CSG Modelagem Geométrica

Ricardo Bustamante de Queiroz

Motivação

Constructive solid geometry

Fácil manipulação

Precisão matemática

Fácil classificação (dentro ou fora)

Trabalho

Estrutura de dados

Trabalho

Estrutura de dados

Objeto

Transformações (Rotação, Escala, Translação)

Nome

Visível ou não

Pai e filhos (Hierarquia)

CSG

Cor do objeto, CheckInside, RayCast Criação de primitivas

Operações (Membership Classification)

CSG

Um objeto pode ser:

Primitiva

Operação

Set Membership

Para compor novas formas, precisamos definir os pontos em que a nova forma geométrica estará dentro ou fora de um ponto sobre um segmento de reta

Semi-espaços

Calcular o set membership de um semi-espaço

Resolvendo equação do círculo (x-xc)²+(y-yc)²+(z-zc)²-R² para o raio r = o+dt

Primitivas

Composição de um ou mais semi-espaços

Algumas primitivas mais complexas

Possível usar modelo superficial (faces) Suposição de que o modelo é válido (watertight) In/Out definido pela Normal da face

Primitivas

Evitar necessidade de fazer set membership para cada sub-espaço.

Octree como primitiva

Também é possível utilizar uma octree como primitiva

Algoritmo SMC - União

Algoritmo SMC - Interseção

Algoritmo SMC - Diferença

RayCasting

O segmento para o SMC é criado a partir de um raio

Cada ponto de interesse guarda, além da informação IN e OUT, informações de cor e normal da superfície.

Informações adicionais, como coordenada de textura, podem ser adicionados.

No final, será considerada a cor e normal do primeiro valor "IN" no segmento resultante.

Problemas durante implementação

Decisões

Usar z-buffer no lugar de fazer raycasting

Mais eficiente, implementação menos intuitiva

Hierarquia real-time

Atualizar forma do objeto resultante ao mover uma das primitivas que o compõe

Bug no raycasting

Nada está aparecendo no momento

Solução:

Usar função CheckInside para visualizar a árvore CSG

