MATH 299Q: Homework 5 Solutions Quiver Representations

Let k be an algebraically closed field.

1. We use a regular n + 3-gon to construct the AR-quiver for \mathbb{A}_n type quivers. Hence, the number of indecomposable representations of Q is equal to the number of all diagonals in an n + 3-gon minus the n diagonals we use to construct the associate triangulation.

For any vertex a of a polygon the diagonals starting at a can end anywhere besides itself or its two neighbors. So there are n diagonals starting at each vertex, n+3 vertices, and we count each diagonal twice so there are n(n+3)/2 diagonals total. Subtracting our n diagonals then yields;

$$|\Gamma_{Q_0}| = \frac{n(n+3)}{2} - n = \frac{n^2 + 3n - 2n}{2} = \frac{n^2 + n}{2} = \frac{n(n+1)}{2}.$$

You can verify this works by examining the solutions of Homework 3.

2. Proof. Suppose that $M = (M_i, \varphi_\alpha)$ and $M' = (M'_i, \varphi'_\alpha)$ are in the same orbit, then there exists some $g \in G_{\mathbf{d}}$ such that $g \cdot M = M'$. That is, for each arrow $i \xrightarrow{\alpha} j$ in Q the following diagram commutes:

$$M_{i} \xrightarrow{\varphi_{\alpha}} M_{j}$$

$$\downarrow^{g_{i}} \qquad \qquad \downarrow^{g_{j}}$$

$$M'_{i} \xrightarrow{\varphi'_{\alpha}} M'_{j}$$

Therefore, g is a morphism of representations, moreover since each g_i is an element of $GL_{d_i}(k)$ we have that it is invertible and thus an isomorphism. That is, $M \cong M'$.

It follows immediately that if $M \cong M'$ then there is a $g \in G_{\mathbf{d}}$ such that $g \cdot M = g(M) = M'$.