University of Minnesota Math Refresher

SUMMER 2015

Problem Set 0

1. Show by induction the following relations:

•
$$1+2+3+...+n=\frac{1}{2}n(n+1)$$
.

$$1 + r + r^2 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}.$$

$$1^3 + 2^3 + \dots + n^3 = \left[\frac{1}{2}n(n+1)\right]^2.$$

2. Show that there is no rational number p such that $p^2 = 2$.

3. Show that if
$$0 < a < b$$
 then $a < \sqrt{ab} < b$ and $0 < \frac{1}{b} < \frac{1}{a}$.

4. Let A, B, C and B_n be arbitrary sets, for $n \in I$. Show that:

$$A \bigcup (\bigcap_{n \in I} B_n) = \bigcap_{n \in I} (A \bigcup B_n).$$

$$\bullet A \cap (\bigcup_{n \in I} B_n) = \bigcup_{n \in I} (A \cap B_n).$$

$$A - (B \cap C) = (A - B) \bigcup (A - C).$$

5. Show the following equivalences (Morgan's Laws):

$$(A \cap B)' = A' \cup B'.$$

$$(A \bigcup B)' = A' \cap B'.$$

Note: E' represents the complement of set E.

6. Consider the following properties of the binary relation R on the set X:

- R is reflexive if for every $x \in X$, xRx.
- R is transitive if for x, y, $z \in X$, xRy and yRz implies xRz.
- R is *complete* if for $x,y \in X$, xRy or yRx.

Which of the properties above are satisfied by the following relations?

■ Let
$$X = \Re^n_+$$
 and R defined on X, where xRy iff $x \ge y$.

• Let
$$X = \Re^2_+$$
 and R defined on X, where xRy iff $x_1 > y_1$ or if $x_1 = y_1$ and $x_2 > y_2$.

1

Math Refresher Problem Set 0

7. Consider the relation \succeq defined on a set of alternatives X. This is known as a preference relation. Also, consider the following definitions:

- Strict preference relation \succ : $x \succ y$ iff $x \succeq y$ but not $y \succeq x$.
- Indifference relation \succ : $x \sim y$ iff $x \succeq y$ and $y \succeq x$.
- A preference relation \succeq is rational if it is complete and transitive.

Suppose \succeq is a rational preference. Show:

- \succ is transitive and irreflexive (irreflexive: $x \succ y$ never holds).
- \bullet \sim is reflexive, transitive and symmetric.
- 8. Show that if \succeq is rational then the strict preference \succ is negatively transitive.
 - \succ is negatively transitive if $x \succ y$, for some $x,y \in X$, then for any other $z \in X$ either z or $x \succ z$.