We claim:

- A method for searching a first table, comprising the steps of: 1 1. 2 storing a first value in a computer memory location; constructing a plurality of subtables by dividing said first table into said plurality of 3 subtables; 4 searching said plurality of subtables simultaneously to match said first value with a 5 6 second value, said second value located in one of said plurality of subtables; and performing an operation on said first value based on the identity of said second 7 8 value. The method of Claim 1, wherein said operation replaces said first value in said 9 2.
- computer memory location with a third value associated with said second value.
- The method of Claim 1, wherein said operation modifies said first value in said computer memory location.

- 1 4. The method of Claim 1, wherein said operation modifies a data set associated with
- 2 said first value in said computer memory location.
- The method of Claim 1, wherein said operation removes said first value from said
- 4 computer memory location.
- 5 6. The method of Claim 1, wherein said first value is selected from a group comprising
- 6 a VPI, a VCI, or a VPI/VCI pair.
- 7. The method of Claim 1, wherein said second value is selected from a group
- 8 comprising a VPI, a VCI, or a VPI/VCI pair.
- 9 8. The method Of Claim 1, wherein said third value is selected from a group
- 10 comprising a VPI, a VCI, or a VPI/VCI pair.

1	9.	A method for conveying a data packet from a first node to a second node
2	compr	ising the steps of:
3		reading a first VPI and a first VCI from said data packet at said first node;
4		storing said first VPI and said first VCI in a computer memory location,
5		simultaneously searching for a second VPI and a second VCI in parallel in a plurality
6	of sub	tables, one subtable in said plurality of subtables containing said second VPL and said
7	secono	VCI matching said first VPI and said first VCI;
8		replacing said first VPI and said first VCI in said data packet with a third VPI and
9	a thire	VCI, said third VPI and said third VCI associated with said second VPI and said
10	secon	d VCI; and
11		conveying said data packet to said second node.
12	10.	The method of Claim 9, further comprising the steps of:
13		storing said first VPI and said first VCI as a first VPI/VCI pair, storing said second
14	VPI a	and said second VCI as a second VPI/VCI pair, and storing said third VPI and said
15	third '	VCI as a third VPI/VCI.

- 1 11. The method of Claim 9, wherein said plurality of subtables are constructed by
- dividing a first table, said first table containing said second VPI and said second VCI and
- said third VPI and said third VCI associated with said second VPI and said second VCI.
- 4 12. The method of Claim 11, wherein said first VPI and said first VCI are stored as a
- first VPI/VCI pair, said second VPI and said second VCI are stored as a second VPI/VCI
- pair, and said third VPI and said third VCI are stored as a third VPI/VCI pair.
- 7 13. The method of Claim 11, wherein the number of said plurality of subtables is
- 8 determined by dividing a number of entries in said first table by a value representing the time
- 9 it takes for said data packet to pass through said first node.

خ. ه.

1	14.	An ATM network, comprising:
2		a plurality of customer premise nodes,
3		a plurality of network nodes;
4		a plurality of physical links connecting said customer premise nodes to said network
5	nodes; and	
6		at least one data packet transmitted through a plurality of physical links between said
7	plural	ity of customer premise nodes and said plurality of network nodes, said data packet
8	includ	ling a first VPI and a first VCI, said first VPI and said first VCI replaced by a second
9	VPI a	and a second VCI when said data packet travels through a first network node in said
10	plura	lity of network nodes, said second VPI and said second VCI determined by searching
11	a plui	rality of subtables in parallel, with one subtable in said plurality of subtables containing
12	a thir	d VPI and a third VCI associated with said second VPI and said second VCI, said third
13	VPI	and said third VCI matching said first VPI and said first VCI.

- 1 15. The ATM network of Claim 14, wherein said first VPI and said first VCI are stored
- as a first VPI/VCI pair, said second VPI and said second VCI are stored as a second
- 3 VPI/VCI pair, and said third VPI and said third VCI are stored as a third VPI/VCI pair.
- 4 16. The ATM network of Claim 14, wherein said plurality of subtables are constructed
- by dividing up a first table containing a third VPI and a third VCI associated with said
- 6 second VPI and said second VCI, said third VPI and said third VCI matching said first VPI
- 7 and said first VCI.
- 8 17. The ATM network of Claim 16, wherein said first VPI and said first VCI are stored
- as a first VPI/VCI pair, said second VPI and said second VCI are stored as a second
- 10 .VPI/VCI pair, and said third VPI and said third VCI are stored as a third VPI/VCI pair.
- 11 18. The ATM network of Claim 16, wherein the number of said plurality of subtables
- is obtained by the number of entries in said first table divided by a value representing the
- time it takes said data packet to travel through said first network node in said plurality of
- 14 network nodes.