e5-AttitudeCtrl: 姿态控制器设计

四旋翼无人机姿态控制器设计实验(SITL->HITL->FLY)

当前位置: [安装目录]\RflySimAPIs\5.RflySimFlyCtrl\1.BasicExps\e5-AttitudeCtrl\

序号	实验名称	简介	文件地址	
1	基础	(1) 复现四旋翼飞行器的 Simulink 仿真,分析控制分配	e5.1\Readme.pdf	免费版
		器的作用;(2)记录姿态的阶跃响应,并对开环姿态控制		
		系统进行扫频以绘制 Bode 图,分析闭环姿态控制系统的		
		稳定裕度;(3)完成四旋翼硬件在环仿真。		
2	分析	(1) 调节 PID 控制器相关参数以改善控制性能并记录超	e5.2\Readme.pdf	免费版
		调量和调节时间,得到一组恰当参数;(2)使用调试后的		
		参数,对系统进行扫频以绘制 Bode 图,观察系统幅频响		
		应,相频响应曲线,分析其稳定裕度。		
3	设计	(1)建立姿态控制通道的传递函数模型,设计校正控制器,使	e5.3\Readme.pdf	免费版
		得姿态角速度环稳态误差 ,相位裕度>65°,截至频		
		率>10rad/s。姿态角度环截至频率>5rad/s,相位裕度>60°;		
		(2)使用自己设计的控制器进行硬件在环仿真实验;		
4	姿态控制器设计-实飞	熟悉实飞实验流程。	e5.4\Readme.pdf	免费版

所有文件列表

序号	实验名称	简介	文件地址	
1	姿态控制器设计	四旋翼无人机姿态控制器设计实验(SITL->HITL->FLY)	Readme.pdf	免费版
2	基础	(1) 复现四旋翼飞行器的 Simulink 仿真,分析控制分配器的作用;(2) 记录姿态的阶跃响应,并对开环姿态控制系统进行扫频以绘制 Bode 图,分析闭环姿态控制系统的稳定裕度;(3) 完成四旋翼硬件在环仿真。	e5.1\Readme.pdf	免费版
3	分析	(1) 调节 PID 控制器相关参数以改善控制性能并记录超调量和调节时间,得到一组恰当参数;(2)使用调试后的参数,对系统进行扫频以绘制 Bode 图,观察系统幅频响应,相频响应曲线,分析其稳定裕度。	e5.2\Readme.pdf	免费版
4	设计	(1)建立姿态控制通道的传递函数模型,设计校正控制器,使得姿态角速度环稳态误差,相位裕度>65°,截至频率>10rad/s。姿态角度环截至频率>5rad/s,相位裕度>60°;(2)使用自己设计的控制器进行硬件在环仿真实验;	e5.3\Readme.pdf	免费版
5	姿态控制器设计-实飞	熟悉实飞实验流程。	e5.4\Readme.pdf	免费版

备注

注 1: 各版本区别说明详见: https://rflysim.com/doc/zh/RflySimVersions.pdf。更高版本获取请见: https://rflysim.com/download.html, 或咨询: service@rflysim.com/doc/zh/RflySimVersions.pdf。更高版本获取请见: https://rflysim.com/download.html, 或咨询: