LECTURE 5

Cosets

Author

Tom Jeong

September 4, 2024

Contents

1 Cosets 3

1 Cosets

Definition 1.1. Let H be a subgroup of G and $g \in G$ then the subset $gH = \{gh | h \in H\}$ This is called the <u>left coset</u> of H containing g

We de note the set of left cosets of H by G/H that means $G/H = \{gH | \forall g \in G\}$

Definition 1.2. similarly we define the <u>right coset</u> of H containing g as $Hg = \{hg|h \in H\}$

Note if G is abelian then $gH=Hg \forall g\in G, H\subseteq G$ e.g. $G=(\mathbb{Z},+)$ and $H=3\mathbb{Z}$ we have

- 1. $0 + 3\mathbb{Z}$
- 2. $1 + 3\mathbb{Z}$
- 3. $2 + 3\mathbb{Z}$

Then $G/H = \mathbb{Z}/3\mathbb{Z} = \{0 + 3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z}\}\$

e.g.
$$G = \mathbb{Z}/6\mathbb{Z}$$
 and $H = \{[0], [3]\}$

- $[0] + H = \{[0], [3]\},\$
- $[1] + H = \{[1], [4]\},\$
- $[2] + H = \{[2], [5]\},\$
- $[3] + H = \{[0], [3]\},$ same thing
- $[4] + H = \{[1], [4]\},$ same thing
- $[5] + H = \{[2], [5]\}$ same thing

so $G/H = \{[0] + H, [1] + H, [2] + H\}$ (all the example is abelian group)

now lets look at non abelian group $G = D_3$ then

$$H = \{e, s_3\}$$
 left cosets

$$eH = \{e, s_3\} = s_3H$$

$$r_1H = \{r_1, s_2\} = s_2H$$

$$r_2H = \{r_2, s_1\} = r_1H$$

Right cosets

$$He = \{e, s_3\} = Hs_3$$

$$Hr_1 = \{r_1, s_2\} = Hs_2$$

$$Hr_2 = \{r_2, s_1\} = Hs_1$$

NOTE:
$$D_3/H = \{eH, r_1H, r_2H\} \neq H \setminus D_3 = \{He, Hr_1, Hr_2\}$$

exercise: find a group G and a subgroup H such that $G/H = H \setminus G$

Lemma 1.1 (2.2.6). let H be a subgroup of G and $x, y \in G$; Then

- 1. $x \in xH$
- 2. xH = yH if and only if $x^{-1}y \in H$
- 3. $xH \cap yH \neq \emptyset$ if and only if xH = yH (intersection empty if xH not equal yH)
- 4. The map $phi: H \to xH$ given by $\phi(h) = xh$ is a bijection

Proof.

- 1. H is a subgroup so $e \in H$ and x = xe so $x \in xH$
- 2. (a) (\rightarrow) if xH=yH then y inxH that is, for some $h\in H, y=xh$ So Then $x^{-1}y=h\in H$
 - (b) (\leftarrow) if $x^{-1}y \in H$ then $y = x(x^{-1}y) \in xH$ so $yH \subseteq xH$ similarly $xH \subseteq yH$ so xH = yH
- 3. Suppose $g \in xH \cap yH$ Then $g = xh_1 = yh_2$ for some $h_1, h_2 \in H$ so $x = yh_2h_1^{-1} \in yH$ so $xH \subseteq yH$ similarly $yH \subseteq xH$ so xH = yH
- 4. $\phi: H \to xH, \phi(h) = xh$ is a multiplication on G restriction to H so its a bijection.

Observe The set of cosets of a subgroup H forms a partition on G. Cor(2.27) Then $G = \bigcup_{g \in G} gH$ and $gH \cap g'H = \emptyset$ if $g \neq g'$

Theorem 1.2 (lagrange).

If H is a subgroup of a finite group G then |G| = |G/H||H| sometimes |G/H| is notated with [G:H]

in English, the order of a subgoroup divides the order of the group

Proof. let $gH \in G/H$ by the lemma 2.2.6 there is a bijection $\phi: H \to gH, \phi(h) = gh$ so |H| = |gH|

Since the set of left cosets of H forms a partition of G, and also each coset has the same number of elements, we have |G| = |G/H||H|

Definition 1.3 (2.2.9).

The number of cosets |G/H| is called the index of H in G and is denoted by [G:H]

Examples: Consider $2\mathbb{Z}$ as a subgroup of \mathbb{Z} then $|\mathbb{Z}| = 2|2\mathbb{Z}|$ so $|\mathbb{Z}/2\mathbb{Z}| = 2$ so $[\mathbb{Z} : 2\mathbb{Z}] = 2$ generalizing this consider $n\mathbb{Z}$ as a subgroup of \mathbb{Z} then $[\mathbb{Z} : n\mathbb{Z}] = n$

Very important questions: When does G/H form a group??? (ex $G = \mathbb{Z}$ and $H = n\mathbb{Z}$)

Given $X, Y \subseteq G$ defin $XY = \{xy | x \in X, y \in Y\}$ and given left cosets xH and gH is (xH)(gH) = (xg)H?

Consider $H = \{e, s_3\}$ in D_3 then $r_1H = \{r_1, s_2\}$ and $s_2H = \{s_2, r_1\}$ so $(r_1H)(s_2H) = \{r_1s_2, r_1r_1, s_2s_2, s_2r_1\} = \{s_1, e, e, s_2\} = \{s_1, e, s_2\}$ but $(r_1s_2)H = \{r_1s_2, s_2s_2\} = \{s_1, e\}$ so $(r_1H)(s_2H) \neq (r_1s_2)H$ (DOESNT EVEN HAVE THE RIGHT NUMBER OF ELEMTNS LOL)

Proposition 1.3 (2.3.1). Let H be a subgroup of G If $gH = Hg \forall g \in G$ then G/H is a group under the operation (gH)(g'H) = (gg')H

Proof.

- 1. $(xy)H \subseteq (xH)(yH)$ then $xyh = xeyh \in (xH)(yH)$
- 2. $(xH)(yH) \subseteq (xy)H$ then $xyh = x(yh) \in (xy)H$

Definition 1.4. A subgroup N of a group G is called <u>normal</u> if $gNg^{-1} = \{gng^{-1} | n \in N\} = N \forall g \in G$

Notice if G is abelian, $gNg^{-1}=gg^{-1}N=N$ so all subgroups of an abelian group are normal.

If N is a normal subgroup of G then we write $N \subseteq G$

exercise $N \subseteq G$ iff $gN = Ng \forall g \in G$ ex: $H = \{e, s_3\}$ in D_3 is NOT normal. $r_1H = \{r_1, s_2\}$ but $s_2H = \{s_2, r_1\}$ so $r_1H \neq s_2H$ so H is not normal.