CHEM1011 WORKSHEET B

SAMPLE EXAM QUESTIONS

ACIDS, BASES AND pH

Question 1.

(a) Complete the following table of conjugate acid/base pairs.

Conjugate acids have one more 'H' than the conjugate base!

Acid	Base		
HF	F^{-}		
H ₃ PO ₄	$\mathrm{H_2PO_4}^-$		
H ₂ O	OH ⁻		
HNO2	NO ₂ ⁻		
CO ₃ ²⁻	— (there isn't one)		

(b) Calculate the pH of a 0.15 M solution of vitamin B_5 (pantothenic acid) given $K_a = 3.95 \times 10^{-5}$.

$$K_a = \frac{x^2}{[HA]}$$
 where $x = [H^+]$

rearrange:
$$x = (3.95 \times 10^{-5} \times 0.15)^{1/2}$$

Check: the least accurate value determines the number of significant figures!

so:
$$pH = -log[H^+] = 2.61$$
 (answer to 2 significant figures)

(c) A buffer is made up to contain $[NH_4^+] = 0.2500 \text{ M}$ and $[NH_3] = 0.1234 \text{ M}$. Given that $pK_a(NH_4^+) = 9.24$, calculate the pH of the buffer.

Use the Henderson-Hasselbalch equation

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

$$= 9.24 + log (0.1234/0.2500) = 8.93$$
 (answer to 2 significant figures)

Check: if more of acid than base, then pH is <u>lower</u> than pK_a!

Question 2.

(a) Calculate the pH of an aqueous buffer solution that contains $0.06 \text{ M Na}_2\text{HPO}_4$ and $0.12 \text{ M KH}_2\text{PO}_4$, given that p $K_a(2)$ for phosphoric acid is 7.21.

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$
$$= 7.21 + log (0.06/0.12) = 6.91$$

Check: if more of acid than base, then pH is <u>lower</u> than pK_a!

(b) Calculate the pH and pH change when 0.8 g of NaOH is added to 400 mL to the above solution.

NaOH neutralises the acid according to:

$$H_2PO_4^- + OH^- \rightarrow HPO_4^{2-} + H_2O$$

Need to calculate new conc's of buffer components.

Initial moles:

$$n(H_2PO_4^-) = c \times V = 0.12 \text{ mol } L^{-1} \times (400\text{mL}/1000\text{mL/L}) = 48 \text{ mmol}$$

 $n(HPO_4^{2-}) = \frac{1}{2} \times n(H_2PO_4^-) = 24 \text{ mmol}$ (Note: ½ as much $H_2PO_4^-$ as HPO_4^{2-})

Change in moles (due to NaOH):

$$n(NaOH) = m(NaOH)/M(NaOH) = 0.8 \text{ g/40 g mol}^{-1} = 20 \text{ mmol}$$

Final moles

$$n(H_2PO_4^-) = 48 - 20 = 28 \text{ mmol}$$

 $n(HPO_4^{2-}) = 24 + 20 = 44 \text{ mmol}$

So final conc's:

(*Note: 1 mmol = 1/1000 mol so the 1000's cancel*)

$$c(H_2PO_4^{-}) = n/V = 28/1000 \; mol \; / \; (400mL/1000mL/L) = 0.0700 \; mol L^{-1} \\ c(HPO_4^{-2-}) = n/V = 44/1000 \; mol \; / \; (400mL/1000mL/L) = 0.1100 \; mol L^{-1}$$

Therefore:

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$
$$= 7.21 + log (0.1100/0.0700) = 7.41$$

Check: if more base than acid, then pH is higher than pK_a!

And |pH| change| = 7.41 - 6.91 = 0.50 pH units

(c) Briefly explain why the pH change is so small.

The added base reacts with $H_2PO_4^-$ (the <u>acid</u> in the buffer) and, therefore, the concentration of H^+ (aq) is <u>almost</u> unchanged.

Question 3.

(a) Fill in the missing entries in the table below for an aqueous solution at 25 °C.

[H ⁺] /mol L ⁻¹	рН	[OH ⁻] /mol L ⁻¹	рОН
$= 10^{-pH}$	= 14 – p0H	$= 10^{-pOH}$	11.5
= 3.5×10^{-3}	= 2.5	= 3.2×10^{-12}	

or =
$$K_w/[H^+] = 10^{-14}/3.5 \times 10^{-3}$$

= 2.9×10^{-12} (so precise answers will depend on fig's carried & route taken)

- (b) The following questions refer to the titration curve shown below right.
 - (i) Estimate the pK_a of the substance being titrated.

$$pK_a = pH @ \frac{1}{2} equiv. vol \sim 8.7$$
 (any number a bit less than 9 would do)

(ii) What class of titration does this curve typify? Circle your answer in the list below.

strong base/strong acid

strong base/weak acid

weak base/strong acid

weak base/weak acid

(c) $pK_w = 11.0$ for superheated H₂O at 250 °C. Calculate the pH of neutral water at this temperature.

$$H_2O(l) \stackrel{K_w}{==} H^+(aq) + OH^-(aq)$$

At neutral pH:
$$[H^{\dagger}] = [OH^{-}]$$

In neutral
$$H_2O$$
: $[H^+] = [OH^-]$

so:
$$K_w = [H^+][OH^-] = [H^+]^2$$

and
$$pK_w = -\log([H^+]^2) = -2\log[H^+] = 2 \times pH$$

Hence:
$$pH = \frac{1}{2} pK_w = \frac{1}{2} \times 11.0 = 5.5$$
 for neutral water at 250 °C