Encoding Words

One-Hot Encoding

Label
0
4
4
3
0
9

0	1	2	3	4	5	6	7	8	9
1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1

Bag of Words

Input Text "Bag of Words"

lext	а	 hate	1	iPhone	love	my	 zoo
I love my iPhone →	0	 0	1	1	1	1	 0
I hate my iPhone →	0	 1	1	1	0	1	 0

Word Embedding

Embeddings

	Val 1	Val 2	Val 3	Val 4
a	0.1	-0.3	1.7	2.4
aardvark	-2.3	4.1	-5.2	3.1
<unknown></unknown>	0.3	0.9	0.8	0.2

Pre-computed Encodings

GloVe: Global Vectors for Word Representation

Jeffrey Pennington, Richard Socher, Christopher D. Manning

Introduction

GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Training is performed on aggregated global word-word co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space.

Getting started (Code download)

- Download the code (licensed under the Apache License, Version 2.0)
- Unpack the files: unzip GloVe-1.2.zip
- Compile the source: cd GloVe-1.2 && make
- Run the demo script: ./demo.sh
- Consult the included README for further usage details, or ask a question
- The code is also available on GitHub

Download pre-trained word vectors

- Pre-trained word vectors. This data is made available under the <u>Public Domain Dedication and License</u> v1.0 whose full text can be found at: http://www.opendatacommons.org/licenses/pddl/1.0/.
 - Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
 - Common Crawl (42B tokens, 1.9M vocab, uncased, 300d vectors, 1.75 GB download): glove.42B.300d.zip
 - o Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip
 - Twitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glove.twitter.27B.zip
- Ruby <u>script</u> for preprocessing Twitter data

GloVe + word2vec

Word Analogy Task

man is to woman as king is to ____?

good is to best as smart is to ____?

china is to beijing as russia is to ____?

Turns out the word-context based vector model we just learnt is good for such analogy tasks,

 $[king] - [man] + [woman] \approx [queen]$

Microsoft Levy, Goldberg, and Israel, Linguistic Regularities in Sparse and Explicit Word Representations, CoML 2014.

Convolutions

2D Convolution Review

Input * Kernel

Output

2D Convolution Review - Multiple Outputs

Original Image

3 Convolutions with different kernels

Multiple Outputs

2D Convolution Review - Multiple Inputs

Multiple Convolutions

Sum all convolutions

	1	love	this	movie
Channel 1	0.4	9.7	-0.7 _{0.2}	0.4
Channel 2	23.4	5.4	-5.2	-3.2
Channel 3	-0.6	-9.4	-2.1	-9.9
Channel 4	-2.4	-1.2	-0.9	-1.9

$$0.4*0.2 + 9.7*0.3 + (-0.7)*0.2$$

= 2.85

	1.0	love	this	movie
Channel 1	0.4	9.7	-0.7	0.4
Channel 2	23.4	5.4 _{0.3}	-5.2 _{0.2}	-3.2
Channel 3	-0.6	-9.4	-2.1	-9.9
Channel 4	-2.4	-1.2	-0.9	-1.9

$$23.4*0.2 + 5.4*0.3 + (-5.2)*0.2$$

= 5.26

Conv 1

2.85

5.26

	1	love	this	movie
Channel 1	0.4	9.7	-0.7	0.4
Channel 2	23.4	5.4	-5.2	-3.2
Channel 3	-0.6 _{0.2}	-9.4 0.3	-2.1	-9.9
Channel 4	-2.4	-1.2	-0.9	-1.9

$$(-0.6)*0.2 + (-9.4)*0.3 + (-2.1)*0.2$$

= -3.36

2.85 5.26 -3.36

	1	love	this	movie
Channel 1	0.4	9.7	-0.7	0.4
Channel 2	23.4	5.4	-5.2	-3.2
Channel 3	-0.6	-9.4	-2.1	-9.9
Channel 4	-2.4	-1.2 0.3	-0.9 _{0.2}	-1.9

$$(-2.4)*0.2 + (-1.2)*0.3 + (-0.9)*0.2$$

= -1.02

Conv 1

2.85

5.26

-3.36

-1.02

	1
Channel 1	0.4
Channel 2	23.4
Channel 3	-0.6
Channel 4	-2.4

love	this	movie
9.7 _{0.3}	-0.7	0.4
5.4	-5.2	-3.2
-9.4	-2.1	-9.9
-1.2	-0.9	-1.9

Conv 1
2.85
5.26
-3.36
-1.02

$$9.7*0.3 + (-0.7)*0.3 + 0.4*0.1$$

= 2.74

	- 1
Channel 1	0.4
Channel 2	23.4
Channel 3	-0.6
Channel 4	-2.4

love	this	movie
9.7	-0.7	0.4
5.4 _{0.3}	-5.2 _{0.3}	-3.2 _{0.1}
-9.4	-2.1	-9.9
-1.2	-0.9	-1.9

2.85 5.26 -3.36 -1.02

	T I		love
Channel 1	0.4		9.7
Channel 2	23.4		5.4
Channel 3	-0.6		-9.4 _{0.3}
Channel 4	-2.4	l '	-1.2
			Conv 1
			2.85

love	this	movie
9.7	-0.7	0.4
5.4	-5.2	-3.2
-9.4 _{0.3}	-2.1	-9.9 _{0.1}
-1.2	-0.9	-1.9

 Conv 1
 Conv 2

 2.85
 2.74

 5.26
 -0.26

 -3.36
 -4.44

 -1.02

				_			
	1		love		this		movie
Channel 1	0.4		9.7		-0.7		0.4
Channel 2	23.4		5.4		-5.2		-3.2
Channel 3	-0.6		-9.4		-2.1		-9.9
Channel 4	-2.4		-1.2		-0.9 _{0.3}		-1.9 _{0.1}
		1	Conv 1	-		(-1.2)*0.	3 + (-0.9)*0.
			2.85		2.74	,	,
			5.26		-0.26		
			-3.36		-4.44		

-0.82

-1.02

2D Max Pooling Review

52	34	14	5
45	12	17	11
29	20	19	27
99	85	60	55
118	103	180	192
120	112	88	29

Input 6x4

Output 3x2

52	17	

2D Max Pooling Review

52	34	14	5
45	12	17	11
29	20	19	27
99	85	60	55
118	103	180	192
120	112	88	29

Input 6x4

Output 3x2

52	17	
99		

2D Max Pooling Review

52	34	14	5
45	12	17	11
29	20	19	27
99	85	60	55
118	103	180	192
120	112	88	29

Input 6x4

Output 3x2

	1.0	love	this	movie
Channel 1	0.4	9.7	-0.7	0.4
Channel 2	23.4	5.4	-5.2	-3.2
Channel 3	-0.6	-9.4	-2.1	-9.9
Channel 4	-2.4	-1.2	-0.9	-1.9

Max Pooling 1

9.7

	1	love
Channel 1	0.4	9.7
Channel 2	23.4	5.4
Channel 3	-0.6	-9.4
Channel 4	-2.4	-1.2

this
-0.7
-5.2
-2.1
-0.9

movie
0.4
-3.2
-9.9
-1.9

Max Pooling 1
9.7
23.4

	1	love	this	movie
Channel 1	0.4	9.7	-0.7	0.4
Channel 2	23.4	5.4	-5.2	-3.2
Channel 3	-0.6	-9.4	-2.1	-9.9
Channel 4	-2.4	-1.2	-0.9	-1.9

9.7 23.4 -0.6

	1	love	this	movi
Channel 1	0.4	9.7	-0.7	0.4
Channel 2	23.4	5.4	-5.2	-3.2
Channel 3	-0.6	-9.4	-2.1	-9.9
Channel 4	-2.4	-1.2	-0.9	-1.9

Max Pooling 1

9.7 23.4 -0.6 -1.2

	1
Channel 1	0.4
Channel 2	23.4
Channel 3	-0.6
Channel 4	-2.4

love
9.7
5.4
-9.4
-1.2

this	movie
-0.7	0.4
-5.2	-3.2
-2.1	-9.9
-0.9	-1.9

Max Pooling 1
9.7
23.4
-0.6
-1.2

	1
Channel 1	0.4
Channel 2	23.4
Channel 3	-0.6
Channel 4	-2.4

love
9.7
5.4
-9.4
-1.2

this	movie
-0.7	0.4
-5.2	-3.2
-2.1	-9.9
-0.9	-1.9

Max Pooling 1
9.7
23.4
-0.6
-1.2

	1
Channel 1	0.4
Channel 2	23.4
Channel 3	-0.6
Channel 4	-2.4

love
9.7
5.4
-9.4
-1.2

this	movie
-0.7	0.4
-5.2	-3.2
-2.1	-9.9
-0.9	-1.9

Max Pooling 1	
9.7	
23.4	
-0.6	
-1.2	

	1
Channel 1	0.4
Channel 2	23.4
Channel 3	-0.6
Channel 4	-2.4

love
9.7
5.4
-9.4
-1.2

this	movie
-0.7	0.4
-5.2	-3.2
-2.1	-9.9
-0.9	-1.9

9.7 23.4 -0.6 -1.2

Convolutional Neural Network

Network Architecture

Network Layers

Map input text to word vectors

Randomly drop nodes to reduce overfitting

Extract features from input

Network Layers

Downsample feature vector to the maximum value in each patch of the feature vector

Downsample feature vector to the maximum value in the entire feature vector

Fully-connected, output layer