

FCC 47 CFR PART 15 SUBPART B TEST REPORT

For

Applicant: Lanstar Mobile Co., Ltd.

Address: Unit F&G, 17F, A Building, Hua Qiang Plaza, Huaqiang Road

North, Futian District, Shenzhen, China

Product Name: GSM MOBILE PHONE

Model Name: Q8

Brand Name: N/A

FCC ID: X5W-Q8

Report No.: STS100104F1

Date of Issue: February 4, 2010

Issued by: Shenzhen Super Test Service Technology Co., Ltd.

No.5, Nangshan 2nd Rd., North Hi-Tech Industrial Park ,Nanshan, Address :

Shenzhen, Guangdong ,China

Tel: 86-755-2795 8522

Fax: 86-755-2795 8022

The report consists 31 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by STS. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver.

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	3
2. GENERAL INFORMATION	4
2.1 PRODUCT INFORMATION	4
2.2 OBJECTIVE	5
2.3 TEST STANDARDS AND RESULTS	5
2.4 ENVIRONMENTAL CONDITIONS	5
3. TEST METHODOLOGY	6
3. 1TEST FACILITY	6
3.2 GENERAL TEST PROCEDURES	6
3.3 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	7
4 SETUP OF EQUIPMENT UNDER TEST	8
4.1 SETUP CONFIGURATION OF EUT	8
4.2 SUPPORT EQUIPMENT	8
4.3 TEST EQUIPMENT LIST	9
5. 47 CFR PART 15B REQUIREMENTS	10
5.1 GENERAL INFORMATION	10
6. LINE CONDUCTED EMISSION TEST	12
6.1. LIMITS OF LINE CONDUCTED EMISSION TEST	12
6.2. BLOCK DIAGRAM OF TEST SETUP	12
6.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	13
6.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	13
6.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	14
7. RADIATED EMISSION TEST	15
7.1. LIMITS OF RADIATED DISTURBANCES AT 3M DISTANCES FOR CLASS B	15
7.2 TEST DESCRIPTION	15
7.3 TEST RESULT	17
APPENDIX 1	18
PHOTOGRAPHS OF TEST SETUP	18
APPENDIX 2	21
PHOTOGRAPHS OF EUT	21

1. VERIFICATION OF CONFORMITY

Equipment Under Test: GSM MOBILE PHONE

Brand Name: N/A

Model Number: Q8

Series Model Name: N/A

Series Model Difference N/A

description:

FCC ID: X5W-Q8

Applicant: Lanstar Mobile Co., Ltd.

Unit F&G, 17F, A Building, Hua Qiang Plaza, Huagiang Road North,

Futian District, Shenzhen, China

Manufacturer: Lanstar Mobile Co., Ltd.

Unit F&G, 17F, A Building, Hua Qiang Plaza, Huaqiang Road North,

Futian District, Shenzhen, China

Technical Standards: FCC Part 15 B **File Number:** STS100104F1

Date of test: Jan. 21,2010 ~ February 4, 2010

Deviation:NoneCondition of Test Sample:NormalTest Result:PASS

The above equipment was tested by Shenzhen Super Test Service Technology Co., Ltd. for compliance with the requirements set forth in FCC Part 15 and the Technical Standards mentioned above. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment and the level of the immunity endurance of the equipment are within the compliance requirements.

The test results of this report relate only to the tested sample identified in this report.

Tested by (+ signature):

Petter Ping February 4, 2010

Review by (+ signature):

July Wen February 4, 2010

Approved by (+ signature):

Terry Yang February 4, 2010

Petter ping

2. GENERAL INFORMATION

2.1 PRODUCT INFORMATION

EUT1- Mobile Phone	
Description:	GSM MOBILE PHONE
Model Name:	Q8
Model Difference description:	
Serial No.:	
IMEI No.:	135790246811220
Frequency:	GSM 850MHz/1900MHz
Hardware Version:	Q8_V1.1
Software Version:	Q8T_V2.0.0
EUT2- Battery	
Description:	Lithium-ion Battery
Model Name:	N/A
Brand Name:	N/A
Manufacturer:	Shenzhen Yisinuo Electron Co., Ltd.
Capacitance:	850 mAh
Rated Voltage:	3.7V
Charge Limit:	4.2V
EUT3 – Power Supply	
Description:	Travel Charger
Model Name:	N/A
Brand Name:	N/A
Manufacturer:	Shenzhen Tianyin Electron Co., Ltd.
Rated Input:	AC 100-240V,50/60Hz, 300mA
Rated Output:	DC 5.0V, 950mA
Length DC USB cable:	1.00m

NOTE:

- 1. The EUT is a model of GSM Portable Mobile Station (MS). It consists of **hand telephone set**, **lithium battery**, **USB Cable (data/power)**, **Earphone** and **charger** as listed above.
- 2. Please refer to Appendix 2 for the photographs of the EUT. For a more detailed features description about the EUT, please refer to User's Manual.

2.2 OBJECTIVE

Perform FCC Part 15 Subpart B tests for FCC Marking.

2.3 TEST STANDARDS AND RESULTS

Test items and the results are as bellow:

EMISSION						
Standard Item Result Remarks						
FCC 47 CFR Part 15 Subpart B (10-1-05 Edition)	§15.107	Conducted Emission	PASS	Meet Class B limit		
	§15.109	Radiated Emission	PASS	Meet Class B limit		

Note:

- 1. The test result judgment is decided by the limit of measurement standard
- 2. The information of measurement uncertainty is available upon the customer's request.

2.4 ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C - Humidity: 30-60 %

- Atmospheric pressure: 86-106 kPa

3. TEST METHODOLOGY

3. 1TEST FACILITY

Test Site: Most Technology Service Co.,Ltd

Location: No.5, Nangshan 2nd Rd., North Hi-Tech Industrial park, Nanshan

Shenzhen, Guangdong, China

Description: There is one 3m semi-anechoic an area test sites and two line conducted labs for final

test. The Open Area Test Sites and the Line Conducted labs are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4:2003 and CISPR

16 requirements. The FCC Registration Number is 490827.

Site Filing: The site description is on file with the Federal Communications

Commission, 7435 Oakland Mills Road, Columbia, MD 21046.

Instrument Tolerance: All measuring equipment is in accord with ANSI C63.4:2003 and CISPR 16

requirements that meet industry regulatory agency and accreditation agency

requirement.

Ground Plane: Two conductive reference ground planes were used during the Line Conducted

Emission, one in vertical and the other in horizontal. The dimensions of these ground planes are as below. The vertical ground plane was placed distancing 40 cm to the rear of the wooden test table on where the EUT and the support equipment were placed during test. The horizontal ground plane projected 50 cm beyond the footprint of the EUT system and distanced 80 cm to the wooden test table. For Radiated Emission Test, one horizontal conductive ground plane extended at least 1m beyond the periphery of the EUT and the largest measuring antenna, and covered the entire area between the EUT and the antenna. It has no holes or gaps having longitudinal dimensions larger than one-tenth of a wavelength at the highest frequency of

measurement up to 1GHz.

3.2 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4:2003, Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4:2003.

3.3 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110 10.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225 8.291 - 8.294 8.362 - 8.366 8.37625 - 8.38675 8.41425 - 8.41475 12.29 - 12.293 12.51975 - 12.52025	MHz 16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17 167.72 - 173.2 240 - 285	MHz 399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267 3332 - 3339 3345.8 - 3358	GHz 4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5 15.35 - 16.2 17.7 - 21.4 22.01 - 23.12 23.6 - 24.0 31.2 - 31.8 36.43 - 36.5
12.57675 - 12.57725 13.36 - 13.41	322 - 335.4	3600 - 4400	(²)

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

² Above 38.6

4 SETUP OF EQUIPMENT UNDER TEST

4.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

4.2 SUPPORT EQUIPMENT

Device Type	Brand	Model	FCC ID	Series No.	Data Cable	Power Cord
PC	HP	6515B		L3-AL1Z09/06		
Power Adapter	HP	92P1158			2.5 m (shield)	
Bluetooth Earphone		JF2606B	-	-	-	-

Remark:

All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.3 TEST EQUIPMENT LIST

Instrumentation: The following list contains equipment used at MOST for testing. The equipment conforms to the CISPR 16-1 / ANSI C63.2 Specifications for Electromagnetic Interference and Field Strength Instrumentation from 10 kHz to 1.0 GHz or above.

No.	Equipment	Manufacturer	Model No.	S/N	Calculator due date
1	Test Receiver	Rohde & Schwarz	ESCI	100492	2010/03/14
2	L.I.S.N.	Rohde & Schwarz	ENV216	100093	2010/03/14
3	Coaxial Switch	Anritsu Corp	MP59B	6200283933	2010/03/14
4	Terminator	Hubersuhner	50Ω	No.1	2010/03/14
5	RF Cable	SchwarzBeck	N/A	No.1	2010/03/14
6	Test Receiver	Rohde & Schwarz	ESPI	101202	2010/03/14
7	Bilog Antenna	Sunol	JB3	A121206	2010/03/14
8	Test Antenna - Horn	Schwarzbeck	BBHA 9120C		2010/03/14
9	Test Antenna - Bi-Log	Schwarzbeck	VULB 9163		2010/03/14
10	Cable	Resenberger	N/A	NO.1	2010/03/14
11	Cable	SchwarzBeck	N/A	NO.2	2010/03/14
12	Cable	SchwarzBeck	N/A	NO.3	2010/03/14
13	DC Power Filter	DuoJi	DL2×30B	N/A	2010/03/14
14	Single Phase Power Line Filter	DuoJi	FNF 202B30	N/A	2010/03/14
15	3 Phase Power Line Filter	DuoJi	FNF 402B30	N/A	2010/03/14
16	Test Receiver	Rohde & Schwarz	ESCI	100492	2010/03/14
17	Absorbing Clamp	Luthi	MDS21	3635	2010/03/14
18	Coaxial Switch	Anritsu Corp	MP59B	6200283933	2010/03/14
19	AC Power Source	Kikusui	AC40MA	LM003232	2010/03/14
20	Test Analyzer	Kikusui	KHA1000	LM003720	2010/03/14
21	Line Impendence Network	Kikusui	LIN40MA- PCR-L	LM002352	2010/03/14
22	ESD Tester	Kikusui	KES4021	LM003537	2010/03/14
23	EMCPRO System	EM Test	UCS-500-M4	V0648102026	2010/03/14
24	Signal Generator	IFR	2032	203002/100	2010/03/14
25	Amplifier	A&R	150W1000	301584	2010/03/14
26	CDN	FCC	FCC-801-M2-25	47	2010/03/14
27	CDN	FCC	FCC-801-M3-25	107	2010/03/14
28	EM Injection Clamp	FCC	F-203I-23mm	403	2010/03/14
29	RF Cable	MIYAZAKI	N/A	No.1/No.2	2010/03/14
30	Universal Radio Communication Tester	ROHDE&SCHWARZ	CMU200	0304789	2010/03/14
31	Telecommunication Antenna	European Antennas	PSA 75301R/170	0304213	2010/03/14

NOTE: Equipments listed above have been calibrated and are in the period of validation.

5. 47 CFR PART 15B REQUIREMENTS

5.1 GENERAL INFORMATION

EUT Function and Test Mode

Mode 1: Call Mode

During the measurement, the lithium battery and the charger were installed, and the MS were in charging state. A communication link was established between the MS and a System Simulator (SS).

The MS operated at GSM 850MHz/PCS1900 mid ARFCN and maximum output power.

The EUT configuration of the emission test was **MS** + **Battery**+ **Charger**.

Mode 2: Idle Mode

The MS was registered to the base station simulator but no call was set up.

The EUT configuration of the emission test was **MS** + **Battery**+ **Charger**.

Mode 3: Call Mode with Earphone

During the measurement, the lithium battery and the charger were installed, and the MS were in charging state. A communication link was established between the MS and a System Simulator (SS).

The MS operated at GSM 850MHz/PCS1900 mid ARFCN and maximum output power.

The EUT configuration of the emission test was **MS** + **Battery**+ **Earphone**.

Mode 4: FM Mode

During the test, the MS was playing the FM function continuously.

The EUT configuration of the emission test was **MS** + **Battery**+ **Earphone**.

Mode 5: Bluetooth Mode

During the measurement, the lithium battery and the charger were installed, and the MS were in charging state. A communication link was established between the EUT and the Bluetooth Earphone and a System Simulator (SS).

The MS operated at GSM 850MHz/PCS1900 mid ARFCN and maximum output power

During the test, the MS was playing the Bluetooth function continuously.

The EUT configuration of the emission test was MS + Battery+ BT Earphone.

Mode 6: GPRS Mode

A communication link was established between the MS and a System Simulator (SS)

During the test, the MS was operating at GPRS mode and made the data transmission function continuously.

The MS operated at GSM 850MHz/PCS1900 mid ARFCN and maximum output power .

The EUT configuration of the emission test was MS + Battery+ Charger.

Mode 7: MP3/MP4 Mode

During the test, the MS was playing the MP3/MP4 function continuously.

The EUT configuration of the emission test was MS + Battery + Charger.

Mode 8: Camera Mode

During the test, the MS was playing the camera function continuously.

The EUT configuration of the emission test was MS + Battery+ Charger.

Mode 9: USB Mode

During the test, the MS was connected with the notebook and made the data transmission function continuously.

The EUT configuration of the emission test was **MS + Battery+ USB Cable+ Notebook** (Acer, Model Name: M52180, SNID: 63401866020).

Mode 10: TV Mode

During the test, the MS was playing the TV function continuously.

The EUT configuration of the emission test was **MS** + **Battery**+ **Charger**.

6. LINE CONDUCTED EMISSION TEST

6.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Fraguency	Maximum RF Line Voltage			
Frequency	Q.P.(dBuV)	Average(dBuV)		
150kHz-500kHz	66-56	56-46		
500kHz-5MHz	56	46		
5MHz-30MHz	60	50		

^{**}Note: 1. the lower limit shall apply at the transition frequency.

6.2. BLOCK DIAGRAM OF TEST SETUP

^{2.} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

6.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per FCC Part 15 (see Test Facility for the dimensions of the ground plane used). When the EUT is floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

- 2) Support equipment, if needed, was placed as per FCC Part 15.
- 3) All I/O cables were positioned to simulate typical actual usage as per FCC Part 15.
- 4) The EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5) All support equipments received power from a second LISN supplying power of AC 120V/60Hz, if any.
- 6) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7) Analyzer / Receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes.
- 8) During the above scans, the emissions were maximized by cable manipulation.
- 9) The following test mode(s) were scanned during the preliminary test:

Preliminary Conducted Emission Test						
Frequency Range In	vestigated		150KHz TO 30 MHz			
Mode of operation	Date	Report No.	Worst Mode			
Call Mode	2010-01-25	STS100104F1	Q8_1(L, N)			
Idle Mode	2010-01-25	STS100104F1	Q8_2(L, N)			
TV Mode	2010-01-25	STS100104F1	Q8_3(L, N)	\boxtimes		
USB Mode	2010-01-25	STS100104F1	Q8_4(L, N)			
MP3/MP4 Mode	2010-01-25	STS100104F1	Q8_5(L, N)			
Camera Mode	2010-01-25	STS100104F1	Q8_6(L, N)			
GPRS Mode	2010-01-25	STS100104F1	Q8_7(L, N)			

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

6.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

EUT and support equipment was set up on the test bench as per step 9 of the preliminary test. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.

The test data of the worst case condition(s) was reported on the Summary Data page.

6.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

EUT: GSM MOBILE PHONE **Power**: AC 120V/60Hz

M/N : Q8 Temperature : $27\,^{\circ}\text{C}$ Mode : TV Mode Humidity : 60%

FREQ	Emissio	n Level	Limit Level(dBuV)		Mai	rgin	Line
(MHz)	QP	AV	QP	AV	QP	AVG	
0.230	53.18	44.92	63.94	53.94	-10.76	-9.02	L
0.286	47.38	39.08	61.29	51.29	-13.91	-12.21	L
0.458	42.67	35.76	56.73	46.73	-14.06	-10.97	L
1.030	35.67	33.37	57.33	47.33	-21.66	-13.96	L
0.290	48.48	37.15	60.52	50.52	-12.04	-13.37	N
0.430	43.08	36.13	57.25	47.25	-14.17	-11.12	N
0.986	40.83	35.41	56.00	46.00	-15.17	-10.59	N
2.142	33.36	32.73	56.00	46.00	-22.64	-13.27	N

Freq. = Emission frequency in MHz

Reading level = Uncorrected Analyzer/Receiver reading

Factor = Cable loss + LISN inserting loss

Emission level = Reading level + Factor
Limit = Limit stated in standard

Margin = Reading in reference to limit

"---" = The emission level complied with the Average limits, with

at least 2 dB margin, so no further recheck.

7. RADIATED EMISSION TEST

7.1. LIMITS OF RADIATED DISTURBANCES AT 3M DISTANCES FOR CLASS B

According to FCC section 15.109, except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

For frequencies above 1000MHz, the field strength limits are based on average detector. When average radiated emission measurements are specified in this part, including emission measurements below 1000MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

7.2 TEST DESCRIPTION

Test Setup:

The EUT is powered by the Battery. The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the EUT is activated and transmitting with the other Bluetooth device (Supply by the Applicant)

during the test.

For the Test Antenna:

(a) In the frequency range of 9 kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

Preliminary Radiated Emission Test						
Frequenc	y Range Investi	30 MHz TO 1000 M	Hz			
Mode of operation	eration Date Report No. Data#		Worst Mode			
Call Mode	2010-01-25	STS100104F1	Q8_1(H, V)			
Idle Mode	2010-01-25	STS100104F1	Q8_2(H, V)			
TV Mode	2010-01-25	STS100104F1	Q8_3(H, V)			
USB Mode	2010-01-25	STS100104F1	Q8_4(H, V)			
MP3/MP4 Mode	2010-01-25	STS100104F1	Q8_5(H, V)			
Camera Mode	2010-01-25	STS100104F1	Q8_6(H, V)			
Bluetooth Mode	2010-01-25	STS100104F1	Q8_7(H, V)	\boxtimes		
FM Mode	2010-01-25	STS100104F1	Q8_8(H, V)			
Call Mode with Earphone	2010-01-25	STS100104F1	Q8_9(H, V)			
GPRS Mode	2010-01-25	STS100104F1	Q8_10(H, V)			

7.3 TEST RESULT

M/N : Q8 Temperature : $27\,^{\circ}\text{C}$ Mode : Bluetooth Mode Humidity : 60%

	Frequency Range Investigated (30 MHz TO 1000 MHz)								
Freq. (MHz)	Reading(RA) (dBuV)	Corr.Factor(CF) (dB)	Measured(FS) (dBuV/m)	Limits(QP) (dBuV/m)	Safe Margins (dBuV/m)	Ant. H/V	Mark		
206.540	7.51	13.77	21.28	43.50	-22.22	Н	Ø		
383.080	6.25	18.16	24.41	46.00	-21.59	Н	Q		
569.320	5.61	22.88	28.49	46.00	-17.51	Н	Ø		
652.740	6.20	24.15	30.35	46.00	-15.65	Н	Q		
827.340	5.01	26.89	31.90	46.00	-14.10	Н	Q		
31.940	9.76	20.50	30.26	40.00	-9.74	V	Q		
383.080	6.29	18.16	24.45	46.00	-21.55	V	Q		
536.340	5.34	22.23	27.57	46.00	-18.43	V	Q		
664.380	5.55	24.29	29.84	46.00	-16.16	V	Q		
899.120	7.34	27.39	34.73	46.00	-11.27	V	Q		

Note:

The maximum radiated emission is searched using PK, QP and AV detectors; the emission levels more than the limits, and that have narrow margins from the limits will be re-measured with AV and QP detectors.

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

CONDUCTED EMISSION TEST SETUP

RADIATED EMISSION TEST SETUP

APPENDIX 2 PHOTOGRAPHS OF EUT

FRONT VIEW OF SAMPLE

BACK VIEW OF SAMPLE

LEFT VIEW OF SAMPLE

RIGHT VIEW OF SAMPLE

TOP VIEW OF SAMPLE

BOTTOM VIEW OF SAMPLE

PHOTO OF POWER SUPPLY

PHOTO OF HEADPHONE

PHOTO OF USB CABLE

PHOTO OF BATTERY

PHOTO OF THE ENTIRE SAMPLE

INTERNAL PHOTO OF SAMPLE - 1

INTERNAL PHOTO OF SAMPLE - 2

INTERNAL PHOTO OF SAMPLE – 3

INTERNAL PHOTO OF SAMPLE - 4

INTERNAL PHOTO OF SAMPLE - 5

INTERNAL PHOTO OF SAMPLE - 6

INTERNAL PHOTO OF POWER SUPPLY-1

INTERNAL PHOTO OF POWER SUPPLY-2

-----END OF REPORT-----