DANIEL ESTEBAN ARIAS ACOSTA 1088279598

En la tabla 1,1 se muestra una comparativa de los tiempos de ejecución en la GPU y la CPU, para el ejercicio de la suma de vectores con tamaños constantes.

TAMAÑO	TIEMPO GPU X10^-6	TIEMPO CPU X10^-6
512	107	2
1024	64	3
3000	92	25
10000	112	79
500000	1462	1677

Tabla 1,1. Comparación de tiempos entre GPU y CPU

Como se puede observar en la gráfica 1,1. los tiempos de ejecución en la GPU tienden a ser mayores que los de la CPU con tamaños inferiores a 3000, dado por entendido que el device demora mas que el host; sin embargo se puede notar una similitud de tiempos cuando el tamaño de los vectores rodea un tamaño de 1000 y un descenso incremental de la GPU a comparación de la CPU. Con esto se concluye que si se pueden mejorar los tiempos de respuesta por parte del device, con tamaños de vectores iguales o superiores a 500000.

Tamaño del vector vs Tiempos en GPU y CPU

Gráfica 1.1.

A continuación en la tabla 1,2. se observan los datos tomados del mismo ejercicio, con la diferencia de que los vectores sumados son unitarios. Se logra percibir un comportamiento similar al de la gráfica 1,1. y se llega a la misma conclusión.

TAMAÑO	TIEMPO GPU X10^-6	TIEMPO CPU X10^-6
512	82	1
1024	105	7
3000	92	11
10000	86	32
500000	1692	3249

Tabla 1,2. Datos de la suma de vectores unitarios.

Gráfica 1,2.

¿Que pasa si solo uso hilos, bloques o una combinación de ambas?

Si se usan solo hilos

Pros:

- puede haber comunicación y sincronización entre los datos
- Permite escalabilidad sin necesidad de recompilar.
- Los hilos son extremadamente ligeros y tienen muy poca sobrecarga de creación.

Contras:

• Se requieren miles para una eficiencia completa.

Si se usan solo bloques

Pros:

• No hay dependencia en el orden de ejecución de procesos.

Contras:

• No permite comunicación y sincronización entre hilos de diferentes bloques.