

Our Project

Team Members

Yiming Jia, Albert Kong, Smruti Nalawade, Peter Zhong, Ziyue(Tom) Zhou

Background

 Traditional ECL models rely on linear assumptions, limiting their adaptability to complex borrower and market dynamics.

Opportunity

 Machine learning techniques can integrate broader data (macroeconomic, geospatial) to enhance accuracy and insight. Using machine learning models, we can make better predictions for mortgage credit risk.

Project Objectives

- Loan Default Prediction
 - o Improve Probability of Default (PD) accuracy through advanced ML.
- Credit Loss Prediction
 - Refine ECL estimates by leveraging actual loss data from Freddie Mac.
- Delinquency Forecasting
 - Integrate macroeconomic indicators to anticipate delinquency trends.
- Geographic Risk Analysis
 - Identify and visualize high-risk regions using geospatial modeling.

Dataset Overview

- Freddie Mac Single-Family Loan-Level Data
 - Origination details (credit scores, LTV, DTI)
 - Monthly performance metrics (delinquency status, foreclosure events)
 - Actual loss information for defaulted loans
- St. Louis Fed (FRED) Macroeconomic Data
 - o GDP, unemployment, interest rates, inflation
 - Aligned by time periods (monthly/quarterly)
- Data Integration
 - Merged on date fields to correlate loan performance with economic indicators

Methodology

ECL Computation

- ECL = PD × Predicted Actual Loss
- Uses model-estimated PD + Freddie Mac actual loss data

PD Estimation

- Classification algorithms (e.g., Random Forest, XGBoost)
- Key features: borrower characteristics, loan terms, macroeconomic variables

Delinquency Forecasting

- Modeling delinquency trends as a high-dimensional time-series forecasting problem to forecast potential risks and market shifts by leveraging statistical ML models (ARIMA, VAR) or deep learning models (LSTM, transformers, etc).
- Combines historical performance + macroeconomic factors

Geospatial Risk Insights

- o Clustering methods (K-Means, DBSCAN) to detect high-default regions
- Heatmaps to visualize geographic concentrations of risk
- State-level or county-level breakdowns to inform local strategies

Tech Stack / Tools

Category	Tools & Technologies
Data Processing & Management	Pandas, NumPy
	SQL (SQLite) - if needed
Machine Learning & Modeling	Scikit-Learn
	XGBoost, Random Forest
Time-Series Forecasting	Statsmodels, Survival Analysis
Geospatial Analysis & Visualization	GeoPandas, Folium
	Seaborn, Matplotlib
Project Management & Collaboration	Agile Methodology (Scrum/Kanban)
	GitHub
	Jupyter Notebooks, VS Code
Documentation & Reporting	Google Docs, Google Sheets
	Microsoft PowerPoint (PPT)

Python Optimization Techniques

Performance Profiling

cProfile, memory_profiler to identify and address bottlenecks

JIT Compilation

Numba for faster loops and numerical computations

Parallelization

Multi-threading (I/O tasks) and multi-processing (CPU tasks)

Vectorization

NumPy/Pandas for bulk operations on large datasets

GPU Acceleration

CuPy for heavy matrix operations, boosting speed

Outcomes

Improved Default Prediction

 Higher accuracy in PD estimation benefiting financial institutions' underwriting decisions and researchers' analyses

Refined ECL Estimates

More precise loss forecasts for proactive provisioning

Risk Insights

Early detection of delinquency trends, identification of geographic "hot spots"

Efficiency & Scalability

 Advanced parallelization and GPU acceleration for handling massive loan datasets

Project Timeline

Any Questions?

Thank You!