Лабораторная работа №8

Элементы криптографии. Шифрование различных исходных текстов одним ключом

Кувшинова Ксения Олеговна¹ 21.10.2022, Moscow

¹RUDN University, Moscow, Russian Federation

Цель работы

Целью данной лабораторной работы является освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Указание к работе

Режим шифрования однократного гаммирования одним ключом двух видов открытого текста реализуется в соответствии со схемой: (fig. 1)

$$C_1 = P_1 \oplus K,$$

$$C_2 = P_2 \oplus K.$$

Figure 1: Схема однократного гаммирования одним ключом двух видов открытого текста

Задание к лабораторной работе

Два текста кодируются одним ключом (однократное гаммирование). Требуется не зная ключа и не стремясь его определить, прочитать оба текста. Необходимо разработать приложение, позволяющее шифровать и дешифровать тексты Р1 и Р2 в режиме однократного гаммирования. Приложение должно определить вид шифротекстов С1 и С2 обоих текстов Р1 и Р2 при известном ключе; Необходимо определить и выразить аналитически способ, при котором злоумышленник может прочитать оба текста, не зная ключа и не стремясь его определить.

Выполнение лабораторной работы

Импортируем необходимые для работы библиотеки (fig. 2)

```
import string import random
```

Figure 2: Импорт библиотек

Выполнение лабораторной работы

Напишем функции формирования ключа, перевода данных в 16 систему и шифрования текста. (fig. 3)

```
[4] #формирование ключа
    def key(size):
      key1 = ''.join(random.choice(string.ascii letters+string.digits) for in range(size))
      print("Key: ", key1)
      key2 = coding(key1)
      print("Key in 16: ", key2)
      return kev2
    #функция перевода в 16 СИ
    def coding(smth):
      smth1 = ' '.join(hex(ord(i))[2:] for i in smth)
      return smth1
    #шифрование
    def crypt(text, key):
      t = [ord(i) for i in text]
      k = [ord(j) for j in key]
      sixt t=''.join(chr(i^j) for i, j in zip(t,k))
      return sixt t
```

Выполнение лабораторной работы

Зашифруем и дешифруем тексты P1 и P2 2 в режиме однократного гаммирования. (fig. 4)

```
P1 = "I'm so lonely"
P2 = "Broken angels"
key = key(len(P1))
cp1 = crypt(P1, key)
cp2 = crypt(P2, key)
print("Зашифрованный текст1: ", cp1)
print("Зашифрованный текст2: ", ср2)
decrypt = crypt(cp1,cp2)
finp1 = crypt(decrypt, P2)
finp2 = crypt(decrypt, P1)
print("Расшифрованный текст1: ", finp1)
print("Расшифрованный текст1: ", finp2)
Key: WFR1TNs3Q0fff
Key in 16: 57 46 52 31 54 4e 73 33 51 30 66 66 66
Зашифрованный текст1: ТВМВЕОВ^ОТТІ
```

Результат выполнения работы

В ходе выполнения лабораторной работы мы освоили на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Библиография

1. Кулябов Д. С., Королькова А. В., Геворкян М. Н. Элементы криптографии. Шифрование (кодирование) различных исходных текстов одним ключом [Текст] / Кулябов Д. С., Королькова А. В., Геворкян М. Н. - Москва: - 3 с. [^1]: Элементы криптографии. Шифрование (кодирование) различных исходных текстов одним ключом.