Classification Performance Metrics

Part One: Confusion Matrix Basics

Ever heard of terms:

"false positive" or "false negative" or "accuracy"?

Ritvij Bharat Private Limited

Say we've developed model to detect presence of a virus infection in a person based on some biological feature.

Assume this is a Logistic Regression, predicting:

- 0 Not Infected (Tests Negative)
- 1 Infected (Tests Positive)

Unlikely that our model will perform perfectly. This means there are 4 possible outcomes:

- Infected person tests positive.
- Healthy person tests negative.
 - Note, these are the outcomes we want! But it is unlikely our test is perfect...

- Infected person tests positive.
- Healthy person tests negative.
- Infected person tests negative.
- Healthy person tests positive.

Based off these 4 possibilities, there are many error metrics we can calculate.

and

Ritvij Bharat Private Limited

Confusion Matrix

ACTUAL		
INFECTED and	HEALTHY	
Bharat Pri	vate Lin	rited
	INFECTED	INFECTED HEALTHY

Confusion Matrix

PREDICTED

INFECTED HEALTHY

INFECTED

HEALTHY

Confusion Matrix

PREDICTED

	ACTUAL		
	INFECTED	d HEALTHY	Sec. 1
INFECTED	TRUE POSITIVE	rivate Lim	itea
HEALTHY			

Confusion Matrix

	ACTUAL		
	INFECTED	HEALTHY	الممدا
INFECTED	TRUE POSITIVE	rivate Liii	nea
HEALTHY		TRUE NEGATIVE	

PREDICTED

Confusion Matrix

	ACT	UAL
Diam's	INFECTED	HEALTHY
INFECTED	TRUE POSITIVE	FALSE POSITIVE
HEALTHY		TRUE NEGATIVE

PREDICTED

Confusion Matrix

PREDICTED

	ACTUAL		
	INFECTED	d HEALTHY	
INFECTED	TRUE POSITIVE	FALSE POSITIVE	
HEALTHY	FALSE NEGATIVE	TRUE NEGATIVE	

Mastering Machine Learning with Pythor

- Imagine a test group of 100 people
- 5 are infected. 95 are healthy.

		ACTU	JAL	
		INFECTED	HEALTHY	
PREDICTED	INFECTED	Bharat P	rivate Lin	aitec
	HEALTHY			

We tested all of them and got these results:

	ACTUAL		
	INFECTED and	HEALTHY	
INFECTED	4	2	ited
HEALTHY	1	93	

PREDICTED

Accuracy?

PREDICTED

	ACT	UAL	• Accuracy:
	INFECTED	HEALTHY	O How o
INFECTED	4	2	correc
HEALTHY	1	93	Acc = (TP+TN

How often is the model correct?

$$Acc = (TP+TN)/Total$$

• Calculating accuracy:

	iHUB D	ACTU	JAL
	Disc. 1	INFECTED and	HEALTHY
PREDICTED	INFECTED	4	2
	HEALTHY	1	93

• Accuracy:

 How often is the model correct?

$$Acc = (TP+TN)/Total$$

(4+93)/100 = 97% Accuracy Is this a good value for accuracy?

The accuracy paradox...

PREDICTED

INFECTED HEALTHY

INFECTED 4 2

HEALTHY 1 93

ACTUAL

Accuracy:

How often is the model correct?

$$Acc = (TP+TN)/Total$$

Imagine we **always** report back "healthy"

PREDICTED

	ACT	UAL
	INFECTED	d HEALTHY
INFECTED	4	2
HEALTHY	1	93

Imagine we **always** report back "healthy"

ACTUAL

PREDICTED

	rydodinp	a country in a rec
	INFECTED	HEALTHY
INFECTED	0	o de Lim
HEALTHY	5	95

(0+95)/100 = 95% Accuracy returns "healthy"!

• Accuracy:

How often is the model correct?

95% accuracy for a model that always returns "healthy"!

This is the accuracy paradox!

- Classifiers dealing with **imbalanced** classes has to confront the issue of the accuracy paradox.
- Imbalanced classes will always result in a distorted accuracy reflecting better performance than what is truly warranted.

as Snukia

Imbalanced classes are often found in real world data sets.

- Medical conditions can affect small portions of the population.
- Fraud is not common (e.g. Real vs. Fraud credit card usage).

- If a class is only a small percentage (n%), then a classifier that always predicts the majority class will always have an accuracy of (1-n).
- In our previous example we saw infected were only 5% of the data.
- Allowing the accuracy to be 95%.

This means we shouldn't solely rely on accuracy as a metric!

and

This is where precision, recall, and f1-score will come in.

Classification Performance Metrics

Part Two: Precision and Recall

- We already know how to calculate accuracy and its associated paradox.
- Let's explore three more metrics that can help give a clearer picture of performance:
 - Recall (a.k.a. sensitivity)
 - o Precision
 - o F1-Score

Let's begin with recall.

	IHUB D	ACTUAL	
		INFECTED an	HEALTHY
PREDICTED	INFECTED	4	2
	HEALTHY	1	93

• Recall:

 When it actually is a positive case, how often is it correct?

(TP)/Total Actual Positives

Recall = (TP)/Total Actual Positives

PREDICTED

INFECTED

INFECTED

HEALTHY

PREDICTED

Recall =

Recall:

 When it actually is a positive case, how often is it correct?

Recall = (TP)/Total Actual
Positives
(4)/5 revas Shukla

PREDICTED

	ACT	• Recall:	
	INFECTED	HEALTHY	O Ho
INFECTED	4	2	are
HEALTHY	1	93	(TP)/To

How many relevant cases are found?

(TP)/Total Actual **Positives**

Recall = 0.8Led by : Shreyas Shukla

What's the recall if we always classify as "healthy"?

ACTUAL

INFECTED 0
PREDICTED
HEALTHY 5

Recall:

How many relevant cases are found?

(TP)/Total Actual Positives

Recall = (TP)/Total Actual Positives

HEALTHY

95

- What's the recall if we always classify as "healthy"?
- A recall of 0 alerts you the model isn't catching cases!

	IHUB D	ACTUAL	
		INFECTED an	HEALTHY
PREDICTED	INFECTED	0	0
	HEALTHY	5	95

• Recall:

How many relevant cases are found?

(TP)/Total Actual Positives

Recall = Led by (0)/5! reyas Shukla

Now let's explore **precision**.

	iHUB D	ACTUAL		
		INFECTED and	HEALTHY	
PREDICTED	INFECTED	4	2	
	HEALTHY	1	93	

Precision =

Precision:

When prediction is positive, how often is it correct?

(TP)/Total Predicted **Positives** Led by (TP)/6 reyas Shukla

Γ		
	INFECTED	HEALTHY
INFECTED	4	2
HEALTHY	1	93
		INFECTED 4

Precision:

 When prediction is positive, how often is it correct?

(TP)/Total Predicted Positives

What's the **precision** if we always classify as "healthy"? ACTUAL

PREDICTED

Disco	INFECTED	d HEALTHY
INFECTED	0	0
HEALTHY	5	95

Precision:

When prediction is positive, how often is it correct?

(TP)/Total Predicted **Positives**

- Recall and Precision can help illuminate our performance specifically in regards to the relevant or positive case.
- Depending on the model, there is typically a trade-off between precision and recall, which we will explore later on with the ROC curve.

Since precision and recall are related to each other through the numerator (TP), we also report the F1-Score, which is the harmonic mean of precision and recall.

iHUB DivyaSampark, IIT Roorkee

The harmonic mean (instead of the normal mean) allows the entire harmonic mean to go to zero if **either** precision or recall ends up being zero.

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

		True cond	ition				
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True positive	y (ACC) = + Σ True negative population	
condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Predicted condition positive}}$	Σ False	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
Predicted (Predicted condition negative	False negative , Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Predicted condition negative}}$	Σ True	tive value (NPV) = negative ndition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power = $\frac{\Sigma}{\Sigma}$ True positive	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\Sigma}{\Sigma}$ False positive $\frac{\Sigma}{\Sigma}$ Condition negative	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds	F ₁ score =	
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate $(TNR) = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$	ratio (DOR) = $\frac{LR+}{LR-}$	2 · Precision · Recall Precision + Recall	

Finally, let's explore a way to visualize the relationships between metrics such as precision and recall with curves.

Ritvij Bharat Private Limited

Led by : Shreyas Shukla

Classification Performance Metrics

Part Three: ROC Curves

Led by : Shreyas Shukla

 There can be a trade-off between True Positives and False Positives.

Our previous infection test.

Actual Status

Negative
Positive

• Fit logistic regression model.

Actual Status

Negative
Positive

- Given X we predict 0 or 1.
- Default is to choose 0.5 as cut-off.
- How many TP vs FP?

124

Actual Status

Negative

Positive

• TP: 3 FP: 1 FN:1 TN:3

Actual Status

Negative
Positive

• What if we lowered the cut-off?

Actual Status

Negative
Positive

- In certain situations, we accept more false positives to reduce false negatives.
- Imagine a dangerous virus test, we would much rather produce false positives and later do more stringent examination than accidentally release a false negative!

Led by : Shreyas Shukla

Chart the True vs. False positives for various cut-offs for the ROC curve.

By changing the cut-off limit, we can adjust our True vs. False Positives!

A perfect model would have a zero FPR. Random guessing is the red line.

Realistically with smaller data sets the ROC curves are not as smooth.

AUC - Area Under the Curve, allows us to compare ROCs for different models.

Can also create precision vs. recall curves:

