CO: Computer Organization

Day6

Indian Institute of Information Technology, Sri City

Jan - May - 2018

http://co-iiits.blogspot.in/

Multiplication of Two Integers using CSAs

Input $M = m_3 m_2 m_1 m_0$

Input $Q = q_3q_2q_1q_0$

 $P = M \times Q$, where M is Multiplicand and Q is Multiplier.

PP_0	0	0	0	0	$m_3.q_0$	$m_2.q_0$	$m_1.q_0$	$m_0.q_0$
PP_1	0	0	0	$m_3.q_1$	$m_2.q_1$	$m_1.q_1$	$m_0.q_1$	0
PP_2	0	0	$m_3.q_2$	$m_2.q_2$	$m_1.q_2$	$m_0.q_2$	0	0
PP_3	0	m ₃ .q ₃	$m_2.q_3$	$m_1.q_3$	$m_0.q_3$	0	0	0

PP_i stands for parallel product 'i'.

Result $Z = P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0$

where $P_0 = m_0.q_0$

Multiplication of Two Integers using CSAs

Input $M = m_3 m_2 m_1 m_0$ Input $Q = q_3 q_2 q_1 q_0$

 $P = M \times Q$, where M is Multiplicand and Q is Multiplier.

Multiplication of Two Integers using CSAs Multiplication of Two 4-bit numbers

Level Num	No. of Summands	No. of Groups	Remaining Summands
1	4	1	1
2	3	1	0
3	2	0	0

Time= $1+2\times2+6$ (using 4-bit CLAs)= $11\mathcal{T}$.

Multiplication of Two Integers using CSAs Multiplication of Two 8-bit numbers

Level Num	No. of Summands	No. of Groups	Remaining Summands
1	8	2	2
2	6	2	0
3	4	1	1
4	3	1	0
5	2	0	0

Time= $1+2\times4+10$ (using 4-bit CLAs)= $19\mathcal{T}$.

Multiplication of Two Integers using CSAs

Time= Time to generate PPs+ (2 x No. of levels of CSA)+(Time to perform final addition)

Leading Zero Detector

<i>s</i> ₃	s ₂	<i>s</i> ₁	<i>s</i> ₀	d_1	d_0
0	0	0	1	1	1
0	0	1	X	1	0
0	1	X	X	0	1
1	X	X	X	0	0

Leading Zero Detector takes $2\mathcal{T}$.

Assume that input and its complement are available at the same time.

4 X 1 MUX

 4×1 MUX takes $2\mathcal{T}$.

Assume that input and its complement are available at the same time.

Shifter

Shifter takes $2\mathcal{T}$.

$$Z = X \pm Y$$

$$X = (-1)^{X_s} \cdot (1 \cdot X_m) \cdot 2^{X_e - bias}$$

$$Y = (-1)^{Y_s}.(1.Y_m).2^{Y_e-bias}$$

$$Z = (-1)^{Z_s}.(1.Z_m).2^{Z_e-bias}$$

Example1:

$$X = 3.75 = (11.11) = (1.111).2^{1}$$

$$Y = 2.25 = (10.01) = (1.001).2^{1}$$

$$Z = X + Y$$

$$Z = (1.111).2^1 + (1.001).2^1$$

$$Z = (11.000).2^1 = (1.1000).2^2$$

Example2:

$$X = 16.75 = (10000.11) = (1.000011).2^4$$

$$Y = 3.25 = (11.01) = (1.101).2^{1} = (0.001101).2^{4}$$

$$Z = X + Y$$

$$Z = (1.000011).2^4 + (0.001101).2^4$$

$$Z = (1.010000).2^4$$

Example3:

$$X = 16.75 = (10000.11) = (1.000011).2^4$$

$$Y = 3.25 = (1.101).2^1 = (0.001101).2^4$$

$$Z = X - Y$$

$$Z = (1.000011).2^4 - (0.001101).2^4$$

$$Z = (0.110110).2^4 = (1.10110).2^3$$

$$Z = X \times Y$$

$$X = (-1)^{X_s}.(1.X_m).2^{X_e-bias}$$

$$Y = (-1)^{Y_s}.(1.Y_m).2^{Y_e-bias}$$

$$Z = (-1)^{Z_s}.(1.Z_m).2^{Z_e-bias}$$

$$Z = X \times Y = (-1)^{X_s \bigoplus Y_s} . (1.X_m \times 1.Y_m).2^{(X_e + Y_e - (2 \times bias))}$$

Example1:

$$X = 3.75 = (11.11) = (1.111).2^{1}$$

$$Y = 3.75 = (11.11) = (1.111).2^{1}$$

$$Z = (1.111).2^1 \times (1.111).2^1$$

$$Z = (11.100001).2^2 = (1.1100001).2^2$$

$$Z = X \times Y = (-1)^{X_s \bigoplus Y_s} . (1.X_m \times 1.Y_m).2^{(X_e + Y_e - (2 \times bias))}$$

Example1:

$$X = 3.75 = (11.11) = (1.111).2^{1}$$

$$Y = 3.75 = (11.11) = (1.111).2^{1}$$

$$Z = (1.111).2^1 \times (1.111).2^1$$

$$Z = (11.100001).2^2 = (1.1100001).2^2$$

$$Z = X \times Y = (-1)^{X_s \bigoplus Y_s} . (1.X_m \times 1.Y_m) . 2^{(X_e + Y_e - (2 \times bias))}$$

Example2:

$$X = 7.875 = (-1)^{0}.(1.11111) = (-1)^{0}.(1.11111).2^{2}$$

$$Y = -3.0 = (-1)^{1}.(11.00) = (-1)^{1}.(1.100).2^{1}$$

$$Z = (-1)^{0 \oplus 1} \cdot (1.111111 \times 1.100) \cdot 2^{2+1}$$

$$Z = (-1)^{1} \cdot (1.0111101) \cdot 2^{4} = -23.625$$

$$Z = X \times Y = (-1)^{X_s \bigoplus Y_s} . (1.X_m \times 1.Y_m) . 2^{(X_e + Y_e - (2 \times bias))}$$

Example2:

$$X = 7.875 = (-1)^{0}.(1.11111) = (-1)^{0}.(1.11111).2^{2}$$

$$Y = -3.0 = (-1)^{1}.(11.00) = (-1)^{1}.(1.100).2^{1}$$

$$Z = (-1)^0 \oplus {}^{1}.(1.11111 \times 1.100).2^{2+1}$$

$$Z = (-1)^{1}.(1.0111101).2^{4} = -23.625$$

Floating Point Multiplier

Single-precision Floating Point Multiplier

Single-precision Floating Point Multiplier

4-stage Pipeline for Single-precision FP Multiplications

- Stage 1: Z_s Generator, Addition of Exponents, PP generation, 5-levels of CSA.
- Stage 2: 2 levels of CSA, 12-bit addition, exponent subtractors.
- Stage 3: 20-bit adder .
- Stage 4: 16-bit adder, Normalizer.

4-stage Pipeline for Single-precision FP Additions

- Stage 1: Difference between exponents, inputs selection using $X_e < Y_e$ signal.
- ② Stage 2: shifter, MAS 8-bit addition, $G_e + 1$ generator.
- Stage 3: MAS 16-bit addition.
- Stage 4: LZD, Normalizer, Subtactor.