AFRE 802 Statistical Methods for Agricultural, Food, & Resource Economists

Linear models & estimation by least squares – Part 2 of 3 (WMS Ch. 11.4 & Wooldridge pp. 38-60, 101-102)

November 30, 2017

Nicole Mason Michigan State University Fall 2017

GAME PLAN

- · Return Ch. 10 HW
- Collect take-home graded exercise and distribute extra practice problem (not graded; we will go over the answers on Tuesday)
- Review
- _____
- Linear models & estimation by least squares
 - Part 2 of 3
 - The simple linear regression model (cont'd)
 - Using Stata to estimate a simple linear regression model
 - · Algebraic properties of OLS
 - · Statistical properties of OLS
 - · Gauss-Markov Theorem

Review: the simple linear regression (SLR) model

• Suppose *y* and *x* are two variables that represent some population. *What does a SLR model look like?*

$$y = \beta_0 + \beta_1 x + u$$

- What are the population parameters we want to estimate?
 - β_0 and β_1
- Why is u included in the model? What does it represent?
 - u: error term (unobserved; all factors other than x that affect y)
- What are some names for y and x?

у	Х
Dependent variable	Independent variable
Explained variable	Explanatory variable
Response variable	Control variable
Predicted variable	Predictor variable
Regressand	Regressor
	Covariate

Review: to get unbiased estimates of β_0 and β_1 , we need to restrict the relationship b/w x and u

$$y = \beta_0 + \beta_1 x + u$$

- 1. E(u) = 0 (not restrictive if have an intercept, β_0)
- 2. *** E(u|x) = E(u). What does this mean?

#1 & #2
$$\rightarrow$$
 $E(u|x) = E(u) = 0$ (zero conditional mean)

What does this imply about E(y|x)?

$$E(y|x) = \beta_0 + \beta_1 x$$

Interpretation of β_1 ?

$$\frac{\partial E(y \mid x)}{\partial x} = \beta_I$$

The expected or average change in y given a one unit increase in x, ceteris paribus (slope)

Interpretation of β_0 ?

 β_0 is the expected value of y when x = 0 (intercept)

Aside: NPR "Hidden Brain" example of a natural experiment, and when it might be reasonable to assume E(u|x)=E(u)

· Listen for the following:

- What is the dependent variable?
- What is the main explanatory variable of interest?
- Why might it be reasonable to assume E(u|x)=E(u) here?
- What is a natural experiment?
- Dependent variable: cognitive function of elderly
- Main explanatory variable: wealth
- E(u|x)=E(u) might be reasonable Congress computational mistake – people in one cohort got higher benefits that next cohort (level of benefits shouldn't be correlated with unobservables)

Aside: Natural experiments

A natural experiment occurs when some exogenous event—often a change in government policy—changes the environment in which individuals, families, firms, or cities operate. A natural experiment always has a control group, which is not affected by the policy change, and a treatment group, which is thought to be affected by the policy change. Unlike with a true experiment, where treatment and control groups are randomly and explicitly chosen, the control and treatment groups in natural experiments arise from the particular policy change. (Wooldridge, 2003: 417) 6

Review: Ordinary least squares (OLS) approach

What is the OLS approach to estimating β_0 and β_1 ?

 Minimize the sum of squared residuals (difference b/w observed & estimated values of y_i)

What are the estimated

values of y_i called? Formula? Fitted values and residuals

Fitted (or predicted)

values of
$$y_i$$
:
 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_I x_i$

What are the residuals?

$$\hat{u}_i = y_i - \hat{y}_i$$

$$= y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

OLS:

$$\min_{\hat{\beta}_{0}, \hat{\beta}_{1}} \sum_{i=1}^{N} \hat{u}_{i}^{2} = \sum_{i=1}^{N} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i})^{2}$$

UNIVERSITY

Review: the OLS estimators for β_0 and β_1

$$\hat{\boldsymbol{\beta}}_0 = \overline{y} - \hat{\boldsymbol{\beta}}_I \overline{x}$$

$$\hat{\beta}_{I} = \frac{\sum_{i=1}^{N} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}} = \frac{\sum_{i=1}^{N} x_{i} y_{i} - \frac{1}{N} \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} y_{i}}{\sum_{i=1}^{N} x_{i}^{2} - \frac{1}{N} \left(\sum_{i=1}^{N} x_{i}\right)^{2}}$$

8

Obtaining OLS estimates – example (Stata)

Wooldridge (2003) Example 2.4: Wage and education Use Stata to run the simple linear regression of wage (y) on educ (x).

<u>Command</u>: regress wage educ (or: reg wage educ)

reg wage educ

Source	SS	df	MS	Number of obs =	526
				F(1, 524) =	103.36
Model	1179.73204	1	1179.73204	Prob > F =	0.0000
Residual	5980.68225	524	11.4135158	R-squared =	0.1648
				Adj R-squared =	0.1632
Total	7160.41429	525	13.6388844	Root MSE =	3.3784

wage $oldsymbol{eta}_I$	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ	.5413593	$\hat{\beta}_{0}^{.053248}$	10.17	0.000	.4367534	.6459651
_cons -	9048516		-1.32	0.187	-2.250472	.4407687

Basic Stata commands

- Linear regression of y on x regress y x
 - EX) regress wage educ OR reg wage educ
- predict newvar1, xb Compute fitted values
 - EX) predict wagehat, xb (I just made up the name wagehat)
- predict newvar2, resid Compute residuals
 - EX) predict uhat, resid (I just made up the name uhat)

10

Recall:
$$\hat{u}_i = y_i - \hat{y}_i$$

= $y_i - \hat{\beta}_0 - \hat{\beta}_I x_i$

$$1. \sum_{i=1}^{N} \hat{u}_i = 0$$

$$2. \sum_{i=1}^{N} x_i \hat{u}_i = 0$$

2. $\sum_{i=1}^{N} x_i \hat{u}_i = 0$ Follows from F.O.C. w.r.t. $\hat{\beta}_l$: $\sum_{i=1}^{N} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_l x_i) = 0$

3. The point $(\overline{x}, \overline{y})$ is always on the OLS regression line

You proved this on HW question 11.1.

$$4. y_i = \hat{y}_i + \hat{u}_i$$

Because
$$\hat{u}_i = y_i - \hat{y}_i$$
.

Total, explained, & residual sum of squares, R²

Total sum of squares:

$$SST \equiv \sum_{i=1}^{N} (y_i - \overline{y})^2$$

Explained sum of squares: $SSE = \sum_{i=1}^{N} (\hat{y}_i - \overline{y})^2$

$$SSE = \sum_{i=1}^{N} (\hat{y}_i - \overline{y})^2$$

Residual sum of squares:

$$SSR \equiv \sum_{i=1}^{N} \hat{u}_i^2$$

$$SST = SSE + SSR$$

Proof is on p. 39 of Wooldridge (2003)

Coefficient of determination or R²: Interpretation?

 $R^2 = SSE / SST = 1 - (SSR / SST)$ sample variation in y

The proportion of the that is explained by x

MICHIGAN STATE UNIVERSITY

Why is it called R²?

• Letter R sometimes used to refer to correlation coefficient (we used ρ)

 R^2 is the squared sample correlation coefficient between y_i and \hat{y}_i

Source	SS	df		MS		Number of obs	=	526
						F(1, 524)	=	103.36
Model	1179.73204	1	1179	.73204		Prob > F	=	0.0000
Residual	5980.68225	524	11.4	135158		R-squared	=	0.1648
						Adj R-squared	=	0.1632
Total	7160.41429	525	13.6	388844		Root MSE	=	3.3784
wage	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	iterval]
educ	.5413593	. 053	248	10.17	0.000	.4367534		6459651
_cons	9048516	.6849	678	-1.32	0.187	-2.250472		4407687

. predict wage	ehat, xb	
	anahat	
. corr wage wa (obs=526)	igenac	
	I	
	wage	wagehat
wage	1.0000	
wagehat	0.4059	1.0000
. display 0.40	59^2	
.16475481		

MICHIGAN STATI

My R^2 is too low!

Does a low R² mean the regression results are useless? Why or why not?

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_I x$$

 $\hat{\beta}_{I}$ may still be good (unbiased) estimate of ceteris paribus effect of x on y even if R^{2} is low

MICHIGAN STATE UNIVERSITY

Statistical properties of OLS

- In order to draw inferences about population parameters β_0 and β_1 from our OLS estimates, need to know the sampling distributions thereof:
 - · Expected value
 - Variance
 - · Etc.
- Once we know the sampling distribution and have an estimate of the variance, then we can compute Z and T statistics, construct confidence intervals, and do hypothesis testing

10

MICHIGAN STATE

Unbiasedness of OLS (simple linear regression)

If the following 4 assumptions hold, then OLS is unbiased. (OLS is also consistent under these assumptions, and under slightly weaker assumptions → AFRE 835.)

SLR.1. Linear in parameters: $y = \beta_0 + \beta_1 x + u$

SLR.2. Random sampling

**SLR.3. Zero conditional mean (exogeneity):

$$E(u \mid x) = E(u) = 0$$

SLR.4. Sample variation in x

Why necessary?

$$\hat{\beta}_{I} = \frac{\sum_{i=1}^{N} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}}$$

OLS estimators for β_0 and β_1 are unbiased under SLR.1-SLR.4

$$E(\hat{\beta}_I) = \beta_I$$
 and $E(\hat{\beta}_0) = \beta_0$

- Leave proof for AFRE 835
 - WMS pp. 577-578 and Wooldridge pp. 46-50
- The key assumption is E(u|x) = E(u) = 0(zero conditional mean / exogeneity) – SLR.3
 - Under SLR.1-SLR.4, OLS estimate of β_1 is the causal effect (ceteris paribus effect) of x on y
 - If E(u|x) ≠ E(u), then x is endogenous to y → OLS estimates biased

Variance of the OLS estimators

Let $V(u) = \sigma^2$

SLR.5. Homoskedasticity (constant variance):

$$V(u \mid x) = V(u) = \sigma^2$$

What does this imply about V(y|x)? (Hint: Plug in $y = \beta_0 + \beta_1 x + u$ and use the rules for conditional variances.)

$$V(y|x) = V(u|x) = \sigma^2$$

Reminder: What is E(y|x) given our earlier assumptions?

$$E(y \mid x) = \beta_0 + \beta_I x$$

Under SLR.1-SLR.5, the variances of the OLS estimators for β_0 and β_1 are:

$$V(\hat{\beta}_{l}) = \frac{\sigma^{2}}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}}$$

$$V(\hat{\beta}_0) = \frac{\sigma^2 N^{-1} \sum_{i=1}^{N} x_i^2}{\sum_{i=1}^{N} (x_i - \overline{x})^2}$$

- Leave proof for AFRE 835
 - WMS pp. 578-579 and Wooldridge pp. 55
- With heteroskedasticity, these formulas are incorrect (and the correct formulas a more complicated)
- Note: SLR.5 <u>NOT</u> needed for unbiasedness

$$V(\hat{\beta}_{l}) = \frac{\sigma^{2}}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}}$$

- What happens to this variance as:
 - V(u) increases?
 - The sample variation in x increases?
- What happens to the standard errors of our OLS estimator when their variances increases?
 - Then what happens to our T and Z stats?
 - Then what happens to our probability of rejecting H0 in favor of H1?

24

MICHIGAN STATE

Gauss-Markov Theorem

(simple linear regression, cross-sectional data case)

Under SLR.1-SLR.5, OLS is BLUE

Best (most efficient, i.e., smallest variance)

Linear (linear function of y_i)

Unbiased

Estimator

Estimating $V(u) = \sigma^2$

- · Almost have all the pieces we need to do inference. Need to estimate $V(u) = \sigma^{2}$.
- · Starting point:

$$\sigma^2 = V(u) = E(u^2) - [E(u)]^2 = E(u^2)$$
 Why?

- What would the method of moments estimator be here? Consistent but biased estimator of σ^2
- Unbiased & consistent estimator for σ²:

$$\hat{\sigma}^2 = \frac{1}{N - 2} \sum_{i=1}^{N} \hat{u}_i^2 = \frac{SSR}{N - 2}$$

B/c N-2 d.o.f. = # of observations minus Leave proof for AFRE 835. See WMS pp. 580-581, Wooldridge pp. 57

Putting it all together: simple linear regression

$$y = \beta_0 + \beta_1 x + u$$

OLS estimators for β_0 and β_1 :

$$\hat{\beta}_{l} = \frac{\sum_{i=l}^{N} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=l}^{N} (x_{i} - \overline{x})^{2}} \hat{\beta}_{0} = \overline{y} - \hat{\beta}_{l} \overline{x}$$

Expected values (under SLR.1-SLR.4):

$$E(\hat{\beta}_I) = \beta_I \text{ and } E(\hat{\beta}_0) = \beta_0$$

Sample variances (under SLR.1-SLR.5):

$$\hat{V}(\hat{\beta}_{I}) = \frac{\hat{\sigma}^{2}}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}} \hat{V}(\hat{\beta}_{0}) = \frac{\hat{\sigma}^{2} N^{-I} \sum_{i=1}^{N} x_{i}^{2}}{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}}$$
where $\hat{\sigma}^{2} = \frac{1}{N-2} \sum_{i=1}^{N} \hat{u}_{i}^{2} = \frac{SSR}{N-2}$

$$\hat{\sigma} \text{ is the standard error}$$

$$\hat{V}(\hat{\beta}_0) = \frac{\hat{\sigma}^2 N^{-1} \sum_{i=1}^{N} x_i^2}{\sum_{i=1}^{N} (x_i - \overline{x})^2}$$

where
$$\hat{\sigma}^2 = \frac{1}{N-2} \sum_{i=1}^{N} \hat{u}_i^2 = \frac{SSR}{N-2}$$

of the regression

Homework:

- WMS Ch. 11 (cont'd):
 - Find the total, explained and residual sum of squares (SST, SSE, SSR), R² (and interpretation), estimate of σ^2 , and estimates of the variances of the OLS estimators for β_0 and β_1 for WMS 11.3 (Excel), 11.4 (Stata), and 11.5 (Stata)
- Complete all Ch. 11 HW before last day of class so that we can go over it then (you won't turn in Ch. 11)

Next class:

Linear regression part 3 of 3

- · Classical Linear Model
- Inference

Reading for next class:

- WMS Ch. 11: sections 11.5
- Wooldridge Introductory Econometrics (2003): pp. 113-136

Estimating the variances of the OLS estimators for β_0 and β_1 - example 11.1 (cont'd)

We found: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i = 1 + 0.7 x_i$

Table 11.1 Data for Example 11.1

X	у
	0
-1	0
0	1
1	1
2	3
® Cangage Learning	

$$\hat{V}(\hat{\beta}_I) = \frac{\hat{\sigma}^2}{\sum_{i=I}^N (x_i - \overline{x})^2}$$

$$\hat{V}(\hat{\beta}_0) = \frac{\hat{\sigma}^2 N^{-1} \sum_{i=1}^{N} x_i^2}{\sum_{i=1}^{N} (x_i - \overline{x})^2}$$

where
$$\hat{\sigma}^2 = \frac{1}{N-2} \sum_{i=1}^{N} \hat{u}_i^2 = \frac{SSR}{N-2}$$