MATH 651: PROBLEM SET 6 SOLUTIONS ARE IN CLASS ON MON. NOV 19.

- 1. (10 points) A space Y is said to have the *universal extension property* if for every normal space X, every closed subset $A \subseteq X$ and every continuous mapping $f: A \to Y$ there exists a continuous extension of f to X.
 - (i) Let I be a nonempty set. Show that \mathbb{R}^I has the universal extension property.
 - (ii) Show that $\{0,1\}$ with discrete topology does not have the universal extension property.
- 2. (10 points) Let (X, τ) be a topological space and let $\{E_{\alpha}\}_{{\alpha} \in \Lambda}$ be a locally finite family of subsets of X. Prove that

$$\overline{\bigcup_{\alpha \in \Lambda} E_{\alpha}} = \bigcup_{\alpha \in \Lambda} \overline{E_{\alpha}}.$$

In particular, the union of a locally finite family of closed sets is closed.

- 3. (10 points) Show that Sorgenfrey line is paracompact.
- 4. (10 points) Is every locally compact Hausdorff space paracompact? Prove or provide a counterexample.
- 5. (5 points) Provide an example of a 2nd countable Hausdorff space which is not metrizable (and justify your claims).
- 6. (5 points) Provide and example of a separable, 1st countable T4 space which is not metrizable (and justify your claims).