RESULTS ANALYSIS

Derrick Kempster

Weka

- Waikato Environment for Knowledge Analysis
- Preprocessing and classification capabilities
- Works with .arff (Attribute-Relation File Format) files
- A very accessible application for data identification and analysis tasks

Preprocessing

- Used the provided preprocessed dataset
- Data conversion programs created to change the format to .arff
 - Part 1 misuse classifier
 - Add the traffic type as a class attribute
 - Part 2 misuse classifier
 - Limit the types to the desired type and "Other"
 - Anomaly classifiers
 - Limit the types to "Anomaly" and "Normal"
- Used Weka to divide master sets into 70% training and 30% test sets
 - Seed of 45 for part 1 and 378 for part 2

Part 1: Random Forest

- 100 trees
- Depth of 100

	Running	Accuracy	
IDS Type	Model Building	Model Testing	(%)
Misuse	386.18	5.50	99.9773
Anomaly	368.32	3.75	99.9891

Part 1: Random Forest – Misuse

Actual	Dete	ermi	ned (Class																				Class
Class	Α	В	С	D	Е	F	G	Н	Ι	J	K	L	М	N	0	P	Q	R	s	T	U	V	W	Acc. (%)
A	317	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100.000
В	0	7	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	87.5000
С	0	0	1	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	20.0000
D	0	0	0	11	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	91.6667
E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	N/A *
F	0	0	0	0	0	1071	0	0	0	0	6	1.	0	0	0	0	0	0	0	0	0	0	0	99.3506
G	0	0	0	0	0	0	6	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	75.0000
Н	0	0	0	0	0	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	33.3333
I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	N/A *
J	0	0	0	0	0	0	0	0	0	67989	0	0	0	0	0	0	0	0	0	0	0	0	0	100.0000
K	0	0	0	0	0	9	0	0	0	0	482	0	0	0	0	0	0	0	0	0	0	0	0	98.1670
L	0	0	0	0	0	0	0	0	1	0	1	173173	0	0	0	0	1	0	0	0	0	4	0	99.9960
M	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	100.0000
N	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	100:0000
O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	67	0	0	0	0	0	0	0	0	100:0000
P	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	905	0	0	0	0	0	0	0	99.8896
Q	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	1	0	0	0	0	0	0.0000
R	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	1	0	1480	0	0	0	0	0	99.3289
S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	900	0	1	0	0	99.8890
T	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0.0000
U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	281	0	0	100:0000
V	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	258	0	98.4733
W	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	4	66.6667
Deter- mina- tion Acc. (%) †	100.0000	100.0000	100.0000	100.0000	N/A *	99.1667	100.0000	100.0000	0.0000	1266:66	98.5685	99.9838	100.0000	100.0000	100.0000	99.8896	0.0000	99.9325	100.0000	N/A *	99.6454	98.4733	100.0000	
A: Back H: LoadMo O: Pod V: WarezC			I: Mi P: Po	ufferO ultiHo ortSwe Varez?	p ep			ptune ootKit		}	K: NMa R: Satan			E: Im L: No S: Sm \$: No	rmal urf	nined in		F: IPSwe M: Perl T: Spy es to con			N:I U:	Land PHF TearDro Horizon		,

Part 1: Random Forest - Misuse

- False Negatives were 0.0162% of deemed-normal traffic
- Some effects of tracking everything on random split
 - Imap and MultiHop each had no entries in the test set
 - Perl, PHF, and Spy each had 1 entry in the test set
 - No traffic was deemed to be Imap or Spy
- Data split should not be entirely random from the set of all traffic
 - Matters more when some types have a comparably small entry count
- Could ensure that 70% of each traffic type gets in the training set
 - Remainder 30% put in the test set

Part 1: Random Forest – Anomaly

Actual	Determina	Class		
Class	Normal	Acc. (%)		
Normal	173174	6	99.9965	
Anomaly	21	73810	99.9716	
Determination Acc. (%) †	99.9879	99.9919		

†: Horizontal

- False Negatives were 0.0121% of deemed-safe traffic
- False Positives were 0.0081% of deemed-unsafe traffic
- Each type is of sufficient size to not need the special split

Part 1: Random Forest - Overview

- The anomaly IDS classifier outperformed the misuse IDS classifier
 - Higher overall accuracy
 - Lower false negative ratio

Part 2: Multilayer Perceptron

- 5 chosen attacks have the most data (excluding Normal)
- Training time of 500 epochs
- 1 hidden layer
- Learning weight of 0.3
- Momentum of 0.2
- No validation set

	Running	Accuracy			
IDS Type	Model Building	Model Testing	(%)		
IPSweep	645.37	1.29	99.8652		
Neptune	641.42	1.31	99.9976		
PortSweep	642.36	1.27	99.9899		
Satan	656.95	1.26	99.9721		
Smurf	631.50	1.28	99.9895		
Anomaly	632.30	1.21	99.6956		

Part 2: Multilayer Perceptron – IPSweep

Classified	Actual	Folso (%)			
As	IPSweep	Other	False (%)		
IPSweep	1084	322	22.9018		
Other	11	245594	0.0045		

- 99.8652% accuracy
 - Second Worst
- Highest False Positive ratio

Part 2: Multilayer Perceptron – Neptune

Classified	Actual	Folso (%)			
As	Neptune	Other	False (%)		
Neptune	68288	1	0.0015		
Other	5	178717	0.0028		

- 99.9976% accuracy
 - Best
- First classifier with a higher false negative ratio than false positive ratio
 - Still acceptable for small size

Part 2: Multilayer Perceptron - PortSweep

Classified	Actual (False	
As	PortSweep	(%)	
PortSweep	852	3	0.3509
Other	22	246134	0.0089

- 99.9899% accuracy
 - Second Best

Part 2: Multilayer Perceptron – Satan

Classified	Actual	Folso (%)			
As	Satan	Other	False (%)		
Satan	1427	15	1.0402		
Other	54	245515	0.0220		

- 99.9721% accuracy
 - Third Worst

Part 2: Multilayer Perceptron – Smurf

Classified	Actual	Falso (%)			
As	Smurf	Other	False (%)		
Smurf	912	23	2.4599		
Other	3	246073	0.0012		

- 99.9895% accuracy
 - Third Best

Part 2: Multilayer Perceptron – Anomaly

Classified	Actual	Folso (%)			
As	Anomaly	Normal	False (%)		
Anomaly	73391	128	0.1741		
Normal	624	172868	0.3597		

- 99.6956% accuracy
 - Worst
- Highest False Negative ratio
- Second classifier with a higher false negative ratio than false positive ratio
 - Worse than Neptune, but still below 1%

Part 2: Multilayer Perceptron - Overview

- The misuse classifiers outperformed the anomaly classifier
 - Higher overall accuracy
 - Lower false negative ratio

Part Comparison

Improvement

- Finding a way to save models / use a different classification tool
 - Models are built right before a testing a data set, and only for that test
 - Cannot export the model to run on other data
- Test additional, more complex classifiers
 - Will cost additional time to construct

Conclusions

- The random forest classifiers overall outperformed the multilayer perceptrons
 - With the given settings applied
- The multilayer perceptron could reasonably be used for misuse
 - False negative ratio is lower
 - Accuracy is only slightly worse