Цель работы. Ознакомление с экспериментальными методами построения областей устойчивости линейных динамических систем и изучение влияния на устойчивость системы ее параметров.

Исходные данные. Требуется построить границу устойчивости системы изменяя значение T2 от 0.1 до 5, подбирая K таким образом, чтобы система была на границе устойчивости. При этом параметр T1 зафиксирован T1=2.5.

Расчитать аналитически границу устойчивости.

1 Моделирование системы

На рисунке 1 представлена модель исследуемой системы.

Рис. 1 - Модель исследуемой системы

На риунках 2,3,4 показаны преходные характеристики системы при различный K и $T_2=0.1$. На рисунке 2 при K=15 система не устойчива, на рисунке 3 при K=5 система устойчива, на рисунке 4 при K=10.5 - система находится на колебательной границе устойчивости.

Рис. 2 – Устойчивая система

Рис. 3 – Устойчивая система

Рис. 4 – Граница устойчивости колебательного типа

2 Анализ устойчивости системы

Предаточная функция исходной сисемы выглядит следющим образом:

$$W(s) = \frac{K}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K}$$
(1)

Для анализа устойчивости системы составим матрицу Гурвица.

$$G = \begin{bmatrix} T_1 + T_2 & K & 0 \\ T_1 T_2 & 1 & 0 \\ 0 & T_1 + T_2 & 1 \end{bmatrix}$$
 (2)

Из этой матрицы можем, используя условие Гурвица, получить необходимое для аналитического расчета равенство

$$K = \frac{T_1 + T_2}{T_1 T_2} \tag{3}$$

Произведем расчет границы устойчивости аналитически и сравним с полученной моделированием системы.

Таблица 1 – Данные полученые моделированием и аналитически

T2, c	0,10	0,50	1,00	1,50	2,00	2,50	3,00	3,50	4,00	5,00
К, э	10,50	2,40	1,40	1,10	0,90	0,80	0,77	0,70	0,65	0,60
К, р	10,40	2,40	1,40	1,07	0,90	0,80	0,73	0,69	0,65	0,60

На риснуках 5 и 6 построены графики по данным полученным моделированием и аналитически.

Рис. 5 – График границы устойчивости полученной экспирементально

Рис. 6 – График границы устойчивости полученной аналитически

Выводы

В данной работе мы экспериметнально и аналитически построили границы устойчивости системы изменяя параметры K и T_2 , при этом оставляя неизменным T_1 . Исходя из условия Гурвица имея один зафиксированный параметр и извемяя второй можно получить границу устойчивости колебательного типа.

Данные полученные при моделировании и аналитические совпадают, но можно сделать вывод, что аналитический расчет точнее.