Eigen Values and Eigen Vectors

Study Material for Week 4

Lecture Three

Recall

Let A be an $n \times n$ matrix. A scalar (real number) λ is called **eigen value** of A if there is a **non-zero** vector X such that $AX = \lambda X$. The vector X is called an **eigen vector** of A corresponding to λ .

• Principal Axes Theorem: -

For a conic whose equation is of the form $ax^2 + bxy + cy^2 + dx + ey + f = 0$, the rotation given by X = PY eliminates the xy term if P is an orthogonal matrix, such that |P| = 1, that diagonalizes $A = \begin{bmatrix} a & h \\ h & b \end{bmatrix}$, $P^TAP = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ and equation of the rotated conic is given by $\lambda_1 y_1^2 + \lambda_2 y_2^2 + [d \quad e]PY + f = 0$ where eigen vectors are the principle axes. Principle axes – These are those directions along which conic is in standard form.

Example

1. Find out what type of conic sections / pair of straight lines is represented by given Q. F. Transform it into the principle axis and plot. $Q(x) = x_1^2 + 24x_1x_2 - 6x_2^2 = 5$.

$$Q(x) = x_1^2 + 24x_1x_2 - 6x_2^2 = 5$$
 which in matrix form is $X^T A X = 5$ ----- (i)

where
$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, and $A = \begin{bmatrix} 1 & 12 \\ 12 & -6 \end{bmatrix}$.

Characteristic equation is $|A - \lambda I| = 0$. $\lambda^2 - S_1 \lambda^2 + S_2 \lambda + |A| = 0$. $S_1 = -5$,

$$|A| = -6 - 144 = -150$$
. $\therefore \lambda^2 + 5\lambda - 150 = 0 \Rightarrow \lambda = 10, -15$.

Eigen vector for $\lambda = -15$, $[A + 15I] X = 0 \Rightarrow \begin{bmatrix} 16 & 12 \\ 12 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Independent

equation is
$$4x_1 + 3x_2 = 0$$
. Solution is $x_2 = t$, $x_1 = \frac{-3}{4}t$. $\therefore \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -(3/4)t \\ t \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}t$.

Therefore eigen vector is $X_1 = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$.

Eigen vector for $\lambda = 10$, $[A - 10I] X = 0 \Rightarrow \begin{bmatrix} -9 & 12 \\ 12 & -16 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Independent

equation is $-3x_1 + 4x_2 = 0$. Solution is $x_2 = t$, $x_1 = \frac{4}{3}t$. $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} (4/3)t \\ t \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}t$.

Therefore eigen vector is $X_2 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$.

To construct orthogonal modal matrix, divide each eigen vector by its norm.

$$W_1 = \frac{X_1}{\|X_1\|} = \begin{bmatrix} -3/5\\4/5 \end{bmatrix}$$
 and $W_2 = \frac{X_2}{\|X_2\|} = \begin{bmatrix} 4/5\\3/5 \end{bmatrix}$. Consider the transformation $X = PY$

where,
$$P = \begin{bmatrix} -3/5 & 4/5 \\ 4/5 & 3/5 \end{bmatrix}$$
. Thus $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3/5 & 4/5 \\ 4/5 & 3/5 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. Putting $X = PY$ in (i),

we have
$$Y^T D Y = 5$$
, i.e., $\begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} -15 & 0 \\ 0 & 10 \end{bmatrix} \begin{bmatrix} y_1 & y_2 \end{bmatrix} = 5$, i.e., $-15y_1^2 + 10y_2^2 = 5$.

This can be rearranged as $\frac{y_1^2}{-\frac{1}{3}} + \frac{y_2^2}{\frac{1}{2}} = 1.$

The Curve is Hyperbola.

It intersect Y_2 axis at $\left(0, \frac{1}{\sqrt{2}}\right)$ and

2. Find out an orthogonal matrix P such that P^TAP is diagonal. Sketch the graph in each of the equations. $3x^2 - 10xy + 3y^2 + 16\sqrt{2}x - 32 = 0$.

Consider, $3x^2 - 10xy + 3y^2 + 16\sqrt{2}x - 32 = 0$. In matrix form this can be written as

$$X^{T}AX + \begin{bmatrix} 16\sqrt{2} & 0 \end{bmatrix} X = 32$$
 -----(i), where $A = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix}$ and $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Characteristic equation is $[A - \lambda I] = 0 \Rightarrow \lambda^2 - S_1 \lambda + |A| = 0$. $S_1 = 6$, |A| = 9 - 25 = -16.

$$\therefore \lambda^2 - 6\lambda - 16 = 0 \quad \lambda = 8, -2.$$

Eigen vector for $\lambda = 8$. $\begin{bmatrix} A - 8I \end{bmatrix} X = 0 \Rightarrow \begin{bmatrix} -5 & -5 \\ -5 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Independent equation is

 $x_1 + x_2 = 0$. Therefore the solution is $x_1 = t$, $x_2 = -t$. $\therefore \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} t \\ -t \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} t$. Therefore eigen vector is $X_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Eigen vector for $\lambda = -2$, $\begin{bmatrix} A + 2I \end{bmatrix} X = 0 \Rightarrow \begin{bmatrix} 5 & -5 \\ -5 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Independent equation is

 $x_1 - x_2 = 0$. Therefore the solution is $x_1 = t$, $x_2 = t$. $\therefore \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} t \\ t \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} t$. Therefore eigen

vector is $X_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. To construct orthogonal modal matrix, divide each eigen vector by its

norm.
$$W_1 = \frac{X_1}{\|X_1\|} = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$$
 and $W_2 = \frac{X_2}{\|X_2\|} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$. Consider the transformation

$$X = PY \text{ where, } P = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}. \text{ Thus } \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}. \text{ Putting}$$

X = PY in (i), we have $Y^TDY + \begin{bmatrix} 16\sqrt{2} & 0 \end{bmatrix} PY = 32$, i.e.,

$$\begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} 8 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} + \begin{bmatrix} 16\sqrt{2} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = 32. \text{ This gives}$$

$$8y_1^2 - 2y_2^2 + 16y_1 + 16y_2 = 32 \Rightarrow 8(y_1^2 + 2y_1) - 2(y_2^2 - 8y_2) = 32$$
. Competing square $8[(y_1 + 1)^2 - 1] - 2[(y_2 - 4)^2 - 16] = 32 \Rightarrow 8(y_1 + 1)^2 - 2(y_2 - 4)^2 = 8$, i.e., $(y_1 + 1)^2 - (y_2 - 4)^2 = 1$.

Problem Session

Q.1		Find out what type of conic section (or pair of straight line) is represented		
		by the following equation. Transform it to Principal axis. Express		
		$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ in terms of new the new coordinate vector $Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$.		
		Sketch the conic with respect to old and new axes.		
	1)	$x_1^2 + 24x_1x_2 - 6x_2^2 = 5$	2)	$x_1^2 + 4\sqrt{3}x_1x_2 + 7x_2^2 = 9$
	3)	$x_1^2 + 6x_1x_2 + 9x_2^2 = 10$	4)	$-30x_1x_2 + 17x_2^2 = 128$
	5)	$53x^2 - 72xy + 32y^2 = 80.$	6)	$16x^2 - 24xy + 9y^2 - 60x - 80y + 100 = 0$