

(12)特許協力条約に基づいて公開された国際出頭

(19) 世界知的所有権機関 国際事務局

- 11888 - 11188 - 11188 - 1118 - 1118 - 1118 - 1118 - 1118 - 1118 - 1118 - 1118 - 1118 - 1118 - 1118 - 1118 - 1118

(43) 国際公開日 2004 年3 月4 日 (04.03.2004)

PCT

(10) 国際公開番号 WO 2004/019658 A1

(51) 国際特許分類⁷: H05B 3/68, 3/20, 3/30, 3/10, H01L 21/02, 21/205, 21/302

(21) 国際出願番号:

PCT/JP2003/010481

(22) 国際出願日:

2003 年8 月20 日 (20.08.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-239810 2002 年8 月20 日 (20.08.2002) JP 特願2002-239811 2002 年8 月20 日 (20.08.2002) JP 特願2002-239812 2002 年8 月20 日 (20.08.2002) JP

(71) 出願人 (米国を除く全ての指定国について): イビデン株式会社 (IBIDEN CO., LTD.) [JP/JP]; 〒503-8004 岐阜県 大垣市 神田町 2 丁目 1 番地 Gifu (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 馬嶋 一隆 (MASHIMA,Kazutaka) [JP/JP]; 〒501-0695 岐阜県 揖斐郡 揖斐川町北方 1-1 イビデン株式会社内 Gifu (JP). 平松 靖二 (HIRAMATSU,Yasuji) [JP/JP]; 〒 501-0695 岐阜県 揖斐郡 揖斐川町北方 1-1 イビデ ン株式会社内 Gifu (JP).

(74) 代理人: 安富康男 (YASUTOMI,Yasuo); 〒532-0011 大阪府 大阪市 淀川区西中島 5 丁目 4 番 2 0 号 中央ビル Osaka (JP).

(81) 指定国 (国内): KR, US.

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

/続葉有/

(54) Title: METAL HEATER

(54) 発明の名称: 金属ヒータ

(57) Abstract: A metal heater which can be heated quickly with small temperature variations of a semiconductor wafer or the like at heating, and is free from warping and deflecting of a metal plate. The metal heater comprises a metal plate and a heating element, characterized in that the metal plate is up to 50 mm thick and has a flatness on the surface thereof of 50 μ m, and the outer edge of a region where the heating element is formed is positioned within 25% of the diameter of the metal plate from the outer periphery of the metal plate.

(57) 要約: 本発明は、加熱時におけ る半導体ウエハ等の温度のぱらつきが 小さく、迅速に加熱することができ、 かつ、金属板に反りや撓みが発生する ことのない金属ヒータを提供すること を目的とする。 本発明の金属ヒ-は、金属板と発熱体とから構成される 金属ヒータであって、前記金属板は、 厚さが50mm以下であり、その表面 の平坦度が50μm以下であるととも に、前記発熱体が形成されている領域 の外縁は、前記金属板の外周から前記 金属板の直径の25%以内の位置にあ ることを特徴とする。

WO 2004/019658 A1

添付公開書類:

- 一 国際調査報告書
- 一 請求の範囲の補正の期限前の公開であり、補正書受 のガイダンスノート」を参照。 領の際には再公開される。

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明細書

金属ヒータ

技術分野

5 本発明は、主に半導体産業、光産業において使用される金属ヒータに関する。

背景技術

15

エッチング装置や、化学的気相成長装置等を含む半導体製造、検査装置等においては、従来、ステンレス鋼などの金属製基材を基板とした金属ヒータが用いら10 れてきた。

図4は、従来から使用されている構成の金属ヒータにシリコンウエハが載置された様子を模式的に示した断面図である。

この金属ヒータ50では、円板形状の金属板51の底面に、銅等の熱伝導性に 優れる材質からなる中プレート61を介して、ヒータ52が配設されており、金 属板51、ヒータ52および中プレート61は、金属板固定ネジ57により、支 持容器60に固定されている。

そして、ヒータ52は導電線64と接続されており、導電線64は、支持容器60および遮熱板63に形成された貫通孔から外部に引き出され、電源等(図示せず)と接続されている。

20 さらに、金属板 5 1 と支持容器 6 0 との間には断熱リング 6 2 が介設されると ともに、支持容器 6 0 の底部には、遮熱板 6 3 が設置されており、金属板 5 1 か らの熱が装置に伝熱することを防止できる構成となっている。

また、金属ヒータ50には、有底孔54が形成され、有底孔54には、金属板51の温度を測定するための、リード線が接続された測温素子56が埋め込まれ25 ている。

また、金属ヒータ50には、支持ピン58を介して半導体ウエハ59が載置されており、半導体ウエハ59を、金属板51の加熱面51aより一定距離離間させた状態で支持し加熱することが可能となっている。

なお、金属ヒータ50には、金属板51、中プレート61、ヒータ52および

支持容器 6 0 を貫通する貫通孔 5 5 も設けられており、貫通孔 5 5 に柱状のリフターピン等を挿通することによっても、被加熱物である半導体ウエハ 5 9 を金属ヒータ 5 0 の加熱面より一定距離離間させた状態で支持し、半導体ウエハ 5 9 を搬送することができるようになっている。

5

10

20

発明の要約

ところが、これらの構造を有する金属ヒータでは、以下のような問題があった。 金属ヒータに用いられる金属板は、ある程度の厚みを有する必要があった。な ぜなら、金属板が薄い場合には、剛性が小さくなるため、加熱に起因する熱膨張 により、金属板が周囲より圧迫を受けることや、支持容器と金属板との熱膨張率 の違いに起因して、金属板に反り、撓み等が発生してしまうからである。

そして、金属板に、このような反りや撓み等が発生した場合には、金属板上に 載置した半導体ウエハが均一に加熱されず、温度にばらつきが発生したり、半導 体ウエハに傷がついたりしてしまうことがあった。

15 しかしながら、金属板の厚みを厚くすると、金属板の熱容量が大きくなり、被加熱物を加熱、冷却する場合、発熱体に印加する電圧や電流量の変化に対して金属板の加熱面の温度が迅速に追従せず、温度制御しにくいという問題があった。

また、金属板上に半導体ウエハを載置し、金属板の加熱面の温度が急激に低下 した際に、これを元の温度に戻すまでに要する時間(リカバリー時間)が長くな り、生産性が低下するという問題があった。

また、このような金属ヒータでは、昇温した場合に、設定温度から一時的に上 方に外れるオーバーシュート現象があり、このオーバーシュートが発生した場合 には、金属ヒータの加熱面を設定した温度にするために、さらに多くの時間を要 していた。

25 さらに、金属板の厚みを厚くすると、金属ヒータ全体の重量が重くなり、また、 嵩張ってしまうという問題があった。

なお、近年の半導体ウエハ等の大口径化等に伴って、より直径の大きい金属ヒータが求められているが、金属板の直径が大きくなるにつれて、金属板自体の温度分布にもばらつきが発生しやすくなり、上記した半導体ウエハの温度均一性が

20

25

益々低下することになる。

そこで、本発明者らは、上述した従来の金属ヒータの問題点に鑑み、加熱時における半導体ウエハ等の温度ばらつきが小さく、迅速に加熱することができ、かつ、金属板に反りや撓みが発生することのない金属ヒータを得ることを目的として鋭意研究を行った結果、金属板の厚さを薄くし、金属板の平坦度を一定値以下とするとともに、発熱体の形状を改良することにより、迅速に昇温を行うことができ、加熱面を均一な温度とすることができることを見出し、第一の本発明を完成するに至った。

すなわち、第一の本発明の金属ヒータは、金属板と発熱体とから構成される金 10 属ヒータであって、上記金属板は、厚さが50mm以下であり、その表面の平坦 度が50μm以下であるとともに、上記発熱体が形成されている領域の外縁は、 上記金属板の外周から上記金属板の直径の25%以内の位置にあることを特徴と する。なお、上記平坦度は、大気雰囲気、500℃以下において、上記範囲にあ ることが望ましい。

15 第一の本発明の金属ヒータは金属板の厚さを50mm以下と薄くしている。従って、発熱体に印加する電圧や電流量の変化に対して金属板の加熱面の温度が迅速に追従するため、半導体ウエハ等の被加熱物を迅速に加熱することができる。

なお、第一の本発明の金属ヒータにおける金属板の厚さとは、発熱体が金属板の底面に設置されている構成の場合には、その金属板の厚さのことをいい、発熱体が複数の金属板の間に挟持されるような構成である場合には、それらの金属板の合計の厚さをいう。

また、金属板の温度追従性が優れているので、半導体製造・検査工程において、 金属ヒータの加熱面に半導体ウエハを載置した際、低下した温度を元に戻すまで の時間(リカバリー時間)を短くすることが可能となり、スループットを短縮す ることができ、生産性を向上させることができる。

なお、金属板が薄く、かつ、平坦性に優れる金属ヒータを実現できた理由については、後に説明することとする。

第一の本発明の金属ヒータを構成する金属板の厚さは、その上限が30mmであることが望ましい。30mmを超えると、熱が伝搬しにくくなり、加熱の効率

20

が低下する傾向が生じるからである。より望ましい上限は、20mmである。 また、金属板の厚さの下限は、3mmであることが望ましい。3mmより薄い と、金属板の強度が低下して平坦度が低下する傾向が生ずるからである。より望ましい下限は、5mmである。

5 また、第一の本発明の金属ヒータにおける金属板の直径は、200mm以上が 望ましい。大きな直径を持つ金属ヒータほど、加熱時に半導体ウエハの温度が不 均一化しやすいため、第一の本発明の構成が有効に機能するからである。また、 このような大きな直径を持つ基板は、大口径の半導体ウエハを載置することがで きるからである。金属板の直径は、特に12インチ (300mm)以上であるこ とが望ましい。次世代の半導体ウエハの主流となるからである。

なお、第一の本発明の金属ヒータは、一の金属板の底面に発熱体が設置されている構成であってもよく、金属板に設置された発熱体に、さらに別の金属板を取り付けるような構成、すなわち、2つの金属板の間に発熱体を挟持するような構成であってもよい。また、3以上の金属板の間に発熱体を挟持するような構成としてもよい。金属板を複数にすることにより、加熱面側の金属板の厚さを薄くした場合であっても、金属板に反りや撓みが発生することがなく、半導体ウエハ等を均一に加熱することができるからである。

上記構成とした場合の加熱面側の金属板の厚さの望ましい上限は、30mmであり、望ましい下限は、3mmであり、より望ましい上限は、20mmであり、より望ましい下限は、5mmである。

第一の本発明の金属ヒータを構成する金属板は、その表面における平坦度が50μm以下である。従って、第一の本発明の金属ヒータを用いて半導体ウエハを加熱する場合には、半導体ウエハと金属板との距離をほぼ一定にすることが可能となるため、半導体ウエハの全体が均一となるように加熱することができる。

25 また、上記金属板は、その表面における平坦度が30μm以下であることが望ましい。

なお、本明細書において、平坦度とは、金属板の表面における最も高い部分と 最も低い部分との差をいうものとする。

このように平坦性に優れる金属ヒータを実現するためには、金属板が熱膨張し

15

20

25

た際の側面からの圧迫に伴う金属板の湾曲を防止する必要がある。このため、金 属板の側面と支持容器(ボトムプレート)との間が密着しないように、スペース を確保することが望ましい。

また、金属板の反りを防止するためには、金属板の縁部を押え板等で抑えつけ、 固定することが望ましい。これにより、金属板を薄くしたことに伴う金属板自身 の変形を防止できるとともに、上述のように、金属板と支持容器との間にスペー スを確保した場合であっても、金属板を確実に支持、固定することができる。 これに加えて、金属板とヒータ固定板の材質を同一のものとすることにより、 これらの熱膨張率の差に起因する金属板の変形を防止することができる。

10 さらに、金属板を構成する材料は、熱伝導性に優れるとともに、剛性が高く、 熱膨張した際にも、変形しにくいものが望ましく、金属板自体の加工が終了した 時点でより平坦度に優れたものとなっていることが望ましい。

第一の本発明の金属ヒータを構成する金属板の材質としては、例えば、アルミニウム、アルミニウム合金、銅、銅合金、ステンレス、インコネル、鋼鉄等を使用することができるが、これらのなかでは、アルミニウム合金が望ましく、アルミニウムー銅の合金がより望ましい。アルミニウムー銅の合金は、機械的な強度が高いため、金属板の厚さを薄くしても、加熱により反ったり、歪んだりしない。そのため、金属板を薄くて軽いものとすることができる。また、アルミニウムー銅の合金は、熱伝導率にも優れているため、金属板として使用した場合、発熱体の温度変化に合わせて、加熱面の温度を迅速に追従させることができる。すなわち、電圧、電流値を変えて発熱体の温度を変化させることにより、金属板の加熱面温度を制御することができるのである。

また、上記アルミニウムー銅合金には、アルミニウム、銅のほかに、マグネシウム、マンガン、ケイ素、亜鉛等を添加してもよい。加工性、耐食性、低膨張性等の諸機能を向上させることができるからである。

上記金属板の材質として、アルミニウム、アルミニウム合金等を用いる場合は、 金属板の表面にアルマイト処理を施すことが望ましい。アルマイト処理とは、ア ルミニウムやアルミニウム合金に、電気化学処理(陽極酸化被膜処理)を行い、 表面に酸化アルミニウムの薄い被膜を施す処理のことをいう。

25

このような処理を行うことにより、金属板の耐食性が向上するとともに、表面が硬くなるため、金属板に傷等が付きにくくなる。また、実際の半導体製造・検査工程で使用する場合であっても、金属板がレジスト液や腐食性ガス等によって腐食されにくくなる。

5 さらに、通常のアルマイト処理よりも低温度、高電圧、高電流密度で陽極酸化 被膜処理を行うことにより、硬質アルマイト処理とすることができる。このよう な硬質アルマイト処理では、より硬質で厚い被膜が得ることが可能となる。

なお、上記被膜の厚さとしては、 $1 \mu m$ 以上が望ましいが、上記硬質アルマイト処理では、被膜の厚さを $3 \mu m$ 以上とすることができる。

10 第一の本発明の金属ヒータでは、発熱体が形成されている領域の外縁は、金属板の外周から金属板の直径の25%以内の位置に存在している。通常、金属板の外周部分では、金属板の外縁部からの放熱が発生するため、金属板の中心部分よりも低温となり、その結果、加熱面の温度が不均一になりやすいが、第一の本発明の金属ヒータでは、このような外周部分にも発熱体が配設されているため、被15 加熱物である半導体ウエハ等を温度のばらつきなく、均一に加熱することができる。

また、本発明者らは、上述した従来の金属ヒータが有する問題点に鑑み、加熱時における半導体ウエハ等の温度ばらつきが小さく、迅速に加熱することができ、かつ、金属板に反りや撓みが発生することのない金属ヒータを得ることを目的として鋭意研究を行った結果、金属板の数を複数にして、加熱面側の金属板の厚さを薄くすることにより、迅速に昇温を行うことができ、加熱面を均一な温度とすることができることを見出し、第二の本発明を完成するに至った。

すなわち、第二の本発明の金属ヒータは、金属板と発熱体とから構成される金属ヒータであって、上記金属板は複数であるとともに、上記金属板の間には、上記発熱体が挟持されており、加熱面側の金属板の厚さが、加熱面と反対側の金属板の厚さと同じか、上記加熱面と反対側の金属板より薄いことを特徴とする。

第二の本発明の金属ヒータは、複数の金属板を有しており、これらの金属板の間には、ヒータが挟持されている。このような構成の金属ヒータは、一の金属板のみからなる金属ヒータに比べ、金属板の厚さを薄くすることが可能となり、加

熱面側の金属板の熱容量が小さくなるため、半導体ウエハ等の被加熱物を迅速に 加熱することができる。

また、金属板の温度追従性が優れているので、半導体製造・検査工程において、 金属ヒータの加熱面に半導体ウエハを載置した際、低下した温度を元に戻すまで の時間(リカバリー時間)を短くすることが可能となり、スループットを短縮す ることができ、生産性を向上させることができる。

さらに、第二の本発明の金属ヒータでは、加熱面側の金属板の厚さが、加熱面 と反対側の金属板の厚さと同じか、加熱面と反対側の金属板の厚さより薄くなっ ている。

10 従って、加熱面側の金属板の厚さを薄くした場合であっても、剛性の高い金属板を加熱面と反対側に設置することにより、加熱時における加熱面の平坦性が向上するため、半導体ウエハと金属板との距離をほぼ一定にすることが可能となり、半導体ウエハの全体が均一となるように加熱することができる。

第二の本発明の金属ヒータは、金属板に設置された発熱体に、さらに別の金属 15 板を取り付けるような構成、すなわち、2つの金属板の間に発熱体を挟持するような構成であってもよく、また、3以上の金属板の間に発熱体を挟持するような 構成としてもよい。

第二の本発明の金属ヒータが、3以上の金属板を有する場合、加熱面側の金属板の厚さとは、最下層のヒータよりも上に存在する金属板の厚さの合計のことをいい、加熱面と反対側の金属板の厚さとは、最下層のヒータより下に存在する金属板の厚さのことをいう。

ここで、3つの金属板を有する場合の金属ヒータの構成を図5に示す。なお、図5では、金属板およびヒータのみを図示している。

図5に示すような金属ヒータの場合、加熱面側の金属板の厚さとは、最下層の 25 ヒータBよりも上に存在する金属板Aおよび金属板Bの厚さの合計 a + b のこと をいう。また、加熱面と反対側の金属板の厚さとは、最下層のヒータBよりも下 に存在する金属板Cの厚さcのことをいう。

以下、第二の本発明の説明においては、主に2つの金属板にヒータが挟持されている構成の金属ヒータについて説明することとする。なお、金属ヒータが上記

15

25

のように2つの金属板を有する構成である場合、加熱面側の金属板のことを上部 金属板といい、加熱面と反対側の金属板のことを下部金属板ということとする。

第二の本発明の金属ヒータにおいて、上部金属板の厚さは、その上限が50mmであることが望ましい。発熱体に印加する電圧や電流量の変化に対して金属板の加熱面の温度が迅速に追従するため、半導体ウエハ等の被加熱物を迅速に加熱することができる。

また、金属板の温度追従性が優れているので、半導体製造・検査工程において、 金属ヒータの加熱面に半導体ウエハを載置した際、低下した温度を元に戻すまで の時間(リカバリー時間)を短くすることが可能となり、スループットを短縮す ることができ、生産性を向上させることができる。

より望ましい上限は、30mmである。熱が伝搬しにくくなり、加熱の効率が低下する傾向が生じるからである。

上部金属板の厚さの下限は、3mmであることが望ましい。3mmより薄いと、 上部金属板の強度が低下して平坦度が低下する傾向が生ずるからである。より望ましい下限は、5mmである。

また、上記構成とした場合の下部金属板の厚さの望ましい上限は、47mmであり、望ましい下限は、5mmであり、より望ましい上限は、30mmであり、より望ましい下限は、10mmである。

さらに、上部金属板の厚さと下部金属板の厚さの比(下部金属板の厚さ/上部 20 金属板の厚さ)は、1~10であることが望ましい。10を超えると、下部金属 板の熱容量が大きくなり過ぎ、被加熱物を迅速に加熱することができなくなるか らである。

また、第二の本発明の金属ヒータでは、複数の金属板およびヒータの直径が全 て同じであることが望ましい。ヒータの金属板の加熱面に伝達することができる からである。

なお、金属板と支持容器との間に断熱リング等を介設する場合等においては、 金属板の直径をそれぞれ異なるものとしてもよい。

第二の本発明の金属ヒータにおける、金属板の直径は200mm以上が望ましく、特に12インチ (300mm) 以上であることが望ましい。その理由は、第

25

一の本発明と同様である。

第二の本発明の金属ヒータを構成する金属板は、その表面における平坦度が 5 0μ m以下であることが望ましく、 $3 0 \mu$ m以下であることがより望ましい。 その理由は、第一の本発明と同様である。

5 このように平坦性に優れる金属ヒータを実現するためには、金属板が熱膨張した際の側面からの圧迫に伴う金属板の湾曲を防止する必要がある。このため、金属板の側面と支持容器(ボトムプレート)との間が密着しないように、スペースを確保することが望ましい。

また、金属板の反りを防止するためには、金属板の縁部を押え板等で抑えつけ、 10 固定することが望ましい。その理由は、第一の本発明と同様である。

これに加えて、金属板とヒータ固定板の材質を同一のものとすることにより、これらの熱膨張率の差に起因する金属板の変形を防止することができる。

さらに、金属板を構成する材料は、熱伝導性に優れるとともに、剛性が高く、 熱膨張した際にも、変形しにくいものが望ましく、金属板自体の加工が終了した 時点でより平坦度に優れたものとなっていることが望ましい。

第二の本発明の金属ヒータを構成する金属板の材質としては、例えば、第一の本発明で用いるものと同様のもの等が挙げられる。

また、第二の本発明においても、その材質は、第一の本発明と同様の理由でアルミニウム合金が望ましく、アルミニウムー銅の合金がより望ましい。

20 なお、第二の本発明の金属ヒータでは、上部金属板の材質と下部金属板の材質とが同一であることが望ましい。両者の熱膨張率の差により、上部金属板に反り や撓み等の変形が発生することを防止できるからである。

また、上記金属板の材質として、アルミニウム、アルミニウム合金等を用いる場合は、第一の本発明と同様、金属板の表面にアルマイト処理を施すことが望ましい。なお、アルマイト処理を行った場合の被膜の厚さとしては、 $1 \mu m$ 以上が望ましいが、硬質アルマイト処理では、被膜の厚さを $3 \mu m$ 以上とすることができる。

第二の本発明の金属ヒータでは、発熱体が形成されている領域の外縁は、金属板の外間から金属板の直径の25%以内の位置に存在していることが望ましい。

15

20

25

通常、金属板の外周部分では、金属板の外縁部からの放熱が発生するため、金属板の中心部分よりも低温となり、その結果、加熱面の温度が不均一になりやすいが、第二の本発明の金属ヒータでは、このような外周部分にも発熱体が配設されているため、被加熱物である半導体ウエハ等を温度のばらつきなく、均一に加熱することができる。

また、本発明者らは、上述した従来の金属ヒータが有する問題点に鑑み、加熱時における半導体ウエハ等の温度ばらつきが小さく、迅速に加熱することができ、かつ、金属板を薄くした場合であっても、金属板に反りや撓みが発生することのない金属ヒータを得ることを目的として鋭意研究を行った結果、金属板の材質を改良することにより、加熱時であっても金属板に変形が生じず、迅速に昇温を行うことができ、加熱面を均一な温度とすることができることを見出し、第三の本発明を完成するに至った。

すなわち、第三の本発明の金属ヒータは、金属板と発熱体とから構成される金属ヒータであって、上記金属板は、アルミニウムー銅合金からなることを特徴とする。

第三の本発明の金属ヒータは、アルミニウムー銅合金からなる金属板を有して いる。

アルミニウムー銅合金からなる金属板は、アルミニウムまたは銅のみを含有する金属板と比較して、機械的な強度が高いため、金属板の厚さを薄くしても、加熱により反ったり、歪んだりしない。そのため、金属板を薄くて軽いものとすることができる。

また、アルミニウムー銅合金からなる金属板は、アルミニウムのみを含有する 金属板と比較して、熱伝導率に優れているため、発熱体の温度変化に合わせて、 加熱面の温度を迅速に追従させることができる。すなわち、電圧、電流値を変え て発熱体の温度を変化させることにより、金属板の加熱面温度を的確に制御する ことができるのである。

さらに、アルミニウムー銅合金は、切削性に優れているため、金属板を容易に 所望の形状にすることができる。

上記金属板は、アルミニウムを90~98%含有していることが望ましい。

25

90%未満では、耐食性が低下し、98%を超えると、機械的強度が低下するおそれがあるからである。

また、上記金属板は、銅を2~10%含有していることが望ましい。

2%以下では、金属板の強度が低下してしまうからであり、10%を超えると、 5 耐食性に劣ることとなるからである。

また、上記アルミニウムー銅合金には、アルミニウム、銅のほかに、マグネシウム、マンガン、ケイ素、亜鉛等を添加してもよい。加工性、耐食性、低膨張性等の諸機能を向上させることができるからである。

第三の本発明の金属ヒータでは、第一の本発明と同様、金属板の表面にアルマ 10 イト処理を施すことが望ましい。なお、上記被膜の厚さとしては、1 μ m以上が 望ましいが、硬質アルマイト処理では、被膜の厚さを3 μ m以上とすることができる。

また、第三の本発明の金属ヒータは、一の金属板の底面に発熱体が設置されている構成であってもよく、金属板に設置された発熱体に、さらに別の金属板を取り付けるような構成、すなわち、2つの金属板の間に発熱体を挟持するような構成であってもよい。また、3以上の金属板の間に発熱体を挟持するような構成としてもよい。金属板を複数にすることにより、加熱面側の金属板の厚さを薄くした場合であっても、金属板に反りや撓みが発生することがなく、半導体ウエハ等を均一に加熱することができるからである。

20 2つの金属板の間に発熱体を挟持するような構成の金属ヒータでは、加熱面側 の金属板の厚さが、加熱面と反対側の金属板の厚さと同じか、加熱面と反対側の 金属板の厚さより薄いことが望ましい。

剛性の高い金属板を加熱面と反対側に設置することにより、金属ヒータ全体の 強度を維持することができるとともに、加熱時における加熱面の平坦性が向上す るため、半導体ウエハと金属板との距離をほぼ一定にすることが可能となり、半 導体ウエハの全体が均一となるように加熱することができるからである。

なお、第三の本発明の金属ヒータでは、上部金属板の材質と下部金属板の材質 とが同一であることが望ましい。両者の熱膨張率の差により、上部金属板に反り や撓み等の変形が発生することを防止できるからである。

20

25

以下、第三の本発明の説明においては、主に2つの金属板にヒータが挟持されている構成の金属ヒータについて説明することとする。なお、金属ヒータが上記のように2つの金属板を有する構成である場合、加熱面側の金属板のことを上部金属板といい、加熱面と反対側の金属板のことを下部金属板ということとする。

第三の本発明の金属ヒータにおいて、一の金属板の底面に発熱体が設置されている構成である場合は、金属板の厚さは、その上限が50mmであることが望ましい。発熱体に印加する電圧や電流量の変化に対して金属板の加熱面の温度が迅速に追従するため、半導体ウエハ等の被加熱物を迅速に加熱することができる。

また、金属板の温度追従性が優れているので、半導体製造・検査工程において、 10 金属ヒータの加熱面に半導体ウエハの載置した際、低下した温度を元に戻すまで の時間(リカバリー時間)を短くすることが可能となり、スループットを短縮す ることができ、生産性を向上させることができる。

より望ましい上限は、30mmである。熱が伝搬しにくくなり、加熱の効率が低下する傾向が生じるからである。

15 また、2つの金属板の間に発熱体を挟持するような構成である場合、加熱面側の金属板の厚さの望ましい上限は、30mmであり、望ましい下限は、3mmであり、より望ましい上限は、5mmである。

さらに、上部金属板の厚さと下部金属板の厚さの比(下部金属板の厚さ/上部金属板の厚さ)は、1~10であることが望ましい。10を超えると、下部金属板の熱容量が大きくなり過ぎ、被加熱物を迅速に加熱することができなくなるからである。

また、第三の本発明の金属ヒータでは、複数の金属板およびヒータの直径が全 て同じであることが望ましい。ヒータの熱を均一化した状態で金属板の加熱面に 伝達することができるからである。

なお、金属板と支持容器との間に断熱リング等を介設する場合等においては、 金属板の直径をそれぞれ異なるものとしてもよい。

第三の本発明の金属ヒータにおける、金属板の直径は、200mm以上が望ましく、12インチ(300mm)以上であることが特に望ましい。その理由は、

第一の本発明と同様である。

第三の本発明の金属ヒータを構成する金属板は、その表面における平坦度が 5 0μ m以下であることが望ましく、 $3 0 \mu$ m以下であることがより望ましい。 その理由は、第一の本発明と同様である。

5 このように平坦性に優れる金属ヒータを実現するため、第二の本発明と同様、 金属板の側面と支持容器(ボトムプレート)との間が密着しないように、スペースを確保することが望ましく、また、金属板の反りを防止するため、金属板の縁 部を押え板等で押え付け、固定することも望ましい。

これに加えて、金属板と押え板の材質を同一のものとすることにより、これら 10 の熱膨張率の差に起因する金属板の変形を防止することができる。

第三の本発明の金属ヒータでは、発熱体が形成されている領域の外縁は、金属板の外間から金属板の直径の25%以内の位置に存在していることが望ましい。 その理由は、第二の本発明と同様である。

15 図面の簡単な説明

20

図1は、第一~第三の本発明に係る金属ヒータの一例を模式的に示す断面図である。

図2は、図1に示した金属ヒータの一部を構成するヒータの水平断面図である。

図3は、第一~第三の本発明に係る金属ヒータの別の一例を模式的に示す断面 図である。

図4は、従来の金属ヒータの一例を模式的に示す断面図である。

図5は、第二の本発明に係る金属ヒータの金属板およびヒータを模式的に示す 断面図である。

図6は、実施例1に係る金属ヒータの加熱面の各測定箇所における温度を示す 25 図である。

図7は、試験例3に係る金属ヒータの加熱面の各測定箇所における温度を示す 図である。

図8は、実施例2に係る金属ヒータに、25℃のシリコンウエハを載置した場合のシリコンウエハの各測定箇所における温度と時間との関係を示すグラフであ

る。

25

図9は、試験例1に係る金属ヒータに、25℃のシリコンウエハを載置した場合のシリコンウエハの各測定箇所における温度と時間との関係を示すグラフである。

5 図10は、140℃における実施例1に係る金属ヒータ加熱面の三次元形状を 示す図である。

図11は、140℃における試験例2に係る金属ヒータ加熱面の三次元形状を 示す図である。

図12は、実施例7に係る金属ヒータに、25℃のシリコンウエハを載置した 10 場合のシリコンウエハの各測定箇所における温度と時間との関係を示すグラフで ある。

図13は、常温における実施例7に係る金属ヒータ加熱面の一部の三次元形状を示す図である。

図14は、140℃における実施例7に係る金属ヒータ加熱面の一部の三次元 15 形状を示す図である。

図15は、実施例13に係る金属ヒータの加熱面の各測定箇所における温度を示す図である。

図16は、試験例4に係る金属ヒータの加熱面の各測定箇所における温度を示す図である。

20 図17は、実施例14に係る金属ヒータに、25℃のシリコンウエハを載置した場合のシリコンウエハの各測定箇所における温度と時間の関係を示すグラフである。

図18は、比較例2に係る金属ヒータに、25℃のシリコンウエハを載置した 場合のシリコンウエハの各測定箇所における温度と時間の関係を示すグラフであ る。

図19は、140℃における実施例13に係る金属ヒータ加熱面の三次元形状を示す図である。

図20は、140℃における試験例5に係る金属ヒータ加熱面の三次元形状を 示す図である。

符号の説明

- 50、110、130 金属ヒータ
- 51、111 金属板
- 5 51a、111a、131a 加熱面
 - 52、112、132 ヒータ
 - 54、114、134 有底孔
 - 55、115、135 貫通孔
 - 56、116、136 測温素子
- 10 57、117、137 金属板固定用ネジ
 - 58、118、138 支持ピン
 - 59、119、139 半導体ウエハ
 - 60、120、140 支持容器
 - 61 中プレート
- 15 62 断熱リング
 - 121、ヒータ固定板
 - 122、142 押え板
 - 123、143 遮熱板
 - 124、144 導電線
- 20 125 (125a、125b) 発熱体
 - 126 マイカ板
 - 131 上部金属板
 - 141 下部金属板

25 発明の詳細な開示

以下、第一~第三の本発明の金属ヒータについて順に説明する。

ここで、第一〜第三の本発明の金属ヒータは、それぞれ略同様の形態を有しているため、同一の図面(図1〜3)を参照しながら説明する。図1は本発明に係る金属ヒータの一例を模式的に示す断面図であり、図2は、図1の水平断面図で

20

あり、図3は、本発明に係る金属ヒータの別の一例を模式的に示す断面図である。 まず、第一の本発明の実施形態について説明する。

第一の本発明の金属ヒータは、金属板と発熱体とから構成される金属ヒータであって、上記金属板は、厚さが50mm以下であり、その表面の平坦度が50μm以下であるとともに、上記発熱体が形成されている領域の外縁は、上記金属板の外周から上記金属板の直径の25%以内の位置にあることを特徴とする。

まず、図1に示した金属ヒータについて説明する。

この金属ヒータ110では、円板形状の金属板111の底面にヒータ112が 設置されており、ヒータ112は、ヒータ固定板121を介して、金属板固定ネ ジ117により金属板111に固定されている。

金属ヒータ110では、金属板111の加熱面111aにおける平坦度が50 μm以下となっている。従って、金属ヒータ110を用いて半導体ウエハを加熱 する場合には、半導体ウエハと金属板との距離をほぼ一定にすることが可能とな り、半導体ウエハの全体が均一となるように加熱することができる。

15 また、金属ヒータ110は、図4に示す金属ヒータ50と以下の点で相違している。

まず、金属ヒータ100では、金属板111、ヒータ112およびヒータ固定板121の側面が支持容器120と密着しておらず、非接触の状態で固定されている点において、図4に示す金属ヒータ50と相違している。このような構成とすることにより、金属板111が熱膨張した際の側面からの圧迫に伴う湾曲を防止することができるとともに、被加熱物を加熱する際に、金属板等からの熱の逃散が少なく、被加熱物を迅速に加熱することができる。

また、金属板111の加熱面111aの外周部には、押え板122が設置されており、この押え板122と金属板固定ネジ117とにより、金属板111、ヒ 25 ータ112およびヒータ固定板121を確実に支持容器120に固定することができるため、金属板を薄くしたことに伴う金属板111自身の変形により、そりや撓みが発生することを防止することができる。

さらに、図1に示す金属ヒータ110と、図4に示す金属ヒータ50とは、上述した金属板の厚さや押え板の有無等のほかにも、金属板固定ネジ117が支持

25

17

容器120を貫通せず、金属板111、ヒータ112およびヒータ固定板121 のみを貫通し、これらを固定している点で相違している。このような構成とする ことにより、金属板111と支持容器120との間の熱膨張率の差に起因する金 属板111の変形を防止することができるとともに、被加熱物を加熱する際に、

5 金属板等からの熱の逃散が少なく、被加熱物を迅速に加熱することができる。

また、支持容器120の底部には、遮熱板123が設置されており、金属板1 11およびヒータ固定板121からの熱が装置に伝達することを防止することが できる構成となっている。

また、金属ヒータ110には、有底孔114が形成され、有底孔114には、 10 金属板の111の温度を測定するための測温素子が埋め込まれている。

さらに、金属ヒータ110には、先端が尖塔状の支持ピン118を介して半導体ウエハ119が載置されており、半導体ウエハ119を金属板111の加熱面より一定距離離間させた状態で、支持し加熱することが可能である。

なお、金属ヒータ110には、金属板111、ヒータ112、ヒータ固定板1 21および支持容器120を貫通する貫通孔115も設けられており、貫通孔1 15に柱状のリフターピン等を挿通することによっても、被加熱物である半導体 ウエハ119を金属板111の加熱面111aより一定距離離間させた状態で支 持し、半導体ウエハ119を搬送することができるようになっている。

そして、ヒータ112は導電線124と接続されており、導電線124は、支 20 持容器120および遮熱板123に形成された貫通孔から外部に引き出され、電 源等(図示せず)と接続されている。

また、図2に示したように、ヒータ112は、金属板111およびヒータ固定板121と同様に平面視円形状であり、金属板111の加熱面111a全体の温度が均一になるように加熱するため、ヒータ112の内部には、閉回路からなる発熱体125a、125bが配置されている。

ヒータ112では、ヒータ112の外周部に屈曲線が円環状に繰り返して閉回路が形成されたパターンからなる発熱体125bが配置され、その内部に同心円の一部を描くようにして繰り返した閉回路が形成されたパターンからなる発熱体125aが配置されている。

さらに、図示はしていないが、ヒータ112は、2枚のマイカ板126で発熱体125を挟持し、固定した構成となっており、通電時は発熱体125がマイカ板126を加熱して、マイカ板126の2次輻射によって被加熱物を加熱することができるようになっている。

5 第一の本発明の金属ヒータがこのような形態を有する場合、金属板111は、 その厚さが50mm以下であり、図4に示す金属ヒータ50の金属板51と比較 して薄いものとなっている。そのため、半導体ウエハ119を迅速に昇温を行う ことができるとともに、リカバリー時間の短い金属ヒータとすることができる。

また、第一の本発明の金属ヒータでは、厚さが50mm以下であり、かつ、平 10 坦度が50μm以下の金属板を実現するため、図4に示す金属ヒータ50とは、 上述した点で相違している。

また、第一の本発明の金属ヒータがこのような形態を有する場合、ヒータ112の内部に形成された発熱体125の外縁は、金属板111の外周から金属板111の直径の25%以内の位置に存在している。通常、金属板111の外周部分では、金属板111の外周部分の表面からの放熱により、温度が不均一になりやすいが、第一の本発明の金属ヒータでは、このような外周部分にも発熱体が配設されているため、被加熱物である半導体ウエハ等を温度のばらつきなく、均一に加熱することができる。

次に、図3に示した金属ヒータについて説明する。

20 図3に示した金属ヒータ130では、円板形状の上部金属板131と下部金属板141との間に、ヒータ132が挟持されており、上部金属板131、ヒータ132および下部金属板141は、金属板固定ネジ137により固定されている。ここで、上部金属板131は、図1に示す金属ヒータ110の金属板111と比較して薄いものとなっているとともに、下部金属板141と比べてもさらに薄いものとなっている。従って、図3に示す金属ヒータ130は、被加熱物を迅速に加熱することができ、リカバリー時間の短いものとすることができる。

また、上部金属板131よりも厚く、剛性が大きい下部金属板141をヒータ 132の底面に設置することにより、加熱時における上部金属板131の変形を 防止することができる。

さらに、金属ヒータ130では、金属板固定用ネジ137のネジ頭が下部金属板141に埋め込まれるような構成となっている。従って、上部金属板131、ヒータ132および下部金属板141をより確実に支持容器140の内部に固定することができ、図1に示す金属ヒータ110と比較して、上部金属板131に反りや撓み等の変形が生じにくい構造となっている。

なお、図3に示した形態の金属ヒータ130では、下部金属板141に貫通孔を形成し、この貫通孔に導電線134を挿通するような構成となっているが、導電線134はヒータ132の側面においてヒータの内部に設置された発熱体と接続することとしてもよい。

10 また、このような形態の金属ヒータ130では、上部金属板131にネジ穴が設けられておらず、金属板固定ネジ137は、ヒータ132および下部金属板141のみを固定しており、上部金属板131の固定は、加熱面の外周部に設置された押え板132で押えつけることにより行っている。このような構成とすることにより、上部金属板131とヒータ132との熱膨張率の差に起因する金属板の変形を防止することができる。

なお、図3に示した金属ヒータ130は、上述した以外の部分の構成については、図1に示した金属ヒータ110と同様である。従って、その説明を省略することとする。

第一の本発明の金属ヒータが図3に示したような形態を有する場合もまた、金 20 属板の厚さ(上部金属板と下部金属板の合計厚さ)は、50mm以下であり、そ の表面の平坦度は、50μm以下であるため、上述したように、迅速な昇温が可 能で、リカバリー時間が短く、さらに、半導体ウエハの全体を均一に加熱するこ とができる。

さらに、第一の本発明の金属ヒータがこのような形態を有する場合、図示はしていないが、金属ヒータ130では、ヒータ132の内部に形成された発熱体の外縁が上部金属板131の外周から上部金属板131の直径の25%以内の位置に存在するような構成となっている。これにより、被加熱物である半導体ウエハ等を温度のばらつきなく、均一に加熱することができる。

なお、第一の本発明の金属ヒータの構成部材、および、該金属ヒータの製造方

法については、後述する。

次に、第二の本発明の実施形態について説明する。

第二の本発明の金属ヒータは、金属板と発熱体とから構成される金属ヒータであって、上記金属板は複数であるとともに、上記金属板の間には、上記発熱体が挟持されており、加熱面側の金属板の厚さが、加熱面と反対側の金属板の厚さと同じか、上記加熱面と反対側の金属板より薄いことを特徴とする。

第二の本発明の金属ヒータの一例としては、2つの金属板の間にヒータが挟持されている構成の金属ヒータがある。このような構成の金属ヒータとしてば、例えば、図3に示したような形態の金属ヒータが挙げられる。

10 なお、図 3 に示した金属ヒータ 1 3 0 では、金属板 1 3 1 の加熱面 1 3 1 a における平坦度は、5 0 μ m以下であるが、第二の本発明の金属ヒータにおける加熱面の平坦度は、5 0 μ m以下に限定されるわけではない。

また、第二の本発明の金属ヒータが、図3に示したような形態を有している場合、ヒータ132の内部に形成された発熱体の外縁は、金属板131の外周から 金属板131の直径の5%以内の位置に存在していることが望ましい。通常、金属板131の外周部分では、金属板131の外周部分の表面からの放熱により、温度が不均一になりやすいが、上記の場合、このような外周部分にも発熱体が配設されていることとなるため、被加熱物である半導体ウェハ等を温度のばらつきなく、均一に加熱することができる。

20 第二の本発明の金属ヒータの構成部材、および、該金属ヒータの製造方法については、後述する。

次に、第三の本発明の実施形態について説明する。

第三の本発明の金属ヒータは、金属板と発熱体とから構成される金属ヒータで あって、上記金属板は、アルミニウムー銅合金からなることを特徴とする。

25 まず、第三の本発明の金属ヒータの一例として、一の金属板の底面にヒータが 設置されている金属ヒータについて説明する。このような構成の金属ヒータとし ては、例えば、図1に示したような形態の金属ヒータが挙げられる。

図1に示したような形態の第三の本発明の金属ヒータにおいて、金属板111 の材質は、熱伝導性に優れ、機械的強度が強いアルミニウムー銅合金からなる。 そのため、発熱体の温度変化に合わせて、加熱面の温度を迅速に追従させることができ、金属板の加熱面を所定の温度にすることができるとともに、金属板の厚さを薄くしても、加熱により反ったり、歪んだりせず、金属板を薄くて軽いものとすることができる。

5 また、第三の本発明の金属ヒータが、図3に示した形態を有する場合、金属板 131の厚さが50mm以下であることが望ましい。

まだ、図3に示した金属ヒータ130では、金属板131の加熱面131aにおける平坦度は、 50μ m以下であるが、第三の本発明の金属ヒータにおける加熱面の平坦度は、 50μ m以下に限定されるわけではない。

10 また、第三の本発明の金属ヒータが、図3に示したような形態を有している場合、ヒータ132の内部に形成された発熱体の外縁は、金属板131の外間から金属板131の直径の5%以内の位置に存在していることが望ましい。その理由は、第二の本発明と同様である。

また、第三の本発明の金属ヒータは、図3に示すような形態であってもよい。 15 第三の本発明の金属ヒータの構成部材、および、該金属ヒータの製造方法については、後述する。

次に、上述した第一〜第三の本発明の金属ヒータの材質や形状等について説明 する。ここで、第一〜第三の本発明の金属ヒータの材質や形状等は略同様である ため、併せて説明することとする。

20 第一〜第三の本発明の金属ヒータにおいて、金属板には、被加熱物を載置する 加熱面の反対側から加熱面に向けて有底孔を設けるとともに、有底孔の底を発熱 体よりも相対的に加熱面に近く形成し、この有底孔に熱電対等の測温素子(図示 せず)を設けることが望ましい。

また、有底孔の底と加熱面との距離は、0.1mm~金属板の厚さの1/2で 25 あることが望ましい。

これにより、測温場所が発熱体よりも加熱面に近くなり、より正確な半導体ウエハの温度の測定が可能となるからである。

有底孔の底と加熱面との距離が0.1mm未満では、放熱してしまい、加熱面に温度分布が形成され、厚さの1/2を超えると、発熱体の温度の影響を受けや

10

20

すくなり、温度制御できなくなり、やはり加熱面に温度分布が形成されてしまうからである。

有底孔の直径は、0.3~5mmであることが望ましい。これは、大きすぎると放熱性が大きくなり、また小さすぎると加工性が低下して加熱面との距離を均等にすることができなくなるからである。

上記測温素子としては、例えば、熱電対、白金測温抵抗体、サーミスタ等が挙げられる。

また、上記熱電対としては、例えば、JIS-C-1602 (1980) に挙げられるように、K型、R型、B型、S型、E型、J型、T型熱電対等が挙げられるが、これらのなかでは、K型熱電対が好ましい。

上記熱電対の接合部の大きさは、素線の径と同じか、または、それよりも大きく、0.5 mm以下であることが望ましい。これは、接合部が大きい場合は、熱容量が大きくなって応答性が低下してしまうからである。なお、素線の径より小さくすることは困難である。

15 上記測温素子は、金ろう、銀ろう、半田、接着剤などを使用して、有底孔の底 に接着してもよく、有底孔に挿入した後、耐熱性樹脂で封止してもよく、両者を 併用してもよい。

上記耐熱性樹脂としては、例えば、熱硬化性樹脂、特にはエポキシ樹脂、ポリイミド樹脂、ビスマレイミドートリアジン樹脂などが挙げられる。これらの樹脂は、単独で用いてもよく、2種以上を併用してもよい。

上記金ろうとしては、 $37\sim80.5$ 重量% $Au-63\sim19.5$ 重量%Cu合金、 $81.5\sim82.5$ 重量%: $Au-18.5\sim17.5$ 重量%: Ni合金から選ばれる少なくとも1種が望ましい。これらは、溶融温度が、900℃以上であり、高温領域でも溶融しにくいためである。

25 銀ろうとしては、例えば、Ag-Сu系のものを使用することができる。

また、第一~第三の本発明においては、発熱体が設けられたヒータを金属板の表面(底面)に設置してもよく、金属板に設置されたヒータに、さらに別の金属板を取り付けるような構成、すなわち、2つの金属板の間にヒータを挟持するような構成としてもよい。

発熱体が設けられたヒータをこのような位置に設定することにより、発熱体から発生した熱が伝搬していくうちに、金属板全体に拡散し、被加熱物(半導体ウエハ)を加熱する面の温度分布が均一化され、その結果、被加熱物の各部分における温度が均一化される。

5 上記ヒータとしては、図2に示すようなマイカヒータ、シリコンラバーヒータ 等を用いることができる。また、単に絶縁性のシールに発熱線を形成したものを ヒータとして使用することもできる。

上記マイカヒータとしては、任意のパターンに形成したニクロム線等の発熱体 を絶縁体であるマイカ板で挟持したものを使用することができる。

10 また、上記シリコンラバーヒータとしては、任意のパターンに形成したニクロ ム線等の発熱体を絶縁体であるシリコンラバーで挟持したものを使用することが できる。

上記ヒータを加熱するための発熱体については、電圧を印加した場合に発熱するものであれば、上述したニクロム線に限られず、タングステン線やモリブデン線、ステンレス線等の他の金属線等であってもよい。

また、発熱体としては、金属線の他に金属箔を使用することもできる。上記金 属箔としては、ニッケル箔、ステンレス箔をエッチング等でパターン形成して発 熱体としたものが望ましい。パターン化した金属箔は、樹脂フィルム等ではり合 わせてもよい。

- 20 さらに、発熱体を被覆する絶縁体についても、短絡を防止することができ、高温にも耐え得る材質のものであれば、上述したマイカ板やシリコンラバーに限られず、例えば、フッ素樹脂、ポリイミド樹脂、ポリベンゾイミダゾール (PBI)等であってもよく、セラミック等からなる繊維をマット状にしたものを用いてもよい。
- 25 上記金属ヒータがヒータを金属板で挟持した形状である場合には、上記ヒータ を複数設けてもよい。この場合は、各層のパターンは、相互に補完するようにど こかの層に発熱体が形成され、加熱面の上方から見ると、どの領域にもパターン が形成されている状態が望ましい。このような構造としては、例えば、互いに千 鳥の配置になっている構造が挙げられる。

15

20

24

また、金属板の表面にヒータを設置する場合は、加熱面はヒータ設置面の反対 側であることが望ましい。金属板が熱拡散の役割を果たすため、加熱面の温度均 一性を向上させることができるからである。

また、第一〜第三の本発明の金属ヒータにおける発熱体のパターンとしては、 図2に示したようなパターンに限らず、例えば、同心円状のパターン、渦巻き状 のパターン、偏心円状のパターン等も用いることができる。また、これらは併用 してもよい。

また、最外周に形成された発熱体パターンを、複雑に分割されたパターンとすることで、温度が低下しやすい金属ヒータの最外周で細かい温度制御を行うことが可能となり、金属ヒータの温度のばらつきを抑えることができる。

また、上記発熱体の面積抵抗率は、 $0.1\sim10\Omega/\square$ が好ましい。面積抵抗率が $10\Omega/\square$ を超えると、発熱量を確保するために、発熱体の直径を非常に細くしなければならず、このため、わずかな欠け等で断線したり、抵抗値が変動したりするからである。また、面積抵抗率が $0.1\Omega/\square$ 未満の場合は、発熱体の直径を大きくしなければ、発熱量を確保できず、その結果、発熱体パターン設計の自由度が低下し、加熱面の温度を均一にすることが困難となるからである。

発熱体と電源とを接続するための手段としては、図1、3で示すように導電線を圧着等で発熱体の両端部に取り付け、この導電線を介して電源等と接続することとしてもよく、発熱体の両端部に端子を取り付け、この端子を介して電源等と接続することとしてもよい。上記端子は、圧着により発熱体に取り付けることが望ましい。

また、上記端子は、半田を介して発熱体に取り付けてもよい。ニッケルは、半田の熱拡散を防止するからである。接続端子としては、例えば、コバール製の外部端子が挙げられる。

25 接続端子を接続する場合、半田としては、銀一鉛、鉛ースズ、ビスマスースズ などの合金を使用することができる。なお、半田層の厚さは、 $0.1\sim50\,\mu\,\mathrm{m}$ が好ましい。半田による接続を確保するのに充分な範囲だからである。

また、第一~第三の本発明の金属ヒータでは、金属板とヒータとの間に中プレートを介設することとしてもよい。このような中プレートを介設することにより、

20

発熱体で発生させた熱をより均一化した状態で金属板に伝達することができる。 上記中プレートの材質としては、熱伝導性に優れる金属が望ましく、例えば、銅、 銅合金等を使用することができる。

また、図1または図3に示した形態の金属ヒータでは、金属板の側面と支持容器とが非接触となっているが、これらが接触しているような構成である場合には、金属板の側面と支持容器との間に断熱リングを介設することが望ましい。金属板の外周部において、熱が逃散することにより、金属板の加熱面に温度のばらつきが発生することを防止できる。

上記支持容器および上記遮熱板は、一体化されていてもよく、遮熱板が支持容 10 器に連結固定されていてもよいが、支持容器と遮熱板とが、一体的に形成されて いることが望ましい。金属ヒータ全体の強度を確保することができるからである。 上記支持容器は、円筒形状であることが望ましく、上記遮熱板は、円板形状で あることが望ましい。

また、上記支持容器および上記遮熱板の厚みは、0.1~5mmであることが 15 望ましい。0.1mm未満では、強度に乏しく、5mmを超えると熱容量が大き くなるからである。

上記支持容器および上記遮熱板は、加工等が容易で機械的特性に優れるとともに、金属ヒータ全体の強度を確保できるように、SUS、アルミニウム、インコネル (クロム16%、鉄7%を含むニッケル系の合金)等の金属により構成されることが望ましい。

なお、上記支持容器と上記遮熱板とが、一体化されていない場合、上記遮熱板としては、遮熱性に優れるように、例えば、耐熱性樹脂、セラミック板、これらに耐熱性の有機繊維や無機繊維が配合された複合板等、余り熱伝導率が大きくなく、かつ、耐熱性に優れたものを用いることも可能である。

25 また、支持容器または遮熱板には、冷媒導入管を取り付けることとしてもよい。 金属ヒータを冷却するための強制冷却用の冷媒等を導入することにより、金属ヒ ータを迅速に降温させることができるからである。さらに、支持容器または遮熱 板には、導入した強制冷却用の冷媒等を排出するための貫通孔が形成されている こととしてもよい。

次に、第一~第三の本発明に係る金属ヒータの製造方法の一例として、図3に 示す形態の金属ヒータの製造方法について説明することとする。

26

なお、第一および第三の本発明の金属ヒータは、必ずしも図3に示すように、 2つの金属板により、ヒータを挟持する形状でなくてもよい。

5 (1)金属板の作製工程

アルミニウムー銅合金等からなる板状体に、NC旋盤を用いて外径加工を行い、 円板形状とした後、この板状体に端面加工、表面加工および裏面加工を順に行う。 このとき、上部金属板となる板状体の厚さを、下部金属板となる板状体よりも 薄くする。

- 10 次に、マシニングセンタ (MC) 等を用いて、半導体ウエハを支持するための リフターピンを挿入する貫通孔となる部分、支持ピンを設置するための凹部、熱 電対などの測温素子を埋め込むための有底孔となる部分を形成する。また、同様 にして所定の位置に有底孔を形成した後、この有底孔にネジ溝を形成することに より、金属板固定用ネジを挿通するためのネジ穴を形成する。
- 15 そして、上部金属板となる板状体にロータリー研削盤を用いて表面研削処理を 施すことにより、上部金属板および下部金属板を製造する。この表面研削処理を 行うことにより、金属板の表面の平坦度を20~30μm程度にすることができ る。

次に、上記金属板にアルマイト処理を施し、上記金属板の表面に酸化被膜を形 20 成する。このような処理を行うことにより、金属板の耐食性が向上するとともに、 表面が硬くなるため、金属板に傷等が付きにくくなる。また、実際の半導体製造・検査工程で使用する場合であっても、金属板がレジスト液や腐食性ガス等によって腐食されにくくなる。

なお、上記アルマイト処理(陽極酸化被膜処理)としては、例えば、硫酸法、 25 シュウ酸法等を用いることができるが、処理後の耐食性、電解液のコスト、作業 性等の点から硫酸法を用いることが望ましい。

(2) ヒータの設置

所定のパターンに加工したニクロム線等の発熱体をマイカ板で挟持したヒータ を、上部金属板と下部金属板の間に設置し、金属板およびヒータに設けられたネ

ジ孔に金属板固定用ネジを挿通した後、締め付けて金属板とヒータとを一体化する。

なお、発熱体は、ヒータ全体を均一な温度にする必要があることから、屈曲線が円環状に繰り返しや同心円の一部を描くようにして繰り返しを基本にしたパターン等とすることが好ましい。

また、金属板とヒータとの間には、銅等のように熱伝導性に優れる材料からなる中プレートを挟持させることとしてもよい。これにより、ヒータから放射される熱をより均一化した状態で金属板に伝達することができる。

(3) 支持容器の取り付け

10 そして、このように金属板とヒータとを一体化させた装置を図3に示したような円筒形状の支持容器に支持、固定する。また、上部金属板の加熱面の外周部と支持容器との間に、押え板を取り付けることにより、金属板の変形を防止できるとともに、金属板をより強固に支持、固定することができる。

なお、支持容器には、その底面に支持容器と同様の材質により構成される遮熱 15 板を設置するとともに、測温素子、導電線等を挿通できるような貫通孔を形成し ておく。

第一〜第三の本発明の金属ヒータにおいては、図3に示すように金属板および ヒータの側面と支持容器とが非接触の状態で支持、固定されていることが望ましい。

20 金属板およびヒータの側面から熱が逃散することにより、金属板の加熱面の外 周部が低温となる場合があるからである。

なお、金属板およびヒータの側面と支持容器とが接触した状態で支持、固定されている場合には、金属板と支持容器との間にポリイミド樹脂、フッ素樹脂等からなる断熱リングを介設することが望ましい。

25 (4)電源等への接続

ヒータに設けられた発熱体の両端部に電源との接続のための端子 (外部端子) を圧着で取り付け、外部の電源等に接続し、金属ヒータの製造を終了する。

なお、上述した貫通孔および有底孔を形成する工程は、金属板にヒータを取り 付けた後に行うこととしてもよいが、金属板、ヒータおよび支持容器のそれぞれ

15

20

に予め貫通孔および有底孔となる開口を形成しておくことが望ましい。

なお、上述した方法で金属ヒータを製造する場合、第一および第三の本発明の 金属ヒータは、必ずしも図3に示すように、上部金属板が下部金属板よりも薄く なっていなくてもよく、上部金属板の厚さと下部金属板の厚さとが同じであって もよい。

発明を実施するための最良の形態

以下、第一~第三の本発明を実施例によりさらに詳細に説明する。

以下の実施例では、半導体ウエハを加熱する金属ヒータを例に示すが、第一~ 10 第三の本発明は、光導波路の温度調整用ヒータとしても使用することができる。

(実施例1)

金属ヒータ(図1、2参照)の製造

(1) アルミニウムー銅合金(A2219 (JIS-H4000)) からなる 板状体にNC旋盤(ワシノ機械社製)を用いて外径加工を行い、円板形状とした 後、この円板体に端面加工、表面加工および裏面加工を施すことにより、金属板用の円板体およびヒータ固定板用の円板体を製造した。

次に、マシニングセンタ(日立精機社製)を用いて、これらの円板体に半導体ウエハ119を支持するためのリフターピンを挿入する貫通孔115となる部分、支持ピン118を設置するための凹部、測温素子116を埋め込むための有底孔114となる部分を形成した。また、同様にして所定の位置に有底孔または貫通孔を形成した後、これらの有底孔または貫通孔にネジ溝を形成することにより、円板体に金属板固定用ネジ117を挿通するためのネジ穴を形成した。

なお、貫通孔115は3箇所に形成し、支持ピン118を設置するための凹部 は4箇所に形成した。

- 25 (2) 次に、(1) の工程で製造された金属板用の円板体の加熱面側表面に、ロータリー研削盤(岡本工作機械製作所製)を用いて表面研削処理を施し、厚さ20mm、直径330mmの金属板(上部金属板)111および厚さ5mm、直径330mmのヒータ固定板(下部金属板)121を得た。
 - (3) 次に、金属板111およびヒータ固定板121を電解液 10%H2S

25

 O_4 、電圧 10V、電流密度 $0.8A/dm^2$ 、液温 20 C の条件でアルマイト処理を行い、金属板 111 およびヒータ固定板 121 の表面に厚さ $15~\mu$ m の酸化被膜を形成した。

(4) そして、図2に示すような屈曲線が円環状に繰り返したパターンおよび 同心円の一部を描くようにして繰り返したパターンに加工したニクロム線からなる発熱体125a、125bを厚さ0.3mmの2枚のマイカ板126で挟持し、直径330mmのヒータ112を得た。

なお、ヒータ112では、発熱体が形成されている領域の外縁が、金属板11 1の外周から金属板111の直径の7%の位置となるように発熱体を形成すると ともに、発熱体125の回路の総数は4とした。

また、マイカ板126には、貫通孔115となる部分、有底孔114となる部分および金属板固定ネジ117を挿通するためのネジ孔となる部分を予め形成しておいた。

その後、(1)~(3)の工程で製造した金属板111およびヒータ固定板1 21でヒータ112を挟み込み、金属板111、ヒータ固定板121およびヒータ112に設けられたネジ孔に金属板固定用ネジ117を挿通した後、これを締め付けることにより、金属板111、ヒータ固定板121およびヒータ112を一体化した。

(5) 次に、図1に示したような円筒形状でSUS製の支持容器120を製造 20 し、この支持容器120の底面に貫通孔115となる部分、有底孔114となる 部分および導電線124を挿通するための貫通孔を形成した後、支持容器120 の底部に円板形状でSUS製の遮熱板123を設置した。

そして、遮熱板123が設置された支持容器120の内部に、(4)で製造したヒータ112およびヒータ固定板121が取り付けられた金属板111を配置し、金属板111の加熱面の外周部に押え板122を取り付けることにより、支持容器120の内部に固定した。

(6) 温度制御のための測温素子116を有底孔114に挿入した後、ポリイミドで有底孔114を封止した。また、金属板111の加熱面に形成された凹部に支持ピン118を設置した。

(7) 次いで、ヒータ112に設けられた発熱体の両端部に電源との接続のための導電線124を圧着で取り付け、外部の電源等に接続し、金属ヒータ110を得た。

30

(実施例2)

5 金属ヒータの製造

金属板111の厚さを5mmとし、ヒータ固定板121の厚さを20mmとした以外は、実施例1と同様にして、金属ヒータを製造した。

なお、上記金属ヒータでは、発熱体が形成されている領域の外縁が、金属板 1 11の外周から金属板 111の直径の 15%の位置に存在している。

10 (実施例3)

金属ヒータ (図3参照)の製造

- (1) 実施例1の(1) ~ (2) と同様にして、上部金属板131および下部金属板141を製造した後、実施例1の(3) と同様にして、上部金属板131および下部金属板141にアルマイト処理を行った。
- なお、上部金属板131は、厚さ2mm、直径330mmとし、下部金属板141は、厚さ20mm、直径330mmとした。
 - (2) 次に、実施例1の(4) \sim (7) と同様にして、上部金属板131および下部金属板141とヒータ132とを一体化した後、支持容器140に設置することにより、金属ヒータ130を製造した。
- 20 なお、本実施例の金属ヒータでは、上部金属板131にネジ孔を形成せず、金属板固定用ネジ137のネジ頭が下部金属板141に埋め込まれる構造とすることにより、下部金属板141の底面が支持容器140の内面に接触するような構成とした。

なお、上記金属ヒータでは、発熱体が形成されている領域の外縁が、上部金属 25 板131の外周から上部金属板131の直径の1%の位置に存在している。

(実施例4)

金属ヒータの製造

上部金属板の厚さを5mmとし、下部金属板の厚さを45mmとした以外は、 実施例3と同様にして金属ヒータを製造した。

なお、上記金属ヒータでは、発熱体が形成されている領域の外縁が、上部金属板の外周から上部金属板の直径の25%の位置に存在している。

(実施例5)

金属ヒータの製造

5 上部金属板の厚さを15mmとし、下部金属板の厚さを20mmとした以外は、 実施例3と同様にして金属ヒータを製造した。

なお、上記金属ヒータでは、発熱体が形成されている領域の外縁が、上部金属板の外間から上部金属板の直径の10%の位置に存在している。

(試験例1)

10 実施例1の(1)~(3)の工程を行う際に、金属板の厚さを55mmとした 以外は、実施例1と同様にして金属ヒータを製造した。

(試験例2)

実施例1の(2)の工程で、金属板用円板体の加熱面側表面に表面研削処理を 施さなかった以外は実施例1と同様にして金属ヒータを製造した。

15 (試験例3)

20

実施例1の(4)の工程で、発熱体が形成されている領域の外縁が、金属板の外間から金属板の直径の30%の位置となるように発熱体を形成した以外は実施例1と同様にして金属ヒータを製造した。

実施例1~5および試験例1~3に係る金属ヒータに通電することにより昇温 し、下記の方法により評価した。

その結果を表1に示す。なお、金属板の直径に対する、金属板の外周から発熱 体の外縁の位置までの距離の割合(外縁位置)についても表1に示した。

評価方法

- (1) 定常時における面内温度均一性
- 25 金属ヒータを140℃まで昇温した後、熱電対を備えた温度センサ付ウエハを 金属ヒータの加熱面に載置し、加熱面の温度分布を測定した。温度分布は、昇温 中における最高温度と最低温度との温度差の最大値で示す。

また、実施例1に係る金属ヒータの加熱面の各測定箇所における温度を図6に、 試験例3に係る金属ヒータの加熱面の各測定箇所における温度を図7に示す。

(2) 過渡時における面内温度均一性

金属ヒータにより、温度センサ付ウエハを常温~140℃までの加熱した時の温度センサ付ウエハ面内の温度分布を測定した。温度分布は、100℃、120℃および130℃において測定し、最高温度と最低温度との温度差の最大値で示す。

(3) 昇温時間

5

金属ヒータを常温~140℃まで昇温した時の昇温時間を測定した。

(4) リカバリー時間

140℃設定温度で、25℃のシリコンウエハを載置した場合に、140℃ま 10 で回復する時間 (リカバリー時間) を測定した。

また、実施例2に係る金属ヒータに、25℃のシリコンウエハを載置した場合のシリコンウエハの各測定箇所における温度と時間との関係を図8に、試験例1に係る金属ヒータに、25℃のシリコンウエハを載置した場合のシリコンウエハの各測定箇所における温度と時間との関係を図9に示す。

15 (5) 平坦度の測定

常温および140℃における金属板の加熱面の平坦度をレーザ変位計(キーエンス社製)を用いて測定した。

また、140℃における実施例1に係る金属ヒータ加熱面の三次元形状を図1 0に、140℃における試験例2に係る金属板加熱面の三次元形状を図11に示 20 す。

表 1

. 10

15

20

25

(140°C) (140°C) 0.24 0.29 0.48
0.49
0.61
0.62
0.67

表1および図6に示すように、実施例1~5に係る金属ヒータは、定常時およ

10

び過渡時において、金属板の加熱面の温度が均一であった。これは、表 1 および 図 1 0 に示すように、平坦度が 5 0 μ m以下であるため、金属板とセンサウエハ との距離にばらつきがなく、均一に加熱できたものと考えられる。

また、実施例1~5に係る金属ヒータでは、金属板の外周部にも発熱体が設けられているため、金属板の加熱面において、中心部と外周部との間で温度差が小さくなるためであると考えられる。

さらに、表1および図8に示すように、実施例1~5に係る金属ヒータでは、 昇温時間およびリカバリー時間が短くなっていた。これは、実施例1~5に係る 金属ヒータでは、金属板の厚さが50mm以下であるため、発熱体の温度変化に 対して金属板の加熱面の温度が迅速に追従し、被加熱物を迅速に加熱することが できたものと考えられる。

一方、試験例1に係る金属ヒータは、表1および図9に示すように、昇温時間 およびリカバリー時間が実施例1~5に係る金属ヒータに比べて劣っていた。こ のことから金属板の厚さは、50mm以下が望ましいことが明らかとなった。

15 また、試験例2に係る金属ヒータは、表1に示すように、定常時および過渡時における金属板の加熱面の温度均一性に劣るものであった。また、試験例2に係る金属ヒータは、図11に示すように加熱面の平坦性に劣るものであった。このことから金属板の表面の平坦度は、50μm以下が望ましいことが明らかとなった。

20 また、試験例3に係る金属ヒータの加熱面の温度均一性(表1、図7参照)と、 実施例1~5に係る金属ヒータの加熱面の温度均一性との比較から、金属板の外 周部に発熱体が形成されていることが望ましいことが明らかとなった。

(実施例6)

金属ヒータ(図3参照)の製造

25 (1) アルミニウムー銅合金(A2219(JIS-H4000)) からなる 板状体にNC旋盤(ワシノ機械社製)を用いて外径加工を行い、円板形状とした 後、この円板体に端面加工、表面加工および裏面加工を施すことにより、上部金 属板用の円板体および下部金属板用の円板体を製造した。

次に、マシニングセンタ(日立精機社製)を用いて、これらの円板体に半導体

0mmの下部金属板141を得た。

5

10

20

ウエハ139を支持するためのリフターピンを挿入する貫通孔135となる部分、 支持ピン138を設置するための凹部、測温素子136を埋め込むための有底孔 134となる部分を形成した。また、同様にして所定の位置に有底孔または貫通 孔を形成した後、これらの有底孔または貫通孔にネジ溝を形成することにより、

35

なお、貫通孔135は3箇所に形成し、支持ピン138を設置するための凹部 は4箇所に形成した。

円板体に金属板固定用ネジ137を挿通するためのネジ穴を形成した。

(2) 次に、(1)の工程で製造された上部金属板用の円板体の加熱面側表面 に、ロータリー研削盤(岡本工作機械製作所製)を用いて表面研削処理を施し、 厚さ5mm、直径330mmの上部金属板131および厚さ15mm、直径33

なお、本実施例では、上部金属板131の厚さが下部金属板141の厚さより も薄いものとなっている。

- (3) 次に、上部金属板131および下部金属板141を電解液 10% H。 SO₄、電圧 10V、電流密度 0.8A/d m²、液温 20℃の条件でアル 15 マイト処理を行い、上部金属板131および下部金属板141の表面に厚さ15 μmの酸化被膜を形成した。
 - (4) そして、図2に示すような屈曲線が円環状に繰り返したパターンおよび 同心円の一部を描くようにして繰り返したパターンに加工したニクロム線からな る発熱体145を厚さ0.3mmの2枚のマイカ板146で挟持し、直径330 mmのヒータ132を得た。

なお、ヒータ132では、発熱体の外縁が、上部金属板131の外周から上部 金属板131の直径の25%以内の位置となるように発熱体145を形成し、発 熱体145の回路の総数は4とした。

25 また、マイカ板146には、貫通孔135となる部分、有底孔134となる部 分および金属板固定ネジ137を挿通するためのネジ孔となる部分を予め形成し ておいた。

その後、(1)~(3)の工程で製造した上部金属板131および下部金属板 141でヒータ132を挟み込み、下部金属板141およびヒータ132に設け

10

られたネジ孔に金属板固定用ネジ137を挿通した後、これを締め付けることにより、上部金属板131、下部金属板141およびヒータ132を一体化した。

(5) 次に、図3に示したような円筒形状でSUS製の支持容器140を製造し、この支持容器140の底面に貫通孔135となる部分、有底孔134となる部分および導電線144を挿通するための貫通孔を形成した後、支持容器140の底部に円板形状でSUS製の遮熱板143を設置した。

そして、遮熱板143が設置された支持容器140の内部に、(4)で製造したヒータ132および下部金属板141が取り付けられた上部金属板131を配置し、上部金属板131の加熱面の外周部に押え板142を取り付けることにより、支持容器140の内部に固定した。

なお、本実施例の金属ヒータでは、金属板固定用ネジ137のネジ頭が下部金属板141に埋め込まれるような構造とすることにより、下部金属板141の底面が支持容器140の内面に接触するような構成とした。

- (6) 温度制御のための測温素子136を有底孔134に挿入した後、ポリイ 15 ミドで有底孔134を封止した。また、上部金属板131の加熱面に形成された 凹部に支持ピン138を設置した。
 - (7) 次いで、ヒータ132に設けられた発熱体の両端部に電源との接続のための導電線144を圧着で取り付け、外部の電源等に接続し、金属ヒータ130 を得た。

20 (実施例7)

金属ヒータの製造

上部金属板131の厚さを5mmとし、下部金属板141の厚さを20mmとした以外は、実施例6と同様にして、金属ヒータを製造した。

なお、本実施例では、上部金属板131の厚さが下部金属板141の厚さより 25 も薄いものとなっている。

(実施例8)

金属ヒータの製造

上部金属板131の厚さを10mmとし、下部金属板141の厚さを10mm とした以外は、実施例6と同様にして、金属ヒータを製造した。 なお、本実施例では、上部金属板の厚さと下部金属板の厚さとが同じ厚さとなっている。

(実施例9)

金属ヒータの製造

5 上部金属板131の厚さを4mmとし、下部金属板141の厚さを40mmと した以外は、実施例6と同様にして、金属ヒータを製造した。

なお、本実施例では、上部金属板131の厚さが下部金属板141の厚さより も薄いものとなっている。

(実施例10)

10 金属ヒータの製造

上部金属板131の厚さを4mmとし、下部金属板141の厚さを44mmとした以外は、実施例6と同様にして、金属ヒータを製造した。

なお、本実施例では、上部金属板131の厚さが下部金属板141の厚さより も薄いものとなっている。

15 (比較例1)

図4に示すように、金属板の底面に銅製の中プレートおよびヒータが設置され、 金属板の加熱面の外周部に押え板が取り付けられていない金属ヒータを製造した。 なお、金属板の厚さは55mmであり、発熱体のパターンは実施例6と同様とし た。

- 20 実施例6~10および比較例1に係る金属ヒータに通電することにより昇温し、
 - (1) 定常時における面内温度均一性、(2) 過渡時における面内温度均一性、
 - (3) 昇温時間、(4) リカバリー時間、(5) 平坦度の測定の評価を行った。 その結果を表2に示す。なお、具体的な評価方法は、実施例1と同様である。

また、(4)リカバリー時間の評価について、実施例7に係る金属ヒータに、 25 25℃のシリコンウエハを載置した場合のシリコンウエハの各測定箇所における

温度と時間との関係を図12に示す。

さらに、(5) 平坦度の測定の結果について、常温における実施例7に係る金属ヒータ加熱面の一部の三次元形状を図13に示す。また、140℃における実施例7に係る金属ヒータ加熱面の一部の三次元形状を図14に示す。

表 2

10

15

20

25

	金属板の厚さ(mm)	厚さ(mm)	定常時面内温度分布(°C)	過渡時	過渡時面内温度分布(℃)	分布(°C)	昇温時間	リカバリー時間	平坦度	平坦度(μm)
	上部金属板	下部金属板	(140°C)	100°C	120°C	130°C	(秒)	(秒)	期温時	140°C
実施例6	22	15	0:30	6.58	2.23	1.50	945	37	29	36
実施例	2	20	0.29	5.75	2.10	1.46	1015	39	28	59
実施例8	10	10	0.28	7.00	3.00	2.00	1100	50	35	40
実施例9	4	40	0.30	4.21	1.80	1.20	800	20	25	26
実施例10	4	44	0.33	4.20	1.70	1.10	1380	. 105	22	25
試験例2	20	വ	0.62	8.95	6.22	3.61	1407	267	55	56
試験例3	20	2	0.67	12.67	10.00	5.57	1405	228	19	27
比較例	55	0	1.80	11.00	5.66	3.50	2530	293	44	56
				l						

表 2 に示すように、実施例 $6\sim10$ に係る金属ヒータは、定常時および過渡時

における上部金属板の加熱面の温度が均一であった。これは、表 2、図 1 3 および図 1 4 に示すように平坦度が 5 0 μ m以下であるため、上部金属板とセンサウエハとの距離にばらつきがなく、均一に加熱できたものと考えられる。

また、実施例6~10に係る金属ヒータでは、一定の厚さを有する下部金属板 がヒータの底面に設置されているため、ヒータから発せられた熱線が均一化され たことによるものと考えられる。

さらに、表 2 および図 1 2 に示すように、実施例 6 ~ 1 0 に係る金属ヒータでは、昇温時間およびリカバリー時間が短くなっていた。これは、実施例 6 ~ 1 0 に係る金属ヒータでは、上部金属板の厚さが薄くなっているため、発熱体の温度変化に対して金属板の加熱面の温度が迅速に追従し、被加熱物を迅速に加熱することができたものと考えられる。

これらのことは、試験例2、3に係る金属ヒータの評価結果との対比からも明らかである。

これに対して、比較例1に係る金属ヒータは、昇温速度およびリカバリー時間 15 が長くなっていた。これは、金属板の厚さが厚いためであると考えられる。

(実施例11)

10

20

25

金属ヒータ(図1、2参照)の製造

(1) JIS-H4000に基づく合金番号がA2219の市販アルミニウム 一銅合金からなる板状体にNC旋盤(ワシノ機械社製)を用いて外径加工を行い、 円板形状とした後、この円板体に端面加工、表面加工および裏面加工を施すこと により、金属板用の円板体およびヒータ固定板用の円板体を製造した。

次に、マシニングセンタ(日立精機社製)を用いて、これらの円板体に半導体ウエハ119を支持するためのリフターピンを挿入する貫通孔115となる部分、支持ピン118を設置するための凹部、測温素子116を埋め込むための有底孔114となる部分を形成した。また、同様にして所定の位置に有底孔または貫通孔を形成した後、これらの有底孔または貫通孔にネジ溝を形成することにより、円板体に金属板固定用ネジ117を挿通するためのネジ孔を形成した。

なお、貫通孔115は3箇所に形成し、支持ピン118を設置するための凹部 は4箇所に形成した。

- (2) 次に、(1) の工程で製造された金属板用の円板体の加熱面側表面に、ロータリー研削盤(岡本工作機械製作所製)を用いて表面研削処理を施し、厚さ20mm、直径330mmの金属板(上部金属板)111および厚さ5mm、直径330mmのヒータ固定板(下部金属板)121を得た。
- 5 (3)次に、金属板1111およびヒータ固定板121を電解液 10%H₂S O₄、電圧 10V、電流密度 0.8A/d m²、液温 20℃の条件でアルマ イト処理を行い、金属板111およびヒータ固定板121の表面に厚さ15μm の酸化被膜を形成した。
- (4) そして、図2に示すような屈曲線が円環状に繰り返したパターンおよび 10 同心円の一部を描くようにして繰り返したパターンに加工したニクロム線からな る発熱体125を厚さ0.3mmの2枚のマイカ板126で挟持し、直径330 mmのヒータ112を得た。

なお、ヒータ112では、発熱体の外縁が、金属板111の外周から金属板1 11の直径の25%以内の位置となるように発熱体125を形成し、発熱体12 5の回路の総数は4とした。

また、マイカ板126には、貫通孔115となる部分、有底孔114となる部分および金属板固定ネジ117を挿通するためのネジ孔となる部分を予め形成しておいた。

その後、(1)~(3)の工程で製造した金属板111およびヒータ固定板1 21でヒータ112を挟み込み、金属板111、ヒータ固定板121およびヒータ112に設けられたネジ孔に金属板固定用ネジ117を挿通した後、これを締め付けることにより、金属板111、ヒータ固定板121およびヒータ112を一体化した。

(5)次に、図1に示したような円筒形状でSUS製の支持容器120を製造 25 し、この支持容器120の底面に貫通孔115となる部分、有底孔114となる 部分および導電線124を挿通するための貫通孔を形成した後、支持容器120 の底部に円板形状でSUS製の遮熱板123を設置した。

そして、遮熱板123が設置された支持容器120の内部に、(4)で製造したヒータ112およびヒータ固定板121が取り付けられた金属板111を配置

し、金属板111の加熱面の外周部に押え板122を取り付けることにより、支持容器120の内部に固定した。

- (6)温度制御のための測温素子116を有底孔114に挿入した後、ポリイミドで有底孔114を封止した。また、金属板111の加熱面に形成された凹部に支持ピン118を設置した。
- (7) 次いで、ヒータ112に設けられた発熱体の両端部に電源との接続のための導電線124を圧着で取り付け、外部の電源等に接続し、金属ヒータ110を得た。

(実施例12)

10 金属ヒータの製造

JIS-H4000に基づく合金番号がA2219の市販アルミニウム-銅合金を用い、金属板111の厚さを $5\,\mathrm{mm}$ 、ヒータ固定板121の厚さを $20\,\mathrm{mm}$ とした以外は、実施例11と同様にして、金属ヒータを製造した。

(実施例13)

- 15 金属ヒータ (図3参照)の製造
 - (1)JIS-H4000に基づく合金番号がA2018の市販アルミニウムー銅合金を用いた以外は、実施例 $110(1)\sim(2)$ と同様にして、上部金属板131および下部金属板141を製造した後、実施例110(3)と同様にして、上部金属板131および下部金属板141にアルマイト処理を行った。
- 20 なお、上部金属板131は、厚さ5mm、直径330mmとし、下部金属板141は、厚さ20mm、直径330mmとした。
 - (2) 次に、実施例11の(4) \sim (7) と同様にして、上部金属板131および下部金属板141とヒータ132とを一体化した後、支持容器140に設置することにより、金属ヒータ130を製造した。
- 25 なお、本実施例の金属ヒータでは、上部金属板131にネジ孔を形成せず、金 属板固定用ネジ137のネジ頭が下部金属板141に埋め込まれる構造とするこ とにより、下部金属板141の底面が支持容器140の内面に接触するような構 成とした。

(実施例14)

金属ヒータの製造

JIS-H4000に基づく合金番号がA5052の市販アルミニウム合金を用い、上部金属板の厚さを5mm、下部金属板の厚さを20mmとした以外は、 実施例13と同様にして金属ヒータを製造した。

5 (試験例4)

実施例11の(1)の工程で、JIS-H4000に基づく合金番号がA10 85の純アルミニウム(純度99.9%)を用いた以外は、実施例11と同様に して金属ヒータを製造した。

(試験例5)

10 実施例11の(1)の工程で、JIS-H4000に基づく合金番号がA40 32のアルミニウム合金(純度85%)を使用した以外は実施例11と同様にして金属ヒータを製造した。

なお、本試験例では、実施例11の(3)の工程は行わなかった。 (試験例6)

15 実施例 1 1 の (1) の工程で、純度 1 0 0 %の純アルミニウムを使用した以外 は実施例 1 1 と同様にして金属ヒータを製造した。

(比較例2)

20

25

図4に示すように、金属板の底面に銅製の中プレートおよびヒータが設置され、 金属板の加熱面の外周部に押え板が取り付けられていない金属ヒータを製造した。 なお、金属板の厚さは60mmであり、発熱体のパターンは実施例11と同様と した。

実施例11~14、試験例4~6および比較例2に係る金属ヒータに通電することにより昇温し、(1)定常時における面内温度均一性、(2)過渡時における面内温度均一性、(3)昇温時間、(4)リカバリー時間、(5)平坦度の測定の評価を行った。その結果を表3に示す。なお、表中の金属板の厚さは、金属ヒータが上部金属板と下部金属板とを含む構成である場合には、上部金属板の厚さのことをいうこととする。なお、評価方法は、実施例1と同様の方法を用いた。また、(1)定常時における面内温度均一性の評価結果について、実施例13に係る金属ヒータの加熱面の各測定箇所における温度を図15に、試験例4に係

る金属ヒータの加熱面の各測定箇所における温度を図16に示す。

さらに、(4) リカバリー時間の評価結果について、実施例14に係る金属ヒータに、25℃のシリコンウエハを載置した場合のシリコンウエハの各測定箇所における温度と時間との関係を図17に、比較例2に係る金属ヒータに、25℃のシリコンウエハを載置した場合のシリコンウエハの各測定箇所における温度と時間との関係を図18に示す。

また、(5) 平坦度の測定の結果について、140℃における実施例13に係る金属ヒータ加熱面の三次元形状を図19に、140℃における試験例5に係る金属板加熱面の三次元形状を図20に示す。

10 表 3

5

	金属板の厚さ(mm)	厚之(mm)	定常時面内温度分布(°C)	過渡時	過渡時面内温度分布(℃)	分布(°C)	胃細點者	りカバリー時間	平坦度(μm)	(m m)	組	組成(%)
	上部金属板	下部金属板		100°C	120°C	130°C	金	(例)	常温時	140°C	Ou	₹
実施例11	20	co.	0.24	5.38	2.80	1.51	1367	. 200	29	30	6.3	93.1
実施例2	വ	20	0.29	5.75	2.10	1.46	1015	39	28	29	6.3	93.1
宇施例13	2	20	0.29	5.72	2.23	2.34	1017	40	30	32	4.0	91.8
平桥倒4		20	0.44	9.56	6.66	5.10	1008	48	37	47	0.1	97.3
大型 11 1	20%	l.c.	0.66	14.74	10.75	8.75	1500	310	47	98	0.05	6.66
計略例5	20	2	0.40	19.19	14.30	10.10	1511	280	37	113	0.9	85.0
試験例6	20	D.	0.66	15.01	10.89	8.84	1495	308	47	97	0	100.0
比較例2	99	0	0.50	15.38	12.80	11.22	1520	300	39	98	100	0

表3および図15に示すように、実施例11~14に係る金属ヒータは、定常

時および過渡時において、金属板の加熱面の温度が均一であった。これは、表3 および図19に示すように金属板の材質が機械的強度の高いアルミニウムー銅合 金であるため、加熱時に金属板に反りや撓みが発生せず、半導体ウエハを均一に 加熱できたものと考えられる。

5 また、表 3 および図 1 7 に示すように、実施例 1 1 ~ 1 4 に係る金属ヒータでは、昇温時間およびリカバリー時間が短くなっていた。これは、実施例 1 1 ~ 1 4 に係る金属ヒータでは、金属板のアルミニウムー銅合金であるため、金属板を薄くすることができ、被加熱物を迅速に加熱することができたものと考えられる。

一方、試験例4に係る金属ヒータは、表3および図16に示すように、金属板 の加熱面の温度均一性、昇温時間およびリカバリー時間が、実施例11~14に 係る金属ヒータに比べて劣るものであった。このことからも、金属板の材質としてアルミニウムー銅合金が優れることは明らかとなった。

また、試験例 5 に係る金属ヒータは、表 3 に示すように、定常時および過渡時における金属板の加熱面の温度均一性に劣るものであった。また、図 2 0 に示すように、試験例 5 に係る金属ヒータの加熱面の平坦性は、実施例 1 1~1 4 にかかる金属ヒータに比べて劣るものであった。このことからも、金属板の材質としてアルミニウムー銅合金が優れることは明らかとなった。

また、試験例6に係る金属ヒータは、表3に示すように、金属板の加熱面の温度均一性、昇温時間およびリカバリー時間が、実施例11~14に係る金属ヒータに比べて劣るものであった。このことからも、金属板の材質としてアルミニウムー銅合金が優れることは明らかとなった。

さらに、比較例2に係る金属ヒータは、表3および図18に示すように、昇温 速度およびリカバリー時間が長くなっていた。これは、金属板の厚さが厚いため であると考えられる。

産業状利用の可能性

15

20

25

以上説明したように第一の本発明の金属ヒータによれば、金属板の厚さが50mm以下と薄くなっているため、発熱体に印加する電圧や電流量の変化に対して金属板の加熱面の温度が迅速に追従し、半導体ウエハ等の被加熱物を迅速に加熱

15

20

することができる。また、このように金属板の温度追従性が優れているので、リカバリー時間を短くすることが可能となり、スループットを短縮することができ、 生産性を向上させることができる。

また、第一の本発明の金属ヒータを構成する金属板は、その表面における平坦 度が50 μ m以下である。従って、第一の本発明の金属ヒータを用いて半導体ウ エハを加熱する場合には、半導体ウエハと金属板との距離をほぼ一定にすること が可能となるため、半導体ウエハの全体が均一となるように加熱することができ る。

さらに、第一の本発明の金属ヒータでは、発熱体が形成されている領域の外縁 10 が、金属板の外周から金属板の直径の25%以内の位置に存在しているため、被 加熱物である半導体ウエハ等を温度のばらつきなく、均一に加熱することができ る。

以上説明したように第二の本発明の金属ヒータは、一の金属板のみからなる金属ヒータに比べ、金属板の厚さを薄くすることが可能となり、加熱面側の金属板の熱容量が小さくなるため、半導体ウエハ等の被加熱物を迅速に加熱することができる。

また、金属板の温度追従性が優れているので、半導体製造・検査工程において、 金属ヒータの加熱面に半導体ウエハを載置した際、低下した温度を元に戻すまで の時間(リカバリー時間)を短くすることが可能となり、スループットを短縮す ることができ、生産性を向上させることができる。

さらに、第二の本発明の金属ヒータでは、加熱面側の金属板の厚さが、加熱面と反対側の金属板の厚さと同じか、加熱面と反対側の金属板の厚さより薄くなっている。

従って、加熱面側の金属板の厚さを薄くした場合であっても、剛性の高い金属 板が加熱面と反対側に設置することにより、金属ヒータ全体の強度を維持することができるとともに、加熱時における加熱面の平坦性が向上するため、半導体ウエハと金属板との距離をほぼ一定にすることが可能となり、半導体ウエハの全体 が均一となるように加熱することができる。

以上説明したように、第三の本発明の金属ヒータは、アルミニウムー銅合金か

らなる金属板を有しており、アルミニウムー銅合金は、機械的な強度が高いため、 金属板の厚さを薄くしても、加熱により反ったり、歪んだりしない。そのため、 金属板を薄くて軽いものとすることができる。

また、アルミニウムー銅合金は、熱伝導率にも優れているため、金属板として 使用した場合、発熱体の温度変化に合わせて、加熱面の温度を迅速に追従させる ことができる。すなわち、電圧、電流値を変えて発熱体の温度を変化させること により、金属板の加熱面温度を制御することができるのである。

さらに、アルミニウムー銅合金は、切削性に優れているため、金属板を容易に 所望の形状にすることができる。

請求の範囲

- 1. 金属板と発熱体とから構成される金属ヒータであって、 前記金属板は、厚さが50mm以下であり、
- 5 その表面の平坦度が 5 0 μ m以下であるとともに、 前記発熱体が形成されている領域の外縁は、前記金属板の外周から前記金属板 の直径の 2 5 %以内の位置にあることを特徴とする金属ヒータ。
 - 2. 金属板と発熱体とから構成される金属ヒータであって、
- 10 前記金属板は複数であるとともに、 前記金属板の間には、前記発熱体が挟持されており、 加熱面側の金属板の厚さが、加熱面と反対側の金属板の厚さと同じか、 前記加熱面と反対側の金属板より薄いことを特徴とする金属ヒータ。
- 15 3.金属板と発熱体とから構成される金属ヒータであって、 前記金属板は、アルミニウムー銅合金からなることを特徴とする金属ヒータ。

図 6

MAX	140.16
MIN	139.91
AVE	140.03
RANGE	0.24

図 7

MAX	140.28
MIN	139.61
AVE	139.97
RANGE	0.67

図 9

図 11

図 12

図 14

図 15

MAX	140.09
MIN	139.80
AVE	139.96
RANGE	0.29

図 16

MAX	140.22
MIN	139.57
AVE	139.95
RANGE	0.66

図 17

図 18

Internal application No.
PCT/JP03/10481

			PCT/JP	03/10481	
A. CLAS:	SIFICATION OF SUBJECT MATTER C1 ⁷ H05B3/68, H05B3/20, H05B3,	/20	U01121/01		
	H01L21/205, H01L21/302	7507 1105557 10	, MOTHST/02	-,	
	to International Patent Classification (IPC) or to both n	ational classification an	d IPC		
	S SEARCHED				
Minimum a Int.	ocumentation searched (classification system followed C1 H05B3/68, H05B3/20, H05B3,	by classification symbo	ls) #011.21/02	,	
	H01L21/205, H01L21/302		, 11011121,02	-,	
Documenta	tion searched other than minimum documentation to the uyo Shinan Koho 1922–1996	e extent that such docum	nents are included	in the fields searched	
	i Jitsuyo Shinan Koho 1971–2003		ı Toroku kond Shinan Kohd	o 1996–2003 o 1994–2003	
Electronic d	data base consulted during the international search (nan				
	,	· · · · · · · · · · · · · · · · · · ·	to pravious, see.	cii terino usca,	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	enmarista of the relevan		Total and the NT	
Y	JP 2000-243542 A (NHK Spring		nt passages	Relevant to claim No.	
X.	08 September, 2000 (08.09.00)),		2-3	
	Full text; Figs. 1 to 7 & US 6180931 B1				
Y	JP 2002-141257 A (Ibiden Co. 17 May, 2002 (17.05.02),	, Ltd.),		1 ·	
	Full text; Figs. 1 to 3				
	& WO 02/99855 A				
	,				
			Ì		
Three by					
Further documents are listed in the continuation of Box C. See patent family annex.					
"A" docum	"A" document defining the general state of the art which is not later document published after the international filing date or priority date and not in conflict with the application but cited to				
"E" earlier	ered to be of particular relevance document but published on or after the international filing	understand the pri "X" document of parti-	nciple or theory unde cular relevance; the c	erlying the invention	
date "L" docume	ent which may throw doubts on priority claim(s) or which is	considered novel of step when the doc	or cannot be consider ument is taken alone	ed to involve an inventive	
special	o establish the publication date of another citation or other reason (as specified)	"Y" document of particular considered to involve	cular relevance; the colve an inventive step	claimed invention cannot be when the document is	
means	ent referring to an oral disclosure, use, exhibition or other	combined with on combination being	e or more other such g obvious to a person	documents, such	
than th	ent published prior to the international filing date but later e priority date claimed		r of the same patent f		
Date of the a	actual completion of the international search ecember, 2003 (10.12.03)	Date of mailing of the	international searc	th report	
, ====	(10.12.03)	24 Decenii	per, 2003 (24.12.03)	
	nailing address of the ISA/	Authorized officer			
Japa	nese Patent Office				

Telephone No.

Facsimile No.

Α.	発明の属する分野の分類	(国際特許分類	(IPC))
----	-------------	---------	-------	---

I.n t C 1 7 H05B3/68, H05B3/20, H05B3/30, H05B3/10, H01L21/02, H01L21/205, H01L21/302

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int Cl⁷ H05B3/68, H05B3/20, H05B3/30, H05B3/10, H01L21/02, H01L21/205, H01L21/302

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996

日本国公開実用新案公報

1971-2003

日本国実用新案登録公報

1996-2003

日本国登録実用新案公報

1994-2003

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連する	5と認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y X	JP 2000-243542 A (日本発条株式会社) 2000.09.08,全文,第1-7図 & US 61809 31 B1	$\begin{array}{c} 1 \\ 2-3 \end{array}$
Y	JP 2002-141257 A (イビデン株式会社) 2002.05.17,全文,1-3図 & WO 02/998 55 A	1

│ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

10.12.03

国際調査報告の発送日

24.12.03

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 豊島 唯 3L 9432

電話番号 03-3581-1101 内線 3337