4736 Decision Mathematics 1

1	(i)	Biggest/largest/last number (only)	B1	Accept bubbling to left unless		
				inconsistent with part (ii):		
		(Not showing effect on a specific list)		Smallest/first number	[1]	
	(ii)	2 1 3 4 5 horizontally or vertically	M1	Or bubbling to left: 1 3 2 4 5		
		(may see individual comparisons/swaps)		Watch out for shuttle sort used		
		[For reference: original list was 3 2 1 5 4]				
		4 comparisons and 3 swaps (both correct)	A1	If not stated, assume that		
				comparisons come first	[2]	
	(iii)	1 2 3 4 5	M1	FT from their first pass with their		
	, ,			bubbling if possible		
		One (more pass after this)	A1	Watch out for		
		` '		'One swap (in 2 nd pass)'	[2]	
	(iv)	$(3000 \div 500)^2 \times 0.2$	M1	$6^2 \times 0.2 \text{ or } 8 \times 10^{-7} \times 9 \times 10^6$		
				or any equivalent calculation		
		= 7.2 seconds	A1	cao UNITS	[2]	
Total = 7						

2	(i)	- Graph is not simple - Two of the vertices are joined by two arcs (if appropriate) - It has a 'loop' (if appropriate) - For a simple graph each vertex must have order 3 or less	M1 A1 B1	A graph with four vertices of orders 2, 2, 4, 4 (ignore any vertex labels) A connected graph Recognition that their graph is not simple (although it is connected). Need not use the word 'simple'.	[3]		
	(ii)	eg Graph is not connected	M1 A1 B1	Any graph with four vertices of orders 2, 2, 4, 4 (that is topologically different from that in part (i)) A graph that is not connected Recognition in words that their graph is not connected	[3]		
	Total = 6						

(iii) $(\frac{2}{3}, 2\frac{2}{3}) \Rightarrow 11\frac{1}{3}$ Follow through if possible Testing vertices or using a line of constant profit (may be implied) (6, 0) \Rightarrow 30 At optimum, $x = 3\frac{1}{3}$ and $y = 5\frac{1}{3}$ A1 (8, 0) cao Follow through if possible Testing vertices or using a line of constant profit (may be implied) Accept $(3\frac{1}{3}, 5\frac{1}{3})$ identified (ft) $32\frac{2}{3}$ (air 32 6 to 32 7) (ff)	3	(i)	$y \le x + 2 x + 2y \ge 6 2x + y \le 12 $ $(y \ge -\frac{1}{2}x + 3) (y \le -2x + 12)$	M1 M1 M1 A1	Line $y = x + 2$ in any form Line $x + 2y = 6$ in any form Line $2x + y = 12$ in any form All inequalities correct	[4]
$(3, 2, 3) \rightarrow 11, 3$ $(3\frac{1}{3}, 5\frac{1}{3}) \Rightarrow 32\frac{2}{3}$ $(6, 0) \Rightarrow 30$ At optimum, $x = 3\frac{1}{3}$ and $y = 5\frac{1}{3}$ Maximum value $= 32\frac{2}{3}$ $(iv) 5 \times 3\frac{1}{3} + k \times 5\frac{1}{3} \ge 5 \times 6 + k \times 0$ M1 Testing vertices or using a line of constant profit (may be implied) Accept $(3\frac{1}{3}, 5\frac{1}{3})$ identified (ft) $32\frac{2}{3} \text{ (air } 32.6 \text{ to } 32.7) \text{ (ft)}$ $M1 5 \times 3\frac{1}{3} + k \times 5\frac{1}{3} \text{ (ft) or implied}$ $M1 5 \times 6 + k \times 0 \text{ or } 30 \text{ or implied}$		(ii)	$y + 2x = 12$ and $y = x + 2 \Rightarrow (3\frac{1}{3}, 5\frac{1}{3})$	A1 A1	Calculating from their lines or implied from either A mark	[4]
$M1 = 5 \times 6 + k \times 0 \text{ or 30 or implied}$		(iii)	$(3\frac{1}{3}, 5\frac{1}{3}) \Rightarrow 32\frac{2}{3}$ $(6, 0) \Rightarrow 30$ At optimum, $x = 3\frac{1}{3}$ and $y = 5\frac{1}{3}$	A1	Testing vertices or using a line of constant profit (may be implied) Accept $(3\frac{1}{3}, 5\frac{1}{3})$ identified (ft)	[3]
		(iv)		M1	$5\times6 + k\times0$ or 30 or implied	[3]

			3.54		1
4	(i)	$ \begin{array}{c cccc} 1 & 0 & & 4 & 5 \\ \hline & & 6 & 5 & \\ \hline & & B & & \\ \end{array} $	M1 M1	Both 6 and 5 shown at B All temporary labels correct including F and J	
		5 6 (9) (16) 7 12	A1	No extra temporary labels	
		$ \begin{array}{c cccc} \hline 6 & & & 16 & & 12 \\ \hline C & & F & & H \end{array} $	В1	All permanent labels correct (may omit <i>F</i> and/or <i>J</i>) cao	
		$ \begin{array}{c cccc} 3 & 3 & & 2 & 2 & & 6 & 10 \\ 4 & 3 & & 2 & & 10 & & & & & & & & & & & & & & & & $	В1	Order of labelling correct (may omit F and/or J , may reverse F and J) cao	
		(10) (16) 16 <i>J K</i>	B1 B1	A - E - B - G - H - K cao 14 cao	[7]
		Route = $A - E - B - G - H - K$ Length = 14 metres			
	(ii)	Without using CJ : Route = $A - E - B - G - F - J$ Length = 21 metres	B1 B1	Follow through their (i) $A-E-B-G-F-J$ 21	[2]
	(iii)	More than 2 metres	M1 A1	2 (cao) More than, or equivalent	
		(Answer of 'more than 7 metres' or '7 metres' \Rightarrow M1, A0)		(Answer of 3 or \geq 3 \Rightarrow SC1)	[2]
				Total =	11

_			·	r	-		
5	(i)		E	W			
		A	x	3 - x	B1	AW = 3 - x	
		В	v	3 - y	B1 B1	BW = 3 - y $CE = 4 which any forms$	
		C	4 - x - y	x+y-1	BI	CE = 4 - x - y, in any form	
			y	N y 1	M1	An appropriate calculation for their	
		Total cost = £	2(250x + 2500)	3-r)		table	
			-200y + 140(3)				
			(4-x-y) + 280(x+y)		A1	Leading to given result	[5]
		=£(2090 - 20:					
	(ii)	$\frac{-2(2000-20x+4)}{2090-20x+4}$		(AU)			
	(11)		_		B1	Showing where the given inequality	
		\Rightarrow -20x + 40y	_	(1.6)		comes from	
		\Rightarrow - $x + 2y \le 3$		(AG)			[1]
	(iii)	50(3-x) + 40(3-x)	(3-y) + 60(x+y-	1)	M1	Follow through their table	
		= 210 + 10x +	20 <i>y</i>		A1	Correct expression $210 + 10x + 20y$	[2]
		So need to ma	ximise x + 2y	(AG)		210 + 10x + 20y	[2]
	(iv)	$P \qquad x$	y s	t -		Rows and columns may be in any	
		1 -1	-2 0	0 0	D1	order	
		0 -1	2 1	0 3	B1 B1	-1 -2 in objective row Constraint rows correct	[2]
		0 1	1 0	1 3	7	Constraint Tows correct	[4]
	(v)	Pivot on the 2	in the v colun	nn	B1	Correct choice of pivot from <i>y</i>	
		1 -2	0 1	0 3		column	
		0 -0.5	1 0.5	0 1.5		Follow through their tableau	
		0 1.5	0 -0.5	1 1.5	M1	and valid pivot if possible Pivot row correct	
					A1	Other rows correct	
		Pivot on 1.5 in	the x column	1	_		
		1 0	0 $\frac{1}{3}$	$1\frac{1}{3}$ 5	M1	Correct choice of pivot	
			1	$\frac{1}{3}$ 2		Follow through their tableau	
		0 0			A1	and valid pivot if possible Correct tableau	
		0 1	$0 - \frac{1}{3}$	$\frac{2}{3}$ 1	B1	Correct answer only	[6]
						,	(-)
		x = 1, y = 2					
						Total =	16

6	(a)(i)	Route Inspection (problem)	B1	Or Chinese postman (problem)	[1]
	(ii)	Odd nodes are A , B , C and D	B1	Identifying odd nodes (may be	
			M1	implied from working) Pairing odd nodes (all three pairings	
		AB = 250 $AC = 100$ $AD = 200$	IVI I	considered)	
		$CD = \frac{200}{450}$ $BD = \frac{250}{250}$ $BC = \frac{350}{550}$		M mark may not be implied	
		450 350 550	A1 B1	350 as minimum 3350 m or 3.35 km UNITS	[4]
		Repeat AC and $BFED = 350$	DI	3330 III 01 3.33 KIII - UNI 13	[4]
-	(iii)	Length of shortest route = 3350 metres C is an odd node, so we can end at		Working need not be seen	
	(111)	another odd node.		Working need not be seen	
		AB = 250 $AD = 200$ $BD = 250$	M1	May be implied from answer	
		Repeat $AD = 200$	A1	3200	
		Length of route = 3200 metres	B1	B	[3]
		Route ends at <i>B</i>			
	(b)(i)	D-G-C-A-E-F-B-H-D	M1	Correct cycle	
				If drawn then arcs must be directed 1580	
		1500	A1	Identifying the stall	
		1580 metres $A - C - D - G$ then method stalls	B1		[3]
	(ii)	A - C - D - G then method stans	M1	Use of Prim's algorithm to build tree	
	(11)	BF = 100	1011	(e.g. an attempt at list of arcs or order	
		FE = 50 C		of adding vertices). NOT Kruskal	
		ED = 100 /D E F	A1	Correct arcs chosen (listed or seen on tree)	
		DG = 80	711	A correct tree with vertices labelled	
		EH = 110 H	B1	Order stated or clearly implied	
		DC = 200	A1	640	
			B1		[5]
		Order of adding nodes: BFEDGHC			
\vdash	(iii)	Total weight of tree = 640 metres Lower bound = $640 + 100 + 200 = 940$	M1	300 + weight of their tree	
	(111)	100 Element 100 for 1		their 940 \le length \le their 1580	
		740 metres \(\sigma\) shortest tour \(\sigma\) 1360 metres		(condone use of < here)	[2]
				Total =	18

For reference:

