Фамилия:		
Имя:		
Группа:		
. py	Задача №1	

Имеются следующие данные о заемщиках:

Дефолт	1	1	1	1	1	0	0	0	0	0
Образование	1	0	0	0	1	1	1	1	1	1
Брак	0	1	0	0	0	0	1	1	1	0

В **нейтральный к риску** банк пришел образованный **клиент**, состоящий в браке. Если банк не выдаст клиенту кредит, то ничего не получит, но и ничего не потеряет. Если банк выдаст клиенту кредит и клиент сможет выплатить этот кредит, то банк получит 100 рублей. Если банк выдаст клиенту кредит, но клиент не сможет вернуть этот кредит (произойдет дефолт), то банк потеряет 500 рублей.

- 1. С помощью **наивного** Байесовского классификатора оцените условную вероятность дефолта клиента **(5 баллов)**
- 2. Банк выдает кредит тогда и только тогда, когда наивный Байесовский классификатор прогнозирует отсутствие дефолта. Укажите цены различных видов прогнозов: TP истинный положительный, FP ложный положительный, TN истинный отрицательный, FN ложный отрицательный. (5 баллов)
- 3. Ориентируясь на информацию о ценах прогнозов, а также на оцененную условную вероятность дефолта, сделайте вывод о целесообразности выдачи кредита клиенту. (5 баллов)
- 4. Дефолт прогнозируется в случае, когда оценка его условной вероятности превышает 0.5. Вы использовали некоторый классификатор, который дал вам следующие оценки условных вероятностей:

$$\hat{P}(\mbox{Дефолт}=1|\mbox{Образование}=1,\mbox{Брак}=1)=0.2$$
 $\hat{P}(\mbox{Дефолт}=1|\mbox{Образование}=1,\mbox{Брак}=0)=0.4$ $\hat{P}(\mbox{Дефолт}=1|\mbox{Образование}=0,\mbox{Брак}=1)=0.6$ $\hat{P}(\mbox{Дефолт}=1|\mbox{Образование}=0,\mbox{Брак}=0)=0.8$

Запишите (в форме таблицы) прогнозы дефолта для каждого заемщика в данных и укажите, к какому виду относятся эти прогнозы (TP, TN, FP или FN). Составьте матрицу путаницы (confusion matrix) и рассчитайте F1-метрику (F1-score) данного классификатора на данных. (5 баллов)

- 5. Изобразите наивный Байесовский классификатор как частный случай Байесовской сети: используйте ориентированный ациклический граф (DAG), чтобы описать связи между дефолтом, образованием и браком. (10 баллов)
- 6. Вы собираетесь обучить Байесовскую сеть и предполагаете, что образование является причиной брака, а брак причиной дефолта. С помощью ориентированного ацикличного графа (DAG) изобразите структуру данной Байесовской сети и, учитывая накладываемые ею ограничения на совместное распределение целевой переменной и признаков, оцените условную вероятность дефолта клиента. Объясните, какие факторы достаточно знать для расчета этой условной вероятности и сделайте вывод о целессообразности учета всех признаков при оценивании условных вероятностей дефолта. (10 баллов)

1

Решение:

1. Оценим априорные вероятности и факторы:

$$\begin{split} \hat{P}\left(\text{Дефолт} = 1\right) &= 0.5 \qquad \hat{P}\left(\text{Дефолт} = 0\right) = 0.5 \\ \hat{P}\left(\text{Образование} = 1 \middle| \text{Дефолт} = 1\right) &= 0.4 \qquad \hat{P}\left(\text{Образование} = 1 \middle| \text{Дефолт} = 0\right) = 1 \\ \hat{P}\left(\text{Брак} = 1 \middle| \text{Дефолт} = 1\right) &= 0.2 \qquad \hat{P}\left(\text{Брак} = 1 \middle| \text{Дефолт} = 0\right) = 0.6 \end{split}$$

При допущении об условной независимости, то есть о независимости между образованием и браком при фиксированном дефолте, получаем:

$$\hat{P}\left(\text{Дефолт}=1,\text{Образование}=1,\text{Брак}=1\right)=\\ =\hat{P}(\text{Дефолт}=1)\hat{P}\left(\text{Образование}=1,\text{Брак}=1|\text{Дефолт}=1\right)\\ =\hat{P}\left(\text{Дефолт}=1\right)\hat{P}\left(\text{Образование}=1|\text{Дефолт}=1\right)\hat{P}\left(\text{Брак}=1|\text{Дефолт}=1\right)=\\ =0.5\times0.4\times0.2=0.04$$

По аналогии имеем:

$$\hat{P}\left(\text{Дефолт}=0,\text{Образование}=1,\text{Брак}=1\right)=\\ =\hat{P}(\text{Дефолт}=0)\hat{P}\left(\text{Образование}=1,\text{Брак}=1|\text{Дефолт}=0\right)\\ \hat{P}\left(\text{Дефолт}=0\right)\hat{P}\left(\text{Образование}=1|\text{Дефолт}=0\right)\hat{P}\left(\text{Брак}=1|\text{Дефолт}=0\right)=\\ =0.5\times1\times0.6=0.3$$

При допущении об условной независимости оценим условную вероятность дефолта:

$$\hat{P}\left(\mbox{Дефолт}=1|\mbox{Образование}=1,\mbox{Брак}=1
ight)=rac{0.04}{0.04+0.3}=rac{2}{17}pprox0.118$$

- 2. Запишем различные виды прогнозов и соответствующие им цены:
 - а) ТР спрогнозировали дефолт и он бы наступил, $P_{TP} = 0$.
 - б) TN спрогнозировали отсутствие дефолта и он бы не наступил, $P_{TN} = 100$.
 - в) FP спрогнозировали дефолт, но он бы не наступил, $P_{FP}=0$.
 - г) FN спрогнозировали отсутствие дефолта, но он бы наступил, $P_{FN}=-500$.
- 3. Ожидаемый выигрыш банка в случае с рассматриваемым клиентом составит:

profit =
$$100 \times \left(1 - \frac{2}{17}\right) - 500 \times \frac{2}{17} \approx 29.41$$

Поскольку ожидаемая полезность банка от выдачи кредита превышает ожидаемую полезность от отсутствия выдачи, то целессообразно выдать кредит.

4. Запишем таблицу с прогнозами и их видами:

Дефолт	1	1	1	1	1	0	0	0	0	0
Образование	1	0	0	0	1	1	1	1	1	1
Брак	0	1	0	0	0	0	1	1	1	0
Дефолт	0	1	1	1	0	0	0	0	0	0
Вид	FN	TP	TP	TP	FN	TN	TN	TN	TN	TN

Составим матрицу путаницы:

$$egin{array}{c|cccc} & \widehat{\mbox{Дефолт}} = 1 & \widehat{\mbox{Дефолт}} = 0 \\ \hline \mbox{Дефолт} = 1 & TP = 3 & FN = 2 \\ \hline \mbox{Дефолт} = 0 & FP = 0 & TN = 5 \\ \hline \end{array}$$

Посчитаем точность и полноту:

precision =
$$\frac{3}{3+0} = 1$$
 recall = $\frac{3}{3+2} = 0.6$

В результате получаем значение метрики:

$$F1 = 2 \times \frac{1 \times 0.6}{1 + 0.6} = \frac{6}{8} = 0.75$$

5. В наивном Байесовском классификаторе в качестве факторов рассматриваются P(Образование|Дефолт) и P(Брак|Дефолт). Следовательно, дефолт является родителем образования и брака, а значит наивный Байесовский классификатор можно изобразить следующим образом:

6. Иллюстрируем структуру Байесовской сети:

Сперва оценим совместные вероятности:

$$\hat{P}\left(\text{Дефолт}=1,\text{Образование}=1,\text{Брак}=1\right)=\\ \hat{P}\left(\text{Образование}=1\right)\hat{P}\left(\text{Брак}=1\middle|\text{Образование}=1\right)\hat{P}\left(\text{Дефолт}=1\middle|\text{Брак}=1\right)=\\ =\frac{7}{10}\times\frac{3}{7}\times\frac{1}{4}=\frac{3}{40}=0.075\\ \hat{P}\left(\text{Дефолт}=0,\text{Образование}=1,\text{Брак}=1\right)=\\ \hat{P}\left(\text{Образование}=1\right)\hat{P}\left(\text{Брак}=1\middle|\text{Образование}=1\right)\hat{P}\left(\text{Дефолт}=0\middle|\text{Брак}=1\right)=\\ =\frac{7}{10}\times\frac{3}{7}\times\frac{3}{4}=\frac{9}{40}=0.225$$

Очевидно, что для расчета условной вероятности достаточно знать лишь оценку фактора $P\left(\text{Дефолт} = 0|\text{Брак} = 1\right)$, поскольку остальные факторы сокращаются:

$$\hat{P}\left($$
Дефолт = $1|$ Образование = 1 , Брак = $1)=\frac{\frac{3}{40}}{\frac{3}{40}+\frac{9}{40}}=\frac{\frac{1}{4}}{\frac{1}{4}+\frac{3}{4}}=0.25$

Таким образом, для оценивания условной на брак и образование вероятности дефолта при соответствующей структуру Байесовской сети достаточно учитывать лишь брак.

вариант κ 4

Фамилия:	
Имя:	
Группа:	
Задача №2	

Исследователь оценивает эффект воздействия факта наличия высшего образования T_i на зарплату Y_i , в качестве контрольных переменных X_i рассматривая стаж и здоровье, а в качестве инструментальной переменной Z_i – образование родителей. Средний эффект воздействия оценивается следующим образом:

$$\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} \frac{T_i Y_i}{\hat{P}(T_i = 1 | X_i)} - \hat{E}(Y_i | X_i, T_i = 0)$$

- 1. Объясните, как можно использовать машинное обучение для расчета соответствующей оценки. Уточните, для чего в данном случае лучше использовать методы классификации, а для чего - регрессию. (10 баллов)
- 2. Сформулируйте допущение об условной независимости и выскажите содержательные (социальноэкономические) соображения о возможных причинах нарушения данного допущения в рассматриваемом случае. Уточните, как нарушение этого допущения скажется на свойствах оценки $\widehat{\text{ATE}}$. (10 баллов)
- 3. Объясните, можно ли избежать негативных последствий нарушения допущения об условной независимости за счет тюнинга (подбора оптимальных гиперпараметров) методов машинного обучения. (10 баллов)
- 4. Назовите метод, не требующий сильных предпосылок о форме связи между контрольными переменными и целевой переменной, который можно применить для получения состоятельной оценки среднего локального эффекта воздействия при нарушении допущения об условной независимости. Укажите с помощью чего и какие именно два основных вида смещения позволяет ослабить соответствующий метод. (15 баллов)
- 5. При допущении об условной независимости исследователь также оценил несколькими методами условные эффекты воздействия $CATE_i$ и хочет выбрать лучший из методов, ориентируясь на следующую метрику качества оценок $CATE_i$:

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{E}(Y_i | X_i, T_i))^2$$

Объясните, можно ли считать данную метрику приемлимой. (15 баллов)

Решение:

- 1. Условную вероятность $P(T_i=1|X_i)$ и условное математическое ожидание $E(Y_i=1|X_i)$ можно оценить с помощью методов машинного обучения. При этом, для оценивания условных вероятностей уместно использовать классификацию (например, рашющие деревья или логистическую регрессию), а для условного математического ожидания регрессию (например, регрессионные деревья).
- 2. Согласно допущению об условной независимости $E\left(Y_{ji}|X_i,T_i=j\right)=E(Y_{ji}|X_i)$, где $j\in\{0,1\}$ и Y_{ji} отражает значение j-го потенциального исхода: Y_{1i} зарплата людей при наличии высшего образования, Y_{0i} зарплата людей при отсутствии высшего образования.

Способности индивида, которые он развил еще до поступления в университет, могут положительно влиять как на вероятность получения высшего образования, так и на заработную плату. Поскольку способности не входят в число контрольных переменных и могут существенно различаться между индивидами даже при одинаковом здоровье и стаже, это может приводить к нарушению допущения о независимости, так как, вероятно, $E(Y_{ji}|X_i,T_i=1)>E(Y_{ji}|X_i)$, поскольку среди людей с высшим образованием могут чаще встречаться развитые способности. В результате оценка $\widehat{\text{ATE}}$ окажется несостоятельной.

3. При нарушении допущения об условной независимости даже если вместо оценок $\hat{P}\left(T_i=1|X_i\right)$ и $\hat{E}\left(Y_i|X_i,T_i\right)$ исользуются истинные значения $P\left(T_i=1|X_i\right)$ и $E\left(Y_i|X_i,T_i\right)$, мы получаем:

$$\widehat{ATE} \xrightarrow{p} E(Y_{1i}|T_i=1) - E(Y_{0i}|T_i=0) \neq ATE$$

Поскольку качество используемых методов машинного обучения может повлиять лишь на точность оценок $\hat{P}\left(T_i=1|X_i\right)$ и $\hat{E}\left(Y_i|X_i,T_i\right)$, то оценка $\widehat{\text{ATE}}$ останется несостоятельной независимо от того, насколько хорошо будут подобраны гиперпараметры методов, используемых для оценивания условных вероятностей и условного математического ожидания.

- 4. В качестве альтернативы исследователь может использовать двойное машинное обучение с инструментальными переменными. В данном методе ортогональность по Нейману и кроссфиттинг позволяют ослабить смещения, вызванные регуляризацией и переобучением соответственно.
- 5. Данная метрика не является хорошим вариантом, поскольку модель, точнее оценивающая Y_i , не обязательно будет точнее оценивать $CATE_i$. Например, даже если оценки $\hat{E}\left(Y_i|X_i,T_i=1\right)$ и $\hat{E}\left(Y_i|X_i,T_i=0\right)$ обладают очень большим, но примерно одинаковым смещением, то их разница, то есть \widehat{CATE}_i , может оказаться весьма точной оценкой, поскольку смещения сократятся. В качестве альтернативы MSE можно использовать, например, метрику, опирающуюся на псевдоисходы:

$$MSE^* = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{Y}_i^* - \widehat{CATE}_i \right)^2$$

где:

$$\hat{Y}_i^* = Y_i \left(\frac{T_i}{\hat{P}(T_i = 1|X_i)} + \frac{1 - T_i}{1 - \hat{P}(T_i = 1|X_i)} \right)$$

вариант κ 2