```
import pandas as pd

# Load dataset directly from GitHub
url = "https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.csv"
df = pd.read_csv(url)
```

Preview the first few rows
df.head()

→ *	Passenge	٦Id	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	ıl.
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
	۹	4	1	1	Futrelle, Mrs. Jacques Heath	female	35 N	1	n	113203	53 1000	∩123	9	

Next steps: Generate code with df

• View recommended plots

New interactive sheet

Check for missing values
df.isnull().sum()

Data Cleaning

```
# Fill missing Age values with median
df['Age'].fillna(df['Age'].median(), inplace=True)
```

```
# Fill missing Embarked values with the mode (most common value)
df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)
```

```
# Drop Cabin column due to too many missing values
df.drop(columns=['Cabin'], inplace=True)
# Confirm that all missing values were handled
df.isnull().sum()
```

Show hidden output

Cleaning Summary:

- Filled missing Age with median
- Filled missing Embarked with mode
- Dropped Cabin due to excessive missing values

Missing Values Check

```
# Survival rate overall
df['Survived'].value_counts(normalize=True) * 100
 <del>_</del>→
                 proportion
       Survived
                  61.616162
          0
                  38.383838
      dtype: float64
 All missing values have been handled successfully.
# Survival rate by gender as percentages
{\tt survival\_by\_gender = df.groupby('Sex')['Survived'].mean() * 100}
survival_by_gender = survival_by_gender.round(2)
# Display the result
print(survival_by_gender)
 <del>_</del>
     Sex
                74.20
      female
      male
                18.89
      Name: Survived, dtype: float64
# Survival by passenger class
df.groupby('Pclass')['Survived'].mean()*100
 <del>_</del>
               Survived
       Pclass
               62.962963
         1
               47.282609
         2
               24.236253
      dtype: float64
# Survival by embarkation port
df.groupby('Embarked')['Survived'].mean()*100
 ∓₹
                  Survived
       Embarked
          С
                 55.357143
          Q
                 38.961039
          S
                 33.900929
      dtype: float64
Exploratory Data Analysis (EDA)
```

Survival by Gender

```
import seaborn as sns
import matplotlib.pyplot as plt
# 1. Survival by Gender
sns.countplot(x='Sex', hue='Survived', data=df)
plt.title('Survival Count by Gender')
plt.show()
```


- Females had a much higher survival rate (74%) compared to males (~19%).
- Survival by Passenger Class
- # 2. Survival by Class
 sns.countplot(x='Pclass', hue='Survived', data=df)
 plt.title('Survival Count by Class')
 plt.show()

- 1st class passengers were more likely to survive.
- Age Distribution of Survivors

```
# 3. Age Distribution of Survivors
sns.histplot(df[df['Survived'] == 1]['Age'], kde=True, bins=20)
plt.title('Age Distribution of Survivors')
plt.show()
```


- Most survivors were aged 20-30.
- Young children (0-5) also had high survival.
- Correlation Heatmap

```
# 4. Correlation Heatmap
# Select only numeric columns to avoid string-to-float errors
numeric_df = df.select_dtypes(include='number')
import seaborn as sns
import matplotlib.pyplot as plt

# Compute correlation matrix only on numeric columns
corr_matrix = numeric_df.corr()

# Plot the heatmap
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix of Numeric Features')
plt.show()
```


- Strongest negative correlation: Pclass vs. Fare (-0.55)
- Survival positively correlates with Fare (+0.26)

Age and Gender Distribution by Survival Status

sns.violinplot(x='Survived', y='Age', hue='Sex', data=df, split=True) plt.title('Age Distribution by Survival and Gender') plt.xlabel('Survived (θ =No, 1=Yes)') plt.show()

- Most non-survivors were males aged 20-40, as shown in the left violin.
- The majority of survivors were females, with a broad age range confirming the "women and children first" policy.
- A noticeable number of **young children** (under 10) survived, from both genders.
- Very few elderly passengers survived.