

Zadanie 5

- Zadanie a bodovanie je k dispozícii na dokumentovom serveri v AIS
- Máte sa naučiť:
 - 1. Pracovať s obrazovými dátami
 - 2. Trénovať konvolučné neurónové siete
- Dataset:
 - Fotografie artiklov oblecenia (foto je pomenovane ako id.png)
 - K nim patrí csv súbor s kategóriami pre dané oblečenie
 - Dostupný na Google Drive.

Dáta

Úloha 1 - načítanie obrázkov

- Obrázky môžeme načítať v troch kanáloch - RGB - Reg, Green, Blue

Pixel of an RGB image are formed from the corresponding pixel of the three component images

Úloha 1 - načítanie obrázkov

- Obrázky môžeme načítať v troch kanáloch -RGB - Reg, Green, Blue
- Obvykle 0-255 -> toto pri neurónových sieťach nechceme:
 - Normalizujeme obrázky najprv a uložíme si ich na disk
 - Normalizujeme ich "za behu" (napr. Keras Image Generator)
- Potrebujeme, aby boli ďalej použiteľné pre modely ML - obvykle tensor
 - počet vstupov (veľkosť batchu) * šírka * výška * 3
- pämaťové/výpočtové nároky?

Pixel of an RGB image are formed from the corresponding pixel of the three component images

Úloha 2 - vytvorenie siete (architektúra)

- Súčasti boli v prednáške
- Buď architektúru vytvoríme sami alebo použijeme transfer learning (predtrénovanú sieť)

Úloha 2 - trénovanie siete

- Poznáme z predchádzajúcich zadaní (trénovania klasických neurónových sietí)
- Dávajte pozor, aby boli vyrovnané počty pre triedy v množinách
- Sledujeme vývoj chyby na trénovacej/validačnej množine
 - Podľa tvaru kriviek nastavujeme learning rate
 - Podľa validačnej chyby predchádzame pretrénovaniu
- Hľadáme dobré parametre/architektúry pre problém:
 - Počty filtrov
 - Počty vrstiev
 - Aktivačné funkcie
 - Solvery ...

Transfer learning

- Využitie siete trénovanej na problém X na riešenie problému Y odstraňujeme kategorizujúce (alebo aj hlbšie) vsrtvy a natrénujeme nové
- Predpoklad: konvolučné vrstvy z problému X sú všeobecné
- Dnes štandard na veľa problémov strojového videnia (ImageNet) málo trénovacích dát, nedostatočný hardvér a pod.
- Učiaci proces je rýchlejší, často presnejší a potrebuje menej trénovacích dát

Transfer learning

Transfer learning

Dáta nového problému	Odporúčané
Málo a podobné pôvodným	Lineárny klasifikátor nad CNN kódmi
Veľa a podobné pôvodným	Finetuning celej siete
Málo a odlišné od pôvodných	SVM klasifikátor nad jednou zo skorších vrstiev
Veľa a odlišné od pôvodných	Trénovanie od náhodných váh

