北京师范大学 2019~2020 学年第二学期期中考试试卷 (A卷)

课程名称:

数学分析 (2)

任课教师姓名:

卷面总分: 100分 考试时长: 120分钟 考试类别: 闭卷

院(系):______ 专业:_____ 年级:_____

姓 名: ______ 学号: _____

题号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	总分
成绩												8	*			

一、计算题(共50分,每题5分)

- 1. 求函数 $f(x) = \frac{1}{1+x}$ 在 x = 0 处带拉格朗日余项的泰勒公式.
- 2. 求函数 $f(x) = \frac{1}{1+x^2}$ 的凹凸区间与拐点.
- 3. $\Re \lim_{x \to \infty} \left[x x^2 \ln \left(1 + \frac{1}{x} \right) \right]$.
- 4. 求数列 $\left\{ (-1)^n \frac{n}{2n+1} \right\}$ 的上下极限.
- 5. 判断函数 $f(x) = \sin \frac{1}{x}$ 在 (0,1) 上是否一致连续, 并说明理由.
- 6. 判断级数 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n^2+1)}}$ 的敛散性.
- 7. 判断级数 $\sum_{n=0}^{\infty} \frac{1}{2^n} \left(1 + \frac{1}{n}\right)^{n^2}$ 的敛散性.
- 8. 判断级数 $\sum_{n=2}^{\infty} \ln \left[1 + \frac{(-1)^n}{n^p} \right] (p > 0)$ 的敛散性, 如果收敛, 说明是绝对收敛还是条 件收敛.
- 9. 判断反常积分 $\int_{0}^{+\infty} \frac{x^{2020}}{1+x} dx$ 的敛散性.
- 10. $\[\mathcal{C} \] f(x) = \int_{0}^{x} \cos \frac{1}{t} dt, \ \[\mathcal{R} \] f'(0). \]$

- 二、证明题(共50分,每题10分)
- 11. 叙述列紧性原理, 并用闭区间套原理证明列紧性原理.
- 12. 设 f(x) 在区间 [0,1] 上非负连续可微, f(0) = f(1) = 0, 且 $|f'(x)| \leq 1$. 求证

$$\int_{0}^{1} f(x)dx \leqslant \frac{1}{4}.$$

又问上面的不等式是否可能成为等式, 为什么?

- 13. 设 $f(x) \in R[a,b]$, 求证: $e^{f(x)} \in R[a,b]$.
- 14. 设级数 $\sum_{n=1}^{\infty} a_n (a_n > 0)$ 收敛, $r_n = \sum_{k=n}^{\infty} a_k$ 称为它的余项.
 - (1) 当 $0 时, 求证: <math>\sum_{k=1}^{n} \frac{a_k}{r_k^p} < \int_0^S \frac{dx}{x^p} (其中 S = \sum_{n=1}^{\infty} a_n);$
 - (2) 当 $0 时, 令 <math>b_n = \frac{a_n}{r_n^p}$, 求证: $\sum_{n=1}^{\infty} b_n$ 比 $\sum_{n=1}^{\infty} a_n$ 收敛慢, 即 $\sum_{n=1}^{\infty} a_n \ll \sum_{n=1}^{\infty} b_n$.
- 15. 设 f(x) 在 $[a, +\infty)$ 上一致连续,且 $\int_a^{+\infty} f(x) dx$ 收敛,证明: $\lim_{x \to +\infty} f(x) = 0$.