

文件版本: V1.0.0

目录

目	录		2
1	绪论		4
	1.1	相关文档	4
	1.2	术语和解释	5
	1.3	安全警告	7
2	GM35 绉	;述	8
	2. 1	GM35 主要特性	8
	2.2	GM35 功能框图	10
3	应用接	:口	11
	3. 1	GM35 引脚描述	11
	3.2	供电	13
		3.3.1 电源引脚	14
	3.3	开机关机	15
		3. 3. 1 GM35 开机	15
		3. 3. 2 GM35 关机	16
	3.4	模块休眠唤醒功能	16
		3. 4. 1 模块 SLEEP 模式	16
		3. 4. 2 模块 SLEEP 电流	16
		3.4.3 模块收到电话、短信唤醒主控	17
	3.5	GPIO, INT, UART 等交互设计要点	18
	3.6	串口	18
		3.6.1 串口功能	20
	3. 7	音频接口	21
		3.7.1 受话器接口电路	22
		3.7.2 麦克风接口电路	23
	3.8	SIM 卡接口	23
		3.8.1 SIM 应用	23
		3.8.2 SIM 卡座的选择	25
	3.9	外部复位输入	28
4	天线接	口	29
	4. 1	模块射频输出功率	30
	4.2	模块射频接收灵敏度	30
	4.3	模块工作频率	30
5	电气,	可靠性和射频特性	31
	5. 1	绝对最大值	31
	5. 2	工作温度	31
	5. 3	电源额定值	32
	5. 4	耗流	33
	5. 5	静电防护	34
6	机械尺	寸	35

公开

稳 定 恒 久 远	WH-GM35 硬件设计手册	Wireless High-reliability
6.1 GM35 的机械尺寸		35
6.2 GM35 引脚分配		36
6.3 GM35 推荐焊接炉温	曲线图	37
7 联系方式		38
8 免责声明		39
9 更新历史		40

1 绪论

1.1 相关文档

本文档描述了 GM35 的硬件应用接口,包括相关应用场合的电路连接以及射频接口等。GM35 的应用十分广泛,本文档将详细介绍 GM35 的所有功能。

本文档可以帮助用户快速的了解 GM35 的接口定义、电气性能和结构尺寸的详细信息。结合本文档和其他的 GM35 的应用文档,用户可以快速的使用 GM35 来设计移动通讯应用方案。

表 1: 相关文档

序号	文档名称	注释		
[1]	ITU-T Draft new	Serial asynchronous automatic dialing and control		
	recommendation V.25ter:			
[2]	GSM 07.07:	Digital cellular telecommunications (Phase 2+); AT command set for		
		GSM Mobile Equipment (ME)		
[3]	GSM 07.10:	Support GSM 07.10 multiplexing protocol		
[4]	GSM 07.05:	Digital cellular telecommunications (Phase 2+); Use of Data Terminal		
		Equipment – Data Circuit terminating Equipment (DTE – DCE)		
		interface for Short Message Service (SMS) and Cell Broadcast Service		
		(CBS)		
[5]	GSM 11.14:	Digital cellular telecommunications system (Phase 2+); Specification		
		of the SIM Application Toolkit for the Subscriber Identity Module –		
		Mobile Equipment (SIM – ME) interface		
[6]	GSM 11.11:	Digital cellular telecommunications system (Phase 2+); Specification		
		of the Subscriber Identity Module – Mobile Equipment (SIM – ME)		
		interface		
[7]	GSM 03.38:	Digital cellular telecommunications system (Phase 2+); Alphabets and		
		language-specific information		
[8]	GSM 11.10	Digital cellular telecommunications system (Phase 2); Mobile		
		Station (MS) conformance specification; Part 1: Conformance		
		specification		
[9]	AN_Serial Port	AN_Serial Port		

1.2 术语和解释

表 2: 术语和解释

衣 2: 小诺和胜型	r ,		
术语	解释		
ADC	Analog-to-Digital Converter		
AMR Adaptive Multi-Rate			
ARP Antenna Reference Point			
ASIC Application Specific Integrated Circuit			
BER Bit Error Rate			
BTS	Base Transceiver Station		
СНАР	Challenge Handshake Authentication Protocol		
CS	Coding Scheme		
CSD	Circuit Switched Data		
CTS	Clear to Send		
DAC	Digital-to-Analog Converter		
DRX	Discontinuous Reception		
DSP	Digital Signal Processor		
DTE	Data Terminal Equipment (typically computer, terminal, printer)		
DTR	Data Terminal Ready		
DTX	Discontinuous Transmission		
EFR Enhanced Full Rate			
EGSM Enhanced GSM			
EMC	Electromagnetic Compatibility		
ESD	Electrostatic Discharge		
ETS	European Telecommunication Standard		
FCC	Federal Communications Commission (U.S.)		
FDMA	Frequency Division Multiple Access		
FR	Full Rate		
GMSK	Gaussian Minimum Shift Keying		
GPRS	General Packet Radio Service		
GSM	Global Standard for Mobile Communications		
HR	Half Rate		
I/O	Input/Output		
IC	Integrated Circuit		
IMEI	International Mobile Equipment Identity		
kbps	Kilo bits per second		

术语	解释				
LED	Light Emitting Diode				
Li-Ion	Lithium-Ion				
MO	Mobile Originated				
MS	Mobile Station (GSM engine), also referred to as TE				
MT	Mobile Terminated				
PAP	Password Authentication Protocol				
PBCCH	Packet Switched Broadcast Control Channel				
PCB	Printed Circuit Board				
PCS	Personal Communication System, also referred to as GSM 1900				
PDU	Protocol Data Unit				
PPP	Point-to-point protocol				
RF	Radio Frequency				
RMS	Root Mean Square (value)				
RTC	Real Time Clock				
RX	Receive Direction				
SIM	Subscriber Identification Module				
SMS	Short Message Service				
TDMA	Time Division Multiple Access				
TE	Terminal Equipment, also referred to as DTE				
TX	Transmit Direction				
UART	Universal Asynchronous Receiver & Transmitter				
URC	Unsolicited Result Code				
USSD	Unstructured Supplementary Service Data				
VSWR	Voltage Standing Wave Ratio				
Vmax	Maximum Voltage Value				
Vnorm	Normal Voltage Value				
Vmin	Minimum Voltage Value				
VIHmax	Maximum Input High Level Voltage Value				
VIHmin	Minimum Input High Level Voltage Value				
VILmax	Maximum Input Low Level Voltage Value				
VILmin	Minimum Input Low Level Voltage Value				
VImax	Absolute Maximum Input Voltage Value				
VImin	Absolute Minimum Input Voltage Value				
VOHmax	Maximum Output High Level Voltage Value				
VOHmin	Minimum Output High Level Voltage Value				
VOLmax	Maximum Output Low Level Voltage Value				
VOLmin	Minimum Output Low Level Voltage Value				

术语	解释		
Inorm	Normal Current		
Imax	Maximum Load Current		
Phonebook			
abbreviations			
FD	SIM fix dialing phonebook		
LD	SIM last dialing phonebook (list of numbers most recently dialed)		
MC	Mobile Equipment list of unanswered MT calls (missed calls)		
ON	SIM (or ME) own numbers (MSISDNs) list		
RC	Mobile Equipment list of received calls		
SM	SIM phonebook		
NC	Not connect		

1.3 安全警告

在使用或者维修任何包含 GM35 模块的终端或者手机的过程中要留心以下的安全防范。终端设备上应当告知用户以下的安全信息。否则 上海稳恒将不承担任何因用户没有按这些警告操作而产生的后果。

当在医院或者医疗设备旁,观察使用手机的限制。如果需要请关闭终端或者手机,否则医疗设备可能会因为射频的干扰而导致误操作。

登机前关闭无线终端或者手机。为防止对通信系统的干扰,飞机上禁止使用无线通信设备。

忽略以上事项将违反当地法律并有可能导致飞行事故。

不要在易燃气体前使用移动终端或者手机。当靠近爆炸作业、化学工厂、燃料库或者加油站时要关掉手机终端。在任何潜在爆炸可能的电器设备旁操作移动终端都是很危险的。

手机终端在开机的状态时会接收或者发射射频能量。当靠近电视、收音机、电 脑或者其它电器设备时会对其产生干扰。

道路安全第一! 在驾驶交通工具时不要用手持终端或手机,请使用免提装置。 在使用手持终端或手机前应先停车。

GSM 手机终端在射频信号和蜂窝网下操作,但不能保证在所用的情况下都能连接。例如,没有话费或者无效的 SIM 卡。当处于这种情况而需要紧急服务,记得使用紧急电话。为了能够呼叫和接收电话,手机终端必须开机而且要在移动信号足够强的服务区域。当一些确定的网络服务或者电话功能在使用时不允许使用紧急电话,例如功能锁定,键盘锁定。在使用紧急电话前,要解除这些功能。一些网络需要有效的 SIM 卡支持。

2 GM35 综述

GM35 是一个 4 频的 GSM/GPRS 模块,工作的频段为: EGSM 900MHz、 GSM850MHz 和 DCS 1800, PCS1900。GM35 支持 GPRS multi-slot class 10/ class 8(可选)和 GPRS 编码格式 CS-1, CS-2, CS-3 and CS-4。

模块的尺寸只有 23.6mm x 19.9mm x 2.2 mm, 几乎可以满足所有用户应用中的对空间尺寸的要求, 例如 M2M, 数据传输系统等。

模块和用户移动应用的物理接口为40个贴片焊盘引脚,提供了应用模块的所有硬件接口。

- 主串口可以帮助用户轻松地进行调试开发。
- 2路音频接口,包含一个麦克风输入、一个受话器输出;以及耳机麦克风和耳机听筒。

GM35 采用省电技术设计, 所以在 SLEEP 模式下最低耗流只有 0.9mA。

GM35 内嵌 TCP/IP 协议,扩展的 TCP/IP AT 命令使用户方便使用 TCP/IP 协议,这在用户做数据传输方面的应用时非常有用。

2.1 GM35 主要特性

表 3: GM35 主要特性

特性	说明						
供电	单电压: 3.5V - 4.2V						
省电	SLEEP 模式下的耗流为 0.9mA						
频段	● 四频: GSM850, EGSM 900 和 DCS 1800, PCS1900 可以自动的搜						
	寻四个频段。						
	● 符合 GSM Phase 2 / 2+						
GSM 类型	小型移动台						
发射功率	• Class 4 (2W): EGSM 900 / GSM850						
	• Class 1 (1W): DCS 1800 / PCS1900						
GPRS 连接特性	● GPRS multi-slot class 10 (默认)						
	● GPRS multi-slot class 8 (可选)						
温度范围	● 正常工作温度: -30° C~+80° C*						
	● 受限工作温度: -40° C~-30° C 及+80° C~+85° C						
	● 存储温度: -45° C~+90° C						

特性	说明					
GPRS 数据特性	● GPRS 数据下行传输: 最大 85.6 kbps					
	● GPRS 数据上行传输: 最大 42.8 kbps					
电路交换(CSD)	● 编码格式: CS-1, CS-2, CS-3 和 CS-4					
	● 支持通常用于 PPP 连接的 PA P (密码验证协议)协议					
	● 内嵌 TCP/IP 协议					
	● 支持分组广播控制信道(PBCCH)					
	● CSD 传输速率: 2.4, 4.8, 9.6, 14.4 kbps					
	● 支持非结构化补充数据业务(USSD)					
短消息 (SMS)	● MT, MO, CB, Text 和 PDU 模式					
	● 短消息(SMS)存储设备: SIM 卡					
SIM 卡接口	支持的 SIM 卡: 1.8V, 3V					
天线接口	GSM 天线引脚					
音频特性	语音编码模式:					
	• Half Rate (ETS 06.20)					
	• Full Rate (ETS 06.10)					
	• Enhanced Full Rate (ETS 06.50 / 06.60 / 06.80)					
	Adaptive multi rate (AMR)					
	● 回音消除					
	● 噪声抑制					
串口和调试口	串口:					
	● 支持 4 线串口 (1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1					
	● 传输速率支持从 2400bps 到 115200bps					
	● 可以通过串口发送 AT 命令和数据					
	● 支持 RTS/CTS 硬件流控,并且可以通过软件打开或者关闭流控功					
	能 - 大体效人 CGM 07.10 协议的中口有用对处					
	● 支持符合 GSM 07.10 协议的串口复用功能					
	● 支持 115200bps 的自动波特率检测功能					
	调试口: ● 用于调试和软件升级					
通讯录管理	支持类型: SM, FD, LD, ON,					
SIM 应用工具包	支持 SAT class 3, GSM 11.14 Release 99					
实时时钟(RTC)	支持					
定时功能	通过 AT 命令设置					
机械尺寸	尺寸: 23.6mm x 19.9mm x 2.2 mm					
重量:	7g					
软件升级	通过调试口升级软件					

^{*}GM35 可以工作,但某些射频性能可能会超出 GSM 规范。

表 4: 编码格式和最大网络数据速度率

特性	说明
编码格式	1 Timeslot 2 Timeslot 4 Timeslot
CS-1:	9.05kbps 18.1kbps 36.2kbps
CS-2:	13.4kbps 26.8kbps 53.6kbps
CS-3:	15.6kbps 31.2kbps 62.4kbps
CS-4:	21.4kbps 42.8kbps 85.6kbps

2.2 GM35 功能框图

下图列出了模块的主要功能部分:

- GSM 基带
- GSM 射频
- 天线接口
- 其他接口

3 应用接口

GM35 通过 40 个贴片引脚和移动应用平台连接。下面的章节将详细描述各个接口功能:

- 供电 (请参考 3.2)
- 串口 (请参考 3.6)
- 模拟音频接口 (请参考 3.7)
- SIM 卡接口 (请参考 3.8)

电气特性和机械尺寸请参考第五章

3.1 GM35 引脚描述

表 5: 引脚描述

电源					
引脚名称	序列	I/0	描述	DC 特性	备注
VBAT	33, 34	I	模块采用单电源供电,通过2 个VBAT电源引脚供电,电压 范围: 3.5V-4.2V,电流>2A		
VDD_EXT	19	0	模块在开机后将会提供此3V 电源输出; 供电能力为100mA		
VRTC	32		输入: RTC 时钟供电 输出: 通过该管脚为备份电池 或电容充电	VImax=3.3V VImin=1.5V VInorn=2.8V VOmax=2.85V VOmin=2.6V VOnorn=2.8V Iout (max) =1.5mA Iin=2.6-5uA	
GND	1, 31, 35, 36, 37, 38, 40		接地		
开机 关机					

稳定	· m l J 人 恒 久 远		WH-GM35 硬件设计手册		Wireless High-reliability
PWR_EN	10	Ι	通过拉低PWRKEY到GND,并保持至少2 秒然后释放,可以开启模块。同样,用户可以通过拉低 PWERKEY到GND,保持至少2秒然后释放,就可以关闭模块。		模块内部已经上拉 拉到VBAT
音频接口					
MIC1P	4	T	麦克风音频输入正端		
MIC1N	5	T	麦克风音频输入负端		
SPK1P	7	0	听筒正极		
SPK1N	6	0	听筒负极		
MIC2P	2	T	耳机MIC正极输入		
MIC2N	3	T	耳机MIC负极输入		
	8	0	喇叭正极		
	9	0	喇叭负极		
串口	10	10		,	
AT UART CTS	23	0	发送清除	3. 0V	
AT UART RTS		T	发送请求	3. 0V	
AT UART RXD		Ī	发送输入	3. 0V	
AT UART TXD		0	发送输出	3. 0V	
AT_UART_DTR	20	Ι	数据终端就绪	3. 0V	若不用休眠功能, 请加10K电阻上拉 至VDD_EXT
AT_UART_DCD	25	I	载波检测	3. 0V	
AT_UART_RI	26	0	振铃指示	3. 0V	
SIM卡接口		•			
SIM VDD	27	0	SIM 卡电源		
	28	0	SIM 卡复位信号		SIM 卡 的 所 有
SIM CLK	30	0	SIM 卡时钟信号		信号线都应该通
	29	I/0	SIM 卡数据信号		过连接TVS二极管来做静电(ESD)防护。
指示灯接口					
	12	0	状态指示灯	当模块开机时,该脚会拉	
	13	0	网络指示灯	注册上网络: 亮	00MS 灭700MS; E100MS 灭1900MS; 100MS 灭100MS
外部复位					

想	但久远		WH-GM35 硬件设计手册		Wireless High-reliability
NRESET	11	Ι	外部复位输入(低电平有效)		在模块出现异常情况下,拉低可以把模块关机 内部已经2.8V上拉,注意电压域不同要分压设计
天线接口					
GSM RF	39		GSM天线接口		
调试串口					
HST_RXD	14	Ι	调试串口输入	3. 0V	
HST TXD	15	0	调试串口输出	3. 0V	
预留					
Reserved	16				
Reserved	17				
Reserved	18				

3.2 供电

GM35 采用单电源供电, VBAT 的电压输入范围从 3.5V 到 4.2V , 推荐电压为 4.0V 。模块发射的突发会导致电压跌落,这时电流的峰值最高会达到 2A。因此,电源的供流能力不能小于 2A。

建议靠近 VBAT 使用一个旁路电容,推荐使用 $100\mu F$ 、低 ESR 的电容。也可以使用 $100\,\mu F$ 钽电容(低 ESR)和一个($1\mu F\sim 10\mu F$) 的陶瓷电容并联来降低成本,PCB 布板时,电容应尽可能靠近模块的 VBAT 引脚。推荐电路如下图所示:

图 1: VBAT 旁路电容参考电路

下图是 DC 输入电压为+5V 的参考设计电路。因为设计的输出为 4V, 所以可以采用线性稳压器来实现。如果输入和输出(VBAT)的压差很大,应该采用开关稳压器。尤其是在当模块突发时电流达到 2A 的情况下,开关稳压器效率优势明显。

可以直接用 3.6V 的锂离子单电池给模块供电,也可以使用镍镉或者镍锰电池直接给模块供电,但请注意 其最大电压不能超过模块的最大电压,否则会损坏模块。

图 2: 供电输入参考设计电路

下图是在 VBAT 等于 4V、最大发射功率时,VBAT 的跌落。测试条件: VBAT 的最大输出电流等于 2A, CA 是 100μ F 的钽电容,ESR 等于 0.7 欧姆,CB 等于 1μ F。

图 3: 突发时 VBAT 的跌落

3.3.1 电源引脚

两个 VBAT 引脚用于电源输入,7个 GND 引脚用于接地。VRTC 引脚用于模块内部 RTC 电源输入。在用户的设计中,请特别注意电源部分的设计,确保即使在模块耗电流达到 2A 时,VBAT 的跌落也不要低于 3.3V。如果电压跌落低于 3.3V,模块可能会关机。从 VBAT 引脚到电源的 PCB 布线要足够宽以降低在传输突发模式下的电压跌落。

3.3 开机关机

3.3.1 GM35 开机

下面章节描述了 GM35 的两种开机方式:

● 使用 PWRKEY 引脚

3.4.1.1 使用 PWRKEY 引脚开启模块 (开机)

用户通过拉低 PWRKEY 信号至少 2 秒然后释放来开机。此引脚已在模块内部上拉到 VBAT。推荐电路如下图:

图 5: 使用 PWRKEY 驱动电路开机

图 6: 使用 PWRKEY 按键开机

下图是开机时序说明:

图 7: 使用 PWRKEY 开机时序图

3.3.2 GM35 关机

下面是 GM35 的几种关机方法:

● 使用 PWRKEY 引脚关机

用户可以通过把 PWRKEY 拉低 2S 后释放,将模块关机关机,关机电路可以参考开机电路设计。关机后会 AT 串口上会上报: "POWER OFF OK"

● 使用 AT 指令关机 用户可以通过 AT 指令来关机。 关机 AT 指令为 "*AT+CPOF*" 关机后会 AT 串口上会上报: "*+CPOF: MS OFF OK*"

3.4 模块休眠唤醒功能

3.4.1 模块 SLEEP 模式

通过拉低 DTR 管脚使系统进入 SLEEP 模式,通过拉高 DTR 管脚使系统唤醒

3.4.2 模块 SLEEP 电流

3.GSM 实网 S1	eep 耗流 (单位:	mA)
无卡	移动	联通

■■■ 穏 定 恒 久 远	WH-GM35 硬件设计手册	Wireless High-reliability

最小电流	0. 9	0.98	0. 97
平均电流	3. 1	3. 3	3. 4

3.4.3 模块收到电话、短信唤醒主控

模块通过 RI 脚唤醒主控;

1) 短信唤醒主控, RI 脚将会拉 3 个 100ms 的低脉冲, RI 脚波形如下:

图 8: 短信唤醒主控, RI 脚波形

1) 电话唤醒主控, RI 脚将会持续拉 250ms 的低脉冲, 3750ms 的高脉冲, 直至电话挂断或接通, RI 脚波 形如下:

图 9: 电话唤醒主控, RI 脚波形

WH-GM35 硬件设计手册 图 10:数据唤醒主控,RI 脚波形

3.5 GPIO, INT, UART 等交互设计要点

因为模块采用 3.0V 的 I0 电源系统,所有 I0 口的最高输入限制电压最大不能超过 3.3V, 否则可能损坏模块 I0 口。3.3V 的电源系统下的 I0 口输出电压,由于信号完整性设计等方面的不完善,I0 口输出电压很有可能因过冲现象而导致 I0 输出实际上超过了 3.3V, 有时甚 至能达到 3.5V, 这时的 3.3V I0 信号直接连接模块 3.0V 系统的 I0, 很可能就会损坏模块的 I0 管脚。这时需要增加串电阻和并电容等设计措施。

引脚名称	引脚序号	I/0	功能	电压域	备注
PWRKEY	10	Ι	AP_PWR_ON_OFF_BP		模块开机
NRESET	11	Ι	AP_PWR_OFF_BP	3. 0V	模块复位
AT_UART_TXD	21	0	数据发送	3. 0V	数据发送
AT_UART_RXD	22	I	数据接收	3. 0V	数据接收

辅助增强控制信号

为了增强 AP 和模块之间的通信更加可靠,建议在AP 有多余的GPIO 或接口资源时,加上这些接口。

引脚名称	引脚序号	1/0	功能	电压域	备注
AT_UART_RTS	24	I	UART_RTS	3. 0V	UART 的硬件流控
AT UART CTS	23	0	UART CTS	3. 0V	UART 的硬件流控

3.6 串口

串口					
AT_UART_RXD	22	I	数据接收	3. 0V	
AT_UART_TXD	21	O	数据发送	3. 0V	
AT_UART_RTS	24	I	发送请求	3. 0V	
AT_UART_CTS	23	O	发送清除	3. 0V	0

表 6: 串口引脚定义

图 11: 串口连接图

串口:

- TXD: 发送数据到 DTE 设备的 RXD 信号线上。
- RXD:从 DTE 设备的 TXD 信号线上接收数据。 串口逻辑电平如下表描述。

表 6: 串口的逻辑电平

参数	最小	最大	单位
VIL	0	0.7	V
VIH	2.1	3.3	V
VOL	0	0.4	V
VOH	2.4	-	V

当主机串口电平为 5V 时,在和模块串口连接时需要进行电平转换,推荐使用 FAIRCHILD 公司的电平转换芯片 NC7WZ07,下面为参考设计电路图。

Wireless High-reliability

图 12: 5V 到 3.0V 电平转换电路参考设计图

在使用 GM35 模块UART 口与PC 或者MCU 通讯的使用,请注意TX、RX 方向,特别需要注意的是 GM35 UART 口仅支持3.0V 电压,所以对于非3.0V 的外部UART 需要使用电平转换,通常的做法是用 二极管或者三极管实现电平转换。也可以使用level shift 芯片实现。

如图所示为三极管以及电阻实现 1.8V/3.0V 电平转换, 图中电阻仅为示意,设计时根据实际需求请重新计算。

3.6.1 串口功能

串口

- 支持 Modem 设备
- 包含数据信号线 TXD 和 RXD, 状态信号线 RTS 和 CTS
- 串口可用于,GPRS 服务,接收 AT 命令控制模块。同样也可以用于串口复用功能。
- GM35 只支持基本的复用模式

串口支持的通讯波特率如下:

2400, 4800, 9600, 14400, 19200, 38400, 57600, 115200bps.

● 自动波特率模式支持的通讯速率如下:

115200bps,默认为自动波特率模式。

Wireless High-reliability

在自动波特率模式下模块可以自动的检测并适应主机应用的波特率。模块默认设置为自动波特率检测。

串口不支持 RS232 电平,只支持 CMOS 电平。关于电平的信息请看表 9 。在 DCE 和 DTE 间必须加一个电平转换 IC 。如果要连接到计算机,请参考下图。

图 13: RS232 电平转换电路

3.7 音频接口

表 7: 音频接口引脚定义

音频接口				
MIC1P	4	I	麦克风音频输入正端	
MIC1N	5	I	麦克风音频输入负端	
SPK1P	7	О	听筒正极	
SPK1N	6	О	听筒负极	
MIC2P	2	I	耳机MIC正极输入	
MIC2N	3	I	耳机MIC负极输入	
LOUDSPKN	8	О	喇叭正极	
LOUDSPKP	9	0	喇叭负极	

模块提供1路模拟音频输入通道可以用于连接麦克风。当音频输入使用麦克风时,推荐使用驻极体麦克风。

音频输出用于连接受话器,最大只能驱动32欧姆的受话器。

建议用户根据实际应用情况来选用下面的电路,以得到更好的声音效果。注意音频信号线是差分信号,在 PCB 布板时,需要充分考虑这点。如下图所示。如果需要选用音频放大电路,推荐使用 National 公司的 LM4890。

另外,模块还提供了用于耳机的 mic 和耳机听筒音频端口。

3.7.1 受话器接口电路

图 14: 受话器接口电路

图 15: AOUT1 听筒输出接口

3.7.2 麦克风接口电路

图 16: 麦克风接口电路

3.8 SIM 卡接口

3.8.1 SIM 应用

模块的 SIM 卡接口支持 GSM Phase 1 规范,同时也支持新的 GSM Phase 2+规范和 FAST 64 kbps SIM 卡 (用于 SIM 应用工具包)。

支持 1.8V 和 3.0V SIM 卡。

SIM 卡的接口电源由模块内部的电压稳压器提供,正常电压值为 2.8V 或者 1.8V。

表 8: SIM 卡接口引脚定义

引脚名称	引脚序号	功能
SIM_DATA	29	SIM 卡数据 I/O
SIM_CLK	30	SIM 卡时钟
SIM_RST	28	SIM 卡复位
SIM_VDD	27	SIM 供电,根据 SIM 卡的类型自动选择输
		出电压,可以为 3.0V±10%
		或者为 1.8V±10% ,输出电流约为 10mA。

下图是 SIM 卡推荐接口电路。为了保护 SIM 卡,建议使用 ST (www.st.com) ESDA6V1W5 或者 ON SEMI (www.onsemi.com) SMF05C 来做静电保护。下图中,串在 IO 口线中的 22Ω电阻用于匹配模块和 SIM 卡之间的阻抗,数据信号线 SIM_DATA 已在模块内部上拉。SIM 卡的外围电路的器件应该靠近 SIM 卡座。

8 引脚卡座的推荐电路如下图:

图 17: 8 引脚 SIM 卡座的接口推荐电路

SIM_PRESENCE 为悬空。

6 引脚的 SIM 卡座的接口电路如下图:

图 18: 6 引脚 SIM 卡座的接口推荐电路

硬件设计建议:

此处可以使用独立的 TVS 管,根据实际ESD 测试情况,酌情使用。

如果 ESD 较好,不需要TVS 管的话, TVS 位置请使用22pF~33pF 的退耦电容,用于提升 SIM 卡的抗射频干扰能力。

如果 ESD 测试下来, TVS 管不可少, 请使用容值不超过50pF 的TVS 管子。

22R 电阻根据实际测试情况, 酌情选择添加还是去除。

下图为验证的简洁参考设计

3.8.2 SIM 卡座的选择

对于 6 引脚 SIM 卡座,推荐使用 Amphenol C707 10M006 5122。

图 19: Amphenol C707 10M006 5122 SIM 卡座尺寸图

表 9: 引脚描述(Amphenol SIM 卡座)

引脚名称	信号	描述
C1	SIM_VDD	SIM 供电,根据 SIM 卡的类型自动选择输出电压,
		可以为 3.0V±10% 或者
		为 1.8V±10%,输出电流约为 10mA。
C2	SIM_RST	SIM 卡复位
C3	SIM_CLK	SIM 卡时钟
C5	GND	接地
C6	VPP	不连接
C7	SIM_DATA	SIM 卡数据 I/O

8 引脚 SIM 卡座,推荐使用 Molex 91228。请访问网页 http://www.molex.com 了解更多相关信息。

Wireless High-reliability

图 20: Molex 91228 SIM 卡座尺寸图

表 10: 引脚描述 (Molex SIM 卡座)

引脚名称	信号	描述
C1	SIM_VDD	SIM 供电,根据 SIM 卡的类型自动选择输出电压,可以为 3.0V±10%
		或者为 1.8V±10%,输出电流约为 10mA。
C2	SIM_RST	SIM 卡复位
C3	SIM_CLK	SIM 卡时钟
C4	GND	接地
C5	GND	接地
C6	VPP	不连接
C7	SIM_DATA	SIM 卡数据 I/O
C8	SIM_PRESENCE	SIM 卡插拔检测(悬空)

١

3.9 外部复位输入

可以通过外部复位引脚 NRESET 使设备进入复位状态。这个信号仅用于紧急复位,比如模块无法响应 AT 命令,或者无法正常关机。当 NRESET 引脚为低电平时将使模块复位,此引脚已在模块内部上拉。应在 NRESET 引脚上并接去耦电容来防止干扰,RESET 以后,需要重新按开机键使模块重新开机。

图 21: 复位时序图

复位推荐设计电路:

图 22: 复位参考设计电路

4 天线接口

模块提供了一个天线接口引脚,用户主板上的天线应该使用微带线或者其他类型的射频 走线(应控制其阻抗为50 欧姆)与模块的天线引脚连接。

为了方便天线调试和认证测试,应该增加一个射频连接器和天线匹配网络,推荐电路图如下:模块的 GSM_ANT 建议预留 PI 型匹配电路。

4.1 模块射频输出功率

表 11: GM35 传导射频输出功率

频段	最大	最小
EGSM900 / GSM850	33dBm ±2dB	5dBm±5 dB
DCS1800 / PCS1900	30dBm ±2 dB	0dBm±5 dB

4.2 模块射频接收灵敏度

表 12: GM35 传导射频接收灵敏度

频段	接收灵敏度(典型值)	接收灵敏度(最大值)
EGSM900/GSM850	<-109dBm	<-107dBm
DCS1800/PCS1900	<-109dBm	<-107dBm

4.3 模块工作频率

表 13: GM35 工作频段

频段	接收	发射
EGSM900/GSM850	925 ∼ 960MHz	880 ∼ 915MHz
DCS1800/PCS1900	1805 ∼ 1880MHz	1710 ∼ 1785MHz

5 电气,可靠性和射频特性

5.1 绝对最大值

下表显示了在非正常工作情况下绝对最大值的状态。超过这些极限值将可能会导致模块永久性的损坏。

表 14: 绝对最大值

参数	最小	最大	单位
VBAT	-	4.2	V
Peak current of power supply	0	3.0	A
Voltage at digit pins*	-0.3	3.3	V
Ii*	-	10	mA
Io*	-	10	mA

^{*} 适用于数字接口, 例如: GPIO, I2C, UART, LCD。

5.2 工作温度

下表显示了模块的工作温度范围:

表 15: GM35 工作温度

参数	最小	典型	最大	单位
工作温度	-30	+25	+80	$^{\circ}$
受限工作温度*	-40 to -30		+80 to +85	$^{\circ}$
存储温度	-45		+90	$^{\circ}\!\mathbb{C}$

^{*}GM35 可以工作,但某些射频性能可能会超出 GSM 规范。

5.3 电源额定值

表 16: GM35 电源额定值

参数	描述	条件	最小	典型	最大	单位
	电源电压	电压必须在最大值与最小值之间,包含了	3.5	4.0	4.2	V
		突发瞬间的跌落和纹波				
	发射瞬间的电压	通常条件,最大射频输出功率			300	mV
	跌落					
	电压纹波	通常条件,最大射频输出功率			502	mV
VBAT		@ f<200kHz				
VDAI		@ f>200kHz				
	峰值电流	功率控制在最大输出功率		2.0		A

5.4 耗流

请参考下表中的电流值。

表 17: GM35 耗流

1. 射频不同功率下功耗测试(唤醒状态)					
	GSM900 功耗 DCS1800 功耗				
ARFCN	功耗(mA)	ARFCN	功耗(mA)		
5	247. 6	0	195		
6	234	1	172. 6		
7	190. 1	2	146		
8	177. 3	3	130		
9	154. 3	4	117.6		
10	138. 3	5	108		
11	124. 2	6	100. 4		
12	114	7	94		
13	105. 1	8	89.8		
14	98. 1	9	85. 7		
15	93	10	83		
16	88. 4	11	81. 3		
17	85. 7	12	79. 5		
18	83. 2	13	78. 6		
19	80.8	14	77.8		
		15	77. 3		

2. 不同电压开机电流(CMU 最大功率下, TALK 模式(mA))

电压	1#耗流	2#耗流	3#耗流	4#耗流
3.8	247. 1	245. 3	248. 5	247. 7
4	242.9	239. 7	244. 2	243.8
4. 2	249.5	248. 6	249. 4	248. 7
AVG	246. 5	244. 5333333	247. 3666667	246. 7333333

3. GSM 实网 Sleep 耗流 (单位: mA)

	1#耗流(无卡)	2#耗流(移动)	3#耗流(联通)
最小电流	0. 9	0.98	0.97
平均电流	3. 1	3. 3	3. 4

Wireless High-reliability

4. 连接 CMU 状态下不同模式 GPRS 耗流 (单位: mA)							
	3Rx 2Tx						
	GSM	(P5, C62)	DCS (P0, C698)			
	电压	 耗流	电压	 耗流			
1	3.6	280. 5	3.6	211. 2			
2	3.8	278. 3	3.8	218. 4			
AVR		279. 4		214.8			
		4Rx 1Tx					
	GSM	(P5, C62)	DCS (P0, C698)			
	电压	耗流	电压	耗流			
1	3.6	285. 3	3. 6	210. 2			
2	3.8	276. 5	3.8	219. 4			
AVR		280. 9		214.8			

5.5 静电防护

模块没有专门针对静电放电做保护。因此,用户在使用中需要对模块做一些适当的防护措施。在生产、装配和操作模块时必须注意适当的静电防护。

6 机械尺寸

这一章描述 GM35 的机械尺寸。

6.1 GM35 的机械尺寸

下图为 GM35 的机械尺寸图。

图 23: 模块尺寸图 (单位: mm)

6.2 GM35 引脚分配

图 25: GM35 引脚图 (顶视图)

表 18: 引脚分配

引脚序号	引脚名称	引脚序号	引脚名称
1	GND	21	TXD
2	MIC2P	22	RXD
3	MIC2N	23	CTS
4	MIC1P	24	RTS
5	MIC1N	25	DCD
6	SPK1N	26	RI
7	SPK1P	27	SIM_VDD
8	LOUDSPKN	28	SIM_RST
9	LOUDSPKP	29	SIM_DATA
10	PWRKEY	30	SIM_CLK
11	EMERG_OFF(RST)	31	GND
12	STSTUS	32	VRTC
13	NETLIGHT	33	VBAT
14	DBG_RXD	34	VBAT
15	DBG_TXD	35	GND
16	RESERVED	36	GND
17	RESERVED	37	GND
18	RESERVED	38	GND
19	VDD_EXT	39	ANT
20	DTR	40	GND

6.3 GM35 推荐焊接炉温曲线图

图 26: GM35 推荐焊接炉温曲线图

7 联系方式

公 司: 上海稳恒电子科技有限公司

地 址: 上海市闵行区秀文路 898 号西子国际五号楼 611 室

网 址: www.mokuai.cn

邮 箱: sales@mokuai.cn

电 话: 021-52960996 或者 021-52960879

使命: 做芯片到产品的桥梁

愿景: 全球有影响力的模块公司

价值观: 信任 专注 创新

产品观:稳定的基础上追求高性价比

8 免责声明

本文档提供有关 WH-GM16 产品的信息,本文档未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除在其产品的销售条款和条件声明的责任之外,我公司概不承担任何其它责任。并且,我公司对本产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性,适销性或对任何专利权,版权或其它知识产权的侵权责任等均不作担保。本公司可能随时对产品规格及产品描述做出修改,恕不另行通知。

9 更新历史

修订表

编号	生成版本	修订章节与内容	修订日期
1	V1.0	生成第一个版本	2017-09-05