A PROOF OF A THEOREM

1. Introduction

I claimed at the end of the Tuesday talk that one can reconstruct a compact metric space X up to homeomorphism from the \mathbb{R} -algebra C(X) of continuous functions $X \to \mathbb{R}$. Let me explain how this can be done.

Probably this is best phrased as saying that $X \mapsto C(X)$ is a 'fully faithful functor,' but I will try to avoid the language of categories and functors.

2. Step 1: Recovering points

Let us show how to recover the underlying point-set of X from the ring C(X). We do this by identifying points with \mathbb{R} -linear functionals on X. Crucial to this is Urysohn's lemma, and a few related results.

Theorem 2.1 (Urysohn's lemma). Let X be a compact metric space. Then for any disjoint closed sets A, B, there is a continuous function $f: X \to [0, 1]$ so that f(A) = 0 and f(B) = 1.

Proof. For metric spaces this is actually not so hard to prove, but for general compact Hausdorff spaces it can be a mess (see papa Rudin for a proof there). Define

$$d_A:X\to\mathbb{R}$$

as

$$d_A(x) = \inf_{a \in A} d(a, x),$$

for d the metric on X.

Note that $d_A(x) = 0$ if and only if $x \in A$: indeed, if $d_A(x) = 0$ then there is a sequence $a_1, a_2, ... \in A$ so that $d(a_n, x) < 1/n$. As X is compact, this sequence has a convergent subsequence; but the limit of any convergent subsequence is clearly x, and so (since A is closed) we deduce that $x \in A$.

Define

$$f(x) = \frac{d_B(x)}{d_A(x) + d_B(x)}.$$

The denominator is never 0, since $A \cap B = \emptyset$, and so this is a continuous function. If $x \in A$, then f(x) = 0/1 = 0, and if $x \in B$, then f(x) = 1/(0+1) = 1. We conclude.

Corollary 2.2 (Partitions of unity). Let X be a compact metric space, and $\{U_i\}_{i\in I}$ an open cover of X. Then there are smooth functions $\varphi_i: X \to [0,1]$ so that

- (1) all but finitely many φ_i are identically 0,
- (2) supp $\varphi_i \subseteq U_i$,
- (3) and for each $x \in X$, $\sum_{i} \varphi_{i}(x) = 1$.

Date: June 27, 2024.

Proof. This is an exercise to the reader, but you can find a solution in most differential geometry textbooks. \Box

Now, we show that C(X) remembers the points of X; precisely, points of X are the \mathbb{R} -algebra homomorphisms $C(X) \to \mathbb{R}$. (To me, a ring homomorphism – and in particular an \mathbb{R} -algebra homomorphism – has to send 1 to 1.)

Proposition 2.3. Every \mathbb{R} -linear homomorphism $\varphi: C(X) \to \mathbb{R}$ is of the form

$$\varphi(f) = f(x)$$

for some fixed point $x \in X$. In other words, the only maps $C(X) \to \mathbb{R}$ are of the form "evaluation at a point."

Proof. First, I claim that there is some point $x \in X$ so that if $f \in C(X)$ has f(x) = 0, then $\varphi(f) = 0$.

Assume this is not the case. Then for every $x \in X$, we can find some $f_x \in C(X)$ with $f_x(x) \neq 0$ but $\varphi(f_x) = 0$. Set

$$U_x = \{ y \in X \mid f_x(y) > 1/2 \}.$$

Then each U_x is open and $x \in U_x$, so that these U_x form an open cover of X. By Corollary 2.2, we can find a partition of unity $\varphi_x : X \to [0,1]$ subordinate to this open cover.

Define

$$(2.4) f = \sum_{x \in X} \varphi_x \cdot f_x.$$

Then f > 1/2 everywhere, and in particular f is a unit in the ring C(X), since 1/f is a continuous function. But also, since all but finitely many φ_x are identically 0, (2.4) is really a *finite* linear combination of the f_x . As $\varphi(f_x) = 0$ for each x, we deduce (from \mathbb{R} -linearity of φ) that $\varphi(f) = 0$.

But $\varphi(1/f) \cdot \varphi(f) = \varphi(1) = 1$ (since φ is a ring homomorphism). Thus we cannot have $\varphi(f) = 0$, and so by contradiction we deduce that there is some point $x \in X$ so that if $f \in C(X)$ has f(x) = 0, then $\varphi(f) = 0$.

We claim now that $\varphi(f) = f(x)$. Indeed, for any function $f: X \to \mathbb{R}$, we can define

$$g = f - f(x),$$

which is a function obeying g(x) = 0, and so $\varphi(g) = 0$. As $f(x) \in \mathbb{R}$ is a constant function and φ is \mathbb{R} -linear, we find that $\varphi(g) = \varphi(f) - \varphi(f(x)) = \varphi(f) - f(x)$, so that (since $\varphi(g) = 0$) we have

$$\varphi(f) = f(x),$$

as desired.

3. Recovering the topology

Now, given an \mathbb{R} -algebra A, we can define a set

$$|A| = \{ \varphi \mid \varphi : A \to \mathbb{R} \text{ is an } \mathbb{R}\text{-algebra homomorphism} \}.$$

We endow |A| with a certain topology; the point of this construction is that if A = C(X), then |C(X)| = X (as sets), and the topology we endow on |C(X)| will be the same as the topology on X.

Definition 3.1. The *Zariski topology* on |A| is the topology whose closed sets are precisely the sets of the form

$$V(I) = \{ \varphi \in |A| \mid \varphi(f) = 0 \text{ for every } f \in I \},$$

for $I \subseteq A$ some ideal of the ring A.

Proposition 3.2. Let X be a compact metric space. The Zariski topology on |C(X)| coincides with the topology on X.

Proof. First we prove that every Zariski closed set is actually closed in X. This is because V(I) is just the set of all points $x \in X$ so that $x \in f^{-1}(0)$ for all $f \in I$; in other words,

$$V(I) = \bigcap_{f \in I} f^{-1}(0).$$

As each $f^{-1}(0)$ is closed (by continuity) and an arbitrary intersection of closed sets is closed, we deduce that each V(I) is closed.

Next, we prove that any closed set $C \subseteq X$ can be written as V(I). In fact, define

$$I = \{ f \in C(X) \mid f(x) = 0 \text{ for all } x \in C \}.$$

We prove now that C = V(I). It is clear that $C \subseteq V(I)$. The harder part is the reverse inclusion; we use Urysohn's lemma for this.

Take a point $x \notin C$. Then, as $\{x\}$ and C are two disjoint closed subsets of X, by Urysohn's lemma there exists some continuous $f: X \to \mathbb{R}$ so that f(C) = 0 and f(x) = 1. As f(C) = 0 we find that $f \in I$, and so $x \notin V(I)$ since $f(x) = 1 \neq 0$. We conclude that C = V(I).

4. Exercises

Thus, a compact metric space can be reconstructed from its \mathbb{R} -algebra of continuous functions. In fact, one can upgrade this result: continuous functions $f:X\to Y$ of comapct metric spaces correspond to \mathbb{R} -algebra homomorphisms $C(Y)\to C(X)$. Can you see how?

Where do I use compactness? Can you remove the compactness assumption by slightly tweaking the reconstruction procedure?

I said \mathbb{R} -algebra C(X). Prove that \mathbb{R} has no automorphisms as a field, and then ask yourself if I need to remember the \mathbb{R} -algebra C(X) or if I can make the above argument work by remembering just the ring C(X).

If instead of compact metric space, I said compact manifold, and instead of continuous functions I used smooth functions, could you recover the manifold up to diffeomorphism? The trickiest part is probably making a smooth version of Urysohn's lemma; this can be accomplished via the analytic tool of "mollifying" a continuous function to closely approximate it by a smooth function.