Local Area Networks (LAN)

Local Area Network (LAN)

- Can be seen as a broadcast domain
 - The set of machines such that a broadcast message from any machine will reach all other machines
 - Machines are on the "same network"
 - That does not mean machines can only broadcast in LANs, a machine can send a message for another specific machine (unicast) or a group of machines (multicast)
- Characteristics
 - Usually (but not necessarily) spread over a small geographical area
 - Relatively high data rate
 - Single administrative management

- Topologies
 - Many specific physical topologies earlier: Bus, star, ring
 - Switched LANs nowadays for arbitrary physical topologies
- Specifications at physical and data link layer mostly
 - We have already seen most of the general issues there
 - We will study Ethernet, the de-facto standard protocol for LANs now

History of Ethernet

- Developed in early 70's in Xerox PARC by Metcalfe and Boggs
- DIX standard Digital/Intel/Xerox standardized 10 Mbps Ethernet in early 80's (final one called Ethernet-2)
- IEEE 802 body standardized various physical layer/MAC combinations, and a single Logical Link Control (LLC) on top of them (1985)
 - IEEE 802.2 : LLC
 - IEEE 802.3 : CSMA/CD
 - IEEE 802.4 : Token ring
 - Many others since then

OSI reference model Application Presentation IEEE 802 reference model Session Transport Upperlayer LLC service protocols access point (LSAP) Network Logical link control Data link Medium access control Scope **IEEE 802** Physical Physical standards

Medium

Medium

- Specifications at data link and physical layers
- Ethernet-2 specifies only MAC sublayer and physical layer
- IEEE 802.2 + one of IEEE 802.3/802.4 etc. specifies complete data link and physical layer
 - We will see what this means shortly

IEEE 802.3

- Working group of IEEE dealing with LANs
- A collection of standards defining various Ethernet types and related issues
- Multiple types depending on speed, media type etc.
 - 10Base-5: 10Mbps, thickwire coaxial cable
 - 10Base-2: 10Mbps, thinwire coax or cheapernet
 - 10Base-T : 10Mbps, UTP
 - 10Base-F: 10Mbps, optical fiber
 - 100Base-TX: 100Mbps, twisted pair
 - 100Base-FX: 100 Mbps, optical fiber
 - 1000Base-LX: 1 Gbps, optical fiber
 - 1000Base-T: 1 Gbps, UTP
 - 10GBASE-T : 10 Gbps, UTP
 - 10GBASE-SR: 10 Gbps, optical fiber
 - There are many other types not covered here

- All of them share the same basic frame format, difference is mostly in MAC and physical layer details like parameter values, encodings, media, connector etc.
- 802.3 primarily specify CSMA/CD for half duplex operations over shared media
- But modern day LANs are all switched LANs with full duplex operation, CSMA/CD is not needed mostly (why?)

Relation Between the Standards

- Standards now are from IEEE
 - "Ethernet LAN" and "IEEE 802.3 LAN" used interchangeably
- Frame format for both standards the same except for small difference
- TCP/IP implementations use original Ethernet-2 frame format, no LLC (network layer directly uses Ethernet frames)
- Both types can coexist on the same LAN (will discuss how later)

Minimum Frame Size

- A frame must take more than 2τ time to send ($\tau = \max$, one-way propagation delay) to detect collision
- An example scenario:
 - Two machines A and B located at the far ends of the cable
 - A starts sending a frame at time 0
 - Frame almost at B at time $\tau \delta$
 - ullet B starts sending a frame at time $au-\delta$
 - Collision occurs at time τ
 - Jam signal gets back to A at time 2τ
 - If A has finished transmitting the frame (before 2τ time), the collision is missed
- Minimum frame size of 10 Mbps Ethernet = 64 bytes
 - Slot time = time to transmit the minimum sized frame = 512bits/10Mbps = 51.2 microseconds for 10 Mbps Ethernet
 - If a station transmits for 1 slot time and does not detect any collision, it will be able to finish its transmission
- What about Fast Ethernet (100 Mbps) and Gigabit Ethernet (1 Gbps)?

Ethernet Frame Format

PA: Preamble --- 10101010s for synchronization

SFD: Start of frame delimiter --- 10101011 to start frame

DA: Destination MAC address

SA: Source MAC address

LEN: Length --- number of data bytes

Type: Identify the higher-level protocol

LLC PDU + Pad: minimum 46 bytes, maximum 1500

FCS: Frame Check Sequence --- CRC-32

MAC Address

ff.ff.ff.ff.ff : Broadcast address

There are also multicast addresses

MAC Address (contd.)

- The MAC sublayer defines a hardware address which is unique for each LAN interface (NIC)
- The address is a 48-bit address, expressed as 12 hex digits
 - Vendor code given to NIC manufacturers by IEEE
 - Serial number given by vendor from its pool
 - Hierarchical address ensures uniqueness

Interoperation Between Ethernet and 802.3

- All protocols type values standardized have values greater than 1536
- Max. length field value in 802.3 frame = 1500
- If length/type field value ≤ 1500, it is a 802.3 frame, else it is a Ethernet-2 frame
- It is also possible to carry protocols using type field inside a 802.3 field (SNAP headers)
 - Not discussed in this course

Some Terminologies

- Segment
 - Part of medium without any repeater
 - One or more devices can connect to a segment
 - Segments can be connected using repeaters
- Collision domain
 - Set of devices such that simultaneous transmission by any two devices will cause a collision
 - One or more segments

IEEE 802.3i: 10Base-T

- 10 Mbps, Baseband, Unshielded Twisted Pair (two pairs), Cat 3 or better
- Max. segment length = 100m
- No. of machines/segment = 1
- Manchester encoding
- 1-persistent CSMA/CD for transmission
- 10 Mbps Ethernet is mostly not used for connecting computers now
 - But modified 10 Mbps Ethernet standards are being used in other network-enabled applications for connecting devices

	10BASE5	10BASE2	10BASE-T	10BASE-FP
Transmission Medium	Coaxial cable (50 Ω)	Coaxial cable (50 Ω)	Unshielded twisted pair	850-nm optical fiber pair
Signaling Technique	Baseband (Manchester)	Baseband (Manchester)	Baseband (Manchester)	Manchester/ on-off
Topology	Bus	Bus	Star	Star
Maximum Segment Length (m)	500	185	100	500
Nodes per Segment	100	30	_	33
Cable Diameter (mm)	10	5	0.4-0.6	62.5/125 μm

IEEE 802.3u: 100Base-TX

- Fast Ethernet (a group of 100 Mbps standards)
- 100 Mbps, Baseband, Unshielded Twisted Pair, Cat 5 or better, or Type 1 STP
- Max. segment length = 100 m
- 4B/5B+MLT-3 encoding
 - Other variations of Fast Ethernet also uses NRZI
- 1-persistent CSMA/CD for transmission

•	100BASE-TX		100BASE-FX	100BASE-T4
Transmission Medium	2 pair, STP	2 pair, Category 5 UTP	2 optical fibers	4 pair, Category 3, 4, or 5 UTP
Signaling Technique	MLT-3	MLT-3	4B5B, NRZI	8B6T, NRZ
Data Rate	100 Mbps	100 Mbps	100 Mbps	100 Mbps
Maximum Segment Length	100 m	100 m	100 m	100 m
Network Span	200 m	200 m	400 m	200 m

IEEE 802.3 1 Gbps: 1000BaseLX

- 1 Gbps, Baseband, on single or multimode optical fiber
- Specified in IEEE802.3z
- Two strands of fiber one for transmit, one for receive
- Max distance varies between 550 m and 5 Km depending on different factors
- 8B/10B Encoding
- CSMA/CD (with some changes) for half duplex

Physical Interconnection

- Bus topology with multidrop lines
 - One long connection with taps to connect machines
 - One machine's transmission can reach all machines
 - The destination machine accepts based on address in frame
 - Collision domain—all machines
 - Inflexible wiring, hard to extend
 - Think of a wiring already done and now you have to extend your network to one more room in the building

- Star/Tree topology with hubs
 - Hub: a central device with ports (4-port, 8-port, ...)
 - One machine can be connected to each port
 - A frame received on one port is always broadcast to all ports (irrespective of the destination)
 - So logically still the same as a bus topology
 - Collision domain = all machines
 - Easy wiring, can extend easily by interconnecting hubs in tree topology
 - A hub just repeats the signal
 - Operates at physical layer

- Star/Tree topology with switches (Layer-2 switch)
 - Switch: similar to hub with ports
 - Difference: A frame received on one port is only sent on a port to which the destination is connected (how?)
 - So logically a point-to-point topology
 - Collision domain = 1 machine
 - Can extend easily by interconnecting switches in tree topology same as hubs
 - A switch also repeats the signal but looks at the MAC address
 - Operates at data link layer
- Almost all LANs are switched LANs now

Switched Ethernet

- Frames no longer broadcast always, sent to only port to which destination is connected
- Separates the single collision domain of hub-based Ethernet to multiple collision domains
 - Allows more than one pair to communicate simultaneously
- Increases bandwidth available to each machine
- How does the switch know which machine is connected to which port?
 - Use a forwarding table
 - Entries of the form <port, destination MAC addresses>
 - Looks up destination MAC address and forwards to appropriate port
 - How is the table built?

- Switch learns!
- Suppose m/c A sends frame to m/c B
 - Switch knows nothing initially, so broadcasts to all ports
 - But switch now knows which port m/c A is connected to!
 - If a frame comes for m/c A, it will be forwarded to only A's port
 - Internal table built up as more and more machines communicate, completely built up when every m/c has sent at least one frame

- What if we connect more switches?
 - Ex: You need to connect 16 machines (M1-M16), but you have only 8-port switches
 - Use 3 no. 8-port switches, S1, S2, S3
 - S1 connects 7 machines (M1-M7), S2 connects 7 machines (M8-M14)
 - One remaining port of S1 connected to one port of S3, same for S2
 - S3 connects 2 machines (M15 at Port 1, M16 at Port 2), plus have one connection each from S1 and S2 (say at Port 3 and Port 4)
 - S3's table will eventually map M15 to Port 1, M16 to Port 2, M1-M7 to Port 3, and M8-M14 to Port 4
 - A frame from say M15 to M6 will be forwarded by S3 to Port 3
 - S1 will then forward it to the port M6 is connected to (in local table of S1)
 - Learns the same way as for a single switch, just that entries in table are of the form <port, list of destination MAC addresses>>

Spanning Tree Protocol

- For practical reasons, the interconnection between multiple switches may not be a tree
 - One switch's failure can cut off a large number of machines from each other
- So switches may be connected in an arbitrary physical topology
- So there can be more than one path between two switches
- Why can this be a problem?
 - A frame broadcast by a machine may go on circulating forever
- Solution:
 - Allow arbitrary physical topology of switches, but create a logical tree of switches out of it at any one time
 - Spanning Tree Protocol and its variations (IEEE802.1d/1w)

- Spanning Tree Protocol (STP)
 - Switches broadcast their switch ids to elect one switch as the root switch (root bridge)
 - By default the switch with the lowest MAC address
 - Can be configured by the administrator also (why needed?)
 - Each switch then finds the shortest "cost" path to the root bridge
 - The selected links form a rooted spanning tree
 - Only the switch ports on the links in the tree are used for forwarding packets (the port is in "forwarding" state)
 - All other ports are put in "blocked" state, not used for forwarding
 - Control packets (Bridge Protocol Data Units (BPDU)) exchanged on all ports periodically to monitor the topology
 - Reconfigure the links if a path is broken

Types of Switches

- Ethernet switches are commonly called L2 switches
 - since they switch based on L2 address (MAC address)
- Unmanaged switch
 - Can not be monitored or configured remotely
 - Low cost
- Managed switch
 - Can be monitored and configured remotely using network management protocols
 - Higher cost, but easier to maintain
- 10/100 Mbps switches are still available, but most switches from common OEMs are now gigabit switches
 - Each port is of speed 1 Gbps (or higher for backend switches)
 - Downward compatible usually to 10/100 Mbps cards

Bridges

- Connects more than one LAN segment
- LANs can be of same type (Transparent Bridging)
 - No modification to content or format of frame
 - No encapsulation
 - Exact bitwise copy of frame
 - MAC frames relayed, so does not need LLC
 - May have buffering to meet peak demand
- LANs can be of different types (Non-Transparent Bridging)
 - Frames may have different formats
 - Needs to transform frames before sending to other LAN
- We consider Transparent Bridging only

Bridge Routing

- How does a bridge know which frame should go to which LAN?
 - Has a routing table similar to switches
 - Entries of the form <port, ford destination MAC addresses
 - Looks up destination MAC address and forwards to appropriate port
 - How is the routing table built?
 - Fixed and manually built ok for small LANs
 - Automatic: same concepts as address learning and STP for switches
- A transparent bridge looks very similar to a switch! Are they the same?

Auto-negotiation

- Allows two network devices to negotiate speed and other parameters
 - A 1000 Mbps network card connected to a 100 Mbps port of a switch
 - A half-duplex capable card connected to a full-duplex capable switch
- Can be turned on or off
- Protocol allows devices to exchange their abilities, the highest common abilities of the two devices is chosen usually
- Mostly relevant for network devices connected with copper (UTP/STP) wires.

LLC (Logical Link Control)

- IEEE 802.2
- Provides a common interface to higher layers for data transmission
- Provides optional link control functionalities (error control, flow control etc.) over MAC layers
- Common protocol over all IEEE 802.x MAC layers

MAC Frame Format for 802.3

LLC Header Fields

- SSAP 8-bit address to identify *Source Service Access Point* (protocol) above data link layer whose data is carried by the LLC PDU
- DSAP 8-bit address to identify *Destination Service Access Point* (protocol) above data link layer to whom the data in LLC PDU will be given
- Control 1 or 2 bytes
- Data Actual data, variable sized (but multiples of bytes)

Example

Network	Unix IP SAP: 80	IBM Netbios SAP: F0	Novell IPX SAP: E0
Data Link	IEEE 802.2 Logical Link Control Layer (LLC)		
	IEEE 802.3 CSMA/CD Medium Access Control Layer		
Physical	802.3 - 10Base5	802.3a - 10Bas	se2 802.3i - 10BaseT

Modes of Operation

- Unacknowledged connectionless (Type 1)
 - no acknowledgment, flow or error control; error detection and discard at MAC level
- Connection-oriented (Type 2)
 - Supports explicit connection establishment/reset/termination, flow control, sequencing, error control
- Acknowledged connectionless (Type 3)
 - No connection establishment, but acknowledgements are sent by receiver and retransmissions done by sender

- Frame formats to support Go-back-N or Selective Reject ARQ
- 7 bit sequence no. (frames numbered modulo 128)
- Exact frame formats skipped here
- IEEE 802.2 not used for IP networks
 - Can use using something called SNAP header (will not discuss), but not done
 - IP networks work on Ethernet-II directly

