Ορισμοί Γ' Λυκείου

Κωνσταντίνος Λόλας

2025

Ορισμός 1: Συνάρτηση

Εστω A ένα υποσύνολο του \mathbb{R} . Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το A;

Απόδειξη. Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το A μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο $\in A$ αντιστοιχίζεται σε ένα μόνο πραγματικό αριθμό y. Το y ονομάζεται τιμή της f στο x και συμβολίζεται με f(x).

Ορισμός 2: Γραφική Παράσταση

Τι ονομάζουμε γραφική παράσταση μιας συνάρτησης f;

Απόδειξη. Εστω f μια συνάρτηση με πεδίο ορισμού A και Oxy ένα σύστημα συντεταγμένων στο επίπεδο. Το σύνολο των σημείων M(x,y) για τα οποία ισχύει y=f(x), δηλαδή το σύνολο των σημείων M(x,f(x)), $x\in A$, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C_f .

Ορισμός 3: Ισότητα Συναρτήσεων

Πότε λέμε ότι δύο συναρτήσεις f και g είναι ίσες;

Απόδειξη. Δύο συναρτήσεις f και g λέγονται ίσες όταν:

- έχουν το ίδιο πεδίο ορισμού Α και
- για κάθε $x \in A$ ισχύει f(x) = g(x).

Ορισμός 4: Πράξεις Συναρτήσεων

Εστω f και g δύο συναρτήσεις ορισμένες στα A και B αντίστοιχα. Πώς ορίζονται οι πράξεις άθροισμα, διαφορά, γινόμενο και πηλίκο των συναρτήσεων f και g;

Απόδειξη. Ορίζουμε ως άθροισμα f+g, διαφορά f-g, γινόμενο fg και πηλίκο $\frac{f}{g}$ δύο συναρτήσεων f, g τις συναρτήσεις με τύπους:

- $\bullet \ (f+g)(x) = f(x) + g(x)$
- $\bullet \ (f-g)(x) = f(x) g(x)$
- (fg)(x) = f(x)g(x)
- $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$.

Το πεδίο ορισμού των f+g, f-g, fg είναι η τομή $A\cap B$ των πεδίων ορισμού των συναρτήσεων f και g, ενώ το πεδίο ορισμού της $\frac{f}{g}$ είναι το $A\cap B$ εξαιρουμένων των τιμών του x που μηδενίζουν τον παρανομαστή g. δηλαδή

$$\{x|x\in A\cap B, g(x)\neq 0\}$$

Ορισμός 5: Σύνθεση Συναρτήσεων

Εστω f και g δύο συναρτήσεις ορισμένες στα A και B αντίστοιχα. Πώς ορίζεται η σύνθεση των συναρτήσεων f και g;

Απόδειξη. Αν f, g είναι δύο συναρτήσεις με πεδίο ορισμού A, B αντιστοίχως, τότε ονομάζουμε σύνθεση της f με την g, και τη συμβολίζουμε με $g \circ f$, τη συνάρτηση με τύπο

$$(g \circ f)(x) = g(f(x))$$

Το πεδίο ορισμού της $g\circ f$ αποτελείται από όλα τα στοιχεία x του πεδίου ορισμού της f για τα οποία το f(x) ανήκει στο πεδίο ορισμού της g. Δηλαδή είναι το σύνολο $A_1=\{x\in A|f(x)\in {\bf B}\}$

Ορισμός 6: Γνησίως Αύξουσα Συνάρτηση

Πότε μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ ;

Απόδειξη. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ αν για κάθε $x_1,x_2\in \Delta$ με $x_1< x_2$ ισχύει $f(x_1)< f(x_2)$.

Ορισμός 7: Γνησίως Φθίνουσα Συνάρτηση

Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ ;

Απόδειξη. Μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ αν για κάθε $x_1,x_2\in \Delta$ με $x_1< x_2$ ισχύει $f(x_1)>f(x_2)$.

Ορισμός 8: Αύξουσα Συνάρτηση

Πότε μια συνάρτηση f λέγεται αύξουσα σε ένα διάστημα Δ ;

Απόδειξη. Μια συνάρτηση f λέγεται αύξουσα σε ένα διάστημα Δ αν για κάθε $x_1,x_2\in \Delta$ με $x_1< x_2$ ισχύει $f(x_1)\leq f(x_2).$

Ορισμός 9: Φθίνουσα Συνάρτηση

Πότε μια συνάρτηση f λέγεται φθίνουσα σε ένα διάστημα Δ ;

Απόδειξη. Μια συνάρτηση f λέγεται φθίνουσα σε ένα διάστημα Δ αν για κάθε $x_1, x_2 \in \Delta$ με $x_1 < x_2$ ισχύει $f(x_1) \geq f(x_2)$.

Ορισμός 10: Γνησίως Μονότονη Συνάρτηση

Πότε μια συνάρτηση f λέγεται γνησίως μονότονη σε ένα διάστημα Δ ;

Απόδειξη. Μια συνάρτηση f λέγεται γνησίως μονότονη σε ένα διάστημα Δ αν είναι γνησίως αύξουσα ή γνησίως φθίνουσα σε αυτό.

Ορισμός 11: Μέγιστο

Πότε μια συνάρτηση f με πεδίο ορισμού το A θα λέμε ότι έχει μέγιστο στο x_0 ;

Απόδειξη. Εστω f μια συνάρτηση με πεδίο ορισμού το A. Θα λέμε ότι η f παρουσιάζει στο $x_0 \in A$ μέγιστο το $f(x_0)$ αν ισχύει:

$$f(x_0) \ge f(x) \quad \forall x \in A$$

Ορισμός 12: Ελάχιστο

Πότε μια συνάρτηση f με πεδίο ορισμού το A θα λέμε ότι έχει ελάχιστο στο x_0 ;

Απόδειξη. Εστω f μια συνάρτηση με πεδίο ορισμού το A. Θα λέμε ότι η f παρουσιάζει στο $x_0 \in A$ ελάχιστο το $f(x_0)$ αν ισχύει:

$$f(x_0) \le f(x) \quad \forall x \in A$$

Ορισμός 13: Ακρότατο

Τι ονομάζουμε ακρότατα μιας συνάρτησης f;

Απόδειξη. Το μέγιστο και το ελάχιστο μιας συνάρτησης f λέγονται ακρότατα της f.

Ορισμός 14: 1-1

Πότε μια συνάρτηση f λέγεται 1-1;

Απόδειξη. Μια συνάρτηση f λέγεται 1-1 αν για κάθε $x_1,x_2\in A$ με $x_1\neq x_2$ ισχύει $f(x_1)\neq f(x_2)$.

Ορισμός 15: Αντίστροφη Συνάρτηση

Πώς ορίζεται η αντίστροφη συνάρτηση μιας f;

Απόδειξη. Εστω μια συνάρτηση $f:A\to\mathbb{R}$. Αν υποθέσουμε ότι αυτή είναι 1–1, τότε για κάθε στοιχείο y του συνόλου τιμών, f(A), της f υπάρχει μοναδικό στοιχείο x του πεδίου ορισμού της A για το οποίο ισχύει f(x)=y. Επομένως ορίζεται μια συνάρτηση $g:f(A)\to\mathbb{R}$ με την οποία κάθε $y\in f(A)$ αντιστοιχίζεται στο μοναδικό $x\in A$ για το οποίο ισχύει f(x)=y.

3

Ορισμός 16: Κριτήριο Παρεμβολής

Να διατυπώσετε το κριτήριο παρεμβολής

Απόδειξη. Εστω οι συναρτήσεις f, g, h. Αν

- $h(x) \le f(x) \le g(x)$ για κάθε x κοντά στο x_0 και
- $\bullet \ \lim\nolimits_{x\to x_0} h(x) = \lim\nolimits_{x\to x_0} g(x) = \lambda \text{,}$

τότε

$$\lim_{x\to x_0} f(x) = \lambda$$

Ορισμός 17: Ακολουθία

Να δώσετε τον ορισμό της ακολουθίας.

Απόδειξη. Ακολουθία ονομάζεται κάθε πραγματική συνάρτηση $\alpha: \mathbb{N} \to \mathbb{R}$.

Ορισμός 18: Συνέχεια σε σημείο

Να δώσετε τον ορισμό της συνέχειας σε σημείο x_0 .

Απόδειξη. Εστω μια συνάρτηση f και x_0 ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x_0 , όταν

$$\lim_{x\to x_0}f(x)=f(x_0)$$

Ορισμός 19: Συνέχεια σε ανοιχτό διάστημα

Πότε λέμε ότι μια συνάρτηση 2 είναι συνεχής σε ένα ανοικτό διάστημα (α, β) ;

Απόδειξη. Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα ανοικτό διάστημα (α, β) , όταν είναι συνεχής σε κάθε σημείο του (α, β)

Ορισμός 20: Συνέχεια σε κλειστό διάστημα

Πότε λέμε ότι μια συνάρτηση 2 είναι συνεχής σε ένα κλειστό διάστημα $[\alpha, \beta]$;

Απόδειξη. Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα $[\alpha,\beta]$, όταν είναι συνεχής στο ανοιχτό (α,β) και επιπλέον

- $\lim_{x \to \alpha^+} f(x) = f(\alpha)$
- $\bullet \ \lim\nolimits_{x\to\beta^-} f(x) = f(\beta)$

Ευρετήριο

1-1, 3

Ακολουθία, 4 Ακρότατα, 3 Αντίστροφη, 3 Αύξουσα Συνάρτηση, 2 Γνησίως Αύξουσα Συνάρτηση, 2 Γνησίως Μονότονη Συνάρτηση, 3 Γνησίως Φθίνουσα Συνάρτηση, 2 Γραφική Παράσταση, 1 Ελάχιστο, 3 Ισότητα Συναρτήσεων, 1
Κριτήριο Παρεμβολής, 3
Μέγιστο, 3
Πράξεις Συναρτήσεων, 1
Συνάρτηση, 1
Συνέχεια σε ανοιχτό διάστημα, 4
Συνέχεια σε κλειστό διάστημα, 4
Συνέχεια σε σημείο, 4
Σύνθεση Συναρτήσεων, 2
Φθίνουσα Συνάρτηση, 2