Opening an ice cream shop in Rome

Chiara Picardi, December 2020.

Business problem

- A client famous for his high quality ice cream (gelato) wants to open a new ice cream shop in Rome
- He is not sure in which neighborhood is better to open the shop due to the high competition
- In this project the neighborhoods of Rome will be examined in order to determine which are the neighborhoods with a low presence of ice cream shops and then less competition
- This project is useful for investors interested in opening an ice cream shops in Rome.

Data

- Data are retrieved from wikipedia: https://en.wikipedia.org/wiki/Category:Quarters_of_Rome
- Data are preprocessed using web scraping techniques,
 Python requests and BeautifulSoup packages.

Neighborhood

```
 Rome Q. XXIII Alessandrino (7 P)
 Rome Q. XXV Appio Claudio (1 C, 4 P)
 Rome Q. IX Appio-Latino (18 P)
 Rome Q. XXVI Appio-Pignatelli (2 P)
 Rome Q. XX Ardeatino (13 P)
```

Creating Dataset(1)

 The Python Geocoder package is used to obtain the longitude and the latitude for each neighborhood

	Neighborhood	Latitude	Longitude
0	► Rome Q. XXIII Alessandrino (7 P)	41.87139	12.57974
1	► Rome Q. XXV Appio Claudio (1 C, 4 P)	41.98425	12.71421
2	► Rome Q. IX Appio-Latino (18 P)	41.87461	12.51333
3	► Rome Q. XXVI Appio-Pignatelli (2 P)	41.84326	12.54058
4	► Rome Q. XX Ardeatino (13 P)	41.53654	12.56257

Creating Dataset(2)

 Foursquare API is used to retrieve information of the frequency of ice cream shops for each neighborhood

	Neighborhoods	Ice Cream Shop
0	► Rome Q. I Flaminio (18 P)	0.10
1	► Rome Q. II Parioli (16 P)	0.05
2	► Rome Q. III Pinciano (3 C, 20 P)	0.07
3	► Rome Q. IV Salario (5 P)	0.08
4	► Rome Q. IX Appio-Latino (18 P)	0.09

Segmenting dataset

 K-means algorithm is used to segment the dataset into four different classes using the frequency of ice cream shops

	Neighborhood	Ice Cream Shop	Category
0	► Rome Q. I Flaminio (18 P)	0.10	0
1	► Rome Q. II Parioli (18 P)	0.07	3
2	► Rome Q. III Pinciano (3 C, 20 P)	0.06	2
3	► Rome Q. IV Salario (5 P)	0.08	3
4	► Rome Q. IX Appio-Latino (20 P)	0.08	3

Results(1)

Results(2)

Bar chart reporting mean ice cream shops frequency for each category

Conclusion

- Neighborhood belonging to category 1 have low competition but represent a risk because population is not used to this kind of business
- The best place to open the ice cream shop will be any neighborhood belonging to category 2
- Information about renting and buying prices or important landmarks are not considered