

UC SANTA BARBARA

Introduction to ECE 594n

Geometric Machine Learning for Biomedical Imaging and Shape Analysis

Nina Miolane, Assistant Professor

Bioimaging at Different Scales

Biomedical research: understand mechanisms of life.

Bioimaging at Different Scales

Biomedical research: understand mechanisms of life.

Bioimaging at Different Scales

Biomedical research: understand mechanisms of life.

The Shapes Of You

Simulation credits: Lorenzi, Ayache, Frisoni, Pennec (Inria). Video credits: US National Institute on Aging (NIH).

Function
Healthy/pathological state

→ Geometry

Function
Healthy/pathological state

→ Geometry

Inverse model?

Biomedical discoveries

 \leftarrow

Geometry

Function Healthy/pathological state

→ Geometry

Inverse model?

Biomedical discoveries

← Geometry

Function
Healthy/pathological state

→ Geometry

Inverse model?

Biomedical discoveries

Geometry

Shape Analysis from Biomedical Imaging

Shape Analysis from Biomedical Imaging

- Mathematical...
- Computational...
- Statistical...

...shape models

Translation

Shapes ↔ Equivalence classes

 G_0 Tran

Translation

Shapes ↔ Equivalence classes

 G_0

Translation

 $g_0 * x$

Shapes \leftrightarrow Equivalence classes = Elements of "Quotient space" Q

$$Q = \{[x] | x \in M\}$$
 where $[x] = \{y \in M \mid \exists g_0 \in G_0 \text{ s. t. } y = g_0 * x\}$

 G_0

Translation

 $g_0 * x$

Shapes ↔ Equivalence classes = Elements of "Quotient space" *Q*

$$Q = \{[x] | x \in M\}$$
 where $[x] = \{y \in M \mid \exists g_0 \in G_0 \text{ s. t. } y = g_0 * x\}$

Smooth deformation

Shapes ↔ Deformations

 G_0

Translation

 $g_0 * x$

G

Smooth deformation

g * x

Shapes \leftrightarrow Equivalence classes = Elements of "Quotient space" Q

Shapes ↔ Deformations

$$Q = \{[x] | x \in M\}$$
 where $[x] = \{y \in M \mid \exists g_0 \in G_0 \text{ s. t. } y = g_0 * x\}$

 G_0

Translation

 $g_0 * x$

G

Smooth deformation

g * x

Shapes ↔ Equivalence classes = Elements of "Quotient space" *Q*

$$Q = \{[x] | x \in M\}$$
 where $[x] = \{y \in M \mid \exists g_0 \in G_0 \text{ s. t. } y = g_0 * x\}$

Shapes ↔ Deformations = Elements of "Lie group" *G*

Translation

Shapes ↔ Equivalence classes = Elements of "Quotient space" Q

Smooth deformation

Shapes ↔ Deformations = Elements of "Lie group" *G*

= Manifolds with additional geometric structures

Quotients, Lie Groups = Manifolds

Generalize computing, statistics & (deep) learning to data on manifolds

Geographic data, e.g. coordinates of cities or earthquakes.

Example: Data on the sphere

Quotients, Lie Groups = Manifolds

Generalize computing, statistics & (deep) learning to data on manifolds

Geographic data, e.g. coordinates of cities or earthquakes.

Example: Data on the sphere

Geomstats: Open-source Python package for Geometric Statistics

Why Geometric Statistics

- Mean: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \rightarrow \text{linear}$
- Manifold → non-linear
- → Mean may not belong to the manifold

Why Geometric Statistics

- Fréchet mean $\bar{x} = \operatorname{argmin}_{x \in M} \sum_{i=1}^{n} \operatorname{dist}_{M(x,x_i)}^2$
- → Mean belongs to the manifold

```
from geomstats.learning.frechet_mean import \
FrechetMean
```

```
estimator = FrechetMean(metric=sphere.metric)
estimator.fit(points)
```

frechet_mean = estimator.estimate_

Fréchet mean

Why Geometric Statistics

- Fréchet mean $\bar{x} = \operatorname{argmin}_{x \in M} \sum_{i=1}^{n} \operatorname{dist}_{M(x,x_i)}^2$
- → Mean belongs to the manifold

```
from geomstats.learning.frechet_mean import \
FrechetMean
```

```
estimator = FrechetMean(metric=sphere.metric)
estimator.fit(points)
```

frechet_mean = estimator.estimate_

Remarks:

- Whitney embedding theorem $M_m \subset \mathbb{R}^{2m}$
- Mean respecting additional geometries

Geomstats

Geomstats: Computing, statistics & (deep) learning for data on manifolds

- Backends: NumPy, Autograd, TensorFlow and PyTorch
- Instantiate manifold of interest

```
sphere = Hypersphere (dim=2)
```

Apply estimation or learning method

```
estimator = FrechetMean(metric=sphere.metric)
estimator.fit(points)
```

Geomstats

Geomstats: Computing, statistics & (deep) learning for data on manifolds

- Backends: NumPy, Autograd, TensorFlow and PyTorch
- Instantiate manifold of interest

```
sphere = Hypersphere(dim=2)
```

Apply estimation or learning method

```
estimator = FrechetMean(metric=sphere.metric)
estimator.fit(points)
```

Geomstats Objectives:

- Teach "hands-on" Geometric Statistics and Learning
- Democratize the use of Geometric Statistics and Learning
- Support research in Geometric Statistics and Learning
- → Compute with shape data

Basic Operations Coded on 20+ Manifolds

```
from geomstats.geometry.special_euclidean \
    import SpecialEuclidean

se3 = SpecialEuclidean(n=3, point_type='vector')
metric = se3.left_canonical_metric

initial_point = se3.identity
initial_tangent_vec = gs.array(
    [1.8, 0.2, 0.3, 3., 3., 1.])
geodesic = metric.geodesic(
    initial_point=initial_point,
    initial_tangent_vec=initial_tangent_vec)
```


Basic Operations Coded on 20+ Manifolds

```
from geomstats.geometry.special_euclidean \
    import SpecialEuclidean

se3 = SpecialEuclidean(n=3, point_type='vector')
metric = se3.left_canonical_metric

initial_point = se3.identity
initial_tangent_vec = gs.array(
    [1.8, 0.2, 0.3, 3., 3., 1.])
geodesic = metric.geodesic(
    initial_point=initial_point,
    initial_tangent_vec=initial_tangent_vec)
```


Basic Operations Coded on 20+ Manifolds

Miolane et al. *Geomstats: a Python package for Riemannian geometry in machine learning.* Journal of Machine Learning Research (2020). **Miolane** et al. *Introduction to Geometric Learning with Geomstats.* SciPy International Conference (2020).

...Statistics and Learning

	Point estimation	Dimension Reduction	Stochastic processes	
Riemannian		(2019)		
Finsler				
Affine				
Stratified spaces	(2017-18)	(2020)		
Lie groups	(2015)			
Quotient spaces	(2017-21)			
Subriemannian			(2015)	

Miolane, Pennec: Computing bi-invariant pseudo-metrics on Lie groups for consistent statistics (2015).

Miolane, Pennec: A survey of mathematical structures for extending 2D neurogeometry to 3D image processing (2015).

Miolane, Holmes, Pennec: Template shape estimation: correcting an asymptotic bias (2017).

Miolane, Holmes, Pennec: Topologically constrained template (2018).

Miolane, Holmes: Learning submanifolds with Riemannian variational autoencoders. (2019).

Miolane, Poitevin, Lee, Holmes: Estimation of orientation and camera parameters in cryo-EM with autoencoders (2020).

Michel, Miolane et al. Cell morphometrics with the Riemannian elastic metric. (2021). In preparation.

Geometric..

...Statistics and Learning

	Point estimation	Dimension Reduction	Stochastic processes	
Riemannian		(2019)		
Finsler				
Affine				
Stratified spaces	(2017-18)	(2020)		
Lie groups	(2015)			
Quotient spaces	(2017-21)			
Subriemannian			(2015)	

Miolane, Pennec: Computing bi-invariant pseudo-metrics on Lie groups for consistent statistics (2015).

Miolane, Pennec: A survey of mathematical structures for extending 2D neurogeometry to 3D image processing (2015).

Miolane, Holmes, Pennec: Template shape estimation: correcting an asymptotic bias (2017).

Miolane, Holmes, Pennec: Topologically constrained template (2018).

Miolane, Holmes: Learning submanifolds with Riemannian variational autoencoders. (2019).

Miolane, Poitevin, Lee, Holmes: Estimation of orientation and camera parameters in cryo-EM with autoencoders (2020).

Michel, Miolane et al. Cell morphometrics with the Riemannian elastic metric. (2021). In preparation.

Shape Analysis from Biomedical Imaging

Goal: Impact of Drug Treatment on Cancer Cell Shapes

- Tumor grading → low accuracy and reproducibility [1]
- Cell morphometrics: cell state → cell shape
 - e.g. actin activity → irregular perimeter

- Questions:
 - How can we quantify differences in cell shapes?
 - How do cancer treatments affect cell?
- Collaborators: A. Prasad, K. Dao Duc, F. Michel, A. Le Brigant

Goal: Impact of Drug Treatment on Cancer Cell Shapes

curves, treatments, lines = geomstats.datasets.utils.load_cells()

DLM8 DUNN

Computing the Mean Shape

```
curves = DiscreteCurves(R2)
mean =FrechetMean(metric=curves.square_root_velocity_metric)
mean.fit(cell_shapes)
```

mean_estimate = mean.estimate_

Hypothesis Testing on Shape Transformations

Dunn:

- higher variability in shapes
- further from mean shape
- Jasp treatment:
 - Effective on Dunn
 - Less effective on DLM8
- Cytd treatment:
 - Very effective on:
 - Dunn
 - DLM8

Statistically significant (p < 0.01)

Histograms of elastic distance to mean cell

Shape Analysis from Biomedical Imaging

...Statistics and Learning

	Point estimation	Dimension Reduction	Stochastic processes	Deep Learning
Riemannian				
Finsler				
Affine				
Stratified spaces				
Lie groups				
Quotient spaces				
Subriemannian				

Geometric Learning beyond shape modeling: equivariance, invariance properties

UC SANTA BARBARA

Exploring the Geometries of Life

Thank you for your attention.

