

Курс «Анализ изображений и видео»

# Лекция №6 «Свёрточные нейросети 2»

Антон Конушин

Заведующий лабораторией компьютерной графики и мультимедиа ВМК МГУ

14 октября 2016 года

### План



- Визуализация
- Архитектуры



Визуализация активаций (тензоров)



Обратите внимание на «разреженность» значений



#### Визуализация фильтров



Слой conv1



Слой conv2



Изображения, на которых достигается максимальный отклик фильтра



Фильтры слоя pool5

#### t-SNE



- Можем вычислить L2 расстояние между выходами full6 или full7 слоёв
- Воспользуемся отображением точек из 4096-мерного пространства на 2х мерное, сохраняющее L2 расстояния (приближенно)
- Визуализируем изображения
- Видим, что близкие по смыслу изображения оказываются близки друг к другу







Какой объект на изображении определяет метку?



- Закрываем фрагмент изображения, вычисляем вероятность целевого класса
- Сканируем изображение и строим «heatmap» вероятности объекта целевого класса

  http://cs231n.github.io/understanding-cnn/

#### Deconvolutional network





- Построили сеть для визуализации стимулов, вызвавших активацию определённого нейрона
- Обнуляем все активации, кроме одной
- Запускаем сеть «в обратную сторону»
- Самое важное «max unpooling»

M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014

#### Пример работы





Figure 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with 3 color planes) is presented as the input. This is convolved with 96 different 1st layer filters (red), each of size 7 by 7, using a stride of 2 in both x and y. The resulting feature maps are then: (i) passed through a rectified linear function (not shown), (ii) pooled (max within 3x3 regions, using stride 2) and (iii) contrast normalized across feature maps to give 96 different 55 by 55 element feature maps. Similar operations are repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from the top convolutional layer as input in vector form  $(6 \cdot 6 \cdot 256 = 9216 \text{ dimensions})$ . The final layer is a C-way softmax function, C being the number of classes. All filters and feature maps are square in shape.

#### Взяли сеть, похожую на AlexNet с небольшими изменениями

# Слой 1: Тор-9 фрагментов





# Слой 2: Топ-9 фрагментов





# Слой 2: Топ-9 фрагментов





# Слой 3: Топ-9 фрагментов





### Слой 3: Топ-9 фрагментов





# Слой 4: Топ-9 фрагментов





### Слой 4: Топ-9 фрагментов





# Слой 5: Топ-9 фрагментов





## Слой 5: Топ-9 фрагментов





### Эволюция признаков





### Эволюция признаков





#### Примеры-соперники



Оптимизацией найдём минимальный сдвиг картинки, достаточный для того, чтобы сеть выдавала другую метку



Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, lan Goodfellow, and Rob Fergus, Intriguing properties of neural networks, ICLR 2014

### Резюме визуализации



- Признаки более высоких слоёв имеют «семантическое» значение
- Можно наблюдать, как оно проявляется при обучении нейросети
- Сеть при классификации учится и локализовывать объект
- Идея «деконволюции» оказалась интересной, и в дальнейшем используется
- Нейросеть «очень» нелинейная, и не всегда соблюдаются условия локальности

### План



- Визуализация
- Архитектуры

#### **AlexNet**





Krizhevsky A., Sutskever I., Hinton, G. E. ImageNet Classification with Deep Convolutional Neural Networks // NIPS 2012

## Spatial Pyramid Pooling (SPP)



В большинстве архитектур присутствует проблема фиксированного размера входного изображения, виновник – полносвязный слой.



## Spatial Pyramid Pooling (SPP)





## Spatial Pyramid Pooling (SPP)



Практически любая архитектура может быть адаптирована для работы с изображениями разного размера путем замены последнего pooling слоя перед полносвязными на SPP слой

|     |                         | top-1 error (%) |              |              |              |  |
|-----|-------------------------|-----------------|--------------|--------------|--------------|--|
|     |                         | ZF-5            | Convnet*-5   | Overfeat-5   | Overfeat-7   |  |
| (a) | no SPP                  | 35.99           | 34.93        | 34.13        | 32.01        |  |
| (b) | SPP single-size trained | 34.98 (1.01)    | 34.38 (0.55) | 32.87 (1.26) | 30.36 (1.65) |  |
| (c) | SPP multi-size trained  | 34.60 (1.39)    | 33.94 (0.99) | 32.26 (1.87) | 29.68 (2.33) |  |

|     |                         | top-5 error (%) |              |              |              |  |
|-----|-------------------------|-----------------|--------------|--------------|--------------|--|
|     | 3                       | ZF-5            | Convnet*-5   | Overfeat-5   | Overfeat-7   |  |
| (a) | no SPP                  | 14.76           | 13.92        | 13.52        | 11.97        |  |
| (b) | SPP single-size trained | 14.14 (0.62)    | 13.54 (0.38) | 12.80 (0.72) | 11.12 (0.85) |  |
| (c) | SPP multi-size trained  | 13.64 (1.12)    | 13.33 (0.59) | 12.33 (1.19) | 10.95 (1.02) |  |

## Очень глубокие (VGG)



#### Идеи:

- Исследовать рост качества за счёт увеличения глубины нейросети
- Использовать только маленькие 3х3 свёртки
- Stride 1 в свёртках чтобы не терять информацию
- ReLU активация
- Нет нормализации
- Уменьшение разрешения через maxpooling
- Число фильтров х2 при уменьшении разрешения в 2 раза

image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

FC-1000

softmax

K. Simonyan, A. Zisserman <u>Very Deep Convolutional Networks for Large-Scale Image Recognition</u>. ICLR 2015

### Свёртки 3х3



- Стек свёрток позволяет обеспечить бОльшее рецептивное поле (reception field)
- 5х5 для 2-х свёрток
- 7х7 для 3-х свёрток
- БОльшая нелинейность за счёт ReLU активаций
- Меньше параметров
  - 18x (2 3x3) vs 25x (5x5)
  - 27x (3 3x3) vs 49x (7x7)



# Исследование вариантов



| A                      | A-LRN                  | В                      | C                                   | D                                   | E                                                |
|------------------------|------------------------|------------------------|-------------------------------------|-------------------------------------|--------------------------------------------------|
| 11 weight<br>layers    | 11 weight<br>layers    | 13 weight<br>layers    | 16 weight<br>layers                 | 16 weight<br>layers                 | 19 weight<br>layers                              |
|                        | i                      | nput (224 × 2          | 24 RGB image                        | e)                                  |                                                  |
| conv3-64               | conv3-64<br>LRN        | conv3-64<br>conv3-64   | conv3-64<br>conv3-64                | conv3-64<br>conv3-64                | conv3-64<br>conv3-64                             |
|                        |                        | max                    | pool                                |                                     |                                                  |
| conv3-128              | conv3-128              | conv3-128<br>conv3-128 | conv3-128<br>conv3-128              | conv3-128<br>conv3-128              | conv3-128<br>conv3-128                           |
|                        |                        | max                    | pool                                |                                     |                                                  |
| conv3-256<br>conv3-256 | conv3-256<br>conv3-256 | conv3-256<br>conv3-256 | conv3-256<br>conv3-256<br>conv1-256 | conv3-256<br>conv3-256<br>conv3-256 | conv3-256<br>conv3-256<br>conv3-256              |
| Garages 1              | V. 0-0-0-2-2-10-1      | max                    | pool                                |                                     |                                                  |
| conv3-512<br>conv3-512 | conv3-512<br>conv3-512 | conv3-512<br>conv3-512 | conv3-512<br>conv3-512<br>conv1-512 | conv3-512<br>conv3-512<br>conv3-512 | conv3-512<br>conv3-512<br>conv3-512<br>conv3-512 |
|                        | 30                     | max                    | pool                                |                                     |                                                  |
| conv3-512<br>conv3-512 | conv3-512<br>conv3-512 | conv3-512<br>conv3-512 | conv3-512<br>conv3-512<br>conv1-512 | conv3-512<br>conv3-512<br>conv3-512 | conv3-512<br>conv3-512<br>conv3-512<br>conv3-512 |
|                        |                        | max                    | pool                                |                                     |                                                  |
|                        |                        | FC-                    | 4096                                |                                     |                                                  |
|                        |                        |                        | 4096                                |                                     |                                                  |
|                        |                        | 4.5                    | 1000                                |                                     |                                                  |
|                        |                        | soft                   | -max                                |                                     |                                                  |

D - VGG-16

E - VGG-19

#### Network in Network





M. Lin, Q. Chen, S. Yan Network In Network. ICLR, 2014

#### Свёртка 1х1





- Мы можем реализовать второй и далее слои «вложенного» перспептрона как 1х1 свёртку с предыдущим слоем
- Можем управлять «глубиной» тензора, регулируя k число свёрток 1х1, по сравнению с n глубиной предыдущего тензора
  - K < N, значит мы уменьшили до k глубину тензора (сжали)
  - K > N, значим мы увиличили глубину тензора
- Можно трактовать как набор локальных классификаторов

### Модуль Inception





(a) Inception module, naïve version

В чём смысл 1х1 свёрток?

Christian Szegedy et. al. Going deeper with convolutions. CVPR 2015

## Модуль Inception





### (b) Inception module with dimension reductions

Christian Szegedy et. al. Going deeper with convolutions. CVPR 2015

# Архитектура Inception





- Глубокая сеть
- Inception-модули
- Несколько уровней supervision

## SqueezeNet





- Активно использовать 1х1 свёртки для уменьшения числа параметров
- «Сжимать» мы будем для того, чтобь на вход 3х3 фильтрам подавать меньше данных



# SqueezeNet



| layer<br>name/type | output size | filter size /<br>stride<br>(if not a fire<br>layer) | depth | S <sub>1x1</sub><br>(#1x1<br>squeeze) | e <sub>lxl</sub><br>(#1x1<br>expand) | e <sub>3x3</sub><br>(#3x3<br>expand) | S <sub>1x1</sub> sparsity | e <sub>1x1</sub><br>sparsity | e <sub>3x3</sub><br>sparsity | # bits | #parameter<br>before<br>pruning | #parameter<br>after<br>pruning |
|--------------------|-------------|-----------------------------------------------------|-------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------|------------------------------|------------------------------|--------|---------------------------------|--------------------------------|
| input image        | 224x224x3   |                                                     |       |                                       |                                      |                                      |                           |                              |                              |        | -                               |                                |
| conv1              | 111x111x96  | 7x7/2 (x96)                                         | 1     |                                       |                                      |                                      | 100% (7x7)                |                              | 6bit                         | 14,208 | 14,208                          |                                |
| maxpool1           | 55x55x96    | 3x3/2                                               | 0     |                                       |                                      |                                      |                           |                              |                              |        |                                 |                                |
| fire2              | 55x55x128   |                                                     | 2     | 16                                    | 64                                   | 64                                   | 100%                      | 100%                         | 33%                          | 6bit   | 11,920                          | 5,746                          |
| fire3              | 55x55x128   |                                                     | 2     | 16                                    | 64                                   | 64                                   | 100%                      | 100%                         | 33%                          | 6bit   | 12,432                          | 6,258                          |
| fire4              | 55x55x256   |                                                     | 2     | 32                                    | 128                                  | 128                                  | 100%                      | 100%                         | 33%                          | 6bit   | 45,344                          | 20,646                         |
| maxpool4           | 27x27x256   | 3x3/2                                               | 0     |                                       |                                      |                                      |                           |                              |                              |        |                                 |                                |
| fire5              | 27x27x256   |                                                     | 2     | 32                                    | 128                                  | 128                                  | 100%                      | 100%                         | 33%                          | 6bit   | 49,440                          | 24,742                         |
| fire6              | 27x27x384   |                                                     | 2     | 48                                    | 192                                  | 192                                  | 100%                      | 50%                          | 33%                          | 6bit   | 104,880                         | 44,700                         |
| fire7              | 27x27x384   |                                                     | 2     | 48                                    | 192                                  | 192                                  | 50%                       | 100%                         | 33%                          | 6bit   | 111,024                         | 46,236                         |
| fire8              | 27x27x512   |                                                     | 2     | 64                                    | 256                                  | 256                                  | 100%                      | 50%                          | 33%                          | 6bit   | 188,992                         | 77,581                         |
| maxpool8           | 13x12x512   | 3x3/2                                               | 0     |                                       |                                      |                                      |                           |                              |                              |        |                                 |                                |
| fire9              | 13x13x512   |                                                     | 2     | 64                                    | 256                                  | 256                                  | 50%                       | 100%                         | 30%                          | 6bit   | 197,184                         | 77,581                         |
| conv10             | 13x13x1000  | 1×1/1 (×1000)                                       | 1     |                                       |                                      |                                      | 20% (3x3)                 |                              |                              | 6bit   | 513,000                         | 103,400                        |
| avgpool10          | 1x1x1000    | 13x13/1                                             | 0     |                                       |                                      |                                      |                           |                              |                              |        |                                 | 535-3399-10003                 |
|                    | activations |                                                     | pi    | rameters                              |                                      |                                      | _                         | compress                     | ion info                     | _      | 1,248,424<br>(total)            | 421,098<br>(total)             |

# Сжатие модели



| CNN<br>architecture                   | Compression<br>Approach | Data<br>Type | Original → Compressed Model Size | Reduction in<br>Model Size vs.<br>Alex Net | Top-1<br>ImageNet<br>Accuracy | Top-5<br>ImageNet<br>Accuracy |
|---------------------------------------|-------------------------|--------------|----------------------------------|--------------------------------------------|-------------------------------|-------------------------------|
| AlexNet                               | None (baseline)         | 32 bit       | 240MB                            | 1x                                         | 57.2%                         | 80.3%                         |
| AlexNet                               | SVD [5]                 | 32 bit       | 240MB → 48MB                     | 5x                                         | 56.0%                         | 79.4%                         |
| AlexNet                               | Network<br>Pruning [11] | 32 bit       | 240MB → 27MB                     | 9 <sub>X</sub>                             | 57.2%                         | 80.3%                         |
| AlexNet Deep Compres-<br>sion [10]    |                         | 5-8 bit      | 240MB → 6.9MB                    | 35x                                        | 57.2%                         | 80.3%                         |
| SqueezeNet<br>(ours)                  | None                    | 32 bit       | 4.8MB                            | 50x                                        | 57.5%                         | 80.3%                         |
| SqueezeNet<br>(ours)                  | Deep<br>Compression     | 8 bit        | 4.8MB → 0.66MB                   | 363x                                       | 57.5%                         | 80.3%                         |
| SqueezeNet Deep<br>(ours) Compression |                         | 6 bit        | 4.8MB → 0.47MB                   | 510x                                       | 57.5%                         | 80.3%                         |

Размер – объём данных на диске.

S. Han, H. Mao, and W. Dally. Deep compression: Compressing DNNs with pruning, trained quantization and huffman coding. arxiv:1510.00149v3, 2015

# Революция глубины



# Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)



VGG, 19 layers (ILSVRC 2014)



ResNet, 152 layers (ILSVRC 2015)





# Проблема добавления слоёв



# Simply stacking layers?



- Plain nets: stacking 3x3 conv layers...
- 56-layer net has higher training error and test error than 20-layer net

## Проблема добавления слоёв





- "Overly deep" plain nets have higher training error
- · A general phenomenon, observed in many datasets

### Добавление с сохранением функции



Research

a shallower model (18 layers)



a deeper counterpart (34 layers)

- A deeper model should not have higher training error
- A solution by construction:
  - original layers: copied from a learned shallower model
  - extra layers: set as identity
  - at least the same training error
- Optimization difficulties: solvers cannot find the solution when going deeper...



#### Residual net



Plaint net



Residual net



- Будем учить не преобразование, а пертурбацию тождественного преобразования
  - Если единичное преобразование оптимально, тогда мы его сохраняем
  - Небольшие флуктуации оказывается обучать проще





#### Базовая модель

- Свёртки 3х3
- Subsampling через свёртку с шагом 2

#### · Residual net



При изменении размеров тензоров пробуют варианты:

- Добавление нулями
- Линейная проекция
- Шаг 2

# Блок для очень глубоких сетей



A practical design of going deeper



- Понижение размерности (256->64)
- Свёртка 3х3 на тензоре меньшей глубины
- Повышение размерности

# Результаты на ImageNet





# Результаты на ImageNet









#### Резюме



- 1х1 свёртки позволяют управлять сжатием/расжатием данных и уменьшать число параметров
- При этом 1x1 свёртки тоже вычисляют интересные признаки
- Residual Learning позволяет обучать «добавку», и за счёт этого обучать сверхглубокие модели
- Есть несколько готовых архитектур и блоков, которые используются как основы для других алгоритмов
  - AlexNet, SqueezeNet, VGG-16, Inception, ResNet