Systems Software

Lexical Analysis

Example

- Real:= position, rate, initial
- Position=initial + rate *60
- Translate the above statement using phases of compiler

Outline

- Role of lexical analyzer
- Specification of tokens
- Recognition of tokens
- Lexical analyzer generator
- Finite automata
- Design of lexical analyzer generator

The role of lexical analyzer

The role of lexical analyzer

- The lexical analyzer is the first phase of compiler.
- Its main task is to read the input characters and produce as output a sequence of tokens that the parser uses for syntax analysis.
- It may also perform secondary task at user interface.
- One such task stripping out from the source program comments and white space in the form of blanks, tab, and newline characters.

- Some lexical analyzer are divided into cascade of two phases, the first called scanning and second is "lexical analysis".
- The scanner is responsible for doing simple task while lexical analysis does the more complex task.

- Issues in Lexical Analysis:
- There are several reason for separating the analysis phase of compiling into lexical analysis and parsing:
- Simpler design is perhaps the most important consideration. The separation of lexical analysis often allows us to simplify one or other of these phases.
- Compiler efficiency is improved.
- Compiler portability is enhanced.

Token, Pattern and Lexemes.

- Token: Sequence of character having a collective meaning is known as token.
- Typical tokens are,
- 1) Identifiers 2) keywords 3) operators 4) special symbols
 5) constants
- Lexeme: The character sequence forming a token is called lexeme for token.
- Pattern: The set of rules by which set of string associate with single token is known as pattern

Token, Pattern and Lexemes...

Token	Lexeme	Pattern
id	x y n0	letter followed by letters and
		digits
number	3.14159, 0, 6.02e23	any numeric constant
If	If	if
relation	<,<=,=,<>,>=,>	< or <= or = or < > or >= or
		letter followed by letters & digit
Literal	"abc xyz"	anything but ", surrounded by "
		's

if(x < =5)

- Token − if (keyword),
- X (id),
- <= (relation),
- 5 (number)
- Lexeme if , x ,<=, 5

total = sum + 12.5

- Token total (id),
- = (relation),
- Sum (id),
- + (operator)
- 12.5 (num)
- Lexeme total, =, sum, +, 12.5

Attributes for tokens

- E = M * C ** 2
 - <id, pointer to symbol table entry for E>
 - <assign-op>
 - <id, pointer to symbol table entry for M>
 - <mult-op>
 - <id, pointer to symbol table entry for C>
 - <exp-op>
 - <number, integer value 2>

Lexical errors

- Some errors are out of power of lexical analyzer to recognize:
 - fi (a == f(x)) ...
- Scenario 1
- If the string fi encounters in C program for the first time in context.
- Scenario 2
- What if lexical analyzer unable to proceed because of no match of pattern.

Error recovery

- Panic mode: successive characters are ignored until we reach to a well formed token
- Delete one character from the remaining input
- Insert a missing character into the remaining input
- Replace a character by another character

Input buffering

- Sometimes lexical analyzer needs to look ahead some symbols to decide about the token to return
 - In C language: we need to look after -, = or < to decide what token to return
 - In Fortran: DO 5 I = 1.25
- We need to introduce a two buffer scheme to handle large look-aheads safely

```
if forward is at end of first half then begin
    reload second half;
    forward = forward+1;
end
else if forward is at end of second half then begin
    reload first half;\
    move forward to beginning of first half;
end
else
    forward = forward+1;
```

Sentinels


```
forward = forward+1
```

If forward= eof then begin

if forward is at end of first half then begin

reload second half;

forward = forward+1;

end

else if forward is at end of second half then begin

reload first half;\

move forward to beginning of first half;

end

else //eof within a buffer signifying end of input

terminate lexical analysis

Specification of tokens

- In theory of compilation regular expressions are used to formalize the specification of tokens
- Regular expressions are means for specifying regular languages
- Example:
 - Letter_(letter_ | digit)*
- Each regular expression is a pattern specifying the form of strings

Specification of tokens

- Strings and Languages:
- The term alphabet or character class denotes any finite set of symbols.
- Examples of symbols are letters and characters.
- e.g., set {0,1} is the binary alphabet.
- The term sentence and word are often used as synonyms for the term string.
- The length of a string s is written as |s| is the number of occurrences of symbols in s.
- e.g., string "banana" is of length six.

Specification of tokens

- The empty string denoted by ε length of empty string is zero.
- The term language denotes any set of strings over some fixed alphabet.
- e.g., $\{\epsilon\}$ set containing only empty string is language under φ .
- If x and y are strings, then the concatenation of x and y (written as xy) is the string formed by appending y to x. x = dog and y = house; then xy is doghouse.

TERM	DEFINITION	
Prefix of s	A string obtained by removing zero or more trailing symbols of string	
	s; e.g., ban is a prefix of banana.	
Suffix of s	A string formed by deleting zero or more of the leading symbols of s;	
	e.g., nana is a suffix of banana.	
Substring of s	A string obtained by deleting a prefix and a suffix from s; e.g., nan is a	
	substring of banana.	
Proper prefix, suffix,	Any nonempty string x that is a prefix, suffix or substring of s that s	
or substring of s	<> x.	
Subsequence of s	Any string formed by deleting zero or more not necessarily contiguous	
	symbols from s; e.g., baaa is a subsequence of banana.	

Terms for parts of a string

Operations on Languages

- There are several operations that can be applied to languages:
- Let L be the set $\{A, B, ..., Z, a, b, ..., z\}$
- Let *D* be the set {0,1, ..., 9}
- L is alphabet consist of upper and lower case letters.
- D is the alphabet set of 10 digits.

Operations on Languages

- Some examples of new languages created from L and D by applying some operations
- $L \cup D$
- LD
- L^4
- L*
- $L(L \cup D)$
- \bullet D^+

OPERATION	DEFINITION
Union of L and M. written L v M	$L \upsilon M = \{ s \mid s \text{ is in } L \text{ or } s \text{ is in } M \}$
Concatenation of L and M. written LM	LM = { st s is in L and t is in M }
Kleene closure of L. written L*	L* denotes "zero or more concatenation of" L.
Positive closure of L. written L+	L+ denotes "one or more Concatenation of" L.

Regular Expression

- It allows defining the sets to form tokens precisely.
- e.g., letter (letter | digit) *
- Defines a Pascal identifier which says that the identifier is formed by a letter followed by zero or more letters or digits.
- A regular expression is built up out of simpler regular expressions using a set of defining rules.
- Each regular expression r denotes a language L(r).

Regular expressions

- ϵ is a regular expression, $L(\epsilon) = \{\epsilon\}$
- If a is a symbol in Σ then a is a regular expression, $L(a) = \{a\}$
- (r) | (s) is a regular expression denoting the language L(r)
 ∪ L(s)
- (r)(s) is a regular expression denoting the language L(r)L(s)
- (r)* is a regular expression denoting (L(r))*
- (r) is a regular expression denting L(r)

- The regular expression (a|b)(a|b) denotes which language?
- The regular expression $a|a^*b$ denotes which language?

AXIOM	DESCRIPTION
r s=s r	is commutative
$\mathbf{r} (\mathbf{s} \mathbf{t}) = (\mathbf{r} \mathbf{s}) \mathbf{t}$	is associative
(rs)t = r(st)	Concatenation is associative
r(s t) = rs rt	Concatenation distributes over
(s t)r = sr tr	

Algebraic Properties of regular expressions

Regular definitions

We may wish to give names to regular expression and to define regular expressions using these names as if they were symbols.

If \sum is an alphabet of basic symbols, then a regular definition is a sequence of definitions of the form

d1 -> r1

d2 -> r2

. . .

 $dn \rightarrow rn$

Where each d_i is a distinct name, and each r_i is a regular expression

• Example:

```
letter_ -> A | B | ... | Z | a | b | ... | Z | _ digit -> 0 | 1 | ... | 9 id -> letter_ (letter_ | digit)*
```

Extensions

- One or more instances: (r)+
- Zero of one instances: r?
- Character classes: [abc]
- Example:
 - letter_ -> [A-Za-z_]
 - digit -> [0-9]
 - id -> letter_(letter|digit)*

• Unsigned numbers in pascal are strings such as,5280,39.37,1243.25E+2,6.33E5

- Unsigned numbers in pascal are strings such as 5280,39.37,6.336E4 or 1.894E-4
- $digit \to 0|1| ... |9$
- digits → digit digit*
- $fraction \rightarrow .digits \mid \in$
- $Exp_{fraction} \rightarrow (E(+|-|\in)digits)| \in$
- $num \rightarrow digits \ fraction \ Exp_{fraction}$

- Notational shorthands
- $digit \to 0|1| ... |9$
- $digits \rightarrow digit^+$
- $fraction \rightarrow (.digits)$?
- $Exp_{fraction} \rightarrow (E(+|-)? digits)?$
- $num \rightarrow digits \ fraction \ Exp_{fraction}$

Recognition of tokens

• Starting point is the language grammar to understand the tokens:

```
stmt -> if expr then stmt
| if expr then stmt else stmt
| \alpha
expr -> term relop term
| term
term -> id
| number
```

Recognition of tokens (cont.)

• The next step is to formalize the patterns:

```
digit -> [0-9]
Digits -> digit+
number -> digit(.digits)? (E[+-]? Digit)?
letter -> [A-Za-z_]
id -> letter (letter|digit)*
If -> if
Then -> then
Else -> else
Relop -> < | > | <= | >= | = | <>
```

We also need to handle whitespaces:

```
ws -> (blank | tab | newline)+
```

Transition Diagram

- It is intermediate steps in the construction of a lexical analyzer
- It depicts the actions that take place when a lexical analyzer is called by parser to get next token.
- consider input buffer with lexeme_begin points to the character.
- Transition diagram is used to keep the information about characters that seen as forward.

Transition diagrams

Transition diagram for relop

Transition diagrams (cont.)

Transition diagram for reserved words and identifiers

Transition diagrams (cont.)

Transition diagram for whitespace

Lexical Analyzer Generator - Lex

Structure of Lex programs

```
declarations
%%
translation rules
%%
auxiliary functions
```

Example

```
% {
   /* definitions of manifest constants
   LT, LE, EQ, NE, GT, GE,
    IF, THEN, ELSE, ID, NUMBER, RELOP */
%}
/* regular definitions
delim
             \lceil t \rceil
             {delim}+
WS
letter
             [A-Za-z]
digit
             [0-9]
id
             {letter}({letter}|{digit})*
number
             \{digit\}+(\.\{digit\}+)?(E[+-]?\{digit\}+)?
%%
             {/* no action and no return */}
{ws}
if
             {return(IF);}
then
             {return(THEN);}
else
             {return(ELSE);}
{id}
             {yylval = (int) installID(); return(ID); }
             {yylval = (int) installNum(); return(NUMBER);}
{number}
```

```
Int installID() {/* funtion to install the
    lexeme, whose first character is
    pointed to by yytext, and whose
    length is yyleng, into the symbol
    table and return a pointer thereto
    */
}

Int installNum() { /* similar to
    installID, but puts numerical
    constants into a separate table */
}
```

Finite Automata

- Regular expressions = specification
- Finite automata = implementation
- A finite automaton consists of
 - An input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions state \rightarrow^{input} state

Finite Automata

Transition

$$s_1 \rightarrow^a s_2$$

Is read

In state s_1 on input "a" go to state s_2

- If end of input
 - If in accepting state => accept, othewise => reject
- If no transition possible => reject

Finite Automata State Graphs

A state

· The start state

An accepting state

· A transition

A Simple Example • A finite automaton that accepts only "1"

• A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state

Another Simple Example

• A finite automaton accepting any number of 1's followed

- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: {0,1}

• Check that "1110" is accepted but "110..." is not

And Another Example • Alphabet {0,1}

- What language does this recognize?

And Another Example

• Alphabet still { 0, 1 }

- The operation of the automaton is not completely defined by the input
 - On input "11" the automaton could be in either state

Epsilon Moves• Another kind of transition: ε-moves

 Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
- Finite automata have finite memory
 - Need only to encode the current state

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

An NFA can get into multiple states

- Input: 1 0 1
- · Rule: NFA accepts if it can get in a final state

NFA vs. DFA (1)

 NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are easier to implement
 - There are no choices to consider

NFA vs. DFA (2)

• For a given language the NFA can be simpler than the DFA

· DFA can be exponentially larger than NFA

Regular Expressions to Finite

Automata

High-level sketch

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp A

• For ε

For input a

Regular Expressions to NFA (2)

For AB

For A | B

Regular Expressions to NFA (3)

• For A*

Examples

- Consider the regular expression
- a|(b)*
- aa*|bb*
- (ab)*a|b
- (0|1)*1

Example of RegExp -> NFA conversion

Consider the regular expression

$$(1 | 0)*1$$

• The NFA is

Next

NFA to DFA. The Trick

- Simulate the NFA
- Each state of resulting DFA
 - = a non-empty subset of states of the NFA
- Start state
 - = the set of NFA states reachable through ε-moves from NFA start state
- Add a transition $S \rightarrow a S'$ to DFA iff
 - S' is the set of NFA states reachable from the states in S after seeing the input a
 - considering ε-moves as well

NFA -> DFA Example

