

REPORTING

Unit 3 – Data exploitation. Query languages and visualization S3-2-MDX

Business intelligence

- CUBES
- LANGUAGE
- MultiDimensional eXpression.
 - Microsoft in 1997

Business intelligence

Do you remember studying Object-Oriented Programming?

Outline

- 1. Tuples, Sets & Cells
- 2. MDX Spells
- 3. MDX Query Syntax

- Measures | Dimensions>Members
- E.g.: 2 dimension cube
 - 1 measure: discharged patients.
 - Time Dimension with 4 members: Jan to April.
 - Hospital Dimension with 4 members: H1,H2,H3,H4.

Discharged	H1	H2	Н3	H4
January	20	44	81	44
February	15	32	78	32
March	23	65	88	65
April	19	67	67	67

- Measures | Dimensions>Members
- E.g.: 2 dimension cube
 - 2 measure: no. discharged patients, total cost (M€).
 - Time Dimension with 4 members: Jan to April.
 - Hospital Dimension with 4 members: H1,H2,H3, H4.

Discharged	H1	H2	H3	H4
January	20 1.5M€	44 4.1M€	81 10.5M€	44 4.1M€
February	15 1.1M€	32 3.9M€	78 10.4M€	32 3.9M€
March	23 1.6M€	65 5.4M€	88 10.7M€	65 5.4M€
April	19 1.5M€	67 5.6M€	67 9.5M€	67 5.6M€

- Dimension has hierarchies
- Hierarchy has **levels**: All, Year, Quarter, Month

Naming Conventions[Time].[All].[2000].[Q4].[Oct] = [Time].[Oct-2000]

Naming Conventions: Tuple
 Tuple in pseudo-MDX: (x,y,z)=(y,z,x)
 ([Time].[Feb],[Dx].[Circ],[Hosp].[H1])

Def1: "*Tuple* is the intersection choosing **one member of each dimension**"

Def2: "A tuple is the intersection FEB of one (and only one) member taken from one or several of MAR the dimensions in the cube."

(tuple=single cell in the cube ??)

Naming Conventions: Tuple
 Tuple in pseudo-MDX: (x,y,z)=(y,z,x)
 ([Time].[Feb],[Dx].[Circ],[Hosp].[H1])

Def1: "*Tuple* is the intersection choosing one member of each dimension"

Def2: "A tuple is the intersection FEE of one (and only one) member taken from one or several of MAR the dimensions in the cube."

(tuple=single cell in the cube ??)

 Naming Conventions: Set Set in pseudo-MDX: {(x1,y1,z1),...,(xn,yn,zn)} {([Time].[Feb],[Dx].[Circ],[Hosp].[H1]), ([Time].[Mar],[Dx].[Circ],[Hosp].[H11])}

"Set is a set of tuples with the same dimensionality" (set of cells in the cube)

AVG(SET)→FLOAT

QUESTION 1: Tuples, Sets & Cells

Question: Tuple or Set?

QUESTION 1:Tuples, Sets & Cells

Question: Tuple or Set?

[DX].[Circulatory],[Hosp].[H1]

Is a TUPLE! (but MANY CELLS!)

QUESTION 2: Tuples, Sets & Cells

Question: Difference between?

```
a) ([Dx].[Circ],[Hosp].[H1])
b)
{([Dx].[Circ],[Hosp].[H1],[Time].[Jan]),
([Dx].[Circ],[Hosp].[H1],[Time].[Feb]),
([Dx].[Circ],[Hosp].[H1],[Time].[Mar]),
([Dx].[Circ],[Hosp].[H1],[Time].[Apr])
}
```


QUESTION 2: Tuples, Sets & Cells

- Question: Difference between?
- a) ([Dx].[Circ],[Hosp].[H1]) **IS A TUPLE** (SEE DEFINITION 1)

```
b)
{([Dx].[Circ],[Hosp].[H1],[Time].[Jan]),
([Dx].[Circ],[Hosp].[H1],[Time].[Feb]),
([Dx].[Circ],[Hosp].[H1],[Time].[Mar]),
([Dx].[Circ],[Hosp].[H1],[Time].[Apr])
} IS A SET
```


QUESTION 3: Tuples, Sets & Cells

Question: Tuple or Set?

[Hosp].[H1], [Hosp].[H3]

QUESTION 3: Tuples, Sets & Cells

Question: Tuple or Set?

[Hosp].[H1], [Hosp].[H3]

is a Set (see Def2!)

RECAP: Tuples, Sets & Cells

[DX].[Circulatory] [DX].[Circulatory],[Hosp].[H1]

ALL THESE ARE TUPLES SINCE THEY HAVE THE "CAPACITY TO POINT TO A SINGLE CELL" (actually they don't)

QUESTION 4: Tuples, Sets & Cells

Question: Do these tuples point to a single cell?

QUESTION 4: Tuples, Sets & Cells

Question: Do these tuples point to a single cell?

[DX].[Circulatory],[Hosp].[H1], [Time].[Mar]

[DX].[Circulatory],[Hosp].[H1]

[DX].[Circulatory],[Time].[Mar]

[Hosp].[H1]

YES

If we consider that all dimensions have a 'DEFAULT MEMBER'

In MDX if you don't specify a member of a dimension the default member is implied

J00-J99

100-199

E00-E90

K00-K93

WHAT IF...

Measures like dimensions

Suppose a cube with 2 measures:

No.Patients and €Cost.

[Hos].[H1],[TIME].[Mar], [Dx].[Car],[Measures].[NoPat]

Measure behaves like member of a dimension

QUESTION 5: Tuples, Sets & Cells

Measures & Hierarchies

[Hos].[H1],[TIME].[Q1],[Dx].[Cir]

QUESTION 5: Tuples, Sets & Cells

Measures & Hierarchies

[Hos].[H1],[TIME].[Q1],[Dx].[Cir]

2. MDX Spells

MDX ≠ SQL?

	ALL (TIME)	
COST	45,300,000 €	

SELECT

{[TIME].[ALL]} ON COLUMNS {[Measure].[Cost]} ON ROWS FROM [MyCube] (shows costs of [HOSP].[H1], default member of HOSP) (also for [Dx].[Circulatory])

(COL dimension) (ROW dimension)

27

	COL 1	COL 2	COL 3
ROW A			
ROW B			
ROW C			

SELECT

{column headers} ON COLUMNS → SET {row headers} ON ROWS → SET FROM [cube] → name


```
SELECT
{[Measure].[Patient]} ON COLUMNS
{[Hospital].[Hosp1],
  [Hospital]. [Hosp2],
  [Hospital]. [Hosp3],
  [Hospital]. [Hosp4]} ON ROWS
  FROM [MyCube]
(shows a default member of TIME)
```

	PATIENT
HOSP 1	23
HOSP 2	65
HOSP 3	88
HOSP 4	65

SELECT

{[Measure].[Patient]} ON COLUMNS {[Hospital].[All Hosp]} ON ROWS FROM [MyCube]

SELECT

{[Measure].[Patient]} ON COLUMNS {[Hospital].Children} ON ROWS FROM [MyCube]

	PATIENT
HOSP 1	23
HOSP 2	65
HOSP 3	88
HOSP 4	65

• QUESTION: Cost in H1,H2 during 2000 (by Q), for circulatory diseases.

Y2000	HOSP1	HOSP2
Q1	2M€	0.3M€
Q2	3.2M€	0.7M€
Q3	1.5M€	0.6M€
Q4	0.4M€	0.5M€

<u>Hint:</u> cost/circulatory are default members

QUESTION:

Cost in H1,H2 in 2000 (by Q), for circulatory diseases.

SELECT

{[Hospital].[Hosp1],

[Hospital].[Hosp2]} ON COLUMNS Feb Mar Oct Nov Co

{[Time].[All].[2000].Children} ON ROW

FROM [MyCube]

Y2000	HOSP1	HOSP2
Q1	2M€	0.3M€
Q2	3.2M€	0.7M€
Q3	1.5M€	0.6M€
Q4	0.4M€	0.5M€

• QUESTION: Patients no. in H1,H2 during 2000 (by Q), for circulatory diseases.

Y2000	HOSP1	HOSP2
Q1	121 pat	78 pat
Q2	165 pat	61 pat
Q3	115 pat	41 pat
Q4	120 pat	76 pat

Hint:

Number of patients is NOT a default member

QUESTION:

Patients in H1,H2

during 2000 (by Q), for

circulatory diseases.

SELECT

{[Hospital].[Hosp1],

[Hospital].[Hosp2]} ON COLUMNS

{[Time].[All].[2000].Children} ON ROWS

FROM [MyCube]

WHERE ([Measures].[NoPat])

Hint:

Number of patients is NOT a default member

Y2000	HOSP1	HOSP2
Q1	121 pat	78 pat
Q2	165 pat	61 pat
Q3	115 pat	41 pat
Q4	120 pat	76 pat

WHERE clause

Not restricted to measures.

Not restricted to 1 dimension.

It is a SLICER/DICER.

WHERE clause

Not restricted to measures.

SELECT

{[Hospital].[Hosp1],

[Hospital].[Hosp2]} ON COLUMNS

{[Time].[All].[2000].Children} ON ROWS

FROM [MyCube]

WHERE ([Dx].[Respiratory])

Y2000	HOSP1	HOSP2
Q1	1M€	0.4M€
Q2	1.2M€	0.1M€
Q3	0.5M€	0.5M€
Q4	0.4M€	0.3M€

MDX spells

WHERE clause

Not restricted to 1 dimension.

SELECT

{[Hospital].[Hosp1],

[Hospital].[Hosp2]} ON COLUMNS

{[Time].[All].[2000].Children} ON ROWS

FROM [MyCube]

WHERE ([Dx].[Respiratory],[Measures].[NoPat])

Y2000	HOSP1	HOSP2	
Q1	61 pat	28 pat	
Q2	75 pat	41 pat	
Q3	105 pat	11 pat	
Q4	112 pat	56 pat	

MDX spells

- WHERE clause
 - It is a *SLICER/DICER*.

()[]{}.

- Brackets []
 - Dimensions: [Time]
 - Members: [2000]
- Dots.
 - Separators: [Time].[2000].[Q3]
- Braces ()
 - Tuples: ([DX].[Circulatory],[Hosp].[H1])


```
Curly Braces {}
```

```
    Sets: {[Hosp].[H1], [Hosp].[H3]}
        {[Dx].Children}
        { ([Dx].[Circ],[Hosp].[H1],[Time].[Jan]),
            ([Dx].[Circ],[Hosp].[H1],[Time].[Feb]),
            ([Dx].[Circ],[Hosp].[H1],[Time].[Mar]),
            ([Dx].[Circ],[Hosp].[H1],[Time].[Apr]) }
```



```
SELECT
{ SET } ON COLUMNS
{ SET } ON ROWS
FROM [cube]
WHERE (TUPLE)
```


QUESTION: Correct? Why?

SELECT
([Measures].[NoPatients]) ON COLUMNS,
{[Time].[2000].Children} ON ROWS
FROM [MyCube]

QUESTION: Correct? Why?

```
SELECT
{[Dx].Children} ON COLUMNS,
{[Time]. [2000].[Q1].[May].Children} ON ROWS
FROM [MyCube]
WHERE {[Measure].[cost],[Hosp].[H2]}
```


- Name of a CELL.
 - In a cube, each cell has a name.

The name of this cell is: ([Time].[2000].[Q2], [Dx].[Circulatory], [Hospital].[H1])

Name of a CELL.

The name of this cell is: ([Time].[2000].[Q2].[Jun], [Dx].[Circulatory], [Hospital].[H1])

- Relative Cell Referencing:
 - CurrentMember, PrevMember, NextMember.

The name of this cell is:

([Time].[2000].**[Q3].PrevMember**, 2000: [Dx].[Circulatory], Q1

Calculated Members: +-*/ %

"Attention improvement on circulatory patients of the 1st quarter of years 1999 and 2000".

Calculus:

```
([Hosp].[H1],[Dx].[Circ],[Time].[2000].[Q1],[Measure].[NoPatient])
```

_

([Hosp].[H1],[Dx].[Circ],[Time].[1999].[Q1],[Measure].[NoPatient])

- Calculated Members: +-*/ %
- "Growth cost throughout year 2000 in H1 for Circulatory patients".

- Calculated Members: +-*/ %
- "Growth cost throughout year 2000 in H1 for Circulatory patients".
 - Growth cost: cost(t)- cost(t-1) (increment/derivate)
 - Obviate: H1 for Circulatory patients

"Growth cost throughout year 2000".

Year	Quarter	Month	Cost M€	No Patient
2000			57	280
	Q1		15	90
		January	5	20
		February	5	30
		Mach	5	40
	Q2		10	60
		April	5	15
		Jun	3	15
		July	2	30
	Q3		12	50
		April	5	10
		Jun	5	10
		July	2	30
	Q4		20	80
		April	5	15
		Jun	5	15
		July	10	50 51

"Growth cost throughout year 2000".

"Growth cost throughout year 2000".

[Time].[CurrentMember],[Measures].[Cost]

_

[Time].[PrevMember],[Measures].[Cost]

	July	2	30
Q4		20	80
	April	5	15
	Jun	5	15
	July	10	50 53

- Calculated Members: +-*/ %
- "Growth cost throughout year 2000 in H1 for Circulatory patients".
- ([Time].[CurrentMember],[Measures].[Cost]
 - [Time].[PrevMember],[Measures].[Cost])

YES... WHAT IF WE FOCUS ON THE QUARTER GROWTH ??????

- Calculated Members: +-*/ % AVG SUM ...
- "Growth cost throughout year 2000 in H1 for Circulatory patients".
- ([Time].[CurrentMember],[Measures].[Cost]
 - [Time].[PrevMember],[Measures].[Cost])

YES... WHAT IF WE FOCUS ON **THE SEMESTER GROWTH** !!!

... <u>SAME EXPRESSION</u>. THAT'S THE COOL THING. DEPENDS ON THE TIME DIMENSION, WHICH DEFINES THE <u>CURRENT MEMBER</u> PROPERTY

OTHER FUNCTIONS:

- Sum (X)→Number: Sums all members of X
- X.Lag(N): N positions back from X.
- X.Lead(M): M position forward from X.
- YTD(X)→Set : YearToDate: Members of the Year until member X.

e.g. YTD(March) → {Jan, Feb, March}

ClosingPeriod, OpeningPeriod, ParallelPeriod,

- Hiearchy navitagion:
 - Member.Children
 - Member.Parent
 - Member.FirstChild / LastChild
 - Descendants(X,n)
 - Ancestors(X,n)
 - Siblings / Cousins
 - Aunt / Uncle

- Bibliography and Resources:
- Mark Whitehorn et al. Fast Track to MDX (2nd Ed). Springer. 2004.
- Microsoft, "Key Concepts in MDX (Analysis Services)", https://docs.microsoft.com/en-us/analysis-services/mdx/key-concepts-in-mdx-analysis-services?view=asallproducts-allversions
- InterSystems, "Introduction to MDX Queries", <u>https://docs.intersystems.com/irislatest/csp/docbook/DocBook.UI.Page.cls?KEY=D2GMDX_CH_MDX_INTRO</u>