MOwNiT – Układy równań liniowych - metody iteracyjne

Przygotował: Szymon Budziak

Dany jest układ równań liniowych **Ax=b**. Elementy macierzy A są zadane wzorem (m,k - parametry zadania podane indywidualnie):

$$\begin{cases} a_{i,i} = k \\ a_{i,j} = \frac{m}{n - i - j + 0.5} & dla \ i \neq j \end{cases}$$

parametry zadania: k = 8, m = 2.

Przyjmij wektor x jako dowolną n-elementową permutację ze zbioru { 1, -1 } i oblicz wektor **b**.

Problem 1:

Metodą Jacobiego rozwiąż układ równań liniowych Ax=b (przyjmując jako niewiadomą wektor x), przyjmując kolejno kryterium stopu:

1.
$$||x|^{(i+1)} - x^{(i)}|| < \rho$$

2. $||Ax^{(i)} - b|| < \rho$

Obliczenia wykonaj dla różnych rozmiarów układu n, dla różnych wektorów początkowych, a także różnych wartości **p** w kryteriach stopu. (Podaj, jak liczono normę.) Wyznacz liczbę iteracji oraz sprawdź różnicę w czasie obliczeń dla obu kryteriów stopu. Sprawdź dokładność obliczeń.

$$A = D + (L + U) \begin{cases} M = I - D^{-1}A \\ W = D^{-1}b \end{cases}$$

gdzie: L – poddiagonalna; U – naddiagonalna; D = B - diagonalna, z diagonalnych elementów macierzy A.

$$Ax = (D + (L + U))x = b \implies Dx = -(L + U)x + b$$

Korzystając z zależności

$$Dx^{(t+1)} = -(L+U)x^{(t)} + b$$

otrzymujemy wzór roboczy:

$$x_i^{(t+1)} = \frac{1}{a_{ii}} [b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(t)}] \; ; \; a_{ii} \neq 0, \forall i \in 1, ..., n$$

Rozmiary układu, które zostały przetestowane w tym zadaniu to: 3, 4, 5, 7, 10, 12, 15, 20, 30, 50, 70, 100, 150, 200, 300, 500. Typ dla którego zostały wykonane obliczenia to float128 z biblioteki numpy.

Wyniki z problemu pierwszego

n	1st condition iterations	2nd condition iterations	1st condition time [s]	2nd condition time [s]	1st condition norm	2nd condition norm
3	13	16	0.000682	0.001079	0.000497	0.000077
4	21	30	0.000573	0.000803	0.003552	0.000564
5	32	43	0.000839	0.001095	0.000979	0.000080
7	33	43	0.000808	0.001081	0.001268	0.000132
10	38	46	0.000949	0.000951	0.000499	0.000084
12	38	47	0.000492	0.000618	0.000518	0.000069
15	34	45	0.000416	0.000636	0.001473	0.000121
20	39	48	0.000508	0.000511	0.000523	0.000069
30	40	48	0.000382	0.000475	0.000496	0.000081
50	41	49	0.000396	0.000659	0.000489	0.000078
70	41	50	0.000673	0.000682	0.000567	0.000070
100	42	51	0.001296	0.001765	0.000527	0.000065
150	43	52	0.000750	0.000937	0.000500	0.000060
200	43	52	0.000777	0.001016	0.000573	0.000068
300	44	53	0.001127	0.001360	0.000547	0.000064
500	45	54	0.002914	0.003768	0.000550	0.000064

Tabela 1: Błędy otrzymane w problemie pierwszym dla różnych wartości rozmiarów układów oraz różnych wektorów początkowych oraz dla epsilon 10^{-3}

n	1st condition iterations	2nd condition iterations	1st condition time [s]	2nd condition time [s]	1st condition norm	2nd condition norm
3	16	20	0.000731	0.000292	0.000077	0.000007
4	31	41	0.000373	0.000559	0.000460	0.000060
5	44	54	0.000514	0.000694	0.000064	0.000007
7	45	55	0.000519	0.000689	0.000085	0.000009
10	47	56	0.000546	0.000726	0.000068	0.000010
12	48	56	0.000779	0.000576	0.000055	0.000010
15	47	58	0.000554	0.000835	0.000078	0.000007
20	49	57	0.000611	0.000686	0.000055	0.000010
30	49	58	0.000582	0.000741	0.000065	0.000009
50	50	59	0.000631	0.001014	0.000062	0.000009
70	51	60	0.000619	0.000830	0.000056	0.000008
100	52	60	0.000755	0.000929	0.000051	0.000009
150	52	61	0.001251	0.001154	0.000060	0.000008
200	53	62	0.000828	0.001202	0.000054	0.000007
300	54	62	0.001128	0.001610	0.000051	0.000008
500	55	64	0.003052	0.004482	0.000051	0.000006

Tabela 2: Błędy otrzymane w problemie pierwszym dla różnych wartości rozmiarów układów oraz różnych wektorów początkowych oraz dla epsilon 10⁻⁴

n	1st condition iterations	2nd condition iterations	1st condition time [s]	2nd condition time [s]	1st condition norm	2nd condition norm
3	20	24	0.000832	0.000313	0.000007	6.562647e ⁻⁰⁷
4	42	52	0.000507	0.000683	0.000049	6.320114e ⁻⁰⁶
5	55	65	0.000676	0.000886	0.000006	7.139595e ⁻⁰⁷
7	56	67	0.000680	0.000909	0.000008	7.493839e ⁻⁰⁷
10	57	66	0.000707	0.000818	0.000008	1.274074e ⁻⁰⁶
12	57	66	0.000641	0.004505	0.000008	1.274633e ⁻⁰⁶
15	59	70	0.000584	0.000656	0.000006	6.681094e ⁻⁰⁷
20	58	67	0.000529	0.000712	0.000008	1.319218e ⁻⁰⁶
30	59	68	0.000608	0.000712	0.000008	1.246217e ⁻⁰⁶
50	60	69	0.000702	0.000920	0.000007	1.141625e ⁻⁰⁶
70	61	69	0.000559	0.000801	0.000006	1.216991e ⁻⁰⁶
100	61	70	0.001477	0.001826	0.000007	1.070235e ⁻⁰⁶
150	62	71	0.000944	0.001277	0.000006	9.414938e ⁻⁰⁷
200	63	71	0.000996	0.001587	0.000006	1.003949e ⁻⁰⁶
300	63	72	0.001277	0.001858	0.000006	8.954799e ⁻⁰⁷
500	64	73	0.003337	0.004952	0.000006	8.292336e ⁻⁰⁷

Tabela 3: Błędy otrzymane w problemie pierwszym dla różnych wartości rozmiarów układów oraz różnych wektorów początkowych oraz dla epsilon 10^{-5}

Wnioski

Dzięki metodzie Jacobiego możemy w łatwy sposób poprawić znane ale niedokładne rozwiązanie układu równań liniowych. Dodatkowo jest to metoda iteracyjna. Na jakość uzyskanego rozwiązania wpływa w dużym stopniu wybrana przez nas precyzja co możemy zauważyć na powyższych tabelach. Jednakże liczba iteracji i czas działania zależą od wybranej precyzji, rozmiaru układu macierzy oraz tego, jak blisko wektor początkowy jest poprawnego/ rzeczywistego rozwiązania. W metodzie Jacobiego zostały wykorzystane dwa kryteria i drugie z nich okazało się być bardziej rygorystycznym i skutkowało większą liczbą iteracji ale również lepszymi wynikami błędów (mniejszymi).

Problem 2:

Dowolną metodą znajdź promień spektralny **macierzy iteracji** (dla różnych rozmiarów układu – takich, dla których znajdowane były rozwiązania układu). Sprawdź, czy spełnione są założenia o zbieżności metody dla zadanego układu. Opisz metodę znajdowania promienia spektralnego.

Twierdzenie: Zbieżność procesu iteracyjnego

Teza:

Ciąg (*) z dowolnym wektorem startowym $x^{(0)}$ jest zbieżny do jedynego granicznego $x^{(\inf)}$ wtedy i tylko wtedy, gdy *promień* spektralny (spectral radius) macierzy iteracji jest mniejszy od 1

$$\rho(M) < 1$$

Promień spektralny macierzy - wartość własna o maksymalnej wartości bezwzględnej.

Rozmiary układu, które zostały przetestowane w tym zadaniu to: 3, 4, 5, 7, 10, 12, 15, 20, 30, 50, 70, 100, 150, 200, 300, 500.

Promień spektralny to maksymalna wartość spośród wartości bezwzględnych wartości własnych macierzy. Wartościami własnymi macierzy nazywamy pierwiastki wielomianu charakterystycznego dla tej macierzy.

$$w_{A}(\lambda) = det(A) - \lambda I$$

gdzie *I* to macierz jednostkowa. Do obliczania wartości własnych wielomianu została użyta funkcja z biblioteki numpy linalg.eigvals.

Wartości promienia spektralnego

n	spectral radius	condition	
3	0.563350	True	
4	0.815332	True	
5	0.817539	True	
7	0.823404	True	
10	0.826339	True	
12	0.827641	True	
15	0.829470	True	
20	0.830267	True	
30	0.831568	True	
50	0.832585	True	
70	0.833011	True	
100	0.833324	True	
150	0.833564	True	
200	0.833684	True	
300	0.833802	True	
500	0.833897	True	

Tabela 4: Wyniki promieni spektralnych macierzy iteracji oraz sprawdzenie czy są spełnione założenia o zbieżności metody dla zadanego układu i dla różnych rozmiarów układu

Wnioski

Możemy zauważyć, że w tym przypadku wszystkie promienie spektralne dla obliczonych rozmiarów układu są mniejsze od 1 czyli spełniają warunek zbieżności metody Jacobiego dla danego układu równań. Również można zauważyć na powyższej tabeli, że dla coraz większych rozmiarów układu wartości promieni spektralnych zwiększają się o bardzo małe wartości. Można zauważyć granicę dla wartości około 0.8339.

Literatura

- Wykład nr 9 dr Rycerz z przedmiotu MOwNiT
- Wikipedia na temat metody Jacobiego oraz promienia spektralnego