A Book of Abstract Algebra (2nd Edition)

Let
$$f(x) = x^2 + x + 1 \in {}_{2}[x].$$

Then
$$f(0)=1$$
 and $f(1)=1+1+1=1$

Then there exist an extension field E of $_2$ containing a zero α of f(x).

Since every element β of a simple extension $E = F(\alpha)$ can be uniquely expressed in the form $\beta = b_0 + b_1 \alpha + ... + b_{n-1} \alpha^{n-1}$ where $b_i \in F$ and α is algebraic over F, $_2(\alpha)$ has elements $0, 1, \alpha, 1 + \alpha$.

This gives a field of four elements.

Addition Tables: Multiplication Tables:

	+	0	1	α	$1+\alpha$		0	1	α	$1+\alpha$
	0	0	1	α	$1+\alpha$	0	0	0	0	0
	1	1	0	$1 + \alpha$	α	1	0	1	α	$1+\alpha$
	α	α	$1+\alpha$ α	0	1	α	0	α	$1+\alpha$	1
1	+α	1+α	α	1	0	$1 + \alpha$	0	$1+\alpha$	1	α

Comment