An Introduction to Manifold

1 Smooth Functions on a Euclidean Space

Problem 1.1

Let $g(x) = \frac{3}{4}x^{\frac{3}{4}}$. Show that the function $h(x) = \int_0^x g(t) dt$ is C^2 but not C^3 at x = 0.

Solution

$$h(x) = \int_0^x g(t) dt$$
$$= \frac{9}{28} x^{\frac{7}{3}},$$

which is countinious at x=0, thus h is C^0 at x=0. $h'(x)=g(x)=\frac{3}{4}x^{\frac{3}{4}}$ is countinious at x=0, thus h is C^1 at x=0.

$$h''(x) = g'(x) = x^{\frac{1}{3}},$$

which is countinious at x = 0, thus h is C^2 at x = 0.

$$h'''(x) = g''(x) = \frac{1}{3}x^{-\frac{2}{3}},$$

which is not countinious at x = 0, thus h is not C^3 at x = 0.

Problem 1.2

Let

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & x > 0\\ 0 & x \le 0. \end{cases}$$

- (a) Show by induction that for x > 0 and k > 0, the k-th derivative $f^{(k)}(x)$ is of the form $p_{2k}e^{-\frac{1}{x}}$ for some polynomial $p_{2k}(y)$ of degree 2k in y.
- (b) Prove that f is C^{∞} on \mathbb{R} and that $f^{(k)}(0) = 0$ for all $k \geq 0$.

Solution

(a) Let k = 0, for x > 0, we have

$$\begin{split} f^{(x)} &= f(x) \\ &= e^{-\frac{1}{x}} \\ &= p_0 \left(\frac{1}{x}\right) e^{-\frac{1}{x}}, \end{split}$$

where $p_0(y)=1$. This is a polynomial of degree 0 in y. Thus the base case holds. Then assume the inductive hypothesis holds for k=n, i.e., $f^{(n)}(x)=p_{2n}(\frac{1}{x})e^{-\frac{1}{x}}$, where $p_{2n}(y)$ is a polynomial of degree 2n. We will show it holds for k=n+1:

$$\begin{split} f^{(k+1)}(x) &= \frac{\mathrm{d}}{\mathrm{d}x} f^{(k)}(x) \\ &= \frac{\mathrm{d}}{\mathrm{d}x} \bigg(p_{2n} \bigg(\frac{1}{x} \bigg) e^{-\frac{1}{x}} \bigg) \\ &= \frac{\mathrm{d}}{\mathrm{d}x} \bigg(p_{2n} \bigg(\frac{1}{x} \bigg) \bigg) e^{-\frac{1}{x}} + p_{2n} \bigg(\frac{1}{x} \bigg) \frac{\mathrm{d}}{\mathrm{d}x} e^{-\frac{1}{x}} \\ &= \frac{\mathrm{d}}{\mathrm{d}x} \left[a_{2k} \bigg(\frac{1}{x} \bigg)^{2k} + \cdots \right] e^{-\frac{1}{x}} + \left[a_{2k} \bigg(\frac{1}{x} \bigg)^{2k} + \cdots \right] \frac{1}{x^2} e^{-\frac{1}{x}} \\ &= \left[-2ka_{2k} \bigg(\frac{1}{x} \bigg)^{2k+1} + a_{2k} \bigg(\frac{1}{x} \bigg)^{2k+2} + \cdots \right] e^{-\frac{1}{x}} \\ &= p_{2(k+1)} \bigg(\frac{1}{x} \bigg) e^{-\frac{1}{x}}, \end{split}$$

where $p_{2(k+1)}(y)$ is a polynomial of degree 2(k+1) in y. This completes the inductive step.

(b) From the result of part (a), we know that for any $k \geq 0$,

$$f^{(k)}(x) = p_{2k} \Big(\frac{1}{x}\Big) e^{-\frac{1}{x}},$$

where $p_{2k}(y)$ is a polynomial of degree 2k. Then we can evaluate the limit as x approaches 0 from the right:

$$\lim_{x \to 0^+} f((k))(x) = \lim_{x \to 0^+} p_{2k} \left(\frac{1}{x}\right) e^{-\frac{1}{x}}$$

$$= 0$$

which implies that $f^{(k)}(0) = 0$ for all $k \geq 0$, and thus f is C^{∞} on \mathbb{R} .

Problem 1.3

Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^n$ be open subsets. A C^{∞} map $F: U \to V$ is called a diffeomorphism if it is bijective and has a C^{∞} inverse $F^{-1}: V \to U$.

- (a) Show that the function $f:]-\frac{\pi}{2}, \frac{\pi}{2}[\to \mathbb{R}, f(x) = \tan x, \text{ is a diffeomorphism.}]$
- (b) Let a, b be real numbers with a < b. Find a linear function $h :]a, b[\rightarrow] -1, 1[$, thus proving that any two finite open intervals are diffeomorphic.
- (c) The composite $f \circ h :]a, b[\to \mathbb{R}$ is then a diffeomorphism of an open interval with \mathbb{R} .
- (d) The exponential function $\exp : \mathbb{R} \to]0, \infty[$ is a diffeomorphism. Use it to show that for any real numbers a and b, the intervals \mathbb{R} , $]a, \infty[$, and $]-\infty, b[$ are diffeomorphic.

Problem 1.4

Show that the map

$$f:]-\frac{\pi}{2},\frac{\pi}{2}[n\to\mathbb{R}^n,f(x_1,...,x_n)=(\tan x_1,...,\tan x_n),$$

is a diffeomorphism.

Problem 1.5

Let B(0,1) be the open unit disk in \mathbb{R}^2 . To find a diffeomorphism between B(0,1) and \mathbb{R}^2 , we identify \mathbb{R}^2 with the xy-plane in \mathbb{R}^3 and introduce the lower open hemisphere

$$S: x^2 + y^2 + (z-1)^2 = 1, \quad z < 1,$$

in \mathbb{R}^3 as an intermediate space.

(a) The stereographic projection $g: S \to \mathbb{R}^2$ from (0,0,1) is the map that sends a point $(a,b,c) \in S$ to the intersection of the line through (0,0,1) and (a,b,c) with the xy-plane. Show that it is given by

$$(a,b,c)\mapsto (u,v)=\left(\frac{a}{1-c},\frac{b}{1-c}\right),\quad c=1-\sqrt{1-a^2-b^2},$$

with inverse

$$(u,v) \mapsto \left(\frac{u}{\sqrt{1+u^2+v^2}}, \frac{v}{\sqrt{1+u^2+v^2}}, 1 - \frac{1}{\sqrt{1+u^2+v^2}}\right).$$

(b) Composing the maps f and g gives the map

$$h = g \circ f : B(0,1) \to \mathbb{R}^2, \quad h(a,b) = \left(\frac{a}{\sqrt{1 - a^2 - b^2}}, \frac{b}{\sqrt{1 - a^2 - b^2}}\right).$$

Find a formula for $h^{-1}(u,v) = (f^{-1} \circ g^{-1})(u,v)$ and conclude that h is a diffeomorphism of the open disk B(0,1) with \mathbb{R}^2 .

(c) Generalize part (b) to \mathbb{R}^n .

Problem 1.6

Prove that if $f: \mathbb{R}^2 \to \mathbb{R}$ is C^{∞} , then there exist C^{∞} functions g_{11}, g_{12}, g_{22} on \mathbb{R}^2 such that

$$f(x,y) = f(0,0) + \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y + x^2g_{11}(x,y) + xyg_{12}(x,y) + y^2g_{22}(x,y).$$

Solution

Applying Taylor's theorem with remainder, we have

$$f(x,y) = f(0,0) + xf_1(x,y) + yf_2(x,y),$$

where $f_1(x,y) = \frac{\partial f}{\partial x}(x,y)$ and $f_2(x,y) = \frac{\partial f}{\partial y}(x,y)$.

As f is C^{∞} , $f_1(x,y)$ and $f_2(x,y)$ are also C^{∞} , we can expand $f_1(x,y)$ and $f_2(x,y)$ using Taylor's theorem with remainder around (0,0):

$$f_1(x,y) = f_1(0,0) + xf_{11}(x,y) + yf_{12}(x,y),$$

$$f_2(x,y) = f_2(0,0) + xf_{21}(x,y) + yf_{22}(x,y).$$

Then, we can substitute these expansions back into the expression for f(x, y):

$$\begin{split} f(x,y) &= f(0,0) + x(f_1(0,0) + xf_{11}(x,y) + yf_{12}(x,y)) + y(f_2(0,0) + xf_{21}(x,y) + yf_{22}(x,y)) \\ &= f(0,0) + \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y + x^2f_{11}(x,y) + 2xyf_{12}(x,y) + y^2f_{22}(x,y). \end{split}$$

Then by defining $g_{11}(x,y) = f_{11}(x,y)$, $g_{12}(x,y) = 2f_{12}(x,y)$, and $g_{22}(x,y) = f_{22}(x,y)$, we get the desired result.

Problem 1.7

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a C^{∞} function with $f(0,0) = \frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Define

$$g(t,u) = \begin{cases} \frac{f(t,tu)}{t} & \text{for } t \neq 0\\ 0 & \text{for } t = 0. \end{cases}$$

Prove that g(t, u) is C^{∞} for $(t, u) \in \mathbb{R}^2$. (Hint: Apply Problem 1.6.)

Problem 1.8

Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^3$. Show that f is a bijective C^{∞} map, but that f^{-1} is not C^{∞} . (This example shows that a bijective C^{∞} map need not have a C^{∞} inverse. In complex analysis, the situation is quite different: a bijective holomorphic map $f: \mathbb{C} \to \mathbb{C}$ necessarily has a holomorphic inverse.)

2 Tangent Vectors in \mathbb{R}^n as Derivations

Problem 2.1

Let X be the vector field $x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}$ and f(x, y, z) the function $x^2 + y^2 + z^2$ on \mathbb{R}^3 . Compute Xf.

Solution

$$Xf = \left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)(x^2 + y^2 + z^2)$$
$$= 2x^2 + 2y^2$$

Problem 2.2

Define carefully addition, multiplication, and scalar multiplication in C_p^{∞} . Prove that addition in C_p^{∞} is commutative.

Solution

Let $[f]_p, [g]_p \in C_p^{\infty}$. We define the addition of two equivalence classes as follows:

$$[f]_p + [g]_p = [f+g]_p,$$

where f + g is the pointwise sum of the functions f and g. The multiplication of two equivalence classes is defined as:

$$[f]_p \cdot [g]_p = [fg]_p,$$

where fg is the pointwise product of the functions f and g.

The scalar multiplication of an equivalence class by a scalar $c \in \mathbb{R}$ is defined as:

$$c[f]_p = [cf]_p,$$

where cf is the pointwise product of the function f and the scalar c.

Problem 2.3

Let D and D' be derivations at p in \mathbb{R}^n , and $c \in \mathbb{R}$. Prove that

- (a) the sum D + D' is a derivation at p.
- (b) the scalar multiple cD is a derivation at p.

Solution

(a) Let $f, g \in C^{\infty(\mathbb{R}^n)}$, then we have

$$(D+D')(fg) = D(fg) + D'(fg)$$

$$= D(f)g(p) + f(p)D(g) + D'(f)g(p) + f(p)D'(g)$$

$$= (D(f) + D'(f))g(p) + f(p)(D(g) + D'(g))$$

$$= (D+D')(f)g(p) + f(p)(D+D')(g).$$
(b)
$$(cD)(fg) = cD(fg)$$

$$= c(D(f)g(p) + f(p)D(g))$$

$$= cD(f)g(p) + cf(p)D(g)$$

$$= (cD)(f)g(p) + f(p)(cD)(g).$$

Problem 2.4

Let A be an algebra over a field K. If D_1 and D_2 are derivations of A, show that $D_1 \circ D_2$ is not necessarily a derivation (it is if D_1 or $D_2 = 0$), but $D_1 \circ D_2 - D_2 \circ D_1$ is always a derivation of A.

Solution

Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(x) = x, and let $D_1 = D_2 = \frac{\mathrm{d}}{\mathrm{d}x}$. Then, for the Lebniz rule, we have

$$\begin{split} D_1 \circ D_2(ff) &= \frac{\mathrm{d}}{\mathrm{d}x} \bigg(\frac{\mathrm{d}}{\mathrm{d}x}(x^2) \bigg) \\ &= \frac{\mathrm{d}}{\mathrm{d}x}(2x) \\ &= 2, \end{split}$$

but

$$\begin{split} (D_2\circ D_1)(f)f(p) + f(p)(D_2\circ D_1)(f) &= \mathrm{d}^2\frac{x}{\mathrm{d}x^2}p + p\mathrm{d}^2\frac{x}{\mathrm{d}x^2}\\ &= 0. \end{split}$$

Therefore, $D_1 \circ D_2$ is not a derivation.

Next, for $D_1 \circ D_2 - D_2 \circ D_1$, we examine the Lebniz rule:

$$\begin{split} (D_1 \circ D_2 - D_2 \circ D_1)(fg) &= D_1 \circ D_2(fg) - D_2 \circ D_1(fg) \\ &= D_1[D_2(f)g(p) + f(p)D_2(g)] - D_2[D_1(f)g(p) + f(p)D_1(g)] \\ &= (D_1 \circ D_2(f)g(p) + f(p)D_1 \circ D_2(g)) \\ &- (D_2 \circ D_1(f)g(p) + f(p)D_2 \circ D_1(g)) \\ &= (D_1 \circ D_2 - D_2 \circ D_1)(f)g(p) + f(p)(D_1 \circ D_2 - D_2 \circ D_1)(g). \end{split}$$

Thus, $D_1 \circ D_2 - D_2 \circ D_1$ satisfies the Leibniz rule and is a derivation.