Модель эпидемии SIR.

Лабораторная работа №5.

Рогожина Н.А.

08 марта 2025

Российский университет дружбы народов, Москва, Россия

Докладчик

- Рогожина Надежда Александровна
- студентка 3 курса НФИбд-02-22
- Российский университет дружбы народов
- https://mikogreen.github.io/

Задание

В дополнение к предположениям, которые были сделаны для модели SIR, предположим, что учитываются демографические процессы, в частности, что смертность в популяции полностью уравновешивает рождаемость, а все рожденные индивидуумы появляются на свет абсолютно здоровыми. Тогда получим следующую систему уравнений:

1.
$$s = -\beta s(t)i(t) + \mu (N - s(t));$$

2.
$$i = \beta s(t)i(t) - \nu i(t) - \mu i(t)$$
;

3.
$$r = \nu i(t) - \mu r(t)$$
,

где μ — константа, которая равна коэффициенту смертности и рождаемости.

Задание

Требуется: - реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;

- построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр μ);
- сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

Теоретическое введение

Теоретическое введение

Предполагается, что особи популяции размера N могут находиться в трёх различных состояниях:

- S (susceptible, уязвимые) здоровые особи, которые находятся в группе риска и могут подхватить инфекцию;
- I (infective, заражённые, распространяющие заболевание) заразившиеся переносчики болезни;
- R (recovered/removed, вылечившиеся) те, кто выздоровел и перестал распространять болезнь (в эту категорию относят, например, приобретших иммунитет или умерших).

Теоретическое введение

Внутри каждой из выделенных групп особи считаются неразличимыми по свойствам. Типичная эволюция особи популяции описывается следующей диаграммой:

$$S \to I \to R$$
.

Считаем, что система замкнута, т.е.

$$N = S + I + R.$$

Выполнение лабораторной работы

Выполнение

Открыв окно визуального моделирования, первое что было установлено - контекст.

Рис. 1: Обозначение постоянных

Для первого интеграла было выставлено Initial Condition = .999.

Рис. 2: Настройка интеграла для s(t)

Для второго интеграла было выставлено Initial Condition = .001.

Рис. 3: Настройка интеграла для i(t)

Также, необходимо было установить максимальное время моделирования как 30 единиц модельного времени.

Рис. 4: Установка max(t)

Рис. 5: Модель эпидемии SIR

Результаты

Смоделировав ситуацию, мы видим планомерное уменьшение здоровых граждан, планомерное увеличение вылечившихся, а также пик количества зараженных граждан, что одновременно является точкой пересечения всех 3 линий.

Рис. 6: Модель эпидемии SIR

Далее, мы повторили ту же модель, но через блок OpenModelica.

Рис. 7: Установка значений блока

Рис. 8: Код OpenModelica

Рис. 9: Модель эпидемии SIR

Видно, что результаты совпадают с аналитическим подсчетом.

Рис. 10: Модель эпидемии SIR

Выполнение задания

Далее, было необходимо реализовать модель эпидемии, учитывающую смертность и рождаемость (коэффициент μ).

Рис. 11: Конфигурация контекста

Рис. 12: Реализованная модель

Выполнение задания

При запуске, с $\mu=0.01;0.1;1$ получились следующие результаты:

Рис. 13: $\mu=0.01$

Рис. 14: $\mu=0.1$

Рис. 15: $\mu=1$

Аналогично, необходимо было доработать код OpenModelica.

Рис. 16: Диаграмма OpenModelica

Рис. 17: Вводимые значения

Рис. 18: Код OpenModelica

Рис. 19: $\mu=0.01$

Рис. 20: $\mu=0.1$

Рис. 21: $\mu=2.4$

Выводы

В ходе лабораторной работы мы получили базовые навыки программирования модели эпидемии с помощью xcos и OpenModelica.