DS n° 07 : Fiche de calculs

Durée : 60 minutes, calculatrices et documents interdits

Nom et prénom :		Note:	
-----------------	--	-------	--

Porter directement les réponses sur la feuille, sans justification.

I. Analyse asymptotique.

Déterminer la limite suivante.

$$\frac{3^{3n}(n!)^3}{n(3n)!} \xrightarrow[n \to +\infty]{} \tag{1}$$

Déterminer les DL suivants ($DL_n(a)$ pour à l'ordre n et au voisinage du point a.)

$$\mathrm{DL}_3(0)\ \mathrm{de}\ \frac{1}{\cos(x)}$$
: (2)

$$DL_4(0) \text{ de } \ln^2(1+x):$$
 (3)

$$\mathrm{DL}_2(1) \ \mathrm{de} \ \mathrm{ch}(x)$$
 :

Déterminer un développement asymptotique à 3 termes en $+\infty$ des fonctions suivantes.

$$th(x)$$
: (5)

$$\sqrt{\frac{x-2}{x+1}} e^{\frac{x}{x-1}} - e :$$
 (6)

Soit la fonction $f: x \mapsto \frac{\operatorname{Arctan}(\ln(1+x))}{x^2} - \frac{1}{x}$.			
On peut prolonger f par continuité en 0 en posant $f(0) = \boxed{\hspace{1cm}}.$	(7)		
Ainsi prolongée, f est dérivable en 0 et $f'(0) = \ . \tag{8}$			
Au voisinage de 0, par rapport à sa tangente en 0, le graphe de f est	(9)		
II. Algèbre linéaire.			
On considère l'endomorphisme de $\mathbb{R}^3 \varphi : \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 3x & +5y & +z \\ -2x & +y & +8z \\ x & -y & -5z \end{pmatrix}$. Donner une représentation cartésienne de chacun des sev de \mathbb{R}^3 suivants.			
$\mathrm{Ker}(arphi)$:	(10)		
$\mathrm{Im}(arphi)$:	(11)		
Donner une base de chacun des sev de \mathbb{R}^3 suivants.			
$\mathrm{Ker}(arphi)$:	(12)		
$\mathrm{Im}(arphi)$:	(13)		
Est-ce que $\mathbb{R}^3=\mathrm{Im}(\varphi)\oplus\mathrm{Ker}(\varphi)$ (répondre oui ou non) :	(14)		
— FIN —			