UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA

INF01112 – 2009 – Estado atual do desenvolvimento de microprocessadores

Nome: Germano de Mello Andersson	Num.Identificação:137719
Passo 1 – Arquitetura Intel Core Com a arquitetura Core, a Intel introduziu vários conc (http://developer.intel.com/products/processor/index.htm é um b características abaixo. Para cada uma delas, indique também a l separar o que é puro marketing e o que é realmente uma inovação	om início) e descreva o que significam as URL final utilizada (Observação: procure
1.1 Wide Dynamic Execution: Permite que cada núcleo continstruções completas por ciclo de clock.	=
URL: http://download.intel.com/products/processor/core2duo/desktop_products/	1 brief.pdf
1.2 Intelligent Power Capability: Otimiza a utilização de enerapenas quando necessário.	• •
URL: http://download.intel.com/products/processor/core2duo/desktop_products/	1_brief.pdf
1.3 Advanced Smart Cache: Aloca dinamicamente por núcleo como prioridade no algoritmo de alocação a quantidade de acesso a dados mais utilizados.	e carga. Obviamente reduz a latência de
URL: http://download.intel.com/products/processor/core2duo/desktop_products/	1 brief.pdf
1.4 Smart Memory Access: Utiliza a largura de banda de dados execução de instruções fora de sequência. Possui algoritmo cache L2 antecipadamente, o que mantem o pipeline semprexecucao de instrucoes.	os que enviam dados da memória para a
URL: http://download.intel.com/products/processor/core2duo/desktop-products/	1 brief.pdf
1.5 Advanced Digital Media Boost: Executa uma instrução processadores versão 45nm possuem também uma caracterís implementa as instruções Sse já existentes e habilita o último	tica chamada "Super Shuffle Engine" que
URL: http://download.intel.com/products/processor/core2duo/desktop_products/	1 brief.pdf
1.6 Turbo Boost Technology Aumenta a frequência do proce limites especificados para temperatura, corrente e força.	
	·

URL:htt	p://www.intel	.com/technolo	gy/turboboos	<u>t/</u>			

Passo 2 – Processadores Intel

Atualmente, a Intel caracteriza seus processadores por um número. Acesse o site da Intel, em http://ark.intel.com, selecione o link "Browse Processors" e preencha a tabela a seguir:

2.1 Preencha a tabela a seguir:

2.1 Trecincila a tabela a be	γ					
Modelo	Freqüência	Cache L2	Hyper-	64 bits	Número de	Potência
	(GHz)	(MB)	Thread	(EM64T)	Núcleos	dissipada
				ou 32 bits	(Cores)	(TDP),
						Watts
Atom Z540	1.86	0,5	sim	nao	1	2.4
Core 2 Quad Q9400	2.66	6	nao	sim	4	95
Core 2 Duo E6400	2.13	2	Não	Sim	2	65
Core 2 Extreme X6800	2.93	12	nao	sim	4	75
Core i7-940	2.93	8	sim	sim	4	130
Core i7-965 Extreme	3.2	12	sim	sim	4	130
Core Solo U1500	1.33	2	nao	nao	1	5.5

Passo 3 – Processadores AMD

Acesse o site da AMD em http://www.amd.com/us-en/Processors e siga o link "Processors". Pesquise no site para responder as perguntas a seguir:

3.1 O que significa a arquitetura Direct Connect? É uma arquitetura que troca o barramento utilizado pa comunicação do processador com a memória e todos outros componentes. Substitui o Front Side Bus pe chamado "HyperTransport", que é capaz de chegar a uma taxa de até 24GB/s por processador. Out	lo ra
importante característica é a presença do controlador de memória no processador, e não mais no Fro Side Bus.	nt
3.2 Qual a principal diferença entre os processadores da família Athlon e os da família Phenom? principal diferença entre as famílias Athlon e Phenom é a arquitetura multi-core utilizada. Ao contrário família Athlon, a família Phenom foi desenvolvida com um multi-core monolítico, ou seja, todos núcleos são/estão no mesmo componente de silício.	da

3.3 Preencha a tabela a seguir

3.3 I lecticità à tabela à se	5411					
Modelo	Freqüência	Cache L2	Cache L3	64 bits ou	Número de	Potência
	(GHz)	(KB)	(KB)	32 bits	Núcleos	dissipada
					(Cores)	(TDP),
						Watts
Phenom X4 9600	2.3	512	2048	ambos	4	95
Athlon 4000+	2.4	1024	0	ambos	1	89
Phenom X3 8650	2.3	512	2048	ambos	3	95
Phenom II X3 710	2.6	512	6144	ambos	3	95
Phenom II X4 910	2.6	512	6144	ambos	4	95

Athlon FX 74	3	1024	0	ambos	1	125
Athlon X2 6000+	3.1	512	0	ambos	1	89

Passo 4 – Processadores PowerPC

Para o projeto de computadores e controladores, não existe só os modelos x86, da Intel e AMD. Um exemplo disto é o processador PowerQuicc 885, desenvolvido pela empresa freescale com base na arquitetura Power-PC. Consulte o manual do MPC885 (disponível em www.freescale.com ou no próprio Moodle) e responda:

4.1 Qual o significado da sigla QUICC? Quad Integrated Communications Controller
4.2 Quais as frequências de operação deste processador? 66MHZ, 80MHZ e 120MHZ
4.3 No processador, o que significam as siglas UISA, VEA e OEA?
4.4 Quantas níveis de cache existem, e quais os tamanhos? Porque o manual denomina esta implementação de "Arquitetura de Harward? Qual o tamanho de um bloco da cache?Cache de Instrução: 8KB. Cache de Dados: 8KB. Tamanho do bloco: 16B, porque 2-way com 256 grupos. O manual denomina a implementação como "Arquitetura de Harvard" em função da separação da cache de instrução e da cache de dados
4.5 O processador tem gerência de memória virtual? Segmentada ou paginada? Quais os tamanhos dos blocos gerenciados? Sim. Paginada. 4,16,512 ou 8192KB.
4.5 Na gerência de memória, o que significam as siglas DTLB e ITLB?