

Name: **Anna Houštecká / Yaroslav Korobka** Exercise Session: **1**

Course: Econometrics II Date: May 30, 2024

Problem 1

Suppose that the random effects model $y_{it} = x'_{it}\beta + \eta_i + v_{it}$ is to be estimated with a panel in which the groups have different numbers of observations. Let T_i be the number of observations in group i. Show that the pooled least squares estimator is unbiased and consistent despite this complication.

Solution 1

The model is equivalent to

$$y_i = X_i \beta + v_i + \eta_i \iota$$
, $y_i \in \mathbb{R}^{T_i}$, $X_i \in \mathbb{R}^{T_i \times K}$, $v_i \in \mathbb{R}^{T_i}$, $\iota := (1, \dots, 1)' \in \mathbb{R}^{T_i}$, $i = 1, \dots, n$,

and given the random effects model assumption, $\mathbb{E}[\eta_i x_{it}] = 0$. The pooled OLS estimator of β is

$$\hat{\beta} = \left(\sum_{i=1}^{n} X_i' X_i\right)^{-1} \sum_{i=1}^{n} X_i' y_i$$

given that $\sum_{i=1}^{n} X_i' X_i$ is invertible. To show the bias, rewrite

$$\hat{\beta} = \left(\sum_{i=1}^{n} X_{i}' X_{i}\right)^{-1} \sum_{i=1}^{n} X_{i}' \left(X_{i} \beta + v_{i} + \eta_{i} \iota\right)$$

$$= \beta + \left(\sum_{i=1}^{n} X_{i}' X_{i}\right)^{-1} \sum_{i=1}^{n} X_{i}' \left(v_{i} + \eta_{i} \iota\right)$$

$$= \beta + \left(\sum_{i=1}^{n} X_{i}' X_{i}\right)^{-1} \sum_{i=1}^{n} X_{i}' u_{i}$$

with $u_i := v_i + \eta_i \iota$. Hence, the bias $\mathbb{E}[\hat{\beta} - \beta | X_i]$ is zero if $\mathbb{E}[X_i' u_i | X_i] = X_i' \mathbb{E}[u_i | X_i] = X_i' \left(\mathbb{E}[v_i | X_i] + \mathbb{E}[\eta_i | X_i]\right) = 0$. It holds because the first expectation is zero by the i.i.d. independent mean zero errors v_{it} , and the second expectation is zero by the random effects assumption and the law of iterated expectations.

To show consistency, rewrite

$$\hat{\beta} - \beta = \left(\frac{1}{n} \sum_{i=1}^{n} X_i' X_i\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} X_i' u_i\right).$$

As $n \to \infty$, using the weak law of large numbers and Slutsky's theorem, we have that

$$\hat{\beta} - \beta \stackrel{p}{\to} Q^{-1} \mathbb{E}[X_i' u_i],$$

where $\lim_{n\to\infty} n^{-1} \sum_{i=1}^n X_i' X_i = \mathbb{E}[X_i' X_i] := Q$ is a non-deficient matrix with full rank. Under the random effects assumption and arguments as above, we have that $\mathbb{E}[X_i' u_i] = 0$. Hence, the estimator is consistent.

Problem 2

Consider $y_{it} = x'_{it}\beta + \eta_i + v_{it}$, i = 1, ..., N, t = 1, ..., T, where $v_{it} \sim \mathcal{N}(0, \sigma^2)$ and $\beta = 0$. Write out the likelihood for estimating η_i and σ^2 , and show that the MLE estimator $\hat{\sigma}^2$ is biased when $T < \infty$.

Solution 2

From the setup, it implies that $y_{it} \sim \mathcal{N}(\eta_i, \sigma^2)$. The individual log-likelihood for each i (across T) is then

$$\log \mathcal{L}(y_{it}|\eta_i, \sigma^2) = C_0 - \frac{T}{2}\log \sigma^2 - \frac{1}{2\sigma^2} \sum_{t=1}^{T} (y_{it} - \eta_i)^2$$

where C_0 is some constant independent of η_i and σ^2 . The ML estimator of η_i is the solution to the equation

$$\frac{\partial \log \mathcal{L}(y_{it}|\eta_i, \sigma^2)}{\partial \eta_i} = \sum_{t=1}^{T} (y_{it} - \hat{\eta}_i) = 0,$$

which is $\hat{\eta}_i = T^{-1} \sum_{t=1}^T y_{it} := \bar{y}_i$. To estimate σ^2 , we use the joint log-likelihood (across i and T),

$$\log \mathcal{L}(y_{it}|\eta_i, \sigma^2) = C_1 - \frac{NT}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{N} \sum_{t=1}^{T} (y_{it} - \eta_i)^2$$

where C_1 is some constant independent of η_i and σ^2 . The ML estimator of σ^2 is the solution to the equation

$$\frac{\partial \log \mathcal{L}(y_{it}|\eta_i, \sigma^2)}{\partial \sigma^2} = -\frac{NT}{2} \cdot \frac{1}{\hat{\sigma}^2} - \frac{1}{2\hat{\sigma}^4} \sum_{i=1}^N \sum_{t=1}^T (y_{it} - \hat{\eta}_i)^2 = 0.$$

Substituting for $\hat{\eta}_i$ and rearranging, we have

$$\hat{\sigma}^2 = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} (y_{it} - \bar{y}_i)^2.$$

Expectation of the estimator is

$$\mathbb{E}[\hat{\sigma}^{2}] = \mathbb{E}\left[\frac{1}{T}\sum_{t=1}^{T}(y_{it} - \bar{y}_{i})^{2}\right]$$

$$= \mathbb{E}\left[\frac{1}{T}\sum_{t=1}^{T}y_{it}^{2} - \frac{2}{T}\sum_{t=1}^{T}y_{it}\bar{y}_{i} + \frac{1}{T}\sum_{t=1}^{T}\bar{y}_{i}^{2}\right]$$

$$= \sigma^{2} - \frac{2}{T}\sum_{t=1}^{T}\mathbb{E}[y_{it}\bar{y}_{i}] + \frac{1}{T}\sum_{t=1}^{T}\mathbb{E}[\bar{y}_{i}^{2}]$$

$$= \sigma^{2} - \frac{2}{T}\sigma^{2} + \frac{1}{T}\sigma^{2} = \sigma^{2} - \frac{\sigma^{2}}{T},$$

which is not equal to σ^2 unless $T \to \infty$.

Problem 3

Consider $y_{it} = \mathbb{1}\{x_{it}\beta + \eta_i + v_{it} \ge 0\}$, where the errors v_{it} have the logistic cdf. Consider T = 2, $x_{i1} = 0$ and $x_{i2} = 1$, and show that the sufficient statistic for η_i is $y_{i1} + y_{i2} = 1$, i.e. conditioning on $y_{i1} + y_{i2} = 1$ implies that the MLE does not depend on η_i .

Solution 3

The log-likelihood function for two periods is given by

$$\log \mathcal{L}(y_i|x_i, \beta, \eta_i) = y_{i1} \log \Lambda (x_{i1}\beta + \eta_i) + (1 - y_{i1}) \log (1 - \Lambda (x_{i1}\beta + \eta_i)) + y_{i2} \log \Lambda (x_{i2}\beta + \eta_i) + (1 - y_{i2}) \log (1 - \Lambda (x_{i2}\beta + \eta_i)),$$

where $\Lambda(z) = 1/(1 + e^{-z})$, and given known values of the covariates,

$$\log \mathcal{L}(y_i | \beta, \eta_i) = y_{i1} \log \Lambda(\eta_i) + (1 - y_{i1}) \log (1 - \Lambda(\eta_i)) + y_{i2} \log \Lambda(\beta + \eta_i) + (1 - y_{i2}) \log (1 - \Lambda(\beta + \eta_i)).$$

Taking the first derivative w.r.t. η_i , and using $\Lambda(z)'/\Lambda(z) = (1 - \Lambda(z))$, we have

$$\frac{\partial \log \mathcal{L}(y_i|\beta,\eta_i)}{\partial \eta_i} = y_{i1}(1 - \Lambda(\hat{\eta}_i)) - (1 - y_{i1})\Lambda(\hat{\eta}_i) + y_{i2}(1 - \Lambda(\hat{\eta}_i + \beta)) - (1 - y_{i2})\Lambda(\hat{\eta}_i + \beta) = 0,$$

which implies

$$y_{i1} + y_{i2} = \Lambda(\hat{\eta}_i) + \Lambda(\hat{\eta}_i + \beta).$$

Now, we discuss three cases:

- 1. if $y_{i1} + y_{i2} = 0$, $\hat{\eta}_i = -\infty$,
- 2. if $y_{i1} + y_{i2} = 2$, $\hat{\eta}_i = \infty$,
- 3. if $y_{i1} + y_{i2} = 1$, $2\hat{\eta}_i = \beta$, and $\hat{\eta}_i = -\beta/2$.

Hence, in the case 3., it is possible to identify η_i from the estimate of β only. It implies that conditional on $\zeta_i := y_{i1} + y_{i2} = 1$, the log-likelihood is independent on η_i making ζ_i a sufficient statistic.

Problem 4

Derive the bias of the OLS estimator for α in a dynamic panel of the form $y_{it} = \alpha y_{it-1} + \eta_i + v_{it}$. Are there any conditions on α that should hold for the estimator to be well-defined?

Solution 4

First, rewrite the model in recursive form,

$$y_{it} = \alpha (\alpha y_{it-2} + \eta_i + v_{it-1}) + \eta_i + v_{it}$$

$$= \alpha^2 (\alpha y_{it-3} + \eta_i + v_{it-2}) + \alpha \eta_i + \alpha v_{it-1} + \eta_i + v_{it}$$

$$= \dots$$

$$= \alpha^t y_0 + \left(\sum_{s=0}^{t-1} \alpha^s\right) \eta_i + \sum_{s=0}^{t-1} \alpha^s v_{it-s}.$$

The bias of the OLS estimator is driven by $\mathbb{E}[y_{it-1}u_{it}]$, where $u_{it} := \eta_i + v_{it}$. Using the property of the geometric series, $\sum_{k=0}^{n-1} r^k = \frac{1-r^n}{1-r}$ for |r| < 1, we have

$$y_{it-1} = \alpha^{t-1} y_0 + \left(\sum_{s=0}^{t-2} \alpha^s\right) \eta_i + \sum_{s=0}^{t-2} \alpha^s v_{it-s}$$
$$= \alpha^{t-1} y_0 + \left(\frac{1 - \alpha^{t-1}}{1 - \alpha}\right) \eta_i + \sum_{s=0}^{t-2} \alpha^s v_{it-s}.$$

Now taking expectations,

$$\begin{split} \mathbb{E}[y_{it-1}\eta_i] &= \mathbb{E}\left[\alpha^{t-1}y_0\eta_i + \left(\frac{1-\alpha^{t-1}}{1-\alpha}\right)\eta_i^2 + \sum_{s=0}^{t-2}\alpha^s v_{it-s}\eta_i\right] \\ &= \alpha^{t-1}\mathbb{E}[y_0\eta_i] + \left(\frac{1-\alpha^{t-1}}{1-\alpha}\right)\sigma_\eta^2 \neq 0. \end{split}$$

Because we have that $\mathbb{E}[y_{it-1}u_{it}] = \mathbb{E}[y_{it-1}\eta_i] + \mathbb{E}[y_{it-1}v_{it}]$, the bias is nonzero even if $\mathbb{E}[y_{it-1}v_{it}] = 0$.