

Next page NESH PAWASKAR

^ ∨ 1 of 6 Q ⊋ D

DNYANESH PAWASKAR

^ ∨ 2 of 6 ⊕ 🤉 ⊅

$$\theta = \beta \theta$$
 $\theta = 0$
 θ indeterminate $\Leftrightarrow \beta = 1 \Rightarrow another$
 eqm position exists
 $P = \beta$ critical/buckling load.

Indeterminate angular disp is on artefact of the limenization.

 $\theta = p \theta$, $\beta = p \theta$

1D eigenvalue problem. $A = b = b = b$
which a system in state equal has non-trivial solutions (in addition to the trivial/zero solution).

$$\Pi(\theta) = \frac{1}{2} \beta \theta^{2} - PL (1-\cos\theta)$$

$$= \frac{1}{2} \beta \theta^{2} - P L (1-\cos\theta)$$

$$= \beta \left[\frac{1}{2} \theta^{2} - p(1-\cos\theta) \right]$$

$$= \beta \left[\frac{1}{2} \theta^{2} - p(1-\cos\theta)$$

	Buc	klin	9	load	ÌS	thc	critical		load	J	ļ
	at	₩ þi	ch	equi	li bri	mv	che	nges	f۰	m	L
	stabl	e	ь	uns	able.		changes				
											H
											H
-											