Microprocessor and Computer Architecture Laboratory UE19CS256

4th Semester, Academic Year 2020-21

Date:

Name: Achyut Jagini	SRN:PES2UG19CS013	Section
		Α

Week#____7___ Program Number: ____1__

1. A) Implement a Tinkercad simulation to turn on and off the Arduino's on-board LED.


```
1 (Arduino Uno R3)
Text
   void setup()
 3
     pinMode(13, OUTPUT);
 4
 5
 6 void loop()
 7
 8
     digitalWrite(13, HIGH);
     delay(1000); // Wait for 1000 millisecond(s)
9
     digitalWrite(13, LOW);
10
11
     delay(1000); // Wait for 1000 millisecond(s)
12 }
```

B) Implement a Tinkercad simulation to turn on and off an external LED connected to the Arduino board

Microprocessor and Computer Architecture Laboratory UE19CS256

4th Semester, Academic Year 2020-21

Date:

	Date.	
Name:	SRN:	Section
Week#7	_ Program Numbe	r:2
Implement a Ti	nkercad simulation to a	alternately turn
on and off ty	wo external LEDs con	nected to the
Arduino board		

Text

± 1 (Arduino Uno R3)

```
1 int red_led=13;
2 int yellow_led=8;
 3 int delay time=1000;
 4 int flag=1;
5 void setup()
6 {
 7
      pinMode(red led, OUTPUT);
 8
     pinMode(yellow_led, OUTPUT);
9
10
11 void loop()
12 {
13
     if (flag == 1){
14
        digitalWrite(red_led, HIGH);
15
         digitalWrite(yellow_led, LOW);
16
         flag=0;
17
18
     else
19
20
       digitalWrite(yellow_led, HIGH);
21
22
     digitalWrite(red_led, LOW);
23
       flag=1;
24
     }
25
26
27
     delay(delay_time);
28 }
```

Microprocessor and Computer Architecture Laboratory UE19CS256

4th Semester, Academic Year 2020-21

Date:

Name:	SRN:	Section
Week#7	Program Number:	3

Implement a Tinkercad simulation to use a pushbutton to control an LED.

± 1 (Arduino Uno R3) Text 1 int button_state; 2 int led=12; 3 int push_btn=7; 5 void setup() 6 { 7 pinMode(led,OUTPUT); 8 9 } 10 11 void loop() 12 13 button_state=digitalRead(push_btn); 14 15 if(button_state==1) 16 digitalWrite(led, HIGH); 17 else 18 digitalWrite(led,LOW); 19 delay(20); 20 } 21 22

Microprocessor and Computer Architecture Laboratory UE19CS256

4th Semester, Academic Year 2020-21

Date:

Name:		SRN:		Section
Week#	7	Program Number: _	4	

Implement a Tinkercad simulation to demonstrate fading of an LED (zero to maximum brightness slowly)

