

ADS AD VIDEO COSOUN

www.aduni.edu.pe

NOMENCLATURA INORGÁNICA II Semana 15

www.aduni.edu.pe

ADUNI

I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

- **1. Relacionar** la fórmula química y nomenclatura de los hidróxidos, según los criterios reconocidos por la IUPAC.
- 2. Identificar los tipos de ácidos inorgánicos.

3. Relacionar la fórmula química y nomenclatura clásica de los ácidos.

II. INTRODUCCIÓN

Muchos productos de uso cotidiano contienen **hidróxidos** como el hidróxido de magnesio, $(Mg(OH)_2,$ presente en la leche de magnesia y otros contienen **ácidos** como el ácido clorhídrico, (HCI), presente en el ácido muriático.

También hay otros hidróxidos y ácidos, tales como:

El NaOH, (soda cáustica), es usado ampliamente en la fabricación de jabones, obtención del papel, limpiadores de desagües, etc.

¿Cuál es su nomenclatura Stock del NaOH?

El H_2SO_4 , es el compuesto químico que más se produce a nivel mundial. Uno de sus principales aplicaciones es la obtención de fertilizantes como el $(NH_4)_2SO_4$.

¿Cuál es su nomenclatura tradicional o clásica del H₂SO₄?

RESPUESTA: hidróxido de sodio

RESPUESTA: ácido sulfúrico

III. FUNCIÓN HIDRÓXIDO

Los hidróxidos tienen diversas aplicaciones.

1)

Las plantas de tratamiento de agua utilizan hidróxido de sodio para controlar la acidez del agua y ayudar a eliminar los metales pesados.

2)

Las celdas de combustible son dispositivos que generan corriente eléctrica con alto rendimiento, usan como electrolito al hidróxido de potasio, KOH.

- Son compuestos ternarios.
- Son compuestos iónicos.
- Presentan como grupo funcional al ion hidróxido
 (OH) ¹⁻
- Obtención general:

Óxido básico + agua → hidróxido

EJEMPLO

$$\frac{2+}{\text{CaO}} + \text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2$$

Óxido cálcico Hidróxido cálcico

El valor absoluto del estado de oxidación del elemento metálico, resulta ser el subíndice del hidróxido.

Hidróxido alumínico

Otra forma de obtener un hidróxido:

$$Na_{(s)} + H_2O_{(\ell)} \to NaOH_{(ac)} + H_{2(g)}$$

• Formulación práctica:

$$M$$
 OH MOH

EJEMPLO

• EO (Ca)=(2+)

- N. Clásica: hidróxido cálcico
- N. Stock: hidróxido de calcio
- N. Sistemática: dihidróxido de calcio

Cuando un elemento tiene un solo valor de estado de oxidación, en su nomenclatura Stock, no se debe indicar en número romano.

- N. Clásica: hidróxido plúmbico
- N. Stock: hidróxido de plomo (IV)
- N. Sistemática: tetrahidróxido de plomo

EJEMPLO

N. Clásica: hidróxido argéntico

N. Stock: hidróxido de plata

N. Sistemática: hidróxido de plata

ELEMENTO	SÍMBOLO	ORIGEN DEL NOMBRE LATÍN
Oro	Au	aurum
Plata	Ag	argentum
Plomo	Pb	plumbum
Cobre	Cu	cuprum
Hierro	Fe	ferrum

- N. Clásica: hidróxido manganoso
- N. Stock: hidróxido de manganeso (II)
- N. Sistemática: dihidróxido de manganeso

- N. Clásica: hidróxido alumínico
- N. Stock: hidróxido de aluminio
- N. Sistemática: trihidróxido de aluminio

IV. FUNCIÓN ÁCIDO

Los ácidos tienen diversas aplicaciones

El *ácido clorhídrico*, HCl_(ac), es un componente del **ácido muriático**, esta mezcla es un eficaz removedor de sarro que obstruye la tubería de desagüe de los baños.

El *ácido sulfúrico*, H₂SO₄, conocido como ácido de batería, es un insumo químico importante para la producción de energía eléctrica en el auto.

- Son compuestos <u>binarios</u> (H y E) o <u>ternarios</u> (H, E y O).
- Donde E, es un elemento no metálico.
- Son compuestos covalentes.
- Presentan como grupo funcional al <u>ion hidrógeno</u> (H ¹⁺).
- Existen dos tipos de ácidos inorgánicos:

A) ÁCIDOS HIDRÁCIDOS

Los **hidrácidos** son compuestos moleculares gaseosos que en solución acuosa se ionizan generando H⁺ y los aniones monoatómicos correspondientes. A esta mezcla acuosa: **agua + hidrácido se le conoce como ácido hidrácido.**

Son las combinaciones binarias del **H** con los elementos F, Cl, Br, I, S ,Se y Te. Se denominan de este modo debido al carácter ácido de sus soluciones acuosas.

Formulan de los ácidos hidrácidos?

Raíz nombre E- uro de hidrógeno

Donde:

El EO elemento E

Grupo VI: S, Se, Te = **2**–

Grupo VII: F, Cl, Br, I = 1

EJEMPLO

Los volcanes activos emanan gases ácidos, entre ellas está el *sulfuro de hidrógeno*, H₂S_(g), el cual ataca el sistema nervioso y bloquea la respiración celular, en altas concentraciones, una sola inhalación puede ser mortal.

ANUAL SAN MARCOS 2021

EJEMPLO

El **ácido fluorhídrico**, HF_(ac), es capaz de corroer al vidrio y la porcelana, razón por la cual se lo emplea para realizar grabados o gráficos de alto relieve.

B) ÁCIDOS OXÁCIDOS (OXOÁCIDOS)

- compuestos covalentes ternarios presentan al elemento oxígeno.
- Obtención general:

Óxido ácido + agua → ácido oxácido (anhídrido)

EJEMPLO

Trabajaremos con la nomenclatura clásica.

$$4+$$
 $CO_2 + H_2O \rightarrow H_2CO_3$
Anhídrido carbónico Ácido carbónico

Anhídrido nitroso

Anhídrido permangánico

HMnO₄

Ácido permangánico

Formulación práctica:

X = EO (E)	H_nEO_m	
Par	$H_2EO_{\frac{x+2}{2}}$	(a)
Impar	$HEO_{\frac{X+1}{2}}$	(b)
B, P, As y Sb	$H_3EO_{\frac{X+3}{2}}$	(c)

Nota:

- Los casos (a) y (b) se obtienen al combinar: 1 anhídrido + 1 H₂O
- El caso (c) se obtiene al combinar: 1 anhidrido + 3H₂O

ANUAL SAN MARCOS 2021

EJEMPLO

ANUAL SAN MARCOS 2021

EJEMPLO

<u>Nota</u>: Las moléculas de ácidos oxácidos, en estado líquido pueden interactuar por **enlace puente hidrógeno** además de F. London, es decir generan líquidos asociados.

EJEMPLO

V. BIBLIOGRAFÍA

- Química, colección compendios académicos UNI; Lumbreras editores
- Química, fundamentos teóricos y aplicaciones; 2019 Lumbreras editores.
- Química, fundamentos teóricos y aplicaciones.
- Química esencial; Lumbreras editores.
- Fundamentos de química, Ralph A. Burns; 2003; PEARSON
- Química, segunda edición Timberlake; 2008, PEARSON
- Química un proyecto de la ACS; Editorial Reverte; 2005
- Química general, Mc Murry-Fay quinta edición

www.aduni.edu.pe

