Escola Politècnica Superior

Grau en Enginyeria d'Edificació

Assignatura: Aplicacions Estadístiques

Tipus d'activitat

	Exercici	Treball / Pràctica	Examen	Altres
Puntuable			X	
No Puntuable				

Competències específiques que es treballen

Capacitat per a utilitzar les tècniques i mètodes probabilístics i d'anàlisi estadística | X

Competències genèriques que es treballen

npeteneles generiques que es tresamen		
Resolució de problemes (CI-1)		
Capacitat d'anàlisi i síntesi (CI-4)		
Coneixement d'informàtica relatiu a l'àmbit d'estudis (CI-2)		
Aptitud per a la gestió de l'informació (CI-5)		
Compromís ètic (CP-1)	X	
Raonament crític (CP-2)	X	
Aptitud per al treball en equip (CP-3)		
Aprenentatge autònom (CP-9)		

Data: 20/04/2011

Problema 1 En una universitat s'ha observat que el 60 % dels estudiants que es matriculen ho fan en una carrera de Ciències, mentre que l'altre 40 % ho fan en carreres d'Humanitats. Si un determinat dia es realitzen 20 matrícules, calcular la probabilitat que:

- a) hi hagi igual nombre de matrícules en Ciències i en Humanitats;
- b) el nombre de matrícules en Ciències sigui menor que en Humanitats;
- c) hi hagi almenys 8 matrícules en Ciències;
- d) no hi hagi més de 12 matrícules en Ciències.
- e) Si les cinc primeres matrícules són d'Humanitats, calcular la probabilitat que en total hi hagi igual nombre de matrícules en Ciències i en Humanitats.

Problema 2 L'empresa EMPIPATSA vol comenar a produir bosses de pipes de pes nominal 100g. La normativa vigent exigeix que el pes del producte envasat no pot ser inferior al 95 % del pes nominal. L'empresa considera que el pes del producte envasat seguirà una llei normal de paràmetres 98g i desviació típica 1g. Es demana:

- a) Demostreu que la probabilitat que una bossa no compleixi la normativa és iqual a 0,0013.
- b) Calculeu la probabilitat que el pes d'una bossa que compleixi la normativa sigui més petit que el pes nominal.
- $c) \ \ Calculeu \ la \ probabilitat \ que \ una \ caixa \ de \ 20 \ bosses \ contingui \ exactament \ 3 \ bosses \ que \ no \ compleixen \ la \ normativa.$

Variables aleatòries usuals

V.A. (X)	$f_X(x)$		E(X)	Var(X)	Altres propietats	
Binomial $B(n, p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	$si x \in \Omega_X$	np	np(1-p)		
$\Omega_X = \{0, 1, \cdots, n\}$	0	si $x \notin \Omega_X$				
Poisson $Po(\lambda)$	$\frac{\lambda^x}{x!}e^{-\lambda}$	si $x \in \Omega_X$	λ	λ	$B(n,p) \approx Po(np)$	
$\Omega_X = \{0, 1, \cdots\}$	0	si $x \notin \Omega_X$			(n gran, p petit)	
					$\int \frac{x-a}{b-a} x \in [a,b]$	
Uniforme $\mathcal{U}(a,b)$	$\frac{1}{b-a}$	si $x \in [a, b]$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$F_X(x) = \begin{cases} \frac{x-a}{b-a} & x \in [a,b] \\ 0 & x < a \\ 1 & x > b \end{cases}$	
					1 x > b	
$\Omega_X = [a, b]$	0	si $x \notin [a, b]$,	
Gaussiana $X(\mu, \sigma^2)$			μ	σ^2	$Z \sim N(0,1)$ normal estándar	
$\Omega_X = \mathbb{R}$					$F_Z(-z) = 1 - F_Z(z)$	
					$F_X(x) = F_Z(\frac{x-\mu}{\sigma})$	
					$B(n,p) \approx N(np, np(1-p))$	
					(n gran)	
					$Po(\lambda) \approx N(\lambda, \lambda)$	
					$(\lambda \text{ gran})$	