Parameter combinations used for the experiment

default_params

```
params_one = { "random_state": 33, "activation": "relu", "hidden_layer_sizes": (12, 24, 48, 96), "learning_rate_init": 0.001, "batch_size": 20 }

params_two = { "random_state": 33, "activation": "relu", "hidden_layer_sizes": (12, 24, 48, 96), "learning_rate_init": 0.001, "batch_size": 50 }
```

Other Model 1

This model was intended to test the performance of the model on the given dataset without applying any feature engineering or transformation techniques. This is to understand the impact of some of the hyper params on the basic model.

Features used: All features of the given data set were used. **Data split:** 70% of data is used for training, with 10% of validation and 20% for testing. **Evaluation metrics:** RMSE and MAE scores were used to evaluate the performance of the model. **Observations:**

Model				
Params	Train (rmse)	Validate (rmse)	Test (rmse)	Evaluate (rmse)
default_param	0.0102359906982	0.010487442622846	0.0099042158689	0.010028905979234
s	38237	05	87822	757
params_one	0.0069322239129	0.006729120103675	0.0066024033722	0.006681047017901
	52257	562	55023	092
params_two	0.0078883547366	0.007768264985211	0.0073810689020	0.007521259696380
	37352	542	74671	296

Other Model 2

This model was intended to test the performance of the model, after feature engineering and standardisation.

Features used: The candle positions and robot positions were used to calculate the euclidean distance between each candle and robot, which were used along with collision and orientation of robot. **Data split:** 70% of data is used for training, with 10% of validation and 20% for testing. **Evaluation metrics:** RMSE and MAE scores were used to evaluate the performance of the model. **Observations:**

Model				
Params	Train (rmse)	Validate (rmse)	Test (rmse)	Evaluate (rmse)
default_param	0.0058786611908	0.005844193387682	0.0060938337200	0.005924278854103
s	33931	432	59899	4415
params_one	0.0049782769073	0.005092708145074	0.0052295245170	0.005039975722926
	360225	442	103765	263
params_two	0.0049978788891	0.005126282787313	0.0052903190521	0.005069214445085
	05543	408	238	569

Other Model 3

This model evaluates the model after addition of more features and uses standardisation and transformation techniques.

Features used: The candle positions and robot positions were used to calculate the distance of each robot with the candles along the x and y axis seperately, which were used along with collision and orientation of robot.

Data split: 70% of data is used for training, with 10% of validation and 20% for testing.

Evaluation metrics: RMSE and MAE scores were used to evaluate the performance of the model.

Observations:

Model				
Params	Train (rmse)	Validate (rmse)	Test (rmse)	Evaluate (rmse)
default_param s	0.0068574568517 373235	0.007020733591741 029	0.0072753478942 59288	0.006957372725829 52
params_one	0.0061203458064 05142	0.006308155320899 452	0.0065383396397 85879	0.006222735763526 444
params_two	0.0062767996797 41773	0.006518804555387 753	0.0066865500200 99288	0.006382960851495 031

Final Model

This model evaluates the model after addition of more features and uses standardisation and transformation techniques.

Features used: Distance between robot and candles, both horizontal and vertical distances as well as Euclidean distances, along with collision and orientation is used.

Data split: 70% of data is used for training, with 10% of validation and 20% for testing.

Evaluation metrics: RMSE and MAE scores were used to evaluate the performance of the model.

Observations:

Model				
Params	Train (rmse)	Validate (rmse)	Test (rmse)	Evaluate (rmse)
default_param	0.0067960702838	0.007285995978415	0.0072841852820	0.006942700515954
s	39948	394	0731	1965
params_one	0.0047922465056	0.004999201637891	0.0050786541525	0.004870231346732
	49399	569	23908	643
params_two	0.0050802811363	0.005388566824830	0.0054764990968	0.005190364305617
	52966	438	533475	732

Key Findings / Observations

More experiments were performed on the dataset, Only the best params that works for these datasets were only recorded in this report.

- relu is the best activation function, which provides the highest performance scores
- the best achitecture in my experiments is (12, 24, 48, 96)
- smaller batch sizes performes well
- learning rate of 0.001 gives best results
- feature engineering is key to better results