Проектирование местного устройства управления с жёсткой логикой

В ЭВМ существует два уровня управления:

- Программный
- Микропрограммный

На программном уровне алгоритмы представлены наборами программ, а в качестве технических средств используется центральное устройство управления (ЦУУ), управляющие последовательностью исполнения команд, извлечением операндов и записью результатов операций.

На микропрограммном уровне в качестве наборов алгоритмов управления рассматривается набор микропрограмм, а технические средства представлены местными устройствами управления (МУУ), хранящими микропрограммы и вырабатывающими последовательности управляющих сигналов.

По принципу построения МУУ разделяются:

- Микропрограммные УУ;
- С жёсткой логикой;

Этапы проектирования МУУ

- Анализ алгоритмов операций, выполняемых БО, и составление обобщённых схем алгоритмов;
- Выбор способа организации МУУ;
- Детализация функциональной схемы МУУ;
- Логическое проектирование МУУ.

Блок операций

Перечень и назначение управляющих входов БО

Обозначение	Назначение					
Y[1]	Вход разрешения приёма первого операнда в RA					
Y[2]	Вход выбора микрооперации, выполняемой в RB (Y[2] = 1 -прием второго операнда, Y[2] = 0 - сдвиг)					
Y[3]	Вход разрешения синхронизации в RB					
Y[4]	Вход снятия с RA прямого значения первого операнда					
Y[5]	Вход снятия с RA инверсного значения первого операнда					
Y[6]	Вход выбора микрооперации выполняемой в RR (Y[6] = 1 - приём, Y[6] = 0 - сдвиг)					
Y[7]	Вход разрешения синхронизации в RR					
Y[8]	Вход синхронной очистки RR					
Y[9]	Вход подключения к сумматору регистра RR(Y[9] = 1) или RB(Y[9] = 0)					
Y[10]	Вход разрешения записи признака результата в RPR					

Сигналы- признаки БО

Обозначение	Назначение
F1	Знак второго операнда
F2	Анализируемый разряд множителя
F3	Признак отрицательного нуля

Функциональная диаграмма

Модифицированная схема алгоритма микропрограммы выполнения операции «Умножения»

Модифицированная схема алгоритма выполнения операции «Сложение»

Y[9] = 0 для операции «сложение»

Функциональная схема МУУ

DS – формирует распределенные во времени сигналы Pm.

КС1 — формирует коды, определяющие следующее состояния DS и сигнал управления режимом DS.

КС2 — формирует коды, определяющие сигналы Yi, сигнал SKO.

DC – дешифрует КОП.

Схема пуска и останова по сигналу SNO устанавливает DS в начальное состояние и разрешает его работу до поступления сигнала SKO.

Возможны два подхода к трактовке понятия состояния МУУ (DS):

- Каждое отдельное состояние DS должно соответствовать определенной операторной или условно операторной вершине в схеме алгоритма микропрограммы;
- Понятие «состояние DS» можно связывать с порядковым номером такт работы МУУ от момента начала операции.

Два режима работы DS:

- Переход в соседнее состояние;
- Переход в несоседнее состояние.

Два наиболее частых варианта реализации DS:

- Двоичный счётчик с дешифратором;
- Регистр сдвига с бегущей единицей.

Детализация функциональной схемы МУУ для рассматриваемого варианта

Счётчик циклов – счётчик анализируемого разряда множителя

КСЗ – формирует сигнал анализа последнего разряда множителя

КС4 – формирует сигнал обнуления счетчика циклов и инкремента параметра і

Граф переходов DS для операции «Умножение»

Граф переходов DS для операции «Сложение»

Для синтеза КС1 составим таблицу переходов.

Операция	Переход	коп	F3	Fc	Р3	P2	P1	PO	D3	D2	D1	D0
Умножение	P0 -> P1	0	Χ	X	0	0	0	1	0	0	1	0
	P1 -> P2	0	Χ	0(X)	0	0	1	0	0	1	0	0
	P2 -> P1	0	Χ	Χ	0	1	0	0	0	0	1	0
Сложение	P0 -> P1	1	Χ	X	0	0	0	1	0	0	1	0
	P1 -> P2	1	Х	Χ	0	0	1	0	0	1	0	0
	P2 -> P3	1	0(X)	Χ	0	1	0	0	1	0	0	0
	P3 - >	1	X	X	0	0	0	0	0	0	0	0

D0 = 0

D1 = P0 v P2 KOP

D2 = KOP P1 v KOP P1 FC

D3 = KOP P2 F3

Для упрощения выражений будем считать, что для умножения DS из P1 переходит в P2 всегда, а признак FC определяет только формирование SKO.

Для сложения аналогично будем считать что переход из Р2

всегда происходит в РЗ, а значения F3 определяет только формирование SKO.

С учётом этого получим:

D0 = 0

D1 = P0 v P2 KOP

D2 = P1

D3 = KOP P2

Для синтеза КС2 и КС 4 составим таблицу значений управляющих сигналов.

КОП	P0	P1	P2	Р3
0 умножение	Y[1], Y[2], Y[3], Y[7],Y[8]	Y[4](F1 F2), Y[5](F1 F2), Y[6], Y[7], Y[12], SKO(FC)	Y[3], Y[7]	•
1 сложение	Y[4], Y[1], Y[2], Y[3], Y[7], Y[8]	Y[4], Y[6], Y[7]	Y[4], Y[8](F3), Y[10](F3), SKO(F3)	Y[4], Y[10], SKO

Y[1] = PO EN

Y[2] = P0

 $Y[3] = (P0 \vee P2 \times \overline{OP}) EN$

Y[4] = KOP v P1 KOP F1 F2

 $Y[5] = P1 \overline{KOP} F1 F2$

Y[6] = P1

Y[7] = (KOP v KOP PO v KOP P1) EN

Y[8] = PO v KOP P2 F3

 $Y[9] = \overline{KOP}$

 $Y[10] = (KOP P2 \overline{F3} v P3) EN$

 $Y[12] = \overline{KOP} P1$

SKO = KOP P1 FC v KOP P2 F3 v P3 EN

Схема МУУ.

