Statistics 709, Exam 1

Instructor: Dr. Y	azhen Wang,	September 28, 2015
First Name:	Last	Name.:
Be sure	to show all rele	evant work!

1. (3 points) Consider a probability space (Ω, \mathcal{F}, P) and $A_1, \dots, A_n \in \mathcal{F}$, where $A_i \cap A_j = \emptyset$ for $i \neq j, \bigcup_{j=1}^n A_j = \Omega$, and $P(A_j) > 0$. Let $\mathcal{G} = \sigma\{A_1, \dots, A_n\}$ be the sigma field generated by A_1, \dots, A_n . Assume that X is a random variable, and set $Y = P(X \geq 1|\mathcal{G})$. It can be shown that

$$Y = \sum_{j=1}^{n} \frac{P([X \ge 1] \cap A_j)}{P(A_j)} \, 1_{A_j} \text{ (you do not need to prove the result)}.$$

Explain the meaning of $Y(\omega)$ for $\omega \in \Omega$.

- 2. Suppose that X and Y are two independent random variables on a probability space (Ω, \mathcal{F}, P) . X is a Bernoulli random variable P(X = 1) = P(X = 0) = 0.5, and Y follows a uniform distribution on (0,1) with pdf f(x) w.r.t. the Lebesgue measure m: f(x) = 1 for $x \in (0,1)$ and zero otherwise. Let $\lambda = m + \delta_0$, where δ_0 denotes the point mass measure at 0.
 - (a) (3 points) Show that the distribution of $\min(X, Y)$ is absolutely continuous w.r.t. λ .
 - (b) (3 points) Specify the pdf of $\min(X, Y)$ w.r.t. λ . You do not need to provide the proof.
- 3. Let $\Omega = [0,1]^2$, and $\mathcal{F} = \mathcal{B}^2_{[0,1]^2}$ be a Borel σ -field on the unit square Ω . Denote by m the one dimensional Lebesgue measure, and $\mathcal{B}_{[0,1]}$ the Borel σ -field on [0,1]. For $B \in \mathcal{F}$, define $\mathcal{L}(B) = \{x : (x.x) \in B\}$ to be a subset of [0,1], that is, $\mathcal{L}(B)$ is the projection of $B \cap \Omega_0$ on each coordinate, where $\Omega_0 = \{(x,x) : x \in [0,1]\}$ represents the diagonal line of Ω .
 - (a) (2 points) Show that for any $B \in \mathcal{F}$, $\mathcal{L}(B) \in \mathcal{B}_{[0,1]}$.
 - (b) (2 points) For $B \in \mathcal{F}$, define $\lambda(B) = m(\mathcal{L}(B))$. Prove that λ is a probability on (Ω, \mathcal{F}) .
 - (c) (4 points) Prove that for any Borel function f(x,y) on (Ω, \mathcal{F}) , f(x,x) is a Borel function on $([0,1], \mathcal{B}_{[0,1]})$. If $\int_0^1 |f(x,x)| m(dx) < \infty$, and f(x,y) is integrable w.r.t λ , show

$$\int_{\Omega} f(x,y)d\lambda = \int_{0}^{1} f(x,x)m(dx).$$

(d) (3 points) Suppose that $g_n(x,y)$, $n \ge 1$, are non-negative Borel functions on (Ω, \mathcal{F}) satisfying $\int_{\Omega} g_n(x,y) d\lambda = 1$, and h(x) is a positive Borel function on $([0,1], \mathcal{B}_{[0,1]})$. Assume that as $n \to \infty$, $g_n(x,y)$ converges to h(x)/h(y) for $(x,y) \in \Omega$. Prove

$$\lim_{n \to \infty} \int_{\Omega} |g_n(x, y) - h(x)/h(y)| d\lambda = 0.$$

Solution 1

Since

$$P(X \ge 1|A_j) = \frac{P([X \ge 1] \cap A_j)}{P(A_j)},$$

For $\omega \in A_i$, $Y(\omega)$ is the conditional probability of $[X \geq 1]$ given event A_i

Solution 2

- (a) For any $B \in \mathcal{B}$ and $\lambda(B) = 0$, we have $0 \notin B$, and m(B) = 0. Let $Z = \min(X, Y)$. $P_Z(B) = P(\min(X, Y) \in B) = P(X = 0 \in B) + P(X = 1, Y \in B) = 0 + P(X = 1)P(Y \in B) = \frac{1}{2}m(B \cap (0, 1)]) = 0$. So $P_Z \ll \lambda$.
- (b) It has a pdf w.r.t. λ

$$f_{\lambda}(z) = \frac{1}{2} \mathbf{1}_{[z=0]} + \frac{1}{2} \mathbf{1}_{[0 < z < 1]} = \frac{1}{2} \mathbf{1}_{[0 \le z < 1]}.$$

Solution 3

- (a) Notice that \mathcal{L} preserves set operations. Define $\mathcal{P} = \{B \in \mathcal{B}^2_{[0,1]^2}, \mathcal{L}(B) \in \mathcal{B}_{[0,1]}\}$. Then \mathcal{P} is a σ -field that contains all open rectangles in $[0,1]^2$ (check). Then $\mathcal{F} = \mathcal{B}^2_{[0,1]^2} \subset \mathcal{P}$.
- (b) To prove λ is a probability measure, just notice that if $B_1, B_2, ..., ...$ are disjoint, then $\mathcal{L}(B_1), \mathcal{L}(B_2), ..., ...$ are also disjoint and $\mathcal{L}(\cup B_i) = \cup \mathcal{L}(B_i)$.
- (c) Define $C = \{B : B = \{(x, y) : 0 \le x \le t, 0 \le y \le s\}, t, s \in [0, 1]\}$ which are all closed rectangles start from left corner and is a π -system. We also define

$$\mathcal{D} = \left\{ B \in \mathcal{B}_{[0,1]^2}^2 : \int_{[0,1]^2} 1_B d\lambda = \int_0^1 1_{\mathcal{L}(B)} dx \right\}$$

which is a λ - system that contains \mathcal{C} (check). Note that $\mathcal{B}^2_{[0,1]^2}$ can be generated from \mathcal{C} , so from $\pi - \lambda$ theorem, all statements are true for $f = 1_B$, $B \in \mathcal{B}^2_{[0,1]^2}$. By the property of Borel function and integration, all statements are also true for simple functions. For nonnegative Borel function f(x,y), there exists monotone increasing simple functions $f_n(x,y)$ such that $f_n(x,y) \to f(x,y)$, $n \to \infty$ point-wise. Since $f_n(x,x)$ is a Borel function and $f(x,x) = \lim_{n\to\infty} f_n(x,x)$, we conclude f(x,x) is a Borel function. $\int_{[0,1]^2} f(x,y) d\lambda = \int_0^1 f(x,x) dx$ follows from MCT. For general Borel function f(x,y),write $f(x,y) = f^+(x,y) - f^-(x,y)$. Then we conclude f(x,x) is a Borel function and $\int_{[0,1]^2} f^+(x,y) d\lambda = \int_0^1 f^+(x,x) dx$, $\int_{[0,1]^2} f^-(x,y) d\lambda = \int_0^1 f^-(x,x) dx$. Then f(x,y) is integrable w.r.t λ if and only if $\int_0^1 |f(x,x)| dx < \infty$, in which case we have

$$\int_{[0,1]^2} f(x,y) d\lambda = \int_0^1 f(x,x) dx$$

(d) From (c) we know $1 = \int_{\Omega} g_n(x,y) d\lambda = \int_0^1 g_n(x,x) m(dx)$, and

$$\int_{\Omega} |g_n(x,y) - h(x)/h(y)| d\lambda = \int_0^1 |g_n(x,x) - h(x)/h(x)| m(dx) = \int_0^1 |1 - g_n(x,x)| m(dx)$$

$$=2\int_0^1 [1-g_n(x,x)]_+ m(dx) - \int_0^1 [1-g_n(x,x)]m(dx) = 2\int_0^1 [1-g_n(x,x)]_+ m(dx),$$

which converges to zero by DCT (as $[1 - g_n(x, x)]_+ \le 1$).