Lattice-Constrained Parametrizations of Form Factors for Semileptonic and Rare Radiative B Decays

UKQCD Collaboration: L Del Debbio^a, J M Flynn^b (presenter), L Lellouch^a and J Nieves^c

^aCentre de Physique Théorique, CNRS Luminy, Case 907, F-13288 Marseille Cedex 9, France (Unité Propre de Recherche 7061)

^bDepartment of Physics & Astronomy, University of Southampton, Southampton SO17 1BJ, UK

^cDepartamento de Fisica Moderna, Avenida Fuentenueva, 18071 Granada, Spain

We describe the form factors for $\bar{B}^0 \to \rho^+ l^- \bar{\nu}_l$ and $B \to K^* \gamma$ decays with just two parameters and the two form factors for $\bar{B}^0 \to \pi^+ l^- \bar{\nu}_l$ with three parameters. The parametrizations are constrained by lattice results and are consistent with heavy quark symmetry, kinematic constraints and light cone sum rule scaling relations.

We obtain a simple yet phenomenologically useful description of the form factors for semileptonic and rare radiative heavy-to-light meson decays for all q^2 , the squared momentum transfer to the leptons or photon. Lattice calculations determine the form factors over a limited region at high q^2 . We use model input to extend the results to q^2 =0, seeking consistency with:

- kinematic constraints: $F_1(0) = F_0(0)$ and $T_1(0) = iT_2(0)$
- heavy quark symmetry (HQS)
- light cone sum rule (LCSR) scaling relations: all form factors scale like $M^{-3/2}$ as $M \rightarrow \infty$ at $q^2 = 0$, where M is the heavy meson mass
- dispersive constraints

The normalisation is fixed using lattice results. The outcome is a two parameter fit for $\bar{B}^0 \to \rho^+ l^- \bar{\nu}_l$ or $B \to K^* \gamma$ and a three parameter fit for $\bar{B}^0 \to \pi^+ l^- \bar{\nu}_l$. More details can be found in [1].

The leading order HQS analysis shows that heavy-to-light $P \rightarrow P$ decay form factors are determined by two universal ("Isgur-Wise") functions, while $P \rightarrow V$ decays are governed by four more such functions (P and V denote pseudoscalar and vector mesons respectively). We adopt a model of Stech [2] which keeps just one universal function for $P \rightarrow P$ and one more for $P \rightarrow V$.

Lattice simulation details can be found in [3,4] with details of the chiral extrapolation for $\bar{B}^0 \rightarrow$

 $\pi^+l^-\bar{\nu}_l$ in [5]. All form factors are calculated for four values of the heavy quark mass around the charm mass and for a variety of q^2 . In our previous work [3,4], the form factors were extrapolated at fixed four-velocity recoil, $\omega = v \cdot (p_{P,V}/m_{P,V})$, near the zero recoil point $\omega = 1$, using the heavy-quark scaling relations:

$$f\Theta M^{n_f/2} = \gamma_f \left(1 + \frac{\delta_f}{M} + \frac{\epsilon_f}{M^2} + \cdots \right)$$

where $n_f = -1, 1, -1, -1, 1, -1, -1, 1$ for $f = F_1, F_0, A_0, V, A_1, A_2, T_1, T_2$ and γ_f, δ_f and ϵ_f are fit parameters. Θ comes from leading logarithmic matching and is chosen to be 1 at the B mass. This procedure neglects the fact that for $M{\to}\infty$, HQS predicts $A_1 = 2iT_2$ and $V = 2T_1$ at fixed ω not too far from $q_{\rm max}^2$. We enforce this condition by performing a combined fit, at fixed ω , of the pairs (A_1, T_2) and (V, T_1) imposing the constraints: $\gamma_{A_1} = 2i\gamma_{T_2}$ and $\gamma_V = 2\gamma_{T_1}$. This guarantees that the extrapolated form factors are consistent with HQS in the infinite mass limit and reduces statistical errors by decreasing the number of parameters.

1.
$$\bar{B}^0 \to \rho^+ l^- \bar{\nu}_l$$
 AND $B \to K^* \gamma$ DECAYS

We use the freedom to adjust quark masses in lattice calculations and consider two situations for the light quark q into which the b decays:

Table 1 Form factor results for $\bar{B}^0 \to \rho^+ l^- \bar{\nu}_l$ and $B \to K^* \gamma$. For $\bar{B}^0 \to \rho^+ l^- \bar{\nu}_l$ the fit parameters are: $A_1(0) = 0.27(\frac{5}{4}), \ M_1 = 7.0(\frac{12}{6}) \,\text{GeV}, \ \chi^2/\text{dof} = 24/20$. For $B \to K^* \gamma$: $A_1(0) = 0.29(\frac{4}{3}), \ M_1 = 6.8(\frac{7}{4}) \,\text{GeV}, \ \chi^2/\text{dof} = 27/20$.

q^2	A_1	A_2	A_0	V	T_1	T_2
0	$0.27(^{5}_{4})$	$0.26(^{5}_{3})$	$0.30(^{6}_{4})$	$0.35(^{6}_{5})$	$0.16(^{2}_{1})$	
$q_{\rm max}^2$	$0.46(^{2}_{1})$	$0.88(^{5}_{3})$	$1.80(^{9}_{5})$	$2.07(^{11}_{6})$	$0.90(^{5}_{4})$	$0.25(^{1}_{1})$

A q=u: matrix elements of $\bar{u} \sigma^{\mu\nu} (1+\gamma^5)b$ are unphysical but constrain $\bar{B}^0 \to \rho^+ l^- \bar{\nu}_l$.

B $q=s: \bar{s}\gamma^{\mu}(1-\gamma^5)b$ is unphysical but constrains $B \to K^*\gamma$.

We complete the parametrization by specifying one of the form factors. To meet all our requirements, including the LCSR scaling condition at $q^2 = 0$, we choose

$$A_1(q^2) = \frac{A_1(0)}{1 - q^2/M_1^2} \tag{1}$$

with free parameters $A_1(0)$ and M_1 . This allows A_1 , A_2 and T_2 , which receive contributions from 1^+ resonances, to diverge at larger q^2 than the more singular V, A_0 and T_1 . We also tried other parametrizations but all results below will use $A_1(q^2)$ in eq. (1). Figure 1 shows the fit for a final state with the mass of the K^* , and Table 1 gives results for the form factors.

2. $\bar{B}^0 \to \pi^+ l^- \bar{\nu}_l$ DECAYS

Stech's model makes $F_0(q_{\max}^2)$ vanish in the chiral limit, contradicting our results and made unlikely by unitarity bounds [5]. Furthermore, the B^* which contributes a pole very close to q_{\max}^2 in F_1 , induces the same singularity in F_0 in the model. This provokes a much stronger q^2 dependence for F_0 than seen in the lattice results or induced by the nearest 0^+ resonance. Therefore we restrict to polar-type q^2 -dependences, consistent with the kinematical constraint, $F_1(0) = F_0(0)$, HQS and unitarity bounds. Our preferred model, consistent with LCSR scaling relations at $q^2 = 0$, is

$$F_1(q^2) = \frac{F(0)}{(1 - q^2/m_1^2)^2}, \quad F_0(q^2) = \frac{F(0)}{(1 - q^2/m_0^2)}.$$

Figure 1. Fit to the lattice predictions for A_0 , A_1 , V, T_1 and T_2 for a K^* meson final state (Situation B) assuming a pole form for A_1 . The dashed vertical line indicates q_{max}^2 .

The result of the fit is: F(0) = 0.27(11), $m_1 = 5.79(58)$ GeV and $m_0 = 6.1(15)$ GeV with $\chi^2/\text{dof} = 0.1/3$. All results below will be quoted using this pole/dipole model.

3. PHENOMENOLOGY

Using our fits we can calculate total rates and differential decay spectra in q^2 and lepton energy E for the decays $\bar{B}^0 \to \rho^+ l^- \bar{\nu}_l$ (Figure 2) and $\bar{B}^0 \to \pi^+ l^- \bar{\nu}_l$. In Table 2 we give our results, illustrating the good agreement of our form factor values at $q^2 = 0$ with LCSR calculations, and compare rates and ratios for semileptonic decays. For $B \to K^* \gamma$ we evaluate the ratio $R_{K^*} = \Gamma(B \to K^* \gamma)/\Gamma(b \to s \gamma) = 16\binom{4}{3}\%$, to be compared with $(18 \pm 7)\%$ from experiment [6].

Table 2 Form factor values at $q^2=0$ with $B\to\pi,\rho$ semileptonic decay rates and ratios from this calculation and from light cone sum rules (LCSR). Decay rates are given in units of $|V_{ub}|^2 \, \mathrm{ps}^{-1}$. $\Gamma_{\rho/\pi} \equiv \Gamma(\bar{B}^0 \to \rho^+ l^- \bar{\nu}_l)/\Gamma(\bar{B}^0 \to \pi^+ l^- \bar{\nu}_l)$ and $\Gamma_{L/T}$ denotes the ratio of rates to longitudinally and transversely polarised rho mesons in $\bar{B}^0 \to \rho^+ l^- \bar{\nu}_l$. l denotes a massless lepton.

	$F_1(0)$	$A_1(0)$	$A_2(0)$	V(0)	$T_1(0)$	$\Gamma_{\pi l \bar{\nu}}$	$\Gamma_{ ho l \bar{ u}}$	$\Gamma_{\rho/\pi}$	$\Gamma_{L/T}$	$\Gamma_{\pi\tau\bar{\nu}_{\tau}}$	$\Gamma_{\rho\tau\bar{\nu}_{\tau}}$
	0.27(11)	$0.27(^{5}_{4})$	$0.26(^{5}_{3})$	$0.35(^{6}_{5})$	$0.16(^{2}_{1})$	$8.5\binom{33}{14}$	$16.5\binom{35}{23}$	$1.9(^{9}_{7})$	$0.80(^{4}_{3})$	$5.8(^{18}_{4})$	$8.8(^{14}_{9})$
LCSR											
[7]		0.27(5)	0.28(5)	0.35(7)			13.5(40)	1.7(5)	0.52(8)		
[8]		0.24(4)		0.28(6)	0.16(3)						
[9]	0.24 – 0.29					8.7					
[10]					0.15(3)						

Figure 2. Differential decay spectra for $\bar{B}^0 \to \rho^+ l^- \bar{\nu}_l$ for massless leptons: (a) $d\Gamma/dq^2$ in units of $10^{-12} |V_{ub}|^2 \, \text{GeV}^{-1}$, (b) $d\Gamma/dE$ in units of $10^{-12} |V_{ub}|^2$. The dashed lines show the envelope of the 68% bootstrap errors computed separately for each value of q^2 or E respectively.

REFERENCES

- UKQCD collab, L Del Debbio et al, preprint CPT-97/P.3505, SHEP-97-13, UG-DFM-4/97 (1997), hep-lat/9708008
- B Stech, Phys Lett B 354 (1995) 447, hepph/9502378
- 3. UKQCD collab, DR Burford et al, Nucl Phys B 447 (1995) 425, hep-lat/9503002
- 4. UKQCD collab, JM Flynn et al, Nucl Phys B 461 (1996) 327, hep-ph/9506398
- 5. L Lellouch, Nucl Phys B 479 (1996) 353, hep-ph/9509358
- 6. CLEO collab, R Ammar et al, preprint CLEO

- CONF 96–05 (1996)
- P Ball and VM Braun, Phys Rev D 55 (1997) 5561, hep-ph/9701238
- 8. A Ali, VM Braun and H Simma, Z Phys C 63 (1994) 437, hep-ph/9401277
- VM Belyaev, A Khodjamirian and R Rückl, Z Phys C 60 (1993) 349, hep-ph/9305348;
 VM Belyaev et al, Phys Rev D 51 (1995) 6177, hep-ph/9410280; A Khodjamirian and R Rückl, Proc ICHEP 96, 28th Int Conf on High Energy Physics, 1996, World Scientific, Singapore (1997) 902, hep-ph/9610367
- D Becirevic, preprint LPTHE-Orsay 97/16 (1997), hep-ph/9707271