The MicroPulse Framework for Adaptive Waking Windows in Sensor Networks

Demetrios Zeinalipour-Yazti (Univ. of Cyprus)
Panayiotis Andreou (Univ. of Cyprus)
Panos Chrysanthis (Univ. of Pittsburgh, USA)
George Samaras (Univ. of Cyprus)
Andreas Pitsillides (Univ. of Cyprus)

http://www.cs.ucy.ac.cy/~dzeina/

System Model

- Distributed Sensing + Centralized Storage
- A continuous Data Acquisition Framework
- Hierarchical (tree-based) routing

Motivation

Limitations

- Energy: Extremely limited (e.g. AA batteries)
- Communication: Transmitting 1 bit over the radio consumes as much energy as ~1000 CPU instructions.

Solution

- Power down the radio transceiver during periods of inactivity.
- Studies have shown that a 2% duty cycle can yield lifetimes of 6 months using 2 AA batteries

Definitions

Definition: Waking Window (τ)

The continuous interval during which sensor A:

- Enables its Transceiver.
- Collects and Aggregates the results from its children for a given Query Q.
- Forwards the results of Q to A's parent.

Remarks

- T is continuous.
- t can currently not be determined in advance.

Definitions

Tradeoff

- Small T : Decrease energy consumption + Increase incorrect results
- Large T: Increase energy consumption +
 Decrease incorrect results

Problem Definition

Automatically tune **t**, locally at each sensor without any global knowledge or user intervention.

Presentation Outline

- Motivation Definitions
- Background on Waking Windows
- ☐ The MicroPulse Framework
 - Construction Phase
 - Dissemination Phase
 - Adaptation Phase
- Experimentation
- ☐ Conclusions & Future Work

The Waking Window in TAG*

- Divide epoch e into d fixed-length intervals
 (d = depth of routing tree)
- When nodes at level i+1 transmit then nodes at level i listen.

Example: The Waking Window in TAG

epoch=31, d (depth)=3
 yields a window τ_i = [e/d] = [31/3] = 10

Transmit: [20..30)

Listen: [10..20)

Transmit: [10..20)

Listen: [0..10)

Transmit: [0..10)

Listen: [0..0)

Disadvantages of TAG's T

- т is an overestimate
 - In our experiments we found that it is three orders of magnitude bigger than required.
- T does not capture variable workloads
 - e.g., X might need a larger τ in (time+1)

9

The Waking Window in Cougar*

Each node maintains a "waiting list".

 Forwarding of results occurs when all children have answered (or timer h expires)

^{*} Yao and Gehrke, In CIDR 2003.

Cougar's Advantage (w.r.t. τ)

More fine-grained than TAG.

Cougar's Disadvantage (w.r.t. τ)

 Parents keep their transceivers active until all children have answered....this is recursive.

Presentation Outline

- Motivation Definitions
- Background on Waking Windows
- ☐ The MicroPulse Framework
 - Construction Phase
 - Dissemination Phase
 - Adaptation Phase
- Experimentation
- Conclusions & Future Work

The MicroPulse Framework

A new framework for automatically tuning т.

MicroPulse :

- Profile recent data acquisition activity
- Schedule T using an in-network execution of the Critical Path Method (CPM)
- CPM is a graph-theoretic algorithm for scheduling project activities.
- CPM is widely used in construction, software development, research projects, etc.

The MicroPulse Framework

- MicroPulse Phases
 - Construct the critical path cost Ψ.
 - Disseminate Ψ in the network and define τ.
 - Adapt the τ of each sensor based on Ψ.

Intuition

Ψ allows a sensor to schedule its waking window.

The Construction Phase

Construct Ψ:

Recursive Definition:

$$\Psi_i = \begin{cases} 0, & \text{if } s_i \text{ is a leaf node.} \\ \max_{\forall j \in children(s_i)} \{\Psi_j + s_{i,j}\}, & \text{otherwise} \end{cases}$$

The Dissemination Phase

Construct Waking Windows (T):

"Disseminate $\Psi = 42$ to all nodes (top-down)"

The Dissemination Phase

Construct Local Slack (λ):

"maximum possible workload increase for the children of a node"

The Adaptation Phase

Intuition

Workload changes are expected, e.g.,

- Question: Should we reconstruct τ?
- Answer: Yes/No.
 - No in Case e+1, because s2 & s3 know their local slack.
 - Yes in Case e+2, because the critical path has been affected.

Presentation Outline

- Motivation Definitions
- Background on Waking Windows
- The MicroPulse Framework
 - Construction Phase
 - Dissemination Phase
 - Adaptation Phase
- Experimentation
- ☐ Conclusions & Future Work

- We have implemented a visual simulator that implements the waking window algorithm of TAG, Cougar and MicroPulse.
- Failure Rate = 20%
- Child Wait Expiration Timer h = 200 ms

Dataset: Intel Lab Data

- 58 sensors deployed in the Intel Berkeley
 Research Lab (28/2/04 5/4/04).
- 2.3 Million Readings: topology info, humidity, temperature, light and voltage
- Epoch = 31 seconds

Sensing Device

- We utilize the energy model of Crossbow's TELOSB Sensor (250Kbps, RF On: 23mA)
- Trace-driven experimentation using Energy
 Volts x Amperes x Seconds.

Query:

SELECT moteid, temperature FROM sensors
EPOCH DURATION 1 min

Energy Consumption TAG versus MicroPulse

- The waking window in TAG is three orders of magnitude more expensive than in MicroPulse.
 - TAG: 7,984mJ
 - MicroPulse: 13.75±0.58mJ
- Difference attributed to the waking window T:
 - **T** in TAG is uniform: 2.21sec. (31 /14 depth)
 - **T** in MicroPulse is non-uniform: 146ms on average.

Energy Consumption Cougar versus MicroPulse

- Same observation holds for Cougar (one order of magnitude more expensive)
 - Cougar: 288.97±24.42mJ
 - MicroPulse: 13.75±0.58mJ
- Observation: A failure at level K of the hierarchy results in a K*h increase in τ, where h is the expiration timer.

Energy Consumption Cougar versus MicroPulse

- We maintain a competitive advantage over Cougar (no failures)
 - Cougar (no failures): 42mJ
 - MicroPulse: 13.75±0.58mJ

Presentation Outline

- Motivation Definitions
- Background on Waking Windows
- ☐ The MicroPulse Framework
 - Construction Phase
 - Dissemination Phase
 - Adaptation Phase
- Experimentation
- □ Conclusions & Future Work

Conclusions

- We have presented the design of MicroPulse that adapts the waking window of a sensing device.
- Experimentation with real datasets reveals that MicroPulse can reduce the cost of the waking window by three orders of magnitude.
- We intend to study more carefully the adaptation algorithms.

The MicroPulse Framework for Adaptive Waking Windows in Sensor Networks

Thank you! Questions?

This presentation is available at: http://www.cs.ucy.ac.cy/~dzeina/talks.html

Related Publications available at:

http://www.cs.ucy.ac.cy/~dzeina/publications.html

DISN 2007 (MDM'07) © Zeinalipour-Yazti, Andreou, Chrysanthis, Samaras, Pitsillides