

Hands-On

Hands-On ini digunakan pada kegiatan Microcredential Associate Data Scientist 2021

Pertemuan 5

Pertemuan 5 (lima) pada Microcredential Associate Data Scientist 2021 menyampaikan materi mengenai Mengumpulkan Data, Menelaah Data dengan metode Statistik

Pengambilan Data dari API Kaggle

Salah satu portal yang menyediakan dataset untuk project Data Science adalah Kaggle (https://www.kaggle.com/ (<a href=

1. Install Modul kaggle:

```
!pip install kaggle
Collecting kaggle
  Downloading kaggle-1.5.12.tar.gz (58 kB)
Requirement already satisfied: six>=1.10 in c:\users\expertbook\anaconda3\lib\s
ite-packages (from kaggle) (1.15.0)
Requirement already satisfied: certifi in c:\users\expertbook\anaconda3\lib\sit
e-packages (from kaggle) (2020.12.5)
Requirement already satisfied: python-dateutil in c:\users\expertbook\anaconda3
\lib\site-packages (from kaggle) (2.8.1)
Requirement already satisfied: requests in c:\users\expertbook\anaconda3\lib\si
te-packages (from kaggle) (2.25.1)
Requirement already satisfied: tqdm in c:\users\expertbook\anaconda3\lib\site-p
ackages (from kaggle) (4.59.0)
Collecting python-slugify
  Downloading python_slugify-5.0.2-py2.py3-none-any.whl (6.7 kB)
Requirement already satisfied: urllib3 in c:\users\expertbook\anaconda3\lib\sit
e-packages (from kaggle) (1.26.4)
Collecting text-unidecode>=1.3
  Downloading text unidecode-1.3-py2.py3-none-any.whl (78 kB)
Requirement already satisfied: chardet<5,>=3.0.2 in c:\users\expertbook\anacond
a3\lib\site-packages (from requests->kaggle) (4.0.0)
Requirement already satisfied: idna<3,>=2.5 in c:\users\expertbook\anaconda3\li
b\site-packages (from requests->kaggle) (2.10)
Building wheels for collected packages: kaggle
  Building wheel for kaggle (setup.py): started
  Building wheel for kaggle (setup.py): finished with status 'done'
  Created wheel for kaggle: filename=kaggle-1.5.12-py3-none-any.whl size=73053
sha256=6b48273c10d518bc6948aad881820bc7bc319bcb440e60521482044108195e22
  Stored in directory: c:\users\expertbook\appdata\local\pip\cache\wheels\29\da
\11\144cc25aebdaeb4931b231e25fd34b394e6a5725cbb2f50106
Successfully built kaggle
Installing collected packages: text-unidecode, python-slugify, kaggle
Successfully installed kaggle-1.5.12 python-slugify-5.0.2 text-unidecode-1.3
```

In [2]: # Install modul kaggle secara eksternal melalui anaconda prompt:

In [1]: # Install modul kaggle secara inline (di dalam notebook)

```
Administrator Anaconda Prompt (Anaconda3)

(base) C:\WINDOWS\system32 pip install kaggle

Oslecting kaggle

Using cached kaggle-1.5.12-py3-none-any.whl

Requirement already satisfied: six>=1.10 in c:\programdata\anaconda3\lib\site-packages (from kaggle) (1.15.0)

Requirement already satisfied: requests in c:\programdata\anaconda3\lib\site-packages (from kaggle) (2.25.1)

Requirement already satisfied: tqdm in c:\programdata\anaconda3\lib\site-packages (from kaggle) (4.59.0)

Requirement already satisfied: python-dateutil in c:\programdata\anaconda3\lib\site-packages (from kaggle) (5.0.2)

Requirement already satisfied: python-slugify in c:\programdata\anaconda3\lib\site-packages (from kaggle) (5.0.2)

Requirement already satisfied: certifi in c:\programdata\anaconda3\lib\site-packages (from kaggle) (2020.12.5)

Requirement already satisfied: urllib3 in c:\programdata\anaconda3\lib\site-packages (from kaggle) (1.26.4)

Requirement already satisfied: text-unidecode>=1.3 in c:\programdata\anaconda3\lib\site-packages (from python-slugify->k aggle) (1.3)

Requirement already satisfied: idna<3,>=2.5 in c:\programdata\anaconda3\lib\site-packages (from requests->kaggle) (2.10)

Requirement already satisfied: chardet<5,>=3.0.2 in c:\programdata\anaconda3\lib\site-packages (from requests->kaggle) (2.10)

Requirement already satisfied: chardet<5,>=3.0.2 in c:\programdata\anaconda3\lib\site-packages (from requests->kaggle) (2.10)

Requirement already satisfied: chardet<5,>=3.0.2 in c:\programdata\anaconda3\lib\site-packages (from requests->kaggle) (2.10)

Requirement already satisfied: chardet<5,>=3.0.2 in c:\programdata\anaconda3\lib\site-packages (from requests->kaggle) (2.10)

Requirement already satisfied: chardet<5,>=3.0.2 in c:\programdata\anaconda3\lib\site-packages (from requests->kaggle) (2.10)
```

2. Create Token API kaggle:

- 1. Login Kaggle.com
- 2. Kemudian pada menu Profile --> Account
- 3. Klik Create New Api Token
- 4. Maka akan terdownload file kaggle.json

Kaggle API secara default mengasumsikan bahwa file kaggle.json tersebut berada di dalam folder:

- ~/.kaggle/ (Linux/Mac)
- C:\Users<Windows-username>.kaggle\ (Windows)

Jika folder tersebut belum ada:

- Buat folder di direktori C:\Users<Windows-username>.kaggle\
- letakkan file kaggle.json kedalam folder tersebut

3. Download Dataset dari Kaggle:

```
usage: kaggle datasets [-h]
                      {list, files, download, create, version, init, metadata, status} ...
optional arguments:
  -h, --help
                      show this help message and exit
commands:
  {list,files,download,create,version,init,metadata, status}
   list
               List available datasets
   files
                      List dataset files
   download
                     Download dataset files
   create
                      Create a new dataset
   version
                      Create a new dataset version
   init
                      Initialize metadata file for dataset creation
   metadata
                      Download metadata about a dataset
   status
                      Get the creation status for a dataset
```

In [1]: # Mencari dataset yang tersedia di kaggle --> pilih data provider dari UCIML
!kaggle datasets list -s Iris

ref				title
	lastUpdated			
uciml	/iris			Iris Species
4KB	2016-09-27 07:38:05	224131	2664	0.7941176
arshi	d/iris-flower-dataset			Iris Flower Dataset
1010B	2018-03-22 15:18:06	40348	369	9 0.8235294
vikri	shnan/iris-dataset			Iris Dataset
	2017-08-03 16:00:44	2892	26	0.7647059
	hk/ireland-historical			Irish Times - Waxy-Wany
News	52	MB 2021-09-25	10:52:48	2977 157 1.
0				
	yin/iris-datasets			Iris datasets
	2017-03-10 09:35:43	1757	14	0.7352941
	an/iris-dataset-json-			Iris Dataset (JSON Vers
ion)		1KB 2018-04-06	5 20:21:31	5615 43
0.75		1		-t- D-] Ah:] /At
		14go-antarctica 1KB 2020-06-09		ata Palmer Archipelago (Ant 9895 114
0.970	, , ,	1KB 2020-00-05	9 10:14:54	9895 114
	oooz rot/irish-weather-hou	nlv_data		Irish Weather (hourly d
ata)		7MB 2020-06-29	20.15.18	1854 40
0.823	_	711D 2020-00-23	20.13.10	1854 40
	bh00007/iriscsv			Iris.csv
	2017-11-09 07:34:35	17030	57	
	end/birds-songs-numer		J.	Birds' Songs Numeric Da
taset			L 09:09:46	704 25
0.941	1765			
kamra	nkausar/iris-data			iris_data
1KB	2017-11-30 10:26:01	1102	13	0.64705884
jeffh	eaton/iris-computer-v	ision		Iris Computer Vision
5MB	2020-11-24 21:23:29	303	9	0.875
styve	n/iris-dataset			Iris dataset
1 KB	2017-11-04 14:10:12	787	8	0.29411766
	nali4343/iris-species			Iris Species
	2020-07-02 06:09:09	49	13	0.5625
_	elitskaya/flower-colo	•		Flower Color Images
50MB	2020-10-01 22:48:07	8344	161	
	enmohammad/mmu-iris-d			MMU iris dataset
30MB	2020-07-25 18:38:33	639	19	
_	avaidya/iris-dataset	22	_	Iris Dataset
	2021-07-25 17:37:14	33	6	0.4117647
	anuss/iris-flower-dat		2	IRIS flower dataset
	2020-01-18 19:43:18	191	3	0.9411765
	hs0ni/iris-dataset	F0.4	7	Iris_dataset
	2018-08-05 14:26:19	584	7	0.64705884 IRIS is
-	66/iris-is 2018-02-16 09:11:35	339	6	
DOTD	2010-02-10 09.11:35	339	ь	0.3173

In [4]: # Download dan ekstrak dataset, secara default akan berada dalam satu direktori d
!kaggle datasets download uciml/iris --unzip

Downloading iris.zip to C:\Users\User\Microcred\Persiapan

```
0% | | 0.00/3.60k [00:00<?, ?B/s]
100% | ######## | 3.60k/3.60k [00:00<00:00, 665kB/s]
```

Atau bisa juga menggunakan link dari kaggle

Latihan (1)

Silahkan Download sebuah dataset menggunakan API Kaggle

In [2]: #Latihan (1) !kaggle datasets list -s Iris

ref			title
size lastUpdated	aownioaacount	voteCount	usabilityRating
uciml/iris			Iris Species
4KB 2016-09-27 07:38:05	224131	2664	0.7941176
arshid/iris-flower-datase			Iris Flower Dataset
1010B 2018-03-22 15:18:0	6 40348	369	9 0.8235294
vikrishnan/iris-dataset			Iris Dataset
999B 2017-08-03 16:00:44	2892	26	0.7647059
therohk/ireland-historica	l-news		Irish Times - Waxy-Wany
News 5	2MB 2021-09-25	10:52:48	2977 157 1.
0			
chuckyin/iris-datasets			Iris datasets
1KB 2017-03-10 09:35:43	1757	14	0.7352941
rtatman/iris-dataset-json			Iris Dataset (JSON Vers
ion)	1KB 2018-04-06	20:21:31	5615 43
0.75			
	-		ata Palmer Archipelago (Ant
arctica) penguin data	11KB 2020-06-09	10:14:54	9895 114
0.9705882			
conorrot/irish-weather-ho	-		Irish Weather (hourly d
-:: /	67MB 2020-06-29	20:15:18	1854 40
0.8235294			
saurabh00007/iriscsv			Iris.csv
1KB 2017-11-09 07:34:35	17030	57	0.4117647
fleanend/birds-songs-nume		00 00 45	Birds' Songs Numeric Da
	25MB 2019-04-01	. 09:09:46	704 25
0.9411765			:: - d_#_
kamrankausar/iris-data	1100	12	iris_data
1KB 2017-11-30 10:26:01	1102	13	0.64705884
jeffheaton/iris-computer- 5MB 2020-11-24 21:23:29		9	Iris Computer Vision 0.875
styven/iris-dataset	303	9	Iris dataset
1KB 2017-11-04 14:10:12	787	8	0.29411766
arslanali4343/iris-specie		0	Iris Species
2KB 2020-07-02 06:09:09	49	13	0.5625
olgabelitskaya/flower-col		13	Flower Color Images
50MB 2020-10-01 22:48:07	•	161	•
naureenmohammad/mmu-iris-		101	MMU iris dataset
30MB 2020-07-25 18:38:33		19	
rutujavaidya/iris-dataset			Iris Dataset
1KB 2021-07-25 17:37:14	33	6	0.4117647
shantanuss/iris-flower-da		•	IRIS flower dataset
1KB 2020-01-18 19:43:18	191	3	0.9411765
ashishs0ni/iris-dataset	_	_	Iris_dataset
1KB 2018-08-05 14:26:19	584	7	0.64705884
jodx666/iris-is			IRIS is
981B 2018-02-16 09:11:35	339	6	0.3125

Pada materi ini, peserta sudah mendapatkan pemahaman mengenai data dan dataset. Penggunaan library pada Python memberikan kemudahan dalam proses data understanding. Beberapa library yang digunakan adalah library Pandas dan Numpy.

Latihan (2)

Lakukan import Library Pandas dan Library Numpy

```
In [3]: #Latihan(2)
#Import Library Pandas
import pandas as pd

#Import Library Numpy
import numpy as np
```

DATAFRAME

DataFrame adalah struktur data 2 dimensi yang berbentuk tabular (mempunyai baris dan kolom). Hampir semua data tidak hanya memiliki 1 kolom tetapi lebih dari 1 kolom, sehingga lebih cocok menggunakan pandas DataFrame untuk mengolahnya.

Penggunaan dataframe pada Python dengan menggunakan syntaks: df.

Latihan (3)

Panggil file (load dataset) dengan format .csv untuk dataset mengenai bunga Iris yang sudah peserta unduh dari Kaggle, dan akan disimpan di dalam dataframe df. Lalu tampilkan 5 baris awal dataset dengan function head()

```
In [4]: #latihan(3)
#Panggil file (load file bernama Iris.csv) dan simpan dalam dataframe Lalu tampil

path = "Iris.csv"
df = pd.read_csv(path)
```

```
In [5]: # menampilkan 5 baris awal dari dataset
df.head()
```

Out[5]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

Telaah Data

Pada telaah data, dapat dilakukan untuk mengetahui:

- · tipe data dari setiap kolom
- · deskripsi statistik data

Latihan (4)

Tampilkan tipe data dari kolom yang ada pada dataset

```
In [6]: #Latihan(4)
#Tampilkan tipe data dari kolom yang ada pada dataset
print(df.dtypes)
```

Id int64
SepalLengthCm float64
SepalWidthCm float64
PetalLengthCm float64
PetalWidthCm float64
Species object

dtype: object

Latihan (5)

Apakah tipe Data dari kolom berikut ini: (silakan diisi pada cell di bawah ini)

```
In [9]: #Latihan (5)
#Tipe Data dari kolom yang ada di dataset

#Kolom "Id" memiliki tipe data = <int64>
#Kolom "SepalLengthCm" memiliki tipe data = <float64>
#Kolom "SepalWidthCm" memiliki tipe data = <float64>
#Kolom "PetalLengthCm" memiliki tipe data = <float64>
#Kolom "PetalWidthCm" memiliki tipe data = <float64>
#Kolom "Species" memiliki tipe data = <object>
#Dengan dtype memiliki tipe data <object>
```

Latihan (6)

Hitunglah ukuran (jumlah baris dan kolom) dari dataset. Dengan menggunakan method function

```
In [7]: #Latihan (6)
#Hitung ukuran (jumlah baris dan kolom) dari dataset

df.sort_values(by=["Id"])
```

Out[7]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

Latihan (7)

Berapakah jumlah baris, dan jumlah kolom pada dataset? (silakan diisi pada cell di bawah ini)

```
In [11]: #Latihan (7)

#Jumlah Baris pada dataset adalah = <150 Baris>

#Jumlah kolom pada dataset adalah = <6 Kolom>
```

Latihan (8)

Tampilkan data yang hanya berisi kolom "Id" dan kolom "Species" dalam bentuk dataframe.

```
In [8]: #Latihan (8)
#Tampilkan data untuk kolom "Id" dan kolom "Species" dalam bentuk dataframe

df[["Id", "Species"]]
```

Out[8]:

	ld	Species
0	1	Iris-setosa
1	2	Iris-setosa
2	3	Iris-setosa
3	4	Iris-setosa
4	5	Iris-setosa
145	146	Iris-virginica
146	147	Iris-virginica
147	148	Iris-virginica
148	149	Iris-virginica
149	150	Iris-virginica

Latihan (9)

Tampilkan data dengan dataframe, dan data yang ditampilkan adalah data pada baris dengan indeks 0 (nol) sampai dengan indeks 9 (sembilan)

```
In [9]: #Latihan (9)
#Tampilkan data dengan dataframe, dan data yang ditampilkan adalah baris dengan i
df[["Id", "Species"]][:10]
```

Out[9]:

	ld	Species
0	1	Iris-setosa
1	2	Iris-setosa
2	3	Iris-setosa
3	4	Iris-setosa
4	5	Iris-setosa
5	6	Iris-setosa
6	7	Iris-setosa
7	8	Iris-setosa
8	9	Iris-setosa
9	10	Iris-setosa

Latihan (10)

Tampilkan data hanya kolom "Id" dan kolom "Species" dengan dataframe, dan yang ditampilkan adalah data pada baris dengan indeks 11 (sebelas) sampai dengan indeks 15 (limabelas)

```
In [10]: #Latihan (10)
#Tampilkan data hanya kolom "Id" dan kolom "Species", pada baris dengan indeks 11
df[["Id", "Species"]][11:16]
```

Out[10]:

	ld	Species
11	12	Iris-setosa
12	13	Iris-setosa
13	14	Iris-setosa
14	15	Iris-setosa
15	16	Iris-setosa

Latihan (11)

Pada DataFrame dapat menampilkan beberapa baris pertama/terakhir dari dataset yang di load. Gunakan Method head() dan tail().

Latihan: Tampilkan data pada 8 (delapan) baris pertama dari dataset, dengan dataframe.

In [11]: #Latihan (11)
#Tampilkan data pada 8 (delapan) baris pertama dari dataset, dengan dataframe

df.head(8)

Out[11]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa

Latihan (12)

Tampilkan data pada 3 (tiga) baris terakhir dari dataset, dengan dataframe.

```
In [12]: #Latihan (12)
#Tampilkan data pada 3 (tiga) baris terakhir dari dataset, dengan dataframe

df.tail(3)
```

Out[12]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

Deskripsi Statistik Data

DataFrame method describe() menampilkan statistik dasar setiap kolom data yang bertipe numerik, mencakup banyaknya data (count), rerata aritmetik (mean), simpangan baku (std), nilai terkecil (min), kuartil pertama (25%), kuartil kedua/median (50%), kuartil ketiga (75%), dan nilai terbesar (max).

Latihan (13)

Hitung korelasi dari dataset. Dengan menggunakan method function

```
In [13]: #Latihan (13)
    #Hitung korelasi dataset
    df.describe()
```

Out[13]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

In [14]: df.loc[:,'SepalLengthCm':].corr()

Out[14]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
SepalLengthCm	1.000000	-0.109369	0.871754	0.817954
SepalWidthCm	-0.109369	1.000000	-0.420516	-0.356544
PetalLengthCm	0.871754	-0.420516	1.000000	0.962757
PetalWidthCm	0.817954	-0.356544	0.962757	1.000000

Latihan (14)

Berdasarkan pada perhitungan korelasi di Latihan (11), apakah yang dapat Bapak/Ibu simpulkan sementara? Silakan tuliskan simpulan sementara Bapak/Ibu pada cell di bawah ini.

```
In [16]: #Latihan (14)
#Simpulan Sementara Hasil Korelasi di latihan (13)

### Korelasi Pearson antara kolom-kolom numerik

#Berdasarkan contoh diatas menggambarkan bahwa
#SepalLengthCm berkorelasi positif dengan SepalLengthCm
#SepalWidthCm berkorelasi negatif dengan SepalLengthCm, PetalLengthCm dan PetalWi
#PetalLengthCm tidak ada korelasi linier dengan SepalLengthCm dan PetalWidthCm da
#dan mereka berkorelasi positif dengan sesama tipe/kolom
```

Latihan (15)

In [17]: |#Latihan (15) #Hitung korelasi dataset untuk kolom PetalLengthCm, PetalWidthCm df.loc[:,'PetalLengthCm':].corr() Out[17]: PetalLengthCm PetalWidthCm 1.000000 0.962757 PetalLengthCm PetalWidthCm 0.962757 1.000000 In [32]: | df.loc[:,'PetalLengthCm':].corr().sum() Out[32]: PetalLengthCm 1.962757 PetalWidthCm 1.962757 dtype: float64 In [18]: #Berdasarkan contoh diatas menggambarkan bahwa #PetalLengthCm tidak ada korelasi linier dengan PetalWidthCm dan sebaliknya #PetalWidthCm tidak ada korelasi linier dengan PetalLengthCm dan sebaliknya #Tetapi ketika korelasi keduanya dijumlahkan maka menjadikan kedua komponen terse In [19]: | df.loc[:,'PetalWidthCm':].corr() Out[19]: **PetalWidthCm PetalWidthCm** 1.0 In [20]: | df.loc[:,'PetalWidthCm':].corr().sum() Out[20]: PetalWidthCm 1.0 dtype: float64 In [22]: #Berdasarkan contoh diatas menggambarkan bahwa #PetalWidthCm berkorelasi positif dengan PetalWidthCm #dan data menunjukkan komponen tersebut menjadi korelasi positif dengan tingkat k

Latihan (16)

Method "describe" secara otomatis melakukan komputasi statistik untuk semua continous variable. Secara default "describe" melakukan ignore terhadap variabel bertype objek.

Komputasi statistik yang dilakukan terdiri dari: count, mean, std, min, max, 25%, 75%, max.

Latihan: Gunakan method describe pada dataset yang sudah di load untuk semua continous variabel. (Dataset Iris.csv)

In [23]: #Latihan (16)
Penggunaan Metode describe untuk komputasi statistik

df.describe(include="all")

Out[23]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
count	150.000000	150.000000	150.000000	150.000000	150.000000	150
unique	NaN	NaN	NaN	NaN	NaN	3
top	NaN	NaN	NaN	NaN	NaN	Iris-setosa
freq	NaN	NaN	NaN	NaN	NaN	50
mean	75.500000	5.843333	3.054000	3.758667	1.198667	NaN
std	43.445368	0.828066	0.433594	1.764420	0.763161	NaN
min	1.000000	4.300000	2.000000	1.000000	0.100000	NaN
25%	38.250000	5.100000	2.800000	1.600000	0.300000	NaN
50%	75.500000	5.800000	3.000000	4.350000	1.300000	NaN
75%	112.750000	6.400000	3.300000	5.100000	1.800000	NaN
max	150.000000	7.900000	4.400000	6.900000	2.500000	NaN

Latihan (17)

Gunakan method describe pada dataset yang sudah di load untuk data bertype objek. (Dataset Iris.csv)

In [24]: #Latihan (17)
#Gunakan method describe pada dataset yang sudah di Load untuk data bertype objek
df.describe()

Out[24]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

Latihan 18

Gunakan method describe pada dataset yang sudah di load untuk semua type data (continous variabel dan type object).

```
In [25]: #Latihan (18)
#Gunakan method describe pada dataset yang sudah di Load untuk semua type data

df.describe(include="all")
```

Out[25]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
count	150.000000	150.000000	150.000000	150.000000	150.000000	150
unique	NaN	NaN	NaN	NaN	NaN	3
top	NaN	NaN	NaN	NaN	NaN	Iris-setosa
freq	NaN	NaN	NaN	NaN	NaN	50
mean	75.500000	5.843333	3.054000	3.758667	1.198667	NaN
std	43.445368	0.828066	0.433594	1.764420	0.763161	NaN
min	1.000000	4.300000	2.000000	1.000000	0.100000	NaN
25%	38.250000	5.100000	2.800000	1.600000	0.300000	NaN
50%	75.500000	5.800000	3.000000	4.350000	1.300000	NaN
75%	112.750000	6.400000	3.300000	5.100000	1.800000	NaN
max	150.000000	7.900000	4.400000	6.900000	2.500000	NaN

Latihan (19)

Hitunglah nilai mean dari dataset.

```
In [26]: #Latihan (19)
#Hitung nilai Mean dari dataset

df.mean()
```

Out[26]: Id 75.500000 SepalLengthCm 5.843333 SepalWidthCm 3.054000 PetalLengthCm 3.758667 PetalWidthCm 1.198667

dtype: float64

Latihan (20)

Hitung nilai mean dari dataset untuk kolom PetalLengthCm.

```
In [27]: #Latihan (20)
#Hitung nilai Mean untuk kolom PetalLengthCm

df.mean()['PetalLengthCm']
```

Out[27]: 3.758666666666693

Latihan (21)

Carilah nilai minimal dari dataset untuk kolom SepalWidthCm.

```
In [28]: #Latihan (21)
#Cari nilai minimal untuk kolom SepalWidthCm

df.min()['SepalWidthCm']
```

Out[28]: 2.0

Method Groupby

Method groupby memungkinkan analisis dilakukan secara per kelompok nilai atribut tertentu.

Latihan (22)

Hitunglah nilai mean dari dataset untuk kolom SepalLengthCm per Species dengan menggunakan metode groupby.

Iris-versicolor 5.936
Iris-virginica 6.588
Name: SepalLengthCm, dtype: float64

Method Value Count

value_counts() menghasilkan frekuensi setiap nilai unik di dalam kolom, dan yang tertinggi countnya adalah merupakan modus pada kolom tersebut.

Latihan (23)

Hitunglah frekuensi pada kolom 'Species' dengan menggunakan metode value counts().

Latihan (24)

Tampilkan perhitungan frekuensi pada kolom 'Species' dengan menggunakan metode value counts() dalam bentuk dataframe.

```
In [31]: |#Latihan (24)
         #Perhitungan frekuensi pada kolom 'Species' dengan menggunakan metode value count
         df[["Id","Species"]].value_counts()
Out[31]: Id
              Species
              Iris-setosa
                                 1
         95
              Iris-versicolor
                                 1
         97
              Iris-versicolor
                                 1
         98
              Iris-versicolor
                                 1
              Iris-versicolor
                                 1
         51
              Iris-versicolor
         52
              Iris-versicolor
                                 1
         53
              Iris-versicolor
                                 1
         54
              Iris-versicolor
                                 1
         150 Iris-virginica
         Length: 150, dtype: int64
```

Latihan (25)

Hitunglah frekuensi pada kolom 'PetalLenghCm' dengan menggunakan metode value_counts() dan dalam bentuk dataframe.

```
In [32]: #Latihan (25)
# Hitung frekuensi pada kolom 'PetalLenghCm' dengan menggunakan metode value_cour

df[["Id","PetalLengthCm"]].value_counts()
```

```
Out[32]: Id
              PetalLengthCm
                               1
              1.4
         95
              4.2
                               1
         97
              4.2
                               1
         98
              4.3
                               1
         99
              3.0
                               1
                               . .
         51
              4.7
                               1
         52
              4.5
                               1
         53
              4.9
                               1
         54
                               1
              4.0
                               1
         150 5.1
         Length: 150, dtype: int64
```