I/Q Modulation

Inefficient Use of Bandwidth

Modulating by a cosine results in a signal that uses twice the bandwidth of the original.

This is inefficient use of the radio spectrum.

I/Q Modulation

- I/Q modulation takes two different signals (m_i(t) and m_q(t)) with the same bandwidth BW and
 - Modulates one by a cosine carrier with frequency f₀
 - This is called the in-phase component (I)
 - Modulates the other by a sine carrier with the same frequency f₀
 - The sine carrier has a one quarter period (90 degree) phase shift with the cosine.
 - This is called the quadrature component (Q)
- Both components occupy a bandwidth of 2BW centered at fo
- However, they can be transmitted at the same time and recovered without interfering with each other.
- I/Q modulation transmits two signals in the same space previously occupied by one, solving the inefficient use of bandwidth!

Modulating by Cosine/Sine

Mixing

I/Q Modulation

Coherent Demodulation

Coherent Demodulation

Quadrature Phase Shift

Quadrature Phase Shift

I-Q Communication

Impact of 90° Phase Shift

Impact of 90° Phase Shift

- I and Q channels get swapped at receiver
 - I input appears at Q output with change in sign
 - Q input appears at I output.
- Key observation: no information is lost!
- For intermediate phase shifts, the I and Q signals are mixed.