Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern

Chahine Abid Bachelor Arbeit

Betreuer: Prof. Johannes Fürnkranz

Frederik Janssen

Inhaltsübersicht

- 1. Einführung und Motivation
- 2. Maschinelle Lernverfahren
- 3. Experimente und Ergebnisse
- 4. Vergleich der Algorithmen
- 5. Zusammenfassung und Konklusion

- Maschinelles Lernen:
 - aus Erfahrung lernen
 - die Leistung wird durch die Erfahrung verbessert
- Anwendungsgebiete:
 - Texterkennung
 - Klassifikation von DNA-Sequenzen
 - Bioinformatik . . .
- Teilgebiete:
 - Klassifikation
 - Regression
 - Clustering . . .

Klassifikation

- Instanz : ein Beispiel aus dem Datensatz
- Attribute : die Eigenschaften der Instanz
 - nominales Attribut: besteht aus einer endlichen Menge von Werten Beispiel: die Farbe (rot, grün, blau, gelb)
 - numerisches Attribut: besteht aus Zahlen Beispiel: die Temperatur (-5, 0, 15, 27, ...)
- Klasse: ordnet dem Beispiel die entsprechende Kategorie zu

Wetter	Temperatur	Feuchtigkeit	Wind	Spielen ?
sonnig	25	90	nein	ja
regnerisch	6	80	ja	nein

- 10-Fache Kreuzvalidierung:
 - 9 Teilmengen: für das Training
 - 1 Teilmenge: für das Testen

- Überanpassung (Overfitting):
 - das Modell ist sehr an die Trainingsdaten überangepasst
 - schlechte Verallgemeinerung f
 ür die Testdaten
- Pruning: Methode zur Vermeidung von Überanpassung
 - prepruning vs postpruning

Motivation

- Support-Vector Maschinen:
 - die Parameter werden oft an die Daten angepasst
 - gute Performanz
- Entscheidungsbaum-Lerner und Regel-Lerner:
 - oft in ihrer Standard-Konfiguration verwendet
 - schlechtere Performanz als die Support-Vector Maschinen
- Ziele:
 - die Parameter f
 ür beide Systeme gr
 ündlich optimieren
 - die Ergebnisse vergleichen und analysieren

Maschinelle Lernverfahren (1) Entscheidungsbaum-Lernen

- ► Tests in den inneren Knoten
- die Klassen werden in den Blättern dargestellt

Maschinelle Lernverfahren (1) Entscheidungsbaum-Lernen

- ► ID3 Algorithmus:
 - einfache Entscheidungsbäume
 - möglichst reine Konten erzeugen
 - Information-Gain für jedes Attribut berechnen
- C4.5 Algorithmus:
 - Erweiterung von ID3
 - Umgang mit Daten der realen Welt
 - Pruning

Maschinelle Lernverfahren (2) Regel-Lernen

Wetter	Temperatur	Feuchtigkeit	Wind	Spielen ?
sonnig	25	90	ja	ja
regnerisch	6	80	ja	nein
sonnig	21	90	nein	nein
sonnig	27	80	nein	ja

▶ die positive Beispiele werden mit der folgenden Regel abgedeckt: if (Wetter = sonnig) and (Temperatur ≥ 25) then Spielen = ja

Maschinelle Lernverfahren (2) Regel-Lernen

- RIPPER (Repeated incremental pruning to produce error reduction):
 - Modifikation des IREP-Algorithmus
 - Trainingsmenge aufteilen: Growingmenge und Pruningmenge
 - Prepruning und Postpruning verwenden: Regeln lernen und gleich prunen
 - Abbruchkriterium: basierend auf dem MDL-Prinzip
 - Optimierungsphase

Maschinelle Lernverfahren (3) Ensemble Lernen

Kombination mehrerer Modelle

Beispiel: Random Forest

- Bagging:
 - die Trainingsmenge in mehreren Teilmengen aufteilen
 - ▶ eine Menge von Entscheidungsbäumen erzeugen (ein Baum für jede Teilmenge)
 - Kombination der Vorhersagen dieser Modelle
- zufällige Featureauswahl: Nur ein Teil der Attribute wird berücksichtigt

Maschinelle Lernverfahren (4) Support-Vector Maschinen

- ▶ Beispiele aus verschiedenen Klassen mit einer Hyperebene trennen
- den Abstand derjenigen Beispiele, die der Hyperebene am nächsten liegen, maximieren (garantiert eine gute Generalisierbarkeit)

Quelle: Data Mining: Practical Machine Learning Tools and Techniques

Maschinelle Lernverfahren (4) Support-Vector Maschinen

- die Daten in einem Raum h\u00f6herer Dimension abbilden
- Berechnung im hochdimensionalen Raum mit Hilfe von Kernel Funktionen:
 - ► RBF Kernel: $K(x, y) = e^{-\gamma ||x-y||^2}$
 - Polynomiale Kernel: $K(x, y) = (\langle x \cdot y \rangle + c)^{d}$
 - Sigmoid Kernel: $K(x, y) = tanh (\gamma \langle x \cdot y \rangle + c)$
- die Daten in verschiedenen Kategorien klassifizieren

Experimente

- WEKA (Experiment Environment)
- 21 Datensätze
- 5 Algorithmen:
 - 1 Entscheidungsbaum-Lerner (J48)
 - 1 Regel-Lerner (JRip)
 - 1 Ensemble (Random Forest)
 - 2 Support-Vector Maschinen (SMO und LibSVM)

Experimente 21 Datensätze

- Klassen:
 - 6 Datensätze mit binären Klassen.
 - 15 Datensätze mit Multi-Klassen
- Instanzen:
 - die Größe der Datensätze variiert zwischen 24 and 2310
- Attribute:
 - nominale und numerische Attribute
 - die Anzahl der Attribute variiert zwischen 5 and 230

1- J48

TECHNISCHE UNIVERSITÄT DARMSTADT

- C: der Konfidenzfaktor (12 Werte):
 - 0.005, 0.01, 0.05, 0.1, 0.15, 0.2 und 0.25: 11 Datensätze
 2 Datensätze für C = 0.25
 - 0.3, 0.4
 - 0.5, 0.75 und 0.99 : 6 Datensätze: 2 Datensätze für C = 0.5
 4 Datensätze für C = 0.75
- ► M: die minimale Anzahl von Instanzen pro Blatt (11 Werte)
 - ▶ 1 : 8 Datensätze (sehr spezifische Bäume)
 - **2**, 3, 4, 5
 - 6, 10, 20, 30, 60 und 100 : 7 Datensätze
- ▶ **B:** die binäre Aufteilung für nominale Attribute verwenden (Standardwert: false)
- ▶ A: die Laplace-Glättung verwenden (Standardwert: false)

1- J48

Veränderung der Genauigkeit in Abhängigkeit von C und M (Datensatz: heart-statlog)

2- Random Forest

- ▶ I: die Anzahl der Bäume (11 Werte):
 - > 5, 10, 20, 30, 50 und 75
 - ▶ 100, 250, 350, 500 und 700: 12 Datensätze (mehr als die Hälfte unseres Datensatzes)
- ▶ K: die Anzahl der zufällig zu berücksichtigenden Attribute
 - ▶ 12 Werte: 0, 1, 2, 3, 4, 5, 7, 10, 15, 20, 50 und 100
- Depth: die maximale Tiefe der Bäume
 - ▶ 10 Werte: 0 (unbegrenzte Tiefe), 2, 3, 5, 10, 20, 30, 50, 75 und 100

Experimente: 5 Algorithmen 3- JRip

- O: die Anzahl der Optimierungen (12 Werte):
 - 1, 2, 3 und 5: 11 Datensätze (nach einer Optimierung, für das Drittel unseres Datensatzes: 7 Datensätze)
 - ▶ 10, 20, 50, 80, 100, 200, 400 und 600
- N: die minimale Gewicht der Instanzen in einer Regel (9 Werte)
 - 1, 2, 3, 4 und 5: 18 Datensätze (wenn N=1 für 10 Datensätze (ungefähr die Hälfte unseres Datensatzes))
 - 6, 10, 20 und 30

Experimente: 5 Algorithmen 3- JRip

- ► **F**: die Verteilung der Datenmenge (Growingmenge und Pruningmenge)
 - 4 Werte: 2, 3, 5 und 10
- P: ob das Pruning verwendet wird (Standardwert: true)
- ► E: ob die 50% Fehlerrate im Abbruchkriterium enthalten ist (Standardwert: true)

3-JRip

Veränderung der Genauigkeit in Abhängigkeit von der Anzahl der Optimierungen für verschiedene Datensätze

4-SMO

- C: der Kostenparameter.
 - ► 14 Werte: 10⁻⁵, 10⁻⁴, 10⁻³, 10⁻², 10⁻¹, 0.5, 1, 2, 10, 100, 1000, 2000, 5000 und 8000
- N: Wie werden die Daten umgewandelt?
 - 0 (Normalisierung der Daten)
 - 1 (Standardisierung der Daten)
 - 2 (keine Umwandlung der Daten)
- $ightharpoonup \gamma$: der gamma Parameter (Breite des Kernels)
 - ▶ 20 Werte: 0, 2⁻¹³, 2⁻¹², ..., 2⁴, 2⁵
- E: der Exponent des Kernels
 - 5 Werte: 1, 2, 3, 4 und 5

4-SMO

Veränderung der Genauigkeit in Abhängigkeit von C und G (RBF Kernel: N=0 Datensatz: anneal)

5- LibSVM

- C: Kostenparameter.
 - ► 14 Werte: 10⁻⁵, 10⁻⁴, 10⁻³, 10⁻², 10⁻¹, 0.5, 1, 2, 10, 100, 1000, 2000, 5000 und 8000
- **Z:** ob die Daten normalisiert werden (Standardwert: false)
- $ightharpoonup \gamma$: der gamma Parameter (Breite des Kernels)
 - ▶ 20 Werte: 0, 2⁻¹³, 2⁻¹², ..., 2⁴, 2⁵
- D: der Exponent des Kernels
 - 5 Werte: 1, 2, 3, 4 und 5
- R: Konstante
 - 3 Werte: 0, -1000, 1000

Experimente: 5 Algorithmen 5- LibSVM

Veränderung der Genauigkeit in Abhängigkeit von C und D (Polykernel: N=0 Datensatz: balance-scale)

Ergebnisse

Datensätze	# Instanzen	# Klassen	# Nominale Attribute	# Numerische Attribute
balance-scale	625	3	1	4
german_credit	1000	2	14	7
ionosphere	351	2	1	34
solar-flare-c	1712	6	11	0
spectrometer2	531	48	3	100
Z00	101	7	17	1

Ergebnisse 1- J48

Datensätze	С	М	B / A	Genauigkeit (%)
balance-scale	0.5	1		80.002
german_credit	0.2	20	В	73.2
ionosphere	0.25	2		91.46
solar-flare-c	0.3	3	В	85.573
spectrometer2	0.1	6		49.531
Z00	0.1	1		94.181

C: der Konfidenzfaktor

M: die minimale Anzahl von Instanzen pro Blatt

B: die binäre Aufteilung für nominale Attribute

A: die Laplace-Glättung

Ergebnisse 2- Random Forest

Datensätze	# Bäume	# Features	Tiefe	Genauigkeit (%)
balance-scale	100	1	5	88.476
german_credit	250	10	10	77.5
ionosphere	20	5	5	95.452
solar-flare-c	350	0	5	85.981
spectrometer2	250	0	20	58.567
Z00	20	2	10	97.09

Ergebnisse 3- JRip

Datensätze	F	N	0	Fehlerrate / Pruning	Genauigkeit (%)
balance-scale	2	2	1	ja	82.096
german_credit	2	20	20	ja	75
ionosphere	3	4	1	ja	91.476
solar-flare-c	2	1	1	ja	85.573
spectrometer2	5	1	400	ja	43.871
Z00	2	1	3	ja	91.181

F: die Verteilung der Datenmenge (Growingmenge und Pruningmenge)

N: die minimale Gewicht der Instanzen in einer Regel

O: die Anzahl der Optimierungen

Ergebnisse 4- SMO

Datensätze	С	Kernel	G/E	N	Genauigkeit (%)
balance-scale	2000	RBF	2^{-3}	0	100
german_credit	1000	RBF	2-11	1	78.3
ionosphere	0.5	Normalized	8	2	96.293
solar-flare-c	10^{-4}	Poly	5	0	86.098
spectrometer2	1000	Normalized	2	2	71.942
Z00	10	RBF	2^{-3}	2	98

Ergebnisse 5- LibSVM

Datensätze	С	Kernel	G/D	Normalize	Genauigkeit (%)
balance-scale	10	Polykernel	2		100
german_credit	5000	Polykernel	1	ja	77
ionosphere	100	RBF	2-1		95.174
solar-flare-c	1	RBF	2 ²		85.922
spectrometer2	10^{-4}	Polykernel	1		71.757
Z00	0.5	linear	-		96.09

Vergleich der Algorithmen (1)

Über einzelne Datensätze: Maximale und minimale Genauigkeit -

Datensätze	J48	Random Forest	JRip	SMO	LibSVM
balance-scale	80.002	88.476	82.096	100	100
	64.493	72.956	71.208	19.859	4.966
	73.325	81.38	78.376	80.537	64.22
	4.486	2.019	1.998	16.529	21.577
Z00	94.181	97.09	91.181	98	96.09
	40.636	42.636	40.636	40.636	23.727
	76.154	73.077	73.911	61.139	46.43
	19.685	23.01	19.871	25.041	17.532
spectrometer2	49.531	58.567	43.871	71.942	71.757
	13.19	10.359	10.359	10.359	5.461
	42.659	43.345	31.027	21.079	16.75
	7.577	13.851	8.538	17.245	17.56

Vergleich der Algorithmen (1)

Über einzelne Datensätze: Maximale und minimale Genauigkeit -

Mittelwert - Standardabweichung

Datensätze	J48	Random Forest	JRip	SMO	LibSVM
ionosphere	91.46	95.452	91.476	96.293	95.174
	74.087	84.333	80.373	64.103	39.587
	88.32	92.609	89.342	78.517	69.534
	4.684	1.254	1.761	13.38	12.154
german_credit	73.2	77.5	75	78.3	77
	65.7	69.8	68.4	61.2	36.5
	70.423	74.47	72.415	70.857	68.374
	1.413	1.83	0.995	2.624	5.934
solar-flare-c	85.573	85.981	85.573	86.098	85.922
	84.055	83.47	83.703	83.877	30.804
	85.076	84.55	85.098	85.193	83.941
	0.268	0.496	0.352	0.273	5.5

Vergleich der Algorithmen (3) Über den gesamten Datensatz

	J48	Random Forest	JRip	SMO	LibSVM
Р	528	1320	1296	1204	2688
N	11088	27720	27216	25284	56448
Mittelwert (in %)	75.853	80.223	75.796	68.774	58.3
Varianz	245.078	222.619	264.655	505.177	634.991
Standardabweichung	15.654	14.92	16.268	22.476	25.199

P: Anzahl der Parametereinstellungen

N: Anzahl der Parametereinstellungen * Anzahl der Datensätze

Vergleich der Algorithmen (4) Signifikanztest

- den durchschnittlichen Rang für jeden Algorithmus bestimmen
- Signifikanzniveau α = 0.01
- die kritische Differenz berechnen (CD: 1.588)

SMO	1.88
LibSVM	2.404
Random Forest	2.5
J48	4.095
JRip	4.119

Zusammenfassung und Konklusion

- Verbesserung der Performanz nach der Optimierung der Parameter
- die symbolische Ansätze sind mehr stabil (niedrige Varianz)
- signifikanter Unterschied zwischen zwei Gruppen:
 - SVMs und Random Forest
 - J48 und JRip
- Random Forest:
 - gute Genauigkeitswerte (ähnlich wie bei den SVMs)
 - niedrige Varianz (ähnlich wie bei den symbolischen Ansätzen)
- Wie verhalten sich andere Ensemble Lerner im Vergleich mit den SVMs?

Vielen Dank für die Aufmerksamkeit!

Vergleich der Algorithmen (2)

Über einzelne Datensätze:

Datensätze	J48	Random Forest	JRip	SMO	LibSVM
balance-scale	80.002	88.476	82.096	100	100
	76.653	82.237	79.05	87.677	89.754
german_credit	73.2	77.5	75	78.3	77
	70.5	74.3	71.7	75.1	70
ionosphere	91.46	95.452	91.476	96.293	95.174
	91.46	94.595	89.753	88.603	93.46
solar-flare-c	85.573	85.981	85.573	86.098	85.922
	85.105	84.346	85.397	85.163	85.163
spectrometer2	49.531	58.567	43.871	71.942	71.757
	47.449	49.346	31.656	51.418	10.359
Z00	94.181	97.09	91.181	98	96.09
	92.181	91.09	87.272	96.181	49.636