ポートフォリオシート

氏名	菅野 玲央	所属東京コミュニケーションアート専門学校
作品名	Labyrinth Dungeon	作品URL ・ QRコード
ジャンル	体感型3D迷路	·作品動画 ①https://youtu.be/SM3N1lqGplk
プラットフォーム	PC	②https://youtu.be/L7Kn2ATKWVo ・企画書及び仕様書
開発環境	Arduino IDE、Unity Fusion360、Cura	企画書→https://leoleo-0109.github.io/HomePage/images/ PDF/Labyrinth_Dungeon_proposal.pdf
使用言語	C言語、C#	仕様書→https://leoleo-0109.github.io/HomePage/images/ PDF/Labyrinth_Dungeon_technical.pdf
制作期間	3ヵ月	
チーム人数	4人(うちプログラマー3人)	

■制作目的

東京ゲームダンジョン3に出展する為です。6軸加速度を用いた自作コントローラーを、前後左右に傾けて操作する体感的型ゲームの実装です。2次元空間と3次元空間をリンクさせる新感覚体験型ゲームの制作です。制作したゲームを来場者にコントローラーを操作しながら、操作感のあるゲームで「体感」を実感してもらうことです。また、2次元空間(ゲーム画面)と3次元空間(ミニマップ)を交互に確認する必要がある為、想像力活かしてプレイしてもらうことことです。

■ゲーム概要

迷路から脱出する「体感型3D迷路ゲーム」です。6軸加速度センサーを用いて、ミニマップを搭載したコントローラーを使用します。実際にコントローラーを傾けた方向へ移動します。ゲーム画面上にはミニマップがありません。ゲームを進めるには、2次元空間(ゲーム画面)と3次元空間(ミニマップ)を交互に確認する必要がある為、想像力が試されます。

3ステージあり、難易度が異なります。各ステージに、3種類の宝箱が各3個ずつ配置されています。宝箱を回収しながら、ゴールを目指します。規定数(必要な宝箱の種類と個数)の宝箱を回収すると、ワームホール(ゴールポイント)が展開されます。規定数に満たない場合は、再度宝箱を探す必要があります。ワームホールが展開されたら、次のステージのミニマップに差し替えます。

ゲーム開始時に、「ストーリーモード」と「選択モード」が選択 出来ます。「ストーリーモード」は、ステージ1をクリアしたら、 ステージ2へ進むことが出来ます。「選択モード」は、好きなステージからスタート出来ます。

■作品画像

眠る 記録回廊

タイトル画面

ゲーム画面

制作担当箇所

- •企画立案、企画書及び仕様書の作成
- ・UIの配置、トラップの配置、プレイヤー挙動
- ・コントローラーの作製(3Dモデリングから)
- •UnityとArduino(マイクロコンピュータ)の連携

【コントローラー作成に使用した材料】

- フィラメント(4色) ・基板
- ・電池ボックス

- Arduino Nano
- ·抵抗(10KΩ)
- ・電源スイッチ

- •MPU6050
- •ESP32
- △ボタン

- ・タクトスイッチ
- ・2Pコネクタ
- 〇ボタン

コントローラーの 完成画像

使用した材料

□アピールポイント

【苦戦したところ】

(1)コントローラーの3Dモデリングに時間を要しました。基板やボタン のサイズ、マイクロコンピュータ用の配線位置、ボタンの取り付け位置 等を予め、定規で採寸しました。採寸データを基に大まかな完成図を 作成しました。メンバーよりリセットボタンの要望があり、再度モデリン グし直しました。重量や持ち易さ、ボタン操作を考慮し、縦幅を若干伸 ばしました。

②1つの基板に、無線用と有線用を組み込んだことです。

当初は、無線専用の予定でした。しかし、展示会当日無線に不具合が 生じた場合も想定し、有線用に切り替え出来る様に、急遽仕様を変更 しました。今回初の試みの為、回路図をイメージし試行錯誤を繰り返し ながら作成しました。

③プレイヤー挙動のパラメータ修正が、最も苦戦しました。実際にコン トローラーを使用し、調整を何度も繰り返し行いました。メンバーにもプ レイしてもらい、意見交換しながら進めました。特に、カメラのスピード に関しては少し遅めに設定し、3D酔いを防ぐことを重視しました。プレ イヤーのスピードに関しては、速過ぎると壁を貫通してしまい、 遅過ぎるとプレイに時間が掛かる為、何度も擦り合わせしました。

- ①盤面を差し替えることで、自動的にステージが切り替わるようにしま した。裏面にタクトスイッチを押す部分(突起)を作成しました。
- ②加速度センサーを用いることで、実際に前後左右にコントローラー を傾けるとプレイヤーの挙動が連動します。また、コントローラーの ボタンを押している間のみカメラ(視点)が押した方向へ回転し、 離すと停止します。
- ③1つの基板に無線用の他に有線用のマイコンと加速度センサーを 組み込んだことです。これは、無線用が不具合を起こした場合を 想定し、有線用でもプレイ出来るよう工夫しました。

無線用コネクタ

コネクタの構造

リセットボタン

有線用コネクタ

3Dモデリング図

基板

ステージ盤面の表(上)裏(下)

決定ボタン

視点旋回

コントローラーの構造

ボタン

■作品詳細画像

①ストーリーモードと選択モード

モード選択 ストーリー 選択 もどる

モード選択画面

ステージ選択画面

③宝箱の種類

スコア宝箱

タイマー宝箱

キー宝箱

②ミニマップの全体マップ

ステージ1

ステージ2

ステージ3

④ワームホール

ワープ or ゴール

炎を出す