

planetmath.org

Math for the people, by the people.

dual module

Canonical name DualModule

Date of creation 2013-03-22 16:00:26 Last modified on 2013-03-22 16:00:26 Owner Mathprof (13753) Last modified by Mathprof (13753)

Numerical id 10

Author Mathprof (13753)

Entry type Definition
Classification msc 16-00
Related topic Unimodular
Defines linear functional

Let R be a ring and M be a left http://planetmath.org/node/365R-module. The $dual\ module$ of M is the right http://planetmath.org/node/365R-module consisting of all module homomorphisms from M into R.

It is denoted by M^* . The elements of M^* are called *linear functionals*. The action of R on M^* is given by (fr)(m) = (f(m))r for $f \in M^*$, $m \in M$, and $r \in R$.

If R is commutative, then every M is an http://planetmath.org/node/987(R,R)-bimodule with rm = mr for all $r \in R$ and $m \in M$. Hence, it makes sense to ask whether M and M^* are isomorphic. Suppose that $b: M \times M \to R$ is a bilinear form. Then it is easy to check that for a fixed $m \in M$, the function $b(m, -): M \to R$ is a module homomorphism, so is an element of M^* . Then we have a module homomorphism from M to M^* given by $m \mapsto b(m, -)$.