Intégration sur un segment

Propriétés de l'intégrale

QCOP INT.1

Soit [a, b] un segment de \mathbb{R} .

Soit $f:[a,b] \longrightarrow \mathbb{R}$ continue par morceaux.

- Rappeler les propriétés de « croissance » et de « linéarité » de l'intégrale.
- Montrer que

$$\left| \int_a^b f(t) \, \mathrm{d}t \right| \leqslant \int_a^b \left| f(t) \right| \, \mathrm{d}t.$$

 \aleph On suppose f continue. Montrer que

$$\left| \int_a^b f(t) \, \mathrm{d}t \right| \leqslant |b - a| \sup_{t \in [a,b]} |f(t)|.$$

QCOP INT.2

Soit [a, b] un segment de \mathbb{R} .

- Rappeler l'inégalité triangulaire intégrale pour une fonction réelle.
- Soit $f:[a,b] \longrightarrow \mathbb{C}$ continue par morceaux, à valeurs complexes.
 - (a) Justifier l'existence de $\theta \in \mathbb{R}$ tel que

$$\mathrm{e}^{\mathrm{i} heta}\int_a^b f(t)\,\mathrm{d}t\in\mathbb{R}.$$

- **(b)** Montrer que l'inégalité triangulaire intégrale est vraie pour des fonctions à valeurs complexes.

Théorème fondamental de l'analyse

QCOP INT.3

Soit I un intervalle (non vide et non réduit à un point) de \mathbb{R} .

Soit $f: I \longrightarrow \mathbb{R}$. Soit $x_0 \in I$. On note $F_{x_0}: x \longmapsto \int_{x_0}^x f(t) dt$ lorsque cela a un sens.

- \blacksquare Si f est continue par morceaux sur I, que dire de la régularité de F_{x_0} ?
- Soit $a \in I$. On suppose f continue en a. Montrer que F_{x_0} est dérivable en a et que $F_{x_0}{}'(a) = f(a)$.
- **%** Montrer que

$$f$$
 continue sur I
 $\forall (a,b) \in I^2, \int_a^b f(t) dt = 0$
 $\Longrightarrow f = 0 \text{ sur } I.$

QCOP INT.4

Enoncer le théorème fondamental de l'analyse.

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction 2π -périodique. À l'aide de $x \longmapsto \int_{-\infty}^{x+2\pi} f(t) dt$, montrer que

$$\forall a \in \mathbb{R}, \quad \int_a^{a+2\pi} f(t) dt = \int_0^{2\pi} f(t) dt.$$

QCOP INT.5

Soit $f : \mathbb{R} \longrightarrow \mathbb{R}$ une fonction. Soient $a, b \in \mathbb{R}$ tels que a < b.

E Énoncer le théorème fondamental de l'analyse.

Compléter et démontrer :

$$\begin{cases} f \text{ est } \dots \text{ sur } [a, b] \\ f \text{ est de signe } \dots \text{ sur } [a, b] \\ \int_a^b f(t) \, \mathrm{d}t = 0 \end{cases} \Longrightarrow \quad f = 0 \text{ sur } [a, b],$$

en étudiant la monotonie d'une fonction bien choisie.

 \mathcal{X} On suppose f de classe \mathcal{C}^1 sur [a, b]. Montrer que

$$|f(a)| + \sup_{t \in [a,b]} |f'(t)| = 0 \implies f = 0 \operatorname{sur} [a,b].$$

Sommes de Riemann

QCOP INT.6

Soient $a, b \in \mathbb{R}$ tels que a < b. Soit $f : [a, b] \longrightarrow \mathbb{R}$ lipschitzienne. On pose, pour $n \in \mathbb{N}^*$,

$$I_n(f) := \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right).$$

Montrer que

$$I_n(f) = \int_a^b f(t) dt + O\left(\frac{1}{n}\right).$$

QCOP INT.7

Soient $a, b \in \mathbb{R}$ tels que a < b. Soit $f: [a, b] \longrightarrow \mathbb{R}$ continue. Montrer que

$$\frac{b-a}{n}\sum_{k=1}^n f\left(a+k\frac{b-a}{n}\right) \longrightarrow \int_a^b f(t)\,\mathrm{d}t.$$