1. Ariketa

1. Bertsioa

- a) Kableatua
- b) 1100000 100 011 111

Jauzi erregis. bada = 0: Opcode = 1100000; R3 = 011; $25 = 011001 \rightarrow -25 = 1001111$

- c) 100 011 111 1 0000 0 0 0 1 0 0
- d) Si R3 = 0: PC = 30010 + (-25) = 29985Si R3 \neq 0: PC = 30010 + 1 = 30011

2. Bertsioa

- a) Kableatua
- b) 1100000 011 010 001

Jauzi erregis. bada = 0: Opcode = 1100000; R2 = 010; 25 = 011001

- c) 011 010 001 1 0000 0 0 0 1 0 0
- d) Si R3 = 0: PC = 30010 + (+25) = 30045Si R3 \neq 0: PC = 30010 + 1 = 30011

2. Ariketa

1. Bertsioa

- a) tins = 3 + 2 + 2 + 4 = 11 ns; $f = 1/tins = 1/(11 \cdot 10^{-9}) = 90,91$ MHz
- b) $6 \cdot tins = 66 \, ns$
- c) B eta Dren ondoren. Antzeko luzerak duten etapak lortzen direlako: tc = Mx {(3+2) ns; (2+4) ns} = 6 ns
- d) tdins= td · (N+C-1) = $7 \cdot (6+2-1) = 49$ ns td=tc+1= 6+1 = 7 ns (etapa baten iraupena erregistroa barne); N=aginduen kopurua; C=Etapa kopurua/agindu
- e) $te = \lim_{N \to \infty} \frac{(N+C+1) \cdot td}{N} = td = 7 \text{ ns}$
- f) A, C eta Dren ondoren erregistroak ipiniz: tf = Mx {3 ns; (2+2) ns; 4 ns} = 4 ns. Bai, etapa bakoitzeko iraupena txikiagotzen delako: (tc+1) = 7 ns-tik (tf+1) = 5 ns-ra.

2. Bertsioa

- a) tins = 4 + 2 + 2 + 3 = 11 ns; $f = 1/tins = 1/(11 \cdot 10^{-9}) = 90,91$ GHz
- b) $5 \cdot tins = 55 ns$
- c) B eta Dren ondoren. Antzeko luzerak duten etapak lortzen direlako: tc = Mx {(3+2) ns; (2+4) ns} = 6 ns
- d) tdins= $td \cdot (N+C-1) = 7 \cdot (5+2-1) = 42 \text{ ns}$ td=tc+1=6+1=7 ns (etapa baten iraupena erregistroa barne); N=aginduen kopurua; C=Etapa kopurua/agindu
- e) $te = \lim_{N \to \infty} \frac{(N+C+1) \cdot td}{N} = td = 7 \text{ ns}$
- f) A, C eta Dren ondoren erregistroak ipiniz: tf = Mx {4 ns; (2+2) ns; 3 ns} = 4 ns. Bai, etapa bakoitzeko iraupena txikiagotzen delako: (tc+1) =7 ns-tik (tf+1) =5 ns-ra.

3. Ariketa

1. Bertsioa

200	E. Kodea Modua	
201	ADRS o NBR = 500	
202	Hurrengo agindua	
+++	+++	
400	600	
+++	+44	
500	800	
+++	****	
600	200	
(0)640	3000	
702	150	

800	250	
	100	
900	350	
***	544	

Helbideratze Modua		Helbide efektiboa	Acc
Zuzena	LDA ADRS	500	800
Berehalakoa	LDA #NBR	201	500
Zeharkakoa	LDA [ADRS]	800	250
Erlatiboa	LDA \$ADRS	500+202=702	150
Indexatua	LDA ADRS (R3)	500+400=900	350
Erregistroa	LDA R3	X	400
Zeharkako erregistroa	LDA (R3)	400	600

PC = 202	
R1 = 100	
R2 = 300	
R3 = 400	
R4 = 500	

2. Bertsioa

200	E. Kodea Modua
201	ADRS 6 NBR = 500
202	Hurrengo agindua
+++	+++
400	600
+++	+14
500	800
+++	1444
600	200
3066	300
702	250
***	****
800	350
900	450
***	344

Helbideratze Modua		Helbide efektiboa	Acc
Zuzena	LDA ADRS	500	800
Berehalakoa	LDA #NBR	201	500
Zeharkakoa	LDA [ADRS]	800	350
Erlatiboa	LDA \$ADRS	500+202=702	250
Indexatua	LDA ADRS (R3)	500+400=900	450
Erregistroa	LDA R3	X	400
Zeharkako erregistroa	LDA (R3)	400	600

PC = 202	
R1 = 100	
R2 = 300	
R3 = 400	
R4 = 500	

4.Ariketa

- a) Kalkulu azpierrutinerako: RET / "Return to the calling program/subroutine". Etendura azpierrutinerako: RETI / "Return from Interrupt" (RET onartzen da).
- b) Bi kasuetan azpierrutinatik bueltatzeko aginduak PCa berreskuratzen du pilatik, hor gorde zen azpierrutina deitu zenean.
- c) Kalkulu azpierrutina: Azpierrutinaren barruan edo programa nagusian azpierrutinaren deia baio lehen. Etenaldi azpierrutina: Azpierrutinaren barruan (erregistroak erabili baino lehen). Ezin da egin programa nagusitik ez baitakigu noiz emango den etenaldi bat.
- d) Ez. Erregistroen berreskuratzea gorde ziren alderantzizko ordenean egon behar da.

5. Ariketa

- a) Eskemak <u>iturri</u> unitateak hasitako bi gailuren arteko <u>handshakina</u> bidezko <u>sinkronizazioa</u> irudikatzen du.
- b) 1 eta 2-ak, <u>iturri</u> eta <u>destino</u> unitateak adierazten dituzte, hurrenez hurren.
- c) 3-ak <u>datu busa (Data bus)</u> adierazten du.
- c) 4-ak <u>datu busa (Data bus)</u> adierazten du.
- e) 5 eta 6-k, request (eskaera) eta reply (erantzuna) seinaleak adierazten dituzte, hurrenez hurren.
- f) 7 eta 8-k, <u>request (eskaera)</u> eta <u>reply (erantzuna)</u> lerroak irudikatzen dituzte, hurrenez hurren.
- g) <u>Time-out (itxoite denbora)</u> mekanismo batek erroreak detektatzen ditu datuen transferentzian.
- h) Transferentzia iturri unitateak hasten du.
 - 0. Hasierako egoera: Request eta Reply desgaituta daude.
 - 1. Iturriak datua ipintzen du eta gero Request gaitzen du datua dagoela esateko.
 - 2. Erantzun bezala destinoak datua hartzen du eta gero Reply gaitzen du esateko datua hartu duela.
 - 3. Erantzun bezala Iturriak Request desgaitzen du eta datua kentzen du.
 - 4. Erantzun bezala eta amaitzeko destinoak Reply desgaitzen du.

Prozesua burututa: iturriak eta destinoak dakite prozesua ondo joan dela.

6. Ariketa

1. Bertsioa

32k x 16 erabiliz 16k x 8

m=16; mci=8; $2^n=32k$; $2^{nci}=16k$

a) $N = (m / mci) \cdot (2^n / 2^{nci}) = 4 memoria$

b)

2. Bertsioa

64k x 8 erabiliz 16k x 8

n=8; mci=8; $2^n=64k;$ $2^{nci}=16k$

a) $N = (m / mci) \cdot (2^n / 2^{nci}) = 4$ memoria

b)

3. Bertsioa

16k x 32 erabiliz 16k x 8

m=32; mci=8; 2ⁿ=16k; 2^{nci}=16

a) $N = (m / mci) \cdot (2^n / 2^{nci}) = 4$ memoria

b)

