Université Abdelmalek Éssaadi Ecole Nationale des Sciences Appliquées Al Hoceima

AP1: Analyse 2

Année: 2019/2020

Sol. de TD:Suites et Séries de Fonctions

séries $N^{\circ}3(Partie 2)$

Professeur A. MOUSSAID

probléme 1

On note, pour tout

$$\forall n \in \mathbb{N}^*, \quad \forall x \in [0, +\infty], \quad f_n(x) = \frac{x^n}{n(x^{2n} + 1)}$$

- 1. Montrer que la série de fonction $\sum_{n\geq 1} f_n(x)$ converge simplement sur $D=[0,1[\cup]1,+\infty[$ On note S la somme de cette série de fonction .
- 2. Montrer que S est de classe C^1 sur D et étudier le signe de S'(x) pour $x \in D$
- 3. Déterminer les limites de S en 1 et en $+\infty$
- 4. Dresser le tableau de variations de S et tracer l'allure de la courbe représentative de S.

probléme 2

- 1. Montrer que la série $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n} e^{-nx}$ est uniformément converge sur $[0,+\infty[$
- 2. Montrer que la fonction $x\mapsto \sum_{n\geq 1}\frac{(-1)^{n+1}}{n}e^{-nx}$ est continue sur $[0,+\infty[$
- 3. Montrer que la fonction $x \mapsto \sum_{n \ge 1} \frac{(-1)^{n+1}}{n} e^{-nx}$ est dérivable sur $]0, +\infty[$ et calculer sa dérivée.
- 4. En déduire que pour tout $x \ge 0$, on a :

$$\sum_{n\geq 1} \frac{(-1)^{n+1}}{n} e^{-nx} = \log(1 + e^{-x})$$