

Advanced Compact MOSFET Model 2: Bridging design and simulation

03/07/2025

Deni Germano Alves Neto

denialves77@gmail.com

https://github.com/ACMmodel/MOSFET_model

About me

- Universidade Federal de Santa Catarina UFSC Brazil
- Undergrad and Masters in IC design 2022
 - Subject : Ultra-Low-Voltage IC circuits $V_{DD} < 100 \ mV$
 - Dissertation: Ultra-Low-Voltage Standard Cell Library
 - ACM for low voltage circuits
- Contact with open-source IC design :
 - Chipathon SSCS 2021 : Analog-front-end for Biosignals AFEbio
 - Chipathon-SSCS & UNIC-CASS 2023/2024 Analog/Digital IC design
- Start PhD in 2023 : MOSFET Modeling ACM2
- Joint PhD between UFSC and
- UGA Grenoble INP
 - TIMA (Currently based)
 - RFIC design

Outline

- Compact models
- ACM2 model
- Parameter Extraction
- DC characteristics
- Circuit examples

Why the need for a design-oriented MOSFET model?

- Compact Model is the medium of information exchange between foundry and designer.
- Provides detailed information about device operation & characteristics.
- **Simple** enough to be incorporated in circuit simulators.
- Accurate enough to predict behavior of circuits.

Oversimplified models

- Poor accuracy, only in one region
- 2/3 DC parameters

- High accuracy in all regions
- tens of DC parameters

Why the need for a design-oriented MOSFET model?

- Compact Model is the medium of information exchange between foundry and designer.
- Provides detailed information about device operation & characteristics.
- **Simple** enough to be incorporated in circuit simulators.
- Accurate enough to predict behavior of circuits.
- Bridge the gap between design and simulation!

IC designers bridge

Problems in current PDK models

BSIM4 issues in sky130

PSP103 issues in IHP open PDK

Subthreshold region

Modeling problem in weak inversion: no DIBL effect

Open-Source IC design

Open-source PDK

Open-source EDA tools

Few open-source IP & libraries

Available compact MOSFET models

We propose:

ACM2 : A Simple 5-DC-parameter MOSFET model

ACM2: A simple 5-DC-parameter MOSFET model

Complete Continuous All-region charge-based MOSFET model

$$V_P = \frac{V_{GB} - V_{T0} + \sigma(V_{DB} + V_{SB})}{n}$$

$$\frac{V_P - V_{SB}}{\phi_t} = q_S - 1 + \ln(q_S)$$

• Used to calculate
$$q_s$$

Bridge between WI and SI regions

$$q_{dsat} = q_s + 1 + \frac{1}{\zeta} - \sqrt{\left(1 + \frac{1}{\zeta}\right)^2 + \frac{2q_s}{\zeta}}$$

$$\frac{V_{DS}}{\phi_t} = q_s - q_d + \ln\left(\frac{q_s - q_{dsat}}{q_d - q_{dsat}}\right)$$

• Used to calculate
$$q_d$$

 Bridge between Triode and Saturation regions

$$I_D = I_S \frac{(q_s + q_d + 2)}{1 + \zeta(q_s - q_d)} (q_s - q_d)$$

Specific current I_S (W,L)

Threshold voltage V_{T0} (W,L)

Slope factor n (W,L)

DIBL factor σ (W,L)

V_{sat} effect ζ (W,L)

Oversimplified model vs ACM model @ Saturation

Unified Charge Control Model

$$I_D = \frac{\beta}{2} (V_{GS} - V_T)^2$$

$$\frac{g_m}{I_D} = \frac{1}{V_{GS} - V_T}$$

$$V_P = \frac{V_{GB} - V_{T0}}{n}$$

$$V_P = \frac{V_{GB} - V_{T0}}{n} \qquad \frac{V_P - V_{SB}}{\phi_t} = q_S - 1 + \ln q_S$$

$$I_D = I_S(q_S^2 + 2q_S)$$

$$I_D = I_S(q_S^2 + 2q_S)$$
 $\frac{g_m}{I_D} = \frac{2}{n\phi_t(1 + q_S)}$

Output characteristics including DIBL and v_{sat}

DIBL model:
$$V_T = V_{T0} - \sigma(V_{SB} + V_{DB})$$

$$I_D = I_S \frac{(q_s + q_d + 2)}{1 + \zeta(q_s - q_d)} (q_s - q_d)$$

Transistor	W/L [μm]	V_{T0} $[mV]$	$I_S[\mu A]$	n	σ	ζ
NMOS	5/0.18	528	5.52	1.37	0.025	0.056

$$\zeta = \frac{(\mu_s \phi_t / L)}{v_{sat}}$$

Outline

- Compact models
- ACM2 model
- Parameter Extraction
- DC characteristics
- Circuit examples

I_{S} , V_{TO} and n extraction

The g_m/I_D method

For $q_S = 1$, $V_{GB} = V_{T0}$ and g_m/I_D is at $\frac{1}{2}$ of its maximum value

$$\frac{V_{GB} - V_{T0}}{n} = q_s - 1 + \ln q_s$$

$$\left. \frac{g_m}{I_D} \right|_{V_{DS} \to 0} = \frac{1}{n\phi_t (1 + q_S)}$$

Extraction of σ

Common-Source Intrinsic-Gain method

$$A_{V,CS} = -\frac{g_{msat}}{g_{dssat}} = -\frac{1}{\sigma}$$

ζ extraction

$$\zeta = \frac{2(\boldsymbol{q_s} + 1 - \sqrt{1 + \boldsymbol{i_{dsat}}})}{\boldsymbol{i_{dsat}}}$$

- q_s calculated from $UCCM(V_{T0}, n, \sigma)$.
- Measure $i_{dsat} = I_{Dsat}/I_{S}$.

Automatic parameter extraction – IHP @ Xschem

Also, available for GF180 and SKY130

Outline

- Compact models
- ACM2 model
- Parameter Extraction
- DC characteristics
- Circuit examples

ACM2: A simple 5-DC-parameter MOSFET model

ACM2¹ vs meas - 130 nm SiGe IHP²

Characteristics of a LVT NMOS bulk transistor with W /L = 10μ m/ 120 nm.

¹ACM2: implemented in verilog-A, compiled by OPENVAF, simulated in Ngspice

² Institut for High-Performance Microelectronics (IHP) open-source PDK

ACM2¹ vs meas - 130 nm SiGe IHP²

$$V_S = V_B = 0$$

$I_D vs V_{DS}$

Characteristics of a LVT NMOS bulk transistor with W /L = 10μ m/ 120 nm.

	PSP103	BSIM4	EKV2.6	ACM2
OpenVAF	3.48s	6.7s	0.22s	0.15s

¹ACM2: implemented in verilog-A, compiled by OPENVAF, simulated in Ngspice

² Institut for High-Performance Microelectronics (IHP) open-source PDK

Outline

- Compact models
- ACM2 model
- Parameter Extraction
- DC characteristics
- Circuit examples

CMOS Inverter in 130 nm bulk VTC and short-circuit current

CMOS Inverter in 130 nm bulk Output Voltage and pull-down current

CMOS Inverter

VTC and short-circuit current in 28 nm FD-SOI

$$W_n = W_p = 1 \mu m$$

 $L_n = L_p = 60 nm$

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

VIN

23

11-Stages Ring Oscillator 180 nm bulk **Output Voltage**

Self-biased current source in 180 nm bulk

Common-source Amplifier in 180 nm bulk

Use the model to explore the design space: R-feedback LNA case

Summary – The ACM2 model

- A truly compact MOSFET model with single-piece functions
- Implemented in Verilog-A for simulation
- Interchangeable between simulators (SPICE or SPECTRE)
- Verify in all three open-source PDKs (Sky130, GF180, IHP-SG13G2)
- Helpful to designers (only 5-DC-parameters)
- Simplified parameter extraction procedure
 - extracted from simulations or chip measurements

Acknowledgments

This project has received funding from the European Union's Horizon Europe research and innovation programme under the HORIZON-KDT-JU-2023-1-IA grant agreement No 101139785

efabless

References

- D. Germano Alves Neto et al., "Design-Oriented Single-Piece 5-DC-Parameter MOSFET Model," in IEEE Access, vol. 12, pp. 87420-87437, 2024.
- Adornes, C.M.; Alves Neto, D.G.; Schneider, M.C.; Galup-Montoro, C. Bridging the Gap between Design and Simulation of Low-Voltage CMOS Circuits. J. Low Power Electron. Appl. 2022, 12, 34.
- ACM2 Github: https://github.com/ACMmodel/MOSFET_model
- IHP Github : https://github.com/IHP-GmbH/IHP-Open-PDK

"Scan me"

- Available in Github:
 - DC model
 - Small-signal model
 - Dynamic model
 - Thermal &

Flicker noise models (1/f)

Github - ACM2

Github - Content

Examples of PDKs and circuit simulators using the ACM model

Verilog-A code Available!

```
MOSFET_model / Verilog-A / NMOS_ACM_2V0.va 📮
  ACMmodel Update NMOS ACM 2V0.va
  Code
        Blame 291 lines (245 loc) · 12.3 KB
          // * ACM NMOS model (Verilog-A)
          // * 07/2023 V2.0.0
          // * Copyright under the ECL-2.0 license
          // * Universidade Federal de Santa Catarina
          // * Current developers: Deni Germano Alves Neto (Doctoral student, UFSC)
                            Cristina Missel Adornes (Doctoral student, UFSC)
          // *
                             Gabriel Maranhao
                                              (Doctoral student, UFSC)
          // * Project Supervisors: Prof. Carlos Galup-Montoro
                             Prof. Marcio Cherem Schneider
          `include "constants.vams"
          `include "disciplines.vams"
          // function of the algorithm 443 to calculate de normalize charge densities
          `define algo_443(Z,qn) \
               if(Z < 0.7385) begin \
                     numeratorD = Z + (4.0/3.0)*Z*Z; \
                     denominatorD = 1.0 + (7.0/3.0)*Z+(5.0/6.0)*Z*Z;
                     WnD = numeratorD/denominatorD; \
                     else begin \
                     numeratorD = ln(Z)*ln(Z)+2.0*ln(Z)-3.0; \
                     denominatorD = 7.0*ln(Z)*ln(Z) + 58.0*ln(Z) +127.0;
                     WnD = ln(Z) - 24.0*(numeratorD/denominatorD); \
```