Homework Assignment #3

Assigned: 02/12/2020 Due: 17/12/2020, 23:59 Late Due: 18/12/2020, 23:59

NOTE: Convert and merge your solutions into one PDF file. Then, submit this file.

- 1) $F(x, y, z, t) = \Pi (0, 1, 4, 6, 8, 9, 10, 12, 14, 15)$ (20pts)
 - a. Implement the circuit using a decoder and an or gate.
 - b. Implement the circuit using one 1-to-8 multiplexer (do not use any other logical elements).
- 2) Consider the following circuit with three inputs (A, B, C) and one output (F) (20 pts).
 - a. Derive the Boolean expression of the signals F1, F2, F3 and the output function F.

b. Complete the following Verilog code part so that it implements the output F.

CS 303 Logic & Digital System Design

3) Consider the sequential circuit with the following next state and output equations (20 pts):

$$A(t+1) = x'+B$$

$$B(t+1) = b(x \oplus A)$$

$$y = x + A$$

a. Fill the state transition table below.

Present State		Input	Next State		Output
Α	В	Х	A(t+1)	B(t+1)	У

- b. Draw the state diagram of the state table.
- 4) Design a state machine for a 16-bit counter circuit.
 - If the "up" button is pressed, the circuit will count up by 1.
 - If the "down" button is pressed, the circuit will count down by 1.
 - If both buttons are pressed at the same time, the circuit will count up by 10.
 - If "reset" button is pressed, the counter will become 0.
 - Maximum value for this counter is 60000. After 60000, counter will circle back to 0.

Draw the state diagram of this circuit. Draw a high-level design of this circuit (20 pts).

5) Design a 4-bit signed/unsigned adder/subtractor circuit. Circuit will have a signed_unsigned input pin to determine the signed/unsigned operation and a adder_subtractor bin to determine adder/subtractor operation. Draw the circuit diagram (20 pts).