Do Carmo - Differential Geometry of Curves and Surfaces

Ashan J

2024-12-02

Contents

4 CONTENTS

Chapter 1

Curves

1.1 Introduction

1.2 Parametrized Curves

2. Let $\alpha(t)$ be a parametrized curve which does not pass through the origin. If $\alpha(t_0)$ is the point of the trace of α closest to the origin and $\alpha'(t_0) \neq 0$, show that the position vector $\alpha(t_0)$ is orthogonal to $\alpha'(t_0)$.

NTS: $\alpha(t_0) \cdot \alpha'(t_0) = 0$ Let $f(t) = |\alpha(t)|$ is the distance from origin and $\alpha(t)$ for all $t \in I$. If $t_0 \in I$ is point t_0 such that $\alpha(t_0)$ is the point of trace of $\alpha(t)$ closest to origin. Thus t_0 has minimum at t_0 thus t_0 is the point of trace of $\alpha(t)$ closest to origin. Thus t_0 has minimum at t_0 thus t_0 is a non-consider t_0 and t_0 is a consider t_0 to t_0 is a consider t_0 in t_0 the point of t_0 is the point of t_0 in t_0 then t_0 is the point of t_0 in t_0 in t_0 in t_0 is the point of t_0 in t_0 in t_0 in t_0 in t_0 in t_0 is the point of t_0 in t_0 in

Thus d(to) is oxghaganal to d'(t).

3. A parametrized curve $\alpha(t)$ has the property that its second derivative $\alpha''(t)$ is identically zero. What can be said about α ?

 $d''(t) = 0 \implies d'(t) = 0$; a isconstant vector, $\alpha(t) = at+b$, b is constant vectory

Therefore $\alpha(t) = at+b$ respent a stright line.

Vector Equations Of A Line

4. Let $\alpha: I \longrightarrow R^3$ be a parametrized curve and let $v \in R^3$ be a fixed vector. Assume that $\alpha'(t)$ is orthogonal to v for all $t \in I$ and that $\alpha(0)$ is also orthogonal to v. Prove that $\alpha(t)$ is orthogonal to v for all $t \in I$.

Since, d'Ct) isorthogonal to y forall teI

d'(t)· Y=0 ∀teI —0

Since, y is fixed vector, it does not depend

on $y = \frac{dy}{dt} = 0$

Now Consider,

 $\frac{d(d(t)\cdot\gamma)}{dt} = d'(t)\cdot\gamma + d(t)\cdot d\gamma$ $(d(t)\cdot\gamma)' = d'(t)\cdot\gamma + o(by 2)$ = o(by 0)

Thus, $(\alpha(t)\cdot \gamma)'=0$ for all $t\in I$. Therefore $(\alpha(t)\cdot \gamma)$ is a constant for all $t\in I$.

Given that $\alpha(0)$ is orgnal to γ .

Thu $\alpha(0) \cdot \gamma = 0$.

Therefore, $\alpha(t) \cdot \gamma = 0$ $\forall t \in I$.

Thus, $\alpha(t)$ is perpenducular to γ , for all $t \in I$.

5. Let $\alpha: I \to R^3$ be a parametrized curve, with $\alpha'(t) \neq 0$ for all $t \in I$. Show that $|\alpha(t)|$ is a nonzero constant if and only if $\alpha(t)$ is orthogonal to $\alpha'(t)$ for all $t \in I$.

Suppose that $0 \neq |\alpha(t)| = k$, kis constant Now Consider following

 $\frac{(\alpha(t) \cdot \alpha(t))}{d \cdot (\alpha(t))^2} = \frac{\alpha'(t) \cdot \alpha(t) + \alpha(t) \cdot \alpha'(t)}{d \cdot (\alpha(t))^2} = 2 \cdot \alpha(t) \cdot \alpha'(t)$ $\frac{\alpha(t)^2}{dt} = \frac{\alpha(t) \cdot \alpha'(t)}{dt} = 2 \cdot \alpha(t) \cdot \alpha'(t)$

0 = 2 d(t), d'(t)

 $O = \alpha(t) \cdot \alpha'(t)$ Since $|\alpha(t)| \neq 0$. Given that $\alpha'(t) \neq 0$

Note that act) to and a'(t) to.
Therefore act) is orgnal to d'(t) forall tej.

For all tel
Then actoral tel
Similar to above, we can show that (df)) is constant.
NTS: d(t) = to forall tel
Assume the contray that $ \alpha(t) = 0$ for some to I. Then $ \alpha(t_0) = 0$ tousne to EI.
Thus, d'(to) = O forsone to EI
It contradict the fact of (t) to for all tel.
Therefore (d(t)) is non-zero constant.