Huffman Coding (cont'd)

- Forward Pass
 - 1. Sort probabilities per symbol
 - 2. Combine the lowest two probabilities
 - 3. Repeat *Step2* until only two probabilities remain.

Huffman Coding (cont'd)

Backward Pass

Assign code symbols going backwards

Original source				Source reduction						
Sym.	Prob.	Code	1		2		3		4	
a ₂ a ₆ a ₁ a ₄ a ₃ a ₅	0.4 0.3 0.1 0.1 0.06 0.04	1 00 011 0100 01010 01011	0.4 0.3 0.1 0.1 0.1	1 00 011 0100 0101	0.4 0.3 0.2 0.1	1 00 010 011	0.4 0.3 — 0.3	1 00 01	0.6 0.4	0

Huffman Coding (cont'd)

• L_{avg} assuming Huffman coding:

$$L_{avg} = E(l(a_k)) = \sum_{k=1}^{6} l(a_k)P(a_k) =$$

3x0.1 + 1x0.4 + 5x0.06 + 4x0.1 + 5x0.04 + 2x0.3 = 2.2 bits/symbol

Redundancy - revisited

• Redundancy: R =

$$R = L_{avg} - H$$

where: $L_{avg} = E(l(r_k)) = \sum_{k=0}^{L-1} l(r_k)P(r_k)$

Note: if L_{avg} = H, then R=0 (no redundancy)

$$R_D = 1 - \frac{1}{C_R}$$