Lab::VISA

VISA, GPIB, etc.

- Instruments can be connected in various ways: Serial port, GPIB, VXI, TCP/IP, etc.
- GPIB (hardware and software)
 - GPIB (IEEE488): Standard by Hewlett-Packard
 - Physical layer IEEE488.1
 - Command layer IEEE488.2
 - SCPI (Standard Commands for Programmable Instruments)
- VISA (software)
 - Virtual Instrument Software Architecture
 - VXI, GPIB, serial, or computer-based instruments
 - NI-VISA library is one implementation of the VISA standard

Lab::VISA

 Lab::VISA is software to control instruments in the lab via VISA (e.g. voltage sources, multimeters, etc.)

- Alternative to LabView, Gpplus, etc.
- But very different: no GUI, just API

Lab::VISA design goals

Flexible

- Allow any kind of measurement procedure
- Control anything that has GPIB or serial connection

Safe

 Make sure you never drive voltage sources to fast and destroy your gates

Helpful

- Automatically collect additional information about the data ("metadata")
- User should have to type in additional information only once and then never again

Lab::VISA is in Perl

- Lab::VISA is written in Perl and C
- To be used from programs written in Perl
- Perl: interpreted scripting language
- Runs on almost every OS
- Extremely good in reading data files, manipulating data, etc.
- Allows to write quick and dirty scripts that get the job done
- Also allows to write clean fullsize programs

=> ideal for experimental physics

Lab::VISA architecture

- Divided into three parts
- Build on top of each other
- Provide increasing comfort
- Measurement scripts can be based on any of these stages
- Lab::VISA is the lowest layer. It makes the NI-VISA library accessible from perl and therefor allows to make any standard VISA call
- Lab::Instrument package makes communication with instruments easier by silently handling the protocol involved
- Lab::Tools is the highest abstraction layer. Provides support for writing good measurement scripts. Offers means of saving data and related meta information to disk, plotting data, etc.

Lab::VISA architecture

```
|Lab::Instrument::HP34401A| |L::I::KnickS252| |L::I::Yokogawa7651|
                    Lab::Instrument::Source
             +--+--+
             |Lab::Instrument|
             +----+
                +---+
               |Lab::VISA|
                +---+
             +----+
             |NI-VISA Library|
             +---+
        |GPIB Library|
                      GPIB connection
                  |TCP/IP connection
                      | USB connection
         |Instrument|
                     | Instrument |
```

- lab-visa/raw_visa.pl
 - looks like example programs from manual
 - protocol overhead is pain in the neck

- lab-instrument/query_id.pl
 - much nicer!

- lab-instrument/make_sweep.pl
 - already at the level of GPplus

Lab::Tools

- Provides additional tools to write better measurement scripts
- Store metadata alongside data
 - date and time
 - settings of additional instruments
 - ratio of voltage divider
 - color of the shirt you are wearing
 - everything that might be important for a later interpretation of the data
- Don't repeat yourself
 - Use above collected information automatically
 - Automatically plot data with correct axes, scaling, labels etc.

Metadata philosophy

Axes

- Axis "bias voltage" (C₁)
- Axis "diode current" (C₂ / R)
- Axis "diode resistance"
 (R * (C₁ / C₂ 1))
- unit
- expression
- description...

Constants

• R = 1000 Ohm

Columns

- C₁: V_{bias}
- C₂: V_{resistor}
- unit
- description...

1.5	+8.19300500E-01
1.4	+7.23413000E-01
1.3	+6.28083900E-01

Plots

- Plot "diode current" axis "diode current" over axis "bias voltage"
- Plot "diode resistance" axis "diode resistance" over axis "bias voltage"
- logscale
- grid
- ranges...

- lab-measurement/lab-measurement.pl
 - metadata
 - plotter.pl
 - live plot
 - list avaible plots
 - create postscript

- real-world/ladediagramm_qpc.pl
 - there is room for further improvements
 - standard measurements should be factored out to dedicated classes like Lab::Measurement::Ladediagramm
 - collection of metadata could be automated further

Other Lab::VISA features

- "Gate protect" safety mechanism
 - Makes sure that no voltage is changed to fast
 - Big voltage steps are automatically split into small, slow steps
- Date/time handling
 - Date/time column can contain timestamp for every data point
 - Plot data as function of time
- Measurements with higher dimensionality
 - Each trace/sweep/line is a "block"
 - Two-dimensional plots, selections of traces, etc.

Online resources

It's far from being complete...

Source Code

http://www.nano.physik.uni-muenchen.de/svn/lab/trunk/

Tutorial

 http://www.nano.physik.unimuenchen.de/svn/lab/trunk/documentation.pdf

goodbye/goodbye.pl