Lead Scoring Case Study

Presented by: Le Thinh Phat

Problem Statement

Company Background:

- X Education, an online course provider for industry professionals, generates many leads daily through various marketing channels like websites, Google, and referrals.
- When potential customers (leads) show interest, such as by filling out a form, they are passed on to the sales team for further communication (calls, emails).

Problem Statement

Current Challenge:

- Despite generating a large number of leads, the company struggles with a low conversion rate of around 30% (i.e., out of every 100 leads, only about 30 convert into paying customers).
- This inefficient process results in wasted effort, as the sales team spends time on leads that are unlikely to convert.

Objective

- X Education wants to optimize its sales process by identifying "Hot Leads", which are the most promising leads with a higher likelihood of conversion.
- By focusing on these potential leads, the company aims to increase the conversion rate to around 80%.

Approach & Methodology

- Analysis Problem Statement.
- Loading data.
- Exploring Data with Column Structure/Column Types/Value Types.
- Data Cleaning and Preparation:
 - Handle missing value:
 - Drop columns with more than 3000 missing values.
 - Drop "City" and "Country" columns because they would not be used in analysis.
 - Drop columns with uninformative categorical data
 - Drop rows with null values in "What is your current occupation", "TotalVisits", "Lead Source", "Specialization"

Approach & Methodology

- Categorical Variable Handling:
 - Created dummy variables for categorical columns.
- Training and Test Split: 70% for training, 30% for testing.
 - Model Selection: Logistic Regression was chosen due to the binary nature of the target variable "Converted".
- Scaling:
 - Scale the three numeric features: "TotalVisits", "Total Time Spent on Website", "Page Views Per Visit".
 - Fit and transform the training data

Approach & Methodology

- Use the Logistic Regression for Model Building
- Use VIF and P-values for Model Validation:
 - Variance Inflation Factor (VIF):
 - Ensured no multicollinearity.
 - All VIF values were below 5.
 - P-values:
 - All significant features had p-values < 0.05.
- Model Evaluation.
- Making Predictions on the Test Set

Explain the results

Ge	eneralized Linear Mode	l Regression Re	esults				
Dep. Variable:	 Converted	No. Observations:		4461			
Model:	GLM	Df Residuals:		4449			
Model Family:	Binomial Logit	Df Model: Scale:		11			
Link Function:				1.0000			
Method:	IRLS	Log-Likelihood:	:	-2079.1			
Date:	Mon, 23 Sep 2024	Deviance:		4158.1			
Time:	23:27:18	Pearson chi2:		4.80e+03			
No. Iterations:	7	Pseudo R-squ. ((CS):	0.3642			
Covariance Type:	nonrobust						
		coef	std err	z	P> z	[0.025	0.975]
const		0.2040	0 . 196	1.043	0 . 297	-0.179	0.587
TotalVisits		11.1489	2.665	4.184	0.000	5.926	16.371
Total Time Spent on Website		4.4223	0.185	23.899	0.000	4.060	4.78
Lead Origin_Lead Add Form		4.2051	0.258	16.275	0.000	3.699	4.712
Lead Source_Olark (1.4526	0.122	11.934	0.000	1.214	1.691	
Lead Source_Welinga	2.1526	1.037	2.076	0.038	0.121	4.185	
Do Not Email_Yes	-1.5037	0.193	-7.774	0.000	-1.883	-1.125	
Last Activity_Had a	2.7552	0.802	3.438	0.001	1.184	4.326	
Last Activity_SMS S	1.1856	0.082	14.421	0.000	1.024	1.347	
What is your currer	-2.3578	0.281	-8.392	0.000	-2.908	-1.807	
What is your currer	ed -2.5445	0.186	-13.699	0.000	-2.908	-2.186	
	Last Notable Activity_Unreachable			3.449	0.001	1.202	4.367

This is the Generalized Linear Model Regression Results

P-values:

- P-values indicate the significance of each feature (independent variable) in predicting the dependent variable "Converted".
- Lower p-values (< 0.05) indicate statistically significant predictors, meaning that changes in these variables are associated with changes in the likelihood of conversion.

Explain the results

- Significant Predictors (P < 0.05):
 - Total Visits (0.000): Highly significant; more visits increase the likelihood of conversion.
 - Total Time Spent on Website (0.000): Highly significant; more time on the website significantly correlates with conversion.
 - Lead Origin_Lead Add Form (0.000): This lead origin type is significant in predicting conversion.
- And with the Positive Coefficients: Increase the probability of conversion.
 - Total Visits (11.1489) and Total Time Spent on Website (4.4223) show that more visits and time increase the likelihood of conversion.
 - Lead Origin_Lead Add Form (4.2057): this one demonstrate a notably higher conversion rate, indicating a clear intent to enroll or seek more information.

Conclusion

In order to increase the probability of lead conversion, the top variables to prioritize for enhancing are:

- 1. Lead Origin_Lead Add Form: Both the RFE and logistic regression results indicate that this variable has a significant impact on conversion. Focusing on leads generated through this source is likely to produce better outcomes.
- 2. Last Activity_SMS Sent: The model shows that leads receiving an SMS have a higher likelihood of conversion, making SMS outreach an effective strategy.
- 3. Lead Source_Olark Chat: This source is linked to higher conversion rates, suggesting that engaging with leads through live chat positively influences conversion.