Beyond Fortran ...

What to do and where to go from here ...

Arun Prasaad Gunasekaran arun_e2711@yahoo.in

Overview

- Other Fortran Compilers
- C, C++
- Parallel Computing
 - Open MP
 - MPI
- Mathematical Computing Languages/Packages
 - Free
 - Paid
- Interpreted Languages
 - Python, R
 - NCL, Ferret, Grads (for Atmospheric and Oceanic Science Students)
 - Other packages like Mayavi, VI, Paraview, UVCDAT etc.,

Other Fortran Compilers

- Intel
- NAG
- Cray
- PGI etc.,

Have non-standard features and can take advantage of certain features in the system architecture. They have more features

Extremely good for Parallel Programming and interfacing them with other languages like C, C++, (within the same brand)

Comes with debuggers, profilers etc., Helpful for large projects.

Recommended for intense computations that demand Super Computers or workstations etc.,

- Superior Compiled programming languages
- Does not have array slicing features
- Has almost all features of Fortran and more features
- Equally good to work with.
- Which to choose? Personal preference and application based choice.

Parallel Computing

- All programs run only in one processor/core
- This paradigm of programming Makes use of multiple cores simultaneously by splitting the work load between the cores.
- OpenMP (Open Specifications for Multi-Processing) is used for computers having shared memory
- MPI (Message Passing Interface) is used for computers having shared / distributed memory
- These are directives and functions that work on top of a compiled language like C, C++, Fortran
- Usage of OpenCL, OpenACC, Graphical Processing Units, OpenGL etc., are quite common

Mathematical Packages

Paid

- Matlab, Mathematica, Maple etc.,
- Very very good and have a lot of extensive features
- Interpreted language based packages

Free

- Scilab, Octave, Freemat etc.,
- Newly emerging packages, completely free, some are software clones
- They are also interpreted language based packages

Interpreted Languages ...

- There are many, I am concentrating on only two of them
- Python and R are very successful.
- Python:
 - Easy to learn
 - Emerging rapidly in scientific computations
 - Can integrate several other programming files into it
 - Nice graphics
- R:
 - Very powerful tool for statistics
 - Can produce high quality graphics
 - Preferred by many for data processing and data analysis

Other Packages and Tools ...

- Other packages (For Atmospheric and Oceanic Science Students/Researchers, but not restricted to them alone):
 - NCL
 - Ferret
 - Grads
 - UVCDAT
- Visualization tools:
 - Visit
 - Paraview
 - MayaVI
 - VI
 - VTK etc.,

Possible Upcoming tutorials – Proposal only

- Advanced Fortran tutorials (Next Series)
- Fortran + OpenMP
- Scientific Python
- Python + Fortran for scientific applications
- Fortran + MPI

Thank You!