APRENDIZADO DE TRANSFORMAÇÕES DE IMAGENS VIA CLASSIFICAÇÃO DE MICRORREGIÕES¹

Pedro H. B. de Almeida*² Orientadora: Nina S. T. Hirata*

INTRODUÇÃO

O tema de interesse é o problema de segmentação de textos em imagens de documentos e o uso técnicas de aprendizado profundo para solucioná-lo.

Exemplo de par de imagens entrada-saída usados para aprender a transformação Φ.

OBJETIVOS

Comparar a segmentação de imagens realizada via classificação pixel a pixel com a realizada via classificação de microrregiões.

METODOLOGIA

Pipelines propostos para classificação pixel a pixel e de microrregiões

Para o cálculo de microrregiões, foram considerados componentes conexos e superpixels calculados pelo algoritmo SLIC.

Para a extração de patches, primeiro calcula-se a microrregião; em seguida, extrai-se uma janela em torno da microrregião; e por fim, normaliza-se todas janelas para um tamanho fixo (41x41 para as microrregiões e 21x21 para o caso de pixels).

Por fim, para classificação, foi usada um CNN cuja entrada é um *patch* 41x41 (para as microrregiões) ou um *patch* 21x21 (para os pixels). A saída é 0 (não texto) ou 1 (texto). A implementação foi feita através da biblioteca Keras.

RESULTADOS

Primeiramente, o classificador foi treinado a partir de uma imagem de treinamento de dimensões 250x346x3. Em seguida, foi treinado em uma imagem de 2280x3257x3. Os resultados para as imagens de testes estão abaixo:

Conjunto de treinamento I			
	Pixels	Componentes conexos	Superpixels
Número de patches	86500	135	277
Tempo para extração de patches (segundos)	1,7740	0,2104	2,9262
Acurácia	0,9183	0,9832	0,9763
Precisão	0,8150	0,9857	0,9816
Recall	0,7692	0,9974	0,9940
	Conjunto de t	treinamento II	
	Pixels	Componentes conexos	Superpixels
Número de patches	MemoryError	3322	16395
Tempo para extração de patches (segundos)	MemoryError	5,4418	62,4901
Acurácia	MemoryError	0,9959	0,9908
Precisão	MemoryError	0,9973	0,9969
Recall	MemoryError	0,9984	0,9889

Verbatim

Sold - Verbatim

Similar and the Sold pack and Experimental Sold Processor Sold and Experimental Sold Processor Sold

DISCUSSÃO

- Número de patches reduzido em aproximadamente 99,84% no caso dos componentes conexos (CCs) e em 99,67% no caso dos superpixels (SPs).
- Desempenho da classificação de microrregiões superior ao da classificação pontual, sendo os CCs a granularidade que mais se destaca na acurácia.
- Poucos dados de treinamento e desbalanceamento de classes: apesar da alta acurácia, a rede falha em classificar corretamente os componentes da classe não-texto, cuja frequência é muito menor que componentes da classe texto.

REFERÊNCIAS

- Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Susstrunk, S. (2012). Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell.
- Karpathy, A. Class notes. CS231n: Convolutional Neural Networks for Visual Recognition.

Projeto de Iniciação científica apresentando no contexto da disciplina MAC0215 - Atividade Curricular em Pesquisa.
 Pedro H. B. de Almeida foi financiado pela Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) sob o processo nº 2018/11899-8.