PROJEKT CHWYTAKA TYPU P-(O-P-Op)

Wojciech Dziuba

Automatyka i Robotyka
WEAliIB

Zadanie projektowe

Zaprojektować chwytak do manipulatora przemysłowego według zadanego schematu kinematycznego spełniający następujące wymagania:

- a) w procesie transportu urządzenie chwytające ma za zadanie pobrać (uchwycić) obiekt w położeniu początkowym, trzymać go w trakcie trwania czynności transportowych i uwolnić go w miejscu docelowym
- b) obiektem transportu są wałki oraz tuleje ze stali o średnicy d=34mm i długości l=100mm
- c) manipulator zasilany jest sprężonym powietrzem o ciśnieniu nominalnym $p_n = 0.6$ MPa.
- d) wałki transportowane są wyłącznie w pozycji pionowej

Rys. 1. Schemat kinematyczny chwytaka

1. Obliczenie ruchliwości chwytaka

Ruchliwość mechanizmu chwytaka obliczono korzystając z poniższego wzoru

$$w = 3n - 2p_5 - p_4 \tag{1}$$

Gdzie:

w – ruchliwość chwytaka

n - liczba członów ruchomych

p₅ - liczba par kinematycznych klasy piątej obrotowych i postępowych

p₄ - liczba par klasy czwartej

Dla chwytaka P-(O-P-Op):

Ruchliwość mechanizmu chwytaka w = 1, w związku z czym do napędzania chwytaka wykorzystano pojedynczy siłownik pneumatyczny o ruchu liniowym.

2. Analiza zadania projektowego

Rys. 2. Schemat kinematyczny chwytaka w założonych położeniach krańcowych wykonany w programie SAM 7.0 przy skoku członu napędzającego $\Delta x = 15mm$ Pozycja A – rozwarcie minimalne szczęk $d_A = 34mm$ Pozycja B – rozwarcie maksymalne szczęk $d_B = 60mm$

3. Wyznaczenie koniecznej siły chwytu F_{ch}

Transportowany obiekt powinien być chwytany w pozycji którą pokazano na **Rys. 3.** oraz **Rys. 4.**

Rys. 3. Rozkład sił tarcia podczas chwytania obiektu

Rys. 4. Rozkład sił normalnych podczas chwytania obiektu

Maksymalny ciężar transportowanego obiektu Q_{max} wyznaczono ze wzoru (2) rozpatrując sytuację w pozycji A **Rys. 2.**

$$Q_{max} = \frac{\pi d_{max}^2}{4} l_{max} * \rho \ [N]$$
 (2)

Gdzie:

 $\mathbf{d_{max}}$ - maksymalna średnica przenoszonego obiektu - maksymalna długość przenoszonego obiektu $\boldsymbol{\rho}$ - ciężar właściwy transportowanego obiektu

Zatem:

Dla pozycji A
$$Q_{A \, max} = \frac{\pi \cdot 0,034^2}{4} \cdot 0, 1 \cdot 78, 5 \cdot 10^3 \cong 7,20 \ [N]$$

Następnie konieczną siłę chwytu szczęk chwytaka wyznaczono za pomocą przekształconego wzoru (3) w następujący sposób

$$F_{ch} = 2N\cos(90^{\circ} - \gamma) = 2N\sin(\gamma)$$
 (3)

$$N = \frac{F_{ch}}{2sin(\gamma)} \qquad T = \mu N = \frac{\mu F_{ch}}{2sin(\gamma)}$$

Aby transportowany element został uchwycony prawidłowo musi być spełniony warunek:

$$4T = rac{2\mu F_{ch}}{sin(\gamma)} \geq Q \cdot n$$
 stąd $F_{ch} \geq rac{Qn \, sin\gamma}{2\mu}$

Gdzie:

N - siła normalna

2γ - kąt rozwarcia szczęk chwytaka

 μ - współczynnik tarcia pomiędzy stalowymi szczękami chwytaka, a stalowym obiektem

n - Współczynnik przeciążenia chwytaka (przyjęty za równy 2)

Dla pozycji A z $\mathbf{Rys.}$ 2. wymagana siła chwytu F_{ch} wynosi:

$$F_{Ach} \ge \frac{7,2 \cdot 2 \cdot sin(60^{\circ})}{2 \cdot 0,15} \cong 42 \ [N]$$

Minimalne wymiary szczęki chwytaka obliczono na podstawie poniższych wzorów, kształtu ramion chwytaka (Rys. 4.) oraz kształtu transportowanego obiektu:

$$tg\gamma = rac{d}{2e_{min}}$$
 stąd $e > e_{min} = rac{d}{2tg\gamma}$

Zatem dla przenoszenia wałków o średnicy d = 34 mm:

$$e_{min} = \frac{34}{2 \cdot tg(60^{\circ})} \cong 11 \, mm$$

Dla dalszych obliczeń przyjęto zatem **e = 15 mm**.

4. Charakterystyka przemieszczeniowa chwytaka

Rys. 5. Model chwytaka do wyznaczania charakterystyki przemieszczenia przy wykorzystaniu metody zamkniętego wieloboku.

Wielkości stałe:

11	_ 25mm	$oldsymbol{arphi}$ X	= 0 °
	= 25mm	arphiy	= 270°
12	= 20mm	• •	= 0°
14	= 34mm	φ 1	_
15		φ2	= 90°
	= 31mm	φ4	= 270°
16	= 20mm	· _	= 180°
17	= 20mm	φ 5	
.,	- 20 111111	φ8	= 180°

Pozostałe wielkości:

$$\varphi 6 = \varphi 3 - 105$$
 $\varphi 7 = \varphi 3 - 135$

Są one zależne od wartości x. Delta x wynosi $\Delta x = 15$ mm, a długość x zmienia się od 20mm do 35mm.

4.1 Wielobok L

Korzystając z metody analitycznej suma wszystkich wektorów wieloboku wektorowego L musi być równa 0.

$$\vec{x} + \vec{l1} + \vec{l2} + \vec{l3} + \vec{l4} + \vec{l5} = 0$$

Następnie wykonano rzut na OY oraz OX.

$$\begin{cases} x\cos(\varphi x) + l1\cos(\varphi 1) + l2\cos(\varphi 2) + l3\cos(\varphi 3) + l4\cos(\varphi 4) + l5\cos(\varphi 5) = 0 \\ x\sin(\varphi x) + l1\sin(\varphi 1) + l2\sin(\varphi 2) + l3\sin(\varphi 3) + l4\sin(\varphi 4) + l5\sin(\varphi 5) = 0 \end{cases}$$

$$\begin{cases} x + l1 + l3\cos(\varphi 3) - l5 = 0 \\ l2 + l3\sin(\varphi 3) - l4 = 0 \end{cases}$$
$$\begin{cases} l3\cos(\varphi 3) = l5 - x - l1 \\ l3\sin(\varphi 3) = l4 - l2 \end{cases}$$

Zatem:

$$\frac{l3sin(\varphi 3)}{l3cos(\varphi 3)} = tg(\varphi 3) = \frac{l4 - l2}{l5 - x - l1} \qquad \qquad \varphi 3 = arctg\left(\frac{l4 - l2}{l5 - x - l1}\right) + 180^{\circ}$$

$$\begin{cases} [l3cos(\varphi 3)]^2 = [l5 - x - l1]^2 \\ [l3sin(\varphi 3)]^2 = [l4 - l2]^2 \end{cases} l3^2 (cos(\varphi 3)^2 + sin(\varphi 3)^2) = [l5 - x - l1]^2 + [l4 - l2]^2$$

$$l3 = \sqrt{[l5 - x - l1]^2 + [l4 - l2]^2}$$

4.2 Wielobok P

Równanie dla wieloboku P:

$$\overrightarrow{y} + \overrightarrow{l2} + \overrightarrow{l6} + \overrightarrow{l7} + \overrightarrow{l8} = 0$$

$$ysin(\varphi y) + l2sin(\varphi 2) + l6sin(\varphi 6) + l7sin(\varphi 7) + l8sin(\varphi 8) = 0$$

$$y = l2 + l6sin(\varphi 3 - 105^\circ) + l7sin(\varphi 3 - 135^\circ)$$

Rys. 6. Charakterystyka przemieszczeniowa otrzymana w programie Excel 2007

Rys. 7. Charakterystyka przemieszczeniowa otrzymana w programie SAM 7.0 Oś pozioma x – wysunięcie suwaka [mm] Oś pionowa y – przemieszczenie [mm]

Otrzymane charakterystyki są bardzo zbliżone i różnice pomiędzy kolejnymi wartościami znajdują się na drugim miejscu po przecinku

	Wysunięcie suwaka [mm]	Przemieszczenie [mm]
Początkowe	0	0
Końcowe	15	11,744

5. Charakterystyka prędkościowa chwytaka

Charakterystykę prędkościową chwytaka wyznaczono różniczkując charakterystykę przesunięciową po x

$$\frac{dy}{dx} = \frac{d}{dx}(l2 + l6\sin(\varphi 3 - 105^\circ) + l7\sin(\varphi 3 - 135^\circ))$$

$$\frac{dy}{dx} = l2\frac{d\varphi 3}{dx} + l6\sin(\varphi 3 - 105^\circ)\frac{d\varphi 3}{dx} + l7\sin(\varphi 3 - 135^\circ)\frac{d\varphi 3}{dx}$$

$$\frac{dy}{dx} = l6\cdot\sin(\varphi 3 - 105^\circ)\frac{d\varphi 3}{dx} + l7\cdot\sin(\varphi 3 - 135^\circ)\frac{d\varphi 3}{dx}$$

$$\frac{d\varphi 3}{dx} = \frac{l4 - l2}{(l5 - x - l1)^2 + (l4 - l2)^2}$$

$$f_v(x) = \frac{dy}{dx} = \frac{(l4 - l2)\cdot((l6\cdot\cos(\varphi 3 - 105^\circ) + l7\cdot\cos(\varphi 3 - 135^\circ))}{(l5 - x - l1)^2 + (l4 - l2)^2}$$

Rys. 6. Charakterystyka prędkościowa otrzymana w programie Excel 2007

Rys. 7. Charakterystyka prędkościowa otrzymana w programie SAM 7.0 Oś pozioma x - wysunięcie suwaka [mm] Oś pionowa y – prędkość [mm/s]

	Wysunięcie suwaka [mm]	Prędkość [mm/s]
Początkowe/a	0	13,34
Końcowe/a	15	4,32

6. Charakterystyka siłowa chwytaka

Charakterystyka siłowa określona jest poniższym wzorem

$$f_F(x) = \frac{F_{ch}}{F_S}$$

Gdzie:

 $\mathbf{f}_{\mathbf{F}}(\mathbf{x})$ - Przełożenie siłowe mechanizmu chwytaka

F_{ch} - Siła chwytu

F_s - Siła na wyjściu zespołu napędowego (siłownika) chwytaka

Można ją jednak wyznaczyć stosując metodę mocy chwilowych, w której można wykorzystać wzór $\mathbf{f_v(x)}$ wcześniej policzonej charakterystyki prędkościowej chwytaka

$$f_F(x) = \frac{1}{2 \cdot f_v(x)}$$

Gdzie:

f_F(**x**) - Przełożenie siłowe mechanizmu chwytaka

 $f_v(x)$ - Charakterystyka prędkościowa

$$f_F(x) = \frac{(l5 - x - l1)^2 + (l4 - l2)^2}{2(l4 - l2) \cdot ((l6 \cdot \cos(\varphi 3 - 105^\circ) + l7 \cdot \cos(\varphi 3 - 135^\circ))}$$

Zamiast charakterystyki siłowej wyrażonej powyższym wzorem wykonano charakterystykę siły na członie napędzającym w programie SAM 7.0 przy założeniu, obciążenia ramion chwytaka symetrycznym układem sił $\mathbf{F}_{ch} = \mathbf{42N}$ Maksymalna siła na członie napędzającym wyniosła $\mathbf{F}_{Smax} = \mathbf{111N}$

Rys. 8. Model do wykonania charakterystyki siłowej w programie SAM 7.0

Rys. 9. Charakterystyka siły na członie napędzającym wykonana w SAM 7.0 Oś pozioma – wysunięcie suwaka [mm] Oś pionowa – siła na członie napędzającym (suwaku) [N]

7. Obliczenie wymaganych parametrów napędu pneumatycznego chwytaka

Przy założeniu ciśnienia zasilania pneumatycznego $\mathbf{p_n}=\mathbf{0,6MPa}$ i sile na członie napędzającym $\mathbf{F_s}=\mathbf{111N}$ wymaganą minimalną średnicę tłoka $\mathbf{D_{min}}$ obliczono za pomocą poniższego wzoru

$$D_{min} = \sqrt{\frac{4 \cdot F_{Smax}}{\pi \cdot p_n}} \cong 0,016 m$$

Następnie na podstawie wyznaczonej minimalnej średnicy tłoka dobrano odpowiedni siłownik stosując zasadę

$$P_t \geq P_w = k \cdot F_{Smax}$$

Gdzie:

Pt - teoretyczna siła pchająca lub ciągnąca siłownik

P_w - obliczona wymagana siła na tłoczysku

k = 1,2 - współczynnik przeciążenia

F_{Smax} - Siła na wyjściu siłownika chwytaka

Zatem:

$$P_t \geq P_w = 1, 2 \cdot 111 \cong 134N$$

Oznacza to że interesuje nas siłownik o parametrach

$$P_t \ge 134N$$
 $D \ge 16mm$ $\Delta x = 15mm$

8. Dobór siłownika na podstawie wymaganych parametrów

Biorąc pod uwagę wymagania wyznaczone w punkcie **7.** dobrano odpowiedni siłownik z oferty firmy Festo^[1].

9. Obliczenia wytrzymałości chwytaka

9.1 Sprawdzenie warunku wytrzymałościowego na ścianie dla najbardziej obciążonego sworznia

Rys. 13. Charakterystyka siły F_{abs} absolutnej działającej w przegubie **10** (**Rys.8.**) zestawiona z charakterystyką siły F_x na członie napędzającym

Na podstawie **Rys. 13.** oraz **Rys. 8.** można określić że największe obciążenie występuje w sworzniu 10 oraz 11 w pozycji chwytu. Siła reakcji na tym przegubie wynosi $R_s \cong 79N$ i jest jednocześnie maksymalną siłą reakcji ma tym przegubie.

Na materiał do wykonania sworzni oraz konstrukcji chwytaka została wybrana stal 20 $\mathrm{HG}^{[2]}$, której wytrzymałość na ścinanie wynosi $k_t = 240~MPa$, a sworznie w całym mechanizmie mają średnicę $\mathbf{d} = 1$ mm.

Sworznie ścinane są w dwóch płaszczyznach zatem warunek wytrzymałościowy ma postać

$$au_{max} = rac{2 \cdot R_s}{\pi \cdot d^2} \cong 51 \, MPa < k_t = 240 \, MPa$$

Wynika z tego że warunek wytrzymałości na ścinanie został spełniony.

Ponieważ obliczenia były wykonywane dla najbardziej obciążonego sworznia można uznać, że pozostałe sworznie również będą odporne na ścinanie

9.1 Sprawdzenie warunku wytrzymałościowego na zginanie ramion chwytaka

Moment gnący ramię obliczono na podstawie wzoru

$$M_g = r \cdot F_{ch}$$

Gdzie:

r - ramię siłyF - siła chwytu

Maksymalny moment gnący znajduje się w miejscu w którym ramię przechodzi przez sworzeń przy zamkniętym położeniu szczęk chwytaka. Moment siły w tamtym miejscu to:

$$F_{ch} \cdot (l6\cos(30^{\circ}) + l7) \cong 1,6 Nm$$

Co pokrywa się z wartością wyliczoną przez SAM 7.0, który podaje $M_{\text{g}}\cong$ 1,6 Nm.

Ramie chwytaka ma przekrój kwadratu o boku a = 3mm. Sworzeń przechodzący przez ramię w miejscu przegubu osłabia konstrukcję, więc wzór na wskaźnik wytrzymałości przyjmuje postać

$$W_g = \frac{a(a^3 - d^3)}{6a} \cong 4.3 \cdot 10^{-9} \, m^3$$

Na podstawie wyżej wyznaczonych wartości wyznaczono warunek wytrzymałościowy wyrażony poniższym wzorem

$$\sigma_{gmax} = rac{M_g}{W_g} \cong 370 \, MPa \, < k_g = \, 450 \, MPa$$

Stal $20HG^{[2]}$, którą wybrano na wykonanie ramion chwytaka posiada wytrzymałość na zginanie $\mathbf{k_g} = \mathbf{450}$ MPa, co oznacza że warunek wytrzymałości na zginanie został spełniony.

Bibliografia

- [1] https://www.festo.com/cat/pl_pl/products 25.05.2018
- [2] http://gemini.net.pl/~marshall/pkm/tablice/tab01.htm 26.05.2018