In []:

cd matlab

Fourier Transforms for Circuit and LTI Systems Analysis

Scope and Background Reading

This session we will apply what we have learned about Fourier transforms to some typical cicuit problems. After a short introduction, this session will be an examples class.

ft3

The material in this presentation and notes is based on Chapter 8 (Starting at Section 8.8) of <u>Steven T. Karris. Signals and Systems: with Matlab Computation and Simulink Modelling. 5th Edition.</u>
(https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?
ppg=304&doclD=3384197&tm=1518713030874) from the **Required Reading List**. I also used Chapter 5 of Benoit Boulet. Fundamentals of Signals and Systems (https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?ppg=212&doclD=3135971&tm=1518713118808) from the **Recommended Reading List**.

Agenda

- · The system function
- Examples

The System Function

System response from system impulse response

Recall that the convolution integral of a system with impulse response h(t) and input u(t) is

$$h(t) * u(t) = \int_{-\infty}^{\infty} h(t - \tau)u(\tau) d\tau.$$

We let

$$g(t) = h(t) * u(t)$$

Then by the time convolution property

$$h(t) * u(t) = g(t) \Leftrightarrow G(\omega) = H(\omega). U(\omega)$$

The System Function

We call $H(\omega)$ the system function.

We note that the system function $H(\omega)$ and the impulse response h(t) form the Fourier transform pair

$$h(t) \Leftrightarrow H(\omega)$$

Obtaining system response

If we know the impulse resonse h(t), we can compute the system response g(t) of any input u(t) by multiplying the Fourier transforms of $H(\omega)$ and $U(\omega)$ to obtain $G(\omega)$. Then we take the inverse Fourier transform of $G(\omega)$ to obtain the response g(t).

- 1. Transform $h(t) \rightarrow H(\omega)$
- 2. Transform $u(t) \rightarrow U(\omega)$
- 3. Compute $G(\omega) = H(\omega)$. $U(\omega)$
- 4. Find $\mathcal{F}^{-1}\left\{G(\omega)\right\} \to g(t)$

Examples

Example 1

Karris example 8.8: for the linear network shown below, the impulse response is $h(t) = 3e^{-2t}$. Use the Fourier transform to compute the response y(t) when the input $u(t) = 2[u_0(t) - u_0(t-3)]$. Verify the result with Matlab.

Matlab verification

```
In [36]:
syms t w
U1 = fourier(2*heaviside(t),t,w)

U1 =

2*pi*dirac(w) - 2i/w

In [37]:
H = fourier(3*exp(-2*t)*heaviside(t),t,w)

H =

3/(2 + w*1i)
```

```
In [38]:
```

```
Y1=simplify(H*U1)
```

Y1 =

```
3*pi*dirac(w) - 6i/(w*(2 + w*1i))
```

In [39]:

```
y1 = simplify(ifourier(Y1,w,t))
```

y1 =

```
(3*exp(-2*t)*(sign(t) + 1)*(exp(2*t) - 1))/2
```

Get y2

Substitute t-3 into t.

In [40]:

$$y2 = subs(y1,t,t-3)$$

y2 =

$$(3*exp(6 - 2*t)*(sign(t - 3) + 1)*(exp(2*t - 6) - 1))/2$$

In [41]:

$$y = y1 - y2$$

y =

$$(3*exp(-2*t)*(sign(t) + 1)*(exp(2*t) - 1))/2 - (3*exp(6 - 2*t)*(sign(t - 3) + 1)*(exp(2*t - 6) - 1))/2$$

Plot result

```
In [42]:
```

```
ezplot(y)
title('Solution to Example 1')
ylabel('y(y)')
xlabel('t [s]')
grid
```


See ft3 ex1.m (matlab/ft3 ex1.m)

Result is equivalent to:

```
y = 3*heaviside(t) - 3*heaviside(t - 3) + 3*heaviside(t - 3)*exp(6 - 2*t) - 3*exp(-2*t)*heaviside(t)
```

Which after gathering terms gives

$$y(t) = 3(1 - 3e^{-2t})u_0(t) - 3(1 - 3e^{-2(t-3)})u_0(t-3)$$

Example 2

Karris example 8.9: for the circuit shown below, use the Fourier transfrom method, and the system function $H(\omega)$ to compute $V_L(t)$. Assume $i_L(0^-)=0$. Verify the result with Matlab.

ft3

_		
<u> </u>		an.
Sol	uu	OH
		•

ſ	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

Matlab verification

```
In [43]:
syms t w
H = j*w/(j*w + 2)
н =
(w*1i)/(2 + w*1i)
In [44]:
Vin = fourier(5*exp(-3*t)*heaviside(t),t,w)
Vin =
5/(3 + w*1i)
In [45]:
Vout=simplify(H*Vin)
Vout =
(w*5i)/((2 + w*1i)*(3 + w*1i))
In [46]:
vout = simplify(ifourier(Vout,w,t))
vout =
-(5*\exp(-3*t)*(sign(t) + 1)*(2*\exp(t) - 3))/2
```

Plot result

```
In [47]:
```

```
ezplot(vout)
title('Solution to Example 2')
ylabel('v_{out}(t) [V]')
xlabel('t [s]')
grid
```


See ft3 ex2.m (matlab/ft3 ex2.m)

Result is equivalent to:

$$vout = -5*exp(-3*t)*heaviside(t)*(2*exp(t) - 3)$$

Which after gathering terms gives

$$v_{\text{out}} = 5 \left(3e^{-3t} - 2e^{-2t} \right) u_0(t)$$

Example 3

Karris example 8.10: for the linear network shown below, the input-output relationship is:

$$\frac{d}{dt}v_{\text{out}} + 4v_{\text{out}} = 10v_{\text{in}}$$

ft3

where $v_{\rm in}=3e^{-2t}$. Use the Fourier transform method, and the system function $H(\omega)$ to compute the output $v_{\rm out}$. Verify the result with Matlab.

Solution

Matlab verification

```
In [48]:
syms t w
H = 10/(j*w + 4)
н =
10/(4 + w*1i)
In [49]:
Vin = fourier(3*exp(-2*t)*heaviside(t),t,w)
Vin =
3/(2 + w*1i)
In [50]:
Vout=simplify(H*Vin)
Vout =
30/((2 + w*1i)*(4 + w*1i))
In [51]:
vout = simplify(ifourier(Vout,w,t))
vout =
(15*exp(-4*t)*(sign(t) + 1)*(exp(2*t) - 1))/2
```

Plot result

```
In [52]:
```

```
ezplot(vout)
title('Solution to Example 2')
ylabel('v_{out}(t) [V]')
xlabel('t [s]')
grid
```


See ft3 ex3.m (matlab/ft3 ex3.m)

Result is equiavlent to:

$$15*\exp(-4*t)*heaviside(t)*(\exp(2*t) - 1)$$

Which after gathering terms gives

$$v_{\text{out}}(t) = 15 \left(e^{-2t} \right) - e^{-4t} \right) u_0(t)$$

Example 4

Karris example 8.11: the voltage across a 1 Ω resistor is known to be $V_R(t) = 3e^{-2t}u_0(t)$. Compute the energy dissipated in the resistor for $0 < t < \infty$, and verify the result using Parseval's theorem. Verify the result with Matlab.

ft3

Note from tables of integrals (http://en.wikipedia.org/wiki/Lists of integrals)

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \arctan \frac{x}{a} + C.$$

\sim		
-	lutic	
-3/1		111

Matlab verification

In [53]:

syms t w

Calcuate energy from time function

```
In [54]:
Vr = 3*exp(-2*t)*heaviside(t);
R = 1;
Pr = Vr^2/R
Wr = int(Pr,t,0,inf)
Pr =
9*exp(-4*t)*heaviside(t)^2
Wr =
9/4
Calculate using Parseval's theorem
In [55]:
Fw = fourier(Vr,t,w)
Fw =
3/(2 + w*1i)
In [56]:
Fw2 = simplify(abs(Fw)^2)
Fw2 =
9/abs(2 + w*1i)^2
In [57]:
Wr=2/(2*pi)*int(Fw2,w,0,inf)
Wr =
(51607450253003931*pi)/72057594037927936
```

See ft3 ex4.m (matlab/ft3 ex4.m)