Assignment 3.5

Due Date: None

1. Let $X \subset \mathbb{R}^d$. Answer the following questions.

- (1) For $x \in X$ and r > 0, verify that $N_X(x, r) = N(x, r) \cap X$.
- (2) Prove that \emptyset and X are both open and closed in X.
- (3) Suppose that $\{U_i : i \in \mathcal{I}\}$ is a family of open sets in X. Prove that $\bigcup_{i \in \mathcal{I}} U_i$ is an open set in X.
- (4) Suppose that U_1, \ldots, U_n are open sets in X. Prove that $\bigcap_{i=1}^n U_i$ is an open set in X.
- (5) Suppose that $\{F_i : i \in \mathcal{I}\}$ is a family of closed sets in X. Prove that $\bigcap_{i \in \mathcal{I}} F_i$ is a closed set in X.
- (6) Suppose that F_1, \ldots, F_n are closed sets in X. Prove that $\bigcup_{i=1}^n F_i$ is a closed set in X.
- **2.** Let $X \subset \mathbb{R}^d$, and let $\{U_i : i \in \mathcal{I}\}$ be a family of open sets in X. Suppose that $\{U_i : i \in \mathcal{I}\}$ is a cover of X. If X is a compact set, prove that $\{U_i : i \in \mathcal{I}\}$ has a finite subcover of X. (In this sense, we can also say that $\{U_i : i \in \mathcal{I}\}$ is an *open cover of* X)
- **3.** Let $f: X \to Y$ where X and Y are subsets of Euclidean spaces. Suppose that $\{A_i: i \in \mathcal{I}\}$ and $\{B_i: i \in \mathcal{I}\}$ are family of subsets of X and Y, respectively. Then, prove the following properties.

$$f(\cup_{i\in\mathcal{I}}A_i) = \bigcup_{i\in\mathcal{I}}f(A_i)$$
$$f(\cap_{i\in\mathcal{I}}A_i) \subset \bigcap_{i\in\mathcal{I}}f(A_i)$$
$$f^{-1}(\cup_{i\in\mathcal{I}}B_i) = \bigcup_{i\in\mathcal{I}}f^{-1}(B_i)$$
$$f^{-1}(\cap_{i\in\mathcal{I}}B_i) = \bigcap_{i\in\mathcal{I}}f^{-1}(B_i)$$