Finite Elements For Engineers

Lecture 7A: Problem Solving Using the 1DBVP Program

S. D. Rajan

1DBVP Program Terminology

- Positive coordinate system points to the right
- FE mesh contains one or more segments
- A segment has the same properties but may contain one or more elements
- The leftmost segment (or the first segment) has the first node and the first element (or node 1 and element 1)
- You create the segment data; 1DBVP creates the nodes, elements and loads

Solid Mechanics

DE

$$-\frac{d}{dx}\left(\alpha(x)\frac{dy(x)}{dx}\right) + \beta(x)y(x) = f(x)$$

Left Mixed
$$\tau = c_a y + d_a$$
 Right $\tau = c_b y + d_b$ Mixed BC

DE

$$-\frac{d}{dx}\left(A(x)E(x)\frac{du(x)}{dx}\right) = w(x)A(x)$$

$$\tau = F = -A(x)E(x)\frac{du(x)}{dx}$$

Solid Mechanics

$$\alpha(x) = A(x)E(x) \equiv F$$

$$\beta(x) = 0$$

$$f(x) = w(x)A(x) \equiv F/L$$

$$c_a = c_b = 0$$

$$d_a = d_b \equiv F$$

Examples

$$\beta(x) = 0$$

$$\alpha(x) = A(x)E(x) \equiv F$$

$$f(x) = q \equiv F/L$$

$$\frac{\overline{AE}}{L} \left[\begin{array}{c|c} 1 & -1 \\ \hline -1 & 1 \end{array} \right] \left\{ \begin{array}{c} u_1 \\ u_2 \end{array} \right\} =$$

$$\left\{ \begin{array}{c|c} P \\ \hline -P \end{array} \right\} + \left\{ \begin{array}{c} qL/2 \\ \hline qL/2 \end{array} \right\}$$

Heat Transfer

DE

$$-\frac{d}{dx}\left(\alpha(x)\frac{dy(x)}{dx}\right) + \beta(x)y(x) = f(x)$$

$$\begin{array}{ccc} \text{Left Mixed} & \tau = c_a y + d_a & \begin{array}{ccc} \text{Right} & \tau = c_b y + d_b \\ \text{Mixed BC} & \end{array}$$

Comparing (assuming A is a constant)

$$\alpha(x) = k(x) \equiv \frac{E}{tLT}$$

$$\beta(x) = \frac{hl}{A} \equiv \frac{E}{tL^3T}$$

$$f(x) \equiv Q(x) + \frac{hl}{A}T_{\infty} \equiv \frac{E}{tL^3}$$

Heat Transfer

A is a NOT constant

$$\begin{bmatrix}
\frac{\overline{k}}{L} + \frac{\overline{hl}L}{3A} & -\frac{\overline{k}}{L} + \frac{\overline{hl}L}{6A} \\
-\frac{\overline{k}}{L} + \frac{\overline{hl}L}{6A} & \frac{\overline{k}}{L} + \frac{\overline{hl}L}{3A}
\end{bmatrix} + h_b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} = \frac{L}{2} \begin{bmatrix} \frac{\overline{hl}}{A} T_{\infty} \\ \frac{\overline{hl}}{A} T_{\infty} \end{bmatrix} + \begin{bmatrix} q_a \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ h_b T_b \end{bmatrix}$$

Example 1 (1D-C⁰ Linear Element)

Brick wall: Determine the steadystate temperature distribution within the wall and also the heat flux through the wall.

$$k = 0.7W/m \cdot ^{\circ}C$$
$$T_{\infty} = -15^{\circ}C$$
$$h = 40W/m^{2} \cdot ^{\circ}C$$

Mesh	Right Temp. (C)	Right Flux (W/m²)	
1-element	-12.63	94.8	
2-elements	-12.63	94.8	
4-elements	-12.63	94.8	

Example 2A (1D-C⁰ Linear Element)

The 4" long steel bar with a 2 in² cross-sectional area is loaded by the given surface traction. Find the displacement and force distribution in the bar.

Mesh	Tip Disp. (in)	Root Force (lb)	Tip Force (lb)
1-element	1.067(10 ⁻⁶)	16	16
2-elements	1.067(10 ⁻⁶)	20.67	11.33
4-elements	1.067(10 ⁻⁶)	21.25	6.75
8-elements	1.067(10 ⁻⁶)	21.32	3.68
16-elements	1.067(10 ⁻⁶)	21.33	1.92

Example 2B (1D-C⁰ Higher Order Elements)

Quadratic Element

Mesh	Tip Disp. (in)	Root Force (lb)	Tip Force (lb)
1-element	1.067(10 ⁻⁶)	21.54	10.5
2-elements	1.067(10 ⁻⁶)	21.34	6.02
4-elements	1.067(10 ⁻⁶)	21.34	3.2
8-elements	1.067(10 ⁻⁶)	21.34	1.65

Cubic Element

Mesh	Tip Disp. (in)	Root Force (lb)	Tip Force (lb)
1-element	1.067(10 ⁻⁶)	21.3	6.4
2-elements	1.067(10 ⁻⁶)	21.33	3.4
4-elements	1.067(10 ⁻⁶)	21.33	1.75

Example 3 (1D-C⁰ Linear Element)

Example T4L3-1

$$T_0 = 20^0 C$$

EBC

$$k_1 = 20 \frac{W}{m \cdot C}$$

$$k_2 = 30 \frac{W}{m \cdot C}$$

$$k_3 = 50 \frac{W}{m \cdot C}$$

$$T_{\infty} = 800^{\circ} C$$

$$h = 25 \frac{W}{m^2 \cdot C}$$

Mixed BC

$$c_a = -h$$

$$d_a = hT_{\infty}$$

Example 4A (1D-C⁰ Linear Element)

Example T4L3-2

EBC

$$\alpha = k$$

$$eta = rac{hl}{A}$$

$$f = \frac{hl}{A}T_{\infty}$$

$$\overline{k} = 24.8 \frac{BTU}{h \cdot ft \cdot F}$$

$$L = 0.516 ft$$

$$A = \pi \frac{d^2}{4} = 5.326(10^{-4}) ft^2$$

$$T_0 = 150^{\circ} F$$

$$T_{\infty} = 80^{\circ} F$$

$$h = 6 \frac{BTU}{h \cdot ft^2 \cdot F}$$

$$l = \pi d = 0.0818 ft$$

Example T4L3-2

Mesh	Right Temp. (F)	Right Flux (Btu/h-ft²)	
1-element	78.4	4268.3	
2-elements	88.97	1174.4	
4-elements	90.5	541.6	
64-elements	91.02	33.0	
256-elements	91.02	8.27	

Example 4B (1D-C⁰ Higher Order Elements)