Sudanese Primary Schools Dataset Analysis and Classification based on Facility Availability

Data Preparation/Feature Engineering

1. Overview

The main aim of this project is to:

- analyze Sudan school's dataset and visualize it
- clustering
- classification of schools according to facilities

The project contains many parts.

- 1. Dataset
 - Dataset preparation
 - Exploratory data analysis (EDA)
 - Prepare dataset for machine learning model (Feature engineering)
- 2. Clustering
 - K-means clustering
- 3. Classification
 - Machine learning models (random forest, knn, svm, naive bayes, nn)
 - Comparison

2. Data Collection

The project aims to analyze Sudanese schools' dataset and classify it according to the facilities to enhance the understanding of the current state of Sudanese schools. As known, Sudan one of the least development countries which still need many steps of development in many aspects but the most important is to provide well based education environment and suffers from proper dataset that can help in analyzing the situation and making good decisions. An impressive collaboration between the Ministry of Education, UNICEF, and OCHA Sudan have been done in 2021 in collecting the school's data in order to ease the decision-making process and to know the actual statics of students, teachers and facilities availability as well.

3. Data Cleaning

As the dataset is quite big, dropping all missing data rows seems a suitable solution. Dataset size changed from 19379 ==> 18716 only 663 rows have been dropped. Below is visualization of missing data distribution across dataset.

4. Exploratory Data Analysis (EDA)

4.1. Distribution of Sudanese school types

4.2. Distribution of Sudanese by locality and areal type (urban, rural)

4.3. Distribution of Sudanese school male-female across states

4.4. Distribution of teachers across different states

4.5. Total number of classrooms in each state

4.6. Classes status based on permanent or need rehabilitation.

4.7. Distribution of schools based on their status.

+		L -
Status	Count	Percentage
normal nongovernmental nomadic special needs quranic displaced complementary	14745 3141 1130 233 72 33 21	76.10% 76.10% 16.21% 5.83% 1.20% 0.37% 0.17% 0.11%
+	+	+

4.8. Distribution of Schools with and without electricity

Distribution of electricity availability across states

4.9. Distribution of Schools with and without water resources

Distribution of water sources types across states

		Seriou de III	acci sources cy	oco acioso otat		
Blue Nile -	23	99	113	65	38	
Central Darfur -	33	65	36	69	151	- 3
East Darfur -	7	40	106	2	298	
Gadarif -	116	223	265	40	205	
Gezira -	119	46	2128	30	114	- 2
Kassala -	84	185	385	21	172	
Khartoum -	37	125	3348	39	245	
North Darfur -	131	289	85	148	465	- 2
မှု North Kordofan -	103	518	270	112	565	
North Kordofan - Northern -	1	4	487	26	21	
Red Sea -	45	95	159	13	193	- 1
River Nile -	30	70	633	57	45	
Sinnar -	71	56	451	66	189	- 1
South Darfur -	119	349	144	217	675	
South Kordofan -	80	152	28	248	56	
West Darfur -	51	140	48	93	111	- 5
West Kordofan -	87	433	100	136	394	
White Nile -	132	383	423	49	205	
	No	Other \	Public network Water sources type	Pump	Well	

4.10. Distribution of Schools latrines

4.11. Distribution of fence, store, school feeding availability

Distribution of Fence in Schools

Distribution of store in Schools

Distribution of school_feeding in Schools

4. Feature Engineering and Data Transformation

- 1st and 5th columns written in Arabic and as both have similar information column written in English ==> Drop
- School name, state name, location (LOCENG) ===> drop
- School grade1 to grade8 columns ==> drop
- edit STCODE and LOCCODE columns to be only the numerical part without "SD" (SD01 SD18)
- Convert yes/no to 1/0 in columns; Fence, Store, School_feeding, Latrines
- check unique classes in 'location', 'Type', 'Status', 'electricity', 'Potable_Water_source' columns convert them to numerical.

```
Unique classes in location: ['urban' 'rural']
Unique classes in Type: ['Boys' 'Girls' 'Mixed']
Unique classes in Status: ['normal' 'nomadic' 'nongovernmental' 'special needs' 'quranic'
'complementary' 'displaced']
Unique classes in electricity: ['No' 'Solar energy' 'Generator' 'Public network']
Unique classes in Potable_Water_source: ['Well' 'Other' 'Pump' 'No' 'Public network']
```

check datatypes

```
: School ID
                              int64
  STCODE
                              int64
  LOCCODE
                              int64
  location
                              int64
  Type
                              int64
  Status
                              int64
  teachers
                              int64
  students_f
                              int64
  students m
                              int64
  students_total
                              int64
  Total_Classrooms
                            float64
  Permanent
                            float64
  Needs Rehabilitation
                          float64
                              int64
  store
                              int64
  school_feeding
                             int64
  kindergarten
  kinder_level1
                           float64
  kinder_level2
electricity
                           float64
                              int64
  Potable_Water_source
                              int64
  Latrines
                              int64
                            float64
  Latrine male
  Latrine_female
                            float64
  Latrine_common
                            float64
  dtype: object
```

• Feature ranking

```
X= df[['School ID', 'STCODE', 'LOCCODE', 'location', 'Type', 'Status',

'teachers', 'students_f', 'students_m', 'students_total',

'Total_Classrooms', 'Permanent', 'Needs Rehabilitation', 'Fence',

'store', 'school_feeding', 'kindergarten', 'kinder_levell',

'kinder_level2', 'electricity', 'Potable_Water_source', 'Latrines',

'Latrine_male', 'Latrine_female', 'Latrine_common', 'PCA1',

'PCA2']].values

y = df['Cluster'].values

rfe = RFE(estimator=DecisionTreeClassifier(), n_features_to_select=6) # define the model

rfe.fit(X, y)# fit RFE

for i in range(X.shape[1]):

print('Feature: %d, Selected %s, Rank: %.1f' % (i, rfe.support_[i], rfe.ranking_[i]))

Feature: 0, Selected False, Rank: 9.0

Feature: 1, Selected False, Rank: 19.0
```

```
Feature: 1, Selected False, Rank: 19.0
Feature: 2, Selected False, Rank: 11.0
Feature: 3, Selected False, Rank: 22.0
Feature: 4, Selected False, Rank: 4.0
Feature: 5, Selected True, Rank: 1.0
Feature: 6, Selected False, Rank: 7.0
Feature: 7, Selected False, Rank: 8.0
Feature: 8, Selected False, Rank: 15.0
Feature: 9, Selected False, Rank: 2.0
Feature: 10, Selected True, Rank: 1.0
Feature: 11, Selected False, Rank: 3.0
Feature: 12, Selected False, Rank: 14.0
Feature: 13, Selected False, Rank: 5.0
Feature: 14, Selected False, Rank: 17.0
Feature: 15, Selected False, Rank: 10.0
Feature: 16, Selected False, Rank: 20.0
Feature: 17, Selected False, Rank: 16.0
Feature: 18, Selected False, Rank: 12.0
Feature: 19, Selected True, Rank: 1.0
Feature: 20, Selected False, Rank: 6.0
Feature: 21, Selected True, Rank: 1.0
Feature: 22, Selected False, Rank: 18.0
Feature: 23, Selected False, Rank: 13.0
Feature: 24, Selected False, Rank: 21.0
Feature: 25, Selected True, Rank: 1.0
Feature: 26, Selected True, Rank: 1.0
```

• Pearson correlation for selected features

Clustering

• K-means k selecting using "elbow" method

• Cluster into 5 classes

Classification Model Exploration

1. Models, training, evaluation and code implementation

Training set = (14972, 6) (14972,)Test set = (3744, 6) (3744,)

Model	Metrices				
Naïve bayes	Fitting 10 folds for each of 25 candidates, totalling 250 fits				
•	Classification report				
	precision recall f1-score support				
	0 0.90 0.89 0.89 1154				
	1 0.96 0.96 0.96 929 2 0.89 0.93 0.91 912				
	3 0.86 0.74 0.80 172				
	4 0.96 0.97 0.96 577				
	accuracy 0.92 3744				
	macro avg 0.91 0.90 0.90 3744 weighted avg 0.92 0.92 0.92 3744				
	weighted avg 0.52 0.52 5744				
	Class Confusion Matrix				
	[[1022 31 93 3 5] [35 892 0 2 0]				
	[45 2 846 9 10]				
	[30 1 5 128 8] [1 5 6 7 558]]				
Random forest	Classification report for Random Forest				
Random forest	precision recall f1-score support				
	0 0.94 0.95 0.94 1154				
	1 0.98 0.98 0.98 929				
	2 0.96 0.94 0.95 912				
	3 0.92 0.90 0.91 172 4 0.99 0.99 0.99 577				
	4 0.35 0.35 0.35 5//				
	accuracy 0.96 3744				
	macro avg 0.96 0.95 0.95 3744 weighted avg 0.96 0.96 0.96 3744				
	integrated and				
	Confusion Matrix for Random Forest: [[1091 13 39 11 0]				
	[[1091 13 39 11 0] [14 915 0 0 0]				
	[43				
	[15 0 1 155 1] [3 2 0 3 569]]				
	[3 2 0 3 303]]				
KNN	Classification report with k=6				
	precision recall f1-score support				
	0 0.92 0.95 0.93 1154				
	1 0.98 0.97 0.98 929				
	2 0.95 0.93 0.94 912				
	3 0.95 0.89 0.92 172				
	4 0.99 0.98 0.99 577				
	accuracy 0.95 3744				
	macro avg 0.96 0.95 0.95 3744				
	weighted avg 0.95 0.95 0.95 3744				
	Class Confusion Matrix				
	[[1097 15 36 6 0]				
	[22 905 1 0 1]				
	[60 2 848 0 2]				
	[17				
	[2 2 4 2 30/]]				

SVM	Classification manage with linear kernel
SVIVI	Classification report with linear kernel precision recall f1-score support
	precision recall il-score support
	0 0.94 0.94 0.94 1154
	1 0.98 0.99 0.98 929
	2 0.95 0.95 0.95 912
	3 0.93 0.93 0.93 172
	4 0.99 0.98 0.99 577
	accuracy 0.96 3744
	macro avg 0.96 0.96 0.96 3744
	weighted avg 0.96 0.96 0.96 3744
	Class Confusion Matrix
	[[1087 14 44 9 0]
	[11 918 0 0 0]
	[42 2 865 0 3]
	[10 0 0 160 2] [4 2 2 3 566]]
	[4 2 2 3 566]]
Neural network	Epoch 1/10
	375/375 [====================================
Training set =	659 Epoch 2/10
(11977, 27)	375/375 [====================================
, , ,	773 Epoch 3/10
(11977, 5)	375/375 [====================================
	796 Epoch 4/10
Validation set =	375/375 [====================================
(2005 27)	816 Epoch 5/10
(2995, 27)	375/375 [==========] - 1s 2ms/step - loss: 0.0313 - accuracy: 0.9891 - val_loss: 0.0390 - val_accuracy: 0.9
	806 Epoch 6/10
(2995, 5)	375/375 [====================================
	820 Epoch 7/10
Test set =	375/375 [====================================
	820 Epoch 8/10
(3744, 27)	375/375 [===========] - 1s 2ms/step - loss: 0.0237 - accuracy: 0.9911 - val_loss: 0.0474 - val_accuracy: 0.9
(3744, 5)	843 Epoch 9/10
	375/375 [==========] - 1s 2ms/step - loss: 0.0200 - accuracy: 0.9929 - val_loss: 0.0506 - val_accuracy: 0.9
	860 Epoch 10/10
	375/375 [==========] - 1s 2ms/step - loss: 0.0185 - accuracy: 0.9938 - val_loss: 0.0308 - val_accuracy: 0.9
	117/117 [==========] - 0s 1ms/step - loss: 0.0490 - accuracy: 0.9848
	Test accuracy: 0.9847756624221802
	117/117 [==========] - 0s 1ms/step
	Classification Report:
	precision recall f1-score support
	0 0.99 0.97 0.98 1154
	1 0.99 1.00 0.99 929
	2 0.98 0.99 0.98 912 3 0.94 0.98 0.96 172
	4 0.99 0.99 0.99 577
	7 0.33 0.33 0.33 3//
	accuracy 0.98 3744
	macro avg 0.98 0.98 0.98 3744
	weighted avg 0.98 0.98 0.98 3744
	Confusion Matrix:
	[[1121 4 19 9 1]
	[4 925 0 0 0]
	[4 3 901 0 4] [3 0 1 168 0]
	[3 0 1 168 0] [3 0 0 2 572]]
	[3 0 0 2 572]]
<u> </u>	•