Chapitre: Vecteurs (2): Colinéarité (correction)

Compétence : Vecteurs colinéaires

Exercice 6 : Multiplication d'un vecteur par un réel et coordonnées

Le plan est muni d'un repère $(0; \vec{i}, \vec{j})$.

Calculer les coordonnées du vecteur $k \vec{u}$ dans les cas suivants :

a.
$$\vec{u} \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$
 et $k = -3$

$$-3\vec{u}\binom{3}{12}$$

b.
$$\vec{u} \left(-\frac{2}{3} \right)$$
 et $k = \frac{3}{4}$

$$\frac{3}{4}\vec{u} \begin{pmatrix} \frac{3}{4} \times \left(-\frac{2}{3}\right) \\ \frac{3}{4} \times \frac{1}{3} \end{pmatrix} \operatorname{soit} \frac{3}{4}\vec{u} \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{4} \end{pmatrix}$$

c.
$$\vec{u} \left(\frac{\sqrt{2}}{\sqrt{5}} \right)$$
 et $k = \sqrt{3}$

$$\sqrt{3}\vec{u} \begin{pmatrix} \sqrt{3} \times \sqrt{2} \\ \sqrt{3} \times \sqrt{5} \end{pmatrix}$$
 soit $\sqrt{3}\vec{u} \begin{pmatrix} \sqrt{6} \\ \sqrt{15} \end{pmatrix}$

Exercice 2 : Vecteurs colinéaire et coordonnées

Existe-t-il un nombre réel k tel que $\vec{v} = k\vec{u}$ lorsque :

a.
$$\vec{u} \begin{pmatrix} -1.5 \\ 2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 4.5 \\ -6 \end{pmatrix}$?

$$\frac{4.5}{-1.5} = -3 \text{ et } -\frac{6}{2} = -3 \text{ ainsi } \vec{v} = -3\vec{u}$$

b.
$$\vec{u} \begin{pmatrix} 0.7 \\ 1.2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 3.5 \\ 5 \end{pmatrix}$?

$$\frac{3.5}{5} = 0,7 \text{ et } \frac{5}{1.2} = 0,6 \neq 0,7$$
 NON

c.
$$\vec{u} \begin{pmatrix} \frac{2}{3} \\ -8 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} \frac{1}{6} \\ -2 \end{pmatrix}$?

$$\frac{\frac{1}{6}}{\frac{2}{3}} = \frac{1}{6} \times \frac{3}{2} = \frac{1}{4} \text{ et } \frac{-2}{-8} = \frac{1}{4} \text{ ainsi } \vec{v} = \frac{1}{4} \vec{u}$$

d.
$$\vec{u} \begin{pmatrix} \sqrt{8} \\ -10 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} \sqrt{2} \\ -5 \end{pmatrix}$

$$\frac{\sqrt{2}}{\sqrt{8}} = \frac{\sqrt{2}}{2\sqrt{2}} = \frac{1}{2} \text{ et } \frac{-5}{-10} = \frac{1}{2} \vec{v} = \frac{1}{2} \vec{u}$$

Exercice 3 : Vecteurs colinéaire et coordonnées

Les vecteurs suivants sont-ils colinéaires ? Si oui déterminer le nombre k tel que $\vec{u}=k\vec{v}$

a.
$$\vec{u} \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -9 \\ 9 \end{pmatrix}$?

` 0 /	
1 ^{ère} méthode :	2 ^{ème} méthode :
$\frac{-1}{-0} = \frac{1}{0} \text{ et } \frac{0}{0} = 0 \neq \frac{1}{0}$	$-1\times 9-0\times (-9)=-9\neq 0$
Ainsi les vecteurs ne sent nes selinéaires	

Ainsi les vecteurs ne sont pas colinéaires.
b.
$$\vec{u} \begin{pmatrix} -2 \\ -6 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 1,8 \\ 5,4 \end{pmatrix}$?

1ère méthode :		2 ^{ème} méthode :
$\frac{-2}{1.8} = -\frac{10}{9} \text{ et } \frac{-6}{5.4} = -\frac{10}{9}$		$-2 \times 5, 4 - (-6) \times 1, 8 = -10, 8 + 10, 8 = 0$
At a 1 1 2 2 2 2 2 2 2 2	10 →	

Ainsi les vecteurs sont colinéaires et
$$\vec{u} = -\frac{10}{9}\vec{v}$$

c.
$$\vec{u} \begin{pmatrix} \frac{1}{4} \\ \frac{5}{3} \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -3 \\ -20 \end{pmatrix}$?

1ère méthode :	2 ^{ème} méthode :
$\frac{1}{2}$ 1 $\frac{5}{7}$ 1	1 , 20 5
$\frac{4}{-3} = -\frac{1}{12}$ et $\frac{3}{-20} = -\frac{1}{12}$	$\frac{1}{4} \times (-20) - \frac{3}{3} \times (-3) = -5 + 5 = 0$
Ainsi les vecteurs sont colinéaires et $\vec{u} = -\frac{1}{13}\vec{v}$	

d.
$$\vec{u} \begin{pmatrix} 0.01 \\ 0.001 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 10^{-3} \\ 10^{-4} \end{pmatrix}$?

1ère méthode :	2 ^{ème} méthode :
$\frac{0.01}{10^{-3}} = 10 \text{ et } \frac{0.001}{10^{-4}} = 10$	$10^{-2} \times 10^{-4} - 10^{-3} \times 10^{-4} = 10^{-6} - 10^{-6} = 0$
Ainsi les vecteurs sont colinéaires et $\vec{u}=10\vec{v}$,

Exercice 4 : Combinaisons linéaires et coordonnées de vecteurs

Le plan est muni d'un repère orthonormée $(0; \vec{l}, \vec{j})$. Déterminer les coordonnées des points A, B, C et D.

1.
$$\overrightarrow{OA} = -2 \ \overrightarrow{i} + 3 \overrightarrow{j}$$

On sait que $\overrightarrow{i} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\overrightarrow{j} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ et $O(0;0)$.

 $\overrightarrow{OA} \begin{pmatrix} -2 \times 1 + 3 \times 0 \\ -2 \times 0 + 3 \times 1 \end{pmatrix}$ soit $\overrightarrow{OA} \begin{pmatrix} -2 \\ 3 \end{pmatrix}$ ainsi $A(-2;3)$.

2. $\overrightarrow{OB} = -(\overrightarrow{i} + 2 \overrightarrow{j}) + (-2 \overrightarrow{i} - \overrightarrow{j})$
 $\overrightarrow{OB} \begin{pmatrix} -(1 + 2 \times 0) + (-2 \times 1 - 0) \\ -(0 + 2 \times 1) + (-2 \times 0 - 1) \end{pmatrix}$ soit $\overrightarrow{OB} \begin{pmatrix} -3 \\ -3 \end{pmatrix}$ ainsi $B(-3;-3)$.

2.
$$\overrightarrow{OB} = -(\overrightarrow{i} + 2\overrightarrow{j}) + (-2\overrightarrow{i} - \overrightarrow{j})$$

 $\overrightarrow{OB} \begin{pmatrix} -(1 + 2 \times 0) + (-2 \times 1 - 0) \\ -(0 + 2 \times 1) + (-2 \times 0 - 1) \end{pmatrix}$ soit $\overrightarrow{OB} \begin{pmatrix} -3 \\ -3 \end{pmatrix}$ ainsi $B(-3; -3)$.

3.
$$\overrightarrow{OC} = \frac{1}{4}(\overrightarrow{l} - \overrightarrow{j}) - \frac{3}{4}(-\overrightarrow{l} + \overrightarrow{j})$$

$$\overrightarrow{OC} \begin{pmatrix} \frac{1}{4}(1 - 0) - \frac{3}{4}(-1 + 0) \\ \frac{1}{4}(0 - 1) - \frac{3}{4}(-0 + 1) \end{pmatrix} \text{ soit } \overrightarrow{OC} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ ainsi } B(1; -1).$$

4.
$$\overrightarrow{OD} = -3(5 \overrightarrow{i} - 3 \overrightarrow{j})$$

$$\overrightarrow{OD} \begin{pmatrix} -3(5 \times 1 - 3 \times 0) \\ -3(5 \times 0 - 3 \times 1) \end{pmatrix} \text{ soit } \overrightarrow{OC} \begin{pmatrix} -15 \\ 9 \end{pmatrix} \text{ ainsi } B(-15;9).$$

Exercice 5 : Combinaisons linéaires et coordonnées de vecteurs

Le plan est muni d'un repère orthonormée $(0; \vec{l}, \vec{j})$. Soit les vecteurs $\vec{u} = -2\vec{i} + \vec{j}$ et $\vec{v} = 3\vec{i} + 4\vec{j}$

On calcule d'abord les coordonnées de \vec{u} et \vec{v} .

Déterminer les coordonnées du vecteur \vec{w} dans les cas suivants:

1.
$$\overrightarrow{w} = \overrightarrow{u} - \overrightarrow{v}$$

$$\left[\overrightarrow{w}\begin{pmatrix} -2 - 3 \\ 1 - 4 \end{pmatrix} \operatorname{soit} \overrightarrow{w}\begin{pmatrix} -5 \\ -3 \end{pmatrix}\right]$$
2. $\overrightarrow{w} = 3(-\overrightarrow{u} + \overrightarrow{v})$

$$\left[\overrightarrow{w}\begin{pmatrix} 3(2+3) \\ 3(-1+4) \end{pmatrix} \operatorname{soit} \overrightarrow{w}\begin{pmatrix} 15 \\ 9 \end{pmatrix}\right]$$
3. $\overrightarrow{w} = -5(\overrightarrow{u} - \overrightarrow{v}) + 3(-\overrightarrow{u} - 2\overrightarrow{v})$

$$\vec{w} \begin{pmatrix} -5(-2-3) + 3(2-6) \\ -5(1-4) + 3(-1-8) \end{pmatrix}$$
 soit $\vec{w} \begin{pmatrix} 13 \\ -12 \end{pmatrix}$

Exercice 6 : Combinaisons linéaires et construction de vecteurs

Construire les points B et C

$$\overrightarrow{AB} = 2\overrightarrow{u} + 4\overrightarrow{v}$$
 et $\overrightarrow{AC} = -3\overrightarrow{v} - 2\overrightarrow{u}$

$$\overrightarrow{AB} = 2\overrightarrow{u} + \frac{3}{2}\overrightarrow{v}$$
 et $\overrightarrow{AC} = -\frac{1}{2}\overrightarrow{v} - \frac{5}{2}\overrightarrow{u}$

$$\overrightarrow{AB} = \frac{3}{2}(\overrightarrow{u} + \overrightarrow{v})$$
 et $\overrightarrow{AC} = -2(\overrightarrow{u} - \overrightarrow{v})$

Exercice 7 : Triangle et construction de points vérifiant une combinaison linéaire de vecteurs.

1. Tracer un triangle ABC rectangle et isocèle en B tel que AB = 3 cm

2. Construire les points D et E vérifiant :

a.
$$\overrightarrow{BD} = 2\overrightarrow{BA} + 3\overrightarrow{BC}$$

b.
$$\overrightarrow{AE} = -\overrightarrow{AC} + 2\overrightarrow{AB}$$

Exercice 8 : Rectangle et construction de points vérifiant une combinaison linéaire de vecteurs.

1. Tracer un rectangle ABCD de centre O tel que AB = 2 cm et AD = 4 cm

2. Construire les points E et F vérifiant :

a
$$\overrightarrow{AF} - 2\overrightarrow{RD} - \overrightarrow{OC}$$

a.
$$\overrightarrow{AE} = 2\overrightarrow{BD} - \overrightarrow{OC}$$

b. $\overrightarrow{BF} = \frac{3}{2}\overrightarrow{OC} + \frac{3}{4}\overrightarrow{DB}$

Exercice 9: Multiplication d'un vecteur par un réel et construction

Pour chacune des figures suivantes, trouver le réel k tel que $\vec{v}=k\vec{u}$

a.

b.

Exercice 10 : Octogone et vecteurs colinéaires

ABCDEFGH est un octogone régulier de centre O.

Répondre par vrai ou faux et justifier

a. Les vecteurs \overrightarrow{OH} et \overrightarrow{FE} sont colinéaires.

Faux (pas la même direction).

b. Les vecteurs \overrightarrow{DE} et \overrightarrow{BG} sont colinéaires.

Vrai (même direction)

c. Les vecteurs \overrightarrow{BC} et \overrightarrow{GF} sont colinéaires.

Vrai (même direction)

d. Les vecteurs \overrightarrow{HB} et \overrightarrow{DF} sont colinéaires.

Vrai (même direction)

Exercice 11 : Parallélisme et vecteurs colinéaires

Vérifier si les droites (AB) et (CD) sont parallèles.

Méthode : Si \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires alors les droites (AB) et (CD) sont parallèles sinon elles ne le sont pas.

a. A(-3; 2), B(3; 3), C(-3; -3) et D(5; -1).

$$\overrightarrow{AB} \begin{pmatrix} 6 \\ 1 \end{pmatrix}$$
 et $\overrightarrow{CD} \begin{pmatrix} 8 \\ 2 \end{pmatrix}$

$$\frac{1^{\text{ère}} \text{ méthode :}}{\frac{8}{6} = \frac{4}{3} \text{ et } \frac{2}{1} = 2 \neq \frac{4}{3}$$

$$\begin{vmatrix} \underline{\textbf{2}^{\text{ème}} \text{ m\'ethode}:} \\ 6 \times 2 - 1 \times 8 = 12 - 8 = 4 \neq 0 \end{vmatrix}$$

Ainsi les vecteurs \overrightarrow{AB} et \overrightarrow{CD} ne sont pas colinéaires alors les droites (AB) et (CD) ne sont pas parallèles.

b. A(0;5), B(3;0), C(-3;8) et D(3;-2).

$$\overrightarrow{AB} \begin{pmatrix} 3 \\ -5 \end{pmatrix}$$
 et $\overrightarrow{CD} \begin{pmatrix} 6 \\ -10 \end{pmatrix}$
 $\frac{1^{\text{ère}} \text{ méthode } :}{\frac{6}{3} = 2 \text{ et } \frac{-10}{-5} = 2$

$$\label{eq:decomposition} \left| \begin{array}{l} \frac{2^{\text{ème}} \ \text{m\'ethode}:}{3\times (-10)-(-5)\times 6} = -30+30 = 0 \end{array} \right|$$

Ainsi les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires alors les droites (AB) et (CD) sont parallèles.

c. A(-1;4), B(3;3), C(-3;1) et D(4;-3).

$$\overrightarrow{AB}$$
 $\begin{pmatrix} 4 \\ -1 \end{pmatrix}$ et \overrightarrow{CD} $\begin{pmatrix} 7 \\ -4 \end{pmatrix}$ $\frac{1^{\text{ère}} \text{ méthode } :}{\frac{7}{4} \text{ et } \frac{-4}{-1} = 4 \neq \frac{7}{4}}$

$$\begin{array}{|c|c|}\hline 2^{\text{ème}} & \text{m\'ethode} : \\ \hline 4 \times (-4) - (-1) \times 7 = -16 + 7 = -9 \neq 0 \end{array}$$

Ainsi les vecteurs \overrightarrow{AB} et \overrightarrow{CD} ne sont pas colinéaires alors les droites (AB) et (CD) ne sont pas parallèles.

d. A(6;5), B(4;1), C(2;3) et D(-0.5;-2).

$$\overrightarrow{AB} \begin{pmatrix} -2 \\ -4 \end{pmatrix} \text{ et } \overrightarrow{CD} \begin{pmatrix} -2, 5 \\ -5 \end{pmatrix}$$

$$\frac{1^{\text{ère}} \text{ méthode } :}{\frac{-2, 5}{-2} = \frac{5}{4} \text{ et } \frac{-5}{-4} = \frac{5}{4}$$

$$\frac{2^{\text{ème}} \, \text{m\'ethode}:}{-2 \times (-5) - (-4) \times (-2,5) = 10 - 10 = 0}$$

Ainsi les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires alors les droites (AB) et (CD) sont parallèles.

Exercice 12 : Points alignés et vecteurs colinéaires

Vérifier si les trois points sont alignés

Méthode : Si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires alors les points A, B et C sont alignés.

a. A(-3;3), B(5;-3) et C(1;0).

Ainsi les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires alors les 3 points sont alignés.

b. E(3;3), F(2;1) et G(-1;-3).

$$\overrightarrow{EF} \begin{pmatrix} -1 \\ -2 \end{pmatrix} \text{ et } \overrightarrow{EG} \begin{pmatrix} -4 \\ -6 \end{pmatrix}$$

$$\underline{1^{\text{ère}} \text{ m\'ethode}:}$$

$$\underline{\frac{-4}{-1}} = 4 \text{ et } \frac{-6}{-2} = 3 \neq 4$$

$$\boxed{ \underline{2^{\text{ème}} \text{ m\'ethode}:} }$$

$$-1 \times (-6) - (-2) \times (-4) = 6 - 8 = -2$$

Ainsi les vecteurs \overrightarrow{EF} et \overrightarrow{EG} ne sont pas colinéaires alors les 3 points ne sont pas alignés.

c. H(-2;6), I(-1;3,5) et J(2;-4).

$$\overrightarrow{HI} \begin{pmatrix} 1 \\ -2,5 \end{pmatrix} \text{ et } \overrightarrow{HJ} \begin{pmatrix} 4 \\ -10 \end{pmatrix}$$

$$\underline{1^{\text{ère}} \text{ méthode :}}$$

$$\frac{4}{1} = 4 \text{ et } \frac{-10}{-2,5} = 4$$

$$2^{\text{ème}} \text{ méthode :}$$

$$1 \times (-10) - (-2,5) \times 4 = -10 + 10 = 0$$

Ainsi les vecteurs \overrightarrow{HI} et \overrightarrow{HJ} sont colinéaires alors les 3 points sont alignés.

d.
$$K\left(\frac{7}{5};1\right), L\left(\frac{4}{5};4\right)$$
 et $M(1;3)$.

$$|\overrightarrow{KL}\left(-\frac{3}{5}\right)\operatorname{et}\overrightarrow{KM}\left(-\frac{2}{5}\right)|$$

$$|\underline{1}^{\text{ère m\'ethode}}:$$

$$|\underline{-\frac{2}{5}}_{-\frac{3}{5}}| = \frac{2}{3}$$

$$|\underline{3}^{\text{ème m\'ethode}}:$$

$$|\underline{-\frac{3}{5}\times 2 - 3\times \left(-\frac{2}{5}\right)}| = -\frac{6}{5} + \frac{6}{5} = 0$$

Ainsi les vecteurs \overrightarrow{KL} et \overrightarrow{KM} sont colinéaires alors les 3 points sont alignés.

e. N(2,5;0), P(-2;4) et Q(-0,5;2,7).

$$\overrightarrow{NP} \begin{pmatrix} -4,5 \\ 4 \end{pmatrix} \text{ et } \overrightarrow{NQ} \begin{pmatrix} -3 \\ 2,7 \end{pmatrix}$$

$$\underbrace{\frac{1^{\text{ère}} \text{ méthode}:}{-3}_{-4,5} = \frac{6}{9} = \frac{2}{3} \text{ et } \frac{2,7}{4} \neq \frac{2}{3} }_{2,3}$$

$$\begin{vmatrix} \underline{2^{\text{ème}} \text{ méthode}:}\\ -4,5 \times 2,7 - 4 \times (-3) = -12,15 + 12 = -0,15 \neq 0 \end{vmatrix}$$

Ainsi les vecteurs \overrightarrow{NP} et \overrightarrow{NQ} ne sont pas colinéaires alors les 3 points ne sont pas alignés.

Exercice 13: Propriétés et vecteurs

Voici une liste de propositions

a. Le point A est le milieu de [BC] avec 5 et 7

b. ABCD est un parallélogramme avec 1 et 2

c. D est le symétrique de B par rapport à A avec 6 et 8

d. Le point B est l'image de C par la translation de

Dans chaque cas, faire une figure puis trouver dans la liste ci-dessous deux conclusions possibles :

1.
$$\overrightarrow{AB} = \overrightarrow{DC}$$

2.
$$\overrightarrow{AD} = \overrightarrow{BC}$$

3.
$$\overrightarrow{AD} - \overrightarrow{CB} = \overrightarrow{0}$$

4.
$$\overrightarrow{CB} = \overrightarrow{AD}$$

5.
$$\overrightarrow{BA} = \overrightarrow{AC}$$

6.
$$\overrightarrow{AD} = \frac{1}{2}\overrightarrow{BD}$$

7.
$$\overrightarrow{CB} = 2\overrightarrow{CA}$$

8.
$$\overrightarrow{AD} + \overrightarrow{AB} = \overrightarrow{0}$$

Exercice 14: Vrai ou faux?

1. Si
$$2\overrightarrow{AB} = 3\overrightarrow{BC}$$
 alors A, B et C sont alignés

2. Si
$$2\overrightarrow{AB} = 3\overrightarrow{BC}$$
 alors $A \in [BC]$

3. Si
$$2\overrightarrow{AB} = -3\overrightarrow{DC}$$
 alors A, B, C et D sont alignés

4. Si
$$2\overrightarrow{AB} = -3\overrightarrow{DC}$$
 alors $(AB) // (CD)$

5. Si
$$2\overrightarrow{AB} = -3\overrightarrow{DC}$$
 alors \overrightarrow{ABCD} est un trapèze

6. Si
$$AB = CD$$
 alors $ABDC$ est un parallélogramme

VRAI: 1 et 4 FAUX: 2, 3, 5 et 6

Compétence : Géométrie et vecteurs

Exercice 15:

Le plan est muni d'un repère $(0; \vec{i}, \vec{j})$.

- 1. Placer les points A(2;1), B(5;3), C(3;-3) et D(6;-1).
- 2. Démontrer que *ABDC* est un parallélogramme.

$$\overrightarrow{AB}inom{3}{2}$$
 et $\overrightarrow{CD}inom{3}{2}$ ainsi $\overrightarrow{AB}=\overrightarrow{CD}$ donc \overrightarrow{ABDC} est un parallélogramme.

3. a. Soit E le symétrique de D par rapport à B. En déduire une égalité de deux vecteurs.

Cela signifie que le point B est le milieu de [ED] ainsi : $\overrightarrow{BE} = \overrightarrow{DB}$

b. Utiliser cette égalité pour calculer les coordonnées du point
$$E$$
.

$$\overrightarrow{BE} = \overrightarrow{DB} \Leftrightarrow \begin{cases} x_E - x_B = x_B - x_D \\ y_E - y_B = y_B - y_D \end{cases} \Leftrightarrow \begin{cases} x_E - 5 = 5 - 6 \\ y_E - 3 = 3 + 1 \end{cases} \Leftrightarrow \begin{cases} x_E = 4 \\ y_E = 7 \end{cases}$$
Ainci $E(A:7)$

Ainsi E(4;7).

Démontrer que ACBE est un parallélogramme.

$$\overrightarrow{CA}inom{-1}{4}$$
 et $\overrightarrow{BE}inom{-1}{4}$ ainsi $\overrightarrow{CA}=\overrightarrow{BE}$ donc $ACBE$ est un parallélogramme.

Exercice 16:

Le plan est muni d'un repère $(0; \vec{i}, \vec{j})$.

- 1. Placer les points A(-3; -3), B(-2; 1), C(2; 2) et D(1; -2). A faire.
- 2. Calculer les coordonnées des vecteurs \overrightarrow{BC} et \overrightarrow{AD} .

$$\boxed{\overrightarrow{BC} \begin{pmatrix} 2+2 \\ 2-1 \end{pmatrix} \operatorname{soit} \overrightarrow{BC} \begin{pmatrix} 4 \\ 1 \end{pmatrix}} \qquad \boxed{\overrightarrow{AD} \begin{pmatrix} 1+3 \\ -2+3 \end{pmatrix} \operatorname{soit} \overrightarrow{AD} \begin{pmatrix} 4 \\ 1 \end{pmatrix}}$$

3. Que peut-on en déduire pour le quadrilatère ABCD?

Ainsi $\overrightarrow{BC} = \overrightarrow{AD}$ donc \overrightarrow{ABCD} est un parallélogramme.

4. Démontrer que ABCD est un losange.

$$\overrightarrow{AB} \begin{pmatrix} -2+3 \\ 1+3 \end{pmatrix} \text{ soit } \overrightarrow{AB} \begin{pmatrix} 1 \\ 4 \end{pmatrix} \text{ ainsi } AB = \sqrt{1^2+4^2} = \sqrt{17}$$

$$\overrightarrow{BC} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \text{ ainsi } BC = \sqrt{4^2+1^2} = \sqrt{17}.$$

ABCD est un parallélogramme ayant deux côtés consécutifs de même longueur, ainsi ABCD est un losange.

Exercice 17:

Le plan est muni d'un repère $(0; \vec{i}, \vec{j})$.

- 1. Placer les points A(-1;0), B(2;1) et C(3;-2). A faire
- 2. Soit D le point tel que ABCD est un parallélogramme
 - a. Calculer les coordonnées du point D. Vérifier graphiquement la réponse.

$$ABCD$$
 est un parallélogramme $\Leftrightarrow \overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \begin{cases} x_B - x_A = x_C - x_D \\ y_B - y_A = y_C - y_D \end{cases} \Leftrightarrow \begin{cases} 2 + 1 = 3 - x_D \\ 1 - 0 = -2 - y_D \end{cases} \Leftrightarrow \begin{cases} x_D = 0 \\ y_D = -3 \end{cases}$ Ainsi $D(0; -3)$

b. Calculer les longueurs AB, AC et BC.

$$\overrightarrow{AB} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 donc $AB = \sqrt{10}$ $\overrightarrow{AC} \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ donc $AC = \sqrt{20}$ $\overrightarrow{BC} \begin{pmatrix} 1 \\ -3 \end{pmatrix}$ donc $BC = \sqrt{10}$

c. Démontrer que l'angle \widehat{ABC} est droit.

On remarque que $AC^2 = AB^2 + BC^2$ ainsi d'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en B.

On a bien montré que l'angle \widehat{ABC} est droit.

3. Quelle est la nature du quadrilatère ABCD ? Justifier la réponse.

ABCD est un parallélogramme avec deux côtés consécutifs égaux et un angle droit. C'est donc un carré.

Compétence : Colinéarité en géométrie repérée

Exercice 18 : Colinéarité en géométrie repérée

Dans le repère $(0; \vec{i}, \vec{j})$, on donne les points A(-2; 3), B(4;7) et C(3;2).

1. Démontrer que les droites (AB) et (OC) sont parallèles.

$$\overrightarrow{AB}$$
 $\binom{4+2}{7-3}$ soit \overrightarrow{AB} $\binom{6}{4}$. \overrightarrow{OC} $\binom{3}{2}$.

$$6 \times 2 - 4 \times 3 = 12 - 12 = 0$$

Ainsi les vecteurs \overrightarrow{AB} et \overrightarrow{OC} sont colinéaires, donc les droites (AB) et (OC) sont parallèles.

2. M(x;0) est un point de l'axe des abscisses. Calculer x pour que les points A, B et M soient alignés.

$$\overrightarrow{AM} \begin{pmatrix} x+2 \\ 0-3 \end{pmatrix} \text{ soit } \overrightarrow{AM} \begin{pmatrix} x+2 \\ -3 \end{pmatrix} \\
\overrightarrow{AB} \begin{pmatrix} 6 \\ 4 \end{pmatrix}.$$

A, B et M sont alignés $\Leftrightarrow \overrightarrow{AM}$ et \overrightarrow{AB} sont colinéaires

$$\Leftrightarrow 4(x+2) - (-3) \times 6 = 0$$

$$\Leftrightarrow 4x + 8 + 18 = 0$$

$$\Leftrightarrow 4x = -26$$

$$\Leftrightarrow x = -\frac{26}{4}$$
.

$$M(-6,5;0)$$
.

Exercice 20 : Colinéarité en géométrie repérée

Dans le repère $(0; \vec{i}, \vec{j})$, on donne les points A(-3; 2)et B(-1;7).

Le point
$$M\left(-6; -\frac{11}{2}\right)$$
 est-il un point de (AB) ?
$$\overrightarrow{AM}\left(-\frac{6+3}{2}\right) \operatorname{soit} \overrightarrow{AM}\left(-\frac{15}{2}\right)$$

$$\overrightarrow{AB}\left(-\frac{11}{2}-2\right) \operatorname{soit} \overrightarrow{AB}\left(\frac{15}{2}\right)$$

$$\overrightarrow{AB}\left(-\frac{1+3}{7-2}\right) \operatorname{soit} \overrightarrow{AB}\left(\frac{2}{5}\right)$$

$$-3 \times 5 - \left(-\frac{15}{2}\right) \times 2 = -15 + 15 = 0.$$

Ainsi les vecteurs \overrightarrow{AM} et \overrightarrow{AB} sont colinéaires, donc les points A, B et M sont alignés c'est à dire $M \in (AB)$.

Exercice 19 : Colinéarité en géométrie repérée

Dans le repère $(0; \vec{i}, \vec{j})$, on donne les points A(-2;-1), B(0;4), C(2;-3) et D(6;-1).

1. M(x;0) est un point de l'axe des abscisses. Calculer x pour que les points A, B et M soient alignés.

$$\overrightarrow{AM} {\binom{x+2}{0+1}} \operatorname{soit} \overrightarrow{AM} {\binom{x+2}{1}}$$

$$\overrightarrow{AB} {\binom{0+2}{4+1}} \operatorname{soit} \overrightarrow{AB} {\binom{2}{5}}$$

A, B et M sont alignés $\Leftrightarrow \overrightarrow{AM}$ et \overrightarrow{AB} sont colinéaires

$$\Leftrightarrow 5(x+2)-1\times 2=0$$

$$\Leftrightarrow 5x + 10 - 2 = 0$$

$$\Leftrightarrow$$
 5 $x = -8$

$$\Leftrightarrow x = -\frac{8}{5}$$
.

$$M(-\frac{8}{5};0).$$

 $\Leftrightarrow y = -4.$ C(-3;-4).

2. Démontrer que les droites (CM) et (BD) sont parallèles.

$$\overline{CM}\begin{pmatrix} -\frac{8}{5} - 2\\ 0 + 3\\ 0 + 3 \end{pmatrix} \text{ soit } \overline{CM}\begin{pmatrix} -\frac{18}{5}\\ 3\\ 3 \end{pmatrix}.$$

$$\overline{BD}\begin{pmatrix} 6 - 0\\ -1 - 4 \end{pmatrix} \text{ soit } \overline{AB}\begin{pmatrix} 6\\ -5 \end{pmatrix}$$

$$-\frac{18}{5} \times (-5) - 3 \times 6 = 18 - 18 = 0$$

Ainsi les vecteurs \overrightarrow{CM} et \overrightarrow{BD} sont colinéaires, donc les droites (CM) et (BD) sont parallèles.

Exercice 21 : Colinéarité en géométrie repérée

Dans le repère $(0; \vec{i}, \vec{j})$, on donne les points A(3; 2), B(7;3), C(-3; y) et D(1;-3).

Calculer y pour que les droites (AB) et (CD) soient

$$\overrightarrow{AB} \begin{pmatrix} 7 - 3 \\ 3 - 2 \end{pmatrix} \text{ soit } \overrightarrow{AB} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

$$\overrightarrow{CD} \begin{pmatrix} 1 + 3 \\ -3 - y \end{pmatrix} \text{ soit } \overrightarrow{CD} \begin{pmatrix} 4 \\ -3 - y \end{pmatrix}$$

$$(AB) // (CD) \Leftrightarrow \overrightarrow{AB} \text{ et } \overrightarrow{CD} \text{ sont colinéaires}$$

$$\Leftrightarrow 4(-3 - y) - 1 \times 4 = 0$$

$$\Leftrightarrow -12 - 4y - 4 = 0$$

$$\Leftrightarrow -4y = 16$$

Compétence : Colinéarité en géométrie non repérée

Exercice 22 : Colinéarité en géométrie non repérée

A et B sont deux points distincts.

On se propose de construire le point M tel que : $\overrightarrow{MA} + 2\overrightarrow{MB} = \overrightarrow{AB}$

1. A l'aide de la relation de Chasles, démontrer que $3\overrightarrow{AM} = \overrightarrow{AB}$.

$$\overrightarrow{MA} + 2\overrightarrow{MB} = -\overrightarrow{AM} + 2\overrightarrow{MA} + 2\overrightarrow{AB} = -3\overrightarrow{AM} + 2\overrightarrow{AB}$$
Or $\overrightarrow{MA} + 2\overrightarrow{MB} = \overrightarrow{AB}$. Ainsi $-3\overrightarrow{AM} + 2\overrightarrow{AB} = \overrightarrow{AB}$ c'est-à-dire $3\overrightarrow{AM} = \overrightarrow{AB}$.

2. Pourquoi M est-il un point de la droite (AB) ? Le construire.

 \overrightarrow{AM} et \overrightarrow{AB} sont colinéaires ainsi les points A,M et B sont alignés donc $M \in (AB)$.

Exercice 23 : Colinéarité en géométrie non repérée

ABC est un triangle.

1. Construire les points I et J tels que : $\overrightarrow{AI} = \overrightarrow{AB} + 2\overrightarrow{AC}$ et $\overrightarrow{AJ} = 2\overrightarrow{AB} + \overrightarrow{AC}$

2. a. Exprimer \overrightarrow{IJ} en fonction de \overrightarrow{AI} et \overrightarrow{AJ} puis en fonction de \overrightarrow{AB} et \overrightarrow{AC} .

 $\overrightarrow{IJ} = \overrightarrow{IA} + \overrightarrow{AJ} = -\overrightarrow{AI} + \overrightarrow{AJ} \qquad \overrightarrow{IJ} = -(\overrightarrow{AB} + 2\overrightarrow{AC}) + 2\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AB} - \overrightarrow{AC}$

b. Que peut-on en déduire sur les droites (IJ) et (BC) ?

 $\overrightarrow{IJ} = \overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}.$

 $|\overrightarrow{IJ}|$ et \overrightarrow{CB} sont colinéaires ainsi les droites (IJ) et (BC) sont parallèles.

Exercice 24 : Colinéarité en géométrie non repérée

ABCD et AEGF sont deux parallélogrammes tels que : $\overrightarrow{BE} = 2\overrightarrow{AB}$ et $\overrightarrow{AF} = 3\overrightarrow{AD}$ Démontrer que les points A, C et G sont alignés.

Exercice 25 : Colinéarité en géométrie non repérée

ABC est un triangle.

Le point I est le milieu du segment [AB] et $\overrightarrow{BJ} = \frac{3}{5}\overrightarrow{BC}$ et $\overrightarrow{AL} = 3\overrightarrow{AC}$.

1. Exprimer \overrightarrow{IJ} et \overrightarrow{IL} en fonction de \overrightarrow{BC} et \overrightarrow{BA} .

$$\overrightarrow{IJ} = \overrightarrow{IB} + \overrightarrow{BJ} = -\frac{1}{2}\overrightarrow{BA} + \frac{3}{5}\overrightarrow{BC}$$

$$\overrightarrow{IL} = \overrightarrow{IA} + \overrightarrow{AL} = \frac{1}{2}\overrightarrow{BA} + 3\overrightarrow{AC} = \frac{1}{2}\overrightarrow{BA} + 3\overrightarrow{AB} + 3\overrightarrow{BC} = -\frac{5}{2}\overrightarrow{BA} + 3\overrightarrow{BC}$$

2. En déduire que les points I, J et L sont alignés.

On remarque que $\overrightarrow{IL} = 5\overrightarrow{IJ}$.

 \overrightarrow{IL} et \overrightarrow{IJ} sont colinéaires ainsi les points I,J et L sont alignés

Exercice supplémentaire : Colinéarité en géométrie non repérée

ABC est un triangle.

1. Construire le point *D* tel que : $5\overrightarrow{AD} = 3\overrightarrow{AB} + 2\overrightarrow{AC}$.

On construit E tel que : $\overrightarrow{AE} = 3\overrightarrow{AB} + 2\overrightarrow{AC}$ puis D tel que : $\overrightarrow{AD} = \frac{1}{5}\overrightarrow{AE}$.

2. a. A l'aide de la relation de Chasles, démontrer que $\overrightarrow{BD} = \frac{2}{5} (\overrightarrow{AC} - \overrightarrow{AB})$.

$$\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD} = -\overrightarrow{AB} + \frac{3}{5}\overrightarrow{AB} + \frac{2}{5}\overrightarrow{AC} = -\frac{2}{5}\overrightarrow{AB} + \frac{2}{5}\overrightarrow{AC} = \frac{2}{5}(\overrightarrow{AC} - \overrightarrow{AB}).$$
b. Que peut-on en déduire sur les points B, C et D .

$$\overrightarrow{BD} = \frac{2}{5} (\overrightarrow{AC} - \overrightarrow{AB}) = \frac{2}{5} (\overrightarrow{BA} + \overrightarrow{AC}) = \frac{2}{5} \overrightarrow{BC}.$$

Ainsi \overrightarrow{BD} et \overrightarrow{BC} sont colinéaires donc les points B, C et D sont alignés.

Exercice supplémentaire : Colinéarité en géométrie non repérée

ABC est un triangle.

D le point tel que $\overrightarrow{AD} = 3\overrightarrow{AB} - 2\overrightarrow{AC}$.

1. Exprimer \overrightarrow{BC} et \overrightarrow{BD} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .

$$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC} = -\overrightarrow{AB} + \overrightarrow{AC}$$

$$\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD} = -\overrightarrow{AB} + 3\overrightarrow{AB} - 2\overrightarrow{AC} = 2\overrightarrow{AB} - 2\overrightarrow{AC}$$

2. En déduire que les points B, C et D sont alignés.

On remarque que : $\overrightarrow{BD} = -2\overrightarrow{BC}$.

Ainsi \overrightarrow{BD} et \overrightarrow{BC} sont colinéaires donc les points B, C et D sont alignés.

Compétence : Logique et vecteurs

Exercice 26 : Y'a-t-il équivalence ?

Le plan est muni d'un repère $(0; \vec{i}, \vec{j})$.

	Р	Q	
1	AB = DC	ABCD est un parallélogramme	
2	C est l'image de D par la translation de vecteur \overrightarrow{AB}	ABCD est un parallélogramme	
3	$\overrightarrow{AB} = -2 \overrightarrow{AC}$	A,B et C sont alignés	
4	$\overrightarrow{AB} = -2 \overrightarrow{AC}$	AB = 2AC	
5	Il existe un réel k tel que $\overrightarrow{AB} = k \ \overrightarrow{CD}$	(AB) // (CD)	
6	AI = IB	\emph{I} est le milieu du segment $\emph{[}\emph{AB}\emph{]}$	
7	$\vec{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$	$2\vec{u}\binom{-2}{6}$	
8	$\vec{u} \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$	$\vec{u} + \vec{v} \begin{pmatrix} -1 \\ 7 \end{pmatrix}$	
9	A(-3;0) et $B(7;3)$	$\overrightarrow{AB} {10 \choose 3}$	

Compléter le tableau suivant en indiquant si les phrases mathématiques sont justes ou fausses.

Numéro	$P\Rightarrow Q$	$Q \Rightarrow P$	$P \Leftrightarrow Q$
1	F	V	F
2	V	V	V
3	V	F	F
4	V	F	F
5	V	V	V
6	F	V	F
7	V	V	V
8	V	F	F
9	V	F	F

Compétence : Choisir un repère pour démontrer

Exercice supplémentaire : Choisir un repère pour démontrer

ABC est un triangle, P, Q, R sont tels que:

$$\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB}$$
; $\overrightarrow{CR} = -\frac{1}{3}\overrightarrow{CB}$ et $\overrightarrow{CQ} = \frac{1}{3}\overrightarrow{CA}$

1. Faire une figure

- 2. Dans chacun des cas suivants, calculer les coordonnées de P,Q et R.
 - a) Dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AC})$

$$\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB} \text{ ainsi } P\left(\frac{1}{3};0\right).$$

$$\overrightarrow{AQ} = \overrightarrow{AC} + \overrightarrow{CQ} = \overrightarrow{AC} + \frac{1}{3}\overrightarrow{CA} = \frac{2}{3}\overrightarrow{AC} \text{ ainsi } Q\left(0;\frac{2}{3}\right).$$

$$\overrightarrow{AR} = \overrightarrow{AC} + \overrightarrow{CR} = \overrightarrow{AC} - \frac{1}{3}\overrightarrow{CB} = \overrightarrow{AC} - \frac{1}{3}\overrightarrow{CA} - \frac{1}{3}\overrightarrow{AB} = -\frac{1}{3}\overrightarrow{AB} + \frac{4}{3}\overrightarrow{AC} \text{ ainsi } R\left(-\frac{1}{3};\frac{4}{3}\right).$$

b) Dans le repère $(B; \overrightarrow{BC}, \overrightarrow{BA})$

$$\overrightarrow{BP} = \overrightarrow{BA} + \overrightarrow{AP} = \overrightarrow{BA} + \frac{1}{3}\overrightarrow{AB} = \frac{2}{3}\overrightarrow{BA} \text{ ainsi } P\left(0; \frac{2}{3}\right).$$

$$\overrightarrow{BQ} = \overrightarrow{BC} + \overrightarrow{AQ} = \overrightarrow{BC} + \frac{1}{3}\overrightarrow{CA} = \overrightarrow{BC} + \frac{1}{3}\overrightarrow{CB} + \frac{1}{3}\overrightarrow{BA} = \frac{2}{3}\overrightarrow{BC} + \frac{1}{3}\overrightarrow{BA} \text{ ainsi } Q\left(\frac{2}{3}; \frac{1}{3}\right).$$

$$\overrightarrow{BR} = \overrightarrow{BC} + \overrightarrow{CR} = \overrightarrow{BC} - \frac{1}{3}\overrightarrow{CB} = \frac{4}{3}\overrightarrow{BC} \text{ ainsi } R\left(\frac{4}{3}; 0\right).$$

c) Dans le repère $(C; \overrightarrow{CR}, \overrightarrow{CQ})$

$$\overrightarrow{CP} = \overrightarrow{CA} + \overrightarrow{AP} = \overrightarrow{CA} + \frac{1}{3}\overrightarrow{AB} = \overrightarrow{CA} + \frac{1}{3}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{CB} = \frac{2}{3}\overrightarrow{CA} + \frac{1}{3}\overrightarrow{CB}$$
Or $\overrightarrow{CR} = -\frac{1}{3}\overrightarrow{CB}$ et $\overrightarrow{CQ} = \frac{1}{3}\overrightarrow{CA}$ donc $\overrightarrow{CP} = -\overrightarrow{CR} + 2\overrightarrow{CQ}$ ainsi $P(-1;2)$
Par définition d'un repère $Q(0;1)$ et $R(1;0)$

3. a. Quel repère choisir pour démontrer que les points P, Q et R sont alignés ?

On choisit le repère $(C; \overrightarrow{CR}, \overrightarrow{CQ})$.

b. Le démontrer.

Dans le repère
$$(C; \overrightarrow{CR}, \overrightarrow{CQ})$$
 on a : $\overrightarrow{RQ} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ et $\overrightarrow{RP} \begin{pmatrix} -2 \\ 2 \end{pmatrix}$.

On remarque que $\overrightarrow{RP} = 2\overrightarrow{RQ}$ ainsi les vecteur \overrightarrow{RP} et \overrightarrow{RQ} sont colinéaire et les points P, Q et R sont alignés.

Compétence : Vecteur directeur

Exercice 27: Vecteurs directeurs

Dire si le vecteur \vec{u} est un vecteur directeur de la droite (AB).

1.
$$A(1;2), B(3;7) \text{ et } \vec{u} \begin{pmatrix} -2 \\ -5 \end{pmatrix}$$
.

$$\overrightarrow{AB} \begin{pmatrix} 3-1 \\ 7-2 \end{pmatrix}$$
 soit $\overrightarrow{AB} \begin{pmatrix} 2 \\ 5 \end{pmatrix}$

 $\vec{u} = - \overrightarrow{AB}$ ainsi les vecteurs sont colinéaires et \vec{u} est un vecteur directeur de la droite (AB).

2.
$$A(-3; 2), B(4; 7) \text{ et } \vec{u} \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

$$\overrightarrow{AB}$$
 $\begin{pmatrix} 4+3\\7-2 \end{pmatrix}$ soit \overrightarrow{AB} $\begin{pmatrix} 7\\5 \end{pmatrix}$
 $5 \times 5 - 1 \times 7 = 25 - 7 = 18 \neq 0$

Ainsi les vecteurs ne sont pas colinéaires et \vec{u} n'est pas un vecteur directeur de la droite (AB).

3.
$$A(-1;3), B(7;3) \text{ et } \vec{u} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\overrightarrow{AB} inom{7+1}{3-3}$$
 soit $\overrightarrow{AB} inom{8}{0}$

 $\vec{u} = \frac{1}{2} \vec{AB}$ ainsi les vecteurs sont colinéaires et \vec{u} est un vecteur directeur de la droite (AB).