Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

S Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Auden

Certificate No: EX3-3820 Jun16

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3820

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

June 27, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	
Power meter NRP	SN: 104778		Scheduled Calibration
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91		06-Apr-16 (No. 217-02288)	Apr-17
	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
		23-Dec-13 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	
Power meter E4419B	SN: GB41293874		Scheduled Check
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A		06-Apr-16 (in house check Jun-16)	In house check: Jun-18
	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:

Name

Function

Signature

Laboratory Technician

Approved by: Katja Pokovic

Issued: June 28, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Technical Manager

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage C

Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z

tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP CF

diode compression point

A, B, C, D

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3820

Manufactured:

September 2, 2011

Calibrated:

June 27, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3820

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Line (I0)
Norm $(\mu V/(V/m)^2)^A$	0.43	0.48	0.49	Unc (k=2)
DCP (mV) ^B	101.2			± 10.1 %
	101.2	97.3	95.3	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc
0	CW		dB	$dB\sqrt{\mu V}$		dB	mV	(k=2)
	CVV	X	0.0	0.0	1.0	0.00	148.5	±3.8 %
		Y	0.0	0.0	1.0		134.3	70
oto: Fo	r details on LIID parameters soo Appea	Z	0.0	0.0	1.0		135.9	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V-2	T5 V-1	Т6
X	53.59	401.9	35.94	14.39				•	
Υ	54.13			14.39	1.148	4.979	0.834	0.475	1.005
7		407.2	36.33	11	1.06	5.036	0.269	0.444	1.006
	61.28	473.5	37.6	7.012	1.239	5.1	0.2		
					1.200	0.1	0.2	0.481	1.017

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Numerical linearization parameter: uncertainty not required.

 $[\]frac{A}{a}$ The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3820

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.42	9.42	9.42	0.34	1.06	± 12.0 %
835	41.5	0.90	9.00	9.00	9.00	0.47	0.80	± 12.0 %
900	41.5	0.97	8.88	8.88	8.88	0.37	0.95	± 12.0 %
1450	40.5	1.20	8.37	8.37	8.37	0.32	0.80	± 12.0 %
1750	40.1	1.37	7.95	7.95	7.95	0.30	0.80	± 12.0 %
1900	40.0	1.40	7.80	7.80	7.80	0.32	0.85	± 12.0 %
2000	40.0	1.40	7.74	7.74	7.74	0.34	0.84	± 12.0 %
2450	39.2	1.80	6.78	6.78	6.78	0.21	1.17	± 12.0 %
2600	39.0	1.96	6.49	6.49	6.49	0.25	1.26	± 12.0 %
5200	36.0	4.66	4.66	4.66	4.66	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.41	4.41	4.41	0.45	1.80	± 13.1 %
5500	35.6	4.96	4.32	4.32	4.32	0.45	1.80	± 13.1 %
5600	35.5	5.07	4.14	4.14	4.14	0.50	1.80	± 13.1 %
5800	35.3	5.27	4.14	4.14	4.14	0.50	1.80	± 13.1 %

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of ϵ Alpha/Depth are determined division.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3820

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	8.87	8.87	8.87	0.30	1.02	± 12.0 %
835	55.2	0.97	8.86	8.86	8.86	0.27	1.13	± 12.0 %
900	55.0	1.05	8.94	8.94	8.94	0.36	0.93	± 12.0 %
1450	54.0	1.30	8.02	8.02	8.02	0.28	0.80	± 12.0 %
1750	53.4	1.49	7.65	7.65	7.65	0.39	0.82	± 12.0 %
1900	53.3	1.52	7.41	7.41	7.41	0.19	1.30	± 12.0 %
2000	53.3	1.52	7.51	7.51	7.51	0.26	1.05	± 12.0 %
2450	52.7	1.95	6.79	6.79	6.79	0.38	0.93	± 12.0 %
2600	52.5	2.16	6.52	6.52	6.52	0.48	0.83	± 12.0 %
5200	49.0	5.30	4.19	4.19	4.19	0.50	1.90	± 13.1 %
5300	48.9	5.42	3.95	3.95	3.95	0.55	1.90	± 13.1 %
5500	48.6	5.65	3.71	3.71	3.71	0.55	1.90	± 13.1 %
5600	48.5	5.77	3.54	3.54	3.54	0.55	1.90	± 13.1 %
5800	48.2	6.00	3.70	3.70	3.70	0.60	1.90	± 13.1 %

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity validity can be extended to \pm 100 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: \pm 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

EX3DV4- SN:3820 June 27, 2016

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

