Algorithms and Data Structures

Arnav Singh

March 9, 2020

- 5 Sheet 5
- 5.1 Fibonacci Numbers
- 5.1.1 Implemented all 4 methods, in zip file check fib.cpp file
- 5.1.2 Table of value for increasing n

No. of fib elements	Naïve	Closed	Bottom Up	Matrix	
1	1,00E-06	1.1e-05	9,00E-06	2,00	E-06
2	0,00E+00	1,00E-06	1,00E-06	1,00	E-06
5	0,00E+00	1,00E-06	5 0		0
12	2,00E-06	1,00E-06	1,00E-06		0
30	0.004321	0) 0	1,00	E-06
75	Reached limit	1,00E-06	5 0		0
187	Reached limit	0	1,00E-06	2,00	E-06
467	Reached limit	1,00E-06	1,00E-06	2,00	E-06
1167	Reached limit	0	3,00E-06	5,00	E-06
2917	Reached limit	O	7,00E-06	1,00	E-05
7292	Reached limit	1,00E-06	5 2.2e-05	2.3e-05	
18230	Reached limit	1,00E-06	6 4.8e-05	5.8e-05	
45575	Reached limit	2,00E-06	0.000122	0.000146	
113937	Reached limit	O	0.000308	0.000367	
284842	Reached limit	O	0.000773	0.000916	
712105	Reached limit	1,00E-06	0.001918	0.00229	
1780262	Reached limit	C	0.005491	0.005866	
4450655	Reached limit	C	0.015028	0.014028	
11126637	Reached limit	C	0.034345	0.036595	
27816592	Reached limit	1,00E-06	0.083827	0.088135	
69541480	Reached limit	0	0.19936	0.226127	
173853700	Reached limit	1,00E-06	0.508536	0.576505	
434634250	Reached limit	1,00E-06	Reached limit	Reached limit	

Figure 1: Running time of all 4 methods with respect to increasing value of n in seconds , time limit taken as 1 second

5.1.3 Value of n

For all the methods the value of n is not the same. For the closed form where we implement the golden ratio, the Fibonacci number would be different because as the the value of increases the larger n gets, the compiler will give rounding off approximation errors, hence will lead a small error.

5.1.4 Plot of Graph

Figure 2: Plot of the running time of all methods with respect to n number of elements, (fixed time taken as 1 second)

5.2 Divide/Conquer and Solving Recurrences

5.2.1 Derive time complexity

Assume two numbers x, y each of n bits.

Multiplying each bit of a number x by each bit of a number y and doing this for n times is n^2

Shifting and adding the result is n

Therefore total time complexity is: $n^2 + n$

$$T(n) = \Theta(n^2) \tag{1}$$

5.2.2 Derive the algorithm

Consider two numbers x and y each of n bits First we divide x into two parts a and b such that $x = a * 2^{\frac{n}{2}} + b$ and similarly for $y = c * 2^{\frac{n}{2}} + d$ Therefore $xy = (a * 2^{\frac{n}{2}} + b)*(c * 2^{\frac{n}{2}} + d)$

On expanding we get,

$$ac \cdot 10^n + 10^{\frac{n}{2}} (ad + bc) + bd$$

Here notice that we have 4 multiplications altogether at the highlighted parts However we can decrease the number of multiplications by rewriting the middle term i.e

$$(ad + bc) = (a + b) \cdot (c + d) - ac - bd \tag{2}$$

Thus we finally have,

$$\underline{ac} \cdot 10^n + 10^{\frac{n}{2}} [(a+b) \cdot (c+d) - ac - bd)] + \underline{bd}$$
(3)

Now we have 3 distinct multiplications which are underlined. A Pseudo code for the algorithm is given in the last page.

5.2.3 Derive Recurrence relation

Since the algorithm requires three distinct multiplications of size n/2 for every subdivision the adding and shifting bits take n time recurrence becomes $T(n) = 3T(\frac{n}{2}) + n$

5.2.4 Solve the recurrence relation using the tree method

Done in the bonus file

5.2.5 Solve it using the master method

$$T(n) = 3T(\frac{n}{2}) + n$$

$$n^{\log_b a} = n^{\log_2 3 = n^{1.58}}$$
 and $f(n) = n$

This is Case 1 as f(n) is polynomially smaller than $n^{1.58}$. $f(n) = O(n^{1-e})$ for e = 0.58Thus by the master theorem: $T(n) = \Theta(n^{\log_2 3})$

Check the next page

Figure 3: Pseudo Code for the algorithm