Espaces préhilbertiens réels : exercices

Produit scalaire

Exercice: *

Vérifier que $\langle .,. \rangle$ est un produit scalaire sur E dans les cas suivants.

1.
$$E = \mathcal{M}_n(\mathbb{R})$$
 et $\langle A, B \rangle = \operatorname{tr} A^{\mathsf{T}} B$.

2.
$$E = \mathcal{C}([-1,1],\mathbb{R})$$
 et $\langle f,g \rangle = \int_{-1}^{1} \frac{f(t)g(t)}{\sqrt{1-t^2}} dt$.

3.
$$E = \{f : \mathbb{R} \to \mathbb{R} \text{ continues} : f^2 \text{ intégrable sur } \mathbb{R} \}$$
 et $\langle f, g \rangle = \int_{\mathbb{R}} fg$.
4. $E = \mathbb{R}[X]$ et $\langle P, Q \rangle = \int_0^1 P(t)Q(t) dt$.
5. $E = \mathbb{R}[X]$ et $\langle P, Q \rangle = \sum_{n=0}^{+\infty} \frac{P(n)Q(n)}{2^n}$.

4.
$$E = \mathbb{R}[X]$$
 et $\langle P, Q \rangle = \int_0^1 P(t)Q(t) dt$

5.
$$E = \mathbb{R}[X]$$
 et $\langle P, Q \rangle = \sum_{n=0}^{+\infty} \frac{P(n)Q(n)}{2^n}$.

Exercice: *

Soit $n \in \mathbb{N}^*$ fixé, $E = \mathbb{R}_n[X]$ et $F = \{P \in E : P(0) = P(1) = 0\}$. Pour $(P,Q) \in E$, on pose

$$\phi(P,Q) = -\int_0^1 (PQ'' + P''Q).$$

- 1. Vérifier que F est un espace vectoriel.
- 2. Donner une base et la dimension de F.
- 3. ϕ définit-il un produit scalaire sur E? sur F?

Exercice: *

Soit E l'ensemble des suites réelles $(u_n)_{n\in\mathbb{N}}$ telles que la série de terme général u_n^2 converge. Pour u et v

$$\langle u, v \rangle = \sum_{n=0}^{+\infty} u_n v_n.$$

- 1. Montrer que E est un espace vectoriel. On le note usuellement l^2 .
- 2. Montrer que $\langle u, v \rangle$ existe.
- 3. Montrer qu'il s'agit d'un produit scalaire.

Exercice: Applications de l'inégalité de Cauchy-Schwarz

Soient $x_1, \ldots, x_n \in \mathbb{R}$.

1. Démontrer que

$$\left(\sum_{k=1}^{n} x_k\right)^2 \leqslant n \sum_{k=1}^{n} x_k^2$$

et étudier les cas d'égalité.

2. On suppose en outre que $x_k > 0$ pour chaque $k \in \{1, \ldots, n\}$ et que $x_1 + \cdots + x_n = 1$. Démontrer que

$$\sum_{k=1}^{n} \frac{1}{x_k} \geqslant n^2$$

et étudier les cas d'égalité.

Exercice: Applications de l'inégalité de Cauchy-Schwarz

Soit $E = \mathcal{C}([a,b],\mathbb{R}^*)$. Déterminer $\inf_{f\in E} \left(\int_a^b f \times \int_a^b \frac{1}{f}\right)$. Cette borne inférieure est-elle atteinte?

II Orthogonalité

Exercice: *

Soit $(E, \langle ., . \rangle)$ un espace euclidien et $\mathcal{B} = (\vec{e_1}, \ldots, \vec{e_n})$ une BON de E. On pose

$$\phi \left| \begin{array}{c} \mathcal{L}(E) \times \mathcal{L}(E) & \longrightarrow & \mathbb{R} \\ (u, v) & \longmapsto & \sum_{i=1}^{n} \langle u(\vec{e_i}), v(\vec{e_i}) \rangle \end{array} \right|$$

Montrer que ϕ est un produit scalaire sur $\mathcal{L}(E)$, et déterminer une base orthonormale pour ce produit scalaire

Exercice: Matrice symétrique

Soit $\mathcal{E} = \mathcal{M}_n(\mathbb{R})$ muni du produit scalaire usuel $\langle A, B \rangle = \operatorname{tr}(A^{\mathsf{T}}B)$.

Montrer que $\mathscr{S}_n(\mathbb{R})$ et $\mathscr{A}_n(\mathbb{R})$ sont supplémentaires orthogonaux, où $\mathscr{S}_n(\mathbb{R})$ désigne l'ensemble des matrices symétriques et $\mathscr{A}_n(\mathbb{R})$ l'ensemble des matrices antisymétriques.

Exercice: Polynômes de Legendre

On munit le \mathbb{R} -espace vectoriel $E = \mathcal{C}([-1,1],\mathbb{R})$ du produit scalaire usuel défini par

$$\forall (f,g) \in E^2: \langle f,g \rangle = \int_{-1}^1 f(t)g(t)dt.$$

On pose pour tout $n \in \mathbb{N}$,

$$L_n(X) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}X^n} [(X^2 - 1)^n]$$

Les polynômes $(L_n(X))_{n\in\mathbb{N}}$ s'appellent **polynômes de Legendre**. On pourra introduire $H_n(X)=(X^2-1)^n$.

- 1. Montrer que L_n est un polynôme de degré n dont on précisera le coefficient dominant.
- 2. En utilisant la formule de Leibniz, calculer $L_n(1)$ et $L_n(-1)$.
- 3. Avec une intégration par parties multiple, calculer $\langle L_n, L_n \rangle$.
- 4. Calculer $\langle Q, L_n \rangle$ lorsque Q est un polynôme de $\mathbb{R}_{n-1}[X]$.
- 5. En déduire $\langle L_n, L_m \rangle$ lorsque n m.
- 6. Comparer $(L_n)_{n\in\mathbb{N}}$ à l'orthonormalisée de la base canonique.

Exercice: Polynômes de Tchebychev

Soit $E = \mathbb{R}[X]$.

On pose, pour $(P,Q) \in E^2$,

$$\langle P, Q \rangle = \frac{2}{\pi} \int_{-1}^{1} \sqrt{1 - t^2} P(t)Q(t)dt$$

- 1. Montrer que $\langle ., . \rangle$ est bien un produit scalaire sur E.
- 2. Soit $n \in \mathbb{N}$. Montrer qu'il existe un unique polynôme U_n tel que

$$\forall \theta \in \mathbb{R} : \sin((n+1)\theta) = \sin(\theta)U_n(\cos\theta).$$

Les polynômes $(U_n(X))_{n\in\mathbb{N}}$ s'appellent polynômes de Tchebychev de seconde espèce.

3. Comparer $(U_n)_{n\in\mathbb{N}}$ à l'orthonormalisée de la base canonique.

III Projection orthogonale

Exercice: Orthonormalisation de Schmidt

Dans \mathbb{R}^3 muni du produit scalaire canonique, orthonormaliser en suivant le procédé de Schmidt la base suivante :

$$u = (1, 0, 1), v = (1, 1, 1), w = (-1, -1, 0).$$

Exercice: Trouver une base orthonormale

Déterminer une base orthonormale de $\mathbb{R}_2[X]$ muni du produit scalaire

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t)dt.$$

Exercice: Projection orthogonale dans \mathbb{R}^4

Soit $E = \mathbb{R}^4$ muni de son produit scalaire canonique et de la base canonique $\mathcal{B} = (e_1, e_2, e_3, e_4)$. On considère G le sous-espace vectoriel défini par les équations

$$\begin{cases} x_1 + x_2 &= 0 \\ x_3 + x_4 &= 0. \end{cases}$$

- 1. Déterminer une base orthonormale de G.
- 2. Déterminer la matrice dans $\mathcal B$ de la projection orthogonale p_G sur G.
- 3. Soit $x = (x_1, x_2, x_3, x_4)$ un élément de E. Déterminer la distance de x à G.

Exercice: Matrice symétrique

Soit $\mathcal{E} = \mathcal{M}_n(\mathbb{R})$ muni du produit scalaire usuel $\langle A, B \rangle = \operatorname{tr}(A^{\mathsf{T}}B)$.

- 1. Montrer que \mathcal{S} et \mathcal{A} sont supplémentaires orthogonaux, où \mathcal{S} désigne l'ensemble des matrices symétriques et \mathcal{A} l'ensemble des matrices antisymétriques.
- 2. Montrer que

$$\forall A \in \mathcal{E} : \operatorname{tr} A \leqslant \sqrt{n \operatorname{tr}(A^{\mathsf{T}} A)}.$$

Étudier le cas d'égalité.

3. Pour $A \in \mathcal{E}$, on pose

$$f_A \mid_{S} \longrightarrow \mathbb{R}$$

$$S \longmapsto \sum_{i=1}^n \sum_{j=1}^n (a_{i,j} - s_{i,j})^2$$

Déterminer le minimum de f_A et la matrice qui réalise ce minimum.

Exercice: Optimum

Déterminer $(a, b, c, d) \in \mathbb{R}^4$ tels que l'intégrale

$$\int_{-\pi/2}^{\pi/2} \left(\sin x - ax^3 - bx^2 - cx - d \right)^2 dx$$

soit minimale.