CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-TAGUS, LERC, LEGI E LEE – 1º SEM. 2008/09 7º FICHA DE EXERCÍCIOS

I. Polinómio e Teorema de Taylor.

1) Determine o polinómio de Taylor de grau 3 em a=0 das funções $f,g:\mathbb{R}\to\mathbb{R}$ definidas respectivamente por

$$f(x) = e^{\sin x}$$
 e $g(x) = \int_0^x \operatorname{sen}(t^2) dt$.

2) Determine o polinómio de Taylor de grau 5 em a=0 da função $f:\mathbb{R}\to\mathbb{R}$ definida por

$$f(x) = e^{\cos x}$$
.

3) Use o polinómio de Taylor para escrever cada um dos seguintes polinómios como um polinómio em potências de (x-3).

i)
$$x^2 - 4x - 9$$
 ii) $x^4 - 12x^3 + 44x^2 + 2x + 1$ iii) x^5

4) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função de classe $C^5(\mathbb{R})$ com polinómio de Taylor de grau 5 em a=0 dado por:

i)
$$p_{5,0}(x) = 1 + x^4$$
; ii) $p_{5,0}(x) = x^3 - x^5$.

Em cada um dos casos, determine $f^{(k)}(0)$, para $k = 0, 1, \dots, 5$, e indique justificando se f tem ou não um extremo local no ponto zero.

5) Seja $f:\mathbb{R}\to\mathbb{R}$ uma função de classe $C^5(\mathbb{R})$ com polinómio de Taylor de grau 5 em a=1 dado por

$$p_{5,1}(x) = \frac{1}{2}x^2\left(1 - \frac{x^2}{2}\right).$$

Determine $f^{(k)}(1)$, para $k = 0, 1, \dots, 5$, e indique justificando se f tem ou não um extremo local no ponto um.

6) Prove, usando o Teorema de Taylor, que

$$\left| e^{-x} - \left(1 - x + \frac{x^2}{2} \right) \right| < \frac{1}{6}, \ \forall x \in [0, 1].$$

7) Prove, usando o Teorema de Taylor, que

$$\left| \operatorname{sen}(x) - \left(x - \frac{x^3}{6} \right) \right| < 0.01, \ \forall x \in [0, 1].$$

8) Prove, usando o Teorema de Taylor, que

$$\left|\cos(x) - \left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right)\right| < 0.1, \ \forall x \in [0, 2].$$

9) Prove, usando o Teorema de Taylor, que se $f: \mathbb{R} \to \mathbb{R}$ é (n+1)-vezes diferenciável e

$$f^{(n+1)}(x) = 0, \ \forall x \in \mathbb{R},$$

então f é um polinómio de grau menor ou igual a n.

2

II. Sucessões.

1) Determine, se existirem, os limites das seguintes sucessões.

a)
$$x_n = \frac{2n+1}{3n-1}$$
 b) $x_n = \frac{2n+3}{3n+(-1)^n}$ c) $x_n = n - \frac{n^2}{n+2}$ d) $x_n = \frac{n+\cos(n)}{2n-1}$ e) $x_n = \frac{n^2-2}{5n^2}$ f) $x_n = \frac{n-1}{\sqrt{n^2+1}}$ g) $x_n = \sqrt{n} - \frac{n}{\sqrt{n}+2}$ h) $x_n = \frac{\sqrt{n^4-1}}{n^2+3}$ i) $x_n = (-1)^n \frac{n}{1+n^2}$ j) $x_n = \frac{n^2-1}{\sqrt{3n^4+3}}$ k) $x_n = \frac{\sqrt{n+1}}{2n+1}$ l) $x_n = \frac{n}{n+1} - \frac{n+1}{n}$ m) $x_n = \sqrt{n+1} - \sqrt{n}$ n) $x_n = \sqrt{n(n+1)} - n$ o) $x_n = \frac{2^n+1}{2^{n+1}-1}$ p) $x_n = \frac{2^n+(-1)^n}{2^{n+1}+(-1)^{n+1}}$ q) $x_n = na^n$, com $|a| < 1$ r) $x_n = \frac{2^{2n}+6n}{3^n-4^{n+2}}$ s) $x_n = \frac{2^{2n}-3^n}{3n-32n}$ t) $x_n = \frac{(3^n)^2}{1+7^n}$

2) Sendo (u_n) e (v_n) sucessões de termos positivos tais que

$$1 \le \frac{u_n}{v_n} \le 1 + \frac{1}{n}$$
 para todo o $n \in \mathbb{N}$,

prove que (u_n) converge sse (v_n) converge. Mostre também que, quando existem, os seus limites são iguais.

- 3) Prove que se $\lim_{n\to\infty} x_n = 0$ então $\lim_{n\to\infty} x_n^2 = 0$.
- 4) Considere a sucessão (x_n) definida por

$$x_1 = 1$$
 e $x_{n+1} = \frac{2x_n + 3}{4}$ para todo o $n \in \mathbb{N}$.

- (a) Prove que (x_n) é estritamente crescente e que $x_n < 3/2$ para todo o $n \in \mathbb{N}$.
- (b) Mostre que (x_n) é convergente e calcule o seu limite.
- **5)** Considere a sucessão (x_n) definida por

$$x_1 = 3$$
 e $x_{n+1} = \sqrt{2x_n + 1}$ para todo o $n \in \mathbb{N}$.

- (a) Prove que (x_n) é estritamente decrescente e que $x_n > 2$ para todo o $n \in \mathbb{N}$.
- (b) Mostre que (x_n) é convergente e calcule o seu limite.
- **6)** Considere a sucessão (x_n) definida por

$$x_1 = 2$$
 e $x_{n+1} = \sqrt{2x_n + 1}$ para todo o $n \in \mathbb{N}$.

- (a) Prove que (x_n) é estritamente crescente e que $x_n < 3$ para todo o $n \in \mathbb{N}$.
- (b) Mostre que (x_n) é convergente e calcule o seu limite.

7) Considere a sucessão (x_n) definida por

$$x_1 = 1$$
 e $x_{n+1} = \sqrt{\frac{3 + x_n^2}{2}}$ para todo o $n \in \mathbb{N}$.

- (a) Prove que (x_n) é estritamente crescente e que $x_n < 2$ para todo o $n \in \mathbb{N}$.
- (b) Mostre que (x_n) é convergente e calcule o seu limite.
- 8) Considere a sucessão (x_n) definida por

$$x_1 = 2$$
 e $x_{n+1} = 3 - \frac{1}{x_n}$ para todo o $n \in \mathbb{N}$.

- (a) Prove que (x_n) é estritamente crescente e que $x_n < 3$ para todo o $n \in \mathbb{N}$.
- (b) Mostre que (x_n) é convergente e calcule o seu limite.
- 9) Considere a sucessão (x_n) definida por

$$x_1 = 3$$
 e $x_{n+1} = 3 - \frac{1}{x_n}$ para todo o $n \in \mathbb{N}$.

- (a) Prove que (x_n) é estritamente decrescente e que $x_n > 2$ para todo o $n \in \mathbb{N}$.
- (b) Mostre que (x_n) é convergente e calcule o seu limite.
- 10) Considere as expressões

$$x_1 = 1$$
 e $x_{n+1} = \frac{x_n}{2} + \frac{2}{x_n}$ para todo o $n \in \mathbb{N}$.

- (a) Verifique que definem, por recorrência, uma sucessão (x_n) , i.e. verifique que $x_n > 0$ para todo o $n \in \mathbb{N}$, por forma a que a segunda expressão faça sentido.
- (b) Prove que $x_n \ge 2$ e $x_{n+1} \le x_n$, para todo o $n \in \mathbb{N}$ com $n \ge 2$.
- (c) Mostre que (x_n) é convergente e calcule o seu limite.
- 11) Mostre que as expressões

$$x_1 = 1$$
 e $x_{n+1} = \frac{2x_n}{1 + 2x_n}$ para todo o $n \in \mathbb{N}$

definem por recorrência uma sucessão (x_n) que é convergente. Calcule o seu limite.

12) Determine, se existirem, os limites das seguintes sucessões.

a)
$$x_n = \left(1 + \frac{1}{n}\right)^{n+7}$$
 b) $x_n = \left(1 + \frac{2}{n}\right)^{3n}$ c) $x_n = \left(1 + \frac{1}{n}\right)^{n^2}$
d) $x_n = \left(1 + \frac{1}{n^2}\right)^n$ e) $x_n = \left(\frac{n-2}{n+2}\right)^{2n+3}$ f) $x_n = \left(\frac{n-1}{n+2}\right)^{1-n}$
g) $x_n = \left(\frac{3n+2}{3n-1}\right)^{n/2}$ h) $x_n = \left(\frac{2n}{2n+1}\right)^{2n-1}$ i) $x_n = \left(\frac{2n}{n+1} - 1\right)^n$

13) Determine, se existirem, os limites das seguintes sucessões.

a)
$$x_n = \sqrt[n]{n}$$
 b) $x_n = \sqrt[n]{1 + \frac{1}{n}}$ c) $x_n = \sqrt[n]{n^2 + n}$ d) $x_n = \sqrt[n]{2^n + 1}$ e) $x_n = \sqrt[n]{2^n + n^2}$ f) $x_n = \sqrt[n]{3^n + 2^{2n}}$

g)
$$x_n = \left(\frac{n-1}{2n^2+1}\right)^{\frac{2}{n}}$$
 h) $x_n = \left(1 - \frac{n}{n+1}\right)^{\frac{1}{n}}$ i) $x_n = \left(\frac{2^n}{n+1}\right)^{\frac{1}{2n}}$

III. Séries Numéricas.

 Mostre que cada uma das seguintes séries é convergente com soma igual ao valor indicado.

a)
$$\sum_{n=1}^{\infty} \frac{2}{3^{n-1}} = 3$$
 b) $\sum_{n=1}^{\infty} \frac{2^n + 3^n}{6^n} = \frac{3}{2}$ c) $\sum_{n=1}^{\infty} \frac{3^{n+1}}{2^{2n}} = 9$ d) $\sum_{n=0}^{\infty} \frac{2^{n+1}}{5^{n-1}} = \frac{50}{3}$ e) $\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{2^n} = \frac{5}{3}$

2) Determine a natureza das seguintes séries.

a)
$$\sum \frac{n-2}{3n+1}$$
 b) $\sum \frac{\sqrt{n}}{n+1}$ c) $\sum \frac{\sqrt{n-1}}{n^2+2}$ d) $\sum \frac{1}{\sqrt{n(n+1)}}$
e) $\sum \frac{n+1}{n^3+1}$ f) $\sum \frac{n}{\sqrt{n^2(n+1)}}$ g) $\sum \frac{n!}{(n+2)!}$ h) $\sum \frac{n^2}{n^3+1}$
i) $\sum \frac{1}{\sqrt[3]{n^2+1}}$ j) $\sum \frac{5^n}{4^n+1}$ k) $\sum \frac{2^n}{3^n+1}$ l) $\sum \frac{2^{2n}}{3^n+1}$

3) Determine a natureza das seguintes séries.

a)
$$\sum \frac{n^{1000}}{(1,001)^n}$$
 b) $\sum \frac{2^n n}{e^n}$ c) $\sum \frac{n^3}{3^n}$ d) $\sum \frac{n^2}{n!}$ e) $\sum \frac{(1000)^n}{n!}$ f) $\sum \frac{n!}{(2n)!}$ g) $\sum \frac{(n!)^2}{(2n)!}$ h) $\sum \frac{n!}{n^n}$ i) $\sum \frac{2^n n!}{n^n}$

4) Determine a natureza das seguintes séries.

a)
$$\sum \frac{\log n}{n}$$
 b) $\sum \frac{1}{\log n}$ c) $\sum \frac{1}{n \log n}$ d) $\sum \frac{1}{n(\log n)^2}$
e) $\sum \frac{1}{n^2 \log n}$ f) $\sum \frac{1}{(\log n)^n}$ g) $\sum \operatorname{sen}\left(\frac{1}{n}\right)$ h) $\sum \operatorname{sen}\left(\frac{1}{n^2}\right)$

- 5) Seja (a_n) uma sucessão de termos positivos tal que $\lim n \, a_n = +\infty$. Mostre que a série $\sum a_n$ é divergente.
- 6) Seja $(\overline{a_n})$ uma sucessão de termos positivos tal que $\lim n^2 a_n = 0$. Mostre que a série $\sum a_n$ é convergente.
- 7) Determine se são absolutamente covergentes, simplesmente convergentes ou divergentes, as seguintes séries.

$$a) \sum \frac{(-1)^n}{2n+1}$$

$$b) \sum \frac{(-1)^n}{\sqrt{n}}$$

$$c) \sum \frac{(-1)^n}{\sqrt{n^2+1}}$$

d)
$$\sum \frac{(-1)^n}{2n^2-1}$$

$$e) \sum (-3)^{-n}$$

$$f) \sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$$

$$g) \sum_{n} (-1)^n \frac{\log n}{n}$$

a)
$$\sum \frac{(-1)^n}{2n+1}$$
 b) $\sum \frac{(-1)^n}{\sqrt{n}}$ c) $\sum \frac{(-1)^n}{\sqrt{n^2+1}}$ d) $\sum \frac{(-1)^n}{2n^2-1}$ e) $\sum (-3)^{-n}$ f) $\sum (-1)^n \frac{n}{n+1}$ g) $\sum (-1)^n \frac{\log n}{n}$ h) $\sum (-1)^n \sec \left(\frac{1}{n}\right)$ i) $\sum (-1)^n \frac{\sec(n\theta)}{n^2}$

$$i) \sum (-1)^n \frac{\operatorname{sen}(n\theta)}{n^2}$$

8) Mostre que se $\sum |a_n|$ converge então $\sum a_n^2$ também converge. Dê um exemplo em que $\sum a_n^2$ converge mas $\sum |a_n|$ diverge.

6

IV. Séries de Potências.

1) Para cada uma das seguintes séries de potências, determine o conjunto dos pontos $x \in \mathbb{R}$ onde a série é (i) absolutamente convergente, (ii) simplesmente convergente e (iii) divergente.

a)
$$\sum \frac{x^n}{2^n}$$
 b) $\sum \frac{x^n}{(n+1)2^n}$ c) $\sum \frac{(x+3)^n}{(n+1)2^n}$ d) $\sum \frac{(x-1)^n}{3^n+1}$ e) $\sum \frac{\sqrt{n}}{n+1}(x+1)^n$ f) $\sum \frac{(x-2)^n}{\sqrt{n^2+1}}$ g) $\sum \frac{(-1)^n}{\sqrt{n+1}}(x-1)^n$ h) $\sum \frac{2n}{n^2+1}(x+1)^n$ i) $\sum \frac{(-1)^n(x+1)^n}{n^2+1}$ j) $\sum \frac{n}{\sqrt{n^4+1}}(1-x)^n$ k) $\sum \frac{(5x+1)^n}{n^2+1}$ l) $\sum \frac{(1-3x)^{2n}}{4^n(n+1)}$ m) $\sum \frac{(-1)^n2^{2n}x^n}{2n}$ n) $\sum \frac{n!}{n^n}x^n$ o) $\sum \frac{(n!)^2}{(2n)!}x^n$

2) Determine $a \in \mathbb{R}$ de modo a que a série

$$\sum \frac{a^{n+1}}{n+1} x^n$$

seja convergente no ponto x = -3 e divergente no ponto x = 3.

3) Seja g a função definida pela fórmula

$$\sum_{n=1}^{\infty} \frac{x^{2n}}{3^{n+1}}$$

no conjunto de todos os pontos em que a série é convergente. Determine o domínio da função g e calcule o seu valor no ponto x = -1.

4) Seja q a função definida pela fórmula

$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{2^{n-1}}$$

no conjunto de todos os pontos em que a série é convergente. Determine o domínio da função g e calcule o seu valor no ponto x=0.

5) Seja q a função definida pela fórmula

$$\sum_{n=1}^{\infty} \frac{(2x)^n}{4^{n+1}}$$

no conjunto de todos os pontos em que a série é convergente. Determine o domínio da função g e calcule o seu valor no ponto x = -1.

V. Séries de Taylor.

- 1) Desenvolva a função $\log x$ em série de potências de (x-1). Qual é o maior intervalo aberto em que a série representa a função?
- 2) Desenvolva a função $x \log x$ em série de potências de (x-1). Qual é o maior intervalo aberto em que a série representa a função?
- 3) Desenvolva a função $\log(x^2 + 2x + 2)$ em série de potências de (x + 1). Qual é o maior intervalo aberto em que a série representa a função?
- 4) Desenvolva a função 1/x em série de potências de (x-1). Qual é o maior intervalo aberto em que a série representa a função?
- 5) Desenvolva a função $1/x^2$ em série de potências de (x-1). Qual é o maior intervalo aberto em que a série representa a função?
- 6) Desenvolva a função 1/(x+2) em série de potências de (x+1). Qual é o maior intervalo aberto em que a série representa a função?
- 7) Desenvolva a função 1/(x+2) em série de potências de x. Qual é o maior intervalo aberto em que a série representa a função?
- 8) Desenvolva a função 1/(x+1) em série de potências de (x-2). Qual é o maior intervalo aberto em que a série representa a função?
- 9) Desenvolva a função 1/x em série de potências de (x-2). Qual é o maior intervalo aberto em que a série representa a função?
- 10) Desenvolva a função $1/x^2$ em série de potências de (x-2). Qual é o maior intervalo aberto em que a série representa a função?
- 11) Desenvolva a função $\int_0^x \sin(t^2) dt$ em série de potências de x. Qual é o maior intervalo aberto em que a série representa a função?
- 12) Desenvolva a função $\int_0^x \cos(t^2) dt$ em série de potências de x. Qual é o maior intervalo aberto em que a série representa a função?
- 13) Desenvolva a função $\int_0^x e^{t^2} dt$ em série de potências de x. Qual é o maior intervalo aberto em que a série representa a função?
- 14) Desenvolva a função

$$\varphi(x) = \int_0^{x^2} \log(1+t^2) dt$$

em série de potências de x. Qual é o maior intervalo aberto em que a série representa a função? A função φ tem um extremo no ponto zero? Justifique com base na série que obteve para φ .