Recap 1: Cauchy and Integrals

• Analytic function f(z) = u(x,y) + iv(x,y) must have

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Cauchy-Riemann conditions

Then

$$\oint_C f(z)dz = 0$$

Cauchy's theorem

and

$$I = \oint_C \frac{dz}{z-a} = \begin{cases} 2\pi i, & a \text{ lies within } C \\ 0, & \text{otherwise} \end{cases}$$

$$f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z) dz}{z-a}$$
 Cauchy integral formula

Recap 2: Series Expansions

Taylor series

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$

$$f(z) \text{ analytic for } |z-a| < R$$

e.g. $f(z) = \frac{1}{z-1}$ Radius of convergence of the Taylor series expansion about z = 0 is R = 1.

expect a singularity at some point z with |z - a| = R

Laurent series

$$f(z)=\sum_{n=-\infty}^{\infty}c_n(z-a)^n$$
 Radii of $f(z)$ analytic for $R_1<|z-a|< R_2$ Series expect singularities at points z with $|z-a|=R_1$ and $|z-a|=R_2$

e.g.
$$f(z) = \frac{1}{(z-1)(z-3i)}$$

Radii of convergence of the Laurent series expansion about z = 0 are $R_1 = 1, R_2 = 3.$

pect singularities at points
$$z$$
 with $|z-a|=R_1$

Construction of Laurent Series

- Several techniques for constructing series
 - 1. Binomial theorem: Taylor series for $|z-a| < R_1$ Principal Laurent for $|z-a| > R_2$ Full Laurent for $R_1 < |z-a| < R_2$
 - Can always write $\frac{1}{(z-a)(z-b)} = \frac{A}{z-a} + \frac{B}{z-b}$ if $a \neq b$
 - 2. If a = b, write $\frac{1}{(z-a)^2} = -\frac{d}{dz} \left(\frac{1}{z-a}\right)$ expand $\left(\frac{1}{z-a}\right)$ as a Taylor/Laurent series, then differentiate (OK because of the Weierstrass theorem uniform convergence)
 - 3. Also can integrate a known expression, e.g. $f(z) = \log_e(1+z)$ write $\frac{df}{dz} = \frac{1}{1+z}$, expand and integrate.

Types of Singularity

- A singularity is any place where a function f is not analytic.
- Our applications and interests point us to a very specific type.
- Suppose f(z) is analytic everywhere in some small region surrounding z=a, except at z=a
 - \Rightarrow f has an <u>isolated singularity</u> at a
- If f(z) is bounded as $z \to a$, $|f| < B < \infty$, then $\lim_{z \to a} f(z)$ exists, so we can define f(a) as this limit, and then f(z) is analytic at z = a

<u>removable</u> singularity

e.g.
$$f(z) = \frac{\sin z}{z}$$

• Otherwise, $|f| \to \infty$ "uniformly" as $z \to a$ (|f| > any M for $|z - a| < \text{some } \varepsilon$)

e.g.
$$f(z) = \frac{1}{z}, \frac{1}{\sin z}$$

Zeros of Functions

- Taylor series: $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$
- If $c_0=0$, $c_1\neq 0$, then $f(z)\sim z-a$ near $z=a-\underline{\text{simple zero}}$ if $c_0=c_1=0$, $c_2\neq 0$, then $f(z)\sim (z-a)^2$ near $z=a-\underline{\text{zero of order 2}}$ if $c_0=c_1=\cdots=c_{m-1}=0$, $c_m\neq 0$, then z=a is a zero or order m
- Order of a zero is lowest m for which $\lim_{z\to a} \frac{f(z)}{(z-a)^m} \neq 0$.

Zeros and Poles

• Similarly, if the Laurent series for *f*

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n$$

has $c_n = 0$ for n < -m, then f has a pole of order m at z = a.

- Order of a pole is lowest m for which $|\lim_{z\to a}(z-a)^m f(z)|\neq \infty$.
- Loosely, "a pole of order m is the reciprocal of a zero of order m."

e.g.
$$f(z) = \csc z = \frac{1}{\sin z} = \frac{1}{z} + \frac{1}{6}z + \frac{7}{360}z^3 + \cdots$$
 pole of order 1 simple pole

Other Singularities

• Possible that f(z) is neither bounded nor uniformly bounded as $z \to a$.

e.g.
$$e^{1/z} = 1 + \frac{1}{z} + \frac{1}{2z^2} + \frac{1}{6z^3} + \cdots$$
, so $c_n \neq 0, n \to -\infty$

Wild oscillations as $z \to 0$, and values taken depend on path.

Can show (Picard's theorem) that f(z) takes on all ("almost all") values in $\mathbb C$ infinitely many times in any small region containing a as $z \to a$.

essential singularity

- Other singularities (non-isolated)
 - 1. branch point and branch cut
 - 2. accumulation point of isolated singularities e.g. $\csc \frac{1}{z}$ as $z \to 0$.

- Often of great interest to mathematicians
- Don't turn up often in "our" applications

The Residue Theorem

- The point!
- Our primary interest is in poles (regular functions divided by polynomials).
- Recall

$$\oint_C \frac{dz}{(z-a)^n} = \int_0^{2\pi} \frac{re^{i\theta}id\theta}{r^n e^{in\theta}} = \frac{i}{r^{n-1}} \int_0^{2\pi} e^{i(1-n)\theta}id\theta$$
$$= \begin{cases} 0, & n \neq 1 \\ 2\pi i, & n = 1 \end{cases}$$

- Then if $f(z)=\sum_{n=-m}^{\infty}c_n(z-a)^n$, substitute in and find that $\oint_{\mathcal{C}}f(z)dz=2\pi i\;c_{-1}$
 - 1. Integral along C depends on behavior of function <u>away</u> from C
 - 2. Integral doesn't depend on the most singular part of the function, but on the <u>least</u> singular part of its Laurent expansion.

The Residue Theorem

- Turn all this into a formal statement of the theorem:
- Define <u>residue</u> of f at a,

Res
$$f(a) = \frac{1}{2\pi i} \oint_C f(z) dz$$
, where C contains a

Note: shape of C doesn't matter (Cauchy)

The Residue Theorem

- Turn all this into a formal statement of the theorem:
- Define $\underline{\text{residue}}$ of f at a,

lying within C,

Res
$$f(a) = \frac{1}{2\pi i} \oint_C f(z) dz$$
, where C contains a

$$\oint_C f(z)dz = 2\pi i \sum_{k=1}^n \operatorname{Res} f(a_k)$$

• Again, integral is determined by the \underline{least} singular behavior of f at poles \underline{away} from C

Computation of Residues

- Integral of a function around a contour boils down to locating its poles inside the contour and computing the residues at each.
- Formal expressions:

for a simple pole at
$$z = a$$
, Res $f(a) = \lim_{z \to a} (z - a) f(z)$
for a pole of order m at $z = a$, Res $f(a) = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dx^{m-1}} [(z - a)^m f(z)]$

- follows from definition of residue in terms of Laurent series
- basically, getting rid of leading terms to expose c_{-1}

e.g.
$$f(z) = e^z/z^4$$
, $m = 4$, $\text{Res } f(0) = \frac{1}{3!} \lim_{z \to 0} \frac{d^3}{dx^3} [e^z] = \frac{1}{6}$

- Simple pole, with $f(z) = \frac{\phi(z)}{\psi(z)}$, $\varphi(a) \neq 0$, $\psi(a) = 0 \implies \operatorname{Res} f(a) = \frac{\phi(a)}{\psi'(a)}$
- But usually, just expanding out the Laurent series is the best way to get there!

Computation of Residues

Examples

1.
$$f(z) = e^z/z^4 = \frac{1}{z^4} \left(1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \cdots \right) = \frac{1}{z^4} + \frac{1}{z^3} + \frac{1}{2z^2} + \frac{1}{6z} + \cdots$$
 residue is $\frac{1}{6}$

2.
$$f(z) = \sin z / z^4 = \frac{1}{z^4} \left(z - \frac{z^3}{6} + \frac{z^5}{120} \dots \right) = \frac{1}{z^3} - \frac{1}{6z} + \frac{z}{120} \dots$$

residue is $-\frac{1}{6}$

3.
$$f(z) = \cos z / z^4 = \frac{1}{z^4} \left(1 - \frac{z^2}{2} + \frac{z^4}{24} \dots \right) = \frac{1}{z^4} - \frac{1}{2z^2} + \frac{1}{24} \dots$$
 residue is 0

4.
$$f(z) = \cos z / z^3 = \frac{1}{z^3} \left(1 - \frac{z^2}{2} + \frac{z^4}{24} \dots \right) = \frac{1}{z^3} - \frac{1}{2z} + \frac{z}{24} \dots$$

residue is $-\frac{1}{2}$

1. Real integral

$$I = \int_0^{2\pi} \frac{d\theta}{1 - 2p\cos\theta + p^2} \quad (|p| \neq 1)$$

Turns up quite frequently in optics, transforms, ...

Standard "trick": convert to a contour integral by writing

$$z = e^{i\theta}, dz = ie^{i\theta}d\theta = izd\theta, \text{ so } d\theta = dz/iz$$

$$\cos\theta = \left(e^{i\theta} + e^{-i\theta}\right)/2 = \frac{1}{2}\left(z + \frac{1}{z}\right)$$

$$\Rightarrow I = \oint_C \frac{dz}{iz\left[1 - p\left(z + \frac{1}{z}\right) + p^2\right]} = z - p$$

$$= z - p$$

$$= (z - p)$$

Two poles, at z = p, 1/p

Only one lies inside the contour.

$$z \left[1 - p \left(z + \frac{1}{z} \right) + p^2 \right]$$

$$= z - pz^2 - p + p^2 z$$

$$= z - p - pz(z - p)$$

$$= (z - p)(1 - pz)$$

$$= -p(z - p)(z - 1/p)$$

1. Integral

$$I = \oint_C \frac{dz}{iz\left[1-p\left(z+\frac{1}{z}\right)+p^2\right]}$$
$$= \oint_C \frac{dz}{-ip(z-p)(z-1/p)}$$

For |p| < 1, the residue at z = p is the coefficient of $(z - p)^{-1}$ in the integrand evaluated at z = p:

Res
$$f(a) = \frac{1}{-ip(p-1/p)} = \frac{i}{p^2 - 1} = \frac{-i}{1 - p^2}$$

$$\implies I = 2\pi i \operatorname{Res} f(a) = \frac{2\pi}{1 - p^2}$$

Typical candidate integral is

$$I = \int_0^{2\pi} \frac{P(\cos\theta, \sin\theta) d\theta}{Q(\cos\theta, \sin\theta)},$$

where P and Q are polynomials in $\cos \theta$ and/or $\sin \theta$.

For |p|>1, the residue at z=1/p is the coefficient of $(z-1/p)^{-1}$ in the integrand evaluated at z=1/p:

Res
$$f(a) = \frac{1}{-ip(1/p-p)} = \frac{i}{1-p^2}$$
 $\implies I = 2\pi i \text{ Res } f(a) = \frac{2\pi}{p^2-1}$

2. A well-known integral

$$I = \int_{-\infty}^{\infty} \frac{dx}{x^2 + a^2}$$

Easy to show: $I = \pi/a$

Integration path is the real axis.

Convert to a closed contour integral as follows:

- 1. Write as finite integral $\int_{-R}^{R} f(z)$.
- 2. Create closed contour C with a large semicircle C_R with |z| = R > a.
- 3. Evaluate using residue theorem
- 4. Take limit $R \to \infty$.
- 5. Demonstrate that the extra integral along the curved contour goes to 0.

2. Residue theorem

$$\implies \oint_C \frac{dz}{z^2 + a^2} = I_R + \oint_{C_R} \frac{dz}{z^2 + a^2} = 2\pi i \operatorname{Res}(ia)$$

> Calculate the residue at *ia*

$$f(z) = \frac{1}{(z-ia)(z+ia)} \Longrightarrow \text{Res } f(ia) = \frac{1}{2ia}$$
$$2\pi i \text{ Res } f(ia) = \pi/a$$

- Note that $I_R = \int_{-R}^R f(z) \ dz \to I \text{ as } R \to \infty \text{ in}$ a very specialized sense
 - Cauchy Principal Value
 - possible for $\int_{-R_1}^{R_2}$ to diverge as R_1 and $R_2 \to \infty$ separately

 $z^2 + a^2 = (z - ia)(z + ia)$ poles of order 1 at $z = \pm ia$ only ia lies inside C

2. Still have to show that

$$\oint_{C_R} \frac{dz}{z^2 + a^2} \to 0 \text{ as } R \to \infty$$

- > Strategy: place a limit on the integral and show that the limit goes to zero as $R \to \infty$.
- Important result (straightforwardly provable from the definition of the integral):

$$\left| \int_{C} f \right| \leq \max_{C} |f| \ L(C)$$
max. value length
of |f| on C of C

2. In this case, on C_R , $|f| \sim \frac{1}{R^2}$, so $\max_{C_R} |f| \sim \frac{1}{R^2}$

Clearly, $L(C_R) = \pi R$

$$\Rightarrow \left| \int_{C_R} f \right| \le \max_{C_R} |f| \ L(C) \sim \frac{\pi}{R} \to 0 \text{ as } R \to \infty$$

- Notes:
 - 1) Standard method of solution for >90% of complex integrals.
 - 2) What if I close the loop with a contour in the <u>lower</u> half plane?
 - pick up residue at -ia: $\frac{-1}{2ia}$ $f(z) = \frac{1}{(z-ia)(z+ia)}$
 - but clockwise, so $\oint = -2\pi i \operatorname{Res}(-ia)$ Result i

Result is <u>unchanged</u>.

ia

-ia

3. Now consider

$$I = \int_{-\infty}^{\infty} \frac{\cos x \, dx}{x^2 + a^2}$$

Almost a Fourier transform...

This time, just replacing x by z and closing with a large semicircle won't work, because

$$\cos z = \frac{1}{2} \left(e^{iz} + e^{-iz} \right) = \frac{1}{2} \left(e^{ix - y} + e^{-ix + y} \right)$$

$$\to \infty \text{ as } |y| \to \infty,$$

so $\left| \int_{C_R} f \right|$ does not go to zero as $R \to \infty$.

Instead (another standard trick), write

$$\cos x = \operatorname{Re}(e^{ix})$$

and consider
$$J = \int_{-\infty}^{\infty} \frac{e^{ix} dx}{x^2 + a^2}$$
, so $I = \text{Re}(J)$

3. Now considering

$$J = \int_{-\infty}^{\infty} \frac{e^{iz} dz}{z^2 + a^2}$$

Now

$$e^{iz}=e^{ix-y} \to 0$$
 as $y \to +\infty$, so OK to close with the large semicircle in the upper half plane, and $\left|\int_{C_R} f\right| \to 0$ for the same reasons as before as $R \to \infty$.

• Residue at ia is $\frac{e^{-a}}{2ia}$,

so $J = 2\pi i \frac{e^{-a}}{2ia} = \frac{\pi}{a}e^{-a}$ $I = J = \frac{\pi}{a}e^{-a}$

Note: *J* is real because sine is an odd function, so the imaginary part of the integral = 0.

Recall: Solving an Inhomogeneous ODE

Equation

Let
$$Y(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \ y(x) e^{-ikx}$$
$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \ f(x) e^{-ikx}$$
$$\Rightarrow -k^2 Y - \lambda^2 Y = F$$
$$\Rightarrow Y(k) = \frac{-F(k)}{k^2 + \lambda^2}$$
$$\Rightarrow y(x) = \frac{-1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \ \frac{F(k)}{k^2 + \lambda^2} e^{ikx}$$

• Start simple: suppose $f(x) = \delta(x)$, so $F(k) = \frac{1}{\sqrt{2\pi}}$

4. Now consider an actual Fourier transform (λ real):

$$I = \int_{-\infty}^{\infty} \frac{e^{ikx} \, dx}{x^2 + \lambda^2}$$

> If k > 0, then the same arguments as before mean that the integrand goes to zero as $y \to +\infty$, so OK to close with a semicircle in the upper half plane.

 C_R

iλ

- > As we just saw, $I = \frac{\pi}{\lambda} e^{-k\lambda}$ $f(z) = \frac{e^{ikz}}{(z-i\lambda)(z+i\lambda)}$
- If k < 0, close with a semicircle in the negative half plane, pick up residue at $-i\lambda$: $-\frac{e^{\kappa\lambda}}{2i\lambda}$ and a negative sign for a clockwise contour

$$\implies I = \frac{\pi}{\lambda} e^{-|k\lambda|}$$

5. What if the pole is on the integration path (e.g. finite pulse transform)?

$$I = \int_{-\infty}^{\infty} \frac{\sin x}{x} \ dx$$

- Removable singularity at x = 0, so the integral is valid, but the behavior of the sine function is such that we can't use our favorite contour.
- > Again, look at

$$J = \int_{-\infty}^{\infty} \frac{e^{iz}}{z} dz$$
, so $I = \text{Im}(J)$

Now we can use the upper semicircle, but our removable singularity has become a <u>pole</u>.

Avoid the pole with another small semicircle (Note: now we have <u>two</u> Cauchy Principal Value integrals, as $R \to \infty$, $r \to 0$)

5. Now the integrand in the *J* integral

$$J = \int_{-\infty}^{\infty} \frac{e^{iz}}{z} dz$$

by construction is analytic everywhere inside the closed contour, so

$$\operatorname{Im}\left(\oint_{C} \frac{e^{iz}}{z} dz\right) = 0$$

$$= I + \operatorname{Im}\left(\int_{C_{R}} \frac{e^{iz}}{z} dz\right) + \operatorname{Im}\left(\int_{C_{r}} \frac{e^{iz}}{z} dz\right)$$

Need to look at the two semicircles separately

- 1) $\int_{C_R} \frac{e^{iz}}{z} dz$ is not so obviously 0
- 2) how to handle $\int_{C_r} \frac{e^{iz}}{z} dz$?

- 5. Look first at $\int_{C_R} \frac{e^{iz}}{z} dz$
 - > previous estimate would just say $\left| \int_{C_R} \frac{e^{iz}}{z} dz \right| \leq \frac{\pi R}{R}$, which does not $\to 0$
 - > integrate by parts:

$$\int_{C_R} \frac{e^{iz}}{z} dz = \left[\frac{e^{iz}}{iz}\right]_{z=-R}^{z=R} + \int_{C_R} \frac{e^{iz}}{iz^2} dz$$

$$\to 0 \qquad \to 0, \text{ by earlier argument}$$

Now for $\int_{C_r} \frac{e^{iz}}{z} dz$

> write $e^{iz} = 1 + (e^{iz} - 1)$

• End result:

$$I = -\operatorname{Im}\left(\lim_{r \to 0} \int_{C_r} \frac{e^{iz}}{z} dz\right)$$
$$= \pi$$

