```
import numpy as np
import sklearn.cluster

data = np.arange(0,100)

data = list(zip(data, data))

from sklearn.cluster import KMeans

model = KMeans(n_clusters=3, init='random', max_iter=50)

model.fit(data)

    KMeans(algorithm='auto', copy_x=True, init='random', max_iter=50, n_clusters=3, n_init=10, n_jobs=None, precompute_distances='auto', random_state=None, tol=0.0001, verbose=0)

model.cluster_centers_
    array([[50. , 50. ], [83. , 83. ], [16.5, 16.5]])
```

Importing required libraries

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from google.colab import drive
drive.mount('/content/drive')

    Mounted at /content/drive
```

Creating dataframes

```
DATA_FOLDER = '_/content/drive/MyDrive/data/uber_rideshare/'

apr14 = pd.read_csv(DATA_FOLDER+'uber-raw-data-apr14.csv')

mov14 = nd_noad_csv(DATA_FOLDER+'uber_now.data_mov14.csv')

https://colab.research.google.com/drive/17dyD8Ci12V9nu5g_zHUEM_oprdSOX4JC#scrollTo=ffribCl4KYTg&printMode=true
```

	Date/Time	Lat	Lon	Base			
0	4/1/2014 0:11:00	40.7690	-73.9549	B02512			
1	4/1/2014 0:17:00	40.7267	-74.0345	B02512			
2	4/1/2014 0:21:00	40.7316	-73.9873	B02512			
3	4/1/2014 0:28:00	40.7588	-73.9776	B02512			
4	4/1/2014 0:33:00	40.7594	-73.9722	B02512			
•••							
1028131	9/30/2014 22:57:00	40.7668	-73.9845	B02764			
1028132	9/30/2014 22:57:00	40.6911	-74.1773	B02764			
1028133	9/30/2014 22:58:00	40.8519	-73.9319	B02764			
1028134	9/30/2014 22:58:00	40.7081	-74.0066	B02764			
1028135	9/30/2014 22:58:00	40.7140	-73.9496	B02764			
4534327 rows × 4 columns							

String to datetime conversion

```
apr14['Date/Time'] = pd.to_datetime(apr14['Date/Time'], format='%m/%d/%Y %H:%M:%S')
may14['Date/Time'] = pd.to_datetime(may14['Date/Time'], format='%m/%d/%Y %H:%M:%S')
jun14['Date/Time'] = pd.to_datetime(jun14['Date/Time'], format='%m/%d/%Y %H:%M:%S')
jul14['Date/Time'] = pd.to_datetime(jul14['Date/Time'], format='%m/%d/%Y %H:%M:%S')
aug14['Date/Time'] = pd.to_datetime(aug14['Date/Time'], format='%m/%d/%Y %H:%M:%S')
sep14['Date/Time'] = pd.to_datetime(sep14['Date/Time'], format='%m/%d/%Y %H:%M:%S')
merged_df['Date/Time'] = pd.to_datetime(merged_df['Date/Time'], format='%m/%d/%Y %H:%M:%S')

dfs = [apr14, may14, jun14, jul14, aug14, sep14, merged_df]
current_df = dfs[0]
```

Rideshare histogram

current_df['Time'] = current_df['Date/Time'].dt.time.apply(lambda x: int(x.strftime('%H%M%S')
current_df

	Date/Time	Lat	Lon	Base	Time
0	2014-04-01 00:11:00	40.7690	-73.9549	B02512	1100
1	2014-04-01 00:17:00	40.7267	-74.0345	B02512	1700
2	2014-04-01 00:21:00	40.7316	-73.9873	B02512	2100
3	2014-04-01 00:28:00	40.7588	-73.9776	B02512	2800
4	2014-04-01 00:33:00	40.7594	-73.9722	B02512	3300
564511	2014-04-30 23:22:00	40.7640	-73.9744	B02764	232200
564512	2014-04-30 23:26:00	40.7629	-73.9672	B02764	232600
564513	2014-04-30 23:31:00	40.7443	-73.9889	B02764	233100
564514	2014-04-30 23:32:00	40.6756	-73.9405	B02764	233200
564515	2014-04-30 23:48:00	40.6880	-73.9608	B02764	234800

564516 rows × 5 columns

sns.histplot(current_df['Time'])

Filtering morning and evening rides

evening_df_idx = (current_df['Time'] > 150000) & (current_df['Time'] < 220000)
evening_df = current_df[evening_df_idx]</pre>

morning_df

	Date/Time	Lat	Lon	Base	Time
30	2014-04-01 05:08:00	40.7141	-74.0094	B02512	50800
31	2014-04-01 05:12:00	40.7893	-73.9709	B02512	51200
32	2014-04-01 05:18:00	40.7747	-73.9910	B02512	51800
33	2014-04-01 05:19:00	40.7689	-73.9876	B02512	51900
34	2014-04-01 05:23:00	40.7744	-74.0149	B02512	52300
564028	2014-04-30 10:55:00	40.7665	-73.9514	B02764	105500
564029	2014-04-30 10:55:00	40.7266	-73.9076	B02764	105500
564030	2014-04-30 10:56:00	40.7365	-73.9816	B02764	105600
564031	2014-04-30 10:57:00	40.7710	-73.8659	B02764	105700
564032	2014-04-30 10:58:00	40.7300	-73.9867	B02764	105800

111422 rows × 5 columns

evening_df

Installing folium

for plotting coordinates

```
!pip install folium
```

```
Requirement already satisfied: folium in /usr/local/lib/python3.7/dist-packages (0.8.3) Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from folio Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from folio Requirement already satisfied: jinja2 in /usr/local/lib/python3.7/dist-packages (from folio Requirement already satisfied: branca>=0.3.0 in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from folio Requirement already satisfied: from folio Requirement already satisfied: from folio Requirement already satisfied: from folio Requirement already sat
```

import folium

Plotting morning rides on map

```
morning_map = folium.Map(location=[40.79658011772687, -73.87341741832425], zoom_start = 12, t
for coordinate in morning_coordinates:
    folium.CircleMarker(radius=1,location=coordinate,fill=True).add_to(morning_map)
morning_map
```


Plotting evening rides on map

evening_map = folium.Map(location=[40.79658011772687, -73.87341741832425], zoom_start = 12, t
for coordinate in evening_coordinates:

folium.CircleMarker(radius=1,location=coordinate,color="#FF0000",fill=True).add_to(evening_
evening_map

Importing KMeans

from sklearn.cluster import KMeans
import numpy as np

Finding clusters

```
n_clusters = 6
model = KMeans(n_clusters=n_clusters, init='random', max_iter=300)
model fit(monning df[['|at' '|on']])
https://colab.research.google.com/drive/17dyD8Ci12V9nu5g_zHUEM_oprdSOX4JC#scrollTo=ffribCl4KYTg&printMode=true
```

```
mouer.irc(moining_uill rar , ron ]]/
     KMeans(algorithm='auto', copy_x=True, init='random', max_iter=300, n_clusters=6,
            n_init=10, n_jobs=None, precompute_distances='auto', random_state=None,
            tol=0.0001, verbose=0)
morning_centroids = model.cluster_centers_
morning_centroids
     array([[ 40.69828782, -74.20574989],
            [ 40.68791073, -73.96539961],
            [ 40.7734237 , -73.96738427],
            [ 40.79314572, -73.86491743],
            [ 40.73297674, -73.99562057],
            [ 40.66314606, -73.77362212]])
for i, coordinate in enumerate(morning_centroids):
    folium.Marker(coordinate, popup='Centroid {}'.format(i+1), icon=folium.Icon(color='red'))
morning_map
```


▼ for evening

```
n_{clusters} = 6
model = KMeans(n clusters=n clusters, init='random', max iter=300)
model.fit(evening_df[['Lat','Lon']])
    KMeans(algorithm='auto', copy_x=True, init='random', max_iter=300, n_clusters=6,
          n_init=10, n_jobs=None, precompute_distances='auto', random_state=None,
          tol=0.0001, verbose=0)
evening_centroids = model.cluster_centers_
evening_centroids
    array([[ 40.79451631, -73.86947377],
          [ 40.73072445, -73.99941624],
          [ 40.69961741, -74.20066416],
          [ 40.68838102, -73.9681331 ],
           [ 40.65714118, -73.7743413 ],
           [ 40.76291046, -73.97455432]])
for i, coordinate in enumerate(evening_centroids):
   folium.Marker(coordinate, popup='Centroid {}'.format(i+1), icon=folium.Icon(color='blue')
evening map
```


Finding clusters in whole selected dataframe

new_ride = (40.70647056912189, -73.91116590442799)
folium.Marker(new_ride, popup='New Rider', icon=folium.Icon(color='green')).add_to(map)
map

centroid_idx = model.predict([new_ride])

centroids[centroid_idx]

array([[40.68792472, -73.96466082]])

folium.Marker(centroids[centroid_idx][0], icon=folium.Icon(color='yellow')).add_to(map)
map

×