Section 1.8

Linear algebra may seem totally separate from moth we have done before, but idea of linear transformations will remind us of the concept of a function.

Recall a function is essentially a way to take an input and assign it to a single culput.

Most commonly, f: IR-7 IR

But in Calc 3 we also saw

f: R-1R^ 7(E)= (1, 12, 3-e)

f: 12 m -> 12 f(x,y)= x 2 , y 3

f: 12 m-> 12 ^ F(x, y, 2)= < x'g, 24, x2>

From this point of view consider A?

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} \vec{x} \\ \vec{x} \end{bmatrix} = \begin{bmatrix} \vec{y} \end{bmatrix}$$

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} \vec{x} \\ \vec{x} \end{bmatrix} = \begin{bmatrix} \vec{y} \\ \vec{y} \end{bmatrix}$$

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} \vec{x} \\ \vec{x} \end{bmatrix} = \begin{bmatrix} \vec{y} \\ \vec{y} \end{bmatrix}$$

So can view $T(\vec{x}) = A\vec{x}$ as a

function (transformation) T: IR -> IR In particular, can call it a matrix transfermation Like with any transformation, for T(x)=Ax? where A is man metrix, we have: Donain; Set of all inputs. No costoictions on donein, can plug in any vector. So domain + IR Codonain. Not the outputs, but the overall space the outputs "live in". All outputs in IR , so codonein is IR m I mage (of 2): for a partieular 2, inage of x is the cutput essociated with that x Range! The set of all antputs (images) May be all of IRM or smeller subset of IRM Range is all possible outputs A. But from vector viewpoint AZ= x, a, 1 ... x, an, a linear combination of columns of A So range is all linear combinations of columns of A Span of alumns of A) Exl In book Squere matrices are of special interest. It A is nxn met. 1x, Domain + Coolomain are

Can name these matrices based an their effect

"Linear" transformations can be thought of as affecting the space

Ex Z , Ex 3

Def: T: 12 -> 12 m or a linear transformation of it satisfies following conditions for all sur, is ell? and all CEIR:

♥ T(\\(\alpha\) = T(\alpha\) + T(\alpha\)

Alternate def:

if for all w, v & | C, d & | C, d & | C * O T (w + d v) = c T (w) + d T (v)

Note: We already know for matrices that $A(\vec{u} + \vec{v}) = A\vec{v} + A\vec{v}$

So every metrix transformation is a linear transformation

A (cx) = cAx

4	more	interesting question. Is every linear	
tra	ns for n	nation able to be represented by a	
mc	+< 1 ×	transformation? Next section	
		Finite us Infinite Dimension	
	Т	T: 1R^-> 1R"	
		, 11C , 11C	
		then there is always motion A	
		such flat T(k) = 4 x)	
		sach itely like it a	