Seminario de Mecánica Cuántica / Teoría de la Información Cuántica

Práctica VI (Curso 2020)

I. Estados coherentes.

1) Sea

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

un estado coherente, donde $|n\rangle=(a^{\dagger})^n|0\rangle/\sqrt{n!}$ y a^{\dagger},a son operadores de creación y aniquilación bosónicos. Demostrar las siguientes propiedades:

- a) $|\alpha\rangle = e^{-|\alpha|^2/2} \exp(\alpha a^{\dagger})|0\rangle$
- b) $|\alpha\rangle = T(\alpha)|0\rangle$, donde $T(\alpha) = \exp[\alpha a^{\dagger} \alpha^* a] = \exp[-i\sqrt{2}(\operatorname{Re}(\alpha)p \operatorname{Im}(\alpha)q)]$ es un operador de traslación y $p = \frac{a-a^{\dagger}}{\sqrt{2}i}$, $q = \frac{a^{\dagger}+a}{\sqrt{2}}$ son los operadores impulso y coordenada asociados. Esto muestra que $|\alpha\rangle$ es un estado fundamental de oscilador armónico "trasladado". Notar que $T(\alpha)$ es unitario.
- c) $a|\alpha\rangle = \alpha|\alpha\rangle$ (autoestado del operador aniquilación).
- d) $P(n) = |\langle n | \alpha \rangle|^2$ sigue una distribución de Poisson, con $E(n) = \langle \alpha | a^{\dagger} a | \alpha \rangle = |\alpha|^2 = V(n)$.
- e) $\langle \alpha | p | \alpha \rangle = \sqrt{2} \text{Im}(\alpha), \ \langle \alpha | q | \alpha \rangle = \sqrt{2} \text{Re}(\alpha).$
- f) Si $H = \hbar \omega a^{\dagger} a \Rightarrow \exp[-iHt] |\alpha\rangle = |\alpha(t)\rangle$, con $\alpha(t) = e^{-i\omega t} \alpha$.

La evolución temporal de $|\alpha\rangle$ es pues una rotación del parámetro complejo α , con frecuencia angular ω .

- e) No ortogonalidad: $\langle \beta | \alpha \rangle = e^{-(|\alpha^2| + |\beta|^2)/2 + \beta^* \alpha}$
- h) (Sobre)completitud: $\frac{1}{\pi} \int_C d\alpha |\alpha\rangle\langle\alpha| = I$ (Identidad).
- i) Incerteza Mínima: $\Delta p \Delta q = 1/2$, donde $(\Delta p)^2 = \langle p^2 \rangle \langle p \rangle^2$, $(\Delta q)^2 = \langle q^2 \rangle \langle q \rangle^2$, con los valores medios tomados respecto de $|\alpha\rangle$. Los estados coherentes son pues los estados cuánticos más "cercanos" a estados clásicos de oscilador armónico.
- 2) a) Mostrar que el efecto de un divisor de haces (beamsplitter), representado por el operador unitario $U = \exp[-i\theta(a_1a_2^{\dagger} + a_1^{\dagger}a_2)]$, sobre un estado coherente es

$$U|\alpha\rangle\otimes|\beta\rangle = |\alpha\cos\theta - i\beta\sin\theta\rangle\otimes|\beta\cos\theta - i\alpha\sin\theta\rangle$$

b) Hallar $U|10\rangle,\, U|01\rangle,\, {\rm donde}\,\, |10\rangle=a_2^\dagger|00\rangle,\, |01\rangle=a_1^\dagger|00\rangle.$

II. Transformaciones unitarias y de Bogoliubov.

1) Hallar las energías, autoestados y el estado fundamental de los siguientes Hamiltonianos:

$$H = \varepsilon (c_1^{\dagger} c_1 + c_2^{\dagger} c_2) - v (c_1^{\dagger} c_2 + c_2^{\dagger} c_1)$$

b)
$$H = \varepsilon (c_1^{\dagger} c_1 + c_2^{\dagger} c_2) - v(c_1^{\dagger} c_2^{\dagger} + c_2 c_1),$$

Considerar tanto el caso fermiónico como el bosónico (en este caso para $|v| < \varepsilon$; Justificar esta restricción).

2) Hallar el entrelazamiento (de los modos 1 y 2) del estado fundamental en a)–b) para $|g|<\varepsilon.$