under Graduate Homework In Mathematics

Probability 1

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2025年10月11日

\mathbb{R}^{O} BEM I 证明 σ -代数是集代数。

SOLTION. 设 \mathcal{A} 是 σ -代数,则由定义知 $\Omega \in \mathcal{A}$ 。下面证 $\forall A, B \in \mathcal{A}$, $A \setminus B \in \mathcal{A}$ 。易知 $A \setminus B = A \cap B^c = (A^c \cup B)^c$ 。由 $A \in \mathcal{A}$ 及 \mathcal{A} 是 σ -代数知 $A^c \in \mathcal{A}$ 。又 $A^c, B \in \mathcal{A}$,可取 $A_1 = A^c, A_2 = B, A_n = \emptyset, \forall n \geq 3$,可知 $A^c \cup B = \bigcup_{n \geq 1} A_n \in \mathcal{A}$ 。最后由 $A^c \cup B \in \mathcal{A}$ 知 $A \setminus B = (A^c \cup B)^c \in \mathcal{A}$ 。 综上知 \mathcal{A} 是集代数。

BOBEM II 设 \mathcal{C} 是集类,则 $\forall A \in \sigma(\mathcal{C}), \exists \mathcal{C}_1 \subset \mathcal{C}, |\mathcal{C}_1| \leq \aleph_0, A \in \sigma(\mathcal{C}_1)$ 。

SOLITION . 定义 $\mathcal{D} := \{A \in \sigma(\mathcal{C}) : \exists \mathcal{C}_1 \subset \mathcal{C}, |\mathcal{C}_1| \leq \aleph_0, A \in \sigma(\mathcal{C}_1) \}$ 。对于 $A \in \mathcal{C}$,易知 $A \in \sigma\{A\}$,故 $A \in \mathcal{D}$ 。从而 $\mathcal{C} \subset \mathcal{D}$ 。又显然有 $\mathcal{D} \subset \sigma(\mathcal{C})$,故要证 $\mathcal{D} = \sigma(\mathcal{C})$,只需证 $\mathcal{D} \notin \sigma$ -代数。

- 1. 由 $\Omega \in \{\emptyset, \Omega\} = \sigma(\emptyset)$ 知 $\Omega \in \mathcal{D}$ 。
- 2. 对 $A \in \mathcal{D}$, 取满足条件的 \mathcal{C}_1 , 则由 $A \in \sigma(\mathcal{C}_1)$ 知 $A^c \in \sigma(\mathcal{C}_1)$, 故 $A^c \in \mathcal{D}$ 。
- 3. 对 $A_n \in \mathcal{D}, n = 1, 2, \dots$, 分别取满足条件的 \mathcal{C}_n 。考查 $\mathcal{C}_0 = \bigcup_{n=1}^{\infty} \mathcal{C}_n$ 。由 $A_n \in \sigma(\mathcal{C}_n) \subset \sigma(\mathcal{C}_0)$ 及 $\sigma(\mathcal{C}_0)$ 为 σ -代数可知 $\bigcup_{n=1}^{\infty} A_n \in \sigma(\mathcal{C}_0)$ 。又由 \mathcal{C}_n 是可数的,得 \mathcal{C}_0 是可数的。故 $\bigcup_{n=1}^{\infty} A_n \in \mathcal{D}$ 。

综上知 \mathcal{D} 为 σ -代数,故 $\mathcal{D} = \sigma(\mathcal{C})$,也即 $\forall A \in \sigma(\mathcal{C}), \exists \mathcal{C}_1 \subset \mathcal{C}, |\mathcal{C}_1| \leq \aleph_0, A \in \sigma(\mathcal{C}_1)$ 。

ROBEM III σ -代数 A 称为可数生成的,如果存在可数的子集类 $\mathcal{C} \subset A$ 使 $\sigma(\mathcal{C}) = A$ 。证明 \mathcal{B}^d 是可数生成的。

SOLTION . 令 $\mathcal{C} := \{B(x,r) : x = (x_1, \cdots, x_d), x_i \in \mathbb{Q}, i = 1, \cdots, d, r \in \mathbb{Q}\}$ 。易知 \mathcal{C} 可数。令 \mathcal{O} 为全体开集。易知 $\mathcal{C} \subset \mathcal{O}$,故 $\sigma(\mathcal{C}) \subset \mathcal{B}^d$ 。故要证 $\sigma(\mathcal{C}) = \mathcal{B}^d$,只需 $\sigma(\mathcal{C}) \supset \mathcal{B}^k$ 。又由 $\sigma(\mathcal{C})$ 为 σ -代数,且 $\mathcal{B}^k = \sigma(\mathcal{O})$,故只需证 $\mathcal{O} \subset \sigma(\mathcal{C})$ 。对于 $\mathcal{O} \in \mathcal{O}$,我们只需证 $\mathcal{O} = \bigcup_{C \in \mathcal{C}: C \subset \mathcal{O}} C \in \sigma(\mathcal{C})$ (由 \mathcal{C} 可数知其为可数并)。显然有 $\mathcal{O} \supset \bigcup_{C \in \mathcal{C}: C \subset \mathcal{O}} C$,故只需证 $\mathcal{O} \subset \bigcup_{C \in \mathcal{C}: C \subset \mathcal{O}} C$ 。取 $x \in \mathcal{O}$,由 \mathcal{O} 为开集知 $\exists r > 0, B(x,r) \subset \mathcal{O}$ 。设 $x = (x_1, \cdots, x_d)$,由有理数的稠密性知 $\exists y_i \in \mathbb{Q}, |x_i - y_i| < \frac{r}{100d}$ 。再取 $s \in \mathbb{Q}$ 使 $\frac{r}{3} < s < \frac{r}{2}$ 。则易知 $\mathcal{B}(y,s) \subset \mathcal{B}(x,r) \subset \mathcal{O}$,且 $x \in \mathcal{B}(y,s) \in \mathcal{C}$ 。故 $x \in \bigcup_{C \in \mathcal{C}: C \subset \mathcal{O}} C$ 。综上 $\mathcal{B}^k = \sigma(\mathcal{C})$ 是可数生成的。

\mathbb{R}^{O} BEM IV 设 \mathcal{C}_n 是单调上升的集类。

- 1. 设 C_n 是集代数,则 $\bigcup_{n=1}^{\infty} C_n$ 是集代数
- 2. 设 C_n 是 σ -代数,则 $\bigcup_{n=1}^{\infty} C_n$ 未必是 σ -代数。

SOUTION. 1. (a) 显然 $\Omega \in \mathcal{C}_n \subset \mathcal{C}$ 。

- (b) 设 $A, B \in \mathcal{C}$, 则 $\exists n, m$ 使 $A \in \mathcal{C}_n, B \in \mathcal{C}_m$ 。取 k > n, m,则 $A, B \in \mathcal{C}_k$ 。故 $A \setminus B \in \mathcal{C}_k \subset \mathcal{C}$ 。故 \mathcal{C} 是集代数。
- 2. 令 $\Omega = \mathbb{N}$, 令 C_n 是由 $\{\{1\}, \{2\}, \dots, \{n\}\}$ 生成的 σ 代数。考察 $\bigcup_{n=1}^{\infty} C_n = \{A : A \cap \mathbb{R} \setminus A^c \cap \mathbb{R}\}$, 易知 $\forall n, \{2n\} \in \bigcup_{n=1}^{\infty} C_n$, 但 $2\mathbb{N} \notin \bigcup_{n=1}^{\infty} C_n$ 。故其不是 σ -代数。

 \mathbb{R}^{OBEM} V 证明 σ 代数不能与 \mathbb{N} 等势。

SOLTION. 设 \mathcal{F} 是一个 σ -代数。考察其原子集族 \mathcal{A} 。若 \mathcal{A} 是 Ω 的覆盖,则考察 $|\mathcal{A}|$ 。若 \mathcal{A} 有限,则易知 $|\mathcal{F}| = 2^{|\mathcal{A}|}$ 也有限。若 \mathcal{A} 无限,则取一个 \mathcal{A} 的可数子集 \mathcal{A}_1 ,加上 $\Omega \setminus \bigcup \mathcal{A}_1$ 构成一个 Ω 的可数分割,记为 \mathcal{B} 。故 $|\mathcal{F}| \geq |\sigma(\mathcal{B})| = 2^{|\mathcal{B}|} = 2^{\aleph_0} > \aleph_0$ 。

若 \mathcal{A} 不是 Ω 的覆盖,则 \mathcal{F} 中一定有无穷递降列 $F_1 \supset F_2 \supset \cdots$ 。令 $A_n := F_n \setminus F_{n+1}$,则 $A_n \in \mathcal{F}$ 两两不交。取 $\mathcal{B} := \{A_n : n \in \mathbb{N}_+\} \cup \{\Omega \setminus \bigcup_{n=1}^{\infty} A_n\}$,则由前面的讨论知 \mathcal{F} 不可数。 \square

 \mathbb{R}^{OBEM} VI 设 \mathcal{C} 是 Ω 中任一集代数,则存在 Ω 中的单调类 \mathcal{M}_0 满足:

- 1. $\mathcal{C} \subset \mathcal{M}_0$,
- 2. 对于包含 \mathcal{C} 的单调类 \mathcal{M} ,有 $\mathcal{M}_0 \subset \mathcal{M}$ 。

称这样的单调类为 C 生成的单调类,记作 $\mathcal{M}(A)$ 。

SOLTION. 令

$$\mathcal{M}_0 := \bigcap_{\mathcal{M}: \mathcal{C} \subset \mathcal{M}, \mathcal{M} \ni \Omega} \mathcal{M}$$
 (1)

。显然 2^{Ω} 是包含 \mathcal{C} 的单调类,故 \mathcal{M}_0 良定义。由 \mathcal{M}_0 的定义易知1,2 是成立的。故只需证 \mathcal{M}_0 是单调类。

对 $A_1, \dots \in \mathcal{M}_0, A_1 \subset A_2 \subset \dots$, 我们要证 $A := \bigcup_{n=1}^{\infty} A_n \in \mathcal{M}_0$ 。对于(1)中的 \mathcal{M} ,由 \mathcal{M}_0 的 定义知 $\mathcal{M}_0 \subset \mathcal{M}$,故 $A_n \in \mathcal{M}$ 。又由 \mathcal{M} 为单调类,故 $A \in \mathcal{M}$ 。由 \mathcal{M} 的任意性可知 $A \in \mathcal{M}_0$ 。对单调下降集列同理可得。故 \mathcal{M}_0 是单调类,从而 $\mathcal{M}(A)$ 是良定义的。

 \mathbb{R}^{O} BEM VII 设 Ω_i , $i=1,2,\cdots,n$ 是 n 个集合, \mathcal{A}_i 是 Ω_i 上的 σ -代数。证明 $\mathcal{C}=\{A_1\times\cdots\times A_n:A_i\in\mathcal{A}_i\}$ 为半集代数。

SOUTION. 事实上只需 A_i 是半集代数就够了。

- 1. 显然 $\Omega = \prod_{i=1}^n \Omega_i \in \mathcal{C}$,且 $\emptyset = \prod_{i=1}^n \emptyset \in \mathcal{C}$ 。
- 2. 设 $A = \prod_i A_i, B = \prod_i B_i \in \mathcal{C}$,则 $A \cap B = \prod_i A_i \cap B_i \in \mathcal{C}$ 。
- 3. 设 $A = \prod_{i} A_{i}, B_{0} = \prod_{i} B_{0i} \in \mathcal{C}$,且 $B \subset A_{0}$ 则有 $\forall i, B_{0i} \subset A_{i}$ 。由 A_{i} 为半集代数可知 $\exists B_{1i}, \dots, B_{n_{i}i} \in A_{i}, A_{i} = \sum_{j=1}^{n_{i}} B_{ji}$ 。于是 $A = \sum_{i_{1}, i_{2}, \dots, i_{n}: 0 \leq i_{n} \leq n_{i}} \prod_{j=1}^{n} B_{i_{j}}, i_{1} = i_{2} = \dots = i_{n} = 0$ 时取到 B_{0}

故 \mathcal{C} 为 $\prod_i \Omega_i$ 上的半集代数。

BOBEM VIII 举例说明可加测度未必有限可加。

SOLTION . 令 $\Omega = \{1,2,3\}, \mathcal{C} = \{\{1\},\{2\},\{3\},\{1,2,3\}\}$ 。令 $\mu: \mathcal{C} \to \mathbb{R}, \mu(\{1\}) = \mu(\{2\}) = \mu(\{3\}) = \mu(\Omega) = 1$ 。由于 \mathcal{C} 中任两个集都相交,故可加性显然满足。但 $\mu(\Omega) = 1 \neq 3 = \mu(\{1\}) + \mu(\{2\}) + \mu(\{3\})$ 。

 \mathbb{R}^{OBEM} IX 设 $(\Omega_n, \mathcal{A}_n, \mu_n), n \geq 1$ 为一列测度空间, Ω_n 两两不交。令

$$\Omega = \sum_{n=1}^{\infty} \Omega_n, \mathcal{A} = \{ A \subset \Omega : \forall n \ge 1, A \cap \Omega_n \in \mathcal{A}_n \}, \mu(A) = \sum_{n=1}^{\infty} \mu_n(A \cap \Omega_n), A \in \mathcal{A}$$

证明 (Ω, A, μ) 为测度空间。

SOLTION. 先证 A 为 σ -代数。

- 1. $\Omega = \bigcup_{n=1}^{\infty} \Omega_n \in \mathcal{A}_{\circ}$
- 2. 设 $A_n \in \mathcal{A}$, 则 $(\bigcup_n A_n) \cap \Omega_m = \bigcup_n (A_n \cap \Omega_m) \in \mathcal{A}_m$, 故 $\bigcup_n A_n \in \mathcal{A}$ 。
- 3. 设 $A \in \mathcal{A}$, 则 $A^c \cap \Omega_m = \Omega_m \setminus (A \cap \Omega_m) \in \mathcal{A}_m$, 故 $A^c \in \mathcal{A}$ 。

再证 μ 为测度。显然 $\mu(A) \geq 0$ 。设 $A_n \in \mathcal{A}$ 两两不交,则 $\mu(\bigcup_n A_n) = \sum_{k=1}^{\infty} \mu_k(\bigcup_n A_n \cap \Omega_k) = \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \mu_k(A_m \cap \Omega_k) = \sum_{m=1}^{\infty} \mu(A_m)$ 。故 μ 是测度。

IPOBLEM X 设 Ω 为一无穷集,令 F 为 Ω 中的有限集或者余有限集构成的集合,ℙ 在次两类集合上取值分别为 0 或 1。

- 证明 F 为集代数, ℙ 为有限可加。
- 若 Ω 为可数集,则 ℙ 不可能为 σ 可加。
- 若 Ω 为不可数集,则 ℙ 为可数可加。

SOUTION. 1. 先证 \mathcal{F} 为集代数。

- (a) Ω 为余有限集, $\Omega \in \mathcal{F}$ 。
- (b) 设 $A, B \in \mathcal{F}$, 要证 $A \setminus B \in \mathcal{F}$ 。若 A 有限或 B 余有限,则 $A \setminus B = A \cap B^c$ 有限。否则 A 余有限,B 有限, $A \setminus B$ 余有限。故 $A \setminus B \in \mathcal{F}$ 。

再证 \mathbb{P} 有限可加。只需证 \mathbb{P} 可加。对于 $A, B \in \mathcal{F}, A \cap B = \emptyset$,由 Ω 无限知 A, B 中有一个有限,不妨 A 有限,则 B 的有限性与 $A \cup B$ 相同。故 $\mathbb{P}(A \cup B) = \mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B)$ 。

- 2. $\mathbb{P}(\bigcup_{\omega \in \Omega} \{\omega\}) = 1 \neq 0 = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\})_{\circ}$
- 3. 取 $A_n \in \mathcal{F}$ 两两不交,则由 Ω 无限知其中至多有一个余有限集。若存在余有限集,不妨设为 A_1 ,则 $\mathbb{P}(\bigcup_n A_n) = 1 = \mathbb{P}(A_1) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$ 。否则 A_n 均为有限集。故 $\bigcup_n A_n$ 至多可数。又 Ω 不可数,故其不是余有限集。故 $\mathbb{P}(\bigcup_n A_n) = 0 = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$ 。

 \mathbb{R}^{OBIEM} XI 举例说明半集代数 \mathcal{T} 生成的 σ -代数不能一般性地表述为

$$\sigma(\mathcal{T}) = \{ \sum_{n=1}^{\infty} A_n : \forall n \ge 1, A_n \in \mathcal{T} \}$$

但如果 Ω 至多可数时,如上表述是正确的。

- 1. $\Omega = \mathbb{N}$ 满足 $0 \in \Omega$, $\Omega^c = \emptyset$ 有限,故 $\Omega \in \mathcal{T}$ 。
- 2. 设 $A, B \in \mathcal{T}$ 。 须证 $A \setminus B \in \mathcal{T}$ 。 若 A 有限且 $0 \notin A$,则有 $A \setminus B$ 也有限且 $0 \notin A \setminus B$,故 $A \setminus B \in \mathcal{T}$ 。 若 A^c 有限且 $0 \in A$,B 有限且 $0 \notin B$,则 $(A \setminus B)^c = A^c \cup B$ 也有限且 $0 \in A \setminus B$,故 $A \setminus B \in \mathcal{T}$ 。 若 A^c , B^c 有限且 $0 \in A$, B,则 $A \setminus B = A \cap B^c$ 有限,且 $0 \notin A \setminus B$,故 $A \setminus B \in \mathcal{T}$ 。 综上, $\forall A, B \in \mathcal{T}$,

令 $S := \{\sum_{n=1}^{\infty} A_n : \forall n \geq 1, A_n \in \mathcal{T}\}$, 下证 $S \neq \sigma(\mathcal{T})$ 。只需证 $\{0\} \in \sigma(\mathcal{T}), \{0\} \notin \mathcal{S}$ 。由 $\{n\} \in \mathcal{T}, \forall n \geq 1$ 可得 $\mathbb{N}_+ \in \sigma(\mathcal{T})$,故 $\{0\} = \mathbb{N}_+^c \in \sigma(\mathcal{T})$ 。反设 $\{0\} \in \mathcal{S}$,则 $\{0\} = \sum_n A_n, A_n \in \mathcal{T}$ 。由 $\{0\}$ 有限知 A_n 有限,由 \mathcal{T} 的定义知 $0 \notin A_n$,故 $0 \notin \sum_n A_n = \{0\}$,矛盾! 故 $\{0\} \notin \mathcal{S}$ 。从而 $\mathcal{S} \neq \sigma(\mathcal{T})$ 。