Fixed-time theory

Define the monodromy matrix

$$T(\lambda) = \begin{bmatrix} c(x_0 + L; \lambda) & s(x_0 + L; \lambda) \\ c_x(x_0 + L; \lambda) & s_x(x_0 + L; \lambda) \end{bmatrix}.$$

Then

$$\begin{split} \psi_{\pm}(x;\lambda) &= c(x;\lambda) + \frac{\pm\sqrt{\Delta^2(\lambda)-1} + \frac{1}{2}(T_{22}(\lambda)-T_{11}(\lambda))}{T_{12}(\lambda)} s(x;\lambda), \\ \Delta(\lambda) &= \frac{1}{2} \mathrm{Tr} T(\lambda). \end{split}$$

For x fixed, knowing ψ_{\pm} as a function of λ is enough to determine q(x,0).

Fixed-time theory

$$\psi_{\pm}(x;\lambda) = c(x;\lambda) + \frac{\pm\sqrt{\Delta^{2}(\lambda) - 1} + \frac{1}{2}(T_{22}(\lambda) - T_{11}(\lambda))}{T_{12}(\lambda)}s(x;\lambda)$$

Since T is an entire function of λ , the singularities of ψ_{\pm} (possibly) occur at when $\Delta^2 = 1$ and $T_{12}(\lambda) = 0$.

From this, one sees that the Bloch spectrum, combined with the Dirichlet spectrum (and a little more), is enough to uniquely specify ψ_{\pm} .

