Ferienkurs Theoretische Mechanik SS 2011

Übungen Donnerstag

Aufgabe 1:

Herleitung der Hamiltongleichungen

Leiten Sie die Hamiltongleichungen

$$\dot{p}_i = -rac{\partial H}{\partial q_i} \quad , \quad \dot{q}_i = rac{\partial H}{\partial p_i}$$

her. Berechnen Sie dafür mit Hilfe der Kettenregel die partiellen Ableitungen von H nach den q_i und nach den p_i , ausgehend von der Definition von H. Sie dürfen (und müssen) dabei die Euler-Lagrange-Gleichungen verwenden.

Aufgabe 2:

Teilchen im elektromagnetischen Feld

Die Lagrangefunktion eines Teilchens mit Ladung e und Masse m in einem elektromagnetischen Feld lautet

$$L\left(\vec{r},\dot{\vec{r}}\right) = \frac{m}{2}\dot{\vec{r}}^{2} - e\Phi\left(\vec{r}\right) + \frac{e}{c}\dot{\vec{r}}\cdot\vec{A}\left(\vec{r}\right)$$

Dabei seien $\Phi(\vec{r})$ und $\vec{A}(\vec{r})$ zeitunabhängige Potentiale; diese hängen mit den elektrischen und magnetischen Feldern über

$$\vec{E} = -\nabla \Phi$$
 , $\vec{B} = \nabla \times \vec{A}$

zusammen. Ferner ist c die Lichtgeschwindigkeit im Vakuum.

a) Geben Sie alle verallgemeinerten Impulse p_i an. Zeigen Sie, dass die Hamiltonfunktion des Systems durch

$$H\left(\vec{r},\vec{p}\right) = \frac{1}{2m} \left(\vec{p} - \frac{e}{c} \vec{A}\left(\vec{r}\right)\right)^{2} + e\Phi\left(\vec{r}\right)$$

gegeben ist.

b) Zeigen Sie, ausgehend von den Hamiltongleichungen, dass das Teilchen den Bewegungsgleichungen

$$m\ddot{\vec{r}} = \frac{e}{c}\dot{\vec{r}} \times \vec{B}\left(\vec{r}\right) + e\vec{E}\left(\vec{r}\right)$$

folgt. Gehen Sie dazu wie folgt vor:

• Verwenden Sie die Hamiltongleichungen für \dot{p}_i und die Ergebnisse aus a), um die \dot{p}_i alleine durch die \dot{r}_j und die Potentiale auszudrücken. Multiplizieren Sie dazu den quadratischen Term in H nicht aus, sondern verwenden Sie, dass $\frac{\partial}{\partial r_i} \left[\vec{a} \left(\vec{r} \right)^2 \right] = 2 \sum_{j=1}^3 a_j \frac{\partial a_j}{\partial r_i}$ für beliebige Vektoren $\vec{a} \left(\vec{r} \right)$ gilt.

• Leiten Sie dann mit Hilfe von a) Differentialgleichungen 2. Ordnung für die r_i her. Verwenden Sie¹ die Identität

$$\left(\vec{v}\times(\nabla\times\vec{w})\right)_i = \sum_{j=1}^3 v_j \left(\frac{\partial w_j}{\partial r_i} - \frac{\partial w_i}{\partial r_j}\right)$$

für beliebige Vektorfelder $\vec{v}(\vec{r})$, $\vec{w}(\vec{r})$.

c) Es sei nun $\vec{A} \equiv 0$ und $\Phi = \Phi(x)$, d.h. Φ soll nicht von y und z abhängen. Welche Variablen sind dann zyklisch und welche Erhaltungssätze folgen daraus?

Aufgabe 3:

Poissonklammern

a) Berechnen Sie für ein beliebiges Hamiltonsche System mit die Possion-klammern

$$\{q_i, q_j\}$$
 , $\{p_i, p_j\}$, $\{q_i, p_j\}$

b) Gegeben sei ein Hamiltonsches System mit drei verallg. Koordinaten und Impulsen. Berechnen Sie mit Hilfe von a) die Poissonklammer

$$\{L_1,L_2\}$$

für die Komponenten L_1 , L_2 des verallgemeinerten Drehimpulses $\vec{L} = \vec{q} \times \vec{p}$.

c) Es sei f(q, p, t) eine beliebige Funktion. Zeigen Sie:

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \{f, H\} + \frac{\partial f}{\partial t}$$

d) Es seien f(q,p) und g(q,p) zwei nicht explizit von t abhängige Erhaltungsgrößen eines hamiltonschen Systems. Zeigen Sie, dass $\{f,g\}$ (q,p) eine Erhaltungsgröße ist.

Hinweis: Es gibt eine elegante Lösung ohne viel Rechenaufwand, welche nur elementare Eigenschaften der Poissonklammer benötigt.

Zusatzaufgabe:

Kreuzprodukt-Identität

Beweisen Sie mit Hilfe des Levi-Civita-Symbols ϵ_{ijk} die Identität

$$(\vec{v} \times (\nabla \times \vec{w}))_i = \sum_{j=1}^3 v_j \left(\frac{\partial w_j}{\partial r_i} - \frac{\partial w_i}{\partial r_j} \right)$$

für beliebige Vektorfelder $\vec{v}\left(\vec{r}\right)$, $\vec{w}\left(\vec{r}\right)$. $Hinweis: \sum_{k=1}^{3} \epsilon_{ijk} \epsilon_{klm} = \delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}$

 $^{^1}$ Wer den Umgang mit dem Levi-Civita-Symbol ϵ_{ijk} üben will, kann in der Zusatzaufgabe diese Identität herleiten.