Sea N el retículo de subgrupos unipraneticos de un toro T (si dim $(T) = d \Rightarrow N \stackrel{\vee}{=} 7Z^d$ y pensamos en (a_1, ad) como el subgrupo $C^* \longrightarrow (C^*)^d$ $(C^*)^d$).

Récierde que a un cono poliedal N-racional le asociamos una visedad tórica afin así:

JE NøZR

U_ = Spic ([[JV / M])

donde JV = { me MøZR: (m, u>>0 tue T}

Ur = Su([y', xy']) T = { m ∈ M : (m, u) ≥ 0 } Calcule: {y = >0} ⊆ Ur { xy = 1 = 0 } = Ur {xy=2≠0} ∈ 4-

Vimos que las órbitas de la acción de T sohe Un estan en (3)
hair con las cras de v. (reweda como.)
Demostraemos que las coas de T tambien estan en bigección Con los ABIERTOS PRINCIPALES (complemento de l'una sola muni regular)
con los ABIERTOS PRINCIPALES (complemento de l'una sola mair regular)
OUE SAN 1-EVENTUS
S. JST entonces J. 25
La idea es simple:
y por lo tanto hay ma molosier (L)
La idea es simple: y por lo tento hay ma inclusión [[J'NM] & C[TVNM] y a nuel de espacios Uz & Uz con image densa.
Demostraremos que la imagen j(Uz) es mabiento prizipul en Uz
1 1 to do 11
Mas preusamente, Uz es canónicamente isomo-jo al abitito de de
Mas prevamente, Uz es canónicamente isomo-jo al abrento de Uz depuido por $\{X \neq 0\}$ donde X es un testigo par la coa $J \leqslant T$.
(i) $X \in \Gamma^{\vee}$ (i.e. $\forall u \in \Gamma \ (u, X) \geq 0$)
(ii) $J = \{u \in \tau : \langle u, \chi \rangle = 0\}.$

Moshaemos el siguiente Tearema:	(4)
Tearema: Sea o un cano poliedral N-racional en NOZIR y sea X E [[TV M] un caracter. y sea X E [[TV M] un caracter.	
y sa $X \in \Gamma[r \cap M]$ in caracter.	
Fl abients 3/ +0(= Ur	
es canonicamente isomorpo a $U_{\mathcal{J}} := Spec(C[\mathcal{J}^{V} \cap M])$ donde $\mathcal{J} \subseteq \mathcal{T}$ es la coa de \mathcal{T} de pruda por \mathcal{X} es dicir	
donde JET es la coa de T de pruda por X, es dicir	
$J:=\{u\in \sigma: \langle u,\chi\rangle=0\}$	
Obs: El Teorema antirio demuestra que hay una bigección	
Caras J < r } (Caras J < r) (More tos principales) (Up)	
$J \longrightarrow U_J \subseteq U_\sigma$	

Dem del Teorema: Mostraemos que C[FV/M] x y C[JV/M] son algebras (5) canonicante somofas. donde $J = \{ u \in \tau : \langle u, \chi \rangle = 0 \}$. J & T luego J > 2 TV y por ello hay ma Par construction McLusian de C[TV MM] que es 1-1 luego Up trène images disa. Por deguision de JV tanto X como X son elementes de JV lvego por la propredad uneral de la localitación teneros C[TVNM]

FEC(C[TVNM])

T[TVNM]

T[TVNM Mostreres quelles sohegete unificado 4 es 1-1 pres Œ[rV/M] es dominio. que Ar JUM = MAM + ZX "> " C" Mosheros la molunión dual, es dem (J'MM) = (orMH+ZX) Si ne (rynm+ZX) => (a) ne (rynm) = rnn (a) (ux) >0 y (u, x) >0 => (ux) =0 myone Inn lugo y es momo.

Ur = Su([y', xy']) T = { m ∈ M : (m, u) ≥ 0 } Calcule: {y = >0} ⊆ Ur { xy = 1 = 0 } = Ur {xy=2≠0} ∈ 4-