EE2030Linear Algebra

Homework#3

Due: 03/29/2023 10:10(Wed)

1. What conditions on b_1 , b_2 , b_3 , b_4 make each system solvable? Find ${\bf x}$ in that case:

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 2 & 5 \\ 3 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 5 & 7 \\ 3 & 9 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

2. Find by elimination the rank of A and also the rank of A^T :

$$A = \begin{bmatrix} 1 & 4 & 0 \\ 2 & 11 & 5 \\ -1 & 2 & 10 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & q \end{bmatrix}$$
(rank depends on q)

3. Reduce to $U\mathbf{x} = \mathbf{c}$ (Gaussian elimination) and then $R\mathbf{x} = \mathbf{d}$ (Gauss-Jordan):

$$A\mathbf{x} = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 1 & 3 & 2 & 0 \\ 2 & 0 & 4 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 10 \end{bmatrix} = \mathbf{b}.$$

Find a particular solution \mathbf{x}_p and all homogeneous solutions \mathbf{x}_n .

4. U comes from A by subtracting row 1 from row 3:

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 2 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Find bases for the two column spaces. Find bases for the two row spaces. Find bases for the two nullspaces. Which spaces stay fixed in elimination?

5. For which numbers c and d do these matrices have rank 2?

$$A = \begin{bmatrix} 1 & 2 & 5 & 0 & 5 \\ 0 & 0 & c & 2 & 2 \\ 0 & 0 & 0 & d & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} c & d \\ d & c \end{bmatrix}$$

6. Choose $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4)$ in \mathbf{R}^4 . It has 24 rearrangements like $(\mathbf{x}_2, \mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_4)$ and $(\mathbf{x}_4, \mathbf{x}_3, \mathbf{x}_1, \mathbf{x}_2)$. Those 24 vectors, including \mathbf{x} itself, span a subspace \mathbf{S} . Find specific vectors \mathbf{x} so that the dimension of \mathbf{S} is: (a) zero, (b) one, (c) three, (d) four.

$$\begin{vmatrix}
3 & b_1 \\
4 & 6 & b_2 \\
5 & 7 & b_3 \\
9 & 12 & b_4
\end{vmatrix} \Rightarrow \begin{vmatrix}
1 & 2 & 3 & b_1 \\
0 & 0 & 0 & b_2 - 2b_1 \\
0 & 1 & 1 & b_3 - 2b_1 \\
0 & 3 & 3 & b_4 - 3b_1
\end{vmatrix} \Rightarrow \begin{vmatrix}
1 & 0 & 1 & 5b_1 - 2b_2 \\
0 & 0 & 0 & b_2 - 2b_1 \\
0 & 1 & 1 & b_3 - 2b_1 \\
0 & 0 & 0 & b_4 + 3b_1 - 3b_2
\end{vmatrix}$$

$$\begin{vmatrix}
b_1 - 2b_1 = 0 & 4nd & b_1 + 3b_1 - 3b_2 = 0 & then it is solven.$$

$$\begin{bmatrix} 2 & 5 & 7 & b_3 \\ 3 & 9 & 12 & b_4 \end{bmatrix} = \begin{bmatrix} 0 & 3 & 3 & 5 & b_4 - 3 & b_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 5 & b_4 + 3 & b_1 - 3 & b_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & b_2 - 2b_1 = 0 & 4 & nd & b_4 + 3b_1 & -3b_3 = 0 & then & it is solvable.$$

 $A^{T} = \begin{bmatrix} 1 & 2 & -1 \\ 4 & 11 & 2 \\ 0 & 5 & 10 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & 6 \\ 0 & 5 & 10 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & 6 \\ 0 & 0 & 0 \end{bmatrix}$

$$\begin{bmatrix}
3 & 9 & 12 & | & 04 & | & 1 & 0 & 3 & 3 & | & 64-3 & | & 1 & 0 & 0 & 0 & | & 64+3 & | & 1 & | & & 1 & | &$$

A has rank 2.

AT has rank 2.

 $\underline{\mathcal{Y}} = \chi_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} + \begin{bmatrix} 5b_1 - 2b_3 \\ b_2 - 2b_1 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 & 3 & b_1 \\ 2 & 4 & 6 & b_2 \\ 2 & 5 & 7 & b_3 \\ 3 & 9 & 12 & b_4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 3 & b_1 \\ 0 & 0 & 0 & b_2 - 2b_1 \\ 0 & 1 & 1 & b_3 - 2b_1 \\ 0 & 3 & 3 & b_4 - 3b_1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & 5b_1 - 2b_2 \\ 0 & 0 & 0 & b_2 - 2b_1 \\ 0 & 1 & 1 & b_3 - 2b_1 \\ 0 & 0 & 0 & b_4 + 3b_1 - 3b_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 & 8 - 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 8 - 2 \end{bmatrix}$$

$$If \quad g = 2 \quad \text{, then } A \text{ has } rank \ 2 \quad .$$

Otherwise, A has rank 3.

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 8 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 8 - 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 8 - 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 8 - 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 8 - 2 \end{bmatrix}$$

If
$$g=2$$
, then A^T has rank 2.

 $\chi_{\rho} = \begin{bmatrix} -4 \\ 3 \\ 0 \end{bmatrix}$, $\chi_{n} \Rightarrow \begin{bmatrix} -2 \\ i \end{bmatrix}$

$$3. \begin{bmatrix} 1 & 0 & 2 & 3 & : & 2 \\ 1 & 3 & 2 & 0 & : & 5 \\ 2 & 0 & 4 & 9 & : & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 3 & : & 2 \\ 0 & 3 & 0 & -3 & : & 3 \\ 0 & 0 & 0 & 3 & : & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 0 & : & -4 \\ 0 & 3 & 0 & 0 & : & 9 \\ 0 & 0 & 0 & 3 & : & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 0 & : & -4 \\ 0 & 1 & 0 & 0 & : & 3 \\ 0 & 0 & 0 & 1 & : & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 3 & 2 & 6 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 3 & 3 & 6 \end{bmatrix}$$

$$\begin{cases} \chi_1 = -2\chi_3 - 4 \\ \chi_2 = 3 \\ \chi_4 = 2 \end{cases} = \begin{cases} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \end{cases} = \begin{bmatrix} -2\chi_3 - 4 \\ 3 \\ \chi_3 \\ \chi_4 \end{bmatrix} = \begin{bmatrix} -2\chi_3 - 4 \\ 3 \\ \chi_3 \\ 2 \end{bmatrix} = \begin{bmatrix} -2\chi_3 - 4 \\ 3 \\ 0 \\ 2 \end{bmatrix}$$

4.
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 2 \end{bmatrix}, \ U = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & 3 & 2 \end{bmatrix}, \ U = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$C(A) \qquad U(X = 0)$$

$$\begin{cases} \begin{bmatrix} 1 \\ 0 \end{bmatrix} & \begin{bmatrix} 3 \\ 1 \end{bmatrix} \text{ are a basis of } C(A) \\ \begin{bmatrix} 1 \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \end{bmatrix} & \begin{bmatrix}$$

re a basis of
$$C(V)$$
is of $N(A)$

$$A^{T} = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 1 & 2 \\ 2 & 1 & 2 \end{bmatrix}$$

$$\begin{cases} \begin{bmatrix} -1 \end{bmatrix} \text{ is a basis of } N(0) \\ S[1 > 2] \cdot (0 | 1) \text{ are a basis of } C(A^{1}) \end{cases}$$

[[1 3 2], [0.1.1] are a basis of $C(U^T)$

$$V_1 = \begin{bmatrix} 1 & 2 & 2 \\ 3 & 1 & 0 \\ 2 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 5 & 0 & 5 \\ 0 & 0 & C & 2 & 2 \\ 0 & 0 & 0 & d & 2 \end{bmatrix} , B = \begin{bmatrix} C & d \\ d & C \end{bmatrix}$$

$$\Rightarrow$$
 If $C=0$, $d=2$, then A.B have rank 2.

6. (a) If
$$x_1 = x_2 = x_3 = x_4 = 0$$
, then dim(s) = 0

(b) If
$$\chi_1 = \chi_2 = \chi_3 = \chi_4 \neq 0$$
, then dim(S) = |

(C) If 2 components of
$$\underline{X}$$
 are positive, the other two are negative, and $x_1^2 = x_2^2 = x_3^2 = x_4^2$

(d) Except above situation,
$$dim(s) = 4$$

7. Without computing A, find bases for its four fundamental subspaces:

8. (Left nullspace) Add the extra column \mathbf{b} and reduce A to echelon form:

8. (Left numspace) Add the extra column b and reduce A to echelon form:
$$\begin{bmatrix} 1 & 7 & 7 \\ 2 & 5 & 7 \\ 3 & 6 & 7 \end{bmatrix} \qquad \begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & b_1 \\ 4 & 5 & 6 & b_2 \\ 7 & 8 & 9 & b_3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & b_1 \\ 0 & -3 & -6 & b_2 - 4b_1 \\ 0 & 0 & 0 & b_3 - 2b_2 + b_1 \end{bmatrix}$$

A combination of the rows of A has produced the zero row. What combination is it? (Look at b_3 - $2b_2$ + b_1 on the right side.) Which vectors are in the nullspace of A^T and which vectors are in the nullspace of A?

9. M is the space of 3 by 3 matrices. Multiply every matrix X in M by

$$A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}. \text{ Notice: A } \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

- (a) which matrices X leads to AX = zero matrix?
- (b) which matrices have the form AX for some matrix X?

(a) finds the "nullspace" of that operation AX and (b) finds the "column space". What are the dimensions of those two subspaces of M? Why do the dimensions

$$\begin{bmatrix}
(7 - 1) & ($$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

7. Basis of
$$C(A)$$
: $\begin{bmatrix} 1 & 6 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 2 & 3 \\ 13 & 26 \end{bmatrix}$. $\begin{bmatrix} 3 & 44 \\ 44 \end{bmatrix}$
Basis of $N(A)$: $\begin{bmatrix} 0 \\ -\frac{1}{2} \end{bmatrix}$

$$N(A) = \left\{ a \cdot \begin{bmatrix} 1 \\ -2 \end{bmatrix}, a \in \mathbb{R} \right\}$$

$$N(A^{T}) = \left\{ b \cdot \begin{bmatrix} 1 - 2 \end{bmatrix}, b \in \mathbb{R} \right\}$$

$$\begin{cases}
(1) & (1) & (2) & (2) & (2) & (2) & (2) & (2) & (3) & ($$

9. (a)
$$\chi = a \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
, $a \in \mathbb{R}$

(b)