

ALGORITMOS

MÉTODO GULOSO
COPYRIGHT © 2023 DIATINF/CNAT/IFRN
JORGIANO VIDAL

AGENDA

- Método guloso
- Problema do troco
- Agendamento de atividades
- Comentários
- Exemplo: Par de soma s

- Contrói solução iterativamente
 - Melhor opção local

- Contrói solução iterativamente
 - Melhor opção local
- Solução ótima local deve ser ótima global
 - Propriedade gulosa

- Contrói solução iterativamente
 - Melhor opção local
- Solução ótima local deve ser ótima global
 - Propriedade gulosa
- Irreversível
 - Escolha feita nunca é desfeita
 - Diferente de backtracking

- Contrói solução iterativamente
 - Melhor opção local
- Solução ótima local deve ser ótima global
 - Propriedade gulosa
- Irreversível
 - Escolha feita nunca é desfeita
 - Diferente de backtracking
- Simples
 - Fácil de implementar

- Contrói solução iterativamente
 - Melhor opção local
- Solução ótima local deve ser ótima global
 - Propriedade gulosa
- Irreversível
 - Escolha feita nunca é desfeita
 - Diferente de backtracking
- Simples
 - Fácil de implementar
- Eficiente
 - Soluções rápidas

- Quantidade mínima de moedas para valor v
 - Moedas = $\{5,2,1\}$ 5

- Quantidade mínima de moedas para valor v
 - Moedas = $\{5,2,1\}$ (5)

- Exemplo: R\$ 0,07Duas moedas:
 - 5 e 2 centavos 5

 Quantidade mínima de moedas para valor v

- Exemplo: R\$ 0,07
 - Duas moedas:
 - 5 e 2 centavos (5

- Propriedade gulosa
 - Maior moeda possível sempre escolhida

• CUIDADO!!!

CUIDADO!!!

Algoritmo guloso pode depender dos dados

CUIDADO!!!

- Algoritmo guloso pode depender dos dados
- moedas = $\{5,4,3,1\}$

CUIDADO!!!

- Algoritmo guloso pode depender dos dados
- moedas = $\{5,4,3,1\}$

• valor = R\$ 0,07

CUIDADO!!!

- Algoritmo guloso pode depender dos dados
- moedas = $\{5,4,3,1\}$

- 5
- 4
- 3

- valor = R\$ 0,07
- Algoritmo guloso

CUIDADO!!!

- Algoritmo guloso pode depender dos dados
- moedas = $\{5,4,3,1\}$
- 5 4 3 1

- valor = R\$ 0,07
- Algoritmo guloso
 - 3 moedas: 5,1,1

CUIDADO!!!

- Algoritmo guloso pode depender dos dados
- moedas = $\{5,4,3,1\}$
- 5
- 4
- 3

- valor = R\$ 0,07
- Algoritmo guloso
 - 3 moedas: 5,1,1
- 5
- 1

• Resposta correta:

CUIDADO!!!

- Algoritmo guloso pode depender dos dados
- moedas = $\{5,4,3,1\}$
- 5
- 4

- valor = R\$ 0,07
- Algoritmo guloso
 - 3 moedas: 5,1,1
- 5
- 1
- 1

- Resposta correta:
 - 2 moedas: 4 e 3
- 4
- 3

- **n** atividades
- Hora início e hora fim
- Quais atividades escolher para realizar maior quantidade de atividades?

Atividade	Início	Fim
1	1	4
2	2	3
3	2	6
4	1	6
5	4	8
6	3	5
7	5	9
8	8	10
9	5	10
10	6	7

- **n** atividades
- Hora início e hora fim
- Quais atividades escolher para realizar maior quantidade de atividades?

Atividade	Início	Fim
1	1	4
2	2	3
3	2	6
4	1	6
5	4	8
6	3	5
7	5	9
8	8	10
9	5	10
10	6	7

- Qual atividade escolher a cada iteração?
 - Início mais cedo?
 - Fim mais cedo?
 - Menor intervalo?
 - Menos conflito?

- Qual atividade escolher a cada iteração?
 - Início mais cedo?
 - Fim mais cedo?
 - Menor intervalo?
 - Menos conflito?

- Qual atividade escolher a cada iteração?
 - Início mais cedo?
 - Fim mais cedo?
 - Menor intervalo?
 - Menos conflito?
- Necessário ordenar:
 - $O(nlg_2n)$

- Qual atividade escolher a cada iteração?
 - Início mais cedo?
 - Fim mais cedo?
 - Menor intervalo?
 - Menos conflito?
- Necessário ordenar:
 - $O(nlg_2n)$

```
Seleciona_Atividades(a, s, f, n)
  // Ordenar por f<sub>i</sub>
  MergeSort(a, s, f, n)
  A ← {a<sub>1</sub>}
  i=1
  Para m ← 2 até n faça
    Se s<sub>m</sub> ≥ f<sub>i</sub> então
    A ← A U {a<sub>m</sub>}
    i ← m
    Fim Se
  Fim Para
retorne A
```


OBSERVAÇÕES

- Simples
- Fácil de implementar
- Eficiente
- IMPORTANTE
 - Análise dos dados deve ser feita
 - Alguma ordem, normalmente, é necessária
 - Pode ser necessário ordenar

- Par de soma s
 - Dado um vetor A de N números inteiros, existe um par de números cuja soma seja S?

- Par de soma s
 - Dado um vetor A de N números inteiros, existe um par de números cuja soma seja S?
- Força bruta:
 - Testa todos os pares: $C_2^n \to O(n^2)$

- Par de soma s
 - Dado um vetor A de N números inteiros, existe um par de números cuja soma seja S?
- Força bruta:
 - Testa todos os pares: $C_2^n \to O(n^2)$
- Método guloso
 - Ordena

- Par de soma s
 - Dado um vetor A de N números inteiros, existe um par de números cuja soma seja S?
- Força bruta:
 - Testa todos os pares: $C_2^n \to O(n^2)$
- Método guloso
 - Ordena
 - Compara primeiro e último

- Par de soma s
 - Dado um vetor A de N números inteiros, existe um par de números cuja soma seja S?
- Força bruta:
 - Testa todos os pares: $C_2^n \to O(n^2)$
- Método guloso
 - Ordena
 - Compara primeiro e último
 - Se maior, descarta último

- Par de soma s
 - Dado um vetor A de N números inteiros, existe um par de números cuja soma seja S?
- Força bruta:
 - Testa todos os pares: $C_2^n \to O(n^2)$
- Método guloso
 - Ordena
 - Compara primeiro e último
 - Se maior, descarta último
 - Se menor, descarta primeiro

- Par de soma s
 - Dado um vetor A de N números inteiros, existe um par de números cuja soma seja S?
- Força bruta:
 - Testa todos os pares: $C_2^n \to O(n^2)$
- Método guloso
 - Ordena
 - Compara primeiro e último
 - Se maior, descarta último
 - Se menor, descarta primeiro
 - Repete operação até que não haja mais números

S = 2510, 8, 6, 12, 9, 15, 2, 21

$$S = 25$$

10, 8, 6, 12, 9, 15, 2, 21
ordena

2+21 < 25

6+21 > 25

6+15 < 25

S = 25

10, 8, 6, 12, 9, 15, 2, 21

ordena

2, 6, 8, 9, 10, 12, 15, 21

$$10+15 = 25$$

$$O(n)$$

Implementação fica como exercício

ALGORITMOS

MÉTODO GULOSO
COPYRIGHT © 2023 DIATINF/CNAT/IFRN
JORGIANO VIDAL