How to use Probabilistic Seismic Hazard Analysis, PSHA, Map ?

- from user's point of view -

如何使用概率地震危險性分析, PSHA, 圖?

Toshihiro Yamada

OYORMS Corporation

Company Profile / self-introduction

OYORMS

- Earthquake risk analysis for companies and real estate
- Natural hazard analysis and simulation
- Development of natural disaster risk model

- Japan's leading geotechnical engineering firm
- Disaster management / Environment / Social infrastructure / Energy / Instrument

- World's leading natural catastrophe modeling company
- Funded in 1989 at Stanford University, USA

Agenda

- What is risk and risk management?
- How is PSHA map used in the insurance industry?
- How is PSHA map used for the seismic design in Japan?
- Which seismic motion strength index is desirable for PSHA?
- What is easy-to-understand expression for the users?

What is risk and risk management?

What is Risk? 什麼是風險?

Concept of Risk

Negative impact 負面影響

Occurrence probability 發生概率

• Uncertainty 不確定

: Damage, Loss, ···

: Cyclic, Return period

: Variance

What is CAT Risk?

- **Cat**astrophe Risk 浩劫風險
- Low probability but big impact

What is Risk Management? 什麼是風險管理?

"Risk management" is the process of protecting assets, earning, debt, and human resources of the company with maximum effects and minimum costs.

How is PSHA map used in the insurance industry?

Flow of earthquake risk analysis

Pick up all possible earthquake scenarios

Result of Risk Analysis / Relation between loss and probability

How is PSHA map used for the seismic design in Japan?

Performance-based seismic design

Earthquake Performance Level Life Safe Full Operational Operational Near Collapse Frequent (43 years) **Design Level** Unacceptable 50% in 30 years **Performance** Occasional Essential Hazardous Objective (for New Construction) Basic Objective (72 years) 50% in 50 years Safety Critical Objective Earthquake Rare (475 years) 10% in 50 years Very Rare (970 years) 10% in 100 years

Recommended performance objectives for buildings (Vision 2000)

SEAOC Vision 2000 Committee (1995). Performance-based seismic engineering of buildings

Design seismic motion and expected performance in Japan

Document	Building Standards Act	Specifications for highway bridges	
Legislation	1981	2002	
Seismic load	base shear coefficient (Co)	acceleration response spectrum (Sa)	
Lower level	Primary design	Level 1	
Design seismic motion level	 low occurrence probability middle class load C₀ >= 0.2 - 0.3 allowable stress design 	 high occurrence probability during service middle class earthquake, conventional level Sa = 200 - 300 gal (T=1 sec) 	
Performance level	no damage in main structure	operational	
Higher level	Secondary design	Level 2	
Design seismic motion level	 very low occurrence probability the largest class load C₀ >= 1.0 calculation of lateral load carrying capacity 	Type I	
		Type II • very low occurrence probability • inland earthquake (Kobe EQ) • Sa = 1500 - 2000 gal (T = 1 sec)	
Performance Level	no collapse	short time recovery / non-fatal damage	

PSHA map and seismic zoning for structural design

JMA Intensity for 10% occurrence probability in 50 years

Seismic zoning for structural design

Which seismic motion strength index is desirable for PSHA?

- Many indices: PGA, PGV, seismic intensity(MMI, JMA), SI, Sa(t), etc.
- For users, the desirable index is what can explain structural damage and social impact caused by the seismic motion.
- However, it is not clear which index is best fit for fragility/vulnerability function. Why?
- One reason is the seismic motion at the damaged structure location is usually unknown, though damage or loss of the structures can be investigated after the earthquake.
- But, it is not so easy to install seismometer in all structures.
- So we tried to predict the seismic motion at any location as accurately as possible from the observed data for developing better fragility/vulnerability function.

Methodology for spatial interpolation of seismic motion

- **STEP-1:** Calculate seismic motion strength index from the observed waveforms
 - PGA, PGV, JMA Intensity, SI, and Sa (0.05 to 10 sec)
- **STEP-2:** Calculate the index on the engineering basement (Vs=400 m/sec)
 - Use non-liner amplification factor of the subsurface ground (AVS30)
- **STEP-3:** Spatial interpolation on the engineering basement (center of mesh)
 - Simple Kriging method: Consider attenuation trend from the fault model
- STEP-4: Calculate seismic index on the ground surface

Spatial interpolation result of Kumamoto earthquake

What is an easy-to-understand expression?

Risk management at various levels

Scale	Organization	Purpose of use	Risk management	
Global	Reinsurance company	Portfolio management		
\$	Multinational company	Supply chain management	Probabilistic risk	
Country-wide	National government	Security and lives of citizens	Portfolio risk	
\$	Insurance company	Ceded reinsurance	Risk finance	
	Country-wide company	Supply chain management		
Regional	Lifeline company	Early recovery, BCP/BCM		
\$	Railway company	Early recovery, BCP/BCM		
	Highway company	Early recovery, BCP/BCM		
Local	Local government: City, Town	Protection of residents		
\$	Hospital, fire station	Maintain operation		
	Local company	Business continuity, survival	Scenario risk Risk control	
Location	Resident	Maintaining life and living	Trisk control	

What is an easy-to-understand expression? (example-1)

Comparison

seismic intensity of the top 5 earthquakes and probabilistic assessment

What is an easy-to-understand expression? (example-2)

- Familiar expression for the users
 - Extent of damage and/or loss

Thank you! 謝謝你的關注!

toshihiro.yamada@oyorms.co.jp