Adult salmonids and rainbow smelt (freshwater, groups 1 and 2)

						,
		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Rainbow)	А	80000	24.00	10	No mortality	D. Herbert, personal communication to Alabaster & Lloyd (1980)
Trout (Rainbow)	Α	160000	24.00	14	100% mortality	D. Herbert, personal communication to Alabaster & Lloyd (1980)
Salmon (Coho)	Α	6779	72.00	7	Loss of habitat caused by excessive sediment transport	Coats et al. (1985)
Steelhead	Α	6779	72.00	7	Loss of habitat caused by excessive sediment transport	Coats et al. (1985)
Trout (Brook)	Α	4	48.00	3	Fish more active and less dependent on cover	Gradall & Swenson (1982)
Salmon	Α	213	24.00	10	Abandoned traditional spawning ground	Hamilton (1961)
Trout (Sea)	Α	213	24.00	10	Abandoned traditional spawning ground	Hamilton (1961)
Trout (Brown)	Α	1000	8760.00	10	Reduced abundance	Herbert et al. (1961)
Trout (Brown)	Α	60	8760.00	0	No adverse effect, healthy population	Herbert et al. (1961)
Trout (Brown)	Α	1040	17520.00	8	Gill lamellae thickened (VFSS)	Herbert et al. (1961)
Trout (Brown)	Α	1210	17520.00	8	Some gill lamellae became fused (VFSS)	Herbert et al. (1961)
Trout (Brown)	Α	1061	8760.00	14	Population one-seventh of expected size (River Fal)	Herbert et al. (1961)
Trout (Brown)	Α	5838	8760.00	14	Fish numbers one-seventh of expected (River Par)	Herbert et al. (1961)
Trout (Brown)	Α	1061	8760.00	14	Deterioration of spawning gravel (River Par)	Herbert et al. (1961)
Trout (Brown)	Α	5838	8760.00	14	Deterioration of spawning gravel (River Fal)	Herbert et al. (1961)
Trout (Brown)	Α	59	8760.00	0	No adverse effect (River Camel)	Herbert et al. (1961)
Trout (Brown)	Α	5838	8760.00	4	Diet shifted to terrestrial invertebrates	Herbert et al. (1961)
Trout (Brown)	A	1061	8760.00	4	Diet shifted to terrestrial invertebrates	Herbert et al. (1961)
Grayling (Arctic)	Α	100	1008.00	8	Fish had decreased resistance to environmental stresses	McLeay et al. (1984)
Grayling (Arctic)	Α	100	1008.00	9	Impaired feeding	McLeay et al. (1984)
Grayling (Arctic)	Α	100	1008.00	9	Reduced growth	McLeay et al. (1984)
Trout (Rainbow)	Α	18	720.00	10	Abundance reduced	Peters (1967)
Trout (Brown)	A	319	720.00	12	Decrease in population size	Peters (1967)
Trout (Brown)	A	18	720.00	10	Abundance reduced	Peters (1967)
Trout (Rainbow)	A	79	720.00	10	Abundance reduced	Peters (1967)
Trout (Brown)	A	79	720.00	10	Abundance reduced	Peters (1967)
, ,		167	720.00			
Trout (Rainbow)	A	167		12	Abundance greatly reduced	Peters (1967)
Trout (Brown)	A A	186	720.00 720.00	12 12	Abundance greatly reduced	Peters (1967)
Trout (Rainbow)					Abundance greatly reduced Abundance greatly reduced	Peters (1967)
Trout (Brown)	A	186	720.00	12	σ ,	Peters (1967)
Trout (Rainbow)	A	319	720.00	12	Abundance greatly reduced	Peters (1967)
Trout (Brown) Whitefish (Mountain)	A A	319 10000	720.00 24.00	12 10	Abundance greatly reduced Fish died; silt-clogged gills	Peters (1967) Langer (1980)
(Mountain) Salmon (Chinook)	Α	650	168.00	5	No latent effects on homing in subsequent test at low SS (returned: 55%, control 56.9%)	Brannon et al. (1981)
Salmon (Chinook)	Α	650	168.00	5	No histological signs of damage to olfactory sensory epithelium	Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	7	Preference for home water reduced, VA (45%, control 80%)	Brannon et al. (1981)
Salmon (Chinook)	Α	0	0.17	3	Strong preference for clean home water (80%) over clean city water	Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	7	Less likely to move upstream, VA (35% moved upstream)	Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	4	Preference for home water with VA vs non- home water with VA (89%)	Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	0	No effect on elapsed time to move upstream	Brannon et al. (1981)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Chinook)	Α	337	0.17	1	Quicker to enter city water vs home water (w/ and w/o VA)	Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	3	Preferece for non-turbid water (VA)	Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	5	Avoidance of sediment plume, increased zig- zagging across raceway (VA)	Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	5	Movement slowed in turbid water (VA)	Brannon et al. (1981)
Salmon (Chinook)	Α	1204	96.00	12	50% mortality, in-stream (LC50)	Unk, Cited by Brannon et al. (1981)
Salmon (Chinook)	Α	18722	96.00	12	50% mortality, static bioassay (LC50)	Unk, Cited by Brannon et al. (1981)
Salmon (Chinook)	Α	337	0.17	7	May delay migratory/homing behavior	Brannon et al. (1981)
Grayling (Arctic)	Α	187	24.00	8	Gill histopathologies (Hypertrophy, hypoerplasia and clubbing)of lamellae	Birtwell et al. (1984)
Fish	Α	10000	24.00	9	Decreased and less diverse fish populations	Knapp (unpublished, cited by Birwell et al. (1984))
Grayling (Arctic)	Α	100	24.00	0	Healthy population, all age classes	Knapp (unpublished, cited by Birwell et al. (1984))
Whitefish (Mountain)	Α	100	24.00	0	Healthy population	Knapp (unpublished, cited by Birwell et al. (1984))
Grayling (Arctic)	Α	10000	24.00	3	Downstream displacement	Knapp (unpublished, cited by Birwell et al. (1984))
Trout (Brown)	Α	100	720.00	11	Population reduced	Scullion & Edwards (1980)
Trout (Brown)	Α	100	720.00	8	Low condition factor	Scullion & Edwards (1980)
Trout (Brown)	Α	110	720.00	8	Switched to primarily terrestrial invertebrate diet (97% diet)	Scullion & Edwards (1980)
Trout (Rainbow)	Α	250	0.25	5	Rate of coughing increased (FSS)	Hughes (1975)
Γrout (Rainbow)	Α	100	0.25	5	Rate of coughing increased (FSS)	Hughes (1975)
Frout (Rainbow)	Α	250	0.25	5	Rate of coughing increased (FSS)	Hughes (1975)
Trout (Rainbow)	Α	600	0.25	5	Rate of coughing increased (FSS)	Hughes (1975)
Salmon (Sockeye)	Α	1577	96.00	5	No respiratory distress observed	Servizi & Martens (1987)
Salmon (Sockeye)	Α	1577	96.00	5	No histological or maked pathological effects on gills	Servizi & Martens (1987)
Salmon (Sockeye)	Α	1577	96.00	8	Sediment particles observed between gill lamellae	Servizi & Martens (1987)
Salmon (Sockeye)	Α	1577	96.00	8	Plasma glucose levels increased 150%	Servizi & Martens (1987)
Salmon (Sockeye)	Α	508	96.00	8	Plasma glucose levels increased 39%	Servizi & Martens (1987)
Salmon (Sockeye)	Α	1577	96.00	8	Significant increase in hematocrit levels	Servizi & Martens (1987)
Salmon (Sockeye)	Α	1577	96.00	10	No mortality	Servizi & Martens (1987)
Salmon (Sockeye)	Α	508	96.00	5	No respiratory distress observed	Servizi & Martens (1987)
Salmon (Sockeye)	Α	508	96.00	10	Gill fungus caused mortality	Servizi & Martens (1987)
Salmon (Sockeye)	A	508	96.00	10	20% mortality (control 20%)	Servizi & Martens (1987)
Salmon (Sockeye)	A	508	96.00	5	No effect on leucocrit values	Servizi & Martens (1987)
Salmon (Sockeye)	A	508	96.00	8	Slight increase in hematocrit levels	Servizi & Martens (1987)
Salmon (Sockeye) Salmon (Sockeye)	A A	508 508	96.00 96.00	8 5	Signficant increase in plasma glucose No histological or marked pathological effects on	Servizi & Martens (1987) Servizi & Martens (1987)
Salmon (Sockeye)	Α	508	96.00	6	gills Sediment particles observed between gill lamellae	Servizi & Martens (1987)
Salmon (Chinook)	Α	650	168.00	7	Homing behavior improved (2 days, control 7 days)	Whitman et al. (1982)
Salmon (Chinook)	Α	650	168.00	7	Homing behavior normal, but fewer test fish returned (20%, control 65%)	Whitman et al. (1982)
Salmon (Chinook)	Α	650	168.00	7	Homing behavior impaired and delayed (3 days, control 2 days)	Whitman et al. (1982)
Salmon (Chinook)	Α	650	168.00	7	Homing behavior normal, more test fish returned (70%, control 45%)	Whitman et al. (1982)
Salmon (Chinook)	Α	650	168.00	7	Homing behavior improved (2 days, control 3 days)	Whitman et al. (1982)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Chinook)	А	650	168.00	7	Homing behavior normal, more test fish returned (75%, control 61%)	Whitman et al. (1982)
Salmon (Chinook)	Α	350	0.17	7	Home water preference disrupted (80% home water, 20% city water)	Whitman et al. (1982)
Salmon (Chinook)	Α	350	0.17	7	Home water preference disrupted (45% home water ash, 55% city water)	Whitman et al. (1982)
Salmon (Chinook)	Α	350	0.17	7	Home water preference disrupted (89% home water w/ash, 11% city water w/ash)	Whitman et al. (1982)
Salmon (Chinook)	Α	350	0.17	7	Home water preference disrupted	Whitman et al. (1982)
almon (Chinook)	Α	650	168.00	7	Homing behavior normal, but fewer test fish returned	Whitman et al. (1982)
rout (Rainbow)	Α	20	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
rout (Rainbow)	Α	31	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
irayling (Arctic)	Α	20	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
Grayling (Arctic)	Α	31	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
Vhite (Round)	Α	20	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
Vhite (Round)	Α	31	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
rout (Rainbow)	Α	20	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
ut (Rainbow)	Α	31	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
yling (Arctic)	Α	20	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
ling (Arctic)	Α	31	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
ite (Round)	Α	20	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
ite (Round)	Α	31	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
ut (Rainbow)	Α	31	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
ayling (Arctic)	Α	31	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
lmon (Coho)	Α	1600	96.00	10	Some fish died	Stober et al. (1981)
non (Coho)	Α	1600	144.00	10	Some fish died	Stober et al. (1981)
non (Coho)	Α	1600	192.00	10	Some fish died	Stober et al. (1981)
mon (Coho)	Α	1429	48.00	10	Some fish died	Stober et al. (1981)
mon (Chinook)	Α	1429	48.00	10	Some fish died	Stober et al. (1981)
mon eelhead)	Α	1429	48.00	10	Some fish died	Stober et al. (1981)
ilmon (Coho)	Α	1429	216.00	10	One fish died	Stober et al. (1981)
out (Lake)	Α	3	21.00	3	Fish avoided turbid areas	Swenson (1978)
out (Brown)	Α	4700	305.00	11	40% population reduction	Crosa et al. (2010)
ut (Brown)	Α	4700	305.00	10	15% biomass reduction	Crosa et al. (2010)
ut (Brown)	Α	4700	305.00	12	40% population reduction	Crosa et al. (2010)
ut (Brown)	Α	4700	305.00	13	66% biomass reduction	Crosa et al. (2010)
ut (Brown)	Α	3000	283.00	11	36% population reduction	Crosa et al. (2010)
ut (Brown)	Α	3000	283.00	12	50% population reduction	Crosa et al. (2010)
out (Cutthroat)	Α	31	42.00	4	Feeding rate (on Chum salmon) decreased 19% (NTU)	Gregory & Levings (1996)
rout (Cutthroat)	Α	57	162.00	4	Feeding rate (on Chinook salmon) decreased 41% (NTU)	Gregory & Levings (1996)
rout (Cutthroat)	Α	29	42.00	4	Feeding rate (on Sockeye salmon) decreased 41% (NTU)	Gregory & Levings (1996)
rout (Rainbow)	Α	30	1176.00	0	No observable effect	Water Research Center (1961)
rout (Rainbow)	Α	30	1176.00	0	No observable effect	Water Research Center (1961)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Rainbow)	Α	90	1176.00	10	Some fish died	Water Research Center (1961)
Trout (Rainbow)	Α	90	1176.00	10	Some fish died	Water Research Center (1961)
Trout (Rainbow)	Α	270	1176.00	12	Mortality rate 50%	Water Research Center (1961)
Trout (Rainbow)	Α	270	1176.00	12	Mortality rate 50%	Water Research Center (1961)
Trout (Rainbow)	Α	270	1176.00	8	Epithelial cells thickened	Water Research Center (1961)
Trout (Rainbow)	Α	270	1176.00	8	Epithelial cells thickened	Water Research Center (1961)
Trout (Rainbow)	Α	270	1176.00	8	Lamellae fused in gills	Water Research Center (1961)
Trout (Rainbow)	Α	270	1176.00	8	Lamellae fused in gills	Water Research Center (1961)
Trout (Rainbow)	Α	270	1176.00	8	Fin-rot occurred in some fish	Water Research Center (1961)
Trout (Rainbow)	Α	270	1176.00	8	Fin-rot occurred in some fish	Water Research Center (1961)
Trout (Brown)	Α	0	744.00	0	Population density 20/1000 ft^3	Water Research Center (1961)
Trout (Brown)	Α	60	744.00	0	Population density 20/1000 ft^3	Water Research Center (1961)
Trout (Brown)	Α	1000	744.00	9	Population reduced 1/3	Water Research Center (1961)
Trout (Brown)	Α	6000	744.00	9	Population reduced 1/20	Water Research Center (1961)
Trout (Rainbow)	Α	8	1.00	0	No behavioral effects	Barrett et al. (1992)
Trout (Rainbow)	Α	45	1.00	4	Reactive distance decreased 35%	Barrett et al. (1992)
Trout (Rainbow)	Α	97	1.00	4	Reactive distance decreased 55%	Barrett et al. (1992)
Trout (Brook)	Α	8	24.00	0	No change in home water preference	DeVore et al. (1980)
Trout (Brook)	Α	41	24.00	0	No change in home water preference	DeVore et al. (1980)
Steelhead	Α	75	168.00	7	Reduced quality of rearing habitat	Slaney et al. (1977b)
Trout (Rainbow)	Α	75	168.00	7	Reduced quality of rearing habitat	Slaney et al. (1977b)
Trout (Rainbow)	Α	59	2232.00	10	Habitat damage; reduced porosity of gravel	Slaney et al. (1977b)
Salmon	Α	16	24.00	4	Feeding behavior apparently reduced	Townsend (1983), Ott (1984)
Salmon (Atlantic)	Α	2500	24.00	10	Increased risk of predation	Gibson (1933)
Trout	Α	16	24.00	4	Feeding behavior apparently reduced	Townsend (1983), Ott (1984)
Trout (Cutthroat)	Α	35	2.00	4	Feeding ceased; fish sought cover	Cordone & Kelly (1961)
Trout (Rainbow)	Α	17500	168.00	8	Fish survived; gill epithelium proliferated and thickened	Slanina (1962)
Salmon	Α	25	4.00	4	Feeding activity reduced	Phillips (1970)
Grayling (Arctic)	Α	31	0.02	3	Fish avoided turbid water	Suchanek et al. (1984a, 1984b)
Trout (Rainbow)	Α	31	0.02	3	Fish avoided turbid water (avoidance behavior)	Suchanek et al. (1984a, 1984b)
Trout (Rainbow)	Α	30	600.00	3	Modified feeding behaviour	Becke et al. (2017, data pulled from Courtice et al. (2022))
Trout (Brown)	Α	300	1104.00	10	Density drop average 5%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Trout (Brown)	Α	300	1272.00	12	Density drop average 60%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Trout (Brown)	Α	800	960.00	9	Density drop average 0%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Trout (Brown)	Α	4700	312.00	9	Density drop average 0%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Trout (Brown)	Α	3000	288.00	10	Density drop average 20%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Trout (Brown)	Α	3500	312.00	9	Density drop average 0%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Trout (Brown)	Α	4000	312.00	10	Density drop average 5%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Trout (Brown)	Α	2600	72.00	12	Density drop average 45%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Trout (Lahontan Cutthroat)	Α	138	24.00	4	75% reduction in feeding	Vinyard & Yuan (1996)
Trout (Lahontan Cutthroat)	Α	107	24.00	4	55% reduction in feeding	Vinyard & Yuan (1996)
Whitefish (Mountain)	Α	4034	120.00	8	Decreased blood hematocrit levels	Bergstedt & Bergersen (1996)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Vhitefish Mountain)	Α	4034	120.00	8	Decrease blood leucocrit levels	Bergstedt & Bergersen (1996)
Whitefish Mountain)	Α	4034	120.00	8	Decrease plasma protein levels	Bergstedt & Bergersen (1996)
Vhitefish Mountain)	Α	4034	120.00	8	Abnormal gill, pseudobranch and fin histology observed	Bergstedt & Bergersen (1996)
Vhitefish Mountain)	Α	4034	120.00	8	Decreased body condition (less mesenteric fat)	Bergstedt & Bergersen (1996)
Vhitefish Mountain)	Α	4034	120.00	0	No effect to spleen, hindgut, kidney, liver or bile	Bergstedt & Bergersen (1996)
Vhitefish Mountain)	Α	4034	120.00	9	Decreased CPUE	Bergstedt & Bergersen (1996)
rout (Rainbow)	Α	4034	120.00	9	Decreased CPUE	Bergstedt & Bergersen (1996)
rout (Brown)	Α	4034	120.00	9	Decreased CPUE	Bergstedt & Bergersen (1996)
Vhitefish Mountain)	Α	4034	120.00	8	Decrease in Fulton's Condition Index	Bergstedt & Bergersen (1996)
rout (Rainbow)	Α	4034	120.00	8	Decrease in Fulton's Condition Index	Bergstedt & Bergersen (1996)
rout (Brown)	Α	4034	120.00	8	Decrease in Fulton's Condition Index	Bergstedt & Bergersen (1996)
rout (Rainbow)	Α	300	192.00	4	Behavioural effects with increased energy expenditure	Michel et al. (2013)
rout (Rainbow)	Α	300	576.00	6	Long-term survivability issues due to general stress.	Michel et al. (2013)
rout (Rainbow)	Α	1300	192.00	4	Behavioural effects with increased energy expenditure	Michel et al. (2013)
rout (Rainbow)	Α	1300	576.00	6	Long-term survivability issues due to general stress.	Michel et al. (2013)
rout (Rainbow)	Α	5000	192.00	4	Behavioural effects with increased energy expenditure	Michel et al. (2013)
rout (Rainbow)	Α	5000	576.00	6	Long-term survivability issues due to general stress.	Michel et al. (2013)
rout (Rainbow)	Α	5000	192.00	8	Slight decrease in growth	Michel et al. (2013)
rout (Rainbow)	Α	300	576.00	8	Slight decrease in body condition	Michel et al. (2013)
rout (Rainbow)	Α	1300	576.00	8	Slight decrease in body condition	Michel et al. (2013)
rout (Rainbow)	Α	5000	576.00	8	Slight decrease in body condition	Michel et al. (2013)
rout (Rainbow)	Α	300	192.00	8	Increase in hepato-somatic index	Michel et al. (2013)
rout (Rainbow)	Α	1300	192.00	8	Increase in hepato-somatic index	Michel et al. (2013)
rout (Rainbow)	Α	5000	192.00	8	Increase in hepato-somatic index	Michel et al. (2013)
rout (Rainbow)	Α	300	576.00	8	Increase in hepato-somatic index	Michel et al. (2013)
rout (Rainbow)	Α	1300	576.00	8	Increase in hepato-somatic index	Michel et al. (2013)
rout (Rainbow)	Α	5000	576.00	8	Increase in hepato-somatic index	Michel et al. (2013)
rout (Rainbow)	Α	5000	192.00	8	Slight decrease in body weight	Michel et al. (2013)
rout (Rainbow)	Α	300	192.00	8	Decreased growth rate	Michel et al. (2013)
rout (Rainbow)	Α	1300	192.00	8	75% reduction in growth rate	Michel et al. (2013)
rout (Rainbow)	Α	5000	192.00	8	75% reduction in growth rate	Michel et al. (2013)
rout (Rainbow)	Α	300	192.00	8	Decrease in spleen-spmatic index	Michel et al. (2013)
rout (Rainbow)	A	1300	192.00	8	Decrease in spleen-spmatic index	Michel et al. (2013)
out (Rainbow)	A	5000	192.00	8	Decrease in spleen-spmatic index	Michel et al. (2013)
rout (Rainbow)	A	300	576.00	8	No change in growth rate	Michel et al. (2013)
rout (Rainbow)	A	1300	576.00	8	No change in growth rate	Michel et al. (2013)
rout (Rainbow)	A	5000	576.00	8	No change in growth rate	Michel et al. (2013)
rout (Rainbow)	A	5000	576.00	8	Increase in spleen-somatic index	Michel et al. (2013)
rout (Rainbow)	A	300	192.00	8	Slight increase in immature erythrocytes	Michel et al. (2013)
rout (Rainbow)	A	1300	192.00	8	Signficant increase in immature erythrocyte	Michel et al. (2013)
rout (Rainbow)	Α	5000	192.00	8	Signficant increase in immature erythrocyte	Michel et al. (2013)
rout (Rainbow)	Α	300	576.00	8	Slight increase in immature erythrocytes	Michel et al. (2013)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Rainbow)	Α	1300	576.00	8	Slight increase in immature erythrocytes	Michel et al. (2013)
Trout (Rainbow)	Α	5000	576.00	8	Slight increase in immature erythrocytes	Michel et al. (2013)
Trout (Rainbow)	Α	5000	576.00	8	Increase in spleen granular macrophages	Michel et al. (2013)
Trout (Rainbow)	Α	5000	192.00	8	Increase in spleen granular macrophages	Michel et al. (2013)
Trout (Rainbow)	Α	5000	576.00	8	Evidence of kidney damage	Michel et al. (2013)
Trout (Rainbow)	Α	5000	192.00	8	Evidence of kidney damage	Michel et al. (2013)
Trout (Rainbow)	Α	115	30.00	6	Physiological responses, no mortality.	Reid et al. (2003)
Trout (Rainbow)	Α	297	30.00	5	Increased respiration rates	Reid et al. (2003)
Trout (Rainbow)	Α	297	30.00	8	Slight increase in hematocrit levels	Reid et al. (2003)
Trout (Rainbow)	Α	297	30.00	8	Decreased leucocrit levels	Reid et al. (2003)
Trout (Rainbow)	Α	115	30.00	5	Increased respiration rates	Reid et al. (2003)
Trout (Rainbow)	Α	115	30.00	8	Slight increased in hematocrit levels	Reid et al. (2003)
Trout (Rainbow)	Α	115	30.00	8	Increased leucocrit levels	Reid et al. (2003)

Juvenile salmonids (freshwater, groups 1 and 3)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Coho)	F	5471.00	96.00	10	10% mortality	J.O.T.J (Not seen: unpublished data cited by Newcombe & Jensen (1996))
Steelhead	F	5471.00	96.00	10	0% mortality, fish exhibited behaviors of severe sublethal stress	J.O.T.J (Not seen: unpublished data cited by Newcombe & Jensen (1996))
Salmon (Coho)	J	54.00	12.00	3	Change in territorial behavior and hierarchy dominance	Berg & Northcote (1985)
Salmon (Coho)	J	54.00	12.00	6	Increased physiological stress (gill flaring)	Berg & Northcote (1985)
Salmon (Coho)	J	28.00	12.00	3	Abandonded cover, change in territorial behavior	Berg & Northcote (1985)
Salmon (Coho)	J	20.00	12.00	0	No change in behavior	Berg & Northcote (1985)
Salmon (Coho)	J	30.00	12.00	6	Increased physiological stress (gill flaring)	Berg & Northcote (1985)
Salmon (Coho)	J	60.00	12.00	6	Increased physiological stress (gill flaring)	Berg & Northcote (1985)
Salmon (Coho)	J	60.00	12.00	4	Reduction in prey capture success - 16.3% capture	Berg & Northcote (1985)
Salmon (Coho)	J	30.00	12.00	4	Reduction in prey capture success - 10.8% capture	Berg & Northcote (1985)
Salmon (Coho)	J	20.00	12.00	4	Reduction in prey capture success - 16.2% capture	Berg & Northcote (1985)
Salmon (Coho)	J	60.00	12.00	4	Dominance structure change alter feeding behavior	Berg & Northcote (1985)
Salmon (Coho)	J	30.00	12.00	4	Dominance structure change alter feeding behavior	Berg & Northcote (1985)
Salmon (Coho)	J	54.00	0.02	1	Alarm reaction	Berg (1983)
Salmon (Coho)	J	20.00	0.02	0	No reaction	Berg (1983)
Salmon (Coho)	J	30.00	0.02	2	Dominance structure change, no alarm reaction	Berg (1983)
Salmon (Coho)	J	60.00	0.02	2	Dominance structure change, no alarm reaction	Berg (1983)
Salmon (Coho)	J	60.00	0.02	6	Increased physiological stress (gill flaring)	Berg (1983)
Salmon (Coho)	J	30.00	0.02	6	Increased physiological stress (gill flaring)	Berg (1983)
Salmon (Coho)	J	20.00	0.02	6	Increased physiological stress (gill flaring)	Berg (1983)
Salmon (Coho)	J	27.00	0.02	6	Increased physiological stress (gill flaring)	Berg (1983)
Salmon (Coho)	YY	85.00	0.08	3	Avoidance behavior	Bisson & Bilby (1982)
Salmon (Coho)	YY	85.00	0.02	1	Alarm reaction	Bisson & Bilby (1982)
Catfish (Channel)	Υ	81.00	3960.00	9	Reduced gowth rate	Buck (1956)
Catfish (Channel)	Υ	189.00	3960.00	0	Growth enhanced	Buck (1956)
Bluegill	Υ	81.00	3960.00	9	Reduced gowth rate	Buck (1956)
Bluegill	Υ	189.00	3960.00	9	Reduced gowth rate	Buck (1956)
Trout (Rainbow)	J	171.00	96.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Rainbow)	J	1017.00	96.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
rout (Rainbow)	J	4887.00	96.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
rout (Rainbow)	J	171.00	192.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
rout (Rainbow)	J	1017.00	192.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
rout (Rainbow)	J	4887.00	192.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
rout (Rainbow)	J	171.00	384.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
rout (Rainbow)	J	1017.00	384.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
rout (Rainbow)	J	4887.00	384.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
Trout (Rainbow)	J	171.00	768.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
Trout (Rainbow)	J	1017.00	768.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
Frout (Rainbow)	J	4887.00	768.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
rout (Rainbow)	J	171.00	1536.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
rout (Rainbow)	J	1017.00	1536.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
Frout (Rainbow)	J	4887.00	1536.00	8	Particles penetrated cells of branchial epithelium	Goldes et al. (1988)
Frout (Rainbow)	J	4887.00	384.00	8	Hyperplasia of gill tissue	Goldes et al. (1988)
Frout (Rainbow)	J	4887.00	768.00	8	Hyperplasia of gill tissue	Goldes et al. (1988)
Frout (Rainbow)	J	4887.00	384.00	8	Parasitic infection of gill	Goldes et al. (1988)
Frout (Rainbow)	J	4887.00	768.00	8	Parasitic infection of gill	Goldes et al. (1988)
Frout (Rainbow)	J	4887.00	1008.00	10	Mortality rate 13.6%	Goldes et al. (1988)
Frout (Rainbow)	J	36.00	1536.00	10	Mortality rate 2.5%	Goldes et al. (1988)
rout (Rainbow)	J	4887.00	384.00	8	Increased lamellae thickness	Goldes et al. (1988)
rout (Rainbow)	J	4887.00	768.00	8	Increased lamellae thickness	Goldes et al. (1988)
rout (Cutthroat)	U	494.00	456.00	12	Mortality 44% (control 90%)	Griffin (1938)
Frout (Cutthroat)	U	494.00	456.00	0	Fed well, grew normally, conditions do not appear to be unfavorable after week 1	Griffin (1938)
Salmon (Chinook)	U	509.00	672.00	0	Fed well, grew normally, conditions do not appear to be unfavorable after week 1	Griffin (1938)
Salmon (Chinook)	U	509.00	672.00	10	Mortality 12% (control 64%)	Griffin (1938)
Frout (Rainbow)	Υ	49.00	5544.00	10	No mortality (control 0%) (CWS)	Herbert & Richards (1962)
Frout (Rainbow)	Υ	96.00	5544.00	10	No mortality (control 0%) (CWS)	Herbert & Richards (1962)
Frout (Rainbow)	Υ	189.00	6720.00	10	No mortality (control 0%) (CWS)	Herbert & Richards (1962)
Frout (Rainbow)	Υ	40.00	5544.00	10	No mortality (control 0%) (WF)	Herbert & Richards (1962)
Frout (Rainbow)	Υ	93.00	5544.00	10	No mortality (control 0%) (WF)	Herbert & Richards (1962)
rout (Rainbow)	Υ	93.00	6720.00	8	Fin rot (WF)	Herbert & Richards (1962)
Frout (Rainbow)	Υ	192.00	24.00	10	Test fish began to die on first day (WF)	Herbert & Richards (1962)
Frout (Rainbow)	Υ	192.00	672.00	10	Mortality 20% (control 0%) (WF)	Herbert & Richards (1962)
Frout (Rainbow)	Υ	192.00	1344.00	11	Mortality 28% (control 0%) (WF)	Herbert & Richards (1962)
Frout (Rainbow)	Υ	192.00	2016.00	12	Mortality 48% (control 0%) (WF)	Herbert & Richards (1962)
Frout (Rainbow)	Υ	192.00	2688.00	12	Mortality 51% (control 0%) (WF)	Herbert & Richards (1962)
Frout (Rainbow)	Υ	192.00	3360.00	13	Mortality 63% (control 0%) (WF)	Herbert & Richards (1962)
Frout (Rainbow)	Υ	192.00	4032.00	13	Mortality 65% (control 0%) (WF)	Herbert & Richards (1962)
rout (Rainbow)	Υ	192.00	4704.00	13	Mortality 67% (control 0%) (WF)	Herbert & Richards (1962)
rout (Rainbow)	Υ	192.00	5376.00	13	Mortality 78% (control 0%) (WF)	Herbert & Richards (1962)
rout (Rainbow)	Y	49.00	960.00	9	Rate of weight gain reduced (CWS)	Herbert & Richards (1962)
rout (Rainbow)	Y	40.00	960.00	9	Rate of weight gain reduced (WF)	Herbert & Richards (1962)
Whitefish Mountain)	U	0.71	0.25	3	Swimming behavior changed	Lawrence & Scherer (1974)
rout (Rainbow)	Υ	71.00	0.25	3	Avoidance behavior manifested part of the time	Lawrence & Scherer (1974)
Frout (Rainbow)	Υ	709.00	0.25	3	Fish attracted to turbidity	Lawrence & Scherer (1974)
Frout (Rainbow)	Y	71.00	0.25	0	No effect	Lawrence & Scherer (1974)
Frout (Rainbow)	Y	709.00	0.25	3	Fish slightly attracted to turbidity	Lawrence & Scherer (1974)
	Y	71.00	0.25	0	No effect	Lawrence & Scherer (1974)
Frout (Rainbow)						

Trout (Rainbow) Trout (Rainbow) Trout (Rainbow) Trout (Rainbow) Whitefish (Mountain) Whitefish (Mountain)	Life Stage ^a Y Y	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Rainbow) Trout (Rainbow) Trout (Rainbow) Whitefish (Mountain) Whitefish	Y Y					
Trout (Rainbow) Trout (Rainbow) Whitefish (Mountain) Whitefish	Υ		0.25	3	Avoidance behavior manifested part of the time	Lawrence & Scherer (1974)
Trout (Rainbow) Whitefish [Mountain) Whitefish		709.00	0.25	3	Fish attracted to turbidity	Lawrence & Scherer (1974)
Whitefish (Mountain) Whitefish		1290.00	0.25	3	Fish attracted to turbidity	Lawrence & Scherer (1974)
(Mountain) Whitefish	Υ	12900.00	0.25	3	Preference for clean water	Lawrence & Scherer (1974)
	U	0.71	0.25	5	Increased swimming speed and direction	Lawrence & Scherer (1974)
	U	7.00	0.25	3	Preference for clean water	Lawrence & Scherer (1974)
Whitefish (Mountain)	U	71.00	0.25	3	Fish attracted to turbidity	Lawrence & Scherer (1974)
Whitefish (Mountain)	U	709.00	0.25	3	Fish attracted to turbidity	Lawrence & Scherer (1974)
Whitefish (Mountain)	U	71.00	0.25	0	No effect	Lawrence & Scherer (1974)
Whitefish (Mountain)	U	709.00	0.25	3	Fish attracted to turbidity	Lawrence & Scherer (1974)
Whitefish (Mountain)	U	1290.00	0.25	3	Fish attracted to turbidity	Lawrence & Scherer (1974)
Whitefish (Mountain)	U	12900.00	0.25	3	Fish avoided turbidity	Lawrence & Scherer (1974)
Trout (Rainbow)	Υ	7088.00	96.00	10	0 % mortality (DM)	Lawrence & Scherer (1974)
Trout (Rainbow)	Υ	21264.00	96.00	10	0 % mortality (DM)	Lawrence & Scherer (1974)
rout (Rainbow)	Υ	28352.00	96.00	10	0 % mortality (DM)	Lawrence & Scherer (1974)
rout (Rainbow)	Υ	42528.00	96.00	10	20 % mortality (DM)	Lawrence & Scherer (1974)
rout (Rainbow)	Υ	70880.00	96.00	14	90 % mortality (DM)	Lawrence & Scherer (1974)
rout (Rainbow)	Υ	53514.00	96.00	12	50% mortality (96 LC50, DM)	Lawrence & Scherer (1974)
Vhitefish Mountain)	U	35440.00	96.00	14	100% mortality (DM)	Lawrence & Scherer (1974)
Vhitefish Mountain)	U	70880.00	96.00	14	100% mortality (DM)	Lawrence & Scherer (1974)
Whitefish Mountain)	U	106320.00	96.00	14	100% mortality (DM)	Lawrence & Scherer (1974)
Whitefish (Mountain)	U	17720.00	96.00	12	50% mortality (96 LC50, DM)	Lawrence & Scherer (1974)
Whitefish Mountain)	U	2.00	96.00	10	0 % mortality (DM)	Lawrence & Scherer (1974)
Whitefish Mountain)	U	17.00	96.00	10	0 % mortality (DM)	Lawrence & Scherer (1974)
Whitefish (Mountain)	U	167.00	96.00	10	0 % mortality (DM)	Lawrence & Scherer (1974)
Whitefish (Mountain)	U	1671.00	96.00	10	0 % mortality (DM)	Lawrence & Scherer (1974)
Whitefish (Mountain)	U	4176.00	96.00	10	20 % mortality (DM)	Lawrence & Scherer (1974)
Whitefish (Mountain)	U	4500.00	96.00	14	100% mortality (96 LC50, DM)	Lawrence & Scherer (1974)
Frout (Rainbow)	Υ	7017.00	96.00	12	100% mortality (96 LC50, DM)	Enviromental Protection Service, from Lawrence & Scherer, 1974
Stickleback threespine)	F	58.00	96.00	10	No mortality in test deisgned to identify lethal threshold	LeGore & DesVoigne (1973)
Stickleback (threespine)	F	577.00	96.00	10	No mortality in test deisgned to identify lethal threshold	LeGore & DesVoigne (1973)
Stickleback (threespine)	F	5767.00	96.00	10	No mortality in test deisgned to identify lethal threshold	LeGore & DesVoigne (1973)
Stickleback (threespine)	F	28830.00	96.00	10	No mortality in test deisgned to identify lethal threshold	LeGore & DesVoigne (1973)
Salmon (Coho)	F	58.00	96.00	10	No mortality in test deisgned to identify lethal threshold	LeGore & DesVoigne (1973)

		Sediment	uose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Coho)	F	577.00	96.00	10	No mortality in test deisgned to identify lethal threshold	LeGore & DesVoigne (1973)
Salmon (Coho)	F	5767.00	96.00	10	No mortality in test deisgned to identify lethal threshold	LeGore & DesVoigne (1973)
Salmon (Coho)	F	28830.00	96.00	10	No mortality in test deisgned to identify lethal threshold	LeGore & DesVoigne (1973)
Salmon (Chinook)	F	1440.00	6.00	9	Growth rate reduced (LNFH)	MacKinlay et al. (1987)
Grayling (Arctic)	U	50000.00	384.00	10	No effect on survival	McLeay et al. (1983, 1987)
Grayling (Arctic)	U	250000.00	96.00	10	No effect on survival	McLeay et al. (1983, 1987)
Grayling (Arctic)	U	50000.00	96.00	10	No effect on survival	McLeay et al. (1987)
Grayling (Arctic)	U	20000.00	96.00	10	10% mortality (control 0%)	McLeay et al. (1983, 1987)
Grayling (Arctic)	U	100000.00	96.00	10	20% mortality (control 0%)	McLeay et al. (1983, 1987)
Grayling (Arctic)	U	100.00	1008.00	10	6.5% mortality (control 10.5%)	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	1008.00	10	7.5% mortality (control 10.5%)	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1008.00	10	8.5% mortality (control 10.5%)	McLeay et al. (1987)
Grayling (Arctic)	U	100000.00	96.00	5	No changes in gill histology (not an end point)	McLeay et al. (1987)
Grayling (Arctic)	U	50000.00	96.00	5	No changes in gill histology (not an end point)	McLeay et al. (1987)
Grayling (Arctic)	U	100000.00	24.00	5	No effect on hematocrit levels	McLeay et al. (1987)
Grayling (Arctic)	U	100000.00	96.00	5	No effect on hematocrit levels	McLeay et al. (1987)
Grayling (Arctic)	U	20000.00	24.00	5	No effect on hematocrit levels	McLeay et al. (1987)
Grayling (Arctic)	U	100000.00	96.00	5	No effect on hematocrit levels	McLeay et al. (1987)
Grayling (Arctic)	U	52000.00	24.00	8	Decrease in leucicrit (# white blood cells)	McLeay et al. (1987)
Grayling (Arctic)	U	5800.00	24.00	8	Decrease in leucicrit (# white blood cells)	McLeay et al. (1987)
Grayling (Arctic)	U	100000.00	96.00	5	No effect on leucicrit	McLeay et al. (1987)
Grayling (Arctic)	U	500.00	24.00	8	Increase in blood sugar (plasma glucose)	McLeay et al. (1983, 1987)
Grayling (Arctic)	U	50.00	24.00	8	Increase in blood sugar (plasma glucose)	McLeay et al. (1987)
Grayling (Arctic)	U	100000.00	96.00	8	Increase and more variation in blood sugar (plasma glucose)	McLeay et al. (1987)
Grayling (Arctic)	U	4400.00	5.00	8	Increase in tolerance to hypoxia (time to death)	McLeay et al. (1987)
Grayling (Arctic)	U	200.00	5.00	8	Decrease in tolerance to hypoxia (time to death)	McLeay et al. (1987)
Grayling (Arctic)	U	100000.00	8.00	5	No effect on tolerance to hypoxia (time to death)	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	12.00	8	Reduced ability to tolerate high temperatures	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	12.00	8	Slight decline in temperature tolerance (critical thermal maxima), acclimated to 15C	McLeay et al. (1987)
Grayling (Arctic)	U	8500.00	12.00	8	Slight decline in temperature tolerance (critical thermal maxima), acclimated to 15C	McLeay et al. (1987)
Grayling (Arctic)	U	50000.00	20.00	5	No effect in temperature tolerance (critical thermal maxima), acclimated to 5C	McLeay et al. (1983, 1987)
Grayling (Arctic)	U	100000.00	20.00	5	No effect in temperature tolerance (critical thermal maxima), acclimated to 5C	McLeay et al. (1983, 1987)
Grayling (Arctic)	U	10000.00	96.00	3	Fish swam near the surface	McLeay et al. (1987)
Grayling (Arctic)	U	10000.00	96.00	3	Fish swam near the surface	McLeay et al. (1987)
Grayling (Arctic)	U	50000.00	96.00	0	No effect on swimming behavior	McLeay et al. (1987)
Grayling (Arctic)	U	50000.00	96.00	0	No effect on swimming behavior	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	1008.00	5	No effect on hematocrit, leucocrit, or plasma glucose	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	1008.00	5	No effect on hematocrit, leucocrit, or plasma glucose	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1008.00	5	No effect on hematocrit, leucocrit, or plasma glucose	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	1008.00	5	No effect on condition factor or body moisture	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	1008.00	5	No effect on condition factor or body moisture	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1008.00	5	No effect on condition factor or body moisture	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	1008.00	5	No overt signs of disease or gill damage	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	1008.00	5	No overt signs of disease or gill damage	McLeay et al. (1987)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Grayling (Arctic)	U	1000.00	1008.00	5	No overt signs of disease or gill damage	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	1008.00	8	Fish slightly paler than controls	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1008.00	8	Fish notably paler than controls; indistinct parr marks	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	1008.00	9	Growth rate reduced	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	1008.00	9	Weight gain reduced by 6%	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	1008.00	9	Weight gain reduced by 10%	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1008.00	9	Weight gain reduced by 33%	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	1008.00	5	No effect on residual DO content at death	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	1008.00	5	No effect on residual DO content at death	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1008.00	5	No effect on residual DO content at death	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	1008.00	10	Significant reduction in times to death (elevated O2 consumption rates) relative to fish in 100 mg/L and control	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1008.00	10	Significant reduction in times to death (elevated O2 consumption rates) relative to fish in 100 mg/L and control	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	1008.00	8	Respiration rate increased (FSS)	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1008.00	8	Respiration rate increased (FSS)	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	1008.00	5	No effect on ability to tolerate high temperatures	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	1008.00	5	No effect on ability to tolerate high temperatures	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1008.00	5	No effect on ability to tolerate high temperatures	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	1008.00	5	No effect on acute lethal tolerance to pentachlorophenol	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	1008.00	8	Fish less tolerant of pentachlorophenol	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1008.00	8	Fish less tolerant of pentachlorophenol	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	840.00	9	Decreased feeding response time to surface drift (16-32 s, control 6-8 s)	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	840.00	9	Decreased feeding response time to surface drift (24-82 s, lower SS 16-32 s), miss-strikes common	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	840.00	9	Decreased feeding response time to surface drift (25 - >191 s, lower SS 16-32 s), miss-strikes common	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	840.00	9	Fish responded less rapidly to drifting food	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	1.00	4	Feeding rate reduced (unfamiliar prey: drosophila)	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	1.00	4	Feeding rate reduced (unfamiliar prey: drosophila); miss strikes common	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1.00	4	Feeding rate reduced (unfamiliar prey: drosophila); miss strikes common	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	1.00	4	Catch rate reduced (unfamiliar prey: drosophila)	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	1.00	4	Catch rate reduced (unfamiliar prey: drosophila); miss strikes common	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1.00	4	Catch rate reduced (unfamiliar prey: drosophila); miss strikes common	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	1008.00	0	No effect on mean prey consumption time (3 min, control 3-4 min; prey Artemia)	McLeay et al. (1987)
Grayling (Arctic)	U 	300.00	1008.00	8	Decrease in mean prey consumption time (4-8 min, control 3-4 min; prey Artemia)	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1008.00	8	Failure to consume all prey items (60 min, control 3-4 min; prey Artemia)	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	1.00	4	Catch rate reduced (unfamiliar prey: tubificids)	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	1.00	4	Catch rate reduced (unfamiliar prey: tubificids)	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1.00	4	Feeding rate reduced (unfamiliar prey: tubificids)	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	840.00	0	No effect on mean prey consumption time (4-9 min, control 9 min; prey tubificids)	McLeay et al. (1987)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Grayling (Arctic)	U	300.00	840.00	8	Decrease in mean prey consumption time (6-9 min, control 9 min; prey tubificids)	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	840.00	8	Failure to consume all prey items (60 min, control 9 min; prey tubificids)	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	756.00	7	Fish moved out of test channel (downstream displacement, 32% upstream vs 60% upstream in control)	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	756.00	7	Fish moved out of test channel (downstream displacement, 15% upstream vs 60% upstream in control)	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	756.00	7	Fish moved out of test channel (downstream displacement, 16% upstream vs 60% upstream in control)	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	756.00	10	Fish displaced from their habitat	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	756.00	10	Fish displaced from their habitat	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1008.00	8	Fish had frequent misstrikes while feeding	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1008.00	8	Fish responded very slowly to prey	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	1008.00	8	Rate of feeding reduced	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	840.00	8	Rate of feeding reduced	McLeay et al. (1987)
Grayling (Arctic)	U	1000.00	1008.00	8	Fish failed to consume all prey	McLeay et al. (1987)
Grayling (Arctic)	U	300.00	840.00	9	Serious impairment of feeding behavior	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	1008.00	8	Fish had decreased resistance to environmental stresses	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	1008.00	9	Impaired feeding	McLeay et al. (1987)
Grayling (Arctic)	U	100.00	1008.00	9	Reduced growth	McLeay et al. (1987)
Grayling (Arctic)	U	1900.00	72.00	10	16% mortality (control 0%)	McLeay et al. (1983)
Grayling (Arctic)	U	1900.00	72.00	9	Gill hypertrophy and hyperplasia	McLeay et al. (1983)
Grayling (Arctic)	U	50.00	24.00	8	Evoke stress response	McLeay et al. (1983)
Salmon (Chinook)	J	207000.00	1.00	14	100% mortality (VA, <5-100 um)	Newcombe & Flagg (1983)
Salmon (Chinook)	J	82400.00	6.00	12	60% mortality (VA, <5-100 um)	Newcombe & Flagg (1983)
Salmon (Chinook)	J	39300.00	24.00	10	No mortality (VA, <5-100um; median <15 um)	Newcombe & Flagg (1983)
Salmon (Chinook)	J	34900.00	36.00	14	90% mortality (VA)	Newcombe & Flagg (1983)
Salmon (Chinook)	J	500.00	36.00	10	No mortality (VA, <5-100um; median <15 um)	Newcombe & Flagg (1983)
Salmon (Chinook)	J	1400.00	36.00	12	50% mortality	Newcombe & Flagg (1983)
Salmon (Chinook)	J	9400.00	36.00	12	50% mortality	Newcombe & Flagg (1983)
Salmon (Sockeye)	J	34900.00	36.00	14	90% mortality (VA)	Newcombe & Flagg (1983)
Salmon (Sockeye)	J	207000.00	1.00	14	100% mortality (VA, <5-100 um)	Newcombe & Flagg (1983)
Salmon (Sockeye)	J	82400.00	6.00	12	60% mortality (VA, <5-100 um)	Newcombe & Flagg (1983)
Salmon (Sockeye)	J	39300.00	24.00	10	No mortality (VA, <5-100um; median <15 um)	Newcombe & Flagg (1983)
Grayling (Arctic)	YY	106.00	24.00	14	94% mortality	Reynolds et al. (1989)
Grayling (Arctic)	YY	106.00	48.00	14	86% mortality	Reynolds et al. (1989)
Grayling (Arctic)	YY	106.00	72.00	14	85% mortality	Reynolds et al. (1989)
Grayling (Arctic)	YY	106.00	96.00	14	87% mortality	Reynolds et al. (1989)
Grayling (Arctic)	YY	379.00	24.00	14	85% mortality	Reynolds et al. (1989)
Grayling (Arctic)	YY	379.00	48.00	13	74% mortality	Reynolds et al. (1989)
Grayling (Arctic)	YY	379.00	72.00	12	59% mortality	Reynolds et al. (1989)
Grayling (Arctic)	YY	379.00	96.00	12	53% mortality	Reynolds et al. (1989)
Grayling (Arctic)	U	1340.00	144.00	9	Food intake and prey diversity severly reduced	Reynolds et al. (1989)
Grayling (Arctic)	U	6280.00	144.00	9	Food intake and prey diversity severly reduced	Reynolds et al. (1989)
Grayling (Arctic)	U	120.00	144.00	5	No effect on food intake	Reynolds et al. (1989)
Grayling (Arctic)	U	160.00	144.00	5	No effect on food intake	Reynolds et al. (1989)
Grayling (Arctic)	U	1340.00	144.00	8	Fish displayed many signs of poor condition	Reynolds et al. (1989)
6 II (A II)	U	6280.00	144.00	8	Fish displayed many signs of poor condition	Reynolds et al. (1989)
Grayling (Arctic)						-,

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Grayling (Arctic)	U	6280.00	144.00	8	Visceral fat absent	Reynolds et al. (1989)
Grayling (Arctic)	U	1340.00	144.00	9	Moderate damage to gills, mucous and sediment present	Reynolds et al. (1989)
Grayling (Arctic)	U	6280.00	144.00	9	Moderate damage to gills, mucous and sediment present	Reynolds et al. (1989)
Grayling (Arctic)	U	1340.00	24.00	8	Increased gill mucous production	Reynolds et al. (1989)
Grayling (Arctic)	U	1340.00	48.00	8	Histopathological changes in gill tissue	Reynolds et al. (1989)
Grayling (Arctic)	U	1340.00	96.00	8	Histopathological changes in gill tissue	Reynolds et al. (1989)
Grayling (Arctic)	U	120.00	144.00	5	No effect on body condition, visceral fat or gill damage	Reynolds et al. (1989)
Grayling (Arctic)	U	160.00	144.00	5	No effect on body condition, visceral fat or gill damage	Reynolds et al. (1989)
Grayling (Arctic)	U	1205.00	48.00	8	Moderate gill damage	Reynolds et al. (1989)
Grayling (Arctic)	U	1205.00	96.00	9	Extensive gill damage (epithelial hyperplasia, secondary lamellae hypertrophy)	Reynolds et al. (1989)
Grayling (Arctic)	U	170.00	96.00	5	No gill damage	Reynolds et al. (1989)
Grayling (Arctic)	U	1388.00	96.00	9	Extensive gill damage (epithelial hyperplasia, secondary lamellae hypertrophy)	Reynolds et al. (1989)
Grayling (Arctic)	U	115.00	96.00	5	No effect on leucocrit values	Reynolds et al. (1989)
Grayling (Arctic)	U	1158.00	96.00	5	No effect on leucocrit values	Reynolds et al. (1989)
Grayling (Arctic)	U	1158.00	48.00	5	No effect on oxygen consumption	Reynolds et al. (1989)
Grayling (Arctic)	U	1158.00	96.00	5	No effect on oxygen consumption	Reynolds et al. (1989)
Steelhead	J	2000.00	48.00	10	No mortality (VA)	Redding & Schreck (1982)
Steelhead	J	3000.00	48.00	10	No mortality (VA)	Redding & Schreck (1982)
Steelhead	J	500.00	48.00	10	No mortality (VA)	Redding & Schreck (1982)
Steelhead	J	2000.00	48.00	10	No mortality (KC)	Redding & Schreck (1982)
Steelhead	J	3000.00	48.00	10	No mortality (KC)	Redding & Schreck (1982)
Steelhead	J	500.00	48.00	10	No mortality (KC)	Redding & Schreck (1982)
Steelhead	J	2000.00	48.00	10	No mortality (KC)	Redding & Schreck (1982)
Steelhead	J	3000.00	48.00	10	No mortality	Redding & Schreck (1982)
Steelhead	J	500.00	48.00	10	No mortality	Redding & Schreck (1982)
Steelhead	J	2000.00	48.00	9	Signficant increase in plasma corticosteroids (VA)	Redding & Schreck (1982)
Steelhead	J	3000.00	48.00	9	Signficant increase in plasma corticosteroids (VA)	Redding & Schreck (1982)
Steelhead	J	500.00	48.00	9	Signficant increase in plasma corticosteroids (VA)	Redding & Schreck (1982)
Steelhead	J	2000.00	48.00	9	Signficant increase in plasma corticosteroids (KC)	Redding & Schreck (1982)
Steelhead	J	3000.00	48.00	9	Signficant increase in plasma corticosteroids (KC)	Redding & Schreck (1982)
Steelhead	J	500.00	48.00	9	Signficant increase in plasma corticosteroids (KC)	Redding & Schreck (1982)
Steelhead	J	2000.00	48.00	9	Signficant increase in plasma corticosteroids	Redding & Schreck (1982)
Steelhead	J	3000.00	48.00	9	Signficant increase in plasma corticosteroids	Redding & Schreck (1982)
Steelhead	J	500.00	48.00	9	Signficant increase in plasma corticosteroids	Redding & Schreck (1982)
Steelhead	J	3000.00	3.00	9	Signficant increase in plasma corticosteroids	Redding & Schreck (1982)
Steelhead	J	3000.00	9.00	9	Signficant increase in plasma corticosteroids	Redding & Schreck (1982)
Steelhead	J	2000.00	9.00	8	Increase in blood hematocrit levels (VA)	Redding & Schreck (1982)
Steelhead	J	3000.00	9.00	8	Increase in blood hematocrit levels (VA)	Redding & Schreck (1982)
Steelhead	J	500.00	9.00	8	Increase in blood hematocrit levels (VA)	Redding & Schreck (1982)
Steelhead	J	2000.00	9.00	8	Increase in blood hematocrit levels (KC)	Redding & Schreck (1982)
Steelhead	J	3000.00	9.00	8	Increase in blood hematocrit levels (KC)	Redding & Schreck (1982)
Steelhead	J	500.00	9.00	8	Increase in blood hematocrit levels (KC)	Redding & Schreck (1982)
Steelhead	J	2000.00	9.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)
Steelhead	J	3000.00	9.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)
Steelhead	J	500.00	9.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)
Steelhead	J	2000.00	24.00	8	Increase in blood hematocrit levels (VA)	Redding & Schreck (1982)
Steelhead	J	3000.00	24.00	8	Increase in blood hematocrit levels (VA)	Redding & Schreck (1982)

		Sediment	dose		Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Steelhead	J	500.00	24.00	8	Increase in blood hematocrit levels (VA)	Redding & Schreck (1982)	
Steelhead	J	2000.00	24.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)	
Steelhead	J	3000.00	24.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)	
Steelhead	J	500.00	24.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)	
Steelhead	J	2000.00	24.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)	
Steelhead	J	3000.00	24.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)	
Steelhead	J	500.00	24.00	8	Increase in blood hematocrit levels	Redding & Schreck (1982)	
Steelhead	J	2000.00	48.00	5	No effect on plasma sodium concentration (VA)	Redding & Schreck (1982)	
iteelhead	J	3000.00	48.00	5	No effect on plasma sodium concentration (VA)	Redding & Schreck (1982)	
iteelhead	J	500.00	48.00	5	No effect on plasma sodium concentration (VA)	Redding & Schreck (1982)	
teelhead	J	2000.00	48.00	5	No effect on plasma sodium concentration	Redding & Schreck (1982)	
teelhead	J	3000.00	48.00	5	No effect on plasma sodium concentration	Redding & Schreck (1982)	
teelhead	J	500.00	48.00	5	No effect on plasma sodium concentration	Redding & Schreck (1982)	
teelhead	J	2000.00	48.00	5	No effect on plasma sodium concentration	Redding & Schreck (1982)	
teelhead	J	3000.00	48.00	5	No effect on plasma sodium concentration	Redding & Schreck (1982)	
iteelhead	J	500.00	48.00	5	No effect on plasma sodium concentration	Redding & Schreck (1982)	
teelhead	J	2000.00	48.00	5	No histological effect on gill tissue (VA)	Redding & Schreck (1982)	
teelhead	J	3000.00	48.00	5	No histological effect on gill tissue (VA)	Redding & Schreck (1982)	
teelhead	J	500.00	48.00	5	No histological effect on gill tissue (VA)	Redding & Schreck (1982)	
teelhead	J	2000.00	48.00	5	No histological effect on gill tissue (KC)	Redding & Schreck (1982)	
teelhead	J	3000.00	48.00	5	No histological effect on gill tissue (KC)	Redding & Schreck (1982)	
teelhead	J	500.00	48.00	5	No histological effect on gill tissue (KC)	Redding & Schreck (1982)	
teelhead	J	2000.00	48.00	5	No histological effect on gill tissue	Redding & Schreck (1982)	
teelhead	J	3000.00	48.00	5	No histological effect on gill tissue	Redding & Schreck (1982)	
teelhead	J	500.00	48.00	5	No histological effect on gill tissue	Redding & Schreck (1982)	
teelhead	J	500.00	3.00	5	Signs of sublethal stress (VA)	Redding & Schreck (1982)	
teelhead	J	500.00	9.00	8	Blood cell count and blood chemistry change	Redding & Schreck (1982)	
teelhead	J	500.00	3.00	5	Signs of sublethal stress (VA)	Redding & Schreck (1982)	
teelhead	J	500.00	3.00	5	Signs of sublethal stress (VA)	Redding & Schreck (1982)	
irayling (Arctic)	U	20.00	24.00	3	Fish avoided parts of the stream	Birtwell et al. (1984)	
irayling (Arctic)	U	20.00	24.00	3	Preference for clear water	Birtwell et al. (1984)	
Grayling (Arctic)	U	122.00	24.00	8	Slight gill histopathologies	Birtwell et al. (1984)	
Grayling (Arctic)	U	232.00	24.00	8	Decline in body condition	Birtwell et al. (1984)	
Grayling (Arctic)	U	319.00	24.00	8	Decreased prey diversity and consumption (stomach content)	Birtwell et al. (1984)	
Grayling (Arctic)	U	319.00	24.00	3	Downstream displacement	Birtwell et al. (1984)	
irayling (Arctic)	U	319.00	24.00	3	Avoidance of turbid water	Birtwell et al. (1984)	
Grayling (Arctic)	J	100.00	24.00	0	Healthy population, all age classes	Knapp (unpublished, cited by Birwell et al. (1984))	
rout (Brown)	J	100.00	720.00	11	Population reduced	Scullion & Edwards (1980)	
rout (Brown)	J	100.00	720.00	8	Low condition factor	Scullion & Edwards (1980)	
rout (Brown)	J	110.00	720.00	8	Switched to primarily terrestrial invertebrate diet (97% diet)	Scullion & Edwards (1980)	
rout (Rainbow)	Υ	30.00	480.00	10	No mortality (control 0%)	Herbert & Merkens (1961)	
rout (Rainbow)	Υ	30.00	960.00	10	0% mortality (control 0%)	Herbert & Merkens (1961)	
rout (Rainbow)	Υ	90.00	960.00	10	10% mortality (control 0%)	Herbert & Merkens (1961)	
rout (Rainbow)	Υ	270.00	960.00	10	12% mortality (control 0%)	Herbert & Merkens (1961)	
rout (Rainbow)	Υ	810.00	960.00	11	22% mortality (control 0%)	Herbert & Merkens (1961)	
rout (Rainbow)	Υ	90.00	1200.00	10	10% mortality (control 0%)	Herbert & Merkens (1961)	
rout (Rainbow)	Υ	270.00	1200.00	10	20% mortality (control 0%)	Herbert & Merkens (1961)	
rout (Rainbow)	Υ	810.00	1200.00	11	25% mortality (control 0%)	Herbert & Merkens (1961)	
rout (Rainbow)	Υ	30.00	3600.00	10	12% mortality (control 10%)	Herbert & Merkens (1961)	
Trout (Rainbow)	Υ	90.00	2640.00	10	15% mortality (control 10%)	Herbert & Merkens (1961)	

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Frout (Rainbow)	Υ	90.00	3000.00	13	68% mortality (control 10%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	810.00	1320.00	10	13% mortality (0% control)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	810.00	1440.00	14	90% mortality (control 5%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	810.00	1488.00	14	100% mortality (control 7%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	768.00	10	20% mortality (control 7%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	672.00	14	100% mortality (control 7%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	360.00	10	11% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	90.00	1200.00	10	10% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	30.00	2040.00	10	0% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	432.00	10	10% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	696.00	13	80% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	810.00	216.00	10	10% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	810.00	264.00	13	80% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Y	30.00	480.00	10	10% mortality (control 10%)	Herbert & Merkens (1961)
rout (Rainbow)	Y	270.00	120.00	10	10% mortality (control 2%)	Herbert & Merkens (1961)
rout (Rainbow)	Y	270.00	360.00	11	40% mortality (control 7%)	Herbert & Merkens (1961)
	Ϋ́	270.00	528.00	14		• • •
rout (Rainbow) rout (Rainbow)	Y Y	810.00	240.00	10	100% mortality (control 10%)	Herbert & Merkens (1961)
, ,					10% mortality (control 5%)	Herbert & Merkens (1961)
rout (Rainbow)	Y	810.00	480.00	10	20% mortality (control 7%)	Herbert & Merkens (1961)
rout (Rainbow)	Y	810.00	960.00	11	40% mortality (control 10%)	Herbert & Merkens (1961)
rout (Rainbow)	Y	30.00	1656.00	10	0% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	90.00	264.00	10	7% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	90.00	1200.00	10	12% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	144.00	10	8% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	240.00	10	15% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	336.00	12	60% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	810.00	144.00	10	10% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	810.00	240.00	10	18% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	810.00	336.00	12	60% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	810.00	528.00	14	83% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	30.00	1440.00	10	8% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	90.00	1152.00	10	6% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	240.00	10	8% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	480.00	10	20% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	720.00	12	42% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	1968.00	12	43% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	810.00	240.00	10	10% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	810.00	480.00	11	33% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	810.00	1968.00	11	40% mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	30.00	1656.00	10	No mortality (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	90.00	720.00	10	Mortality 10% (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	720.00	10	Mortality 14% (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Y	810.00	720.00	10	Mortality 14% (control 0%)	Herbert & Merkens (1961)
rout (Rainbow)	Y	90.00	456.00	10	0-20% mortality (DE)	Herbert & Merkens (1961)
rout (Rainbow)	Y	90.00	456.00	10	0-15% mortality (KC)	Herbert & Merkens (1961)
	Ϋ́	270.00	456.00			
rout (Rainbow)				11	10-35% mortality (KC)	Herbert & Merkens (1961)
rout (Rainbow)	Y	270.00	456.00	12	25-80% mortality (DE)	Herbert & Merkens (1961)
rout (Rainbow)	Y	810.00	456.00	12	35-85% mortality (DE)	Herbert & Merkens (1961)
rout (Rainbow)	Y	810.00	456.00	12	5-80% mortality (KC)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	240.00	10	Gill structure damage, mortality	Herbert & Merkens (1961)
rout (Rainbow)	Υ	810.00	240.00	10	Gill structure damage, mortality	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	240.00	8	Thickened epithelium cells, fused lamellae	Herbert & Merkens (1961)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Rainbow)	Υ	810.00	240.00	8	Thickened epithelium cells, fused lamellae	Herbert & Merkens (1961)
rout (Rainbow)	Υ	30.00	3600.00	5	No changes in gill histology	Herbert & Merkens (1961)
rout (Rainbow)	Υ	90.00	3600.00	5	No changes in gill histology	Herbert & Merkens (1961)
rout (Rainbow)	Υ	30.00	1440.00	5	No changes in gill histology	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	888.00	5	No changes in gill histology	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	1872.00	5	No changes in gill histology	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	2136.00	8	Slight changes in gill histology (thickened epithelium cells, fused lamellae)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	2184.00	5	No changes in gill histology	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	2400.00	8	Moderate changes in gill histology (thickened epithelium cells, fused lamellae)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	2424.00	8	Slight changes in gill histology (thickened epithelium cells, fused lamellae)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	2496.00	5	No changes in gill histology	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	3384.00	8	Slight changes in gill histology (thickened epithelium cells, fused lamellae)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	4104.00	5	No changes in gill histology	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	4704.00	5	No changes in gill histology	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	5880.00	5	No changes in gill histology	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	6360.00	5	No changes in gill histology	Herbert & Merkens (1961)
rout (Rainbow)	Υ	368.00	4104.00	5	No changes in gill histology	Herbert & Merkens (1961)
rout (Rainbow)	Υ	449.00	4704.00	8	Slight changes in gill histology (thickened epithelium cells, fused lamellae)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	559.00	5880.00	8	Slight changes in gill histology (thickened epithelium cells, fused lamellae)	Herbert & Merkens (1961)
rout (Rainbow)	Y	592.00	6360.00	8	Slight changes in gill histology (thickened epithelium cells, fused lamellae)	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	1368.00	8	Slight fin rot - ragged edge	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	2904.00	8	Slight fin rot - tissue loss at edges	Herbert & Merkens (1961)
rout (Rainbow)	Υ	3500.00	1488.00	13	Catastrophic reduction in population size	Herbert & Merkens (1961)
rout (Rainbow)	Υ	810.00	504.00	10	Some fish died	Herbert & Merkens (1961)
rout (Rainbow)	Υ	270.00	3240.00	10	Surival rate reduced	Herbert & Merkens (1961)
rout (Rainbow)	Y	810.00	504.00	8	Gills of fish that survived had thickened epithelium	Herbert & Merkens (1961)
rout (Rainbow)	Υ	553.00	672.00	10	0% mortality (control 0%)	Herbert & Wakeford (1962)
rout (Rainbow)	Υ	2120.00	672.00	14	100% mortality (control 0%)	Herbert & Wakeford (1962)
rout (Rainbow)	Υ	4250.00	672.00	12	50% mortality (control 0%)	Herbert & Wakeford (1962)
rout (Rainbow)	Υ	7433.00	672.00	11	40% mortality (control 0%)	Herbert & Wakeford (1962)
rout (Rainbow)	Υ	7433.00	24.00	10	10% mortality (control 0%)	Herbert & Wakeford (1962)
rout (Rainbow)	Υ	7433.00	432.00	10	20% mortality (control 0%)	Herbert & Wakeford (1962)
rout (Rainbow)	Υ	7433.00	456.00	11	30% mortality (control 0%)	Herbert & Wakeford (1962)
rout (Rainbow)	Υ	7433.00	528.00	11	40% mortality (control 0%)	Herbert & Wakeford (1962)
rout (Rainbow)	Υ	4250.00	552.00	10	10% mortality (control 0%)	Herbert & Wakeford (1962)
rout (Rainbow)	Υ	4250.00	576.00	10	20% mortality (control 0%)	Herbert & Wakeford (1962)
out (Rainbow)	Υ	4250.00	600.00	11	30% mortality (control 0%)	Herbert & Wakeford (1962)
out (Rainbow)	Υ	4250.00	600.00	11	40% mortality (control 0%)	Herbert & Wakeford (1962)
out (Rainbow)	Υ	4250.00	600.00	12	50% mortality (control 0%)	Herbert & Wakeford (1962)
out (Rainbow)	YY	4250.00	588.00	12	50% mortality (CS, control 0%)	Herbert & Wakeford (1962)
almon (Chinook)	J	165.00	720.00	9	Decreased density	Scrivener et al. (1994)
almon (Chinook)	J	165.00	720.00	3	Fish emigrated to lower turbidity tributary	Scrivener et al. (1994)
almon (Chinook)	J	152.00	720.00	3	Fish emigrated to lower turbidity tributary	Scrivener et al. (1994)
rout (Rainbow)	U	1443.00	480.00	12	57% mortality (control 9.5%)	Campbell (1954)
rout (Rainbow)	U	1350.00	240.00	11	25% mortality (control 9.5%)	Campbell (1954)
rout (Rainbow)	U	1517.00	408.00	12	50% mortality (control 9.5%)	Campbell (1954)

		Sediment	dose		Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Salmon (Sockeye)	U	17560.00	96.00	12	50% mortality (LDC50) (FSS)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	17560.00	96.00	8	Hypertrophy of gill tissue (FSS)	Servizi & Martens (1987)	
almon (Sockeye)	U	3143.00	96.00	4	Sublethal effects observed (FSS)	Servizi & Martens (1987)	
almon (Sockeye)	U	3143.00	96.00	8	Hypertrophy and necrosis of gill tissue (FSS)	Servizi & Martens (1987)	
almon (Sockeye)	U	23790.00	96.00	8	Hypertrophy and necrosis of gill tissue (FSS)	Servizi & Martens (1987)	
almon (Sockeye)	U	23790.00	96.00	14	90% mortality (FSS)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	3143.00	96.00	10	0% mortality (FSS)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	9000.00	96.00	10	No mortality (FSS)	Servizi & Martens (1987)	
salmon (Sockeye)	U	13900.00	96.00	10	10% mortality (FSS)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	2100.00	96.00	10	No mortality (MFSS)	Servizi & Martens (1987)	
almon (Sockeye)	U	6949.00	96.00	5	No effect on gills (MFSS)	Servizi & Martens (1987)	
almon (Sockeye)	U	6949.00	96.00	10	No mortality (MFSS)	Servizi & Martens (1987)	
salmon (Sockeye)	U	9850.00	96.00	10	Gill hyperplasia, hypertrophy, epithelial separation, necrosis (MFSS)	Servizi & Martens (1987)	
almon (Sockeye)	U	8158.00	96.00	12	50% mortality (LDC50)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	9850.00	96.00	13	70% mortality (MFSS)	Servizi & Martens (1987)	
salmon (Sockeye)	U	13000.00	96.00	14	90% mortality (MFSS)	Servizi & Martens (1987)	
almon (Sockeye)	U	14500.00	96.00	14	100% mortality (MFSS)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	19500.00	96.00	14	100% mortality (MFSS)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	2688.00	96.00	10	0% mortality (MCSS)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	4888.00	96.00	12	50% mortality (LDC50)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	6991.00	96.00	12	60% mortality (MCSS)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	7500.00	96.00	13	90% mortality (MCSS)	Servizi & Martens (1987)	
almon (Sockeye)	U	14000.00	96.00	14	100% mortality (MCSS)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	2688.00	96.00	8	Hypertrophy and necrosis of gill tissue (MCSS)	Servizi & Martens (1987)	
	U	6991.00	96.00	8	Hypertrophy and necrosis of gill tissue (MCSS)	Servizi & Martens (1987)	
almon (Sockeye)				10			
almon (Sockeye)	U	1465.00	96.00		0% mortality (CSS)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	3359.00	96.00	14	100% mortality (CSS)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	1465.00	96.00	8	Hypertrophy and necrosis of gill tissue (CSS)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	3359.00	96.00	8	Hypertrophy and necrosis of gill tissue (CSS)	Servizi & Martens (1987)	
almon (Sockeye)	U	1668.00	96.00	12	50% mortality (LDC50)	Servizi & Martens (1987)	
almon (Sockeye)	U	900.00	96.00	10	0% mortality (CSS)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	1100.00	96.00	10	0% mortality (CSS)	Servizi & Martens (1987)	
almon (Sockeye)	U	17560.00	96.00	8	Sediment particles observed between gill lamellae	Servizi & Martens (1987)	
Salmon (Sockeye)	U	3143.00	96.00	8	Sediment particles observed between gill lamellae	Servizi & Martens (1987)	
Salmon (Sockeye)	U	23790.00	96.00	8	Sediment particles observed between gill lamellae	Servizi & Martens (1987)	
Salmon (Sockeye)	U	9000.00	96.00	8	Sediment particles observed between gill lamellae	Servizi & Martens (1987)	
Salmon (Sockeye)	U	13900.00	96.00	8	Sediment particles observed between gill lamellae	Servizi & Martens (1987)	
Salmon (Sockeye)	U	17560.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	23790.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	9000.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	13900.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)	
almon (Sockeye)	U	6949.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)	
almon (Sockeye)	U	9850.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)	
almon (Sockeye)	U	8158.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)	
almon (Sockeye)	U	13000.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)	
almon (Sockeye)	U	14500.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)	
almon (Sockeye)	U	19500.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	4888.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	6991.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)	
Salmon (Sockeye)	U	7500.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)	
	0	, 500.00	50.00	J	or priyatorobical acress (auridening beliavior)	201 AITI @ IAICI (C112 (T201)	

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Sockeye)	U	1465.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)
Salmon (Sockeye)	U	3359.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)
almon (Sockeye)	U	1668.00	96.00	5	Minor physiological stress (surfacing behavior)	Servizi & Martens (1987)
almon (Sockeye)	S	14407.00	96.00	6	Slight impairment in hypoosmoregulatory capacity	Servizi & Martens (1987)
almon (Sockeye)	S	14407.00	96.00	10	No mortality (control 0%)	Servizi & Martens (1987)
almon (Sockeye)	S	1261.00	96.00	8	Body moisture content reduced	Servizi & Martens (1987)
almon (Sockeye)	S	14407.00	96.00	8	Body moisture content reduced	Servizi & Martens (1987)
almon (Sockeye)	S	7447.00	96.00	8	Plasma chloride levels increased slightly	Servizi & Martens (1987)
almon (Sockeye)	S	14407.00	96.00	5	Minor physiological stress (respiratory distress, surfacing behavior)	Servizi & Martens (1987)
Salmon (Sockeye)	S	7447.00	96.00	5	Minor physiological stress (respiratory distress, surfacing behavior)	Servizi & Martens (1987)
almon (Sockeye)	S	2678.00	96.00	5	Minor physiological stress (respiratory distress, surfacing behavior)	Servizi & Martens (1987)
almon (Sockeye)	S	1261.00	96.00	0	No effect	Servizi & Martens (1987)
almon (Sockeye)	S	1261.00	96.00	8	Fish slightly paler than controls	Servizi & Martens (1987)
almon (Sockeye)	S	14407.00	96.00	8	Fish slightly paler than controls	Servizi & Martens (1987)
almon (Sockeye)	S	7447.00	96.00	8	Fish slightly paler than controls	Servizi & Martens (1987)
almon (Sockeye)	S	2678.00	96.00	8	Fish slightly paler than controls	Servizi & Martens (1987)
almon (Sockeye)	S	1261.00	96.00	5	No effect on hematocrit levels	Servizi & Martens (1987)
almon (Sockeye)	S	14407.00	96.00	5	No effect on hematocrit levels	Servizi & Martens (1987)
almon (Sockeye)	S	7447.00	96.00	5	No effect on hematocrit levels	Servizi & Martens (1987)
almon (Sockeye)	S	2678.00	96.00	5	No effect on hematocrit levels	Servizi & Martens (1987)
almon (Sockeye)	S	1261.00	96.00	5	No histological effects on gills (trauma, excess mucus or trapped particles)	Servizi & Martens (1987)
almon (Sockeye)	S	14407.00	96.00	5	No histological effects on gills (trauma, excess mucus or trapped particles)	Servizi & Martens (1987)
almon (Sockeye)	S	7447.00	96.00	5	No histological effects on gills (trauma, excess mucus or trapped particles)	Servizi & Martens (1987)
almon (Sockeye)	S	2678.00	96.00	5	No histological effects on gills (trauma, excess mucus or trapped particles)	Servizi & Martens (1987)
almon (Coho)	U	8000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	8200.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	27000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	22700.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	9080.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	7000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	8100.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	1300.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	10900.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	11000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	12500.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	15500.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	15300.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	13000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	9000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	7500.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	1900.00	96.00	10	1% mortality (LC1, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	2100.00	96.00	10	1% mortality (LC1, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	5500.00	96.00	10	1% mortality (LC1, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	9000.00	96.00	10	1% mortality (LC1, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	6900.00	96.00	10	1% mortality (LC1, control 0%)	Servizi & Martens (1991)
almon (Coho)	U	5600.00	96.00	10	1% mortality (LC1, control 0%)	Servizi & Martens (1991)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Coho)	U	3700.00	96.00	10	1% mortality (LC1, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	2500.00	96.00	10	1% mortality (LC1, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	3000.00	96.00	10	1% mortality (LC1, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	21000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	19500.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	26000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	20000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	20500.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	24000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	20500.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	23000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	26000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	21000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	23000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	27000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	20000.00	96.00	12	50% mortality (LC50, control 0%)	Servizi & Martens (1991)
Salmon (Coho)	U	240.00	96.00	5	Rate of coughing increased (FSS)	Servizi & Martens (1992)
Salmon (Coho)	U	20.00	0.05	1	Cough frequency not increased	Servizi & Martens (1992)
Salmon (Coho)	U	20.00	96.00	5	No impact on respiratory function	Servizi & Martens (1992)
Salmon (Coho)	U	7000.00	96.00	8	Avoidance behavior	Servizi & Martens (1992)
Salmon (Coho)	U	20.00	96.00	1	No effect of rate of coughing	Servizi & Martens (1992)
Salmon (Coho)	U	240.00	96.00	6	Rate of coughing increased significantly (FSS)	Servizi & Martens (1992)
Salmon (Coho)	U	2460.00	96.00	6	Rate of coughing increased significantly (FSS)	Servizi & Martens (1992)
Salmon (Coho)	U	6780.00	96.00	6	Rate of coughing increased significantly (FSS)	Servizi & Martens (1992)
Salmon (Coho)	U	530.00	96.00	8	Elevated blood glucose levels	Servizi & Martens (1992)
Salmon (Coho)	U	1360.00	96.00	8	Elevated blood glucose levels	Servizi & Martens (1992)
Salmon (Coho)	U	2550.00	96.00	4	Low levels of avoidance behavior	Servizi & Martens (1992)
Salmon (Coho)	U	3450.00	96.00	8	Strong avoidance behavior	Servizi & Martens (1992)
Salmon (Coho)	U	7000.00	96.00	8	Strong avoidance behavior	Servizi & Martens (1992)
Salmon (Coho)	U	8500.00	96.00	8	Strong avoidance behavior	Servizi & Martens (1992)
Salmon (Coho)	U	1530.00	96.00	6	Elevated blood glucose levels	Servizi & Martens (1992)
Salmon (Coho)	U	1630.00	96.00	6	Elevated blood glucose levels	Servizi & Martens (1992)
Salmon (Coho)	U	530.00	96.00	6	Blood glucose levels increased	Servizi & Martens (1992)
Salmon (Coho)	U	550.00	96.00	6	Elevated blood glucose levels	Servizi & Martens (1992)
Salmon (Coho)	U	460.00	96.00	6	Elevated blood glucose levels	Servizi & Martens (1992)
Salmon (Coho)	U	3000.00	48.00	8	High level of sublethal stress; avoidance	Servizi & Martens (1992)
Salmon (Coho)	U	300.00	0.17	3	Avoidance behavior within minutes	Servizi & Martens (1992)
Salmon (Coho)	U	2460.00	0.05	5	Coughing behavior manifests within minutes	Servizi & Martens (1992)
Salmon (Coho)	U	2460.00	1.00	6	Coughing frequency greatly increased	Servizi & Martens (1992)
Salmon (Coho)	U	2460.00	24.00	8	Fatigue of the cough reflex	Servizi & Martens (1992)
Salmon (Coho)	U	240.00	24.00	6	Cough frequency increased more than 5-fold	Servizi & Martens (1992)
Menhaden (Atlantic)	J	1540.00	24.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)
Menhaden (Atlantic)	J	2470.00	24.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)
Menhaden (Atlantic)	J	3960.00	24.00	14	90% mortality (LC90, FE)	Sherk et al. (1975)
Salmon (Coho)	J	835.00	4.00	0	No significant change in avoidance behavior	Noggle (1978)
Salmon (Coho)	J	703.00	8.00	0	No significant change in avoidance behavior	Noggle (1978)
Salmon (Coho)	J	633.00	6.50	0	No significant change in avoidance behavior	Noggle (1978)
Salmon (Coho)	J	1110.00	6.00	0	No significant change in avoidance behavior	Noggle (1978)
Trout (Steelhead)	J	1558.00	5.50	0	No significant change in avoidance behavior	Noggle (1978)
Trout (Steelhead)	J	382.00	10.00	0	No significant change in avoidance behavior	Noggle (1978)

		Sediment	dose		Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Salmon (Coho)	J	865.00	6.00	0	No significant change in avoidance behavior	Noggle (1978)	
Salmon (Coho)	J	1888.00	5.00	0	No significant change in avoidance behavior	Noggle (1978)	
Salmon (Coho)	J	192.00	7.00	0	No significant change in avoidance behavior	Noggle (1978)	
Salmon (Coho)	J	197.00	3.00	0	No significant change in avoidance behavior	Noggle (1978)	
Salmon (Coho)	J	2500.00	1.00	3	Fish favored turbid water	Noggle (1978)	
Salmon (Coho)	J	8000.00	1.00	3	Avoidance behavior	Noggle (1978)	
Salmon (Coho)	J	8000.00	1.00	5	Coughing rate increased	Noggle (1978)	
Salmon (Coho)	J	984.00	4.00	6	Feeding ceased	Noggle (1978)	
Salmon (Coho)	J	404.00	4.00	6	Feeding ceased	Noggle (1978)	
Salmon (Coho)	J	25.00	1.00	4	Feeding rate decreased	Noggle (1978)	
Salmon (Coho)	J	116.00	4.00	4	Feeding rate decreased to 55% of maximum	Noggle (1978)	
Salmon (Coho)	J	256.00	4.00	4	Feeding rate decreased to 9% of maximum	Noggle (1978)	
Salmon (Coho)	J	300.00	4.00	6	Feeding ceased	Noggle (1978)	
Salmon (Coho)	J	4420.00	96.00	12	Mortality rate 50%	Noggle (1978)	
Salmon (Chinook)	J	2586.00	96.00	12	Mortality rate 50%	Noggle (1978)	
Salmon (Coho)	J	1927.00	96.00	12	Mortality rate 50%	Noggle (1978)	
Salmon (Coho)	J	1198.00	96.00	12	Mortality rate 50%	Noggle (1978)	
Salmon (Coho)	J	1500.00	96.00	12	Mortality rate 50%	Noggle (1978)	
Salmon (Coho)	J	15000.00	96.00	12	Mortality rate 50%	Noggle (1978)	
Salmon (Coho)	J	35000.00	96.00	12	Mortality rate 50%	Noggle (1978)	
rout (Steelhead)	J	10233.00	96.00	12	Mortality rate 50%	Noggle (1978)	
almon (Coho)	J	3500.00	96.00	8	Hematocrit values decreased (41.3%, control 42.0%)	Noggle (1978)	
almon (Coho)	J	12250.00	96.00	8	Hematocrit values increased (42.7%, control 42.0%)	Noggle (1978)	
almon (Coho)	J	22750.00	96.00	8	Hematocrit values increased (45.0%, control 42.0%)	Noggle (1978)	
Salmon (Coho)	J	31500.00	96.00	8	Hematocrit values increased (43.0%, control 42.0%)	Noggle (1978)	
Salmon (Coho)	J	3500.00	96.00	8	Plasma glucose decreased (71.8 mg/100mL, control 77.6 mg/100mL)	Noggle (1978)	
Salmon (Coho)	J	12250.00	96.00	8	Plasma glucose increased (78.7 mg/100mL, control 77.6 mg/100mL)	Noggle (1978)	
Salmon (Coho)	J	22750.00	96.00	8	Plasma glucose increased (97.0 mg/100mL, control 77.6 mg/100mL)	Noggle (1978)	
Salmon (Coho)	J	31500.00	96.00	8	Plasma glucose increased (99.9 mg/100mL, control 77.6 mg/100mL)	Noggle (1978)	
rout (Steelhead)	J	12936.00	96.00	8	Minor gill damage	Noggle (1978)	
rout (Steelhead)	J	8430.00	96.00	8	Major gill damage	Noggle (1978)	
almon (Chinook)	J	4266.00	72.00	8	Major gill damage	Noggle (1978)	
almon (Chinook)	J	4266.00	72.00	14	Fish died	Noggle (1978)	
almon (Chinook)	J	4266.00	72.00	14	Mortality rate 92%	Noggle (1978)	
ialmon (Chinook)	J	4266.00	96.00	8	Minor gill damage	Noggle (1978)	
ialmon (Coho)	J	1547.00	46.00	8	Gill damage	Noggle (1978)	
almon (Coho)	J	1547.00	46.00	14	Fish died	Noggle (1978)	
almon (Coho)	J	5346.00	96.00	8	Minor gill damage	Noggle (1978)	
rout (Steelhead)	J	12936.00	96.00	5	No visible gill damage	Noggle (1978)	
Frout (Steelhead)	J	8430.00	96.00	8	Branchial necrosis, branchial aneurysm, branchial demorrhage present	Noggle (1978)	
Salmon (Chinook)	J	4266.00	72.00	8	Branchial necrosis	Noggle (1978)	
Salmon (Chinook)	J	4266.00	96.00	5	No visible gill damage	Noggle (1978)	
Salmon (Coho)	J	1547.00	46.00	8	Diffuse branchial edema present	Noggle (1978)	
Salmon (Coho)	J	1547.00	46.00	8	Focal lamellar fused	Noggle (1978)	
Salmon (Coho)	J	5346.00	96.00	5	No visible gill damage	Noggle (1978)	

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Grayling (Arctic)	J	86.00	0.67	3	78% of fish avoid turbid water (NTU > 20)	Scannell (1988)
Grayling (Arctic)	J	25.00	96.00	10	Mortality rate 0.6%	Scannell (1988)
Grayling (Arctic)	J	500.00	96.00	10	No mortality	Scannell (1988)
Grayling (Arctic)	J	375.00	96.00	10	Mortality rate 0.3%	Scannell (1988)
Grayling (Arctic)	J	5.00	0.42	0	No behavioral effects	Scannell (1988)
Grayling (Arctic)	J	23.00	0.42	3	38% preferred clear water	Scannell (1988)
Grayling (Arctic)	J	69.00	0.42	3	88% preferred clear water	Scannell (1988)
Grayling (Arctic)	J	115.00	0.42	3	78% preferred clear water	Scannell (1988)
Grayling (Arctic)	J	70.00	0.42	3	90% preferred clear water	Scannell (1988)
Grayling (Arctic)	J	207.00	0.42	3	80% preferred clear water	Scannell (1988)
Grayling (Arctic)	J	46.00	0.42	5	Gill flaring and displayed disturbance behavior	Scannell (1988)
Grayling (Arctic)	J	219.00	0.08	8	Significant reduction in reactive distance	Scannell (1988)
Grayling (Arctic)	J	7.00	0.08	4	11.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	4.00	0.08	4	23.6% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	8.00	0.08	4	23.8% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	8.00	0.08	4	36.3% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	j	5.00	0.08	4	41.7% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	7.00	0.08	4	47.8% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	3.00	0.08	4	48.9% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	5.00	0.08	4	48.9% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	18.00	0.08	4	49.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	24.00	0.08	4	49.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	2.00	0.08	5	62.1% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	8.00	0.08	5	62.1% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	19.00	0.08	5	61.7% decrease in reactive distance	Scannell (1988)
	J	25.00	0.08	5	61.7% decrease in reactive distance	
Grayling (Arctic)	J			5		Scannell (1988)
Grayling (Arctic)		58.00	0.08		61.9% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J ,	88.00	0.08	5	61.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	96.00	0.08	5	62.2% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	121.00	0.08	5	61.7% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	96.00	0.08	4	49.6% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	4.00	0.08	5	74.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	27.00	0.08	5	74.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	56.00	0.08	5	74.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	68.00	0.08	5	74.6% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	88.00	0.08	5	74.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	120.00	0.08	5	75.0% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	27.00	0.08	5	87.2% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	50.00	0.08	5	87.2% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	56.00	0.08	5	87.2% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	69.00	0.08	5	86.9% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	80.00	0.08	5	87.5% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	88.00	0.08	5	86.9% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	121.00	0.08	5	87.1% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	143.00	0.08	5	87.0% decrease in reactive distance	Scannell (1988)
irayling (Arctic)	J	149.00	0.08	5	87.2% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	169.00	0.08	5	87.5% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	183.00	0.08	5	87.2% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	78.00	0.08	5	93.4% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	149.00	0.08	5	93.8% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	79.00	0.08	6	100% decrease in reactive distance	Scannell (1988)
Grayling (Arctic)	J	143.00	0.08	6	100% decrease in reactive distance	Scannell (1988)

		Sediment	dose		Fish Response	_	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Grayling (Arctic)	J	150.00	0.08	6	100% decrease in reactive distance	Scannell (1988)	
Grayling (Arctic)	J	168.00	0.08	6	100% decrease in reactive distance	Scannell (1988)	
Grayling (Arctic)	J	184.00	0.08	6	100% decrease in reactive distance	Scannell (1988)	
Grayling (Arctic)	J	219.00	0.08	6	100% decrease in reactive distance	Scannell (1988)	
Grayling (Arctic)	J	32.00	0.08	4	27.23% decrease in reactive distance	Scannell (1988)	
Grayling (Arctic)	J	33.00	0.08	4	45.54% decrease in reactive distance	Scannell (1988)	
Grayling (Arctic)	J	32.00	0.08	5	54.49% decrease in reactive distance	Scannell (1988)	
Grayling (Arctic)	J	60.00	0.08	5	63.21% decrease in reactive distance	Scannell (1988)	
Grayling (Arctic)	J	60.00	0.08	5	72.57% decrease in reactive distance	Scannell (1988)	
Grayling (Arctic)	J	60.00	0.08	5	90.88% decrease in reactive distance	Scannell (1988)	
Grayling (Arctic)	J	84.00	0.08	5	78.20% decrease in reactive distance	Scannell (1988)	
Grayling (Arctic)	J	161.00	0.08	5	82.32% decrease in reactive distance	Scannell (1988)	
Grayling (Arctic)	J	184.00	0.08	5	91.43% decrease in reactive distance	Scannell (1988)	
Grayling (Arctic)	J	202.00	0.08	5	91.43% decrease in reactive distance	Scannell (1988)	
Grayling (Arctic)	J	0.26	0.08	6	Significantly reduced reactive distance	Scannell (1988)	
Steelhead	F	747.00	336.00	9	Growth rate reduced (FC)	Sigler et al. (1984)	
Steelhead	F	1247.00	336.00	9	Growth rate reduced (FC)	Sigler et al. (1984)	
Steelhead	F	376.00	336.00	9	Growth rate reduced (FC)	Sigler et al. (1984)	
Steelhead	F	1022.00	336.00	9	Growth rate reduced (FC)	Sigler et al. (1984)	
Steelhead	F	1433.00	336.00	9	Growth rate reduced (FC)	Sigler et al. (1984)	
Steelhead	F	264.00	336.00	9	Growth rate reduced (FC)	Sigler et al. (1984)	
Steelhead	F	393.00	504.00	9	Growth rate reduced (FC)	Sigler et al. (1984)	
Steelhead	F	348.00	360.00	9	Growth rate reduced (FC)	Sigler et al. (1984)	
iteelhead	F	230.00	456.00	9	Growth rate reduced (FC)	Sigler et al. (1984)	
iteelhead	F	275.00	408.00	9	Growth rate reduced (FC)	Sigler et al. (1984)	
iteelhead	F	197.00	456.00	9	Growth rate reduced (FC)	Sigler et al. (1984)	
Steelhead	F	262.00	336.00	9	Growth rate reduced (BC)	Sigler et al. (1984)	
Steelhead	F	201.00	456.00	9	Growth rate reduced (BC)	Sigler et al. (1984)	
Steelhead	F	269.00	408.00	9	Growth rate reduced (BC)	Sigler et al. (1984)	
Steelhead	F	225.00	456.00	9	Growth rate reduced (BC)	Sigler et al. (1984)	
Salmon (Coho)	F	497.00	312.00	9	Growth rate reduced (BC)	Sigler et al. (1984)	
Salmon (Coho)	, F	244.00	336.00	9	Growth rate reduced (BC)	Sigler et al. (1984)	
Salmon (Coho)	, F		336.00	9		-	
	F	102.00			Growth rate reduced (BC)	Sigler et al. (1984)	
Salmon (Coho)	F	157.00 108.00	264.00 360.00	9 9	Growth rate reduced (BC)	Sigler et al. (1984)	
Salmon (Coho)	YY				Growth rate reduced (BC)	Sigler et al. (1984)	
Grayling (Arctic)		124.00	144.00	4	Food intake limited	Simmons (1982) Simmons (1982)	
Grayling (Arctic)	YY	3273.00	144.00	4	Food intake severely limited	Simmons (1982)	
Grayling (Arctic)	YY	3273.00	144.00	8	Mucus and sediment accumulated in gill lamellae	` '	
Grayling (Arctic)	YY	3273.00	144.00 144.00	8	Fish displayed many signs of poor condition	Simmons (1982)	
Grayling (Arctic)	YY	124.00		0	No visible abnormalities Hyperplacia and hypertrophy of gill tissue	Simmons (1982)	
Grayling (Arctic)	YY	1388.00	96.00	8	Hyperplasia and hypertrohpy of gill tissue	Simmons (1982)	
Grayling (Arctic)	YY	1250.00	48.00	8	Moderate damage to gill tissue	Simmons (1982)	
Grayling (Arctic)	YY	170.00	96.00	0	No damage to gill tissues	Simmons (1982)	
Grayling (Arctic)	YY	115.00	96.00	5	No significant change in leucocrit value	Simmons (1982)	
Grayling (Arctic)	YY	1158.00	96.00	5	No significant change in leucocrit value	Simmons (1982)	
Grayling (Arctic)	YY	132.00	312.00	5	No difference in hematocrit values	Simmons (1982)	
Grayling (Arctic)	YY	200.00	312.00	5	No difference in hematocrit values	Simmons (1982)	
Grayling (Arctic)	YY	1205.00	48.00	8	Leucocrit values decreased	Simmons (1982)	
Grayling (Arctic)	YY	1158.00	96.00	8	Hematocrit values increased	Simmons (1982)	
Grayling (Arctic)	YY	130.00	48.00	0	No significant change in oxygen equilibrium loss	Simmons (1982)	
Grayling (Arctic)	YY	2917.00	48.00	0	No significant change in oxygen equilibrium loss	Simmons (1982)	
Grayling (Arctic)	YY	130.00	96.00	0	No significant change in oxygen equilibrium loss	Simmons (1982)	

		Sediment	dose		Fish Response		
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Grayling (Arctic)	YY	2917.00	96.00	0	No significant change in oxygen equilibrium loss	Simmons (1982)	
Trout (Rainbow)	F	73.00	1800.00	0	Growth rate increased	Slaney et al. (1977a)	
Frout (Rainbow)	F	73.00	1800.00	0	No effect on growth	Slaney et al. (1977a)	
rout (Rainbow)	F	73.00	1800.00	0	Mortality decreased	Slaney et al. (1977a)	
Bluegill	J	30.00	1.00	4	Reduced capacity to locate prey (NTU)	Vinyard & O'Brien (1976)	
luegill	J	20.00	1.00	4	Reduced capacity to locate prey (NTU)	Vinyard & O'Brien (1976)	
luegill	J	10.00	1.00	4	Reduced capacity to locate prey (NTU)	Vinyard & O'Brien (1976)	
luegill	J	6.00	1.00	4	Reduced capacity to locate prey (NTU)	Vinyard & O'Brien (1976)	
luegill	J	30.00	1.00	4	Reduced capacity to locate prey (NTU)	Vinyard & O'Brien (1976)	
luegill	J	20.00	1.00	4	Reduced capacity to locate prey (NTU)	Vinyard & O'Brien (1976)	
luegill	J	10.00	1.00	4	Reduced capacity to locate prey (NTU)	Vinyard & O'Brien (1976)	
luegill	J	6.00	1.00	4	Reduced capacity to locate prey (NTU)	Vinyard & O'Brien (1976)	
ullhead (Black)	J	135000.00	0.02	3	Fish swam to surface	Wallen (1951)	
ullhead (Black)	J	155000.00	0.02	3	Fish swam to surface often	Wallen (1951)	
ullhead (Black)	J	200000.00	0.02	8	Fish swam to surfaced, floated on side	Wallen (1951)	
ullhead (Black)	J	200000.00	0.02	13	Mortality rate 72.4%	Wallen (1951)	
ullhead (Black)	J	250000.00	0.02	14	Mortality rate 100% on second exposure	Wallen (1951)	
ullhead (Black)	J	200000.00	0.02	3	Fish recovered completely in clear water	Wallen (1951)	
ullhead (Black)	J	185000.00	0.02	14	Mortaliaty rate 100% sediment-clogged gills	Wallen (1951)	
ullhead (Black)	j	185000.00	0.02	8	Fish were emaciated and sediment present in gills	Wallen (1951)	
ullhead (Black)	J	222000.00	408.00	14	Mortality rate 100%	Wallen (1951)	
rout (Brook)	FF	12.00	5880.00	9	Growth rate declined (LNFH)	Sykora et al. (1972)	
rout (Brook)	FF	25.00	5880.00	9	Growth rates reduced (LNFH)	Sykora et al. (1972)	
rout (Brook)	FF	50.00	5880.00	9	Growth rates declined (LNFH)	Sykora et al. (1972)	
out (Brook)	FF	8.00	5880.00	0	Growth rate increased 4.5% (179.7mm, control 172mm, LNFH)	Sykora et al. (1972)	
rout (Brook)	FF	13.00	5880.00	9	Growth rate decreased 6.4% (161mm, control 172mm, LNFH)	Sykora et al. (1972)	
rout (Brook)	FF	23.00	5880.00	9	Growth rate decreased 19% (139mm, control 172mm, LNFH)	Sykora et al. (1972)	
rout (Brook)	FF	50.00	5880.00	9	Growth rate decreased 45% (94.1mm, control 172mm, LNFH)	Sykora et al. (1972)	
rout (Brook)	FF	8.00	5880.00	0	Weight increased by 0.4% (97.3g, control 96.9g, LNFH)	Sykora et al. (1972)	
rout (Brook)	FF	13.00	5880.00	9	Weight decreased by 25% (72.4g, control 96.9g, LNFH)	Sykora et al. (1972)	
rout (Brook)	FF	23.00	5880.00	9	Weight decreased by 55% (43.2g, control 96.9g, LNFH)	Sykora et al. (1972)	
rout (Brook)	FF	50.00	5880.00	9	Weight decreased by 84% (15.7g, control 96.9g, LNFH)	Sykora et al. (1972)	
rout (Brook)	FF	8.00	5880.00	8	Condition factors decreased 7% (1.62, control 17.4, LNFH)	Sykora et al. (1972)	
rout (Brook)	FF	13.00	5880.00	0	Condition factors increased 2% (1.78, control 1.74, LNFH) Condition factors decreased 2% (1.7, control 1.74,	Sykora et al. (1972)	
rout (Brook) rout (Brook)	FF FF	23.00	5880.00 5880.00	8	LNFH) Condition factors decreased 2% (1.7, control 1.74, LNFH)	Sykora et al. (1972) Sykora et al. (1972)	
rout (Brook)	FF	6.00	336.00	9	1.74, LNFH) Test fish weighed 12.50% of controls (LNFH)	Sykora et al. (1972)	
						, , ,	
rout (Brook)	FF	6.00	1008.00	9	Test fish weighed 7.69% of controls (LNFH)	Sykora et al. (1972)	
rout (Brook) rout (Brook)	FF FF	6.00 6.00	1512.00 2352.00	9	Test fish weighed 5.88% of controls (LNFH) Test fish weighed 17.24% more than controls (LNFH)	Sykora et al. (1972) Sykora et al. (1972)	
rout (Brook)	FF	6.00	3192.00	0	Test fish weighed 7.476% more than controls (LNFH)	Sykora et al. (1972)	

		Sediment	dose		Fish Response	
pecies	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
rout (Brook)	FF	6.00	3864.00	0	Test fish weighed 9.134% more than controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	6.00	4536.00	0	Test fish weighed 1.758% more than controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	6.00	5208.00	0	Test fish weighed 6.060% more than controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	6.00	5880.00	0	Test fish weighed 0.412% more than controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	12.00	336.00	9	Test fish weighed 12.5% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	12.00	1008.00	9	Test fish weighed 7.692% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	12.00	1512.00	0	Test fish weighed 5.882% more than controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	12.00	2352.00	0	Test fish weighed 13.79% more than controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	12.00	3192.00	0	Test fish weighed 0.934% more than controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	12.00	3864.00	0	Test fish weighed 9.134% more than controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	12.00	4536.00	9	Test fish weighed 8.040% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	12.00	5208.00	9	Test fish weighed 19.29% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	12.00	5880.00	9	Test fish weighed 25.28% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	25.00	336.00	9	Test fish weighed 12.5% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	25.00	1008.00	9	Test fish weighed 15.38% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	25.00	1512.00	0	Test fish weighed 35.29% more than controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	25.00	2352.00	0	Test fish weighed 44.82% more than controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	25.00	3192.00	0	Test fish weighed 1.869% more than controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	25.00	3864.00	9	Test fish weighed 17.78% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	25.00	4536.00	9	Test fish weighed 33.66% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	25.00	5208.00	9	Test fish weighed 38.75% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	25.00	5880.00	9	Test fish weighed 55.41% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	50.00	336.00	9	Test fish weighed 25% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	50.00	1008.00	9	Test fish weighed 23.07% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	50.00	1512.00	9	Test fish weighed 23.52% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	50.00	2352.00	9	Test fish weighed 17.24% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	50.00	3192.00	9	Test fish weighed 54.20% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	50.00	3864.00	9	Test fish weighed 65.38% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	50.00	4536.00	9	Test fish weighed 75.87% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	50.00	5208.00	9	Test fish weighed 81.49% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	50.00	5880.00	9	Test fish weighed 83.79% of controls (LNFH)	Sykora et al. (1972)
rout (Brook)	FF	50.00	5880.00	9	Test fish weighed 16% of controls (LNFH)	Sykora et al. (1972)
Vhite (Round)	J	15.00	0.02	3	Fish significantly preferred turbid water (NTU)	Suchanek et al. (1984b)
/hite (Round)	F	30.00	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
olly Varden	J	4.00	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
ucker (Longnose)	J	20.00	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
irayling (Arctic)	J	30.00	0.02	3	Fish avoided turbid water (avoidance behavior, NTU)	Suchanek et al. (1984b)
almon (Coho)	PS	1217.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)
almon (Coho)	S	509.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)
almon (Chinook)	S	488.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)
almon (Coho)	S	647.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)
almon (Coho)	S	2174.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)

		Sediment	dose		Fish Response	_	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
almon (Coho)	S	3775.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
salmon (Coho)	S	993.00	96.00	12	Mortality rate 50%	Stober et al. (1981)	
almon (Coho)	S	1249.00	96.00	12	Mortality rate 50%	Stober et al. (1981)	
almon (Coho)	S	1686.00	96.00	12	Mortality rate 50%	Stober et al. (1981)	
almon (Coho)	S	2967.00	96.00	12	Mortality rate 50%	Stober et al. (1981)	
almon (Coho)	S	757.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
almon (Coho)	S	2019.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
almon (Coho)	S	4515.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
almon (Chinook)	S	2565.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
almon (Chinook)	S	4349.00	96.00	12	Mortality rate 50%	Stober et al. (1981)	
almon (Chinook)	S	3109.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
almon (Chinook)	S	943.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
almon (Coho)	PS	21528.00	24.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
almon (Coho)	PS	17989.00	48.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
almon (Coho)	PS	17989.00	72.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
almon (Coho)	PS	17418.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
almon (Coho)	PS	18672.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
almon (Coho)	S	28184.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
almon (Coho)	S	29580.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
almon (Coho)	S	2118.00	96.00	12	Mortality rate 50% Mortality rate 50%	Stober et al. (1981)	
almon (Chinook)	S	16558.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
almon (Chinook)	S	19364.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
almon (Chinook)	S	11000.00	96.00	12	Mortality rate 50% (VA)	Stober et al. (1981)	
	Y	629.00	96.00	8	, , ,	, ,	
almon (Coho)	Y	981.00	96.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)	
almon (Coho)		1200.00			Minor gill damage (epithelial hypertophy)	Stober et al. (1981)	
almon (Coho)	Y		96.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)	
almon (Coho)	Y	1200.00	96.00	0	No gill damage	Stober et al. (1981)	
almon (Coho)	Y	1200.00	96.00	0	No gill damage	Stober et al. (1981)	
almon (Coho)	Y	88.00	96.00	0	No gill damage	Stober et al. (1981)	
almon (Coho)	Y	1539.00	96.00	0	No gill damage	Stober et al. (1981)	
almon (Coho)	Y	10588.00	0.50	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)	
almon (Coho)	Υ	10588.00	0.50	8	Minor gill damage (inflammation, sediment present in gill lamelli)	Stober et al. (1981)	
almon (Coho)	Υ	1539.00	96.00	0	No gill damage	Stober et al. (1981)	
almon (Coho)	Υ	22.00	96.00	0	No gill damage	Stober et al. (1981)	
almon (Coho)	Υ	15.00	96.00	0	No gill damage	Stober et al. (1981)	
almon (Coho)	S	181.00	24.00	8	Minor gill damage (epithelial hypertophy, inflammation)	Stober et al. (1981)	
almon (Coho)	S	181.00	72.00	8	Minor gill damage (epithelial hypertophy, vascular aneurysms)	Stober et al. (1981)	
almon (Coho)	S	181.00	96.00	8	Minor gill damage (epithelial hypertophy, vascular aneurysms, parasites present, inflammation)	Stober et al. (1981)	
almon (Coho)	S	181.00	96.00	8	Minor gill damage (epithelial hypertophy, parasites present)	Stober et al. (1981)	
almon (Coho)	S	467.00	24.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)	
almon (Coho)	S	105.00	96.00	8	Minor gill damage (epithelial hypertophy, parasites present, inflammation)	Stober et al. (1981)	
almon (Coho)	S	337.00	72.00	8	Minor gill damage (epithelial hypertophy, epitethelial degeneration, edema presence)	Stober et al. (1981)	
almon (Coho)	S	273.00	24.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)	
almon (Coho)	S	273.00	48.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)	
Salmon (Coho)	S	273.00	72.00	8	Minor gill damage (parasites present, inflammation)	Stober et al. (1981)	

		Sediment	t dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Coho)	S	273.00	96.00	8	Minor gill damage (epithelial hypertophy, inflammation)	Stober et al. (1981)
Salmon (Coho)	S	120.00	96.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)
Salmon (Coho)	S	203.00	0.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)
Salmon (Coho)	S	203.00	72.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)
Salmon (Coho)	S	400.00	96.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)
Salmon (Coho)	S	606.00	96.00	8	Minor gill damage (epithelial hypertophy, inflammation)	Stober et al. (1981)
Salmon (Coho)	S	618.00	96.00	8	Minor gill damage (epithelial hypertophy, vascular aneurysms)	Stober et al. (1981)
Salmon (Coho)	S	278.00	96.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)
Salmon (Coho)	S	263.00	96.00	8	Minor gill damage (epithelial hypertophy, parasites present, inflammation)	Stober et al. (1981)
Salmon (Coho)	S	85.00	96.00	8	Minor gill damage (epithelial hypertophy, edema presence, inflammation)	Stober et al. (1981)
Salmon (Coho)	S	98.00	96.00	8	Minor gill damage (epithelial hypertophy, epitethelial degeneration)	Stober et al. (1981)
Salmon (Coho)	S	110.00	0.00	8	Minor gill damage (epithelial hypertophy, parasites present, inflammation)	Stober et al. (1981)
Salmon (Coho)	S	110.00	96.00	8	Minor gill damage (epithelial hypertophy, vascular aneurysms, inflammation)	Stober et al. (1981)
Salmon (Coho)	S	42.00	72.00	8	Minor gill damage (epithelial hypertophy, inflammation)	Stober et al. (1981)
Salmon (Coho)	S	9.00	0.00	8	Minor gill damage (epithelial hypertophy, parasites present, vascular aneurysms, inflammation)	Stober et al. (1981)
Salmon (Coho)	S	9.00	72.00	8	Minor gill damage (epithelial hypertophy, vascular aneurysms)	Stober et al. (1981)
Salmon (Coho)	S	9.00	96.00	8	Minor gill damage (epithelial hypertophy, inflammation)	Stober et al. (1981)
Salmon (Coho)	S	36.00	96.00	8	Minor gill damage (epithelial hypertophy, vascular aneurysms, inflamation)	Stober et al. (1981)
Salmon (Chinook)	S	181.00	96.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)
Salmon (Chinook)	S	181.00	96.00	8	Minor gill damage (epithelial hypertophy, parasites present)	Stober et al. (1981)
Salmon (Chinook)	S	181.00	96.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)
Salmon (Chinook)	S	110.00	0.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)
Salmon (Chinook)	S	110.00	96.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)
Salmon (Chinook)	S	110.00	96.00	8	Minor gill damage (epithelial hypertophy, parasites present)	Stober et al. (1981)
Salmon (Chinook)	S	5.00	0.00	8	Minor gill damage (epithelial hypertophy, parasites present)	Stober et al. (1981)
Salmon (Chinook)	S	5.00	0.00	8	Minor gill damage (epithelial hypertophy, parasites present)	Stober et al. (1981)
Salmon (Chinook)	S	348.00	96.00	0	No gill damage	Stober et al. (1981)
Salmon (Chinook)	S	36.00	96.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)
Salmon (Chinook)	S	23.00	0.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)
Salmon (Chinook)	S	23.00	96.00	8	Minor gill damage (epithelial hypertophy)	Stober et al. (1981)
Salmon (Coho)	S	119499.00	96.00	8	Gill damage occurred	Stober et al. (1981)
Salmon (Coho)	S	40084.00	96.00	8	Gill damage occurred	Stober et al. (1981)
Salmon (Coho)	S	647.00	96.00	10	No mortality	Stober et al. (1981)
Salmon (Coho)	S	2174.00	96.00	10	No mortality	Stober et al. (1981)
Salmon (Coho)	S	3775.00	96.00	10	No mortality	Stober et al. (1981)
Salmon (Coho)	S	757.00	96.00	10	No mortality	Stober et al. (1981)
Salmon (Coho)	S	2019.00	96.00	10	No mortality	Stober et al. (1981)
Salmon (Coho)	S	4515.00	96.00	10	No mortality	Stober et al. (1981)
Salmon (Coho)	S	1686.00	96.00	12	Mortality rate 40%	Stober et al. (1981)

		Sediment dose			Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Salmon (Chinook)	S	2565.00	96.00	14	Mortality rate 94.1%	Stober et al. (1981)	
Salmon (Chinook)	S	4349.00	96.00	13	Mortality rate 75%	Stober et al. (1981)	
Salmon (Chinook)	S	3109.00	96.00	14	Mortality rate 84.6%	Stober et al. (1981)	
almon (Chinook)	S	4349.00	96.00	10	Mortality rate 7.2%	Stober et al. (1981)	
Salmon (Coho)	S	1686.00	96.00	11	Mortality rate 22%	Stober et al. (1981)	
almon (Coho)	S	993.00	96.00	8	Gill inflamation present	Stober et al. (1981)	
almon (Chinook)	S	2565.00	96.00	11	Mortality rate 24%	Stober et al. (1981)	
Salmon (Chinook)	S	3109.00	96.00	10	Mortality rate 8.0%	Stober et al. (1981)	
Salmon (Chinook)	S	943.00	96.00	10	Mortality rate 3.4%	Stober et al. (1981)	
almon (Chinook)	S	2565.00	96.00	6	Impaired feeding	Stober et al. (1981)	
almon (Chinook)	S	943.00	96.00	8	Tolerance to stress reduced (VA)	Stober et al. (1981)	
melt (Rainbow)	U	3.00	168.00	3	No change in water preference	Swenson (1978)	
rout (Lake)	J	2.00	0.50	3	Fish avoided turbid areas	Swenson (1978)	
rout (Lake)	J	2.00	1.50	3	Fish avoided turbid areas	Swenson (1978)	
rout (Lake)	J	7.00	4.50	3	Fish avoided turbid areas	Swenson (1978)	
rout (Lake)	J	14.00	2.50	3	Fish avoided turbid areas	Swenson (1978)	
rout (Rainbow)	J	30.00	1656.00	10	No mortality	Herbert & Merkens (1961)	
rout (Rainbow)	J	90.00	1656.00	10	Mortality rate 11%	Herbert & Merkens (1961)	
rout (Rainbow)	J	270.00	1656.00	10	Mortality rate 13%	Herbert & Merkens (1961)	
rout (Rainbow)	J	810.00	1656.00	10	Mortality rate 14%	Herbert & Merkens (1961)	
rout (Rainbow)	J	30.00	3864.00	10	Mortality rate 13%	Herbert & Merkens (1961)	
rout (Rainbow)	J	90.00	3888.00	12	Mortality rate 57%	Herbert & Merkens (1961)	
rout (Rainbow)	J	270.00	1656.00	14	Mortality rate 98%	Herbert & Merkens (1961)	
rout (Rainbow)	J	810.00	1536.00	14	Mortality rate 99%	Herbert & Merkens (1961)	
rout (Rainbow)	J	30.00	2040.00	10	No mortality	Herbert & Merkens (1961)	
rout (Rainbow)	J	90.00	2040.00	10	Mortality rate 10%	Herbert & Merkens (1961)	
rout (Rainbow)	J	270.00	840.00	13	Mortality rate 75%	Herbert & Merkens (1961)	
rout (Rainbow)	J	810.00	1728.00	13	Mortality rate 75%	Herbert & Merkens (1961)	
rout (Rainbow)	J	30.00	960.00	10	Mortality rate 10%	Herbert & Merkens (1961)	
rout (Rainbow)	J	270.00	504.00	12	Mortality rate 44%	Herbert & Merkens (1961)	
rout (Rainbow)	J	810.00	960.00	14	Mortality rate 100%	Herbert & Merkens (1961)	
	J	30.00			•		
rout (Rainbow)	J		1656.00	10	No mortality	Herbert & Merkens (1961)	
rout (Rainbow)		90.00	1656.00	11	Mortality rate 21%	Herbert & Merkens (1961)	
rout (Rainbow)	J	270.00	1656.00	13	Mortality rate 61%	Herbert & Merkens (1961)	
rout (Rainbow)	J	810.00	1656.00	14	Mortality rate 87%	Herbert & Merkens (1961)	
Frout (Rainbow)	J	30.00	4440.00	10	Mortality rate 12%	Herbert & Merkens (1961)	
rout (Rainbow)	J	90.00	4440.00	10	Mortality rate 12%	Herbert & Merkens (1961)	
rout (Rainbow)	J	270.00	2472.00	12	Mortality rate 44%	Herbert & Merkens (1961)	
rout (Rainbow)	J	810.00	4440.00	13	Mortality rate 50%	Herbert & Merkens (1961)	
rout (Rainbow)	J	30.00	960.00	0	No significant difference in growth rates	Herbert & Merkens (1961)	
rout (Rainbow)	J	270.00	504.00	0	No significant difference in growth rates	Herbert & Merkens (1961)	
rout (Rainbow)	J	810.00	960.00	0	No significant difference in growth rates	Herbert & Merkens (1961)	
rout (Rainbow)	J	30.00	1656.00	0	No significant difference in growth rates	Herbert & Merkens (1961)	
rout (Rainbow)	J	90.00	1656.00	0	No significant difference in growth rates	Herbert & Merkens (1961)	
rout (Rainbow)	J	270.00	1656.00	0	No significant difference in growth rates	Herbert & Merkens (1961)	
rout (Rainbow)	J	810.00	1656.00	0	No significant difference in growth rates	Herbert & Merkens (1961)	
rout (Rainbow)	J	30.00	4440.00	0	No significant difference in growth rates	Herbert & Merkens (1961)	
rout (Rainbow)	J	90.00	4440.00	0	No significant difference in growth rates	Herbert & Merkens (1961)	
rout (Rainbow)	J	270.00	2472.00	0	No significant difference in growth rates	Herbert & Merkens (1961)	
Trout (Rainbow)	J	810.00	4440.00	0	No significant difference in growth rates	Herbert & Merkens (1961)	
rout (Rainbow)	J	270.00	840.00	8	Gill epithelium cells thickened, lamellae fused	Herbert & Merkens (1961)	
Frout (Rainbow)	J	810.00	1656.00	8	Gill epithelium cells thickened, lamellae fused	Herbert & Merkens (1961)	

		Sediment	dose		Fish Response	
			. 4030		i isii Kesporise	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Turnet (Deimbern)			. ,	0	Cill anishalium anlla thi dana da la malla a furad	Harbart 9 Marrhaga (1001)
Trout (Rainbow)	J	270.00 810.00	840.00	8	Gill epithelium cells thickened, lamellae fused Gill epithelium cells thickened, lamellae fused	Herbert & Merkens (1961)
Trout (Rainbow)	J		1728.00	8		Herbert & Merkens (1961)
Trout (Rainbow)	J	810.00	1656.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	30.00	3600.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	90.00	3600.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	30.00	1440.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	888.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	1872.00	8	Gill health slightly affected	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	2136.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	2184.00	8	Gill tissue damaged	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	2400.00	8	Gill health slightly affected	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	2424.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	2496.00	8	Gill health slightly affected	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	3384.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	3600.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	4104.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	4704.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	5880.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00	6360.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	810.00	4104.00	0	No effect on gill health	Herbert & Merkens (1961)
Trout (Rainbow)	J	810.00	4704.00	8	Gill health slightly affected	Herbert & Merkens (1961)
Trout (Rainbow)	J	810.00	5880.00	8	Gill health slightly affected	Herbert & Merkens (1961)
Trout (Rainbow)	J	810.00	6360.00	8	Gill health slightly affected	Herbert & Merkens (1961)
Trout (Rainbow)	J	270.00 270.00	1368.00 2904.00	8	Mild fin-rot present	Herbert & Merkens (1961)
Trout (Rainbow)	J J	20.00	0.16	3	Moderate fin-rot present	Herbert & Merkens (1961)
Banded Kokopu Banded Kokopu	J	20.00	0.16	3	23% of fish avoided turbid chamber (control 80%) 34% of fish avoided turbid/odored water (control	Baker (2003)
ванией кокори	J	20.00	0.10	3	23%)	Baker (2003)
Banded Kokopu	J	29.00	0.16	3	34% of fish avoided turbid/odored water (control	Baker (2003)
					23%)	
Banded Kokopu	J	41.00	0.16	3	70% of fish avoided turbid/odored water (control 23%)	Baker (2003)
Smelt (Rainbow)	J	10.00	0.50	1	Alarm reaction	Chiasson (1993)
Smelt (Rainbow)	J	20.00	0.50	1	Alarm reaction	Chiasson (1993)
Smelt (Rainbow)	J	40.00	0.50	1	Alarm reaction	Chiasson (1993)
Smelt (Rainbow)	J	10.00	1.50	1	Alarm reaction on third exposure	Chiasson (1993)
Smelt (Rainbow)	J	40.00	1.00	0	No behavioral effects	Chiasson (1993)
Trout (Brown)	YY	4700.00	305.00	13	77% population reduction	Crosa et al. (2010)
Trout (Brown)	J	4700.00	305.00	13	70% population reduction	Crosa et al. (2010)
Trout (Brown)	F	6000.00	4.72	12	Mortality rate 50%	Garric et al. (1990)
Trout (Brown)	F	10700.00	3.52	12	Mortality rate 50%	Garric et al. (1990)
Trout (Brown)	F	15700.00	2.53	12	Mortality rate 50%	Garric et al. (1990)
Trout (Brown)	F	5700.00	17.00	12	Mortality rate 50%	Garric et al. (1990)
Trout (Brown)	F	10400.00	12.00	12	Mortality rate 50%	Garric et al. (1990)
Trout (Brown)	F	16300.00	7.05	12	Mortality rate 50%	Garric et al. (1990)
Trout (Brown)	F	6000.00	32.00	12	Mortality rate 50%	Garric et al. (1990)
Trout (Brown)	F	10900.00	11.00	12	Mortality rate 50%	Garric et al. (1990)
Trout (Brown)	F	15800.00	7.93	12	Mortality rate 50%	Garric et al. (1990)
Trout (Brown)	F	6000.00	2.88	11	Mortality rate 20%	Garric et al. (1990)
Trout (Brown)	F	10700.00	2.42	11	Mortality rate 20%	Garric et al. (1990)
Trout (Brown)	F	15700.00	2.02	11	Mortality rate 20%	Garric et al. (1990)
Trout (Brown)	F	5700.00	10.00	11	Mortality rate 20%	Garric et al. (1990)
Trout (Brown)	F	10400.00	7.43	11	Mortality rate 20%	Garric et al. (1990)

		Sediment	dose		Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
rout (Brown)	F	16300.00	3.12	11	Mortality rate 20%	Garric et al. (1990)	
rout (Brown)	F	6000.00	15.00	11	Mortality rate 20%	Garric et al. (1990)	
rout (Brown)	F	10900.00	6.03	11	Mortality rate 20%	Garric et al. (1990)	
rout (Brown)	F	15800.00	5.22	11	Mortality rate 20%	Garric et al. (1990)	
rout (Brown)	F	6000.00	2.88	10	Mortality rate 10%	Garric et al. (1990)	
rout (Brown)	F	10700.00	1.95	10	Mortality rate 10%	Garric et al. (1990)	
rout (Brown)	F	15700.00	1.77	10	Mortality rate 10%	Garric et al. (1990)	
rout (Brown)	F	5700.00	8.02	10	Mortality rate 10%	Garric et al. (1990)	
rout (Brown)	F	10400.00	5.77	10	Mortality rate 10%	Garric et al. (1990)	
rout (Brown)	F	16300.00	1.93	10	Mortality rate 10%	Garric et al. (1990)	
rout (Brown)	F	6000.00	9.43	10	Mortality rate 10%	Garric et al. (1990)	
rout (Brown)	F	10900.00	4.30	10	Mortality rate 10%	Garric et al. (1990)	
rout (Brown)	F	15800.00	4.08	10	Mortality rate 10%	Garric et al. (1990)	
rout (Brown)	F	7300.00	12.00	12	Mortality rate 50%	Garric et al. (1990)	
rout (Brown)	F	7300.00	8.83	11	Mortality rate 20%	Garric et al. (1990)	
rout (Brown)	F	7300.00	7.47	10	Mortality rate 10%	Garric et al. (1990)	
rout (Brown)	F	10300.00	6.06	12	Mortality rate 50%	Garric et al. (1990)	
rout (Brown)	F	10300.00	4.60	11	Mortatlity rate 20%	Garric et al. (1990)	
rout (Brown)	F	10300.00	3.92	10	Mortality rate 10%	Garric et al. (1990)	
rout (Brown)	F	11000.00	0.30	12	Mortality rate 50%	Garric et al. (1990)	
rout (Brown)	F	11000.00	0.20	11	Mortality rate 20%	Garric et al. (1990)	
out (Brown)	F	11000.00	0.16	10	Mortality rate 10%	Garric et al. (1990)	
out (Brown)	F	19000.00	48.00	11	Mortality rate 24%	Garric et al. (1990)	
out (Brown)	F	19000.00	48.00	11	Mortality rate 20%	Garric et al. (1990)	
out (Brown)	F	33000.00	48.00	14	Mortality rate >80%	Garric et al. (1990)	
out (Brown)	F	33000.00	48.00	14	Mortality rate >80%	Garric et al. (1990)	
erch (European)	J	10.00	3.00	0	No behavioral effects (NTU)	Granqvist & Mattila (2004)	
erch (European)	J	20.00	3.00	0	No behavioral effects (NTU)	Granqvist & Mattila (2004)	
erch (European)	J	30.00	3.00	0	No behavioral effects (NTU)	Granqvist & Mattila (2004)	
erch (European)	J	10.00	1.50	4	3% decrease in prey consumption (NTU)	Granqvist & Mattila (2004)	
erch (European)	J	20.00	1.50	4	27% decrease in prey consumption (NTU)	Granqvist & Mattila (2004)	
erch (European)	J	30.00	1.50	4	34% decrease in prey consumption (NTU)	Granqvist & Mattila (2004)	
almon (Chum)	J	40.00	0.80	4	Feeding activity reduced 43% (NTU)	DeRobertis et al. (2003)	
/alleye Pollock	J	40.00	0.80	4	Feeding activity reduced 35% (NTU)	DeRobertis et al. (2003)	
ablefish	J	5.00	0.80	4	Feeding activity reduced 70% (NTU)	DeRobertis et al. (2003)	
ablefish	J	10.00	0.80	4	Feeding ceased (NTU)	DeRobertis et al. (2003)	
rout (Brown)	Υ	150.00	0.50	0	Feeding activity increased 3.13%	Greer et al. (2015)	
rout (Brown)	Υ	300.00	0.50	4	Feeding activity reduced 6.27%	Greer et al. (2015)	
rout (Brown)	Υ	450.00	0.50	4	Feeding activity reduced 21.2%	Greer et al. (2015)	
rout (Brown)	Υ	600.00	0.50	4	Feeding activity reduced 31.4%	Greer et al. (2015)	
almon (Chum)	J	31.00	42.00	0	Decreased vulnerability to predation (by 19%, NTU)	Gregory & Levings (1996)	
almon (Chinook)	J	57.00	162.00	0	Decreased vulnerability to predation (by 41%, NTU)	Gregory & Levings (1996)	
almon (Sockeye)	J	29.00	42.00	0	Decreased vulnerability to predation (by 41%, NTU)	Gregory & Levings (1996)	
almon (Chinook)	J	23.00	0.02	2	Predator response changed (NTU)	Gregory (1993)	
almon (Coho)	U	41000.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
almon (Coho)	U	36000.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
almon (Coho)	U	33000.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
almon (Coho)	U	30000.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
almon (Coho)	U	25000.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
almon (Coho)	U	24000.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	

		Sediment dose			Fish Response	_	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Salmon (Coho)	U	19000.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
Salmon (Coho)	U	16000.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
Salmon (Coho)	U	0.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
Salmon (Coho)	U	41000.00	96.00	8	Mineral particles present in gills (0.5/lamellae; 0/lamellae control)	Martens & Servizi (1993)	
Salmon (Coho)	U	36000.00	96.00	8	Mineral particles present in gills (1.25/lamellae; 0/lamellae control)	Martens & Servizi (1993)	
Salmon (Coho)	U	33000.00	96.00	8	No mineral particles present in gills (0 particles/lamellae; 0 particles/lamellae control)	Martens & Servizi (1993)	
Salmon (Coho)	U	30000.00	96.00	8	Mineral particles present in gills (2.5 particles/lamellae; 0 particles/lamellae control)	Martens & Servizi (1993)	
Salmon (Coho)	U	25000.00	96.00	8	Mineral particles present in gills (2 particles/lamellae; 0 particles/lamellae control)	Martens & Servizi (1993)	
Salmon (Coho)	U	24000.00	96.00	8	Mineral particles present in gills (0.5 particles/lamellae; 0 particles/lamellae control)	Martens & Servizi (1993)	
Salmon (Coho)	U	19000.00	96.00	8	Mineral particles present in gills (0.5 particles/lamellae; 0 particles/lamellae control)	Martens & Servizi (1993)	
Salmon (Coho)	U	16000.00	96.00	8	Mineral particles present in gills (2.5 particles/lamellae; 0 particles/lamellae control)	Martens & Servizi (1993)	
Salmon (Coho)	U	0.00	96.00	0	No mineral particles present in gills (0 particles/lamellae; 0 particles/lamellae control)	Martens & Servizi (1993)	
Salmon (Sockeye)	U	245.00	1800.00	8	Mineral particles found in gill samples (average 25)	Martens & Servizi (1993)	
Salmon (Chinook)	U	72.00	1704.00	8	Intracelluar mineral particles present in gill samples (average 0.9)	Martens & Servizi (1993)	
Salmon (Pink)	F	21000.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
Salmon (Pink)	F	17000.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
Salmon (Pink)	F	7000.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
Salmon (Pink)	F	5000.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
Salmon (Pink)	F	4000.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
Salmon (Pink)	F	2000.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
Salmon (Pink)	F	0.00	96.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
Salmon (Pink)	F	21000.00	96.00	8	Mineral particles present in gills (6.5 particles/lamellae; 0 particles/lamellae control)	Martens & Servizi (1993)	
Salmon (Pink)	F	17000.00	96.00	8	Mineral particles present in gill samples (N particles= 11)	Martens & Servizi (1993)	
Salmon (Pink)	F	7000.00	96.00	8	Mineral particles present in gill samples (N particles= 5)	Martens & Servizi (1993)	
Salmon (Pink)	F	5000.00	96.00	8	Mineral particles present in gill samples (N particles= 3)	Martens & Servizi (1993)	
Salmon (Pink)	F	4000.00	96.00	8	Mineral particles present in gill samples (N particles= 4)	Martens & Servizi (1993)	
Salmon (Pink)	F	2000.00	96.00	0	No mineral particles present in gill samples	Martens & Servizi (1993)	
Salmon (Pink)	F	0.00	96.00	0	No mineral particles present in gill samples	Martens & Servizi (1993)	
Salmon (Coho)	U	116.00	1032.00	8	Intracelluar mineral particles present in gill samples (average 2.4)	Martens & Servizi (1993)	
Salmon (Coho)	U	116.00	1032.00	8	Mineral particles present in spleen tissues (33%)	Martens & Servizi (1993)	
Salmon (Sockeye)	U	116.00	1032.00	8	Mineral particles present in gill samples (average 27)	Martens & Servizi (1993)	
Salmon (Sockeye)	U	116.00	1032.00	8	Intracelluar mineral particles present in gill samples (average 14.6)	Martens & Servizi (1993)	
Salmon (Sockeye)	U	16.00	1704.00	8	Mineral particles present in spleen tissues (100%)	Martens & Servizi (1993)	
Salmon (Sockeye)	U	72.00	1704.00	8	Intracelluar mineral particles present in gill samples (average 9.1)	Martens & Servizi (1993)	
Salmon (Chinook)	U	116.00	1032.00	8	Mineral particles present in spleen tissues (33%)	Martens & Servizi (1993)	
Salmon (Sockeye)	U	116.00	1032.00	0	No cytopathological changes observed	Martens & Servizi (1993)	
Salmon (Sockeye)	U	271.00	1800.00	0	No cytopathological changes observed	Martens & Servizi (1993)	

Species Perch (White) Perch (White) Perch (White) Menhaden (Atlantic) Menhaden (Atlantic) Menhaden	Life Stage ^o J J J	Exposure Concentration (mg/L) 100.00 500.00	Exposure duration (h)	SEV ^b	Fish Response Description ^c	Reference
Perch (White) Perch (White) Perch (White) Menhaden (Atlantic) Menhaden (Atlantic) Menhaden	Stage ^a J J	tration (mg/L)		SEV ^b	Description ^c	Reference
Perch (White) Perch (White) Menhaden (Atlantic) Menhaden (Atlantic) Menhaden	J					
Perch (White) Menhaden (Atlantic) Menhaden (Atlantic) Menhaden	J	500.00	96.00	11	Egg mortality 34.0% (control 37.5%)	Auld & Schubel (1974)
Menhaden (Atlantic) Menhaden (Atlantic) Menhaden	-		96.00	13	Egg mortality 70.0% (control 37.5%)	Auld & Schubel (1974)
(Atlantic) Menhaden (Atlantic) Menhaden	J	1000.00	96.00	13	Egg mortality 69.0% (control 37.5%)	Auld & Schubel (1974)
(Atlantic) Menhaden		50.00	96.00	14	Egg mortality 87.5% (control 90.0%)	Auld & Schubel (1974)
	J	100.00	96.00	14	Egg mortality 100% (control 90.0%)	Auld & Schubel (1974)
(Atlantic)	J	500.00	96.00	14	Egg mortality 97.5% (control 90.0%)	Auld & Schubel (1974)
Menhaden (Atlantic)	J	1000.00	96.00	14	Egg mortality 100% (control 90.0%)	Auld & Schubel (1974)
Salmon (Coho)	Υ	450.00	4.00	8	Plasma cortisol increased by 267% (11ng/mL, control 3ng/mL)	Redding et al. (1987)
Salmon (Coho)	Υ	450.00	12.00	5	Plasma cortisol decreased by 35% (11ng/mL, control 17ng/mL)	Redding et al. (1987)
Salmon (Coho)	Υ	450.00	24.00	8	Plasma cortisol increased by 700% (16ng/mL, control 2ng/mL)	Redding et al. (1987)
Salmon (Coho)	Υ	450.00	48.00	8	Plasma cortisol increased by 300% (4ng/mL, control 1ng/mL)	Redding et al. (1987)
Salmon (Coho)	Υ	450.00	96.00	5	Plasma cortisol decreased by 33% (3ng/mL, control 2ng/mL)	Redding et al. (1987)
Salmon (Coho)	Υ	450.00	168.00	8	Plasma cortisol increased by 200% (6ng/mL, control 2ng/mL)	Redding et al. (1987)
Salmon (Coho)	Υ	2500.00	4.00	8	Plasma cortisol increased by 900% (30ng/mL, control 3ng/mL)	Redding et al. (1987)
Salmon (Coho)	Υ	2500.00	12.00	8	Plasma cortisol increased by 82% (31ng/mL, control 17ng/mL)	Redding et al. (1987)
Salmon (Coho)	Υ	2500.00	24.00	8	Plasma cortisol increased by 450% (11ng/mL, control 2ng/mL)	Redding et al. (1987)
Salmon (Coho)	Υ	2500.00	48.00	8	Plasma cortisol increased by 800% (9ng/mL, control 1ng/mL)	Redding et al. (1987)
Salmon (Coho)	Υ	2500.00	96.00	8	Plasma cortisol increased by 100% (6ng/mL, control 2ng/mL)	Redding et al. (1987)
Salmon (Coho)	Υ	2500.00	168.00	8	Plasma cortisol increased by 250% (7ng/mL, control 2ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	450.00	1.00	5	Plasma cortisol decreased by 33% (2ng/mL, control 3ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	450.00	4.00	8	Plasma cortisol increased by 50% (3ng/mL, control 2ng/mL)	
Salmon (Steelhead)	Υ	450.00	12.00	8	Plasma cortisol increased by 50% (3ng/mL, control 2ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	450.00	24.00	0	No change in plasma cortisol (3ng/mL, 3control ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	450.00	48.00	8	Plasma cortisol increased by 600% (7ng/mL, control 1ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	450.00	96.00	5	Plasma cortisol decreased by 33% (2ng/mL, control 3ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	450.00	192.00	8	Plasma cortisol increased by 50% (3ng/mL, control 2ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	2500.00	1.00	8	Plasma cortisol increased by 133% (7ng/mL, control 3ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	2500.00	4.00	8	Plasma cortisol increased by 200% (6ng/mL, control 2ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	2500.00	12.00	8	Plasma cortisol increased by 850% (19ng/mL, control 2ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	2500.00	24.00	8	Plasma cortisol increased by 1267% (41ng/mL, control 3ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	2500.00	48.00	8	Plasma cortisol increased by 2200% (23ng/mL, control 1ng/mL)	Redding et al. (1987)

Species	Life	Sediment	. uose		Fish Response	
	LIIE	Exposure Concen- Exposure		CEVIA	Descriptions	Poforonco
	Stage ^a	tration (mg/L)	duration (h)	SEV ^b	Description ^c	Reference
Salmon (Steelhead)	Υ	2500.00	96.00	8	Plasma cortisol increased by 433% (16ng/mL, control 3ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	2500.00	192.00	5	Plasma cortisol decreased by 50% (1ng/mL, control 2ng/mL)	Redding et al. (1987)
Salmon (Coho)	Υ	450.00	48.00	0	No change in feeding rate (scaled 2.3, control scaled 2.2)	Redding et al. (1987)
Salmon (Coho)	Υ	2500.00	48.00	4	Feeding rate reduced (scaled 0.8, control scaled 2.2)	Redding et al. (1987)
Salmon (Coho)	Υ	450.00	168.00	4	Feeding rate reduced (scaled 2.5, control scaled 2.8)	Redding et al. (1987)
Salmon (Coho)	Υ	2500.00	168.00	4	Feeding rate reduced (scaled 0.1, control scaled 2.8)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	3.00	8	Cortisol concentrations increased (28ng/mL, control: 5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	3.00	8	Cortisol concentrations increased (22ng/mL, control: 5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	3.00	8	Cortisol concentrations increased (9ng/mL, control: 5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	3.00	8	Cortisol concentrations increased (42ng/mL, control: 5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	3.00	8	Cortisol concentrations increased (10ng/mL, control: 5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	9.00	8	Cortisol concentrations increased (20ng/mL, control: 4.5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	9.00	8	Cortisol concentrations increased (79ng/mL, control: 4.5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	9.00	8	Cortisol concentrations increased (43ng/mL, control: 4.5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	9.00	8	Cortisol concentrations increased (77ng/mL, control: 4.5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	9.00	8	Cortisol concentrations increased (80ng/mL, control: 4.5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	9.00	8	Cortisol concentrations increased (78ng/mL, control: 4.5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	24.00	8	Cortisol concentrations increased (39ng/mL, control: 4.6ng/ml)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	24.00	8	Cortisol concentrations increased (78ng/mL, control: 4.6ng/ml)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	24.00	8	Cortisol concentrations increased (40ng/mL, control: 4.6ng/ml)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	24.00	8	Cortisol concentrations increased (28ng/mL, control: 4.6ng/ml)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	24.00	8	Cortisol concentrations increased (31ng/mL, control: 4.6ng/ml)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	24.00	8	Cortisol concentrations increased (41ng/mL, control: 4.6ng/ml)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	48.00	8	Cortisol concentrations increased (5ng/mL, control: 4.5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	48.00	8	Cortisol concentrations increased (20ng/mL, control: 4.5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	48.00	8	Cortisol concentrations increased (43ng/mL, control: 4.5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	48.00	8	Cortisol concentrations increased (29ng/mL, control: 4.5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	48.00	8	Cortisol concentrations increased (17ng/mL, control: 4.5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	48.00	8	Cortisol concentrations increased (18ng/mL, control: 4.5ng/mL)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	3.00	5	Plasma hematocrits decreased (47%,control 48%)	Redding et al. (1987)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Steelhead)	Y	500.00	9.00	8	Plasma hematocrits increased (50%,control 43%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	24.00	8	Plasma hematocrits increased (47%,control 44%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	48.00	8	Plasma hematocrits increased (50%,control 47%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	3.00	8	Plasma hematocrits increased (45%,control 44%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	9.00	8	Plasma hematocrits increased (49%,control 38%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	24.00	8	Plasma hematocrits increased (50%,control 40%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	48.00	8	Plasma hematocrits increased (45%,control 37%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	9.00	8	Plasma hematocrits increased (40%,control 37%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	24.00	8	Plasma hematocrits increased (46%,control 42%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	500.00	48.00	8	Plasma hematocrits increased (43%,control 37%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	3.00	5	Plasma hematocrits decreased (47%,control 48%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	9.00	8	Plasma hematocrits increased (53%,control 43%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	24.00	8	Plasma hematocrits increased (55%, control 44%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	48.00	8	Plasma hematocrits increased (52%,control 47%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	3.00	0	No change in plasma hematocrits (44%,control 44%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	9.00	8	Plasma hematocrits increased (46%,control 38%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	24.00	8	Plasma hematocrits increased (46%,control 40%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	48.00	8	Plasma hematocrits increased (39%,control 37%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	9.00	8	Plasma hematocrits increased (47%,control 37%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	24.00	8	Plasma hematocrits increased (46%,control 42%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	3000.00	48.00	8	Plasma hematocrits increased (45%,control 37%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	0.83	3.00	8	Plasma hematocrits decreased (47%,control 48%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	0.83	9.00	8	Plasma hematocrits increased (49%,control 43%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	0.83	24.00	8	Plasma hematocrits increased (46%,control 44%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	2500.00	48.00	13	Fish tolerance to Vibrio anguillarum infection reduced (77%, control 53%)	Redding et al. (1987)
Salmon (Steelhead)	Υ	2500.00	48.00	13	Fish died from Vibrio anguillarum infection faster (4.1 days, control 4.65 days)	Redding et al. (1987)
Carp (Rock)	J	200.00	18.00	14	Mortality rate 100% (control LC100 21.4 hrs)	Feng et al. (2019)
Carp (Rock)	J	600.00	16.00	14	Mortality rate 100% (control LC100 21.4 hrs)	Feng et al. (2019)
Carp (Rock)	J	1000.00	11.00	14	Mortality rate 100% (control LC100 21.4 hrs)	Feng et al. (2019)
Carp (Rock)	J	200.00	10.00	14	Mortality rate 100% (control LC100 11 hrs)	Feng et al. (2019)
Carp (Rock)	J	600.00	7.50	14	Mortality rate 100% (control LC100 11 hrs)	Feng et al. (2019)
Carp (Rock)	J	1000.00	7.00	14	Mortality rate 100% (control LC100 11 hrs)	Feng et al. (2019)
Carp (Rock)	J	200.00	7.90	14	Mortality rate 100% (control LC100 7 hrs)	Feng et al. (2019)

		Sediment	t dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Carp (Rock)	J	600.00	6.00	14	Mortality rate 100% (control LC100 7 hrs)	Feng et al. (2019)
Carp (Rock)	J	1000.00	5.00	14	Mortality rate 100% (control LC100 7 hrs)	Feng et al. (2019)
Carp (Rock)	J	200.00	4.30	14	Mortality rate 100% (control LC100 5 hrs)	Feng et al. (2019)
Carp (Rock)	J	600.00	4.00	14	Mortality rate 100% (control LC100 5 hrs)	Feng et al. (2019)
Carp (Rock)	J	1000.00	3.60	14	Mortality rate 100% (control LC100 5 hrs)	Feng et al. (2019)
Carp (Rock)	J	200.00	13.00	12	Mortality rate 50% (control LC50 13.8 hrs)	Feng et al. (2019)
Carp (Rock)	J	600.00	11.00	12	Mortality rate 50% (control LC50 13.8 hrs)	Feng et al. (2019)
Carp (Rock)	J	1000.00	9.40	12	Mortality rate 50% (control LC50 13.8 hrs)	Feng et al. (2019)
Carp (Rock)	J	200.00	7.00	12	Mortality rate 50% (control LC50 6.93 hrs)	Feng et al. (2019)
Carp (Rock)	J	600.00	5.55	12	Mortality rate 50% (control LC50 6.93 hrs)	Feng et al. (2019)
Carp (Rock)	J	1000.00	4.85	12	Mortality rate 50% (control LC50 6.93 hrs)	Feng et al. (2019)
Carp (Rock)	J	200.00	5.20	12	Mortality rate 50% (control LC50 4.68 hrs)	Feng et al. (2019)
Carp (Rock)	J	600.00	4.15	12	Mortality rate 50% (control LC50 4.68 hrs)	Feng et al. (2019)
Carp (Rock)	J	1000.00	3.80	12	Mortality rate 50% (control LC50 4.68 hrs)	Feng et al. (2019)
Carp (Rock)	J	200.00	3.28	12	Mortality rate 50% (control LC50 3.50 hrs)	Feng et al. (2019)
Carp (Rock)	J	600.00	3.10	12	Mortality rate 50% (control LC50 3.50 hrs)	Feng et al. (2019)
Carp (Rock)	J	1000.00	2.95	12	Mortality rate 50% (control LC50 3.50 hrs)	Feng et al. (2019)
Bass (Largemouth)	J	10.00	0.30	4	Rate of feeding reduced 15% (NTU)	Huenemann et al. (2012)
Bass (Largemouth)	J	25.00	0.30	4	Rate of feeding reduced 13% (NTU)	Huenemann et al. (2012)
Bass (Largemouth)	J	50.00	0.30	4	Rate of feeding reduced 40% (NTU)	Huenemann et al. (2012)
Bass (Largemouth)	J	100.00	0.30	4	Rate of feeding reduced 21% (NTU)	Huenemann et al. (2012)
ass (Largemouth)	J	250.00	0.30	4	Rate of feeding reduced 85% (NTU)	Huenemann et al. (2012)
ass (Largemouth)	J	10.00	0.30	4	Reduced capacity to locate prey (375 seconds, control: 210 seconds, NTU)	Huenemann et al. (2012)
Bass (Largemouth)	J	25.00	0.30	4	Reduced capacity to locate prey (380 seconds, control: 210 seconds, NTU)	Huenemann et al. (2012)
Bass (Largemouth)	J	50.00	0.30	4	Reduced capacity to locate prey (580 seconds, control: 210 seconds, NTU)	Huenemann et al. (2012)
Bass (Largemouth)	J	100.00	0.30	4	Reduced capacity to locate prey (575 seconds, control: 210 seconds, NTU)	Huenemann et al. (2012)
Bass (Largemouth)	J	250.00	0.30	4	Reduced capacity to locate prey (1090 seconds, control: 210 seconds, NTU)	Huenemann et al. (2012)
Salmon (Chinook)	J	30000.00	48.00	3	62% of fish sought cover, direct behavior response, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	30% of fish sought cover, direct behavior response, sediment treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	16% offish sought cover, exploratory behavior response, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	31% of fish sought cover, exploratory behavior response, sediment treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	1	19% of fish did not seek cover, exploratory behavior response, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	1	20% of fish did not seek cover, exploratory behavior response, sediment treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	2	3% of fish did not seek cover, stuporous behavior responses, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	2	19% of fish did not seek cover, stuporous behavior response, sediment treatment	Korstrom & Birtwell (2006)
Salmon (Chinook) Salmon (Chinook)	J	30000.00	48.00 48.00	3	Fish immediately sought cover, direct behavior response, clear treatment Fish immediately sought cover, direct behavior	Korstrom & Birtwell (2006) Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	response, sediment treatment Fish sought cover in 30 seconds, exploratory	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	behavior response, clear treatment Fish sought cover in 50 seconds, exploratory	Korstrom & Birtwell (2006)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Chinook)	J	30000.00	48.00	0	Fish did not seek cover, exploratory behavior response, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	0	Fish did not seek cover, exploratory behavior response, sediment treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	2	Fish did not seek cover, stuporous behavior response, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	2	Fish did not seek cover, stuporous behavior response, sediment treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	Fish traveled 86 cm to seek cover, direct behavior response, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	Fish traveled 86 cm to seek cover, direct behavior response, sediment treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	Fish traveled 138 cm to seek cover, exploratory behavior response, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	Fish traveled 164 cm to seek cover, exploratory behavior response, sediment treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	0	Fish traveled 225 cm, did not seek cover, exploratory behavior response, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	0	Fish traveled 323 cm, did not seek cover, exploratory behavior response, sediment treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	Fish sought cover at 3.98 bl/s, direct behavior response, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	Fish sought cover at 3.20 bl/s, direct behavior response, sediment treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	Fish sought cover at 0.19 bl/s, exploratory behavior response, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	Fish sought cover at 0.21 bl/s, exploratory behavior response, sediment treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	0	Fish did not seek cover at 0.09 bl/s, exploratory behavior response, clear treatment	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	0	Fish did not seek cover at 0.19 bl/s, exploratory behavior response	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	3	Fish took less time to find cover (85.8 seconds, control 174.1 seconds)	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	5	Fish speed reduced (0.9 bl/s, control 2.6 bl/s)	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	5	Fish took more time to find cover (94.6 seconds, control 25.2 seconds)	Korstrom & Birtwell (2006)
Salmon (Chinook)	J	30000.00	48.00	5	Fish speed reduced (1.5 bl/s, control 3.3 bl/s)	Korstrom & Birtwell (2006)
Mandarin fish	J	0.00	2.00	4	Foraging success rate 46% (control 46%, NTU)	Li et al. (2013)
Mandarin fish	J	10.00	2.00	4	Foraging success rate 47% (control 46%, NTU)	Li et al. (2013)
Mandarin fish	J	20.00	2.00	4	Foraging success rate 49% (control 46%, NTU)	Li et al. (2013)
Mandarin fish	J	40.00	2.00	4	Foraging success rate 50% (control 46%, NTU)	Li et al. (2013)
Mandarin fish	J	80.00	2.00	4	Foraging success rate 51% (control 46%, NTU)	Li et al. (2013)
Mandarin fish	J	10.00	2.00	4	Foraging success rate 51% (control 50%, NTU)	Li et al. (2013)
Mandarin fish	J	20.00	2.00	4	Foraging success rate 50% (control 50%, NTU)	Li et al. (2013)
Mandarin fish	J	40.00	2.00	4	Foraging success rate 45% (control 50%, NTU)	Li et al. (2013)
Mandarin fish	J	80.00	2.00	4	Foraging success rate 49% (control 50%, NTU)	Li et al. (2013)
Cod (Atlantic)	J	10.00	1.00	2	Fish activity increased (599 activity/hour, control 505 activity/hour, NTU)	Meager & Batty (2007)
Cod (Atlantic)	J	16.00	1.00	2	Fish activity decreased (424 activity/hour, control 505 activity/hour, NTU)	Meager & Batty (2007)
Cod (Atlantic)	J	32.00	1.00	2	Fish activity decreased (279 activity/hour, control 505 activity/hour, NTU)	Meager & Batty (2007)
Cod (Atlantic)	J	55.00	1.00	2	Fish activity increased (677 activity/hour, control 505 activity/hour, NTU)	Meager & Batty (2007)
Cod (Atlantic)	J	1.00	0.17	2	Fish activity with prey odor (82 activity/hour, NTU)	Meager & Batty (2007)

		Sediment dose			Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Cod (Atlantic)	J	10.00	0.33	4	Fish activity with prey odor decreased (80 activity/hour, control 82 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	16.00	0.50	2	Fish activity with prey odor increased (90 activity/hour, control 82 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	32.00	0.67	2	Fish activity with prey odor increased (93 activity/hour, control 82 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	55.00	0.83	2	Fish activity with prey odor increased (89 activity/hour, control 82 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	55.00	1.00	2	Fish activity with prey odor increased (92 activity/hour, control 82 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	55.00	1.17	2	Fish activity with prey odor increased (126 activity/hour, control 82 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	55.00	1.33	4	Fish activity with prey odor decreased (45 activity/hour, control 82 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	1.00	0.17	1	Fish activity without prey odor (91 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	10.00	0.33	2	Fish activity without prey odor decreased (74 activity/hour, control 91 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	16.00	0.50	2	Fish activity without prey odor decreased (77 activity/hour, control 91 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	32.00	0.67	2	Fish activity without prey odor decreased (75 activity/hour, control 91 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	55.00	0.83	2	Fish activity without prey odor decreased (87 activity/hour, control 91 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	55.00	1.00	2	Fish activity without prey odor decreased (58 activity/hour, control 91 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	55.00	1.17	2	Fish activity without prey odor decreased (42 activity/hour, control 91 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	55.00	1.33	2	Fish activity without prey odor decreased (24 activity/hour, control 91 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	10.00	0.33	4	Prey search time 20 minutes (NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	10.00	0.47	4	Prey search time increased (28 minutes, control 20 minutes, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	10.00	0.53	4	Prey search time increased (32 minutes, control 20 minutes, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	10.00	0.55	4	Prey search time increased (33 minutes, control 20 minutes, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	10.00	0.62	4	Prey search time increased (37 minutes, control 20 minutes, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	10.00	1.00	2	Fish activity increased (599 activity/hour, control 499 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	10.00	1.00	2	Fish activity decreased (422 activity/hour, control 499 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	10.00	1.00	2	Fish activity decreased (277 activity/hour, control 499 activity/hour, NTU)	Meager & Batty (2007)	
Cod (Atlantic)	J	10.00	1.00	2	Fish activity increased (676 activity/hour, control 499 activity/hour, NTU)	Meager & Batty (2007)	
Salmon (Atlantic)	J	20.00	2.50	2	Increase in foraging behavior (0.6 ,control 0.1)	Robertson et al. (2007)	
Salmon (Atlantic)	J	40.00	2.50	2	Increase in foraging behavior (0.6 ,control 0.1)	Robertson et al. (2007)	
Salmon (Atlantic)	J	60.00	2.50	2	Increase in foraging behavior (0.9 ,control 0.1)	Robertson et al. (2007)	
Salmon (Atlantic)	J	80.00	2.50	2	Increase in foraging behavior (0.6 ,control 0.1)	Robertson et al. (2007)	
Salmon (Atlantic)	J	120.00	2.50	2	Increase in foraging behavior (0.5 ,control 0.1)	Robertson et al. (2007)	
Salmon (Atlantic)	J	180.00	2.50	2	Increase in foraging behavior (0.6 ,control 0.1)	Robertson et al. (2007)	
Salmon (Atlantic)	J	260.00	2.50	2	Increase in foraging behavior (0.8 ,control 0.1)	Robertson et al. (2007)	
Salmon (Atlantic)	J	360.00	2.50	2	Increase in foraging behavior (0.4 ,control 0.1)	Robertson et al. (2007)	
Salmon (Atlantic)	J	460.00	2.50	0	No change in behavior or increase in foraging (0.1 ,control 0.1)	Robertson et al. (2007)	
Salmon (Atlantic)	J	20.00	2.50	2	Fish abandoned cover (0.3, control 0.4)	Robertson et al. (2007)	

		Sediment dose			Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Atlantic)	J	40.00	2.50	2	Fish abandoned cover (0.3, control 0.4)	Robertson et al. (2007)
Salmon (Atlantic)	J	60.00	2.50	2	Fish abandoned cover (0.2, control 0.4)	Robertson et al. (2007)
Salmon (Atlantic)	J	80.00	2.50	1	Fish did not take cover (0, control 0.4)	Robertson et al. (2007)
Salmon (Atlantic)	J	120.00	2.50	1	Fish did not take cover (0, control 0.4)	Robertson et al. (2007)
Salmon (Atlantic)	J	180.00	2.50	1	Fish did not take cover (0, control 0.4)	Robertson et al. (2007)
Salmon (Atlantic)	J	260.00	2.50	1	Fish did not take cover (0, control 0.4)	Robertson et al. (2007)
Salmon (Atlantic)	J	360.00	2.50	1	Fish did not take cover (0, control 0.4)	Robertson et al. (2007)
Salmon (Atlantic)	J	460.00	2.50	1	Fish did not take cover (0, control 0.4)	Robertson et al. (2007)
Salmon (Atlantic)	J	20.00	2.50	3	Territorial behavior displayed, no difference from control (1.0, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	40.00	2.50	3	Territorial behavior displayed, no difference from control (1.0, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	60.00	2.50	3	Decrease in territorial behavior observed (0.9, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	80.00	2.50	3	Decrease in territorial behavior observed (0.7, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	120.00	2.50	3	Decrease in territorial behavior observed (0.8, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	180.00	2.50	3	Decrease in territorial behavior observed (0.3, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	260.00	2.50	3	Decrease in territorial behavior observed (0.4, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	360.00	2.50	3	Decrease in territorial behavior observed (0.3, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	460.00	2.50	3	Decrease in territorial behavior observed (0.2, control 1.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	20.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	40.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	60.00	2.50	2	Increase in alarm reaction observed (0.1, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	80.00	2.50	2	Increase in alarm reaction observed (0.6, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	120.00	2.50	2	Increase in alarm reaction observed (0.9, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	180.00	2.50	1	Alarm reaction observed (1.0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	260.00	2.50	1	Alarm reaction observed (1.0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	360.00	2.50	1	Alarm reaction observed (1.0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	460.00	2.50	1	Alarm reaction observed (1.0, control 0)	Robertson et al. (2007)
Salmon (Atlantic)	J	20.00	2.50	2	Increase in foraging behavior (0.5,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	40.00	2.50	2	Increase in foraging behavior (0.8,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	60.00	2.50	2	Increase in foraging behavior (0.6,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	80.00	2.50	2	Increase in foraging behavior (0.5,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	120.00	2.50	2	Increase in foraging behavior (0.6,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	180.00	2.50	2	Increase in foraging behavior (0.6,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	260.00	2.50	2	Increase in foraging behavior (0.6,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	360.00	2.50	2	Increase in foraging behavior (0.6,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	460.00	2.50	2	Increase in foraging behavior (0.4,control 0.0)	Robertson et al. (2007)
Salmon (Atlantic)	J	20.00	2.50	2	Fish abandoned cover (0.5, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	40.00	2.50	2	Fish abandoned cover (0.5, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	60.00	2.50	2	Fish abandoned cover (0.4, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	80.00	2.50	2	Fish abandoned cover (0.4, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	120.00	2.50	2	Fish abandoned cover (0.4, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	180.00	2.50	2	Fish abandoned cover (0.3, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	260.00	2.50	2	Fish abandoned cover (0.3, control 0.6)	Robertson et al. (2007)
Salmon (Atlantic)	J	360.00	2.50	2	Fish abandoned cover (0.3, control 0.6)	Robertson et al. (2007)

		Sediment dose			Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Salmon (Atlantic)	J	460.00	2.50	2	Fish abandoned cover (0.2, control 0.6)	Robertson et al. (2007)	
Salmon (Atlantic)	J	20.00	2.50	3	Increase in territorial behavior observed(0.1, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	40.00	2.50	3	Increase in territorial behavior observed(0.1, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	60.00	2.50	0	No territorial behavior displayed, no difference from control (0, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	80.00	2.50	3	Increase in territorial behavior observed(0.1, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	120.00	2.50	3	Increase in territorial behavior observed(0.1, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	180.00	2.50	0	No territorial behavior displayed, no difference from control (0, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	260.00	2.50	0	No territorial behavior displayed, no difference from control (0, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	360.00	2.50	0	No territorial behavior displayed, no difference from control (0, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	460.00	2.50	0	No territorial behavior displayed, no difference from control (0, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	20.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	40.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	60.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	80.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	120.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	180.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	260.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	360.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)	
Salmon (Atlantic)	J	460.00	2.50	0	No alarm reaction observed (0, control 0)	Robertson et al. (2007)	
Menhaden	J	140000.00	48.00	10	No mortality (0%)	O'Conner et al. (1976)	
Menhaden	J	140000.00	24.00	10	No mortality (0%)	O'Conner et al. (1976)	
Croaker	J	11400.00	24.00	14	Mortality rate 100% (LC100)	O'Conner et al. (1976)	
Weakfish	U	8200.00	24.00	14	Mortality rate 100% (LC100)	O'Conner et al. (1976)	
Weakfish	U	6800.00	24.00	14	Mortality rate 100% (LC100)	O'Conner et al. (1976)	
Bluefish	J	800.00	24.00	14	Mortality rate 100% (LC100)	O'Conner et al. (1976)	
Menhaden	U	1200.00	24.00	14	Mortality rate 100% (LC100)	O'Conner et al. (1976)	
Menhaden	J	800.00	24.00	14	Mortality rate 100% (LC100)	O'Conner et al. (1976)	
Perch (White)	J	3050.00	24.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)	
Trout (Rainbow)	J	300.00	29.00	10	Fish had decreased resistance to F. columnaris (8.1% mortaliaty)	Poston et al. (1985)	
Trout (Rainbow)	J	300.00	31.00	10	Fish had decreased resistance to F. columnaris (14% mortality)	Poston et al. (1985)	
Trout (Rainbow)	J	300.00	42.00	10	Fish had decreased resistance to F. columnaris (19.7% mortality)	Poston et al. (1985)	
Trout (Rainbow)	J	300.00	48.00	11	Fish had decreased resistance to F. columnaris (26.6% mortality, control 8.8%)	Poston et al. (1985)	
Trout (Rainbow)	J	300.00	60.00	11	Fish had decreased resistance to F. columnaris (34.4% mortality)	Poston et al. (1985)	
Trout (Rainbow)	J	300.00	69.00	11	Fish had decreased resistance to F. columnaris (39.8% mortality)	Poston et al. (1985)	
Trout (Rainbow)	J	11500.00	16.00	10	Fish had decreased resistance to F. columnaris (8.3% mortality)	Poston et al. (1985)	
Trout (Rainbow)	J	11500.00	19.00	10	Fish had decreased resistance to F. columnaris (13.9% mortality)	Poston et al. (1985)	
Trout (Rainbow)	J	11500.00	20.00	11	Fish had decreased resistance to F. columnaris (33.9% mortality)	Poston et al. (1985)	
Trout (Rainbow)	J	11500.00	22.00	12	Fish had decreased resistance to F. columnaris (40.6% mortality)	Poston et al. (1985)	

		Sediment	Sediment dose Fish Response			
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Rainbow)	J	11500.00	23.00	12	Fish had decreased resistance to F. columnaris (46.8% mortality)	Poston et al. (1985)
Trout (Rainbow)	J	11500.00	24.00	12	Fish had decreased resistance to F. columnaris (53.5% mortality)	Poston et al. (1985)
Frout (Rainbow)	J	300.00	69.00	10	Fish had decreased resistance to F. columnaris (7.7% mortality)	Poston et al. (1985)
Frout (Rainbow)	J	11500.00	13.00	10	Fish had decreased resistance to F. columnaris (6.9% mortality)	Poston et al. (1985)
Frout (Rainbow)	J	11500.00	19.00	10	Fish had decreased resistance to F. columnaris (15.2% mortality)	Poston et al. (1985)
rout (Rainbow)	J	11500.00	22.00	11	Fish had decreased resistance to F. columnaris (26.9% mortality)	Poston et al. (1985)
rout (Rainbow)	J	11500.00	30.00	11	Fish had decreased resistance to F. columnaris (34.7% mortality)	Poston et al. (1985)
rout (Rainbow)	J	11500.00	36.00	12	Fish had decreased resistance to F. columnaris (40.5% mortality)	Poston et al. (1985)
rout (Rainbow)	J	11500.00	41.00	12	Fish had decreased resistance to F. columnaris (46.1% mortality)	Poston et al. (1985)
rout (Rainbow)	J	11500.00	44.00	12	Fish had decreased resistance to F. columnaris (54.4% mortality)	Poston et al. (1985)
rout (Rainbow)	J	11500.00	49.00	13	Fish had decreased resistance to F. columnaris (60.8% mortality)	Poston et al. (1985)
rout (Rainbow)	J	11500.00	55.00	13	Fish had decreased resistance to F. columnaris (66.8% mortality)	Poston et al. (1985)
rout (Rainbow)	J	52400.00	16.00	10	No change in survival times after F. columnaris exposure while in flow-through conditions (15.6 hours, control 25.9 hours)	Poston et al. (1985)
rout (Rainbow)	J	32720.00	16.00	10	No change in survival times after F. columnaris exposure while in flow-through conditions (16.2 hours, control 25.9 hours)	Poston et al. (1985)
rout (Rainbow)	J	52400.00	33.00	10	No change in survival times after F. columnaris exposure while in flow-through conditions	Poston et al. (1985)
rout (Rainbow)	J	32720.00	38.00	10	No change in survival times after F. columnaris exposure while in flow-through conditions	Poston et al. (1985)
rout (Rainbow)	J	52400.00	16.00	10	No change in survival times after F. columnaris exposure while in static conditions (15.5 hours, control 20.2 hours)	Poston et al. (1985)
rout (Rainbow)	J	32720.00	15.00	10	No change in survival times after F. columnaris exposure while in static conditions (14.9 hours, control 20.2 hours)	Poston et al. (1985)
rout (Rainbow)	J	52400.00	22.00	10	Survival times decreased after F. columnaris exposure while in static conditions (22.2 hours, control 47.6 hours)	Poston et al. (1985)
rout (Rainbow)	J	32720.00	30.00	10	Survival times decreased after F. columnaris exposure while in static conditions (29.8 hours, control 47.6 hours)	Poston et al. (1985)
⁄lenhaden	J	1540.00	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)
1enhaden	J	2470.00	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
lenhaden	J	3960.00	24.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)
lmon (Coho)	U	300.00	96.00	8	Mean blood sugar increased (7.1 mmol/L, control 5.7 mmol/L)	Servizi & Martens (1992)
almon (Coho)	U	500.00	96.00	8	Mean blood sugar increased (8.2 mmol/L, control 5.7 mmol/L)	Servizi & Martens (1992)
almon (Coho)	U	1000.00	96.00	8	Mean blood sugar increased (10.0 mmol/L, control 5.7 mmol/L)	Servizi & Martens (1992)
almon (Coho)	U	1400.00	96.00	8	Mean blood sugar increased (11.6 mmol/L, control 5.7 mmol/L)	Servizi & Martens (1992)
Salmon (Coho)	U	0.00	96.00	8	Mean blood sugar 5.7 mmol/L	Servizi & Martens (1992)
Salmon (Coho)	U	20.00	24.00	5	Coughing rate increased (0.19 coughs/min, control 0.17 coughs/min)	Servizi & Martens (1992)

		Sediment	dose		Fish Response		
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Salmon (Coho)	U	240.00	24.00	5	Coughing rate increased (1.51 coughs/min, control 0.27 coughs/min)	Servizi & Martens (1992)	
almon (Coho)	U	2460.00	24.00	5	Coughing rate increased (3.32 coughs/min, control 0.09 coughs/min)	Servizi & Martens (1992)	
almon (Coho)	U	2460.00	1.00	5	Coughing rate increased (5.31 coughs/min, control 0.09 coughs/min)	Servizi & Martens (1992)	
almon (Coho)	U	6780.00	1.00	5	Coughing rate increased (6.70 coughs/min, control 0.13 coughs/min)	Servizi & Martens (1992)	
almon (Coho)	U	100.00	96.00	3	0.3% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	200.00	96.00	3	0.3% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	400.00	96.00	3	0.8% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	700.00	96.00	3	1.5% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	800.00	96.00	3	1.8% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	800.00	96.00	3	2.9% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	900.00	96.00	3	1.8% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	1000.00	96.00	3	2.9% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	1100.00	96.00	3	2.2% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	1400.00	96.00	3	2.9% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	2200.00	96.00	3	5.1% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	2300.00	96.00	3	3.3% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	2600.00	96.00	3	2.4% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	2800.00	96.00	3	3.4% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	3200.00	96.00	3	8.6% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	6400.00	96.00	3	13.0% fish showed avoidance response	Servizi & Martens (1992)	
lmon (Coho)	U	6200.00	96.00	3	14.4% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	6900.00	96.00	3	18.1% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	6700.00	96.00	3	22.7% fish showed avoidance response	Servizi & Martens (1992)	
almon (Coho)	U	7000.00	96.00	3	27.1% fish showed avoidance response	Servizi & Martens (1992)	
out (Steelhead)	J	2200.00	1.00	8	Cortisol levels decreased (9.9 ng/ml, control 6.0 ng/ml)	Redding & Schreck (1980)	
rout (Steelhead)	J	500.00	1.00	8	Cortisol levels decreased (5.8 ng/ml, control 6.0 ng/ml)	Redding & Schreck (1980)	
rout (Steelhead)	J	2200.00	4.00	8	Cortisol levels increased (11.4 ng/ml, control 4.5 ng/ml)	Redding & Schreck (1980)	
rout (Steelhead)	J	500.00	4.00	8	Cortisol levels increased (5.5 ng/ml, control 4.5 ng/ml)	Redding & Schreck (1980)	
rout (Steelhead)	J	2200.00	12.00	8	Cortisol levels increased (27.0 ng/ml, control 2.6 ng/ml)	Redding & Schreck (1980)	
rout (Steelhead)	J	500.00	12.00	8	Cortisol levels increased (4.4 ng/ml, control 2.6 ng/ml)	Redding & Schreck (1980)	
rout (Steelhead)	J	2200.00	24.00	8	Cortisol levels increased (47.7 ng/ml, control 7.8 ng/ml)	Redding & Schreck (1980)	
rout (Steelhead)	J	500.00	24.00	8	Cortisol levels decreased (5.4 ng/ml, control 7.8 ng/ml)	Redding & Schreck (1980)	
rout (Steelhead)	J	2200.00	48.00	8	Cortisol levels increased (30.9 ng/ml, control 1.0 ng/ml)	Redding & Schreck (1980)	
rout (Steelhead)	J	500.00	48.00	8	Cortisol levels increased (13.6 ng/ml, control 1.0 ng/ml)	Redding & Schreck (1980)	
rout (Steelhead)	J	2200.00	96.00	8	Cortisol levels increased (24.7 ng/ml, control 7.0 ng/ml)	Redding & Schreck (1980)	
rout (Steelhead)	J	500.00	96.00	8	Cortisol levels decreased (3.1 ng/ml, control 7.0 ng/ml)	Redding & Schreck (1980)	
rout (Steelhead)	J	2200.00	192.00	8	Cortisol levels decreased (0.2 ng/ml, control 5.8 ng/ml)	Redding & Schreck (1980)	
rout (Steelhead)	J	500.00	192.00	8	Cortisol levels increased (6.0 ng/ml, control 5.8 ng/ml)	Redding & Schreck (1980)	
rout (Steelhead)	J	2200.00	1.00	4	Feeding rate decreased	Redding & Schreck (1980)	

980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)
980)

		Sedimen	t dose		Fish Response		
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Trout (Steelhead)	J	583.00	0.00	5	No change in cortisol levels (0.9 ng/ml, control 0.9 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	583.00	3.00	8	Cortisol levels increased (1.1 ng/ml, control 0.6 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	583.00	9.00	8	Cortisol levels increased (1.1 ng/ml, control 0.4 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	583.00	24.00	8	Cortisol levels increased (0.6 ng/ml, control 0.5 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	9.00	8	Hematocrit values increased significantly over controls	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	24.00	8	Hematocrit values increased significantly over controls	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	3.00	8	Hematocrit percent increased (47.5%, control 46.4%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	9.00	8	Hematocrit percent increased (52.2%, control 42.7%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	24.00	8	Hematocrit percent increased (54.5%, control 43.5%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	48.00	8	Hematocrit percent increased (51.4%, control 46.3%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	3.00	8	Hematocrit percent increased (46.9%, control 46.4%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	9.00	8	Hematocrit percent increased (49.4%, control 42.7%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	24.00	8	Hematocrit percent increased (46.9%, control 43.5%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	48.00	8	Hematocrit percent increased (49.5%, control 46.3%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	583.00	3.00	5	Hematocrit percent decreased (46.1%, control 46.4%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	583.00	9.00	8	Hematocrit percent increased (48.3%, control 42.7%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	583.00	24.00	8	Hematocrit percent increased (45.6%, control 43.5%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	0.00	5	No change in osmolality (266.9 m osmol/L, control 266.8 m osmal/L) $$	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	3.00	8	Osmolality decreased (264.8 m osmol/L, control 273.4 m osmal/L)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	9.00	5	No change in osmolality (273.7 m osmol/L, control 273.4 m osmal/L) $$	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	24.00	5	No change in osmolality (273.7 m osmol/L, control 273.5 m osmal/L) $$	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	48.00	8	Osmolality decreased (271.7 m osmol/L, control 276.5 m osmal/L)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	3.00	8	Osmolality decreased (269.7 m osmol/L, control 273.4 m osmal/L)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	9.00	8	Osmolality decreased (272.8 m osmol/L, control 273.4 m osmal/L)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	24.00	8	Osmolality decreased (269.6 m osmol/L, control 273.5 m osmal/L)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	48.00	8	Osmolality decreased (274.8 m osmol/L, control 276.5 m osmal/L)	Redding & Schreck (1980)	
Trout (Steelhead)	J	583.00	0.00	5	No change in osmolality (266.9 m osmol/L, control 266.8 m osmal/L) $$	Redding & Schreck (1980)	
Trout (Steelhead)	J	583.00	3.00	8	Osmolality increased (276.6 m osmol/L, control 273.4 m osmal/L)	Redding & Schreck (1980)	
Trout (Steelhead)	J	583.00	9.00	8	Osmolality increased (274 m osmol/L, control 273.4 m osmal/L)	Redding & Schreck (1980)	
Trout (Steelhead)	J	583.00	24.00	8	Osmolality increased (275.2 m osmol/L, control 273.5 m osmal/L)	Redding & Schreck (1980)	

		Sediment	dose		Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Trout (Steelhead)	J	3000.00	3.00	8	Cortisol levels increased (23.9 ng/ml, control 6.6 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	9.00	8	Cortisol levels increased (83.6 ng/ml, control 3.5 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	24.00	8	Cortisol levels increased (29.5 ng/ml, control 2.4 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	48.00	8	Cortisol levels increased (16.1 ng/ml, control 2.7 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	3.00	8	Cortisol levels increased (42.7 ng/ml, control 6.6 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	9.00	8	Cortisol levels increased (76.2 ng/ml, control 3.5 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	24.00	8	Cortisol levels increased (73.6 ng/ml, control 2.4 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	48.00	8	Cortisol levels increased (19.7 ng/ml, control 2.7 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	3.00	8	Hematocrit percent decreased (43.9%, control 44.1%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	9.00	8	Hematocrit percent increased (45.6%, control 38.2%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	24.00	8	Hematocrit percent increased (45.7%, control 40%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	48.00	8	Hematocrit percent increased (39.7%, control 37%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	3.00	8	Hematocrit percent increased (45%, control 44.1%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	9.00	8	Hematocrit percent increased (49%, control 38.2%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	24.00	8	Hematocrit percent increased (50.4%, control 40%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	48.00	8	Hematocrit percent increased (45%, control 37%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	9.00	8	Cortisol levels increased (72.8 ng/ml, control 12.4 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	24.00	8	Cortisol levels increased (40.4 ng/ml, control 7.3 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	48.00	8	Cortisol levels increased (15.3 ng/ml, control 7 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	9.00	8	Cortisol levels increased (46.9 ng/ml, control 12.4 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	24.00	8	Cortisol levels increased (39.7 ng/ml, control 7.3 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	48.00	8	Cortisol levels increased (48.7 ng/ml, control 7 ng/ml)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	9.00	8	Hematocrit percent decreased (36.9%, control 46.8%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	24.00	8	Hematocrit percent decreased (42.3%, control 46%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	3000.00	48.00	8	Hematocrit percent decreased (36.6%, control 45.2%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	9.00	8	Hematocrit percent decreased (36.9%, control 44.9%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	24.00	8	Hematocrit percent decreased (42.3%, control 46.2%)	Redding & Schreck (1980)	
Trout (Steelhead)	J	500.00	48.00	8	Hematocrit percent decreased (36.6%, control 41.7%)	Redding & Schreck (1980)	
Trout (Steelhead)	F	2000.00	72.00	6	Fish feeding behavior erratic	Redding & Schreck (1980)	
Trout (Steelhead)	F	500.00	72.00	0	No change in feeding behavior	Redding & Schreck (1980)	
Trout (Steelhead)	F	2000.00	72.00	6	Fish feeding behavior erratic	Redding & Schreck (1980)	
Trout (Steelhead)	F	500.00	72.00	0	No change in feeding behavior	Redding & Schreck (1980)	

		Sediment	t dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Steelhead)	F	2000.00	72.00	6	Fish feeding behavior erratic	Redding & Schreck (1980)
Trout (Steelhead)	F	500.00	72.00	0	No change in feeding behavior	Redding & Schreck (1980)
Salmon (Coho)	F	3000.00	108.00	0	No change in feeding behavior	Redding & Schreck (1980)
Salmon (Coho)	F	500.00	108.00	0	No change in feeding behavior	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	4.00	8	Cortisol levels increased (58.9 ng/ml, control 0.9 ng/ml, dye 27.7 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	10.00	8	Cortisol levels increased (24.8 ng/ml, control 17.6 ng/ml, dye 37.8 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	25.00	8	Cortisol levels increased (82.8 ng/ml, control 15.1 ng/ml, dye 1.7 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	48.00	8	Cortisol levels increased (31.6 ng/ml, control 7.3 ng/ml, dye 39.3 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	4.00	8	Cortisol levels increased (28.4 ng/ml, control 0.4 ng/ml, dye 1.3 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	10.00	8	Cortisol levels increased (38.6 ng/ml, control 2.4 ng/ml, dye 1.2 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	25.00	8	Cortisol levels increased (16.5 ng/ml, control 8.4 ng/ml, dye 1.6 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	48.00	8	Cortisol levels increased (23.7 ng/ml, control 6.5 ng/ml, dye 1.5 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2200.00	0.25	8	Cortisol levels greater in darkness (darkness 140.7 ng/ml, ambient 113.6 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2200.00	1.00	8	Cortisol levels greater in darkness (darkness 144.6 ng/ml, ambient 142.6 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	2200.00	8.00	8	Cortisol levels greater in darkness (darkness 98.3 ng/ml, ambient 67.5 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	3.00	8	Cortisol levels increased/decreased (73.7 ng/ml, control 6.9 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	9.00	8	Cortisol levels increased/decreased (70.9 ng/ml, control 16.4 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	24.00	8	Cortisol levels increased/decreased (68.6 ng/ml, control 19.6 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	48.00	8	Cortisol levels increased/decreased (28.4 ng/ml, control 33.4 ng/ml)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	3.00	8	Hematocrit percent increased (53%, control 46.6%)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	9.00	8	Hematocrit percent increased (46.4%, control 44.3%)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	24.00	8	Hematocrit percent increased (50.6%, control 46.8%)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	48.00	8	Hematocrit percent decreased (46.6%, control 47.5%)	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	2.00	13	77% mortality rate after exposure to suspended topsoil	Redding & Schreck (1980)
Trout (Steelhead)	J	2500.00	2.00	13	Fish died from Vibro anguilarum sooner	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	9.00	8	Sodium levels increased (153.8 meq/L, control 138.8 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	24.00	8	Sodium levels increased (151 meq/L, control 137.8 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	48.00	8	Sodium levels decreased (144.9 meq/L, control 147.9 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	9.00	8	Sodium levels increased (159 meq/L, control 138.8 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	24.00	8	Sodium levels increased (146 meq/L, control 137.8 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	48.00	8	Sodium levels decreased (146.9 meq/L, control 147.9 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	3.00	8	Sodium levels increased (162.1 meq/L, control 154.7 meq/L)	Redding & Schreck (1980)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Steelhead)	J	3000.00	9.00	8	Sodium levels increased (163.7 meq/L, control 155.3 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	24.00	8	Sodium levels decreased (157.3 meq/L, control 162 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3000.00	48.00	8	Sodium levels decreased (157.9 meq/L, control 162.2 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	0.00	5	No change in sodium levels (162.2 meq/L, control 162.2 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	3.00	8	Sodium levels increased (164.7 meq/L, control 154.7 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	9.00	8	Sodium levels increased (161.5 meq/L, control 155.3 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	24.00	8	Sodium levels decreased (150.1 meq/L, control 162 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	500.00	48.00	8	Sodium levels decreased (150.4 meq/L, control 162.2 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	0.00	5	No change in sodium levels (169 meq/L, control 168.9 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	3.00	8	Sodium levels increased (161.2 meq/L, control 151.4 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	9.00	8	Sodium levels increased (158 meq/L, control 154.1 meq/L)	Redding & Schreck (1980)
Trout (Steelhead)	J	3500.00	24.00	8	Sodium levels decreased (161.7 meq/L, control 167.1 meq/L)	Redding & Schreck (1980)
Frout (Steelhead)	J	3500.00	48.00	8	Sodium levels decreased (153.5 meq/L, control 154.1 meq/L)	Redding & Schreck (1980)
Goldfish	J	127.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
hiner (Emerald)	J	127.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
hiner (Mimic)	J	127.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Bullhead (Black)	J	127.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Catfish (Flathead)	J	127.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Sunfish (Green)	J	127.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Bass (Redeye)	J	127.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Bass (Largemouth)	J	127.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Darter Cumberland Snubnose)	J	127.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Darter (Greenside)	J	127.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
arter (Rainbow)	J	127.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Parter (Stripetail)	J	127.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Parter (Arrow)	J	127.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Goldfish	J	142.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Catfish (Flathead)	J	142.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Bass (Redeye)	J	142.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Darter Cumberland Inubnose)	J	142.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Darter (Arrow)	J	142.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Goldfish	J	111.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Carp	J	111.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Bullhead (Black)	J	111.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Catfish (Flathead)	J	111.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Sunfish (Green)	J	111.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Bass (Redeye)	J	111.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)
Darter (Cumberland Snubnose)	J	111.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)

		Sediment	dose		Fish Response		
pecies	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
arter (Stripetail)	J	111.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)	
arter (Arrow)	J	111.00	4320.00	14	No fish present in polluted areas (CWS)	Charles (1966)	
rout (Brown)	F	6000.00	744.00	14	No fry present	Water Research Center (1961)	
ilapia (Redbreast)	J	10000.00	2.00	10	No mortality	Buermann et al. (1997)	
ilapia (Redbreast)	J	15000.00	2.00	10	No mortality	Buermann et al. (1997)	
ilapia (Redbreast)	J	20000.00	2.00	10	No mortality	Buermann et al. (1997)	
ilapia (Redbreast)	J	24000.00	2.00	10	No mortality	Buermann et al. (1997)	
ilapia (Redbreast)	J	26000.00	2.00	14	Mortality rate 100%	Buermann et al. (1997)	
ilapia (Redbreast)	J	30000.00	2.00	14	Mortality rate 100%	Buermann et al. (1997)	
lapia (Redbreast)	J	34000.00	2.00	14	Mortality rate 100%	Buermann et al. (1997)	
ilapia (Redbreast)	J	10000.00	6.00	10	No mortality	Buermann et al. (1997)	
lapia (Redbreast)	J	15000.00	6.00	10	No mortality	Buermann et al. (1997)	
lapia (Redbreast)	J	20000.00	6.00	10	No mortality	Buermann et al. (1997)	
lapia (Redbreast)	J	24000.00	6.00	10	No mortality	Buermann et al. (1997)	
lapia (Redbreast)	J	26000.00	6.00	14	Mortality rate 100%	Buermann et al. (1997)	
ilapia (Redbreast)	J	30000.00	6.00	14	Mortality rate 100%	Buermann et al. (1997)	
ilapia (Redbreast)	J	34000.00	6.00	14	Mortality rate 100%	Buermann et al. (1997)	
lapia (Redbreast)	J	10000.00	24.00	10	No mortality	Buermann et al. (1997)	
					•		
ilapia (Redbreast)	J	15000.00	24.00	10	No mortality	Buermann et al. (1997)	
lapia (Redbreast)	J	20000.00	24.00	10	No mortality	Buermann et al. (1997)	
lapia (Redbreast)	J	24000.00	24.00	10	Mortality rate 50%	Buermann et al. (1997)	
lapia (Redbreast)	J	26000.00	24.00	14	Mortality rate 100%	Buermann et al. (1997)	
lapia (Redbreast)	J	30000.00	24.00	14	Mortality rate 100%	Buermann et al. (1997)	
lapia (Redbreast)	J	34000.00	24.00	14	Mortality rate 100%	Buermann et al. (1997)	
lapia (Redbreast)	J	10000.00	48.00	10	No mortality	Buermann et al. (1997)	
lapia (Redbreast)	J	15000.00	48.00	10	No mortality	Buermann et al. (1997)	
lapia (Redbreast)	J	20000.00	48.00	10	Mortality rate 10%	Buermann et al. (1997)	
lapia (Redbreast)	J	24000.00	48.00	13	Mortality rate 75%	Buermann et al. (1997)	
lapia (Redbreast)	J	26000.00	48.00	14	Mortality rate 100%	Buermann et al. (1997)	
lapia (Redbreast)	J	30000.00	48.00	14	Mortality rate 100%	Buermann et al. (1997)	
lapia (Redbreast)	J	34000.00	48.00	14	Mortality rate 100%	Buermann et al. (1997)	
lapia (Redbreast)	J	24000.00	2.00	12	Mortality rate 50%	Buermann et al. (1997)	
lapia (Redbreast)	J	24000.00	6.00	12	Mortality rate 50%	Buermann et al. (1997)	
lapia (Redbreast)	J	21000.00	24.00	12	Mortality rate 50%	Buermann et al. (1997)	
lapia (Redbreast)	J	22000.00	48.00	12	Mortality rate 50%	Buermann et al. (1997)	
lapia (Redbreast)	J	34000.00	2.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)	
lapia (Redbreast)	J	34000.00	6.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)	
lapia (Redbreast)	J	34000.00	24.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)	
lapia (Redbreast)	J	34000.00	48.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)	
ass (Smallmouth)	J	35.00	168.00	11	IC25 - 25% reduction in total biomass	Sweeten (1996)	
ass (Smallmouth)	J	305.00	168.00	12	IC50 - 50% reduction in total biomass	Sweeten (1996)	
uegill	J	76.00	336.00	11	IC25 - 25% reduction in total biomass	Sweeten (1996)	
uegill	J	251.00	336.00	12	IC50 - 50% reduction in total biomass	Sweeten (1996)	
iss (Smallmouth)	J	225.00	168.00	11	IC25 - 25% reduction in mean dry weight	Sweeten (1996)	
uegill	J	76.00	336.00	11	IC25 - 25% reduction in mean dry weight	Sweeten (1996)	
uegill	J	244.00	336.00	12	IC50 - 50% reduction in mean dry weight	Sweeten (1996)	
_		39.00			No mortality (control 0%)	Sweeten (1996)	
ass (Smallmouth)	J		168.00	10	* * * * * * * * * * * * * * * * * * * *		
ass (Smallmouth)	J	79.00	168.00	10	Mortality rate 5% (control 0%)	Sweeten (1996)	
ass (Smallmouth)	J	158.00	168.00	10	Mortality rate 5% (control 0%)	Sweeten (1996)	
ass (Smallmouth)	J	315.00	168.00	11	Mortality rate 28% (control 0%)	Sweeten (1996) Sweeten (1996)	
uegill		39.00	336.00	10	No mortality (control 0%)		

Trout (Rainbow)			Sediment	dose		Fish Response	_
State	Species			•	SEV ^b	Description ^c	Reference
Samon (Chum)	luegill	J	158.00	336.00	10	Mortality rate 3% (control 0%)	Sweeten (1996)
Smith (Chum)	luegill	J	315.00	336.00	11	Mortality rate 28% (control 0%)	Sweeten (1996)
Amon Sockeye U 9851.00 96.00 8 Hypertrophy and necrosis of gill tissue (MCSS) Servai & Martens (1987) out (Rainbow) J 2990.00 66.00 10 Holstide degradation and reduction in density from Courtice et al. (2016, data pulled from Courtice et al. (2016, data pulled from Courtice et al. (2021) out (Rainbow) J 10.00 110.00 13 Density drop average 65% Espa et al. (2019, data pulled from Courtice et al. (2022) out (Rrown) J 300.00 127.00 11 Density drop average 25% Espa et al. (2019, data pulled from Courtice et al. (2022) out (Rrown) J 300.00 312.00 12 Density drop average 60% Espa et al. (2019, data pulled from Courtice et al. (2022) out (Rrown) J 300.00 312.00 13 Density drop average 60% Espa et al. (2019, data pulled from Courtice et al. (2022) out (Rrown) J 300.00 312.00 13 Density drop average 60% Espa et al. (2019, data pulled from Courtice et al. (2022) out (Rrown) J 300.00 312.00 9 Density drop average 60% Espa et al. (2019, data pulled from Courtice et al. (2022) out (Rrown) J 300.00 312.00 9 Density drop average 60% Espa et al. (2019, data pulled from Courtice et al. (2022) out (Rrown) J 400.00 312.00 9 Density drop average 60% Espa et al. (2019, data pulled from Courtice et al. (2022) out (Rrown) J 400.00 312.00 12 Density drop average 60% Espa et al. (2019, data pulled from Courtice et al. (2022) out (Rrown) J 400.00 312.00 12 Density drop average 60% Espa et al. (2019, data pulled from Courtice et al. (2022) out (Rrown) J 400.00 312.00 30	almon (Chum)	J	28000.00	96.00	12	Mortality rate 50%	Smith (1940)
out (Rambow)	lmon (Chum)	J	55000.00	96.00	12	Mortality rate 50% (winter)	Smith (1940)
out (Brown) J 2900.00 66.00 10 Habitat degradation and reduction in density Chrom Courtice et al. (2013). data pulled from Courtice et al. (2021) Count (Brinbow) J 110.00 1.40 4 Fish swam together to compensate for reduced swim performance. Serie et al. (2014). data pulled from Courtice et al. (2022) Berie et al. (2014). data pulled from Courtice et al. (2022) Courtice et al. (2022) Desiry drop average 55% Espa et al. (2013). data pulled from Courtice et al. (2022) Espa et al. (2013). data pulled from Courtice et al. (2022) Desiry drop average 25% Espa et al. (2013). data pulled from Courtice et al. (2022) Espa et al. (2013). data pulled from Courtice et al. (2022) Desiry drop average 60% Espa et al. (2013). data pulled from Courtice et al. (2022) Espa et al. (2013). data pulled from Courtice et al. (2022) Espa et al. (2013). data pulled from Courtice et al. (2022) Espa et al. (2013). data pulled from Courtice et al. (2022) Espa et al. (2013). data pulled from Courtice et al. (2022) Espa et al. (2013). data pulled from Courtice et al. (2022) Espa et al. (2013). data pulled from Courtice et al. (2022) Espa et al. (2013). data pulled from Courtice et al. (2022) Espa et al. (2014). data pulled from Courtice et al. (2022) Espa et al. (2013). data pulled from Courtice et al. (2022) Espa et al. (2013). data pulled from Courtice et al. (2022) Espa et al. (2013). data pulled from Courtice et al. (2022) Espa et al. (2014). data pu	lmon (Sockeye)	U	9851.00	96.00	8	Hypertrophy and necrosis of gill tissue (MCSS)	Servizi & Martens (1987)
Part California Courtice et al. (2022)	out (Rainbow)	J	4315.00	57.00	14	Mortalty rate ~ 100% (CSS)	Newcombe et al. (1995)
swim performance. Courtice et al. (2022)) out (Brown) J 300.00 1104.00 13 Density drop average 55% Espa et al. (2019, data pulled from Courtice et al. (2022)) out (Brown) J 800.00 960.00 13 Density drop average 25% Espa et al. (2019, data pulled from Courtice et al. (2022)) out (Brown) J 800.00 960.00 13 Density drop average 25% Espa et al. (2019, data pulled from Courtice et al. (2022)) out (Brown) J 4700.00 312.00 12 Density drop average 60% Espa et al. (2019, data pulled from Courtice et al. (2022)) out (Brown) J 3000.00 288.00 13 Density drop average 75% Espa et al. (2019, data pulled from Courtice et al. (2022)) out (Brown) J 3000.00 312.00 11 Density drop average 75% Espa et al. (2019, data pulled from Courtice et al. (2022)) out (Brown) J 3000.00 312.00 11 Density drop average 60% Espa et al. (2019, data pulled from Courtice et al. (2022)) out (Brown) J 4000.00 312.00 11 Density drop average 25% Espa et al. (2019, data pulled from Courtice et al. (2022)) out (Brown) J 5600.00 72.00 12 Density drop average 60% Espa et al. (2019, data pulled from Courtice et al. (2022)) out (Brown) J 690.00 3.00 3 Reduce predator avoidance in turbidity Gregory (300, data pulled from Courtice et al. (2022)) immon (Chinook) J 690.00 3.00 3 Reduce predator avoidance in turbidity to reduction Gregory (300, data pulled from Courtice et al. (2022)) immon (Chinook) J 50.00 504.00 4 Reduction in feeding Sutherhand & Meyer (2007, data pulled from Courtice et al. (2022)) ulb (Spotfin) J 50.00 48.00 4 Increased corticosteroid Sutherhand & Meyer (2007, data pulled from Courtice et al. (2022)) ulb (Spotfin) J 70.00 24.00 14 Mortality rate 100% Sutherhand & Meyer (2007, data pulled from Courtice et al. (2022)) ulb (Spotfin) J 70.00 24.00 14 Mortality rate 100% Sutherhand & Meyer (2007, data pulled from Courtice et al. (2022)) ulb (Spotfin) F 1198.00 120.00 12 LCS0 - 50% mortality Clark Barkalow & Bonar (2015) ulb (Yaqui) F 1988.00 36.00 12 LCS0 - 50% mortality Clark Barkalow & Bonar (2015) ulb (Yaqui) F 1988.00 36.00 1	out (Brown)	J	2900.00	66.00	10	Habitat degradation and reduction in density	Quadroni et al. (2016, data pulled from Courtice et al. (2022))
Courtice et al. (2022)	out (Rainbow)	J	110.00	1.40	4		Berli et al. (2014, data pulled from Courtice et al. (2022))
Courtice et al. (2022)	out (Brown)	J	300.00	1104.00	13	Density drop average 65%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Dutl (Brown) J 4700.00 312.00 12 Density drop average 60% Espa et al. (2019, data pulled from Courtice et al. (2022)) Out (Brown) J 3000.00 288.00 13 Density drop average 75% Espa et al. (2019, data pulled from Courtice et al. (2022)) Out (Brown) J 3500.00 312.00 9 Density drop average 9% Espa et al. (2019, data pulled from Courtice et al. (2022)) Out (Brown) J 4000.00 312.00 11 Density drop average 9% Espa et al. (2019, data pulled from Courtice et al. (2022)) Out (Brown) J 4000.00 312.00 11 Density drop average 35% Espa et al. (2019, data pulled from Courtice et al. (2022)) Out (Brown) J 500.00 72.00 12 Density drop average 60% Espa et al. (2019, data pulled from Courtice et al. (2022)) Immon (Chinook) J 69.00 3.00 3.00 3 Reduce predator avoidance in turbidity Gregory (1993, data pulled from Courtice et al. (2022)) Immon (Chinook) J 450.00 1.50 4 Change from attraction to turbidity to reduction Gregory (1993, data pulled from Courtice et al. (2022)) Immon (Chinook) J 50.00 504.00 4 Reduction in feeding Sutheriand & Meyer (2007, data pulled from Courtice et al. (2022)) Indic (Spotfin) J 50.00 48.00 4 Increased corticosteroid Sutheriand & Meyer (2007, data pulled from Courtice et al. (2022)) Indic (Spotfin) J 50.00 48.00 4 Increased corticosteroid Sutheriand & Meyer (2007, data pulled from Courtice et al. (2022)) Indic (Spotfin) J 50.00 48.00 4 Increased corticosteroid Sutheriand & Meyer (2007, data pulled from Courtice et al. (2022)) Indic (Spotfin) J 60.00 24.00 14 Mortality rate 100% Sherk et al. (3974, copied from Courtice et al. (2022)) Indic (Whitetail) J 800.00 24.00 12 CS0 - 50% mortality Clark Barkalow & Bonar (2015) Indic (Yaqui) F 198.00 12.00 12 CS0 - 50% mortality Clark Barkalow & Bonar (2015) Indic (Yaqui) F 198.00 60.00 12 CS0 - 50% mortality Clark Barkalow & Bonar (2015) Indic (Yaqui) F 198.00 60.00 12 CS0 - 50% mortality Clark Barkalow & Bonar (2015) Indic (Yaqui) F 198.00 60.00 12 CS0 - 50% mortality Clark Barkalow & Bonar (2015) Indic (Yaqui) F 198.00 60.00 12 CS0 - 50% mort	out (Brown)	J	300.00	1272.00	11	Density drop average 25%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Courtice et al. (2022) out (Brown) J 3000.00 288.00 13 Density drop average 75% Espa et al. (2019, data pulled from Courtice et al. (2022) out (Brown) J 3500.00 312.00 11 Density drop average 0% Espa et al. (2019, data pulled from Courtice et al. (2022) out (Brown) J 4000.00 312.00 11 Density drop average 35% Espa et al. (2019, data pulled from Courtice et al. (2022) out (Brown) J 2600.00 72.00 12 Density drop average 60% Espa et al. (2019, data pulled from Courtice et al. (2022) Imon (Chinook) J 2600.00 3.00 3 Reduce predator avoidance in turbidity to reduction in foreign ability Imon (Chinook) J 450.00 1.50 4 Change from attraction to turbidity to reduction in foreign ability Imon (Chinook) J 50.00 504.00 4 Reduction in feeding Sutherland & Meyer (2007, data pulled from Courtice et al. (2022)) ub (Spotfin) J 50.00 504.00 4 Reduction in feeding Sutherland & Meyer (2007, data pulled from Courtice et al. (2022)) ub (Spotfin) J 50.00 48.00 4 Increased corticosteroid Sutherland & Meyer (2007, data pulled from Courtice et al. (2022)) ub (Spotfin) J 50.00 48.00 4 Increased corticosteroid Sutherland & Meyer (2007, data pulled from Courtice et al. (2022)) ub (Spotfin) J 50.00 48.00 4 Increased corticosteroid Sutherland & Meyer (2007, data pulled from Courtice et al. (2022)) ub (Spotfin) J 50.00 48.00 4 Increased corticosteroid Sutherland & Meyer (2007, data pulled from Courtice et al. (2022)) ub (Spotfin) J 50.00 48.00 4 Increased corticosteroid Sutherland & Meyer (2007, data pulled from Courtice et al. (2022)) ub (Spotfin) J 50.00 24.00 14 Mortality rate 100% Sherk et al. (1974, copied from Courtice et al. (2022)) ub (Spotfin) J 50.00 24.00 14 Mortality rate 100% Sherk et al. (1974, copied from Courtice et al. (2022)) ub (Yaqui) F 1198.00 120.00 12 (C50 - 50% mortality Clark Barkalow & Bonar (2015) ub (Yaqui) F 1394.00 60.00 12 (C50 - 50% mortality Clark Barkalow & Bonar (2015) ub (Yaqui) F 1394.00 60.00 12 (C50 - 50% mortality Clark Barkalow & Bonar (2015) ub (Yaqui) F 1300.00 84.00 12 (C50 - 50%	out (Brown)	J	800.00	960.00	13	Density drop average 70%	Espa et al. (2019, data pulled from Courtice et al. (2022))
out (Brown) J 3500.00 312.00 9 Density drop average 0% Espa et al. (2012,) data pulled from Courtice et al. (2022)) out (Brown) J 4000.00 312.00 11 Density drop average 35% Espa et al. (2019, data pulled from Courtice et al. (2022)) out (Brown) J 2600.00 72.00 12 Density drop average 60% Espa et al. (2019, data pulled from Courtice et al. (2022)) out (Brown) J 2600.00 3.00 3 Reduce predator avoidance in turbidity Espa et al. (2019, data pulled from Courtice et al. (2022)) Immon (Chinook) J 450.00 1.50 4 Change from attraction to turbidity to reduction Courtice et al. (2022) Gregory (1993, data pulled from Courtice et al. (2022)) Immon (Chinook) J 450.00 504.00 4 Reduction in feeding Sutherland & Meyer (2007, data pulled from Courtice et al. (2022)) siner (Whitetail) J 25.00 504.00 4 Reduction in feeding Sutherland & Meyer (2007, data pulled from Courtice et al. (2022)) siner (Whitetail) J 50.00 48.00 4 Increased corticosteroid Sutherland & M	out (Brown)	J	4700.00	312.00	12	Density drop average 60%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Courtice et al. (2022)) out (Brown)	out (Brown)	J	3000.00	288.00	13	Density drop average 75%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Courtice et al. (2022)) out (Brown)	out (Brown)				9	Density drop average 0%	
Immon (Chinook)	out (Brown)	J	4000.00	312.00	11	Density drop average 35%	Espa et al. (2019, data pulled from Courtice et al. (2022))
Immon (Chinook)	out (Brown)	J	2600.00	72.00	12	Density drop average 60%	Espa et al. (2019, data pulled from Courtice et al. (2022))
in foraging ability	lmon (Chinook)	J	69.00	3.00	3	Reduce predator avoidance in turbidity	
Dulled from Courtice et al. (2022)	lmon (Chinook)	J	450.00	1.50	4	•	
Dulled from Courtice et al. (2022)	iner (Whitetail)	J	50.00	504.00	4	Reduction in feeding	Sutherland & Meyer (2007, data pulled from Courtice et al. (2022))
Pulled from Courtice et al. (2022) Pulled from Courtice et al. (2021) Pulled from Courtice et al. (2021) Pulled from Courtice et al. (2021) Pulled from Courtice et al. (2015) Pulled fr	nub (Spotfin)	J	25.00	504.00	4	Reduction in feeding	Sutherland & Meyer (2007, data pulled from Courtice et al. (2022))
pulled from Courtice et al. (2022)) shefish J 800.00 24.00 14 Mortality rate 100% Sherk et al. (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke (2001)) sher (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke (2001)) sherk et al. (1974, copied from Wilber & Clarke Barkalow & Bonar (2015) sherk et al. (1974, copied from Wilber & Clarke Barkalow & Bonar (2015) sherk et al. (1974, copied from Wilber & Clarke Barkalow & Bonar (2015) sherk et al. (1974, copied from Wilber & Clarke Barkalow & Bonar (2015) sher et al. (1974, copied from Wilber & Clarke Barkalow & Bonar (2015) sherk et al. (1974, copied from Wilber & Clarke Barkalow & Bonar (2015) sherk et al. (1974, copied from Wilber & Clarke Barkalow & Bonar (2015) sherk et al. (1974, copied from Wilber & Clarke Barkalow & Bonar (2015) sherk et al. (1974, copied from Wilber & Clarke Barkalow & Bonar (2015) sherk et al. (1974, copied from Wilber & Clarke Barkalow & Bonar (2015) sherk et al. (1974, copied from Wilber & Clarke Barkalow & Bonar (2015) sherk et al. (1974, copied from Wilber & Clarke Barkalow & Bonar (2015) sherk et al. (1974, copied from Wilber & Clarke Barkalow & Bonar (2015) sherk et al. (1974, copied from Wilber & Clarke Barka	iner (Whitetail)	J	50.00	48.00	4	Increased corticosteroid	Sutherland & Meyer (2007, data pulled from Courtice et al. (2022))
Wilber & Clarke (2001) Sherk et al. (1974, copied from Wilber & Clarke (2001))	nub (Spotfin)	J	100.00	48.00	4	Increased corticosteroid	Sutherland & Meyer (2007, data pulled from Courtice et al. (2022))
traintic) Perch (White) Perch (Whi	uefish	J	800.00	24.00	14	Mortality rate 100%	
Milber & Clarke (2001)) Findb (Yaqui) F 1198.00 12.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Findb (Yaqui) F 8372.00 12.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Findb (Yaqui) F 4750.00 24.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Findb (Yaqui) F 3888.00 36.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Findb (Yaqui) F 2241.00 48.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Findb (Yaqui) F 1934.00 60.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Findb (Yaqui) F 1839.00 72.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Findb (Yaqui) F 1302.00 84.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Findb (Yaqui) F 1283.00 96.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Findb (Yaqui) F 1203.00 108.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Findb (Yaqui) F 1203.00 108.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Findb (Yaqui) F 1203.00 108.00 14 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Findb (Yaqui) F 1197.00 108.00 14 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Findb (Yaqui) F 10000.00 24.00 14 100% mortality Clark Barkalow & Bonar (2015)		J	800.00	24.00	14	Mortality rate 100%	
The proof of the p	erch (White)		750.00	24.00	14	,	Wilber & Clarke (2001))
ub (Yaqui) F 4750.00 24.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) ub (Yaqui) F 3888.00 36.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) ub (Yaqui) F 2241.00 48.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) ub (Yaqui) F 1934.00 60.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) ub (Yaqui) F 1839.00 72.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) ub (Yaqui) F 1302.00 84.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) ub (Yaqui) F 1283.00 96.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) ub (Yaqui) F 1203.00 108.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) ub (Yaqui) F 1197.00 108.00 14 LC50 - 50% mortality Clark Barkalow & Bonar (2015) ub (Yaqui) F 100	ub (Yaqui)		1198.00	120.00	12	LC50 - 50% mortality	Clark Barkalow & Bonar (2015)
Lub (Yaqui) F 3888.00 36.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 2241.00 48.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1934.00 60.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1839.00 72.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1302.00 84.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1283.00 96.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1203.00 108.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1197.00 108.00 14 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 10000.00 24.00 14 100% mortality Clark Barkalow & Bonar (2015)			8372.00	12.00	12	LC50 - 50% mortality	• •
Lub (Yaqui) F 2241.00 48.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1934.00 60.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1839.00 72.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1302.00 84.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1283.00 96.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1203.00 108.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1197.00 108.00 14 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 10000.00 24.00 14 100% mortality Clark Barkalow & Bonar (2015)	ub (Yaqui)	F	4750.00	24.00	12	LC50 - 50% mortality	Clark Barkalow & Bonar (2015)
Lib (Yaqui) F 1934.00 60.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lib (Yaqui) F 1839.00 72.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lib (Yaqui) F 1302.00 84.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lib (Yaqui) F 1283.00 96.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lib (Yaqui) F 1203.00 108.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lib (Yaqui) F 1197.00 108.00 14 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lib (Yaqui) F 10000.00 24.00 14 100% mortality Clark Barkalow & Bonar (2015)	ub (Yaqui)	F	3888.00	36.00	12	LC50 - 50% mortality	Clark Barkalow & Bonar (2015)
Lub (Yaqui) F 1839.00 72.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1302.00 84.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1283.00 96.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1203.00 108.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 1197.00 108.00 14 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lub (Yaqui) F 10000.00 24.00 14 100% mortality Clark Barkalow & Bonar (2015)	ub (Yaqui)	F	2241.00	48.00	12	LC50 - 50% mortality	Clark Barkalow & Bonar (2015)
Lab (Yaqui) F 1302.00 84.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lab (Yaqui) F 1283.00 96.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lab (Yaqui) F 1203.00 108.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lab (Yaqui) F 1197.00 108.00 14 LC50 - 50% mortality Clark Barkalow & Bonar (2015) Lab (Yaqui) F 10000.00 24.00 14 100% mortality Clark Barkalow & Bonar (2015)	ub (Yaqui)	F	1934.00	60.00	12	LC50 - 50% mortality	Clark Barkalow & Bonar (2015)
pub (Yaqui) F 1283.00 96.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) pub (Yaqui) F 1203.00 108.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) pub (Yaqui) F 1197.00 108.00 14 LC50 - 50% mortality Clark Barkalow & Bonar (2015) pub (Yaqui) F 10000.00 24.00 14 100% mortality Clark Barkalow & Bonar (2015)	ub (Yaqui)	F	1839.00	72.00	12	LC50 - 50% mortality	Clark Barkalow & Bonar (2015)
ub (Yaqui) F 1203.00 108.00 12 LC50 - 50% mortality Clark Barkalow & Bonar (2015) ub (Yaqui) F 1197.00 108.00 14 LC50 - 50% mortality Clark Barkalow & Bonar (2015) ub (Yaqui) F 10000.00 24.00 14 100% mortality Clark Barkalow & Bonar (2015)	ub (Yaqui)	F	1302.00	84.00	12	LC50 - 50% mortality	Clark Barkalow & Bonar (2015)
ub (Yaqui) F 1197.00 108.00 14 LC50 - 50% mortality Clark Barkalow & Bonar (2015) ub (Yaqui) F 10000.00 24.00 14 100% mortality Clark Barkalow & Bonar (2015)	ub (Yaqui)	F	1283.00	96.00	12	LC50 - 50% mortality	Clark Barkalow & Bonar (2015)
tub (Yaqui) F 10000.00 24.00 14 100% mortality Clark Barkalow & Bonar (2015)	ub (Yaqui)	F	1203.00	108.00	12	LC50 - 50% mortality	Clark Barkalow & Bonar (2015)
, , ,	ub (Yaqui)	F	1197.00	108.00	14	LC50 - 50% mortality	Clark Barkalow & Bonar (2015)
	ıub (Yaqui)	F	10000.00	24.00	14	100% mortality	Clark Barkalow & Bonar (2015)
		F	5000.00	48.00	14	100% mortality	Clark Barkalow & Bonar (2015)

Species Line Species Protein (mg/s) Species			Sediment	dose		Fish Response	
Sulvere (Razorback) J 2000.00 0.25 3 A Novidence response) control no avoidance response) Sulvere (Razorback) J 2000.00 0.25 3 A Novidence response) Sulvere (Razorback) J 2000.00 0.25 3 Grantly refluended prediction of Juvernilles (control no Johnson & Hirnes (1999) avoidance response) Salmon (Coho) J 40000.00 96.00 10 Common Juvernilles (control no Johnson & Hirnes (1999) Salmon (Coho) J 40000.00 96.00 10 Sintern (Coho) J 40.00 00 96.00 10 Sintern (Coho) J 40.00 00 96.00 10 Sintern (Coho) J 40.00 96.00 10 Sintern (Coho) J 40.00 96.00 10 Sintern (Coho) J 50.00 96.00 10 Sintern (Coho) J 50.00 96.00 10 Sintern (Coho) J 62.00 96.00 10 Sintern (Coho) J 74.00 96.00 10 Sintern (Coho) J 7	Species				SEV ^b	Description ^c	Reference
Page	Sucker (Razorback)	J	250.00	0.25	0		Johnson & Hines (1999)
Salmon (Coho J	Sucker (Razorback)	J	2000.00	0.25	3	·	Johnson & Hines (1999)
Salmon (Coho)	Sucker (Razorback)	J	2000.00	0.25	3		Johnson & Hines (1999)
Salmon (Coho) J 40000.00 96.00 9 Gill damage observed Lake & Hinch (1999) Salmon (Coho) J 22.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 40.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 55.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 62.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 68.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 74.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 74.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 95.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 121.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 121.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 11 20% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 140.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00	Salmon (Coho)	J	100000.00	96.00	10	Lowest concentration to observe mortality	Lake & Hinch (1999)
Salmon (Coho) J 22.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 40.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 55.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 66.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 66.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 95.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 95.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 20% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 20% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 20% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 135.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 135.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 135.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 135.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 135.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 140.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 140.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 140.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 140.00 96.00	Salmon (Coho)	J	40000.00	96.00	9	Stress response (decreased leukocrit)	Lake & Hinch (1999)
Salmon (Coho)	Salmon (Coho)	J	40000.00	96.00	9	Gill damage observed	Lake & Hinch (1999)
Salmon (Coho) J 62.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 62.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 63.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 95.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 95.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 95.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.0	Salmon (Coho)	J	22.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho)	Salmon (Coho)	J	40.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho) J 74.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 74.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 95.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 121.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 110.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 110.00 96.00 10 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 110.00 96.00 10 19% mortality Lake & Hinch (1999) Salmon (Coho) J 110.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0	Salmon (Coho)	J	55.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho) J 74.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 95.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 121.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 10 29% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 10 19% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 10 19% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 103.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 103.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 103.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 135.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 12 60% mo	Salmon (Coho)	J	62.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho) J 95.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 11 20% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 135.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 135.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 135.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 135.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 12 20% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 12	Salmon (Coho)	J	68.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho) J 95.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 121.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 60.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Co	Salmon (Coho)	J	74.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho) J 131.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 121.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 12		J	95.00	96.00	10		Lake & Hinch (1999)
Salmon (Coho) J 121.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 99.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 110.00 96.00 10 19% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 11 20% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 54.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 54.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 122.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 122.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 12 20% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 20% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 1		J	113.00	96.00	10		Lake & Hinch (1999)
Salmon (Coho) J 106.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 99.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 19% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 12 99% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 99% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 99% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 99% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 14 100% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 105.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 105.00 96.00 11 21 211 mortality Lake & Hinch (1999) Salmon (Coho) J 105.00 96.00 12 260 mortality Lake & Hinch (1999) Salmon (Coho) J 105.00 96.00 12 260 mortality Lake & Hinch (1999) Salmon (Coho) J 105.00 96.00 12 260 mortality Lake & Hinch (1999) Salmon (Coho) J 105.00 96.00 12 260 mortality Lake & Hinch (1999) Salmon (Coho) J 105.00		J					
Salmon (Coho) J 99.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 110.00 96.00 10 19% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 135.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 90.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 90.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 90.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 122.00 96.00 12 0% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 12 00% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 12 20% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00		J					• •
Salmon (Coho) J 110.00 96.00 10 19% mortality Lake & Hinch (1999) Salmon (Coho) J 113.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 142.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 135.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 54.00 96.00 10 0% mortality Lake & Hinch (1999)						•	• •
Salmon (Coho) J 113.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 106.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 54.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 11 20% mortality Lake & Hinch (1999) Salmon (Coho) J 101.00 96.00 12 20% mortality Lake & Hinch (1999) Salmon (Coho) J 122.00 96.00 12 20% mortality Lake & Hinch (1999) Salmon (Coho) J 122.00 96.00 12 20% mortality Lake & Hinch (1999) Salmon (Coho) J 122.00 96.00 12 20% mortality Lake & Hinch (1999) Salmon (Coho) J 122.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 122.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 122.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 122.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 122.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 122.00 96						,	• •
Salmon (Coho) J 106.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 133.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 142.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 135.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 14 100% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 54.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 54.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 11 20% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 12 20% mortality Lake & Hinch (1999) Salmon (Coho) J 120.00 96.00 12 20% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 200.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 60.00 96.00 8 Stress resp							
Salmon (Coho)						•	, ,
Salmon (Coho) J 142.00 96.00 11 40% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 135.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 54.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 11 20% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 20% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 41% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 159.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 159.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 159.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 159.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 8 Stress response (decreased leukocr						•	• •
Salmon (Coho) J 130.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 135.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 14 100% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 54.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 11 20% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 11 20% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 41% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 600.00 96.00 8 Stress response (decreased leuk						,	• •
Salmon (Coho) J 135.00 96.00 12 59% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 14 100% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 54.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 11 20% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 138.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 138.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 13 80% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 18 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999)						•	
Salmon (Coho) J 150.00 96.00 14 100% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 54.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 1014.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 1104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 1104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 1104.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 1104.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 101.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 12 41% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 190.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999)						•	• •
Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 54.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 101.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 101.00 96.00 11 20% mortality Lake & Hinch (1999) Salmon (Coho) J 152.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 41% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 160.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 13 80% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 2050.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999)						•	
Salmon (Coho) J 30.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 54.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 101.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 12 21% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999)	Salmon (Coho)	J		96.00	14	100% mortality	Lake & Hinch (1999)
Salmon (Coho) J 50.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 54.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 11 20% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 41% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 150.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 13 80% mortality Lake & Hinch (1999) Salmon (Coho) J 100.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999)	Salmon (Coho)	J		96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho) J 54.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 101.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 101.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 12 41% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 160.00 96.00 12 60% mortality Lake & Hinch (1999)	Salmon (Coho)	J	30.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho) J 64.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 101.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 101.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 12 41% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 160.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 203.00 96.00 12 60% mortality Lake & Hinch (1999)	Salmon (Coho)	J	50.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho) J 94.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 101.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 41% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 160.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 13 80% mortality Lake & Hinch (1999)	Salmon (Coho)	J	54.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho) J 104.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 101.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 121.00 96.00 12 41% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 160.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 203.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 13 80% mortality Lake & Hinch (1999) <tr< td=""><td>Salmon (Coho)</td><td>J</td><td>64.00</td><td>96.00</td><td>10</td><td>0% mortality</td><td>Lake & Hinch (1999)</td></tr<>	Salmon (Coho)	J	64.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho) J 112.00 96.00 10 0% mortality Lake & Hinch (1999) Salmon (Coho) J 96.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 101.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 12 41% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 160.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 203.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 13 80% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) <t< td=""><td>Salmon (Coho)</td><td>J</td><td>94.00</td><td>96.00</td><td>10</td><td>0% mortality</td><td>Lake & Hinch (1999)</td></t<>	Salmon (Coho)	J	94.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho) J 96.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 101.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 121.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 160.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 203.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 203.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 13 80% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 225.00 96.00 14 100% mortality Lake & Hinch (1999)	Salmon (Coho)	J	104.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho) J 101.00 96.00 10 20% mortality Lake & Hinch (1999) Salmon (Coho) J 132.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 121.00 96.00 12 41% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 160.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 203.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 13 80% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 225.00 96.00 14 100% mortality Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch	Salmon (Coho)	J	112.00	96.00	10	0% mortality	Lake & Hinch (1999)
Salmon (Coho) J 132.00 96.00 11 21% mortality Lake & Hinch (1999) Salmon (Coho) J 121.00 96.00 12 41% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 160.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 203.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 13 80% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 225.00 96.00 14 100% mortality Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit)	Salmon (Coho)	J	96.00	96.00	10	20% mortality	Lake & Hinch (1999)
Salmon (Coho) J 121.00 96.00 12 41% mortality Lake & Hinch (1999) Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 160.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 203.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 13 80% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 225.00 96.00 14 100% mortality Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (Salmon (Coho)	J	101.00	96.00	10	20% mortality	Lake & Hinch (1999)
Salmon (Coho) J 158.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 160.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 203.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 13 80% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 225.00 96.00 14 100% mortality Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho)	Salmon (Coho)	J	132.00	96.00	11	21% mortality	Lake & Hinch (1999)
Salmon (Coho) J 160.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 203.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 13 80% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 225.00 96.00 14 100% mortality Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 <td>Salmon (Coho)</td> <td>J</td> <td>121.00</td> <td>96.00</td> <td>12</td> <td>41% mortality</td> <td>Lake & Hinch (1999)</td>	Salmon (Coho)	J	121.00	96.00	12	41% mortality	Lake & Hinch (1999)
Salmon (Coho) J 203.00 96.00 12 60% mortality Lake & Hinch (1999) Salmon (Coho) J 130.00 96.00 13 80% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 225.00 96.00 14 100% mortality Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 6 No change in leukocrit Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999)	Salmon (Coho)	J	158.00	96.00	12	60% mortality	Lake & Hinch (1999)
Salmon (Coho) J 130.00 96.00 13 80% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 225.00 96.00 14 100% mortality Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 6 No change in leukocrit Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999)	Salmon (Coho)	J	160.00	96.00	12	60% mortality	Lake & Hinch (1999)
Salmon (Coho) J 130.00 96.00 13 80% mortality Lake & Hinch (1999) Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 225.00 96.00 14 100% mortality Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 6 No change in leukocrit Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999)		J	203.00			60% mortality	Lake & Hinch (1999)
Salmon (Coho) J 199.00 96.00 14 81% mortality Lake & Hinch (1999) Salmon (Coho) J 225.00 96.00 14 100% mortality Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 6 No change in leukocrit Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999)	Salmon (Coho)	J				,	• •
Salmon (Coho) J 225.00 96.00 14 100% mortality Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999)	, ,					•	, ,
Salmon (Coho) J 20500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999)						,	
Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 6 No change in leukocrit Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999)						,	, ,
Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 20500.00 96.00 6 No change in leukocrit Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999)						, ,	• •
Salmon (Coho) J 20500.00 96.00 6 No change in leukocrit Lake & Hinch (1999) Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999)							
Salmon (Coho) J 60500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999) Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999)						, ,	
Salmon (Coho) J 100500.00 96.00 8 Stress response (decreased leukocrit) Lake & Hinch (1999)							
Salmon (Coho) J 20500.00 96.00 8 Increased blood hematocrit levels Lake & Hinch (1999)							• •
	Salmon (Coho)	J	20500.00	96.00	8	Increased blood hematocrit levels	Lake & Hinch (1999)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Coho)	J	60500.00	96.00	6	No change in blood hematocrit	Lake & Hinch (1999)
Salmon (Coho)	J	100500.00	96.00	8	Increased blood hematocrit levels	Lake & Hinch (1999)
Salmon (Chum)	J	90.00	15.00	3	Avoidance response	Martin et al. (1976)
Salmon (Chum)	J	3954.00	96.00	10	LC10 - 10% mortality	Martin et al. (1976)
Salmon (Chum)	J	241.00	96.00	12	LC50 - 50% mortality	Martin et al. (1976)
Salmon (Chum)	J	4311.00	96.00	14	LC90 - 90% mortality	Martin et al. (1976)
Salmon (Chum)	J	3056.00	15.00	0	No effect	Martin et al. (1976)
Trout (Rainbow)	J	4300.00	504.00	10	Very low mortality	Peddicord & McFarland (1978)
Bass (Striped)	J	1500.00	504.00	10	0% mortality (control 0%)	Peddicord & McFarland (1978)
Bass (Striped)	J	2300.00	504.00	11	35% mortality (control 0%)	Peddicord & McFarland (1978)
Bass (Striped)	J	500.00	504.00	11	0% mortality (control 0%)	Peddicord & McFarland (1978)
Bass (Striped)	J	700.00	504.00	11	0% mortality (control 0%)	Peddicord & McFarland (1978)
Bass (Striped)	J	1000.00	504.00	11	0% mortality (control 0%)	Peddicord & McFarland (1978)
Bass (Striped)	J	1500.00	504.00	11	0% mortality (control 0%)	Peddicord & McFarland (1978)
Salmon (Pink)	J	11400.00	96.00	11	28% mortality	Clarke (Not seen: pers. comm. cited by Servizi (1988))
Salmon (Pink)	J	7600.00	96.00	10	3% mortality	Clarke (Not seen: pers. comm. cited by Servizi (1988))
Salmon (Pink)	J	5800.00	96.00	10	0% mortality	Clarke (Not seen: pers. comm. cited by Servizi (1988))
Salmon (Pink)	J	3200.00	96.00	10	0% mortality	Clarke (Not seen: pers. comm. cited by Servizi (1988))
Salmon (Pink)	J	1600.00	96.00	10	0% mortality	Clarke (Not seen: pers. comm. cited by Servizi (1988))
Sturgeon (Atlantic)	J	250.00	72.00	10	4% mortality (control 0%)	Wilkens (2015)
Sturgeon (Atlantic)	J	100.00	72.00	10	0% mortality (control 0%)	Wilkens (2015)
Sturgeon (Atlantic)	J	250.00	72.00	10	0% mortality (control 0%)	Wilkens (2015)
Sturgeon (Atlantic)	J	500.00	72.00	10	12% mortality (control 0%)	Wilkens (2015)

Salmonid eggs and larvae (freshwater, group 4)

		Sediment dose			Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Chum)	E	111.00	2808	14	Mortality rate 89.3%. (control 6.2%)	Langer (1980)
Salmon (Coho)	EE	117.00	960	10	Mortality; deterioration of spawning gravel	Cederholm, Reid & Salo (1980)
Trout (Cutthroat)	EE	117.00	960	10	Mortality; deterioration of spawning gravel	Cederholm, Reid & Salo (1980)
Trout (Cutthroat)	EE	117.00	1440	0	No effect (10.9% fines vs 8.0% fines in spawning gravel), eyed egg to hatch	Cederholm, Reid & Salo (1980)
Salmon (Coho)	EE	117.00	2880	14	Mortality 97.4% (control 74.4%) eyed egg to button up, deterioration of spawning gravel	Cederholm, Reid & Salo (1980)
Salmon (Coho)	EE	117.00	1440	13	Mortality 75.3% (control 42.8%) eyed egg to hatch	Cederholm, Reid & Salo (1980)
Salmon (Coho)	EE	117.00	3600	13	Mortality 68.1 % (<20% fines)	Cederholm, Reid & Salo (1980)
Salmon (Coho)	EE	117.00	3600	14	Mortality 82.3% (>20% fines), deterioration of spawning gravel	Cederholm, Reid & Salo (1980)
Trout (Rainbow)	E	120.00	384	10	Density of fish reduced	Erman & Ligon (1988)
Trout (Rainbow)	E	99.00	768	13	Mortality rate 58.2% -69.3% (control 38.6%)	Erman & Ligon (1988)
Trout (Rainbow)	EE	18.00	216	10	3% mortality	Peters (1967)
Trout (Rainbow)	EE	79.00	216	11	22% mortality	Peters (1967)
Trout (Rainbow)	EE	167.00	216	12	54% mortality	Peters (1967)
Trout (Rainbow)	EE	186.00	216	13	70% mortality	Peters (1967)
Trout (Rainbow)	EE	319.00	216	12	47% mortality	Peters (1967)
Salmon (Chum)	EE	97.00	2808	13	76.1% mortality (control 6.2%)	Langer (1980)

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Salmon (Chum)	EE	111.00	2808	14	89.3% mortality (control 6.2%)	Langer (1980)
Trout (Brown)	E	162.00	720	14	98.7% mortality (control 14.25%)	Scullion & Edwards (1980)
Trout (Brown)	E	12.00	720	14	86.7% mortality (control 14.25%)	Scullion & Edwards (1980)
Trout (Brown)	SF	162.00	720	14	99.7% mortality (control 15.95%)	Scullion & Edwards (1980)
Trout (Brown)	SF	12.00	720	14	97.9% mortality (control 15.95%)	Scullion & Edwards (1980)
Trout (Rainbow)	EE	1033.00	144	14	100% mortality (control 6%)	Campbell (1954)
Frout (Rainbow)	EE	1033.00	144	10	Mortality rate greater than controls (control 6%)	Campbell (1954)
Salmon (Coho)	F*	8100.00	96	10	1% mortality (LC1, control 0%)	Servizi & Martens (1991)
Grayling (Arctic)	E	11.00	336	12	Mortality rate 52.6%	Scannell (1988)
Grayling (Arctic)	E	31.00	336	10	Mortality rate 3.4%	Scannell (1988)
Grayling (Arctic)	E	174.00	336	10	Mortality rate 4.6%	Scannell (1988)
Grayling (Arctic)	E	265.00	336	10	Mortality rate 4%	Scannell (1988)
Grayling (Arctic)	Е	71.00	336	13	Mortality rate 62.6%	Scannell (1988)
Grayling (Arctic)	Е	191.00	336	10	Mortality rate 19.4%	Scannell (1988)
Grayling (Arctic)	Ε	78.00	336	11	Mortality rate 28%	Scannell (1988)
Grayling (Arctic)	Е	3.00	14	14	92.58% mortality	Scannell (1988)
Grayling (Arctic)	E	5.00	14	14	95.38% mortality	Scannell (1988)
Grayling (Arctic)	E	141.00	14	14	93.96% mortlaty	Scannell (1988)
Grayling (Arctic)	E	274.00	14	14	93.98% mortality	Scannell (1988)
Grayling (Arctic)	E	256.00	14	14	95.38% mortality	Scannell (1988)
					•	
Grayling (Arctic)	E	151.00	14	14	98.52% mortality	Scannell (1988)
Grayling (Arctic)	E	1295.00	14	14	92.58% mortality	Scannell (1988)
Grayling (Arctic)	E	6.00	24	14	99.9% mortality	Scannell (1988)
Grayling (Arctic)	E	20.00	24	14	99.9% mortality	Scannell (1988)
Grayling (Arctic)	E	45.00	24	14	99.92% mortality	Scannell (1988)
Grayling (Arctic)	E	143.00	24	14	99.94% mortality	Scannell (1988)
Grayling (Arctic)	E	322.00	24	14	99.9% mortality	Scannell (1988)
Grayling (Arctic)	E	778.00	24	14	97.02% mortality	Scannell (1988)
Grayling (Arctic)	E	94.00	24	14	97.02% mortality	Scannell (1988)
Grayling (Arctic)	E	49.00	24	14	95.02% mortality	Scannell (1988)
Grayling (Arctic)	E	20.00	14	14	87.9% mortality	Scannell (1988)
Grayling (Arctic)	E	30.00	14	14	92.58% mortality	Scannell (1988)
Grayling (Arctic)	E	43.00	14	14	95.3% mortality	Scannell (1988)
Grayling (Arctic)	Ε	248.00	14	14	93.9% mortality	Scannell (1988)
Grayling (Arctic)	E	392.00	14	14	95.26% mortality	Scannell (1988)
Grayling (Arctic)	Е	433.00	14	14	98.58% mortality	Scannell (1988)
Grayling (Arctic)	Ε	575.00	14	14	93.96% mortality	Scannell (1988)
Grayling (Arctic)	Ε	1109.00	14	14	92.64% mortality	Scannell (1988)
Grayling (Arctic)	Ε	1251.00	14	13	71.2% mortality	Scannell (1988)
Grayling (Arctic)	E	22.00	24	14	99.92% mortality	Scannell (1988)
Grayling (Arctic)	E	32.00	24	14	99.92% mortality	Scannell (1988)
Grayling (Arctic)	E	84.00	24	14	99.92% mortality	Scannell (1988)
Grayling (Arctic)	E	123.00	24	14	96.98% mortality	Scannell (1988)
Grayling (Arctic)	E	19.00	24	14	94.98% mortality	Scannell (1988)
Grayling (Arctic)	E	271.00	24	14	99.92% mortality	Scannell (1988)
Grayling (Arctic)	E	389.00	24	14	99.92% mortality	Scannell (1988)
Grayling (Arctic)	E	439.00	24	14	99.94% mortality	Scannell (1988)
Grayling (Arctic) Salmon	E EE	461.00 37.00	24 1488	14 12	96.98% mortality Egg mortality rate 58%	Scannell (1988) Slaney et al. (1977a)
(Steelhead)						
Salmon (Steelhead)	EE	73.00	1488	10	Egg mortality rate 15%	Slaney et al. (1977a)

		Sediment	t dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Rainbow)	EE	18.00	1488	11	Egg mortality rate 36%	Slaney et al. (1977a)
Trout (Rainbow)	EE	57.00	744	12	Egg mortality rate 47%	Slaney et al. (1977a)
Trout (Rainbow)	EE	552.00	67	12	Hatch success 50%	Slaney et al. (1977a)
Trout (Rainbow)	EE	1618.00	120	12	Hatch success 50%	Slaney et al. (1977a)
Trout (Rainbow)	E	21.00	1152	13	Mortality rate 72%	Slaney et al. (1977a)
Herring (Lake)	L	3.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	8.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	11.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	16.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	18.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	21.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	24.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	28.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	1.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	3.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	8.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	11.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	16.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	18.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	21.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	24.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	28.00	1488	10	No difference in mortality (per least squares regression coefficient)	Swenson & Matson (1976)
Herring (Lake)	L	1.00	1488	3	Depth preference changed	Swenson & Matson (1976)
Herring (Lake)	L	1.00	1488	3	Depth preference changed	Swenson & Matson (1976)
Herring (Lake)	L	3.00	1488	3	Depth preference changed	Swenson & Matson (1976)
Herring (Lake)	L	8.00	1488	3	Depth preference changed	Swenson & Matson (1976)
Herring (Lake)	L	11.00	1488	3	Depth preference changed	Swenson & Matson (1976)
Herring (Lake)	L	16.00	1488	3	Depth preference changed	Swenson & Matson (1976)
Herring (Lake)	L	18.00	1488	3	Depth preference changed	Swenson & Matson (1976)
Trout (Rainbow)	EE	23.00	1440	10	Mortality rate 14.6% (control 16.5%) Mortality rate 97.9% (control 16.5%)	Turnpenny & Williams (1980)
Trout (Rainbow)	EE	101.00	1440 1440	14	, , ,	Turnpenny & Williams (1980)
Trout (Rainbow)	EE	218.00		14	Mortality rate 97.9% (control 16.5%)	Turnpenny & Williams (1980)
Trout (Rainbow)	EE	282.00	1440	14	Mortality rate 97.9% (control 16.5%)	Turnpenny & Williams (1980)
Trout (Rainbow)	EE	186.00	1440	14	Mortality rate 97.9% (control 16.5%)	Turnpenny & Williams (1980)
Trout (Rainbow)	EE	101.00	1440	14	Mortality rate 97.9% (control 16.5%)	Turnpenny & Williams (1980)
Trout (Rainbow)	EE	4.00	1440	14	Mortality rate 97.9% (control 16.5%)	Turnpenny & Williams (1980)
Trout (Rainbow)	EE	4.00	2184	10	Mortality rate 9% (control 9%)	Turnpenny & Williams (1980)
Trout (Rainbow)	EE	19.00	2184	11	Mortality rate 29% (control 9%)	Turnpenny & Williams (1980)
Trout (Rainbow)	EE	101.00	2184	11	Mortality rate 34% (control 9%)	Turnpenny & Williams (1980)

		Sediment dose			Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Trout (Rainbow)	EE	118.00	2184	13	Mortality rate 79% (control 9%)	Turnpenny & Williams (1980)
Trout (Rainbow)	EE	186.00	2184	14	Mortality rate 100% (control 9%)	Turnpenny & Williams (1980)
Trout (Rainbow)	EE	155.00	2184	14	Mortality rate 100% (control 9%)	Turnpenny & Williams (1980)
Herring (Lake)	L	0.25	1488	0	No behavioral effect	Swenson (1978)
Herring (Lake)	L	2.00	1488	0	No behavioral effect	Swenson (1978)
Herring (Lake)	L	3.00	1488	0	No behavioral effect	Swenson (1978)
Herring (Lake)	L	7.00	1488	0	No behavioral effect	Swenson (1978)
Herring (Lake)	L	9.00	1488	0	No behavioral effect	Swenson (1978)
Herring (Lake)	L	12.00	1488	0	No behavioral effect	Swenson (1978)
almon (Sockeye)	E	44.00	912	0	No change in fertilization success	Galbraith et al. (2006)
Salmon (Sockeye)	E	798.00	912	10	Fertilization success decreased 0.8%	Galbraith et al. (2006)
almon (Sockeye)	E	1828.00	912	10	Fertilization success decreased 0.1%	Galbraith et al. (2006)
almon (Sockeye)	E	6621.00	912	11	Fertilization success decreased 21.6%	Galbraith et al. (2006)
almon (Sockeye)	E	128.00	1128	0	No change in fertilization success	Galbraith et al. (2006)
Salmon (Sockeye)	E	46943.00	1128	14	Fertilization success decreased 85.3%	Galbraith et al. (2006)
almon (Sockeye)	Е	71.00	1128	0	No change in fertilization success	Galbraith et al. (2006)
almon (Sockeye)	Е	7691.00	1128	11	Fertilization success decreased 27.3%	Galbraith et al. (2006)
almon (Sockeye)	Е	38231.00	1128	12	Fertilzation success decreased 61.3%	Galbraith et al. (2006)
almon (Coho)	Е	22.00	912	0	No change in fertilization success	Galbraith et al. (2006)
almon (Coho)	Е	4095.00	912	11	Fertilization success decreased 33.2%	Galbraith et al. (2006)
almon (Coho)	Е	28835.00	912	12	Fertilization success decreased 49.2%	Galbraith et al. (2006)
rout (Cutthroat)	Е	2.00	888	11	Mortality rate 21.7%	Cederholm& Lestelle (1974)
rout (Cutthroat)	E	2.00	888	10	Mortality rate 9.7%	Cederholm& Lestelle (1974)
rout (Steelhead)	E	2.00	888	12	Mortality rate 42.8%	Cederholm& Lestelle (1974)
rout (Steelhead)	E	2.00	888	10	Mortality rate 17.2%	Cederholm& Lestelle (1974)
almon (Atlantic)	E	6000.00	600	8	Oxygen consumption reduced 41%	Greig et al. (2005)
almon (Atlantic)	E	10000.00	600	8	Oxygen consumption reduced 96%	Greig et al. (2005)
Salmon (Atlantic)	E	2000.00	600	8	Oxygen consumption reduced 14%	Greig et al. (2005)
almon (Atlantic)	E	4000.00	600	8	Oxygen consumption reduced 14% Oxygen consumption reduced 40%	Greig et al. (2005)
almon (Atlantic)	E	8000.00	600	8	Oxygen consumption reduced 80%	Greig et al. (2005)
	EE	13.00	744	10		
rout (Rainbow)					Mortality rate 5%	Peters (1962)
rout (Rainbow)	EE	118.00	744	11	Mortality rate 39%	Peters (1962)
rout (Rainbow)	EE	142.00	744	14	Mortality rate 100%	Peters (1962)
rout (Rainbow)	EE	282.00	744	14	Mortality rate 100%	Peters (1962)
rout (Rainbow)	EE	246.00	744	14	Mortality rate 100%	Peters (1962)
rout (Rainbow)	EE	18.00	1152	11	Mortality rate 36% (control 27%)	Slaney et al. (1977b)
rout (Rainbow)	EE	57.00	1488	12	Mortality rate 47% (control 27%)	Slaney et al. (1977b)
teelhead	EE	37.00	1488	12	Mortality rate 58% (control 22.5%)	Slaney et al. (1977b)
teelhead	EE	73.00	1488	10	Mortality rate 15% (control 22.5%)	Slaney et al. (1977b)
rout (Rainbow)	EE	7.00	1152	11	Mortality rate over 40%	Slaney et al. (1977b)
rout (Rainbow)	EE	47.00	1152	14	Mortality rate 100%	Slaney et al. (1977b)
rayling (Arctic)	SF	25.00	24	10	Mortality rate 5.7%	J. LaPerriere (copied from Newcombe & Jensen (1996))
rayling (Arctic)	SF	22.00	48	10	Mortality rate 14.0%	J. LaPerriere (copied from Newcombe & Jensen (1996))
Grayling (Arctic)	SF	65.00	24	10	Mortality rate 15.0%	J. LaPerriere (copied from Newcombe & Jensen (1996))
Grayling (Arctic)	SF	22.00	72	10	Mortality rate 14.7%	J. LaPerriere (copied from Newcombe & Jensen (1996))
Grayling (Arctic)	SF	20.00	96	10	Mortality rate 13.4%	J. LaPerriere (copied from Newcombe & Jensen (1996))
Grayling (Arctic)	SF	142.00	48	11	Mortality rate 26%	J. LaPerriere (copied from Newcombe & Jensen (1996))

		Sediment dose			Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Grayling (Arctic)	SF	185.00	72	12	Mortality rate 41.3%	J. LaPerriere (copied from Newcombe & Jensen (1996))
Grayling (Arctic)	SF	230.00	96	12	Mortality rate 47%	J. LaPerriere (copied from Newcombe & Jensen (1996))
Salmon (Coho)	E	1330.00	48	14	Mortality rate 97.6% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1330.00	168	14	Mortality rate 99.2% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1330.00	336	14	Mortality rate 99% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1176.00	1008	14	Mortality rate 99.8% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1176.00	1200	14	Mortality rate 99.8% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1176.00	1728	14	Mortality rate 97.8% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1330.00	528	14	Mortality rate 86.6% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1330.00	720	14	Mortality rate 91.6% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1176.00	888	14	Mortality rate 92.4% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1176.00	1056	14	Mortality rate 98.4% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1176.00	1392	14	Mortality rate 99.2% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	1176.00	1728	14	Mortality rate 100% (control 83.8%)	Shaw & Maga (1943)
Salmon (Coho)	E	157.00	1728	14	Mortality rate 100% (control 83.8%)	Shaw & Maga (1943)

Nonsalmonid eggs and larvae (estuarine, group 4)

		Sedimer	t dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Herring (Blueback)	E	50	168	11	Mortality rate 24% (control 20%)	Auld & Schubel (1978)
Herring (Blueback)	Ε	100	168	11	Mortality rate 24% (control 23%)	Auld & Schubel (1978)
Herring (Blueback)	Ε	500	168	11	Mortality rate 36% (control 26%)	Auld & Schubel (1978)
Herring (Blueback)	Ε	1000	168	11	Mortality rate 29% (control 23%)	Auld & Schubel (1978)
Alewife	Ε	50	168	10	Mortality rate 18% (Control 18%)	Auld & Schubel (1978)
Alewife	Ε	100	168	10	Mortality rate 17% (control 16%)	Auld & Schubel (1978)
Alewife	Ε	500	168	11	Mortality rate 23% (control 18%)	Auld & Schubel (1978)
Alewife	Ε	1000	168	11	Mortality rate 22% (control 16%)	Auld & Schubel (1978)
Shad (American)	Ε	50	168	10	Mortality rate 3% (control 2%)	Auld & Schubel (1978)
Shad (American)	Ε	100	168	10	Mortality rate 17% (control 13%)	Auld & Schubel (1978)
Shad (American)	Ε	500	168	10	Mortality rate 19% (control 13%	Auld & Schubel (1978)
Shad (American)	Ε	1000	168	11	Mortality rate 27% (control 20%)	Auld & Schubel (1978)
Perch (White)	Ε	50	168	11	Mortality rate 26% (control 32%)	Auld & Schubel (1978)
Perch (White)	Ε	100	168	11	Mortality rate 29% (control 29%)	Auld & Schubel (1978)
Perch (White)	Ε	500	168	11	Mortality rate 31% (control 32%)	Auld & Schubel (1978)
Perch (White)	Ε	1000	168	12	Mortality rate 51% (control 31%)	Auld & Schubel (1978)
Bass (Striped)	Ε	50	168	11	Mortality rate 36% (control 30%)	Auld & Schubel (1978)
Bass (Striped)	Ε	100	168	10	Mortality rate 20% (control 22%)	Auld & Schubel (1978)
Bass (Striped)	Ε	500	168	10	Mortality rate 20% (control 18%)	Auld & Schubel (1978)
Bass (Striped)	Ε	1000	168	11	Mortality rate 22% (control 14%)	Auld & Schubel (1978)
Bass (Striped)	Ε	1000	168	10	Reduced hatching success	Auld & Schubel (1978)
Perch (Yellow)	Ε	50	168	10	Mortality rate 2% (control 10%)	Auld & Schubel (1978)
Perch (Yellow)	Ε	100	168	10	Mortality rate 7% (control 10%)	Auld & Schubel (1978)
Perch (Yellow)	Ε	500	168	10	Mortality rate 4% (control 11%)	Auld & Schubel (1978)
Perch (Yellow)	Ε	1000	168	10	Mortality rate 8% (control 9%)	Auld & Schubel (1978)
Shad (American)	L	50	96	10	Mortality rate 7% (control 5%)	Auld & Schubel (1978)
Shad (American)	L	100	96	10	Mortality rate 18% (control 5%)	Auld & Schubel (1978)
Shad (American)	L	500	96	11	Mortality rate 36% (control 4%)	Auld & Schubel (1978)
Shad (American)	L	1000	96	11	Mortality rate 34% (control 5%)	Auld & Schubel (1978)

Species		Sedimer	nt dose		Fish Response	_
	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Bass (Striped)	L	50	60	11	Mortality rate 28% (control 35%)	Auld & Schubel (1978)
Bass (Striped)	L	100	65	10	Mortality rate 17% (control 19%)	Auld & Schubel (1978)
Bass (Striped)	L	500	68	12	Mortality rate 42% (control 17%)	Auld & Schubel (1978)
Bass (Striped)	L	1000	69	11	Mortality rate 35% (control 18%)	Auld & Schubel (1978)
Perch (Yellow)	L	50	96	10	Mortality rate 10% (control 7%)	Auld & Schubel (1978)
Perch (Yellow)	L	100	96	10	Mortality rate 17% (control 7%)	Auld & Schubel (1978)
Perch (Yellow)	L	500	96	11	Mortality rate 37% (control 7%)	Auld & Schubel (1978)
Perch (Yellow)	L	1000	96	11	Mortality rate 38% (control 7%)	Auld & Schubel (1978)
Herring (Pacific)	L	2000	2	4	Feeding rate reduced	Boehlert & Morgan (1985)
lerring (Pacific)	L	500	2	0	Increase in feeding rate - 85% feeding (control 52%)	Boehlert & Morgan (1985)
lerring (Pacific)	L	1000	2	0	Increase in feeding rate - 85% feeding (control 52%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	2000	2	4	Decrease in feeding rate as SSC increased- 75% feeding (control 52%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	4000	2	4	Decrease in feeding rate as SSC increased- 65% feeding (control 52%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	8000	2	4	Decrease in feeding rate as SSC increased- 45% feeding (control 52%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	500	2	0	Increase in feeding rate - 82% feeding (control 34%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	1000	2	0	Increase in feeding rate - 90% feeding (control 34%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	2000	2	4	Decrease in feeding rate as SSC increased- 84% feeding (control 34%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	4000	2	4	Decrease in feeding rate as SSC increased- 78% feeding (control 34%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	8000	2	4	Decrease in feeding rate as SSC increased- 77% feeding (control 34%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	500	2	0	Increase in feeding rate - 60% feeding (control 38%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	1000	2	4	Decrease in feeding rate as SSC increased - 45% (control 38%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	2000	2	4	Decrease in feeding rate as SSC increased - 18% (control 38%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	4000	2	4	Decrease in feeding rate as SSC increased - 20% (control 38%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	8000	2	4	Decrease in feeding rate as SSC increased - 2% (control 38%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	500	2	0	Increase in feeding rate - 65% feeding (control 38%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	1000	2	4	Decrease in feeding rate as SSC increased - 15% (control 38%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	2000	2	4	Decrease in feeding rate as SSC increased - 10% (control 38%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	4000	2	4	Decrease in feeding rate as SSC increased - 0% (control 38%)	Boehlert & Morgan (1985)
Herring (Pacific)	L	8000	2	4	Decrease in feeding rate as SSC increased - 5% (control 38%)	Boehlert & Morgan (1985)
lerring (Pacific)	L	500	24	8	Abraded epidermis, less distinct microridges	Boehlert (1983)
lerring (Pacific)	L	1000	24	8	Abraded epidermis, less distinct microridges	Boehlert (1983)
lerring (Pacific)	L	2000	24	8	Mechanical damage to epidermis	Boehlert (1983)
Herring (Pacific)	L	4000	24	8	Mechanical damage to epidermis	Boehlert (1983)
lerring (Pacific)	L	8000	24	8	Mechanical damage to epidermis	Boehlert (1983)
Herring (Pacific)	L	500	24	8	Some mechanical damage to epidermis	Boehlert (1983)
Herring (Pacific)	L	1000	24	8	Mechanical damage to epidermis, punctured	Boehlert (1983)

		Sediment dose			Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Herring (Pacific)	L	2000	24	8	Mechanical damage to epidermis, punctured	Boehlert (1983)
Herring (Pacific)	L	4000	24	8	Epidermis torn and punctured, microridges less distinct	Boehlert (1983)
Herring (Pacific)	L	8000	24	8	Epidermis torn and punctured, microridges less distinct	Boehlert (1983)
Herring (Pacific)	L	2433	24	10	Mortality rate 5.40% (including control)	Boehlert (1983)
lerring (Pacific)	L	2433	24	10	Mortality rate 5.28% (including control)	Boehlert (1983)
erring (Atlantic)	L	4	3	0	No effect on feeding rate	Johnson & Wildish (1982)
erring (Atlantic)	L	8	3	0	No effect on feeding rate	Johnson & Wildish (1982)
erring (Atlantic)	L	20	3	4	Reduced feeding rate	Johnson & Wildish (1982)
erring (Atlantic)	L	10	3	3	Depth preference changed	Johnson & Wildish (1982)
erring (Atlantic)	L	20	3	3	Depth preference changed	Johnson & Wildish (1982)
erch (white)	Ε	50	24	10	No effect on percent hatched	Morgan et al. (1973)
erch (white)	Ε	1000	24	10	No effect on percent hatched	Morgan et al. (1973)
rch (white)	Ε	1500	24	10	No effect on percent hatched	Morgan et al. (1973)
erch (white)	Е	2000	24	10	No effect on percent hatched	Morgan et al. (1973)
erch (white)	Е	3250	24	10	No effect on percent hatched	Morgan et al. (1973)
erch (white)	Е	4000	24	10	No effect on percent hatched	Morgan et al. (1973)
rch (white)	E	5250	24	10	No effect on percent hatched	Morgan et al. (1973)
rch (white)	E	2000	24	9	Development rate slowed signficantly (80% on control)	Morgan et al. (1973)
rch (white)	E	3250	24	9	Development rate slowed signficantly (80% on control)	Morgan et al. (1973)
erch (white)	E	4000	24	9	Development rate slowed signficantly	Morgan et al. (1973)
rch (white)	E	5250	24	9	Development rate slowed signficantly (65% on control)	Morgan et al. (1973)
iss (Striped)	E	20	24	10	No effect on percent hatched	Morgan et al. (1973)
ss (Striped)	E	150	24	10	No effect on percent hatched	Morgan et al. (1973)
ss (Striped)	E	400	24	10	No effect on percent hatched	Morgan et al. (1973)
iss (Striped)	E	600	24	10	No effect on percent hatched	Morgan et al. (1973)
iss (Striped)	E	900	24	10	Slight decline in percent hatched	Morgan et al. (1973)
ss (Striped)	E	1050	24	10	Slight decline in percent hatched	Morgan et al. (1973)
ss (Striped)	E	1500	24	10	Slight decline in percent hatched	Morgan et al. (1973)
ss (Striped)	E	2000	24	10	Slight decline in percent hatched	Morgan et al. (1973)
iss (Striped)	Е	2300	24	10	Slight decline in percent hatched	Morgan et al. (1973)
ass (Striped)	Е	1500	24	9	Development rate slowed signficantly (80% of control)	Morgan et al. (1973)
ass (Striped)	E	2000	24	9	Development rate slowed signficantly (80% of control)	Morgan et al. (1973)
ass (Striped)	E	2300	24	9	Development rate slowed signficantly (80% of control)	Morgan et al. (1973)
erch (white)	L	5200	6	0	No effect observed	Morgan et al. (1973)
ss (Striped)	L	5200	6	0	No effect observed	Morgan et al. (1973)
rch (white)	L	1626	24	11	27.3% mortality (contol %)	Morgan et al. (1973)
rch (white)	L	5380	24	11	29.3% mortality (control %)	Morgan et al. (1973)
rch (white)	L	1626	48	11	22.6% mortality (contol %)	Morgan et al. (1973)
rch (white)	L	5380	48	13	62.0% mortality (control %)	Morgan et al. (1973)
rch (white)	L	11642	24	12	50% mortality (LD50)	Morgan et al. (1973)
rch (white)	L	2680	48	12	50% mortality (LD50)	Morgan et al. (1973)
ss (Striped)	L	1557	24	10	20.0% mortality (contol %)	Morgan et al. (1973)
iss (Striped)	L	5210	24	11	27.3% mortality (control %)	Morgan et al. (1973)
iss (Striped)	L	1557	48	11	38.7% mortality (contol %)	Morgan et al. (1973)
ass (Striped)	L	5210	48	13	66% mortality (control %)	Morgan et al. (1973)

		Sediment dose			Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Bass (Striped)	L	7846	24	12	50% mortality (LD50)	Morgan et al. (1973)	
Bass (Striped)	L	3411	48	12	50% mortality (LD50)	Morgan et al. (1973)	
Perch (white)	Е	127	24	10	96% hatched (% of controls)	Morgan et al. (1983)	
Perch (white)	Е	250	24	10	96 % hatched (% of controls)	Morgan et al. (1983)	
Perch (white)	Е	382	24	10	87% hatched (% of controls)	Morgan et al. (1983)	
Perch (white)	Е	498	24	10	85% hatched (% of controls)	Morgan et al. (1983)	
Perch (white)	E	995	24	10	84% hatched (% of controls)	Morgan et al. (1983)	
Perch (white)	Е	1500	24	10	86% hatched (% of controls)	Morgan et al. (1983)	
Perch (white)	Е	1900	24	10	88% hatched (% of controls)	Morgan et al. (1983)	
Perch (white)	Е	2200	24	10	86% hatched (% of controls)	Morgan et al. (1983)	
Perch (white)	Е	2750	24	10	89% hatched (% of controls)	Morgan et al. (1983)	
Perch (white)	Ε	3200	24	10	88% hatched (% of controls)	Morgan et al. (1983)	
Perch (white)	Е	4000	24	10	85% hatched (% of controls)	Morgan et al. (1983)	
Perch (white)	E	5250	24	10	88% hatched (% of controls)	Morgan et al. (1983)	
Perch (white)	E	127	24	9	Development rate slowed signficantly (98% of control)	Morgan et al. (1983)	
Perch (white)	Е	250	24	9	Development rate slowed signficantly (98% of control)	Morgan et al. (1983)	
Perch (white)	E	382	24	9	Development rate slowed signficantly (97% of control)	Morgan et al. (1983)	
Perch (white)	E	498	24	9	Development rate slowed signficantly (96% of control)	Morgan et al. (1983)	
Perch (white)	E	995	24	9	Development rate slowed signficantly (85% of control)	Morgan et al. (1983)	
Perch (white)	E	1500	24	9	Development rate slowed signficantly (82% of control)	Morgan et al. (1983)	
Perch (white)	E	1900	24	9	Development rate slowed signficantly (79% of control)	Morgan et al. (1983)	
Perch (white)	E	2200	24	9	Development rate slowed signficantly (78% of control)	Morgan et al. (1983)	
Perch (white)	E	2750	24	9	Development rate slowed signficantly (77% of control)	Morgan et al. (1983)	
Perch (white)	E	3200	24	9	Development rate slowed signficantly (76% of control)	Morgan et al. (1983)	
Perch (white)	E	4000	24	9	Development rate slowed signficantly (65% of control)	Morgan et al. (1983)	
Perch (white)	E	5250	24	9	Development rate slowed signficantly (58% of control)	Morgan et al. (1983)	
Perch (white)	L	1626	24	10	15% mortality	Morgan et al. (1983)	
Perch (white)	L	2438	24	10	16% mortality	Morgan et al. (1983)	
Perch (white)	L	3022	24	10	17% mortality	Morgan et al. (1983)	
Perch (white)	L	5380	24	10	19% mortality	Morgan et al. (1983)	
Perch (white)	L	1626	48	11	23% mortality	Morgan et al. (1983)	
erch (white)	L	2438	48	11	25% mortality	Morgan et al. (1983)	
erch (white)	L	3022	48	12	43% mortality	Morgan et al. (1983)	
Perch (white)	L	5380	48	12	49% mortality	Morgan et al. (1983)	
Bass (Striped)	E	95	24	10	82% hatched (% of controls)	Morgan et al. (1983)	
Bass (Striped)	E	265	24	10	80% hatched (% of controls)	Morgan et al. (1983)	
Bass (Striped)	E	595	24	10	84% hatched (% of controls)	Morgan et al. (1983)	
Bass (Striped)	E	890	24	11	65% hatched (% of controls)	Morgan et al. (1983)	
Bass (Striped)	E	1100	24	12	56% hatched (% of controls)	Morgan et al. (1983)	
Bass (Striped)	E	1600	24	11	62% hatched (% of controls)	Morgan et al. (1983)	
Bass (Striped)	E	1900	24	11	68% hatched (% of controls)	Morgan et al. (1983)	
Bass (Striped)	E	2300	24	11	62% hatched (% of controls)	Morgan et al. (1983)	

		Sediment dose			Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Bass (Striped)	E	95	24	9	Development rate slowed signficantly (89% of control)	Morgan et al. (1983)	
Bass (Striped)	E	265	24	9	Development rate slowed signficantly (98% of control)	Morgan et al. (1983)	
Bass (Striped)	E	595	24	9	Development rate slowed signficantly (98% of control)	Morgan et al. (1983)	
Bass (Striped)	E	890	24	9	Development rate slowed signficantly (60% of control)	Morgan et al. (1983)	
Bass (Striped)	E	1100	24	9	Development rate slowed signficantly (58% of control)	Morgan et al. (1983)	
Bass (Striped)	E	1600	24	9	Development rate slowed signficantly (52% of control)	Morgan et al. (1983)	
Bass (Striped)	E	1900	24	9	Development rate slowed signficantly (50% of control)	Morgan et al. (1983)	
Bass (Striped)	E	2300	24	9	Development rate slowed signficantly (52% of control)	Morgan et al. (1983)	
Bass (Striped)	L	1626	24	10	20% mortality	Morgan et al. (1983)	
Bass (Striped)	L	2438	24	11	21% mortality	Morgan et al. (1983)	
Bass (Striped)	L	3022	24	11	21% mortality	Morgan et al. (1983)	
Bass (Striped)	L	5380	24	11	31% mortality	Morgan et al. (1983)	
Bass (Striped)	L	1626	48	11	25% mortality	Morgan et al. (1983)	
Bass (Striped)	L	2438	48	11	29% mortality	Morgan et al. (1983)	
ass (Striped)	L	3022	48	11	37% mortality	Morgan et al. (1983)	
ass (Striped)	L	5380	48	12	57% mortality	Morgan et al. (1983)	
ass (Striped)	L	5200	12	10	0% mortality	Morgan et al. (1983)	
					•		
erch (white)	L	5200	12	10	0% mortality	Morgan et al. (1983)	
ass (Striped)	L	20417	24	12	50% mortality (LDC50)	Morgan et al. (1983)	
erch (white)	L	67000	24	12	50% mortality (LDC50)	Morgan et al. (1983)	
ass (Striped)	L	6292	48	12	50% mortality (LDC50)	Morgan et al. (1983)	
erch (white)	L	6900	48	12	50% mortality (LDC50)	Morgan et al. (1983)	
Perch (White)	E	50	69	11	Egg mortality 30.3% (control 32.7%)	Auld & Schubel (1974)	
Perch (White)	E	100	69	11	Egg mortality 31.1% (control 32.7%)	Auld & Schubel (1974)	
erch (White)	E	500	69	11	Egg mortality 39.4% (control 32.7%)	Auld & Schubel (1974)	
Perch (White)	E	1000	69	12	Egg mortality 50.6% (control 32.7%)	Auld & Schubel (1974)	
inapper (Pink)	E	32	12	0	No sediment adhesion to egg; No apparent effect on egg	Partridge & Michael (2010)	
Snapper (Pink)	E	100	12	0	No sediment adhesion to egg; No apparent effect on egg	Partridge & Michael (2010)	
Snapper (Pink)	E	320	12	0	No sediment adhesion to egg; No apparent effect on egg	Partridge & Michael (2010)	
Snapper (Pink)	E	1000	12	0	No sediment adhesion to egg; No apparent effect on egg	Partridge & Michael (2010)	
inapper (Pink)	E	3200	12	0	No sediment adhesion to egg; No apparent effect on egg	Partridge & Michael (2010)	
inapper (Pink)	E	10000	12	0	No sediment adhesion to egg; No apparent effect on egg	Partridge & Michael (2010)	
napper (Pink)	E	32	24	0	No sediment adhesion to egg; No apparent effect on egg	Partridge & Michael (2010)	
Snapper (Pink)	E	100	24	0	No sediment adhesion to egg; No apparent effect on egg	Partridge & Michael (2010)	
Snapper (Pink)	E	320	24	0	No sediment adhesion to egg; No apparent effect on egg	Partridge & Michael (2010)	
Snapper (Pink)	E	1000	24	0	No sediment adhesion to egg; No apparent effect on egg	Partridge & Michael (2010)	
Snapper (Pink)	E	3200	24	0	No sediment adhesion to egg; No apparent effect	Partridge & Michael (2010)	

Species		Sediment dose			Fish Response	
	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Snapper (Pink)	E	10000	24	0	No sediment adhesion to egg; No apparent effect on egg	Partridge & Michael (2010)
inapper (Pink)	L	32	12	10	Closed-mouth larvae mortality rate 8%	Partridge & Michael (2010)
napper (Pink)	L	100	12	10	Closed-mouth larvae mortality rate 16%	Partridge & Michael (2010)
napper (Pink)	L	320	12	10	Closed-mouth larvae mortality rate 2%	Partridge & Michael (2010)
napper (Pink)	L	1000	12	11	Closed-mouth larvae mortality rate 31%	Partridge & Michael (2010)
napper (Pink)	L	3200	12	13	Closed-mouth larvae mortality rate 66%	Partridge & Michael (2010)
napper (Pink)	L	10000	12	14	Closed-mouth larvae mortality rate 81%	Partridge & Michael (2010)
napper (Pink)	L	2020	12	12	Closed-mouth larvae mortality rate 50%	Partridge & Michael (2010)
napper (Pink)	L	32	12	11	Open-mouth larvae mortality rate 23%	Partridge & Michael (2010)
napper (Pink)	L	100	12	12	Open-mouth larvae mortality rate 41%	Partridge & Michael (2010)
napper (Pink)	L	320	12	12	Open-mouth larvae mortality rate 55%	Partridge & Michael (2010)
inapper (Pink)	L	1000	12	14	Open-mouth larvae mortality rate 88%	Partridge & Michael (2010)
napper (Pink)	L	3200	12	14	Open-mouth larvae mortality rate 88%	Partridge & Michael (2010)
napper (Pink)	L	10000	12	14	Open-mouth larvae mortality rate 88%	Partridge & Michael (2010)
napper (Pink)	L	157	12	12	Open-mouth larvae mortality rate 50%	Partridge & Michael (2010)
napper (Pink)	L	32	3	10	Open-mouth larvae mortality rate 8%	Partridge & Michael (2010)
napper (Pink)	L	100	3	10	Open-mouth larvae mortality rate 2%	Partridge & Michael (2010)
napper (Pink)	L	320	3	10	Open-mouth larvae mortality rate 10%	Partridge & Michael (2010)
napper (Pink)	L	1000	3	10	Open-mouth larvae mortality rate 6%	Partridge & Michael (2010)
napper (Pink)	L	3200	3	10	Open-mouth larvae mortality rate 9%	Partridge & Michael (2010)
napper (Pink)	L	10000	3	10	Open-mouth larvae mortality rate 20%	Partridge & Michael (2010)
napper (Pink)	L	32	12	10	Open-mouth larvae mortality rate 18%	Partridge & Michael (2010)
napper (Pink)	L	100	12	11	Open-mouth larvae mortality rate 33%	Partridge & Michael (2010)
napper (Pink)	L	320	12	14	Open-mouth larvae mortality rate 82%	Partridge & Michael (2010)
napper (Pink)	L	1000	12	14	Open-mouth larvae mortality rate 91%	Partridge & Michael (2010)
napper (Pink)	L	3200	12	14	Open-mouth larvae mortality rate 91%	Partridge & Michael (2010)
napper (Pink)	L	10000	12	14	Open-mouth larvae mortality rate 88%	Partridge & Michael (2010)
napper (Pink)	L	142	12	12	Open-mouth larvae mortality rate 50%	Partridge & Michael (2010)
	L	32	18	10		Partridge & Michael (2010)
napper (Pink)	L	100			Open-mouth larvae mortality rate 9%	
napper (Pink)			18	11	Open-mouth larvae mortality rate 26%	Partridge & Michael (2010)
napper (Pink)	L	320	18	12	Open-mouth larvae mortality rate 56%	Partridge & Michael (2010)
napper (Pink)	L	1000	18	14	Open-mouth larvae mortality rate 83%	Partridge & Michael (2010)
napper (Pink)	L	3200	18	14	Open-mouth larvae mortality rate 81%	Partridge & Michael (2010)
napper (Pink)	L	10000	18	14	Open-mouth larvae mortality rate 83%	Partridge & Michael (2010)
napper (Pink)	L	270	18	12	Open-mouth larvae mortality rate 50%	Partridge & Michael (2010)
napper (Pink)	L	32	3	10	Open-mouth larvae mortality rate 2%	Partridge & Michael (2010)
napper (Pink)	L	100	3	10	No observed mortality	Partridge & Michael (2010)
napper (Pink)	L	320	3	10	Open-mouth larvae mortality rate 19%	Partridge & Michael (2010)
napper (Pink)	L	1000	3	11	Open-mouth larvae mortality rate 29%	Partridge & Michael (2010)
napper (Pink)	L	3200	3	10	Open-mouth larvae mortality rate 6%	Partridge & Michael (2010)
napper (Pink)	L	10000	3	10	Open-mouth larvae mortality rate 19%	Partridge & Michael (2010)
napper (Pink)	L	320	6	12	Open-mouth larvae mortality rate 43%	Partridge & Michael (2010)
napper (Pink)	L	1000	6	12	Open-mouth larvae mortality rate 45%	Partridge & Michael (2010)
napper (Pink)	L	3200	6	11	Open-mouth larvae mortality rate 39%	Partridge & Michael (2010)
napper (Pink)	L	10000	6	11	Open-mouth larvae mortality rate 23%	Partridge & Michael (2010)
inapper (Pink)	L	100	9	10	Open-mouth larvae mortality rate 5%	Partridge & Michael (2010)
inapper (Pink)	L	320	9	12	Open-mouth larvae mortality rate 48%	Partridge & Michael (2010)
inapper (Pink)	L	1000	9	14	Open-mouth larvae mortality rate 81%	Partridge & Michael (2010)
napper (Pink)	L	3200	9	13	Open-mouth larvae mortality rate 64%	Partridge & Michael (2010)
Snapper (Pink)	L	10000	9	14	Open-mouth larvae mortality rate 88%	Partridge & Michael (2010)

		Sedimer	nt dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Snapper (Pink)	L	502	9	12	Open-mouth larvae mortality rate 50%	Partridge & Michael (2010)
Snapper (Pink)	L	32	12	10	Open-mouth larvae mortality rate 6%	Partridge & Michael (2010)
Snapper (Pink)	L	100	12	10	Open-mouth larvae mortality rate 6%	Partridge & Michael (2010)
Snapper (Pink)	L	320	12	11	Open-mouth larvae mortality rate 21%	Partridge & Michael (2010)
Snapper (Pink)	L	1000	12	13	Open-mouth larvae mortality rate 68%	Partridge & Michael (2010)
Snapper (Pink)	L	3200	12	14	Open-mouth larvae mortality rate 97%	Partridge & Michael (2010)
Snapper (Pink)	L	10000	12	14	Open-mouth larvae mortality rate 98%	Partridge & Michael (2010)
Snapper (Pink)	L	214	12	12	Open-mouth larvae mortality rate 50%	Partridge & Michael (2010)
Snapper (Pink)	L	32	3	10	Open-mouth larvae mortality post 9h recovery 3%	Partridge & Michael (2010)
Snapper (Pink)	L	100	3	10	Open-mouth larvae mortality post 9h recovery 12%	Partridge & Michael (2010)
Snapper (Pink)	L	320	3	10	Open-mouth larvae mortality post 9h recovery 20%	Partridge & Michael (2010)
Snapper (Pink)	L	1000	3	12	Open-mouth larvae mortality post 9h recovery 41%	Partridge & Michael (2010)
Snapper (Pink)	L	3200	3	12	Open-mouth larvae mortality post 9h recovery 51%	Partridge & Michael (2010)
Snapper (Pink)	L	10000	3	11	Open-mouth larvae mortality post 9h recovery 38%	Partridge & Michael (2010)
Snapper (Pink)	L	32	6	10	Open-mouth larvae mortality post 9h recovery 7%	Partridge & Michael (2010)
Snapper (Pink)	L	100	6	10	Open-mouth larvae mortality post 9h recovery 1%	Partridge & Michael (2010)
Snapper (Pink)	L	320	6	10	Open-mouth larvae mortality post 9h recovery 4%	Partridge & Michael (2010)
Snapper (Pink)	L	1000	6	12	Open-mouth larvae mortality post 9h recovery 46%	Partridge & Michael (2010)
Snapper (Pink)	L	3200	6	12	Open-mouth larvae mortality post 9h recovery 59%	Partridge & Michael (2010)
Snapper (Pink)	L	10000	6	13	Open-mouth larvae mortality post 9h recovery 64%	Partridge & Michael (2010)
Snapper (Pink)	L	32	9	10	Open-mouth larvae mortality post 9h recovery 6%	Partridge & Michael (2010)
Snapper (Pink)	L	100	9	11	Open-mouth larvae mortality post 9h recovery 21%	Partridge & Michael (2010)
Snapper (Pink)	L	320	9	11	Open-mouth larvae mortality post 9h recovery 29%	Partridge & Michael (2010)
Snapper (Pink)	L	1000 32	12	12	Open-mouth larvae mortality post 9h recovery 58% Open-mouth larvae mortality post 9h recovery	Partridge & Michael (2010) Partridge & Michael (2010)
Snapper (Pink) Snapper (Pink)	L	100	12	10	12% Open-mouth larvae mortality post 9h recovery	Partridge & Michael (2010)
Snapper (Pink)	L	320	12	12	16% Open-mouth larvae mortality post 9h recovery	Partridge & Michael (2010)
Snapper (Pink)	L	50	240	4	47% Larvae ingested less prey (14 Gladioferens	Partridge & Michael (2010)
Snapper (Pink)	L	100	240	4	imparipes, control 15) Larvae ingested less prey (13 Gladioferens	Partridge & Michael (2010)
Snapper (Pink)	L	200	240	4	imparipes, control 15) Larvae ingested less prey (10 Gladioferens	Partridge & Michael (2010)
Snapper (Pink)	L	50	360	4	imparipes, control 15) Larvae ingested less prey (6 Gladioferens	Partridge & Michael (2010)
Snapper (Pink)	L	100	360	4	imparipes, control 11) Larvae ingested less prey (7 Gladioferens	Partridge & Michael (2010)
Snapper (Pink)	L	200	360	4	imparipes, control 11) Larvae ingested less prey (3 Gladioferens imparipes, control 11)	Partridge & Michael (2010)

		Sedimer	it dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Perch (White)	L	3730	24	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
Perch (White)	L	1550	48	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
Bass (Striped)	L	4850	24	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
Bass (Striped)	L	2800	48	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
Bass (Striped)	L	600	44	8	0.5% increase in hematocrit values	Sherk et al. (1975)
Bass (Striped)	L	1500	336	8	25.2% increase in hematocrit values	Sherk et al. (1975)
Bass (Striped)	L	600	44	8	6.8% decrease in hemoglobin concentration	Sherk et al. (1975)
Bass (Striped)	L	600	44	8	5.5% increase in erythrocyte counts	Sherk et al. (1975)
Bass (Striped)	L	600	44	8	4.4% decrease in plasma osmolality	Sherk et al. (1975)
Bass (Striped)	L	1500	336	8	5.7% increase in plasma osmolality	Sherk et al. (1975)
Herring (Pacific)	E	65	2	0	No change in fertilization and hatching success	Griffin et al. (2009)
Herring (Pacific)	E	125	2	11	Decrease in fertilization and hatching success	Griffin et al. (2009)
Herring (Pacific)	E	250	2	11	Decrease in fertilization and hatching success	Griffin et al. (2009)
Herring (Pacific)	E	500	2	11	Decrease in fertilization and hatching success	Griffin et al. (2009)
Herring (Pacific)	Е	65	2	0	No change in fertilization and hatching success, abnormalities present	Griffin et al. (2009)
Herring (Pacific)	Е	125	2	9	Fertilization and hatching success decreased, abnormalities present	Griffin et al. (2009)
Herring (Pacific)	E	250	2	9	Fertilization and hatching success decreased, abnormalities present	Griffin et al. (2009)
Herring (Pacific)	E	500	2	9	Fertilization and hatching success decreased, abnormalities present	Griffin et al. (2009)
Herring (Pacific)	L	500	2	9	Reduced hatch size (5mm, control 6mm)	Griffin et al. (2009)
Herring (Pacific)	L	500	2	9	Reduced hatch size (6mm, control 8mm)	Griffin et al. (2009)
Herring (Pacific)	L	500	2	9	Reduced hatch size (6mm, control 9mm)	Griffin et al. (2009)
Herring (Pacific)	L	500	2	8	Increased yolk sac size	Griffin et al. (2009)
Herring (Pacific)	L	500	2	12	Decreased post-hatch survival (87 larvae dead, 54 control larvae dead)	Griffin et al. (2009)

Adult nonsalmonids (estuarine or river-estuarine, group 5)

		Sedimer	nt dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Rasbora (harlequin)	Α	40000	24.00	10	Fish died (BC)	Alabaster & Lloyd (1980)
Rasbora (harlequin)	Α	6000	168.00	10	No mortality	Alabaster & Lloyd (1980)
Shad (American)	Α	100	0.25	3	Change in preferred swimming depth	Dadswell et al. (1983)
Toadfish (Oyster)	Α	2200	3.00	5	No effect on oxygen consumption	Neumann et al. (1975)
Toadfish (Oyster)	Α	1580	3.00	5	No effect on oxygen consumption	Neumann et al. (1975)
Toadfish (Oyster)	Α	3360	1.00	8	Oxygen consumption more variable in prestressed fish	Neumann et al. (1975)
Toadfish (Oyster)	Α	11090	72.00	9	Latent ill effects manifested in subsequent test at low SS	Neumann et al. (1975)
Toadfish (Oyster)	Α	10370	72.00	5	No latent effect manifested in subsequent test in filtered water	Neumann et al. (1975)
Toadfish (Oyster)	Α	14600	72.00	8	Fish largely unaffected, but developed latent ill effects	Neumann et al. (1975)
Toadfish (Oyster)	Α	1580	3.00	8	Male respiration rate greater than female	Neumann et al. (1975)
Anchovy (Bay)	Α	2310	24.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)
Anchovy (Bay)	Α	4710	24.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)
Anchovy (Bay)	Α	9600	24.00	14	90% mortality (LC90, FE)	Sherk et al. (1975)

		Sedimer	nt dose		Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Killifish (Striped)	Α	23770	24.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)	
Killifish (Striped)	Α	38190	24.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)	
Killifish (Striped)	Α	61360	24.00	14	90% mortality (LC90, FE)	Sherk et al. (1975)	
Killifish (Striped)	Α	97200	24.00	10	10% mortality (LC10)	Sherk et al. (1975)	
Killifish (Striped)	Α	128200	24.00	12	50% mortality (LC50)	Sherk et al. (1975)	
Killifish (Striped)	Α	169300	24.00	14	90% mortality (LC90)	Sherk et al. (1975)	
Mummichog	Α	24470	24.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)	
Mummichog	Α	39000	24.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)	
Mummichog	Α	62170	24.00	14	90% mortality (LC90, FE)	Sherk et al. (1975)	
Perch (white)	Α	3050	24.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)	
Perch (white)	Α	9850	24.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)	
Perch (white)	Α	31810	24.00	14	90% mortality (LC90, FE)	Sherk et al. (1975)	
Perch (white)	Α	670	48.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)	
Perch (white)	Α	2960	48.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)	
Perch (white)	Α	13060	48.00	14	90% mortality (LC90, FE)	Sherk et al. (1975)	
Silverside (Atlantic)	Α	580	24.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)	
Silverside (Atlantic)	Α	2500	24.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)	
Silverside (Atlantic)	Α	10000	24.00	14	90% mortality (LC90, FE)	Sherk et al. (1975)	
Spot	Α	13090	24.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)	
Spot	Α	20340	24.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)	
Spot	Α	68750	24.00	10	10% mortality (LC10)	Sherk et al. (1975)	
Spot	Α	88000	24.00	12	50% mortality (LC50)	Sherk et al. (1975)	
Spot	Α	112630	24.00	14	90% mortality (LC90)	Sherk et al. (1975)	
Spot	Α	1140	48.00	10	10% mortality (LC10, FE)	Sherk et al. (1975)	
Spot	Α	1890	48.00	12	50% mortality (LC50, FE)	Sherk et al. (1975)	
Spot	Α	3170	48.00	14	90% mortality (LC90, FE)	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	8	Hematocrit increased	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	8	Erythrocyte count increased	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	8	Hemoglobin concentration increased	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	5	Plasma Osmolarita decreased	Sherk et al. (1975)	
Hogchoker	Α	1240	120.00	8	Hematocrit increased	Sherk et al. (1975)	
Hogchoker	Α	1240	120.00	8	Energy utilization increased	Sherk et al. (1975)	
Hogchoker	Α	1240	120.00	8	Erythrocyte count increased	Sherk et al. (1975)	
(illifish (Striped)	Α	960	120.00	8	Hematocrit increased	Sherk et al. (1975)	
Spot	Α	1270	120.00	8	Hematocrit decreased	Sherk et al. (1975)	
Spot	Α	1270	120.00	8	Hemoglobin concentration increased	Sherk et al. (1975)	
Spot	Α	1270	120.00	8	Erythrocyte count increased	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	5	No increase in size of gill goblet cells	Sherk et al. (1975)	
Perch (white)	A	650	120.00	8	Increase of gill mucus goblet cells	Sherk et al. (1975)	
Perch (white)	A	650	120.00	8	Abnormalities of gill secondary lamellae observed	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	8	Gill Lamellae appeared swollen	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	8	Gill epithelium separated from pilar cell tube/lamellar structure	Sherk et al. (1975)	
Perch (white)	Α	650	120.00	8	Enlarged gill epithelial cells	Sherk et al. (1975)	
Perch (white)	A	3050	24.00	9	Significant adverse effect on gill tissue	Sherk et al. (1975)	
Perch (white)	Α	3050	120.00	8	Gill tissue may have been damaged	Sherk et al. (1975)	
Perch (white)	A	650	120.00	8	Histological damage to gill tissue	Sherk et al. (1975)	
(********************************	A	300000	24.00	10		(±5/5)	

		Sediment dose			Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Minnow	Α	300000	24.00	11	30% mortality	Rogers (1969)
(sheepshead) Stickleback (fourspine)	Α	52000	24.00	12	50% mortality (LD50)	Rogers (1969)
Cunner	Α	100000	24.00	12	50% mortality (LD50, 15.0 C, KS)	Rogers (1969)
Cunner	Α	133000	12.00	12	50% mortality (LD50, 15.0 C, KS)	Rogers (1969)
Cunner	Α	100000	24.00	12	50% mortality (LD50, 15.0 C, KS)	Rogers (1969)
Cunner	Α	72000	48.00	12	50% mortality (LD50, 15.0 C, KS)	Rogers (1969)
Cunner	Α	17210	12.00	10	0.15% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	133050	12.00	10	2.3% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	214710	12.00	10	11.9% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	17080	24.00	10	0.18% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	37650	24.00	10	1.21% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	40480	24.00	10	0.7% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	99500	24.00	10	3.23% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	130890	24.00	10	4.2% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	210580	24.00	10	13.13% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	17350	48.00	10	0.11% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	17360	48.00	10	0.73% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	40850	48.00	10	1.19% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	77200	48.00	10	0.72% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	99490	48.00	10	3.29% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	134910	48.00	10	13.36% mortality (15.0 C, KS)	Rogers (1969)
Cunner	Α	209250	48.00	14	95.33% mortality (15.0 C, KS)	Rogers (1969)
stickleback fourspine)	Α	7700	24.00	10	15.37% mortality (15.0-16.0 C, KS)	Rogers (1969)
Stickleback fourspine)	Α	8560	24.00	11	30.54% mortality (15.0-16.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	18600	24.00	12	54.11% mortality (15.0-16.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	18740	24.00	12	59.09% mortality (15.0-16.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	39200	24.00	13	74.13% mortality (15.0-16.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	A	39630	24.00	14	89.52% mortality (15.0-16.0 C, KS)	Rogers (1969)
Stickleback (fourspine) Stickleback	A	58810 59960	24.00 24.00	14 14	89.6% mortality (15.0-16.0 C, KS) 100% mortality (15.0-16.0 C, KS)	Rogers (1969) Rogers (1969)
(fourspine) Stickleback	A A	9380	24.00	10	0% mortality (11.0 C, KS)	Rogers (1969)
(fourspine) Stickleback	A	22300	24.00	10	19.16% mortality (11.0 C, KS)	Rogers (1969)
(fourspine) Stickleback	Α	22460	24.00	11	24.8% mortality (11.0 C, KS)	Rogers (1969)
(fourspine) Stickleback	A	37790	24.00	11	24.69% mortality (11.0 C, KS)	Rogers (1969)
(fourspine) Stickleback	А	53710	24.00	12	44.96% mortality (11.0 C, KS)	Rogers (1969)
(fourspine) Stickleback	А	55130	24.00	12	49.94% mortality (11.0 C, KS)	Rogers (1969)
(fourspine) Stickleback	Α	55140	24.00	13	65.34% mortality (11.0 C, KS)	Rogers (1969)
(fourspine) Stickleback	Α	99010	24.00	13	79.55% mortality (11.0 C, KS)	Rogers (1969)

		Sediment dose			Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Stickleback (fourspine)	Α	99300	24.00	14	89.74% mortality (11.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	198290	24.00	14	94.23% mortality (11.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	200060	24.00	14	96.6% mortality (11.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	299010	24.00	14	99.57% mortality (11.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	300160	24.00	14	95.01% mortality (11.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	57440	24.00	10	11.1% mortality (9.0-9.5 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	101020	24.00	10	15.12% mortality (9.0-9.5 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	200170	24.00	12	40.21% mortality (9.0-9.5 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	301130	24.00	11	39.05% mortality (9.0-9.5 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	330000	24.00	12	50% mortality (LD50, 9.0-9.5 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	53000	24.00	12	50% mortality (LD50, 10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	18300	24.00	12	50% mortality (LD50, 15.0-16.0 C, KS)	Rogers (1969)
Cunner	Α	100000	24.00	12	50% mortality (LD50, 15.0 C, KS)	Rogers (1969)
Cunner	Α	28000	24.00	12	50% mortality (LD50, 20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	40510	24.00	13	60.29% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	40950	24.00	11	35.73% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	73620	24.00	13	69.69% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	85730	24.00	14	80.23% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	99200	24.00	14	80.25% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	98780	24.00	14	100.32% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	118640	24.00	14	89.43% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	103970	24.00	10	6.37% mortality (20.0-25.0 C, KS)	Rogers (1969)
Cunner	Α	10010	24.00	10	1.18% mortality (15.0 C, KS)	Rogers (1969)
Cunner	A	17710	24.00	10	0.61% mortality (15.0 C, KS)	Rogers (1969)
Cunner	A	37510	24.00	11	20.52% mortality (15.0 C, KS)	Rogers (1969)
Cunner	A	41960	24.00	10	10.78% mortality (15.0 C, KS)	Rogers (1969)
Cunner	A	74310	24.00	10	10.43% mortality (15.0 C, KS)	Rogers (1969)
Cunner	A	99460	24.00	12	49.45% mortality (15.0 C, KS)	Rogers (1969)
Cunner	A	133520	24.00	12	59.63% mortality (15.0 C, KS)	Rogers (1969)
Cunner	A	210000	24.00	14	90% mortality (15.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	A	10060	24.00	10	0.3% mortality (19.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	16190	24.00	10	10.42% mortality (19.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	31880	24.00	10	0.06% mortality (19.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	54610	24.00	11	20.17% mortality (19.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	99150	24.00	14	90% mortality (19.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	10910	24.00	10	0% mortality (15.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	56620	24.00	10	0% mortality (15.0 C, KS)	Rogers (1969)

		Sedime	nt dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Minnow (sheepshead)	А	56950	24.00	10	5.63% mortality (15.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	99400	24.00	10	0% mortality (15.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	196940	24.00	10	10.49% mortality (15.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	201140	24.00	10	10.53% mortality (15.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	299440	24.00	10	0% mortality (15.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	299360	24.00	11	30.44% mortality (15.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	9100	24.00	10	0% mortality (KS, 10-12 C)	Rogers (1969)
Stickleback (fourspine)	Α	23400	24.00	11	20.7% mortality (KS, 10.0-12.0 C)	Rogers (1969)
Stickleback (fourspine)	Α	24400	24.00	11	24.9% mortality (KS, 10.0-12.0 C)	Rogers (1969)
Stickleback (fourspine)	Α	37500	24.00	11	24.9% mortality (KS, 10.0-12.0 C)	Rogers (1969)
Stickleback (fourspine)	Α	55000	24.00	12	44.9% mortality (KS, 10.0-12.0 C)	Rogers (1969)
Stickleback (fourspine)	Α	55200	24.00	12	49.9% mortality (KS, 10.0-12.0 C)	Rogers (1969)
Stickleback fourspine)	Α	55100	24.00	13	64.7% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	98500	24.00	14	89.4% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	195300	24.00	14	94.3% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	198000	24.00	14	95.5% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	298600	24.00	14	95.2% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	298000	24.00	14	100% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	98400	24.00	13	78.8% mortality (10.0-12.0 C, KS)	Rogers (1969)
Cunner	А	9100	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Cunner	Α	18100	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Cunner	Α	41500	24.00	10	10.3% mortality (10.0-12.0 C, KS)	Rogers (1969)
Cunner	Α	74600	24.00	10	10% mortality (10.0-12.0 C, KS)	Rogers (1969)
Cunner	Α	99000	24.00	12	50% mortality (10.0-12.0 C, KS)	Rogers (1969)
Cunner	A	133300	24.00	12	59.5% mortality (10.0-12.0 C, KS)	Rogers (1969)
Cunner	A	208100	24.00	14	90.2% mortality (10.0-12.0 C, KS)	Rogers (1969)
Minnow sheepshead)	A	9100	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	55600	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	100100	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	199900	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	200300	24.00	10	10.6% mortality (10.0-12.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	201600	24.00	10	9.2% mortality (10.0-12.0 C, KS)	Rogers (1969)

		Sedimer	nt dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Minnow (sheepshead)	А	300400	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Minnow (sheepshead)	Α	300200	24.00	11	30.3% mortality (10.0-12.0 C, KS)	Rogers (1969)
Mummichog	Α	9100	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Mummichog	Α	56000	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Mummichog	Α	100500	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Mummichog	Α	200600	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Mummichog	Α	299600	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	53000	24.00	12	50% mortality (LD50, 10.0-12.0 C, KS)	Rogers (1969)
Cunner	Α	100000	24.00	12	50% mortality (LD50, 15.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	510	24.00	10	1.33% mortality (12.0-16.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	1170	24.00	10	0% mortality (12.0-16.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	4150	24.00	10	5.63% mortality (12.0-16.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	1970	24.00	11	30.07% mortality (12.0-16.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	3130	24.00	12	45.04% mortality (12.0-16.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	3280	24.00	12	59.85% mortality (12.0-16.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	2620	24.00	14	94.67% mortality (12.0-16.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	3500	24.00	14	95.11% mortality (12.0-16.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	4150	24.00	14	100% mortality (12.0-16.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	4660	24.00	14	100% mortality (12.0-16.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	5100	24.00	14	100% mortality (12.0-16.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	5760	24.00	14	100% mortality (12.0-16.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	9910	24.00	14	100% mortality (12.0-16.0 C, IA)	Rogers (1969)
Cunner	Α	13340	24.00	10	0% mortality (16.4 C, IA)	Rogers (1969)
Cunner	Α	13340	24.00	12	40.15% mortality (16.4 C, IA)	Rogers (1969)
Cunner	Α	23620	24.00	12	49.33% mortality (16.4 C, IA)	Rogers (1969)
Cunner	Α	23830	24.00	14	89.78% mortality (16.4 C, IA)	Rogers (1969)
Cunner	Α	13410	24.00	14	100% mortality (16.4 C, IA)	Rogers (1969)
Cunner	Α	23830	24.00	14	100% mortality (16.4 C, IA)	Rogers (1969)
Cunner	Α	42060	24.00	14	89.63% mortality (16.4 C, IA)	Rogers (1969)
Cunner	Α	42130	24.00	14	97.93% mortality (16.4 C, IA)	Rogers (1969)
Cunner	Α	41980	24.00	14	100% mortality (16.4 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	2110	24.00	10	0.18% mortality (10.0-12.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	1230	24.00	10	0.72% mortality (10.0-12.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	3510	24.00	10	4.85% mortality (10.0-12.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	2460	24.00	11	29.26% mortality (10.0-12.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	4210	24.00	12	44.7% mortality (10.0-12.0 C, IA)	Rogers (1969)

		Sedime	nt dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Stickleback (fourspine)	Α	4390	24.00	12	59.78% mortality (10.0-12.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	3860	24.00	14	94.79% mortality (10.0-12.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	5610	24.00	14	94.97% mortality (10.0-12.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	5610	24.00	14	100% mortality (10.0-12.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	7020	24.00	14	100% mortality (10.0-12.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	8950	24.00	14	100% mortality (10.0-12.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	11050	24.00	14	100% mortality (10.0-12.0 C, IA)	Rogers (1969)
Stickleback (fourspine)	Α	10350	24.00	10	0% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	А	24210	24.00	10	19.57% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	А	24210	24.00	11	24.42% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	38250	24.00	11	24.24% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	56840	24.00	12	43.27% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	56320	24.00	12	48.83% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	55790	24.00	12	57.63% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	100530	24.00	13	76.66% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	100700	24.00	14	87.97% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	200000	24.00	14	91.92% mortality (10.0-12.0 C, KS)	Rogers (1969)
Stickleback (fourspine)	Α	200000	24.00	14	91.92% mortality (10.0-12.0 C, KS)	Rogers (1969)
Cunner	Α	13370	24.00	10	0% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner	Α	13570	24.00	12	40.08% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner	Α	24390	24.00	12	49.9% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner	Α	24580	24.00	14	89.78% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner	Α	13770	24.00	14	100% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner	A	24580	24.00	14	100% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner	A	42280	24.00	14	100% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner	Α	43270	24.00	14	100% mortality (15.0-16.0 C, IA)	Rogers (1969)
Cunner	A	9440	24.00	10	0% mortality (15.0-16.0 C, KS)	Rogers (1969)
Cunner	A	18290	24.00	10	0% mortality (15.0-16.0 C, KS)	Rogers (1969)
Cunner	A	42280	24.00	10	9.62% mortality (15.0-16.0 C, KS)	Rogers (1969)
Cunner	A	38350	24.00	10	19.24% mortality (15.0-16.0 C, KS)	Rogers (1969)
Cunner	Α	74930	24.00	10	9.22% mortality (15.0-16.0 C, KS)	Rogers (1969)
Cunner	A	134920	24.00	12	57.92% mortality (15.0-16.0 C, KS)	Rogers (1969)
Cunner	A	210000	24.00	14	87.17% mortality (15.0-16.0 C, KS)	Rogers (1969)
Cunner	A	9640	24.00	10	0% mortality (15.0-16.0 C, KA)	Rogers (1969)
Cunner	A	13570	24.00	10	0% mortality (15.0-16.0 C, KA)	Rogers (1969)
Cunner	Α	18290	24.00	10	0% mortality (15.0-16.0 C, KA)	Rogers (1969)
Cunner	Α	23800	24.00	10	0% mortality (15.0-16.0 C, KA)	Rogers (1969)
Cunner	Α	14160	24.00	10	10.02% mortality (15.0-16.0 C, KA)	Rogers (1969)

		Sediment dose			Fish Response	_	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Cunner	А	37760	24.00	10	0% mortality (15.0-16.0 C, KA)	Rogers (1969)	
Cunner	Α	41890	24.00	11	20.04% mortality (15.0-16.0 C, KA)	Rogers (1969)	
Cunner	Α	55850	24.00	10	0% mortality (15.0-16.0 C, KA)	Rogers (1969)	
Cunner	Α	75130	24.00	10	8.82% mortality (15.0-16.0 C, KA)	Rogers (1969)	
Cunner	Α	99520	24.00	10	0% mortality (15.0-16.0 C, KA)	Rogers (1969)	
Cunner	Α	99710	24.00	12	48.7% mortality (15.0-16.0 C, KA)	Rogers (1969)	
Mummichog	Α	300000	24.00	10	0% mortality (12.0 C, KS)	Rogers (1969)	
Mummichog	Α	100000	24.00	10	Mortality occurred	Rogers (1969)	
Mummichog	Α	25400	24.00	10	4.59% mortality (12.0 C, DE)	Rogers (1969)	
Mummichog	Α	50490	24.00	10	9.64% mortality (12.0 C, DE)	Rogers (1969)	
Mummichog	Α	73730	24.00	10	14.84% mortality (12.0 C, DE)	Rogers (1969)	
Mummichog	A	99160	24.00	14	85.3% mortality (12.0 C, DE)	Rogers (1969)	
Mummichog	A	10460	24.00	10	0% mortality (12.0 C, KS)	Rogers (1969)	
Mummichog	A	54770	24.00	10	0% mortality (12.0 C, KS)	Rogers (1969)	
Mummichog	A	99080	24.00	10	0% mortality (12.0 C, KS)	Rogers (1969)	
Mummichog	A	199400	24.00	10	0% mortality (12.0 C, KS)	Rogers (1969)	
Mummichog	A	299400	24.00	10	0% mortality (12.0 C, KS)	- '	
Stickleback	A	10000	25.00	14	99.54% mortality (control 0%, 12.5 C, Glass	Rogers (1969) Rogers (1969)	
fourspine)					powder)		
Stickleback fourspine)	А	10000	25.00	14	81.74% mortality (control 0%, 12.5 C, DE)	Rogers (1969)	
Stickleback fourspine)	Α	10000	48.00	14	81.57% mortality (control 0%, 12.5 C, DE)	Rogers (1969)	
Stickleback fourspine)	Α	10000	72.00	14	81.41% mortality (control 0%, 12.5 C, DE)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	95.00	14	86.02% mortality (control 0%, 12.5 C, DE)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	119.00	14	86.18% mortality (control 0%, 12.5 C, DE)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	143.00	14	90.64% mortality (control 0%, 12.5 C, DE)	Rogers (1969)	
Stickleback (fourspine)	Α	10000	26.00	10	18.8% mortality (control 0%, 12.5 C, Glass spheres)	Rogers (1969)	
Stickleback	Α	10000	49.00	11	22.92% mortality (control 0%, 12.5 C, Glass spheres)	Rogers (1969)	
(fourspine) Stickleback	Α	10000	73.00	11	28.01% mortality (control 0%, 12.5 C, Glass	Rogers (1969)	
(fourspine) Stickleback	Α	10000	95.00	11	spheres) 27.52% mortality (control 0%, 12.5 C, Glass spheres)	Rogers (1969)	
(fourspine) Stickleback	Α	10000	119.00	11	27.51% mortality (control 0%, 12.5 C, Glass	Rogers (1969)	
(fourspine) Stickleback	Α	10000	144.00	11	spheres) 27.39% mortality (control 0%, 12.5 C, Glass	Rogers (1969)	
(fourspine) Stickleback	Α	10000	25.00	10	spheres) 9.87% mortality (control 0%, 12.5 C, Powdered	Rogers (1969)	
fourspine) Stickleback	Α	10000	48.00	10	charcol) 13.68% mortality (control 0%, 12.5 C, Powdered	Rogers (1969)	
(fourspine) Stickleback	Α	10000	72.00	10	charcol) 14.65% mortality (control 0%, 12.5 C, Powdered	Rogers (1969)	
(fourspine) Stickleback	Α	10000	96.00	10	charcol) 17.68% mortality (control 0%, 12.5 C, Powdered	Rogers (1969)	
(fourspine) Stickleback	А	10000	119.00	10	charcol) 18.13% mortality (control 0%, 12.5 C, Powdered	Rogers (1969)	
(fourspine) Stickleback	А	10000	143.00	10	charcol) 18.14% mortality (control 0%, 12.5 C, Powdered	Rogers (1969)	

		Sediment dose			Fish Response		
Species	Life Stage ^o	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Stickleback (fourspine)	Α	9790	24.00	10	15.84% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	А	9730	24.00	11	30.99% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	19420	24.00	12	55.75% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	19020	24.00	13	60.28% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	А	39350	24.00	13	73.46% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	39050	24.00	14	89.95% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	59040	24.00	14	89% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	59210	24.00	14	100% mortality (13.5 C, KS, no access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	9010	24.00	10	0.66% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	9590	24.00	10	0% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	А	19470	24.00	11	20.23% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	19560	24.00	11	35.55% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	39350	24.00	11	25.15% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	39210	24.00	11	28% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	44020	24.00	12	54.94% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	44240	24.00	12	57.31% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	59040	24.00	14	89% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Stickleback (fourspine)	Α	59210	24.00	14	100% mortality (13.5 C, KS, access to water surface)	Rogers (1969)	
Cunner	Α	41500	24.00	11	35.06% mortality (23 .0C, no supplemental oxygen)	Rogers (1969)	
Cunner	Α	41030	24.00	13	60.41% mortality (23.0 C, KS, no supplemental oxygen)	Rogers (1969)	
Cunner	Α	73920	24.00	13	68.86% mortality (23.0 C, KS, no supplemental oxygen)	Rogers (1969)	
Cunner	Α	74600	24.00	13	68.68% mortality (23.0 C, KS, no supplemental oxygen)	Rogers (1969)	
Cunner	Α	99480	24.00	13	79.35% mortality (23.0 C, KS, no supplemental oxygen)	Rogers (1969)	
Cunner	Α	99740	24.00	12	49.17% mortality (23.0 C, KS, no supplemental oxygen)	Rogers (1969)	
Cunner	Α	41490	24.00	10	14.23% mortality (23.0 C, KS, supplemental oxygen)	Rogers (1969)	
Cunner	А	40890	24.00	12	44.58% mortality (23.0 C, KS, supplemental oxygen)	Rogers (1969)	
Cunner	А	74480	24.00	11	34.35% mortality (23.0 C, KS, supplemental oxygen)	Rogers (1969)	
Cunner	Α	74440	24.00	12	49.02% mortality (23.0 C, KS, supplemental oxygen)	Rogers (1969)	
Cunner	Α	99350	24.00	12	44.18% mortality (23.0 C, KS, supplemental oxygen)	Rogers (1969)	

		Sediment dose			Fish Response	
pecies	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
ınner	Α	99270	24.00	12	54.02% mortality (23.0 C, KS, supplemental oxygen)	Rogers (1969)
llifish (Gulf)	Α	100	2.00	4	Feeding rate decreased to 60.5% of control (NTU)	Benfield & Minello (1996)
lantic Silverside	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)
oaker	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)
akfish	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)
ch (White)	Α	140000	48.00	10	No mortality (0%)	O'Conner et al. (1976)
t	Α	140000	48.00	10	No mortality (0%)	O'Conner et al. (1976)
dfish	Α	140000	48.00	10	No mortality (0%)	O'Conner et al. (1976)
mmichog	Α	140000	48.00	10	No mortality (0%)	O'Conner et al. (1976)
choker	Α	140000	48.00	10	No mortality (0%)	O'Conner et al. (1976)
dfish	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)
mmichog	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)
gchoker	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)
s (Striped)	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)
fish (Striped)	Α	140000	24.00	10	No mortality (0%)	O'Conner et al. (1976)
dfish	Α	118000	24.00	10	No mortality (0%)	O'Conner et al. (1976)
k Eel	Α	118000	24.00	10	No mortality (0%)	O'Conner et al. (1976)
gchoker	Α	118000	24.00	10	No mortality (0%)	O'Conner et al. (1976)
(Striped)	Α	16600	24.00	14	Mortality rate 100% (LC100)	O'Conner et al. (1976)
t	Α	13080	24.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)
hovy (Bay)	Α	2310	24.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)
ntic Silverside	Α	570	24.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)
nmichog	Α	24470	24.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)
ish (Striped)	Α	23770	24.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)
th (White)	Α	9850	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)
t	Α	20340	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)
hovy (Bay)	Α	4710	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)
ntic Silverside	Α	2400	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)
nmichog	Α	39000	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)
fish (Striped)	Α	38180	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)
ch (White)	Α	31810	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)
t	Α	31620	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)
hovy (Bay)	Α	9600	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)
antic Silverside	Α	10000	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)
mmichog	Α	62170	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)
ish (Striped)	A	61360	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)
isii (striped)	A	27560	12.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)
t	A	42360	12.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)
t	A	65120	12.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)
· i	A	21070	18.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)
t	A	33060	18.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)
i	A	51870	18.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)
	A	13080	24.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)
t +	A	20340	24.00	12	Mortality rate 10% (LC10)	O'Conner et al. (1976)
t t	A	31620	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)
	A		48.00	10	Mortality rate 90% (LC90) Mortality rate 10% (LC10)	O'Conner et al. (1976)
t +	A	1130 1900	48.00 48.00	10	, , , ,	O'Conner et al. (1976)
ot ot					Mortality rate 90% (LC50)	
ι	Α	3170	48.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)
ot	Α	68750	24.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)

		Sediment dose			Fish Response	_
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Spot	Α	88000	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)
Killifish (Striped)	Α	128200	24.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)
Spot	Α	112630	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)
Killifish (Striped)	Α	169300	24.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)
Mummichog	Α	35890	48.00	10	Mortality rate 10% (LC10)	O'Conner et al. (1976)
Mummichog	Α	45160	48.00	12	Mortality rate 50% (LC50)	O'Conner et al. (1976)
Mummichog	Α	56890	48.00	14	Mortality rate 90% (LC90)	O'Conner et al. (1976)
Mummichog	Α	125000	24.00	11	Fish mortality 38%	O'Conner et al. (1976)
Mummichog	Α	109000	72.00	10	No fish mortality	O'Conner et al. (1976)
Toadfish (Oyster)	Α	1580	72.00	0	No significant change in blood chemistry	Neumann et al. (1975)
Toadfish (Oyster)	Α	2200	72.00	0	No significant change in blood chemistry	Neumann et al. (1975)
oadfish (Oyster)	Α	14600	72.00	0	No significant change in microhematocrit levels	Neumann et al. (1975)
oadfish (Oyster)	Α	14600	72.00	0	No significant change in hemoglobin levels	Neumann et al. (1975)
oadfish (Oyster)	Α	14600	72.00	0	No significant change in Erythrocyte count levels	Neumann et al. (1975)
oadfish (Oyster)	Α	14600	72.00	0	No significant change in Blood osmolal concentration levels	Neumann et al. (1975)
oadfish (Oyster)	Α	10370	72.00	0	No significant difference in oxygen consumption	Neumann et al. (1975)
oadfish (Oyster)	Α	11090	72.00	8	Oxygen consumption reduced	Neumann et al. (1975)
oadfish (Oyster)	Α	1580	72.00	5	Significant differences between male respiration rates and female respiration rates	Neumann et al. (1975)
erch (White)	Α	3050	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)
erch (White)	Α	670	48.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)
oot	Α	13090	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)
oot	Α	68750	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)
pot	Α	1140	48.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)
lverside	Α	580	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)
nchovy (Bay)	Α	2310	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)
1ummichog	Α	24470	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)
illifish (Striped)	Α	23770	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)
illifish (Striped)	Α	97200	24.00	10	Mortality rate 10% (LC10)	Sherk et al. (1975)
erch (White)	Α	9850	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
erch (White)	Α	2960	48.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
pot	Α	20340	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
pot	A	88000	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
pot	A	1890	48.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
ilverside	A	2500	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
inchovy (Bay)	A	4710	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
Aummichog	A	39000	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
illifish (Striped)	A	38190	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
illifish (Striped)	A	128200	24.00	12	Mortality rate 50% (LC50)	Sherk et al. (1975)
erch (White)		31810	24.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)
erch (White)	Α				, , ,	Sherk et al. (1975)
` '	A	3060 113630	48.00	14	Mortality rate 90% (LC90) Mortality rate 90% (LC90)	
pot	A	112630	24.00	14	, , ,	Sherk et al. (1975)
oot	A	3170	48.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)
lverside	A	10000	24.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)
nchovy (Bay)	A	9600	24.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)
Aummichog	A	62170	24.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)
illifish (Striped)	Α	61360	24.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)
(illifish (Striped)	Α	169300	24.00	14	Mortality rate 90% (LC90)	Sherk et al. (1975)
erch (White)	Α	650	120.00	8	17.7% increase in hematocrit values	Sherk et al. (1975)
logchoker	Α	1240	120.00	8	27.6% increase in hematocrit values	Sherk et al. (1975)
Killifish (Striped)	Α	960	120.00	8	29.7% increase in hematocrit values	Sherk et al. (1975)

		Sedimer	nt dose		Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
pot	Α	1270	120.00	8	3.9% decrease in hematocrit values	Sherk et al. (1975)	
erch (White)	Α	650	120.00	8	15.1% increase in hemoglobin concentration	Sherk et al. (1975)	
pot	Α	1270	120.00	8	6.7% increase in hemoglobin concentration	Sherk et al. (1975)	
erch (White)	Α	650	120.00	8	29.0% increase in erythrocyte counts	Sherk et al. (1975)	
logchoker	Α	1240	120.00	8	30.4% increase in erythrocyte counts	Sherk et al. (1975)	
pot	Α	1270	120.00	8	5.4% increase in erythrocyte counts	Sherk et al. (1975)	
erch (White)	Α	650	120.00	8	2.8% increase in plasma osmolality	Sherk et al. (1975)	
erch (White)	Α	650	120.00	8	Increase in mucus goblet cells in gills	Sherk et al. (1975)	
erch (White)	Α	650	120.00	8	Secondary lamellae swollen with abnormalities	Sherk et al. (1975)	
erch (White)	Α	650	120.00	8	Epithelial cells enlarged	Sherk et al. (1975)	
erch (White)	Α	650	120.00	8	Epithelium separated from pilar cell tube	Sherk et al. (1975)	
erch (White)	Α	650	120.00	8	Red blood cells increased	O'Connor et al. (1977)	
erch (White)	Α	650	120.00	8	Microhematocrit increased	O'Connor et al. (1977)	
erch (White)	Α	650	120.00	8	Hemoglobin concentration increased	O'Connor et al. (1977)	
erch (White)	Α	650	120.00	8	Osmolality increased	O'Connor et al. (1977)	
ogchoker	Α	1240	120.00	8	Red blood cells increased	O'Connor et al. (1977)	
ogchoker	Α	1240	120.00	8	Microhematocrit increased	O'Connor et al. (1977)	
illifish (Striped)	Α	960	120.00	8	Microhematocrit increased	O'Connor et al. (1977)	
1ummichog	Α	1620	96.00	8	Microhematocrit increased	O'Connor et al. (1977)	
1ummichog	Α	1620	168.00	8	Microhematocrit increased	O'Connor et al. (1977)	
1ummichog	Α	1620	288.00	8	Microhematocrit increased	O'Connor et al. (1977)	
oot	Α	1270	120.00	8	Red blood cellls increased	O'Connor et al. (1977)	
pot	Α	1270	120.00	8	Microhematocrit decreased	O'Connor et al. (1977)	
pot	Α	1270	120.00	8	Hemoglobin concentration increased	O'Connor et al. (1977)	
ass (Striped)	A	600	264.00	8	Red blood cells slightly increased	O'Connor et al. (1977)	
ass (Striped)	Α	600	264.00	8	Microhematocrit slightly increased	O'Connor et al. (1977)	
ass (Striped)	A	600	264.00	8	Hemoglobin concentrations decreased	O'Connor et al. (1977)	
ass (Striped)	A	600	264.00	8	Osmolality decreased	O'Connor et al. (1977)	
ass (Striped)	A	1500	336.00	8	Microhematocrit increased	O'Connor et al. (1977)	
ass (Striped)	A	1500	336.00	8	Osmolality increased	O'Connor et al. (1977)	
oadfish (Oyster)	A	14600	72.00	8	Red blood cells increased	O'Connor et al. (1977)	
oadfish (Oyster)	A	14600	72.00	8	Microhematocrit increased	O'Connor et al. (1977)	
oadfish (Oyster)	A	14600	72.00	8	Hemoglobin concentration slightly increased	O'Connor et al. (1977)	
oadfish (Oyster)	A	14600	72.00	8	Osmolality decreased	O'Connor et al. (1977)	
, , , ,	A						
pot		15820	24.00	8	Red blood cells decreased	O'Connor et al. (1977)	
pot	A	15820	72.00	8	Red blood cells increased	O'Connor et al. (1977)	
pot	A	15820	168.00	5	No change in red blood cells	O'Connor et al. (1977)	
pot	A	15820	24.00	8	Microhematocrit increased	O'Connor et al. (1977)	
pot	A	15820	72.00	8	Microhematocrit decreased	O'Connor et al. (1977)	
oot	A	15820	168.00	5	No change in microhematocrit	O'Connor et al. (1977)	
oot	A	15820	24.00	8	Hemoglobin concentration slightly decreased	O'Connor et al. (1977)	
oot	A	15820	72.00	8	Hemoglobin concentration decreased	O'Connor et al. (1977)	
oot	A	15820	168.00	8	Hemoglobin concentration slightly decreased	O'Connor et al. (1977)	
oot	A	15820	24.00	8	Osmolality increased	O'Connor et al. (1977)	
pot	Α	15820	72.00	8	Osmolality increased	O'Connor et al. (1977)	
pot	Α	15820	168.00	8	Osmolality decreased	O'Connor et al. (1977)	
erch (White)	Α	650	120.00	8	Mucus goblet cells appeared	O'Connor et al. (1977)	
erch (White)	Α	650	120.00	8	Secondary lamellae swollen	O'Connor et al. (1977)	
erch (White)	Α	650	120.00	8	Epithelium on secondary lamellae separated from pilar tube	O'Connor et al. (1977)	
erch (White)	Α	650	120.00	8	Epithelial cells enlarged	O'Connor et al. (1977)	

		Sedimer	nt dose		Fish Response	
Species	Life Stage ^a	Exposure Exposur Concen- tration duration (mg/L)		SEV ^b	Description ^c	Reference
Hogchoker	Α	1240	120.00	8	Liver glycogen concentrations decreased	O'Connor et al. (1977)
Bass (Striped)	Α	790	3.00	5	Respiration increased	O'Connor et al. (1977)
erch (White)	Α	190	3.00	5	Respiration decreased	O'Connor et al. (1977)
oadfish (Oyster)	Α	1580	3.00	5	No change in respiration	O'Connor et al. (1977)
nchovy (Bay)	Α	9600	24.00	14	Mortality rate 90%	Sherk et al. (1974, copied from Wilber & Clarke (2001))
ass (Striped)	Α	1500	336.00	8	Hematocrit increased	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Bass (Striped)	Α	600	264.00	0	No effect	Sherk et al. (1974, copied from Wilber & Clarke (2001))
logchoker	Α	1240	120.00	8	Hematocrit increased	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Killifish (Striped)	Α	960	24.00	8	Hematocrit increased	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Cillifish (Striped)	Α	23770	24.00	10	10% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
(illifish (Striped)	Α	38190	24.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
illifish (Striped)	Α	61360	24.00	14	90% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
J ummichog	Α	24470	24.00	10	10% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
1ummichog	Α	39000	24.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
1ummichog	Α	62170	24.00	14	90% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
1ummichog	Α	35860	48.00	10	10% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Mummichog	Α	45160	48.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Mummichog	Α	56890	48.00	14	90% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Mummichog	Α	1620	96.00	8	Hematocrit increased	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Perch (White)	Α	9850	24.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Perch (White)	Α	31810	24.00	14	90% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Perch (White)	Α	670	48.00	10	10% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Perch (White)	Α	2960	48.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
erch (White)	Α	13060	48.00	14	90% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
ilverside Atlantic)	Α	580	24.00	10	10% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
iilverside Atlantic)	Α	2500	24.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
ilverside Atlantic)	Α	10000	24.00	14	90% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Spot	Α	13090	24.00	10	10% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Spot	Α	20340	24.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Spot	Α	31620	24.00	14	90% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Spot	Α	1140	48.00	10	10% mortality	Sherk et al. (1974, copied fron Wilber & Clarke (2001))

		Sediment dose			Fish Response	
pecies Life Stage	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
pot	А	1890	48.00	12	50% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
ipot	Α	3170	48.00	14	90% mortality	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Spot	Α	1270	120.00	0	No effect	Sherk et al. (1974, copied from Wilber & Clarke (2001))
Perch (Shiner)	Α	1000	96.00	10	Mortality rate 10%	McFarland & Peddicord (1980)
Perch (Shiner)	Α	3000	96.00	10	Mortality rate 20%	McFarland & Peddicord (1980)
Perch (Shiner)	Α	6000	96.00	11	Mortality rate 30%	McFarland & Peddicord (1980)
Sole (English)	Α	10000	240.00	10	0% mortality	McFarland & Peddicord (1980)
Sole (English)	Α	70000	240.00	10	0% mortality	McFarland & Peddicord (1980)
Sole (English)	Α	117000	240.00	13	80% mortality	McFarland & Peddicord (1980)
Perch (Shiner)	Α	3000	200.00	12	LC50 - 50% mortality	McFarland & Peddicord (1980)
Smelt	Α	19	0.08	0	No effect	Wildish & Power (1985)
Smelt	Α	22	0.08	3	Avoidance response	Wildish & Power (1985)
Smelt	Α	24	0.03	3	Avoidance response	Wildish & Power (1985)
Smelt	Α	40	0.06	3	Avoidance response	Wildish & Power (1985)
melt	Α	14	0.08	0	No effect	Wildish & Power (1985)

Adult nonsalmonids (freshwater, group 6)

		Sediment dose			Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Bass (Largemouth)	Α	73	2880.00	9	Weight gain reduced by 32.6%	Buck (1956)
Bass (Largemouth)	Α	207	2880.00	9	Weight gain reduced by 79.36%	Buck (1956)
Bass (Largemouth)	Α	73	2880.00	12	Reduced reproduction rates (66% reduction)	Buck (1956)
Bass (Largemouth)	Α	100	2880.00	12	Reduced reproduction rates or unable to reproduce	Buck (1956)
Bass (Largemouth)	Α	207	2880.00	14	Fish unable to reproduce	Buck (1956)
Bass (Largemouth)	Α	207	2880.00	9	Growth and development retarded	Buck (1956)
Sunfish (redear)	Α	73	2880.00	9	Weight gain reduced by 16.87%	Buck (1956)
Sunfish (redear)	Α	207	2880.00	9	Weight gain reduced by 49.21%	Buck (1956)
Sunfish (redear)	Α	73	2880.00	12	Reduced reproduction rates	Buck (1956)
Sunfish (redear)	Α	100	2880.00	12	Reduced reproduction rates or unable to reproduce	Buck (1956)
Sunfish (redear)	Α	207	2880.00	12	Reduced reproduction rates or unable to reproduce (85.7% reduction)	Buck (1956)
Sunfish (redear)	Α	207	2880.00	9	Growth and development retarded	Buck (1956)
Bluegill	Α	73	2880.00	9	Weight gain reduced 36.94%	Buck (1956)
Bluegill	Α	207	2880.00	9	Weight gain reduced by 59.46%	Buck (1956)
Bluegill	Α	73	2880.00	14	Fish unable to reproduce	Buck (1956)
Bluegill	Α	100	2880.00	14	Fish unable to reproduce	Buck (1956)
Bluegill	Α	207	2880.00	14	Fish unable to reproduce	Buck (1956)
Bluegill	Α	73	2880.00	12	Reduced reproduction rates	Buck (1956)
Bluegill	Α	100	2880.00	12	Reduced reproduction rates	Buck (1956)
Bluegill	Α	207	2880.00	12	Reduced reproduction rates	Buck (1956)
Bluegill	Α	207	2880.00	9	Growth and development retarded	Buck (1956)
Stickleback	Α	99	1440.00	10	Density of fish reduced	Erman & Ligon (1988)

	Sediment dose			Fish Response	_	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
(threespine)						
Sculpin (Prickly)	Α	99	1440.00	10	Density of fish reduced	Erman & Ligon (1988)
Sculpin (Prickly)	Α	99	1440.00	8	Poor condition, signs of starvation	Erman & Ligon (1988)
Fish	Α	120	384.00	10	Density of fish reduced	Erman & Ligon (1988)
Stickleback (threespine)	Α	120	384.00	10	Density of fish reduced	Erman & Ligon (1988)
Sculpin (Prickly)	Α	120	384.00	10	Density of fish reduced	Erman & Ligon (1988)
Bluegill	Α	60	0.05	4	Rate of feeding reduced by 20%	Gardner (1981)
Bluegill	Α	120	0.05	4	Rate of feeding reduced by 27%	Gardner (1981)
Bluegill	Α	190	0.05	4	Rate of feeding reduced by 46%	Gardner (1981)
Bluegill	Α	60	0.05	0	No effect on prey size selection	Gardner (1981)
Bluegill	Α	120	0.05	0	No effect on prey size selection	Gardner (1981)
Bluegill	Α	190	0.05	0	No effect on prey size selection	Gardner (1981)
Bluegill	A	123	0.05	4	Rate of feeding reduced	Gardner (1981)
Creek Chub	A	4	48.00	3	Fish more active and less dependent on cover	Gradall & Swenson (1982)
Creek Chub	A	345	48.00	3	Prefered more turbid conditions	Gradall & Swenson (1982
						·
Fish	A	900	720.00	12	Fish absent or markedly reduced in abundance	Herbert & Richards (1962
Fish Fish	A A	1000 20	720.00 720.00	12 0	Fish absent or markedly reduced in abundance Fish present and fish population not adversely affected	Herbert & Richards (1962 Herbert & Richards (1962
Fish	Α	60	720.00	0	Fish present and fish population not adversely affected	Herbert & Richards (1962
Fish	Α	400	720.00	0	Fish present and fish population not adversely affected	Herbert & Richards (1962
Fish	Α	40	720.00	0	Fish present and fish population not adversely affected	Herbert & Richards (1962
Fish	Α	100	720.00	0	Fish present and fish population not adversely affected	Herbert & Richards (1962
Fish	Α	60	720.00	0	Fish present and fish population not adversely affected	Herbert & Richards (1962
Fish	Α	50	720.00	0	Fish present and fish population not adversely affected	Herbert & Richards (1962
Fish	Α	620	48.00	10	Fish kills downstream from sediment sources	Hesse &Newcombe (1982
Fish	Α	14540	24.00	10	Fish kills downstream from sediment sources	Hesse &Newcombe (1982
Fish	Α	21875	24.00	10	Fish kills downstream from sediment sources	Hesse &Newcombe (1982
Sunfish (Green)	Α	3300	8.00	0	No effect on ventilation rate	Horkel & Pearson (1976)
Sunfish (Green)	Α	6700	8.00	0	No effect on ventilation rate	Horkel & Pearson (1976)
Sunfish (Green)	Α	13300	8.00	5	Rate of ventilation increased (sig)	Horkel & Pearson (1976)
Sunfish (Green)	Α	17800	8.00	5	Rate of ventilation increased (sig)	Horkel & Pearson (1976)
Sunfish (Green)	Α	26700	8.00	5	Rate of ventilation increased (sig)	Horkel & Pearson (1976)
Sunfish (Green)	Α	3300	8.00	6	Decrease in fish movement (body movement traces from physiograph)	Horkel & Pearson (1976)
Sunfish (Green)	Α	6700	8.00	6	Decrease in fish movement (body movement traces from physiograph)	Horkel & Pearson (1976)
Sunfish (Green)	Α	13300	8.00	6	Decrease in fish movement (body movement traces from physiograph)	Horkel & Pearson (1976)
Sunfish (Green)	Α	17800	8.00	6	Decrease in fish movement (body movement traces from physiograph)	Horkel & Pearson (1976)
Sunfish (Green)	Α	26700	8.00	6	Decrease in fish movement (body movement traces from physiograph)	Horkel & Pearson (1976)
Fish	Α	3000	240.00	10	Fish died	Kemp (1949)
Fish (warmwater)	Α	22	8760.00	14	Fish populations destroyed	Menzel et al. (1984)
Stickleback (threespine)	Α	219	720.00	14	Population decimated	Scullion & Edwards (1980
,						

		Sediment dose			Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
(common)						
Carp (Common)	Α	212500	0.02	11	Mortality rate 33.3%	Wallen (1951)
Carp (Common)	Α	165000	0.02	6	Fish gulped air	Wallen (1951)
Carp (Common)	Α	105000	0.02	11	Mortality rate 33.3%	Wallen (1951)
Carp (Common)	Α	122500	0.02	3	Fish recovered completely in clear water	Wallen (1951)
Goldfish	Α	20000	0.02	3	Fish swam to surface	Wallen (1951)
Goldfish	Α	105000	0.02	10	Mortality rate 12.5%	Wallen (1951)
Goldfish	Α	175000	0.02	8	Fish swam to surface, floated on side	Wallen (1951)
Goldfish	Α	222500	0.02	3	Fish stayed at surface	Wallen (1951)
Goldfish	Α	222500	0.02	12	Mortality rate 47.9%	Wallen (1951)
Goldfish	Α	70000	0.02	3	Fish recovered completely in clear water	Wallen (1951)
Shiner (Golden)	Α	20000	0.02	0	No effect	Wallen (1951)
Shiner (Golden)	Α	35000	0.02	5	Fish showed signs of respiratory distress	Wallen (1951)
Shiner (Golden)	Α	75000	0.02	10	Some mortality	Wallen (1951)
Shiner (Golden)	Α	120000	0.02	10	Some mortality	Wallen (1951)
Shiner (Golden)	Α	170000	0.02	14	Mortality rate 100%	Wallen (1951)
Shiner (Golden)	Α	100000	0.02	5	Fish cleared sediment from gills	Wallen (1951)
Shiner (Red)	Α	100000	0.02	3	Fish surfaced once	Wallen (1951)
Shiner (Red)	Α	125000	0.02	3	Fish swam to surface	Wallen (1951)
Shiner (Red)	Α	162500	0.02	8	Fish swam to surface, floated on side	Wallen (1951)
Shiner (Red)	Α	182500	0.02	14	Mortality rate 100%	Wallen (1951)
Minnow (Plains)	Α	50000	0.02	6	Fish showed signs of mild distress	Wallen (1951)
Minnow (Plains)	Α	105000	0.02	14	Mortality rate 100%	Wallen (1951)
Minnow (Plains)	Α	105000	0.02	8	Sediment present in gills, digestive tracks	Wallen (1951)
Minnow (Plains)	Α	150000	0.02	0	Fish recovered completely in clear water	Wallen (1951)
Mosquitofish	Α	40000	0.02	6	Fish showed signs of mild distress	Wallen (1951)
Mosquitofish	A	60000	0.02	3	Fish swam to surface	Wallen (1951)
Mosquitofish	A	115000	0.02	10	Mortality rate 9.8%	Wallen (1951)
Mosquitofish	A	115000	0.02	3	Avoidance response	Wallen (1951)
Mosquitofish	A	187500	0.02	14	Mortality rate 90.1%	Wallen (1951)
Mosquitofish	A	200000	0.02	0	Fish recovered completely in clear water	Wallen (1951)
Bass	A	20000	0.02	1	Fish showed alarm response	
(Largemouth)					,	Wallen (1951)
Bass (Largemouth)	А	50000	0.02	8	Fish floated on side	Wallen (1951)
Bass (Largemouth)	Α	101000	0.02	14	Mortality rate 100%	Wallen (1951)
Bass (Largemouth)	Α	101000	0.02	7	Gills covered in sediment	Wallen (1951)
Sunfish (Green)	Α	20000	0.02	1	Fish displayed mild reactions	Wallen (1951)
Sunfish (Green)	Α	50000	0.02	1	Fish showed mild symptoms	Wallen (1951)
Sunfish (Green)	Α	80000	0.02	10	Mortality rate 2.3%	Wallen (1951)
Sunfish (Green)	Α	210000	0.02	13	Some mortality	Wallen (1951)
Sunfish (Green)	Α	175000	0.02	3	Fish showed avoidance response	Wallen (1951)
Shiner (Golden)	Α	166000	170.00	14	Mortality rate 100%	Wallen (1951)
Mosquitofish	Α	181500	396.00	14	Mortality rate 100%	Wallen (1951)
Goldfish	Α	197000	288.00	14	Mortality rate 100%	Wallen (1951)
Sunfish (Green)	Α	166500	132.00	14	Mortality rate 100%	Wallen (1951)
Minnow (Plains)	Α	96000	324.00	14	Mortality rate 100%	Wallen (1951)
Shiner (Red)	Α	183000	216.00	14	Mortality rate 100%	Wallen (1951)
Carp (Common)	Α	165000	230.00	14	Mortality rate 100%	Wallen (1951)
Bass						
Bass (Largemouth)	А	101000	182.00	14	Mortality rate 100%	Wallen (1951)

		Sedimen	t dose		Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Pumpkinseed	Α	69000	312.00	14	Mortality rate 100%	Wallen (1951)
Sunfish (Orangespotted)	Α	157000	240.00	14	Mortality rate 100%	Wallen (1951)
Catfish (Channel)	Α	85000	223.00	14	Mortality rate 100%	Wallen (1951)
Blackstripe Topminnow	Α	175000	456.00	14	Mortality rate 100%	Wallen (1951)
Black Crappie	Α	145000	48.00	14	Mortality rate 100%	Wallen (1951)
Bass (Rock)	Α	38250	84.00	14	Mortality rate 100%	Wallen (1951)
Shiner (Golden)	Α	115000	408.00	10	No mortality	Wallen (1951)
Shiner (Golden)	Α	150000	120.00	10	No mortality	Wallen (1951)
Mosquitofish	Α	135000	408.00	10	No mortality	Wallen (1951)
Mosquitofish	Α	150000	288.00	10	No mortality	Wallen (1951)
Sunfish (Green)	Α	140000	312.00	10	No mortality	Wallen (1951)
Sunfish (Green)	Α	130000	168.00	10	No mortality	Wallen (1951)
Bullhead (Black)	Α	140000	408.00	10	No mortality	Wallen (1951)
Bullhead (Black)	Α	185000	600.00	10	No mortality	Wallen (1951)
Bass (Largemouth)	Α	90000	144.00	10	No mortality	Wallen (1951)
Pumpkinseed	Α	82500	456.00	10	No mortality	Wallen (1951)
Sunfish (Orangespotted)	Α	125000	432.00	10	No mortality	Wallen (1951)
Central Mudminnow	Α	100000	480.00	10	No mortality	Wallen (1951)
Shiner (Red)	Α	107500	336.00	10	No mortality	Wallen (1951)
Blackstripe Topminnow	Α	107500	312.00	10	No mortality	Wallen (1951)
Goldfish	Α	165000	480.00	10	No mortality	Wallen (1951)
Goldfish	Α	190000	216.00	10	No mortality	Wallen (1951)
Fish (warmwater)	Α	100000	252.00	10	Some fish died; most survived	Wallen (1951)
Fish (warmwater)	Α	200000	480.00	10	Fish died; opercular vacities and gill filaments clogged	Wallen (1951)
Goldfish	Α	25000	336.00	10	Some mortality (MC)	Wallen (1951)
Carp (Common)	Α	165000	480.00	5	No mortality	Wallen (1951)
Fish	Α	2045	8760.00	12	Habitat destruction, fish population decreased by 6-20 fold	Vaughan (1979)
Fish	Α	2045	8760.00	12	Habitat destruction; fish populations smaller than expected	Vaughan (1979); Vaughan et al (1982)
Fish	Α	2045	8760.00	9	Species diversity significantly decreased	Vaughan (1979)
Darter (Greenside)	Α	2045	8760.00	14	Darters absent	Vaughan (1979)
Darter (Rainbow)	Α	2045	8760.00	14	Darters absent	Vaughan (1979)
Darter	Α	2045	8760.00	14	Darters absent	Vaughan (1979); Vaughan et al (1982)
Sucker (Longnose)	Α	20	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
Sucker (Longnose)	Α	31	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
Sucker (Longnose)	Α	20	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
Sucker (Longnose)	Α	31	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
Burbot	Α	20	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
Burbot	Α	31	0.02	3	Fish favored turbid water (NTU)	Suchanek et al. (1984b)
Walleye	Α	9	21.00	3	Fish preferred turbid water	Swenson (1978)

Walleye Smelt (Rainbow) Smelt (Rainbow) Sucker (Longnose) Sucker (White) Troutperch Smelt (Rainbow) Bass (Smallmouth) Bass (Smallmouth)	A A A A A A A A A A A A A A A A A A A	Exposure Concentration (mg/L) 12 3 3 3 3 3 5 10 20 40	Exposure duration (h) 21.00 168.00 168.00 21.00 21.00 21.00 168.00 16.00 23.00 30.00	SEV ^b 3 3 3 0 0 7 4 4	Fish preferred turbid water Fish preferred turbid water Fish preferred turbid water Fish preferred turbid water No behavioral effect No behavioral effect Increased vulnerability to predation Decrease in prey consumed (NTU)	Swenson (1978) Carter et al. (2010) Carter et al. (2010)
Smelt (Rainbow) Smelt (Rainbow) Sucker (Longnose) Sucker (White) Troutperch Smelt (Rainbow) Bass (Smallmouth) Bass (Smallmouth)	A A A A A	3 3 3 3 3 5 10 20	168.00 168.00 21.00 21.00 21.00 168.00 16.00 23.00	3 3 0 0 0 7 4	Fish preferred turbid water Fish preferred turbid water No behavioral effect No behavioral effect Increased vulnerability to predation Decrease in prey consumed (NTU) Decrease in prey consumed (NTU)	Swenson (1978) Swenson (1978) Swenson (1978) Swenson (1978) Swenson (1978) Swenson (1978) Carter et al. (2010)
Smelt (Rainbow) Sucker (Longnose) Sucker (White) Troutperch Smelt (Rainbow) Bass (Smallmouth) Bass (Smallmouth)	A A A A A	3 3 3 3 5 10 20	168.00 21.00 21.00 21.00 168.00 16.00 23.00	3 0 0 0 7 4	Fish preferred turbid water No behavioral effect No behavioral effect No behavioral effect Increased vulnerability to predation Decrease in prey consumed (NTU) Decrease in prey consumed (NTU)	Swenson (1978) Swenson (1978) Swenson (1978) Swenson (1978) Swenson (1978) Carter et al. (2010)
Sucker (Longnose) Sucker (White) Troutperch Smelt (Rainbow) Bass (Smallmouth) Bass (Smallmouth)	A A A A A	3 3 3 5 10 20	21.00 21.00 21.00 168.00 16.00 23.00	0 0 0 7 4	No behavioral effect No behavioral effect No behavioral effect Increased vulnerability to predation Decrease in prey consumed (NTU) Decrease in prey consumed (NTU)	Swenson (1978) Swenson (1978) Swenson (1978) Swenson (1978) Carter et al. (2010)
(Longnose) Sucker (White) Troutperch Smelt (Rainbow) Bass (Smallmouth) Bass (Smallmouth)	A A A A	3 3 3 5 10 20	21.00 21.00 168.00 16.00 23.00	0 0 7 4	No behavioral effect No behavioral effect Increased vulnerability to predation Decrease in prey consumed (NTU) Decrease in prey consumed (NTU)	Swenson (1978) Swenson (1978) Swenson (1978) Carter et al. (2010)
Troutperch Smelt (Rainbow) Bass (Smallmouth) Bass (Smallmouth)	A A A A	3 3 5 10 20	21.00 168.00 16.00 23.00	0 7 4	No behavioral effect Increased vulnerability to predation Decrease in prey consumed (NTU) Decrease in prey consumed (NTU)	Swenson (1978) Swenson (1978) Carter et al. (2010)
Smelt (Rainbow) Bass (Smallmouth) Bass (Smallmouth)	A A A	3 5 10 20	168.00 16.00 23.00	7 4 4	Increased vulnerability to predation Decrease in prey consumed (NTU) Decrease in prey consumed (NTU)	Swenson (1978) Carter et al. (2010)
Bass (Smallmouth) Bass (Smallmouth)	A A A	5 10 20	16.00 23.00	4	Decrease in prey consumed (NTU) Decrease in prey consumed (NTU)	Carter et al. (2010)
(Smallmouth) Bass (Smallmouth)	A A A	10 20	23.00	4	Decrease in prey consumed (NTU)	, ,
(Smallmouth)	A A	20				Carter et al. (2010)
	Α		30.00	4		
Bass (Smallmouth)		40			Decrease in prey consumed (NTU)	Carter et al. (2010)
Bass (Smallmouth)	Α		43.00	4	Decrease in prey consumed (NTU)	Carter et al. (2010)
Minnow (Fathead)		120	0.02	3	Reduced ability to recognize predators	Chivers et al. (2013)
Dace (Rosyside)	A	10	0.70	4	Feeding behavior altered (50% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
Dace (Rosyside)	A	20	0.70	4	Feeding behavior altered (48% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
Dace (Rosyside)	A	30	0.70	4	Feeding behavior altered (~42% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
Dace (Rosyside)	A	10	0.70	4	Feeding behavior altered (55% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
Dace (Rosyside)	A A	20 30	0.70	4	Feeding behavior altered (~48% prey captures forward movement, NTU) Feeding behavior altered (32% prey captures	Hazelton & Grossman (2009) Hazelton & Grossman (2009)
Dace (Rosyside) Shiner	A	10	0.70	4	forward movement, NTU) Feeding behavior altered (~49% prey captures	Hazelton & Grossman (2009)
(Yellowfin) Shiner	A	20	0.70	4	forward movement, NTU) Feeding behavior altered (26% prey captures	Hazelton & Grossman (2009)
(Yellowfin) Shiner	A	30	0.70	4	forward movement, NTU) Feeding behavior altered (33% prey captures	Hazelton & Grossman (2009)
(Yellowfin) Shiner	A	10	0.70	4	forward movement, NTU) Feeding behavior altered (39% prey captures	Hazelton & Grossman (2009)
(Yellowfin) Shiner	A	20	0.70	4	forward movement, NTU) Feeding behavior altered (33% prey captures	Hazelton & Grossman (2009)
(Yellowfin) Shiner	A	30	0.70	4	forward movement, NTU) Feeding behavior altered (18% prey captures	Hazelton & Grossman (2009)
(Yellowfin) Dace (Rosyside)	А	20	0.70	4	forward movement, NTU) Feeding behavior altered (48% prey captures	Hazelton & Grossman (2009)
Dace (Rosyside)	А	10	0.70	4	forward movement, NTU) Feeding behavior altered (55% prey captures	Hazelton & Grossman (2009)
Dace (Rosyside)	Α	30	0.70	4	forward movement, NTU) Feeding behavior altered (32% prey captures	Hazelton & Grossman (2009)
Shiner	Α	20	0.70	4	forward movement, NTU) Feeding behavior altered (26% prey captures	Hazelton & Grossman (2009)
(Yellowfin) Shiner	Α	10	0.70	4	forward movement, NTU) Feeding behavior altered (39% prey captures	Hazelton & Grossman (2009)
(Yellowfin) Shiner (Yellowfin)	Α	30	0.70	4	forward movement, NTU) Feeding behavior altered (22% prey captures forward movement, NTU)	Hazelton & Grossman (2009)
Stickleback (Three-spined)	Α	10	0.50	0	No change in feeding rate (69, control 69, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	4	Feeding rate reduced (54, control 69, NTU)	Helenius et al. (2013)
Stickleback	Α	78	0.50	4	Feeding rate reduced (27, control 69, NTU)	Helenius et al. (2013)

Species	Life	Exposure Concen-				
	Stage ^a	tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
(Three-spined)						
Stickleback (Three-spined)	Α	10	0.50	0	No change in female feeding rate (27, control 27, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	0	Female feeding rate increased (30, control 27, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	4	Female feeding rate reduced (12, control 27, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	10	0.50	0	No change in female feeding rate (15, control 15, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	0	Female feeding rate increased (16, control 15, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	4	Female feeding rate reduced (4 control 15, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	10	0.50	0	No change in female feeding rate (20, control 20, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	4	Female feeding rate reduced (12, control 20, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	4	Female feeding rate reduced (3, control 20, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	10	0.50	0	No change in male feeding rate (32, control 32, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	4	Male feeding rate reduced (25, control 32, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	4	Male feeding rate reduced (27, control 32, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	10	0.50	0	No change in male feeding rate (15, control 15, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	4	Male feeding rate reduced (14, control 15, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	4	Male feeding rate reduced (2, control 15, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	10	0.50	0	No change in male feeding rate (25, control 25, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	4	Male feeding rate reduced (12, control 25, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	4	Male feeding rate reduced (8, control 25, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	10	0.50	0	Feeding rate increased (0.57, control 0.55, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	4	Feeding rate reduced (0.21, control 0.28, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	0	Feeding rate increased (0.23, control 0.17, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	10	0.50	0	Feeding rate increased (0.69, control0.55, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	48	0.50	4	Feeding rate reduced (0.16, control 0.28, NTU)	Helenius et al. (2013)
Stickleback (Three-spined)	Α	78	0.50	4	Feeding rate reduced (0.15, control 0.55, NTU)	Helenius et al. (2013)
Carp (Crucian)	Α	10	2.00	10	Mortality rate <1% (control <1%, NTU)	Li et al. (2013)
Carp (Crucian)	Α	20	2.00	10	Mortality rate <1% (control <1%, NTU)	Li et al. (2013)
Carp (Crucian)	Α	40	2.00	10	Mortality rate 1% (control <1%, NTU)	Li et al. (2013)
Carp (Crucian)	Α	80	2.00	10	Mortality rate 1% (control <1%, NTU)	Li et al. (2013)
Carp (Crucian)	Α	10	2.00	10	Mortality rate 1% (control 0%, NTU)	Li et al. (2013)
Carp (Crucian)	Α	20	2.00	10	Mortality rate <1% (control 0%, NTU)	Li et al. (2013)
Carp (Crucian)	Α	40	2.00	10	Mortality rate <1% (control 0%, NTU)	Li et al. (2013)
Carp (Crucian)	Α	80	2.00	10	Mortality rate 1% (control 0%, NTU)	Li et al. (2013)
Ayu	Α	164	3.00	3	Fish moved to clear water (9 individuals)	Mori et al. (2018)

		Sediment dose			Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Ayu	Α	12	0.02	3	Fish moved to turbid areas (11, control 9.7)	Mori et al. (2018)
Ayu	Α	12	0.75	3	Fish moved to clear areas (8, control 9.7)	Mori et al. (2018)
Ayu	Α	12	1.00	3	Fish moved to turbid areas (10, control 9.7)	Mori et al. (2018)
Ayu	Α	12	1.00	3	Fish moved to clear areas (8, control 9.7)	Mori et al. (2018)
Ayu	Α	240	1.32	3	49.15% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	1.62	3	59.32% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	1.74	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	1.92	3	59.32% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	1.97	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	2.21	3	69.69% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	2.24	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	2.41	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	2.51	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	2.61	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	2.77	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	2.84	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	2.94	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	3.01	3	79.66% of fish moved to clear water	Mori et al. (2018)
lyu	А	240	3.11	3	69.49% of fish moved to clear water	Mori et al. (2018)
, Nyu	Α	240	3.33	3	69.49% of fish moved to clear water	Mori et al. (2018)
ıyu	Α	240	3.41	3	79.66% of fish moved to clear water	Mori et al. (2018)
yu	А	240	3.48	3	69.49% of fish moved to clear water	Mori et al. (2018)
yu	A	240	3.66	3	79.66% of fish moved to clear water	Mori et al. (2018)
yu	A	240	3.76	3	79.66% of fish moved to clear water	Mori et al. (2018)
	A	240	3.76	3	79.66% of fish moved to clear water	Mori et al. (2018)
yu	A	240	3.82	3	69.49% of fish moved to clear water	
yu						Mori et al. (2018)
yu	A	240	3.93	3	79.66% of fish moved to clear water	Mori et al. (2018)
yu	A	240	4.10	3	69.49% of fish moved to clear water	Mori et al. (2018)
yu	A	240	4.23	3	79.66% of fish moved to clear water	Mori et al. (2018)
yu	A	240	4.80	3	79.66% of fish moved to clear water	Mori et al. (2018)
lyu	А	240	5.37	3	79.66% of fish moved to clear water	Mori et al. (2018)
vyu	Α	240	5.77	3	79.66% of fish moved to clear water	Mori et al. (2018)
iyu	Α	240	5.85	3	69.49% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	5.92	3	79.66% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	5.95	3	69.49% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	6.09	3	79.66% of fish moved to clear water	Mori et al. (2018)
iyu	Α	240	6.67	3	79.66% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	6.89	3	59.32% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	7.09	3	69.49% of fish moved to clear water	Mori et al. (2018)
iyu	Α	240	7.16	3	59.32% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	7.39	3	59.32% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	7.56	3	79.66% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	7.64	3	69.49% of fish moved to clear water	Mori et al. (2018)
Nyu	Α	240	7.96	3	69.49% of fish moved to clear water	Mori et al. (2018)
Nyu	Α	240	8.06	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	8.52	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	8.91	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	8.98	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	9.08	3	79.66% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	9.30	3	69.49% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	9.48	3	69.49% of fish moved to clear water	Mori et al. (2018)
				-		,/

		Sediment	dose		Fish Response	
Species	Life Stage ^a	Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Ayu	А	240	9.73	3	69.49% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	10.00	3	69.49% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	73.00	3	46% of fish moved to clear water	Mori et al. (2018)
ıyu	Α	240	2.75	3	41% of fish moved to clear water	Mori et al. (2018)
ıyu	Α	240	5.75	3	48% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	8.50	3	47% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	12.00	3	52% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	14.00	3	50% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	17.00	3	50% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	20.00	3	45% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	23.00	3	43% of fish moved to clear water	Mori et al. (2018)
Ayu	А	240	26.00	3	45% of fish moved to clear water	Mori et al. (2018)
Ayu	А	240	29.00	3	49% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	32.00	3	43% of fish moved to clear water	Mori et al. (2018)
kyu Kyu	A	240	35.00	3	46% of fish moved to clear water	Mori et al. (2018)
kyu Kyu	A	240	38.00	3	48% of fish moved to clear water	Mori et al. (2018)
	A	240	41.00	3	47% of fish moved to clear water	• •
lyu	A		44.00	3	43% of fish moved to clear water	Mori et al. (2018)
Ayu		240				Mori et al. (2018)
Ayu	A	240	46.00	3	46% of fish moved to clear water	Mori et al. (2018)
Ayu	A	240	50.00	3	46% of fish moved to clear water	Mori et al. (2018)
lyu	A	240	52.00	3	46% of fish moved to clear water	Mori et al. (2018)
iyu	Α	240	55.00	3	38% of fish moved to clear water	Mori et al. (2018)
iyu	Α	240	58.00	3	37% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	61.00	3	36% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	64.00	3	41% of fish moved to clear water	Mori et al. (2018)
lyu	Α	240	67.00	3	44% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	70.00	3	45% of fish moved to clear water	Mori et al. (2018)
Ayu	Α	240	73.00	3	44% of fish moved to clear water	Mori et al. (2018)
Ayu	А	12	73.00	3	Fish moved to turbid water (10 fish, control 10 fish)	Mori et al. (2018)
Ayu	А	12	2.75	3	Fish moved to turbid water (4 fish, control 10 fish)	Mori et al. (2018)
Ayu	А	12	5.75	3	Fish moved to turbid water (2 fish, control 10 fish)	Mori et al. (2018)
Ayu	А	12	8.50	3	Fish moved to turbid water (3 fish, control 10 fish)	Mori et al. (2018)
Ayu	А	12	12.00	3	Fish moved to turbid water (2 fish, control 10 fish)	Mori et al. (2018)
Ayu	А	12	14.00	3	Fish moved to turbid water (3 fish, control 10 fish)	Mori et al. (2018)
Ayu	А	12	17.00	3	Fish moved to turbid water (3 fish, control 10 fish)	Mori et al. (2018)
Ayu	А	12	20.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)
Ayu	А	12	23.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)
Ayu	А	12	26.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)
Ayu	А	12	29.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	32.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)
Ayu	А	12	35.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)
Ayu	Α	12	38.00	3	Fish moved to turbid water (7 fish, control 10 fish)	Mori et al. (2018)

		Sediment	dose		Fish Response		
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference	
Ayu	А	12	41.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)	
Ayu	Α	12	44.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)	
Ayu	Α	12	46.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)	
Ayu	Α	12	50.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)	
Ayu	Α	12	52.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)	
Ayu	Α	12	55.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)	
Ayu	Α	12	58.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)	
Ayu	Α	12	61.00	3	Fish moved to turbid water (6 fish, control 10 fish)	Mori et al. (2018)	
Ayu	Α	12	64.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)	
Ayu	Α	12	67.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)	
Ayu	Α	12	70.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)	
Ayu	А	12	73.00	3	Fish moved to turbid water (5 fish, control 10 fish)	Mori et al. (2018)	
ıyu	Α	240	17.00	3	10% probability fish move to clear water	Mori et al. (2018)	
yu	Α	240	67.00	3	10% probability fish move to clear water	Mori et al. (2018)	
yu	Α	240	113.00	3	20% probability fish move to clear water	Mori et al. (2018)	
yu	Α	240	160.00	3	30% probability fish move to clear water	Mori et al. (2018)	
ıyu	Α	240	227.00	3	50% probability fish move to clear water	Mori et al. (2018)	
yu	Α	240	279.00	3	70% probability fish move to clear water	Mori et al. (2018)	
lyu	Α	240	342.00	3	80% probability fish move to clear water	Mori et al. (2018)	
lyu	Α	240	432.00	3	90% probability fish move to clear water	Mori et al. (2018)	
ïlapia Redbreast)	Α	20000	2.00	10	No mortality	Buermann et al. (1997)	
ilapia Redbreast)	А	30000	2.00	10	No mortality	Buermann et al. (1997)	
ilapia Redbreast)	А	36000	2.00	11	Mortality rate 40%	Buermann et al. (1997)	
ilapia Redbreast)	А	40000	2.00	10	Mortality rate 20%	Buermann et al. (1997)	
īlapia Redbreast)	Α	52000	2.00	11	Mortality rate 40%	Buermann et al. (1997)	
ilapia Redbreast)	Α	60000	2.00	13	Mortality rate 60%	Buermann et al. (1997)	
īlapia Redbreast)	А	63000	2.00	14	Mortality rate 100%	Buermann et al. (1997)	
ilapia Redbreast)	А	66000	2.00	14	Mortality rate 100%	Buermann et al. (1997)	
ïlapia Redbreast)	А	80000	2.00	14	Mortality rate 100%	Buermann et al. (1997)	
Filapia Redbreast)	Α	100000	2.00	14	Mortality rate 100%	Buermann et al. (1997)	
Filapia Redbreast)	А	140000	2.00	14	Mortality rate 100%	Buermann et al. (1997)	
Filapia Redbreast)	Α	20000	6.00	10	No mortality	Buermann et al. (1997)	
Filapia Redbreast)	Α	30000	6.00	10	No mortality	Buermann et al. (1997)	

		Sediment dose			Fish Response	
Species	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Tilapia (Redbreast)	А	36000	6.00	11	Mortality rate 40%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	40000	6.00	10	Mortality rate 20%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	52000	6.00	11	Mortality rate 40%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	60000	6.00	12	Mortality rate 60%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	63000	6.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	66000	6.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	80000	6.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	100000	6.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	140000	6.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	20000	24.00	10	No mortality	Buermann et al. (1997)
Tilapia (Redbreast)	Α	30000	24.00	10	Mortality rate 20%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	36000	24.00	11	Mortality rate 40%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	40000	24.00	11	Mortality rate 40%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	52000	24.00	13	Mortality rate 80%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	60000	24.00	13	Mortality rate 80%	Buermann et al. (1997)
Tilapia (Redbreast)	А	63000	24.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	А	66000	24.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	А	80000	24.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	100000	24.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	140000	24.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	А	20000	48.00	10	No mortality	Buermann et al. (1997)
Tilapia (Redbreast)	А	30000	48.00	10	Mortality rate 20%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	36000	48.00	11	Mortality rate 40%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	40000	48.00	11	Mortality rate 40%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	52000	48.00	13	Mortality rate 80%	Buermann et al. (1997)
Tilapia (Redbreast)	А	60000	48.00	13	Mortality rate 80%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	63000	48.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	66000	48.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	80000	48.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	100000	48.00	14	Mortality rate 100%	Buermann et al. (1997)

Species	Life Stage ^a	Sediment dose			Fish Response	
		Exposure Concentration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Tilapia (Redbreast)	А	140000	48.00	14	Mortality rate 100%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	48000	2.00	12	Mortality rate 50%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	48000	6.00	12	Mortality rate 50%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	42000	24.00	12	Mortality rate 50%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	42000	48.00	12	Mortality rate 50%	Buermann et al. (1997)
Tilapia (Redbreast)	Α	60000	2.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	63000	2.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	66000	2.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	80000	2.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	100000	2.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	140000	2.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	60000	6.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	63000	6.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	66000	6.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	80000	6.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	100000	6.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	140000	6.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	60000	24.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	63000	24.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	66000	24.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	80000	24.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	100000	24.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	140000	24.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	60000	48.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	63000	48.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	66000	48.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	80000	48.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	100000	48.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Tilapia (Redbreast)	Α	140000	48.00	10	Silt-clogged gills, severe gill damage	Buermann et al. (1997)
Minnow (Fathead)	Α	50	96.00	0	No change in erdrin toxin tolerance	Brungs & Bailey (1967)

Species		Sediment dose			Fish Response	
	Life Stage ^a	Exposure Concen- tration (mg/L)	Exposure duration (h)	SEV ^b	Description ^c	Reference
Minnow (Fathead)	А	48	96.00	8	Decreased tolerance to erdrin toxin	Brungs & Bailey (1967)
Minnow (Fathead)	Α	47	96.00	8	Decreased tolerance to erdrin toxin	Brungs & Bailey (1967)
Minnow (Fathead)	Α	12	96.00	0	Increased tolerance to erdrin toxin	Brungs & Bailey (1967)
Creek Chub	Α	8	24.00	3	51.5% fish abandoned cover (control 22.8%)	DeVore et al. (1980)
Creek Chub	Α	39	24.00	3	Fish prefer turbid water	DeVore et al. (1980)
Fish	Α	32	24.00	9	Decreased populations in warm turbid waters	DeVore et al. (1980)
Minnow (Fathead)	Α	12	0.33	3	Attracted to turbidity	Abrahams & Kattenfeld (1997, data pulled from Courtice et al. (2022))
Guppies (Trinidadian)	Α	2100	12.00	3	Social dynamic behavioural effects	Borner et al. (2015, data pulled from Courtice et al. (2022))
Sucker (White)	Α	500	6.00	6	Evidence of physiological effects	Merten et al. (2010, data pulled from Courtice et al. (2022))
Bluegill	Α	15	1.00	2	Habitat selection was modified.	Miner & Stein (1996, data pulled from Courtice et al. (2022))
Shiner (Whitetail)	Α	100	504.00	4	Reduction in feeding	Sutherland & Meyer (2007, data pulled from Courtice et al. (2022)
Shiner (Whitetail)	Α	50	48.00	4	Increased corticosteroid	Sutherland & Meyer (2007, data pulled from Courtice et al. (2022)
Shiner (Lahontan Redside)	Α	138	24.00	4	75% reduction in feeding	Vinyard & Yuan (1996)
Shiner (Lahontan Redside)	Α	107	24.00	4	60% reduction in feeding	Vinyard & Yuan (1996)
Dace (Rosyside)	Α	30	2.00	4	Reduction in feeding success	Zamor (2007, data pulled from Courtice et al. (2022))
Shiner (Tricolor)	Α	100	144.00	9	Decrease in spawn effort (0.75, control 0.83)	Burkhead & Jelks (2001)
Shiner (Tricolor)	Α	300	144.00	9	Significant decrease in spawn effort (0.58, control 0.83)	Burkhead & Jelks (2001)
Shiner (Tricolor)	Α	600	144.00	9	Significant decrease in spawn effort (0.25, control 0.83)	Burkhead & Jelks (2001)
Shiner (Tricolor)	Α	100	144.00	9	Fewed eggs laid when spawning (0.12, control 0.26)	Burkhead & Jelks (2001)
Shiner (Tricolor)	Α	300	144.00	9	Fewed eggs laid when spawning (0.10, control 0.26)	Burkhead & Jelks (2001)
Shiner (Tricolor)	Α	600	144.00	9	Fewed eggs laid when spawning (0.02, control 0.26)	Burkhead & Jelks (2001)
Shiner (Tricolor)	Α	300	144.00	9	Delayed spawn onset	Burkhead & Jelks (2001)
Shiner (Tricolor)	Α	600	144.00	9	Delayed spawn onset	Burkhead & Jelks (2001)
Shiner (Golden)	Α	20700	96.00	10	20% mortality (control 0%)	Peddicord & McFarland (1978)
Shiner (Golden)	Α	1500	96.00	10	0% mortality (control 0%)	Peddicord & McFarland (1978)
Shiner (Golden)	Α	3800	96.00	10	0% mortality (control 0%)	Peddicord & McFarland (1978)
Shiner (Golden)	Α	8200	96.00	10	0% mortality (control 0%)	Peddicord & McFarland (1978)
Shiner (Golden)	Α	12870	96.00	10	0% mortality (control 0%)	Peddicord & McFarland (1978)
Shiner (Golden)	Α	15800	96.00	10	0% mortality (control 0%)	Peddicord & McFarland (1978)

^aA = adult; E = egg; EE = eyed egg; F = fry; F* = swim-up fry; FF = young fry (<30 weeks old); FF* = older fry (>30 weeks old); J = juvenile; L = larva; PS = presmolt; S = smolt; SF = sac fry; U = underyearling; Y = approximate yearling; YY = young of the year

cPanicle sizes of suspended sediment (SS) sometimes were given categorically in source documents. As abbreviated here. VFSS = very fine (<15 um); FSS = fine (15-74 um); MFSS = medium to fine (75-149 um); MCSS = medium to coarse (150-290 um); and CSS = coarse (180-740 um). Usual 'sediments' used: BC = bentonite clay; CS = calcium sulfate; CWS = coal washery solids; DE = dtatomaceous earth; DM = drilling mud (nontoxic); FC = fire clay; FE = fuller's earth; IA = incinerator ash; KC = kaolin clay; KS = Kingston silt; LNFH = lime-neutralized ferric hydroxide; MC = montmorillonite clay; VA = volcanic ash; WF = wood fibers. Other abbreviation: NTU = nephelometric turbidity units.

^bSeverity-of-ill-effect ranging from 0 (no detectible effect) to 14 (maximum effect; see Table 1)