Redes y comunicación de Datos 2

Sesión 31

Ciclo: Agosto 2024

Temario

- Presentación del logro de la sesión.
- Dinámica: Lluvia de ideas sobre el protocolo EIGRP.
- Balanceo de cargas.
- Configuración del protocolo EIGRP.
- Actividad:
 - Configuración protocolo EIGRP.

Logro general

Al finalizar el curso, el estudiante implementa soluciones para problemas de redes y comunicaciones de área local y extendida, empleando tecnología de interconexión y seguridad, según las necesidades planteadas.

necesidades planteadas.

Logro de aprendizaje de la sesión

Al finalizar la sesión, el estudiante explica cómo los router toman decisiones de reenvío e implementan enrutamiento con protocolos avanzados, a través de ejemplos desarrollados en clase.

Buenas Prácticas

Con respecto a la Sesión 30

- ¿Qué temas desarrollamos?
- Podrias comentarme de manera breve por favor.

Recuerda que es importante que revises el material de clases de cada semana.

Configuración de RIPv2

- Configuración de RIPv2 en un router Cisco
 - Requiere el uso de un comando version 2
 - RIPv2 ignora las actualizaciones de RIPv1
- Para verificar que RIPv2 esté configurado, utilice el comando
 - show ip protocols

Distance: (default is 120)

Configuración de RIPv2

- Inhabilitación de sumarización automática en RIPv2.
- Para deshabilitar la sumarización automática, ejecute el comando no auto-summary

R3(config) #router rip

R3(config-router) #no auto-summary

Buenas Prácticas

Sesión 31

Lluvia de ideas sobre el enrutamiento dinámico

• ¿Que es el enrutamiento dinámico EIGRP?

Enrutamiento Dinámico

Protocolos de enrutamiento dinámico

Objetivos

- Describir la información básica y la historia del protocolo de enrutamiento de gateway interna mejorada (EIGRP).
- Analizar los comandos básicos de configuración de EIGRP e identificar sus funciones.
- Calcular la métrica compuesta que usa EIGRP.
- Describir los conceptos y el funcionamiento de DUAL.
- Describir los usos de los comandos de configuración adicionales en EIGRP.

Introducción

Protocolos de gateway interior

Protocolos de gateway exterior

	Protocolos de enrutamiento por vector-distancia		Protocolos de enrutamiento del estado de enlace		Vector de la ruta
Con clase	RIP	IGRP			EGP
Sin clase	RIPv2	EIGRP	OSPFv2	IS-IS	BGPv4
IPv6	RIPng I	EIGRP para IPv6	OSPFv3 IS	-IS para IPv6	BGPv4 for IPv6

En este capítulo, aprenderá a:

- Describa los antecedentes y la historia del EIGRP.
- Describa las características y el funcionamiento del EIGRP.
- Analice los comandos de configuración básica del EIGRP e identifique sus propósitos.
- Calcule la métrica compuesta que utiliza EIGRP.
- Describa los conceptos y el funcionamiento de DUAL.
- Describa los usos de los comandos de configuración adicional en EIGRP.

EIGRP

- · Raíces de EIGRP: IGRP
 - Desarrollado en 1985 para solucionar el conteo de saltos limitado de RIPv1
 - Protocolo de enrutamiento de vector de distancia.
 - Métricas usadas por IGRP:
 - Ancho de banda (usado por defecto)
 - Retraso (usado por defecto)
 - Confiabilidad
 - Carga
 - Soporte cancelado que comienza por IOS 12.2(13)T y 12.2(R1s4)S

IGRP a EIGRP

IGRP 1985

Desde 2005, ya no es compatible con IOS 12.2(13)T y 12.2(R1s4)S

> EIGRP 1992 Lanzado en IOS 9.2.1

Formato de mensajes de EIGRP

- Encabezado EIGRP
 - Encabezado de trama de enlace de datos: contiene la dirección MAC de origen y la de destino
 - Encabezado de paquete IP: contiene la dirección IP de origen y la de destino.
 - Encabezado de paquete EIGRP: contiene el número AS
 - Tipo/longitud/campo: porción de datos del mensaje EIGRP

Mensaje de EIGRP encapsulado

Encabezado de trama de	Encabezado de	Encabezado de	Tipo/Longitud/Tipos de valor
enlace de datos	paquete IP	paquetes EIGRP	

Formato de mensajes de EIGRP

Mensaje EIGRP encapsulado

Encabezado de trama de enlace de datos Encabezado de paquete IP

Encabezado de paquete EIGRP Tipo/Longitud/Tipos de valor

- El encabezado de paquete EIGRP contiene:
 - Campo de código de operación
 - Número de sistema autónomo
- Los parámetros EIGRP contienen:
 - Pesos.
 - Tiempo en hold.

- K1 y K3: Pesos para ancho de banda y retraso; establecidos en 1
- Tiempo de espera: Tiempo máximo que el router deberá esperar el siguiente saludo

Formato de mensajes de EIGRP

Mensaje EIGRP encapsulado

Encabezado de trama Encabezado de Encabezado de Tipo/Longitud/Tipos de valor de enlace de datos paquete IP paquete EIGRP

- TLV: IP interna contiene:
 - Campo de métrica.
 - Campo de máscara de subred.
 - Campo de destino.
- TLV: IP externa contiene:
 - Los campos usados cuando las rutas externas se importan al proceso de enrutamiento de EIGRP.

Tipo/Longitud/Tipos de valor TLV de las rutas IP externas

Módulos dependientes de protocolo EIGRP

- EIGRP usa PDM para enrutar varios protocolos diferentes, por ejemplo, IP, IPX y AppleTalk.
- Los PDM son responsables de la tarea específica de enrutamiento de cada protocolo de capa de red.

Tabla de vecino-Apple Tabla de vecino-IPX 3 tablas vecinas Tabla de vecino-IP Interfaz de router del siguiente salto Tabla de topología-Apple Tabla de topología-IPX 3 tablas de topología Tabla de topología-IP Destino1 Sucesor Destino2 Sucesor factible Tabla de enrutamiento-Tabla de enrutamiento-IPX — 3 tablas de Tabla de enrutamiento-IP enrutamiento Destino1 Sucesor

Módulos dependientes de protocolo (PDM) EIGRP

Tipos de paquetes RTP y EIGRP

Protocolo de transporte confiable (RTP)

- Función de RTP
 - Es utilizado por **EIGRP** para transmitir y recibir paquetes EIGRP
- · Características de RTP:
 - Incluye el envío confiable y no confiable de paquetes EIGRP
 - El envío confiable requiere el reconocimiento del destino
 - El envío no confiable no requiere el reconocimiento del destino
 - Los paquetes se pueden enviar mediante:
 - Unicast
 - Multicast
 - Por medio de la dirección 224.0.0.10

Tipos de paquetes EIGRP

Los 5 tipos de paquetes EIGRP:

- Paquetes de saludo
 - Se usan para detectar vecinos y formar adyacencias con ellos.

Tipos de paquetes EIGRP

· Paquetes de actualización

- Se usan para difundir la información de enrutamiento.

· Paquetes de reconocimiento

 Se usan para reconocer la recepción de los paquetes de actualización, consulta y respuesta.

Tipos de paquetes EIGRP

- Paquetes de consulta y respuesta
 - DUAL los usa para la búsqueda de redes.
 - Paquetes de consulta
 - Pueden usar:
 - Unicast
 - Multicast
 - Paquetes de respuesta
 - Usan solamente:
 - Unicast

Protocolo de saludo

- Función del protocolo de saludo:
 - Detectar routers vecinos y establecer adyacencias con ellos
- · Características del protocolo de saludo:
 - Intervalo de tiempo para el envío de paquetes de saludo:
 - En la mayoría de las redes, es de 5 segundos
 - Redes de accesos múltiples sin broadcast multipunto:
 - Unicast cada 60 segundos
 - Tiempo en hold
 - Es el tiempo máximo que el router debe esperar antes de declarar fuera de servicio a un vecino.
 - Tiempo en hold por defecto:
 - Es el triple del intervalo de saludo.

Actualizaciones limitadas de EIGRP

- EIGRP sólo envía actualizaciones cuando hay un cambio en el estado de la ruta.
- Actualizaciones parciales.
 - Una actualización parcial incluye sólo la información de la ruta que se ha modificado. NO se envía la tabla de enrutamiento completa.
- Actualizaciones limitadas.
 - Cuando una ruta se modifica, sólo se notifica la modificación a los dispositivos afectados.
- La utilización de las actualizaciones limitadas parciales por parte de EIGRP minimiza el uso del ancho de banda.

Las actualizaciones de EIGRP son parciales y limitadas:

Parcial porque la actualización sólo incluye la información sobre los cambios de la ruta.

Limitada porque sólo recibirán la actualización aquellos routers afectados por el cambio.

DUAL: Introducción

Algoritmo de actualización difusa (DUAL)

- Objetivo
 - · Es el método principal de EIGRP para evitar los bucles de enrutamiento
- Ventaja del uso de DUAL:
 - Proporciona convergencia rápida mediante el mantenimiento de una lista de rutas de respaldo sin bucles.

DUAL

Distancia administrativa EIGRP

- Distancia administrativa (AD)
 - Se define como la confiabilidad de la ruta de origen.
- · Distancias administrativas por defecto de EIGRP:
 - Rutas sumarizadas = 5
 - Rutas internas = 90
 - Rutas importadas = 170

Distancias administrativas predeterminadas

Origen de la ruta	Distancia administrativa		
Conectado	0		
Estático	1		
Ruta de resumen de EIGRP	5		
BGP externo	20		
EIGRP interno	90		
IGRP	100		
OSPF	110		
IS-IS	115		
RIP	120		
EIGRP externo	170		
BGP interno	200		

Autenticación

- EIGRP puede:
 - Cifrar la información de enrutamiento.
 - Autenticar la información de enrutamiento.

Autenticación

Topología de la red EIGRP

 La topología usada es la misma que en los capítulos anteriores con la incorporación de un router ISP

Topología de la red EIGRP

• EIGRP resumirá automáticamente las rutas en los límites classful

Dispositivo	Interfaz	Dirección IP	Máscara de subred
	Fa0/0	172.16.1.1	255.255.255.0
R1	S0/0/0	172.16.3.1	255.255.255.252
	S0/0/1	192.168.10.5	255.255.255.252
	Fa0/0	172.16.2.1	255.255.255.0
R2	S0/0/0	172.16.3.2	255.255.255.252
R2	S0/0/1	192.168.10.9	255.255.255.252
	Lo1	10.1.1.1	255.255.255.252
	Fa0/0	192.168.1.1	255.255.255.0
R3	S0/0/0	192.168.10.6	255.255.255.252
	S0/0/1	192.168.10.10	255.255.255.252

```
R1#show startup-config

<some output omitted>
!
hostname R1
!
interface FastEthernet0/0
ip address 172.16.1.1 255.255.255.0
!
interface Serial0/0/0
ip address 172.16.3.1 255.255.255.252
clock rate 64000
!
interface Serial0/0/1
description Link to R3
ip address 192.168.10.5 255.255.252.252
!
end
```

```
R2#show startup-config

<some output omitted>
!
hostname R2
!
interface Loopback1
ip address 10.1.1.1 255.255.255.252
description Simulated ISP
!
interface FastEthernet0/0
ip address 172.16.2.1 255.255.255.0
!
interface Serial0/0/0
ip address 172.16.3.2 255.255.252
!
interface Serial0/0/1
ip address 192.168.10.9 255.255.252
clockrate 64000
!
end
```

```
R3#show startup-config

<some output omitted>
!
hostname R3
!
interface FastEthernet0/0
   ip address 192.168.1.1 255.255.255.0
!
interface Serial0/0/0
   ip address 192.168.10.6 255.255.252
   clockrate 64000
!
interface Serial0/0/1
   ip address 192.168.10.10 255.255.252
!
end
```


- Identificaciones de procesos y sistema autónomo (AS)
 - Es un grupo de redes controlado por una autoridad única (referencia RFC 1930)
 - IANA asigna los números AS.
 - Entidades que necesitan los números AS:
 - ISP
 - Prodiers de backbone de Internet:
 - Instituciones que se conectan a otras instituciones mediante los números AS.

- El número de sistema autónomo EIGRP funciona, en realidad, como una identificación de proceso
- La identificación de proceso representa un ejemplo del protocolo de enrutamiento que se ejecuta en un router
- Ejemplo

Router(config)#router eigrp autonomous-system

ID de proceso único


```
R1(config) #router eigrp ?
<1-65535> Autonomous system number
R1(config) #router eigrp 1
```

Si bien el IOS de Cisco hace referencia al parámetro router eigrp como "Número de sistema autónomo", este parámetro configura un proceso de EIGRP -un caso de ejecución de EIGRP en el router- y no se relaciona en absoluto con las configuraciones de AS (Sistema autónomo) en routers ISP.

Comando router eigrp

- El comando global que habilita eigrp es:
 - router eigrp autonomous-system
 - Todos los routers en el dominio de enrutamiento EIGRP deben usar el mismo número de identificación de proceso (número de sistema autónomo)

El comando network

- Funciones del comando network:
 - Habilita las interfaces para transmitir y recibir las actualizaciones **EIGRP**.
 - Incluye la red o subred en las actualizaciones **EIGRP**.
- Ejemplo
 - Router(config-router)#network network-address

```
R1 (config) #router eigrp 1
R1 (config-router) #network 172.16.0.0
R1 (config-router) #network 192.168.10.0

R2 (config-router) #router eigrp 1
R2 (config-router) #network 172.16.0.0
%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 172.16.3.1 (Serial0/0/0) is up: new adjacency
```


- Comando network con una máscara wildcard:
 - Esta opción se usa cuando se quiere configurar EIGRP para publicar subredes específicas
 - Ejemplo:
 - Router(config-router)#network network-address [wildcard-mask]

```
R1 (config) #router eigrp 1
R1 (config-router) #network 172.16.0.0
R1 (config-router) #network 192.168.10.0
```

```
R2(config) #router eigrp 1
R2(config-router) #network 172.16.0.0
%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 172.16.3.1 (Serial0/0/0) is up: new adjacency R2(config-router) #network 192.168.10.8 0.0.0.3
```

```
R3(config) #router eigrp 1
R3(config-router) #network 192.168.10.0
%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 192.168.10.5 (Serial0/0/0) is up: new adjacency R3(config-router) #
%DUAL-5-NBRCHANGE: IP-EIGRP 1: Neighbor 192.168.10.9 (Serial0/0/1) is up: new adjacency R3(config-router) #network 192.168.1.0
```


Verificación de EIGRP

- Los routers EIGRP deben establecer adyacencias con sus vecinos antes de poder enviar o recibir actualizaciones
- El comando para ver la tabla vecina y comprobar que **EIGRP** ha establecido adyacencias con los vecinos es:
 - show ip eigrp neighbors

Actividad

Resolver la siguiente actividad

Módulo de Laboratorio en Packet Tracer Configuración del protocolo EIGRP

En este Packet Tracer, hará lo siguiente:

- Realizar tareas de configuración básicas en un router.
- Configurar y activar interfaces.
- Configurar el enrutamiento EIGRP en todos los router.

- · Información básica e historia
 - EIGRP es una versión derivada de IGRP
 - EIGRP es un protocolo de enrutamiento de vector de distancia, patentado por Cisco, que se lanzó en 1994
- · Características y términos de EIGRP
 - EIGRP usa RTP para transmitir y recibir los paquetes EIGRP
 - **EIGRP** tiene 5 tipos de paquetes:
 - Paquetes de saludo
 - Paquetes de actualización
 - Paquetes de reconocimiento
 - Paquetes de consulta
 - Paquetes de respuesta
 - Soporta VLSM y CIDR

· Características y términos de EIGRP

- **EIGRP** usa un protocolo de saludo
 - El objetivo del protocolo de saludo es detectar y establecer adyacencias
- Actualizaciones de enrutamiento de EIGRP:
 - No periódicas
 - Parciales y limitadas
 - Convergencia rápida

Comandos EIGRP

- Los siguientes comandos se usan para la configuración de EIGRP:
 - RtrA(config)#router eigrp [autonomous-system #]
 - RtrA(config-router)#network network-number
- Los siguientes comandos pueden usarse para verificar **EIGRP**:
 - Show ip protocols
 - Show ip eigrp neighbors
 - Show ip route

· Las métricas de EIGRP incluyen:

- Ancho de banda (por defecto)
- Retraso (por defecto)
- Confiabilidad
- Carga

· DUAL

- Objetivo de **DUAL**
 - Evitar los bucles de enrutamiento
- Sucesor:
 - Ruta primaria al destino
- Sucesor factible:
 - Ruta de respaldo al destino
- Distancia factible:
 - La métrica calculada más baja hacia el destino
- Distancia notificada:
 - La distancia hacia un destino según la publicación de un vecino ascendente.

· Selección de la mejor ruta

- Después de que el router haya recibido todas las actualizaciones de los vecinos conectados directamente, podrá calcular su DUAL
 - 1. La métrica se calcula para cada ruta
 - 2. La ruta con la métrica más baja se designa sucesor y se coloca en la tabla de enrutamiento.
 - 3. Se encuentra el sucesor factible
 - Criterios para el sucesor factible: debe tener una distancia notificada al destino menor que la distancia factible de la ruta instalada.
 - Las rutas factibles se mantienen en la tabla de topología.

· Sumarización automática

- Está activada por defecto
- Resume las rutas en el límite classful
- Se puede inhabilitar la sumarización mediante el siguiente comando:
 - RtrA(config-if)#no auto-summary

Gracias

Universidad Tecnológica del Perú