Review of Lecture 5

Dichotomies

Growth function

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_N)|$$

Break point

Maximum # of dichotomies

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3
0	0	0
0	0	•
0	•	0
•	0	0

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 6: Theory of Generalization

Outline

ullet Proof that $m_{\mathcal{H}}(N)$ is polynomial

ullet Proof that $m_{\mathcal{H}}(N)$ can replace M

© M Creator: Yaser Abu-Mostafa - LFD Lecture 6

Bounding $m_{\mathcal{H}}(N)$

To show: $m_{\mathcal{H}}(N)$ is polynomial

We show: $m_{\mathcal{H}}(N) \leq \cdots \leq \cdots \leq$ a polynomial

Key quantity:

B(N,k): Maximum number of dichotomies on N points, with break point k

Recursive bound on B(N, k)

Consider the following table:

$$B(N,k) = \alpha + 2\beta$$

		# of rows	\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_{N-1}	\mathbf{x}_N
S			$+1 \\ -1$	+1 +1		+1 +1	$\begin{vmatrix} +1 \\ -1 \end{vmatrix}$
	S_1	α	: +1	: -1	:	: -1	: -1
			-1	+1		-1	+1
			+1	-1		+1	+1
			-1	-1		+1	+1
	S_2^+	eta	:	:	:	ŧ	:
			+1	-1		+1	+1
S_2			-1	-1		-1	+1
~ Z			+1	-1		+1	-1
			-1	-1		+1	-1
	S_2^-	eta	:	:	:	:	÷
			+1	-1		+1	-1
			-1	-1		-1	-1

Estimating α and β

Focus on $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{N-1}$ columns:

$$\alpha + \beta \leq B(N-1,k)$$

		# of rows	\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_{N-1}	\mathbf{x}_N
			+1	+1		+1	+1
			-1	+1		+1	-1
	S_1	α	:	÷	÷	÷	:
			+1	-1		-1	-1
			-1	+1		-1	+1
			+1	-1		+1	+1
			-1	-1		+1	+1
	S_2^+	eta	:	÷	÷	:	:
			+1	-1		+1	+1
S_2			-1	-1		-1	+1
	S_2^-	β	+1	-1		+1	-1
			-1	-1		+1	-1
			:	:	:	:	:
			+1	-1		+1	-1
			-1	-1		-1	-1

Estimating β by itself

Now, focus on the $S_2 = S_2^+ \cup S_2^-$ rows:

$$\beta \leq B(N-1,k-1)$$

		# of rows	\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_{N-1}	$ \mathbf{x}_N $
			+1	+1		+1	+1
			-1	+1		+1	-1
	S_1	α	:	:	:	:	:
			+1	-1		-1	-1
			-1	+1		-1	+1
			+1	-1		+1	+1
			-1	-1		+1	+1
	S_2^+	eta	i	÷	÷	:	:
			+1	-1		+1	+1
S_2			-1	-1		-1	+1
			+1	-1		+1	-1
			-1	-1		+1	-1
	S_2^-	β	:	:	:	:	:
			+1	-1		+1	-1
			-1	-1		-1	-1

Putting it together

$$B(N,k) = \alpha + 2\beta$$

$$\alpha + \beta \le B(N-1,k)$$

$$\beta \le B(N-1,k-1)$$

$$B(N,k) \leq$$

$$B(N-1,k) + B(N-1,k-1)$$

		# of rows	\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_{N-1}	\mathbf{x}_N
	S_1	α	+1 -1 : +1 -1	+1 +1 : -1 +1	· · · · · · · · · · · · · · · · · · ·	+1 +1 : -1 -1	+1 -1 : -1 +1
S_2	S_2^+	β	+1 -1 : +1 -1	-1 -1 : -1 -1		+1 +1 : +1 -1	+1 +1 :: +1 +1
	S_2^-	eta	+1 -1 : +1 -1	-1 -1 : -1 -1	· · · · · · · · · · · · · · · · · · ·	+1 +1 : +1 -1	-1 -1 : -1 -1

Numerical computation of B(N, k) bound

8/18

Analytic solution for B(N, k) bound

$$B(N,k) \le B(N-1,k) + B(N-1,k-1)$$

Theorem:

$$B(N,k) \leq \sum_{i=0}^{k-1} {N \choose i}$$

1. Boundary conditions: easy

		k						
		1	2	3	4	5	6	• •
	1	1	2	2	2	2	2	
	2							
	3	1						
N	4	1						
	5	1						
	6	1						
	•	•						

2. The induction step

$$\sum_{i=0}^{k-1} \binom{N}{i} = \sum_{i=0}^{k-1} \binom{N-1}{i} + \sum_{i=0}^{k-2} \binom{N-1}{i}?$$

$$= 1 + \sum_{i=1}^{k-1} \binom{N-1}{i} + \sum_{i=1}^{k-1} \binom{N-1}{i-1}$$

$$= 1 + \sum_{i=1}^{k-1} \left[\binom{N-1}{i} + \binom{N-1}{i-1} \right]$$

$$= 1 + \sum_{i=1}^{k-1} \binom{N}{i} = \sum_{i=0}^{k-1} \binom{N}{i} \checkmark$$

It is polynomial!

For a given \mathcal{H} , the break point k is fixed

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$
 maximum power is N^{k-1}

Three examples

$$\sum_{i=0}^{k-1} \binom{N}{i}$$

• \mathcal{H} is **positive rays**: (break point k=2)

$$m_{\mathcal{H}}(N) = N + 1 \leq N + 1$$

• \mathcal{H} is **positive intervals**: (break point k=3)

$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 \le \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

• \mathcal{H} is 2D perceptrons: (break point k=4)

$$m_{\mathcal{H}}(N) = ? \le \frac{1}{6}N^3 + \frac{5}{6}N + 1$$

Outline

ullet Proof that $m_{\mathcal{H}}(N)$ is polynomial

ullet Proof that $m_{\mathcal{H}}(N)$ can replace M

What we want

Instead of:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 2 \qquad \mathbf{M} \qquad e^{-2\epsilon^2 N}$$

We want:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \leq 2 m_{\mathcal{H}}(N) e^{-2\epsilon^2 N}$$

Pictorial proof 🙂

ullet How does $m_{\mathcal{H}}(N)$ relate to overlaps?

ullet What to do about $E_{
m out}$?

Putting it together

What to do about $E_{\rm out}$

Putting it together

Not quite:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 2 m_{\mathcal{H}}(N) e^{-2\epsilon^2 N}$$

but rather:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 4 m_{\mathcal{H}}(2N) e^{-\frac{1}{8}\epsilon^2 N}$$

The Vapnik-Chervonenkis Inequality