指令解释

前提条件:

import matplotlib.pyplot as plt

import numpy as np

• 一、准备数据

- 1. 区间采样函数:
 - x = np.linspace(-10,10,200)#[-10,10]闭区间中取20个点
 - x = np.arange(-10,10,1)#[-10,10)半开半闭区间中以间隔1来取数值

• 二、制图相关

- 1. 画图函数 plt.plot(x,y,format_string,**kwargs)
 - <1> x ,y分别是x轴和y轴的数据,可以是array或者list
 - <2> format_string 是控制曲线格式的字符串,包括线的颜色、风格和标记字符

A 颜色: color=" "

颜色字符	说明	颜色字符	说明
b	蓝色	m	洋红色
g	绿色	У	黄色
r	红色	k	黑色
С	青绿色cyan	W	白色
'#008000'	RGB某颜色,16进制的三个颜 色	'0.8'	灰度值字符

B 风格--即线型 linestyle=" "

风格字符	说明
U	实线
Ψ	破折线
· S	点划线
1.1	虚线
н н	无线条

C 标记字符 marker=""

标记字 符	说明	标记字 符	说明	标记字 符	说明
1.1	点标记	'1'	下花三 角	'h'	竖六边形
1.1	极小点标 记	'2'	上花三角	'H'	横六边形
'0'	实心圏标 记	'3'	左花三 角	'+'	十字标记
¹V¹	倒三角标 记	'4'	右花三 角	'X'	×标记
1\1	上三角标 记	's'	实心方 形	'D'	菱形标记
'>'	右三角标记	'p'	实心五 角	'd'	廋菱形标 记
'<'	左三角标 记	1*1	星星标记	' '	垂直标记

标记颜色: markerfacecolor='b'

标记尺寸 markerfacecolor=20

标记透明度 alpha = 0.5

<3> 可选参数 kwargs: 可以用来设置很多内容

- 1. linewidth
- 2. color

<4>可以在一个plot函数里面画多个曲线

plt.plot(x,y1,'r-o', x, y2, 'b-^',x, y3)

2. 创建画布 plt.figure()

参数名	默认值	意义
num	None	图像的编号
figsize	None	指定画布的宽和高 (200,100)
dpi	None	指定画布的分辨率,默认为80
facecolor	None	背景颜色
edgecolor	None	边框颜色
frameon	True	是否显示 边框

plt.figure()返回的是Figure类,

3. 子图画法 plt.subplot(nrows,ncols,plotNum,sharex,sharey,subplot_kw,**fig_kw)

参数	说明
nrows	子图所在的行数
ncols	子图所在的列数
plotNum	画
sharex	所有subplot应该使用相同的x轴刻度,调整xlim会影响所有的 subplot
sharey	所有subplot应该使用相同的y轴刻度,调整ylim会影响所有的 subplot
subplot_kw	创建各subplot的关键字字典
**fig_kw	创建figure时的其他关键字

plt.subplot()作用是将figure划分为多个子图,但每条subplot只会创建其中一个子图

可以使用不同的分法来占据figure的不同位置,如代码中的3.8子图中奇数张子图的画法

常见的subplot(2,2,1)表示将整个画布分为2*2共四个局部小块,1表示当前是第1个局部小块作图,2,2,1也可以写为221,同一副图可以有不同的分法来确定不同的位置

4. 图的标识

- plt.title("demo") 图名
- plt.xlabel("x轴")
- plt.ylabel("y轴")

5. 设置坐标显示范围

- plt.xlim(-5,5) 设置横坐标的范围
- plt.xlim(-5,5) 设置纵坐标的范围

6. 指定坐标轴上的刻度

plt.xticks(xList, tarList,rotation=30)

解释: xList是对应x轴上原本的值,

tarList是和xList对应长度的列表,用tarList中的值去替换对应的x轴上的值

rotation是逆时针旋转的角度

- plt.yticks()
- 7. 图例: 用来表示图中各个线条代表什么意思, 常常出现在左上角或者右上角

plt.legend(handles=[f1,f2,f3,,,], labels=['F1','F2','F3'],loc="upper right")

- handles 是plot的返回值,如果没有这个列表,则系统默认按顺序给定, h1, = plt.plot(x,y1) 这里的h1就是返回值,代表这个线
- labels 是给对应的线的名字
- loc是图例的位置,一般有如下选择:

位置字符	编号简写	代表含义
best	0	自动选择最佳图例位置
upper right	1	将图例放在 右上角
upper left	2	将图例放在 左上角
lower right	3	将图例放在 右下角
lower left	4	将图例放在 左下角
right	5	将图例放在 右边
center left	6	将图例放在 居中左边
center right	7	将图例放在 居中右边
lower center	8	将图例放在 居中下边
upper center	9	将图例放在 居中上边
center	10	将图例放在 中心位置

8. 散点图 核心指令为 plt.scatter(x,y)

常用参数列表如下:

参数	默认值	使用方法
x,y		是数据,一般是shape(n,)的数组
S	None	点的大小,也就是点的面积,默认为20
С	None	点的颜色,默认蓝色
marker	None	标记字符,控制点的形状,默认是圆
alpha	None	控制点的透明度

9. 饼状图 核心指令为 plt.pie(x)

常用参数列表如下

参数	默认 值	使用方法
X		列表数据,存放的是各部分占比的向量
explode	None	列表数据,代表每一部分离开中心点的距离
labels	None	列表数据,代表各类的标签
colors	None	列表数据,代表各类的颜色
startangle	None	起始绘制的角度,默认从×轴正方向逆时针画起即默 认0,若=90则表示y轴正方向画起
shadow	False	显示阴影,默认不显示
labeldistance	1.1	label标签位置,相对于半径的比例,默认是1.1,若<1,则画在饼图内侧
radius	None	控制饼图的半径,默认是1

默认画出来的饼状图是椭圆,若想变为圆形,则需添加指令 plt.axis('equal')

10. 柱状图 核心指令 plt.bar()

常用参数列表如下:

参数	默认 值	使用方法
left		x轴的位置序列,表示每个柱状的位置,一般是range产生
height		y轴的位置序列,表示每个柱的高度,也就是我们要展示的数据
alpha	1	透明度
width	0.8	柱形的宽度,默认0.8
color		柱形填充的颜色
edgecolor		图形边缘颜色
label		解释每个图像的含义,是为legend()函数做铺垫
linewidth	3	线宽 默认3,是边缘线的宽度

11. 绘制直方图 核心指令 plt.hist()

常用参数列表如下: