Table of Equations for SCP Actuators

Pooja Patel

February 8, 2017

1 Variable Names and Description

Variables		
Variable	Units	Description
Name		
k	N/m	Spring constant; provided in literature based off of material used
d	m	Movement; change in actuator length when load and heat are applied or
		change in position of load when actuator contracts
T	K	Temperature of the Actuator
T_0	K	Ambient Temperature
c	W/mK	Thermal Constant
P	W	Power
$P_{dissociated}$	W	Power dissipated as heat or friction
V	V	Voltage
R	Ω	Resistance
ρ	Ωm	Resistivity; provided in the literature and dependent on type of string
		used
1	m	Length of the actuator (coiled)
$l_{original}$	m	Length of string used to make actuator
A	m^2	Area; based on diameter of actuator
Δt	N/A	Coil deformation due to change in fiber twist per initial fiber length
LCL	N/A	Length contraction factor (ratio of non-twisted fiber length $(l_{original})$ to
		coil length (l); used from literature characterization of the actuators
N	N/A	Number of coil turns; (turns/m)* $l_{original}$

1.1 Length Contraction Factor and Turns/m for Each Type of Thread

LCL and Turns/m			
LCL	Turns/m	Type of Thread	
4.5	3020	$127~\mu m$ nylon 6,6 monofilament	
4.2	2430	$180~\mu m$ silve plated nylon 6,6 multifilament	
4.5	1430	$270~\mu m$ nylon 6 monofilament	
3.3	2270	$130~\mu m$ fused polyethelene braid	

2 Equations

$$F = kd + c(T - T_0) \tag{1}$$

$$cP = P_{dissociated}(T, T_0) (2)$$

$$P = \frac{V^2}{R} \tag{3}$$

$$R = \rho * l \tag{4}$$

$$I = \frac{V}{R} \tag{5}$$

$$l = \frac{l_{original}}{LCL} \tag{6}$$

$$\frac{d}{l} = \frac{l_{original} * \Delta t}{l * N} \tag{7}$$