nr albumu: 347208 str. 1/2 Seria: 10

Będę oznaczał różnicę symetryczną przez \triangle .

Określmy funkcję $\psi: P_{\text{fin}}(\mathbb{N}) \to \{0,1\}^{\mathbb{N}}$ w następujący sposób:

$$\psi(X)(n) = \begin{cases} 0 & \text{ gdy } n \notin X \\ 1 & \text{ gdy } n \in X \end{cases}$$

Oczywiście jest to iniekcja, zaś każda wartość funkcji ψ jest ciągiem od pewnego miejsca stale równym zero. Ponadto, każdy ciąg od pewnego miejsca stale równy zero jest wartością funkcji ψ – wystarczy po prostu skonstruować zbiór X używając reguł definiujących funkcję ψ .

Gdy $X \neq Y$, to zauważmy, że $X \triangle Y$ to dokładnie zbiór tych liczb, które należą do dokładnie jednego ze zbiorów X, Y, są to zatem dokładnie te liczby, które opisują pozycje w ciągach $\psi(X)$ oraz $\psi(Y)$, na których te ciągi się różnią.

1 Relacja \leq_1

Lemat 1. Jeśli $A, B \in P_{fin}(\mathbb{N}) \setminus \{\varnothing\}$ są takie, że $A \leqslant_1 B$, to $\max A \leqslant \max B$.

Dowód. Gdy A=B teza zachodzi trywialnie. Załóżmy zatem, że $A\neq B$. Przypuśćmy, że $\max B<\max A$. Wtedy oczywiście mamy, że $\max A\not\in B$, zatem $\max A\in A\triangle B$. Stąd $\max(A\triangle B)\geqslant\max A$.

Z definicji, $\max(A \triangle B) \in A \triangle B$. Jednak jak łatwo widać, $A \triangle B \subseteq A \cup B$, jednak $\max(A \cup B) = \max(\max A, \max B)$. Skoro jednak $\max B < \max A$, to $\max(A \cup B) = \max A$. Jednak to nam daje, że $\max(A \triangle B) \leqslant \max(A \cup B) \leqslant \max A$.

Zatem $\max(A \cup B) = \max A$. Jednak z założenia, $\max(A \cup B) \in B$. Stąd jednak mamy, że $\max B \geqslant \max(A \cup B) = \max A$, wbrew założeniu.

Zdefiniujmy dla każdego $n \in \mathbb{N}$ zbiór

$$\mathfrak{X}_{n} = \{X \in P_{\text{fin}}(\mathbb{N}) \mid \forall_{m \in \mathbb{N}}.m > n \implies m \notin X\}$$

tj. zbiór wszystkich podzbiorów $\mathbb N$ ograniczonych z góry przez n. Określmy teraz funkcję $\phi_n: \mathfrak X_n \to \{0,1\}^{n+1}$ jako:

$$\varphi_n(X)(i) = \psi(X)(n-i)$$

dla $i=0,1,\ldots,n-tj$. $\phi_n(X)$ jest ciągiem polegającym na wzięciu pierwszych n+1 bitów ciągu $\psi(X)$ (bo wszystkie pozostałe są na pewno zerami) i przeczytaniu ich wspak. Oczywiście łatwo widać, że ϕ_n jest bijekcją, czego dowód jest analogiczny jak w wielu innych zadaniach z prac domowych – jest to po prostu prosta modyfikacja funkcji przyporządkowującej zbiorowi jego indykator.

Zauważmy teraz, że dla $A, B \in \mathcal{X}_n$ mamy $A \leqslant_1 B \iff \phi_n(A) \leqslant_{\text{lex}} \phi_n(B)$. Dla A = B jest to trywialne. Dla $A \neq B$, mamy, że warunek $\max(A \triangle B) \in A$ (czyli istota tego, żeby $A <_1 B$, bo $A \neq B \implies A \triangle B \neq \emptyset$), oznacza dokładnie tyle, że na najpóźniejszej pozycji, na której ciągi $\psi(A)$ oraz $\psi(B)$ się różnią, $\psi(A)$ ma wartość 0, zaś $\psi(B)$ ma wartość 1. Prawa strona równoważności zaś jest temu równoważna, gdyż pierwsza pozycja, na której różnią się ciągi $\phi_n(A)$ oraz $\phi_n(B)$ to z definicji ostatnia pozycja, na której różnią się ciągi $\psi(A)$ oraz $\psi(B)$.

Stąd obcięcie relacji \leqslant_1 do zbioru \mathfrak{X}_n jest relacją częściowego porządku, gdyż \leqslant_{lex} taką jest.

Stąd łatwo widać, że gdy weźmiemy $X \in P_{\text{fin}}(\mathbb{N})$, to biorąc odpowiednio duże n (tj. takie, żeby $X \in \mathcal{X}_n$), uzyskamy, że $X \leqslant_1 X$. Tak samo biorąc $X,Y \in P_{\text{fin}}(\mathbb{N})$ oraz wystarczająco duże n dostajemy, że $X \leqslant_1 Y \land Y \leqslant_1 X \implies X = Y$. Analogicznie biorąc $A,B,C \in P_{\text{fin}}(\mathbb{N})$ i odpowiednio duże n otrzymamy, że $A \leqslant_1 B \land B \leqslant_1 C \implies A \leqslant_1 C$, gdzie wszystkie te własności wynikną z odpowiednich własności porządku leksykograficznego. Stąd \leqslant_1 jest relacją częściowego porządku.

Pokażemy teraz, że jest to relacja dobrze ufundowana. Przypuśćmy nie wprost, że C_1, C_2, \ldots jest nieskończonym ciągiem malejącym. Z lematu 1 mamy, że dla każdego $i \in \mathbb{N}$, ponieważ $C_i \leqslant_1 C_1$, to max $C_1 \geqslant \max C_i$, zatem $\max C_1$ jest ograniczeniem górnym wszystkich zbiorów C_1, C_2, \ldots Jednak daje to, że $C_i \in \mathfrak{X}_{\max C_1}$, zatem relacja \leqslant_1 na tych zbiorach jest izomorficzna z relacją \leqslant_{lex} na krotkach długości $\max C_1$, która jak było na wykładzie, jest dobrze ufundowana. Daje to sprzeczność, gdyż $\phi_{\max C_1}(C_1), \phi_{\max C_1}(C_2), \ldots$ stanowiłby nieskończony ciąg malejący w tej relacji.

nr albumu: 347208 str. 2/2 Seria: 10

2 Relacja \leq_2

Niech teraz \leq będzie porządkiem leksykograficznym na zbiorze ciągów binarnych od pewnego miejsca równych zeru, przy czym alfabet jest uporządkowany 1 < 0. Zauważmy teraz, że dla $X, Y \in P_{fin}(\mathbb{N})$ zachodzi, że $X \leq_2 Y \iff \psi(X) \leq \psi(Y)$.

Istotnie, jeśli X=Y, to $\psi(X)=\psi(Y)$ i odwrotnie (bo ψ jest iniekcją). Gdy $X\neq Y$, to zauważmy, że $X\triangle Y$ to dokładnie zbiór tych liczb, które należą do dokładnie jednego ze zbiorów X, Y, są to zatem dokładnie te liczby, które opisują pozycje w ciągach $\psi(X)$ oraz $\psi(Y)$, na których te ciągi się różnią. Warunek $\min(X\triangle Y)\in X$ oznacza dokładnie tyle, że na najwcześniejszej pozycji, na której ciągi $\psi(X)$ i $\psi(Y)$ się różnią, $\psi(X)$ ma wartość 1, (bo $\min(X\triangle Y)\in X$), zaś $\psi(Y)$ ma wartość 0, co jest dokładnie definicją porządku leksykograficznego nad alfabetem 1<0. Zatem istotnie \leqslant_2 jest porządkiem izomorficznym z \preceq , gdyż ψ jest bijekcją zachowującą porządek.

Jednak \leq jest porządkiem częściowym, zatem \leq_2 także. Ponadto w \leq istnieje nieskończony ciąg malejący c_1, c_2, \ldots zadany jako:

$$c_n = \underbrace{111\dots11}_n 00000000\dots$$

Istotnie, $c_{n+1} \leq c_n$, gdyż pierwszą pozycją na której się one różnią jest (n+1)-sza, zaś na niej c_{n+1} ma jedynkę, a c_n zero. Zatem \leq nie jest dobrze ufundowany, skąd i \leq_2 nie jest.