CS 7480 Spring 2013 Control Flow Analysis

notes by: Stephen Chang

Friday, January 11, 2013

1 Summary

General monotone flow analysis framework.

- 1. Monotonic, continuous functions
- 2. Lattices
 - represents a program property, ie, a "fact" lattice
 - ordering is information ordering
 - modeling programs as functions on lattices

2 Monotonic, continuous functions

Definition 1. A least upper bound (lub) on set S:

- 1. $\forall x \in S : x \leq \text{lub } S$, ie, lub S is an upper bound of S
- 2. $\forall x \in S : x \leq y \implies \text{lub } S \leq y$, ie, lub S is less than or equal to all upper bounds of S.

If ordering is information ordering, then lub S is the "most precise" upper bound.

Definition 2. In a complete partial order (cpo), every chain has a lub.

Definition 3. A pointed set has a bottom (\bot) element.

Definition 4. A function f is monotone if $\forall a, b : a \leq b \implies f(a) \leq f(b)$.

In other words, more information gives better conclusions. But we don't need to worry much about monotonicity because it's pretty much always true.

Definition 5. A function f is continuous if \forall chains C: f(lub C) = lub f(C).

In other words, the function and lub operations commute. So you "can sneak up on an answer."

Theorem 1. $continuous \implies monotone$

Proof. .

- 1. $x \leq y \implies \text{lub}\{x, y\} = y$
- 2. From the definition of continuous:

$$f(\text{lub}\{x,y\}) = \text{lub}\,f(\{x,y\})$$

Using step 1:

$$f(y) = \text{lub} f(\{x, y\}) = \text{lub} \{f(x), f(y)\}$$

so

$$f(x) \le f(y)$$

meaning f is monotone.

Theorem 2. monotonic \implies continuous, when cpo chains are finite

Proof. Consider (finite) chain $C = x_1 \leq \cdots \leq x_n$. Want to show:

$$f(\operatorname{lub} C) = \operatorname{lub} f(C)$$

- 1. $\operatorname{lub} C = x_n$, so $f(\operatorname{lub} C) = f(x_n)$
- 2. By monotonicity:

$$f(x_1) \le \dots \le f(x_n)$$

so

$$lub f(C) = f(x_n)$$

Theorem 3. With an infinite chain, monotone \implies continuous.

Proof. Counterexample:

$$f: \mathbb{N}_{\infty} \to \mathbb{N}_{\infty}, f(i) = 0, \text{ for } i \in \mathbb{N}, f(\infty) = 1$$

Consider the chain $C = \mathbb{N}$. $f(\text{lub } C) = f(\infty) = 1$, but $\text{lub } f(C) = 0$.

Theorem 4 (Least Fixed-point). If D is a pointed cpo and $f: D \to D$ is continuous, then f has a least fixed-point (lfp), fix $f = \text{lub}\{f^n \bot \mid n \ge 0\}$.

Recall that a recursive function is a search for a fixed point. If there is a least fixed-point, then there is a "best answer".

Proof. Summary:

1. Show that $\{f^n \perp \mid n \geq 0\}$ has a lub.

- 2. Show that the lub is a fixed-point.
- 3. Show that the lub is a least fixed-point.

Proof:

1.

2.

3.