MITSCHRIEB

Lineare Algebra II

Sommersemester 2025

Emma Bach

Vorlesung gehalten von Prof. Dr. Stefan KEBEKUS

Inhalt

1	Wie	ederholung	2
	1.1	Notation	2
	1.2	Determinanten	2
		1.2.1 Axiomatische Beschreibung	2
		1.2.2 Weitere Eigenschaften	2
		1.2.3 Berechnung	3
	1.3	Basiswechsel	3
2	Die Jordansche Normalform		5
	2.1	Erste Anwendungen	6
	2.2	Konjugationsklassen	6
	2.3	Der Satz von Cayley-Hamilton	7
	2.4	Minimal polynome	9
3	Euk	Euklidische und Hermitische Vektorräume	
	3.1	Bilinearformen	15
	3.2	Hermitische Sesquilinearformen	16
Α	A 115	sblicke in die Zukunft	18

Chapter 1

Wiederholung

1.1 Notation

- Die Menge aller $n \times m$ Matrizen mit Einträgen aus dem Körper k schreiben wir $Mat(n \times m, k)$
- Die Gruppe der Invertierbaren $n \times n$ -Matrizen mit Einträgen aus k schreiben wir $Gl_n(k)$
- Den Eigenraum einer Abbildung f zum Eigenwert λ schreiben wir $Eig_f(\lambda)$
- Die $n \times n$ -Einheitsmatrix schreiben wir I_n oder E_n , die Identitätsabbildung des Vektorraums V schreiben wir id_V . Vermutlich werden wir die Unterscheidung zwischen den beiden Begriffen jedoch öfters ignorieren.
- \bullet Das characteristische Polynom eines Endomorphismus f ist

$$\chi_f := \det(f - t \cdot id_V). \tag{1.1}$$

Analog ist das characteristische Polynom einer $n \times n$ -Matrix A

$$\chi_A := \det(A - t \cdot I_n). \tag{1.2}$$

1.2 Determinanten

1.2.1 Axiomatische Beschreibung

- 1. Die Determinante ist multilinear, also:
 - (a) $det(v_1 + w, v_2, ..., v_n) = det(v_1, ..., v_n) + det(w, v_2, ..., v_n)$, ebenso in den anderen Spalten und für Zeilenvektoren.
 - (b) $det(cv_1+w,v_2,\ldots,v_n)=c\cdot det(v_1,\ldots,v_n)$, ebenso in anderen Spalten und für Zeilenvektoren
- 2. Die Determinante ist alternierend: Sind zwei Spalten oder Zeilen gleich, ist die Determinante 0.
- 3. Sie ist **normiert** durch $det(I_n) := 1$

1.2.2 Weitere Eigenschaften

- 1. $det(A^{\top}) = det(A)$
- 2. $det(A^{-1}) = \frac{1}{det(A)}$
- 3. Für quadratische A, B gleicher Größe gilt det(AB) = det(A)det(B)
- 4. Für Konstante c und $n \times n$ -Matrix A gilt $det(cA) = c^n det(A)$
- 5. Für Dreiecksmatrizen A gilt $det(A) = a_{11}a_{22} \dots a_{nn}$
- 6. Besteht eine Spalte oder Zeile aus Nullen, ist die Determinante 0.

7. Vertauscht man zwei Spalten oder Zeilen, ändert die Determinante ihr Vorzeichen. Dies ist äquivalent zu "alternierend" für Körper ohne selbstinverse Elemente $x = -x \neq 0$.

8. Addition eines Vielfachen einer Zeile/Spalte zu einer anderen ändert die Determinante nicht.

1.2.3 Berechnung

Die Determinante einer 2×2 -Matrix ist:

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

Die Determinante einer 3×3 -Matrix ist:

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - ceg - bdi - afh$$

1.3 Basiswechsel

Zu Beginn will ich einige relevante Sätze, Definitionen und Notationsstandards aus der Vorlesung "Lineare Algebra I" wiederholen.

Definition 1.1. Sei $f: V \to W$ eine lineare Abbildung. Sei $A = \{a_1, \ldots, a_n\}$ eine Basis von V und $B = \{b_1, \ldots, b_m\}$ eine Basis von W. So lässt sich jeder Vektor $w \in W$ darstellen als **endliche** Linearkombination der Basisvektoren:

$$w = \sum_{i=1}^{m} \alpha_i b_i \tag{1.3}$$

Insbesondere lassen sich die Bilder der Basisvektoren $a_i \in A$ in dieser Form darstellen:

$$f(a_j) = \sum_{i=1}^{m} \alpha_{ij} b_i \tag{1.4}$$

Die **Darstellungsmatrix** $\operatorname{Mat}_{B}^{A} f$ ist genau durch diese Koeffizienten α_{ij} gegeben.

$$\operatorname{Mat}_{B}^{A} f = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & & \vdots \\ \alpha_{m1} & \dots & \alpha_{mn} \end{pmatrix}$$
 (1.5)

In der Regel arbeiten wir mit der Standardbasis $E = \{e_1, \dots, e_n\}$ und interpretieren jede Matrix M als Darstellungsmatrix $M_E^E f$ einer Linearen Abbildung f.

Definition 1.2. Die Basiswechselmatrix T_B^A ist die Abbildungsmatrix der Identitätsabbildung.

$$T_R^A = \operatorname{Mat}_R^A(\operatorname{id}_V) \tag{1.6}$$

Satz 1.3. Für jede Basis B eines beliebigen Vektorraums V gilt

$$T_B^B = I_n = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$$
 (1.7)

Beweis. Da die Darstellung jedes Vektors durch die Basisvektoren eindeutig gegeben ist, ist die Darstellung $id_V(b_j) = b_j = \sum_{i=1}^m \alpha_{ij} b_i$ eines Basisvektors als Linearkombination genau gegeben durch die Linearkombination mit $\alpha_{ij} = 1$ und $\alpha_{ik} = 0$ für $k \neq j$. Dies entspricht genau dem Standardbasisvektor e_j . Also gilt $T_B^B = (e_1 \dots e_n) = I_n$.

Proposition 1.4. Gegeben $Mat_B^A f$ lässt sich die Abbildungsmatrix $Mat_D^C f$ von f bezüglich zweier neuen Basen C und D durch Nutzung von Basiswechselmatrizen folgendermaßen berechnen:

$$Mat_D^C(f) = T_D^B \cdot Mat_B^A f \cdot T_C^B \tag{1.8}$$

Ein besonders relevanter Spezialfall ist:

$$Mat_B^B(f) = T_B^A \cdot Mat_A^A f \cdot T_A^B \tag{1.9}$$

Satz 1.5. Es gilt $T_B^A = (T_A^B)^{-1}$

Beweis.

$$\begin{split} T_A^B \cdot T_B^A &= T_A^B \cdot id_V \cdot T_B^A \\ &= \operatorname{Mat}_A^B(\operatorname{id}_V) \cdot \operatorname{Mat}_B^B(id_V) \cdot \operatorname{Mat}_B^A(\operatorname{id}_V) \\ &= \operatorname{Mat}_A^A(\operatorname{id}_V) \\ &= \operatorname{id}_V \end{split}$$

Anmerkung 1.6. Betrachten wir eine beliebige Basis $B = \{b_1, \ldots, b_n\}$. Die Matrix T_B^E kann man trivial finden, da jeder Vektor $b_i = (b_{i1} \ldots b_{in})^T$ bezüglich der Standardbasis trivial geschrieben ist als $b_i = \sum_{i=1}^n b_{ij} \cdot e_i$. Nach 1.5 lässt sich die Matrix T_E^B ebenfalls ohne größere Probleme durch invertierung von T_E^B finden.

Definition 1.7. Wir nennen zwei Matrizen A und B **ähnlich**, falls eine Matrix S existiert, sodass

$$A = S^{-1}BS$$

Ein zentrales Ziel der Vorlesung "Lineare Algebra II" ist es, zu einer Matrix A eine besonders simple Matrix B zu finden, welche A ähnlich ist. Hierbei sollte man immer 1.4 im Kopf behalten - zwei Matrizen A und B sind genau dann ähnlich, wenn sie die Darstellungsmatrizen der gleichen Funktion zu verschiedenen Basen sind, also wenn Basen B_1 und B_2 und ein Endomorphismus f existieren, sodass

$$A = Mat_{B_1}^{B_1}(f)$$
 und $B = Mat_{B_2}^{B_2}(f)$

Chapter 2

Die Jordansche Normalform

Let V be a vector space. Let $f: V \to V$ be a nilpotent endomorphism.

Define $V^p = \ker(f^p)$ Where f^p denotes composition.

Lemma 2.1.

$$V^1 \subset V^2 \subset \ldots \subset V$$

Lemma 2.2.

$$\forall p : \forall v \in V : v \in V^p \Leftrightarrow f(v) \in V^{p-1}$$

Satz 2.3. The "natural mapping"

$$\overline{f}: V^p/V^{p-1} \to V^{p-1}/V^{p-2}$$

is injective.

Beweis. We know that the restriction $f|_{V^p}$ is a map $V^p \to V^{p-1}$.

Let q_p denote the quotient map $V^p \to V^p/V^{p-1}$.

Let q_{p-1} denote the quotient map $V^{p-1} \to V^{p-1}/V^{p-2}$.

We have the following diagram:

$$V^{p} \xrightarrow{f|_{V^{p}}} V^{p-1}$$

$$\downarrow^{q_{p}} \qquad \downarrow^{q_{p-1}}$$

$$V^{p}/V^{p-1} \xrightarrow{\overline{f}} V^{p-1}/V^{p-2}$$

By "the universal property" we have that a unique \overline{f} exists iff. $V^{p-1} \subseteq \ker(q_{p-1} \circ f|_{V^p})$. This inclusion holds, since for $v \in V^{p-1}$ we have $f(v) \in V^{p-2}$, which is exactly the kernel of $q_{p-1}V^{p-1} \to V^{p-1}/V^{p-2}$. Therefore the diagram commutes.

We will show injectivity of \overline{f} by showing $\ker(f) = \{0\}$. Let $k \in V^p/V^{p-1}$. Pick an arbitrary representative $v \in k$. Because the diagram commutes, we have

$$k \in \ker f \Leftrightarrow f|V_n(v) \in \ker(q_{n-1}) \Leftrightarrow f(v) \in V^{p-2} \Leftrightarrow v \in V^{p-1}$$

Since $k \in V^p/V^{p-1}$, we have that $v \in V^{p-1}$ must be in the same equivalence class as 0. Therefore the kernel of \overline{f} consists only of the equivalence class of the zero vector (which *is* the zero vector of the quotient space).

We have the following diagram:

$$V \qquad F(V) = V^p \xrightarrow{\eta_V = f|_{V^p}} G(V) = V^{p-1}$$

$$\downarrow^{q} \qquad \downarrow^{F(q) = q_p} \qquad \downarrow^{G(q) = q_{p-1}}$$

$$V/ker(f) \qquad F(V/ker(f)) = V^p/V^{p-1} \xrightarrow{\eta_{V/ker(f)} = \overline{f}} G(V/ker(f)) = V^{p-1}/V^{p-2}$$

2.1 Erste Anwendungen

Erinnerung: Über C ist jede Matrix ähnlich zu einer Jordan-Matrix.

Erste Anwendungen:

- 1. Hohe Potenzen von Endomorphismen ausrechnen.
- 2. Die Exponentialfunktion mit Matrixwertigen Argumenten ausrechnen und damit lineare Differentialgleichungen lösen, auch in vielen Veränderlichen und mit höheren Ableitungen.

2.2 Konjugationsklassen

Frage: Ist in unserer Situation die Jordan-Matrix von f eindeutig?

Antwort: Nein! Blöcke können durch Umsortierung der Basis vertauscht werden.

$$V = \mathbb{C}^2, \vec{v}_1, \vec{v}_2 \text{ EW zu } \lambda_1 \neq \lambda_2$$

$$B = (\vec{v}_1, \vec{v}_2)$$

$$Mat_B^B f = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

$$B' = (\vec{v}_2, \vec{v}_1)$$

$$Mat_{B'}^{B'} f = \begin{pmatrix} \lambda_2 & 0 \\ 0 & \lambda_1 \end{pmatrix}$$

⇒ Neue Frage: Ist die Jordan-Matrix eindeutig bis auf Umsortierung der Blöcke?

Versuch einer Antwort: Sei B eine Jordan-Basis,

$$Mat_B^B(f) = \begin{pmatrix} Jor(\lambda_1, n_1) & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & Jor(\lambda_r, n_r) \end{pmatrix}$$

Beachte: Die Skalare $\lambda_1,\dots,\lambda_r$ sind genau die Eigenwerte von f und müssen deshalb in jeder Jordan-Matrix von f auftreten.

<u>Beachte:</u> Wenn λ ein Eigenwert von f ist, seien i_1, \ldots, i_k die Indizes mit $\lambda_i = \lambda$. Die Summe der indizes ist die Dimension des Hauptraums von f zu λ , muss also für jede Jordan-Matrix von f gleich sein.

$$\sum_{j=1}^{k} n_{i_j} = \dim Hau_f(\lambda) = \text{ alg. Mult. von } f$$

Die rechte Seite hängt nicht von B ab, ist also eine Invariante der Jordan-Matrizen von f. Außerdem: Wenn f auf den Hauptraum $Hau_f(\lambda)$ eingeschränkt wird und wir die Räume V^p und die Partition m_p betrachten, sind die Zahlen n_i genau die Zahlen, die in der zu m_p dualen Partition auftreten (wenn auch in willkürlicher Reihenfolge)

⇒ Ergebnis: Ja! Die Jordanmatrix ist eindeutig bis auf Umsortieren der Blöcke.

Definition 2.4. Die Ähnlichkeitsrelation zwischen Matrizen wird auch als **Konjugation** (oder genauer als **Konjugationswirkung von** Gl_n **auf eine Matrix**) bezeichnet.

Definition 2.5. Als **Orbit (der Konjugationswirkung von** Gl_n **auf** M) einer Matrix M bezeichnen wir die Menge der Matrizen, die zu einer gegebenen Matrix M ähnlich sind.

Beobachtung: Jede Matrix ist einer Jordanmatrix ähnlich, also liegt in jedem Orbit mindestens eine Jordan-Matrix!

Wären Jordan-Matrizen eindeutig, hätten wir nun eine triviale Bijektion zwischen der Menge aller Orbiten von Matrizen und den Jordanformen. Da Jordanmatrizen nur bis auf Umsortieren eindeutig ist, ist die Situation etwas komplizierter (aber nicht viel komplizierter!)

Satz 2.6. Sei B eine Jordan-Basis für f mit Matrix $M_f = Mat_B^B(f)$. Sei $A \in Mat(n \times n)$ eine Matrix, die sich von M_f nur durch Umsortierung von Blöcken unterscheidet. Dann gibt es eine Umsortierung B' von B, sodass $Mat_{B'}^{B'}(f) = A$.

Äquivalent: Wenn sich Matrizen in Jordanform nur durch Umsortierung der Blöcke unterscheiden, sind sie ähnlich.

Ebenfalls Äquivalent: Wenn ein Orbit eine Jordan-Matrix A enthält, so auch alle Jordan-Matrizen, welche aus A durch Umsortierung der Blöcke entstehen.

Satz 2.7. Wenn B_1 , B_2 Jordanbasen von f sind, dann unterscheiden sich die Darstellungsmatrizen $Mat_{B_1}^{B_1}(f)$ und $Mat_{B_2}^{B_2}(f)$ von f zu den beiden Basen nur durch Umsortierung der Blöcke.

Äquivalent: Zwei Jordanmatrizen im selben Orbit unterscheiden sich nur durch Umsortieren der Blöcke.

 $\underline{\underline{\text{Zusammenfassung:}}}$ Es existiert eine Bijektion zwischen den Orbiten der Konjugationswirkung und den $\underline{\ddot{\text{A}}}$ quivalenzklassen von Jordanmatrizen unter Umsortierung.

2.3 Der Satz von Cayley-Hamilton

Seien V ein Vektorraum und $f \in End(V)$ ein Endomorphismus. Wir betrachteten bisher Ausdrücke wie $f, f^2, f^3, f^5 - \lambda \cdot Id_V$ (äquivalent zu $f^5 - \lambda f^0$). Diese sehen aus wie Polynome. Können wir diese Idee formalisieren?

Definition 2.8. Gegeben ein Körper k schreiben wir für die Menge der Polynome mit Variable t und Koeffizienten aus k:

$$k[t] = \left\{ \sum_{i=0}^{m} a_i t^i \mid i \in \mathbb{N}, a_i \in k \right\}$$

Anmerkung 2.9. Gegeben ein Polynom $p \in k[t]$ induziert dieses eine Funktion

$$k \to k$$

$$x \to \sum a_i x^i$$

Sei ϕ die Funktion, welche jedem Polynom die durch das Polynom induzierte Abbildung zuordnet:

$$\phi: k[t] \to (t \to k)$$

Im Allgemeinen ist ϕ nicht injektiv! Sei zum Beispiel $k = F_2$, dann induzieren die Polynome f, f^2, f_3, \ldots alle die selbe Funktion. Polynome sind also von den von ihnen induzierten Funktionen zu unterscheiden.

Definition 2.10. Wir Betrachten die Auswertung eines Polynoms in f:

$$\begin{array}{cccc} \phi_f & : & k[t] & \to & End(V) \\ & & \sum a_i t^i & \to & \sum a_i \cdot f^i \end{array}$$

Analog definieren wir die Auswertung für Matrizen A.

Beobachtung 2.11. Seien A, B ähnlich mit $A = SBS^{-1}$. Dann gilt $A^n = (SBS^{-1})^n = SB^nS^{-1}$, also sind A^n und B^n ebenfalls ähnlich. Also gilt für jedes Polynom:

$$p = \sum a_i t^i$$

$$\phi_A(p) = \sum a_i A^i$$

$$= \sum a_i S B^i S^{-1}$$

$$= S \left(\sum a_i B^i \right) S^{-1}$$

$$= S \phi_B(p) S^{-1}$$

Also bleibt Ähnlichkeit unter der Anwendung von Polynomen erhalten.

Beobachtung 2.12. Betrachte $f \in End(V)$. Wähle Basis B von V. Dann ist

$$\operatorname{Mat}_{B}^{B}\left(f^{i}\right) = \left[\operatorname{Mat}_{B}^{B}\left(f\right)\right]^{i}$$

Also gilt für jedes Polynom $p = \sum a_i t^i$:

$$\operatorname{Mat}_{B}^{B}(\phi_{f}(p)) = \operatorname{Mat}_{B}^{B}\left(\sum a_{i}f^{i}\right)$$

$$= \sum a_{i}\operatorname{Mat}_{B}^{B}\left(f^{i}\right)$$

$$= \sum a_{i}\left[\operatorname{Mat}_{B}^{B}\left(f\right)\right]^{i}$$

$$= \phi_{\operatorname{Mat}_{B}^{B}\left(f\right)}(p)$$

Anmerkung 2.13. Die Abbildungen ϕ_f , ϕ_A werden auch Einsetzungsabbildungen genannt. Statt $\phi_f(p)$ und $\phi_A(p)$ schreibt man oft p(f) und p(A).

Satz 2.14. Cayley-Hamilton: Sei $\chi_f \in k[t]$ das charakteristische Polynom von f. Dann ist

$$\chi_f(f) = 0.$$

Beweis. (Nur für $k = \mathbb{C}$). Sei B eine Jordan-Basis. Dann

$$\operatorname{Mat}_{B}^{B}\left(\chi_{f}(f)\right) = \chi_{f}\left(\operatorname{Mat}_{B}^{B}(f)\right).$$

Es genügt also $\chi_f\left(\operatorname{Mat}_B^B(f)\right) = 0$ zu zeigen.

Schreibe

$$\operatorname{Mat}_{B}^{B}(f) = \begin{pmatrix} Jor(\lambda_{1}, n_{1}) & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & Jor(\lambda_{r}, n_{r}) \end{pmatrix}$$

Es gilt

$$\chi_f(t) = (t - \lambda_1)^{n_1} \cdot \ldots \cdot (t - \lambda_1)^{n_r}$$

Wegen der Blockgestalt gilt:

$$\chi_f(\operatorname{Mat}_B^B(f)) = \begin{pmatrix} \chi_f(Jor(\lambda_1, n)) & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \chi_f(Jor(\lambda_r, n)) \end{pmatrix}$$

Wir wissen, dass jeder Jordanblock $Jor(\lambda_i - \lambda_i, n_i)$ nilpotent mit Index n_i ist. Also hat das charakteristische Polynom Nullfaktoren, also ist $\chi_f\left(\operatorname{Mat}_B^B(f)\right) = 0$.

2.4 Minimal polynome

Definition 2.15. Wir nennen ein Polynom p das Minimalpolynom eines Endomorphismus f, wenn gilt:

- 1. p ist nicht das Nullpolynom
- 2. p(f) = 0
- 3. Der Grad von p ist minimal unter allen Polynomen mit f als Nullstelle
- 4. Der Leitkoeffizient ist 1 (p ist normiert)

Analog für quadratische Matrizen statt Endomorphismen.

Normierung wird einfach durch Skalarmultiplikation des Polynoms erreicht, ist also keine starke Bedingung.

Satz 2.16. Ähnliche Matrizen haben das selbe Minimalpolynom.

Beweis.

$$\begin{split} A &= SBS^{-1} \\ \Longrightarrow A^n &= (SBS^{-1})^n = SB^nS^{-1} \\ \Longrightarrow p(A) &= p(SBS^{-1}) = S \cdot p(B) \cdot S^{-1} := 0 \implies p(B) = 0 \end{split}$$

Satz 2.17. f hat das selbe Minimalpolynom wie seine darstellenden Matrizen.

Satz 2.18. Minimal polynome existieren.

Beweis. Gemäß Satz von Cayley-Hamilton gibt es mindestens ein Polynom, welches nicht das Nullpolynom ist und f als Nullstelle hat. Also finde nichttriviales Polynom p von minimalem Grad finden, welches f als Nullstelle hat 1 . Sei a der Leitkoeffizient von p. Dann ist $a^{-1}p$ ein normiertes Polynom vom selben Grad mit f als Nullstelle.

Satz 2.19. Minimal polynome sind eindeutig.

Beweis. Seien $p_1, p_2 \in k[t]$ zwei Minimalpolynome von f. Wir wissen, dass die Grade gleich sein müssen (3) und dass die Leitkoeffizienten 1 sein müssen (4). Wir haben:

$$p_1(t) = t^n + \sum_{i=0}^{n-1} a_i t^i$$
$$p_2(t) = t^n + \sum_{i=0}^{n-1} b_i t^i$$

 $^{^1}$ Die Menge der Grade von Polynomen mit f als Nullstelle ist eine nichtleere Teilmenge der Natürlichen Zahlen, hat also ein Minimum.

$$\implies (p_1 - p_2)(t) = \sum_{i=0}^{n-1} (a_i - b_i)t^i$$

Der Grad des Differenzpolynoms muss kleiner als n sein, sonst wären p_1 und p_2 nicht minimal. Gleichzeitig gilt:

$$(p_1 - p_2)(f) = p_1(f) - p_2(f) = 0 - 0 = 0$$

Also muss $p_1 - p_2$ das Nullpolynom sein, also ist $p_1 = p_2$.

Frage 2.20. Wie viele Polynome gibt es überhaupt, die f als Nullstelle haben?

Antwort 1: Viele! Wenn p ein Polynom ist mit p(f) = 0, so hat jedes Vielfache von p unter Polynom-multiplikation ebenfalls f als Nullstelle.

Antwort 2:

Satz 2.21. Alle Polynome, die f als Nullstelle haben, sind Vielfache (unter Polynommultiplikation) des Minimalpolynoms. Wenn p das Minimalpolynom von f ist und $q \in k[t]$ ein beliebiges nichttriviales Polynom mit q(f) = 0, dann existiert ein $r \in k[t]$, sodass $q = r \cdot p$.

Beweis. Sei q gegeben. Polynomdivision mit Rest liefert Polynome $r_1, r_2 \in k[t]$ sd. $\deg r_2 < \deg p$ und

$$q = r_1 \cdot p + r_2$$

Es gilt nun:

$$q(f) = r_1(f)p(f) + r_2(f)$$

$$\implies 0 = r_1(f) \cdot 0 + r_2(f)$$

$$\implies r_2(f) = 0$$

Da $\deg r_2 < \deg p$ und p ein Minimalpolynom muss r_2 also das Nullpolynom sein. Der Beweis für Matrizen funktioniert identisch.

Frage 2.22. Wie findet man das Minimalpolynom für ein gegebenes f?

Antwort: Schwierig, es sei denn, man kennt die Jordanform!

Proposition 2.23. Sei A eine quadratische Matrix. Sei $\lambda \in k$. Die folgenden Aussagen sind äquivalent:

- 1. λ ist ein Eigenwert von A.
- 2. λ ist eine Nullstelle des charakteristischen Polynoms.
- 3. λ ist eine Nullstelle des Minimalpolynoms.

Beweis.

- $1 \Leftrightarrow 2$: Die Äquivalenz der ersten beiden Aussagen ist bereits bekannt.
- $3\Rightarrow 2$: Das charakteristische Polynom ist ein Vielfaches des Minimalpolynoms.
- $1 \Rightarrow 3$: Sei ein Eigenwert λ gegeben. Per Annahme existiert eine zu A ähnliche Matrix B der Form:

$$B = \begin{pmatrix} \lambda & * \\ 0 & * \end{pmatrix}$$

Wenn p ein beliebiges Polynom ist, dann ist:

$$p(B) = \begin{pmatrix} p(\lambda) & * \\ * & * \end{pmatrix}$$

Wenn p das Minimalpolynom ist, ist $p(B) = 0_{n \times n}$, also insbesondere $p(B)_{11} = p(\lambda) = 0$.

Anwendung 2.24. Bestimmung von Minimalpolynomen.

Sei A eine quadratische Matrix:

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Dann gilt $\chi_A(t)=(t-2)^3$. Das Minimalpolynom hat also 2 als einzige Nullstelle. $p_1(t)=(t-2)$ und $p_2(t)=(t-2)^2$ erfüllen die Bedingung $p(A)=0_{n\times n}$ nicht, also ist $\chi_A(t)$ das Minimalpolynom.

$$B = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

Dann gilt $\chi_B(t) = (t-2)^5$. Allerdings ist der Nilpotenzindex der Matrix $B - \lambda E_n$ diesmal 3, also ist bereits $p(t) = (t-2)^3$ ein Minimalpolynom.

Analog für sehr große Matrizen mit vielen Jordanblöcken mit verschiedenen Eigenwerten.

Korollar 2.25. Sei A eine $n \times n$ -Matrix über \mathbb{C} . Sei m_i der längste Jordanblock der Matrix zum Eigenwert λ_i , definiert für alle Eigenwerte. Dann ist das Minimalpolynom von A gegeben durch:

$$p(t) = \sum_{i=1}^{d} (t - \lambda_i)^{m_i}$$

Chapter 3

Euklidische und Hermitische Vektorräume

Definition 3.1. Die folgende Abbildung $||\mathbb{R}^n|| \to \mathbb{R}$ nennen wir die **Euklidische Norm**:

$$\begin{aligned} ||\cdot||:\mathbb{R}^n \to \mathbb{R} \\ \vec{x} \to \sqrt{\sum x_i^2} \end{aligned}$$

Definition 3.2. Wir nennen eine Abbildung ϕ eine **Isometrie**, wenn sie metrikerhaltend ist, also:

$$d(\phi(\vec{x}),\phi(\vec{y})) = d(\vec{x},\vec{y})$$

(...)

Konsequenz: Die Isometrien bilden einer Untergruppe der Gruppe $Bij(\mathbb{R}^n)$ der Bijektiven Selbstabbildungen (= Permutationen) des Raums.

Ziel: Diese Gruppe beschreiben!

Wir können das Problem vereinfachen, indem wir die Abbildung:

$$\phi_0: \mathbb{R}^n \to \mathbb{R}^n$$
$$\phi(\vec{v}) \to \phi(\vec{0})$$

betrachten, welche eine Isometrie mit $\phi_0(\vec{0}) = \vec{0}$ ist.

Definition 3.3. Isometrien, für die $\phi(\vec{0}) = \vec{0}$ gilt, heißen **orthogonale Transformationen**.

Orthogonale Transformationen bilden eine Untergruppe der Isometrien.

Definition 3.4. Das Standardskalarprodukt, oder Euklidische Skalarprodukt, auf \mathbb{R}^n ist die Abbildung:

$$\langle :, \mathbb{R} \rangle^n \times \mathbb{R}^n \to \mathbb{R}$$

 $(\vec{x}, \vec{y}) \to \sum_{i=1}^n x_i y_i$

Anmerkung 3.5.

$$\forall \vec{x} \in \mathbb{R}^n : ||\vec{x}||^2 = \langle \vec{x}, \vec{x} \rangle$$

Anmerkung 3.6. Das Skalarprodukt hat folgende Eigenschaften:

1. Linearität in der ersten Komponente:

$$\langle \vec{x}_1 + \lambda \vec{x}_2, \vec{y} \rangle = \langle \vec{x}_1, \vec{y} \rangle + \lambda \langle \vec{x}_2, \vec{y} \rangle$$

2. Linearität in der zweiten Komponente:

$$\langle \vec{x}, \vec{y}_1 + \lambda \vec{y}_2 \rangle = \langle \vec{x}, \vec{y}_1 \rangle + \lambda \langle \vec{x}, \vec{y}_2 \rangle$$

3. Positive Definitheit:

$$\langle \vec{x}, \vec{x} \rangle \ge 0$$
$$\langle \vec{x}, \vec{x} \rangle = 0 \Leftrightarrow \vec{x} = \vec{0}$$

4. Symmetrie:

$$\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$$

5. Verallgemeinerter Satz des Pythagoras:

$$||\vec{x} + \vec{y}||^2 = ||\vec{x}||^2 + 2\langle \vec{x}, \vec{y} \rangle + ||\vec{y}||^2$$

Definition 3.7. Zwei Vektoren \vec{x}, \vec{y} heißen **orthogonal** zueinander, wenn

$$\langle \vec{x}, \vec{y} \rangle = 0$$

Definition 3.8. Eine Basis $\vec{v}_1, \dots, \vec{v}_n$ heißt **Orthonormalbasis**, wenn:

$$\forall i, j : \langle \vec{v}_i \vec{v}_j \rangle = \delta_{ij}$$

Motivation: Wenn irgendein $\vec{v} \in \mathbb{R}$ gegeben ist, kann ich schreiben:

$$\vec{v} = \sum_{i=1}^{n} a_i \vec{v}_i$$

Im Allgemeinen muss man ein Gleichungssystem lösen, um die a_i zu finden. Bilden die \vec{v}_i eine Orthonormalbasis, ist es jedoch einfach:

$$\begin{split} \langle \vec{v}_j, \vec{v} \rangle &= \langle \vec{v}_j, \sum a_i \vec{v}_i \rangle \\ &= \sum a_i \langle \vec{v}_j, \vec{v}_i \rangle \\ &= a_j \end{split}$$

Also gilt:

$$\vec{v} = \sum_i \langle \vec{v}_i, \vec{v} \rangle \vec{v}_i$$

Diese Technik wird im Englischen als coefficient picking bezeichnet.

Satz 3.9. Orthogonale Transformationen erhalten das Skalarprodukt. Wenn also ϕ eine orthogonale Transformation ist und $\vec{x}, \vec{y} \in \mathbb{R}^n$ gegeben sind, gilt:

$$\langle \vec{x}, \vec{y} \rangle = \langle \phi(\vec{y}), \phi(\vec{y}) \rangle$$

Beweis. "Doofe Rechnung mit Pythagoras, werd ich nicht machen."

 $\textbf{Konsequenz 3.10.} \ \ \textbf{Orthogonale Transformationen bilden Orthonormalbasen auf Orthonormalbasen ab}.$

Beweis. Sei ϕ eine orthogonale Transformation, sei $\vec{v}_1, \dots, \vec{v}_n \in \mathbb{R}^n$ eine Orthonormalbasis.

1. Seien Indizes i, j gegeben. Dann ist:

$$\langle \phi(\vec{v}_i), \phi(\vec{v}_i) \rangle \stackrel{Fact}{=} \langle \vec{v}_i, \vec{v}_i \rangle = \delta_{ij}$$

2. Sei eine lineare Relation der Bildvektoren gegeben, also:

$$\vec{0} = \sum \lambda_i \phi(\vec{v}_i)$$

Dann gilt:

$$\vec{0} = \langle \phi(\vec{v}_j), \vec{0} \rangle$$

$$= \langle \phi(\vec{v}_j), \sum_i \lambda_i \phi(\vec{v}_i) \rangle$$

$$= \sum_i \lambda_i \langle \phi(\vec{v}_j), \phi(\vec{v}_i) \rangle$$

$$= \lambda_i$$

Also $\forall j : \lambda_j = 0$, also bilden die Bildvektoren eine Basis.

Konsequenz 3.11. Orthogonaltransformationen sind linear, bilden also eine Untergruppe von $GL_n(\mathbb{R})$.

Beweis. Die Standardbasis ist eine Orthonormalbasis, nach 3.10 ist also die Bildmenge der Standardbasis unter der Orthogonaltransformation ϕ ebenfalls eine Orthonormalbasis. Gegeben $\vec{v} \in \mathbb{R}$ schreibe:

$$\phi(\vec{v}) = \sum_{i} \langle \phi(\vec{e}_i), \phi(\vec{v}) \rangle \phi(\vec{v})$$
$$:= \sum_{i} \eta_i(\vec{v}) \phi(\vec{v})$$

Beobachtung: Es genügt nun zu zeigen, dass für alle i die Abbildung η_i linear ist. Seien also $\vec{v}_1, \vec{v}_2 \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$ gegeben. Dann

$$\begin{split} \eta_i(\vec{v}_1 + \lambda \vec{v}_2) &= \langle \phi(\vec{e}_i), \phi(\vec{v}_1 + \lambda \vec{v}_2) \rangle \\ &= \langle \vec{e}_i, \vec{v}_1 + \lambda \vec{v}_2 \rangle \qquad \text{(Def. Orthogonal transformationen)} \\ &= \langle \vec{e}_i, \vec{v}_1 \rangle + \lambda \langle \vec{e}_i, \vec{v}_2 \rangle \\ &= \langle \phi(\vec{e}_i), \phi(\vec{v}_1) \rangle + \lambda \langle \phi(\vec{e}_i), \phi(\vec{v}_2) \rangle \end{split}$$

Frage 3.12. Wie können die Orthogonalen Transformationen als Matrizen beschrieben werden?

Proberechung: Sei ϕ Orthogonal. Sei B die Standardbasis des \mathbb{R}^n . Dann ist:

$$\operatorname{Mat}_{B}^{B}(\phi) = (\phi(\vec{e}_{1}) \mid \ldots \mid \phi(\vec{e}_{n}))$$

Beachte: Die Spaltenvektoren bilden wieder eine Orthonormalbasis, also:

$$\forall i, j : \langle \phi(\vec{e}_i), \phi(\vec{e}_j) \rangle = \delta_{ij}$$

Wir beachten das Produkt der Matrix mit ihrer Transponierten:

$$\operatorname{Mat}_{B}^{B}(\phi)^{T} \cdot \operatorname{Mat}_{B}^{B}(\phi) = (a_{ij}) \text{ mit } a_{ij} = \langle \phi(\vec{e}_{i}), \phi\vec{e}_{j} \rangle = \delta_{i}j$$

$$= E_{n}$$

Satz 3.13. Ist A darstellende Matrix einer Orthogonalen Transformationen, so ist $A^{-1} = A^{T}$.

Proposition 3.14. Die Rückrichtung gilt auch - ist $A^{-1} = A^{T}$, so ist die dazugehörige Transformation orthogonal.

3.1 Bilinearformen

Definition 3.15. Sei k ein Körper, V ein Vektorraum. Eine Abbildung $b: V \times V \to k$ heißt **Bilinearform**, falls gilt:

- 1. Linearität in der ersten Komponente
- 2. Linearität in der zweiten Komponente

Beispiel 3.16. 1. Das Standardskalarprodukt des \mathbb{R}^n

2. Für $A \in (n \times n, k)$ die Abbildung $b: (\vec{x}, \vec{y}) \to \vec{x}^{\top} A \vec{y}$

Definition 3.17. Wir nennen eine Bilinearform b symmetrisch, wenn $\forall \vec{x}, \vec{y} \in V : b(\vec{x}, \vec{y}) = b(\vec{y}, \vec{x})$

Frage 3.18. Für welche Matrizen ist die Bilinearform $\vec{x}^{\top} A \vec{y}$ symmetrisch?

Antwort: Die Bilinearform zu A ist genau dann symmetrisch, wenn die Matrix symmetrisch ist, also $A = A^{\top}$.

Definition 3.19. Wir nennen eine Bilinearform $b: V \times V \to k$ **positiv semidefinit**, wenn $\forall \vec{x}: b(\vec{x}, \vec{x}) \ge 0$. Wir nennen sie **positiv definit**, wenn $\forall \vec{x} \ne 0: b(\vec{x}, \vec{x}) > 0$

<u>Problem</u>: Auf den meisten Körpern k existiert keine Totalordnung! Dementsprechend definieren wir positive Definitheit nur für $k \subseteq \mathbb{R}$).

Beobachtung 3.20. Die Bilinearformen bilden einen Vektorraum über k (einen Untervektorraum des k-Vektorraums der Abbildungen $V \times V \to k$).

Beobachtung 3.21. Die symmetrischen Bilinearformen bilden einen Untervektorraum des Raums der Bilinearformen.

Beobachtung 3.22. Die positiv definiten Bilinearformen sind im Vektorraum aller Bilinearformen abgeschlossen unter Addition und unter Skalarmultiplikation mit nichtnegativen Skalaren. Sie bilden dementsprechend keinen Untervektorraum, aber immerhin einen konvexen Kegel.

Definition 3.23. Sei $k \subseteq \mathbb{R}$. Ein Skalarprodukt auf einem k-Vektorraum V ist eine symmetrische, positiv definite Bilinearform.

Beispiel 3.24. Das Euklidische Skalarprodukt auf dem \mathbb{R}^n .

Beispiel 3.25. $V = \mathcal{C}([0,1])$ (Stetige Funktionen auf [0,1]), dann können wir ein Skalarprodukt $\langle _, _ \rangle$ definieren als:

$$\langle \text{--}, \text{--} \rangle : V \times V \to \mathbb{R}$$

$$(f,g) \to \int_0^1 fg dx$$

Beobachtung 3.26. Sei k ein Körper, V ein endlichdimensionaler k-Vektorraum, $B = \{\vec{v}_1, \dots, \vec{v}_n\}$ eine angeordnete Basis mit Koordinatenabbildung $\phi_B : V \to k^n$. Wir haben zwei Konstruktionen:

1.

$$\begin{aligned} \operatorname{Mat}_B: \{ \operatorname{Bilinear form} \} &\to \operatorname{Mat}(n \times n) \\ b &\to (b(\vec{v}_i, \vec{v}_j))_{i,j} \end{aligned}$$

2.

$$S_B: \operatorname{Mat}(n \times n) \to \{ \text{Bilinearformen} \}$$
$$A \to ((\vec{x}, \vec{y}) \to \phi_B(\vec{x})^\top A \phi_B(\vec{y}))$$

Proposition 3.27. Mat_B und S_B sind inverse zueinander. Insbesondere ist dementsprechend die Dimension der V-Bilinearformen gleich der Dimension der V-Matrizen, also $\dim(V)^2$.

Korollar 3.28. Gleichzeitig identifizieren diese Isomorphismen direkt symmetrische Bilinearformen mit symmetrischen Matrizen, also dim(symmetrische Bilinearformen) = dim(symmetrische Matrizen) = $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$

Frage 3.29. Wie genau hängt die Matrix von der Wahl der Basis ab?

Antwort: Seien B_1 und B_2 angeordnete Basen mit Basiswechselmatrix $S = \operatorname{Mat}_{B_2}^{B_1}(\operatorname{id}_V)$ und kommutativem Diagramm:

$$k^{n} \xrightarrow{\overrightarrow{v} \to S \cdot \overrightarrow{v}} k^{n}$$

$$\downarrow^{\phi_{B_{1}}} \qquad \qquad \downarrow^{\phi_{B_{2}}}$$

$$V \xleftarrow{\operatorname{id}_{V}} V$$

Sei $b: V \times V \to k$ eine Bilinearform. Erinnerung: Die Matrix $\operatorname{Mat}_{B_1}(b)$ ist eindeutig dadurch festgelegt, dass $\forall \vec{x} \to \vec{y} \in V: b(\vec{x}, \vec{y}) = \phi_{B_1}(\vec{x}) \cdot \overline{\operatorname{Mat}_{B_1}(b) \cdot \phi_{B_2}(\vec{y})}$. Ebenso $\operatorname{Mat}_{B_2}(b)$. Also:

$$\begin{split} \forall \vec{v} \in V : \phi_{B_2}(\vec{v}) &= S\phi_{B_1}(\vec{v}) \\ &= (S\phi_{B_1}(\vec{x}))^\top \mathrm{Mat}_{B_2}\left(b\right) S\phi_{B_1}(\vec{y})) \end{split}$$

Also gilt

$$\operatorname{Mat}_{B_1}(b) = S^{\top} \operatorname{Mat}_{B_2}(b) S$$

Dies erinnert natürlich stark an Ähnlichkeit von Darstellungsmatrizen von Endomorphismen, allerdings wird das Inverse durch eine Transponierte ersetzt! Das ist natürlich einfacher als das Invertieren, Basiswechsel von Bilinearformen ist dementsprechend einfacher als Basiswechsel von Endomorphismen.

3.2 Hermitische Sesquilinearformen

Problem: Reelle Vektorräume sind kompliziert (Das Problem "Wie viele reelle Nullstellen hat ein Polynom" ist NP-Vollständig!!!) Vieles wird einfacher, wenn man über den komplexen Zahlen arbeitet.

Allerdings konnten wir über $\mathbb C$ bisher zum Beispiel nicht die positive Definitheit definieren. Wir wollen nun die Definition von Bilinearformen und Symmetrie ändern, damit sie sich besser mit den komplexen Zahlen vertragen.

Definition 3.30. Sei V ein \mathbb{C} -Vektorraum. Eine Sesquilinearform ist eine Abbildung $b:V\times V\to\mathbb{C}$, sodass gilt:

- 1. Linearität in der ersten Komponente
- 2. Sesquilinearität in der zweiten Komponente:

$$\forall \vec{a}, \vec{b}, \vec{c} \in V : \forall \lambda \in \mathbb{C} : b(\vec{a}, \vec{b} + \lambda \vec{c}) = b(\vec{a}, \vec{b}) + \overline{\lambda}b(\vec{a}, \vec{c})$$

(Der skalare Faktor λ wird also komplex konjugiert.)

Beispiel 3.31. Die Standardsesquilinearform auf \mathbb{C}^n :

$$\langle \underline{\ },\underline{\ }\rangle:\mathbb{C}^n\times\mathbb{C}^n\to\mathbb{C}$$

$$(\vec{x},\vec{y})\to\sum x_i\overline{y_i}$$

Beispiel 3.32. Sei $A \in \text{Mat}(n \times n)$. Dann betrachte:

$$b: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$$
$$(\vec{x}, \vec{y}) \to \vec{x}^\top A \overline{\vec{y}}$$

Definition 3.33. Eine Sesquilinearform heißt Hermitsch, falls:

$$\forall \vec{x}, \vec{y} \in V : b(\vec{x}, \vec{y}) = \overline{b(\vec{y}, \vec{x})}$$

Proposition 3.34. Eine Sesquilinearform ist genau dann Hermitsch, wenn $A^{\top} = \overline{A}$.

Beobachtung 3.35. In einer darstellenden Matrix einer hermitschen Sesquilinearform müssen also die Diagonalelemente reell sein!

Beobachtung 3.36. Wenn $b: V \times V \to \mathbb{C}$ hermitsch ist, so gilt:

$$b(\vec{x}, \vec{x}) = \overline{b(\vec{x}, \vec{x})}$$

Also ist das Bild eines Vektors mit sich selbst reell - also haben wir für komplexe Sesquilinearformen nicht das Problem der Definition von Definitheit, welches wir für Bilinearformen hatten!

Appendix A

Ausblicke in die Zukunft

In der Funktionalanalysis werden unendlichdimensionale Vektorräume betrachtet.

Satz A.1. Der Vektorraum aller Funktionen $f : \mathbb{R} \to \mathbb{R}$ hat eine Basis.

Wie sieht diese Basis aus? Es stellt sich heraus, dass der Beweis nur dank Auswahlaxiom funktioniert, und dass sich diese Basis nicht explizit konstruieren lässt. Die Menge der sog. Kroneckerdeltas δ_{ij} sieht auf den ersten Blick wie ein vielversprechender Kandidat aus:

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Aber es muss bedacht werden, dass zwingende Bedingung für eine Basis ist, dass sich jeder Vektor nicht nur als Linearkombination der Basisvektoren darstellen lässt, sondern sogar als **endliche Linearkombination**. Diese Definition der Basis ist auch bekannt als Hamelbasis.

Es stellt sich heraus, dass die Hamel-Basis aus A.1 nur dank Auswahlaxiom existiert und nicht explizit dargestellt werden kann. Lockern wir den traditionellen Basisbegriff, um zählbar unendliche Linearkombinationen zu erlauben, erhalten wir den Begriff der Schauder-Basis. Die Funktionen δ_{ij} reichen jedoch immer noch nicht als Schauder-Basis des Raums $f: \mathbb{R} \to \mathbb{R}$, sondern nur für den Folgenraum $f: \mathbb{N} \to \mathbb{R}$.

Da sich der Begriff der Linearkombination auf keine sinnvolle Weise auf überabzählbare Mengen erweitern lässt bleibt man an diesem Punkt leider stecken, es existiert leider keine explizit angebbare Basis des Raums $f: \mathbb{R} \to \mathbb{R}$. :(