Group: A3 M

Introduction

We are using the data (*Flights dataset.csv*) given from our Bishops Moodle at CS503 Data Visualization Assignment 3 and applied it to the one of Python compiler, *Jupyter*, for data processing. The data mainly describe the information about flights among the states of the United States of America in 2009.

In this assignment, we used such Python libraries mainly using the *plotly* to perform the data visualization into our code (*Assignment3.ipynb*) as a below

pandas : to convert the data in the csv file into python
 numpy : to process the data with the math calculation

• plotly : to represent the output of interactive data visualization

This report shows the relationship between columns such as the relationship between air time and distance, the delays and US states following with their origins, etc following with the reason why we need to apply data cleaning as *NaN* values before analysing further to the data.

Preprocessing (Data Cleaning)

	VEAD	MONTH	DAY OF MONTH	DAY OF WEEK	LINIOUE CARRIER	AIDLINE ID	CARRIER	TAU 50154	F1	ODIONI	04N0FU 4TION 00DF	DIVED.
	TEAR	MONTH	DAT_OF_MONTH	DAT_OF_WEEK	UNIQUE_CARRIER	AIRLINE_ID	CARRIER	IAIL_NUM	FL_NUM	ORIGIN	 CANCELLATION_CODE	DIVER
0	2009	12	2	3	9E	20363	9E	91879E	850	ATL	 NaN	
1	2009	12	3	4	9E	20363	9E	92289E	850	ATL	 NaN	
2	2009	12	4	5	9E	20363	9E	91629E	850	ATL	 NaN	
3	2009	12	6	7	9E	20363	9E	91709E	850	ATL	 NaN	
4	2009	12	7	1	9E	20363	9E	92289E	850	ATL	 NaN	
5	2009	12	9	3	9E	20363	9E	92009E	850	ATL	 NaN	
6	2009	12	10	4	9E	20363	9E	91539E	850	ATL	 NaN	
7	2009	12	11	5	9E	20363	9E	92289E	850	ATL	 NaN	
8	2009	12	13	7	9E	20363	9E	91629E	850	ATL	 NaN	
9	2009	12	14	1	9E	20363	9E	91869E	850	ATL	 NaN	

Data cleaning has to be done since some certain columns have NaN values which can impact the data analysis to be inaccurate. We then located and counted the number of NaN values between columns by using the python command of *data.isna().sum()* such as below

In [4]:	<pre>data.isna().sum()</pre>	
	DEST_STATE_ADD	0
	DEST_WAC	0
	CRS DEP TIME	0
	DEP_TIME	14193
	DEP_DELAY	14193
	CRS_ARR_TIME	0
	ARR_TIME	15178
	ARR_DELAY	16218
	CANCELLED	0
	CANCELLATION_CODE	514539
	DIVERTED	0
	AIR_TIME	16218
	DISTANCE	0
	CARRIER_DELAY	397249
	WEATHER_DELAY	397249
	NAS_DELAY	397249
	SECURITY_DELAY	397249
	LATE_AIRCRAFT_DELAY	397249
	Unnamed: 35 dtype: int64	529269

In this case, we only delete the *CANCELLATION_CODE* and *Unnamed: 35* as both have the highest number of NaN values in between columns.

Group: A3 M

Data Analysis

The first data analysis is to discuss the relationship between US states and the air time. In this analysis, it specifically observes the comparison of the air time in between the states. Thanks to plotly library in python, we can not only easily compare the air time hours based on the color, but also to see further the detail of the states we are pointing to. As you can see, California is at the very top using flights in the US as it follows with other datas supported including mean delay time, air distance and the number canceled flights. All the queries are set in the python code.

2019 Air time in different states

The second graph shows the different types of delay time in December 2009. The mean security security delay time is mostly constant compared to other graphs. Those other graphs are always fluctuating in December 2009. As you can see below, the flight departure (aircraft) has the biggest number in delay time in the month. We can easily see the detail of the coordinate to the highest point (20, 28.33) which belongs to the aircraft.

Mean six delay times each day in December 2009

Group: A3 M

The third relationship is between the number of the cancelled flights and the airline code. This graph actually needs to be represented in 31 different types of graphs as the bar graph goes to different when it goes day by day. In this representation, we use plotly to compress multiple graphs into only one graph. This can be done by using animation. It is much more interactive and tidy than the other previous graphs as they have the animation located at the below of the bar graph. We took one specific case on day 9th, mostly all flights are cancelled.

CONCLUSION

- It is important to do data cleaning before analysing as the original data has too many NaN
 values which can be affecting the accuracy of the analysis.
- Plotly output could be the best to represent the analysis in the very compact and dynamic
 way as it can reduce many redundant figures and show the significance into the desired
 details shown as coordinates..