

Arquitetura de Computadores 2022/2023

Ficha 5

Tópicos: Representação de dados, tipos e dimensões. Representação de reais (IEEE 754).

Exercícios sobre bases numéricas e representação de dados

Parte I - Números inteiros

- **1.** Considere a representação binária dos valores presentes na memória de um computador com palavras de 7 bits. Complete a tabela interpretando esses bits como:
 - **números sem sinal**, apresentando o valor em base 10 (decimal) e em base 16 (hexadecimal);
 - caracteres na norma ASCII;
 - inteiros com sinal em complemento para 2.

binário	s/sinal dec.	s/sinal hex	car. ASCII	c/sinal Dec.
010 1010				
100 0110				
100 0011				
101 0100				
000 1010				
010 0001				
000 1000				

2. Apresente a representação binária (em complemento para dois) dos valores decimais apresentados na tabela.

decimal	5 bit	8 bit	12 bit
5			
-3			
-16			
-1			
16			
260			

- **3.** Para o caso da representação de números em palavras de 7 bits indique:
 - a) Quantos valores diferentes se podem representar em cada palavra, para números em binário, em hexadecimal e em decimal, com ou sem sinal?
 - b) Quantos caracteres diferentes serão no máximo possíveis representar?

1

- c) Se a palavra representar um endereço de memória, quantos endereços diferentes serão, no máximo, possíveis representar?
- d) Quais são o maior e o menor números que se podem representar sem sinal (dê a resposta em base 10 e em base 2)?
- e) Quais são o maior e o menor números representáveis com sinal em complemento para 2 (dê a resposta em base 10 e em base 2)?
- 4. a) Complete o programa exercicio4.c para imprimir o tamanho em bytes de cada um dos tipos seguintes: char, short, int, unsigned int, long, unsigned long, long long, float, double. Para isso, utilize:
 - "sizeof (T)", operador que devolve o tamanho ocupado por *T* em bytes (o valor devolvido é um size_t que está definido como unsigned int ou unsigned long, dependendo da arquitectura);
 - "printf ("tamanho %zu\n", N) ", função que imprime "tamanho N" mudando de linha de seguida, onde N é o valor que será afixado em base dez.

Nota: ao contrário do Java, alguns dos tipos em C dependem da arquitetura onde o programa é executado (32 bits vs. 64 bits).

b) Complete o programa anterior para escrever também os valores limite dos tipos dados, indicados pelas constantes seguintes definidas em limits.h: SHRT_MIN, SHRT_MAX, INT_MIN, INT_MAX, UINT_MAX, LONG_MIN, LONG_MAX, ULONG_MAX, LLONG_MIN, LLONG_MAX, ULLONG_MAX. Quais são os menores valores para as variantes *unsigned* (que não têm constante definida)? Note que no *printf* deve indicar na formatação o tipo de dados que quer escrever e respetiva representação de acordo com o valor da constante. Assim, deve usar %u para unsigned int, %ld para long int, etc. (veja o manual no terminal com o comando "man 3 printf", ou documentação online sobre o C). Resumo:

prefixo de dimensão	tipo base (para escrever em base dez)
h (short), l (long), ll (long long)	u (unsigned), d ou i (int), f (float ou double)

Para compilar o seu programa use o comando:

cc exercicio4.c -o ex4

Para executar o programa executável gerado utilize o comando:

./ex4

- **5.** Considere os operadores para sequências de bits: **&** , | , ~ , >> e << da linguagem C. Complete programa *exercicio5.c* para escrever no ecrã os resultados de expressões que usam esses operadores sobre uma variável int x, para obter os resultados a seguir indicados:
 - a) Colocar o bit 1 de b a 1, mantendo os outros inalterados;
 - b) Colocar os 4 bits mais significativos de b a 0, mantendo os outros inalterados;
 - c) Colocar o bit 2 de b a 0, mantendo os outros inalterados;
 - d) Determinar se o bit 0 de b é 0 ou 1;
 - e) Multiplicar b por 16 (sem usar os operadores de multiplicação nem de soma);
 - f) Dividir b por 4 (divisão inteira, sem usar os operadores de divisão nem de subtração);
 - g) Multiplicar b por 12 (sem usar o operador de multiplicação);

Campus de Caparica Tel: +351 212 948 536
2829-516 CAPARICA fax: +351 212 948 541 www.fct.unl.pt
di.secretariado@fct.unl.pt

[†] Em arquiteturas de 32 bits é normal que size_t esteja definido como unsigned int

Teste, escrevendo o resultado para b com os valores: 127,86,1,−1. Para tal escreva em base dez e em hexadecimal (dado que não tem uma função para escrever um valor em binário) o valor inicial de b e o resultado de cada expressão. No printf, para escrever em hexadecimal deve usar %x em vez de %u. Justifique os resultados.

- **6.** Escreva uma função em C que permita escrever a representação binária de um valor do tipo int: void printBin (int val);
- 7. Descarregue o ZIP disponível no CLIP, extraia os ficheiros e leia atentamente o código do programa ints-comp2.c. Constatará que, não considerando as duas linhas comentadas, o programa é uma versão abreviada daquele que lhe foi pedido que escrevesse num exercício anterior: imprime a dimensão ocupada em memória por (i) um inteiro com sinal (int) e (ii) sem sinal (unsigned int), e os valores máximo e mínimo que podem ser representados em cada caso:
 - a) Compile e execute o programa. Observe com atenção o valor exibido no printf que mostra o valor da variável in – naturalmente, é o mesmo valor que foi exibido no primeiro printf, i.e., o valor de MAX INT
 - b) NÃO remova nenhum comentário, pense apenas no seguinte: que acha que aconteceria se removesse apenas as marcas // de comentário na linha identificada como Linha 1? Que valor seria mostrado no ecrã?
 - c) Agora, remova apenas as marcas // de comentário na linha identificada como **Linha 1**, compile e execute o programa. Acertou? Parabéns, está a compreender bem o que se passa com a representação em complemento para 2. Não acertou? Tente agora perceber o que aconteceu; se não conseguir, espere pela explicação do seu professor...
 - d) NÃO remova mais nenhum comentário, pense apenas no seguinte: que acha que aconteceria se removesse as marcas // de comentário na linha identificada como Linha 2? Que valor seria mostrado no ecrã?
 - e) Finalmente, remova também as marcas // de comentário na linha identificada como Linha 2, compile e execute o programa. Acertou? Parabéns, para além de compreender bem o que se passa com a representação em complemento para 2, compreende também o papel da especificação de formato de impressão do printf. Não acertou? Tente agora perceber o que aconteceu; se não conseguir, espere pela explicação do seu professor...
- 8. Uma nota final: compile o programa assim,

e execute-o. Veja agora o que aconteceu... Leia o manual online do **gcc** e procure a explicação da opção **ftrapv** (utilize a barra com a palavra ftrapv, isto é, escreva **/ftrapv**, para procurar rapidamente a palavra no texto). Espero que compreenda... senão, aguarde pela explicação do seu docente.

Parte II - Números reais

Observações: O objetivo desta secção é aprofundar/experimentar uma representação de números reais – também designada em computação como representação (de números) em vírgula flutuante.

9. Considere a representação de inteiros e em vírgula flutuante IEEE 754 de precisão simples. Indique os valores representados pelos seguintes padrões de 32 bits:

binário	int. s/sinal dec	int c/sinal dec	FP/IEEE dec
010000010101100000000000000000000000000			

 Campus de Caparica
 Tel: +351 212 948 536

 2829-516 CAPARICA
 Fax: +351 212 948 541
 www.fct.unl.pt

 di.secretariado@fct.unl.pt

110000011010100000000000000000000000000		
		-3,25
		2,4

- **10.** Admita que numa variável do tipo float coloca o valor 0,1. (considere a norma IEEE 754)
 - a) Qual será a representação binária desse valor em memória? *Se achar que está a obter muitas casas decimais, ou se a sua calculadora deixar de ter precisão suficiente, passe à alínea seguinte.*
 - b) Comprove o resultado que obteve completando o programa em C floats.c para que imprima cada um dos bits da variável. Note que o último printf imprime 20 dígitos do valor efetivamente guardado e mostra o erro da conversão.
 - Sugestões: no programa floats.c, a função printBin assume que a sua estratégia para imprimir os bits passa por "apanhar" um bit da variável val e processá-lo e, no final, deslocar (shift) val para apanhar o próximo; pode, contudo, usar outra estratégia: definir uma máscara e usá-la para apanhar um bit, etc., e depois deslocar os bits da máscara e não mexer em val. A decisão é sua \mathfrak{S}
 - c) Complete o programa anterior para afixar no ecrã o valor inteiro representado no expoente.