Оценка доверительных интервалов бутстрап методом с использованием существенной выборки

Афанасьев Михаил Альбертович, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., профессор Ермаков М.С. Рецензент: к.ф.-м.н., доцент Каштанов Ю.Н.

Введение

Существует задача вычисления вероятностей редких событий, которые имеют место во многих приложениях и задачах математической статистики, но при их вычислении прямым моделированием возникает две проблемы:

- Большой объем вычислений.
- Малейшие ошибки в качестве случайных чисел могут вызвать существенные ошибки оценок.

Наиболее распостраненный метод вычисления – *метод* существенной выборки.

Цель работы

Мы подробно остановимся на задаче оценивания малых вероятностей с помощью бутстрап метода и использования существенной выборки.

Цель данной работы -исследовать насколько точна нормальная апроксимация выборочного среднего, стьюдентизированного среднего и их бутстрап аналогов в зонах малых вероятностей, когда объем выборки мал и для распределений имеющих тяжелые хвосты.

Постановка задачи

Рассмотрим одну из простейших задач - оценки малых вероятностей выборочного среднего Пусть $\{X_i\}$ выборка, где X_i — н.о.р.с.в. из распределения с тяжелыми хвостами, например, Стьюдента (t(5), t(10), t(20)). Наша задача состоит в оценивании следующей вероятности:

$$U = P(\overline{X} - \mathsf{E}X_i) > b_n) \tag{1}$$

В нашем случае мы рассмотрим и сравним несколько вариантов:

Постановка задачи

Случай выборочного среднего $P(\sqrt{n}\frac{X-\mathsf{E}X_i}{\sigma}>b_n).$ Случай стьюдентизированного среднего $P(\sqrt{n}\frac{\overline{X}-\mathsf{E}X_i}{s}>b_n).$

Аналогично для бутстрап метода:

C известной дисперсией $P(\sqrt{n} \frac{\overline{X^*} - \overline{X}}{S^*} > b_n).$ C неизвестной дисперсией $P(\sqrt{n} \frac{\sigma}{S^*} - \overline{X}) > b_n).$

Таким образом будут изучены вышеуказанные задачи и сравним насколько эти малые вероятности совпадают и насколько хороша нормальная аппроксимация, когда распределения имеют тяжелые хвосты. И сопоставим полученные численные результаты с аналитическими результатами в этой области.

Метод существенной выборки

Задача — оценить вероятность

$$V_n = P\left(T(\hat{F}_n) - T(F) > b_n\right),\tag{2}$$

где F – теоретическое распределение, \hat{F}_n – эмпирическая фунция распределения, построенная по наблюдениям $X_i \sim F$, $1 \leqslant i \leqslant n$, T – некоторый функционал, b_n – заданное число. В дальнейшем, $T(\hat{F}_n) = \overline{X}$, $T(F) = \mathsf{E} X_i$.

Метод существенной выборки

Введем меру Q: $Q \ll F$. Обозначим $q = \frac{dQ}{dF}$. Промоделируем k независимых выборок с распределением Q

$$Y_1^{(i)}, Y_2^{(i)}, \dots, Y_n^{(i)}, \quad 1 \le i \le k.$$

В качестве оценки вероятности (2) берем

$$\hat{U} = \frac{1}{k} \sum_{i=1}^{k} \mathbb{1}_{T(\hat{Q}_n^{(i)}) - T(F) > b_n} \prod_{j=1}^{n} q^{-1}(Y_j^{(i)}), \tag{3}$$

где $\hat{Q}_{n}^{(i)}$ эмпирическое распределение $Y_{1}^{(i)},Y_{2}^{(i)},\dots,Y_{n}^{(i)}.$

Методы решения при больших уклонениях: Крамер

Теорема (Условие сходимости по Крамеру)

Если интеграл $f(\zeta)=\int_{-\infty}^{+\infty}e^{\zeta x}F\{dx\}$ сходится при $|\zeta|<\zeta_0$ и x меняется вместе с n так, что $x=o(n^{1/6})$, то верно соотношение

$$\frac{1 - F_n(x)}{1 - N(x)} \to 1.$$

Крамер использовал некоторые предположения о существовании моментов, в частности, предполагал, что σ (иногда и μ_3,μ_4) исходного теоретического распределения известна и конечна.

Методы решения при больших уклонениях: Шао

Шао показал, что для стьюдентизированного среднего имеет место нормальная аппроксимация.

Теорема (Условие сходимости по Шао)

При $\mathsf{E}(X_i) = 0$ и конечности третьего момента $\mathsf{E}|X_i|^3 \leqslant \infty$ имеет место следующее соотношение для $x = o(n^{1/6})$:

$$\frac{P(S_n/V_n \ge x)}{1 - N(x)} \to 1,$$

где
$$S_n = \sum_{i=1}^n x_i$$
, $V_n = \sum_{i=1}^n x_i^2$.

Методы решения при больших уклонениях: Вуд

Теперь перейдем к бутстрапу

Теорема (Условия сходимости по Вуду)

Пусть
$$\mathsf{E}(X_i)=0$$
, $\mu_3=\mathsf{E}(X_i^3)$ и $\mu_4=\mathsf{E}(X_i^4)<\infty$. Если $x_n\to\infty$ и $x_n=o(n^{1/4})$, то

$$G_n(x) = \hat{G}_n(x)(1 + o_p(1)).$$

Где

$$G_n(x) = P(\frac{S_n}{\sqrt{n}} > x), \quad S_n = \sum_{i=1}^n (X_i - \mu),$$

$$\hat{G}_n(x) = P(\frac{S_n^*}{\sqrt{n}} > x), \quad S_n^* = \sum_{i=1}^n (X_i^* - \overline{X}),$$

В частности, эту теорему можно спроецировать на разные распределения с тяжелыми хвостами.

Методы решения проблем при больших уклонениях

Таблица 1: Аппроксимация сложных распредений известными

	Зона умеренных	Условие на исходное распре-
	уклонений	деление и моменты
Крамер	$x_n = o(n^{1/6})$	$\int_{-\infty}^{+\infty} e^{\zeta x} F\{dx\}$ сх-ся, конеч-
		ность некоторых моментов
		$\mu_2 < \infty$
Шао	$x_n = o(n^{1/6})$	$E X_i = 0$ и $E X_i ^3 \leqslant \infty$
Вуд	$x_n = o(n^{1/4})$	конечность некоторых мо-
		ментов μ_4 $<$ ∞ , иногда
		ментов $\mu_4 < \infty$, иногда $\mu_{2+\delta} < \infty$

Метод решения

Исходная мера – плотность распределения величин X_i

$$p_{x;\mu} = f(x;\mu)$$

Замена меры, смещаем на $b_n=\Delta$: $\mu_\Delta=\mu+\Delta$

$$p_{x;\mu_{\Delta}} = f(x; \mu + \Delta),$$

$$q(x) = \prod_{i=1}^{n} \frac{p_{i,\mu_{\Delta}}(x)}{p_{i,\mu}(x)}.$$

Моделируем k независимых выборок, $Y_j^{(i)}$ с плотностью $p_{j,\mu_{\Delta}}(x)$

$$Y_1^{(i)}, Y_2^{(i)}, \dots, Y_n^{(i)}, \quad 1 \leqslant i \leqslant k.$$

 ${\sf O}$ ценка $\hat{{
m U}}$

$$\hat{\mathbf{U}} = \frac{1}{k} \sum_{i=1}^{k} \mathbb{1}_{\{\overline{X}_{\Delta}^{(i)} > \mu + \Delta\}} \prod_{j=1}^{n} \frac{p(Y_{j}^{(i)}; \mu)}{p(Y_{j}^{(i)}; \mu + \Delta)} \tag{4}$$

Модификация бустрап метода: Джонс

Вернемся к бутстрапу. Обозначим функцию правдоподобия:

$$I_G(\mathbf{Y}) = \prod_{i=1}^n \prod_{j=1}^n g_{ij}^*,$$

где $g_{ij}^*=g_j$, если $Y_i=X_j$, и $g_{ij}^*=1$ иначе. Из выборок $\mathbf{Y}^{(1)},\mathbf{Y}^{(2)},\ldots,\mathbf{Y}^{(R)}$ получаем оценки $T_{(1)}\leqslant T_{(2)}\leqslant\cdots\leqslant T_{(R)}.$

$$S_r = \frac{1}{R} \sum_{i=1}^r \frac{I_F(\mathbf{Y}^{(i)})}{I_G(\mathbf{Y}^{(i)})}.$$
 (5)

для $r = 1, 2, \dots, R$.

 $\exists ! r^* : S_{r^*} \leqslant p < S_{r^*+1}.$ Оценкой p-квантили для статистики T(F) будет $T_{r^*}.$ Замена меры:

$$G_n: g_i = \frac{1}{n} + \frac{b_n}{sn} (X_i - \overline{X}).$$

Функцию влияния h возьмем h(x) = x.

Алгоритмы моделирования:Крамер, Шао

 $\{\xi_{iti}\}_{t=1}^{\nu} \sim N(0,1)$, тогда сдвинутая на Δ выборка с распределением Стьюдента:

$$\eta_{ij} = \frac{\frac{1}{\sqrt{\nu}} \sum_{t=1}^{\nu} \xi_{itj}}{s_{ij}} + \Delta,$$

Тогда оценка вероятности попадания за квантиль примет вид

$$\hat{P}(\overline{X} > x_{\alpha}) = \hat{\mathbf{U}} = \frac{1}{k} \sum_{j=1}^{k} \mathbb{1}_{\{\overline{X}_{\Delta}^{(j)} > x_{\alpha}\}} \prod_{i=1}^{n} \frac{f_{\nu}(\eta_{ij})}{f_{\nu}(\eta_{ij} - \Delta)}, \quad (6)$$

где $f_{
u}$ - плотность, а $b_{
u}^2 = \frac{
u-1}{
u-3}$ - дисперсия распределения Стьюдента с $\nu - 1$ степенями свободы.

$$\overline{X}_{\Delta}^{(j)} = \frac{1}{b_{\nu}\sqrt{n}} \sum_{i=1}^{k} \eta_{ij}. \quad \Delta = x_{\alpha} \frac{b_{\nu}}{\sqrt{n}}.$$

Осталось смоделировать k выборок и подставить в (6)

Алгоритмы моделирования:Бутстрап

- **1** Вычислим набор весов $w_i = \frac{1}{n} + \frac{b_n}{ns} \left(h(X_i) \overline{h} \right)$.
- ② Моделируем случайное $x=X_i$ 2a. Считаем вероятность попадания случайной велчисины слева от \overline{h} p_1 и p_2 справа. $p_1+p_2=1$. 2b. Моделируем β р.р на [0;1] если $\beta< p_1$ тогда с вероятностью $\frac{1}{k}$ (k- количество случайных величин слева от \overline{h}) берем любую из них в качестве x, случай когда $\beta>p_1$ делается аналогично.
- ullet $h(x) > \overline{h}$. И $h_m = (h(x)_{max} \overline{h}), D_n = \frac{1}{n} + \frac{b_n}{ns}(h_m)$. Моделируем lpha р.р. на $(0; D_n)$. Если $lpha \leqslant \frac{b_n}{s} \left(h(x) \overline{h}\right)$, то добавляем x к выборке, иначе возвращаемся к 2b.
- $h(x)\leqslant \overline{h}$. Моделируем α р.р. на $(0;\frac{1}{n})$. Если $\alpha\leqslant \frac{1}{n}+\frac{b_n}{ns}\left(h(x)-\overline{h}\right)$, то добавляем x к выборке, иначе возвращаемся к 2b.

Алгоритмы моделирования:Бутстрап

Пусть ${\bf X}$ выборка с теоретической функцией распределения F,с математическим ожиданием $\mu=0$, дисперсией σ^2 . ${\bf X}_i^*$ - бутстрап выборка, полученная из исходной. Нужно вычислить следующую величину:

$$\hat{\psi} = P(\sqrt{n} \frac{\overline{X^*} - \overline{X}}{\sigma} > x_{\alpha}).$$

Если всего по ходу бутстрапа будет промоделировано R выборок, из которых r будет удовлетворять неравенству $\sqrt{n} \frac{\overline{X_i^*} - \overline{X}}{\sigma} > x_{\alpha}$, то, собственно, $\frac{r}{R}$ - и есть наша вероятность.

Стьюдентизированный метод будет отличаться только тем, что по ходу бутстрапа будем вычислять не только $\overline{X^*}$ - выборочное среднее, но и $\hat{\sigma}^*$ - стандартное отклонение. И соответственно будем искать:

 $\hat{\xi} = P(\sqrt{n} \frac{X^* - X}{\hat{\sigma}^*} > x_{\alpha}).$

Численные результаты

Изобразим полученные значения квантилей на рисунках 1 - 2.

Рис. 1: Разброс вероятностей на хвостах.

Численные результаты

Рис. 2: Разброс вероятностей на хвостах.

Численные результаты

Модернизированный бутстрап в сравнении с обычным (Рис. 3). Исходная выборка из распределения t(10) размера n=25.

Рис. 3: Разброс квантилей.

Численные результаты: зависимость от п

Изобразим разброс значений квантилей, полученных по алгоритму на рисунке 4.

Рис. 4: Разброс аппроксимаций квантилей при различных исходных распределениях.

Численные результаты: зависимость от распределения

Изобразим полученные оценки на рисунках 5 - 6.

Рис. 5: Результат для моделирования выборочного среднего с известной диспресией.

Численные результаты: зависимость от распределения

Рис. 6: Результат для стьюдентизированного среднего с выборочной дисперсией.

Численные результаты для стьюдентизированного среднего с помощью бутстрап метода

Изобразим полученные оценки вероятностей на рисунке 7 (n=50).

Рис. 7: Метод Джонса для различных малых вероятностей.

Заключение

- Чем хвосты распределения тяжелее, тем более неточными получаются результаты при стандартных методах.
- Моделирование показало, что стьюдентизированная оценка действительно имеет лучшую нормальную аппроксимацию, чем среднее нормированное на стандартное отклонение.
- Вуд показал, что в случае бутстрапа нормальная аппроксимация выборочного среднего имеет место в более широкой зоне вероятностей умеренных уклонений. Это подтверждают результаты моделирования.
- Джонс модернизировали бутстрап так, что он стал работать в несколько раз быстрее и точнее чем банальные алгоритмы. Мы показали, что этот метод прекрасно работает для вычисления малых вероятностей.
- ullet Оказывается, что можно точно оценивать квантили очень малых вероятностей (<0.025) с помощью последнего метода.