THÉORIE DES LANGAGES

DEVAN SOHIER

Exercice 1

Quel est le langage défini par la grammaire : $T \to TTb|TbT|bTT|a$?

Vous démontrerez le résultat.

Exercice 2

Ecrire des machines de Turing reconnaissant les langages suivants :

- $(1) \{a^n b^n c^n / n \in \mathbb{N}^*\} ;$
- (2) $\{\omega c\omega^R/\omega \in \{a,b\}^*\}$;
- (3) $\{\omega\omega^R/\omega\in\{a,b\}^*\}$;
- $(4) \{a^n b^{n^2} / n \in \mathbb{N}\}.$

Exercice 3

Ecrire des machines de Turing calculant les fonctions suivantes :

- (1) $a^n \mapsto a^n b^n$, $n \in \mathbb{N}$;
- (2) $\omega \in \{a, b\}^* \mapsto \omega \omega^R$;
- (3) $\omega \in \{a, b\}^* \mapsto \omega \omega$;
- (4) $(n,m) \in \mathbb{N} \mapsto n-m$ (on supposer n > m);
- (5) $(n,m) \in \mathbb{N} \mapsto n-m$ (on supposer n>m, et n et m codés en binaire);
- (6) $(n,m) \in \mathbb{N} \mapsto n \times m$ (on supposer n et m codés en binaire);
- (7) $n \in \mathbb{N} \mapsto n^2$ (on supposera n codé en binaire).

Exercice 4

Montrer que tout langage régulier est décidable par machine de Turing.