Missing Data Basics Utrecht University Winter School: Missing Data in R

Kyle M. Lang

Department of Methodology & Statistics Utrecht University

2022-02-03

Introduction

- 1. What's your name?
- 2. Where are you from/where do you work?
- 3. What type of research do you do?
- 4. What type of missing data problems do you encounter in your research?
- 5. What statistical software do you use/do you have programming experience?
- 6. What's your math background?

Outline

Missing Data Descriptives

Missing Data Mechanisms

Missing Data Treatments

What are Missing Data?

Missing data are empty cells in a dataset where there should be observed values.

 The missing cells correspond to true population values, but we haven't observed those values.

What are Missing Data?

Missing data are empty cells in a dataset where there should be observed values.

 The missing cells correspond to true population values, but we haven't observed those values.

Not every empty cell is a missing datum.

- Quality-of-life ratings for dead patients in a mortality study
- Firm profitability after the company goes out of business
- Self-reported severity of menstrual cramping for men
- Empty blocks of data following "gateway" items

A Little Notation

$$Y := An N \times P$$
 Matrix of Arbitrary Data

 $Y_{mis} := \text{The } missing \text{ part of } Y$

 $Y_{obs} := \text{The } observed \text{ part of } Y$

 $R := An N \times P$ response matrix

 $M := An N \times P$ missingness matrix

The R and M matrices are complementary.

- $r_{np} = 1$ means y_{np} is observed; $m_{np} = 1$ means y_{np} is missing.
- $r_{np} = 0$ means y_{np} is missing; $m_{np} = 0$ means y_{np} is observed.
- M_p is the *missingness* of Y_p .

MISSING DATA DESCRIPTIVES

Missing Data Pattern

Missing data (or response) patterns represent unique combinations of observed and missing items.

• P items $\Rightarrow 2^P$ possible patterns.

	Χ	Υ
1	Х	У
2	Χ	
3		У
4		

Patterns for
$$P = 2$$

Χ	Υ	Z
Х	У	Z
Χ	У	
Χ		Z
	У	Z
Χ		
		Z
	У	
•		
	x x x	x y x y x

Patterns for P = 3

Missing Data Pattern

The concept of a "missing data pattern" can also be used to classify the spatial arrangement of missing cells on a data set.

- Univariate
 - Missing data occur on only one variable
- Monotone
 - The proportion of complete elements, in both rows and columns, decreases when traversing the data set.
 - The observed cells can be arranged into a "staircase" pattern.
- Arbitrary
 - Missing values are "randomly" scattered throughout the data set.

Example Missing Data Patterns

	Χ	Υ	Z		Χ	Υ	Z			Χ	Υ	Z
1	Х	У	Z	1	Х	У	Z		1	Х		Z
2	Χ	У	Z	2	Χ	У	Z		2	Χ	У	Z
3	Χ	У	Z	3	Χ	У	Z		3	Χ	У	Z
4	Χ	У	Z	4	Χ	У			4	Χ		Z
5	Χ	У	Z	5	Χ	У			5	Χ	У	Z
6	Χ		Z	6	Χ	У			6	Χ		Z
7	Χ		Z	7	Χ				7		У	Z
8	Χ		Z	8	Χ				8	Χ	У	Z
9	Χ		Z	9	Χ				9	Χ		
10	Χ	•	Z	10	•	•	•		10	Χ	У	•
Univa	riate	e Pat	ttern	Monotone Pattern			1	Arbit	Arbitrary Pattern			

Nonresponse Rates

PROPORTION MISSING

- · The proportion of cells containing missing data
- Good early screening measure
- Should be computed for each variable, not for the entire dataset

ATTRITION RATE

 The proportion of participants that drop-out of a study at each measurement occasion

Nonresponse Rates

PROPORTION OF COMPLETE CASES

- The proportion of observations with no missing data
- Often reported but nearly useless quantity

FRACTION OF MISSING INFORMATION

- Associated with an estimated parameter, not with an incomplete variable
- Like an R^2 for the missing data
- Most important diagnostic value for missing data problems
- Can only be computed after treating the missing data

COVARIANCE COVERAGE

$$CC_{jk} = N^{-1} \sum_{n=1}^{N} r_{nj} r_{nk}$$

- The proportion of cases available to estimate a given pairwise relationship (e.g., a covariance between two variables)
- Very important to have adequate coverage of the parameters you want to estimate

INBOUND STATISTIC

$$I_{jk} = \frac{\sum_{n=1}^{N} (1 - r_{nj}) r_{nk}}{\sum_{n=1}^{N} (1 - r_{nj})}$$

• The proportion of missing cases in Y_i for which Y_k is observed

OUTBOUND STATISTIC

$$O_{jk} = \frac{\sum_{n=1}^{N} r_{nj} (1 - r_{nk})}{\sum_{n=1}^{N} r_{nj}}$$

• The proportion of observed cases in Y_i for which Y_k is missing

INflux Coefficient

$$I_{j} = \frac{\sum_{k=1}^{P} \sum_{n=1}^{N} (1 - r_{nj}) r_{nk}}{\sum_{k=1}^{P} \sum_{n=1}^{N} r_{nk}}$$

- The proportion of observed cells in Y that exists in cases for which Y_i is missing
- How well the missing values in Y_j connect to the observed values in Y_{-j}

OUTFLUX COEFFICIENT

$$O_{j} = \frac{\sum_{k=1}^{P} \sum_{n=1}^{N} r_{nj} (1 - r_{nk})}{\sum_{k=1}^{P} \sum_{n=1}^{N} (1 - r_{nk})}$$

- The proportion of missing cells in Y that exists in cases for which Y_i is observed
- How well the observed values in \mathbf{Y}_{j} connect to the missing values in \mathbf{Y}_{-j}

Examples

- 1. What is the coverage for cov(X, Y)?
- 2. What is the coverage for cov(W, Y)?
- **3**. What is the coverage for cov(X, Z)?
- 4. What is the outflux coefficient for *W*?
- **5.** What is the influx coefficient for *W*?

	W	Χ	Υ	Z	
1	W	Х	У		
2	W	Χ	У		
3	W	Χ	У		
4	W	Χ	У		
5	W	Χ	У		
6	W		У	Z	
7	W		У	Z	
8	W		У	Z	
9	W		У	Z	
10	W		У	Z	

Examples

		T1	T2	Т3	T4
1. What is the percent missing at T2?	1	x1	x2	х3	x4
2 What is the attrition water at T22	2	x1	x2	х3	x4
2. What is the attrition rate at T3?	3	x1	x2	х3	x4
3. What is the inbound statistic I_{32} ?	4	x1	x2	х3	
2-2	5	x1	x2	х3	
4. What is the outbound statistic O_{42} ?	6	x1	x2		
[What is the influx coefficient I 2	7	x1	x2	•	
5. What is the influx coefficient I_3 ?	8	x1		•	
6. What is the outflux coefficient O_2 ?	9	x1		•	
2.	10	x1			

MISSING DATA MECHANISMS

Missing Data Mechanisms

Missing Completely at Random (MCAR)

- $P(R|Y_{mis}, Y_{obs}) = P(R)$
- Missingness is unrelated to any study variables.

Missing at Random (MAR)

- $P(R|Y_{mis}, Y_{obs}) = P(R|Y_{obs})$
- Missingness is related to only the observed parts of study variables.

Missing not at Random (MNAR)

- $P(R|Y_{mis}, Y_{obs}) \neq P(R|Y_{obs})$
- Missingness is related to the unobserved parts of study variables.

Simulate Some Toy Data

```
nObs <- 5000 # Sample Size
pm <- 0.3 # Proportion Missing
sigma \leftarrow matrix(c(1.0, 0.5, 0.3,
                   0.5, 1.0, 0.0,
                   0.3. 0.0. 1.0).
                 ncol = 3
tmp <- rmvnorm(n0bs, c(0, 0, 0), sigma)
x0 \leftarrow tmp[, 1]
y0 <- tmp[ , 2]
z0 \leftarrow tmp[, 3]
cor(y0, x0) # Check correlation between X and Y
[1] 0.5001822
```

MCAR Example

MCAR Example

MAR Example

MAR Example

MNAR Example

MNAR Example

In our previous MAR example, ignoring the predictor of missingness actually produces *Indirect MNAR*.

In our previous MAR example, ignoring the predictor of missingness actually produces *Indirect MNAR*.

QUESTION: What happens if we ignore the predictor of missingness, but that predictor is independent of our study variables?

In our previous MAR example, ignoring the predictor of missingness actually produces *Indirect MNAR*.

QUESTION: What happens if we ignore the predictor of missingness, but that predictor is independent of our study variables?

ANSWER: We get back to MCAR:)

The missing data mechanisms are not simply characteristics of an incomplete dataset; we also need to account for the analysis.

Testing the Missing Data Mechanism

We cannot fully test the MAR or MNAR assumptions.

- To do so would require knowing the values of the missing data.
- We can find observed predictors of missingness, but we can never know that we have them all.
- In practice, MAR and MNAR live on the ends of a continuum.
 - Our missing data problem exists at some unknown point along this continuum.
 - We can do a lot to nudge our problem towards the MAR side.

Testing the Missing Data Mechanism

We can test the MCAR assumption.

- With MCAR, the missing data and the observed data should have the same distribution.
- We can test for MCAR by testing the distributions of *auxiliary* variables, **Z**.
 - Use a t-test to compare the subset of Z_p that corresponds to Y_{mis} to the subset corresponding to Y_{obs} .
 - The Little (1988) MCAR test is a multivariate version of this.

Example

Create some toy datasets from the variables we generated above.

T-Test Example

Test for dependence between X and M_Y in MCAR data.

```
mcarData %$% t.test(x ~ m) %>% wrap()
Welch Two Sample t-test
data: x by m
t = 0.68563, df = 2852.8, p-value = 0.493
alternative hypothesis: true difference in means between
group 0 and group 1 is not equal to 0
95 percent confidence interval:
-0.03921499 0.08138543
sample estimates:
mean in group 0 mean in group 1
    0.013908816 -0.007176408
```

T-Test Example

Test for dependence between Z and $M_{
m Y}$ in MCAR data.

```
mcarData %$% t.test(z ~ m) %>% wrap()
Welch Two Sample t-test
data: z by m
t = 0.38865, df = 2841.9, p-value = 0.6976
alternative hypothesis: true difference in means between
group 0 and group 1 is not equal to 0
95 percent confidence interval:
-0.04848298 0.07245421
sample estimates:
mean in group 0 mean in group 1
    0.009151786 -0.002833825
```

Test for dependence between X and M_Y in MAR data.

```
marData %$% t.test(x ~ m) %>% wrap()
Welch Two Sample t-test
data: x by m
t = 92.56, df = 3832.8, p-value < 2.2e-16
alternative hypothesis: true difference in means between
group 0 and group 1 is not equal to 0
95 percent confidence interval:
1.614203 1.684066
sample estimates:
mean in group 0 mean in group 1
      0.5023237 -1.1468112
```

Test for dependence between Z and M_Y in MAR data.

```
marData %$% t.test(z ~ m) %>% wrap()
Welch Two Sample t-test
data: z by m
t = 16.913, df = 2832.1, p-value < 2.2e-16
alternative hypothesis: true difference in means between
group 0 and group 1 is not equal to 0
95 percent confidence interval:
0.4491108 0.5669049
sample estimates:
mean in group 0 mean in group 1
      0.1579585 -0.3500494
```

Test for dependence between X and M_Y in MNAR data.

```
mnarData %$% t.test(x ~ m) %>% wrap()
Welch Two Sample t-test
data: x by m
t = 28.251, df = 2926.7, p-value < 2.2e-16
alternative hypothesis: true difference in means between
group 0 and group 1 is not equal to 0
95 percent confidence interval:
0.7439001 0.8548632
sample estimates:
mean in group 0 mean in group 1
      0.2473977 -0.5519839
```

Test for dependence between Z and M_{Y} in MNAR data.

```
mnarData %$% t.test(z ~ m) %>% wrap()
Welch Two Sample t-test
data: z by m
t = -0.33313, df = 2778.5, p-value = 0.7391
alternative hypothesis: true difference in means between
group 0 and group 1 is not equal to 0
95 percent confidence interval:
-0.07145430 0.05070098
sample estimates:
mean in group 0 mean in group 1
    0.002443105 0.012819764
```

Little (1988) MCAR Test Example

Use the Little (1988) MCAR test on MCAR data.

Little (1988) MCAR Test Example

Use the Little (1988) MCAR test on MAR data.

Little (1988) MCAR Test Example

Use the Little (1988) MCAR test on MNAR data.

Logistic Regression Example

```
## Read in some data:
diabetes <- readRDS(pasteO(dataDir, "diabetes.rds"))</pre>
## Generate MAR missingness:
diabetes$m <- simLogisticMissingness0(data = diabetes,</pre>
                                      pm
                                          = 0.25,
                                      preds = c("bmi", "tc"),
                                      type = "high",
                                      stdData = TRUE)$r
## Predict the missingness using logistic regression:
fit <- diabetes %>%
    select(-glu) %>%
   glm(m ~ ., data = ., family = "binomial")
```

Logistic Regression Example

```
partSummary(fit, 3)
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.459e+01
                       4.031e+00 -3.619 0.000296
            1.205e-02 1.141e-02 1.056 0.290782
age
            2.269e-01
                       4.054e-02 5.596 2.19e-08
bmi
           -1.213e-02
                       1.147e-02 -1.057 0.290292
bp
t.c
            2.949e-02
                       2.897e-02 1.018 0.308696
1d1
            2.703e-03
                       2.625e-02 0.103 0.917986
hdl
           -5.961e-05
                       3.990e-02 -0.001 0.998808
                       2.889e-01
                                  -1.0940.274049
t.ch
           -3.160e-01
            5.588e-01
                       8.952e-01 0.624 0.532537
ltg
            2.501e-03
                       2.380e-03 1.051 0.293237
progress
sexmale
            4.336e-02
                       2.978e-01 0.146 0.884234
```

MISSING DATA TREATMENTS

Listwise Deletion (Complete Case Analysis)

- Use only complete observations for the analysis
 - Very wasteful (can throw out lots of useful data)
 - Loss of statistical power

Pairwise Deletion (Available Case Analysis)

- Use only complete pairs of observations for analysis
 - Different samples sizes for different parameter estimates
 - Can cause computational issues

- Replace Y_{mis} with \bar{Y}_{obs}
 - Negatively biases regression slopes and correlations
 - Attenuates measures of linear association

- Replace Y_{mis} with \bar{Y}_{obs}
 - Negatively biases regression slopes and correlations
 - Attenuates measures of linear association

- Replace Y_{mis} with \bar{Y}_{obs}
 - Negatively biases regression slopes and correlations
 - Attenuates measures of linear association

- Replace Y_{mis} with \bar{Y}_{obs}
 - Negatively biases regression slopes and correlations
 - Attenuates measures of linear association

- Replace Y_{mis} with \widehat{Y}_{mis} from some regression equation
 - Positively biases regression slopes and correlations
 - Inflates measures of linear association

- Replace Y_{mis} with \widehat{Y}_{mis} from some regression equation
 - Positively biases regression slopes and correlations
 - Inflates measures of linear association

- Replace Y_{mis} with \widehat{Y}_{mis} from some regression equation
 - Positively biases regression slopes and correlations
 - Inflates measures of linear association

- Replace Y_{mis} with \widehat{Y}_{mis} from some regression equation
 - Positively biases regression slopes and correlations
 - Inflates measures of linear association

General Issues with Deletion-Based Methods

- Biased parameter estimates unless data are MCAR
- · Generalizability issues

General Issues with Simple Single Imputation Methods

- Biased parameter estimates even when data are MCAR
- Attenuates variability in any treated variables

Averaging Available Items (Person-Mean Imputation)

- Compute aggregate scores using only available values
 - Missing data must be MCAR
 - Each item must contributes equally to the aggregate score

Last Observation Carried Forward (LOCF)

- Replace post-dropout values with the most recent observed value
 - Assume that dropouts would maintain their last known values
 - Attenuates estimates of growth/development

LOCF

LOCF

OK Methods (These work in some situations)

Stochastic Regression Imputation

- Fill Y_{mis} with \widehat{Y}_{mis} plus some random noise.
 - Produces unbiased parameter estimates and predictions
 - Computationally efficient
 - Attenuates standard errors

```
Error in '[.data.frame'(dat2, ,
c("bmi", "glu")): undefined
columns selected
Error in complete(miceS, 1):
object 'miceS' not found
Error in datS[!mVec, ] <- NA:</pre>
object 'datS' not found
Error in fortify(data): object
'datS' not found
Error: geom_point requires the
following missing aesthetics: x
and v
```

5 Pof Makes Claund prodiction

OK Methods (These work in some situations)

```
Error in FUN(X[[i]], ...):
object 'bmi' not found
```

Stochastic Regression Imputation

- Fill Y_{mis} with \widehat{Y}_{mis} plus some random noise.
 - Produces unbiased parameter estimates and predictions
 - Computationally efficient
 - Attenuates standard errors
 - Makes CIs and prediction intervals too narrow

OK Methods (These work in some situations)

Nonresponse Weighting

- Weight the observed cases to correct for nonresponse bias
 - Popular in survey research and official statistics
 - Only worth considering with Unit Nonresponse
 - Doesn't make any sense with Item Nonresponse

Expectation Maximization

Multiple Imputation (MI)

- Replace the missing values with M plausible estimates
 - Essentially, a repeated application of stochastic regression imputation (with a particular type of regression model)
 - Produces unbiased parameter estimates and predictions
 - Produces "correct" standard errors, Cls, and prediction intervals
 - Very, very flexible
 - Computationally expensive

What happens when we apply MI to our previous MAR example?

```
## Estimate imputation model:
miceOut1 <- mice(data = data.frame(y3, x),
                m = 100,
                maxit = 1,
                method = c("norm", ""),
                printFlag = FALSE)
Error in data.frame(y3, x): object 'y3' not found
## Replace missing values with imputations:
impList1 <- list()</pre>
for(m in 1 : miceOut1$m)
   impList1[[m]] <- complete(miceOut1, m)</pre>
Error in eval(expr, envir, enclos): object 'miceOut1' not found
```

The MI-based parameter estimate looks good.

 MI produces unbiased estimates of the parameter when data are MAR.

```
Error in density.default(y): 'x' contains missing values
Error in impList1[[m]]: subscript out of bounds
Error in plot.window(...): need finite 'xlim' values
```

What about applying MI to our MNAR example?

```
## Estimate imputation model:
miceOut2 <- mice(data = data.frame(y4, x),
                m = 100,
                maxit = 1,
                method = c("norm", ""),
                printFlag = FALSE)
Error in data.frame(y4, x): object 'y4' not found
## Replace missing values with imputations:
impList2 <- list()</pre>
for(m in 1 : miceOut2$m)
   impList2[[m]] <- complete(miceOut2, m)</pre>
Error in eval(expr, envir, enclos): object 'miceOut2' not found
```

The MI-based parameter estimate is still biased.

 MI cannot correct bias in parameter estimates when data are MNAR.

```
Error in density(y4, na.rm = TRUE): object 'y4' not found
Error in impList2[[m]]: subscript out of bounds
Error in plot.window(...): need finite 'xlim' values
```

Bayesian Modeling

- Treat missing values as just another parameter to be estimated
 - Models can be directly estimated in the presence of missing data
 - Essentially, runs MI behind-the-scenes during model estimation
 - The predictors of nonresponse must be included in the model, somehow
 - Computationally expensive

Full Information Maximum Likelihood (FIML)

- Adjust the objective function to only consider the observed parts of the data
 - Models are directly estimated in the presence of missing data
 - The predictors of nonresponse must be included in the model, somehow
 - Unless you write your own optimization program, FIML is only available for certain types of models
 - In linear regression models, FIML cannot treat missing data on predictors (if the predictors are taken as fixed)

References

Little, R. J. A. (1988). Missing-data adjustments in large surveys. *Journal of Business & Economic Statistics*, 6(3), 287–296. doi: 10.1080/07350015.1988.10509663

