Math 65 HW 3 Thursday, May 19, 2016

$$6.4.\{1,\ 2,\ 8,\ 9,\ 15,\ 27\},\ 6.5.\{3,\ 7,\ 14,\ 22\}$$

6.4.1 In Exercises 1-12, determine whether *T* is a linear transformation.

 $T: M_{22} \rightarrow M_{22}$ defined by

$$T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+b & 0 \\ 0 & c+d \end{bmatrix}$$

1

6.4.2 In Exercises 1-12, determine whether *T* is a linear transformation.

 $T: M_{22} \rightarrow M_{22}$ defined by

$$\begin{bmatrix} T \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} 1 & w - z \\ x - y & 1 \end{bmatrix}$$

6.4.8 In Exercises 1-12, determine whether *T* is a linear transformation.

 $T: \mathscr{P}_2 \to \mathscr{P}_2$ defined by $T(a+bx+cx^2) = (a+1)+(b+1)x+(c+1)x^2$

6.4.9 In Exercises 1-12, determine whether *T* is a linear transformation.

 $T: \mathscr{P}_2 \to \mathscr{P}_2$ defined by $T(a+bx+cx^2) = a+b(x+1)+b(x+1)^2$

6.4.15 Let $T: \mathbb{R}^2 \to \mathscr{P}_2$ be a linear transformation for which

$$T\begin{bmatrix}1\\1\end{bmatrix} = 1 - 2x$$
 and $T\begin{bmatrix}3\\-1\end{bmatrix} = x + 2x^2$

Find
$$T \begin{bmatrix} -7 \\ 9 \end{bmatrix}$$
 and $T \begin{bmatrix} a \\ b \end{bmatrix}$.

5

6.4.27 Define linear transformations $S: \mathscr{P}_n \to \mathscr{P}_n$ and $T: \mathscr{P}_n \to \mathscr{P}_n$ by

$$S(p(x)) = p(x+1)$$
 and $T(p(x)) = p'(x)$

Find $(S \circ T)(p(x))$ and $(T \circ S)(p(x))$. [*Hint*: Remember the Chain Rule.]

6.5.3 Let $T: \mathscr{P}_2 \to \mathbb{R}^2$ be the linear transformation defined by

$$T(a + bx + cx^{2}) = \begin{bmatrix} a - b \\ b + c \end{bmatrix}$$

(a) Which, if any, of the following polynomials are in $\ker(T)$? (i) 1+x (ii) $x-x^2$ (iii) $1+x-x^2$

(i)
$$1 + x$$
 (ii) $x - x^2$ (iii) $1 + x - x^2$

(b) Which, if any, of the following polynomials are in range (T)?

(i)
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (iii) $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

(c) Describe ker(T) and range(T).

6.5.7 In Exercises 5-8, find bases for the kernel and range of the linear transformations *T* in the indicated exercises. In each case, state the nullity and rank of *T* and verify the Rank Theorem.

Exercise 3

6.5.14 In Exercises 9-14, find either the nullity or the rank of T and then use the Rank Theorem to find the other.

 $T: M_{33} \to M_{33}$ defined by $T(A) = A - A^T$

6.5.22 In Exercises 21-26, determine whether V and W are isomorphic. If they are, give an explicit isomorphism $T:V\to W$.

 $V=S_3$ (symmetric 3 × 3 matrices), $W=U_3$ (upper-triangular 3 × 3 matrices)