KOMUNIKAČNÍ TECHNOLOGIE (BPC-KOM)

Ústav telekomunikací Fakulta elektrotechniky a komunikačních technologií VUT v Brně

doc. Ing. Jan Jeřábek, Ph.D. ierabeki@feec.vutbr.cz

PRINCIPY KOMUNIKAČNÍCH TECHNIK

Plán přednášky

- Způsoby přenosu informace (dat)
- Architektura a topologie sítí
- Jiné členění sítí a technologií dle velikosti
- Vícenásobné využití přenosových cest
- □ Časové dělení
- Kmitočtové dělení
- Metody zajištění obousměrné komunikace

Způsoby přenosu informace (dat)

- Existuje několik základních způsobů přenosu, voleny zpravidla na základě povahy signálu
- Dva základní příklady signálu s odlišnou povahou
 - hovorový signál
 - malé mezery mezi přenášenou informací (nadbytečnost)
 - citlivý na zpoždění
 - obecná data
 - obvykle v dávkách
 - přenos musí být spolehlivý
 - zpoždění není kritické
- Čtyři základní způsoby
 - komutace okruhů
 - komutace zpráv
 - komutace paketů
 - komutace rámců

Komutace okruhů (circuit switching)

- vytváří se fyzické spojení mezi koncovými účastníky (dočasná přenosová cesta), i uvnitř spojovacích uzlů
- Nutnost sestavit spojení před vlastním přenosem informace
 - rezervace prostředků a kapacit pro následný přenos
 - zdržení zahájení přenosu (cca 5 sekund)
- Z hlediska nákladů drahé spojení
 - platí se za celou dobu sestaveného spojení
- Převážně pro přenos hovorových signálů
 - klasická pevná síť
 - mobilní telefonní síť
- Pro datové sítě nepříliš obvyklý způsob přenosu

Komutace zpráv (message switching)

- nevytváří se fyzické spojení mezi přijímačem a vysílačem
- zdroj informace vyšle zprávu do prvního uzlu, dojde k uložení, kontrole, a poté odeslání do dalšího uzlu směrem k příjemci dat
- velké nároky na mezilehlé uzly
 - musí celé zprávy uchovat ve svých pamětech (sít typu storeand-forward)
- každá zpráva nese informaci o svém cíli
- výhodou že vždy zatěžována pouze ta část sítě, kterou se právě zpráva přenáší
- Pro datové sítě taktéž neobvyklé

Komutace paketů (packet switching)

- obdobné vlastnosti jako komutace zpráv
- dlouhá zpráva rozdělena na bloky dat (pakety)
 proměnné délky, s definovanou maximální délkou
- sítí jsou přenášeny jednotlivé pakety, obdobně jako v předcházejícím případě celé zprávy (taktéž storeand-forward)
- problémy s pořadím doručení paketů k cíli
 - nestačí pouhé zabezpečení proti chybám
 - metoda vyžaduje dodatečné prostředky pro zajištění správnosti přenesení celé zprávy
- v současnosti nejčastější způsob přenosu v datových sítích

Komutace buněk (cell switching)

- rozdělení na menší jednotky s přesně definovanou (fixní) délkou
- při přenosu se provádí kontrola pouze u záhlaví buňky (či rámce)
 - malé zdržení přenášené jednotky v daném uzlu
- kontrola přenesených dat je na uživateli
- vhodné k přenosu řečového signálu i klasických dat
- úspora prostředků oproti komutaci okruhů
- rychlejší odezva oproti komutaci zpráv a paketů
- nevýhodou fixní velikost přenášené jednotky

Časové posloupnosti jednotlivých metod

komutace: okruhů, zpráv, paketů, buněk

Architektura a topologie sítí

- Dvoubodové spoje (point-to-point)
 - tvořeny řadou spojů propojujících koncovou stanici s přepojovacím uzlem nebo tyto uzly navzájem
 - nepřímá výměna informace
- Kanály se všesměrovým vysíláním (broadcast, popř. multipoint)
 - Multipoint topologické uspořádání kde může být vytvořeno více kanálů mezi různými dvěma místy
 - Broadcast hromadný přenos z jednoho zdroje po společném kanálu do mnoha míst
 - mnohé lokální, metropolitní, rádiové či satelitní sítě; nyní nejčastěji bezdrátové sítě
 - typicky jeden sdílený komunikační kanál
 - data vysílaná kterýmkoliv uživatelem jsou přijímány všemi ostatními, reaguje pouze ten, jehož adresa je ve zprávě uvedena
 - možnost adresovat data skupině či všem počítačům pomocí speciálních adres (např. tzv. skupinové adresování - multicast)
 - vyžadován speciální rozhodovací mechanismus pro řešení konfliktů současné komunikace více uzlů

Topologie sítí založených na dvoubodových spojení

hvězda, kruh, strom

úplný polygon, propojené kruhy, obecná topologie

Topologie sítí založených na všesměrovém šíření

□ sběrnice, rádiové spojení

Jiné členění sítí a technologií - dle velikosti

- Sítě se dělí několika způsoby
 - dle organizace přenosu dat, druhu komutace jednotek
 - přenosového média
 - **-** ...
 - dle velikosti, dosahu nebo rozlohy
 - neposkytuje informaci z hlediska rychlostí těchto sítí
 - všude velmi rychlé i pomalejší technologie
 - některá řešení je velmi obtížně zařadit
 - členění na
 - Personal Area Network (PAN)
 - Local Area Network (LAN)
 - Metropolitan Area Network (MAN)
 - Wide Area Network (WAN)

Personal Area Network (PAN)

- personální sítě využívané typicky pouze jednou osobou
- zpravidla se spíše nižšími přenosovými rychlostmi, jednotky Mbit/s
- Koncová zařízení
 - chytré telefony, nositelná elektronika (wearables), tablety, počítače, scannery či tiskárny
- Typicky se jedná o bezdrátové technologie
- Dosah v řádu jednotek metrů, či méně
 - USB, Firewire, Bluetooth, NFC (Neer field communication) nebo IrDA (Infrared Data Association)

Local Area Network (LAN)

- výkonný prostředek pro přenos informací v prostorově omezeném měřítku
 - typicky v rámci jedné budovy (max. v řádu km)
- rozšíření dosahu propojením více LAN, pomocí
 - mosty, opakovače
 - páteřní (backbone) sítě, např. MAN
- Topologie
 - Hvězda, hvězda v kombinaci s topologií typu strom
 - Sběrnice
 - dříve i kruh

Rychlosti

- \square 54 Mbit/s, 100 Mbit/s, 300 Mbit/s, 1 Gbit/s, ojediněle >10 Gbit/s
- dříve 10 Mbit/s, popř. 11 Mbit/s
- LAN sítě (a i MAN sítě) normalizovány skupinou standardů IEEE 802

Local Area Network (LAN)

- □ Počet uzlů obvykle v řádu desítek či stovek
- □ Doba zpoždění přenosu mezi uzly 10 µs 1 ms
- Typicky vnitřní instalace
 - domácnosti
 - firmy
 - celé budovy
- sítě ve vlastnictví a užívání jedné organizace nebo osoby
- typické technologie
 - Fast Ethernet, Gigabit Ethernet
 - □ Wi-Fi
 - dříve Ethernet, Token Ring

Metropolitan Area Network (MAN)

- mezistupeň mezi LAN a WAN
- vysokorychlostní přenos dat mezi více lokálními sítěmi, případně mezi LAN a
 WAN
- rozsah je celoměstský až národní
- Nejčastější topologie
 - Kruh, hvězda, částečný polygon (partial mesh)
- rychlosti 1 Gbit/s a vyšší
- prostředky pro přenos všech typů komunikace
 - telefonní služby, video, klasická data
- Technologie
 - optické přenosy
 - rychlý Ethernet přes optická vlákna
 - dříve ATM (Asynchronous Transfer Mode) či FDDI (Fiber Distributed Data Interface)
- obvykle spravována jednou organizací, její prostředky využívány více subjekty
- □ zpoždění na úrovni 100 µs až 10 ms

Wide Area Network (WAN)

- globální sítě, oblast v řádu stovek i tisíců kilometrů
- typicky sítě na úrovni jednotlivých států nebo kontinentů
- hlavní úlohou propojení geograficky rozprostřených LAN (MAN) sítí
- WAN síť
 - může být vystavěna na různých technologiích
 - jednotlivé segmenty sítě mohou být vlastněny různými subjekty
 - části této sítě mohou být v pronájmu (tzv. leased lines)
- Techniky komutace
 - přepínání paketů, buněk, ale i okruhů
- Technologie
 - POS (Packet over SONET/SDH [Synchronous Optical Network/Synchronous Digital Hierarchy])
 - MPLS (Multiprotocol Label Switching)
 - Dříve ATM (Asynchronous Transfer Mode) či FR (Frame Relay)
 - nyní převládají optické technologie

Wide Area Network (WAN)

- □ rychlosti vysoké, zpravidla nižší než MAN a LAN
- topologie sítí WAN obecná
- požadavky na jednotlivé přenosové uzly jsou vysoké, jelikož do WAN sítě bývá připojeno větší množství subjektů
- □ zpoždění vyšší, 1 ms až 100 ms
- Internetworking, zkráceně Internet
 - propojení většího množství WAN sítí
- Autonomní systémy (AS)

Vícenásobné využití přenosových cest

- úkolem komunikačních a telekomunikačních systémů
 před přenosem společnou přenosovou cestou
 - sdružování signálů
 - přizpůsobování sdružených signálů
- snaha o co nejefektivnější využití přenosového prostředí
- ekonomické parametry x vícenásobné využití
- technika multiplexování
 - přes jedno médium je přenášeno více signálů (dat)
 - od různých zdrojů k různým příjemcům

Situace bez vícenásobného využití přenosových cest

Vícenásobné využití přenosových cest

Principy vícenásobného využití přenosových cest

- Prostorové dělení (Space-Division Multiplex = SDM)
 - více paralelních vedení, v rámci jednoho kabelu (optika)
 - není považováno za pravé multiplexování
- Kmitočtové dělení (Frequency-Division Multiplex = FDM)
 - pro různé přenosy využívají různé kmitočty, (pásma) v rámci dané trasy
 - Př.: FM rádio
 - principiálně analogové technologie, lze přenášet digitální signály
 - OFDM (Orthogonal Frequency-Division Multiplex) kódování digitálních dat na více nosných kmitočtů, např. u xDSL
 - viz dále

Principy vícenásobného využití přenosových cest

- Vlnové dělení (Wavelength-Division Multiplex = WDM)
 - varianta kmitočtového dělení používaná v optice
 - jedno optické vlákno, více signálů, odlišeny vlnovou délkou
- Časové dělení (časový multiplex), anglicky TDM (Time-Division Multiplex)
 - zejména digitální technologie
 - dochází k rychlému střídání účastníků v čase
 - □ viz dále

Principy vícenásobného využití přenosových cest

- □ Přístupové metody
 - konkrétní řešení multiplexování daného typu
 - □ FDM > FDMA (Frequency-Division Multiple Access)
 - □ TDM > TDMA (Time-Division Multiple Access)
 - CDM > CDMA (Code-Division Multiple Access)
 - běžně se techniky kombinují
 - př.
 - FDMA + TDMA v rádiové části GSM

- dochází ke střídání vysílajících stanic na sdíleném médiu
- V dalším si představme, že máme čtyři stanice,
 označené A až D, které mohou odesílat nějaká data
- Existují tři základní přenosové režimy:
 - Synchronní přenosový mód
 - Přenosový režim paketů
 - Asynchronní přenosový režim

Synchronní přenosový mód

- odpovídá komutaci okruhů
- A, B, C, D se pravidelně střídají ve vysílání v předem daném pořadí
- každý má k dispozici pouze ¼ kapacity
- kanálový interval (time slot)
 - vždy stejně dlouhý úsek, kdy komunikuje jedna ze stanic
 - □ slotů může být až n v jednom rámci
- Výhody
 - garance konstantní rychlosti
- Nevýhody
 - \square systém značně neefektivní, stanice trvale blokuje (1/n) kapacity systému
 - odesílaná data třeba fragmentovat na stejně velké jednotky, umístění do časového intervalu
- □ př.
 - přístupová část GSM sítí (8 × TS)
 - přenosový systém PCM (Pulse-Code Modulation)

Synchronní přenosový mód

Přenosový mód paketů

- odpovídá komutaci paketů
- připouští proměnnou délku zpráv, nerovnoměrné rozdělení kapacity mezi vysílací stanice
- zprávy jsou odesílány pokud k tomu existuje požadavek
- výhody
 - flexibilnější než synchronní režim
- nevýhody
 - bez dalších mechanizmů nezajišťuje vysílacím stanicím žádnou přenosovou kapacitu
 - systém může být zablokován
 - každá zpráva musí obsahovat řídící záhlaví
- □ př.:
 - současné datové sítě

Přenosový mód paketů

Asynchronní přenosový mód

- odpovídá komutaci buněk
- v systému existují buňky (elementární časové intervaly)
 - s pevně danou délkou (lze do nich vkládat rámce)
- rozdíl oproti synchronnímu přenosovému módu
 - rámce vkládány pouze v případě potřeby
- Výhody
 - větší pružnost
 - možnost využití kapacity ostatními stanicemi
 - kapacita pro jednotlivé uživatele může být různá (nastavení systému)
- Nevýhody
 - režie systému záhlaví u každé buňky
 - konstantní délka jednotky
- □ př.:
 - sítě ATM (Asynchronous Transfer Mode)

Asynchronní přenosový mód

Kmitočtové dělení

- rozdělení kmitočtového spektra na jednotlivá pásma (rozsah kmitočtů, kanály)
- tradiční technologie
- nutné ochranné pásmo mezi sousedními kanály
- Přenosový kanál definován
 - střední kmitočet [Hz]
 - šířka pásma [Hz]
- Využití
 - □ FM rádio
 - □ GSM systém
 - k odlišení směrů komunikace

Kmitočtové dělení

Metody zajištění obousměrné komunikace

- tři základní typy spojení či provozu z hlediska obousměrnosti
 - simplexní spojení (simplex)
 - duplexní spojení (duplex)
- Výklad těchto pojmů se v literatuře různí

X

poloviční duplexní spojení (half-duplex)

Simplexní spojení

- metoda jednosměrné komunikace
- obousměrná komunikace není požadována
- přenos pouze jedním (předem daným) směrem a druhá strana nepotřebuje (a ani nemůže) žádným způsobem reagovat
- □ Př.:
 - klasické rozhlasové a televizní vysílání
 - některé signalizační a senzorové systémy
 - podčást systému plně duplexního spojení

Poloviční duplexní spojení

- obousměrná komunikace není možná souběžně
- protistrany se musí dělit o přenosovou kapacitu
- typicky časové střídání
- □ Př.:
 - klasické vysílačky

 Tento způsob často označován i jako simplexní spojení

Plně duplexní spojení

- systém umožňuje současnou komunikaci oběma směry
- běžně v datových sítích, různá technická řešení
 - mezi oběma stanicemi existuje dvojice simplexních kanálů
 - ve formě elektrického signálu existuje např. samostatná dvojice vodičů pro každý směr
 - u optických kabelů dvě vlákna
 - u radiových přenosů se plný duplex emuluje pomocí dělení
 - časového
 - jeden časový okamžik >; druhý časový okamžik <
 - frekvenčního
 - jeden směr f₁; druhý směr f₂
- □ Př.:
 - klasické telefonní systémy
 - datové sítě

