Assignment 3

Authors:

Name	ID
Sangi Manish Rao	2015A7PS0235H
Tanuj Gupta	2015A7PS0159H
Krishna Bharadwaj	2015A7PS0076H
Ashrith Grandi	2015A7PS0285H

Code Files:

- 1. cur.py
- 2. cur_energy.py
- 3. svd.py
- 4. svd_energy.py
- 5. collab_filtering.py6. collab_filtering_baseline.py

	,	1		
1/1/	Or	1/1	0	
vv		ΚI	ng	
V V	\sim 1	1 / 1	ıич	

Described in README file

Language:

Python

Packages Used:

- 1. Timeit
- 2. Numpy
- 3. Math

Project Description:

In this project we have implemented three major recommender systems which are Collaborative Systems, SVD and CUR along with some modifications.

Collaborative Systems:

Pearson correlation coefficient was used for similarity measure.

Formula:

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}$$

User-User collaborative filtering is used. The following formula is used to predict a user's movie rating.

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

$$s_{ij} \dots \text{ similarity of items } i \text{ and } j$$

$$r_{xj} \dots \text{ rating of user } u \text{ on item } j$$

$$N(i;x) \dots \text{ set items rated by } x \text{ similar to } i$$

Baseline estimate Collaborative-filtering:

Pearson correlation coefficient was used for similarity measure.

User-User collaborative filtering is used. The following formula is used to predict a user's movie rating

Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

$$b_{aseline \ estimate \ for \ r_{xi}}$$

$$b_{xi} = \mu + b_x + b_i$$

$$\mu = \text{overall mean movie rating}$$

$$b_x = \text{rating deviation of user } x$$

$$= (avg. \ rating \ of \ user \ x) - \mu$$

$$b_i = \text{rating deviation of movie } i$$

Singular Value decomposition:

Given matrix is decomposed to these components.

$$\mathbf{A}_{[m \times n]} = \mathbf{U}_{[m \times r]} \; \Sigma_{[r \times r]} \; (\mathbf{V}_{[n \times r]})^{\mathsf{T}}$$

A: Input data matrix

- m x n matrix (e.g., m users, n movies)

U: Left singular vectors

- m x r matrix (m users, r concepts)

Σ: Singular values

- rx r diagonal matrix (strength of each 'concept') (r: rank of the matrix A)

V: Right singular vectors

nxrmatrix(n movies, rconcepts)

SVD with 90% energy:

To find out this, the squares of the diagonal elements of Sigma are summed, until the sum doesn't exceed 90% of the total energy(which is sum of squares of all the diagonal elements). At the point it breaks, the index is noted and dimensionality reduction Is done accordingly.

CUR:

Sampling columns (similarly for rows):

Total length of all the columns

Input: matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, sample size cOutput: $\mathbf{C}_d \in \mathbb{R}^{m \times c}$

- 1. for x = 1 : n [column distribution]
- 2. $P(x) = \sum_{i} \mathbf{A}(i, x)^{2} / \frac{\sum_{i,j} \mathbf{A}(i, j)^{2}}{\text{Sample columns}}$ 3. for i = 1: c [sample columns]
- Pick $j \in 1 : n$ based on distribution P(j)
- 5. Compute $\mathbf{C}_d(:,i) = \mathbf{A}(:,j)/\sqrt{cP(j)}$

Note this is a randomized algorithm, same column can be sampled more than once

- Let W be the "intersection" of sampled columns C and rows R
 - Let SVD of W = X Z Y^T
- Then: U = W⁺ = Y Z⁺ X^T
 - Z+: reciprocals of non-zero singular values: Z+ii =1/Zii
 - W⁺ is the "pseudoinverse"

CUR with 90% energy: To compute this U=pseudoinverse(W) Where W is the SVD with 90% energy of the matrix which is intersection of C,R.

Error-calculations:

Root mean square error (rmse):

Root-mean-square error (RMSE)

$$\sqrt{\sum_{xi}(r_{xi}-r_{xi}^*)^2}$$
 where r_{xi} is predicted, r_{xi}^* is the true rating of x on i

Precision on top k:

k = 50

Relevance = 3

If the number of user ratings considered are less than k Value for each user = (Number of predicted user ratings greater than relevance)/(Number of user ratings actually greater than relevance)

Precision on top k = Mean of the values for all relevance

Rank Correlation:

 Spearman's correlation between system's and user's complete rankings

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$
 where d_i = absolute dipredicted ratings n = number of ratings

where d_i = absolute difference in user and

Comparisons:

Recommender System	RMSE	Precision on Top k(k=3, rel=2)	Spearman Rank Correlation	Time taken
Collaborative	1.31	0.001060445387 0625664	0.99	66.46347651415 039
Collaborative with Baseline Approach	1.024	0.003534817956 875221	0.99	68.66220501824 604
SVD	0.423	0.371686108165 4297	0.99	236.3781164930 3268
SVD with 90% Energy	0.24	0.389183457051 9618	0.99	236.5371684296 9106
CUR	Depends on c,r but average is around 100	0.137857900318 1332	0.98	15.05315716636 8827
CUR with 90% energy	Depends on c,r but average is around 100	0.107635206786 85047	0.98	11.98424341847 331

Data Set:

Small: 100,000 ratings applications applied to 1046 movies by 943 users. Last updated 10/2016.