UNIVERSITY OF COMPUTER STUDIES (PATHEIN)

Stack and Queue
Faculty of Computer Science

Learning Objectives

> To gain the knowledge about the stack and queue

> To understand how to allocate stack and queue data structures on memory

> To discuss the operations of the stack and queue

Stack

What is a Stack?

- Stack is also called last in first out (LIFO) or First in last out (FILO)system
- Stack is a linear data structure which follows a particular order in which the operations are performed.
- Insertion of element into stack is called **PUSH** and deletion of element from stack is called **POP**.

Figure: Push, Pop, Top of Stack

Memory Management

- The stack can be implemented into two ways:
 - Using arrays (Static implementation)
 - Using pointer (Dynamic implementation)

Figure: Stack Pointers

Operation on Stacks

- > Stack(): It creates a new stack that is empty. It needs no parameter and returns an empty stack.
- > push(item): It adds a new item to the top of the stack.
- > pop(): It removes the top item from the stack.
- > peek(): It returns the top item from the stack but does not remove it.
- isEmpty(): It tests whether the stack is empty.
- > size(): It returns the number of items on the stack.

Figure: Push and Pop operations in Stack

Stack Conditions

Figure : Overflow and Underflow Error

PUSH Operation

The process of adding one element or item to the stack is represented by an operation called as the PUSH operation.

ALGORITHM:

PUSH (STACK, TOP, SIZE, ITEM)

STACK is the array with N elements. TOP is the pointer to the top of the element of the array. ITEM to be inserted.

Step 1: if TOP = N then [Check Overflow]

PRINT "STACK is Full or Overflow"

Exit

[End if]

Step 2: TOP = TOP + 1 [Increment the TOP]

Step 3: STACK[TOP] = ITEM [Insert the ITEM]

Step 4: Return

Figure: Push operation in Stack

Representation of Stack in Memory

Figure : Push operation in Stack with moving Top pointer

POP Operation

- The process of deleting one element or item from the stack is represented by an operation called as the POP operation.
- When elements are removed continuously from a stack, it shrinks at same end i.e., top

Figure : Pop of Stack

POP Operation Algorithm

ALGORITHM: POP (STACK, TOP, ITEM)

STACK is the array with N elements. TOP is the pointer to the top of the element of the array. ITEM to be inserted.

Step 1: if TOP = 0 then [Check Underflow]

PRINT "STACK is Empty or Underflow"

Exit [End if]

Step 2: ITEM = STACK[TOP] [copy the TOP Element]

Step 3: TOP = TOP - 1 [Decrement the TOP]

Step 4: Return

Application of Stacks

- "Undo" mechanism in text editor.
- Conversion of decimal number to binary.
- > To solve tower of Hanoi.
- Conversion of infix expression into prefix and postfix.
- Quick sort

What is a Queue?

A queue is a data structure used to model a First-In-First-Out (FIFO) strategy. Conceptually, we add to the end of a queue and take away elements from its front.

Queue data structure

- > Elements added at one end (rear), deleted from other end (front)
- Middle elements inaccessible

Types of Queue

- A standard queue
- Priority Queue
- Double Ended Queue

Figure : Example of Queue

Types of Queues

Queue can be of four types:

- 1. Circular Queue
- 2. Priority Queue
- 3. De-queue (Double Ended Queue)
- 4. Simple Queue

(a)

Figure : Four types of Queue (a)Circular queue(b) Priority Queue

Types of Queues (Cont'd)

Figure: Four types of Queue (c)De-queue (d) Simple Queue

Implementation of Queues as Arrays

Figure: Queue after the first addQueue operation

Figure: Queue after two more addQueue operations

Figure: Queue after the deleteQueue operation

- > Execute operation
 - addQueue(Queue,'A');
- > Execute
 - addQueue(Queue,'B');
 - addQueue(Queue,'C');
- > Execute
 - deleteQueue();

Application of Queues: Simulation

> Simulation

- Technique in which one system models the behavior of another system
- Computer simulation
 - > Represents objects being studied as data
 - > Actions implemented with algorithms
 - Programming language implements algorithms with functions
 - Functions implement object actions

After learning this lecture, the student will be able to:

- Get the knowledge of memory management of stacks
- Understand the basic operations of stack and queue
- Recognize the allocation of queue as array