Python for Data Science

Ch. 3 Pandas Library

Ahmad Rio Adriansyah

Pandas

- Pandas adalah library python yang banyak berkaitan dengan :
 - Series (array 1 dimensi yang homogen)
 - Data Frames (array 2 dimensi yang heterogen)
 - Panel (array 3 dimensi yang umum)
- Bawaan di Anaconda (otomatis terpasang)
- Selain dengan Anaconda, dapat diinstall melalui
 - \$ pip install pandas

Series

- Array 1 dimensi yang mengandung data sejenis (homogen)
- Label pada axisnya disebut sebagai index

```
In [1]: | import numpy as np
           import scipy as sp
           import pandas as pd
           import matplotlib.pyplot as plt
           import seaborn as sns
In [2]:  seri1 = pd.Series(np.random.randn(10))
In [3]: | print(seri1)
              -0.790227
              1.895110
             -0.975352
             -0.988712
             0.801603
             -1.634308
           6 0.043845
           7 0.673665
              1.093062
                0.323069
           dtype: float64
```

Label pada Series

- Kita bisa memberi label pada series yang dibuat dengan menambahkan argumen index dan memberikan nilai berupa list.
- Defaultnya index diberikan berupa bilangan bulat dari 0 hingga banyaknya data pada series -1.

```
0 \sim n-1
```

Contoh Series

- Nilai tukar mata uang terhadap waktu
- Daftar skor/nilai yang didapat
- Luas ruangan
- Banyak peserta dalam suatu rangkaian acara
- dll

Membuat Series dari Dictionary

- Jika dictionary digunakan sebagai inputan pada series, maka secara otomatis key akan menjadi indexnya.
- Index dapat diurutkan dengan memasukkan argumen tambahan index.

```
In [5]: M data = {"Amir":170, "Beni":168, "Candra":175, "Dilan":169, "Elang":170, "Fahri":168}
            seri3 = pd.Series(data)
            print(seri3)
            Amir
                      170
            Beni
                      168
                      175
            Candra
            Dilan
                      169
            Elang
                      170
                      168
            Fahri
            dtype: int64
```

Membuat Series

 Selain dengan dictionary, series juga dapat dibuat dari list, numpy array, ataupun skalar

```
data = np.array([14238,14187,14187,14185,14276,14264,14192,14176])
  seri4 = pd.Series(data)
  print(seri4)
       14238
       14187
       14187
       14185
      14276
      14264
       14192
       14176
  dtype: int32
seri5 = pd.Series(100,index=range(5), name="Skor")
  print(seri5)
       100
       100
       100
       100
       100
  Name: Skor, dtype: int64
```

 Elemen dari series dipanggil seperti memanggil elemen list atau dictionary. Yaitu dengan menggunakan index atau key nya.

```
In [8]: M seri3[0]
Out[8]: 170

In [9]: M seri3['Dilan']
Out[9]: 169
```

Dapat juga menggunakan slicing

```
seri3[:4]
In [10]:
   Out[10]: Amir
                       170
                       168
             Beni
             Candra
                       175
             Dilan
                       169
             dtype: int64
In [11]: M seri3[-3:]
   Out[11]: Dilan
                     169
                     170
             Elang
             Fahri
                     168
            dtype: int64
          seri3["Beni":"Elang"]
In [12]:
   Out[12]: Beni
                       168
             Candra
                       175
             Dilan
                       169
                       170
             Elang
             dtype: int64
```

- Untuk memilih elemen yang tidak berurutan, dapat dipanggil dengan menuliskan list berisi indexnya.
- Jadi kurung sikunya dobel ([[]])

```
In [13]: M seri3[[0,2,5]]
   Out[13]: Amir
                       170
             Candra
                       175
             Fahri
                       168
             dtype: int64
          seri3[["Beni", "Elang", "Fahri"]]
In [14]:
   Out[14]: Beni
                      168
                      170
             Elang
                      168
             dtype: int64
```

Boolean Operator

- Operator boolean dapat diterapkan ke dalam series untuk mendapatkan series boolean yang memenuhinya
- Untuk mendapatkan datanya, series boolean dimasukkan sebagai input pemanggilan

```
seri3>170
In [15]:
   Out[15]: Amir
                      False
            Beni
                      False
            Candra
                       True
            Dilan
                      False
            Elang
                      False
                      False
            dtype: bool
         seri3[seri3>170]
In [16]:
   Out[16]: Candra
            dtype: int64
```

Fungsi pada Series

 Cari fungsi apa saja yang bisa diberlakukan ke series dengan menerapkan fungsi dir()

```
In [ ]: M dir(seri4)
```

- Beberapa contohnya :
 - unique()
 - min(), max()
 - mean(), median(), mode()

```
In [17]: M seri4.unique()
Out[17]: array([14238, 14187, 14185, 14276, 14264, 14192, 14176], dtype=int64)
In [18]: M seri4.mean()
Out[18]: 14213.125
```

Fungsi pada Series

 Beberapa atribut / metode yang sering digunakan kepada series

Description	Attribute/Method
data type of values in series	dtype
True if series is empty	empty
number of elements	size
Returns values as ndarray	values
First n elements	head()
Last n elements	tail()

Latihan

- Buat sebuah series bernama "berat badan", simpan dalam variabel "seri"
- Isi dengan 10 buah data berat badan dengan nama orang sebagai indexnya
- Tunjukkan orang yang berat badannya lebih dari 70 kg
- Tunjukkan rerata dan nilai tengah data tersebut
- Siapa yang paling berat?

Latihan Tingkat Lanjut

 Download data nilai tukar rupiah dari https://www.exchange-rates.org/history/IDR/US D/T

Masukkan ke dalam series dengan perintah

```
exc = pd.read_csv("HistoryExchangeReport.csv", index_col="Date").Rate
```

 Explore data tersebut, kapan nilai tukar rupiah tertinggi/terendah, berapa reratanya, dll.

Data Frame

- Data Frame adalah data struktur tabular 2 dimensi yang heterogen dan dengan axis (baris dan kolom) yang berlabel
- Bisa dibayangkan sebagai dictionary dari series

```
df = pd.DataFrame({"Nama":pd.Series(["Andri", "Budi", "Cecep", "Dharma"]),
                     "Umur":pd.Series([18,20,15,22]),
                     "Tinggi":pd.Series([168,170,165,168])})
  print(df)
       Nama Umur Tinggi
      Andri
               18
                       168
       Budi
               20
                      170
      Cecep
               15
                      165
                      168
  3 Dharma
```

Menambahkan Kolom

- Untuk menambahkan kolom, cukup menggunakan indexing karena data frame bersifat mutabel
- Note: jika index yang diberikan sudah ada, maka akan terganti datanya dengan yang baru

```
df["Berat"] = pd.Series([80,60,92,60])
  print(df)
                  Tinggi Berat
       Nama Umur
                      168
      Andri
               18
                      170
       Budi
               20
                              60
                      165
      Cecep
               15
               22
                      168
                              60
  3 Dharma
```

Data Frame

- Pada materi Python for Data Science ini, kita akan banyak berinteraksi dengan data frame
 - Membuat data frame
 - Memanipulasi data frame
 - Mengisi data frame dari data pada file
 - Membersihkan data
 - Menganalisis data dalam data frame
 - dll

Input dari File

- Data dapat disimpan dalam berbagai macam bentuk, diantaranya csv, pdf, excel, json, xml, sql, dan lain lain.
- Yang paling umum adalah csv (comma separated variables)
- Pandas menyediakan fungsi untuk membaca file csv dengan read_csv(), hasilnya berupa data frame

Input dari File

- Format : >>> pd.read_csv("namafile.csv")
- Dapat ditambahi argumen untuk :
 - Menggunakan kolom tertentu sebagai index (index_col)
 - Menetapkan tipe data kolom-kolomnya (dtype)
 - Menentukan kolom/baris yang mau diskip/diambil (skiprows/usecols)
 - Mengganti nilai yang kosong (missing value) dengan simbol tertentu (na_values)
 - dll

Contoh Dataset

- Data gaji pegawai
 https://raw.githubusercontent.com/mathcoder3141/blog-data-files/master/Congress_White_
 House.csv
- Data kecelakaan pesawat https://github.com/fivethirtyeight/data/tree/master/airline-safety
- Data cuaca
 https://github.com/fivethirtyeight/data/tree/master/us-weather-history
 - Note: Sampel data yang lain bisa dicari melalui penyedia dataset seperti bps, opendata, kaggle, atau yang lainnya.
- Modul sklearn, seaborn, statsmodels juga memiliki dataset bawaan yang bisa digunakan

SKLearn's Toy Datasets

```
from sklearn import datasets
iris = datasets.load_iris()
# https://scikit-learn.org/stable/datasets/index.html
```

They can be loaded using the following functions:

<pre>load_boston ([return_X_y])</pre>	Load and return the boston house-prices dataset (regression).
<pre>load_iris ([return_X_y])</pre>	Load and return the iris dataset (classification).
<pre>load_diabetes ([return_X_y])</pre>	Load and return the diabetes dataset (regression).
<pre>load_digits ([n_class, return_X_y])</pre>	Load and return the digits dataset (classification).
<pre>load_linnerud ([return_X_y])</pre>	Load and return the linnerud dataset (multivariate regression).
<pre>load_wine ([return_X_y])</pre>	Load and return the wine dataset (classification).
<pre>load_breast_cancer ([return_X_y])</pre>	Load and return the breast cancer wisconsin dataset (classification).

Another Toy Datasets

```
import seaborn as sns
iris = sns.load_dataset('iris')
# https://github.com/mwaskom/seaborn-data

import statsmodels.api as sm
iris = sm.datasets.get_rdataset('iris').data
# https://github.com/vincentarelbundock/Rdatasets/tree/master/csv/datasets

data = sm.datasets.longley.load_pandas()
# https://www.statsmodels.org/dev/datasets/index.html
```

- Daftar datasetnya dapat dilihat pada tautan berikut :
 - https://scikit-learn.org/stable/datasets/index.html
 - https://github.com/mwaskom/seaborn-data
 - https://github.com/vincentarelbundock/Rdatasets/tree/master/csv/datasets
 - https://www.statsmodels.org/dev/datasets/index.html

Data Frame

- Load salah satu dataset (contoh : mtcars)
- Periksa daftar nama kolom
 - >>> mt.columns
- Tampilkan beberapa baris data
 - >>> mt.head()
 - >>> mt.tail()
 - >>> mt.sample()
- Periksa tipe data dari kolom tertentu
 - >>> mt["qsec"].dtype
 - >>> mt.dtypes

Atribut Data Frame

df.attribute	description
dtypes	list the types of the columns
columns	list the column names
axes	list the row labels and column names
ndim	number of dimensions
size	number of elements
shape	return a tuple representing the dimensionality
values	numpy representation of the data

Metode Data Frame

df.method()	description
head([n]), tail([n])	first/last n rows
describe()	generate descriptive statistics (for numeric columns only)
max(), min()	return max/min values for all numeric columns
mean(), median()	return mean/median values for all numeric columns
std()	standard deviation
sample([n])	returns a random sample of the data frame
dropna()	drop all the records with missing values

- Elemen data frame adalah berupa series yang dituliskan per kolom
- Untuk memanggil kolom tertentu, dapat dilakukan dengan menuliskan nama kolomnya sebagai index
- Atau dengan menggunakan nama kolomnya sebagai atribut

```
mt["model"].head()
   Out[55]: 0
                          Mazda RX4
                      Mazda RX4 Wag
                         Datsun 710
                     Hornet 4 Drive
                  Hornet Sportabout
             Name: model, dtype: object
In [56]:
          mt.model.head()
   Out[56]: 0
                          Mazda RX4
                      Mazda RX4 Wag
                         Datsun 710
                     Hornet 4 Drive
                  Hornet Sportabout
             Name: model, dtype: object
```

- Selain menggunakan nama indexnya, user juga dapat memilih sel/baris/kolom dengan menggunakan fungsi loc atau iloc
- Format : df.loc[<baris>, <kolom>], atau df.iloc[<baris>, <kolom>]
- Loc digunakan dengan nama kolom/barisnya
- Iloc digunakan dengan index kolom/barisnya