## A Design Study Approach to Classical Control

Randal W. Beard Timothy W. McLain Brigham Young University

Updated: December 28, 2020

## Homework D.e

Adding an integrator to obtain PID control for the mass spring damper, put the characteristic equation in Evan's form and use the Matlab **rlocus** command to plot the root locus verses the integrator gain  $k_I$ . Select a value for  $k_I$  that does not significantly change the other locations of the closed loop poles.

## Solution

The closed loop block diagram including an integrator is shown in Figure 1. The characteristic equation is given by



Figure 1: PID control for the mass spring damper.

$$1 + P(s)C(s) = 1 + \left(\frac{\frac{1}{m}}{s^2 + \frac{b}{m}s + \frac{k}{m}}\right) \left(\frac{k_D s^2 + k_P s + k_I}{s}\right) = 0.$$

Multiplying by the denominator and simplifying gives

$$s^{3} + \left(\frac{b + k_{K}}{m}\right)s^{2} + \left(\frac{k + K_{P}}{m}\right)s + \frac{k_{I}}{m} = 0.$$

In Evan's form we have

$$1 + k_I \left( \frac{\frac{1}{m}}{s^3 + \left(\frac{b+k_D}{m}\right)s^2 + \frac{k+k_P}{m}s} \right) = 0.$$

The appropriate Matlab command is therefore

```
1 >> L = tf([1/m],[1, (b+kd)/m, (k+kp)/m,0]);
2 >> figure(1), clf, rlocus(L);
```