Föreläsning 16 i ADK

Algoritmkonstruktion: sortering i linjär tid

Stefan Nilsson

KTH

Räknesortering

Tidskomplexitet: $\Theta(k+n)$

```
function CountingSort(V[1..n], f: element \rightarrow [1..k])
    C[1..k]: Hjälparray för räkning
    res[1..n]: Hjälparray för lagring av resultatet
    for i \leftarrow 1 to k do C[i] \leftarrow 0
    for j \leftarrow 1 to n do C[f(V[j])]++
    sum \leftarrow 0
    for i \leftarrow k downto 1 do
        sum \leftarrow sum + C[i]
        C[i] \leftarrow n - \text{sum} + 1
    for j \leftarrow 1 to n do
        res[C[f(v[j])]] \leftarrow v[j]
        C[f(v[j])]++
    return res
```

Räknesortering

Exempel

- V[1..10] = [17, 2, 2, 4711, 2, 17, 16, 4711, 2, 17]
- f(2) = 1, f(17) = 2, f(4711) = 3
- C[1..3] efter räkneslingan = [4,4,2]
- C[1..3] efter indexomräkningen [1,5,9]
- res[1..10] = $[2,2,2,2 \mid 17,17,17,17 \mid 4711,4711]$

ADK - F16

3

Några fall då man kan sortera i $o(n \log n)$

- 1 Bara ett konstant antal <u>olika</u> element ska sorteras:
 - $\Theta(n)$ med räknesortering (counting sort)
- 2 Elementen som ska sorteras är tal som är jämnt fördelade i ett visst intervall:
 - $\Theta(n)$ med bucket sort
- 3 Elementen som ska sorteras är strängar som består av d "siffror" $(v[i] = s_{i,1}s_{i,2} \dots s_{i,d})$
 - $\Theta(nd)$ med radixsortering
 - for $i \leftarrow d$ downto 1 do Sortera v[1..n] efter siffra i med en stabil sorteringsalgoritm
 - Om d är konstant får vi linjär tidskomplexitet
 - Om vi räknar antalet siffror i indata få vi linjär tidskomplexitet $\Theta(N)$ där N=nd

Radixsorteringsexempel med d = 3

Osorterat:	Pass 1:	Pass 2:	Pass 3:
Osorterat: 480 973 902 905 532 652 783 009 653 419 816 381	Pass 1: 480 381 902 532 652 973 783 653 905 816	902 905 009 816 419 532 652 653 973	009 381 419 480 532 652 653 783 816
	009 419	381 783	902 905 973