Modern Control Systems

Matthew M. Peet Illinois Institute of Technology

Lecture 6: Back to Matrices

Eigenvalues and Eigenvectors

Eigenvalues and Spectrum are very different for matrices vs. operators.

Definition 1.

For a matrix $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{R}$ is an **eigenvalue** of A, denoted $\lambda \in \text{eig}(A)$ if there exists some **eigenvector** $v_{\lambda} \in X$ such that

$$Av_{\lambda} = \lambda v_{\lambda}$$

Alternative Representations:

- $\lambda \in eig(A)$ if $Ker(\lambda I A) \neq \{0\}$
- For matrices, $\lambda \in eig(A)$ if $det(\lambda I A) = 0$

Recall:

- $\det(A) = \prod \lambda_i(A)$
- trace $(A) = \sum \lambda_i(A)$

Eigenvalues and Eigenvectors

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

[U,V]=eigs([1 2 3; 4 5 6; 7 8 9])

$$U = \begin{bmatrix} -.23 & -.78 & .41 \\ -.53 & -.09 & -.82 \\ -.82 & .61 & .41 \end{bmatrix}; \qquad V = \begin{bmatrix} 16.1 & 0 & 0 \\ 0 & -1.11 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

which means:

$$\lambda_1(A) = 16.1, \quad \lambda_2(A) = -1.11, \quad \lambda_3(A) = 0,$$

$$v_1 = \begin{bmatrix} -.23 \\ -.53 \\ -.82 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -.78 \\ -.09 \\ .61 \end{bmatrix}, \quad v_3 = \begin{bmatrix} .41 \\ -.82 \\ .41 \end{bmatrix}$$

Characteristic Polynomials

Definition 2.

The characteristic polynomial of a matrix A is denoted

$$\mathsf{char} A(\lambda) := \det(\lambda I - A)$$

Theorem 3.

 $\lambda \in eig(A)$ if and only if $char A(\lambda) = 0$

Proof.

- $\lambda \in eig(A)$ if and only if $Ker(\lambda I A) \neq \{0\}$
- $\operatorname{Ker}(\lambda I A) \neq \{0\}$ if and only if there exists some v such that

$$(\lambda I - A)v = 0$$

ullet This means λ is an eigenvalue of A

_

Characteristic Polynomials

Eigenvectors are **NOT** unique

- ullet If v is an eigenvector, then so is αv
- If v_1 and v_2 are both eigenvectors for λ , so is $\alpha v_1 + \beta v_2$.

To avoid the problem of uniqueness, we use eigenspace

Definition 4.

For any $\lambda \in \text{eig}(A)$, there is a unique subspace, S_{λ} , called an **eigenspace**, such that $x \in S_{\lambda}$ if and only if

$$Ax = \lambda x$$
.

Theorem 5.

If $\bigcup_i \{S_i\} = \mathbb{R}^n$, then there exist eigenvectors v_i such that

$$V = [v_1, \cdots, v_n]$$
 is invertible.

Diagonalizability

Then

$$AV = [Av_1, \cdots, Av_n] = [\lambda_1 v_1, \cdots, \lambda_n v_n] = V\Lambda, \quad ext{where} \quad \Lambda = egin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}.$$

If V is invertible, then

$$V^{-1}AV = \Lambda$$

Thus if the eigenspaces span the space, the matrix can be diagonalized via a *Similarity Transformation*.

- But when does this happen?
- Not all matrices can be diagonalized.

Example:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\lambda_1 = 0, \qquad v_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \qquad \lambda_2 = 0, \qquad v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Jordan Form

Diagonalizibility is an important tool.

- A change of bases
- In new basis, the operator/matrix multiplies coordinate by a simple factor.
- Can all operators be so simple?
 - NO

An alternative which applies to ALL matrices is the Jordan Form

Definition 6.

A Jordan Block has the form

$$\lambda I + N = \begin{bmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{bmatrix}$$

Almost Diagonal.

7 / 18

Jordan Form

$$N = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix}$$

is called Nilpotent as

• $N^d = 0$ for some d > 0.

Example

M. Peet

Lecture 6: Eigenvalues

Jordan Form

 λ is the sole eigenvalue of $\lambda I + N$ with multiplicity n and eigenvectors

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad v_4 = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

or a 1-Dimensional eigenspace $S_{\lambda} := \text{span } \{e_1\}.$

• Jordan blocks capture the part of a matrix which cannot be diagonalized.

Theorem 7.

For any $A \in \mathbb{C}^{n \times n}$, there exists an invertible T and Jordan Blocks J_i such that

$$TAT^{-1} = J = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_p \end{bmatrix}$$

ANY matrix is Jordan-Block Diagonalizable.

Different Jordan Blocks may have the same eigenvalue.

Symmetric Matrices

Definition 8.

A Matrix, $A \in \mathbb{R}^{n \times n}$ $(A \in \mathbb{C}^{n \times n})$ is self-adjoint, denoted $A \in \mathbb{S}^n$ $(A \in \mathbb{H}^n)$ if $A = A^T$ $(A = A^*)$.

- Real self-adjoint matrices are called symmetric. (S)
- ullet Complex self-adjoint matrices are called Hermetian. (\mathbb{H})

Lemma 9.

Both Hermetian and Symmetric Matrices have real Eigenvalues.

Proof.

We show that is $A \in \mathbb{H}$ and $Av = \lambda v$, then $\lambda = \lambda^*$.

• If $Av = \lambda v$, then

$$\lambda v^* v = v^* A v = (A^* v)^* v = (A v)^* v = (\lambda v)^* v = \lambda^* v^* v$$

• Hence $\lambda = \lambda^*$, which means λ is real.

Unitary matrices are a special case of coordinate transformation.

Definition 10.

Two vectors, $x, y \in \mathbb{R}^n$ are

- orthogonal if $x^Ty = 0$
- orthonormal if they are orthogonal and ||x|| = ||y|| = 1

A basis, $\{v_i\}$ is an **orthonormal basis** if all v_i are orthonormal.

• A coordinate transformation to an orthonormal basis is a *unitary* operator.

The Gramm-Schmidt Procedure

Given a basis $\{v_1, \dots, v_n\}$, we can construct an orthonormal basis

$$\begin{aligned} x_1 &= \frac{v_1}{\|v_1\|} \\ x_2 &= \frac{v_2 - (v_2^T x_1) x_1}{\|v_2^T x_1) x_1\|} \\ x_3 &= \frac{v_3 - (v_3^T x_2) x_2 - (v_3^T x_1) x_1}{v_3 - (v_3^T x_2) x_2 - (v_3^T x_1) x_1} \end{aligned}$$

- Clearly, all vectors are of unit length
- To see orthogonality, note

$$x_2^T x_1 = \frac{v_2^T x_1 - (v_2^T x_1) x_1^T x_1}{\|v_1\| \|v_2^T x_1) x_1\|} = \frac{v_2^T x_1 - v_2^T x_1}{\|v_1\| \|(v_2^T x_1) x_1\|} = \frac{v_2^T x_1 - v_2^T x_1}{\|v_1\| \|v_2^T x_1) x_1\|}$$

Definition 11.

A matrix U is **Unitary** if $U^*U = I$.

ullet The columns of U form an orthonormal basis

$$\begin{bmatrix} u_1^* \\ u_2^* \\ \vdots \\ u_n^* \end{bmatrix} \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} = \begin{bmatrix} u_1^* u_1 & u_1^* u_2 & \cdots & u_1^* u_n \\ u_2^* u_1 & u_2^* u_1 & & u_2^* u_n \\ \vdots & & \ddots & u_1^* u_n \\ u_n^* u_1 & & \cdots & u_n^* u_n \end{bmatrix} = \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{bmatrix}$$

- $U^* = U^{-1}$
 - ightharpoonup The columns of U^* also form an orthonormal basis

Length Preservation: A basis change which preserves norms.

• If y = Ux, then

$$||y||^2 = x^*U^*Ux = x^*x = ||x||^2$$

• Why the $\|\cdot\|_2$ -norm?

Spectral Theorem

Symmetric matrices can be diagonalized via unitary matrices.

Theorem 12.

If $A \in \mathbb{H}$, then there exists a unitary matrix U and a real diagonal Λ such that

$$A = U\Lambda U^*$$

There is also a spectral theorem for operators.

• What is a diagonal operator?

Positive Matrices

Definition 13.

A symmetric matrix $P \in \mathbb{S}^n$ is **Positive Semidefinite**, denoted $P \geq 0$ if

$$x^T P x \ge 0 \qquad \text{ for all } x \in \mathbb{R}^n$$

Definition 14.

A symmetric matrix $P \in \mathbb{S}^n$ is **Positive Definite**, denoted P > 0 if

$$x^T P x > 0$$
 for all $x \neq 0$

- P is Negative Semidefinite if -P > 0
- P is Negative Definite if -P > 0
- A matrix which is neither Positive nor Negative Semidefinite is Indefinite

The set of positive or negative matrices is a *convex cone*.

Positive Matrices

Lemma 15.

 $P \in \mathbb{S}^n$ is positive definite if and only if all its eigenvalues are positive.

Proof.

 (\Rightarrow) To show sufficiency, use the spectral decomposition. For $x \neq 0$,

$$x^T P x = x^T U^T \Lambda U x = v^T \Lambda v = \sum_{\lambda_i} v_i^2 > 00$$

(\Leftarrow) To show necessity, Suppose λ is an eigenvalue and $Px=\lambda x$ for $x\neq 0$, then

$$\lambda x^T x = x^T P x > 0$$

Hence

$$\lambda = \frac{x^T P x}{x^T x} > 0$$

Easy Proofs:

- A Positive Definite matrix is invertible.
- The inverse of a positive definite matrix is positive definite.

Positive Matrices

Easy Proofs:

• If P > 0, then $TPT^T \ge 0$ for any T. If T is invertible, then $TPT^T > 0$.

Lemma 16.

For any P>0, there exists a positive square root, $P^{\frac{1}{2}}>0$ such that $P=P^{\frac{1}{2}}P^{\frac{1}{2}}$.

Proof.

By the spectral decomposition $A = U\Lambda U^T$, where $\Lambda = \text{diag}(\lambda_1, \cdots, \lambda_n)$.

- Let $\Lambda^{\frac{1}{2}} = \operatorname{diag}(\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_n})$.
- Then $\Lambda^{\frac{1}{2}} > 0$, $\Lambda = \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}}$, and

$$\begin{split} A &= U\Lambda U^T \\ &= U\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}U^T \\ &= U\Lambda^{\frac{1}{2}}U^TU\Lambda^{\frac{1}{2}}U^T \end{split}$$

• Thus $P=P^{\frac{1}{2}}P^{\frac{1}{2}}$, where $P^{\frac{1}{2}}=U\Lambda^{\frac{1}{2}}U^T>0$

The properties of positive matrices extend to positive operators.

What is an inequality? What does ≥ 0 mean?

- An inequality implies a partial ordering:
 - $x \ge y \text{ if } x y \ge 0$
- Any convex cone, C defines a partial ordering:
 - $x y \ge 0$ if $x y \in C$
- The ordering is only partial because $x \leq 0$ does not imply $x \geq 0$
 - $-x \notin C$ does not imply $x \in C$.
 - x may be indefinite.