(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 19. Juli 2001 (19.07.2001)

PCT

B01D 53/86,

(10) Internationale Veröffentlichungsnummer WO 01/51182 A1

B01J 29/06, C01B 21/40

(21) Internationales Aktenzeichen: PCT/EP01/00157

(22) Internationales Anmeldedatum:

(51) Internationale Patentklassifikation7:

9. Januar 2001 (09.01.2001)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:

100 01 541.7 14. Januar 2000 (14.01.2000) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): KRUPP UHDE GMBH [DE/DE]; Friedrich-Uhde-Strasse 15, 44141 Dortmund (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): SCHWEFER, Meinhard [DE/DE]; Frensdorffstrasse 8, 44141 Dortmund (DE). MAURER, Rainer [DE/DE]; Martinstrasse 14, 58332 Schwelm (DE). TUREK, Thomas [DE/DE]; Mathystrasse 35, 76133 Karlsruhe (DE). KÖGEL, Markus [DE/DE]; Pappelweg 2, 67354 Römerberg (DE).

(74) Anwalt: ACKERMANN, Joachim; Postfach 111326, 60048 Frankfurt am Main (DE).

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR THE REMOVAL OF NO, AND N,O FROM THE RESIDUAL GAS IN NITRIC ACID PRODUCTION
- (54) Bezeichnung: VERFAHREN ZUR BESEITIGUNG VON $\mathrm{NO_x}$ UND $\mathrm{N_2O}$ AUS DEM RESTGAS DER SALPETERSÄURE-PRODUKTION

(57) Abstract: A method for the removal of NO_X and N_2O from the residual gas in nitric acid production is disclosed. The method comprises passing the residual gases leaving the absorption tower, through a two-stage combination before introduction into the residual gas turbine. In the first stage the NO_X content of the gas is reduced and in the second stage the N_2O content is reduced. The NO_X/N_2O ratio, before entry into the second stage, is in the range from 0.001 to 0.5 and said gas is brought into contact with a catalyst in the second stage. Said catalyst comprises essentially one or several iron-loaded zeolites.

(57) Zusammenfassung: Beschrieben wird ein Verfahren zur Minderung der NO_x - und N_2O -Konzentration aus dem Restgas der Salpetersäureproduktion. Das Verfahren umfasst die Führung des den Absorptionsturm verlassenden Restgases vor Eintritt in die Restgasturbine durch eine Kombination zweier Stufen. Dabei wird in der ersten Stufe der NO_x -Gehalt und in der zweiten Stufe der N_2O -Gehalt des Gases reduziert, das NO_x/N_2O -Verhältnis vor Eintritt des Gases in die zweite Stufe liegt im Bereich von 0,001 bis 0,5 und dieses Gas wird in der zweiten Stufe in Kontakt mit einem Katalysator gebracht, welcher im wesentlichen einen oder mehrere mit Eisen beladene Zeolithe enthält.

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK,

ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Beschreibung

5

10

15

Verfahren zur Beseitigung von NO_x und N₂O aus dem Restgas der Salpetersäureproduktion

Die vorliegende Erfindung betrifft ein Verfahren zur Beseitigung von NOx und N₂O aus dem Restgas der Salpetersäureproduktion.

Bei der industriellen Herstellung von Salpetersäure HNO₃ durch die katalytische Verbrennung von Ammoniak resultiert ein mit Stickstoffmonoxid NO, Stickstoffdioxid NO₂ (zusammen bezeichnet als NOx) sowie Lachgas N₂O beladenes Abgas. Während NO und NO₂ seit langem als Verbindungen mit ökotoxischer Relevanz bekannt sind (Saurer Regen, Smog-Bildung) und weltweit Grenzwerte für deren maximal zulässige Emissionen festgelegt sind, rückt in den letzten Jahren in zunehmenden Maße auch Lachgas in den Focus des Umweltschutzes, da dieses in nicht unerheblichem Maße zum Abbau von stratosphärischem Ozon und zum Treibhauseffekt beiträgt.

20

Nach Reduzierung der Lachgasemissionen der Adipinsäureindustrie stellt die Salpetersäureproduktion die größte Quelle industrieller Lachgasemissionen dar. Es besteht daher aus Gründen des Umweltschutzes ein dringender Bedarf an technischen Lösungen, die Lachgasemissionen zusammen mit den NOx-Emissionen bei der Salpetersäureproduktion zu reduzieren.

25

30

Zur Beseitigung von NOx aus dem Abgas der Salpetersäureproduktion bestehen zahlreiche Verfahrensvarianten (hier bezeichnet als DeNOx-Stufe), wie chemische Wäsche, Adsorptionsverfahren oder katalytische Reduktionsverfahren. Eine Übersicht ist in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 17, VCH Weinheim (1991) (D1) gegeben. Hervorzuheben ist dabei die selektive katalytische Reduktion (SCR) von NOx mittels Ammoniak zu N₂ und H₂O, welche je nach Katalysator bei Temperaturen

2

von ca. 150°C bis ca. 450°C ablaufen kann und einen NOx-Abbau von mehr als 90% ermöglicht. Sie ist die meist genutzte Variante der NOx-Minderung bei der Salpetersäureproduktion, führt aber, wie auch die übrigen Varianten, nicht zu einer Minderung des N₂O-Gehaltes.

5

10

15

20

25

Hierzu ist nach heutigem Stand der Technik eine gesonderte, zweite Katalysatorstufe notwendig, die in geeigneter Weise mit der DeNOx-Stufe kombiniert wird.

Diese Überlegung ist beispielsweise Grundlage eines in US-A-5,200,162 beschriebenen Verfahrens, welche die Zersetzung von N₂O in einem ebenfalls NOx enthaltenden Abgas nachgeschaltet einer DeNOx-Stufe beansprucht. Dabei wird zumindest ein Teilstrom des Abgases, welches die N₂O-Zersetzungsstufe verläßt, abgekühlt und in diese zurückgeführt, um eine Überhitzung dieser Stufe aufgrund der Exothermie der N₂O-Zersetzung zu vermeiden. Die Erfindung bezieht sich auf Abgase mit einem N₂O-Gehalt bis zu 35Vol%, also beispielsweise auf Abgase der Adipinsäureherstellung.

Ein von Shell präsentiertes Verfahren beschreibt die integrierte Beseitigung von NOx und N_2O im Restgas der Salpetersäureproduktion (Clark, D.M.; Maaskant, O.L.; Crocker, M., The Shell DeNOx System: A novel and cost effective NOx removal technology as applied in nitric acid manufacture and associated processes, presented at Nitrogen '97, in Geneva, 9-11th February 1997, (D2)).

Das Shell Reaktor System basiert auf einem sogenannten Lateral-Flow-Reaktor-Prinzip, wobei die DeNOx –Stufe schon bei relativ geringen Temperaturen (ab 120°C) arbeitet. Zur Entfernung von N_2O wird ein amorpher Metalloxidkatalysator verwendet.

Bei einer Anordnung entsprechender Katalysatoren im Restgas, welches den Absorptionsturm mit einer Temperatur von 20-30°C verläßt, ist das Fenster möglicher Arbeitstemperaturen durch die Betriebstemperatur der Restgasturbine vorgegeben.

Die Restgasturbine nämlich sollte aus technischer und wirtschaftlicher Sicht des Gesamtprozesses am vorteilhaftesten bei Eintrittstemperaturen <550°C und möglichst hohen ΔT und Δp betrieben werden.

3

- Dies ist insbesondere für die Beseitigung von N₂O von Bedeutung, da hierfür nach dem heutigen Stand der Technik deutlich höhere Temperaturen als bei der katalytischen Reduktion von NOx notwendig sind. Die Wirtschaftlichkeit dieser Option ist daher an eine ausreichende Katalysatoraktivität geknüpft.
- Eine Übersicht über die zahlreichen Katalysatoren, deren prinzipielle Eignung zur Zersetzung und Reduktion von Lachgas nachgewiesen wurde wird in Kapteijn F.; Rodriguez-Mirasol, J.; Moulijn, J.A., Appl. Cat. B: Environmental 9 (1996) 25-64, (D3) gegeben.
- Als besonders geeignet zur Zersetzung von N₂O erscheinen u.a. metallausgetauschte Zeolith-Katalysatoren (US-A-5,171,533).

Die hier verwendeten Zeolithe werden durch Ionenaustausch in einer wässrigen, Metallsalze enthaltenden Lösung hergestellt. Zum Ionenaustausch werden Metalle aus der Gruppe: Kupfer, Kobalt, Rhodium, Iridium, Ruthenium oder Palladium verwendet. Die Kupfer-Zeolithe sind sehr empfindlich gegenüber Wasserdampf und büßen unter solchen Bedingungen schnell ihre Aktivität ein (M.; Sandoval, V.H.; Schwieger, W.; Tissler, A.; Turek, T., Chemie Ingenieur Technik 70 (1998) 878-882, (D5)), während die anderen hier aufgeführten Metalle relativ kostenintensiv sind.

25

20

Mit einem Eisen-dotierten Zeolith vom Typ Fe-ZSM5 wurde unter entsprechenden Bedingungen ,wie in Tabelle 1 in US-A-5,171,533 beschrieben, in Abwesenheit von NOx, H_2O und O_2 bei 450 °C nur ein 20%iger Abbau von N_2O erreicht.

Im Falle von Fe-ZSM-5 wird dessen Aktivät zum Abbau von N₂O in Gegenwart entsprechender Mengen NO jedoch deutlich erhöht, was auf eine Reaktion unter Bildung von NO₂ gemäß NO + N₂O ---> N₂ + NO₂ zurückgeführt wird, welche von Fe-

WO 01/51182

4

PCT/EP01/00157

ZSM-5 katalysiert wird (Kapteijn F.; Marban, G.; Rodrigeuez-Mirasol, J.; Moulijn, J.A., Journal of Catalysis 167 (1997) 256-265, (D6); Kapteijn F.; Mul, G.; Marban, G.; Rodrigeuez-Mirasol, J.; Moulijn, J.A., Studies in Surface Science and Catalysis 101 (1996) 641-650, (D7)).

5

20

25

30

Bei Abwesenheit von NOx wurde für Cu oder Co-ausgetauschte Zeolithe eine höhere Aktivität festgestellt als bei den entsprechenden Fe-Zeolithen.

In den im Stand der Technik präsentierten Darstellungen (D6, D7) zum Abbau von N₂O in Gegenwart eines Fe-ZSM-5-Katalysators bei 400°C werden üblicherweise äquimolare Mengen NO und N₂O verwendet. Gemäß D6 und D7 nimmt der Effekt von NOx auf den N₂O-Abbau mit sinkendem NO/N₂O-Verhältnis beständig ab, so daß bei einem NO/N₂O-Verhältnis unter 0,5 der N₂O-Abbau nicht mehr zufriedenstellend ist.

Die besten Ergebnisse werden bei einem Molverhältnis NO/N₂O von 1 oder größer 1 beobachtet.

Bei Einsatz eines solchen Katalysators zur N₂O-Reduktion im Abgas der Salpetersäureproduktion könnte entsprechend den Autoren das gebildete NO₂ in den Prozeß zur Gewinnung von HNO₃ zurückgeführt werden. Die NOx- und N₂O-Konzentrationen im Abgas liegen hierbei je nach Verfahrensvariante bei ca. 1000 ppm.

Eisenhaltige Zeolithe basierend auf Ferrierit zur Reduktion von N₂O-haltigen Gasen sind Gegenstand von WO 99/34901. Die hier eingesetzten Katalysatoren enthalten 80-90% Ferrierit sowie weitere bindende Anteile. Der Wasseranteil der zu reduzierenden Gase liegt im Bereich von 0,5 bis 5%. Bei einem Vergleich verschiedener Zeolith-Typen wurden mit Zeolithen vom FER (Ferrierit)-Typ beim Abbau von N₂O bei Temperaturen von 375 bis 400°C die besten Ergebnisse erzielt (97% N₂O-Abbau bei 375°C und NO/N₂O = 1). Ein wesentlich geringerer Abbau wurde bei Verwendung von Zeolithen vom Pentasil (MFI)- oder Mordenit (MOR)-Typ beobachtet. Bei eisenhaltigen MFI-Zeolithen konnte unter obigen Bedingungen sogar nur ein maximaler N₂O-Abbau von 62 % erreicht werden.

5

Im Hinblick auf den bekannten Stand der Technik ergibt sich somit die Aufgabe, insbesondere für die HNO_3 -Produktion ein wirtschaftliches Verfahren zur Verfügung zu stellen, daß neben einem hohen NOx-Abbau auch einen zufriedenstellenden N_2 O-Abbau ermöglicht.

Insbesondere sollen auch bei einem unterstöchiometrischen NOx/N_2O -Verhältnis, insbesondere bei einem Verhältnis < 0,5, vorzugsweise < 0,1, wie diese nach Reduzierung des NOx-Gehaltes resultieren, gute Ergebnisse für den N_2O -Abbau erzielt werden.

10

15

20

25

30

Die vorliegende Erfindung löst diese Aufgabe und betrifft ein Verfahren zur Minderung der NOx- und N₂O-Konzentration aus dem Restgas der Salpetersäureproduktion, wobei das den Absorptionsturm verlassende Restgas vor Eintritt in die Restgasturbine durch eine Kombination zweier Stufen geführt wird, in der ersten Stufe der NOx-Gehalt (DeNOx-Stufe) und in der zweiten Stufe der N₂O-Gehalt (DeN₂O-Stufe) des Gases reduziert wird, das NOx/N₂O-Verhältnis vor Eintritt des Gases in die zweite Stufe im Bereich von 0,001 bis 0,5, vorzugsweise im Bereich von 0,001 bis 0,2, insbesondere im Bereich von 0,01 bis 0,1 und dieses Gas in der zweiten Stufe in Kontakt mit einem Katalysator gebracht wird, welcher im wesentlichen einen oder mehrere mit Eisen beladenen Zeolithe enthält.

Erfindungsgemäß verwendete Katalysatoren enthalten im wesentlichen, vorzugsweise > 50 Gew%, insbesondere > 70 Gew.% eines oder mehrerer mit Eisen beladener Zeolithe. So kann beispielsweise neben einem Fe-ZSM-5 Zeolith ein weiterer Eisen enthaltender Zeolith, wie z.B. ein eisenhaltiger Zeolith des MFI- oder MOR-Typs, in dem erfindungsgemäß verwendeten Katalysator enthalten sein. Darüberhinaus kann der erfindungsgemäß verwendete Katalysator weitere dem Fachmann bekannte Zusatzstoffe, wie z.B. Bindemittel enthalten.

Die für die DeN₂O-Stufe eingesetzten Katalytoren basieren vorzugsweise auf Zeolithen, in die durch einen Festkörper-Ionenaustausch Eisen eingebracht wurde. Üblicherweise

6

geht man hierfür von den kommerziell erhältlichen Ammonium-Zeolithen (z.B. NH₄-ZSM-5) und den entsprechenden Eisensalzen (z.B. FeSO₄ x 7 H₂0) aus und mischt diese auf mechanischem Wege intensiv miteinander in einer Kugelmühle bei Raumtemperatur. (Turek et al.; Appl. Catal. 184, (1999) 249-256; EP-A-0 955 080). Auf diese Literaturstellen wird hiermit ausdrücklich Bezug genommen. Die erhaltenen Katalysatorpulver werden anschließend in einem Kammerofen an der Luft bei Temperaturen im Bereich von 400 bis 600 °C kalziniert. Nach dem Kalzinieren werden die Fe-Zeolithe in destilliertem Wasser intensiv gewaschen und nach Abfiltrieren des Zeolithen getrocknet. Abschließend werden die so erhaltenen Fe-Zeolithe mit den geeigneten Bindemitteln versetzt und gemischt und beispielsweise zu zylindrischen Katalysatorkörpern extrudiert. Als Bindemittel eignen sich alle üblicherweise verwendeten Binder, die gebräuchlichsten sind hierbei Aluminiumsilicate wie z.B. Kaolin.

Gemäß der vorliegenden Erfindung sind die verwendbaren Zeolithe mit Eisen beladen. Der Eisengehalt kann dabei bezogen auf die Masse an Zeolith bis zu 25% betragen, vorzugsweise jedoch 0,1 bis 10%. Insbesondere eignen sich hier Zeolithe vom Typ MFI, BETA, FER, MOR und/oder MEL. Genaue Angaben zum Aufbau oder Struktur dieser Zeolithe werden im Atlas of Zeolithe Structure Types, Elsevier, 4th revised Edition 1996, gegeben, auf den hiermit ausdrücklich Bezug genommen wird. Erfindungsgemäß bevorzugte Zeolithe sind vom MFI (Pentasil)- oder MOR (Mordenit)-Typ. Insbesondere bevorzugt sind Zeolithe vom Fe-ZSM-5 Typ.

Gemäß der vorliegenden Erfindung werden DeN₂O-Katalysatoren in Kombination mit einer vorgeschalteten DeNOx-Stufe so zwischen dem Absorptionsturm und der Restgasturbine angeordnet, daß das den Absorptionsturm verlassende Restgas zunächst bei Temperaturen von < 400 °C, insbesondere < 350 °C, in einen Reaktor (erste Stufe) geleitet wird, in dem der NOx-Gehalt des Gases bis auf < 100 ppm reduziert wird (vgl. Abbildung 2). Der Betriebsdruck dieser ersten Stufe liegt vorzugsweise bei 1 bis 15 bar, insbesondere bei 4 bis 12 bar.

30

10

15

20

25

Die vorgeschaltete DeNOx-Stufe entspricht einem üblicherweise in Salpetersäureanlagen entsprechend dem Stand der Technik eingesetztem Verfahren zur Minderung

WO 01/51182

25

30

7

PCT/EP01/00157

der NOx-Emissionen. Der NOx-Gehalt des Restgases muß aber noch hoch genug sein, damit die cokatalytischen Effekte von NO oder NO₂ in der nachgeschalteten DeN₂O-Stufe wirksam werden können.

- Bei Betrieb der DeN₂O-Stufe ohne vorgeschaltete DeNOx, d.h. bei einem Eingangsstrom mit in etwa äquimolaren Mengen an NO und N₂O, ist eine Rückführung des gemäß NO + N₂O ---> N₂ + NO₂ gebildeten NO₂ in den HNO₃-Prozeß aufgrund der relativ geringen NO₂-Konzentration von <2000 ppm unwirtschaftlich.
- Der N₂O-Gehalt des Gases bleibt in der DeNOx-Stufe im wesentlichen unverändert. So weist das Gas nach Verlassen der ersten Stufe üblicherweise einen NOx-Gehalt von 1 bis 200 ppm, vorzugsweise 1 bis 100 ppm, insbesondere 1 bis 50 ppm, und einen N₂O-Anteil von 200 bis 2000 ppm, vorzugsweise 500 bis 1500 ppm auf. Nach Verlassen der DeNOx-Stufe resultiert ein NOx/N₂O-Verhältnis von 0,001 bis 0,5, vorzugsweise 0,001 bis 0,2, insbesondere 0,01 bis 0,1. Der Wassergehalt des Gases liegt sowohl nach Verlassen der DeNOx-Stufe, als auch der DeN₂O-Stufe üblicherweise im Bereich von 0,05 bis 1%, vorzugsweise im Bereich von 0,1 bis 0,8%, insbesondere im Bereich von 0,1 bis 0,5%.
- Das so konditionierte Restgas wird nun in die nachgeschaltete DeN₂O-Stufe geleitet, wo unter Ausnutzung eines cokatalytischen Effektes von NOx in Gegenwart des entsprechenden Zeolith-Katalysators ein Abbau des N₂O in N₂ und O₂ bewirkt wird.

Es wurde überraschender Weise gefunden, daß in Gegenwart der gemäß der Erfindung verwendeten eisenhaltigen Zeolith-Katalysatoren der N₂O-Abbau auch in Anwesenheit geringer Mengen an NO_x, d.h. bei einem molaren NO_x/N₂O-Verhältnis < 0,5 drastisch erhöht wird (vgl. Abbildung 1). Ein Effekt, der sich mit zunehmender Temperatur deutlich verstärkt. So ist gemäß der vorliegenden Erfindung beispielsweise bei 450°C ein molares NO_x/N₂O-Verhältnis von 0,01 noch ausreichend, um in Gegenwart eines Fe-ZSM-5-Katalysators, die N₂O-Konzentration von 72% auf 33% abzusenken. Dies ist umso erstaunlicher, als im Stand der Technik der beschleunigte N₂O-Abbau auf die bereits erwähnte stöchiometrische Umsetzung von N₂O mit NO zurückgeführt wird. NO_x

scheint bei hinreichender Temperatur und kleinem NO_x/N₂O-Verhältnis die Rolle eines homogenen Cokatalysators zu übernehmen, welcher den N₂O Abbau gemäß N₂O ---> N₂ + 1/2 O₂ beschleunigt. Bei einem NO_x/N₂O-Verhältnis in den vorstehend genannten Grenzen ist ein maximaler Abbau von N₂O in der nachgeschalteten DeN₂O-Stufe möglich. Sobald das Verhältnis unter 0,001 abfällt, sinkt auch der N₂O-Abbau auf nicht mehr zufriedenstellende Werte ab (vergleiche Beispiel 5). Nach Verlassen der DeN₂O-Stufe liegt der Gehalt an N₂O nach dem erfindungsgemäßen Verfahren im Bereich von 0 bis 200 ppm, vorzugsweise im Bereich von 0 bis 100 ppm, insbesondere im Bereich von 0 bis 50 ppm.

8

10

20

25

30

Dabei wird die Betriebstemperatur der DeN₂O-Stufe insbesondere bestimmt durch den gewünschten Abbaugrad an N₂O und die im Restgas enthaltene Menge an NO_x, ist aber auch, wie dem Fachmann bekannt ist und wie nahezu alle Prozesse der katalytischen Abgasreinigung, in weitem Umfang abhängig von der Katalysatorbelastung, d.h. von dem auf die Katalysatormenge bezogenen Durchsatz an Abgas. Vorzugsweise liegt die Betriebstemperatur der zweiten Stufe im Bereich von 300 bis 550 °C, insbesondere im Bereich von 350 bis 500°C, bei einem Druck im Bereich von 1 bis 15 bar, insbesondere 4 bis 12 bar. Mit steigendem Druck verstärkt sich die cokatalytische Wirkung von NO_x auf die N₂O Zersetzung, so dass durch Druckerhöhung eine weitere Absenkung der Betriebstemperatur ermöglicht wird.

Desweiteren ist der Gehalt an Sauerstoff und H₂O, der je nach Betriebsweise und Verfahrensvariante der Salpetersäureproduktion in gewissen Grenzen schwanken kann und eine inhibierende Wirkung auf den N₂O-Umsatz ausübt, bei Ermittlung bzw. Festlegung der Betriebstemperatur zu berücksichtigen. Der O₂-Gehalt liegt im Bereich von 1 bis 5 Vol.% insbesondere im Bereich von 1,5 bis 4 Vol.%.

Mit den gemäß der Erfindung verwendeten eisenhaltigen Zeolith-Katalysatoren läßt sich damit bei Temperaturen im Bereich von 300 bis 550 °C, vorzugsweise 350 bis 500 °C ein Abbau von N_2O von > 90%, insbesondere > 95% erzielen. Mit steigender Temperatur ist es möglich, auch bei einem NO_x/N_2O -Verhältnis von 0,01 noch einen zufriedenstellenden N_2O -Abbau zu erreichen.

9

Das erfindungsgemäße Verfahren ermöglicht es durch Kombination einer DeNOx-Stufe und einer DeN₂O-Stufe den NO_x- und N₂O-Gehalt des Restgases bei der Salpetersäureherstellung bis auf minimale Werte zu reduzieren. Durch Anordnung der DeNOx-Stufe vor der DeN₂O-Stufe und zwischen Absorptionsturm und Restgasturbine ist das erfindungsgemäße Verfahren auf Grund des monoton ansteigenden Temperaturprofils außerdem sehr wirtschaftlich.

Ferner ist die Prozeßführung bei einer Anordnung beider Stufen vor der Dekompressionsturbine besonders vorteilhaft, da beide Stufen unter Druck (je nach HNO₃-Verfahrensvariante zwischen 4 und 11 bar) betrieben werden können, was eine Reduzierung des effektiv notwendigen Reaktor- bzw. Katalysatorvolumens bedingt.

10

15

20

Durch Betrieb der DeNOx-Stufe bereits bei relativ niedrigen Temperaturen ist darüberhinaus auch beim Anfahren der Anlage, bei dem nur wenig Prozeßwärme zur Verfügung steht, eine hinreichende Minderung des NO_x-Gehaltes gewährleistet.

Ein weiterer Vorteil der Anordnung beider Stufen zwischen Absorptionsturm und Restgasturbine in einem monoton steigenden Temperaturprofil liegt darin, daß das die erfindungsgemäße Kombination verlassende Restgas ohne vorherige Abkühlung und ohne weitere Maßnahmen zur Abgasreinigung direkt der Restgasturbine zur optimalen Rückgewinnung der Kompressions- und Wärmeenergie zugeführt werden kann.

10

Beispiele:

DeNOx-Stufe:

Vorgeschaltet dem DeN₂O-Katalysator kam als DeNOx-Katalysator ein klassischer SCR-Katalysator auf V_2O_5 -WO₃-/TiO₂ Basis (vgl. etwa G. Ertl, H. Knözinger J. Weitkamp: Handbook of Heterogeneous Catalysis, Band 4, Seiten 1633-1668) wie beschrieben unter Verwendung von NH₃ als Reduktionsmittel zum Einsatz . Dieser wurde betrieben bei einer Temperatur von 350°C. In Abhängigkeit von der zugeführten Menge an NH₃ wurden am Ausgang der DeNOx-Stufe verschiedene Gehalte an NO_x und damit NO_x/N₂O-Verhältnisse eingestellt.

DeN₂O-Stufe:

10

15

Die Herstellung eines eisenhaltigen MFI-Katalysators erfolgte durch Festkörperlonentausch ausgehend von einem kommerziell verfügbaren Zeolith in Ammonium-Form (ALSI-PENTA, SM27). Detaillierte Angaben zur Präparation können entnommen werden aus: M. Rauscher, K. Kesore, R. Mönnig, W. Schwieger, A. Tißler, T. Turek, Appl. Catal. 184 (1999) 249-256.

Die Katalysatorpulver wurden an der Luft für 6h bei 823 K kalziniert, gewaschen und über Nacht bei 383 K getrocknet. Nach Zusatz entsprechender Binder folgte die Extrusion zu zylindrischen Katalysatorkörpern (2x2mm).

Die Versuche wurden in einer stationär betriebenen Durchflußapparatur mit online Analytik bei einer Raumgeschwindigkeit von jeweils 10.000 h⁻¹ durchgeführt.

25 Die Zusammensetzung des Feed betrug: 1000 ppm NOx

1000 ppm N₂O

0,5% vol H₂O

2,5% vol O₂

Rest N₂

11

Durch Variation der zugesetzten Menge an NH_3 konnten folgende Restkonzentrationen an NO_x und N_2O erhalten werden:

Beispiel	zugesetzte	Resultierende NO _x -	Resultierndes	Resultierende N ₂ O-
	Menge NH ₃	Konzentration	NO _x /N₂O-Verhältnis	Konzentration
		(nach DeNOx-Stufe	(nach DeNOx-Stufe)	(nach DeN₂O-Stufe
		bei 350°C)		bei 475°C)
1	500 ppm	500 ppm	0,5	40 ppm
2	800 ppm	200 ppm	0,2	54 ppm
3	950 ppm	50 ppm	0,05	81 ppm
4	990 ppm	10 ppm	0,01	99 ppm
5	1000 ppm	<1 ppm	<0,001	462 ppm

Wie den oben angeführten Beispielen zu entnehmen ist, ist ein hoher N_2O -Abbau bis zu einem NO_x/N_2O -Verhältnis von 0,001, insbesondere 0,01 möglich. Sinkt das Verhältnis unter diesen Grenzwert ab, so ist ein hinreichender Abbau nicht mehr gewährleistet, auf Grund der nicht mehr ausreichenden cokatalytischen Funktion von NO_x .

5

12

PCT/EP01/00157

Patentansprüche:

5

10

15

25

WO 01/51182

- 1. Verfahren zur Minderung der NO_x- und N₂O-Konzentration aus dem Restgas der Salpetersäureproduktion, wobei das den Absorptionsturm verlassende Restgas vor Eintritt in die Restgasturbine durch eine Kombination zweier Stufen geführt wird und in der ersten Stufe der NO_x-Gehalt und in der zweiten Stufe der N₂O-Gehalt des Gases reduziert wird, das NO_x/N₂O-Verhältnis vor Eintritt des Gases in die zweite Stufe im Bereich von 0,001 bis 0,5 liegt und dieses Gas in der zweiten Stufe in Kontakt mit einem Katalysator gebracht wird, welcher im wesentlichen einen oder mehrere mit Eisen beladene Zeolithe enthält.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der oder die im Katalysator enthaltenen mit Eisen beladenen Zeolithe vom Typ MFI, BEA, FER, MOR und/oder MEL sind.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der oder die mit Eisen beladenen Zeolith vom Typ MFI sind.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Zeolith ein Fe-20 ZSM-5 ist.
 - 5. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Temperatur der ersten Stufe <400 °C ist, vorzugsweise <350 °C.
 - 6. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Temperatur der zweiten Stufe im Bereich von 300 und 550 °C, vorzugsweise im Bereich von 350 und 500°C, liegt.
- 7. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß beide Stufen bei einem Druck im Bereich von 4 bis 12 bar betrieben werden.

13

8. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die erste Stufe nach dem SCR-Verfahren betrieben wird.

 Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Wassergehalt des Gases nach Verlassen des Absorptionsturms und vor Eintritt in die erste oder zweite Stufe im Bereich von

0,05 bis 1 Vol%, insbesondere im Bereich von 0,1 bis 0,8 Vol%, liegt.

10

15

- 10. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gas nach Verlassen der ersten Stufe einen NO_x-Gehalt im Bereich von 1 bis 200 ppm und einen N₂O-Gehalt im Bereich von 200 bis 2000 ppm, und nach Verlassen der zweiten Stufe einen NO_x-Gehalt von 1 bis 200 ppm und einen N₂O-Gehalt im Bereich von 0 bis 200 ppm aufweist.
- 11. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein N_2 O-Abbau von > 90 %, insbesondere > 95% erreicht wird.

Abbildung 1

Abbildung 2