Teoria da Computação

Minimização de AFD's

Introdução

 Considere a palavra w = ababababa. Em termos de processamento, qual dos autômatos abaixo é mais eficiente?

Introdução

 Considere a palavra w = ababababa. Em termos de processamento, qual dos autômatos abaixo é mais eficiente?

Os dois possuem a mesma eficiência, já que o processamento depende do tamanho da palavra e não do tamanho do autômato

AFD Mínimo

- Um AFD M é dito ser **mínimo** para a linguagem L(M) se nenhum AFD para L(M) contém menor número de estados que M
- Para obter um AFD mínimo deve-se
 - a) Eliminar estados não alcançáveis a partir do estado inicial
 - b) Substituir cada grupo de estados equivalentes por um único estado

O que são estados equivalentes?

Estados Não Alcançáveis

 Para eliminar estados não alcançáveis pode-se utilizar qualquer algoritmo de busca em grafos, como por exemplo, busca em profundidade

Estados Não Alcançáveis

• Autômato sem estados não alcançáveis

Estados Equivalentes

• Seja um AFD $M = (E, \Sigma, \delta, i, F)$ Então $e, e' \in E$ são ditos equivalentes, $e \approx e'$, se e somente se,

$$\forall y \in \Sigma^*, \dot{\delta}(e, y) \in F \Leftrightarrow \dot{\delta}(e', y) \in F$$

A relação ≈ é de equivalência, já que é reflexiva, simétrica e transitiva

 Determinar grupos de estados equivalentes e substituir cada cada grupo por um único estado

Porque reduzir estados equivalentes a um só?

Estados Equivalentes

- Seja um AFD $M = (E, \Sigma, \delta, i, F)$
 - Se $e \approx e'$: um sufixo y é reconhecido passando-se por e se, e somente se, ele é reconhecido passando por e'; logo e e e' podem se tornar um só
 - Se e ≠ e' ($\exists y \in \Sigma^*$, $\delta(e,y) \in Fe$ $\delta(e',y) \notin F$ ou viceversa): se um sufixo y levar a um estado de F, a palavra é aceita, caso contrário, não é. Logo, e ∈ e' não podem se tornar um só

 $[e] = \{e_1, e_2, ..., e_n\}$ é a classe de equivalência de e na partição induzida por \approx

AFD Reduzido

• Seja um AFD $M = (E, \Sigma, \delta, i, F)$, um AFD **reduzido** correspondente a M é o AFD $M' = (E', \Sigma, \delta', i', F')$

$$-E' = \{[e] | e \in E\}$$

$$-\delta'([e], a) = [\delta(e, a)] \quad \forall e \in E, \forall a \in \Sigma$$

$$-i' = [i]$$

$$-F' = \{[e] | e \in F\}$$

O AFD *M*' é equivalente ao AFD *M*? Como mostrar isso?

AFD Reduzido

- Para mostrar que um AFD M' reduzido é equivalente ao AFD M, basta mostrar que
 - a) O processamento é equivalente

$$\delta'([e], w) = [\delta(e, w)] \quad \forall w \in \Sigma^* \text{ por indução sobre}|_{w}|$$

a) Reconhecem a mesma linguagem (L(M') = L(M))

$$\overset{\wedge}{\delta}(i',w) \in F' \Leftrightarrow \overset{\wedge}{\delta}(i,w) \in F \quad \forall w \in \Sigma^*$$

O problema do algoritmo de minimização é encontrar as classes de equivalências induzidas pela relação ≈

Classes de Equivalência Induzidas por ≈

- A relação \approx pode ser definida como uma série de refinamentos ($\approx_0, \approx_1, \approx_2 \ldots$), em que \approx_{n+1} refina \approx_n
- A definição de \mathbf{a}_i ($i \geq 0$) para um AFD $M = (E, \Sigma, \delta, i, F)$ é dada da seguinte forma
 - a) $e \approx_0 e'$ se, e somente se, $e, e' \in F$ ou $e, e' \in E F$
 - b) $e \approx_{n+1} e'(n \ge 0)$ se, e somente se, $e \approx e'$ e $\delta(e,a) \approx_n \delta(e',a) \quad \forall a \in \Sigma$

Classes de Equivalência Induzidas por ≈

- A definição anterior pode ser reformulada usando a notação $[e]_n$, onde ela é usada para denotar a classe de equivalência que pertence o estado e na partição induzida por \approx_n
- A definição de $[e]_i$ ($i \ge 0$) para um AFD $M = (E, \Sigma, \delta, i, F)$ é dada da seguinte forma

a)
$$[e]_0 = \begin{cases} F & \text{se } e \in F \\ E - F & \text{se } e \in E - F \end{cases}$$

b)
$$[e]_{n+1} = \{e' \in [e]_n | [\delta(e',a)]_n = [\delta(e,a)]_n, \forall a \in \Sigma\}$$

 $(n \ge 0)$

 Para exemplificar o algoritmo de minimização, será utilizado o exemplo do problema da matemática (divisão por 6)

O objetivo é particionar o conjunto de estados em conjuntos de equivalência

 Para exemplificar o algoritmo de minimização, será utilizado o exemplo do problema da matemática (divisão por 6)

 $G_1 = \{R_0\}$ $G_2 = \{R_1, R_2, R_3, R_4, R_5\}$ 0 $R_{_{1}}$ Partição dos estados finais e nãofinais R_5 0 0 R_2 R_4 As transições de cada estado levam a qual grupo?

 Para exemplificar o algoritmo de minimização, será utilizado o exemplo do problema da matemática (divisão por 6)

Grupos

$$G_1 = \{R_0\}$$
 $G_2 = \{R_1, R_2, R_3, R_4, R_5\}$

	0	1
R_{o}	G ₁	G ₂
R_1	$G_{\scriptscriptstyle 2}$	$G_{\scriptscriptstyle 2}$
R_2	G_1	$G_{\scriptscriptstyle 2}$
R_3	$G_{\scriptscriptstyle 2}$	$G_{\scriptscriptstyle 2}$
R_4	G_2	G_2
R_5	G_2	G_2

 Para exemplificar o algoritmo de minimização, será utilizado o exemplo do problema da matemática (divisão por 6)

Grupos

$$G_1 = \{R_0\}$$
 $G_2 = \{R_1, R_2, R_3, R_4, R_5\}$

• Para exemplificar o algoritmo de minimização, será utilizado o exemplo do problema da matemática (divisão por 6)

$$G_1 = \{R_0\}$$

$$G_2 = \{R_1, R_3, R_4, R_5\}$$

$$G_3 = \{R_2\}$$

Qual o próximo particionamento?

 Para exemplificar o algoritmo de minimização, será utilizado o exemplo do problema da matemática (divisão por 6)

 Para exemplificar o algoritmo de minimização, será utilizado o exemplo do problema da matemática (divisão por 6)

 $G_1 = \{R_0\}$ $G_2 = \{R_3, R_5\}$ $G_3 = \{R_2\}$ $G_4 = \{R_1, R_4\}$

Grupos

Tem mais partições?

 Para exemplificar o algoritmo de minimização, será utilizado o exemplo do problema da matemática (divisão por 6)

 Para exemplificar o algoritmo de minimização, será utilizado o exemplo do problema da matemática (divisão por 6)

 Para exemplificar o algoritmo de minimização, será utilizado o exemplo do problema da matemática (divisão por 6)

Colocar as arestas baseado na tabela

 Para exemplificar o algoritmo de minimização, será utilizado o exemplo do problema da matemática (divisão por 6)

$$L(M_1) = L(M_2)$$

Exercícios

Encontre o AFD reduzido para os autômatos a seguir

