Assignment 05 Answer

January 1, 2024

1 Assignment 5 Answer

- Unless dictated by the exercise, the point of the code is to generate the visuals, and can therefore be ignored.
- There are some lecture references in this document. They are notes to myself and can be ignored.

```
[]: from scipy.integrate import odeint import numpy as np import sympy as sp import matplotlib.pyplot as plt
```

1.1 Q1

A damped driven harmonic oscillator has the form:

$$F(t) - kx - b\dot{x} - m\ddot{x} = 0$$

where F(t) is the driving force, k is the spring constant, b is the damping constant, and m is the mass.

 $m\ddot{x}$ resists acceleration. $b\dot{x}$ resists velocity. kx resists displacement.

If b = 0 the system is undamped and a sinusoidal input will lead to unbounded growth of its state.

The system can be described in state space as:

$$\dot{x} = Ax + Bu$$

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} F(t)$$

```
x0 = np.array([0, 0])
t = np.linspace(0, duration, 1000)
x = odeint(model, x0, t)

plt.plot(t, x[:, 0])
```

```
[]: m = 1
k = 1
b = 1
duration = 20
```

[]: # Damped step response plot_harmonic_oscilator(k, b, m, duration, lambda t: 1)


```
[]: # Damped driven response plot_harmonic_oscilator(k, b, m, duration, lambda t: np.sin(t))
```


[]: # Undamped driven response plot_harmonic_oscilator(k, 0, m, 10*duration, lambda t: np.sin(t))

[]: # Undamped step response plot_harmonic_oscilator(k, 0, m, 10*duration, lambda t: 1)

When undamped, the system is unstable when given a harmonic input. For this reason, the system is not BIBO stable for all bounded inputs for every k, b, and m.

1.2 Q2

Linearisation:

$$\bar{f}(x) \approx f(a) + \dot{f}(a)(x-a)$$

Such a system would be marginally stable if $\dot{f}(a) = 0$.

S1 (unstable):

$$\begin{split} \dot{x} &= x^2 \\ \ddot{x} &= 2x \\ \dot{\bar{x}} &\approx 0 + 0(x-0) \\ \dot{\bar{x}} &\approx 0 \end{split}$$

S2 (stable):

$$\begin{split} \dot{x} &= -x^3 \\ \ddot{x} &= -3x^2 \\ \dot{\bar{x}} &\approx 0 + 0(x-0) \\ \dot{\bar{x}} &\approx 0 \end{split}$$

Both S1 and S2 linearise to $\dot{\bar{x}} \approx 0$ which is marginally stable.

1.3 Q3

Lecture 144 Does linearizing preserve the stability properties

Both stable and unstable systems may result in the same linearisation. Therefore, linearisation does not preserve stability properties.

1.4 Q4

1.4.1 1

The system has the solution $x_1 = x_2$.

A vector representing this is:

$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

1.4.2 2

The system has no solution because the point (1,1,1) is not in the span of the columns of A.

$$A = \begin{bmatrix} 2 & -1 \\ -3 & 3 \\ -1 & 2 \end{bmatrix}$$

While Ax produces vectors of dimension 3, the span of the columns produces a plane in \mathbb{R}^3 .

This plane is given by:

$$x_1 \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}$$

1.5 Q5

The equilibria of the jordan matrix

$$A = \begin{bmatrix} J_{\lambda_1}^{n_{1,1}} & & & \\ & J_{\lambda_1}^{n_{1,2}} & & \\ & & J_{\lambda_2}^{n_{2,1}} \end{bmatrix}$$

$$A = \begin{bmatrix} \lambda_1 & & & & \\ & \lambda_1 & 1 & & \\ & & \lambda_1 & & \\ & & & \lambda_2 & 1 \\ & & & & \lambda_2 \end{bmatrix}$$

is given by:

$$Ax = 0$$

$$A = \begin{bmatrix} \lambda_1 & & & & & \\ & \lambda_1 & 1 & & \\ & & \lambda_1 & & \\ & & & \lambda_1 & & \\ & & & & \lambda_2 & 1 \\ & & & & & \lambda_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

The only valid solution is: x = 0, meaning the equilibria is at the origin.