به نام خدا

دانشکده مهندسی مکانیک

فاز سوم پروژه گیربکس

استاد درس: دکتر امیر نورانی

نگارش:

ريحانه نيكوبيان 99106747

ايمان شهروى 98106661

زمستان 1401

فهرست

3	1.چکیده
4	2.فرضيات
5	3.طراحی تسمه و پولی
13	4.طراحی سیستم زنجیر و چرخ زنجیر
20	5.محاسبات قيمت
21	6.منابع
2	7. بيوست

1.چکیده

در این فاز قصد داریم برای گیربکسی که در فاز های یک و دو طراحی کردیم، سیستم انتقال قدرت با تجهیزات انعطاف پذیر که شامل تسمه و پولی، زنجیر و چرخ زنجیر میباشد طراحی کنیم.در فاز های قبلی برخی فرضیات درباره پولی و چرخ زنجیر داشتیم که در قسمت فرضیات این پروژه به صورت کامل آورده شده است.

روند انتقال قدرت به سیستم ما به این گونه است که ابتدا توان از یک موتور الکتریکی S فاز از نوع 2000 (این فرض در صورت سوال پروژه یک مطرح شده بود) به چرخ زنجیر کوچک (S) وارد میشود و سپس توسط زنجیر به چرخ زنجیر بزرگ (S) که روی شفت اول ما قرار دارد انتقال پیدا میکند.این مقدار توان با توجه به داده های پروژه اول، برابر S میباشد. بخشی از این توان که برابر S میباشد توسط شفت سوم به پولی کوچک (S) داده شده و از آنجا توسط تسمه به پولی بزرگ (S) انتقال پیدا میکند که این توان را به سیستم رک و پینیونی که در فاز یک طراحی کردیم میدهد.

فرضیات (با ذکر محل آن ها در فاز های قبلی):

1از الکتروموتور سه فاز 2000 استفاده شده است.(داده صورت پروژه فاز اول قسمت ملزومات طراحی-مورد1

2-نسبت تبدیل زنجیر و چرخ زنجیر برابر 3.75 در نظر گرفته شده است.(فاز اول پروژه-صفحه3)

*توضیح درباره فرض بالا: همانطور که در کتاب شیگلی بیان شده از زنجیر میتوان برای نسبت تبدیل های بالا تا 1:6 استفاده کرد و در فاز اول نیر با توجه به سرعت شفت ها و همچنین توانی که میخواستیم روی چرخدنده ها اعمال شود، نسبت تبدیل بالا را انتخاب کردیم.

3-نسبت تبدیل پولی و تسمه برابر 4 در نظر گرفته شده است.(فاز اول پروژه-صفحه 17)

*توضیح درباره فرض بالا: در صورت پروژه فاز اول سرعت رک در بازه 18 تا 23 cm/s خواسته شده بود که ما مقدار میانگین ینی 20 cm/s را برای رک انتخاب کردیم. سپس در طراحی پینیون سیستم، قطر آن برابر 63mm بدست آمد.(صفحه 14-فاز اول پروژه)

در نتیجه چون $V=r\times\omega$ آنگاه سرعت دورانی پینیون که همان سرعت دورانی $V=r\times\omega$ در نتیجه چون $\omega=6.34$ rad/s

چون سرعت دورانی نسبتا پایین است(به علت پایین بودن سرعت رک) ما نسبت تبدیل را کمی بالا بردیم تا سرعت دورانی شفت سوم خیلی کم نشود و نسبت تبدیل بین شفت دو و سه زیاد نشود.این یک فرض مهندسی برای جلو گیری از اوردیزاین چرخ دنده G_6 روی شفت سوم بود.

سرعت پولی کوچک که به شفت سوم متصل است برابر 4=25.36 rad/s= 242.16rpm میشود.

4- سیستم زنجیر و چرخ زنجیر 11KW و سیستم پولی و تسمه 0.5KW توان را انتقال میدهند.(داده های فاز اول پروژه)

طراحی تسمه و پولی:

1-*از تسمه V شکل استفاده کرده ایم. از آنجایی که سیستم پولی و تسمه توان چندان زیادی منتقل نمیکند V شکل برای طراحی نمیکند V شکل برای طراحی با عمر بالا و قیمت پایین نیاز داریم ، از تسمه V شکل برای طراحی تسمه این سیستم استفاده میکنیم. مهم ترین دلیل این انتخاب عرض کمتر تسمه V شکل نسبت به تسمه تخت لست که فضای کمتری را اشغال میکند زیرا از این سیستم تنها برای انتقال توان به یک سیستم رک و پینیون آن هم با توان پایین استفاده میشود و معقول نیست که از یک سیستم پولی و تسمه بزرگ استفاده کنیم.

*همانطور که در فرضیات اشاره شده بود،موتور الکتریکی را یونیفرم در نظر میگیریم و چون دستگاه در خط مونتاژ یک کارخانه استفاده میشود و در مورد نحوه بارگذاری اطلاعات بیشتری در داده های اولیه ی پروژه نیست،ما برای اینکه کمی محافظه کارانه نیز عمل کرده باشیم، **شوک و ضربات را متوسط** در نظر میگیریم. ضریب طراحی را میانگین ضریب طراحی های معمول برای تسمه و پولی که برابر $\mathbf{n}_{d} = \mathbf{1.2}$ میباشد در نظر گرفته ایم. از داده های پروژه داشتیم که دستگاه دو شیفت 6 ساعته ینی $\mathbf{12}$ ساعت فعالیت دارد،بنابراین \mathbf{K}_{s} یا همان ضریب سرویس را برابر میانگین بازه ی داده شده در جدول ینی $\mathbf{K}_{s} = \mathbf{1.3}$ در نظر میگیریم.

	Source of Power		
Driven Machinery	Normal Torque Characteristic	High or Nonuniform Torque	
Uniform	1.0 to 1.2	1.1 to 1.3	
Light shock	1.1 to 1.3	1.2 to 1.4	
Medium shock	1.2 to 1.4	1.4 to 1.6	
Heavy shock	1.3 to 1.5	1.5 to 1.8	

جدول1-ضریب سرویس برای تسمه V شکل

ا توان مطلوب H_d را بدست میاوریم:

$$H_d = H_{\text{nom}} K_s n_{ds}$$

توان مطلوب : Hnom: توان نامی

 K_s : (فاكتور سرويس) ضريب تصحيح عملكرد

شریب طراحی *nd*:

 $0.5 \times 1.3 \times 1.2 = 0.78 \text{ KW}$ $\omega_{P1} = \omega_{shaft3} = 242.16 \text{ rpm}$

3- با توجه به جدول Be2 نوع تسمه را بر حسب توان مطلوب انتخاب میکنیم:

Chart Be 2. Selection of Cross-section of V belt

نمودار 1-انتخاب نوع تسمه بر حسب توان مطلوب و دور

با توجه به توان بدست آمده ما تسمه نوع A را انتخاب میکنیم.

4-از جدول Be3 مشخصات مربوط به تسمه نوع A را بدست میاوریم:

Table Be 3. Dimensions of standard cross-sections

Belt Section	Pitch width W _p (mm)	Nominal top width W (mm)	Nominal height T (mm)	Recommended minimum pitch diameter of pulley (mm)	Permissible minimum pitch diameter of pulley (mm)
Α	11	13	8	125	75
В	14	17	11	200	125
С	19	22	14	315	200
D	27	32	19	500	355
E	32	38	23	630	500

جدول2-مشخصات تایپ های متفاوت تسمه V شکل

حداقل قطر يولى كوچك: d=125 mm

با توجه به نسبت تبدیل که برابر 4 میباشد: D = 500 mm

5-فاصله ی بین مراکز شفت را بدست میاوریم:

$$D + d < C < 3(D + d)$$

ميانگين C = 1000 mm 625 < C <1875

6-زاویه نشست پولی ها و طول گام تسمه را بدست میاوریم:

$$\Theta_{d} = \pi - 2 \times \sin(\frac{D-d}{2 \times c}) = \pi - 2 \times \sin(\frac{500-125}{2 \times 1000}) = 2.77 \text{ rad} = 158.64^{\circ}$$

$$\Theta_{D} = \pi + 2 \times \sin(\frac{D-d}{2 \times c}) = \pi + 2 \times \sin(\frac{500-125}{2 \times 1000}) = 3.518 \text{ rad} = 201.61^{\circ}$$

$$L = \sqrt{4C^2 - (D - d)^2} + \frac{1}{2}(D\theta_D + d\theta_d)$$

$$L = \sqrt{4 \times 1000^2 - (500 - 125)^2} + \frac{1}{2} (500 \times 3.518 + 125 \times 2.77) = 3017.154 \text{ mm}$$

طول داخلی تسمه:

 $L_i = L - L_t$

Lt را از جدول زیر بدست میاوریم:

Table 17-11

Length Conversion Dimensions (Add the listed quantity to the inside circumference to obtain the pitch length in inches).

Belt section	A	В	C	D	Е
Quantity to be added	1.3	1.8	2.9	3.3	4.5

جدول3-مقداری که باید به طول داخلی اضافه شود تا طول گام تسمه بدست آید

 $L_i = 3017.154 - (1.3 \times 25.4) = 2984.134 = 117.485$ in

با استفاده از جدول زیر تسمه را انتخاب میکنیم:

Section	Circumference, in
A	26, 31, 33, 35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 66, 68, 71, 75, 78, 80, 85, 90, 96, 105, 112, 120 128
В	35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 65, 66, 68, 71, 75, 78, 79, 81, 83, 85, 90, 93, 97, 100, 103, 105, 112, 120, 128, 131, 136, 144, 158, 173, 180, 195, 210, 240, 270, 300
C	51, 60, 68, 75, 81, 85, 90, 96, 105, 112, 120, 128, 136, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420
D	120, 128, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660
E	180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660

جدول4-طول گام داخلی استاندارد برای تسمه ی V شکل

7- تعداد تسمه را مشخص میکنیم:

ابتدا Htab یعنی توان قابل انتقال را از روی جدول برای تسمه ی A میخوانیم:

Table Be \$ Power ratings in IW (P.) for A-Section V-Belts, 13 mm wide with 180 Arc of contact on smaller pulley 1.00 to 1.02 to 1.03 to 1.09 at 1.13 to 1.17 to 1.25 to 1.32 to 1.52 to 1.00 1.01 1.01 1.03 1.17 1.18 1.17 1.13 1.15 1.15 1.59 074 :111: 1.25 0.00 1941 2.07 1.73 0.00 0.04 191- 214 :214 0.00 : 0.04 : 0.08 0.13 : 0.12 : 0.14 : 0.17 : 0.18 0.00 . 0.00 0.00 bod. 0.01 0.01 0.35; 0.45 0.34; 0.56 0.67; 0.72 1.073 0.86 0.97 0.00 0.01; 0.01 0.07; 0.03 0.05; 0.04 0.05 0.05 0.05; 0.46; 0.52 0.59; 0.65 0.74 0.85 0.97 1.00; 0.00 0.01; 0.02 0.02; 0.03 0.04; 0.05 0.06; 0.07 0.07; 0.57; 0.59 0.66; 0.74 0.87; 0.96; 0.05; 0.00 0.01; 0.00 0.01; 0.02 0.04; 0.04 0.05; 0.06 0.07; 0.08 0.09; 0.37; 0.66 0.74 0.82 0.08; 0.06; 0.07; 0.08 0.09; 0.37; 0.66 0.74 0.82 0.08; 0.08; 0.09; 0.09; 0.00 0.01; 0.02 0.04; 0.05; 0.06 0.07; 0.08; 0.09; 0.37; 0.66 0.74; 0.82 0.08; 0.09; 0.02

A تایپ V تایپ V تایپ V تایپ کا تایپ

دور 242rpm مقداری بین دو مقدار داده شده در جدول برای سرعت های 200 و 300 دارد:

 $H_{tab} = 0.51 + 0.035 = 0.545$

 H_a (توان قابل انتقال تسمه): K_1K_2 H_{tab}

 $\colon K_{1}$

D-d			<i>K</i> ₁
C	θ, deg	vv	V Flat
0.00	180	1.00	0.75
0.10	174.3	0.99	0.76
0.20	166.5	0.97	0.78
0.30	162.7	0.96	0.79
0.40	156.9	0.94	0.80
0.50	151.0	0.93	0.81
0.60	145.1	0.91	0.83
0.70	139.0	0.89	0.84
0.80	132.8	0.87	0.85
0.90	126.5	0.85	0.85
1.00	120.0	0.82	0.82
1.10	113.3	0.80	0.80
1.20	106.3	0.77	0.77
1.30	98.9	0.73	0.73
1.40	91.1	0.70	0.70
1.50	82.8	0.65	0.65

جدول6-ضريب تصحيح زاويه تماس

$$\frac{D-d}{C} = \frac{375}{1000} \Rightarrow K_1 = 0.945$$
 (میان یابی)

 $: K_2 \\$

	Nominal Belt Length, in				
Length Factor	A Belts	B Belts	C Belts	D Belts	E Belts
0.85	Up to 35	Up to 46	Up to 75	Up to 128	
0.90	38-46	48-60	81-96	144-162	Up to 195
0.95	48-55	62-75	105-120	173-210	210-240
1.00	60-75	78–97	128-158	240	270-300
1.05	78-90	105-120	162-195	270-330	330-390
1.10	96-112	128-144	210-240	360-420	420-480
1.15	120 and up	158-180	270-300	480	540-600
1.20		195 and up	330 and up	540 and up	660

جدول7-ضريب تصحيح طول تسمه

$$K_2 = 1.1$$

 $H_a = 1.1 \times 0.945 \times 0.545 = 0.634 \text{ KW}$

$$N_b >= \frac{H_d}{H_a} = 1.2 \rightarrow$$
 تعداد تسمه برابر 2 میباشد.

Fc -8 و T را بدست میاوریم:

$$V = r\omega = \frac{125mm}{2} \times \frac{1 in}{25.4 mm} \times \frac{1 ft}{12 in} \times 242 \times \frac{2\pi}{1 rev} = 311.788 \frac{ft}{min}$$

$$K_{c} = 0.561 \rightarrow F_{C} = K_{C} \left(\frac{V}{1000}\right)^{2} \rightarrow F_{C} = 0.0545 \text{ lbf}$$

برای زاویه ی شیار پولی چون دیتای خاصی داده نشده،فرض را برمیانگین ینی 34 درجه میگذاریم:

α(°) زاویه شیار پولی	f ضریب اصطکاک
30	0.5
34	0.45
38	0.4

V جدول-6ضریب اصطکاک بر حسب زاویه ی شیار پولی برای تسمه ی

$$f' = \frac{f}{\sin\frac{\alpha}{2}} = 1.539$$

$$T = \frac{H_d}{\omega} = \frac{0.78 \times 1000}{242.16 \times \frac{2\pi}{60}} = 30.758 \text{ N.m} \Rightarrow 30.758 \text{ N.m}$$

$$F_1 - F_2 = \frac{2T}{d} = \frac{2 \times 15.379}{0.125} = 246 \times \frac{0.225 \, lbf}{1 \, N} = 55 \, lbf$$

$$\frac{F_1 - F_C}{F_2 - F_C} = \exp(f'\phi) \rightarrow \phi = \Theta_d \rightarrow \frac{F_1 - 0.0545}{F_2 - 0.0545} = 70.372 \text{ lbf}$$

$$F_1 = 55.847 \text{ lbf}$$

$$F_2 = 0.847 \text{ lbf}$$

9- عمر تسمه را محاسبه میکنیم:

$$T_1 = F_1 + (F_b)_1 = F_1 + \frac{K_b}{d}$$

$$T_2 = F_1 + (F_b)_2 = F_1 + \frac{K_b}{D}$$

$$T_1 = 55.847 + \frac{220}{\frac{125}{25.4}} = 100.551$$

$$T_2 = 55.847 + \frac{220}{\frac{500}{25.4}} = 67.023$$

Belt		to 10° Peaks		o 10 ¹⁰ Peaks	Minimum Sheave
Section	K	Ь	K	Ь	Diameter, in
A	674	11.089			3.0
В	1193	10.926			5.0
C	2038	11.173			8.5
D	4208	11.105			13.0
E	6061	11.100			21.6
3V	728	12.464	1062	10.153	2.65
5V	1654	12.593	2394	10.283	7.1
8V	3638	12.629	5253	10.319	12.5

جدول9-ثوابت مربوط به طول عمر تسمه

$$N_p = (\frac{K}{T})^b = N_{P1} = 1.45 \times 10^9$$

$$N_{P2} = 1.306 \times 10^{11}$$

عمر بی نہایت

طراحی سیستم زنجیر و چرخ زنجیر:

1- ابتدا توان مطلوب سیستم را بدست میاوریم:

 $H_d = H_{nom} K_s n_d$

با توجه به توضیحاتی که در قسمت قبل درباره ضریب طراحی و ضریب سرویس داده شد،از جدول مربوط به زنجیر داریم:

۲۴ ساعت	۱۰ ساعت	وع بار / زمان استفاده در شبانه روز	
1.2	1	يكنواخت	
1.4	1.2	ضربات ملايم	
1.7	1.4	ضربات سنگین	

جدول10-ضریب سرویس برای زنجیر

 $K_s = 1.3$, $n_d = 1.2$

 $H_d = 11 \times 1.3 \times 1.2 = 17.16 \text{ KW}$

2- تعیین تعداد دندانه:

*محدودیت فضایی خاصی بیان نشده و اگر تعداد دندانه ها کم باشد،طبق جزوه ما افزایش تغییرات سرعت و دامنه نوسان رولرها را روی چرخ زنجیر خواهیم داشت.بنابر این تعداد دندانه ها را عدد 21 میگیریم که هم از تغییرات سرعت و نوسان جلوگیری کنیم و هم از پدیده شکارچی جلوگیری کنیم.

 N_1 = 21 \rightarrow 3.75 \rightarrow N_2 =79 \rightarrow 3.75 \rightarrow N_2 =79

3- همانطور که در کلاس بیان شد،ابتدا فرض میکنیم زنجیر یک ردیفه است:

Number of Teeth on Driving Sprocket	K ₁ Pre-extreme Horsepower	K ₁ Post-extreme Horsepower
11	0.62	0.52
12	0.69	0.59
13	0.75	0.67
14	0.81	0.75
15	0.87	0.83
16	0.94	0.91
17	1.00	1.00
18	1.06	1.09
19	1.13	1.18
20	1.19	1.28
N	$(N_1/17)^{1.08}$	$(N_1/17)^{1.5}$

جدول11-ضریب تصحیح تعداد دندانه

برای تعیین K_1 در جدول بالا بجای N_1 گذاشته و میانگین دو مقدار را به عنوان مقدار نهایی انتخاب میکنیم:

$$K_1$$
 = 1.256 , K_1 =1.3145 \Rightarrow K_1 = 1.285

Numbe	er of Strands	K ₂
	1	1.0
	2	1.7
	3	2.5
	4	3.3
	5	3.9
	6	4.6
	8	6.0

جدول12-ضرایب تعداد رشته

 $K_2 = 1$

$$H_{\text{tab}} = \frac{H_d}{K_1 K_2} = \frac{17.16}{1.285 \times 1} = 13.354 \text{ KW} = 17.9 \text{ hp}$$

Sprocket Speed,				ANSI	Chain	Numbe	er		
rev/min	25	5	35	40		41	5	0	60
50	0.05	5	0.16	0.37	7	0.20	0.7	72	1.24
100	0.09)	0.29	0.69)	0.38	1.3	34	2.31
150	0.13	3*	0.41*	0.99)*	0.55*	1.9	92*	3.32
200	0.16	5*	0.54*	1.29)	0.71	2.5	50	4.30
300	0.23	3	0.78	1.85	5	1.02	3.0	61	6.20
400	0.30)*	1.01*	2.40)	1.32	4.0	67	8.03
500	0.37	7	1.24	2.93	3	1.61	5.1	71	9.81
600	0.44	1 %	1.46*	3.45	5*	1.90*	6.	72*	11.6
700	0.50		1.68	3.97	7	2.18	7.3	73	13.3
800	0.56	5*	1.89*	4.48	3*	2.46*	8.	71*	15.0
900	0.62		2.10	4.98		2.74	9.0		16.7
1000	0.68	3*	2.31*	5.48		3.01	10.7		18.3
1200	0.81		2.73	6.45		3.29	12.0		21.6
1400	0.93		3.13*	7.41		2.61	14.4		18.1
1600	1.05		3.53*	8.36		2.14	12.8		14.8
1800	1.16		3.93	8.96		1.79	10.	-	12.4
2000	1.27		4.32*	7.72		1.52*		23*	10.6
2500	1.56		5.28	5.51		1.10*		58*	7.57
3000	1.84		5.64	4.17		0.83	4.9		5.76
	1.0		1000000000	100 (100 (100 (100 (100 (100 (100 (100	9	0.05	-		
								Therman	•
Type A			Ту	ре В				Туре	c
Sprocket			Ту		SI Chai	in Num	ber	Туре	c
		80	Ту 100		51 Chai 140	n Num 160	ber 180	Туре 200	240
Sprocket Speed,	Туре А	80 2.88		AN					
Sprocket Speed, rev/min	Туре А		100	AN:	140	160	180	200	240
Sprocket Speed, rev/min 50	Туре А	2.88	100 5.52	ANS 120 9.33	140 14.4	160 20.9	180 28.9	200 38.4	240 61.8
Sprocket Speed, rev/min 50 100	Туре А	2.88 5.38	100 5.52 10.3	AN: 120 9.33 17.4	140 14.4 26.9	20.9 39.1	28.9 54.0	200 38.4 71.6	240 61.8 115
Sprocket Speed, rev/min 50 100 150 200 300	Туре А	2.88 5.38 7.75 10.0 14.5	100 5.52 10.3 14.8 19.2 27.7	9.33 17.4 25.1	14.0 14.4 26.9 38.8 50.3 72.4	20.9 39.1 56.3 72.9 105	28.9 54.0 77.7	200 38.4 71.6 103	240 61.8 115 166 215 310
Sprocket Speed, rev/min 50 100 150 200 300 400		2.88 5.38 7.75 10.0 14.5 18.7	100 5.52 10.3 14.8 19.2 27.7 35.9	9.33 17.4 25.1 32.5 46.8 60.6	14.0 14.4 26.9 38.8 50.3 72.4 93.8	20.9 39.1 56.3 72.9 105	28.9 54.0 77.7 101 145 188	200 38.4 71.6 103 134 193 249	240 61.8 115 166 215 310 359
Sprocket Speed, rev/min 50 100 150 200 300 400 500	Д	2.88 5.38 7.75 10.0 14.5 18.7 22.9	100 5.52 10.3 14.8 19.2 27.7 35.9 43.9	9.33 17.4 25.1 32.5 46.8 60.6 74.1	140 14.4 26.9 38.8 50.3 72.4 93.8	20.9 39.1 56.3 72.9 105 136 166	28.9 54.0 77.7 101 145 188 204	200 38.4 71.6 103 134 193 249 222	240 61.8 115 166 215 310
Sprocket Speed, rev/min 50 100 150 200 300 400 500 600		2.88 5.38 7.75 10.0 14.5 18.7 22.9 27.0	100 5.52 10.3 14.8 19.2 27.7 35.9 43.9 51.7	9.33 17.4 25.1 32.5 46.8 60.6 74.1 87.3	140 14.4 26.9 38.8 50.3 72.4 93.8 115 127	20.9 39.1 56.3 72.9 105 136 166 141	28.9 54.0 77.7 101 145 188 204 155	200 38.4 71.6 103 134 193 249 222 169	240 61.8 115 166 215 310 359
Sprocket Speed, rev/min 50 100 150 200 300 400 500 600 700	Д	2.88 5.38 7.75 10.0 14.5 18.7 22.9 27.0 31.0	100 5.52 10.3 14.8 19.2 27.7 35.9 43.9 51.7 59.4	9.33 17.4 25.1 32.5 46.8 60.6 74.1 87.3 89.0	140 14.4 26.9 38.8 50.3 72.4 93.8 115 127	20.9 39.1 56.3 72.9 105 136 166 141	28.9 54.0 77.7 101 145 188 204 155 123	200 38.4 71.6 103 134 193 249 222	240 61.8 115 166 215 310 359
\$procket \$peed, rev/min 50 100 150 200 300 400 500 600 700 800	Д	2.88 5.38 7.75 10.0 14.5 18.7 22.9 27.0 31.0 35.0	100 5.52 10.3 14.8 19.2 27.7 35.9 43.9 51.7 59.4 63.0	9.33 17.4 25.1 32.5 46.8 60.6 74.1 87.3 89.0 72.8	140 14.4 26.9 38.8 50.3 72.4 93.8 115 127 101 82.4	20.9 39.1 56.3 72.9 105 136 166 141 112 91.7	28.9 54.0 77.7 101 145 188 204 155 123 101	200 38.4 71.6 103 134 193 249 222 169	240 61.8 115 166 215 310 359
\$procket \$peed, rev/min 50 100 150 200 300 400 500 600 700 800 900	Д	2.88 5.38 7.75 10.0 14.5 18.7 22.9 27.0 31.0 35.0 39.9	100 5.52 10.3 14.8 19.2 27.7 35.9 43.9 51.7 59.4 63.0 52.8	9.33 17.4 25.1 32.5 46.8 60.6 74.1 87.3 89.0 72.8 61.0	140 14.4 26.9 38.8 50.3 72.4 93.8 115 127 101 82.4 69.1	20.9 39.1 56.3 72.9 105 136 166 141 112 91.7 76.8	28.9 54.0 77.7 101 145 188 204 155 123 101 84.4	200 38.4 71.6 103 134 193 249 222 169	240 61.8 115 166 215 310 359
\$procket \$peed, rev/min 50 100 150 200 300 400 500 600 700 800 900 1000	æ	2.88 5.38 7.75 10.0 14.5 18.7 22.9 27.0 31.0 35.0 39.9 37.7	100 5.52 10.3 14.8 19.2 27.7 35.9 43.9 51.7 59.4 63.0 52.8 45.0	9.33 17.4 25.1 32.5 46.8 60.6 74.1 87.3 89.0 72.8 61.0 52.1	140 14.4 26.9 38.8 50.3 72.4 93.8 115 127 101 82.4 69.1 59.0	20.9 39.1 56.3 72.9 105 136 166 141 112 91.7 76.8 65.6	28.9 54.0 77.7 101 145 188 204 155 123 101 84.4 72.1	200 38.4 71.6 103 134 193 249 222 169	240 61.8 115 166 215 310 359
\$procket \$peed, rev/min 50 100 150 200 300 400 500 600 700 800 900 1000 1200	æ	2.88 5.38 7.75 10.0 14.5 18.7 22.9 27.0 31.0 35.0 39.9 37.7 28.7	100 5.52 10.3 14.8 19.2 27.7 35.9 43.9 51.7 59.4 63.0 52.8 45.0 34.3	9.33 17.4 25.1 32.5 46.8 60.6 74.1 87.3 89.0 72.8 61.0 52.1 39.6	140 14.4 26.9 38.8 50.3 72.4 93.8 115 127 101 82.4 69.1 59.0 44.9	20.9 39.1 56.3 72.9 105 136 166 141 112 91.7 76.8 65.6 49.9	28.9 54.0 77.7 101 145 188 204 155 123 101 84.4	200 38.4 71.6 103 134 193 249 222 169	240 61.8 115 166 215 310 359
\$procket \$peed, rev/min 50 100 150 200 300 400 500 600 700 800 900 1000 1200 1400	æ	2.88 5.38 7.75 10.0 14.5 18.7 22.9 27.0 31.0 35.0 39.9 37.7 28.7 22.7	100 5.52 10.3 14.8 19.2 27.7 35.9 43.9 51.7 59.4 63.0 52.8 45.0 34.3 27.2	9.33 17.4 25.1 32.5 46.8 60.6 74.1 87.3 89.0 72.8 61.0 52.1 39.6 31.5	140 14.4 26.9 38.8 50.3 72.4 93.8 115 127 101 82.4 69.1 59.0 44.9 35.6	20.9 39.1 56.3 72.9 105 136 166 141 112 91.7 76.8 65.6	28.9 54.0 77.7 101 145 188 204 155 123 101 84.4 72.1	200 38.4 71.6 103 134 193 249 222 169	240 61.8 115 166 215 310 359
\$procket \$peed, rev/min 50 100 150 200 300 400 500 600 700 800 900 1000 1200 1400 1600	æ	2.88 5.38 7.75 10.0 14.5 18.7 22.9 27.0 31.0 35.0 39.9 37.7 28.7 22.7 18.6	100 5.52 10.3 14.8 19.2 27.7 35.9 43.9 51.7 59.4 63.0 52.8 45.0 34.3 27.2 22.3	9.33 17.4 25.1 32.5 46.8 60.6 74.1 87.3 89.0 72.8 61.0 52.1 39.6 31.5	140 14.4 26.9 38.8 50.3 72.4 93.8 115 127 101 82.4 69.1 59.0 44.9	20.9 39.1 56.3 72.9 105 136 166 141 112 91.7 76.8 65.6 49.9	28.9 54.0 77.7 101 145 188 204 155 123 101 84.4 72.1	200 38.4 71.6 103 134 193 249 222 169	240 61.8 115 166 215 310 359
\$procket \$peed, rev/min 50 100 150 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800	æ	2.88 5.38 7.75 10.0 14.5 18.7 22.9 27.0 31.0 35.0 39.9 37.7 28.7 22.7 18.6 15.6	100 5.52 10.3 14.8 19.2 27.7 35.9 43.9 51.7 59.4 63.0 52.8 45.0 34.3 27.2 22.3 18.7	9.33 17.4 25.1 32.5 46.8 60.6 74.1 87.3 89.0 72.8 61.0 52.1 39.6 31.5 25.8 21.6	140 14.4 26.9 38.8 50.3 72.4 93.8 115 127 101 82.4 69.1 59.0 44.9 35.6	20.9 39.1 56.3 72.9 105 136 166 141 112 91.7 76.8 65.6 49.9	28.9 54.0 77.7 101 145 188 204 155 123 101 84.4 72.1	200 38.4 71.6 103 134 193 249 222 169	240 61.8 115 166 215 310 359
\$procket \$peed, rev/min 50 100 150 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000	æ	2.88 5.38 7.75 10.0 14.5 18.7 22.9 27.0 31.0 35.0 39.9 37.7 28.7 22.7 18.6 15.6 13.3	100 5.52 10.3 14.8 19.2 27.7 35.9 43.9 51.7 59.4 63.0 52.8 45.0 34.3 27.2 22.3 18.7 15.9	9.33 17.4 25.1 32.5 46.8 60.6 74.1 87.3 89.0 72.8 61.0 52.1 39.6 31.5	140 14.4 26.9 38.8 50.3 72.4 93.8 115 127 101 82.4 69.1 59.0 44.9 35.6	20.9 39.1 56.3 72.9 105 136 166 141 112 91.7 76.8 65.6 49.9	28.9 54.0 77.7 101 145 188 204 155 123 101 84.4 72.1	200 38.4 71.6 103 134 193 249 222 169	240 61.8 115 166 215 310 359
\$procket \$peed, rev/min 50 100 150 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800	æ	2.88 5.38 7.75 10.0 14.5 18.7 22.9 27.0 31.0 35.0 39.9 37.7 28.7 22.7 18.6 15.6	100 5.52 10.3 14.8 19.2 27.7 35.9 43.9 51.7 59.4 63.0 52.8 45.0 34.3 27.2 22.3 18.7	9.33 17.4 25.1 32.5 46.8 60.6 74.1 87.3 89.0 72.8 61.0 52.1 39.6 31.5 25.8 21.6	140 14.4 26.9 38.8 50.3 72.4 93.8 115 127 101 82.4 69.1 59.0 44.9 35.6	20.9 39.1 56.3 72.9 105 136 166 141 112 91.7 76.8 65.6 49.9	28.9 54.0 77.7 101 145 188 204 155 123 101 84.4 72.1	200 38.4 71.6 103 134 193 249 222 169	240 61.8 115 166 215 310 359

جدول13-تایپ روانکاری و نوع زنجیر بر حسسب توان اسب بخار

همانطور که میبینیم در جدول برای دور 3000 چنین توانی وجود ندارد بنابراین باید تعداد ردیف را افزایش دهیم:

دور رديفه:

$$K_2 = 1.7$$

$$H_{\text{tab}} = \frac{H_d}{K_1 K_2} = \frac{17.16}{1.7 \times 1.285} = 7.855 \text{ KW} = 10.53 \text{ hp}$$

سه رديفه:

$$K_2 = 2.5$$

$$H_{\text{tab}} = \frac{H_d}{K_1 K_2} = \frac{17.16}{2.5 \times 1.285} = 5.34 \text{ KW} = 7.16 \text{ hp}$$

Sprocket Speed,				AN	SI Chai	n Num	ber		
rev/min		80	100	120	140	160	180	200	240
50	Type A	2.88	5.52	9.33	14.4	20.9	28.9	38.4	61.8
100		5.38	10.3	17.4	26.9	39.1	54.0	71.6	115
150		7.75	14.8	25.1	38.8	56.3	77.7	103	166
200		10.0	19.2	32.5	50.3	72.9	101	134	215
300		14.5	27.7	46.8	72.4	105	145	193	310
400		18.7	35.9	60.6	93.8	136	188	249	359
500	e B	22.9	43.9	74.1	115	166	204	222	0
600	Type	27.0	51.7	87.3	127	141	155	169	
700		31.0	59.4	89.0	101	112	123	0	
800		35.0	63.0	72.8	82.4	91.7	101		
900		39.9	52.8	61.0	69.1	76.8	84.4		
1000		37.7	45.0	52.1	59.0	65.6	72.1		
1200		28.7	34.3	39.6	44.9	49.9	0		
1400		22.7	27.2	31.5	35.6	0			
1600		18.6	22.3	25.8	0				
1800		15.6	18.7	21.6					
2000		13.3	15.9	0					
2500		9.56	0.40						
3000		7.25	0						
Type C					Тур	e C'			

این توان برای زنجیر تایپ C' موجود هست.مشکل اینجاست که تایپ C' تایپ متداولی نیست بنابر این برای اینکه بدانیم آیا طراحی زنجیر با این تایپ اصولی است یا خیر،نظر استاد را پرسیدیم که در زیر آورده شده است:

سلام و نشکر پیاپ ۲ مشاول نیست ثنا معمولا نمی تواند به حوان انتخاب "پیپنه" تحاظ شود. نیاز په مانحطات خاصی برای روانکاری دارد. با سینس امیر نورانی

Amir Nourani
Assistant Professor
Department of Mechanical Engineering
Sharif University of Technology, Tehran, Iran
http://sharif.ir/~nourani/

← Reply ← Forward

بنابر این از تایپ C' استفاده نکرده و بجای آن یک ردیف دیگر به زنجیر اضافه میکنیم،برای زنجیر $K_2 = 1$

$$H_{\text{tab}} = \frac{H_d}{K_1 K_2} = \frac{17.16}{1.285 \times 3.3} = 4.04 \text{ KW} = 5.424 \text{ hp}$$

Sprocket Speed,			ANSI Cho	iin Numbe	r	
rev/min	25	35	40	41	50	60
50	0.05	0.16	0.37	0.20	0.72	1.24
100	0.09	0.29	0.69	0.38	1.34	2.31
150	0.13*	0.41*	0.99*	0.55*	1.92*	3.32
200	0.16*	0.54*	1.29	0.71	2.50	4.30
300	0.23	0.78	1.85	1.02	3.61	6.20
400	0.30*	1.01*	2.40	1.32	4.67	8.03
500	0.37	1.24	2.93	1.61	5.71	9.81
600	0.44*	1.46*	3.45*	1.90*	6.72*	11.6
700	0.50	1.68	3.97	2.18	7.73	13.3
800	0.56*	1.89*	4.48*	2.46*	8.71*	15.0
900	0.62	2.10	4.98	2.74	9.69	16.7
1000	0.68*	2.31*	5.48	3.01	10.7	18.3
1200	0.81	2.73	6.45	3.29	12.6	21.6
1400	0.93*	3.13*	7.41	2.61	14.4	18.1
1600	1.05*	3.53*	8.36	2.14	12.8	14.8
1800	1.16	3.93	8.96	1.79	10.7	12.4
2000	1.27*	4.32*	7.72*	1.52*	9.23*	10.6
2500	1.56	5.28	5.51*	1.10*	6.58*	7.57
3000	1.84	5.64	4.17	0.83	4.98	5.76
Туре А		Тур	е В		Тур	e C

4-بنابراین زنجیر انتخابی ما ANSI35 typeB میباشد.

$$n_{\text{d}_{sub}} = \frac{K_1 K_2 H_{tab}}{K_S H_{nom}} = \frac{1.285 \times 3.3 \times 5.64}{1.3 \times 14.7453} = 1.247$$

ANSI Chain Iumber	Pitch, in (mm)	Width, in (mm)	Minimum Tensile Strength, Ibf (N)	Average Weight, Ibf/ft (N/m)	Roller Diameter, in (mm)	Multiple- Strand Spacing, in (mm)
25	0.250 (6.35)	0.125 (3.18)	780 (3 470)	0.09 (1.31)	0.130 (3.30)	0.252 (6.40)
35	0.375 (9.52)	0.188 (4.76)	1 760 (7 830)	0.21 (3.06)	0.200 (5.08)	0.399 (10.13)
41	0.500 (12.70)	0.25 (6.35)	1 500 (6 670)	0.25 (3.65)	0.306 (7.77)	_
40	0.500 (12.70)	0.312 (7.94)	3 130 (13 920)	0.42 (6.13)	0.312 (7.92)	0.566 (14.38)
50	0.625 (15.88)	0.375 (9.52)	4 880 (21 700)	0.69 (10.1)	0.400 (10.16)	0.713 (18.11)
60	0.750 (19.05)	0.500 (12.7)	7 030 (31 300)	1.00 (14.6)	0.469 (11.91)	0.897 (22.78)
80	1.000 (25.40)	0.625 (15.88)	12 500 (55 600)	1.71 (25.0)	0.625 (15.87)	1.153 (29.29)
100	1.250 (31.75)	0.750 (19.05)	19 500 (86 700)	2.58 (37.7)	0.750 (19.05)	1.409 (35.76)
120	1.500 (38.10)	1.000 (25.40)	28 000 (124 500)	3.87 (56.5)	0.875 (22.22)	1.789 (45.44)
140	1.750 (44.45)	1.000 (25.40)	38 000 (169 000)	4.95 (72.2)	1.000 (25.40)	1.924 (48.87)
160	2.000 (50.80)	1.250 (31.75)	50 000 (222 000)	6.61 (96.5)	1.125 (28.57)	2.305 (58.55)
180	2.250 (57.15)	1.406 (35.71)	63 000 (280 000)	9.06 (132.2)	1.406 (35.71)	2.592 (65.84)
200	2.500 (63.50)	1.500 (38.10)	78 000 (347 000)	10.96 (159.9)	1.562 (39.67)	2.817 (71.55)
240	3.00 (76.70)	1.875 (47.63)	112 000 (498 000)	16.4 (239)	1.875 (47.62)	3.458 (87.83)

جدول 14-مشخصات زنجيرهاي ANSI

5-بدست آوردن طول زنجير:

مقدار میانگین را برای فاصله شفت ها انتخاب میکنیمP=0.375 o 30P < C < 50P o : طول گام

$$C = 40P \rightarrow C = 40(0.375) = 15in$$

$$\frac{L}{p} \approx \frac{2C}{p} + \frac{N_1 + N_2}{2} + \frac{(N_2 - N_1)^2}{4\pi^2 C/p}$$

$$\frac{L}{p} = \frac{2 \times 15}{0.375} + \frac{21 + 79}{2} + \frac{(79 - 21)^2}{4\pi^2 \frac{C}{p}} = 80 + 50 + 2.13 = 132.13 \approx 132$$

131 زنجير و 1 قفل.

6- بدست آوردن قطر چرخ زنجيرها:

$$D_1 = \frac{P}{\sin(\frac{180}{N_1})} = \frac{0.375}{\sin(\frac{180}{21})} = 2.516 \text{ in } = 63.9 \text{ mm}$$

$$D_2 = \frac{P}{\sin(\frac{180}{N_2})} = \frac{0.375}{\sin(\frac{180}{79})} = 9.432 \text{ in} = 240 \text{ mm}$$

محاسبات قيمت:

طبق آخرین قیمت های امروز 22 دی ماه 1401 ، در سایت www.sanatbazar.com :

قيمت پولى 58000 = 5M-12.5cm تومان

قيمت پولى H500 كه قطرى برابر 50cm دارد = 276000 تومان

در سایت www.famcocorp.com در

یک رول 5 متری از تسمه ۷شکل تایپ A = 78000 تومان

در سایت www.sanatbazar.com در

چرخ زنجیر کوچک برای زنجیر 35: 34,800 تومان

چرخ زنجیر بزرگ برای زنجیر 35: 96000 تومان

زنجیر صنعتی چهار ردیفه تایپ A بسته سه متری : 1,960,000 تومان

بنابر این مجموع هزینه تجهیرات انعطاف پذیر برابر دومیلیون و پانصد و سه هزار تومان میباشد.

منابع

جزوه دکتر امیر نورانی کتاب طراحی اجزای شیگلی-ویرایش دهم

www.sanatbazar.com

www.famcocorp.com

پیوست ها 22

Table 17-15

Suggested Service Factors K_S for V-Belt Drives

	Source of Power				
Driven Machinery	Normal Torque Characteristic	High or Nonuniform Torque			
Uniform	1.0 to 1.2	1.1 to 1.3			
Light shock	1.1 to 1.3	1.2 to 1.4			
Medium shock	1.2 to 1.4	1.4 to 1.6			
Heavy shock	1.3 to 1.5	1.5 to 1.8			

Table 17-10

Inside Circumferences of Standard V Belts

Section	Circumference, in					
A	26, 31, 33, 35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 66, 68, 71, 75, 78, 80, 85, 90, 96, 105, 112, 120, 128					
В	35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 65, 66, 68, 71, 75, 78, 79, 81, 83, 85, 90, 93, 97, 100, 103, 105, 112, 120, 128, 131, 136, 144, 158, 173, 180, 195, 210, 240, 270, 300					
C	51, 60, 68, 75, 81, 85, 90, 96, 105, 112, 120, 128, 136, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420					
D	120, 128, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660					
E	180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660					

Table 17-11

Length Conversion Dimensions (Add the listed quantity to the inside circumference to obtain the pitch length in inches).

Belt section	A	В	C	D	Е
Quantity to be added	1.3	1.8	2.9	3.3	4.5

Table 17–13

Angle of Contact

Correction Factor K_1 for

VV* and V-Flat Drives

D-d			K ₁
C	θ , deg	VV	V Flat
0.00	180	1.00	0.75
0.10	174.3	0.99	0.76
0.20	166.5	0.97	0.78
0.30	162.7	0.96	0.79
0.40	156.9	0.94	0.80
0.50	151.0	0.93	0.81
0.60	145.1	0.91	0.83
0.70	139.0	0.89	0.84
0.80	132.8	0.87	0.85
0.90	126.5	0.85	0.85
1.00	120.0	0.82	0.82
1.10	113.3	0.80	0.80
1.20	106.3	0.77	0.77
1.30	98.9	0.73	0.73
1.40	91.1	0.70	0.70
1.50	82.8	0.65	0.65

^{*}A curve fit for the VV column in terms of θ is $K_1 = 0.143\ 543 + 0.007\ 468\ \theta - 0.000\ 015\ 052\ \theta^2$ in the range $90^{\circ} \le \theta \le 180^{\circ}$.

Table 17–14

Belt-Length Correction Factor K_2^*

Nominal Belt Length, in						
Length Factor	A Belts	B Belts	C Belts	D Belts	E Belts	
0.85	Up to 35	Up to 46	Up to 75	Up to 128		
0.90	38-46	48-60	81-96	144-162	Up to 195	
0.95	48-55	62-75	105-120	173-210	210-240	
1.00	60-75	78-97	128-158	240	270-300	
1.05	78-90	105-120	162-195	270-330	330-390	
1.10	96-112	128-144	210-240	360-420	420-480	
1.15	120 and up	158-180	270-300	480	540-600	
1.20		195 and up	330 and up	540 and up	660	

^{*}Multiply the rated horsepower per belt by this factor to obtain the corrected horsepower.

Table 17-16

Some V-Belt Parameters*

Belt Section	Kь	K _c
A	220	0.561
В	576	0.965
C	1 600	1.716
D	5 680	3.498
E	10 850	5.041
3V	230	0.425
5V	1098	1.217
8V	4830	3.288

$$H_d = H_{\text{nom}} K_s n_d$$

۲۴ ساعت	۱۰ ساعت	نوع بار / زمان استفاده در شبانه روز
1.2	1	يكنواخت
1.4	1.2	ضربات ملايم
1.7	1.4	ضربات سنگین

جدول مشخصات تسمه برای محاسبه طول عمر:

Belt		to 10° Peaks	10° to 10 ¹⁰ Force Peaks		Minimum Sheave
Section	K	Ь	K	Ь	Diameter, in
A	674	11.089			3.0
В	1193	10.926			5.0
C	2038	11.173			8.5
D	4208	11.105			13.0
E	6061	11.100			21.6
3V	728	12.464	1062	10.153	2.65
5V	1654	12.593	2394	10.283	7.1
8V	3638	12.629	5253	10.319	12.5

α(°) زاویه شیار پولی	<i>f</i> ضریب اصطکاک
30	0.5
34	0.45
38	0.4

جدول مشخصات زنجیر هایANSI :

ANSI Chain Number	Pitch, in (mm)	Width, in (mm)	Minimum Tensile Strength, Ibf (N)	Average Weight, Ibf/ft (N/m)	Roller Diameter, in (mm)	Multiple- Strand Spacing, in (mm)
25	0.250 (6.35)	0.125 (3.18)	780 (3 470)	0.09 (1.31)	0.130 (3.30)	0.252 (6.40)
35	0.375 (9.52)	0.188 (4.76)	1 760 (7 830)	0.21 (3.06)	0.200 (5.08)	0.399 (10.13)
41	0.500 (12.70)	0.25 (6.35)	1 500 (6 670)	0.25 (3.65)	0.306 (7.77)	_
40	0.500 (12.70)	0.312 (7.94)	3 130 (13 920)	0.42 (6.13)	0.312 (7.92)	0.566 (14.38)
50	0.625 (15.88)	0.375 (9.52)	4 880 (21 700)	0.69 (10.1)	0.400 (10.16)	0.713 (18.11)
60	0.750 (19.05)	0.500 (12.7)	7 030 (31 300)	1.00 (14.6)	0.469 (11.91)	0.897 (22.78)
80	1.000 (25.40)	0.625 (15.88)	12 500 (55 600)	1.71 (25.0)	0.625 (15.87)	1.153 (29.29)
100	1.250 (31.75)	0.750 (19.05)	19 500 (86 700)	2.58 (37.7)	0.750 (19.05)	1.409 (35.76)
120	1.500 (38.10)	1.000 (25.40)	28 000 (124 500)	3.87 (56.5)	0.875 (22.22)	1.789 (45.44)
140	1.750 (44.45)	1.000 (25.40)	38 000 (169 000)	4.95 (72.2)	1.000 (25.40)	1.924 (48.87)
160	2.000 (50.80)	1.250 (31.75)	50 000 (222 000)	6.61 (96.5)	1.125 (28.57)	2.305 (58.55)
180	2.250 (57.15)	1.406 (35.71)	63 000 (280 000)	9.06 (132.2)	1.406 (35.71)	2.592 (65.84)
200	2.500 (63.50)	1.500 (38.10)	78 000 (347 000)	10.96 (159.9)	1.562 (39.67)	2.817 (71.55)
240	3.00 (76.70)	1.875 (47.63)	112 000 (498 000)	16.4 (239)	1.875 (47.62)	3.458 (87.83)

Table 17-21

Single-Strand Sprocket Tooth Counts Available from One Supplier*

No.	Available Sprocket Tooth Counts
25	8-30, 32, 34, 35, 36, 40, 42, 45, 48, 54, 60, 64, 65, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
35	4-45, 48, 52, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
41	6-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
40	8-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
50	8-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
60	8-60, 62, 63, 64, 65, 66, 67, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120
80	8-60, 64, 65, 68, 70, 72, 76, 78, 80, 84, 90, 95, 96, 102, 112, 120
100	8-60, 64, 65, 67, 68, 70, 72, 74, 76, 80, 84, 90, 95, 96, 102, 112, 120
120	9-45, 46, 48, 50, 52, 54, 55, 57, 60, 64, 65, 67, 68, 70, 72, 76, 80, 84, 90, 96, 102, 112, 120
140	9-28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 45, 48, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 96
160	8-30, 32–36, 38, 40, 45, 46, 50, 52, 53, 54, 56, 57, 60, 62, 63, 64, 65, 66, 68, 70, 72, 73, 80, 84, 96
180	13-25, 28, 35, 39, 40, 45, 54, 60
200	9-30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 50, 51, 54, 56, 58, 59, 60, 63, 64, 65, 68, 70, 72
240	9-30, 32, 35, 36, 40, 44, 45, 48, 52, 54, 60

^{*}Morse Chain Company, Ithaca, NY, Type B hub sprockets.

Table 17-23

Multiple-Strand Factors, K_2

Number of Strands	K ₂
1	1.0
2	1.7
3	2.5
4	3.3
5	3.9
6	4.6
8	6.0

Table 17-20

Rated Horsepower Capacity of Single-Strand Single-Pitch Roller Chain for a 17-Tooth Sprocket (Continued)

Sprocket Speed,				AN	SI Chai	n Num	ber		
rev/min		80	100	120	140	160	180	200	240
50	Type A	2.88	5.52	9.33	14.4	20.9	28.9	38.4	61.8
100		5.38	10.3	17.4	26.9	39.1	54.0	71.6	115
150		7.75	14.8	25.1	38.8	56.3	77.7	103	166
200		10.0	19.2	32.5	50.3	72.9	101	134	215
300		14.5	27.7	46.8	72.4	105	145	193	310
400		18.7	35.9	60.6	93.8	136	188	249	359
500	e B	22.9	43.9	74.1	115	166	204	222	0
600	Type	27.0	51.7	87.3	127	141	155	169	
700		31.0	59.4	89.0	101	112	123	0	
800		35.0	63.0	72.8	82.4	91.7	101		
900		39.9	52.8	61.0	69.1	76.8	84.4		
1000		37.7	45.0	52.1	59.0	65.6	72.1		
1200		28.7	34.3	39.6	44.9	49.9	0		
1400		22.7	27.2	31.5	35.6	0			
1600		18.6	22.3	25.8	0				
1800		15.6	18.7	21.6					
2000		13.3	15.9	0					
2500		9.56	0.40						
3000		7.25	0						
Type C					Тур	e C'			

Note: Type A—manual or drip lubrication; type B—bath or disk lubrication; type C—oil-stream lubrication; type C'—type C, but this is a galling region; submit design to manufacturer for evaluation.

Table 17-22

Tooth Correction Factors, K₁

Number of Teeth on Driving Sprocket	K ₁ Pre-extreme Horsepower	K ₁ Post-extreme Horsepower				
11	0.62	0.52				
12	0.69	0.59				
13	0.75	0.67				
14	0.81	0.75				
15	0.87	0.83				
16	0.94	0.91				
17	1.00	1.00				
18	1.06	1.09				
19	1.13	1.18				
20	1.19	1.28				
N	$(N_1/17)^{1.08}$	$(N_1/17)^{1.5}$				

Table Be 1. Correction factors according to service (K_a)

Service	Type of driven Machine	Type of driving units										
		cage, synch	normal torqu hronous and s shunt wound c engine over	split phase d—multi	AC Motor: high torque, induction, single phase DC Motor: series and compound wound—single cylinder IC engine, Multi cylinder IC engine under 600 rpm—line shaft, clutches and brakes							
		Operationa	l hours per d	ay (h)	Operationa	l hours per d	ay (h)					
Light duty		0-10	10-16	16-24	0-10	10-16	16-24					
Light duty	Agitator, blower, exhauster, centrifugal pumps, compressor and fans up to 7.5 kW and light duty conveyor	1.0	1.1	1.2	1.1	1.2	1.3					
Medium duty	Belt conveyor, fans over 7.5 kW, generator, line shaft, machine tools, presses, positive displacement pumps and vibrating screen	1.1	1.2	1.3	1.2	1.3	1.4					
Heavy duty	Bucket elevator, hammer mill, piston pump, saw mill, exciter and wood working machinery	1.2	1.3	1.4	1.4	1.5	1.6					
Extra-heavy duty	Crusher, mill and hoist	1.3	1.4	1.5	1,5	1.6	1.8					

 Table Be 3. Dimensions of standard cross-sections

Belt Section	Pitch width W _p (mm)	Nominal top width W (mm)	Nominal height T (mm)	Recommended minimum pitch diameter of pulley (mm)				
Α	11	13	8	125	75			
В	14	17	11	200	125			
С	19	22	14	315	200			
D	27	32	19	500	355			
E	32	38	23	630	500			

and do lo

يت على مدين والدامت

	Speed of faster shipt			/h	10 E	Щ			7.4.		Additional power increment per belt for speed ratio of									
- 1	1.00	1:35	80	11.60	1 10	(2)31	IM	11)	111	1777.	1.00	0 1.0210	1.05 a	Land		1.176	1110	He		*****
- 1	-	: M4	-	-	-	11440	-		-	: 117	1.01	1.04	1.08		1.18	174	1.11	1157	1.534	100
- }	10		-	12101		11111	1.10	-	_	111111	- 1965	13 (11/2		-14444		111111		1::1::		1 9777
- 1	720	17.5%	0.64	1.55.11	10.71	-0.90	0.99	1131	AH	:: 116	118	1 arr	IN	13167	T.IL.	11285	11	10:	LAF	1100
J	960	1866	0.7	****	4.95		1.25		1.16		0.00	0.01	0.02	1901;	0.04	0.05	0.06	-0.07	0.08	: 247;
1	1440	0.0	1.04	444.14	131	1134	1.73	131	2.07		0.00	0.01	0.03	1004	0.05	0.66	0.08	0.09	0.10	77.42
)	2880	1130	1.67		2.14	Zie	2.76	1336	3.36		0.00	1004	0.04	0.021	016	9.19	0 12	0.14	0.16	0.31
1	100	0.11	0.13		: 0.14	6.0	0.16	; 0:20;	0.21		0.00	9,000	0.00	1.000	10.01	991	0.01	001	0.01	1001
4	200	111	0.22	*****	0.26	1971	0,33	0.4	0.39	9.12	0.00	com:	0.01	1001	10.01	:00C:	0.02	do1 .	0.02	0.03
	400	0.35	0.29	*****	0.37	0.33	0.46	431	0.55		0.00	0.00	0.01	59912	0.02	der!	0.02	0.01	0.03	90.64
	500	0.19	0.45		0.46		0.60	4.74	0.71		0.00	.000:	0.01	(abt	10 03	0.03	0.03	0.04	0.64	d43
	600	0.46	0.52		0.65	an:	0.72	199	1.00	45777	0.00	0.04	0.01	0.037	993	T UND	0.04	0.05	0.05	: (0,04)
- 1	700	0.5	0.59		0.74	944 :	0,04	Tos.	1.14		0.00	0.01	0.02	Mar.	0.03	0.04	0.05	0.06	0.07	mor:
	800	:0.571	0.66	4.74	0.82	:: 296 :	1.08	::KIC	1.27		0.00	1.01	0.02	0.03	0.04	9,05	0.06	0.08	0.09	0.09
	900	0.6)	0.72		0.90	1.08	1.11	1:30	1.41	1132	0.00	9.01	0.02	0.04	10.05	7.99	0.07	0.08	0.10	: 636
	1100	6.55	0.78	*****	0.98	: JUK.	1.29	13.0	1.54		0.00	: 0.01:	0.03	0.04	10.05	::037	0.08	0.09	0.81	: 0JZ:
	1200	9.74	0.54	2007174	1.06	1356	1.40	:1.57	1.66	*****	0.00	9,02	0.03	0.04	0.06	1100	0.09	0.10	0.82	:02%
- 1	1 300	11.83	0.95	1,08	1.21	11232	1.50	1133	1.78	1.93	0.00	0.02	0.03	0.05	0.07	1315	0.110	ait	0.13	1912
	1400	0.44	1.01	1138	1.28	1141	1.69	1.86	2.02		0.00	0.00	0.04	TABAL	0.07	364	0.11	0.12	0.114	: d16:
	1.500	0.92	1.07	1.23	1.33	::ta:	1.79	3.46	2.13	2.30	0.00	0.61	0.04	1008	0.06	0.10	0.82	0.14	0.85	D.18:
	1600	0.91	1.12	1:527.	1.42	6.75	1.89	7.06	2.24	12.40	0.00	0.02	0,04	JUCK.	8.09	0.11	0.13	0.15	0.17	0.19
	1700	101:	3,17	1.13	11.48	: 57.	1.97	7.05	2.35	2.34	0.00	: p.q2:	0.05	0.07	0.09	0.11	0.14	0.16	0.18	0.21
	1900	1.09	1.22	139	1.55	13241	2.07	2.36	2.46		0.00	50.03	0.05	: 9.07:	0.10	1.0.12	0.13	0.17	0.19	(0.22)
1.	2000	111	1.31	130	1.61	2.03	2.84	1205	2.56	1.77	0.00	:0.01:	0.05	0.04	0.10	: 013 :	0.15	0.18	0.20	0.23
- 1	2100	nii:	1.36	155	1.74	1116	231	1.53	2.75	2.87	0.00	0.03	0.05	:004:	0.11	0.14	0.16	0.19	0.22	0.24
	2200	121;	1.40	1.6D.	1.79	111	2.31	240	2.84	3.61	0.00	0,03	0.06	4.09	0.11	0.13	0.17	0.20	0.23	0.27
	2300	124:	1.45	1.63	1.85	:226	2.46	286	2.93	1.16	0.00	0.03	0.06	0.09	0.12	0.76	0.18	0.22	0.25	0.28
- 10	2400	1.28	1.48	1.0701	1.90	Tit	2.54	:7.77.1	3.02	1.126	0.00	9.031	0.07	: win:	0.13	0.16	0.19	0.23	0.26	: 0.29
- A Barrier	2500	LH	1.53	1.75	1.95	2174	2.61	2.83	3.09	12.341	0.00	0.01	9.07	0.10.5	0.14	10.17	0.20	0.24	0.27	0.30;
		137	1.60	11.84	2:06	2.499	2.74	7.92	3.17	3.4Z	0.00	.0.04	0.07	.031	0.14	× 6.17 ·	0.21	0.24	0.28	:031:
11.00	2800	C40	1.64	138	2.10	2.437	2.80	326	3.25	3.31	0.00	P.P4 :	0.07	331	0.15	19,18	0.22	925	0.29	:071:
- 1	2900	10	1.67	11911	2.15	12.60	2.86	13:12:	3.38	3.63	0.00	0.04	0.08	211	0.15	0.19	0.23	0.26	030	10,14
	1000	1.46	8.71	1135	2.19	122	2.92	110	1.45	117	0.00	9.04	0.08	iditi	0.16	10.2001	0.23	0.27.1	0.30	14.444.4
	1100	3.48.	1.74	11.98	2.23	12712	2.98	126	3.50	11271	0.00	4.06	0.08	18131	0.10	10.234	0.25	0.28:	831	0.37
3	1200	151	1.77	202	2.28	3215	3.03	122.1	3.56	11.83	0.00	10.00	0.09	aiii	0.17	0.22	0.26	0.30	033	(0.10
13	1300	133	1.80	2.05	2.31	111	3.07	132	3.61	3.14	0.00	0.66	0.09	ei:	0.18	-0.72	0.27	03111	0.36	72.40
1	1400	135,	1.82	710:	2.34	281	3.11	:100	3.65	:1.92:	0.00	170.65	0.09	: 814:	0.18	177	0.27	0.32	037	240
113	1500	157.	11.85	17337	2.38	771	3.10	1100	3.70	31-77;1	0.00	1995;	0.09	R14;	0.19	421.	0.28	(11)	0.38	3.5
100	1600	139	1,87	1114	2.41	1201	3.19	1120	3.73	1.00	0.00	0.05	0.10	B. E.	0.19	9.29-1	0.29	0.34	0.39	340
1.50	1790	141:	1.89	177.17	2.44	1 291	3.22	:120	3.77	1.04	0,00	20.0	0.10	:Kis:	0.20	:455::	0.30	:433::	0.40	0.45
- 1	1800	162	11.92	1.9	2.46	28	3.23	127	3.80	:1 00:	0.00	1:000	0.10	:210:	0.20	79.28	0.31	: 036:	0.41	13448
	1900	154	1.93	1127	2.49	170	3.28	1138	3.82	34.08	0,00	0.05	0.11	616	0.21	0.26	0.31	937;	0.42	9.0
- 1	1000	157	1.95	13191	2.51	1881	330	1878.	3.84	14.19:1	0.00	10.02	0.11	:pun:	0.22	:0.27	0.32	10.381	0.43	31.48
	100	1.67	1.96	118	2.53	3.65	332	1100	3.85	4.10	0.00	0.06	0.11	0.67	0.22	971	0.33	0.12	0.44	17,10
175		142	1.98	227	2.55	7,47	333	11.6)	3.85	14.19:	0.00	2006.	0.11	0.00	0.23	421	0.34	4.46	0.4.5	0,51
- 1		Leat	1.99	707	2.57	7.00	135	4	3.85	4.10	0.00	0.00	0.12	017	0.23	100	0.315	500	0.445	D32
1.52	1500	170	2.01	231	2.59	3.00	333	201	10000	4.07	7.77	*****	0.12	I SHE	0.24	*****	0.35		0.47	0.5
		616	2.01	1112322	2.60	1200	334		3.85	機能	0.00	10041	0.12	MI	0.24	0.30	0.16	0.02	0.48	034
1.00		TIE:	2.02	12011	2.60	1130	334		3.82	Mil	0.00	0.06	0.12	ith):	0.25	6.32	037	937	0.49	0.4
- 100		hīh!	2.02	131	2.60	1.10	133	1771	3.81	7194	0.00	0.04	0.13	1077		12555	038	*****	0.51	0.52
- 1	1900	271:	2.02	2311	2,60	1105	3.32	1100	3.79	31511	0.00	0.07	0.13	1000	0.26	10,32;	019	0.46	0.52	
		171:	2.02	13121	2.60	15002	3.32	4500	3.77	933	0.00	D007	0.14	0.00	0.27	MHI	0.19	1141	0.53	0.9
-	-	-1-11		1.7141	-	107794		******	2111	147,000	4.44	· SAME SI	4,14	110,000	441	4 44,34 6	0.40	ALSO II	0/34	1000