

Assignmein große Leam Help Introduction/powbline.with Python

Add WeChat powcoder

Tagging

Marc Verhagen, Fall 2017

Contents

- Final project questions?
- Assignment 4 questions? Exam Help
- Language models https://powcoder.com
- POS tagging Add WeChat powcoder
 - Chain rule
 - Bigram tagger
 - Brill tagger
- Train and test corpora; evaluation measures

Language Models

- Set of rules or a statistical model that underly some aspect of language
- Bigram statisticamean Project What Statistica
 - What is the hext word given the previous words in the sentence?
 - Add WeChat powcoder
 What is the probability of a sentence?
 - The probability of all sentences in a language must sum to 1.
- The Mutual Information score that we saw a few weeks ago can model collocations

Language Models

- Formal grammars (e.g. regular, context free) give a hard binary model of all the legal sentences in an angular giect Exam Help
- For NLP, a probabilistic thousand a language that gives a probability that a string is a member of a language can be more useful.

What is POS-tagging?

- Part of speech (POS): also known as lexical category or sometimes as word class
 Assignment Project Exam Help
- Assignment Project Exam Help
 POS-tagging: the process of assigning part-ofspeech tags the process of assigning part-ofaction of the process of assigning part-ofspeech tags the process of assigning par
 - Usually one part-of-speech per word in that context
 - Thus resolving some lexical ambiguity.
- Tagset: The collection of tags for a particular task

Two scenarios

- Given a POS-tagged corpus, identify linguistically interesting phenomena Assignment Project Exam Help – The Brown corpus, the Penn Treebank
- Given raw text, automatically assign POS tags to all words (POS tags) wooder

What you can do with POS tagged data

- What is the most common POS tag?
- What is the most frequent POS tag following another POS tag:
- What is the httpst/frequeder verb/noun in a POS-tagged corpus? Chat powcoder
- Find the most ambiguous words in a postagged corpus
- Some of these questions may be part of assignment 5

Automatic POS-tagging

- Two issues: ambiguity, unknown words
- Approaches: Project Exam Help
 - Rule-based
 - Regular expressions
 - Machine learding We Chat powcoder
 - Learning statistics (n-gram models)
 - Learning rules (transformation-based learning)

Part of speech (POS) ambiguity

Words	Possible Tags	Example of Use
that	subordinating conjunction	that he can swim is good
	determiner	that white table
	Assignment Project	it is not that easy
	relative pronoun	the table that collapsed
round	verb https://powcoo	Pour Office usual suspects
	preposition	turn round the corner
	noun Add WeChat	povicoodet
	adjective	a round box
	adverb	he went round
table	noun	that white table
	verb	I table that
might	noun	the might of the wind
	modal verb	she might come
collapse	noun	the collapse of the empire
	verb	the empire can collapse

Penn Treebank Tagset

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there Droi	VB	Verb, base form	eat
FW	Para Signing	mea chipa	WBD	Adjust tense [1]	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative OS	://powc	Doller.	Verb, hon-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal ACC	We what	DOV	weeder	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	"	Left quote	(' or ")
POS	Possessive ending	's	,,	Right quote	(' or ")
PRP	Personal pronoun	I, you, he	(Left parenthesis	([,(,{,<)
PRP\$	Possessive pronoun	your, one's)	Right parenthesis	(],),},>)
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ;)
RP	Particle	up, off			

Automatic POS-tagging: using context

- Water
 - Water the → verb
 Assignment Project Exam Help
 The water → noun
- Context is morphological, syntactic or Add WeChat powcoder semantic

Morphological context

- Inflectional morphology
 - Verb:
 - destroy, destroying, destroyed
 - https://powcoder.com - Noun:
 - · destruction destruction powcoder
- Derivational morphology
 - Noun:
 - destruction

Syntactic context

- Verb:
 - The bomb destroyed the building.
 Assignment Project Exam Help
 He decided to water the plant.

https://powcoder.com

- Noun:
 - The destruction of Schlatingwooder

Semantic context

- Verb: action, activity
- Noun: state, object etc. Assignment Project Exam Help
- Not directly observable, therefore hard to https://powcoder.com exploit, but it's there:
 - A noun in one language is usually translated into a noun in another language

Baselines and toplines

- Baseline: what is the least you can do?
 - Assigning the most frequent tag to all words
 - Using regular expression of Exploit Helphological information https://powcoder.com
 – Assigning to each word its mostly likely tag
- Topline: what ide the the transfer of the tr
 - Use a combination of morphological, syntactic, and semantic context
 - Determining the contribution of each type of context, and mixing them up in the optimal way

Baseline 1

The Default Tagger assigns the most likely tag

```
import nltkAssignment Project Exam Help
from nltk.corpus import brown
brown_news_taggenttps:owpergeder:complete:
brown_sents = brown.sents(categories='news')
brown_sents = brown.sents(categories='news')
default_tagger = nltk.DefaultTagger(NN)
default_tagger.tag(brown_sents[10])
```

Baseline #2

 The Regular Expression Tagger uses a couple of morphological rules Assignment Project Exam Help

```
import nltk
from nltk.corpushimport//browncoder.com
brown news tagged = brown.tagged words(categories='news')
brown_sents = brown_getysecapetopicstcomen
patterns = [...]
regexp tagger = nltk.RegexpTagger(patterns)
regexp tagger.tag(brown sents[10])
```

Baseline #2

- Regular expression tagger rules
 - VB: base form, e.g., 'go'
 Assignment Project Exam Help
 VBZ: 3rd person singular present, e.g., goes

 - VBN: past participle, e.g., gone
 - VBG: gerun del Weschingpowcoder
 - VBD: simple past, 'went'
 - VBP: non-3rd person singular present

Baseline #3

 The Unigram Tagger tags a word token with its most likely tag, regardless of the context Assignment Project Exam Help

```
import nltk
from nltk.corpushimport/browncoder.com
brown_news_tagged = brown.tagged_words(categories='news')
brown_sents = brownderWarchedopie **Corden*)

# training step
unigram_tagger = nltk.UnigramTagger(brown_tagged_sents)

# running the tagger
unigram_tagger.tag(brown_sents[10])
```

Today

- Final project questions?
- Assignment 4 questions?
 Assignment Project Exam Help
- POS tagging https://powcoder.com
 - Chain rule
 - Bigram tagger

 Add WeChat powcoder
 - Brill tagger

N-Gram Tagging

- Based on statistics derived from a set of n-grams (unigrams, bigrams, trigrams). Assignment Project Exam Help
- Bigram example:
 - Given the frequencies of
 - <The/DET Adde Wellhot powcoder
 - <The/DET water/VERB>
 - What is the most likely tag for water if it follows <The/DET>

N-Gram Model Formulas

Chain rule of probability

$$P(w_1^n) = P(A_1 \text{ spignment}(Project. ExamwHelp \prod_{k=1}^n P(w_k \mid w_1^{k-1}))$$
https://powcoder.com

• Bigram approximation at powcoder

$$P(w_1^n) = \prod_{k=1}^n P(w_k \mid w_{k-1})$$

Chain Rule

- Calculating the probability of a sequence of words given conditional probabilities
 Assignment Project Exam Help
 Conditional probability
- - https://powcoder.com measure of the probability of an event given that another evendon a company contraction and the contraction and the
 - P(cat|the) = the probability of "cat" if we already have "the"
 - P(the) . P(cat|the) = the probability of "the cat"

Chain Rule Formula

$$P(w_1^n) = \prod_{k=1}^n P(w_k|w_1^{k-1})$$
 Assignment Project Exam Help

where https://powcoder.com

 w_k = the world in the chat powcoder

 w_1^n = the sequence $w_1, w_2, ... w_n$

P(A|B) = the probability of A given B

 $\prod_{k=1}^n \Phi$ = the product of all formulas Φ with k ranging from 1 through n

Chain Rule Example

- Input: "Play it again Sam"
- What is the probability that Assignment Project Exam Help

 - "it" will follow "play"?
 https://powcoder.com
 "again" will follow "play it"?
 - "Sam" will follow play traggiroder

Chain Rule Example

Chain Rule Example

Beyond words

- We used w_k to stand in for just the word
- Instead we could use something like <w_k, t_k>,
 Assignment Project Exam Help
 that is, a pair of a word and its tag
- For example https://powcoder.com
 - instead of looking/forthepprobability of "cat" following "the"
 - we can look for the probability of the noun "cat" following the determiner "the"
- Or we can use any combination of features

Problems

- Need very big memory
- Combinatorics of storing the probabilities of Assignment Project Exam Help words given any preceding sequence is O(2ⁿ) https://powcoder.com

Add WeChat powcoder

N-Gram Models

- With the regular chain rule we estimates the probability of each word given prior context.
- An N-gram model uses only N-1 words of prior context.

Unigram: P(sleeps)powcoder.com
Bigram: P(sleeps | cat)

- Trigram: Paskep Habbat powcoder

- Markov assumption: the future behavior of a system only depends on its recent history
 - in a kth-order Markov model, the next state only depends on the k most recent states (an N-gram model is a (N-1)order Markov model)

Bigram Model

- The probability of the sequence ABCD using all context is
 - P(A). P(B) Anneat Project Exame Help
- But with the Wark povassum ption you can throw out your long-term memory
 - P(A) . P(B|A) . P(C|B) . P(D|C)
 - P(play it again sam)
 - = P(play) . P(it|play) . P(it|again) . P(sam|again)
 - = P(play|S).* P(it|play) . P(it|again) . P(sam|again)

Estimating Probabilities

• N-gram conditional probabilities can be estimated from raw text based on the relative frequency of word sequences.

Assignment Project Exam Help

Bigram:
$$P(w) = \frac{C(w_{n-1}w_n)}{O(w_{n-1})}$$

Add WeChat powcoder
N-gram:
$$P(w_n \mid w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1}w_n)}{C(w_{n-N+1}^{n-1})}$$

To have a consistent probabilistic model, append a unique start ($\langle s \rangle$) and end ($\langle s \rangle$) symbol to every sentence and treat these as additional words.

Examples

- P(<s> i want english food </s>)
 - = P(i | <s>) P(want | i) P(english | want)

 Assignment Project Exam Help
 P(food | english) P(</s> | food)
 - $= .25 \times .33 \times h = .25 \times$

Add WeChat powcoder

- P(<s> i want chinese food </s>)
 - = P(i | <s>) P(want | i) P(chinese | want) P(food | chinese) P(</s> | food)
 - $= .25 \times .33 \times .0065 \times .52 \times .68 = .00019$

Unknown Words

- How to handle words in the test corpus that did not occur in the training data, i.e. out of vocabularys ignorm Respect Exam Help
- Train a modeltthat/produdes.amexplicit symbol for an unknown word (<UNK>).

 Add WeChat powcoder

 - Choose a vocabulary in advance and replace other
 - words in the training corpus with <UNK>.
 - Replace the first occurrence of each word in the training data with <UNK>.

Smoothing

- Many rare yet impossible combinations never occur in training (sparse data), so many parameters are zero
 - If a new Acombination to probability of zero and the entire sequence gets a probability of the probability
- In practice, parameters are smoothed (regularized) to reassign some probability mass to unseen events.
- Adding probability mass to unseen events requires removing it from seen ones in order to maintain a joint distribution that sums to 1.

Laplace Smoothing

- Aka "Add-One Smoothing"
- "Hallucinate" additional training data in which each possible N-gram occurs exactly once and adjust estimates accordingly.

Add WeChat powcoder

Bigram:
$$P(w_n \mid w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

V is the total number of possible (N-1)-grams (i.e. the vocabulary size for a bigram model).

Backoff

 Use a simpler model for those cases where your more complicated (yet better) model has Assignment Project Exam Help nothing to say

https://powcoder.com

Add WeChat powcoder

But wait a minute... none of this was about tagging

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Context

- Unigram tagging
 - Using one item of context, the word itself.
 Assignment Project Exam Help
- N-Gram tagging
 - https://powcoder.com

 context is the current word together with the postage of the Adoleceding to wender

Conditional probability

- P(tag_i | tag_{i-1}, w_i)
- So we are looking for the probability of tag_i given that the previous tag was tag_{i-1} and the word itself is W_i

Add WeChat powcoder

Drawbacks of N-Gram approaches

- Conditioned on just the previous tags, even though word tokens can be useful as well
 Assignment Project Exam HelpConditioning on word tokens is unrealistic
- Size of the n-grams (bi-gram and tri-gram tables) can bedarge Chardpthe odgrams are hard to interpret
- Transformation-based learning addresses these issues

Transformation-based Tagging

- Transformation-Based Error Driven Learning (TBL)
 - Assignment Project Exam Help

 Aka the Brill tagger, after its inventor Eric Brill
 - a simple rule-based approach to automated learning of linguistic knowledgeder
- Idea:
 - first solve a problem with a simple technique
 - then apply transformations to correct mistakes

Tagging with transformation rules

Phrase	to	inere	signment	Pto	E cates	xam	Vea Fonal	rehabilitation
Unigram	TO	NN	https://p	TO	NNS	IN	JJ	NN
Rule 1		VB	nttps.//p	JOWC	Jouet.	COIII		
Add WeChat powcoder								
Output	TO	VB	NNS	IN	NNS	IN	JJ	NN
Gold	TO	VB	NNS	IN	NNS	IN	JJ	NN

Tagging with transformation rules

The phrase *The can rusted* has two readings

Let's suppose that can/modal is more frequent than can/noun in our corpus

First step: Assign the trops the by coder.com

The/art can/modal rusted/verb Add WeChat powcoder

Second step: Apply rules

Change the tag from modal to noun if one of the two previous words is an article

This is the idea of the Brill tagger.

Sample Rule Templates

Rules	Explanation
alter(A, B, preytag(C))	Change A to B if previous tag is C
alter(A, B, preytag(C)) ASSIGNMENT Projection Assignment Projection (C)	three tag is C
alter(A, B, prevlor2tag(C)) powco	Change A to B if previous one or two
alter(A, B, nextlor2tag(C)) Add WeChat	Change A to B if next one or two tag is
alter(A, B, nexttag(C))	Change A to B if next tag is C
<pre>alter(A, B, surroundingtag(C, D))</pre>	Change A to B if surrounding tags are C and D
alter(A, B, nextbigram(C, D))	Change A to B if next bigram tag is C D
alter(A, B, prevbigram(C, D))	Change A to B if previous bigram tag is C D

Templates vs rules

- A rule is an instance of a template
- Template: alter (A, B, prevtag(C)) elp
- Rules:
 - https://powcoder.com
 - alter (modal, noun, prevtag(article))
 - alter (noun, verb, prevtag (to))
 - alter (verb, noun, prevtag(article))
 - alter (verb, noun, prevtag(adjective))

Is there a way to learn these rules automatically?

Two Components in Transformation

- A rewrite rule (Action)
 - ex. Change the tag from modal to noun
- A triggering enigroment Rugicoti Evam Help
 - ex. The preceding word is a determiner nttps://powcoder.com

The/det can/Adda Wieledn/aterpo/wcoder to

The/det can/noun rusted/verb ./.

Transformation-Based Error-Driven Learning

Learning procedure

- Initial tagger:
 - Assigning the most likely tag to each word
 - Deciding the most like the second and the later of the
 - https://powcoder.com

 Tag a test corpus with this initial tagger
- Transformational WeChat powcoder
 - Write some rules based on the templates
 - Using the training corpus to spot patterns
 - Applying transformations to the test corpus
- Evaluate your accuracy

Train and Test Corpora

- A language model must be trained on a large corpus of text.
- Model can be constructed teasers an ittembility to generate good results on a held-out test corpus
 - testing on the training corpus gives an optimistically
- biased estimate
 Add WeChat powcoder

 Training and test corpus should be representative of the actual application data.
 - May need to adapt a general model to a small amount of new in-domain data by adding highly weighted small corpus to original training data.

Evaluation Measures

- Accuracy: percentage of correct tags
- Precision, recall and f-measure Assignment Project Exam Help
 - FP false positives
 https://powcoder.com
 TP true positives

 - FN false negatives Chat powcoder

```
John lives in London
ENT
              ENT
     ENT
              ENT
FN
     FP
           TN TP
```

Evaluation Measures

- Precision = tp / (tp + fp)
- Recall = tp / (tp + fn)
 Assignment Project Exam Help
- F-measure = 2. (P. R) / (P + R) https://powcoder.com
 - Harmonic means
 - Penalty if P or R is pretty bad