Examen de Topología

NOTA IMPORTANTE: El espacio máximo para escribir las respuestas es de dos folios por las dos caras. Si se envían más de dos folios, solamente se leerán los dos primeros.

Problema

Sea T la familia de subconjuntos de \mathbb{R} , formada por el conjunto vacío \emptyset y aquellos subconjuntos cuyo complementario es cerrado en (\mathbb{R}, T_u) y acotado.

- a) Pruébese que (\mathbb{R}, T) es un espacio topólogico y que la topología T es menos fina que la T_u .
- b) Estudiar si (\mathbb{R}, T) es T_2 .
- (3,5 puntos)

Solución

- a) El \emptyset y \mathbb{R} pertenecen a (\mathbb{R}, T) por la definición de T.
- Si $\{A_i\}_{i\in I}$ es una familia infinita de abiertos, entonces $\mathbb{R}-\{A_i\}$ son cerrados y acotados y

$$X - \bigcup_{i \in I} \{A_i\} = \bigcap_{i \in I} (X - A_i)$$
, que es cerrado y acotado, luego $\bigcup_{i \in I} \{A_i\}$ es un abierto.

Si $\{A_i\}_{i\in F}$ es una familia finita de abiertos, entonces $\bigcap\limits_{i\in F}\{A_i\}$ es un abierto puesto

que
$$X - \bigcap_{i \in F} \{A_i\} = \bigcup_{i \in F} (X - A_i)$$
, es cerrado y acotado.

b) Es espacio topólogico (\mathbb{R},T) no es T_2 , puesto que dados dos puntos de \mathbb{R} distintos x e y, y dados dos abiertos cualquiera G_1 y G_2 que los contengan respectivamente, se tiene que $G_1 \cap G_2 \neq \emptyset$, puesto que no están acotados, ya que sus complementarios están acotados.

Problema

Dado (\mathbb{R}, T_u) , definimos en \mathbb{R} la relación de equivalencia S: $xSy \Leftrightarrow |x| = |y|$ (|a| valor absoluto de a). Consideremos el espacio cociente $(\mathbb{R}/S, T_u/S)$, y el espacio topológico (\mathbb{R}, T_f) , donde T_f es la topología final para la aplicación $f: (\mathbb{R}, T_u) \to \mathbb{R}$, definida de la siguiente forma f(x) = |x|.

- a) Estudiar si (\mathbb{R}, T_f) es conexo.
- b) Estudiar si (\mathbb{R}/S , T_u/S) y (\mathbb{R} , T_f) son homeomorfos.
- (3,5 puntos)

Solución

a) (\mathbb{R}, T_f) no es conexo, puesto que si x < 0, se tiene que $\{x\}$ es abierto y

cerrado en (\mathbb{R}, T_f) , puesto que $f^{-1}(\{x\}) = \emptyset$, que es abierto y cerrado.

b) $(\mathbb{R}/S, T_u/S)$ es conexo puesto que la aplicación p: $(\mathbb{R}, T_u) \to (\mathbb{R}/S, T_u/S)$ es continua y sobreyectiva, luego la imagen de un conjunto conexo es un conjunto conexo. Como por el apartado a) (\mathbb{R}, T_f) es conexo, tenemos que $(\mathbb{R}/S, T_u/S)$ y (\mathbb{R}, T_f) no son homeomorfos.

Problema

- a) Demostrar que el I y II axiomas de numerabilidad son propiedades finito-multiplicativas.
- b) Demostrar que el axioma de separación T_2 es una propiedad finito-multiplicativa. (3 puntos)

Solución

Proposiciones 17 y 18, página 112 de libro

Examen de Topología

NOTA IMPORTANTE: El espacio máximo para escribir las respuestas es de dos folios por las dos caras. Si se envían más de dos folios, solamente se leerán los dos primeros.

Problema

Sea el espacio topológico (X,T), los conjuntos Y, Y^* y las aplicaciones $f:(X,T)\to Y, \quad g:Y\to Y^*$. Sea S la topología final para f. Demostrar que S^* es la topología final para $g:(Y,S)\to Y^*$ si y sólo si S^* es la topología final para $g\circ f:(X,T)\to Y^*$. (3 puntos)

Solución

Proposición 23, página 25 de libro

Problema

Sea (\mathbb{R}, T_f) , donde T_f es la topología final para la aplicación $f: (\mathbb{R}, T_u) \to \mathbb{R}$ definida de la siguiente forma

f(x) = |x| (donde |a| denota el valor absoluto de a). Se pide

- a) Estudiar si (\mathbb{R}, T_f) es T_2 .
- b) Estudiar si (\mathbb{R}, T_f) es compacto.
- (3,5 puntos)

Solución

```
a) (\mathbb{R}, T_f) es \mathsf{T}_2, puesto que si x \neq y x < y < 0, entonces \{x\} e \{y\} son abiertos de (\mathbb{R}, T_f) porque f^{-1}(x) = f^{-1}(y) = \varnothing y adémas \{x\} \cap \{y\} = \varnothing. Si x < 0 e y \ge 0, entonces tomando un w mayor que y, se tiene que \{x\} \cap [0, w) = \varnothing. Si 0 \le x < y, entonces existen w y w', con x < w < y < w', entonces [0, w) \cap (w, w') = \varnothing. Obsérvese que [0, w) e (w, w') son abiertos de (\mathbb{R}, T_f)
```

b) (\mathbb{R}, T_f) no es compacto, puesto que dado el recubrimiento por abiertos

 $A = \{\{x\}_{x \in \mathbb{R}^-}, [0, +\infty)\}$, no es posible obtener ningún subrecubrimiento finito.

Problema

En el conjunto $\mathbb N$ de los números naturales (se incluye el 0), se considera la topología $T = \{\emptyset, A_0, A_1, \ldots, A_n, \ldots\}$ formada por el conjunto \emptyset y la familia de subconjuntos $A_n = \{n, n+1, n+2, \ldots\}$

- a) Estudiar si en el espacio topológico (\mathbb{N}, T) , el subconjunto de \mathbb{N} de los números pares es denso en \mathbb{N} .
- b) Estudiar si (\mathbb{N}, T) verifica el II axioma de numerabilidad.
- (3,5 puntos)

Solución

a) Sea P el subconjunto de \mathbb{N} de los números pares. Sea x un número natural y sea

G un abierto que contiene a x, G necesariamente contiene un A_i , y por lo tanto $G \cap P \supset A_i \cap P \neq \emptyset$. Luego P es denso en (\mathbb{N}, T) .

b) El conjunto $B = \{A_0, A_1, \dots, A_n, \dots\}$ es una base numerable de (\mathbb{N}, T) , por lo tanto (\mathbb{N}, T) verifica el II axioma de numerabilidad.