 0.05 0, 00 03 03p

x=ln(K/F)

Example 3bis: Stochastic Volatility / **Hull-White**

$$\frac{dS}{S} = \sigma dW, \qquad x = \ln(S/S_0)$$

$$\frac{d\sigma}{\sigma} = \kappa dZ, \quad E(dWdZ) = \rho dt$$

$$dL^{2} = \frac{1}{\kappa^{2}(1-\rho^{2})} \cdot \frac{\kappa^{2}dx^{2} - 2\rho\kappa d\sigma dx + d\sigma^{2}}{\sigma^{2}}$$

$$z = \frac{\kappa x - \rho \sigma}{\sqrt{1 - \rho^2}}$$

$$dL^2 = \frac{1}{\kappa^2} \cdot \frac{dz^2 + d\sigma^2}{\sigma^2}$$

 $dL^2 = \frac{1}{r^2} \cdot \frac{dz^2 + d\sigma^2}{\sigma^2}$ Poincare plane after change of variables

Geodesic Distance

Approximation for Implied Volatility Curves

$$L^* = d(P,Q) = \frac{1}{\kappa} \int_{v_P}^{v_Q} \frac{du}{\sin u}$$

$$L^* = \frac{1}{\kappa} \left| \ln \left(\frac{\kappa x + \rho \sigma + \sqrt{(\kappa x + \rho \sigma)^2 + \sigma^2 (1 - \rho^2)}}{\sigma (1 + \rho)} \right) \right|$$

$$\sigma_{imp}(x) \approx \frac{\kappa |x|}{\ln \left(\frac{\kappa x + \rho \sigma + \sqrt{(\kappa x + \rho \sigma)^2 + \sigma^2(1 - \rho^2)}}{\sigma(1 + \rho)}\right)}$$

Example 4: the Heston Model A variant of the Poincare Half-Space $E(dW_t dZ_t) = \rho dt$

Note: V, not V squared

Closed-form solution for geodesics

$$\xi = \kappa \left(\frac{1 - e^{-\beta x}}{\beta} \right)$$

$$dL^2 = \frac{d\xi^2 + dV^2}{\kappa^2 V}$$

$$\xi(\theta) = \frac{R^2}{2} (\theta - \sin \theta \cos \theta) + \xi(0)$$

$$V(\theta) = R^2 \sin^2 \theta$$

$$0 \le \theta \le \pi$$

0.75

$$dL = \frac{2R^2}{\kappa} \sin\theta d\theta$$

Geodesics are cycloids

Implied volatility curve for Heston model is obtained as an algebraic system

$$\xi = \frac{\sigma_0^2}{\sin^2 \theta_{\text{init}}} \left(\frac{\pi}{2} - \theta_{\text{init}} + \sin \theta_{\text{init}} \cos \theta_{\text{init}} \right)$$

$$\sigma(\xi) = \frac{\kappa |\xi| \sin^2 \theta_{\text{init}}}{2\sigma_0^2 |\cos \theta_{\text{init}}|}$$

Given xi, solve for theta_init, and substitute in the second equation

4550 QQQQ 06 Jan 36.00 (QQQ AJ	36	21/10/21	1.	3,7		
4550 QQQQ Zero Call 4550 QQQQ 06 Jan 36.00 (QQQ 4) 4550 QQQQ 06 Jan 36.625 (\MU		SSAT I) Ari	Vativ	291	
4550 QQQQ 06 Jan 37.00 (QQQ AK	37	JOUL L		A CTAIL	2.50	

Multi-Asset Derivatives: Index Options, Rainbows

Derive index volatility skew from single-stock skews and correlation matrix

$$dx_i = \sigma(x_i, t)dW_i, \qquad i = 1, 2, ..., n$$

$$E(dW_i dW_j) = \rho_{ij} dt$$

N equations for the index components

$$I = \sum_{i=1}^{n} w_i S_i = \sum_{i=1}^{n} w_i S_i (0) e^{x_i} \qquad \bar{x} = \ln \left(\frac{F_i}{I} \right)$$

BBH: ETF of 20 Biotechnology (Components of IBH)

Stocks

Ticker	Shares		ATM ImVol	Ticker	2.6 1.85 Sha	2.7 1.95 ares 1.25	ATM I	0.448 0.476 mVol 428
ABI 05 Dec 41.0	10 (QQQ LO	18	41 21/155	GILD	0.7	0.8	0.208	46
AFFX Jan 36 0	0 (QQQ AJ	4	36 21/64	HGSI	3.7	8	3.976	84
ALKS	0 (QQQ AK 25 (YIZ A	4	106	ICOS	2.9	2.95 2.5	3.349	64
AMGN	0 (QQQ AL 25 (YIZ A	46	38 21 40	IDPH	2.15 1.75	12	2.723 2.332	72
BGEN	0 (QQQ AM 25 (YIZ A	13	39 21 M 27 39.6 21 M 28	MEDI	1.55 1.2	15	2.097 1.706	82
CHIR	0 (QQQ AN 25 (YIZ A	16	40 21 37	MLNM	1 0.75	12	1.471 1.079	92
CRA	0 (QQQ AO 25 (YIZ A	4	41 21 4 55 41 6 21 55	QLTI 1	0.6 0.4	0.65	0.844 0.453	64
DNA zero call	D (QQQ AP	44	53.5	SEPR 9	0.35 38.93	0.4 38.9. 6	0.219 38.956	84
ENZN	0 (QQQ CK 0 (QQQ CJ	3	36 21/11/04 37 21/18 1 5	SHPGY	4.1 3.3	6.8271	4.415 3.588	47
GENZ		14	56	BBH		-		32

BBH March 2003 Implied Vols

Pricing Date: Jan 22 03 10:42 AM

What is the `fair value' of the index volatility reconstructed from the components?

Riemannian metric for the multi-D local vol model

$$dL^{2} = \sum_{ij=1}^{n} (\rho^{-1})_{ij} \frac{dx_{i}}{\sigma(x_{i},0)} \frac{dx_{j}}{\sigma(x_{j},0)}$$

$$= \sum_{ij=1}^{n} \left(\rho^{-1} \right)_{ij} dy_i dy_j, \qquad dy_i \equiv \frac{dx_i}{\sigma(x_i, 0)}$$

If correlations are constant, the metric is ``flat'': it is Euclidean metric after making the change of variables x->y.

Geodesics are straight lines in the y-coordinates

Steepest Descent=Most Likely Stock Price Configuration

Replace conditional distribution by "Dirac function" at most likely configuration

Approximate solution: introduce the stock betas

$$x_i = \beta_i x + \varepsilon_i$$

Regression relation between stock and index returns

$$x_i^* = \beta_i \overline{x}$$

Approximate formula for the optimal stock configuration

$$\frac{1}{\sigma_{\text{imp},I}(\overline{x})} \approx \sqrt{\sum_{ij=1}^{n} \frac{(\rho^{-1})_{ij} \beta_{i} \beta_{j}}{\sigma_{\text{imp},i}(\beta_{i} \overline{x}) \sigma_{\text{imp},i}(\beta_{i} \overline{x})}}$$

$$\sigma_{\text{imp},I}(\bar{x}) \approx \sqrt{\sum_{ij=1}^{n} \rho_{ij} p_{i} p_{j} \sigma_{\text{imp},i}(\beta_{i} \bar{x}) \sigma_{\text{imp},i}(\beta_{i} \bar{x})}$$

DJX: Dow Jones Industrial Average

T=1 month

T= 2 months

T=3 months

T= 5 months

T=7 months

BBH: Biotechnology HLDR

T = 1 month

T = 2 months

T = 6 months

Is dimensionless time is too long? (Error bars: Juyoung Lim) Is correlation causing the discrepancy?

Implied Correlation: a single correlation coefficient consistent with index vol

$$\left(\sigma_{I}^{\text{impl}}\right)^{2} = \sum_{i=1}^{N} p_{i}^{2} \left(\sigma_{i}^{\text{impl}}\right)^{2} + \overline{\rho} \sum_{i \neq j}^{N} p_{i} p_{j} \sigma_{i}^{\text{impl}} \sigma_{j}^{\text{impl}}$$

$$\frac{1}{\rho} = \frac{\left(\sigma_{I}^{\text{impl}}\right)^{2} - \sum_{i=1}^{N} p_{i} \left(\sigma_{i}^{\text{impl}}\right)^{2}}{\sum_{i \neq j}^{N} p_{i} p_{j} \sigma_{i}^{\text{impl}} \sigma_{j}^{\text{impl}}} = \frac{\left(\sigma_{I}^{\text{impl}}\right)^{2} - \sum_{i=1}^{N} p_{i}^{2} \left(\sigma_{i}^{\text{impl}}\right)^{2}}{\left(\sum_{i=1}^{N} p_{i} \sigma_{i}^{\text{impl}}\right)^{2} - \sum_{i=1}^{N} p_{i}^{2} \left(\sigma_{i}^{\text{impl}}\right)^{2}}$$

Approximate formula:

$$\frac{1}{\rho} \approx \left(\frac{\sigma_I^{\text{impl}}}{\sum_{i=1}^{N} p_i \, \sigma_i^{\text{impl}}} \right)^2 \qquad \text{Implied correlation can be defined for different strikes, using SDA}$$

Dow Jones Index

Dow Jones Index: Correlation Skew

Quote Date 9/1/1998 Spot price=78.26

Quote Date 12/10/2001 Spot=99.21

A model for ``Correlation skew": Stochastic Volatility Systems

$$\frac{dS_{i}}{S_{i}} = \sigma_{i}dW_{i} \qquad \frac{d\sigma_{i}}{\sigma_{i}} = \kappa_{i}dZ_{i}$$

$$E(dW_{i}dW_{j}) = \rho_{ij}dt \qquad E(dW_{i}dZ_{j}) = r_{ij}dt$$

$$\overline{x} = \frac{dI}{I}, \qquad x_i = \frac{dS_i}{S_i} \qquad y_i = \frac{d\sigma_i}{\sigma_i}$$

Look for most likely configuration of stocks and vols $(x_1,...,x_n,y_1,...,y_n)$ corresponding to a given index displacement x

Most likely configuration for Stochastic Volatility Systems

$$x_i^* = \beta_i \overline{x}$$

$$\beta_i = \frac{\sigma_i \rho_{iI}}{\sigma_I}$$

$$y_i^* = \gamma_i \overline{x}$$

$$\gamma_i = \frac{\kappa_i r_{iI}}{\sigma_I}$$

Most likely configuration for stocks moves and volatility moves, given the index move

$$\sigma_{I,\text{loc}}^{2}(\bar{x},t) \cong \sum_{ij=1}^{n} p_{i} p_{j} \sigma_{i}(0,t) \sigma_{j}(0,t) e^{\gamma_{i} \bar{x}} e^{\gamma_{j} \bar{x}} \rho_{ij}$$

Method I: Dupire & Most Likely Configuration for Stock Moves

Method II: Stochastic Volatility System and joint MLC for Stocks and Volatilities

Methods I and II are not `equivalent'

Dupire local vol. for single names
$$\sigma_{i,\text{loc}}(x_i,t) \approx \sigma_i(0,t) e^{\varpi_i x_i} \qquad \qquad \varpi_i = \frac{\kappa_i r_{ii}}{\sigma_i}$$

Index vol., Method I
$$\sigma_{I,\text{loc}}^{2}\left(\overline{x},t\right) = \sum_{ij} p_{i} p_{j} \sigma_{i} \left(0,t\right) \sigma_{j} \left(0,t\right) \rho_{ij} e^{\overline{\sigma_{i}}\beta_{i}} e^{\overline{\sigma_{j}}\beta_{j}} e^{\overline{\sigma_{j}}\beta_{j}}$$

Index vol., Method II
$$\sigma_{I,\text{loc}}^2(\bar{x},t) = \sum_{ij} p_i p_j \sigma_i (0,t) \sigma_j (0,t) \rho_{ij} e^{\gamma_i \bar{x}} e^{\gamma_j \bar{x}}$$

Stochastic Volatility Systems give rise to Index-dependent correlations

$$\sigma_{I,\text{loc}}^{2}(\bar{x},t) \approx \sum_{ij} p_{i} p_{j} \sigma_{i} (0,t) \sigma_{j} (0,t) \rho_{ij} e^{\gamma_{i} \bar{x}} e^{\gamma_{j} \bar{x}}$$
 Method II

$$\approx \sum_{ij} p_i p_j \underline{\sigma_i} (0,t) e^{\beta_i \overline{\sigma_i} x} \underline{\sigma_j} (0,t) e^{\beta_j \overline{\sigma_j} x} \rho_{ij} e^{\gamma_i x} e^{\gamma_j x} e^{-\beta_i \overline{\sigma_i} x} e^{-\beta_i \overline{\sigma_i} x}$$

$$\approx \sum_{ij} p_i p_j \sigma_{i,\text{loc}} \left(\beta_i \overline{x}, t \right) \sigma_{i,\text{loc}} \left(\beta_i \overline{x}, t \right) \rho_{ij} \left(\overline{x} \right)$$

$$\rho_{ij}(\bar{x}) \equiv \rho_{ij} e^{(\gamma_i + \gamma_j - \beta_i \bar{\omega}_i - \beta_j \bar{\omega}_j)\bar{x}}$$

Equivalence holds only under additional assumptions on stock-volatility correlations

Method I

$$\gamma_i = \frac{\kappa_i r_{iI}}{\sigma_I}$$

Method II

$$r_{iI} = r_{ii} \rho_{iI}$$

$$r_{ii} = r_{ii} \rho_{ii}$$

Conditions under which both methods give equivalent valuations

Open (and very doable) problems

- ☐ Apply this technology for pricing swaptions based on the volatility skew of LIBOR rates or forward rates
- ☐ If we use a Local Volatility model (e.g. BGM with square-root volatility), the answer is <u>identical</u> to the previous formula
- ☐ The ``full'' SABR multi-asset model gives rise to a complicated Riemannian metric

$$dL^{2} = \sum_{ij=1}^{n} g_{ij} \frac{d\eta_{i}}{\sigma_{i}} \frac{d\eta_{j}}{\sigma_{j}} + \sum_{i=1}^{n} \frac{(d\sigma_{i})^{2}}{\kappa_{i}^{2} \sigma_{i}^{2}}$$

☐ Credit default models for pricing CDOs are amenable to the same approach, especially copula-type models. I am not aware of any solutions

Epilogue: Structural Credit Model

$$\mathbf{x} = (x_1, \dots, x_n)$$
 21MOM2 vector of firm values

4550 0000 05 Dec 39 00 1000 M defaults before time
$$T$$
 if $x_i(T) < \alpha_i$

Equal weighted CDO: loss of m dollars if

$$\mathbf{x}(T) \in \Omega_m = \bigcup_{\text{card}(I) \ge m} \bigcap_{i \in I} \{\mathbf{x} : x_i < \alpha_i\}$$

Solve

$$\inf \{L(0,x) : x \in \Omega_m\}$$