

Programozási alapismeretek

- > További programozási tételek
- ➤ <u>Másolás</u> függvényszámítás
- Kiválogatás
- > Szétválogatás
- ➤ <u>Metszet</u>
- > <u>Unió</u>
- Programozási tételek visszatekintés

További programozási tételek

Mi az, hogy <u>programozási tétel?</u>
Típusfeladat általános megoldása.

- >Sorozat → érték
- \triangleright Sorozat \rightarrow sorozat
- \triangleright Sorozat \rightarrow sorozatok
- ➤ Sorozatok → sorozat

További programozási tételek

Mi az, hogy <u>programozási tétel?</u>
Típusfeladat általános megoldása.

- >Sorozat → érték
- \triangleright Sorozat \rightarrow sorozat
- >Sorozat → sorozatok
- >Sorozatok → sorozat

7. Másolás –

függvényszámítás

Feladatok:

- Egy számsorozat tagjainak adjuk meg az abszolút értékét!
- > Egy szöveget alakítsunk át csupa kisbetűssé!
- Számoljuk ki két vektor összegét!
- Készítsünk függvénytáblázatot a sin(x) függvényről!
- ➤ Ismerjük N hónap sorszámát, adjuk meg a nevét!

Feladatok:

- szolút értékét!
- Számoljuk ki két vektor összegét!
- Készítsünk függvénytáblázatot a sin(x) függvényről!
- ▶ Ismerjük N hónap sorszámát, adjuk meg a nevét!

Mi bennük a közös?

Feladatok:

- szolút értékét!
- Számoljuk ki két vektor összegét!
- Készítsünk függvénytáblázatot a sin(x) függvényről!
- ≽ Ismerjük N hónap sorszámát, adjuk meg a nevét!

Egy számsorozat tagjainak adjuk meg az ab-7. Másolás – Egy szöveget alakítsunk át csupa kisbetűssé! **ggvényszámítás**

Mi bennük a közös?

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad. Az elemeken operáló függvény ugyanaz.

7. Másolás – függvényszámítás függvényszámítás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

 $X \in \mathbb{H}_1^N$

 $f:H_1 \rightarrow H_2$

 \gt Kimenet: $Y \in \mathbb{H}_2^N$

➤ Előfeltétel: –

 \rightarrow Utófeltétel: $\forall i (1 \le i \le N)$: $Y_i = f(X_i)$

Másként₁: $Y_{1..N} = f(X_{1..N})$

Másként₂: Y=f(X) – kissé "pongyola", de kifejező

7. Másolás – függvényszámítás függvényszámítás

- > Bemenet: N∈N, $X \in H_1^N$ $f:H_1 \rightarrow H_2$
- > Kimenet: $Y \in H_2^N$
- > Előfeltétel: –
- > Utófeltétel: $\forall i(1 \le i \le N)$: $Y_i = f(X_i)$

Algoritmus:

i=1..N

Y[i] := f(X[i])

Változó i:Egész

7. Másolás – függvényszámítás

 $X \in H_1^N$

Specifikáció (egy gyakori speciális eset):

Bemenet: $N \in \mathbb{N}$

 $X \in \mathbb{H}^N$

 $G:H \rightarrow H$

T:H-L

 \triangleright Kimenet: $Y \in H^N$

> Előfeltétel: –

7. Másolás – függvényszámítás

Specifikáció (egy gyakori speciális eset):

 \triangleright Bemenet: $N \in \mathbb{N}$, $X \in H_1^N$ $f:H_1 \rightarrow H_2$

- \triangleright Kimenet: $Y \in H_2^N$
- > Előfeltétel: −

 \triangleright Bemenet: $N \in \mathbb{N}$

 $X \in H^N$

 $G:H \rightarrow H$

 $T:H \rightarrow L$

- \succ Kimenet: $Y \in H^N$
- ➤ Előfeltétel: –

> Utófeltétel:
$$\forall i (1 \le i \le N)$$
: $Y_i = \begin{cases} G(X_i), & \text{ha } T(X_i) \\ X_i, & \text{egyébként} \end{cases}$

7. Másolás – függvényszámítás

f:H—H

Specifikáció (egy gyakori speciális eset):

 \triangleright Bemenet: $N \in \mathbb{N}$

$$X \in \mathbb{H}^N$$

 \triangleright Kimenet: $Y \in H^N$

> Előfeltétel: –

7. Másolás – függvényszámítás

> Bemenet: $N \in \mathbb{N}$,

 $X \in H_1^N$ $f:H_1 \rightarrow H_2$

 \triangleright Kimenet: $Y \in H_2^N$

➤ Előfeltétel: –

➤ Utófeltétel: $\forall i(1 \le i \le N)$: $Y_i = f(X_i)$

Specifikáció (egy gyakori speciális eset):

 \triangleright Bemenet: $N \in \mathbb{N}$

 $X \in \mathbb{H}^N$

 $G:H\rightarrow H$

 $T: \mathbb{H} \to \mathbb{L}$

 \succ Kimenet: $Y \in H^N$

> Előfeltétel: –

➤ Utófeltétel: ∀i(1≤i≤N):

$$(T(X_i) \rightarrow Y_i = G(X_i)$$
 és nem $T(X_i) \rightarrow Y_i = X_i$)

7. Másolás – függvényszámítás

i:Egész

Algoritmus:

Specifikáció (egy gyakori speciális eset):

▶ Bemenet: N∈N

 $X \in H^N$

G:H→H $T:H \rightarrow L$

> Kimenet: Y∈H^N

> Előfeltétel: –

> Utófeltétel: ∀i(1≤i≤N):

$$(T(X_i) \to Y_i = G(X_i) \text{ \'es}$$

$$nem \ T(X_i) \to Y_i = X_i)$$

		Változó
i=1N		i:Egés
T(X[i])		7 I
Y[i]:=G(X[i])	Y[i]:=X[i]	

» Számoljuk ki két vektor összegét!

7. Másolás –

függvényszámítás

 $(P,Q) \in (R \times R)^N$

- > Bemenet: $N \in \mathbb{N}$, $X \in H_1^N$ $f: H_1 \rightarrow H_2$
- \succ Kimenet: $Y \in H_2^N$
- > Előfeltétel: –
- > Utófeltétel: $\forall i(1 \le i \le N)$: $Y_i = f(X_i)$

Specifikáció:

> Bemenet: $N \in \mathbb{N}$

 $P,Q \in \mathbb{R}^N$

 $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, f((p_i, q_i)) := p_i + q_i$

» Számoljuk ki két vektor összegét!

7. Másolás –

függvényszámítás

 $(P,Q) \in (R \times R)^N$

- > Bemenet: $N \in \mathbb{N}$, $X \in H_1^N$ $f: H_1 \rightarrow H_2$
- \succ Kimenet: $Y \in H_2^N$
- > Előfeltétel: –
- > Utófeltétel: $\forall i(1 \le i \le N)$: $Y_i = f(X_i)$

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

$$P,Q \in \mathbb{R}^N$$

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, f((p_i, q_i)) := p_i + q_i$$

- \triangleright Kimenet: $R \in \mathbb{R}^N$
- ➤ Előfeltétel: –
- \triangleright Utófeltétel: $\forall i(1 \le i \le N)$: $R_i = P_i + Q_i$

» Számoljuk ki két vektor összegét!

7. Másolás –

függvényszámítás

 $(P,Q) \in (R \times R)^N$

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$, $X \in \mathbb{H}_1^N$ $f: \mathbb{H}_1 \rightarrow \mathbb{H}_2$
- \succ Kimenet: $Y \in H_2^N$
- > Előfeltétel: –
- > Utófeltétel: $\forall i(1 \le i \le N)$: $Y_i = f(X_i)$

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, f((p_i, q_i)) := p_i + q_i$$

- \triangleright Kimenet: $R \in \mathbb{R}^N$
- ➤ Előfeltétel: –
- \gt Utófeltétel: $\forall i (1 \le i \le N)$: $R_i = P_i + Q_i$

Algoritmus:

8. Kiválogatás

Feladatok:

- Adjuk meg egy osztály kitűnő tanulóit!
- Adjuk meg egy természetes szám összes osztóját!
- Adjuk meg egy mondat magas hangrendű szavait!
- Adjuk meg emberek egy halmazából a 180 cm felettieket!
- Adjuk meg egy év azon napjait, amikor délben nem fagyott!
- Adjuk meg egy szó magánhangzóit!

Feladatok:

- Adjuk meg egy osztály kitűnő tanulóit!
- Adjuk meg egy természetes szám összes osztóját!
- Adjuk meg egy mondat magas hang-rendű szavait!
- Adjuk meg emberek egy halmazából a 180 cm felettieket!
- Adjuk meg egy év azon napjait, amikor délben nem fagyott!
- Adjuk meg egy szó magánhangzóit!

3. Kiválogatás

Mi bennük a közös?

Feladatok:

- Adjuk meg egy osztály kitűnő tanulóit!
- Adjuk meg egy természetes szám összes osztóját!
- Adjuk meg egy mondat magas hang-rendű szavait!
- Adjuk meg emberek egy halmazából a 180 cm felettieket!
- Adjuk meg egy év azon napjait, amikor délben nem fagyott!
- Adjuk meg egy szó magánhangzóit!

Mi bennük a közös?

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt!

8. Kiválogatás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^N$

 $T:H \rightarrow L$

8. Kiválogatás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^N$

 $T:H \rightarrow L$

 \triangleright Kimenet: $Db \in \mathbb{N}, Y \in \mathbb{N}^{D^{t}}$

Statikus tömb-deklaráció esetében: N

8. Kiválogatás

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^N$

 $T:H \rightarrow L$

 \triangleright Kimenet: $Db \in \mathbb{N}, Y \in \mathbb{N}^{Db}$

➤ Előfeltétel: –

Statikus tömb-deklaráció esetében: N

8. Kiválogatás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$

 $T:H\rightarrow L$

 \triangleright Kimenet: $Db \in \mathbb{N}, Y \in \mathbb{N}^{D^{t}}$

➤ Előfeltétel: –

➤ Utófeltétel: Db= $\sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Yi}) \text{ és}$

 $Y\subseteq(1,2,...,N)$

Statikus tömb-deklaráció esetében: N

L. Megszámolás tételt!

8. Kiválogatás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$

 $T:H \rightarrow L$

 \triangleright Kimenet: $Db \in \mathbb{N}, Y \in \mathbb{N}^{D}$

➤ Előfeltétel: –

> Utófeltétel: Db= $\sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Yi}) \text{ és}$

 $Y\subseteq(1,2,...,N)$

Másképp: (Db, Y) = Kiválogat $\underset{T(X_i)}{\overset{i=1}{\text{model}}}$

Statikus tömb-deklaráció esetében: N

L. Megszámolás tételt!

8. Kiválogatás

Változó

i:Egész

L. Megszámolás tételt!

Algoritmus:

Specifikáció:

▶ Bemenet: N∈N $X \in H^N$

T:H→L

 \triangleright Kimenet: $Db \in \mathbb{N}$ $Y \in N^{Db}$

➤ Előfeltétel: –

➤ Utófeltétel:
$$Db = \sum_{i=1}^{N} 1$$
 és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$

 $Y\subseteq(1,2,...,N)$

Megjegyzés:

A sorszám általánosabb, mint az érték. Ha mégis érték kellene, akkor Y[Db]:=X[i] szerepelne. (Ekkor a specifikációt is módosítani kell! Lásd később!)

8. Kiválogatás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

 $X \in H^N$

 $T:H\rightarrow L$

> Kimenet: $Db \in N$ $Y \in N^{Db}$

> Előfeltétel: –

> Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és $\forall i (1 \le i \le Db)$: $T(X_{Y_i})$ és

 $Y\subseteq(1,2,...,N)$

Értékek kiválogatása (tömören): Specifikáció₂:

8. Kiválogatás

Specifikáció:

> Bemenet: N∈N $X \in H^N$ T:H→L

 \triangleright Kimenet: $Db \in N$

 $Y \in N^{Db}$ > Előfeltétel: –

 \rightarrow Utófeltétel: Db= $\sum_{i=1}^{n}$ $T(X_i)$

 $\forall i (1 \le i \le Db): T(X_{Y:}) \text{ és}$ $Y\subseteq(1,2,...,N)$

Ertékek kiválogatása (tömören): Specifikáció₂:

 \triangleright Kimenet: $Db \in \mathbb{N}, Y \in \mathbb{H}^{Db}$

 \triangleright Utófeltétel: Db = $\sum 1$ és $T(X_i)$

 $\forall i (1 \le i \le Db): T(Y_i) \text{ és}$

 $Y \subset X$

8. Kiválogatás

Specifikáció:

> Bemenet: N∈N $X \in H^N$

T:H→L

 \triangleright Kimenet: $Db \in N$ $Y \in \mathbb{N}^{Db}$

Előfeltétel: –

> Utófeltétel:
$$Db = \sum_{i=1}^{T} 1$$
 és
$$\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$$

$$V = (1, 2, \dots, N_i)$$

Ertékek kiválogatása (tömören): Specifikáció₂:

 \triangleright Kimenet: $Db \in \mathbb{N}, Y \in \mathbb{H}^{Db}$

ightharpoonup Utófeltétel: Db = $\sum_{i=1}^{\infty} 1$ és $T(X_i)$

> $\forall i (1 \le i \le Db): T(Y_i) \text{ és}$ $Y \subset X$

Másképp: (Db, Y) = Kiválogat X_i

Adjuk meg egy év azon napjait, amikor délben nem fagyott!

8. Kiválogatás

Specifikáció:

Specifikáció: \triangleright Bemenet: $N \in \mathbb{N}$

 $X \in H^N$

T:H→L

 \triangleright Kimenet: $Db \in N$ $Y \in N^{Db}$

➤ Előfeltétel: –

► Utófeltétel:
$$Db = \sum_{i=1}^{N} 1$$
 és

Bemenet:
$$N \in \mathbb{N}, H \in \mathbb{R}^{\mathbb{N}},$$

$$Poz:\mathbb{R} \to \mathbb{L}, Poz(x):=x>0$$

Kimenet:
$$Db \in \mathbb{N}, NF \in \mathbb{N}^{Db}$$

$$\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ \'es} > Ut\acute{o}felt\acute{e}tel_1: Db = \sum_{i=1}^{N} 1 \quad \acute{e}s$$

$$\forall i(1 \le i \le Db): H_{NF_i} > 0 \text{ és}$$

 $NF \subseteq (1,2,...,N)$

Adjuk meg egy év azon napjait, amikor délben nem fagyott!

8. Kiválogatás

Specifikáció:

Specifikáció: \triangleright Bemenet: $N \in \mathbb{N}$

 $X \in H^N$

T:H→L

 \triangleright Kimenet: $Db \in N$

 $Y \in \mathbb{N}^{Db}$

> Előfeltétel: -

➤ Utófeltétel:
$$Db = \sum_{i=1}^{N} 1$$
 és

Bemenet: $N \in \mathbb{N}, H \in \mathbb{R}^{\mathbb{N}}$

 $Poz:\mathbb{R} \to \mathbb{L}, Poz(x):=x>0$

Kimenet: $Db \in \mathbb{N}, NF \in \mathbb{N}^{Db}$

Előfeltétel:

 $\forall i \text{ ($1 \le i \le Db$): } T(X_{Y_i}) \text{ \'es} > Ut\acute{o}felt\acute{e}tel_1: Db = \sum 1$ $H_{i} > 0$

> $\forall i (1 \le i \le Db): H_{NF} > 0 \text{ és}$ $NF \subseteq (1,2,\ldots,N)$

> Utófeltétel₂: (Db, NF) = Kiválogat i

Specifikáció: \triangleright Bemenet: $N \in \mathbb{N}$

- - $X \in H^N$
- $T:H\rightarrow L$
- \triangleright Kimenet: $Db \in \mathbb{N}$ $Y \in N^{Db}$
- > Előfeltétel: -
- \rightarrow Utófeltétel: Db= $\sum 1$ $T(X_i)$

8. Kiválogatás

Változó

i:Egész

Algoritmus:

 $Poz:R \rightarrow L, Poz(x):=x>0$

- \triangleright Kimenet: $Db \in \mathbb{N}$, $NF \in \mathbb{N}^{Db}$
- > Előfeltétel: –
- ➤ Utófeltétel₁: Db= $\sum_{i=1}^{n}$

 $\forall i (1 \le i \le Db): H_{NF_i} > 0 \text{ és}$

 $NF\subseteq(1,2,...,N)$

10. Szétválogatás

Feladatok:

- Adjuk meg egy osztály kitűnő és nem kitűnő tanulóit!
- Adjuk meg emberek egy halmazából a 180 cm felettieket és a nem 180 cm felettieket!
- Adjuk meg egy számsorozatból a páros és a páratlan számokat is!
- Adjuk meg egy év azon napjait, amikor délben fagyott és amikor nem fagyott!
- Adjuk meg egy angol szó magán- és mássalhangzóit!

Feladatok:

- > Adjuk meg egy osztály kitűnő és nem kitűnő Szétválogatás
- > Adjuk meg emberek egy halmazából a 180 cm felettieket és a nem 180 cm felettieket!
- Adjuk meg egy számsorozatból a páros és a páratlan számokat is!
- > Adjuk meg egy év azon napjait, amikor délben fagyott és amikor nem fagyott!
- Adjuk meg egy angol szó magán- és mássalhangzóit!

Mi bennük a közös?

Feladatok:

- Adjuk meg egy osztály kitűnő és nem kitűnő Szétválogatás
- Adjuk meg emberek egy halmazából a 180 cm felettieket és a nem 180 cm felettieket!
- Adjuk meg egy számsorozatból a páros és a páratlan számokat is!
- Adjuk meg egy év azon napjait, amikor délben fagyott és amikor nem fagyott!
- Adjuk meg egy angol szó magán- és mássalhangzóit!

Mi bennük a közös?

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt, illetve nem rendelkezőt! Azaz az összes bemeneti elemet "besoroljuk" a kimenet valamely sorozatába.

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt, illetve nem rendelkezőt!

10. Szétválogatás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

 $X \in H^N$

 $T:H \rightarrow L$

10. Szétválogatás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

 $X \in H^N$

 $T:H\rightarrow L$

 \triangleright Kimenet: $Db \in \mathbb{N}$

 $Y \in \mathbb{N}^{Db}, Z \in \mathbb{N}^{N-Db}$

10. Szétválogatás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

 $X \in H^N$

 $T:H\rightarrow L$

 \succ Kimenet: $Db \in \mathbb{N}$

 $Y \in \mathbb{N}^{Db}, Z \in \mathbb{N}^{N-Db}$

➤ Előfeltétel: –

10. Szétválogatás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

 $X \in H^N$

 $T:H \rightarrow L$

 \succ Kimenet: $Db \in \mathbb{N}$

 $Y \in \mathbb{N}^{Db}, Z \in \mathbb{N}^{N-Db}$

➤ Előfeltétel: –

> Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Yi}) \text{ és}$

 $\forall i (1 \le i \le N - Db)$: nem $T(X_{7i})$ és

 $Y \subseteq (1,2,...,N)$ és $Z \subseteq (1,2,...,N)$

10. Szétválogatás

Specifikáció₂:

➤ Utófeltétel₂:

(Db, Y, Z) = Szétváloga t i
$$\underset{T(X_i)}{\overset{i=1}{\text{otherwise}}}$$

10. Szétválogatás

Specifikáció₂:

> Utófeltétel₂:

$$(Db, Y, Z) = Sz\acute{e}tv\acute{a}loga t i$$

Értékek szétválogatása esetén:

$$(Db, Y, Z) = Sz\acute{e}tv\acute{a}loga t X_i$$

Változó

DbZ,

i:Egész

Algoritmus:

Specifikáció:

> Bemenet: N ∈ N

 $X \in H^N$ $T: H \rightarrow L$

> Kimenet: Db∈N

 $Y \in \mathbb{N}^{Db}$, $Z \in \mathbb{N}^{N-Db}$

> Előfeltétel: –

> Utófeltétel: $Db = \sum_{1}$

 $\forall i (1 \le i \le Db): T(X_{Y:}) \text{ és}$

 $\forall i (1 \le i \le N - Db)$: nem $T(X_{7:i})$ és

 $Y\subseteq(1,2,...,N)$ és $Z\subseteq(1,2,...,N)$

Megjegyzés:

Itt is szerepelhetne := i helyett := X[i], ha csak az értékekre lenne szükségünk. (A specifikáció is módosítandó!)

Probléma:

Y-ban és Z-ben együtt csak N darab elem van, azaz elég lenne egyetlen N-elemű tömb.

Probléma:

Y-ban és Z-ben együtt csak N darab elem van, azaz elég lenne egyetlen N-elemű tömb.

Megoldás:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$

 \triangleright Kimenet: $Db \in \mathbb{N}, Y \in \mathbb{N}^{\mathbb{N}}$

 $T: H \rightarrow L$

1: H→.

> Kimenet: $Db \in N$ $Y \in N^{Db}$. $Z \in N^{N-Db}$

➤ Előfeltétel: –

➤ Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és

 $\forall i (1 {\leq} i {\leq} Db) {:} \ T(X_{Y_i}) \ \acute{e}s$

 $\forall i (1 \le i \le N - Db)$: nem $T(X_{Z_i})$ és $Y \subseteq (1,2,...,N)$ és $Z \subseteq (1,2,...,N)$

Probléma:

Y-ban és Z-ben együtt csak N darab elem van, azaz elég lenne egyetlen N-elemű tömb.

Megoldás:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$

 \triangleright Kimenet: $Db \in \mathbb{N}, Y \in \mathbb{N}^{\mathbb{N}}$

> Előfeltétel: –

► Utófeltétel: Db= $\sum_{i=1}^{N} 1$ és

Permutáció(1,2,...,N):=az 1..N számok összes permutációjának halmaza $\forall i (1 \le i \le Db)$: $T(X_{Yi})$ és $\forall i (Db+1 \le i \le N)$: nem $T(X_{Yi})$ és $Y \in Permutáció(1,2,...,N)$

▶ Bemenet: N∈N

➤ Kimenet: Db∈N

> Utófeltétel: $Db = \sum_{i=1}^{n} 1$

> Előfeltétel: -

 $X \in H^N$ T: $H \rightarrow L$

 $Y \in \mathbb{N}^{Db}$, $Z \in \mathbb{N}^{N-Db}$

 $\forall i(1 \le i \le Db): T(X_{Y:})$ és

 $\forall i (1 \le i \le N - Db)$: nem $T(X_{Z_i})$ és $Y \subseteq (1,2,...,N)$ és $Z \subseteq (1,2,...,N)$

Specifikáció₂:

> Utófeltétel₂:

(Db, Y) = Szétváloga
$$t_2i$$

- \triangleright Bemenet: $N \in \mathbb{N}$, $X \in H^{\mathbb{N}}$
- \triangleright Kimenet: $Db \in \mathbb{N}$, $Y \in \mathbb{N}^{\mathbb{N}}$
- > Előfeltétel: –
- > Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és

 $\forall i (1 \leq i \leq Db) \colon T(X_{Y_i}) \text{ \'es }$

 $\forall i(Db+1 \le i \le N)$: nem $T(X_{Y_i})$ és

Y∈Permutáció(1,2,...,N)

- \triangleright Kimenet: $Db \in \mathbb{N}$, $Y \in \mathbb{N}^{\mathbb{N}}$
- > Előfeltétel: –
- \triangleright Utófeltétel: Db= $\sum 1$ $\forall i(1 \le i \le Db): T(X_{Y_i}) \text{ és}$

 $\forall i(Db+1 \le i \le N)$: nem $T(X_{v_i})$ és

Y∈Permutáció(1,2,...,N)

Specifikáció₂:

> Utófeltétel₂:

(Db, Y) = Szétváloga
$$t_2i$$

Értékek szétválogatása esetén:

(Db, Y) = Szétváloga
$$t_2 X_i$$

Algoritmus:

Változó DbZ, i:Egész

٠	Bemenet:	$N \in \mathbb{N}$	$X \in \Pi^N$
	Kimenet:	Db∈N	$Y \in \mathbb{N}^{\mathbb{N}}$

≻ Kimenet: Db∈N, Y∈N^N
 ≻ Előfeltétel: –

> Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$ $\forall i (Db+1 \le i \le N): \text{ nem } T(X_{Y_i}) \text{ és}$ $Y \in \text{Permutáció}(1,2,...,N)$

Db:=0				
DbZ:=N+1				
i=1N				
T	(X[i]) /N			
Db:=Db+1	DbZ:=DbZ-1			
Y[Db]:=i	Y[DbZ]:=i			

11. Metszet

Feladatok:

- Adjuk meg két természetes szám közös osztóit!
- A télen és a nyáron megfigyelhető madarak alapján adjuk meg a nem költöző madarakat!
- Két ember szabad órái alapján mondjuk meg, hogy mikor beszélgethetnek egymással!
- Adjuk meg azokat az állatfajokat, amelyeket a budapesti és a veszprémi állatkertben is megnézhetünk!

Feladatok:

- Adjuk meg két természetes szám közös osz- 11. Metszet
- > A télen és a nyáron megfigyelhető madarak alapján adjuk meg a nem költöző madarakat!
- Két ember szabad órái alapján mondjuk meg, hogy mikor beszélgethetnek egymással!
- Adjuk meg azokat az állatokat, amelyeket a budapesti és a veszprémi állatkertben is megnézhetünk!

Mi bennük a közös?

Feladatok:

- Adjuk meg két természetes szám közös osz- 11. Metszet
- A télen és a nyáron megfigyelhető madarak alapján adjuk meg a nem költöző madarakat!
- Két ember szabad órái alapján mondjuk meg, hogy mikor beszélgethetnek egymással!
- Adjuk meg azokat az állatokat, amelyeket a budapesti és a veszprémi állatkertben is megnézhetünk!

Mi bennük a közös?

Ismerünk két halmazt (tetszőleges, de azonos típusú elemekkel), meg kell adnunk azokat az elemeket, amelyek mindkét halmazban szerepelnek!

11. Metszet

Specifikáció:

> Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{H}^N, Y \in \mathbb{H}^M$

11. Metszet

Specifikáció:

> Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{H}^{M}, Y \in \mathbb{H}^{M}$ > Kimenet: $Db \in \mathbb{N}, Z \in \mathbb{H}^{Db}$

11. Metszet

Az elemtartalmazás egyértelmű-e.

Specifikáció:

► Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{M}^M, Y \in \mathbb{H}^M$

 \triangleright Kimenet: $Db \in \mathbb{N}, Z \in H^{Db}$

Előfeltétel: HalmazE(X) és HalmazE(Y)

11. Metszet

Az elemtartalmazás egyértelmű-e.

Specifikáció:

> Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{M}^M, Y \in \mathbb{H}^M$

 \triangleright Kimenet: $Db \in \mathbb{N}, Z \in H^{Db}$

Előfeltétel: HalmazE(X) és HalmazE(Y)

Utófeltétel: $Db = \sum_{\substack{i=1 \ X_i \in Y}}^{N} 1$ és

 $\forall i (1 \le i \le Db): (Z_i \in X \text{ \'es } Z_i \in Y) \text{ \'es}$

HalmazE(Z)

11. Metszet

Specifikáció:

- \triangleright Bemenet: N,M \in N, X \in H^N, Y \in H^M
- \gt Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- > Előfeltétel: HalmazE(X) és HalmazE(Y)
- ➤ Utófeltétel: $Db = \sum_{i=1}^{\infty} 1$ és

 $\forall i(1 \le i \le Db): (Z_i \in X \text{ \'es } Z_i \in Y) \text{ \'es}$ HalmazE(Z)

Specifikáció₃:

> Utófeltétel₂:

11. Metszet

Specifikáció:

- \triangleright Bemenet: N,M \in N, X \in H^N, Y \in H^M
- \triangleright Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- > Előfeltétel: HalmazE(X) és HalmazE(Y)
- > Utófeltétel: $Db = \sum_{i=1}^{n}$

 $\forall i (1 \le i \le Db): (Z_i \in X \text{ \'es } Z_i \in Y) \text{ \'es}$

HalmazE(Z)

Specifikáció₃:

> Utófeltétel₂:

(Db,Z)=Metszet(N,X,M,Y)
Másképp: (Db,Z)=Kiválogat
$$X_i$$

11. Metszet

Algoritmus:

Változó i,j:Egész

- \triangleright Bemenet: N,M \in N, X \in H^N, Y \in H^M
- \gt Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- ➤ Előfeltétel: HalmazE(X) és HalmazE(Y)
- ➤ Utófeltétel: Db= $\sum 1$

 $\forall i (1 \le i \le Db): (Z_i \in X \text{ \'es } Z_i \in Y) \text{ \'es}$

HalmazE(Z)

Kiválogatás tétel!

Eldöntés tétel!

Megjegyzés:

A megoldás egy kiválogatás és egy eldöntés.

11. Metszet

Feladatvariációk:

- ➤ Ismerünk két halmazt, meg kell adnunk a közös elemek számát!
- ➤ Ismerünk két halmazt, meg kell adnunk, hogy van-e közös elemük!
- ➤ Ismerünk két halmazt, meg kell adnunk egyet közös elemeik közül!

12. Unió

Feladatok:

- Két szakkör tanulói alapján soroljuk fel a szakkörre járókat!
- A télen és a nyáron megfigyelhető madarak alapján adjuk meg, hogy a milyen madarakat figyeltek meg!
- Két ember szabad órái alapján mondjuk meg, hogy mikor tudjuk elérni valamelyiket!
- Adjuk meg azokat az állatfajokat, amelyeket a budapesti vagy a veszprémi állatkertben megnézhetünk!

Feladatok:

- Két szakkör tanulói alapján adjuk meg a szakkörre járókat!
- A télen és a nyáron megfigyelhető madarak alapján adjuk meg a megfigyelhető madarakat!
- > Két ember szabad órái alapján mondjuk meg, hogy mikor tudjuk elérni valamelyiket!
- Adjuk meg azokat az állatokat, amelyeket a budapesti vagy a veszprémi állatkertben megnézhetünk!

12. Unió

Mi bennük a közös?

Feladatok:

- Két szakkör tanulói alapján adjuk meg a szakkörre járókat!
- A télen és a nyáron megfigyelhető madarak alapján adjuk meg a megfigyelhető madarakat!
- Két ember szabad órái alapján mondjuk meg, hogy mikor tudjuk elérni valamelyiket!
- Adjuk meg azokat az állatokat, amelyeket a budapesti vagy a veszprémi állatkertben megnézhetünk!

12. Unió

Mi bennük a közös?

Ismerünk két halmazt (tetszőleges, de azonos típusú elemekkel), meg kell adnunk azokat az elemeket, amelyek legalább az egyik halmazban szerepelnek!

12. Unió

Specifikáció:

➤ Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{H}^N, Y \in \mathbb{H}^M$

12. Unió

Specifikáció:

► Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{H}^M, Y \in \mathbb{H}^M$

 \rightarrow Kimenet: $Db \in \mathbb{N}, Z \in H^{1/6}$

12. Unió

> Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{H}^{M}, Y \in \mathbb{H}^{M}$

 \triangleright Kimenet: $Db \in \mathbb{N}, Z \in \mathbb{H}^{10b}$

➤ Előfeltétel: HalmazE(X) és HalmazE(Y)

12. Unió

Specifikáció:

> Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{H}^{M}, Y \in \mathbb{H}^{M}$

 \triangleright Kimenet: $Db \in \mathbb{N}, Z \in \mathbb{H}^{10b}$

➤ Előfeltétel: HalmazE(X) és HalmazE(Y)

> Utófeltétel: Db=N+ $\sum_{\substack{j=1\\Y_i \notin X}}^{M}$ 1 és

 $\forall i(1 \le i \le Db): (Z_i \in X \text{ vagy } Z_i \in Y) \text{ \'es}$ HalmazE(Z)

12. Unió

Specifikáció₂:

> Utófeltétel₂:

(Db,Z)=Uni
$$\acute{o}$$
(N,X,M,Y)

12. Unió

Specifikáció₂:

➤ Utófeltétel₂:

(Db,Z)=Uni
$$\acute{o}$$
(N,X,M,Y)

Másképp: (Db,Z)=
$$X + Kiválogat Y_j$$

12. Unió

Algoritmus:

Másolás tétel!

Változó i,j:Egész

```
\gt Kimenet: Db \in \mathbb{N}, Z \in H^{Db}
```

Előfeltétel: HalmazE(X) és HalmazE(Y)

> Utófeltétel: Db=N+ $\sum 1$

 $\forall i (1 \le i \le Db): (Z_i \in X \text{ vagy } Z_i \in Y) \text{ és}$ HalmazE(Z)

Kiválogatás tétel!

Eldöntés tétel!

12. Unió

Feladatvariációk:

- ➤ Ismerünk két halmazt, meg kell adnunk az elemek együttes számát!
- ➤ Ismerünk két halmazt, meg kell adnunk a különbségüket!

Programozási tételek

- ➤ Sorozat → sorozat
- 7. Másolás függvényszámítás
- 8. Kiválogatás
- 9. Rendezés (később lesz)
- ➤ Sorozat → sorozatok
- 10. Szétválogatás
- ➤ Sorozatok → sorozat
- 11. Metszet
- 12. Unió

Programozási alapismeretek 5. előadás vége