# An Introduction to Recommendation Systems



## Agenda

- What is a Recommendation System?
- Recommendation Techniques
  - 1. Collaborative filtering
  - 2. Content-based filtering
- Tutorial using the MovieLens database
- Evaluation of Recommendation Systems
- Implicit vs. Explicit Feedback

## What is a recommendation system?

- An application of machine learning
- Predicts user preference, filters relevant content
- Clustering similar items and users together



## **Spotify**

"Discover Weekly"





#### **Amazon**

#### "Frequently bought together"

#### Customers who bought this item also bought







Deep Learning Ian Goodfellow 中中中中 26 Hardcover CDN\$ 81.36



Applied Predictive Modeling Max Kuhn ★★★★ 8 Hardcover CDN\$ 97.10 \prime



Pattern Recognition and Machine Learning Christopher M. Bishop 食食食食食 Bardcover CDN\$ 86.14 \prime





Hands-On Machine
Learning with Scikit-Learn
and TensorFlow:...
Aurétien Géron
全章章章章。27
Paperback
CDN\$ 45.05 ✓ prime

Page 1 of 17





#### **Netflix**

"Because you watched this TV Show..."





## **OkCupid**

"Finding your best match"





#### **Twitter**

"Who to follow"

#### Who to follow



Hillary Clinton 🤣 @HillaryClinton

Follow

Wife, mom, grandma, women+kids advocate, FLOTUS, Senator, SecState, hair icon, pantsuit aficionado, 2016 presidential candidate.



Barack Obama 🤣 @BarackObama Dad, husband, President, citizen.

Follow



Ellen DeGeneres 📀 @TheEllenShow

Follow

Comedian, talk show host and ice road trucker. My tweets are real, and they're spectacular.

## Recommendation Systems = Machine Learning



- direct preferences: "liking", rating, "swiping right"
- indirect behaviour: watching, listening, shopping, viewing

- predicting future behaviour
- which book will I rate highly
- which song will I put on repeat?

## Recommendation Systems = Machine Learning

## Two main techniques:

1. Collaborative Filtering

2. Content-based Filtering

**Unsupervised Learning** 

(Un)supervised Learning

## **Supervised Learning**

| id  | age | gender | profession | ticket price | cabin  | survived? |
|-----|-----|--------|------------|--------------|--------|-----------|
| 1   | 24  | М      | S          | 10           | middle | N         |
| 2   | 60  | F      | D          | 80           | upper  | Υ         |
| 3   | 33  | М      | R          | 5            | lower  | N         |
| 4   | 7   | F      | NA         | 1            | upper  | Υ         |
| ••• | ••• | •••    | •••        | •••          | •••    |           |
| X   | 27  | F      | S          | 25           | middle | ?         |
|     |     |        |            |              |        |           |

## **Unsupervised Learning**

clustering things together



## **Collaborative Filtering**

- A type of unsupervised learning
- Assumption: "similar users like similar items"
- Uses a utility (user-item) matrix













|        | movie 1 | movie 2 | movie 3 | movie 4 | movie 5 |
|--------|---------|---------|---------|---------|---------|
| user 1 | 1       | 5       | 1       |         |         |
| user 2 | 1       | 5       |         | 4       | 2       |
| user 3 | 5       | 4       |         | 2       |         |
| user 4 | 2       |         | 5       |         |         |
| user 5 | 1.5     | 4.5     | 1       | 5       | 3       |
| user 6 |         | 2       |         | 4.5     | 5       |
| user 7 | 2       |         | 4       |         | 5       |











|        | movie 1 | movie 2 | movie 3 | movie 4 | movie 5 |
|--------|---------|---------|---------|---------|---------|
| user 1 | 1       | 5       | 1       |         |         |
| user 2 | 1       | 5       | ?       | 4       | 2       |
| user 3 | 5       | 4       |         | 2       |         |
| user 4 | 2       |         | 5       |         |         |
| user 5 | 1.5     | 4.5     | 1       | 5       | 3       |
| user 6 |         | 2       |         | 4.5     | 5       |
| user 7 | 2       |         | 4       |         | 5       |











|        | movie 1 | movie 2 | movie 3 | movie 4 | movie 5 |
|--------|---------|---------|---------|---------|---------|
| user 1 | 1       | 5       | 1       |         |         |
| user 2 | 1       | 5       | 1       | 4       | 2       |
| user 3 | 5       | 4       |         | 2       |         |
| user 4 | 2       |         | 5       |         |         |
| user 5 | 1.5     | 4.5     | 1       | 5       | 3       |
| user 6 |         | 2       |         | 4.5     | 5       |
| user 7 | 2       |         | 4       |         | 5       |

## **Collaborative Filtering**

- k-Nearest Neighbours (kNN)
  - Computes similarity between users and items in a vector space
  - "Users who liked this item also liked"
- Matrix factorization



## **Content-Based Filtering**

- Can be unsupervised or supervised learning
- Looks at item and user features to make predictions



## **Content-Based Filtering**

| movie     | year | country | genre  | rating |
|-----------|------|---------|--------|--------|
| Titanic   | 1997 | USA     | drama  | 3.5    |
| Shawshank | 1994 | USA     | drama  | 4      |
| Lamerica  | 1994 | Italy   | drama  | 5      |
| Boss Baby | 2017 | USA     | comedy | 2      |
| •••       |      | • • •   | •••    |        |
| X         | 2010 | Canada  | comedy | ?      |
|           |      |         |        |        |

#### **Tutorial**

#### MovieLens Database

- created in 1997 by a research group at the University of Minnesota
- recommendation system for movies
- open-source data, very active in the machine learning community
- 26,000,000 ratings and 750,000 tag applications applied to 45,000 movies by 270,000 users

## How do we evaluate recommendations?

- Gold standard: A/B testing
- Accuracy (content-based filtering)
- Precision and Recall

## How do we evaluate recommendations?

#### **Traditional ML**



#### **Recommendation Systems**



## Precision@K and Recall@K

#### Precision@K

Of the top k recommendations, what proportion are actually "relevant"?

#### Recall@K

Proportion of items that were found in the top k recommendations.



## Precision@K and Recall@K

#### **Precision@K**

Of the top k recommendations, what proportion are actually "relevant"?

#### Recall@K

Proportion of items that were found in the top k recommendations.



precision = 
$$\frac{TP}{TP + FP}$$
 recall =  $\frac{TP}{TP + FN}$ 

## Implicit vs. Explicit Feedback

- Explicit feedback
  - user directly rates their preference towards an item
- Implicit feedback
  - user behaviour towards an item
  - e.g., listening to song multiple times = positive feedback

## The Netflix Challenge

- Open competition in 2009
- Challenge: improve current recommendation system by 10%
- Dataset included 100,480,507 ratings that ~500K users gave to ~18K movies
  - (user\_id, movie\_id, rating\_ts, rating)
- BellKor's Pragmatic Chaos improved score by 10.05%