Scilab Textbook Companion for Analog Integrated Circuits by R. S. Tomar¹

Created by
Saleem Ahmed
B.Tech
Electrical Engineering
Uttarakhand Technical University
College Teacher
None
Cross-Checked by
Chaya Ravindra

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Analog Integrated Circuits

Author: R. S. Tomar

Publisher: Umesh Publications, New Delhi

Edition: 2

Year: 2007

ISBN: 81-88114-72-3

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Constant Current Sources	5
2	Differentials Aplifiers	12
3	Operational Amlifiers and their Parameters	21
4	Opamps with negative feedback	25
5	Linear Applications of OPamps	33
6	Oscillators and waveform generators	43
7	The 555 timer	56
8	Frequency Synthesizers and PLL	61
9	Active Filters	64
10	Comparators	80
11	Non linear applications of opamp	84
12	Operational Transconductance Amplifier	88
13	Voltage Regulators	80

List of Scilab Codes

Exa 1.1	Design a current mirror circuit
Exa 1.2	Design a current mirror circuit
Exa 1.3	Design a current source
Exa 1.4	Design a current mirror circuit
Exa 1.5	Modified current mirror circuit
Exa 1.6	Find Iout
Exa 1.7	Design a widlar current source
Exa 1.8	Design a widlar current source
Exa 1.9	Calculate Current
Exa 1.10	Determine IC1 and IC2
Exa 2.1	Output Voltage
Exa 2.2	Output Voltage and percent error
Exa 2.3	Current Ad Ac CMRR
Exa 2.4	Gain and CMRR
Exa 2.5	Operating point Gain and Resistance
Exa 2.6	Gain and input resistance
Exa 2.7	Q point and voltage gain
Exa 2.8	RC RE Rid Rid
Exa 2.9	Operating point Gain and Resistance
Exa 2.10	Differential input resistance
Exa 2.11	Gain and input resistance
Exa 3.1	Open loop gain
Exa 3.2	Time taken
Exa 3.3	Maximum Voltage
Exa 3.4	Maximum Frequency
Exa 3.5	Slew rate
Exa 3.6	Close Loop Voltage Gain
Exa 3.7	Limiting Frequency

Exa 4.1	Bandwidth with feedback	25
Exa 4.2	Acl Rif Rof fodash	25
Exa 4.3	Impedence and gain	26
Exa 4.4	Input and output impedence	27
Exa 4.5		27
Exa 4.6		28
Exa 4.7		28
Exa 4.8	Output Voltage	29
Exa 4.9		29
Exa 4.10	Gain and impedence	30
Exa 4.11		31
Exa 4.12		31
Exa 4.13		32
Exa 5.1	Output Voltage	33
Exa 5.2		33
Exa 5.3		34
Exa 5.4		34
Exa 5.5		35
Exa 5.6		35
Exa 5.8		36
Exa 5.9		37
Exa 5.11		37
Exa 5.13		38
Exa 5.14		38
Exa 5.16		39
Exa 5.17		40
Exa 5.18		40
Exa 5.19		41
Exa 5.20		42
Exa 6.1		43
Exa 6.3		44
Exa 6.5		45
Exa 6.6		45
Exa 6.7		46
Exa 6.8	0 1	46
Exa 6.9		47
Exa 6.10	1 0	48
Exa 6 11		49

Exa 6.12	Frequency of output	49
Exa 6.13	Triangular wave generator	49
Exa 6.14	Peak output voltage	50
Exa 6.15	Triangular wave generator	51
Exa 6.16	Frequency of output	51
Exa 6.17	Series and parallel resonant frequencies	52
Exa 6.18	Design a function generator	53
Exa 6.19	V0 V7 I and fo	53
Exa 7.1	Monostable Multivibrator	56
Exa 7.2	Value of R	57
Exa 7.3	Astable Multivibrator	57
Exa 7.4	Design a square wave generator	58
Exa 7.5	Astable Multivibrator	58
Exa 7.6	Astable Multivibrator	59
Exa 7.7	Astable Multivibrator	60
Exa 8.1	Lock Capture and pullin range	61
Exa 8.2	Design a FM demodulator	62
Exa 8.3	Clock frequency and no of bits	62
Exa 9.2	First order low pass filter	64
Exa 9.3	Find Bandwidth	65
Exa 9.4	First order low pass filter	65
Exa 9.5	Convert Cutoff frequency	66
Exa 9.6	First order high pass filter	66
Exa 9.7	Retune the high pass filter	67
Exa 9.8	Second order Butterworth filter	68
Exa 9.9	Second order Butterworth filter	69
Exa 9.10	Second order low pass filter	70
Exa 9.11	Low pass bessel filter	71
Exa 9.12	Second order low pass filter	71
Exa 9.13	Second order low pass filter	72
Exa 9.14	Third order low pass butterworth filter	73
Exa 9.15	Design a band pass filter	74
Exa 9.16	Design a band pass filter	76
Exa 9.17	Design a band pass filter	77
Exa 9.18	Design a band pass filter	78
Exa 9.20	Second order notch filter	79
Exa 10.1	Output Voltage	80
Exa 10.2	Upper and Lower Trip points	80

Exa 10.3	Phase shift	31
Exa 10.4	Output Voltage	31
Exa 10.5	Threshold and hysteresis voltage	32
Exa 11.1	Output Voltage	34
Exa 11.3	Output Voltage	34
Exa 11.4	Output Voltage	35
Exa 11.7	Calculate Output	35
Exa 11.8	Calculate Output	36
Exa 12.1	f3dB frequency	38
Exa 13.1	Regulation	39
Exa 13.2	Load Regulation	39
Exa 13.3	Calculate Load Current	90
Exa 13.4	Determine the output	90
Exa 13.5	Design a regulator circuit)1
Exa 13.6	Calculate Iext)1
Exa 13.7	Value of R1	92
Exa 13.8	Adjustable Voltage regulator	93
Exa 13.9	Regulated Power Supply	93
Exa 13.10)4

Chapter 1

Constant Current Sources

Scilab code Exa 1.1 Design a current mirror circuit

```
1  //Ex 1.1
2  clc;
3  clear;
4  close;
5  format('v',5);
6  Iout=8; // micro A
7  VBE=0.7; //V
8  Beta=80; // unitless
9  VCC=20; //V
10  IREF=Iout*(1+2/Beta); // micro A
11  R=(VCC-VBE)/IREF; // Mohm
12  disp(IREF, "Reference current(micro A)");
13  disp(R, "Resistance required(Mohm)");;
```

Scilab code Exa 1.2 Design a current mirror circuit

```
1 //Ex 1.2
2 clc;
```

```
3 clear;
4 close;
5 format('v',5);
6 Iout=1;//mA
7 VBE=0.7;//V
8 Beta=100;//unitless
9 VCC=30;//V
10 IREF=Iout*(1+2/Beta);//mA
11 R=(VCC-VBE)/IREF;//kohm
12 disp(IREF, "Reference current(mA)");
13 disp(R, "Resistance required(kohm)");;
```

Scilab code Exa 1.3 Design a current source

```
1  //Ex 1.3
2  clc;
3  clear;
4  close;
5  format('v',5);
6  Iout=0.5; //mA
7  Beta=50; // unitless
8  VEB=0.7; //V
9  VCC=5; //V
10  IREF=Iout*(1+2/Beta); //mA
11  R=(VCC-VEB)/IREF; //kohm
12  disp(IREF, "Reference current(mA)");
13  disp(R, "Resistance required(kohm)");;
```

Scilab code Exa 1.4 Design a current mirror circuit

```
1 //Ex 1.4
2 clc;
3 clear;
```

```
4 close;
5 format('v',5);
6 Iout=8;//micro A
7 Beta=100;//unitless
8 VBE=0.7;//V
9 VCC=20;//V
10 IREF=Iout/(1+2/Beta/(1+Beta));//micro A
11 R=(VCC-2*VBE)/IREF;//Mohm
12 disp(IREF, "Reference current(micro A)");
13 disp(R, "Resistance required(Mohm)");;
```

Scilab code Exa 1.5 Modified current mirror circuit

```
1 //Ex 1.5
2 clc;
3 clear;
4 close;
5 format('v',7);
6 Iout=60; //micro A
7 VBE=0.7; //V
8 Beta=150; // unitless
9 VCC=30; //V
10 IREF=Iout*(1+2/Beta/(1+Beta)); //micro A
11 R=(VCC-2*VBE)/IREF; //Mohm
12 disp(IREF, "Reference current(micro A)");
13 disp(R*1000, "Resistance required(kohm)");;
```

Scilab code Exa 1.6 Find Iout

```
1 //Ex 1.6
2 clc;
3 clear;
4 close;
```

```
5  format('v',5);
6  VBE=0.7; //V
7  Beta=120; // unitless
8  VCC=10; //V
9  R=5.6; //kohm
10  //KCL at node x : IREF=IC1+I1; // as Beta>>1
11  //KCL at node y : I1=IC2+IB3; // as Beta>>1
12  IREF=(VCC-VBE)/R; //mA
13  // as IREF=2*IC+IB3=IC*(2+1/Beta)=2*IC; // as Beta>>1
14  IC=IREF/2; //mA
15  Iout=IC; //mA
16  disp(Iout, "Output current(mA)");
```

Scilab code Exa 1.7 Design a widlar current source

```
1 / Ex 1.7
2 clc;
3 clear;
4 close;
5 format('v',5);
6 Iout=6; //micro A
7 IREF = 1.2; //mA
8 VBE2=0.7; //V
9 VT=26; //\text{mV}
10 Beta=120; // unitless
11 VCC = 20; //V
12 R = (VCC - VBE2) / IREF; //kohm
13 disp(R, "Value of resistance R(kohm)")
14 IC1=Iout; //micro A
15 IC2 = (IREF - IC1 * 10^{-3}/Beta) / (1+1/Beta); / mA
16 RS=1/(IC1*10^-6)*VT*10^-3*\log(IC2*1000/IC1);//ohm
17 disp(RS/1000, "Value of resistance RS(kohm)");
```

Scilab code Exa 1.8 Design a widlar current source

```
1 / Ex 1.8
2 clc;
3 clear;
4 close;
5 format('v',6);
6 \quad IREF=1; //mA
7 Io2=20; // micro A
8 Io3=40; //micro A
9 VBE1=0.7; //V
10 VT=26; //\text{mV}
11 VCC=10; //V
12 VEE = -10; //V
13 R = (VCC - VBE1 - VEE) / IREF; //kohm
14 disp(R, "Value of resistance R(kohm)");
15 RE2=VT/Io2*log(IREF*1000/Io2);//kohm
16 disp(RE2, "Value of resistance RE2(kohm)");
17 RE3=VT/Io3*log(IREF*1000/Io3);//kohm
18 disp(RE3, "Value of resistance RE3(kohm)");
19 VBE2=VBE1-RE2*Io2/1000; //V
20 disp(VBE2, "Value of Base emitter voltage of
      transistor Q2(V)");
21 VBE3=VBE1-RE3*Io3/1000; //V
22 disp(VBE3, "Value of Base emitter voltage of
      transistor Q3(V)");
```

Scilab code Exa 1.9 Calculate Current

```
1 //Ex 1.9
2 clc;
3 clear;
4 close;
5 format('v',5);
6 Beta=100;//unitless
```

```
7 VBE=0.715; //V
8 R=5.6; //kohm
9 RC=1; //kohm
10 VCC=10; //V
11 VCB1=0; //V(Q1 \text{ will act as diode})
12 IREF = (VCC - VBE)/R; //mA
13 //KCL at node x : IREF=IC1+2*IB;
14 //KCL at node y : I1=IC2+IB3;//as Beta>>1
15 IREF = (VCC - VBE)/R; //mA
16 //as IREF=2*IC1/Beta+IC1
17 IC1=IREF/(1+2/Beta); //mA
18 IC2=IC1;/mA
19 IC3=IC1; //mA
20 disp(IC1, "Collector current in each transistor, IC1=
      IC2=IC3 in mA");
21 IRC=IC1+IC2+IC3; / mA
22 disp(IRC, "Current through RC(mA)");
```

Scilab code Exa 1.10 Determine IC1 and IC2

```
1 //Ex 1.10
2 clc;
3 clear;
4 close;
5 format('v',5);
6 Vout=5;//V
7 Beta=180;//unitless
8 R=22;//kohm
9 VCC=10;//V
10 VBE=0.7;//V
11 IREF=(VCC-VBE)/R;//mA
12 IC=(IREF-VBE/R)/(1+2/Beta);//mA
13 RC=(VCC-Vout)/IC;//kohm
14 disp(IC,"IC1 & IC2 in mA are ");
15 disp(RC,"RC in kohm is ");
```

16 //Answer in the book is wrong.

Chapter 2

Differentials Aplifiers

Scilab code Exa 2.1 Output Voltage

```
1 //Ex 2.1
2 clc;
3 clear;
4 close;
5 format('v',5);
6 v1=7;//mV
7 v2=9;//mV
8 Ad=80;//dB
9 CMRR=90;//dB
10 vid=v2-v1;//mV
11 vcm=(v1+v2)/2;//mV
12 Ad=10^(Ad/20);//unitless
13 CMRR=10^(CMRR/20);//unitless
14 vout=Ad*(vid+vcm/CMRR)/1000;//V
15 disp(vout,"Output Voltage(V)");;
```

Scilab code Exa 2.2 Output Voltage and percent error

```
1 ///Ex 2.2
2 clc;
3 clear;
4 close;
5 format('v',7);
6 v1=50; //micro V
7 v2=55; //micro V
8 Ad=2*10^5; // unitless
9 CMRR=80; //dB
10 vid=v2-v1;//micro V
11 vcm = (v1+v2)/2; //mV
12 CMRR=10^(CMRR/20); //unitless
13 vout=Ad*(vid+vcm/CMRR)/10^6; //V
14 disp(vout, "Output Voltage(V)");;
15 Verror=vout-Ad*vid/10^6; //V
16 disp(Verror, "Error Voltage(V)");
17 error_p=(Verror/vout)*100;//% error
18 disp(error_p, "Percentage error(%)");
19 // Percentage error answer is not correct in the book
```

Scilab code Exa 2.3 Current Ad Ac CMRR

```
1 ///Ex 2.3
2 clc;
3 clear;
4 close;
5 format('v',6);
6 IT=1;//mA
7 VCC=15;//V
8 RE=50;//kohm
9 RC=15;//kohm
10 Beta=120;//unitless
11 alfa=Beta/(Beta+1);//unitless
12 Vid=6;//mV
```

```
13 VT=26; //\text{mV}
14 // Part (a)
15 iC1=alfa*IT/(1+\exp(-Vid/VT));//mA
16 iC2=IT-iC1;/mA
17 disp(iC2, "dc Collector current through transistors(
     mA)");
18 // Part (b)
19 iC=IT/2; //mA(let iC1=iC2=iC)
20 re=VT/iC; //ohm(let re1=re2=re)
21 Ad=-RC*1000/re; // unitless
22 Acm = -RC*1000/(re+2*RE*1000); //unitless
23 Acm=abs(Acm); ///unitless
24 CMRR=abs (Ad/Acm); ///unitless
25 disp(Ad, "Ad");
26 disp(Acm, "Acm");
27 CMRR=20*\log 10 (CMRR); //dB
28 disp(CMRR, "CMRR(dB)");
```

Scilab code Exa 2.4 Gain and CMRR

```
1 ////Ex 2.4
2 clc;
3 clear;
4 close;
5 format('v',6);
6 RC=2; //kohm
7 RE=4.3; //kohm
8 VEE=5; //V
9 VBE=0.7; //V
10 IT=(VEE-VBE)/RE; //mA
11 VT=26; //mV
12 re=2*VT/IT; //ohm
13 Ad=-RC*1000/2/re; // unitless
14 disp(Ad,"Ad");
15 Acm=-RC*1000/(re+2*RE*1000); // unitless
```

```
16 disp(Acm, "Acm");
17 CMRR=abs(Ad/Acm); // // unitless
18 disp(CMRR, "CMRR");
```

Scilab code Exa 2.5 Operating point Gain and Resistance

```
1 ///Ex 2.5
2 clc;
3 clear;
4 close;
5 format('v',5);
6 Beta=100; //unitless
7 VBE=0.715; VD1=0.715; //V
8 VZ=6.2;/V
9 VT = 26; /mV
10 IZt = 41; / \text{mA}
11 VCC=10; //V
12 VEE=10; //V
13 RE=2.7; //kohm
14 RC=4.7; //kohm
15 VB = -VEE + VZ + VD1; //V
16 VE=VB-VBE; //V
17 IE3=(VE-(-VEE))/(RE); //mA
18 IT=IE3; //mA
19 ICQ=IT/2; //mA(let ICQ1=ICQ2=ICQ)
20 VCEQ = VCC + VBE - ICQ * RC; //V
21 Q=[ICQ\ VCEQ];//[mA\ V](Q\ point)
22 disp(Q, "Q point (ICQ(mA), VCEQ(V)) is ");
23 re=2*VT/IT; //ohm
24 Ad=-RC*1000/re; //unitless
25 Rid=2*Beta*re/1000; //kohm
26 disp(Ad, "Ad");
27 disp(Rid, "Rid(kohm)");
```

Scilab code Exa 2.6 Gain and input resistance

```
1 ///Ex 2.6
2 clc;
3 clear;
4 close;
5 format('v',6);
6 Beta=100; // unitless
7 VBE=0.7; //V
8 \ VCC = 10; //V
9 VEE=10; //V
10 VT=26; / \text{mV}
11 RC=2.7; //kohm
12 R=2.2; //kohm
13 IExt = (VEE - VBE)/R; //mA
14 IC3=IExt; IT=IExt;; //mA
15 ICQ=IT/2; //mA
16 re=2*VT/IT; //ohm(let re1=re2=re)
17 Ad=-RC*1000/re; //unitless
18 Rid=2*Beta*re/1000; //kohm(let Rid1=Rid2=Rid)
19 disp(Ad, "Differntial moe gain, Ad");
20 disp(Rid, "Differntial input resistance, Rid(kohm)");
```

Scilab code Exa 2.7 Q point and voltage gain

```
1 ///Ex 2.7
2 clc;
3 clear;
4 close;
5 format('v',7);
6 Beta=100;//unitless
7 VBE=0.7;//V
```

```
8 VD1=0.7; VD2=0.7/V
9 VCC = 15; //V
10 VEE=15; //V
11 VT=26; / \text{mV}
12 RE=560; //ohm
13 RC=6.8; //kohm
14 R=220; //ohm
15 VB = -VEE + VD1 + VD2; //V
16 VE=VB-VBE; //V
17 IE3=(VE-(-VEE))/RE*1000; //mA
18 IT=IE3; //mA
19 ICQ=IT/2; //mA
20 VCEQ = VCC + VBE - ICQ * RC; //V
21 Q=[ICQ\ VCEQ];//[mA\ V](Q\ point)
22 disp(Q, "Q point (ICQ(mA), VCEQ(V)) is ");
23 re=2*VT/IT; //ohm
24 Ad=-RC*1000/re; // unitless
25 disp(Ad," Differntial moe gain, Ad");
26 //Answer in the book is wrong for Q point.
```

Scilab code Exa 2.8 RC RE Rid Rid

```
1 ////Ex 2.8
2 clc;
3 clear;
4 close;
5 format('v',5);
6 ICQ=200;//micro A
7 Beta=1000;//unitless
8 Ad=180;//unitless
9 CMRR=80;//dB
10 VT=26;//mV
11 re=VT/(ICQ/1000);//ohm(Let re=re1=re2)
12 RC=Ad*re/1000;//kohm
13 CMRR=10^(CMRR/20);//untless
```

```
14 RE=(CMRR-1)*re/2/1000; //kohm
15 disp(RE,RC,"Value of RC & RE(kohm)");
16 Rid=2*Beta*re/1000; //kohm(Let Rid=Rid1=Rid2)
17 disp(Rid,"Differntial input resistance, Rid(kohm)");
18 Ric=(Beta+1)*(re+2*RE*1000)/10^6; //Mohm
19 disp(Ric,"Common mode input resistance, Ric(Mohm)");
```

Scilab code Exa 2.9 Operating point Gain and Resistance

```
1 ///Ex 2.9
2 clc;
3 clear;
4 close;
5 format('v',5);
6 Beta=110; // unitless
7 VBE=0.7; //V
8 VT = 26; /mV
9 VCC=10; //V
10 VEE=10; //V
11 RC=1.8; //kohm
12 R=3.9; //kohm
13 IExt = (VCC - VBE - (-VEE))/R; //mA
14 IT=IExt;; //mA
15 ICQ=IT/2; /mA
16 V1=0; V2=0; //V
17 VE = -2 * VBE ; //V
18 VC = VCC - ICQ * RC; //V
19 VCEQ = VC - VE; //V
20 Q=[ICQ\ VCEQ];//[mA\ V](Q\ point)
21 disp(Q, "Q point (ICQ(mA), VCEQ(V)) is ");
22 re=2*VT/IT; //ohm(let re1=re2=re)
23 reD=2*re; //ohm
24 Ad=-RC*1000/reD; //unitless
25 disp(Ad," Differntial moe gain, Ad");
26 BetaD=Beta^2; // unitless
```

```
27 Rid=2*BetaD*reD/1000; //kohm(let Rid1=Rid2=Rid)
28 disp(Rid, "Differntial input resistance, Rid(kohm)");
29 //Answer for Ad is wrong(+ve) in the book while it
    is negative.
```

Scilab code Exa 2.10 Differential input resistance

```
1 ///Ex 2.10
2 clc;
3 clear;
4 close;
5 format('v',9);
6 Beta=100; // unitless
7 VBE = 0.7; //V
8 R=18.6; //kohm
9 VT = 26; /mV
10 VCC=5; //V
11 VEE=5; //V
12 IExt = (VCC - VBE - (-VEE))/R; //mA
13 IT=IExt; /mA
14 re=2*VT/IT; //ohm(let re1=re2=re)
15 Rid=2*Beta*re/1000; //kohm(let Rid1=Rid2=Rid)
16 disp(Rid," Differntial input resistances, Rid1=Rid2(
      kohm)");
```

Scilab code Exa 2.11 Gain and input resistance

```
1 ///Ex 2.11
2 clc;
3 clear;
4 close;
5 format('v',6);
6 Beta=100;//unitless
```

```
7 VBE=0.7; //V
8 RC=2.7; //kohm
9 R=2.2; //kohm
10 VT=26; //\text{mV}
11 VCC=10; //V
12 VEE=10; //V
13 IExt = (VEE - VBE)/R; //mA
14 IT=IExt;; //mA
15 IE=IT/2; //mA(Let IE1=IE2=IE)
16 re=2*VT/IT; re1=re; re2=re; re3=re; re4=re//ohm
17 reD=re1+re2; //ohm
18 BetaD=Beta^2; // unitless
19 Ad=-RC*1000/reD; //unitless
20 disp(Ad," Differential voltage gain, Ad")
21 Rid=2*BetaD*reD/1000; //kohm(let Rid1=Rid2=Rid)
22 disp(Rid, "Differntial input resistances, Rid1=Rid2(
      kohm)");
23 //Answer in the bok is not accurate.
```

Chapter 3

Operational Amlifiers and their Parameters

Scilab code Exa 3.1 Open loop gain

```
1 //Ex 3.1
2 clc;
3 clear;
4 close;
5 format('e',8);
6 fBW=4;//MHz
7 fo=10;//Hz
8 AOL=fBW*10^6/fo;//unitless
9 disp(AOL,"Open loop gain is");
```

Scilab code Exa 3.2 Time taken

```
1 //Ex 3.2
2 clc;
3 clear;
4 close;
```

```
5 format('v',5);
6 V1=-10;//V
7 V2=10;//V
8 SR=0.5;//V/micro second
9 delta_Vo=V2-V1;//V
10 delta_t=delta_Vo/SR;//micro second
11 disp(delta_t, "Time taken by op-amp is (micro second)"
    );
```

Scilab code Exa 3.3 Maximum Voltage

```
1  //Ex 3.3
2  clc;
3  clear;
4  close;
5  format('v',6);
6  SR=0.6; //V/micro second
7  f=100; //kHz
8  Vm=(SR/10^-6)/(2*%pi*f*1000); //V
9  disp(Vm, "Maximum voltage, Vm is(V)");
```

Scilab code Exa 3.4 Maximum Frequency

```
1 //Ex 3.4
2 clc;
3 clear;
4 close;
5 format('v',5);
6 SR=0.5; //V/micro second
7 Vm=10; //V
8 f=100; //kHz
9 fm=(SR/10^-6)/(2*%pi*Vm); //Hz
10 disp(fm/1000, "Maximum frequency, fm is(kHz)");
```

Scilab code Exa 3.5 Slew rate

```
1 //Ex 3.5
2 clc;
3 clear;
4 close;
5 format('v',5);
6 delta_t=0.3/2;//micro second
7 V1=-3;//V
8 V2=3;//V
9 delta_Vo=V2-V1;//V
10 SR=delta_Vo/delta_t;//V/micro second
11 disp(SR, "Slew rate is(V/micro second)");
```

Scilab code Exa 3.6 Close Loop Voltage Gain

```
1 //Ex 3.6
2 clc;
3 clear;
4 close;
5 format('v',5);
6 SR=2;//V/micro second
7 delta_Vin=0.8;//V
8 delta_t=10;//micro second
9 Acl_max=SR/(delta_Vin/delta_t);//unitless
10 disp(Acl_max,"Maximum close loop voltage gain is");
```

Scilab code Exa 3.7 Limiting Frequency

```
1 / Ex 3.7
2 clc;
3 clear;
4 close;
5 format('v',5);
6 SR=6; //V/micro second
7 //Part (i)
8 Vm=1; //V
9 fm=(SR/10^-6)/(2*%pi*Vm);//Hz
10 disp(fm/1000, "part (i) Maximum frequency, fm is(kHz)
     ");
11 // Part (i)
12 Vm = 10; //V
13 fm = (SR/10^-6)/(2*\%pi*Vm); //Hz
14 disp(fm/1000, "part (ii) Maximum frequency, fm is(kHz
     )");
```

Chapter 4

Opamps with negative feedback

Scilab code Exa 4.1 Bandwidth with feedback

```
1 ///Ex 4.1
2 clc;
3 clear;
4 close;
5 format('v',9);
6 AOL=2*10^5; // unitless
7 fo=5; //Hz
8 ACL=100; // unitless
9 SF=AOL/ACL; // unitless
10 fodash=SF*fo; //Hz
11 disp(fodash/1000, "Bandwidth with feedback(kHz)");
```

Scilab code Exa 4.2 Acl Rif Rof fodash

```
1 ///Ex 4.2
2 clc;
3 clear;
4 close;
```

```
5 format('v',6);
6 AOL=2*10^5; //unitless
7 Ri = 1.5; //kohm
8 Rf = 12; //kohm
9 Rio=1; //Mohm
10 Ro = 100; //ohm
11 fo=5; //Hz
12 Beta=Ri/(Ri+Rf);//unitless
13 SF=(1+AOL)*Beta; //unitless
14 ACL=AOL/SF;//unitless
15 disp(ACL, "Value of ACL");
16 //In case of ideal opamp
17 ACL=1+Rf/Ri; // unitless
18 disp(ACL,"In case of ideal opamp, Value of ACL");
19 Rif=Rio*SF;//kohm
20 disp(Rif, "Value of Rif(Mohm)");
21 disp("This is a large value can be assumed as infity
       resistance.");
22 format('v',5);
23 Rof=Ro/SF; /mohm
24 disp(Rof*1000,"Value of Rof(mohm)");
25 \text{ fodash=SF*fo;} //Hz
26 disp(fodash/1000, "Bandwidth with feedback, fo_dash(
     kHz)");
27 //Answer for Rif in the book has mistake of unit.
```

Scilab code Exa 4.3 Impedence and gain

```
1 ///Ex 4.3
2 clc;
3 clear;
4 close;
5 format('v',9);
6 AOL=%inf;//unitless
7 Rio=%inf;//ohm
```

```
8 Ri=1;//kohm
9 Rf=15;//kohm
10 SF=%inf;//unitless;//as SF=1+AOL*Beta
11 Beta=Ri/(Ri+Rf);//unitless
12 ACL=1/Beta;//unitless
13 disp(Rio, "Input impedence(ohm) for ideal opamp is ");
14 disp(ACL, "Gain of the circuit, ACL");
```

Scilab code Exa 4.4 Input and output impedence

```
1 ///Ex 4.4
2 clc;
3 clear;
4 close;
5 format('v',9);
6 AOL=400; // unitless
7 Rio=500; // kohm
8 Ro=75; // ohm
9 ACL=100; // unitless
10 SF=AOL/ACL; // unitless
11 Rif=Rio*SF; // kohm
12 disp(Rif/1000, "Input impedence, Rif(Mohm)");
13 Rof=Ro/SF; // ohm
14 disp(Rof, "Output impedence, Rof(ohm)");
```

Scilab code Exa 4.5 Non Inverting Amplifier

```
1 ///Ex 4.5
2 clc;
3 clear;
4 close;
5 format('v',5);
```

```
6 ACL=200; // unitless
7 AOL=2*10^5; // unitless
8 Rio=2; //Mohm
9 Ro=75; //ohm
10 Ri=1; //kohm(Assumed)
11 SF=AOL/ACL; // unitless
12 Beta=(SF-1)/AOL; // unitless
13 Rf=Ri*(1-Beta)/Beta; //kohm
14 disp(Ri, "Input impedence, Rif(kohm)");
15 disp(Rf, "Feedback impedence, Rf(kohm)");
```

Scilab code Exa 4.6 Close Loop Voltage Gain

```
1 ///Ex 4.6
2 clc;
3 clear;
4 close;
5 format('v',5);
6 AOL=50;//unitless
7 Beta=0.8;//unitless
8 deltaAOL=-20;//%(Change in open loop gain)
9 deltaBeta=15;//%(Change in feedback factor)
10 AOLnew=AOL+AOL*deltaAOL/100;//unitless(AOL after change)
11 Betanew=Beta+Beta*deltaBeta/100;//unitless(Beta after change)
12 ACL=AOLnew/(1+AOLnew*Betanew);//unitless
13 disp(ACL, "Close loop gain, ACL");
```

Scilab code Exa 4.7 Acl Rif Rof

```
1 ///Ex 4.7
2 clc;
```

```
3 clear;
4 close;
5 format('v',5);
6 AOL=500; // unitless
7 Rio=300; // kohm
8 Ro=100; // ohm
9 ACL=AOL/(1+AOL); // unitless
10 Rif=Rio*(1+AOL)/1000; // Mohm
11 Rof=Ro/(1+AOL); // ohm
12 disp(ACL, "Close loop gain, ACL");
13 disp(Rif, "Value of Rif(Mohm)");
14 disp(Rof, "Value of Rof(ohm)");
```

Scilab code Exa 4.8 Output Voltage

```
1 ///Ex 4.8
2 clc;
3 clear;
4 close;
5 format('v',5);
6 Iin=1;//mA
7 Rf=1;//kohm
8 IB=0;//for ideal opamp
9 If=Iin-IB;//mA
10 Vout=-If*Rf;//V
11 disp(Vout,"Output Voltage(V)");
```

Scilab code Exa 4.9 Variation in output Voltage

```
1 ///Ex 4.9
2 clc;
3 clear;
4 close;
```

Scilab code Exa 4.10 Gain and impedence

```
1 ///Ex 4.10
2 clc;
3 clear;
4 close;
5 format('v',5);
6 AOL=2*10^5; // unitless
7 Rio=2; //Mohm
8 Ro=75; //ohm
9 Ri=1; //kohm
10 Rf = 10; //kohm
11 ACL=-AOL*Rf/(Rf+Ri+AOL*Ri);//unitless(Exact)
12 disp(ACL, "Exact close loop voltage gain");
13 ACL=-Rf/Ri; // unitless (Approximate)
14 disp(ACL, "Approximate close loop voltage gain");
15 Beta=Ri/(Ri+Rf);//unitless
16 SF=1+AOL*Beta; // unitless
17 Rif=Rio*10^6/SF;//ohm
18 disp(Rif, "Input impedence after feedback(ohm)");
```

Scilab code Exa 4.11 Gain and Bandwidth

```
1 ///Ex 4.11
2 clc;
3 clear;
4 close;
5 format('v',5);
6 Ri=2;//kohm
7 Rf=200;//kohm
8 //For 741C
9 fo=5;//Hz
10 AOL=2*10^5;//unitless
11 UGB=1;//MHz
12 ACL=-AOL*Rf/(Rf+Ri+AOL*Ri);//unitless(Exact)
13 disp(ACL, "Close loop voltage gain");
14 fodash=fo*AOL/-ACL;//Hz
15 disp(fodash/1000, "Bandwidth, fo_dash(kHz)");
```

Scilab code Exa 4.12 Calculate Gain

```
1 ///Ex 4.12
2 clc;
3 clear;
4 close;
5 format('v',6);
6 Beta=0.06;//feedback factor
7 fo=100;//Hz
8 AOL=40000;//unitless(at dc)
9 SFdc=1+AOL*Beta;//sacrifice factor at dc
10 f=1;//kHz
11 f=f*10^3;//Hz
```

```
12 SF1=1+AOL*Beta/sqrt(1+f^2/fo^2);//sacrifice factor
         at 1 kHz
13 //(a)
14 ACL=AOL/SFdc;//(unitless)exact close loop gain at dc
15 disp(ACL,"Exact close loop gain at dc");
16 //(b)
17 ACL=1/Beta;//(unitless)approximate close loop gain
         at dc
18 disp(ACL,"Approximate close loop gain at dc");
19 //(c)
20 AOL=3980;//unitless(at dc)
21 ACL=AOL/SF1;//(unitless)exact close loop gain at 1
         kHz
22 disp(ACL,"Exact close loop gain at 1kHz");
```

Scilab code Exa 4.13 Input and output impedence

```
1 ///Ex 4.13
2 clc;
3 clear;
4 close;
5 format('v',5);
6 Beta=0.04; // feedback factor
7 AOL=5000; // unitless (at dc)
8 Rio=40; // kohm
9 Ro=1; // kohm
10 SF=1+AOL*Beta; // sacrifice factor at dc
11 Rif=Rio/SF*1000; // ohm
12 disp(Rif, "Input impedence(ohm)");
13 Rof=Ro*1000/SF; // ohm
14 disp(Rof, "Output impedence(ohm)");
```

Chapter 5

Linear Applications of OPamps

Scilab code Exa 5.1 Output Voltage

```
1 //Ex 5.1
2 clc;
3 clear;
4 close;
5 format('v',5);
6 V1=2; V2=3; V3=4; V4=5; //V
7 R1=10; R2=15; R3=22; R4=50; //kohm
8 Rf=10; //kohm
9 Vout=-Rf/R1*V1-Rf/R2*V2-Rf/R3*V3-Rf/R4*V4; //V
10 disp(Vout, "Output voltage of the circuit(V)");;
```

Scilab code Exa 5.2 Resistor R1 and R2

```
1 //Ex 5.1
2 clc;
3 clear;
4 close;
5 format('v',5);
```

```
6 Rf = 240; //kohm
7 //Vout = -4*Vx + 3*Vy;
8 //case 1st
9 Vy = 0; //V(But Vx is not = 0)
10 //Vox = -Rf/R1*Vx = -4*Vx
11 R1 = Rf/4; //kohm
12 //case 2nd
13 Vx = 0; //V(But Vy is not = 0)
14 //Voy = (1 + Rf/R1) *R2*Vy/(R1 + R2) = 3*Vy
15 R2 = 3/(1 + Rf/R1) *R1/((1 - 3/(1 + Rf/R1)))
16 disp(R1, "Resistance R1(kohm)");
17 disp(R2, "Resistance R2(kohm)");
```

Scilab code Exa 5.3 Output Voltage

```
1 //Ex 5.3
2 clc;
3 clear;
4 close;
5 format('v',5);
6 V1=-2; V2=3; //V
7 R1=50; R2=100; //kohm
8 Rf=250; //kohm
9 //I1+I2=If with IB=0 & Vx=0
10 Vout=-(V1/R1+V2/R2)*Rf; //V
11 disp(Vout, "Output Voltage(V)");
```

Scilab code Exa 5.4 Output Voltage

```
1 //Ex 5.4
2 clc;
3 clear;
4 close;
```

```
5 format('v',5);
6 V1=-2; V2=3; //V
7 R1=12; R2=12; R3=10 // kohm
8 Rf=12; Ri=12; // kohm
9 Rt=2; // kohm
10 Vyx=200*10^-6; //V
11 Vout=Rf/Ri*(1+2*R3/Rt)*Vyx; //V
12 disp(Vout*1000, "Output Voltage(mV)");
```

Scilab code Exa 5.5 Instrumentation Amplifier

```
1  //Ex 5.5
2  clc;
3  clear;
4  close;
5  format('v',4);
6  Ad=5:200;//Gain
7  R1max=50;//kohm(Potentiometer)
8  R4=10;R3=10;//kohm
9  //Case 1st : Ad=Admin &R1=R1max
10  R1=R1max;//kohm
11  R2=(min(Ad)-1)/2*R1max
12  //Case 2nd : Ad=Admax &R1=R1min
13  R1min=2*R2/(max(Ad)-1);//kohm
14  disp(R2,"Resistance R2(kohm)");
15  disp(R1min,"Minimum value of resistance R1(kohm)");
```

Scilab code Exa 5.6 Gain and Impedence

```
1 //Ex 5.6
2 clc;
3 clear;
4 close;
```

```
5 format('v',8);
6 R3=1; //kohm
7 Rt = 5; //kohm
8 Ri=1.8; R1=1.8; //kohm
9 Rf = 18; R2 = 18; //kohm
10 Vs = 15; //V
11 AoL=2*10^5; //Gain(for 741C)
12 Rio = 2 / / Mohm
13 Ro = 75 / Mohm
14 fo=5; //Hz
15 fBW=1; //MHz
16 Ad=Rf/Ri*(1+2*R3/Rt); // differential gain
17 disp(Ad, "Differential gain");
18 Beta=(R3+Rt)/(2*R3+Rt); //unitless
19 Rix=Rio*10^6*(1+AoL*Beta);//ohm
20 disp(Rix, "Input impedence, Rix(ohm)");
21 Rof=Ro/(1+AoL/Ad); //ohm
22 disp(Rof, "Output impedence, Rof(ohm)");
23 //Answer in the book is wron for Rix.
```

Scilab code Exa 5.8 Output Voltage

```
1  //Ex 5.8
2  clc;
3  clear;
4  close;
5  format('v',8);
6  Ri=10; //kohm
7  Rf=15; //kohm
8  Vs=9; //V
9  //Part (a)
10  Ra=120; Rb=120; Rc=120; Rd=120; //ohm
11  Vx=0; Vy=0 //V(as Bridge is balanced)
12  Vout=(Vy-Vx)*Rf/Ri; //V
13  disp(Vout,"(a) Output Voltage(V)");
```

```
14  // Part (b)
15  Ra=120; Rb=120; Rc=120; Rd=150; //ohm
16  Vx=Rb*Vs/(Ra+Rb); //V
17  Vy=Rc*Vs/(Rc+Rd) //V
18  Vyx=Vy-Vx; //V
19  Vout=(Vy-Vx)*Rf/Ri; //V
20  disp(Vout,"(b) Output Voltage(V)");
```

Scilab code Exa 5.9 Output Voltage

```
1 //Ex 5.9
2 clc;
3 clear;
4 close;
5 format('v',8);
6 Vin=2;//V
7 Rf=2*2/(2+2)+2;//kohm
8 R1=1;//kohm
9 Vout=-Rf/R1*Vin;//V
10 disp(Vout,"Output Voltage(V)");
```

Scilab code Exa 5.11 Resistor Ri and Rf

```
1 //Ex 5.11
2 clc;
3 clear;
4 close;
5 format('v',4);
6 G=20;//dB(Gain)
7 f3dB=2;//kHz
8 Cf=0.05;//micro F
9 Rf=1/(f3dB*1000*2*%pi*Cf/1000000)/1000;//kohm
10 G=10^(G/20);//Gain(unitless)
```

```
11 Ri=Rf*1000/G; //ohm
12 disp(Rf, "Resistance Rf(kohm)");
13 disp(Ri, "Resistance Ri(ohm)");
```

Scilab code Exa 5.13 Output of opamp

```
1 / Ex 5.13
2 clc;
3 clear;
4 close;
5 format('v',4);
6 t2=50; //ms(After open the switch)
7 R=40; //kohm
8 C=0.2; //micro F
9 V2=3; /V
10 Vin=5; //V
11 / For Ideal op-amp V1=V2
12 t1=0; //s
13 Vout1=V2;/V
14 V1 = V2; //V
15 t2=t2*10^-3; //s
16 Vout2=-1/(R*10^3*C*10^-6)*integrate('Vin-V1', 'T',0,
      t2) + Vout1; //V
17 //Here we have t=0 switch closed Vout=3V
18 t = [t1*1000 t2*1000]; //ms
19 Vout=[Vout1 Vout2];//V
20 plot(t, Vout);
21 title('Vout Vs time after switch is opened');
22 xlabel('t(ms)');
23 ylabel('Vout(V)');
```

Scilab code Exa 5.14 Output Voltage

```
1 //Ex 5.14
2 clc;
3 clear;
4 close;
5 format('v',4);
6 R1=1;//kohm
7 R2=1;//kohm
8 R3=1;//kohm
9 Rf=R2+R3;//kohm
10 Vin=1;//V
11 //Capacitor remains open circuited for steady state in both cases.
12 Vout=-Rf/R1*Vin;//V
13 disp(Vout,"Output Voltage(V)");
```

Scilab code Exa 5.16 Design required circuit

```
1 / Ex 5.16
2 clc;
3 clear;
4 close;
5 format('v',4);
6 //From the given equationVout=-integrate('5*Vx+2*Vy
     +4*Vz', 't', 0, t) :
7 R1Cf = 1/5; R2Cf = 1/2; R3Cf = 1/4;
8 disp("Various design parameters are: ");
9 Cf=10; //micro F////Chosen for the design
10 disp(Cf, "Capacitance (micro F)");
11 R1=R1Cf/(Cf*10^-6)/1000;//kohm
12 R2=R2Cf/(Cf*10^-6)/1000;//kohm
13 R3=R3Cf/(Cf*10^--6)/1000;//kohm
14 disp(R1, "Resistance R1(kohm)");
15 disp(R2, "Resistance R1(kohm)");
16 disp(R3, "Resistance R1(kohm)");
```

Scilab code Exa 5.17 Output of opamp

```
1 / Ex 5.17
2 clc;
3 clear;
4 close;
5 format('v',4);
6 f = 10; //kHz
7 Rf = 3.2; //kohm
8 Ci = 0.001; // micro F
9 dt=5;//micro seconds
10 dVin=5-(-5); //V(When voltage changes from <math>-5V to +5V
11 Vout = -Rf * 1000 * Ci * 10^- - 6 * dVin / (dt * 10^- - 6); //V
12 disp(Vout, "When voltage changes from -5V to +5V, The
       output Voltage(V)");
13 dVin=-5-(+5); //V(When voltage changes from <math>+5V to -5
      V)
14 Vout = -Rf *1000 * Ci *10^-6 * dVin/(dt *10^-6); //V
15 disp(Vout, "When voltage changes from +5V to -5V, The
       output Voltage(V)");
```

Scilab code Exa 5.18 Design a differentiator

```
1 //Ex 5.18
2 clc;
3 clear;
4 close;
5 format('v',5);
6 fmin=200;//Hz
7 fmax=1;//kHz
8 fa=fmax;//kHz
```

```
disp("Various design parameters are : ");
Ci=0.05;//micro F///Chosen for the design
disp(Ci, "Capacitance Ci(micro F)");
format('v',4);
fb=10*fa;//kHz
Rf=1/(2*%pi*fa*10^3*Ci*10^-6)/1000;//kohm
disp(Rf, "Resistance Rf(kohm)");
Ri=1/(2*%pi*fb*10^3*Ci*10^-6);//ohm
disp(Ri, "Resistance Ri(ohm)");
format('v',6);
Cf=Ri*Ci/(Rf*10^3);//micro F
disp(Cf, "Capacitance Cf(micro F)");
```

Scilab code Exa 5.19 Design a differentiator

```
1 / Ex 5.19
2 clc;
3 clear;
4 close;
5 format('v',5);
6 fmax=100; //Hz
7 fa=fmax;//Hz
8 disp("Various design parameters are: ");
9 Ci=0.1;//micro F////Chosen for the design
10 disp(Ci, "Capacitance Ci(micro F)");
11 Rf=1/(2*\%pi*fa*Ci*10^-6)/1000;//kohm
12 disp(Rf, "Resistance Rf(kohm)");
13 disp("Use f=15 kohm");
14 fb=15*fa; //kHz
15 Ri=1/(2*\%pi*fb*Ci*10^-6)/1000;//kohm
16 disp(Ri, "Resistance Ri(kohm)");
17 disp("Use Ri=1 kohm");
18 format('v',6);
19 Cf=Ri*Ci/Rf; //micro F
20 disp(Cf, "Capacitance Cf(micro F)");
```

Scilab code Exa 5.20 Rf Ri and Cf

```
1 //Ex 5.20
2 clc;
3 clear;
4 close;
5 format('v',5);
6 f = 50; //Hz
7 T=1/f; //s (Period)
8 Ci=0.05; // micro F
9 RiCi=0.01*T; // Given
10 Ri=RiCi/(Ci*10^-6)/1000;//kohm
11 disp(Ri, "Resistance Ri(kohm)");
12 //Vout = -.002*dVin/dt given
13 //On comparing with Vout=-Rf*Ci*dVin/dt
14 RfCi=0.002; //on comparing
15 Rf=RfCi/(Ci*10^-6)/1000;//kohm
16 disp(Rf, "Resistance Rf(kohm)");
17 Cf=Ri*Ci/Rf;//micro F
18 format('v',6);
19 disp(Cf, "Capacitance Cf(micro F)");
```

Chapter 6

Oscillators and waveform generators

Scilab code Exa 6.1 Design a RC phase shift oscillator

```
1 / Ex 6.1
2 clc;
3 clear;
4 close;
5 format('v',6);
6 f0=600; //Hz//Oscillating Frequency
7 disp("Various design parameters are :-");
8 C=0.05; //micro F//Chosen for the design
9 disp(C, "Capacitance (micro F)");
10 format('v',5);
11 R=1/(2*%pi*f0*sqrt(6)*C*10^-6); //ohm
12 R=R/1000; //kohm
13 disp(R, "Resistance R(kohm)");
14 disp ("We can use R=2.2 kohm for design purpose.")
15 //To avoid loading effect
16 Ri=10*R; //\text{kohm}//\text{Ri} > = 10*\text{R}
17 Ri=ceil(Ri);//kohm
18 disp(Ri, "Resistance Ri(kohm)");
19 Rf = 29 * Ri; // \text{kohm} / / \text{Rf} > = 29 * \text{Ri}
```

```
disp(Rf, "Resistance Rf(kohm)");
disp("We can use Rf=640 kohm for design purpose.")
Rf=640; //kohm
//Balancing the circuit
Rom=Rf*Ri/(Rf+Ri); //kohm
Rom=ceil(Rom); //kohm
format('v',6);
disp(Rom, "Resistance Rom(kohm)");
```

Scilab code Exa 6.3 Design a wein bridge oscillator

```
1 / Ex 6.3
2 clc;
3 clear;
4 close;
5 format('v',5);
6 f0=12; //kHz//Oscillating Frequency
7 disp("Various design parameters are :-");
8 C=0.01; //micro F//Chosen for the design between 0.01
      & 1 micro F
9 disp(C, "Capacitance(micro F)");
10 R=1/(2*\%pi*f0*1000*C*10^-6);/ohm
11 R=R/1000; //kohm
12 disp(R, "Resistance R(kohm)");
13 format('v',5);
14 Ri=3*R/2; //kohm//Ri>=3*R/2
15 disp(Ri, "Resistance Ri(kohm)");
16 disp("We can use Ri=2.2 kohm for design purpose.")
17 Ri = 2.2; //kohm
18 Rf = 2*Ri; //kohm
19 disp(Rf, "Resistance Rf(kohm)");
20 disp("We should use Rf=4.7 kohm for design purpose."
     )
```

Scilab code Exa 6.5 Design a wein bridge oscillator

```
1 / Ex 6.5
2 clc;
3 clear;
4 close;
5 format('v',5);
6 f0=2; //kHz//Oscillating Frequency
7 disp("Various design parameters are :-");
8 C=0.05; //micro F//Chosen for the design
9 disp(C, "Capacitance(micro F)");
10 R=1/(2*\%pi*f0*1000*C*10^-6);/ohm
11 R=R/1000; //kohm
12 disp(R, "Resistance R(kohm)");
13 format('v',5);
14 Ri=3*R/2; //kohm//Ri>=3*R/2
15 format('v',4);
16 disp(Ri, "Resistance Ri(kohm)");
17 disp("We can use Ri=2.2 kohm for design purpose.")
18 Rf = 2*Ri; //kohm
19 disp(Rf, "Resistance Rf(kohm)");
20 disp("We should use 5k pot for Rf.")
```

Scilab code Exa 6.6 Frequency of oscillation

```
1 //Ex 6.6
2 clc;
3 clear;
4 close;
5 format('v',6);
6 //Data given
7 R1=1;//kohm
```

Scilab code Exa 6.7 Design a quadrature oscillator

```
1 / Ex 6.7
2 clc;
3 clear;
4 close;
5 format('v',5);
6 f0=200; //Hz//Oscillating Frequency
7 disp("Various design parameters are :-");
8 C=0.05; //micro F//Chosen for the design
9 disp(C, "Capacitance (micro F)");
10 R=0.159/(f0*C*10^-6);//ohm
11 R=R/1000; //kohm
12 disp(R, "Resistance R(kohm)");
13 disp("We should use R=510 kohm for the design.")
14 R=510; //kohm
15 C1=C; C2=C; C3=C; //micro F
16 disp(C3,C2,C1," Capacitance C1, C2 & C3(micro F)");
17 R2=R; R3=R; //kohm
18 disp(R3,R2, "Resistance R2, R3(kohm)");
19 disp("1000k pot can be used.")
20 //Answer for R is calculated wrong in the textbook.
```

Scilab code Exa 6.8 Causes of distortion

```
1 / Ex 6.8
```

```
2 clc;
3 clear;
4 close;
5 format('v',5);
6 Rf=570;//kohm
7 Ri=15;//kohm
8 A=Rf/Ri;//Gain of the circuit
9 Amin=29;//Minimum Gain requirement of RC phase shift oscillator
10 deltaA=(A-Amin)/Amin*100;//%(Exceeding Gain)
11 disp(deltaA, "Gain is exceeded by(%)");
12 disp("It will cause distortion at output.");
```

Scilab code Exa 6.9 Frequency of oscillation

```
1 / Ex 6.9
2 clc;
3 clear;
4 close;
5 format('v',6);
6 disp("Part (a)");
7 L1=25; //micro H
8 L2=10; // micro H
9 Rf = 22; /kohm
10 C=0.01; //micro F
11 LT=L1+L2; // micro H
12 fr=1/(2*%pi*sqrt(C*10^-6*LT*10^-6));//Hz
13 fr=fr/1000; //kHz
14 f0=fr; //kHz
15 disp(f0, "Oscillation frequency(kHz)");
16 Ri=Rf/(L1/L2); //kohm
17 disp(Ri, "Resistance Ri(kohm)");
18 disp("Part (b)");
19 C1=220; //pF
20 C2=680; //pF
```

```
21 Rf=22; //kohm
22 L=1; //mH
23 CT=C1*C2/(C1+C2); //pF
24 fr=1/(2*%pi*sqrt(L*10^-3*CT*10^-12)); //Hz
25 fr=fr/1000; //kHz
26 f0=fr; ///kHz
27 f0=round(f0); //kHz
28 disp(f0, "Oscillation frequency(kHz)");
29 Ri=Rf/(C1/C2); //kohm
30 disp(Ri, "Resistance Ri(kohm)");
```

Scilab code Exa 6.10 Design a square wave generator

```
1 / Ex 6.10
2 clc;
3 clear;
4 close;
5 format('v',6);
6 \text{ f0=1;} // \text{kHz}
7 Vsat=14; //V
8 disp("Various design parameters are :-");
9 C1=0.05; //micro F//Chosen for the design
10 disp(C1, "Capacitance(micro F)");
11 Rf=1/(2*f0*10^3*C1*10^-6)/1000;//kohm
12 disp(Rf, "Resistance Rf(kohm)");
13 / R2 = 0.86 * R1 and Rf = R1 | R2
14 R2byR1=0.86; // from R2=0.86*R1
15 R2=Rf * (1+R2byR1); //kohm
16 R1=R2/R2byR1; //kohm
17 disp(R1, "Resistance R1(kohm)");
18 disp("Use R1=22 kohm for the design.");
19 disp(R2, "Resistance R2(kohm)");
```

Scilab code Exa 6.11 Find Rf and C

Scilab code Exa 6.12 Frequency of output

```
1 //Ex 6.12
2 clc;
3 clear;
4 close;
5 format('v',6);
6 R1=4.7; //kohm
7 R2=3.3; //kohm
8 Rf=2; //kohm
9 C=0.1; // micro F
10 f0=1/2/(Rf*1000)/(C*10^-6)/log(1+2*R2/R1)/1000; //kHz
11 disp(f0, "Frequency of output signal(kHz)");
```

Scilab code Exa 6.13 Triangular wave generator

```
1 / Ex 6.13
2 clc;
3 clear;
4 close;
5 format('v',6);
6 f0=1.5; //kHz
7 Vout=6; //V/// peak to peak
8 Vsat=13.5; //V
9 disp("Various design parameters are: ");
10 R2=10;//kohm///choosen for the design
11 R1=R2*2*Vsat/Vout; //kohm
12 disp(R1, "R1(kohm)");
13 disp(R2, "R2(kohm)");
14 disp("Use R1=50 kohm for the design");
15 //Let Cf=0.05 micro F for the design
16 Cf = 0.05; // micro F
17 disp(Cf, "Cf(micro F)");
18 Ri=R1*1000/(f0*1000)/4/(Cf*10^-6*R2*1000)/1000;//
19 disp(Ri, "Ri(kohm)");
```

Scilab code Exa 6.14 Peak output voltage

```
1  //Ex 6.14
2  clc;
3  clear;
4  close;
5  format('v',4);
6  //Data given
7  R1=6.8; //kohm
8  Ri=100; //kohm
9  R2=1.5; //kohm
10  Cf=0.01; // micro F
11  Vsat=14; //V
12  Vo_pp=2*R2/R1*Vsat; //V///Peak to peak output of
```

Scilab code Exa 6.15 Triangular wave generator

```
1 / Ex 6.15
2 clc;
3 clear;
4 close;
5 format('v',4);
6 //Data given
7 f0=1; //kHz
8 Vo_pp=7;/V
9 Vsat=14;/V
10 disp("Various design parameters are :-");
11 // Let R2=10; // kohm for the design
12 R2=10; //kohm
13 R1=2*R2*Vsat/Vo_pp;//kohm
14 disp(R1, "R1(kohm)");
15 disp(R2, "R2(kohm)");
16 //Choose Cf=0.1 micro F for the design
17 Cf = 0.1; // micro F
18 disp(Cf, "Cf(micro F)");
19 Ri=R1*10^3/(4*f0*10^3*Cf*10^-6*R2*10^3)/1000;/kohm
20 disp(Ri, "Ri(kohm)");
```

Scilab code Exa 6.16 Frequency of output

```
1 / Ex 6.16
2 clc;
3 clear;
4 close;
5 format('v',4);
6 //Data given
7 tau=1; //ms(time period)
8 R1byR2=1.8:0.2:9; //range of R1/R2
9 Beta_min=1/(1+min(R1byR2));//minimum value of Beta
10 Beta_max=1/(1+max(R1byR2));//maximum value of Beta
11 \operatorname{Tmax}=2*\operatorname{tau}*\log((1+\operatorname{Beta}_{\min})/(1-\operatorname{Beta}_{\min})); //\operatorname{ms}///
      For minimum value of Beta
12 fmin=1/(Tmax*10^-3); //Hz
13 Tmin=2*tau*log((1+Beta_max)/(1-Beta_max)); //ms////
      For maximum value of Beta
14 fmax=1/(Tmin*10^-3)/1000;//kHz
15 disp("Frequency range is "+string(fmin)+" Hz to "+
      string(fmax)+" kHz.");
```

Scilab code Exa 6.17 Series and parallel resonant frequencies

```
1 //Ex 6.17
2 clc;
3 clear;
4 close;
5 format('v',4);
6 //Data given
7 Ls=3;//H
8 Cs=0.05;//pF
9 Rs=2;//kohm
10 Cm=10;//pF
11 fS=1/2/%pi/sqrt(Ls*Cs*10^-12)/1000;//kHz
12 disp(fS, "Series resonant frequency(kHz)");
13 CT=Cm*Cs/(Cm+Cs);//pF///Equivalent capacitance
14 fP=1/2/%pi/sqrt(Ls*CT*10^-12)/1000;//kHz
```

```
15 disp(fP, "Parallel resonant frequency(kHz)");
```

Scilab code Exa 6.18 Design a function generator

```
1 / Ex 6.18
2 clc;
3 clear;
4 close;
5 format('v',5);
6 //Data given
7 f0=5; //kHz
8 D=60; //\%/// duty cycle
9 VCC=12; //V
10 //As D=t1/(t1+t2)
11 t2BYt1=1/(D/100)-1;//ratio of t1 & t2
12 / RB/(2*RA-RB)=t2/t1
13 RAbyRB=(1/t2BYt1+1)/2;//Ratio of RA & RB
14 disp("Various design parameters are :");
15 //Let CT=0.05 micro F for this design choosing
      between 0.01 & 1 microo F
16 CT=0.05; // \text{micro } F
17 disp(CT, "CT(micro F)");
18 RA=1/(f0*10^3)/(5/3)^2/(CT*10^-6)/1000; //kohm
19 disp(RA, "RA(kohm)");
20 RB=RA/RAbyRB; //kohm
21 disp(RB, "RB(kohm)");
```

Scilab code Exa 6.19 V0 V7 I and fo

```
1 //Ex 6.19
2 clc;
3 clear;
4 close;
```

```
5 format('v',6);
6 //Data given
7 Rf = 15; //kohm
8 RT1=4.7; //kohm
9 R1=56; //kohm
10 R2=6.8; //kohm
11 R3=10; //kohm
12 R4=1; //kohm
13 R5=1; //kohm
14 CB=1; // micro F
15 CT = 0.05; //mic
16 VCC=15; //V
17 V1 = -15; //V////Voltage given through the resistance (
      R1) 56 kohm
18 disp("Part (i)");
19 Vin=2;/V
20 Vo = Rf/R1 * (-V1) - Rf/R2 * Vin; //V
21 disp(Vo, "Voltage Vo(V)");
22 N_VCC=0; //V////-VCC//// voltage given to the 12th pin
       of IC
23 V7 = N_VCC + 3; //V
24 disp(V7,"Voltage V7(V)");
25 I = (V7 - Vo) / RT1; / / mA
26 disp(I,"Current I(mA)");
27 Rmult=R4*R5/(R4+R5)+R3; //kohm////on pin 3
28 disp(Rmult, "Total resistance on pin 3, Rmult(kohm)")
29 format('v',4);
30 f0=0.32*I*10^-3/(CT*10^-6)/1000;//kHz
31 disp(f0, "Oscillation frequency(kHz)");
32 disp("Part (ii)");
33 format('v',4);
34 \text{ Vin=5;}/V
35 Vo = Rf/R1 * (-V1) - Rf/R2 * Vin; //V
36 disp(Vo, "Voltage Vo(V)");
37 N_VCC=0; //V///-VCC////voltage given to the 12th pin
       of IC
38 V7 = N_VCC + 3; //V
```

```
39  disp(V7,"Voltage V7(V)");
40  I=(V7-Vo)/RT1;//mA
41  format('v',6);
42  disp(I,"Current I(mA)");
43  Rmult=R4*R5/(R4+R5)+R3;//kohm///on pin 3
44  disp(Rmult,"Total resistance on pin 3, Rmult(kohm)")
    ;
45  f0=0.32*I*10^-3/(CT*10^-6)/1000;//kHz
46  disp(f0,"Oscillation frequency(kHz)");
```

Chapter 7

The 555 timer

Scilab code Exa 7.1 Monostable Multivibrator

```
1 ///Ex 7.1
2 clc;
3 clear;
4 close;
5 format('v',9);
6 \text{ th=4}; //\text{ms}
7 VCC=10;/V
8 C=0.05; // micro F(choosen between 0.01 <= C <= 1)
9 R=th*10^-3/(1.1*C*10^-6)/1000;/kohm
10 C1=0.01; //micro F(assumed)
11 C2=0.01; // micro F(choosen between 0.01 <= C <= 1)
12 R2=th*10^-3/(10*C2*10^-6)/1000;/kohm
13 C3=10; // micro F
14 disp("Design values are : ");
15 disp(C, "Capacitance C(micro F)");
16 disp(R, "Resistance R(kohm)");
17 disp(C1, "Capacitance C1(micro F)");
18 disp(C2, "Capacitance C2(micro F)");
19 disp(R2, "Resistance R2(kohm)");
20 disp(C3, "Capacitance C3(micro F)");
21 //Answer of R2 is wrong in the book.
```

Scilab code Exa 7.2 Value of R

```
1 ///Ex 7.2
2 clc;
3 clear;
4 close;
5 format('v',9);
6 ft=2;//kHz
7 C=0.01;//micro F
8 T=1/ft;//ms
9 n=3;//for divide-by-3 circuit
10 th=(0.2+(n-1))*T;//ms
11 R=th/(1.1*C);/kohm
12 disp(R,"Value of Resistance R(kohm)");
```

Scilab code Exa 7.3 Astable Multivibrator

```
1 ///Ex 7.3
2 clc;
3 clear;
4 close;
5 format('v',9);
6 fo=2;//kHz
7 D=70;//%(duty cycle)
8 T=1/fo;//ms
9 VCC=12;//V
10 tC=D*T/100;//ms
11 tD=T-tC;//ms
12 C=0.05;//micro F(choosen between 0.01<=C<=1)
13 RB=tD*10^-3/(0.69*C*10^-6)/1000;//kohm
14 RA=tC*10^-3/(0.69*C*10^-6)/1000-RB;//kohm</pre>
```

```
disp("Design values are : ");
disp(C, "Capacitance C(micro F)");
disp(RA, "Resistance RA(kohm)");
disp(RB, "Resistance RB(kohm)");
```

Scilab code Exa 7.4 Design a square wave generator

```
1 ///Ex 7.4
2 clc;
3 clear;
4 close;
5 format('v',9);
6 \text{ fo=2;} //kHz
7 D=50; //\% (duty cycle)
8 T=1/fo; //ms
9 VCC = 10; /V
10 tC=D*T/100; //ms
11 tD=T-tC; //ms
12 C=0.1; // micro F(choosen between 0.01 <= C <=1)
13 RB=tD*10^-3/(0.69*C*10^-6)/1000; //kohm
14 RA=T*10^-3*1.45/(C*10^-6)/1000-RB;//kohm
15 disp("Design values are: ");
16 disp(C, "Capacitance C(micro F)");
17 disp(RA, "Resistance RA(kohm)");
18 disp(RB, "Resistance RB(kohm)");
19 disp("RA & RB should be equal for 50% duty cycle.")
```

Scilab code Exa 7.5 Astable Multivibrator

```
1 ///Ex 7.5
2 clc;
3 clear;
4 close;
```

```
5  format('v',9);
6  fo=2;//kHz
7  D=40;//%(duty cycle)
8  T=1/fo;//ms
9  VCC=10;//V
10  tC=D*T/100;//ms
11  tD=T-tC;//ms
12  C=0.22;//micro F(choosen between 0.01<=C<=1)
13  RB=tD*10^-3/(0.69*C*10^-6)/1000;//kohm
14  RA=T*10^-3*1.45/(C*10^-6)/1000-RB;//kohm
15  disp("Design values are:");
16  disp(C,"Capacitance C(micro F)");
17  disp(RA,"Resistance RA(kohm)");
18  disp(round(RB),"Resistance RB(kohm)");</pre>
```

Scilab code Exa 7.6 Astable Multivibrator

```
1 ///Ex 7.6
2 clc;
3 clear;
4 close;
5 format('v',9);
6 fo=700; //Hz
7 D=50; //\% (duty cycle)
8 T=1/fo*1000; //ms
9 VCC = 10; //V
10 tC=D*T/100; //ms
11 tD=T-tC; //ms
12 C=0.05; // micro F(choosen between 0.01 <= C <= 1)
13 RB=tD*10^-3/(0.69*C*10^-6)/1000; //kohm
14 RA=T*10^-3*1.45/(C*10^-6)/1000-RB;/kohm
15 disp("Design values are: ");
16 disp(C, "Capacitance C(micro F)");
17 disp(round(RA), "Resistance RA(kohm)");
18 disp(round(RB), "Resistance RB(kohm)");
```

Scilab code Exa 7.7 Astable Multivibrator

```
1 ///Ex 7.7
2 clc;
3 clear;
4 close;
5 format('v',9);
6 fo=800; //Hz
7 D=60; //\%(duty cycle)
8 T=1/fo*1000; //ms
9 VCC = 10; //V
10 tC=D*T/100; //ms
11 tD=T-tC; //ms
12 C=0.047; // micro F(choosen between 0.01<=C<=1)
13 RB=tD*10^-3/(0.69*C*10^-6)/1000; //kohm
14 RA=tC*10^-3*1.45/(C*10^-6)/1000-RB;/kohm
15 disp("Design values are : ");
16 disp(C, "Capacitance C(micro F)");
17 disp(round(RA), "Resistance RA(kohm)");
18 disp(round(RB), "Resistance RB(kohm)");
```

Chapter 8

Frequency Synthesizers and PLL

Scilab code Exa 8.1 Lock Capture and pullin range

```
1 ///Ex 8.1
2 clc;
3 clear;
4 close;
5 format('v',9);
6 VCC=6; //V
7 VEE=6; //V
8 RT=4; //kohm
9 CT=330; //pF
10 C = 240; //pF
11 fo=0.3/(RT*1000*CT*10^--12)/1000;//kHz
12 disp(fo, "Free running frequency(kHz)");
13 Vplus=(VCC-(-VEE))/2; //V
14 deltafL=8*fo/Vplus; //kHz
15 disp(deltafL, "Lock Range(+ve & -ve in kHz)");
16 //For LM 565
17 R=3.6; //kohm
18 deltafC=sqrt(deltafL*1000/(2*%pi*R*1000*C*10^-12))
      /1000; //kHz
```

```
disp(deltafC, "Capture Range(+ve & -ve in kHz)");
deltafP=2*deltafC/2; //kHz
disp(deltafP, "Pull-in Range(kHz)");
```

Scilab code Exa 8.2 Design a FM demodulator

```
1 ///Ex 8.2
2 clc;
3 clear;
4 close;
5 format('v',9);
6 fo=450; //kHz
7 deltafL=240; //kHz(+ve \& -ve)
8 deltafC=40; //kHz(+ve \& -ve)
9 Vplus=8*fo/deltafL; //V
10 // Vplus = (VCC - (-VEE))/2 but |VCC| = |-VEE|
11 VCC=Vplus; //V
12 VEE=Vplus; //V
13 \operatorname{disp}(VCC, "For the design |VCC|=|-VEE| in Volt");
14 RT=4.7; //kohm (Assumed for design)
15 R=3.6; //kohm
16 CT=0.3/(RT*1000*fo*1000)*10^12;/pF
17 C=1/((deltafC*10^3)^2*(2*%pi*R*10^3)/(deltafL*1000))
      *10^9; //nF
18 disp(RT, "Value of RT(kohm)");
19 disp(CT, "Value of CT(pF)");
20 \operatorname{disp}(C, "Value \ of \ C(nF)");
21 //Answer in the book is not accurate.
```

Scilab code Exa 8.3 Clock frequency and no of bits

```
1 ///Ex 8.3
2 clc;
```

```
3 clear;
4 close;
5 format('v',9);
6 fmax=160;//kHz
7 fr=4;//Hz(Resolution)
8 M=2.4;//unitless
9 fclk=M*fmax;//kHz
10 disp(fclk,"Clock frequency(kHz)");
11 N=log(fclk*1000/fr)/log(2);//no. of bits
12 disp(round(N),"No. of bits");
```

Chapter 9

Active Filters

Scilab code Exa 9.2 First order low pass filter

```
1 / Ex 9.2
2 clc;
3 clear;
4 close;
5 format('v',5);
6 \text{ fH=1;} //\text{kHz}
7 Ap=2; // Pass band gain
8 disp("Various design parameters are :-");
9 C=0.05; // micro F// Chosen for the design
10 disp(C, "Capacitance (micro F)");
11 format('v',4);
12 R=1/(2*\%pi*fH*1000*C*10^-6)/1000; //kohm
13 disp(R, "Resistance R(kohm)");
14 //Ap=1+Rf/Ri
15 RfBYRi=Ap-1; //Rf=Ri here
16 / R = Rf | Ri
17 Ri=2*R; //kohm
18 Rf=Ri; //kohm
19 disp(Ri, "Resistance Ri(kohm)");
20 disp(Rf, "Resistance Rf(kohm)");
```

Scilab code Exa 9.3 Find Bandwidth

```
1 //Ex 9.3
2 clc;
3 clear;
4 close;
5 format('v',5);
6 f0=800;//Hz
7 //For Butterworth filter : f0=fH=f_3dB
8 fH=f0;//Hz
9 f_3dB=f0;//Hz
10 BW=fH;//Hz
11 disp(BW,"Bandwidth(Hz)");
```

Scilab code Exa 9.4 First order low pass filter

```
1 / Ex 9.4
2 clc;
3 clear;
4 close;
5 format('v',5);
6 fH=2; //kHz (Cutoff frequency)
7 Ap=1; // Pass band gain
8 disp("Various design parameters are :-");
9 C=0.05; //micro F//Chosen for the design between 0.01
      & 1 micro F
10 disp(C, "Capacitance(micro F)");
11 format('v',4);
12 R=1/(2*\%pi*fH*1000*C*10^-6)/1000;//kohm
13 disp(R, "Resistance R(kohm)");
14 Rdash=R; //kohm(To eliminate the effect of offset)
15 disp(Rdash, "Resistance R*(kohm)");
```

Scilab code Exa 9.5 Convert Cutoff frequency

```
1 / Ex 9.5
2 clc;
3 clear;
4 close;
5 format('v',4);
6 f0=1; //kHz(Cutoff frequency)
7 fOdash=1.5; //kHz(Cutoff frequency)
8 disp("Various design parameters are :-");
9 //For Butterworth filter
10 fH=f0; //kHz
11 fHdash=f0dash; //kHz
12 K=f0/f0dash;//ratio
13 R=3.2; //kohm
14 Rdash=K*R; //kohm
15 disp(Rdash, "Resistance Rdash(kohm)");
16 disp("Use Rdash=2.2 kohm");
17 format('v',5);
18 C=0.05; //micro F//Chosen for the design
19 disp(C, "Capacitance(micro F)");
20 format('v',4);
21 fHdash=1/(2*\%pi*Rdash*1000*C*10^-6)/1000;/kHz
22 disp(fHdash, "Cutoff frequency(kHz)");
```

Scilab code Exa 9.6 First order high pass filter

```
1 //Ex 9.6
2 clc;
3 clear;
4 close;
```

```
5 format('v',5);
6 \text{ fL} = 400; //Hz
7 Ap=2; // Pass band gain
8 disp("Various design parameters are :-");
9 C=0.05; //micro F//Chosen for the design between 0.01
       & 1 micro F
10 disp(C, "Capacitance (micro F)");
11 R=1/(2*\%pi*fL*C*10^-6)/1000;//kohm
12 format('v',4);
13 disp(R, "Resistance R(kohm)");
14 \operatorname{disp}("\operatorname{Use R}=8.2 \operatorname{kohm"});
15 //Ap=1+Rf/Ri
16 RfBYRi=Ap-1; //Rf=Ri here
17 //R=Rf | Ri
18 Ri=2*R; //kohm
19 Rf=Ri; //kohm
20 disp(Ri, "Resistance Ri(kohm)");
21 disp(Rf, "Resistance Rf(kohm)");
```

Scilab code Exa 9.7 Retune the high pass filter

```
1 //Ex 9.7
2 clc;
3 clear;
4 close;
5 format('v',5);
6 fL=400;//Hz
7 fLdash=800;//Hz
8 K=fL/fLdash;//ratio
9 disp("Various parameters for retuning are :-");
10 R=8.2;//kohm
11 Rdash=K*R;//kohm
12 disp(Rdash, "Resistance Rdash(kohm)");
13 disp("Use Rdash=4.2 kohm");
14 Rf=2*Rdash;//kohm
```

```
15 Ri=2*Rdash; //kohm
16 disp(Ri, "Resistance Ri(kohm)");
17 disp(Rf, "Resistance Rf(kohm)");
```

Scilab code Exa 9.8 Second order Butterworth filter

```
1 / Ex 9.8
2 clc;
3 clear;
4 close;
5 format('v',6);
6 f0=3; //kHz(Critical frequency)
7 Ap=4; // Pass band gain
8 //For Butterworth filter using sallen key
9 alfa=1.414; klp=1; // constant
10 fH=f0; //kHz
11 f_3dB=f0;/kHz
12 disp("Various design parameters are :-");
13 C1=0.01; //micro F//Chosen for the design
14 disp(C1, "Capacitance C1(micro F)");
15 C2=alfa^2*C1/4; // micro F
16 disp(C2, "Capacitance C2(micro F)");
17 disp("Use C2=0.004 micro F");
18 C2=0.004; // micro F
19 R=1/(2*\%pi*fH*10^3*sqrt(C1*10^-6*C2*10^-6))/1000;//
     kohm
20 format('v',4);
21 disp(R, "Resistance R(kohm)");
22 disp("Use R=8.2 kohm");
23 R=8.2; //kohm
24 //For offset minimization
25 Rdash=2*R; //kohm
26 disp(Rdash, "Resistance R*(kohm)");
27 RfBYRi=Ap-1; //Rf=Ri here
28 //Ri=10 kohm chosen for design
```

```
29 Ri=10; //kohm
30 Rf=RfBYRi*Ri; //kohm
31 disp(Ri, "Resistance Ri(kohm)");
32 disp(Rf, "Resistance Rf(kohm)");
```

Scilab code Exa 9.9 Second order Butterworth filter

```
1 / Ex 9.9
2 clc;
3 clear;
4 close;
5 format('v',5);
6 f0=2; //kHz(Critical frequency)
7 Ap=5; //dc gain
8 //For Butterworth filter using sallen key
9 alfa=1.414; klp=1; //constant
10 fH=f0; //kHz
11 f_3dB=f0; //kHz
12 Ap1=3-alfa; //gain
13 RfBYRi = Ap1 - 1; // ratio
14 disp("Various design parameters are :-");
15 C=0.05; //micro F//Chosen for the design
16 disp(C, "Capacitance C(micro F)");
17 R=klp/(2*\%pi*fH*10^3*C*10^-6)/1000;//kohm
18 disp(R, "Resistance R(kohm)");
19 disp("Use R=1.6 kohm");
20 //For offset minimization
21 / 2*R=Rf | Ri=Rf / (RfBYRi+1)
22 Rf = 2*R*(RfBYRi+1); //kohm
23 disp(Rf, "Resistance Rf(kohm)");
24 Ri=Rf/RfBYRi; //kohm
25 format('v',4);
26 disp(Ri, "Resistance Ri(kohm)");
27 //Ap=4;//dc gain in this case
28 Ap=4; //dc gain
```

Scilab code Exa 9.10 Second order low pass filter

```
1 / Ex 9.10
2 clc;
3 clear;
4 close;
5 format('v',5);
6 f0=2; //kHz(Critical frequency)
7 fH=f0;/kHz
8 \text{ f}_3dB=f0;//kHz
9 //For Butterworth filter using sallen key
10 alfa=1.414; klp=1; //constant
11 Ap=3-alfa; // band pass gain
12 RfBYRi = Ap -1; // ratio
13 disp("Various design parameters are :-");
14 C=0.05; //micro F//Chosen for the design
15 disp(C, "Capacitance C(micro F)");
16 format('v',4);
17 R=1/(2*\%pi*fH*10^3*C*10^-6)/1000; //kohm
18 disp(R, "Resistance R(kohm)");
19 //For offset minimization
20 //2*R=Rf | Ri=Rf / (RfBYRi+1)
21 Rf = 2*R*(RfBYRi+1); //kohm
22 disp(Rf, "Resistance Rf(kohm)");
23 Ri=Rf/RfBYRi; //kohm
24 disp(Ri, "Resistance Ri(kohm)");
```

```
25 //Answer in the book is not accurate. Some calculation mistake is there while working for offset minimization.
```

Scilab code Exa 9.11 Low pass bessel filter

```
1 / Ex 9.11
2 clc;
3 clear;
4 close;
5 format('v',5);
6 f0=2; //kHz(Critical frequency)
7 fH=f0; //kHz
8 \text{ f}_3dB=f0;//kHz
9 //For Bessel filter of 2nd order
10 alfa=1.73; klp=0.785; //constant
11 Ap=3-alfa; // band pass gain
12 RfBYRi = Ap -1; // ratio
13 disp("Various design parameters are :-");
14 C=0.05; //micro F//Chosen for the design
15 disp(C, "Capacitance C(micro F)");
16 format('v',4);
17 R=klp/(2*\%pi*fH*10^3*C*10^-6)/1000; //kohm
18 disp(R, "Resistance R(kohm)");
19 //For offset minimization
20 //2*R=Rf | Ri=Rf / (RfBYRi+1)
21 Rf=2*R*(RfBYRi+1); //kohm
22 disp(Rf, "Resistance Rf(kohm)");
23 Ri=Rf/RfBYRi; //kohm
24 disp(Ri, "Resistance Ri(kohm)");
```

Scilab code Exa 9.12 Second order low pass filter

```
1 / Ex 9.12
2 clc;
3 clear;
4 close;
5 format('v',5);
6 f0=.12; //kHz(Cutoff frequency)
7 fH=f0;/kHz
8 //For Butterworth filter of 2nd order
9 alfa=1.414; klp=1; //constant
10 Ap=3-alfa; // band pass gain
11 RfBYRi = Ap -1; // ratio
12 disp("Various design parameters are :-");
13 C=0.33; //micro F//Chosen for the design choosing
      between 0.01 & 1 micro F
14 disp(C, "Capacitance C(micro F)");
15 format('v',4);
16 R=klp/(2*\%pi*fH*10^3*C*10^-6)/1000; //kohm
17 disp(R, "Resistance R(kohm)");
18 disp("Use R=3.9 kohm");
19 //For offset minimization
20 / 2*R=Rf | Ri=Rf / (RfBYRi+1)
21 Rf = 2*R*(RfBYRi+1); //kohm
22 disp(Rf, "Resistance Rf(kohm)");
23 Ri=Rf/RfBYRi; //kohm
24 disp(Ri, "Resistance Ri(kohm)");
```

Scilab code Exa 9.13 Second order low pass filter

```
1 //Ex 9.13
2 clc;
3 clear;
4 close;
5 format('v',5);
6 fL=20;//Hz(Cutoff frequency)
7 //For Butterworth filter of 2nd order
```

```
8 alfa=1.414; klp=1; //constant
9 Ap=3-alfa; // band pass gain
10 RfBYRi = Ap -1; // ratio
11 disp("Various design parameters are :-");
12 C=0.22; //micro F//Chosen for the design choosing
      between 0.01 & 1 micro F
13 disp(C, "Capacitance C(micro F)");
14 format('v',4);
15 R=klp/(2*\%pi*fL*C*10^-6)/1000;//kohm
16 disp(R, "Resistance R(kohm)");
17 //For offset minimization
18 / R = Rf | Ri = Rf / (RfBYRi + 1)
19 Rf=R*(RfBYRi+1); //kohm
20 disp(Rf, "Resistance Rf(kohm)");
21 Ri=Rf/RfBYRi; //kohm
22 Ri=floor(Ri); //kohm
23 disp(Ri, "Resistance Ri(kohm)");
```

Scilab code Exa 9.14 Third order low pass butterworth filter

```
1 //Ex 9.14
2 clc;
3 clear;
4 close;
5 format('v',5);
6 fH=2;//kHz(Cutoff frequency)
7 Ap=4;//Pass band gain
8 disp("Butterworth filter of 3rd order can be obtained by cascading of first and second order high pass filter.");
9 //Butterworth polynomial is (s+1)*(s^2+s+1)
10 alfa=1;//for sallen key
11 Ap2=3-alfa;//gain for 2nd order filter
12 Ap1=Ap/Ap2;//gain for 1st order filter
13 //Design parameters for 1st order filter:
```

```
14 disp("Various design parameters for 1st order filter
       are :-");
15 C=0.01; //micro F//Chosen for the design
16 disp(C, "Capacitance C(micro F)");
17 R=1/(2*\%pi*fH*10^3*C*10^-6)/1000;//kohm
18 disp(R, "Resistance R(kohm)");
19 \operatorname{disp}("\operatorname{Use R}=8.2 \operatorname{kohm"});
20 R=8.2; //kohm
21 / Ap1=Rf/Ri+1; with Ap1=2 we have Rf=Ri
22 Rf = 2*R; //kohm
23 Ri=2*R; //kohm
24 disp(Ri,Rf, "Resistance Rf & Ri(kohm)");
25 format('v',6);
26 //Design parameters for 2nd order filter :
27 kLp=1/alfa; //unitless
28 //Ap2=Rfdash/Ridash+1; with Ap2=2 we have Rfdash=
      Ridash
29 disp("Various design parameters for 2nd order filter
       are :-");
30 C=0.033; //micro F//Chosen for the design
31 disp(C, "Capacitance C(micro F)");
32 format('v',4);
33 R=kLp/(2*\%pi*fH*10^3*C*10^-6)/1000; //kohm
34 disp(R, "Resistance R(kohm)");
35 Rf = 2*R; //kohm
36 Ri=2*R; //kohm
37 disp(Ri,Rf, "Resistance Rfdash & Ridash(kohm)");
```

Scilab code Exa 9.15 Design a band pass filter

```
1 //Ex 9.15
2 clc;
3 clear;
4 close;
5 format('v',6);
```

```
6 fL=200; //Hz
7 fH=1; //kHz
8 Ap=4; // Pass band gain
9 fc=sqrt(fH*1000*fL); //Hz(Cutoff frequency)
10 BW=fH*1000-fL; //Hz
11 Q=fc/BW; // Quality Factor
12 disp(Q, "Quality factor is ");
13 disp("As Q<12, it is a wide band filter.");
14 Ap1=2; // Pass band gain for high pass section
15 disp("Various design parameters for high pass
      section are :-");
16 C=0.033; //micro F//Chosen for the design
17 disp(C, "Capacitance C(micro F)");
18 format('v',4);
19 R=1/(2*\%pi*fL*C*10^-6)/1000;//kohm
20 disp(R, "Resistance R(kohm)");
21 / Ap1=Rf/Ri+1; with Ap1=2 we have Rf=Ri
22 Rf = 2*R; //kohm
23 Ri=2*R; //kohm
24 disp(Ri,Rf, "Resistance Rf & Ri(kohm)");
25 Ap2=2; // Pass band gain for low pass section
26 disp("Various design parameters for low pass section
       are :-");
27 format('v',6);
28 C=0.033; //micro F//Chosen for the design
29 disp(C, "Capacitance C(micro F)");
30 format('v',4);
31 K=fL/(fH*1000);//unitless
32 Rdash=K*R; //kohm
33 disp(Rdash, "Resistance Rdash(kohm)");
34 / Ap1 = Rf/Ri + 1; with Ap1 = 2 we have Rf = Ri
35 Rf = 2*Rdash; //kohm
36 \text{ Ri} = 2 * \text{Rdash}; // \text{kohm}
37 disp(Ri,Rf, "Resistance Rf & Ri(kohm)");
38 disp("Use Rf=Ri=10 kohm");
```

Scilab code Exa 9.16 Design a band pass filter

```
1 / Ex 9.16
2 clc;
3 clear;
4 close;
5 format('v',5);
6 disp("Part(a)");
7 fc=1.2; //kHz
8 Q=4; // Quality Factor
9 Ap=10; // Pass band gain
10 disp("Here 2*Q^2=32>AP=10, hence it can be designed
      using single op-amp.");
11 disp("Various design parameters are :-");
12 C=0.05; //micro F//Chosen for the design
13 disp(C, "Capacitance C(micro F)");
14 / fc/Q = 1/(\%pi*R2*C)
15 R2=Q/(fc*1000)/%pi/(C*10^-6)/1000;//kohm
16 disp(R2, "Resistance R2(kohm)");
17 disp("Use R2=22 kohm");
18 format('v',5);
19 R1=R2/(2*Ap); //kohm
20 disp(R1, "Resistance R1(kohm)");
21 R3=R1*1000/(4*%pi^2*R1*1000*R2*1000*(C*10^-6)^2*(fc
      *1000)^2-1);//ohm
22 disp(R3, "Resistance R3(ohm)");
23 disp("Use R3=460 ohm");
24 disp("Part(b)");
25 R3 = 460; //ohm
26 fc_new=1.5; //kHz
27 \text{ fc_old=1.2; } //kHz
28 R3new=R3*(fc_old/fc_new)^2;//ohm
29 disp("Resistance R3 should be changed from "+string(
     R3)+" ohm to "+string(R3new)+" ohm");
```

Scilab code Exa 9.17 Design a band pass filter

```
1 //Ex 9.17
2 clc;
3 clear;
4 close;
5 format('v',5);
6 \text{ fL=3}; //kHz
7 fH=3.6; //kHz
8 Ap=-6; // Pass band gain
9 fc=sqrt(fH*fL)*1000;//Hz
10 BW=(fH-fL)*1000; //Hz
11 Q=fc/BW; // Quality factor
12 disp(Q, "Quality factor is ");
13 disp("Here 1<=Q<=12 criteria fulfills, hence it can
      be designed using single op-amp.");
14 disp("Various design parameters are :-");
15 C=0.01; //micro F//Chosen for the design
16 disp(C, "Capacitance C(micro F)");
17 / fc/Q = 1/(\%pi*R2*C)
18 format('v',4);
19 R2=1/\%pi/(BW)/(C*10^-6)/1000;//kohm
20 disp(R2, "Resistance R2(kohm)");
21 format('v',5);
22 R1=-R2/(2*Ap); //kohm
23 disp(R1, "Resistance R1(kohm)");
24 R3=R1*1000/(4*%pi^2*R1*1000*R2*1000*(C*10^-6)^2*(fc)
      ^2-1);//ohm
25 disp(R3, "Resistance R3(ohm)");
26 disp("Design Verification: ");
27 disp(2*Q^2>abs(Ap),"(i) Is 2*Q^2>|Ap|?");
28 disp("For op-amp 741, GBW=1 MHz");
29 GBW=1; //MHz
```

```
30 disp(GBW*10^6>20*Q^2*fc," Is GBW*10^6>20*Q^2*fc?");
31 disp("2nd criteria failed. The op-amp should have higher GBW product. Use LF411");
```

Scilab code Exa 9.18 Design a band pass filter

```
1 / Ex 9.18
2 clc;
3 clear;
4 close;
5 format('v',5);
6 Ap=-10; // Pass band gain
7 Q=22; // Quality factor
8 fc=50; //Hz
9 R=60; //dB/decade (Roll off rate)
10 disp("Roll off rate of single op-amp=20 dB/decade.
     No. of stages will be 3. Desired design can be
      obtained by cascading three stages.");
11 n=3; //no. of op-amps(as single op-amp has 20 dB/
      decade)
12 fc1=fc; //Hz
13 fc2=fc; //Hz
14 fc3=fc; //Hz
15 Q1=Q*sqrt(2^(1/n)-1); // Quality factor of each stage
16 Q2=Q1; // Quality factor
17 Q3=Q1;//Quality factor
18 Ap1=-(-Ap)^(1/n);//Band pass gain of each stage
19 Ap2=Ap1; //Band pass gain
20 Ap3=Ap1; //Band pass gain
21 // Design of a single op—amp
22 C=0.1; //micro F//Chosen for the design
23 disp("Various design parameters for a single stages
      are :");
24 disp(C, "Capacitance C(micro F)");
25 format('v',4);
```

```
26 R2=Q1/%pi/(fc)/(C*10^-6)/1000; //kohm
27 disp(R2, "Resistance R2(kohm)");
28 format('v',5);
29 R1=-R2/(2*Ap1); //kohm
30 disp(R1, "Resistance R1(kohm)");
31 format('v',4);
32 R3=R1/(4*%pi^2*R1*1000*R2*1000*(C*10^-6)^2*(fc)^2-1); //kohm
33 disp(R3, "Resistance R3(ohm)");
34 //Answer for R2 is wrong in the book.
```

Scilab code Exa 9.20 Second order notch filter

```
1 / Ex 9.20
2 clc;
3 clear;
4 close;
5 format('v',5);
6 \text{ fNO=50}; //\text{Hz}
7 Q=20; // Quality Factor
8 disp("Various design parameters are :-");
9 C=1; //micro F//Chosen for the design
10 disp(C, "Capacitance C(micro F)");
11 R=1/(2*\%pi*fN0)/(C*10^-6)/1000;//kohm
12 disp(R, "Resistance R(kohm)");
13 \operatorname{disp}("\operatorname{Use R}=3.2 \operatorname{kohm"});
14 / Q = (RA + RB) / 4 / RA
15 RA=1; //kohm(chosen for the design)
16 RB=Q*4*RA-RA; //kohm
17 disp(RA, "Resistance RA(kohm)");
18 disp(RB, "Resistance RB(kohm)");
```

Chapter 10

Comparators

Scilab code Exa 10.1 Output Voltage

```
1 ///Ex 10.1
2 clc;
3 clear;
4 close;
5 format('v',5);
6 t=0:0.01:5; //sec (Assumed)
7 Vin=5*sin(2*\%pi*t); //V
8 VCC = 15; //V
9 R2=1; //kohm
10 R1=6.8; //kohm
11 VEE=-15; //V
12 Vsat=13; //V
13 Vref=R2*VCC/(R1+R2);/V
14 disp(Vref, "Reference Voltage(V)")
15 disp(Vsat,"If Vin>Vref, Vout(V):");
16 disp(-Vsat,"If Vin < Vref, Vout(V):");
```

Scilab code Exa 10.2 Upper and Lower Trip points

```
1 ///Ex 10.2
2 clc;
3 clear;
4 close;
5 format('v',9);
6 Vsat=7;//V
7 R1=68;//kohm
8 R2=82;//kohm
9 VUTP=R2*Vsat/(R1+R2);//V
10 VLTP=R2*-Vsat/(R1+R2);//V
11 disp(VUTP,"Upper trip point(V)");
12 disp(VLTP,"Lower trip point(V)");
```

Scilab code Exa 10.3 Phase shift

```
1 ////Ex 10.3
2 clc;
3 clear;
4 close;
5 format('v',9);
6 //Vin=5*sin(omega*t)
7 Vm=5;//V
8 Vsat=7;//V
9 R1=68;//kohm
10 R2=82;//kohm
11 VUTP=R2*Vsat/(R1+R2);//V
12 fi=asind(VUTP/Vm);//degree
13 disp(fi,"Phase shift(degree)");
```

Scilab code Exa 10.4 Output Voltage

```
1 ///Ex 10.4
2 clc;
```

```
3 clear;
4 close;
5 format('v',5);
6 VZ1=4.7;/V
7 \text{ VZ2=4.7; } / \text{V}
8 R1 = 68; //kohm
9 R2=15; //kohm
10 Vout=VZ1+0.7; //V(As one zener diode is always)
      forward biased)
11 VR1 = Vout; //V
12 IR1=VR1/R1*1000; // \text{micro A}
13 IR2=IR1; // micro A
14 VR2 = IR2 * 10^{-3} * R2; //V
15 Vout=VR1+VR2; //V
16 VUTP=(R2/(R1+R2))*Vout; //V
17 VLTP=(R2/(R1+R2))*(-Vout); //V
18 disp(VUTP, "VUTP(V)");
19 disp(VLTP,"VLTP(V)");
```

Scilab code Exa 10.5 Threshold and hysteresis voltage

```
1 ////Ex 10.5
2 clc;
3 clear;
4 close;
5 format('v',9);
6 Vsat=12.5;//V
7 Vref=-12.5;//V
8 R1=80;//kohm
9 R2=20;//kohm
10 Beta=R2/(R1+R2);//unitless
11 UTP=Beta*Vsat+(1-Beta)*Vref;//V
12 LTP=-Beta*Vsat+(1-Beta)*Vref;//V
13 VH=UTP-LTP;//V
14 R3=R1*R2/(R1+R2);//kohm
```

```
disp(UTP,"UTP(V)");
disp(LTP,"LTP(V)");
disp(VH,"Hysteresis Voltahe, VH(V)");
disp(R3,"Use R3(kohm)");
```

Chapter 11

Non linear applications of opamp

Scilab code Exa 11.1 Output Voltage

```
1 ////Ex 11.1
2 clc;
3 clear;
4 close;
5 format('v',5);
6 Vin=12.5; //V
7 Ri=10; //kohm
8 IS=10^-13; //A
9 T=27; // degree C
10 VT=26; //mV
11 Vref=Ri*IS*1000; //V
12 Vout=-VT*10^-3*log(Vin/Vref); //V
13 disp(Vout, "Output Voltahe, Vout(V)");
```

Scilab code Exa 11.3 Output Voltage

```
1 ///Ex 11.2
2 clc;
3 clear;
4 close;
5 format('v',7);
6 R1=10;//kohm
7 k=1.38*10^-23;//J/K
8 T=298;//K
9 q=1.6*10^-19;//C
10 Kdash=k*T/q;//Kdash=k*T/q assumed for temporary calculation
11 disp("Output Voltahe, Vout(V) is "+string(-Kdash)+"* log(Vin/10*10^3)");
```

Scilab code Exa 11.4 Output Voltage

```
1 ///Ex 11.4
2 clc;
3 clear;
4 close;
5 format('v',5);
6 R1=10;//kohm
7 R2=10;//kohm
8 k=1.38*10^-23;//J/K
9 T=298;//K
10 q=1.6*10^-19;//C
11 Kdash=k*T/q;//Kdash=k*T/q assumed for temporary calculation
12 disp("Output Voltahe, Vout(V) is -R1*(log("+string (-1/Kdash)+"*Vin)^-1");
```

Scilab code Exa 11.7 Calculate Output

```
1 ///Ex 11.7
2 clc;
3 clear;
4 close;
5 format('v',6);
6 k=1; // for the givn connection
7 //(a)
8 Vin=5;/V
9 Vout=-k*log10(Vin/0.1);//V
10 disp(Vout, "For 5V input, Output Voltage(V)");
11 //(b)
12 Vin=2;/V
13 Vout=-k*log10(Vin/0.1);//V
14 disp(Vout, "For 2V input, Output Voltage(V)");
15 //(c)
16 Vin=0.1; //V
17 Vout=-k*log10(Vin/0.1);//V
18 disp(Vout, "For 0.1V input, Output Voltage(V)");
19 // (d)
20 Vin = 50; /mV
21 Vout=-k*log10(Vin/1000/0.1);//V
22 disp(Vout, "For 50mV input, Output Voltage(V)");
23 //(a)
24 Vin=5;/mV
25 Vout=-k*log10(Vin/1000/0.1);//V
26 disp(Vout, "For 5mV input, Output Voltage(V)");
```

Scilab code Exa 11.8 Calculate Output

```
1 ///Ex 11.8
2 clc;
3 clear;
4 close;
5 format('v',6);
6 k=1;//for the givn connection
```

```
7 //For 755N module
8 Rin=10; //kohm
9 Iref=10; // micro A
10 Vref=Rin*Iref/1000; //V
11 //(a)
12 Vin=5; /V
13 Vout1 = -k * log 10 (Vin / 0.1); //V
14 Vout=Vref*10^(-Vout1/k); //V
15 disp(Vout, "For 5V input to log amp, Antilog amp
      Output(V)");
16 //(b)
17 Vin=2; //V
18 Vout1=-k*log10(Vin/0.1);//V
19 Vout=Vref *10^(-Vout1/k); //V
20 disp(Vout, "For 2V input to log amp, Antilog amp
      Output(V)");
21 //(c)
22 Vin=0.1; //V
23 Vout1 = -k * log10 (Vin/0.1); //V
24 Vout=Vref *10^(-Vout1/k); //V
25 disp(Vout, "For 0.1V input to log amp, Antilog amp
      Output(V)");
26 // (d)
27 \text{ Vin} = 50; / \text{mV}
28 Vout1=-k*log10(Vin/1000/0.1); //V
29 Vout=Vref*10^(-Vout1/k);/V
30 disp(Vout*1000, "For 50mV input to log amp, Antilog
      amp Output (mV)");
31 / (e)
32 \text{ Vin=5;} / \text{mV}
33 Vout1=-k*log10 (Vin/1000/0.1); //V
34 \text{ Vout=Vref}*10^(-\text{Vout1/k}); //V
35 disp(Vout*1000," For 5mV input to log amp, Antilog
      amp Output (mV)");
```

Chapter 12

Operational Transconductance Amplifier

Scilab code Exa 12.1 f3dB frequency

```
1 ///Ex 12.1
2 clc;
3 clear;
4 close;
5 format('v',9);
6 gm=55;//micro U
7 C=8.75;//pF
8 f3dB=gm/(2*%pi*C);//MHz
9 disp(f3dB,"f-3dB frequency(MHz)")
```

Chapter 13

Voltage Regulators

Scilab code Exa 13.1 Regulation

```
1 ///Ex 13.1
2 clc;
3 clear;
4 close;
5 format('v',6);
6 deltaVin=4;//V
7 deltaVout=0.4;//V
8 Vout=20;//V
9 LR=(deltaVout/Vout)*100/deltaVin;//%/V(Line Regulation)
10 disp(LR,"Line Regulation(%/V)");
```

Scilab code Exa 13.2 Load Regulation

```
1 ///Ex 13.2
2 clc;
3 clear;
4 close;
```

```
5  format('v',6);
6  VNL=18; //V
7  VFL=17.8; //V
8  IL=50; //mA
9  LR=(VNL-VFL)*100/VFL; //%(Line Regulation)
10  LdR=LR/IL; //%/mA(Load Regulation)
11  disp(LdR, "Load Regulation(%/mA)");
```

Scilab code Exa 13.3 Calculate Load Current

```
1 ///Ex 13.3
2 clc;
3 clear;
4 close;
5 format('v',6);
6 VBE=0.65;//V
7 RCL=1.2;//ohm
8 ILmax=VBE/RCL;//A
9 //For Vout=0, IL=ILmax
10 IL=ILmax;//A
11 disp(IL,"Load current(A)");
```

Scilab code Exa 13.4 Determine the output

```
1 ///Ex 13.4
2 clc;
3 clear;
4 close;
5 format('v',6);
6 R=20;//kohm
7 R1=20;//kohm
8 R2=10;//kohm
9 VZ=4.7;//V
```

```
10  Vref=VZ; //V
11  Vout=Vref*(1+R1/R2); //V
12  disp(Vout, "Output Voltage(V)");
```

Scilab code Exa 13.5 Design a regulator circuit

```
1 ///Ex 13.5
2 clc;
3 clear;
4 close;
5 format('v',6);
6 Vout=15; //V
7 Vin=20;/V
8 INL=2; //\text{mA}(INL=Iadj+Iref)
9 Iadj=60; //mA(Assumed)
10 Iref=INL-Iadj/1000; //mA
11 Vref = 1.25; //V
12 R1=Vref/Iref*1000;//ohm
13 VR2 = Vout - Vref; //V
14 R2=VR2/INL*1000;//ohm
15 disp("Design values are : ");
16 disp(R1, "Resistance, R1(ohm)");
17 disp(R2/1000, "Resistance, R2(kohm)");
```

Scilab code Exa 13.6 Calculate Iext

```
1 ///Ex 13.6
2 clc;
3 clear;
4 close;
5 format('v',6);
6 RL1=100;//ohm
7 RL2=1;//ohm
```

```
8 RCS=7; //ohm
9 VEB=0.7; //V
10 Beta=25; // unitless
11 //For 100 ohm Load
12 Vout=5; //V(as 7805 used)
13 IL=Vout/RL1; //A
14 VRCS=IL*RCS; //V(Voltage across RCS)
15 //VRCS<VEB, hence Q1 is off
16 Iout=IL; Iin=IL; //A
17 Iext=Iout-Iin; //A
18 disp(Iext, "For 100 ohm load, Output current Iext(A)"
     );
19 //For 1 ohm Load
20 Vout=5; //V(as 7805 used)
21 IL=Vout/RL2; //A
22 ILmax=IL;/A
23 VRCS=IL*RCS; //V(Voltage across RCS)
24 //VRCS>VEB, hence Q1 is on
25 Iout=(ILmax+Beta*VEB/RCS)/(Beta+1); //A
26 Iext=ILmax-Iout;//A
27 disp(Iext, "For 10 ohm load, Output current Iext(A)")
```

Scilab code Exa 13.7 Value of R1

```
1 ///Ex 13.7
2 clc;
3 clear;
4 close;
5 format('v',6);
6 RL=1:10;//ohm
7 R1=5;//ohm
8 Vref=5;//V
9 IL=1;//A
10 IQ=0;//A
```

```
11 Iref=IL; //A
12 R1=Vref/Iref; //ohm
13 disp(R1," Value of resistor R1(ohm)");
```

Scilab code Exa 13.8 Adjustable Voltage regulator

```
1 ///Ex 13.8
2 clc;
3 clear;
4 close;
5 format('v',6);
6 Vout = 15:20; //V
7 Vin=24;/V
8 VR1=12; //V
9 Vref=12; //V
10 I4=0; //A(Assumed)
11 Iout=1; //A(Assumed)
12 R1=VR1/Iout; //ohm
13 //Vout=VR1*(1+R2/R1)
14 R2min=R1*(min(Vout)/VR1-1);//Putting min Vout
15 R2max=R1*(max(Vout)/VR1-1);//Putting min Vout
16 disp(R1, "Resistance R1(ohm)");
17 disp(R2max, R2min, "Minimum & maximum value of R2(ohm)
     ");
18 disp("A pot of 10 ohm should be used.");
```

Scilab code Exa 13.9 Regulated Power Supply

```
1 ///Ex 13.9
2 clc;
3 clear;
4 close;
5 format('v',6);
```

```
6 Vout=6; //V
7 IL=100; / \text{mA}
8 Vref = 7.15; //V(For LM 723)
9 Iref=1; //mA(Assumed)
10 R1=(Vref-Vout)/Iref;//kohm
11 R2=Vout/Iref;//kohm
12 disp("Design values are: ");
13 disp(R1, "R1 should be used 1.2kohm. Calculated R1(
     kohm) is");
14 disp(R2, "R2 should be used 6.2kohm. Calculated R2(
     kohm)");
15 R1=1.2; R2=6.2; //kohm
16 R3=R1*R2/(R1+R2); //kohm
17 disp(R3, "Resistance R3(kohm)");
18 RCL=0.65/(IL/1000);//kohm
19 disp(RCL, "Resistance RCL(kohm)");
```

Scilab code Exa 13.10 Regulated Power Supply

```
1 ///Ex 13.10
2 clc;
3 clear;
4 close;
5 format('v',6);
6 Vout=15; //V
7 IL=50; //mA
8 Vin=20; //V
9 PDmax=1; //W(For LM 723)
10 Iref=3; //mA(From datasheet)
11 PD=Vout*(IL+Iref);//mW
12 disp(PD/1000, "Required PD(W)");
13 disp(PDmax, "PDmax supplie by LM723(mW)");
14 disp("PD PDmax, so we can use it.");
15 Vref = 7.15; //V(For LM 723)
16 R3=1.5; //kohm (choosen)
```

```
17 R1BYR2=(Vout-Vref)/Vref;
18 R1=R3*(R1BYR2+1);//ohm
19 disp(R1,"Resistance R1(kohm)");
20 R2=R1/R1BYR2;//ohm
21 disp(R2,"Resistance R2(kohm)");
22 disp(R3,"Resistance R3(kohm)");
23 RCL=0.65/(IL/1000);//ohm
24 disp(RCL,"Resistance RCL(ohm)");
```