

FCC PART 15.231

TEST REPORT

For

NINGBO DOOYA MECHANIC & ELECTRONIC TECHNOLOGY CO., LTD.

No.168 Shengguang Road, Luotuo, Zhenhai, Ningbo ZHEJIANG China

FCC ID: VYYDC90A01

Report Type: Product Type: Original Report Single channel wireless transmitter **Test Engineer:** Max Min Report Number: RSHA190429002-00A **Report Date:** 2019-05-30 Oscar. Ye Oscar Ye **Reviewed By:** RF Leader Prepared By: Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

Report No.: RSHA190429002-00A

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	1
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	4
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	5
EXTERNAL I/O CABLE	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
FCC§15.203 - ANTENNA REQUIREMENT	9
APPLICABLE STANDARD	
ANTENNA CONNECTED CONSTRUCTION	
FCC §15.205, §15.209, §15.231 (B) - RADIATED EMISSIONS	10
APPLICABLE STANDARD	
EUT SETUP	11
EMI TEST RECEIVER SETUP	12
Test Procedure	12
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	12
FCC §15.231(A) (1) - DEACTIVATION TESTING	19
APPLICABLE STANDARD	19
TEST PROCEDURE	19
TEST DATA	19
FCC §15.231(C) - 20DB EMISSION BANDWIDTH TESTING	21
APPLICABLE STANDARD	
TEST PROCEDURE	
Trom Dama	2.1

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	NINGBO DOOYA MECHANIC & ELECTRONIC TECHNOLOGY CO., LTD.
Tested Model	DC90
Series Model	DC92,DC174,DC250,DC251,DC3100,DC3105, DC90X,DC92X,DC174X,DC250X,DC251X,DC3100X,DC3105X(X represent A-Z)
Model Difference	Model name and Software
Product Type	Single channel wireless transmitter
Power Supply	DC 3V from battery

Report No.: RSHA190429002-00A

Objective

This test report is prepared on behalf of NINGBO DOOYA MECHANIC & ELECTRONIC TECHNOLOGY CO., LTD. All the test measurements were performed according to the measurement procedure described in ANSI C63.10 - 2013.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.209, 15.35(c) and 15.231 rules.

Related Submittal(s)/Grant(s)

No related submittal/grant.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10 - 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.231 Page 3 of 22

^{*}All measurement and test data in this report was gathered from production sample serial number: 20190429002. (Assigned by the BACL. The EUT supplied by the applicant was received on 2019-04-29)

Measurement Uncertainty

Item		Uncertainty
AC Power Line	es Conducted Emissions	3.19 dB
RF conducte	ed test with spectrum	0.9dB
	30MHz~1GHz	6.11dB
Radiated emission	1GHz~6GHz	4.45dB
	6GHz ~18GHz	5.23dB
Оссир	ied Bandwidth	0.5kHz
Temperature		1.0℃
]	Humidity	6%

Report No.: RSHA190429002-00A

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 15.231 Page 4 of 22

SYSTEM TEST CONFIGURATION

Justification

Channel List:

Channel	Frequency (MHz)
1	433.925

Report No.: RSHA190429002-00A

All buttons triggered the same RF parameters (Contain bandwidth, power level and duty cycle).

EUT Exercise Software

No software was used during the test.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	nufacturer Description Model		Serial Number
/	/ / /		/

External I/O Cable

Cable Description	Description Length (m) From Port		То
/	/	/	/

FCC Part 15.231 Page 5 of 22

Block Diagram of Test Setup

For Radiated Emissions(Below 1GHz):

For Radiated Emissions(Above 1GHz):

FCC Part 15.231 Page 6 of 22

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207(a)	Conducted Emissions	Not applicable (See Note)
§15.205, §15.209, §15.231(b)	Radiated Emissions	Compliant
§15.231 (a) (1)	Deactivation	Compliant
§15.231 (c)	20dB Emission Bandwidth	Compliant

Report No.: RSHA190429002-00A

Note: The EUT is powered by battery.

FCC Part 15.231 Page 7 of 22

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Radiated Emission Test(Chamber 1#)						
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2018-11-30	2019-11-29	
Rohde & Schwarz	Signal Analyzer	FSV40	101116	2018-07-23	2019-07-22	
Sunol Sciences	Broadband Antenna	JB3	A090413-1	2016-12-26	2019-12-25	
Sonoma Instrunent	Pre-amplifier	310N	171205	2018-08-14	2019-08-13	
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/	
DOOYA	RF Cable	/	/	Each Time	/	
MICRO-COAX	Coaxial Cable	Cable-8	008	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-9	009	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-10	010	2018-08-15	2019-08-14	
	Radiated E	mission Test(Char	nber 2#)	•		
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2018-08-27	2019-08-26	
ETS-LINDGREN	Horn Antenna	3115	9207-3900	2017-07-15	2020-07-14	
A.H.Systems, inc	Amplifier	2641-1	491	2019-02-20	2020-02-19	
Narda	Attenuator	10dB	010	2018-08-15	2019-08-14	
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/	
MICRO-COAX	Coaxial Cable	Cable-6	006	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-11	011	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-12	012	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-13	013	2018-08-15	2019-08-14	

Report No.: RSHA190429002-00A

FCC Part 15.231 Page 8 of 22

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No.: RSHA190429002-00A

Antenna Connected Construction

The EUT has a PCB antenna which was permanently attached and the antenna gain is 1dBi; fulfill the requirement of this section. Please refer to EUT photos.

Result: Compliant.

FCC Part 15.231 Page 9 of 22

FCC §15.205, §15.209, §15.231 (b) - RADIATED EMISSIONS

Applicable Standard

FCC §15.205, §15.209, §15.231 (b)

According to FCC §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Report No.: RSHA190429002-00A

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	2250	225
70-130	1250	125
130-174	1250 to 3750 **	125 to 375 **
174-260	3750	375
260-470	3750 to 12500 **	375 to 1250**
Above 470	12500	1250

Note: ** means Linear interpolations

- (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.
- (2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in §15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.
- (3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

FCC Part 15.231 Page 10 of 22

EUT Setup

Below 1GHz:

Report No.: RSHA190429002-00A

Above 1 GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10 - 2013. The specification used was the FCC 15 § 15.209, 15.205 and 15.231.

FCC Part 15.231 Page 11 of 22

EMI Test Receiver Setup

The system was investigated from 30 MHz to 5 GHz.

During the radiated emission test, the EMI test Receiver was set with the following configurations:

Frequency Range	Frequency Range RBW		IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	/	PK
1000MHz - 5000MHz	1MHz	3MHz	/	PK

Report No.: RSHA190429002-00A

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude ($dB\mu V/m$) = Meter Reading ($dB\mu V$) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.205, §15.209, §15.231 (b).

Test Data

Environmental Conditions

Temperature:	22.6 °C-24.3 °C
Relative Humidity:	51 % -52 %
ATM Pressure:	101.3 kPa -101.8 kPa

The testing was performed by Max Min from 2019-05-07 to 2019-05-17.

Test mode: Transmitting

FCC Part 15.231 Page 12 of 22

30MHz-1GHz (FSK modulation)

(Pre-scan in the X,Y and Z axes of orientation, the worst case Y-axis of orientation was recorded.)

Report No.: RSHA190429002-00A

E	Corrected Rx Antenna	T. (11)	Corrected	T	M			
Frequency (MHz)	Amplitude Max Peak (dBµV/m)	Height (cm)	Polar (H/V)	Turntable Degree	Hactor		Limit (dBμV/m)	Margin (dB)
30.970	29.21	100.00	Н	56.00	-4.60	60.83	31.62	
64.799	16.95	100.00	Н	332.00	-17.60	60.83	43.88	
119.846	22.65	100.00	V	0.00	-11.20	43.50	20.85	
210.663	22.69	200.00	V	51.00	-12.30	60.83	38.14	
420.910	28.97	100.00	Н	0.00	-7.90	60.83	31.86	
433.925	87.15	100.00	Н	354.00	-7.70	100.83	13.68	
867.850	35.49	200.00	V	170.00	-0.60	80.83	45.34	

Field Strength of Average Emission

Frequency	Peak Measurement@3m	Height	Polar	Duty Cycle Corrected	Corrected Ampitude	FCC Part 15.231(b)/205/209	
(MHz)	(dBμV/m)	(cm)	(H/V)	Factor (dB)	(dBµV/m)	Limit (dBµV/m)	Margin (dB)
433.925	87.15	100.00	Н	-7.04	80.11	80.83	0.72
867.850	35.49	200.00	V	-7.04	28.45	60.83	32.38

FCC Part 15.231 Page 13 of 22

1GHz-5 GHz (FSK modulation)

(Pre-scan in the X,Y and Z axes of orientation, the worst case **Y-axis of orientation** was recorded.)

Report No.: RSHA190429002-00A

Corrected Rx Antenna Corrected Amplitude Frequency **Turntable** Limit Margin **Factor** Height Polar (MHz) $(dB\mu V/m)$ (dB) MaxPeak Degree (dB/m)(cm) (H/V) $(dB\mu V/m)$ 1301.775 44.70 100.00 V 221.00 -11.00 74.00 29.30 1735.700 36.04 100.00 V 79.00 -9.20 80.83 44.79 2169.625 38.47 200.00 V 106.00 -7.80 80.83 42.36 2603.550 37.54 200.00 V 14.00 -6.40 80.83 43.29 49.19 250.00 V 3037.475 318.00 -4.30 80.83 31.64 3905.325 44.84 250.00 V 282.00 -2.20 74.00 29.16

FCC Part 15.231 Page 14 of 22

Field Strength of Average Emission

Report No.: RSHA190429002-00A

Frequency	Peak Measurement@3m	Height	Polar	Polar Corrected Ampitude	Corrected	FCC Part 15.231(b)/205/209	
(MHz)	(dBμV/m)	(cm)	(H/V)		Ampitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
1301.775	44.70	100.00	V	-7.04	37.66	54.00	16.34
1735.700	36.04	100.00	V	-7.04	29.00	60.83	31.83
2169.625	38.47	200.00	V	-7.04	31.43	60.83	29.40
2603.550	37.54	200.00	V	-7.04	30.50	60.83	30.33
3037.475	49.19	250.00	V	-7.04	42.15	60.83	18.68
3905.325	44.84	250.00	V	-7.04	37.80	54.00	16.20

Note 1:

 $\begin{array}{l} Corrected\ Factor\ (dB/m) = Antenna\ factor\ (RX)\ (dB/m) + Cable\ Loss\ (dB) - Amplifier\ Factor\ (dB) \\ Margin\ (dB) = Limit\ (dB\mu V/m) - Corrected\ Amplitude\ (dB\mu V/m) \end{array}$

Note 2:

Calculate Average value based on Duty Cycle correction factor:

Tp=56.108ms

Ton= Burst1*N1 + Burst2*N2+ Burst3*N3= 4.0572ms*1+0.748ms*18+0.338*22= 24.9572ms

Duty Cycle Corrected Factor =20*log(Ton/Tp) =20*log(24.9572ms/56.108ms)=-7.04dB

Average value = Peak value + Duty Cycle Corrected Factor

FCC Part 15.231 Page 15 of 22

This duty cycle is the worst case for the EUT

Duty Cycle

Report No.: RSHA190429002-00A

Date: 10 MAY 2019 11:00:00

Date:10 M AY 2019 10:53:22

FCC Part 15.231 Page 16 of 22

Zoom in Pulse Train

Report No.: RSHA190429002-00A

Date: 10 M AY 2019 11:04:49

Duty Cycle Burst 1

Date: 10 M AY .2019 11:12:05

FCC Part 15.231 Page 17 of 22

Duty Cycle Burst 2

Report No.: RSHA190429002-00A

Date: 10 M AY 2019 11:16:00

Duty Cycle Burst 3

Date:10 M A Y .2019 11:14:54

FCC Part 15.231 Page 18 of 22

FCC §15.231(a) (1) - DEACTIVATION TESTING

Applicable Standard

Per FCC §15.231(a) (1), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Report No.: RSHA190429002-00A

Test Procedure

- 1. With the EUT's antenna attached, the waveform was received by the test antenna which was connected to the spectrum analyzer.
- 2. Set center frequency of spectrum analyzer=operating frequency.
- 3. Set the spectrum analyzer as RBW=100k VBW=300k Span=0Hz.
- 4. Repeat above procedures until all frequency measured was complete.

Test Data

Environmental Conditions

Temperature:	24.3 ℃	
Relative Humidity:	53 %	
ATM Pressure:	101.2 kPa	

The testing was performed by Max Min on 2019-05-10.

Test mode: Transmitting

FCC Part 15.231 Page 19 of 22

Channel Frequency (MHz)	Limit (s)	Result
433.925	<5	Pass

Report No.: RSHA190429002-00A

FSK Modulation

 $T_{\text{stop}} < 5s$

Date: 10 M AY 2019 11:42:32

FCC Part 15.231 Page 20 of 22

FCC §15.231(c) - 20dB EMISSION BANDWIDTH TESTING

Applicable Standard

Per 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Report No.: RSHA190429002-00A

Test Procedure

With the EUT's antenna attached, the waveform was received by the test antenna which was connected to the spectrum analyzer, plot the 20 dB bandwidth.

Test Data

Environmental Conditions

Temperature:	24.3 ℃	
Relative Humidity:	51 %	
ATM Pressure:	101.2 kPa	

The testing was performed by Max Min on 2019-05-10.

Test Mode: Transmitting

FCC Part 15.231 Page 21 of 22

FSK modulation:

Channel Frequency	20dB Bandwidth	Limit	Result
(MHz)	(kHz)	(kHz)	
433.925	67.007	1084.813	Pass

Report No.: RSHA190429002-00A

Note: Limit = 0.25% * Center Frequency = 0.25% * 433.925 MHz = 1084.813 kHz

20 dB Emission Bandwidth

Date:10 M AY 2019 11:27:06

***** END OF REPORT *****

FCC Part 15.231 Page 22 of 22