

HCC4543B HCF4543B

BCD-TO-7 SEGMENT LATCH/DECODER/LCD DRIVER

- DISPLAY BLANKING OF ALL ILLEGAL INPUT COMBINATIONS
- LATCH STORAGE OF CODE
- CAPABILITY OF DRIVING TWO LOW POWER TTL LOADS, TWO HTL LOADS, OR ONE LOW POWER SCHOTTKY LOAD OVER THE FULL RATED-TEMPERATURE RANGE
- PIN-FOR-PIN REPLACEMENT FOR THE HCF4056B (with pin 7 tied to V_{SS})
- DIRECT LED DRIVING CAPABILITY
- 100% TESTED FOR QUIESCENT CURRENT AT 20V
- MAXIMUM INPUT CURRENT OF 1A AT 18V OVER FULL PACKAGE-TEMPERATURE RANGE; 100nA AT 18V AND 25°C
- NOISE MARGIN (full package-temperature range) = 1V AT V_{DD} = 5V 2V AT V_{DD} = 10V 2.5V AT V_{DD} = 15V
- 5-V. 10-V. AND 15-V PARAMETRIC RATINGS

Applications:

- INSTRUMENT DISPLAY DRIVER
- DASHBOARD DISPLAY DRIVER
- COMPUTER/CALCULATOR DISPLAY DRIVER
- TIMING DEVICE DRIVER (clocks, watches, timers)

DESCRIPTION

The HCC/HCF4543B is a BCD-to-seven segment latch/decoder/driver designed primarily for liquidcrystal display (LCD) applications. It is also capable of driving light emitting diode (LED), incandescent, gas-discharge, and fluorescent displays. This device is functionally similar to and serves as direct replacement for the HCF4056B when pin 7 is connected to Vss. It differs from the HCF4056B in that it has a display blanking capability instead of a level-shifting function and requires only one power supply. When the HCF4056B is used in the level shifting mode, two power supplies are required. When the HCF4543B is used for LCD applications, a square wave must be applied to the PHASE input and the backplane of the LCD device. For LED applications a logic 1 is required at the PHASE input for common-cathode devices; a logic 0 is required for common-anode devices (see truth table).

December 1989 1/12

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to 18	V V
Vi	Input Voltage	- 0.5 to V _{DD} + 0.5	V
l _l	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for Top = Full Package-temperature Range	200 100	mW mW
T _{op}	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C °C
T _{stg}	Storage Temperature	- 65 to + 150	°C

 $^{^{\}ast}$ All Voltage Values are referred to V_{SS} pin voltage.

LOGIC DIAGRAM (1/2 of device shown)

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage : HCC Types HCF Types	3 to + 18 3 to + 15	V V
Vı	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	သိ လ

TRUTH TABLE

		INP	UT CC	DE			OUTPUT STATE						DIODI AV	
LD	ВІ	Ph*	D	С	В	Α	а	b	С	d	е	f	g	DISPLAY CHARACTER
Х	1	0	Х	Х	Х	Х	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	1	1	0	0	0	0	1
1	0	0	0	0	1	0	1	1	0	1	1	0	1	2
1	0	0	0	0	1	1	1	1	1	1	0	0	1	3
1	0	0	0	1	0	0	0	1	1	0	0	1	1	4
1	0	0	0	1	0	1	1	0	1	1	0	1	1	5
1	0	0	0	1	1	0	1	0	1	1	1	1	1	6
1	0	0	0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	0	0	1	1	1	1	1	0	1	1	9
1	0	0	1	0	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	0	1	1	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	1	0	0	0	0	0	0	0	Blank
1	0	0	1	1	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	1	1	0	0	0	0	0	0	0	Blank
0	0	0	Х	Х	Х	Х	**						**	
•	•	•			•		Inverse of Output Combinations Above					Display as above		

X = Don't care.

A = Don't cale.
 Above combinations
 For liquid-crystal readouts, apply a square wave to Ph.
 For common cathode LED readouts, select Ph = 0.
 For common anode LED readouts, select Ph = 1.
 ** = Depends upon the BCD code previously applied when LD = 1.

STATIC ELECTRICAL CHARACTERISTICS

			Te	est Cond	lition	s			,	Value				
Symbol	Parame	ter	Vı	Vo	lo	V _{DD}	TL	ow		25°C		T _{Hi}	gh	Unit
			(V)		(μ A)	(V)	Min.	Max.	Min.	Тур.	Max.		Max.	
ΙL	Quiescent		0/5			5		5		0.04	5		150	
	Current	нсс	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	
			0/20			20		100		0.08	100		3000	μΑ
			0/5			5		5		0.04	5		150	
		HCF Types	0/10			10		10		0.04	10		300	
		, , , ,	0/15			15		20		0.04	20		600	
VoH	Output High		0/5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low		5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V _{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
VIL	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	٧
	Voltage			9/1	< 1	10		3			3		3	
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/5	2.5		5	- 1.6		- 1.3	- 2.6		- 0.9		
	Drive Current	нсс	0/5	4.6		5	- 0.46		- 0.37	- 0.75		- 0.26		
	Ourion	Types	0/10	9.5		10	- 0.98		- 0.8	- 1.6		- 0.55		
			0/15	13.5		15	- 3.33		- 2.7	- 5.4		- 1.9		mA
			0/5	2.5		5	1.3		- 1.1	- 2.6		- 0.9		
		HCF	0/5	4.6		5	0.36		- 0.31	- 0.75		- 0.25		
		Types	0/10	9.5		10	0.81		- 0.68	- 1.6		- 0.54		
			0/15	13.5		15	2.7		- 2.3	- 5.4		- 1.84		
loL	Output	LICC	0/5	0.4		5	0.64		0.51	1		0.36		
	Sink Current	HCC Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Ourion	"	0/15	1.5		15	4.2		3.4	6.8		2.4		mA
		HCF	0/5	0.4		5	0.52		0.44	1		0.36		
		Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
			0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Leakage	HCC types	0/18	- Any In	nut	18		± 0.1		± 10 ⁻⁵	± 0.1		± 1	μА
	Current	HCF types	0/15	, dry III	Put	15		± 0.3		± 10 ⁻⁵	± 0.3		± 1	μΛ

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5V min. with $V_{DD} = 15V$.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all V_{DD} values is 0.3%/°C, all input rise and fall time = 20ns)

Symbol	Parameter	Test Conditions	AII	Unit		
		V DD (V)	Min.	Тур.	Max.	
t _{PHL}	Propagation Delay Time	5 10 15		600 200 150	1200 400 300	
t _{PLH}		5 10 15		500 200 150	1000 400 300	
t _{THL}	Transition Time	5 10 15		180 90 65	360 180 130	
t _{TLH}		5 10 15		180 90 65	360 180 130	ns
twH	Latch Disable Pulse Width	5 10 15	250 100 80	125 50 40		
tsu	Address Setup Time	5 10 15	60 20 10	15 - 5 - 5		
tH	Address Hold Time	5 10 15	25 20 20	-5 10 0		
C _{IN}	Input Capacitance	Any Input		5	7.5	pF

BCD-to-seven-segment latch/decoder/driver functional diagram

Typical Output Low (sink) Current Characteristics.

Typical Transition Time as a Function of Load Capacitance

Typical Dinamic Power Dissipation as a Function of Frequency

Minimum Output Low(sink) Current Characteristics.

Typical Propagation Delay Time as a Function of Load Capacitance

Input Voltage Test Circuit.

Quiescent Device Current Test Circuit.

Input-leakage -current Test Circuit.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			20			0.787		
В			7			0.276		
D		3.3			0.130			
Е	0.38			0.015				
e3		17.78			0.700			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
Н	1.17		1.52	0.046		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N			10.3			0.406		
Р	7.8		8.05	0.307		0.317		
Q			5.08			0.200		

SO16 (Narrow) MECHANICAL DATA

DIM.		mm		inch				
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.2	0.004		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	9.8		10	0.385		0.393		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S			8° (r	nax.)				

PLCC20 MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	9.78		10.03	0.385		0.395		
В	8.89		9.04	0.350		0.356		
D	4.2		4.57	0.165		0.180		
d1		2.54			0.100			
d2		0.56			0.022			
E	7.37		8.38	0.290		0.330		
е		1.27			0.050			
e3		5.08			0.200			
F		0.38			0.015			
G			0.101			0.004		
М		1.27			0.050			
M1		1.14			0.045			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

