AMENDMENTS TO THE CLAIMS

Please amend the claims as follows:

- 1. (Amended) A method for defeating a denial-of-service attack, for use in a communication system in which a client sends a ciphertext of a random number chosen by the client encrypted under a public key of a server to authenticate a the server, the method comprising the steps of:
- (a) at the server, generating a random number $r_{\rm B}$ in response to a service request from a client and sending the random number to the client;
- (b) at the server, receiving the <u>a</u> ciphertext produced by the client using the random number r_B from the elient <u>server</u> and a random number r_A of <u>selected by</u> the client, <u>enciphered with the public key of the server</u>;
- (c) at the server, recovering a random number $r_B r_{B'}$ from the ciphertext received from the client <u>based on a private key corresponding to the public key of the server</u> and comparing the recovered random number with the random number sent to the client; and
- (d) if the <u>recovered</u> random <u>number is equal to the random number sent to the</u> <u>client numbers match at the step (e)</u>, providing the service, and, otherwise, denying the service.
- 2. (Amended) The method as received in claim 1, wherein, at the step (a), the random number r_B is obtained by an equation $r_B = H(K_{master}, index_r_B)$ where H is a hash function, K_{master} is a secret master key and $index_r_B$ is an index parameter for the random number.
- 3. (Amended) A method for defeating denial-of-service attack, applicable to a server authentication system in which a client uses a discrete exponentiation g^{r_A} as a random client's challenge to a the server, a private key and a public key of a the server are respectively b and g^b , and the ciphertext of the client's challenge using the public key of the server is g^{br_A} , the method comprising the steps of:
 - (a) at the server, sending a random number r_A to a client;

(b) at the server, receiving x and y values which the client computed by using the random number from the server as:

$$x=(g^b)^{r_A+r_B}$$

where b is the private key of the server and g^b is the public key of the server, and

$$y = h(g^{r_A})$$

where h represents a hash function;

(c) comparing y from the client with y' as follows:

$$y' = h(x^{b^{-1}}g^{-r_B})$$
; and

- (d) if y and y' match, providing a requested service to the client, and, otherwise, denying the service <u>to</u> the client.
- 4. (Amended) In a communication system having a large capability processor in which a client sends a server a ciphertext of a random number encrypted under a public key of the server to authenticate the server, a computer readable medium for recording a program for implementing the functions of:
- (a) at the server, generating a random number $r_{\rm B}$ in response to a service request from a client and sending the random number to the client;
- (b) at the server, receiving the \underline{a} ciphertext which is produced by the client based on the random number r_B sent to the client and a random number r_A of produced by the client;
- (c) at the server, recovering the \underline{a} random number $r_B \underline{r_{B'}}$ from the ciphertext received from the client and comparing the recovered random number with the random number sent to the client; and
- (d) if the <u>recovered</u> random <u>number is equal to the random number sent to the</u> <u>client numbers match at the step (e)</u>, providing the service, and, otherwise, denying the service.
- 5. (Amended) In a server authentication system having a large capability processor, in which a client uses a disrecte discrete exponentiation g^{r_B} as a random client's challenge to a server, a private key and a corresponding public key of the server

are respectively b and g^b , and a ciphertext of the client's challenge using the public key of the server is g^{br_A} , a computer readable medium for recording a program for implementing the functions of:

- (a) at the server, sending a random number to a client;
- (b) at the server, receiving x and y values which the client computed by using the random number from the server as:

$$x=(g^b)^{r_A+r_B}$$

where b is the private key of the server and g^b is the public key of the server, and

$$y = h(g^{r_A})$$

where h represents a hash function;

(c) at the server, comparing y from the client with y' as follows:

$$y' = h(x^{b^{-1}}g^{-r_B})$$
; and

(d) if y and y' match, providing a service to the client, and, otherwise, denying the service.