AI LAB

2.1 - UNSUPERVISED LEARNING

FRANCESCA M. BUFFA

LAB STRUCTURE

- INTRODUCTION
- THE DATA
- THE AI-LAB CHALLENGE PART 1
- PART 1 SHARING AND DISCUSSION

- UNSUPERVISED LEARNING EXAMPLES
- THE AI-LAB CHALLENGE PART 2
- PART 2 SHARING AND DISCUSSION

- SUPERVISED LEARNING EXAMPLES
- THE AI-LAB CHALLENGE PART 3
- LARGE PROJECTS AND DATABASES

- THE AI-LAB CHALLENGE PARTS 1-3, SHARING AND DISCUSSION
- DATA INTERPRETATION
- DISCUSS AND PREPARE WORKSHOP PRESENTATIONS

UNSUPERVISED LEARNING APPLICATIONS

- EXPLORATORY DATA ANALYSIS
- QUALITY CONTROL
- CLASS DISCOVERY
- DIMENSIONALITY REDUCTION

EXAMPLE: QC IN SINGLE CELL SEQUENCING EXPERIMENT

#Cells 528
Samples (Cntrl vs Treatment)

2637

#Features/Genes

#Features/Genes 2637

PCA DIMENSIONALITY REDUCTION

DIMENSIONALITY REDUCTION

CLUSTERING APPLICATIONS

ARE THERE GROUPS OF SIMILAR DISEASES/CELLS?

"UNSUPERVISED APPROACH"

CLASS DISCOVERY

FIND GROUPS OF SIMILAR CASES OR SIMILAR FEATURES

Clustering: guilty-by-association

Are my samples similar?

Samples with similar genomic profile might for example have a similar prognosis or response to treatment.

Or in single cell might come from the same cell population.

Are my genes similar?

Suppose genes A and B are grouped in the same cluster. This mean they are expressed under the same conditions. Then we can hypothesize that genes A and B are involved in similar pathways/share function.

Unsupervised: Breast Cancer Subtypes (PAM50)

- Unsupervised approach: outcome not considered
- Classification based on Expression of Breast Cancer Intrinsic Genes
- Gene expression microarrays
- Hierarchical clustering used to represent distance between samples
- Groups identified matching existing clinical knowledge

Perou et al, Nature 2000 Sorlie et al, PNAS 2001

How many clusters?

Perou et al, Nature 2000 Sorlie et al, PNAS 2001

REPRODUCIBILITY

WEIGELT, B ET AL, LANCET ONCOLOGY, 2010

WHEN USING DIFFERENT METHODS TO ASSIGN PATIENTS TO EACH CLUSTER:

• BASAL-LIKE CANCERS WERE CONSISTENTLY CLASSIFIED.

• ASSIGNMENT OF INDIVIDUAL CASES TO LUMINAL A, LUMINAL B, HER2, AND NORMAL BREAST-LIKE SUBTYPES WAS DEPENDENT ON THE METHOD USED.

• THE SIGNIFICANCE OF ASSOCIATIONS WITH OUTCOME OF EACH MOLECULAR SUBTYPE, OTHER THAN BASAL-LIKE AND LUMINAL A, VARIED DEPENDING ON THE METHOD USED.

Link between gene expression clusters and genomic features

Link between gene expression clusters and genomic features

Clustering on Copy Number Changes and transcriptional landscape of thousands of tumours (IntClust)

The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups

Christina Curtis^{1,2}†*, Sohrab P. Shah^{3,4}*, Suet-Feung Chin^{1,2}*, Gulisa Turashvill^{3,4}*, Oscar M. Rueda^{1,2}, Mark J. Dunning², Doug Speed^{2,5}*, Andy G. Lynch^{1,2} Shamith Samarajiwa^{1,2}, Vinyin Yuan^{1,2}, Stefan Grāf^{1,2}, Gavin Ha³, Gholamreza Haffari³, Ali Bashashati³, Roslin Russell², Steven McKinney^{3,4}, METABRIC Group[‡], Anita Langered⁶, Andrew Green⁷, Elena Provenzano⁸, Gordon Wishart⁸, Sarah Pinder⁹, Peter Watson^{3,4,10}, Florian Markowetz^{1,2}, Leigh Murphyl¹⁰, Ian Ellis⁷, Arnie Purushotham^{9,11}, Anne-Lise Børresen-Dale^{6,12}, James D. Brenton^{2,13}, Simon Tavaré^{1,2,5,14}, Carlos Caldas^{1,2,8,13} & Samuel Aparicio^{3,4}

Gene expression-based approach for classifying breast tumors into the ten IntClust subtypes

Genome-driven integrated classification of breast cancer validated in over 7,500 samples

H Raza Ali, Oscar M Rueda, Suet-Feung Chin, Christina Curtis, Mark J Dunning, Samuel AJR Aparicio and Carlos Caldas 🖾

Genome Biology 2014 15:431 | DOI: 10.1186/s13059-014-0431-1 | © Ali et al.; licensee BioMed Central Ltd. 2014

EXAMPLE OF INTEGRATED CLUSTERING METHOD: ICLUSTER

https://sites.google.com/site/ronglais/icluster

Methylation

The iCluster algorithm formulates the problem of subgroup discovery as joint penalized multivariate regression of the different omics data types with reference to a set of common latent variables, which represent the underlying tumor subtypes Gaussian joint latent variable model.

CLUSTERING SINGLE CELLS RNASEQ

DISCOVERY OF DIFFERENT CELL PHENOTYPES

Identifying cell-type marker genes

Uncovering tissue dynamics

Discovering sample heterogeneity

