System-oriented Programming Spring 2018

S06

Professor : Philippe Cudré-Mauroux

Assistant : Michael Luggen

Submitted by Sylvain Julmy

Exercise 1

a)

Figure 1:

b)

Figure 2:

c)

Figure 3:

Exercise 2

- a) a is a local array of local array of int.
- b) b is a local array of pointer on int.
- c) c is a function which take no arguments and return an int. We have to specify void for the arguments to garanteed that the function should not take any argument.
- d) d is a function which take a pointer of a function which has no argument and return an int. The function d return an int as well.
- e) f is a function which return a function that return an int with no arguments. The function f take 0 argument.

Exercise 3

- a) stackt is a synonym for pointer on void.
- b) $fctInt_t$ is a synonym for a function which take an int and return an int.
- c) fct_gen is a synonym for a function which take a pointer on void and return a pointer on void.
- d) signal is a synonym for a function which take 2 arguments: an int and a function that return nothing and take an int. signal return a function that return nothing and take an int.

Exercise 4

 $mult \text{ return } (2+4)*8 = 48. \ compute \text{ return } (2+4)*8 = 48$

	6 = 2 + 4
\$add	
	4
	2
	6
\$mult	
	8
	add(2,4) = 6
	8 * 6 = 48
\$main	

Stack segment

Figure 4: Stack segment of mult.

	2 + 4 = 6
\$add	
	2
	4
	6
\$compute\$2	
	4
	2
	add
	6
\$mult	
	8
	compute(add,2,4)
	6 * 8 = 48
\$compute\$1	
	8
	compute(add,2,4)
	mult
\$main	

Stack segment

Figure 5: Stack segment of compute.

Exercise 5

I think I didn't find the correct code for this exercice...

Figure 6: Stack and heap segment.