A figura representa sete superfícies equipotenciais planas, paralelas entre si, e perpendiculares ao plano da página. A distância entre as superfícies equipotenciais é 1.0 cm e a distância entre os pontos B e C é 3 cm.

O campo elétrico na região é:

Resposta Selecionada: d. 1000 V/m com sentido para a direita

A figura mostra a posição de seis cargas elétricas, iguais em módulo. Considere que o módulo de cada carga é q = 1 nC. O campo elétrico na origem é. (i e j são os versores segundo xx e yy respetivamente)

Resposta Selecionada: (+22500 i + 22500 j) N/C

Segunda-feira, 13 de Julho de 2020 14H26m BST

Considere a seguinte associação de condensadores representada na figura.

Se for aplicada uma diferença de potencial de 6.0 V entre os pontos A e B, calcule os valores a azul na tabela, que se referem à carga de cada condensador (em microcoulomb) e a diferença de potencial aos seus terminais (em volt).

Α				
$c_1 \stackrel{\bot}{=}$	Condensadores	C [μF]	Q [μC]	<i>V</i> [V]
	c_1	1	Q_1	V ₁
$C_2 =$	c_2	2	$\mathbf{Q_2}$	$\mathbf{V_2}$
_	c_3	3	\mathbf{Q}_3	V ₃
$C_3 =$				
В				

Um campo elétrico está representado na figura por cinco linhas de campo paralelas e equidistantes. As linhas representadas a tracejado são perpendiculares às linhas de campo. Das seguintes afirmações diga quais são as Verdadeiras (com V) e as Falsas (com F).

O campo elétrico representado na figura é semelhante ao campo elétrico produzido por uma carga pontual positiva. [x] Os pontos S e P pertencem a diferentes linhas equipotenciais. [y]

O potencial elétrico no ponto P é menor do que o potencial elétrico no ponto Q. [z]

O potencial elétrico no ponto R é maior do que o potencial elétrico no ponto Q. [w]

Resposta Especificada para x F

Resposta Especificada para y V

Resposta Especificada para z F

Resposta Especificada para w V

A figura representa sete superfícies equipotenciais planas, paralelas entre si, e perpendiculares ao plano da página. A distância entre as superfícies equipotenciais é 1.0 cm e a distância entre os pontos B e C é 3 cm.

O trabalho realizado pelo campo elétrico para transportar a carga elétrica $q = +2 \mu C$, desde o ponto **A** ao ponto **C** é:

Pergunta 4
8 em 8 pontos

A tabela indica, para 4 cilindros semelhantes ao da figura, os fluxos do campo elétrico, expresso em N m²/C, através das superficies A, B e C. A ordem dos cilindros, de acordo com a carga que se encontra no seu interior, do valor mais negativo até ao valor mais positivo é:

Cilindro	Superficie A	Superfície B	Superficie C
1	$+2x10^9$	-6x10 ⁹	+4x10 ⁹
2	-2x10 ⁹	$+3x10^9$	-5x10 ⁹
3	+3x10 ⁹	+6x10 ⁹	-2x10 ⁹
4	+2x10 ⁹	-3x10 ⁹	-5x10 ⁹

Pergunta 5

11,25 em 15 pontos

O gráfico da figura mostra a variação da intensidade do campo elétrico em função da distância (r) ao centro de uma esfera eletricamente carregada, em equilíbrio eletrostático.

Constante de Coulomb = 9,0 x 109 (em unidades SI)

Permitividade elétrica do vazio. 8,85 x 10⁻¹² (em unidades SI)

- (a) Qual o rato da esfera, em cm? (arredondamentos às décimas, e use a virgula como separador) [A]
- (b) A esfera é condutora ou Isoladora? [B]
- (c) Calcule a carga da esfera, em microcoulomb. (arredondamentos às décimas, e use a virgula como separador) [C]
- (d) O fluxo elétrico através de uma superfície esférica gaussiana de raio 3 cm é maior, menor ou igual ao fluxo elétrico através de uma superfície gaussiana esférica de raio 4 cm. [D]

Resposta Especificada para A 2,0

Resposta Especificada para B condutora

Resposta Especificada para C 4.0*10 ^ 16

Resposta Especificada para D Igual

Se necessário use os seguintes valores:

Pergunta 6	0 em 10 pontos
Duas partículas de cargas q ₁ =q e q ₂ =-15q estão colocadas nos pontos (0,0) e (L,0) no plano XY, separadas pela distância L= 4. Determine a posição (abcissa) dum ponto de coordenada negativa em que o potencial elétrico seja nulo (Tome V=0 no infinito)	
Nota1: Escreva explicitamente o sinal + ou - no seu resultado.	

Nota2: Apresente a sua resposta arredondada às CENTÉSIMAS e use VÍRGULA como separador entre as unidades e as casas decimais.

No circuito apresentado, a capacidade dos condensadores é: $C_1 = 12.0 \ \mu F$, $C_2 = 5.0 \ \mu F$, $C_3 = 4.5 \ \mu F$. A capacidade equivalente do circuito e a carga acumulada no condensador C₃, quando a diferença de potencial aplicada, V, é 12.5 V é de:

Resposta Selecionada: 3,6 µF; 45 µC

).

A figura representa sete superfícies equipotenciais planas, paralelas entre si, e perpendiculares ao plano da página. A distância entre as superfícies equipotenciais é 1.0 cm e a distância entre os pontos B e C é 3 cm.

Caraterize a força elétrica a que fica sujeita uma carga q = 2 C colocada no ponto A.

Duas cargas pontuais positivas, $q_1 = -q$ e $q_2 = 4q$, estão fixas sobre o eixo dos xx, nas posições x = 0 e x = 3m. Das seguintes afirmações diga quais são as **Verdadeiras** (com **V**) e as **Falsas** (com **F**).

A intensidade da força que q_1 exerce sobre q_2 é igual à intensidade da força que q_2 exerce sobre q_1 . [x]

A força que q_1 exerce sobre q_2 é no sentido positivo do eixo dos xx [y]

Existe um ponto à esquerda das 2 cargas, sobre o eixo dos xx, onde o campo elétrico criado pelas duas cargas se anula. [z]

O campo elétrico num ponto entre as cargas tem o sentido positivo do eixo dos xx. [w]

Resposta Especificada para x V

Resposta Especificada para y F

Resposta Especificada para z V

Resposta Especificada para w F