Universität Rostock Institut für Mathematik Prof. Dr. Martin Redmann Franziska Schulz

Wahrscheinlichkeitstheorie und Mathematische Statistik Übungsblatt 6

Aufgabe 6.1

Sie befinden sich in einer Großstadt und wollen die unbekannte Anzahl γ an Taxis schätzen. Dabei nehmen Sie an, dass das erste Taxi mit der Nummer 1 beschriftet ist und zudem alle Weiteren durchgehend nummeriert seien. Dazu beobachten Sie die Nummern von $n \in \mathbb{N}$ unterschiedlichen Taxis.

- i) Geben Sie den Parameterraum Γ und die parametrische Verteilungsfamilie $\{P_{\gamma}, \gamma \in \Gamma\}$ an.
- ii) Leiten Sie den Maximum-Likelihood-Schätzer $\hat{\gamma}_{\mathrm{ML}}$ für γ her.
- iii) Bestimmen Sie den Erwartungswert von $\hat{\gamma}_{\text{ML}}$ und untersuchen Sie $\mathbb{E}[\hat{\gamma}_{\text{ML}}]$ für $n \to \infty$.
- iv) Wie ändert sich der Maximum-Likelihood-Schätzer, wenn die kleinste Nummer nicht 1, sondern auch unbekannt ist? Dabei ist der Parameter der zugrundeliegenden Verteilung zweidimensional und die gesuchte Anzahl der Taxis eine Funktion der Parameter.

Aufgabe 6.2 (Fortsetzung von Aufgabe 6.1)

- i) Bestimmen Sie den Momentenschätzer $\hat{\gamma}_M$ von γ (für den Fall, dass die kleinste Nummer 1 ist) und bestimmen Sie den Erwartungswert von $\hat{\gamma}_M$. Welche Kritik kann man an $\hat{\gamma}_M$ äußern?
- ii) Untersuchen Sie, ob $\hat{\gamma}_M$ fast sicher gegen γ konvergiert.
- iii) Berechnen Sie mit den Beobachtungen aus Tabelle 1 konkrete Schätzwerte (für alle drei Schätzer) und die betragsmäßige Abweichung von dem zugrunde liegenden Parameter $\gamma_0 = 89$.

sample 1	5	38	61	72	80
sample 2	7	27	29	44	63
sample 3	37	49	68	80	88

Aufgabe 6.3

Sei X_1, \ldots, X_n eine Stichprobe für die Binomialverteilung Bin(n, p). Wir nehmen an, dass beide Parameter unbekannt sind. Bestimmen Sie den Momentenschätzer für den Parametervektor (n, p).

Aufgabe 6.4

Gegeben sei eine Stichprobe X_1, \ldots, X_n für die Exponential-Verteilung mit Parameter $\lambda > 0$. Bestimmen Sie den Maximum-Likelihood-Schätzer $\hat{\lambda}_{\text{ML}}$ für λ . Bestimmen Sie weiterhin den Erwartungswert des Schätzers und untersuchen Sie, ob $\hat{\lambda}_{\text{ML}}$ fast sicher gegen λ konvergiert.

Abgabe: Mittwoch, 21.05.2025 bis 9.00 Uhr, online bei Stud.IP unter Aufgaben, im PDF Format.