DC & Transient Response Outline

- DC Response
- Logic Levels and Noise Margins
- □ Transient Response
- Delay Estimation

DC Response

- \square DC Response: V_{out} vs. V_{in} for a gate (input)
- Ex: Inverter
 - When $V_{in} = 0$

$$\rightarrow$$
 $V_{out} = V_{DD}$

- When $V_{in} = V_{DD}$ -> $V_{out} = 0$
- In between, V_{out} depends on transistor size and current
- By KCL, must settle such that

$$I_{dsn} = -I_{dsp} = I_{sdp}$$

Operating Regions

☐ Transistor operating regions

Region	nMOS	pMOS
Α	Cutoff	Linear
В	Saturation	Linear
С	Saturation	Saturation
D	Linear	Saturation
Е	Linear	Cutoff

Operating Regions

□ Revisit transistor operating regions

Region	nMOS	pMOS
А	Cutoff	Linear
В	Saturation	Linear
С	Saturation	Saturation
D	Linear	Saturation
E	Linear	Cutoff

C point is called switching point, is about $V_{DD}/2$ if $\beta_n = \beta_p$

Beta Ratio

- \Box If β_p / $\beta_n \neq 1$, switching point will move from $V_{DD}/2$
- ☐ Called *skewed* gate
- Other gates: collapse into equivalent inverter

Beta Ratio

- \Box If β_p / $\beta_n \neq 1$, switching point will move from $V_{DD}/2$
- ☐ Called *skewed* gate
- Other gates: collapse into equivalent inverter

Noise Margins

□ How much noise can a gate input see before it does not recognize the input?

Noise Margins

 \square Low Noise Margin $NM_L = V_{IL} - V_{OL}$; High $NM_H = V_{OH} - V_{IH}$;

 V_{IH} =minimum high input voltage; V_{IL} =maximum low input voltage

V_{OH}=minimum high output voltage; V_{OL}=maximum low output voltage

Logic Levels

☐ To maximize noise margins, select logic levels at negative unity gain point of DC transfer characteristic

Exercise

□ 2.2, 2.4, 2.7, 2.14, 2.15, 2.16, 2.21, 2.22, 3.7

Transient Response

- □ DC analysis tells us V_{out} if V_{in} is constant regarding of time
- □ Transient analysis tells us V_{out}(t) if V_{in}(t) changes following time
 - Requires solving differential equations
- Input is usually considered to be a step or ramp signal
 - From 0 to V_{DD} or vice versa

Inverter Step Response

☐ Ex: find step response of inverter driving load cap

$$\begin{aligned} V_{in}(t) &= u(t - t_0)V_{DD} \\ V_{out}(t < t_0) &= V_{DD} \\ \frac{dV_{out}(t)}{dt} &= -\frac{I_{dsn}(t)}{C_{load}} \end{aligned}$$

$$I_{dsn}(t) = \begin{cases} 0 & t \le t_0 \\ \frac{\beta}{2} (V_{DD} - V_t)^2 & V_{out} > V_{DD} - V_t \\ \beta (V_{DD} - V_t - \frac{V_{out}(t)}{2}) V_{out}(t) & V_{out} < V_{DD} - V_t \end{cases}$$

Delay Types

- □ Delay determines how quickly the circuit is able to process data.
- In combinational circuit, two types of delay are important: contamination delay and propagation delay.

Propagation Delay Definition

- Propagation delay is the time it takes from a change in the input to the <u>completion (switching point)</u> of the change in the output (worst delay)
- □ **t**_{pdr}: rising propagation delay
 - From input change crossing $V_{DD}/2$ to rising output crossing $V_{DD}/2$ (upper bound)
- □ t_{pdf}: falling propagation delay
 - From input change crossing $V_{DD}/2$ to falling output crossing $V_{DD}/2$ (upper bound)
- □ **t**_{pd}: average propagation delay
 - $t_{pd} = (t_{pdr} + t_{pdf})/2$
- \Box **t**_r: rise time
 - From output crossing 0.2 (0.1) V_{DD} to 0.8 (0.9) V_{DD}
- \Box **t**_f: fall time
 - From output crossing 0.8 (0.9) V_{DD} to 0.2 (0.1) V_{DD}

Propagation Delay

FIG 5.7 Unloaded inverter

Delay

- When different logic gates are connected to form a circuit, the contamination and propagation delays of the individual gates sum to form the overtall circuit delays.
- Because contamination delay refers to the start of the output change:
 Overall contamination delay for a circuit is the smallest sum of
 contamination delays through gates from input to output.
- Conversely, since propagation delay refers to the completion of the output change: Overall propagation delay for a circuit is the largest sum of propagation delays through gates from input to output.

Simulated Inverter Delay

- Solving differential equations by hand is too hard
- ☐ SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!

☐ But simulations do take time to complete for large

Delay Estimation

- ☐ We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask "What if?"
- ☐ The step response usually looks like a 1st order RC response with a decaying exponential.
- ☐ Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = RC$
- ☐ Characterize transistors by finding their effective R
 - Depends on average current as gate switches

RC Values

- Capacitance
 - $C = C_g = C_{sb} = C_{db} = 2 \text{ fF/}\mu\text{m}$ of gate width
 - Values similar across many processes
- Resistance
 - R \approx 2 K $\Omega^*\mu m$ in 180 nm process
 - Improves with shorter channel lengths
- □ Unit transistors
 - May refer to minimum contacted device $(4\lambda/2\lambda)$
 - Or maybe 1 μm wide device
 - Doesn't matter as long as you are consistent

RC Delay Model

- ☐ Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- □ Capacitance proportional to width
- Resistance inversely proportional to width

Inverter Delay Estimate

☐ Estimate the delay of a fanout-of-1 inverter at node Y

d = 6RC

Example: 3-input NAND sizes

☐ Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

Example: 3-input NAND

☐ Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

3-input NAND Caps

☐ Annotate the 3-input NAND gate with gate and diffusion capacitance.

3-input NAND Caps

□ Annotate the 3-input NAND gate with gate and diffusion capacitance.

Elmore Delay

- ON transistors look like resistors
- ☐ Pullup or pulldown network modeled as RC ladder
- □ Elmore delay of RC ladder

$$t_{pd} \approx \sum_{\text{nodes } i} R_{i-to-source} C_i$$

$$= R_1 C_1 + (R_1 + R_2) C_2 + \dots + (R_1 + R_2 + \dots + R_N) C_N$$

Example: 2-input NAND

☐ Estimate worst-case rising and falling delay of 2-input NAND driving *h* identical gates.

Example: 2-input NAND

 □ Estimate worst case rising propagation delays of a 2-input NAND driving h identical gates.

Example: 2-input NAND

☐ Estimate falling propagation delays of a 2-input NAND driving *h* identical gates.

$$t_{pdf} = (2C)\left(\frac{R}{2}\right) + \left[\left(6+4h\right)C\right]\left(\frac{R}{2} + \frac{R}{2}\right)$$

$$= (7+4h)RC$$

Delay Components

- Delay has two parts (components)
 - Parasitic delay—determined by the gate driving its own internal diffusion capacitance
 - 6 RC or 7 RC for the previous NAND2
 - Independent of load
 - Effort delay—depends on the ratio of external load capacitance to input capacitance. The capacitance ratio is called the electrical effort or fanout, will be discussed later.
 - 4h RC for the previous NAND2
 - Proportional to load capacitance

Contamination Delay

- □ Best-case (contamination) delay can be substantially less than propagation delay.
- ☐ Ex: If both inputs fall (from '1' go to '0') simultaneously

Diffusion Capacitance

- ☐ we assumed contacted diffusion on every s and d.
- ☐ Good layout minimizes diffusion area
- ☐ Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion help too

Layout Comparison

■ Which layout is better?

Exercise

- **4.2**, 4.3, 4.4
- Develop an one bit full adder function and schematic circuit
- Develop a half adder function and schematic circuit
- □ Draw the schematic circuits of a latch and a rising edge trigger DFF (refer to the previous class note by using transmission gate and other logic)