1. Consider the following Turing Machine.

State	Input	Write	Move	Next
$q_0 = q_0 = q_0$	⊔ 0 1	⊔ 0 1	L R R	$egin{array}{c} q_a \ q_0 \ q_1 \end{array}$
$q_1 \ q_1 \ q_1 \ q_1$	⊔ 0 1	⊔ 0 1	L R R	$q_f \\ q_1 \\ q_0$

Determine what happens when the Turing Machine is run with the following inputs initially on the tape.

- (a) 0001
- (b) 0111
- (c) 0110
- (d) 0101010001
- (e) 00000000000000111
- (f) 00
- (g)

Solution:

- (a) Fail
- (b) Fail
- (c) Accept
- (d) Accept
- (e) Fail
- (f) Accept
- (g) Accept
- 2. Give the state table for a Turing Machine that appends a parity bit to a tape with a string of consecutive 0's and 1's.

Problem Sheet: Turing machines

Solution:						
	State	Input	Write	Move	Next	-
	q_0	Ш	0	L	q_a	-
	q_0	0	0	\mathbf{R}	q_0	
	q_0	1	1	R	q_1	_
	q_1		1	L	q_f	
	q_1	0	0	\mathbf{R}	q_1	
	q_1	1	1	\mathbf{R}	q_0	
						•

- 3. Construct a Turing Machine to compute the sequence $0 \sqcup 1 \sqcup 0 \sqcup 1 \sqcup 0 \sqcup \ldots$, that is, 0 blank 1 blank 0 blank, etc [1].
- 4. Give the state table for a Turing Machine that multiplies a string of consecutive 0's and 1's by 2. The machine should treat the initial contents of the tape as a natural number written in binary form, with the least significant bit at the end. That is, if the contents of the tape are 01101, then the right-most 1 represents the number 1, the middle 1 represents the number 4 and the left-most 1 represents the number 8. Then the number on the tape is 8 + 4 + 1 = 13.
- 5. Give the state table for a Turing Machine that multiplies a string of consecutive 0's and 1's by 2. The machine should treat the initial contents of the tape as a natural number written in binary form, with the most significant bit at the end. That is, if the contents of the tape are 01101, then the right-most 1 represents the number 16, the middle 1 represents the number 4 and the left-most 1 represents the number 2. Then the number of the tape is 2 + 4 + 16 = 22.
- 6. Give the state table for a Turing Machine that adds 1 to a string of consecutive 0's and 1's.
- 7. Give the state table for a Turing Machine that subtracts 1 to a string of consecutive 0's and 1's.
- 8. List all words of length at most three in Σ^* where Σ is:
 - (a) $\{0,1\}$
 - (b) $\{a, b, c\}$
 - (c) {}
- 9. Design a Turing machine to recognise the language $\{0^n1^n|n\geq 1\}$.
- 10. Design a Turing machine to recognise the language $\{ww|w\in\{0,1\}^*\}$
- 11. Design a Turing machine to recognise the language $\{a^i b^j c^k | i, j, k \in \mathbb{N}_0\}$

Problem Sheet: Turing machines

References

[1] A. M. Turing. On computable numbers, with an application to the entscheidungs problem. $Proceedings\ of\ the\ London\ Mathematical\ Society,\ s2-42(1):230-265,\ 1937.$