Студент: Тимур Хабибуллин

Группа: МОАД Дата: 5 мая 2022 г.

1. (a) $f(n) = O(g(n)) \stackrel{?}{\Leftrightarrow} \exists C > 0 : \forall n \in \mathbb{N} : f(n) \leqslant Cg(n)$:

В случае \Leftarrow очевидно: возьмем N=1, добавим в определение $\forall n\geqslant N$ и получим определение O-большого.

В случае \Rightarrow : пусть при данных C,N и n=N-1 у нас нарушается неравество: f(N-1)>Cg(N-1) (вообще говоря, оно может нарушаться и при другом n, но для определенности пусть будет так, или не нарушаться совсем, тогда нам подходит константа из определения O, но это не интересный случай). Поскольку $f(N-1), g(N-1) < \infty$, то введем $\frac{f(N-1)}{g(N-1)} = C_{N-1} > C$ и $C_{N-1} < \infty$. Аналогично можно ввести $C_{N-2} = \frac{f(N-2)}{g(N-2)}$ и т.д. Тогда мы получим набор $\{C_i\}_{i\in[1,N-1]}$, в котором обязательно есть $C_i > C$. Возьмем максимальное $C_i = C_{max}$ и тогда для всех $n \in \mathbb{N}$, в том числе и для n < N, будет выполнено неравенство $\frac{f(n)}{g(n)} \le C_{max}$. Таким образом, мы получили определение без условия на N, т.е. они эквивальногнины.

Для случая $f, g: \mathbb{N} \to \mathbb{R}_{>0}$ аналогично.

(b)
$$f(n) = o(g(n)) \stackrel{?}{\Leftrightarrow} \forall C > 0, \forall n \in \mathbb{N} : f(n) < Cg(n)$$
:

Приведем пример, когда это не выполняется. Пусть $f(n) = 10n, g(n) = n^2$. Очевидно, что $f(n) = o(g(n)) : \forall C \; \exists N : \forall n \geqslant N \; 10n < Cn^2$ (например, C = 1, N = 11). Однако если убрать условие на $\exists N$, то неравенство не будет выполняться при $n \leqslant N$, а значит, эти определения не эквивалентны.

Для случая $f, g: \mathbb{N} \to \mathbb{R}_{>0}$ аналогично.

2. Заполнить табличку

N	f(n)	g(n)	0	0	Θ	ω	Ω
a	n	n^2	+	+	-	-	-
b	$log^k n$	n^{ε}	+	+	-	-	-
c	n^k	c^n	+	+	-	-	-
d	\sqrt{n}	n^{sinn}	-	-	-	-	-
e	2^n	$2^{n/2}$	-	-	-	+	+
f	n^{logm}	m^{logn}	+	-	+	-	+
g	log(n!)	$log(n^n)$	+	-	+	-	+

(а) Дано и очевидно

(b) $f(n) = log^k n, g = n^{\varepsilon}$, где $\varepsilon > 0$ f = O(g) и f = o(g), т.к. по правилу Лопиталя

$$\frac{f(n)}{g(n)} = \frac{\log^k n}{n^{\varepsilon}} \sim \frac{k \log^{k-1} n}{\varepsilon \ln(2) n^{\varepsilon}} \sim \dots \sim O(\frac{1}{n^{\varepsilon}}) \to 0 \leqslant C$$

при $n \to \infty$, где C > 0 - любая наперед заданная константа.

По этой же причине $f \neq \Omega(g)$, т.к. нельзя найти $C,N: \forall n\geqslant N: \frac{\log^k n}{n^\varepsilon} \sim \frac{1}{n^\varepsilon} > C > 0$ и тем

более это не верно при условии $\forall C>0$ - мы всегда сможем приблизиться к нулю сильнее, чем любая заданная наперед C.

Учитывая $f \neq \Omega(g)$, получаем $f \neq \Theta(g)$, т.к. $f = \Theta(g) \Leftrightarrow f = O(g) \cap f = \Omega(g)$

(c) $f(n) = n^k, g(n) = c^n = e^{nln(c)}.$ f = O(g) и f = o(g), т.к. по правилу Лопиталя

$$\frac{f(n)}{g(n)} = \frac{n^k}{e^{nln(c)}} \sim \frac{kn^{k-1}}{ln(c)e^{nln(c)}} \sim \dots \sim O(\frac{1}{e^{nln(c)}}) \rightarrow 0 < const$$

при $n \to \infty$

Как и в предыдущем пункте, $f \neq \Omega(g)$, $f \neq \omega(g)$ и $f \neq \Theta(g)$.

(d) $f(n) = \sqrt{n}, g(n) = n^{sinn}.$ $f \neq O(g)$, т.к. нельзя найти $C, N: \forall n \geqslant N: \sqrt{n} < Cn^{sinn}.$ При $n \to \infty$ можно всегда подобрать такие n и $\varepsilon: 2\pi k - n < \varepsilon < 1/2, k \in \mathbb{N}$ (Например, $n = 50, \varepsilon = 0.16$). Тогда

$$n^{sinn} pprox (2\pi k)^{-\varepsilon + O(\varepsilon^3)}$$
 и $\frac{f(n)}{g(n)} pprox = (2\pi k)^{1/2 + \varepsilon + O(\varepsilon^3)} o \infty.$

Значит, не существует такой C>0 и $N: \forall n\geqslant N: \frac{f(n)}{g(n)}\leqslant C.$ Т.е. $f\neq O(g)$. Как следствие $f\neq o(g)$, поскольку какую бы мы не задали константу C>0, всегда можно найти такие n, что $\frac{f(n)}{g(n)}\geqslant C$.

 $f \neq \Omega(g)$, поскольку можем подобрать такие n и ε : $(\pi/2+2\pi k)-n<\varepsilon<1/2, k\in\mathbb{N}$ (Например, $n=1000, \varepsilon=0.16$). Тогда

$$n^{sinn} pprox (\pi/2+2\pi k)^{(1-arepsilon^2/2)}$$
 и $rac{f(n)}{g(n)} pprox (\pi k)^{-1/2+arepsilon^2/2}
ightarrow 0.$

Получаем, что не существует такой C>0 и $N: \forall n>N$ $\frac{f(n)}{g(n)}\geqslant C$, т.е. $f\neq \Omega(g)$, и по той же причине $f\neq \omega(g)$. Как следствие, $f\neq \Theta(g)$

- (e) $f(n) = 2^n, g(n) = 2^{n/2}$ Сразу видно, что $f(n) \neq O(g(n))$, т.к. $\frac{f(n)}{g(n)} = 2^{n/2} \to \infty$ при $n \to \infty$. Т.е. $\not\exists C, N : \forall n \geqslant N$ $\frac{f(n)}{g(n)} < C$. Следовательно, $f(n) \neq o(g(n))$. $f(n) = \omega(g(n))$, т.к. $\forall C > 0 \; \exists N : \forall n > N \; \frac{f(n)}{g(n)} = 2^{n/2} > C$. Как следствие $f(n) = \Omega(g(n))$, т.к. раз это верно $\forall C > 0$, то это значит, что $\exists C > 0$.
 - $f(n) \neq \Theta(g(n)),$ поскольку $f(n) \neq O(g(n)).$
- (f) $f(n) = n^{logm}, g(n) = m^{logn}$ Так как $log(x) = \frac{lnx}{ln2}$, то $f(n) = exp(lnn \cdot lnm/ln2) = g(n)$. Т.е. получаем, что f(n) = g(n).

f(n) = O(g(n)), так как при $C \geqslant 1 \ \forall n \in \mathbb{N} \ f(n) \leqslant Cg(n)$. Однако $f(n) \neq o(g(n))$, т.к. неравенство f(n) < Cg(n) не выполняется при C < 1 $f(n) = \Omega(g(n))$, т.к. $\forall n \in \mathbb{N} \ f(n) \geqslant Cg(n)$ при $C \leqslant 1$. Следовательно, $f(n) \neq \omega(g(n))$. Поскольку f(n) = O(g(n)) и $f(n) = \Omega(g(n))$, то $f(n) = \Theta(g(n))$.

(g) $f(n) = log(n!), g(n) = log(n^n) = nlog(n)$ Формула Стирлинга: f(n) = nlog(n) - n + O(log(n)). f(n) = O(g(n)), так как $\frac{f(n)}{g(n)} = \frac{nlog(n) - n + O(n)}{nlog(n)} = 1 - \frac{1}{log(n)} + O(\frac{1}{n}) < 1$. Получается, что для $\forall C \geqslant 1$ $\frac{f(n)}{g(n)} \leqslant C$ при $N \geqslant 2$. $f(n) \neq o(g(n))$, поскольку нам не подходят C < 1.

 $f(n)=\Omega(g(n)),$ т.к. $\forall n\geqslant 2$ $\frac{f(n)}{g(n)}\geqslant C=\frac{1}{2}.$ Действительно, из формулы для $\frac{f(n)}{g(n)}$ видно, что с ростом n оно монотонно увеличивается и стремится к 1. Значит, минимум достигается при n=2, а тогда $\frac{log(n!)}{log(n^n)}\geqslant \frac{1}{2}.$ Из этого следует, что неравенство $\frac{f(n)}{g(n)}>C$ нарушается при $C<\frac{1}{2},$ значит, $f(n)\neq \omega(g(n)).$

Поскольку f(n) = O(g(n)) и $f(n) = \Omega(g(n))$, то $f(n) = \Theta(g(n))$.

3. Задача про массив и m операций add(x, l, r):

Пусть исходный массив считан в массив a[i], i = 1...n.

(a) Создадим за O(n) массив из нулей b[i], i = 1...n и для каждого запроса add(x, l, r) изменим b[i] следующим образом:

$$b[l] + = x$$

$$b[r+1]+ = -x$$
, если $r < n$

Это займет время O(m).

(b) Затем за O(n) сделаем еще одно преобразование b[i]:

$$b[i+1]+=b[i], i=1...n-1$$

В массиве начиная с каждого b[r] в следующую позицию будет добавляться свой x, и дойдя до b[r+1] этот x удалится.

(c) За время O(n) сложим исходный массив a[i] с b[i] и выведем результат.

Итоговая сложность алгоритма O(n) + O(m) = O(m+n)

4. $T(n) = 2T(|log(n)|) + 2^{log^*(n)}$, где $log^*(n)$ - итерированный логарифм.

Пусть $log^*(n) = k$. Поскольку итерированный логарифм равен числу итерированных логарифмирований аргумента n, необходимых для того, чтобы результат стал не больше 1, то если подставить в качестве аргумента $\lfloor log(n) \rfloor$, то значение итерированного логарифма уменьшится на 1:

$$log^*(\lfloor log(n) \rfloor) = k - 1$$

Как видно из рекурентного соотношения, на первом шаге выполняется задача размера n и тратится $2^{log^*(n)} = 2^k$ времени. На следующем шаге мы получаем задачу размера $\lfloor log(n) \rfloor$ и тратим $2 \cdot 2^{log^*(\lfloor log(n) \rfloor)} = 2 \cdot 2^{k-1} = 2^k = 2^{log^*(\lfloor log(n) \rfloor)}$ времени. И так далее на каждом шаге будем тратить $2^{log^*(\lfloor log(n) \rfloor)}$ времени. Общее время работы - сумма потраченного времени на каждом шаге. Глубина дерева рекурсии есть $k = log^*(n)$.

В результате получаем $T(n) = O(k * 2^k) = O(log^*(n) \cdot 2^{log^*(n)})$