Übungen zu Algorithmen und Programmentwicklung für die Biologische Chemie

Michael T. Wolfinger (based on slides by Sven Findeiß)

Research Group Bioinformatics and Computational Biology Department for Theoretical Chemistry Währingerstrasse 17, 1090 Vienna, Austria

Sommersemester 2025

Dynamic Progamming

- Solving recursion equations (with overlapping subproblems) efficiently
- Optimization employing 'optimal substructure'

Example 1: Fibonacci Series

The Fibonacci Series of numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, ... can be defined recursively:

```
def fib(n):
     if n \le 2: f = 1
     else: f = fib(n-1) + fib(n-2)
     return f
Example:
                                                                fib 2
       fib 3
                 fib 2
                                                  fib 1
                          fib 2
                                   fib 1
                                         fib 2
     fib 2 fib 1
```


Building the solution space we realize:

- **1** The run-time of the recursion scales exponentially $(\sim 2^n)$ with the input size.
- 2 Many (sub)solutions are calculated over and over again (5 \times fib 2, 3 \times fib 3, 2 \times fib 4).
- 3 Avoid redundancy: tabulate subsolutions!

Building the solution space we realize:

- **1** The run-time of the recursion scales exponentially $(\sim 2^n)$ with the input size.
- 2 Many (sub)solutions are calculated over and over again (5 \times fib 2, 3 \times fib 3, 2 \times fib 4).
- 3 Avoid redundancy: tabulate subsolutions!

Building the solution space we realize:

- **1** The run-time of the recursion scales exponentially $(\sim 2^n)$ with the input size.
- 2 Many (sub)solutions are calculated over and over again (5 \times fib 2, 3 \times fib 3, 2 \times fib 4).
- 3 Avoid redundancy: tabulate subsolutions!

Dynamic Programming = Recursion + Memoization

Dynamic Programming = Recursion + Memoization

```
memo = \{\}
                                   def fib(n):
def fib(n):
                                        if n in memo:
    if n \le 2:
                                            return memo[n]
        f = 1
                                        elif n \leq 2:
    else:
                                            f = 1
        f = fib(n-1)
                                        else:
             + fib(n-2)
                                            f = fib(n-1)
    return f
                                                + fib(n-2)
                                       memo[n] = f
                                        return f
```

Stop and think

- How much faster can one compute fib using DP?
- How much space do we need for DP-fib?

Dynamic Programming = Recursion + Memoization

```
memo = \{\}
                                   def fib(n):
def fib(n):
                                       if n in memo:
    if n \le 2:
                                            return memo[n]
       f = 1
                                       elif n \leq 2:
    else:
                                            f = 1
        f = fib(n-1)
                                       else:
             + fib(n-2)
                                            f = fib(n-1)
                                                + fib(n-2)
    return f
                                       memo[n] = f
                                       return f
```

Stop and think:

- How much faster can one compute fib using DP?
- How much space do we need for DP-fib?

Recursive (top-down) vs. iterative (bottom-up) Fibonacci

```
memo = \{\}
                               memo = \{\}
def fib(n):
                               def fib(n):
    if n in memo:
        return memo[n]
                                    for i in range(1,n+1):
    elif n \le 2:
                                        if i <= 2:
                                            f = 1
        f = 1
    else:
                                        else:
        f = fib(n-1)
                                            f = memo[i-1]
             + fib(n-2)
                                                 + memo[i-2]
                                        memo[i] = f
    memo[n] = f
    return f
                                    return memo[n]
```

OP = Order + Tabulation (Reuse)

Recursive (top-down) vs. iterative (bottom-up) Fibonacci

```
memo = \{\}
                               memo = \{\}
def fib(n):
                               def fib(n):
    if n in memo:
        return memo[n]
                                    for i in range(1,n+1):
    elif n \le 2:
                                        if i <= 2:
                                            f = 1
        f = 1
    else:
                                        else:
        f = fib(n-1)
                                            f = memo[i-1]
             + fib(n-2)
                                                 + memo[i-2]
                                        memo[i] = f
    memo[n] = f
    return f
                                    return memo[n]
```

DP = Order + Tabulation (Reuse)

Optimization by DP: Levenshtein Distance

Definition: Levenshtein distance of strings a and b := minimal cost of transforming a into b by edit operations "replace", "insert", "delete" each of cost 1.

Example: AUTO \Rightarrow RAD, MOTORRAD \Rightarrow FAHRRAD

As edit sequence:

$$\texttt{AUTO} \ \to \ \texttt{AUT} \ \to \ \texttt{AUD} \ \to \ \texttt{AD} \ \to \ \texttt{RAD} \tag{4}$$

$$ext{MOTORRAD}
ightarrow ext{MOTHRRAD}
ightarrow ext{MOAHRRAD}
ightarrow ext{MFAHRRAD}
ightarrow ext{FAHRRAD}$$

or as alignment: -AUTO MOTORRAD

RA-D- -FAHRRAD

NOTE: "Levenshtein Distance" has optimal substructure:

If -AUTO is optimal, then it's subsolution -AUT (of
RA-DRA-D
subproblem 'AUT' vs 'RAD') must be optimal

Optimization by DP: Levenshtein Distance

Definition: Levenshtein distance of strings a and b := minimal cost of transforming a into b by edit operations "replace", "insert", "delete" each of cost 1.

Example: AUTO \Rightarrow RAD, MOTORRAD \Rightarrow FAHRRAD

As edit sequence:

$$\texttt{AUTO} \ \to \ \texttt{AUT} \ \to \ \texttt{AUD} \ \to \ \texttt{AD} \ \to \ \texttt{RAD} \tag{4}$$

$$ext{MOTORRAD}
ightarrow ext{MOTHRRAD}
ightarrow ext{MOAHRRAD}
ightarrow ext{MFAHRRAD}
ightarrow ext{FAHRRAD}$$

or as alignment: -AUTO MOTORRAD

RA-D- -FAHRRAD

NOTE: "Levenshtein Distance" has optimal substructure:

If -AUTO is optimal, then it's subsolution -AUT (of
RA-DRA-D
subproblem 'AUT' vs. 'RAD') must be optimal.

Calculating the Levenshtein distance of a and b

- build n × m-matrix D
 where: D_{ij} := distance of a₁,..., a_i and b₁,..., b_j
- calculate each D_{ij} from optimal partial solutions

Recursion:

$$D_{0,0} = 0; D_{0,j} = j; D_{i,0} = i$$

$$D_{i,j} = min \left\{ egin{array}{ll} D_{i-1,j-1} + egin{array}{ll} 1 & ext{if } a_i
eq b_j \ 0 & ext{otherwise} \ D_{i-1,j} + 1 \ D_{i,j-1} + 1 \end{array}
ight.$$

$$D_{0,0} = 0; D_{0,j} = j; D_{i,0} = i$$

$$D_{i,j} = min \begin{cases} D_{i-1,j-1} + \begin{cases} 1 & \text{if } a_i \neq b_j \\ 0 & \text{otherwise} \end{cases} \\ D_{i-1,j} + 1 \\ D_{i,i-1} + 1 \end{cases}$$

	j	0	1	2	3
i		-	R	Α	D
0	-	0	1	2	3
1	Α	1			
2	U	2			
2 3 4	T	3			
4	0	4			

$$D_{0,0} = 0; D_{0,j} = j; D_{i,0} = i$$

$$D_{i,j} = min \begin{cases} D_{i-1,j-1} + \begin{cases} 1 & \text{if } a_i \neq b_j \\ 0 & \text{otherwise} \end{cases} \\ D_{i-1,j} + 1 \\ D_{i,i-1} + 1 \end{cases}$$

	j	0	1	2	3
i		-	R	Α	D
0	-	0	1	2	3
1	Α	1			
1 2 3	U	2			
3	Т	3			
4	0	4			

	j	0	1	2	3
i		-	R	Α	D
0	-	0	1	2	3
1	Α	1	1	1	2
2	U	2	2	2	2
3	Т	3	3	3	3
4	0	4	4	4	4

$$D_{0,0} = 0; D_{0,j} = j; D_{i,0} = i$$

$$D_{i,j} = min \left\{ egin{array}{ll} D_{i-1,j-1} + egin{array}{ll} 1 & ext{if } a_i
eq b_j \\ 0 & ext{otherwise} \\ D_{i-1,j} + 1 & & \\ D_{i,j-1} + 1 & & \end{array}
ight.$$

	j	0	1	2	3
i		-	R	Α	D
0	-	0	1	2	3
1	Α	1			
2	U	2			
1 2 3 4	Т	3			
4	0	4			

	j	0	1	2	3
i		-	R	Α	D
0	-	0	1	2	3
1	Α	1	1	1	2
2	U	2	2	2	2
3	Т	3	3	3	3
4	0	4	4	4	4

 $D_{n,m}$ contains the distance of a and b.

$$D_{0,0} = 0; D_{0,j} = j; D_{i,0} = i$$

$$D_{i,j} = min \left\{ egin{array}{ll} D_{i-1,j-1} + egin{array}{ll} 1 & ext{if } a_i
eq b_j \ 0 & ext{otherwise} \ D_{i-1,j} + 1 \ D_{i,j-1} + 1 \end{array}
ight.$$

	j	0	1	2	3
i		-	R	Α	D
0	-	0	1	2	3
1	Α	1			
2	U	2			
3	T	3			
4	0	4			

j	0	1	2	3
	-	R	Α	D
-	0	1	2	3
Α	1	1	1	2
U	2	2	2	2
Т	3	3	3	3
0	4	4	4	4
	T	- 0 A 1 U 2 T 3	- R - 0 1 A 1 1 U 2 2 T 3 3	- R A - 0 1 2 A 1 1 1 U 2 2 2 T 3 3 3

 $D_{n,m}$ contains the distance of a and b.

Tracing back the optimal choices from $D_{n,m}$ to $D_{0,0}$ yields *some* optimum alignment of a and b.

Assignment A3: Optimization by DP

Go to:

https://github.com/TBIAPBC/APBC2025/tree/master/A3

Happy hacking!