Problem Set 7

Math 255: Analysis I

Due: Thursday, March 28th at 11:59pm EST

Problem 1. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in a metric space X. For each of the following statements determine whether it implies the convergence of x_n to q and whether the convergence of x_n to q implies the statement. If an implication holds then prove it, otherwise provide a counter example.

1. $\exists N \in \mathbb{N}$ s.t. $\forall \varepsilon > 0 \ \forall n \geq N \ d(x_n, q) < \varepsilon$

Proof.

- 1. $\implies x_n \to q$:
 - For any $\epsilon > 0$, we always that N given by assumption such that $d(x_n, q) < \epsilon$ for all $n \geq N$ and for all $\epsilon > 0$.
 - Then, for all $n \geq N$, we have $d(x_n, q) < \epsilon$.
 - Thus, $x_n \to q$.

 $q \to x_n \not\Longrightarrow 1$:

- Let $X = \mathbb{R}$ and $x_n = \frac{1}{n}$. Then, $x_n \to 0$.
- However, there is no single N that works for all $\epsilon > 0$. For example, if one chooses an N based on $\epsilon = 1$, say N = 2, this N does not suffice for a smaller ϵ , say $\epsilon = \frac{1}{10}$, for which we would need N > 10.

2. $\forall k \in \mathbb{N} \ \exists N \in \mathbb{N} \ \text{s.t.} \ \forall n \geq N \ d(x_n, q) < \frac{1}{k}$

Proof.

- $2. \implies x_n \to q$:
 - For any $\epsilon > 0$, we choose k such that $\frac{1}{k} < \epsilon$.
 - By the statement, we have N such that $d(x_n,q) < \frac{1}{k} < \epsilon$ for all $n \ge N$.
 - Therefore, $x_n \to q$.

 $x_n \to q \implies 2$:

- Let $k \in \mathbb{N}$ be arbitrary.
- Because $x_n \to q$, we can choose N such that $d(x_n, q) < \frac{1}{k}$ for all $n \ge N$.
- Therefore, for any $k \in \mathbb{N}$, we can choose N such that $d(x_n, q) < \frac{1}{k}$.
- 3. $\forall 0 < \varepsilon < 1 \ \exists N \in \mathbb{N} \ \text{s.t.} \ \forall n \geq N \ d(x_n, q) < \varepsilon$

Proof.

 $x_n \to q \implies 3$:

- By definition, $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $d(x_n, q) < \epsilon$.
- Therefore, for any $0 < \epsilon < 1$, we can choose N such that $d(x_n, q) < \epsilon$.

 $3 \implies x_n \to q$:

- For any $0 < \epsilon < 1$, we can choose N such that $d(x_n, q) < \epsilon$.
- In particular, let N' be the N corresponding to $\epsilon = 1/2$. That is, $d(x_n, q) < 1/2$ for all $n \ge N'$.
- For any $\epsilon \geq 1$, we can choose this N' such that $d(x_n,q) < 1/2 < \epsilon$ for all $n \geq N'$.
- Therefore, $x_n \to q$.
- 4. $\forall \varepsilon > 1 \ \exists N \in \mathbb{N}$ s.t. $\forall n \geq N \ d(x_n, q) < \varepsilon$

Proof. $x_n \to q \implies 4$:

- By definition, $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $d(x_n, q) < \epsilon$.
- Therefore, for any $\epsilon > 1$, we can choose N such that $d(x_n, q) < \epsilon$.

 $4 \not\Longrightarrow x_n \to q$:

- Let $X = \mathbb{R}$ and $x_n = \frac{(-1)^n}{2}$. x_n does not converge.
- The condition is satisfied for all $\epsilon > 1$ because $d(x_n, 0) = 1/2 < \epsilon$ for all n.
- However, x_n does not converge.

Problem 2. For each of the following pairs of sequences, determine whether $(b_n)_{n\in\mathbb{N}}$ is a subsequence of $(a_n)_{n\in\mathbb{N}}$. If it is, find the increasing sequence of indices $(n_k)_{k\in\mathbb{N}}$ describing the subsequence.

1. $a_n = n$ and $b_n = 2^n$

Proof. $(b_n)_{n\in\mathbb{N}}$ is a subsequence of $(a_n)_{n\in\mathbb{N}}$.

- The first few terms of $(b_n)_{n\in\mathbb{N}}$ are $(2,4,8,16,\ldots)$.
- The first few terms of $(a_{n_k})_{k\in\mathbb{N}}$ are $(2,4,8,16,\ldots)$.
- $(b_n)_{n\in\mathbb{N}} = (a_{n_k})_{k\in\mathbb{N}}$ where $n_k = 2^k$.
- We can verify that $(n_k)_{k\in\mathbb{N}}$ is an increasing sequence of indices. The first few terms of $(n_k)_{k\in\mathbb{N}}$ are $(2,4,8,16,\ldots)$.

2. $a_n = n$ and $b_n = 2 + (-1)^n$

Proof. $(b_n)_{n\in\mathbb{N}}$ is not a subsequence of $(a_n)_{n\in\mathbb{N}}$.

- Notice that $b_1 = 1$ and $b_3 = 1$.
- However, the only index n such that $a_n = 1$ is n = 1.
- Therefore, $(b_n)_{n\in\mathbb{N}}$ is not a subsequence of $(a_n)_{n\in\mathbb{N}}$.

3. $a_n = n^{\sqrt{n}/2}$ and $b_n = n^n$

Proof. $(b_n)_{n\in\mathbb{N}}$ is a subsequence of $(a_n)_{n\in\mathbb{N}}$.

- The first few terms of $(a_n)_{n\in\mathbb{N}}$ are $(1^{\sqrt{1}/2}, 2^{\sqrt{2}/2}, 3^{\sqrt{3}/2}, 4^{\sqrt{4}/2}, \ldots)$.
- The first few terms of $(b_n)_{n\in\mathbb{N}}$ are $(1,2^2,3^3,4^4,\ldots)$.
- $(b_n)_{n\in\mathbb{N}} = (a_{n_k})_{k\in\mathbb{N}}$ where $n_k = k^2$.
- We can verify that $(n_k)_{k\in\mathbb{N}}$ is an increasing sequence of indices. The first few terms of $(n_k)_{k\in\mathbb{N}}$ are $(1,4,9,16,\ldots)$.

4. $a_n = (-1)^{\lfloor \frac{n}{2} \rfloor}$ and $b_n = (-1)^n$, where $\lfloor t \rfloor = \max\{k \in \mathbb{Z} : k \le t\}$.

Proof. $(b_n)_{n\in\mathbb{N}}$ is a subsequence of $(a_n)_{n\in\mathbb{N}}$.

- The first few terms of $(a_n)_{n\in\mathbb{N}}$ are $(1,-1,-1,1,1,-1,-1,1,\ldots)$.
- The first few terms of $(b_n)_{n\in\mathbb{N}}$ are $(-1,1,-1,1,\ldots)$.
- $(b_n)_{n\in\mathbb{N}}=(a_{n_k})_{k\in\mathbb{N}}$ where $n_k=2k$.
- We can verify that $(n_k)_{k\in\mathbb{N}}$ is an increasing sequence of indices. The first few terms of $(n_k)_{k\in\mathbb{N}}$ are $(2,4,6,8,\ldots)$.

Problem 3. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . Recall the following set defined in class

$$\operatorname{Accum}(x_n)_{n\in\mathbb{N}} = \left\{z\in[-\infty,\infty]: \exists \text{ a subsequence } (x_{n_k})_{k\in\mathbb{N}} \text{ of } (x_n)_{n\in\mathbb{N}} \text{ with } \lim_{k\to\infty} x_{n_k} = z\right\}.$$

1. Let $K \subseteq \mathbb{R}$ be any compact subset¹. Prove that for any $m \in \mathbb{N}$ there exist finitely many points $p_1, ..., p_{N_m} \in K$ satisfying that for every $x \in K$ there exists $1 \le i \le N_m$ with $|x - p_i| < \frac{1}{m}$.

Use this to construct a sequence $(p_n)_{n \in \mathbb{N}}$ in K which satisfies that $\operatorname{Accum}(p_n)_{n \in \mathbb{N}} = K$.

Proof.

- Let K be a compact set in \mathbb{R} and let $m \in \mathbb{N}$ be arbitrary.
- Consider the open cover $\bigcup_{p \in K} N_{\frac{1}{m}}(p)$ that covers K.
- Because K is compact, there exists a finite subcover $\bigcup_{i=1}^{N_m} N_{\frac{1}{m}}(p_i)$ that still covers K.
- $p_1, p_2, \dots, p_{N_m} \in K$ is the finite set of points that correspond to this finite subcover.
- Let $x \in K$. Because $x \in K$, there exists $1 \le i \le N_m$ such that $x \in N_{\frac{1}{m}}(p_i)$.
- This implies $|x p_i| < \frac{1}{m}$.
- Therefore, for every $x \in K$, there exists $1 \le i \le N_m$ such that $|x p_i| < \frac{1}{m}$.

To construct a sequence $(p_n)_{n\in\mathbb{N}}$ in K such that $Accum(p_n)_{n\in\mathbb{N}}=K$:

Proof.

• For each $m \in \mathbb{N}$, choose N_m distinct points $p_1^{(m)}, p_2^{(m)}, \dots, p_{N_m}^{(m)} \in K$ as discussed above.

- Let $p_1 = p_1^{(1)}, p_2 = p_1^{(2)}, \dots, p_{N_1} = p_1^{(N_1)}, p_{N_1+1} = p_2^{(1)}, \dots, p_{N_1+N_2} = p_2^{(N_2)}, \dots$
- Define the sequence $(p_n)_{n\in\mathbb{N}}$ as $p_n=p_n^{(m)}$
- For any $x \in K$, there exists a subsequence of $(p_n)n \in \mathbb{N}$ converging to x.
- Therefore, $Accum(p_n)_{n\in\mathbb{N}}=K$.

2. Let $f: \mathbb{N} \to \mathbb{Q}$ be a bijection², and define the sequence $q_n = f(n)$. Prove $Accum(q_n)_{n \in \mathbb{N}} = [-\infty, \infty]$.

Proof.

- Such a bijection exists because \mathbb{N} and \mathbb{Q} is countable.
- To prove $\operatorname{Accum}(q_n)_{n\in\mathbb{N}}=[-\infty,\infty]$, we will show that for every real number and the points $-\infty$ and ∞ , there exists a subsequence of $(q_n)_{n\in\mathbb{N}}$ that converges to x or $-\infty$ or ∞ , respectively.
- Let $x \in \mathbb{R}$ be arbitrary. We will show that there construct a subsequence of $(q_n)_{n \in \mathbb{N}}$ that converges to x.
- Pick the subsequence indexes k_n such that $x \frac{1}{n} < f(k_n) < x$ and $k_n < k_{n+1}$.
- Such a k_n exists because f is a bijection. Such a $f(k_n)$ exists because of the denseness of \mathbb{Q} in \mathbb{R} .
- This subsequence converges to x. (For any $\epsilon > 0$, choose N such that $1/N < \epsilon$.)
- Let $x = -\infty$. We can choose the subsequence indexes k_n such that $f(k_n) < -n$ and $k_n < k_{n+1}$.
- This subsequence converges to $-\infty$.

 $^{^{1}}$ E.g. the middle $-\frac{1}{3}$ Cantor.

²Recall - why does there exist one?

³Be careful to construct the subsequences of $(q_n)_{n\in\mathbb{N}}$ properly.

- Let $x = \infty$. We can choose the subsequence indexes k_n such that $f(k_n) > n$ and $k_n < k_{n+1}$.
- This subsequence converges to ∞ .
- Therefore, $Accum(q_n)_{n\in\mathbb{N}}=[-\infty,\infty].$

3. Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be two sequences in \mathbb{R} where $a_n\to a$ and $b_n\to b$, for $a,b\in\mathbb{R}$. Define

$$c_n = \begin{cases} a_n & n \text{ is odd} \\ b_n & n \text{ is even} \end{cases}.$$

What is $Accum(c_n)_{c \in \mathbb{N}}$? Prove your claim.

Proof. We will prove that $Accum(c_n)_{n\in\mathbb{N}} = \{a, b\}.$

- Consider the subsequence $(a_{n_k})_{k\in\mathbb{N}}$ of $(a_n)_{n\in\mathbb{N}}$ where $n_k=2k-1$. This is also a subset of $(c_n)_{n\in\mathbb{N}}$.
- Because $a_n \to a$, we have $a_{n_k} \to a$ as limits are hereditary.
- Consider the subsequence $(b_{n_k})_{k\in\mathbb{N}}$ of $(b_n)_{n\in\mathbb{N}}$ where $n_k=2k$. This is also a subset of $(c_n)_{n\in\mathbb{N}}$.
- Because $b_n \to b$, we have $b_{n_k} \to b$ as limits are hereditary.
- Therefore, $\{a, b\} \subseteq Accum(c_n)_{n \in \mathbb{N}}$.
- Now, let $x \in Accum(c_n)_{n \in \mathbb{N}}$. We will show that $x \in \{a, b\}$.
- Because $x \in Accum(c_n)_{n \in \mathbb{N}}$, there exists a subsequence $(c_{n_k})_{k \in \mathbb{N}}$ of $(c_n)_{n \in \mathbb{N}}$ that converges to x.

Problem 4. Let $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R} . Briefly prove or refute with a counterexample, the following statements:

1. If $a_n \to L$ then $|a_n| \to |L|$

Proof.

- By definition, $a_n \to L$ means that for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $|a_n L| < \epsilon$.
- Recall the triangle inequality, taking z = 0, $|x y| \le |x| + |y|$.
- Taking $x = a_n L$ and y = 0
- Then, $|a_n L| < \epsilon$ implies $||a_n| |L|| \le |a_n L| < \epsilon$.
- This implication is clear by considering all possibilities of a_n and L.
 - If a_n and L are both positive, then $|a_n| = a_n$ and |L| = L so $||a_n| |L|| = |a_n L| < \epsilon$.
 - If a_n and L are both negative, then $|a_n| = -a_n$ and |L| = -L so $||a_n| |L|| = |-a_n (-L)| = |a_n L| < \epsilon$.
 - If a_n is positive and L is negative, then $|a_n| = a_n$ and |L| = -L so $||a_n| |L|| = |a_n (-L)| = |a_n + L| < |a_n L|| < \epsilon$.
 - If a_n is negative and L is positive, then $|a_n| = -a_n$ and |L| = L so $||a_n| |L|| = |-a_n L| < |a_n L| < \epsilon$.
- Therefore, $|a_n| \to |L|$.

2. If $|a_n| \to L$ then $a_n \to L$

Proof. Counterexample:

- Let L=1 and $a_n=(-1)^n$. Then, $|a_n|=1$ for all n.
- It is clear that $|a_n| \to 1$. However, a_n does not converge.

3. If $|a_n| \to 0$ then $a_n \to 0$

Proof.

- By definition, $|a_n| \to 0$ means that for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $||a_n| 0| < \epsilon$.
- $||a_n| 0| < \epsilon$ implies that $|a_n 0| < \epsilon$ because $||a_n| 0| = ||a_n|| = |a_n| = |a_n 0|$.
- Therefore, $a_n \to 0$.

4. If $a_n \to L$ and for all $n \in \mathbb{N}$ we know $a_n > -2$, then L > -2

Proof. Counterexample:

- Let L=-2 and $a_n=-2+\frac{1}{n}$. It is clear for all $n\in\mathbb{N}, a_n>-2$ because $\frac{1}{n}>0$.
- To show that $a_n \to -2$, we need to show that for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $|a_n (-2)| < \epsilon$.
- Let $\epsilon > 0$ be arbitrary. Choose N such that $N > \frac{1}{\epsilon}$.
- Then, for all $n \ge N$, $|a_n (-2)| = |(-2 + \frac{1}{n}) (-2)| = \frac{1}{n} < \epsilon$.
- Therefore, $a_n \to -2$ and for all $n \in \mathbb{N}$, $a_n > -2$ but $L \not > -2$.

5. If $a_n \to 0$ then $a_n^n \to 0$

Proof.

- By definition, $a_n \to 0$ means that for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $|a_n 0| = |a_n| < \epsilon$.
- In particular take $\epsilon = 1$. Denote N' as the N corresponding to $\epsilon = 1$. That is, $|a_n| < 1$ for all n > N'.
- To show that $a_n^n \to 0$, we need to show that for any $\delta > 0$, there exists $M \in \mathbb{N}$ such that for all $n \ge M$, $|a_n^n 0| = |a_n^n| < \delta$.
- For $0 < \delta < 1$, we can choose M corresponding to $\epsilon = \delta$. That is, M = N such that $|a_n| < \delta$ for all $n \ge N$.
- Because $|a_n^n| < |a_n|$ when $0 < \delta < 1$, we have $|a_n^n| < \delta$ for all $n \ge M$.
- For $\delta \geq 1$, we can choose M = N'. Then, $|a_n| < 1$ for all $n \geq N'$.
- Therefore, as $|a_n| < \delta$, we also have $|a_n^n| < \delta$ for all $n \ge N'$.
- Therefore, $a_n^n \to 0$.

6. If $|a_n| < 1$ for all n then $a_n^n \to 0$

Proof. Counterexample:

- Let $a_n = \left(\frac{1}{2}\right)^{\frac{1}{n}}$. It is clear that $|a_n| < 1$ for all n.
- However, $a_n^n = \left(\frac{1}{2}\right)^{\frac{1}{n}^n} = \frac{1}{2}$ for all n.
- So a_n^n does not converge to 0.

Good luck!