Ch. 3.1 Vector Spries and Subspaces

67.

- The most important vector spaces we work with are R', R', R', R',

- Think of R3 as all possible (x,y,z) rectors in 3-dimensional space.

- A vector space must have a zero vector. For TR' it's (0,0,0).

- A vector space is closed under addition & Scalar multiplication -

- In other words, linear combinations of vectors in TR'3 stay in TR3

- A subspace of a vectorspace is a Set of vectors that live in a host Space such that linear combination) in the subspace stay in the subspace.

For R's, the only subspaces are:

- For two vectors VW a linear
- For two vectors V, W, a linear combination is out-dw Hc, delk
Example: Is RZ a subspace of R3?
Example: Do the linear combinations
of $\vec{V} = (1,2,2,4)$ and $\vec{W} = (e,77,3,4)$ form a subspace of \mathbb{R}^4 ?
yes. cV+dw will form a plane
Does it go than the origin? Uses it go than the origin? OUT OW = 0 = (0,0,0,0)
Example: Which of the following are subspaces of R3?
A.) The plane of vectors (b, bz, bz)
Does it go thru the origin? Yes. (2) Does the Sum of two vectors retain the form?
retain the form?

Note: A subset is a collection
of vectors inside a space, but
it doesn't meet the requirements
of a Subspace.

Example: In R3 the collection
of vectors with non-negative 3
entries is a subset of R3
but not a subspace of R3.

Columnspace of A

(71)

- Denoted C(A), it is the collection of all vectors Ax for all x.

- It is the set of linear combinations of the columns of A.

- For $A\bar{x} = \bar{b}$ to be solvable, we need $\bar{b} \in C(A)$.

Example: Prove that C(A) is a subspace of Rm.

Proof: Let A be mxn.

(1) Clearly O is in C(A), just take I O times each column of A.

to generate RHS 6=0.

(a) Let b, b* be in ((A).

Then $\overrightarrow{A}\overrightarrow{x}=\overrightarrow{b}$ and $\overrightarrow{A}\overrightarrow{x}^*=\overrightarrow{b}^*$ for some $\overrightarrow{x},\overrightarrow{x}^*$.

Take the sum>

 $A = \overline{b}$ The sum of vectors

in C(A) remains $A = \overline{b}$ $A = \overline{b}$ in $A = \overline{b}$ in the $A = \overline{b}$

C) B= [12345] DOOOO] PFFFF We only have one pivot C(B) is a line in R2 C(B) is all multiples of 101 We have 2 pivots, so C(D) is a 2- dim. subspace of . IR3 C(D) is the plane c o to for any c, d ETR. E= 1236 ~ C(E) is a Z-dim subspace of R3. it is a plane spanned by 4, 5

Example: For which RHS is Ax= b so vable! $\begin{bmatrix} 1 & 4 & 2 & | & b_1 \\ 2 & 8 & 4 & | & b_2 \\ -1 & -4 & -2 & | & b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & | & b_2 - 2b_1 \\ 0 & 0 & 0 & | & b_3 + b_1 \end{bmatrix}$ we need $b_3 = -b_1$ we need $b_2 = 2b_1$ For AX = To to be solvable, RASTO most look like this: $\overrightarrow{b} = \begin{vmatrix} b_1 \\ 2b_1 \\ -b_1 \end{vmatrix}$ or $\overrightarrow{b} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ C(A) is a line in R3, thru origin, [] directim.

Example: If the 9x1Z system AZ=B is solvable for every B, what is the C(A)? $\begin{bmatrix} A & \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{12} \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix} \qquad \text{all of } \mathbb{R}^q$ $9 \times 12 \qquad X_{12}$ Example: Find the colspace for: C(A) is a plane in R3.

C(A) is a plane in TR3.

C(A) is all linear combinations of

[] and []

2 and []

Example: A is 24×24 and invertible.

C(A) is _____.

Example: Explain why matrices A and [A AB] (with extra columns) have the same columnspace. Welp, AB is a matrix filled up With linear combinations of the Columns of A. Thus the matrix A AB has the same columnspace as A -Example: Suppose A== b and Ag=6+. Then A==5+6 What is 7? Clearly Ax + Ay = b + b* A(x+y) = b+bSo 至二文玩。 Thus, if To The CCA)

Then To +b* e C(A) too.

The set of solutions to $A\vec{x} = \vec{0}$ form a subspace of \mathbb{R}^n .

Proof: Let A be an mxn matrix:

$$\begin{bmatrix} A \\ M \times N \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ X_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

1) clearly = 0 is in the nullspace of A.

(2) let \vec{x}, \vec{y} be in N(A).

Then A= o and A= o.

Sum: $A\overrightarrow{x} = \overrightarrow{0}$ $A\overrightarrow{y} = \overrightarrow{0}$ $A(\overrightarrow{x}+\overrightarrow{y}) = \overrightarrow{0}$

 $A(\cancel{x}+\cancel{y})=0$ and $\cancel{x}+\cancel{y}$ is in N(A).

B.) Let & EN(A).

then AZ=0. Take scalar multiple:

A(A)=CO=O

and cx e N(A) too.

Since the 3 properties are met, N(A) is a subspace of TR". Example: Find the CCA), N(A) (7)
of this Z×6 matrix A.

C(A) is all of R2. C(A) is all linear comb. of [8], [1].

N(A) is all solutions \$ to Ax=0.

N(A) is a subspace of R6.

N(A) is 4- dimensional.

We will describe N(A) by getting the special solutions
to AX=0.

$$X_1$$
 + $\frac{1}{4}$ X_3 + $\frac{1}{5}$ X_4 + $\frac{1}{4}$ X_6 = 0
 X_2 - X_3 - X_4 + 5 X_5 + 10 X_6 = 0

Set each free variable to I with others set to O. Solve. Repeat 4 times.

(2)
$$X_3=0$$
, $X_4=1$, $X_5=0$, $X_6=0$
 $\Rightarrow X_1=-1/2$
 $X_2=1$
 $X_2=1$
 $X_2=1$

(3.)
$$X_3 = 0$$
, $X_4 = 0$, $X_5 = 1$, $X_5 = 0$
 $\Rightarrow X_1 = 0$
 $X_2 = -5$
 $\Rightarrow X_3 = (0, -5, 0, 0, 1, 0)$

(4.)
$$X_3=0$$
, $X_4=0$, $X_5=0$, $X_6=1$
 $X_1=-1/4$
 $X_2=-10$
 $X_4=(-1/4,-10,0,0,0,1)$

The vectors 3, \$2, \$3, \$4 form a basis for N(A).

Any linear combination

$$2 = c_1 \vec{s}_1 + c_2 \vec{s}_2 + c_3 \vec{s}_3 + c_4 \vec{s}_4$$
 also

Solves AZ = 0

dim (C(A)) = # pivot variables

dim (N(A)) = # free variables

= n - # pivots.

Note: N(A) is identical to

Example: Find C(A), N(A) for

rref(A) = I and A is inventible.

CCA) is all of R4. We have 4 proots.

N(A) is just = [3]. Only one solution to

The easy trick to find the special (81).

Solutions to AX = 0.

Example: A = [1 6 6 6 6 6 1 7 8 10 12].

1 6 6 7 8

Describer C(A), N(A).

Tref(A) = [0 - 6 0 - 2]

O 0 0 0 0 0 0

P P F P F

Pivot columns reveal ((A). It is all linear comb. of (1,1,1,1), (5,6,7,6), (3,6,10,7) - Not all RHS B are solvable for Ax=6.

N(A), take the two free columns and do the trick:

 $\overline{S}_{1} = (6, -2, 1, 0, 0)$

 $\vec{S}_{2} = (-6, 2, 0, -2, 1)$

and A3,=0 A32=0

and A(c,3,+c252)=0

N(A) is a 2-dim. Subspace of R.

Example: Let A be an inventible 2x2 matrix. (82)

Describe all vectors in the nullspace

of 2x4 matrix B= [A A].

Well, ref(A) = I 2x2 and

ref(B) = [0 1 0 1]

PPFF

N(A) is two-dimensional.

N(A) is two-dimensional. Basts vectors are $\vec{S}_1 = (-1, 0, 1, 0)$ $\vec{S}_2 = (0, -1, 0, 1)$ N(A) is all linear comb. of \vec{S}_1, \vec{S}_2 .

Example: Construct a matrix whose nullspace consists of all linear comb. of $S_1 = (5, 4, 1, 0)$ and $S_2 = (2, 2, 0, 1)$. $A\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = 0 \quad \text{and} \quad A \quad \text{must be } m \times 4$ $X_1 \times X_2 \times X_3 \times X_4 \quad X_4 \times X_4 \times X_5 \times X_5 \times X_4 \times X_5 \times X_5 \times X_6 \times X_5 \times X_6 \times X_5 \times X_6 \times$

Example: (1) Show $A \neq = \overline{b}$ has no solution when the 9×9 matrix $[A \overline{b}]$ is invertible.

The system is 9x8. Augmenting RHS B gives an invertible 9x9 matrix with 9 pivots. This shows vector b is in dependent of the 8 columns of A. RHS is not a linear comb. of columns of A!

AX=B will have no solution!

2) So then Ax = b is solvable if the 9×9 matrix [Ab] is singular!

Example: Give the complete solution (84) to x + y + z = 7 x - y + z = 7. Solution: We have two planes in R3. Should intersect at a line (unless parallel). [0-200]~ [101|7] × + = 7 [0] 0 | 0] > 7 = 0 So, need a particular solution on the line, we choose Z=O. $\vec{X}_{p} = (7,0,0)$ Now, need special solution S. We Choose Z=1.

S=(-1,0,1). (And any multiple)

7-c Complete Solution: $\chi = \chi_p + cS_1 = \begin{bmatrix} 7-c \\ c \end{bmatrix}$

- Rank of a matrix is the number of pivots.
 - rank(A) is the true size of a matrix.
- rank(A) = # of independent columns = # of independent rows
- dim (CCA) = T
- dim (NCA) = n-r
- If n>m, there must be at least one free variable and there must be at least one special solution to AX=0.

Example: Why does no 3×3 matrix
have a column space that equals
its nullspace?

Example. The matrix A reveals two (86.)

Special solutions, $\vec{S}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\vec{S}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ (These solve $A\vec{x} = \vec{0}$).

a) Describe all possibilities for the size

Since solutions \$, \$\frac{1}{2} are 3x1.

A must have 3 columns.

Number of rows could be anything.

 $\begin{bmatrix} A & \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} b \\ b \end{bmatrix} \quad \text{and} \quad A = 18$ $m \times 3 \quad 3 \times 1 \quad m \times 1$

(b.) Give a 1×3 example for A.

Let $A = \begin{bmatrix} 1 - c - d \end{bmatrix}$. Then $A\vec{s}_1 = \begin{bmatrix} 1 - c - d \end{bmatrix} \begin{bmatrix} c \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$

A 32 = [1-c-d] [d] = [0]

as required

(c) Give a 3×3 example for A. Let A = 0000 TITIC TID

Describe all possibilities for rank (A). r must be I for any size A.

We have 3 columns, 1 pivot, 2 free. r = # pivots = 1 no matter how many rows we add to A.

A is mxn. A= [] has no solutions. Example A = [o] has one solution.

a) Give all information about mn. r. AX = | 0 | has one solution tells us

N(A) is just the \$ = 0 vector.

There are no free variables.

Each column has a pivot.

Also, RHS. To is 3×1, so m=3. Also, Ax=[i] has no solutions tells us C(A) is not all of R3 So m=3, r=n <3.

We have two possibilities: 88. (i) m=3, r=1, n=1 (ii) m=3, r=2, n=2 (b) Give an example matrix A for each (DE) (i) $A = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ works. M = 3 N = 1Section 3.3 Complete Solution to AX= b has complete solution 文=文》+文》 1) To get Xp, set all free variables to O and solve Ax=b. 2) To get Xn. Set all free variables to I (in turn) and solve AX=0. (3.) The $\frac{1}{2}$ pant gets scalars $C_1, C_2, e+c_-$ The $\frac{1}{2}$ does

Example: Give the complete solution to AZ=6. Also, describe C(A), N(A). $A = \begin{vmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{vmatrix}$, $\vec{b} = \begin{vmatrix} -9 \\ -12 \\ -4 \end{vmatrix}$ $\begin{bmatrix} A & 1 & 6 & 4 & | & -8 & | \\ A & 5 & 5 & 6 & | & -12 & | \\ 2 & 3 & 5 & 2 & | & -4 & | \end{bmatrix}$ \[\begin{aligned}
 2 4 6 4 -8 \\
 -1 -1 -2 \\
 -1 -1 -2 \\
 \end{aligned}
 \] [2464]-87~ [0000] [202-4 | 8]~ [000000 | 0] [101-2 | 4] [0112 | -4] [00000]

C(A) is a 2-dimensional subspace of R2.

It is the plane spanned by (2,2,2) and (4,5,3).

(90.) Get special solutions to AX=0. s,=(-1,-1,1,0) 3=(2,-2,0,1) N(A) is a 2-din subspace of R4. It is the plane spanned by 3, 52. Solution \$\forall to A \forall = \forall is same as Ry=J $x_1 + x_3 - 2x_4 = 4$ $x_2 + x_3 + 2x_4 = -4$ Set x3 =0, X4=0, =) X1 = 4, X2 = -4

Xn = C, S, + C2 S2

Complete Solution to Ax= bis

For any Ci, Cz EIR.

Example: The complete solution to a square, inventible matrix A with m=n=r. Let A= [10] and [- 2] The solution will be unique.

The N(A) is just = [3].

rref(A) = I (3 pivots)

Xp = A-16 = 3

Xn = [8]

 $\overrightarrow{X} = \overrightarrow{X}_p + \overrightarrow{X}_n = \begin{bmatrix} 3\\1\\-1 \end{bmatrix} + C\begin{bmatrix} 0\\0\\-1 \end{bmatrix}$

Matrices With Full Column Rank

- · r=n
- . All columns are Pivot columns
- · N(A) is just o.
- · If Ax=b has a solution, it is unique.
- · Columns of A are in dependent.

For To E C(A) need 0 = b3 +b2-26, OF b3 = 26, - 62 CCA) is a plane in TR3 through origin.
Most b not on that plane! Most AX= To not solvable. N(A) is just [3] = o in R'. (No free variables) Complete Solution to AX = b is $\vec{X} = \vec{X}_p + \vec{X}_n = \begin{vmatrix} \frac{b_2 - b_1}{2} \\ \frac{2b_1 - b_2}{2} \end{vmatrix} + \begin{vmatrix} 0 \\ 0 \end{vmatrix}$ Check that ZP works: $A = \begin{bmatrix} 2 & 1 \\ 4 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} b_2 - b_1 \\ 2b_1 - b_2 \end{bmatrix} = \begin{bmatrix} b_2 - b_1 + 2b_1 - b_2 \\ 2b_2 - 2b_1 + 2b_1 - b_2 \\ 2b_1 - b_2 \end{bmatrix}$ 3×2 $A\overrightarrow{x}_{p} = \begin{cases} b_{1} \\ b_{2} \\ ab_{1} - b_{2} \end{cases}$

Matrices with Full Row Rank

- · F=M
 - . All rows are pivot rows, no zero rows.
 - · AX= b has a solution for every b.
 - o There are n-F=n-m special solutions to A==0.
 - · C(A) is all of Rm.
 - · rows of A are linearly independent.

Example:

$$3x_1 + 6x_2 + 9x_3 + 5x_4 + 25x_5 = 53$$

 $7x_1 + 14x_2 + 21x_3 + 9x_4 + 53x_5 = 97$
 $-4x_1 - 8x_2 - 12x_3 + 5x_4 + 10x_5 = 46$

Every RHS b is solvable sine (95.

To get xp, set x2= X3 = O and solve.

 \times_{1}

Zp=(1,0,0,10,0)

文=GEZ,1,0,0,0)+

$$c_{2}(-3,0,1,0,0)$$

Et Write down all Known relationships (96.) for r, m, n if Ax= b has.... 1) No solution for some 5 r < m, r ≤ n 2) Infinitely many solutions for every b. r<n, r=m Exactly 1 solution for some 5.
O solutions for other 5. r=n, rzm (4) Solution for every to r=m=n Find the complete solution to X+4+2=1 [III] PFF $\frac{P}{X} = \begin{bmatrix} T \\ O \end{bmatrix} + C_1 \begin{bmatrix} -1 \\ O \end{bmatrix} + C_2 \begin{bmatrix} -1 \\ O \end{bmatrix} = \begin{bmatrix} T - C_1 - C_2 \\ C_1 \\ C_2 \end{bmatrix}$ Section 3.4 Independence, (97)
Basis, Dimension.

Linear Independence: A sequence of vectors $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ is linearly independent iff $\vec{c}_1, \vec{v}_2, ..., \vec{v}_n = \vec{o}$ only when all $\vec{c}_i = 0$.

Vectors $\vec{V}_1, \vec{V}_2, ..., \vec{V}_n$ are linearly independent iff rref $\vec{V}_1, \vec{V}_2 ... \vec{V}_n$ produces a pivot in each column.

Columns of A are linearly independent iff the only solution to AX=0 is X=0.

98. Example: Are (1,1,1,1), (1,2,3,4) and (1,4,7,10) linearly independent? NO. Example: Are [2], [3], [4], [5] linearly independent? No! Too many vectors! RZ is two-dimensional. Cannot have more than 2 linearly independent vectors! $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \end{bmatrix} \sim \begin{bmatrix} 2 & 3 & 4 \\ 0 & -1 & -2 & -3 \end{bmatrix}$ P = FPro Tip: Any sequence with a repeated vector is linearly dependent. Pro Tip: Any sequence with the zero vector is linearly dependent.

Def: A set of vectors span a space if the linear comb. fill the space. Example: Let $A = \begin{bmatrix} 7 & 0 & 7 \\ 4 & 0 & 4 \\ 1 & 6 & 61 \end{bmatrix}$ # The three columns of A Span CCA). * Note: V3 = V, + 10 V2, 50 columns are dependent. # V, and Vz also Span C(A). # How many vectors do I need to totally describe CCA)? Def: A basis is a set of linearly independent vectors that span the space.

EX: Give two bases for IR?

Example: Give two bases for the (100.)

rowspace of A = [1044]. rref(A) = [07-4-4]~[01-4/4-4/4] Kows 1,2 are pivot rows. One basis is [1044], [2744]
Another basis is [1044], [01-4/7-4/7] Another basis is [3788], [a744] Fact: A basis has exactly the right number of vectors: Enough to Span the Space, but still linearly independent! Fact: Vectors V, Vz, Vn form a basis for Rn exactly when they are the columns of an invertible NXN matrix.

Theorem: For vector Vil vectorspace V, there is only one way to write V as a linear combination of a set of basis rectors. Quick Illustration: In R3, a basis is $\vec{e}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \vec{e}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \vec{e}_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} = \frac{\pi}{0} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} + \frac{\pi}{2} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} = \frac{\pi}{0} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} + \frac{\pi}{2} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} = \frac{\pi}{0} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} + \frac{\pi}{2} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} = \frac{\pi}{0} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} + \frac{\pi}{2} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} = \frac{\pi}{0} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} + \frac{\pi}{2} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} = \frac{\pi}{0} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} + \frac{\pi}{2} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} = \frac{\pi}{0} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} + \frac{\pi}{2} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} = \frac{\pi}{0} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} + \frac{\pi}{2} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} = \frac{\pi}{0} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} + \frac{\pi}{2} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} = \frac{\pi}{0} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} + \frac{\pi}{2} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} = \frac{\pi}{0} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} + \frac{\pi}{2} \begin{bmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix} + \frac{\pi}$ Proof: Let V,, V2, ..., Vn be a basis for Vo Suppose V = a, V, + a2 V2 + ... + an Vn and also = 6, 7, + 6, 7, + 6, 7, ... + 6, 7, (Now Subtract) $\vec{O} = \vec{V} - \vec{v} = (a_1 - b_1)\vec{v}_1 + (a_2 - b_2)\vec{v}_2 + \cdots + (a_n - b_n)\vec{v}_n$ By def, a basis must have independent Nectors so the only camp of vectors, so the only comb. of V, V2, ..., Vn to get the 0 must have all coeff. equal to O.

Thus, a,-b,=0 or a,=b, 102, $a_n-b_n=0$ or $a_n=b_n$. Therefore the combination of Vi... Vn to give V is unique. Example: If w, wz, w3 are independent, Show that $\vec{V}_1 = \vec{W}_2 - \vec{W}_3$ $\overrightarrow{V}_2 = \overrightarrow{W}_1 - \overrightarrow{W}_3$ and $\overrightarrow{V}_3 = \overrightarrow{W}_1 - \overrightarrow{W}_2$ are dependent. Solution: Find a combination that goes $+(\overline{W},-\overline{W}_2)$ Example: Give a basis for the space of all 2x3 matrices whose columns add to O. [-100], [00-10], [00-7] [-1-10], [-10-1]

Example: Give a basis for the Plane X-2y+3Z=0 in R3. A = [1-2 3] has nullspace basis $S_1 = (2, 1, 0)$ 52=(-3,0,1) Find a basis for the line of vectors perpendicular to that plane: [1-23] Find a basis for the intersection of x-2y+32=0 with the xy-plane. Xy-plane has Z=0, so X-2y+0z=0 is the line of intersection. A basis for that line is 27

Section 3.5 Fundamental Theorem of Linear Algebra dim (Columns race (A))=1 Carve up dim (left Null(A)= m-F dim (rowspace(A)) = T Carve UP dim (nullspace (A)) = n-T Picture Big Input AX Rowspace Columnspace Nullspace Nullspace dim n-T ATT = 0 AX =0

What is

(105)

Columnspace (A): Set of all linear comb.
of columns of A.

Set of all vectors AX +X.

Left Nullspace (A): Set of solutions

to $A^T \vec{y} = \vec{O}$ or $(\vec{y}^T A)^T = \vec{O}^T = \vec{O}$

It is the set of linear comb.
of the rows of A to generate
the zero row.

Rowspace (A): Set of all linear comb.
of the rows of A.

Set of all vectors ATy ty.

Nullspace (A) = Set of all solutions to Ax=0.

It is the set of all linear combinations of the columns to generate the Zero column. EXAMPLE: GIVE BASES FOR THE 4

FUNDAMENTAL SUBSPACES FOR

INVERTIBLE A= 12 2

15 0 15

0 7 14

Solution: $\Gamma ank(A) = 3$ $\dim(C(A)) = \Gamma = 3 \quad \text{with basis} \quad \begin{bmatrix} 12\\15\\0 \end{bmatrix}, \begin{bmatrix} 7\\14 \end{bmatrix}$ $\dim(N(AT)) = M - \Gamma = 3 - 3 = 0$ $\text{with basis} \quad \emptyset$

 $dim\left(C(AT)\right)=\Gamma=3$ with basis $\begin{bmatrix}12&1&2\end{bmatrix}$, $\begin{bmatrix}15&0&15\end{bmatrix}$, $\begin{bmatrix}0&7&14\end{bmatrix}$ $dim\left(N(A)\right)=n-\Gamma=3-3=0$ with basis ϕ .

106.

EX: Give bases for the four fund... (107-) $A = \begin{bmatrix} 12 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 15 & 0 & 0 & 15 \\ 0 & 7 & 0 & 14 \end{bmatrix}$ now 4x4.C(A) is 3-dimensional subspace of IR4. A basis is 12 0 0 15 15 14 N(AT) is a 1-dimensional subspace of 184. A basis is 0100 Check: [0 100] 12 102 = [0000] 1x4 150015 1x4 07014 C(AT) is a 3-dim. cabspace of R4. A basis is [12 1 0 2], [15 0 0 15], LO 70 147 N(A) is a 1-din. Subspace of R4. A basis is (0,0,1,0)

Tip: One way to find a basis for 108.

The left nullspace is to tack on RHS 5 and do elimination. Example: Give bases for the C(A), N(AT). for $A = \begin{bmatrix} 3 & 6 & 6 & 9 & 12 \\ 9 & 4 & 1 & 0 & 0 \\ 15 & 2 & -4 & -9 & -12 \end{bmatrix}$ M=3, n=5, $\Gamma = \frac{2}{2}$. $[A][b] = \begin{bmatrix} 3 & 6 & 6 & 9 & 12 \\ 9 & 4 & 1 & 0 & 0 \\ 15 & 2 & -4 - 9 & -12 \end{bmatrix} \begin{bmatrix} 6_1 \\ 6_2 \\ 6_3 \end{bmatrix}^{\nu}$ $\begin{vmatrix} 3 & 6 & 6 & 9 & 12 \\ 0 & -14 & -17 & -27 & -36 & | b_2 - 3b_1 \\ 0 & -28 & -34 & -54 & -72 & | b_3 - 5b_1 \end{vmatrix}$ [2 2 3 4 | 61/3 0 1 | 19/14 | 36/14 | (36,-62)/14 0 0 0 0 0 | 63-262+61 PPFFFF C(A) is 2 dim. with basis 15, 2 N(AT) is I dim. with basis [1-21] C(A) is a plane in R. N(AT) is the perpendicular line!

Give basis for the 4 fund. (109. Example: subspaces for $A = \begin{bmatrix} 1 & 3 & 1 & 2 & 4 \\ 1 & 0 & 0 & 1 & 2 & 1 \\ 2 & 0 & 0 & 2 & 4 & 2 \end{bmatrix}$ with m = 4, n = 5. $\begin{bmatrix} A & | b \end{bmatrix}^{2} & | b & | & b & | b & | &$ 1 3 1 2 4 6, T 0 0 1 2 1 bz 0 0 0 0 0 0 b3-2b1 0 0 2 4 2 64 1 3 1 2 4 | b1 0 0 1 2 1 | b2 0 0 0 0 0 0 | b3-2b1 0 0 0 0 0 0 | b4-2b2 rref(A) = [3003 00000 00000

dim $(C(A))=\Gamma=Z$ with basis $\begin{bmatrix} 1\\0\\2\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\2\\2 \end{bmatrix}$ (110) dim $(N(AT))=M-\Gamma=4-2=Z$ with basis $\begin{bmatrix} -2010\\7\\2 \end{bmatrix}$, $\begin{bmatrix} 0-201\\7\\2 \end{bmatrix}$ We've carved up \mathbb{R}^{H} into two perposes $\begin{bmatrix} -2010\\7\\2 \end{bmatrix}$.

dim (C(AT)) = T = Z, basis is $\begin{bmatrix}
1 & 3 & 0 & 0 & 3
\end{bmatrix}, \\
\begin{bmatrix}
0 & 0 & 1 & 2 & 1
\end{bmatrix}$ dim (N(A)) = n - T = 5 - 2 = 3, a basis $\begin{bmatrix}
-3 & 0 & 0 & 7 & -3 & 0 \\
0 & 0 & 1 & 2 & 1
\end{bmatrix}$ We've carred up R^5 into two perp.

subspaces !!