Markov-Chain-Monte-Carlo-Verfahren und der Metropolis-Hastings Algorithmus

Elise Wolf

18. November 2023

Inhalt

Einführung in MCMC

zentrale Aspekte von Markovketten in MCMC

Metropolis Hastings Algorithmus

Konvergenz von MCMC Approximationen

Schluss

Zentrale Idee hinter MCMC

Ziel: Stichprobe aus einer Wahrscheinlichkeitsverteilung erzeugen

Problem: hochdimensionierte Daten, unbekannte Gestalt der Zielverteilung

Markovketten-Monte-Carlo-Verfahren:

irreduzible, aperiodische Markovkette mit einer invarianten Zielverteilung

Monte Carlo: Simulation von Zufallszahlen zum Finden

Monte Carlo: Simulation von Zufallszahlen zum Finden approximativer Lösungen

Probleme bei der Anwendung von Monte Carlo

$$T_n(f) = \frac{1}{n} \sum_{i=1}^n f(X_i) \xrightarrow[n \to \infty]{} \int_{\Omega} f(x) p(x) dx = \mathbb{E}_p[f(X)]$$

Beispiel: Gaußverteilung $\sqrt{\frac{1}{2\pi}}e^{-\frac{x^2}{2}}$ auf [-a,a]

Abbildung: Durchschnittliche Werte des Integrals über die Anzahl der Zufallszahlen K. Quelle: hanada2022 Hanada, MCMC from Scratch

Effizienzsteigerung durch MCMC

Langsame Konvergenz für großes a.

Multivariate Verteilung, hochdimensionale Regionen.

Algorithm 1: Metropolis-Algorithmus

- 1 Wähle einen Startwert x_0 .
- 2 for t = 0, 1, 2, ... do
- 3 Wähle eine uniformverteilte Zufallszahl δ_t .
- **4** Schlage einen Kandidaten x_{t*} vor: $x_{t*} = x_t + \delta_t$.
- 5 Führe den Metropolis-Test durch:
- 6 Berechne die Akzeptanzwahrscheinlichkeit:
- 7 $p(x_t, x_{t*}) = \min\left(1, \frac{f(x_{t*})}{f(x_t)}\right) \in [0, 1].$
- 8 Generiere eine uniformverteilte Zufallszahl u in [0,1].
- 9 if $u \leq p(x_t, x_{t*})$ then
- 10 Akzeptiere den Kandidaten: $x_{t+1} \leftarrow x_{t*}$. else
- 11 Lehne den Kandidaten ab: $x_{t+1} \leftarrow x_t$.

Fundamentalsatz für ergodische Markovketten

Sei $(X_n)_{n\in\mathbb{N}_0}$ eine irreduzible, aperiodische, rekurrente Markovkette mit Zustandsraum E und Übergangsmatrix $P=(p(x,y))_{x,y\in E}$. Dann gilt für alle $x,y\in E$:

$$\lim_{n\to\infty} p_n(x,y) = \begin{cases} \frac{1}{\mathbb{E}_y[S_y]}, & \text{falls } \mathbb{E}_y[S_y] < \infty, \\ 0, & \text{falls } \mathbb{E}_y[S_y] = \infty. \end{cases}$$

Im positiv rekurrenten Fall konvergiert somit $p_n(x, y)$ gegen die (eindeutig bestimmte) Gleichgewichtsverteilung $\pi(y) = \frac{1}{\mathbb{E}_y[S_y]}$.

Def. Markovkette

Definition

Sei $P = (p(x,y))_{x,y \in E}$ eine stochastische Matrix und $v: E \to [0,1]$ ein Wahrscheinlichkeitsvektor. Ein stochastischer Prozess $(x_n)_{n \in \mathbb{N}_0}$ auf $(\Omega, \mathcal{F}, \mathbb{P})$ mit Zustandsraum E heißt (zeitinhomogene) Markovkette mit Übergangsmatrix P und Startverteilung v (kurz: (v, P)-Markovkette), falls:

- (i) $\mathbb{P}[X_{n+1} = x_{n+1} | X_0 = x_0, \dots, X_n = x_n] = p(x_n, x_{n+1}) \ \forall \ n \in \mathbb{N}_0$ und $x_0, \dots, x_{n+1} \in E$ mit $\mathbb{P}[X_0 = x_0, \dots, X_n = x_n] > 0$.
- (ii) $\mathbb{P}[X_0 = x_0] = v(x_0) \ \forall \ x_0 \in E$.

Beispiel einer Markovkette

Abbildung: Graph einer einfachen symmetrischen Irrfahrt auf $\ensuremath{\mathbb{Z}}$

Irreduzibilität

Definition

Eine Markovkette mit Zustandsraum E und Übergangsmatrix $P = (p_{ij})$ heißt irreduzibel, wenn $\forall x, y \in E$ und $\exists n \in \mathbb{N}$ gilt:

$$p_n(x,y) > 0$$
 und $p_n(y,x) > 0$,

wobei $p_n(x, y)$ die Einträge der n-ten Potenz der Übergangsmatrix P sind.

einhergehende Definitionen

Definition (erste Rückkehr- bzw. Treffzeit S_A)

$$S_A(\omega) := \inf\{n \in \mathbb{N} : X_n(\omega) \in A\}$$

Definition (Starke Markoveigenschaft)

$$P_{\nu}[(X_T, X_{T+1}, \ldots) \in A \mid F, X_T = x, T < \infty] = P_{x}[(X_0, X_1, \ldots) \in A]$$

rekurrenter Zustand $\mathbb{P}_x[S_x < \infty] = 1$. positiv rekurrenter Zustand $\mathbb{E}_x[S_x] < \infty$.

Beispiel einer reduziblen Markovkette

Aperiodizität

Definition (Periode)

 $\forall x \in E \text{ heißt } d(x) = \operatorname{ggT}\{n \in \mathbb{N}_0 : p_n(x,x) > 0\} \text{ die Periode des Zustands } x. \text{ lst } d(x) = 1, \text{ so heißt der Zustand } x \text{ aperiodisch.}$

Beispiel einer periodischen Markovkette

Periodische Markovkette n einen anderen zu gelangen, benötigt 2*n* Schrit

Von einem Zustand in einen anderen zu gelangen, benötigt 2n Schritte, z.B. $n \ge 2$ für Zustand 1 und $n \ge 1$ für Zustand 3

invariantes Maß

Definition (Invariantes Maß, Gleichgewichtsverteilung)

$$\pi(x) = (\pi P)(x) = \sum_{y \in E} \pi(y) p(y, x) \quad \forall x \in E.$$

Falls π invariant und eine Verteilung ist, d.h., $\pi[E] = 1$, so nennt man π eine **Gleichgewichtsverteilung** oder invariante Verteilung. stärkere Aussage:

Definition (reversibles Maß)

Ein Maß π auf E heißt reversibel bezüglich einer stochastischen Matrix $P = (p(x,y))_{x,y \in E}$, falls die sogenannte Detailed Balance Bedingung erfüllt ist:

$$\pi(x) \cdot p(x, y) = \pi(y) \cdot p(y, x) \quad \forall x, y \in E.$$

Fundamentalsatz für ergodische Markovketten

Sei $(X_n)_{n\in\mathbb{N}_0}$ eine irreduzible, aperiodische, rekurrente Markovkette mit Zustandsraum E und Übergangsmatrix $P=(p(x,y))_{x,y\in E}$. Dann gilt für alle $x,y\in E$:

$$\lim_{n\to\infty} p_n(x,y) = \begin{cases} \frac{1}{\mathbb{E}_y[S_y]}, & \text{falls } \mathbb{E}_y[S_y] < \infty, \\ 0, & \text{falls } \mathbb{E}_y[S_y] = \infty. \end{cases}$$

Im positiv rekurrenten Fall konvergiert somit $p_n(x, y)$ gegen die (eindeutig bestimmte) Gleichgewichtsverteilung $\pi(y) = \frac{1}{\mathbb{E}_y[S_y]}$.

Kopplung

Definition

Eine bivariate Markovkette $((X_n, Y_n))_{n \in \mathbb{N}_0}$ $\forall n \in \mathbb{N}_0, (x, y), (x', y') \in E \times E$ gilt:

$$\mathbb{P}[X_{n+1} = x' \mid (X_n, Y_n) = (x, y)] = p(x, x')$$

$$\mathbb{P}[Y_{n+1} = y' \mid (X_n, Y_n) = (x, y)] = p(y, y')$$

 $p'((x,y),(x',y')) := p(x,x') \cdot p(y,y')$ eine unabhängige Kopplung.

Metropolis-Hastings-Algorithmus in allgemeiner Form

Algorithm 2: Metropolis-Hastings Algorithm

- 1 **Input**: Vorschlagswahrscheinlichkeit $q(x_j|x_i)$,
- 2 symmetrische Funktion $s(x_i, x_j)$,
- 3 Zielverteilung π für $x_i, x_j \in S$, $k \in \mathbb{N}$, wobei k eine Iteration über die Wiederholungen
- 4 Output: approximiertes Sample $X \sim \pi$
- 5 Initializierung: wähle beliebigen Startpunkt $x_0 \in S$

Metropolis-Hastings-Algorithmus in allgemeiner Form

Algorithm 3: Metropolis-Hastings Algorithm

- 1 repeat
- 2 until k = 0, 1, 2, ...;
- 3 Übergangswahrscheinlichkeit: $x(k^*) \sim q(\cdot|x(k))$ Akzeptanzwahrscheinlichkeit: $\rho(x(k), x(k^*)) = s(x(k), x(k^*)) \cdot \frac{\pi(x(k))q(x(k))x(k^*)}{\pi(x(k))q(x(k^*)|x(k)) + \pi(x(k^*))q(x(k)|x(k^*))}$ Test und Aktualisierung: Generiere eine uniformverteilte Zufallszahl u in [0, 1]. if $u \leq \rho(x(k), x(k^*))$ then
- 4 Akzeptiere den Kandidaten: $x(k+1) \leftarrow x(k^*)$. else
- 5 Lehne den Kandidaten ab: $x(k+1) \leftarrow x(k)$. Konvergenz

Version von Hasting 1970

symmetrische Funktion s(x,y) geeignet umdefinieren:

$$s(x(k),x(k^*)) = \frac{\pi(x(k))q(x(k^*)|x(k)) + \pi(x(k^*))q(x(k)|x(k^*))}{\max(\pi(x(k))q(x(k^*)|x(k)), \pi(x(k^*))q(x(k)|x(k^*)))}$$

Umformen gibt für die Akzeptanzwahrscheinlichkeit

$$\rho(x(k), x(k^*)) = \min\left(1, \frac{\pi(x(k^*))q(x(k)|x(k^*))}{\pi(x(k))q(x(k^*)|x(k))}\right)$$

$$\forall \pi(x(k))q(x(k^*)|x(k)).$$

Burn-In Phase

Abbildung: verschieden Sample-Sizes. Konvergenz gegen die invariante Gleichgewichtsverteilung.

Konvergenz gegen die invariante GGV

Wird eine Markovkette mit Hilfe des Metropolis-Hastings-Algorithmus konstruiert, so ist π deren invariante Wahrscheinlichkeitsverteilung.

IDEE.

Es seien π eine Wahrscheinlichkeitsverteilung, Q eine Vorschlagsverteilung,

$$\begin{array}{l} \rho(x(k),x(k^*)) = \min \left(1, \frac{\pi(x(k^*))q(x(k)|x(k^*))}{\pi(x(k))q(x(k^*)|x(k))}\right), \\ p(x(k),x(k^*)) = q(x(k^*)|x(k))\rho(x(k),x(k^*)) \text{ für } x(k) \neq x(l) \text{ und } \\ p(x(k),x(k)) = 1 - \sum_{x(k) \neq x(k^*)} p(x(k),p(x(k^*)) \end{array}$$
 Wenn

$$\pi(x(k))p(x(k),x(k^*)) = \pi(x(k))q(x(k^*)|x(k))\rho(x(k),x(k^*))$$

= $\pi(x(k^*))q(x(k)|x(k^*))\rho(x(k^*),x(k)) = \pi(x(k^*))p(x(k^*),x(k))$

erfüllt ist, folgt aus der Reversibilität von π auch die Invarianz.

Zusammenfassung

Einführung:

MCMC zur Approximation von Verteilungen

Zentrale Aspekte:

Herausforderungen bei hochdimensionalen Räumen, gezielte Exploration des Zustandsraums. Fundamentalsatz für ergodische Markovketten.

Metropolis Hastings:

Vorschlagsverteilung und Akzeptanzwahrscheinlichkeit.

Konvergenz:

Fundamentalsatz: Konvergenz gegen stationäre Verteilung.

Fragen

Fragen?