Dokumentation

Roboter-Fangen

Maschinenbauinformatik 3. & 5. Semester

Michael Mertens, Jonah Vennemann, Sven Stegemann, Eugen Zwetzich

7. Februar 2016

Inhaltsverzeichnis

1	Projektbeschreibung 1.1 Spielablauf	3
2	Gantt-Diagramm	4
3	Aufwandsschätzung	7
4	GitHub 4.1 ZenHub	10
5	Bedienung	12
6	Programmierung 6.1 Programmablaufplan 6.2 Hauptformular 6.3 Klassen 6.3.1 Vektor 6.3.2 KI 6.3.3 Konstanten 6.3.4 Roboter Daten 6.3.4 Roboter Daten	13 13 13 13 14
7	Resümee	14

Abbild	dungsverzeichnis	
1	Gantt-Diagramm	6

1 Projektbeschreibung

Bei dem Projekt "Roboter-Fangen" für das Modul IT-Projektmanagement besteht unsere Aufgabe als eines von zwei Teams in der Programmierung einer Steuerungssoftware für das Fischertechnik ROBOTICS TXT Discovery Set.

Das Gemeinziel ist ein lauffähiges Fangen-Spiel zu erstellen bei dem vier Roboter pro Team von der jeweiligen Software gesteuert werden.

Dabei werden die Positionsdaten aller Roboter von einem Schiedsrichter-Server mit Hilfe einer Kamera berechnet und an die Steuerungssoftware der beiden Teams geschickt. Hauptbestandteile der Steuerungssoftware:

- Benutzeroberfläche:
 - Kamerabilder
 - Eingabefelder zum Verbinden
 - zusätzliche Informationen
- Positionsdatenverarbeitung über eine Vektorklasse:
 - Attribute: x,y als Typ Double
 - Methoden: Addieren, Subtrahieren, Skalar multiplizieren, Winkel berechnen
- Elemente der KI:
 - Fangen
 - Fliehen
 - Ausweichen
 - im Feld bleiben
 - Rausfahren nachdem Gefangenwerden

Neben der Programmierung gehören dabei auch die Planung, die Dokumentation des Codes sowie die Darstellung des Projekts dazu.

- Quelltextkommentare
- Präsentation
- Zeiterfassung
- Betriebsanleitung
- Spielregeln

1.1 Spielablauf

Es werden pro Gruppe 4 Roboter auf dem Spielfeld in extra Positionsfelder platziert. Die Größe des Spielfeldes ist festgelegt.

- 1. "Start" an den Server senden
- 2. Warten auf Start vom Server
- 3. Losfahren
- 4. Geschwindigkeit: $\frac{3}{4}$ der vollen Geschwindigkeit
- 5. Volle Geschwindigkeit ab einem Abstand x vom Gegner
- 6. Meldung ob ein Roboter gefangen wurde, an den Server senden
- 7. Server setzt den gefangenen Roboter auf neutral
- 8. Gefangener Roboter fährt aus dem Spielfeld
- 9. Spiel endet wenn alle Roboter einer Gruppe gefangen wurden bzw. nach 30 Minuten

2 Gantt-Diagramm

Ein Gantt-Diagramm oder auch Balkenplan ist ein nach dem Unternehmensberater Henry L. Gantt benanntes Instrument des Projektmanagements, das die zeitliche Abfolge von Aktivitäten grafisch in Form von Balken auf einer Zeitachse darstellt.

In der Abbildung 1 sieht man die einzelnen Aktivitäten, die wir für unser Projekt Roboter-Fangen eingeplant haben. Außerdem sieht

Einige Aktivitäten haben wir in Gruppen eingeteilt, um:

- Planung
- Programmierung Teil 1
- $\bullet\,$ Programmierung Teil 2
- Dokumentation

	®	Name	Dauer	Start	Ende	Vorgänger	Ressourcen
1	✓	M0: Start	0 tage	23.12.15 08:00	23.12.15 08:00		
2	✓	Analyse	0,5 tage	23.12.15 08:00	23.12.15 13:00	1	Gruppe Blau; Gruppe
3	⊌	Aufgabenaufteilung	0,5 tage	23.12.15 12:00	23.12.15 17:00	2	Gruppe Blau
4	✓	Planung	0,5 tage	28.12.15 08:00	28.12.15 13:00	3	
5	✓	Projektbeschreibung	0,5 tage	28.12.15 08:00	28.12.15 13:00		Eugen Zwetzich;Com
6	✓	Spielregeln	0,5 tage	28.12.15 08:00	28.12.15 13:00	5AA	Jonah Vennemann;Eu
7	⊌	Skizze PAP KI	0,5 tage	28.12.15 08:00	28.12.15 13:00	6AA	Michael Mertens
8	o	M1: Planung abgeschlossen	0 tage	04.01.16 08:00	04.01.16 08:00	4	
9		Programmierung - Teil I	9,5 tage	04.01.16 08:00	15.01.16 13:00	8	
10		GUI-Design	1 tag	04.01.16 08:00	04.01.16 17:00		Computer; Jonah Venn
11		Programmstart/verbinden	1,5 tage	05.01.16 08:00	06.01.16 13:00	10	
12		Positionsdaten empfang	1 tag	06.01.16 13:00	07.01.16 13:00	11	Sven Stegemann
13		Fahrtrichtungen ermitteln	2 tage	07.01.16 13:00	11.01.16 13:00	12	
14		Als "gefangen" melden	1 tag	04.01.16 08:00	04.01.16 17:00	10AA	
15		Simple KI	4 tage	11.01.16 13:00	15.01.16 13:00	1 3	
16		KI - Fliehen	2 tage	11.01.16 13:00	13.01.16 13:00		Jonah Vennemann
17		KI - Ausweichen	2 tage	11.01.16 13:00	13.01.16 13:00	16AA	Eugen Zwetzich
18		KI - Im Feld bleiben	2 tage	11.01.16 13:00	13.01.16 13:00	17AA	Jonah Vennemann
19		KI - Fangen	2 tage	11.01.16 13:00	13.01.16 13:00	18AA	Eugen Zwetzich
20		KI - Rausfahren nachde	2 tage	13.01.16 13:00	15.01.16 13:00	19	Jonah Vennemann
21	o	M2: Erste Implementierung	0 tage	15.01.16 13:00	15.01.16 13:00	9	
22		Vorabpräsentation erstell	1 tag	15.01.16 13:00	18.01.16 13:00	21	
23	o	M3: Kurzpräsentation	0 tage	18.01.16 13:00	18.01.16 13:00	22	
2 4		Programmierung - Teil II	3 tage	18.01.16 12:00	21.01.16 13:00	2 3	
25	✓	Log-Funktion	0,5 tage	18.01.16 12:00	18.01.16 17:00		Jonah Vennemann
26		Kamerabilder anzeigen	1 tag	18.01.16 13:00	19.01.16 13:00	27AA	Michael Mertens
27	✓	Klasse zur Vektorberech	1 tag	18.01.16 12:00	19.01.16 13:00	25AA	Eugen Zwetzich
28	Ö	Tests	2 tage	19.01.16 13:00	21.01.16 13:00	27	Computer;Gruppe Bla
29	Ö	M4: Programmieren abge	0 tage	21.01.16 13:00	21.01.16 13:00	24	
3 0		Präsentation abschließen	1,5 tage	21.01.16 13:00	22.01.16 17:00	29	Jonah Vennemann
3 1	Ö	M5: Endpräsentation	0 tage	22.01.16 17:00	22.01.16 17:00	30	
3 2	Ö	Dokumentation	30 tage	05.01.16 08:00	15.02.16 17:00	9AA	
3 3		Betriebsanleitung	30 tage	05.01.16 08:00	15.02.16 17:00		Eugen Zwetzich;Com
3 4	Ö	M6: Dokumentation abge	0 tage	15.02.16 17:00	15.02.16 17:00	32	
		-		Roboter fangen Ro			

Abbildung 1: Gantt-Diagramm

3 Aufwandsschätzung

Um den Aufwand unseres IT-Projektes abschätzen zu können, haben wir die Methode Function-Point benutzt.

Das Function-Point-Verfahren(auch -Analyse oder -Methode, kurz: FPA) dient der Bewertung des fachlich-funktionalen Umfangs eines Informationstechnischen Systems.

Die Durchführung des Verfahrens verläuft in 5 Schritten:

- 1. Analyse der Komponenten und Kategorisierung ihrer Funktionalitäten
- 2. Bewertung der verschiedenen Funktionskategorien
- 3. Einbeziehung besonderer Einflussfaktoren
- 4. Ermittlung der sog. Total Function Points(TFP)
- 5. Ableitung des zu erwartenden Entwicklungsaufwandes

1. Schritt

- Eingabedaten
 - GUI
 - Programmstart
- Ausgabedaten
 - Ereignisprotokolldatei
 - Kamerabild
 - Steuerbefehle senden
- projektbez. Datenbestände
 - Fahrtrichtung
 - Fangen
 - Fliehen
 - Ausweichen
 - Im Feld bleiben
 - Rausfahren nach dem Fangen
 - Vektorberechnung
- externe Datenbestände

- Positionsdaten
- Mitteilung gefangen
- Roboter aktiv?

2. Schritt

(1.4.1)	Anzah]	der Fun	ktionen	Faktoren d	n der Fu	nktionen	Fur	ıktionspu	nkte
ruitkijouskategorie	Einfach	Mittel	Komplex	Einfach	Mittel	Komplex	Einfach	Mittel	Komplex
Eingabedaten		П	0	33	4	9	33	4	0
Ausgabedaten		2	0	4	20	7	4	10	0
Projektbez. Datenbestände	П	3	3	7	10	15	7	30	45
Externe Datenbestände	က	0	0	ಬ	7	10	15	0	0

7	118
7	Summe SI:

3. Schritt

$^{ m Nr}$	Nr Einflussfaktoren	Gewichte
-	Schwierigkeit und Komplexität der Rechenoperatoren (Faktor 2)	2
2	Schwierigkeit und Komplexität der Ablauflogik	ಬ
က	Umfang der Ausnahmeregelung (Faktor 2)	9
4	Verflechtungen mit anderen IT-Systemen	က
က	dezentrale Verarbeitung und Datenhaltung	0
9	erforderliche Maßnahmen der IT Sicherheit	0
_	angestrebte Rechengeschwindigkeit	П
∞	Konvertierung der Datenbeständen	0
6	Benutzer- und Änderungsfreundlichkeit	П
10	Wiederverwendbarkeit von Komponenten (bspw. Klassen)	П

Summe S2:

4. Schritt

$$TFP^{1} = S1 \cdot S3$$

$$= S1 \cdot \left(0.7 + \frac{S2}{100}\right)$$

$$= 118 \cdot \left(0.7 + \frac{19}{100}\right)$$

$$TFP = 105.02$$

5. Schritt

$$PM^2 = 0.08 \cdot TFP - 7 \le 1000TFP > PM = 0.08 \cdot TFP - 108$$

$$PM = 0.08 \cdot TFP - 7$$

$$= 0.08 \cdot 105.02 - 7$$

$$PM = 1.4016$$

$$PM = 672.77h$$

$$3 \text{ Personen} = 224.256 \text{h pro Person}$$

$$4 \text{ Personen} = 168.192 \text{h pro Person}$$

⇒ Bei einem 4 starken Team benötigen wir ca. 170h pro Person.

4 GitHub

GitHub ist ein webbasierter Online-Dienst, für die Versionsverwaltungssoftware Git. Git wurde von Linus Torvalds ursprünglich für die Verwaltung des Linux-Kernels geschrieben.

4.1 ZenHub

ZenHub ist ein Projektmanagement Addon für GitHub. In diesem ist es möglich

 $^{^{1}\}mathrm{TFP}{=}\mathrm{Total}$ Function Points

 $^{^{2}}$ Personenmonate(PM) = 20 Arbeitstage

5 Bedienung

6 Programmierung

6.1 Programmablaufplan

6.2 Benutzeroberfläche

6.3 Klassen

Für die Berechnungen und Logik haben wir eigene Klassen geschrieben.

Diese unterteilen sich in:

- Vektor
- KI
- Konstanten
- Roboter Daten

6.3.1 Vektor

- Funktionen
 - **Label** Beschreibung
- Prozeduren
 - **Label** Beschreibung
- Variablen
 - **Label** Beschreibung

6.3.2 KI

• Funktionen

PrioritätFestlegen Beschreibung

FangvektorBerechnen description

FliehvektorBerechnen description

AusweichvektorBerechnen description

RausfahrvektorBerechnen description

ServerdatenEmpfangen description

Anmelden description

• Prozeduren

SteuerbefehlSenden Beschreibung

 $\textbf{GeschwindigkeitBerechnen} \ \operatorname{description}$

Initialisierung description

Steuern description

• Variablen

ZeitletzterFrames Beschreibung

RoboterDaten description

Roboter description

Spielfeld description

Server description

6.3.3 Konstanten

• Variablen

Mindestabstand Beschreibung

Nullvektor ist ein konstanter Record

6.3.4 Roboter Daten

• Variablen

Position eines jeden Roboters vom Typ TVektor

 Geschwindigkeit eines jeden Roboters in $\frac{m}{s}$ vom Typ T Vektor

Positionverlauf ist eine Warteschlange (TQueue) mit Positionen des Roboters vom Typ TVektor

Aktiv description

7 Resümee