

<복제물에 대한 경고>

본 저작물은 **저작권법제25조수업목적 저작물이용 보상금제**도에 의거. **한국복제전송저작권협회와약정을체결하고** 적법하게 이용하고 있습니다. 약정범위를 초과하는 사용은 저작권법에 저촉될 수 있으므로

저작물의재복제 및수업목적외의사용을 금지합니다.

2020, 03, 30,

건국대학교(서울)·한국복제전송저작권협회

<전송에 대한 경고>

본사이트에서 수업 자료로 이용되는 저작물은 저작권법제25조 수업목적저작물이용 보상금제도에 의거.

한국복제전송저작권협회와 약정을 체결하고 적법하게 이용하고 있습니다.

약정범위를 초과하는 사용은 저작권법에 저촉될 수 있으므로

수업자료의 대중 공개 공유 및 수업 목적 외의 사용을 금지합니다.

2020, 03, 30,

건국대학교(서울)·한국복제전송저작권협회

Artificial Neural Network

ANN (Artificial Neural Networks)

• 수학적 논리학이 아닌 <u>인간의 두뇌</u>를 모방하여 수많은 간단한 처리기들(뉴런)의 네트워크를 통해 문제를 해결하는 기계학습 모델

ANN (Artificial Neural Networks)

수학적 논리학이 아닌 인간의 두뇌를 모방하여 수많은 간단한 처리기들(뉴런)의 네트워크를 통해 문제를 해결하는 기계학습 모델

Brief ANN History

- Frank Rosenblatt, 1957
 - Single-layer perceptron
- Minsky & Papert 1969
 - ANN is a linear function (1st winter season)
- Rumelhart, Hinton & Williams, 1986
 - Back propagation algorithm for Multi-layer perceptron
 - Vanishing gradient problem! (2nd winter season)
- Geoffrey Hinton, 2009 → Yoshua Bengio, Andrew Ng, Ian Goodfellow
 - New activation function, ReLU, for deep neural networks
 - Drop-out for increasing robustness

REMIND

Linear Hypothesis

Matrix Representation

$$[w1 \quad w2 \quad w3] \times \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} = [w1 \times x1 + w2 \times x2 + w3 \times x3]$$

$$H(X) = WX + b$$
With b vector
$$[b \quad w1 \quad w2 \quad w3] \times \begin{bmatrix} 1 \\ x1 \\ x2 \\ x3 \end{bmatrix} = [b \times 1 + w1 \times x1 + w2 \times x2 + w3 \times x3]$$

$$H(X) = WX$$
Without b vector
$$H(X) = WX$$
Transpose representation

REMIND

Cost Function

$$\frac{(H(x^{(1)}) - y^{(1)})^2 + (H(x^{(2)}) - y^{(2)})^2 + (H(x^{(3)}) - y^{(3)})^2}{3} \\ > \frac{2}{1} \\ cost = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2 \\ \times \frac{1}{2} \\ \times \frac{1}{$$

Our goal? $\underset{W,b}{\operatorname{minimize}} \cos t(W,b)$

Cost function을 최소로 하는hypothesis가 무엇일까?

Formal Definition of Gradient Decent

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^{2} \qquad cost(W) = \frac{1}{2m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^{2}$$

$$W := W - \alpha \frac{\partial}{\partial W} \frac{1}{2m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

$$W := W - \alpha \frac{1}{2m} \sum_{i=1}^{m} 2(Wx^{(i)} - y^{(i)})x^{(i)} \qquad \qquad W := W - \alpha \frac{\partial}{\partial W} cost(W)$$

$$W := W - \alpha \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})x^{(i)}$$

Edited by Harksoo Kim

REMIND

Logistic Hypothesis

$$H(x)=Wx+b$$
 $\gcd(z)=rac{1}{\left(1+e^{-z}
ight)}$ 이라 1 사이 값으로 변환
$$\sum_{net=\sum\limits_{i=0}^{n}w_ix_i}^{x_0=1}\sum_{net=\sum\limits_{i=0}^{n}w_ix_i}^{x_0=1}$$
 Architecture of ANN

Cost Function

$$Cost(W) = \frac{1}{m} \sum c(H(x), y)$$

$$c(H(x), y) = \begin{cases} -\log(H(x)) &: y = 1\\ -\log(1 - H(x)) &: y = 0 \end{cases}$$

$$c(H(x), y) = -y\log(H(x)) - (1 - y)\log(1 - H(x))$$

Minimize Cost → Gradient decent algorithm

$$Cost(w) = -\frac{1}{m} \sum ylog(H(x)) + (1 - y)log(1 - H(x))$$
$$W := W - \alpha \frac{\partial}{\partial W} cost(W)$$

퍼셉트론 (Perceptron)

• 구조

• 결정 공간 (decision surface)

Multinomial Classification

x1 (hours)	x2 (attendance)	y (grade)	X_2
10	5	Α	B or not
9	5	Α	A A A or not
3	2	В	В
2	4	В	В
11	1	С	C
A or not		A or not	$X \rightarrow \overline{V} \rightarrow \overline{\overline{Y}}$
		B or not	$X \to W \mapsto \int \to \overline{Y}$
		C or not	$X \rightarrow \overline{V} \rightarrow \overline{\overline{Y}}$

Edited by Harksoo Kim

Multinomial Classification

New Cost Function for Multinomial Classification

Cross Entropy

$$S(y) = \overline{Y}$$

$$\begin{bmatrix} 0.7 \\ 0.2 \\ 0.1 \end{bmatrix}$$

$$D(S, L) = -\sum_{i} L_{i} log(S_{i})$$

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \overline{Y} \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \odot -\log \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \odot \begin{bmatrix} \infty \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \odot -\log \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \odot \begin{bmatrix} 0 \\ \infty \end{bmatrix} = \begin{bmatrix} 0 \\ \infty \end{bmatrix} = \infty$$

SoftMax

$$\begin{bmatrix} w_{A1} & w_{A2} & w_{A3} \\ w_{B1} & w_{B2} & w_{B3} \\ w_{C1} & w_{C2} & w_{C3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \longrightarrow \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$
 Sigmoid 함수에 의해서 각 각 0~1 사이 값이 출력됨
$$S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}$$
 One-hot representation
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 argmax
$$\begin{bmatrix} S(y_1) \\ S(y_2) \\ S(y_3) \end{bmatrix} = \begin{bmatrix} 0.7 \\ 0.2 \\ 0.1 \end{bmatrix}$$
 Probabilities (Distributed representation)

Non-linear Problems

• 비선형 분리 문제

- 비선형 분리 문제 > 선형 분리 문제
 - SVM 커널 함수(kernel function)
 - Single-layer perceptron → Multi-layer perceptron

XOR in Multi-layer Perceptron

질의응답

Homepage: http://nlp.konkuk.ac.kr E-mail: nlpdrkim@konkuk.ac.kr

