Table des matières

1	Les polynômes	2	Propriété - Variations du trinôme
	Définition - Monômes	2	2.3 La forme factorisée
	Exemple(s) - Exemples de monômes	2	Propriété - Forme factorisée
	Définition - Polynôme	2	
	Exemple(s) - Polynômes	2	3 Racine et signe d'un trinôme
	r		3.1 Racine d'un trinôme
2	Differentes expressions et lien avec la courbe		Définition - Racines d'un polynôme
	representative	2	Propriété - Racines et forme factorisée .
	2.1 La forme développée	2	3.2 Aspect graphique
	Définition - Fonction polynôme de de-		Exemple(s) - Aspect graphique des ra-
	gré 2	2	cines
	Définition - Parabole	3	3.3 Signe d'un trinôme donne sous forme
	2.2 La forme canonique	3	factorisee
	Propriété - Forme canonique	3	Méthode - Étude de signe d'un trinôme
	Démonstration - Forme canonique	3	donné sous forme factorisée
	Propriété - Sommet de la parabole	4	Propriété - Signe d'un trinôme

Compétences travaillées	<u></u>	<u>~</u>	<u> </u>	
• Connaître le vocabulaire des polynômes de degré 2				
• Savoir utiliser les différentes formes des polynômes de degré 2				
• Lecture graphique de fonctions polynômes de degré 2				
• Utiliser les racines d'un polynômes de degré 2				
• Étude du signe d'un polynômes de degré 2				

Vocabulaire utilisé

- monômes (p. 2)
- degré du monôme (p. 2)
- **polynôme** (p. 2)
- **réduit** (p. 2)
- degré d'un polynôme réduit (p. 2)
- **ordonné** (p. 2)
- fonction polynôme de degré 2 (p. 2)
- forme développée (p. 2)
- **parabole** (p. 2)
- **sommet** (p. 3)

- forme canonique (p. 3)
- **sommet** (p. 3)
- axe de symétrie (p. 3)
- forme factorisée (p. 5)
- racines (p. 5)

1. Les polynômes

Définition

Monômes

Les **monômes** sont des expressions algébriques formées du produit d'un coefficient a réel par une puissance (entière) d'une indéterminée $X : aX^n$.

L'exposant de X est appelé le degré du monôme.

Exemple(s)

Exemples de monômes

1. $4X^0 = 4$ est de degré 0

2. $-3X^1 = -3X$ est de degré 1 3. πX^2 est de degré 2

4. $12,5X^7$ est de degré 7

5. 0X = 0 est de degré $-\infty$

Définition

Polynôme

Un polynôme est une somme (finie) de monômes.

- Un polynôme est dit réduit lorsque tous ses monômes sont de degrés distincts.
- Le degré d'un polynôme réduit est le plus grand degré de ses monômes.
- Un polynôme réduit est dit ordonné lorsque ses monômes sont rangés suivant les puissances décroissantes de l'indéterminée X.

Exemple(s)

Polynômes

1. $-3 + 8X^2 + 4X - 7X^3 - 7X + 10$ est un polynôme.

2. $3X^2 - 12X^5 + 2$ est sous forme réduite mais $5 + 7X - 14X^2 + 8X$ n'est pas sous forme réduite car les monômes 7X et 8X sont semblables (même degré).

3. $-7X^3 + X - 3$ est ordonné alors que $X - 7X^2 + 2$ ne l'est pas.

Remarque(s):

Les polynômes ont ceci de merveilleux qu'ils peuvent s'appliquer à un très grand nombre d'objets. X peut désigner des nombres bien sûr mais aussi des polynômes, des fonctions, des transformations géométriques, des tableaux de nombres (matrices), etc.

2. Differentes expressions et lien avec la courbe representative

La forme développée

Définition

Fonction polynôme de degré 2

Une fonction polynôme de degré 2 est une fonction f définie sur \mathbb{R} par

 $f(x) = ax^2 + bx + c$

avec $a \in \mathbb{R}^*$ et $b, c \in \mathbb{R}$.

Cette écriture de f(x) est appelée **forme développée** de f(x).

Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, avec $a \in \mathbb{R}^*$ et $b, c \in \mathbb{R}$.

- Si a > 0 alors la représentation graphique de f est une **parabole** \mathscr{P} « tournée vers le haut ».
- Si a < 0 alors la représentation graphique de f est une **parabole** \mathscr{P} « tournée vers le bas ».

Remarque(s):

- Le point « le plus haut » (a < 0) ou « le plus bas » (a > 0) est appelé le sommet de la parabole.
- L'ordonnée du point de \mathcal{P} qui a pour abscisse 0 est le coefficient c.

2.2

La forme canonique

Propriété

Forme canonique

Soit f une fonction définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ une fonction polynôme du second degré $(a \neq 0)$. Il existe deux nombres réels α et β tels que pour tout nombre réel x, on a :

$$ax^2 + bx + c = a(x - \alpha)^2 + \beta$$

L'écriture $a(x - \alpha)^2 + \beta$ est la **forme canonique** de la fonction f.

$$1. \alpha = -\frac{b}{2a}$$

$$2. \beta = -\frac{b^2 - 4ac}{4a}$$

Démonstration

Forme canonique

Soit $f: x \mapsto ax^2 + bx + c$

Montrons que $f(x) = a(x - \frac{-b}{2a})^2 - \frac{b^2 - 4ac}{4a}$

$$f(x) = a(x - \frac{-b}{2a})^2 - \frac{b^2 - 4ac}{4a}$$

$$f(x) = a(x^2 - 2 \times 1 \times \frac{-b}{2a} + \frac{b^2}{4a^2}) - \frac{b^2 - 4ac}{4a}$$

$$= a(x^2 - \frac{-b}{a} + \frac{b^2}{4a^2}) - \frac{b^2}{4a} + \frac{\cancel{Aac}}{\cancel{Aa}}$$

$$= ax^2 + bx + \frac{b^2}{4a} - \frac{b^2}{4a} + c$$

$$= ax^2 + bx + c$$

Développer le carré

Réduire l'expression

Développer

Propriété

Sommet de la parabole

Soit f une fonction polynôme de degré 2 de forme canonique $f(x) = a(x - \alpha)^2 + \beta$.

1. Le **sommet** de la parabole \mathscr{P} a pour coordonnées $S(\alpha; \beta)$.

2. La parabole \mathcal{P} a pour **axe de symétrie** la droite d'équation $x = \alpha$.

Propriété

Variations du trinôme

Soit f une fonction définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ une fonction polynôme du second degré $(a \neq 0)$ avec forme canonique $f(x) = a(x - \alpha)^2 + \beta$.

Les variations du trinôme f sont données par les tableaux suivants :

1. Si a > 0, la fonction f est décroissante sur l'intervalle $]-\infty;\alpha]$ et croissante sur l'intervalle $[\alpha;+\infty[$.

X	$-\infty$	α	+∞
f	+∞	β	+∞

2. Si a < 0, la fonction f est croissante sur l'intervalle $] - \infty; \alpha]$ et décroissante sur l'intervalle $[\alpha; +\infty[$.

x	$-\infty$	α	+∞
f		β	~~

2.3 La forme factorisée

Propriété

Forme factorisée

La fonction f définie sur \mathbb{R} par $f(x) = a(x - x_1)(x - x_2)$ est une fonction polynôme de degré 2, avec a, x_1 et x_2 des réels tels que $a \neq 0$.

Cette écriture de f(x) est appelée **forme factorisée** de f(x).

3. Racine et signe d'un trinôme

3.1 Racine d'un trinôme

Définition

Racines d'un polynôme

Les racines d'un polynôme sont les nombres réels qui annulent ce polynôme.

Remarque(s):

Soit f la fonction définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ avec $a \in \mathbb{R}^*$ et $b, c \in \mathbb{R}$.

Les **racines** de la fonction polynôme f sont les **solutions** de l'équation f(x) = 0.

Graphiquement, ce sont les abscisses des points d'intersections entre la courbe représentative de f, notée \mathscr{C}_f , et l'axe des abscisses.

Propriété

Racines et forme factorisée

Si un polynôme est écrit sous **forme factorieée** $a(x-x_1)(x-x_2)$ avec $a \ne 0$, alors ses **racines** sont x_1 et x_2 .

De plus un polynôme de degré 2 est écrit sous forme développée $ax^2 + bx + c$ et possède deux racines x_1 et x_2 , alors :

- 1. La somme des racines est égale à $-\frac{b}{a}$
- **2.** Le produit des racines est égale à $\frac{c}{a}$

3.2 Aspect graphique

Exemple(s)

Aspect graphique des racines

Prenons la fonction f définie sur \mathbb{R} par $f(x) = -x^2 + x + 2$.

Sur cet exemple, on remarque que \mathscr{C}_f coupe l'axe des abscisses en deux points.

De plus, on observe graphiquement les solutions x_1 et x_2 de l'équation f(x) = 0, à savoir :

$$x_1 = -1$$
 et $x_2 = 2$

Les racines du polynôme $-x^2 + x + 2$ semblent être -1 et 2.

3.3 Signe d'un trinôme donne sous forme factorisee

Méthode

Étude de signe d'un trinôme donné sous forme factorisée

Pour étudier le signe d'un polynôme de degré 2 donné sous forme factorisée, il faut dresser un tableau de signes dans lequel :

1. Chaque ligne est liée à un facteur.

2. Les signes de la ligne f(x) sont déterminés par la règle des signes.

Soit f la fonction définie sur \mathbb{R} par $f: x \mapsto -5(x-5)(x+3)$. Le tableau de signe de f est :

x	$-\infty$		-3		5		+∞
-5		_		_		_	
x - 5		_		_	0	+	
<i>x</i> + 3		_	0	+		+	
f(x)		_	0	+	0	_	

Propriété

Signe d'un trinôme

Soit f la fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x) = a(x-x_1)(x-x_2)$ avec $a \neq 0$. Avec la convention $x_1 < x_2$, le tableau de signe de la fonction f est donné par :

x	$-\infty$		x_1	x_2		+∞
f(x)	si	gne de <i>a</i>	0	signe de $-a$ 0	signe de <i>a</i>	