Sobre capítulo V:

Análisis de la productividad y precios en la economía de celulares y computadores:

En una economía, sólo se producen celulares y computadores. En la cuál se produjo lo siguiente en los años 2016, 2017 y 2018:

Año.	Año Precio Computadores	Cantidad Producida	Precio celulares	Cantidad Producida
Ano		Computadores	1 recio ceruiares	celulares
2016	150	100	100	50
2017	200	200	120	70
2018	250	300	150	100

RESPUESTAS:

1) Calcular el PIB nominal para los años 2016, 2017, 2018.

Recordar que el PIB nominal se calcula con:

$$\sum q\cdot p$$

Dado esto tenemos:

Para el año 2016:

$$150 \cdot 100 + 100 \cdot 50 = 40000$$

Para el año 2017:

$$200 \cdot 200 + 120 \cdot 70 = 48400$$

Para el año 2018:

$$250 \cdot 300 + 150 \cdot 100 = 90000$$

2) Calcular el PIB real para los mismos años utilizando como año base el 2016.

Recordar que el PIB real se calcula con:

$$\sum q_t \cdot p_{\text{a\~{n}o base}}$$

Dado esto tenemos:

Para el año 2016:

$$150 \cdot 100 + 100 \cdot 50 = 40000$$

Para el año 2017:

$$150 \cdot 200 + 100 \cdot 70 = 37000$$

Para el año 2018:

$$150 \cdot 300 + 100 \cdot 100 = 55000$$

3) Calcular el deflactor del PIB para los tres años mencionados anteriormente.

Recordar que el deflactor del PIB se calcula con:

$$\frac{\text{PIB nominal}}{\text{PIB real}}$$

Para el año 2016:

$$\frac{40000}{40000} = 1$$

Para el año 2017:

$$\frac{48400}{37000} = 1.3$$

Para el año 2018:

$$\frac{90000}{55000} = 1.63$$

4) Calcular la tasa de inflación del mercado, utilizando el año 2016 como base.

Recordar que la tasa de inflación anual en los distintos años se calula con:

$$\frac{Def_t}{Def_{t-1}} - 1$$

Para el año 2016:

Para el año 2017:

$$\frac{1.3}{1} - 1 = 30\%$$

Para el año 2018:

$$\frac{1.63}{1.3} - 1 = 25\%$$

Análisis de la función de costos de una empresa en un mercado perfectamente competitivo:

Preguntas de concepto:

- a) Si los precios no cambian durante un periodo dado, el PIB nominal y el PIB real deberían coincidir. ¿Verdadero o falso?
- b) Un aumento en la población total va a aumentar el PIB per cápita de un país. ¿Verdadero o falso?
- c) El PIB es una medida perfecta del bienestar de las personas. ¿Verdadero o falso?

RESPUESTAS:

a)

VERDADERO. Ambas medidas incluyen cantidad y precio, pero el PIB real toma el precio de un periodo determinado, y el PIB nominal toma en cuenta el precio corriente. Si los precios no cambian entre el periodo de referencia del PIB real y el periodo corriente, entonces ambos coinciden.

b)

FALSO. No necesariamente. Considerando que el $PIB_{pc} = PIB/(PoblacinTotal)$ es posible afirmar que un aumento en la población total va a traer como consecuencia una disminución en el PIB pc de un país. Siempre y cuando el PIB se mantenga constante.

c)

FALSO. EL excluye cosas importantes como los tiempos de ocio, los bienes y servicios del hogar y tampoco explica la distribución de riqueza en el país y como ese PIB per capita realmente se destribuye en un ciudadano promedio. Pero, igualmente el PIB es considerado como una buena medida del bienestar económico ya que existe una correlación fuerte entre aquellos países con PIB alto y buena salud, educación, innovación, entre otros.

Cálculo del PIB nominal y real para una economía:

En un país imaginario, la canasta básica es considerada como 2 kilos de queso, 2 pares de jeans y 10 litros de bencina.

a) Con esa información complete la siguiente tabla:

		Año 1		Año 2		Año 3	
Items Canasta	Unidades	\$ unidad	\$ Total	\$ unidad	\$ Total	\$ unidad	\$ total
Queso	2 kg	5000		5132		5500	
Jeans	2 pares	20000		25000		30000	
Bencina	10 litros	890		1100		1200	
Costo Total		34,8		154			

- b) Calcule el IPC para cada año, eligiendo el año 1 como base.
- c) Utilizando el IPC calcule la tasa de inflación para cada año.

RESPUESTAS:

a)

		Año 1		Año 2		Año 3	
Items Canasta	Unidades	\$ unidad	\$ Total	\$ unidad	\$ Total	\$ unidad	\$ total
Queso	2 kg	5000	10000	5132	10264	5500	11000
Jeans	2 pares	20000	40000	25000	50000	30000	60000
Bencina	10 litros	890	8900	1100	11000	1200	12000
Costo Total			58900		71264		83000

b)

El Índice Precio al Consumidor es una medida del costo total de los bienes y servicios comprados por un consumidor típico.

$$IPC = \frac{58900}{58900} * 100 = \%100$$

$$\tilde{\text{Ano}}$$
 2

$$IPC = \frac{71264}{58900} * 100 = \%120.99$$

$$\tilde{\text{Ano}}$$
 3

$$IPC = \frac{83000}{58900} * 100 = \%140.90$$

c)

La tasa de inflación es el cambio porcentual en el índice de precios con respecto al periodo precedente.

Año 1

$$IPC = \frac{100 - 100}{100} * 100 = \%0$$

$$IPC = \frac{120.99 - 100}{100} * 100 = \%20.99$$

 $\tilde{\text{Ano}}$ 3

$$IPC = \frac{140.90 - 120.99}{120.99} * 100 = \%16.45$$

Análisis de inflación y PIB:

a) Un país tiene solo los mercados de la siguiente tabla:

Rubro	Cantidad producida	Valor por unidad
Venta de autos importados	20	\$120
producción de harina para	400	\$10
mercados nacionales		
producción minera	1000	\$80
Producción de harina para ex-	1200	\$15
portaciones.		

Indique cuanto es la cantidad del PIB.

b) Sin tomar en cuenta la pregunta anterior, tenemos otro país con los siguientes datos:

Año	PIB nominal	PIB real
Actual	\$30	\$31
Base	\$25	\$30

Calcule su Inflación por el deflactor del PIB.

RESPUESTAS:

a)

De todos los rubros el unico que no pertenece a la categoría del PIB es la venta de autos importados. Por los demás, se multiplica la unidad por su valor y se suma con el resto.

$$400 \cdot 10 + 1000 \cdot 80 + 1200 \cdot 15 = 102000$$

b)

Primero calculamos los deflactores:

Para el actual: 30/31.

Para el base: 5/6

Luego calculamos la inflación:

$$Inflacin: \frac{\frac{30}{31} - \frac{5}{6}}{\frac{5}{6}} = \frac{36}{31} - 1 = \frac{5}{31} = \%16.13$$

Evaluación del equilibrio en un mercado laboral con salario mínimo:

Suponga un mercado con las siguientes funciones de oferta y demanda laboral:

$$L_s = 10 + 10w$$

$$L_d = 100 - 5w$$

- a) Encuentre el nivel de equilibrio.
- b) Suponga la fijación de un salario igual a 10 y determine que pasará en ese mercado.

RESPUESTA:

Para resolver esto primero debemos encontrar el equilibrio, lo cual nos da L=70 y w=6. Si reemplazamos el salario mínimo impuesto en ambas funciones, vemos que la demanda de trabajo sería $L_d=50$ y la oferta $L_s=100$. Es decir, habrían 110 personas dispuestas a trabajar y sólo 50 puestos demandados. El desempleo sería:

$$L_s - L_d = 110 - 50 = 60$$

Cálculo del Índice de Precios al Consumidor (IPC) y tasa de inflación en diferentes períodos:

El 2014 es el año base para el cálculo del'Índice de Precios al Consumidor. A partir de la siguiente tabla calcule:

- a) El'Índice de Precios al Consumidor para cada año (2014, 2015 y 2016).
- b) Calcule la inflación (variación de precios) anual 2015-2016 y 2014-2015.
- c) Ahora usted le presta 30.000 a su amigo, quien se compromete a devolver 32.000 al cabo de un año, en este caso el 31 de diciembre de 2016.
- ¿Cuál es la tasa de interés nominal que su amigo está dispuesto a pagarle?

	2014	2015	2016
Precio de celular	800.000	820.000	850.000
Precio del tomate	300	450	500
Precio de zapatos	50.000	45.000	55.000
Cantidad de celular	1	1	1
Cantidad del tomate	200	200	200
Cantidad de zapatos	4	4	4

- ¿Cuál es la tasa de interés real? Nota: Tenga en cuenta la inflación anual 2015-2016
- d) Ahora suponga que usted le presta a su amigo en UF. Cuando usted le prestó el dinero a su amigo, la UF era de 25.000. Si su amigo se compromete a pagarle la misma tasa de interés nominal del ejercicio anterior y devolverle el dinero un año después, ¿cuánto dinero recibe usted al cabo de un año?

RESPUESTAS:

a)

Costo de vida
$$2014 = 800.000 * 1 + 300 * 200 + 50.000 * 4 = 1.060.000$$

Costo de vida $2015 = 820.000 * 1 + 450 * 200 + 45.000 * 4 = 1.090.000$

Costo de vida
$$2016 = 850.000 * 1 + 500 * 200 + 55.000 * 4 = 1.170.000$$

$$\begin{split} IPC_{2014} &= \frac{1.060.000}{(1.060.000)*100} = 100\\ IPC_{2015} &= \frac{1.090.000}{(1.060.000)*100} = 102.8\\ IPC_{2016} &= \frac{1.170.000}{(1.060.000)*100} = 110.4 \end{split}$$

b)

Variación Precios 2015/2014 =
$$(\frac{102.8}{100} - 1) * 100 = 2,83\%$$

Variación Precios 2016/2015 = $(\frac{110.4}{102.8} - 1) * 100 = 7.34\%$

c)

La tasa de interés nominal que su amigo estará pagando será la relación entre lo prestado y lo que finalmente le pagará.

Tasa de interés nominal =
$$(\frac{32000}{30000} - 1) \cdot 100 = 6.66\%$$

La tasa de interés real representa cuanto realmente estarás ganado al prestarle dinero a tu amigo. Ya que aunque la tasa de interés nominal es mayor a 0, si la tasa de inflación de ese año será mayor o igual a la nominal, no existe una ganacia real en ese préstamo.

Tasa de interés real = tasa de interés nominal – inflación Tasa de interés real = 6.66-7.34 = -0.68%

Debido a que la tasa de inflación es real a la nominal, al hacer este préstamo, el valor de tu dinero disminuye.

d)

Prestamo en UF =
$$\frac{30,000}{25,000}$$
 = $1.2UF$ Pago en un año = $1.2 \times (1+6.66\%)$ = 1.28 En un año la UF = $25,000 \times (1+7.34\%)$ = $26,834.9$ Pago efectivo = $1.28 \times 26,834.9$ = $34,348.5$

Cálculo del coeficiente de Gini en una economía con diferentes niveles de ingreso:

Tenemos la siguiente tabla que representa el porcentaje de población acumulado de la población según su ingreso porcentual acumulado:

Tabla de demanda:

decil:	Ingresos:
0.1	0.01
0.2	0.02
0.3	0.03
0.4	0.05
0.5	0.06
0.6	0.08
0.7	0.14
0.8	0.58
0.9	0.80
1	1

Calcule el coeficiente de Ginni.

RESPUESTA:

$$G=1-\left|\sum_{k=0}^{n-1}\left(X_{k+1}-X_{k}\right)\left(Y_{k+1}+Y_{k}\right)\right|$$

$$1 - 0.1(0.01 + (0.01 + 0.02) + (0.02 + 0.03) + (0.03 + 0.05) + (0.05 + 0.06) + (0.06 + 0.08)) +$$

$$0.1((0.08 + 0.10) + (0.10 + 0.50) + (0.50 + 0.8) + (0.8 + 1))$$

$$=$$

$$1 - 0.1 \cdot 4.3$$

$$1 - 0.43$$

$$0.57$$

Análisis del mercado monopolístico de papas fritas y ketchup:

Suponga que tanto las papas fritas como el ketchup son mercados monopólicos. Las funciones de costo total son, respectivamente $CT_{PF}=10\cdot q_{PF}$ y $CT_K=5\cdot q_K\setminus$ Las demandas respectivas se pueden expresar como: $P_{PF}=100-q_{PF}$ y $P_K=80-q_K+q_{PF}$

- a) Si es que cada bien es producido por monopolistas separados, determine los precios y cantidades de cada uno.
- b) Asuma ahora que ambas empresas desean integrarse en una sola y monopólica, determine los precios y cantidades para cada bien.\
- c) ¿Cuál es mejor desde un punto de vista social? ¿Por qué?

RESPUESTAS:

a)

El monopolista de papas fritas produce una cantidad de papas fritas tal que maximicen su utilidad:

$$\begin{split} \pi_{PF} &= P_{PF} \cdot q_{PF} - CT_{PF} \\ \pi_{PF} &= (100 - q_{PF}) \cdot q_{PF} - 10 \cdot q_{PF} \\ p dv \pi_{PF} q_{PF} &= 0 = 100 - 2 \cdot q_{PF} - 10 \\ q_{PF} &= 45 \\ P_{PF} &= 55 \end{split}$$

Con este resultado, podemos encontrar el óptimo del monopolista del ketchup.

$$\pi_K = P_K \cdot q_K - CT_K$$

$$\begin{split} \pi_K &= (80 - q_K + q_{PF}) \cdot q_K - 5 \cdot q_K \\ \pi_K &= 80 \cdot q_K - q_K^2 + q_{PF} \cdot q_K - 5 \cdot q_K \\ \pi_K &= 80 \cdot q_K - q_K^2 + 45 \cdot q_K - 5 \cdot q_K \\ \pi_K &= 120 \cdot q_K - q_K^2 \\ pdv\pi_K q_K &= 0 = 120 - 2 \cdot q_K \\ q_K &= 60 \\ P_K &= 65 \end{split}$$

b)

Si ambos bienes se producen por sólo uno de los monopolistas, entonces el problema que enfrenta ahora es:

$$\begin{split} \pi &= P_{PF} \cdot q_{PF} + P_K \cdot q_K - CT_K - CT_{PF} \\ \pi &= (100 - q_{PF}) \cdot q_{PF} + (80 - q_K + q_{PF}) \cdot q_K - 10 \cdot q_{PF} - 5 \cdot q_K \\ \pi &= 100 \cdot q_{PF} - q_{PF}^2 + 80 \cdot q_K - q_K^2 + q_{PF} \cdot q_K - 10 \cdot q_{PF} - 5 \cdot q_K \\ \pi &= 90 \cdot q_{PF} + 75 \cdot q_K + q_{PF} \cdot q_K - q_{PF}^2 - q_K^2 \end{split}$$

$$\begin{aligned} p dv \pi q_{PF} &= 0 = 90 + q_K - 2 \cdot q_{PF} \\ p dv \pi q_K &= 0 = 75 + q_{PF} - 2 \cdot q_K \end{aligned}$$

$$\begin{aligned} q_{PF} &= \frac{255}{3} = 85 \\ q_K &= 80 \\ P_{PF} &= 15 \end{aligned}$$

 $P_{K} = 65$

c) ¿Cuál es mejor desde un punto de vista social? ¿Por qué?

$$\begin{split} BS_{Integrado} &= EP_{Integrado} + EC_{Integrado} \\ EP_{Integrado} &= 85 \cdot 15 - 85 \cdot 10 + 100 \cdot 65 - 100 \cdot 5 = 6425 \\ EC_{Integrado} &= \frac{85 \cdot 85}{2} + \frac{100 \cdot 100}{2} = 8612.5 \\ BS_{Integrado} &= 15037.5 \end{split}$$

$$BS_{PF} = EP_{PF} + EC_{PF} = 55 \cdot 45 - 45 \cdot 10 + \frac{45 \cdot 45}{2} = 3037.5$$

$$BS_K = EP_K + EC_K = 60 \cdot 65 - 60 \cdot 5 + \frac{60 \cdot 60}{2} = 5400$$

$$BS_{Integrado} = 8437.5$$

La integración de ambos monopolios es positiva desde el punto de vista social. Esto se debe a que ambos productos son complementarios

Análisis del impacto de la inflación utilizando el deflactor del PIB e IPC:

Considere una economía en la cual se tiene el siguiente detalle de los bienes producidos o importados por sus habitantes.

Bien	Categoria
Pan	Producido
Vino	Producido
Autos	Importado
Cobre	Producido

- a) ¿Cuáles son los bienes que se consideran para el cálculo del pib?\
- b) ¿Cuáles son los bienes que se consideran para el cálculo del IPC?\
- c); Por qué la inflación difiere cuando se usa el Deflactor o el IPC ?\

RESPUESTAS:

a)

Solo se consideran los bienes producidos: Pan, Vino y Cobre

b)

Ahora se considera el bien "Autos" ya que es un bien dentro de la canasta de consumo, pero no se considera el bien "Cobre" puesto que no es consumido

c)

La inflación difiere cuando se usa el Deflactor o el IPC porque ambos indicadores miden cosas distintas. El Deflactor considera todos los bienes producidos dentro de la economía, los cuales no todos son necesariamente consumidos por las personas. Por lo tanto, si se quiere analizar el costo de la vida, es mejor usar el IPC para medir la inflación dado que en el IPC se usa una canasta de consumo representativa. Con respecto a críticas de ambas formas para medir la inflación, se tiene que al medirla por el lado del Deflactor no se refleja de forma precisa variaciones en el costo de vida. Mientras que una crítica al usar el IPC para medir la inflación es el sesgo de sustitución: el IPC no incorpora el efecto sustitución por el lado de los consumidores cuando sube el precio de un bien dentro de la canasta de consumo.

:

En el país X se consumen solamente arroz, pantalones y celulares. El arroz y los pantalones son producidos y consumidos en X. Por otro lado, los celulares son importados desde el país Y.

	Año 1		Año 2		Año 3	
Productos	cantidad	\$ unidad	cantidad	\$ unidad	cantidad	\$ unidad
Arroz	160	480	320	158	156	410
Pantalones	180	435	410	160	652	352
Celulares	185	420	420	140	410	586

- a) Calcular el PIB Nominal.
- b) Calcular el PIB Real con el año 2 como base.
- c) Calcular la tasa de crecimiento del país.
- d) Calcular el deflactor del PIB para cada año y la tasa de inflación para cada año.

RESPUESTAS:

a)

$$\begin{split} PIB_1 &= 160x480 + 320x158 = 76800 + 50560 = 127360 \\ PIB_2 &= 180x435 + 410x160 = 78300 + 65600 = 143900 \\ PIB_3 &= 185x420 + 420x140 = 77700 + 58800 = 136500 \end{split}$$

b)

$$\begin{split} PIBreal_1 &= 160x435 + 320x160 = 69.600 + 51.200 = 120800 \\ PIBreal_2 &= 180x435 + 410x160 = 78300 + 65600 = 143900 \\ PIBreal_3 &= 185x435 + 420x160 = 80475 + 67200 = 147675 \end{split}$$

c)

$$Tasa_{ao1-2} = \frac{143900 - 120800}{120000} * 100 = 19,25\%$$

$$Tasa_{ao2-3} = \frac{147675 - 143900}{143900} * 100 = 2,62\%$$

d)

$$\begin{aligned} Deflactor_{ao1} &= \frac{127360}{120800} = 1,05 \\ Deflactor_{ao2} &= \frac{143900}{143900} = 1 \\ Deflactor_{ao3} &= \frac{136500}{147675} = 0,92 \end{aligned}$$

Inflación:

$$\frac{1-1,05}{1,05}*100 = -47,61\%$$

$$\frac{0,92-1}{1}*100 = -8\%$$

:

Tenemos la siguiente tabla que representa el porcentaje de población acumulado de la población según su ingreso porcentual acumulado:

Tabla de demanda:

decil:	Ingresos:
0.1	0.01
0.2	0.02
0.3	0.03
0.4	0.04
0.5	0.05
0.6	0.06
0.7	0.10
0.8	0.15
0.9	0.20
1	1

Calcule el coeficiente de Ginni.

RESPUESTA:

$$G = 1 - \left| \sum_{k=0}^{n-1} \left(X_{k+1} - X_k \right) \left(Y_{k+1} + Y_k \right) \right|$$

$$1 - 0.1(0.01 + (0.01 + 0.02) + (0.02 + 0.03) + (0.03 + 0.04) + (0.04 + 0.05) + (0.05 + 0.06)) +$$

$$0.1((0.06 + 0.10) + (0.10 + 0.15) + (0.15 + 0.2) + (0.2 + 1))$$

$$=$$

$$1 - 0.1 \cdot 2.32$$

$$1 - 0.232$$

$$0.768$$

:

La función de producción es la relación entre la cantidad de insumos utilizados para producir un bien y la cantidad producida de estos.

Una empresa ''A´´ tiene la siguiente función de producción de kilogramos de jamón:

$$Q = 4KL + K^2 + 0.5L^2$$

Y una empresa ''B'' tiene esta otra función de producción la misma materia.

$$Q = KL + 2K^2 + L^2$$

En el mercado de la empresa, cada unidad producida es vendida por \$5 dólares. con:

- Q: cantidad producida.
- L: unidades de trabajo usadas en la producción (pueden ser horas de trabajo trabajadores).
- K: unidades de capital usadas en la producción.

Si los trabajadores de ambas empresas trabajan las mismas horas, y se gasta la misma cantidad en horas que en capital usado. ¿Que empresa gasta más en producir el bien?

RESPUESTA:

$$L = K = X$$

Empresa B:

$$Q = X^2 + 2X^2 + X^2$$

$$Q = 4X^2$$

Empresa A:

$$Q=4X^2+X^2+0.5X^2$$

$$Q=5.5X^2$$

$$5.5X^2 > 4X^2$$

Entonces la empresa A, produce más caro que la empresa B

:

A partir de la siguiente tabla calcule lo que se pide respecto al IPC considerando el año 2018 como base.

Año	2018	2019	2020
Bien X	\$10	\$12	\$13
Bien Y	\$9	\$7	\$5
Bien Z	\$14	\$20	\$25

Se sabe que se gasta el 20% del presupuesto en el bien X, el 30% en el bien Y y el resto en el bien Z.

- a) Calcular la inflación anual.
- b) Si usted presta \$160.000 y le devuelven \$190.000. ¿Que tasa de interés nominal le están pagando?
- c) ¿Cuál sería la tasa de interés real? Considerando la inflación 2019/2020.
- d) ¿Cuanto le deberían pagar si pasan dos años?

RESPUESTAS:

a)

Para realizar este ejercicio primero es necesario calcular el IPC. Los precios del año 2018 lo tomamos como base y calculamos el del año 2019 y 2020 de la siguiente manera:

$$IPC_{2019} = (0, 2 \cdot \frac{12}{10} + 0, 3 \cdot \frac{7}{9} + 0, 5 \cdot \frac{20}{14}) \cdot 100 = 118,76$$

$$IPC_{2020} = (0, 2 \cdot \frac{13}{10} + 0, 3 \cdot \frac{5}{9} + 0, 5 \cdot \frac{25}{14}) \cdot 100 = 131,95$$

Con esos datos es posible calcular la inflación de ambos períodos, la inflación del año 2018 al 2019 sería así:

$$inflacin_{2018-2019} = (\frac{118,76}{100} - 1) \cdot 100 = 18,76\%$$

Y la inflación del 2019 al 2020:

$$inflacin_{2019-2020} = (\frac{131,95}{118,76} - 1) \cdot 100 = 11,1\%$$

b) Ocuparemos la fórmula del valor futuro y reemplazamos los valores.

$$VF = VP \cdot (1+i)^n$$

$$190.000 = 160.000(1+i)^1$$

$$\frac{190.000}{160.000} = 1+i$$

$$i = \frac{19}{16} - 1$$

$$i = 0.1875 = 18.75\%$$

Esa sería la tasa de interés nominal que nos estarían pagando.

c)

Para calcular el interés real debemos tomar la tasa nominal y restarle la inflación del período solicitado, por lo que tendríamos:

$$i_{real} = 18,75\% - 11,1\% = 7,65\%$$

d)

Si pasan dos años, debemos reemplazar en la fórmula n por 2, nos deberían pagar:

$$VF = 160.000(1'0, 1875)^2 = 225.625$$

Es decir, si pasan dos años y mantenemos la tasa nos deben pagas \$225.625.

:

Imagine un bien X que se transa en un mercado perfectamente competitivo con dos tipos de agente. La curva de oferta de ese mercado está dada por:

$$Q_s = -4, 3 + 0, 3P_x$$

La demanda de los consumidores A y B son respectivamente:

$$Q_{d,A} = 0, 1I_A - 2P_x$$

$$Q_{d,B} = 198, 2 - 0, 5P_y - 0, 2P_x$$

El bien Y tiene un precio de \$200 y el consumidor A tiene un ingreso de \$6000.

- a) ¿Qué tipo de bien es X para el agente A respecto al ingreso?
- b) ¿Qué tipo de bien es X para el agente B respecto al bien Y?

RESPUESTAS:

- a) Para saber que tipo de bien es X para el agente A respecto a su ingreso, debemos derivar la demanda de A respecto al ingreso, lo que da como resultado 0,1. Al ser un valor positivo, significa que es un bien normal, es decir, que al aumentar el ingreso de ese agente, aumenta su demanda.
- b) Para ver que tipo de bien es X respecto al bien Y para el consumidor B, tomamos la demanda del agente B y la derivamos respecto al precio de y. Da como resultado -0,5. Como el resultado es menor a cero, significa que son bienes complementarios.

:

Complete la siguiente tabla que contiene los datos de un país con respecto al PIB.

RESPUESTA:

Año	PIB real	PIB nominal	Deflactor	del	inflación anual
			PIB		
2018	\$ 500	\$ 512			X
2019	\$ 489	\$ 501			
2020	\$ 513	\$ 545			

Año	PIB real	PIB nominal	Deflactor del	inflación anual
			PIB	
2018	\$ 500	\$ 512	1.024	X
2019	\$ 489	\$ 501	1.025	0.05%
2020	\$ 513	\$ 545	1.062	3.69%