

ÜBUNGEN

zur Veranstaltung Quantencomputing im Studiengang Angewandte Informatik

No. 8 Martin Rehberg

Präsenzaufgaben

Aufgabe 1: Eigenwerte und Eigenvektoren der Hadamard-Matrix

- (i) Zeigen Sie das $\binom{1+\sqrt{2}}{1}$ ein Eigenvektor zum Eigenwert 1 ist.
- (i) Zeigen Sie das $\binom{1-\sqrt{2}}{1}$ ein Eigenvektor zum Eigenwert -1 ist.

Aufgabe 2: Messen Sie das Qubit $|\psi\rangle=\frac{3+i\sqrt{3}}{4}|0\rangle-\frac{1}{2}|1\rangle$ bzgl. verschiedener Basen.

- (i) Z-Basis $\{|0\rangle, |1\rangle\}$
- (ii) X-Basis $\{|+\rangle, |-\rangle\}$

Übungsaufgaben

Aufgabe 1: Zeigen Sie das die Eigenwerte einer unitären Matrix von der Form $\exp(i\theta)$ für $0 \le \theta < 2\pi$ sind.

Hinweis: Sie dürfen verwenden das unitäre Matrizen invariant bzgl. der euklidischen Norm sind, d.h. für $\mathbf{x} \in \mathbb{C}^n$ und eine unitäre Matrix $U \in \mathbb{C}^{n \times n}$ gilt $||U\mathbf{x}||_2 = ||\mathbf{x}||_2$.

Aufgabe 2: Beweisen Sie für Quantengatter

- (i) $R_2 = \sqrt{Z} = S$
- (ii) $R_3 = \sqrt[4]{Z} = T$

Prisenzulgsten