HEP computer tools

from SARAH and beyond

Diego Restrepo

Sep 20, 2019 - IPP-UFRN Natal: [PDF: http://bit.ly/SARAHIIP]

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Focus on

arXiv:1811.11927 [PRD]

In collaboration with

N. Bernal (UAN), C. Yaguna (UPTC), Ó. Zapata, (UdeA)

Preliminars

※ Computer tools in particle physics

Information

This is the website for the course 'Computer tools in particle physics' by Avelino Vicente

- CINVESTAV, México City (México) 2015
- IFIC, Valencia (Spain) 2016
- Universidad de Antioquia, Medellín (Colombia) 2016
- IFIC, Valencia (Spain) 2017

References

The course focuses on the material contained in the following notes:

Computer tools in particle physics, A. Vicente, arXiv:1507.06349 [PDF]

For two-loops RGEs see also:

"Exploring new models in all detail with SARAH", Florian Staub, arXiv:1503.04200 [PDF]

SARAH:

"SARAH 4: A tool for (not only SUSY) model builders", Florian Staub, arXiv:1309.7223 [PDF]

About

This is the website for the course 'Computer tools in particle physics'.

Links V1.0 August 2009: Susy Only V4.0 September 2013: non-Susy SARAH V4.14.2 (Transfered to W.Porod)

- SPheno
- MicrOMEGAs
- MadGraph
- MadAnalysis
- FlavorKit

Contact

Avelino Vicente IFIC (CSIC/U. Valencia) Office B-6-0

For questions and comments, you can send me an e-mail.

Copyright 2006 Truly Simple. Design by Igor Penjivrag Template downloaded from free website templates

※ Computer tools in particle physics

Information

This is the website for the course 'Computer tools in particle physics' by Avelino Vicente

- CINVESTAV, México City (México) 2015
- IFIC, Valencia (Spain) 2016
- Universidad de Antioquia, Medellín (Colombia) 2016
- IFIC, Valencia (Spain) 2017

References

The course focuses on the material contained in the following notes:

Computer tools in particle physics, A. Vicente, arXiv:1507.06349 [PDF]

For two-loops RGEs see also:

"Exploring new models in all detail with SARAH", Florian Staub, arXiv:1503.04200 [PDF]

SARAH:

"SARAH 4: A tool for (not only SUSY) model builders", Florian Staub, arXiv:1309.7223 [PDF]

About

This is the website for the course 'Computer tools in particle physics'.

Links

- SARAH
- SPheno
- MicrOMEGAs
- MadGraph
- MadAnalysis
- FlavorKit

Contact

Avelino Vicente IFIC (CSIC/U. Valencia) Office B-6-0

For questions and comments, you can send me an e-mail.

Computer tools in particle physics

Information

This is the website for the course <u>Computer tools in particle physics</u> by Avelino Vicente, to take place at <u>Instituto de Física Corpuscular</u> (CSIC/Universidad de Valencia).

Dates: Monday 22/05/2017 - Friday 26/05/2017

Place: IFIC - Sala de Audiovisuales (Nave experimental)

Time: 15:00

Duration: 1.5 h for the first session and 1 h for the rest

Material and required programs

This will be a hands-on course, where all participants are encouraged to run all codes in their own laptops. The only required programas are <u>Mathematica</u>, a <u>LaTeX compiler</u> and <u>Fortran 90 and C++ compilers</u>. If you wish to fully participate please download the following files:

- For lecture 1: run_sarah_Scotogenic.nb and Scotogenic.tar.gz
- For lecture 2: micromegas 4.2.5.tgz
- For lecture 4: run_sarah_DarkBS.nb, DarkBS.tar.gz and plotDarkBS.txt

You should also download the latest versions of the codes we are going to use (exception: for lecture 2 we will use an old version of MicrOMEGAs, see above). You can find them in their official websites (links on_your right). Fipalty the slides of the course are available here: introduction, lecture 1, lecture 2, lecture 3, lecture 4 and lecture 5)

References

The course will mainly focus on the material contained in the following notes:

Computer tools in particle physics, A. Vicente, arXiv:1507.06349

About

This is the website for the course Computer tools in particle physics. IFIC (CSIC/U. Valencia), May 22nd - 26th, 2017.

Input/Output

Code

SARAH SPheno MicrOMEGAS

► MadGraph

- MadAnalysis
- FlavorKit -

Contact

Avelino Vicente IFIC (CSIC/U. Valencia) Office B-6-0

For questions and comments, you can send me an e-mail.

Observables already in FlavorKit

Lepton flavor	Quark flavor
$\ell_{lpha} ightarrow \ell_{eta} \gamma$	$B^0_{s,d} \to \ell^+\ell^-$
$\ell_lpha o 3\ell_eta$	$ar{B} o X_s \gamma$
$\mu-e$ conversion in nuclei	$\bar{B} \to X_s \ell^+ \ell^-$
$ au o P \ell$	$ar{B} o X_{d,s} u ar{ u}$
$h o \ell_lpha\ell_eta$	$B \to K \ell^+ \ell^-$
$Z o \ell_lpha \ell_eta$	$K o \pi u ar{ u}$
	$\Delta M_{B_{s,d}}$
	ΔM_K and ε_K
	$P o \ell \nu$

Ready to be computed in your favourite model!

Observables already in FlavorKit

	Lepton flavor	Quark flavor
	$\ell_{\alpha} \to \ell_{\beta} \gamma$	$B^0_{\underline{s},d} \to \ell^+\ell^-$
	$\ell_{lpha} ightarrow 3 \ell_{eta}$	$ar{B} o X_s \gamma$
$\mu - \epsilon$	conversion in nuclei	$\bar{B} \to X_s \ell^+ \ell^-$
	$ au o P \ell$	$ar{B} o X_{d,s} u ar{ u}$
	$h o \ell_{\alpha}\ell_{\beta}$	$B \to K \ell^+ \ell^-$
	$Z o \ell_{lpha}\ell_{eta}$	$K o \pi u ar{ u}$
Also in SARAH	Lough	$\Delta M_{B_{s,d}}$
S,T,U One-loop corrections to All masses $\Delta M_K ext{ and } arepsilon_K$		
Two-loop corrections to Higgs mass $P o \ell u$		
Gluon fusion production of scalars with proper output for MadGraph		
Ready to be computed in your favourite model!		

Computer tools in particle physics

Information

This is the website for the course <u>Computer tools in particle physics</u> by Avelino Vicente, to take place at <u>Instituto de Física Corpuscular</u> (CSIC/Universidad de Valencia).

Dates: Monday 22/05/2017 - Friday 26/05/2017

Place: IFIC - Sala de Audiovisuales (Nave experimental)

Time: 15:00

Duration: 1.5 h for the first session and 1 h for the rest

Material and required programs

This will be a hands-on course, where all participants are encouraged to run all codes in their own laptops. The only required programas are <u>Mathematica</u>, a <u>LaTeX compiler</u> and <u>Fortran 90 and C++ compilers</u>. If you wish to fully participate blease download the following files:

- For lecture 1: run_sarah_Scotogenic.nb and Scotogenic.tar.gz
- For lecture 2: micromegas 4.2.5.tgz
- For lecture 4: run_sarah_DarkBS.nb, DarkBS.tar.gz and plotDarkBS.txt

You should also download the latest versions of the codes we are going to use (exception: for lecture 2 we will use an old version of MicrOMEGAs, see above). You can find them in their official websites (links on your right). Finally, the slides of the course are available here: (introduction) lecture 1. lecture 2. lecture 3. lecture 4 and lecture 5.

References

The course will mainly focus on the material contained in the following notes:

Computer tools in particle physics, A. Vicente, arXiv:1507.06349

About

This is the website for the course Computer tools in particle physics. IFIC (CSIC/U. Valencia), May 22nd - 26th, 2017.

Links

- SARAH
- SPheno
- MicrOMEGAs
- MadGraph
- MadAnalysis
- FlavorKit

Contact

Avelino Vicente IFIC (CSIC/U. Valencia) Office B-6-0

For questions and comments, you can send me an e-mail.

Models already in SARAH

Supersymmetric Models

- MSSM [in several versions]
- NMSSM [in several versions]
- Near-to-minimal SSM (near-MSSM)
- General singlet extended SSM (SMSSM)
- DiracNMSSM
- Triplet extended MSSM/NMSSM
- Several models with R-parity violation
- Several U(1)-extended models
- Secluded MSSM
- · Several B-L extended models
- Inverse and linear seesaws
- MSSM/NMSSM with Dirac Gauginos
- Minimal R-Symmetric SSM
- Minimal Dirac Gaugino SSM
- Seesaws I-II-III [SU(5) versions]
- Left-right symmetric model
- Quiver model
- Models with vector-like superfields

Non-Supersymmetric Models

- Standard Model
- Two Higgs doublet models (including inert)
- Singlet extensions
- Triplet extensions
- U(1) extensions
- SM extended by a scalar color octet
- Gauged Two Higgs doublet model
- Singlet extended SM
- Singlet Scalar DM
- Singlet-Doublet DM
- · Models with vector-like fermions
- Model with a scalar SU(2) 7-plet
- Leptoquark models
- Left-right models
- 331 models (with and without exotics)
- Georgi-Machacek model

More info: http://sarah.hepforge.org/

Models already in SARAH

- Always check any version of SARAH and SPheno with this one!
- Nakah and Spheno with this one:
- General singlet extende SSM (SMSSM)
- DiracNN SSM
- Triplet eleended MS M/NMSSM
- Several models with R-parity violation
- Several U(1)-extended models
- Secluded MSSM
- · Several B-L extended models
- Inverse and linear seesaws
- MSSM/NMSSM with Dirac Gauginos
- Minimal R-Symmetric SSM
- Minimal Dirac Gaugino SSM
- Seesaws I-II-III [SU(5) versions]
- Left-right symmetric model
- Quiver model
- Models with vector-like superfields

Non-Supersymmetric Models

- Standard Model
- Two Higgs doublet models (including inert)
- Singlet extensions
- Triplet extensions
- U(1) extensions
- · SM extended by a scalar color octet
- Gauged Two Higgs doublet model
- Singlet extended SM
- Singlet Scalar DM
- Singlet-Doublet DM
- · Models with vector-like fermions
- Model with a scalar SU(2) 7-plet
- Leptoquark models
- Left-right models
- 331 models (with and without exotics)
- Georgi-Machacek model

More info: http://sarah.hepforge.org/

Models already in SARAH

Supersymmetric Models

- MSSM [in several versions]
- NMSSM [in several versions]
- Near-to-minimal SSM (near-MSSM)
- General singlet extended SSM (SMSSM)
- DiracNMSSM
- Triplet extended MSSM/NMSSM
- Several models with R-parity violation
- Several U(1)-extended models
- Secluded MSSM
- · Several B-L extended models
- Inverse and linear seesaws
- MSSM/NMSSM with Dirac Gauginos
- Minimal R-Symmetric SSM
- Minimal Dirac Gaugino SSM
- Seesaws I-II-III [SU(5) versions]
- Left-right symmetric model
- Quiver model
- Models with vector-like superfields

Non-Supersymmetric Models

- Standard Model
- Two Higgs doublet models (including inert)
- Singlet extensions
- Triplet extensions
- U(1) extensions
- SM extended by a scalar color octet
- Gauged Two Higgs doublet model
- Singlet extended SM
- Singlet Scalar DM
- Singlet-Doublet DM
- · Models with vector-like fermions
- Model with a scalar SU(2) 7-plet
- Leptoquark models
- Left-right models
- 331 models (with and without exotics)
- Georgi-Machacek model

More info: http://sarah.hepforge.org/

BSM-Submodules

```
git clone --recursive https://github.com/restrepo/BSM-Submodules.git
cd BSM-Submodules/
emacs SARAH/Models/SSDM/SSDM.m
```

```
SU(3)_{c} 	imes SU(2)_{L} 	imes U(1)_{Y} 	imes rac{Z_{2}}{Z_{2}} \mathcal{D}_{\mu} = \partial_{\mu} - ig_{1}YB_{\mu} - ig_{2}TW_{\mu}^{B}
```

 $-ig_3\Lambda G_{\mu}$.

```
Off[General::spell]
Model`Name = "SSDM";
Model`NameLaTeX ="Singlet scalar Dark Matter";
Model Authors = "Diego Restrepo ...";
Model Date = "2015-11-16";
(* 2013-01-24: ...)
(* Global Symmetries *)
Global[[1]] = {Z[2], Z2};
(* Gauge Groups *)
Gauge[[1]]={B, U[1], hypercharge, g1,False,1};
Gauge[[2]]={WB, SU[2], left, g2,True,1};
Gauge[[3]]={G, SU[3], color, g3,False,1};
```

Н

$$\mathcal{L} = (\mathcal{L}_C + \text{h.c}) + \mathcal{L}_R,$$

$$+ \mathcal{L}_{R},$$

$$\mathcal{L}_{C} = - \frac{\mathbf{Y}_{e}}{\mathbf{e}^{c}} \widetilde{\mathbf{H}} \cdot \mathbf{L} - \frac{\mathbf{Y}_{d}}{\mathbf{d}^{c}} \widetilde{\mathbf{H}} \cdot \mathbf{Q} - \frac{\mathbf{Y}_{u}}{\mathbf{u}^{c}} \mathbf{H} \cdot \mathbf{Q},$$

$$- M_S^2 S^2 - \lambda_{SH} S^2 \widetilde{H} \cdot H - \lambda_S S^4.$$

$$Y_0 \to N_E \times N_E. \cdots$$

 $\mathcal{L}_{R} = - \mu^{2} \widetilde{H} \cdot H - \lambda_{1} (\widetilde{H} \cdot H)^{2}$

FermionFields[[1]] = $\{q, 3, \{uL, dL\},$ 1/6. 2. 3.1}: FermionFields[$\lceil 2 \rceil$] = {l. 3. {vL. eL}. -1/2. 2. 1.1}: FermionFields[[3]] = $\{d, 3, conj[dR],$ 1/3, 1, -3,1}; FermionFields[[4]] = {u, 3, conj[uR], -2/3. 1. -3.1}: FermionFields[[5]] = {e, 3, conj[eR], 1. 1. 1.1}: ScalarFields[[1]] = {H, 1, {Hp, H0}, 1/2, 2, 1,1}; $ScalarFields[[2]] = {S, 1, ss.}$ 0, 1, 1,-1}; RealScalars = {S}; DEFINITION NameOfStates={GaugeES. EWSB}: (* ---- Before EWSB ---- *)

(* Matter Fields *)

```
(* Gauge Sector *)
DEFINITION[EWSB][GaugeSector] =
(* ---- VEVs ---- *)
DEFINITION[EWSB][VEVs]=
{{HO,{v,1/Sqrt[2]}, {Ah,\[ImaginaryI]/Sqrt[2]},{hh,1/Sqrt[2]}}};
DEFINITION[EWSB][MatterSector]=
    {{{dL}, {conj[dR]}}, {{DL,Vd}, {DR,Ud}}},
     {{{uL}, {conj[uR]}}, {{UL, Vu}, {UR, Uu}}},
     {{{eL}, {conj[eR]}}, {{EL, Ve}, {ER, Ue}}}};
(* Dirac-Spinors *)
DEFINITION[EWSB][DiracSpinors]={
 Fd ->{ DL, conj[DR]},
 Fe ->{ EL, conj[ER]},
 Fu ->{ UL, conj[UR]},
 Fv ->{ vL. 0}}:
```

$$\begin{pmatrix} B^{\mu} \\ W_{3}^{\mu} \end{pmatrix} = Z^{\gamma Z} \begin{pmatrix} A^{\mu} \\ Z^{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{W} & \sin \theta_{W} \\ -\sin \theta_{W} & \cos \theta_{W} \end{pmatrix} \begin{pmatrix} A^{\mu} \\ Z^{\mu} \end{pmatrix}^{ \begin{cases} \{\text{VB,VWB[3]}, \{\text{VP,VZ}\}, \text{ZZ}\}, \\ \{\text{VWB[1],VWB[2]}\}, \{\text{VWp,conj[VWp]}\}, \text{ZW} \} \end{cases} },$$

$$H^{0} = \frac{iA + (h + v)}{\sqrt{2}} . \qquad \qquad \text{DEFINITION[EWSB][VeVs]} = \{ \{\text{H0, \{v, 1/Sqrt[2]\}, \{Ah, \{\text{ImaginaryI}\}/5\}, \{\text{ImaginaryI}\}/5\}, \{\text{ImaginaryI}\}/5\} \},$$

$$V_{d} \rightarrow N_{F} \times N_{F}, \cdots$$

Chuck Norris fact of the day

Chuck Norris lost his virginity before his dad

From A. Vicente

```
(* Gauge Sector *)
DEFINITION[EWSB][GaugeSector] =
(* ---- VEVs ---- *)
DEFINITION[EWSB][VEVs]=
{{HO,{v,1/Sqrt[2]}, {Ah,\[ImaginaryI]/Sqrt[2]},{hh,1/Sqrt[2]}}};
DEFINITION[EWSB][MatterSector]=
    {{{dL}, {conj[dR]}}, {{DL,Vd}, {DR,Ud}}},
     {{{uL}, {conj[uR]}}, {{UL, Vu}, {UR, Uu}}},
     {{{eL}, {conj[eR]}}, {{EL, Ve}, {ER, Ue}}}};
(* Dirac-Spinors *)
DEFINITION[EWSB][DiracSpinors]={
 Fd ->{ DL, coni[DR]}.
 Fe ->{ EL, conj[ER]},
 Fu ->{ UL, conj[UR]},
 Fv ->{ vL. 0}}:
```

./parameters.m

```
. . .
{g1,
            { Description -> "Hypercharge-Coupling"}},
{g2,
            { Description -> "Left-Coupling"}},
{g3,
            { Description -> "Strong-Coupling"}},
. . .
{v,
             { Description -> "EW-VEV",
               DependenceNum -> Sqrt[4*Mass[VWp]^2/(g2^2)],
               DependenceSPheno -> None }},
{ThetaW,
           { Description -> "Weinberg-Angle",
              DependenceNum -> ArcSin[Sqrt[1 - Mass[VWp]^2/Mass[VZ]^2]]}},
{ZZ, {Description -> "Photon-Z Mixing Matrix"}},
    . . .
```

../parameters.m

```
{
{
| The scription -> "Photon-Z Mixing Matrix",
| Dependence -> {{Cos[ThetaW], -Sin[ThetaW]},
| {Sin[ThetaW], Cos[ThetaW]}},
| Real ->True,
| LaTeX -> "Z^{{\gamma Z}",
| LesHouches -> None,
| OutputName -> ZZ }},
| ...
```

./particles.m

```
ParticleDefinitions[EWSB] = {
 {hh
       , { Description -> "Higgs",
             PDG -> {25},
              PDG.IX -> {101000001},
             Mass -> LesHouches,
             FeynArtsNr -> 1,
             LaTeX -> "h",
             ElectricCharge -> 0,
             LHPC -> {1},
             OutputName -> "h" }},
 {ss , { Description -> "Singlet",
            PDG -> {6666635},
            PDG.IX -> {101000002},
            FeynArtsNr -> 10,
            Mass -> LesHouches,
            LaTeX -> "S",
            ElectricCharge -> 0,
            LHPC -> {"gold"},
            OutputName -> "Ss" }},
        . . .
  . . .
```

./SPheno.m

```
OnlyLowEnergySPheno = True;
MINPAR={{1,Lambda1IN},
        {2,LamSHIN},
        {3,LamSIN},
        {4,MSinput}
 . . .
ListDecayParticles = {Fu,Fe,Fd,hh};
ListDecayParticles3B = {{Fu, "Fu.f90"}, {Fe, "Fe.f90"}, {Fd, "Fd.f90"}};
. . . .
DefaultInputValues = {Lambda1IN -> 0.28, LamSHIN -> 0.01, LamSIN -> 0,
                      MSinput -> 200};
```

Implicit files without editors

```
cat << EOF > kk.txt
Hello world
EOF
```

Listing 1: Creates kk.txt file

```
math << EOF
2+2
EOF</pre>
```

Listing 2: commands expecting input files

```
Mathematica 11.0.0 for Linux x86 (64-bit)
Copyright 1988-2016 Wolfram Research, Inc.

In[1]:=
Out[1]= 4

In[2]:=
```

Check SARAH

```
math << EOF
<<./SARAH/SARAH.m
Start["SSDM"]
MakeSPheno[]
FOF</pre>
```

```
Mathematica 11.0.0 for Linux x86 (64-bit)
In[1]:= SARAH 4.14.1
by Florian Staub, 2018
In[2]:= Preparing arrays
Model files loaded
 Model
          : SSDM
 Author(s): Diego Restrepo (based on SM model by F.Staub)
 Date : 2015-11-16
Loading Susyno functions for the handling of Lie Groups
Based on Susyno v.2.0 by Renato Fonseca (1106.5016)
webpage: web.ist.utl.pt/renato.fonseca/susyno.html
Finished! SPheno code generated in 170.872s
The following steps are now necessary to implement the model in SPheno:
```

Check SPheno

```
cp -r SARAH/Output/SSDM/EWSB/SPheno SPheno/SSDM
cd SPheno
make Model=SSDM # Be sure that Makefile use gfortran!
```

```
# Return to parent directory: BSM-Submodules
cd ../
```

Check micrOMEGAs

cd micromegas

```
make # Recompile everything!
     make # twice
make -C CalcHEP src MICROMEGAS=MICROMEGAS
# CalcHEP has compiled successfuly and can be started.
 The manual can be found on the CalcHEP website:
      http://theory.sinp.msu.ru/~pukhov/calchep.html
 The next step is typically to run
       ./mkWORKdir <new dir>
# where <new dir> is the new directory where you will do
 your calculations. After creating this directory, you
# should cd into it and run calchep or calchep_batch.
 Please see the manual for further details.
make[1]: Leaving directory '****/BSM-Submodules/micromegas/sources'
```

Build micrOMEGAs model

```
./newProject SSDM
cd .. # return to parent directory
```

Check micrOMEGAs II

```
math << EOF
<<../SARAH/SARAH.m
Start["SSDM"]
MakeCHep[]
EOF</pre>
```

```
Mathematica 11.0.0 for Linux x86 (64-bit)
...
Write main file for MicrOmegas
Done. Model files generated in 31.044s
Output is saved in ****/BSM-Submodules/SARAH/Output/SSDM/EWSB/CHep/
```

```
cp SARAH/Output/SSDM/EWSB/CHep/* micromegas/SSDM/work/models/
cd micromegas/SSDM/
cp work/models/*.cpp .
# check your micrOMEGAs version
make main=CalcOmega_with_DDetection_MOv5.cpp
```

```
make -C work
...
g++ -g -fPIC -o CalcOmega_with_DDetection_MOv5 CalcOmega_with_DDetection_MOv5.cpp ... -lpthread
cd ../../ #Return to parent directory
```

Check Madgraph

```
math << EOF
<<../SARAH/SARAH.m
Start["SSDM"]
MakeUFO[]
EOF</pre>
```

```
Mathematica 11.0.0 for Linux x86 (64-bit)
...
Writing effective diphoton and digluon vertices

Done. UFO files generated in 30.716s
Output is saved in ****/BSM-Submodules/SARAH/Output/SSDM/EWSB/UFO/
```

```
cp -r SARAH/Output/SSDM/EWSB/UFO/ madgraph/models/SSDM
madgraph/bin/mg5_aMC << EOF
import model SSDM
check u u~ > mu+ mu-
EOF
```

```
Process Min element Max element Relative diff. Result u u~ > mu+ mu- 4.9949890843e-03 4.9949890843e-03 5.2093911919e-15 Passed Summary: 1/1 passed, 0/1 failed
```

Benchmark point

```
cp SPheno/SSDM/Input_Files/LesHouches.in.SSDM .
emacs LesHouches.in.SSDM
```

```
File Edit Options Buffers Tools Help
Block MODSEL
 1 1
                     1/0: High/low scale input
 2 1
                  # Boundary Condition
6 1
                   # Generation Mixing
Block SMINPUTS
                  # Standard Model inputs
 2 1.166370E-05
                   # G F.Fermi constant
 3 1.187000E-01
                   # alpha s(MZ) SM MSbar
 4 9.118870E+01
                   # Z-boson pole mass
 5 4.180000E+00
                   # m b(mb) SM MSbar
6 1.735000E+02
                   # m top(pole)
 7 1.776690E+00
                   # m tau(pole)
Block MINPAR
                  # Input parameters
                      # Lambda1IN
     2.8000000E-01
    1.000000E-02
                      # LamSHIN
     0.000000E+00
                      # LamSIN
     2.0000000E+02
                      # MSinput
Block SPhenoInput
                    # SPheno specific input
    - 1
                    # error level
                    # SPA conventions
                    # Skip 2-loop Higgs corrections
                    # Method used for two-loop calculation
                    # Gaugeless limit used at two-loop
 10
                    # safe-mode used at two-loop
 11 1
                    # calculate branching ratios
 13 1
                    # 3-Body decays: none (0), fermion (1), scalar (2), both (3)
 14 0
                    # Run couplings to scale of decaying particle
 12 1.000E-04
                    # write only branching ratios larger than this value
 15 1.000E-30
                    # write only decay if width larger than this value
 16 1
                   # One-loop decays
 10 2
                                                     1.nolo 0 2. +roo ono ( +uo loon)
       LesHouches.in.SSDM Top L16
                                        (Fundamental)
menu-bar options menu-set-font
```

```
File Edit Options Buffers Tools Help
Block MODSEL
1 1
                    1/0: High/low scale input
 2 1
                  # Boundary Condition
6 1
                   # Generation Mixing
Block SMINPUTS
                  # Standard Model inputs
2 1.166370E-05
                   # G F.Fermi constant
 3 1.187000E-01
                   # alpha s(MZ) SM MSbar
4 9.118870E+01
                  # Z-boson pole mass
 5 4.180000E+00
                   # m b(mb) SM MSbar
6 1.735000E+02
                   # m top(pole)
7 1.776690E+00
                   # m tau(pole)
Block MINPAR
                  # Input parameters
                      # Lambda1IN
    2.8000000E-01
    1.000000E-02
                      # LamSHIN
    0.0000000E+00
                      # LamSIN
     2.0000000E+02
                      # MSinput
Block SPhenoInput
                   # SPheno specific input
   - 1
                   # error level
                    # SPA conventions
                    # Skip 2-loop Higgs corrections
                   # Method used for two-loop calculation
                    # Gaugeless limit used at two-loop
 10
                   # safe-mode used at two-loop
 11 1
                   # calculate branching ratios
 13 1
                   # 3-Body decays: none (0), fermion (1), scalar (2), both (3)
 14 0
                   # Run couplings to scale of decaying particle
 12 1.000E-04
                   # write only branching ratios larger than this value
 15 1.000E-30
                   # write only decay if width larger than this value
16 1
                   # One-loop decays
 10 2
                                                     1.0010
       LesHouches.in.SSDM Top L16
                                       (Fundamental)
menu-bar options menu-set-font
```

Run SPheno

```
BSM-Submodules $ SPheno/bin/SPhenoSSDM LesHouches.in.SSDM
Calculating branching ratios and decay widths
Calculating one loop decays
Loop masses not calculated: tree-level masses used for kinematics
Loop masses not calculated: no U-factors are applied
Calculating one-loop decays of Fu
Calculating one-loop decays of Fe
Calculating one-loop decays of Fd
Calculating one-loop decays of hh
Calculating low energy constraints
Calculating unitarity constraints
Writing output files
Finished!
BSM-Submodules$ emacs SPheno.spc.SSDM
```

```
File Edit Options Buffers Tools Help
# SUSY Les Houches Accord 2 - SSDM Spectrum + Decays + Flavor Observables
# SPheno module generated by SARAH
# SPheno v4.0.3
  W. Porod, Comput. Phys. Commun. 153 (2003) 275-315, hep-ph/0301101
# W. Porod, F.Staub, Comput.Phys.Commun.183 (2012) 2458-2469, arXiv:1104.1573
# SARAH: 4.14.1
# F. Staub: arXiv:0806.0538 (online manual)
  F. Staub; Comput. Phys. Commun. 181 (2010) 1077-1086; arXiv:0909.2863
# F. Staub: Comput. Phys. Commun. 182 (2011) 808-833: arXiv:1002.0840
# F. Staub: Comput. Phys. Commun. 184 (2013) 1792-1809: arXiv:1207.0906
  F. Staub; Comput. Phys. Commun. 185 (2014) 1773-1790; arXiv:1309.7223
# Including the calculation of flavor observables based on the FlavorKit
   W. Porod, F. Staub, A. Vicente; Eur. Phys. J. C74 (2014) 8, 2992; arXiv:1405.1434
# Two-loop masss corrections to Higgs fields based on
  M. D. Goodsell, K. Nickel, F. Staub; Eur.Phys.J. C75 (2015) no.6, 290; arXiv:1411.0675
  M. D. Goodsell, K. Nickel, F. Staub; Eur.Phys.J. C75 (2015) no.1, 32; arXiv:1503.03098
   M. D. Goodsell, F. Staub; arXiv:1511.01904
# in case of problems send email to florian.staub@kit.edu and goodsell@lpthe.jussieu.fr
# Created: 19.09.2019. 22:47
Block SPINFO
                    # Program information
     1 SPhenoSARAH
                         # spectrum calculator
        v4.0.3
                    # version number of SPheno
                    # version number of SARAH
     9 4.14.1
Block MODSEL # Input parameters
    1 1 # GUT scale input
    2 1 # Boundary conditions
    6 1 # switching on flavour violation
Block MINPAR # Input parameters
    1
        2.80000000E-01 # Lambda1IN
        1.00000000E-02 # LamSHIN
        0.00000000E+00 # LamSIN
        2.00000000E+02 # MSinput
Block gaugeGUT 0= -1.00000000E+00 # (GUT scale)
      0.00000000E+00 # g1(0)
       0.0000000E+00 # g2(0)
       0.0000000E+00 # g3(0)
Block SMINPUTS # SM parameters
      SPheno.spc.SSDM Top L39
                                   (Fundamental)
Beginning of buffer
```



```
File Edit Options Buffers Tools Help
      % ₽ ₽ Q
        52
               0.00000000E+00 # Ignore negative masses
               0.00000000E+00 # Ignore negative masses at MZ
        53
        55
               0.00000000E+00 # Calculate one loop masses
        56
               1.00000000E+00 # Calculate two-loop Higgs masses
        57
               1.00000000E+00 # Calculate low energy
        60
               1.00000000E+00 # Include kinetic mixing
               1.00000000E+00 # Solution of tadpole equation
Block HiggsBoundsInputHiggsCouplingsFermions #
    1.00000000E+00
                                                                              5 # h 1 b b coupling
                      0.0000000E+00
    1.00000000E+00
                      0.00000000E+00
                                                         25
                                                                              3 # h 1 s s coupling
                                                         25
                                                                              6 # h 1 t t coupling
    1.0000000E+00
                      0.0000000E+00
                                                         25
                                                                    4
                                                                              4 # h 1 c c coupling
    1.0000000E+00
                      0.0000000E+00
    1.00000000E+00
                                                         25
                                                                   15
                                                                             15 # h 1 tau tau coupling
                      0.0000000E+00
                                                                   13
                                                                             13 # h 1 mu mu coupling
    1.0000000E+00
                      0.0000000E+00
Block HiggsBoundsInputHiggsCouplingsBosons #
    1.00000000E+00
                                                 24
                                                           24 # h 1 W W coupling
    1.0000000F+00
                                                 23
                                                           23 # h 1 Z Z coupling
    0.00000000E+00
                                       25
                                                 23
                                                           22 # h 1 Z gamma coupling
                         3
                                       25
                                                 22
                                                           22 # h 1 gamma gamma coupling
    1.04284942E+00
                                                 21
                                                           21 # h 1 g g coupling
    1.02186767E+00
                         4
                                       25
                                                 21
                                                                     23 # h 1 a a Z couplina
    0.0000000F+00
                         3
                                       25
                                                 25
                                                           23 # h 1 h 1 Z coupling
    0.0000000E+00
Block EFFHIGGSCOUPLINGS # values of loop-induced couplings
                     22
        25
                                  22
                                        0.33598689E-04 # H-Photon-Photon
        25
                     21
                                        0.65965686E-04 # H-Gluon-Gluon
        25
                     22
                                        0.00000000E+00 # H-Photon-Z (not vet calculated by SPheno)
Block SPhenoLowEnergy # low energy observables
           -0.00000000E+00 # T-parameter (1-loop BSM)
           0.00000000E+00 # S-parameter (1-loop BSM)
           0.00000000E+00 # U-parameter (1-loop BSM)
      20
           1.99137438E-23 # (q-2) e
      21
           2.00436756E-14 # (q-2) mu
      22
           9.10708358E-10 # (g-2) tau
            0.00000000E+00 # EDM(e)
      24
           0.00000000E+00 # EDM(mu)
      25
            0.00000000E+00 # EDM(tau)
          -3.57242562E-04 # delta(rho)
Block FlavorKitOFV # guark flavor violating observables
     200
           3.15000000E-04 # BR(B->X s gamma)
           1.00000000E+00 # BR(B->X s gamma)/BR(B->X s gamma) SM
     201
-:--- SPheno.spc.SSDM 22% L186 (Fundamental)
```



```
File Edit Options Buffers Tools Help
🍄 🛅 📓 💥 🛔 Save 💪 Undo
                              ₩ 🖶 🖺 Q
                            0.00000000E+00
                                              # coeffBB SRRSM
 01050105 3232
                      0
 01050105 3132
                      0
                            0.00000000E+00
                                              # coeffBB SLRSM
 01050105 4141
                 00
                      0
                            0.00000000E+00
                                              # coeffBB VLLSM
 01050105 4242
                 00
                      0
                            0.00000000E+00
                                              # coeffBB VRRSM
 01050105 4142
                 00
                      0
                            0.00000000E+00
                                              # coeffBB VLRSM
                                              # coeffBB TLLSM
 01050105 4343
                      0
                            0.0000000E+00
                            0.00000000E+00
                                              # coeffBB TRRSM
 01050105 4444
                 00
                      0
 03050305 3131
                                              # coeffBsBs SLLSM
                      0
                            0.0000000E+00
                                              # coeffBsBs SRRSM
 03050305 3232
                      0
                            0.0000000E+00
 03050305 3132
                 00
                      0
                            0.0000000E+00
                                              # coeffBsBs SLRSM
                                              # coeffBsBs_VLLSM
 03050305 4141
                      0
                            0.0000000E+00
                      0
                                              # coeffBsBs VRRSM
 03050305 4242
                 00
                            0.0000000E+00
03050305 4142
                 00
                      0
                                              # coeffBsBs VLRSM
                            0.0000000E+00
03050305 4343
                            0.00000000E+00
                                              # coeffBsBs TLLSM
                 00
                     0
 03050305 4444
                00
                      0
                            0.00000000E+00
                                              # coeffBsBs TRRSM
Block TREELEVELUNITARITY #
            1.00000000E+00 # Tree-level unitarity limits fulfilled or not
            1.67207372E-02 # Maximal scattering eigenvalue
Block TREELEVELUNITARITYWTRILINEARS #
            1.00000000E+00 # Tree-level unitarity limits fulfilled or not
            1.61576897E-02 # Maximal scattering eigenvalue
            2.00000000E+03 # best scattering energy
      11
            1.00000000E+03 # min scattering energy
      12
            2.00000000E+03 # max scattering energy
      13
            5.00000000E+00 # steps
DECAY
                    3.82261015E-13
                                    # Fu 2
                                         ID2
#
     BR
                       NDA
                                ID1
#
     BR
                       NDA
                                ID1
                                         ID2
                                                   ID3
     3.05502575E-02
                       3
                                              - 1
                                                              # BR(Fu 2 -> Fu 1 Fd 1^* Fd 1 )
                                              - 1
                                                              # BR(Fu 2 -> Fu 1 Fd 1^* Fd 2 )
     5.45954987E-01
     1.56486313E-03
                                              - 3
                                                              # BR(Fu 2 -> Fu 1 Fd 2^* Fd 1 )
                                              - 3
                                                              # BR(Fu 2 -> Fu 1 Fd 2^* Fd 2 )
     2.79270154E-02
     1.07295183E-02
                                             -11
                                                              # BR(Fu 2 -> Fd 1 Fe 1^* Fv 1 )
                                             -13
                                                              # BR(Fu 2 -> Fd 1 Fe 2^* Fv 2 )
     1.01645236E-02
                                                         14
     1.91744771E-01
                                             -11
                                                         12
                                                              # BR(Fu 2 -> Fd 2 Fe 1^* Fv 1 )
     1.81364064E-01
                                             -13
                                                              # BR(Fu 2 -> Fd 2 Fe 2^* Fv 2 )
DECAY
                    1.55526925E+00
                                     # Fu 3
              6
                                ID1
                                         ID2
#
     BR
                       NDA
     1.67597777E-03
                                                   # BR(Fu 3 -> Fd 2 VWp )
     9.98288583E-01
                                                   # BR(Fu 3 -> Fd 3 VWp )
                                              24
-:--- SPheno.spc.SSDM 80% L558
                                    (Fundamental)
```

```
File Edit Options Buffers Tools Help
😭 🛅 📓 💥 🕌 Save
                                % B 🖺
                       ⇔Undo
     2.15252618E-03
                                              -12
                                                                # BR(Fd 3 -> Fu 1 Fv 1^* Fe 1 )
     2.14490780E-03
                                              -14
                                                                # BR(Fd 3 -> Fu 1 Fv 2^* Fe 2 )
                                                                # BR(Fd 3 -> Fu 1 Fv 3^* Fe 3 )
     5.83957751E-04
                                              - 16
     1.59069889F-01
                                              -12
                                                           11
                                                                # BR(Fd 3 -> Fu 2 Fv 1^* Fe 1 )
     1.58104211E-01
                                              - 14
                                                           13
                                                                # BR(Fd 3 -> Fu 2 Fv 2^* Fe 2 )
                                                                # BR(Fd 3 -> Fu 2 Fv 3^* Fe 3 )
     1.96896118F-02
                                               - 16
DECAY
             25
                     6.42252863E-03
                                      # hh
     BR
                        NDA
                                 ID1
                                          ID2
                                    22
                                                     # BR(hh -> VP VP )
     1.93338706E-03
                        2
                                               22
     5.96211424E-02
                                    21
                                                     # BR(hh -> VG VG )
                                    23
                                                     # BR(hh -> VZ VZ )
     2.82490956E-02
                                               23
                                   -24
                                                     # BR(hh -> VWp^* VWp virt )
     2.33261695E-01
     1.33790716E-04
                                    - 3
                                                     # BR(hh -> Fd 2^* Fd 2
     3.58433068E-01
                                    - 5
                                                     # BR(hh -> Fd 3^* Fd 3
     1.45065926E-04
                                   -13
                                                     # BR(hh -> Fe 2^* Fe 2
                                   - 15
     4.18774507E-02
                                               15
                                                    # BR(hh -> Fe 3^* Fe 3 )
     1.68995783E-02
                                                     # BR(hh -> Fu 2^* Fu 2

ightharpoonup \operatorname{BR}(h \to S S) = 26\%
     2.59445280E-01
                               6666635
                                           6666635
                                                    # BR(hh -> ss ss )
DECAY1L
                       1.11448989E-23
                                        # Fu 2
     BR
                        NDA
                                 ID1
                                          ID2
     9.80578882E-01
                        2
                                                     # BR(Fu 2 -> Fu 1 VG )
     1.94211179E-02
                                                    # BR(Fu 2 -> Fu 1 VP )
DECAY1L
                6
                       1.40218346E+00
                                        # Fu 3
                                          ID2
#
     RR
                        NDA
                                 ID1
     1.67434891E-03
                                                    # BR(Fu 3 -> Fd 2 VWp )
     9.98290247E-01
                                                    # BR(Fu 3 -> Fd 3 VWp )
DECAY1L
                       1.38160366E-20
                3
                                        # Fd 2
     BR
                        NDA
                                 ID1
                                          ID2
     9.93677595E-01
                                               21
                                                     # BR(Fd 2 -> Fd 1 VG )
     6.32240539E-03
                                                    # BR(Fd 2 -> Fd 1 VP )
DECAY1L
                5
                       4.50364203E-14
                                        # Fd 3
     BR
                                 ID1
                                          ID2
                        NDA
     2.05693613E-02
                        2
                                                    # BR(Fd 3 -> Fd 1 VG )
     9.74708472E-01
                                     3
                                                     # BR(Fd 3 -> Fd 2 VG )
     4.62332156E-03
                                                    # BR(Fd 3 -> Fd 2 VP )
DECAY1L
               25
                       8.26580363E-03
                                        # hh
                        NDA
                                 ID1
                                          ID2
     BR
     3.55304437E-04
                                                     # BR(hh -> Fd 2^* Fd 2 )
                                    - 3
                                    - 5
                                                     # BR(hh -> Fd 3^* Fd 3 )
     6.75629528E-01
     1.19436199E-04
                                   -13
                                               13
                                                     # BR(hh -> Fe 2^* Fe 2 )
-:--- SPheno.spc.SSDM
                         93% L632 (Fundamental)
```

Run micrOMEGAs

micromegas/SSDM/CalcOmega_with_DDetection_MOv5 SPheno.spc.SSDM

```
Masses of odd sector Particles:
\sim SS : MSS = 28.4 | I |
PROCESS: ~Ss,~Ss->Alleven,1*x{h,g,A,Z,Wp,Wm,nu1,Nu1,nu2,Nu2,nu3,Nu3,d1,D1,d2,D2,d3,D3,u1,U1,u2,U2,u3,U3,e1,E1,e2,E2,e3,
Xf=1.64e+01 Omega h^2=2.28e+01
# Channels which contribute to 1/(omega) more than 1%.
# Relative contributions in % are displayed
  85% ~Ss ~Ss ->d3 D3
   8% ~Ss ~Ss ->e3 E3
   4% ~Ss ~Ss ->u2 U2
   2% ~Ss ~Ss ->g g
==== Calculation of CDM-nucleons amplitudes =====
        TREE LEVEL
PROCESS: QUARKS,~Ss->QUARKS,~Ss{d1,D1,d2,D2,d3,D3,u1,U1,u2,U2,u3,U3
Delete diagrams with SO !=1, V5 ,A
CDM-nucleon cross sections[pb]:
proton SI 2.407E-09 SD 0.000E+00
neutron SI 2.471E-09 SD 0.000E+00
===== Direct Detection ======
73Ge: Total number of events=1.29E-03 /dav/kg
Number of events in 10 - 50 KeV region=4.19E-04 /day/kg
131Xe: Total number of events=2.66E-03 /day/kg
```

Dirac neutrino masses

One loop topologies $U(1)_{B-L} \oplus Z_2 \oplus Z_2$

One loop topologies $U(1)_{B-L}$ only!

One loop topologies $U(1)_{B-L}$ only! with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]

Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$
$$\sum_{i} f_{i}^{3} = 3$$

Dirac Zee

```
cp -r BSM/SARAH/Models/B-L/ SARAH/Models/
math << FOF
<<./SARAH/SARAH.m
Start["B-L/DZ"]
MakeSPheno[]
FOF
cp -r SARAH/Output/B-L-DZ/EWSB/SPheno SPheno/BLDZ
cd SPheno
make Model=BLD7
cd .. # Return to parent directory
cp -r SARAH/Output/BLDZ/EWSB/SPheno SPheno/BLDZ
cd SPheno
make Model=BLDZ # Be sure that Makefile use gfortran!
cd .. # Return to parent directory
cp BSM/LesHouches.in.BLDZ .
```

SPheno/bin/SPhenoBLDZ LesHouches.in.BLDZ

cat SPheno.spc.BLDZ

```
Block MASS # Mass spectrum
    PDG code
                               particle
                 mass
       25
              1.24861947E+02 # hh_1
       35
              1.71464282E+03
                             # hh 2
   900037
              2.00000000E+03
                              # Hm 2
   900038
              3.00000000E+03
                              # Hm 3
       22
               0.0000000E+00
                              # VP
       23
               9.11887000E+01
                              # VZ
       21
               0.00000000E+00 # VG
       24
              7.96796394E+01
                              # VWm
       31
              2.57196423E+03 # VZp
               5.0000000E-03 # Fd 1
       15
              1.77669000E+00 # Fe_3
       12
              0.00000000E+00 # Fv 1
       14
              1.61994502E-31 # Fv 2
              4.42048291E-14 # Fv 3
       16
  8810012
              4.42048291E-14
                              # Fv_4
  8810014
              2.08300541E-10
                             # Fv 5
   8810016
               2.08300541E-10
                              # Fv 6
```


2nd Chuck Norris fact of the day

Chuck Norris can run collider simulations with MadGraph on an abacus

From A. Vicente