Тема 10 Държавен изпит

специалност Приложна математика

Ред на Лоран. Теорема за резидуумите.

Анотация

Ред на Лоран. Теорема за резидуумите.

Да се докаже теоремата на Лоран за развитие в ред на функция холоморфна във венец. Да се дефинират трите вида изолирани особени точки: отстранима, полюс и съществена особена точка и да се докажат: теоремата на Риман (за отстранима особена точка) и теоремата на Казорати-Вайерщрас – Сохоцки. Да се дефинира резидуум на холоморфна функция в изолирана особена точка и да се докаже теоремата за резидуумите.

Задачи: Определяне вида на изолираните особени точки на холоморфна функция и пресмятане на резидуумите в тях. Пресмятане чрез теоремата за резидуумите на контурни интеграли и на реални несобствени интеграли.

Тема 10

1. Ред на Лоран.

Теорема 1.1 (холоморфните функции са аналитични)

Нека f(z) е холоморфна в някаква област G и нека т. z_0 е точка от нея. Тогава тя се развива в ред на Тейлор около тази точка и имаме

$$f(z) = \sum_{j=0}^{\infty} a_j (z - z_0)^j, a_j = \frac{f^{j}(z_0)}{j!} = \frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{j+1}} \, d\zeta,$$

j=0,1,2,...

където γ е някаква проста Жорданова, която огражда z_0 и лежи изцяло вътре в $G(\phi$ иг. 1)

Фигура 1.

Редовете на Лоран представляват обобщение на редовете на Тейлор – различното при тях е, че евентуално може да събираеми (краен или безкраен брой) по отрицателните степени на $^{Z-Z_0}$.

Преди да формулираме теоремата на Лоран да направим няко неформални разсъждения, касаещи сходимостта на безкраен ред по отрицателните степени на $z^{-}z_{0}$.

Да разгледаме
$$A = \sum_{i=0}^{\infty} \frac{b_i}{(z-z_0)^i}$$
 и да положим $\zeta := \frac{1}{z-z_0}$. Получаваме реда

$$A\!=\!\sum_{i=0}^{\infty}b_{i}\xi^{i}$$
 . Знаем реда на сходимост на последния

ред

$$R = \frac{1}{\limsup\limits_{n \to \infty} \sqrt[n]{b_n}}$$
 . Тоест имаме, че при $\xi \lor \xi R$

сходящ, а при $|\xi| > R$ редът е разходящ. Какво

това за $z-z_{0}$? Редът $A = \sum_{i=0}^{\infty} \frac{b_{i}}{\left(z-z_{0}\right)^{i}}$ е сходящ при

$$\ddot{\iota} z - z_0 \lor \dot{\iota} \frac{1}{R} = \limsup_{n \to \infty} \sqrt[n]{b_n}$$
 и разходящ при $|z - z_0| < \limsup_{n \to \infty} \sqrt[n]{b_n}$. Получихме, че за

разлика от обикновените редове, при които сходимостта е вътре в кръг, тук сходимостта е вън от кръг.

Нека сега си представим, че имаме $C = A + B = \sum_{i=0}^{\infty} a_i (z - z_0)^i + \sum_{i=1}^{\infty} \frac{b_i}{(z - z_0)^i}$. Ако искаме С да

е сходящ е достатъчно да са сходящи и А, и В. Това означава

$$|z-z_0| < r_1 = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{a_n}} u \lor z - z_0 \lor \overset{\circ}{\iota} r_2 = \limsup_{n \to \infty} \sqrt[n]{b_n}$$

Ясно е, че при $r_1 \le r_2$ няма да имаме сходимост. Ако $r_1 > r_2$ имаме сходимост във венеца(фиг. 2) $r_2 < \dot{c} \, z - z_0 \lor \dot{c} \, r_1$

Фиг. 2

Теорема 1.2 (Лоран)

Нека f(z) е холоморфна(аналитична) във венеца $r < \iota z - z_0 \lor \iota R$. Тогава f(z) се развива в ред на Лоран във венеца , имаме

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n, a_n = \frac{1}{2 \pi i} \int_{\gamma_i} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta, n = 0, \pm 1, \pm 2, \dots$$
Tyk

 Y_l е междинна окръжност с радиус r < l < R

Доказателство:

От теоремата на Коши за облатта – венец имаме, че

$$Y_{R+\iota} \frac{f(\vec{\zeta})}{(\vec{\zeta}-z)} \mathcal{A} \vec{\zeta}$$
 $Y_{r'-\iota} \frac{f(\vec{\zeta})}{(\vec{\zeta}-z)} \mathcal{A} \vec{\zeta} + \frac{1}{2\pi i} \int_{\iota} \vec{\iota} - \text{обикаляме голямата окръжност правилно, другата} - \text{не. Тук r} < f(z) = \frac{1}{2\pi i} \int_{\iota} \vec{\iota}$

 $r' < |z-z_0| < R' < R$ (могат да се изберат такива r', $R' - \Phi$ иг. 3). Нека в първия интеграл

преобразуваме
$$\frac{1}{\xi-z} = \frac{1}{\xi-z_0+z_0-z} = \frac{1}{\xi-z_0} \frac{1}{1-\frac{z-z_0}{\xi-z_0}}$$
 Върху $\gamma_{R\, z}$ имаме

Тема 10

$$iz-z_0 \vee \frac{i}{R}$$
 <1

 $\dot{c} \frac{z-z_0}{\xi-z} \lor \leq \dot{c}$. Тогава можем да развием по формулата за геометрична прогресия члена

$$\frac{1}{1 - \frac{z - z_0}{\xi - z_0}} \quad .$$
Имаме
$$\frac{1}{1 - \frac{z - z_0}{\xi - z_0}} = 1 + \frac{z - z_0}{\xi - z_0} + \dots + \left(\frac{z - z_0}{\xi - z_0}\right)^k + \dots$$

Получаваме $\frac{f(z)}{\xi - z} = \frac{f(z)}{\xi - z_0} + \frac{z - z_0}{(\xi - z_0)^2} f(z) + \dots + \frac{(z - z_0)^k}{(\xi - z_0)^{k+1}} f(z) + \dots$ Последното е равномерно

сходящ ред. Интегрираме върху $\gamma_{R^{\,T}}$ (теорема на

Вайерщрас) и умножаваме двете страни по $\frac{1}{2\pi i}$.

Получаваме

$$\begin{aligned} \gamma_{R+i} & \frac{f(\zeta)}{(\zeta - z_0)^2} \mathcal{A} \zeta + \dots + \frac{(z - z_0)^k}{2 \pi i} \int_{i} \zeta \\ & \gamma_{R+i} \frac{f(z)}{\xi - z_0} \mathcal{A} \zeta + \frac{(z - z_0)}{2 \pi i} \int_{i} \zeta \\ & \gamma_{R+i} \frac{f(\zeta)}{(\zeta - z_0)} \mathcal{A} \zeta \frac{1}{2 \pi i} \int_{i} \zeta \\ & \frac{1}{2 \pi i} \int_{i} \zeta \end{aligned}$$

 $Y_{R+i} \frac{f(\zeta)}{(\zeta-\zeta)^{k+1}} \mathscr{A} \zeta + \dots$

Да положим

$$\gamma_{R+\dot{\iota}} \frac{f(\zeta)}{(\zeta-z_0)^{n+1}}$$
, $n=0,1,2,...$ Получа $a_n = \frac{1}{2\pi i} \int \dot{\iota}$

,2,...
$$\gamma_{R+\dot{\iota}}\frac{f(\zeta)}{(\zeta-z_0)} \mathbb{Z} \zeta = \sum_{n=0}^{\infty} a_n (z-z_0)^n$$
 Получаваме
$$\frac{1}{2\pi i} \int_{\dot{\iota}} \dot{\iota}$$

$$Y_{r+\iota} \frac{f(\zeta)}{(z-\zeta)} \mathcal{A} \zeta$$
 Нека сега преработим първия интеграл $Y_{r'-\iota} \frac{f(\zeta)}{(\zeta-z)} \mathcal{A} \zeta = \frac{1}{2\pi i} \int_{\iota} \dot{\iota}$. Върху $\ddot{\iota}$ Фиг. 3

$$\frac{1}{z-\zeta} = \frac{1}{z-z_0+z_0-\zeta} = \frac{1}{z-z_0} \frac{1}{1-\frac{\zeta-z_0}{z-z_0}} \qquad , \qquad \frac{\zeta z-z_0 \lor \zeta < 1}{\zeta - \frac{\zeta}{z-z_0} \lor \zeta \frac{r'}{\zeta}} \ . \qquad \text{Аналогично} \qquad \text{развиваме}$$

$$\frac{1}{1-rac{\zeta-z_0}{z-z_0}}$$
 като геом. прогресия; След умножаване по $f(\zeta)$ получаваме

$$\frac{f(\zeta)}{(z-\zeta)} = \frac{f(\zeta)}{z-z_0} (1 + \frac{\zeta-z_0}{z-z_0} + \dots + (\frac{\zeta-z_0}{z-z_0})^k + \dots) = \frac{f(\zeta)}{z-z_0} + \frac{f(\zeta)(\zeta-z_0)}{(z-z_0)^2} + \dots + \frac{f(\zeta)(\zeta-z_0)^k}{(z-z_0)^{k+1}} + \dots$$

Интегрираме върху окръжността Y_r

$$Y_{r-\iota} \frac{f(\zeta)}{(\zeta-z)} \mathcal{A} \zeta = \frac{\left(z-z_0\right)^{-1}}{2\pi i} \int_{Y_{\iota}} \frac{f(\zeta)}{\left(\zeta-z_0\right)^0} \mathcal{A} \zeta + \frac{1}{2\pi i} \int_{\iota} \dot{\iota}$$

$$\frac{+(z-z_0)^{-2}}{2\pi i}\int_{\gamma_r}\frac{f(\zeta)}{(\zeta-z_0)^{-1}} d\zeta + ... + \frac{(z-z_0)^{-(k+1)}}{2\pi i}\int_{\gamma_r}\frac{f(\zeta)}{(\zeta-z_0)^{-(k)}} d\zeta + ...$$

Да положим $b_n = a_{-n} = \int_{\gamma_{r'}} \frac{f(\zeta)}{(\zeta - z_0)^{n-1}}$, n = 1,2,3.. Нека r'<l <R'. Ясно e, че

$$\int_{Y_{C}} \frac{f(\zeta) \mathcal{A} \zeta}{(\zeta - z_{0})^{n-1}} = \int_{Y_{C}} \frac{f(\zeta) \mathcal{A} \zeta}{(\zeta - z_{0})^{n-1}}, n = 1, 2, \dots u \int_{Y_{R}} \frac{f(\zeta) \mathcal{A} \zeta}{(\zeta - z_{0})^{n+1}} = \int_{Y_{C}} \frac{f(\zeta) \mathcal{A} \zeta}{(\zeta - z_{0})^{n+1}}, n = 0, 1, 2, \dots$$

Получихме исканото : $f(z) = \sum_{n=-\infty}^{+\infty} a_n (z-z_0)^n$, $a_n = \frac{1}{2 \pi i} \int_{\gamma_i} \frac{f(\zeta)}{(\zeta-z_0)^{n+1}} \mathcal{A}(\zeta)$, $n=0,\pm 1,\pm 2,...$

2. Особени точки. Теореми на на Казорати-Вайерщрас – Сохоцки, Риман

Дефиниция 2.1: Казваме, че f има особеност в т. z_0 , ако f не е аналитична в тази точка. Още, z_0 е изолирана особена, ако има околност на z_0 , за която f е аналитична навсякъде освен в т. z_0 .

Нека имаме особеност в т. z_0 . Имаме два случая:

- 1. f има крайна граница в т. z_0 казваме, че особеността е "правилна" или отстранима.
- 2. f няма крайна граница в т. z_0

Тема 10

Във втория случай имаме отново две възможности:

$$\lim_{z \to z_0} {\it i} f(z) \lor {\it i} \infty$$
 (z_0 се нарича полюс) или $\#\lim_{z \to z_0} f(z)$ (z_0 е съществена особеност)

Примери: в т. 0+0i $f_1(z)=\frac{1}{z^2}$ клони към безкарйност по абсолютна стойност, докато

$$f_2(z)$$
= $e^{rac{1}{z}}$ няма граница : $\lim_{x \to 0, x > 0} e^{rac{1}{z}} = \infty$, $\lim_{x \to 0, x < 0} e^{rac{1}{z}} = 0$.

Теорема 2.1 (Риман)

НДУ т. z_0 да бъде правилна е f(z) да бъде ограничена в околност на т. z_0 . Доказателство:

(<=)Нека f(z) е ограничена в околност на т. z_0 , т.е. съществува $\delta>0:0<\dot{c}\ z-z_0\lor\dot{c}\ \delta\to \lor f(z)\lor \le M$

В тази околност f(z) има представяне

$$f(z) = \sum_{n=-\infty}^{-1} a_n (z - z_0)^n + \sum_{n=0}^{+\infty} a_n (z - z_0)^n, a_n = \frac{1}{2 \pi i} \int_{C_\epsilon} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta, n = 0, \pm 1, \pm 2, \dots$$

Това е така за произволно малко ϵ : $\delta > \epsilon > 0$. Това е така, понеже като изберем такова

 ϵ съществува $\epsilon_1 \colon 0 < \epsilon_1 < \epsilon$ (фиг. 4) че f е аналитична във венеца $\epsilon_1 < \epsilon_2 - \epsilon_0 \lor \epsilon_0$ и коефициентите могат да се изчислят върху междинната окръжност C_ϵ (от теоремата на Лоран)

Да разгледаме коефициентите с отрицателни индекси на f.

$$\begin{array}{c} \dot{\iota} f(\zeta) \vee \frac{\dot{\iota}}{\dot{\iota} (\zeta - z_0)^{n+1} \vee \dot{\iota} \mathcal{Q} \zeta} \leq \frac{M}{2 \, \pi} \, \epsilon^{-(n+1)} \int\limits_{\gamma} \mathcal{Q} \zeta = \frac{M}{2 \, \pi} \, \epsilon^{-(n+1)} 2 \, \pi \epsilon = M \, \epsilon^{-n} \,, n = -1, -2, \\ \dot{\iota} \iota 2 \, \pi i \vee \dot{\iota} \int\limits_{\zeta} \dot{\iota} \\ \dot{\iota} \, a_n \vee \leq \frac{1}{\dot{\iota}} \end{array}$$

Но това е за произволно малко ϵ : $\delta > \epsilon > 0$ следователно всички тези коефициенти са

0 и f(z) има само "правилна част" в развитието си : $f(z) = \sum_{n=0}^{+\infty} a_n (z-z_0)^n$

Сега е ясно, че $\lim_{z \to z_0} f(z) = a_0$ - имаме крайна граница и z_0 е правилна.

(=>)Обратното, нека точката е правилна, следователно функцията може да бъде направена аналитична в тази точка. Но това означава че е ограничена в околност на тази точка.

Следствие: (Теорема на Риман)

Ако f(z) е холоморфна в областта G с изключение може би на точката а от G, за която функцията не е дефинирана, и ако f е ограничена в G, то винаги е възможно f да се додефинира в f. а по такъв начин, че f(z) да е холоморфна в цялата област G, включително в точка f.

Доказателство (нестрого):

От теорема 2.1 е ясно, че ако f е ограничена, то $\lim_{z \to a} f(z) = a_0$. Додефинирайки

 $f(a) \stackrel{\iota}{=} a_0$ ние получаваме аналитична функция понеже f се развива в ред само по положителните си стойности .

Класификация на изолираните особените точки (без доказателство) :

Ще пропуснем отстранимите особени точки, които както видяхме(Теорема 2.1, следствие от нея) всъщност не са особени.

Нека f(z) е холоморфна в областта G с изключение на точката f(z) от G. Нека разгледаме развитието на f(z) в някаква околност на g(z) а.

1сл.
$$f(z) = \frac{a_{-m}}{(z-z_0)^m} + \dots + \frac{a_{-1}}{z-z_0} + \sum_{n=0}^{+\infty} a_n (z-z_0)^n$$
 (имаме само краен брой членове с

отрицателни индекси). В този случай казваме, че Z_0 е m- кратен полюс.

2сл.
$$\sum_{n=-\infty}^{-1} a_n (z-z_0)^n + \sum_{n=0}^{+\infty} a_n (z-z_0)^n$$
 (имаме безкрайно много членове с отрицателни

8

индекси). В този случай Z_0 е съществена особеност.

Други видове изолирани особени точки няма.

Теорема 2.2 (Казорати-Сохотски- Вайерщрас)

Нека z_0 е съществена особеност за f. Тогава ако означим с $C^\infty = CU^{\{\infty\}}$, то $\forall a \in C^\infty$ $\exists \{z_n\}_{n=1,2,..}: z_n \to z_0 \land \lim_{n \to \infty} f(z_n) = a$

- 1) Нека а=" $^\infty$. Ако допуснем, че не съществува редица $\{z_n\}_{n=1,2,\dots}: z_n \to z_0 \wedge \lim_{n\to\infty} f(z_n) = \infty$, то тогава f(z) ще е ограничена в околност на z_0 , което е противоречие.
- 2) Нека а $\ \epsilon C$. Допускаме, че не съществува редица $\ \{z_n\}_{n=1,2,\dots}: z_n \to z_0 \wedge \lim_{n \to \infty} f(z_n) = a$, т.е.

 $\exists \epsilon > 0$: $\forall \delta > 0 |z - z_0| < \delta \land \dot{c} f(z) - a \lor \dot{c} \epsilon$

Да означим $\phi(z) = \frac{1}{f(z) - a}$. За нея е в сила $\ddot{\phi}(z) \lor \ddot{c} = 0$. Тоест ϕ е аналитична в

околност на $\hspace{.1in} z_0$, която е правилна за нея. Но тогава $\hspace{.1in} f(z) = a + \frac{1}{\phi(z)}$. Ние вече

доказахме, че съществува редица от комплексни числа, клоняща към Z_0 , за която стойностите на f клонят към безкрайност. Ако приложим тази редица в полученото равенство, получаваме, че $^{\phi}$ има особеност в т. Z_0 (а е крайно). Но това е противоречие.

3. Резидууми. Теорема за резидуумите.

Теорията на резидуумите възниква във връзка с нуждата от изчисляване на интеграли по затворени криви от функции, които във вътрешността на тези криви не са аналитични, а имат краен брой изолирани особености (фиг. 5)

Дефиниция 3.1 (Резидуум на функция в изолирана особена точка)

Нека а е изолирана особеност за f. Нека Γ е окръжност с μ Фиг. 5 такъв, че вътре в кръга да няма други особености. **Резидуум** на f в т. а наричаме

$$\frac{1}{2\pi i}\int_{\Gamma}f(z)dz$$

Бележим с $Resf \dot{\iota}_a$. Доказва се, че в случай на m-кратен полюс, резудуума на f е коефициента пред индекса "-m" в Лорановото развитие на функцията f.

Теорема 3.1 (теорема за Резидуумите)

Нека G е област с граница Γ , такава че функцията f е аналитична в G с ижлючение на

краен брой точки ${\left\{a_{j}
ight\}_{j=1,...,n}}$ - изолирани особености. Тогава

$$\int_{\Gamma} f(z) \, dz = 2 \pi i \sum_{j=1}^{n} Res(f) \, \dot{\mathbf{c}}_{a_{j}}$$

<u>Доказателство:</u> Да опишем п кръга около изолираните особености така, че да не се пресичат и да означим с $\{\Gamma_j\}_{j=1,\dots,n}$ техните контури (фиг. 6). Според теоремата на Коши

Фиг. 6

$$j=1,..,n$$
 $\int\limits_{\Gamma_{j+i}f(z)}\int\limits_{d\!\!/z=2}\pi i\sum_{j=1}^nResf$ $oldsymbol{\iota}_{a_j}$ $\{\Gamma_{j\!i}f(z)d\!\!/z=\sum_{j=1}^noldsymbol{\iota}$ U $oldsymbol{\iota}$ $\Gamma_{+i}f(z)d\!\!/z=\int\limits_{i}$ $oldsymbol{\iota}$

Пресмятане на резудуум на f в т. а - крайна:

1) прост полюс : $Res(f) \dot{c}_a = \lim_{z \to a} (z - a) f(z)$

2) k- полюс :
$$Res(f)$$
і $_{a} = \frac{\lim\limits_{z \to a} \mathscr{Q}^{k-1}}{\mathscr{Q} z^{k-1}} [\frac{(z-a)^{k} f \ (z)}{(k-1) \, !}]$

3) В съществено особна точка, коефициента пред $\frac{1}{z-a}$ в Лорановото развитие около т.

Α

Литература:

- [1] Увод в теорията на аналитичните функции, Л. Чолаков
- [2] Теория на аналитичните функции, Т. Аргирова
- [3] Записки от лекциите по КА ,спец. ПМ, на Евгени Христов

Темата е разработена от Велико Дончев, уч. 2011/2012 г.