LECTURE 19 & 20- RECURRENCE RELATION

A recurrence relation is an equation that recursively defines a sequence where the next term is a function of the previous terms (Expressing F_n as some combination of F_i with i < n).

EXAMPLE – FIBONACCI SERIES $F_n = F_{n-1} + F_{n-2}$, TOWER OF HANOI – $F_n = 2F_{n-1} + 1$

$$ig| F_n = F_{n-1} + F_{n-2}$$

$$F_n = 2F_{n-1} + 1$$

Linear Recurrence Relations

A linear recurrence equation of degree k or order k is a recurrence equation which is in the format $x_n = A_1 x_{n-1} + A_2 x_{n-1} + A_3 x_{n-1} + \dots A_k x_{n-k}$ (A_n is a constant and $A_k
eq 0$) on a

sequence of numbers as a first-degree polynomial.

These are some examples of linear recurrence equations -

Recurrence relations	Initial values	Solutions
$F_n = F_{n-1} + F_{n-2}$	$a_1 = a_2 = 1$	Fibonacci number
$F_n = F_{n-1} + F_{n-2}$	$a_1 = 1, a_2 = 3$	Lucas Number
$F_n = F_{n-2} + F_{n-3}$	$a_1 = a_2 = a_3 = 1$	Padovan sequence
$F_n = 2F_{n-1} + F_{n-2}$	$a_1 = 0, a_2 = 1$	Pell number

How to solve linear recurrence relation

Suppose, a two ordered linear recurrence relation is - $F_n = AF_{n-1} + BF_{n-2}$ where A and B are real numbers.

The characteristic equation for the above recurrence relation is -

$$x^2 - Ax - B = 0$$

Three cases may occur while finding the roots -

Case 1 - If this equation factors as $(x-x_1)(x-x_1)=0$ and it produces two distinct real roots x_1 and x_2 , then $F_n=ax_1^n+bx_2^n$ is the solution. [Here, a and b are constants]

Case 2 - If this equation factors as $(x-x_1)^2=0$ and it produces single real root x_1 , then $F_n=ax_1^n+bnx_1^n$ is the solution.

Case 3 - If the equation produces two distinct complex roots, x_1 and x_2 in polar form $x_1=r\angle\theta$ and $x_2=r\angle(-\theta)$, then $F_n=r^n(acos(n\theta)+bsin(n\theta))$ is the solution.

Problem 1

Solve the recurrence relation $\ F_n = 5F_{n-1} - 6F_{n-2}$ where $\ F_0 = 1$ and $\ F_1 = 4$

Solution

The characteristic equation of the recurrence relation is -

$$x^2 - 5x + 6 = 0$$
,

So,
$$(x-3)(x-2)=0$$

Hence, the roots are -

$$x_1=3$$
 and $x_2=2$

The roots are real and distinct. So, this is in the form of case 1

Hence, the solution is -

$$F_n = ax_1^n + bx_2^n$$

Here, $F_n = a3^n + b2^n \ (As \ x_1 = 3 \ and \ x_2 = 2)$

Therefore,

$$1 = F_0 = a3^0 + b2^0 = a + b$$

$$4 = F_1 = a3^1 + b2^1 = 3a + 2b$$

Solving these two equations, we get $\ a=2$ and $\ b=-1$

Hence, the final solution is -

$$F_n = 2.3^n + (-1).2^n = 2.3^n - 2^n$$

Problem 2

Solve the recurrence relation $-F_n=10F_{n-1}-25F_{n-2}$ where $F_0=3$ and $F_1=17$

Solution

The characteristic equation of the recurrence relation is -

$$x^2 - 10x - 25 = 0$$

So
$$(x-5)^2=0$$

Hence, there is single real root $x_1=5$

As there is single real valued root, this is in the form of case 2 Hence, the solution is -

$$F_n = ax_1^n + bnx_1^n$$

$$3 = F_0 = a.5^0 + (b)(0.5)^0 = a$$

$$17 = F_1 = a.5^1 + b.1.5^1 = 5a + 5b$$

Solving these two equations, we get $\ a=3$ and $\ b=2/5$

Hence, the final solution is - $\,F_n=3.5^n+(2/5).\,n.2^n$

Solve the recurrence relation $F_n = 2F_{n-1} - 2F_{n-2}$

$$F_n = 2F_{n-1} - 2F_{n-2}$$

where

$$F_0=1$$
 and $F_1=3$

SOLUTION: The characteristic equation of the recurrence relation is –

$$x^2 - 2x - 2 = 0$$

Hence, the roots are -

$$x_1=1+i$$
 and $x_2=1-i$

In polar form,

$$x_1=r \angle heta$$
 and $x_2=r \angle (- heta),$ where $r=\sqrt{2}$ and $heta=rac{\pi}{4}$

The roots are imaginary. So, this is in the form of case 3.

Hence, the solution is -

$$F_n = (\sqrt{2})^n (acos(n.\,\sqcap/4) + bsin(n.\,\sqcap/4))$$

$$1 = F_0 = (\sqrt{2})^0 (acos(0.\,\sqcap/4) + bsin(0.\,\sqcap/4)) = a$$

$$3 = F_1 = (\sqrt{2})^1 (acos(1.\,\sqcap/4) + bsin(1.\,\sqcap/4)) = \sqrt{2}(a/\sqrt{2} + b/\sqrt{2})$$

Solving these two equations we get a=1 and b=2

Hence, the final solution is -

$$F_n=(\sqrt{2})^n(cos(n.\,\pi/4)+2sin(n.\,\pi/4))$$

NON-HOMOGENEOUS RECURRENCE RELATION AND PARTICULAR SOLUTIONS:

A recurrence relation is called non-homogeneous if it is in the form

$$F_n = AF_{n-1} + BF_{n-2} + f(n)$$
 where $f(n)
eq 0$

Its associated homogeneous recurrence relation is $\ F_n = AF_{n-1} + BF_{n-2}$

The solution (a_n) of a non-homogeneous recurrence relation has two parts.

First part is the solution $\,(a_h)\,$ of the associated homogeneous recurrence relation and the second

part is the particular solution (a_t) .

$$a_n = a_h + a_t$$

Solution to the first part is done using the procedures discussed in the previous section.

To find the particular solution, we find an appropriate trial solution.

Let
$$f(n)=cx^n$$
 ; let $x^2=Ax+B$ be the characteristic equation of the associated

homogeneous recurrence relation and let x_1 and x_2 be its roots.

If
$$x
eq x_1$$
 and $x
eq x_2$, then $a_t = Ax^n$

$${}^{ hinspace}$$
 If $x=x_1$, $x
eq x_2$, then $a_t=Anx^n$

If
$$x=x_1=x_2$$
 , then $a_t=An^2x^n$

Example

Let a non-homogeneous recurrence relation be $F_n=AF_{n-1}+BF_{n-2}+f(n)$ with characteristic roots $x_1=2$ and $x_2=5$. Trial solutions for different possible values of f(n) are as follows -

f(n)	Trial solutions	
4	Α	
5.2 ⁿ	An2 ⁿ	
8.5 ⁿ	An5 ⁿ	
4 ⁿ	A4 ⁿ	
2n ² +3n+1	An ² +Bn+C	

PROBLEM 1

Solve the recurrence relation

$$F_n = 3F_{n-1} + 10F_{n-2} + 7.5^n$$
 where fo=4 and f1=3

SOL.

Solution

This is a linear non-homogeneous relation, where the associated homogeneous equation $F_n=3F_{n-1}+10F_{n-2}$ and $f(n)=7.5^n$

The characteristic equation of its associated homogeneous relation is -

$$x^2 - 3x - 10 = 0$$

Or,
$$(x-5)(x+2)=0$$

Or,
$$x_1=5$$
 and $x_2=-2$

Hence $a_h = a.5^n + b.(-2)^n$, where a and b are constants.

Since $f(n)=7.5^n$, i.e. of the form $\ c. \, x^n$, a reasonable trial solution of at will be $\ Anx^n$

$$a_t = Anx^n = An5^n$$

After putting the solution in the recurrence relation, we get -

$$An5^n = 3A(n-1)5^{n-1} + 10A(n-2)5^{n-2} + 7.5^n$$

Dividing both sides by 5^{n-2} , we get

$$An5^2 = 3A(n-1)5 + 10A(n-2)5^0 + 7.5^2$$

Or,
$$25An = 15An - 15A + 10An - 20A + 175$$

Or,
$$35A = 175$$

Or,
$$A=5$$

So,
$$F_n = An5^n = 5n5^n = n5^{n+1}$$

The solution of the recurrence relation can be written as -

$$F_n = a_h + a_t$$

$$=a.5^n+b.(-2)^n+n5^{n+1}$$

Putting values of $\,F_0=4\,$ and $\,F_1=3\,$, in the above equation, we get $\,a=-2\,$ and

$$b = 6$$

Hence, the solution is -

$$F_n = n5^{n+1} + 6.(-2)^n - 2.5^n$$

PROBLEMS:

What is the solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0=2$ and $a_1=7$?

- What is the solution of the recurrence relation $f_n = f_{n-1} + f_{n-2}$ with $f_0=0$ and $f_1=1$?
- What is the solution of the recurrence relation $a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$ with $a_0 = 8$, $a_1 = 6$ and $a_2 = 26$?