assending price auction (English auction) - Second price auction (SPA)
assending price auction (English auction) - Second price auction (SPA) Agranic, learning sth. about competition -> consider. Static)
descending price auction (Deutsch) - first (FPA)
TANSE WEN NIVE THE MORNES PRICE.
Proof: Ascending = Second. Soleride when to raise (flashhold)
optimal at beginning > optimal when learning. assume: drop out price
Second highert drop out price.
devide simoutaneously (submit) don't know what appoint doing).
strategy for player (bidder) i is to submit a bid bi &R+ 12+20) n bidders i \in \[\left\ 1, 2,, n \right\ \]
(b1, b2,, bn) = bid profile
rule of auction determines as a function of bid profile
who gives the goods and what everybody pays.
First Price Anction (surplus)
utility for \(\forall \tau-bi \) \(\text{bi} \) \(\text{highest bid} \) > \(\text{max b} \) \(\text{j} \)
$Mi(b_1, b_2, -, b_1 v_i) = \frac{1}{\#(j_i b_j = b_i)} \frac{ v_i - b_i }{b_i} = \frac{max}{b_j}$ 0 $b_i < max b_j$

Second Price Aution	(Vi-max bj	bi > max j
	#Sj=bis (Vr-bi)	bi = max -
		< · · ·
equilibrium, incompli	ete information	
Dominant Strategy		
Bid bi is a DS t	for bidder i of valuation	n vi
_	otimal for this bidder, re	A
bidders submit	(P-1)	0 1
(b)	, b2 · · · bi-l , bi+l , · · ·	bn)
	i (bi), b-i lvi), t	
Z / 50 / 60 / 10 / 10 / 10 / 10 / 10 / 10 / 1		
most gaves do not he	we a DSE	
		(an together)
devide independently simular	Jack Bu 4.3 0,0	(go together) 2 Optimal.
base on gress of wh	Bu Ba	
	M WE OTHER NO.	
mo DSE.	in. DCE	
most aution do not has		the and a Vicini
Howevers STA has USI	E => goal: maximize	me sugues x win!
It is a dominant stro	ategy for bidder i of v	aluation vi to bid vi
the truthful bidding	is a DSE.	
Proof:		
1 Vi > max bj		
4	$L_i(V_i)$ $b-i$ $V_i) = V_i - V_i$	•
		vi - max bj (not improve).
La), ma	3× hī 5 10	

