Python – Lektion 7 Klassen & Vererbung

Rückblick

- Klassen-Definition class
- Datenabstraktion:
 Setter/Getter, Property, public/protected/private
- Methoden und Variablen: __init__(), magische Methoden

Rückblick

```
class Konto.
    ""Diese Klasse stellt ein Bankkonto dar.""
    zinssatz = 0.15
    def __init__(self, inhaber, kontonummer, kontostand):
        ""Diese Methode initialisiert die Variablen.""
        self inhaher = inhaher
        self.kontonummer = kontonummer
        self.__kontostand = kontostand
    @property
    def kontostand(self):
        print("Der Kontostand wurde abgefragt.")
        return self .__ kontostand
    @kontostand.setter
    def kontostand(self, n):
        self._kontostand = n
        print(f"Der Kontostand wurde auf {self._kontostand} geändert.")
if __name__ == "__main__":
    konto = Konto ("Peter Müller", "9-7-8-6", 1000)
    konto.kontostand = 10000
```

Heutige Themen

- Magische Methoden
- Vererbung
- Mehrfachvererbung

Magische Methoden

- ▶ Besondere Fähigkeiten¹ für Klassen
- Grundfunktionen

- Operatoren überladen
 - Arithmetische Operatoren: + / * % ...
 - Numerische Operatoren: __int__(), __float__(), __abs__(), ...
 -
- Containertypen emulieren
 - --len__(), __iter__(), __contains__(), ...
- **.**..

http://localhost:8888/notebooks/magische_methoden.ipynb

https://docs.python.org/3/reference/datamodel.html#special-method-names

Eine neue Klasse aus einer bestehenden Klasse ableiten:

Eine neue Klasse aus einer bestehenden Klasse ableiten:

Eine neue Klasse aus einer bestehenden Klasse ableiten:

- Person ist eine: Oberklasse, Basisklasse, Elternklasse oder Superklasse
- Angestellter und Bürger sind eine: Unterklasse, abgeleitete Klasse, Kindklasse oder Subklasse

Eine neue Klasse aus einer bestehenden Klasse ableiten:

- ist-eine Beziehung zwischen Super- und Subklasse:
 - Angstellter ist eine Person
 - Bürger ist eine Person
- Liskovsches Substitutionsprinzip:

Jedes Programm, welches mit Objekten der Superklasse funktioniert, sollte auch mit Objekten der Subklasse funktionieren.

Verletzung des Liskovschen Substitutionsprinzip:

- ist-eine Beziehung zwischen Super- und Subklasse:
 - Papagei ist ein Vogel
 - Pinguin ist ein Vogel
- Liskovsches Substitutionsprinzip: Jedes Programm, welches mit Objekten der Superklasse funktioniert, sollte auch mit Objekten der Subklasse funktionieren.

Zwischenklassen helfen das Substitutionsprinzip zu erfüllen:

Eine neue Klasse aus einer bestehenden Klasse ableiten:

http://localhost:8888/notebooks/vererbung.ipynb

Mehrfachvererbung

► Eine Subklasse kann von mehreren Superklassen erben:


```
class A:
    pass

class B:
    pass

class C(A, B):
    pass
```

Mehrfachvererbung

► Eine Subklasse kann von mehreren Superklassen erben:

Mehrfachvererbung

- super() ruft automatisch die Methode der n\u00e4chsten Klasse auf
- Method Resolution Order (MRO) → C3 Superclass Linearization²
- Diamond-Problem ist kein Problem mit super()

http://localhost:8888/notebooks/mehrfachvererbung.ipynb

15/15

Lektion 7 - Klassen & Vererbung

²https://en.wikipedia.org/wiki/C3_linearization