Técnicas de Concepção de Algoritmos (1ª parte): algoritmos gananciosos

R. Rossetti, A.P. Rocha CAL, MIEIC, FEUP Fevereiro de 2016

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2015-2016)

2

Algoritmos gananciosos (greedy algorithms)

Algoritmos Gananciosos

- É qualquer algoritmo que aplica uma heurística de solução em que se tenta realizar uma escolha óptima local em todo e cada estágio da solução.
- Aplicável a problemas de optimização (maximização ou minimização)
- Em diversos problemas, a optimização local garante também a optimização global, permitindo encontrar a solução óptima de forma eficiente
- Subestrutura óptima: um problema tem subestrutura óptima se uma solução óptima p/ problema contém soluções óptimas para os seus subproblemas!

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2015-2016)

Estratégia Gananciosa

- Um algoritmo ganancioso funciona em fases. Em cada fase verifica-se a seguinte estratégia:
 - Pega-se o melhor que se pode obter no exacto momento, sem considerar as consequências futuras para o resultado final
 - 2. Por se ter escolhido um **óptimo local** a cada passo, espera-se por acabar a encontrar um **óptimo global**!
- Portanto, a opção que parece ser a melhor no momento é a escolhida! Assim,
 - Quando há uma escolha a fazer, uma das opções possíveis é a "gananciosa." Portanto, é sempre seguro optar-se por esta escolha
 - Todos os subproblemas resultantes de uma alternativa gananciosa são vazios, excepto o resultado

Premissas

- Cinco principais características que suportam essa solução:
 - 1. Um conjunto de candidatos, de onde a solução é criada
 - 2. Uma função de selecção, que escolhe o melhor candidato a ser incluído na solução
 - Uma função de viabilidade, que determina se o candidato poderá ou não fazer parte da solução
 - 4. Uma função objectivo, que atribui um valor a uma solução, ou solução parcial
 - Uma função solução, que determinará se e quando se terá chegado à solução completa do problema

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2015-2016)

6

Algoritmo abstracto

- ♦ Inicialmente o conjunto de itens está vazio (i.e. conjunto solução)
- A cada passo:
 - Um item será adicionado ao conjunto solução, pela função de selecção
 - > SE o conjunto solução se tornar inviável, ENTÃO rejeita-se os itens em consideração (não voltando a seleccioná-los)
 - SENÃO o conjunto solução ainda é viável, ENTÃO adiciona-se os itens considerados

Problema do troco

extrair 8 cêntimos

(com nº mínimo de moedas)

Saco / depósito / stock de moedas

extrair(8, {1, 1, 1, 2, 2, 2, 2, 5, 5})

(com nº mínimo de moedas)

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2015-2016)

Resol. c/ algoritmo ganancioso

Escolhe-se a moeda de valor mais alto que não excede o montante em falta (pois com moedas de valor mais alto o nº de moedas necessário será mais baixo)

Sub-problema do mesmo tipo

Dá a solução óptima, se o sistema de moedas tiver sido concebido apropriadamente (caso do euro) e não existirem problemas de stock!

Implementação iterativa

```
static final int moedas[] = {1,2,5,10,20,50,100,200};

// stock[i] = n° de moedas de valor moedas[i]
public int[] select(int montante, int[] stock) {
  int[] sel = new int[moedas.length];
  for (int i=moedas.length-1; montante>0 && i>=0; i--)
    if (stock[i] > 0 && moedas[i] <= montante) {
      int n_moed=Math.min(stock[i],montante/moedas[i]);
      sel[i] += n_moed;
      montante -= n_moed * moedas[i];
    }
  if (montante > 0)
    return null;
  else
    return sel;
}
```

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2015-2016)

Escalonamento de actividades

- Problema: dado um conjunto de actividades, encontrar um subconjunto com o maior número de actividades não sobrepostas!
- ♦ Input: Conjunto S de *n* actividades, a_1 , a_2 , ..., a_n .
 - > s_i = instante de início da actividade i.
 - \rightarrow f_i = instante de fim da actividade i.
- Output: Subconjunto A de número máximo de actividades compatíveis (i.e. não sobrepostas)

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2015-2016)

10

Escalonamento de actividades

Subestrutura óptima:

- Assume-se que as actividades estão ordenadas.
 - $f_1 \le f_2 \le \dots \le f_n.$
- Supondo-se q/ uma solução óptima inclua actividade a_k.
 - > Isso gera dois subproblemas:
 - > Seleccionar de a_1 , ..., a_{k-1} , actividades compatíveis entre si, e que terminam antes de a_k começar (compatíveis com a_k).
 - > Seleccionar de a_{k+1} , ..., a_n , actividades compatíveis entre si, e que iniciam depois de a_k terminar.
 - A solução para os dois subproblemas deve ser óptima.
 - * Fica como exercício provar esta condição!

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2015-2016)

Escalonamento de actividades

Abordagem recursiva:

- Seja S_{ij} = subconjunto de actividades em S q/ iniciam depois de a_i terminar e terminam antes de a_i começar.
- Subproblemas: Seleccionar o máximo número de actividades mutuamente compatíveis de S_{ii}.
- Seja c[i, j] = tamanho do subconjunto de tamanho máximo de actividades mutuamente compatíveis em S_{ij}.

$$c[i, j] = \begin{cases} 0 & \text{if } S_{ij} = \phi \\ \max\{c[i, k] + c[k, j] + 1\} & \text{if } S_{ij} \neq \phi \end{cases}$$

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2015-2016)

2

.,

Escalonamento de actividades

Abordagem gananciosa:

- Considerar as actividades numa ordem específica
- ◆ Escolher a "melhor opção" de actividade
- Descartar todas as actividades incompatíveis com a actividade seleccionada
- ◆ Estratégias
 - > "Earliest starting time" -> ascendente em Si
 - > "Earliest finishing time" -> ascendente em Fi
 - > "Shortest interval" -> ascendente em Fi Si
 - "Fewest conflicts" -> para cada actividade, contar o número de conflitos e ordenar segundo este número.

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2015-2016)

14

Escalonamento de actividades

Abordagem gananciosa:

a ← ai | earliest finishing time

 $R \leftarrow R \cup \{a\}$

A ← A - ∀ aj | aj não é compatível com aì

EndWhile

Return R

* Escalonamento de actividades

Variação do problema de escalonamento de actividades:

- ◆ Dados: tarefas (jobs) e tempo (duração)
- Objectivo: sequenciar tarefas minimizando o tempo médio de conclusão
- Método: tarefas mais curtas (que acabam mais cedo) primeiro
 Tempo médio: 25

Tarefa	Tempo
j1	15
j2	8
j3	3
j4	10

j1 j2 j3 j4 l 15 23 26 36

Tempo médio: 17.75

récnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP (2015-2016)

Outros Exemplos de Problemas

- Problemas em que se garante uma solução óptima:
 - > Problema do troco, desde que não haja falta de stock
 - > Problema de escalonamento
 - Árvores de expansão mínima
 - > Codificação de Huffman
 - > Dijkstra, para cálculo do caminho mais curto num grafo
- Problemas em que não se garante uma solução óptima
 - > Problema da mochila (mas pode dar boas aproximações ...)

17

Referências

- Mark Allen Weiss. Data Structures & Algorithm Analysis in Java. Addison-Wesley, 1999
- Steven S. Skiena. The Algorithm Design Manual. Springer 1998
- Robert Sedgewick. Algorithms in C++. Addison-Wesley, 1992
- ◆ Slides de Maria Cristina Ribeiro