Math 221: LINEAR ALGEBRA

§Review session for test III

Le Chen¹

Emory University, 2020 Fall

(last updated on 10/29/2020)

Creative Commons License (CC BY-NC-SA)

Slides are adapted from those by Karen Seyffarth from University of Calgary.

Exercise 5.1.7 (L)

Problem

If $U = \operatorname{span}\{\vec{x}, \vec{y}, \vec{z}\}$ in \mathbb{R}^n , show that $U = \operatorname{span}\{\vec{x} + t\vec{z}, \vec{y}, \vec{z}\}$ for every $t \in \mathbb{R}$.

Exercise 5.1.8 (H)

Problem

If $U = \operatorname{span}\{\vec{x}, \vec{y}, \vec{z}\}$ in \mathbb{R}^n , show that $U = \operatorname{span}\{\vec{x} + \vec{y}, \vec{y} + \vec{z}, \vec{z} + \vec{x}\}$.

Exercise 5.1.13 (L)

Problem

If A is an m \times n matrix, show that, for each invertible m \times m matrix U, null(A) = null(UA).

ercise 5.1.14 (H)

Problem

If A is an $m\times n$ matrix, show that, for each invertible $n\times n$ matrix V, im(A)=im(AV).

Exercise 5.1.18 (P)

Problem

Suppose that \vec{x}_1 , \vec{x}_2 , \cdots , \vec{x}_k are vectors in \mathbb{R}^n . If $\vec{y} = a_1\vec{x}_1 + a_2\vec{x}_2 + \cdots + a_k\vec{x}_k$ where $a_1 \neq 0$, show that

$$\operatorname{span}\{\vec{x}_1,\vec{x}_2,\cdots,\vec{x}_k\} = \operatorname{span}\{\vec{y}_1,\vec{x}_2,\cdots,\vec{x}_k\}.$$

Exercise 5.1.23 (P)

Problem

Let P denote an invertible $n \times n$ matrix. If λ is a number, show that

$$E_{\lambda}(PAP^{-1}) = \{P\vec{x} \,|\, \vec{x} \text{ is in } E_{\lambda}(A)\}$$

for each $n \times n$ matrix A.

Exercise 5.2.5 (P)

Problem

Suppose that $\{\vec{x}, \vec{y}, \vec{z}, \vec{w}\}$ is a basis of \mathbb{R}^4 . Show that

- 1. $\{\vec{x} + a\vec{w}, \vec{y}, \vec{z}, \vec{w}\}$ is also a basis of \mathbb{R}^4 for any choice of scalar a.
- 2. $\{\vec{x} + \vec{w}, \vec{y} + \vec{w}, \vec{z} + \vec{w}, \vec{w}\}$ is also a basis of \mathbb{R}^4 .
- 3. $\{\vec{x},\vec{x}+\vec{y},\vec{x}+\vec{y}+\vec{z},\vec{x}+\vec{y}+\vec{z}+\vec{w}\}$ is also a basis of $\mathbb{R}^4.$

Exercise 5.2.8 (P)

Problem

If A is an $n \times n$ matrix, show that $\det(A) = 0$ if and only if some column of A is a linear combinations of the other columns.

Exercise 5.2.12 (L)

Problem

If $\{\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_k\}$ is independent, show that $\{\vec{x}_1, \vec{x}_1 + \vec{x}_2, \cdots, \vec{x}_1 + \vec{x}_2 + \cdots + \vec{x}_k\}$ is independent too.

Exercise 5.2.13 (H)

Problem

If $\{\vec{y}, \vec{x}_1, \vec{x}_2, \cdots, \vec{x}_k\}$ is independent, show that $\{\vec{y} + \vec{x}_1, \vec{y} + \vec{x}_2, \cdots, \vec{y} + \vec{x}_k\}$ is independent too.

Exercise 5.2.14 (P)

Problem

If $\{\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_k\}$ is independent, and if \vec{y} is not in $span\{\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_k\}$, show that $\{\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_k, \vec{y}\}$ is independent.

Exercise 5.2.15 (P)

Problem

If A and B are matrices and the columns of AB are independent, show that the columns of B are independent.

Exercise 5.2.16 (P)

Problem

Suppose that $\{\vec{x}, \vec{y}\}$ is a basis of \mathbb{R}^2 , and let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Show that A is invertible if and only if $\{a\vec{x} + b\vec{y}, c\vec{x} + d\vec{y}\}$ is a basis of \mathbb{R}^2 .

Exercise 5.2.17 (P)

Problem

Let A denote an $m \times n$ matrix.

- 1. Show that null(A) = null(UA) for every invertible $m \times m$ matrix U.
- 2. Show that $\dim(\text{null}(A)) = \dim(\text{null}(AV))$ for every invertible $n \times n$ matrix V.

Exercise 5.2.18 (P)

Problem

Let A denote an $m \times n$ matrix.

- 1. Show that im(A) = im(AV) for every invertible $n \times n$ matrix V.
- 2. Show that $\dim(\operatorname{im}(A)) = \dim(\operatorname{im}(UA))$ for every invertible $m \times m$ matrix U.

Exercise 5.3.2 (P)

Problem

In each case, show that the set of vectors is orthogonal in \mathbb{R}^4 .

- 1. $\{(1, -1, 3, 5), (4, 1, 1, -1), (-7, 28, 5, 5)\}$
- **2.** $\{(2,-1,4,5),(0,-1,1,-1),(0,3,2,-1)\}$

Exercise 5.3.9 (P)

Problem

If A is an $m \times n$ matrix with orthonormal columns, show that $A^TA = I_n$.

Exercise 5.3.12 (H)

Problem

- 1. Show that \vec{x} and \vec{y} are orthogonal in \mathbb{R}^n if and only if $||\vec{x} + \vec{y}|| = ||\vec{x} \vec{y}||$.
- 2. Show that $\vec{x}+\vec{y}$ and $\vec{x}-\vec{y}$ are orthogonal in \mathbb{R}^n if and only if $||\vec{x}||=||\vec{y}||.$

Exercise 5.3.16 (H)

Problem

If $R^n=\mathrm{span}\{\vec{x}_1,\cdots,\vec{x}_m\}$ and $\vec{x}\cdot\vec{x}_i=0$ for each i, show that $\vec{x}=\vec{0}.$

Exercise 5.3.17 (P)

Problem

If $R^n = span\{\vec{x}_1, \cdots, \vec{x}_m\}$ and $\vec{x} \cdot \vec{x}_i = \vec{y} \cdot \vec{x}_i$ for each i, show that $\vec{x} = \vec{y}$.

Exercise 5.3.18 (L)

Problem

Let $\{\vec{e}_1,\cdots,\vec{e}_n\}$ be an orthogonal basis of $\mathbb{R}^n.$ Given \vec{x} and \vec{y} in $\mathbb{R}^n,$ show that

$$\vec{x}\cdot\vec{y} = \frac{(\vec{x}\cdot\vec{e}_1)(\vec{y}\cdot\vec{e}_1)}{||\vec{e}_1||^2} + \dots + \frac{(\vec{x}\cdot\vec{e}_n)(\vec{y}\cdot\vec{e}_n)}{||\vec{e}_n||^2}.$$

Exercise 5.4.3

Problem

- 1. Can 3×4 matrix have independent columns? Independent rows? Explain.
- 2. If A is 4×3 and rank (A) = 2, can A have independent columns? Independent rows? Explain.
- 3. If A is an $m \times n$ matrix and rank (A) = m, show that $m \le n$.
- 4. Can a non-square matrix have its rows independent and its columns independent too? Explain.
- 5. Can the null space of a 3×6 matrix have dimension 2? Explain.
- 6. Suppose that A is 5×4 and null(A) = $\{c\vec{x} | c \in \mathbb{R}\}$ for some $\vec{x} \neq \vec{0}$. Can $\dim(\operatorname{im}(A)) = 2$?

Exercise 5.4.5 (H)

Problem

If A is $m \times n$ and B is $n \times m$, show that AB = 0 if and only if $col(B) \subseteq null(A)$.

Exercise 5.4.8 (L)

Problem

Let $A=\vec{cr}$ where $\vec{c}\neq\vec{0}$ is a column vector in \mathbb{R}^m and $\vec{r}\neq\vec{0}$ is a row vector in \mathbb{R}^n .

- 1. Show that $\operatorname{col}(A) = \operatorname{span}\{\vec{c}\}\ \operatorname{and}\ \operatorname{row}(A) = \operatorname{span}\{\vec{r}\}.$
- 2. Find dim(null(A))
- 3. Show that $null(A) = null(\vec{r})$

Exercise 5.4.10 (L)

Problem

Let A be an $n \times n$ matrix.

- 1. Show that $A^2 = 0$ if and only if $col(A) \subseteq null(A)$
- 2. Conclude that if $A^2=0,$ then rank $(A)\leq \frac{n}{2}$
- 3. Find a matrix A for which col(A) = null(A)

Exercise 5.4.11

Problem

Let B be an $m \times n$ matrix and let AB be $k \times n$ matrix. If rank (B) = rank (AB), show that null(B) = null(AB).

Exercise 5.4.13 (H)

Problem

Let A be an $m\times n$ matrix with columns $\vec{c}_1,\vec{c}_2,\cdots,\vec{c}_n.$ If rank (A)=n, show that $\{A^T\vec{c}_1,A^T\vec{c}_2,\cdots,A^T\vec{c}_n\}$ is a basis of $\mathbb{R}^n.$

Exercise 5.4.18 (P)

Problem

- 1. Show that if A and B have independent columns, so does AB.
- 2. Show that if A and B have independent rows, so does AB.

Exercise 5.5.3 (P)

Problem

If $A \sim B$, show that

- 1. $A^T \sim B^T$
- 2. $A^{-1} \sim B^{-1}$
- 3. $rA \sim rB$ for $r \in \mathbb{R}$
- 4. $A^n \sim B^n$ for $n \ge 1$

Exercise 5.5.7 (P)

Problem

Let λ be an eigenvalue of A with corresponding eigenvector \vec{x} . If $B = P^{-1}AP$ is similar to A, show that $P^{-1}\vec{x}$ is an eigenvector of B corresponding to λ .

Exercise 5.5.10 (P)

Problem

Let A be a diagonalizable $n \times n$ matrix with eigenvalues $\lambda_1, \dots, \lambda_n$ (including multiplicity). Show that:

$$\det(A) = \lambda_1 \lambda_2 \cdots \lambda_n \quad \text{and} \quad \operatorname{tr}(A) = \lambda_1 + \lambda_2 + \cdots + \lambda_n.$$

Exercise 5.5.12 (P)

Problem

Let P be an invertible $n \times n$ matrix. If A is any $n \times n$ matrix, write $T_P(A) = P^{-1}AP$. Verify that

- 1. $T_{P}(I) = I$
- $2. \ T_P(AB) = T_P(A)T_P(B)$
- 3. $T_P(A + B) = T_P(A) + T_P(B)$
- 4. $T_P(rA) = rT_P(A)$
- 5. $T_P(A^k) = [T_P(A)]^k$
- 6. If A is invertible, $T_P(A^{-1}) = [T_P(A)]^{-1}$
- 7. If Q is invertible, $T_Q(T_P(A)) = T_{PQ}(A)$

Exercise
$$5.5.17$$
 (P)

Problem

$$\mathrm{Let}\; A = \begin{bmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{bmatrix} \; \mathrm{and}\; B = \begin{bmatrix} c & a & b \\ a & b & c \\ b & c & a \end{bmatrix}.$$

- 1. Show that $x^3 (a^2 + b^2 + c^2)x 2abc$ has real roots by considering A
- 2. Show that $a^2 + b^2 + c^2 \ge ab + ac + bc$ by considering B

Exercise 5.5.18 (P)

Problem

Assume the 2×2 matrix A is similar to an upper triangular matrix. If $tr(A) = 0 = tr(A^2)$, show that $A^2 = O_{2\times 2}$, where $O_{2\times 2}$ is a 2×2 zero matrix.

Bank 5.44

Problem

Find a basis for the solution space of $A\vec{x} = 0$ if

$$A = \begin{bmatrix} 1 & -2 & 3 & 4 \\ 3 & -5 & 7 & 8 \end{bmatrix}$$