

Aritmética binária Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

- Como é feita a representação numérica?
 - Bases numéricas
 - 2 (binário)
 - 10 (decimal)
 - ▶ 16 (hexadecimal)

$$N\'{u}mero = \sum_{i=0}^{n-1} B_i \times N^i$$

$$\begin{array}{rll} 33_{10} & = & 1 \times 2^5 + 1 \times 2^0 = 100001_2 \\ & = & 3 \times 10^1 + 3 \times 10^0 = 33_{10} \\ & = & 2 \times 16^1 + 1 \times 16^0 = 21_{16} \end{array}$$

- Como o sinal dos números binários é implementado?
 - Sinal e magnitude
 - ► Complemento a 1 e 2

- Como o sinal dos números binários é implementado?
 - Sinal e magnitude
 - Complemento a 1 e 2
- De que maneira as principais operações aritméticas em formato binário são implementadas?
 - Adição
 - Subtração
 - Multiplicação
 - Divisão

- Quais são os menores e maiores números que podem ser representados pela arquitetura?
 - Capacidade de armazenamento
 - ► Conceitos de overflow e underflow

- Quais são os menores e maiores números que podem ser representados pela arquitetura?
 - Capacidade de armazenamento
 - Conceitos de overflow e underflow
- ► E as frações e os números reais?
 - Padrão IEEE 754

- Métodos para representação de sinal em números
 - Sinal e magnitude
 - Complemento a 1
 - Complemento a 2

1 bit de sinal + 7 bits de dados

- Sinal e representatividade
 - $ightharpoonup + \leftrightarrow S = 0 \text{ e } 2^7 \text{ valores}$
 - ▶ $\leftrightarrow S = 1 \text{ e } 2^7 \text{ valores}$

- Método de sinal e magnitude (8 bits)
 - Primeiro bit indica o sinal e demais bits a magnitude

- Método de sinal e magnitude (8 bits)
 - Primeiro bit indica o sinal e demais bits a magnitude

Duas representações para o valor 0

- Método de complemento a 1 (8 bits)
 - O valor de sinal oposto é o complemento bit a bit

- Método de complemento a 1 (8 bits)
 - O valor de sinal oposto é o complemento bit a bit

Duas representações para o valor 0

- Método de complemento a 2 (8 bits)
 - O valor de sinal oposto é o complemento bit a bit + 1

- Método de complemento a 2 (8 bits)
 - O valor de sinal oposto é o complemento bit a bit + 1

 $2^7 = 128$ valores negativos e positivos

- Adição binária de 8 bits
 - $A = 200_{10} = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^3 = 11001000_2$
 - $B = 25_{10} = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 = 00011001_2$
 - $R = A + B = 225_{10} = 11100001_2$

A_i	B_i	R_i	C_i
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$\begin{array}{ccc}
200 & & 11001000_2 \\
+25 & \Longrightarrow & +00011001_2 \\
225 & & 11100001_2
\end{array}$$

- Adição binária de 8 bits
 - $A = 200_{10} = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^3 = 11001000_2$
 - $B = 25_{10} = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 = 00011001_2$
 - $R = A + B = 225_{10} = 11100001_2$

A adição de números com n bits pode gerar um resultado de até n+1 bits

- Subtração binária de 8 bits
 - $A = 200_{10} = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^3 = 11001000_2$
 - $B = 25_{10} = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 = 00011001_2$

$$R = A - B = 175_{10} = 10101111_2$$

A_i	B_i	R_i	C_i			
0	0	0	0	200		11001000
0	1	1	1	<u>–25</u>	\Longrightarrow	<u>-00011001</u>
1	0	1	0	175		10101111
1	1	0	0			

- Subtração binária de 8 bits
 - $A = 200_{10} = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^3 = 11001000_2$
 - $B = 25_{10} = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 = 00011001_2$
 - Arr $R = A B = 175_{10} = 10101111_2$

A_i	B_i	R_i	C_i			
0	0	0	0	200		11001000
0	1	1	1	<u>–25</u>	\Longrightarrow	<u>-00011001</u>
1	0	1	0	175		10101111
1	1	0	0			

A subtração de números com n bits pode gerar um resultado de até n+1 bits

- Multiplicação binária de 8 bits
 - $A = 11_{10} = 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0 = 00001011_2$
 - $B = 13_{10} = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0 = 00001101_2$
 - Arr $R = A \times B = 143_{10} = 10001111_2$

					1011
A_{i}	B_i	R_i	11		×1101
0	0	0	<u>×13</u>		1011
0	1	0	33	\Longrightarrow	0000
1	0	0	+11		1011
1	1	1	143		+1011
					10001111

- Multiplicação binária de 8 bits
 - $A = 11_{10} = 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0 = 00001011_2$
 - $B = 13_{10} = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0 = 00001101_2$
 - $R = A \times B = 143_{10} = 10001111_2$

A multiplicação de números com *n* bits necessita de até 2*n* bits para armazenar o resultado

- Divisão binária de 8 bits
 - $A = 143_{10} = 1 \times 2^7 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 10001111_2$
 - $B = 10_{10} = 1 \times 2^3 + 1 \times 2^1 = 00001010_2$
 - \triangleright Q = A \div B = 14₁₀ = 00001110₂
 - $R = A \mod B = 3_{10} = 00000011_2$

- Divisão binária de 8 bits
 - $A = 143_{10} = 1 \times 2^7 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 10001111_2$
 - $B = 10_{10} = 1 \times 2^3 + 1 \times 2^1 = 00001010_2$
 - \triangleright Q = A \div B = 14₁₀ = 00001110₂
 - $R = A \mod B = 3_{10} = 00000011_2$

A divisão de números com *n* bits precisa de até *n* bits para armazenar o quociente e o resto

- Adição/subtração binária de 8 bits
 - Método de sinal e magnitude
 - $A = -72_{10} = 11001000_2$
 - $B = +25_{10} = 00011001_2$
 - $R = A + B = -(|A| |B|) = -47_{10} = 10101111_2$

1001000

-0011001

<u>1</u>0101111

- Adição/subtração binária de 8 bits
 - Método de sinal e magnitude

$$A = -72_{10} = 11001000_2$$

$$B = +25_{10} = 00011001_2$$

$$R = A + B = -(|A| - |B|) = -47_{10} = 10101111_2$$

1001000

<u>-0011001</u>

<u>1</u>0101111

Ajuste do sinal e cálculo utilizando a magnitude

- Adição/subtração binária de 8 bits
 - Método de complemento a 1

```
A = -72_{10} = 10110111_2
```

$$B = +25_{10} = 00011001_2$$

$$R = A + B = -47_{10} = 11010000_2$$

10110111

+00011001

11010000

- Adição/subtração binária de 8 bits
 - Método de complemento a 1

$$A = -72_{10} = 10110111_2$$

$$B = +25_{10} = 00011001_2$$

$$R = A + B = -47_{10} = 11010000_2$$

10110111

+00011001

11010000

Basta realizar a adição dos números com sinal

- Adição/subtração binária de 8 bits
 - Método de complemento a 2

$$A = -72_{10} = 10111000_2$$

$$B = +25_{10} = 00011001_2$$

$$R = A + B = -47_{10} = 11010001_2$$

10111000

+00011001

11010001

- Adição/subtração binária de 8 bits
 - Método de complemento a 2

$$A = -72_{10} = 10111000_2$$

 $B = +25_{10} = 00011001_2$

$$R = A + B = -47_{10} = 11010001_2$$

10111000

+00011001 11010001

Sem valores duplicados para 0

- Extensão de sinal dos números
 - Codificação de complemento a 2
 - $A[8] = 10000000_2 = -128_{10}$
 - $B[32] = 11111 \cdots 1111110000000_2 = -128_{10}$

			S	В ₆	<i>B</i> ₅	B ₄	<i>B</i> ₃	B_2	B_1	B_0
			1	0	0	0	0	0	0	0
		/	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
S	B ₃₀	 B ₈	<i>B</i> ₇	<i>B</i> ₆	B_5	B ₄	<i>B</i> ₃	B_2	B_1	B_0
1	1	 1	1	0	0	0	0	0	0	0

$$B = A$$

- Como implementar de forma escalável e com portas lógicas as operações de adição e de subtração?
 - Método de complemento a 2

Χ	Υ	Ζ
0	0	0
0	1	1
1	0	1
1	1	0

$$Z = X + Y = X \mathbf{xor} Y$$

- Como implementar de forma escalável e com portas lógicas as operações de adição e de subtração?
 - Método de complemento a 2

Χ	Υ	Ζ
0	0	0
0	1	1
1	0	1
1	1	0

$$Z = X + Y = X$$
 xor Y

E como fazer o "vai a um" (carry)?

- Como implementar de forma escalável e com portas lógicas as operações de adição e de subtração?
 - Método de complemento a 2

Χ	Υ	C_{in}	Ζ	C _{out}
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

$$Z = X + Y + C_{in} = X \text{ xor } Y \text{ xor } C_{in}$$

$$C_{out} = (X \text{ and } Y) \text{ xor } (C_{in} \text{ and } (X \text{ xor } Y))$$

- Como implementar de forma escalável e com portas lógicas as operações de adição e de subtração?
 - Método de complemento a 2

$$Z[32] = X[32] + Y[32]$$

Exemplo

- Considerando o método de codificação de complemento a 2 e capacidade de armazenamento de 8 bits, realize as operações abaixo passo a passo em codificação binária
 - \rightarrow 4 + 8 + 16 + 32
 - \triangleright 5 3 + 8 13
 - \triangleright 2 × 3 × 4 × -5

Limites numéricos

- Quais são os limites para os números inteiros?
 - Capacidade de 32 bits (sem sinal)

B ₃₁	B_{30}	B_{29}	• • • •	B_2	B_1	B_0		
1	1	1		1	1	1	\Longrightarrow	$2^{32} - 1$
:				:	:	:		:
0	0	0		0	1	1	\Longrightarrow	+3
0	0	0		0	1	0		+2
0	0	0		0	0	1	\Longrightarrow	+1
0	0	0		0	0	0	\Longrightarrow	0

Limites numéricos

- Quais são os limites para os números inteiros?
 - ► Complemento a 2 com 32 bits (com sinal)

B ₃₁	B ₃₀	B_{29}	• • •	B_2	B_1	B_0		
0	1	1	• • •	1	1	1	\implies	$2^{31} - 1$
i	i	į		÷	:	:		:
0	0	0		0	0	1	\implies	+1
0	0	0		0	0	0	\implies	0
1	1	1		1	1	1	\implies	-1
:				:	:	:		:
1	0	0		0	0	0	\implies	-2^{31}

Limites numéricos

O que acontece quando a capacidade de armazenamento do hardware é extrapolado?

Limites numéricos

- O que acontece quando a capacidade de armazenamento do hardware é extrapolado?
 - Capacidade de 8 bits
 - Sem sinal: é gerado um bit excedente (carry)

```
\begin{array}{ccc}
159_{10} & 10011111_2 \\
+121_{10} & \Longrightarrow & +01111001_2 \\
\hline
280_{10} & \underline{1}00011000_2 \\
00011000_2 = 24_{10}
\end{array}
```

Limites numéricos

- O que acontece quando a capacidade de armazenamento do hardware é extrapolado?
 - Capacidade de 8 bits
 - Sem sinal: é gerado um bit excedente (carry)

$$\begin{array}{ccc}
159_{10} & & 10011111_{2} \\
+121_{10} & \Longrightarrow & +01111001_{2} \\
280_{10} & & 100011000_{2}
\end{array}$$

$$\begin{array}{c}
00011000_{2} = 24_{10}
\end{array}$$

 Com sinal: ocorre quando o sinal do resultado é diferente para operandos que possuem o mesmo sinal

$$\begin{array}{ccc}
119_{10} & 01110111_{2} \\
+102_{10} & \Longrightarrow & +01100110_{2} \\
221_{10} & \underline{1}1011101_{2} \\
& & & & & & & \\
11011101_{2} = -35_{10}
\end{array}$$

Limites numéricos

- O que acontece quando a capacidade de armazenamento do hardware é extrapolado?
 - Capacidade de 8 bits
 - Sem sinal: é gerado um bit excedente (carry)

$$\begin{array}{ccc}
159_{10} & & 10011111_{2} \\
+121_{10} & \Longrightarrow & +01111001_{2} \\
280_{10} & & \underline{100011000_{2}} \\
00011000_{2} = 24_{10}
\end{array}$$

 Com sinal: ocorre quando o sinal do resultado é diferente para operandos que possuem o mesmo sinal

$$\begin{array}{ccc}
119_{10} & 01110111_{2} \\
 & +102_{10} & \Longrightarrow & +01100110_{2} \\
\hline
221_{10} & & & \underline{1}1011101_{2} \\
 & & & & & & & \\
11011101_{2} = -35_{10}
\end{array}$$

- ↑ Overflow
- Underflow

Como representar os números reais?

- Como representar os números reais?
 - ► Ponto fixo (notação Q)
 - Hardware padrão
 - Operações com números inteiros

- Como representar os números reais?
 - ► Ponto fixo (notação Q)
 - Hardware padrão
 - Operações com números inteiros
 - Ponto flutuante (IEEE 754)
 - Hardware dedicado
 - Operações especializadas

- Como representar os números reais?
 - ► Ponto fixo (notação Q)
 - Hardware padrão
 - Operações com números inteiros
 - Ponto flutuante (IEEE 754)
 - Hardware dedicado
 - Operações especializadas
 - Precisão arbitrária
 - Emulação por software
 - Números inteiros ou reais

- Aritmética de ponto fixo (notação Q)
 - Definição da parte inteira e fracionária (32 bits)

$$Q4.27 = 9,25_{10}$$

$$= 9_{10} + 0,25_{10}$$

$$= 1001_2 + 0,01_2$$

Sinal	Inteira	Fracionária
0	1001	010000000000000000000000000000000000000

- Aritmética de ponto fixo (notação Q)
 - ► Entendendo a codificação binária fracionária

$$9,25_{10} = 9_{10} + 0,25_{10}$$

- Aritmética de ponto fixo (notação Q)
 - Entendendo a codificação binária fracionária

$$9,25_{10}=9_{10}+0,25_{10}\\$$

$$9,25_{10} = (2^3 + 1) + 0,25_{10}$$

- Aritmética de ponto fixo (notação Q)
 - Entendendo a codificação binária fracionária

$$9,25_{10} = 9_{10} + 0,25_{10} \\$$

$$9,25_{10} = \left(2^3 + 2^0\right) + 0,25_{10}$$

- Aritmética de ponto fixo (notação Q)
 - Entendendo a codificação binária fracionária

$$9,25_{10} = 9_{10} + 0,25_{10}$$

$$9,25_{10} = 1001_2 + 0,25_{10}$$

- Aritmética de ponto fixo (notação Q)
 - Entendendo a codificação binária fracionária

$$9,25_{10} = 9_{10} + 0,25_{10}$$

$$9,25_{10}=1001_2+\left(2^{-2}+\underline{0}\right)$$

- Aritmética de ponto fixo (notação Q)
 - Entendendo a codificação binária fracionária

$$9,25_{10} = 9_{10} + 0,25_{10}$$

$$9,25_{10} = 1001_2 + 0,01_2$$

- Aritmética de ponto fixo (notação Q)
 - ► Representatividade um número Q2.2

S	<i>B</i> ₃	B_2	B_1	B_0		
0	1	1	1	1	\implies	+3,75
0	1	1	1	0	\implies	+3,50
0	1	1	0	1	\implies	+3,25
0	1	1	0	0	\implies	+3,00
:	:	:	:	:		:
:	: 0	: 0	:	: 1	$ \Longrightarrow$:
: 1 1	: 0 0	: 0 0	; 1 1	: 1 0	$\begin{vmatrix} \Rightarrow \\ \Rightarrow \end{vmatrix}$: -4,00 -4,25
; 1 1	: 0 0 0	-	: 1 1 0	; 1 0	$\begin{vmatrix} \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \end{vmatrix}$	

- Aritmética de ponto fixo (notação Q)
 - ✓ São utilizados componentes de aritmética inteira que permitem operações mais rápidas e simples

- Aritmética de ponto fixo (notação Q)
 - ✓ São utilizados componentes de aritmética inteira que permitem operações mais rápidas e simples
 - Maior precisão da parte fracionária com mesma quantidade de bits

 Q0.31
 float (32 bits)

 Fração (31 bits)
 Fração (23 bits)

- Aritmética de ponto fixo (notação Q)
 - ✓ São utilizados componentes de aritmética inteira que permitem operações mais rápidas e simples
 - √ Maior precisão da parte fracionária com mesma quantidade de bits

Q0.31 float (32 bits)
Fração (31 bits) Fração (23 bits)

X Representatividade limitada

- Aritmética de ponto fixo (notação Q)
 - ✓ São utilizados componentes de aritmética inteira que permitem operações mais rápidas e simples
 - √ Maior precisão da parte fracionária com mesma quantidade de bits

 Q0.31
 float (32 bits)

 Fração (31 bits)
 Fração (23 bits)

- X Representatividade limitada
- × Problemas com arredondamento e *overflow*

- Aritmética de ponto fixo (notação Q)
 - ✓ São utilizados componentes de aritmética inteira que permitem operações mais rápidas e simples
 - √ Maior precisão da parte fracionária com mesma quantidade de bits

Q 0.31	float (32 bits)
Fração (31 bits)	Fração (23 bits)

- X Representatividade limitada
- X Problemas com arredondamento e *overflow*

Aplicação principal: sistemas de baixo custo sem unidade de ponto flutuante (FPU)

- Aritmética de ponto flutuante (IEEE 754)
 - Níveis de precisão
 - Simples (32 bits)
 - Dupla (64 bits)
 - Quádrupla (128 bits)

					Expoente (8 bits)	Fração (23 bits)
				S		
			Expoente (11 bits)		Fração (52	bits)
		S				
	Expoente (15 bits)		Fra	ção (112 bits)	
S						

- Aritmética de ponto flutuante (IEEE 754)
 - Representação dos valores de 32 bits

float =
$$(-1)^{Sinal} \left(1 + \sum_{i=0}^{22} B_{22-i} 2^{-i}\right) \times 2^{(Expoente-127)}$$

Sinal	Expoente	Fracionária
0	10000010	001010000000000000000000000000000000000

```
\begin{array}{lll} 9,25_{10} & = & 9_{10}+0,25_{10} \\ & = & 1001_2+0,01000000000000000002 \\ & = & 1,00101000000000000000002 \times 2^3 \\ & = & (-1)^0(1_2+0,001010000000000000000) \times 2^{(130_{10}-127_{10})} \\ & = & (-1)^0(1_2+0,001010000000000000000) \times 2^{(10000010_2-127_{10})} \end{array}
```

- Aritmética de ponto flutuante
 - √ Maior representatividade de valores

- Aritmética de ponto flutuante
 - ✓ Maior representatividade de valores
 - √ Mecanismos de arredondamento e de precisão

- Aritmética de ponto flutuante
 - √ Maior representatividade de valores
 - ✓ Mecanismos de arredondamento e de precisão
 - X Hardware dedicado que aumenta o custo e o consumo de potência do sistema

- Aritmética de ponto flutuante
 - ✓ Maior representatividade de valores
 - ✓ Mecanismos de arredondamento e de precisão
 - X Hardware dedicado que aumenta o custo e o consumo de potência do sistema
 - X As operações são mais complexas e demoradas

- Aritmética de ponto flutuante
 - ✓ Maior representatividade de valores
 - ✓ Mecanismos de arredondamento e de precisão
 - X Hardware dedicado que aumenta o custo e o consumo de potência do sistema
 - X As operações são mais complexas e demoradas

Aplicação principal: redução do tempo de projeto em sistemas com unidade de ponto flutuante (FPU)

- Aritmética de precisão arbitrária
 - Geralmente é utilizada em aplicações com números inteiros com capacidade que depende somente da quantidade de memória disponível, sendo nativamente suportada em linguagens como Python

- Aritmética de precisão arbitrária
 - Geralmente é utilizada em aplicações com números inteiros com capacidade que depende somente da quantidade de memória disponível, sendo nativamente suportada em linguagens como Python
 - As linguagens de programação que não suportam diretamente a aritmética de precisão arbitrária, como C/C++, podem utilizar bibliotecas para suportar estas operações (GMP/MPFR)

- Aritmética de precisão arbitrária
 - Geralmente é utilizada em aplicações com números inteiros com capacidade que depende somente da quantidade de memória disponível, sendo nativamente suportada em linguagens como Python
 - As linguagens de programação que não suportam diretamente a aritmética de precisão arbitrária, como C/C++, podem utilizar bibliotecas para suportar estas operações (GMP/MPFR)
 - Aplicações
 - Cálculo de constantes matemáticas
 - Criptografia de chave pública
 - Descoberta de números primos
 - **.**..

Exemplo

Considerando os métodos de complemento a 2, de ponto fixo Q2.5 e de ponto flutuante F8 descritas abaixo, converta os números reais A = 2,71 e B = 3,14 para estas representações numéricas

$$F8 = (-1)^S \left(1 + \sum_{i=0}^4 B_{4-i} 2^{-i}\right) \times 2^{Expoente}$$

$$\begin{array}{c|cccc} Sinal & Inteira \\ \hline S & I_6 I_5 I_4 I_3 I_2 I_1 I_0 \\ \hline Sinal & Inteira & Fracionária \\ \hline S & I_1 I_0 & F_4 F_3 F_2 F_1 F_0 \\ \hline Sinal & Expoente & Fracionária \\ \hline S & E_1 E_0 & F_4 F_3 F_2 F_1 F_0 \\ \hline \end{array}$$

- Realize a operação A B para cada representação e compare erro dos resultados obtidos
- Verifique o que seria necessário para implementar as operações de divisão e de multiplicação