Optimisation stochastique

1 Motivation et quelques rappels

1.1 Un problème d'optimisation "fréquent"

$$\min_{x \in \mathbb{R}^n} h(x) = \min_{x \in \mathbb{R}^n} f(x) + g(x) \tag{1}$$

avec:

- $f: \mathbb{R}^n \to \mathbb{R}$ lisse, à savoir à gradient lipschitzien : $\exists L > 0$ tel que $\forall x, y \in \mathbb{R}^n, ||\nabla f(x) \nabla f(y)|| \le L||x y||$
- $g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ convexe, potentiallement non-lisse.

Exemple:

- i) g = 0: problème d'optimisation lisse non-convexe.
- ii) $g(x) = \lambda ||x||_1$ avec $\lambda > 0$ régularisation parcimonieuse.
- iii) Reformulation d'un problème d'optimisation avec contraintes : $\min_{x \in \mathcal{C}} f(x)$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe non-vide.

1.2 Exemples d'applications

Exemple 1 : Moindres carrés régularisés On dispose d'un modèle linéaire :

$$\forall x \in \mathbb{R}^n, f(x, \beta) = x^T \beta$$
 $\beta \in \mathbb{R}^n$ paramètre du modèle

On dispose d'observations $(x_i, y_i) \in (\mathbb{R}^n \times \mathbb{R})^p$ permettant d'estimer β

D'où le problème d'optimisation suivant :

$$\min_{\beta \in \mathbb{R}^n} \frac{1}{2} \sum_{i=1}^p (f(x_i, \beta) - y_i)^2 \quad \Leftrightarrow \quad \min_{\beta \in \mathbb{R}^n} \frac{1}{2} ||X\beta - y||_2^2 \quad \text{avec } X = \begin{pmatrix} x_1^T \\ \vdots \\ x_p^T \end{pmatrix} \in \mathbb{M}_{p,n}(\mathbb{R}) \tag{2}$$

Texte manquant

- i) $g(\beta) = \frac{\lambda}{2} ||\beta||_2^2$: régularisation de Tikhonov.
- ii) $g(\beta) = \lambda ||\beta||_1$: régularisation parcimonieuse (LASSO).

Figure 1: SVM

iii)
$$g(\beta) = \frac{\lambda}{2} ||\beta||_{\beta}^2 =$$

Texte manquant

Exemple 1 : SVM (Séparateurs à Vaste Marge)

On dispose de données $(x_i)_{i \in \{1,\dots,p\}} \in \mathbb{R}^p$ labelisés $(y_i)_{i \in \{1,\dots,p\}} \in \{-1,1\}^p$ On cherche à construire un hyperplan séparant les données (x_i) selons leurs labels (y_i)

Dans un premier temps, on suppose qu'il existe un tel hyperplan de vecteurs normal $\beta \in \mathbb{R}^n$, passant par l'origine.

Quel hyperplan choisir?

- \Rightarrow Incertitude : nombre de données, répartition dans \mathbb{R}^n , etc...
- ⇒ Maximiser la distance maximale entre les données et l'hyperplan.

Condition de séparabilité : $\forall i \in \{1, ..., p\}, y_i(x_i^T \beta) \geq 0$

D'où le problème d'optimisation suivant :

$$\max_{(\beta,M)\in(\mathbb{R}^n\times\mathbb{R}^+)} M \quad \text{s.c.} \quad \forall i \in \{1,\dots,p\}, \quad y_i \frac{(x_i^T\beta)}{||\beta||_2} \ge M$$
 (3)

Remarque: $d(z, \{\beta^T x = 0\}) = \frac{|\beta^T z|}{||\beta||_2}$

En pratique, la condition de séparabilité n'est pas vérifiée pour tout $i \in \{1, ..., p\}$ \Rightarrow Pénalisation des contraintes non satisfaites.

On pose $\forall t \in \mathbb{R}, t^+ = \max(t, 0)$

Ceci conduit à formuler un autre problème d'optimisation :

$$\max_{(\beta,M)\in(\mathbb{R}^n\times\mathbb{R}^+)} M - \lambda \sum_{i=1}^p (1 - y_i \frac{(x_i^T \beta)}{||\beta||_2 M})^+ \tag{4}$$

avec : $||\beta||_2 = \frac{1}{M}$ et en reformulant pour obtenir un problème de minimisation :

$$\min_{\beta \in \mathbb{R}^n} ||\beta||_2^2 + \lambda \sum_{i=1}^p (1 - y_i(x_i^T \beta))^+$$
 (5)

avec : $\sum_{i=1}^{p} (1 - y_i(x_i^T \beta))^+$ non-lisse (non différentiable)

1.3 Rappels de convexité

Définition

Soit $\mathcal{C} \subset \mathbb{R}^n$. On dit que \mathcal{C} est convexe si :

$$\forall x, y \in \mathcal{C}, \, \forall \lambda \in [0, 1], \, \lambda x + (1 - \lambda)y \in \mathcal{C}$$

Exemples:

- i. partie affine : $\{x_0 + s \text{ avec } s \in S\}$ avec S un sous-espace vectoriel de \mathbb{R}^n et $x_0 \in \mathbb{R}^n$.
- ii. hyperplan : $\{x \in \mathbb{R}^n \text{ tel que } \alpha^T x = \beta\}$
- iii. demi-espace : $\{x \in \mathbb{R}^n \text{ tel que } \alpha^T x \leq \beta\}$
- iv. polyèdre : $\{x \in \mathbb{R}^n \text{ tel que } Ax \leq b\}$ avec $A \in \mathbb{M}_{m,n}(\mathbb{R})$ et $b \in \mathbb{R}^m$.
- v. ellipoïde : $\{x \in \mathbb{R}^n \text{ tel que } x^T C x \leq 1\}$ avec $C \in \mathbb{S}_n(\mathbb{R})$ (matrice symétrique semi-définie positive).

Propriété

Opérations préservant la convexité :

- intersection
- somme
- multiplication par un scalaire
- produit cartésien
- image réciproque par une application linéaire
- image directe par une application linéaire
- projection : $\{x_1 \text{ tel que } (x_1, x_2) \in \mathcal{C}\}$ avec \mathcal{C} convexe.

Définition - Fonctions convexes

Soit $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe.

• f est convexe sur C si :

$$\forall x, y \in \mathcal{C}, \forall \lambda \in [0, 1], f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

• f est strictement convexe sur C si :

$$\forall x, y \in \mathcal{C}, \forall \lambda \in]0,1[, f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y)$$

Propriété - CNS

Condition Nécessaire de convexité dans le cas dérivable. Soit $f: \Omega \to \mathbb{R}$ avec Ω ouvert de \mathbb{R}^n et $\mathcal{C} \subset \Omega$ convexe.

• Si f est dérivable sur Ω , alors f est convexe sur $\mathcal C$ convexe si et seulement si

$$\forall x, y \in \mathcal{C}, f(y) \ge f(x) + f'(x)(y - x)$$

$$\Leftrightarrow \forall x, y \in \mathcal{C}, f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

• Si f est deux fois dérivable sur Ω , alors f est convexe sur $\mathcal C$ convexe si et seulement si

$$\forall x \in \mathcal{C}, f''(x)(y - x, y - x) \ge 0$$

$$\Leftrightarrow \forall x \in \mathcal{C}, (y - x)^T \nabla^2 f(x)(y - x) \ge 0$$

Propriété

- f convexe sur \mathcal{C} convexe $\Rightarrow \alpha f$ convexe sur \mathcal{C} convexe pour $\alpha > 0$
- Combinaisons linéaires à coefficients positifs de fonctions convexes sont convexes
- Soit f convexe sur \mathcal{C} convexe. Soit $A \in \mathbb{M}_{m,n}(\mathbb{R})$ et $b \in \mathbb{R}^m$. Alors $\mathcal{C}' = \{x \in \mathbb{R}^n \text{ tel que } Ax + b \in \mathcal{C}\}$ est convexe et $x \mapsto f(Ax + b)$ est convexe sur \mathcal{C}' .
- Soit $(f_i)_{i \in \{1,\dots,m\}}$ convexes sur $(C_i)_{\{i \in \{1,\dots,m\}\}}$ Alors $\max_{i \in \{1,\dots,m\}} f_i$ convexe sur $\bigcap_{i=1}^m C_i$.
- Soit $g: \mathbb{R}^n \to \mathbb{R}$ convexe sur $\mathcal{C} \subset \mathbb{R}^n$ Soit $h: \mathbb{R} \to \mathbb{R}$ croissante et convexe sur \mathcal{C}' tel que $g(\mathcal{C}) \subset \mathcal{C}'$ Alors $h \circ g$ est convexe sur \mathcal{C} .
- Soit $g: \mathbb{R}^n \to \mathbb{R}^p$ avec $\forall i \in \{1, \dots, p\}$, g_i convexe sur \mathbb{R}^n Soit $h: \mathbb{R}^p \to \mathbb{R}$ croissante et convexe vis-à-vis de chacun de ses arguments. Alors $f: \mathbb{R}^n \to \mathbb{R}$ est convexe sur \mathbb{R}^n

$$f: \mathbb{R}^n \to \mathbb{R}$$
 est convexe sur \mathbb{R}^n
 $x \mapsto h \circ g(x) = h(g_1(x), \dots, g_p(x))$

1.4 Régularité des fonctions convexes

Définition - Epigraphe

Soit $f: \mathcal{C} \to \mathbb{R}$

On appelle épigraphe de f, noté $\varepsilon(f)$, l'ensemble suivant :

$$\varepsilon(f) = \{(x, w) \in \mathcal{C} \times \mathbb{R} \text{ tel que } f(x) \leq w\}$$

Propriété

Soit $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe. f est convexe sur \mathcal{C} si et seulement si $\varepsilon(f)$ est convexe.

Preuve:

i) Supposons f convexe sur C convexe

$$\forall x, y \in \mathcal{C}, \forall \lambda \in [0, 1], f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

Soient $(x_1, w_1) \in \varepsilon(f)$ et $(x_2, w_2) \in \varepsilon(f)$ et $\lambda \in [0, 1]$
$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2) \leq \lambda w_1 + (1 - \lambda)w_2$$

$$\Rightarrow \lambda(x_1, w_1) + (1 - \lambda)(x_2, w_2) \in \varepsilon(f)$$

ii) Supposons $\varepsilon(f)$ convexe

Soit $x, y \in \mathcal{C}$ et $\lambda \in [0, 1]$

 $(x, f(x)), (y, f(y)) \in \varepsilon(f)$

 $\Rightarrow \lambda(x, f(x)) + (1 - \lambda)(y, f(y)) \in \varepsilon(f)$

 $\Rightarrow (\lambda x + (1 - \lambda)y, \lambda f(x) + (1 - \lambda)f(y)) \in \varepsilon(f)$

 $\Rightarrow f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$

Propriété - Inégalité de Jensen

Soit $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe.

Soit $x_1, \ldots, x_p \in \mathcal{C}$ et $\lambda_1, \ldots, \lambda_p \in \mathbb{R}^+$ tel que $\sum_{i=1}^p \lambda_i = 1$.

Alors $f(\sum_{i=1}^{p} \lambda_i x_i) \le \sum_{i=1}^{p} \lambda_i f(x_i)$

Propriété

Soit $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe. Soit $x_0 \in \overset{\circ}{\mathcal{C}}$ f est continue en x_0 .

Preuve:

Soit $x_0 \in \mathcal{C}$. Soit Δ un simplexe inclus dans \mathcal{C} et contenant x_0 .

Notons $(s_i)_{i \in \{1,\dots,n+1\}}$ les sommets de Δ .

 $\forall x \in \Delta, \exists ! (\lambda_i)_{i \in \{1,\dots,n+1\}} \in \mathbb{R}^{n+1} \text{ tel que } \lambda_i \geq 0 \text{ et } \sum_{i=1}^{n+1} \lambda_i = 1 \text{ et } x = \sum_{i=1}^{n+1} \lambda_i s_i$ (coordonnées barycentriques de x vis-à-vis de Δ).

d'où

$$f(x) \leq \sum_{i=1}^{n+1} \lambda_i f(s_i)$$
 par convexité de f et inégalité de Jensen.

$$\leq \max_{i \in \{1, \dots, n+1\}} f(s_i) \operatorname{car} \sum_{i=1}^{n+1} \lambda_i = 1$$

Donc f est majorée sur Δ .

En particulier, $\forall \delta > 0$ tel que $B(x_0, \delta) \subset \Delta$, f est majorée sur $B(x_0, \delta)$. Fixons un tel δ et notons M un majorant de f sur $B(x_0, \delta)$.

Texte manquant

$$\Rightarrow f(\delta) \le 2f(x_0) - M$$

Bilan :
$$2f(x_0) - M \le f(z) \le M, \forall z \in B(x_0, \delta)$$

 $\Rightarrow f$ est bornée sur $B(x_0, \delta)$

Soit
$$K > 0$$
 tel que $\forall z \in B(x_0, \delta), |f(z)| \leq K$

On montre que f est lipschitzienne sur $B(x_0, \frac{\delta}{2})$ Soit $x, y \in B(x_0, \frac{\delta}{2}), x \neq y$

On pose:
$$\begin{cases} x' = x - \frac{\delta}{2} \frac{y - x}{||y - x||} \\ y' = y + \frac{\delta}{2} \frac{y - x}{||y - x||} \end{cases}$$

Alors $x' \in B(x_0, \delta)$: $||x' - x_0|| = ||x - \frac{\delta}{2} \frac{y - x}{||y - x||} - x_0|| \le ||x - x_0|| + \frac{\delta}{2} < \delta$ De même, $y' \in B(x_0, \delta)$

D'où
$$|f(x')| \le K$$
 et $|f(y')| \le K$

De plus,
$$x = \frac{2||y-x||}{2||y-x||+\delta}x' + \frac{\delta}{2||y-x||+\delta}y = \lambda x' + (1-\lambda)y'$$
 avec $\lambda = \frac{2||y-x||}{2||y-x||+\delta} \in]0,1[$

Par convexité de
$$f$$
 sur \mathcal{C} : $f(x) \leq \lambda f(x') + (1 - \lambda)f(y)$
 $\Rightarrow f(x) - f(y) \leq \lambda (f(x') - f(y)) \leq 2K\lambda \leq \frac{4K}{2||y - x|| + \delta}||y - x||$
 $\Rightarrow |f(x) - f(y)| \leq \frac{4K}{\delta}||y - x||$

De même,
$$y=\lambda y'+(1-\lambda)x$$
 et de la même manière, on montre que $|f(y)-f(x)|\leq \frac{4K}{\delta}||y-x||$ $\Rightarrow |f(x)-f(y)|\leq \frac{4K}{\delta}||y-x||$

Bilan : f est lipschitzienne sur $B(x_0, \frac{\delta}{2})$ En particulier, f est continue en x_0

2 Sous-différentiell d'une fonction

2.1 Sous-gradient et sous différentiel

Définition - Sous-differentiel et sous-gradient

Soit $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe. Soit $x \in \mathcal{C}$ et $g \in \mathbb{R}^n$ g est appelé sous-gradient de f en x si :

$$\forall y \in \mathcal{C}, f(y) \ge g^T(y - x) + f(x)$$

On appelle sous-différentiel de f en x, noté $\partial f(x)$, l'ensemble des sous-gradients de f en x :

$$\partial f(x) = \{ g \in \mathbb{R}^n \text{ tel que } \forall y \in \mathcal{C}, f(y) \ge g^T(y - x) + f(x) \}$$

Exemple: $f : \mathbb{R} \to \mathbb{R}, f(x) = |x|$ Soit $x \in \mathbb{R}$

- si x < 0, alors f(x) = -xSoit $g \in \mathbb{R}$ tel que $\forall y \in \mathbb{R}$, $f(y) \ge g(y - x) + f(x)$
 - Soit $y \le 0$, $f(y) = -y = -y + x x = -(y x) + f(x) \ge g(y x) + f(x)$ avec g = -1
 - Soit y > 0, $f(y) = y \ge -y + x x \ge -(y x) + f(x) \ge g(y x) + f(x)$ avec g = -1

Donc $\partial f(x) = \{-1\}$

- si x > 0, $\partial f(x) = \{1\}$ (même raisonnement)
- si x = 0, $\partial f(x) = [-1, 1]$

Propriété

Soit $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe. Soit $x \in \mathcal{C}$ Alors $\partial f(x)$ est un convexe non-vide.

Preuve:

Supposons $\partial f(x) = \emptyset$ alors $\partial f(x) = \bigcap_{y \in \mathcal{C}} \{g \in \mathbb{R}^n \text{ tel que } f(y) \ge g^T(y - x) + f(x) \}$

or, $\forall y \in \mathcal{C}$, $\{g \in \mathbb{R}^n \text{ tel que } f(y) \geq g^T(y-x) + f(x)\}$ est convexe (demi-espace) et fermé (comme image réciproque d'un fermé par une application continue ψ)

$$\psi : \mathbb{R}^n \to \mathbb{R}$$

$$q \mapsto f(y) - f(x) - q^T(y - x)$$

 $\Rightarrow \partial f(x)$ est convexe et fermé comme intersections de parties convexes et fermées.

Propriété

Soit $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe. Soit $x \in \mathcal{C}$ tel que f est continue en x. Alors $\partial f(x)$ est borné.

<u>Preuve</u>:

Soit $x \in \overset{\circ}{\mathcal{C}}$ tel que f est continue en x.

$$x \in \overset{\circ}{\mathcal{C}}$$
: $\exists y_1 > 0$ tel que $B(x, y_1) \subset \mathcal{C}$ f continue en x : $\forall \varepsilon > 0$, $\exists y_2 > 0$ tel que $\forall y \in B(x, y_2)$, $|f(y) - f(x)| < \varepsilon$

Posons
$$\eta = min(y_1, y_2)$$

Montrons que $\partial f(x)$ est borné.

Supposons le contraire.

$$\forall M > 0, \exists g \in \partial f(x) \text{ tel que } ||g||_2 > M$$

Soit M > 0. Fixons un tel g tel que $||g||_2 > M \Rightarrow g \neq 0$

Soit
$$y=x+\frac{\eta}{2}\frac{g}{||g||_2}$$
d'où $||y-x||_2=\frac{\eta}{2}<\eta\Rightarrow y\in B(x,\eta)\subset\mathcal{C}$

Par définition de
$$g: f(y) \ge g^T(y-x) + f(x)$$

 $\Rightarrow f(y) - f(x) \ge \frac{\eta}{2}||g||_2 > \frac{\eta}{2}M \text{ avec } M = \frac{2}{\eta}$
 $\Rightarrow |f(y) - f(x)| > \varepsilon$

Or,
$$y \in B(x, \eta) \Rightarrow y \in B(x, y_2) \Rightarrow |f(y) - f(x)| < \varepsilon$$

D'où
$$\varepsilon < |f(y) - f(x)| < \varepsilon$$
 : contradiction.

Donc $\partial f(x)$ est borné.

Propriété

Soit $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe.

- $\forall x \in \overset{\circ}{\mathcal{C}}, \, \partial f(x) \neq \emptyset$ (Et $\partial f(x)$ compact convexe non-vide)
- Si f dérivable en $x \in \overset{\circ}{\mathcal{C}}$, alors $\partial f(x) = \{\nabla f(x)\}$

<u>Preuve</u>:

i) Soit $\mathcal{C} \subset \mathbb{R}^n$ convexe non-vide.

Soit
$$x_0 \in \mathcal{C}^c \cup (\overline{\mathcal{C}} \setminus \mathring{\mathcal{C}})$$

alors $\exists \alpha \in \mathbb{R}^n \setminus \{0\}$ tel que $\sup_{z \in \mathcal{C}} \alpha^T z \leq \alpha^T x_0$

Texte manquant

Soit
$$x \in \overset{\circ}{\mathcal{C}}$$

Texte manquant

- ii) On suppose de plus f dérivable en $x \in \overset{\circ}{\mathcal{C}}$
 - f convexe sur \mathcal{C} convexe et dérivable en $x \in \overset{\circ}{\mathcal{C}}$ $\Rightarrow \forall y \in \mathcal{C}, f(y) \geq \nabla f(x)^T (y - x) + f(x)$ $\Rightarrow \nabla f(x) \in \partial f(x)$ $\Rightarrow \{\nabla f(x)\} \subset \partial f(x)$
 - Soit $g \in \partial f(x)$ $\forall y \in \mathcal{C}, f(y) \geq g^T(y-x) + f(x)$ Or, $x \in \mathring{\mathcal{C}}: \exists N \in \mathbb{N} \text{ tel que } y_N = x + \frac{u}{N} \in \mathcal{C} \text{ avec } u \in \mathbb{R}^n$

Fixons un tel
$$N$$
.
 $\forall n \geq N, f(y_n) \geq \frac{1}{n} g^T u + f(x)$

Or,
$$f$$
 dérivable en x :

$$f(y_n) = f(x) + \frac{1}{n} \nabla f(x)^T u + \frac{1}{n} ||u||_2 \varepsilon(\frac{1}{n}u) \text{ avec } \varepsilon(h) \xrightarrow[h \to 0]{} 0$$

$$\Rightarrow f(x) + \frac{1}{n} \nabla f(x)^T u + \frac{1}{n} ||u||_2 \varepsilon(\frac{1}{n}u) \ge \frac{1}{n} g^T u + f(x)$$

$$\Rightarrow (\nabla f(x) - g)^T u + ||u||_2 \varepsilon(\frac{1}{n}u) \ge 0$$

A la limite :
$$(\nabla f(x) - g)^T u \ge 0, \forall u \in \mathbb{R}^n$$

 $\Rightarrow g = \nabla f(x)$

Donc
$$\partial f(x) \subset {\nabla f(x)}$$

Bilan :
$$\partial f(x) = {\nabla f(x)}$$

Propriété

Soit
$$f: \mathcal{C} \to \mathbb{R}$$
 avec $\mathcal{C} \subset \mathbb{R}^n$ convexe. Soit $x^* \in \mathcal{C}$
Alors x^* est un minimum global de f sur \mathcal{C} si et seulement si $0 \in \partial f(x^*)$

Preuve:

$$0 \in \partial f(x^*) \Leftrightarrow \forall y \in \mathcal{C}, \ f(y) \geq 0^T (y-x^*) + f(x^*) = f(x^*) \Leftrightarrow x^*$$
 est un minimum global de f sur \mathcal{C}

2.2 Calculs de sous-gradients

Pour simplifier, on suppose avoir (f_i) convexes sur \mathbb{R}^n

Propriété

- Soit $(\alpha_1, \alpha_2) \in (\mathbb{R}_+^*)^2$. On pose $f = \alpha_1 f_1 + \alpha_2 f_2$. Alors $\partial f(x) = \alpha_1 \partial f_1(x) + \alpha_2 \partial f_2(x)$
- Soit $h: x \mapsto f(Ax + b)$ avec $A \in \mathbb{M}_{m,n}(\mathbb{R})$ et $b \in \mathbb{R}^m$ Alors $\partial h(x) = A^T \partial f(Ax + b)$
- Soit $f: x \mapsto \max_{i \in \{1, \dots, m\}} f_i(x)$ Soit $I_0 = \{i \in \{1, \dots, m\} \text{ tel que } f_i(x) = f(x)\}$ Alors $\forall g \in \partial f_{I_0}(x), g \in \partial f(x)$
- Soit $f: x \mapsto \sup_{a \in A} f_a(x)$ Soit $I_0 = \{ a \in A \text{ tel que } f_a(x) = f(x) \}$ Alors $\forall g \in \partial f_{I_0}(x), g \in \partial f(x)$

Texte manquant

3 Algorithmes de sous-gradient

3.1 Algorithme du sous-gradient

On considèle le problème suivant :

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{avec } f \text{ convexe sur } \mathbb{R}^n. \tag{6}$$

On suppose que f admet au moins un minimum $x^* \in \mathbb{R}^n$

On a l'Algorithme suivant :

Entrées : $x_0 \in \mathbb{R}^n$

Tant que

Texte manquant

Remarque : f est convexe sur \mathbb{R}^n

$$\overline{\Rightarrow \forall x \in \mathbb{R}^n, \, \partial f(x) \neq \emptyset}$$

et $\partial f(x)$ est un compact convexe de \mathbb{R}^n

Soit $k \in \mathbb{N}$

$$||x_{k+1} - x^*||_2^2 = ||x_k - \alpha_k g_k - x^*||_2^2$$

$$= ||x_k - x^*||_2^2 - 2\alpha_k g_k^T (x_k - x^*) + \alpha_k^2 ||g_k||_2^2$$
Texte manquant

On pose :
$$f_{best}^k = \min_{j \in \{1, ..., k\}} f(x_j)$$

On a:

$$2\sum_{l=1}^{k} \alpha_l(f(x_l) - f^*) \le ||x_1 - x^*||_2^2 + \sum_{l=1}^{k} ||gl||_2^2$$

$$\Rightarrow 0 \le f_{best}^k - f(x^*) \le \frac{||x_1 - x^*||_2^2 + \sum_{l=1}^{k} ||gl||_2^2}{2\sum_{l=1}^{k} \alpha_l}$$

Soit R > 0 tel que $||x_1 - x^*|| \le R$

On a donc :
$$0 \le f_{best}^k - f(x^*) \le \frac{R^2 + \sum_{l=1}^k ||g_l||_2^2}{2\sum_{l=1}^k \alpha_l}$$

On suppose de plus : $\exists a>0$ tel que $\forall l\in\mathbb{N}^*,\,||gl||\leq a$

$$\Rightarrow 0 \le f_{best}^k - f(x^*) \le \frac{R^2 + a^2 \sum_{l=1}^k \alpha_l^2}{2\sum_{l=1}^k \alpha_l}$$

Quelle stratégie de pas α_l choisir ?

• Pas constant : $\forall l \in \{1, \dots, k\}, \ \alpha_l = \alpha > 0$

On a donc :
$$0 \le f_{best}^k - f(x^*) \le \frac{R^2 + ka^2\alpha^2}{2k\alpha} \xrightarrow[k \to \infty]{} \frac{a^2\alpha}{2}$$

 $\Rightarrow f_{best}^k \in B_f(f(x^*), \frac{a^2\alpha}{2})$

•
$$\forall l \in \{1, ..., k\}, \alpha_l > 0$$

•

$$\forall l \in \mathbb{N}, \alpha_l = \frac{\gamma_l}{gl}$$
 avec $\gamma_l > 0$
$$\lim_{l \to \infty} \gamma_l = 0$$

$$\sum_{l=1}^{\infty} \gamma_l = \infty$$

Texte manquant

$$\forall k \ge N_1 + 1, \qquad 0 \le f_{best}^k - f(x^*) \le \frac{R^2 + a^2 \sum_{l=1}^{N_1} \alpha_l^2}{2 \sum_{l=1}^k \alpha_l} + \frac{a^2 \sum_{l=N_1+1}^k \alpha_l^2}{2 \sum_{l=1}^k \alpha_l}$$
$$= \frac{R^2 + a^2 \sum_{l=1}^{N_1} \alpha_l^2}{2 \sum_{l=1}^k \alpha_l} + \frac{\varepsilon}{2} \frac{\sum_{l=N_1+1}^k \alpha_l^2}{\sum_{l=1}^k \alpha_l}$$

Félix de Brandois

11

De plus,
$$\sum_{l=1}^{k} \alpha_l \to \infty$$

$$\exists N_2 \in \mathbb{N} \text{ tel que } \forall k \geq N_2, \sum_{l=1}^k \alpha_l^2 \geq \frac{R^2 + a^2 \sum_{l=1}^{N_1} \alpha_l^2}{\varepsilon}$$

D'où
$$\forall k \geq \max(N_1 + 1, N_2), \ 0 \leq f_{best}^k - f(x^*) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Donc
$$f_{best}^k \xrightarrow[k \to \infty]{} f(x^*)$$

Remarque: On s'intéresse à la stratégie de pas qui minimise $\psi(\alpha) = \frac{R^2 + a^2 ||\alpha||_2^2}{2||\alpha||_1}$ avec $\alpha \in (\mathbb{R}_{+}^{*})^{k}$

Avec une telle stratégie de pas, il pourra être nécessaire de faire $\mathcal{O}(\frac{1}{\varepsilon})$ itérations pour atteindre $|f_{best}^k - f(x^*)| \le \varepsilon$ Pour $\varepsilon = 10^{-3}$, on a 10^6 itérations : l'algorithme est très long dans le pire des cas.

3.2 Algorithme du sous-gradient projeté

Soit $f: \mathbb{R}^n \to \mathbb{R}$ convexe. On considère le problème suivant :

$$\min_{x \in \mathcal{C}} f(x) \quad \text{avec } \mathcal{C} \text{ partie convexe, ferm\'ee} =, \text{ non-vide de } \mathbb{R}^n. \tag{7}$$

On suppose que (7) admette au moins une solution $x^* \in \mathcal{C}$

Remarque: \mathcal{C} partie convexe fermée non-vide de \mathbb{R}^n :

La projection orthogonale sur C, notée Π_C , est 1-lipschitzienne :

$$\forall (x, y) \in (\mathbb{R}^n)^2, ||\Pi_{\mathcal{C}}(x) - \Pi_{\mathcal{C}}(y)||_2 \le ||x - y||_2$$

Idée Projection orthogonale sur \mathcal{C} des itérations de l'algorithme du sous-gradient.

On a l'algorithme suivant :

Entrées : $x_0 \in \mathbb{R}^n$

Tant que

- Calculer $g_k \in \partial f(x_k)$
- $x_{k+1} = \Pi_{\mathcal{C}}(x_k \alpha_k q_k)$

Fin Tant que

 $\frac{\text{Y'a-t-il convergence ?}}{\text{Soit } z_{k+1} = x_k - \alpha_k g_k} \in \mathbb{R}^n \quad \text{avec} \quad g_k \in \partial f(x_k) \text{ et } \alpha_k > 0$

$$||z_{k+1} - x^*||_2^2 = ||x_k - \alpha_k g_k - x^*||_2^2$$

$$\leq ||x_k - x^*||_2^2 - 2\alpha_k (f(x_k) - f(x^*)) + \alpha_k^2 ||g_k||_2^2$$

Or,
$$||x_k - x^*||_2^2 = ||\Pi_{\mathcal{C}}(z_{k+1}) - \Pi_{\mathcal{C}}(x^*)||_2^2$$
 car $x^* \in \mathcal{C} \Rightarrow \Pi_{\mathcal{C}}(x^*) = x^*$
 $\leq ||z_{k+1} - x^*||_2^2$ car $\Pi_{\mathcal{C}}$ est 1-lipschitzienne
 $\leq ||x_k - x^*||_2^2 - 2\alpha_k(f(x_k) - f(x^*)) + \alpha_k^2||g_k||_2^2$

On retrouve les mêmes contraintes de convergence que pour l'algorithme du sous-gradient.

Notamment, on a besoin de $\mathcal{O}(\frac{1}{\varepsilon})$ itérations pour atteindre $|f_{best}^k - f(x^*)| \le \varepsilon$

Remarque : $\Pi_{\mathcal{C}}$ peut être difficile à calculer en pratique selon ce qu'est \mathcal{C}

3.3 Cas particulier : contraintes convexes d'inégalité

On considère le problème suivant :

$$\begin{cases} \min_{x \in \mathbb{R}^n} f(x) & \text{avec } f \text{ et } (f_i)_{i \in \{1, \dots, p\}} \text{ convexe sur } \mathbb{R}^n \\ \forall i \in \{1, \dots, p\}, f_i(x) \le 0 \end{cases}$$
 (8)

En posant $C = \{x \in \mathbb{R}^n \text{ tel que } \forall i \in \{1, \dots, p\}, f_i(x) \leq 0\}$

Le problème (8) devient :

$$\min_{x \in \mathcal{C}} f(x) \qquad \text{avec } \mathcal{C} \text{ convexe} \tag{9}$$

Il est possible d'utiliser l'algorithme du sous-gradient projeté, mais $\Pi_{\mathcal{C}}$ peut être difficile à calculer.

Quelles autres stratégies?

On cherche un algorithme qui respecte les contraintes à chaque itérations.

Entrées : $x_0 \in \mathbb{R}^n$

Tant que

• Calculer $g_k \in \mathbb{R}^n$ tel que :

$$-g_k \in \partial f(x_k)$$
 si $x_k \in \mathcal{C}$
 $-g_k \in \partial f_i(x_k)$ tel que $f_i(x_k) > 0$.

 $\bullet \quad x_{k+1} = x_k - \alpha_k g_k$

Fin Tant que

On pose
$$f_{best}^k = \min_{j \in \{1, \dots, k\}} f(x_j)$$
 avec $x_j \in \mathcal{C}$

On suppose de plus que : $\exists x_l \in \mathbb{R}^n$ tel que $\forall i \in \{1,\ldots,p\}, f_i(x_l) < 0$ et $f(x_l) \neq f(x^*)$ (avec x^* solution de (9))

Avec
$$(\alpha_l)$$
 tel que :
$$\begin{cases} \forall l \in \mathbb{N}^*, \alpha_l > 0 \\ \sum \alpha_l = \infty \\ \sum \alpha_l^2 < \infty \end{cases}$$
 Alors $f_{best}^k \xrightarrow[k \to \infty]{} f(x^*)$

Preuve:

Supposons le contraire : $\exists \varepsilon > 0$ tel que $\forall N \in \mathbb{N}, \exists k \geq N$ tel que $f_{best}^k \geq f(x^*) + \varepsilon$ En particulier, $f_{best}^N \geq f_{best}^k \geq f(x^*) + \varepsilon, \forall N \in \mathbb{N}$

Soit
$$\lambda \in [0,1]$$
. On pose $\tilde{x} = (1-\lambda)x^* + \lambda x_l \in \mathcal{C}$ (par convexité de \mathcal{C})

Par convexité de
$$f$$
, $f(\tilde{x}) \leq (1 - \lambda)f(x^*) + \lambda f(x_l)$
 $\leq f(x^*) + \lambda (f(x_l) - f(x^*))$

Texte manquant

$$\forall i \in \{1, \dots, p\}, f_i(\tilde{x}) \leq (1 - \lambda)f_i(x^*) + \lambda f_i(x_e)$$
 par convexité de f_i
Or, $f_i(x^*) \leq 0$ car $x^* \in \mathcal{C}$ et $f_i(x_l) < 0$ par définition de x_l

$$f_i(\tilde{x}) \le \lambda f_i(x_l)$$

$$\le \lambda \max_{i \in \{1, \dots, p\}} f_i(x_l)$$

$$\le -\mu \quad \text{avec } \mu = \lambda \max_{i \in \{1, \dots, p\}} f_i(x_l) > 0$$

D'où
$$\exists (\tilde{x}, \mu) \in \mathcal{C} \times \mathbb{R}_+^*$$
 tel que
$$\begin{cases} f(\tilde{x}) \leq f(x^*) + \frac{\varepsilon}{2} \\ \forall i \in \{1, \dots, p\}, f_i(\tilde{x}) \leq -\mu \end{cases}$$

$$\forall k \in \mathbb{N}, \qquad ||x_{k+1} - \tilde{x}||_2^2 = ||x_k - \alpha_k g_k - \tilde{x}||_2^2$$
$$= ||x_k - \tilde{x}||_2^2 - 2\alpha_k g_k^T (x_k - \tilde{x}) + \alpha_k^2 ||g_k||_2^2$$

• 1er cas :
$$x_k \in \mathcal{C}$$

Alors $g_k \in \partial f(x_k)$ et $||x_{k+1} - \tilde{x}||_2^2 \le ||x_k - \tilde{x}||_2^2 - 2\alpha_k(f(x_k) - f(\tilde{x})) + \alpha_k^2||g_k||_2^2$
Or, $x_k \in \mathcal{C}$

Texte manquant

4 Méthodes proximales

4.1 Fonction proximale

Soit $h: \mathbb{R}^n \to \mathbb{R}$ convexe. On définit la fonction proximale de h, noté $prox_h$, par :

$$\forall x \in \mathbb{R}^n, \quad \operatorname{prox}_h(x) = \underset{u \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ h(u) + \frac{1}{2} ||u - x||_2^2 \right\}$$
 (10)

Exemple:

- i) h = 0 alors $\forall x \in \mathbb{R}^n$, $\operatorname{prox}_h(x) = x$
- ii) Texte manquant
- iii) $\forall x \in \mathbb{R}^n, h(x) = \lambda ||x||_1 \text{ avec } \lambda > 0$ Alors prox_h est appelé $\operatorname{Seuillage\ doux}$, et est défini par :

$$\forall i \in \{1, \dots, n\}, \quad [\operatorname{prox}_h(x)]_i = \begin{cases} x_i - \lambda & \text{si } x_i > \lambda \\ 0 & \text{si } |x_i| \le \lambda \\ x_i + \lambda & \text{si } x_i < -\lambda \end{cases}$$
(11)

4.2 Méthode du gradient proximal

On s'intéresse au problème d'optimisation suivant :

$$\min_{x \in \mathbb{R}^n} f(x) = g(x) + h(x) \tag{12}$$

Avec:

- g convexe et dérivable sur \mathbb{R}^n
- h convexe, potentiellement non-lisse (mais telle que $prox_h$ soit facile à calculer)

Entrées : $x_0 \in \mathbb{R}^n$

Tant que

• $x_{k+1} = \operatorname{prox}_{\alpha_k} h(x_k - \alpha_k \nabla g(x_k))$

et α_k obtenue depuis :

- i) $\forall k \in \mathbb{N}, \alpha_k = \alpha > 0 \text{ (pas constant)}$
- ii) Recherche linéaire

Exemple:

i) $h = 0 : x_{k+1} = x_k - \alpha_k \nabla g(x_k)$ (méthode de descente de gradient)

ii)
$$h(x) = \begin{cases} 1 \text{ si } x \in \mathcal{C} & \text{avec } \mathcal{C} \text{ convexe fermée non-vide de } \mathbb{R}^n \\ +\infty \text{ sinon} & x_{k+1} = \Pi_{\mathcal{C}}(x_k - x_k) \end{cases}$$
 $x_{k+1} = \prod_{\mathcal{C}} (x_k - x_k)$ (méthode du gradient projeté)

iii)
$$h(x) = \lambda ||x||_1$$
 avec $\lambda > 0$
Seuillage doux pour minimiser $f(x) = g(x) + \lambda ||x||_1$

Remarque:

i)

$$\begin{aligned} x_{k+1} &= \underset{u \in \mathbb{R}^n}{\operatorname{argmin}} \ \left\{ \alpha_k h(u) + \frac{1}{2} ||u - x_k + \alpha_k \nabla g(x_k)||_2^2 \right\} \\ &= \underset{u \in \mathbb{R}^n}{\operatorname{argmin}} \ \left\{ h(u) + \frac{1}{2\alpha_k} ||u - x_k||_2^2 + 2\alpha_k \nabla g(x_k)^T (u - x_k) + \alpha^2 ||\nabla g(x_k)||_2^2 \right\} \\ &= \underset{u \in \mathbb{R}^n}{\operatorname{argmin}} \ \left\{ h(u) + g(x_k) + \nabla g(x_k)^T (u - x_k) + \frac{1}{2\alpha_k} ||u - x_k||_2^2 + \frac{\alpha_k}{2} ||\nabla g(x_k)||_2^2 \right\} \\ &= \underset{u \in \mathbb{R}^n}{\operatorname{argmin}} \ \left\{ h(u) + g(x_k) + \nabla g(x_k)^T (u - x_k) + \frac{1}{2\alpha_k} ||u - x_k||_2^2 \right\} \end{aligned}$$

Avec : $g(x_k) + \nabla g(x_k)^T (u - x_k) + \frac{1}{2\alpha_k} ||u - x_k||_2^2$ LE modèle quadratique dégénéré de g en x_k

ii)
$$u = \text{prox } h(x) \Leftrightarrow 0 \in \partial \rho(u) \text{ avec } \rho(u) = h(u) + \frac{1}{2}||u - x||_2^2$$

 $\Leftrightarrow 0 \in \partial h(u) + \{u - x\}$
 $\Leftrightarrow x - u \in \partial h(u)$

iii) La méthode du gradient proximal peut se réécrire :
$$x_{k+1} = x_k + \alpha_k G_{\alpha_k}(x_k)$$
 avec $G_{\alpha_k}(x) = \frac{1}{\alpha}(x - \text{prox } \alpha h(x - \alpha \nabla g(x)))$

En effet,
$$x_k - \alpha_k G_{\alpha_k}(x_k) = \operatorname{prox} \alpha_k h(x_k - \alpha_k \nabla g(x_k))$$

$$\Leftrightarrow x_k \alpha_k \nabla g(x_k) - x_k + \alpha_k G_{\alpha_k}(x_k) \in \partial \alpha_k h(x_k - \alpha_k G_{\alpha_k}(x_k))$$
 par ii)
$$\Leftrightarrow \alpha_k \left[G_{\alpha_k}(x_k) - \nabla g(x_k) \right] \in \partial \alpha_k h(x_k - \alpha_k G_{\alpha_k}(x_k))$$

$$\Leftrightarrow G_{\alpha_k}(x_k) - \nabla g(x_k) \in \partial h(x_k - \alpha_k G_{\alpha_k}(x_k))$$

$$\Leftrightarrow G_{\alpha_k}(x_k) \in \partial h(x_k - \alpha_k G_{\alpha_k}(x_k)) + \{\nabla g(x_k)\}$$

De plus, $G_{\alpha_k}(x_k) = 0 \Leftrightarrow 0 \in \partial h(x_k) + \{\nabla g(x_k)\} \Leftrightarrow x_k$ est un minimum de f

D'où : tout point fixe de la suite des itérés du gradient proximal est un minimum de f

Recherche linéaire : backtracking et condition d'arrêt modifiée

Entrées : $\alpha_0 > 0, \beta \in]0,1[, x_k \in \mathbb{R}^n, \nabla g(x_k) \in \mathbb{R}^n]$

Tant que

- $\alpha_{l+1} = \beta \alpha_l$
- Critère d'arrêt : $g(x_k \alpha_l G_{\alpha_l}(x_k)) \leq g(x_k) \alpha_l G_{\alpha_l}(x_k)^T \nabla g(x_k) + \frac{\alpha_l}{2} ||G_{\alpha_l}(x_k)||_2^2$

Fin Tant que

4.3 Recherche linéaire (choix des pas) et convergence de l'algorithme

Propriété

On suppose que ∇g est L-lipschitzienne avec L > 0:

$$\forall (x,y) \in (\mathbb{R}^n)^2, ||\nabla g(x) - \nabla g(y)||_2 \le L||x - y||_2$$

Alors l'algorithme de recherche linéaire s'arrête sur $\alpha_l \geq \min (\alpha_0, \frac{\beta}{L}) := \alpha_{min}$

Preuve:

$$\nabla g \text{ est } L\text{-lipschitzienne} \Rightarrow \forall (x,y) \in (\mathbb{R}^n)^2, g(y) \leq g(x) + \nabla g(x)^T (y-x) + \frac{L}{2} ||y-x||_2^2$$
$$\Rightarrow g(x_k - \alpha_l G_{\alpha_l}(x_k)) \leq g(x_k) - \alpha_l G_{\alpha_l}(x_k)^T \nabla g(x_k) + \frac{L}{2} \alpha_l^2 ||G_{\alpha_l}(x_k)||_2^2$$

La condition est valide pour tout $\alpha_l \in]0, \frac{1}{L}[$ Donc à l'arrêt de la recherche linéaire, $\alpha_l \geq \min (\alpha_0, \frac{\beta}{L})$

Propriété

On suppose que ∇g est L-lipschitzienne. A l'arrêt de la recherche linéaire $(\alpha_k, G_{\alpha_k}(x_k))$, on a :

$$\forall z \in \mathbb{R}^n, \quad f(x_k - \alpha_k G_{\alpha_k}(x_k)) \le f(z) + G_{\alpha_k}(x_k)^T (x_k - z) - \frac{\alpha_k}{2} ||G_{\alpha_k}(x_k)||_2^2$$

<u>Preuve</u>: Par définition du critère d'arrêt de la recherche linéaire:

$$g(x_k - \alpha_k G_{\alpha_k}(x_k)) \le g(x_k) - \alpha_k G_{\alpha_k}(x_k)^T \nabla g(x_k) + \frac{\alpha_k}{2} ||G_{\alpha_k}(x_k)||_2^2$$

$$\le g(x_k) + \alpha_k G_{\alpha_k}(x_k)^T (G_{\alpha_k}(x_k) - \nabla g(x_k)) - \frac{\alpha_k}{2} ||G_{\alpha_k}(x_k)||_2^2$$

On a:
$$G_{\alpha_k}(x_k) - \nabla g(x_k) \in \partial h(x_k - \alpha_k G_{\alpha_k}(x_k))$$

Donc: $\forall z \in \mathbb{R}^n, h(z) \ge [G_{\alpha_k}(x_k) - \nabla g(x_k)]^T (z - x_k + \alpha_k G_{\alpha_k}(x_k)) + h(x_k - \alpha_k G_{\alpha_k}(x_k))$

De plus,

$$g(x_{k} - \alpha_{k}G_{\alpha_{k}}(x_{k})) + h(x_{k} - \alpha_{k}G_{\alpha_{k}}(x_{k})) \leq g(x_{k}) + h(x_{k} - \alpha_{k}G_{\alpha_{k}}(x_{k})) + \alpha_{k}G_{\alpha_{k}}(x_{k})^{T}(G_{\alpha_{k}}(x_{k}) - \nabla g(x_{k})) - \frac{\alpha_{k}}{2}||G_{\alpha_{k}}(x_{k})||_{2}^{2} \Leftrightarrow f(x_{k} - \alpha_{k}G_{\alpha_{k}}(x_{k})) \leq g(x_{k}) + h(x_{k} - \alpha_{k}G_{\alpha_{k}}(x_{k})) + \alpha_{k}G_{\alpha_{k}}(x_{k})^{T}(G_{\alpha_{k}}(x_{k}) - \nabla g(x_{k})) - \frac{\alpha_{k}}{2}||G_{\alpha_{k}}(x_{k})||_{2}^{2}$$

Or,
$$h(x_k - \alpha_k G_{\alpha_k}(x_k)) \le h(z) + [G_{\alpha_k}(x_k) - \nabla g(x_k)]^T (x_k - z - \alpha_k G_{\alpha_k}(x_k))$$

$$\Rightarrow f(x_k - \alpha_k G_{\alpha_k}(x_k)) \le g(x_k) + h(z) + \alpha_k G_{\alpha_k}(x_k)^T (G_{\alpha_k}(x_k) - \nabla g(x_k)) + [G_{\alpha_k}(x_k) - \nabla g(x_k)]^T (x_k - z - \alpha_k G_{\alpha_k}(x_k)) - \frac{\alpha_k}{2} ||G_{\alpha_k}(x_k)||_2^2$$

$$f(x_k - \alpha_k G_{\alpha_k}(x_k)) \le g(x_k) + h(z) + [G_{\alpha_k}(x_k) - \nabla g(x_k)]^T (x_k - z) - \frac{\alpha_k}{2} ||G_{\alpha_k}(x_k)||_2^2$$

Or, g est convexe et dérivable sur \mathbb{R}^n d'où : $\forall z \in \mathbb{R}^n, g(z) \geq \nabla g(x_k)^T (z - x_k) +$ $g(x_k)$

$$\Rightarrow g(x_k) \le g(z) + \nabla g(x_k)^T (x_k - z)$$

Texte manquant

Convergence:

On suppose que ∇g est *L*-lipschitzienne.

On suppose également que $\forall k \in \mathbb{N}, \alpha_k = \frac{1}{L}$ ou α_k est obtenu à partir de l'algorithme de recherche linéaire.

$$\forall z \in \mathbb{R}^n, \quad f(x_{k+1}) \le f(z) + G_{\alpha_k}(x_k)^T (x_k - z) - \frac{\alpha_k}{2} ||G_{\alpha_k}(x_k)||_2^2$$

- Avec $z = x_k : f(x_{k+1}) \le f(x_k) \frac{\alpha_k}{2} ||G_{\alpha_k}(x_k)||_2^2$ Si x_k n'est pas un minimum de f, alors $||G_{\alpha_k}(x_k)||_2^2 \ne 0$ (méthode de descente)
- Avec $z = x^* : f(x_{k+1}) \le f(x^*) + G_{\alpha_k}(x_k)^T (x_k x^*) \frac{\alpha_k}{2} ||G_{\alpha_k}(x_k)||_2^2$ $\Rightarrow 0 \le f(x_{k+1}) f(x^*) \le G_{\alpha_k}(x_k)^T (x_k x^*) \frac{\alpha_k}{2} ||G_{\alpha_k}(x_k)||_2^2$

Or,
$$||x_k - x^*||_2^2 - ||x_{k+1} - x^*||_2^2 = ||x_k - x^*||_2^2 - ||x_k - \alpha_k G_{\alpha_k}(x_k) - x^*||_2^2$$
$$= 2\alpha_k G_{\alpha_k}(x_k)^T (x_k - x^*) - \alpha_k^2 ||G_{\alpha_k}(x_k)||_2^2$$
$$= 2\alpha_k \left[G_{\alpha_k}(x_k)^T (x_k - x^*) - \frac{\alpha_k}{2} ||G_{\alpha_k}(x_k)||_2^2 \right]$$

$$\Rightarrow G_{\alpha_k}(x_k)^T(x_k - x^*) - \frac{\alpha_k}{2} ||G_{\alpha_k}(x_k)||_2^2 = \frac{1}{2\alpha_k} [||x_k - x^*||_2^2 - ||x_{k+1} - x^*||_2^2]$$
Et donc: $0 \le f(x_{k+1}) - f(x^*) \le \frac{1}{2\alpha_k} [||x_k - x^*||_2^2 - ||x_{k+1} - x^*||_2^2]$
D'où: $0 \le \sum_{l=0}^{k-1} [f(x_{l+1}) - f(x^*)] \le \frac{1}{2} \sum_{l=0}^{k-1} \frac{1}{\alpha_l} [||x_l - x^*||_2^2 - ||x_{l+1} - x^*||_2^2]$
 x^* est un minimum de f sur $\mathbb{R}^n \Leftrightarrow \forall z \in \mathbb{R}^n, f(z) \ge f(x^*)$
En posant $f_{best}^k = \min_{l \in \{0, \dots, k\}} f(x_l)$, on a:
$$0 \le k(f_{best}^k - f(x^*)) \le \frac{1}{2} \sum_{l=0}^{k-1} \frac{1}{\alpha_l} [||x_l - x^*||_2^2 - ||x_{l+1} - x^*||_2^2]$$
En posant $\alpha^* = \begin{cases} \frac{1}{L} \text{ si stratégie de pas constant} \\ \alpha_{min} \text{ si recherche linéaire} \end{cases}$, on a:
$$0 \le k(f_{best}^k - f(x^*)) \le \frac{1}{2\alpha^*} ||x_0 - x^*||_2^2$$
Soit $R \ge ||x_0 - x^*||_2^2$:
Alors $0 \le f_{best}^k - f(x^*) \le \frac{R^2}{2\alpha^*} \frac{1}{k}$
Donc $f_{best}^k \xrightarrow[k \to \infty]{} f(x^*)$

On atteint $0 \le f_{best}^k - f(x^*) \le \varepsilon$ (avec $\varepsilon > 0$) au plus tard si $k \ge \frac{2\alpha^*}{R^2} \frac{1}{\varepsilon}$ Donc $\mathcal{O}(\frac{1}{\varepsilon})$ itérations pour atteindre la précision ε sur la valeur de $f(x^*)$

4.4 Méthode accélérée du gradient proximal

Sous les mêmes hypothèses que la méthode du gradient proximal, on pose l'algorithme suivant : (algorithme FISTA : Fast Iterative Shrinkage-Thresholding Algorithm)

Entrées : $x_0 \in \mathbb{R}^n$

 $y_0 = x_0$

Tant que

- $x_k = \text{prox } \alpha_k h(y_{k-1} \alpha_k \nabla g(y_{k-1}))$
- $y_k = x_k + \frac{k-1}{k+2}(x_k x_{k-1})$

Fin Tant que

Algorithme de recherche linéaire :

Entrées : $t_0 = \alpha_{k-1}, \ \beta \in]0,1[$ Tant que

- $t_l = \beta t_{l-1}$
- Critère d'arrêt : $g(y_{k-1} t_l \nabla g(y_{k-1})) \le g(y_{k-1}) t_l G_{t_l}(y_{k-1})^T \nabla g(y_{k-1}) + \frac{t_l}{2} ||G_{t_l}(y_{k-1})||_2^2$

Fin Tant que