4th Year Project: Soldering Machine

James Glanville

11th June 2013

1 Existing Solutions

There are a number of hobbyist solutions to deal with SMD parts:

- Solder paste + heat:
 - Solder stencils: Expensive setup costs, very quick to use. Not suitable for this project.
 - Manual solder paste application: Mostly expensive dispenser, or with a syringe.
 - Hot air gun: Can be relatively difficult to get the right temperature profile.
 - Converted toaster over: seems quite common.
- Soldering by hand:
 - Dragging a bead of solder along pins, then cleaning up with solder sucker/wick. Too much feedback required to automate?
 - Some devices (SOIC?) have slightly bendy pins. A small amount of downwards pressure on the pin onto a tinned pad works.

2 Design

$2.1 \quad X/Y \text{ axes}$

The X/Y axes have the same requirements. 0.5mm pitch smd devices common - 0.05mm repeatability reasonable target? Choice between stationary "bed" and moving tools, or viceversa. Stationary bed reduces likelihood of jolting parts around, but tools are bulkier and heavier than the bed, which increases demands on driving mechanism. I quite like the idea

Driving mechanisms:

- Toothed belts + pulleys + stepper motors: Simple, as used in repraps. Can be run open loop very easily. Requires: stepper motor + driver, belt, pulley.
- Threaded rod + stepper motors: Cheap, slower but probably fast enough. M3-5 easy to couple to motor shafts (http://www.thingiverse.com/thing:9622).
- Closed loop: dc motors + feedback. Linear potentiometers: relatively expensive, and potential issues with electrical noise. Rotary encoders: cheap, accurate (m4 pitch is 0.5mm, not much travel/turn, might only need 10 slot encoder)

Linear slides:

• Drawer slides: cheap, surprisingly high precision.

- 3d printed bushings + steel rod. If 3d printer existance assumed, then very cheap solution.
- LM8UUs (or smaller): About 1 each, so probably too expensive.

2.2 Z axis

The Z axis will not require as much precision as the X and Y. Potential mechanisms:

• Micro servos: cheap (2 on ebay). Require no drivers, and simple to drive. Z axis potentially does not need to be linear (UP/DOWN only?) so rotary-¿linear mechanism simpler. If not linear, then hinging out of the way is a cheaper mechanism than slides.

2.3 Part placement

- Manual placement. Much more of a problem for a large number of SMD resistors/capacitors etc, than larger components.
- Vacuum "tweezers". Mechanically relatively simple, but problems of intelligent control, as well as well as storing the components before placement. As an experiment, I tried using an aquarium pump in reverse (by attaching the silicone tubing to the inlet instead of the outlet) connected to a fairly large diameter needle (ID: Xmm).

2.4 Heated Bed

Soldering to a hot board is easier (smaller temperature difference). Probably not worth the cost/complexity.

2.5 Flux application

Flux application may be a significant problem, unless a manual brush with a solder pen is sufficient.

2.6 Soldering iron

Designing a mount for a cheap and widely available soldering iron may well be cheapest.

2.7 Electronics/Firmware

I have decided to use an avr chip to translate GCODE to stepper motor commands for the following reasons:

- Cost: an atmega328 is 2-3, a usb-serial chip is i2, which is not much.
- Mature open source firmware (GRBL, https://github.com/grbl/grbl) is available for gcodeistepper conversion, which leaves more time to focus on other parts of this project.

3 Tools

I have a small mill, a 3d printer and a lathe. It may be worth considering that a lot of people/schools have access to a laser cutter and perhaps mill/lathe, so if possible all custom components could be 3d printed or lasercut.

4 Vacuum Placing

4.1 Prototype

To test how effectively small parts could be placed with a vacuum, I made a simple test setup:

- 12V diaphragm air pump (8.89 ebay)
- 6mm OD/4mm ID silicone tube (2.69/m ebay)
- various needles (need more info here)
- MOSFET
- gate resistor

Figure 1: Pump with hose and needle.

The pump draws 200mA at 12V, which is easily controlled with a MOSFET. Using a 1.8mm ID needle, SOIC-20 parts were picked up, and had significant friction against the needle - essential to avoid slipping or rotating. It was important to place the needle as centrally as possible on the part to avoid generating any imbalance that allowed the part to fall.

4.2 Conclusions

A vacuum needle solution is workable, and a good choice for this project. Things that need to be considered for use in the final project:

- The pump takes a certain time to generate a vacuum because of the relatively large internal volume of the pump and silicon tube. It will be important to measure this, and add a margin of error so that full suction is applied to each device before any movement takes place. Similarly, when turning off the pump, the pressure must return to atmospheric before the device can be considered to have been placed successfully. In testing, the pump I used took less than a second to leak sufficiently for this to occur, but if another pump were to be used, it may be necessary to place a tiny hole in the air line so that pressure drops quickly.
- It is important to place the needle very near to the centre of mass of the device. The majority of devices will be symmetrical, which will make this easier.

• The needle must be able to be raised and lowered to the correct heights. It may be possible to push the needle down with a weak spring, with a micro servo that raises it - this would remove any need to know the exact height of each device. This will need to be tested.

Figure 2: SMD resistor being picked up.