Formal Verification of the FDO protocol

<u>Simone Bussa</u>, Riccardo Sisto, Fulvio Valenza DAUIN, Politecnico di Torino, Italy

{first}.{last}@polito.it

IoT Device Onboarding Introduction

IoT Device Onboarding

Onboarding solutions today

- Manual installation: time, trust, costs
- Proprietary 'zero touch' protocols: specific platforms, pre-configuration

Need to replace proprietary protocols with a single shared standard

Fido Device Onboarding

In 2020, Fido Device Onboarding (FDO)

- By the FIDO Alliance
- Hardware independent, plug&play
- Allows late binding

FDO v1.1^[1] is a Proposed Standard Specification

- It is necessary to deeply analyze its security
- No formal verification found in the literature

My contributions: perform a first formal analysis of the protocol to highlight potential vulnerabilities

Formal Verification

Static analysis of a system formal model

- 1. Formal Specification: from the system to its formal abstract model
- 2. Formal Verification: check if the model satisfies some formal properties

Formal methods increase the confidence in the security of the protocols by giving high assurance

Two questions:

- How does the device discover the Owner URL?
- 2. How is the transfer of ownership of the device handled?

OWNER SK, OWNER URL 2. TOO Phase **OWNER** SERVER URL GUID - OWNER URL 4. TO2 Phase RENDEZVOUS **SERVER** 3. TO1 Phase • • • • • \Box

Two questions:

DEVICE

- How does the device discover the Owner URL?
- 2. How is the transfer of ownership of the device handled?

MANUFACTURER

DEV_SK, MAN PK

」 GUID, SERVER URL

1. DI Phase

Two questions:

- How does the device discover the Owner URL?
- 2. How is the transfer of ownership of the device handled?

1. DI Phase

- How does the device discover the Owner URL?
- 2. How is the transfer of ownership of the device handled?

Ownership Voucher

OV Header GUID, SERVER_URL, MAN_PK, DEV_PK

OVEntryArray

MAN_PK, h(OVHeader), sign(MAN_SK)

Ownership Voucher

OV Header GUID, SERVER_URL, MAN_PK, DEV_PK

OVEntryArray

MAN_PK, h(OVHeader), sign(MAN_SK) DIST_PK, h(entry₀), sign(MAN_SK)

Signed using private key corresponding to

Ownership Voucher

OVEntryArray

Owner has sk_N_i

MAN_PK, h(OVHeader), sign(MAN_SK) DIST_PK, h(entry₀), sign(MAN_SK) pk_Ni, h(entry_{i-1}), sign(sk_N_{i-1})

Signed using private key corresponding to

In the TOO phase, the OWNER SK, Owner uses the OV OWNER URL and OWNER_SK to authenticate to the 1. TOO Phase **OWNER** Server **OVHeader** GUID, SERVER_URL, MAN_PK, DEV_PK **GUID - OWNER URL** 3. TO2 **OVEntryArray** Phase OWNER PK, MAN PK, DIST PK, $h(entry_{i-1}),$ h(OVHeader), $h(entry_0)$, sign(MAN_SK) sign(MAN_SK) sign(sk_N_{i-1}) **RENDEZVOUS SERVER** 2. TO1 Phase **DEVICE**

In the TOO phase, the OWNER SK, Owner uses the OV OWNER URL and OWNER_SK to authenticate to the 1. TOO Phase **OWNER** Server **OVHeader** GUID, SERVER_URL, MAN_PK, DEV_PK GUID - OWNER URL 3, TO2 **OVEntryArray** Phase OWNER PK, MAN PK, DIST PK, h(entry_{i-1}), h(OVHeader), $h(entry_0)$, sign(MAN_SK) sign(MAN_SK) sign(sk_N_{i-1}) **RENDEZVOUS SERVER** 2. TO1 Phase **OVHeader** GUID, SERVER_URL, MAN PK, DEV PK In the TO1 phase, the **OVEntryArray** device uses DEV_SK DEVICE OWNER PK. to authenticate to MAN PK, DIST_PK, h(OVHeader), $h(entry_{i-1}),$ $h(entry_0)$, sign(MAN_SK) sign(MAN_SK) sign(sk_N_{i-1}) the Server

Verification results

Proverif found the following weakness, when the attacker is an <u>intermediate</u> node in the supply chain

OV 3 entries authenticates the Owner

Verification results

OV 3 entries authenticates the Owner

Proverif found the following weakness, when the attacker is an <u>intermediate</u> node in the supply chain

"Truncated" OV authenticates the attacker

Consequences (I)

DENIAL OF SERVICE

Consequences (II)

Similar attack reported by FIDO

In an app-note FIDO reported a similar vulnerability

Possible countermeasures

Conclusions and Future work

Conclusions:

- First formal symbolic analysis of the FDO protocol
- Verification found a weakness similar to another one already known
- We reported our findings to FIDO who is conducting a stringent certification program to assess the security of the FDO protocol
- We hope our analysis can contribute to improve the protocol draft

Future work:

- Test the attack on the real implementation
- Propose countermeasures (Server authentication in TO1)

Thanks for your attention!

SIMONE BUSSA simone.bussa@polito.it

