Cours 3 Interprétation : fonctions, prédicats et connecteurs

Logique – Licence Informatique

 les connecteurs logiques ¬, ⇒, ∧ et ∨ sont des opérateurs syntaxiques permettant de construire des formules à partir d'autres formules

- les connecteurs logiques ¬, ⇒, ∧ et ∨ sont des opérateurs syntaxiques permettant de construire des formules à partir d'autres formules
 - ils n'ont pas (encore) de signification :
 - connecteur : constructeur de formules
 - ★ syntaxiquement une formule n'a pas de valeur autre qu'elle-même

- les connecteurs logiques ¬, ⇒, ∧ et ∨ sont des opérateurs syntaxiques permettant de construire des formules à partir d'autres formules
 - ils n'ont pas (encore) de signification :
 - connecteur : constructeur de formules
 - ★ syntaxiquement une formule n'a pas de valeur autre qu'elle-même
- égalité syntaxique : deux formules sont syntaxiquement égales ssi elles ont été obtenues en appliquant les mêmes connecteurs sur des (sous-)formules syntaxiquement égales

$$\begin{array}{ll} \text{true} = \text{true} \\ \neg (F_1 \lor F_2) = \neg (F_1 \lor F_2) \\ F \lor \neg F = F \lor \neg F \\ F \land \neg F = F \land \neg F \end{array} \right. \quad \begin{array}{ll} \text{true} \neq \neg \text{false} \\ \neg (F_1 \lor F_2) \neq \neg F_1 \land \neg F_2 \\ F \lor \neg F \neq \text{true} \\ F \land \neg F \neq \text{false} \end{array}$$

Termes

- les connecteurs logiques ¬, ⇒, ∧ et ∨ sont des opérateurs syntaxiques permettant de construire des formules à partir d'autres formules
 - ils n'ont pas (encore) de signification :
 - connecteur : constructeur de formules
 - syntaxiquement une formule n'a pas de valeur autre qu'elle-même
- égalité syntaxique : deux formules sont syntaxiquement égales ssi elles ont été obtenues en appliquant les mêmes connecteurs sur des (sous-)formules syntaxiquement égales

$$\begin{array}{lll} \text{true} = \text{true} & \text{true} \neq \neg \text{false} \\ \neg (F_1 \lor F_2) = \neg (F_1 \lor F_2) & \neg (F_1 \lor F_2) \neq \neg F_1 \land \neg F_2 \\ F \lor \neg F = F \lor \neg F & F \lor \neg F \neq \text{true} \\ F \land \neg F = F \land \neg F & F \land \neg F \neq \text{false} \\ \end{array}$$

comment caractériser les formules « sémantiquement équivalentes » ?

Termes

- les connecteurs logiques ¬, ⇒, ∧ et ∨ sont des opérateurs syntaxiques permettant de construire des formules à partir d'autres formules
 - ils n'ont pas (encore) de signification :
 - connecteur : constructeur de formules
 - syntaxiquement une formule n'a pas de valeur autre qu'elle-même
- égalité syntaxique : deux formules sont syntaxiquement égales ssi elles ont été obtenues en appliquant les mêmes connecteurs sur des (sous-)formules syntaxiquement égales

$$\begin{array}{ll} \text{true} = \text{true} \\ \neg (F_1 \lor F_2) = \neg (F_1 \lor F_2) \\ F \lor \neg F = F \lor \neg F \\ F \land \neg F = F \land \neg F \end{array} \right. \quad \begin{array}{ll} \text{true} \neq \neg \text{false} \\ \neg (F_1 \lor F_2) \neq \neg F_1 \land \neg F_2 \\ F \lor \neg F \neq \text{true} \\ F \land \neg F \neq \text{false} \end{array}$$

- comment caractériser les formules « sémantiquement équivalentes » ?
- comment associer une « valeur de vérité » aux formules ?

- les connecteurs logiques ¬, ⇒, ∧ et ∨ sont des opérateurs syntaxiques permettant de construire des formules à partir d'autres formules
 - ils n'ont pas (encore) de signification :
 - connecteur : constructeur de formules
 - syntaxiquement une formule n'a pas de valeur autre qu'elle-même
- égalité syntaxique : deux formules sont syntaxiquement égales ssi elles ont été obtenues en appliquant les mêmes connecteurs sur des (sous-)formules syntaxiquement égales

$$\begin{array}{lll} \text{true} = \text{true} & \text{true} \neq \neg \text{false} \\ \neg (F_1 \lor F_2) = \neg (F_1 \lor F_2) & \neg (F_1 \lor F_2) \neq \neg F_1 \land \neg F_2 \\ F \lor \neg F = F \lor \neg F & F \lor \neg F \neq \text{true} \\ F \land \neg F = F \land \neg F & F \land \neg F \neq \text{false} \\ \end{array}$$

- comment caractériser les formules « sémantiquement équivalentes » ?
- comment associer une « valeur de vérité » aux formules ?
- comment identifier les formules « toujours vraies » ?

associer une valeur booléenne appartenant à $\mathbb{B} = \{0, 1\}$ à une formule $F \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$

donner une valeur aux termes apparaissant dans F

- donner une valeur aux termes apparaissant dans F
 - interpréter les termes de $\mathcal{T}_0(\mathcal{F})$ par des valeurs appartenant à un certain ensemble : le domaine d'interprétation

- 🚺 donner une valeur aux termes apparaissant dans F
 - interpréter les termes de $\mathcal{T}_0(\mathcal{F})$ par des valeurs appartenant à un certain ensemble : le **domaine d'interprétation**
- 2 associer un **booléen** (une valeur de \mathbb{B}) à chaque formule atomique de $\mathcal{L}_0(\mathcal{F}, \mathcal{P})$

- donner une valeur aux termes apparaissant dans F
 - interpréter les termes de $\mathcal{T}_0(\mathcal{F})$ par des valeurs appartenant à un certain ensemble : le domaine d'interprétation
- associer un **booléen** (une valeur de **B**) à chaque formule atomique de $\mathcal{L}_0(\mathcal{F},\mathcal{P})$
 - interpréter les symboles de prédicat de P

- donner une valeur aux termes apparaissant dans F
 - interpréter les termes de $\mathcal{T}_0(\mathcal{F})$ par des valeurs appartenant à un certain ensemble : le domaine d'interprétation
- associer un **booléen** (une valeur de **B**) à chaque formule atomique de $\mathcal{L}_0(\mathcal{F},\mathcal{P})$
 - interpréter les symboles de prédicat de P
- associer une **expression booléenne** à la formule *F*

- donner une valeur aux termes apparaissant dans F
 - interpréter les termes de $\mathcal{T}_0(\mathcal{F})$ par des valeurs appartenant à un certain ensemble : le domaine d'interprétation
- associer un **booléen** (une valeur de **B**) à chaque formule atomique de $\mathcal{L}_0(\mathcal{F},\mathcal{P})$
 - interpréter les symboles de prédicat de P
- 🗿 associer une **expression booléenne** à la formule *F*
 - interpréter les connecteurs logiques par des opérations booléennes

- donner une valeur aux termes apparaissant dans F
 - interpréter les termes de $\mathcal{T}_0(\mathcal{F})$ par des valeurs appartenant à un certain ensemble : le domaine d'interprétation
- associer un **booléen** (une valeur de **B**) à chaque formule atomique de $\mathcal{L}_0(\mathcal{F},\mathcal{P})$
 - interpréter les symboles de prédicat de P
- associer une expression booléenne à la formule F
 - interpréter les connecteurs logiques par des opérations booléennes
- évaluer l'expression booléenne

• entiers de Peano : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ ($\mathcal{F}_0 = \{Z\}, \mathcal{F}_1 = \{S\}$)

- entiers de Peano : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ ($\mathcal{F}_0 = \{Z\}, \mathcal{F}_1 = \{S\}$)
- domaine d'interprétation des entiers de Peano : entiers naturels $\mathbb{N} = \{0, 1, 2, \cdots\}$

- entiers de Peano : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ ($\mathcal{F}_0 = \{Z\}, \mathcal{F}_1 = \{S\}$)
- domaine d'interprétation des entiers de Peano : entiers naturels $\mathbb{N} = \{0, 1, 2, \cdots\}$
- structure M permettant d'interpréter les symboles de \mathcal{F}

Termes

- entiers de Peano : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ ($\mathcal{F}_0 = \{Z\}, \mathcal{F}_1 = \{S\}$)
- domaine d'interprétation des entiers de Peano : entiers naturels $\mathbb{N} = \{0, 1, 2, \cdots\}$
- structure M permettant d'interpréter les symboles de F
 - ▶ constante $Z \in \mathcal{F}_0$ interprétée par l'entier $Z^{\mathbf{M}} = 0 \in \mathbb{N}$

- entiers de Peano : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ $(\mathcal{F}_0 = \{Z\}, \mathcal{F}_1 = \{S\})$
- domaine d'interprétation des entiers de Peano : entiers naturels $\mathbb{N} = \{0, 1, 2, \cdots\}$
- structure M permettant d'interpréter les symboles de F
 - ▶ constante $Z \in \mathcal{F}_0$ interprétée par l'entier $Z^{\mathbf{M}} = 0 \in \mathbb{N}$
 - ▶ symbole de fonction $S \in \mathcal{F}_1$
 - ★ constructeur unaire de terme $S: \mathcal{T}_0(\mathcal{F}) \to \mathcal{T}_0(\mathcal{F})$
 - interprété par une fonction unaire $S^{\hat{M}}: \mathbb{N} \to \mathbb{N}$ définie par $S^{M}(x) = x + 1$

- entiers de Peano : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ $(\mathcal{F}_0 = \{Z\}, \mathcal{F}_1 = \{S\})$
- domaine d'interprétation des entiers de Peano : entiers naturels $\mathbb{N} = \{0, 1, 2, \cdots\}$
- structure M permettant d'interpréter les symboles de F
 - ▶ constante $Z \in \mathcal{F}_0$ interprétée par l'entier $Z^{\mathbf{M}} = 0 \in \mathbb{N}$
 - ▶ symbole de fonction $S \in \mathcal{F}_1$
 - ★ constructeur unaire de terme $S: \mathcal{T}_0(\mathcal{F}) \to \mathcal{T}_0(\mathcal{F})$
 - * interprété par une fonction unaire $S^{\dot{M}}: \mathbb{N} \to \mathbb{N}$ définie par $S^{M}(x) = x + 1$
- interprétation des termes : $[t]^{\mathbf{M}} = \begin{cases} Z^{\mathbf{M}} = 0 & \text{si } t = 0 \\ S^{\mathbf{M}}([t']^{\mathbf{M}}) = [t']^{\mathbf{M}} + 1 & \text{si } t = S(t') \end{cases}$

- ullet entiers de Peano : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F}=\mathcal{F}_0\cup\mathcal{F}_1$ $(\mathcal{F}_0=\{Z\},\,\mathcal{F}_1=\{S\})$
- domaine d'interprétation des entiers de Peano : entiers naturels $\mathbb{N} = \{0, 1, 2, \cdots\}$
- structure M permettant d'interpréter les symboles de F
 - ▶ constante $Z \in \mathcal{F}_0$ interprétée par l'entier $Z^{\mathbf{M}} = 0 \in \mathbb{N}$
 - Symbole de fonction S ∈ F₁
 - ★ constructeur unaire de terme $S: \mathcal{T}_0(\mathcal{F}) \to \mathcal{T}_0(\mathcal{F})$
 - * interprété par une fonction unaire $S^{\mathbf{M}}: \mathbb{N} \to \mathbb{N}$ définie par $S^{\mathbf{M}}(x) = x + 1$
- interprétation des termes : $[t]^{\mathbf{M}} = \begin{cases} Z^{\mathbf{M}} = 0 & \text{si } t = 0 \\ S^{\mathbf{M}}([t']^{\mathbf{M}}) = [t']^{\mathbf{M}} + 1 & \text{si } t = S(t') \end{cases}$
- exemple : $[S(S(Z))]^{M}$

- entiers de Peano : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ $(\mathcal{F}_0 = \{Z\}, \mathcal{F}_1 = \{S\})$
- domaine d'interprétation des entiers de Peano : entiers naturels $\mathbb{N} = \{0, 1, 2, \cdots\}$
- structure M permettant d'interpréter les symboles de F
 - ▶ constante $Z \in \mathcal{F}_0$ interprétée par l'entier $Z^{\mathbf{M}} = 0 \in \mathbb{N}$
 - Symbole de fonction S ∈ F₁
 - ★ constructeur unaire de terme $S: \mathcal{T}_0(\mathcal{F}) \to \mathcal{T}_0(\mathcal{F})$
 - * interprété par une fonction unaire $S^{\mathbf{M}}: \mathbb{N} \to \mathbb{N}$ définie par $S^{\mathbf{M}}(x) = x + 1$
- interprétation des termes : $[t]^{\mathbf{M}} = \begin{cases} Z^{\mathbf{M}} = 0 & \text{si } t = 0 \\ S^{\mathbf{M}}([t']^{\mathbf{M}}) = [t']^{\mathbf{M}} + 1 & \text{si } t = S(t') \end{cases}$
- $\quad \bullet \ \ \text{exemple}: \ \ [S(\underline{S(Z)})]^{\underline{M}} = S^{\underline{M}}([S(Z)]^{\underline{M}})$

- entiers de Peano : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ $(\mathcal{F}_0 = \{Z\}, \mathcal{F}_1 = \{S\})$
- domaine d'interprétation des entiers de Peano : entiers naturels $\mathbb{N} = \{0, 1, 2, \cdots\}$
- structure M permettant d'interpréter les symboles de F
 - ▶ constante $Z \in \mathcal{F}_0$ interprétée par l'entier $Z^{\mathbf{M}} = 0 \in \mathbb{N}$
 - ▶ symbole de fonction $S \in \mathcal{F}_1$
 - ★ constructeur unaire de terme $S: \mathcal{T}_0(\mathcal{F}) \to \mathcal{T}_0(\mathcal{F})$
 - * interprété par une fonction unaire $S^{\dot{M}}: \mathbb{N} \to \mathbb{N}$ définie par $S^{M}(x) = x + 1$
- interprétation des termes : $[t]^{\mathbf{M}} = \begin{cases} Z^{\mathbf{M}} = 0 & \text{si } t = 0 \\ S^{\mathbf{M}}([t']^{\mathbf{M}}) = [t']^{\mathbf{M}} + 1 & \text{si } t = S(t') \end{cases}$
- $\quad \bullet \ \ \text{exemple}: \ \ [S(\textcolor{red}{S(Z)})]^{\texttt{M}} = S^{\texttt{M}}([S(\textcolor{red}{Z})]^{\texttt{M}}) = S^{\texttt{M}}(S^{\texttt{M}}([Z]^{\texttt{M}}))$

- entiers de Peano : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ ($\mathcal{F}_0 = \{Z\}, \mathcal{F}_1 = \{S\}$)
- domaine d'interprétation des entiers de Peano : entiers naturels $\mathbb{N} = \{0,1,2,\cdots\}$
- structure M permettant d'interpréter les symboles de F
 - ▶ constante $Z \in \mathcal{F}_0$ interprétée par l'entier $Z^{\mathbf{M}} = 0 \in \mathbb{N}$
 - ▶ symbole de fonction S ∈ F₁
 - ★ constructeur unaire de terme $S: \mathcal{T}_0(\mathcal{F}) \to \mathcal{T}_0(\mathcal{F})$
 - * interprété par une fonction unaire $S^{\mathbf{M}}: \mathbb{N} \to \mathbb{N}$ définie par $S^{\mathbf{M}}(x) = x + 1$
- interprétation des termes : $[t]^{\mathbf{M}} = \left\{ \begin{array}{ll} Z^{\mathbf{M}} = 0 & \text{si } t = 0 \\ S^{\mathbf{M}}([t']^{\mathbf{M}}) = [t']^{\mathbf{M}} + 1 & \text{si } t = S(t') \end{array} \right.$
- $\quad \text{exemple}: \ [S(\textcolor{red}{S(Z)})]^{\texttt{M}} = S^{\texttt{M}}([S(\textcolor{red}{Z})]^{\texttt{M}}) = S^{\texttt{M}}(S^{\texttt{M}}([\textcolor{red}{Z}]^{\texttt{M}})) = S^{\texttt{M}}(S^{\texttt{M}}(\textcolor{red}{Z}^{\texttt{M}}))$

Termes

- entiers de Peano : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ $(\mathcal{F}_0 = \{Z\}, \mathcal{F}_1 = \{S\})$
- domaine d'interprétation des entiers de Peano : entiers naturels $\mathbb{N} = \{0, 1, 2, \cdots\}$
- structure M permettant d'interpréter les symboles de F
 - ▶ constante $Z \in \mathcal{F}_0$ interprétée par l'entier $Z^{\mathbf{M}} = 0 \in \mathbb{N}$
 - ▶ symbole de fonction S ∈ F₁
 - ★ constructeur unaire de terme $S: \mathcal{T}_0(\mathcal{F}) \to \mathcal{T}_0(\mathcal{F})$
 - * interprété par une fonction unaire $S^{\mathbf{M}}: \mathbb{N} \to \mathbb{N}$ définie par $S^{\mathbf{M}}(x) = x + 1$
- interprétation des termes : $[t]^{\mathbf{M}} = \left\{ \begin{array}{ll} Z^{\mathbf{M}} = 0 & \text{si } t = 0 \\ S^{\mathbf{M}}([t']^{\mathbf{M}}) = [t']^{\mathbf{M}} + 1 & \text{si } t = S(t') \end{array} \right.$
- $\bullet \ \textit{exemple}: \ \frac{[S(S(Z))]^{M} = S^{M}([S(Z)]^{M}) = S^{M}(S^{M}([Z]^{M})) = S^{M}(S^{M}(Z^{M}))}{= S^{M}(S^{M}(0))}$

- entiers de Peano : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ $(\mathcal{F}_0 = \{Z\}, \mathcal{F}_1 = \{S\})$
- domaine d'interprétation des entiers de Peano : entiers naturels $\mathbb{N} = \{0, 1, 2, \cdots\}$
- structure M permettant d'interpréter les symboles de F
 - ▶ constante $Z \in \mathcal{F}_0$ interprétée par l'entier $Z^{\mathbf{M}} = 0 \in \mathbb{N}$
 - ▶ symbole de fonction S ∈ F₁
 - ★ constructeur unaire de terme $S: \mathcal{T}_0(\mathcal{F}) \to \mathcal{T}_0(\mathcal{F})$
 - * interprété par une fonction unaire $S^{\mathbf{M}}: \mathbb{N} \to \mathbb{N}$ définie par $S^{\mathbf{M}}(x) = x + 1$
- interprétation des termes : $[t]^{\mathbf{M}} = \left\{ \begin{array}{ll} Z^{\mathbf{M}} = 0 & \text{si } t = 0 \\ S^{\mathbf{M}}([t']^{\mathbf{M}}) = [t']^{\mathbf{M}} + 1 & \text{si } t = S(t') \end{array} \right.$
- exemple : $[S(\frac{S(Z))}]^{M} = S^{M}([S(Z)]^{M}) = S^{M}(S^{M}([Z]^{M})) = S^{M}(S^{M}(Z^{M}))$ $= S^{M}(S^{M}(0)) = S^{M}(0+1) = S^{M}(1) = 1+1=2$

• expressions arithmétiques : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(\mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$

- expressions arithmétiques : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(\mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$

- expressions arithmétiques : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(\mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation : Z (entiers relatifs)
- ullet structure ${f M}$ permettant d'interpréter les symboles de ${\cal F}$
 - chaque constante $k \in \mathcal{F}_0$ est interprétée par l'entier relatif $k^{\mathbf{M}} = k \in \mathbb{Z}$

- expressions arithmétiques : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(\mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation : Z (entiers relatifs)
- ullet structure ldot permettant d'interpréter les symboles de ${\cal F}$
 - chaque constante $k \in \mathcal{F}_0$ est interprétée par l'entier relatif $k^{\mathbf{M}} = k \in \mathbb{Z}$
 - exemple : la valeur de l'expression 8 est l'entier relatif 8

- expressions arithmétiques : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(\mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation : Z (entiers relatifs)
- structure M permettant d'interpréter les symboles de \mathcal{F}
 - ▶ chaque constante $k \in \mathcal{F}_0$ est interprétée par l'entier relatif $k^{\mathbf{M}} = k \in \mathbb{Z}$
 - exemple : la valeur de l'expression 8 est l'entier relatif 8
 - interprétation des symboles de fonction de F₂
 - ★ \oplus : $\mathcal{T}_0(\mathcal{F}) \times \mathcal{T}_0(\mathcal{F}) \to \mathcal{T}_0(\mathcal{F})$: opérateur binaire de construction d'expressions arithmétiques

- expressions arithmétiques : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(\mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation : Z (entiers relatifs)
- structure M permettant d'interpréter les symboles de \mathcal{F}
 - ▶ chaque constante $k \in \mathcal{F}_0$ est interprétée par l'entier relatif $k^{\mathbf{M}} = k \in \mathbb{Z}$
 - exemple : la valeur de l'expression 8 est l'entier relatif 8
 - ▶ interprétation des symboles de fonction de F₂
 - ★ \oplus : $\mathcal{T}_0(\mathcal{F}) \times \mathcal{T}_0(\mathcal{F}) \to \mathcal{T}_0(\mathcal{F})$: opérateur binaire de construction d'expressions arithmétiques interprété par l'opérateur binaire $\oplus^{\mathbf{M}} : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ d'addition de deux entiers relatifs $(\oplus^{\mathbf{M}} = +)$

Logique - Licence Informatique, Sorbonne Université

Termes

- expressions arithmétiques : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(\mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation : Z (entiers relatifs)
- structure M permettant d'interpréter les symboles de \mathcal{F}
 - ▶ chaque constante $k \in \mathcal{F}_0$ est interprétée par l'entier relatif $k^{\mathbf{M}} = k \in \mathbb{Z}$
 - exemple : la valeur de l'expression 8 est l'entier relatif 8
 - ▶ interprétation des symboles de fonction de F₂
 - ★ \oplus : $\mathcal{T}_0(\mathcal{F}) \times \mathcal{T}_0(\mathcal{F}) \to \mathcal{T}_0(\mathcal{F})$: opérateur binaire de construction d'expressions arithmétiques interprété par l'opérateur binaire $\oplus^{\mathbf{M}} : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ d'addition de deux entiers relatifs $(\oplus^{\mathbf{M}} = +)$
 - ★ ⊖,⊗...

Termes

- expressions arithmétiques : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(\mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- structure M permettant d'interpréter les symboles de F
- interprétation des termes

$$[t]^{ extsf{M}} = \left\{egin{array}{ll} k^{ extsf{M}} = k & ext{si } t = k \in \mathcal{F}_0 \end{array}
ight.$$

- expressions arithmétiques : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(\mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation : Z (entiers relatifs)
- structure M permettant d'interpréter les symboles de \mathcal{F}
- interprétation des termes

$$[t]^{\mathbf{M}} = \begin{cases} k^{\mathbf{M}} = k & \text{si } t = k \in \mathcal{F}_0 \\ \oplus^{\mathbf{M}} ([t_1]^{\mathbf{M}}, [t_2]^{\mathbf{M}}) = [t_1]^{\mathbf{M}} + [t_2]^{\mathbf{M}} & \text{si } t = \oplus (t_1, t_2) \end{cases}$$

exemple : $[\oplus(\ominus(8,3),\ominus(5,1))]^{\mathbf{M}}$

Interprétation des termes : expressions arithmétiques

- expressions arithmétiques : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(\mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation : Z (entiers relatifs)
- structure M permettant d'interpréter les symboles de \mathcal{F}
- interprétation des termes

$$[t]^{\mathbf{M}} = \begin{cases} k^{\mathbf{M}} = k & \text{si } t = k \in \mathcal{F}_0 \\ \oplus^{\mathbf{M}} ([t_1]^{\mathbf{M}}, [t_2]^{\mathbf{M}}) = [t_1]^{\mathbf{M}} + [t_2]^{\mathbf{M}} & \text{si } t = \oplus (t_1, t_2) \end{cases}$$

exemple : $\begin{array}{ll} [\oplus(\ominus(8,3),\ominus(5,1))]^{\textbf{M}} \\ = & \oplus^{\textbf{M}}([\ominus(8,3)]^{\textbf{M}},[\ominus(5,1)]^{\textbf{M}}) = [\ominus(8,3)]^{\textbf{M}} + [\ominus(5,1)]^{\textbf{M}} \end{array}$

Interprétation des termes : expressions arithmétiques

- expressions arithmétiques : $\mathcal{T}_0(\mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(\mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation : Z (entiers relatifs)
- ullet structure ldot permettant d'interpréter les symboles de ${\mathcal F}$
- interprétation des termes

$$[t]^{\mathbf{M}} = \begin{cases} k^{\mathbf{M}} = k & \text{si } t = k \in \mathcal{F}_0 \\ \oplus^{\mathbf{M}} ([t_1]^{\mathbf{M}}, [t_2]^{\mathbf{M}}) = [t_1]^{\mathbf{M}} + [t_2]^{\mathbf{M}} & \text{si } t = \oplus (t_1, t_2) \end{cases}$$

 $\begin{array}{ll} \bullet \ \ \textit{exemple}: \\ & [\oplus (\ominus (8,3),\ominus (5,1))]^{\textbf{M}} \\ & = \ \ \oplus^{\textbf{M}} ([\ominus (8,3)]^{\textbf{M}},[\ominus (5,1)]^{\textbf{M}}) = [\ominus (8,3)]^{\textbf{M}} + [\ominus (5,1)]^{\textbf{M}} \\ & = \ \ \ominus^{\textbf{M}} ([8]^{\textbf{M}},[3]^{\textbf{M}}) + \ominus^{\textbf{M}} ([5]^{\textbf{M}},[1]^{\textbf{M}}) = (8-3) + (5-1) = 9 \\ \end{array}$

Termes

structure M permettant d'interpréter les symboles de \mathcal{F}

- structure M permettant d'interpréter les symboles de F
 - domaine d'interprétation | M | (ensemble non vide)

- structure M permettant d'interpréter les symboles de F
 - domaine d'interprétation | M | (ensemble non vide)
 - ▶ associe à chaque constante $k \in \mathcal{F}_0$ un élément $k^{\mathbf{M}} \in |\mathbf{M}|$

- structure M permettant d'interpréter les symboles de F
 - domaine d'interprétation | M | (ensemble non vide)
 - ▶ associe à chaque constante $k \in \mathcal{F}_0$ un élément $k^{\mathbf{M}} \in |\mathbf{M}|$
 - ▶ associe à chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n, une fonction n-aire $f^{\mathbf{M}} : |\mathbf{M}|^n \to |\mathbf{M}|$

- structure M permettant d'interpréter les symboles de F
 - domaine d'interprétation | M | (ensemble non vide)
 - ▶ associe à chaque constante $k \in \mathcal{F}_0$ un élément $k^{\mathsf{M}} \in |\mathsf{M}|$
 - ▶ associe à chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n, une fonction n-aire $f^{\mathbf{M}} : |\mathbf{M}|^n \to |\mathbf{M}|$
- interprétation des termes de $\mathcal{T}_0(\mathcal{F})$

$$[\]^{\boldsymbol{\mathsf{M}}}:\mathcal{T}_0(\mathcal{F})\to |\boldsymbol{\mathsf{M}}|$$

- structure M permettant d'interpréter les symboles de \mathcal{F}
 - domaine d'interprétation | M | (ensemble non vide)
 - ▶ associe à chaque constante $k \in \mathcal{F}_0$ un élément $k^{\mathsf{M}} \in |\mathsf{M}|$
 - ▶ associe à chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n, une fonction *n*-aire $f^{\mathbf{M}}: |\mathbf{M}|^n \to |\mathbf{M}|$
- interprétation des termes de $\mathcal{T}_0(\mathcal{F})$

$$[\]^{\mathbf{M}}:\mathcal{T}_0(\mathcal{F})
ightarrow |\mathbf{M}|$$
 $[t]^{\mathbf{M}}=\left\{egin{array}{c} k^{\mathbf{M}} \end{array}
ight.$

si
$$t = k \in \mathcal{F}_0$$

- structure M permettant d'interpréter les symboles de F
 - domaine d'interprétation | M | (ensemble non vide)
 - ▶ associe à chaque constante $k \in \mathcal{F}_0$ un élément $k^{\mathbf{M}} \in |\mathbf{M}|$
 - ▶ associe à chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n, une fonction n-aire $f^{\mathbf{M}} : |\mathbf{M}|^n \to |\mathbf{M}|$
- interprétation des termes de $\mathcal{T}_0(\mathcal{F})$

$$\begin{split} [\]^{\mathbf{M}} &: \mathcal{T}_0(\mathcal{F}) \to |\mathbf{M}| \\ [t]^{\mathbf{M}} &= \left\{ \begin{array}{ll} k^{\mathbf{M}} & \text{si } t = k \in \mathcal{F}_0 \\ f^{\mathbf{M}}([t_1]^{\mathbf{M}}, \cdots, [t_n]^{\mathbf{M}}) & \text{si } t = f(t_1, \cdots, t_n) \end{array} \right. \end{split}$$

structure M permettant d'interpréter les symboles de \mathcal{F} et de \mathcal{P}

- structure M permettant d'interpréter les symboles de \mathcal{F} et de \mathcal{P}
 - ▶ $p \in \mathcal{P}_0$ est interprété par un booléen $p^{\mathbf{M}} \in \{0, 1\}$

- structure M permettant d'interpréter les symboles de \mathcal{F} et de \mathcal{P}
 - ▶ $p \in \mathcal{P}_0$ est interprété par un booléen $p^{\mathbf{M}} \in \{0, 1\}$
 - $p \in \mathcal{P}_n$ (n > 0) est interprété par une relation *n*-aire $p^{\mathbf{M}}$ sur le domaine d'interprétation $|\mathbf{M}|$: $p^{\mathbf{M}} \subseteq |\mathbf{M}|^n$ $p^{\mathbf{M}}$ est un ensemble de *n*-uplets de valeurs dans $|\mathbf{M}|$

- ullet structure ldot permettant d'interpréter les symboles de ${\mathcal F}$ et de ${\mathcal P}$
 - ▶ $p \in \mathcal{P}_0$ est interprété par un booléen $p^{\mathbf{M}} \in \{0, 1\}$
 - p ∈ P_n (n > 0) est interprété par une relation n-aire p^M sur le domaine d'interprétation |M| : p^M ⊆ |M|ⁿ

 $p^{\mathbf{M}}$ est un ensemble de *n*-uplets de valeurs dans $|\mathbf{M}|$ exemple : interprétation du prédicat $inf \in \mathcal{P}_2$ sur le domaine $|\mathbf{M}| = \mathbb{N}$

exemple: interpretation of predicat $m \in \mathbb{Z}_2$ surface domaine $|\mathbf{w}| = \mathbf{r}$

$$\begin{array}{ll} \textit{inf}^{M} &= \{(0,0),(0,1),(0,2),\cdots,(1,1),(1,2),(1,3),\cdots\} \\ &= \big\{(n_1,n_2) \in \mathbb{N}^2 \mid n_1 \leq n_2\big\} \subseteq \mathbb{N}^2 \end{array}$$

Logique - Licence Informatique, Sorbonne Université

- ullet structure ldot permettant d'interpréter les symboles de ${\mathcal F}$ et de ${\mathcal P}$
 - ▶ $p \in \mathcal{P}_0$ est interprété par un booléen $p^{\mathbf{M}} \in \{0, 1\}$

exemple : interprétation du prédicat $\mathit{inf} \in \mathcal{P}_2$ sur le domaine $|M| = \mathbb{N}$

$$\begin{array}{ll} \textit{inf}^{\mathbf{M}} &= \{(0,0),(0,1),(0,2),\cdots,(1,1),(1,2),(1,3),\cdots\} \\ &= \{(n_1,n_2) \in \mathbb{N}^2 \mid n_1 \leq n_2\} \subseteq \mathbb{N}^2 \end{array}$$

associer un booléen à une formule atomique $p(t_1, \dots, t_n)$

Logique - Licence Informatique, Sorbonne Université

- ullet structure ldot permettant d'interpréter les symboles de ${\mathcal F}$ et de ${\mathcal P}$
 - ▶ $p \in \mathcal{P}_0$ est interprété par un booléen $p^{\mathbf{M}} \in \{0, 1\}$
 - p ∈ P_n (n > 0) est interprété par une relation n-aire p^M sur le domaine d'interprétation |M| : p^M ⊆ |M|ⁿ p^M est un ensemble de n-uplets de valeurs dans |M|

exemple: interprétation du prédicat $inf \in \mathcal{P}_2$ sur le domaine $|\mathbf{M}| = \mathbb{N}$

$$\begin{array}{ll} \textit{inf}^{\mathbf{M}} &= \{(0,0),(0,1),(0,2),\cdots,(1,1),(1,2),(1,3),\cdots\} \\ &= \{(n_1,n_2) \in \mathbb{N}^2 \mid n_1 \leq n_2\} \subseteq \mathbb{N}^2 \end{array}$$

- associer un booléen à une formule atomique $p(t_1, \dots, t_n)$
 - ▶ calcul des valeurs $[t_1]^{\mathbf{M}}$, ..., $[t_n]^{\mathbf{M}}$ appartenant au domaine $|\mathbf{M}|$

7/22

- ullet structure ldot permettant d'interpréter les symboles de ${\mathcal F}$ et de ${\mathcal P}$
 - ▶ $p \in \mathcal{P}_0$ est interprété par un booléen $p^{\mathbf{M}} \in \{0, 1\}$
 - p ∈ P_n (n > 0) est interprété par une relation n-aire p^M sur le domaine d'interprétation |M| : p^M ⊆ |M|ⁿ p^M est un ensemble de n-uplets de valeurs dans |M|

exemple: interprétation du prédicat $inf \in \mathcal{P}_2$ sur le domaine $|\mathbf{M}| = \mathbb{N}$

$$\begin{array}{ll} \textit{inf}^{\mathbf{M}} &= \{(0,0),(0,1),(0,2),\cdots,(1,1),(1,2),(1,3),\cdots\} \\ &= \{(n_1,n_2) \in \mathbb{N}^2 \mid n_1 \leq n_2\} \subseteq \mathbb{N}^2 \end{array}$$

- associer un booléen à une formule atomique $p(t_1, \dots, t_n)$
 - ▶ calcul des valeurs $[t_1]^{\mathbf{M}}$, ..., $[t_n]^{\mathbf{M}}$ appartenant au domaine $|\mathbf{M}|$
 - ▶ déterminer si le *n*-uplet $([t_1]^{\mathbf{M}}, \dots, [t_n]^{\mathbf{M}})$ appartient à l'ensemble $p^{\mathbf{M}}$

- structure M permettant d'interpréter les symboles de \mathcal{F} et de \mathcal{P}
 - $\triangleright p \in \mathcal{P}_0$ est interprété par un booléen $p^{\mathbf{M}} \in \{0, 1\}$
 - $p \in \mathcal{P}_n$ (n > 0) est interprété par une relation *n*-aire $p^{\mathbf{M}}$ sur le domaine d'interprétation $|\mathbf{M}|$: $p^{\mathbf{M}} \subset |\mathbf{M}|^n$ p^{M} est un ensemble de *n*-uplets de valeurs dans M

exemple: interprétation du prédicat $inf \in \mathcal{P}_2$ sur le domaine $|\mathbf{M}| = \mathbb{N}$

$$\begin{array}{ll} \textit{inf}^{\mathbf{M}} &= \{(0,0),(0,1),(0,2),\cdots,(1,1),(1,2),(1,3),\cdots\} \\ &= \{(n_1,n_2) \in \mathbb{N}^2 \mid n_1 \leq n_2\} \subseteq \mathbb{N}^2 \end{array}$$

- associer un booléen à une formule atomique $p(t_1, \dots, t_n)$
 - \triangleright calcul des valeurs $[t_1]^{\mathbf{M}}$, ..., $[t_n]^{\mathbf{M}}$ appartenant au domaine $|\mathbf{M}|$
 - déterminer si le *n*-uplet ($[t_1]^{\mathbf{M}}, \dots, [t_n]^{\mathbf{M}}$) appartient à l'ensemble $p^{\mathbf{M}}$

$$[\inf(Z, S(S(Z)))]^{M} = 1 \text{ car } ([Z]^{M}, [S(S(Z))]^{M}) = (0, 2) \in \inf^{M}$$

- structure M permettant d'interpréter les symboles de \mathcal{F} et de \mathcal{P}
 - $\triangleright p \in \mathcal{P}_0$ est interprété par un booléen $p^{\mathbf{M}} \in \{0, 1\}$
 - $p \in \mathcal{P}_n$ (n > 0) est interprété par une relation *n*-aire $p^{\mathbf{M}}$ sur le domaine d'interprétation $|\mathbf{M}|$: $p^{\mathbf{M}} \subset |\mathbf{M}|^n$ p^{M} est un ensemble de *n*-uplets de valeurs dans M

exemple: interprétation du prédicat $inf \in \mathcal{P}_2$ sur le domaine $|\mathbf{M}| = \mathbb{N}$

$$\begin{array}{ll} \textit{inf}^{\mathbf{M}} &= \{(0,0),(0,1),(0,2),\cdots,(1,1),(1,2),(1,3),\cdots\} \\ &= \{(n_1,n_2) \in \mathbb{N}^2 \mid n_1 \leq n_2\} \subseteq \mathbb{N}^2 \end{array}$$

- associer un booléen à une formule atomique $p(t_1, \dots, t_n)$
 - \triangleright calcul des valeurs $[t_1]^{\mathbf{M}}$, ..., $[t_n]^{\mathbf{M}}$ appartenant au domaine $|\mathbf{M}|$
 - déterminer si le *n*-uplet ($[t_1]^{\mathbf{M}}, \dots, [t_n]^{\mathbf{M}}$) appartient à l'ensemble $p^{\mathbf{M}}$

$$[inf(Z, S(S(Z)))]^{M} = 1 \text{ car } ([Z]^{M}, [S(S(Z))]^{M}) = (0, 2) \in inf^{M}$$

 $[inf(S(S(Z)), Z)]^{M} = 0 \text{ car } ([S(S(Z))]^{M}, [Z]^{M}) = (2, 0) \notin inf^{M}$

- structure M permettant d'interpréter les symboles de \mathcal{F} et de \mathcal{P}
 - domaine d'interprétation | M
 - ▶ chaque constante $k \in \mathcal{F}_0$ est interprétée par un élément $k^{\mathsf{M}} \in |\mathsf{M}|$
 - ▶ chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n est interprété par une fonction *n*-aire $f^{\mathbf{M}}: |\mathbf{M}|^n \to |\mathbf{M}|$
 - ▶ chaque symbole $p \in \mathcal{P}_0$ est interprété par un booléen $p^{\mathsf{M}} \in \{0,1\}$
 - ▶ chaque symbole de prédicat $p \in P_n$ d'arité n est interprété par un ensemble de *n*-uplets $p^{\mathbf{M}} \subseteq |\mathbf{M}|^n$

- structure M permettant d'interpréter les symboles de \mathcal{F} et de \mathcal{P}
 - domaine d'interprétation | M
 - ▶ chaque constante $k \in \mathcal{F}_0$ est interprétée par un élément $k^{\mathsf{M}} \in |\mathsf{M}|$
 - ▶ chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n est interprété par une fonction *n*-aire $f^{\mathbf{M}}: |\mathbf{M}|^n \to |\mathbf{M}|$
 - ▶ chaque symbole $p \in \mathcal{P}_0$ est interprété par un booléen $p^{\mathbf{M}} \in \{0, 1\}$
 - ▶ chaque symbole de prédicat $p \in P_n$ d'arité n est interprété par un ensemble de *n*-uplets $p^{\mathbf{M}} \subseteq |\mathbf{M}|^n$
- interprétation des formules atomiques $I_M: \mathcal{L}_0(\mathcal{F}, \mathcal{P}) \to \mathbb{B}$

- structure M permettant d'interpréter les symboles de \mathcal{F} et de \mathcal{P}
 - domaine d'interprétation | M
 - ▶ chaque constante $k \in \mathcal{F}_0$ est interprétée par un élément $k^{\mathsf{M}} \in |\mathsf{M}|$
 - ▶ chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n est interprété par une fonction *n*-aire $f^{\mathbf{M}}: |\mathbf{M}|^n \to |\mathbf{M}|$
 - ▶ chaque symbole $p \in \mathcal{P}_0$ est interprété par un booléen $p^{\mathbf{M}} \in \{0, 1\}$
 - ▶ chaque symbole de prédicat $p \in P_n$ d'arité n est interprété par un ensemble de *n*-uplets $p^{\mathbf{M}} \subseteq |\mathbf{M}|^n$
- interprétation des formules atomiques $I_M : \mathcal{L}_0(\mathcal{F}, \mathcal{P}) \to \mathbb{B}$

$$p \in \mathcal{P}_0$$
 $I_{\mathbf{M}}(p) = p^{\mathbf{M}}$

- structure M permettant d'interpréter les symboles de \mathcal{F} et de \mathcal{P}
 - domaine d'interprétation | M
 - ▶ chaque constante $k \in \mathcal{F}_0$ est interprétée par un élément $k^{\mathbf{M}} \in |\mathbf{M}|$
 - ▶ chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n est interprété par une fonction *n*-aire $f^{\mathbf{M}}: |\mathbf{M}|^n \to |\mathbf{M}|$
 - ▶ chaque symbole $p \in \mathcal{P}_0$ est interprété par un booléen $p^{\mathbf{M}} \in \{0, 1\}$
 - ▶ chaque symbole de prédicat $p \in P_n$ d'arité n est interprété par un ensemble de *n*-uplets $p^{\mathbf{M}} \subseteq |\mathbf{M}|^n$
- interprétation des formules atomiques $I_M : \mathcal{L}_0(\mathcal{F}, \mathcal{P}) \to \mathbb{B}$

$$\begin{aligned} p &\in \mathcal{P}_0 & \mathbf{I_M}(p) = p^{\mathbf{M}} \\ p &\in \mathcal{P}_n \\ (n &> 0) & \mathbf{I_M}(p(t_1, \cdots, t_n)) = \left\{ \begin{array}{l} 1 & \text{si } \left([t_1]^{\mathbf{M}}, \cdots, [t_n]^{\mathbf{M}}\right) \in p^{\mathbf{M}} \\ 0 & \text{sinon} \end{array} \right. \end{aligned}$$

associer un booléen à une formule $F \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$

associer un **booléen** (une valeur de **B**) à chaque formule atomique apparaissant dans F

... et associer le booléen $I_{M}(false) = 0$ à la formule false et le booléen $I_{M}(true) = 1$ à la formule true

- associer un **booléen** (une valeur de **B**) à chaque formule atomique apparaissant dans F
 - ... et associer le booléen $I_{M}(false) = 0$ à la formule false et le booléen $I_{M}(true) = 1$ à la formule true
- associer une expression booléenne, notée $[F]^{M}$, à la formule F

- associer un **booléen** (une valeur de **B**) à chaque formule atomique apparaissant dans F
 - ... et associer le booléen $I_{M}(false) = 0$ à la formule false et le booléen $I_{M}(true) = 1$ à la formule true
- associer une expression booléenne, notée $[F]^{M}$, à la formule F
- évaluer l'expression booléenne [F]^M (déterminer un booléen)

- ② associer une **expression booléenne**, notée $[F]^{M}$, à la formule F
 - expressions booléennes

- ② associer une **expression booléenne**, notée $[F]^{M}$, à la formule F
 - expressions booléennes
 - les booléens 0 et 1 sont des expressions booléennes

- associer une expression booléenne, notée $[F]^{M}$, à la formule F
 - expressions booléennes
 - ★ les booléens 0 et 1 sont des expressions booléennes
 - si e est une expression booléenne, alors e est une expression booléenne

associer un booléen à une formule $F \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$

- associer une expression booléenne, notée $[F]^{M}$, à la formule F
 - expressions booléennes

Termes

- ★ les booléens 0 et 1 sont des expressions booléennes
- ★ si e est une expression booléenne, alors ē est une expression booléenne
- * si e_1 et e_2 sont des expressions booléennes, alors $e_1 + e_2$ et $e_1 \cdot e_2$ sont des expressions booléennes

-, + et · sont des opérateurs booléens : ils ne s'appliquent que sur des expressions booléennes (ils ne s'appliquent pas sur des formules logiques)

Logique - Licence Informatique, Sorbonne Université

- associer une expression booléenne, notée $[F]^{M}$, à la formule F
 - expressions booléennes
 - ★ les booléens 0 et 1 sont des expressions booléennes
 - ★ si e est une expression booléenne, alors ē est une expression booléenne
 - * si e_1 et e_2 sont des expressions booléennes, alors $e_1 + e_2$ et $e_1 \cdot e_2$ sont des expressions booléennes
 - ▶ définition inductive de [F]^M

- associer une expression booléenne, notée $[F]^{M}$, à la formule F
 - expressions booléennes
 - ★ les booléens 0 et 1 sont des expressions booléennes
 - ★ si e est une expression booléenne, alors ē est une expression booléenne
 - * si e_1 et e_2 sont des expressions booléennes, alors $e_1 + e_2$ et $e_1 \cdot e_2$ sont des expressions booléennes
 - définition inductive de [F]^M

$$[true]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(true) = 1$$
 $[false]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(false) = 0$

- ② associer une **expression booléenne**, notée $[F]^{M}$, à la formule F
 - expressions booléennes
 - ★ les booléens 0 et 1 sont des expressions booléennes
 - ★ si e est une expression booléenne, alors ē est une expression booléenne
 - * si e_1 et e_2 sont des expressions booléennes, alors e_1+e_2 et $e_1\cdot e_2$ sont des expressions booléennes
 - définition inductive de [F]^M

$$[\text{true}]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(\text{true}) = 1 \qquad [\text{false}]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(\text{false}) = 0 \\ [F]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(F) \quad \text{si } F \in \mathcal{L}_0(\mathcal{F}, \mathcal{P})$$

- associer une expression booléenne, notée $[F]^{M}$, à la formule F
 - expressions booléennes
 - ★ les booléens 0 et 1 sont des expressions booléennes
 - ★ si e est une expression booléenne, alors ē est une expression booléenne
 - * si e_1 et e_2 sont des expressions booléennes, alors $e_1 + e_2$ et $e_1 \cdot e_2$ sont des expressions booléennes
 - définition inductive de [F]^M

$$\begin{split} [\mathsf{true}]^{\mathbf{M}} &= \mathbf{I}_{\mathbf{M}}(\mathsf{true}) = 1 & [\mathsf{false}]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(\mathsf{false}) = 0 \\ [F]^{\mathbf{M}} &= \mathbf{I}_{\mathbf{M}}(F) & \mathsf{si} \ F \in \mathcal{L}_0(\mathcal{F}, \mathcal{P}) \\ [\neg F_0]^{\mathbf{M}} &= \overline{[F_0]^{\mathbf{M}}} \end{split}$$

- associer une expression booléenne, notée $[F]^{M}$, à la formule F
 - expressions booléennes
 - ★ les booléens 0 et 1 sont des expressions booléennes
 - ★ si e est une expression booléenne, alors ē est une expression booléenne
 - * si e_1 et e_2 sont des expressions booléennes, alors $e_1 + e_2$ et $e_1 \cdot e_2$ sont des expressions booléennes
 - définition inductive de [F]^M

$$\begin{split} [\mathsf{true}]^{\mathbf{M}} &= \mathbf{I}_{\mathbf{M}}(\mathsf{true}) = 1 & [\mathsf{false}]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(\mathsf{false}) = 0 \\ [F]^{\mathbf{M}} &= \mathbf{I}_{\mathbf{M}}(F) & \text{si } F \in \mathcal{L}_0(\mathcal{F}, \mathcal{P}) \\ [\neg F_0]^{\mathbf{M}} &= \overline{[F_0]^{\mathbf{M}}} \\ [F_1 \wedge F_2]^{\mathbf{M}} &= [F_1]^{\mathbf{M}} \cdot [F_2]^{\mathbf{M}} \end{split}$$

- associer une expression booléenne, notée $[F]^{M}$, à la formule F
 - expressions booléennes
 - ★ les booléens 0 et 1 sont des expressions booléennes
 - ★ si e est une expression booléenne, alors ē est une expression booléenne
 - * si e_1 et e_2 sont des expressions booléennes, alors $e_1 + e_2$ et $e_1 \cdot e_2$ sont des expressions booléennes
 - définition inductive de [F]^M

$$\begin{aligned} [\mathsf{true}]^{\mathsf{M}} &= \mathbf{I}_{\mathsf{M}}(\mathsf{true}) = 1 & [\mathsf{false}]^{\mathsf{M}} = \mathbf{I}_{\mathsf{M}}(\mathsf{false}) = 0 \\ [F]^{\mathsf{M}} &= \mathbf{I}_{\mathsf{M}}(F) & \text{si } F \in \mathcal{L}_0(\mathcal{F}, \mathcal{P}) \\ [\neg F_0]^{\mathsf{M}} &= \overline{[F_0]^{\mathsf{M}}} \\ [F_1 \wedge F_2]^{\mathsf{M}} &= [F_1]^{\mathsf{M}} \cdot [F_2]^{\mathsf{M}} \\ [F_1 \vee F_2]^{\mathsf{M}} &= [F_1]^{\mathsf{M}} + [F_2]^{\mathsf{M}} \end{aligned}$$

associer un booléen à une formule $F \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$

- associer une expression booléenne, notée $[F]^{M}$, à la formule F
 - expressions booléennes
 - ★ les booléens 0 et 1 sont des expressions booléennes
 - ★ si e est une expression booléenne, alors ē est une expression booléenne
 - * si e_1 et e_2 sont des expressions booléennes, alors $e_1 + e_2$ et $e_1 \cdot e_2$ sont des expressions booléennes
 - définition inductive de [F]^M

$$\begin{split} [\mathsf{true}]^{\mathsf{M}} &= \mathsf{I}_{\mathsf{M}}(\mathsf{true}) = 1 & [\mathsf{false}]^{\mathsf{M}} = \mathsf{I}_{\mathsf{M}}(\mathsf{false}) = 0 \\ [F]^{\mathsf{M}} &= \mathsf{I}_{\mathsf{M}}(F) \quad \mathsf{si} \ F \in \mathcal{L}_0(\mathcal{F}, \mathcal{P}) \\ [\neg F_0]^{\mathsf{M}} &= \overline{[F_0]^{\mathsf{M}}} \\ [F_1 \wedge F_2]^{\mathsf{M}} &= [F_1]^{\mathsf{M}} \cdot [F_2]^{\mathsf{M}} \\ [F_1 \vee F_2]^{\mathsf{M}} &= \overline{[F_1]^{\mathsf{M}}} + [F_2]^{\mathsf{M}} \\ [F_1 \Rightarrow F_2]^{\mathsf{M}} &= \overline{[F_1]^{\mathsf{M}}} + [F_2]^{\mathsf{M}} \end{split}$$

associer un booléen à une formule $F \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$

- associer une expression booléenne, notée $[F]^{M}$, à la formule F
 - exemple : $[inf(S(S(Z)), Z) \vee true]^{\mathbf{M}}$

$$\begin{split} [\mathsf{true}]^{\mathsf{M}} &= \mathsf{I}_{\mathsf{M}}(\mathsf{true}) = 1 & [\mathsf{false}]^{\mathsf{M}} = \mathsf{I}_{\mathsf{M}}(\mathsf{false}) = 0 \\ [F]^{\mathsf{M}} &= \mathsf{I}_{\mathsf{M}}(F) \quad \mathsf{si} \ F \in \mathcal{L}_0(\mathcal{F}, \mathcal{P}) \\ [\neg F_0]^{\mathsf{M}} &= \overline{[F_0]^{\mathsf{M}}} \\ [F_1 \wedge F_2]^{\mathsf{M}} &= [F_1]^{\mathsf{M}} \cdot [F_2]^{\mathsf{M}} \\ [F_1 \vee F_2]^{\mathsf{M}} &= \overline{[F_1]^{\mathsf{M}}} + [F_2]^{\mathsf{M}} \\ [F_1 \Rightarrow F_2]^{\mathsf{M}} &= \overline{[F_1]^{\mathsf{M}}} + [F_2]^{\mathsf{M}} \end{split}$$

associer un booléen à une formule $F \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$

- ② associer une **expression booléenne**, notée $[F]^{M}$, à la formule F
 - exemple : $[inf(S(S(Z)), Z) \lor true]^{M}$

$$= [inf(S(S(Z)), Z)]^{M} + [true]^{M}$$

$$\begin{aligned} [\mathsf{true}]^{\mathbf{M}} &= \mathbf{I}_{\mathbf{M}}(\mathsf{true}) = 1 & [\mathsf{false}]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(\mathsf{false}) = 0 \\ [F]^{\mathbf{M}} &= \mathbf{I}_{\mathbf{M}}(F) \quad \text{si } F \in \mathcal{L}_0(\mathcal{F}, \mathcal{P}) \\ [\neg F_0]^{\mathbf{M}} &= \overline{[F_0]^{\mathbf{M}}} \\ [F_1 \wedge F_2]^{\mathbf{M}} &= [F_1]^{\mathbf{M}} \cdot [F_2]^{\mathbf{M}} \\ [F_1 \vee F_2]^{\mathbf{M}} &= \overline{[F_1]^{\mathbf{M}}} + [F_2]^{\mathbf{M}} \\ [F_1 \Rightarrow F_2]^{\mathbf{M}} &= \overline{[F_1]^{\mathbf{M}}} + [F_2]^{\mathbf{M}} \end{aligned}$$

associer un booléen à une formule $F \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$

- associer une expression booléenne, notée $[F]^{M}$, à la formule F
 - exemple : $[inf(S(S(Z)), Z) \vee true]^{\mathbf{M}}$

$$= [inf(S(S(Z)), Z)]^{\mathbf{M}} + [true]^{\mathbf{M}}$$

$$= 0 + 1 \quad \text{si } \mathbf{I}_{\mathbf{M}}(inf(S(S(Z)), Z)) = 0$$

$$\begin{split} &[\mathsf{true}]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(\mathsf{true}) = 1 & [\mathsf{false}]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(\mathsf{false}) = 0 \\ &[F]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(F) & \mathsf{si} \ F \in \mathcal{L}_0(\mathcal{F}, \mathcal{P}) \\ &[\neg F_0]^{\mathbf{M}} = \overline{[F_0]^{\mathbf{M}}} \\ &[F_1 \wedge F_2]^{\mathbf{M}} = [F_1]^{\mathbf{M}} \cdot [F_2]^{\mathbf{M}} \\ &[F_1 \vee F_2]^{\mathbf{M}} = \overline{[F_1]^{\mathbf{M}}} + \overline{[F_2]^{\mathbf{M}}} \\ &[F_1 \Rightarrow F_2]^{\mathbf{M}} = \overline{[F_1]^{\mathbf{M}}} + \overline{[F_2]^{\mathbf{M}}} \end{split}$$

associer un booléen à une formule $F \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$

- associer une expression booléenne, notée $[F]^{M}$, à la formule F
 - exemple : $[(\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)]^{\mathbf{M}}$

$$\begin{split} &[\mathsf{true}]^{\mathsf{M}} = \mathsf{I}_{\mathsf{M}}(\mathsf{true}) = 1 & [\mathsf{false}]^{\mathsf{M}} = \mathsf{I}_{\mathsf{M}}(\mathsf{false}) = 0 \\ &[F]^{\mathsf{M}} = \mathsf{I}_{\mathsf{M}}(F) \quad \mathsf{si} \ F \in \mathcal{L}_0(\mathcal{F}, \mathcal{P}) \\ &[\neg F_0]^{\mathsf{M}} = \overline{[F_0]^{\mathsf{M}}} \\ &[F_1 \wedge F_2]^{\mathsf{M}} = [F_1]^{\mathsf{M}} \cdot [F_2]^{\mathsf{M}} \\ &[F_1 \vee F_2]^{\mathsf{M}} = \overline{[F_1]^{\mathsf{M}}} + \overline{[F_2]^{\mathsf{M}}} \\ &[F_1 \Rightarrow F_2]^{\mathsf{M}} = \overline{[F_1]^{\mathsf{M}}} + \overline{[F_2]^{\mathsf{M}}} \end{split}$$

associer un booléen à une formule $F \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$

- associer une **expression booléenne**, notée $[F]^{M}$, à la formule F
 - exemple : $[(\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)]^{\mathbf{M}}$

$$= \quad \overline{[\neg F_1 \wedge F_2]^{\textbf{M}}} + [F_3 \vee F_1]^{\textbf{M}}$$

$$\begin{split} [\mathsf{true}]^{\mathsf{M}} &= \mathsf{I}_{\mathsf{M}}(\mathsf{true}) = 1 & [\mathsf{false}]^{\mathsf{M}} = \mathsf{I}_{\mathsf{M}}(\mathsf{false}) = 0 \\ [F]^{\mathsf{M}} &= \mathsf{I}_{\mathsf{M}}(F) \quad \mathsf{si} \ F \in \mathcal{L}_0(\mathcal{F}, \mathcal{P}) \\ [\neg F_0]^{\mathsf{M}} &= \overline{[F_0]^{\mathsf{M}}} \\ [F_1 \wedge F_2]^{\mathsf{M}} &= [F_1]^{\mathsf{M}} \cdot [F_2]^{\mathsf{M}} \\ [F_1 \vee F_2]^{\mathsf{M}} &= \overline{[F_1]^{\mathsf{M}}} + [F_2]^{\mathsf{M}} \\ [F_1 \Rightarrow F_2]^{\mathsf{M}} &= \overline{[F_1]^{\mathsf{M}}} + [F_2]^{\mathsf{M}} \end{split}$$

associer un booléen à une formule $F \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$

- associer une expression booléenne, notée $[F]^{M}$, à la formule F
 - exemple : $[(\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)]^{\mathbf{M}}$

$$= \overline{\left[\neg F_1 \wedge F_2\right]^{\mathbf{M}}} + \left[F_3 \vee F_1\right]^{\mathbf{M}} = \overline{\left[\neg F_1\right]^{\mathbf{M}} \cdot \left[F_2\right]^{\mathbf{M}}} + \left(\left[F_3\right]^{\mathbf{M}} + \left[F_1\right]^{\mathbf{M}}\right)$$

$$\begin{split} &[\mathsf{true}]^{\mathsf{M}} = I_{\mathsf{M}}(\mathsf{true}) = 1 & [\mathsf{false}]^{\mathsf{M}} = I_{\mathsf{M}}(\mathsf{false}) = 0 \\ &[F]^{\mathsf{M}} = I_{\mathsf{M}}(F) & \mathsf{si} \ F \in \mathcal{L}_0(\mathcal{F}, \mathcal{P}) \\ &[\neg F_0]^{\mathsf{M}} = [F_0]^{\mathsf{M}} \\ &[F_1 \land F_2]^{\mathsf{M}} = [F_1]^{\mathsf{M}} \cdot [F_2]^{\mathsf{M}} \\ &[F_1 \lor F_2]^{\mathsf{M}} = [F_1]^{\mathsf{M}} + [F_2]^{\mathsf{M}} \\ &[F_1 \Rightarrow F_2]^{\mathsf{M}} = \overline{[F_1]^{\mathsf{M}}} + [F_2]^{\mathsf{M}} \end{split}$$

associer un booléen à une formule $F \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$

- ② associer une **expression booléenne**, notée $[F]^{\mathbf{M}}$, à la formule F
 - exemple : $[(\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)]^{\mathbf{M}}$

$$= \underline{\underline{[\neg F_1 \land F_2]^{\mathbf{M}}}} + [F_3 \lor F_1]^{\mathbf{M}} = \overline{[\neg F_1]^{\mathbf{M}} \cdot [F_2]^{\mathbf{M}}} + ([F_3]^{\mathbf{M}} + [F_1]^{\mathbf{M}})$$

$$= \underline{[F_1]^{\mathbf{M}} \cdot [F_2]^{\mathbf{M}}} + ([F_3]^{\mathbf{M}} + [F_1]^{\mathbf{M}})$$

$$\begin{split} &[\mathsf{true}]^{\mathsf{M}} = \mathsf{I}_{\mathsf{M}}(\mathsf{true}) = 1 & [\mathsf{false}]^{\mathsf{M}} = \mathsf{I}_{\mathsf{M}}(\mathsf{false}) = 0 \\ &[F]^{\mathsf{M}} = \mathsf{I}_{\mathsf{M}}(F) & \mathsf{si} \ F \in \mathcal{L}_0(\mathcal{F}, \mathcal{P}) \\ &[\neg F_0]^{\mathsf{M}} = [F_0]^{\mathsf{M}} \\ &[F_1 \land F_2]^{\mathsf{M}} = [F_1]^{\mathsf{M}} \cdot [F_2]^{\mathsf{M}} \\ &[F_1 \lor F_2]^{\mathsf{M}} = [F_1]^{\mathsf{M}} + [F_2]^{\mathsf{M}} \\ &[F_1 \Rightarrow F_2]^{\mathsf{M}} = [F_1]^{\mathsf{M}} + [F_2]^{\mathsf{M}} \end{split}$$

associer un booléen à une formule $F \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$

- 2 associer une **expression booléenne**, notée $[F]^{\mathbf{M}}$, à la formule F
 - exemple : $[(\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)]^{\mathbf{M}}$

$$= \underline{\overline{[\neg F_1 \land F_2]^{\mathbf{M}}}} + [F_3 \lor F_1]^{\mathbf{M}} = \overline{[\neg F_1]^{\mathbf{M}} \cdot [F_2]^{\mathbf{M}}} + ([F_3]^{\mathbf{M}} + [F_1]^{\mathbf{M}})$$

$$= \overline{[F_1]^{\mathbf{M}}} \cdot [F_2]^{\mathbf{M}} + ([F_3]^{\mathbf{M}} + [F_1]^{\mathbf{M}}) = \overline{\overline{\mathbf{I}_{\mathbf{M}}(F_1)}} \cdot \mathbf{I_{\mathbf{M}}(F_2)} + (\mathbf{I_{\mathbf{M}}(F_3)} + \mathbf{I_{\mathbf{M}}(F_1)})$$

$$\begin{split} &[\mathsf{true}]^{\mathsf{M}} = I_{\mathsf{M}}(\mathsf{true}) = 1 & [\mathsf{false}]^{\mathsf{M}} = I_{\mathsf{M}}(\mathsf{false}) = 0 \\ &[F]^{\mathsf{M}} = I_{\mathsf{M}}(F) & \mathsf{si} \ F \in \mathcal{L}_0(\mathcal{F}, \mathcal{P}) \\ &[\neg F_0]^{\mathsf{M}} = [F_0]^{\mathsf{M}} \\ &[F_1 \land F_2]^{\mathsf{M}} = [F_1]^{\mathsf{M}} \cdot [F_2]^{\mathsf{M}} \\ &[F_1 \lor F_2]^{\mathsf{M}} = [F_1]^{\mathsf{M}} + [F_2]^{\mathsf{M}} \\ &[F_1 \Rightarrow F_2]^{\mathsf{M}} = \overline{[F_1]^{\mathsf{M}}} + [F_2]^{\mathsf{M}} \end{split}$$

Evaluation d'une expression booléenne

deux approches:

Evaluation d'une expression booléenne

deux approches:

approche algébrique : on ne définit pas les opérateurs booléens mais on spécifie les propriétés que ces opérateurs vérifient

- raisonnement équationnel
 - ⋆ pour « simplifier » une expression booléenne
 - pour déterminer le résultat de l'évaluation d'une expression booléenne

Evaluation d'une expression booléenne

deux approches:

approche algébrique : on ne définit pas les opérateurs booléens mais on spécifie les propriétés que ces opérateurs vérifient

- raisonnement équationnel
 - ⋆ pour « simplifier » une expression booléenne
 - pour déterminer le résultat de l'évaluation d'une expression booléenne
- définition des opérateurs booléens
 - application des opérateurs pour calculer le résultat de l'évaluation d'une expression booléenne

 spécification des propriétés des opérateurs booléens à partir d'une relation = entre expressions booléennes

Termes

- spécification des propriétés des opérateurs booléens à partir d'une relation = entre expressions booléennes
 - e₁ ≡ e₂ ssi les évaluations de e₁ et e₂ produisent les mêmes booléens

Formules valides

- spécification des propriétés des opérateurs booléens à partir d'une relation = entre expressions booléennes
 - e₁ ≡ e₂ ssi les évaluations de e₁ et e₂ produisent les mêmes booléens
 - ★ le résultat de l'évaluation de e₁ est le booléen b₁
 - ★ le résultat de l'évaluation de e₂ est le booléen b₂
 - ★ les booléens b_1 et b_2 sont syntaxiquement égaux ($b_1 = b_2$)

- spécification des propriétés des opérateurs booléens à partir d'une relation = entre expressions booléennes
 - $e_1 \equiv e_2$ ssi les évaluations de e_1 et e_2 produisent les mêmes booléens
 - ▶ ≡ est une relation d'équivalence sur les expressions booléennes

Termes

- spécification des propriétés des opérateurs booléens à partir d'une relation = entre expressions booléennes
 - $e_1 \equiv e_2$ ssi les évaluations de e_1 et e_2 produisent les mêmes booléens
 - ▶ ≡ est une relation d'équivalence sur les expressions booléennes

Expressions booléennes

★ réflexive : e = e

- spécification des propriétés des opérateurs booléens à partir d'une relation = entre expressions booléennes
 - e₁ ≡ e₂ ssi les évaluations de e₁ et e₂ produisent les mêmes booléens
 - ▶ ≡ est une relation d'équivalence sur les expressions booléennes
 - ★ réflexive : e = e
 - ★ symétrique : si $e_1 \equiv e_2$ alors $e_2 \equiv e_1$

Termes

- spécification des propriétés des opérateurs booléens à partir d'une relation = entre expressions booléennes
 - $e_1 \equiv e_2$ ssi les évaluations de e_1 et e_2 produisent les mêmes booléens
 - ▶ ≡ est une relation d'équivalence sur les expressions booléennes
 - ★ réflexive : e = e
 - * symétrique : si $e_1 \equiv e_2$ alors $e_2 \equiv e_1$
 - * transitive : si $e_1 \equiv e_2$ et $e_2 \equiv e_3$ alors $e_1 \equiv e_3$

- spécification des propriétés des opérateurs booléens à partir d'une relation = entre expressions booléennes
 - $e_1 \equiv e_2$ ssi les évaluations de e_1 et e_2 produisent les mêmes booléens
 - ▶ ≡ est une relation d'équivalence sur les expressions booléennes
 - ► ≡ est une congruence pour les opérateurs booléens ¬, · et +

spécification des propriétés des opérateurs booléens à partir d'une

- relation \equiv entre expressions booléennes • $e_1 \equiv e_2$ ssi les évaluations de e_1 et e_2 produisent les mêmes
 - booléens
 - ▶ ≡ est une relation d'équivalence sur les expressions booléennes
 - ightharpoonup = est une congruence pour les opérateurs booléens –, \cdot et +
 - * si $e_1 \equiv e_2$ alors $\overline{e_1} \equiv \overline{e_2}$

- spécification des propriétés des opérateurs booléens à partir d'une relation = entre expressions booléennes
 - $e_1 \equiv e_2$ ssi les évaluations de e_1 et e_2 produisent les mêmes booléens
 - ▶ ≡ est une relation d'équivalence sur les expressions booléennes
 - ▶ ≡ est une congruence pour les opérateurs booléens ¬, · et +
 - * si $e_1 \equiv e_2$ alors $\overline{e_1} \equiv \overline{e_2}$
 - * si $e_1 \equiv e_1'$ et $e_2 \equiv e_2'$ alors $e_1 \cdot e_2 \equiv e_1' \cdot e_2'$ et $e_1 + e_2 \equiv e_1' + e_2'$

- spécification des propriétés des opérateurs booléens à partir d'une relation = entre expressions booléennes
 - e₁ ≡ e₂ ssi les évaluations de e₁ et e₂ produisent les mêmes booléens
 - ▶ ≡ est une relation d'équivalence sur les expressions booléennes
 - ▶ ≡ est une congruence pour les opérateurs booléens ¬, · et +
 - on utilise souvent le symbole = à la place du symbole ≡ : il s'agit dans ce cas d'une égalité « sémantique »

- spécification des propriétés des opérateurs booléens à partir d'une relation = entre expressions booléennes
- algèbre de Boole minimale (B, ·, +, -)
 - B contient deux éléments distincts 0 et 1

```
distinction
 0 \not\equiv 1 (E0)
```


- spécification des propriétés des opérateurs booléens à partir d'une relation = entre expressions booléennes
- algèbre de Boole minimale (B, ·, +, -)
 - B contient deux éléments distincts 0 et 1
 - ▶ pour tous $a, b \in \mathbb{B}$, les opérateurs booléens vérifient les propriétés :

distinction		complément			
		complément 0	$\overline{0} \equiv 1$	(E1.1)	
0 ≢ 1	(E0)	· · · · · · · · · · · · · · · · · · ·	<u>=</u> a		

- spécification des propriétés des opérateurs booléens à partir d'une relation = entre expressions booléennes
- algèbre de Boole minimale (B, ·, +, -)
 - B contient deux éléments distincts 0 et 1
 - ▶ pour tous $a, b \in \mathbb{B}$, les opérateurs booléens vérifient les propriétés :

$\frac{\text{distinction}}{0 \not\equiv 1 (E0)}$		complément			
		complément 0	$\overline{0} \equiv 1$	(E1.1)	
		involution	a a≡a	(E1.2)	
		produit	•	somme	
	commutativité	$a \cdot b \equiv b \cdot a$	(E2.1)	$a+b\equiv b+a$	(E3.1)

Termes

Approche algébrique

- spécification des propriétés des opérateurs booléens à partir d'une relation = entre expressions booléennes
- algèbre de Boole minimale (B, ·, +, -)
 - B contient deux éléments distincts 0 et 1
 - ▶ pour tous $a, b \in \mathbb{B}$, les opérateurs booléens vérifient les propriétés :

distinction	complément			
	complément 0	$\overline{0} \equiv 1$	(E1.1)	
0 ≢ 1 (E0)		$\overline{\overline{a}} \equiv a$ (E1.2)		
	produit		somme	
commutativité	$a \cdot b \equiv b \cdot a$	(E2.1)	$a+b\equiv b+a$	(E3.1)
élément neutre	1 · <i>a</i> ≡ <i>a</i>	(E2.2)	$0+a\equiv a$	(E3.2)

- spécification des propriétés des opérateurs booléens à partir d'une relation = entre expressions booléennes
- algèbre de Boole minimale (B, ·, +, -)
 - B contient deux éléments distincts 0 et 1
 - ▶ pour tous $a, b \in \mathbb{B}$, les opérateurs booléens vérifient les propriétés :

distinction	complément			
	complément	$0 \overline{0} \equiv 1$	(E1.1)	
0 ≢ 1 (E0)	involution	$\bar{\bar{a}} \equiv a$	(E1.2)	
	produit	·	somme	
commutativité	$a \cdot b \equiv b$	· a (E2.1)	$a+b\equiv b+a$	(E3.1)
élément neutre	1 · <i>a</i> ≡ <i>a</i>	(E2.2)	$0+a\equiv a$	(E3.2)
élément absorb	ant $0 \cdot a \equiv 0$	(E2.3)	1 + <i>a</i> ≡ 1	(E3.3)

Raisonnement équationnel

• raisonnement équationnel permettant d'établir que le résultat de l'évaluation de l'expression booléenne e est le booléen b

- raisonnement équationnel permettant d'établir que le résultat de l'évaluation de l'expression booléenne e est le booléen b
 - en utilisant les propriétés de \equiv , montrer que $e \equiv b$

- raisonnement équationnel permettant d'établir que le résultat de l'évaluation de l'expression booléenne e est le booléen b
 - en utilisant les propriétés de \equiv , montrer que $e \equiv b$
 - exemple : $\overline{1 \cdot 0} \equiv 1$

Termes

- raisonnement équationnel permettant d'établir que le résultat de l'évaluation de l'expression booléenne e est le booléen b
 - en utilisant les propriétés de \equiv , montrer que $e \equiv b$
 - exemple : $1 \cdot 0 \equiv 1$
 - (1) $1 \cdot 0 \equiv 0$ d'après (E2.2)

Raisonnement équationnel

- raisonnement équationnel permettant d'établir que le résultat de l'évaluation de l'expression booléenne e est le booléen b
 - en utilisant les propriétés de \equiv , montrer que $e \equiv b$
 - exemple: $1 \cdot 0 \equiv 1$
 - (1) $1 \cdot 0 \equiv 0$ d'après (E2.2)
 - (2) $\overline{1\cdot 0} \equiv \overline{0}$ d'après (1) car \equiv est une congruence pour –

Raisonnement équationnel

- raisonnement équationnel permettant d'établir que le résultat de l'évaluation de l'expression booléenne e est le booléen b
 - en utilisant les propriétés de \equiv , montrer que $e \equiv b$
 - exemple: $1 \cdot 0 \equiv 1$
 - (1) $1 \cdot 0 \equiv 0$ d'après (E2.2)
 - (2) $1 \cdot 0 \equiv \overline{0}$ d'après (1) car \equiv est une congruence pour $\overline{}$
 - (3) $\overline{0} \equiv 1$ d'après (E1.1)

Raisonnement équationnel

- raisonnement équationnel permettant d'établir que le résultat de l'évaluation de l'expression booléenne e est le booléen b
 - en utilisant les propriétés de \equiv , montrer que $e \equiv b$
 - exemple: $1 \cdot 0 \equiv 1$
 - (1) $1 \cdot 0 \equiv 0$ d'après (E2.2)
 - (2) $1 \cdot 0 \equiv \overline{0}$ d'après (1) car \equiv est une congruence pour $\overline{}$
 - (3) $\overline{0} \equiv 1$ d'après (E1.1)
 - (4) $1 \cdot 0 \equiv 1$ d'après (2) et (3) car \equiv est transitive

Termes

- raisonnement équationnel permettant d'établir que le résultat de l'évaluation de l'expression booléenne e est le booléen b
 - en utilisant les propriétés de \equiv , montrer que $e \equiv b$
 - exemple : 1 ⋅ 0 = 1
 - (1) $1 \cdot 0 \equiv 0$ d'après (E2.2)
 - (2) $\overline{1\cdot 0} \equiv \overline{0}$ d'après (1) car \equiv est une congruence pour
 - (3) $\overline{0} \equiv 1$ d'après (E1.1)
 - (4) $\overline{1 \cdot 0} \equiv 1$ d'après (2) et (3) car \equiv est transitive
- ullet raisonnement équationnel permettant d'établir que $e_1 \equiv e_2$

Raisonnement équationnel

- raisonnement équationnel permettant d'établir que le résultat de l'évaluation de l'expression booléenne e est le booléen b
 - en utilisant les propriétés de \equiv , montrer que $e \equiv b$
 - exemple: $1 \cdot 0 \equiv 1$
 - (1) $1 \cdot 0 \equiv 0$ d'après (E2.2)
 - (2) $\overline{1\cdot 0} \equiv \overline{0}$ d'après (1) car \equiv est une congruence pour -
 - (3) $\overline{0} \equiv 1$ d'après (E1.1)
 - (4) $1 \cdot 0 \equiv 1$ d'après (2) et (3) car \equiv est transitive
- raisonnement équationnel permettant d'établir que $e_1 \equiv e_2$
 - exemple: pour tout $a \in \mathbb{B}$, a + a = a

Raisonnement équationnel

- raisonnement équationnel permettant d'établir que le résultat de l'évaluation de l'expression booléenne e est le booléen b
 - en utilisant les propriétés de \equiv , montrer que $e \equiv b$
 - exemple: $1 \cdot 0 \equiv 1$
 - (1) $1 \cdot 0 \equiv 0$ d'après (E2.2)
 - (2) $\overline{1\cdot 0} \equiv \overline{0}$ d'après (1) car \equiv est une congruence pour -
 - (3) $\overline{0} \equiv 1$ d'après (E1.1)
 - (4) $1 \cdot 0 \equiv 1$ d'après (2) et (3) car \equiv est transitive
- raisonnement équationnel permettant d'établir que $e_1 \equiv e_2$
 - exemple: pour tout $a \in \mathbb{B}$, a + a = aon raisonne par cas sur a:
 - ★ si a=0, montrons $0+0\equiv 0$ (1) $0 + 0 \equiv 0$ d'après (E3.2)

Raisonnement équationnel

- raisonnement équationnel permettant d'établir que le résultat de l'évaluation de l'expression booléenne e est le booléen b
 - en utilisant les propriétés de \equiv , montrer que $e \equiv b$
 - exemple : 1 ⋅ 0 = 1
 - (1) $1 \cdot 0 \equiv 0$ d'après (E2.2)
 - (2) $\overline{1\cdot 0} \equiv \overline{0}$ d'après (1) car \equiv est une congruence pour -
 - (3) $\overline{0} \equiv 1$ d'après (E1.1)
 - (4) $\overline{1 \cdot 0} \equiv 1$ d'après (2) et (3) car \equiv est transitive
- ullet raisonnement équationnel permettant d'établir que $e_1 \equiv e_2$
 - exemple: pour tout $a \in \mathbb{B}$, a + a = a on raisonne par cas sur a:
 - ★ si a = 0, montrons $0 + 0 \equiv 0$
 - (1) $0 + 0 \equiv 0$ d'après (E3.2)
 - ★ si a = 1, montrons $1 + 1 \equiv 1$
 - (1) $1 + 1 \equiv 1$ d'après (E3.3)

Expressions booléennes équivalentes

pour $a, b, c \in \mathbb{B}$: associativité associativite $(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$ (E2.4) $(a+b) + c \equiv a + (b+c)$ (E3.4)

Expressions booléennes équivalentes

pour $a, b, c \in \mathbb{B}$: associativité (E2.4) $(a+b)+c \equiv a+(b+c)$ (E2.5) $a+a \equiv a$ $(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$ (E3.4)idempotence (E3.5) $a \cdot a \equiv a$

 $a \cdot 1 \equiv a$

(E3.6)

Expressions booléennes équivalentes

pour $a,b,c\in\mathbb{B}$: associativité $(a\cdot b)\cdot c\equiv a\cdot (b\cdot c) \qquad \text{(E2.4)}$ idempotence $a\cdot a\equiv a \qquad \text{(E2.5)}$ élément neutre $(a+b)+c\equiv a+(b+c) \qquad \text{(E3.4)}$

pour $a, b, c \in \mathbb{B}$:

associativité

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$$

idempotence

$$a \cdot a \equiv a$$

élément neutre

 $a \cdot 1 \equiv a$

élément absorbant

$$a \cdot 0 \equiv 0$$

 $a + a \equiv a$

(E2.6)
$$a + 0 \equiv a$$

(E2.4)
$$(a+b)+c \equiv a+(b+c)$$

(E3.4)

pour $a, b, c \in \mathbb{B}$:

associativité

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$$

(E2.4)
$$(a+b)+c \equiv a+(b+c)$$

Expressions booléennes

idempotence

$$a \cdot a \equiv a$$

$$a + a \equiv a$$

(E3.4)

élément neutre

$$a \cdot 1 \equiv a$$

$$a+0\equiv a$$

élément absorbant

$$a \cdot 0 \equiv 0$$

$$a+1\equiv 1$$

distributivité

$$a \cdot (b+c) \equiv a \cdot b + a \cdot c$$
 (E4.1) $a + (b \cdot c) \equiv (a+b) \cdot (a+c)$ (E4.2)

$$a + (b \cdot c) \equiv (a+b) \cdot (a+c)$$

pour $a, b, c \in \mathbb{B}$:

associativité

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$$

(E2.4)
$$(a+b)+c \equiv a+(b+c)$$
 (E3.4)

idempotence

$$a \cdot a \equiv a$$

$$a + a \equiv a$$

élément neutre

$$a \cdot 1 \equiv a$$

$$a + 0 \equiv a$$

(E3.5)

élément absorbant

$$a \cdot 0 \equiv 0$$

$$a+1\equiv 1$$

distributivité

$$a \cdot (b+c) \equiv a \cdot b + a \cdot c$$
 (E4.1)

$$a + (b \cdot c) \equiv (a + b) \cdot (a + c)$$
 (E

complément
$$a \cdot \overline{a} \equiv 0$$

(E1.3)
$$a + \overline{a} \equiv 1$$

pour $a, b, c \in \mathbb{B}$:

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$$

(E2.4)
$$(a+b)+c \equiv a+(b+c)$$
 (E3.4)

Expressions booléennes

idempotence

$$a \cdot a \equiv a$$

$$a + a \equiv a$$

élément neutre

$$a \cdot 1 \equiv a$$

$$a+0\equiv a$$

élément absorbant

$$a \cdot 0 \equiv 0$$

$$a+1\equiv 1$$

distributivité

$$a \cdot (b+c) \equiv a \cdot b + a \cdot c$$
 (E4.1)

$$b+c) \equiv a \cdot b + a \cdot c$$
 (E4.1)

$$a + (b \cdot c) \equiv (a+b) \cdot (a+c)$$
 (E4.2)

complément $a \cdot \overline{a} \equiv 0$

$$a + \overline{a} \equiv 1$$

lois de Morgan

$$+a=1$$

$$\overline{a \cdot b} \equiv \overline{a} + \overline{b}$$

$$(E4.3) \mid \overline{a+b} \equiv \overline{a} \cdot \overline{b}$$

pour $a, b, c \in \mathbb{B}$:

associativité

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$$
 (E2)

(E2.4)
$$(a+b)+c \equiv a+(b+c)$$
 (E3.4)

idempotence

$$a \cdot a \equiv a$$
 (E2.5)

$$a + a \equiv a$$

élément neutre

$$a \cdot 1 \equiv a$$
 (E2.6)

$$a+0\equiv a$$

élément absorbant

$$a \cdot 0 \equiv 0 \tag{E2.7}$$

$$a+1\equiv 1$$

distributivité

$$a \cdot (b+c) \equiv a \cdot b + a \cdot c$$
 (E4.1)

$$a + (b \cdot c) \equiv (a + b) \cdot (a + c)$$
 (E4.2)

complément $a \cdot \overline{a} \equiv 0$

$$a + \overline{a} \equiv 1$$

lois de Morgan

 $\overline{a \cdot b} \equiv \overline{a} + \overline{b}$

$$(E4.3) \mid \overline{a+b} \equiv \overline{a} \cdot \overline{b}$$

EXERCICE: montrer ces équivalences

$$[(\neg F_1 \wedge F_2) \Rightarrow (F_3 \vee F_1)]^{\boldsymbol{M}} = \overline{\boldsymbol{I_M}(F_1)} \cdot \boldsymbol{I_M}(F_2) + (\boldsymbol{I_M}(F_3) + \boldsymbol{I_M}(F_1))$$

Expressions booléennes

$$[(\neg F_1 \wedge F_2) \Rightarrow (F_3 \vee F_1)]^{\mathbf{M}} = \overline{\textbf{I}_{\mathbf{M}}(F_1)} \cdot \textbf{I}_{\mathbf{M}}(F_2) + (\textbf{I}_{\mathbf{M}}(F_3) + \textbf{I}_{\mathbf{M}}(F_1))$$

$$\overline{\overline{\mathbf{I}_{\mathsf{M}}(F_1)} \cdot \mathbf{I}_{\mathsf{M}}(F_2)} + (\mathbf{I}_{\mathsf{M}}(F_3) + \mathbf{I}_{\mathsf{M}}(F_1))$$

$$\begin{split} [(\neg F_1 \wedge F_2) \Rightarrow (F_3 \vee F_1)]^{\mathbf{M}} &= \overline{\overline{\mathbf{I}_{\mathbf{M}}(F_1)}} \cdot \mathbf{I}_{\mathbf{M}}(F_2) + (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) \\ &= \overline{\overline{\mathbf{I}_{\mathbf{M}}(F_1)}} \cdot \overline{\mathbf{I}_{\mathbf{M}}(F_2)} + (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) \\ &= \overline{\left(\overline{\mathbf{I}_{\mathbf{M}}(F_1)} + \overline{\mathbf{I}_{\mathbf{M}}(F_2)}\right)} + (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) \quad (\text{E4.3}) \end{split}$$

Simplification de $[F]^{\mathbf{M}}$: exemple

$$\begin{split} [(\neg F_1 \wedge F_2) &\Rightarrow (F_3 \vee F_1)]^{\mathbf{M}} = \overline{\mathbf{I}_{\mathbf{M}}(F_1)} \cdot \mathbf{I}_{\mathbf{M}}(F_2) + (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) \\ &= \overline{(\overline{\mathbf{I}_{\mathbf{M}}(F_1)} \cdot \overline{\mathbf{I}_{\mathbf{M}}(F_2)} + (\overline{\mathbf{I}_{\mathbf{M}}(F_3)} + \overline{\mathbf{I}_{\mathbf{M}}(F_1)})} \\ &= \overline{(\overline{\mathbf{I}_{\mathbf{M}}(F_1)} + \overline{\mathbf{I}_{\mathbf{M}}(F_2)})} + (\overline{\mathbf{I}_{\mathbf{M}}(F_3)} + \overline{\mathbf{I}_{\mathbf{M}}(F_1)}) \quad (E4.3) \\ &= \overline{(\overline{\mathbf{I}_{\mathbf{M}}(F_1)} + \overline{\mathbf{I}_{\mathbf{M}}(F_2)})} + (\overline{\mathbf{I}_{\mathbf{M}}(F_3)} + \overline{\mathbf{I}_{\mathbf{M}}(F_1)}) \quad (E1.2) \end{split}$$

$$\begin{split} [(\neg F_1 \wedge F_2) &\Rightarrow (F_3 \vee F_1)]^{\mathbf{M}} = \overline{\mathbf{I}_{\mathbf{M}}(F_1)} \cdot \mathbf{I}_{\mathbf{M}}(F_2) + (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) \\ &= \overline{(\overline{\mathbf{I}_{\mathbf{M}}(F_1)} \cdot \overline{\mathbf{I}_{\mathbf{M}}(F_2)} + (\overline{\mathbf{I}_{\mathbf{M}}(F_3)} + \overline{\mathbf{I}_{\mathbf{M}}(F_1)})} \\ &\equiv \overline{(\overline{\mathbf{I}_{\mathbf{M}}(F_1)} + \overline{\mathbf{I}_{\mathbf{M}}(F_2)}) + (\overline{\mathbf{I}_{\mathbf{M}}(F_3)} + \overline{\mathbf{I}_{\mathbf{M}}(F_1)})} \quad (E4.3) \\ &\equiv \overline{(\overline{\mathbf{I}_{\mathbf{M}}(F_1)} + \overline{\mathbf{I}_{\mathbf{M}}(F_2)}) + (\overline{\mathbf{I}_{\mathbf{M}}(F_3)} + \overline{\mathbf{I}_{\mathbf{M}}(F_1)})} \quad (E1.2) \\ &\equiv \overline{(\overline{\mathbf{I}_{\mathbf{M}}(F_3)} + \overline{\mathbf{I}_{\mathbf{M}}(F_1)}) + (\overline{\mathbf{I}_{\mathbf{M}}(F_1)} + \overline{\mathbf{I}_{\mathbf{M}}(F_2)})} \quad (E3.1) \end{split}$$

$$\begin{split} [(\neg F_1 \wedge F_2) &\Rightarrow (F_3 \vee F_1)]^{\textbf{M}} = \overline{\overline{\textbf{I}_{\textbf{M}}(F_1)} \cdot \textbf{I}_{\textbf{M}}(F_2)} + (\textbf{I}_{\textbf{M}}(F_3) + \textbf{I}_{\textbf{M}}(F_1)) \\ &= \overline{(\overline{\textbf{I}_{\textbf{M}}(F_1)} \cdot \textbf{I}_{\textbf{M}}(F_2)} + (\textbf{I}_{\textbf{M}}(F_3) + \textbf{I}_{\textbf{M}}(F_1)) \\ &\equiv (\overline{\textbf{I}_{\textbf{M}}(F_1)} + \overline{\textbf{I}_{\textbf{M}}(F_2)}) + (\textbf{I}_{\textbf{M}}(F_3) + \textbf{I}_{\textbf{M}}(F_1)) \quad (\text{E4.3}) \\ &\equiv (\overline{\textbf{I}_{\textbf{M}}(F_1)} + \overline{\textbf{I}_{\textbf{M}}(F_2)}) + (\overline{\textbf{I}_{\textbf{M}}(F_3)} + \overline{\textbf{I}_{\textbf{M}}(F_1)}) \quad (\text{E1.2}) \\ &\equiv (\overline{\textbf{I}_{\textbf{M}}(F_3)} + \overline{\textbf{I}_{\textbf{M}}(F_1)}) + \left(\overline{\textbf{I}_{\textbf{M}}(F_1)} + \overline{\textbf{I}_{\textbf{M}}(F_2)}\right) \quad (\text{E3.1}) \\ &\equiv ((\overline{\textbf{I}_{\textbf{M}}(F_3)} + \overline{\textbf{I}_{\textbf{M}}(F_1)}) + \overline{\textbf{I}_{\textbf{M}}(F_1)}) + \overline{\textbf{I}_{\textbf{M}}(F_2)} \quad (\text{E3.4}) \end{split}$$

$$\begin{split} & [(\neg F_{1} \wedge F_{2}) \Rightarrow (F_{3} \vee F_{1})]^{M} = \overline{I_{M}(F_{1})} \cdot I_{M}(F_{2}) + (I_{M}(F_{3}) + I_{M}(F_{1})) \\ & = \overline{I_{M}(F_{1})} \cdot I_{M}(F_{2}) + (I_{M}(F_{3}) + I_{M}(F_{1})) \\ & = (\overline{I_{M}(F_{1})} + \overline{I_{M}(F_{2})}) + (I_{M}(F_{3}) + I_{M}(F_{1})) \quad \text{(E4.3)} \\ & = (I_{M}(F_{1}) + \overline{I_{M}(F_{2})}) + (I_{M}(F_{3}) + I_{M}(F_{1})) \quad \text{(E1.2)} \\ & = (I_{M}(F_{3}) + I_{M}(F_{1})) + (I_{M}(F_{1}) + \overline{I_{M}(F_{2})}) \quad \text{(E3.1)} \\ & = (I_{M}(F_{3}) + (I_{M}(F_{1})) + I_{M}(F_{1})) + \overline{I_{M}(F_{2})} \quad \text{(E3.4)} \end{split}$$

$$\begin{split} & [(\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)]^{M} = \overline{I_{M}(F_1)} \cdot I_{M}(F_2) + (I_{M}(F_3) + I_{M}(F_1)) \\ & = \overline{(I_{M}(F_1)} \cdot I_{M}(F_2) + (I_{M}(F_3) + I_{M}(F_1)) \\ & = \overline{(I_{M}(F_1)} + \overline{I_{M}(F_2)} + (I_{M}(F_3) + I_{M}(F_1)) \quad (E4.3) \\ & = \overline{(I_{M}(F_1)} + \overline{I_{M}(F_2)} + (I_{M}(F_3) + I_{M}(F_1)) \quad (E1.2) \\ & = \overline{(I_{M}(F_3)} + I_{M}(F_1)) + \overline{(I_{M}(F_1)} + \overline{I_{M}(F_2)} \quad (E3.1) \\ & = \overline{(I_{M}(F_3)} + I_{M}(F_1)) + \overline{I_{M}(F_1)} + \overline{I_{M}(F_2)} \quad (E3.4) \\ & = \overline{(I_{M}(F_3)} + I_{M}(F_1)) + \overline{I_{M}(F_2)} \quad (E3.5) \end{split}$$

$$[(\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)]^{\mathbf{M}} = \overline{\overline{\mathbf{I}_{\mathbf{M}}(F_1)} \cdot \mathbf{I}_{\mathbf{M}}(F_2)} + (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1))$$

$$\overline{\mathbf{I}_{M}(F_{1})} \cdot \mathbf{I}_{M}(F_{2}) + (\mathbf{I}_{M}(F_{3}) + \mathbf{I}_{M}(F_{1}))$$

$$\equiv (\overline{\mathbf{I}_{M}(F_{1})} + \overline{\mathbf{I}_{M}(F_{2})}) + (\mathbf{I}_{M}(F_{3}) + \mathbf{I}_{M}(F_{1})) \quad (E4.3)$$

$$\equiv (\mathbf{I}_{M}(F_{1}) + \overline{\mathbf{I}_{M}(F_{2})}) + (\mathbf{I}_{M}(F_{3}) + \mathbf{I}_{M}(F_{1})) \quad (E1.2)$$

$$\equiv (\mathbf{I}_{M}(F_{3}) + \mathbf{I}_{M}(F_{1})) + (\mathbf{I}_{M}(F_{1}) + \overline{\mathbf{I}_{M}(F_{2})}) \quad (E3.1)$$

$$\equiv ((\mathbf{I}_{M}(F_{3}) + \mathbf{I}_{M}(F_{1})) + \mathbf{I}_{M}(F_{1})) + \overline{\mathbf{I}_{M}(F_{2})} \quad (E3.4)$$

$$\equiv (\mathbf{I}_{M}(F_{3}) + \mathbf{I}_{M}(F_{1})) + \overline{\mathbf{I}_{M}(F_{2})} \quad (E3.5)$$

- algèbre de Boole minimale (B, ·, +, −)
 - B contient deux éléments distincts 0 et 1

- algèbre de Boole minimale (B, ·, +, −)
 - B contient deux éléments distincts 0 et 1
 - ▶ définition des opérateurs ·, + et :

		a·b	a+b			
0	0	0	0		a	ā
0	1	0	1	•	0	
1	0	0	1		1	0
1	1	1	1			

- algèbre de Boole minimale (B, ·, +, -)
 - B contient deux éléments distincts 0 et 1
 - définition des opérateurs ·, + et :

a	b	a·b	a+b			
0	0	0	0	-	а	ā
0	1	0	1	•	0	1
1	0	0	1		1	0
1	1	1	1			

 calcul du résultat de l'évaluation d'une expression booléenne par application des opérateurs sur leurs arguments

- algèbre de Boole minimale (B, ·, +, ¬)
 - B contient deux éléments distincts 0 et 1
 - ▶ définition des opérateurs ·, + et :

a	b	a · b	a+b		
0		0	0	а	ā
0	1	0	1	0	
1	0	0	1	1	0
1	1	1	1		

- calcul du résultat de l'évaluation d'une expression booléenne par application des opérateurs sur leurs arguments
 - exemple $\overline{1+0} \cdot 1$

- algèbre de Boole minimale (IB, ·, +, -)
 - B contient deux éléments distincts 0 et 1
 - ▶ définition des opérateurs ·, + et :

Expressions booléennes

- calcul du résultat de l'évaluation d'une expression booléenne par application des opérateurs sur leurs arguments
 - ► exemple $\frac{1}{1+0} \cdot 1$ = $\frac{1}{1} \cdot 1$ application de l'opérateur + (1+0=1)

- algèbre de Boole minimale (B, ·, +, -)
 - B contient deux éléments distincts 0 et 1
 - définition des opérateurs ·, + et :

Expressions booléennes

- calcul du résultat de l'évaluation d'une expression booléenne par application des opérateurs sur leurs arguments
 - ▶ exemple 1 + 0 · 1 = $\overline{1} \cdot 1$ application de l'opérateur + (1 + 0 = 1)application de l'opérateur – $(\overline{1} = 0)$

- algèbre de Boole minimale (B, ·, +, -)
 - B contient deux éléments distincts 0 et 1
 - définition des opérateurs ·, + et :

Expressions booléennes

 calcul du résultat de l'évaluation d'une expression booléenne par application des opérateurs sur leurs arguments

```
▶ exemple 1 + 0 · 1
              = \overline{1} \cdot 1 application de l'opérateur + (1 + 0 = 1)
              = 0 \cdot 1
                                       application de l'opérateur \overline{\phantom{a}} (\overline{1} = 0) application de l'opérateur \overline{\phantom{a}} (0 \cdot 1 = 0)
```


- algèbre de Boole minimale (B, ·, +, -)
 - B contient deux éléments distincts 0 et 1
 - ▶ définition des opérateurs ·, + et :

Expressions booléennes

 calcul du résultat de l'évaluation d'une expression booléenne par application des opérateurs sur leurs arguments

```
▶ exemple 1 + 0 · 1
         = \overline{1} \cdot 1 application de l'opérateur + (1 + 0 = 1)
         = 0 \cdot 1
                         application de l'opérateur - (\overline{1} = 0)
                         application de l'opérateur \cdot (0 \cdot 1 = 0)
```

dans la pratique, on peut « mixer » calcul et raisonnement équationnel

Expressions booléennes

construction d'une expression booléenne

$$[\boldsymbol{\mathit{F}}]^{\boldsymbol{M}} = \overline{\overline{I_{\boldsymbol{M}}(\boldsymbol{\mathit{F}}_{1})}.I_{\boldsymbol{M}}(\boldsymbol{\mathit{F}}_{2})} + (I_{\boldsymbol{M}}(\boldsymbol{\mathit{F}}_{3}) + I_{\boldsymbol{M}}(\boldsymbol{\mathit{F}}_{1}))$$

Interprétation de $F = (\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)$

construction d'une expression booléenne

$$[F]^{\boldsymbol{M}} = \overline{\overline{\boldsymbol{I}_{\boldsymbol{M}}(F_1)}.\boldsymbol{I}_{\boldsymbol{M}}(F_2)} + (\boldsymbol{I}_{\boldsymbol{M}}(F_3) + \boldsymbol{I}_{\boldsymbol{M}}(F_1))$$

$$[F]^{\mathbf{M}} \equiv (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) + \overline{\mathbf{I}_{\mathbf{M}}(F_2)}$$

Interprétation de $F = (\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)$

construction d'une expression booléenne

$$[F]^{\boldsymbol{M}} = \overline{\overline{I_{\boldsymbol{M}}(F_1)}.I_{\boldsymbol{M}}(F_2)} + (I_{\boldsymbol{M}}(F_3) + I_{\boldsymbol{M}}(F_1))$$

$$[F]^{\mathbf{M}} \equiv (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) + \overline{\mathbf{I}_{\mathbf{M}}(F_2)}$$

- interprétation des formules atomiques (selon la structure M)
 - exemple: $I_M(F_1) = 0$, $I_M(F_2) = 1$ et $I_M(F_3) = 1$

Interprétation de $F = (\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)$

construction d'une expression booléenne

$$[F]^{\boldsymbol{M}} = \overline{\overline{\boldsymbol{I}_{\boldsymbol{M}}(F_1)}.\boldsymbol{I}_{\boldsymbol{M}}(F_2)} + (\boldsymbol{I}_{\boldsymbol{M}}(F_3) + \boldsymbol{I}_{\boldsymbol{M}}(F_1))$$

$$[F]^{\mathbf{M}} \equiv (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) + \overline{\mathbf{I}_{\mathbf{M}}(F_2)}$$

- interprétation des formules atomiques (selon la structure M)
 - exemple : $I_M(F_1) = 0$, $I_M(F_2) = 1$ et $I_M(F_3) = 1$
- évaluation de l'expression booléenne (simplifiée) $[F]^{\mathbf{M}} = (1+0) + \overline{1}$

Interprétation de $F = (\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)$

construction d'une expression booléenne

$$[F]^{\boldsymbol{M}} = \overline{\overline{\boldsymbol{I}_{\boldsymbol{M}}(F_1)}.\boldsymbol{I}_{\boldsymbol{M}}(F_2)} + (\boldsymbol{I}_{\boldsymbol{M}}(F_3) + \boldsymbol{I}_{\boldsymbol{M}}(F_1))$$

$$[F]^{\mathbf{M}} \equiv (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) + \overline{\mathbf{I}_{\mathbf{M}}(F_2)}$$

- interprétation des formules atomiques (selon la structure M)
 - exemple: $I_M(F_1) = 0$, $I_M(F_2) = 1$ et $I_M(F_3) = 1$
- évaluation de l'expression booléenne (simplifiée) $[F]^{\mathbf{M}} = (1+0) + \overline{1}$ raisonnement équationnel

$$(1+0)+\bar{1}$$

onstruction d'une expression booléenne

$$[\boldsymbol{F}]^{\boldsymbol{M}} = \overline{\overline{\boldsymbol{I}_{\boldsymbol{M}}(\boldsymbol{F}_1)}.\boldsymbol{I}_{\boldsymbol{M}}(\boldsymbol{F}_2)} + (\boldsymbol{I}_{\boldsymbol{M}}(\boldsymbol{F}_3) + \boldsymbol{I}_{\boldsymbol{M}}(\boldsymbol{F}_1))$$

$$[F]^{\mathbf{M}} \equiv (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) + \overline{\mathbf{I}_{\mathbf{M}}(F_2)}$$

- interprétation des formules atomiques (selon la structure M)
 - exemple : $I_{M}(F_{1}) = 0$, $I_{M}(F_{2}) = 1$ et $I_{M}(F_{3}) = 1$

$$= \begin{array}{cc} (1+0) + \overline{1} \\ \hline = & 1 + \overline{1} \end{array}$$
 (E3.3)

Interprétation de $F = (\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)$

construction d'une expression booléenne

$$[F]^{M} = \overline{\overline{I_{M}(F_{1})}.I_{M}(F_{2})} + (I_{M}(F_{3}) + I_{M}(F_{1}))$$

simplification (raisonnement équationnel)

$$[F]^{\mathbf{M}} \equiv (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) + \overline{\mathbf{I}_{\mathbf{M}}(F_2)}$$

- interprétation des formules atomiques (selon la structure M)
 - exemple : $I_{M}(F_{1}) = 0$, $I_{M}(F_{2}) = 1$ et $I_{M}(F_{3}) = 1$

$$\begin{array}{ccc} & (1+0)+\overline{1} \\ \equiv & 1+\overline{1} & (E3.3) \\ \equiv & 1 & (E3.3) \end{array}$$

Interprétation de $F = (\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)$

construction d'une expression booléenne

$$[F]^{\boldsymbol{M}} = \overline{\overline{\boldsymbol{I}_{\boldsymbol{M}}(F_1)}.\boldsymbol{I}_{\boldsymbol{M}}(F_2)} + (\boldsymbol{I}_{\boldsymbol{M}}(F_3) + \boldsymbol{I}_{\boldsymbol{M}}(F_1))$$

$$[F]^{\mathbf{M}} \equiv (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) + \overline{\mathbf{I}_{\mathbf{M}}(F_2)}$$

- interprétation des formules atomiques (selon la structure M)
 - exemple: $I_M(F_1) = 0$, $I_M(F_2) = 1$ et $I_M(F_3) = 1$
- évaluation de l'expression booléenne (simplifiée) $[F]^{M} = (1+0) + \overline{1}$ raisonnement équationnel calcul

$$\begin{array}{ccc} & (1+0)+\overline{1} \\ \equiv & 1+\overline{1} & (E3.3) \\ \equiv & 1 & (E3.3) \end{array}$$

$$(1+0) + \overline{1}$$

Termes

construction d'une expression booléenne

$$[\boldsymbol{F}]^{\boldsymbol{M}} = \overline{\overline{\boldsymbol{I}_{\boldsymbol{M}}(\boldsymbol{F}_1)}.\boldsymbol{I}_{\boldsymbol{M}}(\boldsymbol{F}_2)} + (\boldsymbol{I}_{\boldsymbol{M}}(\boldsymbol{F}_3) + \boldsymbol{I}_{\boldsymbol{M}}(\boldsymbol{F}_1))$$

simplification (raisonnement équationnel)

$$[F]^{\mathbf{M}} \equiv (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) + \overline{\mathbf{I}_{\mathbf{M}}(F_2)}$$

interprétation des formules atomiques (selon la structure M)

• exemple :
$$I_M(F_1) = 0$$
, $I_M(F_2) = 1$ et $I_M(F_3) = 1$

• évaluation de l'expression booléenne (simplifiée) $[F]^{M} = (1+0) + \overline{1}$ raisonnement équationnel calcul

$$(1+0)+\overline{1}$$

 $\equiv 1+\overline{1}$ (E3.3)
 $\equiv 1$ (E3.3)

$$\begin{array}{c} (1+0)+\overline{1} \\ \equiv 1+\overline{1} & \text{(E3.3)} \end{array}$$

Interprétation de $F = (\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)$

construction d'une expression booléenne

$$[F]^{\boldsymbol{M}} = \overline{\overline{\boldsymbol{I}_{\boldsymbol{M}}(F_1)}.\boldsymbol{I}_{\boldsymbol{M}}(F_2)} + (\boldsymbol{I}_{\boldsymbol{M}}(F_3) + \boldsymbol{I}_{\boldsymbol{M}}(F_1))$$

simplification (raisonnement équationnel)

$$[F]^{\mathbf{M}} \equiv (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) + \overline{\mathbf{I}_{\mathbf{M}}(F_2)}$$

- interprétation des formules atomiques (selon la structure M)
 - exemple: $I_M(F_1) = 0$, $I_M(F_2) = 1$ et $I_M(F_3) = 1$
- évaluation de l'expression booléenne (simplifiée) $[F]^{M} = (1+0) + \overline{1}$ raisonnement équationnel calcul

Interprétation de $F = (\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)$

construction d'une expression booléenne

$$[F]^{M} = \overline{\overline{I_{M}(F_{1})}.I_{M}(F_{2})} + (I_{M}(F_{3}) + I_{M}(F_{1}))$$

simplification (raisonnement équationnel)

$$[F]^{\mathbf{M}} \equiv (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) + \overline{\mathbf{I}_{\mathbf{M}}(F_2)}$$

interprétation des formules atomiques (selon la structure M)

• exemple :
$$I_M(F_1) = 0$$
, $I_M(F_2) = 1$ et $I_M(F_3) = 1$

• évaluation de l'expression booléenne (simplifiée) $[F]^{M} = (1+0) + \overline{1}$ raisonnement équationnel calcul

aisonnement équationnel (1 + 0) +
$$\overline{1}$$

 $\equiv 1 + \overline{1}$ (E3.3)
 $\equiv 1$ (E3.3) (E3.3) (E3.3) (E3.3) (E3.3) (E3.3) (E3.3) (E3.3)

Interprétation de $F = (\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)$

construction d'une expression booléenne

$$[F]^{M} = \overline{\overline{I_{M}(F_{1})}.I_{M}(F_{2})} + (I_{M}(F_{3}) + I_{M}(F_{1}))$$

simplification (raisonnement équationnel)

$$[F]^{\mathbf{M}} \equiv (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) + \overline{\mathbf{I}_{\mathbf{M}}(F_2)}$$

interprétation des formules atomiques (selon la structure M)

• exemple :
$$I_M(F_1) = 0$$
, $I_M(F_2) = 1$ et $I_M(F_3) = 1$

4 évaluation de l'expression booléenne (simplifiée) $[F]^{M} = (1+0) + \overline{1}$ raisonnement équationnel | calcul

$$[F]^{M} = 1$$

Logique - Licence Informatique, Sorbonne Université

Tables de vérité

 la valeur de [F]^M ne dépend que des valeurs booléennes associées par M aux formules atomiques apparaissant dans F

Tables de vérité

- la valeur de [F]^M ne dépend que des valeurs booléennes associées par M aux formules atomiques apparaissant dans F
- exemple: table de vérité pour $F = (\neg F_1 \land F_2) \Rightarrow (F_3 \lor F_1)$

$I_{M}(F_{1})$	$I_{M}(F_{2})$	$I_{M}(F_3)$	$[F]^{\mathbf{M}} = (\mathbf{I}_{\mathbf{M}}(F_3) + \mathbf{I}_{\mathbf{M}}(F_1)) + \overline{\mathbf{I}_{\mathbf{M}}(F_2)}$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Expressions booléennes

- $I_{M}(F_{1}) + I_{M}(F_{2})$ est une expression booléenne
 - $ightharpoonup I_{M}(F_{1})$ et $I_{M}(F_{2})$ sont des booléens (des valeurs dans $\mathbb{B}=\{0,1\}$)

- $I_{M}(F_1) + I_{M}(F_2)$ est une expression booléenne
 - ▶ $I_M(F_1)$ et $I_M(F_2)$ sont des booléens (des valeurs dans $\mathbb{B} = \{0, 1\}$)
 - ▶ le résultat de l'évaluation de $\overline{I_M(F_1) + I_M(F_2)}$ est un booléen
 - l'évaluation d'une expression booléenne est déterministe : le résultat est unique

- $I_M(F_1) + I_M(F_2)$ est une expression booléenne
 - $ightharpoonup I_{M}(F_{1})$ et $I_{M}(F_{2})$ sont des booléens (des valeurs dans $\mathbb{B}=\{0,1\}$)
 - ▶ le résultat de l'évaluation de $I_M(F_1) + I_M(F_2)$ est un booléen
 - ★ l'évaluation d'une expression booléenne est déterministe : le résultat est unique
- $\neg (F_1 \vee F_2)$ est une formule de $\mathbb{F}_0(\mathcal{F}, \mathcal{P})$

- $I_{M}(F_{1}) + I_{M}(F_{2})$ est une expression booléenne
 - ▶ $I_M(F_1)$ et $I_M(F_2)$ sont des booléens (des valeurs dans $\mathbb{B} = \{0, 1\}$)
 - ▶ le résultat de l'évaluation de $I_M(F_1) + I_M(F_2)$ est un booléen
 - l'évaluation d'une expression booléenne est déterministe : le résultat est unique
- $\neg (F_1 \lor F_2)$ est une formule de $\mathbb{F}_0(\mathcal{F}, \mathcal{P})$
 - cette formule est « vraie » dans certaines structures

* si
$$I_{M}(F_{1}) = 0$$
 et $I_{M}(F_{2}) = 0$,
 $[\neg(F_{1} \lor F_{2})]^{M} = \overline{I_{M}(F_{1}) + I_{M}(F_{2})} = \overline{0 + 0} = 1$

quelles différences entre $F = \neg (F_1 \vee F_2)$ et $[F]^M = \overline{I_M(F_1) + I_M(F_2)}$?

- $I_{M}(F_{1}) + I_{M}(F_{2})$ est une expression booléenne
 - ▶ $I_M(F_1)$ et $I_M(F_2)$ sont des booléens (des valeurs dans $IB = \{0, 1\}$)
 - ▶ le résultat de l'évaluation de $I_M(F_1) + I_M(F_2)$ est un booléen
 - l'évaluation d'une expression booléenne est déterministe : le résultat est unique
- $\neg(F_1 \lor F_2)$ est une formule de $\mathbb{F}_0(\mathcal{F},\mathcal{P})$: c'est une formule **contingente**
 - cette formule est « vraie » dans certaines structures

* si
$$I_{M}(F_{1}) = 0$$
 et $I_{M}(F_{2}) = 0$,
 $[\neg(F_{1} \lor F_{2})]^{M} = \overline{I_{M}(F_{1}) + I_{M}(F_{2})} = \overline{0 + 0} = 1$

cette formule est « fausse » dans certaines structures

* si
$$I_{M}(F_{1}) = 1$$
 et $I_{M}(F_{2}) = 0$,
 $[\neg (F_{1} \lor F_{2})]^{M} = \overline{I_{M}(F_{1}) + I_{M}(F_{2})} = \overline{1 + 0} = 0$

quelles différences entre $F = \neg (F_1 \vee F_2)$ et $[F]^M = \overline{I_M(F_1) + I_M(F_2)}$?

- $I_{M}(F_{1}) + I_{M}(F_{2})$ est une expression booléenne
 - ▶ $I_M(F_1)$ et $I_M(F_2)$ sont des booléens (des valeurs dans $\mathbb{B} = \{0, 1\}$)
 - ▶ le résultat de l'évaluation de $I_M(F_1) + I_M(F_2)$ est un booléen
 - l'évaluation d'une expression booléenne est déterministe : le résultat est unique
- $\neg(F_1 \lor F_2)$ est une formule de $\mathbb{F}_0(\mathcal{F},\mathcal{P})$: c'est une formule **contingente**
 - cette formule est « vraie » dans certaines structures

* si
$$I_{\mathbf{M}}(F_1) = 0$$
 et $I_{\mathbf{M}}(F_2) = 0$,
 $[\neg (F_1 \lor F_2)]^{\mathbf{M}} = \overline{I_{\mathbf{M}}(F_1) + I_{\mathbf{M}}(F_2)} = \overline{0 + 0} = 1$

cette formule est « fausse » dans certaines structures

* si
$$I_{M}(F_{1}) = 1$$
 et $I_{M}(F_{2}) = 0$,
 $[\neg (F_{1} \lor F_{2})]^{M} = \overline{I_{M}(F_{1}) + I_{M}(F_{2})} = \overline{1 + 0} = 0$

il existe des formules « toujours vraies » et des formules « toujours fausses »

- une formule F est **satisfiable** ssi il existe une structure M telle que $[F]^M = 1$ (M est un **modèle** de F)
 - ▶ $\neg(F_1 \lor F_2)$ est satisfiable : avec la structure **M** telle que $I_M(F_1) = 0$ et $I_M(F_2) = 0$, $[\neg(F_1 \lor F_2)]^M = 1$

Formules satisfiables – Formules valides

- une formule F est satisfiable ssi il existe une structure M telle que $[F]^{M} = 1$ (M est un modèle de F)
 - ▶ $\neg (F_1 \lor F_2)$ est satisfiable : avec la structure M telle que $I_M(F_1) = 0$ et $I_{M}(F_{2}) = 0$, $[\neg (F_{1} \vee F_{2})]^{M} = 1$
- une formule F est insatisfiable ssi il n'existe aucune structure M telle que $[F]^{M} = 1$
 - ▶ $F_0 \land \neg F_0$ est insatisfiable : $[F_0 \land \neg F_0]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(F_0) \cdot \overline{\mathbf{I}_{\mathbf{M}}(F_0)} = 0$ pour toute structure M

Formules satisfiables – Formules valides

- une formule F est **satisfiable** ssi il existe une structure M telle que $[F]^M = 1$ (M est un **modèle** de F)
 - ▶ $\neg(F_1 \lor F_2)$ est satisfiable : avec la structure M telle que $I_M(F_1) = 0$ et $I_M(F_2) = 0$, $[\neg(F_1 \lor F_2)]^M = 1$
- une formule F est **insatisfiable** ssi il n'existe aucune structure M telle que $[F]^M = 1$
 - ▶ $F_0 \land \neg F_0$ est insatisfiable : $[F_0 \land \neg F_0]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(F_0) \cdot \overline{\mathbf{I}_{\mathbf{M}}(F_0)} = 0$ pour toute structure \mathbf{M}
- une formule F est **valide** ssi pour toute structure M, $[F]^M = 1$
 - ▶ $F_0 \vee \neg F_0$ est valide : $[F_0 \vee \neg F_0]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(F_0) + \overline{\mathbf{I}_{\mathbf{M}}(F_0)} = 1$ pour toute structure \mathbf{M}

Formules satisfiables – Formules valides

- une formule F est satisfiable ssi il existe une structure M telle que $[F]^{M} = 1$ (M est un modèle de F)
 - ▶ $\neg (F_1 \lor F_2)$ est satisfiable : avec la structure M telle que $I_M(F_1) = 0$ et $I_{M}(F_{2}) = 0$, $[\neg (F_{1} \vee F_{2})]^{M} = 1$
- une formule F est **insatisfiable** ssi il n'existe aucune structure M telle que $[F]^{M} = 1$
 - $ightharpoonup F_0 \wedge \neg F_0$ est insatisfiable : $[F_0 \wedge \neg F_0]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(F_0) \cdot \overline{\mathbf{I}_{\mathbf{M}}(F_0)} = 0$ pour toute structure M
- une formule F est **valide** ssi pour toute structure M, $[F]^M = 1$
 - $ightharpoonup F_0 \lor \neg F_0$ est valide : $[F_0 \lor \neg F_0]^{\mathbf{M}} = I_{\mathbf{M}}(F_0) + \overline{I_{\mathbf{M}}(F_0)} = 1$ pour toute structure M
- propriétés :
 - ► F est valide ssi ¬F est insatisfiable
 - F est insatisfiable ssi ¬F est valide

• $F_2 \models F_1$: la formule F_1 est **conséquence sémantique** de la formule F_2 ssi pour toute structure **M** telle que $[F_2]^{\mathbf{M}} = 1$, on a $[F_1]^{\mathbf{M}} = 1$

- $F_2 \models F_1$: la formule F_1 est **conséquence sémantique** de la formule F_2 ssi pour toute structure **M** telle que $[F_2]^{\mathbf{M}} = 1$, on a $[F_1]^{\mathbf{M}} = 1$
 - exemple : $F_1, F_2 \in \mathcal{L}_0(\mathcal{F}, \mathcal{P})$ $F_1 \models (F_2 \Rightarrow F_1)$ car pour toute structure **M** telle que $[F_1]^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}}(F_1) = 1$ on a $[F_2 \Rightarrow F_1]^{\mathbf{M}} = \overline{\mathbf{I}_{\mathbf{M}}(F_2)} + \mathbf{I}_{\mathbf{M}}(F_1) = \overline{\mathbf{I}_{\mathbf{M}}(F_2)} + 1 = 1$

- $F_2 \models F_1$: la formule F_1 est conséquence sémantique de la formule F_2 ssi pour toute structure M telle que $[F_2]^M = 1$, on a $[F_1]^M = 1$
 - exemple: $F_1, F_2 \in \mathcal{L}_0(\mathcal{F}, \mathcal{P})$ $F_1 \models (F_2 \Rightarrow F_1)$ car pour toute structure M telle que $[F_1]^{M} = I_M(F_1) = 1$ on a $[F_2 \Rightarrow F_1]^{\mathbf{M}} = \overline{\mathbf{I}_{\mathbf{M}}(F_2)} + \mathbf{I}_{\mathbf{M}}(F_1) = \overline{\mathbf{I}_{\mathbf{M}}(F_2)} + 1 = 1$

$I_{\mathbf{M}}(F_1) = [F_1]^{\mathbf{M}}$	$I_{M}(F_2)$	$[F_2 \Rightarrow F_1]^{\mathbf{M}}$
0		
0		
1	0	
1	1	

Termes

- $F_2 \models F_1$: la formule F_1 est conséquence sémantique de la formule F_2 ssi pour toute structure M telle que $[F_2]^M = 1$, on a $[F_1]^M = 1$
 - exemple: $F_1, F_2 \in \mathcal{L}_0(\mathcal{F}, \mathcal{P})$ $F_1 \models (F_2 \Rightarrow F_1)$ car pour toute structure M telle que $[F_1]^{\mathbf{M}} = I_{\mathbf{M}}(F_1) = 1$ on a $[F_2 \Rightarrow F_1]^{M} = \overline{I_M(F_2)} + I_M(F_1) = \overline{I_M(F_2)} + 1 = 1$

$I_{\mathbf{M}}(F_1) = [F_1]^{\mathbf{M}}$	$I_{M}(F_2)$	$[F_2 \Rightarrow F_1]^{\mathbf{M}}$
0		
0		
$\boxed{1} \rightarrow$	0	\rightarrow 1
$\boxed{1} \rightarrow$	1	\rightarrow 1

- $F_2 \models F_1$: la formule F_1 est conséquence sémantique de la formule F_2 ssi pour toute structure M telle que $[F_2]^M = 1$, on a $[F_1]^M = 1$
- propriété : $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide

- $F_2 \models F_1$: la formule F_1 est **conséquence sémantique** de la formule F_2 ssi pour toute structure **M** telle que $[F_2]^{\mathbf{M}} = 1$, on a $[F_1]^{\mathbf{M}} = 1$
- propriété : $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
 - ▶ supposons $F_2 \models F_1$ et montrons que $F_2 \Rightarrow F_1$ est valide

- $F_2 \models F_1$: la formule F_1 est conséquence sémantique de la formule F_2 ssi pour toute structure M telle que $[F_2]^M = 1$, on a $[F_1]^M = 1$
- propriété : $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
 - ▶ supposons $F_2 \models F_1$ et montrons que $F_2 \Rightarrow F_1$ est valide soit M une structure quelconque, montrons

$$[F_2 \Rightarrow F_1]^{M} = [F_2]^{M} + [F_1]^{M} = 1$$

- $F_2 \models F_1$: la formule F_1 est **conséquence sémantique** de la formule F_2 ssi pour toute structure **M** telle que $[F_2]^{\mathbf{M}} = 1$, on a $[F_1]^{\mathbf{M}} = 1$
- propriété : $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
 - supposons F₂ ⊨ F₁ et montrons que F₂ ⇒ F₁ est valide soit M une structure quelconque, montrons
 [F₂ ⇒ F₁]^M = [F₂]^M + [F₁]^M = 1 raisonnement par cas :

si
$$[F_2]^{M} = 0$$
, alors $\overline{[F_2]^{M}} + [F_1]^{M} = 1 + [F_1]^{M} = 1$

Termes

- $F_2 \models F_1$: la formule F_1 est conséquence sémantique de la formule F_2 ssi pour toute structure M telle que $[F_2]^M = 1$, on a $[F_1]^M = 1$
- propriété : $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
 - ▶ supposons $F_2 \models F_1$ et montrons que $F_2 \Rightarrow F_1$ est valide soit M une structure quelconque, montrons $[F_2 \Rightarrow F_1]^{\mathbf{M}} = [F_2]^{\mathbf{M}} + [F_1]^{\mathbf{M}} = 1$ raisonnement par cas: si $[F_2]^{M} = 0$, alors $[F_2]^{M} + [F_1]^{M} = 1 + [F_1]^{M} = 1$ si $[F_2]^{\mathbf{M}} = 1$, alors puisque $F_2 \models F_1$, on a $[F_1]^{\mathbf{M}} = 1$ et donc $[F_2]^{\mathbf{M}} + [F_1]^{\mathbf{M}} = 0 + 1 = 1$

- $F_2 \models F_1$: la formule F_1 est **conséquence sémantique** de la formule F_2 ssi pour toute structure **M** telle que $[F_2]^{\mathbf{M}} = 1$, on a $[F_1]^{\mathbf{M}} = 1$
- propriété : $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
 - ▶ supposons que $F_2 \Rightarrow F_1$ est valide et montrons $F_2 \models F_1$

- $F_2 \models F_1$: la formule F_1 est **conséquence sémantique** de la formule F_2 ssi pour toute structure **M** telle que $[F_2]^{\mathbf{M}} = 1$, on a $[F_1]^{\mathbf{M}} = 1$
- propriété : $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
 - ▶ supposons que $F_2 \Rightarrow F_1$ est valide et montrons $F_2 \models F_1$ soit **M** une structure telle que $[F_2]^{\mathbf{M}} = 1$, montrons que $[F_1]^{\mathbf{M}} = 1$

- $F_2 \models F_1$: la formule F_1 est **conséquence sémantique** de la formule F_2 ssi pour toute structure **M** telle que $[F_2]^{\mathbf{M}} = 1$, on a $[F_1]^{\mathbf{M}} = 1$
- propriété : $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
 - ▶ supposons que $F_2 \Rightarrow F_1$ est valide et montrons $F_2 \models F_1$ soit **M** une structure telle que $[F_2]^{\mathbf{M}} = 1$, montrons que $[F_1]^{\mathbf{M}} = 1$ puisque $F_2 \Rightarrow F_1$ est valide, on a $[F_2 \Rightarrow F_1]^{\mathbf{M}} = \overline{[F_2]^{\mathbf{M}}} + [F_1]^{\mathbf{M}} = 1$

- $F_2 \models F_1$: la formule F_1 est **conséquence sémantique** de la formule F_2 ssi pour toute structure **M** telle que $[F_2]^{\mathbf{M}} = 1$, on a $[F_1]^{\mathbf{M}} = 1$
- propriété : $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
 - ▶ supposons que $F_2 \Rightarrow F_1$ est valide et montrons $F_2 \models F_1$ soit \mathbf{M} une structure telle que $[F_2]^{\mathbf{M}} = 1$, montrons que $[F_1]^{\mathbf{M}} = 1$ puisque $F_2 \Rightarrow F_1$ est valide, on a $[F_2 \Rightarrow F_1]^{\mathbf{M}} = \overline{[F_2]^{\mathbf{M}}} + [F_1]^{\mathbf{M}} = 1$ et donc $0 + [F_1]^{\mathbf{M}} = 1$ c-à-d $[F_1]^{\mathbf{M}} = 1$

- $F_2 \models F_1$: la formule F_1 est conséquence sémantique de la formule F_2 ssi pour toute structure M telle que $[F_2]^M = 1$, on a $[F_1]^M = 1$
- propriété : $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
- $\{F_1, \dots, F_n\} \models F$: la formule F est conséquence sémantique de l'ensemble fini de formules $\{F_1, \dots, F_n\}$ ssi pour toute structure M telle que $[F_1 \wedge \cdots \wedge F_n]^{\mathbf{M}} = \prod_{i=1}^n [F_i]^{\mathbf{M}} = 1$, on a $[F]^{\mathbf{M}} = 1$

- $F_2 \models F_1$: la formule F_1 est conséquence sémantique de la formule F_2 ssi pour toute structure M telle que $[F_2]^M = 1$, on a $[F_1]^M = 1$
- propriété : $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
- $\{F_1, \dots, F_n\} \models F$: la formule F est conséquence sémantique de l'ensemble fini de formules $\{F_1, \dots, F_n\}$ ssi pour toute structure M telle que $[F_1 \wedge \cdots \wedge F_n]^{\mathbf{M}} = \prod_{i=1}^n [F_i]^{\mathbf{M}} = 1$, on a $[F]^{\mathbf{M}} = 1$
 - exemple : $\{F_1, F_1 \Rightarrow F_2\} \models F_2$ $F_1, F_2, F_3 \in \mathcal{L}_0(\mathcal{F}, \mathcal{P})$ soit **M** une structure telle que $[F_1 \wedge (F_1 \Rightarrow F_2)]^{\mathbf{M}} = 1$, on a $[F_1 \wedge (F_1 \Rightarrow F_2)]^{\mathbf{M}} \equiv I_{\mathbf{M}}(F_1) \cdot I_{\mathbf{M}}(F_2)$, et donc $I_{\mathbf{M}}(F_2) = 1$

- $F_2 \models F_1$: la formule F_1 est **conséquence sémantique** de la formule F_2 ssi pour toute structure **M** telle que $[F_2]^{\mathbf{M}} = 1$, on a $[F_1]^{\mathbf{M}} = 1$
- propriété : $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
- $\{F_1, \dots, F_n\} \models F$: la formule F est **conséquence sémantique** de l'ensemble fini de formules $\{F_1, \dots, F_n\}$ ssi pour toute structure M telle que $[F_1 \land \dots \land F_n]^M = \prod_{i=1}^n [F_i]^M = 1$, on a $[F]^M = 1$
 - exemple : $\{F_1, F_1 \Rightarrow F_2\} \models F_2$ $F_1, F_2, F_3 \in \mathcal{L}_0(\mathcal{F}, \mathcal{P})$ soit \mathbf{M} une structure telle que $[F_1 \land (F_1 \Rightarrow F_2)]^{\mathbf{M}} = 1$, on a $[F_1 \land (F_1 \Rightarrow F_2)]^{\mathbf{M}} \equiv \mathbf{I}_{\mathbf{M}}(F_1) \cdot \mathbf{I}_{\mathbf{M}}(F_2)$, et donc $\mathbf{I}_{\mathbf{M}}(F_2) = 1$

$\mathbf{I_M}(F_1) = [F_1]^{\mathbf{M}}$	$I_{M}(F_{2})$	$ [F_1 \Rightarrow F_2]^{\mathbf{M}}$	$ [F_1 \wedge (F_1 \Rightarrow F_2)]^{M} $	$ [F_2]^{M}$
0	0	1	0	0
0	1	1	0	1
1	0	0	0	0
1	1	1	1	1

- $F_2 \models F_1$: la formule F_1 est **conséquence sémantique** de la formule F_2 ssi pour toute structure **M** telle que $[F_2]^{\mathbf{M}} = 1$, on a $[F_1]^{\mathbf{M}} = 1$
- propriété : $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
- $\{F_1, \dots, F_n\} \models F$: la formule F est **conséquence sémantique** de l'ensemble fini de formules $\{F_1, \dots, F_n\}$ ssi pour toute structure M telle que $[F_1 \land \dots \land F_n]^M = \prod_{i=1}^n [F_i]^M = 1$, on a $[F]^M = 1$
 - exemple : $\{F_1, F_1 \Rightarrow F_2\} \models F_2$ $F_1, F_2, F_3 \in \mathcal{L}_0(\mathcal{F}, \mathcal{P})$ soit \mathbf{M} une structure telle que $[F_1 \land (F_1 \Rightarrow F_2)]^{\mathbf{M}} = 1$, on a $[F_1 \land (F_1 \Rightarrow F_2)]^{\mathbf{M}} \equiv \mathbf{I}_{\mathbf{M}}(F_1) \cdot \mathbf{I}_{\mathbf{M}}(F_2)$, et donc $\mathbf{I}_{\mathbf{M}}(F_2) = 1$

$I_{\mathbf{M}}(F_1) = [F_1]^{\mathbf{M}}$	$I_{M}(F_{2})$	$[F_1 \Rightarrow F_2]^{\mathbf{M}}$	$[F_1 \wedge (F_1 \Rightarrow F_2)]^{\mathbf{M}}$	$[F_2]^{M}$
0	0	1	0	0
0	1	1	0	1
1	0	0	0	0
$\boxed{1} \rightarrow$	1	$\boxed{1} \rightarrow$	\rightarrow 1 \rightarrow	\rightarrow 1
			401471147147	▶ =

- $F_2 \models F_1$: la formule F_1 est conséquence sémantique de la formule F_2 ssi pour toute structure M telle que $[F_2]^M = 1$, on a $[F_1]^M = 1$
- propriété : $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
- $\{F_1, \dots, F_n\} \models F$: la formule F est conséquence sémantique de l'ensemble fini de formules $\{F_1, \dots, F_n\}$ ssi pour toute structure M telle que $[F_1 \wedge \cdots \wedge F_n]^{\mathbf{M}} = \prod_{i=1}^n [F_i]^{\mathbf{M}} = 1$, on a $[F]^{\mathbf{M}} = 1$
- propriété : $\{F_1, F_2, \dots, F_n\} \models F$ ssi $(F_1 \land F_2 \land \dots \land F_n) \Rightarrow F$ est valide

Formules logiquement équivalentes

• $F_1 \models F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$

- $F_1 \models F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
 - ▶ | est une relation d'équivalence (réflexive, symétrique, transitive)

- $F_1 \models F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
 - exemple: $\neg (F_1 \lor F_2) \models \neg F_1 \land \neg F_2$

$$F_1, F_2 \in \mathcal{L}_0(\mathcal{F}, \mathcal{P})$$

- $F_1 \models F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
 - exemple: $\neg (F_1 \lor F_2) \sqsubseteq \neg F_1 \land \neg F_2$

$$F_1, F_2 \in \mathcal{L}_0(\mathcal{F}, \mathcal{P})$$

$$[\neg(F_1 \vee F_2)]^{\mathbf{M}} = \overline{\mathbf{I}_{\mathbf{M}}(F_1) + \mathbf{I}_{\mathbf{M}}(F_2)}$$

- $F_1 \models F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
 - exemple: $\neg (F_1 \lor F_2) \sqsubseteq \neg F_1 \land \neg F_2$

$$F_1, F_2 \in \mathcal{L}_0(\mathcal{F}, \mathcal{P})$$

$$[\neg(F_1 \vee F_2)]^{\mathsf{M}} = \overline{\mathsf{I}_{\mathsf{M}}(F_1) + \mathsf{I}_{\mathsf{M}}(F_2)}$$

$$[\neg F_1 \wedge \neg F_2]^{\mathbf{M}} = \overline{\mathbf{I}_{\mathbf{M}}(F_1)} \cdot \overline{\mathbf{I}_{\mathbf{M}}(F_2)}$$

- $F_1
 otin F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
 - exemple : $\neg (F_1 \lor F_2) \models \neg F_1 \land \neg F_2$

$$F_1, F_2 \in \mathcal{L}_0(\mathcal{F}, \mathcal{P})$$

$$[\neg(F_1\vee F_2)]^{\mathbf{M}}=\overline{\mathbf{I}_{\mathbf{M}}(F_1)+\mathbf{I}_{\mathbf{M}}(F_2)}$$

$$[\neg F_1 \wedge \neg F_2]^{\mathsf{M}} = \overline{\mathsf{I}_{\mathsf{M}}(F_1)} \cdot \overline{\mathsf{I}_{\mathsf{M}}(F_2)}$$

$$\overline{I_{M}(F_1) + I_{M}(F_2)} \equiv \overline{I_{M}(F_1)}.\overline{I_{M}(F_2)}$$

pour toute structure M, les expressions booléennes $[\neg(F_1 \lor F_2)]^M$ et $[\neg F_1 \land \neg F_2]^M$ s'évaluent à la même valeur booléenne

Termes

Formules logiquement équivalentes

- $F_1 \sqsubseteq F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
 - exemple: $\neg (F_1 \lor F_2) \sqsubseteq \neg F_1 \land \neg F_2$

$$F_1,F_2\in\mathcal{L}_0(\mathcal{F},\mathcal{P})$$

$$[\neg(F_1\vee F_2)]^{\mathsf{M}}=\overline{\mathsf{I}_{\mathsf{M}}(F_1)+\mathsf{I}_{\mathsf{M}}(F_2)}$$

$$[\neg F_1 \wedge \neg F_2]^{\mathbf{M}} = \overline{\mathbf{I}_{\mathbf{M}}(F_1)} \cdot \overline{\mathbf{I}_{\mathbf{M}}(F_2)}$$

$$\overline{I_{M}(F_{1})+I_{M}(F_{2})}\equiv \overline{I_{M}(F_{1})}.\overline{I_{M}(F_{2})}$$

pour toute structure M, les expressions booléennes $[\neg (F_1 \lor F_2)]^M$ et $[\neg F_1 \land \neg F_2]^{\mathbf{M}}$ s'évaluent à la même valeur booléenne

les formules $\neg (F_1 \lor F_2)$ et $\neg F_1 \land \neg F_2$ sont dans la même classe d'équivalence (pour |)

Logique - Licence Informatique, Sorbonne Université

- $F_1 \models F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
 - \blacktriangleright est une congruence pour \neg , \Rightarrow , \land , \lor

Termes

- $F_1 \models F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
 - \triangleright est une congruence pour \neg , \Rightarrow , \land , \lor

si
$$F \sqsubseteq F'$$
, alors $\neg F \sqsubseteq \neg F'$

$$F_1 \Rightarrow F_2 \models F_1' \Rightarrow F_2'$$

si $F_1 \models F_1'$ et $F_2 \models F_2'$, alors: $F_1 \land F_2 \models F_1' \land F_2'$
 $F_1 \lor F_2 \models F_1' \lor F_2'$

- $F_1 \models F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
- propriété : $F_1 \sqsubseteq F_2$ ssi $F_1 \models F_2$ et $F_2 \models F_1$

- $F_1 \models F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
- propriété : $F_1 \models F_2$ ssi $F_1 \models F_2$ et $F_2 \models F_1$
 - ▶ supposons $F_1 \models F_2$
 - ★ montrons $F_1 \models F_2$

- $F_1 \models F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
- propriété : $F_1 \sqsubseteq F_2$ ssi $F_1 \sqsubseteq F_2$ et $F_2 \sqsubseteq F_1$
 - ightharpoons supposons $F_1 \equiv F_2$
 - * montrons $F_1 \models F_2$ soit M une structure telle que $[F_1]^M = 1$

Termes

- $F_1 \models F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
- propriété : $F_1 \sqsubseteq F_2$ ssi $F_1 \sqsubseteq F_2$ et $F_2 \sqsubseteq F_1$
 - ightharpoons supposons $F_1 \equiv F_2$
 - ★ montrons $F_1 \models F_2$ soit M une structure telle que $[F_1]^M = 1$ puisque $F_1 \sqsubseteq F_2$, on a $[F_1]^{M} = [F_2]^{M} = 1$ et donc $F_1 \models F_2$

- $F_1 \models F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
- propriété : $F_1 \sqsubseteq F_2$ ssi $F_1 \sqsubseteq F_2$ et $F_2 \sqsubseteq F_1$
 - ightharpoons supposons $F_1 \equiv F_2$
 - ★ montrons $F_1 \models F_2$ soit M une structure telle que $[F_1]^M = 1$ puisque $F_1 \sqsubseteq F_2$, on a $[F_1]^{\mathbf{M}} = [F_2]^{\mathbf{M}} = 1$ et donc $F_1 \models F_2$
 - * raisonnement similaire pour montrer $F_2 \models F_1$

- $F_1 \models F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
- propriété : $F_1 \sqsubseteq F_2$ ssi $F_1 \sqsubseteq F_2$ et $F_2 \sqsubseteq F_1$
 - ▶ supposons $F_1 \models F_2$ et $F_2 \models F_1$, montrons $F_1 \models F_2$

- $F_1 \sqsubseteq F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
- propriété : $F_1 \sqsubseteq F_2$ ssi $F_1 \sqsubseteq F_2$ et $F_2 \sqsubseteq F_1$
 - ▶ supposons $F_1 \models F_2$ et $F_2 \models F_1$, montrons $F_1 \models F_2$ soit M une structure, on raisonne par cas
 - * si $[F_1]^M = 0$, on montre par l'absurde que $[F_2]^M = 0$

- $F_1 \sqsubseteq F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
- propriété : $F_1 \sqsubseteq F_2$ ssi $F_1 \sqsubseteq F_2$ et $F_2 \sqsubseteq F_1$
 - ▶ supposons $F_1 \models F_2$ et $F_2 \models F_1$, montrons $F_1 \models F_2$ soit M une structure, on raisonne par cas
 - * si $[F_1]^M = 0$, on montre par l'absurde que $[F_2]^M = 0$ si $[F_2]^{\mathbf{M}} = 1$, alors puisque $F_2 \models F_1$ il vient $[F_1]^{\mathbf{M}} = 1$ ce qui contredit $[F_1]^{M} = 0$

- $F_1 \sqsubseteq F_2$ ssi pour toute structure M, $[F_1]^M = [F_2]^M$
- propriété : $F_1 \sqsubseteq F_2$ ssi $F_1 \sqsubseteq F_2$ et $F_2 \sqsubseteq F_1$
 - ▶ supposons $F_1 \models F_2$ et $F_2 \models F_1$, montrons $F_1 \models F_2$ soit M une structure, on raisonne par cas
 - * si $[F_1]^{\mathbf{M}} = 0$, on montre par l'absurde que $[F_2]^{\mathbf{M}} = 0$ si $[F_2]^{\mathbf{M}} = 1$, alors puisque $F_2 \models F_1$ il vient $[F_1]^{\mathbf{M}} = 1$ ce qui contredit $[F_1]^{M} = 0$
 - * si $[F_1]^M = 1$ alors puisque $F_1 \models F_2$ il vient $[F_2]^M = 1$

Validité/Complétude de la Déduction Naturelle

$$F, F_1, \cdots, F_n \in \mathbb{F}_0(\mathcal{F}, \mathcal{P})$$

- **Validité** : si F est prouvable à partir des hypothèses F_1, \dots, F_n , alors $\{F_1, \dots, F_n\} \models F$
- Complétude : si $\{F_1, \dots, F_n\} \models F$ alors F est prouvable à partir des hypothèses F_1, \dots, F_n

