MLRF Lecture 03

J. Chazalon, LRDE/EPITA, 2020

Local feature descriptors

Lecture 03 part 02

Introduction

Local feature **detectors** give us the same feature under several perturbations: perspective, illumination, blur...

Local feature descriptors will associate a vector to each local feature.

Such description vector should be:

- Compact to enable fast indexing and matching
- **Discriminative** to enable object recognition
- Robust to perturbations to tolerate real conditions

We will focus on two widely used descriptors for their pedagogical interest:

- **HoG** (Histogram of gradients), used in SIFT
- **BRIEF** (Binary Robust Independent Elementary Features), used in ORB

HoG (Histogram of Gradients)

HoG: Algorithm overview

- (optional) global image normalization
- compute the gradient image in x and y
- 3. compute gradient histograms
- normalise across blocks
- 5. flatten into a feature vector
- 6. (quantify to integers)

Dalal, N. and Triggs, B., "Histograms of Oriented Gradients for Human Detection," IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, San Diego, CA, USA.

HoG: Example

Input image

Histogram of Oriented Gradients

HoG summary

Pros

Cons

Very stable over illumination changes, Slow to compute.

perspective changes, blur

Quite large (128 bytes for original SIFT)

BRIEF (Binary Robust Independent Elementary Features)

BRIEF

Very spiky otherwise, like derivatives.

General idea:

- 1. Sample pairs of points $\{p(x), p(y)\}$ in the **smoothed** keypoint neighborhood
- 2. Compute a simple **binary test**: p(x) < p(y)
- 3. Accumulate the results of n_d tests to form a **binary** vector of n_d bits (256 in ref.)

BRIEF: sampling strategies

G I:
$$(x_i, y_i) \sim i.i.d.$$
 Uniform $(-S/2, +S/2)$

G II:
$$(x_i, y_i) \sim i.i.d.$$
 Gaussian $(0, \frac{1}{25})$

G III:
$$x_i \sim i.i.d.$$
 Gaussian $(0, \frac{1}{25} S^2)$
 $y_i \sim i.i.d.$ Gaussian $(x_i, \frac{1}{100} S^2)$

G IV: (x_i,y_i) randomly sampled from discrete locations of a coarse polar grid introducing a spatial quantization.

G V: $x_i = (0,0)$ y_i takes all possible values on a coarse polar grid containing n_d points.

What is the best approach?

BRIEF: sampling strategies

G II: $(x_i, y_i) \sim i.i.d.$ Gaussian $(0, \frac{1}{25})$

Random sampling around the center.

BRIEF summary

Pros

Very fast to compute

Very fast to match (SSE acceleration for Hamming distance)

Very compact to store

Cons

Less robust than HoG (SIFT), DoH (SURF) on several real cases.

Invariance checks

Rotation invariance

Add an angle measure!

Take the main gradient orientation.

(Take the average around the keypoint.)

- ⇒ We now have for each keypoint:
 - Coordinates
 - Orientation
- ⇒ Descriptor: computed over **normalized patch**

Main patch orientation

Scale invariance

Multi scale feature detection and computation:

- Add a keypoint for each relevant scale
- Possibly several keypoints at the same position!
- ⇒ We now have for each keypoint:
 - Coordinates
 - Orientation
 - Scale
- ⇒ Descriptor: computed on a **scaled patch**

(Reminder: Gaussian's sigma vs window size)

Illumination invariance

SIFT approach:

- 1. normalize the vector⇒ Solves Affine but what non-linear sources like camera saturation?
- Which norm? $\max(v_i) = 1$

 $\Sigma v_i = 1$

2. Cap the vector elements to 20% (!) and renormalize⇒ Now we have some illumination invariance

Viewpoint invariance

Well, mostly...

Better, but more complex approaches can tolerate extreme viewpoint change.

See, for instance:

J.-M. Morel and G. Yu, "ASIFT: A New Framework for Fully Affine Invariant Image Comparison," SIAM Journal on Imaging Sciences, vol. 2, no. 2, pp. 438–469, Jan. 2009.

Complete pipelines

SIFT (Scale invariant feature tr.)

- 1. Construct Scale Space
- Take Difference of Gaussians
- Locate DoG Extrema
- 4. Sub Pixel Locate Potential Feature Points
- 5. Filter Edge and Low Contrast Responses
- 6. Assign Keypoints Orientations
- Build Keypoint Descriptors
- 8. Matching, etc.

ORB (oriented FAST and rotated BRIEF)

- 1. Use FAST in pyramids to detect stable keypoints
- 2. Select the strongest features using FAST or Harris response
- 3. Finds their orientation using first-order moments
- 4. Computes the descriptors using BRIEF where the coordinates of random point pairs are rotated according to the measured orientation

Conclusion about feature extraction

Selection of appropriate features:

- It is a **critical** decision
- Depends on the specific application

Features must:

- Be invariant to data variations (depending on the application):
 rotation, perspective, noise, blur, shape distortion, illumination, compression...
- Have **low dimensionality** for fast training, matching, reasonable storage

Features determine the **type of information** to work with:

- gray-level, binary, color image,
- contours, vectorization, skeleton

Features also determine the **type of classifier / indexer** (next part of the lecture).