Note Title

09/05/2025

LIMINF E LIMSUP DI SUCCESSIONI

Brutalmente:
$$a_m = (-1)^m$$
 no Dinsup $a_n = 1$, Dining $a_n = -1$

$$a_{m} = \arctan \left(m + (-1)^{m} m^{2} \right)$$
 vs $\limsup_{n \to +\infty} a_{m} = \frac{\pi}{2}$, $\lim_{n \to +\infty} a_{m} = -\frac{\pi}{2}$

Def. (Liusup) Sia au ma successione

L'Nota beue: Sn ≤ M, quiudi Sn ∈ R, e ivoltre Sn+1 ≤ Sn perché è il sup su meno roba, quindi {Sm} è debelu. decr.]

Allora si poue

questo existe per forta e sta iu R∪{-∞3.

Def. (Liming) Sid	a Ou una succession	one	
(i) Se au NON è	Divitata cuferioreu	eule, allova lin	uiuf au = -00
(ii) Se au é lim	itata inferiorment	, allora si poue	
Im: e iufiue	= iuf { ak : k > /	m} E R	Yme IN
Dimiu n-s +	if au = Divu In		2-1-1-0
	Questo Diu	le esiste perché Ju uite sta iu RU{t	e de boeil. 1/160c.
	1 Living e livese 2 Vale sempre la		9
	liming an	≤ liusup au	
	3) Vale 11 segus di du in questo ca	= se e solo se so coiucide cou	esiste lieu au,
Esempio facile 1 Allora per ogni			
	$a_{k}: k \ge m_{j} = 1$ $a_{k}: k \ge m_{j} = -1$	AWE W	
	s de liusup	Ju -> -1 Diming	

Car	atteriz	nazi e	oue d	sel l	iluit	æ\								
						0								
Qi	ming 1-5 too	au =	= -0	0 ~	v /	M	e R	au	× 3	freq	neut	eme	ute	
Di m	winf -> 100	au =	to	~	ક હે	Qc	ster	න ර	ne di					
0i	P	Qu. s	= .0	e R						Q)-E	Q	2+E	
~	minf 100	Cux									1 qui	ucq uac	tregue	eut.
~	~> 48	2 >0		Q - 8	٤ ≤ ٥	lu.	de	liui↓	tu ,	(defi'	λ,	freque	
					s l				ement					
							`	6						
(U+	ilità	Tutt	i i .	teoneu	m s	ù,	licent	idi.	succe	ssionei	Si	eu	uua'a	uo
										Dimin				
											U		/	
(4)	Teorem	α de Q	Cou	efrou	to a	2	Sid	R O	u ≤ k	om d	efiu	دنان	,	
	Allora										·			
		iuiu -> +00	f a	u ≤ S	Dimi n-2+	uf	bn	e	lim	ent a	u {	Diu	sup l	om
2	Teoren	1 G 3	ei ca	نطه ۲۸	11,07		Sta	Qu. s	< b~	≤ Cm	de &	باررا	3)	
	Allova		00 00		<u> </u>			544 -		- Cm	- 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	, 0 (0													
	نىينۇ.	مار	711 5	e Di	مين.	b	~ < (ی نازد	in bo	. < .0i	W 54	1 YO (200	
	W-> +	~	4	~~	5 40 c		1	m→ to	0	1 1	U-) H	×		
			conf	due due		C	vvieto		С	outrou	, to			
									_					
														0
									_					
	_				1.								-	
	In pa allora ugual bn t	i du	ie fe	ruiu	iai ecu	Q utro	xti sa ali, a	oue viup	ugual di es	i, wa iste il	e al	lora wile	sow	0

3 Teorema delle sottosuccessioni se au è una succ. e ann è una sua sottosuccessione, allora Diminf an & Diminf a_{k_m} & Dimenp a_{k_m} & Dimenp a_m Notes on 1 notes on 1 notes Come prima, se au ha limite (în R oppure ±00), allora i due laterali coiucidano, ma allora coincidons i due centrali, quiudi la sottosucc. ha lo stesso limite della succ.