Метод. Досягнути умови рівності густини розчину середній густині кульки.

Теоретичні обґрунтування.

За цієї умови кулька плаває повністю зануреною всередині розчину $ho_{\kappa} =
ho_{
m p}.$

$$m =
ho_{ ext{K}} V = m_{ ext{CT}} + m_{ ext{II}} \; \; ; V_{ ext{CT}} = rac{m_{ ext{CT}}}{
ho_{ ext{CT}}};$$

$$ho_{{ ext{K}}} V = m_{{ ext{CT}}} +
ho_{{ ext{I}}} * (V - V_{{ ext{CT}}}) \; \; ; m_{{ ext{CT}}} = rac{V(
ho_{{ ext{K}}} -
ho_{{ ext{I}}})}{1 - rac{
ho_{{ ext{II}}}}{
ho_{{ ext{CT}}}}}$$

Хід роботи.

І. Визначення об'єму кульки

Визначити діаметр кульки можна 2 способами:

- а) прокотивши кульку по прямій на міліметровому папері (1 або 2 оберти). Для цього на кульку слід нанести мітку фломастером.
- б) обгорнувши кульку міліметровим папером (1 або 2 оберти).

Точність методу а) більша ніж методу б), тому що при обертанні кільки папером похибка збільшується внаслідок утворення конуса, а не циліндра, та збільшення діаметра при другому обгортанні.

$$d = \frac{l}{n\pi}$$

d – діаметр кульки, l –довжина кола, n – кількість обертів.

Об'єм кульки

$$V = \frac{1}{6}\pi \left(\frac{l}{n\pi}\right)^3.$$

- II. Досягнення умови плавання кульки у товщі рідини
- 1. Занурюємо кульку у розчин.
- 2. Шприцом додаємо воду ΔV у розчин, в якому плаває кулька.
- 3. Добре перемішуємо розчин з водою.
- 4. Занурюємо кульку шприцом або ложкою (вилкою).
- 5. Повторюючи п. 2-4 добиваємося плавання кульки у товщі отриманого розчину.
- 6. Переконуємося, що віно вага байдужа, занурюючи кульку на різні глибини.
- III. Обробка отриманих результатів
 - 1. З таблиці маємо для 8% розчину $C_1 = \frac{m_{NaCl}}{v_{\text{розчину}}} = 0,08447 \; \text{г/см}^3$, а об'єм $V_0 = 60 \; \text{мл}$, ρ =1,056 г/мл. 1 мл=1 см³.
 - 2. Доливаючи воду за допомогою шприца, знаходимо концентрацію отриманого розчину у якому кулька буде плавати у товщі рідини: $C_1V_0 = C_x(V_0 + \Delta V)$.
 - 3. За таблицею визначаємо густину рідини, яка відповідає даній концентрації, вважаючи що густина в діапазоні 2% змінюється лінійно.
 - 4. Знаючи об'єм та густину розчину, у якому зависає кулька обчислюємо масу сталі.
 - 5. Визначаємо фактори, які найбільше впливають на точність вимірювання.

Розв'язок завдання №2 (8 клас)

1 спосіб

Теоретичне обгрунтування

Сутність методу визначення питомої теплоємності цукрового розчину полягає у використанні рівняння теплового балансу при змішуванні холодної води і гарячого цукрового розчину (або навпаки, гарячої води та холодного розчину). Кількісті теплоти передана нагрітим цукровим розчином в першому наближенні дорівнює кількості теплоти отриманої водою:

- для води: $Q_e = c_e m_e (t_e t_p)$ (1)
- для цукрового розчину $Q_u = c_u m_u (t_u t_p)$ (2)
- $m_{_{\!\it B}}, m_{_{\!\it U}}$ маси води та цукрового розчину відповідно;
- t_e, t_u початкові температури води та цукрового розчину,
- t_p результуюча температура суміші.

Змішуємо рідини та швидко вимірюємо результуючу температуру, щоб зменшити теплові втрати. Тепло, яке забирає чи віддає термометр, не враховуємо.

Розв'язавши систему (1)-(2), отримаємо формулу питомої теплоємності цукрового розчину:

$$c_{u} = c_{e} \frac{m_{e}(t_{e} - t_{p})}{m_{u}(t_{u} - t_{p})}$$
 (3)

Практична частина

Маса води та цукрового розчину визначаємо за допомогою цифрових терезів. Складаємо установку – рис. 1. Вимірюємо температуру води після нагрівання. Вимірюємо температуру цукрового розчину до змішування. Змішуємо рідини та швидко вимірюємо результуючу температуру суміші. Дані заносимо до таблиці. Здійснюємо розрахунки. Робимо висновки.

Таблиця

$N_{\underline{0}}$	$m_{B,}$	m _{ц,}	$t_{B,}$	t _{ц,}	t _{p,}	$t_{\rm B}$ - $t_{\rm p,}$	t_{II} - t_{p} , °C	c,	Δc,	$\epsilon_{c,}$
	Γ	Γ	°C	°C	°C	°C	°C	Дж/кг°С	Дж/кг°С	%
1										
2										
3										

Похибка нашого вимірювання буде залежати від точності вимірювання величин маси, температури води, цукрового розчину та температури суміші, а також від різниці температур. Для збільшення точності доцільно щоб величина різниці температур рідин, що змішуються була якомога більша.

Рис. 1.

2 спосіб

Теоретичне обгрунтування

Сутність методу визначення питомої теплоємності цукрового розчину полягає у порівнянні кількості теплоти, що йде на нагрівання води та на нагрівання цукрового розчину за допомогою спиртівки (забезпечуючи ККД установки η для обох процесів приблизно однаковим):

- для води: $Q_1 = \eta q m_1 = c_{_{\mathcal{B}}} m_{_{\mathcal{B}}} \Delta t_{_{\mathcal{B}}}$ (1)
- для цукрового розчину $Q_2 = \eta q m_2 = c_u m_u \Delta t_u$ (2)
- $m_{_{\!\it B}}, m_{_{\!\it U}}$ маси води та цукрового розчину відповідно;
- m_1, m_2 маси спирту, що витрачена на нагрівання води і цукрового розчину відповідно.

Розв'язавши систему (1)-(2), отримаємо формулу питомої теплоємності цукрового розчину:

$$c_u = c_e \frac{m_2}{m_1} \frac{m_e \Delta t_e}{m_u \Delta t_u}$$
 (3)

Практична частина

Виконуємо дослід з водою. Маса води визначається за допомогою цифрових терезів. Складаємо установку — рис. 1. Вимірюємо масу спиртівки до горіння. Вимірюємо температуру води до та після нагрівання. Вимірюємо масу спиртівки після горіння. Аналогічні вимірювання здійснюємо у досліді з цукровим розчином. Дані заносимо до таблиці. Здійснюємо розрахунки. Оцінюємо точність отриманого результату. Робимо висновки.

Таблиця

No	m _{B,}	t _{в0,} °C	t _{B,} °C	$\Delta t_{B,}$ °C	т п	t _{ц0,} °С	t _{II,} °C	$\Delta t_{II,}$ °C	m _{1,}	m _{2,}	с, Дж/кг°С	Δс, Дж/кг°С	ε _{c,}
1	1				1				1	1	, ,	, ,	70
2													
3													

Похибка нашого вимірювання буде залежати від точності вимірювання величин маси, температури води, цукрового розчину та маси спирту, а також від різниці температур. Для збільшення точності доцільно щоб величина різниці температур рідин, що змішуються була якомога більша.

Рис. 1.