## **NOTICE UTILISATION**

### CE DOCUMENT DOIT ETRE ASSOCIE AU BROCHAGE DE LA CARTE

## **Etapes**

- Pilotage MCC (x3)
  - Pont en H L293D (pour 3 moteurs)
- Passage sur batterie
- Utilisation des capteurs de position
- Autres options
  - Communication RF (optionnel)
    - KAPPA M868 (RF)
    - RN41/42 Evaluation Board XV
  - Capteurs Distance SHARP (x 3)
  - LIDAR RpLidar A2

Basée sur une carte Nucléo L476

#### **ATTENTION**

Ne pas utiliser le connecteur J23! (erreur de conception)

#### **ATTENTION**

Sur les moteurs Digilent , il faut inverser les broches VCC et GND du capteur de position!!



## **NOTICE UTILISATION**

- Pilotage MCC (x3)
  - Pont en H L293D (pour 3 moteurs)
- Passage sur batterie
- Utilisation des capteurs de position
- Autres options
  - Communication RF (optionnel)
    - KAPPA M868 (RF)
    - RN41/42 Evaluation Board XV
  - Capteurs Distance SHARP (x 3)
  - LIDAR RpLidar A2

## **NOTICE UTILISATION**

#### **MOTEURS A COURANT CONTINU**

#### Moteurs à courant continu

Principe de fonctionnement :

https://www.youtube.com/watch?v=A3b3Km5KVXs

## Moteurs des robots holonomes

Tension nominale: 12 V

Réduction: 1/74,9

Codeur: 360 CPR

#### Connecteur



# **Magnetic Encoders**

Two Channel Optical Encoder





#### **Electrical Characteristics**

| Characteristics           | Symbol    | Test conditions                    | Min. | Ref.  | Max. | Units | Output circuit  Output wave | OVCO<br>SIG<br>GNE |
|---------------------------|-----------|------------------------------------|------|-------|------|-------|-----------------------------|--------------------|
| Supply voltage            | Vcc       |                                    | 2.7  | -     | 5.5  | v     |                             |                    |
| Output saturation voltage | Vce (sat) | Vcc = 14V ; IC = 20mA              | -    | 300   | 700  | mV    |                             |                    |
| Output leakage current    | Icex      | Vcc = 14V ; Vcc = 14V              | *    | < 0.1 | 10   | μА    |                             | 90°±1/6 T          |
| Supply current            | Ice       | Vcc = 20V Output open              |      | 5     | 10   | mA    |                             |                    |
| Output rise time          | tr        | Vcc = 14V ; Rt = 820 Ω ; Ct = 20pF | -    | 0.3   | 1.5  | μS    |                             |                    |
| Output fall time          | tr        | Vcc = 14V ; RL = 820 Ω ; CL = 20pF |      | 0.3   | 1.5  | μS    |                             |                    |

## **NOTICE UTILISATION**

#### PILOTAGE MOTEURS A COURANT CONTINU

## **Pilotage Analogique**

Moteurs à courant continu / Vitesse de rotation



K: coefficient de conversion propre à chaque moteur

## **ATTENTION / PUISSANCE**

Nécessité d'un étage de puissance

## **Pilotage Numérique**

### Principe PWM

Temps de réponse mécanique des moteurs élevé (dépend de la taille du moteur – intertie)



NUCLEO http://lense.institutoptique.fr/mine/nucleo-generer-un-signal-rectangulaire/

#### **PONT EN H**

Sens 1

T1

T3

T2

U

T4



Sens 2

#### PILOTAGE MOTEURS A COURANT CONTINU



## **NOTICE UTILISATION**

- Pilotage MCC (x3)
  - Pont en H L293D (pour 3 moteurs)
- Passage sur batterie
- Utilisation des capteurs de position
- Autres options
  - Communication RF (optionnel)
    - KAPPA M868 (RF)
    - RN41/42 Evaluation Board XV
  - Capteurs Distance SHARP (x 3)
  - LIDAR RpLidar A2

#### PASSAGE SUR BATTERIE

## ATTENTION / BATTERIE

La manipulation de batterie peut être dangereuse : en cas de court-circuit, un courant très important peut apparaître pouvant entrainer la destruction de la batterie et d'autres composants

#### TOUJOURS DEBRANCHER LA BATTERIE AVANT DE MANIPULER LE ROBOT ET LA CARTE



## **UTILISATION DE BATTERIE / RISQUES**

https://www.mrcmodelisme.com/avertissements-sur-les-batteries-li-po-80203/

## **NOTICE UTILISATION**

#### **PASSAGE SUR BATTERIE**

### Nucléo

Le cavalier **JP5** doit être déplacé en position **E5V** (external 5V), au lieu de **U5V** (USB 5V). Le téléversement de nouveau programme est alors impossible sans repasser en **U5V**.

# Débrancher la batterie lors de la manipulation de ce cavalier!





U5V



E5V



#### Carte

Les deux bornes du cavalier J19 doivent être reliées.

PHOTO CARTE

- Pilotage MCC (x3)
  - Pont en H L293D (pour 3 moteurs)
- Passage sur batterie
- Utilisation des capteurs de position
- Autres options
  - Communication RF (optionnel)
    - KAPPA M868 (RF)
    - RN41/42 Evaluation Board XV
  - Capteurs Distance SHARP (x 3)
  - LIDAR RpLidar A2



## **Robot Holonome**