CA20N EAB -0 53

ENVIRONMENTAL ASSESSMENT BOARD

ONTARIO HYDRO DEMAND/SUPPLY PLAN HEARINGS

VOLUME:

67

DATE: Tuesday, October 1, 1991

BEFORE:

HON. MR. JUSTICE E. SAUNDERS

Chairman

DR. G. CONNELL

Member

MS. G. PATTERSON

Member

14161 482-3277

2300 Yonge St. Suite 709 Toronto. Canada M4P 1E4

ENVIRONMENTAL ASSESSMENT BOARD ONTARIO HYDRO DEMAND/SUPPLY PLAN HEARING

IN THE MATTER OF the <u>Environmental Assessment Act</u>, R.S.O. 1980, c. 140, as amended, and Regulations thereunder;

AND IN THE MATTER OF an undertaking by Ontario Hydro consisting of a program in respect of activities associated with meeting future electricity requirements in Ontario.

Held on the 5th Floor, 2200 Yonge Street, Toronto, Ontario, on Tuesday, the 1st day of October, 1991, commencing at 10:30 a.m.

VOLUME 67

BEFORE:

THE HON. MR. JUSTICE E. SAUNDERS

Chairman

DR. G. CONNELL

Member

MS. G. PATTERSON

Member

STAFF:

MR. M. HARPUR

Board Counsel

MR. R. NUNN

Counsel/Manager, Information Systems

MS. C. MARTIN

Administrative Coordinator

MS. G. MORRISON

Executive Coordinator

APPEARANCES

	CAMPBELL FORMUSA)	ONTARIO HYDRO
	HARVIE)	
J.E	. HOWARD, Q.C.)	
	LANE)	
J.0	. SHEPHERD)	IPPSO
I.	MONDROW)	
J.	PASSMORE)	
R.	WATSON)	MUNICIPAL ELECTRIC
A.	MARK	j	ASSOCIATION
7,		,	
s.	COUBAN)	PROVINCIAL GOVERNMENT
	MORAN	j	AGENCIES
C.	MARLATT)	NORTH SHORE TRIBAL COUNCIL,
	ESTRIN)	UNITED CHIEFS AND COUNCILS
٠.	DOTALL	,	OF MANITOULIN, UNION OF
			ONTARIO INDIANS
			ONIARIO INDIAND
n	POCH)	COALITION OF ENVIRONMENTAL
	STARKMAN)	GROUPS
)	GROOFS
υ.	ARGUE	,	
m	ROCKINGHAM		MINISTRY OF ENERGY
1.	ROCKINGHAM		MINISIRI OF ENERGI
В	KELSEY)	NORTHWATCH
	GREENSPOON)	110111111111111111111111111111111111111
	YACHNIN)	
и.	IACHNIN	,	
T A	M. RODGER		AMPCO
0 .1	1. RODGER		1111 00
м.	MATTSON)	ENERGY PROBE
	CHAPMAN)	Ditarios Prope
υ.	CHAIRM	,	
Δ	WAFFLE		ENVIRONMENT CANADA
23.0	MILLIDE		
М.	CAMPBELL)	ONTARIO PUBLIC HEALTH
	IZZARD)	ASSOCIATION, INTERNATIONAL
11.	THUME	,	INSTITUTE OF CONCERN FOR
			PUBLIC HEALTH
			TODDIO HERBIH
C	GRENVILLE-WOOD		SESCI
G.	GKENATHTE-MOOD		DESCI
D	ROGERS		ONGA
D.	ROOLKD		011011

A P P E A R A N C E S (Cont'd)

	POCH PARKINSON)	CITY OF TORONTO
R.	POWER		CITY OF TORONTO,
			SOUTH BRUCE ECONOMIC CORP.
s.	THOMPSON		ONTARIO FEDERATION OF AGRICULTURE
в.	BODNER		CONSUMERS GAS
J.	MONGER)	CAC (ONTARIO)
K.	ROSENBERG	j	
	GATES	j	
W.	TRIVETT		RON HUNTER
М.	KLIPPENSTEIN		POLLUTION PROBE
N.	KLEER)	NAN/TREATY #3/TEME-AUGAMA
J.	OLTHUIS)	ANISHNABAI AND MOOSE RIVER/
J.	CASTRILLI)	JAMES BAY COALITION
т.	HILL		TOWN OF NEWCASTLE
м.	OMATSU)	OMAA
в.	ALLISON)	
	REID	j	
		,	
E.	LOCKERBY		AECL
c.	SPOEL)	CANADIAN VOICE OF WOMEN
U.	FRANKLIN)	FOR PEACE
В.	CARR)	
F.	MACKESY		ON HER OWN BEHALF
D.	HUNTER		DOFASCO
в.	TAYLOR)	MOOSONEE DEVELOPMENT AREA
D.	HORNER)	BOARD AND CHAMBER OF

A P P E A R A N C E S (Cont'd)

T. HEINTZMAN D. HAMER C. FINDLAY)	ATOMIC ENERGY OF CANADA
P.A. NYKANEN)	CANADIAN MANUFACTURERS ASSOCIATION - ONTARIO
G. MITCHELL		SOCIETY OF AECL PROFESSIONAL

INDEX of PROCEEDINGS

	Page No.
KEITH DOUGLAS BROWN, PAUL FRANK VYROSTKO; Sworn. JOHN KENNETH SNELSON; Recalled.	11977
Direct Examination by Mr. Campbell	11980

LIST of EXHIBITS

No.	Description	Page No.
319	Supplementary witness statement distributed according to Board's request on September 20, 1991.	11977
320	Package of overheads.	11978
321.1	Interrogatory No. 5.14.64.	12034
321.2	Interrogatory No. 5.14.6.	12039
321.3	Interrogatory No. 15.14.111.	12054
321.4	Interrogatory No. 3.14.7.	12077
321.5	Interrogatory No. 5.9.18.	12090
321.6	Interrogatory No. 5.14.233.	12091
321.7	Interrogatory No. 5.9.54.	12095
321.8	Interrogatory No. 5.14.273.	12105

1	Upon commencing at 10:33 a.m.
2	THE REGISTRAR: This hearing is now in
3	session. Please be seated.
4 .	THE CHAIRMAN: This morning we start
5	Panel 5 and I thought perhaps I should just confirm
6	some of the dates which most of you already know.
7	On October the 10th, which is a week from
8	Thursday, we will spend some time on the preliminary
9	scoping of Panel 6, the Hydraulic Panel.
10	And Monday the 14th is Thanksgiving and
11	Tuesday the 15th, there is a field trip, so there will
12	be no hearing here on Tuesday the 15th.
13	On the 18th, which is a Friday, I just
14	mention parenthetically that that is the extended date
15	for statement of concerns on Panel 6, the Hydraulic
16	Panel.
17	The Board is taking its mid-fall break on
18	the week of the 21st - that is the 21st to the 24th
19	inclusive. Our expectations based on what we have been
20	able to gather from discussions is that this panel
21	ought to be finished by the end of October, with the
22	Hydraulic Panel starting on Monday, the 4th of
23	November. To do that, I think we have to be all very
24	conscious of time. Time is a non-renewable resource.
25	And so that I am going to now read out

1	what I understand is the agreed order of
2	cross-examination.
3	I would like to say in advance that I
4	think we are very grateful to the cooperation that
5	everybody has shown in scheduling the examinations and
6	there has been really a minimum amount of down time.
7	But it is important that the order of cross-examination
8	be maintained and that people keep track of what is
9	going on so that we have as few gaps in the flow as
10	possible.
11	IPPSO will be starting the cross-
12	examination followed by MEA, followed by AMPCO,
13	followed by the Gas Association, followed by Dofasco,
14	followed by Northwatch, followed by the Coalition, CEG,
15	then the City of Toronto, Energy Probe, Pollution
16	Probe, NAPA, the North Shore Tribal Council, NAN, the
17	Moose River/James Bay Coalition, OMAA, Mrs. Mackesy and
18	the Government of Ontario.
19	Have I left anybody out or is there any
20	comment on that order? That order, we understand, has
21	been the order that was agreed by the parties.
22	Yes, sir?
23	MR. HUNTER: My name is David Hunter. I
24	am counsel for Dofasco. I will be approaching the
25	other parties to see if we might rearrange our place on

1 that list. I have a conflict at the latter part of 2 next week and the beginning of the next week. I will 3 inform the Board. THE CHAIRMAN: All right. I think, as a 5 matter of fact, I have a note of that, Mr. Hunter, and 6 if you can just coordinate with Ms. Morrison on that. 7 MR. HUNTER: Thank you. 8 THE CHAIRMAN: Mr. Thompson? 9 MR. THOMPSON: I will talk with Mrs. 10 Morrison to arrange something suitable. 11 THE CHAIRMAN: All right. Thank you. 12 Anyone else? 13 Mr. Campbell? 14 MR. B. CAMPBELL: Thank you, Mr. 15 Chairman. Appearing with me in Panel 5 is Ms. Gail 16 Karish. That is spelled K-A-R-I-S-H. 17 The Panel 5 witnesses, starting closest 18 to the Board, are Mr. Ken Snelson who has appeared 19 before you already in these proceedings and I have reminded him that he remains under oath in these 20 21 proceedings. He is Manager, Demand/Supply Integration, 22 System Planning Division of Ontario Hydro. 23 Next and in the centre of the panel is Mr. Paul Vyrostko. That is spelled V-Y-R-O-S-T-K-O. 24 25 Mr. Vyrostko is Director of the Non-Utility Generation

_	
1	Division. And farthest from the panel is Mr. Keith
2	Brown. He is Superintendent, Programs and Special
3	Studies, also in the Non-Utility Generation Division.
4	And if I could ask Mr. Brown and Mr.
5	Vyrostko to be sworn in, please.
6	KEITH DOUGLAS BROWN,
7	PAUL FRANK VYROSTKO; Sworn. JOHN KENNETH SNELSON; Recalled.
8	THE REGISTRAR: Mr. Snelson, you are
9	still under oath. Thank you.
10	MR. B. CAMPBELL: Mr. Chairman, I am
11	going to suggest that the next exhibit number be given
12	to the supplementary witness statement that was
13	distributed, according to the Board's request, on
14	September 20th, 1991.
15	THE REGISTRAR: The next exhibit number,
16	Mr. Chairman, is 319.
17	EXHIBIT NO. 319: Supplementary witness statement
18	distributed, according to the Board's request, on September 20th, 1991.
19	MR. B. CAMPBELL: So that would be
20	Exhibit 319. I have also distributed, as is our
21	practice, a package of overheads that will be referred
22	to by the panel in their direct testimony, and if that
23	package could be given the next exhibit number, that is
24	320.
25	Would that be satisfactory?

1	THE CHAIRMAN: Yes.
2	EXHIBIT NO. 320: Package of overheads
3	THE CHAIRMAN: Perhaps we might give the
4	interrogatory number now, too, and the undertaking
5	number and that will be easier.
6	THE REGISTRAR: That will be 261.79.
7	THE CHAIRMAN: No, no. We have got a new
8	panel.
9	THE REGISTRAR: Oh, a new one, I beg your
10	pardon. So it is.
11	MR. B. CAMPBELL: So we would reserve
12	then an exhibit for interrogatory listing and that
13	exhibit number would be 321, Mr. Thompson?
14	THE CHAIRMAN: 321 for interrogatories.
15	MR. B. CAMPBELL: I, of course, am
16	reluctant to
17	THE CHAIRMAN: I understand that, Mr.
18	Campbell, but still in anticipation, we can put 322
19	down for undertakings.
20	MR. B. CAMPBELL: All right.
21	I can see if I hope to win that battle I
22	am going to have to eventually drum up a little more
23	support than I presently have been able to, but I will
24	have to save it for another day.
25	Mr. Chairman, members of the panel, we

1	will certainly complete the direct testimony of this
2	panel today, I expect with some time to spare. The
3	direct testimony I guess can easily be described as
4	being in six sort of broad areas.
5	There will first be a section dealing
6	with some of the terminology and addressing some of the
7	issues associated with Hydro's promotion of non-utility
8	generation, identifying advantages and disadvantages
9	and so on in an overview sort of way.
10	Secondly then, Mr. Snelson will speak
11	briefly to the place the non-utility generation option
12	plays in the broader context of the Demand/Supply Plan
13	In the third area, Mr. Brown and Mr.
14	Vyrostko will provide some specific details on Hydro's
15	non-utility generation activities.
16	Fourth, Mr. Snelson will address system
17	integration issues.
18	Fifth, Mr. Brown will deal with the
19	forecasting of non-utility generation potential and
20	what are his expectations as to what can be attained
21	over the planning period.
22	And then finally, there will be just one
23	final area with Mr. Vyrostko dealing with how Hydro
24	intends to work with the industry to promote
25	non-utility generation.

DIRECT EXAMINATION BY MR. B. CAMPBELL:

- Q. Now, against that background, Mr.
- 3 Vyrostko, I believe, my first question is for you. In
- 4 paragraph 4 of the supplementary witness statement that
- is filed, it includes by noting that Ontario Hydro is
- 6 committed to obtaining the maximum economic non-utility
- 7 generation.

1

- 8 [10:43 a.m.]
- 9 I would like you to go through that
- 10 terminology and series of words and just explain what
- is meant by the various phrases involved, and I would
- ask you to start, please, simply by explaining what
- 13 non-utility generation is.
- MR. VYROSTKO: A. Thank you, Mr.
- 15 Campbell.
- "Non-utility generation" from Ontario
- 17 Hydro's perspective is defined as electrical generation
- in the Province of Ontario that is neither owned nor
- operated by Ontario Hydro but is connected to the bulk
- 20 electricity system or the distribution electricity
- 21 system. It is not defined as electricity generated
- 22 outside the province and sold to a point inside the
- 23 province.
- 24 There are many terms that are used
- 25 simultaneously for non-utility generation, terms such

1 as "independent power", "private power", "parallel 2 generation" or "independent generation". 3 With respect to the term "economic", based on Hydro's strategy that says we will pay up to 4 5 avoided cost, the purchase of electricity is then set 6 such that if we pay no more than the avoided cost, then 7 the customers of Ontario Hydro would in fact not see 8 private generation being any more expensive than the 9 choice that Ontario Hydro were to put in if they were 10 building the facility themselves, and therefore, as 11 long as we pay avoided cost or less then from our perspective non-utility generation is economic. 12 13 Finally, the term "maximum". Ontario 14 Hydro encourages all projects that are economic and 15 preferred and can be integrated into the hydroelectrical system. We don't have any ceiling on 16 17 the number of NUGs that we can get within that concept, and so if therefore that is the term referred to as 18 19 "maximum". 20 Q. All right. Now we are going to come 21 back to some discussion of what that term "preferred" 22 means within the concept of maximum later in these 23 proceedings, but I would just note, I take it, Mr. 24 Vyrostko, that that is an important element to bear in 25 mind in that use of the word "maximum" economic?

1	A. That's correct.
2	Q. Well, we will come back to that, but
3	I would like you to briefly outline, please, the
4	various types of non-utility generation that you are
5	involved with.
6	A. In essence the non-utility generation
7	is broken down into two types, and they are categorized
8	by fuel - that is, the primary energy that is used to
9	develop non-utility generation - and then the second
.0	one is the process.
.1	And if I could draw your attention to the
.2	slide, which is page 1 of the exhibit.
.3	Q. Exhibit 320?
. 4	A. Exhibit 320. Across the top we have
.5	the category of primary energies, and the typical
.6	energies are falling water, natural gas, and the third
.7	one is energy from waste which could include wood
.8	waste, municipal solid waste or landfill gas.
.9	On the lefthand side of the transparency
20	there are the different conversion processes that are
21	used to convert the primary energy into electricity.
22	For instance, the hydraulic process is taking falling
!3	water through a turbine and producing electricity.
24	Cogeneration is the simultaneous
25	production of both electricity and thermal energy or

1	heat or steam from a single fuel, typically natural gas
2	but it could also be from wood waste, and so that would
3	be one of the other process.
4	And then the final one is the other
5	thermal process, which typically represents the utility
6	facility whereby you take a fuel, whether it be natural
7	gas or energy from waste, and put it through boilers to
8	create steam which drives a turbine and produces
9	electricity.
10	Based on Exhibit 74, which is the
11	Demand/Supply Planning Strategy, Ontario Hydro has
12	preference for non-utility generation that is generated
13	using renewable energies or high efficiency
14	cogeneration processes, and if we look on the
15	transparency you will see that all of those that I have
16	talked about, except for one, falls within the category
17	called the "preferred" type of non-utility generation.
18	Q. I take it the one that is
19	non-preferred is the one that is shown on page 1 of
20	Exhibit 320 with the square; that is, other thermal,
21	burning of natural gas simply to produce electricity;
22	is that correct?
23	A. That's correct.
24	Q. Now, aside from fuel and process type
25	are there any other ways that non-utility generation

Farr & Associates Reporting, Inc.

are there any other ways that non-utility generation

1	projects can be categorized?
2	A. Typically, there are two other ways
3	of categorizing non-utility generation, and they are
4	referring to them as either load displacement or
5	purchased non-utility generation.
6	Load displacement non-utility generation
7	is electricity generated by a customer for their own
8	use, thereby displacing the amount of electricity they
9	would typically buy from the utility.
10	Purchase generation is generation that is
11	put together or generated expressly for the sole
12	purpose of selling to Ontario Hydro.
13	Q. Now, Mr. Vyrostko, what do you see as
14	some of the important planning considerations in
15	relation to the development of non-utility generation
16	in Ontario?
17	A. There are a number of points that I
18	would like to make with respect to the importance of
19	non-utility generation.
20	The first is that non-utility generation
21	is a viable and a significant supply resource with
22	respect to the Demand/Supply Plan, and, in fact, we are
23	estimating approximately 3,100 megawatts of non-utility
24	generation by the year 2000.
25	Secondly, as mentioned before, Ontario

1	Hydro does have a preference for non-utility generation
2	using renewable fuels and/or high efficiency
3	cogeneration, called cogeneration, and we see these
4	preferred options as meeting the increasing
5	requirements of the Demand/Supply Plan.
6	Third is that non-utility generation
7	using non-renewable electricity-only generation
8	technologies, similar to those used by Ontario Hydro,
9	such as large combined cycle technologies, although we
10	have accepted them to date where they have been
11	economic we will consider for future planning to be
12	part of the major supply plan, and I would like to
13	refer to those now as major supply NUGs.
14	If we refer back to page 1 of Exhibit 320
15	the one that Mr. Campbell referred to was in fact the
16	one technology which is major supply NUGs, and the
17	reason why we would see this as forming or being part
18	of the same type of technology, or, in essence, being
19	called a major supply NUG, is that these typically are
20	very large projects using the same type of technology
21	that a utility would use, straight combined cycle, and
22	the impacts that they would have on the environment are
23	typically the same as any utility plant.
24	So, therefore, from our perspective they
25	are seen to be equal to a utility plant and

are seen to be equal to a utility plant, and,

1	therefore, we are calling them major supply NUGs.
2	Q. When one looks in Exhibit 3, the
3	Demand/Supply Plan and sees the designation for a
4	certain type of fossil plant as being CTU-CC, which I
5	understand to be "Combustion Turbine Unit-CC", is that
6	an example of a technology that would be both
7	implemented by NUGs or by Ontario Hydro?
8	A. That's correct, because "CC" stands
9	for "combined cycle", and, in fact, combined cycle
10	technology is common for the private generation and it
11	is also common for the major utility supply.
12	MR. B. CAMPBELL: We will be - later in
13	the evidence, Mr. Chairman and the panel - showing you
14	the way these different plants operate.
15	Q. But, Mr. Vyrostko, I think you also
16	wanted to address some addition at points dealing with
17	how you go about recognizing planning considerations
18	with respect to NUGs?
19	MR. VYROSTKO: A. Yes, one of the other
20	issues that we feel is important is that Ontario
21	Hydro's forecast of the preferred projects is revisited
22	on an annual basis, and we revisit this forecast on an
23	annual basis to incorporate all the latest project
24	information that we have and any new industry trends

that may in fact be materializing.

25

	1	The final point that I would like to make
	2	is that Ontario Hydro's programs and activities are
	3	developed to ensure that we obtain the maximum economic
	4	preferred non-utility generation to meet system needs,
	5	and we do this by reducing both internal and external
	6	barriers to the development of the industry.
	7	These are reviewed and assessed on an
	8	annual basis to ensure that we do reflect industry
	9	trends and practices and Hydro's needs.
	10	Q. Then I would ask you just briefly
	11	please to give an overview of what you see as some of
	12	the advantages and disadvantages in terms of the Hydro
	13	system for the development of non-utility generation.
	14	Perhaps start with the advantages.
	15	[10:54 a.m.]
	16	A. There are potential advantages of
	17	non-utility generation which, in many cases, are
	18	generic and they don't necessarily apply with all
	19	projects; that is, some of these advantages may only
	20	apply to certain projects.
	21	But in general, we view these as
Y w	22	advantages for us. Some of them are things like the
1000	23	small size of non-utility generation projects relative
1/	24	to our own generation make these projects easier to
	25	incorporate into the system. And they also have less

1	impact on the local communities.
2	Secondly, geographic dispersion of these
3	projects enhance the system balance and transmission
4	efficiency by matching load requirements with the
5	generation.
6	In addition typically, non-utility
7	generation has shorter design and construction lead
8	times which better addresses the changing requirements
9	of Ontario Hydro's system.
10	Finally, there is off-loading of risks
11	from Ontario Hydro to the private sector associated
12	with the development of these projects which benefits
13	the ratepayers of the province.
14	Q. All right. And again, just in a very
15	summary way, could you outline what you see as some of
16	the potential adverse impacts associated with the
17	development of NUGS?
18	A. Some of the potential adverse impacts
19	include increased uncertainty regarding the continued
20	operation of non-utility generation. We have had very
21	good success at bringing projects on stream and into
22	operation, but here in Ontario, some of these haven't
23	been operating for a long time and, of course, the
24	question is, will they be there? And so, one of the
25	issues that we have to look at is, can they be relied

25

on for the term that we sign contracts for?

2 Additionally, another potential adverse

3 impact is the uncertainty with respect to the

4 availability and reliability. Most of the non-utility

5 generation projects that we have seen have proven to be

6 as reliable as the major supply options, but again,

over the long term, that is a question that has to be

8 addressed as we look at the long term.

In addition, one of the potential adverse impacts is the less flexible system operation that these projects have. Many of them are base load generation which means they operate all the time and they don't turn on and off to meet needs of the system so they are less flexible and typically than some of the other generation that the utility might have on the system.

And finally, there could be less optimal long-term resource mix in terms of how you commit to technologies and fuels such as natural gas over the long term and whether, in fact, all of those choices give you the best optimum resource mix over time.

Q. All right. And on balance having considered those factors, what are the key reasons for Hydro's preference for non-utility generation using renewable resources and/or high-efficiency conversion

Farr & Associates Reporting, Inc.

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1	technologies?
2	A. Well, if we look at each one of those
3	terms and opportunities let's look first at the
4	renewable projects. These projects typically are
5	smaller projects that, in fact, are much smaller than
6	the Ontario Hydro or a large utility system.
7	For instance, if we look at Ontario
8	Hydro, it has, in fact, matured as an industry and has
9	focused on building large facilities. Its structure,
10	its expertise is in building major plants.
11	And so, therefore, to have a utility like
12	Ontario Hydro moving into build a small plant is not
13	very cost-effective. And so, therefore, having
14	non-utility generation building small plants allows for
15	the resources in the province to be effectively used,
16	large facilities by the utility and the smaller size
17	projects by the non-utility generation industry.
18	If we look on the cogen side, which is
19	the high efficiency technology, cogeneration is an
20	efficient way of using energy resources because, in
21	fact, it does produce two different energies from a
22	single fuel source and it provides benefits for the
23	private sector by improving the economics in their
24	overall operation.
25	And then lastly, if we look at the waste

- fuels generation using by-products such as wood waste
 has environmental benefits. It facilities waste
 disposal and we will encourage that whenever an
 industry or third party developer can make these
 projects economic.
- Q. Now, Mr. Vyrostko, I would like you
 then to again just in an overview way describe for the
 Board the stages that non-utility generation has kind
 of moved through in the province, where it has come
 from, where you see it now and where you see it going
 in the future.

I guess I would first like you to -well, if you could give us just an overview on that and
then perhaps a little more detail in each of those
areas.

A. I think the best way to discuss the development of the industry is to put page 2 of Exhibit 320 on the transparency. The exhibit is broken down into three time periods; the past, present and future. What I would like to do is basically take the Board through each of those time periods to try to give an indication as to what were some of the developments, what did the industry look like, what were some of the activities in each of those time periods because I think it is important to understand how the industry

- 1 has grown in Ontario through that period. 2 And the other point I would like to make 3 with respect to this overhead is that the panel, both 4 Mr. Snelson and Mr. Brown, will be talking about issues 5 in the past, present and future and so this brings a 6 context to some of the development over that time 7 period. 8 All right. Now, in terms of - I will 9 do this chronologically - perhaps you could deal with 10 the left-hand side of the slide and the points you want 11 to make with respect to the development of the industry 12 up to about the 1988 period. 13 A. First of all, the point I would like to make is that non-utility generation is not new in 14 15 Ontario. In fact, the entire Ontario Hydro system 16 started from non-utility generation; that is, private companies owning their own electrical systems, and then 17 18 eventually, Hydro purchasing them and basically forming 19 the utility system that we know today. 20 Traditionally, these non-utility 21 generators contributed to the system to the point where 22 now we have approximately 1200 megawatts of that 23 traditional non-utility generation in the system
 - Q. That was the situation you found

amounting to about 4 per cent of Hydro's capacity.

24

25

1	yourself in by about the '88 period?
2	A. This was around 1981, '82 as we
3	approached the this is where we were at.
4	These typical traditional non-utility
5	generation projects were initiated by the companies
6	themselves because there was no program with Ontario
7	Hydro. Typically, they were load displacement type
8	projects and they had no contract with Ontario Hydro.
9	In 1982, Ontario Hydro developed a
10	corporate policy designed to stimulate the growth of
11	the non-utility generation industry.
12	And shortly thereafter, Ontario Hydro
13	undertook a study called the demand/supply option study
14	which went out and discussed the preferences that
15	industry and customers and the public had towards our
16	overall approach to long-term planning.
17	Through that discussion, many of the
18	customers identified a preference towards non-utility
19	generation using renewable fuels and cogeneration as
20	something that Ontario Hydro should be pursuing.
21	So subsequently, the demand/supply
22	strategy was developed and introduced non-utility
23	generation as a high priority to complement Hydro's
24	existing generation at a cost that was equal to or less

than Hydro's own generation.

25

1	As we were going through the stage of
2	preference being expressed by the industry and by the
3	public, Ontario Hydro around 1985, '86 developed a NUG
4	program using industry information following the
5	introduction of our policy.
6	At the same time as we were developing
7	this program, we were paying attention to what was
8	happening elsewhere, especially in the United States,
9	with respect to non-utility generation to try to
.0	incorporate some of the trends there into our program.
.1	Now, at this time, the program was
12	reasonably simple. We were just starting the program.
L3	And the three activities that we had under way at this
L4	part of the development were the fact that we did have
15	contract negotiations for purchase-type projects. We
16	were willing to enter into negotiations on a
L7	project-by-project basis.
18	We had an open-door policy for the
19	solicitation of our accepting business development; in
20	other words, if anybody had an opportunity or an idea,
21	they can come and talk to us and proceed from there to
22	develop the project. And we did develop standard
23	purchase rates for projects under 5 megawatts.
24	And at this stage, as we approached the
25	end of the '80s, most of the projects that we had in

1	service or committed were small projects. And
2	typically, they were renewable projects using water.
3	In fact, at the bottom of the
4	transparency we can see we showed at this period of
5	time 42 projects that were in service or committed
6	amounting to 268 megawatts, but except for two projects
7	that were natural gas-fired at that time, all the rest
8	were virtually hydraulic.
9	Q. All right. And how would you
10	characterize the development of the NUG industry in its
11	current state, you know, and reflecting the activities
12	over the '89 to '91 period?
13	A. I think I can say that Hydro has
14	established a partnership with the industry to
15	reinforce the development of maximum economic
16	non-utility generation.
17	Because of this partnership, which we
18	continue to reinforce between ourselves and the
19	industry, we are seeing a great array of players now
20	industry that are now participating.
21	And today, the non-utility generation
22	industry really includes players such as electric
23	utilities, electricity customers, the gas industry. We
24	have private electricity developers, equipment
25	manufacturers, consultants, contractors (native groups

1	private and public institutions. It is a wide spectrum
2	of different players in the industry.
3	I believe that Ontario Hydro has also
4	matured in this process and I believe we are perceived
5	by many players in the industry, including many from
6	other parts of North America, to be, in fact, leaders
7	among the utilities with respect to encouraging
8	non-utility generation. Specifically, they see us as
9	leaders in the following areas: In the first one, we
10	have adopted a flexible approach for negotiating
11	non-utility generation projects; secondly, that we have
12	a specific program in place to encourage and deal with
13	load displacement type projects.
14	In addition, we are one of the few
15	utilities that, in fact, assess long-term potential for
16	non-utility generation through the production of an
17	annual long-term NUG forecast.
18	As well, we have identified and addressed
19	the needs of the industry while ensuring a benefit for
20	ratepayers. In fact, we have developed a balanced
21	approach between Hydro's needs, the ratepayers' needs
22	and the industry needs.
23	In addition, Ontario Hydro has many
24	non-utility generation project activities in place that
25	reinforce this development, including the solicitation

1	process, the request for proposal No. 1, which will be
2	discussed later, to proactively seek proposals. We
3	have a well developed communication network dealing
4	with and communicating with all of the industry.
5	We have a mature costing and negotiating
6	process. We have mechanisms in place to support
7	Hydro's preference for renewable and high-efficiency
8	cogeneration, such as the preference premiums on our
9	purchase rates.
10	We now have an array of programs which
11	facilitate project development and negotiations. And
12	we monitor these activities on an ongoing way to help
13	us identify a potential for future development to meet
14	system needs.
15	Now, there has been a rapid development
16	of the industry in a relatively short period of time
17	and that has provided a large amount of megawatts to
18	the system. Part of that has been because over the
19	last year-and-a-half interest rates have improved. We
20	have got our avoided costs increasing and we have
21	applied the preference premiums for some of these
22	preferred projects.
23	But in essence, the big factor that has
24	made the development of the industry move forward as
25	quickly as it has was the falling gas prices. A year

1	ago, gas was still predicted by the industry to be
2	increasing at a high rate. In the last year, we have
3	seen the price basically fall and stabilize to the
4	point where now the industry, the gas industry, is
5	looking at non-utility generation as a good business
6	for them.
7	With this expansion, this increase over
8	the last year-and-a-half, we have seen the development
9	of a variety of projects and they vary in terms of
10	technology, in size, in terms of in-service date and in
11	location. I think with all of this happening, this has
12	brought the industry to maturity.
13	I believe now that there are a number of
14	large and small players with projects that are
15	operating or under construction that have shown that
16	they are capable and willing to assist Ontario Hydro in
1,7	meeting its long-term electricity needs.
18	[11:07 a.m.]
19	Q. I think you were going to give an
20	indication of the project activity as it sort of stands
21	now?
22	A. Thank you, Mr. Campbell. I forgot
23	that.
24	Q. That's what I am here for.
25	A. That present circumstance now really

1	materializes in the numbers at the bottom of the
2	present category there where we show there are 74
3	projects now either in-service or committed amounting
4	to 730 megawatts.
5	In addition, there are 48 projects that
6	are under active negotiations amounting to 3,500
7	megawatts, and recently we stated in the speech from
8	the Chair to IPPSO that in that category there are 10
9	projects that have now formally accepted our price
10	offers and they amount to over 1,000 megawatts.
11	So, clearly, the present situation shows
L2	a lot of activity and a significant amount of megawatts
13	that are coming on board.
.4	Q. Now, Mr. Vyrostko, perhaps I just
15	might ask you to clarify at this point, as I understand
16	it all these figures that you are talking about are in
17	effect over and above the 1,200 megawatts you spoke of
18	as having been developed in the past by the early '80s,
.9	basically of load displacement types of projects in
20	private industry.
21	Am I correct in that understanding?
22	A. That's correct, Mr. Campbell, because
23	we tend to always deal with the non-utility generation
4	business as the business as it started from about

 $^{1}85/^{1}86$ onward, and so the 1,200 megawatts of the

1	traditional NUGs is always there, and when we talk
2	numbers it is always on top of the 1,200 megawatts.
3	Q. Okay. Now, I guess against all of
4	that background of development to date what are your
5	expectations for the future?
6	A. Given the success that we have seen
7	to date our approach now will be to focus on the
8	preference for non-utility generation using high
9	efficiency conversion technologies, such as
.0	cogeneration and renewable resource generation for
.1	obtaining the remaining balance of the non-utility
.2	generation megawatts expected by the year 2000.
.3	In essence, the additional 1,000
.4	megawatts that is remaining to get to 3,100 we would
.5	like to focus and prioritize with the renewable and
.6	cogen.
.7	Partly we want to do that because, as Mr.
.8	Snelson will talk about, there are some limitations to
.9	the system. We are reaching the capability of the
20	system to take on more, and, therefore, if there are
21	only certain spots or if there are only certain amounts
22	of non-utility generation that we can take, then we
23	want to ensure that we give them to those renewables
24	and to the cogeneration type of projects that the
5	public has said they prefer us to proceed with

1	At the same time as we are looking at
2	these preferred technologies and, as I said, we had
3	an open door policy. We went and instituted an open
4	solicitation called the "Request for Proposal".
5	Last October we went back to an open door
6	policy, and we really have to ask ourselves now as we
7	move forward with the success and as we go towards the
8	3,100 megawatts: Do we continue to have an open door
9	policy?
10	Because of the system limitations and the
11	fact that there are only certain locations where we can
12	accept projects we are now starting to look at whether
13	competitive bidding is approaching the time to be
14	instituted, such that we can then use the bidding
15	process to take on megawatts that integrate into our
16	system and integrate with respect to the size of the
17	need, the location, and/or the timing.
18	Also, as we go towards the future we will
19	continue to prepare the non-utility generation forecast
20	document on an annual basis to incorporate the most
21	accurate and up-to-date information on future industry
22	developments.
23	We have said before that our forecast is
24	not a ceiling, and our forecast is in fact looked at,
25	as I said before, annually to ensure that we are

1	keeping up to speed with the industry, and, in fact, we
2	incorporate all trends there.
3	Then finally, in the future we will
4	continue to identify and assess the need for future
5	programs and policy initiatives to assist industry
6	development.
7	Q. All right. Now, in looking at the
8	potential for future development of non-utility
9	generation could you identify in addition to sort of
10	the simple and obvious question of "does the system
11	need any more capacity", in addition to that could you
12	identify other factors that influence or you see as
13	potentially influencing non-utility generation
L 4	development?
15	A. I see basically three factors that
16	not only have influenced in the past but will continue
L 7	to influence the development of non-utility generation.
L8	The three factors are the social or
L9	environmental factors, the financial or economic
20	factors, and then the operating factors. I would like
21	to take each one of them separately and discuss them in
22	a little bit more detail.
23	If we take the social and environmental
24	factors, if we look at the environmental side, there
25	are changes occurring to the environment and

1	environmental regulations in an on-going way both today
2	and in the future, and those changes may have
3	significant impacts on the industry. For instance,
4	there may be as a result of various controls higher
5	capital costs associated with the control technology
6	which then will have impacts on non-utility generation.
7	In addition, there may be some fuels or
8	technologies that may not even be practical in the near
9	term or the long term. For instance, the government
10	this year introduced a ban on incineration which then
11	changes the activities associated with forecasting of
12	municipal solid waste.
13	On the other side, on the small hydraulic
14	side, the Water Power Association of Ontario is
15	proceeding with a class environmental assessment
16	process to help facilitate the development of small
17	hydro, and so these types of developments will
18	obviously have impacts down in the future.
19	On the social side, I mentioned that
20	typically the small NUGs have less impact on the
21	community. In fact, in many cases the NUGs can become
22	part of the community and in fact help and develop the
23	community with respect to either jobs or parks around
24	the development.

But we are starting to see now that even

Farr & Associates Reporting, Inc.

1	the small NUGs are not necessarily getting acceptance.
2	We are seeing projects up north that are having
3	blockades associated with some of the development, and
4	so I think from the development of small hydro the
5	non-utility generation industry has to now start to
6	recognize these sensitivities in the communities and
7	start to make that part of the planning process as they
8	develop their projects down the road.
9	In terms of the financial/economic
LO	factors, financial factors are critical to the project.
11	Obviously, our avoided cost and changes to our avoided
12	costs impact on the project. I think, as I mentioned
L3	before, interest rates and access to financing is a
L4	significant impact both today and down the road.
L5	The continuation of Class 34, which is
L6	the accelerated tax write-off in the Federal Income Tax
L7	Act, is a significant factor for renewables and cogen,
L8	and, as I said before, the price and the availability
L9	of low cost natural gas is paramount to having natural
20	gas-fired projects moving forward.
21	So there is some uncertainty. There are
22	obviously concerns with respect to some of these
23	financial factors.
24	On the economic factor, cogen is
25	associated with customers because they do have they

1 are the steam host, and we have seen Ontario and most 2 of North America go through a recession over the past 3 year. 4 These customers who may have wanted to go 5 forward with cogeneration may not be making that 6 decision now because they just do not have the capital 7 dollars. They do not have the resources to move 8 forward, and so, therefore, as we look to the future and count on cogeneration we really have to be 9 conscious of the economic situation that those 10 11 customers face and whether they are in fact still 12 prepared to proceed forward with non-utility 13 generation. 14 Then the last factor is the operating 15 factor, and here we are dealing with issues such as 16 reliability, longevity, how long will the project in 17 fact continue to supply electricity, transmission 18 capacity from an overall utility perspective, and 19 dispatchability. 20 I mentioned before the need to have a 21 flexible system, and currently most of the non-utility 22 generation projects operate under base load or 23 continual operation, and we now have to start looking

Farr & Associates Reporting, Inc.

at, as we move towards a larger share of the system

with non-utility generation, how can we incorporate

24

1	dispatchability so that they can be part of the
2	flexible mix of supply options for the utility?
3	MR. B. CAMPBELL: Now, just before
4	turning to Mr. Snelson, Mr. Chairman, I should advise
5	that with respect to gas availability and those sorts
6	of considerations, including long-term price outlooks,
7	there will be expertise on that matter on Panel 8,
8	which is our Fossil Panel.
9	This Panel can certainly speak to the
.0	impact of price generally in terms of the development,
.1	but the actual forecasting, some of the long-term
.2	forecasting considerations, and in particular
.3	availability considerations, will be the topic of Panel
. 4	8 or part of the topic of Panel 8. It will, I think,
.5	cover quite a bit of ground.
.6	Q. Now, Mr. Snelson, I would like to
.7	turn to you, please, next, and ask you to provide an
18	overview from the position that you occupy in the
19	Corporation with regard to the rationale for including
20	the non-utility generation option as a component in
21	demand/supply planning.
22	MR. SNELSON: A. Well, as Mr. Vyrostko
23	has already said, there are some technologies for
24	generating electricity which we consider to be better
5	implemented by non-utility generators than by a large

1 utility such as Ontario Hydro. 2 There are three technologies in 3 particular. 4 Cogeneration, it would be difficult for 5 Ontario Hydro to own and operate an electrical 6 generating plant within a steam user's industrial 7 facility. 8 The second one is small hydro, and, as 9 Mr. Vyrostko has said, --10 Q. Sorry, just a moment. I take it on 11 that it is because the customer's primary certain is 12 getting the process heat not the electricity? 13 Α. That is correct. 14 And the second one? 0. 15 A. The second one is small hydro in 16 that, as Mr. Vyrostko has already said, Ontario Hydro is not very well structured to undertake small projects 17 18 effectively. 19 The third one is burning waste fuels, and 20 generally the purpose of a waste burning plant is to 21 dispose of wastes and the electricity is the by-product 22 of that process, and it makes more sense for the people 23 or the organization with the responsibility of

Farr & Associates Reporting, Inc.

disposing of the wastes to be the proponent of the

project and for the electricity to be purchased by

24

1 Ontario Hydro.

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

2 Again, as Mr. Vyrostko has explained, 3 prior to 1982 then these sorts of technologies were 4 developed by private interests but mostly to meet their 5 own need for electricity as load displacement projects. Ontario Hydro was not taking an active role in 6 encouraging such electricity generation.

> Through the 1980s and through the consultations with respect to the Demand/Supply Plan and Demand/Supply Planning Strategy, it was becoming apparent that these technologies were being recognized as more environmentally and socially desirable, and that's why Ontario Hydro is taking active steps and an active role in encouraging non-utility generation.

From a planning perspective we recognize that the system can accommodate private generation, we have done for many years, and that this can be a useful addition to electricity supplies, but there does need to be adequate integration of planning and operation with the rest of the system.

Perhaps you could briefly outline the Demand/Supply Planning Strategy elements that pertain to the development of NUGs?

Well, as I have said, the strategy is to promote non-utility generation, and the

1	Demand/Supply Planning Strategy which was developed in
2	1989 is included in Exhibit 3, Appendix A, and the
3	complete strategy with its rationale is in Exhibit 74.
4	Throughout the discussions that went into
5	the development of the strategy, then, it was presumed
6	and I think most participants in those discussions
7.	presumed that NUGs would use cogeneration, small hydro,
8	waste fuels and renewable energies. So the strategy
9	elements were written that we would purchase all
10	non-utility generation up to avoided cost, at any cost
11	up to avoided cost.
.2	We also had strategies in there for
.3	preference for certain types of technology, preference
. 4	for renewable energies, preference for high efficiency
.5	conversion processes, and those are stated in the
.6	Demand/Supply Planning Strategy, and, as we indicated
.7	in Panel 3, in 1990 we gave specific expression to
.8	those preferences through the use of a 10 per cent
.9	adder to avoided cost, and that was discussed in Panel
20	3.
1	Now, that 10 per cent adder applies to
2	the preferred non-utility generation technologies that
13	Mr. Vyrostko has mentioned.
4	In addition, along with the strategy went

some statements which we called priority and strategic

1	directions, which are given on page Al in Exhibit 3,
2	and one of those priority strategic directions was to
3	encourage non-utility generation, and the way that is
4	interpreted is that we will give preference to
5	developing cost-effective, preferred non-utility
6	generation before we start to develop a major supply.
7	[11:26 a.m.]
8	Q. Now, with that background to the
9	strategy, what developments have taken place since the
10	strategy was enunciated that are affecting its
11	implementation?
12	A. Well, it is now becoming clear that a
13	number of factors are having some effect. We are
14	having a lot of success with our non-utility generation
15	program. And the total amount of megawatts that are
16	being offered to us and coming to contract are
17	beginning to approach the values which we have planned
18	upon in the 1990s. In fact, the quantities that are
19	offered has the potential to create a capacity surplus
20	in the 1990s.
21	In addition, when you take into account
22	both the quantity and the location of non-utility
23	generation, then there is the potential to
24	significantly affect local and regional balances of
25	load and generation and these are the balances that

1	determine transmission requirements. And I will
2	discuss those in more detail in later testimony.
3	The final factor that is affecting the
4	implementation of this strategy is that the non-utility
5	generators are starting to offer projects which are
6	large. They only generate electricity or have a very
7	small part of cogeneration associated with them and
8	they use a non-renewable fuel such as natural gas.
9	Now, as Mr. Vyrostko has said, such
LO	projects are virtually the same as the combustion
11	turbine combined cycle option which is discussed in the
.2	Demand/Supply Plan, Exhibit 3, as one of Ontario
1.3	Hydro's major supply options. And so again, as Mr.
.4	Vyrostko has said, we are defining those as major
15	supply NUGS.
16	Q. All right. Now, is this somewhat
.7	changed situation affecting the way in which NUGS are
.8	integrated into the electricity system?
.9	A. As far as the preferred non-utility
20	generation is concerned, there is no significant
21	change. The development of non-utility generation from
22	cogeneration, small hydro and waste fuels will continue
23	to receive a high priority.
24	However, we are having to change our
25	emphasis in two ways to respond to these circumstances:

1	The first one is that we have to pay more attention to
2	encouraging non-utility generation in the right
3	locations, in the locations that will reduce
4	transmission requirements rather than increase
5	transmission requirements.
6	And because the major supply NUGS that
7	are being offered are essentially the same as some
8	options that Ontario Hydro might use, then the major
9	supply NUGS are going to be incorporated into planning
10	on the same basis as Ontario Hydro's major supply as
11	part of the major supply part of the plan.
12	Q. Perhaps you could just briefly
13	outline some of the rationale as to why major supply
14	NUGS are, in effect, being treated in the same way as
15	similar Hydro generation with respect to their impact
16	on planning.
17	A. As far as their potential effects are
18	concerned, as I have said, these major supply NUGS use
19	technologies which are similar to the same technologies
20	that Ontario Hydro might use. They are likely to have
21	very similar effects in terms of their environmental
22	effects, their social effects, their resource use
23	implications, such as the fuel that they might be
24	using, and the efficiency of fuel use.

25

And so we feel it is right to the

1	establish the need for that sort of technology in
2	resource use with respect to major supply options and
3	that who would own the facility is something of a
4	secondary issue in that respect.
5	Q. All right. And how does this
6	treatment of major supply NUGS in your judgment affect
7	the demand/supply planning process?
8	A. The process is largely unchanged.
9	This slide which is a simplification of Figure 2.2 of
LO	Exhibit 3, and which I also used in Panel 2, is taken
11	from page 3 of Exhibit 320 which we submitted this
L2	morning.
13	The process that we use to establish the
4	need for demand and supply options is that first of
.5	all, we try to establish what the load forecast is,
.6	which is shown on the top right, and that was discussed
.7	in Panel 1.
.8	In Panel 2, we tried to establish the
.9	capability of the existing system, which is in the
20	bottom left, and the difference between the two is the
21	need and that the ways of meeting that need are to
2	reduce demand or to increase supply or some combination
13	until we reach a balance.
4	We can now move forward as shown on the

next slide, which is page 4 of Exhibit 320, and this

1	shows the way in which the need for demand and supply
2	can be reduced and if I use it to define the need for
3	major supply. And so, demand reductions can reduce the
4	need for major supply and supply increases can also
5	reduce the need for major supply.

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

The load displacement non-utility generation, which is part of the non-utility generation plan, is part of the load reduction and the purchase non-utility generation is part of the supply increase.

The direction we are moving in now is that the NUG plan will focus on the preferred options and that will be discussed further in Mr. Brown's evidence, and the major supply non-utility generation will not be considered to be part of the NUG plan and will not be accounted for in the purchased non-utility generation in the NUG plan or the load displacement non-utility generation. It will be accounted for as part of the major supply plan which is there to meet the major supply need.

The major supply non-utility generation, which is really part of the major supply plan, the discussion of technologies will take place in Panel 8 along with the discussion of the similar technologies that Ontario Hydro would use and the appropriate proportion of the system mix that should come from

1 these technologies will be discussed in Panels 10 and 2 11. 3 Q. Now, against that background, Mr. 4 THE CHAIRMAN: Are you going to come to 5 it? Do you have a more precise definition than you 6 have given so far of what constitutes a major supply 7 NUG? If you are going to come to it later, then --8 MR. B. CAMPBELL: I think it become clear 9 later, Mr. Chairman. 10 Q. And Mr. Vyrostko, I want to come back 11 to you and just confirm, however, that for purposes of 12 Panel 5 in terms of those characteristics that affect 13 NUG development, those matters for all of the NUGS 14 remain here with Panel 5. 15 MR. VYROSTKO: A. That's correct. 16 MR. B. CAMPBELL: All right. Mr. 17 Chairman, that would be a convenient time if you plan 18 to take a morning break. 19 THE CHAIRMAN: All right. We will take a 20 15-minute break. 21 THE REGISTRAR: Please come to order. 22 This hearing will take a 15-minute break. --- Recess at 11:35 a.m. 23 24 ---On resuming at 11:53 a.m. 25 THE REGISTRAR: Please come to order.

1	This hearing is again in session. Be seated, please.
2	MR. B. CAMPBELL: Mr. Starkman wants to
3	address something, Mr. Chairman.
4	MR. STARKMAN: Mr. Chairman, we just had
5	an opportunity at the break and discuss this question
6	of splitting off a part of the non-utility generation
7 .	evidence in discussion as between Panel 5 and Panel 8,
8	and I just want to register our concern that it not be
9	split off and that at the very least, that we clarify
10	very precisely what we are splitting off because we
11	came here to talk about non-utility generation in this
12	panel. We think non-utility generation is generation
13	by persons other than Ontario Hydro.
14	And now Ontario Hydro is saying, well, we
15	want to split off the discussion of the environmental
16	impacts and the costs of certain types of non-utility
17	generation to Panel 8, and we just don't think that
18	that is
19	THE CHAIRMAN: Those are the things that
20	they characterize as major supply; is that what you
21	mean?
22	MR. STARKMAN: Exactly, but we see no
23	reason for that split. These are non-utility
24	generation options of one sort of another.
25	THE CHAIRMAN: Why don't we wait until

1	Mr. Campbell has completed his evidence and given us
2	the whole picture and then perhaps we will have a
3	better method of assessing that at that time.
4	Would that be satisfactory?
5	The idea of the major supply NUG is a
6	relatively new concept to me at least, but perhaps I
7	missed something in going through the material.
8	I think the thinking of it is it would be
9	counterproductive to deal with both the environmental
10	effects of a so-called major supply NUG and the fossil
11	fuel. They at least should be better all dealt with
12	the same time. That, I take it, is the reason, but
13	let's wait until the end of the Hydro evidence and see
14	how it pans out.
15	MR. STARKMAN: Thank you.
16	MR. B. CAMPBELL: I have been asked by
17	Mr. Starkman, Mr. Chairman, just to clarify, and I
18	would ask the panel to correct me if I am incorrect,
19	but as you will see from our evidence included in the
20	additional 1,000 megawatts of NUGS that the panel will
21	be speaking to in the course of its evidence and which
22	have been a result, at least in our submission, as the
23	success of Mr. Vyrostko's division, are a mix of types
24	of projects including, I believe, Mr. Vyrostko - again,

correct me if I am wrong - some that are basically

1	electricity-producing only.
2	The simple point that we are making here,
3	and it is set out in paragraph 9 of our supplementary
4	witness statement, is that it is just the point you
5	made; that where there are virtually identical
6	technologies, rather than examine them twice, we have
7	said, given that it is the same as the combined cycle
8	combustion turbine units that Ontario Hydro has
9	evaluated in its fossil options, that we want it to be
.0	clear that in terms of the specific discussion of that
.1	technology and its environmental effects, we propose to
.2	deal with that in detail once in Panel 8, which is our
13	fossil panel.
4	Of course, that technology has always
L5	been part of that panel's consideration and what has
16	been explained is that there seems to be a tendency or
L7	there have been some projects come forward that are
18	basically of that type as well.
L9	So, that is really the only purpose in
20	dealing with it in this way and, of course, those types
21	of projects have integration issues that arise with
22	them with respect to the system generally that Mr.
23	Snelson has spoken to.
2.4	So, I don't know if that clarifies it for
L -1	So, I don't know it that chariffes it for

my friend, but we really did not want to deal with the

Farr & Associates Reporting, Inc.

1 same technology twice. 2. MR. GREENSPOON: Could I make a comment, 3 please? 4 MR. B. CAMPBELL: Absolutely. 5 MR. GREENSPOON: Mr. Chairman, briefly, I 6 have a large problem if what that means is that Mr. 7 Campbell, in defining the parameters of his direct 8 evidence, is putting limits on possible cross-examination. I guess I should say we can maybe 9 10 deal with that at that time. 11 THE CHAIRMAN: I think it would be easier 12 to deal with these concerns after Hydro has put in all 13 its evidence in-chief and we can then see what we are 14 dealing with. 15 MR. B. CAMPBELL: I think that is 16 sensible, Mr. Chairman. 17 Q. All right then, I think then I want 18 to come back to you, Mr. Vyrostko. Given the reliance 19 that is being placed on non-utility generation by 20 Ontario Hydro, what do you see the development of NUGS 21 entailing in Ontario? 22 MR. VYROSTKO: A. I think to encourage 23 the development of non-utility generation as a supply 24 option requires Ontario Hydro to be three things: Be

Farr & Associates Reporting, Inc.

flexible, be active and be responsive in dealing with

1	both the needs of the industry as well as our own
2	needs.
3	Q. All right. Now I am going to ask you
4	to deal with each of these in turn.
5	What do you mean what when you say that
6	it is important for you to be flexible?
7	A. Well, as I said before, we have
8	established a good partnership with the industry and
9	that really has involved a lot of different players and
10	the need to recognize the different needs of those
11	various players.
12	And because of the array of players
13	there, it requires that we be flexible enough to deal
1.4	with issues such as the small project that has been
15	built to address specific resource requirements at a
16	certain location to very large projects that, in fact,
17	compete with Ontario Hydro's generation.
18	At the same time, we are looking at
19	preferred generation which is the renewable and the
20	high-efficiency cogen to those that are non-renewable
21	like straight electricity-producing projects such as
22	the major supply NUGS.
23	In addition, we have to be flexible
24	because we have to recognize the steam use in
2 5	industrial plants as well as the electrical consumption

1	there and we have to be able to balance both the steam
2	requirements and the electricity consumption at those
3	various locations.
4	In addition, we have seen the rise of
5	third party developers in the province who are coming
6	in to be part of the development of non-utility
7	generation and we have to be flexible in dealing with
8	their needs as well.
9	THE CHAIRMAN: Sorry, you better say what
10	you mean by third party development.
11	MR. VYROSTKO: A third party developer
12	is, in essence, an independent developer who has
13	identified an opportunity here in Ontario, whether it
14	has to do with a steam host and he approaches an
15	industrial customer and says, "look I can, in fact,
16	build a project for you and what I will do is I will
17	sell steam to you and I will sell electricity to
18	Ontario Hydro." In other words, he is an independent
19	party, a third party, that now is part of the process.
20	THE CHAIRMAN: But if he did that, he
21	would be a NUG, his plant; was that not right,
22	MR. VYROSTKO: That's correct, he is
23	still considered a NUG, yes, yes. But it is just that
24	he has a need now that is different than a steam host
25	and so, therefore, we have to recognize that type of

1	requirement as well.
2	And then finally, we are starting to see
3	a number of municipal utilities involved in looking at
4	non-utility generation opportunities.
5	MR. B. CAMPBELL: Q. All right. And
6	what do you mean when you say you have got to be
7	responsive to the industry?
8	MR. VYROSTKO: A. We have to be
9	responsive in order to continue to assess the
10	non-utility generation option against other options of
11	Ontario Hydro to ensure that there is a ratepayer
12	benefit.
13	In addition, we have to be responsive to
14	work together with the industry, to identify strategies
15	that address the needs of both the developer and
16	Ontario Hydro and to communicate those needs regularly
17	as well.
18	It is very important that we identify the
19	needs of the industry and the needs of Ontario Hydro
20	and share those through a communication process so that
21	we are aware of the requirements that each of us has.
22	And then finally, I think to be
23	responsive, it requires support that we have to provide
24	to encourage the development and the implementation of
25	non-utility generation projects through flexible and

- 1 responsive programs and activities.
- Q. All right. And could you explain
- 3 what you are speaking of when you say you take an
- 4 active role in all of this?
- 5 A. Well, one of the important things in
- 6 terms of knowing what the industry is dealing with the
- 7 developers, the various participants in the individual
- 8 site-specific projects. We take an active part by
- 9 negotiating with the participants on those projects.
- Through the negotiation process, we get a better handle
- on and a better understanding of the unique needs
- 12 associated either with that project or with the
- 13 industry.
- 14 Secondly, we take an active participation
- with the industry because it provides us with direct
- 16 market information with respect to the industry needs
- and some of the concerns that they have and then allows
- us to, in fact, introduce programs that respond to
- 19 those needs effectively.
- In addition, active involvement has
- 21 resulted in a number of my staff participating on
- 22 either Hydro committees or external committees, and
- 23 this network of contacts reinforces the ability for us
- 24 to identify industry concerns and needs. And at the
- 25 same time, it also helps us to reinforce Ontario

1	Hydro's commitment with the industry. Finally, as a	
2	utility, our responsibility is to serve the customer.	
3	Cogeneration is, in fact, an important opportunity for	
4	a customer to, in fact, improve his overall energy use	
5	and in that way be more competitive within his own	
6	industry and stay as a viable industry within Ontario.	
7	So, by having direct contact with a	
8	customer, it gives us the opportunity to help that	
9	customer understand the opportunities for cogen and,	
10	therefore, to improve his long-term operation.	
11	Q. All right. Now can you outline the	
12	approach that you have taken to communicating your	in the
13	interest in the development of non-utility generation	D/202
14	in the way you have spoken of?	
15	A. Well, Hydro's means and ways of	
16	communicating have to be as varied as the industry	
17	itself. And so, therefore, our objective in	
18	communicating with the industry includes providing	7 mg of
19	up-to-date information on industry development	Hi cter
20	requirements through pamphlets, various announcements	D Nat
21	or surveys, by taking opportunities to discuss issues	
22	and concerns with other stake holders.	
23	[12:03 p.m.]	_
24.	Also, we encourage input into program	Cers!
25	development requirements at various different	

1	opportunities, and we take the time also to reaffirm
2	Ontario Hydro's role as an active partner in the
3	industry development.
4	Finally, our communication supports the
5	preferred direction of Ontario Hydro in pursuing
6	non-utility generation as a viable option.
7	Q. Against that background, what
8	specific steps are taken in the course of ensuring
9	communication with the industry?
10	A. We communicate with the industry both
11	directly and indirectly, and let me look at talk
12	about directly first.
13	As I said before, through having specific
14	interaction with individual proponents during the
15	negotiations with each project we have the opportunity
16	to communicate directly with every proponent who comes
17	through our door.
18	Secondly, we conduct regular workshops
19	with the industry, and it brings the various
20	stakeholders, participants, government, and utilities
21	together to exchange ideas and address current key
22	issues.
23	In terms of communicating indirectly, we
24	have effective participation through membership on a
25	number of committees, such as the Non-Utility

1	Generation Advisory Council, the Technical Committee of
2	the Water Power Association of Ontario, Special
3	Sub-Committee of the Municipal Electric Association on
4	parallel generation, and also a former task group of
5	the Ministry of Natural Resources dealing with
6	hydraulic site releases.
7	In addition, we have indirect Nature
8	Communication from membership on a number of
9	associations, such as IPPSO, the Water Power
10	Association, and the Canadian Electrical Association.
11	Also, we communicate indirectly through
12	our regional customer service representatives who are
13	out there interfacing with the customer on a day-to-day
14	basis, and they provide sort of the eyes and the ears
15	for us to understand what are some of the requirements
16	for the individual customers.
17	Finally, we communicate indirectly
18	through various market surveys and research programs.
19	Q. Now, you mentioned a couple of times,
20	Mr. Vyrostko, that one of your important activities is
21	that process of project negotiation.
22	Why do you see that process as being
23	valuable to you, and I guess as a corollary to that,
24	why do you prefer taking that approach to the business
25	as opposed to simply saying: Here is a standard

1	contract, these are the terms, sign up or don't, it's
2	your choice? What value do you see to you in the
3	negotiation process?
4	A. As we started our session after the
5	break we talked about some of the needs that we have
6	with the industry, and one was flexibility.
7	The objective for us negotiating
8	contracts is to really ensure that that flexibility is
9	there, to address the needs of both the industry and
10	Ontario Hydro on specific projects and also to support
11	the development of maximum economic non-utility
Ļ2	generation. So, therefore, negotiation with the
13	industry from my perspective is an important component
L4	in our business because a contract is a long-term
L5	commitment. We are looking at anywhere between twenty
1.6	years and fifty years of the contract life.
L7	Therefore, if two parties enter into a
L8	long-term commitment like that, it is important that
L9	all of the elements of that business transaction be
20	comfortable and acceptable to both parties at the front
21	end, and therefore, negotiations allows us to do that.
22	In addition, a lot of these projects are
23	involving a lot of dollars, and, therefore, any
24	problems associated with some of the elements of the

contract may have serious financial consequences, and

1	so	that	it	is	important	that	we	negotiate	those	at	the
2	fro	ont er	nd.								

I think the other element is that a contract, as we see it, obligates Ontario Hydro to, in fact, buy electricity from that project for the twenty years or the fifty years. It's a major obligation on our part, and in some cases it is stronger than the developer who isn't necessarily obligated to produce electricity; only if, in fact, the developer sees that as a good business proposition will he do that.

negotiate the contract all of those elements of those clauses are in fact acceptable to both parties.

The other element of negotiations is that we need to integrate the Hydro contract with all of the other elements of that business proposition, and, for instance, any of these long-term contracts involve fuel supply contracts. They also involve financial agreements. It is important that all of the contracts are sort of coordinated such that they support each other in a good business sense. And negotiation allows us to do that.

In addition, negotiation allows us to optimize the project, to meet the challenge of the affordability for Hydro to purchase the power, as well

- as for the developer to be able to construct, finance and operate the project.
- It is almost like -- no two projects are

 alike, and, therefore, I don't think any condition, any

 contract condition, can necessarily be standardized to

 provide that same sense of importance to different

 players, and by negotiating we are therefore allowing

 us to be a lot more suited to the needs of the

 individual project and the developer.

The other advantage of negotiating, it offers us the opportunity to balance off some risks and some benefits of the project with the developer such that we can make the project more economic and viable over the long term.

I guess finally we have found to date — and that is over the years that I have talked about, from the past to the present — we have found that this approach to negotiating which matches the needs of Ontario Hydro with the industry has resulted in some very good success stories. We believe that it has brought forward a number of viable projects.

This is not just my view. We have had a number of various developers from around North America who have come to talk to us about projects express the same view to us.

1	Q. Now, just lest it be overlooked, is
2	it also fair to say though that for smaller projects
3	which you have described as being under 5 megawatts,
4	that there is a standard contract available but that
5	the option of negotiation is also available in that
6	case; is that correct?
7	A. That's correct. If the proponent for
8	a project under 5 megawatts is looking for something
9	more than just a standard rate, if they're looking for
10	some financial assistance, participating in some other
11	program, then in fact we would then look at
12	negotiating.
13	Q. Now, can you outline, please, the
14	kind of negotiating or that process that goes on with
15	negotiating projects as you carry it out in your
16	division?
17	A. Yes, I would like to do that.
18	If we turn to page 5 of Exhibit 320, on
19	the transparency we can see that there are three key
20	stages to project negotiations.
21	The first stage is identifying the
22	opportunity, the second one is the project assessment
23	stage where we look for eligibility criteria, and the
24	last one is project approval.
25	I would also like to draw the Board's

1	attention to the left-hand side where we talk about
2	three terms that become very common in our
3	communication, and that is what we call an "identified
4	project", which is, in essence, when anybody gives us
5	some sense that there is a project out there in a
6	specific location.
7	Then the "proposed project", which is in
8	fact, once we have accepted the project, then we are
9	now negotiating it through various stages, it becomes
10	the proposed project, and then finally it becomes a
11	"committed project" after a contract has been signed.
12	So, our negotiating process and the way
13	we term projects go hand in hand.
14	Q. Now, perhaps you could deal in a
15	little more detail with what is involved in what you
16	have identified as your first stage; that is, simply
17	identifying the opportunity?
18	A. Okay. I think the first thing to
19	remember is that the identification of a project can in
20	fact be in response to either a specific request that
21	we may have put forward, like the request for proposal
22	back in May of '89, or it could be in terms of a
23	general response to our desire to acquire projects
24	under the maximum economic objective that we have.

The opportunity though to identify the

1	project rests with the proponent. They, in fact,
2	choose where they want to put the project, the type of
3	technology, what type of fuel will be used, and timing
4	of the project.

So what happens then is the proponent submits an application to Hydro with the particulars of the project that he has at the time. Once we receive that application we would then review it, discuss it with the proponent, and provide some preliminary information such that the proponent then can go back and start looking at some detailed assessments and some detailed designs.

about what is required for a connection requirement, what are some of the generic purchase rates out that may be available for that project. We would look at any technical advice that we can possibly give the proponent to help with that project, and we would also look at some pre-feasibility assessments, whether in fact the technology or the location or the type of fuel is appropriate for the proposal that the proponent is looking at.

At the same time, if the project involved for instance a steam hose and there would be some -- or there might be some further requirements needed in

1	terms of detailed information, or if the proponent was
2	thinking of possibly taking advantage of the financial
3	assistance program that we have, we would be asking the
4	proponent to look at a detailed consulting study, and
5	at the time we would be talking about some of the
6	issues that are necessary for the consulting study.
7	So once we have been able to provide this
8	general information to the proponent they will then
9	take that information back and now go through a formal
10	proposal submission to us.
11	Q. When you get those kinds of
12	submissions how do you go about assessing those
13	projects?
14	A. After he or she has put together this
15	formal proposal we would then look at it to ensure that
16	all of the information that we have specified in our
17	request for proposal document, which was attached to
18	Interrogatory 5.14.64, to ensure that all that
19	technical information is included, and that information
20	deals with the type of technology, the type of fuel,
21	the in-service date.
22	We would be asking for a sense of amount
23	of electricity that will be generated on-peak and
24	off-peak. We are looking for a sense of what the

economics and the financial responsibilities of the

25

1	parties are. We would be looking at the type of fuel
2	and how they expect to procure the fuel, and we would
3	also be looking at whether there is a schedule for
4	addressing environmental regulations and obtaining
5	necessary permits.
6	MR. B. CAMPBELL: Mr. Chairman, if we
7	could have as 321.1 the interrogatory that was referred
8	to, which was 5.14.64.
9	EXHIBIT NO. 321.1: Interrogatory No. 5.14.64.
10	MR. CAMPBELL: Q. Now, the last point,
11	Mr. Vyrostko, you mentioned in that list of
12	considerations was environmental matters. What is
13	Hydro's role during project negotiation in the area of
14	environmental impacts?
15	MR. VYROSTKO: A. Well, the first point
16	is that the NUG developer is responsible for ensuring
17	that their project is developed in an environmentally
18	responsible manner.
19	When the project opportunity is
20	identified and we receive an application we would then
21	refer the proponent to the appropriate government
22	agency to facilitate the request for and the completion
23	of all the necessary environmental reviews and permits.
24	Then, once that information has been
25	received by the proponent and he has met with the

1	government, upon the submission of the proposal back to
2	Ontario Hydro as a formal proposal Hydro requires
3	therefore at that time that there is a schedule
4	submitted that addresses all of the environmental
5	regulations and discusses all the necessary permits
6	that that proponent is aware of.
7	Q. Now, if we can go back to your slide
8	then, all of that having been done what is the next
9	step.
10	A. Now we are at the stage where the
11	project is accepted, so now at this stage Hydro would
12	be providing a detailed connection requirement and
13	outlining the costs necessary for incorporating the
14	project into the system.
15	At this stage also is when Hydro would be
16	looking at whether the project can be incorporated onto
17	the system, the transmission system.
18	Then we would continue, and if the
19	project now has acceptance onto our system we would
20	then discuss illustrative rates and start talking about
21	other financial requirements and/or any of the
22	financial assistance programs that we have available
23	for the project.
24	At the same time, if there is other
25	technical information that has to be shared between

either ourselves or the proponent are done at that
time.

At this stage we have a lot of detail on the project and we are now in a position to be able to, with the proponent, look at whether there are some risks and benefits that can be transferred between either Ontario Hydro or the developer to make that project a viable project.

Now, after having gone through all that information, the proposal typically would then be what we would consider "optimized" in that the proponent would have learned some information and would then have gone back and revised their proposal to some extent, whether it has changed the size somewhat or maybe deferred it or brought it forward by a year or so, or looked at some of the smaller details to make that project fit the overall affordability design between ourselves and the proponent.

Then once all of these have been put together and everything looks acceptable, a formal offer would be then placed on the table, and that formal offer can either come from Ontario Hydro or from the proponent.

Once the offer has been reviewed by both parties then it could be either accepted or rejected by

1	either party. If it is rejected, then we would try
_	energy parent in the respectively even we would try
2	again to see if by working with the proponent we can
3	reoptimize and do some more maybe with the project to
4	see whether in fact the project can fit within all of
5	the affordability criteria.
6	Finally, we would get to the stage where
7	the formal offer now has been accepted by the
8	proponent, and then we would take that formal offer to
9	our Executive office for approval as well, and once the

Q. All right. Now, do all projects go through, in a general way, this kind of negotiation process that you have outlined?

approval now has been obtained by both parties we would

proceed to finalize the contract, and at that time we

would consider the project committed.

A. All projects that we have, whether they are large or small, would in fact go through the first stage, which is the identification of the opportunity, and then the preliminary discussions with us and some of the sharing of information with respect to connection costs and/or some generic rates or some general advice that we can give the proponent.

However, since projects under 5 megawatts are much smaller than the larger ones, the dollar value is much less, the need to be as critical in terms of

1	fitting the various needs of the project are not quite
2	as important because the projects typically are
3	simpler.
4	Therefore, we have developed a standard
5	contract for projects under 5 megawatts and also we
6	have developed standard purchase rates that then
7	facilitate and make the overall administration and the
8	development of those types of projects much easier.
9	However, as we discussed previously with
10	Mr. Campbell's question
11	THE CHAIRMAN: What is your standard
.2	process rate? What is your standard for less than 5
13	megawatts?
4	MR. VYROSTKO: We have standard purchases
L5	rates?
L6	THE CHAIRMAN: Yes, what is the standard
L7	purchase rate? You say they are rates or one rate?
18	MR. VYROSTKO: No, we in fact have
L9	there are three different options to the rates.
20	THE CHAIRMAN: You are going to get into
21	that later?
22	MR. B. CAMPBELL: We hadn't thought of
23	going through that in detail, Mr. Chairman. They are
24	published and we can file that rate schedule, if that
25	would be of assistance to you.

1 THE CHAIRMAN: Well, all right. It's up 2 to you. MR. B. CAMPBELL: Holy smokes. If I have 3 4 to give the first undertaking I am going to be really 5 peeved, but I quess I better do that. 6 We will take an undertaking on that to --7 MR. SNELSON: Maybe I can help you, Mr. 8 Campbell. The latest under 5 megawatt rate is given in 9 Interrogatory 5.14.6. 10 THE CHAIRMAN: Did you happen to see what 11 it is? I am just curious. 12 MR. SNELSON: I would have to pull it out 13 to find the number. 14 THE CHAIRMAN: All right. 15 MR. B. CAMPBELL: I'm sorry, what was the 16 interrogatory number again? 17 MR. SNELSON: 5.14.6. 18 MR. B. CAMPBELL: And that will be 321.2. 19 ---EXHIBIT NO. 321.2: Interrogatory No. 5.14.6. 20 MR. B. CAMPBELL: Q. Perhaps, Mr. 21 Vyrostko, you could just give some of the figures that 22 are in your standard published rates for 5 megawatts or 23 less projects? 24 [12:25 p.m.] 25 MR. VYROSTKO: A. In essence, there's

1	three options to the rates. One is the general option
2	which is applicable to all projects. And by the way,
3	all three options are, what we call, the time
4	differentiated rates. There is a different rate for
5	the different time periods based on summer peak and
6	winter peak and summer off-peak and winter off-peak.
7	And so that really varies from 7.36 cents
8	for winter peak, which is the most expensive and most
9	valuable time for us, to 2.66 cents for a summer
10	off-peak which is the least valuable for us.
11	Now, option 2 which is the same rates but
12	with the preference because we do have a 10 per cent
13	preference for a renewable, in essence is just taking
14	10 per cent and adding that to those projects. So,
15	therefore, again, the winter peak would be 8.1 cents
16	per kilowatthour and the summer off-peak would be 2.93
17	cents per kilowatthour.
18	And then the third option that we have is
19	an option that gives basically a flat rate for projects
20	over a ten year period and we do this to stimulate the
21	development of small renewable projects. And what that
22	does, that helps with the financing because, in fact,
23	you are getting paid more at the earlier years and, of
24	course, that rate stays the same for all ten years.

Farr & Associates Reporting, Inc.

And that rate is, again for those two

periods that I talked about, is 9.81 cents per 1 2 kilowatthour for the winter peak and at 3.55 cents for 3 the summer off-peak. 4 Q. All right. And as you have mentioned 5 where - as I understand from what you advised earlier -6 financial assistance from Ontario Hydro comes into the 7 picture, that is where you would tend to have some 8 departure from the standard contracts for under 5 9 megawatt projects and those might well go through the 10 same negotiation process. 11 Do I have that right? 12 That's correct. Mr. Brown will get 13 into a little bit more detail of the financial 14 assistance program, but when we do that we, in fact, 15 are now negotiating. 16 Q. Okay. Now, turning to those purchase 1.7 rates, I guess, briefly, could you describe how 18 purchase rates for non-utility generation are 19 determined? 20 A. Purchase rates currently are 21 determined using project appraisal system incremental 22 values applied to specific projects. These take into account the considerations discussed earlier in Panel 3 23 24 and account for transmission system credits and losses

Farr & Associates Reporting, Inc.

25

as well.

1	There are two components included in
2	calculating the purchase rate: Component 1 includes
3	the determination of what we call a basic avoided cost;
4	and component 2 accounts for the application of the
5	preference premium for generation using renewable
6	resources and/or high-efficiency conversion technology
7	like cogeneration.
8	Q. How do you apply the basic avoided
9	cost in determining the NUG purchase rate?
10	A. The basic avoided cost for the
11	project is determined by applying the system
12	incremental values, or the SICs as they are referred
13	to, to the power, to the megawatts and the energy,
14	which is the megawatthours, expected to be delivered by
15	the project over the term of the proposed contract.
16	The basic avoided cost is influenced by
17	such things as the proposed in-service date of the
18	project, the term of the contract, the correspondence
19	of the power and the energy deliveries with the peak
20	and off-peak demand periods of the power system and the
21	degree to which power and energy deliveries can be
22	dispatched or curtailed by Ontario Hydro.
23	And because of all of these different
24	variations in the project, it is very difficult to
25	compare specific avoided cost or purchase rates from

1 projects solely based on those rates. 2 In addition, this basic avoided cost includes adjustments to account for transmission losses 3 4 and credits. 5 Q. All right. And then against that 6 background, how do you apply the preference premium? 7 The preference premium, which is up to 10 per cent of component 1, is offered for projects 8 9 or is based on one of the following considerations: We will provide a 10 per cent adder for all projects that 10 11 are based on using one of the following types of fuels: 12 Renewable energy resources such as solar, wind, water, 13 or forest biomass or waste product fuels, such as 14 municipal solid waste, wood waste or industrial, 15 commercial or agricultural waste products; and the 16 third one is waste heat recovery. 17 The second option is that we will provide 18 an adder of up to 10 per cent for all energy-efficient projects which use non-renewable fuels for other than 19 20 combustion support.

The adder will be based on the degree to which non-renewable fuels are used to produce electricity more efficiently than typical utility fossil-fueled plants, and this typically would be applied to the cogeneration facilities.

21

22

23

24

25

т	Q. All right. Turning then to you, Mr.
2	Brown, could you please identify some of the programs
3	that are presently used to support the development of
4	the non-utility generation industry in Ontario?
5	MR. BROWN: A. To put our programs in
6	perspective, I think it is important to reiterate a
7	statement that Mr. Vyrostko made earlier, in that it
8	was just a few years ago we had very few programs. One
9	of the ones we did have then was the standard rates
10	which we already described to the panel today.
11	But industry essentially developed on
12	their own. It is only in the last few years Ontario
13	Hydro has increased the emphasis on developing
14	programs.
15	Today I would like to elaborate on four
16	significant programs that are in operation today. One
17	is our request for proposal process No. 1. It is one
18	of our solicitation processes that is winding down.
19	No. 2, we have our consultant assistance
20	program to assist in determining project feasibility.
21	Three, we have a financial assistance
22	program, which was mentioned earlier, which provides
23	assistance to the load displacement projects, but also
24	provides flexibility for purchase type projects.
25	And four, we are involved in a government

- 1 audit program to identify cogeneration opportunities in 2 the government sector. 3 Q. All right. I would like to discuss each one of these in turn and ask you to first outline 4 5 what were the objectives of RPF No. 1, request for 6 proposal No. 1, and how did that process work. 7 A. Our objectives for request for proposal No. 1 was to communicate our interest to the 8 9 non-utility generation industry to specify our proposal 10 requirements, our connection requirements, and formalize these in more detail. 11 12 We requested specific in-service dates, 13 and for request for proposal No. 1, this is December 14 31st, 1994. We will take all projects under avoided 15 cost. 16 Q. Okay. Now those being sort of the 17 basics of request for proposal No. 1, what was the 18 response and what is the status of whatever interest 19 has been shown in this request for proposals? 20 A. As was mentioned, request for 21 proposal No. 1 started in May, 1989. Response was a 22 lot greater than we expected. By the proposal deadline 23 of January 25th, 1990, we had 39 proposals representing 24 some 6500 megawatts.
- At this time, we have 68 megawatts of

1	committed projects, 1,200 megawatts that have accepted
2	Hydro's rate offer. Most still require senior
3	management approval. And we have 700 megawatts that
4	are in the final stages of negotiation.
5	Q. All right. If you could move then to
6	the next program that you mentioned, could you outline
7	the purpose and results of the consultant study
8	assistance program?
9	A. The consultant study assistance
10	program provides assistance for consultant studies to
11	identify the technical and economic potential of
12	proposals. Our interest in this program is to take
13	steps to ensure the risks of a project are adequately
14	assessed prior to financial commitments, especially if
15	financial assistance is being considered by Ontario
16	Hydro. The assistance is available to all projects to
17	meet Ontario Hydro's pre-feasibility criteria.
18	Eighteen projects have taken advantage of
19	this program to date. Seven out of these 18 projects
20	representing 173 megawatts are either in service or
21	committed to be in service. Several others are still
22	in negotiation stage at this time.
23	Q. Now, turning to your financial
24	assistance program, again I would ask you the same

question; could you explain briefly what it is and how

25

1	i	t	WO	r	k	S	?

A. The—financial assistance program
provides a means to access more projects that are
economic. It is especially designed for load
displacement projects which do not have a rate offer
because essentially they are not selling any to Ontario
Hydro, but it also provide financial flexibility for
developers of purchase type projects.

But although the financing may vary from project to project, the cost to Ontario Hydro is still the same. It is below avoided cost. And our premise is that to combine assistance, the financial assistance and the purchase rate must not exceed the project-specific avoided cost less any lost revenue.

The program is offered in six options:

Advance payment, which is very similar to the option 3

standard rate Mr. Vyrostko earlier identified, where we pay more in the earlier years and recover in later years.

The second option, guaranteed payment, which is directed at hydraulic projects, provides a minimum cash flow regardless of monthly performance.

The third option, is performance payments which directed at load displacement projects. We will provide periodic payments based on minimum performance

1	Criteria.
2	The fourth option is low interest loans
3	for Ontario Hydro.
4	The fifth option, we will buy down loans
5	from external institutions.
6	And the sixth is we will assist in
7	natural gas procurement using one of the above options,
8	such as a low interest loan or buying down a financial
9	institutions loan.
10	To date, ten projects representing some
11	200 megawatts have taken advantage of this program.
12	Q. All right. And finally, Mr. Brown,
13	in the fourth program, you mentioned what involvement
14	does the division have in the government audit program.
15	I take it here this is the same audit
16	program that Ms. Fraser spoke about on Panel 4 that
17	operates at both the federal and provincial level.
18	A. Yes. It is very important to point
19	out that this program is really an energy management
20	program that was already discussed in Panel 4 by energy
21	management. Our involvement is to identify
22	cogeneration opportunities in the government sector.
23	It is the same auditors used in the
24	energy management process except there are screened
25	buildings for cogeneration opportunities. Of those

1	screened, we perform pre-feasibility studies to
2	identify those that require further study.
3	Once a building has been identified as
4	being an economic potential, we will follow our normal
5	negotiation process.
6	To date, as you must have heard in Panel
7	4, about 1,000 provincial buildings have been audited
8	and 700 federal buildings have been selected. Twenty
9	of these have been screened by auditors to date as
10	possibly having cogeneration potential.
11	Other than some existing district heatin
12	and cooling opportunities that already came to Ontario
13	Hydro, none of the twenty have resulted in new
14	proposals.
15	However, we are hopeful through this
16	program that we will be able to identify new sites
17	where this program will move government projects into
18	our negotiating process.
19	Q. All right. Now, what additional
20	activities are being considered by way of programs in
21	the division for the future?
22	A. We have the following activities
23	underway: One, to address load displacement concerns
24	about back-up power, the simultaneous buy/sell, to
25	enhance the role of municipal electric utilities in NUC

1	development, to assist the ministry of Natural
2	Resources in expediting hydraulic site releases, to
3	develop new solicitation processes such as competitive
4	bidding to better match NUG development with system
5	need, to promote NUG development in remote communities,
6	to promote small load displacement projects similar to
7	our standard 5 megawatt rates, and finally, to support
8	a development of promising alternate technologies used
9	for electricity generation.
10	Q. All right. Now I want to come back
11	to you, Mr. Snelson, and deal with some of the
12	integration issues that are associated with NUGS.
13	Can you tell us generally what is
14	required to integrate NUGS into the electricity system?
15	MR. SNELSON: A. There are quite a range
16	requirements necessary to integrate non-utility
17	generation together with the other generation
18	transmission and distribution into an effective system
19	to meet electricity needs.
20	There are two sort of general classes:
21	The first one is the physical interconnection to carry
22	electricity to the newest part of our system; and the
23	second one, the wider requirements to coordinate with
24	other parts of the system including the regional
25	transmission supply system, the bulk electricity

transmission system and the generation system.

The first one, the interconnection,

covers those facilities directly attributable to the

non-utility generation, such as the transmission line

to the nearest point on the system, changes to

switching and protective systems to connect the

non-utility generator.

These connection requirements are part of the negotiating process which has already been discussed by Mr. Vyrostko and I won't discuss further.

My evidence on integration focuses on the broader requirements to coordinate with the rest of the system, including coordination in planning, design, and operation.

For small non-utility generation and cogeneration, the integration requirements are generally kept to a minimum. We have to recognize that the non-utility generator often selects the location, the size, the timing and the operating pattern to suit some non-electrical use of the facilities, and those factors cannot be chosen to suit the electricity system. So that is one reason for keeping the integration requirements to a minimum. And the other one is that these are generally the preferred technologies that we are trying to encourage.

-	ror the major suppry wood then the
2	integration requirements are similar to the
3	requirements of similar utility generation. As the
4	industry becomes a more significant proportion of the
5	generation on the system, we have to pay more attention
6	to the integration issues for these major supply NUGS.
7	When you come to the integration
8	requirements, I have said that it affects the regional
9	system, the bulk electricity transmission system and
10	the generation system. Then in these three parts of
11	the system, the general objective is the same, but the
12	actual details of the requirements are somewhat
13	different, so I will deal with those factors one at a
14	time.
15	Those factors are those associated with
16	the local area requirements for the regional supply
17	system, the inter-regional requirements of the bulk
18	electricity transmission system and the system-wide
19	considerations for the planning and operation of
20	generation.
21	Q. All right. I would like you to deal
22	with each of those three categories one at a time.
23	First, can you tell us the integration
24	considerations that tend to be specific to the regional
25	supply system?

_	A. The detailed evidence on
2	transmission, both the regional and the bulk
3	electricity transmission, will be given in Panel 7, but
4	I can give an overview of the implications for
5	non-utility generation.
6	Assuming that the non-utility generation
7	plant is connected to the regional supply system, there
8	are a number of factors that have to be taken into
9	account in integrating into that system. These factors
LO	include the effects on voltage levels. Any generation
11	must be operated to maintain acceptable voltage levels
L2	in the area for customers. This may require contract
L3	terms that affect the design and operation of the
L 4	generator.
L5	This type of requirement is likely to be
L6	more important the larger the proportion of the load in
L7	the area that is supplied by the non-utility generator.
18	Another factor that must be taken into
L9	account is reliability. The design of the local system
20	must account for the expected degree of reliability of
21	the non-utility generator to maintain reliable supply
22	to customers. This is particularly significant if the
23	non-utility generator has one unit that is a large
24	portion of the supply to that area.
25	And then there is the effect on the

1	regional load and generation balance. This is dynamic
2	in the sense that load and generation are constantly
3	changing; however, in general terms, if an area has
4	more load than generation, the non-utility generator
5	will improve the balance and tend to reduce
6	requirements for transmission and also reduce
7	transmission losses.
8	[12:45 p.m.]
9	On the other hand, if the area already
10	has more generation than load the non-utility generator
11	will tend to increase regional requirements and losses.
12	We gave some general information on this
13	in answer to Interrogatory 5.14.111, and this shows the
14	province east and south of Sudbury and identifies
15	preferred locations for non-utility generation from a
16	regional transmission perspective based on existing
17	in-service non-utility generation and existing and
18	committed transmission.
19	This is page 6 from Exhibit 320.
20	Q. All right. If we could just note
21	that Interrogatory 5.14.111 should be added to the list
22	as 321.3.
23	EXHIBIT NO. 321.3: Interrogatory No. 5.14.111.
24	MR. SNELSON: Now, the slide shows
25	preferred areas.

1	THE REGISTRAR: .2?
2	THE CHAIRMAN: I think 3.
3	MR. B. CAMPBELL: .2 would be 5.14.6.
4	THE REGISTRAR: Thank you.
5	MR. SNELSON: The slide shows preferred
6	areas which are the main load centres shown in red on
7	the slide and by a distinctive hatching in the hard
8	copy, and it shows that load centres such as Toronto,
9	Ottawa, Kitchener, London generally have less
10	generation than load and that from a long-term balance
11	for those areas more generation would be beneficial.
12	Least preferred areas are also indicated
13	as red areas in the slide and diagonal hatching in the
14	hard copy, and these are areas that already have more
15	than sufficient amount of generation.
16	As discussed in the interrogatory, these
17	areas of preference are expected to change over time
18	with the addition of non-utility generation projects,
19	other changes to generation, load growth and their
20	cumulative impact on the bulk electricity system.
21	MR. CAMPBELL: Q. All right. Now, could
22	we turn then to the impact on the bulk electricity
23	transmission system, which was the second part of this
24	system integration issues you referred to.
25	MR. SNELSON: A. The integration

concerns for the bulk electricity	transmission system
are similar in principle to those	for the regional
supply system.	

balance must be maintained are larger and the flows on the transmission lines are less directly a function of load in the area. Transmission line flows also depend heavily on the scheduling of generation, much of which is connected directly to the bulk electricity system, transmission system, and it also depends upon flows to and from interconnected utilities.

A few general points before discussing specific transmission effects, the lead times for building non-utility generation and the lead times for building transmission do not match. Most of our non-utility generators can add projects to the system in the order of 2 to 3 years, and that is with the approval processes that they currently have to follow.

For transmission additions the lead time tends to be of the order of 5 to 10 years, and a large part of that is due to the long approval processes applicable to Ontario Hydro transmission.

So given those factors, then, in the

1990s non-utility generation must be incorporated into
the transmission system with the following facilities;

that is, the existing transmission system, plus 1 2 transmission that is already approved, plus 3 transmission upgrades that can be undertaken without 4 major approval processes. 5 So, in the 1990s, it is possible that the 6 transmission may be somewhat restrictive and may affect the preferred location and size of non-utility 7 8 generation. 9 In the long term, the transmission can be 10 built to accommodate non-utility generation just as it 11 can be built to accommodate Ontario Hydro generation. 12 We do need to have better mechanisms to include 13 transmission considerations in non-utility generation 14 planning to influence siting, where that's flexible, 15 and to reflect the cost implications of location from a 16 transmission point of view. 17 Q. Now, the other matter you spoke of 18 was interregional transmission limits and how or what 19 limits are there that exist that may affect NUG 20 development in the '90s. 21 There are five interregional 22 transmission limits that may impose constraints on 23 non-utility generation in the 1990s, and these can be 24 seen by reference to Figure 4-1 of Exhibit 3, which is

Farr & Associates Reporting, Inc.

reproduced as page 7 of Exhibit 320.

25

1	Most of these
2	Q. Sorry. Just when you say that, the
3	4-1 in Figure 3, it is a similar one, but I take it
4	given the January, '91 date that page 7 is a current
5	version? Bottom right corner?
6	A. Yes, I am looking at the date and
7	then I am looking at what is shown on the slide. And
8	yes, it is an updated version.
9	Q. Okay. All right. If you could go
.0	through the limits, please?
.1	A. Yes, and these limits are mostly
.2	limited by 500 kV transmission, although in some cases
.3	the 230 kV transmission has some effects.
.4	The first limit I wanted to refer to is a
.5	west to east limit across the north of Lake Superior,
.6	which is really the top left-hand corner of the main
.7	slide or the right-hand side of the inset, towards the
.8	right-hand side of the inset which shows the west
.9	system.
20	With recent additions to capacity on the
21	west system, part of which is non-utility generation,
22	we are now in the situation where we expect to have
23	more generation than load in that general area of
24	northwestern Ontario that is west of that area, so we
5	are talking about Thunder Bay and west.

1 And so, with more generation in that area 2 than load the predominant flows on that transmission 3 are from the west to the east, and at present there is 4 one double circuit, 230 kV line through that area, and 5 the loading limits on that line may affect the amount 6 of non-utility generation in the northwestern part of 7 the province. 8 The second area that may be limited by 9 transmission is between Timmins and Sudbury. At 10 present, the main line is a single circuit, 500 kV 11 line, and you will notice that the Moose River 12 generation is north of that. That line and the 13 loadings on that line are affected by additional 14 non-utility generation and additional hydraulic 15 generation in the area around Timmins, Kapuskasing and 16 to the north, including the Moose River Basin, and the 17 flows there are predominantly from north to south. 18 The third limit is between Sudbury and 19 Toronto. At present, there are two single circuit, 500 20 kV lines, and the flow tends to be south at peak times 21 because of peaking hydraulic generation in the north, 22 and it tends to be north at nighttime when the peaking 23 generation is shut down. 24 We expect that the flow south will be

Farr & Associates Reporting, Inc.

limiting as additional generation is added in northern

25

1	Ontario, both northeast and northwest, and as the
2	Manitoba purchase comes into the picture. So this
3	transmission corridor affects all non-utility
4	generation in the northeast and northwest parts of the
5	province.
6	The fourth transmission limit is
7	generally to the west of the Greater Toronto area. If
8	you can think of an imaginary line drawn between
9	Hamilton and Georgian Bay and power flows that cross
10	that line, then that's approximately the part of the
11	province that is limited.
12	There are several existing 500 kV and 230
13	\ensuremath{kV} transmission lines in the area, and the flow that is
14	of concern is from the west to the east, and that can
15	affect additional generation, including additional
16	non-utility generation in southwestern Ontario.
17	The fifth and last transmission limit
18	that we have identified is one that runs through the
19	Metropolitan Toronto area, generally to the north of
20	the Metropolitan Toronto area, and you can think of it
21	as being limiting to flows that sort of cross Yonge
22	Street.
23	There are several existing transmission
24	lines at 500 kV and 230 kV in that area, and the
25	concern the flow that is of concern is that at times

1	that transmission is fully loaded or will be fully
2	loaded from the east to the west, and that can affect
3	non-utility generation to the east of the Metropolitan
4	Toronto area over to Ottawa.
5	Q. Now, Mr. Snelson, given these limits,
6	is it going to be possible from a transmission
7	viewpoint to incorporate the 3,100 megawatts of
8	non-utility generation by the year 2000, or by 2000?
9	A. Yes. Yes, we believe it will be
10	possible but that careful integration with the
11	transmission system is required.
12	In order to incorporate that amount of
13	generation and depending on where it is located, before
14	the year 2000 and before we can add major new
15	transmission lines we may need some temporary solutions
16	to these transmission limits with the sorts of
17	arrangements that are acceptable in the short term but.
18	not acceptable in the long term.
19	As we approach and pass the turn of the
20	century we have some plans for additional transmission
21	facilities which will alleviate some but not all of
22	these bottlenecks, and that that will enable us to
23	accommodate some additional non-utility generation.
24	Given that transmission capability is
25	somewhat limited, then we are adopting the approach

1	and this is consistent with the approach that we have
2	been talking about. We are adopting the approach of
3	reserving that limited capability for the generally
4	preferred non-utility generation, also recognizing that
5	most of these technologies don't have the flexibility
6	to choose their siting to suit the needs of the
7	electricity system.
8	When it comes to actually putting
9	megawatt limits on the flows that will be permitted and
10	the additional amounts of non-utility generation at any
11	point in time that would be acceptable, then this is a
12	somewhat complicated matter.
13	It is continually changing. As the load
14	grows in a given area, then more generation in that
15	area can be accepted. There are uncertainties with
16	other resource developments that affect the
17	transmission limits, and the transmission system itself
18	is evolving over time as improvements are made.
19	We also are affected by the developments
20	on the interconnected systems that we are
21	interconnected to.
22	So this is somewhat complicated, and
23	Panel 7 will have a transmission planning witness who
24	will be able to deal with this topic and will have
25	available the latest information.

1	Q. Now, the third part of the system you
2	referred to was the generation side of it.
3	Maybe before getting into the generation
4	side of it this would be a good time to have the lunch
5	break?
6	THE CHAIRMAN: Adjourned until 2:30.
7	THE REGISTRAR: We will adjourn until
8	2:30.
9	Luncheon recess at 1:00 p.m.
10	On resuming at 2:33 p.m.
11	THE REGISTRAR: Please come to order.
12	This hearing is again in session. Please be seated.
13	MR. B. CAMPBELL: Thank you, Mr.
14	Chairman.
15	Q. Mr. Snelson, just before I turn to
16	this generation question, I want you to clarify one
17	thing for me, please.
18	Just prior to the lunch break, you
19	indicated that - you were discussing the lead times for
20	non-utility generation versus transmission additions
21	and you said the NUG lead time was about two to three
22	years.
23	Do I understand that to be from the time
24	of the project commitment? That isn't sort of the
25	whole of the process right through to in-service, but

1	the two to three years represents what?
2	MR. SNELSON: A. The two to three years
3	does represent from project commitment to in-service
4	and the time to negotiate the project is in addition to
5	that.
.6	Q. Okay. Now, the third part of the
7	system you referred to as requiring careful integration
8	considerations was the generation.
9	Can you outline for the panel, please,
10	the integration requirements as far as the generation
11	system is concerned?
12	A. There are three main considerations
13	with respect to integration from a generating system
14	point of view. The first one is with respect to
15	economic integration into planning. And the tool that
16	we use for that is avoided cost and that has already
17	been discussed in Panel 3 so I won't discuss it further
18	here.
19	The second question is with respect to
20	the load and capacity balance from a planning
21	perspective and the third
22	THE CHAIRMAN: Load, what?
23	MR. SNELSON: Load and capacity.
24	THE CHAIRMAN: Load and capacity.
25	MR. SNELSON: And the third one is with

1 respect to operational flexibility.

MR. B. CAMPBELL: Q. All right. Now, I

am going to ask you to illustrate the load and capacity

considerations by showing how the new NUG figure of

3100 megawatts by the year 2000 affects the balance

between load and capacity. If you could go through

that for us, please.

MR. SNELSON: A. Yes. And if we quickly review the conceptual figure that was page 4 of Exhibit 320 which shows how demand management NUGS, hydraulic and purchase NUGS can contribute to reducing the need for major supply, we have now come to the point where we can start to put some numbers to this figure, which is the next slide.

This slide is a load and capacity balance for the end of the year 2000. It is shown in the attachment to the supplementary witness statement which, I believe, was given the exhibit number of 319 and it is reproduced as page 8 of the overheads for this panel, Exhibit 320.

And it has been reproduced with two corrections: A minor arithmetical error of the order of 30 megawatts has been corrected and the asterisks for the notes were incorrect on the original and are now correct.

.1	This figure includes all of the
2	information to date. It includes the demand management
3	estimates from Panel 4, including the 3500 megawatts of
4	electrical efficiency improvements in fuel switching.
5	It includes the NUG estimates from this panel, which
6	are based on the 1990 NUG plan, plus 1,000 megawatts of
7	extra purchase NUGS. And the load displacement is part
8	of the demand reduction.
9	THE CHAIRMAN: You are going too fast for
10	me.
11	What is based on the 1990 NUG plan?
12	MR. SNELSON: The line in the demand
13	reductions that says load displacement of 248 and
14	the
15	THE CHAIRMAN: All right. Which you
16	said
17	MR. SNELSON: Which is directly taken
18	from the 1990 NUG plan.
19	THE CHAIRMAN: That is net of retirements
20	forecast of natural NUG?
21	MR. SNELSON: That is correct.
22	THE CHAIRMAN: And plus a 1,000?
23	MR. SNELSON: And the purchase of
24	non-utility generation which is shown in the supply
25	increases as 2,593 is 1,000 megawatts larger than the

1 corresponding number, in the 1990 NUG plan. 2 These two numbers do not add to 3100 3 megawatts because of the effect of the natural load 4 displacement NUGS and the retirements, which are 5 covered in the 1990 NUG plan. But in terms of new, 6 then it does account for the 3100. 7 THE CHAIRMAN: Well, let's just take it a 8 little easier. 9 MR. SNELSON: Okav. MR. B. CAMPBELL: I knew this one was 10 11 going to be a problem. 12 THE CHAIRMAN: Let's start with the 2593. 13 MR. SNELSON: Yes? 14 THE CHAIRMAN: Which NUG plan is that related to? 15 16 MR. SNELSON: It is taken from the 1990 17 NUG plan. 18 THE CHAIRMAN: Yes? 19 MR. SNELSON: Which shows a figure for 20 purchase non-utility generation of 1,593. 21 THE CHAIRMAN: Yes? 22 MR. SNELSON: And because we are now 23 planning on 1,000 megawatts more, 1,000 has been add 24 today that number and it is shown at 2,593. 25 THE CHAIRMAN: So, if we want to put a

1	plan number on that, would you say it is this plan that
2	is coming up at this hearing? Is that what you are
3	saying?
4	MR. SNELSON: It is our way of showing,
5	at this time, the effect of the 3100 megawatts.
6	Mr. Brown will be talking about the
7 .	specifics of how he comes to the figures that are in
8	the 1990 NUG plan and his expectations of what will
9	come about in the 1991 NUG plan.
.0	THE CHAIRMAN: All right. And then the
.1	load displacement NUGS are 248; is that right?
.2	MR. SNELSON: That is correct. And if
.3	you add 248 to 2,593, you get a number that is
.4	somewhere a little over 2,800 megawatts.
.5	THE CHAIRMAN: Yes?
.6	MR. SNELSON: And the difference between
.7	that and 3100 megawatts, which is, in fact, the total
.8	new NUGS, is the allowance for some of those NUGS
.9	having been expected to occur naturally and being
20	accounted for in the basic load forecast and a small
1	allowance for some retirements of existing non-utility
2	generation which is mostly load displacement
13	non-utility generation.
4	So, the net increase that was shown in
.5	the 1990 NUG plan was 248.

1	THE CHAIRMAN: So, the plan that you are
2	presenting today as at this moment - that is, October
3	first, 1991 - is 2593 plus 248; is that right?
4	MR. SNELSON: That is correct, and it
5	corresponds to the chair's announcement of 3100
6	megawatts having taken into account these other
7	effects.
8	THE CHAIRMAN: All right.
9	DR. CONNELL: Can we have the original
1.0	reference of which this is an update?
11	MR. SNELSON: This was attached to our
12	supplementary witness statement.
13	Is that the original reference you are
14	referring to?
15	DR. CONNELL: Yes.
16	MR. SNELSON: And it is attached to the
17	supplementary witness statement, which is Exhibit 319,
18	I believe. It was given that number this morning.
19	MS. PATTERSON: And there were no
20	footnotes on the original one; is that right?
21	MR. SNELSON: There were footnotes on the
22	original one, but the four stars' note was incorrectly
23	placed. The note was there, but the four stars were in
24	the wrong places.
25	And the sum of 5481 megawatts of demand

1	reductions on the right-hand side, halfway down, I
2	think it was 33 megawatts less and it was the incorrect
3	addition of the four numbers on the left-hand side, and
4	that was then reflected also in the total at the
5	bottom.
6	MR. B. CAMPBELL: So, to prevent myself
7	from making a previous faux pas, my recommendation
8	would be to recycle that attachment and use these
9	figures.
10	Q. Now
11	MR. SNELSON: A. I think I was partway
12	through.
13	Q. Yes. Where are we here?
14	A. I think I explained that the updated
15	demand management and non-utility generation numbers
16	were included in this figure.
17	Also included are the Hydro electric
18	options which will be discussed in Panel 6 and so we
19	are getting a little ahead of ourselves. And what is
20	shown here is consistent with the changes that Mr.
21	Campbell advised you of on September the 24th.
22	And the in-service capacity that is shown
23	in this year at the end of the year 2000 for hydraulic
24	is the same as in Exhibit 3, the Demand/Supply Plan,
25	except that it only shows the Mattagami redevelopment

1 in the Moose River Basin and Patten Post, which has 2 been advanced in response to government direction with 3 respect to their regional economic initiative in the Elliott Lake area. Patten Post is now planned to be 4 5 partly in service at this time. And the remaining item that is included 6 7 is the start of the Manitoba purchase. At this particular time, the Manitoba purchase will not be 8 9 fully in service, but the first 400 megawatts would be 10 available at this time. 11 So, we can summarize that information with respect to whether we have a surplus or a 12 13 shortfall, and that was included on page 8 of our 14 supplementary witness statement, Exhibit 319, and it is 15 reproduced here as page 9 of Exhibit 320. 16 This has figures taken from the previous 17 figure rounded to the nearest 100 megawatts or the 18 nearest .1 of a gigawatt. And all the numbers on this 19 table come from the previous one except for the bottom 20 line which shows a surplus or shortfall. 21 So, what this shows is that if all our 22 plans for the 1990s are approved and implemented with 23 no delays, then under median low growth, we would have 24 approximately 2,600 megawatts of surplus by the end of 25 the year 2000.

1	Recognizing that we also have strategies
2	to be prepared to meet upper load growth, with the
3	upper load growth as shown in the Demand/Supply Plan,
4	we would have approximately a 2,000 megawatt shortfall.
5	And with the current estimated upper, we would have a
6	3,400 megawatt shortfall.
7	Q. All right. Now, just before you move
8	on, I want to be clear, Mr. Snelson, that none of these
9	figures reflect the results of any rebalancing exercise
.0	the results of which have been promised to this Board,
.1.	I keep saying in Christmas wrapping, but there has been
.2	no attempt this is simply putting in the specific
.3	changes that have been spoken to in a mathematical way?
.4	A. That is correct, and there may be
.5	other changes implemented through the rebalancing
.6	process.
.7	Q. All right. Now
.8	THE CHAIRMAN: Now, just to finish off,
.9	the 1,000 extra megawatts.
20	MR. SNELSON: Yes?
21	THE CHAIRMAN: What is the basis for
22	that? That is an increase, there was 1593 megawatts in
23	the 1990 NUG plan; am I right?
24	MR. SNELSON: That is correct.
25	THE CHAIRMAN: And it has now been

1	increased to 2593 with the added thousand.
2	MR. SNELSON: Yes.
3	THE CHAIRMAN: Are you going to come to
4	what is the basis of adding the extra thousand?
5	MR. B. CAMPBELL: Yes.
6	MR. SNELSON: Yes, we are.
7	THE CHAIRMAN: Okay. All right.
8	MR. B. CAMPBELL: Q. Now, Mr. Snelson,
9	if the load follows this median growth path - that is,
10	the primary load follows the median load growth path -
11	how does the surplus that is shown on page 9 by the end
12	of the year 2000 affect the longer term demand supply
13	balance?
14	MR. SNELSON: A. Well, the surplus is
15	something that exists for a few years either side of
16	the year 2000. It doesn't indicate a long-term
17	surplus. That is shown on the next slide which is page
18	10 of Exhibit 320.
19	This includes all of the resources that
20	were indicated on the two previous tables, but instead
21	of just showing the year 2000, it now shows it over a
22	twenty five year period.
23	The way you read this figure is that the
24	top line, the top solid heavy line, is the basic load

forecast. The solid line below that is the firm load

25

1	forecast taking into account all of the demand
2	reductions.
3	The lower thinner line is the load
4	meeting capability of the existing system. And the
5	higher thinner line is the load meeting capability of
6	the existing system plus the increases in supply from
7	non-utility generation, hydraulic and Manitoba
8	purchase.
9	And so, the surplus or shortfall can be
10	seen by comparing the lower heavy line with the upper,
11	thinner line. And one can see that the years '96, '97
12	and '98 are close to balance and it was needs in this
13	period that was one factor in deciding that planning
14	for extra NUGS was a good idea. And that the NUGS that
15	come into service partly to meet that need are also
16	there and contribute to the surplus around the year
17	2000.
18	And the surplus has substantially gone by
19 '	about 2004, which shows that major supply and
20	considerable amounts of major supply are still required
21	in the long term.
22	Q. Now, again
23	THE CHAIRMAN: Well, on this graph,
24	unless I am misreading it, it is more like 2006, isn't

25

it, or 7?

1	MR. SNELSON: I think it is 2005, I
2	think, perhaps the cross-over, is it?
3	THE CHAIRMAN: Well, I guess eyeballing
4	it, it looks like more like it is over 2004 anyway?
5	MR. SNELSON: Yes. Well, in 2004 it is
6	reduced to a fairly small value. We plan on a margin
7	of the order of plus or minus 400 or 500 megawatts.
8	MR. B. CAMPBELL: Q. Now, again, Mr.
9	Snelson, is it fair to say that this chart does not
10	represent any to be read as representing any overall
11	result of the reintegration exercise the results of
12	which have been spoken of by myself and others so
13	often?
14	MR. SNELSON: A. That is correct.
15	Q. Now, can you just summarize then the
16	demand/supply balance considerations with respect to
17	the NUG plan?
18	A. The first point is that the 3100
19	megawatts which was announced by the Chair of Ontario
20	Hydro was not constrained by the load and capacity
21	balance picture with respect to the preferred NUG
22	technologies. It is the forecast of what we can get
23	from the preferred NUG technologies.
24	And this overcapacity situation for a
25	number of years was considered to be acceptable at this

-	point in planning from a road and capacity point of
2	view based on the strategies of being prepared to meet
3	upper load growth, the uncertainty in the timing of
4	other resources, and there are resources that
5	contribute to that apparent surplus which have some
6	uncertainty associated with them, particularly with
7	their timing, and recognizing that the additional
8	non-utility generation is from preferred technologies.
9	The plans for major supply NUGS, just
10	like plans for Ontario Hydro generation in Ontario
11	Hydro major supply, must take into account that we are
12	now forecasting sufficient capacity for the 1990s.
13	Q. All right. Turning then to questions
14	of operational flexibility, how does the need for
15	operational flexibility affect non-utility generators?
16	A. In planning, we try to maintain a mix
17	of options that can follow the varying load and do so
18	at low cost in an environmentally acceptable way.
19	Operations has the job of actually
20	managing this on a daily, hourly, minute-by-minute
21	basis.
22	Mr. Barrie on Panel 2, you will recall,
23	described some parts of this process and I believe you
24	saw some parts of this process on your visit to the
25	control centre.

1	[2:53 p.m.]
2	A large part of this day-to-day,
3	minute-by-minute operation is with regards to
4	dispatching of generation, and we provided some
5	information on the dispatching of generation in
6	Interrogatory 3.14.67.
7	Briefly summarizing some of the things
8	that are in there,
9	Q. Perhaps we could just assign the
10	number for that first.
11	THE REGISTRAR: 321.4.
12	<u>EXHIBIT NO. 321.4</u> : Interrogatory 3.14.67.
13	MR. SNELSON: Dispatching of generation
14	takes place over a variety of time scales which vary
15	from instantaneous through the operation of automatic
16	equipment to the setting of planned outages several
17	months in advance.
18	Some aspects of dispatching are mandatory
19	for safety, system security or other reasons.
20	Environmental considerations can affect the need to
21	reduce the output of some generation and increase the
22	output of other generation. Another important aspect
23	of dispatching is to reduce the costs by making
24	preferential use of low cost fuels.
25	Non-utility generation should contribute

1	its share to the need for flexible system operation
2	that is appropriate for the technology that is being
3	used.
4	To this time dispatchability for
5	non-utility generation, dispatchability requirements,
6	have been limited to needs for public and worker
7	safety, system security and reliability, with some
8	minimal economic dispatch to avoid periods of surplus
9	base load generation, and this was appropriate while
10	the NUG industry was developing and while NUGs were a
11	small proportion of the total system.
12	We consider that this approach will
13	remain appropriate for the preferred options that are
14	in the NUG plan. For major supply NUGs we consider
15	that dispatchability similar to Ontario Hydro's
16	generation using comparable technology will be
17	required.
18	THE CHAIRMAN: That last again, what was
19	it? For the major supply NUGs? You said something.
20	MR. SNELSON: That they should have
21	dispatchability capabilities similar to the
22	dispatchability that we would specify for Ontario Hydro
23	generation using the same technology.
24	THE CHAIRMAN: Are there three kinds of
25	NUGs: one, preferred NUGs; two, non-preferred NUGs,

1 which aren't major supply NUGs; and three, major supply 2 NUGs? 3 MR. SNELSON: I think we principally have 4 it divided two ways: preferred NUGs, --5 THE CHAIRMAN: What about a NUG that 6 isn't a major supply NUG that isn't a preferred? Is it 7 out of consideration? Is it out of the plan? I just 8 want to be clear about it. 9 MR. B. CAMPBELL: There is nothing that is out of the plan. It is just how they are being 10 11 treated in the planning, Mr. Chairman. 12 I am not sure... 13 MR. VYROSTKO: I can't actually think of 14 the non-preferred, non-major supply NUG. I can't think 15 of an example right now, although that's not to say 16 some may show up, but I think right now the two 17 categories are probably covering off virtually 18 everyone. 19 THE CHAIRMAN: Okay. Thank you. 20 MR. CAMPBELL: Q. Do you want to 21 continue then, Mr. Snelson? Those were all of the 22 points that you wanted to make there, as I understand 23 it; is that correct? 24 MR. SNELSON: A. Yes, that is correct. 25 Q. All right. If I could have a moment,

1	Mr. Chairman?
2	Thank you, Mr. Chairman.
3	Mr. Vyrostko, I was going to go next to
4	Mr. Brown, but I am going to ask you let's just deal
5	with one simple question here before we proceed into
6	this because I think it will help.
7	Can you explain just briefly, please -
8	and Mr. Brown will be dealing with all of the numbers
9	in more detail - but can you explain just briefly,
10	please, about where this extra 1,000 megawatts has come
11	from? Just simply with that question.
12	MR. VYROSTKO: A. In essence, over the
13	last year, dealing with it earlier in direct evidence
14	we said that the gas prices have come down, and as a
15	result of the very low gas prices to date in essence
16	these 1,000 megawatts of projects were projects that
17	were not anticipated in the 1990 NUG plan. In fact,
18	they were projects that were able to become economic as
19	a result of the conditions existing today in the
20	industry.
21	And so, in essence, what we are looking
22	at - and Mr. Brown will talk about it in detail - is
23	that this proposed 1991 plan is no different than the
24	1990 plan except for the incorporation of this
25	unexpected 1,000 megawatts.

1

Mr. Chairman?

1	Q. As I understand it, it is this
2	unexpected 1,000 megawatts that is what was described
3	in Mr. Eliesen's speech as being very close to being
4	committed right now?
5	A. That's correct. Price offers have
6	been accepted, and in at least half of the projects our
7	corporation has also accepted the offer.
8	Q. And it is fair to say that the
9	corporation simply did not expect to be in this
10	position with respect to that 1,000 megawatts as of a
11	year ago?
12	A. That's correct, and I think Mr. Brown
13	will deal with some of that as well.
14	Q. All right. Now, Mr. Brown, in
15	looking to the future, when you publish your NUG
16	plan I know you have a particular view of it, and I
17	would like you to explain what the NUG plan represents
18	in Ontario Hydro's planning.
19	MR. BROWN: A. Basically the NUG plan is
20	a forecast.
21	There are two activities that we do in
22	the forecast. We estimate the technical potential of
23	non-utility generation in Ontario, and then we forecast
24	the amount of attainable non-utility generation from
25	that.

1	To date, two NUG plans have been
2	developed: the 1989 NUG plan, which is filed as
3	Exhibit 26, and the 1990 NUG plan, filed as Exhibit 83,
4	a correction later filed in Exhibit 143.
5	In general, in Ontario, as Mr. Vyrostko
6	mentioned this morning, there are about 1,200 megawatts
7	of what we refer to as historical load displacement
8	generation. These generators have been in operation
9	for many years. The numbers in the NUG plan are over
10	and above this 1,200.
11	Simply stated, the total number of NUGs
12	in Ontario is 1,200 megawatts plus the NUG plan.
13	THE CHAIRMAN: Where does the natural NUG
14	fit into that?
15	MR. BROWN: The natural is part of the
16	NUG plan. It's a growth in historical load
17	displacement that we would have predicted would have
18	occurred without Ontario Hydro's programs and
19	activities.
20	THE CHAIRMAN: I understand that, but
21	it's not included on page 8, though; it has been netted
22	out?
23	MR. BROWN: It is, but it's not
24	explicitly stated.
25	If we turn back to that table in Exhibit

1 320, page 8, in the basic load forecast it's in the top 2 box of that page. That's where the natural load 3 displacement is accounted for. 4 So it is buried, is a correct way of 5 putting it, in the 32,800 number. 6 THE CHAIRMAN: The natural NUGs are in 7 there? 8 MR. BROWN: Yes. And that number for the 9 year 2000 is 207 megawatts. 10 THE CHAIRMAN: But, as I understand it, 11 it doesn't play a part, or does it play a part, in your 12 NUG plan, those 207 megawatts? 13 MR. BROWN: Yes, it does play a part. It 14 is part of the 3,100. 15 THE CHAIRMAN: It is part of the 3,100? 16 MR. BROWN: Yes. 17 THE CHAIRMAN: Okay. All right. 18 MR. BROWN: The NUG plan is our best 19 estimate of power and energy attainable for NUGs over 20 the next twenty five years. 21 I will focus on the capacity values of 22 future NUGs, but I think it is important to also 23 emphasize that the energy contribution for NUGs is also 24 important. These numbers are provided in the NUG plan and I will provide the assumptions used to determine 25

1	those numbers.
2	Furthermore, the NUG plan provides the
3	load displacement NUG which is used for load forecasts.
4	The natural NUG is included in the basic forecast, as I
5	just outlined, and a program-driven load displacement
6	is included in the primary load forecast. The
7	purchased NUG is used in the capacity planning.
8	All these numbers are in the NUG plan.
9	All of them are included in the 3,100 by the year 2000.
10	The NUG plan includes technologies likely
11	to be developed by the private sector and is connected
12	to the main grid. The NUG plan does not include NUG
13	development in remote communities or small development
14	applications not connected to the main grid, such as
15	the supply to an isolated cottage.
16	Although we have such projects and we
17	will continue to support their development, they are
18	not part of the plan.
19	MR. CAMPBELL: Q. In the sense that they
20	are not part of the forecast that you use in doing this
21	demand/supply balance for the bulk electricity system?
22	MR. BROWN: A. That's correct.
23	Q. All right. Now, could you summarize
24	the technologies currently considered in the NUG plan?
25	A. Numbers

1	Q. Here I am talking the 1990 NUG plan,
2	okay?
3	A. There are a number of technologies
4	that were included in the 1990 NUG plan.
5	It included hydraulic sites. These are
6	typically less than 5 megawatts, but there are sites
7	larger than this. There is other thermal technology,
8	which is a catch-all, which includes municipal solid
9	waste, turbo expanders, wood waste, major supply NUG.
10	We have another category called
11	"cogeneration", which is the most significant part of
12	the plan and represents about 70 per cent of the
13	forecast. We also considered alternate technologies
14	such as wind and solar.
15	I want to add that alternate technologies
16	although considered in the 1990 NUG plan were not
17	included in the 1990 forecast. This was because they
18	were not expected to be economic in Ontario, and by
19	that I mean the contribution of these technologies, the
20	wind and solar, were expected to be minimal over the
21	planning period when we did the 1990 NUG plan of less
22	than 5 megawatts over that twenty five year period.
23	The economics and environmental
24	considerations of these alternate technologies will be
25	discussed further in Panel No. 0

1	MR. B. CAMPBELL: Again, Mr. Chairman,
2	this is a case where in terms of the NUG programs in
3	these areas it is all material for this panel, except
4	some of the specifics of the economics and technologies
5	will be dealt with in Panel 8 and I expect that there
6	will be back from printing a document that will be
7	distributed to all the parties fairly shortly.
8	I have spoken at some of the earlier
9	meetings with parties about this. This document
10	represents I think it started out, as I mentioned
11	before, as sort of a briefing note in this area, but it
12	has turned into a very snappy briefing note indeed, and
13	we thought it would be useful to distribute it to all
14	the parties.
15	That will be out shortly and will be
16	witnessed in Panel 8.
17	Before I ask Mr. Brown to go on in this
18.	area, though, I want to go back, Mr. Brown.
19	Q. You spoke of a number of technologies
20	in the plan and you mentioned major supply NUG. We
21	seem to be causing some confusion with this term. I am
22	going to try and keep it straight as we go along.
23	My understanding is that if you look in
24	the 1990 NUG plan you won't find any heading called
25	"Major Supply NUG"; am I correct?

1	MR. BROWN: A. That's correct.
2	Q. But you did look at the technology
3	that is involved; that is, gas-fired, electricity only
4	production, non-utility generation in a combined cycle
5	format?
6	A. That's the long version of major
7	supply NUG.
8	Q. All right. Having looked at it, the
9	amount that you included in the plan in 1990 was zero
10	because it was not believed to be economic?
11	A. That's correct.
12	THE CHAIRMAN: What was zero, what was
13	zero?
14	MR. BROWN: In the 1990 NUG plan it was
15	called "fossil fuel generation", which has now been
16	labeled "major supply NUG", and in the 1990 NUG plan
17	our estimate was zero.
18	THE CHAIRMAN: So it is just a
19	transposition in terms? Is that all it is? It is
20	nothing more than that?
21	MR. BROWN: In the 1990 NUG plan when we
22	said "fossil fuel generation" we were explicitly
23	talking about electricity only, non-cogeneration.
24	There is an element in our 1,000 number
25	that is not pure, just electricity only generation,

1	which I will deal with later in my direct.
2	THE CHAIRMAN: But let me just make sure
3	I understand. What you called in the 1990 plan
4	"fossil" What was it again?
5	MR. BROWN: Fossil fueled.
6	THE CHAIRMAN: Fossil fueled?
7	MR. BROWN: Generation.
8	THE CHAIRMAN: Generation. Now is called
9	"major supply NUGs"; is that right?
10	MR. BROWN: Yes.
11	THE CHAIRMAN: It's as simple as that?
12	MR. BROWN: Yes.
13	THE CHAIRMAN: All right.
14	MR. CAMPBELL: Q. We will be coming to
15	its treatment now as you prepare the 1991 plan or
16	forecast, and we will deal with that in a moment, but I
17	want to come back and go through, when you are
18	preparing this forecast or plan, ask you to describe
1,9	the sources of information that you use in that
20	development.
21	MR. BROWN: A. In developing the NUG
22	plan we use four principal sources.
23	The first one is resource assessment.
24	This is generally a list of sites in Ontario that have
25	technical potential.

1	Our second source is an economic
2	analysis. This is an analysis of larger industrial
3	sites that have cogeneration potential.
4	The third source is project development
5	information. It is information obtained from NUG
6	proponents through the negotiation process.
7	The fourth source is project performance
8	information which is information obtained from
9	in-service NUG projects.
LO	Q. All right. Now, I would like to take
11	you through each one of them and start by explaining
L2	what you are speaking of when you speak of a "resource
13	assessment".
14	A. A resource assessment is a process to
15	evaluate the technical potential. The end result of
16	this process is a list of all sites with technical
17	potential. For example, the resource assessment for
18	industrial cogeneration is based on a collection of
19	data where steam is used. In some cases, such as wood
20	waste, there is no site-by-site breakdown available.
21	In this particular case we use provincial totals.
22	Some of these potentials are lowered to
23	incorporate areas that are impractical, such as for
24	collectibility reasons.
25	Our resource assessments are based on

1	internal and external studies. These have been
2	referenced in the plan and are provided in several
3	interrogatories, such as 5.9.18.
4	MR. B. CAMPBELL: Perhaps we can have
5	that given the next number, which would be?
6	THE REGISTRAR: 321.5.
7	MR. B. CAMPBELL: 321.5. Thank you.
8	EXHIBIT NO. 321.5: Interrogatory No. 321.5.
9	MR. BROWN: As a final check on our
10	resource assessment we compare our technical potentials
11	with those compared by other jurisdictions through
12	business contacts, conferences and trade publications.
13	MR. CAMPBELL: Q. Now, the second source
14	of information you identified is economic analysis.
15	What are you speaking of when you speak of that bit of
16	information?
17	MR. BROWN: A. An economic analysis is a
18	study of a typical NUG facility. It determines, based
19	on judgment, the economic viability of the facility.
20	For cogeneration this is performed using
21	a Lotus spreadsheet program we developed. It uses
22	among other things NUG purchase rates and natural gas
23	prices. This spreadsheet was provided in
24	interrogatories such as 5.14.233.
25	MR. B. CAMPBELL: And perhaps we could

_	get the next number for that. That 5 321.0:
2	THE REGISTRAR: Right.
3	<u>EXHIBIT NO. 321.6</u> : Interrogatory No. 5.14.233.
4	MR. B. CAMPBELL: Q. Are there some
5	areas where you have and don't have the necessary data
6	to conduct that kind of analysis?
7	MR. BROWN: A. At this time it is only
8	the area of industrial cogeneration where we have the
9	necessary data that we can do an economic analysis, and
10	we have referred to this as our cogeneration model.
11	Q. All right. Now, the third
12	information source you have mentioned, which was
13	project development information, can you give a
14	description of what that body of information covers?
15	A. Project development information is a
16	data base of information collected from NUG proponents
17	through various stages of the negotiation process.
18	This information source provides very
19	detailed information such as a listing of all known
20	projects, the location, size, type of each project,
21	connection information, the status of each project,
22	rate and financial assistance information, contract
23	negotiation status and likely in-service date.
24	Much of this information is provided by
25	NUG proponents in confidence, but we aggregate this

_	information to determine the timing and location of
2	future NUGs, the amount of NUG that will be load
3	displacement and the amount that will be purchase, the
4	attainable potential for certain technologies where a
5	full economic analysis is not possible. It is also
6	used in the short-term portion of the forecast.
7	The aggregated and forecast information
8	is set out in the NUG plan and is shared with external
9	agencies such as the Independent Power Producer Society
10	of Ontario and the Non-Utility Generation Advisory
11	Council on a regular basis.
12	Q. What is the fourth information source
13	you spoke of, which is project performance information?
14	A. The final information source, project
15	performance information, is a collection of data on
16	actual NUG performance. It includes in-service
17	megawatt capacity, capacity factor information, and
18	other reliability data on in-service NUGs. At the
19	present time, there is limited information available
20	but enough to establish preliminary estimates in this
21	area.
22	As we collect data over time these
23	preliminary estimates will be improved. Recognizing
24	the importance of this data we are currently developing
25	a new data base which will provide valuable performance

1 information in the future. 2 As in the case of project development 3 information, this information is obtained from NUG Δ proponents in confidence. 5 Now, how do you apply these sources 6 of information in your development of the NUG forecast 7 or "the NUG plan", as you referred to it? 8 The application of these four sources 9 is really dependent on how much we know about each 10 technology, but, in general, the forecast is developed 11 by reviewing the results of the first three sources -12 resource assessment, economic analysis and project 13 development information - and later we use the project 14 performance information to develop certain forecast 15 assumptions to calculate energy, such as using capacity 16 factors. 17 [3:17 p.m.] 18 Q. All right. Now, before we get into 19 the details of the NUG plan, how has that plan or 20 forecast evolved over the last three years, and I would 21 perhaps ask you to just start briefly with the first 22 NUG plan which was 1989?

Farr & Associates Reporting, Inc.

very little forecast information was available. Very

few utilities were forecasting long-term NUG

Α.

When we developed the 1989 NUG plan,

23

24

25

1	projections and this continues to be the case.
2	However, recognizing the importance of
3	project development data, our efforts were directed at
4	improving the quality of this data. More projects and
5	more data on each project was included in our data
6	base.
7	Furthermore, we updated our resource an
8	assessments through literature searches and contacts
9	with other utilities.
10	Based on the information we had, our
11	forecast of cogeneration, hydraulic and energy from
12	waste or other thermal, as it is called now, the 1989
13	forecast by the year 2000 was 1,661 megawatts. And by
14	the year 2014, the forecast was 2,663 megawatts.
15	This is the forecast that was used in the Demand/Supply
16	Plan.
17	Q. All right. Then what steps did you
18	take to improve the 1990 forecast?
19	A. When we started the 1990 plan, we
20	contracted an outside consultant to assess the 1989 NUG
21	plan and recommend areas for improvement. The report
22	on the findings of the consultant's report was attached
23	to Interrogatory 5.9.54.
24	Q. Perhaps we could have the next number

25

for that.

1	THE REGISTRAR: 321.7.
2	MR. B. CAMPBELL: Thank you.
3	EXHIBIT NO. 321.7: Interrogatory No. 5.9.54.
4	MR. B. CAMPBELL: Thank you.
5	MR. BROWN: And finally, we updated all
6	four sources of information used in developing the plan
7	the latest forecast information.
8	Based on this information, the 1990 NUG
9	plan showed an increase in the NUG forecast from the
10	1661 megawatts I mentioned earlier to 2,107 megawatts.
11	The major reason for this increase was
12	the addition of two technologies. This represented 350
13	out of the 450 megawatt increase.
14	MR. B. CAMPBELL: Q. All right. The 450
15	being the difference between the 1661 and the 2107?
16	MR. BROWN: A. That's correct.
17	Q. All right. Now, what were the two
18	technologies that amounted for the first 350 megawatts
19	of that difference?
20	A. Based on the project development
21	information, there was a trend of two new technologies
22	emerging in the NUG area: One was electrical
23	generation from natural gas compressor stations; and
24	the second was the use of natural gas generation at
25	wood waste generation facilities. I will discuss both

1 of these when I talk about the plan details. 2 And the final 100 megawatts of the 450 3 megawatt increase was due to an increase in industrial 4 cogeneration of 100 megawatts, and this is due to 5 improvements in our economic analysis model. 6 I just want to finish off the '90 plan by 7 reiterating that the technologies originally in the '89 8 NUG plan showed very little substantial increase in the 9 1990 NUG plan. 10 Q. All right. Now --11 THE CHAIRMAN: Do you have a figure for 12 2015 for the 1990 plan? 13 MR. BROWN: It is on my next slide. 14 THE CHAIRMAN: Oh, all right. I mean, 15 that is related to the 2107. That is what I wanted to 16 tie it in with because you gave us the figures for 17 1989. 18 MR. BROWN: Actually, I don't total them 19 here -- 3319. 20 THE CHAIRMAN: 3319? 21 MR. BROWN: Yes. 22 MR. B. CAMPBELL: Q. All right. 23 what steps are you undertaking to improve the next NUG 24 plan that I guess would be dated later this year? 25 MR. BROWN: A. We are currently working

T	on the 1991 NUG plan. The methodology we used in the
2	1990 NUG plan continues to be appropriate. Preliminary
3	indications do not show a significant change in the
4	forecast of preferred NUGS.
5	In the 1991 NUG plan, we are going to
6	take a closer look at alternate technologies. Recent
7	industry activities have indicated some post-2,000 year
8	contribution, but this is not expected to be
9	significant.
LO	Current activity indicates the major
11	supply NUG proposals are viable. This also includes
12	cogeneration project proposals which use a relatively
13	low percentage of their thermal energy for purposes
14	other than electricity production. These are similar
.5	to a major supply NUG.
1.6	Those that are expected to proceed will
17	be included in the 1991 NUG plan. This accounts for
18	the 1,000 megawatt increase.
19	In summary, the estimates of preferred
20	technologies
21	THE CHAIRMAN: In addition to the gas
22	price, I think; is that right? In addition to the gas
23	price? The gas price going up, I thought you said a
24	moment ago, was the reason for the 1,000 increase.
25	MR. BROWN: The decrease in the gas price

1	has made these purchases viable, yes.
2	THE CHAIRMAN: So, it ties in with this?
3	MS. PATTERSON: It is the same 1,000
4	megawatts?
5	MR. BROWN: Yes.
6	In summary of the '91 plan, overall the
7	preferred technologies have not increased from the '89
8	plan. We have added two new technologies, I mentioned
9	earlier, natural gas compressor stations and natural
.0	gas with wood waste and these accounted for changes
.1	from '89 to '90.
.2	Between '90 and '91 NUG plan, we have the
.3	1,000 megawatts of additional viable major supply NUGS
.4	expected to be committed by the end of this year.
.5	However, the 1991 NUG plan will not try
.6	to forecast major supply NUG.
.7	As Mr. Snelson mentioned earlier, as the
.8	system needs this technology, the NUG division will
.9	solicit NUG proposals.
0	As commitments are made to major supply,
1	they will be incorporated into the NUG plan at that
2	time.
:3	MR. B. CAMPBELL: All right. Mr.
4	Chairman, if we are going to take the afternoon break,
:5	I think if we could do it five minutes early, this is a

convenient time for that break. I expect we will 1 2 finish today. 3 THE CHAIRMAN: We will adjourn for 15 4 minutes. 5 THE REGISTRAR: This hearing will take a 6 15-minute recess. 7 ---Recess at 3:26 p.m. ---On resuming at 3:47 p.m. 8 9 THE REGISTRAR: Please come to order. 10 This hearing is again in session. Be seated, please. 11 MR. B. CAMPBELL: Thank you, Mr. 12 Chairman. I have been asked to speak to you with respect to the appearance in this panel for 13 14 cross-examination purposes of the Solar Energy Society. 15 A perusal of the statements of concern that we have filed will indicate that we never received 16 17 a statement of concern from SESCI. 18 I am now advised that, in fact, one was 19 prepared and it is now in the Board staff's hands and 20 they do want to have the opportunity to cross-examine 21 on this panel and ask simply that I speak to that 22 matter and that their position be worked out. They are 23 quite happy to, as I understand it, fall somewhere 24 towards the bottom end of the list as they have in

Farr & Associates Reporting, Inc.

other panels in terms of position. So, I was asked to

25

1	communicate that to you.
2	THE CHAIRMAN: Also, there was a
3	statement made just a few moments ago about alternative
4	energies being in the NUGS and I am not sure whether
5	that may not enhance their interest in the panel.
6	MR. B. CAMPBELL: Well, the detailed
7	review of technologies and so on, as I say, is a Panel
8	8 matter. I have just briefly glanced at the statement
9	of concern and I will speak to Mr. Grenville-Wood who
10	is represented
11	THE CHAIRMAN: You might point out that
L2	part of your presentation which does refer to
13	alternative energy.
L4	MR. B. CAMPBELL: Yes, I will do that.
15	And, of course, in terms of the development issues
16	around that with respect to its development through the
L7	mechanism of non-utility generation, that, of course,
18	is a matter for this panel.
19	THE CHAIRMAN: I gather, Ms. Couban, you
20	want to be promoted higher on the list; is that
21	correct?
22	Mr. Moran, is it?
23	MR. MORAN: Thank you, Mr. Chairman. I
24	just wanted to indicate that we have talked to a few of
25	the intervenors who are earlier on the list and they

1 have indicated they don't have any objection to us 2 going third, fourth or fifth. 3 We have a bit of a scheduling problem with some other matters and we would like to go earlier 4 5 rather than later. THE CHAIRMAN: Well, would you tell me 6 precisely where you would like to go? 7 8 MR. MORAN: At this point, we are probably going to follow IPPSO. 9 10 THE CHAIRMAN: All right. That is second. 11 MR. MORAN: That would be second, that is 12 correct. 13 THE CHAIRMAN: All right. Well, do you 14 think Mr. Grenville-Wood would mind replacing the government at the end of the list? 15 16 MR. B. CAMPBELL: My impression was that 17 that would not be a problem. 18 THE CHAIRMAN: All right. Mr. 19 Grenville-Wood would be pleased to act in the stead of 20 the government. (laughter) 21 THE CHAIRMAN: All right. 22 MR. HUNTER: If I might, Mr. Campbell, we 23 actually were hoping to proceed after IPPSO as well, so I will talk to this gentleman and we will try to sort 24

Farr & Associates Reporting, Inc.

25

out the schedule.

1	THE CHAIRMAN: All right. Thank you.
2	You don't know how long you are going to be?
3	MR. HUNTER: I would presume we will be
4	no longer than two or three hours.
5	THE CHAIRMAN: All right.
6	MR. B. CAMPBELL: Q. All right. With
7	those preliminaries out of the way, if, Mr. Brown, I
8	could ask you to turn to page 11, put up the overhead
9	for page 11 of Exhibit 320.
.0	I guess I would like you first just to go
.1	through briefly summarizing the figures that were in
.2	the 1990 non-utility generation plan.
.3	MR. BROWN: A. I will be addressing the
.4	numbers themselves later on. I just want to bring to
.5	your attention the process that we are going to follow,
.6	and that is for each technology which is listed across
.7	the top, hydraulic, which is written 'Hyd' on the slide
.8	for convenience, MSW, turbo expander, wood waste, major
.9	supply NUG, the cogeneration portion which includes
20	industrial, institutional, commercial and residential
21	and natural gas compressor stations.
22	For each one of these technologies, I
!3	will be looking at the 1990 NUG plan estimate of
24	technical potential, year 2000 attainable, year 2015
25	attainable and provide preliminary indications of the

1 1991 NUG plan for these technologies in terms of the 2 year 2000 and the year 2016. 3 THE CHAIRMAN: 16 or 15? MR. BROWN: The 1991 NUG plan is a twenty 4 5 five year forecast, so it will be going one year longer 6 than the '90 plan. 7 THE CHAIRMAN: So the figure at the 8 bottom left-hand corner should be 16 and not 15? 9 MR. BROWN: That's correct. 10 MR. B. CAMPBELL: Q. All right. Now, 11 Mr. Brown, I am going to ask you then to start with the 12 hydraulic column, please, and I guess first ask you to 13 describe what you have included in the -- or just describe generally the potential for that hydraulic 14 15 resource and then we will proceed from there. 16 MR. BROWN: A. The hydraulic resources in 17 Ontario are documented in Exhibit No. 82. You referred to page 12 of Exhibit 320, is a summary of the figures 18 19 from Exhibit 82. 20 The total resources in Ontario were 21 estimated at 19,900 megawatts. After deducting the in-service capacity, which is either Ontario Hydro or 22 23 old load displacement NUG, which is almost 7500 24 megawatts, if we deduct the 3,591 which is in Exhibit

Farr & Associates Reporting, Inc.

28 of the Ontario Hydro 1989 hydraulic plan, and deduct

25

1	northern rivers such as the Winisk and Albany
2	watersheds that amount to over 5,000 megawatts, and
3	remove those megawatts on parkland which are strict NUG
4	development, which total 694, this value was also
5	explained in Exhibit 28.
6	And finally, we deduct 1,784 as
7	classified as other environmental, technical or
8	economic reasons, and this is explained in Exhibit 28
9	and will be further dealt with in Panel 6.
.0	By subtracting all of these values off of
.1	the total in Ontario, we have a technical potential for
.2	non-utility generators in Ontario for hydraulic
.3	development of 1,252 megawatts.
.4	Q. All right. That is the number that
.5	is, in effect, your starting point and Panel 6 will be
.6	speaking to the rationale for eliminating certain of
.7	that capacity which is theoretically available; do I
.8	have that right?
.9	A. Panel 6 will be addressing the 3,591,
20	the 694 and the 1,784 figures.
1	THE CHAIRMAN: Well, I haven't looked at
2	it close enough, but where does the recent Moose River
!3	developments come into this?
14	MR. B. CAMPBELL: Well, Mr. Chairman,
!5	that is part of the 3,591 megawatts that were in the

1	1989 hydraulic plan. That capacity is not considered
2	within the amount available to NUGS that Mr. Brown will
3	be speaking to.
4	THE CHAIRMAN: All right.
5	MR. BROWN: And this information is
6	provided in the NUG plan in Table Al-8 and was
7	subsequently revised for Interrogatory 5.14.273.
8	MR. B. CAMPBELL: All right. And the
9	number attaching to that would be 3?
10	THE REGISTRAR: 321.8.
11	THE CHAIRMAN: Give me the interrogatory
12	again, please?
13	MR. BROWN: 5.14.273.
14	THE CHAIRMAN: Thank you.
15	EXHIBIT NO. 321.8: Interrogatory No. 5.14.273
16	MR. B. CAMPBELL: Q. All right. Now,
17	how do you go about then making a judgment as to what
18	would be developed over the next twenty five years and
19	what was that figure for the 1990 plan?
20	MR. BROWN: A. From the technical
21	potential of the over 1200 megawatts, we estimate the
22	likelihood of a site going into service based on its
23	current stage of development; the premise being that
24	most of the promising undeveloped sites have been
25	identified.

-	ruithermore, the more economic a site is,
2	the further along its development will be.
3	Site success factors based on project
4	experience are used to estimate the year 2000 and the
5	year 2015 contribution to the 1990 NUG plan.
6	Q. You are using analysis here 2015 and
7	16 sort of interchangeably. We should read in 2016?
8	A. For the 1990 NUG plan
9	Q. Oh, for 1990, I am sorry. I am going
10	to confuse this even more. I can see this. I will
11	just be quiet.
12	A. Different factors depending on the
13	status of the site are used. For an unidentified
14	site - that is, we are unaware of any NUG activity of
15	that site - we have a certain success factor. This
16	increases depending on the level of development. For
17	an identified site, it is a higher number where a NUG
18	proponent has identified an opportunity to us; even
19	higher for a proposed site where proposal has been
20	submitted to the NUG division at Ontario Hydro for
21	detailed consideration and finally once it is committed
22	or a contract has been signed.
23	Project development data is used rather
24	than economic analysis because it was judged to be
25	impractical to perform a pre-feasibility study of the

1 over 800 sites that consist of the technical potential. 2 These numbers are identified in the 1990 NUG plan. 3 For the year 2000, we estimated 251 4 megawatts of hydraulic NUG would be developed. And by 5 the year 2015 for the 1990 NUG plan, 386 megawatts 6 would be developed. 7 I just wanted to compare our forecast 8 that was done in the 1989 NUG plan with the 1990 NUG 9 plan and compare it as to the actual development to 10 date. 11 The top line is the 1989 NUG plan shown 12 in green and the lower line is our revised forecast. 13 The 1990 NUG plan shown in the white bar and the red 14 bars are the actual development. You can see from the 15 actual development it was well below our 1989 forecast 16 and it is one of the reasons why we adjusted our site 17 success factors. And this in turn lowered the 18 hydraulic forecast. 19 And he also noticed that the actual isn't 20 even keeping up with our 1990 NUG plan forecast which would indicate that our next forecast is going to be 21 22 less than the 1990 plan. 23 [4:00 p.m.] 24 Q. All right. Now, you have expressed those in terms of capacity figures. How is the energy

Farr & Associates Reporting, Inc.

25

1	from those facilities determined?
2	A. The energy is based on using the name
3	plate or capacity values of the hydraulic stations
4	using a capacity factor based on the performance of
5	industry hydraulic facilities over many years. This
6	value is 65 per cent; that is, the average energy from
7	a hydraulic facility over a year is the size of the
8 .	facility megawatts times the number of hours in a year,
9	8,760, times 65 per cent.
10	Q. All right. What do you see as the
11	main reasons that it influenced your thinking in
12	arriving at the figure of about 251 megawatts to be
13	developed by the year 2000?
14	A. There are three reasons
15	THE CHAIRMAN: Well, that figure has now
16	gone down to 170, in fact, if we are looking at the
17	last chart.
18	MR. BROWN: The 170 is the 1991
19	preliminary estimate, which I will talk about now if
20	that's appropriate.
21	MR. B. CAMPBELL: Q. All right. If you
22	could deal with the reasons for the change in those
23	figures.
24	MR. BROWN: A. The 1990 NUG plan, we saw
25	that many of the proposed hydraulic projects were

1 becoming inactive, and, as I mentioned earlier, in our 2 forecast process that we have difference between an 3 identified project and a proposed project and since 4 many of the proposed projects are now into identified 5 this results in a decrease in the forecast. 6 By just changing our project information 7 and using the same success factors that are detailed in 8 the 1990 NUG plan resulted in a year 2000 forecast of 9 170 megawatts, a decrease of almost 80 megawatts and a 10 year 2016 forecast of 270 megawatts, a decrease by the 11 same 80 megawatts. 12 THE CHAIRMAN: Excuse me. What's the 13 difference between an identified and a proposed 14 project? 15 MR. BROWN: We have various 16 classifications, depending on the negotiation status of the project. 17 18 An identified project is a NUG proponent 19 has come to Ontario Hydro to discuss the project with 20 us. After discussions and he submits a proposal, as 21 Mr. Vyrostko mentioned this morning, and that proposal 22 is considered for future development, then that's when 23 it becomes proposed. 24 THE CHAIRMAN: That was in the earlier 25 chart?

1	MR. BROWN: Yes.
2	THE CHAIRMAN: All right.
3	MR. B. CAMPBELL: Q. All right. Now,
4	you have spoken briefly to declining economics being a
5	factor considered there. Were there other factors that
6	were considered?
7	MR. BROWN: A. Two other factors were
8	considered. First is development risk and hydraulic
9	development.
LO	To develop a hydraulic project there are
11	many technical and environmental studies required. The
12	costs for these are increasing significantly. There is
13	still a risk that a site may not be permitted for
1.4	future development even after the studies are done.
15	Many developers are not in a financial position to take
16	this risk.
17	The second reason is increasing
18	development concerns. More interest groups are
19	expressing concerns about water power development, from
20	recreational concerns to landownership. This may be
21	sufficient to deter development.
22	Q. I wanted to turn next, then, to your
23	other thermal category, and you described it previously
24	as sort of a catch-all. Perhaps you could just
25	describe what you have included in that section.

1	A. As shown on Exhibit 320, page 11, the
2	other thermal includes municipal solid wastes, which is
3	municipal solid waste incineration and generation of
4	electricity from landfill gas.
5	It includes turbo expanders at natural
6	gas pressure let-down locations. It includes wood
7	waste fuel generation and also major supply NUG for
8	what is called in the 1990 NUG plan, "fossil fuel
9	generation".
.0	Q. I am going to ask you to go through
.1	the first three, then we will talk about cogeneration,
.2	and against that background come back and deal with
.3	major supply.
4	So first, if you could outline the
.5	technical potential of municipal solid waste .
16	incineration and landfill gas in Ontario as it was
17	outlined in the 1990 plan and perhaps how you
18	determined that number?
	A. Technical potential for MSW includes
20	both the incineration of MSW and landfill gas. The
21	estimate in the 1990 NUG plan was 240 megawatts. This
22	was determined based on external estimates of the
23	volume of MSW in Ontario and the internal estimates of
24	landfill gas from project development information.
25	The MSW estimates also take into account

1	waste reduction efforts in the Greater Toronto area and
2	the collectibility problems of smaller site locations.
3	Q. All right. Now, taking all of that
4	into account, in the 1990 NUG plan how much of the
5	technical potential did you expect to see develop by
6	the years 2000 and 2015?
7	A. With the increasing concern of waste
8	disposal we expect that future MSW would be developed
9	twice as fast as it had in the past. Now, bear in mind
.0	this was done a year ago.
.1	116 megawatts of MSW incineration and
12	landfill gas was forecasted by the year 2000 as shown
L3	on page 11. 176 megawatts was forecasted by the year
L4	2015. The energy from these facilities was calculated
15	using a 75 per cent capacity factor.
L 6	Q. Now, what changes will you be
L7	incorporating into your '91 forecast or plan with
18	respect to MSW incineration first and then landfill
19	gas?
20	A. First of all, we are going to split
21	up this category into MSW incineration and landfill
22	gas, and I will address each of those separately.
23	First of all, MSW incineration. The
24	technical potential for MSW is expected to increase.
25	However, with respect to the forecasts the Government

1	of Ontario has stated it will no longer approve future
2	MSW incineration projects. Given the lead time
3	required to develop such a facility no increases above
4	the current 12 megawatts is expected until after the
5	year 2000 at the earliest.
6	While recycling will reduce the amount of
7	MSW available for incineration the degree of reduction
8	is unlikely to eliminate it. An element of MSW will be
9	included in the later years of the plan. The reason we
10	are doing this is because this technology at the
11	present time appears to be acceptable, and it also
12	depends on the success of current recycling programs.
13	The second area
14	Q. Now, when you say the technology
15	appears acceptable, what do you mean by that? I mean,
16	it clearly isn't acceptable at the moment to the
17	Government of Ontario.
18	A. In other jurisdictions MSW
19	incineration is an accepted technology in the United
20	States and in Europe.
21	Q. All right. Now, then, if you could
22	deal with landfill gas?
23	A. We will continue to forecast landfill
24	gas in the NUG plan. The technical potential is

expected to increase by about 60 to 70 megawatts.

25

1 However, the attainable potential is dependent on 2 large, deep sites, landfill sites. We currently expect 3 by the year 2000 that the existing level of 21 4 megawatts will double to 42 megawatts. 5 After the year 2000 we need further study to determine how much landfill gas will be developed by 6 7 the year 2016. But in summary of MSW, we expect about 8 50 megawatts by the year 2000 and about 120 megawatts 9 by the year 2016, MSW and landfill gas. 10 Q. Now, going to the next section of your thermal category, first of all would you just 11 12 explain what a turbo expander is? 13 Α. There are a few occasions in Ontario where pressure needs to be reduced before distribution. 14 Essentially, we have high pressure on one side and low 15 16 pressure on the other side. At the present, pressure-reducing valves 17 are used and the wasted energy available is normally 18 exhausted as heat. However, by running the gas through 19 a turbo expander electricity can be produced to reduce 20 the pressure with no heat waste. 21 O. I take it this is just the equivalent 22 of running water through a hydraulic turbine except it 23 is natural gas? 24

Farr & Associates Reporting, Inc.

25

A. It's the very same principle.

1	Q. All right. Now, what did you
2	estimate the technical attainable potentials to be in
3	your 1990 plan?
4	A. We estimated the technical potential
5	to be about 30 megawatts. However, not all of these
6	sites are economic due to varying pressure conditions
7	at the sites.
8	Our forecast of attainable by year 2000
9	was 5 megawatts and increasing to 7 megawatts by the
10	year 2015. The energy from these facilities was
11	developed using the same capacity factors we used for
12	MSW; that is, 75 per cent.
13	Q. Do you see any change to these
14	figures? I take it, from the graph you don't see any
15	changes to these for 1991?
16	A. No, I don't.
17	Q. Now, with respect
18	DR. CONNELL: Just a little technical
19	question. How do you cope with the adiabetic cooling,
20	are these pretty chilly places, these turbo expander
21	sites?
22	MR. BROWN: It is an outside building.
23	In the winter they do require heating for the gas to
24	maintain the pressures. I am not sure of your point.
25	It's just running gas through a turbine. The gas is

1	going through a pressure reduction valve without this
2	technology.
3	DR. CONNELL: It must act a bit like a
4	refrigerator, I would think, with a tremendous loss of
5	pressure.
6	MR. BROWN: The only facility I have seen
7	with this didn't have any special facilities to account
8	for that, so I assume it's not a problem.
9	MR. B. CAMPBELL: Q. If you could turn
L O	then to your next category, wood waste, and could you
11	advise the Board as to what your estimate of technical
12	potential was as stated in the 1990 plan?
L3	MR. BROWN: A. Technical potential for
L 4	wood waste and natural gas generation in combination is
15	660 megawatts. This was developed based on the amount
L6	of wood waste available in the province.
L7	We estimated 280 megawatts would be
L8	available from wood waste, and accounting for the
19	collectibility of this we estimate about 110 megawatts
20	of this 280 would be available for NUG development.
21	However, recent project development
22	information indicated that NUG proponents were
23	combining natural gas generation with wood waste
24	generation. On average, projects were proposing 5
25	parts gas to one part wood waste. This resulted in a

1 technical potential of 660 megawatts using this 2 technology. Q. So, strictly speaking, then, those 3 megawatts that are shown in that column are not 4 entirely due to the combustion of wood. It's this 5 to 5 6 1 ratio of wood to gas that results in these figures? Α. That's right. 7 What was your estimate of the year 8 9 2000 and 2015 achievable potential? Perhaps you could just explain those figures. 10 A. Our forecast in this category was 11 12 based on the premise that wood waste in the past has been developing mainly for disposal reasons, and this 13 will continue at the same rate. 14 Using this rate and projecting to the 15 16 year 2000 and assuming the new technology of burning 17 natural gas 5 parts gas to 1 part wood waste would result in 300 megawatts by the year 2000 and 435 18 19 megawatts by the year 2015. 20 The wood waste being burned is the same 21 as our 1989 estimate. The increase is a result of 22 natural gas generation being combined with wood waste 23 generation, and, again, the energy is determined using

Farr & Associates Reporting, Inc.

the same capacity factors as MSW; that is, 75 per cent

24

25

capacity factor.

1	Q. what changes do you expect for the
2	1991 plan?
3	A. You recall what I mentioned earlier,
4	that there is a large portion of gas being burned in
5	these facilities.
6	This is now called a major supply NUG.
7	The 1991 plan is going back to preferred technologies,
8	which is just wood waste generation. This will
9	definitely decrease the technical potential as it is
10	removing the combined approach. In terms of the
11	forecast, we don't expect a change in the year 2000
12	estimate. However, in the 1991 NUG plan we are only
13	looking at preferred options. Removing the natural gas
L 4	component will lower the 2016 forecast.
L5	Q. I want to then just skip over the
16	major supply - we will come back to it - and deal with
L7	the cogeneration portion of the chart, industrial,
L8	institutional and gas compressor stations, and the
L9	first thing I want to do is explain what you mean when
20	you are talking about cogeneration.
21	A. Cogeneration, as we mentioned earlier
22	this morning, is the simultaneous production of useful
23	heat usually in the form of steam and mechanical or
24	electricity energy. Our activities are focused on
2.5	promoting high-efficiency cogeneration, and that's

1	what's included in all of the NUG plans.
2	I want to turn your attention to Exhibit
3	320, page 14, and try to explain the concepts of
4	cogeneration and where major supply fits in.
5	On the top of page 14 is a typical coal
6	or gas generator. Its efficiency is about 35 per cent.
7	There is a lot of waste heat that comes out, usually
8	into atmosphere or into a lake. This is typical of
9	Ontario Hydro stations such as Nanticoke or Lakeview.
LO	As you can see, there is quite a significant amount of
11	waste heat involved in this process.
L2	Beneath this figure is a typical combined
13	cycle generator. It is more efficient than a coal
L 4	generator, going from 35 to 43 per cent, and that is
15	through the use of combustion turbine and a heat
16	recovery steam generator producing electricity, but it
17	still requires a cooling mechanism, either an air
18	condenser or water condenser, as water is shown on this
19	slide still removing waste heat.
20	These can be developed either by Ontario
21	Hydro, and these are included in Ontario Hydro's major
22	supply plan as a CTU-CC, for "combined cycle", or it
23	can be developed by a non-utility generator and is a
24	good example of a major supply NUG.

Q. I know Dr. Connell will be adding the

Farr & Associates Reporting, Inc.

25

1	numbers right now, and they don't go to 100, and
2	perhaps you could just explain. There is about a
3	missing 5 per cent if you try and add the numbers for
4	each of these two technologies. Perhaps you could just
5	explain how that is accounted for.
6	A. Not shown on this display just for
7	simplicity. There are losses in terms of the
8	generation and transformer on the electrical side of 5
9	to 6 per cent, and that is a footnote in the bottom of
0	the slide.
1	Q. Now, I think then you have a second
2	slide that deals with high-efficiency cogeneration at
3	this point as opposed to simple electricity production.
4	A. Turn to Exhibit 320, page 15. The
5	top part of that page shows a typical high-efficiency
6	cogenerator. Those that are looked at in the NUG plan,
7	efficiency is around 80 per cent. As you can see,
8	there is no waste heat being lost. All the steam from
9	the production of electricity is then used in a process
0	which accounts for almost all of the heat. Again, this
1	is the preferred NUG option. It is a high-efficiency
2	cogeneration.
3	However, not all cogeneration is the
4	same, and that is why I prepared the bottom slide which
5	shows a combined cycle technology with a combustion

turbine and a heat recovery steam generator that sends
some of its heat for process. Some of it goes into
cooling much like the combined cycle major supply NUG I
showed on the previous page. The amount of efficiency
from this project varies depending on how much is sent
to process and how much is sent for cooling into air or
water.

When I am talking about cogeneration I am referring to those that are approaching the 80 per cent level. The lower efficiency cogenerator is very much a function of process steam, and many of the projects that we have on the table today are using very little process steam and are essentially very similar to the combined cycle generator on the previous page.

Q. I take it that when you talk about preferred cogeneration what you are focusing on is the top half; that is, your high-efficiency cogeneration?

A. That is correct.

Q. And at some point you are going to have to decide, I assume, exactly where you are going to draw that line between the two types?

A. We know the combined cycle generator is a major supply NUG, and we know the 80 per cent is a preferred NUG, and we are working on a way to determine where the middle ground is.

1	[4:20 p.m.] Q. And I take it that isn't precisely
2	defined yet?
3	A. No, it is not.
4	Q. Just on that point, could you explain
5	the kinds of tests that are applied? For instance, is
6	there a different class 34 treatment of different types
7	of facilities, these two different types of facilities?
8	A. The federal government uses a heat
9	rate to determine whether a cogenerator is high
10	efficiency or not. They use a number of 7,000
11	kilowatthours per Btu sorry, 7,000 Btus per
12	kilowatthour, my mistake.
13	Q. And that is the kind of test that you
14	are looking at when you are trying to decide where to
15	draw the line as to what really constitutes the
16	preferred high-efficiency cogenerator?
17	A. That's correct. And our current
18	preference premium also gives a full 10 per cent adder
19	for those facilities that have a heat rate of less than
20	6,000 Btus per kilowatthour and I add that the lower
21	the number, the more efficient the cogenerator is.
22	Q. All right. Now, with that
23	background, again, I would ask you to explain what
24	categories of this type of generation are included in
25	the cogeneration section of the NUG plan.

1	A. If we go back to Figure 11, it
2	identifies the three areas of cogeneration that are in
3	the NUG plan: the industrial cogeneration sector, No.
4	1, the institutional, commercial and residential
5	cogeneration sector, No. 2; and the third, the natural
6	gas compressor station's generation.
7	For the purists in the audience
8	THE CHAIRMAN: Just hold it a second.
9	The one headed Institution is also commercial and
10	residential; is that right?
ll .	MR. BROWN: It is three sectors.
.2	THE CHAIRMAN: All right.
L3	MR. BROWN: And the compressor station is
1.4	really not a cogenerator. It is a generation of
15	electricity based on waste heat recovery, but if the
16	efficiency of these stations can parallel, a
L7	high-efficiency cogenerator is included in this section
18	for convenience.
L9	MR. B. CAMPBELL: Q. Okay. If you can
20	deal then with the first portion of that which is the
21	industrial cogeneration and perhaps again explain how
22	you arrived at the technical potential in the 1990 NUG
23	plan?
24	MR. BROWN: A. Our technical potential
25	estimates starts from steam user data. Data was used

1	to estimate the technical potential of a
2	high-efficiency cogenerator based on combined cycle
3	technology.
4	The estimated is adjusted to recognize
5	that there are mismatches between steam use and
6	electricity production and there are a few sites not in
7	the original list that are added or deleted from time
8	to time.
9	The larger sites added to our original
.0	potential over 800 megawatts. There were new sites
.1	that were not in our original list and these added over
.2	700 megawatts, 750 megawatts, but a portion of this is
.3	also larger NUGS, those above the high efficiency
4	level.
.5	The result of these adjustments from our
16	original list provide a potential of 7,882 megawatts.
L7	Q. All right. And from that, how did
18	you determine the attainable potential in the 1990 NUG
L9	plan?
20	A. In the short term, project
21	development data is used; that is, we forecast those
22	projects that are likely to proceed in the next three
23	to five years.
24	In the long-term, an economic analysis
25	was conducted; an economic analysis based on the

typical cogeneration project was conducted. We tried 1 2 to identify the characteristics necessary for a steam site to have economic potential. 3 4 The higher the ratio of average steam demand over the year to the peak steam demand over the 5 year, the more economic the site is. 6 Using our cogeneration model I mentioned 7 earlier, an estimate of the long-term potential was 8 This was provided in Interrogatory 9 determined. 10 5.14.233. MR. B. CAMPBELL: All right. And the 11 12 number for that would be? 13 THE REGISTRAR: 321.9. MR. B. CAMPBELL: Oh. I am told this one 14 15 has already been referred to so will already be on the list, so if we can hold that number. 16 17 THE REGISTRAR: We will put it back. MR. B. CAMPBELL: It has already been 18 19 referred to as 321.6. All right. 20 Q. Now, you mentioned your cogeneration 21 model. 22 Can you identify the significant 23 parameters that were used in that analysis? 24 MR. BROWN: A. The cogeneration model used three significant parameters: First, the NUG 25

1	purchase rates; 2, the natural gas costs associated
2	with electricity production; and 3, the capital costs
3	associated with electricity production, and these are
4	updated on an annual basis.
5	Q. All right. And what NUG purchase
6	rates did you use in the cogeneration model?
7	A. The NUG plan is developed using the
8	latest planning system incremental values known as the
9	SICs. These vary as a function of many factors, but
10	one of them is in-service date.
11	So our cogeneration model looks at three
12	typical years over the planning period. And for the
13	1990 NUG plan, these are the years 1995, the year 2000
14	and the year 2005.
15	The rate that is determined for each
16	particular year follows the same methodology used to
17	calculate project-specific rates as discussed earlier
18	by Mr. Vyrostko. The rates and assumptions are shown
19	in Exhibit 320, page 16, shown on this slide.
20	So we used the July 1990 project
21	appraisal SICs; these were provided in Exhibit 85. The
22	reasons we used project appraisal rather than planning
23	for the 1990 NUG plan was discussed earlier in Panel 3.
24	A typical cogeneration project of 15
25	megawatts or greater is normally hooked up to the 115

kV system. As such, it gets a 4 per cent credit to the 1 rate. Furthermore, we assume high-efficiency 2 3 cogeneration and this qualifies for a 10 per cent premium as Mr. Vyrostko mentioned earlier this morning. 4 5 The rates shown for three years are on page 16. I might add, these are all in 1990 dollars, 6 7 the year the plan was done. 8 All right. And could you explain the 9 natural gas prices you used? 10 Α. The NUG plan uses the most current 11 Ontario Hydro natural gas forecast. The gas forecast 12 used in the 1990 NUG plan was a September '89 forecast 13 that was incorporated into the thermal cost review. 14 The starting prices are shown on page 16 and are in 15 dollars of the year. These prices in the model 16 escalate at the same escalation rate as the forecast 17 itself. 18 If we turn to Exhibit 320, page 17, is a 19 comparison of the gas forecast used in the 1989 NUG 20 plan, the one used in the 1990 NUG plan and the most 21 recent gas forecast produced by Ontario Hydro that will 22 be incorporated into the 1991 NUG plan. 23 Of interest on this slide is first at the 24

Farr & Associates Reporting, Inc.

25

beginning in the year 1990, you see the steady decrease

in the starting prices of gas which we have been seeing

1	over the last couple of years, the decreases, which is
2	making the natural gas projects more viable.
3	And also shown on this slide is the

increase from the 1989 NUG plan forecast to the one that was used in the 1990. This change resulted in the estimate of economic potential decreasing from 5,000 megawatts in the 1989 NUG plan to only 1200 megawatts in the 1990 NUG plan. There is little change between the forecast used in the 1990 NUG plan and the 1991 NUG plan.

Q. And what was the estimate of capital cost, the other factor, one of the other major factors used in your cogeneration model?

A. Turning back to page 16, capital costs of \$960 per kilowatt in 1990 dollars was used, so approximately \$1 million per megawatt. These costs include all the costs required to integrate the cogeneration into the existing steam system, all costs for the electrical connection, including the cost on the Ontario Hydro system which are charged back to the developer, all natural gas connection costs and all other equipment costs.

This estimate is based on information obtained from NUG proponents and general industry information. It is typical of those quoted in public

1 documents.

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

2 Q. All right. Now, using that information you just described, what were the results 3 of your cogeneration model in the 1990 plan and your 4 5 forecast of industrial cogeneration?

> The results of our model found that Α. for an industrial site to be economic, it required a 70 per cent steam capacity factor; that is, the ratio of average annual steam demand to maximum steam demand of an economic cogeneration should be over 70 per cent.

> They also found that the economics of a typical cogenerator are not sensitive to the in-service date. As such, we expect the cogeneration growth should taper off in the later years as more promising sites are developed leaving less economic opportunities for cogeneration.

Using this 70 per cent factor, we forecast that 1,250 megawatts of industrial cogeneration by the year 2000; 2,105 megawatts by the year 2,015 will be developed. This is generally consistent with those numbers in the 1989 NUG plan which were 1,155 megawatts by year 2000 and 1,905 megawatts by year 2014.

All right. And how did you forecast energy from these facilities?

1	A. Energy Contribution for a
2	high-efficiency cogenerator was based on an 80 per cent
3	capacity factor. This was determined from a 20 per
4	cent unavailability based on 5 per cent for planned
5	outages, which is roughly two weeks per year, 5 per
6	cent for forced outages and a 10 per cent steam process
7	derating.
8	This was added for cogeneration because
9	it recognizes that a unit is not always at full load
0	all the time. This is typical during the summer when
.1	there is no heating load and the unit is backed down.
.2	Q. All right. And again, what changes
.3	do you expect in the 1991 NUG plan?
. 4	A. The technical potential is currently
.5	expected to increase by over 1,000 megawatts. This is
.6	due to active proposals from oversized cogenerators,
.7	those using a lot of natural gas.
.8	The year 2000 and year 2016 forecasts of
.9	attainable potential are currently expected to be 5- to
20	600 megawatts higher and this is shown as the figure
21	1800 on page 11. Again, this is due to oversized
22	cogenerators expected to be signed by the end of this
23	year.
24	Forecasts of other oversized generators
25	will not be included in the 1991 NUG plan and the

remainder of the forecast is expected to be similar to 1 2 the 1990 NUG plan. A long-term natural gas forecast, as I 3 have already displayed, and the NUG purchase rates, are 4 5 expected to be similar to those used in the 1990 NUG 6 plan. 7 All right. If you could go then to 0. 8 your next category which covers institutional, 9 commercial, residential cogeneration. 10 The technical potential for this Α. 11 sector was based on an external report which estimated 12 over 6,200 megawatts of technical potential. This 13 report was issued in 1987 and was considered to contain 14 the best available information on this sector. 15 Although there is considerable technical 16 potential in this sector, over 6,200 megawatts, our 17 estimate is 85 megawatts by the year 2000. This is not 18 expected to increase significantly after the year 2000 19 as the forecast of natural gas price increases will 20 further lower the economics of this sector. 21 This forecast is consistent with what we know about the 22 experience of this sector in other jurisdictions. 23 Now, why is it in this case that only

Farr & Associates Reporting, Inc.

a very small portion of the technical potential shows

up in your forecast of what will actually develop?

24

25

1	A. If we compare this sector to the
2	industrial sector, you will notice that the capital
3	costs in this area, because there are smaller machines,
4	are typically 10 to 30 per cent higher on a cost per
5	unit of generation (i.e., for dollars per kilowatt)
6	than a larger industrial cogenerator.
7	Furthermore, the fuel costs for this
8	sector are much higher. The industrial cogenerators
9	can arrange to get their own gas. The industrial,
.0	commercial and residential normally obtain gas from the
.1	local gas utility at slightly higher prices.
.2	And third, past that utilization, we
.3	mentioned earlier in the industrial sector that you
. 4	require a 70 per cent capacity factor. This sector is
.5	typically using cogeneration for heating and this would
. 6	not be higher than the 70 per cent that we estimated in
.7	the industrial sector to be economic.
.8	Q. And that is simply, I take it,
.9	because the heat is required only during the heating
20	season?
21	A. That's correct.
22	Q. And what is your view as to whether
23	you propose to make an adjustment to this in 1991?
24	A. We don't expect a change in this
5	particular sector

1	Q. All right. Now, natural gas
2	compressor station non-utility generators, what are
3	they?
4	A. Natural gas compressor stations along
5	major pipelines can be modified to produce electricity
6	efficiently from natural gas.
7	[4:35 p.m.]
8	At present, these stations use gas-fired
9	combustion turbines to drive compressors for the
10	purposes of natural gas transportation. The heat from
11	these turbines is normally exhausted to atmosphere.
12	The recovery of this heat in combination
13	with additional gas turbines used exclusively for gas
14	generation can result in an efficiency that parallels
15	an efficient cogenerator, and this technology can be
16	viable at low natural gas prices.
17	Q. I'm sorry, can you run that by me
18	again? I thought you indicated the use of that heat
19	for gas generation; I take it you mean electricity
20	generation?
21	A. Sorry, the use of the waste heat to
22	produce electricity.
23	Q. And it is that efficiency that the
24	overall efficiency can result in quite a highly overall
25	efficient operation?

1	A. High efficiency or a low heat rate.
2	Q. All right. Now, again, could you go
3	through what were the technical and attainable
4	potentials for these and how you arrived at them for
5	the 1990 NUG plan?
6	A. The 1990 estimate of technical
7	potential was based on project development information
8	and was estimated to be between 240 and 300 megawatts.
9	Again, based on the project development
10	information we estimated 100 megawatts of this would be
11	attainable by the year 2000 and 125 megawatts of this
12	would be attained by the year 2015. The same capacity
13	factors as cogeneration were used to determine the
1.4	energy contribution; that is, 80 per cent.
15	Q. All right. And again, could you
16	explain the difference you see for this technology on
17	the chart that you have put up?
18	A. The technical and attainable
19	potential are currently expected to increase in the
20	1991 NUG plan. The technical potential is expected to
21	increase by about 400 megawatts and attainable
22	potential by 240 megawatts.
23	This increase is again because of the
24	element of major supply in these current proposals and
25	they are not reflecting the high efficiency that could

1 be attained using straight waste heat recovery. THE CHAIRMAN: I'm sorry, could you 2 3 explain that again, please, that last part? What did 4 you say? MR. BROWN: The natural gas compressor 5 6 stations that we are looking at originally were 7 incorporating a lot of waste heat recovery, and that is 8 being very efficient. 9 THE CHAIRMAN: That is being what? 10 MR. BROWN: Very efficient. 11 THE CHAIRMAN: Yes? 12 MR. BROWN: The new proposals we are 13 seeing now have a large degree of electricity only 14 generation added onto that, thereby reducing the 15 efficiency of the particular site, and it is 16 essentially the waste heat recovery project with a 17 combined cycle plan side by side. 18 THE CHAIRMAN: Yes? And...? 19 MR. BROWN: And the resulting efficiency 20 is a lot less, and the potential, the megawatts 21 attainable from that site are a lot higher. 22 THE CHAIRMAN: And this is all developed 23 since the 1990 load forecast? 24 MR. BROWN: Since the 1990 NUG plan, yes. 25 THE CHAIRMAN: NUG plan, I'm sorry.

1	MR. BROWN: In the 1990 NUG plan we were
2	getting proposals, and we have one committed at the
3	present at 40 megawatts, and at that time the proposals
4	were between 40 and 50 megawatts. Now the proposals
5	are 150 to 400 megawatts each.
6	MR. B. CAMPBELL: Q. So there is no
7	difference in the amount of waste heat that is being
8	used; it is just more gas is being used?
9	MR. BROWN: A. Yes. That gas is
LO	primarily used for electricity generation only.
11	Q. All right. Now,
L2	THE CHAIRMAN: But doesn't this make it
L3	analogous, or does it not, to a major supply NUG?
L4	MR. BROWN: The new proposals now are
15	very similar to a major supply NUG.
L6	THE CHAIRMAN: Which is not included in
L7	your plan?
L8	MR. BROWN: That's correct. Where those
L9	sites we are not forecasting those in the 1991 NUG
20	plan, but as they are committed and this is part of
21	our 1,000 forecast. As they are committed, they will
22	be included in the plan.
23	THE CHAIRMAN: But you are treating this
24	gas compressor differently although they are the same?
25	You are putting them into the plan for commitment?

1	MR. BROWN: There are a few that have
2	accepted Ontario Hydro's price offer.
3	THE CHAIRMAN: Yes.
4	MR. B. CAMPBELL: Q. So, as I understand
5	it, Mr. Brown, as commitments are actually made they
6	will be reflected in the plan, but you are not going to
7	be forecasting that extra component?
8	MR. BROWN: A. Our forecast will just be
9	the high efficiency at those sites, which is the 40 to
10	50 megawatts per site.
11	DR. CONNELL: So if in fact the expanded
12	plans are not approved you still think the plans that
13	are based only on waste heat are still viable? They
14	would likely go ahead, would they?
15	MR. BROWN: Yes.
16	MR. B. CAMPBELL: Q. We have got one
17	missing column, then, the major supply NUG. What was
18	the technical and attainable potential for that
19	technology? Although that name was not used in the
20	1990 plan, what was the technical and attainable
21	potential for that technology?
22	MR. BROWN: A. The major supply NUG or
23	the fossil fuel generation, as was stated in the 1990
24	NUG plan, the technical potential in this area is
25	virtually unlimited.

1	These are very similar to our own supply
2	options. You can build as many as you need. The
3	attainable potential is largely a function of the
4	natural gas prices. 70 per cent of the lifecycle costs
5	of such a facility is fuel.
6	Our assessment in the 1990 NUG plan
7	indicated that such projects were not economic in
8	Ontario Hydro's forecast of natural gas prices, and,
9	therefore, we included zero megawatts in the 1990 NUG
.0	plan.
.1	Q. And again, what changes do you expect
.2	in the '91 NUG plan?
.3	A. As I mentioned earlier, gas prices
. 4	are down by about 20 per cent from last year. Hydro's
.5	natural gas forecasts have estimated a 7 per cent
.6	increase. This difference is almost 30 per cent. This
.7	now makes major supply NUG economic within system need.
.8	We currently expect 350 megawatts will be
.9	committed by the end of the year, and this 350 will be
20	included in the 1991 NUG plan and is one part of the
21	1,000 megawatts we just recently announced.
22	However, the 1991 NUG plan will not
23	forecast future major supply NUGs. These are like our
24	own options and they will be constrained by system
25	need, not by economic development. We will include

1 major supply, as I mentioned, when projects are 2 committed. 3 Q. All right. Now, you have indicated 4 as well, and what is not shown on the chart -- you have 5 indicated that some technology has been added since the 1989 plan was first developed. Are there any 6 additional technologies that you will be including a 7 8 look at in your preparation of the 1991 plan? 9 A. The NUG plan forecasts all 10 technologies we estimate to make a contribution over 11 the 25 year planning period of greater than 5 12 megawatts. 13 Based on the recent industry developments 14 in the area of alternate technologies I believe these 15 will make a contribution after the year 2000. These 16 technologies include: wind; solar; plantation 17 biomass - that is, electricity from trees; peat; novel 18 waste heat recovery, where "steam generation" from waste heat fluids other than water, such as ammonia are 19 20 used; and finally, fuel cells, which is a chemical 21 conversion much like a battery that converts oxygen and 22 hydrogen obtained from natural gas into electricity and 23 water. 24 Assuming substantial cost reductions

Farr & Associates Reporting, Inc.

occur in these technologies, we are expecting about 200

25

1	megawatts in this area by the year 2016. This
2	additional 200 megawatts generally offsets the expected
3	reductions in wood waste, municipal solid wastes and
4	small hydro.
5	As I mentioned earlier, the cost in
6	environmental considerations of the alternate
7	technologies will be discussed in Panel No. 8.
8	Q. But in terms of the programs that you
9	are considering putting in place and so on to support
10	those efforts, they would be a matter for discussion on
11	this Panel?
12	A. That's correct.
13	Q. I am going to ask you, please, to
14	just go to page 19 and summarize how the forecast
15	has
16	A. I believe it's page 18.
17	Q. I am going to go to page 18 first and
18	just ask you to summarize what you see happening for
19	your preliminary 1991 forecast for the year 2000.
20	A. Page 18 summarizes the past two NUG
21	plans and provides a preliminary indication of what the
22	1991 plan will look like.
23	At the bottom are the NUG plan totals:
24	the 1,661 we estimated in 1989; 2,107 in the 1990
25	forecast; and the estimated 3,100 megawatts in the 1991

1 NUG plan.

As shown on this slide, we can identify
the two additional technologies that were added to the
1990 plan that increased the number, these being gas
compressor stations and the use of natural gas wood
waste. Again, these accounted for 350 megawatts of the
increase.

The preliminary 1991 forecast also identifies an area where a major supply NUG has increased our forecast. I will point to these specifically.

We have the major supply NUG itself, 350 megawatts. There is a component of major supply included in the gas compressor stations in the 340 megawatts in that number, and in the cogeneration number in the industrial sector of 1,800 megawatts there is a component of major supply in there, and these are represented by proposals we have received that are not high efficiency cogenerators.

While there are some ups and downs in the numbers over these three plans they have generally offset each other. In accounting for the two new technologies and the addition of this major supply addition the forecasts have been fairly consistent.

Q. Can you go through the forecast

1 towards the end of the plan period then, which I 2 believe is set out at page 19? 3 A. Page 19 provides the 25 year 4 forecasts, and bear in mind that each one of these ends on a different year. 5 6 The '89 plan ends in the year 2014; the 7 1990 plan ends in the year 2015; and the 1991 NUG plan will end in the year 2016. 8 9 The 25 year forecasts are provided. 10 There is a 1989 NUG plan of 2,663; 3,319 in the 1990 11 NUG plan; and we haven't added up the 1991 yet because 12 there are still a few areas in the areas of municipal 13 solid waste, wood waste and finally alternate energy that need further refinements. 14 15 But for the initial demand/supply balance 16 mentioned by Mr. Snelson, we have added 1,000 megawatts 17 as a preliminary indication of the 1991 value on top of the 1990 NUG plan for the same years. 18 19 The number is approximately 4,300 20 megawatts by the year 2014. O. Now, finishing then with you, Mr. 21 22 Vyrostko, --THE CHAIRMAN: Just a minute. Where is 23 that 1,000? I am at page 19. Show me where that 1,000 24 is.

Farr & Associates Reporting, Inc.

25

1 MR. BROWN: The 1,000 is included in the 2 350. 3 THE CHAIRMAN: I am looking at page 19. 4 Is that the right page to look at? 5 MR. BROWN: Yes. 6 THE CHAIRMAN: Where is the 1,000 you are 7 talking about? 8 MR. BROWN: If we turn to the preliminary 9 '91 forecast and go down to "Major Supply" you will see 10 350 megawatts? 11 THE CHAIRMAN: Yes. 12 MR. BROWN: If you move up to "Gas 13 Compressor Stations" the number is 365? 14 THE CHAIRMAN: Right. 15 MR. BROWN: There is a component of that 16 which is part of the 1,000. THE CHAIRMAN: Well, how much of that is 17 18 part of the 1,000? 19 MR. BROWN: A total of 650 megawatts is 20 coming out of that portion plus the industrial portion. 21 I don't have the split here. 22 THE CHAIRMAN: How much is coming out of 23 those two? 24 MR. BROWN: 650. 25 THE CHAIRMAN: 650. That makes the

1	1,000. Is that right?
2	MR. BROWN: Yes.
3	THE CHAIRMAN: All right.
4	MR. B. CAMPBELL: Q. Now, Mr. Vyrostko,
5	you of course are familiar with these figures and you
6	have heard Mr. Brown's evidence. Are you satisfied
7	that the figures, the preliminary 1991 figures, are
8	reasonable figures to use for planning purposes?
9	MR. VYROSTKO: A. Yes, I believe they
10	are reasonable, and I believe they are for a number of
11	reasons. One is that I think the industry has matured
12	in its development of non-utility generation and it has
13	demonstrated its capability to respond to our requests
14	for maximum economic non-utility generation.
15	Secondly, as Mr. Snelson pointed out, we
16	currently have limited capability to absorb non-utility
17	generation, and because of our transmission situation
18	locating NUGs has to be very site specific. Therefore,
19	we will have to focus our attention on the effect of
20	integration of non-utility generation based on system
21	need.
22	Third, as Mr. Brown discussed, given the
23	characteristics of major supply NUGs being similar to
24	Hydro's major supply options in areas such as size,
25	technology and environmental effects, we believe that

1 it is appropriate to treat them as a major supply and 2 discuss them in Panel 8 and Panel 10. 3 [4:50 p.m.] In addition, with the system need and 5 transmission facilities reaching full capacity, we must focus on the preferred NUGS; that is, that generation 6 7 using renewable resources and high-efficiency cogeneration. 8 9 We have to prioritize any spare capacity 10 we have within our system to those for the preferred NUGS such that the benefits of the province are 11 12 maximized as much as we can. 13 And then finally, as we have said before, 14 this NUG plan is a forecast and we will continue to 15 review our NUG forecast on an annual basis and we will 16 incorporate any changes resulting from new project developments and/or industry trends. 17 18 MR. B. CAMPBELL: Thank you, Mr. 19 Chairman, those are my questions of this panel. 20 I would again point out that with respect 21 to this matter of major supply NUGS in terms of the 22 kinds of initiatives that might be taken by the 23 corporation in terms of actually obtaining major supply

Farr & Associates Reporting, Inc.

those kinds of questions are entirely appropriate for

facilities from the non-utility generation industry,

24

25

1	this panel.
2	But given the similarities in
3	technologies and the review of fossil options that is
4	taking place in Panel 8, the detailed technical and
5	environmental and so on effects associated with that
6	type of facility will be covered in Panel 8 as was
7	pointed out in the witness statement.
8	THE CHAIRMAN: Mr. Starkman and, I guess,
9	Mr. Greenspoon both had concerns about this panel. It
.0	is now nearly five to 5:00. I wonder if it wouldn't be
.1	better to digest, if you are going to be here
.2	tomorrow are you going to be here tomorrow, Mr.
13	Greenspoon?
.4	MR. GREENSPOON: Yes, sir.
L5	THE CHAIRMAN: I think it might be better
16	to try and digest some of these things and maybe think
L7	about it a bit and maybe we can deal with it tomorrow
18	morning.
19	Would that be all right, Mr. Starkman?
20	MR. STARKMAN: That would be fine, Mr.
21	Chairman.
22	THE CHAIRMAN: And then after that, IPPSO
23	will be ready to start its cross-examination?
24	MR. MONDROW: Yes, sir.
25	THE CHAIRMAN: All right. And you will

1	be at least all tomorrow and probably the next day as
2	well; would that right? Would that be fair?
3	MR. MONDROW: That is a very safe
4	assumption, yes.
5	THE CHAIRMAN: Yes. All right. We will
6	adjourn then until tomorrow morning at ten o'clock.
7	THE REGISTRAR: This hearing will adjourn
8	until ten o'clock tomorrow morning.
9	of the other description had been substituted that the panel
10	Whereupon the hearing was adjourned at 4:54 p.m., to be reconvened on Wednesday, the 2nd day of October, 1991, at 10:00 a.m.
11	occoper, 1991, at 10.00 a.m.
12	
13	
14	
1.5	
16	
17	
18	
19	
20	part parts an Albert Summittee Life on the street course
21	To come toucker of some Auryly Whit proposition in
22	
23	
24	
25	JB/RR [c. copyright 1985]

