PHÂN TÍCH THIẾT KẾ HỆ THỐNG THÔNG TIN Information System Analysis and Designe

Số tín chỉ: 4(3,1)

Số tiết: 75 tiết (45 LT- 30 TH)

Giảng viên: TS. Đinh Thị Thu Hương.

(Mobile: 0903087599 – e-mail: huongdtt@sgu.edu.vn)

Bộ môn: Khoa học máy tính - Khoa CNTT, SGU.

Chương 7: Lý thuyết chuẩn hóa cơ sở dữ liệu

- Phụ thuộc hàm.
- Bao đóng.
- Khóa của lược đồ quan hệ.
- Phủ tối thiểu.
- Dạng chuẩn.
- Chuẩn hóa cơ sở dữ liệu.
- Phép tách lược đồ quan hệ.
- Bài tập

Ví dụ: Lược đồ ER của hệ thống quản lý nhân sự

E-R là mô hình trung gian để chuyển những yêu cầu quản lý dữ liệu trong thế giới thực thành mô hình CSDL quan hệ

Các vấn đề gặp phải khi tổ chức CSDL

Ví dụ: Cho lược đồ quan hệ Thi(MASV,HOTEN,MONHỌC,DIEMTHI) và một quan hệ trên lược đồ quan hệ Thi như sau:

MASV	HOTEN	моннос	DIEMTHI
00CDTH189	Nguyễn ∨ăn Thành	Cấu Trúc Dữ Liệu	7
00CDTH189	Nguyễn ∨ăn Thành	Cơ Sở Dữ Liệu	9
00CDTH211	Trần Thu Hà	Kỹ Thuật Lập Trình	5
00CDTH189	Nguyễn ∨ăn Thành	Kỹ Thuật Lập Trình	8

1/ Dư thừa2/ Mâu thuẫn tiềm ẩn

3/ Bất thường khi chèn 4/ Bất thường khi xoá

MASV	HOTEN	моннос	DIEMTHI
00CDTH189	Nguyễn ∨ăn Thành	Cấu Trúc Dữ Liệu	7
00CDTH189	Nguyễn ∨ăn Thành	Cơ Sở Dữ Liệu	9
00CDTH211	Trần Thu Hà	Kỹ Thuật Lập Trình	5
00CDTH189	Nguyễn ∨ăn Thành	Kỹ Thuật Lập Trình	8

MASV	HOTEN
00CDTH189	Nguyễn Văn Thành
00CDTH211	Trần Thu Hà

MAMH	TENMON
M1	Cơ sở dữ liệu
M2	Cấu trúc dữ liệu
M3	Kỹ thuật lập trình

MASV	MAMH	DIEMTHI
00CDTH189	M2	7
00CDTH189	M2	9
00CDTH211	M3	5
00CDTH189	M3	8

7.1 Phụ thuộc hàm (functional dependence-FD)

Định nghĩa: R(Ω) là lược đồ quan hệ. X, Y là hai tập con của tập thuộc tính $\Omega = \{A_1, A_2, ..., A_n\}$. r là một quan hệ trên R(Ω); t_1 , t_2 là hai bộ bất kỳ của r.

$$X \rightarrow Y \Leftrightarrow (t_1.X = t_2.X \Rightarrow t_1.Y = t_2.Y)$$

(Ta nói X xác định Y hay Y phụ thuộc hàm vào X)

Ví dụ 1:

- Mã nhân viên xác định tên nhân viên SSN -> ENAME
- Mã đề án xác định tên đề án và địa điểm PNUMBER -> {PNAME, PLOCATION}
- Mã nhân viên và mã đề án xác định giờ làm việc trong tuần của nhân viên cho đề án {SSN, PNUMBER} -> HOURS

Ví dụ

A	В	С	D	Е
1	2	3	4	5
1	4	3	4	5
1	2	4	4	1

Kí hiệu nào là phụ thuộc hàm

I. $AB \rightarrow C$

II. $B \rightarrow D$

III. DE \rightarrow A

(T)

(T)

Phụ thuộc hàm hiển nhiên

Nếu X \supseteq Y thì X \rightarrow Y.

Với r là quan hệ bất kỳ, F là tập phụ thuộc hàm thỏa
 trên r, ta luôn có

F ⊇ {các phụ thuộc hàm hiển nhiên}

7.2 Hệ luật dẫn Armstrong

- Phụ thuộc hàm được suy diễn logic từ F
 - Phụ thuộc hàm X → Y được suy diễn logic từ F nếu một quan hệ r bất kỳ thỏa mãn tất cả các phụ thuộc hàm của F thì cũng thỏa phụ thuộc hàm X → Y.
 - Ký hiệu F|= X → Y.

Bao đóng của F

- Bao đóng của F là tập tất cả các phụ thuộc hàm được suy diễn logic từ F.
- Ký hiệu: F+

Nếu F=F+ thì F là họ đầy đủ của các PTH

Thuật toán tìm bao đóng F+

"Áp dụng hệ tiên đề Armstrong cho đến khi không tìm ra thêm phụ thuộc hàm mới"

7.2 Hệ luật dẫn Armstrong

- Các tính chất của tập F⁺
 - Tính phản xạ: F ⊆ F+
 - Tính đơn điệu: Nếu F ⊆ G thì F+ ⊆ G+
 - Tính lũy đẳng: $(F^+)^+ = F^+$.
 - Phần phụ của F: F⁻ = G F⁺

(G - tập tất cả các PTH có thể có của r)

7.2 Hệ luật dẫn Armstrong

- Hệ luật dẫn Amstrong: Gọi R(Ω) là lược đồ quan hệ với Ω ={A₁, A₂,..., Aₙ} là tập thuộc tính và X,Y,Z,W là tập con của Ω. (Kí hiệu: XY=X∪Y)
 - Ba luật của tiên đề Amstrong:
 - Luật phản xạ (reflexive rule):
 Nếu Y ⊆ X thì X → Y
 - 2. Luật tăng trưởng (augmentation rule): Nếu X → Y, Z ⊆ Ω thì XZ → YZ
 - 3. Luật bắc cầu (Transivity Rule)
 Nếu X → Y và Y → Z thì X → Z

CM: Tiên đề tăng trưởng

Giả sử quan hệ r thoả mãn $X \to Y$. Tồn tại hai bộ t, $u \in r$ sao cho t[XZ] = u[XZ] mà t[YZ] \neq u[YZ] Vì t[Z] = u[Z] nên để có t[YZ] \neq u[YZ] thì t[Y] \neq u[Y] (1) Mà ta có t[XZ] = u[XZ] nên t[X] = u[X] (2) Từ (1) và (2) ta có t[X] = u[X] và t[Y] \neq u[Y] điều này là trái với giả thiết quan hệ r thoả mãn $X \to Y$. Vậy t[YZ] = u[YZ] hay $XZ \to YZ$ là đúng trên quan hệ r.

7.2 Hệ luật dẫn Armstrong

- Ba hệ quả của tiên đề Amstrong:
- 1. Luật hợp (Union Rule)

Nếu
$$X \rightarrow Y$$
 và $X \rightarrow Z$ thì $X \rightarrow YZ$

2. Luật bắc cầu giả (Pseudotransivity Rule)

Nếu
$$X \rightarrow Y$$
 và $WY \rightarrow Z$ thì $XW \rightarrow Z$

3. Luật phân rã (Decomposition Rule)

Nếu
$$X \rightarrow Y$$
 và $Z \subset Y$ thì $X \rightarrow Z$

7.3 Bao đóng của tập thuộc tính X (closures of attribute sets)

Dịnh nghĩa

Gọi F là tập các phụ thuộc hàm trên tập thuộc tính Ω ., $X \subseteq \Omega$. Gọi X^+ là bao đóng của X đối với F, X^+ được định nghĩa như sau:

$$X^+ = \{ A \in \Omega \mid X \rightarrow A \in F^+ \}$$

■ Bổ đề

 $X \rightarrow Y$ được suy diễn từ hệ tiên đề Armstrong khi và chỉ khi $Y \subset X^+$.

7.3 Bao đóng của tập thuộc tính X (closures of attribute sets)

Thuật toán tìm bao đóng:

- Tính liên tiếp tập các tập thuộc tính X⁰,X¹,X²,... theo phương pháp sau:
- Bước 1: $X^0 = X$
- Bước 2: lần lượt xét các phụ thuộc hàm của F
 - ❖ Nếu $Y \rightarrow Z$ có $Y \subseteq X_i$ thì $X^{i+1} = X^i \cup Z$
 - ❖Loại phụ thuộc hàm Y → Z khỏi F
- Bước 3: Nếu ở bước 2 không tính được Xⁱ⁺¹ thì Xⁱ
 chính là bao đóng của X
- Ngược lại lặp lại bước 2.

7.2 Bao đóng của tập thuộc tính X (closures of attribute sets)

Ví dụ 1: Cho lược đồ quan hệ R(A,B,C,D,E,G,H) và tập phụ thuộc hàm

F={B \rightarrow A; DA \rightarrow CE; D \rightarrow H; GH \rightarrow C; AC \rightarrow D}. Tìm bao đóng của X = {A,C} trên F?

Giải:
$$X^{(0)} = \{A,C\}, \{A,C\} \rightarrow \{D\}$$

- $X^{(1)} = \{A,C,D\}, \{A,D\} \rightarrow \{C,E\}$
- $X^{(2)} = \{A,C,D,E\}, \{D\} \rightarrow \{H\}$
- $X^{(3)} = \{A,C,D,E,H\}$
- $X^{+}=X^{(3)}$

Cho
$$X = \{B, D\} -> X^+?$$

7.3 Bao đóng của tập thuộc tính X (closures of attribute sets)

Ví dụ 2: cho lược đồ quan hệ: Q(A,B,C,D,E,G)

```
F = \{ f_1: A \rightarrow C;
f_2: A \rightarrow EG;
f_3: B \rightarrow D;
f_4: G \rightarrow E \}
```

Tìm bao đóng:

- $X^+ v \acute{o} i X = \{A,B\};$
- $Y^+ v \acute{o} i Y = \{C,G,D\}$

Sử dụng bao đóng của tập thuộc tính

- Kiém tra siêu khóa (Testing for superkey)
 - Để kiểm tra X có phải là siêu khóa: tính X+, nếu X+
 chứa tất cả các thuộc tính của R thì X là siêu khóa.
 - X là khóa dự tuyển (candidate key) nếu không tập con nào trong số các tập con của nó là khóa.
- □ Kiếm tra một phụ thuộc hàm X→Y có được suy dẫn từ F.
- □ Kiểm tra 2 tập phụ thuộc hàm tương đương F⁺=G⁺

Với mỗi phụ thuộc hàm Y→Z trong F

- ❖Tính Y⁺ trên tập phụ thuộc hàm G
- Nếu Z ⊆ Y⁺ thì Y→Z trong G⁺ và ngược lại

Phụ thuộc hàm dư thừa

- Tập các PTH có thể là dư thừa vì chúng có thể suy diễn từ các PTH khác.
 - **Ví dụ:** A→C là dư thừa đối với F= (A→B, B→C, A→ C)
- Một phần của phụ thuộc hàm cũng có thể dư thừa.
 - Ví dụ:

$$F=(A \rightarrow B, B \rightarrow C, A \rightarrow C, D)$$
 có thể được viết lại: $F=(A \rightarrow B, B \rightarrow C, A \rightarrow D)$

Bài tập:

Cho F = {AB \rightarrow C, B \rightarrow D, C \rightarrow E, CE \rightarrow GH, G \rightarrow A} Hãy chứng tổ phụ thuộc hàm AB \rightarrow E, AB \rightarrow G được suy diễn từ F nhờ luật dẫn Armstrong.

Giải:

$$\begin{array}{c}
AB \to C \\
C \to E \Longrightarrow
\end{array}$$

$$\xrightarrow{Bac \ cau} AB \to E$$

X	X_F^+	
AB	ABCDEGH	→

Được suy diễn từ F

Phụ thuộc hàm tương đương

- Định Nghĩa: Hai tập phụ thuộc hàm F và G là tương đương (Equivalent) nếu F+ = G+
 - Ký hiệu: $F \equiv G$ (F ~G).
- Thuật toán xác định F và G có tương đương không
 - -Bước 1: Với mỗi phụ thuộc hàm X→Y của F ta xác định xem X→Y có là thành viên của G không.
 - $-Bu\acute{o}c$ 2: Với mỗi phụ thuộc hàm X \rightarrow Y của G ta xác định xem X \rightarrow Y có là thành viên của F không.
 - Nếu cả hai bước trên đều đúng thì F ≡G

Phụ thuộc hàm tương đương

- Ví dụ: Cho lược đồ quan hệ R(ABCE) hai tập phụ thuộc hàm:
 - $-F={A \rightarrow BC, A \rightarrow D, C \rightarrow E}$
 - $-G = \{A \rightarrow BCE, A \rightarrow ABD, C \rightarrow E\}$
 - a) F có tương đương với G không?
 - b) F có tương đương với G'={A→BCE} không?

Phụ thuộc hàm tương đương

Với mỗi phụ thuộc hàm $Y \rightarrow Z$ trong F Tính Y+ trên tập phụ thuộc hàm G Nếu $Z \subseteq Y$ + thì $Y \rightarrow Z$ trong G+ và ngược lại

$$F=\{A \rightarrow BC, A \rightarrow D, C \rightarrow E\}$$

$$G=\{A \rightarrow BCE, A \rightarrow ABD, C \rightarrow E\}$$

Giải:

- Tính A+ C+ dựa trên tập G
 - A_G^+ A BCED \supset BC (xét A \rightarrow BC)
 - $C^+_G = CE \supset E \text{ (x\'et } C \rightarrow E)$
 - Các phụ thuộc hàm trong F đều được suy diễn từ G⁺ (1).
- Tính A+ C+ dựa trên tập F
 - A^+ = ABCED \supset BCE (xét A \rightarrow BCE)
 - $^{\diamond}$ C⁺_F=CE ⊃ E (xét C → E)
 - ⇔ Các phụ thuộc hàm trong G đều được suy diễn từ F+ (2)
 - (1) và $(2) \Rightarrow F^+ = G^+ \Rightarrow F \equiv G$.

Bài tập

1/ Chứng minh các suy diễn sau là đúng: a/ $\{W \rightarrow Y, X \rightarrow Z\} = \{WX \rightarrow Y\}$ b/ $\{X \rightarrow Z, Y \subset Z\} = \{X \rightarrow Y\}$ c/ $\{X \rightarrow Y, X \rightarrow W, WY \rightarrow Z\} = \{X \rightarrow Z\}$ $d/\{X \rightarrow Y, Z \rightarrow W\} = \{XZ \rightarrow YW\}$ $e/\{X \rightarrow Y, Y \rightarrow Z\} = \{X \rightarrow YZ\}$ 2/ Cho lược đồ quan hệ R và tập các phụ thuộc hàm: $F=\{AB \rightarrow C, B \rightarrow D, CD \rightarrow E, CE \rightarrow GH, G \rightarrow A\}$ trên R. Chứng minh $AB \rightarrow EG$ 3/ Cho lược đồ quan hệ R(ABCDEGH) và tập phụ thuộc hàm F, $F = \{B \rightarrow A; DA \rightarrow CE; D \rightarrow H; GH \rightarrow C; AC \rightarrow D \}$ Hãy tính: B⁺; H⁺;BC⁺ 4/ Cho lược đồ quan hệ Q(ABC) hai tập phụ thuộc hàm: $F = \{A \rightarrow B; A \rightarrow C; B \rightarrow A; C \rightarrow A; B \rightarrow C\}$ $G=\{A\rightarrow B; C\rightarrow A; B\rightarrow C\}$ F có tương đương với G không?

Phụ thuộc hàm có vế trái dư thừa:

- F là tập các phụ thuộc hàm trên lược đồ quan hệ R.
- $-Z \rightarrow Y \in F$.
- Phụ thuộc hàm Z → Y có vế trái dư thừa nếu có một $A \in Z$ sao cho: $F = F \{Z \rightarrow Y\} \cup \{(Z A) \rightarrow Y\}$

Ví dụ 1: R(A,B,C), F={AB \rightarrow C; B \rightarrow C}. Kiếm tra AB \rightarrow C có dư thừa không?

$$F = F - \{AB \rightarrow C\} \cup \{(AB - A) \rightarrow C\} = \{B \rightarrow C\}$$

AB → C: là phụ thuộc hàm không đầy đủ

 $B \rightarrow C$: là phụ thuộc hàm đầy đủ

Ví dụ 2: Cho tập phụ thuộc hàm $F = \{A \rightarrow BC, B \rightarrow C, AB \rightarrow D\}$. Phụ thuộc hàm $AB \rightarrow D$ có vế trái dư thừa không?

$$F = F - \{Z \rightarrow Y\} \cup \{(Z - A) \rightarrow Y\}$$

Giải:
$$F = F - \{AB \rightarrow D\} \cup \{A \rightarrow D\}$$

= $\{A \rightarrow BC, B \rightarrow C, A \rightarrow D\}$

- \Rightarrow Phụ thuộc hàm AB \rightarrow D có vế trái dư thừa.
- F là tập phụ thuộc hàm có vế trái không dư thừa nếu F không chứa phụ thuộc hàm có vế trái dư thừa.

- Thuật toán loại các phụ thuộc hàm có vế trái dư thừa:
 - Xét lần lượt các phụ thuộc hàm X →Y trong F
 - Với mọi tập con X'≠ Ø của X, nếu X' →Y ∈ F⁺ thì thay
 X →Y bằng X' →Y .

Ví dụ 3: F = {A →BC , B → C, AB → D}, loại các phụ thuộc hàm có vế trái dư thừa.

Giải: Xét AB
$$\rightarrow$$
 D có A+=ABCD \Rightarrow A \rightarrow D \in F+ \Rightarrow Trong F ta thay AB \rightarrow D bằng A \rightarrow D \Rightarrow F = {A \rightarrow BC,B \rightarrow C, A \rightarrow D}

Phụ thuộc hàm dư thừa:

 F là tập phụ thuộc hàm không dư thừa nếu không tồn tại F'⊂ F sao cho F'≡ F. Ngược lại F là tập phụ thuộc hàm dư thừa.

Ví dụ:

Cho F = $\{A \rightarrow BC, B \rightarrow D, AB \rightarrow D\}$ thì F dư thừa vì F = F'= $\{A \rightarrow BC, B \rightarrow D\}$

Tập phụ thuộc hàm tối thiểu (minimal cover)

- F được gọi là một tập phụ thuộc hàm tối thiểu (hay phủ tối thiểu) nếu F thỏa đồng thời ba điều kiện sau:
 - F là tập phụ thuộc hàm có vế trái không dư thừa
 - F là tập phụ thuộc hàm có vế phải một thuộc tính.
 - F là tập phụ thuộc hàm không dư thừa

- Thuật toán tìm phủ tối thiểu của một tập phụ thuộc hàm
 - Bước 1: Loại bỏ các phụ thuộc hàm có vế trái dư thừa.
 - Bước 2: Tách các phụ thuộc hàm có vế phải nhiều hơn một thuộc tính thành các phụ thuộc hàm có vế phải một thuộc tính.
 - Bước 3: Loại bỏ các phụ thuộc hàm dư thừa.

- Ví dụ 1: Cho lược đồ quan hệ Q(A,B,C,D) và tập phụ thuộc F ={AB →CD, B → C, C → D}. Tìm phủ tối thiểu của F.
 - Bước 1: AB → CD là phụ thuộc hàm có vế trái dư thừa?
 - \square Xét B \rightarrow CD \in F⁺?
 - Tính $B^+ = BCD \Rightarrow B \rightarrow CD \in F^+$
 - ❖ Vậy AB → CD là phụ thuộc hàm có vế trái dư thừa
 A ⇒ F={B → CD; B → C; C → D}

 Bước 2: tách các phụ thuộc hàm có vế phải nhiều hơn 1 thuộc tính thành các phụ thuộc hàm có vế phải 1 thuộc tính

F={B
$$\rightarrow$$
 CD; B \rightarrow C; C \rightarrow D}
F={B \rightarrow D; B \rightarrow C; C \rightarrow D}=F_{1tt}

Bước 3:

Ta có: B \rightarrow D là PTH dư thừa do {B \rightarrow C;C \rightarrow D}

Kết quả cho phủ tối thiểu: $F=\{B \rightarrow C; C \rightarrow D\}=Ftt$ Bài tập: Cho lược đồ quan hệ Q(A,B,C,D) và tập phụ thuộc F như sau:

 $F = \{A \rightarrow C; C \rightarrow A; CB \rightarrow D; AD \rightarrow B; CD \rightarrow B; AB \rightarrow D\}$ Hãy tìm phủ tối thiểu của F

KHÓA CỦA LƯỢC ĐỒ QUAN HỆ (Key)

- Định Nghĩa: Cho lược đồ quan hệ R(A₁,A₂,...,A_n)
 - ♦U là tập thuộc tính của R.
 - F là tập phụ thuộc hàm trên R.
 - K là tập con của U

K là một khóa của R nếu:

- ❖Không tồn tại K' ⊂ K sao cho K'+= U

KHÓA CỦA LƯỢC ĐÒ QUAN HỆ (Key)

- Tập thuộc tính S được gọi là siêu khóa nếu S ⊇K
- Thuộc tính A được gọi là thuộc tính khóa nếu A∈K với K là khóa bất kỳ của R. Ngược lại A được gọi là thuộc tính không khóa.
- Một lược đồ quan hệ có thể có nhiều khóa và tập thuộc tính không khóa cũng có thể bằng rỗng.
- Ví dụ: cho lược đồ quan hệ R(U) với U={A,B,C,D,E} và tập PTH:

$$F=\{AB \rightarrow CE; B \rightarrow D; BC \rightarrow A\}$$

Các khóa của R là K₁=AB, K₂=BC.

Vậy: A,B,C là thuộc tính khóa còn Fn={D,E}

- Thuật toán tìm một khóa của một lược đồ quan hệ R
 - − Bước 1: gán K = U.
 - Bước 2: A là một thuộc tính của K, đặt K' = K A. Nếu K'+= U thì gán K = K' thực hiện lại bước 2.
 - Nếu muốn tìm các khóa khác (nếu có) của lược đồ quan hệ, ta có thể thay đổi thứ tự loại bỏ các phần tử của K.

■ Ví dụ 1: cho lược đồ quan hệ R (A,B,C,D,E) và tập phụ thuộc hàm F như sau:

 $F=\{AB\rightarrow C, AC\rightarrow B, BC\rightarrow DE\}$ tìm khóa K?

Giải:

B1: $K=U \Rightarrow K=ABCDE$

B2:(K\A)+ \Rightarrow (BCDE)+=BCDE \neq U \Rightarrow K=ABCDE

B3:(K\B)+ \Rightarrow (ACDE)+= ABCDE = U \Rightarrow K=ACDE

B4: $(K\C)^+ \Rightarrow (ADE)^+ = ADE \neq U \Rightarrow K=ACDE$

B5: $(K\D)^+ \Rightarrow (ACE)^+ = ACEBD = U \Rightarrow K = ACE$

B6: $(K \setminus E)^+ \Rightarrow (AC)^+ = ACBDE = U \Rightarrow K = AC$

Ví dụ 2: cho lược đồ quan hệ R(A,B,C,D,E,G,H,I) và tập phụ thuộc hàm

```
F={AC\rightarrow B;
BI\rightarrow AC;
ABC\rightarrow D;
H\rightarrow I;
ACE\rightarrow BCG;
CG\rightarrow AE}
```

- Tim K?

- Thuật toán tìm tất cả khóa của lược đồ quan hệ:
 - Bước 1: Xác định tất cả các tập con khác rỗng của
 U={X₁, X₂, ...,X_{n-1}}
 - Bước 2: Tìm bao đóng của các X_i
 - Bước 3: Siêu khóa là các X_i có X_i⁺= U
 - ❖Giả sử ta đã có các siêu khóa là S = {S₁,S₂,...,Sm}
 - Bước 4: xét mọi S_i, S_j con của S (i ≠ j), nếu S_i ⊂ S_j thì loại S_j (i,j=1..n), kết quả còn lại của S chính là tập tất cả các khóa cần tìm.

Ví dụ: Tìm tất cả các khóa của lược đồ quan hệ với tập phụ thuộc hàm như sau:

$$Q(C,S,Z)$$
; $F = \{f_1:CS \rightarrow Z; f_2:Z \rightarrow C\}$

Xi	X_i^+	Super key	Key
С	С		
S	S		
CS	CSZ	CS	CS
Z	ZC		
CZ	CZ		
SZ	SZC	SZ	SZ
CSZ	CSZ	CSZ	

Answer $\{C, S\}$ và $\{S, Z\}$

- Thuật toán (cải tiến) tìm tất cả khóa của một lược đồ quan hệ
 - Bước 1: tạo tập thuộc tính nguồn TN, tập thuộc tính trung gian TG
 - *Bước 2*:
 - Nếu TG = ∅ thì lược đồ quan hệ chỉ có một khóa K
 = TN kết thúc
 - Ngược lại Qua bước 3
 - Bước 3: tìm tất cả các tập con X_i của tập trung gian TG

- Bước 4: tìm các siêu khóa S_i bằng cách ∀X_i
 - \star if $(TN \cup X_i)^+ = U$ then $S_i = TN \cup X_i$
- Bước 5: tìm khóa bằng cách loại bỏ các siêu khóa không tối thiểu.
 - $\Leftrightarrow \forall S_i, S_i \in S$
 - ❖ if S_i ⊂S_j then Loại S_j ra khỏi tập siêu khóa S, S
 còn lại chính là tập khóa cần tìm.

Ví dụ: cho lược đồ quan hệ R(C,S,Z) và tập phụ thuộc hàm $F=\{CS \rightarrow Z; Z \rightarrow C\}$. Áp dụng thuật toán cải tiến:

- $-TN = {S}; TG = {C,Z}$
- Gọi X_i là các tập con của tập TG:

X _i	TN∪X _i	(TN∪X _i)⁺	Siêu khóa	Khóa
Ø	S	S		
С	SC	U	SC	SC
Z	SZ	U	SZ	SZ
CZ	SCZ	U	SCZ	

- 1. Cho F={AB \rightarrow E, AG \rightarrow I, BE \rightarrow I, E \rightarrow G, GI \rightarrow H}. Hãy chứng tỏ phụ thuộc hàm AB \rightarrow GH được suy diễn từ F nhờ luật dẫn Armstrong.
- 2. Cho lược đồ quan hệ R(A,B,C,D) và tập phụ thuộc F như sau:
- $F = \{A \rightarrow C; C \rightarrow A; CB \rightarrow D; AD \rightarrow B; CD \rightarrow B; AB \rightarrow D\}$ Hãy tìm phủ tối thiểu của F?
- 3. Cho G = {AB \rightarrow C, A \rightarrow B, B \rightarrow C, A \rightarrow C} và $F = \{AB \rightarrow C, A \rightarrow B, B \rightarrow C\}.$

Hai PTH trên có tương đương không?

4. Cho lược đồ CSDL

```
KeHoach(NGAY, GIO, PHONG, MOMHOC, GIAOVIEN):
F = \{NGAY, GIO, PHONG \rightarrow MONHOC\}
    MONHOC, NGAY → GIAOVIEN;
    NGAY, GIO, PHONG → GIAOVIEN;
    MONHOC → GIAOVIEN}
a/ Tính {NGAY, GIO, PHONG}+; {MONHOC}+
b/ Tìm phủ tối thiểu của F.
c/ Tìm tất cả các khóa của KeHoach?
```

5. Cho lược đồ CSDL

```
Q(LENTAU, LOAITAU, MACHUYEN, LUONGHANG, BENCANG, NGAY)

F = {TENTAU →LOAITAU;

MACHUYEN →TENTAU, LUONGHANG;
```

TENTAU, NGAY → BENCANG, MACHUYEN}

a/ Hãy tìm tập phủ tối thiểu của F?

b/ Tìm tất cả các khóa của Q?

6. Cho lược đồ quan hệ (A,B,C,D,E,G) và tập PTH:

$$\mathsf{F} = \{\mathsf{AB} {\rightarrow} \mathsf{C}; \ \mathsf{C} \to \mathsf{A}; \ \mathsf{CB} \to \mathsf{D}; \ \mathsf{ACD} \to \mathsf{B}; \ \mathsf{D} \to \mathsf{EG}, \ \mathsf{BE} \to \mathsf{C};$$

CG
$$\rightarrow$$
BD; CE \rightarrow AG } a/ X={B,D}, X+=?

$$b/Y=\{C,G\}, Y+=?$$

7. Hãy tìm tất cả các khóa cho lược đồ CSDL

Q(BROKER, OFFICE, STOCK, QUANTITY, INVESTOR, DIVIDENT):

```
F = \{STOCK \rightarrow DIVIDENT;
INVESTOR \rightarrow BROKER;
INVESTOR, STOCK \rightarrow QUANTITY;
BROKER \rightarrow OFFICE\}
```

BÀI TẬP VỀ NHÀ

- 1. Cho lược đồ quan hệ R(C,T,H,R,S,G) và tập phụ thuộc F như sau:
- $F = \{C \rightarrow T; HR \rightarrow C; HT \rightarrow R; CS \rightarrow G; HS \rightarrow R\}$
- Hãy tìm phủ tối thiểu của F?
- 2. Cho lược đồ quan hệ R(A,B,C,D,E,H) và tập phụ thuộc F như sau:
- $F = \{A \rightarrow E; C \rightarrow D; E \rightarrow DH\}$
- Chứng minh K={A,B,C} là khóa duy nhất của R?
- 3. Cho lược đồ quan hệ R(A,B,C,D) và tập phụ thuộc F như sau:
- $F = \{AB \rightarrow C; D \rightarrow B; C \rightarrow ABD\}$
- Hãy tìm tất cả các khóa của R?
- 4. Cho lược đồ quan hệ R(A,B,C,D,E,G) và tập phụ thuộc F như sau:
- $\mathsf{F} = \{\mathsf{AB} \ \to \mathsf{C}; \ \mathsf{C} \to \mathsf{A}; \ \mathsf{BC} \to \mathsf{D}; \ \mathsf{ACD} \to \mathsf{B}; \ \mathsf{D} \to \mathsf{EG}; \ \mathsf{BE} \to \mathsf{C}; \ \mathsf{CG} \to \mathsf{BD};$
- $CE \to G\}$
- Hãy tìm tất cả các khóa của R?