Exercise 1 (Exercise 2). Let P be a poset in which every interval [x, y] is finite. Show that, in the incidence algebra $\mathscr{I}(P)$:

- i) f is invertible if and only if $\forall x (f(x, x) \neq 0)$.
- ii) $fg = \delta \iff gf = \delta$, this is, inverses are two sided.
- iii) If f is invertible then f^{-1} is unique.

Really quickly, recall that the incidence algebra is the set of *interval functions* from P to \mathbb{C} . In other words, we can describe $\mathscr{I}(P)$ as

$$\mathscr{I}(P) = \{ f : P^2 \to \mathbb{C} : x > y \Rightarrow f(x,y) = 0 \}.$$

Answer

i) Suppose f is invertible with $fg = \delta$. If $x \in P$:

$$(f \cdot g)(x, x) = f(x, x)g(x, x) = \delta(x, x) = 1.$$

This means that, as complex numbers, f(x,x)g(x,x)=1 thus none can be zero and $f(x,x)=\frac{1}{g(x,x)}$.

On the other hand, suppose $f(x, x) \neq 0$. We will construct an inverse for f inductively using the fact the every interval is finite.

Our base case is |[x,y]| = 1, then x = y and $g(x,x) = \frac{1}{f(x,x)}$. Suppose that we have an interval [x,y] of length n and for intervals of length less than n g(x,y) is the inverse of f(x,y). So

$$\delta(x,y) = (fg)(x,y) \iff 0 = \sum_{x \leqslant z \leqslant y} f(x,z)g(z,y)$$

$$\iff 0 = f(x,x)g(x,y) + \sum_{x < z \leqslant y} f(x,z)g(z,y)$$

$$\iff -f(x,x)g(x,y) = \sum_{x < z \leqslant y} f(x,z)g(z,y)$$

$$\iff g(x,y) = \frac{-1}{f(x,x)} \sum_{x < z \leqslant y} f(x,z)g(z,y)$$

Thus it holds that when $f(x, x) \neq 0$, we can solve the previous equation to obtain an expression for the inverse of f. By induction, it follows that f is invertible.

ii) First notice that the process we did in the last item is valid even if we replace *invertible* with *right-invertible*. The same process can be done in the same way to obtain a *left inverse* for f such that $hf = \delta$. This means that $hf = fg \Rightarrow h = g$.

Exercise 2 (Exercise 3, Sagan 5.27). Consider Young's lattice Y of all integer partitions ordered by containment of Young diagrams. Given λ , consider the interval $P_{\lambda} = [(1), \lambda]$ as a subposet of Y. Recall $|\lambda| = n$ when $\lambda \vdash n$.

- i) Compute $\mu(P_{\lambda})$ for $1 \leq |\lambda| \leq 3$.
- ii) Show that $\mu(P_{\lambda}) = 0$ for $|\lambda| \ge 4$.

Answer

i) We will draw Young's lattice and add the values of the Möbius function to each of the elements right next to them:

So in essence, $\mu((1)) = \mu((2,1)) = 1$, $\mu((1,1)) = \mu((2)) = -1$ and the rest of the values are zero.

ii) We will use Rota's cross-cut theorem which states that if K is a cross-cut of a finite lattice L, then $\mu(\hat{1}) = \sum_{(*)} (-1)^{|B|}$ where the sum is taken over all $B \subseteq K$ such that $\bigwedge B = \hat{0}$ and $\bigvee B = \hat{1}$.

Recall a cross-cut is a subset $K \subseteq L$ of a lattice such that

- $\diamond K$ is an antichain.
- $\diamond K$ doesn't contain 1_L nor 0_L .
- \diamond Every maximal chain $C \subseteq L$ intersects K.

The interval P_{λ} is indeed a finite lattice. Consider the set $\{(1,1),(2)\}$ the atoms which cover (1). We claim that this is indeed a cross cut.

- \diamond Clearly neither (1,1) can be embedded into (2) nor backwards so they are incomparable.
- \diamond (1), λ are not in $\{(1,1),(2)\}$.
- \diamond Now take any maximal chain^a, which must start at (1) and end at λ . Such a chain must go through (1, 1) or (2) to continue going up. Else, it wouldn't be maximal.

The subsets of K are in $\mathcal{P}(K) = \{\emptyset, \{(1,1)\}, \{(2)\}, K\}$. The meet of \emptyset is λ and the join is 1. For the singletons, the meets and joins are themselves and for K, the meet is indeed (1) but the join is (2,1).

Applying Rota's cross-cut theorem we get an empty sum. So it must hold that $\mu(P_{\lambda}) = 0$ for any λ with $|\lambda| \ge 4$.

Exercise 3 (Exercise 4). Draw the Hasse diagrams of all 15 lattices on six elements. Which are upper semi-modular? Which are modular? Distributive? Atomic?

Answer

The following are the Hasse diagrams of all 15 lattices on 6 elements:

If we call the lattices L_1, \ldots, L_{17} (in the most natural left-to-right, row-by-row order), then we can categorize them according to what is asked.

- \diamond The **upper semi-modular** lattices are $L_1, L_2, L_3, L_4, L_7, L_8, L_{15}$ and L_{17} .
- All the upper semi-modular lattices are modular in this case. There are no more.
- \diamond There are only two **atomic** lattices which are L_{13} and L_{17} .
- \diamond The distributive lattices are L_1 through L_4 and L_{15} .

Lattices which contain

^a**Sam** helped me with this argument.

as sublattices are not distributive. The atomic lattices were checked by hand as well as rank function computations a .

^aThe check for this problem was done with **Sam** and **Kelsey**