The group G is isomorphic to the group labelled by [42, 3] in the Small Groups library. Ordinary character table of $G \cong C7 \times S3$:

	1a	2a	7 <i>a</i>	3a	14a	7 <i>b</i>	21 <i>a</i>	14b	7c	21b	14c	7d	21c	14d	7e	21d	14e	7f	21e	14f	21f
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	1	1	-1	1	1	-1	1	1	-1	1	1	-1	1	1	-1	1
χ_3	1	-1	$E(7)^{6}$	1	$-E(7)^{6}$	$E(7)^{5}$	$E(7)^{6}$	$-E(7)^{5}$	$E(7)^4$	$E(7)^{5}$	$-E(7)^4$	$E(7)^{3}$	$E(7)^{4}$	$-E(7)^{3}$	$E(7)^{2}$	$E(7)^{3}$	$-E(7)^2$	E(7)	$E(7)^{2}$	-E(7)	E(7)
χ_4	1	-1	$E(7)^{5}$	1	$-E(7)^5$	$E(7)^{3}$	$E(7)^{5}$	$-E(7)^{3}$	E(7)	$E(7)^{3}$	-E(7)	$E(7)^{6}$	E(7)	$-E(7)^{6}$	$E(7)^4$	$E(7)^{6}$	$-E(7)^4$	$E(7)^{2}$	$E(7)^{4}$	$-E(7)^2$	$E(7)^2$
χ_5	1	-1	$E(7)^4$	1	$-E(7)^4$	E(7)	$E(7)^{4}$	-E(7)	$E(7)^{5}$	E(7)	$-E(7)^5$	$E(7)^{2}$	$E(7)^{5}$	$-E(7)^2$	$E(7)^{6}$	$E(7)^{2}$	$-E(7)^{6}$	$E(7)^{3}$	$E(7)^{6}$	$-E(7)^{3}$	$E(7)^3$
χ_6	1	-1	$E(7)^{3}$	1	$-E(7)^{3}$	$E(7)^{6}$	$E(7)^{3}$	$-E(7)^{6}$	$E(7)^{2}$	$E(7)^{6}$	$-E(7)^2$	$E(7)^{5}$	$E(7)^{2}$	$-E(7)^5$	E(7)	$E(7)^{5}$	-E(7)	$E(7)^4$	E(7)	$-E(7)^4$	$E(7)^4$
χ_7	1	-1	$E(7)^{2}$	1	$-E(7)^2$	$E(7)^{4}$	$E(7)^{2}$	$-E(7)^4$	$E(7)^{6}$	$E(7)^{4}$	$-E(7)^{6}$	E(7)	$E(7)^{6}$	-E(7)	$E(7)^{3}$	E(7)	$-E(7)^{3}$	$E(7)^{5}$	$E(7)^{3}$	$-E(7)^5$	$E(7)^5$
χ_8	1	-1	E(7)	1	-E(7)	$E(7)^{2}$	E(7)	$-E(7)^2$	$E(7)^{3}$	$E(7)^{2}$	$-E(7)^3$	$E(7)^4$	$E(7)^{3}$	$-E(7)^4$	$E(7)^{5}$	$E(7)^{4}$	$-E(7)^5$	$E(7)^{6}$	$E(7)^{5}$	$-E(7)^{6}$	$E(7)^6$
χ_9	1	1	$E(7)^{6}$	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{5}$	$E(7)^{4}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{3}$	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{2}$	E(7)	$E(7)^{2}$	E(7)	E(7)
χ_{10}	1	1	$E(7)^{5}$	1	$E(7)^{5}$	$E(7)^{3}$	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{3}$	E(7)	$E(7)^{6}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^{6}$	$E(7)^{4}$	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{2}$	$E(7)^2$
χ_{11}	1	1	$E(7)^{4}$	1	$E(7)^{4}$	E(7)	$E(7)^4$	E(7)	$E(7)^{5}$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{3}$	$E(7)^3$
χ_{12}	1	1	$E(7)^{3}$	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^{5}$	E(7)	$E(7)^4$	E(7)	$E(7)^{4}$	$E(7)^4$
χ_{13}	1	1	$E(7)^{2}$	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{6}$	E(7)	$E(7)^{3}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	$E(7)^{3}$	$E(7)^{5}$	$E(7)^5$
χ_{14}	1	1	E(7)	1	E(7)	$E(7)^{2}$	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{2}$	$E(7)^{3}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	$E(7)^{5}$	$E(7)^{6}$	$E(7)^6$
χ_{15}	2	0	2	-1	0	2	-1	0	2	-1	0	2	-1	0	2	-1	0	2	-1	0	-1
χ_{16}	2	0	$2*E(7)^3$	-1	0	$2*E(7)^6$	$-E(7)^{3}$	0	$2*E(7)^2$	$-E(7)^{6}$	0	$2*E(7)^5$	$-E(7)^2$	0	2 * E(7)	$-E(7)^{5}$	0	$2*E(7)^4$	-E(7)	0	$-E(7)^4$
χ_{17}	2	0	$2*E(7)^2$	-1	0	$2*E(7)^4$	$-E(7)^2$	0	$2*E(7)^6$	$-E(7)^4$	0	2 * E(7)	$-E(7)^{6}$	0	$2*E(7)^3$	-E(7)	0	$2*E(7)^5$	$-E(7)^{3}$	0	$-E(7)^{5}$
χ_{18}	2	0	2 * E(7)	-1	0	$2*E(7)^2$	-E(7)	0	$2*E(7)^3$	$-E(7)^2$	0	$2*E(7)^4$	$-E(7)^{3}$	0	$2*E(7)^5$	$-E(7)^4$	0	$2*E(7)^6$	$-E(7)^{5}$	0	$-E(7)^{6}$
χ_{19}	2	0	$2*E(7)^6$	-1	0	$2 * E(7)^5$	$-E(7)^6$	0	$2*E(7)^4$	$-E(7)^{5}$	0	$2*E(7)^3$	$-E(7)^4$	0	$2*E(7)^2$	$-E(7)^{3}$	0	2 * E(7)	$-E(7)^2$	0	-E(7)
χ_{20}	2	0	$2*E(7)^5$	-1	0	$2*E(7)^3$	$-E(7)^5$	0	2 * E(7)	$-E(7)^{3}$	0	$2*E(7)^6$	-E(7)	0	$2*E(7)^4$	$-E(7)^{6}$	0	$2*E(7)^2$	$-E(7)^4$	0	$-E(7)^2$
χ_{21}	2	0	$2*E(7)^4$	-1	0	2 * E(7)	$-E(7)^4$	0	$2*E(7)^5$	-E(7)	0	$2*E(7)^2$	$-E(7)^5$	0	$2*E(7)^6$	$-E(7)^2$	0	$2*E(7)^3$	$-E(7)^{6}$	0	$-E(7)^3$

Trivial source character table of $G \cong C7 \times S3$ at p = 3:

Normalisers N_i							N_1												N_2					
p-subgroups of G up to conjugacy in G							P_1												P_2					
Representatives $n_j \in N_i$	1a 2a	7a	14a	7b	14b	7c	14c	7d	14d	7e	14e	7f	14f $1a$	a 7a	2a $7b$	14a	7c	14b	7d	14c	7e $14a$	\overline{J} 7f	14e	14f
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	3 1	3	1	3	1	3	1	3	1	3	1	3	1 0	0	0 0	0	0	0	0	0	0 0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} 3 & -1 \end{vmatrix}$	3	-1	3	-1	3	-1	3	-1	3	-1	3	$-1 \mid 0$	0	0 0	0	0	0	0	0	0 0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} 3 & -1 \end{vmatrix}$	$3*E(7)^6$	$-E(7)^{6}$	$3*E(7)^5$	$-E(7)^5$	$3*E(7)^4$	$-E(7)^4$ 3	$3 * E(7)^3$	$-E(7)^3$	$3*E(7)^2$	$-E(7)^2$	3 * E(7)	-E(7) 0	0	0 0	0	0	0	0	0	0 0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} 3 & -1 \end{vmatrix}$	$3*E(7)^5$	$-E(7)^{5}$	$3*E(7)^3$	\ /	3 * E(7)	()	\ /	$-E(7)^{6}$	\ /	$-E(7)^4$	\ /	$-E(7)^2 \mid 0$	0	0 0	0	0	0	0	0	0 0	0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} \end{vmatrix} $	$\begin{vmatrix} 3 & -1 \end{vmatrix}$	$3*E(7)^4$	$-E(7)^4$	3 * E(7)	()		$-E(7)^5$ 3	\ /	$-E(7)^2$	\ /	$-E(7)^{6}$	$3*E(7)^3$	$-E(7)^3 \mid 0$	0	0 0	0	0	0	0	0	0 0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 -1	$3 * E(7)^3$	$-E(7)^{3}$	$3*E(7)^6$	$-E(7)^{6}$	$3*E(7)^2$	$-E(7)^2$ 3	()	$-E(7)^5$	\ /_	-E(7)	\ /	$-E(7)^4 \mid 0$	0	0 0	0	0	0	0	0	0 0	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	$3 * E(7)^2$	$-E(7)^2$	$3*E(7)^4$	$-E(7)^4$	$3*E(7)^6$	$-E(7)^6$	()	\ /	$3*E(7)^3$	$-E(7)^{3}$	$3*E(7)^5$	$-E(7)^{5} \mid 0$	0	0 0	0	0	0	0	0	0 0	0	0	0
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 1 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	$\begin{vmatrix} 3 & -1 \end{vmatrix}$	3*E(7)	-E(7)	$3*E(7)^2$	$-E(7)^2$	$3*E(7)^3$	$-E(7)^3$ 3	()	$-E(7)^4$	$3*E(7)^5$	$-E(7)^5$	$3 * E(7)^6$	$-E(7)^{6} \mid 0$	0	0 0	0	0	0	0	0	0 0	0	0	0
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 1 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	1 -	$3*E(7)^6$	$E(7)^{6}$	$3*E(7)^5$	$E(7)^{5}$	$3 * E(7)^4$	$E(7)^4$ 3	$3 * E(7)^3$	$E(7)^{3}$	$3*E(7)^2$	$E(7)^{2}$	3 * E(7)	E(7) = 0	0	0 0	0	0	0	0	0	0 0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} $	1	$3*E(7)^5$	$E(7)^{5}$	$3 * E(7)^3$	$E(7)^{3}$	3 * E(7)	E(7) 3	\ /	(-)	$3*E(7)^4$	$E(7)^4$	$3*E(7)^2$	$E(7)^2 \mid 0$	0	0 0	0	0	0	0	0	0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot $	1	$3*E(7)^4$	(')	3*E(7)	(-)	()	()		$E(7)^{2}$		— (·)	$3 * E(7)^3$	$E(7)^3 \mid 0$	0	0 0	0	0	0	0	0	0 0	0	0	0
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$		$3*E(7)^3$	$E(7)^{3}$	$3*E(7)^{6}$	\ / .	()	()		()		(-)	$3*E(7)^4$	$E(7)^4 \mid 0$	0	0 0	0	0	0	0	0	0 0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} $	3 1	$3 * E(7)^2$	$E(7)^{2}$	$3*E(7)^4$	\ /	$3 * E(7)^6$	\ /	3*E(7)	()	()	()	$3*E(7)^5$	$E(7)^5 \mid 0$	0	0 0	0	0	0	0	0	0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	3 1	3 * E(7)	E(7)	$3*E(7)^2$	$E(7)^2$	$3 * E(7)^3$	$E(7)^3$ 3	$3*E(7)^4$	$E(7)^4$	$3*E(7)^5$	$E(7)^5$	$3*E(7)^6$	$E(7)^6 = 0$	0	0 0	0	0	0	0	0	0 0	0	0	0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	1 1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1 1	1	1	1	1	1	1 1	1	1	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 -1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1 1	1	-1 1	-1	1	-1	1	-1	1 -1	. 1	-1	-1
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} $	1	$E(7)^{3}$	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{2}$	$E(7)^{5}$	$E(7)^{5}$	E(7)	E(7)	$E(7)^4$	$E(7)^4$ 1	$E(7)^{3}$	1 $E(7)$	$E(7)^{6}$	$E(7)^2$	(-)	(-)	$E(7)^2$ E	$E(7) \qquad E(7)$	E(7)	E(7)	$E(7)^4$
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 1 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	1 -1	$E(7)^{3}$	$-E(7)^3$	$E(7)^{6}$	$-E(7)^6$	$E(7)^{2}$	$-E(7)^2$	(/	$-E(7)^5$	E(7)	-E(7)	$E(7)^4$	$-E(7)^4 \mid 1$	$E(7)^{3}$	-1 $E(7)$	/	·	()	$E(7)^5$ -	$E(7)^2$ E	-E(7) - E(7)	$E(7)^5$	-E(7)	$-E(7)^4$
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 1 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	1 1	$E(7)^{6}$	$E(7)^{6}$	$E(7)^{5}$	$E(7)^{5}$	$E(7)^4$	$E(7)^4$	$E(7)^{3}$	$E(7)^{3}$	$E(7)^{2}$	$E(7)^{2}$	E(7)	E(7) 1	$E(7)^{6}$	1 $E(7)$	$E(7)^{5}$ $E(7)^{6}$	$E(7)^4$	$E(7)^{5}$	$E(7)^3$ E	$E(7)^4$ $E($	$(7)^2 E(7)$	$)^3$ $E(7)$	$E(7)^2$	E(7)
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} $	1 -1	$E(7)^{6}$	$-E(7)^{6}$	$E(7)^{5}$	$-E(7)^5$	$E(7)^4$	$-E(7)^4$	$E(7)^{3}$	$-E(7)^3$	$E(7)^{2}$	$-E(7)^2$	E(7)	-E(7) 1	$E(7)^{6}$	-1 $E(7)$	$E(7)^5 - E(7)^6$	$E(7)^4$	(·)	$E(7)^3 -$	$E(7)^4$ $E($	$(7)^2 - E(7)^2$	$(7)^3 E(7)$	-E(7)	2 $-E(7)$
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	1	$E(7)^{2}$	$E(7)^{2}$	$E(7)^4$	$E(7)^4$	$E(7)^{6}$	$E(7)^{6}$	E(7)	E(7)	$E(7)^{3}$	$E(7)^3$	$E(7)^{5}$	$E(7)^{5}$ 1	$E(7)^{2}$	1 $E(7)$	$E(7)^4$	\ /	\ /	\ /	()	$(7)^3 E(7)^3$	E(7)	$E(7)^3$	$E(7)^{5}$
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 1 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	1	$E(7)^{2}$	$-E(7)^{2}$	$E(7)^4$	$-E(7)^4$	$E(7)^{6}$	$-E(7)^6$	E(7)	-E(7)	\ /	$-E(7)^{3}$	$E(7)^{5}$	$-E(7)^{5}$ 1	$E(7)^{2}$	-1 $E(7)$	/	/ /		\ /_	$E(7)^6$ $E($	` / .	(')	()	$-E(7)^{5}$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	1 1	$E(7)^{5}$	$E(7)^{5}$	$E(7)^{3}$	$E(7)^{3}$	E(7)	E(7)	$E(7)^{6}$	$E(7)^{6}$	$E(7)^4$	$E(7)^4$	$E(7)^{2}$	$E(7)^2 \mid 1$	$E(7)^{5}$	1 E(7)	/ /	\ /	\ /	\ /	E(7) $E($	$(7)^4 E(7)$	E(7)	$E(7)^4$	$E(7)^2$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	1 -1	$E(7)^{5}$	$-E(7)^5$	$E(7)^{3}$	$-E(7)^{3}$	E(7)	-E(7)	$E(7)^{6}$	$-E(7)^{6}$	$E(7)^4$	$-E(7)^4$	$E(7)^{2}$	$-E(7)^2 \mid 1$	$E(7)^{5}$	-1 $E(7)$	/	/ /	\ /	` ' '	\	$(7)^4 - E(7)^4$	E(7)	-E(7)	$-E(7)^2$
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	1	E(7)	E(7)	$E(7)^{2}$	$E(7)^{2}$	$E(7)^{3}$	$E(7)^3$	$E(7)^4$	$E(7)^4$	$E(7)^{5}$	$E(7)^{5}$	$E(7)^{6}$	$E(7)^{6}$ 1	E(7)	1 $E(7)$	/ /		()	\ /	$E(7)^3$ $E($	` /_	E(7)'	$E(7)^5$	$E(7)^{6}$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	1 -1	E(7)	-E(7)	$E(7)^2$	$-E(7)^2$	()	$-E(7)^3$	$E(7)^4$	$-E(7)^4$	$E(7)^{5}$	$-E(7)^{5}$	$E(7)^{6}$	$-E(7)^{6}$ 1	E(7)	-1 $E(7)$	/	/ \ /_	\ /	` ′ ′	`	$(7)^5 - E(7)^5$	$E(7)^4$	-E(7)	$-E(7)^{6}$
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	1 1	$E(7)^4$	$E(7)^4$	E(7)	E(7)	$E(7)^{5}$	$E(7)^{5}$	$E(7)^{2}$	$E(7)^2$	$E(7)^{6}$	$E(7)^{6}$	$E(7)^{3}$	$E(7)^3 \mid 1$	$E(7)^4$	1 E(7) $E(7)$		(-)	$E(7)^2$ E	$E(7)^5$ $E($	$(7)^6 E(7)$	E(7)	$E(7)^6$	$E(7)^3$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 -1	$E(7)^4$	$-E(7)^4$	E(7)	-E(7)	$E(7)^{5}$	$-E(7)^5$	$E(7)^{2}$	$-E(7)^2$	$E(7)^{6}$	$-E(7)^{6}$	$E(7)^{3}$	$-E(7)^3 \mid 1$	$E(7)^4$	-1 $E($	-E(7)	$)^4 E(7)^5$	-E(7)	$E(7)^2 -$	$E(7)^{5}$ $E($	$(7)^6 - E(7)^6$	$E(7)^2$	-E(7)	$-E(7)^3$

 $P = C_{monm}([()]) \sim$

 $P_2 = Group([(1,9,4)(2,12,6)(3,15,8)(5,18,11)(7,21,14)(10,24,17)(13,27,20)(16,30,23)(19,33,26)(22,36,29)(25,38,32)(28,40,35)(31,41,37)(34,42,39)]) \cong \mathbf{C3}$

 $N_1 = Group([(1,2)(3,5)(4,12)(6,9)(7,10)(8,18)(11,15)(13,16)(14,24)(17,21)(19,22)(20,30)(23,27)(25,28)(26,36)(29,33)(31,34)(32,40)(35,38)(37,42)(39,41), (1,3,7,13,19,25,31)(2,5,10,16,22,28,34)(4,8,14,20,26,32,37)(6,11,17,23,29,35,39)(9,15,21,27,33,38,41)(12,18,24,30,36,40,42), (1,4,9)(2,6,12)(3,8,15)(5,11,18)(7,14,21)(10,17,24)(13,20,27)(16,23,30)(19,26,33)(22,29,36)(25,32,38)(28,35,40)(31,37,41)(34,39,42)] \cong C7 \times S3$ $N_2 = Group([(1,9,4)(2,12,6)(3,15,8)(5,18,11)(7,21,14)(10,24,17)(13,27,20)(16,30,23)(19,26,32)(28,36,29)(25,38,32)(28,40,35)(31,34)(32,40)(35,38)(37,42)(39,41), (1,3,7,13,19,25,31)(2,5,10,16,22,28,34)(4,8,14,20,26,32,37)(6,11,17,23,29,35,39)(9,15,21,27,33,38,41)(12,18,24,30,36,40,42)] \cong C7 \times S3$