中科院软件所智能服务

机器人技术研究

汇报内容

一、智能服务机器人技术研究

- 移动机器人调研
- Xbot运动控制系统开发
- 多传感器融合技术
- 机器人自动避障
- 机器人SLAM与自主导航技术
- ROS社区机器人主页

二、腾讯优图项目合作

- 项目目标
- 关键技术
- 技术方案
- 项目内容
- 成果展示

软件所布局通用机器人软件平台

♀ 背景

- ▽ 智能机器人是当前的热门领域,有重要的研究价值和巨大的成果转化空间
- ▽ 智能机器人软件平台系统集合了协同网络、操作系统、人机交互、人工智能、云计算与大数据等多个学科方向的核心和前瞻技术,符合交叉融合和协同创新的特点
- 与研究所"一三五"中的基础软件、高可信软件两项"突破",以及自然人机交互、云计算与大数据、智能协同网络、自然语言处理等"培育"都有紧密联系

♥ 研究目标和内容

- ♀ 目标: 满足智能机器人科研和开发需求的通用软件系统平台
- 主要内容: 面向智能机器人的云端协同软件系统平台、智能服务机器人

移动机器人调研

Turtlebot

Double

RoboMing

Intel

ZEUS

机器人底盘指标	技术需求		
移动速度	0.1~2m/s可调		
载重能力	不少于20kg		
自平衡性	有		
近场测距传感器	有		
惯性器件IMU	有		
续航能力	不少于8小时		
码盘计数	不小于8000码/转		
底盘控制方式	线速度+角速度或线速度+ 半径		
控制频率	2HZ左右		
跨越高度	1cm左右		
机器人驱动支持	有		

Turtlebot

Willow Garage设计的一款的机器人开发平台。

优点: 价格低廉 功能丰富 社区强大

缺点: 机身太轻 塑料外壳 载重较小

Turtlebot with coffee machine

Double

一款定位于远程操控以及在线视频用途的室内移动机器人。

优点:远程视频和控制

缺点:控制系统完全闭源,不适合二次开发

RoboMing

国产仿Double的自平衡机器人

优点: 远程视频和控制

缺点:控制系统完全闭源,不适合二次开发

ROBOT INTERACTION LAB

以服务机器人的感知和交互为重点研究方向, 开发的视觉感知技术,硬件参考设计,人机交 互理念等前沿成果为学术界与产业界提供了研 究平台,加速了机器人的原型开发。目前已开 发完成平板机器人原型"茵茵"和"泰勒"。

ZEUS

自主建图定位和导航

- 无需人为协助的情况下自主建立环境地图
- 寻找路径并移动到指定的目标地点,避开障碍物
- 支持多路线巡逻模式

第三方应用扩展

- 完全开放的软硬件平台
- 提供外扩硬件固定位,可扩展显示器、传感器等设备通过SLAMWARE SDK进行业务逻辑应用开发

自主返回充电

- 通过自主导航定位技术, Zeus将在电池电量低时自动返回充 电坞充电
- 支持可外部调度的预约式充电

云端远程管理

• 透过SLAMWARE机器人云服务,可在远程对所有注册的Zeus平 台进行统一调度管理

软件所机器人: Xbot

硬件改造

- 校准超声测距 模块
- 添加激光雷达
- 添加ASUS深度 摄像头
- •添加显示平板

软件开发

- 重算IMU惯性 单元数据
- 完善控制指令
- 解码多元数据
- 传感器数据预处理
- 实时预估机器 人运动轨迹

算法研发

- 多种路径规划 算法
- 机器人SLAM 算法
- 多传感器数据融合算法
- 机器人自主导 航算法

Xbot激光测距、视觉传感器

传感器类 型	指标名称	指标数据	误差	
编码器	编码率	8000码/转码/转		
	测距范围	10~50cm	1cm	
超声测距	盲区范围	<10cm		
红外测距	工外测距 测距范围 0.05~0.45m		1cm	
IMIT	角度范围	0~360		
IMU	缺陷 数据跳变			
	测距角度	0~360		
	测距范围	6m	5cm	
RPLidar	转动频率	5.5Hz		
	扫描频率	2000Hz		
	盲区	<0.15m		
	测距范围	0.8~3.5m	5cm	
ASUS	盲区	<0.8m		
	水平角度	45		
	竖直角度	57.5		

机器人动力学轨迹预估

$$\dot{P} = \begin{bmatrix} \dot{x}_R & \dot{y}_R & \dot{\theta}_R \end{bmatrix}^T \qquad \begin{bmatrix} \dot{x}_R \\ \dot{y}_R \\ \dot{\theta}_R \end{bmatrix} = \begin{bmatrix} \cos \theta_R & 0 \\ \sin \theta_R & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ \omega \end{bmatrix}$$

$$\begin{cases} \dot{x}_R = v \cdot \cos \theta_R = \frac{(v_R + v_L) \cdot \cos \theta_R}{2} \\ \dot{y}_R = v \cdot \sin \theta_R = \frac{(v_R + v_L) \cdot \sin \theta_R}{2} \\ \dot{\theta}_R = \frac{(v_R - v_L)}{l} \end{cases}$$

多传感器数据融合技术

多传感器数据融合技术

性能指标		扫描 (deg		2D扫描角度 (deg)	扫描频率 (Hz)	扫描。 (n		悬空物 体感知	人体 检测	玻璃影响	定位影响
	Н	V	D			min	max				
融合前	58	0	0	58	6.8	0.8	3.0	无	无	无法测 距玻璃	単个平面
融合后	58	45	70	240+-10	33	0.15	6.0	有	可扫 描轮 廓	无法测 距玻璃	整个前方轮廓

机器人自动避障

机器人导航主要解决三个问题:

- 1.我在何处? (感知与定位)
- 2.我要往哪里走? (路径规划)
- 3.我该如何到达那里? (运动执行)

Where am I going? (Cognition)

Position, map

Route plan

Where am I? (Perception, localization)

How do I get there? (Motion control)

Environment

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

预制路径:设置好路径点,系统自动规划并保存

路径规划算法:JPS算法,规划速度大大提升

JPS算法 VS Dijkstra算法

平滑运动:设定加速度、速度上限

位置修复: 0.5HZ更新自身位置

定位算法: AMCL (蒙特卡洛定位)

路径规划: JMP

机器人运行效果	评估结果		
固定目标点往返运动位置误差	13.8cm		
机器人最长单次规划路径时间	<0.055s		
机器人固定目标点移动完成时间	49.6005s		
机器人防碰撞效果	<0.3m制动		
动态障碍物避障效果	待完善		
是否支持任意位置启动	暂不支持,待开发		
是否支持自动回归充电	暂不支持,待开发		
最大规划距离限制	无距离限制		

Xbot ROS社区主页

2. Video Montages

Here's there video montages of robots using ROS:

ROS 8 Year Montage Long

Documentation

About | Support | Status | answers.ros.org

Browse Software

News

Download

Submit

Search:

Robots/ Xbot

Xbot

1. Package Summary

Xbot is a both differential drive and holonomic wheeled mobile robot which armed with one rotatable platform and one updown rotatable camera box.

1.1 Base Driver

腾讯优图深度合作

人脸识别与分析

项目目标:

研发具备在室内场景进行自主巡航,人性化移动能力的签到/迎 宾机器人(人脸识别+语音识别+Xbot)

关键技术:

- 1. 人脸识别
- 2. 语音识别
- 3. 机器人避障和路径规划
- 4. 移动机器人SLAM与自主导航

项目技术方案

服务机器人项目应用层技 术由腾讯优图云端提供支 持,实现人脸识别、语音 识别与交互等功能。 机器人控制层和运动执行 层由中科院软件所开发。 控制规划层包括机器人的 底盘驱动控制、同步定位 与地图构建(SLAM)、路 径规划、自动避障、人性 化移动、安全运动保障等 功能。

腾讯优图人脸识别技术

性别 识别 五官 人脸 定位 检测 人脸 活体 分析 年龄 检测 估值 表情 关键点 识别 追踪

机器人主动人脸识别

传统人脸识别场景

机器人主动人脸识别场景

基于腾讯人脸识别的机器人个性化服务

多场景个性化定制

银行

酒店

酒店场景迎宾机器人

中国科学院软件研究所 协同创新中心 X-Lab of ISCAS

骨骼检测技术

机器人外形设计

性能对标

性能 机器人	软件所Xbot	ZEUS
移动速度(m/s)	0.01~2	0.3, 0.4, 0.5
障碍物检测	正前方三维检测	固定高度平面
自主建图定位与导航	有	有
单次路径规划时间(s)	<1	约为5
续航时间(h)	>8	2~3
可升降平台	有	无
二次开发	可扩展性好,可外接传感 器或加入自定义功能	较为封闭,数据不可获得
固定路线运行模式	有	无

请各位领导、 批评指正。

