Are Transformers Effective for Time Series Forecasting?

PDF: https://arxiv.org/pdf/2205.13504v3.pdf

Github: https://github.com/cure-lab/LTSF-Linear

Problem with Transformer in Time-Series Forecasting

- ❖ In time series modeling: extract the temporal relations (mối quan hệ thời gian) in an ordered set of continuous points ⇒ the order itself plays the most crucial role
- In Transformer:
 - positional encoding and using tokens to embed sub-series facilitate preserving some ordering information
 - the nature of the permutation-invariant self-attention mechanism inevitably results in temporal information loss
 - This is usually not a serious concern for semantic-rich applications such as NLP e.g., the semantic meaning of a sentence is largely preserved even if we reorder some words in it.

Motivation

- Not all time series are predictable
- Long-term forecasting is only feasible for those time series with a relatively clear trend and periodicity
- ❖ Linear models can already extract such information ⇒ introduce a set of simple models:
 - Linear (new baseline for comparison)
 - NLinear (Normalization Linear)
 - DLinear (Decomposition Linear)

Linear

Figure 2: Illustration of the basic linear model.

Algorithm 1 Linear Model procedure Linear(x) $result \leftarrow Linear(x)$ return result

end procedure

- ♦ An O(1) maximum signal traversing path length ⇒ capable of capturing both short-range and long-range temporal relations
- High-efficiency: costs much lower memory and fewer parameters and has a faster inference speed than existing Transformers
- Interpretability: After training, can visualize weights from the seasonality and trend branches ⇒ have some insights on the predicted values
- Easy-to-use: without tuning model hyper-parameters

Algorithm 2 NLinear Model

procedure NLINEAR(x)

$$\begin{split} x.shape &= [batch_size, input_length, num_features] \\ seq_last &\leftarrow x[:, -1:,:] \\ x &\leftarrow x - seq_last \\ result &\leftarrow Linear(x) \\ result &\leftarrow x + seq_last \\ return \ result \end{split}$$

end procedure

Normalization in NLinear


```
Algorithm 3 DLinear Model
  procedure MOVINGAVERAGE(x)
     avg \leftarrow AveragePooling1D(pool\_size = kernel\_size, strides = 1, padding = 'valid')
      front \leftarrow tile(x[:, 0:1,:], multiples = [1, (kernel\_size - 1)//2, 1])
     end \leftarrow \text{tile}(x[:, -1:, :], \text{multiples} = [1, (\text{kernel\_size} - 1)//2, 1])
     x \leftarrow \text{concatenate}([front, x, end], \text{axis} = 1)
     x \leftarrow avg(x)
     return x
  end procedure
  procedure Series Decomposition (x)
     trend\ init \leftarrow MovingAverage(x)
     seasonal init \leftarrow x - trend init
     return seasonal init, trend init
  end procedure
  procedure DLINEAR(x)
      seasonal init, trend init \leftarrow SeriesDecomposition(x)
```

 $seasonal \ output \leftarrow Linear \ Seasonal(seasonal \ init)$ trend $output \leftarrow Linear$ Trend(trend init) $result \leftarrow seasonal \ output + trend \ output$ return result

end procedure

Me	thods	IMP.	Lin	ear*	NLin	ear*	DLi	near*	FEDf	ormer	Autof	ormer	Info	rmer	Pyrafo	rmer*	Log	Frans	Rep	eat*
M	etric	MSE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE										
3	96	27.40%	0.140	0.237	0.141	0.237	0.140	0.237	0.193	0.308	0.201	0.317	0.274	0.368	0.386	0.449	0.258	0.357	1.588	0.946
Electricity	192	23.88%	0.153	0.250	0.154	0.248	0.153	0.249	0.201	0.315	0.222	0.334	0.296	0.386	0.386	0.443	0.266	0.368	1.595	0.950
3	336	21.02%	0.169	0.268	0.171	0.265	0.169	0.267	0.214	0.329	0.231	0.338	0.300	0.394	0.378	0.443	0.280	0.380	1.617	0.961
m	720	17.47%	0.203	0.301	0.210	0.297	0.203	0.301	0.246	0.355	0.254	0.361	0.373	0.439	0.376	0.445	0.283	0.376	1.647	0.975
900	96	45.27%	0.082	0.207	0.089	0.208	0.081	0.203	0.148	0.278	0.197	0.323	0.847	0.752	0.376	1.105	0.968	0.812	0.081	0.196
E	192	42.06%	0.167	0.304	0.180	0.300	0.157	0.293	0.271	0.380	0.300	0.369	1.204	0.895	1.748	1.151	1.040	0.851	0.167	0.289
Exchange	336	33.69%	0.328	0.432	0.331	0.415	0.305	0.414	0.460	0.500	0.509	0.524	1.672	1.036	1.874	1.172	1.659	1.081	0.305	0.396
m	720	46.19%	0.964	0.750	1.033	0.780	0.643	0.601	1.195	0.841	1.447	0.941	2.478	1.310	1.943	1.206	1.941	1.127	0.823	0.681
-	96	30.15%	0.410	0.282	0.410	0.279	0.410	0.282	0.587	0.366	0.613	0.388	0.719	0.391	2.085	0.468	0.684	0.384	2.723	1.079
Traffic	192	29.96%	0.423	0.287	0.423	0.284	0.423	0.287	0.604	0.373	0.616	0.382	0.696	0.379	0.867	0.467	0.685	0.390	2.756	1.087
몬	336	29.95%	0.436	0.295	0.435	0.290	0.436	0.296	0.621	0.383	0.622	0.337	0.777	0.420	0.869	0.469	0.734	0.408	2.791	1.095
1 .52	720	25.87%	0.466	0.315	0.464	0.307	0.466	0.315	0.626	0.382	0.660	0.408	0.864	0.472	0.881	0.473	0.717	0.396	2.811	1.097
51	96	18.89%	0.176	0.236	0.182	0.232	0.176	0.237	0.217	0.296	0.266	0.336	0.300	0.384	0.896	0.556	0.458	0.490	0.259	0.254
Weather	192	21.01%	0.218	0.276	0.225	0.269	0.220	0.282	0.276	0.336	0.307	0.367	0.598	0.544	0.622	0.624	0.658	0.589	0.309	0.292
	336	22.71%	0.262	0.312	0.271	0.301	0.265	0.319	0.339	0.380	0.359	0.395	0.578	0.523	0.739	0.753	0.797	0.652	0.377	0.338
>	720	19.85%	0.326	0.365	0.338	0.348	0.323	0.362	0.403	0.428	0.419	0.428	1.059	0.741	1.004	0.934	0.869	0.675	0.465	0.394
50	24	47.86%	1.947	0.985	1.683	0.858	2.215	1.081	3.228	1.260	3.483	1.287	5.764	1.677	1.420	2.012	4.480	1.444	6.587	1.701
1	36	36.43%	2.182	1.036	1.703	0.859	1.963	0.963	2.679	1.080	3.103	1.148	4.755	1.467	7.394	2.031	4.799	1.467	7.130	1.884
=	48	34.43%	2.256	1.060	1.719	0.884	2.130	1.024	2.622	1.078	2.669	1.085	4.763	1.469	7.551	2.057	4.800	1.468	6.575	1.798
	60	34.33%	2.390	1.104	1.819	0.917	2.368	1.096	2.857	1.157	2.770	1.125	5.264	1.564	7.662	2.100	5.278	1.560	5.893	1.677
	96	0.80%	0.375	0.397	0.374	0.394	0.375	0.399	0.376	0.419	0.449	0.459	0.865	0.713	0.664	0.612	0.878	0.740	1.295	0.713
E	192	3.57%	0.418	0.429	0.408	0.415	0.405	0.416	0.420	0.448	0.500	0.482	1.008	0.792	0.790	0.681	1.037	0.824	1.325	0.733
ETTh	336	6.54%	0.479	0.476	0.429	0.427	0.439	0.443	0.459	0.465	0.521	0.496	1.107	0.809	0.891	0.738	1.238	0.932	1.323	0.744
-	720	13.04%	0.624	0.592	0.440	0.453	0.472	0.490	0.506	0.507	0.514	0.512	1.181	0.865	0.963	0.782	1.135	0.852	1.339	0.756
	96	19.94%	0.288	0.352	0.277	0.338	0.289	0.353	0.346	0.388	0.358	0.397	3.755	1.525	0.645	0.597	2.116	1.197	0.432	0.422
ETTh2	192	19.81%	0.377	0.413	0.344	0.381	0.383	0.418	0.429	0.439	0.456	0.452	5.602	1.931	0.788	0.683	4.315	1.635	0.534	0.473
(r)	336	25.93%	0.452	0.461	0.357	0.400	0.448	0.465	0.496	0.487	0.482	0.486	4.721	1.835	0.907	0.747	1.124	1.604	0.591	0.508
	720	14.25%	0.698	0.595	0.394	0.436	0.605	0.551	0.463	0.474	0.515	0.511	3.647	1.625	0.963	0.783	3.188	1.540	0.588	0.517
_	96	21.10%	0.308	0.352	0.306	0.348	0.299	0.343	0.379	0.419	0.505	0.475	0.672	0.571	0.543	0.510	0.600	0.546	1.214	0.665
E	192	21.36%	0.340	0.369	0.349	0.375	0.335	0.365	0.426	0.441	0.553	0.496	0.795	0.669	0.557	0.537	0.837	0.700	1.261	0.690
ETTm1	336	17.07%	0.376	0.393	0.375	0.388	0.369	0.386	0.445	0.459	0.621	0.537	1.212	0.871	0.754	0.655	1.124	0.832	1.283	0.707
-	720	21.73%	0.440	0.435	0.433	0.422	0.425	0.421	0.543	0.490	0.671	0.561	1.166	0.823	0.908	0.724	1.153	0.820	1.319	0.729
	96	17.73%	0.168	0.262	0.167	0.255	0.167	0.260	0.203	0.287	0.255	0.339	0.365	0.453	0.435	0.507	0.768	0.642	0.266	0.328
ETTm2	192	17.84%	0.232	0.308	0.221	0.293	0.224	0.303	0.269	0.328	0.281	0.340	0.533	0.563	0.730	0.673	0.989	0.757	0.340	0.371
	336	15.69%	0.320	0.373	0.274	0.327	0.281	0.342	0.325	0.366	0.339	0.372	1.363	0.887	1.201	0.845	1.334	0.872	0.412	0.410
111	720	12.58%	0.413	0.435	0.368	0.384	0.397	0.421	0.421	0.415	0.433	0.432	3.379	1.338	3,625	1.451	3.048	1.328	0.521	0.465
_		* are implemen											,,,,,		3.023		2.4			

Table 2. Multivariate long-term forecasting errors in terms of MSE and MAE, the lower the better. Among them, ILI dataset is with forecasting horizon $T \in \{24, 36, 48, 60\}$. For the others, $T \in \{96, 192, 336, 720\}$. Repeat repeats the last value in the look-back window. The best results are highlighted in bold and the best results of Transformers are highlighted with a underline. Accordingly, IMP. is the best result of linear models compared to the results of Transformer-based solutions.

Can existing LTSF-Transformers extract temporal relations well from longer input sequences?

Figure 4. The MSE results (Y-axis) of models with different look-back window sizes (X-axis) of long-term forecasting (T=720) on the Traffic and Electricity datasets.

- Existing
 Transformer-based
 models' performance
 deteriorates or stays
 stable when the
 look-back window size
 increases
- The performances of all LTSF-Linear are significantly boosted with the increase of look-back window size

Are the self-attention scheme effective for LTSF?

Methods		Informer	AttLinear	Embed + Linear	Linear
ge	96	0.847	1.003	0.173	0.084
lan	192	1.204	0.979	0.443	0.155
Exchange	336	1.672	1.498	1.288	0.301
田	720	2.478	2.102	2.026	0.763
ETTh1	96	0.865	0.613	0.454	0.400
	192	1.008	0.759	0.686	0.438
	336	1.107	0.921	0.821	0.479
	720	1.181	0.902	1.051	0.515

Table 4. The MSE comparisons of gradually transforming Informer to a Linear from the left to right columns. *Att.-Linear* is a structure that replaces each attention layer with a linear layer. *Embed* + *Linear* is to drop other designs and only keeps embedding layers and a linear layer. The look-back window size is 96.

Can existing LTSF-Transformers preserve temporal order well?

	Methods		Linear			FEDformer			Autoformer			Informer		
Predict Length		Ori.	Shuf.	Half-Ex.	Ori.	Shuf.	Half-Ex.	Ori.	Shuf.	Half-Ex.	Ori.	Shuf.	Half-Ex.	
ge	96	0.080	0.133	0.169	0.161	0.160	0.162	0.152	0.158	0.160	0.952	1.004	0.959	
Exchange	192	0.162	0.208	0.243	0.274	0.275	0.275	0.278	0.271	0.277	1.012	1.023	1.014	
xch	336	0.286	0.320	0.345	0.439	0.439	0.439	0.435	0.430	0.435	1.177	1.181	1.177	
Ш	720	0.806	0.819	0.836	1.122	1.122	1.122	1.113	1.113	1.113	1.198	1.210	1.196	
	Average Drop	N/A	27.26%	46.81%	N/A	-0.09%	0.20%	N/A	0.09%	1.12%	N/A	-0.12%	-0.18%	
	96	0.395	0.824	0.431	0.376	0.753	0.405	0.455	0.838	0.458	0.974	0.971	0.971	
Th1	192	0.447	0.824	0.471	0.419	0.730	0.436	0.486	0.774	0.491	1.233	1.232	1.231	
ET	336	0.490	0.825	0.505	0.447	0.736	0.453	0.496	0.752	0.497	1.693	1.693	1.691	
	720	0.520	0.846	0.528	0.468	0.720	0.470	0.525	0.696	0.524	2.720	2.716	2.715	
-	Average Drop	N/A	81.06%	4.78%	N/A	73.28%	3.44%	N/A	56.91%	0.46%	N/A	1.98%	0.18%	

Table 5. The MSE comparisons of models when shuffling the raw input sequence. *Shuf.* randomly shuffles the input sequence. *Half-EX*. randomly exchanges the first half of the input sequences with the second half. Average Drop is the average performance drop under all forecasting lengths after shuffling. All results are the average test MSE of five runs.

For the ETTh1 dataset, FEDformer and Autoformer introduce time series inductive bias into their models ⇒ can extract certain temporal information when the dataset has more clear temporal patterns ⇒ suffer when shuffle all the order information

Is training data size a limiting factor for existing LTSF-Transformers?

Methods	FEDf	ormer	Autoformer			
Dataset	Ori.	Short	Ori.	Short		
96	0.587	0.568	0.613	0.594		
192	0.604	0.584	0.616	0.621		
336	0.621	0.601	0.622	0.621		
720	0.626	0.608	0.660	0.650		

Table 7. The MSE comparison of two training data sizes.

Dataset: Traffic

Ori.: full dataset (17,544*0.7 hours)
Short: shortened dataset (8,760 hours)

Is efficiency really a top-level priority?

Method	MACs	Parameter	Time	Memory
DLinear	0.04G	139.7K	0.4ms	687MiB
Transformer×	4.03G	13.61M	26.8ms	6091MiB
Informer	3.93G	14.39M	49.3ms	3869MiB
Autoformer	4.41G	14.91M	164.1ms	7607MiB
Pyraformer	0.80G	241.4M*	3.4ms	7017MiB
FEDformer	4.41G	20.68M	40.5ms	4143MiB

^{- ×} is modified into the same one-step decoder, which is implemented in the source code from Autoformer.

Table 8. Comparison of practical efficiency of LTSF-Transformers under L=96 and T=720 on the Electricity. MACs are the number of multiply-accumulate operations. We use Dlinear for comparison since it has the double cost in *LTSF-Linear*. The inference time averages 5 runs.

^{- * 236.7}M parameters of Pyraformer come from its linear decoder.

Conclusion

- Most of the existing Transformer fail to extract temporal relations from long sequences, i.e., the forecasting errors are not reduced (sometimes even increased) with the increase of look-back window sizes
- The temporal modeling capabilities of Transformers for time series are exaggerated, at least for the existing LTSF benchmarks

Thank you for listening