

Practical Machine Learning

Day 7: MAR24 DBDA

Kiran Waghmare

Agenda

Decision Tree

Problem statement

- Assume that you are given a characteristic information of 10,000 people living in your town. You are asked to study them and come up with the algorithm which should be able to tell whether a new person coming to the town is male or a female.
 - Primarily you are given information about:
 - Skin colour
 - Hair length
 - Weight
 - Height
- Based on the information you can divide the information in such a way that it somehow indicates the characteristics of Males vs. Females.

Example 1:

Decision Tree

Decision Tree Terminologies

- Root Node: Root node is from where the decision tree starts
- It represents the entire dataset, which further gets divided into two or more homogeneous sets.
- Leaf Node: Leaf nodes are the final output node
- , and the tree cannot be segregated further after getting a leaf node.
- Splitting: Splitting is the process of dividing the decision node/root node into sub-nodes according to the given conditions.
- Branch/Sub Tree: A tree formed by splitting the tree.
- Pruning: Pruning is the process of removing the unwanted branches from the tree.
- Parent/Child node: The root node of the tree
- is called the parent node, and other nodes are called the child nodes.

Decision Tree

 A decision tree is one of the most powerful tools of supervised learning algorithms used for both classification and regression tasks.

• It builds a **flowchart-like tree structure** where each internal node denotes a test on an attribute, each branch represents an outcome of the test, and each leaf node (terminal node) holds a class label.

• It is constructed by recursively splitting the training data into subsets based on the values of the attributes until a stopping criterion is met, such as the maximum depth of the tree or the minimum number of samples required to split a node.

Attribute Selection Measures

- While implementing a Decision tree, the main issue arises that how to select the best attribute for the root node and for sub-nodes. So, to solve such problems there is a technique which is called as Attribute selection measure or ASM.
- By this measurement, we can easily select the best attribute for the nodes of the tree. There are two popular techniques for ASM, which are:
 - Information Gain
 - Gini Index

Entropy
$$(P) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

Information Gain and Gini Index in Decision Tree

$$Gini(P) = 1 - \sum_{i=1}^{n} (p_i)^2$$

1. Information Gain:

 Information gain is the measurement of changes in entropy after the segmentation of a dataset based on an attribute.

 It calculates how much information a feature provides us about a class. **Entropy:** Entropy is a metric to measure the impurity in a given attribute. It specifies randomness in data. Entropy can be calculated as:

Entropy(s)= $-P(yes)log_2 P(yes)- P(no) log_2 P(no)$

Where,

- •S= Total number of samples
- •P(yes)= probability of yes
- •P(no)= probability of no

Entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

■ Information needed (after using A to split D into v partitions) to classify D:

Info_A
$$(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$$
Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

a) Entropy using the frequency table of one attribute:

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

b) Entropy using the frequency table of two attributes:

$$E(T, X) = \sum_{c \in X} P(c)E(c)$$

		Play Golf		
		Yes	No	
	Sunny	3	2	5
Outlook	Overcast	4	0	4
	Rainy	2	3	5
				14

$$\mathbf{E}(PlayGolf, Outlook) = \mathbf{P}(Sunny)^*\mathbf{E}(3,2) + \mathbf{P}(Overcast)^*\mathbf{E}(4,0) + \mathbf{P}(Rainy)^*\mathbf{E}(2,3)$$

$$= (5/14)^*0.971 + (4/14)^*0.0 + (5/14)^*0.971$$

$$= 0.693$$

		Play	Golf
		Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	3
Gain = 0.247			

		Play	Golf
		Yes	No
	Hot	2	2
Temp.	Mild	4	2
	Cool	3	1
Gain = 0.029			

		Play	Golf
		Yes	No
I I and a state of	High	3	4
Humidity Normal		6	1
Gain = 0.152			

		Play	Golf
		Yes	No
1454-	False	6	2
Windy		3	3
Gain = 0.048			

$$Gain(T, X) = Entropy(T) - Entropy(T, X)$$

Step 3: Choose attribute with the largest information gain as the decision node, divide the dataset by its branches and repeat the same process on every branch.

	+		Golf
*		Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
Rainy		2	3
Gain = 0.247			

Step 4a: A branch with entropy of 0 is a leaf node.

Step 4b: A branch with entropy more than 0 needs further splitting.

Step 5: The ID3 algorithm is run recursively on the non-leaf branches, until all data is classified.

Decision Tree to Decision Rules

A decision tree can easily be transformed to a set of rules by mapping from the root node to the leaf nodes one by one.

R₁: IF (Outlook=Sunny) AND (Windy=FALSE) THEN Play=Yes

R₂: IF (Outlook=Sunny) AND (Windy=TRUE) THEN Play=No

R₃: IF (Outlook=Overcast) THEN Play=Yes

R₄: IF (Outlook=Rainy) AND (Humidity=High) THEN Play=No

R₅: IF (Outlook=Rain) AND (Humidity=Normal) THEN Play=Yes

Homework

+			.	·
ID	Fever	Cough	Breathing issues	Infected
į 1	МО	NO	МО	ио ј
2	YES	YES	YES	YES
j 3	YES	YES	МО	мо ј
i 4	YES	NO	YES	YES
j 5	YES	YES	YES	YES
6	МО	YES	МО	NO I
7	YES	NO	YES	YES
8	YES	NO	YES	YES
j 9	NO	YES	YES	YES
10	YES	YES	NO	YES
1 11	NO	YES	NO	NO I
1 12	NO	YES	YES	YES
1 13	NO	YES	YES	ио ј
14	YES	YES	NO	ио ј

Radom Forest

Entropy

Entropy measures the degree of randomness in data

• For a set of samples X with k classes:

$$entropy(X) = -\sum_{i=1}^{k} p_i \log_2(p_i)$$

where p_i is the proportion of elements of class i

Lower entropy implies greater predictability!

Information Gain

 The information gain of an attribute a is the expected reduction in entropy due to splitting on values of a:

$$gain(X, a) = entropy(X) - \sum_{v \in Values(a)} \frac{|X_v|}{|X|} entropy(X_v)$$

where X_v is the subset of X for which a = v

Best attribute = highest information gain

In practice, we compute entropy(X)

	Des it fly?	Color	Class
	No	Brown	Mammal
	No	White	Mammal
	Yes	Brown	Bird
	Yes	White	Bird
	No	White	Mammal
	No	Brown	Bird
	Yes	White	Bird
,	***	•	

$$entropy(X) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx 0.985$$

$$entropy\left(X_{color=brown}\right) = -\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3} \approx 0.918$$
 $entropy\left(X_{color=white}\right) = 1$

$$entropy(X_{color=white}) = 1$$

$$gain(X, color) = 0.985 - \frac{3}{7} \cdot 0.918 - \frac{4}{7} \cdot 1 \approx 0.020$$

$$entropy(X_{fly=yes}) = 0$$

$$entropy(X_{fly=yes}) = 0$$
 $entropy(X_{fly=no}) = -\frac{3}{4}\log_2\frac{3}{4} - \frac{1}{4}\log_2\frac{1}{4} \approx 0.811$

$$gain(X, fly) = 0.985 - \frac{3}{7} \cdot 0 - \frac{4}{7} \cdot 0.811 \approx 0.521$$

Gini Impurity

Gini Impurity

 Gini impurity measures how often a randomly chosen example would be incorrectly labeled if it was randomly labeled according to the label distribution

Error of classifying randomly picked fruit with randomly picked label

For a set of samples X with k classes:

$$gini(X) = 1 - \sum_{i=1}^{k} p_i^2$$

where p_i is the proportion of elements of class i

Can be used as an alternative to entropy for selecting attributes!

Best attribute = highest impurity decrease

In practice, we compute gini(X) only

once!

Does it fly?	Color	Class
No	Brown	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

$$gini (X) = 1 - \left(\frac{3}{7}\right)^{2} - \left(\frac{4}{7}\right)^{2} \approx 0.489$$

$$gini (X_{color=brown}) = 1 - \left(\frac{1}{3}\right)^{2} - \left(\frac{2}{3}\right)^{2} \approx 0.444 \qquad gini (X_{color=white}) = 0.5$$

$$\triangle gini (X, color) = \mathbf{0}.489 - \frac{3}{7} \cdot \mathbf{0}.444 - \frac{4}{7} \cdot \mathbf{0}.5 \approx \mathbf{0}.013$$

$$gini (X_{fly=yes}) = 0 \qquad gini (X_{fly=no}) = 1 - \left(\frac{3}{4}\right)^{2} - \left(\frac{1}{4}\right)^{2} \approx 0.375$$

$$\triangle gini (X, fly) = \mathbf{0}.489 - \frac{3}{7} \cdot \mathbf{0} - \frac{4}{7} \cdot \mathbf{0}.375 \approx \mathbf{0}.274$$

Entropy versus Gini Impurity

- Entropy and Gini Impurity give similar results in practice
 - They only disagree in about 2% of cases "Theoretical Comparison between the Gini Index and Information Gain Criteria" [Răileanu & Stoffel, AMAI 2004]
 - > Entropy might be slower to compute, because of the log

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - <u>Prepruning</u>: Halt tree construction early-do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - <u>Postpruning</u>: *Remove branches* from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Handling Numerical Attributes

Handling numerical attributes

- How does the ID3 algorithm handle numerical attributes?
 - Any numerical attribute would almost always bring entropy down to zero
 - This means it will completely overfit the training data

Cor	Consider a numerical value for					
Outlook	Temperature	umidity Humiáity	, Wind	Play Tennis?		
Sunny	Hot	90	Weak	No		
Sunny	Hot	87	Strong	No		
Overcast	Hot	93	Weak	Yes		
Rainy	Mild	89	Weak	Yes		
Rainy	Cool	79	Weak	Yes		
Rainy	Cool	59	Strong	No		
Overcast	Cool	77	Strong	Yes		
Sunny	Mild	91	Weak	No		
Sunny	Cool	68	Weak	Yes		
Rainy	Mild	80	Weak	Yes		
Sunny	Mild	72	Strong	Yes		
Overcast	Mild	96	Strong	Yes		
Overcast	Hot	74	Weak	Yes		
Rainy	Mild	97	Strong	No		

Handling numerical attributes

- Numerical attributes have to be treated differently
 - > Find the best splitting value

$$gain(X, a, t) = entropy(X) - \frac{|X_{a \le t}|}{|X|} entropy(X_{a \le t}) - \frac{|X_{a > t}|}{|X|} entropy(X_{a > t})$$

Humidity	Play Tennis?		Humidity	Play Tennis?		
90	No		59	No	Mean of each	6
87	No		68	Yes	consecutive	7
93	Yes		72	Yes		7
89	Yes	Ct	74	Yes	pair	7
79	Yes	Sort	77	Yes		7
59	No		79	Yes		7
77	Yes		80	Yes		3
91	No		87	No		8
68	Yes		89	Yes		8
80	Yes		90	No		ç
72	Yes		91	No		Ç
96	Yes		93	Yes		ç
74	Yes		96	Yes		Ş
97	No		97	No		_

Candidate

 $gain\left(X,humidity,83.5\right) =$

Handling numerical attributes

- Numerical attributes have to be treated differently
 - Find the best splitting value

$$gain(X, a, t) = \underbrace{entropy(X)}_{} - \frac{|X_{a \le t}|}{|X|} entropy(X_{a \le t}) - \frac{|X_{a > t}|}{|X|} entropy(X_{a > t})$$

Humidity	Play Tennis?
90	No
87	No
93	Yes
89	Yes
79	Yes
59	No
77	Yes
91	No
68	Yes
80	Yes
72	Yes
96	Yes
74	Yes
97	No

	Dlan
Humidity	Play Tennis?
59	No
68	Yes
72	Yes
74	Yes
77	Yes
79	Yes
80	Yes
87	No
89	Yes
90	No
91	No
93	Yes
96	Yes
97	No

Mean of each

70
73
75.5
78
79.5
83.5
88
89.5
90.5
92
94.5
96.5

Candidate split values

63

gain(X, humidity, 83.5) = 0.94

Handling numerical attributes

- Numerical attributes have to be treated differently
 - > Find the best splitting value

Humidity	Play Tennis?		
90	No		
87	No		
93	Yes		
89	Yes		
79	Yes		
59	No		
77	Yes		
91	No		
68	Yes		
80	Yes		
72	Yes		
96	Yes		
74	Yes		
97	No		

83.5 is the
best
splitting
value with
an
information
gain of
0.450

Handling Missing Values

Handling missing values at training time

Does it fly?	Color	Class
No	White	Mammal
No	White	Mammal
Yes	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

$$P(Yes|Bird) = \frac{2}{3} = 0.66$$

$$P(No|Bird) = \frac{1}{3}$$

$$= 0.33$$

$$P(Brown|Mammal)$$

$$= 0$$

- Simply ignoring them would mean throwing away a lot of information
- There are better ways of handling missing values:
- > Set them to the most common value
- Set them to the most probable value given the label

$$P(White|Mammal)$$

= 1

Handling missing values at training time

Does it fly?	Color	Class
No	White	Mammal
No	White	Mammal
No	Brown	Bird
Yes	White	Bird
No	White	Mammal
No	Brown	Bird
Yes	White	Bird

- Data sets might have samples with missing values for some attributes
- Simply ignoring them would mean throwing away a lot of information
- There are better ways of handling missing values:
- > Set them to the most common value
- > Set them to the most probable value given the label
- Add a new instance for each possible value
- ➤ Leave them unknown, but discard the sample when evaluating the gain of that attribute

 (if the attribute is chosen for splitting, send the instances
 - with unknown values to all children)
- ➤ Build a decision tree on all other attributes (including label) to predict missing values
 - (use instances where the attribute is defined as training data)

Decision Boundaries

Decision trees produce non-linear decision boundaries

Support Vector Machines

Decision Tree

Decision Trees: Training and Inference

Random Forests

(Ensemble learning with decision trees)

Random Forests

- Random Forests:
 - Instead of building a single decision tree and use it to make predictions, build many slightly different trees and combine their predictions
- We have a single data set, so how do we obtain slightly different trees?
 - 1. Bagging (Bootstrap Aggregating):
 - ➤ Take random subsets of data points from the training set to create N smaller data sets
 - > Fit a decision tree on each subset
 - 2. Random Subspace Method (also known as Feature Bagging):
 - Fit N different decision trees by constraining each one to operate on a random subset of features

Bagging at training time

Bagging at inference time

Random Subspace Method at training time

Random Subspace Method at inference time

Random Forests

Mass (g)	Color	Texture	рН	Label
84	Green	Smooth	3.5	Apple
121	Orange	Rough	3.9	Orange
85	Red	Smooth	3.3	Apple
101	Orange	Smooth	3.7	Orange
111	Green	Rough	3.5	Apple

117	Red	Rough	3.4	Orange

Bagging +
Random Subspace Method +
Decision Tree Learning Algorithm

Ensemble Learning

- Ensemble Learning:
 - Method that combines multiple learning algorithms to obtain performance improvements over its components
- Random Forests are one of the most common examples of ensemble learning
- Other commonly-used ensemble methods:
 - Bagging: multiple models on random subsets of data samples
 - Random Subspace Method: multiple models on random subsets of features
 - Boosting: train models iteratively, while making the current model focus on the mistakes of the previous ones by increasing the weight of misclassified samples

Boosting

Boosting

Ensemble Methods: Increasing the Accuracy

- Ensemble methods
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models, M_1 , M_2 , ..., M_k , with the aim of creating an improved model M^*
- Popular ensemble methods
 - Bagging: averaging the prediction over a collection of classifiers
 - Boosting: weighted vote with a collection of classifiers
 - Ensemble: combining a set of heterogeneous classifiers

Summary

- Ensemble Learning methods combine multiple learning algorithms to obtain performance improvements over its components
- Commonly-used ensemble methods:
 - Bagging (multiple models on random subsets of data samples)
 - Random Subspace Method (multiple models on random subsets of features)
 - Boosting (train models iteratively, while making the current model focus on the mistakes of the previous ones by increasing the weight of misclassified samples)
- Random Forests are an ensemble learning method that employ decision tree learning to build multiple trees through bagging and random subspace method.
 - > They rectify the overfitting problem of decision trees!