Homework 2

Due: February 17, 2021

1. Let $x, y \in \mathbb{R}^n$, and consider a function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$. We make the following definitions:

$$\operatorname{prox}_{tf}(y) := \arg\min_{x} \frac{1}{2t} ||x - y||^2 + f(x)$$
$$f_t(y) := \min_{x} \frac{1}{2t} ||x - y||^2 + f(x).$$

Notice that $\operatorname{prox}_{tf}(y)$ is the minimizer of an optimization problem; in particular it is a vector in \mathbb{R}^n , On the other hand $f_t(y)$ is a function from $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, just as f. Suppose f is convex.

- (a) Show that f_t is convex.
- (b) Show that $prox_{tf}(y)$ is uniquely defined for any input y.
- (c) Compute prox_{tf} and f_t , where $f(x) = ||x||_1$.
- (d) Compute prox_{tf} and f_t for $f = \delta_{\mathbb{B}_{\infty}}(x)$, where $\mathbb{B}_{\infty} = [-1, 1]^n$.

Solution.

(a) Let $h(y) = \frac{1}{2t} ||x - y||^2 + f(x)$. Since x - y is affine and $||\cdot||^2$ is convex, $\frac{1}{2t} ||x - y||^2$ is convex. Since f is convex, their sum h(y) must also be convex. Then

$$h(\lambda y_1 + (1 - \lambda)y_2) \le \lambda h(y_1) + (1 - \lambda)h(y_2)$$

Now consider

$$f_t(\lambda y_1 + (1 - \lambda y_2)) = \min_x h(\lambda y_1 + (1 - \lambda y_2)) \le \lambda h(y_1) + (1 - \lambda)h(y_2)$$

which holds for any x_1 in $h(y_1)$ and x_2 in $h(y_2)$. Consider $x_1 = \operatorname{prox}_{tf}(y_1)$ and $x_2 = \operatorname{prox}_{tf}(y_2)$, then $h(x_1, y_1) = f_t(y_1)$ and $h(x_2, y_2) = f_t(y_2)$. Thus we can rewrite the inequality as

$$f_t(\lambda y_1 + (1 - \lambda y_2)) \le \lambda f_t(y_1) + (1 - \lambda) f_t(y_2)$$

This proves f_t is convex.

(b) Since $\lim_{|y|\to\infty} h(y) = \infty$, h(y) is coercive and at least one minimizer exists. We note that $\frac{1}{2t} ||x-y||^2$ is strictly convex since the Hessian is 2I. Then h(y) must be strictly convex since it is the sum of a strictly convex function and a convex function. Then the minimizer must be unique, i.e. $\operatorname{prox}_{tf}(y)$ is uniquely defined.

(c) By the definition of $prox_{tf}(y)$

$$\operatorname{prox}_{tf}(y) = \arg\min_{x} \frac{1}{2t} ||x - y||^{2} + ||x||_{1}$$
$$= \arg\min_{x} \sum_{i} \frac{1}{2t} ||x_{i} - y_{i}||^{2} + |x_{i}|_{1}$$

Since the equations are decoupled, we only need to consider the *i*-th one,

$$\arg\min_{x_i} \frac{1}{2t} ||x_i - y_i||^2 + |x_i|$$

The optimality condition is

$$0 \in \frac{x - y}{t} + \partial ||x||_1$$

If $x_i < 0$, then $x_i = y_i + t$ and $y_i < -t$. If $x_i > 0$, then $x_i = y_i - t$ and $y_i > t$. If $x_i = 0$, then $|y_i| \le t$. Thus

$$\left(\operatorname{prox}_{tf}(y)\right)_{i} = \begin{cases} y_{i} + t & y_{i} < -t \\ y_{i} - t & y_{i} > t \\ 0 & |y_{i}| \leq t \end{cases}$$

$$(f_t(y))_i = \begin{cases} t/2 + |y_i + t| & y_i < -t \\ t/2 + |y_i - t| & y_i > t \\ y_i^2/(2t) & |y_i| \le t \end{cases}$$

(d) By the definition of $prox_{tf}(y)$

$$\operatorname{prox}_{tf}(y) = \arg\min_{x} \frac{1}{2t} \|x - y\|^{2} + \delta_{\mathbb{B}_{\infty}}(x)$$
$$= \arg\min_{x \in \mathbb{B}_{\infty}} \frac{1}{2t} \|x - y\|^{2}$$
$$= \operatorname{proj}_{\mathbb{B}_{\infty}}(y)$$
$$= \max(\min(y, 1), -1)$$

Thus $f_t(y) = \frac{1}{2t} \| \max(\min(y, 1), -1) - y \|^2$.

- 2. More prox identities.
 - (a) Suppose f is convex and let $g_s(x) = f(x) + \frac{1}{2s} ||x x_0||^2$. Find formulas for $\max_{tg} f$ and f_t .
 - (b) Let $f(x) = ||x||_2$. Write $\operatorname{prox}_{tf}(y)$ in closed form.
 - (c) Let $f(x) = \frac{1}{2}||x||_2^2$. Write $\operatorname{prox}_{tf}(y)$ in closed form.
 - (d) Let $f(x) = \frac{1}{2} ||Cx||^2$. Write $\operatorname{prox}_{tf}(y)$ in closed form.

Solution.

(a) By the definition of $prox_{tq}(y)$

$$\operatorname{prox}_{tg}(y) = \arg\min_{x} \frac{1}{2t} ||x - y||^2 + f(x) + \frac{1}{2s} ||x - x_0||^2$$

The optimality condition is

$$0 \in \frac{1}{t}(x-y) + \partial f(x) + \frac{1}{s}(x-x_0)$$

Rearranging

$$\frac{1}{t}(y-x) + \frac{1}{s}(x_0 - x) \in \partial f(x)$$
$$\frac{s+t}{st}(\frac{sy + tx_0}{s+t} - x) \in \partial f(x)$$

Let $\lambda = \frac{st}{s+t}$ and $z = \frac{sy+tx_0}{s+t}$, then

$$\operatorname{prox}_{tq}(y) = \operatorname{prox}_{\lambda f}(z)$$

Let $\operatorname{prox}_{tq}(y) = x^*$. By the definition of $g_t(y)$

$$g_t(y) = \min_{x} \frac{1}{2t} \|x - y\|^2 + f(x) + \frac{1}{2s} \|x - x_0\|^2$$
$$= \frac{1}{2t} \|x^* - y\|^2 + f(x^*) + \frac{1}{2s} \|x^* - x_0\|^2$$

Similarly for $f_{\lambda}(z)$

$$f_{\lambda}(z) = \frac{1}{2\lambda} ||x^* - z||^2 + f(x^*)$$

Rewriting in terms of t and y

$$f_{\lambda}(z) = \frac{\|s(x^* - y) + t(x^* - x_0)\|^2}{2st(s+t)} + f(x^*)$$

Computing the difference between $g_t(y)$ and $f_{\lambda}(z)$, we find

$$g_t(y) - f_{\lambda}(z) = \frac{1}{2(s+t)} \|y - x_0\|^2$$
$$g_t(y) = f_{\lambda}(z) + \frac{1}{2(s+t)} \|y - x_0\|^2$$

(b) The optimality condition is

$$\nabla(\frac{1}{2t}||x-y||^2 + ||x||_2) = \frac{1}{t}(x-y) + \frac{x}{||x||} = 0$$

Solving yields

$$x(1 + \frac{t}{\|x\|}) = y$$

Since t > 0, x = cy for some c > 0. Then

$$y = cy\left(1 + \frac{t}{c\|y\|}\right)$$
$$c = 1 - \frac{t}{\|y\|}$$

Thus $\text{prox}_{tf}(y) = (1 - \frac{t}{\|y\|})y$.

(c) The optimality condition is

$$\nabla(\frac{1}{2t}\|x-y\|^2 + \frac{1}{2}\|x\|_2^2) = \frac{1}{t}(x-y) + x = 0$$

Solving yields

$$\operatorname{prox}_{tf}(y) = x = \frac{y}{t+1}$$

(d) The optimality condition is

$$\nabla (\frac{1}{2t} \|x - y\|^2 + \frac{1}{2} \|Cx\|^2) = \frac{1}{t} (x - y) + C^T C x = 0$$

Solving yields

$$prox_{tf}(y) = x = (tC^TC + I)^{-1}y$$

Coding Assignment Please download 515Hw2_Coding.ipynb solvers.py and mnist01.npy to complete the coding problem (3), (4) and (5).

- (3) Complete three generic solvers we learned from the class in solvers.py, including,
 - proximal gradient descent,
 - accelerated gradient descent.
 - accelerated proximal gradient descent.
- (4) Compressive sensing, consider the sparse regression problem,

$$\min_{x} \ \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_1$$

where $A \in \mathbb{R}^{m \times n}$ and m < n. When x is sparse, it is possible to recover using the ℓ_1 regularizer. We choose $\lambda = ||A^{\top}b||_{\infty}/10$.

- (a) By treating $f(x) = \frac{1}{2} ||Ax b||^2$ and $g(x) = \lambda ||x||_1$, complete the function w.r.t. to f and g.
- (b) Apply the proximal gradient algorithm. Do you recover the signal?
- (c) Apply accelerated proximal gradient, is it faster than method of (b)?
- (5) Logistic regression on MNIST data, recall the logistic regression problem,

$$\min_{x} \sum_{i=1}^{m} \left\{ \ln(1 + \exp(\langle a_i, x \rangle)) - b_i \langle a_i, x \rangle \right\} + \frac{\lambda}{2} ||x||^2.$$

We will use logistic regression to classify the "0" and "1" images from MNIST. In this example, a_i is our vectorized image, and b_i is the corresponding label. We want to obtain an classifier, so that for a new image a_{new} , we can predict

$$\begin{cases} a_{\text{new}} \text{ is a } 0, & \text{if } \langle a_{\text{new}}, x \rangle \leq 0 \\ a_{\text{new}} \text{ is a } 1, & \text{if } \langle a_{\text{new}}, x \rangle > 0 \end{cases}.$$

- (a) Complete the function, gradient and Hessian for the logistic regression.
- (b) Apply gradient, accelerate gradient and Newton's method to solve the problem. Which one is the fastest and which one is the slowest?
- (c) What is your accuracy of the classification for the test data.