CSCI971 Advance Computer Security: Homework #9

Mei Wangzhihui 2019124044

Problem 1

This protocol is like EIgamal encryption mode.

The $sk \leftarrow k, pk \leftarrow g^k$.

Alice knows the public key pk and $F(k,m) = H(m)^k$, she chx ge a random $\rho \leftarrow Z_q$ and sends Bob $\widehat{m} = H(m) \cdot g^{\rho}$.

We assume $v \leftarrow g^{\rho}, \omega \leftarrow pk^{\rho} = g^{\rho k} = v^k$.

When Bob get the \widehat{m} , he respond $res = \widehat{m}^k = H(m)^k \cdot g^{\rho k} = H(m)^k \cdot \omega$ to Alice, as H(m) is random oracle, so Bob cannot know the m from H(m).

Wh en Alice get the res, she knows $\omega = g^{k\rho}$ so she just get $H(m)^k = res/(g^{k\rho})$.

Because It is hard to get k from \widehat{m}^k as it is a hard problem in number theory. So Alice doesn't know k.

Problem 2

1)

Game 0(DDH Game)

Challenger C_i , generate random α, β, γ from Z_q . Calculate $u = g^{\alpha}, v = g^{\beta}, W_0 = g^{\alpha\beta}W_1 = g^{\gamma}$ and send (u, v, W_b) to Adversary, Adversary A output \hat{b}

Game 1

Step1: Challenger \mathcal{C}_{∞} generate $pk = u \in G$ and $E(pk, m) = [\beta \leftarrow Z_q, \gamma \leftarrow g^{\alpha}, e \leftarrow \mu^{\beta} * m]$. Challenger send pk to Adversary.

Step2: Adversary \mathcal{A} generate $m_0, m_1, |m_0| = |m_1|$ and send to Challenger.

Step3: Challenger genetate $e = \mu^{\beta} * m_b$ and send Adversary (v, e). Adversary output b.

The Adversary knows g^{α} , g^{β} , $g^{\alpha\beta*m_b}$ because DDH assumption holds in G. The Adversary cannot distinguish $g^{\alpha\beta}$ and g^{γ} . A cannot distinguish $g^{\alpha\beta}*m$ and $g^{\gamma}*m$. As g^{γ} is a random number, So $g^{\gamma}*m$ is indistinguishable. Assume W_b as the event, that Adversary output 1 in experiment b.

 $Adv_SS[\mathcal{A}, \mathcal{E}] = |Pr[W_0] - Pr[W_1]|$ is neglibible.

2)

the CDH assumption is stronger than DDH assumption, so CDH \Rightarrow DDH.

If CDH problem is solvable, Adversary \mathcal{A} can compute $g^{\alpha\beta}$ from g^{α} and g^{β} . As \mathcal{A} can get $u = g^{\alpha}, v = g^{\beta}$, he can compute $g^{\alpha}\beta * m_0$ and $g^{\alpha}\beta * m_1$ by himself, so $Adv_SS[\mathcal{A}, \mathcal{E}] = 1$ is not neglibible. So the E_{MEG} is not semantically secure.

3)

$$E(m_0) * E(m_1) = (v, e_0) * (v, e_1) = (v^2, e_0 * e_1) = E(m_1 * m_2)$$

$$D(E(m_0) * E(m_1)) = D(sk, (v^2, e_0 * e_1)) = e_0 * e_1/(v_2)^{\alpha} = \frac{g^{\alpha}\beta * m_0 * g^{\alpha}\beta * m_1}{(g^{2\beta})^{\alpha}}$$

: it is possible to create a new ciphertext c which is an encryption of $m_1 * m_2$.

Problem 3

Problem 4

1) if Adversary \mathcal{A} knows g^{α} and h^{β} . He can compute $e(g,g)^{\alpha\beta}=e(g^{\alpha},g^{\beta})$. In DDH, he can distinguish $e(g,h)^{\alpha}\beta$ and $e(g,h)^{\gamma}(\gamma R Z_q)$ if \mathcal{A} know g^{α} and g^{β} .

So $Adv_{SS}[\mathcal{A}, \mathcal{E}] = 1$ is not neglibible. DDH problem is easy in G.

2) CDH is hard to solve $\Rightarrow Pr[A \text{ know } g^{\alpha\beta} | A \text{ know } (g^{\alpha}, g^{\beta})]$ is neglibible.

We can construct a game, Adversary \mathcal{A} attack in a BLS signature game. Adversary \mathcal{B} attack CDH assumption. \mathcal{B} is \mathcal{A} 's Challenger.

in CDH Attack Game, Challenger C_1 generate he generate $x \leftarrow Z_q, pk = g^x, sk = x, h = H(m)$ and send (g, g^x, h) to \mathcal{B} , \mathcal{B} give back h^x and win if (g, g^x, h, h^x) is DH-tuple.

For \mathcal{B} , he challenge Adversary \mathcal{A} in BLS attack game. \mathcal{B} send $pk = g^x, g$ to \mathcal{A} A query \mathcal{B} with $M_i, i \in \{0, 1, ..., R_0\}$, \mathcal{B} give back $H(M_i), \sigma$ and \mathcal{A} generate fogery M, σ to \mathcal{B} .

in each query step if $i \neq i * \mathcal{B}$ would randomly choose $x_i \in X$ and compute $H(M_i) = g^{x_i}$ to \mathcal{A} only when $i = i * \mathcal{B}$ send g to \mathcal{A} . A know g, g^x does not know g.

So $Pr[m = m_{i*}] = 1/q_H$

 $Adv_{CDH} \leq 1/q_H * Adv_{SIG}[\mathcal{A}, BLS]$

As Adv_{CDH} is negligible, $Adv_{SIG}[A, BLS]$ is also negligible, so BLS signature is secure.