Lecture 18 The Real Business Cycle Model Part 5: Application and Matching Data

Hui-Jun Chen

National Tsing Hua University

October 29, 2025

Overview

- > Recall that in Lecture 13, there is no production in dynamic model.
- ➤ The following 5 lectures is for **Real Business Cycle** (RBC) model:
 - >> Lecture 14: consumer
 - >> Lecture 15: firm
 - >> Lecture 16: competitive equilibrium
 - >> Lecture 17: formal example
 - >> Lecture 18: application to bring RBC to data

- 1 z↑
- $z' \uparrow$
- $|3|K\downarrow$
- 4 G↑

Analysis on $z \uparrow$

Suppose current TFP increases from z_1 to z_2 , $z_2 > z_1$

- ▶ labor demand (firm): $z \uparrow \Rightarrow MPN \uparrow$, and thus $N_{D,2} > N_{D,1}, \forall w$
- ▶ labor supply (consumer): no direct effect, but r^* ↓ leads to $N_S(r)$ shifts in
- ▶ labor market clearing: demand \uparrow , $w \uparrow$, and $N^*(r) \uparrow$, hold r fixed
- **>** output supply: shifts out ∵ labor market, $Y_{S,2}(r) > Y_{S,1}(r)$, $\forall r$
- > output demand: no effect, only move along the curve, because
 - >> firm: current TFP is not changing optimal investment schedule
 - >> consumer: no direct effect
 - >> government: no direct effect

Equilibrium Effects of $z \uparrow$

Taking Stock: $z \uparrow$

Output supply curve shifts out, while output demand remain the same

- \rightarrow output \uparrow , $Y_2 > Y_1$
- ightharpoonup real interest rate \downarrow , $r_2 < r_1$
- > decreases in r make labor supply shifts in
 - >> saving S become less desirable, so no need to work that much
- wage increase because of the shifts in demand and supply
- effect on N^* is theoretically ambiguous, yet data shows that the effect of intertemporal substitution of leisure $(N_S \downarrow)$ is small

Recall **business cycle facts**: procyclical labor, real wage, and average labor productivity. All consistent with model prediction!

- 1 Z 1
- $z' \uparrow$
- $3 K \downarrow$
- 4 $G \uparrow$

Analysis on $z' \uparrow$

> labor demand: no direct effect

> labor supply: no direct effect, yet r ↑ cause supply to shift to the right

- > output supply: no direct effect
- **>** output demand: higher z' ⇒ higher MPK' ⇒ firm's investment demand is higher ⇒ demand shifts to the right
 - >> no direct effect from consumer and government

Equilibrium Effect of $z' \uparrow$

- 1 z ^
- $z' \uparrow$
- $K \downarrow$
- 4 G↑

Analysis on Destruction of Initial Capital $K\downarrow$

Suppose a natural disaster destroys some initial capital: $K_1 \to K_2$, where $K_2 < K_1$.

- ▶ labor demand: $K \downarrow \Rightarrow MPN \downarrow \Rightarrow N_D^2(w) < N_D^1(w), \forall w$
- **>** labor supply: no direct effect, but $r^* \uparrow \Rightarrow N_S(r) \downarrow$
- ightharpoonup labor market clearing: lower wage and quantity of labor, hold r fixed
- **>** output supply: shifts in, \because labor market effects, $Y_S^2(r) < Y_S^1(r), \forall r$
- output demand: shifts out, because
 - \Rightarrow firm: $K \downarrow$, so must $I_D \uparrow$ to meet same amount of K'
 - remember capital accumulation process $K' = I_D + (1 \delta)K$
 - >> consumer and government have no direct effects

Equilibrium Effect of $K \downarrow$

- 1 Z 1
- $z' \uparrow$
- $3 K \downarrow$
- $G \uparrow$

Analysis on Government Spending Increase $G \uparrow$

Suppose $G \uparrow$, holding G' fixed. This is more complicated...

> example: wartime spending (WWII), Stimulus in recession (COVID check)

Need to trace individual decisions and market clearing conditions to find **overall equilibrium effect**.

- **▶** simplification: assume MPC is constant
- ➤ interpretation: slope < 1 in output demand curve</p>
- example: $U(C, C') = \ln C + \beta \ln C' \Rightarrow C' = \beta(1+r)C$, which implies

$$C = \frac{1}{1+\beta} \left(Y - T + \frac{Y' - T'}{1+r} \right) \Rightarrow \frac{dC}{dY} = \frac{1}{1+\beta}$$

Impact on Output Demand

 $G \uparrow$ causes a Δ amount of shift in the output demand curve. How big is Δ , and where do the change comes from?

- 1. direct effect: $G_2 G_1 > 0$
- 2. indirect effect: increase in taxes decreases the consumption

$$G_2 > G_1$$
, $T_2 + \frac{T_2'}{1+r} > T_1 + \frac{T_1'}{1+r}$, and thus consumer's income \downarrow by the amount of $G_2 - G_1$.

- **>>** effect on consumption: $MPC \times (G_2 G_1)$
- 3. indirect effect: consumer perceives as Y_D changes Δ amount, and thus consumption changes.
 - >> translate to consumption: MPC \times Δ

$$\Delta = G_2 - G_1 + MPC \times (G_2 - G_1) + MPC \times \Delta \Rightarrow \Delta = G_2 - G_1$$

note: more complicated if MPC is not constant, or varies across people!

Impact on Output Demand (Cont.)

The elasticity of output demand with respect to government spending is defined as the demand multiplier:

$$m_D = \frac{\Delta}{G_2 - G_1} = 1$$

> implication: rightward shift of the demand curve is exactly 1-1

 \blacktriangleright because of 1-1 relationship, we know $Y_D^2(r)=Y_D^2(r)+\Delta$

Impact on Output Supply

- > labor demand: no effect
- **>** labor supply: outward shift, ∴ wealth effect of $T, T' \uparrow$
 - \Rightarrow holding r fixed, $N_S^2(r_1) > N_S^1(r_1)$
 - \Rightarrow in equilibrium of next slide, $r^* \uparrow$, and thus saving become desirable, $N_S^2(r_2) > N_S^2(r_1)$
- > output supply: shifts out, given labor supply shifts

Combine effects: $Y^* \uparrow$, $N^* \uparrow$, $w^* \downarrow$, yet r^* depends on the amount of movement for both demand and supply.

Equilibrium Effect of $G \uparrow$

Taking Stock: Output

What is the total government expenditure multiplier?

- **definition**: the **equilibrium** (as opposed to demand or supply only) ratio of increase in output to the increase in government spending.
- > result: must is less than 1 without "large" shifts in supply curve
 - \Rightarrow shift in output demand curve is $G_2 G_1$ for each r
 - >> supply curve slopes up: equilibrium effect $< G_2 G_1$ (before shift)
 - >> what determines size of supply curve shift?
 - size of wealth effect on labor supply (small)
 - size of intertemporal substitution effect on labor supply (small)
 - "Keynesian" stimulus: multiplier may be positive in recessions, but need some sort of economic inefficiency for this result.

Taking Stock: Everything Else

Imagine supply curve is horizontal:

- equilibrium effect: $Y_2 Y_1 = G_2 G_1$, no change in r
- > would have to come from no change in consumer's lifetime wealth, and so would induce no change in current consumption.

With upward slope sufficient to make $r_2 > r_1$ (empirically plausible case):

- > consumption falls due to intertemporal substitution effect
- investment falls due to higher opportunity cost of investing in capital
- > "crowding out:" government expenditures here also limit future production
- > total: higher output, but at what cost?