随机算法

岳镝

2025年5月30日

随机算法

欢迎大家选修孔雨晴老师的《随机算法》课程(春季学期)

Union Bound 对事件 A,B,有 $\Pr[A \cup B] \leq \Pr[A] + \Pr[B]$

Markov's Inequality

对非负随机变量 X 和 a>0,有 $\Pr[X\geq a]\leq \frac{\mathbb{E}[X]}{a}$

Chebyshev's Inequality

对于随机变量 X 和 $\varepsilon > 0$,

$$\Pr[|X - \mathbb{E}[X]|^2 \ge \varepsilon] \le \frac{|\operatorname{Var}[X]|}{\varepsilon^2}$$

$$\Pr[|X - \mathbb{E}[X]|^4 \ge \varepsilon^4]$$

$$\Pr[|X - \mathbb{E}[X]|^6 \ge \varepsilon^6]$$

->Xie {0,1}

Chernoff/Hoeffding Bounds $X_i \in [0,1]$ 设 X_1, X_2, \dots, X_n 是独立的 0-1 随机变量。记 $X = \sum_{i=1}^n X_i$, $\mu = \mathbb{E}[X]$.

(1) 对
$$\beta \in (0,1)$$
, 有
$$\Pr[X \leq (1-\beta)\mu] \leq \exp\left(-\frac{\beta^2\mu}{2}\right)$$
 (2) 对 $\beta > 0$, 有

$$\Pr[X \ge (1+\beta)\mu] \le \begin{cases} \exp\left(-\frac{\beta^2 \mu}{2+\beta}\right), & \beta > 0, \\ \exp\left(-\frac{\beta^2 \mu}{3}\right), & \beta \in (0,1] \end{cases}$$

(3) 对
$$\lambda > 0$$
,有

$$\Pr[X \ge \mu + \lambda] \\ \Pr[X \le \mu - \lambda]$$
 \le \exp\left(-\frac{2\lambda^2}{n} \right)

ZPP (zero-error probabilistic polynomial time) 称语言(问题) $L \in ZPP$,若存在期望运行时间为多项式的随机算法判定 L

- ▶ 判定算法是拉斯维加斯型
- ▶ 例子: 排序问题

RP (randomized polynomial time)

称语言(问题) $L \in \mathbb{RP}$,若存在多项式时间的随机算法 A,使得对任意实例 $x \in \{0,1\}^*$,

$$(1) (x \in L \Longrightarrow \Pr[A(x) = \mathrm{acc}] \ge 1/2 \qquad \text{ce (0,1)}$$

- (2) $x \notin L \Longrightarrow A(x) = \text{rej}$
 - ▶ "弃真"型蒙特卡洛算法
 - ▶ 例子: 合数

coRP

称语言(问题) $L \in coRP$,若存在多项式时间的<mark>随机算法 A,</mark>使得对任意实例 $x \in \{0,1\}^*$,

- (1) $x \in L \Longrightarrow A(x) = acc$
- (2) $x \notin L \Longrightarrow \Pr[A(x) = \text{rej}] \ge 1/2$
 - ▶ "取伪"型蒙特卡洛算法
 - ▶ 例子: 素数 串相等

BPP (bounded-error probabilistic polynomial time)

称语言(问题) $L \in BPP$,若存在多项式时间的<mark>随机算法 A,</mark>使得对任意实例 $x \in \{0,1\}^*$,

(1)
$$x \in L \longrightarrow \Pr[A(x) = \operatorname{acc}] \ge 2/3 \longrightarrow c > 2$$

(2)
$$x \notin L \Longrightarrow \Pr[A(x) = \text{rej}] \ge 2/3$$

给定 n 个数的集合 X,找出 X 中一个至少第 n/2 大的数。要求错误概率不超过 1/n

给定 n 个数的集合 X,找出 X 中一个至少第 n/2 大的数。要 求错误概率不超过 1/n

- ▶ 随机取 $x \sim X$,则 x 是至少第 n/2 大的概率为 1/2
- ▶ 独立重复 $t = O(\log n)$ 次, $S = \{x_1, x_2, \dots, x_t\}$ ▶ 令 $x^* = \max(S)$

给定 n 个数的集合 X,找出 X 中一个排名在 $\lfloor n/4, 3n/4 \rfloor$ 之间的数。要求错误概率不超过 1/n

给定 n 个数的集合 X 找出 X 中一个排名在 [n/4,3n/4] 之间的数。要求错误概率不超过 1/n

- ▶ 随机取 $x \sim X$, 则 x 排名在 [n/4, 3n/4] 之间的概率为 1/2
- ▶ 独立重复 $t = O(\log n)$ 次, $S = \{x_1, x_2, \dots, x_t\}$
- ightharpoonup
 igh
- ▶ 错误概率?

(11)
$$\chi^*$$
 $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1$

$$\frac{\text{Ii}}{\text{Ii}} = \begin{cases} 1, & \text{ in in the } 2 < \frac{1}{4} \\ 0, & \text{o.w.} \end{cases}$$

$$P_r[I_i = 1] \leq \frac{1}{4}$$

$$1 \leq i \leq t$$

$$exp\left(-\frac{2\cdot(\frac{1}{4})^{2}}{t}\right)$$

已知弃真型算法 A

- (1) $x \in L \Longrightarrow \Pr[A(x) = \mathrm{acc}] \ge 1/2$
- (2) $x \notin L \Longrightarrow A(x) = \text{rej}$

构造弃真型算法 A'

- (1) $x \in L \Longrightarrow \Pr[A'(x) = acc] \ge 1 1/\operatorname{poly}(n)$
- (2) $x \notin L \Longrightarrow A'(x) = \text{rej}$

已知弃真型算法 A

- (1) $x \in L \Longrightarrow \Pr[A(x) = \mathrm{acc}] \ge 1/2$
- (2) $x \notin L \Longrightarrow A(x) = \text{rej}$

构造弃真型算法 A'

- (1) $x \in L \Longrightarrow \Pr[A'(x) = acc] \ge 1 1/\operatorname{poly}(n)$
- (2) $x \notin L \Longrightarrow A'(x) = \text{rej}$

算法 A':

- 1. 独立重复运行 $t = O(\log n)$ 次算法 A
- 2. 若某次结果为 acc, 则返回 acc
- 3. 若每次结果均为 rej, 则返回 rej

已知双侧错误算法 A

(1)
$$x \in L \Longrightarrow \Pr[A(x) = \mathrm{acc}] \ge 2/3$$

(2)
$$x \notin L \Longrightarrow \Pr[A(x) = \text{rej}] \ge 2/3$$

构造双侧错误算法 A'

(1)
$$x \in L \Longrightarrow \Pr[A'(x) = acc] \ge 1 - 1/\operatorname{poly}(n)$$

(2)
$$x \notin L \Longrightarrow \Pr[A'(x) = \text{rej}] \ge 1 - 1/\text{poly}(n)$$

已知双侧错误算法 A

(1)
$$x \in L \Longrightarrow \Pr[A(x) = \mathrm{acc}] \ge 2/3$$

(2)
$$x \notin L \Longrightarrow \Pr[A(x) = \text{rej}] \ge 2/3$$

构造双侧错误算法 A'

(1)
$$x \in L \Longrightarrow \Pr[A'(x) = acc] \ge 1 - 1/\operatorname{poly}(n)$$

(2)
$$x \notin L \Longrightarrow \Pr[A'(x) = \text{rej}] \ge 1 - 1/\text{poly}(n)$$

算法 A':

- 1. 独立重复运行 $t = O(\log n)$ 次算法 A
- 2. 统计 acc 的次数 α 和 rej 的次数 β ($\alpha + \beta = t$)
- 3. 若 $\alpha \geq \beta$, 则返回 acc
- 4. 若 $\alpha < \beta$, 则返回 rej

证明: $ZPP = RP \cap coRP$

证明: $ZPP = RP \cap coRP$

称语言(问题) $L \in ZPP$,若存在期望运行时间为多项式的随机算法判定 L

称语言(问题) $L \in RP$,若存在多项式时间的<mark>随机算法 A</mark>,使得对任意实例 $x \in \{0,1\}^*$,

- (1) $x \in L \Longrightarrow \Pr[A(x) = acc] \ge 1/2$
- (2) $x \notin L \Longrightarrow A(x) = rej$

称语言(问题) $L \in coRP$,若存在多项式时间的随机算法 A,使得对任意实例 $x \in \{0,1\}^*$,

- (1) $x \in L \Longrightarrow A(x) = acc$
- (2) $x \notin L \Longrightarrow \Pr[A(x) = \text{rej}] \ge 1/2$

- (1) $ZPP \subseteq RP \cap coRP$
 - ▶ 目标: 给定问题 L 的期望多项式时间判定算法 M,改造成单侧错误随机算法 A

(1) $ZPP \subseteq RP \cap coRP$

- ▶ 目标: 给定问题 L 的期望多项式时间判定算法 M,改造成单侧错误随机算法 A
- ightharpoonup 给 M 一个运行时间上限 τ ,超时则强行停止,输出 rej

- (2) $RP \cap coRP \subseteq ZPP$
 - ▶ 目标: 给定问题 L 的弃真型算法 A 和取伪型算法 B,构造期望多项式时间算法 M

- (2) $RP \cap coRP \subseteq ZPP$
 - ▶ 目标: 给定问题 L 的弃真型算法 A 和取伪型算法 B,构造期望多项式时间算法 M
 - ▶ 反复运行 A(x), B(x), 直到它们给出相同结果

- (2) $RP \cap coRP \subseteq ZPP$
 - ▶ 目标: 给定问题 L 的弃真型算法 A 和取伪型算法 B,构造期望多项式时间算法 M
 - ▶ 反复运行 A(x), B(x), 直到它们给出相同结果

算法 M(x):

- 1. 重复独立运行 A(x), B(x)
- 2. 若 A(x) = B(x), 输出 A(x); 否则转 1