

sur l'exemple des dérivés halogénés

Substitutions et passage à différentes fonctions

nucléophiles	not and			
- <u>X</u> 1	Solvants	produits R-X' : autre dérivé halogéné		
H₂Q : °IŌH	Propanone			
H ₃ C-COOl e	eau	R-OH: alcool		
H2C-COOL	Acide éthanoïque	CH ₃ COO-R : ester		
IC≡NI	DMSO; éthanol	R-CN : nitrile		
INH ₃ ; CH ₃ NH ₂	éthanol	RNH ₂ ; R-NH amines		
H3C-C≡CI	DMSO	H ₃ C-C≡C-R		
9Ю́СН₃ /	éthanol	R-O-CH ₃ : éther		

Mécanisme SN₂

-Indication cinétique : v = k [CH₃Br]. [HO] ; l'équation bilan traduit ce qui se passe au niveau microscopique CH3-04+1BCP H₃C-Br + HO

Olmothyl sulfaxyde che

Le mécanisme est dit concerté. La réaction est d'ordre 1 par rapport à chacun des réactifs et

d'ordre global égal à 2.

Ce n'est par toujous viai

(R) Conclusion : La réaction SN2 est stemper force dance us bandonèse specifique **Trautispecifiqe**

ER

viceverso.)

The y a authorst d'élapses Profil énergétique réactionnel. + 2 vage, & Etape 2-NU+X-ER (cardanée réadionnelle)

- Influence de différents facteurs sur la vitesse de la réaction SN₂.

Le dérivé halogène

Paible plus la resider de la resider

Bromure d'alkyle	Classe de l'halogénure	Vitesse relative de la réaction SN2
CH ₃ -Br	Halogénure de méthyle	1200
CH ₃ -CH ₂ -Br	Halogénure primaire	40
CH ₃ -CH ₂ -CH ₂ -Br	Halogénure primaire	16
(CH ₃) ₂ CHBr	Halogénure secondaire	1
(CH ₃) ₃ CBr	Halogénure tertiaire	Trop faible pour être mesurée -> S

publishe seasit meux que seradale, qui exapit mieux que teatible. Conclusion:

are to religible airse attage, it last qu'il puisse passe donc moirs à atome est avantair, pur fault et l'attages (APOUR GUE

CH3X>RCH2X > RR'CHX > RE'R'CX

d'une hormone peptidique, l'ocytocine :

Bien différence la palacité et la palacialité Polariabilité - aprinde due mass électorique à se desorner sais

Halogène Vitesse relative de réaction CH₃I + HO- → CH₃OH + Γ CH₃GI + HO- → CH₃OH + Gr 30000 10000 Br qui réagit e vite que co

Conclusion:

La la Estation litre de la liaison divines dans la Sensial de la liaison divines dans la sensial dans la sensi

I explus ses dare full foundation out

La nature du nucléophile

Réaction entre l'iodure de méthyle et divers nucléophiles dans le méthanol.

nucléophile	Vitesse relative	nucléophile	Vitesse relative
CH ₃ OH	1	NH ₃	316000
F	500	CH ₃ O	1950000
CH ₃ COO	20000	(CN)	5000000

Conclusion:

En général, les espèces changés sont médilleus nutérphilles the her educes was changes

Le solvant

Solvan	te	protique	polaire	Vitesse relative	
NOT THE REAL PROPERTY OF THE PERSON OF THE P		-	oui	1	
Méthanol	CH ₃ OH	oui	oui	40.5	
	HCONH ₂			12,5	
Formamide				(1200000)	
N.N-diméthylformamide	HCON(CH ₃) ₂	non	- Cui		

= je voux que le nuléophile gude son énergie pour Joine la rédution, on a besoin d'un exhaut apportuse, ou siran

Indication cinétique : v = k.[RBr]. L'étape cinétiquement déterminante ne fait intervenir que le dérivé halogéné. La réaction est d'ordre global égal à 1 et se fait en 2 étapes : la première est des la première est des la première est des la première est des constitues de la première est des constitues de la première est de la premièr

lente et la seconde rapide.

composé-tentiaire favorisé.

2 vagues > 2 étapes Ep R+X0 2-X - Influence de différents facteurs sur la vitesse de la réaction SN₃-

Le dérivé halogéné

RR'R"CX> RR'CHX> RCH2X> CH3X

La nature de l'halogène

I même chose se sulz C-I > C-Br > C-Cl

In n'a pas besoin d'ette tes fort au il y a un carbonation qui a besoin de n'importe quel nucléatible Le solvant

Il n'a poe besoin d'être aprovige, on souvout protique ne gière pas pour la réaction.

- Polaise.

- Indication cinétique : v = k.[RBr].[HO] ; l'équation bilan traduit ce qui se passe au niveau Le mécanisme est concerté, la base attaquant l'hydrogène tandis que la liaison double se crée et que la liaison C-Br se rompt. La réaction est d'ordre global égal à 2. 1 étape. report ge la géode ait lieu - Indication stéréochimique : position anticoplanaire ou antipériplanaire (même plan mais en du voire de l'élimination. Section ramain pas section ramai Bry C2H5 C₂H₅ (€) (5) that de teamsition Tout séagit au même temps Ecrire le mécanisme avec le stéréoisomère (2R,3S) 019x1 (H3 C2H5 (a) C H3 (2). Elle est steenspecifique auti (il faut mettee ilun ai haut et Diastereospaifique s'autre en bas pour faire la réaction) - Profil énergétique réactionnel. rejosélective. Ep 1 vague > 1 étape

Mécanisme E₂.

x emplement du dais contact of the policy contact of the - Influence de différents facteurs sur la vitesse de la réaction E2.

Le dérivé halogéné

La nature de l'halogène

C-I>C-Br>C-Cl

La nature de la base

La nature de la base

Til fout que la Base soit forte et carrantele

COL V = K[89] [Base] - Si [64] + > V 1.

Le solvant

J'ai tot de solvant perhique l'estre la pour de solvant perhique ramair par pour de la base porte active. (Since HO ser de la lasse sent des base active active. (Since HO ser de la lasse sent des base active active.)

Orientation de l'élimination : règle de Zaïtsev. Si plusieurs atomes de carbone voisins du carbone porteur de l'halogène porteur m H, on le forme préférentiellement l'alcène le plus substitué (si la base n'est pas trop encombrée).

Compétition substitution - élimination.

		elimitation	substitution
+ EtO	25°C EtOH	CH ₃ -CH=CH ₂ + 9%	CH ₃ -CH ₂ -CH ₂ -OEt 91%
+ EtO	25°C	(CH ₃) ₂ C=CH ₂ + 60%	(CH ₃) ₂ CH-CH ₂ -OEt 40%
+ HO'	25°C	(CH ₃) ₂ C=CH ₂ + 17%	(CH ₃) ₃ COH 83%
+ HO	80°C)	(CH ₃) ₂ C=CH ₂ + 99%	(CH ₃) ₃ COH 1%
+ EtO	25°C EtOH	(CH ₃)CH=CH ₂ + 87%	(CH ₃) ₂ CH-OEt 13%
+ (CH ₃) ₃ CO	25°C (CH ₃) ₃ COH	(CH ₃)CH=CH ₂ 98%	
or Minine			> base aucharbas
Leber ruta			je gavaire
	+ EtO + HO + EtO +	+ EtO	# EtO # 9% + EtO 25°C CH ₃) ₂ C=CH ₂ + 60% + HO 25°C (CH ₃) ₂ C=CH ₂ + 60% + HO 25°C (CH ₃) ₂ C=CH ₂ + 17% + HO 80°C (CH ₃) ₂ C=CH ₂ + 99% + EtO 25°C (CH ₃) ₂ C=CH ₂ + 87% + (CH ₃) ₃ CO (CH ₃) ₃ COH 98%

Réactivité des organomagnésiens.
On met à côté de C un élément dus éteclispecitif.

Pour chacune des 4 réactions ci-après, s'il y a lieu, compléter les formules de Lewis des composés, indiquer la polarité des liaisons, identifier les sites nucléophiles et électrophiles. Donner la formule des produits représentés par des lettres, indiquer les flèches de mécanisme, préciser quel type de réaction a lieu ainsi que la stéréochimie des C*.

Bases	Gamme pKa	Exemples	conditions	
amines NR ₃	8-12	NEt ₃ , NEt(iPr) ₂ pyridine	CH ₂ Cl ₂ 0 - 20°C	
ROM ; MOH alcoolates ; hydroxydes	16-20	NaOH ; KOH MeONa ; tBuOK	CH ₃ OH;C ₂ H ₅ OH;THF 0 - 20°C	
métalliques. MH hydrures	25-30	NaH ; KH	THF; DMF < 0°C	
MNH ₂ ; MNR ₂ amidures	30-35	LiNH ₂ NaNH ₂ LiN(iPr) ₂ ou LDA	NH ₃ (<-30°C) THF (-78°C) DMSO (20°C)	
R ₃ CM; RCH ₂ M organométalliques	35-45	MeLi BuLi tBuLi	THF -78°C	

Caractéristiques de quelques solvants usuels en chimie organique

Solvants	Permittivité relative e	μ	polaire	protique	dispersant	Teb ("C)
eau	79	1,8	oui	oui	oui	100
acide éthanoique	6,2	1,7	oui	oui	non	114
méthanol	33	1,7	oui	oui	oul	65
DMSO (Me ₂ SO)	47	3,9	oui	non	oui	189
propanone	21	2,9	oui	non	oui	56
dichlorométhane	8,9	1,6	peu	non	non	40
Ether diéthylique	4,3	1,3	peu	non	non	35
Toluène	2.4	0.4	non	non	non	110
Hexane	2	0	non	non	non	69
DMF (Me ₂ NCHO)	37	3,87	oui	non	oui	153
Acétonitrile (CH ₃ CN)	38	3,45	oui	non	oui	81

 ϵ_r et μ ne varient pas de façon corrélée. Ainsi, lorsqu'il est nécessaire d'établir une échelle de solvants classés par polarité croissante (pour réaliser des chromatographies par exemple), on considère la valeur de la permittivité relative comme plus significative que la valeur du moment dipolaire.

aguiratolliges -> boses ties fortes

V= K[RX]-[RMgX]

sasant por dagaronagnésieus:

- apolique
- base de Leuris

example: diethylether: Et-O-Et

VII. Oxydation des alcools.

Les produits obtenus dépendent de la classe de l'alcool.

alcool (I)
$$\xrightarrow{Ox}$$
 aldéhyde \xrightarrow{Ox} acide carboxylique

CH3-CH2-O-H \xrightarrow{Ox} CH3-C-H \xrightarrow{Ox} CH3-COOH

alcool (II) \xrightarrow{Ox} cétone

CH3-C-OH \xrightarrow{Ox} CH5-C-GH5

CH3-C-OH \xrightarrow{Ox} CH5-C-GH5

CH5-C-OH \xrightarrow{Ox} CH5-C-GH5

alcool (III) pas d'oxydation mais réaction possible.

Réaction d'un alcool tertiaire en milieu oxydant acide :

