D: -1 -: 1 - - 1:

Distributions	
Discrete	
Combinatorial	Finite space, equally likely outcomes
D	P(A) = card(A)/n
Bernoulli	Success probability of bent coin
	$p_0 = q = (1 - p) \text{ and } p_1 = p$ $\mu = p, \sigma^2 = pq$
Binomial	$\mu - p, \sigma - pq$ Probability of n heads in k tosses
	$p_k = \binom{n}{k} p^k (1-p)^{n-k}$
	$\mu = np, \sigma^2 = npq$
Geometric	Failures before 1st success, $k \ge 0$
000m00110	$p_k = (1-p)^k p$
	$\mu = \frac{q}{p}, \sigma^2 = \frac{q}{p^2}$
Negative Binomial	
6	Failures before rth success $k \ge 0$ $w_r(k; p) = {k+r-1 \choose k} q^k p^r$
	Note the negative binomial is sum of
	r independent geometric RVs.
	$\mu = \frac{rq}{p}, \sigma^2 = \frac{rq}{(p)^2}$
Poisson	Characterization of rare events
	$p_k = e^{-\lambda} \lambda^k / k!$
	$\mu = \lambda, \sigma^2 = \lambda$
Continuous	A 1
Uniform	Agnostic about outcome on interval $f(x) = 1/(b-a)$ on
	a < x < b and 0 o.w.
	$\mu = \frac{1}{2}(a+b), \sigma^2 = \frac{1}{12}(b-a)$
Gamma	Note $\Gamma = (n-1)!$
	$a(t,\alpha) = a(\alpha t)^{n-1} e^{-\alpha t}$
	$g_n(t;\alpha) = \alpha \frac{(\alpha t)^{n-1}}{(n-1)!} e^{-\alpha t}$ $\mu = \frac{1}{\alpha}, \sigma^2 = \frac{1}{\alpha^2}$
	$\mu = \frac{1}{\alpha}, \sigma^2 = \frac{1}{\alpha^2}$
Chi-squared	Finite $X_k \mathcal{N}(0,1); V^2 = \sum_{n=1}^{k=1} X_k^2$
	Finite X_k $\mathcal{N}(0,1)$; $V^2 = \sum_{k=1}^n X_k^2$ $g_{n/2}(t;1/2) = \frac{1}{2^{n/2}\Gamma(\frac{n}{2})} t^{\frac{n}{2}-1} e^{-\frac{t}{2}}$
	$\mu = n, \sigma^2 = 2n$
Exponential	A model for true randomness
	$f(x) = \alpha e^{-\alpha x}$ for $x > 0$
	$\mu = \frac{1}{\alpha}, \sigma^2 = \frac{1}{\alpha^2}$
Normal	The one to rule them all
	$f(x) = \frac{1}{\sqrt{(2\pi)}\sigma} e^{-(x-\mu)^2/2\sigma^2}$
	V (2")

Even function, strictly positive, dies monotonically... Multivariate Normal Note that x and m are vectors $f(x) = \frac{1}{2\pi^{\frac{n}{2}} \det(A)^{\frac{1}{2}}} exp(-\frac{1}{2}(x-m)A^{-1}(x-m)^T)$

Negative Binomial Trick: $\binom{r+k-1}{k}q^kp^r = \binom{-r}{k}(-q)^kp^r$

Properties of Distributions

Shifting and Scaling If two densities come from same type: $\frac{1}{a}f(\frac{x-m}{a})$ then $\mu = a\mu + m$ $\sigma^2 = a^2\sigma^2$

Convolution The convolution of any pair of distributions must necessarily be a distribution

Stability of the Normal Suppose $X_1, X_2, ... X_n$ are independent and for each $k X_k$ is normal with mean μ_k and variance σ_k . Then $S_n = \sum_{k=1}^n X_k$ is normal with mean $\sum_{k=1}^n \mu_k$ and variance $\sum_{k=1}^n \sigma_k$, or in other words normal densities are stable under convolution. Also stable under non-degenerate linear transformation

Translation Invariance: Uniform

Sum of Independent Poisson RVs For independent random variables drawn from Poisson distribution is Poisson and the

mean is $\lambda_1 + \lambda_2$

Sum of Independent Binomials is also binomial.

Sum of Independent Gamma RVs Given $X_1 \sim g_{n_1}(x_1, \alpha)$ and $X_2 \sim g_{n_2}(x_2, \alpha)$ then $Z = X_1 + X_2 \sim g_{n_1+n_2}(z, \alpha)$. Note the RV's must have the same mean $\frac{1}{2}$

The marginals of a multivariate normal are normal Note: a system of variables with marginal normal densities need not have a jointly normal density, and, in fact a joint density need not even exist

Sum of Exponentials Sum of independent exponential random variables from a common exponential density $\alpha e^{-\alpha x}$ for x>0 is S_n , the sum $S_n = X_1 + X_2 + ... + X_n$ has the gamma density. Memoryless Property ONLY the exponential and geometric distributions are memoryless. The random variable X exhibits the memoryless property if $P\{X > s + t | X > s\} = P\{X > t\}$ or recast $P\{X > s + t | X > s\} = P\{X > t\}$ if and only if $P{X > s + t} = P{X > s}P{X > t}$

Rotation of Bivariate Normal There exists a rotation of a bivariate normal st. the normal coordinates become independent Max variance for Bernoulli Trial Is 1/4 which occurs if p=1/2. Bernoulli trials are assumed to be independent unless otherwise stated.

Expectation

Variance $Var(X) = E(X^2) - E(X)^2$ Covariance Cov(X,Y) = E(XY) - E(X)E(Y)

Law of the Unconcious Statistician If X is a discrete r.v. and g is a function from $R \to R$ then, $E(g(X)) = \sum_{x} g(x)P(X = x)$ Independence Independent variables are uncorrelated, but uncorrelated variables are not necessarily independent. However, this is a necessary and sufficient condition if we are talking about the marginals of a normal density Additivity Expectation is additive. Variance is additive if the summands are independent. Conditional Expectation $E(X_2) = E(E(X_2|X_1))$

Conditional Probability

$$\begin{split} P(A|H) &= \frac{P(A \cap H)}{P(H)} \\ P_H : A \rightarrow P(A|H) \\ P(A_1 \cap A_2 \cap \ldots \cap A_n) &= P(A_1|A_2 \cap \ldots \cap A_n) \\ \times P(A_2|A_3 \cap \ldots \cap A_n) \times P(A_{n-1}|P(A_n) \times P(A_n) \\ \mathbf{Bayes \ Rule} \ P(A_k|H) &= \frac{P(H|A_k)P(A_k)}{\sum_{j>1}P(H|A_j)P(A_j)} \end{split}$$

Inclusion-Exclusion

$$\begin{split} S_k &= \sum (P(A_{j_1}) \cap \ldots \cap P(A_{j_k})) = \binom{n+1}{k} (1-ka)_+^n \\ \textbf{De Finneti's Theorem} \\ P\{L_1 > x_1, ..., L_{n=1} > x_{n+1}\} &= (1-\frac{x_1}{\tau} - \frac{x_2}{\tau} \ldots - \frac{x_{n+1}}{\tau})_+^n \end{split}$$

Limit Laws

Weak Law of Large Numbers Strong Law of Large Numbers Central Limit Theorem

Suppose $X_1, X-2,...$ is a sequence of independent random variable drawn from a common distribution F with mean zero and variance one. For each n, let $S_n * = (X_1 + ... + X_n)/\sqrt{n}$. Then S_n* converges in distribution to the standard normal. $P\{a < S_n * < b\} \to \Phi(b) - \Phi(a) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} dx \text{ If } E(X_k) = \mu$

and $Var(X_k) = \sigma^2$ then we can center and scale the variables such that $S_n * = (S_n - n\mu/\sqrt{n}\sigma)$ and the theorem holds for the new properly normalize $S_n *$.

Inequalities

Convexity The chord lies above the curve

 $\Psi(\alpha x + (1 - \alpha)y) < \alpha \Psi(x) + (1 - \alpha)\Psi(y)$

Jensen If Ψ is convex, X is integrable, and $\Psi(x)$ is integrable then: $\Psi(E(x)) \leq E(\Psi(x))$

Another of Jensen $E(X^2) > E(X)^2$

AM-GM $x_1^{p_1} x_2^{p_2} ... x_n^{p_n} \le p_1 x_1 + p_2 x_2 + ... p_n x_n$

Specialization of AM-GM $x^{1/p}y^{1/q} < (1/p)x + (1/q)y$ simplifies to: $xy \leq (1/p)x^p + (1/q)y^p$

Holder's $|E(XY)| < E(|XY|) < E(|X|)^{1/p} E(|Y|)^{1/q}$

Cauchy-Schwarz If p = q = 2 in Holder's \rightarrow $|E(XY)^2| \le E(X^2)E(Y^2)$

Minkowski $p \ge 1$ then $||x+y|_p \le ||x||_p + ||y||_p$

Chebyshev $P\{|S_n - n\mu| \ge n\epsilon\} \le \frac{n\sigma^2}{n^2\epsilon^2}$ Chernoff $P\{S_n \ge t\} \le (\inf_{\lambda \ge 0} e^{-\lambda t/n} M(\lambda))^n$ and

 $P\{S_n \le t\} \le (\inf_{\lambda > 0} e^{-\lambda t/n} M(-\lambda))^n$

Where $M(\lambda) = E(e^{\lambda X_j}) = \int_{\mathcal{D}} e^{\lambda x} dF(x)$ is the moment generating function

 $\mathbf{Markov}P\{X \ge a\} \le \frac{E(X)}{a}$

Normal Tail Bound p 317 $\frac{\phi(x)}{x}(1-\frac{1}{x^2})<1-\Phi(x)<\frac{\phi(x)}{x}$ Normal Tail Bound p 165 $\int_{t}^{\infty} \phi(x) dx \leq \frac{1}{2} e^{-t^2/2}$

Logarithmic Identities

$$\begin{split} y &= \log_b\left(x\right) \text{iff} x = b^y \\ \log_b\left(\frac{x}{y}\right) &= \log_b\left(x\right) - \log_b\left(y\right) \\ \log_b\left(x\right) &= \log_b\left(c\right) \log_c\left(x\right) = \frac{\log_c\left(x\right)}{\log_c\left(b\right)} \\ \log_b\left(x^n\right) &= n \log_b\left(x\right) \\ \log_b\left(1\right) &= 0 \\ \log_b\left(b\right) &= 1 \\ \log_b\left(xy\right) &= \log_b\left(x\right) + \log_b\left(y\right) \end{split}$$

$$log(\infty) \to \infty$$
 $log(0) \to -\infty$ $log(1) = 0$

Exponential Identities

$$x^a x^b = x^{(a+b)}$$
 $(x^a)^b = x^{(ab)}$
 $x^a y^a = (xy)^a$ $x^{(a-b)} = \frac{x^a}{x^b}$

Common Infinite Series

Exponential

$$\sum_{k=0}^{\infty} \frac{z^k}{k!} = e^z$$

$$\sum_{k=0}^{\infty} k \frac{z^k}{k!} = ze^z \text{ Mean of the Poisson}$$

$$\sum_{k=0}^{\infty} k^2 \frac{z^k}{k!} = (z+z^2)e^z \text{ Second moment of Poisson}$$

$$\sum_{k=0}^{\infty} k^3 \frac{z^k}{k!} = (z+3z^2+z^3)e^z$$

$$\sum_{k=0}^{\infty} k^4 \frac{z^k}{k!} = (z+7z^2+6z^3+z^4)e^z$$
Binomial

$$\sum_{k=0}^{\infty} {n \choose k} z^k = (1+z)^{\alpha}, |z| < 1$$

$$\sum_{k=0}^{\infty} {n \choose k} x^{n-k} y^k = (x+y)^n$$

Integration

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1 \qquad \int a^x dx = \frac{1}{\ln a} a^x$$

$$\int \frac{1}{x} dx = \ln |x| \qquad \qquad \int \int \ln x dx = x \ln x - x$$

$$\int \sin x dx = -\cos x$$

$$\int \cos x dx = \sin x$$

The Bernoulli Schema

```
Theorem 1 Suppose X_1,...,X_n is a sequence of Bernoulli tials
 with success probability p. Then the sume S_n = X_1 + ... + X_n has
a distribution b_n(k) = \binom{n}{k} p^k q^{n-k}. Recall as a matter of
convention the definition for real t and integer k that
\binom{t}{k} = t(t-1)(t-2)...(t-k+1)/k! if k \ge 0 and 0 otherwise.
Example: Ball and Urn Put n balls in m urns, probability that
there are k balls in first r: \binom{n}{k} \frac{r}{m}^k (1 - \frac{r}{m})^{n-k}
Example: Polls Select n individuals from population, an
unknown fraction p support policy. All samples are independent. S_n = \sum_{j=1}^n Z_j is the number of individuals in
favor, S_n \sim b_n(k; p). Let \zeta \in [0, 1] be a guess for p. b(\zeta) = b_n(S_n; \zeta) = \binom{n}{S_n} \zeta^{S_n} (1 - \zeta)^{n - S_n}, then b(\zeta) is maximized
at \zeta = (S_n/n). The sample mean is \arg \max_{\zeta} b_n(S_n); \zeta which is
the mean of the empirical distribution. Thus, p estimated by this
 value yields the largest probability of observations consistent with
the data. We say that the sample mean is the unbiased estimator
{\bf Error~Bound~on~Sample~Mean~\it Via~\it Chebyshev}
P\{|\frac{1}{n}S_n - p| \ge \epsilon\} = \sum_{n=1}^{\infty} b_n(k; p) \le \frac{pq}{n\epsilon^2} \le \frac{1}{4n\epsilon^2}
Example: Random Walks The number of paths from (a,b) to
(a',b') is N_n(k) = \binom{n}{\frac{n+k}{2}} where n = a' - a and k = b' - b. If the
path goes through strictly positive values the number of such paths is N_n^+(k) = N_{n-1}(k-1) - N_{n-1}(k+1) = \binom{n-1}{n+k} - \binom{n-1}{n+k} = \binom{n-1}{n+k}
\frac{k}{n} \binom{n}{\frac{n+k}{2}}
Example: Returns The probability of a return is
P\{S_2 = N_{2v}(0)2^{-2v} = {2v \choose v}2^{-2v}\}
Example: Waiting Time
Example: Population Size
```

The Essence of Randomness