Package 'dualtrees'

October 28, 2019

October 28, 2019
Title Decimated and Undecimated 2D complex dual-tree wavelet transform
Version 0.0.1
Description What the package does (one paragraph).
Depends R (>= 3.5.0)
License What license is it under?
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1

R topics documented:

Index

A_b																			2
A_b_bp																			2
biascor																			3
blossom																			3
boys																			3
c2q																			4
cen2uv																			4
decimate																			5
dt2cen																			5
dtcwt																			5
fld2dt 																			6
get_en																			7
holes																			7
idtcwt																			7
make_square .																			8
my_conv																			9
near_sym_b																			9
near_sym_b_bp																			10
period_bc																			10
put_in_mirror .																			10
q2c																			11
qshift_b																			11
qshift_b_bp																			12
shift1																			12
upsample																			12
																			13

2 A_b_bp

A_b

Bias correction matrices for the "b"-wavelets

Description

Matrices supposedly needed in order to eliminate the effect of "spectral leakage" for the local dtcwt-spectra. Used by biascor(\dots).

Usage

A_b

Format

A list with entries N512, N256, N128, N64, N32, each containing the bias correction matrix of appropriate size

Source

Calculated by hand via /user/s6sebusc/wavelets_verification/general_scripts/Amats_cdtwt.r

Examples

```
image(A_b$N512)
```

A_b_bp

Bias correction matrices for the "b_bp"-wavelets

Description

Matrices supposedly needed in order to eliminate the effect of "spectral leakage" for the local dtcwt-spectra. Used by biascor(\dots).

Usage

A_b_bp

Format

A list with entries N512, N256, N128, N64, N32, each containing the bias correction matrix of appropriate size

Source

Calculated by hand via /user/s6sebusc/wavelets_verification/general_scripts/Amats_cdtwt.r

Examples

```
image(A_b_bp$N512)
```

biascor 3

biascor

spectral bias correction, implemented in FORTRAN

Description

spectral bias correction, implemented in FORTRAN

Usage

```
biascor(en, a)
```

blossom

Two meteorologists in front of cherry blossoms

Description

A very beautiful image.

Usage

blossom

Format

A 512x512 matrix of gray-scale values

Source

real life

Examples

```
image(blossom, col=gray.colors(32,0,1))
```

boys

Two stromchasers in the sun

Description

Another classic image.

Usage

boys

Format

A 256x256 matrix of gray-scale values

4 cen2uv

Source

real life

Examples

```
image(boys, col=gray.colors(32,0,1))
```

c2q

Transform six fields of complex coefficients back into four trees.

Description

This function takes the six directional complex daughter wavelet coefficients and re-constructs the three combinations of high- and low passes from the four trees (ab, ba, aa, bb).

Usage

```
c2q(comp)
```

Arguments

comp

complex array of dimnesions nx, ny, 6

Value

a list of low- and high-pass components from the four trees, names LoaHia, LobHib, etc.

Examples

```
c2q( comp )
```

cen2uv

transform angle and anisotropy into vector components for plotting

Description

transform angle and anisotropy into vector components for plotting

```
cen2uv(cen)
```

decimate 5

	decimate	delete every second row of a matrix	
--	----------	-------------------------------------	--

Description

delete every second row of a matrix

Usage

```
decimate(mat, odd = FALSE, dec = TRUE)
```

dt2cen

get the centre of the DT-spectrum

Description

get the centre of the DT-spectrum

Usage

```
dt2cen(pyr)
```

dtcwt

The 2D forward dualtree complex wavelet transform

Description

This function performs the dualtree complex wavelet analysis, either with or withour decimation

Usage

```
dtcwt(mat, fb1 = near_sym_b, fb2 = qshift_b, J = NULL, dec = TRUE,
  mode = NULL, verbose = TRUE, boundaries = "periodic")
```

Arguments

mat	the real matrix we wish to transform
fb1	A list of analysis filter coefficients for the first level. Currently only near_sym_b and near_sym_b_bp are implemented
fb2	A list of analysis filter coefficients for all following levels. Currently only qshift_b and qshift_b_bp are implemented
J	number of levels for the decomposition. Defaults to log2($min(Nx,Ny)$) in the decimated case and log2($min(Nx,Ny)$) - 3 otherwise
dec	whether or not the decimated transform is desired
mode	how to perform the convolutions, either "direct" (default if dec=TRUE) or "FFT" (default if dec=FALSE)
verbose	if TRUE, the function tells you which level it is working on
boundaries	how to handle the internal boundary conditions of the convolutions, has no effect if mode="direct"

6 fld2dt

Details

This is the 2D complex dualtree wavelet transform as described by Selesnick et al 2005. It consists of four discerete wavelet transform trees, generated from two filter banks a and b by applying one set of filters to the rows and the same ot the other to the columns. In the decimated case (dec=TRUE), each convolution is followed by a downsampling, meaining that the size of the six coefficient fields is cut in half at each level. In this case, it is supposedly efficient to use direct convolutions (mode="direct"), the boundary conditions of which are steered by the boundaries-argument. If dec=FALSE, direct convolutions may be slow and you should use mode="FFT". In that case, you need to handle the boundary conditions externally (enter a nice 2^N x 2^M matrix) and the maximum level J is smaller than log2(N) due to the construction of the filters via an 'algorithme a trous'.

Value

if dec=TRUE a list of complex coefficient fields, otherwise a complex J * Nx * Ny * 6 array.

Note

Periodic and reflective boundaries are both implemented for the decimated case, but only the periodic boundaries are actually invertible at this point.

References

Selesnick, I.W., R.G. Baraniuk, and N.C. Kingsbury. "The Dual-Tree Complex Wavelet Transform." IEEE Signal Processing Magazine 22, no. 6 (November 2005): 123–51. https://doi.org/10.1109/MSP.2005.1550194.

See Also

idtcwt

Examples

```
dt <- dtcwt( boys )
par( mfrow=c(2,3), mar=rep(2,4) )
for( j in 1:6 ){
   image( boys, col=grey.colors(32,0,1) )
   contour( Mod( dt[[3]][ ,,j ] )**2, add=TRUE, col="green" )
}</pre>
```

fld2dt

transform a field, handle boundary conditions, return energy

Description

transform a field, handle boundary conditions, return energy

```
fld2dt(fld, Nx = NULL, Ny = NULL, J = NULL, mode = NULL,
  correct = NULL, verbose = FALSE, boundary = "pad",
  fb1 = near_sym_b_bp, fb2 = qshift_b_bp)
```

get_en 7

get_en

get energy from the dualtree transform

Description

get energy from the dualtree transform

Usage

```
get_en(pyr, correct = "fast")
```

holes

insert holes into a filter?

Description

insert holes into a filter?

Usage

```
holes(fil, second = TRUE)
```

idtcwt

The 2D inverse dualtree complex wavelet transform

Description

Reconstructs an image from the pyramid of complex directional wavelet coefficients.

Usage

```
idtcwt(pyr, fb1 = near_sym_b, fb2 = qshift_b, verbose = TRUE,
boundaries = "periodic")
```

Arguments

pyr	a list containing arrays of	of complex coefficients for each	level of the decomposi-

tion, produced by dtcwt(..., dec=TRUE).

fb1 the filter bank for the first level

the filter bank for all following levels

verbose if true, the function will say a few words while doing its thing.

boundaries how to handle the boundary conditions, should be the same as for the decompo-

sition.

8 make_square

Details

This function re-arranges the six complex daughter coefficients back into the four trees, convolves them with the synthesis wavelets and adds everything up to recover an image. For the near_sym_b and qshift_b filter banks, this reconstruction should be basically perfect. In the case of the the b_bp filters, non-negligible artifacts appear near +-45° edges.

Value

```
a real array of size 2N \times 2M where dim(pyr[[1]]) = (M,N,6).
```

Note

At present, only boundaries="periodic" actually works :(

References

Selesnick, I.W., R.G. Baraniuk, and N.C. Kingsbury. "The Dual-Tree Complex Wavelet Transform." IEEE Signal Processing Magazine 22, no. 6 (November 2005): 123–51. https://doi.org/10.1109/MSP.2005.1550194.

See Also

dtcwt

Examples

```
py <- dtcwt( boys )
boys_i <- idtcwt( py )
image( boys - boys_i )</pre>
```

make_square

Padded boundary conditions

Description

Padded boundary conditions

```
make_square(picture, N, Ny = N, value = min(picture, na.rm = TRUE))
```

my_conv 9

my_conv Column-convolutions	my_conv	Column-convolutions	
-----------------------------	---------	---------------------	--

Description

This function convolves the columns of a matrix mat with a filter fil.

Usage

```
my_conv(mat, fil, dec = TRUE, mode = "direct", odd = FALSE,
boundaries = "periodic")
```

Arguments

mat	a matrix
fil	the filter to convolve the columns with
dec	if TRUE, every second row is discarded after the convolution
mode	how to actually do the convolutions, must be either "direct" or "FFT"
odd	if TRUE, the first row is discarded, otherwise the second row is.
how	to handle the boundaries, does nothing if mode="FFT"

Details

This functions does all of the actual computations inside the wavelet transform. The direct mode uses filter(...) and can handle any field size you like. It is supposedly faster when the filters are short, i.e., in the decimated case. The FFT-version really only works when the input dimensions are whole powers of two and the filter is not longer than the columns of the matrix.

Examples

```
dboysdy <- my_conv( boys, c(-1,1), dec=FALSE )
dboysdx <- t( my_conv( t(boys), c(-1,1), dec=FALSE ) )
par( mfrow=c(1,2) )
image( dboysdx, col=gray.colors(32) )
image( dboysdy, col=gray.colors(32) )</pre>
```

near_sym_b

A q-shift filter for the second to last levels

Description

Data from a QTL experiment on gravitropism in

Usage

```
data(qshift_b)
```

Format

A list of high- and low-pass filters for analysis and synthesis

put_in_mirror

Source

dtcwt python package

Examples

```
data(qshift_b)
```

near_sym_b_bp

A q-shift filter for the second to last levels

Description

Data from a QTL experiment on gravitropism in

Usage

```
data(qshift_b)
```

Format

A list of high- and low-pass filters for analysis and synthesis

Source

dtcwt python package

Examples

data(qshift_b)

period_bc

Periodic boundary conditions

Description

Periodic boundary conditions

Usage

```
period_bc(x, N, Ny = N)
```

put_in_mirror

Reflective boundary conditions

Description

Reflective boundary conditions

```
put_in_mirror(x, N, Ny = N)
```

q2c

q2c

Transform data from the four trees to six fields of complex coefficients.

Description

This function takes the four combinations of high- and low passes from the four trees (ab, ba, aa, bb) and re-arranges them into the six directional complex daughter wavelets.

Usage

q2c(q)

Arguments

q

a list of wavelet coefficients named LoaHia, LobHib, HiaLoa, ...

Value

```
a complex array of size nx, ny, 6
```

Examples

```
q2c( q )
```

qshift_b

A q-shift filter for the second to last levels

Description

Data from a QTL experiment on gravitropism in

Usage

```
data(qshift_b)
```

Format

A list of high- and low-pass filters for analysis and synthesis

Source

dtcwt python package

Examples

```
data(qshift_b)
```

12 upsample

qshift_b_bp

A q-shift filter for the second to last levels

Description

Data from a QTL experiment on gravitropism in

Usage

```
data(qshift_b)
```

Format

A list of high- and low-pass filters for analysis and synthesis

Source

dtcwt python package

Examples

```
data(qshift_b)
```

shift1

shift a matrix forward or backward by one row

Description

shift a matrix forward or backward by one row

Usage

```
shift1(x, forward = TRUE)
```

upsample

add rows with zeroes to a matrix

Description

add rows with zeroes to a matrix

```
upsample(mat, odd = TRUE)
```

Index

*Topic convolution,	<pre>put_in_mirror, 10</pre>
my_conv, 9	0 11
*Topic datasets	q2c, 11
A_b, 2	qshift_b, 11
A_b_bp, 2	qshift_b_bp, 12
	17
blossom, 3	shift1, 12
boys, 3	51111 61, 12
$near_sym_b, 9$	uncample 12
near_sym_b_bp, 10	upsample, 12
qshift_b, 11	
qshift_b_bp, 12	
*Topic drudenfuss	
c2q, 4	
q2c, 11	
*Topic wavelets	
my_conv, 9	
my_conv, /	
A_b, 2	
A_b_bp, 2	
himme 2	
biascor, 3	
blossom, 3	
boys, 3	
c2q, 4	
cen2uv, 4	
CCIIZAV, I	
decimate, 5	
dt2cen, 5	
dtcwt, 5, 8	
fld2dt, 6	
get_en, 7	
holes, 7	
idtcwt, 6, 7	
10 CWC, 0, 7	
make_square, 8	
my_conv, 9	
near_sym_b, 9	
near_sym_b_bp, 10	
period_bc, 10	