## Which Maximal Subgroups are Perfect Codes

Zhishuo Zhang

This is a joint work with Shouhong Qiao, Ning Su, Binzhou Xia, and Sanming Zhou.

University of Melbourne

October 22nd, 2025



- A code of length n over a set F is a subset  $C \subseteq F^n$ .
- The Hamming-distance:  $d(x, y) := |\{i \mid x_i \neq y_i\}|$ .
- Closed ball of radius t:  $B_t(x) = \{y \mid d(x,y) \le t\}$ .
- A code *C* is a *t*-error-correcting code if  $\forall x, y \in C, \ x \neq y \Rightarrow B_t(x) \cap B_t(y) = \varnothing.$
- A *t*-error-correcting code is perfect if  $\bigcup_{x \in C} B_t(x) = F^n$ .



- A code of length n over a set F is a subset  $C \subseteq F^n$ .
- The Hamming-distance:  $d(x, y) := |\{i \mid x_i \neq y_i\}|$ .
- Closed ball of radius t:  $B_t(x) = \{y \mid d(x,y) \leq t\}$ .
- A code *C* is a *t*-error-correcting code if  $\forall x, y \in C, \ x \neq y \Rightarrow B_t(x) \cap B_t(y) = \emptyset$
- A *t*-error-correcting code is perfect if  $\bigcup_{x \in C} B_t(x) = F^n$ .



- A code of length n over a set F is a subset  $C \subseteq F^n$ .
- The Hamming-distance:  $d(x, y) := |\{i \mid x_i \neq y_i\}|$ .
- Closed ball of radius t:  $B_t(x) = \{y \mid d(x,y) \le t\}$ .
- A code *C* is a *t*-error-correcting code if  $\forall x, y \in C, \ x \neq y \Rightarrow B_t(x) \cap B_t(y) = \emptyset$
- A *t*-error-correcting code is perfect if  $\bigcup_{x \in C} B_t(x) = F^n$ .



- A code of length n over a set F is a subset  $C \subseteq F^n$ .
- The Hamming-distance:  $d(x, y) := |\{i \mid x_i \neq y_i\}|$ .
- Closed ball of radius t:  $B_t(x) = \{y \mid d(x,y) \leq t\}$ .
- A code *C* is a *t*-error-correcting code if  $\forall x, y \in C, \ x \neq y \Rightarrow B_t(x) \cap B_t(y) = \emptyset$
- A *t*-error-correcting code is perfect if  $\bigcup_{x \in C} B_t(x) = F^n$ .



- A code of length n over a set F is a subset  $C \subseteq F^n$ .
- The Hamming-distance:  $d(x, y) := |\{i \mid x_i \neq y_i\}|$ .
- Closed ball of radius t:  $B_t(x) = \{y \mid d(x,y) \le t\}$ .
- A code C is a t-error-correcting code if  $\forall x, y \in C, \ x \neq y \Rightarrow B_t(x) \cap B_t(y) = \varnothing.$
- A *t*-error-correcting code is perfect if  $\bigcup_{x \in C} B_t(x) = F^n$ .



- A code of length n over a set F is a subset  $C \subseteq F^n$ .
- The Hamming-distance:  $d(x, y) := |\{i \mid x_i \neq y_i\}|$ .
- Closed ball of radius t:  $B_t(x) = \{y \mid d(x,y) \le t\}$ .
- A code *C* is a *t*-error-correcting code if  $\forall x, y \in C, x \neq y \Rightarrow B_t(x) \cap B_t(y) = \emptyset.$
- A *t*-error-correcting code is perfect if  $\bigcup_{x \in C} B_t(x) = F^n$ .



The receive space

## Perfect Codes on Distance-Transitive Graphs

Biggs<sup>[1]</sup> (1973) generalized the setting of perfect t-codes to graphs:

- Let  $\Gamma$  be a graph with vertex set  $F^n$ ;
- For distinct  $x, y \in V(\Gamma)$ ,  $x \sim y$  iff d(x, y) = 1.

The proper setting for perfect code question is distance-transitive graphs

## Lloyd's Thereom<sup>[2]</sup>

If a perfect t-error-correcting code exists in  $F^n$ , where |F| = q, then

$$\sum_{k=0}^{t} \sum_{j=0}^{k} (-1)^{j} (q-1)^{k-j} {x \choose j} {n-x \choose k-j}$$

has t distinct integral zeros among  $1, \ldots, n$ .

<sup>[1]</sup> N. L. Biggs, Perfect codes in graphs, J. Combinatorial Theory, Ser. B, 15 (1973), 289-296.

<sup>[2]</sup> S. P. Lloyd, Binary Block Coding, Bell System Tech. J. 36 (1957), 517-535.

## Perfect Codes on Distance-Transitive Graphs

Biggs<sup>[1]</sup> (1973) generalized the setting of perfect t-codes to graphs:

- Let  $\Gamma$  be a graph with vertex set  $F^n$ ;
- For distinct  $x, y \in V(\Gamma)$ ,  $x \sim y$  iff d(x, y) = 1.

The proper setting for perfect code question is distance-transitive graphs.

## Lloyd's Thereom<sup>[2]</sup>

If a perfect t-error-correcting code exists in  $F^n$ , where |F| = q, then

$$\sum_{k=0}^{t} \sum_{j=0}^{k} (-1)^{j} (q-1)^{k-j} {x \choose j} {n-x \choose k-j}$$

has t distinct integral zeros among  $1, \ldots, n$ .

<sup>[1]</sup> N. L. Biggs, Perfect codes in graphs, J. Combinatorial Theory, Ser. B, 15 (1973), 289-296.

<sup>[2]</sup> S. P. Lloyd, Binary Block Coding, Bell System Tech. J. 36 (1957), 517-535.

## Perfect Codes on Distance-Transitive Graphs

Biggs<sup>[1]</sup> (1973) generalized the setting of perfect t-codes to graphs:

- Let  $\Gamma$  be a graph with vertex set  $F^n$ ;
- For distinct  $x, y \in V(\Gamma)$ ,  $x \sim y$  iff d(x, y) = 1.

The proper setting for perfect code question is distance-transitive graphs.

#### Lloyd's Thereom<sup>[2]</sup>

If a perfect t-error-correcting code exists in  $F^n$ , where |F|=q, then

$$\sum_{k=0}^{t} \sum_{j=0}^{k} (-1)^{j} (q-1)^{k-j} {x \choose j} {n-x \choose k-j}$$

has t distinct integral zeros among  $1, \ldots, n$ .

<sup>[1]</sup> N. L. Biggs, Perfect codes in graphs, J. Combinatorial Theory, Ser. B, 15 (1973), 289-296.

<sup>[2]</sup> S. P. Lloyd, Binary Block Coding, Bell System Tech. J. 36 (1957), 517-535.

#### Definition

A perfect code in a graph  $\Gamma = (V, E)$  is a subset C of V such that no two vertices in C are adjacent and every vertex in  $V \setminus C$  is adjacent to exactly one vertex in C.

Closed neighborhoods of all vertices in C forms a partition of V.

Hamming codes are perfect codes on Hamming graphs H(n, q):

- $V = \mathbb{F}_q^n$ ,
- $(x_1, \dots, x_n) \sim (y_1, \dots, y_n)$  iff they differ in exactly one coordinate.

H(n,q) is a Cayley graph.

#### Definition

A perfect code in a graph  $\Gamma = (V, E)$  is a subset C of V such that no two vertices in C are adjacent and every vertex in  $V \setminus C$  is adjacent to exactly one vertex in C.

Closed neighborhoods of all vertices in C forms a partition of V.

Hamming codes are perfect codes on Hamming graphs H(n, q):

- $V = \mathbb{F}_a^n$ ,
- $(x_1, \dots, x_n) \sim (y_1, \dots, y_n)$  iff they differ in exactly one coordinate.

H(n,q) is a Cayley graph.

#### Definition

A perfect code in a graph  $\Gamma = (V, E)$  is a subset C of V such that no two vertices in C are adjacent and every vertex in  $V \setminus C$  is adjacent to exactly one vertex in C.

Closed neighborhoods of all vertices in C forms a partition of V.

Hamming codes are perfect codes on Hamming graphs H(n, q):

- $V = \mathbb{F}_q^n$ ,
- $(x_1 \ldots, x_n) \sim (y_1, \ldots, y_n)$  iff they differ in exactly one coordinate.

H(n,q) is a Cayley graph

#### Definition

A perfect code in a graph  $\Gamma = (V, E)$  is a subset C of V such that no two vertices in C are adjacent and every vertex in  $V \setminus C$  is adjacent to exactly one vertex in C.

Closed neighborhoods of all vertices in C forms a partition of V.

Hamming codes are perfect codes on Hamming graphs H(n, q):

- $V = \mathbb{F}_q^n$ ,
- $(x_1, \dots, x_n) \sim (y_1, \dots, y_n)$  iff they differ in exactly one coordinate.

H(n,q) is a Cayley graph.

#### Definition

A perfect code in a graph  $\Gamma = (V, E)$  is a subset C of V such that no two vertices in C are adjacent and every vertex in  $V \setminus C$  is adjacent to exactly one vertex in C.

Closed neighborhoods of all vertices in C forms a partition of V.

Hamming codes are perfect codes on Hamming graphs H(n, q):

- $V = \mathbb{F}_q^n$ ,
- $(x_1, \dots, x_n) \sim (y_1, \dots, y_n)$  iff they differ in exactly one coordinate.

H(n,q) is a Cayley graph.

## Codes Equipped with Algebraic Structure

Let F be a set and  $C \subseteq F^n$  be a code.

- Linear code:  $F = \mathbb{F}_q$  and C is a linear subspace of  $\mathbb{F}_q^n$ .
- Group code:  $F^n$  is an additive group and  $C \leq F^n$ .

#### Definition

If a perfect code H of a Cayley graph Cay(G, S) is a subgroup of G, then H is called a subgroup perfect code.

The additional subgroup structure

- enriches the theoretic study
- offers advantages in efficient representation and computation

Hamming codes are subgroup perfect codes

## Codes Equipped with Algebraic Structure

Let F be a set and  $C \subseteq F^n$  be a code.

- Linear code:  $F = \mathbb{F}_q$  and C is a linear subspace of  $\mathbb{F}_q^n$ .
- Group code:  $F^n$  is an additive group and  $C \leq F^n$ .

#### Definition

If a perfect code H of a Cayley graph Cay(G, S) is a subgroup of G, then H is called a subgroup perfect code.

#### The additional subgroup structure

- enriches the theoretic study
- offers advantages in efficient representation and computation

Hamming codes are subgroup perfect codes

## Codes Equipped with Algebraic Structure

Let F be a set and  $C \subseteq F^n$  be a code.

- Linear code:  $F = \mathbb{F}_q$  and C is a linear subspace of  $\mathbb{F}_q^n$ .
- Group code:  $F^n$  is an additive group and  $C \leq F^n$ .

#### Definition

If a perfect code H of a Cayley graph Cay(G, S) is a subgroup of G, then H is called a subgroup perfect code.

The additional subgroup structure

- enriches the theoretic study
- offers advantages in efficient representation and computation

Hamming codes are subgroup perfect codes.

# Subgroup Perfect Codes of a Group

#### **Problem**

Classify (H, S) such that H is a subgroup perfect code of Cay(G, S).

A natural starting point is to determine which subgroups  $H \leq G$  admit such a pair.

Definition (Huang–Xia–Zhou $^{[1]}$ , 2018)

H is called a subgroup perfect code of G if H is a subgroup perfect code of some Cayley graph on G.

<sup>[1]</sup> H. Huang, B. Xia and S. Zhou, Perfect codes in Cayley graphs. SIAM J. Discrete Math. 32 (2018), no. 1, 548–559.

# Subgroup Perfect Codes of a Group

#### **Problem**

Classify (H, S) such that H is a subgroup perfect code of Cay(G, S).

A natural starting point is to determine which subgroups  $H \leq G$  admit such a pair.

Definition (Huang–Xia–Zhou $^{[1]}$ , 2018)

H is called a subgroup perfect code of G if H is a subgroup perfect code of some Cayley graph on G.

<sup>[1]</sup> H. Huang, B. Xia and S. Zhou, Perfect codes in Cayley graphs. SIAM J. Discrete Math. 32 (2018), no. 1, 548–559.

# Subgroup Perfect Codes of a Group

#### **Problem**

Classify (H, S) such that H is a subgroup perfect code of Cay(G, S).

A natural starting point is to determine which subgroups  $H \leq G$  admit such a pair.

# Definition (Huang-Xia-Zhou<sup>[1]</sup>, 2018)

H is called a subgroup perfect code of G if H is a subgroup perfect code of some Cayley graph on G.

<sup>[1]</sup> H. Huang, B. Xia and S. Zhou, Perfect codes in Cayley graphs. *SIAM J. Discrete Math.* 32 (2018), no. 1, 548–559.

## Characterization of Subgroup Perfect Codes

## Theorem (Chen–Wang–Xia<sup>[1]</sup>, 2020)

Let  $H \leq G$ . Then the following are equivalent:

- H pc G;
- there exists an inverse-closed left transversal of H in G;
- for each  $a \in G$  such that  $a^2 \in H$  and  $|H|/|H \cap H^a|$  is odd, there exists  $b \in aH$  such that  $b^2 = e$ ;
- for each  $a \in G$  such that  $HaH = Ha^{-1}H$  and  $|H|/|H \cap H^a|$  is odd, there exists  $b \in aH$  such that  $b^2 = e$ .

<sup>[1]</sup> J. Chen, Y. Wang and B. Xia, Characterization of subgroup perfect codes in Cayley graphs. *Discrete Math.* 343 (2020), no. 5, 111813, 4 pp.

## Characterizing Subgroup Perfect Codes by 2-Subgroups

### Theorem (Zhang $^{[1]}$ , 2023)

Let  $H \leq G$ , and let  $Q \in Syl_2(H)$ . Then the following are equivalent:

- *H* is a perfect code of *G*;
- Q is a perfect code of G;
- Q is a perfect code of any Sylow 2-subgroup of  $N_G(Q)$ ;

<sup>[1]</sup> J. Zhang, Characterizing subgroup perfect codes by 2-subgroups. *Des. Codes Cryptogr.* 91 (2023), no. 9, 2811–2819.

#### Theorem (Qiao-Su-Xia-Z.-Zhou, 2025+)

Let H be a 2-subgroup of G. Then H pc G iff, for each  $a \in N_G(H) \setminus H$  with  $a^2 \in H$ , the subgroup H has a complement in  $H(a) \cong H.C_2$ .

Let  $H \cong C_{2^n} \rtimes C_2$ , and G be an arbitrary group containing H. We characterized whether H pc G based on the above theorem.

Similar method can be used to study other groups

#### Proposition (Qiao-Su-Xia-Z.-Zhou, 2025+)

#### Theorem (Qiao-Su-Xia-Z.-Zhou, 2025+)

Let H be a 2-subgroup of G. Then H pc G iff, for each  $a \in N_G(H) \setminus H$  with  $a^2 \in H$ , the subgroup H has a complement in  $H(a) \cong H.C_2$ .

Let  $H \cong C_{2^n} \rtimes C_2$ , and G be an arbitrary group containing H. We characterized whether H pc G based on the above theorem.

Similar method can be used to study other groups.

#### Proposition (Qiao-Su-Xia-Z.-Zhou, 2025+)

#### Theorem (Qiao-Su-Xia-Z.-Zhou, 2025+)

Let H be a 2-subgroup of G. Then H pc G iff, for each  $a \in N_G(H) \setminus H$  with  $a^2 \in H$ , the subgroup H has a complement in  $H(a) \cong H.C_2$ .

Let  $H \cong C_{2^n} \rtimes C_2$ , and G be an arbitrary group containing H. We characterized whether H pc G based on the above theorem.

Similar method can be used to study other groups.

#### Proposition (Qiao-Su-Xia-Z.-Zhou, 2025+)

#### Theorem (Qiao-Su-Xia-Z.-Zhou, 2025+)

Let H be a 2-subgroup of G. Then H pc G iff, for each  $a \in N_G(H) \setminus H$  with  $a^2 \in H$ , the subgroup H has a complement in  $H(a) \cong H.C_2$ .

Let  $H \cong C_{2^n} \rtimes C_2$ , and G be an arbitrary group containing H. We characterized whether H pc G based on the above theorem.

Similar method can be used to study other groups.

#### Proposition (Qiao-Su-Xia-Z.-Zhou, 2025+)

#### Theorem (Qiao-Su-Xia-Z.-Zhou, 2025+)

Let H be a 2-subgroup of G. Then H pc G iff, for each  $a \in N_G(H) \setminus H$  with  $a^2 \in H$ , the subgroup H has a complement in  $H(a) \cong H.C_2$ .

Let  $H \cong C_{2^n} \rtimes C_2$ , and G be an arbitrary group containing H. We characterized whether H pc G based on the above theorem.

Similar method can be used to study other groups.

#### Proposition (Qiao-Su-Xia-Z.-Zhou, 2025+)

# Maximal Subgroup Perfect Codes

Lemma (Zhang-Zhou<sup>[1]</sup>, 2021)

If  $H \leq M \leq G$ , then H pc  $G \Longrightarrow H$  pc M.

To determine whether H pc G, we begin by examining whether H pc M where M is the smallest overgroup properly containing H.

In other words, we focus on

#### Problem

For H < G, whether H pc G?

A good perfect code should have large cardinality in order to make efficient use of the channel.

<sup>[1]</sup> J. Zhang and S. Zhou, Corrigendum to "On subgroup perfect codes in Cayley graphs" [European J. Combin., 91 (2021) 103228], European J. Combin. 101 (2022), Paper No. 103461, 5 pp.

# Maximal Subgroup Perfect Codes

Lemma (Zhang-Zhou<sup>[1]</sup>, 2021)

If  $H \leq M \leq G$ , then H pc  $G \Longrightarrow H$  pc M.

To determine whether H pc G, we begin by examining whether H pc M, where M is the smallest overgroup properly containing H.

In other words, we focus on

#### Problem

For H < G, whether H pc G?

A good perfect code should have large cardinality in order to make efficient use of the channel.

<sup>[1]</sup> J. Zhang and S. Zhou, Corrigendum to "On subgroup perfect codes in Cayley graphs" [European J. Combin., 91 (2021) 103228], European J. Combin. 101 (2022), Paper No. 103461, 5 pp.

# Maximal Subgroup Perfect Codes

Lemma (Zhang-Zhou<sup>[1]</sup>, 2021)

If  $H \leq M \leq G$ , then H pc  $G \Longrightarrow H$  pc M.

To determine whether H pc G, we begin by examining whether H pc M, where M is the smallest overgroup properly containing H.

In other words, we focus on

#### Problem

For H < G, whether H pc G?

A good perfect code should have large cardinality in order to make efficient use of the channel.

<sup>[1]</sup> J. Zhang and S. Zhou, Corrigendum to "On subgroup perfect codes in Cayley graphs" [European J. Combin., 91 (2021) 103228], European J. Combin. 101 (2022), Paper No. 103461, 5 pp.

#### Relevant Results in the Literature

*G* is called code-perfect if  $\forall H < G$ , H pc G.

## Theorem (Ma–Walls–Wang–Zhou<sup>[1]</sup>, 2020)

A group is code-perfect iff it has no elements of order 4.

## Corollary (Ma-Walls-Wang-Zhou<sup>[1]</sup>, 2020)

A simple group is code-perfect iff it is isomorphic to one of:

- $C_p$ , where p is a prime;
- $PSL_2(2^e)$ ,  $e \ge 2$ ;
- $PSL_2(q)$ ,  $q \equiv \pm 3 \pmod{8}$ , q > 5;
- a Ree group  ${}^{2}G_{2}(3^{2n+1})$ , n > 1;
- the Janko group  $J_1$ .

<sup>[1]</sup> X. Ma, G. L. Walls, K. Wang and S. Zhou, Subgroup Perfect Codes in Cayley Graphs. SIAM J. Discrete Math. 34 (2020), no. 3, 1909–1921.

#### Relevant Results in the Literature

## Theorem (Chen-Li-Zhang<sup>[1]</sup>, 2025)

If *G* is one of the following groups:

- $PSL_2(q)$ , where q is a prime power;
- Suz(q), where  $q = 2^{2m+1}$ ;
- $PSU_3(q)$ , where q is a prime power,

and H < G, then the sufficient and necessary condition for H pc G is classified.

<sup>[1]</sup> Z. G. Chen, J. J. Li and J. Y. Zhang, Subgroup perfect codes in Lie type simple groups of rank one, Des. Codes Cryptogr. (2025), 1–18.

#### Relevant Results in the Literature

## Theorem (Bu-Li-Zhang<sup>[1]</sup>, 2025)

The sufficient and necessary condition of H pc G is classified for the following (G, H):

- $G = C_{2^n}.C_2$  and H < G;
- $G=\mathrm{SL}_3(q)$ , where q is a prime power with  $q\equiv -1\pmod 4$ , and H< G.

<sup>[1]</sup> X. C. Bu, J. J. Li and J. Y. Zhang, Subgroup perfect codes of 2-groups with cyclic maximal subgroups, Bull. Malays. Math. Sci. Soc. 48 (2025), no. 3, Paper No. 78, 9 pp.

#### Quotient Reduction

## Lemma (Zhang-Zhou<sup>[1]</sup>, 2021)

Let  $N \subseteq G$  and  $N \subseteq H \subseteq G$ . Then H pc  $G \Longrightarrow H/N$  pc G/N.

- Given a group G with  $H \underset{\text{max}}{<} G$ , and let  $N = \text{Core}_G(H)$ ;
- Then H/N < G/N, and so G/N is primitive.

#### Reduced Problem

Let H be the stabilizer of a primitive group G. Whether H pc G?

#### Lifting Problem

H/N pc  $G/N \Longrightarrow H$  pc G?

<sup>[1]</sup> J. Zhang and S. Zhou, Corrigendum to "On subgroup perfect codes in Cayley graphs" [European J. Combin., 91 (2021) 103228], European J. Combin. 101 (2022), Paper No. 103461, 5 pp.

# Lemma (Zhang–Zhou<sup>[1]</sup>, 2021)

Let  $N \subseteq G$  and  $N \subseteq H \subseteq G$ . Then H pc  $G \Longrightarrow H/N$  pc G/N.

- Given a group G with  $H \underset{\text{max}}{<} G$ , and let  $N = \text{Core}_G(H)$ ;
- Then H/N < G/N, and so G/N is primitive.

#### Reduced Problem

Let H be the stabilizer of a primitive group G. Whether H pc G?

## Lifting Problem

<sup>[1]</sup> J. Zhang and S. Zhou, Corrigendum to "On subgroup perfect codes in Cayley graphs" [European J. Combin., 91 (2021) 103228], European J. Combin. 101 (2022), Paper No. 103461, 5 pp.

# Lemma (Zhang-Zhou<sup>[1]</sup>, 2021)

Let  $N \subseteq G$  and  $N \subseteq H \subseteq G$ . Then H pc  $G \Longrightarrow H/N$  pc G/N.

- Given a group G with  $H \underset{\text{max}}{<} G$ , and let  $N = \text{Core}_G(H)$ ;
- Then H/N < G/N, and so G/N is primitive.

#### Reduced Problem

Let H be the stabilizer of a primitive group G. Whether H pc G?

## Lifting Problem

<sup>[1]</sup> J. Zhang and S. Zhou, Corrigendum to "On subgroup perfect codes in Cayley graphs" [European J. Combin., 91 (2021) 103228], European J. Combin. 101 (2022), Paper No. 103461, 5 pp.

# Lemma (Zhang-Zhou<sup>[1]</sup>, 2021)

Let  $N \subseteq G$  and  $N \subseteq H \subseteq G$ . Then H pc  $G \Longrightarrow H/N$  pc G/N.

- Given a group G with  $H \underset{\text{max}}{<} G$ , and let  $N = \text{Core}_G(H)$ ;
- Then H/N < G/N, and so G/N is primitive.

#### Reduced Problem

Let H be the stabilizer of a primitive group G. Whether H pc G?

## Lifting Problem

<sup>[1]</sup> J. Zhang and S. Zhou, Corrigendum to "On subgroup perfect codes in Cayley graphs" [European J. Combin., 91 (2021) 103228], European J. Combin. 101 (2022), Paper No. 103461, 5 pp.

# Lemma (Zhang-Zhou<sup>[1]</sup>, 2021)

Let  $N \subseteq G$  and  $N \subseteq H \subseteq G$ . Then H pc  $G \Longrightarrow H/N$  pc G/N.

- Given a group G with  $H \underset{\text{max}}{<} G$ , and let  $N = \text{Core}_G(H)$ ;
- Then H/N < G/N, and so G/N is primitive.

### Reduced Problem

Let H be the stabilizer of a primitive group G. Whether H pc G?

### Lifting Problem

<sup>[1]</sup> J. Zhang and S. Zhou, Corrigendum to "On subgroup perfect codes in Cayley graphs" [European J. Combin., 91 (2021) 103228], European J. Combin. 101 (2022), Paper No. 103461, 5 pp.

# Lifting Problem

## Lifting Problem

Let  $N \subseteq G$  and  $N \subseteq H \subseteq G$ . Whether H/N pc  $G/N \Longrightarrow H$  pc G?

Lemma (Qiao-Su-Xia-Z.-Zhou, 2025+)

If G is a split extension of N by G/N, then H/N pc  $G/N \Longrightarrow H$  pc G.

#### Question

Is there any better characterization of whether

H/N pc  $G/N \implies H$  pc G

## Lifting Problem

### Lifting Problem

Let  $N \subseteq G$  and  $N \subseteq H \subseteq G$ . Whether H/N pc  $G/N \Longrightarrow H$  pc G?

## Lemma (Qiao-Su-Xia-Z.-Zhou, 2025+)

If G is a split extension of N by G/N, then H/N pc  $G/N \Longrightarrow H$  pc G.

#### Question

Is there any better characterization of whether

$$H/N$$
 pc  $G/N \implies H$  pc  $G$ ?

# Perfect codes in Primitive Groups

## Theorem (Qiao-Su-Xia-Z.-Zhou, 2025+)

Let G be a primitive group of type HA, HS, HC, TW, SD or CD, and let H be a point stabilizer. Then H pc G.

# Diamond Lemma (Qiao-Su-Xia-Z.-Zhou, 2025+)

Let H and K be subgroups of a group G such that HK is a group. Then  $(H \cap K)$  pc  $K \Longrightarrow H$  pc HK.



# Perfect codes in Primitive Groups

## Theorem (Qiao-Su-Xia-Z.-Zhou, 2025+)

Let G be a primitive group of type HA, HS, HC, TW, SD or CD, and let H be a point stabilizer. Then H pc G.

## Diamond Lemma (Qiao-Su-Xia-Z.-Zhou, 2025+)

Let H and K be subgroups of a group G such that HK is a group. Then  $(H \cap K)$  pc  $K \Longrightarrow H$  pc HK.



## Theorem (Qiao-Su-Xia-Z.-Zhou, 2025+)

Let  $T = \mathrm{PSL}_2(q)$  with prime power  $q \geq 4$ , let G be a primitive almost simple group with socle T, and let H be the point stabilizer of G. Then H not pc G iff one of the following holds:

- q > 7,  $q \equiv -1 \pmod{8}$ , |G/T| is odd, and  $H \cap T \cong D_{q-1}$ ;
- q>9,  $q\equiv 1\pmod 8$ , |G/T| is odd, and  $H\cap T\cong D_{q+1}$ ;
- $q \equiv 1 \pmod{8}$ ,  $|G/T| \equiv 2 \pmod{4}$ ,  $G \not\leq P\Sigma L_2(q)$ ,  $G \not\geq PGL_2(q)$ , and  $H \cap T \cong D_{q+1}$ .

Similar method can be used to consider almost simple groups with other socle.

## Theorem (Qiao-Su-Xia-Z.-Zhou, 2025+)

Let  $T = \mathrm{PSL}_2(q)$  with prime power  $q \geq 4$ , let G be a primitive almost simple group with socle T, and let H be the point stabilizer of G. Then H not pc G iff one of the following holds:

- q > 7,  $q \equiv -1 \pmod{8}$ , |G/T| is odd, and  $H \cap T \cong D_{q-1}$ ;
- q > 9,  $q \equiv 1 \pmod{8}$ , |G/T| is odd, and  $H \cap T \cong D_{q+1}$ ;
- $q \equiv 1 \pmod{8}$ ,  $|G/T| \equiv 2 \pmod{4}$ ,  $G \not\leq P\Sigma L_2(q)$ ,  $G \not\geq PGL_2(q)$ , and  $H \cap T \cong D_{q+1}$ .

Similar method can be used to consider almost simple groups with other socle.

Certain almost simple groups, such as  $\operatorname{PGL}_2(q)$ , have the property that every maximal subgroup is a perfect code.

Which almost simple groups have the property that every maximal subgroup is a perfect code?

Question (Xia–Zhang–
$$Z$$
.[1], 2025+)

Whether every maximal subgroup of  $S_n$  is a perfect code?

- intransitive maximal subgroups of  $S_n$ ;
- $AGL_1(p)$  as maximal subgroups of  $S_p$  for odd primes p;
- $AGL_2(p)$  as maximal subgroups of  $S_{p^2}$  for  $p \equiv 3 \pmod{4}$ .

<sup>[1]</sup> B. Xia, J. Zhang and Z. Zhang, On subgroup perfect codes in vertex-transitive graphs. https://arxiv.org/abs/2501.08101.

Certain almost simple groups, such as  $\operatorname{PGL}_2(q)$ , have the property that every maximal subgroup is a perfect code.

Which almost simple groups have the property that every maximal subgroup is a perfect code?

Question (Xia–Zhang–Z.
$$^{[1]}$$
, 2025+)

Whether every maximal subgroup of  $S_n$  is a perfect code?

- intransitive maximal subgroups of  $S_n$ ;
- $AGL_1(p)$  as maximal subgroups of  $S_p$  for odd primes p;
- AGL<sub>2</sub>(p) as maximal subgroups of  $S_{p^2}$  for  $p \equiv 3 \pmod{4}$ .

<sup>[1]</sup> B. Xia, J. Zhang and Z. Zhang, On subgroup perfect codes in vertex-transitive graphs. https://arxiv.org.abs/2501.08101.

Certain almost simple groups, such as  $\operatorname{PGL}_2(q)$ , have the property that every maximal subgroup is a perfect code.

Which almost simple groups have the property that every maximal subgroup is a perfect code?

Whether every maximal subgroup of  $S_n$  is a perfect code?

- intransitive maximal subgroups of  $S_n$ ;
- $AGL_1(p)$  as maximal subgroups of  $S_p$  for odd primes p;
- $AGL_2(p)$  as maximal subgroups of  $S_{p^2}$  for  $p \equiv 3 \pmod{4}$ .

<sup>1]</sup> B. Xia, J. Zhang and Z. Zhang, On subgroup perfect codes in vertex-transitive graphs. https://arxiv.org abs/2501.08101.

Certain almost simple groups, such as  $PGL_2(q)$ , have the property that every maximal subgroup is a perfect code.

Which almost simple groups have the property that every maximal subgroup is a perfect code?

Whether every maximal subgroup of  $S_n$  is a perfect code?

- intransitive maximal subgroups of  $S_n$ ;
- $AGL_1(p)$  as maximal subgroups of  $S_p$  for odd primes p;
- $AGL_2(p)$  as maximal subgroups of  $S_{p^2}$  for  $p \equiv 3 \pmod{4}$ .

<sup>[1]</sup> B. Xia, J. Zhang and Z. Zhang, On subgroup perfect codes in vertex-transitive graphs. https://arxiv.org/abs/2501.08101.

### Proposition (Qiao-Su-Xia-Z.-Zhou, 2025+)

For a permutation group K such that  $H \wr K \leq G \wr K$ ,

$$H \text{ pc } G \implies H \wr K \text{ pc } G \wr K.$$

The converse does not hold, which means the problem of type PA can not be reduced to the problem of type AS.

## Theorem (Qiao-Su-Xia-Z.-Zhou, 2025+)

Let  $H \leq G$ . If  $|H|_2 \leq 2$ , then  $H \wr S_2$  is a perfect code of  $G \wr S_2$ .

## Corollary (Qiao-Su-Xia-Z.-Zhou, 2025+)

Let  $T = \mathrm{PSL}_2(q)$  with prime power q, and let H < T. Then  $H \wr S_2$  pc  $T \wr S_2$ .

### Proposition (Qiao-Su-Xia-Z.-Zhou, 2025+)

For a permutation group K such that  $H \wr K \leq G \wr K$ ,

$$H \text{ pc } G \implies H \wr K \text{ pc } G \wr K.$$

The converse does not hold, which means the problem of type PA can not be reduced to the problem of type AS.

Let  $H \leq G$ . If  $|H|_2 \leq 2$ , then  $H \wr S_2$  is a perfect code of  $G \wr S_2$ .

Corollary (Qiao–Su–Xia–Z.–Zhou, 2025+)

Let  $T = \mathrm{PSL}_2(q)$  with prime power q, and let H < T. Then  $H \wr S_2$  pc  $T \wr S_2$ .

### Proposition (Qiao-Su-Xia-Z.-Zhou, 2025+)

For a permutation group K such that  $H \wr K \leq G \wr K$ ,

$$H \text{ pc } G \implies H \wr K \text{ pc } G \wr K.$$

The converse does not hold, which means the problem of type PA can not be reduced to the problem of type AS.

Let  $H \leq G$ . If  $|H|_2 \leq 2$ , then  $H \wr S_2$  is a perfect code of  $G \wr S_2$ .

Corollary (Qiao-Su-Xia-Z.-Zhou, 2025+) Let  $T = \mathrm{PSL}_2(q)$  with prime power q, and let H < T. Then  $H \wr S_2$  pc  $T \wr S_2$ .

### Proposition (Qiao-Su-Xia-Z.-Zhou, 2025+)

For a permutation group K such that  $H \wr K \leq G \wr K$ ,

$$H \text{ pc } G \implies H \wr K \text{ pc } G \wr K.$$

The converse does not hold, which means the problem of type PA can not be reduced to the problem of type AS.

## Theorem (Qiao-Su-Xia-Z.-Zhou, 2025+)

Let  $H \leq G$ . If  $|H|_2 \leq 2$ , then  $H \wr S_2$  is a perfect code of  $G \wr S_2$ .

## Corollary (Qiao-Su-Xia-Z.-Zhou, 2025+)

Let  $T = \mathrm{PSL}_2(q)$  with prime power q, and let H < T. Then  $H \wr S_2$  pc  $T \wr S_2$ .

### Further Research

#### Question

Is there any better characterization of whether

$$H/N$$
 pc  $G/N \implies H$  pc  $G$ ?

### Question

What more can we say about types AS and PA?

#### Question

Which almost simple groups have the property that every maximal subgroup is a perfect code?

### Question

Whether every maximal subgroup of  $S_n$  is a perfect code?

Thank You.