	WHAT IS CLAIMED IS:				
1	1. A method of recovering a clock and data from a data signal				
2	comprising:				
3	receiving the data signal having a first data rate;				
4	receiving a clock signal having a first clock frequency, and alternating				
5	between a first level and a second level;				
6	storing the data signal when the clock signal alternates from the first level to				
7	the second level, and providing the stored data signal as a first signal a first amount of time				
8	later;				
9	storing the first signal when the clock signal alternates from the first level to				
10	the second level, and providing the stored first signal as a second signal a second amount of				
	time later;				
125	providing a third signal by delaying the first signal for a third amount of time				
13	storing the third signal when the clock signal alternates from the second level				
10 10 14 14 15	to the first level, and providing the stored third signal as a fourth signal a fourth amount of				
	time later;				
16 17= 18-	providing a fifth signal by delaying the data signal a fifth amount of time;				
174	providing an error signal by taking the exclusive-OR of the first signal and the				
18	fifth signal; and				

19

20

1

2

3

1

2

3

1

2

providing a reference signal by taking the exclusive-OR of the second signal and the fourth signal, wherein the first data rate is equal to the first clock frequency.

- The method of claim 1 further comprising: applying the error signal and the reference signal to a loop filter to generate a loop filter output.
- 3. The method of claim 2 wherein the storing the data signal is done by a first flip-flop, the storing the first signal is done by a third flip-flop, and storing the third signal is done by a second flip-flop.
- The method of claim 3 wherein the providing the error signal and providing the reference signal is done by exclusive-OR gates.

block is approximately equal to a clock-to-O delay of the first storage element.

2

1		10.	The apparatus of claim 9 wherein a delay through the first delay block		
2	is approximately equal to the time between a rising edge of the clock signal and a falling edge				
3	of the clock signal.				
1		11.	An apparatus for recovering data from a received data signal		
2	comprising:	~ .			
3			flip-flop having a data input coupled to a first data input port, and a		
4	clock input coupled to a first clock port;				
5	a second flip-flop having a data input coupled an output of the first flip-flop,				
6	and a clock input coupled to the first clock port;				
7 8 10 11 12 13 13	a first delay element having an input coupled to the output of the first flip-flop				
8	a third flip-flop having a data input coupled to an output of the first delay				
90	element, and a clock input coupled to a second clock port;				
10_	a second delay element having an input coupled to the first data input port;				
114	a first exclusive-OR gate having a first input coupled to the output of the				
12	second flip-flop, and a second input coupled to an output of the third flip-flop; and				
13		a seco	and exclusive-OR gate having a first input coupled to the output of the		
14**	first flip-flop and a second input coupled the second delay element,				
15	wherein the signal at the second clock port is the complement of the signal at				
16	the first clock	port.			
1		12.	The apparatus of claim 11 wherein the first data input port is		
2	configured to receive a differential signal.				
_	tomigarea to	1000110	, a directivat signat		
1		13.	The apparatus of claim 12 wherein the first clock port is configured to		
2	receive a differential signal.				
		14.	The second Calaba 12 absorbed Cart at the OP and a 11 a		
1	C		The apparatus of claim 13 wherein the first exclusive OR gate provides		
2	a reference si	gnai, ar	nd the second exclusive OR gate provides an error signal.		
1		15.	An optical receiver comprising the apparatus of claim 11.		
1		16.	An optical transceiver comprising:		
2	an optical transmitter; and				
3	the optical receiver of claim 15 coupled to the optical transmitter.				

1

1

 A system for receiving and transmitting optical signals comprising:
a light emitting diode, configured to transmit optical signals;
a transmitter coupled to the light emitting diode;
a photo-diode, configured to receive optical signals;
a receive amplifier coupled to the photo-diode;
the apparatus of claim 11 coupled to the receive amplifier; and
a media access controller coupled to the apparatus of claim 11

18. A method of modifying a signal path comprising an output of a first flip-flop coupled to an input of a second flip-flop and the output of the first flip-flop and an output of the second flip-flop coupled to a logic gate, the flip-flops clocked on consecutive transitions of a clock signal, the method comprising:

inserting a delay element between the output of the first flip-flop and the input of the second flip-flop, wherein a delay through the delay element is greater than a duration between consecutive transitions of the clock signal, less a clock-to-Q delay for the first flip-flop, and plus a hold time for the second flip-flop; and

inserting a third flip-flop between the first flip-flop and the logic gate, an input of the third flip flop coupled to the output of the first flip-flop, and an output of the third flip-flop coupled to the logic gate.

- 19. The method of claim 18 wherein the delay through the delay element is less than a duration between three consecutive edges of the clock signal, less the clock-to-Q delay for the first flip-flop, less a set-up time for the second flip-flop.
 - 20. The method of claim 19 wherein the logic gate is an XOR gate.