

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

Aluno: Arthur Cadore Matuella Barcella Data: 02/09/2021

1ª Fase – Engenharia de Telecomunicações

Disciplina: LOG

LÓGICA - AVALIAÇÃO 2

<u>Para as questões 1 a 4</u>, verificar a validade do argumento apresentado, utilizando inferências lógicas. (Numerar premissas/conclusões e indicar as inferências utilizadas)

1)

QUESTÃO INFORMADA		
PREMISSAS:	$A \rightarrow C, C \rightarrow \sim B, B$	
CONCLUSÃO:	~A	

VERIFICAÇÃO DA VALIDADE:

	DESCRIÇÃO	PREMISSA
1	Premissa 1	$A \rightarrow C$
2	Premissa 2	$C \rightarrow \sim B$
3	Premissa 3	В
4	Silogismo Hipotético (1,2)	A → ~B
5	Modus tollens (4,3)	~A
CONCLUSÃO:		~A

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

2)

QUESTÃO INFORMADA		
PREMISSAS:	$A \ V \ D, (A \ V \ D) \to E, E \to C, C \to F$	
CONCLUSÃO:	F	

VERIFICAÇÃO DA VALIDADE:

	DESCRIÇÃO	PREMISSA
1	Premissa 1	A∨D
2	Premissa 2	$(A \lor D) \rightarrow E$
3	Premissa 3	$E \to C$
4	Premissa 4	$C \rightarrow F$
5	Modus ponens (2,1)	E
6	Modus ponens (3,5)	С
7	Modus ponens (4,6)	F
	CONCLUSÃO:	F

3)

QUESTÃO INFORMADA		
PREMISSAS:	A \vee B, \sim B, A \rightarrow (C \vee \sim D), D	
CONCLUSÃO:	С	

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL
INSTITUTO FEDERAL
SANTA CATARINA
SANTA CATARINA
SANTA CATARINA

VERIFICAÇÃO DA VALIDADE:

	DESCRIÇÃO	PREMISSA
1	Premissa 1	A∨B
2	Premissa 2	~B
3	Premissa 3	$A \rightarrow (C \ V \ \sim D)$
4	Premissa 4	D
5	Comutação (1)	BvA
6	Silogismo disjuntivo (5,2)	A
7	Modus ponens (3,6)	C v ~D
8	Comutação (7)	~D v C
9	Silogismo disjuntivo (8,4)	С
	CONCLUSÃO:	С

4)

QUESTÃO INFORMADA	
PREMISSAS:	$A \rightarrow B, A, C \rightarrow PB, CC \rightarrow CB \land D$
CONCLUSÃO:	В

VERIFICAÇÃO DA VALIDADE:

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

	DESCRIÇÃO	PREMISSA
1	Premissa 1	$A \to B$
2	Premissa 2	Α
3	Premissa 3	C → ~B
4	Premissa 4	~C → (B^D)
5	Modus ponens (2,1)	В
6	Modus tollens (3,5)	~C
7	Modus ponens (4,6)	B ^ D
8	Simplificação (7)	В
	CONCLUSÃO:	В

- 5) Formalizar o argumento apresentado a seguir e demonstrar a sua validade utilizando regras de inferência lógica. (Na demonstração, numerar premissas/conclusões e indicar inferências)
 - Se um número for divisível por 2 e for divisível por 3, então será divisível por 6.
 - Determinado número é divisível por 3, mas não é divisível por 6.
 - Portanto, esse número não é divisível por 2.

(silogismo disjuntivo, simplificação, Morgan, modus tollens)

ESPECIFICAÇÃO:

PROPOSIÇÃO	DESCRIÇÃO
А	For um número divisível por 2
В	For um número divisível por 3

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

С	For um número divisível por 6
~C	Não for um número divisível por 6
~A	Não for um número divisível por 2

ARGUMENTO	PREMISSA
Se um número for divisível por 2 e for divisível por 3, então será divisível por 6.	$(A ^B) \rightarrow C$
Determinado número é divisível por 3, mas não é divisível por 6.	B ^ ~C
Portanto, esse número não é divisível por 2.	~A

FORMALIZAÇÃO DO ARGUMENTO:

ARGUMENTO COMPLETO (FORMALIZADO):	
$(((A \land B) \rightarrow C) \land (B \land (\sim C)) \rightarrow \sim A$	

DEMONSTRAÇÃO DA VALIDADE:

	DESCRIÇÃO	PREMISSA	
1	Premissa 1	$(A \land B) \rightarrow C$	
2	Premissa 2	B ^ ~C	

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS SÃO JOSÉ

ENGENHARIA DE TELECOMUNICAÇÕES

3	Comutação (2): ~C ^ B	
4	Simplificação (3) ~C	
5	Modus tollens (1,4)	~(A ^ B)
6	Teorema de Morgan (5)	~A v ~B
7	Comutação (6) ~B v ~A	
8	Simplificação (2)	В
9	Silogismo disjuntivo (7,8)	~A
	CONCLUSÃO:	~A

<u>Para as questões 6 e 7</u>, demonstrar a invalidade dos argumentos apresentados, utilizando o método da atribuição de valores. Indicar os valores das proposições simples que levam à invalidade.

6)

QUESTÃO INFORMADA			
PREMISSAS: D V E, D \rightarrow B, B V C, \sim A, A V C			
CONCLUSÃO:	E		

Argumento inválido - Premissas verdadeiras, conclusão falsa:

Conclusão Falsa:	~E	Pois:	E = V

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

1° Premissa verdadeira: D ∨ E				
D	E	DVE		
V	F	V		
F	F	F		
CONCLUSÃO: D = V				

2° Premissa verdadeira: D → B					
$D \qquad B \qquad D \to B$					
V	V	V			
V	F	F			
CONCLUSÃO: B = V					

3° Premissa verdadeira: B ∨ C					
B C B V C					
V	V	V			
V F V					
CONCLUSÃO: C = V/F					

4° Premissa verdadeira: ~A				
Α ~Α				
V	F			

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS SÃO JOSÉ

ENGENHARIA DE TELECOMUNICAÇÕES

CONCLUSÃO: A = F

5° Premissa verdadeira: A ∨ C					
A C AVC					
F	V	V			
F	F	F			
CONCLUSÃO: C = V					

Valores das proposições simples:					
А	В	С	D	E	
F	V	V	V	F	

7)

QUESTÃO INFORMADA				
PREMISSAS:	$B \rightarrow A, A \lor D, D \rightarrow \sim C$			
CONCLUSÃO:	AVC			

Argumento inválido - Premissas verdadeiras, conclusão falsa:

Conclusão Falsa:	~A / ~C	Pois:	(A V C) = V
------------------	---------	-------	-------------

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

1° Premissa verdadeira: B → A					
В	Α	$B \rightarrow A$			
V	F	F			
F F V					
CONCLUSÃO: B = F					

2° Premissa verdadeira: A ∨ D					
D A A V D					
V	F	V			
F F					
CONCLUSÃO: D = V					

3° Premissa verdadeira: D → ~C				
D	~C	D → ~C		
V	V	V		

Valores das proposições simples:				
А	В	С	D	
F	F	F	V	

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

8)Considerando os indivíduos e classes especificados a seguir, expressar formalmente (em termos de conectivos, variáveis, constantes e quantificadores) as proposições apresentadas.

- INDIVÍDUOS: Machado de Assis (m), Sartre (s), Aristóteles(a), Jorge Amado (j)
- CLASSES: brasileiros (B), escritores (E), filósofos (F)

	PROPOSIÇÕES	FORMALIZAÇÃO
а	Aristóteles não é brasileiro.	~Ba
b	Machado de Assis é brasileiro e escritor.	Bm ^ Em
С	Sartre é filósofo e não é brasileiro.	Fs ^ ~Bs
d	Aristóteles e Sartre são filósofos.	Fa ^ Fs
е	Jorge Amado não é filósofo.	~Fj
f	Se Sartre é filósofo e escritor.	Fs → Es
g	Machado de Assis e Jorge Amado são escritores e brasileiros.	Em ^ Ej ^ Bm ^ Bj
h	Aristóteles é filósofo ou Sartre não é escritor.	Fa v ~Es
i	Alguns brasileiros não são escritores.	∃x(Bx ^ ~Ex)
j	Alguns filósofos são brasileiros.	∃x(Fx ^ Bx)
k	Nenhum filósofo é escritor.	$\forall x(Fx \rightarrow \sim Ex)$
I	Todo escritor é filósofo.	$\forall x (Ex \rightarrow Fx)$
m	Alguns brasileiros são escritores ou filósofos.	∃x(Bx ^ (Ex v Fx))
n	Alguns escritores e filósofos são brasileiros.	∃x(Ex (Fx ^ Bx)
O	Nenhum escritor é filósofo e brasileiro.	$\forall x(Ex \rightarrow \sim (Fx \land Bx))$

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

9) Expressar formalmente (em termos de conectivos, variáveis, constantes e quantificadores) o argumento apresentado a seguir. Verificar a validade do argumento.

ARGUMENTO:

- Todos os gregos são europeus.
- Todos os italianos são europeus.
- Dante é italiano.
- Sócrates é grego.
- Logo, Dante e Sócrates são europeus.

ATRIBUIÇÃO:

• INDIVÍDUOS: Sócrates (s), Dante (d)

• CLASSES: Gregos (G), Europeus (E), Italianos (I)

	PROPOSIÇÕES	FORMALIZAÇÃO
Α	Todos os gregos são europeus.	$\forall x(Gx \rightarrow Ex)$
В	Todos os italianos são europeus.	$\forall x(Ix \rightarrow Ex)$
С	Dante é italiano.	ld
D	Sócrates é grego.	Gs
E	Logo, Dante e Sócrates são europeus.	Ed ^ Es
	CONCLUSÃO:	$(\forall x(Gx \rightarrow Ex) \land \forall x(Ix \rightarrow Ex) \land Id \land Gs) \rightarrow Ed \land Es$

VERIFICAÇÃO DA VALIDADE:

1	2	3	4
$\forall x(Gx \rightarrow Ex)$	$\forall x(Ix \rightarrow Ex)$	ld	Gs

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS SÃO JOSÉ

ENGENHARIA DE TELECOMUNICAÇÕES

Para validação da validade do argumento foi considerado:

INDIVIDUO 1: SOCRATES (GREGO)INDIVIDUO 2: DANTE (ITALIANO)

	DESCRIÇÃO	PREMISSA		
5	Exemplificação Universal (1)	Gs → Es		
6	Exemplificação Universal (2)	Id o Ed		
7	Modus ponens (5,4)	Es		
8	8 Modus ponens (6,3) Ed			
9	9 Adição (8,7) Ed ^ Es			
С	CONCLUSÃO: Ed ^ Es, portanto dante e sócrates são europeus			

10)Considerando a tabela-verdade apresentada a seguir, obter as expressões lógicas correspondentes (soma de produtos e produto de somas).

Α	В	С	Y	RESULTADO
0	0	0	1	~A~B~C
0	0	1	1	~A~BC
0	1	0	0	A+~B+C
0	1	1	0	A+~B+~C
1	0	0	1	A~B~C
1	0	1	1	A~BC
1	1	0	1	AB~C

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
INSTITUTO FEDERAL
CAMPUS SÃO JOSÉ
ENGENHARIA DE TELECOMUNICAÇÕES

1	1	1	0	~A+~B+~C
---	---	---	---	----------

SOMA DOS RESULTADOS INDIVIDUAIS:

$$(\sim A \sim B \sim C) + (\sim A \sim BC) + (A \sim B \sim C) + (A \sim BC) + (AB \sim C)$$

PRODUTO DOS RESULTADOS INDIVIDUAIS:

$$(A+\sim B+C)$$
 . $(A+\sim B+\sim C)$. $(\sim A+\sim B+\sim C)$