Viga a flexión doblemente empotrada

Introducción

En este Trabajo se nos propone resolver el análisis de una viga empotrada por tres medios distintos:

- 1- Resolución matemática analítica
- 2- Método de diferencias finitas en programa de calculo
- 3- Método de elementos finitos en programa CAD.

De esta manera arribar al mismo objetivo, y comparando sus resultados.

Interpretación Física

La ecuación u(x) representa el desplazamiento vertical o flecha de una viga doblemente empotrada donde f(x) es el valor de la carga transversal que se le ejerce a la misma. Con las restricciones en ambos extremos, siendo nulo el desplazamiento y el giro.

- u(x): Desplazamiento vertical
- u'(x): Giro
- u"(x): Curvatura
- u"'(x): Corte
- $u^{(IV)}(x)$: Carga Transversal

Figura 24: Viga Bi-empotrada

Entonces, consideramos la funcion $f(x) = \frac{w(x)}{EI} = \frac{d^4u}{dx^4}$, siendo E el modulo de elasticidad del material e I el momento de inercia con respecto al eje.

Resolución matemática analítica

Comenzamos analizando el problema dado planteado a continuación:

La ecuación corresponde al problema físico de calcular el desplazamiento transversal u(x) de una viga empotrada donde f(x) es la carga transversal, en términos matemáticos,

(D)
$$\begin{cases} u^{IV} = f(x) & \text{en } \Omega \\ u(0) = 0 = u'(0) = u(1) = u'(1) & \text{en } \Gamma \end{cases}$$

De manera de hacerlo más general tomamos 1=2h, siendo 1 la medida de la longitud de la viga en el extremo de empotramiento. Concluimos 0=u'(0)=u(2h)=u'(2h)=u(0).

La ecuación analizada es una ODE no homogénea de 4^{to} orden, por lo tanto, mediante cuatro integrales definidas se arriba a la solución. En el caso de que la carga transversal sea constante, f(x) = Q, la solución analítica es:

$$\begin{split} u_{(x)}^{(IV)} &= f(x) \\ u_{(x)}^{"''} &= \int f dx = f \cdot x + C_1 \\ u_{(x)}^{"} &= \int (f \cdot x + C_1) dx = f \frac{x^2}{2} + C_1 x + C_2 \\ u_{(x)}^{'} &= \int \left(f \frac{x^2}{2} + C_1 x + C_2 \right) dx = \frac{f}{2} \frac{x^3}{3} + C_1 \frac{x^2}{2} + C_2 x + C_3 \\ u_{(x)} &= \frac{f}{6} \frac{x^4}{4} + \frac{C_1}{2} \frac{x^3}{3} + C_2 \frac{x^2}{2} + C_3 x + C_4 \\ u_{(x)} &= \frac{f}{24} x^4 + \frac{C_1}{6} x^3 + \frac{C_2}{2} x^2 + C_3 x + C_4 \end{split}$$

Ahora, debemos encontrar los coeficientes C_1 , C_2 , C_3 y C_4 . Para ello, se utilizan las condiciones de borde dadas en el enunciado, es decir, 0 = u'(0) = u(2h) = u'(2h) = u(0):

En el extremo x=0;

$$u_{(x)} = \frac{f}{24}x^4 + \frac{C_1}{6}x^3 + \frac{C_2}{2}x^2 + C_30 + C_4$$
$$u_{(0)} = 0 = \frac{f}{24}0 + \frac{C_1}{6}0 + \frac{C_2}{2}0 + C_30 + C_4$$
$$0 = C_4$$

Luego,

$$u'_{(x)} = \frac{f}{2} \frac{x^3}{3} + C_1 \frac{x^2}{2} + C_2 x + C_3$$
$$u'_{(0)} = 0 = \frac{f}{2} \frac{0}{3} + C_1 \frac{0}{2} + C_2 x + C_3$$
$$0 = C_3$$

Resultando entonces los coeficientes,

$$C_3 = 0 \ y \ C_4 = 0$$

En el extremo x=2h;

$$u(x) = 0 = \frac{f}{24} (2h)^4 + \frac{C_1}{6} (2h)^3 + \frac{C_2}{2} (2h)^2$$
$$\frac{C_2}{2} (2h)^2 = -\frac{f}{24} (2h)^4 - \frac{C_1}{6} (2h)^3$$
$$C_2 = -\frac{2f}{24} \frac{(2h)^4}{(2h)^2} - \frac{2C_1}{6} \frac{(2h)^3}{(2h)^2}$$
$$C_2 = -\frac{f}{12} (2h)^2 - \frac{C_1}{3} (2h)$$

Por otro lado,

$$u'_{(x)} = 0 = \frac{f}{6}x^3 + \frac{C_1}{2}x^2 + xC_2$$

$$u'_{(2h)} = \frac{f}{6}(2h)^3 + \frac{C_1}{2}(2h)^2 + (2h)\left[-\frac{f}{12}(2h)^2 - \frac{C_1}{3}(2h)\right]$$

$$u'_{(2h)} = 0 = \frac{f}{6}(2h)^3 + \frac{C_1}{2}(2h)^2 - \frac{f}{12}(2h)^3 - \frac{C_1}{3}(2h)^2$$

$$C_1\frac{(2h)^2}{2} - C_1\frac{(2h)^2}{3} = -\frac{f}{6}(2h)^3 + \frac{f}{12}(2h)^3$$

$$C_1(2h)^2\left[\frac{1}{2} - \frac{1}{3}\right] = \frac{f}{6}(2h)^3\left[-1 + \frac{1}{2}\right]$$

$$C_1(2h)^2\left[\frac{1}{6^6}\right] = \frac{f}{6}(2h)^p\left[\frac{-1}{2}\right]$$

$$C_1 = -fh$$

Reemplazando C1 en C2

$$C_{2} = -\frac{f}{12}(2h)^{2} - \frac{C_{1}}{3}(2h)$$

$$C_{2} = -\frac{f}{12}(2h)^{2} - \frac{-fh}{3}(2h) = -\frac{f}{12}(2h)^{2} - \frac{-f}{3}(2h^{2})$$

$$C_{2} = fh^{2} \left[\frac{-1}{3} + \frac{2}{3} \right]$$

$$C_{2} = \frac{fh^{2}}{3}$$

$$C_{2} = \frac{fh^{2}}{3} \quad y \quad C_{1} = -fh$$

Ahora, para obtener u(x) reemplazamos C1, C2, C3 y C4 en la ecuación, de manera que planteamos:

$$u(x) = \frac{f}{24}x^4 + \left(-\frac{fh}{6}\right)x^3 + \frac{fh^2}{6}x^2$$

Quedando u(x) en función del punto de la viga que queremos analizar y la longitud de la viga h.

Recordando que $f(x) = \frac{w(x)}{EI}$

Reemplazando en la última ecuación:

$$u(x) = \frac{w(x)}{24 * E * I} * x^4 + \left(-\frac{w(x) * h}{6 * E * I}\right) * x^3 + \frac{w(x) * h^2}{6 * E * I} * x^2$$

Por último, si también consideramos una fuerza puntual $f(x) = Q = \frac{q}{EI} = \frac{w(x)}{EI}$ podemos concluir:

$$u(x) = \frac{q}{24 * E * I} * x^4 + \left(-\frac{q * h}{6 * E * I}\right) * x^3 + \frac{q * h^2}{6 * E * I} * x^2$$

Luego, aplicamos a un ejemplo, siendo $E=200000N/mm^2$ e $I=(1/32)*pi*200^3 mm$ y la fuerza aplicada f=1000N. Tomamos la medida de la viga de sección circular de 100mm de radio y 10000mm de largo. Graficamos la función en MATLAB para observar la solución analítica del problema.

Siendo aproximadamente 17*10^4 mm la flecha máxima de la viga.

Resolución por método de diferencias finitas

Para resolver la ecuación a partir de método de diferencia finitas, de manera de obtener u a partir de $\frac{du^4}{d^4x} = \frac{q}{EI'}$ tomamos como datos aquellos presentados anteriormente y un paso h de 5 mm.

Reescribimos la derivada cuarta centrada como:

$$f'^{v} = \frac{f_2 - 4f_1 + 6f_0 - 4f_{-1} + f_{-2}}{h^4}$$

Las derivadas cuartas hacia adelante y hacia atrás las reescribimos de la siguiente manera:

- Hacia adelante:

$$f'^{v} = \frac{3f_0 - 14f_1 + 26f_2 - 24f_3 + 11f_4 - 2_{f5}}{h^4}$$

Hacia atrás:

$$f''' = \frac{3f_0 - 14f_{-1} + 26f_{-2} - 24f_{-3} + 11f_{-4} - 2f_{-5}}{h^4}$$

Luego, haciendo uso del Método de diferencia finitas en una dimensión aplicando condiciones de borde Dirichlet iguales a 0. Aplicando la derivada cuarta hacia adelante en el segundo nodo y la derivada cuarta hacia atrás en el penúltimo nodo, mientras en los nodos internos usamos la derivada cuarta centrada. Finalmente, la función u(x) queda como muestra el grafico:

Como bien podemos observar, la gráfica obtenida analíticamente y la obtenida por método de diferencias finitas podemos considerarlas equivalentes, lo cual demuestra la eficacia de este método.

Resolución por método de elementos finitos en programa CAD

Tomamos la viga de sección circular de 100 mm de radio y 10000 mm; cuyo material es "AISI 1010 barra de acero laminada en caliente". Con una fuerza distribuida aplicada sobre el eje z perpendicularmente y doble empotramiento, sobre la cual analizaremos su desplazamiento en mm por medio de una simulación en SOLIDWORKS.

Viga circular

