Numerical Analysis

Homework 10. Numerical Integration

Due: May 9, 2017

In this home work, you will implement various Newton-Cotes integration formulas to find the integral, I, of f(x) over a fixed range, $x \in [0, 2]$.

$$f(x) = e^x (10.1)$$

$$I = \int_0^2 f(x) \, \mathrm{d}x. \tag{10.2}$$

Note that the closed form solution for I^* is known and can be used to find the integration errors.

1. Divide the interval, [0,2], into 12 equal sized regions, to generate an array Y[k], $k=0,1,\cdots,12$, with

$$Y[k] = e^{k \cdot h}, \tag{10.3}$$

where h = 2/12.

- 1.1. Using the array Y[] and the region size h to perform the first order Newton-Cotes integration to find the integral, $I_{12}^{(1)}$, and the error, $E_{12}^{(1)} = |I^* I_{12}^{(1)}|$.
- 1.2. Using the array Y[] and the region size h to perform the second order Newton-Cotes integration to find the integral, $I_{12}^{(2)}$, and the error, $E_{12}^{(2)} = |I^* I_{12}^{(2)}|$.
- 1.3. Using the array Y[] and the region size h to perform the third order Newton-Cotes integration to find the integral, $I_{12}^{(3)}$, and the error, $E_{12}^{(3)} = |I^* I_{12}^{(3)}|$.
- 1.4. Using the array Y[] and the region size h to perform the fourth order Newton-Cotes integration to find the integral, $I_{12}^{(4)}$, and the error, $E_{12}^{(4)} = |I^* I_{12}^{(4)}|$.
- 1.5. Using the array Y[] and the region size h to perform the sixth order Newton-Cotes integration to find the integral, $I_{12}^{(6)}$, and the error, $E_{12}^{(6)} = |I^* I_{12}^{(6)}|$.
- 2. Divide the interval, [0,2], into 24 equal sized regions, to generate an array Y[k], $k=0,1,\cdots,24$, with

$$Y[k] = e^{k \cdot h},$$

where h = 2/24.

- 2.1. Using the array Y[] and the region size h to perform the first order Newton-Cotes integration to find the integral, $I_{24}^{(1)}$, and the error, $E_{24}^{(1)} = |I^* I_{24}^{(1)}|$.
- 2.2. Using the array Y[] and the region size h to perform the second order Newton-Cotes integration to find the integral, $I_{24}^{(2)}$, and the error, $E_{24}^{(2)} = |I^* I_{24}^{(2)}|$.
- 2.3. Using the array Y[] and the region size h to perform the third order Newton-Cotes integration to find the integral, $I_{24}^{(3)}$, and the error, $E_{24}^{(3)} = |I^* I_{24}^{(3)}|$.

1

- 2.4. Using the array Y[] and the region size h to perform the fourth order Newton-Cotes integration to find the integral, $I_{24}^{(4)}$, and the error, $E_{24}^{(4)} = |I^* I_{24}^{(4)}|$.
- 2.5. Using the array Y[] and the region size h to perform the sixth order Newton-Cotes integration to find the integral, $I_{24}^{(6)}$, and the error, $E_{24}^{(6)} = |I^* I_{24}^{(6)}|$.
- 3. Repeat the same process and divide the interval into 48 regions to find $I_{48}^{(1)}$, $E_{48}^{(1)}$, $I_{48}^{(2)}$, $E_{48}^{(2)}$, $I_{48}^{(3)}$, $E_{48}^{(4)}$, $I_{48}^{(4)}$, $E_{48}^{(6)}$, and $E_{48}^{(6)}$.
- 4. Repeat the same process and divide the interval into 96 regions to find $I_{96}^{(1)}$, $E_{96}^{(1)}$, $I_{96}^{(2)}$, $E_{96}^{(2)}$, $I_{96}^{(3)}$, $E_{96}^{(3)}$, $I_{96}^{(4)}$, $E_{96}^{(4)}$, and $E_{96}^{(6)}$.
- 5. Repeat the same process and divide the interval into 192 regions to find $I_{192}^{(1)},\,E_{192}^{(1)},\,I_{192}^{(2)},\,E_{192}^{(2)},\,I_{192}^{(3)},\,E_{192}^{(3)},\,I_{192}^{(4)},\,E_{192}^{(4)},\,I_{192}^{(6)},\,$ and $E_{192}^{(6)}.$
- 6. Repeat the same process and divide the interval into 384 regions to find $I_{384}^{(1)},\,E_{384}^{(1)},\,I_{384}^{(2)},\,E_{384}^{(2)},\,I_{384}^{(3)},\,E_{384}^{(3)},\,I_{384}^{(4)},\,E_{384}^{(6)},\,I_{384}^{(6)}$, and $E_{384}^{(6)}$.
- 7. Repeat the same process and divide the interval into 768 regions to find $I_{768}^{(1)},\,E_{768}^{(1)},\,I_{768}^{(2)},\,E_{768}^{(2)},\,I_{768}^{(3)},\,E_{768}^{(3)},\,I_{768}^{(4)},\,E_{768}^{(6)},\,and\,E_{768}^{(6)}.$
- 8. Repeat the same process and divide the interval into 1536 regions to find $I_{1536}^{(1)},\,E_{1536}^{(1)},\,I_{1536}^{(2)},\,E_{1536}^{(3)},\,I_{1536}^{(4)},\,E_{1536}^{(4)},\,I_{1536}^{(6)},\,and\,E_{1536}^{(6)}$
- 9. Compare the solutions you obtained, please state your observations.

Notes.

- 1. For this homework you need to turn in a set of C++ source codes. That includes hw09.cpp, which solves question 5 above, MAT.h, the new header file, MAT.cpp, which includes the two functions above, VEC.h and VEC.cpp files.
- 2. A pdf file is also needed. Please name this file hw09a.pdf.
- 3. Submit your files on EE workstations. Please use the following command to submit your homework 9.
 - $\sim ee407002/bin/submit hw09 hw09a.pdf hw09.cpp MAT.h MAT.cpp VEC.h VEC.cpp$

where hw09 indicates homework 9.

4. Your report should be clearly written such that I can understand it. The writing, including English grammar, is part of the grading criteria.