Contents

1	Topology		
	1.1	Topological Spaces	2
	1.2	Metric Spaces	6
	1.3	Subspace Topologies	12

1

Topology

1.1 Topological Spaces

Definition 1.1.1 ► **Topology**

A **topology** on a set *X* is a collection $\mathcal{T} \subseteq \mathcal{P}(X)$ such that

- $\emptyset, X \in \mathcal{T}$;
- for any index set I, if $\{X_i : i \in I\} \subseteq \mathcal{P}(\mathcal{T})$, then $\bigcup_{i \in I} X_i \in \mathcal{T}$;
- for any $X_1, X_2, \dots, X_n \in \mathcal{T}, \bigcap_{i=1}^n X_i \in \mathcal{T}$.

The pair (X, \mathcal{T}) is said to be a **topological space**. A subset $Y \subseteq X$ is **open** if $Y \in \mathcal{T}$.

Remark. For any set X, we define $\{\emptyset, X\}$ as the *trivial topology* on X, $\mathcal{P}(X)$ as the *discrete topology*, and $\{X \setminus U : U \subseteq X \text{ is finite}\} \cup \{\emptyset\}$ as the *co-finite topology*.

The set $\{(-\alpha, \alpha) : \alpha > 0\} \cup \{\mathbb{R}, \emptyset\}$ defines a topology on \mathbb{R} . This example also demonstrates why it is crucial to only consider closure under finite intersections when defining a topology, because

$$\bigcap_{n=1}^{\infty} \left(-1 - \frac{1}{n}, 1 + \frac{1}{n} \right) = [-1, 1] \notin \mathcal{T}.$$

We now seek a systematic method to generate a topology given any set. The idea here is to make use of a *cover*.

Definition 1.1.2 ▶ Basis

A basis for a topology on *X* is a collection $\mathcal{B} \subseteq \mathcal{P}(X)$ such that

- for any $x \in X$, there exists some $B \in \mathcal{B}$ such that $x \in B$;
- for any $x \in X$ and $B_1, B_2 \in \mathcal{B}$ with $x \in B_1 \cap B_2$, there exists some $B \in \mathcal{B}$ such that $x \in B \subseteq B_1 \cap B_2$.

It may be useful to see a basis as a cover of a set with the second additional property as stated in the above definition. Notice that the first property of the basis \mathcal{B} is basically saying that

$$X \subseteq \bigcup \mathcal{B}$$
,

i.e., \mathcal{B} is a cover of X.

Given any basis \mathcal{B} for some topology on X, a set generated by \mathcal{B} can be defined as

 $\mathcal{T} := \{U \subseteq X : \text{ for any } u \in U, \text{ there exists some } B \in \mathcal{B} \text{ such that } u \in B \subseteq U\}$

We will show that \mathcal{T} is a topology on X. First, it is clear that $\emptyset, X \in \mathcal{T}$.

Let I be an index set and $\{X_i: i \in I\} \subseteq \mathcal{P}(\mathcal{T})$ be any collection of subsets of X. Notice that for any $x \in \bigcup_{i \in I} X_i$, there exists some $j \in I$ such that $x \in X_j \subseteq \mathcal{T}$. According to our construction, this means that there exists some $B \in \mathcal{B}$ such that $x \in B \subseteq X_j \subseteq \mathcal{T}$. Therefore, $\bigcup_{i \in I} X_i \subseteq \mathcal{T}$ as desired.

To prove that \mathcal{T} is closed under finite intersection, we consider the following lemma:

Lemma 1.1.3 ▶ Finite Intersection of Elements in Basis Is Covered

Let \mathcal{B} be a basis for a topology on X and $B_1, B_2, \dots, B_n \in \mathcal{B}$, then for any $x \in \bigcap_{i=1}^n B_i$, there exists some $B \in \mathcal{B}$ such that $x \in B \subseteq \bigcap_{i=1}^n B_i$.

Proof. The case where n=1 is trivial by taking $B=B_1$. Suppose that there is some integer $k \geq 1$ such that for any $B_1, B_2, \cdots, B_k \in \mathcal{B}$ and any $x \in \bigcap_{i=1}^k B_i$, there exists some $B \in \mathcal{B}$ such that $x \in B \subseteq \bigcap_{i=1}^k B_i$. Take any $B_{k+1} \in \mathcal{B}$. It is clear that for any $x \in \bigcap_{i=1}^{k+1} B_i$, there exists some $B \in \mathcal{B}$ such that

$$x \in B \subseteq \bigcap_{i=1}^k B_i$$
.

Notice that $x \in B_{k+1} \in \mathcal{B}$, so we know that $x \in B \cap B_{k+1}$. By Definition 1.1.2, this means that there exists some $B' \in \mathcal{B}$ such that

$$x \in B' \subseteq B \cap B_{k+1} \subseteq \bigcap_{i=1}^{k+1} B_i.$$

Now, suppose $X_1, X_2, \dots, X_n \in \mathcal{T}$ are finitely many subsets of X. Take any $x \in \bigcap_{i=1}^n X_i$. It is clear that $x \in X_i$ for each $i = 1, 2, \dots, n$. Therefore, for each $i = 1, 2, \dots, n$, there exists some $B_i \in \mathcal{B}$ such that $x \in B_i \subseteq X_i$. By Lemma 1.1.3, this means that there exists some set $B \in \mathcal{B}$ such that

$$x \in B \subseteq \bigcap_{i=1}^{n} B_i \subseteq \bigcap_{i=1}^{n} X_i$$
.

Therefore, $\bigcap_{i=1}^{n} X_i \in \mathcal{T}$. So this set \mathcal{T} generated by \mathcal{B} is indeed a topology on X.

The following proposition further shows that the topology generated by a basis \mathcal{B} is the set

of all possible unions of elements in \mathcal{B} :

Proposition 1.1.4 ▶ Equivalent Construction of Topologies Generated from Bases

Let X be any set. If \mathcal{B} is a basis for a topology \mathcal{T} on X, then

$$\mathcal{T} = \left\{ \bigcup_{A \in \mathcal{V}} A : \mathcal{V} \in \mathcal{P}(\mathcal{B}) \right\}.$$

Proof. Denote

 $\mathcal{T}_{\mathcal{B}} := \{ U \subseteq X : \text{ for any } u \in U, \text{ there exists some } B \in \mathcal{B} \text{ such that } u \in B \subseteq U \}.$

It suffices to prove that $\mathcal{T} = \mathcal{T}_{\mathcal{B}}$. Take any $T \in \mathcal{T}$, then there exists some $V \in \mathcal{P}(\mathcal{B})$ such that $T = \bigcup_{A \in \mathcal{V}} A$. This means that for every $t \in T$, there exists some $B_t \in \mathcal{V}$ such that $t \in B_t \subseteq T$. Therefore, $T \in \mathcal{T}_{\mathcal{B}}$. Conversely, for any $S \in \mathcal{T}_{\mathcal{B}}$, there exists some $B_s \in \mathcal{B}$ for each $s \in S$ such that $s \in B_s$. Denote $U \coloneqq \{B_s : s \in S\} \in \mathcal{P}(\mathcal{B})$, then it is clear that $S \subseteq \bigcup_{B \in U} B$. Since $B_s \subseteq S$ for each $s \in S$, we have $\bigcup_{B \in U} B \subseteq S$, which implies that $S = \bigcup_{B \in U} B$. This means that $S \in \mathcal{T}$. Therefore, $\mathcal{T} \subseteq \mathcal{T}_{\mathcal{B}}$ and $\mathcal{T}_{\mathcal{B}} \subseteq \mathcal{T}$, which means that $\mathcal{T} = \mathcal{T}_{\mathcal{B}}$.

Next, we define a special topology in Euclidean spaces using open balls.

Definition 1.1.5 ► Standard Topology

For any $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and any r > 0. Denote the Euclidean open ball centred at \mathbf{x} with radius r by

$$B_r(\mathbf{x}) := \left\{ \mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n : \sqrt{\sum_{i=1}^n (x_i - y_i)^2} < r \right\}$$

The **standard topology** on \mathbb{R}^n is the set generated by the basis

$$\mathcal{B} := \{B_r(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^n, r \in \mathbb{R}^+\}.$$

It may be helpful to actually show that this set \mathcal{B} is indeed a basis of a topology on \mathbb{R}^n . The fact that \mathcal{B} is a cover for \mathbb{R}^n is trivial enough. Take any $\mathbf{x} \in \mathbb{R}^n$ and balls $B_{\alpha}(\mathbf{x}_1)$, $B_{\beta}(\mathbf{x}_2) \in \mathcal{B}$ such that $\mathbf{x} \in B_{\alpha}(\mathbf{x}_1) \cap B_{\beta}(\mathbf{x}_2)$ (the existence of these 2 balls is again trivial enough). Take

$$r = \min \{ \alpha - \| \mathbf{x} - \mathbf{x}_1 \|, \beta - \| \mathbf{x} - \mathbf{x}_2 \| \}.$$

Clearly, r > 0 and $x \in B_r(x)$, so we are done.

Now, we discuss the analogue of the subset relation in topologies.

Definition 1.1.6 ► Fineness and Coarseness

Let \mathcal{T} and \mathcal{T}' be topologies on some set X. We say that \mathcal{T} is **finer** than \mathcal{T}' , or equivalently, that \mathcal{T}' is **coarser** than \mathcal{T} , if $\mathcal{T}' \subseteq \mathcal{T}$.

Observe that any topology of X must be a subset of $\mathcal{P}(X)$, which is the discrete topology on X, so the discrete topology is the finest topology on a set.

Remark. For any basis \mathcal{B} for a topology on X, the topology generated by \mathcal{B} is the coarsest topology containing \mathcal{B} .

The above remark is easy to verify. Let \mathcal{T} be any topology on X with $\mathcal{B} \subseteq \mathcal{T}$ and $\mathcal{T}_{\mathcal{B}}$ be the topology generated by \mathcal{B} . For any $T \in \mathcal{T}_{\mathcal{B}}$, by Proposition 1.1.4, there exists some $V \subseteq \mathcal{B}$ such that $T = \bigcup_{A \in \mathcal{V}} A$. Note that $A \in \mathcal{T}$ for all $A \in \mathcal{V}$, so by Definition 1.1.1, $T \in \mathcal{T}$ and so $\mathcal{T}_{\mathcal{B}} \subseteq \mathcal{T}$ as desired.

This motivates us to consider fineness in terms of bases.

Proposition 1.1.7 ► **Fineness in Terms of Bases**

Let \mathcal{B} and \mathcal{B}' generate topologies \mathcal{T} and \mathcal{T}' respectively on X. \mathcal{T}' is finer than \mathcal{T} if and only if for every $B \in \mathcal{B}$ and any $x \in B$, there exists some $B_x \in \mathcal{B}'$ such that $x \in B_x \subseteq B$.

Proof. Suppose that \mathcal{T}' is finer than \mathcal{T} , then $\mathcal{T} \subseteq \mathcal{T}'$. Take any $B \in \mathcal{B}$, then by Proposition 1.1.4, $B \in \mathcal{T}$, which means that $B \in \mathcal{T}'$. Since \mathcal{B}' is a basis for \mathcal{T}' , by Definition 1.1.2 for any $x \in \mathcal{B}$, there exists some $\mathcal{B}_x \in \mathcal{B}'$ such that $x \in \mathcal{B}_x \subseteq \mathcal{B}$.

Suppose conversely that for every $B \in \mathcal{B}$ and any $x \in B$, there is some $B_x \in \mathcal{B}'$ such that $x \in B' \subseteq B$. Take any $T \in \mathcal{T}$, for each $x \in T$, by Definition 1.1.2 there exists some $B \in \mathcal{B}$ such that $x \in B \subseteq T$, and so we can find some $B_x \in \mathcal{B}'$ such that $x \in B_x \subseteq B \subseteq T$, so $T \in \mathcal{T}'$. Therefore, $\mathcal{T} \subseteq \mathcal{T}'$ and so \mathcal{T}' is finer than \mathcal{T} .

Recall that every basis of a topology on X is an open cover of X consisting only of subsets of X. Therefore, the union of the elements in the basis is essentially X itself. This motivates us to propose another way to generate a topology on a set.

Definition 1.1.8 ► **Sub-basis**

A sub-basis of *X* is a collection $S \subseteq \mathcal{P}(X)$ such that $\bigcup_{A \in S} A = X$.

Remark. Every basis is a sub-basis.

For an arbitrary set X, let S be a sub-basis and denote the collection of all finite subsets of $\mathcal{P}(S)$ as \mathcal{F}_{S} . Define

$$\mathcal{U}_{\mathcal{S}} \coloneqq \left\{ \bigcap_{A \in F} A : F \in \mathcal{F}_{\mathcal{S}} \right\}$$

to be the collection of all finite intersections of sets in S. The topology generated by a subbasis of X is given by

$$\mathcal{T} \coloneqq \left\{ \bigcup_{A \in \mathcal{V}} A : \mathcal{V} \subseteq \mathcal{U}_{\mathcal{S}} \right\}.$$

We shall show that \mathcal{T} is indeed a topology on X by considering the following proposition:

Proposition 1.1.9 ▶ Finite Intersections of Sets in a Sub-basis Form a Basis

Let S be a sub-basis for a set X and let \mathcal{U}_S be the set of all finite intersections of sets in S, then \mathcal{U}_S is a basis of a topology on X.

Proof. Take any $x \in X$. By Definition 1.1.8, we have $x \in \bigcup_{A \in S} A$. Therefore, there exists some $A \in S \subseteq \mathcal{P}(X)$ such that $x \in A$. For any $x \in X$ and $B_1, B_2 \in \mathcal{U}_S$ such that $x \in B_1 \cap B_2$, notice that $B_1 \cap B_2$ is a finite intersection of sets in S, so $B_1 \cap B_2 \in \mathcal{U}_S$. Therefore, by Definition 1.1.2, \mathcal{U}_S is a basis.

With Propositions 1.1.9 and 1.1.4, it is clear that \mathcal{T} as constructed above is a topology on X.

1.2 Metric Spaces

Definition 1.2.1 ▶ **Metric**

A **metric** on a set *S* is a function $d: S \times S \to \mathbb{R}$ such that:

- $d(x, y) \ge 0$ for all $x, y \in S$ (positivity);
- d(x, y) = 0 if and only if x = y (definiteness);
- d(x, y) = d(x, y) for all $x, y \in S$ (symmetry);
- $d(x, y) \le d(x, z) + d(y, z)$ for all $x, y, z \in S$ (triangular inequality).

Remark. A metric is sometimes also called a distance function.

A metric generalises the notion of distance in Euclidean spaces. We can weaken the above axioms to arrive at the following definition:

Definition 1.2.2 ▶ Pseudo-metric

A **pseudo-metric** on a set *S* is a function $d: S \times S \to \mathbb{R}$ such that:

- $d(x, y) \ge 0$ for all $x, y \in S$ (positivity);
- d(x, x) = 0 for all $x \in S$;
- d(x, y) = d(x, y) for all $x, y \in S$ (symmetry);
- $d(x, y) \le d(x, z) + d(y, z)$ for all $x, y, z \in S$ (triangular inequality).

The key difference between a pseudo-metric and a metric is that a pseudo-metric only requires that every element is at 0 distance away from itself, whereas a metric requires that every element is **the only element** that is at 0 distance away from itself.

By dropping the requirement on symmetry, we obtain the following definition:

Definition 1.2.3 ▶ Quasi-metric

A quasi-metric on a set S is a function $d: S \times S \to \mathbb{R}$ such that:

- $d(x, y) \ge 0$ for all $x, y \in S$ (positivity);
- d(x, y) = 0 if and only if x = y (definiteness);
- $d(x, y) \le d(x, z) + d(y, z)$ for all $x, y, z \in S$ (triangular inequality).

We equip a set with a metric to generalise the Euclidean spaces.

Definition 1.2.4 ► **Metirc Space**

A metric space (S, d) is a set S together with a metric d on S.

The most basic example of a metric is the *discrete metric* defined by

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

over any set X, which essentially is just a characteristic function.

Recall that in an inner product space (V, g) over some field \mathbb{F} , we can define the length of any $\mathbf{v} \in V$ as

$$\|\boldsymbol{v}\| = \sqrt{g(\boldsymbol{v}, \boldsymbol{v})}.$$

This length function induces a metric over V given by

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|.$$

In the Euclidean space \mathbb{R}^n , a usual definition for distance is

$$d_2(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^n (y_i - x_i)^2\right]^{\frac{1}{2}}.$$

Note that (\mathbb{R}^n, d_2) is a metric space, where d_2 is known as the *Euclidean distance*. In general, we can prove that for any $p \in \mathbb{N}^+$,

$$d_p(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^n \|y_i - x_i\|^p\right]^{\frac{1}{p}}$$

is a metric over \mathbb{F}^n for any inner product space (\mathbb{F}^n, g) where \mathbb{F} is a field, known as the L^p -norm. Furthermore, notice that

$$\max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\|^p \le \sum_{i=1}^n \|y_i - x_i\|^p \le n \max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\|^p.$$

Taking the *p*-th root on all three parts, we have

$$\max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\| \le \left[\sum_{i=1}^n \|y_i - x_i\|^p \right]^{\frac{1}{p}} \le n^{\frac{1}{p}} \max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\|.$$

By Squeeze Theorem, this allows us to define

$$d_{\infty}(\boldsymbol{x},\boldsymbol{y}) = \lim_{p \to \infty} d_p(\boldsymbol{x},\boldsymbol{y}) = \max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\|.$$

 $d_{\infty}(x, y)$ can be alternatively written as $\|x - y\|_{\infty}$, which is known as the *infinite norm*.

The *p*-adic numbers can be defined from the following lemma:

Lemma 1.2.5 ▶ p-adic Numbers

Let p be any prime number. For all $x \in \mathbb{Q} \setminus \{0\}$, there exists a unique $k \in \mathbb{Z}$ such that

$$x = \frac{p^k r}{s}, \qquad r, s \in \mathbb{Z}$$

with $p \nmid r$, s and $s \neq 0$.

The *p-adic norm* is defined as

$$|x|_p = \begin{cases} p^{-k} & \text{if } x = \frac{p^k r}{s} \\ 0 & \text{if } x = 0 \end{cases},$$

which induces a metric over $\mathbb Q$ defined by

$$d(x,y) = |x - y|_p.$$

We can show that the *p*-adic metric satisfies

$$d(x,z) \le \max\{d(x,y),d(y,z)\}$$

for all $x, y, z \in \mathbb{Q}$. Such a metric is known as an *ultra-metric*.

Given any metric space, the metric will induce a distance between subsets of the space.

Definition 1.2.6 ▶ **Distance between Subsets**

Let (X, d) be a metric space and $A, B \subseteq X$ be non-empty. The **distance** between A and B is defined as

$$d(A, B) := \inf\{d(x, y) : (x, y) \in A \times B\}.$$

Additionally, we may wish to define a measure for the size of a subset in a metric space.

Definition 1.2.7 ▶ **Diameter**

Let (X, d) be a metric space. The **diameter** of a set $A \subseteq X$ is defined as

$$\operatorname{diam}(A) \coloneqq \sup \{ d(x, y) : (x, y) \in A \times A \}.$$

The set A is **bounded** if diam (A) is finite.

The name "diameter" is not a coincidence with the diameter of a graph. Specifically, if we consider a graph G = (V, E), the pair (V, d) forms a metric space with d(u, v) being the usual distance between two vertices in G defined as the size of the shortest u-v path in G. It is clear that d is indeed a metric.

Now, let us consider the subgraph $H \subseteq G$ induced by any $U \subseteq V$ and check the eccentricity for H, i.e.,

$$\epsilon(u) = \max\{d_H(u, u') : u' \in U\}$$
 for all $u \in U$.

Now, the diameters for *H* can be computed as

$$\operatorname{diam}(H) = \max\{\epsilon(u) : u \in U\}$$
$$= \sup\{d_H(u, u') : (u, u') \in U \times U\},\$$

and this obviously agrees with Definition 1.2.7!

Recall that in Definition 1.1.5, we use Euclidean open balls to construct a basis for a topology on \mathbb{R}^n . We can generalise this idea in any metric space.

Proposition 1.2.8 ▶ Metric Induces a Basis

Let (X, d) be a metric space. Define

$$B_r(x) := \{ y \in X : d(x, y) < r \},$$

then collection

$$\mathcal{B}_d := \{B_r(x) : x \in X, r \in \mathbb{R}^+\}$$

is a basis for a topology on X.

Proof. Notice that for any $x \in X$, we have $x \in B_1(x) \in \mathcal{B}_d$. Let $B_p(x_1), B_q(x_2) \in \mathcal{B}_d$ be such that $x \in B_p(x) \cap B_q(x)$. Take $k = \min\{p - d(x, x_1), q - d(x, x_2)\}$, then clearly k > 0 and we can find $B_k(x) \subseteq B_p(x) \cap B_q(x)$ such that $x \in B_k(x) \in \mathcal{B}_d$. Therefore, \mathcal{B}_d is a basis for a topology on X.

Since we can obtain a basis from a metric, it follows naturally that we can generate a topology using this induced basis.

Definition 1.2.9 ► **Metrisable Topology**

Let (X, d) be a metric space. A topology \mathcal{T} on X is **metrisable**, or **induced** by d, if it is generated by \mathcal{B}_d

We can verify that the discrete topology $\mathcal{P}(X)$ is induced by the discrete metric. Let the discrete metric on X be χ , then it is easy to see that

$$B_r(x) = \begin{cases} \{x\} & \text{if } 0 < r \le 1 \\ X & \text{if } r > 1 \end{cases}.$$

Therefore,

$$\mathcal{B}_{\chi} = \{X\} \cup \big\{ \{x\} : x \in X \big\}.$$

Let \mathcal{T}_{χ} be the topology on X generated by \mathcal{B}_{χ} , then it suffices to prove that $\mathcal{P}(X) \subseteq \mathcal{T}_{\chi}$. Take any $U \in \mathcal{P}(X)$, then for any $u \in U$, we have $u \in \{u\} \subseteq U$. Clearly $\{u\} \in \mathcal{B}_{\chi}$, so $\mathcal{T}_{\chi} = \mathcal{P}(X)$ is the discrete topology indeed.

In particular, for Euclidean spaces, the following result extends Definition 1.1.5:

Proposition 1.2.10 \blacktriangleright Every L^p -metric Generates the Standard Topology

Let \mathcal{T} be the standard topology on \mathbb{R}^n , then \mathcal{T} is induced by any L^p -metric d_p .

Proof. For any $p \in \mathbb{N}^+$, notice that

$$\max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\|^p \le \sum_{i=1}^n \|y_i - x_i\|^p \le n \max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\|^p.$$

Taking the *p*-th root yields

$$\max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\| \le \left[\sum_{i=1}^n \|y_i - x_i\|^p \right]^{\frac{1}{p}} \le n^{\frac{1}{p}} \max_{i \in \mathbb{N}^+, i \le n} \|y_i - x_i\|.$$

This means that

$$d_{\infty}(\mathbf{x}, \mathbf{y}) \leq d_{p}(\mathbf{x}, \mathbf{y}) \leq n^{\frac{1}{p}} d_{\infty}(\mathbf{x}, \mathbf{y}).$$

Let \mathcal{T}_0 and \mathcal{T}_p be topologies on \mathbb{R}^n generated by \mathcal{B}_{d_∞} and \mathcal{B}_{d_p} respectively. Take any $T \in \mathcal{T}_p$, then for any $\boldsymbol{t} \in T$, there is some $B_r(\boldsymbol{t}') \in \mathcal{B}_{d_p}$ such that $\boldsymbol{t} \in B_r(\boldsymbol{t}') \subseteq T$. Take some $\ell = \frac{1}{2} |r - d_p(\boldsymbol{t}, \boldsymbol{t}')|$, then we have found $B_\ell(\boldsymbol{t}) \in \mathcal{B}_{d_p}$ such that

$$t \in B_{\ell}(t) \subseteq B_r(t') \subseteq T$$
.

Take $k = \frac{1}{2} \ell n^{-\frac{1}{p}}$ and consider

$$B_k(t) \coloneqq \{ y \in \mathbb{R}^n : d_{\infty}(t, y) < k \} \in \mathcal{B}_{d_{\infty}}.$$

Notice that for each $y \in B_k(t)$, we have

$$d_p(\boldsymbol{t}, \boldsymbol{y}) \leq n^{\frac{1}{p}} d_{\infty}(\boldsymbol{t}, \boldsymbol{y}) < \ell,$$

so $t \in B_k(t) \subseteq B_\ell(t) \subseteq T$. This implies that $T \in \mathcal{T}_0$ and so $\mathcal{T}_p \subseteq \mathcal{T}_0$. By a similar argument, one may check that $\mathcal{T}_0 \subseteq \mathcal{T}_p$. Therefore, $\mathcal{T}_0 = \mathcal{T}_p$ for any $p \in \mathbb{N}^+$. Note that by Definition 1.1.5, \mathcal{T} is generated by \mathcal{B}_{d_2} , which means that $\mathcal{T} = \mathcal{T}_2 = \mathcal{T}_0 = \mathcal{T}_p$ for any $p \in \mathbb{N}^+$. Therefore, \mathcal{T} is induce by any L^p -metric d_p .

The fact that

$$d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) \leq d_{p}(\boldsymbol{x}, \boldsymbol{y}) \leq n^{\frac{1}{p}} d_{\infty}(\boldsymbol{x}, \boldsymbol{y})$$

means that all L^p -metrics are equivalent over the same space.

1.3 Subspace Topologies

Definition 1.3.1 ► **Subspace Topology**

Let (Y, \mathcal{T}_Y) be a topological space and $X \subseteq Y$ be some subset. The collection

$$\mathcal{T}_X := \{U \cap X : U \in \mathcal{T}_Y\}$$

is the subspace topology on X.

We may check that \mathcal{T}_X defined as such is indeed a topology on X. First, by taking $U = \emptyset$ and U = Y respectively, we know that $\emptyset, X \in \mathcal{T}_X$. For any $U \in \mathcal{T}_Y$, we have $Y \setminus U \in \mathcal{T}_Y$ and so

$$X \setminus (U \cap X) = (Y \setminus U) \cap X \in \mathcal{T}_X.$$

For any $V \subseteq \mathcal{T}_X$, we define a subset $\mathcal{U}_V \subseteq \mathcal{T}_Y$ such that for each $V \in V$ there is a unique $U_V \in \mathcal{U}_V$ such that $V = U_V \cap X$. Then,

$$\bigcup_{A \in \mathcal{V}} A = \bigcup_{B \in \mathcal{U}_{\mathcal{V}}} (B \cap X)$$
$$= \left(\bigcup_{B \in \mathcal{U}_{\mathcal{V}}} B\right) \cap X$$
$$\in \mathcal{T}_{X}.$$

Let $X_1, X_2, \dots, X_n \in \mathcal{T}_X$ and define $X_i = U_i \cap X$ where $U_i \in \mathcal{T}_Y$ for $i = 1, 2, \dots, n$, then

$$\bigcap_{i=1}^{n} X_{i} = \bigcap_{i=1}^{n} (U_{i} \cap X)$$

$$= \left(\bigcap_{i=1}^{n} U_{i}\right) \cap X$$

$$\in \mathcal{T}_{X}.$$

So \mathcal{T}_X is really a topology on X. Intuitively, the following holds:

Proposition 1.3.2 ▶ Basis for a Subspace

Let (Y, \mathcal{T}_Y) be a topological space and \mathcal{T}_X be the subspace topology on some $X \subseteq Y$. If \mathcal{B}_Y is a basis of \mathcal{T}_Y , then

$$\mathcal{B}_X := \{B \cap X : B \in \mathcal{B}_Y\}$$

is a basis of \mathcal{T}_X .

Proof. We first prove that \mathcal{B}_X is a basis. Take any $x \in X \subseteq Y$. Note that there exists some $B \in \mathcal{B}_Y$ such that $x \in B$. Take $B \cap X \in \mathcal{B}_X$, then $x \in B \cap X$. For any $B_1, B_2 \in \mathcal{B}_X$ with $x \in B_1 \cap B_2$, we write $B_1 \coloneqq B_1' \cap X$ and $B_2 \coloneqq B_2' \cap X$ where $B_1', B_2' \in \mathcal{B}_Y$, then we have $x \in B_1' \cap B_2'$. This means that there is some $B \in \mathcal{B}_Y$ such that $x \in B \subseteq B_1' \cap B_2'$. Write $B' \coloneqq B \cap X \in \mathcal{B}_X$, then for each $b \in B'$, we know that $b \in B_1' \cap B_2'$ and $b \in X$, which implies that $b \in B_1 \cap B_2$. Therefore, $x \in B' \subseteq B_1 \cap B_2$. This means that \mathcal{B}_X is a basis of a topology on X.

We then prove that \mathcal{T}_X is generated by \mathcal{B}_X . Let \mathcal{T} be the topology generated by \mathcal{B}_X . By Proposition 1.1.4, we have

$$\mathcal{T} = \left\{ \bigcup_{A \in \mathcal{V}} A : \ \mathcal{V} \subseteq \mathcal{B}_X \right\}.$$

Similarly, we can write

$$\mathcal{T}_Y = \left\{ \bigcup_{A \in \mathcal{V}} A : \mathcal{V} \subseteq \mathcal{B}_Y \right\}.$$

Take any $T \in \mathcal{T}_X$, then there exists some $\mathcal{V} \subseteq \mathcal{B}_Y$ such that

$$T = \left(\bigcup_{A \in \mathcal{V}} A\right) \cap X$$
$$= \bigcup_{A \in \mathcal{V}} A \cap X$$
$$\in \mathcal{T}.$$

Therefore, $\mathcal{T}_X \subseteq \mathcal{T}$. Conversely, take any $T' \in \mathcal{T}$, there exists some $\mathcal{U} \subseteq \mathcal{B}_Y$ such that

$$T' = \bigcup_{B \in \mathcal{U}} (B \cap X)$$
$$= \left(\bigcup_{B \in \mathcal{U}} B\right) \cap X$$
$$\in \mathcal{T}_X.$$

Therefore, $\mathcal{T} \subseteq \mathcal{T}_X$ and so $\mathcal{T}_X = \mathcal{T}$.

The following result shows that open sets in subspaces remain open in the superspace:

Proposition 1.3.3 ► Superspace Preserve Open Sets

Let (Y, \mathcal{T}_Y) be a topological space. If $X \subseteq Y$ is open in Y and $U \subseteq X$ is open in X, then U is open in Y.

Proof. Let \mathcal{T}_X be the subspace topology on X. Since U is open in X, we have $U \in \mathcal{T}_X$. By Definition 1.3.1, there exists some $V \in \mathcal{T}_Y$ such that $U = V \cap X$. However, $U \subseteq X$, so $U = V \in \mathcal{T}_Y$, which means that U is open in Y.

We can do a similar manipulation with metric spaces and induce a metric on a subspace.

Definition 1.3.4 ► **Subspace Metric**

Let (X, d) be a metric space. The **subspace metric** of some $A \subseteq X$ is the restriction of d to A, denoted as

$$d_A(x, y) = d(x, y)$$
, for all $x, y \in A$.

Naturally, the following result is true:

Proposition 1.3.5 ➤ Subspace Metric Induces Subspace Topology

Let (X, d) be a metric space. The topology induced by the subspace metric d_A on some subspace $A \subseteq X$ is the subspace topology on A.

Proof. Let \mathcal{T}_d and \mathcal{T}_{d_A} be topologies induced by d on X with basis \mathcal{B}_d and by d_A on A with basis \mathcal{B}_{d_A} respectively. Let \mathcal{T}_A be the subspace topology on A with basis \mathcal{B}_A . Take any $B \in \mathcal{B}_{d_A} \subseteq \mathcal{B}_d$, then clearly any $x \in B$ is such that $x \in B \cap A \in \mathcal{B}_A$. Therefore, by Proposition 1.1.7, $\mathcal{T}_{d_A} \subseteq \mathcal{T}_A$. Conversely, take any $B_A \mathcal{B}_A$. For any $x \in B_A$, there exists some $B_1 \in \mathcal{B}_d$ such that $x \in B_1$ and $B_A = B_1 \cap A$. Notice that this implies that $x \in A \in \mathcal{T}_{d_A}$, so we can find some $B_2 \in \mathcal{B}_{d_A} \subseteq \mathcal{B}_d$ such that $x \in B_2$. By Definition 1.1.2, there exists some $B \subseteq B_1 \cap B_2 \in \mathcal{B}_{d_A}$ such that $x \in B$. By Proposition 1.1.7, this means that $\mathcal{T}_A \subseteq \mathcal{T}_{d_A}$. Therefore, $\mathcal{T}_A = \mathcal{T}_{d_A}$.