APPUNTI e DOMANDE d'ESAME - INTERAZIONE UOMO MACCHINA

Un prodotto che nessuno compra è un prodotto inutile

Appunti

design

HMI

design prodotto

design esperienza

design interfaccia

HCD

human centered design

sviluppo antropocentrico vs sviluppo tecno-centrico schema ciclico HCD

- specificare il contesto d'uso
- specificare i requisiti
- progettare la soluzione
- testare e valutare

usabilità

Progettazione delle interfacce

discoverability e understanding

design of useful things

incidente di three mile island

Principi fondamentali dell'interazione

esperienza

affordance

significanti

mapping

feedback

modello concettuale

immagine di sistema

Vincoli

classi di vincoli:

- vincoli fisici
- vincoli culturali
- vincoli semantici
- vincoli logici

funzioni obbliganti

- interlock
- lock-in
- lock-out

comandi centrati sulle attività

Come le persone fanno le cose

golfi dell'esecuzione e della valutazione

i 7 stati dell'azione

scopo

stati d'esecuzione:

- progettare
- specificare

• eseguire

stati di valutazione:

- percepire
- interpretare
- confrontare

i 7 principi fondamentali della progettazione

- cosa voglio ottenere?
- quali sono le sequenze d'azione alternative?
- quale azione posso fare ora?
- cosa è successo?
- cosa significa?
- va bene? ho realizzato il mio scopo?

feedforward e feedback in interaction

i 7 principi fondamentali del design

- visibilità
- feedback
- modello concettuale
- affordance
- significanti
- mapping
- vincoli

pensiero umano

conscio e subconscio

tipi di memoria:

- memoria dichiarativa
- memoria procedurale

emozioni e cognizione

processing del cervello:

- livello viscerale
- livello comportamentale
- livello riflessivo

Errore Umano

root cause analysis

i 5 perché

definizione di errore

- lapsus o slips
 - o di azione
 - di memoria
- mistakes
 - rule based
 - o knowledge based
 - memory lapse

interruzioni

feedback sbagliati

prevenzione dell'errore

- comprendere le cause dell'errore
- controlli di sensibilità
- annunciare le azioni
- rendere più semplice la scoperta e comprensione degli errori
- aiutare l'utente a compiere correttamente le azioni

per la prevenzione dell'errore utilizzare:

- constraints
- undo
- messaggi di errore e di conferma
- aumentare il numero di controlli
- migliorare il modello concettuale dell'utente
- allertare l'operatore umano quando ci si avvicina a un errore

mitigazione dell'errore usando metafora formaggio svizzero:

- aumentare il numero di controlli (fette di formaggio)
- diminuire la probabilità di errore (buchi nel formaggio)
- allertare l'operatore umano quando ci si avvicina a un errore (buchi si sono allineati)

Le interfacce utente

livelli di interfacce:

- Human Interface Device (HID)
- Human Machine Interface (HMI)
- Human Computer Interface (HCI)

classificazione delle interfacce:

- tactile UI
- visual UI
- auditory UI
- olfactory UI
- gustatory UI
- equilibrial UI

interfacce che utilizzano più di un senso:

- Composite User Interface (CUI) e classificazione
 - macrocategorie
 - standard
 - virtual
 - augmented
 - classificazione per numero di sensi
- Graphical User Interface (GUI)
- Multimodal User Interface (MUI)

Human Interface Design (HID)

protocollo HID

- identità:
 - device
 - host
- protocolli
 - bluetooth HID
 - serial HID
 - ZigBee HID
 - HID over I2C
 - HOGP

periferiche HID

- testi e caratteri
 - o tastiere
 - layout fisico
 - layout virtuale
 - layout funzionale
- lettore codici a barre
- sistemi di puntamento
 - classificazione
 - tipo di input
 - diretto
 - indiretto
 - modo in cui il movimento viene mappato
 - assoluto
 - relativo
 - come i dispositivi producano il segnale
 - isotonico
 - isometrico
 - elastico
 - velocità in cui si fa avanzare il puntatore
 - position control
 - rate control
 - o esempi
 - eye tracker
 - bright pupil
 - dark pupil
 - passive light
 - gaze tracking
 - data glove
 - dispostivi aptici
 - smart papers
 - lavagne digitali
- dispositivi per il suono
 - microfono
 - o array di microfoni
- sensori di immagini
 - 3D scanning
 - passivi
 - camere stereoscopiche
 - sistemi fotometrici
 - tecniche silhouette
 - attivi
 - time-of-flight
 - triangolazione
 - scanner 3D a luce strutturata
 - scanner 3D a luce modulata

- inertial measurement unit (IMU)
- dispositivi wearable
 - sensori PPG
 - EEG headset

Natural User Interface (NUI)

per essere tale:

- · apprendimento progressivo
- expertise instantanea
- interazione diretta
- basso carico cognitivo

una strategia per realizzare NUI è l'uso della Reality User Interface (RUI)

Graphical User Interface (GUI)

struttura dell'interfaccia

- · struttura gerarchica
- struttura sequenziale
- struttura matriciale
- struttura a database

architettura dell'informazione

- · componenti principali:
 - o schemi o strutture organizzative
 - o sistemi di labelling
 - o sistemi di navigazione
 - o sistemi di ricerca
- tipi di schemi organizzativi:
 - o esatti
 - schema alfabetico
 - schema cronologico
 - schema geografico
 - soggettivi
 - topic scheme
 - task scheme
 - audience scheme
 - metaphoric scheme

layout di interfacce e componenti

UX design

identificare le personas mediante:

- task analysis
- feedback
- prototipazione

dipendentemente dai dati che abbiamo possiamo avere 3 tipi di personas:

- proto-personas
- qualitative personas
- statistical personas

principio di Pareto

tipi di informazioni di una personas:

- demografiche
- personali
- attitudinali e cognitivi
- obiettivi e motivazioni
- comportamentali

personas e archetipi

requirements

- funzionali
- non funzionali

user stories

è una breve dichiarazione o astrazione che identifica l'utente e il suo bisogno/obiettivo. É un requisito espresso dalla prospettiva di un dell'obiettivo dell'utente. aiutano a documentare informazioni pratiche riguardo gli utenti e aiutano gli sviluppatori a tracciare una roadmap. struttura: As a 'role', I want 'feature' because 'reason'. tutti possono scrivere user stories ad ogni livello di dettagli. i dettagli possono essere aggiunti splittando le user stories in multiple user stories o aggiugendo condizioni di soddisfazione.

scenarios

uno scenario è una situazione che cattura come gli utenti interagiscono con un prodotto.

un buon scenario deve rispondere:

- chi è l'utente?
- motivazione e aspettativa dal prodotto?
- qual'è il suo obiettivo?

grazie agli scenarios possiamo determinare:

- i punti importanti durante progettazione per l'UX
- fasi del processo che richiedono ulteriore revisione e attenzione
- le principali esigenze e motivazioni dell'utente

modi per scrivere scenarios:

- · goal o task orinentati agli scenarios
- · elaborated scenarios
- · full scale task scenarios

casi d'uso

è una descrizione scritta di come un utente interagisce con un sistema. ogni caso d'uso è rappresentato come una sequenza di passaggi che iniziano con l'obiettivo dell'utente e terminano quando l'obiettivo è raggiunto. un caso d'uso aggiunge valore perché aiuta a spiegare come il sistema dovrebbe comportarsi e forniscono una lista di obiettivi.

scenarios vs casi d'uso

uno scenario richiede una situazione che può avere uno o più attori che intraprendono una determinata funzionalità. un caso d'uso coinvolge un attore e il flusso che un particolare attore prende in una determinata funzionalità o percorso.. la differenza principale è la prospettiva.

includono:

- l'utente
- · cosa vuole fare
- il suo scopo
- step necessari per raggiungere lo scopo
- feedback
- trigger
- basic flow
- · alternative flow

non includono:

- dettagli implementativi o di scelta tecnologica
- · dettagli di UI

i passaggi da seguire per la creazione di un caso d'uso sono:

- 1. identificare le personas
- 2. sceglierne una per caso d'uso
- 3. identificare il suo scopo
- 4. discenderne i task principali da quelli secondari
- 5. considerare le sequenze alternative
- 6. accoppiare punti in comune tra in vari casi d'uso
- 7. ripetere per tutte le personas

Metodi e strumenti per l'innovazione

disruptive innovation

human centered desing process

fasi:

- 1. ispirazione
- 2. ideazione
- 3. implementazione

design thinking

obiettivi:

- avvicinarsi al cliente
- favorire la creatività e generare idee
- sperimenare le idee con prototipi

fasi principali:

- 1. empatizzare
- 2. definire
- 3. ideare
- 4. prototipare
- 5. testare

agile, scrum e devops

modello waterfall:

- 1. analisi dei requisiti
- progettazione
 svilluppo
- 4. collaudo
- collaudo
 manutenzione

modello agile i 12 principi del modello agile

modello scrum: sottocategoria agile

modello devops : sottocategoria agile per cloud

Prototipazione di interfacce

pretotipo

thoughtland

actionland

pretotype vs prototype

obiettivi del pretotyping sono aiutare a:

- identificare funzionalià chiave
- decidere le funzionalità da implemtare nel mockup
- test sui mockup e collezione dei feedback e dati
- analisi dei dati e determinare il prossimo passo

i 7 pilasti del pretotyping:

- obbedire alla legge del fallimento del mercato
- assicurarsi di star costruendo il prodotto giusto
- non perdersi in chiacchere, idee o opinioni
- fidarsi solo dei propri dati
- · fare pretotyping
- parlare con i numeri e con i fatti
- pensa globalmente, testa localmente

Flusso del pretotyping

- 1. isolare l'assunzione chiave
- 2. scegliere un tipo di pretotype
- 3. fare ipotesi di mercato (ipotesi XYZ)
- 4. testare il pretotype
- 5. imparare, rifinire, hyperzoom

tipi di pretotyping

- fake door
- mechanical turk
- impersonator

minimum viable product

Industria 4.0

internet

internet of things (IoT)

story of industry

digital twin

prodotti e servizi smart

nuovi principi del design

- UX per IoT
- device specializzati con differenti capacità
- far interagire i dispositivi tra loro
- controllo remoto
- design per network
- design per risparmio d'energia

Domande orale

- 1. differenza tra design thinking e human centered design
- 2. esempio di mapping
- 3. cos'è uno scenarios? da cosa parto per definirli?
- 4. cos'è un prototipo? gradi di fedeltà?
- 5. cos'è la ppg?
- 6. cos'è lo scanner time-of-flight?
- 7. user behavior pattern? *
- 8. come deve essere un feedback?
- 9. differenza tra mockup e prototipo? *mockup
- 10. cos'è una imu?
- 11. cos'è un sistema di eyetracking e quali tecnologie conosciamo?
- 12. cosa sono l'euristiche di newtan? *
- 13. quali sono gli errori umani?
- 14. prese x persone. quale sarà il numero y che fa le z cose? *
- 15. cos'è lo human center design process?

- 16. cos'è il test qualitativo? *
- 17. scanner 3d a luce strutturata
- 18. cosa sono lapsus d'azione
- 19. modello concettuale fa parte del sistema?
- 20. cos'è il paradigma?
- 21. cos'è una nui?
- 22. come si scrivono le user stories?
- 23. cos'è l'immagine di un sistema
- 24. quali sono i sette stadi dell'azione?
- 25. cos'è un wireframe?
- 26. cos'è un modello a doppio diamante?
- 27. cos'è un dispositivo aptico?
- 28. differenza affordance significativa?
- 29. tipi di test?
- 30. quali sono i principi fondamentali dell'interazione?
- 31. cos'è l'HID protocol?
- 32. differenza tra user stories e requirements?
- 33. parlami dei vincoli
- 34. come devono essere i feedback?
- 35. struttura interallacciata *
- 36. la regola dei 5 perché?
- 37. discoverability e understanding 38. differenza tra prototipo e pretotipo 39. livelli mentali dell'essere umano
- 40. i 7 stadi dell'azione
- 41. come si dividono i sistemi di puntamento?
- 42. distruptive innovation
- 43. 6 caratteristiche principali del prototipo *