Zhengdong Zhang

Email: zhengz@uoregon.edu

Course: MATH 648 - Abstract Algebra Instructor: Professor Arkady Berenstein

Homework - Week 1

ID: 952091294

Term: Winter 2025

Due Date: 15^{th} January, 2025

Problem 14.1.13

Let V be a left R-module and X be a subset of V. Then Ann(X) is a left ideal of R, and if X is a submodule of V then Ann(X) is a two-sided ideal of R.

Solution: Assume X is a subset of V. Let $a, b \in \text{Ann}(X)$. For any $x \in X$, we have (a + b)(x) = ax + bx = 0. Let $x \in R$, we have

$$(ra)x = r(ax) = r0 = 0.$$

This proves that Ann(X) is a left ideal of R. Now assume X is a submodule of V, we only need to prove that Ann(X) is a right ideal of R. Note that

$$(ar)x = a(rx) = 0$$

since X being a submodule of V tells us that rx is still an element of X for any $r \in R$. This shows that Ann(X) is a two-sided ideal of R.

Problem 14.1.15

True or false?

- (1) Let R be a commutative ring and $I, J \triangleleft R$ be two ideals of R. If the modules R/I and R/J are isomorphic then I = J.
- (2) Let R be a ring and I, J be two left ideals in R. If the modules R/I and R/J are isomorphic then I = J.

Solution:

(1) This is true. Let $\phi: R/I \xrightarrow{\sim} R/J$ be an isomorphism of R-modules with $\phi(1+I) = a+J$ for some $a \in R$. For any $j \in J$, we have

$$\phi(j+I) = \phi(j\cdot 1 + I) = j\cdot \phi(1+I) = ja + J.$$

Note that J is an ideal in R, so ja+J=J as $ja\in J$. Thus, $j+I\in\ker\phi=\{I\}$ because ϕ is an isomorphism. This shows that $j\in I$. We have proved $J\subseteq I$. Use a similar argument and an injective R-module homomorphism $\phi^{-1}:R/J\to R/I$ we can show that $I\subseteq J$. Now we can conclude that I=J.

(2) This is false. Consider $R = M_2(\mathbb{R})$ is the 2×2 matrix ring over \mathbb{R} . We define

$$I = \left\{ \begin{pmatrix} p & 0 \\ q & 0 \end{pmatrix} \mid p, q \in \mathbb{R} \right\},$$

$$J = \left\{ \begin{pmatrix} 0 & p \\ 0 & q \end{pmatrix} \mid p, q \in \mathbb{R} \right\}.$$

I is a left ideal of R since for any matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, we have

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} p & 0 \\ q & 0 \end{pmatrix} = \begin{pmatrix} ap + bq & 0 \\ cp + dq & 0 \end{pmatrix} \in I.$$

Similar for J. Note that the quotient is a R-module

$$R/I = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} + I \right\}$$

and $\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$ and $\begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}$ represent the same element in the quotient if $b_1 = b_2$ and $d_1 = d_2$. So the choice of b, d uniquely determines an element in R/I. Similarly, the choice of a, c uniquely determines an element in R/J. Define a map

$$\phi: R/I \to R/J,$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} b & a \\ d & c \end{pmatrix}.$$

It is easy to see that ϕ is both injective and surjective. Moreover, this is an R-module homomorphism since

$$\phi\begin{pmatrix} k & l \\ m & n \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \phi\begin{pmatrix} ka + lc & kb + ld \\ ma + nc & mb + nd \end{pmatrix}$$

$$= \begin{pmatrix} kb + ld & ka + lc \\ mb + nd & ma + nc \end{pmatrix}$$

$$= \begin{pmatrix} k & l \\ m & n \end{pmatrix} \begin{pmatrix} b & a \\ d & c \end{pmatrix}$$

$$= \begin{pmatrix} k & l \\ m & n \end{pmatrix} \phi\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Thus, R/I and R/J are isomorphic as R-modules but obviously I and J are different left ideals in R.

Problem 14.1.16

Let V be an R-module. A family $(V_i)_{i\in I}$ of submodules of V is a directed system of submodules if for any $i, j \in I$ there exists $k \in I$ such that $V_i \subseteq V_k$ and $V_j \subseteq V_k$. Prove that V is finitely generated if and only if the union $\bigcup_{i\in I} V_i$ of any directed set of proper submodules is proper. Deduce that a finitely generated module has a maximal proper submodule.

Solution: First we assume V is finitely generated. Suppose the set

$$S = \{v_1, v_2, \dots, v_n\}$$

is the generating set for the module V. Denote the generating set for V_i is S_i for every $i \in I$. For any $i \in I$, V_i being proper submodules implies that S_i is a proper subset of S.

<u>Claim</u>: There exists $k \in I$ such that for any $i \in I$, $V_i \subseteq V_k$.

<u>Proof:</u> Note that every V_i is finitely generated, so we only need to show that there exists $k \in I$, for any $i \in I$, we have $S_i \subseteq S_k$. We pick S_k as the set with the most elements. This can be done because $(S_i)_{i \in I}$ are all subsets of a finite set S with n elements. Suppose there exists $v \in S_i$ for some i such that $v \notin S_k$. By the definition of the directed system, there must exists some $k' \in I$ such that $V_i \subseteq V_{k'}$ and $V_k \subseteq V_{k'}$. This implies $v \in S_{k'}$ and $S_k \subseteq S_{k'}$. $S_{k'}$ is strictly larger than S_k . This contradicts our choice of S_k .

The above claim tells us that $\bigcup_{i \in I} V_i = V_k$ is a proper submodule.

Now assume for any directed system of proper submodule $(V_i)_{i\in I}$, the union $\cup_{i\in I}V_i$ is proper and V is not finitely generated. Consider a set of $(V_i)_{i\in I}$ where for each $i\in I$, V_i is a finitely generated submodule of V. This is a directed system because for any $i,j\in I$, the union $V_i\cup V_j$ is also a finitely generated submodule. And since V is not finitely generated, each V_i must be proper. It is easy to see that $\bigcup_{i\in I}V_i\subseteq V$. We claim that $V=\bigcup_{i\in I}V_i$ because for every $v\in V$, $v\in \langle v\rangle$ which is a finitely generated submodule. This shows that the union $\bigcup_{i\in I}V_i=V$ is not proper. A contradiction.

Given a finitely generated nontrivial module V, consider the set $S = \{V_i\}_{i \in I}$ where each V_i is a proper submodule of V.S is non-empty since the zero module 0 is always in S. S has a partial order given by the inclusion of subodules. Consider a totally ordered subset X of S. Note that X is a directed system and we can take the union of all elements in X as an upper bound since previously we have shown that the union is still a proper submodule. By Zorn's lemma, S must have a maximal element, which is a maximal proper submodule of V.

Problem 14.1.17

True or false? As a \mathbb{Z} -module, \mathbb{Q} has a maximal proper submodule.

Solution: This is false. Let M be a maximal proper \mathbb{Z} -submodule of \mathbb{Q} . Then \mathbb{Q}/M is a simple \mathbb{Z} -module. By Example 14.1.21, a \mathbb{Z} -module \mathbb{Q}/M is simple if and only if $\mathbb{Q}/M \cong C_p$ for some prime p. So we have a surjective homomorphism of \mathbb{Z} -modules $\phi: \mathbb{Q} \to C_p$ with $\ker \phi = M$. For any $\frac{m}{n} \in \mathbb{Q}$, we have

$$\phi(\frac{m}{n}) = \phi(\frac{m}{pn} + \frac{m}{pn} + \dots + \frac{m}{pn}) = p\phi(\frac{m}{pn}) = 0.$$

So ϕ is the zero morphism, which contradicts the surejctivity of ϕ .

Problem 14.1.23

An R-module V is irreducible if and only if $V \cong R/I$ for a maximal left ideal I of R.

Solution: First we assume that V is irreducible. For any $v \in V$, by Exercise 14.1.13, the annihilator Ann (v) is a left ideal of R. Suppose Ann $(v) \subseteq J \subseteq R$ is contained in some other left ideal in R. There exists $a \in J$ such that $a \notin \text{Ann}(v)$. Note that $a \notin \text{Ann}(v)$ implies $av \neq 0$, so $v \in \langle av \rangle = V$ since V is simple. This means that there exist $r \in R$ such that v = rav. So $1 - ra \in \text{Ann}(v) \subseteq J$. Then $1 = (1 - ra) + ra \in J$ and this shows that J = R. We have proved that Ann(v) is a maximal left ideal of R. We define a map

$$\phi: R/\mathrm{Ann}(v) \to V;$$

 $r + \mathrm{Ann}(v) \mapsto rv.$

It is obvious that ϕ is a well-defined R-module homomorphism. Suppose $r + \text{Ann}(v) \in \text{ker } \phi$. Then we have

$$\phi(r + \operatorname{Ann}(v)) = rv = 0.$$

This implies $r \in \text{Ann}(v)$, so r + Ann(v) = Ann(v) in R/Ann(v). This proves that ϕ is injective. Moreover, we know that

$$V = \{ rv \mid r \in R \} .$$

Suppose $r + \operatorname{Ann}(v)$ and $s + \operatorname{Ann}(v)$ are different representatives for the same element in $R/\operatorname{Ann}(v)$, we know $r - s \in \operatorname{Ann}(v)$ and (r - s)v = 0. This means rv = sv is the same element in V. This proves that ϕ is surjective. Thus, we have an R-module isomorphism $V \cong R/\operatorname{Ann}(v)$.

Conversely, we assume $V \cong R/I$ for some maximal left ideal I in R. We need to prove that R/I as a R-module is simple. By Exercise 14.1.14, the correspondence theorem in modules tells us that the set of submodules in R/I corresponds to the set of left ideals containing I, and since I is maximal, R/I only has two submodules: 0 and itself. This proves that $V \cong R/I$ is simple.

Problem 14.1.24

Prove that for every ring R there exists an irreducible R-module.

Solution: By Exercise 14.1.23, we only need to show that every ring R has a maximal left ideal I. Let S be the set of all proper left ideals in R. S is not empty since the zero ideal 0 is always in S. S has a partial order given by the inclusion. Given a totally orderer subset $\{J_i\}_{i\in I}$, we claim that $\bigcup_{i\in I}J_i$ is an upper bound. Indeed, for any $a\in\bigcup_{i\in I}J_i$, there must exists $k\in I$ such that $a\in J_k$. Then $ra\in J_k\subseteq\bigcup_{i\in I}J_i$ for any $r\in R$ since J_k is a left ideal. Moreover, suppose $\bigcup_{i\in I}J_i=R$. Then $1\in R=\bigcup_{i\in I}J_i$. This means there exists $k\in I$ such that $1\in J_k$, namely $J_k=R$. This contradicts that J_k is a proper left ideal of R. So $\bigcup_{i\in I}J_i$ is still a proper left ideal of R. By Zorn's lemma, S has a maximal element.

Problem 14.1.25

Let R be a commutative ring. Show that the map $V \mapsto \operatorname{Ann}_R(V)$ induces a bijection between the set of isomorphism classes of irreducible R-modules and the set of maximal ideals of R.

Solution: Let V be a simple R-module and $v \in V$ is a nonzero element. Claim:

$$\operatorname{Ann}(v) = \operatorname{Ann}(V).$$

<u>Proof:</u> It is obvious that $Ann(V) \subseteq Ann(v)$ since $v \in V$. On the other hand, given $r \in Ann(v)$ satisfying rv = 0. We know V is simple so $\langle v \rangle = V$. For any $w \in V$, there exists $r' \in R$ such that w = r'v. Now using the fact that R is commutative, we have

$$rw = r(r'v) = (rr')v = (r'r)v = r'(rv) = 0.$$

so $r \in \text{Ann}(V)$.

The claim tells us that the map $\phi: V \mapsto \operatorname{Ann}(V) = \operatorname{Ann}(v)$ for some $v \in V$. We have already seen in Exercise 14.1.23 that $\operatorname{Ann}(v)$ is a maximal ideal of R and $V \cong R/\operatorname{Ann}(v)$. Suppose $V \cong W$ as R-modules, then we have $R/\operatorname{Ann}(v) \cong R/\operatorname{Ann}(w)$ for some $v \in V$ and $w \in W$. By Exercise 14.1.15 (1), $\operatorname{Ann}(v) = \operatorname{Ann}(w)$ in R. So the map ϕ is well-defined. Moreover, we can define $\phi^{-1}: I \to R/I$ where I is a maximal ideal of R. Note that $I = \operatorname{Ann}(R/I)$ if we view R/I as an R-module. So this indeed defines an inverse of ϕ . This proves that ϕ is an isomorphism.

Problem 14.2.1

If R is commutative and V is an irreducible R-module, then $V \oplus V$ is not cyclic. Give an example of a non-commutative ring R and an irreducible left R-module V such that $V \oplus V$ is cyclic.

Solution: First assume R is commutative. Let $v, w \in V$ be two different nonzero elements. Since V is simple, we know that $V = \langle v \rangle = \langle w \rangle$. We can write $V \oplus V = \langle v \rangle \oplus \langle w \rangle$. Suppose that $V \oplus V$ is cyclic. Then there exists $a \in \langle v \rangle \oplus \langle w \rangle$ such that for some $r_1, r_2 \in R$, $a = r_1v + r_2w$ generates $V \oplus V$. There exists $r_3, r_4 \in R$ such that

$$r_3(r_1v + r_2w) = v$$
$$r_4(r_1v + r_2w) = w$$

which gives us

$$r_3r_1 = 1, r_3r_2 = 0,$$

 $r_4r_1 = 0, r_4r_2 = 1.$

Note that R is commutative, so we have

$$1 = (r_3r_1)(r_4r_2) = (r_3r_2)(r_4r_1) = 0.$$

A contradiction. So $V \oplus V$ cannot be cyclic.

Now assume R is not commutative. Let $R = M_2(\mathbb{F})$ be the 2×2 matrix ring over a field \mathbb{F} . The column vectors

$$V = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \mid a, b \in \mathbb{F} \right\}$$

is a simple left R-module. Moreover, we have $V \oplus V \cong M_2(\mathbb{F})$, which can be generated by $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ as a left $M_2(\mathbb{F})$ -module.

Problem 14.2.6

Let $0 \to K \xrightarrow{\iota} V \xrightarrow{\pi} Q \to 0$ be an exact sequence of left R-modules. If Q and K are finitely generated then so is V.

Solution: Since K and Q are finitely generated, we can write

$$K = \langle v_1, v_2, \dots, v_m \rangle, \ Q = \langle w_1, w_2, \dots, w_n \rangle$$

for some positive integer m, n. There exists $w'_1, w'_2, \ldots, w'_n \in V$ such that $\pi(w'_i) = w_i$ for any $1 \le i \le n$ because π is surjective.

Claim: V is generated by the set

$$\{\iota(v_1), \iota(v_2), \ldots, \iota(v_m), w'_1, w'_2, \ldots, w'_n\}$$
.

<u>Proof:</u> Note that by exactness, we have $V/\iota(K) \cong Q$. By our choice of generators, $V/\iota(K)$ is generated by

$$w'_1 + \iota(K), w'_2 + \iota(K), \dots, w'_n + \iota(K).$$

So for every $v \in V$, the coset $v + \iota(K)$ can be written as

$$v + \iota(K) = (a_1 w_1' + \iota(K)) + (a_2 w_2' + \iota(K)) + \dots + (a_n w_n' + \iota(K))$$

= $(a_1 w_1' + a_2 w_2' + \dots + a_n w_n') + \iota(K)$

where $a_1, a_2, \ldots, a_n \in R$. This means that

$$v - a_1 w_1' - a_2 w_2' - \dots - a_n w_n' \in \iota(K).$$

Note that ι is injective and K is generated by v_1, \ldots, v_m , so we can write

$$v - a_1 w_1' - a_2 w_2' - \dots - a_n w_n' = b_1 \iota(v_1) + b_2 \iota(v_2) + \dots + b_m \iota(v_m).$$

This proves the claim.

Problem 14.2.12

The sequence of R-modules and R-module homomorphisms

$$U \xrightarrow{f} V \xrightarrow{g} W \to 0$$

is exact if and only if the corresponding sequence

$$0 \to \hom_R(W, X) \xrightarrow{g^*} \hom_R(V, X) \xrightarrow{f^*} \hom_R(U, X)$$

of abelian groups is exact for every R-module X.

Solution: First we prove the sufficiency. Assume we have an exact sequence of R-modules

$$U \xrightarrow{f} V \xrightarrow{g} W \to 0.$$

Apply the functor $hom_R(-,X)$ where X is an R-module. We need to prove the following:

(1) $g^* : \hom_R(W, X) \to \hom_R(V, X)$ is injective. Let $p \in \hom_R(W, x)$ and $p \in \ker g^*$. This is the same as for any $v \in V$, we have $g^*(p)(v) = (p \circ g)(v) = 0$ in X. For any $w \in W$, by exactness we know that $g : V \to W$ is surjective, so there exists $w' \in V$ such that g(w') = w. Then we have

$$p(w) = p(g(w')) = (p \circ g)(w') = 0.$$

This proves that $p: W \to X$ is the zero morphism, so $\ker g^* = 0$ and g^* is injective.

(2) We need to show that $\ker f^* = \operatorname{Im} g^*$. First we show that $\operatorname{Im} g^* \subseteq \ker f^*$. This is equivalent to $f^* \circ g^* = 0$. Note that $\operatorname{hom}_R(-, X)$ is a functor, so

$$f^* \circ q^* = (q \circ f)^* = 0^* = 0$$

by exactness of the original sequence. Next, consider a map $q:V\to X$ satisfying $f^*(q)=q\circ f=0$. For any $w\in W$, since g is surjective, we can choose $v\in V$ such that g(v)=w. Define a map $q':W\to X$ as follows:

$$q'(w) = q(v).$$

This is well-defined (it does not depend on the choice of v). Suppose there exists another $v' \in V$ such that g(v') = w. Then $v - v' \in \ker g = \operatorname{Im} f$ by the exactness of the original sequence. This means there exists $u \in U$ such that f(u) = v - v'. So we have

$$q(v) - q(v') = q(v - v') = q(f(u)) = (q \circ f)(u) = 0$$

since $q \in \ker f^*$. We have proved that $\ker f^* \subseteq \operatorname{Im} g^*$. Therefore, $\ker f^* = \operatorname{Im} g^*$.

Now assume for any R-module X, we have an exact sequence

$$0 \to \hom_R(W, X) \xrightarrow{g^*} \hom_R(V, X) \xrightarrow{f^*} \hom_R(U, X).$$

We need to show that the original sequence

$$U \xrightarrow{f} V \xrightarrow{g} W \to 0$$

is exact. We need to prove the following:

(1) q is surjective.

Take $X = \operatorname{coker} g$ and $q: W \to \operatorname{coker} g$ is the canonical projection map. The composition $(q \circ g) = g^*(q) = 0$ by definition of the cokernel and since g^* is injective by the exactness of the sequence, we know that q = 0 is the zero map. This implies that $\operatorname{coker} g = 0$, so g is surjective.

(2) We need to prove that $\operatorname{Im} f = \ker g$.

First we need to show that Im $f \subseteq \ker g$, which is equivalent to $g \circ f = 0$. By exactness, we have

$$f^* \circ g^* = (g \circ f)^* : \hom_R(W, X) \to \hom_R(U, X)$$

is the zero map. Take X = W and we have

$$0 = (g \circ f)^*(id_W) = f \circ g \circ id_W = f \circ g.$$

This proves $\operatorname{Im} f \subseteq \ker g$. On the other hand, consider $p: V \to \operatorname{coker} f$ is the canonical projection. By definition, we know that $f^*(p) = p \circ f = 0$, so $p \in \ker f^* = \operatorname{Im} g^*$ by exactness of the sequence. This means there exists $\phi: W \to \operatorname{coker} f$ such that $g^*(\phi) = \phi \circ g = p$. Now suppose $v \in V$ satisfying g(v) = 0. We have

$$p(v) = (\phi \circ g)(v) = \phi(g(v)) = 0.$$

So $v \in \ker p = \ker(V \to \operatorname{coker} f) = \operatorname{Im} f$. We have proved that $\ker g \subseteq \operatorname{Im} f$. Therefore, $\ker g = \operatorname{Im} f$.

Problem 14.2.16

Let G be a finite group, \mathbb{F} a field of characteristic p dividing |G|. Then the 1-dimensional submodule of the left regual module $\mathbb{F}G$ spanned by the element $\sum_{g \in G} g$ is not a direct summand of the regular module.

Solution: Let $x = \sum_{g \in G} g$. Assume $\langle x \rangle$ is a direct summand of $\mathbb{F}G$ as an $\mathbb{F}G$ -module, then there exists a $\mathbb{F}G$ -submodule C such that $C \oplus \langle x \rangle = \mathbb{F}G$. Suppose an element $\sum_{h \in G} a_h h \in C$ where $a_h \in \mathbb{F}$. We have

$$x(\sum_{h\in G}a_hh)=(\sum_{g\in G}g)(\sum_{h\in G}a_hh)=\sum_{g\in G}\sum_{h\in G}a_hgh=\sum_{k\in G}b_kk.$$

Note that for any $k \in G$, there exists a unique $g = kh^{-1} \in G$ for every $h \in G$ such that gh = k. So $b_k = \sum_{h \in G} a_h$ for any $k \in G$. And we can write

$$x(\sum_{h\in G}a_hh)=\sum_{g\in G}(\sum_{h\in G}a_h)g=(\sum_{h\in G}a_h)(\sum_{g\in G}g)=(\sum_{h\in G}a_h)x\in \langle x\rangle.$$

Since $\sum_{h\in G} a_h h \in C$, we can be see that $x(\sum_{h\in G} a_h h) \in C \cap \langle x \rangle = 0$. This implies $0 = \sum_{h\in G} a_h \in \mathbb{F}$. On the other hand, suppose $\sum_{h\in G} b_h h \in \mathbb{F}G$ and similarly we have

$$(\sum_{h \in G} b_h h) x = (\sum_{h \in G} b_h h) (\sum_{g \in G} g) = (\sum_{h \in G} b_h) x \in \langle x \rangle.$$

Now consider $e \in G$ which is the identity element, viewed as an element in $\mathbb{F}G$. $e \notin C$ since the coefficients need to sum to zero and also $e \notin \langle x \rangle$. But $\mathbb{F}G = \langle x \rangle \oplus C$. A contradiction.

Problem 14.3.4

True or false? If K is a free R-module, then every short exact sequence of R-modules of the form $0 \to K \to V \to Q \to 0$ is split.

Solution: This is false. Consider the following short exact sequence of \mathbb{Z} -modules

$$0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/(2) \to 0.$$

Here $K = \mathbb{Z}$ is a free \mathbb{Z} -module but this sequence does not split since \mathbb{Z} cannot be written as direct sum of \mathbb{Z} and $\mathbb{Z}/(2)$.

Problem 14.3.9

Suppose R is an integral domain with the property that any maximal R-linearly independent set of vectors in any free R-module is a basis. Prove that R is a field.

Solution: Consider R itself as a free R-module of rank 1. Take $0 = \neq x \in R$. Then the set $\{x\}$ is maximal and R-linearly independent, so it is a basis. This means for any $r \in R$, there exists $y \in R$ such that yx = r. Take r = 1 and this tells us that every element in R has a multiplicative inverse. Thus, R is a field.

Problem 14.3.10

Give an example of an integral domain R and a submodule of a free R-module that is not free.

Solution: Let k be a field of characteristic 0 and R = k[x,y], which is an integral domain. R itself can be viewed as a free R-module of rank 1. Consider the ideal $I = (x,y) \subseteq R$, which is a submodule of R, and I is not a free R-module. Assume the opposite. Note that R as a free R-module is of rank 1, so I is free, then it must also be of rank 1. This means I can be generated by one element, namely I is a principal ideal in R. Note that x and y are relatively prime in R, so I has be generated by $\gcd(x,y) = 1$. This shows that I = R, but I is proper since $1 \in R$, $1 \in R$, $1 \in R$, but $1 \in R$, and $1 \in R$, $1 \in R$

Problem 14.3.11

If R is commutative and every submodule of a free R-module is free then R is a PID.

Solution: View R itself as a free R-module of rank 1, then any ideal $I \subseteq R$ is a R-submodule of rank at most 1. This means there exist $a \in I$ such that for any $b \in I$, there exist $r \in R$ such that ra = b. This shows that I is generated by a, so I is a principal. Moreover, for any $a \in R$, consider the principal ideal generated by a, it is a free R-module with basis $\{a\}$. If a is a zero divisor, then $\{a\}$ is not R-linearly independent since there exists non zero $r \in R$ such that ra = 0. A contradiction. This proves that R is a principal ideal domain.