Zeta-values of arithmetic schemes at negative integers and Weil-étale cohomology

Alexey Beshenov Université de Bordeaux / Universiteit Leiden

Advised by Baptiste Morin and Bas Edixhoven

4 December 2017, Leiden

Outline

- Motivation
- Motivic cohomology
- ► Weil-étale complexes
- Regulator
- ► Main conjecture
- Stability properties
- * Definition of Weil-étale complexes

Motivation

Motivation: zeta values

Zeta function of an arithmetic scheme:

$$\begin{array}{c} X \\ \text{of finite type} \downarrow \\ \text{Spec } \mathbb{Z} \end{array} \rightsquigarrow \zeta(X,s) := \prod_{x \in X_0} \frac{1}{1 - N(x)^{-s}} \quad (\operatorname{Re} s > \dim X) \end{array}$$

- ► Conjecture: meromorphic continuation to C.
- ► Two quantities for each $n \in \mathbb{Z}$: $d_n := \operatorname{ord}_{s=n} \zeta(X,s) :=$ vanishing order at s = n, special value $\zeta^*(X,n) := \lim_{s \to n} (s-n)^{-d_n} \zeta(X,s)$.

Motivation: cohomological interpretation of zeta values

► May be traced to Dirichlet (1839):

$$\zeta_F^*(0) = \zeta^*(\operatorname{Spec} \mathcal{O}_F, 0) = -\frac{h_F}{\#\mu_F} R_F.$$

Actually,

$$\cdots = -\frac{\#H^0(\operatorname{Spec} \mathcal{O}_F, \mathbb{Z}^c(0))}{\#H^{-1}(\operatorname{Spec} \mathcal{O}_F, \mathbb{Z}^c(0))_{tors}} R_F,$$

where $\mathbb{Z}^c(0) \cong \mathbb{G}_m[1]$ (to be explained in a moment).

* First results about finite generation of motivic cohomology are from the XIX century :-) $H^0(\operatorname{Spec} \mathcal{O}_F, \mathbb{Z}^c(0))$ is finite; $H^{-1}(\operatorname{Spec} \mathcal{O}_F, \mathbb{Z}^c(0))$ is of rank $r_1 + r_2 - 1$.

Motivation: Weil-étale cohomology (very brief history)

- ▶ **Lichtenbaum**: d_n and $\zeta^*(X, n)$ conjecturally come from "Weil-étale cohomology".
- ▶ **Lichtenbaum**, 2005: first studies for $X_{/\mathbb{F}_q}$.
- ▶ **Geisser**, 2004: further results for $X_{/\mathbb{F}_q}$.
- ▶ Lichtenbaum, 2009: $X = \operatorname{Spec} \mathcal{O}_F$, n = 0.
- ▶ Morin, 2014: $X_{/\mathbb{Z}}$ proper, regular, n = 0.
- ▶ Flach and Morin, 2016: $X_{/\mathbb{Z}}$ proper, regular, $n \in \mathbb{Z}$.

Motivation: my thesis

- Goal: construct Weil-étale cohomology following Flach and Morin...
- ► For any arithmetic scheme *X* (harder).
- ▶ For n < 0 (easier).

From now on, *n* is strictly negative!

Motivic cohomology

Motivic cohomology

- ▶ Bloch, 1986: cycle complexes $\mathbb{Z}(n)$, higher Chow groups $CH^{i}(X, p) = H^{2i-p}(X, \mathbb{Z}(i))$.
- ► Geisser, 2010: dualizing complexes.

$$(X,n) \rightsquigarrow \mathbb{Z}^{c}(n)$$
, complex of sheaves on $X_{\acute{e}t}$.

- ▶ $\mathbb{Z}^c(n) = \mathbb{Z}(d-n)[2d]$, $d = \dim X$.
- * For $X_{/k}$ smooth, RHS \cong Voevodsky's motivic complex (not our case).

Motivic cohomology: Borel–Moore behavior of $\mathbb{Z}^c(n)$

- ▶ Borel-Moore homology for locally compact spaces.
- ▶ Localization triangles for $U \hookrightarrow X \leftarrow Z$:

$$R\Gamma_{BM}(Z,\mathbb{Z}) \to R\Gamma_{BM}(X,\mathbb{Z}) \to R\Gamma_{BM}(U,\mathbb{Z}) \to \cdots$$
 [1]

- ▶ Verdier: $R\Gamma_{BM}(X, \mathbb{Z}) = R\Gamma(X, p^{!}\underline{\mathbb{Z}}) \cong R\text{Hom}(R\Gamma_{c}(X, \mathbb{Z}), \mathbb{Z}),$ where $p: X \to *$.
- Dual to cohomology with compact support:

$$R\Gamma_c(U,\mathbb{Z}) \to R\Gamma_c(X,\mathbb{Z}) \to R\Gamma_c(Z,\mathbb{Z}) \to \cdots$$
 [1]

► **Geisser**, 2010: for schemes,

$$R\Gamma(Z_{\acute{e}t},\mathbb{Z}^c(n)) o R\Gamma(X_{\acute{e}t},\mathbb{Z}^c(n)) o R\Gamma(U_{\acute{e}t},\mathbb{Z}^c(n)) o \cdots [1]$$

Motivic cohomology: assumption on finite generation

- ► Conjecture $L^c(X_{\acute{e}t}, n)$: $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ are finitely generated for all $i \in \mathbb{Z}$.
- * As always here, n < 0.

Weil-étale complexes

Weil-étale complexes

Theorem.

- ▶ For an arithmetic scheme *X* and n < 0, assume $L^c(X_{\acute{e}t}, n)$.
- We may construct a perfect complex of abelian groups

$$R\Gamma_{W,c}(X,\mathbb{Z}(n))$$

(well-defined up to an iso in $\mathbf{D}(\mathbb{Z})$).

▶ **perfect** = $H^{i}_{W,c}(X, \mathbb{Z}(n))$ are finitely generated; zero for almost all i.

Weil-étale complexes: splitting

- ► $R\Gamma_{W,c}(X,\mathbb{Z}(n)) \otimes \mathbb{R} \cong R\mathrm{Hom}(R\Gamma(X_{\acute{e}t},\mathbb{Z}^c(n)),\mathbb{R})[-1] \oplus R\Gamma_c(G_{\mathbb{R}},X(\mathbb{C}),(2\pi i)^n\mathbb{R})[-1].$
- ► $G_{\mathbb{R}} := \operatorname{Gal}(\mathbb{C}/\mathbb{R})$ acts on $R\Gamma_c(X(\mathbb{C}), (2\pi i)^n A) \Rightarrow$ $G_{\mathbb{R}}$ -equivariant cohomology with compact support:

$$R\Gamma_c(G_{\mathbb{R}},X(\mathbb{C}),(2\pi i)^nA):=R\Gamma(G_{\mathbb{R}},R\Gamma_c(X(\mathbb{C}),(2\pi i)^nA)).$$

Grothendieck spectral sequence:

$$E_2^{pq} = H^p(G_{\mathbb{R}}, H^q_c(X(\mathbb{C}), (2\pi i)^n A)) \Longrightarrow H^{p+q}_c(G_{\mathbb{R}}, X(\mathbb{C}), (2\pi i)^n A).$$

▶ Note:

$$H^i_c(G_\mathbb{R},X(\mathbb{C}),(2\pi i)^n\,\mathbb{R})\cong H^i_c(X(\mathbb{C}),(2\pi i)^n\,\mathbb{R})^{G_\mathbb{R}}$$

$$(H^{>0}(G_\mathbb{R},\ldots) \text{ is always 2-torsion!})$$

Regulator

Regulator

- A nice construction due to Kerr, Lewis, and Müller-Stach (2006).
- ▶ Usually:

motivic cohomology (higher Chow groups) of $X \xrightarrow{Reg}$ Deligne (co)homology of $X(\mathbb{C})$.

▶ In our case n < 0: a morphism in $\mathbf{D}(\mathbb{Z})$

$$Reg: R\Gamma(X_{\acute{e}t}, \mathbb{Z}^c(n)) \to R\Gamma_{BM}(G_{\mathbb{R}}, X(\mathbb{C}), (2\pi i)^n \mathbb{R})[1].$$

- ▶ **Drawback**: need to assume that $X_{\mathbb{C}}$ is smooth, quasi-projective.
- ▶ Conjecture B(X, n): the \mathbb{R} -dual is a quasi-isomorphism

$$Reg^{\vee}: R\Gamma_c(G_{\mathbb{R}}, X(\mathbb{C}), (2\pi i)^n \mathbb{R})[-1] \xrightarrow{\simeq} RHom(R\Gamma(X_{\acute{e}t}, \mathbb{Z}^c(n)), \mathbb{R})$$

Morphism $\smile \theta$

Define

$$R\Gamma_{W,c}(X,\mathbb{Z}(n))\otimes \mathbb{R} \stackrel{\smile \theta}{\longrightarrow} R\Gamma_{W,c}(X,\mathbb{Z}(n))\otimes \mathbb{R}[1]$$

$$R\Gamma_{W,c}(X,\mathbb{Z}(n))\otimes\mathbb{R}$$

$$\operatorname{splitting}\downarrow\cong$$

$$R\operatorname{Hom}(R\Gamma(X_{\operatorname{\acute{e}t}},\mathbb{Z}^{c}(n)),\mathbb{R})[-1]\oplus R\Gamma_{c}(G_{\mathbb{R}},X(\mathbb{C}),(2\pi i)^{n}\,\mathbb{R})[-1]$$

$$\downarrow$$

$$R\Gamma_{c}(G_{\mathbb{R}},X(\mathbb{C}),(2\pi i)^{n}\,\mathbb{R})[-1]$$

$$\operatorname{conjecturally}\cong\downarrow \operatorname{Reg}^{\vee}$$

$$R\operatorname{Hom}(R\Gamma(X_{\operatorname{\acute{e}t}},\mathbb{Z}^{c}(n)),\mathbb{R})$$

$$\downarrow$$

$$R\operatorname{Hom}(R\Gamma(X_{\operatorname{\acute{e}t}},\mathbb{Z}^{c}(n)),\mathbb{R})\oplus R\Gamma_{c}(G_{\mathbb{R}},X(\mathbb{C}),(2\pi i)^{n}\,\mathbb{R})$$

$$\operatorname{splitting}\downarrow\cong$$

$$R\Gamma_{W,c}(X,\mathbb{Z}(n))\otimes\mathbb{R}[1]$$

Trivialization map λ

► Assume $\mathbf{L}^{c}(X_{\acute{e}t}, n)$ and $\mathbf{B}(X, n)$. Then

$$\cdots \to H^{i}_{W,c}(X,\mathbb{Z}(n)) \otimes \mathbb{R} \xrightarrow{\smile \theta} H^{i+1}_{W,c}(X,\mathbb{Z}(n)) \otimes \mathbb{R} \to \cdots \quad (*)$$

is an acyclic complex of finite dimensional vector spaces.

- ► Knudsen, Mumford, 1976: determinants of complexes.
 - C^{\bullet} , perfect object in $\mathbf{D}(\mathbb{Z}) \rightsquigarrow \det_{\mathbb{Z}} C^{\bullet}$, \mathbb{Z} -module of rank 1.
- ► Properties of determinants ⇒ (*) induces a canonical iso

$$\lambda \colon \mathbb{R} \xrightarrow{\cong} (\det_{\mathbb{Z}} R\Gamma_{W,c}(X,\mathbb{Z}(n)) \otimes \mathbb{R}.$$

▶ $R\Gamma_{W,c}(X,\mathbb{Z}(n))$ is constructed up to iso in $\mathbf{D}(\mathbb{Z})$, but $\det_{\mathbb{Z}}R\Gamma_{W,c}(X,\mathbb{Z}(n))$ is *canonically* defined and *canonically* seen as a lattice in \mathbb{R} .

Main conjecture

Conjecture C(X, n)

For an arithmetic scheme X and n < 0

- a) assume $\mathbf{L}^{c}(X_{\acute{e}t}, n)$;
- b) assume that $X_{\mathbb{C}}$ is smooth, quasi-projective; assume $\mathbf{B}(X, n)$;
- c) assume meromorphic continuation near s = n for $\zeta(X, s)$.

Then

1) the vanishing order is given by

$$\operatorname{ord}_{s=n} \zeta(X,s) = \sum_{i \in \mathbb{Z}} (-1)^i \cdot i \cdot \operatorname{rk}_{\mathbb{Z}} H^i_{W,c}(X,\mathbb{Z}(n)).$$

2) the special value is given up to sign by

$$\lambda(\zeta^*(X,n)^{-1})\cdot \mathbb{Z} = \det_{\mathbb{Z}} R\Gamma_{W,c}(X,\mathbb{Z}(n)).$$

Main conjecture: relation to other statements

- For X regular, proper,
 C(X,n) ⇐⇒ conjectures of Flach and Morin (2016).
- ► Flach and Morin (2016):
 their special value conjecture

 Tamagawa number conjecture
 (Bloch, Kato, Fontaine, Perrin-Riou).

Main conjecture: meaning of the vanishing order

- ▶ What is that sum $\sum_{i \in \mathbb{Z}} (-1)^i \cdot i \cdot \operatorname{rk}_{\mathbb{Z}} H^i_{W.c}(X, \mathbb{Z}(n))$?
- ▶ Under the assumptions a), b),

$$\begin{aligned} \operatorname{ord}_{s=n} \zeta(X,s) &\stackrel{?}{=} \sum_{i \in \mathbb{Z}} (-1)^i \cdot i \cdot \operatorname{rk}_{\mathbb{Z}} H^i_{W,c}(X,\mathbb{Z}(n)) \\ &= \sum_{i \in \mathbb{Z}} (-1)^i \operatorname{dim}_{\mathbb{R}} H^i_c(X(\mathbb{C}), (2\pi i)^n \, \mathbb{R})^{G_{\mathbb{R}}} \\ &= \chi(R\Gamma_c(G_{\mathbb{R}}, X(\mathbb{C}), (2\pi i)^n \, \mathbb{R})). \end{aligned}$$

Toy example: number rings

▶ Let $X = \operatorname{Spec} \mathcal{O}_F$, $[F : \mathbb{Q}] = r_1 + 2r_2$. The $G_{\mathbb{R}}$ -space $X(\mathbb{C})$:

► $R\Gamma_c(X(\mathbb{C}), (2\pi i)^n \mathbb{R})$: a single \mathbb{R} -vector space

$$V:=((2\pi i)^n\,\mathbb{R})^{\oplus r_1}\oplus ((2\pi i)^n\,\mathbb{R}\oplus (2\pi i)^n\,\mathbb{R})^{\oplus r_2}.$$

▶ $G_{\mathbb{R}}$ -actions: $z \mapsto \overline{z}$ and $(z_1, z_2) \mapsto (\overline{z_2}, \overline{z_1})$.

$$\chi(R\Gamma_c(G_{\mathbb{R}},X(\mathbb{C}),(2\pi i)^n\mathbb{R}))=\dim_{\mathbb{R}}V^{G_{\mathbb{R}}}=egin{cases} r_2, & n ext{ odd}, \ r_1+r_2, & n ext{ even}. \end{cases}$$

Dull example: varieties over finite fields

- ▶ For $X_{/\mathbb{F}_q}$ we have $X(\mathbb{C}) = \emptyset$.
- ▶ Weil's zeta function:

$$\zeta(X,s) = \exp\left(\sum_{k\geq 1} \frac{\#X(\mathbb{F}_{q^k})}{k} q^{-ks}\right).$$

► For *n* < 0

$$\operatorname{ord}_{s=n} \zeta(X,s) = \chi(R\Gamma_c(G_{\mathbb{R}},X(\mathbb{C}),(2\pi i)^n\mathbb{R})) = 0.$$

Okay, so how can we obtain new results?

Stability properties

For the zeta function:

$$U \hookrightarrow X \leftarrow Z \leadsto \zeta(X,s) = \zeta(U,s) \cdot \zeta(Z,s),$$

$$\mathbb{A}_X^r := \mathbb{A}_\mathbb{Z}^r \times X \leadsto \zeta(\mathbb{A}_X^r,s) = \zeta(X,s-r).$$

► **Theorem**. For the conjecture:

$$U \hookrightarrow X \leftarrow Z \leadsto \text{two out of three } \mathbf{C}(U,n), \ \mathbf{C}(X,n), \ \mathbf{C}(Z,n)$$
 $\Longrightarrow \text{the other one,}$

$$\mathbb{A}_X^r := \mathbb{A}_\mathbb{Z}^r \times X \leadsto \mathbf{C}(\mathbb{A}_X^r,n) \iff \mathbf{C}(X,n-r).$$

Stability properties: proof idea

Vanishing orders and localization:

additivity of
$$\chi$$
 for the triangle $R\Gamma_c(G_{\mathbb{R}},U(\mathbb{C}),(2\pi i)^n\,\mathbb{R}) o R\Gamma_c(G_{\mathbb{R}},X(\mathbb{C}),(2\pi i)^n\,\mathbb{R}) o R\Gamma_c(G_{\mathbb{R}},Z(\mathbb{C}),(2\pi i)^n\,\mathbb{R}) o \cdots [1]$

Vanishing orders and affine space:

 $G_{\mathbb{R}}$ -equivariant quasi-isomorphism

$$R\Gamma_c(\mathbb{C}^r \times X(\mathbb{C}), (2\pi i)^n \mathbb{R}) \simeq R\Gamma_c(X(\mathbb{C}), (2\pi i)^{n-r} \mathbb{R})[-2r].$$

Special value and localization:

look also at the dual to the Borel–Moore triangle for
$$\mathbb{Z}^c(n)$$
:
 $R\text{Hom}(R\Gamma(U_{\acute{e}t},\mathbb{Z}^c(n)),\mathbb{R}) \to R\text{Hom}(R\Gamma(X_{\acute{e}t},\mathbb{Z}^c(n)),\mathbb{R}) \to R\text{Hom}(R\Gamma(Z_{\acute{e}t},\mathbb{Z}^c(n)),\mathbb{R}) \to \cdots$ [1]

Special value and affine space:

$$p \colon \mathbb{A}_X^r \to X \Longrightarrow Rp_* \mathbb{Z}^c(n) \simeq \mathbb{Z}^c(n-r)[2r]$$
$$\Longrightarrow R\Gamma(\mathbb{A}_{X.\acute{e}t}^r, \mathbb{Z}^c(n)) \simeq R\Gamma(X_{\acute{e}t}, \mathbb{Z}^c(n-r))[2r].$$

Thank you!