

Fourier-Motzkin

Eine kleine Zusammenfassung

dimension_reduction(A,b)

Eliminiert die letzte Spalte von A $\in \mathbb{R}^{m \times n}$

```
Input: A, b
Output: A', b'
For i=1,...,m:
  If A[i,n] == 0:
     A'.add row(A[i])
     b'.add row(b[i])
     continue
  For j=i+1,...,m:
     If sign(A[i,n]) != sign(A[j,n]):
        A'.add row(1/A[i,n] * A[i] - 1/A[j,n] * A[j])
        B'.add row(1/A[i,n] * b[i] - 1/A[j,n] * b[j])
A' = A'[:,:-1]
Return A', b'
```

dimension_reduction(A,b)

Man kann A' und b' auch durch Linksmultiplikation mit einer Matrix M erhalten.

$$A' = M \cdot A \text{ und } b' = M \cdot b$$

Die Matrix M wird so konstruiert:

Entsteht die k-te Zeile von A' durch
$$\frac{1}{\lambda}$$
A[i] + $\frac{1}{\mu}$ A[j] so ist $M[k,i]=\frac{1}{\lambda}$, $M[k,j]=\frac{1}{\mu}$ und $M[k,l]=0$ sonst

_image(A,M)

A ist die Matrix, die das Polyhedron P beschreibt und M die lineare Abbildung, die A transformiert.

$$M \cdot A = \{ y \mid \exists x : y = Mx, Ax \ge b \}$$

$$\underbrace{x \in P}$$

$$M \cdot A = \pi(\{(y, x) : Q \cdot {y \choose x} = b'\})$$

$$Q = \begin{pmatrix} -I & M \\ I & -M \\ 0 & A \end{pmatrix}, b' = \begin{pmatrix} 0 \\ 0 \\ b \end{pmatrix}$$

H_representation(x_1,...,x_k)

Berechne die konvexe Hülle von x_1, \ldots, x_k .

$$A = \begin{pmatrix} 1 & & & 1 \\ x_1 & \cdots & x_k \\ 1 & & & 1 \end{pmatrix} \in \mathbb{R}^{n \times k}, P = \{x : Qx = b\}$$

$$Q = \begin{pmatrix} 1 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \ddots & 0 \\ 1 & \dots & 1 \\ -1 & \dots & -1 \end{pmatrix}, b = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ -1 \end{pmatrix}$$

Die konvexe Hülle ist dann $A \cdot P$.

compute_x_or_y

Fall n=1: Sei $A = \mathbb{R}^{m \times 1}$. Gibt es ein $x \in \mathbb{R}$, sodass $Ax \ge b$?

Alle Einträge von $A = (a_1, \dots, a_m)$ mit $a_i > 0$ legen eine **untere Schranke** für x fest.

Alle Einträge von $A = (a_1, \dots, a_m)$ mit $a_i < 0$ legen eine **obere Schranke** für x fest.

Falls die untere Schranke größer als die untere Schranke ist, so gibt es keine Lösung.

Dann findet man ein $y \in \mathbb{R}^m$ mit $y^TA = 0$ und $y^Tb > 0$. Setze dazu

$$y_l = 1, y_u = -\frac{a_l}{a_u}$$

und alle anderen Komponenten $y_i = 0$.

compute_x_or_y

Fall n>1: Um das y zu konstruieren, berechne $y = M^T y_{old}$.

Um das $x \in \mathbb{R}^{n+1}$ zu konstruieren, setze das alte $x' \in \mathbb{R}^n$ in $A \binom{x'}{z} \ge b$ ein und finde für z eine passende Lösung (siehe Fall 1).