Estructuras Discretas INF-313

Sergio Hernández, Mónica Acevedo shernandez@ucm.cl, macevedo@ucm.cl

Facultad de Ciencias de la Ingeniería

Introducción

• Los grafos son estructuras discretas que consisten de vértices y aristas que conectan los vértices. Existen disintos tipos de grafos, dependiendo si las aristas tienen o no dirección, si existen múltiples aristas para un mismo vértices o si se permiten o no lazos.

Introducción

- Los grafos son estructuras discretas que consisten de vértices y aristas que conectan los vértices. Existen disintos tipos de grafos, dependiendo si las aristas tienen o no dirección, si existen múltiples aristas para un mismo vértices o si se permiten o no lazos.
- Los grafos aparecen en muchos problemas de ingenería, matemáticas aplicadas y ciencias de la computación.

Introducción

- Los grafos son estructuras discretas que consisten de vértices y aristas que conectan los vértices. Existen disintos tipos de grafos, dependiendo si las aristas tienen o no dirección, si existen múltiples aristas para un mismo vértices o si se permiten o no lazos.
- Los grafos aparecen en muchos problemas de ingenería, matemáticas aplicadas y ciencias de la computación.
- La mayoría de estos problemas están relacionados con la representación (grafos densos, poco densos) y búsqueda en grafos (por ejemplo, ruta más corta entre una ciudad y otra).

Grafos

Definición

Un grafo es una tupla G=(V,E) donde V es un conjunto (finito o infinito) de vértices, puntos o nodos y E es un una colección finita de aristas. El conjunto E contiene elementos de la unión de todos los subconjuntos con uno o dos elementos del conjunto V. Esto quiere decir, que cada elemento de E es un subconjunto de uno o dos elementos de V.

Grafos

Los vértices u y v son adyacentes o vecinos si hay una arista (u,v). En este caso u y v se denominan extremos de la arista o también que la arista es incidente en cada uno de sus extremos. Los grafos se presentan mediante diagramas en el plano de forma natural.

Ejemplo

Grafos Simples

Definición

Un grafo simple es un grafo en el cual existe sólo una arista $\{u,v\}$ para conectar dos vértices u y v.

$$G = (V, E)$$

$$V = \{1, 2, 3, 4\}$$

$$E = [(1, 4), (1, 2)$$

$$(2, 3), (4, 3), (2, 4)]$$

Multi-Grafos

Definición

Un multi-grafo simple es un grafo en el cual existe más de una arista $\{u,v\}$ para conectar dos vértices u y v (aristas paralelas). También se presentan lazos, es decir arista que tienen el mismo vértice en los extremos.

$$G = (V, E)$$

$$V = \{1, 2, 3, 4\}$$

$$E = [(1, 4), (4, 1), (1, 2), (2, 1)$$

$$(2, 3), (3, 2), (4, 3), (3, 4)$$

$$(2, 4)]$$

Grafos

Grado de un Vértice

El grado de un vértice v en un grafo G, se escribe grd(v), es igual al número de aristas en G que contienen a v, es decir que inciden sobre v. Por lo cual se tiene el siguiente resultado:

Teorema La suma de los grados de los vértices de un grafo G es igual al doble del número de aristas en G.

Un vértice es par o impar si su grado es un número par o impar.

Un vértice de grado cero se denomina vértice aislado.

Grafos dirigidos

Definición

Un grafo dirigido es un grafo en el cual cada arista $\{u, v\}$ consiste en un par ordenado de vértices u y v.

$$G = (V, E)$$

$$V = \{1, 2, 3, 4\}$$

$$E = [(1, 4), (2, 1), (3, 2), (4, 3), (2, 4)]$$

Grafos ponderados

Definición

Un grafo ponderado es un grafo en el cual cada arista $\{u, v\}$ tiene un peso $w_{u,v}$ asociado.

$$G = (V, E)$$

$$V = \{1, 2, 3, 4\}$$

$$E = [(1, 4), (2, 1)$$

$$(3, 2), (4, 3), (2, 4)]$$

$$w_{1,4} = 0.6 \quad w_{2,1} = 0.4$$

$$w_{3,2} = 0.8 \quad w_{4,3} = 0.2$$

$$w_{2,4} = 0.3$$

Grafos Completos

Definición

Un grafo completo sobre n vértices denotado por K_n es un grafo simple con una arista por cada par de vértices distintos.

$$G = (V, E) \equiv K_4$$

$$V = \{1, 2, 3, 4\}$$

$$E = [(1, 4), (1, 2), (1, 3)$$

$$(2, 3), (3, 4), (2, 4)]$$

Grafos Regulares

Definición

Un grafo G es regular de grado k o k-regular si sus vértices tienen grado k, si todos los vértices tienen el mismo grado.

Un grafo *G* es conexo si existe una arista entre dos de sus vértices. Los grafos regulares conexos de grado 0, 1 o 2 se describen con facilidad. El grafo conexo 0-regular es el grafo trivial con un vértice y sin ninguna.

El grafo conexo 0-regular es el grafo trivial con un vértice y sin ninguna arista.

El grafo conexo 1-regular es el grafo con dos vértices y una arista que los que los une. El grafo conexo 2-regular con n vértices es el grafo que consta de un solo n-ciclo.

Grafos Bipartitos

Definición

Un grafo G=(V,E) es bipartito si existen dos subconjuntos V_1 y V_2 (posiblemente vacíos) de V tal que si $V_1\cap V_2=\emptyset$ y $V_1\cup V_2=V$, entonces cada arista en E es incidente sobre un vértice en V_1 y un vértice en V_2 , es decir cada arista en G une un vértice de V_1 con un vértice de V_2 .

$$V = \{1, 2, 3, 4, 5\}$$

$$E = [(1, 2), (2, 3), (4, 5)]$$

$$V_1 = \{1, 3, 4\}$$

$$V_2 = \{2, 5\}$$

Listas de adyacencia

Una forma de representar grafos es mediante listas de adyacencia.

Vértice	Vértices adyacentes
1	2,5
2	1,5,4,3
3	2,4
4	2,5,3
5	1,2,4

Matriz de adyacencia

Otra forma de representar un grafo G=(V,E) es mediante una matriz de adyacencia A. La matriz de adyacencia $A=(a_{ij})$ es una matriz de orden $|V|\times |V|$, tal que:

$$a_{ij} = egin{cases} 1 & ext{si el v\'ertice } \{i,j\} \in E \ 0 & ext{de lo contrario} \end{cases}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$

