Segundo Certamen Informática Teórica

23 de noviembre de 2024

https://www.xkcd.org/2968

La entrega es en hojas separadas por pregunta, cada una debidamente identificada (nombre, rol, certamen y ramo). Si no responde, entregue una pregunta en blanco.

1. Demuestre que el lenguaje $L = \{\langle M_1, M_2 \rangle : \exists \omega, \omega \in \mathcal{L}(M_1) \land \omega \in \mathcal{L}(M_2) \}$ no es decidible. Acá M_1 y M_2 son máquinas de Turing.

(25 puntos)

2. Demuestre que los lenguajes decidibles son cerrados respecto de (a) la unión y (b) la concatenación. Basta una explicación informal, pero clara. Puede usar programas o pseudocódigo.

(30 puntos)

3. En lo siguiente, considere problemas D_i decidibles, I_i no decidibles, E_i computacionalmente enumerables no decidibles. Indique cuáles de las siguientes reducciones son posibles. Justifique brevemente.

a)
$$I_1 \le D_1$$

b)
$$E_2 \le I_2$$

c)
$$\overline{E}_3 \le E_4$$

d)
$$\overline{D}_2 \le D_3$$

(20 puntos)

4. En lo siguiente, considere problemas $P_i \in P$, $N_i \in NP$, C_i es NP-completo, y X_i es desconocido. Indique qué permiten concluir sobre X_i las siguientes reducciones, suponiendo que P \neq NP:

a)
$$X_1 \le_p N_1 \ y \ P_1 \le_p X_1$$
 b) $C_2 \le X_2$

b)
$$C_2 \leq X_2$$

c)
$$X_3 \le P_2 \lor X_3 \le n C_2$$

c)
$$X_3 \le P_2 \ y \ X_3 \le_p C_2$$
 d) $C_4 \le_p X_4 \ y \ X_4 \le_p N_4$

(20 puntos)

5. El problema DOUBLE SAT da una fórmula lógica ϕ en variables x_1, \dots, x_n y pregunta si hay al menos dos maneras de satisfacer ϕ (vale decir, valores distintos de las variables que hacen verdadera ϕ). Demuestre que DOUBLE SAT es NP-completo.

(30 puntos)

HvB/⊮T_EX2_€