Numerical Optimization with Python

Lecture 1: Introduction

Lecture 01: Introduction

- Administrivia
- Motivational examples
- Mathematical formulation of an optimization problem
- A practitioner point of view
- Classification of optimization problems
- General course overview
- Background material overview of some mathematical concepts

- Email
 Yonathan.Mizrahi@post.idc.ac.il
- Office hours default is after class (but many more will be set)
- ► Course site https://moodle.idc.ac.il/2022/course/view.php?id=2201705
- ▶ 3 hours weekly
 - ▶ 2 hours lecture: theory, methods, algorithms, examples
 - ▶ 1 hour tutorial: Python programming, exercises and more examples

- Prerequisites (will be reviewed when needed)
 - Linear algebra (vectors and matrices and some geometry)
 - Multivariate calculus (gradients, Hessian, chain rule, Taylor's theorem)
 - Programming IS assumed, but Python language will be taught from scratch
 - Probability, statistics? No previous knowledge assumed but some examples will be easier to understand if you have some background (already one example today)

- Grading:
 - Dry exercises (2-3):
 - ▶ Mathematical concepts, small proofs, computation
 - ▶ Understanding of algorithms and methods taught in class
 - Programming exercises (2-3)
 - ► Implementing optimization algorithms
 - ► Test them on (usually very simple) examples

- Grading (cont.):
 - ▶ Course project presented in class during last three sessions of the semester:
 - ▶ Paper/book chapter/advanced method
 - ▶ Interesting application
 - ► Choose from a collection I propose, or: you are more than welcome to bring your own suggestions
 - ► Challenges you in the literature review, reading technical papers and presentation (in addition to the implementation challenge)

- Grading (cont.):
 - ► HW assignments each student submits their own work
 - Working in groups is encouraged, but once team work is done think and articulate your own solution
 - Project in pairs

Literature:

Optimization theory and algorithms will be based on selected chapters from:

Literature (cont.):

Python programming topics will be based on selected parts of:

Literature (cont.):

- Other resources we will use from time to time:
 - Python documentation and specific libraries docs/tutorials
 - ▶ Other technical papers or book chapters for students selection of project

Example 0: what do we already know from basic Calculus?

```
\min_{x \in \mathbb{R}} [e^x + x^2] \qquad \text{(unconstrained, single variable)} \min_{x \in [a,b]} [e^x + x^2] \qquad \text{(closed interval constraints, single variable)} \min_{x \in \mathbb{R}^2} [e^{x^2 + y^2}] \qquad \text{(unconstrained, multivariate)} \max[x^2 + 4y^2] \quad \text{subject to } x^2 + y^2 = 1 \text{ (eq. constrained, multivariate)}
```

Example 0: what do we already know from basic Calculus?

```
So... what's so new in this course??

x \in [a,b]

\min_{x \in \mathbb{R}^2} e^{x^2 + y^2} (unconstrained, multivariate)

\max_{x \in \mathbb{R}^2} x^2 + 4y^2 subject to x^2 + y^2 = 1 (constrained, multivariate)
```

- **Example 0:** what do we already know from basic Calculus?
- What's new:
 - In Calculus courses we could solve *BY HAND*. This does not happen in real life we need algorithms and numerical methods
 - ▶ We will *implement* numerical methods (write code and test it on problems)
 - ▶ We will solve families of problems with *real world applications*
 - We will need more advanced theory (typically not covered in Calculus courses) to enable a rich family of algorithms

- **Example 0:** what do we already know from basic Calculus?
- What's new (cont.):
 - ▶ We will account for *modeling*: how can a story formalized as a mathematical problem that can eventually be solved by an algorithm?
 - We will get some experience with existing optimization software (after we implement some methods on our own)

- ► Example 1: a transportation problem (adopted from Ch01 of Nocedel & Wright's book)
 - A company has two factories F_1 , F_2 and 12 retail outlets R_1 , ..., R_{12}
 - Factory i can produce a_i tons per week (the *capacity* of the factory)
 - ightharpoonup Retail outlet j requires b_j tons per week (the **demand** of the retail outlet)

- Example 1: a transportation problem (adopted from Ch01 of Nocedel & Wright's book)
 - \triangleright Shipping from factory i to retail outlet j costs c_{ij}
 - ▶ **Problem**: determine how many tons to ship from each factory to each retail outlet such that conditions are satisfied and total cost is minimized

- **Example 1:** a transportation problem (cont.)
 - Denote the unknown variables by x_{ij} : the mount shipped from F_i to R_j
 - ► The total cost to minimize is then:

$$c_{1,1}x_{1,1} + \dots + c_{1,12}x_{1,12} + c_{2,1}x_{2,1} + \dots + c_{2,12}x_{2,12} = \sum_{ij} c_{ij}x_{ij}$$

- ▶ The two capacity constraints are: $\sum_{j=1}^{12} x_{ij} \le a_i$ for i = 1,2
- ▶ The 12 demand constraints are: $\sum_{i=1}^{2} x_{ij} \ge b_j$ for j = 1, 2, ..., 12
- Non-negativity constraints: $x_{ij} \ge 0$ for all i, j

- **Example 1:** a transportation problem (cont.)
 - ▶ We arrived at the following formulation:

$$\min \sum_{ij} c_{ij} x_{ij}$$

Subject to:

$$\sum_{j=1}^{12} x_{ij} \le a_i$$
 for $i = 1,2$

$$\sum_{i=1}^{2} x_{ij} \ge b_j$$
 for $j = 1, 2, ..., 12$

$$x_{ij} \ge 0$$
 for all i, j

- **Example 1:** a transportation problem (cont.)
 - We arrived at the following formulation:

$$\min \sum_{ij} c_{ij} x_{ij}$$

Subject to:

$$\sum_{i=1}^{12} x_{ij} \le a_i$$
 for $i = 1,2$

$$\sum_{i=1}^{2} x_{ij} \ge b_j$$
 for $j = 1, 2, ..., 12$

$$x_{ij} \ge 0$$
 for all i, j

The objective function (the one we minimize) and all constraints are linear in the unknown variables

This type of problem is called a Linear Program (LP)

- ► Example 2: slightly more complicated modelling portfolio optimization (Nocedel & Wright Ch16/Boyd Ch04)
 - ➤ To increase expected return. an investor must be willing to tolerate greater risks
 - ▶ The tradeoff is modeled in *portfolio theory*
 - Assume n possible investments with return $r_1, ..., r_n$.

Fig: The Economic Times https://economictimes.indiatimes.com/wealth/invest/why-you-should-not-try-to-time-the-stock-market/articleshow/64230309.cms?from=mdr

- ► Example 2: slightly more complicated modelling portfolio optimization (Nocedel & Wright Ch16/Boyd Ch04)
 - These are not known, and are modelled as *random* variables with expected values $\mu_i = \mathrm{E}[r_i]$ and variance $\sigma_i^2 = \mathrm{E}[(r_i \mu_i)^2]$
 - If you are not familiar with *expectation* and *variance* yet, think of the expectations as averages over time of past returns, and of variance as a measure of how much the past returns fluctuate from their average (how volatile)

- Example 2: portfolio optimization (cont.)
 - ▶ A portfolio is a mixture of the investments: $R = \sum_{i=1}^{n} x_i r_i$
 - ▶ The x_i 's are non-negative weights: $x_1, ..., x_n \ge 0, \sum_{i=1}^n x_i = 1$
 - ► To model how desirable the portfolio is we need the expected return and variance of the random variable *R*. We will see in an exercise:

$$E[R] = \sum_{i=1}^{n} x_i \mu_i = x^T \mu$$
 and $Var[R] = x^T Gx$,

Where G is the $n \times n$ symmetric matrix with $G_{ij} = \mathbb{E}[(r_i - \mu_i)(r_j - \mu_j)]$ called the covariance matrix

- Example 2: portfolio optimization (cont.)
 - As the name suggests, the covariance matrix $G_{ij} = \mathrm{E} \big[(r_i \mu_i) \big(r_j \mu_j \big) \big]$ measures the tendency of investments to move in the same direction (co-vary)
 - ▶ We are interested in a portfolio with high return and small variance
 - ▶ The model by *Markowitz* suggests the following formulation:

$$\max[x^T \mu - \kappa x^T G x]$$

Subject to:
$$\sum_{i=1}^{n} x_i = 1, x_i \ge 0$$

- Example 2: portfolio optimization (cont.)
 - ► *Markowitz* portfolio optimization:

$$\max[x^T \mu - \kappa x^T G x]$$

Subject to:
$$\sum_{i=1}^{n} x_i = 1, x_i \ge 0$$

- \blacktriangleright The constant κ (Greek letter kappa) is a risk tolerance parameter
- ► We arrived at a maximization problem with a quadratic objective and linear constraints: Quadratic Programming (QP), for which we will study algorithms

- Example 2: portfolio optimization (cont.)
 - Markowitz portfolio optimization alternative formulation:

$$\min x^T G x$$

Subject to:
$$\begin{cases} x^T \mu \ge r_{min} \\ \sum_{i=1}^n x_i = 1, x_i \ge 0 \end{cases}$$

- In this modeling we have a hard constraint on minimal return, and minimize (softly) the risk objective (problems are not at all equivalent)
- Still qualifies as QP (but what if we had the risk as a hard constraint?)

- ▶ In examples 1-2 we did not *solve*
- We focused on *modelling*: formalizing a real life problem/business use-case as a mathematical problem
- Modelling is obviously not unique
- We could have a much less simple transportation model (storage and manufacturing cost, non-linear price models, etc.)
- We could have chosen many other models to select a portfolio (other objectives, other constraints such as quadratic risk in the constraints)

A Practitioner's Point of View

Customer and/or Product manager

Present real life problems and business cases, typically:

- Complex
- Non-formally defined
- Missing information or vague
- Hard!

Technology (R&D)

Value?

Modelling:

- Formal problem definition
- Can we model as an optimization problem?
- One that is solvable? Perhaps even solved?
- Simplifications? Relaxations?

Solving:

- Correctness
- Efficiency
- Robustness
- In house vs. commercial solvers
- Ad-hoc vs. general algorithm

- ▶ Denote by $x \in \mathbb{R}^n$ the vector of variables, also called *unknowns* or *parameters*
- f is the objective function: a (scalar) function of x we want to minimize (or maximize)
- We may also have *constraint functions*, denoted c_i or f_i : scalar functions of x that define equalities and inequalities that the unknown vector x must satisfy

In the above notations, the optimization problems we will study can be presented as:

$$\min_{x\in\mathbb{R}^n}f(x)$$

Subject to:

$$c_i(x) = 0, i \in \mathcal{E}$$
 (equality constraints)

$$c_i(x) \leq 0, i \in \mathcal{I}$$
 (inequality constraints)

Example:

$$\min_{x \in \mathbb{R}^2} [(x_1 - 2)^2 + (x_2 - 1)^2]$$

Subject to:

$$x_1^2 - x_2 \le 0$$

$$x_1 + x_2 \le 2$$

 c_1 c_2 contours of f region c_1 c_2 c_3 c_4 c_4 c_5 c_6 c_7 c_8 c_8

(Fig: Nocedal & Wright, Ch01)

- Alternative notations we may use/come across:
 - Max instead of min (can negate the objective to convert)
 - \triangleright RHS of constraint functions appears as a constant vector b (not necessarily zero)
 - ▶ Constraints with ≥ instead of ≤
- ► The above formulations are equivalent and easily transform from one to the other by rearranging the equations

Classification of Optimization Problems

- Constrained vs. unconstrained optimization
- Linear vs. nonlinear optimization
- Convex vs. nonconvex optimization
- Local vs. global optimization
- Continuous vs. discrete optimization
- Stochastic vs. deterministic optimization

General Course Overview

- Week 1: Introduction, mathematical formulation, some review and basic Python
- Week 2+3: Unconstrained optimization problem definition, necessary and sufficient conditions for local min, convexity (definitions), Line Search algorithms (Gradient Descent, Newton's Method, Quasi-Newton methods
- Week 4+5: Constrained Optimization problem definition, KKT conditions formulation, Lagrangian function and Lagrange dual problem

General Course Overview

- Week 6+7: Lagrange duality, proof of KKT conditions and examples, perturbations and sensitivity analysis
- Week 8+9: Algorithms for constrained optimization Linear KKT, Newton's method, Interior Point methods (log-barrier method)
- Week 10: Beyond convexity: penalty methods and Augmented
 Lagrangian for local minimization
- ► Week 11-13: Project presentations (~30 min. talk per topic)

Review of Mathematical Background

- We now set up mathematical notation for the course, and recall some important facts from Geometry, Linear Algebra and Multivariate
 Calculus
- Not an exhaustive review
- During the course other material we will need will be reviewed when used

Review of Mathematical Background

The Euclidean space \mathbb{R}^n

 \blacktriangleright Most of our time will be spent in the real Euclidean space of dimension n:

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, x_i \in \mathbb{R} \right\}$$

- By convention vectors are columns, unless explicitly stated otherwise (x denotes a column vector, x^T denotes a row vector)
- ▶ The *standard inner product* on \mathbb{R}^n : $\langle x, y \rangle = y^T x = \sum_{i=1}^n x_i y_i$

Note: subscript sometimes used for index of a scalar component and sometimes of a point/vector. This will be clear according to context

The Euclidean space \mathbb{R}^n (cont.)

▶ The standard inner product induces the *Euclidean norm* (length of a vector):

$$||x||_2 \coloneqq \sqrt{x^T x} = [x_1^2 + \dots + x_n^2]^{\frac{1}{2}}$$

- (when we omit the 2 and write ||x|| we mean Euclidean norm, and occasionally we will come across other types of norms)
- From Law of Cosines it follows that: $y^T x = ||x|| ||y|| \cos \theta$
- Vectors x, y are called *orthogonal* if $x^Ty = 0$ ($\theta = 90^\circ$) and *orthonormal* if ||x|| = ||y|| = 1

The Euclidean space \mathbb{R}^n (cont.)

- An *affine subspace* is a translated linear subspace (not necessarily contains the origin)
- A hyper-plane is an n-1 dimensional affine subspace of \mathbb{R}^n that can be represented by $a^Tx=b$ for a constant nonzero vector $a\in\mathbb{R}^n$ and a scalar a

 $b \in \mathbb{R}$

The vector a is then orthogonal to the hyper-plane, and is called **the normal** vector: $a^T(p_2 - p_1) = a^Tp_2 - a^Tp_1 = b - b = 0$

- The hyper-plane $a^Tx = b$ separates space into two components: one **open** half-space $a^Tx > b$, the other **open half-space** $a^Tx < b$ and $a^Tx = b$ is their common boundary
- The normal vector a points in the direction of $a^Tx > b$ (why?)

- The *open ball* of radius r around x_0 : $B(x_0, r) \coloneqq \{x \in \mathbb{R}^n : ||x x_0|| < r\}$
- For the *closed ball* the inequality is \leq and denoted $\bar{B}(x_0, r)$
- A subset $U \subset \mathbb{R}^n$ is called *open* if for every $u \in U$ there is an open ball around u contained in U
- A subset $V \subset \mathbb{R}^n$ is called *closed* if it contains all limit points of all possible sequences of points in V

- ▶ A subset $F \subset \mathbb{R}^n$ is **bounded** if for all $x \in F$, $||x|| \leq M$ for some constant M > 0
- Some useful facts and definitions:
 - $ightharpoonup A \subset \mathbb{R}^n$ is open $\Leftrightarrow A^C$ is closed
 - ightharpoonup A subset of \mathbb{R}^n that is closed and bounded is called *compact*
 - ▶ The *interior* of A is the largest open set contained in A and is denoted int(A)
 - ▶ The *closure* of A is the smallest closed set containing A and is denoted cl(A) (or \overline{A})

- A subset $C \subset \mathbb{R}^n$ is called *convex* if for any pair $x, y \in C$, the line segment between x and y is also contained in C
- The line segment can be written as all *convex combinations* of x and y: $\alpha x + (1 \alpha)y$, for all $\alpha \in [0,1]$
- We will study convex sets and *convex functions* in further depth, as they play an important role in mathematical optimization

- Important types of linear combinations and their geometric:
 - Linear combinations: $\alpha x + \beta y$ where $\alpha, \beta \in \mathbb{R}$ span a 2D plane (linear sub-space)
 - ▶ Affine combinations: $\alpha x + \beta y$ where $\alpha + \beta = 1$ span a 1D line (affine subspace)
 - **Convex combinations:** $\alpha x + \beta y$ where $\alpha + \beta = 1$ and $\alpha, \beta \ge 0$ span the line segment connecting x and y (the convex hull of x, y)
 - ► Conic combinations: $\alpha x + \beta y$ where and $\alpha, \beta \ge 0$ span the convex cone with apex at the origin and supported by x, y (we will better understand cones later in the course)

Vectors and matrices

- Matrices are 2D arrays: $A = \left[a_{ij}\right]_{i=1,\dots,m,j=1,\dots,n}$ row index and column index
- ▶ Given bases for \mathbb{R}^n , \mathbb{R}^m , A represents a linear transformation: y = Ax
- For example: $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & -4 \end{bmatrix}$

$$y = Ax = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 - x_3 \\ 2x_1 + 3x_2 - 4x_2 \end{bmatrix} \mathbb{R}^3 (n = 3)$$

$$\mathbb{R}^2 \ (n=2)$$

Vectors and matrices

- A matrix $A \in \mathbb{R}^{m \times n}$ induces four fundamental spaces:
 - ▶ The *range (or image)* of A: a subspace of \mathbb{R}^m : $R(A) := \{Ax : x \in \mathbb{R}^n\}$
 - ▶ The *null-space* (or Kernel) of A: a subspace of \mathbb{R}^n : $N(A) := \{x \in \mathbb{R}^n : Ax = 0\}$
 - ▶ The *range (or image)* of A^T : a subspace of \mathbb{R}^n : $R(A^T) := \{A^Ty: y \in \mathbb{R}^m\}$
 - ▶ The *null-space* (or Kernel) of A^T : a subspace of \mathbb{R}^m : $N(A^T) := \{y \in \mathbb{R}^m : A^Ty = 0\}$
- ► Take a few minutes to remember where each subspace is contained and which of them are the *orthogonal complement* of which

Vectors and matrices

Matrix vector multiplication of $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$:

$$Ax = y \in \mathbb{R}^m$$

- A linear transformation of x from \mathbb{R}^n to \mathbb{R}^m
- Now view: each element (row) of y is a *linear combination* of the elements of x, with coefficients from the corresponding row of A

Vectors and matrices (cont.)

Matrix vector multiplication $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$:

$$Ax = y \in \mathbb{R}^m$$

Column view: y is a *linear combination of the columns* of A, with coefficients given by x:

Denoting:
$$A = \begin{bmatrix} | & \cdots & | \\ a_1 & \dots & a_n \\ | & \cdots & | \end{bmatrix}$$
, then $y = x_1 a_1 + \dots + x_n a_n$

Vectors and matrices (cont)

- Five useful views of matrix multiplication AB = C, $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times d}$
 - ▶ View #1 the definition (rows × columns, scalar view): $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$
 - View #2 row view: each row of C is a linear combination of the rows of B, with coefficients given by the respective row in A, i.e. row of $A \times$ the entire matrix B
 - View #3 column view: each column of C is a linear combination of the columns of A, with coefficients given by the respective column in B, i.e. the entire matrix $A \times a$ column of B

Vectors and matrices (cont)

- Five useful views of matrix multiplication AB = C, $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times d}$
 - View #4 columns \times rows (rank-one view) C is the sum of n matrices, each given by column k of $A \times \text{row } k$ of B (each matrix of rank one)
 - ▶ View #5 block view: the above can be done block-wise and still hold.

Eigenvalues and eigenvectors:

- **Definition:** a nonzero vector v is an *eigenvector* of the square matrix A with *eigenvalue* λ (scalar) if $Av = \lambda v$
- ▶ Geometrically: directions in space where the matrix *operates as a scalar*
- If $A \in \mathbb{R}^{n \times n}$ admits n eigenvectors that are *linearly independent*, denote by V the matrix with $v_1, ..., v_n$ stacked as columns, then we can write:

$$AV = \begin{bmatrix} | & & | \\ Av_1 & \cdots & Av_n \\ | & | \end{bmatrix} = \begin{bmatrix} | & & | \\ \lambda_1v_1 & \cdots & \lambda_nv_n \\ | & | \end{bmatrix}$$

Eigenvalues and eigenvectors (cont.):

Now denote by Λ the diagonal matrix with elements $\lambda_1, ..., \lambda_n$ in the diagonal, then:

$$AV = \begin{bmatrix} | & & | \\ Av_1 & \cdots & Av_n \\ | & | \end{bmatrix} = \begin{bmatrix} | & & | \\ \lambda_1v_1 & \cdots & \lambda_nv_n \\ | & | \end{bmatrix} = V\Lambda$$

Hence: $AV = V\Lambda \Rightarrow \Lambda = V^{-1}AV$ (we got the diagonalization of A, also referred to as its *spectral decomposition*)

Symmetric Matrices

- **Definition:** A is symmetric if $a_{ij} = a_{ji}$, i.e. $A = A^T$
- Properties of symmetric matrices:
 - ► All eigenvalues and eigenvectors are real
 - ► Eigenvectors are independent (hence diagonalizable)
 - ▶ Eigenvectors can be chosen such that they are *orthonormal*

Orthogonal Matrices

- ▶ **Definition:** *V* is *orthogonal* if columns of *V* are orthonormal (each have unit length, and each pair is orthogonal)
- Properties of real an orthogonal matrix V:
 - $V^T V = I$, namely V^T is V^{-1}
 - \rightarrow det $V = \pm 1$
 - ► Geometrically: rotations or reflections

Orthogonal Matrices (cont)

Orthogonal matrices preserve distances (isometry):

$$||Vx - Vy||^2 = (Vx - Vy)^T (Vx - Vy) = (x^T V^T - y^T V^T)(Vx - Vy) = (x - y)^T V^T V(x - y)$$
$$= (x - y)^T (x - y) = ||x - y||^2$$

Orthogonal Matrices and Symmetric matrices

- Putting the above together, we have that a symmetric matrix A admits a spectral decomposition of the form: $\Lambda = V^T A V$ (with V orthogonal)
- (Remember that Hessian matrices of twice continuously differentiable functions are symmetric)

Multi-variate derivatives:

▶ Denote by $f: \mathbb{R}^n \to \mathbb{R}$ a scalar valued function with continuous partial derivatives of second order

The gradient vector is the vector of partial derivatives: $\nabla f = \begin{bmatrix} \overline{\partial x_1} \\ \vdots \\ \underline{\partial f} \\ \overline{\partial x_n} \end{bmatrix}$

- ▶ By convention, the gradient is a column vector, i.e. a direction in the same space of the function's parameters
- When we refer to the *linear operator* we will denote it by df: the row vector (of partial derivatives) that operates by matrix multiplication
- More generally, for $F: \mathbb{R}^n \to \mathbb{R}^k$ denote by dF the matrix of partial derivatives: $[dF]_{ij} = \frac{\partial F_i}{\partial x_i}$, also called the *differential matrix* of F or the *Jacobian matrix*

- Writing the derivatives in the above notation enables using the chain rule for vector valued functions
- Chain rule function composition corresponds to matrix multiplication of the differential matrices:

$$F: \mathbb{R}^n \to \mathbb{R}^k$$
 and $G: \mathbb{R}^k \to \mathbb{R}^d$ differentiable $\Rightarrow H \coloneqq G \circ F: \mathbb{R}^n \to \mathbb{R}^d$ differentiable and:
$$dH(x) = dG(y)dF(x)$$

- Chain rule example: gradients are orthogonal to level sets of differentiable functions
- Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable and $c(t), t \in (a,b)$ a smooth curve for which $f\bigl(c(t)\bigr) = \mathrm{const}$ $\nabla f(p)$
- ► Then $\frac{d}{dt}[f \circ c] = \frac{d}{dt} \text{const} = 0$
- But $\frac{d}{dt}[f \circ c](t) = df(c(t))\frac{dc}{dt}(t) \Rightarrow$ the inner product: $\langle \nabla f, c'(t) \rangle$ is zero, and hence ∇f is orthogonal to tangent space

- Hessian: the matrix of second order derivatives of a scalar function
- Some important simple cases of vector differentiation (check by differentiation and make sure the look familiar from their univariate analogs!):
 - $f(x) = a^T x \Rightarrow \nabla f(x) = a$ (gradient of a linear function)
 - ▶ $f(x) = x^T Qx \Rightarrow \nabla f(x) = [Q + Q^T]x$ and if Q symmetric: 2Qx (gradient of a quadratic function)
 - ► $f(x) = x^T Qx \Rightarrow H(x) = 2Q$ (Hessian of a quadratic function)

- Let u be a unit vector, that is: $u^T u = 1$
- For continuously differentiable functions, the *directional derivative* of f in the direction u (denoted $\partial_u f$) can be computed by the inner product: $\langle \nabla f, u \rangle$

- lackbox Geometrically: the slope at direction u is in fact the projection of the gradient on u
- Therefore: $\partial_u f = \|\nabla f\| \|u\| \cos \theta$ and ∇f is the direction of greatest ascend, and $-\nabla f$ is the direction of steepest descent, which will play a role in several algorithms for minimization

Next Week

- Unconstrained optimization problem definition
- Overview of algorithms for unconstrained optimization