DIGITAL LAB NOTEBOOK OF KEVIN MURRAY

Honours Project, 2013

Jointly supervised by Justin Borevitz and Barry Pogson

1 Mon 2012-12-03

1.1 Initial Harvest of Keng's RIX lines

1.1.1 Aim

Harvest lines before the 1 week repeated HL stress experiment.

1.1.2 Method

- Tissue was harvested into a 96 well tray of 8-strip \approx 1mL tubes
- Single leaves were placed into the tubes, and snap frozen in liquid nitrogen.

1.1.3 Results

The following table details the collection, including the plate layout

\mathbf{Well}	Line	Comments
A1	78	
B1	80	
C1	85	Possible cross contamination from D1
D1	74	
E1	73	Leaf shatered, lost a lot of tissue
F1	76	
G1	83	
H1	81	Had to crush leaf while warm to fit it into tube
A2	89	Had to crush leaf while warm to fit it into tube
B2	90	
C2	91	
D2	87	
E2	108	
F2	92	
G2	osb2	
H2	93	
A3	94	
В3	4	
C3	99	
D3	16	
E3	17	
F3	18	may be 17, hard to read label
G3	18	
Н3	21	
A4	23	
B4	25	
C4	57	
D4	28	

XX7 11	.	
Well	Line	Comments
E4 F4	29	
G4	30 31	
H4	32	
A5	63	
А5 В5	98	may be 07 hard to read
Б5 С5	98 98	may be 97, hard to read
D5	20	
E5	67	
F5	99	
G5	99	
H5	100	
A6	65	
B6	72	
C6	1	
D6	1	a second fully shaded leaf from same plant as C6
E6	2	· · · · · · · · · · · · · · · · · · ·
F6	13	
G6	5	
H6	6	
A7	7	
B7	8	
C7	9	
D7	10	
E7	11	
F7	33	
G7	36	
H7	39	
A8	38	
B8	39 40	
C8 D8	40	
E8	41 43	
F8	42	
G8	45	
H8	45	second leaf from unlabeled plant broke leaf while handling minutes before sampling
A9	71	second real from amabeled plant broke real winte handling immutes before sampling
В9	46	
C9	47	
D9	99	
E9	50	
F9	51	
G9	52	
H9	52	
A10	54	
B10	55	
C10	56	
D10	58	
E10	59	
F10	71	
G10	61	

Well	Line	Comments
H10	21	
A11	68	
B11		
C11		
D11		
E11		
F11		
G11		
H11		
A12		
B12		
C12		
D12		
E12		
F12		
G12		
H12		

Attachments:

 $\bullet \ \ \texttt{./2012-12/20121203-harvest-pictures.tar.bz2} \ \texttt{MD5SUM:} 2843946f8 cae 888a60 dcd2226feb 874f and 2012-12/20121203-harvest-pictures.tar.bz2 \ \texttt{MD5SUM:} 2843946f8 cae 888a60 dcd2226feb 874f and 2012-12/20121203-harvest-pictures.tar.bz2 \ \texttt{MD5SUM:} 2843946f8 cae 888a60 dcd2226feb 874f and 2012-12/20121203-harvest-pictures.tar.bz2 \ \texttt{MD5SUM:} 2843946f8 cae 888a60 dcd2226feb 874f and 2012-12/20121203-harvest-pictures.tar.bz2 \ \texttt{MD5SUM:} 2843946f8 cae 888a60 dcd2226feb 874f and 2012-12/20121203-harvest-pictures.tar.bz2 \ \texttt{MD5SUM:} 2843946f8 cae 888a60 dcd2226feb 874f and 2012-12/20121203-harvest-pictures.tar.bz2 \ \texttt{MD5SUM:} 2843946f8 cae 888a60 dcd2226feb 874f and 2012-12/20121203-harvest-pictures.tar.bz2 \ \texttt{MD5SUM:} 2843946f8 cae 888a60 dcd2226feb 874f and 2012-12/20121203-harvest-pictures.tar.bz2 \ \texttt{MD5SUM:} 2843946f8 cae 888a60 dcd2226feb 874f and 2012-12/$

2 Mon 2012-12-10

2.1 Final Harvest of Keng's RIX lines

2.1.1 Aim

Harvest lines after 1 week of HL stress.

2.1.2 Method

- An Eppendorf 1.2mL deep well plate was placed on dry ice for ≈ 10 minutes before sampling to allow to cool.
- Whole leaves were excised and placed into 1.2mL Eppendorf 96 deep well plate.
- Where possible, the largest mature leaf was taken. In some cases, this was hard to determine, so the youngest of the fully-expanded leaves was taken (as this was generally also the largest leaf). Some plants were very small, and had only juvenile leaves, in which case the largest juvenile leaf was taken.

2.1.3 Results

The following table describes the plate layout.

Well	Line	Comments
A1	87	
B1	100	
C1	92	
D1	OSB2	
E1	93	
F1	94	
G1	1*cvi	
H1	99	
A2	63	
B2	98	
C2	98	2nd plant with orange label
D2	70	
E2	67	
F2	99	
G2	66	
H2	100	
A3	65	
В3	72	
C3	12	
D3	11	
E3	10	
F3	12	
G3	9	

XX7 11	т•	
Well	Line	Comments
H3	8	
A4	7	
B4	6	
C4	5	
D4	13	
E4	2	
F4	1*cvi	
G4	49	
H4	47	
A5	46	
B5	42	
C5	45	
D5	71	
E5	39	
F5	40	
G5	41	
H5	43	
A6	38	
B6	39	
C6	36	
D6	33	
E6	61	
F6	62	
G6	68	
H6	58	
A7	65	
B7	71	
C7	53	
D7	55 56	
E7	56 50	
F7	50	
G7 H7	51 52	
A8	78	NPQ4
B8	80	M Q4
C8	85	
D8	74	
E8	73	
F8	76	
G8	83	
H8	81	
A9	89	
B9	90	
C9	91	
D9	16	
E9	17	
F9	18	
G9	21	
H9	23	
A10	25	
B10	57	

Well	Line	Comments
C10	28	
D10	29	
E10	30	
F10	31	
G10		
H10		
A11		
B11		
C11		
D11		
E11		
F11		
G11		
H11		
A12		
B12		
C12		
D12		
E12		
F12		
G12		
H12		

Attachments:

 $\bullet \ \ \, ./2012-12/20121210-harvest-photos.tar.bz 2\ MD5SUM: 40 dae 2 cad 3 babaa 3 c 32 f 0 d 35 a 9 d 9 4 4 2 c d 2 c d 2 babaa 3 c 3 c 2 f 0 d 3 5 a 9 d 9 d 4 2 c d 2 c d 2 babaa 3 c 3 c 2 f 0 d 3 5 a 9 d 9 d 4 2 c d 2 c d 2 babaa 3 c 3 c 3 c 2 f 0 d 3 5 a 9 d 2 c d 2 c d 2 babaa 3 c 3 c 2 f 0 d 3 5 a 9 d 2 c d 2$

3 Mon 2013-01-14

3.1 MAKE: Washed Ball Bearings

3.1.1 Method

- Aliquot approx 15mL of 3mm diameter steel ball bearings into 50mL falcon tube
- Add clean 100% ethanol
- Vortex for ≈ 5 minutes
- Remove ethanol, wash beads with milliQ or sterile water
- Dry in fume cupboard overnight

3.2 TissueLyser grinding of practice samples

3.2.1 Aims

To grind tissue from the excess tissue of Keng's RIX lines collected on 3/12/12.

3.2.2 Method

- Remove pre-frozen TissueLyser blocks from -80 freezer.
- Add one cleaned bead to each Eppendorf tube (beads were not pre-cooled)
- Pour LN₂ into the TissueLyser block
- Add Eppys with beads and sample, and run for 3x 1min runs at 29Hz
- Replace samples in -80

4 Mon 2013-01-21

4.1 Quantification of RNA samples

4.1.1 Aim

• Determine qty of RNA in previously extracted samples

4.1.2 Method

- Nanodropped RNA extraction from 15/1/13??
- Standard protocol, used sterile milliQ water as blank.

4.1.3 Result

• Of the 14 samples, 10 had reasonable amounts of RNA, and 260/280 ratios were above 1.8 in all but one case. (see ./2013-01/20130121-PracticeRNASamples.ods)

4.1.4 Attachments

- ./2013-01/20130121-PracticeRNAExtractionSamples.csv
- ./2013-01/20130121-PracticeRNAExtractionSamples.ndv
- ./2013-01/20130121-PracticeRNASamples.ods

4.2 MADE: 10x MOPS Solution

4.2.1 Method

- Add 41.8g RNA only MOPS to beaker
- Add 450mL DEPC H2O, mix w/ stirrer bar on mag stirrer
- Add 26.6mL 3M Sodium Acetate (0.22um Filtered before use)
- Add 10mL RNA only 0.5M EDTA
- pH to 7 with 5M NaOH
- Top up to 500 mL with DEPC H2O
- Use 10ml per 100mL MOPS gel

4.3 MADE: RNA Denaturing Gel (MOPS)

Method

- Melt 1g RNAase-free Agarose in 72ml DEPC H2O
- Add 10mL 10x MOPS
- Add 18mL 37% Formaldehyde
- Pour in RNA-only gel tank, previously washed with 0.5% SDS and RNAase-zap

5 Tue 2013-01-22

5.1 Denature RNA for RNA gels

5.1.1 Method

- Dilute RNA to 100ng/μL
- Add RNA gel loading buffer (Obtained from Pete Crisp)
- Incubate at 65 degrees for 10 minutes. The samples were incubated for 10 minutes on the evening of 2013-01-21, but the gels were not run until 2013-01-22, so they were denatured for a further 2 minutes at 65 degrees

5.2 TBE Gel

5.2.1 Aim

• To compare TBE and denaturing/MOPS gels for RNA

5.2.2 Method

- Dissolve 1g RNAase-free Agarose in 90mL DEPC water
- Add 10mL RNAase-free TBE (prepared using DEPC Water, obtained from Pete Crisp)
- Pour in RNA-only gel tank, previously washed with 0.5% SDS or RNAase-zap
- Then, load denatured samples, and run in RNAase-free 1x TBE
- Run at $\approx 80 \text{V}$, $\approx 40\text{-}50 \text{mA}$ for $\approx 1.75 \text{h}$
- Stain gel in 0.5ug/ml Ethidium Br in DEPC water?? for 10 min on orbital shaker, and photograph.

5.2.3 Result

See Figure 5.1 below.

Gel indicates some degradation of RNA, however most samples are OK. Sample order is (left to right) A2, A3, A5, A6, A7, B3, B5, B7. A7 appears to have no RNA, although this is probably a mis-loading error. Overall, the TBE gel appears to be of more use than the MOPS gel.

5.3 MOPS gel

5.3.1 Aim

• Determine quality of RNA and Compare MOPS with TBE for RNA gels

Figure 5.1: TBE Gel of Practice RNA samples, 2013-01-22

5.3.2 Method

- Load samples after denaturing as above. Sample order is (left to right) A2, A3, A5, A6, A7, B3, B5, B7.
- Run gel in RNA ase free 1x MOPS at \approx 80V, \approx 100 mA for \approx 1.75h as per TBE gel above.
- Stain gel in 0.5ug/ml Ethidium Br in DEPC water?? for 10 min on orbital shaker.
- De-stain on orbital shaker gel in 1x MOPS, and photograph. Gel disintegrated whilst destaining.

5.3.3 Results

See Figures 5.2 and 5.3

Mops gel confirms that the RNA was of reasonable quality. The MOPS gel appears to be of less use than the TBE gel.

5.3. MOPS GEL 17

6 Tue 2013-01-29

6.1 Seed Stock Levels

The stocks of Joost's RIX set were checked. Seed lines were classified as having either plenty (+), limited(?) or no (-) seed. The levels of each line are shown in the table below.

Line	\mathbf{Desc}	Count
1	Col-0_1915	not in box
2	Col-0_4936	not in box
3	Cvi x Cvi	0
4	$1 \times Cvi$	not in box
5	1×146	0
6	10×26	0
7		0
8	Ll-1	not in box
9		not in box
10	107×124	not in box
11	109×185	not in box
12		not in box
13	110×32	?
	112×30	0
15		0
16	114 x 3	?
17		0
18	115×126	0
19		?
20	118 x 108	0
21	118 x 164	0
22	119 x 177	0
23	12 x 142	0
24		?
25	125 x 117	0
26	128 x 6	0
27	132 x 129	not in box
28	133 x 35	0
29		0
30	135 x 10	0
31		?
32	136 x 102	0
33	165 x 137	not in box
34		0
35 36	139 x 36	0
	14 x 4	0
37	146×64	not in box

Line	\mathbf{Desc}	Count
38	147×50	0
39	147×69	0
40	149×165	0
41	150×37	0
42	152 x 42	0
43		0
44		?
45		0
46	156 x 166	0
47	16 x 4	0
48	-	0
49		not in box
50		0
51	168 x 22	0
52		not in box
53		0
	17 x 21 170 x 24	0
55		0
56		0
50 57		?
58		0
59	186 x 27	0
60		0
61	187 x 190 187 x 69	not in box
62		0
63		0
64	19 x 67	0
65		0
66		not in box
67		0
68		0
	21 x 22	0
	24 x 171	0
71	25×9	0
72	26×74	0
73	33×58	not in box
74	35×120	0
75	38×35	0
76	39×27	not in box
77	40×74	0
78	npq4	not in box
79	43×131	not in box
80	44×50	0
81	45×23	0
82	46×29	0
83	48×160	0
	49×158	0
	5×172	not in box
86	5×188	not in box
	51 x 111	0
88	51 x 18	0

Line	\mathbf{Desc}	Count
89	54×183	0
90	55×18	0
91	59×116	0
92	6×131	0
93	61×162	0
94	63×151	not in box
95	7×46	0
96	8 x 61	not in box
97	Ler x Ler	0
98	Ler self	0
99	Cvi x Ler	0
100	Ler x Cvi	0

7 Thu 2013-02-07

7.1 Prepare Trays for Planting

Trays were filled with steamed seed raising mix, with 1mL/L Osmocote® added and mixed before dispensing. Trays were filled by pouring potting mix over tall 5cm square pots, and compacting it with hands. 41 trays of 24 and one tray of 20 pots were made.

Once trays were made, they were watered with $\approx 1.5 L$ RO water, containing $\approx 1 mL/L$ AzaMaxTM, covered with cling film and stored at 4 degrees C.

8 Fri 2013-02-08

8.1 Planting of RIX lines

8.1.1 Aim:

Plant (ideally) 9 plants of each of the RIX lines, for the experiment Keng and I will conduct

8.1.2 Method:

Seeds were planted in pre-prepared trays, by shaking from a piece of paper. Either 6 or 12 plants of each line, and some mutants, were planted in contiguous blocks. Once planted, trays were sprayed with a small amount of water and labelled by row, i.e. each row of plants consisted of one genotype, and only one pot was labelled per row. Plants were not randomised at this point. If the tray was dry, approx 0.5-1L of RO water was added.

The following table describes the lines which were planted. 12 plants of each line were planted, unless otherwise stated in the "Qty" columns below. From now on, lines will be referred to by their number in the following table.

Line Number	Line Name	Quantity
1	Col-0	
2	cvi self	
3	1×146	
4	10×26	
5	101×176	
6	LL-1	
7	145×105	
8	107×121	
9	18×109	
10	109×48	
11	114×3	6
12	$110 \ge 32$	6
13	112×30	
14	115×12	
15	118×108	
16	118×164	
17	12×142	
18	122 ± 42	
19	125×117	
20	128×6	
21	129×132	
22	133×35	
23	134×29	
24	135×10	
25	136×102	
20	100 X 102	

Line Number Line Name Quantity 26 165×137 27 139×36 28 14×4 29 146×64 147×50 30 147×69 31 32 149×165 33 150×37 34 152×42 35 153×108 36 153×20 6 37 156×106 38 119×60 6 16 x 4 39 16×66 40 41 16×7 42 166×25 43 168×22 17×21 44 171×143 45 174×34 46 47 180×157 48 $186 \ge 27$ 187×69 49 19×173 50 19×67 51 52 190×176 53 191×31 54 192×189 55 $20 \ge 138$ 6 56 24×171 15×9 57 26×74 58 33×58 59 38×35 60 39×27 61 44×50 62 63 45×23 46×29 64 65 48×160 66 49×158 $5 \ge 172$ 67 68 5 x 188 69 51×111 70 51 x 18 71 54×183 55×18 72 73 59×116 74 6×131 75 61 x 162 76 63×151

Line Number Line Name Quantity

- $77 \quad 8 \ge 61$
- 78 ler self
- 79 ler
- 80 cvi x ler
- 81 ler x cvi
- 82 npq1
- 83 npq4
- 84 pgr5
- 85 Stn8-1
- 86 Cvi-1
- $87 \quad 135 \times 142$

6

9 Thu 2013-02-14

9.1 Sun and Shade Spectra

9.1.1 Aim

Measure specta from natural sun and natural shade at midday

9.1.2 Method

- John Evan's spectroradiometer was used
- Measure every nm from 400 to 800
- Measurements taken at approx 12:30-1pm
- Measure clear, unobstructed sun with no clouds in quadrangle between forrestry, geography and Robertson buildings, ANU.
- Measure shade under elm tree in same location
- Calculations made by Pip Wilson, yielded umol photon per square meter per second per nanometer measures of intesnity. (see attached xls spreadsheet).

9.1.3 Results

Overall PAR integrations were 38.0 and 1809.5 uE for shade and sun respectively. Spectra detailed in:

- 20130214-shade and sun spectra.xlsx MD5SUM db67505144fbd20ecc317a494f80ecde
- 20130214-SunShadeSpectra.csv MD5SUM 56003985e19111288384dcd5f4dc51f1

10 Fri 2013-03-01

10.1 Creation of Solarcalc files

10.1.1 Aim:

Generate the solar calc files which will be used to control the conviron growth cabinents and heliospectra lights for the duration of the latter part of the experiment.

10.1.2 Method

• SolarCalc version 2013 Feb C (zip file MD5SUM: 0b2b456771eb44ed1fa8ed1a087bfbd0) was used.

Location: Temora
Min Temp: 5 C
Max Humid.: 80
Start Date: 1/9/12
End Date: 31/12/12

• Shading: 0

• LED Ratios: 7.74 6.16 5.98 5.64 7.35 1.00 5.45

• 2010 weather

10.1.3 Results

• Solarcalc output:

./2013-03/20130301-KMTemora2012Sep01_A_LED-Normalised.csv MD5sum b1dee0ba373a1e74956dd5c8d3ccce38

• Solarcalc preferences file:

 $./2013-03/20130301-KMTemora2012Sep01_A_LED-Normalised_prefs.srp\\ MD5SUM d01fcc5ae9ad8fba07bd9b9512c82857$

11 Tue 2013-03-05

11.1 Creation of Better Normalised Shaded Solarcalc files

11.1.1 Aim:

Generate the solar calc files which will be used to control the conviron growth cabinents and heliospectra lights for the duration of the latter part of the experiment.

11.1.2 Method

• SolarCalc version 2013 Feb C (zip file MD5SUM: 0b2b456771eb44ed1fa8ed1a087bfbd0) was used.

Location: Temora
Min Temp: 10 C
Max Humid.: 70
Start Date: 1/9/12
End Date: 31/12/12
Shading: 0 and 45%

• LED Ratios: 1.29 1.03 .94 1.22 0.17 .91

• 2010 weather

11.1.3 Results

Solarcalc outputs:

- $\ \, ./2013-03/20130305-Temora 2012 Sep 01_45 shade_2010 weather_LED-Better Normalised.csv \\ ddff 182b78d1fe 10e 662fb 827a179804$
- $\ \, ./2013-03/20130305-Temora 2012 Sep 01_0 shade_2010 weather_LED-Better Normalised.csv \\ d41 d8cd 98f 00b 204e 9800998ecf 8427e \\$

Solarcalc preferences files:

- ./2013-03/20130305-Temora2012Sep01_0shade_2010weather_LED-BetterNormalised.srp 9e800ba2b31a5346b37bc17127515d38
- ./2013-03/20130305-Temora2012Sep01_45shade_2010weather_LED-BetterNormalised.srp d40480b773fdaad8ecf9bd14a5d445ed

12 Thu 2013-03-07

12.1 Creation of Brighter Normalised Shaded Solarcalc files

12.1.1 Aim:

Generate the solar calc files which will be used to control the conviron growth cabinents and heliospectra lights for the duration of the latter part of the experiment.

These files are to increase the brightness of the high light treatment.

12.1.2 Method

• SolarCalc version 2013 Feb C (zip file MD5SUM: 0b2b456771eb44ed1fa8ed1a087bfbd0) was used.

Location: Temora
Min Temp: 10 C
Max Humid.: 70
Start Date: 1/9/12
End Date: 31/12/12

Shading: 0LED Ratios:

2x: 2.6 2.06 2 1.96 2.44 0.34 1.82 4x: 5.2 4.12 4 3.92 4.88 0.68 3.64

• 2010 weather

12.1.3 Results

Solarcalc outputs:

- ./2013-03/20130307-KMTemora2012Sep01_0shade_2010weather_LED-2xBetterNormalised.csv 59 fcd4 a acdf20 eeb750c22b18ba4f118
- ./2013-03/20130307-KMTemora2012Sep01_0shade_2010weather_LED-4xBetterNormalised.csv 3d79e511b4367d1c5807b247fffa3b48

Solarcalc preferences files:

- ./2013-03/20130307-KMTemora2012Sep01_0shade_2010weather_LED-2xBetterNormalised.srp bf276b2cf5658f00fbd02bce55f186f7
- ./2013-03/20130307-KMTemora2012Sep01_0shade_2010weather_LED-4xBetterNormalised.srp 3 f124559 d1553 f68384218509196992 d

13 Sun 2013-03-10

13.1 Creation of Intermittent Bright/Shaded Solarcalc files

13.1.1 Aim:

Generate the solar calc files which will be used to control the conviron growth cabinents and heliospectra lights for the duration of the latter part of the experiment.

These files are to increase the brightness of the high light treatment.

13.1.2 Method

• SolarCalc version 2013 Feb C (zip file MD5SUM: 0b2b456771eb44ed1fa8ed1a087bfbd0) was used.

Location: Temora
Min Temp: 10 C
Max Humid.: 70
Start Date: 1/9/12
End Date: 31/12/12

- Shading: High Light file: 0, Low Light files: 45

- LED Ratios:

1x: 1.29 1.03 .94 1.22 0.17 .91 2x: 2.6 2.06 2 1.96 2.44 0.34 1.82

-2010 weather

• Then, the spliceSolarCalc.py script was used to splice between them, using the command line:

```
python spliceSolarCalc.py -o KMTemora2012Sep01_Intermittent2hLL1hHL.csv \
-f 2013-03/20130305-Temora2012Sep01_45shade_2010weather_LED-BetterNormalised.csv \
-F 2013-03/20130307-KMTemora2012Sep01_Oshade_2010weather_LED-2xBetterNormalised.csv \
-1 120 -2 60 # 2h Low, 1h High
```

13.1.3 Results

Solarcalc inputs:

- $\bullet ./2013-03/20130305-Temora 2012 Sep 01_45 shade_2010 weather_LED-Better Normalised.csv \\ ddff 182b78d1 fe 10e 662 fb 827a179804$
- $\bullet ./2013-03/20130307-\texttt{KMTemora}2012 Sep01_0 shade_2010 weather_LED-2xBetterNormalised.csv \\ 59 fcd4 aacdf20 eeb750c22b18ba4f118$

Solarcalc preferences files:

• ./2013-03/20130305-Temora2012Sep01_45shade_2010weather_LED-BetterNormalised.srp d40480b773fdaad8ecf9bd14a5d445ed

• ./2013-03/20130307-KMTemora2012Sep01_0shade_2010weather_LED-2xBetterNormalised.srp bf276b2cf5658f00fbd02bce55f186f7

Solarcalc Output:

• 2013-03/20130310-KMTemora 2012Sep01_Intermittent2hLL1hHL.csv c415ed3654b071ad6fbcbd044b60f732

Solarcalc Splice Script:

./2013-03/20130310-spliceSolarCalc.py 6cd8ea9895d19b7851c41c086535f318

14 Fri 2013-03-19

14.1 Enter plants in trayscan database

14.1.1 Aim

Allow trayscan to see and process out plants

14.1.2 Method

Using the tray registrator, the attached csv was registered in the database. The registration may have failed, PSI will fix the database to reflect it.

14.1.3 Results

./2013-03/20130320-TrayscanImportSheet.csv MD5SUM: 69b97ec5cd3f30c10c0d7b21da59a35b

15 Mon 2013-03-25

15.1 Harvesting of practice tissue

15.1.1 Aim

Harvest unimportant tissue from extra plants to use for pracice RNA preps.

15.1.2 Method

- Plants had been grown since germination in convirons 8 & 9 under standard growth conditions
- Leaves were harvested from each plant into a 96-well 1.2mL plate on dry ice
- the plant number as per ./2013-02/20130208-KMPlantedLines.csv was recorded

- The plate was labelled "Harvest Tissue Plate", and stored in -80.
- The samples are laid out as described below:

	1	2	3	4	5	6	7	8	9	10	11	12
A	62	50	48 med lf	46	54	46						
В	62	50	48 lrg lf	46	54	46						
\mathbf{C}	23	50	19	21	46	46						
D	48	???	61	61	46	46						
\mathbf{E}	48	27	61	61	46	46						
F	48	23 caul	61	25	46	46						
G	48	23 caul	61	25	46	46						
Η	48	48 sml	61	16	46	46						

16 Tue 2013-03-26

16.1 Harvesing the First Replicate across each chamber

16.1.1 Aim

Harvest the actual experimental samples. Today, the first replicate will be harvested.

16.1.2 Method

- Leaves were taken from plants grown under experiment conditions (recorded by Keng, to be summarised later)
- Leaves were excised and genly rolled (where possible) between fingers, without breaking or squashing them. This allowed them to unroll to fill the edges of the wells in most cases, for faster freezing.
- Approx 1.5x1.5cm sections were taken when leaves exceeded this size. Tip end of leaves were taken if a leaf was torn. Leaves were torn once rolled by quckly plucking them with tweezers, using tweezer blades to cut the leaf.
- Harvesting started at 12:00. Detailed in the table below.

Time	Chamber	Condtion
12:00:00	2	0h
12:40:00	5	0h
13:00:00	4	0h
13:40:00	2 tray 1	1h HL (1h05 in HL)
13:55:00	5 trays 2 and 3	1h HL (30m in HL)
14:05:00	2 tray 2 and 3	1h HL (1h25m in HL)
14:15:00	5 tray 1	1h HL (1h15m in HL)
14:30:00	2	0h
14:45:00	4	0h
15:00:00	5	0h
15:40:00	2	1h HL (1h10m in HL)
16:00:00	4	1h HL (1h15m in HL)
16:15:00	5	1h HL (1h15m in HL)

The plate layout is described below. Abbreviations are: S, small (and so on), C, cauline leaves, sq, squashed leaf while harvesting, sen, some senescence on harvested leaf (only a small amount of senescence was allowed), P, purple/anthocyanin accumulation.

Plate 1:

		12 4 2d1 4 2d1 ½L 4 2d3 ½L sq 4 2d4 ½L sq 4 3a1 ½L 4 3d1 4 3c1 4 3c1 4 2c4		
				12
12 4 3c1 M sq 4 2d3 sq 4 2d3 2S 4 2d4 4 3a1 sq 4 3d1 sq 4 2e4 sq 4 2e4 sq 4 3c1 sq		11 4 2a3 4 3b1 sq ½L 4 2b2 4 2b3 4 2b4 4 2c1 4 2c3 4 2c3	11 12 5 9d2 5 9d3 5 9d4 2C 5 10B1 2S 5 9e2 5 9e3	11 5 9d2 5 9d3 5 9d4 C 5 10d1 2S sq 5 9e2 5 9e3 2C 5 9e4
11 4 3b1 4 2b2 4 2b3 4 2b4 4 2c1 4 2c1 4 2c3 4 2c3 4 2c3		10 4 1c1 sq 4 1d1 4 1d2 ½L sq 4 1d2 ½L sq 4 1e2 ½L 4 1e3 4 1e3 4 1e4 4 2a1	10 5 9a3 2S 5 9a4 ½L 5 10b1 2S 5 10c1 2S 5 10c1 5 5 9b4 5 10c1 5 9c3 5 9d1	10 5 9a3 5 9a4 5 10b1 a1 5 10e1 2S 5 9b4 5 10c1 5 9c3
10 4 1d1 4 1d2 4 1d4 L 4 1e1 L 4 1e3 4 1e4 4 2a1 L 4 2a3 basal ½		9 5 1e2 5 1e3 4 1a1 4 1a2 CL sq 4 1a3 4 1b1 3S 4 1b2 2S 4 1b4 ½L	9 841 5 842 5 862 5 864 5 9a1	9 5 8d1 5 8d2 5 8d2 5 8e2 ½ 5 8e3 5 8e4 2S 5 9a1 sq 5 9a2
9 5 2e4 4 1a1 4 1a2 CL 4 1a3 4 1b1 4 1b2 CL 4 1b4		8 5 1b4 5 1c1 5 1c3 2S sq 5 1c4 5 1d4 5 1d4 sq 5 1e1 CL	8 4 9e3 5 8a3 ½ 5 8b1 sq 5 8b2 5 8b3 5 8b4 sq 5 8c4	8 4 9e3 5 8a3 5 8b1 5 8b2 ½ 5 8b3 C 5 8b4 ½ 5 8c2 5 8c2
8 5 3c1 5 2c4 5 2d1 5 2d3 5 2d4 sq 5 2e1 5 3e1		. 7	7 4 9a3 C 4 9b4 ½L 4 9b4 ½L 4 10a1 2S 4 9c3 4 9d1 2M 4 9d4 4 9d4	7 4 9a3 4 9b3 4 9b4 4 10a1 2S 4 9c3 ½ 4 9d1 2S 4 9d4
7 5 2a2 Pur 5 3a3 5 2a4 L 5 2b1 5 2b2 5 3b1 5 3b4		20000000	6 4 8b3 4 8b4 4 8c1 4 8c1 4 8c1 2 8e1 4 8e1 4 8e1 4 9e2	6 4 8b3 2S 4 8b4 4 8c1 4 8c4 C 4 8d1 2S 4 8e1 4 10e1 ½ sq 4 9a2 3S
6 b1 5 1c3 b2 5 1c4 a3 5 1d3 a4 5 1d4 a2 5 1e1 b2 5 1e2 b4 5 1e3 c1 5 2a1		6 2 254 2 2c1 2 2c3 2 3d1 2 2d2 2 3d1 2 2d2 2 2d2 2 3e1 2 2e1 CL sq	5 2 9e1 2 9e2 2 9e3 sq 2 9e4 4 8a1 sq 4 8a3 4 8b1	5 9e1 C 9e2 9e3 C 9e4 8a1 ½ 8a3 8b1 sq 8b2
4 5 2 2c3 5 1a1 2 3d1 5 1b1 2 2d2 5 1a3 2 3e1 5 1a4 2 2e1 5 1a2 2 2e2 5 1b2 2 2e3 5 1b4 2 2e4 5 1c1		5 3e1 5 3d1 ½ 5 2e4 2 3b1 2 2a3 2 2b2 2 2b2 2 2b3	4 2 9c1 ½ 2 9c3 ½ sq 2 9c4 2S 2 9d1 sq 2 9d2 ½ 2 9d3 2 9d4 sq	4 2 9b4 2 2 9c1 ½ 2 2 9c3 ½ 2 2 9c4 2S 2 2 9d1 4 2 9d2 4 2 9d3 sq 4
3 2 1e4 2 3b1 2 2a3 2 2a4 2 2b2 L 2 2b3 2 2b3 2 2b4 2 2b4		4 5 2b4 5 2c1 CL 5 3c1 L 5 2c4 5 2d1 5 2d3 5 2d3 5 2d3	3 2 9a1 2 9a2 ½L 2 10c1 2 10b1 sq 2 9b1 2 10a1 ½L 2 10a1 ½L 2 9b4 ½L	3 2 9A1 2 9a2 2 10c1 2 10b1 2 9b1 2 10a1 2 10d1 ½ 2 9b4 ½
2 1c1 S ??? 2 1c3 2 1d1 S 2 1d2 L 2 1d2 L 2 1d3 L 2 1e1 2 1e2 2 1e2 2 1e3 2 1e3		3 2 1e4 CL 5 2a1 5 2a2 2S 5 3a1 3S 5 2a4 5 2b1 CL 5 2b2 CL 5 3b1	2 2 8c2 2 8c3 ½L 2 8c4 2 8d1 2 8d2 2 8d4 2 8d4 2 8c4 2 8c4	2 2 8c2 2 8c3 1/L 2 8c4 2S sq 2 8d1 2S 2 8d4 2 8e1 1/2 2 8e1 1/2 2 8e3 2S
1 A 2 1a1 B 2 1b1 C 2 1a3 sen D 2 1b4 E 2 1b2 L F 2 1b3 S G 2 1c4 L H 2 1c1		2 1c2 sq 2 1c2 sq 2 1c3 2S 2 1a4 L CL sq 2 1d2 3S 2 1d3 M 2 1e1 M 2 1e2 sq 2 1e3	1 A 2 8a1 B 2 8a2 sq C 2 8a3 sq D 2 8a4 E 2 8b1 F 2 8b2 G 2 8b4 H 2 8c1	1 2 8a1 2 8a2 sq 2 8a3 2 8a4 2 8b1 sq 3S 2 8b2 2S 2 8b4 2S 2 8c1
		1 2 1a1 2 1a3 2 1b4 2 1b1 2 1b2 2 1b2 2 1b3 2 1b4 2S		нстерсву Ноге
		HCFEDCBA		
	Plate 2:		Plate 3:	Plate 4:

17 Wed 2013-03-27

17.1 Harvesing the Second Replicate across each chamber

17.1.1 Aim

Harvest the actual experimental samples. Today, the second replicate will be harvested.

17.1.2 Method

- Leaves were taken from plants grown under experiment conditions (recorded by Keng, to be summarised later)
- Procedure was as per yesterday
- Leaves were excised and genly rolled (where possible) between fingers, without breaking or squashing them. This allowed them to unroll to fill the edges of the wells in most cases, for faster freezing.
- Approx 1.5x1.5cm sections were taken when leaves exceeded this size. Tip end of leaves were taken if a leaf was torn. Leaves were torn once rolled by quckly plucking them with tweezers, using tweezer blades to cut the leaf.
- Harvesting started at 11:30. Detailed in the table below.

\mathbf{Time}	Chamber	Condtion
11:30:00	4 part 1	0h
11:45:00	5 p1	0h
12:00:00	2 p1	0h
12:15:00	4 p2	0h
12:30:00	5 p2	0h
12:45:00	2 p2	0h
13:25:00	4 p1	$1 \mathrm{hHL}$
13:40:00	5 p1	$1 \mathrm{hHL}$
14:00:00	2 p1	$1 \mathrm{hHL}$
14:15:00	4 p2	$1 \mathrm{hHL}$
14:30:00	5 p2	$1 \mathrm{hHL}$
14:45:00	2 p2	$1 \mathrm{hHL}$

The plate layout is described below. Abbreviations are: S, small (and so on), C, cauline leaves, sq, squashed leaf while harvesting, sen, some senescence on harvested leaf (only a small amount of senescence was allowed), P, purple/anthocyanin accumulation.

Plate 5:

.sml		12 2 5a2 2 5b1 S 2 5c1 2 5c2 2 5d1 2 5d2 2 5d2 2 5d2 2 5d2	12
12 2 5c1 ½ 2 5c2 ½ 2 5d1 2 5d2 2 5d2 2 5e1 2 5e2 2v.sml	11 12 2 12d1 2 12d2 2 12e1 2 12e2	11 3b4 2S 3c2 ½ sen 3c4 2S 3d3 ½ 3d4 ½shaded 3e2 wounded 3e1 ½	11 2 12c2 ½ 2 12d1 2 12d2 2 12d2 2 12e1 ½ 2 12e2 ½ sq
11 2 4d2 2 4d3 2 4e1 2 4e3 sq 2 4e4 ½ 2 5a1 2 5a2 2 5b2 2 5b1 sq C	10 2 11d4 2 11e2 2 11e3 2 12a2 2 12b1 2 12b1 2 12b2 2 12c2	24	10 2 10d4 caul 2 10e2 ½ 2 10e3 ½ 2 10e4 ½ 2 12a2 ½ 2 12b1
10 2 4a2 2S 2 4a3 2 4a4 sq 2 4b1 ½ 2 4c3 2 4c1 2 4c3 2 4c3	9 2 2 11a2 3 2 11a3 4 2 11b1 4 2 11c1 2 2 11c3 3 2 11c3 4 2 11c1 2 2 11c3	10 S 2 4d2 sq S 2 4d3 sq S 2 4e1 S 2 4e3 2 3b2 sq ½ 2 3b3 2 3a3	9 2 10a2 ½ 2 2 10a3 2 10a4 ½ 2 2 10b4 2 10c2 sq 2 2 10c3
9 2 3b4 C 2 3c2 2 3c4 2 3d3 ½ 2 3d4 2 3e4 2 3e4 2 3e4	8 1/2 2 10c2 2 10c3 2 10c4 2 10c4 2 10c4 2 10c4 2 10c6 2 10c6 2 10c6	9 S 2 4a2 2S 2 4a3 2S 2 4a4 2S 5 2 4b1 ½ 2 4b1 2 4b3 2 2 4c1 2 2 4c1 2 2 4c4 ½	b2 c1 ½ c3 d1 ½ d3 ½ d4 ½
8 5 4c1 5 4c2 ½ 5 4d1 sq 5 4d2 ½ sq 5 4e2 ½ 2 3a3 2 3a4 ½ 2 3b2 ½	7 5 12c1 ½ 5 12c2 % 5 12d1 5 12d2 3 10a2 2 10a3 2 10a4 2 10b4	8 5 4e4 2S 5 5a1 9 5 5c1 5 5c2 ½ 5 5d1 5 5d2 ½ 5 5d2 ½ 2 5a2 ½	
7 4d1 ½ 5 4d2 5 4d3 P 5 4d4 P 5 4e2 5 4e3 2 4e4 2 4e4 2 5a1 ½ 2	6 5 11c4 5 11d3 5 11d4 5 11e1 5 11e2 ½ sen 5 12a2 sq 5 12b1 sq 5 12b2 ½	7 5 4c4 S 5 4d1 ½ 5 4d2 3S sq 5 4d3 5 4d3 P? 5 4d4 P 5 4e2 caul 5 4e3 sq	7 5 12b2 5 12c1 5 12c1 5 12c2 5 12d2 5 12d2 2 11a2 $\frac{1}{2}$
6 5 4a2 5 4a3 % C 5 5 4b1 5 4b2 5 4c1 5 4c1 % sq 5 5 4c4 %	5 5 10d4 5 10e2 5 10e3 5 11a1 5 11a2 5 11b1 5 11b2 sq	6 5 4a1 P 5 4a2 5 4a3 ½ 5 4b1 5 4b2 5 4b4 5 4c1 P	6 5 11c4 ½ 5 11d3 5 11d4 S sen 5 11d4 5 11e1 sq 5 11e2
5 354 P 5 4 5 3 3 4 9 5 4 5 4 5 3 4 9 5 4 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 4 1 C 5 5 4 5 4 1 C 5 5 4 5 4 1 C 5 5 4 5 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5	4 5 10a3 P sen 5 10b2 ½ 5 10b3 5 10c4 5 10c2 5 10c3 5 10d2 ½ sq 5 10d3	5 3b3 5 3b4 P 5 3c3 P 5 3d2 2S 1 5 3d4 sq 5 3d2 sq 5 3d2 vg 5 3d2 vg 5 3d2 vg	5 5 10d4 ½ 5 10e2 ½ 5 10e3 5 11a1 sq 5 11a2 sq 5 11b1 ½
4 3e3 S 5 3e4 5 5e1 sq 5 5e2 5 3a2 5 3b2 5 3b3 ½ 5	3 4 11c2 sq ½ 4 11e2 ½ 4 11e4 ½ 4 12b1 4 12b1 4 12b1 5 10a2 ½ 5 10a3 C	4 3e3 2S 4 5e1 sq 4 5e2 ½ 5 3a2 sq 5 3a3 sq sen 5 3a3 2S 5 3b2	4 5 10a3 2S 5 10a4 P 5 10b2 5 10b3 5 10c2 ½
3 4 3b1 4 3b4 4 5b1 sq 4 5b2 sq 4 5c4 5 4 5c2 5 4 5d2 15 6 5d2 15 7 5d2 15 7 5d2 15 7 5d2 15 8 5d2 15 8 5d2 15 8 5d2	2 10d3 sen 10d4 C 10e2 ½ 10e3 11a1 11a3 C 11a4 ½	3 4 3b3 4 5e1 2S sen 4 5b1 4 5b2 4 3c4 4 5c2 4 5c2 4 5d1	3 4 10c2 ½ 4 10d2 sq 4 10d2 sen 4 10d2 caul 4 10d4 dam 4 10e2
2 4 4c4 4 4e1 4 4e3 4 3c2 4 3a3 4 3a3 4 5a1 sq 4 5a2 sq	bs %, bs	2 4 4 bb 4 4 4e1 4 4e2 4 3c2 4 3a3 4 3a4 sq 4 5a1 4 5a1	2 4 12d1 ½ 4 12e1 ½ 4 10a2 4 10a3 4 10a4 sq 4 10b2
1 4 4a1 4 4a2 C 4 4a3 sq 4 4a4 4 4b3 4 4b4 4 3b2 4 4c3	1 A 410a2 B 410a3 C 410a4 D 410b2 E 410b3 F 7 410b4 G 410c2 H 410d2	1 4a1 4a2 sen 4a3 sq 4b3 sq 4b4 sq 4b5 4b5	1 4 11a1 4 11a3 C 4 11a4 ½ 4 11b1 2S 4 11c2 ½ 4 11c2 ½
A W O O O F O H		4 A D D I I I I I I I I I I I I I I I I I	FEDCBA
	Plate 6:	Plate 7:	Plate 8:

18 Thu 2013-03-28

18.1 Harvesing the Third Replicate across each chamber

18.1.1 Aim

Harvest the actual experimental samples. Today, the third replicate will be harvested.

18.1.2 Method

- Leaves were taken from plants grown under experiment conditions (recorded by Keng, to be summarised later)
- Procedure was as per yesterday
- Leaves were excised and genly rolled (where possible) between fingers, without breaking or squashing them. This allowed them to unroll to fill the edges of the wells in most cases, for faster freezing.
- Approx 1.5x1.5cm sections were taken when leaves exceeded this size. Tip end of leaves were taken if a leaf was torn. Leaves were torn once rolled by quckly plucking them with tweezers, using tweezer blades to cut the leaf.
- Harvesting started at 11:30. Detailed in the table below.

StartTime	Chamber	Tray	Condtion
1135	5	5+6	0h
1140	5	7	0h
1150	2	6	0h
1155	2	5 + 7	0h
1203	4	5	0h
1205	4	6	0h
1210	4	7	0h
1217	5	12	0h
1223	5	13	0h
1229	5	14	0h
1235	2	12	0h
1237	2	13	0h
1242	2	14	0h
1255	4	12	0h
1258	4	13	0h
1300	4	14	0h
1252	5	5+6	1hHL (1h05)
1257	5	7	1hHL (1h10)
1305	2	5+7	1hHL (1h05)
1310	2	6	1hHL (1h10)
1318	4	6	1hHL (1h03)
1330	4	7	1hHL (1h15)
1423	5	14	1hHL (1h10)
1430	5	13	1hHL (1h15)
1440	5	12	1hHL (1h15)
1455	2	12	1hHL (1h0)
1500	2	13	1hHL (1h05)
1505	2	14	1hHL (1h10)
1517	4	12	1 hHL (57 m)
1520	4	13	1hHL (1h0)
1526	4	14	1hHL (1h06m)

The plate layout is described below. Abbreviations are: S, small, 2S, 2x small (and so on), C/caul, cauline leaves, sq, squashed leaf while harvesting, sen, some senescence on harvested leaf (only a small amount of senescence was allowed), P, purple/anthocyanin accumulation.

Plate 9:

			am am iv
			11 4 13e4 sen 4 13e4 dam 4 14c1 4 14c3 4 14d1 ½ 4 14d2 4 14e1 juv 4 14e1 juv
12	Q		of same leaf
	12	12	10 4 13b2 ½ sq 4 13c2 4 13d3 sq 4 13e1 sq 4 13e1 juv 4 13e2 outer ½ 4 13e2 inner ½
10 1	#	11	10 4 13b2 ½ sq 4 13c2 4 13d3 sq 4 13e1 sq 4 13e1 juv 4 13e2 outer 4 13e2 inner
	10 4 14e2 4 14e3	10	4 13b2 4 13c2 4 13d3 4 13e1 4 13e2 4 13e2 4 13e2
9 4 7b2 ½ 4 7c1 4 7c2 dam 4 7c2	9 4 13e1 4 13e2 4 13e4 4 14c1 4 14c1 4 14d1 4 14d2	9 4 7e2 juv 4 7e2 4 5e4 ½ 4 5e4 ½ 4 5e4 ½	9 4 12c3 ½ sen 4 12c4 ½ 4 12e3 caul 4 12e3 ½ sen 4 12e4 4 13a2 ½ 4 13b1 juv
8 4 6d3 4 6d4 ½ 4 6e1 ½ 4 6e3 4 6e4 4 7a1 4 7a3 ½ sq 4 7b1 sq	8 4 12c4 4 12c4 4 12e3 4 13a2 4 13b1 4 13b2 4 13c2 4 13c3	8 4 6e2 ½ 4 6e4 2C 4 7a1 4 7a3 ½ 4 7b1 sq 4 7b2 ½ 4 7c2 2S sq	% % % sq sq 2Juv
7 4 5e3 ½ 4 5e4 ½ 4 6a1 ½ sq 4 6b1 ½ 4 6b1 ½ 4 6c1 ½ 4 6c3 ½ dam 4 6c3 ½ dam 4 6c4 S	7 2 14c2 ½ 2 14c3 2 14d3 2 14d3 ½ 2 14e2 sq 2 14e3 4 12b3 4 12c3	7 4 6a4 2S 4 6b1 ½ 4 6c1 4 6c3 4 6c4 6 6c3 4 6d4 6 6d4 6 6d4 6 6d4 7 6d4 ½	
74 sq basal 75 sq 74 sq 75 sq 77 sq	6 2 13d2 ½ 2 13e1 dam 2 13e3 ½ 2 13e4 2 14a1 2 14b3 2 14b3 sq 2 14c1 ½	6 2 6b3 2 6b4 ½ 2 6d4 sq 2 6d4 2 6c2 2 6c1 2 6c1 2 6c1 4 6a1 ½	7 2 1363 ½ 2 1364 sq 2 1364 juv 2 1431 2 1352 part shaded 2 1452 juv 2 1463
5 6 6e1 ½ 2 7c2 6e2 ½ 2 7d3 5b3 ½ 2 7d3 5c4 2 7e1 5d4 2 7e2 7b1 ½ 2 7e3 7b3 ½ 4 5a4 7c1 ½ 4 5d4	5 2 13a1 2 13a3 2 13a4 2 13b4 25 2 13b4 25 2 13c3 ½ 2 13c3 ½	5 2 7e1 2 7e2 2 7e3 ½ 2 6a1 2 6a2 2 6a3 2 6a4 caul 2 6a4 2S	bs
4 2 6a2 2 6a3 ½ 2 6 2 6a4 2 6a4 2 6b2 2 6b3 2 664 2 6c2 2 6c4 2 6c4	4 5 14d2 ½ P 5 14d2 ½ P 2 12a3 ½ 2 12b3 2x 2 12b3 2x 2 12c3 ½ sq 2 12c4 ½	4 2 5b3 2 5c4 ½ 2 5d4 2S 1caul 2 7b1 2 7b3 ½ 2 7c1 ½ 2 7c2 ½	T
3 5 7b3 5 7c1 ½ 5 7c2 1/3 5 7c3 ½ 5 7c2 P 5 7c2 P 5 7c3 ½ sq P	3 5 13d2 % 5 13e2 5 13e2 5 14a2 P 5 14b1 % 5 14b2 % dam 5 13c3 %	3 5 7b3 8q 5 7c1 ½ 5 7c2 ¼ 5 7c3 ½ 5 7d2 ½ 8q 5 7e2 P 5 7e3 juv 5 7e3 juv 5 7e3 juv	5 2 12b3 ½ shade 1 2 12b3 juv 2 12c3 2 12c4 2 12d4 ½ 2 13a1 2 13a3
5 5e3 5 5d3 1/3 sq 5 5d4 2S 5 6d4 2S 5 6e1 5 5e4 P 5 6e4 5 7a2 ½ 5 7a3 P	2 5 13a4 P 5 1 13b1 2S 5 5 13b2 P 5 5 13b3 P 5 5 13c2 dam 5 5 13c2 5 5 13c3 2S 5	5 5e3 5 5e3 5 5d3 ½ dam 5 6d4 5 6e1 ½ 5 5e4 P 5 6e4 8q 5 7a2 ½ P 5 7a3 P	4 5 12a3 juv 5 12a4 ½ sq 5 12b4 ½ 5 12c3 5 12c2 1 5 12e2 2 12a3 sq 2 12a4
1 5 5a3 dam 5 5 5a4 5 5 6a3 ½ 5 5 6a4 P 5 5 5b3 ½ 5 5 5c4 sq 5 5 6b4 5 5 6c1	1 5 12a3 ½ 5 5 12a4 5 5 12b4 5 5 12d3 ½ 5 5 12e3 ½ 5 5 12e3 5 5 13a2 P 5	1 5 5 5 3 3 5 5 5 5 5 5 5 6 6 3 1 ½ 5 5 6 6 3 1 ½ 5 5 5 6 6 3 1 ½ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 5 13c2 5 13c3 2S 5 13c4 5 13c4 juv 5 13d2 juv 5 13d2 juv 5 12e2 5 12e2
4 W O O B F O H	начыосвъ	HUNHUUBA	2 5 13a1 5 13a2 P 5 13a4 P 5 13b1 2S 5 13b2 p 5 13b3 p 5 13b3 P 5 13b3 P
	Plate 10:	Plate 11:	Plate 12: A 5 14a2 p B 5 14b1 ½ C 5 14b2 D 5 14b3 E 5 14c3 F 5 14d2 ½ P G 5 14d3 P H 5 14d3 P

19 Fri 2013-04-26

Trayscan Test 19.1

Aim 19.1.1

Test the tray registrator function of the trayscan, as instructed by Petr Ent.

19.1.2 Method

A test tray was made, and placed in the trayscan for PSI to test.

The tray registration was as per the attached file:

./2013-04/20130426-TrayscanTest.csv

MD5SUM: b6716d2b3c2b63adc36ef6d6a1a11104

Corrected Trayscan Import File 19.2

19.2.1 Aim

Fix difference between the file which we imported into trayscan and the tray labels by which the phenotypic data was recorded.

19.2.2 Method

The format of the tray identifiers was changed to reflect the label format. No other changes were made.

File attachement:

./2013-04/20130426-CorrectedTrayscanImportSheet.csv

MD5SUM: ba68cc9c73d63b648899dac35129ace5

19.3 Count of all sampled plants

19.3.1 Aim

To determine the number of plants (for tim's abstract)

19.3.2 Method

The number of RIX, mutant and parental lines which survived to sampling week were counted.

19.3.3 Results

Chamber:	2	4	5
	Fluctuating	Sufficient	Excess
overall	185	148	172
rix	158	122	145
Parental	15	14	15
mutant	12	12	12

20 Mon 2013-05-06

Development of Undistortion script 20.1

20.1.1 Aim

Trial parameters to Imagemagick's convert binary to get best undistortion of barrel distortion.

20.1.2 Method

To test the different parameters to the barrel undistortion model, the following command was run, with params substituted for the model parameters below. The original image was from the stard ot $5\mathrm{mp}$ webcams. convert -distort Barrel convert -distort convert -distort convert -distort convert -distort convert -distort convert -di

The parameters below were tested:

- "0.0 0.0 -0.15 1.15"
- "0.0 0.0 -0.10 1.10"
- "0.0 0.0 -0.05 1.05"
- "0.0 0.0 -0.5 1.5"
- "0.0 0.0 -0.11 1.11"

20.1.3 Results

The parameters "0.0 0.0 -0.15 1.15" appeared to work best. Chromatic aberration is problematic. Will try to use fulla from the hugin toolkit.

21 Wed 2013-05-15

21.1 Creation of Caroline Chong's Solarcalc files

21.1.1 Aim

Create solarcalc files for Caroline Chong's Pelargonium.

21.1.2 Method

- SolarCalc version 2013 Feb C (zip file MD5SUM: 0b2b456771eb44ed1fa8ed1a087bfbd0) was used.
- Min Temp: 5 C
- Max Humid.: 85
- Start Date: 1/11/12
- End Date: 31/12/13
- Shading: 0
- LED Ratios:
 - 4x: 5.2 4.12 4 3.92 4.88 1 3.64
- 2010 weather (current)

BotriverFuture.csv:

- Solar Calc version 2013 Feb C (zip file MD5SUM: 0b2b456771eb44ed1fa8ed1a087bfbd0) was used.
- Min Temp: 5 C
- Max Humid.: 85
- Start Date: 1/11/12
- End Date: 31/12/13
- Shading: 0
- LED Ratios:
 - $4x:\ 5.2\ 4.12\ 4\ 3.92\ 4.88\ 1\ 3.64$
- 2040 weather

${\bf Tilba Current. csv:}$

- SolarCalc version 2013 Feb C (zip file MD5SUM: 0b2b456771eb44ed1fa8ed1a087bfbd0) was used.
- Location: Tilba -36.377685°S 150.069347°E
- Min Temp: 5 C
- Max Humid.: 85
- Start Date: 1/11/12
- End Date: 31/12/13
- Shading: 0
- LED Ratios:
 - 4x: 5.2 4.12 4 3.92 4.88 1 3.64
- 2010 weather (current)

TilbaFuture.csv:

- Solar Calc version 2013 Feb C (zip file MD5SUM: 0b2b456771eb44ed1fa8ed1a087bfbd0) was used.
- Location: Tilba -36.377685°S 150.069347°E
- Min Temp: 5 C
- Max Humid.: 85
- Start Date: 1/11/12
- End Date: 31/12/13
- Shading: 0
- LED Ratios:
 - 4x: 5.2 4.12 4 3.92 4.88 1 3.64
- 2040 weather

21.1.3 Results

The following files have been attached:

- $\bullet \quad ./2013-05/20130515-Caroline Solar calc Locations. kmz \ md5 sum \ 9a5be15bd5bcc854e2f27f33fb1e34e0$
- $\qquad ./2013-05/20130515-Botrivier Current.csv\ md5sum\ fbe6cea 104e11eb9a35448b8be45613d$
- ./2013-05/20130515-BotrivierCurrent.srp md5sum bdc0b67c73750e5c774e63d7a66aaaa1
- $\qquad ./2013-05/20130515- Botriver Future.csv\ md5sum\ 36690160162125160371620976923986$
- $\bullet \quad ./2013-05/20130515\text{-BotriverFuture.srp} \ \, \mathrm{md5sum} \ \, 646c0bb13b39868ba0426000af9532aa$
- $./2013-05/20130515-TilbaCurrent.csv\ md5sum\ 4875aa65f83b86ead8f7008d724d54dc \\ ./2013-05/20130515-TilbaCurrent.srp\ md5sum\ 878d3193b493a2ced5d69a32bfe8e3bf \\ ./2013-05/20130515-TilbaCurrent.srp\ md5sum\ 878d3193b493a2ced5d69a32b6$
- ./2013-05/20130515-TilbaFuture.csv md5sum 4ae75c0b7ff77eef4f7355cbc42fddb6
- ./2013-05/20130515-Tilba Future.srp md5sum 3544f9404cc1687f609b674767ac2f48

21.2 Testing of tissuelyzer settings and protocol

21.2.1 Aim

Test which settings in the tissuelyzer are optimal for grinding tissue in 96 well plates.

21.2.2 Method/Results

- Remove plate containing tissue from -80, and place in tray with LN2.
- Remove silicone tray mat, and repalce with Qiagen collection tube strip caps
- As the plates did not have ball bearings, I added LN2-frozen balls to the top of each plate.
- \bullet Freeze tissuelyzer blocks in LN2
- Pour LN2 into tissuelyzer base (the section with the rubber)
- Place plate with bottom in base, and put in machine. Don't add ln2 to the top of the plate
- Run machine (with counterbalance) for 1 min at 25hz
- Remove plate. After inspection, some wells were not pulverised, due to the bead being stuck, so i banged the plate against the desk quite hard about 5 times to dislodge it
- Run for another minute. The tissues appeared to have been ground more thoroughly.
- Spin plate at 6k RPM for 1 minute. This got most of the tissue to the bottom to the tube. Some remained around the lids, and seemed to thaw slightly.
- The plate was put back into the -80

22 Thu 2013-05-16

22.1 Practice Kumar et al Library Prep

22.1.1 Aim

Take two samples up to first strand synthesis

22.1.2 Method

Make fresh LBB and additives (hereafter LBBMA):

- Add 6mL LBB from dynabeads kit to 15mL falcon tube
- add 30uL mercapto ethanol and ≈ 90uL antifoam A. (antifoam A is V. viscous, could not be accurately pippeted)

Preps:

- Using practice plate from march harvest harvest, tissuelysed wed 15/5/13
- A2: Add 1mL LBBMA, pippete to mix, breif vortex, pipette into eppie, vortex again. Sample had many chunks which did not
 resuspend, spilt some lysates.
- A3: Add 500uL LBBMA, use 200uL pippetor to mix, then add extra 500uL and mix w/ 1000ul pippettor. Tfr to new tube. May not have added 500uL the second time, so added ≈ 200uL extra.
- Left A1 8min and A2 5min at RT
- Tfr -> qiashredder, spin 10k rpm, 10min
- Prepare dynabeads:

Resuspend bottle w/ v. gentle vortex

 $150 \mathrm{uL}$ -> fresh eppie

vortex, spin, mag sep, remove supn.

add 100uL LBBMA, resusp., centrifuge, resusp, $50\mathrm{uL}$ ea to 2 new tubes

- mag sep, remove supn
- 200 uL lysates -> each tube, rest of lysates onto dry ice
- pip to mix, incubate @ rt w/ hand mixing, 10min
- sep on mag sep, 15 min
- wash per protocol (steps 1.3~5-6) w/ LBBMA, not straight LBB
- leave in WBB 20min while DNAse MM was made
- Make 20uL DNAse MM per protocol, with 5% extra, using DEPC mQ water
- wash beads again w/ WBB (NOT Low Salt Buffer)
- add 18uL TrisHCL from dynabeads kit, resusp. 2uL -> extra tubes, for bioanalyser
- add 10uL DNA ase MM to 15uL, incubate 10min at 37C in pcr machine
- add 1.5uL 0.22uM filtered EDTA, pip to mix, incubate 75C for 10min
- samples -> ice for $10\min$, add 175 LBBMA, \min
- incubate RT with hand mixing 10min
- mag sep beads for 10min
- wash per steps 1.3 5-6, but w/ 150uL WBA for sample A3 in step 5
- Wash w/ 200u
L WBB again (not LSB)
- Make 13uL primer/dntp mix:

 $10 \mathrm{mM}$ Tris from dynabeads kit, $11.6 \mathrm{uL}$

25mM DNTPs from Pete

Random primers from sigma

- incubate, prepare FS cDNA MM, add sample and run synthesis rxn in PCR machine as per protocol, steps 1.3 step 18 2.1 step 5
- \bullet Freeze sample at -20C

22.1.3 Results

None yet

23 Thu 2013-06-06

23.1 Create Condtions for keng

23.1.1 Aim

Make solarcalc conditions for keng.

23.1.2 Method

as described in the .srp files attached.

23.1.3 Results

 $2013-06/20130606-Griffith Current 100 Light.srp\ 2013-06/20130606-Griffith Current 100 Light.csv\ 2013-06/20130606-Mildura Current 100 Light.srp\ 2013-06/20130606-Temora Current 100 Light.csv\ 2013-06/20130606-Temora Current 100 Light.srp\ 2013-06/20130606-Temora Current 100 Light.srp\ 2013-06/20130606-Temora Current 100 Light.csv\ 2013-06/20130606-Umea Current 100 Light.csv\ 2013-06/20130606-Umea Current 100 Light.csv\ 2013-06/20130606-Umea Current 100 Light.csv\ 2013-06/20130606-Wollongong Current 100 Light.csv\ 2013-06/20130606-Wollongong Current 100 Light.csv\ 2013-06/20130606-Wollongong Current 100 Light.csv\ 2013-06/20130606-Wollongong Current 100 Light.csv\ 2013-06/20130606-Zaragoza Current 100 Light.srp\ 2013-06/20130606-Zaragoza Current 100 Light.srp\$

23.2 Spanish conditions

23.2.1 Aim

Create some inland spanish inland/coastal conditions for comparison.

23.2.2 Method

See .srp files attached

23.2.3 Results

The inland condition is too cold, so we won't use these.

LED Intensity

Figure 23.1: Light

Figure 23.2: RH

 $\label{eq:condition} \mbox{Figure 23.3: Light Ratio (WollongongCurrent100Light / WollongongCurrent35Light)}$

Chamber Temp Deg C ß Wollongong 100% Wollongong 35% Griffith 100% Mildura 100%

Figure 23.4: Temp

Time

Figure 23.5: Spain Temps

24 Fri 2013-06-21

24.1 Run Degradome analyseR for Pete's poster

24.1.1 Aim

Run Deg
AnalyseR on the paresnip data $\,$

24.1.2 Method

Paresnip output was filtered using:
R -f DegradomeAnalyseR/paresnip/paresnip_filter.R --args <files>
The files paresnip_1, paresnip_2, and paresnip_3 were filtered pairwise, and all together.

genotype	\mathbf{Rep}	count
Col-0	1	37985
Col-0	2	41471
Col-0	3	36789
Col-0	1-2	14236
Col-0	1-3	13844
Col-0	2-3	13488
Col-0	DA	1709

25 Mon 2013-07-15

25.1 Extraction of samples from plates

25.1.1 Aim

Get the col, cvi and ler samples out of the plates for RNA extraction

25.1.2 Method

- Plates were placed in liquid N2, and allowed to cool.
- Qiagen collection tube caps were used to close the plates
- individual caps were cut away and sample disrupted $\rm w/~a~ln2~frozen~p1000~tip$
- contents were emptied into pre labeled and pre ln2 frozen eppies (normal 1.7ml ones)
- plates were re-capped with collection tube caps, and plate mats strapped to plates w/ cotton thread to stop explosions.

25.2 Table of counts sample counts

25.2.1 Counts

I've counted the number of samples per condition, genotype and reps to see what's missing. See also attached files: 20130712-harvestPlateGenotypeLayouts.ods f04bb7426b9d7e9048ba5757811e6ec4 20130714-sampleGenotypeTreatmentCounts.ods deca19773a3f8c626763a466fbbfd7d6

		Col	Cvi	Ler
0h	Fl Ch2	2	2	2
	Su Ch4	1	2	1
	Ex Ch5	3	1	1
1h HL	Fl Ch2	2	2	3
	Su Ch4	2	1	2
	Ex Ch5	3	3	4

Table 25.1: Samples for each genotype