ਅਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ : 9ਵੀਂ ਜਮਾਤ ਵਿੱਚ ਅਸੀਂ ਅਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਬਾਰੇ ਪੜਿਆ ਸੀ, ਉਹਨਾਂ ਨੂੰ ਸੰਖਿਆ ਰੇਖਾ ਤੇ ਕਿਸ ਤਰ੍ਹਾਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸ ਭਾਗ ਵਿੱਚ ਅਸੀਂ ਇਹ ਸਿੱਧ ਕਰਾਂਗੇ ਕਿ $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, ਅਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਹਨ। ਇਸ ਤੋਂ ਪਹਿਲਾਂ ਇੱਕ ਪ੍ਰਮੇਯ ਬਾਰੇ ਚਰਚਾ ਕਰਾਂਗੇ।

- ਜੇ p ਇੱਕ ਅਭਾਜ ਸੰਖਿਆ ਹੈ ਅਤੇ p,a^2 ਨੂੰ ਵੰਡਦੀ ਹੈ ਤਾਂ p,a ਨੂੰ ਵੀ ਵੰਡਦੀ ਹੋਵੇਗੀ। ਭਾਵ ਜੇ ਕੋਈ ਸੰਖਿਆ 3, a^2 ਨੂੰ ਵੰਡਦੀ ਹੈ ਤਾਂ 3 a ਨੂੰ ਵੀ ਵੰਡੇਗੀ।
- 1. ਸਿੱਧ ਕਰੋ $\sqrt{2}$ ਇੱਕ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

ਹੱਲ: ਮੰਨ ਲਓ, $\sqrt{2}$ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

$$\therefore \sqrt{2} = \frac{p}{q}, q \neq 0$$
 ਅਤੇ p, q ਵਿੱਚ ਕੋਈ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਨਹੀਂ ਹੈ।.... (i)
ਦੋਵਾਂ ਪਾਸੇ ਵਰਗ ਕਰਨ 'ਤੇ
 $2 - \frac{p^2}{q}$ ਂ $2 - \frac{p^2}{q}$ ਵਿੱਚ ਕੋਈ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਨਹੀਂ ਹੈ।.... (i)

$$2 = \frac{p^2}{q^2}$$
 i.e $p^2 = 2q^2$ (ii)

 p^2 ਸੰਖਿਆਂ 2 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ,

p ਸੰਖਿਆ 2 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ।

p=2m (ii) ਵਿੱਚ ਭਰਨ 'ਤੇ

ii)
$$\Rightarrow (2m)^2 = 2q^2 \Rightarrow 2q^2 = 4m^2 \Rightarrow q^2 = 2m^2$$

ਭਾਵ, q^2 ਸੰਖਿਆ 2 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ।

ਪਰ (i) ਅਨੁਸਾਰ ਅਸੀਂ ਇਹ ਮੰਨਿਆ ਹੈ ਕਿ ਇਹਨਾਂ ਵਿੱਚ ਕੋਈ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਨਹੀਂ ਹੈ। ਅਸੀਂ ਜੋ ਮੰਨ ਕੇ ਚੱਲੇ ਸੀ, ਉਹ ਗਲਤ ਹੈ। ∴√2 ਇੱਕ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

2. ਸਿੱਧ ਕਰੋ $\sqrt{3}$ ਇੱਕ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

ਹੱਲ: ਮੰਨ ਲਓ, √3 ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

$$\therefore \sqrt{3} = \frac{p}{q}$$
 , $q \neq 0$ ਅਤੇ p,q ਵਿੱਚ ਕੋਈ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਨਹੀਂ ਹੈ। (i) ਦੋਵਾਂ ਪਾਸੇ ਵਰਗ ਕਰਨ 'ਤੇ

$$3 = \frac{p^2}{q^2}$$
 i.e $p^2 = 3q^2$ (ii)

 p^2 ਸੰਖਿਆ 3 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ.

p ਸੰਖਿਆ 3 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ।

p = 3m (ii) ਵਿੱਚ ਭਰਨ 'ਤੇ

ii)
$$\Rightarrow$$
 $(3m)^2 = 3q^2$ \Rightarrow $3q^2 = 9m^2$ \Rightarrow $q^2 = 3m^2$
ਭਾਵ. q^2 ਸੰਖਿਆ 3 ਤੇ ਵੰਡੀ ਜਾਂਦੀ ਹੈ।

ਪਰ (i) ਅਨੁਸਾਰ ਅਸੀਂ ਇਹ ਮੰਨਿਆ ਹੈ ਕਿ ਇਹਨਾਂ ਵਿੱਚ ਕੋਈ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਨਹੀਂ ਹੈ।

ਅਸੀਂ ਜੋ ਮੰਨ ਕੇ ਚੱਲੇ ਸੀ, ਉਹ ਗਲਤ ਹੈ। $∴ \sqrt{3}$ ਇੱਕ ਅਪਰਿਮੇਯ਼ ਸੰਖਿਆ ਹੈ।

3. ਸਿੱਧ ਕਰੋ $5 + \sqrt{6}$ ਇੱਕ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

ਹੱਲ: ਮੰਨ ਲਓ. $5 + \sqrt{6}$ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

$$r - 5 = \sqrt{6}$$

r ਇੱਕ ਪ੍ਰਿਮੇਯੂ ਸੰਖਿਆ ਹੈ ਤਾਂ r-5 ਵੀ ਪ੍ਰਿਮੇਯੂ ਸੰਖਿਆ ਹੈ।

ਪਰੰਤੁ $\sqrt{6}$ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

ਪਰਿਮੇਯ = ਅਪਰਿਮੇਯ, ਜੋ ਸੰਭਵ ਨਹੀਂ ਹੈ।

 \therefore 5 ± √6 ਅਪਰਿਮੇਸ਼ ਸੰਖਿਆ ਹੈ।

4 ਸਿੱਧ ਕਰੋ $3\sqrt{2}$ ਅਪਰਿਮੇਸ਼ ਸੰਖਿਆ ਹੈ।

ਹੱਲ: ਮੰਨ ਲਓ, $3\sqrt{2}$ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

$$\frac{r}{3} = \sqrt{2}$$

r ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ ਤਾਂ $\frac{r}{3}$ ਵੀ ਇੱਕ ਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

ਪਰੰਤੂ $\sqrt{2}$ ਇੱਕ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ। ਪਰਿਮੇਯ = ਅਪਰਿਮੇਯ, ਜੋ ਸੰਭਵ ਨਹੀਂ ਹੈ।

 $\therefore 3\sqrt{2}$ ਇੱਕ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।

ਅਭਿਆਸ

- 1. ਸਿੱਧ ਕਰੋ $\sqrt{5}$. $\sqrt{7}$ ਅਪਰਿਮੇਯ ਸੰਖਿਆਵਾਂ ਹਨ।
- 2. ਸਿੱਧ ਕਰੋ ਹੇਠਾਂ ਦਿੱਤੀਆਂ ਸੰਖਿਆਵਾਂ ਅਪਰਿਮੇਯ ਹਨ:

(i)
$$4 + \sqrt{2}$$
 (ii) $5 - \sqrt{3}$ (iii) $2 + 5\sqrt{3}$ (iv) $5\sqrt{3}$ (v) $\frac{1}{\sqrt{2}}$