Atividades

1-Complete as tabelas verdade para as seguintes expressões. (A + B) C $A\oplus (B + C)$ $(A \to B) (-C)$

2-Prove se as expressões abaixo são equivalentes: $(A+B)\cdot(A+C) = A+(B\cdot C)$ $A \mapsto (B \oplus C) = (A \oplus B) \leftrightarrow C$

CADERNO Jandaia

$$A \mapsto (B \oplus C) = (A \oplus B) \leftrightarrow C$$

3-Utilizando (https://circuitverse.org/simulator) crie circuitos lógico para representar as seguintes expressões:

 $(A \uparrow B) + (\neg C)$ $(A \cdot B) + (\neg A \cdot C)$ $(A \oplus B) \cdot (C + D)$ $(A \oplus B) \cdot (C \downarrow D)$ $(A + B) \cdot (C \downarrow D)$ $(A + B) + (\neg C \rightarrow D)$ $(A + B + C) \cdot (A \uparrow D)$

(A 1 B) + (- C) = (A. B) + (¬A. C) = (A + B) . (C+D) = ¬(A+B) · (C↓D)= $(A \to B) + (\neg C \to D) = (A + B + C) \cdot (A \uparrow D) = (A \uparrow D) = (A \uparrow B + C) \cdot (A \uparrow D) = (A \uparrow D) = (A \uparrow B + C) \cdot (A \uparrow D) = (A \uparrow B + C$