PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-319757

(43)Date of publication of application: 16.11.2001

(51)Int.Cl.

H05B 3/12 H05B 3/18

(21)Application number: 2000-136346

(71)Applicant: NGK SPARK PLUG CO LTD

(22)Date of filing:

(72)Inventor:

INOUE YOSHIO

MORITA NAOTOSHI

(54) CERAMIC HEATER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a ceramic heater retaining a uniformity and a high level of a thermal emissivity of a heater by reducing an unevenness of a color of a coloring part, and enabling to aim at a further life-elongation.

09.05.2000

SOLUTION: Transition metal components behave as a color center in a lot of ceramic materials inside and function as a coloring component. By containing the transition metal components as coloring component within a range of 0.1 to 7 wt.% in a ceramic substrate 11, the color unevenness of the coloring part can be controlled smaller, and the thermal emissivity of the heater can be retained nearly uniform and at a high level, and the lifeelongation can be promoted further. In addition, the coloring components can be contained in dispersion among the ceramic substrate 11. According to this, for example, when preparing a raw material powder of the ceramic substrate 11, such an operation is possible to compound it as the coloring agent powder, and in that case, the coloring component can be diffusively mixed uniformly in the ceramic substrate 11, and the unevenness of the color of the coloring part can be extremely small. Accordingly, a process to coat colorant to the surface of the ceramic substrate 11 as before is unnecessary and a rise of a manufacturing cost by an increase of the process can be evaded.

LEGAL STATUS

[Date of request for examination]

03.07.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出廣公開番号 特期2001-319757 (P2001-319757A)

(43)公開日 平成13年11月16日(2001.11.16)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

H05B 3/12

3/18

H05B 3/12 A 3K092

3/18

審査請求 未請求 請求項の数7 OL (全 7 頁)

(21)出顧番号	特願2000-136346(P2000-136346)	(71)出願人	000004547 日本特殊陶業株式会社
(22) 出顧日	(72)発明者 井上 芳雄 愛知県名古遠市瑞穂区高辻町14番1 本特殊陶業株式会社内 (72)発明者 森田 直年		爱知県名古遠市瑞穂区高辻町14番18号
		(72)発明者	井上 芳雄
			愛知県名古遠市瑞穂区高辻町14番18号 门
		本特殊陶業株式会社内	
		(7%)発明者	森田 直年
			愛知県名古遠市瑞穂区高辻町14番18号 1
			本特殊陶業株式会社内
		(74)代理人	100095751
			弁理士 菅原 正倫

最終頁に続く

(54) 【発明の名称】 セラミックヒータ

(57)【要約】

【課題】 着色部の色むらを小さくしてヒータの熱放 射率を均一かつ高水準に保持し、より一層の長寿命化を 図ることのできるセラミックヒータを提供する。

【解決手段】 遷移金属成分は、多くのセラミック材 料中にて色中心としてふるまうため、着色成分として機 能する。着色成分としての遷移金属成分を、セラミック 基体11中に0.1~7重量%の範囲にて含有すること によって、着色部の色むらが小さく抑えられ、ヒータの 熱放射率を高水準でほぼ均一に保持して、長寿命化をよ り一層促進することができる。また、着色成分は、セラ ミック基体11中に分散含有させることが可能である。 これによれば、例えばセラミック基体11の原料粉末を 調製するときに着色剤粉末として配合する等の操作が可 能であり、かかる場合には、着色成分をセラミック基体 11中に均一に拡散混合することができ、着色部の色む らをきわめて小さくすることができる。したがって、従 来のように着色剤をセラミック基体11表面へ塗布する 工程は不要であり、工程の増加による製造コストの上昇 を回避することができる。

【特許請求の範囲】

【請求項1】 抵抗発熱体が埋設されたセラミック基体の少なくとも表層部に、遷移金属成分として、Mo, W, Ni, Cr, Fe, Co, Mn及びTiから選ばれる1種又は2種以上の着色成分を含有し、

JIS Z8721に規定された色の表示方法における 明度をVとしたときに、少なくとも前記表層部における 外観明度Vが2~5となっていることを特徴とするセラ ミックヒータ。

【請求項2】 着色成分としての前記遷移金属成分が 0.1~7重量%の範囲にて含有されている請求項1記 載のセラミックヒータ。

【請求項3】 前記セラミック基体中の前記遷移金属成分が0.1~5重量%の範囲にて含有されている請求項1又は2記載のセラミックヒータ。

【請求項4】 前記遷移金属成分は、前記セラミック基 体中に分散含有されている請求項1ないし3のいずれか に記載のセラミックヒータ。

【請求項5】 前記セラミック基体は、 $A1_2O_3$ を主体として構成される請求項1ないし4のいずれかに記載のセラミックヒータ。

【請求項6】 前記セラミック基体の内層部の明度Vが 2~5である請求項1ないし5のいずれかに記載のセラ ミックヒータ。

【請求項7】 前記遷移金属成分は、前記セラミック基 体中において一部が金属状態で存在する請求項1ないし 6のいずれかに記載のセラミックヒータ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はセラミックヒータに 関するものであり、特に自動車用酸素センサの加熱用あ るいはディーゼルエンジンのグローシステム、さらには 半導体基板加熱用あるいはファンヒータや保温式便座等 に使用されるセラミックヒータに関する。

[0002]

【従来の技術】上述のようなセラミックヒータとしては、A12O3(アルミナ)等の絶縁性セラミックを主体とするセラミック基体中に、W(タングステン)等の高融点金属からなる抵抗発熱体を埋設した構造のものが知られている。ところで、この種のセラミックヒータ(以下、単にヒータとも言う)においては従来、ヒータへの印加電力を高めて熱放射量を増加させようとするとヒータ自体の温度上昇に伴ってヒータの耐久性が低下する問題が指摘されていた。そこで特開平10-302938号において、ヒータのセラミック基体表面に熱放射性膜を形成してヒータ表層部を着色することによりヒータの熱放射率を高め、ヒータの長寿命化を図る技術が開示されている。

[0003]

【発明が解決しようとする課題】しかし、上記技術によ

れば、着色化成分を含むペーストをスクリーン印刷等によってセラミック基体表面へ塗布する際に膜厚さが不均一になりやすく、ヒータ表層部の着色化の度合いが場所により又は個体によりばらついて、ヒータの熱放射率が不均一になりやすいという問題がある。また、熱放射性膜のペーストをセラミック基体表面へ塗布する工程が余分に必要になり、製造コストの上昇にもなる。

【0004】本発明の課題は、着色部の色むらを小さくしてヒータの熱放射率を均一かつ高水準に保持し、より一層の長寿命化を図ることのできるセラミックヒータを提供することにある。

[0005]

【課題を解決するための手段及び作用・効果】上述の課題を解決するために、本発明のセラミックヒータは、抵抗発熱体が埋設されたセラミック基体の少なくとも表層部に、遷移金属成分として、Mo,W,Ni,Cr,Fe,Co,Mn及びTiから選ばれる1種又は2種以上の着色成分を含有し、JIS Z8721に規定された色の表示方法における明度をVとしたときに、少なくとも前記表層部における外観明度Vが2~5となっていることを特徴とする。

【0006】遷移金属成分は、多くのセラミック材料中にて色中心としてふるまうため、着色成分として機能する。本発明のセラミックヒータによれば、Mo,W,Ni,Cr,Fe,Co,Mn及びTiから選ばれる1種又は2種以上の着色成分を、セラミック基体の少なくとも表層部に含有して、その外観明度Vを2~5の範囲としたので、明度範囲に規定される確実な着色がセラミック基体に対してなされ、ヒータの熱放射率を所定の高水準に保持して、長寿命化を図ることができる。

【0007】上記遷移金属成分としては、 $Mo, W, Ni, Cr, Fe, Co, Mn及びTiから選ばれる1種又は2種以上を使用することが特に望ましい。これらは、<math>Al_2O_3$ 等のセラミック材料中にて、着色を生ずる成分としてふるまいやすく、セラミック基体をより効果的に着色することができ、ひいてはヒータの熱放射率を高水準に維持する上で、より有利となる。

【0008】しかも、着色効果の高い上記着色成分を添加しているので、その添加量の調整により、セラミック基体の表層部の外観明度Vを上記2~5の範囲に保持しつつ、例えば、セラミック基体の内層部の明度Vも同様の範囲として、色むらを抑制するような明度調節(ひいてはヒータの熱放射率調節)も比較的容易に行える。

【0009】明度Vの測定方法については、JIS Z8722「色の測定方法」において、「4.分光測色方法」の「4.3反射物体の測定方法」に規定された方法を用いるものとする。なお、該4.3に規定された条件 a~dは、被測定面の形状に応じて最適のものを適宜選択する。例えば、セラミック基体の外周面を測定面とする場合は、条件d(試料面の法線に対して光軸のなす角

度が10°を超えない1つの光線束で試料を照明し、あらゆる方向へ反射する光を集積して受光する)を採用することが望ましい。ただし、簡略な方法として、JIS Z8721に準拠して作成された標準色票との目視比較により、明度を知ることもできる。

【0010】そして、着色成分としての遷移金属成分を、セラミック基体中に0.1~7重量%の範囲にて含有することによって、着色部の色むらが小さく抑えられ、ヒータの熱放射率を高水準でほぼ均一に保持して、長寿命化をより一層促進することができる。また、本発明における着色成分は、セラミック基体中に分散含有させることが可能である。これによれば、例えばセラミック基体の原料粉末を調製するときに着色剤粉末として配合する等の操作が可能であり、かかる場合には、着色成分をセラミック基体中に均一に拡散混合することができる。したがって、従来のように着色剤をセラミック基体表面へ塗布する工程は不要であり、工程の増加による製造コストの上昇を回避することができる。

【0011】なお、ここでいう「着色部の色むら」には、「一個体の中の着色部(セラミック基体)の色むら」と、「個体間での着色部(セラミック基体)の色むら」との両方の意味を含んでいる。

【0012】ところで、セラミック基体中の遷移金属成分が0.1重量%未満では、着色化の度合いが低く(着色部の色合いが薄く)なって、ヒータの熱放射率を高水準に保持するのが困難になる。また、セラミック基体中の遷移金属成分が7重量%を超えると、セラミック基体の耐電圧低下を招くことにつながる。なお、望ましくは、セラミック基体中の遷移金属成分の含有量は0.1~5重量%の範囲で調整するのがよい。

【0013】また、セラミック基体は、熱伝導性と高温強度及び高温耐食性に優れた AI_2O_3 を主体に構成することが推奨される。 AI_2O_3 の選択により高水準のヒータ熱放射率を安価に得ることができる。

【0014】上記Mo, W, Ni, Cr, Fe, Co, Mn及びTi等の、着色成分としての遷移金属成分は、例えば酸化物の形態で添加できる。ただし、遷移金属成分が着色性能を発現する色中心等としてふるまうことができるのであれば、遷移金属成分の添加形態あるいはセラミック基体中での存在状態は酸化物状態に限られるものではない。また、酸化物形態で存在させる場合においても、焼成により酸化物に転化できるものであれば、酸化物以外の原料(例えば炭酸塩など)を使用することが可能である。

【0015】このように、少なくともセラミック基体の 表層部における外観明度Vが2~5となっているのが望 ましい。該明度Vが上記の数値範囲となるようにセラミ ック基体を濃く着色すれば、セラミック基体表面におけ る熱輻射(熱放射)の効率が高められ、ヒータの熱放射 率を高水準に維持できる。この場合、セラミック基体の 製造時に、原料中に着色成分を添加・混合する方法を採 用すれば、セラミック基体の表面だけでなく、内層部の 明度Vも2~5とすることができる。また、1個のヒー 夕中の色むらを抑制する観点においては、表層部と内層 部との明度差をなるべく小さくすることが望ましい。

【0016】そして、着色成分としての上記遷移金属成 分は、酸化物形態(あるいは酸化物以外の化合物形態) では、当然に正の価数を有するイオン、すなわちカチオ ン状態にて存在することとなる。他方、遷移金属成分 は、セラミック基体中において一部が金属状態で存在す ることがある。例えば、セラミック基体を還元雰囲気で 焼成する場合には、着色成分を酸化物の形態で添加して もその一部が還元されて金属単体に転化することもあり うる。そして、このように金属単体の状態で存在するこ とで、着色効果が一層高められる場合がある。なお、遷 移金属成分がカチオン状態にて存在するか否かは、例え ばX線光電子分光(XPSあるいはESCA)により簡 単に確認することができる。具体的には、XPSあるい はESCAにより分析したときに得られる光電子スペク トルにおいて、着目している金属元素の結合エネルギー ピークに、正のイオン価数を生ずる向きに化学シフトを 生じていればカチオン状態で存在していると言うことが でき、イオン価数の化学シフトが生じていない場合 (イ オン価数が0の場合)には、その金属元素は単体状態で 存在していると見ることができる。

【0017】なお、本明細書において、「表層部」とは 部材表面からの深さが500μmまでの領域をいい、

「内層部」とは深さがそれ以上の領域をいう。また、本明細書において「主体」とは最も重量含有率の高い成分を意味し、必ずしも「50重量%以上を占める成分」を意味するものではない。

[0018]

【発明の実施の形態】以下、本発明の実施の形態を、図面を参照して説明する。図1及び図2は、本発明のセラミックヒータの一実施例を示している。すなわち、該セラミックヒータ1は、円筒状の芯体2と、芯体2の外周面に積層形態で巻き付けられた形でこれと一体化された円筒状のセラミック基体11と、セラミック基体11の半径方向中間部において周方向面内に埋設された抵抗発熱体12とを有する。

【0019】セラミック基体11は図2(b)(c)に示すように、径方向に積層され一体化された2つのセラミック層11a及び11bを有し、それらセラミック層11a,11bの間に抵抗発熱体12が配置されている。抵抗発熱体12がWを主体に構成され、セラミック基体11がAl₂O₃を主体に構成される場合が最も一般的であるが、かかる態様に限定はされない。

【0020】抵抗発熱体12は、図2(a)に示すように、セラミック基体11の軸線方向に沿って延びる複数

の本体部4が、それと交差する方向において互いにほぼ 等間隔で配置されるとともに、それらの互いに隣接する もの同士が、両端部において接続部5により順次連結さ れた、つづら折れ状の連続形態に形成されている。そし て、その抵抗発熱体12の後端側には、セラミック基体 11の軸線方向に延びる電源接続用の3つのリード部1 2a~12cが一体化されており(12bはかくれて見 えない)、各末端部にはやや広幅の端子部9a~9cが 形成されている。

【0021】抵抗発熱体12の各端子部9a~9cの位置に対応して、外側のセラミック層11aにはその厚さ方向に貫くスルーホール13a~13cがそれぞれ設けられる。このスルーホール13a~13cは、セラミック層11aの内周面側の端子部9a~9cと外周面側の電極端子部14a~14cとを電気的に接続する。スルーホール13a~13cの内面と電極端子部14a~14cは、W、Pt等の高融点金属膜を焼き付けたメタライズ層Mで構成され、Niメッキを施した後、電極端子部14a~14cにおいて端子金具15a~15cに接合(例えばろう付け)されている。なお、21はセラミックヒータ1を所定の位置に固定するための取付部(例えばフランジ)、22は取付部21をセラミック基体11の外周面に固定するための固定部材(例えばガラスシール)である

【0022】図1及び図2で表されるセラミックヒータ 1は、例えば以下のような方法にて製造することができ る。

【0023】まず、主体となるアルミナ粉末に焼結助剤粉末と着色剤粉末とを配合して、セラミック基体11の原料粉末60(絶縁性セラミック粉末)を調製し、これに所定の溶媒、バインダ等を加えてボールミル等で混合し、スラリー状とする。そして、このスラリー状物を減圧脱泡し、ドクターブレード法等により所定厚さを有する板状の粉末成形体100a,100b(生グリーンシート)が得られる。

【0024】ここで、焼結助剤粉末としては、例えばS iO_2 、MgO、CaO、 B_2O_5 等の1種又は2種以上を、成形・焼成後のセラミック基体11において合計で15重量%以下着色剤粉末としてはの範囲で含有されるように配合することができる。なお、原料粉末60の調製時において、焼結助剤粉末は上記酸化物粉末のほか、焼結により酸化物に転化しうる化合物、例えば炭酸塩(一例として $CaCO_3$)や水酸化物等の形で配合してもよい。

【0025】また、着色剤粉末としては、遷移金属の酸化物の粉末、例えばMo,W,Ni,Cr,Fe,Co,Mn及びTiから選ばれる1種又は2種以上の酸化物の粉末を用いることができる。その配合割合は、成形・焼成後のセラミック基体11において、着色成分となる遷移金属カチオンが0.1~7重量%(より望ましく

は0.1~5重量%)の範囲にて含有されるように調整される。なお、原料粉末60の調製時において、着色成分は上記酸化物粉末のほか、焼結により酸化物に転化しうる化合物、例えば炭酸塩(一例として $C\circ CO_3$)や水酸化物等の形で配合してもよい。

【0026】次に、セラミックヒータの焼成工程を図3 に示す。絶縁性セラミック粉末をバインダとともに板状 に成形した粉末成形体100b (生グリーンシート)の 板面に、抵抗発熱体12の原料粉末(例えば、WやMo 等の高融点金属粉末)を含有する導電性ペーストを用い て、抵抗発熱体のパターン120をスクリーン印刷法等 により厚膜印刷する。次に、粉末成形体100bのパタ ーン120が形成された側の面に、同じく板状に形成さ れた別の粉末成形体100a(生グリーンシート)を重 ね合わせて積層体130を作製する。この積層体130 を芯体2となるべき筒状成形体102の外周に巻付けて 筒状の未焼成組立体150を作製し、酸化性又は非酸化 性雰囲気の焼成炉内にて所定温度(例えば1400~1 700℃)で焼成することにより、成形体100a, 1 00bが一体化してセラミック基体11となり、さらに 筒状成形体102(芯体2)もセラミック基体11と一 体化される。印刷されたパターン120は抵抗発熱体1 2となる。

[0027]

【実施例】図1に示すセラミックヒータ1を、下記の方法により作製した。図3の粉末成形体100a,100bは次のように作製した。まず、Al₂O₃粉末に、焼結助剤成分としてSiO₂を4重量%、CaOを2重量%、MgOを2重量%と、着色成分としてMnO₃を0~8重量%(ただし、O及び8重量%は比較例)とを配合した。この混合粉末(原料)に対し所定の溶媒を加えてボールミルで50~80時間湿式混合・粉砕した後脱水乾燥して、セラミック基体11の原料粉末60(絶縁性セラミック粉末)を得た。

【0028】上記原料粉末60に対し、以下の溶媒及び バインダを加えてボールミルで混合し、スラリー状とした:

・溶媒:トリクロールエチレン、n-ブタノール;
・バインダ:メタクリル酸イソブチルエステル3重量
%、ブチルエステル3重量%、ニトロセルロース1重量
%、ジオクチルフタレート0.5重量%。そして、この
スラリー状物を減圧脱泡後板状に流出させて徐冷し、溶
媒を蒸発させて、板状の粉末成形体(生グリーンシー
ト)100a(厚さ0.05mm)及び100b(厚さ
0.5mm)を得た。

【0029】次に、抵抗発熱体のパターン120を印刷 形成するためのインクは次のようにして調製した。まず、W粉末とMo粉末とを所定割合で配合し、その配合 物に対し所定量の溶媒、バインダ等を添加し、さらにボ ールミル等で混合してスラリー状とする。その後、溶媒 を蒸発させることにより導電性ペーストを得た。

【0030】そして、図3に示すように、粉末成形体100bの表面に上記インクを用いてパターン120をスクリーン印刷し、その上に別の粉末成形体100aを熱圧着して積層体130を形成した。この積層体130を別途押し出し法にて作製した筒状成形体102の周囲に巻き付けて未焼成組立体150を作製した。また、粉末成形体100aには、Wメタライズインク塗布部140(スルーホール13a~13cとなるべき部分113a~113cと電極端子部14a~14cとなるべき部分114a~114cとを含む)とを形成した。

【0031】上記の未焼成組立体150を脱バインダ処理後、1400~1600℃の非酸化性雰囲気中で焼成した。その後、電極端子部14a~14cにNiメッキを施した後、電極端子部14a~14cと端子金具15a~15cとをろう付けした。さらに、フランジ21をガラスシール22にてセラミック基体11の外周面に固定することにより、図1に示すセラミックヒータ1を作製した。

【0032】なお、既述の通り、原料粉末60中の MnO_3 粉末の配合割合を調整し、成形・焼成後のセラミック基体11における MnO_3 の含有量を $0\sim8$ 重量%の範囲内で変化させている。これによって、セラミック基

体11における MnO_3 の含有量が異なるセラミックヒータ1を、試験品として計8種類(ただし、0及び8重量%は比較例)作製した。

【0033】(熱放射率の測定)このようにして作製した8種類のセラミックヒータ1について、それぞれの熱放射率を熱電対と熱放射型温度計とを使って測定した。すなわち、セラミック基体11の発熱部外周面に熱電対を張り付けて表層部の温度を測定すると同時に、この発熱部の放射エネルギを熱放射型温度計にて測定し温度換算した。そして、熱電対と熱放射型温度計とで検出された温度(絶対温度)の比をとることでセラミックヒータ1の熱放射率を算出した。以上の測定結果を表1に示す。

【0034】(明度の測定)次に、各セラミックヒータ 1について、セラミック基体11の外観明度を、JIS 28721に準拠して作成された標準色票との目視比 較により測定した。さらに、セラミックヒータ1の軸直 交切断面において、外周から径方向内側へ1mmの位置 にて、内層部明度を上記と同様に測定した。これらの明 度の測定結果も表1にあわせて示す。

[0035]

【表1】

試料No.	着色成分含有量(重量%)	熟放射率	外観明度	内層部明度 ※
1, *	MnO ₃ :0%	0.60	9. 0 *	9.0 *
2	MnO ₃ :0.1%	0.85	4. 0	4. 0
3	MnO ₃ :1%	0.89	3. 5	3. 5
4	MnO3:2%	0. 91	3. 0	3. 0
5	MnO ₃ :3%	0.93	2. 5	2. 5
6	MnO ₃ :5%	0. 95	1. 5	1. 5
7	MnO ₃ : 7%	0.96	1. 0	1. 0
8 *	MnO3:8% *	0.96	1. 5	1. 5

⇒は比較例を表わす。

※) 内層部明度は、ヒータの軸直交切断面において、外周から径方向内側へ1 mmの 位置にて測定した明度を表す。

【0036】表1において、着色成分として MnO_3 を0.1重量%添加しただけでもセラミックヒータの熱放射率は著しく向上し、 MnO_3 の含有量が増えるにつれて熱放射率も上昇する傾向が見られる。また、 MnO_3 の添加によりセラミック基体は表層部のみならず内層部に至るまで赤みを帯びた黒色に着色され、 $AMnO_3$ 含有量における表層部と内層部との明度差は1以内であることがわかる。したがって、着色部の色むらが小さく抑えられ、ヒータの熱放射率はセラミック基体の発熱部のほぼ全体にわたり高水準でほぼ均一に保持されていると

考えられる。なお、セラミック基体の表面をXPSにより分析し、そのスペクトルプロファイルをピーク分離したところ、Mnは大部分がカチオン状態で存在していることが判明したが、一部、金属状態で存在していることを示唆していると思われる小さなピークが観察された。【図面の簡単な説明】

【図1】本発明のセラミックヒータの一実施例を示す全 体斜視図。

【図2】図1の部分切欠き斜視図並びにそのA-A及びB-B断面図。

【図3】図1のセラミックヒータの製造方法の一例を示す説明図。

【符号の説明】

1 セラミックヒータ

11 セラミック基体

12 抵抗発熱体

【図1】

15a
2
-11
-13a
-14a
M
-12

【図2】

【図3】

フロントページの続き

Fターム(参考) 3K092 PP06 PP15 PP16 QA02 QB02 QB20 QB31 QB37 QB45 QB74 QC02 QC43 QC52 QC66 RA06 RB23 RD09 RD16 RD26 RD32 RD33 RD41 RD47 TT37 UB03 UB04 VV34