ARMA-X Analysis Tutorial

Contents

D	ata	2
	Load Base Data	2
	Volatility	2
	Number of Posts	3
	Dummy for Social Media Post	4
	Number of Tweets Mentioning Tariffs	5
	Number of Tweets Mentioning Trade	5
	Number of Tweets Mentioning China	5
	Proportion of Positive	5
	Proportion of Negative	6
	Merge	6
S	&P500 Univariate ARMA-X Models	7
	Tweet Dummy as Exogenous	7
	Tweet Count as Exogenous	12
	Tariff as Exogenous	18
Ir	nteraction Terms	24
	Dummy * Tariff	24

Data

Load Base Data

```
# 1. Load Political Social Media
#contains posts from Twitter & TruthSocial
social <- read.csv(here("data/mothership", "social.csv"))</pre>
social hourly <- read.csv(here("data/mothership", "socialhourly.csv"))</pre>
# 2. Load Financial
#S&P500
SPY <- read.csv(here("data/mothership", "SPY.csv"))</pre>
VGK <- read.csv(here("data/mothership", "VGK.csv"))</pre>
#CSI 300 (China)
ASHR <- read.csv(here("data/mothership", "ASHR.CSV"))
#make posixct
SPY$timestamp = as.POSIXct(SPY$timestamp,format = "%Y-%m-%d %H:%M:%S")
VGK$timestamp = as.POSIXct(VGK$timestamp,format = "%Y-%m-%d %H:%M:%S")
ASHR$timestamp = as.POSIXct(ASHR$timestamp,format = "%Y-%m-%d %H:%M:%S")
social$timestamp = as.POSIXct(social$timestamp,format = "%Y-%m-%d %H:%M:%S")
social_hourly$timestamp = as.POSIXct(social_hourly$timestamp,format = "%Y-%m-%d %H:%M:%S")
social_hourly$adjusted_time = as.POSIXct(social_hourly$adjusted_time,format = "%Y-%m-%d %H:%M:%S")
#select timeframe
SPY = filter(SPY, between(timestamp, as.Date('2018-01-01'), as.Date('2025-05-07')))
VGK = filter(VGK,between(timestamp, as.Date('2018-01-01'), as.Date('2025-05-07')))
ASHR = filter(ASHR, between(timestamp, as.Date('2018-01-01'), as.Date('2025-05-07')))
social = filter(social, between(timestamp, as.Date('2018-01-01'), as.Date('2025-05-07')))
social_hourly = filter(social_hourly,between(timestamp, as.Date('2018-01-01'), as.Date('2025-05-07')))
```

Volatility

Number of Posts

```
#find count
tweetcount = dplyr::select(social_hourly,timestamp,adjusted_time,N)
```

Trump Social Media Count

Dummy for Social Media Post

```
#find dummy
tweetdummy = dplyr::select(social_hourly,timestamp,adjusted_time,dummy)
#for taking count of closed market hours
tweetdummy2 <- tweetdummy %>%
```

```
group_by(adjusted_time) %>%
summarise(dummy = sum(dummy))
#peculiar interpretation for dummy: if dummy>1 it means that there were x
#out-hours which had tweets in them
```

Number of Tweets Mentioning Tariffs

```
#find count
tariff = dplyr::select(social_hourly,timestamp,adjusted_time,total_tariff)

#for taking count of closed market hours
tariff2 <- tariff %>%
    group_by(adjusted_time) %>%
    summarise(total_tariff = sum(total_tariff))
```

Number of Tweets Mentioning Trade

```
#find count
trade = dplyr::select(social_hourly,timestamp,adjusted_time,total_trade)

#for taking count of closed market hours
trade2 <- trade %>%
   group_by(adjusted_time) %>%
   summarise(total_trade = sum(total_trade))
```

Number of Tweets Mentioning China

```
#find count
china = dplyr::select(social_hourly,timestamp,adjusted_time,total_china)

#for taking count of closed market hours
china2 <- china %>%
    group_by(adjusted_time) %>%
    summarise(total_china = sum(total_china))
```

Proportion of Positive

```
#find count
positive = dplyr::select(social_hourly,timestamp,adjusted_time,prop_positive)
#how to count outside hours? since proportion?
```

Proportion of Negative

```
#find count
negative = dplyr::select(social_hourly,timestamp,adjusted_time,prop_negative)
```

Merge

```
#merge our dependant and independant vars
#case 1: ignore tweets outside trading hours
armax_data = left_join(SPY_volatility, VGK_volatility, by="timestamp")
armax_data = left_join(armax_data, ASHR_volatility, by="timestamp")
armax data = left join(armax data, select(tweetdummy, -adjusted time), by="timestamp")
armax_data = left_join(armax_data, select(tweetcount, -adjusted_time), by="timestamp")
armax_data = left_join(armax_data, select(tariff, -adjusted_time), by="timestamp")
armax_data = left_join(armax_data, select(trade, -adjusted_time), by="timestamp")
armax_data = left_join(armax_data, select(china, -adjusted_time), by="timestamp")
armax_data = left_join(armax_data, select(positive, -adjusted_time), by="timestamp")
armax_data = left_join(armax_data, select(negative, -adjusted_time), by="timestamp")
rm(armax_data)
#case 2: push tweets made outside market hours to the next open hour
armax_data = left_join(SPY_volatility, VGK_volatility, by="timestamp")
armax_data = left_join(armax_data, ASHR_volatility, by="timestamp")
armax data <- armax data %>%
 left_join(tweetdummy2, by = c("timestamp" = "adjusted_time"))
armax_data <- armax_data %>%
 left_join(tweetcount2, by = c("timestamp" = "adjusted_time"))
armax data <- armax data %>%
  left_join(tariff2, by = c("timestamp" = "adjusted_time"))
armax_data <- armax_data %>%
 left_join(trade2, by = c("timestamp" = "adjusted_time"))
armax_data <- armax_data %>%
 left_join(china2, by = c("timestamp" = "adjusted_time"))
#rename volatility columns
names(armax_data)[2] <- "SPY_vol"</pre>
names(armax_data)[3] <- "VGK_vol"</pre>
names(armax_data)[4] <- "ASHR_vol"</pre>
#convert NA to zeroes
armax data$N[is.na(armax data$N)] = 0
armax_data$dummy[is.na(armax_data$dummy)] = 0
armax_data$total_tariff[is.na(armax_data$total_tariff)] = 0
armax_data$total_trade[is.na(armax_data$total_trade)] = 0
armax_data$total_china[is.na(armax_data$total_china)] = 0
#armax data$prop positive[is.na(armax data$prop positive)] = 0
#armax_data$prop_negative[is.na(armax_data$prop_negative)] = 0
```

	Model 1
ar1	0.9812***
	(0.0023)
ma1	-0.6787^{***}
	(0.0091)
ma2	-0.2105^{***}
	(0.0108)
ma3	-0.0106
	(0.0100)
ma4	0.0324***
	(0.0088)
intercept	0.0325***
	$(0.0061) \\ 0.0013^{***}$
$dummy_lag_0$	
	(0.0003)
$dummy_lag_1$	0.0008**
	(0.0003)
$dummy_lag_2$	-0.0003
	(0.0003)
$dummy_lag_3$	-0.0010**
	(0.0003)
$dummy_lag_4$	-0.0008*
	(0.0003)
$dummy_lag_5$	-0.0008*
1 1 0	(0.0003)
dummy_lag_6	0.0000
1 1 7	(0.0003)
dummy_lag_7	0.0009**
ATO	(0.0003)
AIC	-24011.5255
AICc	-24011.4883
BIC	-23899.5334
Log Likelihood	12020.7628
Num. obs.	12915
*** $p < 0.001$; ** $p < 0.00$	01; * $p < 0.05$

Table 1: ARMAX Model Results

S&P500 Univariate ARMA-X Models

Tweet Dummy as Exogenous

	Model 1
ar1	0.3535***
	(0.0088)
ar2	0.0393^{***}
	(0.0093)
ar3	0.0970***
	(0.0092)
ar4	0.1026***
	(0.0093)
ar5	0.0779***
	(0.0088)
intercept	0.0291***
•	(0.0027)
$dummy_lag_0$	0.0021***
v —	(0.0003)
dummy_lag_1	0.0013***
v —	(0.0003)
$dummy_lag_2$	0.0001
	(0.0003)
AIC	-23390.6502
AICc	-23390.6331
BIC	-23315.9848
Log Likelihood	11705.3251
Num. obs.	12920
*** n < 0.001 · ** n < 0.0)1·*n < 0.05

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 2: ARMAX Model Results

```
#we want to plot the IRFs of these models
nb.periods = 20
irf.plot(res1,nb.periods)
```


irf.plot(res2,nb.periods)

	Model 1
ar1	-0.8979***
	(0.0157)
ar2	-0.5785^{***}
	(0.0172)
ar3	-0.1483***
	(0.0156)
ar4	0.3598***
	(0.0120)
ar5	0.6167***
	(0.0153)
ar6	0.8030***
	(0.0151)
ar7	0.6221***
	(0.0125)
ma1	1.1955***
	(0.0122)
ma2	0.9902***
	(0.0178)
ma3	0.5642^{***}
	(0.0206)
ma4	-0.0238
	(0.0182)
ma5	-0.4950^{***}
	(0.0166)
ma6	-0.8420^{***}
	(0.0139)
ma7	-0.7527***
	(0.0084)
intercept	0.0302^{***}
	(0.0060)
$dummy_lag_0$	0.0016^{***}
	(0.0003)
$dummy_lag_1$	0.0008**
	(0.0003)
AIC	-24830.0899
AICc	-24830.0369
BIC	-24695.6910
Log Likelihood	12433.0450
Num. obs.	12921
*** $p < 0.001$; ** $p < 0.00$	01; *p < 0.05

*** p < 0.001; ** p < 0.01; * p < 0.05

Table 3: ARMAX selected by AIC

irf.plot(res3\$model,nb.periods)

Tweet Count as Exogenous

```
#we want to plot the IRFs of these models
nb.periods = 20
irf.plot(res1,nb.periods)
```

	Model 1
ar1	0.9812***
	(0.0023)
ma1	-0.6783^{***}
	(0.0091)
ma2	-0.2113^{***}
	(0.0108)
ma3	-0.0110
	(0.0100)
ma4	0.0330^{***}
	(0.0088)
intercept	0.0333***
	(0.0060)
N_{lag_0}	0.0003^{**}
	(0.0001)
N_{lag_1}	0.0002
	(0.0001)
N_{lag_2}	-0.0001
	(0.0001)
N_{lag_3}	-0.0003**
	(0.0001)
N_{lag_4}	-0.0003*
	(0.0001)
N_{lag_5}	-0.0002*
	(0.0001)
N_{lag_6}	-0.0000
	(0.0001)
N_{lag_7}	0.0003**
	(0.0001)
AIC	-23991.7721
AICc	-23991.7349
BIC	-23879.7799
Log Likelihood	12010.8861
Num. obs.	12915
*** $p < 0.001$: ** $p < 0.00$	01: *p < 0.05

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 4: ARMAX Model Results

	Model 1
ar1	0.3547***
	(0.0088)
ar2	0.0386***
	(0.0093)
ar3	0.0968***
	(0.0092)
ar4	0.1020***
	(0.0093)
ar5	0.0778***
	(0.0088)
intercept	0.0302***
1	(0.0027)
N_{lag_0}	0.0005***
0	(0.0001)
N_lag_1	0.0003***
_ 0_	(0.0001)
N_{lag_2}	0.0000
_ 0_	(0.0001)
AIC	-23367.7281
AICc	-23367.7111
BIC	-23293.0628
Log Likelihood	11693.8641
Num. obs.	12920
***** < 0.001: *** < 0.00)1· *n < 0.05

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 5: ARMAX Model Results

	Model 1
ar1	-0.8773***
	(0.0164)
ar2	-0.5729^{***}
	(0.0187)
ar3	-0.1390^{***}
	(0.0170)
ar4	0.3523***
	(0.0128)
ar5	0.6138***
	(0.0157)
ar6	0.8078***
	(0.0154)
ar7	0.6232***
	(0.0129)
ma1	1.1788***
	(0.0130)
ma2	0.9765***
	(0.0190)
ma3	0.5452***
	(0.0222)
ma4	-0.0321
	(0.0191)
ma5	-0.5012^{***}
	(0.0171)
ma6	-0.8469***
	(0.0141)
ma7	-0.7537^{***}
	(0.0086)
intercept	0.0310^{***}
	(0.0066)
$N_{lag}0$	0.0004^{***}
	(0.0001)
N_{lag_1}	0.0002*
	(0.0001)
AIC	-24812.3182
AICc	-24812.2652
BIC	-24677.9192
Log Likelihood	12424.1591
Num. obs.	12921
*** $p < 0.001;$ ** $p < 0.001;$	$01; {p} < 0.05$

Table 6: ARMAX selected by AIC

irf.plot(res2,nb.periods)

irf.plot(res3\$model,nb.periods)

Tariff as Exogenous

```
#we want to plot the IRFs of these models
nb.periods = 20
irf.plot(res1,nb.periods)
```

	Model 1
ar1	1.6392***
	(0.1237)
ar2	-0.8082^{***}
	(0.1443)
ar3	0.1591^{***}
	(0.0238)
ma1	-1.3393***
	(0.1247)
ma2	0.4068^{***}
	(0.1121)
intercept	0.0314^{***}
	(0.0057)
$total_tariff_lag_0$	0.0044^{*}
	(0.0018)
$total_tariff_lag_1$	0.0206***
	(0.0019)
$total_tariff_lag_2$	0.0113^{***}
	(0.0018)
AIC	-24097.7721
AICc	-24097.7551
BIC	-24023.1068
Log Likelihood	12058.8861
Num. obs.	12920
*** - < 0.001 ** - < 0.01 *	. 0.05

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 7: ARMAX Model Results

	Model 1
ar1	0.3538***
	(0.0088)
ar2	0.0402^{***}
	(0.0093)
ar3	0.0877^{***}
	(0.0093)
ar4	0.0955***
	(0.0093)
ar5	0.0825^{***}
	(0.0088)
intercept	0.0313^{***}
	(0.0025)
$total_tariff_lag_0$	0.0047^{**}
	(0.0018)
$total_tariff_lag_1$	0.0203***
	(0.0019)
$total_tariff_lag_2$	0.0110^{***}
	(0.0018)
AIC	-23455.1331
AICc	-23455.1161
BIC	-23380.4678
Log Likelihood	11737.5666
Num. obs.	12920
*** < 0.001 ** < 0.01 *	< 0.05

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 8: ARMAX Model Results

	Model 1
ar1	-0.6539***
	(0.0121)
ar2	0.0271
	(0.0156)
ar3	0.0145
	(0.0109)
ar4	0.1316^{***}
	(0.0139)
ar5	0.6410***
	(0.0134)
ar6	0.6900***
	(0.0094)
ma1	0.9532^{***}
	(0.0092)
ma2	0.2810^{***}
	(0.0160)
ma3	0.1801^{***}
	(0.0147)
ma4	0.0658***
	(0.0124)
ma5	-0.6168^{***}
	(0.0129)
ma6	-0.8019^{***}
	(0.0070)
intercept	0.0315***
	(0.0057)
$total_tariff_lag_0$	0.0070***
	(0.0016)
$total_tariff_lag_1$	0.0159^{***}
	(0.0017)
$total_tariff_lag_2$	0.0083***
	(0.0016)
AIC	-24961.8383
AICc	-24961.7908
BIC	-24834.9072
Log Likelihood	12497.9191
Num. obs.	12920
***n < 0.001: **n < 0.01: *n	< 0.05

 $^{^{***}}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 9: ARMAX selected by AIC

irf.plot(res2,nb.periods)

irf.plot(res3\$model,nb.periods)

Interaction Terms

Dummy * Tariff