Support Vector Machines (SVM)

About Me

- Shubhan Tamhane
- Sophmore studying Statistical Data Science and minor in Financial Analysis
- Motivation: SVM is a very popular ML Algorithm and I wanted to learn how it works in terms of classification

Introduction

• What is SVM?

A supervised machine learning algorithm used mainly for classification

• Why use it?

Works well in high-dimensional spaces and finds a clear decision boundary between classes

Core Idea

- SVM finds the **best boundary** (line or hyperplane) that separates data into classes
- It chooses the one with the maximum margin the widest gap between the classes
- The closest data points to the boundary are called **support vectors**

What This Means

- Example: Suppose we have a dataset of Class 1 and Class 0
- Very separable
- We can see the hyperplane, maximum margin, and the support vectors

Key Concepts

Margin

- Distance between decision boundary and nearest data points
- SVM maximizes this gap

Support Vectors

- Closest points to the margin
- Define the decision boundary
- Only these matter for SVM's learning

More Realistic Example

• In this example, we can see that it is impossible to set a hyperplane without having many misclassifications due to high overlap

2

• So what can we do?

_

More Realistic Example contd.

- To fix this we can plot this in a two-dimensional space with the X-value as the original data point and the Y-value as the square of the original point
- To code this in Python we would say:

```
from sklearn.svm import SVC

model = SVC(kernel = 'poly', degree = 2)
```

• Later, we'll see how SVM can do this transformation automatically using something called a **kernel**

_

More Realistic Example contd.

- Transformed data is now linearly separable
- SVM finds a linear boundary in 2D

Linear vs Non-Linear

- Linearly separable: A straight line (or plane) can separate the classes (Example 1)
- Non-linear data: Use kernels to transform the space (Example 2)

4

The Kernel Trick

- Kernels transform the data into higher-dimensional space without computing the transformation directly
- When we mapped out x^2, we did it manually, but the Kernel trick can do this for us automatically
- This allows SVM to draw a straight boundary in the transformed space

Real-world	analogy:
TIGGT WOLLS	. anarogy.

Imagine red and blue sprinkles arranged in a ring pattern. In 2D you can't separate them, but

Common Kernel Types

Kernel	Use Case
Linear	Data that's already separable with a straight line (Example 1)
Polynomial	When the decision boundary is curved (Example 2)
RBF (Radial Basis Function)	For complex, non-linear boundaries

 ${f RBF}$ measures similarity based on distance — closer points are more related.

Radial Basis Function Kernel

- RBF kernel flexibly bends the boundary to fit the shape
- Measures similarity between two points based on distance
- Maps data points in an infinite-dimensional feature space
- Flexible and powerful

Parameters

Parameter	Description	Example
kernel	Defines the shape of the decision boundary	'linear', 'rbf', 'poly'
С	Controls trade-off between margin size and misclassification	<pre>C = 0.1 (wide margin), C = 100 (strict)</pre>
gamma	Defines how far the influence of a point reaches	'scale', 0.1, 1
degree	Degree of the polynomial kernel	degree = 2 or 3

Pros & Cons

Pros	Cons
Works well in high-dimensional space	Computationally expensive on large datasets
Effective with small datasets	Sensitive to parameter tuning
Prevents overfitting well	Not great with overlapping groups

Real-World Applications

- Face recognition
 - Facebook and Apple
- Spam email detection
- Speech Recognition
 - Siri and Google
- Image Classification
 - Pintrest

Summary

- SVM finds a decision boundary with the maximum margin
- Support vectors define the boundary
- \bullet $\,$ Kernels allow SVM to work with complex data shapes

Thank You!

Questions?