

1

3

Using Logic for Knowledge Bases

- ▶ A logic is a formal language:
 - ▶ Represents facts that we know about the world: each such fact is a sentence in our logical language
 - Allows us to generate new facts based on what we already know by performing inference
- ▶ A logic has two basic components:
 - ▶ Syntax: defines what counts as a sentence of the language
 - ▶ Semantics: defines what makes a sentence true or false

Artificial Intelligence (CS 131) 3

ntelligence (CS 131) 3

Image source: Russell & **Knowledge-Based Agents** We can build AI agents that act in the world based upon incoming data, supplemented by their knowledge of the world Actions are function KB-AGENT(percept) returns an action persistent: KB, a knowledge base chosen based t, a counter, initially 0, indicating time upon *KB*, a knowledge-Tell(KB, Make-Percept-Sentence(percept, t))base $action \leftarrow Ask(KB, Make-Action-Query(t))$ Tell(KB, Make-Action-Sentence(action, t)) $t \leftarrow t + 1$ return action Incoming data (percepts) and chosen actions are also recorded to that knowledge-base Artificial Intelligence (CS 131)

2

Inference & Logical Entailment

- An inference rule tells an agent how to draw conclusions based upon what they already know
- ▶ Valid rules encode a semantic relationship between what we infer and and what is already in our knowledge base
- We say that a sentence α follows from our knowledge base, KB, or that KB entails α :

 $KB \models \alpha \Leftrightarrow \alpha$ is true in every situation in which KB is true

▶ For example:

 $\{\text{Breeze at } [2,1]\} \models (\text{Pit at } [3,1]) \text{ OR } (\text{Pit at } [2,2])$

Artificial Intelligence (CS 131)

B: Breeze

▶ The agent starts at bottom left, sensing nothing adjacent to it:

[None, None, None, None, None]

On moving right, the agent senses a breeze:

[None, Breeze, None, None, None]

▶ Based on this sequence of percepts, there exist a total of 8 possible models representing the presence or absence of pits in each of the 3 adjacent squares

Artificial Intelligence (CS 131)

Semantic Models

- A formal semantics defines truth and entailment in terms of a logical model
- Circumstances under which a sentence is true or false
- Model m is a model of sentence α if α is true in m
- $M(\alpha)$ = set of all models of α
- \blacktriangleright KB entails α whenever all models of KB are also models of α

 $KB \models \alpha \Leftrightarrow M(KB) \subseteq M(\alpha)$

Artificial Intelligence (CS 131)

10

13

Models for the Wumpus World $\alpha_1=\text{``[1,2] is safe''} \text{ is entailed by our knowledge base, due to the containment relationship between the models}$ $M(KB)\subseteq M(\alpha_1)$ Artificial Intelligence (CS 131) 14

14

Syntax of Propositional Logic (PL)

- ▶ A basic formal language for representing simple statements of fact (propositions)
- A set of logical connectives and a simple recursive syntax (grammar) for their combination into sentences
- Basic proposition symbols, $P_1, P_2, ...,$ are sentences
- If S is a sentence, $\neg S$ is a sentence (negation)
- If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)
- If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction)
- If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
- If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Artificial Intelligence (CS 131) 16

Semantics of Propositional Logic (PL)

- A PL model m is an assignment of true/false values to whatever basic propositional symbols exist
 - P_1 = True, P_2 = False, P_3 = True, etc.
 - \blacktriangleright For *n* propositional symbols, 2^n such models are possible
- ▶ Given an assignment to basic symbols, all more complex sentences are true/false according to semantic rules:
- $\neg S$ is true iff (if and only if) S is false
- $S_1 \wedge S_2$ is true iff S_1 is true and S_2 is true
- $S_1 \vee S_2$ is true iff S_1 is true or S_2 is true
- $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true
- $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true

Artificial Intelligence (CS 131)

17

Logic in the Wumpus World

B: Breeze

- We can use PL to express the situation of the agent:
- Let $P_{i,i}$ be true if there is a pit in location [i, j]
- Let $B_{i,i}$ be true if there is a breeze in location [i, j]
- · The relevant KB is:

 $\{\neg P_{1,1}, \neg P_{2,1}, \neg B_{1,1}, B_{2,1}\}$

▶ PL can also express Wumpus World rules like "Pits cause breezes in adjacent squares":

 $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$

 $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$

Artificial Intelligence (CS 131) 19

Truth Tables for PL Semantics

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
Т	Т	F	Т	Т	Т	Т
T	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	Т	F	F	Т	Т

- The basic semantic rules of PL correspond to a simple set of truth tables, each of which gives the result of applying one connective to one or more propositional symbols
- Each connective is defined by its truth function: takes one or more truth values as input and outputs another truth value

Artificial Intelligence (CS 131) 18

18

Truth-Functional Analysis (01)

▶ Based on the basic truth tables, we can assign a semantic value to any complex PL sentence, recursively

 $P \quad Q \qquad \neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$

Artificial Intelligence (CS 131)

19

Truth-Functional Analysis (02)

▶ Based on the basic truth tables, we can assign a semantic value to any complex PL sentence, recursively

$$P \quad Q \qquad \neg (P \vee Q) \Leftrightarrow (\neg P \wedge \neg Q)$$

FF

Artificial Intelligence (CS 131)

21

Truth-Functional Analysis (04)

▶ Based on the basic truth tables, we can assign a semantic value to any complex PL sentence, recursively

$$\begin{array}{ccc} P & Q & \neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q) \\ T & T & F & F \end{array}$$

T F F

Artificial Intelligence (CS 131)

Truth-Functional Analysis (03)

▶ Based on the basic truth tables, we can assign a semantic value to any complex PL sentence, recursively

P $\neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$

F

Artificial Intelligence (CS 131)

22

Truth-Functional Analysis (05)

▶ Based on the basic truth tables, we can assign a semantic value to any complex PL sentence, recursively

 $P \quad Q \qquad \neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$

F T F F

F F T

T

F

T F F

T T T

Artificial Intelligence (CS 131)

23

▶ Based on the basic truth tables, we can assign a semantic value to any complex PL sentence, recursively

Artificial Intelligence (CS 131)

Artificial Intelligence (CS 131)

25

Valid and Satisfiable Sentences

▶ Key relationships to remember:

Valid and Satisfiable Sentences

- An expression like this is valid: true in any possible model that assigns truth values to propositional symbols
- In addition, a sentence like this is satisfiable, i.e. there exists some model that makes it true

Artificial Intelligence (CS 131) 26