Un algorithme d'optimisation à haute dimension pour la fouille de données

Méthode et application en onco-pharmacogénomique

Vincent Gardeux, René Natowicz, Rachid Chelouah, Roman Rouzier, Antônio Braga Padua, Patrick Siarry

> L@ris, EISTI LiSSi. Université Paris-Est Université Paris-Est, ESIEE-Paris Hôpital Tenon

ROADEF 2011 - 2.3 et 4 Mars 2011

Sommaire

- Introduction
- 2 Description du problème
- Méthode
- A Résultats
- 5 Conclusion

La fouille de données ou *Data Mining* permet d'extraire la connaissance à partir d'un ensemble de données.

On peut la décomposer en plusieurs phases :

- Feature Selection : Phase de sélection des variables les plus intéressantes (les variables apportant le plus d'information pour la future classification).
- Classification :
 - Apprentissage : On calcule à partir des variables sélectionnées, les règles qui nous permettront de dire à quelle classe appartient un nouvel individu
 - Validation : On estime les performances de notre classifieur

- Données fournies par des puces à ADN
 Fournissent le niveau d'expression d'un ensemble de
- Fournissent le niveau d'expression d'un ensemble de gènes pour un patient donné

Données

- Patientes atteintes du cancer du sein
- 2 sources de données utilisant la même puce à ADN (Affymetrix U133A) de 22283 gènes
 - Houston: 82 Patients Villejuif: 51 Patients
- 2 classes de patientes : pour chaque patiente, on sait si elle a été répondeuse (PCR : pathologic complete response) ou non (No-PCR) au traitement chimiothérapique
- Données importantes : $\simeq 20000$ gènes pour très peu de cas : $\simeq 100$ patients
- But : Prédire la classe d'un nouveau patient en fonction des niveaux d'expression de ses gènes.

Méthodes

- On utilisera des procédés pour augmenter virtuellement le nombre de cas d'études (cross-validation, bootstrapping, ...)
- On prend le parti de se focaliser sur l'étape de *Feature Selection*
- Après sélection d'un sous-ensemble de gènes par notre méthode, on utilisera des classifieurs existants pour la création du modèle de prédiction : LDA, DLDA, SVM, ... (disponibles dans Matlab, R, ...)

Normalisation Logarithmique

 Normalisation nécessaire quand les variables peuvent prendre des valeurs sur plusieurs décades (typiquement > 5 décades)

Méthode

Utile pour ramener les données sur une échelle commune

Méthode

Introduction

But : Normaliser la variation des probes pour toutes les patientes. Soit $x = \{x_1, ..., x_i, ..., x_n\}$ le vecteur à normaliser, et x_{max} et x_{min} ses extrema. Chaque composant \dot{x}_i du vecteur normalisé \dot{x} est calculé ainsi :

$$\dot{x}_i = \frac{\log(x_i) - \log(x_{min})}{\log(x_{max}) - \log(x_{min})} \tag{1}$$

avec log l'opérateur logarithmique décimal

Algorithme de *Feature Selection* - Etat de l'art

• La plupart des méthodes de *Feature Selection* actuelles se basent sur des méthodes statistiques pour sélectionner les variables les moins redondantes et apportant le maximum d'information (Student t-test, R-squared, ...)

Méthode

 Il existe également des techniques d'optimisation (LASSO, algorithmes génétiques, ...), mais la plupart utilisent tout d'abord un test statistique afin de limiter la dimension de l'espace de recherche.

Algorithme de Feature Selection - But

- Sélectionner le sous-ensemble de gènes le plus représentatif :
 - Maximiser la distance entre les 2 classes de patientes (distance interclasse)

- Minimiser la taille du sous-ensemble de gènes sélectionnés, afin d'éviter le sur-apprentissage des données (data overfitting)
- ⇒ Optimisation bi-objectif
- ⇒ Les 2 objectifs sont contradictoires
- Fonction objectif comme combinaison linéaire convexe de ces 2 objectifs, pondérés par un paramètre w ($w \in [0,1]$)

$$F_w(s) = w * d(G(s), G'(s)) + (1 - w) * (1 - |s|)$$
 (2)

Algorithme de *Feature Selection* - Définitions

Distance interclasse:

Soient G(s) et G'(s) les deux vecteurs centres de gravité des deux classes répondeuses et non répondeuses pour le sous-ensemble de sondes s. La distance interclasse est la distance euclidienne entre les deux centres de gravité G(s) et G'(s)

- La fonction bi-objectif est à optimiser dans l'ensemble des sous-ensembles de sondes (ensemble de taille 2²²²⁸³)
- Une solution est un vecteur binaire de dimension 22283

Ex:

Introduction

$$x = \{0, 1, 0, 0, 0, 1, 0, ..., 1\}$$

 \Rightarrow Un 1 en position i, signifie que le i^{eme} gène est sélectionné

Algorithme de Feature Selection - Méthode

 Problème d'optimisation haute dimension : nous nous sommes basés sur l'algorithme EUS développé pour les problèmes d'optimisation à grande dimension

Principe de EUS

- Méthode de relaxation pour décomposer la fonction objectif dimension par dimension
- Line Search pour optimiser la fonction objectif sur chaque dimension
- Procédure de redémarrage pour explorer l'espace de recherche
- Discrétisation de l'algorithme EUS (DEUS) ⇒ Application sur un vecteur binaire
- Algorithme résultant : suite de minimisations locales
 - Gène retiré ou ajouté au sous-ensemble si cela augmente la valeur de la fonction objectif
 - On recommence jusqu'à stabilisation

Algorithme de Feature Selection - DEUS pseudo code

```
Procedure DEUS
begin
    Initialiser le vecteur binaire S aléatoirement
   dο
       v = f(S) (avec f la fonction objectif)
      for i = 1 to n
          permuter la i^{eme} valeur binaire de S
          v'=f(S)
         if(v' < v) then permuter à nouveau la i^{eme} valeur de S
      end for
    while aucune meilleure solution n'est trouvée durant une
itération complète
end
```

Protocole Expérimental

Introduction

- Comparaison avec 2 méthodes récentes :
 - Hess 2006 (t-test + DLDA)
 - Natowicz 2008 (BI Majorité 30 + DLDA)
- Nous avons suivi le protocole utilisé par Hess et Natowicz :
 - Données Houston : Population d'apprentissage (pour la sélection des gènes et pour la méthode de classification)
 - Données Villejuif : Population de validation (pour la méthode de classification)

- Chaque population contient 1/3 de patient répondant au traitement et 2/3 non répondant
- Méthode de classification utilisée : DLDA (Diagonal Linear Discriminant Analysis)

Résultats comparatifs

	DEUS DLDA 31	DEUS DLDA 11	t-test DLDA 31	BI Majorité 30
Distance interclasse	5175,45	3670,45	1383,30	3210,28
Précision	0,863	0,882	0,765	0,863
Sensibilité	0,846	0,923	0,923	0,923
Spécificité	0,868	0,868	0,711	0,842
VPP	0,688	0,706	0,522	0,667
VPN	0,943	0,971	0,964	0,970

- Sensibilité : Probabilité d'être classifiée répondeuse si elle l'est
- Spécificité : Probabilité d'être classifiée non répondeuse si elle l'est
- VPP : Valeur Prédictive Positive = probabilité d'être répondeuse si classifiée ainsi
- VPN : Valeur Prédictive Négative = probabilité d'être non répondeuse si classifiée ainsi

Résultats

Gènes sélectionnés

Les 11 gènes sélectionnés par DEUS sont les suivants :

Sonde Affymetrix	Nom du Gène	Hess	Natowicz
203929_s_at	MAPT	Χ	
204825_at	MELK	Χ	X
204913_s_at	SOX11		
205225_at	ESR1		
205354_at	GAMT	Χ	
205548_s_at	BTG3	Χ	X
209173_at	AGR2		
212956_at	AI348094		
213134_x_at	BTG3	Χ	X
218211_s_at	MLPH		
219051_x_at	METRN	Χ	X

Conclusion

Introduction

 Nos résultats surpassent les autres, mais le résultat le plus intéressant est qu'ils sont obtenus avec 3 fois moins de probes (11 au lieu de 30)

- Rapidité de convergence : quelques itérations suffisent
- Solution stable :
 - Ne dépend pas de la solution initiale
 - Ne dépend pas de l'ordre dans lequel les gènes sont examinés
 - A chaque redémarrage, converge vers la même solution pour un w donné
- La Sensibilité est élevée => important pour les biologistes et éventuellement pour la mise en place d'une routine clinique
- Une Cross-validation 3-fold sur l'ensemble des 133 patientes obtient d'excellents résultats => Accentue la robustesse de la méthode

Travaux en cours

Introduction

 La Méthode Lasso "regularisation path via coordinate descent" (Trevor Hastie & al.) retourne des prédicteurs ayant plus de sondes et dont les performances sont inférieures.

- Fonction objectif intégrant inertie interclasse et inertie intraclasse
- Fonction objectif intégrant la corrélation entre les gènes
- Application à d'autres domaines d'application

Conclusion 000

Merci pour votre attention

Des questions?

Vincent Gardeux Enseignant-chercheur EISTI Doctorant de l'Université Paris-Est Créteil

Davantage d'informations à propos des recherches en cours : http://gardeux-vincent.eu