

http://research.microsoft.com/en-us/um/people/bibuxton/buxtoncollection/ http://www.billbuxton.com/inputManuscript.html

TAXONOMIES

		Number of Dimensions							
		1		2				3	
Froncity Sensod	>s#:oı	Rotary Pct	S1idirg Fot	Tablet& Fue∢		Light Γen	botonic Joyatrok	≟Ľ Joystick	
					Toucl Tablet	Touch Screen			т
	Motion	Continuous Rotary Pot	Treadmill	Mouse			Sprung Jouistick Trackball	30 Trackball	l·1
	Σ		Fermistat				M/Y Pad		т
	Pressure	Torque Sensor					sometria Jogstick		т
		rotary	l'near	puek	stylus finger horz.	stylus finger vertical	smal' fixed location	small fixed with twist	

Bill Buxton, 1983 Lexical and Pragmatic Considerations of Input Structures Computer Graphics, 17 (1), 31-37.

Tâches élémentaires :

- **Select**: pointer un objet (menu, bouton, etc.)
- **Position**: placer un objet sur 1, 2, 3 ou plus de dimensions
- **Orient**: orienter un objet sur 1, 2, 3 ou plus de dimensions
- **Path**: dessiner une ligne, courbe, etc.
- Quantify: saisir une valeur scalaire
- **Text** : saisir du texte

James D. Foley, Victor L. Wallace, Peggy Chan, 1984
The human factors of computer graphics interaction techniques
IEEE Computer Graphics and Applications, 4(11), 13-48

TOUCH PANEL

TABLET

MOUSE

DIRECT WITH ---

LOCATOR DEVICE

INDIRECT WITH

LCCATOR BEVICE

Jock D. Mackinley, Stuart K. Card, George G. Robertson, 1990 A Semantic Analysis of the Design Space of Input Devices Journal of Human-Computer Interaction, 5 (2), 145-190.

Anthony Martinet, Géry Casiez, Laurent Grisoni, 2010 The Effect of DOF Separation in 3D Manipulation Tasks with Multi-touch Displays VRST'10, 111-118

Bill Buxton, 1990 A Three-State Model of Graphical Input INTERACT '90, 449-456.

SAISIE DE TEXTE

Datahand, 1990

Maltron, 1994

Orbitouch, 2002

Saisie de phrases
Fréquence des lettres
Avec/sans correction
Avec ou sans regard

WPM: words per minute

KSPC: key strokes per character

POINTAGE

3000 images/s

≈ 20 x 20 pixels

Traitement d'images

(d Burl Femiles

(b) Manila Folder

(d) BSIFFest Chart

Mesure de capacité

Lignes × Colonnes

2 couches

Maximiser la surface

Mesure à chaque intersection

Calcul des centroïdes

Modèle du temps de pointage

D : distance

W: taille de cible

$$MT = a + b \times log_2\left(\frac{2D}{W}\right)$$

FILTRAGE

Problème : données bruitées

• Solution : filtre

- Compromis
 - Bruit : mouvement quand le périphérique est immobile
 - Latence : décalage entre le mouvement du périphérique et du curseur

Problème : données bruitées

• Solution : filtre

- Compromis
 - Bruit : mouvement quand le périphérique est immobile
 - Latence : décalage entre le mouvement du périphérique et du curseur

Moyenne sur les x dernières valeurs
Lissage des points ⇒ gomme les mouvements brusques

- + Facile à implémenter
- Latence importante

Moyenne glissante dont le poids des valeurs décroit Simple exponentiel Double exponentiel

- + Facile à implémenter
- Latence importante

$$\hat{X}_i = \alpha X_i + (1 - \alpha)\hat{X}_{i-1}$$

$$\hat{X}_{i}^{[2]} = \alpha \hat{X}_{i} + (1 - \alpha) \hat{X}_{i-1}^{[2]}$$

$$P_{t+\tau} = \left(2 + \frac{\alpha\tau}{1-\alpha}\right)\hat{X}_i - \left(1 + \frac{\alpha\tau}{1-\alpha}\right)\hat{X}_i^{[2]}$$

Passe bas

+172000.000ms Noiny signat 66.560

Passe bas

+172000.000ms Noiny signat 66.560

Prédit les nouvelles valeurs en fonction de leur évolution

- + Plus efficace que la moyenne glissante
- Compliqué à comprendre
- Compliqué à régler
- Compliqué à implémenter

Ratman Tiber

Ratman Tiber

Filtre passe bas à fréquence de coupure variable

Filtre peu lorsque les mouvements sont rapides ⇒ peu de latence

Filtre beaucoup quand les mouvements sont lents ⇒ peu de bruit

- + Efficace
- + Facile à régler
- + Facile à implémenter

http://www.lifl.fr/~casiez/1euro/

APPENDIX A - 1€ FILTER

```
Algorithm 1: 1€ filter
  EXT: First time flag: firstTime set to true
          Data update rate: rate
          Minimum cutoff frequency: mincutoff
          Cutoff slope: beta
          Low-pass filter: xfilt
          Cutoff frequency for derivate: dcutoff
          Low-pass filter for derivate: dxfilt
  IN : Noisy sample value: x
  OUT: Filtered sample value
1 if firstTime then
     firstTime \leftarrow false
      dx \leftarrow 0
4 else
      dx \leftarrow (x - xfilt.hatxprev()) * rate
6 end
7 edx \leftarrow dxfilt.filter(dx, alpha(rate, dcutoff))
8 cutoff \leftarrow mincutoff + beta * |edx|
9 return xfilt.filter(x, alpha(rate, cutoff))
```

Algorithm 2: Filter method of Low-pass filter

Algorithm 3: Alpha computation

```
IN : Data update rate in Hz: rate
Cutoff frequency in Hz: cutoff
OUT: Alpha value for low-pass filter
1 tau ← 1.0 / (2*π*cutoff)
2 te ← 1.0 / rate
3 return 1.0 / (1.0 + tau/te)
```


FONCTIONS DE TRANSFERT

De combien se déplace le curseur ?

Contrôle en position

ex: souris

Contrôle en vitesse

ex : joystick

$$CD_{gain} = \frac{V_{pointeur}}{V_{p\acute{e}riph\acute{e}rique}}$$

Fonction linéaire

Gain constant

Fonction non linéaire

Gain variable, par exemple en fonction de la vitesse

Phase balistique

Rapide et imprécise

⇒ gain élevé

Phase corrective

Lente et précise

⇒ gain faible

David E. Meyer, et al., 1988

Optimality in human motor performance: ideal control of rapid aimed movements *Psychological Review*, 95, 340-370

Géry Casiez and Nicolas Roussel, 2011 No more bricolage! Methods and tools to characterize, replicate and compare pointing transfer functions UIST'11, 603-614

www.libpointing.org

PROGRAMMATION

Interroger le périphérique en boucle

- + Simple
- Gaspille le CPU
- Gaspille de l'énergie
- Peu précis

```
int main()
{
  while (true)
  {
    input();
    update();
    draw();
  }
}
```

Réagir aux inputs

- + Précis
- + Consomme peu de CPU
- + Consomme peu d'énergie
- Compliqué

```
void onKeyDown(...)
void onMouseMove(...)
int main()
  while (true)
    update();
    draw();
```