

Faculty of Engineering

MATH142

Essentials of Engineering Mathematics

First-Order ODEs

- I. Separable
- II. Homogeneous
- III. Linear
- IV. Exact
- V. Bernoulli

III. Linear Equations

Definition: A first-order DE of the form $a_1(x)\frac{dy}{dx}+a_0(x)y=g(x)$, $a_1(x)\neq 0$ is said to be a linear equation in the variable y.

The **standard form** of a linear first-order ODE is $\frac{dy}{dx} + P(x)y = Q(x)$

Steps for Solving a Linear Equation

1. Write the DE in standard form

$$\frac{dy}{dx} + P(x)y = Q(x) \qquad (1)$$

- 2. Find the integrating factor $\mu(x) = e^{\int P(x)dx}$
- 3. Multiply equation (*I*) by $\mu(x)$

$$\mu(x)\frac{dy}{dx} + \mu(x)P(x)y = \mu(x)Q(x) \tag{II}$$

4. Equation (II) can be expressed as $\frac{d}{dx}[\mu(x)y] = \mu(x)Q(x)$ or

$$d[\mu(x)y] = \mu(x)Q(x)dx \tag{III}$$

5. Integrate both sides of (*III*) to get $y = \frac{1}{\mu(x)} [\int \mu(x)Q(x)dx + C]$

Faculty of Engineering and Information Science

Example 1: Solve $\frac{1}{x} \frac{dy}{dx} - 4y = 1$

Faculty of Engineering and Information Sciences

Example 2: Solve $x \frac{dy}{dx} - 4y = x^6 e^x$

Faculty of Engineering and Information Sciences

Example 3: Solve the IVP y' + y = x y(0) = 4