ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD.

INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.

1. Cirkelns ekvation

Cirkeln med centrum i C(p,q) och radien r=a

har ekvationen $(x-p)^2 + (y-q)^2 = a^2$

Anmärkning 1. Endast en punkt(0,0) satisfiera ekvationen $x^2 + y^2 = 0$

Anmärkning 2. Ingen punkt satisfierar ekvationen $x^2 + y^2 = -1$.

Exempel 1. Rita cirkeln

$$x^2 + y^2 + 4x - 2y = 4$$

Vi kvadratkompletterar

$$x^{2} + y^{2} + 4x - 2y = 4 \implies (x+2)^{2} - 4 + (y-1)^{2} - 1 = 4$$

$$\Rightarrow (x+2)^{2} + (y-1)^{2} = 9$$

Om vi jämför med cirkelns ekvationen $(x-p)^2 + (y-q)^2 = a^2$, ser vi att

$$-p = 2$$
, $-q = -1$ och $a^2 = 9$

eller

$$p = -2$$
, $q = 1$ och $a = 3$

Alltså C(-2,1) är centrum och a=3 är cirkelns radie.

Ellipsen med centrum i origo (0,0) och halvaxlarna a,b

har ekvationen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Anmärkning1: Om ellipsens centrum ligger i punkten C(p,q) då har ellipsen följande ekvation

$$\frac{(x-p)^2}{a^2} + \frac{(y-q)^2}{b^2} = 1.$$

Anmärkning 2. Endast en punkt(0,0) satisfiera ekvationen $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 0$

Anmärkning 3. Ingen punkt satisfierar ekvationen $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$.

Hyperbler: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (har 2 skärningspunkter med x-axeln)

och $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$. (har 2 skärningspunkter med y-axeln)

Hyperbeln $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ med asymptoter $y = \frac{bx}{a}$ och $y = -\frac{bx}{a}$

Typerbeln $\frac{y^2}{b^2} - \frac{1}{a^2} = 1$ m asymptoter $y = \frac{b x}{a}$ och $y = -\frac{b x}{a}$

Anmärkning 1. Ekvationen $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ kan faktoriseras och skrivas som

$$\left(\frac{x}{a} - \frac{y}{b}\right)\left(\frac{x}{a} + \frac{y}{b}\right) = 0.$$

och därmed punkter som satisfierar ekvationen ligger på två linjer

$$\frac{x}{a} - \frac{y}{b} = 0 \quad och \qquad \frac{x}{a} + \frac{y}{b} = 0 .$$

Exempel 2. Rita hyperbeln $2y^2 - 8x^2 = 8$.

Lösning: För att bestämma a och b skriver vi ekvationen på formen $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$.

Vi delar ekvationen $2y^2 - 8x^2 = 8 \mod 8$ och får

$$\frac{y^2}{4} - x^2 = 1 \Rightarrow b = 2 \text{ och } a = 1.$$

Därför är $y = \pm 2$ hyperbelns asymptoter.

Vi ritar asymptoter och,

med hjälp av en rektangel (se bilden),

skisserar vi hyperbeln.

y = 2x och y = -2x

Parabler

$$y=ax^2+bx+c$$
 (där $a\neq 0$) och $x=ay^2+by+c$ (där $a\neq 0$)

Exempel 3.

Parabeln $y = x^2$

Parabeln $x = y^2$

MÄNGDER

Standard talmängder:

N= {0, 1, 2, 3,....} mängden av alla **naturliga tal** (I några böcker N={1,2,3,...)

 $Z=\{ ... -3, -2, -1,0, 1, 2, 3, 4, ... \}$ mängden av alla **hela tal**

där m, n är hela tal och $n \neq 0$ } mängden av alla **rationella tal**

R mängden av alla reella tal

C mängden av alla komplexa tal

Endimensionella Intervall:

- (a, b) Öppet intervall = mängden av reella tal x sådana att a < x < b
- [a, b) halvöppet intervall = mängden av reella tal x sådana att $a \le x < b$
- (a, b) halvöppet intervall = mängden av reella tal x sådana att $a < x \le b$
- [a, b] Slutet intervall= mängden av reella tal x sådana att $a \le x \le b$

GRUNDLÄGGANDE BEGREPP OCH BETECKNINGAR

Begrepp "mängd" och "element" är grundläggande begrepp i matematiken (och därmed begrepp "mängd" och "element" inte definieras .)

Exempel 4. Låt A vara mängden av alla heltal som är större är 3 och mindre än 8.

A består av element 4, 5, 6 och 7. Vi betecknar detta på följande sätt

 $A = \{4, 5, 6, 7\}.$

Därmed $4 \in A$ som utläses 4 **tillhör** A (eller 4 är ett element i mängden A)

Vi kan skriva att $5 \in A$, $6 \in A$ och $7 \in A$

men t ex $51 \notin A$ (51 tillhör inte A)

Definition 1. Mängden utan element $\{\}$ kallas **den tomma mängden** och betecknas \emptyset .

Definition 2. Mängden A är en delmängd av mängden B om varje element i A är också element i B.

Vi betecknar $A \subseteq B$ (utläses A är en delmängd av B)

A B

Alltså: $A \subseteq B$ om $(x \in A \Rightarrow x \in B)$.

Definition 3. Två mängder A och B är lika om

(varje element som tillhör A, tillhör också B) och (varje element som tillhör B tillhör också A)

Alltså:

A = B om och endast om $(x \in A \Rightarrow x \in B)$ och $(x \in B \Rightarrow x \in A)$.

Därmed A = B är ekvivalent med $[A \subseteq B \text{ och } B \subseteq A]$

Anmärkning: Om $A \subseteq B$ och $A \neq B$ säger vi att A är en **äkta delmängd** av B och skriver

$$A \subset B$$

En mängd definieras av de element som mängden innehåller. Det sätt på vilket vi anger mängdens element, eller om element upprepas spelar inte roll.

Därför t ex

$${1,2,3}={1,1,3,3,2,2,2}={3,1,2}$$

(Vi ser att alla tre mängder består av element 1, 2 och 3 . Upprepning och ordning spelar inte roll i mängdens definition.)

En mängd **definieras oftast** som mängden av alla element som satisfierar ett eller flera villkor och ligger i en redan känd mängd:

$$A = \{x \in G: P(x)\},\$$

utläses A är mängden av alla x som tillhör G och som satisfierar villkoret P(x).

En mängd definieras av de element som mängden innehåller. Det sätt på vilket vi anger mängdens element, eller om element upprepas spelar inte roll.

Därför t ex

$$\{1,2,3\}=\{1,1,3,3,2,2,2\}=\{3,1,2\}$$

(Vi ser att alla tre mängder består av element 1, 2 och 3 . Upprepning och ordning spelar inte roll i mängdens definition.)

Exempel 5. Låt Z beteckna mängden av alla heltal. Ange alla element för följande mängder

a)
$$A = \{x \in Z: -2 \le x \le 4\}$$
 b) $B = \{x \in Z: x^2 = 25\}$

c)
$$C = \{x \in Z : x^2 = -25\}$$
 d) $D = \{x \in Z : 2x = 3\}$

Svar: a)
$$A=\{-2, -1, 0, 1, 2, 3, 4\}$$
 b) $B=\{-5, 5\}$ c) $C=\emptyset$ d) $D=\emptyset$

Exempel 6. Låt R beteckna mängden av alla reella tal. Ange alla element för följande mängder

a)
$$A = \{x \in R: x^2 = 5\}$$
 b) $B = \{x \in R: 2x = 3\}$ c) $A = \{x \in R: x^2 = -5\}$ d)

Svar: a) $A = \{-\sqrt{5}, \sqrt{5}\}$ b) $B = \{3/2\}$ c) $C = \emptyset$

Exempel 7. Rita följande mängd i xy-planet

$$A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 9 \}$$

Svar:

Exempel 8. Rita följande mängd i xy-planet

D= {
$$(x, y) \in R^2 : \frac{x^2}{4} + y^2 < 1 \text{ och } y \ge 0$$
}

MÄNGDOPERATIONER. 1. Unionen mellan två mängder A och B är mängden av alla element som finns i A **eller** B. Unionen betecknas $A \cup B$ (utläses A union B) .

$$A \cup B = \{x : x \in A \text{ eller } x \in B\}$$

- 2. Snittet (skärningen) av två mängder A och B är mängden av alla element som finns i både A och
- B. Snittet betecknas $A \cap B$ (utläses A snitt B)

$$A \cap B = \{x : x \in A \text{ och } x \in B\}$$

3. A och B är disjunkta mängder om de har inga gemensamma element

dvs $A \cap B = \emptyset$ (där \emptyset betecknar den **tomma mängden**).

4. Differensen mellan två mängder A och B är mängden av alla element som ligger i A men inte i B.

 $A \setminus B = \{x : x \in A \text{ och } x \notin B\}.$

6. Symmetrisk differens.

$$A \Delta B = (A \backslash B) \cup (B \backslash A)$$

7. Oftast betraktar vi mängdoperationer mellan delmängder till en känd mängd (grundmängd), $\text{Om } G \text{ är en grundmängd (tex } R^n) \text{ och A en delmängd till } G \text{ då definieras komplementet till A som}$ mängden av alla element i G som inte ligger i A. komplementet betecknas A^C

$$A^C = \{ x \in G : x \notin A \}$$

PUNKTMÄNGDER I Rⁿ

Definition 4. Rⁿ definieras som mängden av alla reella **n-tipplar**:

$$R^{n} = \{(x_1, x_2, \dots x_n), \text{där alla koordinater } \mathbf{x}_k \text{ är reella tal} \}.$$

Element i \mathbb{R}^n dvs n-tipplar $(x_1, x_2, \dots x_n)$ kallar vi punkter.

Låt M vara en delmängd till Rⁿ.

Vi använder fäljande beteckningar:

 $P \in M$ betecknar att punkten P **tillhör** mängden M (P ligger i M)

 $Q \notin M$ betecknar att punkten Q inte tillhör mängden M (Q ligger inte i M).

Punkter och vektorer.

Om A $(a_1,a_2,\ldots a_n)$ och B $(b_1,b_2,\ldots b_n)$ är två punkter i R n och \overrightarrow{AB} vektorn med startpunkt i A och eendpunkt i B då gäller

$$\overrightarrow{AB} = (b_1 - a_1, b_2 - a_2, \dots b_n - a_n).$$

Positionsvektorn (=ortvektorn) till en punkt A $(a_1, a_2, ... a_n)$ är vektorn

$$\overrightarrow{OA} = (a_1 - 0, a_2 - 0, \dots a_n - 0) = (a_1, a_2, \dots a_n),$$

{har samma koordinater som punkten A}.

Därför kan en n-tippel $(a_1,a_2,\ldots a_n)$ betraktas som både en punkt eller en vektor $\{$ dvs punkten A $(a_1,a_2,\ldots a_n)$ eller tillhörande ortvektor vektor $\stackrel{\rightarrow}{OA}=(a_1,a_2,\ldots a_n)$.

Avståndet mellan A och B, som betecknas d(A,B), är lika med längden av vektorn \overrightarrow{AB} :

$$d(A, B) = |\overrightarrow{AB}| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \dots + (b_n - a_n)^2}$$

Anm. Om vektorlängd definieras på ovanstående (standard) sätt kallas $\mathbf{R}^{\mathbf{n}}$ för euklidisk vektorrum.

Triangelolikheten: $d(A,C) \le d(A,B) + d(B,C)$

är viktig och kan enkelt bevisas med hjälp av elementär algebra.

Öppet och slutet klut.

Definition 5. Låt $C(c_1, c_2, \dots c_n)$ vara en punkt i $\mathbf{R}^\mathbf{n}$ och r>0 ett reellt tal. Ett **öppet klot** i $\mathbf{R}^\mathbf{n}$ består av alla punkter $X(x_1, x_2, \dots x_n)$ som satisfierar d(X, C) < r. Vi kallar C för klotets medelpunkt eller centrum och r för dess radie.

Alltså det öppna klotet $K\ddot{o}(C,r)$, med centrum C och radien r, definieras av

 $K\ddot{o}(C,r) = \{X \in \mathbb{R}^n : d(X,C) < r\}$ eller

$$K\ddot{o}(C,r) = \{(x_1, x_2, \dots x_n) : \sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2 + \dots + (x_n - a_n)^2} < r\}$$

som är ekvivalent med

$$K\ddot{o}(C,r) = \{(x_1, x_2, \dots x_n) : (x_1 - a_1)^2 + (x_2 - a_2)^2 + \dots + (x_n - a_n)^2 < r^2\}$$

Definition 6. Ett **slutet klot** Ks(C,r), med centrum C och radien r, definieras av

$$Ks(C,r) = \{X \in \mathbb{R}^n : d(X,C) \le r\}$$

Anmärkning: Ett "klot" enligt ovanstående definiton blir ett intervall i det endimensionella rummet och en cirkel i det tvådimensionella rummet

T ex endimensionella (slutna) "klotet" med centrum i punkten C=5 och radien r=1 är

 $K_1(C,r) = \{x \in R : d(x,C) \le 1\} = \{x \in R : |x-5| \le 1\} = \{x \in R : -1 \le x - 5 \le 1\} = \{x \in R : 4 \le x \le 6\}$ dvs "klotet" är faktiskt intervallet [4,6]

Sfär.

Definition 7. En **sfär** S(C,r) i \mathbb{R}^n , med centrum C och radien r, definieras av

$$S(C,r) = \{X \in \mathbb{R}^n : d(X,C) = r\}$$

Exempel 9. Bestäm ekvationen som beskriver 5-dimensionella sfären med centrum

C(1, 2, -3, -10, 7) och radien r=3.

Lösning: Om $X(x_1, x_2, ... x_5)$ är en punkt på sfären då

$$d(C,X) = r \Rightarrow \sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2 + \dots + (x_n - a_n)^2} = r$$

$$\Rightarrow (x_1 - a_1)^2 + (x_2 - a_2)^2 + \dots + (x_n - a_n)^2 = r^2$$

I vårt fall blir sfärens ekvation

$$(x_1-1)^2 + (x_2-2)^2 + (x_3+3)^2 + (x_4+10)^2 + (x_5-7)^2 = 9$$

Begränsade och obegränsade mängder.

Definition 8. En mängd M i R^n är begränsad om det finns ett tal c sådant att

d(O,P) < c för alla $P \in M$.

Anmärkning 1 Vi kan skriva villkoret på ekvivalent sätt : $|\stackrel{\rightarrow}{OP}| < c$.

Anmärkning 2. Definitionen kan geometriskt tolkas på följande sätt:

(Mängden M i \mathbb{R}^n är begränsad.) \Leftrightarrow (Det finns minst ett klot med centrum i origo som innehåller hela M.)

Exempel 10. Bestäm om följande mängder i R² är begränsade eller obegränsade.

a)
$$M_1 = \{(x, y) \in \mathbb{R}^2 : y = x\}$$
 (en rät linje)

b)
$$M_2 = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{1} \le 1\}$$
 (ellipsen med centrum i origo och halvaxlar 2 och 1)

Svar: a) Mängden M_1 är obegränsad.

Förklaring: Avståndet från en punkt (x,y) i M_1 til origo är

$$d(P,O) = \sqrt{x^2 + y^2} = \sqrt{x^2 + y^2} = x\sqrt{2}$$
 är obegränsad (avståndet $d(P,O) \to \infty$ om $x \to \infty$)

Svar: b) Mängden M_2 är begränsad.

Hela ellipsen ligger i en cirkel t ex i cirkeln med radien r= 3 och centrum i origo.

Exempel 11. Avgör om följande mängd är begränsad

a)
$$A = \{(x, y), 1 \le x \le 2, 1 \le y \le 2\}$$
 b) $B = \{(x, y), 0 \le y \le x\}$

Svar a) Mängden A är **begränsad**. (Mängden ligger t ex i cirkeln $x^2 + y^2 \le 25$

b) Mängden är **obegränsad**. Oavsett hur stor cirkel ritar vi, finns det alltid punkter utanför cirkeln.

RANDPUNKTER. INRE OCH YTTRE PUNKTER

Vi betraktar en punkt P i Rⁿ och en mängd M som är äkta delmängd av Rⁿ.

Definition 9.

- 1. En punkt P i Rⁿ kallas en **randpunkt** till M om **varje** öppet klot med centrum i punkten P (oavsett hur litet klotets radie är) innehåller minst en punk från M och minst en punkt från komplementet C(M).
- 2. En punkt P i Rⁿ kallas en **inre punkt** till M om det finns **minst ett** öppet klot med centrum i P vars alla punkter ligger i M.
- 2. En punkt P i Rⁿ kallas en **yttre punkt** till M om det finns **minst ett** öppet klot med centrum i P vars alla punkter ligger i CM.

I ovanstående figur är R en randpunkt till M. P är en inre punkt medan Q är en yttre punkt till M

Definition 10. Mängden av alla randpunkten till M kallas **randen** av M och betecknas oftast $\partial(M)$.

ÖPPNA OCH SLUTNA MÄNGDER

Definition 11.

- 1. En mängd M i Rⁿ är **sluten** om mängdens ALLA gränspunkter också tillhör mängden.
- 2. En mängd är öppen om INGEN mängdens gränspunkt tillhör mängden.
- 3. En mängd är **varken öppen eller sluten** om några, men inte alla, gränspunkter tillhör mängden.

Lägg märke till att enligt Definitionen vi har följande påstående:

- P1. En öppen mängd innehåller endast inrepunkter (ingen gränspunkt)
- P2. (M är öppen) ⇔ (Komplementet C(M) är sluten)
- P3. (M är sluten) ⇔ (Komplementet C(M) är öppen)

OMGIVNING TIL EN PUNKT

Definition 12. Vi säger att mängden M är en **omgivning** till punkten P om M innehåller ett öppet klot med centrum i P.

Exempel 12. Beskriva randpunkter, eventuella inrepunkter och avgör om följande mängder i R² är öppna, slutna eller "varken öppna eller slutna".

a)
$$M_1 = \{(x, y) \in R^2 : \frac{x^2}{4} + \frac{y^2}{1} \le 1\}$$

b)
$$M_2 = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{1} < 1\}$$

c)
$$M_3 = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{1} = 1\}$$

d)
$$M_4 = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{1} \le 1, \quad x > 0\}$$

e)
$$M_5 = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{1} < 1, x \ge 0\}$$

f)
$$M_6 = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{1} \le 1, \quad x \ge 0\}$$

Lösning a) Randen $\partial(M_1)$ består av alla punkter i R² som ligger på ellipsen $\frac{x^2}{4} + \frac{y^2}{1} = 1$ och alla ligger i M_1 (se Definitionen av M_1).

Alltså
$$\partial(M_1) = \{(x, y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{1} = 1\}$$

Inre punkter satisfierar $\frac{x^2}{4} + \frac{y^2}{1} < 1$.

Mängden $M_{\scriptscriptstyle 1}$ är sluten eftersom den innehåller alla sina randpunkter.

b) $\partial(M_2) = \{(x,y) \in R^2 : \frac{x^2}{4} + \frac{y^2}{1} = 1\}$ samma som i a-frågan men, den här gången, ingen randpunkt tillhör M_2 . Därför är M_2 en öppen mängd. Alla punkter i M_2 är inre punkter.

c) Alla punkter på ellipsen M_3 är randpunkten. Mängden saknar inrepunkter. Randen $\partial(M_3)=\{(x,y)\in R^2: \frac{x^2}{4}+\frac{y^2}{1}=1\}=M_3 \ .$

 M_3 är en sluten mängd.

d) Randen består av sträckan AB (se figuren nedan) och den delen av ellipsen som ligger till höger om y-axeln.

Sträckan AB tillhör inte $\,M_{\scriptscriptstyle 4}\,$ medan halvellips tillhör $\,M_{\scriptscriptstyle 4}\,.$

Mängden är varken öppen eller sluten. Inre punkter är de punkter som definieras av

$$\{(x,y) \in R^2 : \frac{x^2}{4} + \frac{y^2}{1} < 1, \quad x > 0\}$$

e) Mängden är varken öppen eller sluten. Se nedanstående figur.

f) $\,M_{_{6}}\,$ är en sluten mängd. se figuren nedan.

KOMPAKTA MÄNGDER

Definition 13. En mängd som är både begränsad och sluten kallas kompakt.

Exempel 13. Bestäm om följande mängder i planet R² är kompakta

- **a)** $\{(x,y), 0 \le x \le 2, 0 \le y \le 3\}$ **b)** $\{(x,y), \frac{x^2}{4} + y^2 \le 1\}$
- **c**) $\{(x,y), 0 < x < 3, 0 < y < 4\}$ **d)** $\{(x,y), y \ge x\}$

Svar: a) Ja. Mängden är kompakt eftersom den är begränsad och sluten.

- b) Ja. Mängden är kompakt eftersom den är begränsad och sluten.
- c) Nej. Mängden är INTE kompakt eftersom den är INTE sluten.
- d) Nej. Mängden är INTE kompakt eftersom den är INTE begränsad.

DEFINITIONSMÄNGD FÖR EN FUNKTION AV FLERA VARIABLER

I nedanstående uppgifter använder vi kunskap om Definitionsmängder för elementära envariabelfunktioner:

- i) En rationell funktion $\frac{p(t)}{q(t)}$ är definierad om $q(t) \neq 0$
- ii) Logaritm $\ln(t)$ är definierad om t > 0.
- iii) Funktionen \sqrt{t} är definierad om $t \ge 0$.
- iv) Funktioner $\arcsin(t)$ och $\arccos(t)$ är definierade om $-1 \le t \le 1$

Exempel 14. Bestäm och skissera (rita) största möjliga Definitionsmängd D till följande funktioner.

Bestäm också om Definitionsmängden är en sluten, öppen eller varken sluten eller öppen mängd.

a)
$$z = \frac{1}{y-x}$$

b)
$$z = \sqrt{9 - x^2 - y^2}$$

a)
$$z = \frac{1}{y-x}$$
 b) $z = \sqrt{9 - x^2 - y^2}$ c) $z = \ln(4 - x^2 - y^2)$

d)
$$z = \ln(x^2 + y^2 - 4)$$

d)
$$z = \ln(x^2 + y^2 - 4)$$
 e) $z = \sqrt{2y} + \ln(4 - x^2 - 4y^2)$

f)
$$z = \arcsin(y) + \sqrt{1 - \frac{x^2}{4} + y^2}$$

Lösning:

a) Funktionen $z = \frac{1}{y-x}$ är definierad om $y-x \neq 0$ d vs $y \neq x$. Definitionsmängden består av alla punkten i planet \mathbb{R}^2 förutom de som ligger på linjen y=x.

Gränsen till Definitionsmängden består av punkter som ligger på linjen y = x.

Ingen gränspunkt tillhör D och därför är D är en öppen mängd.

b) Funktionen $z=\sqrt{9-x^2-y^2}$ är definierad om $9-x^2-y^2\geq 0$ d vs $x^2+y^2\leq 9$. Definitionsmängden består av alla punkter som ligger på cirkelskivan $x^2+y^2\leq 9$

Gränspunkter, d vs punkter som ligger på själva cirkelns linje $x^2 + y^2 = 9$ tillhör också D. (Alla gränspunkten tillhör D) \Rightarrow (D är en sluten mängd).

c) Funktionen z = $\ln(4-x^2-y^2)$ är definierad om $4-x^2-y^2>0$ d vs $x^2+y^2<4$.

Definitionsmängden består av alla "inre" punkter på cirkelskivan.

Gränspunkter, d vs punkter som ligger på själva cirkelns linje $x^2 + y^2 = 4$ tillhör INTE D. (INGEN gränspunkt tillhör D) \Rightarrow (D är en öppen mängd).

d) Funktionen
$$z = \ln(x^2 + y^2 - 4)$$
 är definierad om $x^2 + y^2 - 4 > 0$ d vs $x^2 + y^2 > 4$.

Definitionsmängden består av alla "yttre" punkter till cirkelskivan $x^2 + y^2 > 4$

Gränspunkter, d vs punkter som ligger på själva cirkelns linje $x^2 + y^2 = 4$ tillhör INTE D. (INGEN gränspunkt tillhör D) \Rightarrow (D är en öppen mängd).

e) Funktionen
$$z = \sqrt{2y} + \ln(4 - x^2 - 4y^2)$$
 är definierad om

två villkor är uppfyllda

Villkor 1. $2y \ge 0$ dvs $y \ge 0$ (Punkter som ligger på linjen y=0 uppfyller också villkor 1)

och

Villkor 2.

$$4 - x^2 - 4y^2 > 0 \implies x^2 + 4y^2 < 4 \implies \frac{x^2}{4} + y^2 < 1$$

(Gränspunkter på ellipsskivan uppfyller INTE villkor 2)

Båda villkor är uppfyllda i övre delen av ellipsen $\frac{x^2}{4} + y^2 < 1$. Några gränspunkter tillhör D men inte alla.

(Några gränspunkter tillhör D men inte alla) ⇒ (D är en varken öppen eller sluten mängd).

f)
$$z = \arcsin(y) + \sqrt{1 - \frac{x^2}{4} + y^2}$$
 Funktionen $z = \arcsin(y) + \sqrt{1 - \frac{x^2}{4} + y^2}$ är definierad om

två villkor är uppfyllda

Villkor 1.
$$-1 \le y \le 1$$
 och

Villkor 2.

$$1 - \frac{x^2}{4} + y^2 \ge 0 \implies \frac{x^2}{4} - y^2 \le 1$$

Gränspunkterna för det här villkoret består av de punkter som ligger på hyperbeln $\frac{x^2}{4}-y^2=1$. Hyperbeln delar planet i tre delar och olikheten $\frac{x^2}{4}-y^2\leq 1$ är uppfylld på själva hyperbeln och i den del som innehåller (0,0) (som vi kan inse genom att testa tre punkter t ex (0,0) , (3,0) och (-3,0)).

Båda villkor är uppfyllda mellan linjerna y=1 , y=-1 och mellan två grenar av hyperbeln.

Alla gränspunkten tillhör D) ⇒ (D är en sluten mängd).