

SACC

2022 中国系统架构师大会

SYSTEM ARCHITECT CONFERENCE CHINA 2022

激发架构性能 点亮业务活力

△ 云上会议 网络直播 | ● 2022年10月27-29日

Building a High-performance and Scalable Metadata Service for Distributed File System

Alluxio 创始成员&开源社区副总裁 范斌

About Me

Bin Fan (https://www.linkedin.com/in/bin-fan/)

- Founding Engineer, VP Open Source @ Alluxio
- Alluxio PMC Co-Chair, Presto TSC/committer
- Email: binfan@alluxio.com
- PhD in CS @ Carnegie Mellon University

apc999

Alluxio Overview

- Originally a research project (Tachyon) in UC Berkeley AMPLab led by by-then PHD student Haoyuan Li (Alluxio founder CEO)
- Backed by top VCs (e.g., Andreessen Horowitz) with \$70M raised in total, Series C (\$50M) announced in 2021
- Deployed in production at large scale in Facebook, Uber, Microsoft, Tencent, Tiktok and etc
- More than 1200 Contributors on Github. In 2021, more than 40% commits in Github were contributed by the community users
- The 9th most critical Java-based Open-Source projects on Github by Google/OpenSSF^[1]

[1] Google Comes Up With A Metric For Gauging Critical Open-Source Projects

Companies Using Alluxio

LEARN MORE

7 Years Ago

Alluxio (Tachyon) in 2015

What is Tachyon

- A Reliable Memory Centric Distr Storage System
- Enable memory-speed data shari different computation framework
- Started at AMPLab as a research from the summer of 2012

SACC 2022 2022中国系统架构师大会 SYSTEM ARCHITECT CONFERENCE CHIMA 2022

Alluxio (Tachyon) in 2015 Enable Data Sharing Among Spark Jobs

Alluxio (Tachyon) in 2015 Fast Checkpoint for job reliability

execution engine & storage engine same process

What's Different

Topology

• On-prem Hadoop → Cloud-native, Multi- or Hybrid-cloud, Multi-datacenter

Computation

- MR/Spark → Spark, Presto, Hive, Tensorflow, Pytorch
- More mature frameworks (less frequent OOM etc)

Data access pattern

- Sequential-read (e.g., scanning) on unstructured files → Ad-hoc read into structured/columnar data
- Hundred to thousand of big files → millions of small files

The Evolution from Hadoop to Cloud-native Eravern

Data Storage

 On-prem & colocated HDFS → S3 !!! and other object stores (possibly across regions like us-east & us-west), and legacy on-prem HDFS in service

Resource/Job Orchestration

- YARN \rightarrow K8s
 - Lost focus on data locality

Strong Market Demand For Simplification

UNIFICATION OF DATA LAKES

Serve analytics & AI from multiple data locations

EFFICIENT ACCESS & DATA MANAGEMENT

Acceleration & autotiering of remote data sources

ENVIRONMENT AGNOSTICITY

Agility across regions for private, hybrid or multi-cloud

Architecture

Application

Persist Storage

S3 region-us-east 1

Core Feature 1: Distributed Caching

Core Feature 2: Filesystem Namespace Virtualization

- Alluxio can be viewed as a logical file system
 - Multiple different storage service can be mounted into same logical Alluxio namespace
- An Alluxio path is backed by an persistent storage address
 - o alluxio://Data/Sales <-> hdfs://service/salesdata/Sales

Challenges to Build Scalable Metadata Services

What is File System Metadata

- Data structure of the Filesystem Hierarchy: Often an Inode tree to represent parent dir, children, permission bits, ower/group, modification time
 - Each node on this inode tree corresponding to one file or directory
 - Commonly seen in all file systems
 - Can include mounts of other file systems in Alluxio and the size of the tree can be very large!
- Sub-file blocks information (block ID -> workers)
 - Index for a distributed system to point to the data server

Factors w.r.t. Design a Scale Metadata Service

- # of Alluxio Servers in a cluster
 - Heartbeat:
 - node -> master
 - Load balancing
 - Workload skew
- # of concurrent clients
- # of files/dirs in this logical file system
- Throughput of metadata RPCs
 - Read ops
 - Write ops
- Speed to fail over to other stand-by masters (avoid Single node of failure)

Single Master Scalability

How to Store File System Metadata

Federating Multiple Storage

=> We need to handle a "logical file system" multiple times bigger

Storing the raw metadata becomes a problem with a large number of files

- On average, each file takes 1KB of on-heap storage
- 1 billion files would take 1 TB of heap space!
- A typical JVM runs with < 64GB of heap space
- GC becomes a big problem when using larger heaps

Off-Heap Metadata Storage => 1 Billion Files

Other Metadata Serving Challenges

- Common file operations (ie. getStatus, create) need to be fast
 - On heap data structures excel in this case
- Operations need to be optimized for high concurrency
 - Generally many readers and few writers for large-scale analytics
- The metadata service also needs to sustain high load
 - A cluster of 100 machines can easily house over 5k concurrent clients!
- Connection life cycles need to be managed well
 - Connection handshake is expensive
 - Holding an idle connection is also detrimental

Built-in Fault Tolerance

- Alluxio cluster can recover from restarts, and avoid single-point of failure
 - File system status must be able to be recovered
 - This was previously done utilizing an external fault tolerance storage
- Our approach: Self-Managed Quorum for Leader Election and Journal Fault Tolerance Using Raft
 - Raft is a consensus algorithm that is designed to be easy to understand.
 It's equivalent to Paxos in fault-tolerance and performance
 - Enables hot standbys for rapid recovery in case of single node failure

拓展阅读: 知乎: 漫话分布式系统共识协议: Paxos篇

Built-in Self-Managed Quorum-based Journal

Consensus achieved internally

 Leading masters commits state change

Benefits

Local disk for journal

Challenges

Performance tuning

Alluxio + Raft architecture

Consider Alluxio File System Alone

If clients only query and modify Alluxio File System through Alluxio masters,
 the semantics is strongly consistent

Consider Alluxio File System + UFS

 When clients can modify UFS, Alluxio masters provide synchronization between Alluxio namespace and UFS

RPC System in Alluxio 1.x

Master RPC using Thrift

Filesystem metadata operations

Worker RPC using Netty

Data operations

Problems

- Hard to maintain and extend two systems
- Thrift is not maintained, no streaming RPC support

gRPC

- https://grpc.io/
- gRPC is a modern open source high performance RPC framework that can run in any environment
- Works well with Protobuf for serialization

Unified RPC Framework in Alluxio 2.0

Unify all RPC interfaces using gRPC

Benefits

- Streaming I/O
- Protobuf everywhere
- Well maintained & documented

Challenges

Performance tuning

gRPC Transport Layer

- Connection multiplexing to reduce the number of connections from #
 of application threads to # of applications
 - Solves the connection life cycle management problem
- Threading model enables the master to serve concurrent requests at scale
 - Solves the high load problem
- High metadata throughput needs to be matched with efficient IO
 - Consolidated Thrift (Metadata) and Netty (IO)

Check out this blog for more details: https://www.alluxio.com/blog/moving-from-apache-thrift-to-grpc-a-perspective-from-alluxio

Summary

- Designing & Implementing a distributed system is hard but also fun
- First you need to well understand the design requirements
- Consistency, Scalability, Reliability We spent most of our time to fight for
- Do not reinvent the wheel, but also be cautious when introducing new building blocks

官方微信公众号

Slack官方账号

Alluxio小助手

