

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
7. März 2002 (07.03.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/18370 A1

(51) Internationale Patentklassifikation⁷: C07D 403/12, (74) Gemeinsamer Vertreter: BOEHRINGER INGELHEIM PHARMA KG; 55216 Ingelheim/Rhein (DE).

(21) Internationales Aktenzeichen: PCT/EP01/09535

(81) Bestimmungsstaaten (national): AB, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(22) Internationales Anmeldedatum:
18. August 2001 (18.08.2001)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
100 42 061.3 26. August 2000 (26.08.2000) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BOEHRINGER INGELHEIM PHARMA KG [DE/DE]; 55216 Ingelheim/Rhein (DE).

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HIMMELSBACH, Frank [DE/DE]; Ahornweg 16, 88441 Mittelbiberach (DE). LANGKOPF, Elke [DE/DE]; Schloss 3, 88447 Warthausen (DE). JUNG, Birgit [DE/DE]; Mühlstrasse 23, 55270 Schwabenheim (DE). BLECH, Stefan [DE/DE]; Müllerweg 9, 88447 Warthausen (DE). SOLCA, Flavio [CH/AT]; Fimbingergasse 1/9, A-1230 Wien (AT).

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: BICYCLIC HETEROCYCLES, MEDICAMENTS CONTAINING THESE COMPOUNDS, THEIR USE, AND METHODS FOR THE PRODUCTION THEREOF

(54) Bezeichnung: BICYCLISCHE HETEROCYCLEN, DIESE VERBINDUNGEN ENTHALTENDE ARZNEIMITTEL, DEREN VERWENDUNG UND VERFAHREN ZU IHRER HERSTELLUNG

WO 02/18370 A1

(57) Abstract: The invention relates to bicyclic heterocycles of general formula (I), in which R_a to R_c, A to E, and X are defined as referred to in Claim No. 1, to their tautomers, their stereoisomers, and to their salts, particularly their physiologically compatible salts with inorganic or organic acids or bases, which have valuable pharmacological properties, in particular, an inhibitive effect on the signal transduction imparted by tyrosine kinases. The invention also relates to the use of said bicyclic heterocycles for treating diseases, especially tumor diseases, disorders of the lung and of the respiratory tract, and to the production thereof.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft bicyclische Heterocyclen der allgemeinen Formel (I), in der R_a bis R_c, A bis E und X wie im Anspruch 1 definiert sind, deren Tautomere, deren Stereoisomere und deren Salze, insbesondere deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren oder Basen, welche wertvolle pharmakologische Eigenschaften aufweisen, insbesondere eine Hemmwirkung auf die durch Tyrosinkinasen vermittelte Signaltransduktion, deren Verwendung zur Behandlung von Krankheiten, insbesondere von Tumorerkrankungen, von Erkrankungen der Lunge und der Atemwege und deren Herstellung.

- 1 -

Bicyclische Heterocyclen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung

- 5 Gegenstand der vorliegenden Erfindung sind bicyclische Heterocyclen der allgemeinen Formel:

- 10 deren Tautomeren, deren Stereoisomere und deren Salze, insbe-
sonders deren physiologisch verträgliche Salze mit anorgani-
schen oder organischen Säuren oder Basen, welche wertvolle
pharmakologische Eigenschaften aufweisen, insbesondere eine
Hemmwirkung auf die durch Tyrosinkinasen vermittelte Signal-
transduktion, deren Verwendung zur Behandlung von Krankheiten,
insbesondere von Tumorerkrankungen, von Erkrankungen der Lunge
und der Atemwege und deren Herstellung.

In der obigen allgemeinen Formel I bedeutet:

- 20 R. ein Wasserstoffatom oder eine Methylgruppe.

- R_b eine Phenyl-, Benzyl- oder 1-Phenylethylgruppe, in denen der Phenylkern jeweils durch die Reste R₁ bis R₃ substituiert ist,
wobei

R_1 und R_2 , die gleich oder verschieden sein können, jeweils ein Wasserstoff-, Fluor-, Chlor-, Brom- oder Jodatom.

- 30 eine Methyl-, Ethyl-, Hydroxy-, Methoxy-, Ethoxy-, Amino-,
Cyano-, Vinyl- oder Ethinylgruppe,

eine Aryl-, Aryloxy-, Arylmethyl- oder Arylmethoxygruppe,

- 2 -

eine durch 1 bis 3 Fluoratome substituierte Methyl- oder Methoxygruppe oder

5 R₁ zusammen mit R₂, sofern diese an benachbarte Kohlenstoffatome gebunden sind, eine -CH=CH-CH=CH-, -CH=CH-NH- oder -CH=N-NH-Gruppe und

R₃, ein Wasserstoff-, Fluor-, Chlor- oder Bromatom,
10 R_c, ein Wasserstoffatom oder eine Methylgruppe,

X eine durch eine Cyanogruppe substituierte Methingruppe oder ein Stickstoffatom,
15 A eine 1,1- oder 1,2-Vinylengruppe, die jeweils durch eine oder zwei Methylgruppen oder durch eine Trifluormethylgruppe substituiert sein kann,

20 eine Ethinylengruppe, oder

eine gegebenenfalls durch eine Methyl- oder Trifluormethylgruppe substituierte 1,3-Butadien-1,4-ylengruppe,

25 B ein Wasserstoffatom oder eine C₁₋₄-Alkylgruppe, eine durch 1 bis 3 Fluoratome substituierte Methylgruppe, eine durch 1 bis 5 Fluoratome substituierte Ethylgruppe, eine C₁₋₄-Alkylcarbonyl-, Carboxy-, C₁₋₄-Alkoxy carbonyl-, Aminocarbonyl-, C₁₋₄-Alkylaminocarbonyl-, Di-(C₁₋₄-Alkyl)-aminocarbonyl-, Pyrrolidino-carbonyl-, Piperidinocarbonyl-, Morpholinocarbonyl- oder eine
30 4-(C₁₋₄-Alkyl)-Piperazinocarbonylgruppe, oder

eine durch den Rest R₄ substituierte C₁₋₄-Alkylgruppe, wobei

35 R₄ eine C₁₋₄-Alkoxygruppe,

- 3 -

- eine durch 2 C₁₋₄-Alkylgruppen substituierte Aminogruppe, in
der die Alkylreste gleich oder verschieden sein können und
jeder Alkylteil ab Position 2 durch eine C₁₋₄-Alkoxy- oder
Di-(C₁₋₄-Alkyl)-aminogruppe oder durch eine 4- bis 7-glie-
5 drige Alkyleniminogruppe substituiert sein kann, wobei in
den vorstehend erwähnten 6- bis 7-gliedrigen Alkylenimino-
gruppen jeweils eine Methylengruppe in 4-Stellung durch ein
Sauerstoff- oder Schwefelatom, durch eine Sulfinyl-, Sulf-
fonyl- oder N-(C₁₋₄-Alkyl)-iminogruppe ersetzt sein kann,
10 eine gegebenenfalls durch 1 bis 4 Methylgruppen substitu-
ierte 4- bis 7-gliedrige Alkyleniminogruppe,
15 eine gegebenenfalls durch 1 oder 2 Methylgruppen substitu-
ierte 6- bis 7-gliedrige Alkyleniminogruppe, in der jeweils
eine Methylengruppe in 4-Stellung durch ein Sauerstoff-
oder Schwefelatom, durch eine Sulfinyl-, Sulfonyl- oder
N-(C₁₋₂-Alkyl)-iminogruppe ersetzt ist, oder
20 eine gegebenenfalls durch 1 bis 3 Methylgruppen substitu-
ierte Imidazolylgruppe darstellt,
C eine C₁₋₆-Alkylengruppe, eine -O-C₁₋₆-alkylengruppe, wobei der
Alkylteil mit dem Rest D verknüpft ist, oder ein Sauerstoff-
25 atom, wobei dieses nicht mit einem Stickstoffatom des Restes D
verknüpft sein kann, und
D eine Pyrrolidinogruppe, in der die beiden Wasserstoffatome
in 2-Stellung durch eine Gruppe E ersetzt sind, in der
30 E eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen
substituierte -CH₂-O-CO-CH₂-, -CH₂CH₂-O-CO-,
-CH₂-O-CO-CH₂CH₂-, -CH₂CH₂-O-CO-CH₂- oder -CH₂CH₂CH₂-O-CO-
Brücke darstellt,
35 eine Pyrrolidinogruppe, in der die beiden Wasserstoffatome in
3-Stellung durch eine Gruppe F ersetzt sind, in der

F eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte -O-CO-CH₂CH₂- , -CH₂-O-CO-CH₂- , -CH₂CH₂-O-CO- , -O-CO-CH₂CH₂CH₂- , -CH₂-O-CO-CH₂CH₂- , -CH₂CH₂-O-CO-CH₂- ,

5 -CH₂CH₂CH₂-O-CO- , -O-CO-CH₂-NR₅-CH₂- , -CH₂-O-CO-CH₂-NR₅- , -O-CO-CH₂-O-CH₂- oder -CH₂-O-CO-CH₂-O-Brücke darstellt, wobei

10 R₅ ein Wasserstoffatom oder eine C₁₋₄-Alkylgruppe bedeutet,

15 eine Piperidino- oder Hexahydroazepinogruppe, in denen die beiden Wasserstoffatome in 2-Stellung durch eine Gruppe E ersetzt sind, wobei E wie vorstehend erwähnt definiert ist,

20 eine Piperidino- oder Hexahydroazepinogruppe, in denen jeweils die beiden Wasserstoffatome in 3-Stellung oder in 4-Stellung durch eine Gruppe F ersetzt sind, wobei F wie vorstehend erwähnt definiert ist,

25 eine Piperazino- oder 4-(C₁₋₄-Alkyl)-piperazinogruppe, in denen die beiden Wasserstoffatome in 2-Stellung oder in 3-Stellung des Piperazinoringes durch eine Gruppe E ersetzt sind, wobei E wie vorstehend erwähnt definiert ist,

30 eine Pyrrolidino- oder Piperidinogruppe, in denen zwei vicinale Wasserstoffatome durch eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte -O-CO-CH₂- , -CH₂-O-CO- , -O-CO-CH₂CH₂- , -CH₂-O-CO-CH₂- , -CH₂CH₂-O-CO- , -O-CO-CH₂-NR₅- oder -O-CO-CH₂-O-Brücke ersetzt sind, wobei R₅ wie vorstehend erwähnt definiert ist und die Heteroatome der vorstehend erwähnten Brücken nicht an die 2- oder 5-Stellung des Pyrrolidinoringes und nicht an die 2- oder 6-Stellung des Piperidinoringes gebunden sind,

35 eine Piperazino- oder 4-(C₁₋₄-Alkyl)-piperazinogruppe, in denen ein Wasserstoffatom in 2-Stellung zusammen mit einem Wasser-

- 5 -

stoffatom in 3-Stellung des Piperazinoringes durch eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte -CH₂-O-CO-CH₂- oder -CH₂CH₂-O-CO-Brücke ersetzt sind,

- 5 eine Piperazinogruppe, in der ein Wasserstoffatom in 3-Stellung zusammen mit dem Wasserstoffatom in 4-Stellung durch eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte -CO-O-CH₂CH₂- oder -CH₂-O-CO-CH₂-Brücke ersetzt sind, wobei jeweils das linke Ende der vorstehend erwähnten Brücken
- 10 an die 3-Stellung des Piperazinoringes gebunden ist,

eine durch den Rest R₆ substituierte Pyrrolidino-, Piperidino- oder Hexahydroazepinogruppe, in denen

- 15 R₆ eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte 2-Oxo-tetrahydrofuranyl-, 2-Oxo-tetrahydropyranyl-, 2-Oxo-1,4-dioxanyl- oder 2-Oxo-4-(C₁₋₄-alkyl)-morpholinylgruppe darstellt,

- 20 eine in 3-Stellung durch eine 2-Oxo-morpholinogruppe substituierte Pyrrolidinogruppe, wobei die 2-Oxo-morpholinogruppe durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,

- 25 eine in 3- oder 4-Stellung durch eine 2-Oxo-morpholinogruppe substituierte Piperidino- oder Hexahydroazepinogruppe, wobei die 2-Oxo-morpholinogruppe durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,

- 30 eine an einem Ringkohlenstoffatom durch R₆ substituierte 4-(C₁₋₄-alkyl)-piperazino- oder 4-(C₁₋₄-alkyl)-homopiperazino-gruppe, in denen R₆ wie vorstehend erwähnt definiert ist,

eine in 4-Stellung durch den Rest R₇ substituierte Piperazino- oder Homopiperazinogruppe, in denen

35

R₇, eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte 2-Oxo-tetrahydrofuran-3-yl-, 2-Oxo-te-

- 6 -

trahydrofuran-4-yl-, 2-Oxo-tetrahydropyran-3-yl-, 2-Oxo-tetrahydropyran-4-yl- oder 2-Oxo-tetrahydropyran-5-yl-Gruppe darstellt,

- 5 eine in 3-Stellung durch eine $(R_sNR_r)_-$, R_sO- , R_sS- , R_sSO- oder R_sSO_2- -Gruppe substituierte Pyrrolidinogruppe, wobei R_s und R_r , wie vorstehend erwähnt definiert sind,
- 10 eine in 3- oder 4-Stellung durch eine $(R_sNR_r)_-$, R_sO- , R_sS- , R_sSO- oder R_sSO_2- -Gruppe substituierte Piperidino- oder Hexahydroazepinogruppe, in denen R_s und R_r , wie vorstehend erwähnt definiert sind,
- 15 eine durch eine R_6-C_{1-4} -alkyl-, $(R_sNR_r)-C_{1-4}$ -alkyl-, R_sO-C_{1-4} -alkyl-, R_sS-C_{1-4} -alkyl-, R_sSO-C_{1-4} -alkyl-, $R_sSO_2-C_{1-4}$ -alkyl- oder $(R_sNR_r)-CO$ -Gruppe substituierte Pyrrolidino-, Piperidino- oder Hexahydroazepinogruppe, in denen R_s bis R_r , wie vorstehend erwähnt definiert sind,
- 20 eine in 3-Stellung durch eine $R_6-CO-NR_4-$, R_6-C_{1-4} -alkylen- $CONR_4-$, $(R_sNR_r)-C_{1-4}$ -alkylen- $CONR_5-$, R_sO-C_{1-4} -alkylen- $CONR_5-$, R_sS-C_{1-4} -alkylen- $CONR_5-$, R_sSO-C_{1-4} -alkylen- $CONR_5-$, $R_sSO_2-C_{1-4}$ -alkylen- $CONR_5-$, 2-Oxo-morpholino- C_{1-4} -alkylen- $CONR_5-$, R_6-C_{1-4} -alkylen-Y- oder C_{2-4} -Alkyl-Y-Gruppe substituierte Pyrrolidinogruppe, wobei der
- 25 C_{2-4} -Alkylteil der C_{2-4} -Alkyl-Y-Gruppe jeweils ab Position 2 durch eine $(R_sNR_r)_-$, R_sO- , R_sS- , R_sSO- oder R_sSO_2- -Gruppe substituiert ist und der 2-Oxo-morpholinoteil durch eine oder zwei C_{1-2} -Alkylgruppen substituiert sein kann, in denen
- 30 R_s bis R_r , wie vorstehend erwähnt definiert sind und Y ein Sauerstoff- oder Schwefelatom, eine Imino-, N- $(C_{1-4}$ -Alkyl)-imino-, Sulfinyl- oder Sulfonylgruppe darstellt,
- 35 eine in 3- oder 4-Stellung durch eine $R_6-CO-NR_5-$, R_6-C_{1-4} -alkylen- $CONR_5-$, $(R_sNR_r)-C_{1-4}$ -alkylen- $CONR_5-$, R_sO-C_{1-4} -alkylen- $CONR_5-$,

- 7 -

- R₅S-C₁₋₄-alkylen-CONR₅- , R₅SO-C₁₋₄-alkylen-CONR₅- , R₅SO₂-C₁₋₄-alkylen-CONR₅- , 2-Oxo-morpholino-C₁₋₄-alkylen-CONR₅- , R₆-C₁₋₄-alkylen-Y- oder C₂₋₄-Alkyl-Y-Gruppe substituierte Piperidino- oder Hexahydroazepinogruppe, in denen Y wie vorstehend erwähnt definiert ist, der 2-Oxo-morpholinoteil durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann und der C₂₋₄-Alkylteil der C₂₋₄-Alkyl-Y-Gruppe jeweils ab Position 2 durch eine (R₅NR₇)₂- , R₅O- , R₅S- , R₅SO- oder R₅SO₂-Gruppe substituiert ist, wobei R₅ bis R₇ wie vorstehend erwähnt definiert sind,
- 10 eine an einem Ringkohlenstoffatom durch eine R₆-C₁₋₄-alkyl- , (R₅NR₇)₂-C₁₋₄-alkyl- , R₅O-C₁₋₄-alkyl- , R₅S-C₁₋₄-alkyl- , R₅SO-C₁₋₄-alkyl- , R₅SO₂-C₁₋₄-alkyl- oder R₅NR₇-CO-Gruppe substituierte 4-(C₁₋₄-Alkyl)-piperazino- oder 4-(C₁₋₄-Alkyl)-homopiperazinogruppe, in denen R₅ bis R₇ wie vorstehend erwähnt definiert sind,
- 15 eine in 4-Stellung durch eine R₆-C₁₋₄-alkyl- , R₆-CO- , R₆-C₁₋₄-alkylen-CO- , (R₅NR₇)₂-C₁₋₄-alkylen-CO- , R₅O-C₁₋₄-alkylen-CO- , R₅S-C₁₋₄-alkylen-CO- , R₅SO-C₁₋₄-alkylen-CO- oder R₅SO₂-C₁₋₄-alkylen-CO-Gruppe substituierte Piperazino- oder Homopiperazinogruppe, in denen R₅ bis R₇ wie vorstehend erwähnt definiert sind,
- 20 eine in 4-Stellung durch eine C₂₋₄-Alkylgruppe substituierte Piperazino- oder Homopiperazinogruppe, in denen die C₂₋₄-Alkylgruppe jeweils ab Position 2 durch eine (R₅NR₇)₂- , R₅O- , R₅S- , R₅SO- oder R₅SO₂-Gruppe substituiert ist, wobei R₅ und R₇ wie vorstehend erwähnt definiert sind,
- 25 eine durch eine 2-Oxo-morpholino-C₁₋₄-alkylgruppe substituierte Pyrrolidino- , Piperidino- oder Hexahydroazepinogruppe, in denen der 2-Oxo-morpholinoteil durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,
- 30 eine in 3-Stellung durch eine C₂₋₄-Alkyl-Y-Gruppe substituierte Pyrrolidinogruppe, in denen Y wie vorstehend erwähnt definiert ist und der C₂₋₄-Alkylteil der C₂₋₄-Alkyl-Y-Gruppe jeweils ab

Position 2 durch eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte 2-Oxo-morpholinogruppe substituiert ist,

- 5 eine in 3- oder 4-Stellung durch eine C₂₋₄-Alkyl-Y-Gruppe substituierte Piperidino- oder Hexahydroazepinogruppe, in denen Y wie vorstehend erwähnt definiert ist und der C₂₋₄-Alkylteil der C₂₋₄-Alkyl-Y-Gruppe jeweils ab Position 2 durch eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte 2-Oxo-morpholinogruppe substituiert ist,
- 10 eine an einem Ringkohlenstoffatom durch eine 2-Oxo-morpholino-C₁₋₄-alkyl-Gruppe substituierte 4-(C₁₋₄-Alkyl)-piperazino- oder 4-(C₁₋₄-Alkyl)-homopiperazinogruppe, in denen der 2-Oxo-morpholinoteil durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,
- 15 eine in 4-Stellung durch eine 2-Oxo-morpholino-C₁₋₄-alkylen-CO-Gruppe substituierte Piperazino- oder Homopiperazinogruppe, in denen der 2-Oxo-morpholinoteil durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,
- 20 eine in 4-Stellung durch eine C₂₋₄-Alkylgruppe substituierte Piperazino- oder Homopiperazinogruppe, in denen der C₂₋₄-Alkylteil jeweils ab Position 2 durch eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte 2-Oxo-morpholinogruppe substituiert ist,
- 25 eine in 1-Stellung durch den Rest R₇, durch eine R₆-C₁₋₄-alkyl-, R₆-CO-, R₆-C₁₋₄-alkylen-CO-, (R₅NR₇)-C₁₋₄-alkylen-CO-, R₆O-C₁₋₄-alkylen-CO-, R₆S-C₁₋₄-alkylen-CO-, R₆SO-C₁₋₄-alkylen-CO-, R₆SO₂-C₁₋₄-alkylen-CO- oder 2-Oxo-morpholino-C₁₋₄-alkylen-CO-Gruppe substituierte Pyrrolidinyl- oder Piperidinylgruppe, in denen R₅ bis R₇ wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,
- 30
- 35

- 9 -

- eine in 1-Stellung durch eine C_{2-4} -Alkylgruppe substituierte Pyrrolidinyl- oder Piperidinylgruppe, in denen der C_{2-4} -Alkylteil jeweils ab Position 2 durch eine $(R_5NR_7)-$, R_7O- , R_7S- , R_7SO- , R_7SO_2- oder 2-Oxo-morpholinogruppe substituiert ist,
- 5 wobei R_5 und R_7 , wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei C_{1-2} -Alkylgruppen substituiert sein kann,
- eine jeweils am Ringstickstoffatom durch den Rest R_7 , durch
- 10 eine R_6-C_{1-4} -alkyl-, R_6-CO- , R_6-C_{1-4} -alkylen-CO-, $(R_5NR_7)-C_{1-4}$ -alkylen-CO-, R_7O-C_{1-4} -alkylen-CO-, R_7S-C_{1-4} -alkylen-CO-, R_7SO-C_{1-4} -alkylen-CO-, $R_7SO_2-C_{1-4}$ -alkylen-CO- oder 2-Oxo-morpholino-C₁₋₄-alkylen-CO-Gruppe substituierte Pyrrolidin-3-yl-NR₅-, Piperidin-3-yl-NR₅- oder Piperidin-4-yl-NR₅-Gruppe,
- 15 in denen R_5 bis R_7 , wie vorstehend erwähnt definiert ist und der 2-Oxo-morpholinoteil durch eine oder zwei C_{1-2} -Alkylgruppen substituiert sein kann,
- eine jeweils am Ringstickstoffatom durch eine C_{2-4} -Alkylgruppe
- 20 substituierte Pyrrolidin-3-yl-NR₅-, Piperidin-3-yl-NR₅- oder Piperidin-4-yl-NR₅-Gruppe, in denen der C_{2-4} -Alkylteil jeweils ab Position 2 durch eine $(R_5NR_7)-$, R_7O- , R_7S- , R_7SO- , R_7SO_2- oder 2-Oxo-morpholinogruppe substituiert ist, wobei R_5 und R_7 , wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil
- 25 durch eine oder zwei C_{1-2} -Alkylgruppen substituiert sein kann,
- eine R_6-C_{1-4} -alkylen-NR₅-Gruppe, in der R_5 und R_6 wie vorstehend erwähnt definiert sind, oder
- 30 eine C_{2-4} -Alkyl-NR₄-Gruppe, in denen der C_{2-4} -Alkylteil jeweils ab Position 2 durch eine $(R_5NR_7)-$, R_7O- , R_7S- , R_7SO- , R_7SO_2- oder 2-Oxo-morpholinogruppe substituiert ist, wobei R_5 und R_7 , wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei C_{1-2} -Alkylgruppen substituiert sein kann,
- 35 eine durch den Rest R_8 oder durch den Rest R_8 und eine C_{1-4} -Alkylgruppe substituierte 2-Oxo-morpholin-4-yl-Gruppe, wobei

- 10 -

- R₈ eine C₁₋₄-Alkyl-, Hydroxy-C₁₋₄-alkyl-, C₁₋₄-Alkoxy-C₁₋₄-alkyl-, Di-(C₁₋₄-Alkyl)-amino-C₁₋₄-alkyl-, Pyrrolidino-C₁₋₄-alkyl-, Piperidino-C₁₋₄-alkyl-, Morpholino-C₁₋₄-alkyl-,
- 5 4-(C₁₋₄-Alkyl)-piperazino-C₁₋₄-alkyl-, C₁₋₄-Alkylsulfanyl-C₁₋₄-alkyl-, C₁₋₄-Alkylsulfinyl-C₁₋₄-alkyl-, C₁₋₄-Alkylsulfonyl-C₁₋₄-alkyl-, Cyan-C₁₋₄-alkyl-, C₁₋₄-Alkoxycarbonyl-C₁₋₄-alkyl-, Aminocarbonyl-C₁₋₄-alkyl-, C₁₋₄-Alkyl-aminocarbonyl-C₁₋₄-alkyl-, Di-(C₁₋₄-alkyl)-aminocarbonyl-C₁₋₄-alkyl-,
- 10 Pyrrolidinocarbonyl-C₁₋₄-alkyl-, Piperidinocarbonyl-C₁₋₄-alkyl-, Morpholinocarbonyl-C₁₋₄-alkyl- oder eine 4-(C₁₋₄-Alkyl)-piperazinocarbonyl-C₁₋₄-alkylgruppe darstellt,
- eine durch zwei Reste R₈ substituierte 2-Oxo-morpholin-4-yl-
- 15 Gruppe, wobei R₈ wie vorstehend erwähnt definiert ist und die beiden Reste R₈ gleich oder verschieden sein können,
- eine 2-Oxo-morpholin-4-yl-Gruppe, in der die beiden Wasserstoffatome einer Methylengruppe durch eine gegebenenfalls
- 20 durch eine oder zwei C₁₋₂-Alkylgruppen substituierte -(CH₂)_m-, -CH₂-Y-CH₂-, -CH₂-Y-CH₂-CH₂-, -CH₂CH₂-Y-CH₂CH₂- oder -CH₂CH₂-Y-CH₂CH₂CH₂- Brücke ersetzt sind, wobei
- m die Zahl 2, 3, 4, 5 oder 6 und
- 25 Y ein Sauerstoff- oder Schwefelatom, eine Sulfinyl-, Sulfonyl- oder C₁₋₄-Alkylimino-Gruppe darstellen,
- eine 2-Oxo-morpholin-4-yl-Gruppe, in der ein Wasserstoffatom in 5-Stellung zusammen mit einem Wasserstoffatom in 6-Stellung
- 30 durch eine -(CH₂)_n-, -CH₂-Y-CH₂-, -CH₂-Y-CH₂CH₂- oder -CH₂-CH₂-Y-CH₂- Brücke ersetzt ist, wobei
- Y wie vorstehend erwähnt definiert ist und n die Zahl 2, 3 oder 4 darstellt,
- 35 wobei, soweit nichts anderes erwähnt wurde, unter den bei der Definition der vorstehend erwähnten Reste erwähnten Arylteilen

- 11 -

eine Phenylgruppe zu verstehen ist, die durch R₉ mono- oder di-substituiert sein kann, wobei die Substituenten gleich oder verschieden sein können und .

- 5 R₉ ein Fluor-, Chlor-, Brom- oder Jodatom, eine C₁₋₂-Alkyl-, Trifluormethyl- oder C₁₋₂-Alkoxygruppe darstellt, oder
zwei Reste R₉, sofern sie an benachbarte Kohlenstoffatome gebunden sind, zusammen eine C₃₋₄-Alkylen-, Methylendioxy-
10 oder 1,3-Butadien-1,4-ylengruppe darstellen.

Bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

- 15 R_a ein Wasserstoffatom,
R_b eine 1-Phenylethyl-, 3-Methylphenyl-, 3-Chlorphenyl-, 3-Bromphenyl- oder 3-Chlor-4-fluorphenylgruppe,
20 R_c ein Wasserstoffatom,
X ein Stickstoffatom,
A eine 1,2-Vinylen- oder Ethinylengruppe,
25 B ein Wasserstoffatom,
C eine -O-CH₂CH₂- , -O-CH₂CH₂CH₂- oder -O-CH₂CH₂CH₂CH₂- Gruppe, wobei der Alkylenteil jeweils mit dem Rest D verknüpft ist,
30 und
D eine Piperidinogruppe, in der die beiden Wasserstoffatome in 4-Stellung durch eine -CH₂-O-CO-CH₂- , -CH₂CH₂-O-CO-, -CH₂CH₂-O-CO-CH₂- , -O-CO-CH₂-NCH₃-CH₂- oder -O-CO-CH₂-O-CH₂-Brücke
35 ersetzt sind,

- 12 -

- eine Piperazinogruppe, in der ein Wasserstoffatom in 3-Stellung zusammen mit dem Wasserstoffatom in 4-Stellung durch eine -CO-O-CH₂-CH₂- oder -CH₂-O-CO-CH₂-Brücke ersetzt sind, wobei jeweils das linke Ende der vorstehenden Brücken an die 3-Stellung des Piperazinoringes gebunden ist,
- 5
- eine Piperidinogruppe, die in 4-Stellung durch eine 2-Oxo-morpholino- oder 2-Oxo-morpholinomethylgruppe substituiert ist, wobei der 2-Oxo-morpholinoteil jeweils durch eine oder zwei
- 10 Methylgruppen substituiert sein kann,
- eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-Gruppe substituiert ist,
- 15
- eine Piperidinogruppe, die in 4-Stellung durch eine R₆S-Gruppe substituiert ist, wobei
- 20 R₆ eine 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-Gruppe darstellt,
- eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-tetrahydrofuranyl methyl- oder 2-Oxo-tetrahydrofuranyl carbonylgruppe substituiert ist,
- 25
- eine Piperazinogruppe, die in 4-Stellung durch eine [2-(2-Oxo-tetrahydrofuran-3-ylsulfenyl)ethyl]gruppe substituiert ist,
- eine Piperidin-4-yl-Gruppe, die in 1-Stellung durch eine
- 30 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-Gruppe substituiert ist,
- eine 2-Oxo-morpholin-4-ylgruppe, die durch eine Methoxymethyl- oder Methoxyethylgruppe substituiert ist,
- 35
- eine 2-Oxo-morpholin-4-ylgruppe, in der die beiden Wasserstoffatome einer Methylengruppe durch eine -CH₂CH₂CH₂CH₂- ,

- 13 -

-CH₂CH₂CH₂CH₂CH₂- , -CH₂-O-CH₂CH₂- oder -CH₂CH₂-O-CH₂CH₂-Brücke ersetzt sind,

bedeuten, deren Tautomere, Stereoisomere und deren Salze.

5

Besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

R_a ein Wasserstoffatom,

10

R_b eine 1-Phenylethyl- oder 3-Chlor-4-fluorphenylgruppe,

R_c ein Wasserstoffatom,

15 X ein Stickstoffatom,

A eine 1,2-Vinylengruppe,

B ein Wasserstoffatom,

20

C eine -O-CH₂CH₂- , -O-CH₂CH₂CH₂- oder -O-CH₂CH₂CH₂CH₂- Gruppe, wobei der Alkylenteil jeweils mit dem Rest D verknüpft ist, und

25 D eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-tetrahydrofuran-4-yl- oder 2-Oxo-tetrahydrofuran-5-ylcarbonyl-Gruppe substituiert ist, bedeuten,

deren Tautomere, Stereoisomere und deren Salze.

30

Beispielsweise seien folgende besonders bevorzugte Verbindungen der obigen allgemeinen Formel I erwähnt:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-{3-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-propyloxy}-6-[(vinylcarbonyl)-amino]-chinazolin,

- 14 -

- (2) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-{2-[4-[(S)-(2-oxo-tetrahydrofuran-5-yl)carbonyl]-piperazin-1-yl]-ethoxy}-6-[(vinylcarbonyl)amino]-chinazolin,
- 5 (3) 4-[(R)-(1-Phenyl-ethyl)amino]-7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-6-[(vinylcarbonyl)amino]-chinazolin und
- 10 (4) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-6-[(vinylcarbonyl)amino]-chinazolin,
- deren Tautomere, Stereoisomere und deren Salze.
- 15 Die Verbindungen der allgemeinen Formel I lassen sich beispielweise nach folgendem Verfahren herstellen:

a. Umsetzung einer Verbindung der allgemeinen Formel

in der

R_a bis R_c, C, D und X wie eingangs erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

25

in der

A und B wie eingangs erwähnt definiert sind und

- 30 Z₁ eine Austrittsgruppe wie ein Halogenatom, z.B. ein Chlor- oder Bromatom, oder eine Hydroxygruppe darstellt.

- Die Umsetzung wird gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Acetonitril, Toluol, Chlorbenzol, Tetrahydrofuran, Methylenchlorid/Tetrahydrofuran oder Dioxan gegebenenfalls in Gegenwart einer anorganischen oder organischen Base und gegebenenfalls in Gegenwart eines wasserentziehenden Mittels zweckmäßigerweise bei Temperaturen zwischen -80 und 150°C, vorzugsweise bei Temperaturen zwischen -60 und 80°C, durchgeführt.
- 10 Mit einer Verbindung der allgemeinen Formel III, in der Z₁ eine Austrittsgruppe darstellt, wird die Umsetzung gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Acetonitril, Toluol, Chlorbenzol, Tetrahydrofuran, Methylenchlorid/Tetrahydrofuran oder Dioxan zweckmäßigerweise in Gegenwart einer tertiären organischen Base wie Triethylamin, Pyridin, 2-Dimethylaminopyridin oder N-Ethyl-diisopropylamin (Hünig-Base), wobei diese organischen Basen gleichzeitig auch als Lösungsmittel dienen können, oder in Gegenwart einer anorganischen Base wie Natriumcarbonat,
- 15 20 Kaliumcarbonat oder Natronlauge zweckmäßigerweise bei Temperaturen zwischen -80 und 150°C, vorzugsweise bei Temperaturen zwischen -60 und 80°C, durchgeführt.

Mit einer Verbindung der allgemeinen Formel III, in der Z₁ eine Hydroxygruppe darstellt, wird die Umsetzung vorzugsweise in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Thionylchlorid, Trimethylchlorsilan, Phosphortrichlorid, Phosphorpentoxid, Hexamethyl-disilazan, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid oder 1-Hydroxy-benztriazol und gegebenenfalls zusätzlich in Gegenwart von 4-Dimethylamino-pyridin, N,N'-Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff zweckmäßigerweise in einem Lösungsmittel wie Methylenchlorid, Tetrahydrofuran, Dioxan, Toluol, Chlorbenzol, Dimethylsulfoxid, Ethylenglycoldiethylether oder Sulfolan und gegebenenfalls in Gegenwart eines Reaktionsbeschleunigers wie 4-Dimethylaminopyridin bei Temperaturen zwischen -80 und

- 16 -

150°C, vorzugsweise jedoch bei Temperaturen zwischen -60 und 80°C, durchgeführt.

Die Umsetzung wird jedoch besonders vorteilhaft mit Acrylsäure 5 und Acrylsäurechlorid in Gegenwart von Triethylamin durchgeführt.

Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Hydroxy-, Carboxy- oder 10 Iminogruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder abgespalten werden.

Beispielsweise kommt als Schutzrest für eine Hydroxygruppe die 15 Trimethylsilyl-, Acetyl-, Benzoyl-, Methyl-, Ethyl-, tert.Bu- tyl-, Trityl-, Benzyl- oder Tetrahydropyranylgruppe,

als Schutzreste für eine Carboxygruppe die Trimethylsilyl-, 20 Methyl-, Ethyl-, tert.Butyl-, Benzyl- oder Tetrahydropyran- ylgruppe und

als Schutzreste für eine Iminogruppe die Formyl-, Acetyl-, Trifluoracetyl-, Ethoxycarbonyl-, tert.Butoxycarbonyl-, Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl- oder 2,4-Di- 25 ethoxybenzylgruppe in Betracht.

Die gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes erfolgt beispielsweise hydrolytisch in einem wässrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, 30 Essigsäure/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Natriumhydroxid oder Kaliumhydroxid oder aprotisch, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 35 und 120°C, vorzugsweise bei Temperaturen zwischen 10 und 100°C.

- 17 -

Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxy-carbonylrestes erfolgt jedoch beispielsweise hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem geeigneten Lösungsmittel wie Methanol,

- 5 Ethanol, Essigsäureethylester oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 100°C, vorzugsweise jedoch bei Raumtemperaturen zwischen 20 und 60°C, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar. Die Abspaltung 10 eines 2,4-Dimethoxybenzylrestes erfolgt jedoch vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol.

Die Abspaltung eines tert.Butyl- oder tert.Butyloxycarbonylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure 15 wie Trifluoressigsäure oder Salzsäure oder durch Behandlung mit Jodtrimethylsilan gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenechlorid, Dioxan, Methanol oder Diethylether.

- 20 Die Abspaltung eines Trifluoracetylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Salzsäure gegebenenfalls in Gegenwart eines Lösungsmittels wie Essigsäure bei Temperaturen zwischen 50 und 120°C oder durch Behandlung mit Natronlauge gegebenenfalls in Gegenwart eines Lösungsmittels wie Tetrahydrofuran bei Temperaturen zwischen 0 und 50°C. 25

Ferner können die erhaltenen Verbindungen der allgemeinen Formel I, wie bereits eingangs erwähnt wurde, in ihre Enantiomeren und/oder Diastereomeren aufgetrennt werden. So können beispielweise cis-/trans-Gemische in ihre cis- und trans-Isomeren, und Verbindungen mit mindestens einem optisch aktiven Kohlenstoffatom in ihre Enantiomeren aufgetrennt werden.

- 35 So lassen sich beispielsweise die erhaltenen cis-/trans-Gemische durch Chromatographie in ihre cis- und trans-Isomeren, die erhaltenen Verbindungen der allgemeinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe

- 18 -

- Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971)) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestens 2 asymmetrischen Kohlenstoffatomen auf Grund ihrer physikalisch-chemischen Unterschiede nach an sich bekannten Methoden, z.B. durch Chromatographie und/oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren getrennt werden können.
- Die Enantiomerentrennung erfolgt vorzugsweise durch Säulentrellung an chiralen Phasen oder durch Umkristallisieren aus einem optisch aktiven Lösungsmittel oder durch Umetzen mit einer, mit der racemischen Verbindung Salze oder Derivate wie z.B. Ester oder Amide bildenden optisch aktiven Substanz, insbesondere Säuren und ihre aktivierten Derivate oder Alkohole, und Trennen des auf diese Weise erhaltenen diastereomeren Salzgemisches oder Derivates, z.B. auf Grund von verschiedenen Löslichkeiten, wobei aus den reinen diastereomeren Salzen oder Derivaten die freien Antipoden durch Einwirkung geeigneter Mittel freigesetzt werden können. Besonders gebräuchliche, optisch aktive Säuren sind z.B. die D- und L-Formen von Weinsäure oder Dibenzoylweinsäure, Di-o-Tolylweinsäure, Äpfelsäure, Mandelsäure, Camphersulfonsäure, Glutaminsäure, Asparaginsäure oder Chinasäure. Als optisch aktiver Alkohol kommt beispielsweise (+)- oder (-)-Menthol und als optisch aktiver Acylrest in Amiden beispielsweise (+)-oder (-)-Menthoxycarbonyl in Betracht.
- Des Weiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Methansulfonsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.

Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formeln II bis III sind teilweise literaturbekannt oder man erhält diese nach an sich literaturbekannten Verfahren 5 (siehe Beispiele I bis IX).

Wie bereits eingangs erwähnt, weisen die erfindungsgemäßen Verbindungen der allgemeinen Formel I und ihre physiologisch verträglichen Salze wertvolle pharmakologische Eigenschaften 10 auf, insbesondere eine Hemmwirkung auf die durch den Epidermal Growth Factor-Rezeptor (EGF-R) vermittelte Signaltransduktion, wobei diese beispielsweise durch eine Inhibition der Ligandenbindung, der Rezeptordimerisierung oder der Tyrosinkinase selbst bewirkt werden kann. Außerdem ist es möglich, daß die 15 Signalübertragung an weiter abwärtsliegenden Komponenten blockiert wird.

Die biologischen Eigenschaften der neuen Verbindungen wurden wie folgt geprüft:

20 Die Hemmung der EGF-R vermittelten Signalübertragung kann z.B. mit Zellen nachgewiesen werden, die humanen EGF-R exprimieren und deren Überleben und Proliferation von Stimulierung durch EGF bzw. TGF-alpha abhängt. Hier wurde eine Interleukin- 25 3-(IL-3) abhängige Zelllinie murinen Ursprungs verwendet, die derart genetisch verändert wurde, daß sie funktionellen humanen EGF-R exprimiert. Die Proliferation dieser F/L-HERc genannten Zellen kann daher entweder durch murines IL-3 oder durch EGF stimuliert werden (siehe von Rüden, T. et al. in 30 EMBO J. 2, 2749-2756 (1988) und Pierce, J. H. et al. in Science 239, 628-631 (1988)).

Als Ausgangsmaterial für die F/L-HERc Zellen diente die Zelllinie FDC-P1, deren Herstellung von Dexter, T. M. et al. in J. 35 Exp. Med. 152, 1036-1047 (1980) beschrieben wurde. Alternativ können aber auch andere Wachstumsfaktor-abhängige Zellen verwendet werden (siehe beispielsweise Pierce, J. H. et al. in

- 20 -

Science 239, 628-631 (1988), Shibuya, H. et al. in Cell 70, 57-67 (1992) und Alexander, W. S. et al. in EMBO J. 10, 3683-3691 (1991)). Zur Expression der humanen EGF-R cDNA (siehe Ullrich, A. et al. in Nature 309, 418-425 (1984)) wurden re-
5 kombinante Retroviren verwendet, wie in von Rüden, T. et al., EMBO J. 7, 2749-2756 (1988) beschrieben, mit dem Unterschied, daß zur Expression der EGF-R cDNA der retrovirale Vektor LXSN (siehe Miller, A. D. et al. in BioTechniques 7, 980-990
10 (1989)) eingesetzt wurde und als Verpackungszelle die Linie GP+E86 (siehe Markowitz, D. et al. in J. Virol. 62, 1120-1124 (1988)) diente.

Der Test wurde wie folgt durchgeführt:

15 F/L-HERC Zellen wurden in RPMI/1640 Medium (BioWhittaker), supplementiert mit 10 % foetalem Rinderserum (FCS, Boehringer Mannheim), 2 mM Glutamin (BioWhittaker), Standardantibiotika und 20 ng/ml humanem EGF (Promega), bei 37°C und 5% CO₂ kulti-
20 findungsgemäßen Verbindungen wurden 1,5 x 10⁴ Zellen pro Ver- tiefung in Triplikaten in 96-Loch-Platten in obigem Medium (200 µl) kultiviert, wobei die Proliferation der Zellen ent- weder mit EGF (20 ng/ml) oder murinem IL-3 stimuliert wurde. Als Quelle für IL-3 dienten Kulturüberstände der Zelllinie
25 X63/0 mIL-3 (siehe Karasuyama, H. et al. in Eur. J. Immunol. 18, 97-104 (1988)). Die erfindungsgemäßen Verbindungen wurden in 100% Dimethylsulfoxid (DMSO) gelöst und in verschiedenen Verdünnungen den Kulturen zugefügt, wobei die maximale DMSO Konzentration 1% betrug. Die Kulturen wurden für 48 Stunden
30 bei 37°C inkubiert.

Zur Bestimmung der inhibitorischen Aktivität der erfindungs-
gemäßen Verbindungen wurde die relative Zellzahl mit dem Cell
Titer 96TM AQueous Non-Radioactive Cell Proliferation Assay
35 (Promega) in O.D. Einheiten gemessen. Die relative Zellzahl wurde in Prozent der Kontrolle (F/LHERC Zellen ohne Inhibitor) berechnet und die Wirkstoffkonzentration, die die Prolifera-

- 21 -

tion der Zellen zu 50% hemmt (IC_{50}), abgeleitet. Hierbei wurden folgende Ergebnisse erhalten:

Verbindung (Beispiel Nr.)	Hemmung der EGF-abhängigen Proliferation IC_{50} [nM]
1(2)	12

- 5 Die erfindungsgemäßen Verbindungen der allgemeinen Formel I hemmen somit die Signaltransduktion durch Tyrosinkinasen, wie am Beispiel des humanen EGF-Rezeptors gezeigt wurde, und sind daher nützlich zur Behandlung pathophysiologischer Prozesse, die durch Überfunktion von Tyrosinkinasen hervorgerufen werden.
- 10 Das sind z.B. benigne oder maligne Tumoren, insbesondere Tumoren epithelialen und neuroepithelialen Ursprungs, Metastasierung sowie die abnorme Proliferation vaskulärer Endothelzellen (Neoangiogenese).
- 15 Die erfindungsgemäßen Verbindungen sind auch nützlich zur Vorbeugung und Behandlung von Erkrankungen der Atemwege und der Lunge, die mit einer vermehrten oder veränderten Schleimproduktion einhergehen, die durch Stimulation von Tyrosinkinasen hervorgerufen wird, wie z.B. bei entzündlichen Erkrankungen der Atemwege wie chronische Bronchitis, chronisch obstruktive Bronchitis, Asthma, Bronchiektasien, allergische oder nicht-allergische Rhinitis oder Sinusitis, zystische Fibrose, α1-Antitrypsin-Mangel, oder bei Husten, Lungenemphysem, Lungenfibrose und hyperreaktiven Atemwegen.
- 20
- 25 Die Verbindungen sind auch geeignet für die Behandlung von Erkrankungen des Magen-Darm-Traktes und der Gallengänge und -blase, die mit einer gestörten Aktivität der Tyrosinkinasen einhergehen, wie sie z.B. bei chronisch entzündlichen Veränderungen zu finden sind, wie Cholezystitis, M. Crohn, Colitis ulcerosa, und Geschwüren im Magen-Darm-Trakt oder wie sie bei Erkrankungen des Magen-Darm-Traktes, die mit einer vermehrten

Sekretion einhergehen, vorkommen, wie M. Ménétrier, sezernierende Adenome und Proteinverlustsyndrome,

desweiteren zur Behandlung von Nasenpolypen sowie von Polypen
5 des Gastrointestinaltraktes unterschiedlicher Genese wie z.B. villöse oder adenomatöse Polypen des Dickdarms, aber auch von Polypen bei familiärer Polyposis coli, bei Darmpolypen im Rahmen des Gardner-Syndroms, bei Polypen im gesamten Magen-Darm-Trakt bei Peutz-Jeghers-Syndrom, bei entzündlichen Pseudopoly-
10 pen, bei juvenilen Polypen, bei Colitis cystica profunda und bei Pneumatoses cystoides intestinales.

Außerdem können die Verbindungen der allgemeinen Formel I und deren physiologisch verträglichen Salze zur Behandlung von
15 Nierenerkrankungen, insbesondere bei zystischen Veränderungen wie bei Zystennieren, zur Behandlung von Nierenzysten, die idiopathischer Genese sein können oder im Rahmen von Syndromen auftreten wie z.B. bei der tuberösen Sklerose, bei dem von-Hippel-Lindau-Syndrom, bei der Nephronophthisis und Mark-
20 schwammniere sowie anderer Krankheiten verwendet werden, die durch aberrante Funktion von Tyrosinkinasen verursacht werden, wie z.B. epidermaler Hyperproliferation (Psoriasis), inflammatorischer Prozesse, Erkrankungen des Immunsystems, Hyperproliferation hämatopoetischer Zellen etc..

25 Auf Grund ihrer biologischen Eigenschaften können die erfundungsgemäßen Verbindungen allein oder in Kombination mit anderen pharmakologisch wirksamen Verbindungen angewendet werden, beispielsweise in der Tumortherapie in Monotherapie oder
30 in Kombination mit anderen Anti-Tumor Therapeutika, beispielsweise in Kombination mit Topoisomerase-Inhibitoren (z.B. Etoposide), Mitoseinhibitoren (z.B. Vinblastin), mit Nukleinsäuren interagierenden Verbindungen (z.B. cis-Platin, Cyclophosphamid, Adriamycin), Hormon-Antagonisten (z.B. Tamoxifen),
35 Inhibitoren metabolischer Prozesse (z.B. 5-FU etc.), Zytokinen (z.B. Interferonen), Antikörpern etc. Für die Behandlung von Atemwegserkrankungen können diese Verbindungen allein oder in

- 23 -

- Kombination mit anderen Atemwegstherapeutika, wie z.B. sekretolytisch, broncholytisch und/oder entzündungshemmend wirksamen Substanzen angewendet werden. Für die Behandlung von Erkrankungen im Bereich des Magen-Darm-Traktes können diese
- 5 Verbindungen ebenfalls alleine oder in Kombination mit Motilitäts- oder Sekretions-beeinflussenden oder entzündungshemmenden Substanzen gegeben werden. Diese Kombinationen können entweder simultan oder sequentiell verabreicht werden.
- 10 Die Anwendung dieser Verbindungen entweder alleine oder in Kombination mit anderen Wirkstoffen kann intravenös, subkutan, intramuskulär, intrarektal, intraperitoneal, intranasal, durch Inhalation oder transdermal oder oral erfolgen, wobei zur Inhalation insbesondere Aerosolformulierungen geeignet sind.
- 15 Bei der pharmazeutischen Anwendung werden die erfindungsgemäßen Verbindungen in der Regel bei warmblütigen Wirbeltieren, insbesondere beim Menschen, in Dosierungen von 0,01-100 mg/kg Körpergewicht, vorzugsweise bei 0,1-15 mg/kg verwendet. Zur
- 20 Verabreichung werden diese mit einem oder mehreren üblichen inerten Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/-
- 25 Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Stearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen in übliche galenische Zubereitungen wie Tabletten, Dragées, Kapseln, Pulver, Suspensionen, Lösungen, Sprays oder Zäpfchen eingearbeitet.
- 30 Die nachfolgenden Beispiele sollen die vorliegende Erfindung näher erläutern ohne diese zu beschränken:
- 35 Herstellung der Ausgangsverbindungen:

Beispiel I

- 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-[3-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-propyloxy]-chinazolin
610 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-6-nitro-7-[3-[4-(2-
- 5 oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-propyloxy]-chinazolin und 268 mg Eisenpulver werden in 22 ml Ethanol suspendiert und zum Sieden erhitzt. Dann werden 0.76 ml Eisessig und 0.50 ml Wasser zugegeben. Innerhalb weniger Minuten entsteht eine klare braune Lösung und nach einer Stunde ist die Reduktion beendet. Zur Aufarbeitung wird das Reaktionsgemisch eingeeengt. Der Rückstand wird mit Methylenchlorid verrührt, mit wenigen Brocken Eis versetzt und mit 1 ml 15N Natronlauge alkalisch gestellt. Die wäßrige Phase wird abgetrennt und mit Methylenchlorid/Methanol (95:5) extrahiert. Die vereinten organischen Phasen werden mit Wasser gewaschen, über Magnesiumsulfat getrocknet und eingeeengt. Der harzartige Rückstand wird durch Verrühren mit tert.Butylmethylether zur Kristallisation gebracht. Der gelbliche Feststoff wird abgesaugt und im Vakuum getrocknet.
- 10 Ausbeute: 437 mg (76 % der Theorie),
 R_f -Wert: 0.30 (Kieselgel, Methylenchlorid/Methanol/konzentrierte, wäßrige Ammoniaklösung = 90:10:0.1)
Massenspektrum (ESI⁺): m/z = 515, 517 [M+H]⁺
- 15 25 Analog Beispiel I werden folgende Verbindungen erhalten:
- (1) 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-[2-{4-[(S)-(2-oxo-tetrahydrofuran-5-yl)carbonyl]-piperazin-1-yl}-ethoxy]-chinazolin
30 R_f -Wert: 0.38 (Kieselgel, Methylenchlorid/Methanol/konzentrierte, wäßrige Ammoniaklösung = 90:10:0.1)
Massenspektrum (ESI⁺): m/z = 529, 531 [M+H]⁺
- (2) 6-Amino-4-[(R)-(1-phenyl-ethyl)amino]-7-[2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy]-chinazolin
35 R_f -Wert: 0.36 (Kieselgel, Methylenchlorid/Methanol/konzentrierte, wäßrige Ammoniaklösung = 90:10:1)

- 25 -

Massenspektrum (ESI⁺): m/z = 477 [M+H]⁺

(3) 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-chinazolin

5 R_f-Wert: 0.29 (Kieselgel, Methylenchlorid/Methanol/konzentrierter, wässrige Ammoniaklösung = 90:10:1)

Massenspektrum (ESI⁺): m/z = 501, 503 [M+H]⁺

Beispiel II

10

4-[(3-Chlor-4-fluor-phenyl)amino]-6-nitro-7-{3-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-propyloxy}-chinazolin

1.10 g 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(3-methansulfonyloxy-propyloxy)-6-nitro-chinazolin und 2.33 g 4-Piperazin-1-yl-

15 dihydro-furan-2-on x 2 Trifluoressigsäure in 25 ml Acetonitril werden mit 360 mg Natriumiodid und 1.63 g Kaliumcarbonat ver- setzt. Das Reaktionsgemisch wird etwa zwei Stunden unter Rück- fluß erhitzt. Zur Aufarbeitung werden die anorganischen Salze abfiltriert und mit Essigester und Methylenchlorid/Methanol

20 nachgewaschen. Das Filtrat wird eingeengt und der Eindampfrückstand in Methylenchlorid/Methanol aufgenommen. Die Lösung wird mit Wasser gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der gelbe, harzartige Rückstand wird über eine Kieselgelsäule mit Methylenchlorid/Methanol/konzentrierter, wässriger Ammoniaklösung (95:4:1) chromatographiert. Man erhält 25 die Titelverbindung als gelben Feststoff.

Ausbeute: 625 mg (49 % der Theorie),

R_f-Wert: 0.45 (Kieselgel, Methylenchlorid/Methanol/konzentrierter, wässrige Ammoniaklösung = 90:10:0.1)

30 Massenspektrum (ESI⁺): m/z = 545, 547 [M+H]⁺

Analog Beispiel II werden folgende Verbindungen erhalten:

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-{2-[4-(tert.butyloxy-

35 carbonyl)-piperazin-1-yl]-ethoxy}-6-nitro-chinazolin

R_f-Wert: 0.42 (Kieselgel, Methylenchlorid/Methanol/konzentrierter, wässrige Ammoniaklösung = 90:10:1)

(2) 4-[(R)-(1-Phenyl-ethyl)amino]-7-{2-[4-(tert.butyloxycarbonyl)-piperazin-1-yl]-ethoxy}-6-nitro-chinazolin

R_f-Wert: 0.20 (Kieselgel, Methylenchlorid/Methanol = 95:5)

5 Massenspektrum (ESI⁻): m/z = 521 [M-H]⁻

(3) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-6-nitro-chinazolin

R_f-Wert: 0.43 (Kieselgel, Methylenchlorid/Methanol/konzentrierte, wässrige Ammoniaklösung = 90:10:0.1)

10 Massenspektrum (ESI⁻): m/z = 529, 531 [M-H]⁻

(4) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-{3-[4-(tert.-butyloxycarbonyl)-piperazin-1-yl]-propyloxy}-6-nitro-

15 chinazolin

R_f-Wert: 0.55 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI⁺): m/z = 561, 563 [M+H]⁺

(5): 4-[(3-Chlor-4-fluor-phenyl)amino]-7-{4-[4-(tert.-

20 butyloxycarbonyl)-piperazin-1-yl]-butyloxy}-6-nitro-chinazolin

R_f-Wert: 0.49 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI⁺): m/z = 597, 599 [M+Na]⁺

Beispiel III

25

4-[(3-Chlor-4-fluor-phenyl)amino]-7-(3-methansulfonyloxy-propyloxy)-6-nitro-chinazolin

Zu 4.60 g 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(3-hydroxy-propyloxy)-6-nitro-chinazolin und 4.29 ml Diisopropylethylamin in

30 150 ml Methylenchlorid werden bei Raumtemperatur unter Rühren

0.96 ml Methansulfonsäurechlorid getropft. Das Reaktionsge-

misch wird etwa 30 Minuten bei Raumtemperatur gerührt, dann

werden nochmals 0.1 ml Methansulfonsäurechlorid zugegeben:

Nach etwa einer Stunde ist die Umsetzung vollständig und die

35 trübe Reaktionslösung wird mit Eiswasser versetzt. Es fällt

ein dicker, gelblicher Niederschlag aus, welcher abgesaugt,

- 27 -

mit wenig Methylenchlorid und Wasser gewaschen und im Exsikkator getrocknet wird.

Ausbeute: 5.06 g (92 % der Theorie),

R_f-Wert: 0.43 (Kieselgel, Methylenchlorid/Methanol = 95:5)

5 Massenspektrum (ESI⁻): m/z = 469, 471 [M-H]⁻

Analog Beispiel III werden folgende Verbindungen erhalten:

10 (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(2-methansulfonyloxy-ethoxy)-6-nitro-chinazolin

R_f-Wert: 0.53 (Kieselgel, Methylenchlorid/Methanol/konzentrierte, wäßrige Ammoniaklösung = 90:10:1)

Massenspektrum (ESI⁻): m/z = 455, 457 [M-H]⁻

15 (2) 4-[(R)-(1-Phenyl-ethyl)amino]-7-(2-methansulfonyloxy-ethoxy)-6-nitro-chinazolin

R_f-Wert: 0.45 (Kieselgel, Methylenchlorid/Methanol = 95:5)

Massenspektrum (ESI⁻): m/z = 431 [M-H]⁻

20 (3) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(4-methansulfonyloxybutyloxy)-6-nitro-chinazolin

R_f-Wert: 0.42 (Kieselgel, Methylenchlorid/Methanol = 95:5)

Massenspektrum (ESI⁻): m/z = 483, 485 [M-H]⁻

25 Beispiel IV

4-[(3-Chlor-4-fluor-phenyl)amino]-7-(3-hydroxy-propyloxy)-6-nitro-chinazolin

Zu 21.30 g 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[3-(tetrahydropyran-2-yloxy)-propyloxy]-6-nitro-chinazolin (Rohprodukt aus Beispiel V) in 200 ml Methanol werden 3.00 ml konzentrierte Salzsäure getropft. Dabei fällt ein gelber Niederschlag aus. Die Suspension wird noch etwa 3.5 Stunden bei 50°C gerührt. Zur Aufarbeitung wird das Methanol am Rotationsverdampfer im Vakuum abdestilliert. Der Rückstand wird mit Essigester und etwas Eiswasser versetzt und mit Natronlauge alkaliisch gestellt. Die organische Phase wird mit Wasser und ge-

- 28 -

- sättigter Natriumchlorid-Lösung gewaschen und bleibt über Nacht bei Raumtemperatur stehen, wobei ein gelber Niederschlag ausfällt. Dieser wird abgesaugt, mit Essigester nachgewaschen und getrocknet. Das Filtrat wird eingeengt und der Eindampfrückstand aus Essigester umkristallisiert. Die so erhaltenen Kristalle werden mit dem zuvor abgesaugten Niederschlag vereinigt und nochmals aus Essigester umkristallisiert. Man erhält das gewünschte Produkt in Form von schwach gelblichen Kristallen.
- 5 Ausbeute: 4.60 g (40 % der Theorie),
Schmelzpunkt: 224-227°C
Massenspektrum (ESI⁻): m/z = 391, 393 [M-H]⁻

- Analog Beispiel IV werden folgende Verbindungen erhalten:
- 15 (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(2-hydroxy-ethoxy)-6-nitro-chinazolin
R_f-Wert: 0.46 (Kieselgel, Methylenechlorid/Methanol/konzentrierte, wäßrige Ammoniaklösung = 90:10:1)
20 Massenspektrum (ESI⁻): m/z = 377, 379 [M-H]⁻
- (2) 4-[(R)-(1-Phenyl-ethyl)amino]-7-(2-hydroxy-ethoxy)-6-nitro-chinazolin
Schmelzpunkt: 192-194°C
25 Massenspektrum (ESI⁻): m/z = 353 [M-H]⁻
- (3) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(4-hydroxy-butyloxy)-6-nitro-chinazolin
R_f-Wert: 0.25 (Kieselgel, Methylenechlorid/Methanol = 95:5)
30 Massenspektrum (ESI⁻): m/z = 405, 407 [M-H]⁻

Beispiel V

- 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[3-(tetrahydropyran-2-yloxy)-propyloxy]-6-nitro-chinazolin
35 14.50 g 3-(Tetrahydropyran-2-yloxy)-propan-1-ol in 120 ml Tetrahydrofuran werden portionsweise mit Natriumhydrid (60%ig in

- 29 -

Mineralöl) 2.40 g versetzt. Das Reaktionsgemisch wird etwa 15 Minuten bei Raumtemperatur gerührt, anschließend werden unter Eisbad-Kühlung 10.10 g 4-[(3-Chlor-4-fluor-phenyl)amino]-7-fluor-6-nitro-chinazolin zugegeben und mit 20 ml Tetrahydrofuran nachgespült. Das Reaktionsgemisch färbt sich schlagartig dunkelrot und das Eisbad wird entfernt. Nach etwa 2.5 Stunden werden insgesamt nochmals 500 mg Natriumhydrid in zwei Portionen zugegeben und das Reaktionsgemisch wird über Nacht bei Raumtemperatur gerührt. Zur Aufarbeitung wird die dunkle Reaktionslösung auf ca. 400 ml Eiswasser gegossen, mit tert. Butylmethylether und Essigester versetzt und mit Zitronensäure neutral gestellt. Die organische Phase wird abgetrennt und eingeengt. Man erhält 21.30 g eines braunen Öls, welches ohne weitere Reinigung der Schutzgruppenabspaltung (siehe Beispiel IV) unterzogen wird.

R_f-Wert: 0.37 (Kieselgel, Cyclohexan/Essigester = 1:1)

Massenspektrum (ESI⁻): m/z = 475, 477 [M-H]⁻

Analog Beispiel V werden folgende Verbindungen erhalten:

20

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[2-(tetrahydropyran-2-yloxy)-ethoxy]-6-nitro-chinazolin

R_f-Wert: 0.60 (Kieselgel, Petrolether/Essigester = 1:2)

Massenspektrum (ESI⁻): m/z = 461, 463 [M-H]⁻

25

(2) 4-[(R)-(1-Phenyl-ethyl)amino]-7-[2-(tetrahydropyran-2-yloxy)-ethoxy]-6-nitro-chinazolin

R_f-Wert: 0.12 (Kieselgel, Cyclohexan/Essigester = 1:1)

Massenspektrum (ESI⁻): m/z = 437 [M-H]⁻

30

(3) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[4-(tetrahydropyran-2-yloxy)-butyloxy]-6-nitro-chinazolin

R_f-Wert: 0.31 (Kieselgel, Cyclohexan/Essigester = 1:1)

Massenspektrum (ESI⁻): m/z = 489, 491 [M-H]⁻

35

Beispiel VI

- 30 -

4-[(3-Chlor-4-fluor-phenyl)amino]-7-(2-{4-[(S)-(2-oxo-tetrahydrofuran-5-yl)carbonyl]-piperazin-1-yl}-ethoxy)-6-nitro-chinazolin

- Zu 320 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[2-(piperazin-1-yl)-ethoxy]-6-nitro-chinazolin in 4 ml N,N-Dimethylformamid werden 93 mg (S)-(+)-5-Oxo-tetrahydrofuran-2-carbonsäure und 176 µl Triethylamin gegeben. Anschließend wird das Reaktionsgemisch mit 230 mg (Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-tetrafluoroborat versetzt und vier Stunden bei Raumtemperatur gerührt. Zur Aufarbeitung werden etwa 20 ml Eiswasser zugegeben. Der dabei entstandene Niederschlag wird abgesaugt, mit Wasser und tert. Butylmethylether nachgewaschen und im Exsikkator getrocknet. Das ockerfarbene, feste Rohprodukt wird ohne weiter Reinigung weiter umgesetzt.
- Ausbeute: 330 mg (82 % der Theorie),
R_f-Wert: 0.40 (Kieselgel, Methylenchlorid/Methanol/konzentrierte, wäßrige Ammoniaklösung = 90:10:0.1)

- Analog Beispiel VI werden folgende Verbindungen erhalten:
- (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(3-{4-[(S)-(2-oxo-tetrahydrofuran-5-yl)carbonyl]-piperazin-1-yl}-propyloxy)-6-nitro-chinazolin
R_f-Wert: 0.48 (Kieselgel, Methylenchlorid/Methanol/konz. wäßrige Ammoniaklösung = 90:10:0.1)
Massenspektrum (ESI⁺): m/z = 573, 575 [M+H]⁺

- (2) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(4-{4-[(S)-(2-oxo-tetrahydrofuran-5-yl)carbonyl]-piperazin-1-yl}-butyloxy)-6-nitro-chinazolin
R_f-Wert: 0.47 (Kieselgel, Methylenchlorid/Methanol/konz. wäßrige Ammoniaklösung = 90:10:0.1)
Massenspektrum (ESI⁺): m/z = 585, 587 [M-H]⁻

35 Beispiel VII

- 31 -

4-[(3-Chlor-4-fluor-phenyl)amino]-7-[2-(piperazin-1-yl)-ethoxy]-6-nitro-chinazolin

780 mg 4-[(3-Chlor-4-fluor-phenyl)amino]-7-{2-[4-(tert.butyl-oxy carbonyl)-piperazin-1-yl]-ethoxy}-6-nitro-chinazolin in

5 10 ml Methylenchlorid werden mit 2.00 ml Trifluoressigsäure versetzt. Die gelbe Reaktionslösung wird eine Stunde bei Raumtemperatur gerührt und dann über Nacht stehengelassen. Am nächsten Morgen wird das Reaktionsgemisch eingeengt, mit ca. 20 ml Wasser versetzt und mit konzentrierter Ammoniaklösung
10 alkalisch gestellt. Der entstandene Niederschlag wird abgesaugt und mit Wasser und tert.Butylmethylether nachgewaschen. Der gelbliche Feststoff wird in Methylenchlorid/Methanol (5:1) aufgenommen. Die Lösung wird mit 2 N Natronlauge gewaschen. Die wässrige Phase wird mit insgesamt 400 ml Methylenchlorid/Methanol (5:1) extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gereinigt, über Magnesiumsulfat getrocknet und eingeengt. Der Kolbenrückstand wird mit tert.Butylmethylether verrieben, abgesaugt und im Exsikkator getrocknet.

20 Ausbeute: 680 mg (5 % der Theorie),
 R_f -Wert: 0.15 (Kieselgel, Methylenchlorid/Methanol/konzentrierte, wässrige Ammoniaklösung = 90:10:1)
Massenspektrum (ESI⁻): m/z = 445, 447 [M-H]⁻

25 Analog Beispiel VII werden folgende Verbindungen erhalten:

(1) 4-[(R)-(1-Phenyl-ethyl)amino]-7-[2-(piperazin-1-yl)-ethoxy]-6-nitro-chinazolin

30 R_f -Wert: 0.12 (Kieselgel, Methylenchlorid/Methanol/konzentrierte, wässrige Ammoniaklösung = 90:10:1)
Massenspektrum (ESI⁻): m/z = 421 [M-H]⁻

(2) 4-(Piperazin-1-yl)-dihydro-furan-2-on x 2 Trifluoressigsäure (Die Reaktionslösung wird ohne wässrige Aufarbeitung eingeeengt.)

35 R_f -Wert: 0.09 (Kieselgel, Methylenchlorid/Methanol/konzentrierte, wässrige Ammoniaklösung = 90:10:1)

- 32 -

Massenspektrum (ESI⁺): m/z = 171 [M+H]⁺

(3) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[3-(piperazin-1-yl)-propyloxy]-6-nitro-chinazolin

5 R_f-Wert: 0.18 (Kieselgel, Methylenchlorid/Methanol/konz. wässrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI⁺): m/z = 461, 463 [M+H]⁺

(4) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[4-(piperazin-1-yl)-

10 butyloxy]-6-nitro-chinazolin

R_f-Wert: 0.20 (Kieselgel, Methylenchlorid/Methanol/konz.

wässrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI⁺): m/z = 475, 477 [M+H]⁺

15 Beispiel VIII

4-[(R)-(1-Phenyl-ethyl)amino]-7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-6-nitro-chinazolin

1.99 g 4-[(R)-(1-Phenyl-ethyl)amino]-7-[2-(piperazin-1-yl)-

20 ethoxy]-6-nitro-chinazolin werden in 10 ml Methanol gelöst und mit 376 µl (5H)-Furan-2-on versetzt. Das Reaktionsgemisch wird bei Raumtemperatur über Nacht gerührt. Dann werden nochmals 35 µl (5H)-Furan-2-on zugegeben. Nach weiteren 1.5 Stunden Rühren bei Raumtemperatur ist die Umsetzung vollständig. Die 25 braune Reaktionslösung wird eingeeengt und über eine Kieselgelsäule mit Methylenchlorid/Methanol (95:5 bis 93:7) als Laufmittel chromatographiert. Man erhält die Titelverbindung als gelblichen Feststoff.

Ausbeute: 1.71 g (72 % der Theorie),

30 R_f-Wert: 0.45 (Kieselgel, Methylenchlorid/Methanol/konzentrierte, wässrige Ammoniaklösung = 90:10:1)

Massenspektrum (ESI⁺): m/z = 505 [M-H]⁺

Analog Beispiel VIII wird folgende Verbindung erhalten:

- 33 -

(1) 4-(4-tert-Butyloxy-piperazin-1-yl)-dihydro-furan-2-on (Die Reaktion wird in Methylenchlorid durchgeführt.)

R_f-Wert: 0.54 (Kieselgel, Methylenchlorid/Methanol/konzentrierte, wässrige Ammoniaklösung = 90:10:1)

5 Massenspektrum (ESI⁺): m/z = 293 [M+Na]⁺

(2) 4-[{(3-Chlor-4-fluor-phenyl)amino]-7-{4-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-butyloxy}-6-nitro-chinazolin

10 R_f-Wert: 0.50 (Kieselgel, Methylenchlorid/Methanol/konz. wässrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI⁺): m/z = 559, 561 [M+H]⁺

Beispiel IX

15

4-[(R)-(1-Phenyl-ethyl)aminol-6-nitro-7-fluor-chinazolin

Zu 108.8 g 4-Chlor-6-nitro-7-fluor-chinazolin in 800 ml Methylenchlorid wird eine Lösung aus 74 ml (R)-1-Phenyl-ethylamin in 100 ml Dioxan unter Eisbad-Kühlung getropft. Das Reaktionsgemisch wird über Nacht bei Raumtemperatur gerührt. Zur Aufarbeitung wird es mit Wasser ausgeschüttelt. Die organische Phase wird über Magnesiumsulfat getrocknet und eingeeengt. Der Rückstand wird chromatographisch über eine Kieselgelsäule mit Petrolether/Essigester (1:1) als Laufmittel gereinigt.

25 Ausbeute 52.90 g (35 % der Theorie),

Schmelzpunkt: 203°C

Massenspektrum (ESI⁺): m/z = 313 [M+H]⁺

Beispiel X

30

6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-(3-{4-[(S)-(2-oxo-tetrahydrofuran-5-yl)carbonyl]-piperazin-1-yl}-propyloxy)-chinazolin

Die Substanz wird in 75 % Ausbeute durch Hydrierung von 4-[(3-

35 Chlor-4-fluor-phenyl)amino]-7-(3-{4-[(S)-(2-oxo-tetrahydrofuran-5-yl)carbonyl]-piperazin-1-yl}-propyloxy)-6-

nitro-chinazolin in Tetrahydrofuran in Gegenwart von Raney-Nickel in einer Parr-Apparatur bei einem Wasserstoffpartialdruck von 50 psi erhalten.
 R_f -Wert: 0.44 (Kieselgel, Methylenchlorid/Methanol/konz.

5 wässrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI $^+$): m/z = 541, 543 [M-H] $^+$

Analog Beispiel X werden folgende Verbindungen erhalten:

10 (1) 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-{4-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-butyloxy}-chinazolin
 R_f -Wert: 0.24 (Kieselgel, Methylenchlorid/Methanol/konz.
wässrige Ammoniaklösung = 90:10:0.1)
Massenspektrum (ESI $^+$): m/z = 529, 531 [M+H] $^+$

15

(2) 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-{4-[4-[(S)-(2-oxo-tetrahydrofuran-5-yl)carbonyl]-piperazin-1-yl]-butyloxy}-chinazolin

R_f -Wert: 0.35 (Kieselgel, Methylenchlorid/Methanol/konz.

20 wässrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI $^+$): m/z = 579, 581 [M+Na] $^+$

Herstellung der Endverbindungen:

25 Beispiel 1

4-[(3-Chlor-4-fluor-phenyl)amino]-7-{3-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-propyloxy}-6-[(vinylcarbonyl)-aminol]-chinazolin

30 Eine Mischung aus 166 mg Acrylsäure und 0.77 ml Triethylamin in 10 ml Tetrahydrofuran wird im Trockeneis/Aceton-Kühlbad auf -50°C abgekühlt und mit einer Lösung aus 175 μ l Acrylsäurechlorid in 4 ml Tetrahydrofuran versetzt. Das Reaktionsgemisch wird 45 Minuten bei dieser Temperatur gerührt. Anschließend

35 wird eine Lösung aus 427 mg 6-Amino-4-[(3-chlor-4-fluor-phenyl)amino]-7-{3-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-propyloxy}-chinazolin in 10 ml Tetrahydrofuran innerhalb

von 20 Minuten zugetropft. Nun läßt man das Reaktionsgemisch langsam auf 0°C erwärmen und röhrt bei dieser Temperatur, bis die Umsetzung vollständig ist. Anschließend wird mit Eiswasser versetzt, wobei sich ein zäher Niederschlag bildet. Dieser
5 wird mehrmals gründlich mit Essigester/Methanol extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Das gelbliche, harzartige Rohprodukt wird chromatographisch über eine Kieselgelsäule mit Methylenchlorid/Methanol (95:5) als Laufmittel gereinigt.
10 Ausbeute: 148 mg (31 % der Theorie),
 R_f -Wert: 0.45 (Kieselgel, Methylenchlorid/Methanol/konzentrierte, wäßrige Ammoniaklösung = 90:10:0.1)
Massenspektrum (ESI⁻): m/z = 567, 569 [M-H]⁻

15

Analog Beispiel 1 werden folgende Verbindungen erhalten:

- (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-{2-[4-[(S)-(2-oxo-tetrahydrofuran-5-yl)carbonyl]-piperazin-1-yl]-ethoxy}-6-[(vinylcarbonyl)amino]-chinazolin
20 R_f -Wert: 0.46 (Kieselgel, Methylenchlorid/Methanol/konzentrierte, wäßrige Ammoniaklösung = 90:10:0.1)
Massenspektrum (ESI⁻): m/z = 581, 583 [M-H]⁻
- 25 (2) 4-[(R)-(1-Phenyl-ethyl)amino]-7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-6-[(vinylcarbonyl)amino]-chinazolin (Die Reaktion wird nur mit Acrylsäurechlorid in Methylenchlorid in Gegenwart von Triethylamin durchgeführt.)
30 R_f -Wert: 0.42 (Kieselgel, Methylenchlorid/Methanol/konzentrierte, wäßrige Ammoniaklösung = 90:10:1)
Massenspektrum (ESI⁻): m/z = 529 [M-H]⁻
- 35 (3) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-6-[(vinylcarbonyl)amino]-chinazolin (Die Reaktion wird mit Acrylsäure und Isobutylchloroformiat in Gegenwart von Triethylamin in Tetrahydrofuran durchgeführt.)

- 36 -

R_f -Wert: 0.40 (Kieselgel, Methylenchlorid/Methanol/konzentrierte, wässrige Ammoniaklösung = 90:10:1)

Massenspektrum (ESI $^+$): m/z = 553, 555 [M-H] $^+$

- 5 (4) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(3-{4-[(S)-(2-oxo-tetrahydrofuran-5-yl)carbonyl]-piperazin-1-yl}-propyloxy)-6-[(vinylcarbonyl)amino]-chinazolin

R_f -Wert: 0.26 (Kieselgel, Methylenchlorid/Methanol = 9:1)

Massenspektrum (ESI $^+$): m/z = 597, 599 [M+H] $^+$

10

- (5) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-{4-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-butyloxy}-6-[(vinylcarbonyl)amino]-chinazolin

R_f -Wert: 0.28 (Kieselgel, Methylenchlorid/Methanol/konz.

15 wässrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI $^+$): m/z = 583, 585 [M+H] $^+$

- (6) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(4-{4-[(S)-(2-oxo-tetrahydrofuran-5-yl)carbonyl]-piperazin-1-yl}-butyloxy)-6-

20 [(vinylcarbonyl)amino]-chinazolin

R_f -Wert: 0.45 (Kieselgel, Methylenchlorid/Methanol/konz.

wässrige Ammoniaklösung = 90:10:0.1)

Massenspektrum (ESI $^+$): m/z = 611, 613 [M+H] $^+$

- 25 Analog den vorstehenden Beispielen und anderen literaturbekannten Verfahren können folgende Verbindungen hergestellt werden:

- (1) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(3-{4-[(2-oxo-tetrahydrofuran-5-yl)methyl]-piperazin-1-yl}-propyloxy)-6-[(vinylcarbonyl)amino]-chinazolin

- (2) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[3-(4-{2-[(2-oxo-tetrahydrofuran-3-yl)sulfanyl]-ethyl}-piperazin-1-yl)-propoxy]-6-[(vinylcarbonyl)amino]-chinazolin

- 37 -

(3) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-{3-[1-(2-oxo-tetrahydrofuran-4-yl)-piperidin-4-yl]-propyloxy}-6-[(vinylcarbonyl)amino]-chinazolin

5 (4) 4-[(3-Brom-phenyl)amino]-7-{3-[1-(2-oxo-tetrahydrofuran-4-yl)-piperidin-4-yl]-propyloxy}-6-[(vinylcarbonyl)amino]-chinazolin

10 (5) 4-[(3-Methyl-phenyl)amino]-7-{3-[1-(2-oxo-tetrahydrofuran-4-yl)-piperidin-4-yl]-propyloxy}-6-[(vinylcarbonyl)amino]-chinazolin

15 (6) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[3-(3-oxo-perhydro-pyrazino[2,1-c][1,4]oxazin-8-yl)-propyloxy]-6-[(vinylcarbo-nyl)amino]-chinazolin

(7) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[3-(1-oxo-perhydro-pyrazino[2,1-c][1,4]oxazin-8-yl)-propyloxy]-6-[(vinylcarbo-nyl)amino]-chinazolin

20 (8) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[3-(2-oxa-3-oxo-8-aza-spiro[4.5]dec-8-yl)-propyloxy]-6-[(vinylcarbonyl)amino]-chinazolin

25 (9) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[3-(3-oxa-2-oxo-9-aza-spiro[5.5]undecan-9-yl)-propyloxy]-6-[(vinylcarbonyl)amino]-chinazolin

30 (10) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[3-(1,4-dioxa-2-oxo-9-aza-spiro[5.5]undecan-9-yl)-propyloxy]-6-[(vinylcarbonyl)amino]-chinazolin

35 (11) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[3-(4-methyl-1-oxa-2-oxo-4,9-diaza-spiro[5.5]undecan-9-yl)-propyloxy]-6-[(vinyl-carbonyl)amino]-chinazolin

- 38 -

- (12) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[3-[4-(2-oxo-morpholin-4-yl)-piperidin-1-yl]-propyloxy]-6-[(vinylcarbonyl)amino]-chinazolin
- 5 (13) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[3-[4-(6-methyl-2-oxo-morpholin-4-yl)-piperidin-1-yl]-propyloxy]-6-[(vinylcarbonyl)amino]-chinazolin
- 10 (14) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(3-[4-(6-methyl-2-oxo-morpholin-4-yl)methyl]-piperidin-1-yl)-propyloxy]-6-[(vinylcarbonyl)amino]-chinazolin
- 15 (15) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(3-[4-(2-oxo-tetrahydrofuran-3-yl)sulfanyl]-piperidin-1-yl)-propyloxy]-6-[(vinylcarbonyl)amino]-chinazolin
- 20 (16) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[3-(6-methoxymethyl-2-oxo-morpholin-4-yl)-propyloxy]-6-[(vinylcarbonyl)amino]-chinazolin
- (17) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[3-[6-(2-methoxyethyl)-2-oxo-morpholin-4-yl]-propyloxy]-6-[(vinylcarbonyl)amino]-chinazolin
- 25 (18) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[3-(1,9-dioxa-2-oxo-4-aza-spiro[5.5]undecan-4-yl)-propyloxy]-6-[(vinylcarbonyl)amino]-chinazolin
- Beispiel 2
- 30 Dragées mit 75 mg Wirksubstanz
- 1 Dragéekern enthält:
- | | |
|---------------------|---------|
| Wirksubstanz | 75,0 mg |
| Calciumphosphat | 93,0 mg |
| Maisstärke | 35,5 mg |
| Polyvinylpyrrolidon | 10,0 mg |

- 39 -

Hydroxypropylmethylcellulose	15,0 mg
Magnesiumstearat	<u>1,5 mg</u>
	230,0 mg

5 Herstellung:

- Die Wirksubstanz wird mit Calciumphosphat, Maisstärke, Polyvinylpyrrolidon, Hydroxypropylmethylcellulose und der Hälfte der angegebenen Menge Magnesiumstearat gemischt. Auf einer 10 Tablettiermaschine werden Preßlinge mit einem Durchmesser von ca. 13 mm hergestellt, diese werden auf einer geeigneten Maschine durch ein Sieb mit 1,5 mm-Maschenweite gerieben und mit der restlichen Menge Magnesiumstearat vermischt. Dieses Granulat wird auf einer Tablettiermaschine zu Tabletten mit der gewünschten Form gepreßt.
- 15

Kerngewicht: 230 mg

Stempel: 9 mm, gewölbt

- 20 Die so hergestellten Dragéekerne werden mit einem Film überzogen, der im wesentlichen aus Hydroxypropylmethylcellulose besteht. Die fertigen Filmdragées werden mit Bienenwachs glänzt.

Dragéegewicht: 245 mg.

25

Beispiel 3Tabletten mit 100 mg Wirksubstanz**30 Zusammensetzung:**

1 Tablette enthält:

Wirksubstanz	100,0 mg
Milchzucker	80,0 mg
Maisstärke	34,0 mg
35 Polyvinylpyrrolidon	4,0 mg
Magnesiumstearat	<u>2,0 mg</u>
	220,0 mg

Herstellungverfahren:

Wirkstoff, Milchzucker und Stärke werden gemischt und mit
 5 einer wässrigen Lösung des Polyvinylpyrrolidons gleichmäßig
 befeuchtet. Nach Siebung der feuchten Masse (2,0 mm-Maschen-
 weite) und Trocknen im Hordentrockenschränk bei 50°C wird
 erneut gesiebt (1,5 mm-Maschenweite) und das Schmiermittel
 zugemischt. Die preßfertige Mischung wird zu Tabletten ver-
 10 arbeitet.

Tablettengewicht: 220 mg

Durchmesser: 10 mm, biplan mit beidseitiger Facette und
 einseitiger Teilkerbe.

15 Beispiel 4Tabletten mit 150 mg WirksubstanzZusammensetzung:

20 1 Tablette enthält:

Wirksubstanz	150,0 mg
Milchzucker pulv.	89,0 mg
Maisstärke	40,0 mg
Kolloide Kieselgelsäure	10,0 mg
25 Polyvinylpyrrolidon	10,0 mg
Magnesiumstearat	<u>1,0 mg</u>
	300,0 mg

Herstellung:

30

Die mit Milchzucker, Maisstärke und Kieselgelsäure gemischte Wirksubstanz wird mit einer 20%igen wässrigen Polyvinylpyrrolidonlösung befeuchtet und durch ein Sieb mit 1,5 mm-Maschenweite geschlagen.

35 Das bei 45°C getrocknete Granulat wird nochmals durch dasselbe Sieb gerieben und mit der angegebenen Menge Magnesiumstearat gemischt. Aus der Mischung werden Tabletten gepreßt.

- 41 -

Tablettengewicht: 300 mg

Stempel: 10 mm, flach

Beispiel 5

5

Hartgelatine-Kapseln mit 150 mg Wirksubstanz

1 Kapsel enthält:

Wirkstoff	150,0 mg
10 Maisstärke getr.	ca. 180,0 mg
Milchzucker pulv.	ca. 87,0 mg
Magnesiumstearat	<u>3,0 mg</u>
	ca. 420,0 mg

15 Herstellung:

Der Wirkstoff wird mit den Hilfsstoffen vermischt, durch ein Sieb von 0,75 mm-Maschenweite gegeben und in einem geeigneten Gerät homogen gemischt.

20 Die Endmischung wird in Hartgelatine-Kapseln der Größe 1 abgefüllt.

Kapselfüllung: ca. 320 mg

Kapselhülle: Hartgelatine-Kapsel Größe 1.

25 Beispiel 6

Suppositorien mit 150 mg Wirksubstanz

1 Zäpfchen enthält:

30 Wirkstoff	150,0 mg
Polyäthylenglykol 1500	550,0 mg
Polyäthylenglykol 6000	460,0 mg
Polyoxyäthylensorbitanmonostearat	<u>840,0 mg</u>
	2 000,0 mg

35

Herstellung:

- 42 -

Nach dem Aufschmelzen der Suppositorienmasse wird der Wirkstoff darin homogen verteilt und die Schmelze in vorgekühlte Formen gegossen.

5 Beispiel 7

Suspension mit 50 mg Wirksubstanz

100 ml Suspension enthalten:

10	Wirkstoff	1,00 g
	Carboxymethylcellulose-Na-Salz	0,10 g
	p-Hydroxybenzoësäuremethylester	0,05 g
	p-Hydroxybenzoësäurepropylester	0,01 g
	Rohrzucker	10,00 g
15	Glycerin	5,00 g
	Sorbitlösung 70%ig	20,00 g
	Aroma	0,30 g
	Wasser dest.	ad 100 ml

20 Herstellung:

Dest. Wasser wird auf 70°C erhitzt. Hierin wird unter Rühren p-Hydroxybenzoësäuremethylester und -propylester sowie Glycerin und Carboxymethylcellulose-Natriumsalz gelöst. Es wird auf Raumtemperatur abgekühlt und unter Rühren der Wirkstoff zugegeben und homogen dispergiert. Nach Zugabe und Lösen des Zuckers, der Sorbitlösung und des Aromas wird die Suspension zur Entlüftung unter Rühren evakuiert.
5 ml Suspension enthalten 50 mg Wirkstoff.

30

Beispiel 8

Ampullen mit 10 mg Wirksubstanz

35 Zusammensetzung:

Wirkstoff	10,0 mg
0,01N Salzsäure s.q.	

- 43 -

Aqua bidest ad 2,0 ml

Herstellung:

- 5 Die Wirksubstanz wird in der erforderlichen Menge 0,01N HCl gelöst, mit Kochsalz isotonisch gestellt, sterilfiltriert und in 2 ml Ampullen abgefüllt.

Beispiel 9

10

Ampullen mit 50 mg Wirksubstanz

Zusammensetzung:

Wirkstoff	50,0 mg
15 0,01N Salzsäure s.q.	
Aqua bidest	ad 10,0 ml

Herstellung:

- 20 Die Wirksubstanz wird in der erforderlichen Menge 0,01N HCl gelöst, mit Kochsalz isotonisch gestellt, sterilfiltriert und in 10 ml Ampullen abgefüllt.

Beispiel 10

25

Kapseln zur Pulverinhalation mit 5 mg Wirksubstanz

1 Kapsel enthält:

30 Wirksubstanz	5,0 mg
Lactose für Inhalationszwecke	<u>15,0 mg</u>
	20,0 mg

Herstellung:

35

- 44 -

Die Wirksubstanz wird mit Lactose für Inhalationszwecke gemischt. Die Mischung wird auf einer Kapselmaschine in Kapseln (Gewicht der Leerkapsel ca. 50 mg) abgefüllt.

Kapselgewicht: 70,0 mg

5 Kapselgröße: 3

Beispiel 11:

Inhalationslösung für Handvernebler mit 2,5 mg Wirksubstanz

10

1 Hub enthält:

Wirksubstanz	2,500 mg
Benzalkoniumchlorid	0,001 mg
15 1N-Salzsäure q.s.	
Ethanol/Wasser (50/50)	ad 15,000 mg

Herstellung:

- 20 Die Wirksubstanz und Benzalkoniumchlorid werden in Ethanol/Wasser (50/50) gelöst. Der pH-Wert der Lösung wird mit 1N-Salzsäure eingestellt. Die eingestellte Lösung wird filtriert und in für den Handvernebler geeignete Behälter (Kartuschen) abgefüllt.
- 25 Füllmasse des Behälters: 4,5 g

Patentansprüche

5 1. Bicyclische Heterocyclen der allgemeinen Formel

in der

10 R_a ein Wasserstoffatom oder eine Methylgruppe,

R_b eine Phenyl-, Benzyl- oder 1-Phenylethylgruppe, in denen der Phenylkern jeweils durch die Reste R₁ bis R₅ substituiert ist,
wobei

15

R₁ und R₂, die gleich oder verschieden sein können, jeweils ein Wasserstoff-, Fluor-, Chlor-, Brom- oder Jodatom,

20 eine Methyl-, Ethyl-, Hydroxy-, Methoxy-, Ethoxy-, Amino-, Cyano-, Vinyl- oder Ethinylgruppe,

eine Aryl-, Aryloxy-, Arylmethyl- oder Arylmethoxygruppe,

25 eine durch 1 bis 3 Fluoratome substituierte Methyl- oder Methoxygruppe oder

R₁ zusammen mit R₂, sofern diese an benachbarte Kohlenstoffatome gebunden sind, eine -CH=CH-CH=CH-, -CH=CH-NH- oder -CH=N-NH-Gruppe und

30

R₃ ein Wasserstoff-, Fluor-, Chlor- oder Bromatom,

R_c ein Wasserstoffatom oder eine Methylgruppe,

X eine durch eine Cyanogruppe substituierte Methingruppe oder ein Stickstoffatom,

- 5 A eine 1,1- oder 1,2-Vinylengruppe, die jeweils durch eine oder zwei Methylgruppen oder durch eine Trifluormethylgruppe substituiert sein kann,

eine Ethinylengruppe, oder
10

eine gegebenenfalls durch eine Methyl- oder Trifluormethylgruppe substituierte 1,3-Butadien-1,4-ylengruppe,

- B ein Wasserstoffatom oder eine C₁₋₄-Alkylgruppe, eine durch 1 bis 15 3 Fluoratome substituierte Methylgruppe, eine durch 1 bis 5 Fluoratome substituierte Ethylgruppe, eine C₁₋₄-Alkylcarbonyl-, Carboxy-, C₁₋₄-Alkoxy carbonyl-, Aminocarbonyl-, C₁₋₄-Alkylaminocarbonyl-, Di-(C₁₋₄-Alkyl)-aminocarbonyl-, Pyrrolidino-carbonyl-, Piperidinocarbonyl-, Morphinocarbonyl- oder eine 20 4-(C₁₋₄-Alkyl)-Piperazinocarbonylgruppe, oder

eine durch den Rest R₄ substituierte C₁₋₄-Alkylgruppe, wobei

R₄ eine C₁₋₄-Alkoxygruppe,
25

- eine durch 2 C₁₋₄-Alkylgruppen substituierte Aminogruppe, in der die Alkylreste gleich oder verschieden sein können und jeder Alkylteil ab Position 2 durch eine C₁₋₄-Alkoxy- oder Di-(C₁₋₄-Alkyl)-aminogruppe oder durch eine 4- bis 7-gliedrige Alkyleniminogruppe substituiert sein kann, wobei in 30 den vorstehend erwähnten 6- bis 7-gliedrigen Alkyleniminogruppen jeweils eine Methylengruppe in 4-Stellung durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl-, Sulfonyl- oder N-(C₁₋₄-Alkyl)-iminogruppe ersetzt sein kann,

35 eine gegebenenfalls durch 1 bis 4 Methylgruppen substituierte 4- bis 7-gliedrige Alkyleniminogruppe,

- eine gegebenenfalls durch 1 oder 2 Methylgruppen substituierte 6- bis 7-gliedrige Alkyleniminogruppe, in der jeweils eine Methylengruppe in 4-Stellung durch ein Sauerstoff- oder Schwefelatom, durch eine Sulfinyl-, Sulfonyl- oder N-(C₁₋₂-Alkyl)-iminogruppe ersetzt ist, oder
- 5
10
15
20
25
30
35
- eine gegebenenfalls durch 1 bis 3 Methylgruppen substituierte Imidazolylgruppe darstellt,
- C eine C₁₋₆-Alkylen gruppe, eine -O-C₁₋₆-alkylen gruppe, wobei der Alkylenteil mit dem Rest D verknüpft ist, oder ein Sauerstoffatom, wobei dieses nicht mit einem Stickstoffatom des Restes D verknüpft sein kann, und
- D eine Pyrrolidinogruppe, in der die beiden Wasserstoffatome in 2-Stellung durch eine Gruppe E ersetzt sind, in der
- E eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte -CH₂-O-CO-CH₂-, -CH₂CH₂-O-CO-, -CH₂-O-CO-CH₂CH₂-, -CH₂CH₂-O-CO-CH₂- oder -CH₂CH₂CH₂-O-CO-Brücke darstellt,
- eine Pyrrolidinogruppe, in der die beiden Wasserstoffatome in 3-Stellung durch eine Gruppe F ersetzt sind, in der
- F eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte -O-CO-CH₂CH₂-, -CH₂-O-CO-CH₂-, -CH₂CH₂-O-CO-, -O-CO-CH₂CH₂CH₂-, -CH₂-O-CO-CH₂CH₂-, -CH₂CH₂-O-CO-CH₂-, -CH₂CH₂CH₂-O-CO-, -O-CO-CH₂-NR₅-CH₂-, -CH₂-O-CO-CH₂-NR₅-, -O-CO-CH₂-O-CH₂- oder -CH₂-O-CO-CH₂-O-Brücke darstellt, wobei
- R₅ ein Wasserstoffatom oder eine C₁₋₄-Alkylgruppe bedeutet,

eine Piperidino- oder Hexahydroazepinogruppe, in denen die beiden Wasserstoffatome in 2-Stellung durch eine Gruppe E ersetzt sind, wobei E wie vorstehend erwähnt definiert ist,

- 5 eine Piperidino- oder Hexahydroazepinogruppe, in denen jeweils die beiden Wasserstoffatome in 3-Stellung oder in 4-Stellung durch eine Gruppe F ersetzt sind, wobei F wie vorstehend erwähnt definiert ist,
- 10 eine Piperazino- oder 4-(C₁₋₄-Alkyl)-piperazinogruppe, in denen die beiden Wasserstoffatome in 2-Stellung oder in 3-Stellung des Piperazinoringes durch eine Gruppe E ersetzt sind, wobei E wie vorstehend erwähnt definiert ist,
- 15 eine Pyrrolidino- oder Piperidinogruppe, in denen zwei vicinale Wasserstoffatome durch eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte -O-CO-CH₂-, -CH₂-O-CO-, -O-CO-CH₂CH₂-, -CH₂-O-CO-CH₂-, -CH₂CH₂-O-CO-, -O-CO-CH₂-NR₅- oder -O-CO-CH₂-O-Brücke ersetzt sind, wobei R₅ wie vorstehend erwähnt definiert ist und die Heteroatome der vorstehend erwähnten Brücken nicht an die 2- oder 5-Stellung des Pyrrolidinoringes und nicht an die 2- oder 6-Stellung des Piperidinoringes gebunden sind,
- 20
- 25 eine Piperazino- oder 4-(C₁₋₄-Alkyl)-piperazinogruppe, in denen ein Wasserstoffatom in 2-Stellung zusammen mit einem Wasserstoffatom in 3-Stellung des Piperazinoringes durch eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte -CH₂-O-CO-CH₂- oder -CH₂CH₂-O-CO-Brücke ersetzt sind,
- 30
- 35 eine Piperazinogruppe, in der ein Wasserstoffatom in 3-Stellung zusammen mit dem Wasserstoffatom in 4-Stellung durch eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte -CO-O-CH₂CH₂- oder -CH₂-O-CO-CH₂-Brücke ersetzt sind, wobei jeweils das linke Ende der vorstehend erwähnten Brücken an die 3-Stellung des Piperazinoringes gebunden ist,

eine durch den Rest R₆ substituierte Pyrrolidino-, Piperidino- oder Hexahydroazepinogruppe, in denen

- 5 R₆ eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte 2-Oxo-tetrahydrofuranyl-, 2-Oxo-tetrahydropyran-, 2-Oxo-1,4-dioxanyl- oder 2-Oxo-4-(C₁₋₄-alkyl)-morpholinylgruppe darstellt,
- 10 eine in 3-Stellung durch eine 2-Oxo-morpholinogruppe substituierte Pyrrolidinogruppe, wobei die 2-Oxo-morpholinogruppe durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,
- 15 eine in 3- oder 4-Stellung durch eine 2-Oxo-morpholinogruppe substituierte Piperidino- oder Hexahydroazepinogruppe, wobei die 2-Oxo-morpholinogruppe durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,
- 20 eine an einem Ringkohlenstoffatom durch R₆ substituierte 4-(C₁₋₄-alkyl)-piperazino- oder 4-(C₁₋₄-alkyl)-homopiperazino-gruppe, in denen R₆ wie vorstehend erwähnt definiert ist,
- 25 eine in 4-Stellung durch den Rest R₇ substituierte Piperazino- oder Homopiperazinogruppe, in denen
 - R₇, eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte 2-Oxo-tetrahydrofuran-3-yl-, 2-Oxo-tetrahydrofuran-4-yl-, 2-Oxo-tetrahydropyran-3-yl-, 2-Oxo-tetrahydropyran-4-yl- oder 2-Oxo-tetrahydropyran-5-yl-Gruppe darstellt,
 - 30 eine in 3-Stellung durch eine (R_sNR_t)₂-, R_sO-, R_sS-, R_sSO- oder R_sSO₂-Gruppe substituierte Pyrrolidinogruppe, wobei R_s und R_t wie vorstehend erwähnt definiert sind,
 - 35 eine in 3- oder 4-Stellung durch eine (R_sNR_t)₂-, R_sO-, R_sS-, R_sSO- oder R_sSO₂-Gruppe substituierte Piperidino- oder Hexahydroaze-

- 50 -

pinogruppe, in denen R_s und R, wie vorstehend erwähnt definiert sind,

- 5 eine durch eine R₆-C₁₋₄-alkyl-, (R₅NR₇)-C₁₋₄-alkyl-, R₆O-C₁₋₄-al-
kyl-, R₆S-C₁₋₄-alkyl-, R₆SO-C₁₋₄-alkyl-, R₆SO₂-C₁₋₄-alkyl- oder
(R₅NR₇)-CO-Gruppe substituierte Pyrrolidino-, Piperidino- oder
Hexahydroazepinogruppe, in denen R_s bis R, wie vorstehend er-
wähnt definiert sind,
- 10 eine in 3-Stellung durch eine R₆-CO-NR₄-, R₆-C₁₋₄-alkylen-CNR₄-,
(R₅NR₇)-C₁₋₄-alkylen-CNR₅-, R₆O-C₁₋₄-alkylen-CNR₅-, R₆S-C₁₋₄-al-
kylen-CNR₅-, R₆SO-C₁₋₄-alkylen-CNR₅-, R₆SO₂-C₁₋₄-alkylen-CNR₅-,
2-Oxo-morpholino-C₁₋₄-alkylen-CNR₅-, R₆-C₁₋₄-alkylen-Y- oder
C₂₋₄-Alkyl-Y-Gruppe substituierte Pyrrolidinogruppe, wobei der
15 C₂₋₄-Alkylteil der C₂₋₄-Alkyl-Y-Gruppe jeweils ab Position 2
durch eine (R₅NR₇)-, R₆O-, R₆S-, R₆SO- oder R₆SO₂-Gruppe sub-
stituiert ist und der 2-Oxo-morpholinoteil durch eine oder
zwei C₁₋₂-Alkylgruppen substituiert sein kann, in denen
- 20 R_s bis R, wie vorstehend erwähnt definiert sind und

Y ein Sauerstoff- oder Schwefelatom, eine Imino-,
N-(C₁₋₄-Alkyl)-imino-, Sulfinyl- oder Sulfonylgruppe
darstellt,
- 25 eine in 3- oder 4-Stellung durch eine R₆-CO-NR₅-, R₆-C₁₋₄-al-
kylen-CNR₅-, (R₅NR₇)-C₁₋₄-alkylen-CNR₅-, R₆O-C₁₋₄-alkylen-CNR₅-,
R₆S-C₁₋₄-alkylen-CNR₅-, R₆SO-C₁₋₄-alkylen-CNR₅-, R₆SO₂-C₁₋₄-al-
kylen-CNR₅-, 2-Oxo-morpholino-C₁₋₄-alkylen-CNR₅-, R₆-C₁₋₄-al-
kylen-Y- oder C₂₋₄-Alkyl-Y-Gruppe substituierte Piperidino- oder
30 Hexahydroazepinogruppe, in denen Y wie vorstehend erwähnt
definiert ist, der 2-Oxo-morpholinoteil durch eine oder zwei
C₁₋₂-Alkylgruppen substituiert sein kann und der C₂₋₄-Alkylteil
der C₂₋₄-Alkyl-Y-Gruppe jeweils ab Position 2 durch eine
35 (R₅NR₇)-, R₆O-, R₆S-, R₆SO- oder R₆SO₂-Gruppe substituiert ist,
wobei R_s bis R, wie vorstehend erwähnt definiert sind,

- eine an einem Ringkohlenstoffatom durch eine R₆-C₁₋₄-alkyl-, (R₅NR₇)-C₁₋₄-alkyl-, R₆O-C₁₋₄-alkyl-, R₆S-C₁₋₄-alkyl-, R₆SO-C₁₋₄-alkyl-, R₆SO₂-C₁₋₄-alkyl- oder R₅NR₇-CO-Gruppe substituierte 4-(C₁₋₄-Alkyl)-piperazino- oder 4-(C₁₋₄-Alkyl)-homopiperazino-
- 5 gruppe, in denen R₅ bis R₇, wie vorstehend erwähnt definiert sind,
- eine in 4-Stellung durch eine R₆-C₁₋₄-alkyl-, R₆-CO-, R₆-C₁₋₄-alkylen-CO-, (R₅NR₇)-C₁₋₄-alkylen-CO-, R₆O-C₁₋₄-alkylen-CO-,
- 10 R₆S-C₁₋₄-alkylen-CO-, R₆SO-C₁₋₄-alkylen-CO- oder R₆SO₂-C₁₋₄-alkylen-CO-Gruppe substituierte Piperazino- oder Homopiperazinogruppe, in denen R₅ bis R₇, wie vorstehend erwähnt definiert sind,
- eine in 4-Stellung durch eine C₂₋₄-Alkylgruppe substituierte
- 15 Piperazino- oder Homopiperazinogruppe, in denen die C₂₋₄-Alkylgruppe jeweils ab Position 2 durch eine (R₅NR₇)-, R₆O-, R₆S-, R₆SO- oder R₆SO₂-Gruppe substituiert ist, wobei R₅ und R₇, wie vorstehend erwähnt definiert sind,
- 20 eine durch eine 2-Oxo-morpholino-C₁₋₄-alkylgruppe substituierte Pyrrolidino-, Piperidino- oder Hexahydroazepinogruppe, in denen der 2-Oxo-morpholinoteil durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,
- 25 eine in 3-Stellung durch eine C₂₋₄-Alkyl-Y-Gruppe substituierte Pyrrolidinogruppe, in denen Y wie vorstehend erwähnt definiert ist und der C₂₋₄-Alkylteil der C₂₋₄-Alkyl-Y-Gruppe jeweils ab Position 2 durch eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte 2-Oxo-morpholinogruppe substituiert ist,
- 30 eine in 3- oder 4-Stellung durch eine C₂₋₄-Alkyl-Y-Gruppe substituierte Piperidino- oder Hexahydroazepinogruppe, in denen Y wie vorstehend erwähnt definiert ist und der C₂₋₄-Alkylteil der C₂₋₄-Alkyl-Y-Gruppe jeweils ab Position 2 durch eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte 2-Oxo-morpholinogruppe substituiert ist,

- eine an einem Ringkohlenstoffatom durch eine 2-Oxo-morpholino-C₁₋₄-alkyl-Gruppe substituierte 4-(C₁₋₄-Alkyl)-piperazino- oder 4-(C₁₋₄-Alkyl)-homopiperazinogruppe, in denen der 2-Oxo-morpholinoteil durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,
- eine in 4-Stellung durch eine 2-Oxo-morpholino-C₁₋₄-alkylen-CO-Gruppe substituierte Piperazino- oder Homopiperazinogruppe, in denen der 2-Oxo-morpholinoteil durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,
- eine in 4-Stellung durch eine C₂₋₄-Alkylgruppe substituierte Piperazino- oder Homopiperazinogruppe, in denen der C₂₋₄-Alkylteil jeweils ab Position 2 durch eine gegebenenfalls durch eine oder zwei C₁₋₂-Alkylgruppen substituierte 2-Oxo-morpholino-gruppe substituiert ist,
- eine in 1-Stellung durch den Rest R₇, durch eine R₆-C₁₋₄-alkyl-, R₆-CO-, R₆-C₁₋₄-alkylen-CO-, (R₅NR₇)-C₁₋₄-alkylen-CO-, R₆O-C₁₋₄-alkylen-CO-, R₆S-C₁₋₄-alkylen-CO-, R₆SO-C₁₋₄-alkylen-CO-, R₆SO₂-C₁₋₄-alkylen-CO- oder 2-Oxo-morpholino-C₁₋₄-alkylen-CO-Gruppe substituierte Pyrrolidinyl- oder Piperidinylgruppe, in denen R₅ bis R₇, wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,
- eine in 1-Stellung durch eine C₂₋₄-Alkylgruppe substituierte Pyrrolidinyl- oder Piperidinylgruppe, in denen der C₂₋₄-Alkylteil jeweils ab Position 2 durch eine (R₅NR₇)-, R₆O-, R₆S-, R₆SO-, R₆SO₂- oder 2-Oxo-morpholinogruppe substituiert ist, wobei R₅ und R₇, wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,
- 35 eine jeweils am Ringstickstoffatom durch den Rest R₇, durch eine R₆-C₁₋₄-alkyl-, R₆-CO-, R₆-C₁₋₄-alkylen-CO-, (R₅NR₇)-C₁₋₄-al-

- kylen-CO-, R₂O-C₁₋₄-alkylen-CO-, R₂S-C₁₋₄-alkylen-CO-, R₂SO-C₁₋₄-alkylen-CO-, R₂SO₂-C₁₋₄-alkylen-CO- oder 2-Oxo-morpholino-C₁₋₄-alkylen-CO-Gruppe substituierte Pyrrolidin-3-yl-NR₅-, Piperidin-3-yl-NR₅- oder Piperidin-4-yl-NR₅-Gruppe, in denen R₅
- 5 bis R, wie vorstehend erwähnt definiert ist und der 2-Oxo-morpholinoteil durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,
- eine jeweils am Ringstickstoffatom durch eine C₂₋₄-Alkylgruppe substituierte Pyrrolidin-3-yl-NR₅-, Piperidin-3-yl-NR₅- oder Piperidin-4-yl-NR₅-Gruppe, in denen der C₂₋₄-Alkylteil jeweils ab Position 2 durch eine (R₅NR₆)-, R₂O-, R₂S-, R₂SO-, R₂SO₂- oder 2-Oxo-morpholinogruppe substituiert ist, wobei R₅ und R, wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil 15 durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,
- eine R₆-C₁₋₄-alkylen-NR₅-Gruppe, in der R₅ und R₆ wie vorstehend erwähnt definiert sind, oder
- 20 eine C₂₋₄-Alkyl-NR₄-Gruppe, in denen der C₂₋₄-Alkylteil jeweils ab Position 2 durch eine (R₅NR₆)-, R₂O-, R₂S-, R₂SO-, R₂SO₂- oder 2-Oxo-morpholinogruppe substituiert ist, wobei R₅ und R, wie vorstehend erwähnt definiert sind und der 2-Oxo-morpholinoteil durch eine oder zwei C₁₋₂-Alkylgruppen substituiert sein kann,
- 25 eine durch den Rest R₈ oder durch den Rest R₈ und eine C₁₋₄-Alkylgruppe substituierte 2-Oxo-morpholin-4-yl-Gruppe, wobei
- R₈ eine C₃₋₄-Alkyl-, Hydroxy-C₁₋₄-alkyl-, C₁₋₄-Alkoxy-C₁₋₄-alkyl-, Di-(C₂₋₄-Alkyl)-amino-C₁₋₄-alkyl-, Pyrrolidino-C₁₋₄-alkyl-, Piperidino-C₁₋₄-alkyl-, Morpholino-C₁₋₄-alkyl-, 4-(C₁₋₄-Alkyl)-piperazino-C₁₋₄-alkyl-, C₁₋₄-Alkylsulfanyl-C₁₋₄-alkyl-, C₁₋₄-Alkylsulfinyl-C₁₋₄-alkyl-, C₁₋₄-Alkylsulfonyl-C₁₋₄-alkyl-, Cyan-C₁₋₄-alkyl-, C₁₋₄-Alkoxycarbonyl-C₁₋₄-alkyl-, Aminocarbonyl-C₁₋₄-alkyl-, C₁₋₄-Alkyl-aminocarbonyl-C₁₋₄-alkyl-, Di-(C₁₋₄-alkyl)-aminocarbonyl-C₁₋₄-alkyl-, Pyrrolidino-carbonyl-C₁₋₄-alkyl-, Piperidinocarbonyl-C₁₋₄-alkyl-, Morpho-

- linocarbonyl-C₁₋₄-alkyl- oder eine 4-(C₁₋₄-Alkyl)-piperazino-carbonyl-C₁₋₄-alkylgruppe darstellt,
- eine durch zwei Reste R₈ substituierte 2-Oxo-morpholin-4-yl-Gruppe, wobei R₈ wie vorstehend erwähnt definiert ist und die beiden Reste R₈ gleich oder verschieden sein können,
- eine 2-Oxo-morpholin-4-yl-Gruppe, in der die beiden Wasserstoffatome einer Methylengruppe durch eine gegebenenfalls
- durch eine oder zwei C₁₋₂-Alkylgruppen substituierte -(CH₂)_n-, -CH₂-Y-CH₂- , -CH₂-Y-CH₂-CH₂- , -CH₂CH₂-Y-CH₂CH₂- oder -CH₂CH₂-Y-CH₂CH₂CH₂- Brücke ersetzt sind, wobei
- m die Zahl 2, 3, 4, 5 oder 6 und
- Y ein Sauerstoff- oder Schwefelatom, eine Sulfinyl-, Sulfonyl- oder C₁₋₄-Alkylimino-Gruppe darstellen,
- eine 2-Oxo-morpholin-4-yl-Gruppe, in der ein Wasserstoffatom in 5-Stellung zusammen mit einem Wasserstoffatom in 6-Stellung
- durch eine -(CH₂)_n-, -CH₂-Y-CH₂- , -CH₂-Y-CH₂CH₂- oder -CH₂-CH₂-Y-CH₂- Brücke ersetzt ist, wobei
- Y wie vorstehend erwähnt definiert ist und
- n die Zahl 2, 3 oder 4 darstellt,
- 25 bedeuten, wobei, soweit nichts anderes erwähnt wurde, unter den bei der Definition der vorstehend erwähnten Reste erwähnten Arylteilen eine Phenylgruppe zu verstehen ist, die durch R₉ mono- oder disubstituiert sein kann, wobei die Substituenten
- gleich oder verschieden sein können und
- R₉ ein Fluor-, Chlor-, Brom- oder Jodatom, eine C₁₋₂-Alkyl-, Trifluormethyl- oder C₁₋₂-Alkoxygruppe darstellt, oder
- 35 zwei Reste R₉, sofern sie an benachbarte Kohlenstoffatome gebunden sind, zusammen eine C₃₋₄-Alkylen-, Methylendioxy- oder 1,3-Butadien-1,4-ylengruppe darstellen,

deren Tautomere, Stereoisomere und deren Salze.

- 2.. Bicyclische Heterocyclen der allgemeinen Formel I gemäß An-
5 spruch 1, in der
- R_a ein Wasserstoffatom,
- 10 R_b eine 1-Phenylethyl-, 3-Methylphenyl-, 3-Chlorphenyl-,
3-Bromphenyl- oder 3-Chlor-4-fluorphenylgruppe,
- R_c ein Wasserstoffatom,
- X ein Stickstoffatom,
15 A eine 1,2-Vinylen- oder Ethinylengruppe,
- B ein Wasserstoffatom,
- 20 C eine -O-CH₂CH₂- , -O-CH₂CH₂CH₂- oder -O-CH₂CH₂CH₂CH₂- Gruppe,
wobei der Alkylenteil jeweils mit dem Rest D verknüpft ist,
und
- 25 D eine Piperidinogruppe, in der die beiden Wasserstoffatome in
4-Stellung durch eine -CH₂-O-CO-CH₂- , -CH₂CH₂-O-CO- ,
-CH₂CH₂-O-CO-CH₂- , -O-CO-CH₂-NCH₃-CH₂- oder -O-CO-CH₂-O-CH₂-Brücke
ersetzt sind,
- eine Piperazinogruppe, in der ein Wasserstoffatom in 3-Stel-
30 lung zusammen mit dem Wasserstoffatom in 4-Stellung durch eine
-CO-O-CH₂-CH₂- oder -CH₂-O-CO-CH₂-Brücke ersetzt sind, wobei
jeweils das linke Ende der vorstehenden Brücken an die 3-Stel-
lung des Piperazinoringes gebunden ist,
- 35 eine Piperidinogruppe, die in 4-Stellung durch eine 2-Oxo-mor-
pholino- oder 2-Oxo-morpholinomethylgruppe substituiert ist,

- 56 -

wobei der 2-Oxo-morpholinoteil jeweils durch eine oder zwei Methylgruppen substituiert sein kann,

5 eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-Gruppe substituiert ist,

10 eine Piperidinogruppe, die in 4-Stellung durch eine R₆S-Gruppe substituiert ist, wobei

10 R₆ eine 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-Gruppe darstellt,

15 eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-tetrahydrofuranyl methyl- oder 2-Oxo-tetrahydrofuranyl carbonylgruppe substituiert ist,

20 eine Piperazinogruppe, die in 4-Stellung durch eine [2-(2-Oxo-tetrahydrofuran-3-ylsulfenyl)ethyl]gruppe substituiert ist,

25 eine Piperidin-4-yl-Gruppe, die in 1-Stellung durch eine 2-Oxo-tetrahydrofuran-3-yl- oder 2-Oxo-tetrahydrofuran-4-yl-Gruppe substituiert ist,

30 eine 2-Oxo-morpholin-4-ylgruppe, die durch eine Methoxymethyl- oder Methoxyethylgruppe substituiert ist,

eine 2-Oxo-morpholin-4-ylgruppe, in der die beiden Wasserstoffatome einer Methylengruppe durch eine -CH₂CH₂CH₂CH₂-,

35 -CH₂CH₂CH₂CH₂CH₂- , -CH₂-O-CH₂CH₂- oder -CH₂CH₂-O-CH₂CH₂-Brücke ersetzt sind,

bedeuten, deren Tautomere, Stereoisomere und deren Salze.

35 3. Bicyclische Heterocyclen der allgemeinen Formel I gemäß Anspruch 1, in der

R_a ein Wasserstoffatom,

R_b eine 1-Phenylethyl- oder 3-Chlor-4-fluorphenylgruppe,

5 R_c ein Wasserstoffatom,

X ein Stickstoffatom,

A eine 1,2-Vinylengruppe,

10

B ein Wasserstoffatom,

15

C eine -O-CH₂CH₂- , -O-CH₂CH₂CH₂- oder -O-CH₂CH₂CH₂CH₂- Gruppe,
wobei der Alkylene Teil jeweils mit dem Rest D verknüpft ist,

und

20

D eine Piperazinogruppe, die in 4-Stellung durch eine 2-Oxo-tetrahydrofuran-4-yl- oder 2-Oxo-tetrahydrofuran-5-ylcarbonyl-Gruppe substituiert ist, bedeuten,

deren Tautomere, Stereoisomere und deren Salze.

4. Folgende Verbindungen der allgemeinen Formel I gemäß Anspruch 1:

25

(1) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-{3-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-propyloxy}-6-[(vinylcarbonyl)-amino]-chinazolin,

30

(2) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-(2-{4-[(S)-(2-oxo-tetrahydrofuran-5-yl)carbonyl]-piperazin-1-yl}-ethoxy)-6-[(vinylcarbonyl)amino]-chinazolin,

35

(3) 4-[(R)-(1-Phenyl-ethyl)amino]-7-{2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy}-6-[(vinylcarbonyl)amino]-chinazolin und

- 58 -

(4) 4-[(3-Chlor-4-fluor-phenyl)amino]-7-[2-[4-(2-oxo-tetrahydrofuran-4-yl)-piperazin-1-yl]-ethoxy]-6-[(vinylcarbonyl)-amino]-chinazolin,

5 deren Tautomere, Stereoisomere und deren Salze.

5. Physiologisch verträgliche Salze der Verbindungen nach mindestens einem der Ansprüche 1 bis 4 mit anorganischen oder organischen Säuren oder Basen.

10

6. Arzneimittel, enthaltend eine Verbindung nach mindestens einem der Ansprüche 1 bis 4 oder ein physiologisch verträgliches Salz gemäß Anspruch 5 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.

15

7. Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 5 zur Herstellung eines Arzneimittels, das zur Behandlung von benignen oder malignen Tumoren, zur Vorbeugung und Behandlung von Erkrankungen der Atemwege und der Lunge, zur Behandlung von Polypen, von Erkrankungen des Magen-Darm-Traktes, der Gallengänge und -blase sowie der Niere und der Haut geeignet ist.

20
25 8. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 6, dadurch gekennzeichnet, daß auf nichtchemischem Wege eine Verbindung nach mindestens einem der Ansprüche 1 bis 5 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.

30 9. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel I gemäß den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß

a) eine Verbindung der allgemeinen Formel

35

- 59 -

in der

- 5 R_a bis R_c, C, D und X wie in den Ansprüchen 1 bis 4 erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

Z₁ - CO - A - B , (III)

in der

- 10 A und B wie in den Ansprüchen 1 bis 4 erwähnt definiert sind, Z₁ eine Austrittsgruppe darstellt, umgesetzt wird und

erforderlichenfalls ein bei den vorstehend beschriebenen Umsetzungen verwendeter Schutzrest wieder abgespalten wird und/oder

- 15 gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird und/oder

- 20 eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträgliche Salze übergeführt wird.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 01/09535

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C07D403/12 C07D498/04 C07D491/10 C07D498/10 A61P35/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C07D A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, WPI Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98 13354 A (LOHMANN JEAN JACQUES MARCEL ; HENNEQUIN LAURENT FRANCOIS AND (FR)); 2 April 1998 (1998-04-02) page 45, line 23 -page 45, line 25; claims 1-16; examples 1-76	1-9

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

14 November 2001

Date of mailing of the international search report

21/11/2001

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Schmid, A

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 01/09535

Patent document cited in search report	Publication date		Patent family member(s)		Publication date
WO 9813354	A 02-04-1998	AU	729968 B2		15-02-2001
		AU	4561397 A		17-04-1998
		BR	9711302 A		17-08-1999
		CN	1231662 A		13-10-1999
		CZ	9901039 A3		16-06-1999
		EP	0929530 A1		21-07-1999
		WO	9813354 A1		02-04-1998
		JP	2001500891 T		23-01-2001
		NO	991422 A		24-03-1999
		PL	332385 A1		13-09-1999
		SK	38999 A3		08-10-1999
		TR	9900674 T2		21-07-1999
		HU	9902850 A2		28-04-2000

INTERNATIONAL SEARCH REPORT

International application No.

PCT/EP 01/09535

Continuation of Field I.2**Claim No. 1 (in part)**

The specification C2-C4-alkyl-NR4 group for "D" on Page No. 53 is incomprehensible since partially instable groups (e.g. C2-C4-alkyl-N-O-alkyl, etc.) arise when taking group R4 into consideration.

The applicant is therefore advised that patent claims or sections of patent claims laid to inventions for which no international search report was drafted normally cannot be the subject of an international preliminary examination (PCT Rule 66.1(e)). Similar to the authority entrusted with the task of carrying out the international preliminary examination, the EPO also does not generally carry out a preliminary examination of subject matter for which no search has been conducted. This is also valid in the case when the patent claims have been amended after receipt of the international search report (PCT Article 19), or in the case when the applicant submits new patent claims pursuant to the procedure in accordance with PCT Chapter II.

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 01/09535

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
 IPK 7 C07D403/12 C07D498/04 C07D491/10 C07D498/10 A61P35/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
 IPK 7 C07D A61P

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ, WPI Data, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Beir. Anspruch Nr.
A	WO 98 13354 A (LOHMANN JEAN JACQUES MARCEL ;HENNEQUIN LAURENT FRANCOIS AND (FR)); 2. April 1998 (1998-04-02) Seite 45, Zeile 23 -Seite 45, Zeile 25; Ansprüche 1-16; Beispiele 1-76	1-9

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *'A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *'E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- *'L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweiteilhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *'O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *'P* Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *'T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *'X* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *'Y* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
14. November 2001	21/11/2001
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Bevollmächtigter Bediensteter Schmid, A

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 01/09535

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9813354	A 02-04-1998	AU 729968 B2	15-02-2001
		AU 4561397 A	17-04-1998
		BR 9711302 A	17-08-1999
		CN 1231662 A	13-10-1999
		CZ 9901039 A3	16-06-1999
		EP 0929530 A1	21-07-1999
		WO 9813354 A1	02-04-1998
		JP 2001500891 T	23-01-2001
		NO 991422 A	24-03-1999
		PL 332385 A1	13-09-1999
		SK 38999 A3	08-10-1999
		TR 9900674 T2	21-07-1999
		HU 9902850 A2	28-04-2000

WEITERE ANGABEN	PCT/ISA/ 210
<p>Fortsetzung von Feld I.2</p> <p>Ansprüche Nr.: 1(teilweise)</p> <p>Die Spezifikation C2-C4-Alkyl-NR4-Gruppe für "D" auf Seite 53 ist nicht nachvollziehbar, da unter Berücksichtigung der Gruppe R4 teilweise instabile Gruppen entstehen (z.B. C2-C4-Alkyl-N-O-Alkyl, etc.)</p> <p>Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentansprüche vorlegt.</p>	