Homework 2, Solutions

Problem #1

1.

2.

```
suppressMessages(library(tidyverse))
listings <- read.csv("~/Downloads/listings.csv")</pre>
```

a. We are interested in neighborhood_group (the NYC borough) and room_type.

```
listings %>% select(neighbourhood_group, room_type) %>% head()
```

b. Hypotheses are

 $H_0: \{\text{Room types are independent of NYC borough}\}\ vs\ H_a: \{\text{Room types are dependent on NYC borough}\}$

c.

```
my.tab <- listings %>% select(neighbourhood_group, room_type) %>% table()
my.tab
```

```
##
                       room_type
## neighbourhood_group Entire home/apt Private room Shared room
         Bronx
##
                                     378
                                                   659
                                                 10131
##
         Brooklyn
                                    9565
                                                                418
##
         Manhattan
                                   13054
                                                  7931
                                                                471
         Queens
                                                                204
##
                                    2118
                                                  3489
         Staten Island
                                     181
                                                   187
                                                                 10
```

colSums (my.tab)

```
## Entire home/apt Private room Shared room
## 25296 22397 1171
```

rowSums(my.tab)

##	Bronx	Brooklyn	Manhattan	Queens Staten	Island
##	1105	20114	21456	5811	378

sum(my.tab)

[1] 48864

For cell (1,1), Bronx borough & Entire home/apt:

$$E_{1,1} = \frac{\text{row 1 total} \ \times \ \text{column 1 total}}{\text{total sample size}} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 2118 + 181)}{48864} = \frac{\text{row 1 total} \ \times \ \text{column 1 total}}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 2118 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 2118 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 2118 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 2118 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 2118 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 2118 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 2118 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 2118 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 2118 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 2118 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 2118 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 2118 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 13054 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 181)}{48864} = \frac{(378 + 659 + 68) \times (378 + 9565 + 181)}{48864} = \frac{(378 + 659 + 68)}{48864} = \frac{(378 + 659$$

$$\frac{1105 \times 25296}{48864} = 572.0383$$

For cell (5,3), Staten Island & Shared room:

$$E_{5,3} = \frac{\text{row 5 total} \ \times \ \text{column 3 total}}{\text{total sample size}} = \frac{378 \times 1171}{48864} = 9.06$$

d. Proceed to apply your my.chisq.test() and interpret the results. As a sanity check, also run R's built-in chisq.test() function on that same data, make sure the outputted X^2 and p-values match with those provided by my.chisq.test().

my.chisq.test(my.tab)

```
## chisq pval
## 1609.391 0.000
```

There's strong statistical evidence to claim dependence between NYC borough and the room type. The chisq.test() output confirms it.

chisq.test(my.tab)

```
##
## Pearson's Chi-squared test
##
## data: my.tab
## X-squared = 1609.4, df = 8, p-value < 2.2e-16</pre>
```

e. In case you end up claiming that variables are not independent, proceed to make a few comments on **strength** of the relationship (as was done for Income & Happiness example in class).

prop.table(my.tab, margin = 1)

```
##
                     room_type
##
  neighbourhood_group Entire home/apt Private room Shared room
##
        Bronx
                            0.34208145
                                       0.59638009 0.06153846
                                        0.50367903 0.02078155
##
         Brooklyn
                            0.47553943
##
         Manhattan
                            0.60840790
                                        0.36964019 0.02195190
##
         Queens
                            0.36448116
                                       0.60041301 0.03510583
##
         Staten Island
                            0.47883598
                                        0.49470899 0.02645503
```

For example, Manhattan has a really high % of entire home/apt - 60%, which is at least 13% higher than in any other borough. Meanwhile, Queens and Bronx mostly provides private rooms - 60%, which is at least 10% higher than in other boroughs. Moreover, the proportion of shared rooms in Bronx (6%) is at least 1.5-2 times higher than those in other boroughs.

Problem #2

1.

11.84 Degrees of freedom explained

a) The order of the calculations is given in the table.

_	Vote for Fe		
Political Views	Yes	No	Total
Extremely Liberal	56	1st: $58 - 56 = 2$	58
Moderate	490	2nd: 509 - 490 = 19	509
Extremely Conservative	4th: $61 - 3 = 58$	3rd: 24 - 2 - 19 = 3	61
Total	604	24	628

b) The order of the calculations is given in the table.

_	Vote for Fen		
Political Views	Yes	No	Total
Extremely Liberal	2nd: 58 - 2 = 56	1st: $24 - 3 - 19 = 2$	58
Moderate	3rd: 509 - 19 = 490	19	509
Extremely Conservative	4th: $61 - 3 = 58$	3	61
Total	604	24	628

2.

11.9 Happiness and gender

- a) H₀: Gender and happiness are independent.
 - H_a: Gender and happiness are dependent.
- b) If the null hypothesis of independence is true, it is not unusual to observe a chi-square value of 1.04 or larger because the probability is 59% of this occurring. Hence, there is no evidence of an association between gender and happiness.

Expected counts:

• For (1,1) cell, with Gender = Female, Happiness = Not:

$$E_{1,1} = \frac{\text{(row 1 total) x (column 1 total)}}{\text{total sample size}} = \frac{(154 + 592 + 336) \times (154 + 123)}{1964} = \frac{1082 \times 277}{1964} = 152.6039$$

• For (2,3) cell, with Gender = Male, Happiness = Very:

$$E_{2,3} = \frac{\text{(row 2 total) x (column 3 total)}}{\text{total sample size}} = \frac{(123 + 502 + 257) \times (336 + 257)}{1964} = \frac{882 \times 593}{1964} = 266.3065$$

which are both pretty close to the observed counts, confirming the χ^2 -test results of non-significance.

3.

11.16 Primary food choice of alligators

a)

_	Primary Food				_	
Lake	Fish	Invertebrates	Birds & Reptiles	Other	Total	n
Hancock	54.5%	7.3%	14.6%	23.6%	100%	55
Trafford	24.5%	34.0%	22.6%	18.9%	100%	53

- b) H₀: The distribution of primary food choice is the same for alligators caught in lakes Hancock and Trafford (homogeneity).
 - H_a: The distributions differ for the two lakes.
- c) df = (2-1)(4-1) = 3, so we expect the chi-squared statistic to be 3 with a standard deviation of $\sqrt{2df} = \sqrt{2(3)} = \sqrt{6} = 2.5$. Since 16.79 is (16.79-3)/2.5 = 5.5, or 5.5 standard deviations about the expected value of 3, it is considered extreme.
- d) Since the P-value is less than 0.001, there is strong evidence that the distribution of primary food choice of alligators differs in the two lakes.

Problem #3.

1. a.

```
tab.1 <- matrix(c(0.51, 0.49, 0.49, 0.51)*100, 2,2)
tab.2 <- matrix(c(0.51, 0.49, 0.49, 0.51)*200, 2,2)
tab.3 <- matrix(c(0.51, 0.49, 0.49, 0.51)*10000, 2,2)
tab.1
```

```
## [,1] [,2]
## [1,] 51 49
## [2,] 49 51
```

tab.2

tab.3

my.chisq.test(tab.1)

```
## chisq pval
## 0.0800000 0.7772974
```

my.chisq.test(tab.2)

```
## chisq pval
## 0.1600000 0.6891565
```

my.chisq.test(tab.3)

```
## chisq pval
## 8.000000000 0.004677735
```

b.

 $p_1 = \{\text{proportion of females going to religious services weekly}\}$

 $p_2 = \{\text{proportion of males going to religious services weekly}\}$

Then

Difference in proportion:
$$p_1 - p_2 = 0.51 - 0.49 = 0.02$$

Risk ratio :
$$\frac{p_1}{p_2} = \frac{0.51}{0.49} = 1.0408$$

- c. As n increases, we can clearly see that the results become more **statistically significant**, while not changing at all from the **practical significance** standpoint. That's why for large sample sizes, it is critical to pay attention to both statistical significance and the practical effect size.
- 2. Solution below:

11.32 Marital happiness

- a) Since the P-value is less than 0.001, there is strong evidence for an association between marital and general happiness.
- b) No, not generally. Large X^2 values can occur even for weak (but still significant) associations.
- c) The percentage of being not too happy is 20/588 11/26 = 0.389, or about 40 percentage points higher for those who are not too happy in their marriage compared to those who are very happy in their marriage.
- d) Those who are not too happy in their marriage are about (11/26)/(20/588) = 11.8, or about 12 times as likely to be not too happy compared to those who are very happy in their marriage.