Armónicos esféricos como matrices de rotación

Se pueden hallar autoestados de dirección $|\hat{n}\rangle$ rotando el $|\hat{z}\rangle$,

$$\hat{n} = \mathcal{D}(R) \left| \hat{z} \right\rangle$$

Figura 0.1

Necesitamos aplicar
$$\mathcal{D}(R) = \mathcal{D}(\alpha = \varphi, \beta = \theta, \gamma = 0)$$
$$|\hat{n}\rangle = \sum_{m,\ell} \mathcal{D}(R) \, |\ell, m\rangle \, \langle \ell, m \, | \, \hat{z}\rangle$$
$$\langle \ell, m' \, | \, \hat{n}\rangle = \sum_{m,\ell} \langle \ell, m' \, | \, \mathcal{D}(R) \, | \, \ell, m\rangle \, \langle \ell, m \, | \, \hat{z}\rangle$$

pero como la $\mathcal{D}(R)$ no conecta ℓ diferentes, se tiene

$$\left\langle \ell,m'\left|\,\hat{n}\right\rangle = \sum_{m} \mathcal{D}_{m'm}^{\ell}(R)\left\langle \ell,m\left|\,\hat{z}\right\rangle \right.$$

$$Y_{\ell}^{m'*}(\theta,\varphi) = \sum_{m} \mathcal{D}_{m'm}^{\ell}(R) Y_{\ell}^{m*}(\theta=0,\varphi \mathrm{indet})$$

pero como $\theta=0$, $Y_\ell^m=0$ con $m\neq 0$ se tiene

$$\begin{split} \langle \ell, m \, | \, \hat{z} \rangle &= Y_{\ell}^{m*}(\theta=0, \varphi \mathrm{indet}) \delta_{m0} \\ \langle \ell, m \, | \, \hat{z} \rangle &= \sqrt{\frac{2\ell+1}{4\pi}} \delta_{m0} \\ Y_{\ell}^{m'*}(\theta, \varphi) &= \sqrt{\frac{2\ell+1}{4\pi}} \mathcal{D}_{m'0}^{\ell}(\alpha=\varphi, \beta=\theta, \gamma=0) \end{split}$$

la matriz de rotación en este caso es un armónico esférico.

La Ψ tiene la misma simetría que el potencial.

1.1 Suma de momentos angulares

1.1.1 Dos momentos de spín 1/2

Sean dos estados de spín 1/2

$$\mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2 \equiv \mathbf{S}_1 \otimes \mathbb{1}_2 + \mathbb{1}_1 \otimes \mathbf{S}_2$$

en cada espacio valen las relaciones usuales de conmutación

$$[S_{1/2i},S_{1/2j}]=i\hbar\epsilon_{ijk}S_{1/2k}, \qquad [S_{1i},S_{2j}]=0$$

donde el último indica que operadores de espacios diferentes conmutan.

Un estado general es

$$|S_1,m_1\rangle\otimes|S_2,m_2\rangle\equiv|S_1,S_2;m_1,m_2\rangle$$

Hay cuatro estados

$$\begin{array}{ccccccc} S_1 & S_2 & m_1 & m_2 \\ & |1/2,1/2; & 1/2, & 1/2 \rangle \\ & |1/2,1/2; & 1/2,-1/2 \rangle \\ & |1/2,1/2;-1/2,-1/2 \rangle \\ & |1/2,1/2;-1/2, & 1/2 \rangle \\ S_1 & S_2 & S_{1z} & S_{2z} \end{array}$$

que corresponden a los operadores $S_1^2, S_2^2, S_{1z}, S_{2z}$ que conmutan (son un CCOC).

Podemos elegir otras base de operadores que comutan que será: S_1^2, S_2^2, S, S_z , de modo que el estado general será

$$|S_1, S_2; S, m\rangle$$

Así tendremos

$$S_1 \quad S_2 \quad S \quad m$$

$$\text{Triplete} \left\{ \begin{array}{l} |1/2,1/2\,;\,1,\quad 1\rangle \\ |1/2,1/2\,;\,1,\quad 0\rangle \\ |1/2,1/2\,;\,1,-1\rangle \end{array} \right.$$

$$\text{Singlete} \left\{ \begin{array}{l} |1/2,1/2\,;\,0,\quad 0\rangle \\ |1/2,1/2\,;\,0,\quad 0\rangle \end{array} \right.$$

y recordemos que $m_1 + m_2 = m$ y $s_1 + s_2 = s$

$$S^2 = (S_1 + S_2)^2 = S_1^2 + S_2^2 + 2 \mathbf{S}_1 \cdot \mathbf{S}_2 \qquad S_z^2 = (S_{1z} + S_{2z})^2 = S_{1z}^2 + S_{2z}^2 + 2 S_{1z} \cdot S_{2z}$$

Dada la repetición de S_1, D_2 se suelen identificar a las bases solamente

$$\begin{cases} \{|m_1,m_2\rangle\} \\ \{|S,m\rangle\} \end{cases}$$

Además la base $\{|m_1,m_2\rangle\}$ se puede poner como

$$+ \equiv +1/2$$
 $- \equiv -1/2$

1.1.2 Cambio entre bases

Podemos hallar a ojo que

- $|++\rangle = |1,1\rangle$
- $|--\rangle = |1,-1\rangle$

de manera que la única forma de tener m=1 es con los dos spines up y la única forma de tener m=-1 es con los dos spines down.

Se hallan los otros con el operador de bajada

$$S_- \equiv S_{1-} + S_{2-}$$

y si descompongo S_- en S_{1-} y S_{2-} para operar en $\langle s,m\rangle$ se tiene

$$S_{-}\left|++\right\rangle = S_{1-}\left|++\right\rangle + S_{2-}\left|++\right\rangle = S_{1-}\otimes\mathbb{1}_{2}\left|++\right\rangle + \mathbb{1}_{1}\otimes S_{2-}\left|++\right\rangle = \hbar\left|-+\right\rangle + \hbar\left|+-\right\rangle$$

y ahora si opero con S_{-} ,

$$S_{-}|11\rangle = \sqrt{2}\hbar |10\rangle$$

•
$$|10\rangle = \frac{1}{\sqrt{2}}(|-+\rangle + Ket + -)$$

Luego

$$|00\rangle = a |+-\rangle + b |-+\rangle$$

y puedo usar ortonormalidad

$$\langle 10 \, | \, 00 \rangle = 0 = \frac{a}{\sqrt{2}} + \frac{b}{\sqrt{2}} \qquad \text{con } |a|^2 + |b|^2 = 1$$

•
$$|00\rangle = \frac{1}{\sqrt{2}}(|+-\rangle - |-+\rangle)$$

1.2 Teoría formal de suma de momentos angulares

Sea de sumar dos momentos angulares $J_1, J_2.$ Las relaciones de conmutación son

$$\begin{split} [J_{1i},J_{1j}] &= i\hbar\varepsilon_{ijk}J_{1k} \qquad [J_{2i},J_{2j}] = i\hbar\varepsilon_{ijk}J_{2k} \qquad [J_{1k},J_{2l}] = 0 \\ \mathbf{J} &= \mathbf{J}_1\otimes\mathbbm{1}_2 + \mathbbm{1}_1\otimes\mathbf{J}_2 \equiv \mathbf{J}_1 + \mathbf{J}_2 \\ [J_i,J_j] &= i\hbar\epsilon_{ijk}J_k \end{split}$$

El momento total J cumple que

$$J^2 = J_1^2 + J_2^2 + 2J_1J_2 \qquad J^2 = J_1^2 + J_2^2 + 2J_{1z}J_{2z} + J_{1+}J_{2-} + J_{1-}J_{2+}$$

donde vemos que

$$[J^2_{1/2},J^2]=0 \qquad [J_z,J^2]=0 \qquad [J^2_{1/2},J_{1/2,z,+,-}]=0$$

pero

$$[J^2, J_{1z}] \neq 0$$
 $[J^2, J_{2z}] \neq 0$

Esto deja dos opciones para elegir un CCOC

$$\begin{array}{c|c} J_1^2,J_2^2,J_{1z},J_{2z} & J_1^2,J_2^2,J^2,J_z \\ \\ |j_1,j_2;m_1,m_2\rangle & |j_1,j_2;j,m\rangle \\ \\ \text{base desacoplada} & \text{base acoplada} \end{array}$$

Se puede pasar de una base a otra con una identidad 1 apropiada

$$\left| j_{1}, j_{2}; j, m \right\rangle = \sum_{m_{1}, m_{2}} \left| j_{1}, j_{2}; m_{1}, m_{2} \right\rangle \left\langle j_{1}, j_{2}; m_{1}, m_{2} \left| j_{1}, j_{2}; j, m \right\rangle$$

$$1. \ |j_1,j_2;j,m\rangle = \sum_{m_1,m_2} C^j_{m_1m_2} \, |j_1,j_2;m_1,m_2\rangle$$

$$\operatorname{con} -j_1 \leq m_1 \leq j_1 \ \operatorname{y} -j_2 \leq m_2 \leq j_2$$

$$\left| j_{1},j_{2};m_{1},m_{2}\right\rangle =\sum_{i,m}\left| j_{1},j_{2};j,m\right\rangle \left\langle j_{1},j_{2};j,m\left|\, j_{1},j_{2};m_{1},m_{2}\right\rangle$$

$$2. \ |j_1,j_2;m_1,m_2\rangle = \sum_{j,m} C_{m_1m_2}^{j*} \, |j_1,j_2;j,m\rangle$$

 $con - j \le m \le j$ y $con j \to \infty$.

Donde los $C^j_{m_1m_2}$ son los coeficientes de Clebsh-Gordan. En 2 la \sum sería en $j \to \infty$, pero veamos la relacion que hace algunos $C^j_{m_1m_2}=0$. Ante todo abreviaremos suprimiendo los índices j_1,j_2 con lo cual

$$C_{m_1m_2}^j = \langle m_1, m_2 \mid j, m \rangle$$

1.2.1 Restricciones para la no nulidad de los coeficientes

$$\begin{split} \left(J_z - J_{1z} - J_{2z}\right)|j,m\rangle &= (m\hbar - J_{1z} - J_{2z})\,|j,m\rangle = 0 \\ \left\langle m_1, m_2 \,|\, (J_z - J_{1z} - J_{2z})\,|\, j,m\rangle &= 0 \\ &\qquad \qquad \hbar (m - m_1 - m_2)\,\langle m_1, m_2\,|\, j,m\rangle = 0 \end{split}$$

entonces

$$\langle m_1, m_2 \mid j, m \rangle \neq 0 \iff m = m_1 + m_2$$

A su vez, en la suma de J_1 y J_2 resultan los j acotados por una desigualdad triangular

$$|j_1 - j_2| \le j \le j_1 + j_2$$

Asimismo los $C^j_{m_1m_2}$ se toman reales, entonces

$$C^{j*}_{m_1m_2}=C^j_{m_1m_2}$$

y juntando todo se tiene

$$\langle m_1, m_2 | j, m \rangle \neq 0 \iff m = m_1 + m_2,$$

o lo que es equivalente

$$\langle j,m\,|\,m_1,m_2\rangle\iff |j_1-j_2|\leq j\leq j_1+j_2$$

Ambas bases tienen la misma dimensión

$$\sum = (2j_1 + 1)(2j_2 + 1)$$

Recordemos que cada jtiene 2j+1 estados posibles (los m correspondientes a cada j) ($|m|\leq j$). Si sumamos $j_1=1,j_2=3/2$ tendremos

$$\dim = 2 \oplus 4 \oplus 6 = 3 \otimes 4 = 12$$

$$j = 1/2, 3/2, 5/2$$
 $m_1 = -1, 0, 1$

$$j = -5/2, -3/2, -1/2, 1/2, 3/2, 5/2 \qquad m_2 = -3/2, -1/2, 1/2, 3/2$$

Podemos ver a ojo que

$$|j = 5/2, m = 5/2\rangle = |m_1 = 1, m_2 = 3/2\rangle$$

 $|j = 5/2, m = -5/2\rangle = |m_1 = -1, m_2 = -3/2\rangle$

luego con el $J_{=}, J_{-}$ podemos construirnos los siguientes (utilizando ortonormalidad)

$$\begin{split} \left\langle j',m' \,\middle|\, j,m \right\rangle &= \delta_{j'j} \delta_{m'm} \\ \sum_{m_1,m_2} \left\langle j',m' \,\middle|\, m_1,m_2 \right\rangle \left\langle m_1,m_2 \,\middle|\, j,m \right\rangle &= \delta_{j'j} \delta_{m'm} \\ \sum_{m_1,m_2} \left\langle m_1,m_2 \,\middle|\, j,m \right\rangle^2 &= 1 \end{split}$$

siendo esto último la ortonormalidad.

1.2.2 Relación de recurrencia

$$\begin{split} J_{\pm}\left|j,m\right\rangle &=\left(J_{1\pm}+J_{2\pm}\right)\sum_{m_{1}^{\prime},m_{2}^{\prime}}\left|m_{1}^{\prime},m_{2}^{\prime}\right\rangle\left\langle m_{1}^{\prime},m_{2}^{\prime}\left|j,m\right\rangle\\ \sqrt{\left(j\mp m\right)\left(j\pm m+1\right)}\left|j,m\pm1\right\rangle &=\sum_{m_{1}^{\prime},m_{2}^{\prime}}\left\langle m_{1}^{\prime},m_{2}^{\prime}\left|j,m\right\rangle\left(J_{1\pm}\left|m_{1}^{\prime},m_{2}^{\prime}\right\rangle+J_{2\pm}\left|m_{1}^{\prime},m_{2}^{\prime}\right\rangle\right) \end{split}$$

y metiendo un bra $\langle m_1, m_2|$ se llega a la relación de recurrencia

$$\sqrt{(j \mp m)(j \pm m + 1)} \left< m_1, m_2 \mid j, m \pm 1 \right> = \sqrt{(j_1 \mp m_1 + 1)(j_1 \pm m_1)} \left< m_1 \mp 1, m_2 \mid j, m \right> + \\ \sqrt{(j_2 \mp m_2 + 1)(j_2 \pm m_2)} \left< m_1, m_2 \mp 1 \mid j, m \right>$$

1.2.3 Suma de L y S

Sea suma L y S, entonces

$$\begin{split} j_1 = l & \quad j_2 = S = 1/2 \quad m_1 = m_l \quad m_2 = m_s = \pm 1/2 \\ |l - 1/2| & \leq j \leq l + 1/2 \qquad j = \begin{cases} l - 1/2 \\ l + 1/2 \end{cases} \\ m = m_l + 1/2 \qquad m_l = m + 1/2, m - 1/2 \qquad m_S = 1/2, -1/2 \end{split}$$

y luego dim= $(2l+1)\otimes 2=)4l+2.$ Habrá sólo cuatro $C^j_{m_1m_2}$ no nulos, que serán

$$\langle m+1/2, -1/2 \, | \, l-1/2, m \rangle$$

$$\langle m+1/2, -1/2 \, | \, l+1/2, m \rangle$$

$$\langle m-1/2, 1/2 \, | \, l-1/2, m \rangle$$

$$\langle m-1/2, 1/2 \, | \, l+1/2, m \rangle$$

donde vemos que los coeficientes linkean sólo los estados con $j=\ell-1/2$ y $j=\ell+1/2$ y podemos construir una matriz de 2×2 para este caso.

Esto tórnase práctico para acoplamiento spin-órbita

$$\begin{split} \mathbf{L}\cdot\mathbf{S} &= \frac{1}{2}(J^2 - L^2 - S^2) \\ \mathbf{L}\cdot\mathbf{S} \left| l,s;j,m \right\rangle &= \frac{1}{2}\left(j(j+1)\hbar^2 - l(l+1)\hbar^2 - s(s+1/2)\hbar^2\right) \left| l,s;j,m \right\rangle \\ &= \frac{1}{2}\left(j(j+1) - l(l+1) - 3/4\right)\hbar^2 \left| l,s;j,m \right\rangle \\ \mathbf{L}\cdot\mathbf{S} \left| l,s;j,m \right\rangle &= \begin{cases} \frac{l\hbar^2}{2} \left| l,s;j,m \right\rangle & \text{si } j = l+1/2 \\ -\frac{(l+1)\hbar^2}{2} \left| l,s;j,m \right\rangle & \text{si } j = l-1/2 \end{cases} \end{split}$$

1.3 Operadores vectoriales

Queremos analizar como transforma un operador vectorial \hat{v} bajo rotaciones en mecánica cuántica. En mecánica clásica,

$$V_i = R_{ij}V_i$$
 con R matriz diagonal

En mecánica cuántica tenemos que al rotar

$$|\alpha\rangle_R = \mathcal{D}(R) |\alpha\rangle$$

Pediremos entonces que $\langle V \rangle$ transforme como un vector y eso lleva a que

$$\begin{split} \left\langle \alpha \,|\, V_i \,|\, \alpha \right\rangle_R &= \left\langle \alpha \,\big|\, \mathcal{D}^\dagger(R) V_i \mathcal{D}(R) \,\big|\, \alpha \right\rangle = R_{ij} \left\langle \alpha \,\big|\, V_j \,\big|\, \alpha \right\rangle \\ & \mathcal{D}(R)^\dagger V_i \mathcal{D}(R) = R_{ij} V_j \end{split} \tag{)}$$

y calculando la expresión anterior (1) llegamos a que debe valer

$$[V_i, J_i] = i\hbar \varepsilon_{ijR} V_R$$

que es la manera de transformar de un operador vectorial. Podemos probar un caso simple de una rotación infinitesimal en \hat{z} y ver que vale.

1.4 Operadores tensoriales

En mecánica clásica

$$T_{ij} = R_{ii'}R_{jj'}T_{i'j'}$$

que es un tensor de rango dos. Esto es un tensor cartesiano. Su problema es que no es irreducible, entonces puede descomponerse en objetos que transforman diferente ante rotaciones. Sea la díada U_iV_j , tensor de rango dos, que puede escribirse como

$$UV = \frac{1}{3}\mathbf{U}\cdot\mathbf{V}\boldsymbol{\delta}_{ij} + \frac{1}{2}\left(\boldsymbol{U}_{i}\boldsymbol{V}_{j} - \boldsymbol{U}_{j}\boldsymbol{V}_{i}\right) + \left[\frac{1}{2}\left(\boldsymbol{U}_{i}\boldsymbol{V}_{j} + \boldsymbol{U}_{j}\boldsymbol{V}_{i}\right) - \frac{1}{3}\mathbf{U}\cdot\mathbf{V}\boldsymbol{\delta}_{ij}\right]$$

Hemos reducido el tensor cartesiano en tensores irreducibles. Podemos asociar esta descomposición con las multiplicidades de objetos con momento angular $\ell=0, \ell=1, \ell=2$

escalar
$$\longrightarrow \ell = 0$$
 singlete (un elemento independiente)

vector
$$\longrightarrow \ell = 1$$
 triplete (tres elementos independientes)

tensor de traza nula $\longrightarrow \ell = 2$ quintuplete (cinco elementos independientes)

Se define

$$T_q^{(k)}$$
 tensor esférico de rango k y número magnético q

Un tensor esférico transforma como

$$\mathcal{D}(R)T_{q'}^{(k)}\mathcal{D}(R)^{\dagger} = \mathcal{D}(R)T_{q'}^{(k)} \qquad (2)$$

Tendremos

$$T_0^{(0)}$$
 (escalar) tensor esférico de rango 0 ($\ell=0$)
$$(T_1^{(1)},T_0^{(1)},T_{-1}^{(1)})$$
 (vector) tensor esférico de rango 1 ($\ell=1$)

En muchos casos se puede escribir un tensor esférico como armónico esférico

$$\begin{split} Y_\ell^m(\theta,\varphi) &= Y_\ell^m(\hat{n}) \ \ \, \longrightarrow \overbrace{\hat{n} \longrightarrow \vec{v}}^{\text{paso}} \quad Y_\ell^m(\vec{v}) \equiv Y_k^q(\vec{v}) = T_q^{(k)} \\ \hat{n} &= (n_x,n_y,n_z) = \left(\frac{x}{r},\frac{y}{r},\frac{z}{r}\right) \quad \longrightarrow \quad \mathbf{v} = (rn_x,rn_y,rn_z) \\ \hat{n} &= (\cos(\phi)\sin(\theta),\sin(\phi)\sin(\theta),\cos(\theta)) \\ Y_1^0 &= \sqrt{\frac{3}{4\pi}}n_z \quad \longrightarrow \quad T_1^0 = \sqrt{\frac{3}{4\pi}}V_z \\ Y_1^{\pm 1} &= \mp \sqrt{\frac{3}{4\pi}}\frac{n_x \pm in_y}{\sqrt{2}} \quad \longrightarrow T_{\pm 1}^{(1)} = \mp \sqrt{\frac{3}{4\pi}}\frac{V_x \pm iV_y}{\sqrt{2}} \end{split}$$

Calculando en (2), cosa que podemos hacer para, por ejemplo, una rotación infinitesimal, llegamos a las relaciones de conmutación para tensores.

$$[J_z, T_q^{(k)}] = \hbar q T_q^{(k)} \qquad [J_\pm, T_q^{(k)}] = \hbar \sqrt{(k \mp 1)(k \pm q + 1)} T_{q \pm 1}^{(k)}$$