Trường Đại học Công nghệ thông tin Ôn thi cao học năm 2009

Đại số quan hệ và ngôn ngữ SQL Relational Algebra & SQL

PGS.TS. Đỗ Phúc Khoa Hệ thống thông tin

Năm phép toán cơ bản

- $\underline{Selection}$ (σ) : chọn.
- *Projection* (π) : chiếu.
- *Descartes-product* (×) tích Descartes.
- Set-difference () hiệu
- <u>Union</u> (∪) hợp.

Chiếu (projection)

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

Ví dụ:

Chỉ giữ lại các thuộc tính được chỉ định trong danh sách chiếu.

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

$$\pi_{sname,rating}(S2)$$

age 35.0 55.5

$$\pi_{age}(S2)$$

Chon -selection (σ)

Chọn các dòng thỏa điều kiện.

si	d	sname	rating	ag	;e
28	}	yuppy	9	35	0.
3		lubber	8	54	5.5
44	1	ounny	5	34	50
5	3	rusty	10	3:	5.0

sname	rating
yuppy	9
rusty	10

$$\pi_{sname,rating}(\sigma_{rating} > 8^{(\$2)})$$

Hợp và hiệu

- Các phép toán này yêu cầu 2 quan hệ nhập phải tương thích
 - Cùng số thuộc tính.
 - Cùng tên và kiểu.

Hợp- Union

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

$$S1 \cup S2$$

Hiệu- Set Difference

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0

S1-S2

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age	
28	yuppy	9	35.0	
44	guppy	5	35.0	
S2-S1				

$$S2-S1$$

Toán tử giao (Intersection)

- Các quan hệ phải tương thích
- Có thể biểu diễn qua phép hợp và phép hiệu

$$R \cap S = R - (R - S)$$

Giao - Intersection

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

$$S1 \cap S2$$

Tích Descartes

 Kết từng dòng của quan hệ đầu (R) với từng dòng của quan hệ thứ hai (S):

R X S

Ví dụ về tích Descartes

Students

stud#	name	course
100	Fred	PH
200	Dave	CM
300	Bob	CM

Courses

course#	name
PH	Pharmacy
CM	Computing

Students X Courses =

stud#	Students.name	course	course#	Courses.name
100	Fred	PH	PH	Pharmacy
100	Fred	PH	CM	Computing
200	Dave	CM	PH	Pharmacy
200	Dave	CM	CM	Computing
300	Bob	CM	PH	Pharmacy
300	Bob	CM	CM	Computing

Theta kết

• Tích Descartes có áp dụng điều kiện:

 $R \bowtie < condition > S$

Ví dụ về Theta kết

Students

stud#	name	course
100	Fred	PH
200	Dave	CM
300	Bob	CM

Courses

course#	name
PH	Pharmacy
CM	Computing

Students *⋈ stud#* = 200 **Courses**

Phép kết trong: Inner Join (Equijoin)

 Phép kết Theta với điều kiện <condition> là bằng nhau (=) giữa khóa chính và khóa ngoại.

R
$$\bowtie$$
 S

Ví dụ về Inner Join

Students

stud#	name	course
100	Fred	PH
200	Dave	CM
300	Bob	CM

Courses

course#	name
PH	Pharmacy
CM	Computing

Students *⋈ course* = *course* **# Courses**

stud#	Students.name	course	course#	Courses.name
100	Fred	PH	PH	Pharmacy
200	Dave	CM	CM	Computing
300	Bob	CM	CM	Computing

Phép kết tự nhiên (natural join)

 Phép kết trong (inner join) sinh ra dữ liệu dư (trong ví dụ trước ta có: course và course#). Để loại bỏ trường hợp trùng này, ta dùng:

```
π < stud#, Students.name, course, Courses.name >
  (Students ⋈ <course = course#> Courses)
hay
R1 = Students ⋈ <course = course#> Courses
R2 = π < stud#, Students.name, course, Courses.name > R1
Kết quả này được gọi là kết tự nhiên (natural join) giữa Students và Courses
```

Ví dụ về kết tự nhiên (Natural Join)

Students

stud#	name	course
100	Fred	PH
200	Dave	CM
300	Bob	CM

Courses

course#	name
PH	Pharmacy
CM	Computing

R1= Students *⋈* <course = course#> Courses

 $R2 = \pi < stud\#$, Students.name, course, Courses.name > R1

stud#	Students.name	course	Courses.name
100	Fred	PH	Pharmacy
200	Dave	CM	Computing
300	Bob	CM	Computing

Phép kết ngoài (Outer Joins)

- Phép kết trong + các dòng của bảng không thỏa <condition>.
- Phép kết ngoài phải: R <R.primary_key = S.foreign_key> S
 Tất cả các dòng trong S được giữ lại và các dòng không thỏa của R được dồn các tri NULL

Ví dụ về phép kết ngoài trái Left Outer Join

Students

stud#	name	course
100	Fred	PH
200	Dave	CM
400	Peter	EN

Courses

course#	name
PH	Pharmacy
СМ	Computing
СН	Chemistry

Students <course = course#> Courses

stud#	Students.name	course	course#	Courses.name
100	Fred	PH	PH	Pharmacy
200	Dave	CM	CM	Computing
400	Peter	EN	NULL	NULL

Ví dụ về phép kết ngoài phải Right Outer Join

Students

stud#	name	course
100	Fred	PH
200	Dave	CM
400	Peter	EN

Courses

DI
Pharmacy
Computing
Chemistry

Students <course = course#> Courses

stud#	Students.name	course	course#	Courses.name
100	Fred	PH	PH	Pharmacy
200	Dave	CM	CM	Computing
NULL	NULL	NULL	СН	Chemistry
				-

Phép chia: Division

- Dùng cho biểu thức "tất cả " trong truy vấn sau:
 Tìm mã thủy thủ (sids) đặt tất cả (all) các thuyền (boats).
- Vd: cho A có 2 thuộc tính x và y; B chỉ có một thuộc tính y:

$$A/B = \{\langle x \rangle | \forall \langle y \rangle \in B(\exists \langle x, y \rangle \in A) \}$$

A/B (chia) chứa tất cả các bộ (x) sao cho mọi bộ y trong B đều có bộ xy trong A.

Ví dụ phép chia A/B

sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

pno	
p2	
B1	

pno	
p1	
p2	
p4	
<i>B3</i>	

sno
s1
s2
s3
s4

sno s1 A/B3

A/B

A/B2

Ví dụ về phép chia

- Tìm tất cả khách hàng có tài khoản tại tất cả chi nhánh nằm ở ChVille
 - Branch (bname, assets, bcity)
 - Account (bname, acct#, cname, balance)

Ví dụ về phép chia

R1: Tìm tất cả các chi nhánh tại Chville

R2: Tìm cặp (bname, cname) từ Account

R3: Các khách của r2 Có tài khoản tại tất cả chi nhánh có tên trong r1

$$r1=\pi_{bname}$$
 (σ_{bcity} ='Chville', Branch)
 $r2=\pi_{bname}$, cname (Account)
 $r3=r2\div r1$

Biểu diễn phép chia A/B dùng các toán tử cơ bản

$$\pi_{\chi}((\pi_{\chi}(A)\times B)-A)$$

Cơ sở dữ liệu

- Cho CSDL câu lạc bộ thuyên buồm
- Sailors(Sid, Sname, rating, age):thủy thủ
- Boat(Bid,color): thuyền
- Reserves(Sid,Bid,ReservedDate):đặt chỗ

Tìm tên thủy thủ (sailors) đặt thuyền có mã (bid) #103

- Solution 1: $\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$
- Solution 2: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$

Sailors(Sid,Sname, rating, age):thủy thủ Boat(Bid,color): thuyền Reserves(Sid,Bid,ReservedDate):đặt chỗ

Tìm tên thủy thủ (sailors) đặt thuyền màu đỏ (red boat)

 Thông tin về màu đỏ chỉ có trong quan hệ Boats, ta cần thêm một phép kết:

$$\pi_{sname}((\sigma_{color='red'}, Boats) \bowtie Reserves \bowtie Sailors)$$

* Giải pháp tốt hơn (tối ưu truy vấn):

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'},Boats)\bowtie Res)\bowtie Sailors)$$

Sailors(Sid,Sname, rating, age):thủy thủ Boat(Bid,color): thuyền Reserves(Sid,Bid,ReservedDate):đặt chỗ

Tìm tên thủy thủ (sailors) đặt thuyền màu đỏ và màu xanh lục

$$\rho$$
 (Tempred, π_{sid} (($\sigma_{color} = red'$ Boats) \bowtie Reserves))

$$\rho$$
 (Tempgreen, $\pi_{sid}((\sigma_{color=green}, Boats)) \bowtie Reserves))$

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$

Tìm tên thủy thủ (sailors) đặt tất cả các thuyền

Phép chia:

```
\rho \ (Tempsids, (\pi_{sid,bid} Reserves) / (\pi_{bid} Boats))
\pi_{sname} (Tempsids \bowtie Sailors)
```

Sailors(Sid,Sname, rating, age):thủy thủ Boat(Bid,color): thuyền Reserves(Sid,Bid,ReservedDate):đặt chỗ

Chứng minh biểu thức đại số quan hệ

Cho q là quan hệ trên tập thuộc tính RS ($R \cup S$), chứng minh: $q \subseteq \prod_R (q) \bowtie \prod_S (q)$

Chứng minh:

Cho $t \in q$, theo đ/n của phép chiếu $t[R] \in \prod_R(q)$ và $t[S] \in \prod_S(q)$

Ta có theo định nghĩa của phép kết:

$$t[RS] \in \prod_{R}(q) \longrightarrow \prod_{S}(q)$$

Do vậy
$$t = t[RS] \in \prod_{R}(q) \bowtie \prod_{S}(q)$$

Chứng minh biểu thức đại số quan hệ

 Cho quan hệ r(R), A và B là hai thuộc tính của quan hệ R, chứng minh:

$$\sigma_{A=a}(\sigma_{B=b}(r)) = \sigma_{B=b}(\sigma_{A=a}(r))$$

• Chứng minh:

```
\sigma_{A=a} (\sigma_{B=b}(r)) = \sigma_{A=a} (\{t \in r \mid t[B]=b\}) = \{t' \in \{t \in r \mid t[B]=b\} \mid t'[A]=a \} = \{t \in r \mid t[A]=a \land t[B]=b \} = \{t' \in \{t \in r \mid t[A]=a\} \mid t'[B]=b \} = \sigma_{B=b} (\sigma_{A=a}(r))
```

Chứng minh biểu thức đại số quan hệ

 Cho 2 quan hệ r, s , A là thuộc tính của quan hệ R,S. Chứng minh:

$$\sigma_{A=a}(r \cap s) = \sigma_{A=a}(r) \cap \sigma_{A=a}(s)$$

• Chứng minh:

```
\sigma_{A=a}(r \cap s) = \sigma_{A=a}(t \in r \land t \in s) =
\{ t' \in \{t | t \in r \land t \in s\} | t[A]=a\} =
\{t | t \in r \text{ và } t[A]=a\} \cap \{t | t \in s \text{ và } t[A]=a \}
\sigma_{A=a}(r) \cap \sigma_{A=a}(s)
```

Đại số quan hệ và ngôn ngữ SQL

Toán tử một ngôi (unary operations)

Selection

```
\sigma_{\text{course} = \text{`Computing'}} Students 

<u>In SQL:</u>
Select *
From Students
Where course = `Computing';
```

Projection

 π stud#, name Students <u>In SQL:</u> Select stud#, name From Students;

Selection & Projection

```
\pi stud#, name (\sigma course = 'Computing' Students)

In SQL:
Select stud#, name
From students
Where course = 'Computing';
```

Toán tử hai ngôi/kết Binary Operations/Joins

```
Tích Descartes: Students X Courses

In SQL:
Select *
From Students, Courses;
```

```
Theta kết: Students ⋈ <stud# =200> Courses

In SQL:
Select *
From Students, Courses
Where stud# = 200;
```

Toán tử hai ngôi/kết

```
Inner Join (Equijoin): Students ≥ <course=course#> Courses

In SQL:
Select *
From Students, Courses
Where course=course#;
```

Where course=course#;

```
Natural Join: R1= Students \bowtie <course = course#> Courses R2= \pi < stud#, Students.name, course, Courses.name > R1 In SQL: Select stud#, Students.name, course, Courses.name From Students, Courses
```

Phép kết ngoài (Outer Joins)

Left Outer Join

Tổ hợp các phép toán một ngôi và hai ngôi

```
R1= Students ⋈ <course=course#> Courses
```

 $R2 = \sigma < address = "Aberdeen" > R1$

R3= π <Students.name, Course.name> R2

In SQL:

Select Students.name, Courses.name
From Students, Courses
Where course=course#
AND address="Aberdeen";

Các toán tử tập hợp

Union: R ∪ S

In SQL:

Select * From R

Union

Select * From S;

Intersection: $R \cap S$

In SQL:

Select * From R

Intersect

Select * From S;

Difference: R - S

In SQL:

Select * From R

Minus

Select * From S;

Các toán tử trong SQL

Between, In, Like, Not

```
SELECT *
FROM Book
WHERE catno BETWEEN 200 AND 400;
```

SELECT *
FROM Product
WHERE prod_desc BETWEEN 'C' AND 'S';

SELECT *
FROM Book
WHERE catno NOT BETWEEN 200 AND 400;

SELECT Catno
FROM Loan
WHERE Date-Returned IS NULL;

SELECT Catno
FROM Loan
WHERE Date-Returned IS NOT NULL;

SELECT Name FROM Member WHERE memno IN (100, 200, 300, 400);

SELECT Name FROM Member WHERE memno NOT IN (100, 200, 300, 400);

SELECT Name
FROM Member
WHERE address NOT LIKE '%Aberdeen%';

SELECT Name FROM Member WHERE Name LIKE '_ES%';

Note: In MS Access, use * and # instead of % and _

Chọn giá trị phân biệt

Student

stud# name address
100Fred Aberdeen

200Dave Dundee 300Bob Aberdeen

SELECT Distinct address FROM Student;

address

Aberdeen

Dundee

Các bài tập về SQL

Lược đồ CSDL

- Professor(<u>ssn</u>, profname, status, salary)
- Course(<u>crscode</u>, crsname, credits)
- Taught(<u>crscode</u>, <u>semester</u>, ssn)

Giá định (1) Mỗi khóa học chỉ có một giáo sư phụ trách trong trong mỗi học kỳ; (2) tất cả giáo sư đều có lương khác nhau; (3) tất cả giáo sư có tên khác nhau; (4) tất cả khóa học có tên khác nhau; (5) thuộc tính status có thể có các giá trị "Full", "Associate", và "Assistant".

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê tất cả giáo sư đã dạy khóa học có mã 'CSC6710' nhưng không dạy khóa học có mã 'CSC7710'.

Lời giải ĐSQH

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

$$\pi_{ssn}(\sigma_{crscode='CSC6710}, (Taught)) - \pi_{ssn}(\sigma_{crscode='CSC7710}, (Taught))$$

Lời giải SQL

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

```
(SELECT ssn
From Taught
Where crscode = 'CSC6710')
EXCEPT
(SELECT ssn
From Taught
Where crscode = 'CSC7710'))
```

Professor(<u>ssn</u>, profname, status, salary)

Course(<u>crscode</u>, crsname, credits)

Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê các giáo sư đã dạy các khóa học có mã 'CSC6710' và 'CSC7710'.

Đại số quan hệ

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, semester, ssn)
```

$$\pi_{ssn}(\sigma_{crscode='CSC6710' \land crscode='CSC7710'})$$
 (Taught), SAI!

$$\pi_{ssn}(\sigma_{crscode='CSC6710'}, (Taught)) \cap$$

 $\pi_{ssn}(\sigma_{crscode='CSC7710'}, (Taught)), ĐÚNG!$

SQL

Professor(<u>ssn</u>, profname, status, salary)

Course(<u>crscode</u>, crsname, credits)

Taught(<u>crscode</u>, <u>semester</u>, ssn)

SELECT T1.ssn From Taught T1, Taught T2, Where T1.crscode = 'CSC6710' AND T2.crscode='CSC7710' AND T1.ssn=T2.ssn

Professor(<u>ssn</u>, profname, status, salary)

Course(<u>crscode</u>, crsname, credits)

Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê các giáo sư không dạy môn có mã số 'CSC7710'.

Đại số quan hệ

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

$$\pi_{\rm ssn}(\sigma_{\rm crscode} \cdot (csc7710), Taught)), SAI!$$

$$\pi_{ssn}$$
(Professor)- π_{ssn} ($\sigma_{crscode='csc7710}$,(Taught)),
ĐUNG!

SQL

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

(SELECT ssn From Professor) EXCEPT (SELECT ssn From Taught T Where T.crscode = 'CSC7710')

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê các giáo sư đã dạy môn học có mã 'CSC6710' và 'CSC7710" trong cùng một học kỳ

Đại số quan hệ

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

SQL

Professor(<u>ssn</u>, profname, status, salary)

Course(<u>crscode</u>, crsname, credits)

Taught(<u>crscode</u>, <u>semester</u>, ssn)

SELECT T1.ssn

From Taught T1, Taught T2,

Where T1.crscode = 'CSC6710' AND T2.crscode='CSC7710' AND

T1.ssn=T2.ssn AND T1.semester=T2.semester

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê các giáo sư đã dạy môn có mã 'CSC6710' hay môn học có mã 'CSC7710" nhưng không dạy cả hai môn.

Đại số quan hệ

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

$$\begin{array}{l} \pi_{ssn}(\sigma_{crscode='CSC6710'}, \\ \sigma_{crscode='CSC7710'}(Taught)) - \\ (\pi_{ssn}(\sigma_{crscode='CSC6710'}, (Taught)) \cap \\ \pi_{ssn}(\sigma_{crscode='CSC7710'}, (Taught))) \end{array}$$

SQL

```
Taught(crscode, semester, ssn)

(SELECT ssn
FROM Taught T
WHERE T.crscode='CSC6710' OR T.crscode='CSC7710')

Except
(SELECT T1.ssn
From Taught T1, Taught T2,
Where T1.crscode = 'CSC6710') AND T2.crscode='CSC7710' AND T1.ssn=T2.ssn)
```

Professor(<u>ssn</u>, profname, status, salary)

Course(<u>crscode</u>, crsname, credits)

Professor(<u>ssn</u>, profname, status, salary)

Course(<u>crscode</u>, crsname, credits)

Taught(<u>crscode</u>, <u>semester</u>, ssn)

Trả về các khóa học không bao giờ mở.

Đại số quan hệ

Professor(<u>ssn</u>, profname, status, salary) Course(<u>crscode</u>, crsname, credits)

Taught(<u>crscode</u>, <u>semester</u>, ssn)

$$\pi_{\text{crscode}}(\text{Course}) - \pi_{\text{crscode}}(\text{Taught})$$

SQL

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

```
(SELECT crscode
FROM Course)
EXCEPT
(SELECT crscode
FROM TAUGHT
)
```

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, semester, ssn)

Liệt kê các khóa học được dạy tối thiểu trong 2 học kỳ.

Đại số quan hệ

```
Professor(\underline{ssn}, profname, status, salary)
Course(\underline{crscode}, crsname, credits)
Taught(\underline{crscode}, semester, ssn)
\pi_{crscode}(\sigma_{semester1} \Leftrightarrow_{semester2}(
Taught[\underline{crscode}, ssn1, semester1] \sqsubseteq
Taught[\underline{crscode}, ssn2, semester2]))
```

SQL

```
Professor(<u>ssn</u>, profname, status, salary)
```

Course(<u>crscode</u>, crsname, credits)

Taught(<u>crscode</u>, <u>semester</u>, ssn)

SELECT T1.crscode FROM Taught T1, Taught T2 WHERE T1.crscode=T2.crscode AND T1.semester <> T2.semester

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê các khóa học được dạy trong ít nhất là 10 học kỳ.

SQL

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

SELECT crscode FROM Taught GROUP BY crscode HAVING COUNT(*) >= 10

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê các khóa học được dạy trong ít nhất là 5 giáo sư khác nhau.

```
Course(crscode, crsname, credits)
      Taught(crscode, semester, ssn)
SELECT crscode
FROM (SELECT DISTINCT crscode, ssn FROM TAUGHT)
GROUP BY crscode
HAVING COUNT(*) >= 5
SELECT crscode
FROM Course C
WHERE (SELECT COUNT(DISTINCT*) FROM Taught T
        WHERE T.crscode = C.crscode
        ) >=5.
```

Professor(<u>ssn</u>, profname, status, salary)

Professor(<u>ssn</u>, profname, status, salary)
Course(crscode, crsname, credits)

Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê tên các giáo sư đã dạy khóa học có mã 'CSC6710'.

Đại số quan hệ

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

$$\pi_{\text{profname}}(\sigma_{\text{crscode='CSC6710'}}(\text{Taught}) \bowtie \text{Professor})$$

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

SELECT P.profname FROM Professor P, Taught T WHERE P.ssn = T.ssn AND T.crscode = 'CSC6710'

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê tên của các full professors đã dạy môn học có mã 'CSC6710'.

Đại số quan hệ

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

$$\pi_{\text{profname}}(\sigma_{\text{crscode='csc6710'}}, (\text{Taught}) \bowtie \sigma_{\text{status='full'}}, (\text{Professor}))$$

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

```
SELECT P.profname
FROM Professor P, Taught T
WHERE P.status = 'full' AND P.ssn = T.ssn AND T.crscode = 'CSC6710'
```

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê tên của các full professors đã dãy ít nhất là 2 khóa học trong một học kỳ.

Đại số quan hệ

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

$$\pi_{\text{profname}}(\pi_{\text{ssn}}(\sigma_{\text{crscode1}} \leftrightarrow \text{crscode2})))$$
Taught[crscode1, ssn, semester]
Taught[crscode2, ssn, semester])))

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

SELECT P.profname FROM Professor P, Taught T1, Taught T2 WHERE P.status = 'Full' AND P.ssn = T1.ssn AND T1.ssn = T2.ssn AND T1.crscode <> T2.crscode AND T1.semester = T2.semester

```
Professor(<u>ssn</u>, profname, status, salary)
       Course(<u>crscode</u>, crsname, credits)
       Taught(<u>crscode</u>, <u>semester</u>, ssn)
SELECT P.profname
FROM Professor P
WHERE status = 'Full' AND ssn IN(
SELECT ssn
FROM Taught
GROUP BY ssn, semester
HAVING COUNT(*) >= 2
```

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Xóa các giáo sư không dạy khóa học nào.

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

```
DELETE FROM Professor
WHERE ssn NOT IN
(SELECT ssn
FROM Taught
)
```

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

```
DELETE FROM Professor
WHERE ssn IN
(
(SELECT ssn FROM Professor)
EXCEPT
(SELECT ssn FROM Taught)
)
```

```
Professor(ssn, profname, status, salary)
Course(crscode, crsname, credits)
Taught(crscode, semester, ssn)

DELETE FROM Professor P
WHERE NOT EXISTS
(
SELECT * FROM Taught T
WHERE T.ssn = P.ssn
)
```

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Đổi tất cả tín chỉ (credits) sang 4 cho các khóa học được giảng dạy trong học kỳ mùa thu năm 2006 (f2006 semester).

```
Professor(<u>ssn</u>, profname, status, salary)
       Course(<u>crscode</u>, crsname, credits)
       Taught(<u>crscode</u>, <u>semester</u>, ssn)
UPDATE Course
SET credits = 4
WHERE crscode IN
  SELECT crscode
  FROM Taught
  WHERE semester = 'f2006'
```

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê tên của các giáo sư đã dạy hơn 30 tín chỉ khóa học.

```
Professor(<u>ssn</u>, profname, status, salary)
      Course(crscode, crsname, credits)
       Taught(<u>crscode</u>, <u>semester</u>, ssn)
SELECT profname
FROM Professor
WHERE ssn IN
   SELECT T.ssn
   FROM Taught T, Course C
   WHERE T.crscode = C.crscode
   GROUP BY T.ssn
   HAVING SUM(C.credits) > 30
```

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê tên của các giáo sư đã dạy nhiều khóa học nhất trong học kỳ mùa xuân năm 2006 (S2006).

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

```
SELECT profname
FROM Professor
WHERE ssn IN(
    SELECT ssn FROM Taught
    WHERE semester = 'S2006'
    GROUP BY ssn
    HAVING COUNT(*) =
        (SELECT MAX(Num))
        FROM
            (SELECT ssn, COUNT(*) as Num
            FROM Taught
            WHERE semester = 'S2006'
            GROUP BY ssn)
    )
```

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê tên các khóa học mà giáo sư 'Smith" đã dạy trong học kỳ mùa thu năm 2007.

Đại số quan hệ

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

$$\pi_{\text{crsname}}(\sigma_{\text{profname='Smith'}}, (\text{Professor}) \bowtie \sigma_{\text{semester='f2007'}}, (\text{Taught}) \bowtie Course)$$

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

SELECT crsname
FROM Professor P, Taught T, Course C
WHERE P.profname = 'Smith' AND P.ssn = T.ssn AND
T.semester = 'F2007' AND T.crscode = C.crscode

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Hãy liệt kê theo thứ tự thời gian các khóa học mà giáo sư có mã số ssn = 123456789 đã dạy trong từng học kỳ.

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

SELECT semester, COUNT(*)
FROM Taught
WHERE ssn = '123456789'
GROUP BY semester
ORDER BY semester ASC

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Hãy liệt kê theo thứ tự từ điển tên của từng giáo sư và số các khóa học đã giảng dạy.

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

SELECT P.profname, COUNT(*)
FROM Professor P, Taught T
WHERE P.ssn = T.ssn
GROUP BY P.ssn, P.profname
ORDER BY P.profname ASC

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Xóa các giáo sư đã dạy ít hơn 10 khóa học.

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

```
DELETE FROM Professor
WHERE ssn IN(
    SELECT ssn
    FROM Taught
    GROUP BY ssn
    HAVING COUNT(*) < 10
)
```

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Xóa các giáo sư đã dạy ít hơn 40 tín chỉ.

```
Professor(<u>ssn</u>, profname, status, salary)
      Course(<u>crscode</u>, crsname, credits)
      Taught(crscode, semester, ssn)
DELETE FROM Professor
WHERE ssn IN(
    SELECT T.ssn
    FROM Taught T, Course C
    WHERE T.crscode = C.crscode
    GROUP BY ssn
    HAVING SUM(C.credits) < 40
```

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê các giáo sư không dạy bất kỳ khóa học nào trong 3 học kỳ (F2006, W2007, F2007).

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê tên các khóa học mà giáo sư Smith không dạy.

Đại số quan hệ

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

```
\pi_{crsname}(Course) -
\pi_{crsname}(\sigma_{profname='Smith}, (Professor)) \bowtie (Taught) \bowtie Course)
```

```
Professor(<u>ssn</u>, profname, status, salary)
      Course(<u>crscode</u>, crsname, credits)
      Taught(<u>crscode</u>, <u>semester</u>, ssn)
SELECT crsname
FROM Course C
WHERE NOT EXISTS
    SELECT *
    FROM Professor P, Taught T
    WHERE P.profname='Smith' AND P.ssn = T.ssn AND
T.crscode = C.crscode
```

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê tên các khóa học được giảng dạy bởi tất cả giáo sư.

Đại số quan hệ

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

 $\pi_{\text{crscode. ssn}}(\text{Taught})/\pi_{\text{ssn}}(\text{Professor})$

```
Professor(<u>ssn</u>, profname, status, salary)
      Course(crscode, crsname, credits)
      Taught(<u>crscode</u>, <u>semester</u>, ssn)
SELECT crscode
FROM Taught T1
WHERE NOT EXISTS(
    (SELECT ssn
    FROM Professor)
    EXCEPT
    (SELECT ssn
     FROM Taught T2
     WHERE T2.crscode = T1.crscode)
```

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê tên của các khóa học được giảng dạy trong tất cả các học kỳ.

Đại số quan hệ

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
```

Taught(<u>crscode</u>, <u>semester</u>, ssn)

$$\pi_{\text{crscode, semester}}(\text{Taught})/\pi_{\text{semester}}(\text{Taught})$$

```
Professor(<u>ssn</u>, profname, status, salary)
      Course(crscode, crsname, credits)
      Taught(<u>crscode</u>, <u>semester</u>, ssn)
SELECT crscode
FROM Taught T1
WHERE NOT EXISTS(
    (SELECT semester
    FROM Taught)
    EXCEPT
    (SELECT semester
     FROM Taught T2
     WHERE T2.crscode = T1.crscode)
```

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê các khóa học CHI được giảng dạy bởi các trợ lý giáo sư (assisitant) professors.

Đại số quan hệ

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

$$\pi_{\text{crscode}}(\text{Course}) - \pi_{\text{crscode}}$$
 $(\sigma_{\text{status} \neq \text{`Assistant'}}(\text{Professor}) \bowtie \text{Taught})$

```
Professor(<u>ssn</u>, profname, status, salary)
      Course(<u>crscode</u>, crsname, credits)
      Taught(<u>crscode</u>, <u>semester</u>, ssn)
SELECT crscode
FROM Course C
WHERE c.crscode NOT IN(
    (SELECT crscode
     FROM Taught T, Professor P
     WHERE T.ssn = P.ssn AND P.status='Junior'
```

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê tên của các giáo sư giảng dạy nhiều khóa học nhất trong học kỳ Fall 2001.

SQL Solution

```
SELECT *
FROM Professor P1
WHERE Not EXISTS
  SELECT *
  FROM Professor P2
  WHERE(
      (SELECT COUNT(*)
     FROM Taught
     WHERE Taught.ssn = P2.ssn AND
Taught.semester='F2001')
     (SELECT COUNT(*)
     FROM Taught
     WHERE Taught.ssn = P1.ssn AND
Taught.semester='F2001')
```

Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)

Liệt kê tên của giáo sư có lương cao nhất.

SQL Solution

```
Professor(ssn, profname, status, salary)
Course(crscode, crsname, credits)
Taught(crscode, semester, ssn)

SELECT *
FROM Professor
WHERE salary = (
    (SELECT MAX(salary))
    FROM Professor P
)
```

```
Professor(<u>ssn</u>, profname, status, salary)
Course(<u>crscode</u>, crsname, credits)
Taught(<u>crscode</u>, <u>semester</u>, ssn)
```

Liệt kê tên của giáo sư có lương cao xếp thứ nhì.

SQL Solution

```
Professor(<u>ssn</u>, profname, status, salary)
      Course(crscode, crsname, credits)
      Taught(<u>crscode</u>, <u>semester</u>, ssn)
SELECT *
FROM Professor P1
WHERE 1 = (
     (SELECT COUNT(*)
     FROM Professor P2
     WHERE P2.salary > P1.salary
```