Gaussian Processes (Presentation of Roberts et al., 2012)

Alan Aw

Department of Statistics

March 11, 2019

I am more familiar with R than Matlab, so...

Feel free to download code to play with Gaussian Processes with your bare hands:

- 1. Go to
 https://github.com/alanaw1/gaussianprocesses/
- 2. Download the ${f R}$ script

Conditioning on Observed Data

SE kernel, zero mean, w/o and with two points observed

Effect of Changing the Mean

SE kernel, quadratic mean, w/o and with two points observed

Hyperparameters matter

Figure 5. (a-c) Functions drawn from a GP with a squared exponential covariance function with output scale h = 1 and length scales $\lambda = 0.1$ (a), 1 (b), 10 (c). (Online version in colour.)

SE kernel with varying hyperparameters. Source: Roberts et al. (2012)

Some kernel recipes

Combinations of different kernels allow flexible modelling. Source: Roberts et al. (2012)

Modelling light curves of transiting exoplanets

Based on Gibson et al. (2012)

Context: Modeling instrumental systematics with application to

archival NICMOS transmission spectroscopy of the hot

Jupiter HD 189733

Data: Transit light data, external state variables (temperature of

light detector, orbital phase, position of host star, etc.),

flux variability of host star

Modelling light curves of transiting exoplanets

Goal: Discover and characterise extra-solar planets through observing light curves, while accounting for instrumental systematics

Method: Fit a multi-input GP

- ▶ Use a complex mean function that encodes physical relationship between transit light curves and time (aka "planetary transit function")
- ► GP with SE covariance kernel used to model instrumental systematics

Effect of different GP mean functions on inference

(Clockwise, from top left) linear, quadratic, step function, planetary transit function. Source: Gibson et al. (2012)

Multi-dimensional weather sensor data

Based on Osborne et al. (2007)

Context: Four sensors on South coast of the UK

Source: Weather Reports from Bramble Bank (www.bramblemet.co.uk)

Data: Environmental variables per sensor: wind speed/direction, air temperature, sea temperature, height, etc. (*two* data streams, one is real-time and other is retrospective)

Multi-dimensional weather sensor data

- **Goal:** Build a system that can adaptively sample and process information cost-effectively (including relying on fewer points to predict missing or future values)
- **Method:** Fit a multi-input and multi-output GP with active data selection
 - ▶ Uses spherical decomposition kernel for $K_L(\ell_m, \ell_n)$ (see Pinheiro & Bates, 1996)
 - ▶ Active data selection: algorithm is simply induced to make a reading whenever the uncertainty grows beyond a pre-specified threshold (p. 5 of paper)

Four independent GPs vs multi-output GP

Black is actual data, blue is predicted from GP. Can you tell which is which? Source: Roberts et al. (2012)

Comparison of GP with other time series methods

Table 1. Predictive performances for 5 day Bramblemet tide height dataset. We note the superior performance of the GP compared with a more standard Kalman filter model. Error metrics shown are root mean square error (r.m.s.e.) and normalized mean square error (n.m.s.e.), which is presented on a logarithmic, decibel scale.

algorithm	r.m.s.e (m)	n.m.s.e. (dB)	
naive	7.5×10^{-1}	— 2.1	
Kalman filter	1.7 ×10 ⁻¹	—15.2	
independent GPs	8.7 ×10 ⁻²	—20.3	
multi-output GP	3.8 ×10 ⁻²	—27.6	

Source: Roberts et al. (2012)

Active data selection

Sampler always chooses Sotonmet readings, because of their complexity owing to existence of "young flood stand" and "double high tide." Source:

Roberts et al. (2012)

Whither, from here?

- 1. Rasmussen & Williams (2005) contains plentiful information for building models from basic GP blocks.
- 2. Applications to Biology (potential project ideas)
 - ▶ Population genetics: inferring demographic histories. See Palacios, Wakeley & Ramachandran (2015) *Genetics*; and Palacios & Minin (2013) *Biometrics*
 - ► Influenza dynamics: work by Palacios, Wang and Hernandez using Twitter data to create multi-input GP to better model and predict seasonal influenza rates (motivated by the CDC "Predict the Influenza Season Challenge," www.cdc.gov/flu/news/predict-flu-challenge.htm)
 - ▶ Gene expression: Profiling transcriptome-wide time series expression. See McDowell et al. (2018) PLoS Comp. Biol.
 - ► Gene-specific branching dynamics: Fit branching Gaussian process to single-cell RNA-seq data to infer branching times. See Boukouvalas, Hensman & Rattray (2018) Genome Biol.

R Packages for GPs

- ▶ mlegp is a popular package
- ▶ INLA (Integrated Nested Laplace Approximation) can fit GPs with Laplace approximation for integration over hyperparameter space
 - Tutorial
 (http://www.maths.bath.ac.uk/ jjf23/brinla/gpreg.html)
- ► GPfit based on a new optimisation algorithm (see MacDonald, Ranjan & Chipman, 2013)

Concluding Remarks

- 1. GPs are flexible models for dynamic, probabilistic (aka, stochastic) processes
- 2. Means and covariances can be specified by user before performing inference
- 3. Including priors on covariance hyperparameters leads to complicated issues with integration, requiring tools like Laplace approximation, MCMC over posterior, and Bayesian quadrature
- 4. Has potential applications to biological questions