2014 年全国统一高考化学试卷 (新课标I)

- 一、选择题(本题共7小题,每小题6分,共42分)
- 1. (6分)下列化合物中同分异构体数目最少的是()

A. 戊烷 B. 戊醇 C. 戊烯 D. 乙酸乙酯

2. (6分) 化学与社会、生活密切相关,对下列现象或事实的解释正确的是 ()

选项	现象或事实	解释
А	用热的烧碱溶液洗去油污	Na ₂ CO ₃ 可直接和油污反应
В	漂白粉在空气中久置变质	漂白粉中的 CaCl ₂ 与空气中的
		CO2反应生成 CaCO3
С	施肥时,草木灰(有效成分为 K ₂ CO ₃)	K ₂ CO ₃ 与 NH ₄ Cl 反应生成氨气
	不能与 NH ₄ Cl 混合使用	会降低肥效
D	FeCl ₃ 溶液可用于铜质印刷线路板制作	FeCl ₃ 能从含有 Cu ²⁺ 的溶液中置
		换出铜

A. A

B. B

C. C

D. D

3. (6分) 已知分解 1mol H₂O₂ 放出热量 98kJ,在含少量 I□的溶液中,H₂O₂分 解的机理为:

 $H_2O_2+I^{\Box} \rightarrow H_2O+IO^{\Box}$ 慢

 $H_2O_2+IO^{\square} \rightarrow H_2O+O_2+I^{\square}$ 快

下列有关该反应的说法正确的是()

A. 反应速率与 I□的浓度有关 B. IO□也是该反应的催化剂

C. 反应活化能等于 98kJ•mol $^{\square 1}$ D. v (H_2O_2) =v (H_2O) =v (O_2)

- 4. (6分) X, Y, Z均为短周期元素, X, Y处于同一周期, X, Z的最低价 离子分别为 X^2 和 Z^1 , Y^+ 和 Z^1 具有相同的电子层结构。下列说法正确的是
 - A. 原子最外层电子数: X>Y>Z B. 单质沸点: X>Y>Z

C. 离子半径: X^{2□}>Y⁺>Z[□] D. 原子序数: X>Y>Z

5. (6分) 溴酸银(AgBrO₃)溶解度随温度变化曲线如图所示,下列说法错误 的是()

- A. 溴酸银的溶解是放热过程
- B. 温度升高时溴酸银溶解速度加快
- C. 60℃时溴酸银的 K_{sp}约等于 6×10^{□4}
- D. 若硝酸钾中含有少量溴酸银,可用重结晶方法提纯
- 6. (6分)下列有关仪器使用方法或实验操作正确的是()
 - A. 洗净的锥形瓶和容量瓶可以放进烘箱烘干
 - B. 酸式滴定管装标准溶液前, 必须先用该溶液润洗
 - C. 酸碱滴定实验中,用待滴定溶液润洗锥形瓶以减小实验误差
 - D. 用容量瓶配溶液时, 若加水超过刻度线, 立即用滴管吸出多余液体
- 7. (6分)利用如图所示装置进行下列实验,能得出相应实验结论是()

选项	1	2	3	实验结论	<u></u>
Α	稀硫酸	Na ₂ S	AgNO ₃ 与 AgCl	$K_{sp} (AgCI) > K_{sp} (Ag_2S)$	
			的浊液		
В	浓硫酸	蔗糖	溴水	浓硫酸具有脱水性、氧体	Ł
				性	
С	稀盐酸	Na ₂ SO ₃	Ba(NO ₃) ₂ 溶	SO ₂ 与可溶性钡盐均可生	成 😡 🖫 🖫
			液	白色沉淀	
D	浓硝酸	Na ₂ CO ₃	Na ₂ SiO ₃ 溶液	酸性: 硝酸>碳酸>硅酯	
Α.	A		В. В	C. C I). D

三、非选择题:包括必考题和选考题两部分(一)必考题(共58分)

8. (13 分) 乙酸异戊酯是组成蜜蜂信息素的成分之一,具有香蕉的香味,实 第2页(共9页) 验室制备乙酸异戊酯的反应、装置示意图和有关数据如图 1、2 及表格:

相对分子质量 密度/ 沸点/℃ 水中溶解性 (g•cm²³) 异戊醇 88 微溶 0.8123 131 乙酸 60 1.0492 溶 118 乙酸异戊酯 130 0.8670 142 难溶

实验步骤:

在 A 中加入 4.4g 异戊醇、6.0g 乙酸、数滴浓硫酸和 2~3 片碎瓷片,开始缓慢加热 A,回流 50min,反应液冷至室温后倒入分液漏斗中,分别用少量水、饱和碳酸氢钠溶液和水洗涤;分出的产物加入少量无水 MgSO₄固体,静置片刻,过滤除去 MgSO₄固体,进行蒸馏纯化,收集 140□143℃馏分,得乙酸异戊酯 3.9g.

回答下列问题:
(1) 仪器 B 的名称是;
(2) 在洗涤操作中,第一次水洗的主要目的是,第二次水洗的主要目
的是;
(3) 在洗涤、分液操作中,应充分振荡、然后静置,待分层后(填标
号)
a. 直接将乙酸异戊酯从分液漏斗的上口倒出
b. 直接将乙酸异戊酯从分液漏斗的下口放出
c. 先将水层从分液漏斗的下口放出, 再将乙酸异戊酯从下口放出
d. 先将水层从分液漏斗的下口放出,再将乙酸异戊酯从上口倒出
(4) 本实验中加入过量乙酸的目的是;
(5) 实验中加入少量无水 MgSO ₄ 的目的是;
(6) 在蒸馏操作中, 仪器选择及安装都正确的是(如图3)(填标
号)
(7) 本实验的产率是(填标号)
a.30% b.40% c.60% d.90%
(8) 在进行蒸馏操作时, 若从 130℃便开始收集馏分, 会使实验的产率偏
(填"高"或"低"),其原因是
9. $(15 eta)$ 次磷酸 (H_3PO_2) 是一种精细磷化工产品,具有较强还原性,回答
下列问题:
(1) H_3PO_2 是一元中强酸,写出其电离方程式;
(2) H_3PO_2 及 NaH_2PO_2 均可将溶液中的 Ag^+ 还原为银,从而可用于化学镀银。
① H_3PO_2 中, P 元素的化合价为;
②利用 H_3PO_2 进行化学镀银反应中,氧化剂与还原剂的物质的量之比为 4: 1,
则氧化产物为(填化学式);
③NaH ₂ PO ₂ 为(填"正盐"或"酸式盐"), 其溶液显(填"弱酸
性"、"中性"或"弱碱性");
(3) H_3PO_2 的工业制法是:将白磷(P_4)与 Ba (OH) $_2$ 溶液反应生成 PH_3 气体

和 Ba(H_2PO_2)₂,后者再与 H_2SO_4 反应,写出白磷与 Ba(OH) $_2$ 溶液反应

的化学方程式 ;

- (4) H₃PO₂也可用电渗析法制备。"四室电渗析法"工作原理如图所示(阳膜和阴膜分别只允许阳离子、阴离子通过):
- ①写出阳极的电极反应式;
- ②分析产品室可得到 H₃PO₂ 的原因_____;
- ③早期采用"三室电渗析法"制备 H₃PO₂,将"四室电渗析法"中阳极室的稀硫酸用 H₃PO₂稀溶液代替,并撤去阳极室与产品室之间的阳膜,从而合并了阳极室与产品室,其缺点是产品中混有_____杂质,该杂质产生的原因是。。

- 10. (15分) 乙醇是重要的有机化工原料,可由乙烯气相直接水合法或间接水合法生产,回答下列问题:
- (1) 间接水合法是指先将乙烯与浓硫酸反应生成硫酸氢乙酯 (C₂H₅OSO₃H),再水解生成乙醇,写出相应反应的化学方程式_____; (2) 已知:

甲醇脱水反应 2CH₃OH (g) —CH₃OCH₃ (g) +H₂O (g) △H₁=□23.9kJ•mol□¹ 甲醇制烯烃反应 2CH₃OH (g) —C₂H₄ (g) +2H₂O (g) △H₂=□29.1kJ•mol□¹ 乙醇异构化反应 C₂H₅OH (g) —CH₃OCH₃ (g) △H₃=+50.7kJ•mol□¹ 则乙烯气相直接水合反应 C₂H₄ (g) +H₂O (g) —C₂H₅OH (g) 的△H=______ kJ•mol□¹,与间接水合法相比,气相直接水合法的优点是______;

(3) 如图为气相直接水合法中乙烯的平衡转化率与温度、压强的关系(其中 n_{H_2} 0[:] $n_{C_2H_4}$ =1: 1)

- ②图中压强 (P₁, P₂, P₃, P₄) 大小顺序为_____, 理由是_____;
- ③气相直接水合法常采用的工艺条件为:磷酸/硅藻土为催化剂,反应温度 290°C,压强 6.9MPa, n_{H_2} 0: $n_{C_2H_4}$ =0.6:1,乙烯的转化率为 5%,若要进一步提高乙烯转化率,除了可以适当改变反应温度和压强外,还可以采取的措施有_____、___。

【化学-选修 2: 化学与技术】

11. (15分)磷矿石主要以磷酸钙[Ca₃ (PO₄)₂•H₂O]和磷灰石[Ca₅F (PO₄)₃, Ca₅ (OH) (PO₄)₃]等形式存在,图 (a) 为目前国际上磷矿石利用的大致情况,其中湿法磷酸是指磷矿石用过量硫酸分解制备磷酸,图 (b) 是热法磷酸生产过程中由磷灰石制单质磷的流程:

部分物质的相关性质如下:

	熔点/℃	沸点/℃	备注
白磷	44	280.5	
PH ₃	2133.8	287.8	难溶于水、有还原性
SiF ₄	290	286	易水解

-				• H
	盔	卜为	11 10	[题:

5	=100.0			
SiF ₄	290	286	易水解	
回答下列问	题:			
(1)世界」	二磷矿石最主要	的用途是生产	含磷肥料,约占磷矿石使用	量的
%;				
(2) 以磷	矿石为原料,	湿法磷酸过	程中 Ca ₅ F (PO ₄) 3反应化	2.学方程式
为:	现有 1t 扫	折合含有 P ₂ O ₅ 约	约30%的磷灰石,最多可制	得到 85%的
商品磷酸	Èt.			
(3) 如图	(b) 所示,热剂	法磷酸生产过程	星的第一步是将 SiO ₂ 、过量:	焦炭与磷灰
石混合,	高温反应生成	白磷. 炉渣的	主要成分是(填化	学式). 冷
凝塔1的	」主要沉积物是	,冷凝	塔 2 的主要沉积物是	_•
(4) 尾气中	中主要含有	,还含有少	≥量的 PH ₃ 、H ₂ S 和 HF 等.	将尾气先通
入纯碱溶	落,可除去	; 再通入	次氯酸钠溶液,可除去	(均
填化学式	`)			
(5) 相比于	-湿法磷酸,热	法磷酸工艺复	杂,能耗高,但优点是	·
【化学-选修	§ 3:物质结构。	与性质】		
12. 早期发	现的一种天然		昌颗粒由 Al、Cu、Fe 三种 st	金属元素组
	·			

- 1 12 成,回答下列问题:
 - (1) 准晶是一种无平移周期序,但有严格准周期位置序的独特晶体,可通过 方法区分晶体、准晶体和非晶体.
 - 用硫氰化钾检验 Fe3+, 形成的配合物的颜色为_____.
 - (3) 新制备的 Cu (OH) 2可将乙醛 (CH₃CHO) 氧化成乙酸,而自身还原成 Cu₂O, 乙醛中碳原子的杂化轨道类型为 ; 1mol 乙醛分子中含有的 σ 键的数目为_____,乙酸的沸点明显高于乙醛,其主要原因

是_____. Cu₂O 为半导体材料,在其立方晶胞内部有 4 个氧原子,其余氧原子位于面心和顶点,则该晶胞中有 个铜原子.

【化学-选修 5: 有机化学基础】

13. 席夫碱类化合物 G 在催化、药物、新材料等方面有广泛应用。合成 G 的一种路线如下:

已知以下信息:

$$\begin{array}{c|c}
H \\
C = C \\
R_3
\end{array}
\xrightarrow{R_2}
\begin{array}{c}
1)O_3 \\
2)Z_n/H_2O
\end{array}
\xrightarrow{R_1CHO} + O = C \\
R_3$$

- ②1molB 经上述反应可生成 2molC,且 C 不能发生银镜反应。
- ③D属于单取代芳香烃,其相对分子质量为106。
- ④核磁共振氢谱显示 F 苯环上有两种化学环境的氢。

$$O = C$$
 $R'(H)$
 $-$ 定条件
 $R - N$
 $R'(H)$

回答下列问题:

- (1) 由 A 生成 B 的化学方程式为_____, 反应类型为_____;
- (2) E 的化学名称是_____, 由 D 生成 E 的化学方程式为_____;
- (3) G 的结构简式为 ;
- (4) F的同分异构体中含有苯环的还有______种(不考虑立体异构),其中核磁共振氢谱中有 4 组峰,且面积比为 6: 2: 2: 1 的是______,(写出其中的一种的结构简式)。
- (5) 由苯和化合物 C 经如下步骤可合成 N□异丙基苯胺。

$$\sum$$
 反应条件 $_{1H}$ 反应条件 $_{2I}$ $\frac{C}{-rr}$ $_{1}$ 还原

反应条件1所选择的记	[【] 剂为;	反应条件2所选择的试剂为	_;	I的
结构简式为	0			