

FILE COPY

36

9

38

AD A 1 1

ENVIRONMENTAL INVENTORY AND ANALYSIS FOR PINE BLUFF, ARKANSAS

Volume II Appendices

PINE BLUFF
METROPOLITAN AREA, ARKANSAS
URBAN WATER MANAGEMENT
STUDY

DACW38-74-C-0139

PREPARED FOR THE

DEPARTMENT OF THE ARMY
VICKSBURG DISTRICT, CORPS OF ENGINEERS

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

82 04 23 015

ENVIRONMENTAL INVENTORY AND ANALYSIS FOR PINE BLUFF, ARKANSAS VOLUME II APPENDICES

PINE BLUFF METROPOLITAN AREA,
ARKANSAS URBAN WATER
MANAGEMENT STUDY

OCTOBER 1975

PREPARED FOR THE

DEPARTMENT OF THE ARMY
VICKSBURG DISTRICT, CORPS OF ENGINEERS

Approved for sublic release;
Distribution Unlimited

OT10 15 TO 15
APPENDICES TABLE OF CONTENTS: A PROPERTY AND A STATE OF THE PROPERTY AND A STATE OF TH
APPENDIX A - PHYSICAL RESOURCES :
Approximate Acreage and Proportionate Extent of Jefferson County Soils (Table A-1)
Physical and Chemical Properties of Jefferson County Soils (Table A-2) A- 2
Suitability and Limitations of Jefferson County Soils for Source Material (Table A-3)
Degree and Kind of Limitation for Town and Country Planning (Table A-4) . A- 5
Soil Suitability for Agriculture and Woodland Production (Table A-5) A- 9
Soil Suitability for Wildlife Elements and Kinds of Wildlife (Table A-6). A-13
Subsurface Stratigraphy
Soil Associations
Unit Hydrographs Station 7 (Figure A-1)
APPENDIX B - LAND USE
Methodology for Functional Land Use Projections
Assumptions
APPENDIX C - WATER QUALITY;
Collection and Analysis Methods Baseflow Water Sampling

	Page
Baseflow Water Quality Data (continued):	0.10
Water Temperature (Table C-3)	• • • • • • • • • • • • • • • • • • • •
Dissolved Oxygen (Table C-4)	• •(>-11
Free Carbon Dioxide (Table C-5)	
True Color (Table C-6)	• •C-13
Turbidity (Table C-7)	· · C-14
Secchi Transparency (Table C-8)	· ·C-15
Total Coliform Bacteria (Table C-9)	
Fecal Coliform Bacteria (Table C-10)	C-17
Fecal Streptococcus Bacteria (Table C-11)	C-18
Biological Oxygen Demand (Table C-12)	
Chemical Oxygen Demand (Table C-13)	
Ammonia Nitrogen (Table C-14)	C-21
Nitrate Nitrogen (Table C-15)	· ·C-22
Nitrite Nitrogen (Table C-16)	
Total Kjeldahl Nitrogen (Table C-17)	
Total Phosphorus (Table C-18)	
Total Solids (Table C-19)	· ·C-26
Suspended Solids (Table C-20)	C-27
Volatile Solids (Table C-21)	· ·C-28
Specific Conductance (Table C-22)	
Selected Minerals (Table C-23)	
EDTA Hardness (Table C-24)	
Calcium Hardness (Table C-25)	· ·C-32
Oil and Grease (Table C-26)	C-33
Seasonal Water Temperature and Dissolved Oxygen Profiles	
Station 9a	
Spring, 1974 (Table C-27)	C-34
Summer, 1974 (Table C-28)	· ·C-34
Fall, 1974 (Table C-29)	· ·C-35
Winter, 1974-75 (Table C-30)	· ·C-35
Station 9b	
Spring, 1974 (Table C-31)	C-36
Summer, 1974 (Table C-32)	c-36
Fall, 1974 (Table C-33)	
Winter, 1974-75 (Table C-34)	C-37
Station 10a	
Spring, 1974 (Table C-35)	0-38
Summer, 1974 (Table C-36)	
Fall, 1974 (Table C-37)	C-3c
Winter, 1974-75 (Table C-38)	· · · · · · · ·
Station 10b	• • 6-39
Spring, 1974 (Table C-39)	a 1.0
Spring, 1974 (Table C-39)	0-40
Summer, 1974 (Table C-40)	· ·C-40
Fall, 1974 (Table C-41)	C-41
	C-42
Station 10c	1 -
Spring, 1974 (Table C-43)	C-43
Summer, 1974 (Table C-44)	C-44
Fall, 1974 (Table C-45)	. C-45
177 - 4 - 4 - 107h75 178h 14 17-11h 1	0-16

<u>Pa</u>	
Stormwater Quality: Station 1 (Legend)	
Biochemical and Chemical Oxygen Demands (Figure C-1)	48
Fecal Bacteria (Figure C-2)	49
Ammonia and Kjeldahl Nitrogen (Figure C-3)	50
Suspended Solids and Total Phosphorus (Figure C-4)	51
Oil, Grease and Zinc (Figure C-5)	52
Stormwater Quality: Station 2 (Legend)	
Biochemical and Chemical Oxygen Demands (Figure C-6))4
Fecal Bacteria (Figure C-7)	25
Ammonia and Kjeldahl Nitrogen (Figure C-8)	56
Suspended Solids and Total Phosphorus (Figure C-9)	
Oil, Grease and Zinc (Figure C-10)	58
Stormwater Quality: Station 3 (Legend)	50
Biochemical and Chemical Oxygen Demands (Figure C-11)	
Fecal Bacteria (Figure C-12)	へつ
Ammonia and Kjeldani Nitrogen (Figure C-15)	22
Suspended Solids and Total Phosphorus (Figure C-14)	
Oil, Grease and Zinc (Figure C-15)	24
Stormwater Quality: Station 4 (Legend)	5 5
Biochemical and Chemical Oxygen Demands (Figure C-16)	56
Facal Bacteria (Figure C-17)	57
Fecal Bacteria (Figure C-17)	ίķ
Suspended Solids and Total Phosphorus (Figure C-19)	รด
Oil, Grease and Zinc (Figure C-20)	10
Stormwater Quality: Station 5 (Legend)	71
Biochemical and Chemical Oxygen Demands (Figure C-21	
Fecal Bacteria (Figure C-22)	73
Fecal Bacteria (Figure C-22)	74
Suspended Solids and Total Phosphorus (Figure C-24)	75
Oil, Grease and Zinc (Figure C-25)	
011, 010000 0110 (11601 0 2), (11001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Stormwater Quality: Station 7 (Legend)	77
Biochemical and Chemical Oxygen Demands (Figure C-26)	78
Fecal Bacteria (Figure C-27)	<u>7</u> 9
Ammonia and Kjeldahl Nitrogen (Figure C-28)	80
Suspended Solids and Total Phosphorus (Figure C-29)	31
Oil, Grease and Zinc (Figure C-30)	32
Stormwater Quality: Station &a (Legend)	વેર
Biochemical and Chemical Oxygen Demands (Figure C-31)	άŅ
Proping Contemporation (Figure C-30)	Ŋς
Fecal Bacteria (Figure C-32)	J) RE
Ammonia and Ajeidani Mitrogen (rigure C-55)	o. o.c
Suspended Solids and Total Phosphorus (Figure C-34)) (
Oil, Grease and Zinc (Figure C-35)	აბ
Discharge Curve at Station 4, July 25-26, 1974 Storm (Figure C-36)	39
BOD Loading at Station 4. July 25-26. 1974 Storm (Figure C-37)	90

Daga
COD Loading at Station 4, July 25-26, 1974 Storm (Figure C-38)
Kjeldahl Nitrogen Loading at Station 4, July 25-26, 1974 Storm (Figure C-39)
Nitrate Nitrogen Loading at Station 4, July 25-26, 1974 Storm (Figure C-40)C-93
Phosphorus Loading at Station 4, July 25-26, 1974 Storm (Figure C-41) C-94
Total Solids Loading at Station 4, July 25-26, 1974 Storm (Figure C-42)C-95
Zinc Loading at Station 4, July 25-26, 1974 Storm (Figure C-43)
Discharge Curve at Station 8a, July 25-26, 1974 Storm (Figure C-44)
BOD Loading at Station 8a, July 25-26, 1974 Storm (Figure C-45)
COD Loading at Station 8a, July 25-26, 1974 Storm (Figure C-46)
Kjeldahl Nitrogen Loading at Station 8a, July 25-26, 1974) Storm (Figure C-47)
Nitrate Nitrogen Loading at Station 8a, July 25-26, 1974 Storm (Figure C-48) C-101
Phosphorus Loading at Station 8a, July 25-26, 1974 Storm (Figure C-49)C-102
Total Solids Loading at Station 8a, July 25-26, 1974 Storm (Figure C-50)C-103
Zinc Loading at Station 8a, July 25-26, 1974 Storm (Figure C-51)
Discharge Curve at Station 2, July 25-26, 1974 Storm (Figure C-52)
BOD Loading at Station 2, July 25-26, 1974 Storm (Figure C-53)
OD Loading at Station 2, July 25-26, 1974 Storm (Figure C-54)
Kjeldahl Nitrogen Loading at Station 2, July 25-26, 1974 Storm (Figure C-55)
Nitrate Nitrogen Loading at Station 2, July 25-26, 1974 Storm (Figure C-56)C-109
Phosphorus Loading at Station 2, July 25-26, 1974 Storm (Figure C-57) C-110
Total Solids Loading at Station 2, July 25-26, 1974 Storm (Figure C-58)C-111
Zinc Loading at Station 2, July 25-26, 1974 Storm (Figure C-59)
Summary of Baseflow Sampling: Station 1 (Table C-47)

v

Simm	ary of Baseflow S		1.		L 2 .		۱۵																Take
5 canta	Station 5 (Table	C-21/	(0	on	(T)	iue	:a)	•															C_117
	Station 6 (Table																						
	Station 7 (Table	- 0-23/ (•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	.0-119
	Station 8a (Tabl	e (-54).	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	٠	٠	•	•	•	•	.0-120
	Station 9a (Tabl	e (-55).	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	.0-121
	Station 9b (Tabl	e C-56).	•	•	•	٠	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	.C-122
	Station 10a (Tab	le C-57)	•	•	٠	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	.C-123
	Station 10b (Tab	le C-58)	•	•	•	•	•		•		٠	•	٠	•		•	•	•	•	•	•	•	.C-124
	Station 10c (Tab	le C-59)	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	.C-125
Summ	ary of Stormwater	Ouelita																					
D Canaga	Station 1 (Table	Great ch	•																				C-126
	Station 2 (Table	C-60) .	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	0.120
	Station 2 (Table Station 3 (Table	C-61) .	•	•	•	•	•	• •	•	•	٠	•	•	•	• •	•	•	•	•	•	•	•	121-0
	Station 3 (Table	0-02)	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	.0-120
	Station 4 (Table	0-63)	•	•	•	٠	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	.0-129
	Station 5 (Table	C-64) .	•	•	•	•	•		•	•	•	•	٠	•		•	•	٠	•	•	•	•	.C-130
	Station 7 (Table	C-65).	•	•	•	•	•		•	•	•	•	٠	•	• •	•	•	•	•	•	•	•	.C-131
	Station & (Table	e C-66).	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	.C-132
	Station 8b (Table	e C-67).	•	٠	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	.C-133
Meda	r Industries Disc	hamaina	٠.	c.		۰ ـ ٩		T.7 4															0.701
Majo.																							
	The Arkansas Sys																						
	The Caney Bayou																						
	The Brumps Bayou	System.	•	•	٠	•	•		•	•	•	•	•	•	• •	•	•	٠	•	•	•	•	.C-135
Indu	stries of the Pine	e Bluff,	A	rke	ıns	88	A	rea	. (Tal	ole		~ 6	(8)									.C-136
		_																					_
Poll	ution Loads by Sto	orm																					
	Station 7 (Table	c-69).																					.C-138
	Station 8a (Tabl	e C-70).																					.C-139
	Station 1 (Table	C-71).																					.C-140
	Station 2 (Table																						
	Station 3 (Table																						
	Station 4 (Table	$(-7)_{1}$	•	٠	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	C-1):3
	Station 5 (Table	C-14) .	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	0-145
	Station) (lable	U=15) .	•	•	•	•	•	• •	•	•	•	•	٠	•	• •	٠	•	•	٠	•	•	•	.0-144
Pollt	ution Load Frequen	ncies																					
	Station 7 (Table	c-76).																					.C-145
	Station 8a (Tabl	e C-77).	_													_	Ī		-		_		.C-146
	Station 1 (Table																						
	Station 2 (Table	C-70)	•	•	•	•	•	٠.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0 1/0
	Station 3 (Table	G 90)	•	•	•	•	•	• •	•	•	•	•	٠	•	• •	•	•	٠	•	•	•	•	0-140
	Station 4 (Table																						
	Station 5 (Table	C-82) .	•	زا	•	•	•	• •	•	٠	•	•	٠	•	•	•	٠	•	•	•	•	•	.C-151
		400-110-		V	-												,						
		<u>APPENDI</u>	<u>X</u>	<u> </u>	· B	10	<u>L0(</u>	SIC	<u>AL</u>	EL	<u>EM</u>	EN	TS	رُ	-	_	->	ر	111	,			
Samo	ing Methods																						ו בת
دريست	Bottom Composition	• • • •	•	•	•	•	•	• •	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	ν. 1
	Phytoplankton		•	•	•	•	•	• •	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	· <i>v</i> - 1
	Aquatic Vegetation					•	•		•	•	•	•	•	•	•	•	•	•	•				.D- 1

	Epibenthos	.D- 2
Bota	nical Elements Phytoplankton of the Pine Bluff Study Area Stations (Table D-1) Vascular Plants of Jefferson County (Table D-2)	
Zo ole	ogical Elements Zooplankton of the Pine Bluff Study Area Stations (Table D-3) Benthic Invertebrates of the Pine Bluff Study Area	.D-47
	Stations (Table D-4)	.D-48
	l Taxa, Numbers of Individuals and Biomass of Benthos: April and mber, 1974	
	Station 1 (Table D-5)	.D-49
	Station 2 (Table D-6)	.D-50
	Station 3 (Table D-7)	.D-51
	Station 4 (Table D-8)	.D-52
	Station 5 (Table D-9)	.D-53
	Station 7 (Table D-10)	.D-54
	Station 9a (Table D-11)	.D-55
	Station 10b (Table D-12)	.D-56
Epib	enthos of the Pine Bluff Study Area Stations (Table D-13)	.D-57
Epib	enthic Catch Per Effort: April and November, 1974	
-	Station 1 (Table D-14)	.D-58
	Station 2 (Table D-15)	
	Station 3 (Table D-16)	
	Station 4 (Table D-17)	
	Station 5 (Table D-18)	
	Station 7 (Table D-19)	-D-63
	Station 9a (Table D-20)	D-61
	Station 10b (Table D-21)	•D-65
Fish	es in the Pine Bluff Study Area (Table D-22)	.D-66
Fish	Community Studies (1974)	
_	Station 1 (Table D-23)	-D-70
	Station 3 (Table D-24)	D-72
	Station 5 (Table D-25)	.D_73
	Station 7 (Table D-26)	-D-75
	Station 10b (Table D-27)	
	01401011 100 (1401e D-2)/	טן בעי
Rept	iles and Amphibians of the Pine Bluff Study Area (Table D-28)	.D-78
Bi rd	s of Jefferson County and the Pine Bluff Study Area (Table D-29)	.D-82
Mamm	als of the Pine Bluff Study Area (Table D-30)	•D-95
	ribution and Per Cent Composition of Overstory Plants in the Willow-	
cypr	ess Association: Transects 1 and 2 (Table D-31)	.D−98

r age
Distribution and Per Cent Composition of Overstory Plants in the River Birch-Buttonbush Community: Transects 3, 4, 5 and 6 (Table D-32)
Distribution and Per Cent Composition of Overstory Plants in the Locust-Water Eickory Association: Transects 7 and 8 (Table D-33)
Distribution and Per Cent Composition of Overstory Plants in the Water Oak-River Birch Association: Transects 9, 10 and 11 (Table D-34) D-10
Distribution and Per Cent Composition of Overstory Plants in the White Oak-Sweetgum Association: Transects 12 and 13 (Table D-35)
Distribution and Per Jent Composition of Overstory Plants in the Pine-Post Oak Association: Transects 14, 15, 16, 17 and 18 (Table D-36)
Distribution and Per Cent Composition of Overstory Plants in Cleared Areas: Transects 19 and 20 (Table D-37)
Pistribution and Per Cent Composition of Overstory Plants in the Urban Areas: Transects 21 through 31 (Table D-38)
\downarrow
APPENDIX E - SOCIOECONOMIC ELEMENTS .
Socioeconomic Methods
Recreational Resources Inventory of the Pine Bluff Area: Fall, 1974 (Table E-1)
Citizens' Advisory Committee Questionnaire: Pine Bluff Environmental Resources Survey, Pine Bluff Urban Water Management Study
Location Map for Identification of Esthetic and Ecological Areas
Citizens' Advisory Committee Questionnaire: Pine Bluff Urban Water Management Study, Recreational, Environmental and Cultural Needs
Public Involvement Groups (Table E-2)
Master List of Historic Structures, Pine Bluff, Jefferson County, Arkansas (Table E-3)

Appendix A Physical Resources

TABLE A-1

APPROXIMATE ACREAGE AND PROPORTIONATE EXTENT OF JEFFERSON COUNTY SOILS

SOIL	ARFA (ACRES)	EXTENT (PERCENT)
Amv silt loam	13,239	2.31
Amy soils, frequently flooded	8,214	1.42
Callowav silt loam, O to 1 nercent slopes	5,619	0.95
Callowav silt loam, 1 to 3 percent slopes	4,646	0.85
Coushatta soils	422	0.07
Crevasse loamy sand	11,674	2.03
Desha clav	8,735	1.52
Grenada silt loam, 1 to 3 percent slopes	3,081	0.52
Grenada silt loam, 3 to 8 percent slopes	4,388	0.74
Hebert silt loam	16,208	2.83
Henry silt loam	3,517	0.67
Latanier clav	14,217	2.46
Lonoke silt loam, 1 to 3 percent slopes	13,081	2.25
McGehee silt loam	29,871	5.18
Morganfield silt loam	18,263	3.16
Quachita silt loam	13,975	2.44
Perry clay	103,437	17.99
Perry-Crevasse complex, undulating	12,640	2.17
Pheba silt loam, 0 to 1 nercent slopes	9,102	1.57
Pheba silt loam, 1 to 3 percent slopes	47,598	8.27
Portland clav	69,292	12.07
Rilla silt loam, 0 to 1 percent slopes	44,949	7.93
Rilla silt loam, undulating	16,686	2.92
Sacul fine sandy loam, 1 to 3 percent slopes	4,042	0.72
Sacul fine sandy loam, 3 to 8 percent slopes	8,921	1.54
Sacul fine sandy loam, 8 to 12 percent slopes	7,228	1.24
Savannah fine sandv loam, 1 to 3 percent slopes	15,368	2.65
Savannah fine sandv loam, 3 to 8 percent slopes	19,543	3.37
Sawver silt loam, 1 to 3 nercent slopes	6,410	1.18
Sawver silt loam, 3 to 8 nercent slones	10,214	1.75
Smithdale fine sandy loam, 1 to 3 percent slopes	798	0.12
Smithdale fine sandy loam, 3 to 12 percent slopes	6,192	1.04
Water	23,421	4.07
Total	574,991	100.00

SOURCE: U.S. Department of Agriculture, 1969 - 1973.

TABLE A-2

PHYSICAL AND CHEMICAL PROPERTIES OF JEFFERSON COUNTY SOILS

SOIL SERIES	DEPTH (In.)	TEXTURE	ACIDITY (bH)	PEDM. (In./Hr.)	EPOS. K	PNT. T	SLOPES (Percent)
Amv	0-18 18-68 52-68	SIL, L, VFSL SIL, SICL FSL, SIL, SICL	4.5-5.5 4.5-5.5 4.5-5.5	0.69-2.0 0.06-0.2 0.60-2.0	 	 	0 to 1
Angie (Sawver)	0-5 5-29 29-80	SIL, L SICL, L, SIL SIC, C	4.5-5.5 4.5-5.5 4.5-5.5	0.60-2.0 0.20-0.6 0.06-0.2	0.37	3 	1 to 8
Cahaba (Smithdale)	0-11 0-11 11-38 38-60	LS SL, FSL CL, SCL, L L, SL	4.5-5.5 4.5-5.5 4.5-5.5 4.5-5.5	2.00-6.0 2.00-6.0 0.60-2.0 2.00-6.0	0.17 0.28 0.24 0.28	5 5 	5 to 40
Callowav	0-30 30-53 53-60	SIL, SICL SIL, SICL SIL, SICL	5.1-6.0 5.1-6.0 5.1-7.8	0.60-2.0 0.06-0.2 0.06-0.2	0.43 	3	0 to 5
Crevasse	0-10 0-10 10-60	S, LS SL, LFS S, LS	5.6-8.4 5.6-8.4 5.6-8.4	6.00-20 6.00-20 6.00-20		 	
Desha	0-7 0-7 7-55 55-72	SIC, C SIL, SICL SIC, C SIC, C, SIL	6.1-7.8 6.1-7.8 6.1-7.8 6.1-7.8	<0.2 0.20-0.6 <0.06 0.60-2.0	 	 	0 to 3
Grenada	0-5 5-21 21-24 24-50 50-60	SIL SIL, SICL SIL, SICL SIL, SICL	4.5-6.0 4.5-6.0 4.5-6.0 4.5-6.0 5.1-6.0	0.60-2.0 0.60-2.0 0.60-2.0 0.06-0.2 0.06-0.2	0.43 0.43 0.43 0.43 0.43	3 3 3 	0 to 12
Hebert	0-10 0-10 10-37 37-72	SICL, L SIL, VFSL L, SICL, SIL SIL, L, SICL, FSL	5.1-7.3 5.1-7.3 4.5-6.5 5.1-7.8	0.60-2.0 0.60-2.0 0.20-0.6 0.60-2.0	 	 	0 to 3
Henry	0-9 9-31 31-60 60-90	SIL SICL SIL	4.5-5.5 4.5-5.5 4.5-5.5 5.1-7.8	0.60-2.0 0.60-2.0 0.06-0.2 0.20-0.6	 	 	0 to 2
Keo (Coushatta)	0-8 0-8 8-27 27-61	SIL, VFSL SICL SIL, SICL SIL, SICL, VFSL	5.6-7.3 5.6-7.3 6.1-8.4 6.6-8.4	0.60-2.0 0.20-0.6 0.60-2.0 0.60-2.0	0.37 0.32 0.32 0.37	5 5 	0 to 3

TABLE A-2 (cont.) PHYSICAL AND CHEMICAL PROPERTIES OF JEFFERSON COUNTY SOILS

SOIL SERIES	DEPTH (In.)	TEXTURE	ACIDITY (pH)	PERM. (In./Hr.)	EROS. K	POT. T	SLOPES (Percent)
Latanier	0-10 0-10 10-25 25-60	SICL C, SIC C, SIC SIL, SICL, VFSL	6.6-8.4 6.6-8.4 6.6-8.4 6.6-8.4	0.06-0.2 <0.06 <0.06 0.06-2.0	0.37 0.32 0.37 0.37	5 5 	0 to 3
Lonoke	0-32 32-60 60-80	FSL, SIL, LVFS VFSL, SIL, L FS, SL, S	5.6-7.8 5.6-7.8 5.6-7.8	2.00-6.0 0.60-2.0 2.00->6.0			0 to 3
McGehee	0-17 17-24 24-52 52-60	SIL, L, VFSL SICL, SIL SIC, C SIC, C	5.1-6.0 5.1-6.0 5.1-7.8 5.1-8.4	0.60-2.0 0.20-0.6 0.06-0.2 0.06-0.2		 	0 to 2
Morganfield	0-50	SIL	6.1-7.8	0.63-2.0			0 to 2
Ouachi ta	0-19 19-69 69-77	SIL, L SIL, L, SICL FSL, SIL, LFS	4.5-6.0 4.5-5.5 4.5-5.5	0.60-2.0 0.20-0.6 0.60-6.0		 	0 to 1
Perrv	0-6 0-6 6-30 30-60	SICL C, SIC C	4.5-6.0 4.5-6.0 5.1-7.3 6.1-8.4	0.06-0.2 <0.06 <0.06 <0.06	 		0 to 3
Pheba	0-8 8-21 21-60	SIL, L, FSL SIL, L SIL, L, SICL	4.0-5.5 4.0-5.5 4.0-5.5	0.06-2.0 0.60-2.0 0.20-0.6	0.37 	0.3	0 to 3
Portland	0-8 0-8 8-18 18-45 45-65	SIL SIC, C C C SR-SIL-C	4.5-5.5 4.5-5.5 4.5-5.5 6.1-8.4 6.1-8.4	0.20-2.0 <0.06 <0.06 <0.06 <0.06			0 to 3
Rilla	0-8 8-35 35-69	SIL, L, VFSL SICL, CL, SIL L, SICL, SIC	4.5-7.3 3.6-5.5 4.5-8.4	0.60-2.0 0.60-2.0 0.60-2.0	0.37 0.32 0.32	5	0 to 5
Sacul	0-10 10-44 44-72	SL, FSL, L C, SIC SICL, SIL	4.5-5.5 4.5-5.5 4.5-5.5	0.60-2.0 0.06-0.2 0.20-0.6	0.37	3	1 to 40
Savannah	0-6 0-6 6-28 28-44 44-68	FSL, SL SIL, L L SCL	4.5-5.5 4.5-5.5 4.5-5.5 4.5-5.5 4.5-5.5	0.63-2.0 0.63-2.0 0.63-2.0 0.20-0.63 0.20-0.63	0.37	3	0 to 8

SOURCE: U.S. Department of Agriculture, 1969 - 1973.

\$ 15 to

TABLE A-3
SUITABILITY AND LIMITATIONS OF JEFFFRSON COUNTY
SOILS FOR SOURCE MATERIAL

7 = 7 1 - 1 - 1	Roadfill	Sand	e Material Gravel	Tonsoil
Series Torv	Poor, wetness	Unsuited	Unsuited	Poor: wetness
inaie	Poor: low	Unsuited:	Unsuited:	Fair: too clavev
(Sawver)	strength; shrink-swell	excess fines	excess fines	Tarr. coo cravev
Cahaba	Good to poor:	Unsuited:	Unsuited:	Good to poor:
(Smithdale)	slope	excess fines	excess fines	slope
Calloway	Fair: traffic supporting capacity; wetness	Unsuited	Unsuited	Good
Crevasse	Good	Good	Unsuited	Poor: too sandv
Desha	Poor: low strength	Unsuited	Unsuited	Poor: too clavev
Grenada	Fair: wetness; low strength	Unsuited	linsui ted	Good
Hebert	Fair: nlastic- itv; wetness	linsuited	Unsuited	Fair: thickness of material; texture on silty clay loam tyne
Henry	Poor: wetness	Unsuited	Unsuited	Poor: wetness
Keo	Fair: low	Unsuited:	Unsuited:	Good to fair: too
(Coushatta)	strength; shrink-swell	excess fines	excess fines	clayey
Latanier	Poor: low	Unsuited:	Unsuited:	Poor: too clavev
	strenath; shrink-swell	excess fines	excess fines	
Lonoke	Fair: low strength	Unsuited	Unsui ted	Good
McGehee	Severe: low	Unsuited:	Unsuited:	Good
	strength; shrink-swell	excess fines	excess fines	
Morganfield	Fair: easily eroded; traf- fic supporting capacity	Unsuited	Unsuited	Good
Duachita	Fair: Tow strength	Unsuited	Unsuited	Good
Perry	Poor: wetness; low strength; shrink-swell	Unsuited: excess fines	Unsuited: excess fines	Poor: wetness; too clavev
Pheba	Fair: low strength; wetness	Unsui ted	Unsuited	Good
Portland	Severe: low strength; shrink-swell	Unsui ted	Unsuited	Poor: too clavev
Rilla	Fair: low	Unsuited:	Unsuited:	Fair: thin laver
	strength; shrink-swell	excess fines	excess fines	
	Severe: low	Unsuited	Unsuited	Poor: thin layer;
Sacul		I	1	too clavey; slope
Sacul	strength; shrink-swell;		ļ	,
	shrink-swell;	Unsuited	Unsuited	Good
Sacul	shrink-swell;	Unsuited	Unsuited	Good Dept. of Agri., 196

Table A-4
DEGREE AND KIND OF LIMITATION FOR TOW! AND COUNTRY PLANNING

477914444	C1471.		_	trafffc-sunnort-			water table:	Some areas sub-	fect to frequent	flooting	Severe: Tow	strength; shrink-	swell potential.			511ght: 5-8%	slones: "oderate:	8-15% slones;	Severe: 15-40%	Sinnes	Coerate to se-	Mere: Seasona!	modernte teste:	בייסיבים בר בי מייוני	Summorting Canac-	Severe: Flood				Severe: Seasonal	nion water table;	- C.	cftv: somewhat			potential.		
1 four	INDUSTRIES				high water table;	some areas sub-	fect to frequent	flooding: corro-	sivity.		Severe: 10w		swell notential;	wetness; high	Corrosivity.			0-40% S100es			a high mater	table: community	noorly drained.	moderate hearth	strength.		hazard.		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	chrink-cuoll as		bearing strength: supperting one	seasonal high	e e		ane; nonding;	of uncoated	steel.
	Playdrounds	racms and Irails	Severe: noorly	drained; seasonal	high water table;	Some areas sub-	lect to frenuent	flooding.			"oderate to	severe: s low	nercolation;	slone	N 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	311416: 3-8%	Signes; noerate:	Control of Act	Severe: 15-40%	Covere computat	noor v drained:	seasonal high	water table.			Severe: flood	hazard; too sandv		Cavara fair to	poor traffic-	ability; some-	what poor drain-	ave; seasonal	high water table;	very slow perme-	ability.		
RECREATION AREAS	Picnic Areas	583 14 211121	Jevere: noorly			Some areas sub-	lect to frequent	flooding.			Sitcht				C1 1 2h+ . E 00		8-15% clones.	Covers: 15,40%	Siones	Moderate: some-	what noorly	drained; seasonal	high water table.			Severe: too sandv.			Severe: fair to	poor traffic-	ability; seasonal	ofth water table.	_					
	Campsites	Covere	drained: poor 19	biob med, seasonal	יוייין יים נפר ניסטופי	Some areas sub-	lect to trendent	110001119.		_		חפונים ושנוסט			Clinht 5-84	S Ones Moderate.	8-15% slopes:	Severe: 15-40%	slones	Severe: somewhat	nonrly drained;	seasonal high	water table.			Severe: flood	sandy ton		Severe: fair to	noor traffic-	ä		Seasonal high	rater table; very	All I GERMEN DE LITA			
	Sewage Lagoons	Moderate fate	emhankmen+ mat-	erial: severe in		•	400 1 1000-	72111		3 24 44213	Salitate to Severe:	reaces with	increased close	90015 7757	Severe: Slow	percolation:	slone.			"foderate: fea-	tures favorable	for lagoons.	Fair material	for reservois		evere: Tiood	ercolation.		Severe where sub-	lect to deep	flooding; other-	wise, singnt						
HOUSING DEVELOPMENTS	Sentic Tank Filter Fields	<u>8</u>	_		Some areas subject		£100ding			Cavana . c. o					Slight: 5-8%	Slones; Moderate	8-15% slones;	Severe: 15-40%	slopes	Severe: seasonal	high water table;	slow percolation.			- 1	pazame 1000			Severe: very slow	Dermeability;	Seasonal nigh	מרכן נפסום				3,		
	Foundations of Dwellings	Severe: moderate	bearing strength;	poorly drained;	Seasonal high	water table: some	areas subtert to	frequent flooding	6	Savere: DW		swell notential:	wetness.		S11aht: 5-8%	Slopes; Moderate:		: 15-40%	J	"oderate: season-	al nigh water	table; somewhat	poorly grained;	Source Dearing	Strendtn.	hazard			Severe: high	CONTINK-SWELL DO-	high water table.	low bearing	Strength; somewhat	poor drainage;	ponding.			
SOIL	SERIES	Amv					_			Bando	(Cahaba	(Smithdale)				Calloway					7, 22, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10		2	series.)	Desha									

Table A-4 (continued)
DECREE AND KIND OF LIMITATION FOR TOWN AND COUNTRY PLANNING CONTINUED

TPAFFICHAVS		Moderate: season— al hich water table in level areas; moderate traffic-support— ing capacity.	Voderate to severe: seasonal high water table; moderate traffic supporting capacity.		Moderate: moderate traffic-supporting capacitv; moderate shrink-swell potential.	Severe: shrink- swell botential; low strength.	Moderate: water table and traffic supporting capac- ity.
1 19PT	INDUSTRIES	Moderate: moder- ate bearing strength; slopes.	Moderate: sea- sonal high water table; moderate bearing strength; somewhat poorly drained.	Severe: seasonal high water table; oresumptive bearing strength,	Moderate: moder- ate bearing strength; moder- ate shrink swell potential; moder- ate corrosivity of uncoated	Severe: flood hazard; wetness; shrink-swell potential.	Moderate: pre- sumptive bearing strength.
	Plaverounds Paths and Trails	Moderate 1f slobes are less than 6%; severe if slobes are more than 6%.	Moderate: some- what poorly drained; moder- ately slow permeability.	Verv severe: trafficability.	Moderate: good to Moderate: moder- fair trafficabil- ate bearing itv; moderatelv strength; moder- slow permeabilitv, ate shrink-swell notential; moder ate corrosivity of uncoated steel.	Severe: too clavev.	Silght
RECPEATION AREAS	Picnic Areas	<u>Slight</u>	Moderate: some- what noorly drained.	Severe: noor trafficabilitv.	Slint to Moder- ate: good to fair trafficability.	Severe: too Clavev; flood hazard.	Slight
	Camnsites	Moderate: slow nermeability.	Moderate: some- what noorly drained; moder- ately slow permeability.	Severe: noor trafficability.	Moderate: fair trafficability; moderately slow permeability.	<u>Severe</u> : too clavev; flood hazard.	Slight
	Sewage Lagoons	Slight to severe: slone is excessive for languous in some areas. Fair to nood material for reservoir sites.	Vere: moderate nemeability below a denth of about 40 inches. Fair to good material for reservoir sites.	Verv severe: Severe: seasonal bercolation rate high water table: a slow, high pre-ing strength. summtive bearing strength.	ate: nossible moderate lateral seepage; fair material for reservoir sites. Severe where subfect to deep flooding.	Severe: flood hazard.	Slight
HOUSING DEVELOPMENTS	A &	<u>Severe</u> : slow percolation.	Severe: slow per-foderate to se- colation; sea- vere: moderate sonal high water nermeability table. below a denth o about 40 inches Fair to good ma erial for reser voir sites.	Verv severe: Dercolation rate hi s slow; high water table; pre-if summitve bearing	Severe: moderate-S1 Tv STOW Derme-att ability. se moment m	Severe: slow per-Severe: flood colation; wet- hazard. ness; flood hazard.	Moderate: moder- ate percolation rate; slope.
OH	Foundations of Dwellings	Moderate: moderate <u>Severe</u> : slow bearing strength; percolation, moderately well drained.	Moderate: season- al high water table: somewhat poorly drained; moderate bearing strength,	Severe: seasonal high water table.	Moderate: moder- ate bearing strength: moder- ate shrink-swell potential.	Severe: shrink- swell potential; wetness: flood hazard; low strength.	Sitaht
SOIL	SERIES	Grenada .	Hebert	Henry	Keo (Coushatta)	Latanier	Lonoke

Table A-4 (continued)
DEGREE AND KIND OF LIMITATION FOR TOWN AND COUNTRY PLANNING CONTINUED

S01L	- 1	HOUSING DEVELOPMENTS			RECREATION AREAS		1 TCHT	TOACCTOUANC
SERIES	Foundations of		Sewage			Playarounds	INDISTRIFC	014:31:44:1
7 V V	Direllings	ds	Lagoons	Campsites	Picnic Areas	Paths and Trails		
rcuence	reasons high nermaskilter		Sitaht	Severe: somewhat	ا با	Severe: somewhat	Moderate to se-	Moderate to se-
	TANTON TOP	, Land		poor grainage;		noor drainage;	vere: seasonal	vere: seasonal
	erate hearing	Seasing High	•	Seasonal more	age.	slow nermeability;	high water table:	high water table;
	ctronath. come.	water capie.		water table;		seasonal high	moderate bearing	moderate to low
	what poor drain-			VILLE DEFINE AD I I I V		water table.	strength; some-	traffic-support-
	age: high chrink-						what noor drain-	ing capacity;
	Swell notential					_	ane; high cor-	high shrink-swell
	helpe a denth of						rosivity of un-	potential at a
	16 in.						coated steel.	depth below 16
Morganfleid	Severe: flood	Severe: flood	Moderate: nerme-	Moderate: flood	Moderate: flood	"oderate: flood	Severe: flood	Cavere: Flood
	nazard.	hazard.	able material.	hazard; slight	hazard; slight	hazard; slight	hazard: low bear-	hazard
				when not subject	lect	when not subject	ing strength;	
Out of the	Covers : cub fact	10000		to flooding.	\neg	to flooding.	stability.	
כחשכה בש	Severe: Subject	Severe: Subject	Severe: subject Severe: sub	Severe: subject	Moderate: sub-	Severe: subject	Severe: subject	Severe: subject
	to rrequent Tibod-	to rreduent	renuent flood	to frequent	lect to frequent to frequent	to frequent	to frequent	to frequent
	house act	Tionaling; Stow		t lood 1 nd.	flooding.	flooding.	flooding.	flooding; mod-
	חפפו ווון ארובווקרווי	percolation.	ment material.	-				erate traff c
				-				supporting
*Perry (For	Severe: high	Cavara . cascons	Moderate to ce-	South Control				canacity.
Crevasse part	Shrink-swell Do-	- :	Vere features	trafficability.	Appete: noor	Severe: noor	Severe: high	Severe: high
of unit see	tential seasonal	_	favorable for	2002 1. 425		נרמד ורמטוווני.	Surink-Swell DO-	Shrink-Swell po-
	high water table:			from the drained;		poorly drained;	tential; low	tential; low
series.)	low hearting	in come amose	in amount cut fort	frederic 110001mg	- - 00	Verv Slow ner-	Dearing strength:	traffic-support-
	strength: noorly		in areas subject in some areas	onscore areas;		meablity; sea-	poorly drained;	ing capacity;
	drained: frequent		+0 000d material	Seasonal mign		Sonal nigh water	Seasonal high	seasonal high
			for necession	water table.	man water table	table; trenuent	water table;	water table;
	- The second		24400			flooding in some	frequent flood-	frequent flood-
Pheha	Covere. moderate	100	sites.		Т	areas.	ing in some areas.	ing in some areas
	bearing strength:	Colation: coacon-	ambankment mater-	Severe: Somewhat	Ė	Revere: somewhat	Severe: moderate	Severe: moderate
	somewhat poorly	al high cater	4x1	poor 10 drained.	_	poorly drained;	<u>:-</u>	traffic-sunport-
	drained: seasonal			Seasonal night	-	seasonal nigh	_	ing capacity;
	high water table.			water table.	414)	water table.		seasonal high
					ישם וני			water table.
			_				nian corrosivity.	
		4	7					

Table A-4 (continued)
DEGPEE AND KIND OF LIMITATION FOR TOWN AND COUNTRY PLANKING CONTINUED

SOIL	ЭН	HOUSING DEVELOPMENTS			RECREATION AREAS		LIGHT	TRAFFICUAYS
SERIES	Foundations of	Sentic Tank	Sewage			Plavgrounds	INDUSTRIES	
	Owellings	Filter Fields	Lagoons	Camnsites		Paths and Trails		
Portland	Severe: high	Severe: seasonal	erate to severe	Severe: poor	Severe: noor		Severe: high	Severe: high
	shrink-swell no-	high water table;	to nood mat-	trafficability;	trafficability;	trafficability;	shrink-swell po-	shrink-swell po-
	tential; seasonal	tential; seasonal slow percolation; eria	erial for reser-	somewhat poorly	somewhat noorlv	somewhat poorly	tential; low	tential: low
	high water table;	hinh water table; frenuent flooding voir	voir sites; fea-	drained; ponding;	drained; ponding; drained; ponding	5	bearing strength;	traffic-support-
	low bearing	In some areas.	w	frenuent flooding frenuent flooding in some areas;	frequent flooding	,	seasonal high	ing capacity;
	strength; some-		for lancons ex-	in some areas;	in some areas;		water table; some-seasonal high	seasonal high
	what poorly		_	verv slow perme-	verv slow perme-		what poorly drain- water table; fre-	water table; fre-
	drained; ponding;		ject to flooding.	abilitv; seasonal abilitv; seasonal areas; season a l	abilitv; seasonal		ed; ponding; fre-	nuent flooding
	frequent flooding			high water table.	high water table. high water table. high water table,	high water table.	nuent flooding in in some areas	in some areas.
	in some areas.						some areas.	
Rilla	Moderate: moderateModerate to se-		Severe: moderate	Slight	Sitaht	Staht	Moderate: moderate Moderate: moder-	"Aoderate: moder-
	bearing strength. vere: moderately		permeability be-				bearing strength, ate traffic-sup-	ate traffic-sup-
-		slow percolation.	low depth of 53				,	porting capacity.
يت حد			inches; subject				-	
			to piping.					
Sacul	Moderate if slones Severe: slow		_		Slight if slopes	Moderate if	Moderate if slopes Severe: low traf-	Severe: low traf-
	are less than 15%;percolation.		are less than 7%.	slones are less	are less than 8%; slones are less		are less than 8%;	fic-supporting
	moderate bearing		severe if slopes	than 15%; slow	moderate if		moderate bearing	capacity; moder-
	strength; moder-		are steeper; fair	nermeability;	slones are more	nermeability;	strength; moder-	ate shrink-swell
	ate shrink-swell		to good embank-	severe if slones	than 15%.	severe if slones	ate shrink-swell	potential;
	potential;		ment material.	are more than		are more than 6%.	notential; severe	slopes.
	severe if slopes			15%.			if slopes are more	
	are more than 15%						than 8%.	
Savannah	Moderate: stable;	Moderate: stable; Moderate: mod- Moderate: moder-	Moderate: moder-	Moderate: Slow	STIght	Slight to moder-	Moderate: wetness Moderate:	Woderate: low
	moderately well	erate percolation	ate percolation	percolation.		ate: slopes;	-	strength.
	drained material.	rate.	rate.			slow percolation.		

*When considering Perry-Crevasse complex, undulating, one must consider properties of both series.

SOURCE: U.S. Department of Agriculture, 1969-73.

Table A-5
SOIL SUITABILITY FOR AGRICULTURE AND MORNLAND PRODUCTION

	apabili	tv and Pr	d Predicted VieldsCro	ieldsC	Capability and Predicted YieldsCrons and Pasture (High Level "anagement)	ture				Plond	Woodland Suitability	1164		
						Common			nene,	"ananoment Problems	lems		Potential	Prod.
Soft	E 2	Cotton (1bs.)	Sovbeans (bu.)	Pice (bu.)	Bahtadrass (Allw)	Burmu. Sr.	Fescue (AIIM)	Eroston	Enuin.	Seed Inc	Vindth.	Plant		Site
Amv Silt Loam		450		1	7.5		1	Slight	Cevere	Severe	Slight	S1 toht	Shortleaf	888
, The state of the													Sweetnum	8
Frequently		450	25		7.5	6.0		Slight	Severe	Moderate to	Slight	Slight	Loblolly Sweetrum	88
- 100ded										Severe			Water Oaks	8
Silt Loam	82	650	35	120	8	5	α	61 tob	Moderate	Sitght	Cliabe	"oderate	Loblolly	8
0-1% Slopes	}	}	3	}	;	?		,	an puero.	Moderate	Jubric	01 0	Cherrybark	25
												, , ,	Sweetnum	8
Calloway Cilt loam	&	650	5	5	6					Stinht		Moderate	Loblolly	8
1 24 61000	3	000	3	150	3.0	٠. د.		Situnt	Moderate	£	Sitaht	ដ	Shortleaf	2
1-24 310Des		_								Moderate		Severe	Cherrybark	28
Coushatta													Sweetnum	3
Soils	88	825	6			8.0		Slight	Slight	Clicht	53 taht	Citche	Cottonwood	35
			_					,	,	,	,	,	Peran	3
													Cherrybark	
Crevasse									-				Loblolly	g
Codiny Sand							_	Sitant	Moderate	Severe	Sitaht	Sitaht	Sweetnum	દ્વ
													White Oak	85
Desha			1										Cottonwood	
ر اهر د اهر		676	35	8		7.0	0.6	Slight	Severe	Moderate	Sliaht	Slight	Cherrybark	8
							_			_			Sweetnum	8
													Willow Oak	8
Silt Loam	82	009	35		8.5	7.0	0.8	Moderate	Moderate	C1 toh	C) tobe	Moderate	Loblolly	88
1-3% Slones							-	Severe		•	,	ייספרי מיי	Sweet orm	38
													Cherrybark	32
Grenada								Moderate					Loblolly	8
2.8% Clones	7	9	ç		6			ဒ္	Moderate	Sitaht	Sitaht	Moderate	Shortleaf	8
Sadore soles	6	000	3		٥.٠	e.o	c:	SEVERE					Sweetaum	8
													Cherrybark	2

Table A-5 (continued)
SOIL SHITABILITY FOR AGRICYLTHER AND MODULAND PRODUCTION CONTINUED

S.	nabilit	ty and Pro	d Predicted YieldsCro	eldsC	Canability and Predicted YieldsCrops and Pasture (High Level Management)	ture				le (book)	Woodland Suftability	Htv		
						-			ייהחביי	Г.	lems		Potential	prod.
	Cor bu.)	Cotton (1bs.)	Sovbeans (bu.)	Rice (bu.)	Bahiagrass (AUM)	Burmu. Gr.	Fescue (AUM)	Erosion Hazard	Enuin. Limit	Seedling Mort'v	Wazard	Plant Compet.	Important	Site
Hebert Silt Loam	S	8	ł	85	8.5		1	Slight	Moderate	Slight			Cherrybark Mater Oak	88
		}	:		1						_		Nuttall	8
													Sweetoum	88
Henry Eilt Loam	Ş	0	Ç	120	7.0	2	7.0	C1 toht	Moderate	C1 toht	C1 inh	Moderate	Shortleaf	88
	3	3	3	2	:	•	:	,		,	•	Severe	Sweetnum	88
													Cherrybark	8
Latanier		63.5	,			0		41-713		Me de me A.	77-78-0	44-64	Cottonwood	110
C. a.v		050	જ			0	D. 6	Jubris	nogerate	Moderate	Silder	Jubris	Sweetdum	3 8
													Mater Oak	38
ONORO													Cottonwood	35
Silt Loam	85	800	38			0.6	8.0	Slight	Slight	Slight	Slight	Slight	Mater Oak	8
1-3% Slones			_										Cherrybark	8
													Sweetnum	8
McSehee									:/oderate	STight			Cottomwood	GOL
Silt Loam		575	င္က	82		0.6	 6.9	Slight	ţ	٠	Sitaht	Slight	Cherrybark	
									Severe	Hoderate			FILLOW Cak	2 0
													Sweetgum	S 8
Porgantield													Cottonwood	£
Silt Loam	125	1,000	45		0.6	12.3	0.6	STIAht	Silaht	Slight	Slinht	STIGHT	Cherrybark	110
	_							_				_	Muttall Dak	2
													! Jater ∩ak	£
Nuachita						,				Staht			Sveetnum	8
Silt Loam			32		7.5	۷.۷		Slinht	Moderate	ŧ.	Situht	Sitabt	Nuttall Oak	001
										Moderate			Water Oak	8
													Cottonwood	38
													Pot tonuond	6
7 E L		Š	35	13		y	u a	Sicht	Covere	Cl toht	Sitabt	Severe	Sweetnum	28
b 5		3	3	3		;	?	,	2 10 10		1	,	Green Ash	22

Table A-5 (continued)
SOLL SHITABILITY FOR ACPICULING AND HONDLAWD PROPHICTION CONTINUED

Cai	nabilit	v and Pri	d Predicted Yi (High Level "An	nagemen	Canability and Predicted YieldsCrops and Pasture (High Level Management)	ture				Thools	Mondland Suitability	11tv		
						Common			Pana!	"ananement Problems	lems		Potential	Prod.
Sofl	Cora (bu.)	Cotton (1bs.)	Sovbeans (bu.)	Rice (bu.)	Bahaiorass (AUM)	Rurru. Sr.	Fescue (Aijri)	Frosion	Fouin. Limit	Seedling Port'y	Mazard	Plant Compet.	Important	Si te Index
Perrv- Crevasse Complex							1	Slight	Severe	Severe	Sliaht	Slight	8_	95
Pheba Silt Loam 0-1% Slopes	75	575	30	130		6.5	8.5	Moderate	Moderate	Slight	Sifaht	Moderate	Loblolly Shortleaf Cherrybark Sweetnum Water Oak	88888
Pheba Silt Loam 1-3% Slopes	75	575	90		8.0		7.0	Moderate	'loderate	Slight	Slight	Moderate	Lobiolly Shortleaf Cherrybark Sweetnum Water Oak	88888
Portland Clav		600	32	130		7.0	0.6	Slight	Severe	Sliaht	Slight	Severe	Cottomyood Sweetrum Cherrybark	888
Rilla Silt Loam O-1% Slones	98	006	40		08	8.5	9.0	Slinht	Slinht	Slight	Slinht	Slight	Cottonwood Hater Nak Cherrybark Huttall Nak Sweetnum	58888
Pilla Silt Loam Undulating	06	. 058	35		0.6	8.5	0.6	Slicht	Slicht	Slight	Sliaht	Slight	Cottonwood Water Oak Cherrybark Nuttall Oak Sweetoum	288 88
Sacul Fine Sandv Loam 1-3% Slopes	35	4 00	52		7.5	6.5	6.9	"nderate	Slinht to Moderate	Slight to Moderate	Slight	Slight	Loblolly Shortleaf	82
Sacul Fine Sandv Loam 3-8% Slones					7.5	6.5	5.0	''oderate	Slinht to Moderate	Slinht to Moderate	Sliaht	Slight	Loblollv Shortleaf	8 2
Sacul Fine Sandv Loam 8-12% Slopes					6.5	5.5	5.0	Moderate	Slinht to Moderate	Slinht to Moderate	Slight	Slight	Loblolly Shortleaf	82

Table A-5 (continued)
SOIL SUITABILITY FOR AGRICULTURE AND WOODLAND PPODUCTION CONTINUED

oflity		Plant Compet.		Sliaht	Moderate	Moderate
Woodland Suitability	Pms	Wort'v Hazard	Slight	Slight	Slinht	STfaht
Moodla	"anagement Problems	Seedling Wort'v	"derate Slight Slight	Moderate Slight Slight	Sliaht	Slinht
	הפחהי	Frosion Eouin, Seedling Windth. Hazard Limit Mort'v Hazard	"oderate	Moderate	Slight Slight Slight	Slight
		Frosion Hazard	Sliaht	Slight	Slinht	Slight
		Fescue (Allist)	7.0	7.0		
ture	Common	Burmu, Gr. Fescue (AIM) (AIM) I	7.0	7.0	5.5	5.0
<pre>Predicted YieldsCrops and Pasture High Level Management)</pre>		Bahlaqrass (AUM)1				
eldsCi nanemen		Pice (bu.)				
<pre>J Predicted VieldsCro (Hinh Level "Ananement)</pre>		Cotton Sovbeans Pice (1bs.) (bu.)	52	50	52	52
v and Pr (Hin		Cotton (1bs.)	920	200	200	450
Capability and ((bu.)	51)	45	55	20
Caj		•	Savannah Silt Loam 1-3% Slopes	Sawver Silt Loam 3-8% Slobes	Smithdale Fine Sandv Loam 1-3% Slopes	Smithdale Fine Sandy Loam 3-12% Slopes

			_						_	_		_		
Prod.	Site	Index	66	8	န္တ	66	8	8	82	8	2	82	8	2
Potential Prod.	Important	Trees	Loblally	Slash Pine	Longleaf	Lobioliv	Slash Pine	Longleaf	Slash Pine	Loblolly	Lonnleaf	Slash Pine	Loblolly	Longleaf
	Plant	Compet.		Slight			Slight			Moderate Loblolly			Moderate Loblollv	
ems	Windth.	"ort'v Hazard Compet.		Slight			Slight			Slinht			STiaht	
"ananement Problems	Seedling	Wort'v								Slight			Slinht	
הפתה.	Frosion Enuin. Seedling Windth.	Limit		"oderate Slight			Noderate Slight		1	Slinht			Slight Slight	
	Frosion	Hazard		Slight			Slight			Slinht			Slight	
						_		_				_		_
	Fescue	(AIII4)		7.0			7.0							
LOWWO.	Burmu. Gr. Fescue	(MIM)		7.0			7.0			5.5			5.0	
	S	(AUM)												
	Pice	(bu.)												
	ton Sovbeans Pice	(pq.)		52			20			52			25	
	ro Co	-		င္က			8	-		2			္က	

¹A.U.M. stands for animal-unit-month. The figures represent the number of months that 1 acre (0.4 ha.) will provide grazing for one animal unit (one com, steer, or horse, five hogs, or seven sheeb) without injury to the nasture.

SOURCE: U.S. Department of Agriculture, 1969-73.

Table A-6 SOIL SUITABILITY FOR WILDLIFE FLEWENTS AND KINDS OF WILDLIFE

			11 7 27 2 6 0 USE 3 6 1 6 1 1 1					A	
			אוומווא שממו	נטני ושייריונא	Matland Food			1265 01 111011	
5011	Grain and Seed Crons	Grasses and Legumes	vild Merbaceous Plants	Hardwood Woody Plants	Cover Plants	Shallow-water Nevelonments	Openland	Woodland	Wetland
Amy Silt Loam	Poorly Suited	Suited	Suffed		Well Suited	Hell Suited	Sufted	Well Suffed	Well Suited
Amy Soils. Frenuently Flooded	Poorly Suited	Suited	Sutted	Well Suited	Well Cuited	Ponely Suffed	Poorly Suited	Well Cuited	Well Suited
Calloway Silt Loam, 9 to 1 Percent Slopes	Well Suited	Mell Suited	!all Cufted	"all Suited	Suited	l'ell cutted	Wall Cutted	Vell Suited	
Calloway Silt Loam, 1 to 3 Percent Slopes Suited	cuited	Well Sufted	Well Suffed		Poorly Suited	Pourly Suited	Well Suited	Suited	Poorly Suited
Coushatta Soils	(ell Suited	Well Suited	'all custed	ell cuited	Inculted	ווחבטונים	Wall Surted	iall Suited	Insuited
Crevisse Loamy Sand	Poorly Suited	Suited	Surred	Poorly Tuited	Poorly Sulted	-	7 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	والفهم	175 gr 26 3
Suited Suited freespoorly Suited	Suited Poorly Suited	Suited Suited		Tell Suited	Suited	Jaji juited Porely fuited	Tuited Saited	1	Suited
Grenada Silt Loam, 1 to 3 Percent Slones	Jell Suited	Well Suffed	uited	'all fulted	Unsuited	Ponriv Suited	Tall Suffed	Vall Suffed	Pourly Suited
	Cuitod	Loll Suited	Pall Cuited	Joll Cuitod		"Incluited."	"ball Cuived	Lall Cuttod	1
	'ell Sufted	Party Tla) Led			S. I ted	tod	uited	Suited
	Cuited	Suited		Cuited) to	'oll fulted		İ	100
Latanier Clay	Sui ted	Suited	Suited	111111	- 1	oll Suited	uited	(a) (a)	201107 110
1 to 3 Percent Slones	"ell Suited	well Suited	Mell Sufted	Pell Suited	foorly Sufted		Pell Suited	Cuites	"msuited
	well surced	Well Suited	well Suited	well Suiteu	Suited		mell suited	Sulfe.	,,,
Concentield Silt Loam	Suited	Suited	Suited	Suited	Poorly Suited		Jell Suited	j	Doorly Suited
	Suited	Suited	Suited		Pell Suited	ell Suited	Suited	Suited	Tell Sured
Ferry-Crevasse Complex,	Poorly Suited	Suited	Suited	Sutted	 	Poorly Sutted	Suffed	, 4.	Poorly Suited
Pheba Silt Loam,	S. i. t. a.d.	Voll Suited	Uall Suffed	Tall Cuited	Pa + i · ·	Cuited	"oll Suffed	Sell Surred	100
Pheba Silt Loam,	222								
Stones	Suited	Suited	Tiell Cuited	Vell Suntted	Suited	Sufted	Suited	Tall Suited	Susted
0 to 1 Percent Slopes	Hell Suffed	Well Suited	Well Suited	Sell Suffed	Has at ten	Ponriv Suffed	Vall Sutted	Sell Suited	healted
('ndulating	Well Suited	Well Suffed	Well Suited	Pell Suffed	Pourly Suited	Unsuited	Tell Suffed	Nell Suited	Incuited
Secul Fine Sandy Loam, 1 to 3 Percent Slones	Sufted	Well Suffed	Well Suffed	'ell Sufted	"nsuited	Poorly Suited	Pell Suited	Pell Suffed	Unsuited
Sacul Fine Sandy Loam, 3 to 8 Percent Slopes	Sufted	Well Sufted	Vell Suffed	Pell Suffed	Pinsuited	lingus ted	vell Suited	Vell Sutted	"nsufted
Sacul Fine Sandy Lnam, 8 to 12 Percent Slopes	Poorly Suited	Well Suited	Well Suffed	Well Suffed	Hasuited	Insufted	cuited	Hell Surred	"nsuited
Savannah Fine Sandy Loam, 1 to 3 Percent Slones	Mall Sufted	Well Suited	Well Suited	Tell Suited	Popriv Suffed	Poorly Suffed	!ell Suffed	Mell Sutted	Foorly Suffed
Savannah Fine Sandy Loam, 3 to 8 Percent Slones	Tell Suited	"ell Suited	11ell Suited	"ell Sufted	Poorly Suited	11nsuited	Pell Culted	Tell Cuited	Unsuited
Sawver Silt Loam 1 to 3 Percent Slones	Mall Suited	Well Sutted	1911 Suft d	upll cutted	Ponriv Suited	Ponrly Cuited	iell Sufted	Well Suffed	Prorly Suited
Sarver Silt Loan, 3 to 8 Percent Slones	Suited	Pell Suited	Upll Sufted	'ell Suited	Poorly Sulted	Insufted	'iell Cuited	'ell Suited	i'nsuited
Smithdale fine Sandy Loam	Suited	Well Sufted	Hell Suited	"ell Suited	*Insufted	Pnsuited	Well Suited	Hell Suited	nsuited
Smithdale Fine Sandy Loam 3 to 12 Percent Slones	Suited	Well Suited	uall Suited	vell Suited	Mnswited	Phsuited	Pall Suited	 Sell Suited	l'nsuited

SOURCE: U.S. Department of Agriculture, 1969-73.

SUBSURFACE STRATIGRAPHY

- A. Paleozoic Era. Paleozoic age rocks outcrop about 18 miles northwest of Jefferson County. The Paleozoic rocks are relatively old, well-compacted and folded beds of sandstone and shale. These basement rocks formed during the mostly marine deposition periods of Cambrian through Pennsylvanian times. Little else is known of the structural attitudes of the downwarped, and possibly faulted, Paleozoic rocks lying immediately beneath the Tertiary or Upper Cretaceous sediments in the embayment.
- B. <u>Mesozoic Era</u>. Upper Cretaceous sediments overlie the Paleozoic rocks of Jefferson County. The Lower Cretaceous, Jurassic, Triassic and Permian sediments, however, are absent from the county. Three groups are predominant in the Upper Cretaceous series: Austin, Taylor and Navarro.
- 1. <u>Austin</u>. Formations in the Austin Group include the Pre-Ozan and Basal Detrital units. The Basal Detrital Unit is characterized according to Caplan (1954):

The Basal Detrital Unit is a medium to coarse-grained, glauconitic, quartzitic sandstone. Pyrite, siderite, phosphatic nodules and lignite, the latter often being found at the top and bottom of the formation, are characteristic of the basal unit. The quartz grains comprising the sandstone frequently have a greenish tinge and become coarser toward the base of the unit.

Being a transgressive marginal unit deposited on a peneplaned surface, the sandstone tends to show a relationship to the terrain it has overlapped; consequently, rounded, frosted quartz grains may be found in the basal unit where the St. Peter, Everton or Joachim make up the pre-Cretaceous areal surface. In like fashion, black shale fragments should be present in the unit where Atoka, Morrow or Mississippian shales form the Paleozoic floor of the embayment. Cherts may occur in the basal unit, or constitute it, where cherty Ordovician limestones and dolomites have been transgressed.

- 2. <u>Taylor</u>. The Taylor Group includes Ozan, Annona, Marlbrook and Saratoga formations.
- a. Ozan. The Ozan formation may attain thicknesses of up to 150 feet in the southeast section of Jefferson County, although it may not be present in the northwest corner of the county. The Ozan is considered to be the basal formation of the Taylor Group in northeastern Arkansas (Caplan, 1954).

It varies from fossiliferous gray sandy marl, sand, sandy limestone and clay to chalk and marl. A glauconitic sand layer occurs at the base.

b. Annona. The Annona formation probably ranges from 0 to 85 feet in thickness in Jefferson County. Sedimentation may have occurred between the depositional periods of the Ozan and Annona formations. Caplan (1954) states:

The Annona of this area is a medium to dark gray, finely micaceous, non-calcareous shale which may contain zones of light gray, calcareous, sparingly fossiliferous shale or marl. In places, glauconitic chalk and thin beds of calcareous fine-grained sandstones may be found within the formation. In well samples, the base of the Annona is generally found to be marked by a zone containing a considerable representation of free pyrite, glauconite and phosphatic nodules. This zone has its greatest value in permitting establishment of the lower limit of the "chalk section" in the embayment, since the Saratoga-Marlbrook-Annona sequence comprising the "chalk section" may otherwise not be separable within itself or from the underlying Ozan formation, where it is present. Although such a distinction among these formations may not appear to have commercial significance at this time, it is of value in helping to detail the stratigraphy of the area. A study of electrical logs in the embayment, in conjunction with sample work, indicates that the base of the Annona can be picked fairly accurately from electrical logs alone where no samples are available. formation frequently contains iridescent shell fragments, Inoceramus prisms, and sharks teeth which may help to delimit it.

- c. Marlbrook. The Marlbrook formation has been tentatively identified south and east of a line running through northwest Jefferson County. Its thickness in Jefferson County ranges from 0 to 150 feet. The Marlbrook is a fossiliferous chalky blue to gray marl containing some glauconitic sand and, locally, thin beds of chalk (Cushing et al., 1964). Phosphate nodules may also be present in this formation.
- d. <u>Saratoga</u>. The Saratoga formation should be found overlying either the Marlbrook or Annona formations in Jefferson County; with thicknesses ranging from 0 to 125 feet. This formation is a white fossiliferous sandy chalk with a thin glauconitic and phosphatic zone at its uncomfortable contact with the underlying Marlbrook formation (Cushing <u>et al.</u>, 1964). Thin-bedded limestones or sandstones may be present in the deeper layers.

- 3. <u>Navarro</u>. Two formations in the Navarro Group, the Nacatock and Arkadelphia, comprise the uppermost limits of the Upper Cretaceous series in Jefferson County.
- a. Nacatock. Caplan (1954) offers this characterization of the Nacatock formation:
 - ...this formation can generally be divided lithologically into three units in northeastern Arkansas. The upper and lower units are similar in appearance, both being essentially sandy clays, shales and marls. The latter unit, however, appears to contain relatively more marl than the former. The middle member of the formation is its most distinctive lithologic unit, being principally a light-gray to white, fossiliferous, calcareous phosphatic, glauconitic, poorly sorted sandstone. Light gray glauconitic, micaceous sandy marls may be present indiscriminately in this unit, in addition to thin-bedded, white, sandy crystalline limestone.
- b. Arkadelphia. The Arkadelphia formation forms the uppermost boundary between the Upper Cretaceous System and the Tertiary System in Jefferson County. The Arkadelphia formation is generally about 50 feet thick throughout the embayment. The Arkadelphia formation is typically light to dark-gray, marly, fossiliferous shale which may be glauconitic and chalky in part. Frequently, a gray, micaceous shale is found in the basal portion of the Arkadelphia. C. Cenozoic Era.
- 1. Tertiary Paleocene Epoch. The Paleocene Epoch includes the Midway Group which is comprised of the Clayton and Porters Creek formations. The top of the Midway Group is 1,500 feet below sea level in the northwestern part of Jefferson County and 3,000 feet below sea level in the extreme southeastern portion of the county. Caplan (1954) characterized the Midway Group:

The Midway Group is made up of two members, an upper (Porters Creek) blue-gray to dark-gray, fissile, flakey shale, containing sideritic, concretionary layers, and a lower unit of soft, gray, calcareous, fossiliferous shale with lenses of white limestone near the base. Occasionally a glauconitic, phosphatic layer separates the lower Midway unit from the underlying Arkadelphia formation. The calcareous lower Midway unit (Clayton) ranges between 1 and 120 feet in thickness, averaging between 50 and 100 feet, in the embayment. It thickens abruptly, however, in the vicinity of the Ouachita Mountains and exceeds

the maximum thickness given here by several times. The upper shale member of the Midway is essentially non-calcareous and unfossiliferous, although a few arenaceous forams have been identified within it. The lower unit is identified by the appearance of calcareous material and highly fossiliferous zones.

- 2. Tertiary Eocene Epoch. The Eocene Series overlies the Midway Group in Jefferson County; this series is divided in ascending order into the Wilcox, Claiborne and Jackson groups. These groups are of marine and nonmarine origin in the embayment.
- a. <u>Wilcox Group</u>. The Wilcox Group is the oldest of the Eccene Series in Jefferson County; an outcrop of this formation can be found nine miles west of the northwest corner of the county (Branner, 1929). About 11 miles north of Pine Bluff, it is approximately 750 feet thick, and its top is about 1,500 feet below the surface and 1,275 feet below sea level (Klein <u>et al.</u>, 1950). The Wilcox is composed primarily of clay, sand, and silt and contains considerable lignite and some glauconite. This unit downdips toward the embayment axis about 50 feet per mile in Jefferson County. The Wilcox is probably a thick mass of deltaic sediments accumulated over a period of continental erosion (Klein <u>et al.</u>, 1950). The sandy unit of the Wilcox in the northern part of the embayment is known as the "1,400-foot sand" in the Memphis area; it is an important aquifer in this region.

b. Claiborne Group.

the state of the s

- (1) Carrizo Sand. The Carrizo Sand is the basal member of the Claiborne Group in Jefferson County; it unconformably overlies the Wilcox Group (Hosman et al., 1968). The Carrizo Sand dips scutheastward across Jefferson County at a rate of 20-40 feet per mile. Thickness of this formation increases from less than 100 feet in the northwest segment of Jefferson County (about 20 miles from an outcrop of Carrizo Sand) to greater than 300 feet in that eastern portion of the county included in the Desha Basin. The Carrizo Sand consists of fine to coarse light gray to brownish gray micaceous sand.
- (2) <u>Cane River Formation</u>. The Cane River formation overlies the Carrizo Sand and underlies the Sparta Sand formation. This formation ranges in thickness from about 150 feet in the northwestern part of the county to about 400 feet or more in the southeast section. Marine clay, sandy clay, marl and thin beds of fine sand are most predominant. The Cane River formation dips toward the embayment axis at 30-40 feet per mile in a northwest-southeast direction across Jefferson County.

- (3) Sparta Sand. Overlying the Cane River formation in Jefferson County is the Sparta Sand, a white to light gray fine to medium-grained massive sand, with beds and lenses of light-gray to tan clay and sandy clay (Klein et al., 1950). The Sparta Sand in Jefferson County is comprised of about 20 per cent sand interstratified with silt, clay, shale and minor amounts of lighte (Hosman et al., 1968). The presence of glauconitic sands possibly is the result of reworking materials of older strata by fluviatile action (Klein et al., 1950). Indications are that the Sparta Sand is the result of continental erosion and subsequent deposition. Thicknesses vary considerably in the Jefferson County area; the formation ranges from 450-800 feet within relatively short distances. Several miles west of the north-western corner of the county, the Sparta Sand outcrops, while in the southeast, it dips to approximately 900 feet below mean sea level. Sparta Sand is the most productive Tertiary aquifer in Jefferson County.
- (4) Cook Mountain Formation. The upper part of the Claiborne Group in south-central Arkansas consists of the Cook Mountain and Cockfield formations. The Cook Mountain formation is less than 200 feet thick in Jefferson County and is composed of glauconitic, calcareous fossiliferous sandy marl or limestone in the lower lithologic unit and sandy carbonaceous clay or shale (locally glauconitic) in the upper unit (Cushing et al., 1964).

 Locally, the Cook Mountain contains clay and lenses of sand (Klein et al., 1950).
- (5) <u>Cockfield Formation</u>. The uppermost formation in the Claiborne Group is the Cockfield formation; composition is chiefly lenticularly interbedded, fine to medium quartz sand and lignitic clay; the basal part of the formation is sandier (Broom and Reed, 1973). The Cockfield deepens in the southeast portion of Jefferson County as it dips towards the embayment. Thickness in the county is about 200 feet, although it may be more expansive in the more eastern portions of the county.

The Wilcox-Claiborne groups constitute a thickness of 2,000-3,000 feet in the Desha Basin (eastern Jefferson County). This profundity constitutes over half the total Tertiary deposition in this area (Wilbert, 1953).

c. <u>Jackson Group</u>. The undifferentiated Jackson Group is the uppermost unit in the Eocene Series; it is overlain in all Jefferson County by Mississippi River alluvial deposits except in a belt about five miles wide on the north and 16 miles on the south where outcropping occurs. The Jackson was formed during the last extensive marine invasion of the Mississippi embayment (Cushing

et al., 1964). It is comprised of relatively homogeneous clay, with some silt and sand beds. Thickness ranges from 100-300 feet, although in certain areas erosion may have further reduced the thickness of this formation.

SOIL ASSOCIATIONS

A. Amy-Pheba-Savannah Association. This poorly drained to moderately well drained association occurs in the west-central part of the county and encompasses portions of the City of Pine Bluff and the Pine Bluff Arsenal. It consists of broad flats intermixed with occasional small ridges. The Amy soils occur on the broad flats, the Pheba soils occur on the flats and lower edges of the ridges and the Savannah soils occur on the ridges (Larance et al., 1973). This association encompasses about 6.8 per cent of the county. Amy soils make up about 45 per cent of the association; Pheba soils, 25 per cent and Savannah, 20 per cent. The remaining per cent is composed of Myatt, Cahaba (Smithdale*), Angie (Sawyer*), Sacul and Ochlockonee (U.S. Department of Agriculture, 1969-73).

Amy soils are poorly drained. The gray silt loam surface soil overlays a gray, mottled silty clay loam. The Pheba soils are somewhat poorly drained. The surface soil consists of dark gray to grayish-brown silt loam, whereas, the subsoil is yellowish-brown to grayish-brown, mottled silt loam or loam. The lower portion of the subsoil is a mottled, firm and brittle silt loam fragipan. Savannah soils are moderately well drained. The surface soil is grayish-brown fine sandy loam. The upper subsoil is yellowish-brown loam or sandy clay loam and the lower subsoil is a gray and brown, mottled fragipan (U.S. Department of Agriculture, 1969-73).

Soils in this association are poorly suited for dwellings, other buildings or highways because of the seasonal high water table, wetness and low bearing strength. Slow percolation rate and seasonal high water table also make this association poorly suited for septic tank absorption fields (Larance et al., 1973). Although this association is suited to farming, most of the land outside of the Pine Bluff city limits is woodland.

B. <u>Sawyer-Sacul-Savannah Association</u>. This moderately well drained association occurs along the western portion of the county. It is located on nearly level to rolling uplands of the Coastal Plain (U.S. Department of Agriculture, 1971a).

*Cahaba has been changed to Smithdale and Angie to Sawyer as part of the new classification procedures being conducted by SCS. Hereafter, Cahaba soils and Angie soils will be referred to as Smithdale and Sawyer soils, respectively.

The Sawyer and Savannah soils are more prevalent in the nearly level areas, whereas, the Sacul soils predominate on the steep slopes (U.S. Department of Agriculture, 1968-73).

This large association encompasses about 20.3 per cent of the county. Sawyer soils make up about 35 per cent of the association; Sacul, 25 per cent; and Savannah, 25 per cent. The remaining portion is composed of Amy, Ochlockonee, Luka, Myatt, Smithdale, Susquehanna and Pheba soils (U.S. Department of Agriculture, 1969-73).

The moderately well-drained Sawyer soils have a grayish-brown fine sandy loam surface soil. The upper subsoil is yellowish-brown silty clay loam and covers a lower subsoil of yellow and gray, mottled silty clay or silty clay loam. Sacul soils are also moderately well drained. The surface soil consists of grayish-brown fine sandy loam and the subsurface soil is yellowish-red and red clay and is mottled gray in the lower portion. The moderately well drained Savannah soils have a surface layer of grayish-brown fine sandy loam. The subsoil is yellowish-brown loam or sandy clay loam in the upper portion with a gray, yellow and brown mottled fragipan in the lower part (U.S. Department of Agriculture, 1969-73).

Soils in this association are poorly suited for highways, septic tank absorption fields and dwellings because of low strength, high shrink-swell potential, slow percolation rate and slopes. Forest and pasture types of vegetation are predominant in the sloping upland areas (U.S. Department of Agriculture, 1969-73).

C. <u>Smithdale-Savannah Association</u>. This well and moderately well drained association occurs in four patchy locations in the western portion of the county. Smithdale soils predominate on the upper ridges, whereas, Savannah soils occur on the level and slighly elevated areas. This association encompasses about 4.2 per cent of the county. Smithdale soils comprise about 45 per cent of the association and Savannah soils make up about 40 per cent. The remaining portion is composed of Sawyer, Amy, Pheba and Sacul soils (U.S. Department of Agriculture, 1969-73).

Smithdale soils are well drained. The surface layer is brownish sandy loam, whereas, the upper subsoil is yellowish-red or red sandy clay loam and the lower subsoil is loam or sandy loam. Savannah soils are moderately well drained. These soils have a dark grayish-brown fine sandy loam surface layer and a yellowish-brown loam subsoil. A thick brittle, mottled yellowish-brown, gray and red fragipan lies below the lower subsoil (U.S. Department of Agriculture, 1969-73).

This association is suited for dwellings, other buildings and foundations for highways except where slopes are prohibitive (Larance et al., 1973). Although Smithdale soils are suited for septic tank absorption fields, Savannah soils are poorly suited because of their slow percolation rate and moderately slow permeability. Soils in this association are suited for agriculture but require careful management. Most areas are forested with pines (U.S. Department of Agriculture, 1969-73).

D. <u>Crevasse-Portland Association</u>. This excessively and somewhat poorly drained association occurs within the floodplain of the Arkansas River and somewhat parallels the river diagonally across the county from northwest to scutheast. This association encompasses about 9.2 per cent of the county. Crevasse soils make up about 45 per cent of the association and Portland soils make up 30 per cent. The remaining per cent of the association is composed of Rilla, Keo (Coushatta*), Morganfield, Latanier, Desha and Perry soils (U.S. Department of Agriculture, 1969-73).

Crevasse soils are excessively drained. The brown loamy sand of the surface soils overlays light yellowish-brown sand. Portland soils are somewhat poorly drained. The surface layer is dark grayish-brown silty clay loam to clay and the subsoil consists of dark brown to red, mottled clay (U.S. Department of Agriculture, 1969-73).

Soils in this association are poorly suited for dwellings, other buildings and highways because of flood hazard in unprotected areas, low strength, high shrink-swell potential and wetness. These soils are also poorly suited for septic tank absorption fields because of percolation rates, wetness and flood potential (U.S. Department of Agriculture, 1969-73).

Crevasse soils protected from flooding are cleared and planted in pasture and hay. Forest plants consist of cottonwood, elm, hackberry, pecan, sycamore and willow. Most Portland soils are cleared and cultivated for soybeans, cotton and rice. Prior to clearing, vegetation consisted of baldcypress, sweetgum, water tupelo, oaks, hackberry and hawthorne (U.S. Department of Agriculture, 1969-73).

E. <u>Henry-Calloway-Grenada Association</u>. This poorly to moderately well drained association occurs primarily in a narrow strip from central to south-central Jefferson County with a small section occurring in the south-central portion of the county. Most of this association occurs within the city limits of

*Keo has been changed to Coushatta as part of the new soil classification procedures being conducted by SCS. Hereafter, Keo soils will be referred to as Coushatta.

Pine Bluff and the boundary of the Pine Bluff Arsenal. This association encompasses about 3.7 per cent of the county. Henry soils make up about 40 per cent and Grenada soils, 15 per cent. The remaining portion of the association is composed of Falaya and Zachary soils and gullied land (U.S. Department of Agriculture, 1969-73).

Henry soils are poorly drained. The surface soil is grayish-brown or gray silt loam and the subsoil is gray, mottled silt loam or silty clay loam with a fragipan. Calloway soils are somewhat poorly drained. The surface soil is grayish-brown silt loam and the subsoil is grayish-brown and yellowish-brown, mottled silt loam or silty clay loam with a fragipan. Grenada soils are moderately well drained. The surface soil is brown silt loam and the subsoil is yellowish-brown silt loam or silty clay loam in the upper portion and mottled gray and yellowish-brown with a fragipan in the lower subsoil (U.S. Department of Agriculture, 1969-73).

Henry and Calloway soils are poorly suited as sites for residential development and as a foundation for highways, whereas, Grenada soils are fairly well suited (Cloutier and Fingers, 1966). Land-use limitations for Henry and Calloway soils are created by wetness and poor traffic supporting capacity. These soils have poor to moderate suitability for septic tank absorption fields. The principal soils in this association are suited for the cultivation of cotton, corn, soybeans and pasture. Wooded species are mostly mixed hardwoods (U.S. Department of Agriculture, 1969-73).

F. Morganfield-Coushatta-Rilla Association. This well drained association occurs in central Jefferson County parallel to the Arkansas River. It is nearly level to very gently sloping. This association encompasses about 7.0 per cent of the county. Morganfield soils comprise about 35 per cent of the association; Coushatta, 25 per cent; and Rilla, 25 per cent. The remaining portion of the association is composed of Hebert, Latanier, McGehee and Portland soils (U.S. Department of Agriculture, 1969-73).

The well drained Morganfield soils have a grayish-brown or brown fine sandy loam surface soil. The subsoil is brown or strong brown silt loam or loam. Coushatta soils are also well drained. They have a reddish-brown silt loam surface layer and a reddish-brown silty clay loam or silt loam subsoil. The well drained Rilla soils have a grayish-brown or brown silt loam or fine sandy loam surface soil. The subsoil is yellowish-red loam or silty clay loam (U.S. Department of Agriculture, 1969-73).

The principal soils composing this association are well suited for cultivation of cotton, corn, soybeans, small grains and pastures. Native vegetation was mixed hardwoods (U.S. Department of Agriculture, 1969-73).

Scils are moderately to poorly suited for dwellings, other buildings and highways because of potential flood hazards, wetness, low strength and high shrink-swell potential. However, under flood protected conditions Morganfield and Coushatta soils are well suited for the above mentioned purposes. Suitability for septic tank absorption fields is moderate in protected areas (U.S. Department of Agriculture, 1969-73).

G. <u>Perry-Portland Association</u>. This somewhat poorly drained association predominates in the northeast corner of the county but smaller areas are found throughout the eastern half of the county along slackwater flats and sluggish bayous and sloughs. This large association encompasses about 26.0 per cent of the county. Perry soils make up about 45 per cent of the association and Portland soils make up 40 per cent. The remaining portion consists of Latanier, Desha, Hebert, Rilla and Lonoke soils (U.S. Department of Agriculture, 1969-73).

The poorly drained Perry soils have a dark grayish-brown, mottled clay surface layer. The subsoil has a gray, mottled clay upper region and a reddish-brown clay lower region. The somewhat poorly drained Portland soils have a dark brown clay or silt loam surface layer. The upper portion of the subsoil is brown, mottled clay and the lower portion is reddish-brown clay (Larance et al., 1973).

The soils in this association have severe limitations for use as residential sites or as a foundation for roads because of their wetness, instability and low bearing strength. They are also poorly suited for septic tank absorption fields because of wetness and slow percolation rate (Larance et al., 1973). This association is well suited to rice, cotton, soybeans and pasture (Cloutier and Fingers, 1966). Native vegetation consisted of water tolerant oaks, cottonwood, sweetgum and sycamore (U.S. Department of Agriculture, 1969-73). H. Rilla-Lonoke-Hebert Association. This well and somewhat poorly drained association occurs primarily in north-central Jefferson County. Smaller areas are located in the south-central and extreme eastern portions of the county. These nearly level to gently rolling soils developed primarily from Arkansas River alluvium. This association encompasses about 21.7 per cent of the county. Rilla soils make up about 35 per cent of the association; Lonoke soils,

30 per cent and Hebert soils, 20 per cent. The remaining portion is composed of Perry, Portland, McGehee, Coushatta, Morganfield and Latanier soils (U.S. Department of Agriculture, 1969-73).

Rilla soils are well drained. The surface soil is grayish-brown or brown silt loam or fine sandy loam and the subsoil is yellowish-red silt loam or silty clay loam. Lonoke soils are also well drained. The surface soil is dark brown silt loam and the subsoil is reddish-brown loam to fine sand loam. Hebert soils are somewhat poorly drained. The surface soil is grayish-brown or brown silt loam and the subsoil is grayish-brown to reddish-brown, mottled clay loam to silty clay loam (U.S. Department of Agriculture, 1969-73).

The soils in this association are suited for dwellings, other buildings and highways. These soils are not, however, suited for septic tank absorption fields because of slow percolation rate and wetness. The soils in this association are suited for cultivation of cotton, soybeans, corn and pasture. Prior to agricultural cultivation, these soils were forested primarily by bottomland hardwoods (U.S. Department of Agriculture, 1969-73).

Figure A-1: Unit Hydrograph - Station 7 (Caney Bayou at Wooden Bridge on Jones Road)

Figure A-2: Unit Hydrogragh - Station 8 (Brumps Bayou at Highway 65)

Figure A-3: Unit Hydrograph - Station 1 (Bayou Bartholomew at Princeton Pike Road)

Figure A-4: Unit Hydrograph - Station 2 (Interceptor Canal at 34th Street)

Figure A-5: Unit Hydrograph - Station 3 (Bayou Bartholomew at Highway 15)

Figure A-6: Unit Hydrograph - Station 4 (Outlet Canal at 38th Street)

Figure A-7: Unit Hydrograph - Station 5 (Bayou Bartholomew at Pinebergen)

Appendix B
Land Use

METHODOLOGY FOR FUNCTIONAL LAND USE PROJECTIONS

- A. Assumptions were based upon Series E population projections: OBERS, 1972. Population of the specific study area was calculated and used; Jefferson County figures were <u>not</u> employed.
- B. The land use data presented in the PBAMWMS was amended as suggested by the Southeast Arkansas Regional Planning Commission and used as baseline data.

ASSUMPTIONS

- A. Residential density factors of 18 people per acre in urban areas and 15 people per acre in rural areas were used in forecasting residential areas. Typical lot sizes, housing trends, and family sizes were considered in this factor.
- B. Commercial areas were calculated on a per capita basis and primary consideration was given to "new" areas.
- C. Public areas will include recreational facilities as planned and a given per capita area for institutional uses. Projections for 2000 and 2020 include standard criteria for optimum development of recreational facilities (Dechiara and Koppelman, 1969).
- D. Semi-public areas were calculated by using a decreasing per capita ratio through the year 2020. The established ratio for 1974 is .0085 acres per capita and those used for 1985, 2000 and 2020 were .0081, .0078 and .0075, respectively. The decreasing factor was used to take into account a "fixed allotment" commonly associated with such facilities.
- E. Transportation, communications and utilities were calculated upon the net expansion of urban areas.
- F. The industrial areas shown in 1974 are sufficient to accommodate a population twice as large as that of Pine Bluff. Small figures were added in 1985 and 2000 in an effort to accommodate miscellaneous development.
- G. The Pine Bluff Arsenal and its related uses and the major water areas were held constant throughout the year 2020.
- H. Agricultural and forest lands were calculated based on current patterns and a projection of the amount of land required for future urban-type development.
- I. Acreage for new transportation corridors was calculated based upon the expansion of U.S. Highway 65 in the Study Area for 1985, and the construction of the Bayou Bartholomew Expressway and the relocation of major rail corridors for

the year 2000. Due to the fact that these projects are outside of the urban area and are not necessary to accommodate the projected growth, they were classified separately from other transportation corridors (transportation, communications and utilities).

Appendix C
Water Quality

C

COLLECTION AND ANALYSIS METHODS

A. <u>Baseflow Water Sampling</u>. Water quality determinations were performed twice monthly at stream and canal stations 1, 2, 3, 4, 5, 6, 7, 8a and 8b, while lake stations 9a, 9b, 10a, 10b and 10c were monitored monthly.

No deviations were made in relation to station sampling order. Beginning at Station 6, the order of sampling continued with samplings at stations 7, 8a, 8b, 1, 2, 3, 4 and 5. On lake sampling dates, the above order again received successive attention after Station 5.

Field observations were made on meterological conditions plus stream, canal and lake physical characteristics; i.e., rate of flow, algal blooms, presence of film layers and stream water levels. Height of the stream and canal water columns for discharge determinations were noted on both staff and stage recorder gages.

At stream and canal stations, water samples were taken with 3-gallon plastic buckets and held in six (6) ounce polyethylene Whirl-pac bags and one (1) liter polyethylene bottles. Samples taken in lakes were secured at mid-depth with a bottle train sampler. After field analysis, samples were refrigerated and taken to Ouachita Baptist University Chemistry Department in Arkadelphia, Arkansas, for laboratory analysis. Number, name and location of the water quality sampling stations by river basin hydrologic system follow:

THE ARKANSAS RIVER BASIN

The Caney Bayou System		
Station 6	Upper Caney	Caney Bayou at High- way 65
Station 7*	Lower Caney	Caney Bayou at wooden bridge above Lake Pine Bluff at Jones Road
The Brumps Bayou System		
Station 8a *	Brumps	Brumps Bayou at U.S. Highway 65
Station 8b*	Brumps Confluence	Brumps Bayou tributary below Bellewood Cemetary
Station 9a	Lake Pine Bluff	At mouth of Brumps Bayou
Station 9b	Lake Pine Bluff	Eastern edge of lake
The Arkansas River System		
Station 10a	Lake Langhofer	Near levee close to eastern shoreline

^{*}Also monitored for stormwater quality.

The Arkansas River System (continued)

Station 10b	Lake Langhofer	Opposite Boyd Point
Station 10c	Lake Langhofer	Opposite Island Harbor Marina

THE OUACHITA RIVER BASIN

The Bartholomew System

Station 1*	Princeton Pike	Bayou Bartholomew at Princeton Pike Road
Station 2*	Interceptor	Interceptor Canal at 34th Street
Station 3*	Highway 15	Bayou Bartholomew at Highway 15
Station 4*	Outlet	Outlet Canal at 38th Street
Station 5*	Pineburgen	Bayou Bartholomew at the Jefferson-Lincoln County Line Road

B. Stormwater Sampling. Collection procedures for stormwater quality were similar to those used in baseflow water sampling, except that sampling succession was enacted within stations as opposed to among stations in baseflow water sampling. Baseline samples were secured before rainfall during all storms except for May 14-15, 1974, when a combination of a rapidly approaching storm and procedural difficulties precluded such samples. Parameters such as pH, alkalinity, dissolved oxygen and specific conductance were measured in a laboratory within two (2) hours of collecting, rather than completed under adverse field conditions. Elapsed time within station collections varied according to type station, storm intensity and sampling time. Because stations 1, 2, 4 and 8a had small drainage areas, elapsed time between samplings were much shorter than large-drainage stations 3, 5 and 7. Storms of high intensity and short duration required more frequent sampling than low intensity, long duration storms; elapsed time between samples for low intensity storms was generally double that of high intensity storms. Within storm periods, elapsed time between samples increased by a factor of 2 to 4x toward sampling completion. C. Non-Periodic Sampling.

1. Water and Mud. Water and mud samples for heavy metals (excluding those taken during stormwater quality) and pesticides were all taken on July 18, 1974. All samples were secured in six (6) ounce polyethylene Whirl-pac bags or one (1) liter polyethylene bottles, refrigerated to 4°C and delivered to

either Ouachita Baptist University or Barrow-Agee Laboratories for analysis; no preservatives were added to the samples.

2. Tissues.

- a. <u>Fishes</u>. Fishes were obtained by seining, rotenone or hook and line, then frozen in Whirl-pac bags. Because more than one specimen of each species was gathered at each station, individuals within each species were cut into four sections and mixed. Samples were then subdivided into two equivalent aliquots, one each for Ouachita Baptist University and Barrow-Agee Laboratories.
- b. <u>Birds and Mammals</u>. All raccoons taken in the Study Area were killed with a .22 caliber rifle. Individual specimen livers were then frozen whole in Whirl-pac bags. Later the samples were halved and sent to Ouachita Baptist University and Barrow-Agee Laboratories for analysis. Barred owls which had been injured near stations 1 and 3, and screech owls killed with a .22 caliber rifle at the remaining stations were eviscerated for liver samples. After freezing in Whirl-pac bags, samples were halved and sent to the above laboratories for analysis. Raccoons were determined for sex, age and weight; owls were weighed and determined as adult or immature.

D. Water Quality Methods.

1. In Situ (Field).

- a. pH. Beckman Chemate Meter.
- b. Dissolved Oxygen. YSI Model 54RC Dissolved Oxygen Meter.
- c. Water Temperature. YSI Model 54RC Dissolved Oxygen Meter.
- d. Specific Conductance. YSI Conductivity Meter.
- e. <u>Free Carbon Dioxide</u>. Titrimetric method as described in American Public Health Association (1971).
- f. <u>Total Alkalinity</u>. Potentiometric method as described in American Public Health Association (1971).
- g. <u>Transparency</u>. Measured by a ten (10) centimeter black and white Secchi disk in shade, where possible.
- h. <u>Dissolved Oxygen and Temperature Profiles (Lakes)</u>. Readings taken at one meter intervals with YSI Model 54RC Dissolved Oxygen Meter.

2. Laboratory.

- a. <u>Turbidity</u>. From March 12-July 25, Hach DR II Spectrophotometer; after July 25, Jackson Turbidimeter.
- b. <u>Color (True)</u>. From March 12-July 25, Hach DR II Spectrophotometer; after July 15, Curtin Matheson Water Analyser and Color Slide. Samples were centrifuged prior to analysis.

- c. <u>Biochemical Oxygen Demand</u>. As described in American Public Health Association (1971).
- d. Chemical Oxygen Demand. Samples preserved with 0.2 ml concentrated $\rm H_2SO_4/100$ ml, then analysed as described in American Public Health Association (1971) with the modification that excess chromate was determined spectrophotometrically rather than t titration.
- e. <u>Total Hardness</u>. EDTA titrimetric method as described by American Public Health Association (1971).
- f. <u>Calcium Hardness</u>. Calcium as determined by atomic absorption spectroscopy; hardness then calculated as described in American Public Health Association (1971).
- g. Oil and Grease. Samples were taken on surface and acidified to pH 3; analysed as described in American Public Health Association (1971) using Freon as an extracting agent.
- h. <u>Nitrite Nitrogen</u>. Spectrophotometric method as described in American Public Health Association (1971).
- i. <u>Nitrate Nitrogen</u>. Ultraviolet spectrophotometric method as described in American Public Health Association (1971).
- j. Ammonia Nitrogen. Orion specific ion electrode at conditions recommended by manufacturer.
- k. <u>Total Kjeldahl Nitrogen</u>. Digestion as described in American Public Health Association (1971), followed by direct determination of ammonia using methods described in j.
- 1. <u>Total Phosphorus</u>. Persulfate digestion followed by ascorbic acid method as described in American Public Health Association (1971).
- m. Total, Fecal Coliform and Fecal Streptococcus Bacteria. Membrane filter technique as described in American Public Health Association (1971).
- n. Total Solids. Raw water samples evaporated to dryness and placed in oven at 180° C as described in American Public Health Association (1971).
- o. Suspended Solids. Raw water sample filtered through a glass fiber filter, then filtrate evaporated and treated in the same manner as n.
- p. <u>Volatile Solids</u>. Residue remaining from total solids determination was fired at 550°C as described in American Public Health Association (1971).
- q. Lead, Zinc, Silver, Chromium, Copper, Cadmium, Iron, Manganese, Cobalt and Nickel. Samples fixed in field with 8 drops concentrated HCl/100 ml sample.

- (1) <u>Mud and Tissues</u>. Digestion with concentrated nitric acid, then atomic absorption spectroscopy at conditions recommended by manufacturer (Perkin Elmer Corporation).
- (2) <u>Water</u>. Atomic absorption spectroscopy at conditions recommended by manufacturer (Perkin Elmer Corporation).
- r. Arsenic. Silver diethyldithiocarbamate method as described in American Public Health Association (1971).
- s. <u>Aluminum</u>. Erichrome Cyanine R method as described in American Public Health Association (1971).
- t. Mercury. Samples fixed with eight (8) drops $KMnO_4/100$ ml sample, then analysed by flameless atomic absorption method.
- u. <u>Boron</u>. Curcumin method as described in American Public Health Association (1971).
- v. Cyanide. Orion specific ion electrode at conditions recommended by manufacturer.
- w. <u>Phenols</u>. Direct photometric method as described in American Public Health Association (1971).
 - x. Sulfate. As described in American Public Health Association (1971).
 - y. Chlorides. As described in American Public Health Association (1971).
- z. Barium, Selenium, Beryllium, Antimony, Molybdenum, Thallium, Tin and Titanium. Samples evaporated, acidified and analysed with a Jarrel-Ash atomic absorption unit.
- z'. Lindane, DDE, Endrin, Aldrin, DDD, Chlordane, Heptachlor, DDT, Methyoxychlor, Heptachlor Epoxide, Dieldrin, Endosulfan, Methyl Parathion, Toxaphene and Polychlorinated Biphenyls. Electron capture gas chromatography.
- E. Stormwater Load Diagram Methods. Steps required for the determination of loadings during the 25-26 July, 1974 storm at stations 2, 4 and 8a are presented below:
- 1. Stage readings at sampling times were converted to cubic feet per second (cfs) with the use of established stage-discharge relationship curves from stations 2 and 4; Station 8a data was converted from direct discharge readings. Curves were filled in during sudden stage increases or decreases by extrapolating additional discharge readings from stage recorder charts. A series of discharge readings was than established at varying intervals for each station.
- 2. Discharge in total cubic feet between real and extrapolated sampling times was calculated by multiplying cfs times the number of seconds between points.

- 3. Known sampling concentrations and extrapolated concentrations were established in correlation with discharge points on the hydrograph. Number of pounds of a given parameter per cubic foot of water in a given time period were calculated as equivalents of mg/l and expressed as 0.0000624 lb/ft³.
- 4. Total loadings were calculated as the sum of the pounds of parameter/cubic feet of water discharged during the various time intervals.
- 5. Load diagrams were plotted and are presented in Figures C-36 through C-59. F. Stormwater Runoff Load Analysis. The following information was available for developing load-frequency curves for storm runoff in the Pine Bluff area:
- 1. Measured concentrations of various parameters for various storm events covering portions of the storms at seven stations.
 - 2. A-35 stage charts for most of the storms.
 - 3. Stage-Discharge curves for most of stations monitored.
 - 4. Measured discharge for some of the storms at some of the stations.
 - 5. Volume-frequency relationships.

Using the A-35 charts, stage-discharge curves, and measured discharges, hydrographs were developed which were assigned frequencies from the volume-frequency relationships. Most of the frequencies were less than three months with the exception of the Lower Caney Station which had one storm with a frequency of 2.5 years.

Total loads of the various parameters for particular storms were developed on a "weighted average" basis. A concentration at a particular point in time was weighted according to the estimated or measured discharge at that point in time to develop a "weighted average" for the total storm event. This "weighted average" was multiplied by the total volume under the hydrograph for the storm to get total load. This total load was assigned the same frequency as was developed for the estimated volume.

Next these observed total loads were plotted verses frequency. Several methods were tried to extrapolate this data to the 10-year frequency (most of the storms monitored were in the two to three month range or less). The method finally used to arrive at average annual loads is described as follows:

- 1. The observed points were extrapolated to the 0.25 year frequency as a straight line (it was assumed that concentrations would stay the same in this range).
- 2. The curve was extended to other frequencies based on the concentration dropping one-half for each succeeding time period. For

the Lower Caney Station, the curves were extended from observed data points since data on a 2.5-year frequency storm was available.

After average annual loads were calculated for each station, these data were used as the base year (1974). Future stormwater quality was then projected as per cent change for the years 1985, 2000 and 2020 and quantified from base load data.

G. Quality Control Program. Environmental Protection Agency (EPA) reference samples were tested for nutrients, minerals, oxygen demands, trace metals and pesticides throughout the course of the study. The purpose of this quality control program was to insure accurate results in all phases of water quality testing by aiding the analysis laboratory in rectifying any detection difficulties. When EPA reference sample inaccuracies were noted, the involved laboratory was notified immediately and steps were taken to correct the problem.

Table C-1 BASEFLOW WATER QUALITY DATA

7.8 8.0 7.6 7.3 7.8 7.8 6 7.8 7.4 7.6 9.2 7.7 7.4 10c 7.7 6.9 7.9 7.5 8.6 7.8 7.0 7.5 7.5 7.6 8.3 7.5 8.1 10b 8.3 9.3 8.0 8.3 7.9 8.7 9.3 8.2 9.2 8.2 2.6 85 8.0 7.1 108 7.9 8.6 8.0 8.6 8.0 7.5 6.8 7.7 7.3 7.2 7.1 ક 7.8 8.9 7.9 7.2 7.3 7.9 7.2 7.5 7.5 8.4 98 9.1 2 7.1 6.7 7.2 7.2 7.0 7.0 6.8 7.2 6.5 7.1 8 STATION NUMBER 6.6 7.1 6.6 6.5 6.5 6.9 6.8 6.8 6.7 9.9 6.9 6.3 6.5 6.8 ±. 6.7 4.9 6.7 품 6.5 6.3 6.3 6.5 6.8 6.5 6.8 6.7 5.9 6.6 6.9 6.9 6.9 9.9 6.7 6.7 6.6 7.8-7.6 6.9 6.3 6.3 5.8 6.5 6.3 6 6 6 5 8 7 8 7 6.6 9.9 6.3 6.5 6.1 6.7 2 6.2-6.8 6.9 6.9 6.8 6.9 7.20 6.7 4.9 6.5 6.9 6.9 2.6 66.8 5.6 4.9 6.5 6.9 7.0 7.0 66.5 6.3 6.2 666 666 666 4.9 3 6.8-7.0 7.3 7.5 7.1 2 5.8 6.0 6.0 6.2 6.3 6.0 40000 6.2 $\frac{6.1}{6.1}$ Mar. 12
Mar. 26
Apr. 11
Apr. 25
May 23
May 23
May 23
Jun. 6
Jun. 20
Jul. 11
Jul. 26
Aug. 22
FALL Sep. 5 Sep. 17 Oct. 3 Oct. 17 Nov. 21 WINTER Dec. 12
Dec. 26
Jan. 9
Jan. 23
Feb. 6 SAMPLING DATE SPRING

Table C-2 BASEFLOW WATER QUALITY DATA Alkalinity (mg/l CaCO₃)

							1						
SAMPLING						STATION	◚	ł					
DATE	٦	5	3	17	5	9	7	80	98	g	108	105	100
SPRING Mar. 12	6.5	5.7	5.0	56.5	15.0	4.5	0.μ	51	i 				
Mar. 26	0.4	59.5	80	57.5	18.5	5.2	20	62.5	49	84	80	90	83
Apr. 11	7	57.5	13.5	100.5	19	7.5	32	73			. 1		
	7	26.5	4.5	21)]	5	8	84	94	747	79.5	9	2
1	7	62	14.5	72	21.5	8.5	29	09				1	
May 23	3.5	58.5	11	50	20	7	18	59	47	46.5	70	65.5	83
1	`		7	CC	3 -	8	7.5	7					
- 1		20.2	٦	7 03	77	2 5	200	36		0.17	50	56	53
L	7	2	77	3		17	7/1	3 6					
Jul. 11	28	65	28	131	09	27	65	83					200
Jul. 26	ካካ	₹9	30	99	49	30	7.1	71	67	93	69	73	87
Aug. 8	23	52	19	69	56	23	59	77					
Aug. 22	29	99	33	54	†††	28	55	78	68	127	₇₉	79	101
								,				_	
Sep. 5	7	140	6	34	10	3	37	101			*		.0.
Sep. 17	7	97	5	36	12	13	34	76	50	59	89	83	121
	9	0,,	88	95	15	20	748	84					
Oct. 17	19	1	21	20	18	21	26	82	72	68	90	86	92
	9	99	10	76	29	7.0	54	88					
Nov. 21	2	61	8	69	25	9	30	99	55	61	8	81	200
						,							
	10	73	5	32	14	9	20	55					
Dec. 26	5	22	8	7,7	16	2	12	55	NS	55	87	76	8
	7	99	10	124	13	6	21	93					
Jan. 23	19	59	11	110	19	9	15	59	65	63	75	74	75
1	6	57	9	87	17	10	13	77					
Feb. 20	10	09	15	93	14	14	15	87	57	58	79	7.7	74
MEAN	12	75	16	99	22	12	31	73	96	1 9	75	75	81
RANGE	3.5-	22-	-20	21-	-65	-2°		148-	41-	1.22-	50-	- 200	153-
	717	0).	00	131	20			707	ا ا	77	7	 	

Table C-3 BASEFLOW WATER QUALITY DATA Water Temperature (^OC)

;	٠	,				a ina a radimi	(A) A:						
SAMPLING						STATION	N NUMBER						
DATE	1	2	3	7	5	9		8	98	9,6	108	10b	10c
	17.3	6.45	18.9	19.0	20.0	16.0	17.5	18.2					
Mar. 26	12.0	23.0	10.9	11.5	11.6	8.2	10.3	13.1					
Apr. 11	14.1	19.7	16.5	17.1	17.6	14.0	15.0	18.0					
	13.1	16.6	16.1	17.5	18.0	13.5	15.8	18.0					
	17.4	23.0	20.0	22.0	22.5	17.6	20.0	23.2					
May 23	19.2	23.5	21.5	22.8		19.0	21.2						
SUMMER Jun. 6	20.2	26.1	21.5	24.0	23.3	19.2	21.0	23.0					
Jun. 20	21.3	25.8	24.1	26.2	1.		23.8	24.8					
Jul. 11	23.9	25.8	29.0	28.0	29.0		26.5	26.1					
Jul. 26	54	26.0	28	28.0	28.0	25.0	26.5	25.5					
Aug. 8	23.0	26.0	27	26.5	27.0	23.0	24.5	24.5					
Aug. 22	23.1	24.2	27.2	26.0	27.4	23.8	25.5	25.0					
FALL	\	,		,	,	1	1	C					
Sep. >	16.5	18.0	20.5	19.0	20.0	17.5	17.5	16.0					
Sep. 17	18.5	21.5	20	21.0	21.5	18.0	19.0	20.5					
	16.0	21.5	19	22.5	22.0	15.0	16.0	15.5					
Oct. 17	17.0	17.5	16.5	16.0	16.0	13.5	15.0	15.5					
	11.0	14.5	12.5	15.0	14.0	11.5	13.0	12.5					
Nov. 21	10.5	8.6	14.0	12.5	13.0		11.5	11.0					
	,					,							
	6.5	17.5	10.4	7.0	7.0	0.9	5.5	7.0					
	6.3	0.9	6.0	7.0	7.0	0.9	7.0	6.0					
	8.5	20.5	11.0	11.0	0.6	8.0	8.0	9.5					
Jan. 23	4.5	10.5	0.9	6.5	0.9	4.5	2.0	6.5					
Feb. 6	7.5	16.5	6.0	8.0	9.0	8.0	8.0	7.0					
Feb. 20	6.5	10.5	9.5	10.0	10.0		8.0	9.0					
MEAN	14.9	19.5	17.2	17.7	17.9	14.6	15.9	16.7					
RANGE	4.5- 24.0	-6.0- 26.0-	-0-9 29:0-	28:5-	29.0-	25.8	26.5	26.1					

Table C-4
BASEFLOW WATER QUALITY DATA
Dissolved Oxygen (mg/1)

						}	(6)						
SAMPLING						STATION	ON NUMBER						
DATE	1	5	3	77	5	9	7	8	98	જ	108	105	10c
SPRING Mar. 12	7.9	7.6	7.25	3.2	4.5	8.1	ر. در	2.5					
Mar. 26	10.0	9.1	8.8	7.25	8.4	10.4	9.3	7.05					
	7.8	8.6	6.0	9.35	5.8	7.4	7.2	2.0					
Apr. 25	8.2	6.5	4.3	1.75	4.55	8.0	4.9	2.4					
	6.2	6.8	1.0	1.5	3.0	5.9	1.0	5.8					
1	7.0	6.8	4.8	0.2	2.3	6.8	2.4	5.7					
SUMMER	t		,	,	,	,							
ľ		2.5	3.8	7.7	3.1	9.	3.2	7.5		1			
	5.75	p. 4	2.95	2.0	1.5	5.7	1.2	1.8					
Jul. 11	0.7	8.6	3.5	2.0	3,3	3.9	0.0	2.8					
Jul. 26	10.4	5.7	5.4	2.2	3.2	0.3	0.2	3.4					
Aug. 8	1.0	9.2	5.5	5.0	3.2	1.5	0.1	1,1					
Aug. 22	1.5	7.3	1.8	2.8	2.8	1.6	. 35	3.8					
	7 7	- α	7 '	,	-								
100		- 	1	7:7	7		7:5						
Sep. If	6.2	8.3		1.8	4.3	2.1	1.8	4.7					
	4.5	8.7		4.6	5.4	0.9	9.0	5.6					
Oct. 17	0.4	10.1	7.0	5.0	6.2	1.7	0.1	5.2					
Nov. 7	7.2	10.0		4.7	3.3	ή•ή	0.8	6.1					
Nov. 21	7.8	9.8	7.1	4.1	7.4	8.2	3.7	8.0					
	10.6	9.1	10.3	6.7	9.1	11.1	7.6	10.2					
	10.6	10.7	9.5	6.2	7.9	10.4	7.4	10.2					
Jen. 9	9.9	8.8	9.2	3.6	8.1	10.1		8.0					
	10.9	9.6	11.1	4.7	6.6	11.5	9.3	9.1					
- 1	12.5	11.2	11.6	9.4	10.5	12.4	10.4	12.0					
Feb. 20	10.1	9.8	9.8	5.0	8.4	11.5	7.7	9.1					
MEAN	6.7	8.4	4.9	3.9	5.3	6.5	3.9	5.9					
RANGE	12.5	5.7-	1.0-	0.2- 9.4	1.5-	0.3- 12.4	0.1- 10.4	12.0					

Table C-5 BASEFLOW WATER QUALITY DATA Free Carbon Dioxide (mg/1)

1

SAMOT TWO						CT mA m.S.	HARMIN N						
DATE	7	2	3	7	5	9		8	98	98	108	10b	10c
1	10.1	7.6	90.9	13.1	10.1	6.06	13.13	13.1					
Mar. 26	†0°†	†0 †	90.9	70.7	7.6	5.6	5.05	90.9	2.43	3.04	20.2	1.21	0.0
1	9	7	8.5	7.5	8	8	1	10					
•	80	8.5	10	12.5	9.5	5.0	10.5	12	0.5	2	2	2.5	1.0
•	9.5	5	14	21	11	0.6	12	10					
May 23	6	7	10	17	12	5	13	10	0	2.5	3	5	5
				ł									
c o		7	10	15.5	12	٩	13	10.5					
Jun. 20	12	9	16	13	16	18	15	13	0	0	2	77	3.5
Jul. 11	15.5	†7	ŌΙ	16	15	13	15	8					
Jul. 26	17	10	12	17	11	19	22	10	7.0	14	0	3.0	3.0
Aug. 8	12	6.9	0.6	14	11.0	16	21	12					
Aug. 22	12	6	6	15	11	12	17	8	9	7	2	4.0	5
FALL													!
Sep. 5	7	77	14	14	9.0	8	11	11					
Sep. 17	6	7	ηT	91	10	11	12	13	0	0	0	0	4.0
Oct. 3	9	5	6	20	7	13	16	16					
oct. 17	17	9	0.7	75	9	0.6	18	13	14	3	3	3	2
Nov. 7	~	m	0.6	0.7	7	0.9	11	7.0					
Nov. 21	2	1	5	6	8	5	6	8	8	2	3	3	1,
WINTER	٠	,	1	t	1	Ó							•
ייבוני די	7	٥	4	_	‡	V)	7	0				Ţ	
Dec. 25	٣	3	3	7	††	4	9	5	NS	7	5	æ	5
Jen. 9	7	2	9	23	5	3	7	В					
Jen. 23	5	3	5	12	3	3	17	5	3	2	3	3	3
reb. 6	7	5	2	8	17	9	5	5			ن	1	+
Feb. 20	m	3	9	23	ή.	3	ή,	8	3	2	0	2	1
MEAN	7.0	5.4	8.7	13.4	9.8	8.2	η.ιι	9.5	3.4	5.9	2.1	3.2	3.0
RANGE	, c	, ,	h.	<u>-</u> †	4	- <u>2</u> -	-17	-2.	-0	-0	0.	-lo	-0
	17		16	~~		0	S S S		0	<u>.</u>	<u></u>	×	~

Table C-6 BASEFLOW WATER QUALITY DATA True Color (Platinum-Cobalt Units)

SAMPLING						STATION	N NUMBER						
DATE	1	2	3	†	5	9	7	8	98	જ	10e	10b	100
SPRING Mar. 12	25	10	10	30	5	04	80	15					
Mar. 26	2	25	101	10	10	5	10	710	5	5	10	5	5
	15	35	09	8	35	25	9	30					
	2	07	35	02	80	50	30	38	10	15	20	35	15
	8	75	80	4.5	105	55	90	20					
May 23	120	25	140	90	140	105	130	9	25	22	30	1,5	35
œ.	110	135	110	170	170	110	140	100					
ľ	145	8	180	75	150	125	145	85	25	10	55	80	9
Jul. 11	105	g	190	165	195	110	135	22					
	120	70	55	80	96	130	80	50	25	140	20	20	15
Aug. 8	100	20	02	45	70	140	20	09					
Aug. 22	100	70	80	70	03	140	120	745	8	8	30	30	15
l	00 5	6	00.5	00	100	100	011	00					
of the k	TOO	OOT	150	TOO	100	207	277	2	١		Ę	6	000
Sep. 17	947	017	160	120	120				20	77	2	77	7
	120	140	160	09	140	200	110	0,2					
0ct. 17	160	20	80	8	70	200	8	9	50	50	20	20	20
Nov. 7	100	745	140	40	110	120	120	100					
Nov. 21	09	55	110	70	90	100	120	100	55	25	20	30	75
				1	((1	-					
	120	180	140	110	90	001		0,7			100	30	S
	110	165	55	140	90	110	QQ	140	3	42	62	25	2
1 7	20	017	50	60	90	50	80	70					
Jan. 23	9	70	90	130	80	09	100	110	55	æ	09	9	20
	09	180	80	110	90	110	110	120					
Feb. 20	70	517	110	160	90	70	120	120	55	8	50	9	8
MEAN	89	73	96	98	65	98	95	73	4.5	36	30	36	38
RANGE	169-	10- 180	10 - 190	10 - 170	5- 195	5- 200	20 - 145	115- 140	-56	80-	10-	- 68	-58

Table C-7 BASEFLOW WATER QUALITY DATA Turbidity (Jackson Turbidity Units)

CAMPETUC.						STATION	N NUMBER						1
DATE	1	2	3	7	5	9	7	80	98	8	108	10b	700
1.		8	S	Ç.	35	55	7.5	35					
Mar. 12	22	77	200	77	35	15	27	22	35	10	20	7	10
- 1	2	OT (25	215	166	100	205	1,5					
Apr. 11	30	6	77	77	216			1-1-1	CC	C.	17	8	15
Apr. 25	10	9	7	12	22	2	2	166	2				
May 9	10	20	20	20	2	2	의	77]	3,	C.F	0	30
May 23	50	5	35	25	22	25	0K	22	27	77	27	27	
æ					1	ı (<u> </u>	<u>.</u>					
Jun. 6	17	25	30	50	50	35	077	7			7	10	(3
Jun. 20	36	25	09	28	14.1	38	747	9	5	. 22	#7	7	-
1	5.5	14.1	23	οτ	15	25	12	35					o o
1	180	45	30	10	30	<80	15	8	×80	\$ \$	88	020	Ş
A110. 8	28°	\% %	<80 80	, 80 80	<80	<80	×80	89					Q.
A10 %	\$ \frac{2}{2} \text{\$\frac{2}{2}} \$\frac	177	×80	×80	<80	<80	<80	89	88	105	× 80	080	3
PALL													
Sep. 5	80	8	×80	×80	80	°89	8	08°		į	S	٩	og v
Sep. 17	, 89	×80	<80	<80	<80	<80	×80	8	085	89	00>	900	3
Oct.	86 V	×80	<80	<80	<80	<80	08° ×	×80			3	00	00,
Oct. 17	88	800	, 86 86	<80	<80	<80	\$ \$	8	<80	88) 86 86		200
	& &	, 80 ,	, 80	<80	<80	<80	ჯ 29>	8			3		7
Nov. 21	, 80 80	, 88 80	× 80	<80	<80	<80	<80	\$ 8	<80	\$ \$) (80)	700>	7
			,	č	G	ď	,	08,					
Dec. 12	<80	170	089 089	Ş	Ş	36		S C	og,	ď	80	^80	<80
	<80	290	×80 80	28) (8)	000	9		337				
Jen. 9	80	<80	<80	SS SS SS	8	90	99		00,	00,	SK.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<80
Jan. 23	% %	×80	<80	<80	×80	, 80 80	\$ \$	000	200	200	3		
Feb. 6	8,	100	<80	<80	<80	, 80 80	, 80 ,	080	ě		OB.	, RO	< 80
	, 80 80 80	×80	^ 80	<80	<80	×80	<80	08,	000	000	3		
	60	75	င့်	55	59	09	61	09	61	9	59	23	79
The state of the s	200	1	\\ \	į.		1	ė,	11.	10-	10-	10-	<u>-</u> 2	-010 -076
KANGE	2	290	80	80	80	88	80	33	700		77	***	

Table C-8
BASEFLOW WATER QUALITY DATA
Secchi Transparency (cm)

SAMPLING						STATIC	STATION NUMBER						
DATE	1	2	3	7	5	9	7	8	98	જ	108	10b	10c
SPRING													
Mar. 12													
Mar. 26									47.6	66.3	9.04	22.9	63.5
Apr. 11													
Apr. 25									53.3	61.0	67.3	48.3	63.5
May 9													
May 23									64.8	8.49	77.5	77.5	53.3
SUMMER													
Jun 20										-	,		
Jul. 11									5.60	T + 1	2.9	72.4	27.9
Jul. 26									36.8	27.1	70.5	68.7	70 1
Aug. 8													
Aug. 22									28.0	25.4	63.5	73.8	68.7
FALL Sen 5													
Sep. 17									7.0.6	c 8'	0 99	7 87	2 63
Oct. 3									2	7.2	2	1000	7
Oct. 17									73.2	70.1	68.6	62.5	68
Nov. 7													
Nov. 21									62.5	79.2	79.2	56.4	16.5
WINTER Dec. 12													
Dec. 26									30.5	9,40	74.8	73.5	54.8
Jen. 9													
Jan. 23									84.46	86.36	53.3	45.7	55.3
Feb. 6													
Feb. 20									57.9	86.8	47.2	39.6	39.6
MEAN									54.1	4.59	66.1	59.5	54.5
RANGE									28-46 84-46	-9:46	19.6-	22.8-	27.5

Table C-9 BASETLOW WATER QUALITY DATA Total Coliform Bacteria (per 100 ml)

						CHAMTON	N NIMBER						
SAMPLING	ļ-	6	3	77	5	9		8	98	જ	108	10b	10c
DATE	1	,	,										
	30	000	טטט טבור	טטט אַצרי	30,100	84,800	121,000	130,000					,
Mar. 12	23,000	36,000	000 1	317 000	18,000	_	16,100	47,000	13,300	157,000	3.480	12,100	10,800
	1,300	1	2000	200	1,500	3 000	200	630,000					
Apr. 11	4, 700	9,500	2,400	14.500	4,700	000	+-	125 000	000 - 11	6.200	5,600	9,300	009.9
Apr. 25	8,900	1	7,600		7	19,500		25,000	222				
	6,800	딦	9,700	146,000	4 000	10.400	10.200	0000	000	500	750	120	009
May 23	36,000	200	7,700	5,300	T, 600	2,200	4 (00	3,700					
	008	002.01	300	9,500		7	12,400	15,100				004	007 6
Tim. 20	76,000	1_	62,000] n.		1_1		174,000	7,100	960	T 30	3	2000
1	143,000	63,000	81,000	148,000	10,500	23,000	16,800	20,200			000	805	700
100	11.000	1	5, 400	,	2,900	16,400	23,500	13,100	78,000	12,400	320	130	77
	7,100	1	006	27,000			_	75,000	11	,	001	001	110
Aug. 22	3,300		2,300	620,000	3,200	4,900	330,000	5,600	44 000	70021	237	Ŝ	
FALL				_			7	106 000					
Sep. 5	21,100	,_	_1	4		_1_	14,000		13 200	7,000	1.500	1,100	2,000
Sep. 17	15,500		!	4		2	12,000	T.	L.				
Oct. 3	6,600		_1	-	-]°	7	7	1_	001 01	73.000	22,300	158,000	13,300
Oct. 17	8,200	2,3	13	3	키	1	1	1	22121				
	610				4	-	Ç.	S QC	125,000	15.800	2,700	2,500	10,900
Nov. 21	1,200	100	14,100	252,000	92,000	136,000		1	75/100				
WINTER	000	C		60 000	63 000	12,000	19,200	71,000					
rec. r	203,500	100	_	15	┸	7	┡	7	760,000	5,700	3,600	1,300	0,100
Dec. 20	100,000	767	11 000	_	1	-	↓_	_				1	t
200	1		4	2	7,300		34,000	53,000	321,000	307,000	21,300	7,540	,300
7	1	O.S.	L	1_	122	L	9		- }			4	ν γ
L.	1,00	6	┸-	S	L	3,900	7,800	19,500	18,500	5,500	7,000	77	7
;		L	Ľ	[30.825	143,001	92,875	116,842	49,	5	177	5,195
MEAN	23,127	34,143	32,301	4700-		}-i		1	\	-006 -006		100	13 300
RANGE	143,000	291,000	254,000	5 626,000	63,000	193,000	330,000		9	1307,000	77		1

Table C-10 BASEFLOW WATER QUALITY DATA Fecal Coliform Bacteria (per 100 ml)

SAMPLING						STATION	N NUMBER						
DATE	1	2	3	7	5	9		8	98	9,6	10a	10b	10c
SPRING	3, 700	220	1.160	3,100	1.600	9,600	9,300	26,800					
Mar. 26	9	300	390	39,000	1,100	200	2,100	1,200	230	1,470	270	130	110
	OL.	9	200	500	300	110	530	216,000					
	300	750	210	630	260	280	220	1,010	300	110	80	120	200
May 9	22	51	131	069	32	260	300	610					
May 23	1,800	50	2,300	3,900	100	10	2,500	2,100	300	100	250	20	210
	71 300	6.910	6.300	002.9	1.830	13,000	5.500	10,300					
Jun. 20	109	2,200	180	3,500	210	1,100	320	7-7	230	0	10	140	240
Jul. 11	5,300	2,200	2,100	1,120	143	710	320	1,800					
Jul. 26	2,300	2,700	410	1	620	320	750	5,600	3,700	570	130	38	7.7
Aug. 8	300	210	0	2,600	100	0	9,100	_					
Aug. 22	210	730	320	3,400	220	700	2,600	110	2,700	130	0	0	0
FALL	002	יטטט ר	1 300	005 9	001 1	610	טטטר	14.100					
	280	00261	350	1 300	170	200	100	1	1.130	340	0	160	100
	2	70	80	140	01	50	0	2,100					
Oct. 17	日	0	120	<u></u>	2,200	210	130	860	81	890	10	110	170
Nov. 7	110	0	230	٣,	0	10	0	1,710					
Nov. 21	30	0	1,200	7	210	029	180	1,500	19,900	η 30	20	10	620
							`						
	790	0	3,100	1,210	950	046	260	+					
Dec. 26	1,030	2,600	001,9	2,700	350	3,100	. 550	6,900	9,200	30	04	0	230
Jen. 9	80		370	087	120	50	140	4,800					
Jan. 23	7	0	140		07	320	50	1,310	350	20	0	10	140
	70	Ö	920	1,	1,050	210	520	840					
Feb. 20	20	10	250		120	110	70	2,510	280	10	0	0	20
MEAN	915	1,021	191,1	754,4	645	1,229	1,531	13,186	3,200	342	68	62	176
RANGE	5.306	1	ł	%	0 0 0	13,000	300.	(U	~	1,470	270	160	620
	1225	I	ì	ı					Į				

Table C-11

TY DATA	(per 100 ml)
WATER QUALITY	s Bacteria
BASEFLOW V	Strep to coccus
	Fecal

SAMPLING						STATIO	STATION NUMBER						
DATE	1	5	3	77	5	9	7	8	98	9,6	108	10b	10c
SPRING Mar. 12	1.270	09	6,700	2,020	550	3,350	8,800	9,800					
Mar. 26	120	0	20	300	31	20	120	017	1,150	2,650	10	0	0
Apr. 11	01	300	09	200	210	50	100	18,000					
Apr. 25	7,00	260	180	580	160	0ħL	200	300	80	09	80	140	41
	240	20	21	1,500	72	280	93	260					
	730	0	880	092	230	0	720	130	20	0	0	0	10
SUMMER Jun. 6	2.700	1.120	טר#ינ	069	730	5.800	טוצ ו	082 L					
Jun. 20	380	170	181	160	51.	670	210	7	0	0	0	0	0
Jul. 11	1,250	370	80	230	330	780	140	250					
Jul. 26	1,900	830	140		380	310	180	019	1,390	30	0	0	0
Aug. 8	110	320	0	1,560	0	0	1,010	590					
Aug. 22	10	30	0	140	0	10	80	50	300	0	0	0	0
FALL Sep. 5	01	סננ	009	200	120	00	Uη	000 1					
Sep. 17	320	0	320	1.110	000	170	205	1.590	80	120	0.1	c	0,
	50	10	30	150	09	200	110	210	×				
Oct. 17	10	0	380	930	230	50	180	580	180	30	0	0	0
Nov. 7	0	0	0	3,300	0	0	0	1,100					
Nov. 21	06	0	1,800	1,400	150	790	110	550	017	10	07	110	130
WINTER													
Dec. 12	1,030	0	4,700	2,200	510	1,460	270	6,400					
Dec. 26	2,280	8,100	10,900	7,200	310	2,700	1,290	7,800	16,600	50	90	20	9
	30	0	110	80	210	50	10	0η6					
Jan. 23	0	0	_0	028	50	09	95	049	140	Ō	0	0	20
	30	0	570	067	590	160	019	1,050					
Feb. 20	0	0	190	10	50	04	30	044	190	0	10	0	0
MEAN	545	200	1,174	1,025	219	731	655	3,425	1,712	243	22	14	21
RANGE	2,280	8,100	10,900	-01° 7	3,350	5,800	0. 8.800	-01 -01 -01	-0 16,600	-049.2	-06	0-0	130

Table C-12 BASEFLOW WATER QUALITY DATA Biological Oxygen Demand (mg/l)

ONL MINE						CT MA TO	COCO MAN						
DATE	٦	2	3	77	5	9		8	98	%	108	10b	10c
1 .	,				0	1. 6	α 1	7 8					
	-T-0	7.4	4.1	V . V	6.7	0 -	0.6		٥	C 1	7	2 3	0 2
	1 C	1 - 0	† C	0.0.	, C	10	10.7	7.08 t		7.1		5	
Apr. 25	7.7	0.11	7.7	5.0	1.8	3,00	I	8.5	5.4	4.5	5.4	5.7	3.5
1	18	2.7		5.0	3.6	2.1	l	2.6					
May 23	3.1	2.5	3.8	6.8		4.5	5.4	3.3	9.4	3.3	4.1	3.8	2.8
	, ,	U	Li Li	C		, ,	- 1	ri C					
000	ر م م	7.7	10-2	73.7	0 -	1,01	7.7	2.69	0 9	7 5	4.9	5.0	2.2
Jul. 11	777	65	30	32	77	73	29	29					
	8	3	26	25	14	5.0	13	19	6.7	11	6.3	>7.6	4.9
	μ.7	3.3	6.2	5.9	5.2	3.8	51	5.8					
Aug. 22	3.4	1,1	7.0	7.1	3.5	5.9	15	5.4	6.2	8.1	7.2	4.1	2.7
		1	(,	ı	-	-	0					
odb.	7.7	7.7	2.8	1.4	4:2	4.4	7.5	2.2				,	4
Sep. 17	4.3	0.1	2.5	3.7		3.0	3.6	21	3.6	5.5	1.0	3.7	0.0
0ct. 3	5.8	η.η	4.9	1.8	2.2	6.9	6	7.5					
Oct. 17	2.5	2.2	2.0	15	0.7	2.7	4.2	2.2	2.8	4.2	2.3	1.0	0.8
Nov. 7	1.9	1.2	3.4	4.1	2.6	5.5	7.3	5.6					
Nov. 21	3.1	3.3	3.7	μ.7	3.6	2.4	7.4	5.5	6.9	٦٠ ٦	5.8	5.9	3.2
	,			(-					
	3.6	4.0	2.4	5.8	3.1	3.8	3.(4.2				7	
	4.2	5.3	4.4	14.7	2.9	3.5	4.9	5.4	4.8	3.6	5.0	3.4	2.9
Jen. 9	3.3	7.0	3.7	9.4	7.6	5.3	5.6	4.9					
	1.9	1.6	7.5	3.7	1.9	1.0	5.6	3.6	3.3	8.4	7.4	4.0	3.4
	5.8	3.6	9.4	3.4	5.2	7.2	6.3	2.9					
Feb. 20	3.6	1.3	2.7	3.1	•	1.4	1.1	1.2	3.6	3.8	4.2	3.6	5.1
MEAN	5.7	1.9	6.3	6.7		7.7	11.3	10.5	4.9	5.5	4.9	7.7	3.2
RANGE	1.9-	0.1- 65	1.2-	3.7-	-2-	1.0-	2.6 -	-5.2- 62	2.8-	3.3-	1.6-	1.0-	0.6- 5.9
	-		7.7	1	-		×						

Table C-13
BASEFLOW WATER QUALITY DATA
Chemical Oxygen Demand (mg/1)

SAMPLING						STATIC	N NUMBE!	_					
DATE	1	5	3	- -	5	9	2 9	8	98	જ	108	10b	10c
SPRING Mar. 12	22	8	25	16	19	27	77	11					
Mar. 26	10	80	11	23	16	15	19	7	8	12	8	6	6
Apr. 11	4.9	ħ.9	₹.9	11.2	>45	16	13	9.6					
	5₫	36	36	1	28	26	39	23	14.1	39	34	27	17
May 9	21	8	6	5	32	20	20	7					
May 23	36	5	22	75	14	5	5	5	25	26	18	14	24
SUMMER Tim 6	23	30	25	30	27	30	30	30					
Jun. 20	22	18	,,,	24	31	18	35	26	77	24	33	20	17
Jul. 11	34	745	24	48	43	84	1,8	0,1					
Jul. 26	32	10	7	30	17	31	42	19	23	63	20	174	7
Aug. 8	31	9	31	41	27	17	56	62					
Aug. 22	35	25	9†	25	43	22	33	31	34	27	18	43	29
FALL Sep. 5	25	ηε	25	3-1	23	1,1,	21	23					
Sep. 17	18	31	53	17	27	18	14	27	28	36	25	38	34
	36	17	25	30	23	17	21	22					
Oct. 17	22	L	27	54	11	33	29	14	10	13	33	28	22
Nov. 7	29	25	16	19	13	10	19	16					
Nov. 21	22	36	14	18	25	25	14	33	25	22	30	21	25
WINTER	į į		,		(1					
	77	TO	٥٦	27	2/2	23	127	T-4					
200	22	14	17	26	26	25	28	4]	14	23	31	18	22
Jen. 9	17	21	17	22	25	21	25	12					
Jan. 23	*	32	39		21	17	25	21	22	25	23	31	31
Feb. 6	27	17	22	18	27	27	25	18					
Feb. 20	11	22	19	36	25	6	14	22	23	14	23	33	31
MEAN	5ħ	20	23	26	25	23	25	22	23	27	25	25	22
RANGE	- 4 -9	5- 145	- <u>7</u> -	1,84 1,84	11-	1,84 	1,57– 1,83	- 1	8- 17	13 - 63	-8 علا	9- 13-	7- 34

Table C-14
BASEFLOW WATER QUALITY DATA
Ammonia Nitrogen (mg/l)

						10100							
SAMPLING DATE	-	2	3	7	5	9	7	8	98	98	108	100	10c
	5	, c	71.0	û C	50	- C	0%	700					
Mar. 26	0,19	0.20	0.28	0.33	0.27	0.10	0.20	0.26	0.36	0.26	0.30	0.26	0.31
	0.15	0.16	0.15	0.20	0.16	0.36	0.53	2.87					
Apr. 25	0.19	0.15	0.13	0.25	0.12	0.08	0.19	0.13	0.12	0.12	0.08	0.11	0.08
	0.23	0.21	0.42	0.90	0.39	0.33	0.61	0.21					
May 23	0.07	0.18	0.14	1.20	0.39	0.07	0.08	0.08	0.07	0.34	0.23	0.08	0.07
1	,		7			I d	70 0	71.0					
	0.08	0.05	0.04	0.33	27.0	10.0	07.0	0.10	800	000	21.0	0.08	0
	0.16	0.09	0.33	0.20	0.37	0.17	0.33	9 3	00.0	65:5	77.0		3
Jul. 11	0.21	0.10	0.16	0.40	0.86	0.23	0.30	0.21				1, 0	000
Jul. 26	0.13	0.08	0.23	0.78	0.11	0.15		0.39	0.25	0.39	0.07	0.15	0.08
Aug. B	0.07	60.0	70.0	90.0	0.19	0.64	2.4						
Aug. 22	0.05	0.16	0.36	0.50	0.06	0.25	4.67	0.31	0.07	0.17	0.56	0.05	90.0
ļ	7. 6	0,000	9, 0	,(,,	1,50	7,5	0	,					
Zep.	0.10	0.19	0.10	0.14	0.14	0. L4	00.0	21.0			000		T.
Sep. 17	0.08	0.17	0.08	0.61	0.08	0.18	1.09	0.10	0.09	0.14	0.08	0.05	90-0
0ct. 3	0.14	0.12	0.08	1.48	0.07	0.28	1.17	0.28					
Oct. 17	0.23	97.0	0.24	0.28	0.24	0.39	0.86	0.62	0.30	0.37	0.59	11.0	0.37
Nov. 7	0.50	0.23	07.0	0.87	1.04	0.25	1.09	0.91					
Nov. 21	0.37	0.33	0.39	0.25	0.23	0.28	0.26	0.21	0.21	0.35	0.28	0.51	0.29
WINTER													
Dec. 12	ı	-	-	1	1	-	1						
Dec. 26		-	-	-	_	_	-	-		-	-		
	0.1	0.1	1.0	1.75	1.8	0.1	0.2	0.3					
Jan. 23	0.1	0.1	0.1	1.4	0.2	0.1	0.3	0.4	0.1	0.1	0.1	0.1	0.1
	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.1					
Feb. 20	0.1	0.2	0.1	0.9	0.1	0.1	0.2	η.0	0.1	10	0.1	0.1	7.0
MEAN	0.17	0.17	0.19	0.59	0.33	0.21	0.71	0.41	0.16	0.22	0.23	0.15	0.15
RANGE	0.05-	<u> </u>	0.04-	10.08-	9.0	-73.0	P. 63-	0.08 2.87	-20°0 0°36	0.09-	0.07- 0.59	0.05 - 0.51	0.06- 0.37

Table C-15
BASEFLOW WATER QUALITY DATA
Nitrate Nitrogen (mg/1)

SAMPLING		2	3	7	5	STATION 6	7 T	8	98	æ	108	10b	100
SPRING Mar. 12	0.31	0.2 8	9,10	0.74	0.42	0.39	0.55	0.48					
Mar. 26	0.15	0.15	0.26	97.0	0.42	0.18	0.68	0.22	0.20	0.22	0,48	0.22	0.15
•	0.20	0.30	0.30	0.70	1.30	0.20	1.00	09.0					
Apr. 25	0.20	0,40	0,40	09.0	0.40	0.40	0.80	0.40	0.30	0.20	0.30	0.30	0.40
•	0.25	0.20	0.20	0.14	0.38	0.29	0.54	0.14					
•	0,40	0.30	0.50	09.0	0.50	09.0	0.70	0.30	0.50	1.00	0.30	0.50	0.80
SUMMER	67.0	9 0 (20 0	69 0	(Z)	100 [0 57	ריל ט					
100	0.41	0.29	0.45	0.32	0.47	0.45	0.87	0.38	0.23	0.41	0.23	0.41	0.57
	0.18	0.16	0.11	0.41	0.27	1.10	0.27	0.20					
Jul. 26	0.45	0.27	0.25	0.56	0.38	5.5	0.59	0.34	0.23	0.32	0.25	1.3	0.43
Aug. 8	0.36	0.14	0.43	0.61	0.59	0.36	0.61	0.61					
Aug. 22	0.47	0.18	0.27	0.66	0.34	0.54	0.68	0.34	0.25	0.63	0.25	0.18	0.23
FALL Sep. 5	0.54	0.52	56.0	54.0	0.54	0.77	0.95	0.93					
H	1.18	0.41	0.45	0.63	0.59	0.66	0.93	0.97	0.38	0.36	0.25	0.36	0.43
Oct. 3	0.41	0.47	0.50	1.15	1.22	0.97	1.10	0.36					
0ct. 17	0.45	0.15	0.26	0.50	0.43	0.68	1.60	0.40	0.38	2.56	0.05	94.0	0.13
Nov. 7	2.51	2.24	3.11	3.04	2.98	1.88	2.57	5.28					
Nov. 21	0.15	1.15	0.41	1.38	0.63	-	2.31	0.34	0.25	0.22	0.16	-	0.69
WINTER Dec 12													
26.00	,	\ \ \ \ \	100		ć		\ -	\ \ -	7 0	c			26
				179	1	7.7.	2-1	·l	2	7:2			
Jen. 23		, ~	, °	200	0.5	7.0	100	9.0	0.5	10	7.0	7.0	9.0
Feb. 6	0.3	0.2	0.3	1.7	9.0	4.0	7.0	9.0					
Feb. 20	-	9.0	9.0	0.4	0.3	0.2	0.7		0.3	0.2	0.2	2.0	0.4
MEAN	0.48	94.0	0.52	92.0	19.0	1.02	46.0	0.72	0.34	0.62	0.67	1.23	0.62
RANGE	0.15-	9.14-	0.11-	0.14- 3.04-	9.27-	0.20-	0.27-	$\frac{0.14}{5.28}$	0.30-	2.56	0.05-	0.18-	2.63-

Table C-16
BASEFLOW WATER QUALITY DATA
Nitrite Nitrogen (mg/l)

						•							
SAMPLING						STATION	N NUMBER						
DATE	1	2	3	7	5	9	1 :	8	98	ЭЪ	108	10b	10c
	00.00	0.03	00.00	0.03	00.00	00.00	0.0	[0.0]					
Mar. 26	0.00	0.00	0.00	0.01	0.00	0.00	0.05	וט.0	00.0	00 0	0	00 0	00 0
	0.01	0.02	0.01	0.04	0.01	0.00	0.00						
	0.00	0.00	0.00	0.01	0.00	0.00	0.00	00.0	00.0	0.00	00.0	0.00	0.01
	0.00	0.04	0.00	0.02	0.01	0.00	0.02	00.0					
	0.00	0.02	0.00	0.01	0.00	0.00	0.02	0.00	00.0	00.0	00.0	00.0	00.0
SUMMER	0.00	00.00	00.00	0.01	00.00	00.00	10.0	00.0				ı	
Jun. 20	0.00	0.02	0.00	0.01	0.00	0.00	0.05	0.00	00.0	0.00	00.0	0.00	00 0
Jul. 11	0.00	0.02	0.00	0.00	0.01	0.00	00.0	0.01					
Jul. 26	0.00	0.02	0.00	0.01	0	0.00	0.00	0.02	0.00	00.0	0.00	0.00	0.00
Aug. 8	0.00	0.02	0.00	90.0	0.01	0.00	0.01	0.04					
Aug. 22	0.00	0.04	0.00	0.01	0.00	0.00	0.00	0.03	0.02	00.00	00.0	00.0	0.01
FALL							,						
Sep. 5	0.00	0.01	0.00	0.07	0.00	0.00	0.03	0.00					
Sep. 17	00.00	0.04	00.0	0.14	0.02	0.00	0.20	0.02	0.00	0.04	00.0	00.0	0.03
0ct. 3	00.0	0.05	00.0	0.11	0.00	0.00	0.02	0.02					
Oct. 17	00.0	0.01	00.0	00.0	0.00	00.00	0.00	0.01	0.00	0.00	0.00	0.01	0.01
Nov. 7	00.0	0.02	00.0	0.04	00.00	00.0	0.00	0.01					
Nov. 21	0.00	0.02	0.00	0.01	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00
WINTER	00		00	.0	00	000							
Zec. Z	900	0.01	00.00	70.0	30.0	00.00	10.0	0.01		,		3	300
Dec. 20	0.00	0.00	0.00	0.01	00.00	0.00	0.02	0.01	0.02	00-0	00.0	00.0	00-0
Jen. 9	00.0	0.03	0.00	0.01	0.01	00.0	0.01	0.01					
Jen. 23	0.00	0.02	00.0	00.0	00.00	00.0	0.00	00.00	0.00	00.00	0.00	0.00	0.00
Feb. 6	00.0	†0°0	00.0	00.0	00.0	00.0	00.0	00.00					
Feb. 20	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00
MEAN	00.00	0.02	00.00	0.02	00.00	0.00	0.02	0.01	00.00	00.0	00.0	0,00	0.01
RANGE	0.00	0.00	0.00	0.00	0.00	0.00	0.01- 0.02	l	0.00- 0.02	0.00	0.00- 0.01	0.00-	0.00- 0.03

Table C-17 BASEFLOW WATER QUALITY DATA Total Kjeldahl Nitrogen (mg/l)

STAUTION NUMBER: 1						2			, , , , , , , , , , , , , , , , , , ,					
1 2 3 4 5 6 7 8 94 90 104 100 1 2 3 146 2.46 1.32 1.49 2.17 2.87 1.78 2.34 2.03 1.46 1.49 1.43 2.23 1.78 2.34 2.03 1.46 1.49 1.45 2.23 1.78 2.34 2.03 1.46 1.49 1.40 1.4	SAMPLING						STATIO	1						
1.33 0.93 1.46 2.46 1.32 1.49 2.17 2.87 1.86 1.89 1.89 1.19 2.23 1.78 2.03 1.86 1.89 <td< th=""><th>DATE</th><th>1</th><th>5</th><th>3</th><th>†</th><th>5</th><th>9</th><th></th><th>8</th><th>9e</th><th>ጭ</th><th>10a</th><th>10b</th><th>10c</th></td<>	DATE	1	5	3	†	5	9		8	9 e	ጭ	10a	10b	10c
1.144 1.07 1.44 2.08 1.23 1.76 2.34 2.03 1.86 1.89 1.99 1.44 1.07 1.44 2.08 1.10 1.10 1.10 1.10 1.18 1.10 1.18 1.10 1.10 1.18 1.10 1.10 1.18 1.10 <t< th=""><th></th><th>1.33</th><th>0.93</th><th>9ħ*T</th><th>5.46</th><th>1,32</th><th>6ħ.I</th><th>2.17</th><th>2.87</th><th></th><th></th><th></th><th></th><th></th></t<>		1.33	0.93	9ħ*T	5.46	1,32	6ħ.I	2.17	2.87					
1.0.46 0.76 1.16 1.86 1.10 0.88 2.32 4.34 0.38 1.41 1.83 0.99 0.91 0.45 1.16 1.26 2.02 1.41 1.83 0.40 0.64 0.53 1.41 1.83 0.99 0.93 0.43 1.60 2.20 0.93 1.20 0.64 0.53 1.50 0.60 1.20 0.74 1.50 1.60 2.20 0.93 1.20 1.90 1.30 1.30 1.30 0.53 1.20 0.60 1.20 1.30 0.53 1.20 1.40 1.30 0.53 1.20 1.30		1.44	1.07	1.47	2.08	1.98	1.43	2.23	1.78	2.34	2.03	1.86	1.89	2.00
5 0.91 1.55 1.86 2.02 1.41 1.83 1.07 2.19 0.38 1.41 1.83 0.09 1.05 0.40 0.10 2.22 1.29 1.00 2.10 0.140 0.53 1.50 0.60 1.20 1.05 0.74 1.50 1.60 2.20 1.20 2.20 0.74 0.53 1.50 0.60 1.50 0.70 1.50 0.74 0.53 1.50 0.60 1.50 1.20 1.50 1.70 1.10 1.60 1.20 1.20 1.130 0.75 1.40 2.00 2.20 1.20 1.20 1.70 1.10 1.60 1.10 1.20 1.20 1.10		97.0	0.78	1.16	1.86	1.10	0.88	2.32	4.34					
9 1.05 0.40 1.01 2.32 1.29 1.00 1.86 0.40 0.53 1.50 0.60 1.20 1.20 0.64 0.53 1.50 0.60 1.20 1.20 0.74 0.74 0.75 1.50 0.60 1.20 0.70 1.20 0.72 0.74 1.50 1.60 1.80 1.20 0.25 2.80 1.70 1.10 1.		0.91	1.55	1.86	2.02	1,41	1.83	1.07	2.19	0.38	1.41	1.83	0.99	1.18
3 0.99 0.43 1.60 2.20 0.93 1.20 2.20 0.93 1.20 0.64 0.53 1.50 0.60 1.20 1.20 1.40 2.00 2.00 2.60 0.25 2.80 1.70 1.10 1.10 1.80 1.10 1.30 0.53 1.20 2.00 2.60 0.25 2.80 1.70 1.10 1.10 1.10 1.10 1.30 0.53 1.20 2.20 4.5 1.9 4.5 1.9 1.3 2.8 1.70 1.10		1.05	0.40	1.01	2.32	1,29	1.00	1.88	0.40					
6 0.74 1.50 1.60 1.80 1.30 1.20 1.70 1.10 1.		0.99	0.43	1.60	2.20	0.93	1.20		0.64	0.53	1.50	0.60	1.20	0.46
1.20 1.40 2.00 2.60 0.25 2.80 1.70 1.10 <td< th=""><th>SUMMER</th><th>η 2 0</th><th>1.50</th><th>09 1</th><th>1.80</th><th>1.30</th><th>1.20</th><th>1.50</th><th>0.74</th><th></th><th></th><th></th><th></th><th></th></td<>	SUMMER	η 2 0	1.50	09 1	1.80	1.30	1.20	1.50	0.74					
1.30 0.53 1.20 2.20 4,30 0.90 1.30 1.30 1.20 2.20 4,30 0.90 1.30 1.7 2.9 4.3 1.7 1.9 8 2.0 0.65 1.9 4.5 1.9 1.3 2.8 1.7 2.9 4.3 1.7 1.9 1.3 0.65 1.9 4.5 1.9 1.7 6.8 1.7 1.9 2.3 1.2 0.9 1.24 0.93 1.53 2.02 1.55 2.17 2.9 1.7 1.7 1.7 2.9 1.7 2.0 1.7 1.7 2.9 1.7	Jun. 20	1.20	1,40	2.00	2.00	2.60	0.25	2.80	1.70	1.10	1.10	1.80	1.10	0.74
2.0 0.62 1.9 4.5 1.3 2.8 1.7 2.9 4.3 1.7 1.9 8 0.85 1.86 1.86 2.9 6.4 0.84 6.4 3.6 1.7 2.9 4.3 1.7 1.9 1.3 0.85 1.7 1.1 1.7 6.8 1.7 2.1 1.0 2.6 1.7 2.94 1.70 2.64 2.17 1.70 1.70 1.70 2.64 2.17 1.70 1.70 1.70 2.64 2.17 2.94 1.70 2.64 2.17 2.94 1.70 2.64 2.17 2.94 1.70 2.64 2.34 2.65 2.34 2.65 2.87 3.16 2.34 2.34 2.50 2.03 2.04 2.04 2.34 2.34 2.57 2.03 1 2.0 1.59 2.56 2.34 2.34 2.34 2.34 2.34 2.34 2.03 2 2.0 2.56 <th>Jul. 11</th> <th>1.30</th> <th>0.53</th> <th>1.20</th> <th>2.20</th> <th>4.30</th> <th>0.90</th> <th>1.90</th> <th>1,30</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Jul. 11	1.30	0.53	1.20	2.20	4.30	0.90	1.90	1,30					
8 0.85 1.86 2.9 6.4 6.4 3.6 1.9 2.3 1.2 0.9 2 1.3 0.8 1.7 1.7 6.8 1.5 1.2 0.9 1.53 2.02 2.24 1.55 2.17 2.94 1.70 2.64 2.17 1.70 1.70 3 0.79 0.25 0.85 1.87 0.67 1.10 2.65 1.10 2.64 2.17 1.70 1.70 1 2.03 0.94 1.87 3.58 1.72 2.87 3.16 2.34 2.34 2.34 1.57 2.03 1 2.70 1.69 2.55 2.34 2.65 2.87 3.16 2.34 2.03 2 1.09 1.32 1.64 2.31 1.83 2.26 2.19 1.36 2.03 2 - - - - - - - - - - - -<	Jul. 26	2.0	0.62	1.9	4.5	1.9	1.3	2.8	1.7	2.9	4.3	1.7	1.9	1.3
2 1.3 0.8 1.7 3.1 1.2 1.7 6.8 1.5 1.9 2.3 1.2 0.9 5 1.55 2.24 1.55 2.17 4.03 2.17 2.64 2.17 1.70 2.64 2.17 1.70 2.65 1.10 2.65 1.10 2.65 1.10 2.65 1.10 2.81 1.70 <t< th=""><th>Aug. 8</th><th>0.85</th><th>1.86</th><th>1.86</th><th>2.9</th><th>ф.9</th><th>0.84</th><th>6.4</th><th>3.6</th><th></th><th></th><th></th><th></th><th></th></t<>	Aug. 8	0.85	1.86	1.86	2.9	ф . 9	0.84	6.4	3.6					
5 1.55 2.32 2.02 2.24 1.55 1.70 4.03 2.17 2.64 2.17 1.70 1.03 2.17 2.04 1.71 1.70 2.64 2.17 1.70 1.70 1.70 1.70 1.70 1.70 2.65 1.10 2.65 1.10 2.65 1.10 2.65 1.10 2.34 2.34 2.34 2.65 2.87 3.16 2.34 2.65 2.87 3.16 2.34 2.34 2.65 2.87 3.16 2.34 2.34 2.34 2.35 2.34 2.35 2.34 2.65 2.87 3.16 2.31 1.83 2.26 2.19 1.77 2.03 2 -	Aug. 22	1.3	0.8	1.7	3.1	1.2	1.7	6.8	1.5	1.9	2.3	1.2	0.9	1.4
17 1.24 0.53 5.24 1.75 2.17 2.94 1.70 2.64 2.17 1.70 1	FALL	1 2 5	25	CO C	10.0	ובנ	02 1	60 1	2 17					
1.89 1.91 2.37 1.87 1.67 1.10 2.65 1.10 1.87 2.03 1.87 2.65 1.10 2.65 1.10 2.34 2.34 1.57 2.03 1.87 2.65 2.34 2.35 2.19 2.34 2.34 1.57 2.03 2.50 2.65 2.34 2.65 2.87 3.16 2.39 2.26 2.19 1.38 2.09 2.30 2.50 2.65 2.31 2.31 2.31 2.65 2.19 1.38 2.09 2.50	-	1.22	6.36	1 53	2000	1.55	2 17	000	1 70	2 64	217	1.70	1,70	1.46
17 2.03 0.94 1.87 3.58 1.72 1.72 2.81 2.19 2.34 2.34 1.57 2.03 18 2.09 2.50 2.65 2.34 2.65 2.87 3.16 2.26 2.19 1.38 2.09 19 0.5 0.5 0.7 3.12 3.1 0.6 1.3 1.8 0.5 0.6 0.8 0.5 0.7 0.46 0.8 0.5 0.7 0.46 0.1 1.81 1.81 1.37 2.60 1.84 1.76 2.06 1.50 1.55 2.70 2.32 0.46 0.1 0.1 0.1 1.80 0.2 0.2 0.2 0.7 0.40 0.38 0.5 0.7 0.7 0.46 0.1 0.1 1.80 0.2 0.2 0.2 0.7 0.40 0.38 0.5 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.7 0.40 0.38 0.5 0.7 0.46 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.7 0.40 0.38 0.5 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.7 0.40 0.38 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 100	72.0	20.00	200	1 87	77.0	7	2 65				,	,	
7 2.70 1.69 2.50 2.65 2.34 2.65 2.87 3.16 3.16 2.26 2.19 1.38 2.09 3.12 - <th>0ct. 17</th> <th>2.03</th> <th>0.0</th> <th>1.87</th> <th>3.58</th> <th>1.72</th> <th>1.72</th> <th>2.81</th> <th>2.19</th> <th>2.34</th> <th>2.34</th> <th>1.57</th> <th>2.03</th> <th>1.72</th>	0ct. 17	2.03	0.0	1.87	3.58	1.72	1.72	2.81	2.19	2.34	2.34	1.57	2.03	1.72
3 1.91 2.37 1.97 1.32 1.64 2.31 1.83 2.26 2.19 1.38 2.09 3 1.2 -	Nov. 7	2.70	1.69	2.50	2.65	2.34	2.65	2.87	3.16					
3.12 -	Nov. 21	1.89	1.91	2.37	1.97	1.32	1.64	2.31	1.83	2.26	2.19	1,38	2.09	1.64
26	WINTER													
23 0.5 0.7 3.12 3.1 0.6 1.3 1.8 0.6 0.3 0.7 1.0 0.6 0.8 0.5 0.7 23 0.0 0.1 2.1 2.1 0.2 0.3 0.7 1.0 0.6 0.8 0.5 0.7 20 0.9 0.0 1.1 1.1 1.1 1.1 1.1 1.0 0.4 0.5 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.3 0.2														
23 0.0 0.1 0.1 2.1 0.2 0.3 0.7 1.0 0.6 0.8 0.5 0.7 0.7 0.9 0.0 0.0 0.1 0.1 0.1 0.2 0.3 0.7 1.0 0.6 0.8 0.5 0.7 0.7 0.9 0.6 0.9 0.6 0.8 0.5 0.7 0.7 0.9 0.6 0.9 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1						,		,						
5 0.0 0.1 0.1 0.2 0.3 0.7 1.0 0.6 0.8 0.5 0.7 6 0.9 0.6 1.1 1.1 1.1 1.1 1.6 0.9 0.7 0.7 1.6 0.6 0.8 0.5 0.7 20 1.1 1.6 2.0 2.8 2.0 3.1 1.9 1.2 2.4 2.5 2.4 2.5 1.19 1.03 1.54 2.44 1.88 1.37 2.60 1.84 1.76 2.0 1.55 2.70 2.3 2.6 6.7 0.40 0.38 0.38 0.8 0.5 2.70 2.3 2.6 6.7 0.40 0.38 0.38 0.8 0.35		0.5	0.5	0.0	3.12	4,4	9.0	٢٠٠	8	ļ	ľ			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Jen. 23	0.0	0.1	0.1	2.1	0.2	0.3	0.7	700	9.0	8	0.5	0.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Feb. 6	0.9	9.0	1,1	1.8	1.1	1.1	1.6	1.6					
1.19 1.03 1.54 2.44 1.88 1.37 2.60 1.84 1.76 2.06 1.50 1.55 $0.46-0.1-0.1-0.1-1.80-0.2-0.25-0.7-0.40-0.38-0.38-0.8-0.5-0.5-0.7-0.40-0.38-0.38-0.8-0.5-0.5-0.7-0.40-0.34-0.38-0.8-0.5-0.5-0.7-0.40-0.38-0.88-0.8-0.5-0.7-0.40-0.38-0.88-0.88-0.88-0.88-0.88-0.88-0.8$	Feb. 20	1,1	1.6	2.0	2.8	2.0	3.1	1.9	1.2	2.4	2.5	2.4	2.5	2,2
0.46 - 0.1 - 0.1 - 1.80 - 0.2 - 0.25 - 0.7 - 0.40 0.38 0.8 0.5 0.5 0.7 - 0.40 0.38 0.38 0.8 0.8 0.7 0.00 0.38 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.	MEAN	1.19	1.03	1.54	2.44	1.88	1.37	2.60	1.84	1.76	5.06	1.50	1.55	1.31
	RANGE	0.46-	0.1- 2.32	0.1- 2.50	1.80-	0.2 4.7	0.25-	- <u>7</u> -9	ካይ 'ካ -0ካ ' 0	0.38-	p. 8-	$\frac{0.5}{1.86}$	2.75	2.3-

Table C-18 BASEFLOW WATER QUALITY DATA Total Phosphorus (mg/1)

SAMPLING						STATIC	STATION NUMBER	_					
DATE	1	5	3	7	5	9	7	8	98	8	10a	100	10c
SPRING Mar. 12	0.05	0.56	0.15	0.59	0.18	70.0	0.36	0.33					
1 1	0.03	0.04	0.05	0.36	0.13	0.02	0.52	0.25	0.10	0.08	0.09	0.10	0.13
Apr. 11	0.00	0.19	0.05	0.10	0.14	0.02	0.60	77.0					
	0.02	0.13	0.07	0.28	0.10	0.01	0.15	0.13	0.05	0.08	0.07	90.0	0.04
	0.04	0.38	0.07	0.18	0.15	0.02	0.41	0.24					
May 23	0.01	0.04	0.01	0.13	0.02	20.0	0.05	0.02	0.03	0.05	0.01	0.01	0.00
SUMMER 6	0 03	20 0	90 0	11 0	25	a c	000	C					
K	0.00	0.17	0.10	0.08	0.07	0.0	0.63	0.18	0.11	0.10	0.05	0.04	0.02
	0.18	0.04	0.11	90.0	0.19	0.10	0.36	0.36					
Jul. 26	0.06	0.14	0.09	0.08	0.14	0.01	0.09	0.14	0.00	0.08	0.08	0.08	0.05
Aug. 8	0.07	0.20	0.13	0.42	0.05	0.12	1.69	90.0					
Aug. 22	0.11	0.21	0.20	0.14	0.23	0.13	1.6	0.20	0.16	0.09	0.11	0.10	90.0
	90.0	0.15	0.09	0.13	0.25	0.07	0, 80	0.15					
Sep. 17	0.10	0.20	0.17	0.52	0.24	90.0	1.3	0.22	90.0	0.07	0.03	0.01	0.04
Oct. 3	90.	.31	.11	.07	.17	90.	.57	.11					
Oct. 17	0.31	0.22	0.16	0.93	04.0	0.08	0.30	0.58	0.22	0.18	0.24	0.17	0.14
Nov. 7	0.07	0.19	0.17	90.0	0.16	0.31	0.26	19.0					
Nov. 21	.03	. 19	.11	.28	. 20	90.	.96	.19	.20	90.	₹0.	90.	60.
Tec. 17	.07	.10	.12	٠ 04	. 12	.05	. 09	.08					
	٠٥٠	.20	.08	.34	.10	90.	. 60	-22	.18	.04	.08	.05	٠٥٠
	.04	. 85	.10	0.13	13	٠٥٠	.51	. 16					
Jen. 23	· 0	. 23	90.	. 19	.10	90.	.43	.20	.03	,07	.11	.07	60,
- 1	0.04	0.72	0.08	0.15	0.11	0.04	0.10	0.16					
Feb. 20	90.0	0.21	0.08	0.20	0.09	0.03	0.35	0.30	0.09	0.08	0.11	0.11	0.08
MEAN	0.08	0.24	0.11	0.23	0.16	0.07	0.55	0.23	0.10	0.08	0.09	0.07	0.07
RANGE	0.00-	-178°0	0.26	0.04- 0.93	0.35	0.01- 0.31	0.05- 0.96-	-58:0	0.00	0.18	0.01-	0.01-	0.0 14 0.14

Table C-19 BASEFLOW WATER QUALITY DATA Total Solids (mg/1)

							- 1						
SAMPLING	1	2	3	7	5	91.41.101	N NOMBER	8	98	æ	108	10b	10c
SPRING	20	156	171	149	102	297	186	168					
Mar. 26	717	104	96	142	89	79	118	115	151	143	267	227	234
	100	141	107	206	10h	90	162	188					
	83	ħ <i>L</i>	78	80	140	63	87	125	108	103	197	166	205
	85	111	η6	119	25	93	2 ^h 0	417					
	1114	133	144	158	126	123	156	115	191	127	193	205	333
SUMMER	101	100	101	102	750	85	108	128					
Time 20	101	120	112	166	107	85	136	174	120	1111	170	181	228
111.	96	120	103	230	234	105	143	159					
Jul. 26	159	143	164	181	124	128	171	190	222	543	222	176	218
Aug. 8	130	133	132	193	111	102	234	167					
Aug. 22	120	230	150	161	120	144	165	174	554	560	188	214	281
						`							
Sep. 5	95	143	120	118	87	29	130	216		000	000	200	27.0
	103	138	143	136	116	97	148	193	155	138	200	922	310
	112	164	144	199	93	109	177	178				100	
Oct. 17	120	116	116	180	75	126	152	179	139	170	226	255	282
Nov. 7	129	128	150	247	166	128	156	214					202
Nov. 21	117	137	131	201	135	102	127	1.83	134	127	245	254	102
					,								
	181	299	213	153	116	118	157	283	·			3,0	7.10
	106	297	116	161	110	86	125	171	158	119	254	200	240
	92	148	122	142	241	98	120	212					
Jan. 23	76	143	147	220	101	84	135	243	136	121	195	201	2.(0
	26	193	103	154	120	106	119	200					
Feb. 20	143	123	165	161	119	95	138	212	141	126	202	201	265
MEAN	111	151	131	174	124	108	150	179	181	149	213	214	56 ^l t
RANGE	-7/L	-47	78-	-08	75-	63-	- 28-	114-	108-	103-	170 - 267	166-	205-
	181	299	213	247	24	567	740	100				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

Table C-20
BASEFLOW WATER OUALITY DATA
Suspended Solids (mg/l)

SAMPLING						ST TO W	GGGWWW N						
DATE	г	2	3	7	5	9	1	8	98	જ	108	10b	10c
SPRING	·	6	ì	G			á	5					
	4	25	0 -	مرم	۲۶	212	N S	75	C.	0.1		c	000
		10	7-	2 5	77	21-	200	3/2	7		2		ĵ
	200	C	18	287	71	100	33	38%	20	1.5	3.1	27	75
May 9	0		3	0	11	0	17	16			}		
May 23	16	28	51	26	26	23	917	1	13	73	18	۵٫	29
SUMMER													1
Jun. 6	0	. 3	29	56	63	0	30	- 6					
Jun. 20	25	18	25	27	3	0	19	9	31	- 22	8	25	38
Jul. 11	0	15	20	0	105	23	8	18					
Jul. 26	39	5	143	11	5	017	6	19	149	105	58	-3	10
Aug. 8	09	19	20	35	35	17	96	25					
Aug. 22	22	76	31	713	0	16	20	25	425	38	14	26	77
FALL				,	,								
Sep. >	0	12	35	10	18	0	14	20					
Sep. 17	3	14	84	21	7	9	21	0	917	0	L	13	36
0ct. 3	7	53	25	59	3	8	28	54					
0ct. 17	†	0	8	99	3	31	27	80	2	23	0	29	1.5
Nov. 7	31	0	38	19	141	7.7	54	18					
Nov. 21	56	39	52	37	98	7	29	31	0	91	0	17	50
WINTER													
Dec. 12	87	191	62	23	19	0	45	95					
Dec. 26	11	134	54	Zħ	32	0	27	13	27	11	0	37	22
Jen. 9	0	19	29	0	0	13	18	0					
Jan. 23	61	18	75	817	35	-7	55	53	7	30	9	25	E
Feb. 6	†8	117	84	133	95	26	85	177					
Feb. 20	6	5	80	34	25	11	38	0	16	6	28	21	18
MEAN	20	35	36	30	25	20	η:Ε	27	65	12	ηI	21	26
RANGE	-0 -	0- 191	- <u>3</u> -	-0 -	0 - 105	0- 212	-5 06	95	0- 425	0- 105	-8 <u>5</u>	0 - 37	4 - 50

Table C-21
BASEFLOW WATER QUALITY DATA
Volatile Solids (mg/1)

SAMPLING						STATION	ON NUMBER	-					
DATE	1	5	3	7	2	9		8	98	જ	10a	100	100
SPRING 12	37	717	ξ.	53	77	133	5.5	5.					
Mar. 26	<u>8</u>	35	100	7.7.7	96	32	59	7,8	56	52	89	99	56
Apr. 11	4.5	58	17	777	1,5	07	71	92					Ž
	16	31	77	15	32	11	12	25	23	13	35	37	09
May 9	28	20	45	39	38	37	710	39					3
	<u>7</u> 47	53	09	71	50	59	53	50	71	79	84	7.5	77
SUMMER Jun. 6	رح	22	١٤	37	90	10	άc	3.),					
ľ	92	53	07	76	53	21	52	77	69	[9]	63	55	75
	L17	45	38	100	102	84	20	69					
Jul. 26	. 55	- 51	21	69	78	29	54	28	7.1	100	3.18	9	3
Aug. 8	80	61	82	92	57	57	110	69					
Aug. 22	89	617	78	82	42	73	120	52	82	93	69	61	69
FALL Sep. 5	30	917	75	37	66	28	517	84					
Sep. 17	1,17	55	99	09	69	61	, 1 9	83	65	53	70	7.17	70
0ct. 3	07	53	43	92	43	775	73	57					T
Oct. 17	51	44	44	97	77	54	58	79	82	98	89	84	67
Nov. 7	59	43	58	63	10γ	55	99	85					
Nov. 21	78	ተተ	Ĺή	99	50	72	39	65	37	36	54	77	72
WINTER Dec. 12	100	22	יקט נ	89	۲٬۲	37	37	358					
Dec. 26	33	4.5	31	141	25	70	33	30%	10	72	67	76	1.7
Jan. 9	30	36	38	83	83	77	33	192					
	33	0.2	77	148	43	37	19	126	73	79	7.1	92	88
	75	92	7.1	26	99	52	50	105					1
	82	77	98	82	51	35	- 56	83	63	63	L9	0.2	8,4
MEAN	L 17	84	52	70	55	Ľή	25	70	19	58	69	99	70
RANGE	-91 109	20 - 77	-12 401	15-	25- 101	11-	122-	-255-	23- 853-	13-	-35-	37-	-Z ¹ 7

Table C-22
BASEFLOW WATER QUALITY DATA
Specific Conductance (umho/cm)

SAMPLING						STATION	N NUMBER						
DATE	-1	5	3	ή	5	9	7	8	98	હ	108	10b	10c
SPRING Mar. 12	01	138	26	145	7.1	36		161					
Mar. 26	50	145	59	133	71	50	68	145	136	133	356	290	288
1	55	125	38	230	70	50	110	245					
Apr. 25	35	72	61	62	31	38	7†0	138	230	150	285	229	325
•	50	139	58	180	75	51	105	170					
May 23	43	071	45	150	68	9†7	85	195	179	165	300	300	560
SUMMER Jung	20	90	7.2	100	55	04	70	188					
Jun. 20	55	151	109	229	128	57	115	549	158	157	271	275	316
Jul. 11	80	145	63	345	188	79	185	212					
Jul. 26	110	150	125	265	155	100	205	225	185	-	313	327	707
Aug. 8	65	145	95	210	100	09	185	190					
Aug. 22	73	136	111	152	153	69	160	200	187	346	321	347	507
FALL Sen. 5	05	110	ויי	50	80	35	26	225					
Sep. 17	202	135	50	110	202	8	115	225	152	170	316	323	473
Oct. 3	45	130	55	230	55	50	140	175					
Oct. 17	09	120	8	120	09	09	140	175	165	210	330		1
Nov. 7	20	115	45	305	105	09	95	195					
Nov. 21	50	100	50	195	80	50	90	155	150	170	330	700	310
WINTER							i	L					
nec. 12));	770	200	0)	20	Q#	2	122				100	0.0
	38	50	710	70	50	30	80	125	135	137	267	285	220
	07	130	35	225	710	4.5	65	198					
Jan. 23	35	100	35	180	45	35	55	180	125	126	193	216	280
	30	120	30	80	01	30	0η	140					
	35	100	70	175	9	35	09	185	135	125	208	208	7 <u>8</u> 8
MEAN	51	121	59	169	62	52	101	184	191	172	288	291	364
RANGE	30-	50- 150	30- 125	62 - 345	188	30 -	-01	125- 249	125- 230	126- 346-	193 - 330	216- 400	250- 500-

Table C-23
BASEFLOW WATER QUALITY DATA
Selected Minerals (mg/l)

						STATION	I NIMBER						
MINERAL & SAMPLING DATE	1	2	3	7	5	9	7	8	98	જ	10a	10b	100
MITTOS													
	26	10.8	7.6	7.2	2.4	2.4	17.0	11.2	7.6	9.6	24.0	22.5	27.0
	3.6	7.0	3.2	4.2	3.8	2.8	7.6	12.0	12.0	10.0	27.0	24.0	24.0
Feb. 20	11.0	14.0	8.4	12.0	7.5	6.3	5.1	22.0	13.0	8.1	17.0	20.0	25.0
CHLORIDE												3	000
0ct. 17	11.9	10.2	14.9	12.3	11.3	7.3	15.0	14.7	23.0	34.0	73.0	90.0	100.0
Dec. 26	3.4	3.7	7.7	5.2	5.1	3.2	91.0	13.0	0.01	0.11	0,00		2 0 1 2
Feb. 20	8.9	5.9	8.3	15.0	10.0	4.1	2.0	T4:0	70.07	2017	2:/2	2	
SULFATE			, k	(C	 - -	13.0	1 K K	23.5	8,66	22.4
0ct. 17	12.5	4.3	13.1	75.7	10.4	10.0	25.0	23.0	21.0	18.0	15.0	17.0	16.0
Feb. 20	0.0 0.0 V	8 2 2	3.8	11.0	9.9	< 2.0	5.9	10.1	3.3	6.9	2.9	4.1	6.1
))													
;													
	3.7	9.0	1.8	1.8	0.8	4.5	2.0	1.6	9.0	0.4	0.1	0.1	0.1
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7.2	2.0	3.6	1.9	1.6	1.7	2.8	2.5	0.3	٥.4	٥. 4	1.0
Feb. 20	0.9	1.0	2.5	5.0	2.4	1.4	1.5	3.6	0.9	η•0	7.0	0.8	1.1
MANGANESE												0	70 0
0ct. 17	1.3	0.06	0,40	1.10	0.15	0.60	0.55	0.25	0.22	0.20	0.12	71.0	00.0
Dec. 26	0.05	0.05	0.10	0.20	0.05	0.05	0.05	2.0	0.10	0.05	0.10	0.10	20.0
Feb. 20	0.07	0.05	0.12	1.0	0.07	0.10	0.10	0,40	0.07	<0.05	0.15	0.12	0.0
					•								

Table C-24
BASEFLOW WATER QUALITY DATA
EDTA Hardness (mg/l CaCO₃)

SAMPLING						STATON	MINABE						
DATE	7	2	3	77	5	9	1	8	98	96	108	10b	10c
SPRING Mar. 12	19	30	18	52	20	25	20	45					
Mar. 26	16	27	17	58	25	7,7	23	39	26	50	111	102	66
Apr. 11	18	29	20	92	25	16	35	36					
Apr. 25	13	24	14	24	19	12	17	37	64	917	97	80	98
May 9	11	56	18	65	25	16	31	30					
May 23	13	28	15	61	23	14	23	31	<i>L</i> ተ	917	98	80	115
SUMMER Jun. 6	20	56	12	36	20	11	55	57					
Jun. 20	14	34	18	99	37	15	31	65	715	42	67	7.1	81
Jul. 11	31	27	21	105	콨	₹	50	917					
Jul. 26	ኒ ካ	35	24	96	45	29	50	71	50	88	83	98	116
Aug. 8	25	56	20	79	26	19	38	114					
Aug. 22	26	25	21	45	1,2	28	1 9	h5	40	116	74	92	126
FALL			,	,									
Sep. 5	20	35	16	36	14	17	22	79					
Sep. 17	14	28	16	710	20	17	25	74	Lη	57	93	95	118
Oct. 3	22	30	23	†18	23	23	017	58					
Oct. 17	56	29	25	24	54	25	Oη	51	ης.	19	901	901	104
Mov. 7	17	29	22	92	36	22	28	72					
Nov. 21	16	27	18	η2	32	18	22	61	81	58	111	102	96
WINTER			,			,							
Dec. 12	1.4	ဇ္ဂ	18	33	20	16	22	50					
Dec. 26	20	31	18	01	22	21	27	148	55	52	107	102	81
Jen. 9	16	26	18	110	110	17	25	78					
Jan. 23	16	31	17	η6	21	1.8	५ट	. 72	6η	87	85	82	94
Feb. 6	14	27	16	45	13	16	61	29					
Feb. 20	15	28	16	18	21	14	22	68	ካካ	7,8	80	9L	93
MEAN	20	29	18	1 9	30	19	30	57	52	09	92	90	102
RANGE	-27	24- 35	12- 25	24- 105	14- 110	11 - 29	- 0 2	30-	26 -0†	-5† 116	67- 111	80- 106	81- 126

Table C-25 BASEFLOW WATER QUALITY DATA Calcium Hardness (mg/l CaCO₃)

SAMPLING						STATIO	STATION NUMBER						
DATE	7	5	3	ħ	5	9	7	ထ	98	જ	10 a	10b	100
SPRING), 7	03.0	0.01	υ υπ	0.01	29.0	12.0	54.0					:
Mar. 26	8.2	19.0	9.6	42.0	16.0	8.2	14.0	24.0	34.0	38.0	74.0	0.99	65.0
	11.0	24.0	12.0	58.0	16.0	9.0	54.0	29.0					
Apr. 25	6.5	16.0	7.2	16.0	7.5	0.9	8.5	25.0	38.0	38.0	0.09	52.0	63.0
	8.0	22.0	11.0	76.0	15.0	8.2	20.0	23.0					
May 23	7.0	21.0	10.0	36.0	18.0	8.8	14.0	24.0	35.0	35.0	65.0	0.00	0.0
	α	03.0	60	0.70	13.0	7.8	14.0	16.0					
Jun. 20	8.5	27.0	7.5	50.0	26.0	8.8	20.0	53.0	34.0	32.0	50.0	58.0	0.99
Jul. 11	21.0	19.0	12.0	84.0	34.0	32.0	18.0	34.0					
Jul. 26	35	24	17	89	32	21	37	37	04	92	82	79	106
Aug. 8	16	18	12	715	17	12	32	29					
Aug. 22	22	18	14	34	30	17	35	34	30	104	70	72	97
FALL	0	3 00	α	2 P.C	11.8	6.9	14.8	09					
Sep.	11.0	10,		7.7%	10	0	• 1	55	35	42	89	72	80
Oct. 3	8.6	20.0	12.0	58.0	11.5	12.2	21.5	41.2					
Oct. 17	16.2	18.0	14.5	40.0	13.0	14.0	27.5	40.0	42.5	0.09	77.5	77.5	75.0
Nov.	7.5	20	9.5	09	20	8.75	15	55					
Nov. 21	9.5	17.5	10.8	31.8	17.2	9.2	15.8	37.2	22.5	26.8	37.5	67	32.8
	,	, 				•		,					
Dec. 12	6.8	18	8.0	20	12	7.8	13	36					
Dec. 26	5.2	15	6.2	20	10	5.2	12	32	31	29	61	53	77.77
Jen. 9	7.2	20	9.0		7.7	7.8	15	61					
Jan. 23	6.5	24	7.8	19	9.5	7.2	12	51	36	38	54	52	90
reb. 6	5 5	18	6.8	77	8.0	0.9	8.5	9†					
Feb. 20	7.0	20	8.8	55	12	7.2	13	74	36	33	54	51	61
MEAN	11	20	10	43.8	19.1	11.2	18.1	9.04		45.9	62.8	63.3	68.9
RANGE	4.7-	15-	6.2- 14.5	16- 84	7.5-	-0-9	8.5-	23 - 61	22.5-	26.8- 104	37.5-	52 - 79	32.8- 106

Table C-26
BASEFLOW WATER QUALITY DATA
Oil and Grease (mg/l)

							L.						
SAMPLING	1	2	3	7	5	ST.AT.10N	N NUMBER	8	98	8	108	10b	10c
Mar. 12		0.00	0.00	0.00	0.00	0.00	1.40	3.10					
	0.10	00.0	0.40	1.30	0.00	0.10	07.0	1.10	0.10	0.30	0.10	0.80	0.10
Apr. 11	5.30	0.45	7.30	00.0	0.76	0.18	3.40	1.60					
	2.40	2.00	2.40	2,00	3,10	7.00	1.50	4,30	4.50	1.90	6.20	3.00	5.00
	1,10	2.00	6.50	5.20	3,40	2,80	8.10						
	1.00	0.20	00.0	8.10	3.50	0.20	0.20	0,00	00.00	0.70	0.20	0.20	0.00
l													
Jun. 6	1,80	1.60	1.60	1.80	1.50	1.80	0.90	2.10					
Jun. 20	0,00	0.80	1	00.00	0,40	0.80	00.0	0.50	0.80	1.10	0.00	0.00	0.00
Jul. 11	0.00	0.30	09.0	02.0	0.20	1.30	00.0	0.33					
Jul. 26	2.7	0.0	0.0	0.0	0.0	6.0	0.0	0.0	0.0	1.7	0.0	0.0	0.0
Aug. 8	1.8	2.8	0.0	1.8	0.5	2.7	5.8	1.0					
Aug. 22	0.0	1.2	0.5	18.1	15.2	6.0	1.8	1.0	•	1.3	1.2	1.0	0.0
1							,						
	0.0	0.0	0.0	0.0	0.3	0.3	0.0	0.0					
Sep. 17	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.5	0.0	0.0	0.0	0.3
	0.0	1.0	0.0	9.₁	0.0	0.0	0.0	0.0					
Oct. 17	0.0	9.3	0.0	18.0	0.0	9.1	0.0	0.0	1.2	0.0	0.0	7.7	1.1
Nov. 7	0.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0					
Nov. 21	0.0	1.6	6.0	1.0	0.0	2.6	0.0	0.0	1.0	0.0	0.0	1.9	0.0
WINTER													
Dec. 12	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.2					
Dec. 26	0.0	0.2	0.0	0.0	0.0	0.0	0:8	0.2	0.0	0.0	1.2	0.0	0.0
	0.0	0.0	0.0	9.0	0.0	0.0	0.0	0.2					
	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	1.5	0.0
	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0					
Feb. 20	0.0	3.1	0.0	₽.0	9.0	0.0	1.0	3.5	2.3	0.0	0.0	0.0	2.1
MEAN	0.79	1.11	0.86	2.75	1.23	1.15	1.18	0.99	0.86	9.0	47.0	1.07	0.72
RANGE	0.00-	0.00-	0.00-	0.00- 18.0	0.00-	0.00 1.00	0.00	0.00-	0.00-	-00.0	0.00-	-00°0	0.00-
	, i		,,,	~	-/		× + ×	711X	44	A-127	X	1	

Table C-27
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 9a
Spring, 1974

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/1) METER
March 27	Surface 1'	14.6 13.9	8.5 8.7
	2'	12.0	9.1
	3 '	12.0	8.8
	74 .	11.9	7.5
April 25	Surface	24.0	9.7
	1'	23.0	10.0
	2'	22.1	9.6
	<u>)</u>	21.5	8.6
May 23	Surface	29.5	10.8
•	1'	29.5	10.8
	2'	29.4	10.6
	3'	29.4	10.6

Table C-28
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 9a
Summer, 1974

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/1) METER
June 20	Surface	29.2	9.3
	1'	28.7	9.4
	2'	28.2	9.4
	3'	27.8	8.8
July 25	0.5'	30.5	7.6
	3'	29.0	5.3
August 22	Surface	32.0	12.1
	1'	30.7	9.6
	3'	29.9	6.8

Table C-29
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 9a Fall, 1974

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/1) METER
September 17	Surface	25.8	12.9
	1'	25.8	12.3
	2'	25.3	11.7
	3'	25.1	9.2
October 17	Surface 1' 2' 3' 4' 5'	22.5 22.0 21.0 19.5 19.0	10.6 10.6 10.6 9.4 5.7 5.2
November 21	Surface	15	7.2
	1'	15	7.6
	3'	13	10.6
	5'	14.5	10.1

Table C-30
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 9a
Winter 1974-75

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/1) METER
December 26	Surface	9.0	5.8
	1'	9.0	5.8
	3'	9.0	5.9
	6'	9.0	5.9
January 23	Surface	9.5	11.9
-	l'	9.0	11.9
	3'	7.0	11.6
	5'	7.0	9.3
	9'	7.0	8.2
February 20	Surface	12.0	11.3
	1'	12.0	11.3
	3'	11.0	11.3
	6'	10.0	10.4
	9'	9.5	9.5
	11'	9.5	9.1

Table C-31
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 9b
Spring, 1974

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/1) METER
March 27	Surface	14.3	10.8
	1'	14.0	10.8
	<u>)</u> † +	13.6	10.4
	7'	11.9	8.8
	10'	11.0	7.7
	13'	11.0	7.3
	14'	10.9	7.4
April 25	Surface	21.2	10.0
	1'	21.0	10.1
	3' 6.5'	19.8	8.3
	6.5'	19.5	7.8
May 23	Surface	27.8	10.6
	1'	27.4	10.6
	3 '	25.5	8.5
	5'	25.2	7.6

Table C-32
Seasonal Water Temperatuers and Dissolved Oxygen Profiles: Station 9b
Summer, 1974

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/l) METER
June 20	Surface	30.0	10.6
	3'	29.3	10.6
	6'	28.0	8.25
	9'	27.2	5.45
July 25	Surface	31.0	11.7
	1'	30.8	11.6
	2'	30.7	11.6
August 22	Surface	31.9	13.2
	1'	31.5	12.5
	2'	31.0	11.7

Table C-33
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 9b Fall, 1974

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/l) METER
September 17	Surface	25.5	12.6
	1'	25	11.8
	2'	25	11.6
October 17	Surface	23.8	10.6
	1'	22.9	10.2
	2'	21.0	8.7
	3'	19.1	4.4
November 21	Surface	13.5	11.4
	1'	13.5	11.2
	3'	13.0	11.2
	6'	13.0	10.9
	7'	13.0	10.2

Table C-34
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 9b
Winter 1974-75

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/1) METER
December 26	Surface	7.5	9.7
	1'	7·5	9.7
	3' 6'	7.5	9.7
		7.5	9.7
	8'	7.0	9.7
January 23	Surface	8.0	11.9
	1'	8.0	11.9
	3'	6.5	11.8
	6'	6.0	11.5
	9'	6.0	11.2
February 20	Surface	10.0	11.0
· ·	1'	10.0	11.0
	3'	10.0	11.0
	6'	10.0	10.9
	9'	10.0	10.8
	10'	10.0	10.8

Table C-35
Seasonal Water Temperatures and Dissoved Oxygen Profiles: Station 10a
Spring, 1974

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/l) METER
March 27	Surface	14.5	11.5
	2'	12.0	10.5
	5'	11.2	10.3
	8'	11.0	10.3
	11'	10.9	10.3
	14'	10.8	10.3
	17'	10.7	10.2
April 25	Surface 1' 3' 6' 9' 12'	21 20.8 19.5 18.7 18.2	10.5 10.5 10.1 9.2 7.7 5.0
May 23	Surface	27.2	10.3
	1'	26.6	10.2
	3'	25.1	9.3
	6'	25	7.8
	9'	24.4	5.0
	12'	24.1	1.8

Table C-36
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 10a
Summer, 1974

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/1) METER
June 20	Surface	28.6	10.6
	3'	28.2	10.5
	6'	27.9	10.5
	9'	26.7	7.2
	12'	26.0	5.9
	15'	24.8	5.1
July 25	Surface 1' 3' 6' 9' 12'	31 30 29.5 29.5 30	11.0 10.9 11.3 7.0 5.5 0.7
August 22	Surface	31.5	15.7
	1'	30.3	17.1
	3'	29.8	15.4
	6'	29.2	14.5
	9'	27.3	1.4
	12'	27.2	0.4

Table C-37
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 10a Fall, 1974

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/1) METER
September 17	Surface	24.0	11.2
	1'	23.8	11.3
	3'	23.0	10.6
	6'	22.3	9.4
	9'	22.2	7.8
	12'	22.1	7.4
October 17	Surface 1' 3' 6' 9' 12'	20.0 20.0 19.0 18.5 18.5	11.6 11.2 9.7 9.2 8.9
November 21	Surface	14.0	11.2
	1'	14.0	11.1
	3'	14.0	11.2
	6'	13.5	11.1
	9'	14.0	11.1
	12'	14.0	11.0

Table C-38
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 10a
Winter 1974-75

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/l) METER
December 26	Surface 1' 3' 6' 9' 12'	8.0 8.0 8.0 8.0 8.0	10.6 10.6 10.5 10.6 10.8
January 23	Surface 1' 3' 6' 9' 12'	7.5 7.5 7.0 6.5 7.0 7.5	14.3 14.2 14.2 12.6 12.2 11.9
February 20	Surface 1' 3' 6' 9' 12' 13'	9.5 9.5 9.5 9.0 9.0 9.0	13.5 13.5 13.5 13.4 13.2 12.6

Table C-39
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 10b
Spring, 1974

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/1) METER
March 27	1' 4' 7' 10' 13' 16'	14.0 13.8 12.8 12.2 12.0 11.9	12.2 12.0 11.5 8.4 8.3 8.2 8.2
April 25	Surface 1' 3' 6' 9' 12' 15' 18' 21'	20.5 20.3 19.5 19.0 18.9 18.5 18.2 18.2	9.5 9.5 8.6 8.0 7.7 7.2 6.9 6.9 5.0 3.0
May 23	Surface 1' 3' 6' 9' 12' 16'	27.2 26.9 25.2 25.0 24.9 24.8 24.3	11.9 11.8 9.4 7.5 6.05 5.6 2.3

Table C-40
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 10b
Summer, 1974

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/1) METER
June 20	Surface 3' 6' 9' 12' 15'	27.0 25.9 25.2 24.9 24.8 24.6	7.3 6.75 4.3 3.4 2.6 1.75
July 25	Surface 1' 3' 6' 9' 12' 15' 18'	31.0 30.0 29.0 29.0 29.0 28.5 28.5	11.5 11.0 7.5 5.1 3.6 2.6 1.0
August 22	Surface 1' 3' 6' 9' 12' 15' 18'	32.0 31.2 29.9 28.4 28.1 28.0 27.8 27.6	14.9 17.2 16.8 5.6 2.0 0.7 0.3 0.2

Table C-41
Seasonal Water Temperatures and Dissoved Oxygen Profiles: Station 10b
Fall, 1974

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/1) METER
September 17	Surface	24.9	12.8
	1'	24.8	12.6
	3'	24.1	12.4
	3 ' 6'	24.0	11.9
	9'	23.4	10.2
	12'	23.2	8.4
	15'	23.0	6.2
	18'	22.7	2.2
October 17	Surface	20.0	11.9
	1'	20.0	11.9
	3' 6'	19.0	11.6
	6'	18.5	9.1
	9'	18.5	8.5
	12'	18.0	8.0
	15'	18.0	8.0
	18'	18.0	8.0
	21'	18.5	7.7
	241	18.5	7.5
November 21	Surface	13	9.2
	1'	· 13	9.1
	3'	13	9.1
	6'	13	9.1
	9'	13	9
	12'	13	8.8
	15'	13.5	8.8
	18'	13.5	8.7
	21'	13.5	8.5
	24'	13.5	8.3
	26'	14	7.8

Table C-42
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 10b Winter, 1974-75

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/1) METER
December 26	Surface	8.0	10.1
	1'	8.0	10.1
	3'	8.0	10.0
	6'	8.0	10.1
	9'	8.0	10.1
	12'	8.0	10.0
	15'	8.0	10.0
	18'	8.0	10.0
	21'	8.0	9.8
	24'	8.0	9.8
	26'	7.5	9.7
January 23	Surface	8.0	12.7
	1'	8.0	12.6
	3' 6'	7.0	12.3
	6'	6.5	12.2
	9'	6.5	12.1
	12'	6.5	12.0
	15'	6.5	11.9
	18'	6.5	11.9
	21'	6.5	11.8
	24'	6.5	11.8
	26'	6.0	11.8
February 20	Surface	10.0	13.1
	1'	10.0	13.1
	3'	10.0	13.1
	6'	10.0	13.0
	9'	9.5	12. 6
	13'	9.5	12.3
	15'	9.0	11.8
	18'	9.0	11.6

Table C-43
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 10c
Spring, 1974

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/l) METER
March 27	1' 4'	14.4 14.2	12.4 12.2
	7'	14.0	12.0
	10'	12.5	9.8
	13'	12.2	8.5
April 25	Surface	20.2	11.8
•	1'	20.1	11.8
	3' 6'	19.9	11.2
		18.5	9.8
	9'	18.0	8.8
	12'	18.0	8.5
	15'	18.0	8.25
	18'	17.8	7.6
	22'	17.5	6.8
May 23	Surface	28.0	10.7
	1'	28.0	10.8
	3'	26.3	9.6
	61	24.8	7.2
	9'	24.1	6.7
	12'	24.0	7.0
	15'	24.0	6.7
	18'	23.1	3.5
	21'	23.0	2.9

Table C-44
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 10c
Summer, 1974

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/1) METER
June 20	Surface	28.1	8.1
	3'	27.9	7•95
	6'	27.5	7.8
	9'	27.1	7.6
	12 '	26.9	7•5
	15'	2 6. 5	7.5
	18'	26.1	7•4
	21'	25.5	7.0
	241	24.0	6.3
	27'	24.6	5.2
July 25	Surface	31.5	11.0
•	1'	31.5	10.9
	3 '	31	11.1
	6'	30.5	10.4
	9'	30.0	7.1
	12'	29.5	6.8
	15'	29.5	6.6
	18'	29	4.8
	21'	29	1.7
	54,	29	0.7
August 22	Surface	32.0	10.8
	1'	30.1	12.6
	3 '	29.2	12.8
	6'	28.7	8.5
	9'	28.5	6.4
	12'	28.3	5.9
	15'	28.1	4.6
	18'	28.0	1.6
	21'	27.7	1.2

Table C-45
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 10c
Fall, 1974

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/1) METER
September 27	Surface	24.0	9.0
	1'	23.6	8.7
	3'	23.4	8.5
	6'	23.0	8.0
	9'	22.9	7.2
	12'	22.7	6.5
	15'	22.6	6.3
	18'	22.6	6.7
	21'	22.5	5.4
October 17	Surface	22.0	12.2
	1'	21.5	12.2
	3'	20.0	11.9
	6'	19.0	9.9
	9'	19.0	9.1
	12'	18.5	9.0
	15'	19.0	8.7
	18'	19.0	8.3
	21'	19.0	7.7
November 21	Surface	12.5	9.8
	1'	12.5	9.7
	3 '	12.5	9•7
	6'	12.5	9.7
	9'	12.5	9.8
	12'	12.5	9.8
	15'	12.5	9.8
	18'	12.5	9.8
	21'	12.5	9.7
	23'	13	9.4

Table C-46
Seasonal Water Temperatures and Dissolved Oxygen Profiles: Station 10c Winter, 1974-75

DATE	DEPTH (From Top)	TEMPERATURE (°C)	D.O. (mg/1) METER
December 26	Surface	7.5	10.7
	1'	7.5	10.7
	3'	7.5	10.7
	6'	7.5	10.7
	9'	7.5	10.9
	12'	7.0	10.9
	15'	7.0	10.9
	18'	7.0	10.9
	21'	7.0	11.0
	24 •	7.0	10.6
January 23	Surface	7.0	12.2
Ognosia -2	1'	7.0	12.2
		6.0	12.0
	3' 6'	6.0	12.1
	9'	6.0	12.1
	12'	5.5	12.3
	15'	5.0	12.3
	18'	5.0	12.2
	21'	5.0	12.2
February 20	Surface	9.0	12.5
reorani, co	1'	9.0	12.5
	3'	9.0	12.5
	6'	9.0	12.5
	9'	8.5	12.5
	12'	8.0	12.4
	15'	8.0	12.2
	18'	8.0	12.1
	21'	8.0	12.1

STORMWATER QUALITY STATION 1

STORM EVENTS:

December 6 - 7, 1974

February 22 - 23, 1975

STORMWATER QUALITY STATION 2

STORM EVENTS: May 14 - 15, 1974 July 25 - 26, 1974 December 5 - 6, 1974 February 22 - 23, 1975

VTN METAIRIE LA F/G 13/2 ENVIRONMENTAL INVENTORY AND ANALYSIS FOR PINE BLUFF, ARKANSAS. —-ETC(U) 0CT 75 DACW38-74-C-0139 AD-A113 819 UNCLASSIFIED NL 2 OF 4

STORMWATER QUALITY

STATION 3

STORM	EVENTS:
	May 14 - 15, 1974
	July 24 - 25 1074

STORMWATER QUALITY STATION 4

STORM EVENTS: May 14 - 15, 1974 July 25 - 26, 1974 December 6 - 7, 1974 February 22 - 23, 1975

0 . Q 35 35 -8 30 Figure C-16 Biochemical and Chemical 0xygen Demands Hours After Initial Rainfall Hours After Initial Rainfall 25 25 20 50 15 10 19 Rain Begins Rain Begins 30 L 20-15--Ci 75--09 15-30-COD (bbm) BOD (ppm) C-66

STORMWATER QUALITY

STATION 5

STORM EVENTS:

May 14 - 15, 1974

July 25 - 26, 1974

December 6 - 7, 1974

February 22 - 23, 1975

35 ഉ Figure C-24 Suspended Solids and Total Phosphorus 25 Hours After Initial Rainfall Hours After Initial Rainfall Rain Begins Rain Begins 0 3,000 2,000-1.0-1,000 0.5 -Total Phosphorus (ppm) Suspended Solids (ppm) C-75

STORMWATER QUALITY STATION 7

STORM EVENTS: May 14 - 15, 1974 July 25 - 26, 1974 January 9 - 11, 1975 March 9 - 10, 1975

STORMWATER QUALITY STATION 8

STORM EVENTS: May 14 - 15, 1974 July 25 - 26, 1974 January 9 - 11, 1975 March 9 - 10, 1975

C-88

C-89

Figure C-41 Phosphorus Loading at Station 4, July 25-26, 1974 Storm

Figure C-44: Discharge Curve at Station 8a, July 25-26, 1974 Storm

Figure C-45: BOD Loading at Station 8a, July 25-26, 1974 Storm

1500-

1400-

1300-

1200-

1100-

10001

96

Figure C-46: COD Loading at Station 8a, July 25-26, 1974 Storm

C-99

Figure C-48: Nitrate Nitrogen Loading at Station 8a, July 25-26, 1974 Storm

Figure C-49: Phosphorus Loading at Station 8a, July 25-26, 1974 Storm

Figure C-50: Total Solids Loading at Station 8a, July 25-26, 1974 Storm

Figure C-55: Kjeldahl Nitrogen Loading at Station 2, July 25-25, 1974 Storm

C-110

Figure C-58: Total Solids Loading at Station 2, July 25-26, 1974 Storm

Summary of Baseflow Sampling Station 1

FARAMETER	SPRING MEAN	SUMMER MEAN	FALL MEAN	WINTER MEAN	ANNUAL MEAN	ANNUAL RANGE	NGE
	5.9	6.5	6.1	6.4	6.2	5.7 -	9
<i>-</i> 1	5	23	8	10	12	3.5 -	777
a) l	15.5	22.6	14.0	7 7		¥ 1	: 6
D.O. (mg/l)	7.9	2.8	5.5	0 0 0	7.77	4.7	770
ω ₂ (mg/1)	7.8	12.6	8.0	2 2	1		777
True Color (PCH)	53	113	2.0		۲۰۰	- 7),
Ľ	280	113	11.3	8).	68	- 5	160
12	,	200	005	00>	080	-	
Total Coliform (per 100 ml)	18 563	1,1 567	070 8	001.00	- 100	J	
_	000	2 11.5	000	23.200	23,122	610 -143,000	000
	194	1.058	80 80	560	212	1	5,300
B.0.D	7.4	8.3	3, 5,	205	246		2,280
11 C.O.D. (mg/l)	20	, Q.	25.7	7.5	7.7.	7.9 -	24.0
Ammonia	0 10	000	0.00	77	5, 6,	- 4-0	36.0
Nitrite (mg/l N)		37.0	0.00	77.7	0.17	0.05-	0.30
_	0.05		0.0	0.0	0.0	0.0	0.01
e ldah	75.5	0.45	0.87	0.30	0.48	0.15-	1.18
2	1.03	1.23	1.70	0.63	1.19	0.46-	2.7
motel Solide (mg/1)	••	0.123	0.105	0.048	0.075	- 0.0	0.31
J.	92	120	113	119	111	- 1/2	181
1 5011ds	9	24	12	36	20	0	87
	34	50	94	09	47	16	90,
Specific Conductance (micromhos/cm)	145	72	51	35	15	08	5 5
Sodium (mg/1)	_	1	,	-		2	
Sulfate (mg/l)		,					
Chloride (mg/1)	-	,	,				
Iron (mg/l)	-	,	,				
Manganese (mg/l)	-						
Total Hardness (mg/1CaCO3)	16	27	20	16	20	13	1.7
Calcium Hardness $(mg/1 \text{ CaCO}_3)$	7.6	18.6	10.7	6.4	2	- 27 1	35
Oils & Grease (mg/1)	1.98	1.05	00 0	0.50	02.0		3

Summary of Baseflow Sampling Station 2

by (mg/l CaCO ₃) 54 54 7.4 7.5 11 12 13 14 15 15 17 17 17 17 17 17 17 17	SPRING MEAN SUMMER MEAN	CAN FALL MEAN	WINTER MEAN	ANNUAL MEAN	ANNUAL RANGE	WANGE
ty (mg/l CaCO ₃) 11	_	7.5	7.7	7.7	- 6.9	7.9
ure (oc) 21.8 25.7 17.1 1 1 7.6 7.2 9.2 1 1 7.6 7.7 4.3 1 or (PCU) 35 78 67 1 rensparency (cm) 480<		52	95	77	22 -	70
(1) 6.0 7.6 7.2 9.2 1.3 or (FCU) 35 78 67 1.3 realsparency (cm) 35 78 680 880 880 880 880 880 880 880 880 88	8.	17.1	13.6	19.5	- 0.9	56
1) 6.0 7.0 4.3 11 135 78 67 11 12 13 12 13 13 14 12 13 14 15 13 15 15 15 13 15 15 15 15 15 15 15 15		9.5	6.6	9.1	5.7 -	11.2
or (PCU) 35 78 67 11 v (JTU)	0	14.3	7.2	5.4	3 -	10
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	-	29	113	73	10 -	180
Inform (per 100 ml) 29,167 43,700 14,774 48,93 Inform (per 100 ml) 329 2,492 328 93 Inform (per 100 ml) 157 473 20 1,35 Inform (per 100 ml) 157 473 20 Inform (per 100 ml) 157 473 20 Inform (per 100 ml) 157 14,2 2.8 Inform (per 100 ml) 12 22 2.8 Inform (per 100 ml) 0.21 0.25 0.85 Inform (per 100 ml) 0.27 0.35 0.85 Inform (per 100 ml) 0.26 0.14 0.21 Inform (per 100 ml) 0.26 0.14 0.21 Inform (per 100 ml) 0.25 0.14 0.21 Inform (per 100 ml) 120 146 138 20 Inform (per 100 ml) 127 138 118 10 Inform (per 100 ml) 127 138 138 138 Inform (per 100 ml) 127 138 Inform (per 100 ml) 138 Inform (per 100		× 80	<80	×80		
	43,	14,774	48,933	34,143	0 -29	-291,000
reptococci (per 100 ml) 157	2,	328	933	1,021	0	6,910
ng(1) h.7 14.2 2.8 2.8 ng/1) 12 22 25 25 ng/1 N 0.21 0.10 0.25 0.25 (mg/1 N) 0.02 0.02 0.03 0.08 eldahl (mg/1 N) 0.22 0.14 0.21 1.34 sephorus (mg/1 N) 120 146 138 20 d Solids (mg/1) 16 23 20 8 Solids (mg/1) 40 46 46 48 5 Solids (mg/1) 127 138 10 conductance (micromhos/cm) 127 138 10 mg/1 N - - - (mg/1) - - - (mg/1) - - - (mg/1) - - - rdness (mg/1 CaCO3) 27 28 30 rdness (mg/1 CaCO3) 27 20.8 21.5 19.5 1		20	1,350	500	0	8,100
ng/1) 12 22 25 25 mg/1 N 0.21 0.10 0.25 (mg/1 N) 0.02 0.03 0.03 eldahl (mg/1 N) 0.27 0.35 0.82 eldahl (mg/1 N) 0.22 0.35 0.82 eldahl (mg/1 N) 0.22 0.14 0.21 1ids (mg/1) 120 146 48 20 4 Solids (mg/1) 40 46 48 20 Solids (mg/1) 127 138 118 10 Conductance (micromhos/cm) 127 138 118 10 mg/1 N - - - - (mg/1) - - - (mg/1) - - - mg/1 N - - - - - - - - - - - - - - -<	.7	2.8	2.8	6.1	0.1 -	65
(mg/1 N) 0.21 0.10 0.25 (mg/1 N) 0.02 0.03 0.03 (mg/1 N) 0.27 0.35 0.82 eldsh1 (mg/1) 0.28 1.12 1.34 sphorus (mg/1) 120 146 138 20 d Solids (mg/1) 16 23 20 8 Solids (mg/1) 40 46 48 5 Conductance (micromhos/cm) 127 138 118 10 mg/1) - - - - - (mg/1) - - - - - (mg/1) - - - - - (mg/1) - - - - - - (mg/1) - - - - - - - (mg/1) - - - - - - - (mg/1) - - - - -		25		20	1	45
(1) 0.02 0.02 0.03 (1) 0.27 0.35 0.82 0.08 1.12 1.34 0.22 0.14 0.21 120 146 138 20 140 46 48 120 127 138 118 10 127 138 118 10 127 138 118 10 127 138 118 10 127 138 118 10 138 118 10 146 188 118 10 16 188 118 10 17 10ac03 20.8 21.5 19.5 1	21		0.13	0.17	0.05-	0.46
(1) 0.27 0.35 0.82 mg/1) 0.86 1.12 1.34 1.20 0.14 0.21 1.20 1.46 1.38 20 8 mg/1) 16 23 20 8 mg/1) 17 138 1.18 1.0 ce (micromhos/cm) 127 138 1.18 1.0 -	32		0.02	0.02	-00.0	0.05
1,12	27			94.0	0.14-	7.6
mg/l) 0.22 0.14 0.21) 120 146 138 2 mg/l) 16 23 20 mg/l) 40 46 48 ight) 127 138 118 1 	36			1.03	0.1 -	2.32
mg(1) 120 146 138 2 mg(1) 16 23 20 mg/1) 40 46 48 ce (micromhos/cm) 127 138 118 1	22		0.39	0.24	0.04-	0.85
mg/1)		138	201	151	- 7,2	299
ug/l) 40 46 48 ice (micromhos/cm) 127 138 118 1 - - - - - - - - - - 1/1 CaCO3 (2) 27 28 30 mg/l CaCO3 (2) 20.8 21.5 19.5	_	20	81	35	0	191
Ice (micromhos/cm) 127 138 118 1 - - - - - - - - 1/1 CaCO3 27 28 30 mg/1 CaCO3 20.8 21.5 19.5		84	58	84	20 -	77
./1 CacO3)) 127 (118	102	121	- 05	150
./1 CacO3)	-	_	_	1		
./1 Caco3)	-	-	_			
./lcaco3)		-	_	1		
./lcaco3) 27 28 30 mg/lcaco3) 20.8 21.5 19.5	_	_	-			
$\frac{1.0 \cos(3)}{\cos(1.0 \cos(3))}$ 27 28 30 $\cos(1.0 \cos(3))$ 20.8 21.5 19.5	_	_	-			
mg/1 CaCO ₃) 20.8 21.5 19.5		30	29	29	- _प ट	35
	8	19.5	19.2	50	15 -	27
Oils & Grease (mg/l) 78 1.12 1.98			0.55	1.11	0.0	9.3

TABLE C-49
Summary of Baseflow Sampling
Station 3

Parameter	SPRING MEAN	SUMMER MEAN	FALL MEAN	WINTER MEAN	ANNUAL MEAN	ANNUAL RANGE	ANGE
Нq	6.4	9.9	6.2	6.5	6.4	5.6 -	7.0
Alkalinity (mg/l CaCO ₃)		55	η2	6	16	5 -	88
Temperature (OC)		26.1	17.1	8.2	17.2	6.0 -	29.0
D.O. (mg/l)	5.4	4.3	5.9	10.3	6.4		11.6
$\infty_2 (mg/1)$	9.1	11.0	9.7	8.4	8.7	٠ ٣	16
True Color (PCU)	26	114	128	88	96	10	190
Turbidity (JTU)	<80	<80	×80	<80 <80	×80		
rency	_	_					
Total Coliform (per 100 ml)	32,017	27,150	22,953	61,483	35,901	820 -25	-254,000
Coliform	732	1,552	547	1.813	1,161		6,300
Fecal Streptococci (per 100 ml)	1,310	302	522	2,757	1.174	1	10,900
9.0.D. (mg/l)	4.5	14.1	3.2	ተ ፡ ይ	6.3	1.2 -	30
C.O.D. (mg/l)		25	23	25	23	1	9†
C Ammonia (mg/1 N)	0.21	0.20	0.23	0.10	0.19	0.04-	0.42
Nitrite (mg/l N)	0	0	0	0	0	0.0	0.01
Nitrate $(mg/1 N)$	0.35	0.30	0.95	84.0	0.52	0.11-	17
Total Kieldahl $(mg/1)$	1.43	1.71	1.86	0.98	1.54	0.1 -	2.5
Total Phosphorus (mg/l)	0.07	0.15	0.14	60.0	0.11	0.01-	0.26
Total Solids (mg/l)	114	131	134	ተተ፲	131	- 87	215
Suspended Solids (mg/l)	28	33	59	26	36	3 -	99
Volatile Solids (mg/l)	74	8†	50	1 9	25	21 -	104
Specific Conductance (micromhos/cm)	53	96	54	39	59	30 -	125
נר.		1	-	_	_		
Sulfate (mg/l)	•		-	-	_		
Chloride (mg/l)	_	_	-	_	-		
Iron $(mg/1)$	-	_	1	1	-		
Manganese (mg/l)	-		1	1	_		
Total Hardness (mg/1CaCO3)	17	19	20	17	18	12 -	25
Calcium Hardness (mg/l CaCO ₃)	10.0	11.9	10.8	7.8	10.0	6.2 -	14.5
Oils & Grease (mg/l)	2.77	0.45	0.08	00.00	0.86	0.0	7.3

Summary of Baseflow Sampling Station

	SPRING MEAN	SUMMER MEAN	FALL MEAN	WINTER MEAN	ANNUAL MEAN	ANNUAL RANGE	35
Parameter			t	0 9	0 9	6.2 -	7.5
Ho	6.9	6.9	١٩٠	2.0	99		131
Alkalinity (mg/1 CaCO_)	09	†L	09	72	00	3	0 80
3	18.3	26.5	17.71	8.3	1.7.7		200
	9.6	2.6	3.6	5.9	3.9	` }	
D.O. (mg/1)	13.0	14.6	13.0	12.8	13.4	o.	23.0
110	1	101	87	118	98	- 01	
	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	× 80	<80	<80	<80	1	
Turbidity (JTU)		-	1	1	041 055	200.059- 000.3	000
Coliforn (Der	114,933	143,817	103,400	99,017	110,410		000
Der	7,970	2,803	4,983	1,433	1,105		4,200
Facel Strentococci	893	556	1,202	1,300	7.2	3.7	32
(mg/1)	7.1	14.4	93.1	25.2	26	- 5	78
C.O.D. (BR/	23	33	20		0.59	-90.0	1.48
Ammonia	0.57	0.38	TO O		0.02	- 0	0.02
Nitrite $(mg/1 N)$	0.05	0.02			0.76	0.14-	3.04
[] [] []	0.54	0.53	T.T.		77.0	1.8 -	4.5
1	2.16	2.75	6.37		0.23	-70.0	0.93
Total Phosphorus (mg/l)	0.27	0.15	180 - 33		174	80	247
	142	187	100	107	30	, 0	56
Suspended Solids (mg/l)	15	53	63	87	30	15 -	148
Volatile Solids (mg/1)	52	9.	075	133	169	- 65	345
Specific Conductance (micromhos/cm)	150	21.7	TOOT		,		
Sodium (mg/l)				-	1		
aı	,		1		 		
l as	1		1	-	-		
Iron $(mg/1)$		-			 - -		
Manganese $(mg/1)$		- 6	- 63	89	179	- 42	105
Total Hardness (mg/1 CaCO3)	57	60	3			7,	ά
m Hardnes	39.7	50.8	41.9	-7	43.8	- 0.0	18.0
Oils & Grease $(mg/1)$	2.77	3.73	1 4.03	0.40	(1.5		

TABLE C-51 Summary of Baseflow Sampling Station 5

PARAMETER	SPRING MEAN	SUMMER MEAN	FALL MEAN	WINTER MEAN	ANNUAL MEAN	ANNUAL RANGE	ANGE
Нq	4.9	6.8	6.5	9.9	6.6	5.8 -	7.6
Alkalinity (mg/l CaCO ₃)	17	38	18	91	22	- 9	09
Temperature (OC)	18.9	26.8	17.8	8.0	17.9	- 9	29
D.O. (mg/l)	1.8	2.9	7.4	8.9	5.3	1.5 -	10.5
$\infty_2 (mg/1)$	7.6	12.7	7.8	0.4	8.6	3 -	16.0
True Color (PCU)	63	123	105	88	95	- 5	195
Turbidity (JTU)	<80	<80	<80	<80	<80		
Secchi Transparency (cm)		-	_			•	
Total Coliform (per 100 ml)	12,500	8,217	10,778	18,033	12,382	170 -6	-63,000
Fecal Coliform (per 100 ml)	615	521	620	864	549	0 - 0	2,200
יציו	209	549	130	287	219	- 0	730
ဂ္ B.O.D. (mg/l)	6.4	12.6	2.5	3.3	5.8	- 2.0	94
C.O.D. (mg/1)	56	31	20	<u>₹</u> 2	25	11 -	145
<pre>Ammonia (mg/l N)</pre>	0.26	0.29	0.30	0.55	0.33	- 9.0	1.8
Nitrite (mg/l N)	0	0	0	0	0	0	
Nitrate (mg/l N)	15.0	0.43	1.07	0.48	0.64	0.27~	2.98
Total Kjeldahl (mg/l)	1.34	2.95	1.53	1.60	1.88	0.2 -	6.4
Total Phosphorus (mg/l)	0.12	0.17	12.0	0.11	0.16	-20.0	0.35
Total Solids (mg/l)	110	141	112	135	121	- 51	241
Suspended Solids (mg/l)	17	35	18	31	25	- 0	105
Volatile Solids (mg/l)	51	61	57	52	55	- 52	104
Specific Conductance (micromhos/cm)	1 9	130	75	718	62	- 0†	188
Sodium (mg/l)	_	_	-	-	_		
Sulfate (mg/1)	1	_	1	-			
Chloride $(mg/1)$	_		-	_			
Iron $(mg/1)$	_	•	•	•	_		
Manganese $(mg/1)$		_	-	1	_		
Total Hardness (mg/1 CaCO3)	23	37	25	35	30	14 -	110
Calcium Hardness $(mg/1 \text{ CaCO}_3)$	15.3	25.3	14.3	21.4	1.61	- 5.7	77
Oils & Grease (mg/l)	1.79	2.97	0.05	0.10	1.23	0.0	15.2

TABLE C-52 Summary of Baseflow Sampling Station 6

Parameter	SPRING MEAN	SUMMER MEAN	FALL MEAN	WINTER MEAN	ANNUAL MEAN	ANNUAL RANGE	NGE
Hq	6.4	6.8	6.3	6.8	9.9	5.9 -	7.1
Alkalinity (mg/l CaCO ₂)	9	23	12	8	12	- 2	30
Temperature (OC)	14.7	22.8	14.3	7.9	14.6	4.5 -	25
D.O. (mg/l)	7.8	3.4	3.5	11.2	6.5	0.3 -	12.4
	6.4	ηľ	8.7	3.5	8.2	2 -	19
True Color (PCU)	27	126	144	83	98	- 5	200
Turbidity (JTU)	×80	×80	<80	<80	<80		
Secchi Transparency (cm)	1		_	_		ţ	
Total Coliform (per 100 ml)	21,333	21,433	38,900	1,633	30,825	1,100 -195	-195,000
_	1,248	2,588	292	788	1,229	0 - 1	3,000
Fecal Streptococci (per 100 ml)	0ħZ	1,262	177	547	731	0	5,800
•	7.4	18.3	7.5	3.7	7.7	1.0 -	73.0
) E	18	28	25	22	23	- 2	748
l ø	0.20	0.25	0.25	0.10	0.21	0.01-	0.64
	0	0	0	0	0	0	
Nitrate (mg/l N)	0.34	1.53	1.53	0.62	1.02	0.20-	1.88
Total Kjeldahl (mg/l)	1.31	1.03	1.83	1.28	1.37	0.25-	2.65
Total Phosphorus (mg/l)	ηO•O	0.08	0.11	50.0	0.07	0.01-	0.31
Total Solids (mg/l)	124	108	105	96	108	63 -	297
Suspended Solids (mg/l)	††	16	10	6	20	- 0	212
Volatile Solids (mg/l)	52	1,1	145	35	11	11 -	133
Specific Conductance (micromhos/cm)	45	89	58	36	52	30 -	100
Sodium (mg/l)	•	-	•	_	1		
Sulfate (mg/+)		-	1		1		
Chloride (mg/l)	,		_	_	_		
Iron $(mg/1)$	•	_			_		
Manganese (mg/l)		ſ	-		-		
Total Hardness (mg/lCaCO3)	16	21	20	17	19	11 -	29
Calcium Hardness (mg/l CaCO ₃)	11.5	16.4	6.6	6.9	11.2	- 0.9	32
Oils & Grease (mg/l)	1.21	1,42	2.0	0.0	1.15	0.0	8.4

Table C-53
Summary of Baseflow Sampling
Station

Parameter	SPRING MEAN	SUMMER MEAN	FALL MEAN	WINTER MEAN	ANNUAL MEAN	ANNUAL RANGE	RANGE
Hď	6.5	6.8	6.7	9.9	9.9	6.3 -	7.1
Alkalinity (mg/l CaCO ₃)		50	38	16	31	- 7	71
Temperature (OC)	16.6	24.6	15.3	6.9	15.9	- 0.3	26.5
D.O. (mg/l)	5.0	0.9	1 . i	8.3	3.9	0.1 -	10.4
$\infty_2 (mg/1)$	9.6	17.2	12.8	5.8	11.4	- 7	22
True Color (PCU)	99	107	108	100	95	- 02	145
Turbidity (JTU)	×80	<80	<80	<80	<80	!	
Secchi Transparency (cm)	-	_		-	_	1	
Total Coliform (per 100 ml)	31,733	104,917	10,187	25,167	43,001	220 -330	-330,000
	2,492	3,098	568	265	1,531	5 - 0	9,300
Streptococci (1,672	1,88	82	377	655	-	8,800
B.O.D. (mg/l)	6.7	28.9	5.5	0.4	11.3	2.6 -	09
	20	37	19	54	25	- 5	87
•	0.32	1.39	0.76	0.23	0.71	-80.0	4.67
Nitrite $(mg/1 N)$	0.01	0.01	0.05	0.01	0.02	0.01-	0.03
Nitrate $(mg/1 N)$	17.0	0.59	1.58	88.0	0.94	0.27-	2.57
Total Kjeldahl (mg/l)	1.98	3.7	2.94	1.38	2.60	- 2.0	6.8
	0.35	0.79	0.70		0.55	0.05-	96.0
Total Solids (mg/l)	158	160	148	132	150	- 28	240
Suspended Solids $(mg/1)$	39	28	23	517	34	- 2	90
Volatile Solids (mg/l)	148	72	58	81	57	12 -	120
Specific Conductance (micromhos/cm)	7.8	153	112	62	101	- 0 [†]	205
Sodium (mg/1)	•	_	_	-	-		
Sulfate (mg/l)	•	Į.	1	_			
Chloride (mg/l)	1	-	_	_	-		
Iron $(mg/1)$	_	•	_		_		
Manganese $(mg/1)$	-	_	-	_			
Total Hardness (mg/10aCO3)	24	43	30	23	30	20 -	64
Calcium Hardness (mg/l CaCO ₃)	15.4	26.0	18.8	12.3	18.1	8.5 -	37
Oils & Grease $(mg/1)$	2.50	1.42	00.0	0.80	1.18	- 0.0	8.10

Table C-54 Summary of Baseflow Sampling Station 8a

Parameter	SPRING MEAN	SUMMER MEAN	FALL MEAN	WINTER MEAN	ANNUAL MEAN	ANNUAL RANGE	NGE
Нф	6.9	7.2	7.0	7.3	7.1	6.5 -	7.5
Alkalinity (mg/l CaCO ₃)	59	77	98	71	73	- 84	101
Temperature (OC)	19.1	24.8	15.5	7.5	16.7	- 0.9	26.1
(mg/1)	4.2	3.9	5.9	9.6	5.9	1.8 -	12.0
$\infty_2 (mg/1)$	10.2	10.3	11.3	2.9	9.5	- 5	13.1
True Color (PCU)	34	09	78	117	73	15 -	140
レコ	<80	<80	<80	<80	<80		
Secchi Transparency (cm)			_	-	1	1	
Total Coliform (per 100 ml)	160,150	50,500	48,750	112,100	92,875	3,900 -630	-630,000
Fecal Coliform (per 100 ml)	41,287	4,320	3,728	3,410	13,186	110 -216	-216,000
Fecal Streptococci (per 100 ml)	9,805	577	988	2,878	3,425	1	48,000
'B.O.D. (mg/l)	9.3	21,1	7.3	£•7	10.5	2.2 -	62.0
C.0.D. (mg/1)	10	35	23	21	22	- 7	6 2
Ammonia (mg/l N)	0.63	0.30	0.39	0.30	0.41	0.08-	2.87
Nitrite (mg/l N)	0.01	0.02	0.01	0.01	0.01	- 0	0.04
Nitrate (mg/l N)	0.36	0,38	1.38	82.0	0.72	0.14-	5.28
Total Kleldahl (mg/l)	2.04	1.76	2.03	0η•Ι	1.84	0.40-	4.34
Total Phosphorus (mg/l)	0.24	0.19	0.32	0.19	0.23	0.02-	0.64
Total Solids (mg/l)	138	165	194	220	179	11^{h}	283
Suspended Solids (mg/l)	22	17	17	25	2.5	- 0	95
Volatile Solids (mg/l)	51	55	92	86	10	25 -	158
Specific Conductance (micromhos/cm)	176	211	192	159	181	125 -	249
Sodium (mg/l)	_		_	_			
Sulfate (mg/1)	•	•		_	-		
Chloride (mg/l)	ſ	-	1	_	-		
Iron $(mg/1)$	_	_	_	_	_		
Manganese (mg/l)		_		_			
Total Hardness (mg/1 CaCO3)	36	63	99	ħ9	25	30 ~	114
Calcium Hardness (mg/l CaCO ₃)	29.8	38.8	48.1	45.5	9.04	23 -	61
Oils & Grease (mg/l)	2.47	0.82	00.0	0.68	0.99	0	4.70

TABLE C-55 Summary of Baseflow Sampling Station 9a

PARAMETER	SPRING MEAN	SUMMER MEAN	FALL MEAN	WINTER MEAN	ANNUAL MEAN	ANNUAL RANGE	ANGE
Нq	8.0	7.6	8.1	7.5	7.8	7.2 -	9.1
Alkalinity (mg/l CaCO ₃)	L7	59	59	61	95	41 -	72
Temperature (OC) See Appendix C	_	_	-		-	j	
(mg/l) See	_	_	_	_	-	J	
mg/1)	6.0	5.3	0.4	3.0	3.4	0	80
True Color (PCU)	13	7.7	52	29	45	- 5	90
Turbidity (JTU)	<80	<80	<80	<80	<80	1	
Secchi Transparency (cm)	55.2	L 44	58.8	57.6	54.1	28 -	84.5
Total Coliform (per 100 ml)	8,400	43,033	49,433	366,500	116,842	ן. 	-760,000
Coliform (277	2,210	7,037	3,277	3,200		19,900
Streptococci (417	263	223	2,933	1,112	ıĮ	2,600
B:0.D. (mg/l)	6.4	6.3	ተ ተ	3.9	4.9	2.8 -	6.9
1	25	27	21	20	23	8	41
Ammonia	0.18	0.13	0.20	0.10	0.16	-20.0	0.36
Nitrite (mg/l N)	0	10.0	0	0.01	0	- 0	0.02
_	0.33	0.24	0.34	0.47	0.34	0.20-	9.0
Total Kjeldahl (mg/l)	1.08	1.97	2.41	1.00	1.76	0.38-	2.64
Total Phosphorus (mg/l)	90.0	0.09	0.16	0.1	0.10	0	0.22
Total Solids (mg/l)	150	300	143	145	184	108 -	554
Suspended Solids (mg/l)	27	202	17	16	65	0	425
Volatile Solids (mg/l)	50	72	61	59	61	23 -	82
Specific Conductance (micromhos/cm)	182	177	156	132	161	125 -	230
Sodium (mg/l)	•	1	-	-			
Sulfate (mg/1)	-	1	1		-		
Chloride (mg/l)	-	-	1	_	_		
Iron (mg/l)	ì	_	_	-	•		
Manganese (mg/l)	-	_	_		_		
Total Hardness (mg/1 CaCO3)	1 79	77	50	6ħ	52	- 04	97
Calcium Hardness $(mg/1 CaCO_3)$	35.7	34.7	33.3	34.3	34.5	22.5 -	42.5
Oils & Grease $(mg/1)$	1.53	12.63	0.90	0.77	3.96	- 0.0	37.1
				•			

TABLE C-56 Summary of Baseflow Sampling Station 9b

PARAMETER	SPRING MEAN	SUMMER MEAN	FALL MEAN	WINTER MEAN	ANNUAL MEAN	ANNUAL RANGE	NGE
Нqq	8.1	8.1	8.0	7.1	7.7	6.8 -	8.6
Alkalinity (mg/l CaCO ₃)	24	87	63	59	۲9	75 -	127
Temperature (OC) See Appendix C			-	l	į.		
(mg/l) See Appe	1	-	_	ı	_	i	
∞ ₂ (mg/1)	2.5	3.7	1.7	3.7	2.9	0	7
True Color (PCU)	17	53	38	28	36	- 5	80
Turbidity (JTV)	<80	<80	<80	<80	<80	•	
Secchi Transparency (cm)	0.49	42.4	65.9	89.3	65.4	25.4 -	₹.96
Total Coliform (per 100 ml)	1 54,567	5,053	31,933	106,067	49,405	500 -307,	000
Fecal Coliform (per 100 ml)	560	233	553	20	342	0 - 1,	1,470
	903	10	531	7	243	0 - 2,	2,650
B.O.D.	5.0	8.2	η, 8	4.1	5.5	3.3 -	11.0
C.O.D. (mg/l)	92	38	78	21	27	13 –	63
N Ammonia (mg/l N)	0.24	0.22	0.29	0.10	0.22	-60.0	0.39
Nitrite $(mg/1 N)$	0	0	0.01	0	0	0	0.04
Nitrate $(mg/1 N)$	0.47	0.45	1.05	0.50	0.62	0.20-	2.56
Total Kjeldahl (mg/l)	1.65	2.57	2.23	1.65	2.06	0.8 –	4.3
Total Phosphorus (mg/1)	0.07	0.09	0.10	90.0	0.08	0.04-	0.18
Total Solids (mg/l)	124	205	145	122	149	103 -	560
Suspended Solids (mg/l)	23	55	13	17	27	- 0	105
Volatile Solids (mg/l)	43	7.7	58	7 7	58	13 -	100
Specific Conductance (micromhos/cm)	149	252	183	129	172	126 -	346
Sodium (mg/1)	1	-	f	_	_		
Sulfate (mg/l)	,		1	l	_		
Chloride $(mg/1)$		_	-	_	_		
Iron $(mg/1)$	1	1	-	**	_		
Manganese $(mg/1)$	_	_	-	_	-		
ness (mg/lCa	L†1 [82	61	6η	09	_ Zt1	116
Calcium Hardness (mg/l CaCO ₃)	37.0	7.07	42.9	33.3	6.54	26.8 -	104
Oils & Grease $(mg/1)$	0.97	1.37	0.00	0.07	9.0	0.0	1.9

TABLE C-67 Summary of Baseflow Sampling Station 10a

PARAMETER	SPRING MEAN	SUMMER MEAN	FALL MEAN	WINTER MEAN	ANNUAL MEAN	ANNUAL RANGE	RANGE
He	8.1	8.6	8.6	7.7	8.3	7.1 -	9.3
Alkalinity (mg/1 CaCO ₂)	7.7	61	83	80	75	- 05	90
Temperature (OC) See Appendix C			-	1	1		
		_	1	1	_	1	
mg/1)	2.3	1.3	2.0	2.7	2.1	- 0	5
This Color (PCII)	20	35	20	4.5	30	10 -	09
	×80	<80	<80	<80	<80	_	
12	61.8	73.1	71.3	58.4	66.1	બ	
Total Coliform (per 100 ml)	3,277	190	8,833	9,900	5,550	120 -22	
Coliform (per	200	24	10	13	99	0	270
Streptococci	30	0	8	33	22	- 0	90
B.O.D. (mg/1)	5.0	9.9	3.2	4.6	4.9	1.6 -	2.)
0.0	20	24	29	56	25	ω	34
1 6	0.20	0.26	0.32	0.10	0.23	0.07-	0.59
Nitrite (mg/l	0	0	0	0	0	- 0	0.01
T/ Sul	0.36	0.24	0.15	1.93	0.67	1	5.2
eldah.	1.43	1.57	1.55	1.45	1.50	0.5 -	1.86
	90.0	0.08	0.10	0.1	0.09	0.01-	0.24
Solids (mg/]	219	193	112	217	213	170 -	267
Suspended Solids (mg/l)	16	27	2	11	14	- 0	58
K-	62	85	61	68	69	35 -	118
13	304	302	325	223	288	193 -	330
Sodium (mg/1)	,	-	1		-		
Sulfate (mg/1)	•	•	-	-	-		
ĪΛ	,		-	-	-		
I~	,	1	1	-	'		
Manganese (mg/l)	,	1	_	•	-		
Iπ	86	75	103	91	92	- 29	111
Calcium Hardness (mg/l CaCO ₂)	66.3	67.3	61.0	56.3	62.8	37.5 -	82
Oils & Grease $(mg/1)$	2.17	0.4	00.00	0.4	0.74	- 0.0	6.20

TABLE C-58 Summary of Baseflow Sampling Station 10b

	TAN ENG CALLEGE	CINAMER MEAN	FALL MEAN	WINTER MEAN	ANNUAL MEAN	ANNUAL RANGE	NGE
PARAMETER	SPRING MEAN	CONTRACT VALLEY		1	7.7	- 6.9	8.6
	7.9	7.5	7.9	#:		1	6
ph (0.00 () (mg/) (mg/) (mg/)	72	69	83	92	75	- 05	2
vac 3,	<u>-</u>			ı	•		
rature		-	_	1	*		
D.O. (mg/l) See Appendix C		,	C	٦,4	3.2	0	ω
	2.9	3.7	2.0		36	- 5	80
Fig. Color (PCII)	28	43	523	200	×80		
L '	<80	×80	08 V	000	59.5	22.9 -	77.5
Cooki Transmarency (cm)	9.64	71.6		3/5	17 360	100 -158	1~
Coliform (Der	7,173	333	53,867	8,103	ન		
Coliform (ner 100	96	59	93	25	7.	- 0	110
Strontorori	13	0	37	- 0	7 7	1.0 -	7.6
(mg/1)	5.4	4.9	3.5	3.1	25		43
0.00	17	26	29	2 0	77	0.05-	0.51
À	0.15	0.09	0.22	07.70			0.01
北北	c	0	0	0		2	~
加州		0.63	1.28	2.67	1:23	12.0	5.09
N 1/3m e	36-1	1.30	1.94	1.60	1.22		71.0
Kieldahl m	90 0	0.07	0.08	0.08	0.01	-10.075	260
Phospho		190	245	221	214	1	27
7	122	8,	22	30	21		
nded Solids	77	23	67	ħL	99	37 =	#A
	25	316	362	236	291	216 -	400
Specific Conductance (micromhos/cm)	213	7=7=	,		-		
Sodium (mg/1)			,	-			
Sulfate (mg/l)							
Chloride (mg/l)	-			 - -			
	-	-		-	-		
			101	87	3	- 80	106
dness (mg/lCa	87	03	101		63.3	- 55	79
Calcium Hardness (mg/1 CaCO ₃)	59.3	69.7	(2.2	76.0	1 07	0.0	7.7
Oils & Grease (mg/l)	1.33	0.33	2.1	0.5			

TABLE C- 59 Summary of Baseflow Sampling Station 10c

							l
Parameter	SPRING MEAN	SUMMER MEAN	FALL MEAN	WINTER MEAN	ANNUAL MEAN	ANNUAL RANGE	- 1
Hď	8.3	7.6	7.7	7.5	7.8	7.3 - 9.2	
Alkalinity (mg/l CaCO ₃)	82	80	88	72	81	53 - 121	
Temperature (OC) See Appendix C	_			-	_	•	
(mg/l) See Appe		1	ŀ	-	1	•	1
$\infty_2 (mg/1)$	2.0	3.8	3.3	3.0	3.0	0 - 5	
True Color (PCU)	18	30	42	09	38	5 - 80	
Turbidity (JTU)	<80	<80	<80	08>	<80	1	
Secchi Transparency (cm)	60.1	58.7	49.3	6.64	54.5	27.9 - 79.4	
Total Coliform (per 100 ml)	6,000	616	8,733	290.5	5,195	110 -13,300	
Coliform	173	96	297	0 † Γ	176	0 - 620	
Streptococci (17	0	7.4	22	21	0 - 130	
1	4.1	3.3	1.5	3.8	3.2	0.6 - 5.9	1
1 C.O.D. (mg/l)	17	11	27	28	22	7 – 34	
of Ammonia (mg/l N)	0.15	0.07	0.24	01.0	0.15	0.06- 0.37	
Nitrite (mg/l N)	0	0	0.01	0	0.01	0 - 0.03	
Nitrate $(mg/1 N)$	0.45	0.41	0.42	1.2	0.62	0.13- 2.6	
Total Kjeldahl (mg/l)	1.21	1.15	1.61	1.25	1.31	0.3 - 2.00	
Total Phosphorus (mg/1)	90.0	0.04	0.09	0.07	0.07	0 - 0.14	
Total Solids (mg/l)	257	242	596	260	564	205 - 333	
Suspended Solids (mg/l)	28	17	34	54	26	50 – ہر	
Volatile Solids (mg/l)	63	69	72	92	70	47 – 98	1
Specific Conductance (micromhos/cm)	391	410	392	272	364	250 - 507	- [
Sodium (mg/1)		,	į	-	•		-[
Sulfate (mg/l)	ŧ	-	1	1	1		-
Chloride $(mg/1)$	_	-		_			
Iron $(mg/1)$		_	_	_	_		
Manganese $(mg/1)$		-	-	-			
Total Hardness (mg/lCaCO3)	104	108	106	89	102	81 - 126	
Calcium Hardness (mg/l CaCO ₃)	68.7	89.7	62.6	55.0	68.9	32.8 - 106	
Oils & Grease (mg/l)	1.70	0.00	0.47	0.70	0.72	0.0 - 5.0	

TABLE C-60 Summary of Stormwater Quality Station 1

SELECTED PARAMETERS*	May 14–15	July 25-26, 1974	Dec. 6-7, 1974	Jan. 1975	Feb. 22-23, 1975	Mar. 9-10, 1975	All Events
D.O. (mc/1)	! 1	•	{	11		11	
Total Coliform (per 100 ml in millions)	1	ı	0.023/2.010	1	0.001/0.016		0.001/2.010
	ı	•	0.001/0.007	-	<0.001/0.004		<0.001/0.007
Fecal Streptococci (per 100 ml in millions)	•	ſ	< 0.001/0.004		< 0.001/0.003	,	< 0.001/0.004 0.001
B.O.D. (mg/l)	•		6.6/37.0	ı	1.8/4.0	•	1.8/37.0
•	1	đ	26.0/51.0 36.8	1	22.0/39.0		22.0/51/0
Ammonia (mg/l N)	-	•	0.10/0.20 0.13	1	0.10/0.10	1	0.10/0.20
	_	•	0.0/0.0	l	0.0/0.0	1	0.0/0.0
Nitrate (mg/l N)	1	•	2.3/9.2	1	0.2/1.3	ı	0.2/9.2
Total Kjeldahl (mg/1)	-	1	0.20/0.80	•	1.6/2.2		0.20/2.20
Total Phosphorus (mg/l)	-	j	0.01/0.04	-	0.02/0.04	1	0.01/0.04
Total Solids (mg/l)			66 5TT/†18	1	95/244	 	84/244
Suspended Solids (mg/l)	-	3	υμή 18/20	•	3/132 79	t	3/132 62
Volatile Solids (mg/l)	_	•	1/30 18	ı	32/81 53	1	1/81
Calcium Hardness (mg/1 CaCO ₃)	-	•	6.8/13.0 8.5	ı	5.0/7.8 6.1	ı	5.0/13.0 7.3
Oils & Grease (mg/l)	-	•	0.0/18.0	ı	0.3/9.3	1	0.0/18.0

* Minimum/Maximum Mean

TABLE C-61 Summary of Stormwater Quality Station 2

SELECTED		July	ec.	ļġ	Feb.	Mar.	A11
PARAMETERS *	14-15, 1974	25-26, 1974	6-7, 1974	10-11, 1975	22-23, 1975	9-10, 1975	Events
D.O. (mg/l)	1	-		_	-	-	1
Coliforn		0.081/4.860	0.018/8.600		0.348/0.510		
(per 100 ml in millions)		2.393	3.213	,	0.429	•	ı
E C	< 0.001/0.251	0.003/0.250	<pre>900.0/100.0 ></pre>		< 0.001/0.028		< 0.001/0.250
~1	0.076	0.115	0.002	J	0.012	_	0.048
Strept	ı	0.001/0.144	< 0.001/0.011	J	< 0.001/0.048	1	< 0.001/0.144
(per 100 ml in millions)		0.093	0.005		0.021		0,040
B.O.D. (mg/1)	ı	3.0/12.0 6.9	5.6/8.1	ı	1.6/8.9	ı	1.6/12.0
C.O.D.	4.0/57.0	4.0/39.0	17.0/51.0		28.0/49.0		4.0/57.0
Ammonia	0.00	< 0 0/ 10 0 V	35.3		37.7		
(mg/1 N)	_	0.05	0.17	,	0.10/0.20	ı	< 0.04/0.20
Nitrite (mg/l N)	ı	£0.0/00.0	0.01/0.03	J	0.00/0.03	1	0.00/00.03
Nitrate		0.27/0.77	0.8/11.0		0.18/0.70		0.18/11.0
(mg/1 N)		0.53	3.8		0.34	_	1.23
Total Kjeldahl (mg/l)	ı	9.4/9.0	0.3/1.4	l	1.1/3.6	1	0.1/4.6
Total Phosphorus	1	0.02/0.23	0.12/0.58		0.15/0.33		0.02/0.58
~	1847/240	11.0	0.24		0.19	\ \ \	0.18
$(m_{\rm S}/1)$	1336	143/3776 1162	98/340 182	ı	157/1415 787	ı	98/3776
Suspended Solids	90/3552	5/3522	4/222 8.e) 	8/1055	-	4/3552
Volatile Solids	25-75	40/972	0/51		194		836
	_	217	33	1)0/104 93	ı	0/9/2
<pre>Calcium Hardness (mg/1 CaCO₂)</pre>	•	5.8/24.0	15.0/22.0	•	18.0/24.0	•	5.8/24.0
Oils & Grease		1.01	0 0/18 0		Z1.3		16.7
' 그	-	1	4.5	ı	2.9.3	1	0.0/18.0

* Minimum/Maximum Mean

TABLE C-62 Summary of Stormwater Quality Station 3

SELECTED PARAMETERS*	May 14-15, 1974	July 25-26, 1974	Dec. 6-7. 1974	Jan. 10-11, 1975	Feb. 22-23, 1975	Mar. 9-10, 1975	All Events
D.O. (mg/1)	ı	1		-	1		-
Total Coliform (per 100 ml in millions)	1	0.005/6.900 2.523			1	•	0.005/6.900 2.523
Fecal Coliform (per 100 ml in millions)	0.001/0.021 0.006	< 0.001/0.061 0.038	ı	•			< 0.001/0.061 0.02¼
Fecal Streptococci (per 100 ml in millions)		<0.001/0.087 0.031	ı	-		1	< 0.001/0.087 0.031
B.O.D. (mg/1)	-	5.2/26.0 9.2		ŧ	•	ı	5.2/26.0 9.2
C.O.D. (mg/1)	17.0/33.0 25.0	7.0/34.0 23.2	-	-		-	7.0/34.0 24.2
Ammonia (mg/l N)	-	<0.04/0.73 0.25	•	1		•	<0.04/0.73 0.25
Nitrite (mg/l N)	•	0.00/0.01	ı	ı		ı	0.00/0.01
Nitrate (mg/l N)	•	0.25/0.81	1	ı	,	ľ	0.25/0.81 0.61
Total Kjeldahl (mg/l)	-	0.9/3.6 2.2	1	•	ŧ	•	0.9/3.6
Total Phosphorus (mg/1)	-	0.06/0.17	ı	1	,	1	0.06/0.17
Total Solids (mg/l)	162/353 213	164/672 271	ı	1	1	ı	
Suspended Solids (mg/l)	89/258 133	43/665 239	ı	-	ı	1	06T 43/665
Volatile Solids (mg/l)	-	21.0/77.0 46.6	-	ı	ı	•	21.0/77.0 46.6
Calcium Hardness $(mg/1 \text{ CaCO}_3)$	-	8.2/22.0 13.3	1	_		1	8.2/22.0 13.3
Oils & Grease (mg/l)	1.1/4.2 2.9	0.0/7.8					0.0/7.8 2.9
				*			

* Minimum/Maximum Mean

TABLE C-63 Summary of Stormwater Quality Station 4

SELECTED PARAMETERS*	May 14-15, 1974	July 25-26, 1974	Dec. 6-7, 197 ⁴	Jan. 10-11, 1975	Feb. 1975	Mar. 9-10, 1975	All Events
D.0.				_	-	-	1
Total Coliform (ner 100 ml in millions)	,	0.113/6.100	0.027/4.150	1	0.001/0.430	1	0.001/6.100
Fecal Coliform (per 100 ml in millions)	0.002/0.054	0.438/0.025	0.001/0.052		< 0.001/0.007		< 0.001/0.438 0.075
Fecal Streptococci (ver 100 ml in millions)	1	0.015/0.181	0.001/0.014		< 0.001/0.012	•	< 0.001/0.181 0.031
	'	6.5/25.0	6.4/41.0 16.3		3.3/6.6		3.3/41.0
C.O.D. (Eg/1)	39.0/70.0	18.0/57.0	18.0/40.0 29.4	1	22.0/36.0	•	18.0/70.0 36.4
- Ammonia 5 (mg/l N)	1	0.15/0.78 0.42	0.10/0.20	ı	0.50/2.60	•	0.10/2.60
O Nitrite (mg/1 N)	1	0.01/0.08	0.00/0.03	ı	0.00/0.002	•	0.00/0.08
Nitrate (mg/l N)	1	0.6/1.1	1.2/7.2	ı	0.4/0.7	•	0.4/7.2 1.9
Total Kjeldahl (mg/1)	1	1.8/4.5 3.2	0.7/1.6	•	2.5/4.3 3.7	t	0.7/4.5 2.7
Total Phosphorus (mg/1)		0.07/0.32	0.27/0.40	ı	0.03/0.27	ŧ	0.03/0.32
Total Solids (mg/l)	191/975	176/3177	1091/539	1	220/535	ı	109/3177 496
Suspended Solids (mg/l)	16/854	11/2788 831	33/320	1	0/265 93	ı	11/2788 359
Volatile Solids (mg/l)	1	36/210	22/68 43	1	τ6/8ε	ı	22/210 67
Calcium Hardness (mg/1 CaCO ₃)	1	12.0/68.0 31.6	24.0/37.0 29.6	•	31.0/88.0 67.3	l	12.0/88.0 42.8
Oils & Grease (mg/l)	2.6/4.1	0.0/4.1 1.4	0.0/1.0 0.1	ŧ	0.0/8.8 3.5	ı	0.0/8.8

Minimum/Maximum Mean

TABLE C-64
Summary of Stormwater Quality
Station 5

		1.5					
PARAMETERS*	14-15, 1974	25-26, 1974	10-11, 1974	Jan. 10-11, 1975	Feb. 22-23, 1975	Mar. 9-10, 1975	A11 Events
D.O. (mg/1)	-	,	,	,		1	-
Total Coliform	-	0.003/0.840	0.031/0.203		0.002/0.049		0.002/0.840
(per 100 ml in millions)			0.063		0.022	•	0.139
Fecal Coliform (per 100 ml in millions)	< 0.001/0.043	0.001/0.048	< 0.001/0.001	ı	0.001/0.004	-	× 0.001/0.048
Strept		38	k 0.001/0.001		0.001/0.003		k 0.001/0.036
(per 100 ml in millions)		0.010	<0.001	_	0.001	-	η00.0
B.O.D. (mg/1)	1	3.9/14.0	6.0/7.7	ı	1.5/5.5	•	1.5/14.0
C.0.D. (mg/1)	2.1/32.0 23.9	17.0/42.0 32.3	15.0/50.0	-	27.0/39.0	-	2.1/50.1
, ,		<0.04/0.22	0.10/0.20		0.10/0.10		: 0.041/0.22
S (mg/1 N)		0.11	0.15		0,10	_	0.12
Nitrite (mg/1 N)	ı	0.00/0.02	0	•	000	-	0.00/00.02
Nitrate		0.38/0.84	1.7/9.2		0.3/1.0		0.3/9.2
(mg/1 N)	9.0	0.63	5.7		0.15		2.2
Total Kjeldahl (mg/1)	1	1.91/3.6	0.30/0.80	1		_	
Total Phosphorus				11			
To+21 Co14 Ac	900/711	101,7600	00/11/		100/000		
	175	262	95 /	ı	120/195	1	170
Suspended Solids (mg/l)	14/258 94	5/606	0/52 28	-	9/73		909/0
Volatile Solids				•		,	3
Calcium Hardness	,	17.0/32.0	8.2/12.0		7.8/13.0		7.8/12.0
(me/ ± caco 3/		22.8	9.6		10.5	,	14.4
Oils & Grease (mg/l)	2.4/3.3	0.0/6.3	0/2.2	ŧ	0.0/7.9	•	6.7/0.0

Minimum/Maximum Mean

TABLE C-65 Summary of Stormwater Quality Station 7

SELECTED PARAMETERS*	May 14-15, 1974	July 25-26, 1974	Dec. 6-7, 1974	Jan.	Feb. 22-23, 1975	Mar. 9-10.1975	All Events
D.O. (mg/1)	-	-	,				
Total Coliform (per 100 ml in millions)	ı	0.023/0.860	J	0.071/1.270	•	0.008/0.092	0.008/1.270
Fecal Coliform (per 100 ml in millions)	0.002/0.1	0.001/0.05 ⁴ 0.022	J	< 0.001/0.009	1	5 40.001/0.0 >	0.001/0.043 < 0.001/0.018 0.001
Fecal Streptococci (per 100 ml in millions)	1	<0.001/0.034	,	<0.001/0.016	ı	<0.001/0.001 <0.001	<0.001/0.03 ⁴
B.O.D. (mg/1)	-	5.0/13.0	3	0.9/0.4	ı	0.8/0.5	
C.O.D. (mg/1)	33.0/49.0	14.0/42.0 35.1	J	22.0/37.0 30.6	•	28.0/46.0 40.1	14.0/49.0 34.9
C Ammonia (1867) 189	-	0.06/0.93	ı	0.20/0.40	•	0.20/0.70	0.06/0.93
	-	0/0.02	ı	0/0.01	ı	0.01/0.0 0.01	0/0.02
Nitrate (mg/l N)		0.45/0.74	•	0.5/1.5 0.84	f	0.7/1.6	0.45/1.60
Total Kjeldahl (mg/l)	-	1.6/5.0	ı	1.3/2.8	*	1.3/2.2	1.3/5.0
Total Phosphorus (mg/l)	-	0.09/1.30 0.74	ı	0.19/0.69	•	0.38/0.64	0.09/1.30
Total Solids (mg/l)	205/398 258	148/248 201	ı	120/378	•	122/195 141	120/398 203
Suspended Solids (mg/l)	99/317 164	9/196 125	1	18/253	1	12/5	5/317 106
Volatile Solids (mg/l)	-	25.0/75.0 52.1	ı	33.0/56.0		45.0/67.0 57.3	25.0/75.0
Calcium Hardness (mg/1 CaCO ₃)	-	14.0/37.0 25.8	1	7.0/27.0 14.0	-	14.0/23.0 16.4	14.0/37.0 18.7
Oils & Grease $(mg/1)$	1.7/3.5 2.6	0/8.9 1.7	•	0/2.1 0.4	_	0/0.2	0/8.9

* Minimum/Maximum Mean

TABLE C-66 Summary of Stormwater Quality Station <u>8a</u>

SECECTED Parameters*	May 14-15, 1974	July 25-26, 1974	Dec. 6-7. 1974	Jan. 10-11, 1975	Feb. 22-23, 1975	Mar. 9-10, 1975	All Events
D.0.		1	,	-	. 11	-	•
Total Coliform		0.013/8.900		0.093/5,590		0.014/0.880	0.013/5.500
(per 100 ml in millions)	-	5.339	_	3.438	1	1.490	3.219
Fecal Coliform (new 100 ml in millions)	-	0.006/0.330	1	0.005/0.071	•	0.001/0.073	< 0.001/0.073
Fecal Streptococci		< 0.001/0.203		0.002/0.023		0.001/0.029	< 0.001/0.203
(per 100 ml in millions)	_	0.120		0.012	_	0.019	0.050
B.O.D. (mc/1)	-	7.3/19.0	· ·	1.7/5.8	-	2.0/9.3	2.0/19.0 8.0
C.0.D. (mg/1)	22.0/88.0 43.3	19.0/60.0		12.0/36.0 30.4	•	22.0/42.0 35.9	12.0/60.0
- Amonia		< 0.04/0.39		0.20/0.30	1	0.20/0.50	< 0.04/60.0
(N [/20])		0.09		0.21		0.34	0.22
Nitrite (mg/l N)	0.01/0.03	0.01/0.02	ı	0.00/0.01	1	0.01/0.01	0.00/0.02
Witrate (m./l N)	1	0.34/1.20		0.50/1.20	-	0.30/1.10	0.30/1.20
Total Kjeldahl	,	1.3/5.0	-	1.7/3.9	-	1.3/2.3	1.3/5.0
Total Phosphorus	ı	0.01/0.31	-	0.24/0.47		0.12/1.44	0.01/1.44
Total Solids	206/791	133/771		171/626	1	174/382	133/791
Suspended Solids	104/698	19/737	,	0/509	•	23/281	0/737
Volatile Solids (mg/l)	1	22/52 36	1	46/93 66	1	48/78 67	22/93 56
Calcium Hardness (mg/1 CaCO ₃)	ı	12.0/37.0	l l	20.0/61.0	ı	23.0/44.0	12.0/61.0
Oils & Grease (mg/l)	4.4/6.4	0.0/5.0		0.0/2.1	ſ	0.0/0.0	0.0/6.4

* Minimum/Maximum Mean

Table C-67 Summary of Storm Water Quality Station 8b

SELECTED PARAMETERS*	May 14-15, 197 ^μ	July 25-26, 1974	Dec. 6-7, 1974	Jan. 10-11, 1975	Feb. 22-23, 1975	Mar. 9-10, 1975	Ail Events
D.O. (mg/l)	-	'	-	1	1	1	
Total Coliform (per 100 ml in millions)	1	0.013/8.900	ı	0.093/5.59	J	0.013/0.002	0.013/8.900
Fecal Coliform (per 100 ml in millions)	0.113/0.167	0.005/0.330	•	0.005/0.021	ı	< 0.001/0.049 < 0.018	0.001/0.049 < 0.001/0.330 0.018 0.089
Fecal Streptococci (per 100 ml in millions)	1	0.001/0.203	1	0.001/0.061	-	97	< 0.001/0.203 0.054
			 	4.1/9.5	ı	3.0/>11.0	3.0/>11.0
C.O.D. ? (mg/1)	1	1	ı	1	•		•
Monia (mg/l N)		1		•	•	-	_
Nitrite (mg/l N)	1	-	ı	-	•	•	-
Nitrate (mg/l N)	•	•	1	1	_	-	1
Total Kjeldahl (mg/l)	1	-	1	•	-	_	•
Total Phosphorus (mg/1)	1	•	•	ì	_	_	•
Total Solids (mg/l)	•		•	-	-	_	•
Suspended Solids (mg/l)			•	•	1	1	1
Volatile Solids (mg/l)		•	1	1	1	-	1
Calcium Hardness (mg/l CaCO ₃)	•	,	ı	•	I	-	1
Oils & Grease (mg/l)	1		r	1	t	-	1

* Minimum/Maximum Mean

MAJOR INDUSTRIES DISCHARGING TO SURFACE WATERS

The major industries which discharge to surface waters are within the Arkansas River Basin. They are concentrated in the Arkansas River System and the Brumps and Lower Caney (I and II) sub-basins.

A. The Arkansas System. There are a number of industries which are located in either the Arkansas or Deep Bayou river systems, but which discharge into the Arkansas River:

Valmac Industries - Waldron Processing Plant

International Paper Company

St. Louis Southwestern Railway Company (Cotton Belt)

Weyerhaeuser Pulp and Paper

Allied Chemical

Pine Bluff Arsenal - U.S. Department of the Army

As their discharges do not influence the monitored stations, a description of their processes and effluents is omitted. The majority of these industries are permitted by the Arkansas Department of Pollution Control and Ecology and detailed process description and the results of effluent monitoring can be obtained from this agency.

- B. The Caney Bayou System. There are four industries in the Lower Caney watersheds which discharge into Caney Bayou.
- 1. Weyerhaeuser Company Dierks Division. The plant wastes are discharged into a 1.4-acre oxidation pond shared with the Viking Bag Company. Effluent from the pond discharges into Caney Bayou.
- The U.S. Environmental Protection Agency tested composite samples of the pond influent and effluent in May, 1973. The results were reported by the Arkansas Department of Pollution Control and Ecology (1974a): influent included an average of 244 mg/1 BOD, 564 mg/1 COD, 236 mg/1 suspended solds; effluent had an average flow of 0.0647 MGD with 27 mg/1 BOD (88 per cent reduction), 78 mg/1 suspended solids (67 per cent reduction) and 112 mg/1 dissolved solids (59 per cent reduction).
- 2. Viking Bag Company. Sanitary and industrial wastes from the plant are discharged to a 1.4-acre oxidation pond which is snared with the Weyerhaeuser Dierks Multiwall Bag Plant.
- 3. <u>Dixie Wood Preserving Company</u>. Wastes are collected by a small oxidation pond which discharges into Caney Bayou. Currently, data on the quality and quantity of effluent are not available.

- 4. Pine Bluff Arsenal. Operations at the Pyrotechnic Munitions Manufacturing Area generate waste waters containing some organic dyes, chlorates, carbonates and chlorides. A portion of this area drains east to the Arkansas River, while the remainder drains west to Caney Bayou (Arkansas Department of Pollution Control and Ecology, 1974a).
- C. The Brumps Bayou System. Each of the discharging industries are located in the Brumps sub-basin and discharge into Brumps Bayou.
- 1. Valmac Industries, Incorporated. The two main sources of process waste water from the plant are the offal and feather flow-away lines. Each line is equipped with a vibrating screen through which waste water flows before combining into a plant sewer line connected to the Harding Sewer System. Sanitary sewage from the plant is discharged to a separate line connected to the city sanitary sewer. All wastes are collected at the Spruce Street pumping station. During moderate to heavy rains, wastes collected at this pump station frequently by-pass the system and discharge into Brumps Bayou.

The Arkansas Department of Pollution Control and Ecology (1974a) monitored waste water flow and took 24-hour composite samples of the process effluent below the vibrating screens on four days. Process effluent flow averaged 0.698 MGD with 387 mg/1 BOD, 658 mg/1 COD, 573 mg/1 total solids and 212 mg/1 suspended solids.

- 2. <u>W.S. Fox and Sons, Inc.</u> In compliance with an NPDES permit, effluent has been monitored monthly. During the first nine months of 1974, BOD averaged 206 mg/l; total suspended solids, 247 mg/l.
- 3. Arkansas Oak Flooring Company. Arkansas Oak Flooring Company discharges industrial wastes to Brumps Bayou. NPDES permit monitoring for the first six months of 1974 indicated 26.2 mg/l BOD and 57.4 mg/l total suspended solids.

Industries of the Pine Bluff, Arkansas Area"

A. Arkansas Basin

				ARKANSAS	ARKANSAS RIVER SYSTEM			
NO. OF **	INDUSTRY	SIC NO.	DRAINAGE SUB-BASIN	MUNICIPAL SEWER SYSTEM SERVICE	DISCHARGE RECEIVING WATER BODY	PRODUCTS	Treatment Facilities	REMARKS
4	Valmac Industries, Inc.	2042	Arkansas River	Not Connected	Lake Langhofer	Poultry	Oxidation pond	
Ø	Ravick Mfg. Co., Inc.	2433	Arkansas River	Not Connected	None	Wood roof trusses, pre-fab wall panels, pre-hung door units		
.	International Paper Co.	2621	Arkansas River	Not Connected	Arkansas Rive:	Polyethelene- coated bleached paper board, newsprint	Oxidation ponds, primary clarifier, acration lagoon, septic tanks	Monitoring effluent under an EPA permit, Arkansas permit
ပ	Weyerhaeuser Co., Inc.	2631	Arkansas River	Not Connected	Arkansas River	Unbleached Kraft paper and paper- board	Primary clarifier, aeration lagoon	Monitoring effluent under en EFA permit
A	Hudson Pulp and Paper Corporation	2643	Atkansas River	Connected	None	Multiwall paper shipping sacks, manufactured from purchased paper	Pre-treatment be- fore discharge into sever system	
ပ	Weyerhaeuser CoDierks Div. Multiwall Bags	2643	Arkansas River	Not Connected	Caney Bayou	See above	Oxidation pond	Monitoring effluent under Arkansas permi
<	Allied Chemical Corp.	2819	Arkansas River	Not Connected	Lake Langhofer	Liquid alum	Oxidation Pond	
0	U.S. Army - Pine Bluff Arsenel	3483	Arkansas River	Not Connected	Arkansas River and Caney Bayou	White phosphorous rocket warheads & artillery shells incenuiary munitions & various smoke munitions	Clarigester trick- ling filter, oxida- tion pond, neutral- ization & chlorina- tion basin.	Treatment facilities for domestic wastes only.
· ~	Dickey Machine Works	3522	Arkansas River	Not Connected	Ncne	Rear mount culti- vators and spray	Septic tanks	
<	Strong Mfg. Co., Inc.	3531	Arkansas River	Not Connected	None	Aggregate mixing machinery slurry pumps	Septic tanks	
٧	Monark Shipyards, Inc.	37.32	Arkansas River	Not Connected	Arkanses River	Boat construction		
ပ	National Center for Toxicological Research	None	Arkansas River	Not Connected	Arkansas River	Research studdes dealing with ef- fects of long term exposure to low concentra- tions of environ- mental chemicals	Clarigester, trick- ling filter, finish- ing oxdation pond, neutralization and chlorination basin	This complex is operated by the U.S. Food and Drug Administration on the Pine Bluff Arsenal
				B. Caney	Caney Bayou System			
4	Pepsi-Cola Bottling Co.	2086	Lower Caney	Connected	None	Bottled moft drinkm		

Pressure treated Oxidation ponds lumber & plywood, fire retardant

Lower Caney Not Connected Caney Bayou

2491

Dixde Wood Preserving

				2				
	** Buttling Co.	2086	Lower Caney	Connected	None	Bottled soft drinks		
	tale wad Preserving	2491	Lover Caney	Not Connected	Caney Bayou	Pressure treated lumber & plywood, fire retardant pressure-treated lumber & plywood	Oxidation ponds	
-	Viking Bag Division	2643	Lower Caney	Not Connected	Caney Bayou	Kraft bags and sacks from pur- chased paper	Oxidation pond	Oxidation pond operation under Arkansas permit
4	Independent Aluminum	3361	Lower Caney	Connected	Caney Bayou	Aluminum castings	Septic tanks	Serviced by White
4	Pine Bluff Trailer Mfg. Company	3715	Lower Caney	Not Connected	Caney Bayou	Truck trailers and bodies	Septic tanks	
<	Pine Bluff Casket Co.	3994	Lower Caney	Connected	None	Metal and wood burial caskets		
Ø	Dr. Pepper Bottling Co., Inc.	2086	Oakland	Connected	None	Bottled soft drinks		
ø	Nevada Mfg. Co.	2211	Oakland	Connected	None	Sheets, rillow cases, towels		
æ	Seagram, Joseph E.	5445	Oakland	Connected	None	Barrel staves and heads		
ω	Brown Furniture Mfg.	2511	Oakland	Connected	None	Wood household furniture		
<	Vangilder Poultry & Egg, Inc.	2015	Pine Bluff Lake	Connected	None	Eggs		
				BRUMPS	BRUMPS BAYOU SYSTEM			
<	Valmac Industries, Inc.	2015	Brumps	Connected	Brumps Bayou	Poultry products	Vibrating screen for filtering offal and feather wastes	Although connected to the sever sys- tem, occasional o- verflow enters Brumps Dayou
ρ	W.S. Fox & Sons, Inc.	2421	Brumps	Connected	Brumps Bayou	Lumbe r	Septic tank	Monitoring efflu- ent under an EPA permit, septic tank effluent en- ters Brumps Bayou
ပ	Arkansas Oak Flooring Co.	5426	Вгитрв	Connected	Brumps Bayou	Oak flooring, rough lumber, stair treads, risers		Monitoring efflu- ent under an EPA permit
<	Arkansas Pallet Co.	5499	Brumps	Connected	None	Hardwood pallets	Septic tenk	
<	Whitten Concrete Co.	3272	Brumps	Connected	None			
ပ	Standard Brakeshoe and Fdy. Company	3323	Вгипре	Connected	None	Mild carbon and low alloy steel castings		
Δ	Pearson, Ben, Mfg. Co., Inc.	3522	Brumps	Connected	None	Mechanical cotton pickers		
a	Ben Pearson-Brunsvick	3949	Brumps	Connected	None	Archery equipment		

Table C-69
Pollution Loads by Storm: Station 7

Storm Date and Load (1bs.)

Parameter	14-15 May 1974 ¹ /	25-26 July 1974 ² /	10-15 Jan. 1975 ³ /	10-11 March 1975 4/
Oil & Grease	29,500	643	10,400	51.6
Nitrate	-	161	8818	2242
Nitrite	68.3	3.04	0	19.8
Ammonia	-	103	3469	478
Total Alk.	230,200	-	159,000	39,700
BOD ₅	-	1751	62,200	13,870
COD	428,400	9079	450,000	78,400
T. Hardness	-	10,400	308,000	48,200
Ca Hardness	-	5697	132,000	31,700
Kjeldahl N.	-	572	27,500	3909
T. Phosphorus	-	229	3936	1016
T. Solids	3,514,000	53,800	2,855,000	286,500
S. Solids	2,644,000	37,100	1,494,000	63,300
V. Solids	-	14,000	640,000	119,900
Zinc	-	20.0	755	99.2
Lead	-	15.6	2241	198.4
Mercury	0	0.19	. 0	-
Cu	-	13.0	-	-
Ni	-	26.0	-	-
Cr	-	26.0	-	-

^{1/} Volume = 176,500,000 ft³, Freq. = 1.45 years 2/ Volume = 4,169,000 ft³, Freq. = 0.123 years 3/ Volume = 213,800,000 ft³, Freq. = 2.50 years 4/ Volume = 31,800,000 ft³, Freq. = 0.185 years

C. Ouschite Basin

	Bread and bakery products	Bottled moft drinks	Cottonseed pro-	Newspaper & com- mercial printing	See above	Miscellaneous printing	Commercial printers, cata- logs, brochures, business forms	Insecticides, herbicides, blend fertilizers	Asphalt, ready mix concrete, sand, quarry run stone, crushed stone	Concrete blocks and brick	Fabricated steel	Mahing tackle	Cabinets, wooden millwork, winding moulds	Store fixtures and cabinets	Commercial printing	Printers ink	Injection mould- ings, pump, mop parts	Pre-fabricated steel buildings	Attachmenta for cotton pickers	Metalcutting tools		Industrial fiber- Septic tanks glass products
Bartholonem system	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	Fone	Outlet Canal
BARTHOL	Connected	Connected	Connected	Connected	Connected	Connected	Connected	Connected	Connected	Connected	Connected	Connected	Connected	Connected	Connected	Connected	Connected	Connected	Connected	Connected	Connected	Not Connected
	Town Branch	ŀ	Town Branch	1	Town Branch	Town Branch	Town Branch	Town Branch	Town Branch	Town Branch		Town Branch	Interceptor	Interceptor Canal	Interceptor	Interceptor Canal	Interceptor Canal	Interceptor Canal	Interceptor	Interceptor Canal	Interceptor Canal	Outlet Canel
	2051	2086	2091	2711	2711	2741	2752	2871- 2879	2951- 3273	3271	3441	3949	2431	2541	2751	2893	3079	3776	3522	3541	3612	3979
	Holsum Baking Co.	Coca-Cola Bottling Co.	Cook Industries, Inc.	Clark Printing Co., Inc.	Commercial Printing Co.	Colortec	The Perdue Co., Inc.	Miverside-Planters Chemical Co.	Pine Bluff Sand and Gravel Co.	Arkhola Sand and Gravel Co.	Martin Machinery Co.	White's Auto Fisher	Moseley Cabinet and Milwork	Lavrence Cabinet Shop	Arkansas Printing Co.	C.P. & W. Printing Ink Company	Acme Plastic Products	Varco-Pruden Div. of Dombrico, Inc.	West Tool & Equipment Company	Illinois/Eclipse Div. Illinois Tool Works, Inc.	Central Maloney, Inc.	D & R Boat & Fibergless Company
	8	æ	ø	Y	ပ	4	4	 	es.	4	¥	Y	4	<	V	4	4	ပ	<	₀ 	-	۷

						ings, pump, mop
ပ	Varco-Pruden Div. of Dombrico, Inc.	3449	Interceptor	Connected	None	Pre-fabricated steel buildings
4	West Tool & Equipment Company	3522	Interceptor	Connected	None	Attachments for cotton pickers
0	Illinois/Eclipse Div. Illinois Tool Works, Inc.	3541	Interceptor	Connected	None	Metalcutting tools
-	Central Maloney, Inc.	3612	Interceptor Canal	Connected	None	Electrical trans- formers
4	D & R Boat & Fibergless Company	3979	Outlet Canal	Not Connected	Outlet Canal	Industrial fiber- Septic tanks glass products
4	American Sheetmetal Works, Inc.	3442	Outlet Canal	Connected	None	Sheet metal fabrication
A	W & A MEG. Co.	3522	Outlet Canal	Connected	None	Fertilizer dis- tributers, grass control machines, chemical tanks, row markers
4	Condray Sign & Advertising Co.	3993	Outlet Lanel	Connected	Kone	Plastic and neon signs
4	Sims Signs	3993	Outlet Canal	Connected	None	See above
ວ	Pine Bluff Industries	2339	Harding	Connected	None	Women's sport clothes
4	Lindley Printing Co.	2751	Harding	Connected	Kone	Commercial
V	Pine Bluff Crating & Pallet Co.	2499	Lover Nevins	Connected	None	Wooden pallets, skids, lumber
٧	Wafford Mfg. Co.	2511	Lower Mewins	Connected	Kone	Dining chairs

^{*} Directory of Arkansas Industries, 1972.

1

^{**}Employment Code: A (1-49); B (50-99); C (100-199); D (200-299); I (300-499); P (500-999); G (1,000-2,499); H (2,500 and over).

C. Quachita Basin

B No. Same Basing Co. 2011 Come Branch Connected Store Prest and Sparry B Core-Cole Bottling Co. 2005 Town Branch Connected Store Prest and Sparry B Core Industries, Sec. 2001 Town Branch Connected Store Connected St					C. Ou	achita Basin	
B Cock-Gold Buttling Co. 2006 Town Branch Connected State States of States States and States					BARTHO	LOMEN SYSTEM	
B Cock Industries, Jac. 2009. Town Breach Connected Nove Stries B Cock Industries, Jac. 2009. Town Breach Connected Nove Cities as pro- crack. The Control of Post of	В	Holsum Baking Co.	2051	Town Branch	Connected	None	
8 Cook Industries, Jack 2001 Fown Branch Connected Name Citive ear pro- case.rd A Clark Printing Co., Jac. 2711 Fown Branch Connected Now Surgices and Surgices							
A Clark Printing Co., Inc. 2711 Toom Branch Connected No. Recycle of commercial printing C Commercial Printing Co. 2711 Toom Branch Connected Spor Per serve A Colorde 2711 Toom Branch Connected Spor Misrelland, A The Parkin Co., Inc. 2772 Toom Branch Connected Spor Misrelland, A The Parkin Co., Inc. 2772 Toom Branch Connected Spor Misrelland, A Blarestan-Finature 2871. Toom Branch Connected No. December 100, 100, 100, 100, 100, 100, 100, 100	В	Coca-Cola Bottling Co.	2086	Town Branch	Connected	None	
C Commercial Fristing Co. 2711 Torm Branch Connected None Fee above: A Colories 2711 York Branch Connected None Minor Minor Minor Minor Department Connected None Minor Minor Minor Department Connected None Provide Co., 18c. 2752 York Branch Connected None Provide Co., 18c. 2753 York Branch Connected None Provide Co., 18c. 2753 York Branch Connected None Asymptotic Co., 18c. 2753 York Branch Connected None Asymptotic Co., 18c. 2753 York Branch Connected None Provide Connec	В	Cook Industries, Inc.	2091	Town Branch	Connected	None	
C. Commercial Printing Co. 2711 Nove Branch Connected Nove Mercial Printing Connected Nove Printing Co	A	Clark Printing Co., Inc.	2711	Town Branch	Connected	None	
A Delorice 27% Nove Branch Connected Fone Printing A The Ferdum Co., Jee. 2750 Torm Branch Connected Sune Printing A The Ferdum Co., Jee. 2750 Torm Branch Connected Sune Printing A Naverida-Flantere 2571- Torm Branch Connected Sune Printing Chemical Co. 2770 Torm Branch Connected Sune Printing B Pice Bull Found and 2571 Torm Branch Connected Sune Printing Gravel Co. 3771 Torm Branch Connected Sune Printing A Albable Sand and 3271 Torm Branch Connected Sune Printing A Martin Residency Co. 3811 Torm Branch Connected Sune Printing A White's Auto Fisher 3509 Torm Branch Connected Sune Printing A White's Auto Fisher 3509 Torm Branch Connected Sune Printing A Martin Residency Co. 3811 Torm Branch Connected Sune Printing A Martin Residency Co. 3811 Torm Branch Connected Sune Printing A Martin Residency Co. 3811 Torm Branch Connected Sune Printing A Martin Residency Co. 3811 Torm Branch Connected Sune Printing A Martin Residency Co. 3811 Torm Branch Connected Sune Printing A Martin Residency Co. 3811 Torm Branch Connected Sune Printing A Martin Residency Co. 3811 Torm Branch Connected Sune Printing A Martin Residency Co. 3811 Interceptor Connected Sune Printing A Argument Printing Co. 2751 Interceptor Connected Sune Printing A C.P. & Printing Pak 2893 Interceptor Printers C Vaccompty and Day of Pake Printing Co. 2751 Interceptor Printers C Vaccompty Printing Pak 2893 Interceptor Printers C Vaccompty Printing Pak 2893 Interceptor Printers C Vaccompty Printing Co. 2751 Interceptor Connected Sune Printing Connected Sune Printin	c	Commercial Printing Co.	2711	Town Branch	Connected	Nane	
A The Ferdum Co., Sec. 2750 Town Branch Connected Some Services, settle-List, becomes, and printers 2511- Town Dranch Connected Now Teach List, becomes, and Connected Connected Some Services, and Connected Some Services, blanch Connected Some Services, blanch Connected Some Services, blanch Connected Some Services, and Ser							
A Rivers de Planters 251. Tonn Branch Connected More Center Connected Connec						NOTE:	printing
A Riversider/Bantare 2011 From Branch Connected Nove Interrities Stand Connected Nove Interrities Stand Connected Connected Stand Connected Connected Connected Stand Connected Conn	A	The Perdue Co., Inc.	27 52	Town Branch	Connecte:	Kon ¢	printers, cata- logs, brochures,
B Place Bluff End and 2531 Town Branch Connected Noise Application of the Market Co. 3273 State of the Market Co. 3274 State of the Market St	A			Town Branch	Connected	None	Inserticité herlichte, blend
A Arthola Sand and Greek Co. 3271 Town Branch Connected bone attributed Connected Conn	В			Town Brench	Connected	None	Approact, ready mix our mete, mail: Clare can out the
A Martin Machinery Co. 3441 Town Branch Connected None 1. Ingree and 2431 Interceptor Connected None 1. Ingree and 2431 Interceptor Connected None 1. Interceptor None 1. Interceptor Connected None 1. Interceptor None 1. Interceptor Connected None 1. Interceptor Connected None 1. Interceptor None 1. Interceptor Connected None 1. Interceptor None 1. Interceptor Connected None 1. Interceptor Connected None 1. Interceptor None 1. Interceptor Connected None 1. Interceptor None 1. Interceptor Connected None 1. Interceptor None 1. Interc		Arkhola Sand and	3271	Town Brw.ch	Connected	hone	
A Mosely Cabinet and 231 Interceptor Connected None foliation John Milwork 231 Interceptor Connected Sone foliation John Milwork 231 Interceptor Connected Sone foliation John Milwork 231 Interceptor Connected Sone Canal Sone Canal Sone Canal Sone Sone Sone Sone Sone Sone Sone Sone			3661	Iom Branch	Connected.	Vana.	antities, b
A Lawrence Cabinet Snop 25-1 interceptor Canal Sone Services & John School Services & John School Services & Sone Services & S							
A Lawrence Cabinet Shop 25-1 interceptor Commented Rome Attack Printing Co. 2751 interceptor Commented Rome Printing Co. 2751 interceptor Printing Co. 2751 interceptor Commented Rome Attack Printing Co. 2751 interceptor Rome Printing Co. 2751 interceptor Rome Attack Printing Co. 2751 intercept							
A Lavrence Cabinet Snop 25-1 interceptor Canal Donnected Arasansa Printing Co. 2751 interceptor Canal Bone West Co. 2751 interceptor Canal Bone West Co. 2751 interceptor Canal Bone West Co. 2751 interceptor Canal Bone Bone Bone Bone Bone Bone Bone Bone	^		2432		COMMECTED	None	mouse, winding
A Arkansas Frinting Co. 2751 Interceptor Canal Connected Mone Service A C.P. & W. Printing Ina 2693 Interceptor Canal Connected Mone Service Ina Connected A A Acce Plastic Products 3079 Interceptor Connected Nume Service Ina Connected Nume Service Ina Connected Nume Service In Service Ina Connected Nume Service Inc. Service Interceptor Connected Nume Service Inc. Service Interceptor Service Inc. Service Interceptor Service Interceptor Service Inc. Service Interceptor Service Interceptor Service Interceptor Service Interceptor Service Inc. Service Int. Service							Miles de de la companya della compan
A Areanse Printing Co. 2751 interceptor Canal Strong Company A C.P. & W. Printing Ina 2693 interceptor Canal Strong Company A Ace Plactic Products 3079 interceptor Connected Bone Strong Consecutive Canal Strong Connected Canal Strong Canal Strong Connected Canal Strong Canal Strong Connected Canal Strong Ca	A	Lawrence Cabinet Shop	2541		Connected	None	At a spiral of the spiral of t
Company A Acad Plastic Products 3079 Interreptor Connected None Interreptor Cana. Interreptor Cana. Interreptor Cana. Interreptor Connected None Interrepto	<u> </u>	Arkansas Printing Co.	2751		Connected	None	The I is a
Cana. Cana. Cana. Cana. Cana. Compared Div. of J449 Inter eptor Connected None Destruction of Section of			2893		Connected	lione	Fisciery and
Dombrico, Inc. A West Tool & Equipment 3522 interceptor Connected None Attainment of Congress Congress Canal Connected None Attainment of Congress Congress Canal Connected None Attainment of Congress	A	Acme Plastic Products	3079		Connected	None	State of the Control
A West Total & Equipment 3522 interceptor Connected None Atta Numerical Company Canal Cana	C		ويناو		Connected	Nice	
C Illinois/Eclipse Div		West Tool & Equipment	3522	Interceptor	Conected	None	Atta tuestta t
F Central Maloney, Inc. 1612 Interreptor Canal Rise Connected Connec	— ē	Illinois/Eclipse Div.		interceptor	Connected	hone	
A D & R Boat & Fibergiass 3979 (utlet Canal Not Connected Cutlet Canal Connected Cutlet Canal Cunnected Cutlet Canal Cunnected Some Carry					Connected	N 1 C	- P / F / A 1 808 -
Company A American Sheetmetal 3444 Outlet Canal Connected hone (seriors Vorks, Inc.) B W & A Mfg. Co. 3522 Outlet Canal Connected Hone Ferror of Stitters grass of the state of the of the stat				Canal			frimers
Works, Inc. B W & A Mfg. Co. 3522 Outlet Canal Connected Home Ferr yet if there grass the production of the production	A				Not connected	outlet and	wilder part limits
A Condray Sign & Adver- 3993 Outlet Canal Connected Hone Plantic without with the state of the s	A		3444	Sutlet Canal	Cannected	*ane	
A Condray Sign & Adver- 3993 Outlet Canal Connected Rone Plantic will seem signs A Sime Signe 3993 Outlet Canal Connected Kone See a '' C Pine Bluff Industries 2339 Marding Connected Sone Women's sport counters A Lindley Printing Co. 2751 Harding Connected Home Comments printful A Pine Bluff Crating & 2499 Lower Nevins Connected Mone Monden passets, auxiliar, lumber		W & A Mfg. Co.	3522	Outlet Canal	Connected	Fone	
A Sime Signs 7993 Outlet Canal Connected None See at Connected Sone Signs 7993 Outlet Canal Connected Sone See at Connected Sone Sone Sone Sone Sone Sone Sone Sone							, rri - ma nyree. Nemi w Naskei.
A Sime Signe 7093 Outlet Canal Connected None See a 7 C Pine Bluff Ladustries 2339 Marding Connected None bosen's sport clothes A Lindley Printing Co. 2751 Harding Connected None Connected None Connected Pine Bluff Crating & 2499 Lower Newins Connected None Monder printing Pallet Co. 881ds, lumber	A	Administration of the Control of the	3993	Outlet Canai	Connected	Hone	
C Pine Bluff Industries 2339 Harding Connected Sone Women's sport clothes A Lindley Printing Co. 2751 Harding Connected Home Connected Printing printing A Pine Bluff Crating & 2499 Lower Newins Connected Home Wooden parameter, Pallet Co. Skide, Jumber	A		3093	Outlet Canal	Connected	Kone	
A Lindley Printing Co. 2751 Harding Connected None Commercial printing A Pine Bluff Crating & 2499 Lower Newins Connected None Voctem parents, Pallet Co. RRids, Jumber	c				Connected		Women's sjort
printing A Pine Bluff Crating & 2099 Lower Newins Connected None Monten paratis, Pallet Co. akids, Junter							
Pallet Co. exids, lumber	A	Lindley Printing Co.	2751	Harding	Connected	None	
			5199	Lower Hevins	Connected	None	Moden pa. 008. akida, lumber
		Wafford Mfg. Co.	2511	Lover Nevins	Connected	None	

^{*} Directory of Arkanses Industries, 1972.

^{**}Employment Code: A (1-49); B (50-99); C (100-199); D (200-299); E (300-499); F (500-999); G (1,000-2,499); H (2,500 and over).

Table C-69 Pollution Loads by Storm: Station 7

Storm Date and Load (1bs.)

Parameter	14-15 May 19741/	25-26 July 1974 ² /	10-15 Jan. 1975 ³ /	10-11 March 19754/
Oil & Grease	29,500	643	10,400	51.6
Nitrate	-	161	8818	2242
Nitrite	68.3	3.04	0	19.8
Ammoni a	-	103	3469	478
Total Alk.	230,200	-	159,000	39,700
BOD ₅	-	1751	62,200	13,870
COD	428,400	9079	450,000	78,400
T. Hardness	-	10,400	308,000	48,200
Ca Hardness	-	5697	132,000	31,700
Kjeldahl N.	-	572	27,500	3909
T. Phosphorus	-	229	3936	1016
T. Solids	3,514,000	53,800	2,855,000	286,500
S. Solids	2,644,000	37,100	1,494,000	63,300
V. Solids	-	14,000	640,000	119,500
Zinc	-	20.0	755	99.2
Lead	-	15.6	55/1	198.4
Mercury	0	0.19	9	-
Cu	-	13.0	-	-
Ni	-	26.0	-	-
Cr	-	26.0	-	-

 $[\]frac{1}{2}$ Volume = 176,500,000 ft³, Freq. = 1.45 years $\frac{2}{2}$ Volume = 4,169,000 ft³, Freq. = 0.123 years $\frac{3}{4}$ Volume = 213,800,000 ft³, Freq. = 2.50 years $\frac{1}{4}$ Volume = 31,800,000 ft³, Freq. = 0.054 years

Table C-70 Pollution Loads by Storm: Station 8a

Storm	Date	and Load	(lbs)

		•	
Parameter	July 25-26 1974 ¹ /	January 10-11 1975 ² /	March 10-11 19753/
Oil & Grease	204	288	0
Nitrate	129.4	273	
Nitrîte	1.19	0	0.74
Ammonia	4.76	73	22.0
T. Alk.		9747	1 9 9 5
BOD ₅	1488	1862	451
COD	5262	12,100	2518
T. Hardness	2703	12,300	2526
Ca. Hardness	1631	8980	1973
Kjeldahl N.	320	898	157
T. Phosphorous	24.8	136.8	17.3
T. Solids	43,700	138,400	17,966
S. Solids	38,500	97,100	8917
V. Solids	4096	25,005	4823
Zinc	16.2	72.3	9.50
Lead	8.8	78.8	7.36
Mercury	0.127	0	-
Cu	5 .9 5	-	-
Ni	11.9	-	-
Cr	11.9	-	-
_			

^{1/} Volume = 1,908,000 ft $_3^3$, Freq. = 0.04 years 2/ Volume = 5,850,000 ft $_3^3$, Freq. = 0.16 years 3/ Volume = 1,180,000 ft $_3^3$, Freq. = 0.03 years

Table C-71
Pollution Loads by Storm: Station 1

Storm Date and Load (1bs)

Parameter	6-7 Dec. 19741/	$22-23$ Feb. $1975^{2/}$
Oil & Grease	1486	2616
Nitrate	1652	912
Nitrite	0	0
Ammonia	27.0	104.2
T. Alk	1311	12,536
BOD ₅	1698	3731
COD	8558	29,400
T. Hardness	3220	11,900
Ca Hardness	1964	6002
Kjeldahl N.	117	2095
T. Phosphorus	7.43	31.2
T. Solids	21,800	208,800
S. Solids	8900	100,100
Volatile Solids	4054	70,400
Zinc	11.3	78 . 8
Lead	32.2	104.2
Mercury	0.20	0.77

^{1/} Volume = 3,609,000 ft³, Freq. = 0.027 years 2/ Volume = 16,700,000 ft³, Freq. = 0.0125 years

Table C-72 Pollution Loads by Storm: Station 2

Storm	Date	and	Load	(lbs)
		21		

Parameter	14-15 May 1974 ¹ /	25-26 July 1974 ² /	6-7 Dec 1974 ³ /	22-23 Feb 1975 ⁴
Oil & Grease	624	5 2 8	11.93	. 667
Nitrate	-	116	349	111
Nitrite	1.99	1.91	1.03	С
nh _{l+} -n	- .	10.1	12.8	26.9
Alkalinity	2,607		1,782	7,032
BOD ₅	-	1,511	522	1,304
COD	6,084	5,569	2,378	8,037
T. Hardness	-	3,949	1,907	5,164
Ca Hardness	-	1,568	1,281	4,099
K. Nitrogen	-	637	81	538
T. Phosphates	-	28.8	13.3	33.8
T. Solids	188,000	419,000	16,900	163,400
S. Solids	170,000	399,000	9,600	128,000
V. Solids	-	40,600	2,900	18,300
Zinc	-	27.1	7.8	33.4
Lead	-	14.71	14.7	20.1
Mercury	0.018	0.168	0	0
Cu	-	10.51	-	-
Ni	-	21.02	-	-
Cr	-	21.02	-	-

^{1/} Volume = 2,381,000 ft³, Freq. = 0.052 years $\frac{2}{2}$ / Volume = 3,368,000 ft³, Freq. = 0.08 years $\frac{3}{4}$ / Volume = 1,180,000 ft³, Freq. = 0.032 years $\frac{1}{4}$ / Volume = 3,220,000 ft³, Freq. = 0.074 years

Source: U.S. Army Corps of Engineers, Vicksburg District, pers. comm.

TABLE C-73
Pollution Loads by Storm: Station 3

Storm Date and Load (1bs)

Parameter	14-15 May 19741/	25-26 July 1974 ²
Oil & Grease	21,300	6310
Nitrate	-	1452
Nitrite	129.8	10.0
Ammonia.	-	559
Total Alk.	109,800	-
BOD ₅	-	12,040
COD	289,500	53,700
T. Hardness	-	260
Ca Hardness	-	21,400
Kjeldahl N.	-	4034
T. Phosphorous	-	260
T. Solids	2,583,000	691,000
S. Solids	1,727,000	661,000
V. Solids	~	92 , 700
Zinc	~	183.7
Lead	~	121.8
Mercury	0.18	2.40
Cu		99.8
Ni	-	199.7
Cr	-	199.7

 $[\]underline{1}$ / Volume = 160,000,000 ft³, Freq. = 0.65 years $\underline{2}$ / Volume = 32,000,000 ft³, Freq. = 0.04 years

Table C-74 Pollution Loads by Storm: Station 4

Storm Date and Load (1bs)

Parameter	14-15 May 19741/	25-26 July 1974 ² /	6-7 Dec. 1974 ^{3/}	22-23 Feb. 1975 ⁴ /
Oil & Grease	655	977	4.0	· 574
Nitrate	-	461	177	118
Nitrite	2.57	7.0	0.77	0.60
Ammonia	-	121	3.7	188
Total Alk.	3669	-	1535	13,800
BOD ₅	-	4841	654	1238
con	9356	19,700	859	6006
T. Hardness	-	11,400	1642	⁶ 525
Ca. Hardness	-	10,100	1054	7363
K. Nitrogen	-	1596	49	587
T. Phosporous	-	107	13.2	40
T. Solids	45,700	281,000	· 7933	44,800
S. Solids	26,800	270,000	4334	19,800
Volatile S.	-	31,700	. 1730	9513
Zinc	-	35.4	3.7	25.8
Lead	-	58	3. 7	19.4
Mercury	0.31	0.205	0	0.0114
Cu	-	23.3	- '	- ,
Ni	-	46.5	-	-
Cr	-	46.5	-	-

^{1/} Volume = 2,940,000 ft³, Freq. = 0.031 years 2/ Volume = 7,459,000 ft³, Freq. = 0.062 years 3/ Volume = 588,600 ft³, Freq. = 0.022 years 1/ Volume = 3,105,000 ft³, Freq. = 0.037 years

Source: U.S. Army Corps of Engineers, Vicksburg District, pers. comm.

TABLE C-75
Pollution Loads by Storm: Station 5

Storm Date and Load (1bs)

Parameter	14-15 May 19741/	25-26 July 1974 ² /	6-7 Dec. 1974 ³ /
Oil & Grease	30,400	3746	. 0
Nitrate	-	914	4700
Nitrite	9.5	15.4	0
Ammonia	•	110	112.9
Total Alk.	175,600	-	, 8592
BOD ₅	-	6751	5610
COD	288,900	47,900	24,100
T. Hardness	·	55,900	15,200
Ca Hardness	-	32,000	7900
Kjeldahl N.	- .	3285	438
T. Phosphorous	-	169	74
T. Solids	1,886,000	381,600	77,000
S. Solids	1,166,000	276,800	206,400
V. Solids	-	49,100	26,400
Zinc	-	106	45.5
Lead	-	69.9	126.4
Mercury	0.95	2.94	0.29
Cu	-	69.9	
Ni	-	140	-
Cr	-	140	-

 $[\]frac{1}{2}$ / Volume = 163,600,000 ft³, Freq. =0.016 years $\frac{2}{2}$ / Volume = 22,400,000 ft³, Freq. =0.027 years $\frac{3}{2}$ / Volume = 13,500,000 ft³, Freq. =0.023 years

Table C-76 Pollution Load Frequencies: Station 7 LOAD IM LBS

							YEARLY PROBABILITY)BABILITY							
PARAMETER	0.1	0.2	0.5	1.0	2.0	0.4	5.0	6.67	89	10	50	8	Ot	8	AVERAGE AUTUAL LOAT
್ಷೆ ಬ್ಯಾ	∞o*é9	66,500	62,500	26,500	00 5.64	39,500	∞, €	31,500	28,500	25,000	14,000	8,000	2,600	O	∞,63,000
යයා	550,000	510,000	000*↑†	376,000	ου:¹gοε	300°0η∂	220,000	0001061	000*571	150,000	85,000	, te, 000	ಯ0°ು೭	o	756,300
SCIE CECCESE.S	9,420,000	3,320,000	2,140,000	1,920,000	7,670,570	., 207, 300	000*061*1	7,030,000	930,000	810,000	30°081	276,000	300,001	c	25, 533,000
SOECHES THE THE CE	4,210	260*1	3,790	3,350	92.4	8 8.	°, 000	1,760	1,700)1°,1°	820	500	24.0	С	χ::: ¹ ηη
10 M	32,780	29.136	3.1°C	₩. 2000	ं ६	16, 900	13,500	12,000	10,900	J0546	20512	3,220	1,53	ی	xe,375
VELTOUSN															
D:::3	કહેં	910	522	520	37.5	SO र	370	350	8,	360	150	ä	् न	o	ŭ,
**************************************	22,770	21,800	200، م	18,100	15, con	75°,11	10,700	9,200	8,200	7,200	7,100	2,500	1,000	O	230,00°

SOURCE: U.S. Army Corps of Engineers, Winksburg District, pers, comm.

Table C-77 Follution Load Frequencies: Station Sa

AYERAGE ARTUAL LOAD	26,500	323,000	1,751,000	2,921	3€*3₹	2,21	1,462	2,9,5
\$0	0	0	o	٥	o	c	o ,	o
04	250	1,500	12,000	13	&	0,010	6.5	33
8	580	3,500	23,000	30	28	0.023	213	ક્ક
20	1,050	9,000	41,000	55	350	0.241	27	142
01	1,850	10,500	72,000	95	620	0.071	βi	250
80	2,100	11,700	82,000	107	82.	0,082	55	285
вавілту 6.67	2,300	13,000	92,000	219	770	050*0	09	312
YEARLY PRODABILITY 5.0 · 6.67	2,650	14,900	104,000	135	870	0.105	89	360
0.4	2,900	16,200	114,000	149	. 96	0,113	22	390
2.0	3,700	20,800	145,000	26 5	1,240	0.145	35	500
1.0	4,100	23,000	159,000	210	1,370	0,160	107	565
0.5	008,4	24,000	168,000	220	०२५ र	0.169	311	505
0.2	024,4	5ª,7c0	000,171	528	06¶'ī	0.174	911	615
0.1	o5-;*¶	24,900	174,330	टिंट	1,505	0.176	11.7	(23
PARAMETER	5003	25/	ಡಾಚಾನಿ ಕಡುವಿ	STATE STATES	X777 17.7 17.7 17.7	्ट्यातास्य	3	13. 14. 14. (15. 14. (15.) 14. (15.)

. 1978: 1.3. Army Corps of Engineers, Micksburg District, pers. comm.

VTN METAIRIE LA F/G 13/2 ENVIRONMENTAL INVENTORY AND ANALYSIS FOR PINE BLUFF, ARKANSAS. --ETC(U) OCT 75 DACW38-74-C-0139 AD-A113 819 UNCLASSIFIED NL 3 of 4

Table C-78 Follution Load Frequencies: Station 1

PLEASETTE	0.1	0.2	0.5	1.0	2.0	O° 1 7	YEARLY PROBABILITY 5.0 6.67	084BILITY 6.67	σο	10	8	8.	3	₽.	AVENAZE ANGUKU - LOAD
ಕ್ಷೀತ	9,350	∞§*6	9.050	8,650	7,800	6,150	009'5	006'1	005 ⁴ ₹	3,800	2,200	1,250	550	0	330 '611
D:	67,530	67,300	65,000	62,000	55,900	μ3,900	000°0†	35,000	32,000	28,000	16,000	000'6	3,900	0	862,000
STEETS:	133,500	165,000	180,000	172,500	150,000	126,000	115,000	100,000	92,000	80,000	76,000	26,300	∞0'71	0	2,457,3Cc
2000 2000 2000 2000 2000 2000 2000 200	72	ĸ	ý	%	8	177	£4	86	34.5	30	Ė	9.5	-3	٥	919
TERNET KITENET	050.4	000°†	3,900	3,700	3,350	2,600	2,400	2,100	1,900	1,650	9,	520	590	•	51,100
Jail: c⊙x	1.76	1,74	1.68	1.60	1,45	1,14	1.02	0.90	0.82	0.72	0.43	0.22	0.10	0	22.07
200	167	597	160	152	137	108	88.	98	78	\$	9 1	22	13	c	2,20
\$37230 9 C.3	7,500	7,700	7,450	7,100	6,400	5,000	009,4	000*1	3,600	3,200	1,800	1,000	\$2	•	98,700

t CTCE: U.S. Army Corps of Engineers, Vicksburg District, pers. comm.

Table C-79
Follution Load Frequencies: Station 2

P. 34/E TR	0.1	0.2	0.5	1,0	2.0	0.4	YEARLY PROBABILITY 5.0 6.67	OBABILITY 6.67	ω	10	. &	&	0 4	8	AVERAGE AMILIAL LOAD
303 ₅	3,860	3,820	3,720	3,560	3,100	2,620	2,400	2,100	1,900	1,690	970	520	230	0	206,02
	23,700	23,500	23,000	22,000	20,000	15,600	14,200	12,500	11,400	10,000	2,600	3,200	2,900	0	321,00.
SCILOS SCILOS	710.300	აœ°ĕ⁄9	663,000	621,000	537,000	1,22,000	385,000	339,000	30,,000	270,000	154,000	000°₹	36,000	c	7,854,000
7.143 7.143	3.56	92.0	30.5	0.38	78.0	61.0	6.0	0.64	1,5,0	39.0	22.0	५ दा	ر. د.	0	1,196
TEOC STATE	1,630	1,620	1,580	1,500	1,350	1,050	950	850	760	670	1,90	523	173	٥	36'τ2
<u> </u>	0. इंकेड	0.342	0.328	0.304	0.255	0.200	0,183	0.160	0.145	0.129	0.073	0.042	0.02C	0	1.01
31.12	79.5	79.0	77.5	74.5	68.0	53.5	0.64	43.0	39.0	o.4°	20. 0	n.º	5.0	9	1,795
8 9720 8 770)9.€,£	1,790	31,8,1	1,770	1,600	1,250	1,070	1,000	8	დ _წ	757	250	011	0	ઝ ે જ

SNETE: U.S. Arts Corps of Engineers, Wicksburg Matrict, pers. comm.

Table C-80 Pollution load Frequencies: Station 3

AVERAGE AECAL LOAC		300,450,4	27,484,72					326,300
A PA								
\$		0	0	ļ 				٥
o q		18,000	125,000					1,500
8		1,2,000	250,000					3,300
50		76,000	510,000					6,000
93		131,000	000,000					10,500
ω		150,000	1,020,000					12,000
6.67		165,000	1,120,000					13,300
YEARLY PROBABILITY		190,000	1,290,000					15,200
0.4		209,000	1,410,000					16,600
2.0		240,000	1,780,000					ου ₁ ,15
1,0		321,000	1,970,000					24,300
0.5		355,000	2,370,000					25,600
0.2		373,000	2,120,000					26,300
0.1		376,000	. 230,000					. 56,6cc
PARAMETER	عدة ع	ge.	STICE STICE	S. MOTOR	1200 CATA) enem	2	\$0.50 \$10

CARREL 9.5. Army Corps of Engineers, Vicksburg District, pers. comm.

Table C-81 Fellution Load Frequencies: Station 4

	AYERAGE AMETUAL LOAD	300,691	000°203	6,592,000	P45,4	ει, έω	17.86	1,695	50,700
	&	0	۰	0	o	0	v	o	0
	9	750	3,700	75,000	50	230	0.000	7.5	230
	ዾ	1,750	8,200	130,000	∄	650	0.190	17.5	520
	8	3,200	15,600	190,000	79	1,150	0.330	35	ट र हे
	o,	5,500	25,600	330,000	137	2,000	೦,58೧	55	1,550
	80	6,200	29,000	380,000	157	2,250	0.670	52	1,870
TLITY	6.67	6,850	32,000	420,000	173	2,500	0.720	69	2,070
YEARLY PROBABILITY	. 0.2	7,80€	36,500	480,000	198	2,860	0.820	78	2,360
, x	0*1	8,600	000,041	530,000	216	3,130	0.910	98	2,600
	2.0	11,000	51,400	670,000	275	000,4	1,165	011	3,300
	1.0	12,200	58,500	760,000	306	094,4	1,285	123	3,650
	8	12,800	62,000	808,000	320	4,690	1,360	129	3,850
	8	13,200	64,100	835,000	330	4,820	1,400	133	3,950
	10	13,300	65,000	942,000	335	.9€°¶	1,420	현	3,990
	PAPAMETER	BCF ₅	đ:C	500 M	SCOAT PHOSTHORUS	A.T. S.	YET COME.	2	38 (1) C

...... U.S. Army Corps of Engineers, Wicksburg District, pers. comm.

Table C-82 Pollution Load Frequencies: Station 5

AVERAGE AUTHAL LOAD	1,293,000	6,735,000	7,781,000	16.0c.	263,000	5°6 ₅	y,	730,80C
\$	o	0	0	0	o	0	C	0
9	œ, 9	30,000	∞c*o≤∶	0,	1,500	92.0	Ę.	3,100
&	13,500	70,000	330,000	160	3,700	05.0	Ž.	7,100
8	24,000	757,000	600,000	562	6,700	11.11	& &	13,000
01	77,000	320,000	1,020,000	520	11,700	3, 35	5	22,900
6 0	47,500	252,000	1,170,000	597	13,300	2.21	570	26,000
BABILITY 6.67	52,000	278,000	1,280,000	650	ω,4τ	गग *ट	630	28,430
YEAR,Y PROBABILITY	000*09	319,000	1,460,000	750	16,800	2.80	720	32,500
o. . 	990,000	350,000	1,610,000	920	16,500	3.06	790	35,800
0.5	84,000	000,044	2,050,000	030'1	23.500	3.90	00C*T	ω ₌ •\$η
1,0	93,000	000°58¶	2,275,000	1,220	27,300	54*ग	1,155	50,500
0.5	97,500	205,000	2,400,000	1,300	29,000	÷.75	1,230	53,500
0.2	101,000	519,000	2,510,000	1,350	30,350	. 4.95	:,275	≥6,000
0,1	102,000	523,000	2,570,000	1,360	30,750	5.00	1.73	57,200
PARAVETER	ર્ગ્લલ	.	SCENED SCENED	anderna	iae.ii. Ģericy	delac.Z.	ÿ	\$ 220 \$ 220

CTTABLE U.S. Army Corps of Engineers, Wicksburg District, pers, comm.

ľ,

Appendix D Biological Elements

SAMPLING METHODS

A. <u>Bottom Composition</u>. Three 9 x 9 inch Ekman grab samples were combined, air dried and subsampled at stations 1, 2, 3, 4, 5, 7, 9a and 10b. Large objects such as gravel, sticks and rubbish not retained by a No. 10 U.S. Standard Seive (2.00mm) were weighed to the nearest 0.lg. About 100g of the remaining soil was oxidized with 30% hydrogen peroxide until organic matter was removed; samples were dried and weighed. Exactly 50g of the remaining soil was disaggregated by the addition of 5ml neutral sodium hexametaphosphate and placed into a Bouyoucos Sedimentation Cylinder.

A hydrometer was used to determine per cent sand, silt and clay. Hydrometer readings taken at 40 seconds and 2 hours measured sand and silt composition, respectively. Clay composition was determined by subtraction of sand and silt from the original 50g sample.

- B. Phytoplankton. April collections of phytoplankton at stations 1, 2, 3, 4, 5, 7, 9a and 10b consisted of a 1-gallon sample taken 6 inches below the surface and allowed to settle after preservation. Because the plankton was sparse, November samples were collected by pouring 50 gallons of water through a No. 20 mesh plankton net at all stations except 10b, where three vertical 20-foot hauls with the plankton net were made. Phytoplankton was preserved in 5% formalin and a 1.5% soap solution, identified and assigned relative abundance.
- C. Aquatic Vegetation. Relative abundance and species composition for aquatic vegetation were determined at stations 1, 2, 3, 4, 5, 7, 9a and 10b. Plants were collected with a rake or by hand. Only those plants directly in contact with the water were considered.
- D. Zooplankton. Samples were taken at stations 1, 2, 3, 4, 5, 7, 9a and 10b in April and November, 1974. All stations except 10b were sampled by pouring 50 gallons of water through a No. 20 mesh plankton net; three vertical 20-foot hauls were made at Station 10b. Samples were preserved in 5% formalin, identified and assigned relative abundance.
- E. Epibenthos. Epibenthos were collected at stations 1, 2, 3, 4, 5, 7, 9a and 10b in April and November, 1974. Fifteen 3-foot sweeps with a Turtox 9-inch diameter mouth sweepnet (bar mesh = 1mm) were made through emergent vegetation, along shorelines, in littoral habitats or immediately above the substrate. Organisms were preserved in 5% formalin, identified and quantified per 15 sweeps.

- F. Benthos. April and November collections of benthos at stations 1, 2, 3, 4, 5, 7, 9a and 10b consisted of six, 9 x 9-inch Ekman dredge grabs taken equidistant across the water body. Samples were preserved in 5% formalin and later treated with a Rose Bengal dye-isopropanol solution and separated from the substrate. Organsims were identified and quantified by numbers and biomass (using volumetric displacement). Diversity indices were calculated according to Wilhm (1970).
- G. <u>Fishes</u>. Stations 1, 3, 5, 7 and 10b were sampled for fishes in April, May, June and November, 1974. Methods used depended upon water velocity, depth, channel configuration, water temperature and the number of snags. All fishes were weighed to the nearest 0.1g, measured to the nearest 1.0mm total length and assigned relative abundance and biomass per surface acre of water.
- 1. Minnow Seine. A 10-foot (3.1 m) by 4-foot (1.2 m) minnow seine of 1/8 inch (3.2mm) bar mesh was used at suitable stations. The minnow seine was not used at Station 7 during any period, nor at Station 5 in November.
- 2. Bag Seine. A 30-foot (9.3 m) by 4-foot (1.2 m) bag seine of ½ inch (12.7mm) stretch mesh was used in conjunction with the minnow seine.
- 3. Gill Nets. Two 100-foot (31.3 m) by 6-foot (1.9 m) flag-type gill nets, each with 1/3 of the total area consisting of 1-inch (2.5cm), 2-inch (5.0cm) and 3-inch (7.5cm) mesh, were set at Station 10b in May, 1974. Catch data from both were combined into a single catch per unit effort designation. Stream velocities precluded usage of gill nets at all other stations.
- 4. Rotenone. All fish sampling sites except Station 3 were treated with 4-6 pounds (1.8-2.7kg) of rotenone per acre-foot of water in June, 1974. Fishes were collected up to 4 hours after rotenone applications. All rotenone samples are considered representative except those from Station 5, where water velocities in the main channel carried the rotenone quickly downstream. The Arkansas Game and Fish Commission conducted all rotenone sampling.
- H. Overstory and Understory Vegetation. Eight study area phytogeographic regions were analysed for terrestrial vegetation. These vegetative associations were determined mainly by field reconnaissance. Species composition

was determined by conducting vegetative transects. Each transect represented a straight line at least 100 yards (91.4m) long and 10 feet (3.1m) wide. All vegetation within each transect was divided into overstory and understory and was differentiated according to diameter size. Plants having a diameter of about two inches (5.1cm) or more were considered overstory. Each overstory plant was tabulated and quantified. Relative abundance was estimated for each understory species within the transects. A total of 31 transects were conducted within the study area with at least two transects taken in each phytogeographic region.

Table D-1 Phytoplankton of the Pine Bluff Study Area Stations*

STATION NO.	TAXON	RELATIVE ABUNDANCE
1	CHLOROPHYTA	Infrequent
	CYANOPHYTA	Infrequent
	CHRYSOPHYTA	Rare
	RHODOPHYTA Batrachospermum sp.	Infrequent
2	CHLOROPHYTA Spirogyra spp. Closterium spp. Microspora sp.	Frequent Rare Infrequent
	CHRYSOPHYTA	Abundant
	CYANOPHYTA Oscillatoria spp.	Infrequent
3	CHRYSOPHYTA	Infrequent
	CYANOPHYTA Oscillatoria spp.	Infrequent
4	CHRYSOPHYTA	Infrequent
	CYANOPHYTA Merismopedia sp.	Infrequent
	CHLOROPHYTA Closterium spp. Scenedesmus spp. Pandorina morum Gonium pectorale	Frequent Infrequent Infrequent Infrequent
5	CHRYSOPHYTA	Infrequent
	CHLOROPHYTA Closterium spp.	Rare
	CYANOPHYTA <u>Oscillatoria</u> spp.	Rare
7	CYANOPHYTA Oscillatoria spp.	Frequent
98.	CHLOROPHYTA Pediastrum spp. Microspora spp. Spirogyra spp.	Abundant Infrequent Rare

Table D-1 (continued)

9a (continued)	CYANOPHYTA Microcystis spp. Anabaena spp.	Frequent Rare
10b	CHRYSOPHYTA	
	Gomphonema spp.	Rare
	Navicula spr.	Infrequent
	CHLOROPHYTA	
	Scene desmus spp.	Abundant
	Scenedesmus quadricauda	Frequent
	Pediastrum spp.	Abundant
	Pandorina morum	Frequent
	Gonium rectorale	Frequent
	CYANOPHYTA	
	Anabaena spp.	Abundant
	Merismopedia spp.	Abundant

^{*} This list represents only the predominant taxa at the Study Area stations. It is not to be considered comprehensive or complete. It is, however, the only algal list for the Study Area stations to date. Further investigations should yield additional taxa.

Table D-2
Vascular Plants of Jefferson County*

SCIENTIFIC NAME COMMON NAME	HABITAT REQUIREMENTS	RELATIVE ABUNDANCE:
ACANTHACEAE		
Justicia ovata Water Willow	Shallow water	y•
Ruellia humilis Wild Petunia	Open forests; Id fiels	· ·
Ruellia pedunculata Wild Petunia	Open woods along streams	ā
Ruellia strepens Wild Petunia	Rich woods	Ü
ACERACEAE		
Acer negundo Box Elder	River banks and floodolain woods	A
Acer rubrum Red Maple	Woods	А
Acer saccharinum Silver Maple	Along streams and wettish flat woodlands	Ū
AIZOACEAE		
Mollugo verticillata Carpet-weed	Waste areas	U
ALISMATACEAE		
Echinodorus cordifolius Burhead	Shallow water	C
Sagittaria sp. Arrowhead	Shallow water	C
Sagittaria graminea Arrowhead	Shallow water	U
Sagittaria g. platyphylla Delta Duck Potato	Shallow water	С
Sagittaria latifolia Common Arrowhead	Shallow water	С
Sagittaria montevidensis calcina Arrowhead	Shallow water	U

AMARANTHACEAE

Alternanthera philoxeroides Alligatorweed	Streams and ponds	A
Amaranthus arenicola Pigweed	Dried ponds, lake shores, fields and roadsides	C
Amaranthus powellii Pigweed	Open waste areas	C
Amaranthus retroflexus Pigweed	Open waste areas	C
Amaranthus tamariscinus Pigweed	Waste areas	U
Froelichia floridana Cottonweed	Dry fields and sandy soils	C
Iresine rhisomatosa Bloodleaf	Sandy alluvial soils	С
AMARYLLIDACEAE		
Agave virginica False Aloe	Open woods, sandy soil	υ
Hymenocallis occidentalis Spider Lily	Wet areas, shallow water	С
Hypoxis hirsuta Stargrass	Open woods and pastures	С
ANACARDIACEAE		
Rhus copallina Dwarf Sumac	Woods and bottomlands	С
Rhus glabra Smooth Sumac	Open woods, waste areas	С
Rhus radicans Poison Ivy	Woods	A
ANNONACEAE		
Asimina triloba Pawpaw	Rich woods and banks of streams	U
APOCYNACEAE		
Apocynum cannabinum Indian Hemp	Along ditches and streams	С

Trachelospermum difforme Trachelospermum	Along streams and forest edges	С
<u>Vinca major</u> Periwinkle	Along streams and forest edges	Ū
AQUIFOLIACEAE		
Ilex ambigua Carolina Holly	Sandy woods, along streams	K
AQUIFOLIACEAE		
<u>Ilex decidua</u> Deciduous Holly	Woods	С
Ilex opaca American Holly	Moist woods and banks of streams	U
ARACEAE		
Arisaema dracontium Green Dragon	Rich woodlands and alluvial soils	С
ARALIACEAE .		
Aralia spinosa Hercules Club	Woodlands along streams	U
ASCLEPIADACEAE		
Asclepias perennis Milkweed	Swampy ground and alluvial woods	U
Asclepias tuberosa Butterflyweed	Fields, thickets and open woods	С
Asclepias variegata Milkweed	Thickets and open woods	U
Cynanchum laeve	Moist woods, fields	С
BALSAMINACEAE		
Impatiens capensis Spotted Touch-me-not	Wet woods	U
BERBERIDACEAE		
Podophyllum peltatum May Apple	Rich woods along streams	С

BETULACEAE

Alnus serrulata Common Alder	Stream banks	K
Betula nigra River Birch	Stream banks and lake shores	С
Corylus americana Hazelnut	Woods	U
Ostrya virginiana Hop Hornbeam	Woods	С
Carpinus caroliniana Ironwood, Hornbeam	Woods along stream valleys	C
BIJNONIACEAE		
Bignonia capreolata Cross Vine	Moist woods	С
Campsis radicans Trumpet Creeper	Bottomlands and thickets	С
Catalpa speciosa Catalpa	Open woods, cultivated	С
BORAGINACEAE	·	
Heliotropium indicum Indian Heliotrope	River banks, lake shores	С
Myosotis virginica Scorpion Grass	Rich woods and bottomlands	С
Heliotropium convolvulaceum Heliotrope	Open areas, roadsides	U
CACTACEAE		
Opuntia compressa Prickly Pear Cactus	Open areas	U
CAMPANULACEAE		
Lobelia appendiculata Lobelia	Moist places in pinelands old fields, roadsides	С
Lobelia cardinalis Cardinal Flower	Along streams of fields, roadsides and open bottomlands	С
Lobelia puberula Lobelia	Moist areas of bottomlands, streams	С

Triodanis perfoliata Venus' Looking Glass	Fields, roadsides and waste areas	Α
CAPRIFOLIACEAE		
Lonicera japonica Japanese Honeysuckle	Woods, thickets, waste areas	Α
Lonicera sempervirens Trumpet Honeysuckle	Woods, thickets, waste areas	С
Sambucus canadensis Common Elderberry	Open woods, waste areas, old fields	Α
Viburnum prunifolium Black Haw	Moist or dry woods	U
Viburnum rufidulum Southern Black Haw	Edge of woods, streamsides	U
CARYOPHYLLACEAE		
Arenaria patula Sandwort	Fields	U
Sagina decumbens Pearlwort	Fields and open woods	С
Silene antirrhina Catchfly	Moist grassy areas, fields	K
Stellaria media Common Chickweed	Lawns, roadsides, waste areas	A
Saponaria officinalis Soapwort	Open areas, old fields, roadsides	С
CELASTRACEAE		
Euonymus americanus Strawberry Bush	Along streams and bottomlands	С
CHENOPODIACEAE		
Chenopodium album Lamb's Quarters	Roadsides, fields and waste areas	U
Chenopodium ambrosioides Mexican Tea	Waste places	С
Cyclolom atriplicifolium Winged Pigweed	Waste places	С

CISTACEAE

Lechea tenuifolia Pinweed	Roadsides, fields, open woods	С
Lechea villosa Pinweed	Roadsides, fields, open woods	C
COMMELINACEAE		
Commelina communis Dayflower	Stream banks and open areas	С
Commelina diffusa Dayflower	Bottomlands	U
Commelina virginica Dayflower	Bottomlands	С
Tradescantia hirsutiflora Spiderwort	Open woods and streambanks	С
Tradescantia ohiensis Spiderwort	Meadows, thickets, roadsides	Α
Tradescantia tharpii Spiderwort	Open woods	U
Tradescantia occidentalis Spiderwort	Open fields, roadsides	υ
COMPOSITAE		
Achillea millefolium Yarrow	Open woods, roadsides, fields	С
Ambrosia artemisiifolia Common Ragweed	Waste areas	С
Ambrosia bidentata Ragweed	Waste areas	C
Ambrosia trifida Giant Ragweed	Waste areas	C.
Antennaria plantaginifolia Pussy's Toes	Moist open areas, fields	С
Anthemis cotula Mayweed	Waste places, cultivated	С
Aster dumosus Aster	Roadsides, fields	С

Aster ericoides Wreath Aster	Roadsides, fields	С
Aster exilis Aster	Roadsides, fields	С
Aster lateriflorus White Woodland Aster	Woods	C
Aster linariifolius Aster	Roadsides, fields	С
Aster ontarionis Aster	Roadsides, fields	С
Aster paludosus Aster	Roadsides, fields	С
Aster pilosus White Heath Aster	Roadsides, fields	С
Aster patens Spreading Aster	Roadsides, fields	С
Aster turbinellus .	Roadsides, fields	С
Aster umbellatus Aster	Roadsides, fields	С
Aster vimineus Small White Aster	Roadsides, fields	С
Baccharis halimifolia Groundsel Tree	Open sandy areas	С
Bidens aristosa Tickseed Sunflower	Moist open areas	С
Bidens bipinnata Spanish Needles	Moist open areas	С
Boltonia asteroides	Roadsides and fields	С
Boltonia diffusa Boltonia	Roadsides and fields	С
Centaurea cyanus Cornflower	Roadsides, cultivated	K

Cirsium altissimum Tall Thistle	Roadsides, fields, waste areas	С
Cirsium carolinianum Thistle	Roadsides, fields, waste areas	С
Cirsium discolor Thistle	Roadsides, fields, waste areas	С
Cirsium horridulum Bull Thistle	Roadsides, fields, waste areas	С
Coreopsis tinctoria Tickseed	Moist open areas	С
Coreopsis grandiflora Tickseed	Sandy, wooded areas	U
Coreopsis lanceolata Tickseed Coreopsis	Open areas	ij
Coreopsis pubescens Star Tickseed	Open areas	К
Coreopsis tripteris Tall Tickseed	Open areas, roadsieds	ť
Dracopis amplexicaulis Dracopis	Moist open areas	С
Echinacea pallida Purple Cone-flower	Open wood hillside	С
Eclipta alba Yerba de Tago	Edges of streams, ponds and lakes	С
Elephantopus carolinianus Carolina Elephants'-foot	Dry woods	С
Elephantopus tomentosus Hairy Elephants'-foot	Dry woods	С
Erechtites hieracifolia Fireweed	Roadsides, open woods	С
Erigeron annuus Fleabane	Roadsides, fields	С
Erigeron canadensis Horseweed	Roadsides, fields	С
Erigeron philadelphicus Philadelphia Fleabane	Roadsides, fields	С

Erigeron pusillus Horseweed	Roadsides, fields	C
Erigeron strigosus Daisy Fleabane	Roadsides, fields	С
Erigeron tenuis Fleabane	Roadsides, fields	C
Eupatorium album Thoroughwort	Roadsides, fields and woods	U
Eupatorium capillifolium Dog-fennel	Roadsides, fields and woods	U
Eupatorium coelestinum Mistflower	Roadsides, wooded areas	Ĉ
Eupatorium hyssopifolium Thoroughwort	Open areas	R
Eupatorium incarnatum Boneset	Roadsides, thickets	U
Eupatorium perfoliatum Boneset	Moist sandy areas	IJ
Eupatorium rotundifolium Thoroughwort	Open woods	C
Eupatorium rugosum White Snakeroot	Open areas, fields	С
Eupatorium serotinum Thoroughwort	Open areas, fields	С
Facelis retusa Facelis	Sandy soils	ប
Gnaphalium obtusifolium Rabbit Tobacco	Roadsides and open fields	U
Gnaphalium purpureum Purple Cudweed	Sandy soils	U
Haplopappus ciliatus Haplopappus	Sandy soils, river edges	С
Haplopappus divaricatus Haplopappus	Sandy soils, river edges	С
Helenium amarum Bitter Weed	Roadsides and open fields	A
	D-14	

Helenium campestre Sneeze Weed	Roadsides and open fields	U
Helenium flexuosum Sneeze Weed	Moist sandy areas	U
Helianthus angustifolius Sunflower	Roadsides, fields, open areas	С
Helianthus annuus Common Sunflower	Roadsides, fields, open areas	С
Helianthus divaricatus Sunflower	Roadsides, fields, open areas	U
Helianthus grosseserratus Sunflower	Roadsides, fields, open areas	U
Helianthus hirsutus Sunflower	Roadsides, fields, open areas	ij
Helianthus maximiliani Maximilian Sunflower	Roadsides, fields, open areas	U
Heliopsis helianthoides Ox-eye	Roadsides, fields, open areas	C
Hieracium gronovii Hawkweed	Fields	С
Heterotheca graminifolia Silk Grass	Roadsides, fields, open areas	С
Heterotheca latifolia Golden Aster	Roadsides, fields, open areas	С
Heterotheca pilosa Camphor Weed	Roadsides, fields, open areas	С
Iva annua Marsh-elder	Wet areas, open stream sides	С
Krigia dandelion Potato Dandelion	Lawns, fields, open areas	A
Krigia oppositifolia Dwarf Dandelion	Lawns, fields, open areas	С
Lactuca canadensis Wild Lettuce	Roadsides, fields, open areas	С
Lactuca floridana Wild Lettuce	Roadsides, fields, open areas	U

Lactuca serriola Prickly Lettuce	Roadsides, fields, open areas	С
<u>Liatris aspera</u> Blazing-star	Roadsides, old fields	С
<u>Liatris pycnostachya</u> Blazing-star	Roadsides, old fields	С
Mikania scandens Climbing Hempweed	Moist open woods, fields, roadsides	С
Prenanthes alba White Lettuce	Bottomland woods	U
Prenanthes altissima Rattlesnake Root	Bottomland woods	U
Prenanthes serpentaria Gall-of-the-Earth	Open woods	K
Pluchea camphorata Stinkweed	Moist areas	С
Polymnia uvedalia . Bearsfoot	Near streams	U
Pyrrhopappus carolinianus False Dandelion	Lawns, fields, roadsides	С
Rudbeckia hirta Black-eyed Susan	Fields, roadsides, open areas	С
Rudbeckia grandiflora Coneflower	Fields, roadsides, open areas	С
Rudbeckia subtomentosa Coneflower	Fields, roadsides, open areas	С
Senecio glabellus Butterweed	Moist open woods, fields, roadsides	С
Senecio tomentosus Ragwort	Woods	С
Silphium integrifolium Rosin-weed	Roadsides, fields	U
Solidago arguta Goldenrod	Roadsides, fields, waste areas	С
Solidago caesia Bluestem Goldenrod	Roadsides, fields, waste areas	С

	Table D L (Sellement)	
Solidago canadensis Goldenrod	Roadsides, fields, waste areas	C
Solidago gigantea Goldenrod	Roadsides, fields, waste areas	ប
Solidago hispida Goldenrod	Roadsides, fields, waste areas	С
Solidago leptocephala Goldenrod	Roadsides, fields, waste areas	C
Solidago nemoralis Goldenrod	Roadsides, fields, waste areas	C
Solidago odora Sweet Goldenrod	Roadsides, fields, waste areas	C
Solidago petiolaris Goldenrod	Roadsides, fields, waste areas	С
Solidago radula Goldenrod	Roadsides, fields, waste areas	С
Solidago rugosa Rough-leaved Goldenrod	Roadsides, fields, waste areas	Ç
Soliva pterosperma.	Roadsides, fields, waste areas, lawns	C
Sonchus asper Spiny-leaved Sow Thistle	Roadsides, fields, waste areas	С
Spilanthes americana Creeping Spotflower	Roadsides, fields, waste areas	U
Taraxacum officinale Dandelion	Lawns, fields, pastures	А
Verbesina helianthoides Crown Beard	Open woods, fields	С
Vernonia altissima Tall Ironweed	Open woods, fields	C
Vernonia missurica Ironweed	Open woods, fields	С
Vernonia texana Ironweed	Open woods, fields	c
Xanthium strumarium Cocklebur	Disturbed areas	C

CONVOLVULACEAE

Convolvulus arvensis Bindweed	Disturbed areas	С
Cuscuta campestris Dodder	Parasites of herbs	U
Ipomoea hederacea Ivy-leaved Morning Glory	Streambanks, fields and disturbed areas	С
Ipomoea lacunosa Common Morning Glory	Damp thickets and streambanks	С
Ipomoea pandurata Wild Potato	Thickets, fields and roadsides	С
Jacquemontia tamnifolia Smallflower Morning Glory	Disturbed areas	C
Dichondra repens Dichondra	Lawns, roadsides	С
CORNACEAE		
Cornus drummondii Roughleaf Dogwood	Streambanks, bottomlands	С
Cornus florida Flowering Dogwood	Uplands	С
Cornus foemina Stiff Dogwood	Low wet woodlands	U
Nyssa sylvatica Black Gum	Mixed woods	С
CRUCIFERAE		
Brassica campestris Field Mustard	Fields, waste places	С
Brassica kaber Charlock	Open areas, fields	С
Capsella bursa-pastoris Shepherd's Purse	Lawns, fields, roadsides	Α
Cardamine hirsuta Bitter Cress	Moist open ground	С
Cardamine pensylvanica Bitter Cress	Moist open ground	С

Descurainia rinnata Tansy Mustard	Disturbed areas	C
<u>Praba</u> brachycarpa Praba	Lawns, open areas	,
Lepidium virginicum For Man's Pepper Brass	Lawns, roadsides, open areas	
Rorippa islandica Yellow ress	Wet areas	9
Rorippa sessiliflora Yellow Cress	Wet areas	.*
Sibara virginica Sibara	Old fields, readsides	Ç
CUCURBITACEAE		
Cayaponia grandifolia Manso	River bottoms	ñ
Melothria pendula Oreeping Cucumber	Moist rich woods	С
CUPRESSACEAT		
Juniperus virginana Red Cedar	Old fields, cultivated	
CYPERACEAE		
Carex intumescens Sedge	Wet areas	C
Cyperus ovularis Sedge	Waste areas	С
Cyperus pseudovegetus Sedge	Urban areas	K
Cyperus rotundus Sedge	Urban areas	K
Eleocharis obtusa Spike-rush	Wet areas	С
Fimbristylis autumnalis Fimbristylis	Wet areas	С
Fimbristylis vahlii Fimbristylis	Wet areas	С

Fuirena simplex Umbrella Grass	Wet areas	С
Rhynchospora capitellata False Bog Rush	Wet areas	C
Rhynchospora macrostachya Beakrush	Wet areas	C
DIOSCOREACEAE		
Dioscorea batatas Cinnamon Vine	Moist woods	K
Dioscorea <u>quaternata</u> Yam	Moist woods	С
EBENACEAE		
<u>Diospyros</u> <u>virginiana</u> Persimmon	Woods	С
EQUISETACEAE	•	
Equisetum ferrissii Smooth Scouring Rush	Streamsides	С
ERICACEAE .		
Lyonia ligustrina He-Huckleberry	Rich moist woods	C
Lyonia mariana Stagger Bush	Rich moist woods	С
Monotropa uniflora Indian Pipe	Rich moist woods	U
Rhododendron sp. Azalea	Rich moist woods, open areas	U
Vaccinium arboreum Farkleberry	Rich moist woods	С
Vaccinium elliottii Mayberry	Rich moist woods	С
Vaccinium stamineum Deerberry	Rich moist woods	С
EUPHORBIACEAE		
Acalypha gracilens Three-seeded Mercury	Roadsides, fields, open areas	С

Acalypha <u>stryaefolia</u> Three-seeded Mercury	Roadsides, rields, open areas	С
Acalypha rhomboidea Three-seeded Mercury	Roadsides, fields, open areas	Ĉ
Croton capitatus Hogwart	Roadsides, fields, open areas	Ċ
Croton glandulosus Croton	Roadsides, fields, open areas	¢.
Croton monanthogynus	Roadsides, fields, open areas	
Crotonopsis elliptica Rushfoil	Roadsides, fields, open areas	C
Euphorbia corollata Flowering Spurge	Roadsides, fields, open areas	0
Euphorbia heterophylla Painted-deaf	Roadsides, fields, open areas, urban areas	U
Euphorbia maculata Nodding Spurge	Roadsides, fields, open areas	0
Euphorbia supina · Milk Durslane	Roadsides, fields, open areas	/*•
FAGACEAE		
Castanea <u>pumila</u> Chinquapin	Woodlands and thickets	U
Fagus grandifolia Beech	Upland woods	U
Quercus alba White Oak	Upland woods	С
Quercus falcata Southern Red Oak	Upland woods	A
Quercus marilandica Blackjack Oak	Upland areas	Ū
Quercus macrocarpa Bur Oak	Moist forests along streams	C
Quercus michauxii Basket Oak	Woods	U
Quercus nigra Water Oak	Streams	С

Quercus phellos Willow Oak	Streams, wet areas	С
		IJ
Quercus rubra Northern Red Oak	Upland woods	U
Quercus stellata Post Oak	Upland woods	A
Quercus velutina Black Oak	Upland woods	С
Quercus shumardii Shumard Red Oak	Waterways	U
Quercus lyrata Overcup Oak	Moist forests along streams	С
GENTIANACEAE		
Sabatia angularis Rose Pink	Edge of upland woods	С
Sabatia brachiata Marsh Pink	Open moist areas	C
GERANIACEAE		
Geranium carolinianum Geranium	Dry woods, open areas	С
GRAMINEAE		
Agrostis hyemalis Hair Grass	Moist areas, roadsides	С
Andropogon gerardii Bluestem	Old fields, roadsides	С
Andropogon glomeratus Beard Grass	Old fields, roadsides	С
Andropogon virginicus Broom sedge	Old fields, roadsides	С
Aristida intermedia Three Awn Grass	Open areas, sandy soil	С
Aristida oligantha Three Awn Grass	Open areas, sandy soil	U
Aristida longespica Three Awn Grass	Open areas, sandy soil	С

Arundinaria gigantea Cane	Wet areas	Ģ
Bromus racemosus Brome Grass	Open areas, old fields	C
Cenchrus incertus Sandspurs	Disturbed areas	C
Echinochloa crusgalli Barnyard Grass	Lawns, roadsides	А
Elymus canadensis Wild Rye Grass	Old fields, open areas	C
Eragrostis capillaris Love Grass	Old fields, open areas	C
Eragrostis hypnoides Love Grass	Old fields, open areas	C
Eragrostis pectinacea Love Grass	Old fields, open areas	^
Eragrostis oxylepis Love Grass	Open areas, old fields	C
Eragrostis spectablis Love Grass	Open areas, old fields	С
Erianthus alopecuroides Beard Grass	Woodlands along stream courses	С
Erianthus contortus Beard Grass	Moist sandy areas	U
Leersia oriyzoides Cut Grass	Roadside ditches	К
Leersia virginica Cut Grass	Swampy areas	U
Leptoloma cognatum Witch Grass	Open areas, sandy soil	C
Leptochloa fascicularis Witch Grass	Open areas, sandy soil	C
Leptochloa panicoides Witch Grass	Open areas, sandy soil	С
Leptochloa uninervia Witch Grass	Open areas, sandy soil	K

Oplismenus setarius Oplismenus	Woods, along streams	С
Panicum anceps Panic Grass	Well drained sites in uplands	С
Panicum angustifolium Panic Grass	Uplands	С
Panicum capillare Witch Grass	Disturbed areas	С
Panicum commutatum Panic Grass	Disturbed areas	С
Panicum dichotomiflorum Panic Grass	Moist disturbed areas along streams	С
Panicum hians Panic Grass	Moist areas	С
Panicum laxiflorum Panic Grass	Woods, sandy soil	С
Panicum polyanthes Panic Grass	Woods, sandy soil	U
Panicum scoparium Panic Grass	Moist woods, sandy soil	С
Panicum virgatum Panic Grass	Moist open areas	С
Paspalum floridanum Paspalum	Moist open areas	С
Paspalum laeve Paspalum	Open woods	U
Paspalum urvillei Vasey Grass	Moist disturbed areas	С
Setaria lutesens Foxtail Grass	Fields, open areas	С
Sorghum halepense Johnson Grass	Roadsides, disturbed areas	С
Sphenopholis obtusata Wedge Grass	Moist areas	С
Sporobolus asper Dropseed	· Disturbed areas	С
Sporobolus cryptandrus Dropseed	Disturbed areas	A
	D-24	

Tripsacum dactyloides Gamma Grass	Open areas	С
Tridens flavus Purple Top	Open forests, roadsides	С
Tridens strictus Tridens	Open forests, sandy soil	U
Uniola latifolia Uniola	Creek bottoms	Ç
Uniola laxa Uniola	Open areas, moist sandy soil	С
<u>Uniola</u> <u>sessiliflora</u> Uniola	Sandy woods	С
HAMAMELIDACEAE		
Hamamelis virginiana Witch Hazel	Stream borders	С
<u>Liquidambar</u> <u>stryraciflua</u> Sweet Gum	Upland and bottomland forests	Α
HIPPOCASTANACEAE .		
Aesculus pavia Red Buckeye	Open areas, forest edges	C
HYDROPHYLLACEAE		
Hydrolea uniflora Hydrolea	Edges of ponds and streams	С
Phacelia ranunculacea Phacelia	Moist woods	С
HYPERICACEAE		
Ascyrum hypericoides St. Andrew's Cross	Forests and open areas	С
Ascyrum stans St. Peter's-Wort	Wet woods	С
Hypericum densiflorum St. John's-Wort	Streams, pine forests	С
Hypericum drummondii St. John's-Wort	Old fields	С
Hypericum mutilum Dwarf St. John's-Wort	Edges of streams and swamps	C

HYPERICACEAE (continued) Edges of streams, swamps C Hypericum walteri St. John's-Wort and ponds IRIDACEAE Streambanks, wet pastures <u>Iris cristata</u> Crested Iris Open areas Sisyrinchium pruinosum Blue-eyed Grass JUGLANDACEAE Wet woods near streams Carya cordiformis Bitternut Hickory Bottomlands near streams, Carya illinoensis cultivated Pecan Woods near streams C <u>Carya ovalis</u> <u>Sweet Pignut Hickory</u> Dry woods, sandy soil Carya texana Black Hickory Woods С Carya tomentosa Mockernut Hickory Swamps, wet woods Carya aquatica Water Hickory С Woodlands Juglans nigra Black Walnut JUNCACEAE Stream edges, moist areas C Juncus scirpoides Rush LABIATAE <u>Cunila origanoides</u> Dittany U Dry woods Old fields of uplands Hedeoma hispida Mock Pennyroyal Lamium amplexicaule Henbit Dead-Nettle Lawns, open areas Lamium purpureum Dead Nettle Disturbed areas C

Lycopus rubellus	Wet areas	С
Lycopus virginicus Bugle Weed	Wet areas of woodlands	C
Monarda citriodora Monarda	Open areas	C
Monarda fistulosa Wild Bergamot	Open woods, fields	Ċ
Monarda punctata Spotted Monarda	Open areas, disturbed areas	C
Perilla frutescens Beef-steak Plant	Damp woods, stream borders	С
Prunella vulgaris Self-heal	Pastures, lawns, fields	С
Pycnanthemum <u>albescens</u> White Basil	Open woods along streams	IJ
Pycnanthemum muticum Mountain Mint	Dry open woods	ſi
Pycnanthemum tenuifolium Mountain Mint	Wet open areas	Ü
Salvia lyrata Cancerweed	Open areas	С
Scutellaria integrifolia Skullcap	Wood borders, stream edges	U
Scutellaria ovata Skullcap	Open wooded areas, roadsides	U
Stachys tenuifolia Hedge-Nettle	Open areas	С
Teucrium canadense Wood Sage	Open areas	C
Trichostema dichotomum Blue Curls	Dry open woods	U
LAURACEAE		
<u>Lindera benzoin</u> Spice Bush	Moist areas	С

Sassafras albidum	Dry uplands	С
LEGUMINOSAE		
Amorpha fruticosa False Indigo	Open areas	С
Amphicarpa bracteata Hog Peanut	Rich woods, moist areas	С
Apios americana Groundnut	Woods near streams	С
Baptisia leucantha Baptisia	Pine-oak woodlands	U
Baptisia sphaerocarpa Baptisia	Open areas	U
Cassia fasciculata Partridge Pea	Fields, open woods, roadsides	С
Cassia nictitans Sensitive Pea	Disturbed areas	С
Cercis canadensis Redbud	Woods	С
Centrosema virginianum Butterfly Pea	Open woods	С
Dalea lanata Wooley Dalea	Open sandy areas	R
Desmanthus <u>illinoensis</u> Prairie Mimosa	Open clayey soils	С
Desmodium ciliare Tick Trefoil	Dry sandy woods	С
Desmodium glutinosum Beggar's Ticks	Dry woods	Ŭ
Desmodium nudiflorum Beggar's Ticks	Woods	Ū
Desmodium nuttallii Beggar's Ticks	Dry sandy woods	С
Desmodium paniculatum Beggar's Ticks	Dry sandy woods	С

Desmodium dillenii Beggar's Ticks	Dry sandy woods	C
Desmodium rigidum Beggar's Ticks	Dry sandy woods	С
Dioclea multiflora Dioclea	Along streams of uplands	U-R
Galactia volubilis Downey Milkpea	Woodlands	С
Gleditsia triacanthos Honey Locust	Open disturbed areas	С
Gymnocladus dioica Kentucky Coffee Tree	Cultivated, low rich woods	R
<u>Lathyrus hirsutus</u> Singletary Pea	Ro a dsid e s	U
Lathyrus latifolius Perennial Sweetpea	Cultivated, open woods	U
Lespedeza capitata Round-head Bush Clover	Open woodlands	U
Lespedeza cuneata Chinese Bush Clover	Sandy roadsides	υ
Lespedeza hirta Hairy Bush Clover	Sandy woods	С
Lespedeza procumbens Trailing Bush Clover	Roadsides, open sandy woodlands	С
Lespedeza repens Creeping Bush Clover	Roadsides, open sandy woodlands	С
Lespedeza stuevei Tall Bush Clover	Dry woods	U-R
Lespedeza striata Japanese Bush Clover	Sandy open areas	С
Lespedeza stipulacea Korean Bush Clover	Sandy roadsides	С
Lespedeza virginica Slender Bush Clover	Roadsides, open sandy woodlands	С
Medicago lupulina Black Medick	Fields, open areas	С

LEGUMINOSAE (continued)		
Medicago sativa Alfalfa	Fields, open areas	С
Melilotus albus Bur Clover	Fields, open areas	C
Melilotus officinalis Bur Clover	Fields, open areas	С
Mimosa strigillosa Powderpuff	Open areas	C
Phaseolus polystachios Bean	Open areas	U-R
Pisum sativum Field Pea	Fields, cultivated, roadsides	C
Psoralea psoraliodes Sampson's Snakeroot	Sandy wooded areas	С
Rhynchosia latifolia Snoutbean	Sandy wooded areas	С
Robinia hispida Bristly Locust	Cultivated, woods edge	С
Robinia pseudoacacia Black Locust	Cultivated, open woods, roadsides	С
Schrankia uncinata Sensitive Brier	Open sandy soils	С
Sesbania exaltata Coffee Weed	Open sandy soils	C
Strophostyles helvola American Bean	Open sandy soils	U
Strophostyles pauciflora Fuzzy Bean	Open sandy soils	υ
Strophostyles umbellata Fuzzy Bean	Sandy pine forests	С
Stylosanthes biflora Pencil Flower	Open areas	С
Tephrosia spicata Goat's Rue	Open areas, sandy soil	ប

Tephrosia virginiana Devil's Shoestring	Open areas, sandy soil	С
Trifolium arvense Rabbitfoot Clover	Lawns, fields, roadsides	С
Trifolium dubium Small Hop Clover	Lawns, fields, roadsides	С
Trifolium incarnatum Crimson Clover	Lawns, fields, roadsides	С
Trifolium campestre Low Hop Clover	Lawns, fields, roadsides	C
Trifolium reflexum Buffalo Clover	Lawns, fields, roadsides	C
Vicia dasycarpa Winter Vetch	Fields	C
Vicia sativa Common Vetch	Fields	С
LEITNERIACEAE		
Leitneria floridana Corkwood	Thickets	R (Threatened)
	Thickets	R (Threatened)
Corkwood	Thickets Ponds, slow-moving streams	R (Threatened)
Corkwood LEMNACEAE Lemna spp.		
Corkwood LEMNACEAE Lemna spp. Duckweed		
Corkwood LEMNACEAE Lemna spp. Duckweed LENTIBULARIACEAE Utricularia gibba	Ponds, slow-moving streams	A
Corkwood LEMNACEAE Lemna spp. Duckweed LENTIBULARIACEAE Utricularia gibba Bladderwort	Ponds, slow-moving streams	A
Corkwood LEMNACEAE Lemna spp. Duckweed LENTIBULARIACEAE Utricularia gibba Bladderwort LILIACEAE Aletris farinosa	Ponds, slow-moving streams Ponds	A C
Corkwood LEMNACEAE Lemna spp. Duckweed LENTIBULARIACEAE Utricularia gibba Bladderwort LILIACEAE Aletris farinosa Unicorn Root Allium canadense	Ponds, slow-moving streams Ponds Sand-gravel areas	A C

Chamaelirium <u>luteum</u> Blazing Star	Cultivated, woods	R
Nothoscordum bivalve False Garlic	Open areas, fields, roadsides	С
LILIACEAE		
Smilacina racemosa False Soloman's Seal	Woods	С
Smilax bona-nox Catbrier	Woods	С
Smilax glauca Greenbrier	Woods	С
Smilax herbacea Greenbrier	Woods	С
Smilax rotundifolia Greenbrier	Woods	С
Trillium recurvatum Purple trillium	Upland woods	U
LINACEAE .		
Linum medium Sucker Flax	Disturbed areas	С
LOGANIACEAE		
Gelsemium sempervirens Yellow Jessamine	Wooded areas	С
Polypremum procumbens Polypremum	Open areas, cultivated	С
LYTHRACEAE		
Ammania coccinea Tooth-cup	Mud of ponds and ditches	С
Lythrum lanceolatum Loosestrife	Open areas	С
MALVACEAE		
Abutilon theophrasti Indian Mallow	Fields, open areas	Ŭ
Hibiscus militaris Scarlet Rose-mallow	Open areas, streamsides	С

Hibiscus trionum Flower-of-an-hour	Open areas, streamsides	C
Sida spinosa Prickly Mallow	Fields, open areas	С
Sida rhombifolia Axocatzin	Fields, open areas	С
MELASTOMATACEAE		
Rhexia mariana Meadow Beauty	Old fields	C
Rhexia virginica Meadow Beauty	Old fields	С
MELLACEAE		
Melia azedarach Chinaberry Tree	Bottomland woods	Ū
MENISPERMACEAE		
Cocculus carolinus	Woods	C
Carolina Moonseed		
MORACEAE		
	Cultivated, roadsides	K
MORACEAE Broussonetia papyrifera	Cultivated, roadsides Edge of fields, open areas	K C
MORACEAE Broussonetia papyrifera Paper Mulberry Maclura pomifera	·	
MORACEAE Broussonetia papyrifera Paper Mulberry Maclura pomifera Osage Orange Morus rubra	Edge of fields, open areas	С
MORACEAE Broussonetia papyrifera Paper Mulberry Maclura pomifera Osage Orange Morus rubra Red Mulberry	Edge of fields, open areas	С
MORACEAE Broussonetia papyrifera Paper Mulberry Maclura pomifera Osage Orange Morus rubra Red Mulberry MYRICACEAE Movella cerifera	Edge of fields, open areas Woods	c
MORACEAE Broussonetia papyrifera Paper Mulberry Maclura pomifera Osage Orange Morus rubra Red Mulberry MYRI CACEAE Movella cerifera Wax Myrtle	Edge of fields, open areas Woods	c
MORACEAE Broussonetia papyrifera Paper Mulberry Maclura pomifera Osage Orange Morus rubra Red Mulberry MYRI CACEAE Movella cerifera Wax Myrtle NYMPHAEACEAE Brasenia schreberi	Edge of fields, open areas Woods Bottomlands	c c

OLEACEAE

Olimodal		
Chionanthus virginicus Fringe Tree	Old fields, cultivated, roadsides	С
Forestiera acuminata Swamp Privet	Bottomlands	U
Fraxinus pennsylvanica Green Ash	Bottomlands	С
Ligustrum vulgare Common Privet	Shaded woodlands	С
ONAGRACEAE		
Gaura coccinea Scarlet Gaura	Open disturbed areas, sandy soil	С
Gaura parviflora Gaura	Open disturbed areas, sandy soil	С
Ludwigia liptocarpa Water Primrose	Wet areas, ditches	С
Ludwigia peploides Water Primrose	Ponds and streams	С
Ludwigia alternifolia Seedbox	Ditches and wet areas	U
Ludwigia <u>decurrens</u> Primrose Willow	Swampy areas	C
Ludwigia glandulosa Cylindric-fruited Ludwigia	Swampy areas	С
Ludwigia linearis Water Primrose	Wet areas in pine forests	U
Oenothera biennis Common Evening Primrose	Woods and disturbed areas	С
Oenothera laciniata Cut-leaved Evening Primrose	Fields	С
Oenothera linifolia Three-leaved Sundrops	Open woods	С
Oenothera fruticosa Evening Primrose	Open areas	U
Oenothera rhombipetala Evening Primrose	Disturbed areas	С

Oenothera speciosa Snowy Primrose	Roadsides, fields, open areas	A
OPHIOGLOSSACEAE		
Botrychium biternatum Grape Fern	Deep woods	U
ORCHIDACEAE		
Cypripedium calceolus Large Yellow Lady-slipper	Deep woods	R (Threatened)
Isotria verticillata Whorled Pogonia	Stream borders of uplands	U
Spiranthes vernalis Ladies' Tresses	Bottomlands	C
Tipularia discolor Crane-fly Orchid	Streams of pine-hardwoods	U
OSMUNDACEAE		
Osmunda cinnamomea Cinnamon Fern	Deep wet woods	С
Osmunda regalis Royal Fern	Deep wet woods	С
OXALIDACEAE		
Oxalis dillenii Wood Sorrel	Open areas, fields, lawns	С
Oxalis repens Creeping Wood Sorrel	Open areas, fields, lawns	С
Oxalis violacea Wood Sorrel	Open areas, fields, lawns	C
PASSIFLORACLAE		
Passiflora incarnata Passion Flower	Fences, open disturbed areas	C
Passiflora lutea Passion Flower	Fields	С
PHRYMACEAE		
Phryma leptostachya Lopseed	Woodlands and thickets	U

PINACEAE		
Pinus echinata Shortleaf Pine	Upland woods	Α
Pinus taeda Loblolly Pine	Upland woods	A
PLANTAGINACEAE		
Plantago aristata Buckthorn	Lawns, fields	С
Plantago lanceolata English Plantain	Lawns, fields	С
Plantago rugelii Plantain	Lawns, fields	С
Plantago virginica Pale-seeded Plantain	Lawns, fields	С
PLATANACEAE		
Platanus occidentalis Sycamore	Streamsides, low woods, cultivated	С
POLEMONIACEAE		
Phlox glaberrima Phlox	Fields, roadsides	С
Phlox pilosa Phlox	Fields, roadsides	С
POLYGALACEAE		
Polygala sanguinea Milkwort	Moist open woods	С
POLYGONACEAE		
Brunnichia cirrhosa Ladies' Eardrops	Edge of ponds and streams, low woods	C
Polygonum hydropiper Water Pepper	Wet areas	С
Polygonum hydropiperoides Wild Water Pepper	Wet areas	С
Polygonum lapathifolia Smartweed	Wet disturbed areas	C
Polygonum pensylvanica Pinkweed	Wet disturbed areas	C
LIHVAGEN	D-36	

Polygonum persicaria Lady's Thumb	Wet areas	С
Polygonum punctata Water Smartweed	Wet areas	С
Polygonum aviculare Smartweed	Wet areas	С
Polygonum virginianum Virginia Knotweed	Woodlands	С
Rumex crispus Sour Dock	Lawns, disturbed areas	С
Rumex hastatulus Wild Sorrel	Fields	С
Rumex verticillatus Dock	Fields	С
POLYPODIACEAE		
Asplenium platyneuron Ebony Spleenwort	Rich woods	C
Athyrium filix-femina Lady Fern	Rich woods	С
Polypodium polypodioides Resurrection Fern	Large oaks	C
Polystichum acrostichoides Christmas Fern	Along streams of rich woods	С
Pteridium aquilinum Bracken Fern	Open areas, edge of woods	C
Woodsia obtusa Blunt-lobed Woodsia	Rich woods	U
Woodwardia areolata Netted Chain Fern	Rich woods	U
Woodwardia virginica Virginia Chain Fern	Rich woods	U
PORTULACACEAE		
Claytonia virginica Spring Beauty	Lawns, open areas	A
Portulaca oleracea Purslane	Open areas, roadsides	С

PRIMULACEAE

Lysimachia radicans Loosestrife	Open woods	С
RANUNCULACEAE		
Anemone virginiana Thimbleweed	Sandy wooded areas	С
<u>Clematis crispa</u> Swamp Leather Flower	Along streams of bottomland forests	С
Clematis dioscoreifolia Leather Flower	Woods, fence rows	С
Clematis pitcheri Leather Flower	Woods and thickets	С
Clematis virginiana Virgin s Bower	Edges of bottomland forests	С
Ranunculus abortivus Small-flowered Crowfoot	Moist ground, open areas	С
Ranunculus <u>bulbosus</u> Hispid Buttercup	Lawns, open areas	С
Ranunculus sardous Buttercup	Moist areas	U
Ranunculus sceleratus Buttercup	Stream and lake borders	С
Ranunculus septentrionalis Swamp Buttercup	Swamps	U
RHAMNA CEAE .		
Berchemia scandens Rattan Vine	Woods	С
Ceanothus americanus New Jersey Tea	Forest clearings	С
ROSACEAE		
Agrimonia rostellata Agrimony	Moist rich open woods	С
Amelanchier arborea Service Berry	Fence rows, field edges	С
Crataegus marshallii Parsley Hawthorn	Fence rows, field edges	С
	D-38	

D-38

Crotocque nitido	Fence rows, field edges	C
Crataegus nitida Hawthorn	rence lows, lielu edges	Ü
Crataegus viridis Green Hawthorn	Fence rows, field edges	С
Duchesnea indica Indian Strawberry	Wet woods, thickets	С
Geum canadense White Avens	Rich woods	U
Gillenia stipulata American Ipecac	Woods and thickets	С
Potentilla simplex Old Field Cinquefoil	Woodlands	С
Prunus americana Wild Plum	Cultivated, roadsides, woods edge	С
Prunus angustifolia Chickasaw Flum	Old fields, woods edge	С
Prunus serotina Black Cherry	Woods	C
Prunus umbellata Flatwood Plum	Fence rows, streamsides	С
Aronia arbutifolia Red Chokeberry	Bottomland thickets	K
Rosa cathayensis Rose	Woods edge, roadsides	U
Rosa multiflora Japanese Rose	Open woods, thickets, waste areas	U
Rosa setigera Prairie Rose	Open woods, thickets	С
Rubus argutus High Bush Blackberry	Fields, forest edges	С
Rubus flagellaris Northern Dewberry	Fields, forest edges	С
Rubus procerus Himalaya Berry	Fields, forest edges	С
Rubus trivialis Southern Dewberry	Fields, forest edges	С

RUBLACEAE

Cephalanthus occidentalis Buttonbush	Streamsides, lake shores	A
Diodia teres Rough Buttonweed	Sandy woodlands	С
Diodia virginiana Buttonweed	Swamps, streams	С
Galium aparine Cleavers	Disturbed areas, lawns	С
Galium circaezans Woods Bedstraw	Dry rich woods	U
Galium obtusum Bluntleaf Bedstraw	Wet woods	С
Galium uniflorum Bedstraw	Wet woods	K
Hedyotis australis Bluets	hawns, open areas, fields	С
Hedyotis caerulea Bluets	Lawns, open areas, fields	С
Hedyotis purpurea Bluets	Lawns, open areas, fields	С
Hedyotis crassifelia Bluets	Lawns, open areas, fields	С
Mitchella repens Partridge Berry	Woods	U
Sherardia arvensis Field Madder	Fields, roadsides	С
Spermacoce glabra Smooth Buttonweed	Bottomlands	С
RUTACEAE		
Zanthoxylum clava-herculis Hercules'-club	Sandy soils	U
SALICACEAE		
Populus alba Silver Poplar	Cultivated, roadsides	U

Populus deltoides Cottonwood	Watercourses	С
Populus grandidentata Large-toothed Aspen	Cultivated, water courses	บ
Salix interior Sandbar Willow	Sandbars	K
Salix nigra Black Willow	Streambeds, wet fields	С
SAPINDACEAE		
Cardiospermum halicababum Balloon Vine	Open disturbed areas and brushy areas	C
SAPOTACEAE		
Bumelia lanuginosa Chittimwood	Upland areas	U
SAURURACEAE		
Saururus cernuus Lizard's Tail	Backwater areas, stream and lake borders	С
SAXIFRAGACEAE		
Penthorum sedoides Ditch Stonecrop	Wet areas, stream and lake borders	U
SCROPHULARIACEAE		
Gerardia aspera	Dry forest and clearing	ប
Gerardia fasciculata Gerardia	Open weedy areas	С
Gerardia gattingeri Gerardia	Open woodlands	ប
Gerardia heterophylla Prairie Gerardia	Old fields	С
Gerardia tenuifolia Gerardia	Along ponds and streams	С
Gratiola neglecta Clammy Hedge Hyssop	Along ponds and streams of woods	С
Gratiola pilosa Hedge Hyssop	Backwater areas and bottomlands	С

Conobea multifida Conobea	Upland streams	С
Linaria canadensis Blue Toadflax	Grassey areas in open woodlands, roadsides	С
Lindernia dubia False Pimpernel	Backwater areas and stream borders	С
Mazus japonicus Mazus	Roadsides, open areas, lawns	K
Bacopa acuminata Water Hyssop	Ditches, backwater areas, ponds	С
Mimulus alatus Monkey Flower	Wooded streams	С
Pedicularis canadensis Lousewort	Edge of upland forests, seepage slopes	С
Penstemon alluviorum Beard-Tongue	Open areas, alluvial soils	U
Penstemon arkansanus Beard-Tongue	Upland woods	υ
Penstemon laxiflorus Beard-Tongue	Upland woods	Ŭ
Verbascum thapsus Mullein	Roadsides, open areas, disturbed areas	С
Verbascum blattaria Moth Mullein	Roadsides, open areas, disturbed areas	ប
Veronica arvensis Corn Speedwell	Open wooded slopes; fields	С
Veronica peregrina Neckweed	Streams, backwater areas	C
SOLANACEAE		
Datura innoxia Indian Apple	Dry rocky streambeds	Ū
Physalis angulata Ground Cherry	Open woods, disturbed areas	С
Physalis virginiana Ground Cherry	Old fields, disturbed areas	C

Physalis viscosa Ground Cherry	In and near woods	С
Solanum americanum Black Night Shade	Dry open woods, thickets	С
Solanum carolinense Horse-nettle	Fields and disturbed areas	С
Solanum elaeagnifolium Silver-leaf Nightshade	Disturbed areas, roadsides	С
Solanum rostratum Buffalo Bur	Disturbed areas, roadsides	С
SYMPLOCACEAE		
Symplocos tinctoria Horse-sugar	Bottomlands and wet woods	С
TAMARICACEAE		
Tamarix gallica Salt Cedar	Alluvial stream courses, cultivated	U
TAXODIACEAE .		
Taxodium distichum Baldcypress	Swampy areas, standing water	С
TILIACEAE		
Tilia caroliniana Carolina Basswood	Upland woodlands along streams	U
TYPHACEAE		
Typha angustifolia Cattail	Wet areas	С
ULMACEAE		
Celtis Laevigata Southern Hackberry	Bottomlands, wet woods	С
Planera aquatica Water Elm	Water courses	К
Ulmus alata Winged Elm	Woods	С
Ulmus americana American Elm	Woods	С

Ulmus crassifolia Cedar Elm	Uplands near streams	С
UMBELLIFERAE		
Chaerophyllum tainturieri Chervil	Dry woods and thickets	С
Cicuta maculata Spotted Cowbane	Streams and wet areas	С
Crytotaenia canadensis Honewort	Moist upland areas	C
Daucus carota Wild Carrot	Disturbed areas	С
<u>Daucus pusillus</u> Rattlesnake-weed	Disturbed areas	С
Eryngium yuccifolium Button Snakeroot	Fields	С
Hydrocotyle verticillata Pennywort	Wet woods, wet areas	C
Oxypolis rigidior Oxypolis .	Bottomlands	C
Ptilimnium nuttallii Mock Bishop's Weed	Moist areas of fields and open areas	С
Sanicula canadensis Black Snakeroot	Moist woods	С
Thaspium trifoliatum Meadow Parsnip	Fields	U
Torilis japonica Torilis	Bottomlands, wet woods	С
Trepocarpus aethusae Trepocarpus	Bottomlands	U
Zizia aurea Golden Alexander	Bottomlands and sandy woods	С
URTICACEAE .		
Urtica chamaedryoides Nettle	Open woods, disturbed areas	С
Boehmeria cylindrica False Nettle	Wet areas, backwaters and streambanks	С

VALERIANACEAE		
Valerianella radiata Corn Salad	Roadsides, open areas	C
VERBENACEAE		
Callicarpa americana French Mulberry	Bottomlands, wet woods	С
Lippia lanceolata Fog Fruit	Wet areas, streambanks	С
Lippia nodiflora Fog Fruit	Wet areas, streambanks	С
Verbena bonariensis Vervain	Rice field edges, wet areas	U
Verbena brasiliensis Brasilian Vervain	Roadsides, open areas, disturbed areas	A
Verbena canadensis Rose Verbena	Roadsides, fields, open areas	С
<u>Verbena</u> <u>halei</u> <u>Vervain</u>	Fields, pastures, open areas	C
<u>Verbena</u> <u>rigida</u> Vervain	Roadsides and fields	С
<u>Verbena</u> <u>stricta</u> <u>Vervain</u>	Roadsides, disturbed areas	С
Verbena urticifolia Vervain	Bottomlands, disturbed areas	С
VIOLACEAE		
<u>Viola lanceolata</u> <u>Violet</u>	Roadside ditches, wet fields	С
Viola missouriensis Missouri Violet	Bottomlands	. C
Viola pratincola Common Violet	Lawns, roadsides, fields	С
Viola rafinesquii Johnny-jump-up	Lawns, roadsides, fields	С
Viola sagittata Arrow-leaved Violet	Dry wood edges	С

<u>Viola triloba</u> Three-lobed Violet	Wet woods, bottomlands	С
VITACEAE		
Ampelopsis arborea Peppervine	Uplands forests	A
Ampelopsis cordata Raccoon Grape	Uplands forests	A
Parthenocissus quinquefolia Virginia Creeper	Uplands forests	A
Vitis aestivalis Summer Grape	Streambanks of wooded areas	С
Vitis cinerea Grayback Grape	Bottomlands	С
Vitis vulpina Frost Grape	Open woods along upland streams	С

*This list of vascular plants, compiled by VTN Louisiana, is based largely on a personal collection (of non-cultivated plants) of Mrs. Marie Locke, a Pine Bluff amateur botanist. Many of Mrs. Locke's identifications were confirmed by Dr. Edwin B. Smith, Professor of Botany and Director of the Herbarium at the University of Arkansas, Fayetteville. This list also incorporates plants from collections and observations of the VTN field team. This is the most complete list of vascular plants compiled for Jefferson County, Arkansas, to date.

** A - Abundant

- C Common
- U Uncommon
- R Rare
- K Unknown

STATION NO.	TAXON	RELATIVE ABUNDANCE
1	Cyclopoid copepods	Infrequent
	Chironomid larvae	Infrequent
	Nauplii	Infrequent
	Nematodes	Infrequent
	Ostracods	Rare
2	Rotifers	Infrequent
	Nauplii	Infrequent
	Oligochaetes	Rare
	Copepods	Infrequent
	Nematodes	Rare
3	Nauplii	Infrequent
	Rotifers	Infrequent
	Copepods	Infrequent
	Cladocerans	Infrequent
4	Nauplii	Infrequent
	Rotifers	Infrequent
	Copepods	Rare
5	Cladocerans	Infrequent
	Rotifers	Infrequent
	Nauplii	Infrequent
	Chironomids	Rare
7	Copepods	Frequent
	Nauplii	Frequent
	Ostracods	Frequent
	Rotifers	Infrequent
	Cladocerans	Rare
9 a	Rotifers	Very Abundant
	Cladocerans	Abundant
	Nauplii	Abundant
	Copepods	Frequent
10ъ	Cladocerans	Abundant
	Cyclopoid copepods	Frequent
	Nauplii	Frequent
	Rotifers	Frequent

^{*} This list represents only the larger predominant taxa present at the Study Area stations. It is the only list of zooplankton from these areas.

Table D-4 Benthic Invertebrates of the Pine Bluff Study Area Stations* (April and November, 1974)

COELENTERATA	Astacidae	
Hydra sp.	Procambarus sp.	
Hydra americana	Procambarus simulans	
NETT A A TROLEO DUTA	INSECTA	
NEMATOMORPHA	Ephemeroptera	
THE A PROPERTY SET VITALITY	Hexagenia sp.	
PLATYHELMINTHES	Oreianthus sp.	
<u>Dugesia</u> tigrina	Potamenthus sp.	
ANNELIDA	Caenis sp.	
Oligochaeta	Baetis sp.	
Aeolosoma sp.	Ephemerella sp.	
Naididae	Odonata	
Chaetogaster sp.	Macromia sp.	
Ophidonais sp.	Libellula sp.	
Dero sp.	Cannacria gravida	
Pristina sp.	Somatochlora sp.	
Naidium sp.	Coleoptera	
Nais sp.	Haliplus sp.	
Stylaria sp.	Bidessus sp.	
Tubi di ci dae	Hydrobius sp.	
Tubifex sp.	Diptera	
Limnodrilus sp.	Chaoborus sp.	
Limnodrilus cervix	Simulium sp.	
Branchiura sowerbyi	Tanypodini	
Lumbriculidae #1	Tanypus sp.	
Lumbriculidae #2	Pentaneura sp.	
Lumbriculus sp.	Procladius sp.	
Lumbriculus inconstans	Coelotanypus sp.	
Cambarincola sp.	Chironomini	
Hirudinea	Chironomus sp.	
Helobdella sp.	Cryptochironomus sp.	
Helobdella elongata	Parachironomus sp.	
Helobdella lineata	Glyptotendipes sp.	
Helobdella stagnalis	Paralauterborniella sp.	
Placobdella sp.	Einfeldia sp.	
Placobdella parasitica	Dicrotendipes sp.	
Mooreobdella microstoma	Unidentified pupae	
ARTHROPODA	MOLLUSCA	
Crustacea	Gastropoda	
Branchinecta sp.	Physa sp.	
Cladocera	Lymnaea sp.	
Copepoda	Pelecypoda	
Diaptomus sp.	Unionidae	
Cyclopoida	Arcidens confragosus	
Asellus militaris	Sphaerium sp.	
Hyalella azteca	Sphaerium transversum	
<u></u>	مرحمون المستقل المتناف	

^{*} For abundance and distribution see Tables D-5 through D-12.

Table D-5
Total Taxa, Numbers of Individuals and Biomass of Benthos:
Station 1, April and November, 1974

TAXA	NO. OF INDIVIDUALS/m ² (APRIL/NOVEMBER)	BIOMASS IN g/m ² (APRIL/NOVEMBER)
Dero sp.	6/395	0.06/0.10
Stylaria sp.	0/73	0/0.03
Aeolosoma sp.	0/217	0.0.06
Lumbriculidae #1	33/0	1.71/0
Lumbriculidae #2	6/0	0.06/0
Lumbriculus sp.	4/0	0.33/0
Nematomorpha	0/16	0 % 0.01
Helobdella sp.	0/3	0/0.03
Branchinecta sp.	0/249	0/0.16
Diaptomus sp.	11/0	0.06/0
Asellus militaris	16/0	0.11/0
Hyalella azteca	16/6	0.06/0.02
Cyclopoida	0/19	0/0.01
Cladocera	0/54	0/0.01
Astacidae	0/3	0/0.61
Procambarus sp.	6/0	4.40/0
Oreianthus sp.	2/0	0.11/0
Potamanthus sp.	6/0	0.06/0
Baetis sp.	6/0	0.06/0
Ephemerella sp.	0/13	0/0.06
Somatochlora sp.	0/6	0/0.57
Macromia sp.	11/0	0.55/0
Libellula sp.	16/0	2.75/0
Haliplus sp.	6/0	0.11/0
Bidessus sp.	6/0	0.11/0
Hydrobius sp.	16/0	0.28/0
Cannacria gravida	6/0	1.38/0
Chaoborus sp.	6/0	0.06/0
Tanypus sp.	280/0	1.05/0
Pentaneura sp.	187/0	0.77/0
Chironomini	171/0	0.72/0
Chironomus sp.	0/35	0/0.06
Parachironomus sp.	39/0	0/0.28
Einfeldia sp.	0/22	0/0.03
Dicrotendipes sp.	0/131	0/0.16
Unidentified dipteran pupae	11/0	0.16/0
Sphaerium sp.	6/0	0.06/0
Sphaerium transversum	6/13	3.36/0.10
Arcidens confragosus	0/3	0/0.26
TOTALS: 25/17	933/1,258	18.66/2.25

Table D-6

Total Taxa, Numbers of Individuals and Biomass of Benthos:
Station 2, April and November, 1974

TAXA	NO. OF INDIVIDUALS/m ² (APRIL/NOVEMBER)	BIOMASS IN g/m ² (APRIL/NOVEMBER)
Hydra sp.	11/0	0.06/0
Nai di dae	0/10	0/0.02
Dero sp.	638/268	5.28/0.35
Limnodrilus sp.	7,799/5,825	54.84/14.37
Limnodrilus cervis	6/0	0.06/0
Lumbriculidae	22/0	0.22/0
Lumbriculus inconstans	1,326/19	86.52/1.01
Diaptomus sp.	16/0	0.06/0
Branchinecta sp.	0/10	0/0.01
Hyalella azteca	77/0	0.26/0
Libellula sp.	33/0	0.83/0
Chaoborus sp.	50/0	0.11/0
Procladius sp.	0/61	0/0.15
Tanypus sp.	154/0	1.98/0
Chironomini	39/0	0.11/0
Unidentified dipteran pupae	11/0	0.11/0
TOTALS: 13/6	10,182/6,199	150.44/16/31

Table D-7

Total Taxa, Numbers of Individuals and Biomass of Benthos: Station 3, April and November, 1974

TAXA	NO. OF INDIVIDUALS/m ² (APRIL/NOVEMBER)	BIOMASS IN g/m ² (APRIL/NOVEMBER)
Hydra sp.	6/0	0.06/0
Nematomorpha	11/73	0.06/0.01
Dugesia tigrina	0/6	0/0.01
Naidium sp.	11/0	0.06/0
Dero sp.	0/45	0/0.01
Tubifex sp.	143/0	1.38/0
Limnodrilus sp.	501/568	2.48/6.30
Helobdella lineata	94/101	0.22/0.96
Helobdella stagnalis	16/6	0.33/0.11
Helobdella elongata	264/0	6.60/0
Placobdella sp.	0/11	0/0.84
Placobdella parasitica	6/0	0.11/0
Mooreobdella microstoma	6/6	0.06/0.06
Branchinecta sp.	39/22	0.16/0.02
Hyalella azteca	16/45	0.22/0.11
Potamanthus sp.	0/11	0/0.01
Baetis sp.	6/0	0.28/0
Macromia sp.	6/0	0.83/0
Chaoborus sp.	22/0	0.06/0
Tanypus sp.	66/34	0.22/0.11
Procladius sp.	0/28	0/0.06
Chironomini	143/0	0.50/0
Chironomus sp.	193/56	0.72/0.34
Cryptochironomus sp.	11/84	0.06/0.11
Einfeldia sp.	0/96	0/0.11
Sphaerium sp.	0/17	0/0.62
Sphaerium transversum	6/0	1.65/0
TOTALS: 20/17	1,566/1,209	16.06/9.77

Table D-8
Total Taxa, Numbers of Individuals and Biomass of Benthos:
Station 4, April and November, 1974

TAXA	NO. OF INDIVIDUALS/m ² (APRIL/NOVEMBER)	BIOMASS IN g/m ² (APRIL/NOVEMBER)	
Limnodrilus sp.	59,593/18,611	352.65/49.02	
Lumbriculidae	0/425	0/3.72	
Helobdella sp.	138/0	0.50/0	
Helobdella lineata	0/226	0/30.55	
Placobdella multilineata	0/146	0/14.61	
Chironomus sp.	193/0	1.32/0	
Lymnaea sp.	22/0	1.32/0	
Sphaerium transversum	8,245/1,541	163.35/130.18	
TOTALS: 5/5	68,191/20,949	529.99/228.08	

Table D-9
Total Taxa, Numbers of Individuals and Biomass of Benthos:
Station 5, April and November, 1974

TAXA	NO. OF INDIVIDUALS/m ² (APRIL/NOVEMBER)	BIOMASS IN g/m ² (APRIL/NOVEMBER)	
Nematomorpha	0/10	0/0.01	
Naididae	0/118	0/1.13	
Pristina sp.	0/341	0/0.41	
Ophidonais sp.	0/210	0/0.26	
Nais sp.	61/0	0.77/0	
Dero sp.	2,585/0	10.51/0	
Limnodrilus sp.	8,509/1,027	37.57/1.24	
Helobdella sp.	28/0	0.66/0	
<u> Helobdella lineata</u>	28/6	0.11/0.10	
Placobdella sp.	0/10	0/0.10	
Branchinecta sp.	0/19	0/0.01	
Hyalella azteca	0/13	0/0.03	
Asellus militaris	16/3	0.11/0.01	
Diaptomus sp.	16/0	0.06/0	
Macromia sp.	6/0	0.61/0	
<u>Hexagenia</u> sp.	319/6	3.69/0.01	
Hydrobius sp.	0/3	0/0.10	
Caenis sp.	0/26	0/0.06	
Chaoborus sp.	33/0	0.06/0	
Procladius sp.	28/51	0.11/0.10	
Tanypus sp.	116/26	0.11/0.06	
Chironomini	16/0	0.06/0	
Chironomus sp.	55/10	0.22/0.02	
Cryptochironomus sp.	160/0	0.50/0	
Sphaerium transversum	297/83	30.03/1.31	
Arcidens confragosus	6/0	3.85/0	
TOTALS: 17/17	12,279/1,962	89.25/3.95	

Table D-10
Total Taxa, Numbers of Individuals and Biomass of Benthos:
Station 7, April and November, 1974

TAXA	NO. OF INDIVIDUALS/m ² (APRIL/NOVEMBER)	BIOMASS IN g/m ² (APRIL/NOVEMBER)	
Dero sp.	39/16	0.11/0.02	
Limnodrilus sp.	968/89	2.09/0.06	
Limnodrilus cervix	61/0	0.39/0	
Lumbriculidae	28/0	0.06/0	
Cambarincola sp.	193/0	0.28/0	
<u>Helobdella</u> sp.	0/6	0/0.35	
Branchinecta sp.	72/112	0.83/0.13	
Hyalella azteca	44/99	0.06/0.29	
Astacidae	0/41	0/5.74	
Procambarus simulans	6/0	33.28/0	
Haliplus sp.	0/3	0/0.03	
Chaoborus sp.	33/0	0.55/0	
Tanypus sp.	50/0	0.16/0	
Chironomini	88/0	0.22/0	
Chironomus sp.	154/0	0.88/0	
Parachironomus sp.	83/0	0.16/0	
Procladius sp.	55/0	0.11/0	
<u>Dicrotendipes</u> sp.	0/67	0/0.06	
Glyptotendipes sp.	0/35	0/0.06	
Unidentified dipteran pupae	495/252	15.17/16.26	
TOTALS: 15/11	2,369/723	54.25/23/16	

Table D-11
Total Taxa, Numbers of Individuals and Biomass of Benthos:
Station 9a, April and November, 1974

TAXA	NO. OF INDIVIDUALS/m ² (APRIL/NOVEMBER)	BIOMASS IN g/m ² (APRIL/NOVEMBER)
Nematomorpha	6/0	0.06/0
Nai di dae	11/125	0.06/0.31
Nais sp.	22/0	0.11/0
Dero sp.	924/1,344	0.77/0.94
Limnodrilus sp.	7,469/42,134	50.77/116.59
Branchiura sowerbyi	11/0	0.61/0
Tubifex sp.	16/0	0.11/0
Lumbriculidae	6/0	0.28/0
Placobdella sp.	0/31	0/0.31
Placobdella parasitica	6/0	0.22/0
Helobdella stagnalis	39/0	0.28/0
Helobdella lineata	0/63	0/0.63
Branchinecta sp.	72/63	0.22/0.06
Tanypus sp.	50/94	0.28/0.63
Chironomus sp.	143/188	1.10/0.31
Procladius sp.	0/63	0/0.16
TOTALS: 13/9	8,775/44,105	55.31/119.94

Table D-12

Total Taxa, Numbers of Individuals and Biomass of Benthos:
Station 10b, April and November, 1974

TAXA	NO. OF INDIVIDUALS/m ² (APRIL/NOVEMBER)	BIOMASS IN g/m ² (APRIL/NOVEMBER)	
Hydra americana	11/0	0.06/0	
Pristina sp.	6/19	0.11/0.03	
Dero sp.	61/548	0.77/0.77	
Chaetogaster sp.	127/0	0.88/0	
Stylaria sp.	0/13	0/0.01	
Naididae	0/38	0/0.03	
Naidium sp.	0/86	0/0.22	
Limnodrilus sp.	1,188/902	7.70/2.71	
Limnodrilus cervix	16/0	0.11/0	
Lumbriculidae	22/0	0.11/0	
Branchinecta sp.	66/1.66	0.22/0.29	
Copepoda	0/6	0/0.01	
Diaptomus sp.	66/0	0.22/0	
Hyalella azteca	16/0	0.06/0	
Chaoborus sp.	22/0	0.16/0	
Simulium sp.	6/0	0.11/0	
Tanypodini	16/0	0.06/0	
Tanypus sp.	149/0	0.88/0	
Coelotanypus sp.	39/48	0.33/0.06	
Chironomini	77/0	0.33/0	
Chironomus sp.	77/239	0.50/0.41	
Cryptochironomus sp.	22/70	0.22/0.13	
Glyptotendipes	6/26	0.06/0.06	
Paralauterborniella sp.	11/22	0.06/0.03	
Parachironomus sp.	0/26	0/0.03	
Unionidae	11/0	0.33/0	
Sphaerium sp.	11/6	0.06/0.13	
Sphaerium transversum	39/0	1.05/0	
TOTALS: 23/16	2,065/2,225	4.94/14.23	

Table D-13

Epibenthos of the Pine Bluff Study Area Stations* (April and November, 1974)

ANNELIDA
Oligochaeta
Limnodrilus sp.
Hirudinea
Helobdella sp. Helobdella stagnalis
Helobdella stagnalis
Placobdella sp.
Placobdella parasitica
Mooreobdella microstoma
Haemopis sp.
ARTHROPODA
Crustacea
Branchinecta sp.
Hyalella azteca
Asellus militaris
Astacidae
Procambrus sp.
Procambarus clarki
Procambarus simulans
Palaemonetes kadiakensis
Insecta
Ephemeroptera
Isonychia sp.
Oreianthus sp.
Odonata
Macromia sp.
Argia sp.
Ischnura sp.
Hemiptera
Gerris sp.
Notonectidae
Ranatra sp.
Corixidae
Coleoptera
Gyrinidae
Gyrinus sp.
Hydrophilidae
Diptera
Chaoborus sp.
Simulium sp.
Chironomidae
<u>Tanypus</u> sp. <u>Eukiefferiella</u> sp.
Eukiefferiella sp.
Chironomus sp.
Dicrotendipes sp.

MOLLUSCA
Gastropoda
Physa sp.
Lymnaeidae
Pelecypoda
Sphaerium sp.
CHORDATA

Amphibia

Rana sp.

Pisces

Esox americanus

Notropis antherinoides

Gambusia affinis

Aphredoderus sayanus

Lepomis sp.

Lepomis macrochirus

Etheostoma gracile

Etheostoma proelaire

^{*} For abundance and distribution see Tables D-14 through D-21.

Table D-14
Epibenthic Catch Per Effort: Station 1, April and November, 1974

TAXA	NO. OF INDIVIDUALS PER EFFORT (APRIL/NOVEMBER)
ARTHROPODA	
Insecta	
Corixidae	1/0
Dipteran pupae	0/1
Dicrotendipes sp.	0/93
Crustacea	
Branchinecta sp.	0/2
Hyalella azteca	0/6
Asellus militaris	0/2
Astacidae	0/2
Palaemonetes kadiakensis	0/3
TOTALS: 1/7	1/109

Table D-15
Epibenthic Catch Per Effort: Station 2, April and November, 1974

TAXA	NO. OF INDIVIDUALS PER EFFORT (APRIL/NOVEMBER)	
ARTHROPODA		
Insecta		
Argia sp.	0/1	
Ischnura sp.	1/8	
Eukiefferiella sp.	2/0	
Hydrophilidae	0/1	
Notonectidae	0/3	
Crustacea		
Asellus militaris	0/1	
Astacidae	0/1	
MOLLUSCA		
Gastropoda		
Physa sp.	0/8	
LS: 2/7	3/23	

Table D-16
Epibenthic Catch Per Effort: Station 3, April and November, 1974

TAXA	NO. OF INDIVIDUALS PER EFFORT (APRIL/NOVEMBER)
ANNELIDA	
Hirudinea	
Helobdella sp.	0/1
ARTHROPODA	
Crustacea	
Palaemonetes kadiakensis	26/20
Astacidae	0/17
Hyalella azteca	0/5
Asellus militaris	0/1
Insecta	
Chironomidae	0/22
Notonectidae	0/2
Gerris sp.	1/0
Ranatra sp.	1/0
TALS: 3/7	28/68

Table D-17
Epibenthic Catch Per Effort: Station 4, April and November, 1974

TAXA	NO. OF INDIVIDUALS PER EFFORT (APRIL/NOVEMBER)
ANNELIDA	
Hirudinea	
Placobdella sp.	0/2
Placobdella parasitica	1/0
Helobdella elongata	2/0
ANTHROPODA	
Crustacea	
Palaemonetes kadiakensis	10/0
Astacidae	0/1
Insecta	
Gyrinus sp.	1/0
Gyrinidae larvae	0/1
MOLLUSCA	
Gastropoda	
Physa sp.	4/65
TALS: 5/4	18/69

Table D-18
Epibenthic Catch Per Effort: Station 5, April and November, 1974

TAXA	NO. OF INDIVIDUALS PER EFFORT (APRIL/NOVEMBER)
ARTHROPODA	
Crustacea	
Procambarus clarki	2/0
Procambarus simulans	1/0
Astacidae	0/6
Palaemonetes kadiakensis	6/21
Asellus militaris	0/1
Insecta	
Hydrophilidae	1/0
Oreianthus sp.	0/1
Notonectidae	0/41
Gyrinus sp.	0/6
TOTALS: 4/6	10/76

Table D-19
Epibenthic Catch Per Effort: Station 7, April and November, 1974

TAXA		NO. OF INDIVIDUALS PER EFFORT (APRIL/NOVEMBER)
ANNELIDA		
Hirudinea		
Mooreobdel	la microstoma	0/1
ARTHROPODA		
Crustacea		
<u>Hyalella a</u>	zteca	2/5
Astacidae		1/14
Procambaru	s sp.	0/3
Palaemonet	es kadiakensis	13/51
Insecta		
Argia sp.		0/2
Notonectidae		1/17
<u>Simulium</u> s	p .	0/1
Chironomid	se e	0/7
Hydrophili	dae	2/0
Tanypus sp.	•	7/0
Chironomus	sp.	4/0
Chaoborus :	sp.	1/0
MOLLUSCA		
Gastropoda		
<u>Viviparus</u> s	sp.	3/0
 TALS:	9/9	34/101

Table D-20
Epibenthic Catch Per Effort: Station 9a, April and November, 1974

TAXA	NO. OF INDIVIDUALS PER EFFORT (APRIL/NOVEMBER)
ANNELIDA	
Hirudinea	
Mooreobdella microstoma	0/2
ARTHROPODA	
Crustacea	
Hyalella azteca	0/4
Astacidae	0/14
Palaemonetes kadiakensis	0/1
Insecta	
Macromia sp.	1/0
Isonychia sp.	0/8
Argia sp.	0/1
Ischnura sp.	0/4
Notonectidae	0/5
Chironomidae	0/43
MOLLUSCA	
Gastropoda	
Physa sp.	0/11
TALS: 1/10	1/93

Table D-21

Epibenthic Catch Per Effort: Station 10b, April and November, 1974

TAXA		NO. OF INDIVIDUALS PER EFFORT (APRIL/NOVEMBER)
ANNELII)A	
Hiru	dinea	
<u> </u>	Melobdella sp.	0/1
<u>I</u>	laemopis sp.	0/1
ARTHROI	PODA	
Crus	stacea	
<u>I</u>	iyalella azteca	. 2/3
1	Palaemonetes kadiakensis	13/3
1	Astacidae	0/1
Ins	ecta	
<u>.</u>	Isonychia sp.	0/2
	Ischnura sp.	0/11
	Chironomidae	0/7
9	Gyrinus sp.	1/0
-	Chaoborus sp.	4/0
MOLLUS	CA	
Gas	tropoda	
	Lymnaeidae	0/4
TALS:	4/8	20/33

Table D-22 Fishes in the Pine Bluff Study Area*

SPECIES	HABITAT	RELATIVE ABUNDANCE
POLYODONTI DAE		
<u>Polydon spathula</u> Paddlefish	Large streams and connected waters	Rare
ACIPENSERIDAE		
Scaphirhynchus platorynchus Shovelnose Sturgeon	Large streams, connected waters and lakes	Rare
AMIIDAE		
Amia calva Bowfin	Clear, quiet waters with abundant vegetation	Uncommon
LEPISOSTEIDAE		
<u>Lepisosteus</u> <u>oculatus</u> Spotted Gar	Quiet waters with abundant vegetation	Common
<u>Lepisosteus platostomus</u> Shortnose Gar	Mainstreams of large, muddy rivers	Uncommon
<u>Lepisosteus spatula</u> Alligator Gar	Quiet areas of large rivers	Rare
CLUPEIDAE		
<u>Dorosoma cepedianum</u> Gizzard Shad	Most stream and lake habitats	Abundant
ESOSIDAE		
Esox americanus Grass Pickerel	Pooled areas of relatively clear bayous, rivers and streams	Abundant
CYPRINIDAE		
Cyprinus carpio	Quiet, shallow rivers and impoundments	Common
Hybognathus hayi Cypress Minnow	Quiet, backwater areas of rivers and bayous	Common
Notemigonus crysoleucas Golden Shiner	Clear, heavily vegetated habitats	Abundant
Notropis atherinoides Emerald Shiner	Quiet waters of larger rivers and lakes	Abundant
Notropis buchanani Chost Shiner	Quiet backwaters over mud bottoms	Uncommon
Notropis chalybaeus Ironcolor Shiner	Quiet backwaters	Uncommon

Notropis emiliae Pugnose Minnow	Lowland streams and lakes	Common
Notropis lutrensis Red Shiner	Clean, sandy-bottom creeks	Uncommon
Notropis maculatus Taillight Shiner	Sluggish bayous and oxbow lakes	Common
Notropis rubellus Rosyface Shiner	Backwater areas of large streams	Uncommon
Notropis texanus Weed Shiner	Sluggish bayous and back- water areas	Common
Notropis umbratilis Redfin Shiner	Clean, sandy-bottom creeks	Common
Notropis venustus Blacktail Shiner	Flowing, clear to slightly turbid streams	Uncommon
Notropis volucellus Mimic Shiner	Rivers and larger streams with gravel or hard bottoms	Uncommon
Notropis spp. (hybrid) **		- ~
Pimephales vigilax Bullhead Minnow	Pools and backwaters of sluggish streams and rivers	Abundant
CATOSTOMIDAE		
<u>Carpiodes carpio</u> River Carpsucker	Quiet, silt-bottomed back- waters and pools of large rivers	Abundant
Erimyzon oblongus Creek Chubsucker	Clear pools and backwaters of streams	Common
Ictiobus bubalus Smallmouth Buffalo	Oxbow lakes and backwaters of streams	Common
<u>Ictiobus</u> <u>cyprinellus</u> Bigmouth Buffalo	Oxbows and sloughs of larger rivers	Common
<u>Ictiobus niger</u> Black Buffalo	Flowing waters in streams; quiet impounded waters	Common
Minytrema melanops Spotted Sucker	Slow waters of creeks having hard bottoms	Common
ICTALURIDAE		
Ictalurus melas Black Bullhead	Quiet streams and backwaters with soft, muddy bottoms	Abundant
<u>Ictalurus natalis</u> Yellow Bullhead	Clear, flowing waters with abundant vegetation	Common
Ictalurus punctatus Channel Catfish	Streams with moderate current and sand, gravel or rubble bottom	Abundant
<u>Ictalurus furcatus</u> Blue Catfish	Large lakes and deeper portions of large rivers	Uncommon

Pylodictus olivaris Flathead Catfish	Deep holes of river beds; lakes and large streams	Uncommon
Noturus gyrinus Tadpole Madtom	Quiet streams and backwaters with soft muddy bottoms	Abundant
CYPRINODONTIDAE		
Fundulus chrysotus Golden Topminnow	Quiet, weedy backwaters and oxbows of large rivers	Uncommon
<u>Fundulus</u> <u>notti</u> Starhead Topminnow	Quiet, weedy backwaters and oxbows of rivers	Common
<u>Fundulus olivaceus</u> Blackspotted Topminnow	Relatively clear, weedy portions of lakes, canals and streams	Abundant
POECILIIDAE		
<u>Gambusia affinis</u> Mosquitofish	Backwaters of sluggish lowland streams and canals	Abundant
APHREDODERI DAE		
Aphredoderus sayanus Pirate Perch	Quiet waters of ponds, swamps and sluggish streams	Abundant
ATHERINIDAE		
<u>Labidesthes sicculus</u> Brook Silverside	Calm pools and backwaters in streams	Abundant
PERCICHTHYIDAE		
<u>Morone saxitalis</u> Striped Bass	Large rivers and impound- ments	Uncommon
Morone chrysops White Bass	Large rivers and small tributaries	Uncommon
<u>Morone mississippiensis</u> Yellow Bass	Lakes and quiet backwaters and pools of larger rivers	Common
CENTRARCHIDAE		
Centrarchus macropterus Flier	Clear quiet backwaters with sandy bottoms	Uncommon
<u>Lepomis cyanellus</u> Green Sunfish	Clear to turbid creeks and backwaters	Abundant
<u>Lepomis gulosus</u> Warmouth	Sluggish lowland streams with muddy bottoms	Common
<u>Lepomis humilis</u> Orangespotted Sunfish	Streams with sluggish, turbid waters	Common
<u>Lepomis macrochirus</u> Bluegill	Clear waters with ample vegetation	Abundant
<u>Lepomis marginatus</u> Dollar Sunfish	Lowland, swampy areas and sluggish bayous	Uncommon

Lepomis megalotis Longear Sunfish	Clear lakes and streams	Common
<u>Lepomis</u> <u>microlophus</u> Redear Sunfish	Clear, still waters with some vegetation	Un common
<u>Lepomis</u> <u>punctatus</u> Spotted Sunfish	Clear, quiet brown water	Uncommon
<u>Lepomis</u> <u>auritus</u> Redbreast Sunfish	Clear streams and lakes with some vegetation	Uncommon
Micropterus punctulatus Spotted Bass	Deep pools of moderate to large streams	Uncommon
Micropterus salmoides Largemouth Bass	Most clear streams and lakes	Abundant
<u>Pomoxis annularis</u> White Crappie	Brushy areas in clear-to- turbid streams and lakes	Common
Pomoxis nigromaculatus Black Crappie	Brushy and weedy areas of clear streams and lakes	Abundant
ELASOMATIDAE		
Elassoma zonatum Banded Pygmy Sunfish	Clear, quiet waters with abundant vegetation	Uncommon
PERCI DAE		
Etheostoma caeruleum Rainbow Darter	Clear, flowing streams with sandy bottoms	Uncommon
<u>Etheostoma chlorosomum</u> Bluntnose Darter	Sluggish creeks with mud or clay bottoms	Uncommon
Etheostoma fusiforme Swamp Darter	Clear, sluggish bayous and backwaters	Uncommon
Etheostoma gracile Slough Darter	Lowland streams, ponds and sloughs	Common
Etheostoma proeliare Cypress Darter	Clear, slow-moving bayous with abundant vegetation	Common
Etheostoma stigmaeum Speckled Darter	Large, clear streams with moderate gradients	Uncommon
Etheostoma whipplei Redfin Darter	Slow-moving streams with mixed sand and gravel bottoms	Uncommon
SCIAENIDAE		
Aplodinotus grunniens Freshwater Drum	Deeper pools of rivers and lakes	Common

^{*} Fish lists were generated from VTN Louisiana sampling data, Buchanan (1973), Pinkham et al. (1972) and the Arkansas Game and Fish Commission (pers. comm.). Habitat requirements were taken from Cross (1967) and Smith-Vaniz (1968).

^{***}Personal communications with Dr. N. Douglas, Northeast Louisiana University, Monroe.

Table D-23 Fish Community Studies (1974): Station 1

					TECHNICAL					
		SEINE	(APRIL OR	APRIL/NOVEMBER				ROTENONE	(JUNE)	
		Length	h (mm)	Weight	ht (g)		Ler	Length (mm)	Weight)
SPECIES	NO.	ı×	RANGE	ı×	1	NO.	ı×	RANGE	ı×	RANGE
Dorosoma cepedianum	3	148	140 - 152	33.2	29.0 - 35.4	80	133	77 - 157	20.9	6.7 - 31.2
Esox americanus	7	129	57 - 201	32.2	1.6 - 72.5	17	204	75 - 245	82.9	2.6 -105.0
Notemigonus chrysoleucas	4	901	94 - 115	14.3	9.6 - 19.2	7	109	98 - 125	13.1	8.1 - 18.6
Hybognathus hayi	-			-	ł	10	†6	91 - 99	6.3	5.5 - 7.5
Notropis umbratilus	36	57	17 - 74	2.2	1.1 - 5.2	56	29	TL - 9 [†]	2.2	0.9 - 3.7
o Notropis maculatus			1	-	1	†7	39	26 - 51	0.8	0.3 - 1.5
OErimyzon oblongus	'		1	ı	1	17	152	92 - 203	55.4	9.9 -123.2
Minytrems melanops			ı		ŧ	15	144	154 - 169	32.3	20.0 - 50.3
Noturus gyrinus	-	,	•	•	1	5	51	18 - 107	4.5	0.1 - 15.4
Ictalurus natalis	,	1	ı	1	I	3	ገቱቱ	120 - 167	42.2	24.0 - 62.8
Ictalurus melas		1		1	1	1	175	175	67.8	67.8
Fundulus olivaceus	21/	719 37	51 - 94/ 33 - 41	3.5/ 0.6	1.4 - 9.5 0.4 - 0.8	14/	/6L	50 - 91/	2.0/	1.4 - 7.0/
Aphredoderus sayanus	١	1	ı	1	ı	9	19	27 - 93	5.0	7.11 - 4.0
Centrarchus macropterus	3/	941	144 - 148	68.6	66.5 - 73.8	तं	151	136 - 182	72.2	46.8 - 98.8
Lepomis gulosus	71/2	0η /9ηΙ	146/ 26 - 55	87.2/ 1.6	87.2/ 0.1 - 3.2	21/ -	/811	/95T - ††	45.4/	1.5 -102.1/
Lepomis punctatus		-	1	ı	_	1	25	52	2.7	2.7
Lepomis microlophus		1	1	-	-	5	82	61 - 11	8.2	7.9 - 8.6

Table D-23 (continued) Station 1

			•							
Lepomis macrochirus	5/	72/ 122	39 - 114/ 122	10.8/ 35.8	1.3 - 31.1/ 35.8	32	06	38 - 146	16.8	1.2 - 69.2
Lepomis megalotus	ı	ı	1	-	ł	13	95	63 - 178	31.6	6.3 -173.7
Lepomis cyanellus	7	50	38 - 58	3.2	1.4 - 4.1	10	77	39 - 149	18.0	1.4 - 89.1
Lepomis marginatus	2	96	86 - 107	25.4	16.1 - 34.8	16	09	52 - 90	5.5	3.1 - 19.6
Lepomis sp.	1	-/ 21	-/ 21	-/ 0.1	0.1	ı	ı	ì	ı	ı
Poxomis nigromaculatus	ı	į	ı	ı	1	П	162	162	57.7	57.7
Micropterus salmoides	-	1	•	1	1	1	677	642	564.9	564.9
VE Elassome Zonatum	-	-	•	١	1	10	50	12 - 21	0.1	0.1
Etheostoma gracile	-	1	1	i	ı	6	39	27 - 52	9.0	0.2 - 1.2
Etheostoms proeliare	-/ -	ηε /-	33 - 35	₹°0 /-	0.2 - 0.5	/1	- /87	- 38/	0.2/	/†*0 - T*0
Etheostoma whipplei	-	ı		•	1	9	31	27 - 38	0.3	0.2 - 0.5
Etheostome fusiforme	-	-	-	_	1	2	56	25 - 28	0.2	0.1 - 0.2
Etheostoma sp.	τ	23	23	€*0	0.3	1	-	ı	1	•

i

Table D-24
Fish Community Studies (1974): Station 3

	7	ECHNIQUE			
		Leng		Weigh	
SPECIES	NO.	x	RANGE	x	RANGE
Dorosoma cepedianum	15	145	119 - 331	47.4	15.1 -360.2
Esox americanus	12	113	60 - 204	20.9	1.3 - 64.2
Notemigonus chrysoleucas	3/ 7	68/ 9 ¹ 4	36 - 111/ 85 - 100	4.0/ 7.7	0.4 - 10.2/ 5.4 - 9.3
Hybognathus hayi	8	82	68 - 93	3.9	2.2 - 6.5
Notropis emiliae	0/ 43	0/ 46	0 / 31 - 55	0/ 0.8	0 /
Notropis maculatus	2/ 33	51/ 31	51 / 23 - 36	0.8/ 0.4	0.6 - 1.0/ 0.1 - 0.6
Notropis texanus	21	54	48 - 62	1.5	1.1 - 2.3
Notropis umbratilus	4	56	53 - 58	1.4	1.1 - 1.8
Notropis sp.	1	57	57	1.6	1.6
Fundulus chrysotus	2	52	48 - 57	2.0	1.5 - 2.4
Fundulus notti	3/ 3	64/ 3 ⁴	49 - 73/ 23 - 42	3.3/ 0.6	0.8 - 4.8/
Fundulus olivaceus	<u>-</u> /	- / 40	- / 34 - 45	- / 0.6	0.4 - 0.8
Gambusia affinis	48/ 10	35/ 25	24 - 45/ 18 - 33	0.6/ 0.2	0.1 - 1.2/ 0.1 - 0.3
Aphredoderus sayanus	7/ 1	35/ 93	31 - 41/ 93	0.8/ 11.9	0.6 - 1.1/ 11.9
Labidesthes sicculus	15/ 15	63/ 47	42 - 77/ 32 - 63	1.5/ 0.5	0.5 - 2.4/ 0.2 - 1.1
Lepomis gulosus	1	56	56	3.8	3.8
Lepomis humilus	6	74	55 - 93	8.5	3.1 - 14.9
Lepomis macrochirus	47/ 15	47/ 47	22 - 90/ 28 - 70	2.5/ 2.3	0.3 - 13.1/ 0.5 - 5.7
Lepomis marginatus	1	94	94	24.6	24.6
Lepomis microlophus	6	83	65 - 143	16.8	5.7 - 67.6
Poxomis nigromaculatus	0/ 1	0/ 145	0 / 145	0/ 36.1	0 / 36.1
Elassoma zonatum	0/ 1	0/ 28	0/ 28	0.4	0 /
Etheostoma proeliare	0/ 3	0/ 31	0/ 27 - 34	0/ 0.3	0 /

Table D-25 Fish Community Studies (1974): Station 5

					all OTNER Dam					
-			() ANIAS	(MAY)	TONTIONT			ROTENONE	(JUNE)	
			awrence (Mei oht	ht (0)		Fen	Length (mm)	Weight	
SPECIES	NO.	יים	RANGE	×	1	NO.	١×	ira I	ı×	RANGE
Dorosoma cepedianum		,		ı	ı	6	154	64 - 257	η5.0	2.5 -177.1
Nany americanus	1	63	63	1.7	1.7	13	112	71 - 195	13.5	2.4 - 64.1
Notemigonus chrysoleucas	П	85	85	6.7	6.7	14	98	55 - 117	9.9	1.4 - 17.0
Notropis chalybaeus		-	•		1	-	1	1	'	۱
Notropis volucellus	-	84	81	1.1	1.1	2	91	١, ١	9.9	,
Notropis rubellus		-	_	1	ı	2	68	, }	2.2	,
Participate antherinoides	ŀ		-	1	1	26	94	,	1.1	.
	2	52	15 - Ft	1.7	1.1 - 2.3	10	73	,	3.3	,]
Notropis umbratilus			-	•	-	19	52	, }	1.4	.
	-	1	ı	1	1	21	25	h2 - 72	1.7	0.4 - 3.7
	7	53	53	1.3	1.3	-	-	۱ ۱	,	۱
		1	-		ı	2	0 1 τ	, }	27.5	1
Ictalurus natalis]-	,	1	,	1 -	η ₁ 1	14.1	7]	3.1	$^{\cdot}$
Noturus Evrinus		-	1	-	_	22	36	17 - 50	6.0	0.1 - 1.9
Fundulus olivaceus	-	-	'	1	•	7	73	ļ	3.7	
Gambusia affinis	75	₹	25 - 45	9.0	0.2 - 1.5	14.1	745	28 - 89	1.9	
Aphredoderus sayanus	٦	92	<u>76</u>	8.0	8.0	75	72	40 - 110	8.7	1.7 - 31.5
Centrarchus macropterus	-		•		1	τ	125	125	57.4	
Lepomis gulosus	m	55	75 - 45	3.1	3.1 - 3.2	15	80	62 - 108	13.7	.3-
Leponis humilis	 -	-	-		,	5	L9	54 - 77	9.9	2.7 - 10.7

1

Table D-25 (continued) Station 5

Toronto to many of 110				•	l	5	62	61 - 99	13.5	4.1 - 29.7
repoints punctage			ď		0 0	C.	90	66 - 163	29.4	5.0 -102.7
Lepomis macrochirus	2	2	62 - 78	٠ <u>٠</u>	7.0 - 0.4	27	2	532 53		
Lenomis marginatus	7	9	53 - 69	5.4	3.6 - 7.7	7	79	64	6.2	6.2
			-	,		11	7.1	53 - 110	11.1	2.7 - 27.7
				Į,	-	7	8	28 - 32	6.0	0.5 - 0.6
Lepomis spp.							100	10 - 35	9.0	0.3 - 1.1
Elassoma zonatum	-	ı	1	1	1	0	54	- 1	;	
Etheostoma chlorosomum	2	34	19 - 50	9.0	0.1 - 1.0	77	36	26 – 51	9.0	0.3 - 1.1
Tetracetoma gracile			_	,		2	34	<u> 33 – 35</u>	₶0	ካ•0
Potter come Brace.			1	,		2	28	26 - 31	0.2	0.2 - 0.3
Etheostoms caer are un						<u> </u> ,	50	250	000	0.2
Etheostoma stigmaeum	-	-	'	1	ı	7	77	77	,	2 30
Aplodinotus grunniens	,	-	1	,	-		139	136 - 143	27.2	24.7 - 29.3

Table D-26
Fish Community Studies (1974): Station 7

		T	ECHNIQUE: ROT	ENONE (JU	NE)
		Len		Weig	
SPECIES	NO.	- x	RANGE	-x	RANGE
Lepisosteus oculatus	1	504	504	358.1	358.1
Dorosoma cepedianum	78	196	38 - 261	79.9	1.0 - 161.7
Esox americanus	2	80	53 - 106	3.8	1.2 - 6.4
Hybognathus hayi	2	94	92 - 95	6.0	5.6 - 6.4
Notropis venustus	3	81	71 - 88	6.4	3.5 - 8.4
Notropis <u>lutrensis</u>	8	66	53 - 80	3.4	1.2 - 6.1
Notemigonus chrysoleucas	40	68	39 - 112	3.6	0.1 - 13.3
Pimephales vigilax	3	75	70 - 79	5.0	3.8 - 6.1
Ictalurus natalis	15	162	47 - 234	103.3	3.5 - 175.1
Ictalurus melas	10	160	123 - 216	67.6	26.9 - 146.8
Ictalurus punctatus	1	101	101	9.8	9.8
Fundulus olivaceus	2	78	77 - 78	4.2	4.2 - 4.3
Gambusia affinis	13	44	39 - 50	1.3	0.9 - 1.6
Aphredoderus sayanus	32	65	39 - 103	5.2	1.1 - 16.1
Lepomis gulosus	17	75	51 - 151	12.7	3.0 - 80.9
Lepomis cyanellus	12	78	51 - 122	12.8	2.4 - 42.1
Lepomis marginatus	3	83	64 - 97	13.8	5.4 - 21.5
Lepomis punctatus	1	129	129	60.9	60.9
Lepomis macrochirus	28	72	34 - 155	12.2	0.6 - 85.3
Lepomis megalotus	32	107	76 - 132	33.1	9.3 - 53.7
Pomoxis nigromaculatus	2	61	57 - 65	3.0	2.4 - 3.5
Micropterus salmoides	4	54	34 - 67	2.5	0.8 - 3.6
Aplodinotus grunniens	13	159	133 - 282	56.7	26.0 - 290.7

TABLE D-27 Fish Community Studies (1974): Station 10b

NO.	SEINE				200				
NO.	Lengt	JONE OF	JUNE/NOVEMBER	ER)			GILL NET (MAY	/ROTENONE	(JUNE)
NO. NO.	1	h (mm)	Weight	٦		Length	븬	Weight	(8)
oculatus 1 edianum 3/ nus - igilax -	×	RANGE	ı×	RANGE	No.	ı×	RANGE	ı×	RANGE
3/ 6 nus – –	52	52	0.2	0.2	77	738/	T38 /	1,379.2/	1,374.2- /
0	39/	- 1 :	114.4/	76.7 -142.6/	- /2	212/	200 -223/	83.8/	75.8- 92.9/
nus - Rilax -	97	54 - 147	8.9	3.4 - 29.6	65	75		17.5	0.2-112.9
igilax -		1	1	ı	7-	134	97 - 172	18.0	5.0- 31.1
	_	ſ	-	1	12	- / 20	22 - 78	1.9	0.1- 4.8
Notemigonus Chrysoleucas	1	-	ı	1	3/	/ - /	63 - 71	2.4	2.2-2.5
Notropis antherinoides -/ -/ 2 72	-/ 72	71 - 72	2.8	2.7 - 2.8	7-	12	75 - 79	3.0	2.8- 3.1
Notropis lutrensis	ı	ı	1	t	1 / [- /	52 /	1.3	1.3
Ictiobus cyprinellus 2 76	92	75 - 76	9.9	6.2 - 6.9	-	1		•	•
Ictiobus niger	-	1	-	ì	7-	289	247 -331	/ - / - / -	275.3-696.1
Ictiobus bubalus 1 287	187	287	348.6	9*8†8	12	445/ 50	304 -756/ 22 - 78	832.6/	406.6-153.5/ 0.1- 4.8
Cyprinus carpio	1	•	1	-	2/	289/	206 -372/	610.2/	464.2-756.2/
Minytrems melanops -		i	•	ı	2/2	142/ 184	132 -151/ 175 -193	27.4/	22.7- 32.1/ 55.1- 78.2

Table D-27 (continued) Station 10b

otel arus punctatus	1	1	ı	ı	1	7 6	254/ 203	231 - 282/ 122 - 323	112.2	15.5-382.2
Pundulus chrysotus	3	78	75 - 80	5.5	4.7 - 5.9	'	ı	I	_	•
Gembusia affinis	10/ 3	33/ 33	25 - 41/ 32 - 34	0.7/ 0.7	0.4 - 1.0/ 0.6 - 0.8	/-6	- / 32	27 - 22 / -	0.5	0.3- 1.1
Labidesthes sicculus	707	/111	36 - 58/	0.5/	0.3 - 1.2/	7-8	- / -	1 - 50	7-0,1	0.6- 1.4
Lepomis cyanellus		1			1	17/	144/	1	60.2/	60.2 /
Lepomis humilus	1		I		ı	7-	/ -	νη – 63 - μη	2.0	0.9- 3.2
Lepomis megalotus	1	98	98	20.8	20.8	3/	117/ 106	110 -127/ 89 -126	39.0/ 28.0	34.1-46.1/13.0-48.4
Lepomis macrochirus	/1/8	68/ 45	25 - 110/ 22 - 73	11.3/	0.4 - 22.4/ 0.3 - 6.4	1/ 18	128/ 70	128 / 24 -184	43.9/ 15.1	43.9 / 0.1-123.6
Lepomis gulosus		1		ı	1	1	_ / ¹ 41	41 – /	1.0	1.0
Leponis spp.	3/	-/ 32	30 - 33	/ <u>-</u> 0.5	9.0 - 4.0	, 9	ηε / -	2t1 - 92 /	9.0	0.1 -1.0
Morone mississippiensis	ı	ı	 	1	ſ		216/	194 -237/ -	112.3/	90.5-134.1/
Pomoxis nigromaculatus	,	ı	t	ı	ſ	3 /	85	55 -137	- / 12.2	0.9-33.1
Pomoxis annularis	1	ı	1	ı	1	1/ 41	227/ 1,1	227 / 32 - 63	519.3/ 0.8	519.3 / 0.2- 2.9
Micropterus salmoides	1	91	91	10.2	10.2	-/ 13	- / 64	/ - 6η - 88	3.5	1.7- 10.0
Aplodinotus grunniens	ı	1	1	1	ı	-/ 14	99i / -	125 -210	51.5	18.6-101.3
T								T		

Table D-28
Reptiles and Amphibians of the Pine Bluff Study Area*

SPECIES	HABITAT	RELATIVE ABUNDANCE
ALLIGATOR		
Alligator mississippiensis American Alligator	Secluded stream and backwater areas	Rare
TURTLES		
Chelydra serpentina Common Snapping Turtle	Bottomlands, backwater areas	Common
<u>Chrysemys picta dorsalis</u> Southern Painted Turtle	Bottomlands, backwater areas	Common
<u>Deirochelys reticularia miaria</u> Western Chicken Turtle	Quiet backwaters	Common
Graptemys kohni Mississippi Map Turtle	Streams of bottomlands	Common
Graptemys pseudogeographica ouachitensis Ouachita Map Turtle	Upland streams	Common
<u>Kinosternon</u> subrubrum <u>hippocrepis</u> Mississippi Mud Turtle	Ponds and backwater areas	Common
<u>Chrysemys</u> <u>concinna</u> <u>hieroglyphica</u> Slider	Slow-moving streams and backwater areas	Common
<u>Chrysemys floridana hoyi</u> Missouri Slider	Slow-moving streams and backwater areas	Common
Chrysemys scripta elegans Red-eared Turtle	Ponds and lakes	Commen
Sternotherus carinatus Razor-backed Musk Turtle	Streams	Common
Sternotherus <u>odoratus</u> Stinkpot Turtle	Streams and ponds	Common
Terrapene carolina triunguis Three-toed Box Turtle	Upland woods	Common
<u>Trionyx</u> <u>muticus</u> Smooth Softshell Turtle	Streams and ponds	Common
<u>Trionyx</u> <u>spiniferus</u> Spiny Softshell Turtle	Streams and ponds	Common
Macroclemys temmincki Alligator Snapping Turtle	Lakes and ponds	Uncommon

LIZARDS

	Anolis c. carolinensis Green Anole	Uplands	Common
	Cnemidophorus s. sexlineatus Six-lined Racerunner	Uplands	Common
	Eumeces fasciatus Five-lined Skink	Uplands	Common
	Eumeces laticeps Broad-headed Skink	Hardwood leaf litter	Common
	Leiolopisma laterale Ground Skink	Hardwood leaf litter	Common
	Ophisaurus a. attenuatus Western Slender Glass Lizard	Open areas throughout	Common
	Sceloporus undulatus hyacinthinus Northern Fence Lizard	Upland woods	Common
SN	AKES		
	Agkistrodon c. contortrix Southern Copperhead	Woods throughout	Common
	Agkistrodon piscivorus leucostoma Western Cottonmouth	Bottomlands, backwaters	Common
	<u>Carohophis amoenus vermis</u> Western Worm Snake	Throughout	Common
	Cemophora coccinea Scarlet Snake	Throughout	Common
	Coluber constrictor priapus Southern Black Racer	Woods	Common
	Crotalus horridus atricaudatus Canebrake Rattlesnake	Bottomlands	Common
	Diadophis punctarus stictogenys Mississippi Ringneck Snake	Bottomlands	Common
	Elaphe obsoleta obsoleta Black Rat Snake	Bottomlands	Common
	Elaphe obsoleta spiloides Gray Rat Snake	Upland woods	Common
	Farancia abacura reinwardti Western Mud Snake	Stream courses, shallow waters	Common
	Virginia striatula Rough Earth Snake	Upland woods and fields	Common
	<u>Virginia valeriae elegans</u> Western Smooth Earth Snake	Upland woods and fields	Common
	Heterodon platyrhinos Eastern Hognose Snake	Upland woods	Common

<u>Lampropeltis q. calligaster</u> Prairie Kingsnake	Fields	Common
Lampropeltis triangulum amaura Louisiana Milk Snake	Fields	Common
Lampropeltis getulus holbrooki Speckled Kingsnake	Fields	Common
Masticophis f. flagellum Eastern Coachwhip	Fields	Common
Micrurus fulvius tenere Texas Coral Snake	Bottomland hardwoods	Common
Natrix c. cyclopion Green Watersnake	Bottomland waters	Common
Natrix erythrogaster flavigaster Yellow-bellied Watersnake	Bottomland waters	Common
Natrix grahami Graham's Watersnake	Upland waters	Common
Natrix r. rhombifera Diamond-backed Watersnake	Bottomland waters	Common
Natrix rigida Glossy Watersnake	Bottomland waters	Common
Natrix sipedon confluens Broad-banded Watersnake	Bottomland waters	Common
Natrix sipedon pleuralis Midland Watersnake	Bottomland waters	Common
Opheodrys aestivus Rough Green Snake	Uplands	Common
Sistrurus miliarus streckeri Western Pygmy Rattlesnake	Uplands	Common
Storeria <u>dekayi wrightorum</u> Midland Brown Snake	Woods throughout	Common
Storeria o. occipitomaculata Northern Red-bellied Snake	Woods throughout	Common
Thamnophis p. proximus Western Ribbon Snake	W∞ds, fields throughout	Common
Thamnophis sirtalis sirtalis Eastern Garter Snake	Woods, fields throughout	Common
ALAMANDERS		
Ambystoma maculatum Spotted Salamander	Ponds, slow-moving streams	Common
Ambystoma opacum Marbled Salamander	Bottomlands	Common
Ambystoma texanum Small-mouth Salmander	Bottomlands	Common

Ambystoma t. tigrinum Eastern Tiger Salamander	Farm ponds, wet areas	Common
Amphiuma tridactylum Three-toed Amphiuma	Swamp areas, backwater areas	Common
Desmognathus fuscus brimleyorum Central Dusky Salamander	Moist areas throughout	Common
Notophthalmus viridescens louisianensis Central Newt	Moist areas throughout	Common
Necturus maculosus louisianensis Louisiana Waterdog	Streams and ponds of bottomlands	Common
<u>Plethodon g. glutinosus</u> Slimy Salamander	Streams and ponds of bottomlands	Common
<u>Siren intermedia nettingi</u> Western Lesser Siren	Streams and ponds of bottomlands	Common
FROGS AND TOADS		
Scaphiopus h. holbrooki Eastern Spadefoot	Wet sandy soils	Common
Bufo americanus American Toad	Shallow water areas	Common
Bufo woodhousei fowleri Fowler's Toad	Moist sandy areas	Abundant
<u>Hyla crucifer</u> Spring Peeper	Temporary pons of cut-over woodlots	Abundant
Hyla versicolor Gray Treefrog	Small temporary ponds in woodlands	Common
<u>Hyla cinerea</u> Green Treefrog	Standing water	Common
Acris crepitans Northern Treefrog	Pond and moist areas	Common
Gastrophryne carolinensis Eastern Narrow-mouthed Toad	Stream and swamp borders	Common
<u>Pseudacris triseriata feriarum</u> Upland Chorus Frog	Wet areas of uplands	Common
Rana palustris Pickerel Frog	Meadow waters	Common
Rana utricularia Southern Leopard Frog	Shallow water, ponds and pools	Abundant
Rana clamitans clamitans Bronze Frog	All wet areas	Common
Rana catesbeiana Bull Frog	All wet areas	Abundant

^{*} This list is based on Conant (1958), the field observations of VTN Louisiana, Inc. and personal communication with Dr. J.S. Rogers, University of New Orleans. It should be considered relatively complete for the Study Area.

	WARTENET.	CDAGONAL CELEVIC	RELATIVE ABUNDANCE
SPECIES	HABITAT	SEASONAL STATUS	IN REGION
GAVIIFORMES			
Common Loon Gavia immer	Water bodies	Winter	Rare
Red-throated Loon Gavia stellata	Water bodies	Winter	Accidental
PODICIPEDIFORMES			
Horned Grebe Podiceps auritus	Water bodies	Winter	Uncommon
Eared Grebe Podiceps nigricollis	Water bodies	Winter	Occasional
Pied-billed Grebe Podilymbus podiceps	Water bodies	Permanent	Common*+
PELECANIFORMES			
White Pelican Pelecanus erythrorhynchos	Water bodies	Migrant	Uncommon
Double-crested Cormorant Phalacrocorax auritus	Water bodies	Winter	Occasional
Anhinga Anhinga anhinga	Swamps, lakes, ponds	Summer	Rare
CICONIIFORMES			
Great Blue Heron Ardea herodias	Water habitats	Permanent	Common+
Green Heron Butorides virescens	Water habitats	Summer	Common*+
Little Blue Heron Florida caerulea	Water habitats	Summer	Uncommon*+
Cattle Egret Bubulcus ibis	Pastures and water habitats	Summer(A)	Uncommon+
Great Egret Casmerodius albus	Water habitats	Summer(A)	Uncommon
Snowy Egret Egretta thula	Water habitats	Migrant	Rare
Black-crowned Night Heron Nycticorax nycticorax	Water habitats	Mi grant	Rare
Yellow-crowned Night Heron Nyctanassa violacea	Water habitats	Summer	Un co: uno n#+
Least Bittern Ixobrychus exilis	Water habitats	Summer(A)	Rare+
American Bittern Botaurus lentiginosus	Water habitats	Migrant	Occasional

White-faced Ibis Plegadis chihi	Water habitats	Wanderer	Accidental
White Ibis Eudocimus albus	Water habitats	Migrant	Rare
Roseate Spoonbill Ajaia ajaja	Water habitats	Wanderer	Accidental
ANSERIFORMES			
Whistling Swan Olor columbianus	Water habitats	Winter	Occasional
Canada Goose Branta canadensis	Water habitats	Winter	Uncommon
White-fronted Goose Anser albifrons	Water habitats	Winter	Occasional
Snow Goose Chen caerulescens	Water habitats	Winter	Uncommon+
Mallard Anas platyrhynchos	Water habitats	Winter(A)	Common+
Black Duck Anas rubripes	Water habitats	Winter	Uncommon
Gadwall <u>Anas</u> strepera	Water habitats	Winter	Commo
Pintail Anas acuta	Water habitats	Winter	Common
Green-winged Teal Anas crecca	Water habitats	Winter	Common+
Blue-winged Teal Anas discors	Water habitats	${\tt Winter}({\tt A})$	Common+
American Wigeon Anas americana	Water habitats	Winter	Common
Northern Shoveler Anas clypeata	Water habitats	Winter	Common
Wood Duck <u>Aix sponsa</u>	Wooded swamps, water habitats	Permanent	Common*+
Redhead Aythya americana	Water bodies	Winter	Uncommon
Ring-necked Duck Aythya collaris	Water bodies	Winter	Common
Canvasback <u>Aythya</u> valisineria	Water bodies	Winter	Uncomm on
Lesser Scaup Aythya affinis	Water bodies	Winter	Common
Common Goldeneye Bucephala clangula	Water bodies	Winter	Uncommon
Bufflehead Bucephala albeola	Water bodies	Winter	Uncommon

Oldsquaw Clangula hyemalis	Water bodies	Winter	Occasional
White-winged Scoter Melanitta deglandi	Water bodies	Winter	Rare
Ruddy Duck Oxyura jamaicensis	Water bodies	Winter	Abundant
Hooded Merganser Lophodytes cucullatus	Water bodies	Winter(A)	Uncommon+
Common Merganser Mergus merganser	Water bodies	Winter	Rare
Red-breasted Merganser Mergus serrator	Water bodies	Winter	Uncommon
FALCONI FORMES			
Turkey Vulture Cathartes aura	Various habitats	Permanent	Common*+
Black Vulture Coragyps atratus	Various habitats	Winter	Un common+
Mississippi Kite Ictinia misisippiensis	Brushland near open woods and water	Summer	Uncommon*+
Sharp-shinned Hawk Accipiter striatus	Open woodlands and wood margins	Winter	Uncommon
Cooper's Hawk Accipiter cooperii	Open woodlands and wood margins	Permanent	Uncommon*+
Red-tailed Hawk Buteo jamaicensis	Open woodlands and wood margins	Permanent	Common*+
Red-shouldered Hawk Buteo lineatus	Moist woodlands	Permanent	Common*+
Broad-winged Hawk Buteo platypterus	Upland woods	Summer	Uncommon*+
Swainson's Hawk Buteo swainsoni	Open woodlands, wood margins	Migrant	Rare
Golden Eagle Aquila chrysaetos	Large open areas near woods	Winter	Occasional
Bald Eagle Haliaeetus leucocephalus	Rivers, lakes	Winter	Un common+
Marsh Hawk Circus cyaneus	Fields, grass- lands	Winter	Common+
Osprey <u>Pandion haliaetus</u>	Near water bodies	Winter(A)	Uncommon
Peregrine Falcon Falco peregrinus	Shorelines, woods	Migrant	Rare
Merlin <u>Falco columbarius</u>	Open woods, near lakes	Migrant	Rare
American Kestrel Falco sparverius	Open woods, roadsides	Permanent	Common*+

GALLIFORMES			
Bobwhite Colinus virginianus	Open woodlands, margins	Permanent	Common*+
Turkey Meleagris gallopavo	Bottomlands, uplands with dense cover	Permanent	Uncommon*
GRUI FORMES			
Virginia Rail Rallus limicola	Near water courses	Mi grant(A)	Rare
Sora Porzana carolina	Open swamps	Migrant(A)	Uncommon+
Purple Callinule Porphyrula martinica	Along water courses, swamps	Summer	Occasional*+
Common Gallinule Gallinula chloropus	Water habitats	Summer	Uncommon*+
American Coot Fulica americana	Water habitats	Winter(A)	Abundant
CHARADRIIFORMES			
Semipalmated Plover Charadrius semipalmatus	Mudflats, shorelines	Migrant	Uncommon
Piping Plover Charadrius melodus	Shorelines	Migrant	Rare
Killdeer Charadrius vociferus	Pastures, fields, shorelin	<i>Permanent</i> es	Common*+
American Golden Plover Pluvialis dominica	Fields, dry flats	Migrant	Rare
Black-bellied Plover Pluvialis squatarola	Mudflats, shorelines	Migrant	Uncommon
Ruddy Turnstone Arenaria interpres	Mudflats, shorelines	Migrant	Rare
American Woodcock Philohela minor	Mixed forests, lowlands	Permanent	Common*+
Common Snipe Capella gallinago	Wet habitats	Winter	Common+
Spotted Sandpiper Actitis macularia	Shorelines, mudflats	Migrant(A)	Common+
Solitary Sandpiper Tringa solitaria	Water habitats	Migrant	Uncommon+
Lesser Yellowlegs Tringa flavipes	Shallow-water habitats	Mi grant	Uncommor:
Greater Yellowlegs Tringa melanoleuca	Shallow-water habitats	Mi grant	Uncommon
Pectoral Sandpiper Calidris melanotos	Mudflats, shores	Mi grant	Common
White-rumped Sandpiper Calidris fuscicollis	Mudflats, shores	Mi grant	Uncommon

Least Sandpiper Calidris minutilla	Mudflats, shores, wet fiel	Migrant(A) ds	Common
Semipalmated Sandpiper Calidris pusilla	Shores, mud- flats, marshes	Migrant	Uncommon
Western Sandpiper Calidris mauri	Mudflats, muddy pools	Migrant	Uncommon
Short-billed Dowitcher Limnodromus griseus	Mudflats, shorelines	Migrant	Uncommon
Stilt Sandpiper Micropalama himantopus	Mudflats, shallow ponds	Migrant	Uncommon
Buff-breasted Sandpiper Tryngites subruficollis	Dry fields, short grassland	Mi grant	Eare
American Avocet Recurvirostra americana	Shores, shallow water	Migrant	Uncommon
Sanderling <u>Calidris</u> alba	Shores, mud- flats	Migrant	Uncommon
Wilson's Phalarope Steganopus tricolor	Shallow lakes, mudflats, shores	Migrant	Rare
Herring Gull Larus argentatus	Water habitats	Winter	Uncommon
Ring-billed Gull Larus delawarensis	Water habitats	Winter	Common
Forster's Tern Sterna forsteri	Water habitats	Migrant	Common
Least Tern Sterna albifrons	Water habitats	Mi grant	Rare
Caspian Tern Hydroprogne caspia	Water habitats	Migrant	Uncommon
Black Tern Chlidonias nigra	Water habitats	Migrant	Common
Black Skimmer Rynchops nigra	Open water habitats	Wanderer	Acci dental
COLUMBIFORMES			
Rock Dove Columbia livia	Farmlands, urban areas	Permanent	Common*+
Mourning Dove Zenaida macroura	Wooded areas, pastures	Permanent	Common*+
Inca Dove Scardafella inca	Urban areas	Wanderer	Accidental
CUCULIFORMES			
Yellow-billed Cuckoo Coccyzus americanus	Wooded areas	Summer	Common*+
Black-billed Cuckoo Coccyzus erythropthalmus	Wooded areas	Mi grant	Uncommon+
Roadrunner Geococcyz californianus	Open country	Permanent	Uncommon*+

STRIGIFORMES			
Barn Owl Tyto alba	Open country, marshes	Winter	Rame
Screech Owl Otus asio	Wooded areas, urban areas	Permanent	Common #+
Great Horned Owl Bubo virginianus	W∞ded areas	Permanent	Common*+
Barred Owl Strix varia	Wooded areas	Permanent	Common*+
Short-eared Owl Asio flammeus	Open areas near woodlands	Winter	Occasional
CAPRIMULGIFORMES			
Chuck-will's Widow Caprimulgus carolinensis	Wooded lowlands	Summer	Common*+
Whip-poor-will Caprimulgus vociforus	Woodlands	Migrant	Common+
Common Nighthawk Chordeiles minor	Varied habitats	Summer	Common*+
APODIFORMES			
Chimney Swift Chaetura pelagica	Urban areas, woodlands	Summer	Common*4
Ruby-throated Hummingbird Archilochus colubris	Varied habitats	Summer(A)	Common*+
CORACIIFORMES			
Belted Kingfisher Megaceryle alcyon	Water habitats	Permanent	Common*+
PICIFORMES			
Common Flicker Colaptes auratus	Wooded areas, urban areas	Permanent	Common*+
Pileated Woodpecker Dryocopus pileatus	Wooded areas	Permanent	Common*+
Red-bellied Woodpecker Centurus carolinus	Wooded areas	Permanent	Common*+
Red-headed Woodpecker Melanerpes erythrocephalus	Mixed woodlands, urban areas	Permanent	Common#+
Yellow-bellied Sapsucker Sphyrapicus varius	Wooded areas, urban areas	Winter	Common+
Hairy Woodpecker Dendrocopos villosus	Wooded areas	Permanent	Common#+
Downy Woodpecker Dendrocopos pubescens	Wooded areas	Permanent	Common*+
Red-cockaded Woodpecker Dendrocopos borealis	Mature pine forests	Permanent	Rare

PASSERIFORMES

Fish Crow Corvus ossifragus	Lowland areas, along watercours		Common*+
Corvus brachyrhynchos	Wooded areas	Permanent	Common*+
Blue Jay Cyanocitta cristata	Wooded areas, urban areas	Permanent	Abundant*+
Purple Martin Progne subis	Open areas, wrban and rural	$Summer(\Lambda)$	Common*+
Cliff Swallow Petrochelidon pyrrhonota	Along water- courses	Migrant	Uncommon+
Barn Swallow Hirundo rustica	Rural areas, bridges	Summer	Common*+
Rough-winged Swallow Stelgidopteryx ruficollis	Near streams, lakes	Summer	Common*+
Bank Swallow Riparia riparia	Along water- courses	Migrant	Occasional+
Tree Swallow Iridoprocne bicolor	Open country near water	Migrant	Common+
Horned Lark Eremophila alpestris	Open fields, grassland	Permanent	Common*+
Vermillion Flycatcher Pryocephalus rubinus	Brushy areas near water	Winter	Accidental
Olive-sided Flycatcher Nuttallornis borealis	Wooded areas along watercours	Migrant es	Uncommon+
Eastern Wood Pewee Contopus virens	Wooded areas	Summer	Common*+
Least Flycatcher Empidonax minimus	Woodlands and open areas	Migrant	Occasional+
Willow Flycatcher Empidonax traillii	Shrubby swamp thickets	Migrant	Rare+
Acadian Flycatcher Empidonax virescens	Woodlands	Summer	Common*+
Yellow-bellied Flycatcher Empidonax flaviventris	Wet forests, watercourses	Migrant	Occasional+
Eastern Phoebe Sayornis phoebe	Woodlands	Winter	Uncommon:
Great-crested Flycatcher Myiarchus crinitus	Woodlands, urban areas	Summer	Common *+
Scissor-tailed Flycatcher Muscivora forficata	Open, wooded areas, urban are		Common#+
Western Kingbird Tyrannus verticalis	Open areas	Migrant	Occasional+
Eastern Kingbird Tyrannus tyrannus	Open fields and roadsides	Summer	Common*+
· 			

Carolina Chickadee Parus carolinensis	Wooded areas, urban areas	Permanent	Common *+
Tufted Titmouse Parus bicolor	Wooded areas, urban areas	Permanent	Common*+
White-breasted Nuthatch Sitta caro inensis	Mixed woodlands	Permanent .	Uncommon*+
Red-breasted Nuthatch Sitta canadensis	Wooded areas, urban areas	Winter	Unicommonit
Brown-headed Nuthatch Sitta pusilla	Pine and mixed woodlands	Permanent	Uncommon:
Brown Creeper Certhia familiaris	Wooded areas	Winter	Common+
House Wren Troglodytes aedon	Wooded areas	Migrant	Uncommon+
Winter Wren Troglodytes troglodytes	Low wooded areas	Winter	Commen+
Bewick's Wren Thryomanes bewickii	Brushy areas, urban areas	Permanent	Uncommon*+
Carolina Wren Thryothorus ludovicianus	Brushy areas, urban areas	Permanent	Common*.+
Long-billed Marsh Wren Telmatodytes palustris	Coarse vegeta- tion near water	Winter	Un common
Mockingbird Mimus polyglottos	Open, wooded areas, urban are	Permanent eas	A bu nd a nt⇒+
Gray Catbird <u>Dumetella carolinensis</u>	Wooded areas, brush, urban are	Summer(A) eas	Uncommon*+
Brown Thrasher Toxostoma rufum	Wooded areas, brush, urban are	Permanent eas	Common*+
American Robin Turdus migratorius	Wooded areas, urban areas	Permanent	Abundant*-
Wood Thrush Hylocichla mustelina	Wooded areas	Summer	Common*+
Hermit Thrush Catharus guttatus	Pine-hardwood forests	Winter	Common+
Swainson's Thrush Catharus ustulatus	Wooded areas	Migrant	Uncommon+
Gray-cheeked Thrush Catharus minimus	Wooded areas	Migrant	Uncommon+
Veery Catharus fuscescens	Moist, lowland forests	Migrant	Occasional+
Eastern Bluebird Sialia sialis	Open wooded areas	Permanent	Common*+
Blue-gray Gnatcatcher Polioptila caerulea	Wooded areas, thickets	Summer	Common*+
Golden-crowned Kinglet Regulus satrapa	Wooded areas, thickets	Winter	Common+

Ruby-crowned Kinglet Regulus calendula	Wooded areas, thickets	Winter	Common+
Water Pipit Anthus spinoletta	Wet fields	Winter	Uncommon
Cedar Waxwing Bombycilla cedrorum	Wooded areas, urban areas	Winter	Common+
Loggerhead Shrike Lanius ludovicianus	Open areas	Permanent	Common*+
Starling Sturnus vulgaris	Croplands, open areas, urban are		Abundant*+
White-eyed Vireo Vireo griseus	Brushy areas	Summer	Common*+
Bell's Vireo Vireo bellii	Brushy areas	Summer	Uncommon*+
Yellow-throated Vireo Vireo flavifrons	Wooded areas	Migrant	Uncommon+
Solitary Vireo Vireo solitarius	Wooded areas	Migrant(A)	Uncommon+
Red-eyed Vireo Vireo olivaceus	Wooded areas	Summer	Common*+
Philadelphia Vireo Vireo philadelphicus	Wooded areas	Mi grant	Uncommon+
Warbling Vireo Vireo gilvus	Wet wooded areas	Summer	Uncommon*+
Black-and-white Warbler Mniotilta varia	Low wooded areas	Summer	Common*+
Prothonotary Warbler Protonotaria citrea	Woodlands, swamps, near wat	Summer er	Common*+
Worm-eating Warbler Helmitheros vermivorus	Wooded areas	Summer	Uncommon
Golden-winged Warbler Vermivora chrysoptera	Wooded areas	Migrant	Occasional+
Blue-winged Warbler Vermivora pinus	Brushy areas	Migrant	Occasional+
Tennessee Warbler Vermivora peregrina	Wooded areas	Mi grant	Common+
Orangs-crowned Warbler Vermivora celata	Brushy areas	Winter	Uncommon+
Nashville Warbler Vermivora ruficapilla	Wooded areas	Migrant	Occasional+
Northern Parula Warbler Parula americana	Wet woodlands	Summer	Common#+
Yellow Warbler Dendroica petechia	Shrubs, willows streamside	Migrant	Uncommon+
Magnolia Warbler Dendroica magnolia	Woodlands	Migrant	Uncommon+

Yellow-rumped Warbler Dendroica opronata	Wooded areas, urban areas	Winter	Common+
Black-throated Green Warbler	Wooded areas	Migrant	Uncommon+
Dendroica virens			••
Cerule a n Warbl er Dendroica cerulea	Wooded areas	Summer	Uncommen+
Blackburnian Warbler Dendroica fusca	Wooded areas	Migrant	Uncommon+
Yellow-throated Warbler Dendroica dominica	Wet, low woodlands	Summer	Common*+
Chestnut-sided Warbler Dendroica pennsylvanica	Brushy pastures, shrubby areas	Migrant	Uncommon+
Bay-breasted Warbler Dendroica castanea	Wooded areas	Migrant	Uncommon+
Blackpoll Warbler Dendroica striata	Brushy areas	Migrant	Occasional
Pine Warbler Dendroica pinus	Pine forests, mixed woodlands	Permanent	Common*+
Prairie Warbler Dendroica <u>discolor</u>	Dry, brushy areas	Summer	Common*4
Ovenbird Seiurus aurocapillus	Wooded areas	Migrant	Occasional
Northern Waterthrush Seiurus noveboracensis	Along water- courses	Mi grant	Uncommon
Louisiana Waterthrush Seiurus motacilla	Along water- courses	Migrant	Common+
Kentucky Warbler Oporonis formosus	Wet woodlands	Summer	Common*+
Mourning Warbler Oporonis philadelphia	Swampy thickets, dry brushy areas	Migrant	Uncommon+
Connecticut Warbler Oporonis agilis	Swamps, thickets	Migrant	Rare+
Common Yellowthroat Geothlypis trichas	Swamps, thickets, marshes	Summer(A)	Commen#+
Yellow-breasted Chat Icteria virens	Thickets and brushy clearings	Summer	Common#+
Hooded Warbler Wilsonia citrina	Wet woodlands, swamps	Summer	Common *+
Wilson's Warbler Wilsonia pusilla	Swamps, thickets	Migrant	Uncommon+
Canada Warbler Wilsonia ganadensis	Woodlands	Migrant	Uncommon+
American Redstart Setophaga ruticilla	Low, wet wooded areas	Migrant	Common*+
House Sparrow Passer domesticus	Near human	Permanent	Abundant*+

Bobolink Dolichonyx oryzivorus	Fields and pastures	Mi grant	Uncommon+
Eastern Meadowlark Sturnella magna	Fields and pastures	Permanent	Abundant*+
Western Meadowlark Sturnella neglecta	Fields and pastures	Winter	Occasional+
Yellow-headed Blackbird Xanthocephalus xanthocephalus	Open areas, marshes	Wanderer	Accidental
Red-winged Blackbird Agelaius phoeniceus	Fields, swamps, marshes	Permanent	Abundant *+
Orchard Oriole Icterus spurius	Wooded areas, urban areas	Summer	Common*+
Northern Oriole Icterus galbula	Wooded areas, urban areas	Summer(A)	Common*+
Rusty Blackbird Euphagus carolinus	Wet fields and woods	Winter	Uncommon+
Brewer's Blackbird Euphagus cyanocephalus	Fields, feedlots, pastures	Winter	Uncommon+
Common Grackle Quiscalus quiscala	Open areas, urban areas	Permanent	Abundant*+
Brown-headed Cowbird Molothrus ater	Open fields	Permanent	Abundant ++
Scarlet Tanager Piranga olivacea	Wooded areas	Migrant	Uncommon+
Summer Tanager Piranga rubra	Wooded areas	Summer(A)	Common*+
Cardinalis cardinalis	Wooded areas, brushland, urban areas	Permanent	Abundant*+
Rose-breasted Grosbeak Pheucticus ludovicianus	Wooded areas	Migrant	Uncommon+
Blue Grosbeak Guiraca caerulea	Wooded areas, thickets, road- sides	Summer	Common*+
Indigo Bunting Passerina cyanea	Wooded areas, thickets, road- sides	Summer	Common*+
Painted Bunting Passerina ciris	Wooded areas, farmyards, roadsides	Summer	Uncommon*+
Dickcissel Spiza americana	Grasslands	Summer(A)	Common *+
Evening Grosbeak Hesperiphona vespertina	Wooded areas, urban areas	Winter	Occasional+
Purple Finch Carpodacus purpureus	Wooded areas, urban areas	Winter	Common+

Pine Siskin Spinus pinus	Wooded areas, urban areas	Winter	Occasional+
American Goldfinch Spinus tristis	Open woods, urban areas	Winter	Common+
Red Crossbill Loxia curvirostra	Pine woods	Winter	Pare
Rufous-sided Towhee Pipilo erythrophthalmus	Brushy areas, thickets	Winter	Common+
Savannah Sparrow Passerculus sandwichensis	Fields and pastures	Winter	Common+
Grasshopper Sparrow Ammodramus savannarum	Grassland	Summer (A)	Occasional
LeConte's Sparrow Ammospiza lecontii	Wet, weedy areas	Winter	Occasional+
Vesper Sparrow Pooecetes gramineus	Open fields	Winter	Uncommon
Lark Sparrow Chondestes grammacus	Weedy fields and pastures	Summer	Uncommon+
Bachman's Sparrow Aimophila aestivalis	Open pine woods, old field	Summer Is	Uncommon
Dark-eyed Junco Junco hyemalis	Wooded areas, urban areas	Winter	Common.
Tree Sparrow Spizella arborea	Open, brushy areas	Winter	Rare+
Chipping Sparrow Spizella passerina	Open, mixed woodlands	Winter	Common+
Field Sparrow Spizella pusilla	Brushy pastures and clearings	Permanent	Common*+
H a rris' Sparrow Zonotrichia querula	Open and brushy areas	Winter	Occasional+
White-crowned Sparrow Zonotrichia leucophrys	Brushy edges, tangles	Winter	Common+
White-throated Sparrow Zonotrichia albicollis	Wooded areas, urban areas	${ t Winter}({ t A})$	Abur .ant+
Fox Sparrow Passerella iliaca	Woodlands, tangles, thicket	Winter s	Common+
Lincoln's Sparrow Melospiza lincolnii	Brushy areas, wet thickets	Winter	Common+
Swamp Sparrow Melospiza georgiana	Weedy, wet areas	Winter	Common+

Common+ Open woodlands, Winter Song Sparrow edges Melospiza melodia Open fields, Winter Uncommon Lapland Longspur pastures Calcarius lapponicus Uncommon Open fields, Winter Smith's Longspur pastures Calcarius pictus

SEASONAL STATUS

A - additional records

RELATIVE ABUNDANCE

Abundant - large numbers

Common - can be found every day in the right habitat

Uncommon - can be expected in the right habitat, but not always found

Occasional - not seen every year

Rare - 5 records or less

Accidental - out of known range

- * Breeds in Jefferson County
- + Found within one mile of Bayou Bartholomew

This list was prepared by Jane E. Stern from Jefferson Audubon Society records, 1965-1975.

Taxonomy and nomenclature are according to the American Ornithologists' Union, Check-List of North American Birds, 5th ed. (and Thirty-second Supplement).

Table D-30 Mammals of the Pine Bluff Study Area*

SPECIES	HABITAT	RELATIVE ABUNDANCE
Didelphis virginiana Opossum	All wooded areas	Common
Cryptotis parva Least Shrew	Grassy fields and thickets on edge of woodlands	Common
Blarina brevicauda Shorttail Shrew	Wooded areas throughout	Common
<u>Scalopus aquaticus</u> Eastern Mole	Upland woods	Common
Myotis austroriparius Little Brown Bat	Trees, buildings, culverts	Uncommon
<u>Pipistrellus subflavus</u> Eastern Pipistrel	Old buildings, farm houses	Uncommon
Lasiurus borealis Red Bat	Large trees	Uncommon
Eptesicus fuscus Eig Brown Bat	Old buildings, farm houses	Uncommon
Lasiurus cinereus Hoary Bat	Migrant, old buildings, farm houses	Uncommon
Nycticeius <u>humeralis</u> Evening Bat	Hollow trees, old buildings	Common
Procyon lotor Raccoon	Bottomland hardwoods, uplands	Common
Mustela frenata Longtail Weasel	Wooded areas	Uncommon
<u>Mustela</u> <u>vison</u> Mink	Bottomlands, backwater areas	Uncommon
Lutra canadensis River Otter	Water courses	Uncommon
<u>Mephitis</u> <u>mephitis</u> Striped Skunk	Bottomlands	Common
Spilogale putorius Eastern Spotted Skunk	Woodlands	Uncommon
Canis latrans Coyote	Remote areas throughout	Uncommon
Vulpes fulva Red Fox	Pine-hardwood forests	Uncommon
<u>Urocyon</u> <u>cinereoargenteus</u> Grey Fox	Pine-hardwood forests bordering pastures	Uncommon

D-95

Lynx rufus Bobcat	Extensive forests	Uncommon
Sciurus carolinensis Eastern Gray Squirrel	All wooded areas	Common
Sciurus <u>niger</u> Eastern Fox Squirrel	Open hardwood	Common
Marmota monax Woodchuck	Forest edges	Uncommon
Glaucomys volans Southern Flying Squirrel	Forested areas	Common
Geomys <u>bursarius</u> Plains Pocket Gopher	Well drained uplands	Un common
Castor canadensis Beaver	Woodland waterways	Common
Reithrodontomys fulvescens Fulvous Harvest Mouse	Old fields, thickets, forest borders with dense vegetation	Common
Peromyscus leucopus White-footed Mouse	Forests and forest borders	Common
Peromyscus maniculatus Deer Mouse	Open areas and woodlands	Common
Peromyscus gossypinus Cotton Mouse	Forest and forest borders	Common
Ochrotomys nuttalli Golden Mouse	Mixed pine-hardwoods	Common
Neotoma floridana Eastern Wood Rat	Hardwood bottomland forests	Uncommon
Oryzomys palustris Rice Rat	Wet marshy areas, stream and lake edges	Uncommon
Sigmodon hispidus Hispid Cotton Rat	Old fields, thickets	Common
<u>Microtus pinetorum</u> Woodland Vole	Hardwood forests with abundant leaf litter	Uncommon
<u>Ondatra zibethicus</u> Muskrat	Water courses with adequate vegetation for cover and nesting	Common
Rattus norvegicus Norway Rat	Urban areas, fields	Common
Rattus rattus Roof Rat	Urban areas, fields	Common
Mus musculus House Mouse	Urban areas, fields	Common
Myocastor coypus Nutria	Streams and lakes with herbaceous vegetation	Uncommon

Sylvilagus floridanus
Eastern Cottontail

Sylvilagus aquaticus
Swamp Rabbit

Odocoileus virginianus
Whitetail Deer

Dasypus novemcinctus
Nine-banded Armadillo

Edges of upland hardwoods
Common
Common
Common

^{*} This list is based on Pinkham et al. (1972), Lowery (1974), and field observations of VTN Louisiana, Inc. It should be considered relatively complete for the Study Area.

Table D-31
Distribution and Per Cent Composition of Overstory Plants in the Willow-Cypress Association:
Transects 1 and 2

SPECIES	COMMON NAME	TRANS	SECT 2	TOTAL	PER CENT COMPOSITION
Salix nigra	Black Willow	11	5	16	43
Populus deltoides	Eastern Cottonwood	6	-	6	16
Taxodium distichum	Baldcypress	-	4	4	11
Celtis laevigata	Hackberry	-	14	4	11
Fraxinus tomentosa	Pumpkin Ash	-	4	4	11
Carya aquatica	Water Hickory	-	3	3	8
TOTALS		17	20	37	100

Table D-32
Distribution and Per Cent Composition of Overstory Plants in the River Birch-Buttonbush Community:

Transects 3,4,5,and 6

SPECIES	COMMON NAME			SECT		TOTAL	PER CENT
		3	4	5	<u> </u>		COMPOSITION
Betula nigra	River Birch	28	-	9	24	61	25
Salix nigra	Black Willow	3	56	-	-	59	25
Taxodium distichum	Baldcypress	-	-	5	13	18	8
Cephalanthus occidentalis	Buttonbush	12	-	3	2	17	7
Carya aquatica	Water Hickory	-	-	15	1	16	7
Carya illinoensis	Sweet Pecan	-	-	12	-	12	5
Carya sp.	Hickory	-	-	15	-	15	6
<u>Ulmus</u> <u>crassifolia</u>	Cedar Elm	-	-	14	12	16	7
Ulmus americana	American Elm	-	-	7	-	7	3
<u>Ilex</u> <u>decidua</u>	Deciduous Holly	-	-	4	-	14	2
Quercus phellos	Willow Oak	-	-	3	-	-	1
Quercus sp.	Oak	-	-	3	1	4	2
<u>Liquidambar</u> <u>styraciflua</u>	Sweetgum	3	_	-	-	3	1
Gleditsia aquatica	Water Locust	-	-	3	-	3	1
Fraxinus tomentosa	Pumpkin Ash	-	-	1	-	1	<1
Acer negundo	Boxelder	-	1	-	-	1	<1
TOTALS		46	57	84	53	240	100

Table D-33
Distribution and Per Cent Composition of Overstory Plants in the Locust-Water Hickory Association:

Transects 7 and 8

SPECIES	COMMON NAME	TRA 7	nseci 8	TOTAL	PER CENT COMPOSITION
Gleditsia aquatica	Water Locust	6	6	12	12
Gleditsia triacanthos	Honey Locust	-	2	2	2
<u>Ulmus</u> <u>americana</u>	American Elm	10	2	12	12
<u>Ulmus</u> <u>crassifolia</u>	Cedar Elm	-	10	10	10
Ulmus alata	Winged Elm	-	14	4	ļ
Carya aquatica	Water Hickory	6	5	11	11
Quercus phellos	Willow Oak	-	10	10	10
Quercus nigra	Water Oak	6	-	6	6
Quercus nuttallii	Nuttall Oak	-	3	3	3
Quercus stellata	Post Oak	-	3	3	3
Quercus michauxii	Cow Oak	1	1	2	2
Quercus alba	White Oak	1	-	1	1
Taxodium distichum	Baldcypress	4	2	6	6
Celtis <u>laevigata</u>	Hackberry	6	-	6	6
Fraxinus tomentosa	Pumpkin Ash	3	2	5	4
Liquidambar styraciflua	Sweetgum	-	14	14	14
Ostrya virginana	Hop Hornbean	-	1	1	1
Salix nigra	Black Willow	1	-	1	ı
Morus rubra	Red Mulberry	-	1	1	ı
Nyssa sylvatica	Blackgum	1	-	1	1
TOTALS		45	56	101	100

Table D-34
Distribution and Per Cent Composition of Overstory Plants in the Water Oak-River Birch Association:

Transects 9,10, and 11

SPECIES	COMMON NAME	TR 9	ANSE	CT 11_	TOTAL	PER CENT COMPOSITION
Betula nigra	River Birch	13	14	-	27	14
Quercus nigra	Water Oak	9	11	3	23	12
Quercus phellos	Willow Oak	~	1	-	1	<1
Carpinus caroliniana	Blue Beech	16	7	-	23	12
Carya illinoensis	Sweet Pecan	~	-	21	21	10
Carya aquatica	Water Hickory	~	-	3	3	2
Liquidambar styraciflua	Sweetgum	8	4	8	20	10
Celtis laevigata	Hackberry	-	-	19	19	10
Maclura pomifera	Osage Orange	-	-	12	12	6
<u>Hamamelis</u> sp.	Witch Hazel	11	_	-	11	6
Gleditsia triacanthos	Honey Locust	_	-	10	10	5
Pinus taeda	Loblolly Pine	10	_	-	10	5
Diospyros virginiana	Persimmon	_	-	8	8	4
Ulmus americana	American Elm	1	ı	3	5	2
Ulmus alata	Winged Elm	1	1	-	2	1
Cercis canadensis	Redbud	-	-	2	2	1
Ostrya virginiana	Hop Hornbeam	-	1	-	1	<1
Fraxinus americana	White Ash	-	1	-	1	<1
TOTALS		69	41	89	199	100

Table D-35
Distribution and Per Cent Composition of Overstory Plants in the White Oak-Sweetgum Association:

Transects 12 and 13

SPECIES	COMMON NAME	TRANS	SECT 13	TOTAL	PER CENT COMPOSITION
Quercus alba	White Oak	7	6	13	18
Quercus nigra	Water Oak	7	5	12	17
Quercus falcata	So. Red Oak	14	2	6	8
Quercus shumardii	Shumard Oak	-	3	3	14
Quercus stellata	Post Oak	2	-	2	3
Quercus phellos	Willow Oak	ı	-	1	1
Liquidambar styraciflua	Sweetgum	7	5	12	17
Fagus grandifolia	American Beech	5	-	5	7
Diospyros virginiana	Persimmon	2	2	4	6
Carya sp.	Hickory	-	14	4	6
Pinus taeda	Loblolly Pine	4	-	4	6
Fraxinus americana	White Ash	-	3	3	4
Castanea sp.	Chestnut	1	-	ı	1
Sassafras albidum	Sassafras	-	1	1	1
Ulmus alata	Winged Elm	-	1	1	1
TOTALS		40	32	72	100

Table D-36
Distribution and Per Cent Composition of Overstory Plants in the Pine-Post Oak Association:

Transects 14,15,16,17 and 18

SPECIES	COMMON NAME		TR	ANSE	CT		TOTAL	PER CENT
		14	15	16	17	18_		COMPOSITION
Pinus taeda	Loblolly Pine	8	11	6	26	22	73	22
Liquidambar styraciflua	Sweetgum	8	13	18	8	6	53	16
Quercus stellata	Post Oak	7	17	12	6	6	48	14
Quercus falcata	Southern Red Oak	6	7	10	2	1	26	8
Quercus alba	White Oak	9	7	1	8	-	25	8
Quercus nigra	Water Oak	-	-	3	-	6	9	3
Quercus marilandica	Blackjack Oak	7	-	-	-	-	7	3
Quercus shumardii	Shumard Oak	3	-	-	-	-	3	<1
Quercus phellos	Willow Oak	-	-	1	-	1	2	<1
Nyssa sylvatica	Blackgum	4	1	21	-	11	37	11
Acer rubrum	Red Maple	-	7	6	4	5	22	7
Fagus grandifolia	American Beech	-	-	-	-	16	16	5
Ulmus alata	Winged Elm	-	-	-	1	6	7	3
Carya cordiformis	Bitternut Hickor	y -	-	-	3	-	3	<1
Carya illinoensis	Sweet Pecan	-	-	-	-	1	1	<1
Sassafras albidum	Sassafras	_	-	1	-	-	1	<1
TOTALS		52	63	79	58	81	333	100

Table D-37
Distribution and Per Cent Composition of Overstory Plants in Cleared Areas:

Transects 19 and 20

SPECIES	COMMON NAME	TRAN	SECT 20	TOTAL	PER CENT COMPOSITION
Prunus americana*	American Plum	_	-	~	-
Salix nigra	Black Willow	12	5	17	38
Platanus occidentalis	American Sycamore	6	7	13	29
Disopyros virginiana	Persimmon	-	3	3	7
Acer rubrum	Red Maple	-	1	1	2
Gleditsia triacanthos	Honey Locust	-	11	11	24
		. 			·
TOTALS		18	27	45	100

^{*} Species occurred in thickets, too numerous to count.

Table D-38
Distribution and Per Cent Composition of Overstory Plants in the Urban Areas:
Transects 21 through 31

SPECTES	COMMON NAME					W V CILL	THE A MODERATE					TAMOM T	man Carlo
		12	22	23	24	25	26 27	28	29	30	31	TOTAL	COMPOSITION
Liquidambar styraciflua	Sweetgum	#	١	ч	ı	4		1	7	,	ო	33	15.2
Ulmus smericana	American Elm	1	ı	ı	í	Q	1		•		17	19	8.7
Ulmis alata	Winged Elm	1	1	1	ı	1	,	•	•	,	н	п	ቱ •0
Quercus nigra	Water Oak	9	ı	5	1	ı	·		v		1	17	7.9
Quercus phellos	Willow Oak	5	1	1	t	ı	1		'	1	1	9	2.9
Quercus alba	White Oak	9	ŧ	ı	ŧ	1	,		'	1	•	9	2.9
Onercus sp.	Oak	N	t	Ø	ŧ	ı	٠ ح	,	1	1	ı	9	2.9
A Quercus stellata	Post Oak	ĸ	ı	ı	ŧ	ı	,	,	•	1	1	ო	1.1
Carya illinoensis	Sweet Pecan	1	ı	н	က	ო	,		9	1	ı	16	7.5
Carya sp.	Hickory	1	ı	i	,	ı	1		'	ı	ឧ	01	4.5
Carya sp.	Pecan	н	ŧ	1	1	ı		•	'	1	f	н	ቲ.0
Salix nigre	Black Willow	ı	7		3	Н	ო		•	1	,	15	6.8
Platanus occidentalis	American Sycamore	ч	ı	ч	1	_	H	'	-	1	,	ដ	5.1
Pinus taeda	Loblolly Pine	0	,	Н	ı	•	1	1	('	•	10	4.5
Pinus echinata	Shortleaf Pine	ŧ	1	Н	1	ı	'	1	•	ı	,	Н	₹.0
Albizia julibrissin	Mimosa Tree	7	Н	ı	1	f		•	,	í	ı	ω	3.8
Morus rubra	Red Mulberry	1	l	ſ	Q	t	,		'	1	9	σο	3.8
Prunus serotina	Black Cherry	н	ı	4	1	ı	•	,	-	ı	1	9	2.9
Juniperus virginiana	Red Cedar	m	ı	•	1	ı	1	1	N	1	1	2	4.5

SELLING	COMMON NAME					NAGE	THE A MCTECH					T ATION	TRANS CRAM
		22	જ	g	₹	25	36		28	29 30	31		COMPOSITION
Cercis canadensis	Redbud	ı	7	1	8		1	Ø	,	•	•	7	2.4
Myssa sylvatica	Blackgum	Н	1	Н	1	1	,	Н	1	1	н	7	1.8
Diospyros virginiana	Persimon	Ч	ı	ı	ı	ı	1	ı	1	m	•	4	1.8
Camellia sasanqua	Camellia	í	1	í	,	í	1	ᆏ		ı		н	4.0
Camellia japonica	Camellia	ſ	ı	t	1	ſ	1	4		,	!	7	1.8
Thuja occidentalis	Eastern White Cedar	N	ı	•	1	f	ı	ı	ı	i	1	α	6.0
Magnolia grandiflora	Southern Magnolia	t	I	1	Н	ı		~	ι	ì	,	~	6.0
Ligustrum vulgare	Common Privet	ı	1	ı	ı	ı	1	٦	ı	i	1	н	ቲ•0
Acer saccharinum	Silver Maple	7	•	•	1	ł	1	1	ı	ì	1	٦	4.0
Acer negundo	Boxelder	1	1	•	1	,	ı	Н	ı	1	ļ	н	ቱ.0
Acer rubrum	Red Maple	ł	ı	•	ι	ı	ι	,	ı	ı	н,	н	4.0
Liriodendron tulipifera	Tulip Tree	ਜ	1	1	•	1	1	ı	ı	i	1	7	4.0
Podocarpus macrophyllis	Podocarpus	7	ı	•	•	ı	ı	1	ı	1	1	Ħ	ተ. 0
Fraxinus sp.	Ash	ı	t	٦	í	ı	ı	1	ı	1		н	ሳ.0
Pyrus malus		1	ı	1	-	ı	ı	1	1	ı	1	Н	4.0
Catalpa sp.	Catalpa	1	ı	i	•	Н	1	1	ı		(н	4.0
Populus deltoides	Eastern Cottonwood	٦	ł	ı	ł	ı	ı	1	ı	1	ſ	ч	ሳ.0
Populus alba	White Poplar	1	1	1	1	ı	Н	ı	ı	1	•	т	7.0
Ilex opaca	Holly	1	1	i	•	ı	ı	ч	1	ı	•	н	ላ.0
Robinia pseudo-acacia	Black Locust	t	ı	i	5	ſ	ı	ı	ı	H		7	ղ•0
Symplocos tinctoria	Common Sweetleaf	1	i l	í	ı	6	1		1		٦ -	-	ላ.0
TOTALS		26	6	22	6	18	7	13	0	7.7	07	218	100.0

Appendix E Socioeconomic Elements

SOCIOECONOMIC METHODS

- A. Methodology for Projecting Employment. Projections for total employment were made by the Bureau of Economic Analysis (BEA). Employment was then broken down by broad industrial sources using the total figures as a control. Agricultural employment was held constant assuming that automation on the farm is about at its peak. The other areas of employment were held at the same ratio as in 1970. Manufacturing employment was prorated to each industry according to projected earnings.
- B. <u>Methodology for Projecting Bank Deposits</u>. Historic bank deposits were projected using linear regression.
- C. <u>Methodology for Projecting Value Added by Manufacturing</u>. Historic value added by manufacturing was projected using linear regression.
- D. <u>Methodology for Projecting Retail and Wholesale Trade</u>. Linear regression analysis was applied to historic data to project retail and wholesale trade.
- E. Methodology for Projecting Value of Farm Products Sold. Linear regression analysis was applied to historic total value of farm products sold to make the projections.
- F. Methodology for Projecting White, Negro, and Other Populations. The Negro population was projected using linear regression analysis, the other population was held constant at one per cent, and the white population was taken as the residual of the BEA projected total population.
- G. Methodology for Projecting Population by Sex and Age Group. These data were tabulated for the census years 1960 and 1970. Gross survival ratios were then established for each age-sex cohort group based on the changes that took place between 1960-1970. These historical ratios were used as the base for projecting population for 1985, 2000, and 2020. BEA projected total population was then broken down by sex and age group based on percentages in each group as projected using the cohort group.
- H. Methodology for Projecting Rural and Urban Population. Rural population was projected for 1985 and 2000 using linear regression analysis and was assumed to remain constant from 2000 to 2020. Urban population was taken as the residual of the BEA projected total population.

- I. <u>Methodology for Projecting Total and Per Capita Income</u>. Projections for total and per capita income were taken straight from BEA.
- J. Methodology for Projecting Earnings by Type and Broad Industrial Sources. These projections were made by BEA.

Table E-1
Recreational Resources Inventory of the Pine Bluff Area: Fall, 1974
(Modified from the Pine Bluff Parks and Recreation Department)

	(moa)	Tiea	Trom	tne	וץ	ne	RI	utt	Par	ks and	Keci	reati	i on . u	epar	CIIK	ent)			
No.	Bono	Acresga	Administrations	Accessibility	Boor Oriented	Percent of Completed Development	Is This As Exventory For A Mew Ares or Facility Developed Since 1970?	Nas There Been A Change In Omerrahly and/or Facilities To The Recreation Aren Since 1963/70?	Has There Been A Change in Administration Since 1970	Primary Attraction of Becreational Area 1. Lond, Bosed 4. Historical/Architectural Site 2. Mater Bosed 5. Indoor Activities 3. Air Sports 6. Archeological Site	Is Any Acquisition of Buvolopment Planned in Most Two Vents? J. Expension of Enisting Pacifity or Area 2. Development of Completely New Area.	Amount of Indoor Pacility Under Recreational The?	Acrosys: A. Land Only B. Mater C. Watland			Season: A. All Year S. Semen Caly C. Spring, Deman and Pall Caly D. Wilson Caly	A. Per	Origin of Visitors To This Area: A. Pajority Originating from balking Distance B. Pajority Originating from 1 to 25 Miles C. Pajority Originating from 26 to 30 Miles D. Pajority Originating from 51 to 150 Miles E. Pajority Originating from 51 and Over	Fees Charged Monthly: A. Membership Caly B. Other Admission or User Fee C. Mons
1.	Rosswood Country	300	•	10	Out	All	ilo	No	Mo	1	No		Α.			۸,			۸.
2.	Club Lakeside Elem.	1	5	1/0	Out	All	Mo	No	No	i	No.	12,201							\$23,00
3.	School Cabe Heyer Elem.	24	3	1/4	Out	All	No	No	No	1	No.	23,314	Α.						
4.	Barnes Hemorial	2	5				No	No	Ho	1	- Ita	<u> </u>	2 ac.						
5.	School Pine Bluff Country	200	•	4	Quit	A11	No	No	No	1	-1.2 No		A.			۸.			Α.
6.	Beleir Junior High	40	5	1/4	In	All	No	No	No	1	No.	75,790	144 ac						\$41,00
7.	School Belair Elementary	1/10	5		Out	All	No	No	No	ī	Ho	eq.ft.	30 ec.						
<u>. </u>	Indiana Bloomtary	15	5	1/10		All	No	No	Yes	1	Ho	26,916							
9.	School Southwood Elem. School	10	3		Out	All	No	No	No	1	No 1,2	33, 153	A ac. A. 28 ac						
10.	Carver Elementary School	3	5	1/2	Out	_	No	Mo	No	ī	No.	24,644	A. 5 ec.		-				
11.	Butran Country Club	12.2	6		Out	AII	No	No	No	1,2	No.	94.55.	<u> </u>						~
12.	Broadmoor Elem.	15-20	5	1/2	Out	All	No	No	ilo	1	Ho Ho	24,644	A: 10 ac			c.		·	
13.	Greenville Elem. School	8	5	3	Out	All	No	No	No	1	Yes 1.2	26,127	Α.						
14.	Thirty-Pourth Avenue School	8	3	1/2 e1.	Out	All	Ho	No	No	4	#o 1,2	37,028	A. 8 ac.	9. 10	001	c.	A.10% B.60%	١.	c.
15.		10	5		Out	All	Mo	No.	No		No	210 A M		D.		c.	C.30%	<u>1.</u>	c.
	School .		-	=1.		, .	•			ř	1,2		4 ac.	10	00%		8.40% C.30%		-•
16.	Citizen Boys Club	8	6	1/2	In		No	No	No	5					50% -50%	Α.		7.	A. \$.50
17.	First Ward Elem. School	3	3	1/5	Out	All	No	No	Мо	1	No 1,2	19,969	A. 3 ac.	D.	00%		A.10% B.60%	В.	c.
18.	Herrill Junior	9	5	1/2	Out	AII	No	No	Mo	1	No	53,204	Α.	D.		c.	C.30%	1.	-c.
	High School			et.							1,2	sq.ft.	9 ac.	10	OOL		3.60% C.30%		
19.	Roedside Park May.65 Green Thumb				Out		Yes	Yes		1,4	No 1.2		A. 4 ac.			۸.			C.
20.	Sem Taylor Elem. School	4	,	ní.	Out	Alī	Mo	No	No	1	No 1,2	20,046 sq.ft.	A. 4 ac.	D.	00%	c.	A.10% B.60%	Б.	c.
21.	Oak Fork Eles. School	15	5	1/5	Que	Ali	Мо	No	No	ī	No 1,2	31,343 eq.ft.	A. 10 ac.				6.30% A.10% B.60%	ъ.	c.
22.	Rivenes Girl Scout Comp Taloha	160	6	10	Out	All	No	No	No	i	Yes-1 No-2		A. 160 ac			c.	C.30% A.80% B.20%	c.	c.
23.	Dollarway School Dis Three Sites	t. 11	5		În Out	All	No	No	No	i			A: li ac.			Ç.	A.10% B.60% C.30%	8.	c.

Table E-1 (continued)

No.	Mana	Acreage Administration *	Accesebblity	Door Oriented Percent of Completed Dayslonment	Inventory eveloped 54	Mes There Dees A Change Is Ownership and/or Facilities to The Recrestion Area Since 1968/70?	Nos There Seen A Change in Administration Since 1970	Primary Attraction of Becreetienel Area 1. Land Bosed 4. Miscerical/Architectural Site 2. Mater Based 5. Indeor Activities 3. Air Sports 6. Archeological Site	Is Any Acquisition of Development Planmed In Mark Two Vers? 1. Expension of Existing Pacifity or Area 2. Development of Completely New Area	Amount of Indoor Pacility Under Recreational Use?	Across: A. Land Only B. Mater C. Detland	Gross Mater Front Total Visitations: D - Day-time H - Might-time O - Over-aight	Season: A. All Year B. Summar Only C. Spring, Sommer and Fall Only B. Winter Only	Percent Distribution of Total Amenal Wisite By Wonth: A. Summer B. Pell & Winter C. Spring	Origin of Visitors To This Ares: A. Pajority Originating from Uniting Distance B. Majority Originating from 1 to 25 Miles C. Majority Originating from 26 to 30 Miles D. Pajority Originating from 28 to 30 Miles E. Majority Originating from 31 to 150 Miles E. Majority Originating from 151 and Over	Fees Charged Monthly: A. Membership Only B. Other Admission or User Pee C. Mene
24.	Southeast Junior	20 5	1/6	Out	No	No.	No	1	Мо	59,340		D-90%			8.	C.
25.	High School Circle "T" Ranch	700 6	i ai.	Out Al	.l Ho	No	No	1	No 1,2	99.££	20 ac. A. 640 ac. B.60 ac		A.		J	c.
26.	Pine Bluff Senior	40 5	1	Out Al	1 No	No	Yes	1		2,680,56	LA.					
27.	Sherrill School	5 5		Out Al	1 No	No	No	1	Yes-2 No	eq.ft.	A.		E.		1.	c.
28.	Playground Altheimer School	10 5		Out Al	1 No	No	No	1	1.2 No	4,500	A.		Α.		A.	c.
29.	Playground Pine Bluff Arsenal	4 5		Out	Мо	No	Ио	1,5	1,2 No	sq.ft.	À.	D-220	A.			
30.	Playaround White Hall City	20 4	1	In Out 40	7 Yes	No	Mo	1	1,2 Yes		A.	<u> </u>	Α.	A.80%		c.
	Park		æí.						Ho~2		20 ac.	4,000		3.10% G.10%		
31.	White Hell School DistThree Sites	10 5	•	Out Al	1 No	No	No	1,5	No 1,2		A. S ac.	D-850	۸.		3.	
32.	Redfield School	12 5	•	Out	Mo	No	No	1	Ho		A. 12 ac.	D 1.000	۸.		3.	
33.	Playeround Little Bayou Heto	20 1	3 mi.	Out 95	% No	No	Жо	1	1,2 No 1,2	Hone	A. 20 ac.	Ł D	Α.	A.60% B.10% C.30%	c.	C.
34.	ilabbas eka	5 5		Qut 13	% No	llo	No	1,3	Yes-1 No-2		\$ ac.		E.	_VIAVA_	3.	
35.	St. Herie	59 1	3	Out 75		No	No	2	Yes-1	Hone	A. 59 ac.	1 D m1, 180,000	Α.		ı.	c.
36.	Trulock	32 Î	=1. 3 =1.	Out 75	% No	No	No	2	Yes-1 No-2	Hone	A. 32 ac.	m1, 180,000 k D m1, 78,000	۸.	A.60% B.10%	8.	c.
37.	Limmood School	4 5		Out	No	No	No	1	No	Hone	۸.		t.	G.30%	1.	
36.	Playeround Rioling Star	110 t	3 a1.	Out 80	% No	No	No	2	Yes-1 No-2	None	A. 110 ac.	t D ml. 49,000	Α.	A.60% B.10%	ъ.	C.
39.	Tar Comp Roc.	66.80 1	7 mi.	Out 70	A No	No	No	2	Yes-1 No-2	Hone	A. 66.80	2 D mi. 133,000	A.	C.30% A.60% B.10%	c.	c.
40.	28th & Chio Park	.07 4	ils mi.	Out 30	Z Yes	Yes	Yes	1	Yes-1 No-2	Mone	A: 1.2	0 D 1,000	À.	C.30% A.80% B.10%	۸.	c.
- 41.	Civic Conter Park	14.67 4	1	Out 90	% No	No	No	ì	No-1	150,0)O	D-150,0	00 A.	1:13	В.	c.
42.	3rd & Great Park	1.0 4	- 2	Out 10	OL No	No	No	1	Yes-2 No-1	13.00	A	N-25,00	0 A.	6:33A	۸,	ċ.
43.	Rood Lake	41 6		Out	No	Мо	No	- 3	No-2	Hone	1.0	N-400		0.33%		
44.	Horseshoe Lake	101- 6		Out	No	No	No	5	1.2 No	Mone						
45.	University of Ark.	22.5 2	<u> </u>	18/s	Yes	No	No		- Ita		A.				1.	1 .
40.	et Pine Bluff Muteon Park	2.7 4		Out	No	K 6	No	1	- 1,2 16-1	None	20 A.	p-5.000	Ā.	1 101	<u>C.</u>	<u> </u>
									No-2		2.1	D-5,000 N-900		C-201	<u></u>	

Table E-1 (continued)

## Second Park \$9.39 4	Mo.	Mone	Acresge	Administration o	Accesibility	Door Oriented	Percent of Completed Devi	Is This Am Investory For A Mew Area or Pacility Meveloped Since 1970?	Has There Been A Change In Ownership and/or Facilities To The Recreation Area Since 1968/70?	Nes There Been A Change in Administration Since 1970	Francy Attraction of Recrustional Area 1. Land Based 4. Historical/Architectural Site 2. Water Based 5. Indem Activition 3. Air Sports 6. Archological Site	Is any Acquisition of Development Planmed In Hart Two Years? Hart Emphasion of Eristing Pacifity or Area 2. Development of Completely New Area	Amount of Indoor Pacility Under Recrestional Use?	Acreegs: A. Imad Only B. Mater C. Wetland	Gross Water Pront	Total Visitations: D - Bay-time R - Might-time O - Over-aight	Season: A. All Year B. Summer Colly C. Spring, Summer and Pall Chly D. Wiker Colly	Percent Distribution By Month: A. Damer	Origin of Visitors To This Ares: A. Nejority Originating from Melhing Distance b. Mejority Originating from 1 to 25 Miles c. Nejority Originating from 26 to 50 Miles D. Nejority Originating from 31 to 150 Miles E. Nejority Originating from 51 to 150 Miles	Fees Charged Wonthly: A. Membership Galy B. Other Admission or User Fee C. None
Marcican Lagion 5 6 10 Out Yee Yee 1 Yee-1 50-2 5 6 7 1 1 1 1 1 1 1 1 1	47.	Townsend Park	39.59	• 4	mi.			No	Мо	No	1,2,3	Yes-1 No-2	1500 #q.ft	A-38 a .8-Pool		D-100,00 N-50,000	D A.			č.
Langua Nork	48.	American Legion Beseball Perk	5	6	,10 mi.	Out		Yes	Yes	Yes	i			 -			В.	C.202	A . B .	
League Mail Mo-2	47.		5.2	•		Que		Yes	Yee	Yes	1		alone	A-5.2 a	_		В.			
Field	50.		5.5	•		Out		No	No	Yes	1		Mone	A-5.2 a			В.			
Same	51.		4.5	•		Out	100	No	No	No	1	No 1,2	None	A-2 e		D-10,000 N-40,000	۸,	B-5%		
Club at. 1.2 10 10 10 10 10 10 10 1	52.	Bush Basebell Park	2	6		Out			No	No	1		None	A-2 a				<u> </u>		
34. Johnson Lake 90 6 Out No No No 2 None 55. Regional Park 1,143 4 6 In/Out 4,3 Yes-2 None A-1145 8-10 A	53.	Eden Park Country Club	10	6	3/4 mi.			Yes	Yes	No	1,2	Yes-1 No-2	19,200 sq.ft.	A-9 B-1			В.		A. B.	
Out 4,5 Yes-2 Rote 8-40 a. C-200 - 56. 9th & Que Perk 4 k Out No No No 1 None A25 D-500 A. A-33% A. C. 37. Nemaberry Lake 351 6 3 Out No No No No 2 No 1,2 38. Swen Lake 500 6 3 Out No No No 2 No 1,2 39. Central Perk 7.83 4 3/A Out No No No 1 Yes-1 None A-7.83 D-3000 A. A-80% A. C. 60. Oakland Perk 165 4 k Out No No No 1,2 Yes-1 5,000 A-150 D-700,000 A. A-80% B. S. 61. Srumps Bayou Perk 3.41 4 1/10 Out Yes Yes Yes Yes 1,2 Yes-1 None A-3.41 A. A-80% B. 62. National Little 5.9 5 2.5 Out No	54.	Johnson Lake	90	6		Out		No	Ио	Мо	2		Mone	-			[700]	<u> </u>		
Second S	55.	Regional Park	1,145	•	•			Yes	Yee		1,2		None	B-40			۸.			7.
57. Heneberry Lake 351 6 3 Out No No 2 None 38. Swen Lake 500 6 3 Out No No No 2 No	56.	9th & Gum Park	. =. = .	4		Out		No	Mo	No	1		Hone	A25			λ.	B-33%	A. B.	с.
Second S	57.	Heneberry Lake	351	•		Out		No	No	No	2		Hone							
## 10-2 ## 14-400 ## 1-107 ##	58.	Swen Lake	500	6		Out		Но	No	No	2	No 1,2	_							
60. Oakland Park 165 4 & Out No No 1,2 Yes-1 6,000 A-150 B-700,000 A. A-807, B. B. B. M. A-807, B. B. B. M. A-807, B. B. B. O. C. T. C. C. T. C.	59.	Central Park	7.83	•		Out		No	Мо	No	1		None			D-3000 N-400	۸,	B-10%	A. B.	c
1	60.	Oskland Park	165	•		Out		No	No	No	1,2		6,000 sq. 2.	A-150 B-15			۸.	A-807 B-107		
Compute Park Mo. M	61.	Brumpa Bayou Park	3.41	4		Out		Yes	Yes	Yes	1,2		None	A-3.41			۸,	V-101		₹,
Ho-2 H-1,000 B-10%	62.		5.9	. 6		Qut		No		No	1		None	A-5.9			В.	A-100%		
64. Sestern Little 4 6 Out No No 1 No None A. A-80% A. Longue Ballfield 1,2 8-10% 8.	63.	leke Pine Bluff	500	2		Out		No	No	Мо	2		None	B-500			۸.	B-101	В.	
	64.		4	6		Out		No	No	No	i	No 1,2	Hone				۸.	A-80% B-10%	A. B.	

Table E-1 (continued)

No. Massa 53. Popular Lake		- Administrations	Accessibility		Percent of Completed Bevelopment	Is This An inventory for A Man Area or Pacility Developed Since 1970?	Hee There Seem A Cheste Is Ownership and/or Pacilities to the Recreation Ace Since 1966/70?	Mas There Been A Chonge in Administration 8 State 1970	Primary Attraction of Barrestianal Area 1. Land Based 4. Eisterfeal/Architecturel Site 2. Water Based 5. Indoor Artistics 3. Air Sports 6. Archeological Site	In Any Acquisition of Bevelopment Flammed in [inc. Two Years?] 1. Expendation of Existing Pacifity or Arms 1. A Periophent of Completely flow Acces 7. A Periophent of Completely flow Acces	Amount of Indoor Pacility Under Recreetional Use?	Acresge: A. Land Only B. Water C. Moriand	Cross Water Pr	Total Visitations: B - Rey-time B - Right-time O - Over-aight	Season: A. All Year D. Seemer Chly C. Spring, Demart and Pall Chly D. Wilser Chly	Percent Distribution of Total Annual Visits By Wooth: A. Summar B. Fall & Winter C. Spring	Origin of Visitors To This Ares: A. Nojority Originating from Whiking Distance B. Nojority Originating from 1 to 35 Miles C. Nojority Originating from 35 to 90 Miles D. Nojority Originating from 31 to 150 Miles E. Nojority Originating from 31 to 150 Miles E. Nojority Originating from 151 and Over	Fees Charged Monthly: A. Hemberchip Chily B. Other Admission or ther Pee C. Hene
			=1.							No-5			ft.	#-80 0-0		A-601 8-201 C-201	î.	٠.
66. Dial	20	3	1	m/ Mt		No	No	No	1		5,000 eq.£i	A-20					λ. B.	c.
67. Sixth Avenue	i	5	I	n/	1001	No	No	No	1		11,190 sq.ft.	A-1	None		D,		A: 8.	е.
68. Packing Town	2	3	0	u t	1001	No	No	No	1			A-2	None				A: B:	

Administration
1. Federal
2. State
3. County
4. City
5. School Board
6. Perochiol Sci

CITIZENS' ADVISORY COMMITTEE QUESTIONNAIRE: PINE BLUFF ENVIRONMENTAL RESOURCES SURVEY, PINE BLUFF URBAN WATER MANAGEMENT STUDY

A. INTRODUCTION.

This survey is a major part of the Pine Bluff Urban Water Management Study, and will serve several functions. First, it will be used to generate a listing of the environmental resources of the Study Area which may merit preservation, enhancement or restoration, and secondly, it will initiate the first step in evaluating and correlating both environmental needs and resources of the community. It may well be that present needs cannot be met by existing resources and additional areas will have to be considered for these needs.

The listings of aesthetic and ecological resources are not final; they are for your reflection and comments. Consider each item carefully, keeping in mind the relative importance of each area. Consider the area's resiliency or sensitivity to changing conditions. Also consider areas which were not listed and add these to the list.

An enclosed map of the Study Area illustrates the location of each aesthetic and ecological area included in the questionnaire. Areas or sites you think important which are not included in the aesthetic and ecological list should be identified and enumerated on the map. For example, if you feel that the city needs a park in the southern part of town, indicate it on the map and add it to the list.

B. ESTHETIC AND ECOLOGICAL AREAS.

The list below designates environmental areas and sites which may merit preservation, restoration or enhancement. You need comment only upon those areas with which you are familiar; add additional areas and sites as you feel necessary. If you are unfamiliar with a particular area, place a check () in the "unfamiliar with area" box after the item. If you strongly agree, agree or disagree that an area is suited for preservation, restoration or enhancement, place a check () in the appropriate box. Space has been provided for additional remarks you may wish to make concerning each area. If you comment on particular areas, you may want to follow this procedure:

- 20. Bayou Bartholomew Greenbelt
 -Comment example
 - a. Important for wildlife and aesthetics; used heavily for nature study and visual enjoyment

or

b. Of little importance; an irresponsible proposal which infringes on the principals of land ownership

			Need to Preserve	e, Restore, Enhance
Location	List of Areas	Unfamiliar With Area	Strongly Agree	
к10	1. Alice Brake Remarks:			
E1-M9	2. Arkansas River Remarks:			
к6	 Arkansas River Wetlands Remarks: 	8		
	BAYOU BARTHOLOMEW:			
A7-C9	4. Above Princeton Pik Remarks:	e		
C9-H11	5. Between Princeton P Road and Olive Stre <u>Remarks</u> :	ike et		
H11-J14	6. Below Olive Street Remarks:			
18	7. Boyd Point Beach Remarks:			
J7	8. Boyd Point Levee Lake: Remarks:	5		
I-J7	9. Boyd Point Wooded Are <u>Remarks</u> :	as		
J7	10. Boyd Point Sanctuary (Oxidation Ponds) Remarks:			
112	11. Bayou Imbeau Remarks:			
н8	12. Blackdog Lake Remarks:			
G-H13	13. Boggy Bayou Remarks:			
1.6	14. Bream Lake Remarks:			
G9	15. Brumps Bayou Remarks:			
H11	16. Byrd Lake Remarks:			

			Unfamiliar	Need to Preserve	, Restor	e, Enhance
Location	List of Areas	<u>त</u> ग्र	With Area	Strongly Agree	Agree	Disagree
A3-D5	17. Caney Bayou Above Highway 65 Remarks:	17.				
D5-G8	18. Caney Bayou Below Highway 65 Remarks:	18.				
G7	19. Caney Bayou Wetlands Remarks:	19.				
F-G11	20. Bayou Bartholomew Greenbelt Remarks:	20.				
к8	21. Intl. Paper Co. Wildlife Management Ar Remarks:	21.	8.			
L9	22. Johnson Lake Remarks:	22.	•			
I-K7	23. Lake Langhofer Remarks:	23.				
н8	24. Lake Pine Bluff Remarks:	24.				
B10	25. Lake Taloha Remarks:	25.				
B10-E11	26. Nevins Creek Remarks:	26.				
19	27. Old Lake Bed East of 21st and Ohio Remarks:	27.				
к6	28. Ste. Marie Recreations Area Remarks:	28.				
C11	29. Sulphur Springs Area Remarks:	29.				
E3	30. Tripletts Bluff (P.B. Arsenal) Remarks:	30.				
к6	31. Wilkins Lake Remarks:	31.				

			Unfamiliar	Need to Preserve	, Restor	e, Enhance
Location	List of Areas	n <u>Ids</u>	With Area	Strongly Agree	Agree	Disagree
E5	<pre>32. Yellow Bluff (P.B. Arsenal) Remarks:</pre>					
F 5	33. Yellow Lake (P.B. Arsenal) Remarks:					
110	34. Taylor Lake Remarks:					
D13-E11	35. Pigeon Creek Remarks:					
H-J7	36. Island Harbor Marina Road Remarks:					
	37.	37.				
	38.	38.				
	39.	39.				
	40.	40.				

FIGURE E-1: LOCATION MAP FOR IDENTIFICATION OF ESTHETIC AND ECOLOGICAL AREAS

CITIZENS' ADVISORY COMMITTEE QUESTIONNAIRE:

PINE BLUFF URBAN WATER MANAGEMENT STUDY, RECREATIONAL, ENVIRONMENTAL AND CULTURAL NEEDS

The Pine Bluff metropolitan area is experiencing growth-related problems and opportunities. Urbanization and related problems often have a direct or indirect effect on recreational and aesthetic use of areas and on the plants and animals in and around the urban area. The purpose of this questionnaire is to assess the recreational, environmental and cultural needs and desires of the community.

- A. Circle the activities in which you or your family participate:
 - 1. Fishing
- 6. Swimming
- 11. Hunting

- 2. Horseback riding
- 7. Outdoor sports
- 12. Cultural activities; arts and crafts, music, fairs, etc.

- 3. Hiking
- 8. Picnicking
- 666.

- 4. Camping
- 9. Canoeing
- 13. Bird-watching and nature study

- 5. Boating
- 10. Bicycling
- 14. Others (Specify)
- B. From the list below mark the environmental areas important to you and your family.
 - 1. Fishing areas

8. Bridle trails

2. Hunting areas

9. Undeveloped lands outside of urban community

3. Hiking trails

- 10. Undeveloped lands and open space as part of the urban community
- 4. Camping and picnicking areas (Parks)
- 11. Green belts along water courses

5. Bird sanctuaries

- 12. Indoor and outdoor sports areas
- 6. Boating and canoeing areas
- 13. Educational areas (archaeological and historical sites, nature trails, environmentally unique areas)
- 7. Facilities for cultural activities
- 14. Others (Specify)

C.	From the items checked in Que to you and your family.	estion "B", rank	by number th	e five most	important
	2				
	3.				

4. ____

- D. Has urban and/or agricultural development or pollution affected any of the areas in Question "B"? Which?
- E. List places that you feel need to be preserved for natural beauty, wildlife and/or recreation in the Pine Bluff area.

Table E-2 Public Involvement Groups (Groups in the Pine Bluff Study Area Which Received Environmental Needs Questionnaires)

- 1. American Association of Retired Persons
- 2. Arkansas Community Organizations for Reform Now (ACORN)
- 3. Arkansas Power and Light Employees
- 4. Azalea Garden Club
- 5. Ben Pearson-Brunswick Division Employees
- 6. Cotton Belt Railroad Employees
- 7. Dial PTA Board of Directors
- 8. Dollarway Student Council
- 9. Gabe Meyer Teachers
- 10. Girl Scouts
- 11. Hardin Community Jaycees
- 12. Hardin Home Demonstration Club
- 13. Hudson Pulp and Paper Company Employees
- 14. Indian Hills Scout Troop
- 15. International Paper Company Employees
- 16. Jefferson Wildlife Association
- 17. Lions Club
- 18. Ozark Society, Delta Chapter
- 19. Pilot Club
- 20. Pine Bluff Arsenal Rod and Gun Club
- 21. Pine Bluff Chamber of Commerce
- 22. Pine Bluff Education Association
- 23. Pine Bluff High School Student Council
- 24. Pine Bluff Horticultural Club
- 25. Pine Bluff Jaycees Board of Directors
- 26. Pine Bluff League of Women Voters
- 27. Pine Bluff Motorcycle Club
- 28. Sixth Avenue Teachers
- 29. Society of Professional Engineers
- 30. Sulphur Springs Eastern Star Masons

- 31. Trades and Labor Council
- 32. University of Arkansas at Pine Bluff-Faculty
- 33. Watson Chapel Booster Club
- 34. Watson Chapel Boy Scouts
- 35. Watson Chapel Methodist Church Men's Club
- 36. Watson Chapel Student Council
- 37. West Pine Bluff Rotary Club
- 38. Weyerhauser-Bay Division Employees
- 39. Weyerhauser-Paper Products Division Employees
- 40. Whitehall Boy Scouts
- 41. Whitehall Jaycees
- 42. Whitehall Saddle Club
- 43. Whitehall Student Council

Table E-3
Master List of Historic Structures, Pine Bluff, Jefferson County, Arkansas*

West Barraqu	<u>e</u>	Linden		
510	715	402		
602	719	West Fifth		
702	801	619	1105	
704	1215	703	1117	
716		702	1203	
West Second		713	1216	
512	914	802	1218	
520	919	817	1308	
602	1021	816	1314	
604	1205	1104	1602	
702	1216	West Sixth		
703	1300	802	1416	
709	1301	1301	1420	
717	1316	1414		
718	1319	West Seventh		
800	1502	208		
810	1600	Cherry		
909	1601	621		
West Third		Beech		
609	803	701		
613	1013	Martin		
West Fourth		400		
320	1000	West Eleventh		
619	1011	316		
802	1115	316		
902				
<u>Pine</u>		East Fifteenth		
625	802	506		
701	825	West Harding		
800		208		
West Eighth		Business Section		
1502		White House Hot	el	

Table E-3 (continued)

East Second		Barranco Shoe S	Shop		
316	917	Kientz Grocery			
618	1204	Court House			
East Sixth		Merchants and Planters Bank			
216	810	120 East 16th			
408		319 East 6th			
East Fighth		216 State			
519		End of Main			
Georgia		100 Main			
624	704	West Barraque			
State		120	207		
625	1203	200	212		
704	1212	205	221		
Texas		115 East 2nd			
1109		Gallagher House			
East Twelvth		217 East 3rd			
420		Hotel Pines			
Tennessee		618 East 3rd			
706	708	Railroad Static	n		
Business Section (con't)					

622 Main

Shrine Temple 502 East 3rd 422 Main

223 West Barraque

State and Alabama

Tomlinson Home

^{*} Streets and their respective street numbers.

