1. Методы получения оценок

Методы получения оценок: метод максимального правдоподобия, метод моментов, метод наименьших квадратов.

2. Свойства оценок

Свойства оценок: несмещённость, состоятельность, эффективность в классе.

3. Асимптотические методы

Центральная предельная теорема. Лемма Слуцкого. Дельта-метод. Построение асимптотических доверительных интервалов.

4. Святая троица тестов

Три классических теста: LM, LR, Wald.

Чёрный трек: тесты в матричной форме для вектора параметров?

5. IIIB — MHK

МНК в скалярной и матричной форме без статистических свойств. Строгая мультиколлинеарность. Рассказать, что коэффициенты при стандартизации всех переменных называют частными корреляциями.

Коммент: Здесь первый раз говорим слова "строгая мультиколлинеарность".

Чёрный трэк: нелинейный мнк численно?

Задачи для доски:

МНК и R2 руками на доске

Задачи для колаба:

МНК и R2

Рост R2 с ростом числа регрессоров

Poct RSS с ростом числа наблюдений

6. Предпосылки о математическом ожидании и дисперсии

МНК со статистическими предпосылками на ожидание и дисперсию. Теорема Гаусса-Маркова.

6.1. Ожидание и ковариационная матрица

Пусть r — случайный вектор размерности $n \times 1$, s — случайный вектор размерности $k \times 1$. A и b — неслучайные матрица и вектор соответственно, имеющие подходящие размерности.

Математическим ожиданием случайного вектора r называется вектор

$$\mathbb{E}(r) = \begin{pmatrix} \mathbb{E}(r_1) \\ \mathbb{E}(r_2) \\ \vdots \\ \mathbb{E}(r_n) \end{pmatrix}.$$

Ковариационная матрица вектора r определяется следующим образом:

$$\mathbb{V}\mathrm{ar}(r) = \begin{pmatrix} \mathbb{C}\mathrm{ov}(r_1, r_1) & \mathbb{C}\mathrm{ov}(r_1, r_2) & \dots & \mathbb{C}\mathrm{ov}(r_1, r_n) \\ \mathbb{C}\mathrm{ov}(r_2, r_1) & \mathbb{C}\mathrm{ov}(r_2, r_2) & \dots & \mathbb{C}\mathrm{ov}(r_2, r_n) \\ \dots & \dots & \dots \\ \mathbb{C}\mathrm{ov}(r_n, r_1) & \mathbb{C}\mathrm{ov}(r_n, r_2) & \dots & \mathbb{C}\mathrm{ov}(r_n, r_n) \end{pmatrix}.$$

Ковариационная матрица векторов r и s определяется следующим образом:

$$\mathbb{C}\text{ov}(r,s) = \begin{pmatrix} \mathbb{C}\text{ov}(r_1,s_1) & \mathbb{C}\text{ov}(r_1,s_2) & \dots & \mathbb{C}\text{ov}(r_1,s_k) \\ \mathbb{C}\text{ov}(r_2,s_1) & \mathbb{C}\text{ov}(r_2,s_2) & \dots & \mathbb{C}\text{ov}(r_2,s_k) \\ \dots & \dots & \dots & \dots \\ \mathbb{C}\text{ov}(r_n,s_1) & \mathbb{C}\text{ov}(r_n,s_2) & \dots & \mathbb{C}\text{ov}(r_n,s_k) \end{pmatrix}.$$

Далее рассмотрим свойства для вектора математических ожиданий и ковариационной матрицы:

a)
$$\mathbb{E}(Ar+b) = A \mathbb{E}(r) + b$$

6)
$$\mathbb{C}ov(r,s) = \mathbb{E}(rs^T) - \mathbb{E}(r)\mathbb{E}(s^T)$$

$$\mathbf{B}) \ \mathbb{C}\mathrm{ov}(Ar+b,s) = A \,\mathbb{C}\mathrm{ov}(r,s)$$

r)
$$\mathbb{C}ov(r, As + b) = \mathbb{C}ov(r, s)A^T$$

д)
$$\mathbb{V}ar(r) = \mathbb{C}ov(r,r) = \mathbb{E}(rr^T) - \mathbb{E}(r)\mathbb{E}(r^T)$$

e)
$$Var(Ar + b) = A Var(r)A^T$$

ж)
$$\mathbb{E}(r^T A r) = \operatorname{trace}(A \operatorname{Var}(r)) + \mathbb{E}(r^T) A \operatorname{\mathbb{E}}(r)$$

6.2. Иерархия зависимостей случайных величин

Можно выделить три степени независимости случайных величин. Рассмотрим их на примере пары произвольных величин r и s.

Напомним, что случайные величины r и s называются независимыми, если для любых числовых множеств A и B независимы события $\{r \in A\}$ и $\{s \in B\}$:

$$\mathbb{P}(r \in A, s \in B) = \mathbb{P}(r \in A) \cdot \mathbb{P}(s \in B)$$

Определить линейную независимость величин r и s можно по-разному. Некоторые авторы считают условие $\mathbb{C}\mathrm{ov}(r,s)=0$ определением линейной независимости, в этом случае нижняя эквивалентность на графике тривиальна. Нам кажется более логичным другой подход. Величины r и s линейно независимы, если наилучшее линейное приближение r с помощью s не зависит от s.

Задача 6.1. Покажем, что из равенства условного и безусловного математических ожиданий не следует независимость случайных величин:

		-		
	1/3	1/3	1/3	
r	-1	1	0	
s	0	0	1	

Определение 6.2. Наилучшее линейное приближение величины r с помощью величины s — это линейная функция от s,

BestLin
$$(r \mid s) = \alpha + \beta s$$
,

где константы α и β находятся из решения задачи оптимизации $\mathbb{E}((r-\mathrm{BestLin}(r,s)^2) \to \mathrm{min}_{\alpha,\beta}.$

6.3. Теорема Гаусса — Маркова

Чтобы исследовать свойства полученной точечной оценки $\hat{\beta}$ нам потребуются предпосылки о математическом ожидании и ковариационной матрице вектора u.

Мы предположим, что случайные ошибки в среднем равны нулю, а именно,

$$\mathbb{E}(u \mid X) = 0.$$

Предпосылку о математическом ожидании можно записать и в скалярном виде,

$$\mathbb{E}(u_i\mid X)=0, \quad \text{ при } \forall i\in\{1,\dots,n\}.$$

Теорема 6.3. Если

- а) Модель линейна по параметрам: $y = X\beta + u$;
- б) Матрица X размера $[n \times k]$ имеет полный ранг k.
- в) Условное ожидание ошибок равно нулю, $\mathbb{E}(u \mid X) = 0$;
- г) Условная ковариационная матрица ошибок пропорциональна единичной, $\mathbb{V}\mathrm{ar}(u\mid X)=\sigma^2I;$
- д) Оценка $\hat{\beta}$ получена методом наименьших квадратов, $\hat{\beta} = (X^T X)^{-1} X^T y;$
- е) Альтернативная оценка $\hat{\beta}^{\mathrm{alt}}$ является условно несмещёнными $\mathbb{E}(\hat{\beta}^{\mathrm{alt}}\mid X)=\beta$ и линейной по y;

то

- а) Оценка $\hat{\beta}$ является линейной по y;
- б) Оценка $\hat{\beta}$ является условно несмещённой, $\mathbb{E}(\hat{\beta}\mid X)=\beta$ и несмещённой, $\mathbb{E}(\hat{\beta})=\beta$;

в) Оценка любого коэффициента $\hat{\beta}_j$ является более эффективной, чем альтернативная оценка $\hat{\beta}_i^{\rm alt}$:

$$\operatorname{\mathbb{V}ar}(\hat{\beta}_j \mid X) \leq \operatorname{\mathbb{V}ar}(\hat{\beta}_j^{\operatorname{alt}} \mid X).$$

Вывод теоремы можно усилить, для любой линейной комбинации коэффициентов $w^T\beta$ МНК-оценка $w^T\hat{\beta}$ эффективнее альтернативной оценки $w^T\hat{\beta}^{\rm alt}$:

$$\operatorname{Var}(w^T \hat{\beta}_j \mid X) \leq \operatorname{Var}(w^T \hat{\beta}_j^{\text{alt}} \mid X).$$

6.4. Задачи для доски:

Задача 6.4. Исследовательница Мишель собрала данные по 20 студентам. Переменная y_i — количество решённых задач по эконометрике i-ым студентом, а x_i — количество просмотренных серий любимого сериала за прошедший год. Оказалось, что $\sum y_i = 10, \sum x_i = 0, \sum x_i^2 = 40, \sum y_i^2 = 50, \sum x_i y_i = 60.$

- а) Найдите МНК-оценки коэффициентов парной регрессии.
- б) В рамках предположения $\mathbb{E}(u_i \mid X) = 0$ найдите $\mathbb{E}(y_i \mid X)$, $\mathbb{E}(\hat{\beta}_i \mid X)$, $\mathbb{E}(\hat{u}_i \mid X)$, $\mathbb{E}(\hat{u}_i \mid X)$.
- в) Предположим дополнительно, что $\mathbb{V}\mathrm{ar}(u_i \mid X) = \sigma^2$ и u_i при фиксированных X независимы. Найдите $\mathbb{V}\mathrm{ar}(y_i \mid X)$, $\mathbb{V}\mathrm{ar}(y_i(x_i \bar{x}) \mid X)$, $\mathbb{V}\mathrm{ar}(\sum y_i(x_i \bar{x}) \mid X)$, $\mathbb{V}\mathrm{ar}(\hat{\beta}_2 \mid X)$.

Задача 6.5. Рассмотрим классическую линейную модель $y = X\beta + u$ с предпосылками Гаусса — Маркова: $\mathbb{E}(u \mid X) = 0$ и $\mathbb{V}\mathrm{ar}(u \mid X) = \sigma^2 I$. Для всех случайных векторов $(y, \hat{y}, \hat{\beta}, u, \hat{u}, \bar{y})$ найдите все возможные ожидания и ковариационные матрицы $\mathbb{E}(\cdot)$, $\mathbb{V}\mathrm{ar}(\cdot)$, $\mathbb{C}\mathrm{ov}(\cdot, \cdot)$.

Задача 6.6. Рассмотрим модель $y_i = \beta x_i + u_i$ с двумя наблюдениями, $x_1 = 1$, $x_2 = 2$. Величины u_1 и u_2 независимы и равновероятно равны +1 или -1.

- а) Найдите оценку $\hat{\beta}_{\text{ols}}$ для β с помощью метода наименьших квадратов.
- б) Чему равна дисперсия \mathbb{V} ar $(\hat{\beta}_{ols} \mid x)$ и ожидание $\mathbb{E}(\hat{\beta}_{ols} \mid x)$?
- в) Постройте несмещённую оценку $\hat{\beta}_{\text{best}}$ с наименьшей дисперсией.
- г) Чему равна дисперсия $\mathbb{V}\mathrm{ar}(\hat{\beta}_{\mathrm{best}} \mid x)$?
- д) А как же теорема Гаусса Маркова? Почему в данном примере удаётся построить оценку с дисперсией меньше, чем у оценки методом наименьших квадратов?
- a) $\hat{\beta}_{ols} = (y_1 + 2y_2)/5;$
- б) $\operatorname{Var}(\hat{\beta}_{ols} \mid x) = 1/5;$
- в) Заметим, что по величине $2y_1-y_2$ можно однозначно восстановить величины ошибок u_1 и u_2 . Например, если $2y_1-y_2=3$, то $u_1=1,\,u_2=-1$.

$$\hat{eta}_{ ext{best}} = egin{cases} y_1 + 1, \ ext{если} \ 2y_1 - y_2 < 0, \ y_1 - 1, \ ext{если} \ 2y_1 - y_2 > 0. \end{cases}$$

г) Шок контент, $\mathbb{V}\mathrm{ar}(\hat{\beta}_{\mathrm{best}}\mid x)=0.$

д) Построенная оценка $\hat{\beta}_{\text{best}}$ является нелинейной по y, а теорема Гаусса — Маркова гарантирует только, что метод наименьших квадратов порождает несмещённую оценку с наименьшей дисперсией среди линейных по y оценок.

Задача 6.7. (Hansen 4.14)

Задана модель $y=X\beta+u$, для которой выполняются предпосылки теоремы Гаусса — Маркова. Вас интересует величина $\theta=\beta^2$. Пусть получены МНК-оценки коэффициентов: $\hat{\beta},\,V_{\hat{\beta}}=\mathbb{V}\mathrm{ar}[\hat{\beta}|X]$. Тогда кажется неплохой идеей оценить θ как $\hat{\theta}=\hat{\beta}^2$.

- а) Найдите $\mathbb{E}[\hat{\theta}|X]$. Является ли $\hat{\theta}$ смещённой?
- б) Предложите способ коррекции смещения для получения несмещённой оценки $\hat{\theta}^*$, используя результаты предыдущего пункта.

Задача 6.8. Рассмотрим модель регрессии $y_i=\beta_1+\beta_2x_{i2}+...+\beta_kx_{ik}+u_i$. Пусть все предпосылки теоремы Гаусса — Маркова выполнены. Дополнительно предположим, что $u_i\sim N(0,\sigma^2), i=1,...,n.$. Дополнительно известно, что на самом деле $\beta_2=...=\beta_k=0$.

- а) Найдите $\mathbb{E}(R^2)$.
- б) Найдите $\mathbb{E}(R_{\mathrm{adj}}^2)$.

6.5. Задачи для колаб:

Генерация R2 для вывода распределения

Генерация смещения

Генерация лишних регрессоров

Реальный пример с лишним регрессорами (тип знаки зодиака и ретроградный)

Какая-то длинная задача, которую из темы в тему и в ней находить потом нарушения предпосылок? https://colab.research.google.com/drive/1wFrLyGcVVETx96jS93I4z8asgAQwqIdw?usp=sharing

6.6. Чёрный трэк:

Умножение блочных матриц. Если размеры блоков допускают операцию умножения, то:

$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} \cdot \begin{bmatrix} E & F \\ \hline G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ \hline CE + DG & CF + DH \end{bmatrix}.$$

Формула Фробениуса (блочное обращение).

$$\left[\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right]^{-1} = \left[\begin{array}{c|c} A^{-1} + A^{-1}BH^{-1}CA^{-1} & -A^{-1}BH^{-1} \\ \hline -H^{-1}CA^{-1} & H^{-1} \end{array}\right],$$

где A — невырожденная квадратная матрица размерности $n \times n, D$ — квадратная матрица размерности $k \times k, H = D - CA^{-1}B$.

Задача 6.9. Пусть истинной является модель $y=X_1\beta_1+X_2\beta_2+u$, где X_1,X_2- матрицы признаков размерностей $n\times k_1$ и $n\times k_2$ соответственно. Вместо истинной модели вы оцениваете модель вида $y=X_1\beta_1+v$, где v- вектор случайной ошибки, удовлетворяющий предпосылкам теоремы Гаусса — Маркова.

- а) Будет ли МНК-оценка вектора параметров β_1 несмещённой?
- б) Будет ли несмещённой МНК-оценка дисперсии случайной ошибки?
- в) Рассчитайте $\mathbb{V}\mathrm{ar}(\hat{eta}_1)$. Не противоречит ли полученной результат теореме Гаусса Маркова?

Задача 6.10. Пусть истинной является модель $y=X_1\beta_1+u$, где X_1- матрица признаков размерности $n\times k_1$. Вместо истинной модели вы оцениваете модель вида $y=X_1\beta_1+X_2\beta_2+v$, где X_2- матрица признаков размерности $n\times k_2$, v- вектор случайной ошибки, удовлетворяющий предпосылкам теоремы Гаусса — Маркова.

- а) Будет ли МНК-оценка вектора параметров β_1 несмещённой?
- б) Будет ли несмещённой МНК-оценка дисперсии случайной ошибки?
- в) Рассчитайте $\mathbb{V}\mathrm{ar}(\hat{eta}_1)$. Не противоречит ли полученной результат теореме Гаусса Маркова?

7. Доверительные интервалы для коэффициентов

Построение доверительных интервалов для МНК оценок. Проверка гипотез. Асимптотика без нормальности ошибок. Нормальность ошибок.

8. Бутстрэп

Бутстрэп. Классический бутстрэп до регрессии и бутстрэп в регрессии. Метод наименьших модулей. Чёрный трэк: возможно, разные варианты бутстрэпа в регрессии? ВСА-бутстрэп до регрессии?

9. Выбор функциональной формы

Дамми-переменные и их интерпретация. Функциональные формы: полиномы, логарифмы, интерпретация коэффициентов. Информационные критерии.

Чёрный трэк: Структурные сдвиги. Тест Чоу. Локально-линейная регрессия (LOESS).

10. Гетероскедастичность

Гетероскедастичность. Тестирование гетероскедастичности. Робастные оценки. Доступный обобщённый МНК.

Задачи для доски:

Хансен: во сколько раз может быть недооценена дисперсия из-за гетероскедастичности

Коммент: акцент на робастных ошибках, тестирование и обобщённый МНК — кратко.

11. Мультиколлинеарность и метод главных компонент

Мультиколлинеарность и метод главных компонент.

Чёрный трэк: несколько взглядов на метод главных компонент? LASSO?

12. Эндогенность

Эндогенность. Инструментальные переменные. Ошибка измерения регрессора. Двухшаговый МНК.

13. Эффекты воздействия

Оценка эффектов воздействия. ATE. LATE. Четкий (sharp) и нечеткий (fuzzy) разрывный регрессионный дизайн (RDD).

Чёрный трэк: Метод разность разностей (DiD). Динамический метода разность разностей (Event Study).

14. Логистическая регрессия: точечные оценки

Логистическая регрессия: Бинарный и упорядоченный логит. Точечные оценки, прогнозы. Интерпретация предельных эффектов.

Чёрный трэк: Множественные логиты. Неупорядоченные, условные, смешанные логиты.

15. Логистическая регрессия: доверительные интервал

Логистическая регрессия: доверительные интервалы и проверка гипотез.

Чёрный трэк: разные хоббиты

15.1. Смещение, цензурирование и

Представим себе ситуацию, в которой зависимая количественная не всегда наблюдаема. Для моделирования этой ситуации мы введём скрытую латентная переменная y_i^* , которая линейно зависит от предиктора x_i , как обычно,

$$y_i^* = x_i^T \beta + u_i, \quad y^* = X^T \beta + u$$

Бинарная переменная $z_i \in \{0,1\}$ равна 1 в случае, если мы наблюдаем y_i^* .

Возможно несколько случаев:

	наблюдаемость y^*	наблюдаемость x	наблюдаемостн
Цензурирование			
censored model	зависит от y^*	всегда	
Усечение			
truncated model	зависит от y^*	если наблюдаем y^*	
Выборочное смещение			
sample selection	зависит от w	всегда	всегда
Переключающиеся режимы			
switching regimes	всегда, w переключает тип зависимости	всегда	всегда

Представим себе, что мы открыли дорогой ресторан. К нам заглядывают клиенты. Часть клиентов ужасаются от ценника и убегают, $y_i^* < 0$. Часть клиентов остаются и ужинают у нас, $y_i^* > 0$. Вместо нуля можно выбрать другой порог, но с нулём чуть-чуть удобнее.

15.2. Цензурирование

Рассмотрим самый распространённый вариант цензурирования: вместо отрицательных значений латентной переменной y_i^* мы видим нули.

Эта модель известна как тобит модель типа I, type I Tobit model.

$$\begin{cases} y_i^* = x_i^T\beta + u_i, & y^* = X^T\beta + u\\ (u \mid X) \sim \mathcal{N}(0, \sigma^2 I)\\ y_i = \max\{y_i^*, 0\}\\ (x_i, y_i) \text{ наблюдаемы при любых } i \end{cases}$$

Лог-функция правдоподобия равна

$$\ell(\beta, \sigma) = \sum_{y_i = 0} \ln F(-x_i^T \beta / \sigma) + \sum_{y_i > 0} \ln f((y_i - x_i^T \beta) / \sigma) - \sum_{y_i > 0} \ln \sigma$$

15.3. Усечение

$$\begin{cases} y_i^* = x_i^T\beta + u_i, & y^* = X^T\beta + u\\ (u \mid X) \sim \mathcal{N}(0, \sigma^2 I)\\ y_i = \max\{y_i^*, 0\}\\ (x_i, y_i) \text{ наблюдаемы, если } y_i > 0 \end{cases}$$

Лог-функция правдоподобия равна

$$\ell(\beta, \sigma) = \sum_{y_i > 0} \ln f((y_i - x_i^T \beta) / \sigma) - \sum_{y_i > 0} \ln F(x_i^T \beta / \sigma) - \sum_{y_i > 0} \ln \sigma$$

15.4. Три осмысленных условных ожидания

Ожидание латентной переменной показывает, сколько в среднем планирует потратить гость ресторана на ужин, ещё не видевший цен, полезность от ужина,

$$m^*(x_i) = \mathbb{E}(y_i^* \mid x_i) = x_i^T \beta$$

Предельный эффект для латентной переменной

$$\partial \mathbb{E}(y_i^* \mid x_{ij})/\partial x_{ij} = \beta_j$$

Ожидание цензурированной переменной, $y_i = \max\{y_i^*, 0\}$, сколько в среднем потратит человек, заглянувший в ресторан, с учётом того, что часть уйдёт испугавшись ценника

$$m(x_i) = \mathbb{E}(y_i \mid x_i) = x_i^T \beta F(x_i^T \beta / \sigma) + \sigma f(x_i^T \beta / \sigma)$$

Предельный эффект для цензурированной переменной

$$\partial \mathbb{E}(y_i \mid x_{ij})/\partial x_{ij} =$$

Условное ожидание усечённой переменной, $(y_i \mid y_i^* > 0)$, средний чек в ресторане

$$m^{\#}(x_i) = \mathbb{E}(y_i \mid x_i, y_i^* > 0) = x_i^T \beta + \sigma \lambda(x_i^T \beta / \sigma),$$

где $\lambda(s)$ — обратное отношение Миллса, inverse Mills ratio,

$$\lambda(s) = \mathbb{E}(v \mid v + s > 0) = f(s)/F(s), \quad v \sim \mathcal{N}(0; 1)$$

Предельный эффект для ожидания усечённой переменной

Выборочное смещение Переключающиеся режимы