Equations of planes and tangent planes

First recall Chapter 5, Section 5 Equations of Planes

5.5 *Planes* in Space

- \blacktriangle A *plane* Π in space is determined by
- (i) a *point* on the plane &
- (ii) its *orientation* (indicated by a *normal* to Π)

Problem Given point R in plane Π with position

vector
$$\mathbf{r_0} = x_0 \mathbf{i} + y_0 \mathbf{j} + z_0 \mathbf{k}$$
 & normal

$$\mathbf{n} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$
 to $\mathbf{\Pi}$:

find an *equation* for Π

Vector equation for plane Π

• Let P be a point in plane Π with

position vector

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$
. Then

$$(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0.$$

5.5.1 Cartesian equation for Π

$$(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0$$

$$\mathbf{r} - \mathbf{r_0} = (x - x_0)\mathbf{i} + (y - y_0)\mathbf{j} + (z - z_0)\mathbf{k}$$

$$\mathbf{n} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

$$(\mathbf{r} - \mathbf{r_0}) \cdot \mathbf{n} = a(x - x_0) + b(y - y_0) + c(z - z_0)$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

or
$$\begin{cases} ax + by + cz = d, \\ \text{where } d = ax_0 + by_0 + cz_0 \end{cases}$$

SUMMARY

Equations for Π

❖ Vector equation :

$$(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0$$

Cartesian equation :

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

◆ Cartesian equation simplified:

$$ax + by + cz = d,$$

where $d = ax_0 + by_0 + cz_0$

Tangent Planes

Given: surface S

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}$$

& a point P_0 with position vector $\mathbf{r}_0 = \mathbf{r}(u_0, v_0)$

Find: the equation of the tangent plane to S at P_0

• Parametric surfaces in space :

$$\mathbf{r}(u, v) = x(u, v)\mathbf{i} + y(u, v)\mathbf{j} + z(u, v)\mathbf{k}$$
 (1) where u and v are two independent parameters.

• Fix $v = v_0$. Curve C_1

$$\mathbf{r}(u, v_0) = x(u, v_0)\mathbf{i} + y(u, v_0)\mathbf{j} + z(u, v_0)\mathbf{k}$$

Tangent vector to C_1 at P_0

$$\mathbf{r}_{u} = \frac{\partial x}{\partial u}(u_{0}, v_{0})\mathbf{i} + \frac{\partial y}{\partial u}(u_{0}, v_{0})\mathbf{j} + \frac{\partial z}{\partial u}(u_{0}, v_{0})\mathbf{k}$$

$$\mathbf{r}(u_0, v) = x(u_0, v)\mathbf{i} + y(u_0, v)\mathbf{j} + z(u_0, v)\mathbf{k}$$

Tangent vector to C_2 at P_0

$$\mathbf{r}_v \equiv \frac{\partial x}{\partial v}(u_0, v_0)\mathbf{i} + \frac{\partial y}{\partial v}(u_0, v_0)\mathbf{j} + \frac{\partial z}{\partial v}(u_0, v_0)\mathbf{k}$$

• As \mathbf{r}_u and \mathbf{r}_u lie in the tangent plane to S at P_0 , the cross product $\mathbf{r}_u \times \mathbf{r}_v$ provides a **normal** vector to the tangent plane. Thus the **equation** of the **tangent plane** is: $(\mathbf{r} - \mathbf{r}_0) \cdot (\mathbf{r}_u \times \mathbf{r}_v) = 0$

 $\mathbf{r}_u imes \mathbf{r}_v$ $\mathbf{r}_u imes \mathbf{r}_u$ $\mathbf{r}_u imes \mathbf{r}_u$ $\mathbf{r}_u imes \mathbf{r}_u$

See CH5, 5.5 planes in Space $(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0$