MP Programme de colle n° 20

Chapitre 15

Calcul différentiel

- 1. Dérivée selon un vecteur, dérivées partielles
- 2. Différentiabilité
- 3. Matrices jacobiennes
- 4. Cas des applications numériques

Exercices à donner

- Calcul de dérivées selon un vecteur
- Calcul de dérivées partielles
- Continuité, différentiabilité, caractère \mathcal{C}^1
- Recherche d'extremums locaux sur un ouvert
- Recherche d'extremums globaux sur un compact

Démos à connaître

2.4

<u>Proposition 2</u> Si $f: U \to F$ est différentiable en a, alors f admet en ce point une dérivée selon tout vecteur u non nul et $\boxed{\mathbf{D}_u f(a) = \mathrm{d} f(a).u}$

<u>Proposition 3</u> Soit $f: U \to F$ différentiable en a et $\mathcal{B} = (e_j)_{1 \leqslant j \leqslant n}$ base de E.

Soit
$$h \in E$$
 tel que $h = \sum_{j=1}^n h_j.e_j$. Alors $\mathrm{d} f(a).h = \sum_{j=1}^n h_j.\frac{\partial f}{\partial x_j}(a)$.

3.3

Proposition 4 : Dérivée le long d'un arc

Soit I un intervalle de \mathbb{R} et U un ouvert de \mathbb{R}^n .

Soit $\gamma:I\to U$ un arc différentiable.

Ainsi $\forall t \in I : \gamma(t) = (x_1(t), x_2(t), ..., x_n(t))$ où $(x_1, x_2, ..., x_n) \in \mathcal{D}(I, \mathbb{R})^n$

Soit $f: U \to F$ une fonction différentiable.

Alors $f \circ \gamma$ est dérivable sur I et

$$\forall t \in I : \boxed{(f \circ \gamma)'(t) = \mathrm{d}f(\gamma(t)).\gamma'(t)} = \sum_{i=1}^{n} x_i'(t).\frac{\partial f}{\partial x_i}(a) \quad \text{où } a = \gamma(t)$$

4.1.a

Théorème de représentation des formes linéaires

Soit E espace euclidien : $\forall \varphi \in \mathcal{L}(E, \mathbb{K}), \exists ! a \in E / \varphi = (a \mid .)$

4.1.b

<u>Propriété 1</u>: **coordonnées** de $\overrightarrow{\text{grad}} f(a)$ en base <u>orthonormée</u>

Soit $\mathcal B$ une base orthonormée de E et $f:U\to\mathbb R$ différentiable en $a\in U$.

Les coordonnées de $\overrightarrow{\text{grad}} f(a)$ dans la base \mathcal{B} constituent le n-uplet

$$\left[\frac{\partial f}{\partial x_1}(a), \frac{\partial f}{\partial x_2}(a), \dots, \frac{\partial f}{\partial x_n}(a) \right]$$

4.1.c

<u>Propriété 2</u> : Soit E euclidien et $f:U\to\mathbb{R}$ différentiable en $a\in U$.

Si $\overrightarrow{\operatorname{grad}} f(a) \neq 0_{\mathbb{R}^n}$, il est colinéaire et de même sens que le vecteur unitaire

selon lequel la dérivée de $\,f\,$ en $\,a\,$ est maximale. Plus précisément :

$$\forall u \in E \, / \, \| \, u \, \| = 1, \ D_u f(a) \leqslant \left\| \, \operatorname{grad}(f)(a) \, \right\| = D_v f(a) \quad \text{où } v = \frac{\operatorname{grad}(f)(a)}{\left\| \operatorname{grad}(f)(a) \right\|}$$

4.1.d

Gradient en coordonnées polaires

$$\overrightarrow{\operatorname{grad}} f(a) = \frac{\partial F}{\partial r}(r,\theta).e_r + \frac{1}{r} \frac{\partial F}{\partial \theta}(r,\theta).e_\theta$$

4.2

<u>Théorème</u> : Soit U ouvert de E euclidien et $f:U\to\mathbb{R}$ différentiable en a.

Si f admet en a un extremum local, alors a est un point critique.