BUCK基础

TI大学计划 钟舒阳 shuyang-zhong@ti.com

Buck Operation

- To generate a regulated output voltage, the control switch must begin switching
- When the control switch is *on*, the voltage across the inductor increases to the input voltage minus the output voltage, and energy is stored in the inductor
- When the control switch is *off*, energy continues to flow to the output through the inductor.
- The output capacitor filters the AC current, allowing DC current to flow into the load

Inductors

 Passive elements that stores energy in a magnetic field and resists changes in electric current

$$V = L * \frac{dI}{dT}$$

- Switch-mode power supplies rely on the Steady-State Inductor Principle for power conversion
- Common inductor considerations are
 - Inductance
 - DC Current Rating
 - Saturation Current Rating
 - DCR
 - Core loss
 - Saturation profile

Inductors

Examine the voltage across an inductor that is operating in periodic steady state. The governing equation is

$$v(t) = L \frac{di(t)}{dt}$$
 which leads to $i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^{t_0+t} v(t)dt$

Since the inductor is in periodic steady state, then the current at time t_o is the same as the current one period T later, so

$$i(t_o + T) = i(t_o)$$
, or $i(t_o + T) - i(t_o) = 0 = \frac{1}{L} \int_{t_o}^{t_o + T} v(t) dt$

The conclusion is that $\int\limits_{t_{o}}^{t_{o}+T}v(t)dt=0$ which means that

the average voltage across an inductor operating in periodic steady state is zero

When Switch Is Closed

Switch closed for DT seconds

Reverse biased, thus the diode is open

$$v_L = L \frac{di_L}{dt}$$
, $v_L = V_{in} - V_{out}$, $V_{in} - V_{out} = L \frac{di_L}{dt}$, $\frac{di_L}{dt} = \frac{V_{in} - V_{out}}{L}$

for DT seconds

When Switch Is Open

Switch open for (1 – D)T seconds

i_L continues to flow, thus the diode is closed. This is the assumption of "continuous conduction" in the inductor which is the normal operating condition.

$$v_L = L \frac{di_L}{dt}, \qquad v_L = -V_{out}, \qquad -V_{out} = L \frac{di_L}{dt}, \qquad \frac{di_L}{dt} = \frac{-V_{out}}{L}$$
 for (1-D)T seconds

Since the average voltage across L is zero

$$V_{Lavg} = D \bullet (V_{in} - V_{out}) + (1 - D) \bullet (-V_{out}) = 0$$

$$DV_{in} = D \bullet V_{out} + V_{out} - D \bullet V_{out}$$

The input/output equation becomes $|V_{out} = DV_{in}|$

$$V_{out} = DV_{in}$$

From power balance,
$$V_{in}I_{in} = V_{out}I_{out}$$
, so

$$I_{out} = \frac{I_{in}}{D}$$

Note – even though i_{in} is not constant (i.e., i_{in} has harmonics), the input power is still simply V_{in} • I_{in} because V_{in} has no harmonics

Examine the inductor current

Switch closed,
$$v_L = V_{in} - V_{out}$$
, $\frac{di_L}{dt} = \frac{V_{in} - V_{out}}{L}$

Switch open,
$$v_L = -V_{out}, \frac{di_L}{dt} = \frac{-V_{out}}{L}$$

From geometry, $I_{avg} = I_{out}$ is halfway

Buck Topology: Current and Voltage Waveforms

查看PMLKBUCKEVM的波形

- 观察开关节点波形和输出电压波形
- 改变输入电压,观察开关节点波形占空比的变化
- 改变开关频率,观察开关节点波形的变化

Light-Load Operation: CCM and DCM

Inductor current drops to zero before the end of the cycle: "Discontinuous Conduction Mode" (DCM)

Control Mode

- Voltage Mode Control (VMC)
- Current Mode Control (CMC)
 - Peak Current Mode Control (PCMC)
 - Valley Current Mode Control (VCMC)
 - Average Current Mode Control (ACMC)
- Hysteretic Mode Control (HMC)