# **Optimization in Machine Learning**

# **Bayesian Optimization Important Surrogate Models**





#### Learning goals

- Search space / input data peculiarities in black box problems
- Gaussian process
- Random forest

## **SURROGATE MODELS**

#### Desiderata:

- Regression model (there are also classification approaches)
- Non-linear local model
- Accurate predictions (especially for small sample sizes)
- Often: uncertainty estimates
- Robust, works often well without human modeler intervention

#### Depending on the application:

- Can handle different types of inputs (numerical and categorical)
- Can handle dependencies (i.e., hierarchical input)



#### **GAUSSIAN PROCESS**

Posterior predictive distribution for test point  $\mathbf{x} \in \mathcal{S}$  under zero mean:

$$Y(\mathbf{x}) \mid \mathbf{x}, \mathcal{D}^{[t]} \sim \mathcal{N}\left(\hat{f}(\mathbf{x}), \hat{s}^2(\mathbf{x})\right)$$

with

$$\hat{f}(\mathbf{x}) = k(\mathbf{x})^{\top} \mathbf{K}^{-1} \mathbf{y}$$
  
 $\hat{s}^2(\mathbf{x}) = k(\mathbf{x}, \mathbf{x}) - k(\mathbf{x})^{\top} \mathbf{K}^{-1} k(\mathbf{x})$ 



Note:  $\mathbf{x}$  here denotes the test input.  $k(\mathbf{x}) \coloneqq (k(\mathbf{x}, \mathbf{x}^{[1]}), \dots, k(\mathbf{x}, \mathbf{x}^{[t]}))^{\top}$ .  $\mathbf{y} \coloneqq (y^{[1]}, \dots, y^{[t]})^{\top}$ .

Kernel / Gram matrix  $\mathbf{K} \coloneqq \left(k(\mathbf{x}^{[i]}, \mathbf{x}^{[j]})\right)_{i,i}$  where  $i, j \in \{1, \dots, t\}$ .



#### RANDOM FOREST

- Bagging ensemble
- Fit B decision trees on bootstrap samples
- Feature subsampling





- Choose split location uniformly at random
- Results in a "smoother" mean prediction



# **RANDOM FOREST - MEAN AND VARIANCE**

- Let  $\hat{f}_b: \mathcal{S} \to \mathbb{R}$  be the mean prediction of a decision tree b (mean of all data points in the same node as observation  $\mathbf{x} \in \mathcal{S}$ )
- Let  $\hat{s}_b^2: \mathcal{S} \to \mathbb{R}$  be the variance prediction (variance of all data points in the same node as observation  $\mathbf{x} \in \mathcal{S}$ )
- Mean prediction of forest:  $\hat{f}: \mathcal{S} \to \mathbb{R}$ ,  $\mathbf{x} \mapsto \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(\mathbf{x})$
- Variance prediction of forest:  $\hat{s}^2 : \mathcal{S} \to \mathbb{R}$ ,  $\mathbf{x} \mapsto \left(\frac{1}{B} \sum_{b=1}^{B} \hat{s}_b^2(\mathbf{x}) + \hat{f}_b(\mathbf{x})^2\right) \hat{f}(\mathbf{x})^2$  (law of total variance assuming a mixture of B models)
- Alternative variance estimator:
  - (infinitesimal) Jackknife
- Variance prediction derived from randomness of individual trees
  - Bagging / boostrap samples
  - Features sampled at random
  - (randomized split locations in the case of "extratrees")



# **RANDOM FOREST - DIFFERENT CHOICES**





### RANDOM FOREST

#### Pros:

- Cheap(er) to train
- Scales well with the number of data points
- Scales well with the number of dimensions
- Can easily handle hierarchical mixed spaces. Either via imputation or directly respecting dependencies in the tree structure
- Robust

#### Cons:

- Suboptimal uncertainty estimates
- Not really Bayesian (no real posterior predictive distribution)
- Poor extrapolation



#### **EXAMPLE**

Minimize the 2D Ackley Function using BO\_GP (GP with Matérn 3/2, EI), BO\_RF (standard Random Forest, EI), BO\_RF\_ET (Random Forest with extratrees, EI) or a random search:





