Measure and Integration II (MAA5617), Spring 2021 Practice problems

1. Recall the notation

$$M_q(g) = \sup \left\{ \left| \int fg \, d\mu \right| : f \text{ simple and } \|f\|_p = 1 \right\}.$$

Suppose μ is semifinite, $q < \infty$, $M_q(g) < \infty$. Prove:

$${x:|g(x)| > 1/n}$$

has finite measure μ for every $n \geq 1$.

- 2. Recall that "separable" = "containing a dense countable subset". Prove:
 - $L^p(\mathbb{R}^n, \lambda^n)$ is separable for $1 \leq p < \infty$ (polynomials are dense on compact sets; use σ -finiteness).
 - $L^{\infty}(\mathbb{R}^n, \lambda^n)$ is not separable (prove that it contains an uncountable subset without points of concentration).
- **3.** Let 0 . Prove:
 - $L^p \not\subset L^q \iff X$ contains sets of arbitrarily small positive measure.
 - $L^q \not\subset L^p \iff X$ contains sets of arbitrarily large finite measure.
- **4.** (Jensen's inequality) Suppose $(\Omega, \mathcal{S}, \mathbb{P})$ is a measure space with $\mathbb{P}(\Omega) = 1, X : \Omega \to \mathbb{R}$ a measurable function, and $\phi : \mathbb{R} \to \mathbb{R}$ a convex function. Prove:

$$\phi\left(\int X d\mathbb{P}(\omega)\right) \le \int \phi(X) d\mathbb{P}(\omega).$$

(Use that every point $(x, \phi(x))$ of the graph of ϕ has a support plane, that is, $\phi(y) - \phi(x) \ge \alpha(y-x)$ for some number α .)

- **5.** Show that the L^p -norm is not induced by an inner product for $p \neq 2$.
- **6.** Let $\alpha_n \geq 0$ and $\sum_{1}^{\infty} \alpha_n = \infty$. Prove that for some suitable sequence of $c_n \geq 0$, $\sum_{1}^{\infty} \alpha_n c_n = \infty$, but $\sum_{1}^{\infty} \alpha_n c_n^2 < \infty$.
- 7. For a pair of functions f, g in $L^1(\mathbb{R})$, prove that their convolution

$$f * g(x) = \int f(y)g(x-y) d\lambda(y)$$

is measurable and in $L^1(\mathbb{R})$ as well.

8. Suppose (X,μ) is a measure space with $\mu(X)=1$. Prove that for $f\in L^r(\mu)$,

$$s \mapsto ||f||_s$$

is an increasing function on (0, r].

Let V be a vector space, V^* its dual. We will say that $\{f_n\} \subset V$ converges to an $f \in V$ weakly, if

$$\lim_{n \to \infty} \phi(f_n) = \phi(f), \qquad \forall \phi \in V^*.$$

- **9.** Let $1 . Prove that if <math>\{f_n\}$ is bounded in $L^p([0,1],\lambda)$ and converges to f in measure, then it converges to f weakly in $L^p([0,1],\lambda)$.
- 10. In the same L^p as above, if $\{f_n\}$ converges to f weakly, then $\{\|f_n\|_p\}$ is bounded.
- 11. In general, weak convergence does not imply convergence in measure (take $X = \mathbb{R}$).
- 12. Let L be the vector space of bounded functions from the normalized unit circle \mathbb{T} (equivalently: periodized [0,1)) to \mathbb{R} . The functions are not assumed to be measurable. Let for $f \in L$

$$p(f) = \inf M(f; a_1, \dots, a_n),$$

where the inf is over all $n \in \mathbb{N}$ and all finite collections $\{a_i\} \subset \mathbb{T}$, and where

$$M(f; a_1, \dots, a_n) = \sup_{t \in \mathbb{T}} \frac{1}{n} \sum_{i=1}^n f(t + a_i).$$

The addition is understood mod 1.

Constructed in this way p is a sublinear functional (check this; also see the link below). By the Hahn-Banach theorem, there exists a linear functional \mathcal{F} such that

$$\mathcal{F}(f) \le p(f).$$

Denoting

$$\int f(t) dt := \frac{1}{2} [\mathcal{F}(f(t)) + \mathcal{F}(f(1-t))]$$

, one has a functional that to each element of L puts in correspondence the number $\int f(t) dt$, so that for all functions f, h and scalars α, β :

- $\int [\alpha f + \beta h] dt = \int \alpha f dt + \int \beta h dt$
- $\int f dt \ge 0$ when $f \ge 0$
- $\int f(t+\alpha) dt = \int f(t) dt$
- $\int_{0}^{\infty} f(1-t) dt = \int_{0}^{\infty} f(t) dt$ $\int_{0}^{\infty} 1 dt = 1$

Integrating indicators with respect to this notion of integral gives a finitely additive measure, defined on all sets. Compare to the Vitali counterexample, showing the nonexistence of countably additive measures on all sets. The argument above is due to Banach: http://matwbn.icm.edu.pl/ksiazki/or/or2/or213.pdf#page=14.