

Course Name : Data Structures & Algorithms

Bharat Deshpande Computer Science & Information Systems

innovate achieve lead

What is a program?

Algorithm

An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.

Data Structures

Is a systematic way of organizing and accessing data, so that data can be used efficiently.

Algorithms + Data Structures = Program

Algorithmic problem

Specification of output as a function of input

For eg: Sorting of integers

Input Instance : 8,4,5,2,10

Output Instance as a permutation of input : 2,4,5,8,10

Algorithmic Solution

- Algorithm describes actions on the input instance.
- Infinitely many correct algorithm for the same problem.

Infinite number of input instances satisfying the specification.

Two key points: Repeatable argument & Correctness

What is good algorithm?

- Resources Used
 - Running time
 - Space used

- Resource Usage
 - Measured proportional to (input) size

Measuring the running time

Write a program implementing the algorithm.

 Run the program with inputs of varying size and composition.

 Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time.

Limitations of experimental studies

Implementation is a must.

Execution is possible on limited set of inputs.

 If we need to compare two algorithms we need to use the same environment (like hardware, software etc)

Analytical model to analyze algorithm

- Algorithm should be analyzed by using general methodology.
- This approach uses:
 - High level description of the algorithm.
 - Takes into account all possible inputs.
 - Allows one to evaluate the efficiency of any algorithm in a way that is independent of the hardware and the software environment.

Pseudo-code

 A mixture of natural language and high level programming concepts that describes the main ideas behind a generic implementation of a data structure and algorithms.

```
Algorithm arrayMax(A, n)
```

```
Input: An array A of n integers
```

```
Output: The maximum element of A
```

```
currentMax \leftarrow A[0] for i \leftarrow 1 to n - 1 do
```

if A[i] > currentMax then $currentMax \leftarrow A[i]$

return currentMax

Pseudo-code

- Is structured than usual prose but less formal than a programming language.
- Expressions
 - Use standard mathematical symbols to describe numeric and Boolean expressions.
 - Uses ← for assignment.
 - Use = for the equality relationship.
- Method declaration
 - Algorithm name(param1,param2...)

Assumptions

Individual statement considered as "unit" time

Not applicable for function calls and loops

Individual variable considered as "unit" storage

Often referred to as "algorithmic complexity"

Complexity Example [1]

```
Example 1 (Y and Z are input)
X = Y * Z;
X = Y * X + Z;
// 2 units of time and 1 unit of storage
// Constant Unit of time and Constant Unit of storage
```

Complexity Example [2]

```
Example 2 (a and N are input)
i = 0;
while (j < N) do
  a[i] = a[i] * a[i];
   b[i] = a[i] + i;
  i = i + 1;
endwhile;
// 3N + 1 units of time and N+1 units of storage
// time units prop. to N and storage prop. to N
```

Complexity Example [3]

Example 3 (a and N are input) j = 0; while (j < N) do k = 0;while (k < N) do a[k] = a[j] + a[k];k = k + 1;endwhile; b[i] = a[i] + i;j = j + 1;endwhile; //??? units of time and ??? units of storage // time prop. to N^2 and storage prop. to N

Input Sequence of numbers

Sort

Output a

Permutation of input of numbers $b_1, b_2, b_3, ..., b_n$ 1,2.4.6.8

Correctness(Requirement for the output)

For any input algorithm halts with the output:

- $b_1 < b_2 < b_3 < ... < b_n$
- b₁,b₂,b₃,..., b_n is a permutation of a₁, a₂,a₃,...,a_n

Running time of algorithm depends on

- Number of elements n.
- How (partially)sorted they are.

Order Notation

- Purpose
 - Capture proportionality
 - Machine independent measurement
 - Asymptotic growth(i.e. large values of input size N)

Motivation for Order Notation

Examples

- $100 * log_2 N < N$ for N > 1000
- $70 * N + 3000 < N^2$ for N > 100
- $10^5 * N^2 + 10^6 * N < 2^N$ for N > 26

Asymptotic Analysis

- Goal: To simplify analysis of running time of algorithm .eg $3n^2=n^2$.
- Capturing the essence: how the running time of the algorithm increases with the size of the input in the limit.

Asymptotic Notation

The big O notation

Definition

Let f and g be functions from the set of integers to the set of real numbers. We say that f(x) is in O(g(x)) if there are constants C > and k such that $|f(x)| \le C |g(x)|$, whenever x > = k.

• This is read as f(x) is **big-oh** of g(x)

Note: Pair of *C* and *k* is never unique.

innovate

Order Notation

Examples

```
g(n) = 17*N + 5
\lim_{n\to\infty} g(n) / f(n) = c
\lim_{N\to\infty} (17*N + 5)/N = 17. The asymptotic complexity is O(N)
g(n) = 5*N^3 + 10*N^2 + 3
\lim_{n\to\infty} (5*N^3 + 10*N^2 + 3) / N^3 = 5. The asymptotic complexity is O(N<sup>3</sup>)
\begin{split} g(n) &= C1^*N^k + C2^*N^{k-1} + ... + Ck^*N + C \\ \lim_{n \to \infty} \left( C1^*N^k + C2^*N^{k-1} + ... + Ck^*N + C \right) / N^k = C1. \end{split}
The asymptotic complexity is O(N<sup>k</sup>)
2^{N} + 4*N^{3} + 16 is O(2^{N})
5*N*log(N) + 3*N is O(N*log(N))
1789 is O(1)
```

```
function search(X, A, N)
j = 0;
while (j < N)
    if (A[j] == X) return j;
   j++;
endwhile;
return "Not-found";
```


Linear Search - Complexity

Time Complexity

"if" statement introduces possibilities

- Best-case: O(1)
- Worst case: O(N)
- Average case: ???

Binary Search Algorithm

```
Assume: Sorted Sequence of numbers
low = 1; high = N;
while (low <= high) do
 mid = (low + high) /2;
 if (A[mid] = = x) return x;
 else if (A[mid] < x) low = mid +1;
 else high = mid - 1;
endwhile;
 return Not-Found;
```

- Best Case
 - O(1)
- Worst case:
 - Loop executes until low <= high</p>
 - Size halved in each iteration
 - N, N/2, N/4, ... 1
 - How many steps ?

Binary Search - Complexity

- Worst case:
 - K steps such that $2^K = N$
 - i.e. log_2N steps is O(log(N))