

5	(11)	On a rough floor friction prevents the base of the ladder from sliding.
<u> </u>		On a smooth floor there is no force preventing the ladder from sliding?
	·	On a sough floor friction prevents the base of the ladder from sliding. I On a smooth floor there is no force preventing the ladder from sliding? This force is necessary to balance the normal nearly from the wall.
	(111)	in a longer act as a point hole and produces pluring due to averlapping
		maged (y exceedingly small diffraction efects present) to the hole is too large it
		in ages for the little
		images from the first hole.
	(iv)	The blue doth aly reflects blue light Sodium light is yellow so
		The blue cloth aly reflects blue light. Sodum light is yellow so no light is reflected — so cloth appears dark. [77]
<u> </u>		
(d)	(1)	hight is a transverse wave and sound is a longitudinal wave. Only transverse waves can be polarized.
		housverse weives can be polarized.
		Kotale a polaroid sheet in the beam. The intensity well very from a
		Rotate a polaroid sheet in the beam. The intensity will very from a maximum to a minimum for a partially polarged beam. A fully polarged beam causes extenction at the minimum.
	(1)	[A] = [y] = [L] with: m (\frac{1}{2})
		[T] = [o] units: diniensembless (2)
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
<u> </u>		[x] = [L] mits: m (\(\frac{\pi}{2}\))
		y will maintain the same value providing 2T(Bt - 2E/x) = const.
		$2\pi(\beta t - 3e/x) = censt$ $x = -\frac{const}{2\pi} + x\beta t$
		Velocity $u = \gamma \beta$, which is a constant [] either $u = dx = \beta \gamma$ or $\frac{\Delta x}{\Delta t} = \gamma \beta$]
		Non mathematical explanation ox if correct
		[7]
(e)	(i)	Wind dreves water vapour from the clothes. This causes more mater to
		evaporate which cooks the remaining water in the clothes, Sufficient
-		Wind draves water vapour from the clothes. This causes more water to evaporate, which cools the remaining water in the clothes, Sufficient cooling will extract sufficient latent heat of Jusian from the [2] water to cause freezing of the water
		water in cause freezeng of the water

<u>ê)</u>	<u>(i)</u>	If wers M freezes and was m evaporates they heat
		extraded from M = 333×103M J (2)
		extracted from water = 2500 × 10 ³ m J (\frac{1}{2})
		Equating
		333 M = 2500 m
		M = 2500
		m 333
		0 M 2500 - 2500 - 0.882
		" m+M 2500+333 2833
		[5]
(£)	()	
_($(310)^2 = 2a(1.20)$
		$a = 4.00 \times 10^4 \text{ ms}^2$
	<u>(n)</u>	'V=u+at'
		310 = 4.00×104 t
		$t = 7.74 \times 10^{-3} \text{s}$
		Rotational speed = 2(211) / 7.74 ×10-3 rads/s
		$= 1.62 \times 10^3 \text{ Tado/s} $
- ,_ _,	•••	
	(111)	Rotation poduces stability in the motion of the bullet (1)
<u> </u>		a
	۱٧	a decreases with distance
		rapid due to expansion of gas.
		on pressing
		trigger
	-	12m
<u>a/</u>	(1)	Upthrust = Vol. (Sair - SHe) g
		= 512 (1.290 - 0.178)q
		= 569g
		= mg where m is largest mass raised
		m = 569 kg

)2 <u>(i)</u>	Applying Newton's grawtational law of altraction to was in at h
:	$mg = \frac{GM_{EM}}{(R_{E}+h)^{2}}$
	$g_{k} = \frac{GM_{E}}{(R_{E} + k)^{2}}$
	But $g = \frac{GME}{R^2E}$
	Thus $ \frac{g_{k}}{g_{k}} = \frac{g_{k}}{g_{k}} \frac{R_{E}^{2}}{(R_{E} + h)^{2}} $
(11)	Below the Earth's surface force on wass m due to oplere radius r , M_r , Thus $mg_r = \frac{Gm M_r}{r^2}$
	$\frac{Rut}{M_r = \left(\frac{\Gamma}{R_E}\right)^3 M_E}$
	$g_{\Gamma} = \frac{G_{\Gamma}M_{E}\Gamma}{R_{E}^{3}} = g_{0}(\frac{\Gamma}{R_{E}})$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(14)	The Earth does not have uniform density, but it is spherically of symmetric with increasing density towards its centre, consequently the equations in (i) and (ii) do apply, providing in (ii) the MJ is the
	mass within the sphere of radius or and the subsequent requations are modified to take this into account

3(6)	<u>(i)</u>	For a satellite in cercular motion, mass m, angular frequency w,
<u>(</u>		
		$m(R_E + L)\omega^2 = \frac{GMEm}{(R_E + L)^2}$
		where
		$\omega = 2\pi/(2.0\times 60\times60)$
		W = 21/(2 07 , 180×80)
		$\left(R_{E}+h\right)^{3}=\frac{G_{1}M_{E}}{\omega^{2}}$
		$= \frac{(6 \cdot 67 \times 10^{4})(5.97 \times 10^{24})}{(5.97 \times 10^{24})}$
	·····	$(2\pi/2.0\times 60\times60)^{2}$
- ,	·	$= (6.67)(5.97)10^{13} \left(\frac{7.20\times10^{3}}{2\pi}\right)^{2}$
<u> </u>		$= 5.229 \times 10^{20} \mathrm{m}^3 \mathrm{l}$ $R_{\text{E}} + h = 8.056 \times 10^6 \mathrm{m}$
		R=+h = 8.056 x 15 m
		f. = (8.056 - 6.38)10 ⁶ m
		$h = (8.056 - 6.38)10^6 \text{m}$ $h = 1.68 \times 10^6 \text{m} = 1.68 \times 10^3 \text{ km}$
	(3)	Annular alaidu Dil E. H - 27 (24×60×60) 1/2(=)
	(")	Angular velocity of the Earth = 21 /(24 × 60 × 60) rado/s (2) Angular velocity of satellite = 21 /(2 × 60 × 60) rado/s (2)
		A 1 : 1 - 1 1 - 10 t.
		Angular velocity of satellite nelative to the truth = $\frac{2\pi}{60 \times 60 \times 2} \left[1 - \frac{1}{12}\right] \left(\frac{1}{2}\right)$
		. –
		$= 2\pi(11)/(12\times60\times60)$
·		$= 8.000 \times 10^{-4} \text{s}^{-1} \left(\frac{1}{2} \right)$
	10	
	(FLA)	In the diagram RE
		$\cos\theta = R + R \qquad (1) \qquad \dot{\phi} = 0$
		$= \frac{6.38 \times 10^{6}}{8.056 \times 10^{6}}$
		= 0.792 (1) (REXT)
		0 = 37.63° EARTH.
	:	° 20 = 75.3° (1)
		[9]
-(·)		The constational hold of the Noon and to a large of the C
\		Sold is the state of the same same same same same same same sam
-		The gravitational field of the Moon, and to a lesser extent the Sun, will perturb the circular metron and limit the largest periods! Viscons effects of the Earth's atmosphere will reduce the energy! of the Safellete and limit the smallest possible periods of a satellite
		Viscons effects of the Earth's amosphere will reduce thegergy
		of the Satellele and limit the smallest possible periods of a satellele

28		18
Ò	0	Diameter of Venus shadow 4:0 mm ± 0.5mm
	L -/	Diameter of Sun 1/2 140 mm + 15 mm (NOTE PICTURE DORS NOT SHOW)
		$\lambda = \frac{140}{2} = 1225 / (1000)$
		FRENC CALCULATION, NOT REQUIRED BY STUDENT GIVES
		$\frac{\Delta h}{2} = 2\left(\frac{0.5}{4.0} + \frac{15}{140}\right) \sim 45.\%$
		λ = 1225 ± 500 Accept error in range ± 500 to ± 200 No marks for smaller or larger error
	()	See diagram 7 SHADON
 :	(FI)	Similar triangles and data from Table 8.1. give "m" 1.08x10m 1.08x
		1.50×10 1.50
·		$\frac{52}{12\cdot1\times10^6} = \frac{1\cdot50-1\cdot08)\times10^{11}}{(1\cdot50-1\cdot08)\times10^{11}} = \frac{0\cdot42}{0\cdot42}$ VENUS
		$x = 12 \cdot 1 \times 10^{\circ} \left(\frac{0.42}{0.42} \right)$
	@	Radius of shadow = 6.05×10 (0.42) EARTH Diam. 12.1×10 m
		(Inving
		$\lambda = \left(\frac{6.98 \times 10^8}{0.42}\right) \left(\frac{0.42}{1.00}\right)$
		6.05×106 1.50
		$\frac{1}{\lambda} = \frac{1042}{1042}$
		Fore- Calculation, not required by Student, gives
		$\frac{\Delta \lambda}{\lambda} = 2 \left[\frac{10}{6980} + \frac{10}{605} + \frac{1}{42} + \frac{1}{150} \right] \sim 0.05$
		$\frac{20}{3} = \frac{1}{6980} = \frac{1}{605} = \frac{1}{42} = \frac{150}{150}$
_		
 		$\lambda = 1042 \pm 52$ (ACCEPT ANY ERROR IN RANGE
		FOR ERROR 25 -> 100, NO MARKS OTHERWISE)
	•	
<u>b)</u>	_(i)_	Relative angular velocity $W = W_V - W_E $ (E = EARTH, V = VENUS,
		= 2T (TV - TE) Periods T
	<u> </u>	TV 15 Percodo 1
		$= 2\pi \left(\frac{T_E - T_V}{T_E T_V}\right) \left(\frac{1}{2}\right)$
- , _ , . , .		C19 - 101 x100 T= 31/1 x100
~		Sub ⁹ . T _V = 1.94×105 T _E = 3.16×105 Relative period T = W = T _E -T _V = 5.02×10s = 1.59years
		Kelative ferrod 1= W TE-TV 3.02/108 = 105 Types
	-	
		bannent: It is in fact much longer (n 100 years) due to (2

