Name:				
AP Cal	culus AB	– Unit	1 Test	Review

Review Topics

- Chapter 1
 - o Linear equations
 - Slope $m = \frac{y_1 y_2}{x_1 x_2}$
 - Slope-intercept form (y = mx + b)
 - Point-slope form $(y = m(x x_1) + y_1)$
 - Horizontal and vertical lines
 - Parallel and perpendicular lines
- Chapter 2
 - o Limits
 - Be able to properly use limit notation
 - Limits from graphs, from tables, and algebraically
 - Properties of limits
 - Left and right hand limits
 - Solve limits involving $\lim_{x\to 0} \frac{\sin x}{x}$
 - Limits involving infinity
 - Vertical asymptotes and behavior near them
 - Horizontal asymptotes
 - Continuity
 - o Intermediate Value Theorem

NO CALCULATOR ALLOWED

- 1. Write the equation of the line described. (continues to next page)
 - a. y-intercept: ½, slope: -3
 - b. through (-3, 4) with a slope of -2
 - c. through (-1, 3) and (2, -6)

d. vertical line through (-2, 5)

e. line perpendicular to $y = \frac{4}{5}x - 8$ through (-4, 1)

2. Find the value of x if the slope of the line through (-8, -2) and (x, 2) is 2. Show your work.

3. What are the three conditions that need to be met for a function f(x) to be continuous at x = c?

- 4. Briefly describe what a limit of a function is.
- 5. Evaluate the following if $\lim_{x\to 2} f(x) = 3$. Show your work.
 - a. $\lim_{x \to 2} \left(5f(x) \right)$
 - b. $\lim_{x\to 2} (x \cdot f(x))$
 - c. $\lim_{x\to 2} (f(x))^2$

6. Use the graph below to answer the following questions.

a.
$$\lim_{x\to 1^-} f(x) =$$

$$f. \quad \lim_{x \to 2^{-}} f(x) =$$

$$b. \quad \lim_{x \to 1^+} f(x) =$$

g.
$$\lim_{x\to 2^+} f(x) =$$

c.
$$\lim_{x\to 1} f(x) =$$

$$h. \quad \lim_{x\to 2} f(x) =$$

d.
$$f(1) =$$

i.
$$f(2)=$$

e. Is
$$f(x)$$
 continuous at $x = 1$?
Why or why not?

j. Is
$$f(x)$$
 continuous at $x = 2$? Why or why not?

k. Is f(x) continuous at x = 0? Why or why not?

- 7. Use the graph of f(x) to answer the following questions.
 - a. List all locations where f(x) has an infinite discontinuity.
 - b. List all locations where f(x) has a jump discontinuity.

c. List all locations where f(x) has a removable discontinuity.

a.
$$\lim_{x \to 2} \frac{x-2}{x+2}$$

d.
$$\lim_{x \to 3} \frac{x-3}{x^2-9}$$

b.
$$\lim_{x \to 0} \frac{(3+x)^2 - 9}{x}$$

e.
$$\lim_{x \to 0} \frac{\sin(4x)}{x}$$

c.
$$\lim_{x\to 0} \frac{\frac{1}{x+3} - \frac{1}{3}}{x}$$

$$f. \quad \lim_{x \to 0} \frac{\sin(2x)}{2x^2 - 6x}$$

Show your "thinking"

g.
$$\lim_{x \to -3^+} \frac{1}{x+3}$$

$$h. \quad \lim_{x \to -4^-} \frac{x}{x+4}$$

i.
$$\lim_{x \to -\infty} \frac{2x^2 - 5x + 1}{3x^3 - 4}$$

j.
$$\lim_{x \to -\infty} \frac{2x^2 - 5x + 1}{3x^2 - 4}$$

k.
$$\lim_{x \to -\infty} \frac{2x^4 - 5x + 1}{3x^3 - 4}$$

$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 5}}{x + 7}$$

$$m. \lim_{x \to -\infty} \frac{\sqrt{x^2 - 5}}{x + 7}$$

9. Find the vertical asymptote(s) of $f(x) = \frac{-3}{x+4}$ and the behavior to the left and right of each asymptote. You must show your work.

10. Find the horizontal asymptote(s) of $f(x) = \frac{2x^3 + 3x - 1}{4x^3 - 6}$. You must show your work.

11. Find the horizontal asymptote(s) of $f(x) = \frac{|x+4|}{x-3}$. You must show your work.

12. For a continuous function f, f(0) = 7 and f(4) = 2. Explain why f(c) = 3 for some c c in [0, 4] or explain why you don't have enough information to conclude this.