Attorney's Dock

6.: 08919-018002 / 03A-871028

: January 2, 2002 Filed

3 Page

In the claims:

Claims 17-27 have been cancelled.

Claims 1-16 have been reiterated as follows:

(Reiterated) A metal complex of the following formula: 1.

wherein

each of R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸, independently, is hydrogen, alkyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, amino, aminoalkyl, alkylcarbonylamino, alkylaminocarbonyl, alkylcarbonyl, alkylcarbonylalkyl, alkoxycarbonyl, alkylcarbonyloxy, cycloalkyl, heterocycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl; each of \mathbb{R}^2 and \mathbb{R}^3 , and \mathbb{R}^6 and R⁷, independently, optionally joining together to form a cyclic moiety fused with the two pyridyl rings to which R² and R³, or R⁶ and R⁷ are bonded; the cyclic moiety, if present, optionally being substituted with alkyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, amino, aminoalkyl, alkylcarbonylamino, alkylaminocarbonyl, alkylcarbonyl, alkylcarbonylalkyl, alkoxycarbonyl, alkylcarbonyloxy, cycloalkyl, heterocycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl;

each of L^1 and L^2 , independently, is $-C(R^a)$ (R^b) -, -O-, -S-, or $-N(R^c)$ -; each of R^a , R^b , and R^c, independently, is hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, aralkyl, or heteroaralkyl;

M is a Co, Ni, Ru, Rh, Mn, Os, Ag, Cr, Zn, Cd, Hg, Re, Ir, Pt, or Pd ion; and each of X^1 and X^2 , independently, is a labile ligand; or a salt thereof.

ACCESCES CACECE

Serial No.:

: January 2, 2002

Filed Page

·· KODBALGA . OZDBGB

: 4

(Reiterated) The metal complex of claim 1, wherein each of R¹, R², R³, R⁴, R⁵, R⁶, 2. R⁷, and R⁸, independently, is hydrogen, alkyl, or alkoxy.

Attorney's Docke

- (Reiterated) The metal complex of claim 1, wherein each of R² and R³, and R⁶ 3. and R⁷, independently, join together to form a cyclic moiety; the cyclic moiety being benzene.
- (Reiterated) The metal complex of claim 3, wherein the cyclic moiety is 4. unsubstituted.
- (Reiterated) The metal complex of claim 4, wherein each of R¹, R⁴, R⁵, and R⁸, 5. independently, is hydrogen, alkyl, or alkoxy.
- (Reiterated) The metal complex of claim 5, wherein each of R¹, R⁴, R⁵, and R⁸, 6. independently, is hydrogen.
- (Reiterated) The metal complex of claim 6, wherein each of L¹ and L², 7. independently, is $-N(R^c)$ - where R^c is hydrogen.
 - (Reiterated) The metal complex of claim 7, wherein M is Co. 8.
- (Reiterated) The metal complex of claim 8, wherein X¹ and X², independently, is 9. trifluoroacetate.
- (Reiterated) The metal complex of claim 9, wherein said complex is cobalt(II) 10. (hexaazacyclophane) (trifluoroacetate).
- (Reiterated) The metal complex of claim 1, wherein each of L^1 and L^2 , 11. independently, is -S- or - $N(R^c)$ -.

6.: 08919-018002 / 03A-871028

Serial No.:

: January 2, 2002

Page : 5

(Reiterated) The metal complex of claim 11, wherein each of L¹ and L², 12. independently, is $-N(R^c)$ - where R^c is hydrogen.

- (Reiterated) The metal complex of claim 1, wherein M is Co, Ru, or Mn. 13.
- (Reiterated) The metal complex of claim 13, wherein M is Co. 14.
- (Reiterated) The metal complex of claim 1, wherein X^1 and X^2 , independently, is 15. H₂O, Cl, trifluoroacetate, or pyridine.
- (Reiterated) The metal complex of claim 15, wherein X^1 and X^2 , independently, is 16. trifluoroacetate.

: ** COOSOCO OLO C