

policant: P. A. Billing-Medel, et al.

rial No.: 08/962,094

Filed: October 31, 1997

For: REAGENTS AND METHODS

USEFUL FOR DETECTING THE

BREAST

Examiner: L. Arthur

Group Art Unit: 1655

Case No.: 5995.US.P1

Date:

CERTIFICATE OF MAILING (37 (1.8 (a))

I hereby certify that this paper (along when any paper referred to as being attached or enclosed) is being deposited with the Used States Postal Service on the date shown below with sufficient postage as first class mail in an envelope addressed to the:

Assistant Commissioner for Patents Washington, D.C. 20231, on:

Date of Deposit: April 25, 2002

Vanda C. South 4/25/03

DECLARATION OF PAULA N. FRIEDMAN Ph.D.

OBIGINALLY FILED

Assistant Commissioner for Patents Washington, D.C. 20231

Dear Sir:

- 1. I am one skilled in the art of cancer diagnostics. I have a Ph.D. in Molecular Biology from Columbia University as well as an M.A. and a M. Phil. in Molecular Biology also from Columbia University. I further have a B.A. in Biology from Dartmouth College.
- 2. I was a Postdoctoral Fellow in the Laboratory of Dr. Clay Siegall at the Pharmaceutical Research Institute Bristol-Myers Squibb and an Assistant Pharmacologist, Dept. of Clinical Immunology & Biol. Therapy at the MD Anderson Cancer Center.
- 3. I have nine years of research and development experience in the cancer diagnostic industry. Much of my work has involved the discovery and validation of novel cancer markers to improve the accuracy of diagnosing the onset of cancer. In fact, I am a named inventor of several U.S. Patents, all of which are related to the field of cancer diagnostics.
- 4 I also have authored numerous journal articles relating to cancer pathology, detection, and metastasis (see Attachment I).

5. I am one of the named inventors of the aforementioned application.

- 6. I have read and am familiar with the Patent Office Action dated August 28, 2001 and utility rejection under 35 U.S.C. 101 applied against the present application.
- 7. At my direction, Dr. Tim Stenzel in the Department of Pathology at Duke University in Chapel Hill, North Carolina, conducted an RT-PCR assay on lymph node tissue from either breast cancer patients or non-breast cancer patients. RNA was isolated from the lymph node tissues using the Qiagen RNeasy kit and then subjected to quantitative RT-PCR using primers specific for the BS106 gene. The BS106 product was quantitated by comparing the values to a standard curve of SKBR3 (breast cancer cell line) RNA. The purpose of this experiment was to show that the BS106 gene is expressed in breast cancer cells that have escaped the primary tumor. The RT-PCR assay, like the one described here, is useful in distinguishing lymph nodes that contain cancer cells from those that do not. Dr Tim Stenzel's lab at Duke is a leading laboratory that searches for new molecular tests that can help doctors more accurately stage breast cancer patients and therefore provide their patients with the best possible care.
- 8. The results of the BS106 RT-PCR assay are shown in Attachments A and B. Attachment A shows the quantitative RT-PCR results for the nodes from breast cancer patients. All of the values for the 9 samples are positive indicating that there are breast cells present. Some nodes have more cells then others, resulting in the higher values. Attachment B shows the results for the non-breast cancer nodes and one can see that all these values are zero except for one very low positive sample (ABNLLN 19). Below each table is a summary of the data. These results indicate that BS106 is detected in 9/9 cancer nodes and 1/20 normal nodes. This is a sensitivity of 100% and a specificity of 95% for the detection of metastatic cells in the lymph nodes.
- 9. The results in Paragraph 8 confirm that BS106 can be used as a marker for the detection of breast cells in the lymph nodes that have escaped the primary tumor.
- 10. I hereby declare that all statements made herein are of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that the statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under § 1001 of Title 18 of the United States code and such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Paula N. Friedman, Ph.D.

4/24/02

Date

ATTACHMENT I

MAY 0 9 2002 ECH CENTED LOS 379

Publications:

Wang, E.H., **Friedman**, **P.N.** and Prives, C. 1989. The murine p53 protein blocks replication of SV40 DNA in vitro by inhibiting the initiation functions of SV40 large T antigen. Cell, 3392.

Manfredi, J.J., Wang, E.H., **Friedman, P.N.**, and Prives, C. 1989. Purified SV40 large T antigen in complex with murine p53 does not support SV40 DNA replication in vitro. Implications for the mechanism of transformation by SV40 large T antigen. In Common Mechanisms of Transformation by Small DNA Tumor Viruses. Luis P. Villeareal, ed. American Society for Microbiology, 113.

Bischoff, J.R., Friedman, P.N., Marshak, D., Prives, C., and Beach, D. 1990. The p53 protein is phosphorylated by cyclin A-cdc2 as well as cyclin B-cdc2. PNAS, 87,4766-4770.

Friedman, P.N., Kern, S.E., Vogelstein, B., and Prives, C. 1990. Wild-type, but not mutant, human p53 proteins inhibit the replication activities of simian virus 40 large tumor antigen. PNAS, 87, 9275-9279.

Kern, S.E., Kinzler, K.W., Baker, S.J., Nigro, J.M., Rotter, V., Levine, A.J., **Friedman, P.N.**, Prives, C. and Vogelstein, B. 1991. Mutant p53 proteins bind DNA abnormally in vitro. Oncogene, 6, 131-136.

Bargonetti, J., **Friedman**, **P.N.**, Kern, S.E., Vogelstein, B., and Prives, C. 1991. Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell, 65, 1083-1091.

Kern, S.E., Kinzler, K.W., Bruskin, A., Jarosz, D., **Friedman, P.N.**, Prives, C. and Vogelstein, B. 1991. Identification of p53 as a sequence-specific DNA-binding protein. Science, 252,1708-1710.

Farmer, G., Bargonetti, J., Zhu, H., **Friedman, P.N.**, Prywes, R., and Prives, C. 1992. Wild-type p53 activates transcription in vitro. Nature, 358, 83-86.

Prives, C., Bargonetti, J., **Friedman, P.N.**, Manfredi, J.J., and Wang, E. 1992. Functional consequences of the interaction between the p53 tumor suppressor protein and the SV40 large tumor antigen. Cold Spring Harbor Symposium on Quantitative Biology: The Cell Cycle, Vol. 56, 227-235.

Bargonetti, J., Reynesdottir, I., **Friedman, P.N.**, and Prives, C. 1992. Wild-type p53 site-specific binding to cellular DNA is regulated by SV40 T antigen and mutant p53. Genes and Devel., 6, 1886-1898.

Friedman, P.N., Wang, E.H., Meerovitch, K., Sonenberg, N., and Prives, C. 1992. Murine p53 inhibits the function but not the formation of SV40 T antigen hexamers and stimulates T antigen RNA helicase activity. Chromosoma, 102, 60-66.

Friedman, P.N., Chen, X., Bargonetti, J., and Prives, C. The p53 protein is an unusually shaped tetramer that binds directly to DNA. PNAS, 90, 3319-3323.

Reynesdottir, I., Lorimer, H.E., **Friedman, P.N.**, Wang, E.H., and Prives, C. 1993. Phosphorylation and active ATP hydrolysis are not required for SV40 T antigen hexamer formation. J. of Biol. Chem., 268, 24647-24654.

Friedman, P.N., McAndrew, S.J., Gawlak, S.L., Chace, D., Trail, P.A., Brown, J.P., and Siegall, C.B. 1993. BR96 sFv-PE40, a potent single-chain immunotoxin that selectively kills carcinoma cells. Cancer Res., 53, 334-339.

Friedman, P.N., Chace, D.F., Trail, P.A., and Siegall, C.B.1993. Antitumor activity of the single-chain immunotoxin BR96 sFv-PE40 against established breast and lung tumor xenografts. J. of Immun., 150, 3054-3061.

Friedman, P.N., Chace, D.F., Gawlak, S.L., and Siegall, C.B. 1993. The single-chain immunotoxins BR96 sFv-PE40 and BR96 sFv-PE38: Potent anti-tumor agents for the treatment of human cancer. In Growth Factors, Peptides, and Receptors, T. Moody, ed., Plenum Press, 409-414.

Attachment A

Lymph nodes from	SKBR3 Ng equivalents					Ratio of Marker/ Beta 2 Micro			
breast cancer patients	Du101	BS106	Marnma	Cyto	Deta2	Bu101/Bete2	DS106/Deta2	Manm/Beta2	Cyto/Det
ABNUÉNZO A TRANS	'H-1111 mm	. 14 11 40	4 • • • • • • • • • • • • • • • • • • •						C)(V/DC)
The state of the s	260.0000	31 U JUL	110.000	45 UJUU	101.0000	2 <i>1</i> 6,101	L.31UJ	1.1000	U.45LL
ADMILINIZZA LINICA	£.3000	1000.000	0.0490	32 0000	82.000C	0.1012	12.1951	0.0006	0.3902
	8.9000	5900.000	1.5000	32 0000	87.000C	0.1023	67.3161	0.0172	0.3678
TARNII NOR LEINIA	1.3000	30 0 DOC	0.3130	53 0000	74.0000	DD17E	C.4C54	0.0002	0.7162
ABNEUN 29 LINICAL	1.1000	4700.3000	0.3270	13 0000	130.0000	3,008€	36.1538	0.3002	0.1000
ABULTU30 WIN CA	14.30CO	3.0000	0.3900	16 0000	35.000C	0.4000	0 03571	0.3111	0.1600
ABNLUN 31 LIN CA.	20.3000	29 0 300	29.0000	85 0000	0.3100	64.5161	93.5484	125.8065	274.193
ABNULN 34 ALIN CA	6.9000	98 000C	3.1000	9.3000	6.3000	1 D352	15.5556	0.4921	
*ABNILN 44 TUNCA"	0.0000	2.5000	0.5200	7.40CO	90.0000	J.D422	C.0270	0.4921 0.3069	1.4762 0.3022

IN CA Hymph nodes with histological cancer

Number of ⊃ositve Samples	(9.9)	(9/9)	(9.9)	(9/9)	(9.9)
% Fostve Samples	100%	100%	100%	100%	100%

Attachment B

Lymph nodes from		SKBR3 Ng equivalents				Ratio of Marker/ Beta 2 Micro			
non-cancer patients	Bu101	BS106	Mamma	Cyto	Dete2	Bu101/Deta2			
Samples		***				E de la liberaz	DS 106/Deta2	Mamm/Beta2	Cyto/Bet
TARNITANIA	L UUUU	U.UUUU	V.JULU	U.UU 11	86.UUUL	אחרת ר	טטטנט ט	טטטע.ט	1.2791
AN ADNIENDA ABNIEN 4	C.0000	0.0000	0.3000	0.0013	83.000C	סממכ	0 00000	0.3000	1.5663 E-
PARNIN'S PAR	C.0000 C.0000	0.0000	0.3000	0.0000	12.000C	ססכסכ	0 00000	0.000	0.000
ABNULN 64	C.0000	0.0000	0.3000	0.0000	6.1000	סססכ	0 00000	0.2000	0.0000
ABNLLN 8	C.0000	0.0000 0.0000	0.3000	0.0000	16.000C	ססכמכ	0 00000	0.000	0.D0CC
ABNLUNG.	C.0000	0.0000	0.30CO 0.30CO	0.00CO 0.00CO	51.0000	20000	0 00000	0.3000	0.D0CC
ABNULNIO	C.0000	0.0000	0.3000	0.0000	26.000C	2,020C	0 00000	0.3000	0.D0CC
ADNLLNIT	C.0000	0.0000	0.3000	0.0000	69.000C 06.000C	20CQ.C 20CQ.C	0 03000	0.3000	0.3000
ABNLUN 12	0.0000	0.0000	0.3000	0.0000	13.000C	20CQ.C	0 03000 0 03000	0.3000	0.0000
EL N'IJN BA	L.UUUU	U.UUUU	U.JULU	U.UULU	6.4000	רת ר הרמה	טטטבט ט	0.000	0.D0CC
ADNELN 14	C.0000	0.0000	0.3000	0.00CO	71.000C	2000.0	0.0000	0.00C.0 UUUL.U	0.70CE
ABNULN 15	C.0000	0.0000	0.3000	0.0000	12C.0000	2000.0	0 00000	0.3000	0.30CC 0.30CC
AHNI I N.16 ABNÜLN 17	1 1111111	11 10 0 0 1	11 1111 11	11 1866 11	76 HHH	111 1111		11 111111	ון ווון ו
ABNLLN 18	0.0000 0.0000	0.0000	0.3000	0.00CO	21.000C	ם מכמ כ	0 00000	0.000	0.3000
ZARNI I N 19	C.0000	0.0000 0.0720	0.3000	0.00CO	47.000C	30CQ.C	0 00000	0.3000	0.3000
ABNUL N 48	C.0000	0.0720	0.3000	0.0011	13C.0000	ם מכם כ	0 00055	0.000	8.4615E-
ARNUUN (P	C.0000	0.0000	0.30CO 0.30CO	0.00CO 0.00CO	5.5000	20000	C.0000	0.3000	0.D0CC
ABNUUN 50	0.0000	0.0000	0.3000	0.00CO	30.000C 11.000C	3.030C	0.000	0.0000	0.0000
			3.2300	0.0000	11.000C	סטסס ב	C.0C00	0.3000	0.3000
Vumber of Positive Samples	(0/20)	(1/20)	i 0/20)	(3/20)	(20/20 i				
% Fositve Samples	0%	5%	0% ፞	15%	100%				

CH02/22185094.2