Probability Theory and Random Processes (MA225)

Lecture 14

Indian Institute of Technology Guwahati

July-Nov 2022

Functions of RVs: Technique 2 for CRV

Theorem: Let $X = (X_1, ..., X_n)$ be a CRV with JPDF f_X .

- Let $y_i = g_i(x)$, i = 1, 2, ..., n be $\mathbb{R}^n \to \mathbb{R}$ functions such that y = g(x) is one-to-one. That means that there exists the inverse tranformation $x_i = h_i(y)$, i = 1, 2, ..., n defined on the range of the transformation.
- Assume that both the mapping and its' inverse are continuous.
- **3** Assume that partial derivatives $\frac{\partial x_i}{\partial y_j}$, $i=1,\,2,\,\ldots,\,n,\,j=1,\,2,\,\ldots,\,n$, exist and are continuous.
- Assume that the Jacobian of the inverse transformation

$$J \doteq \det \left(\frac{\partial x_i}{\partial y_j}\right)_{i,j=1,2,\dots,n} \neq 0$$

on the range of the transformation.

Then $Y = (g_1(X), \ldots, g_n(X))$ is a CRV with JPDF

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(h_1(\mathbf{y}), \ldots, h_n(\mathbf{y}))|J|.$$

July-Nov 2022

Functions of RVs: Technique 2 for CRV

Example 1: Let X_1 and X_2 be *i.i.d.* U(0, 1) random variables. Find the JPDF of $Y_1 = X_1 + X_2$ and $Y_2 = X_1 - X_2$.

Example 2: Let X_1 and X_2 be *i.i.d.* N(0, 1) random variables. Find the PDF of $Y_1 = X_1/X_2$.

Remark: If X and Y are independent, then g(X) and h(Y) are also independent.

Moment Generating Function

Let $X=(X_1,X_2,\ldots,X_n)$ be a RV. The moment generating function (MGF) of X at $t=(t_1,t_2,\ldots,t_n)$ is defined by

$$M_{\mathbf{X}}(\mathbf{t}) = E\left(\exp\left(\sum_{i=1}^{n} t_i X_i\right)\right),$$

provided the expectation exists in a neighborhood of origin $\mathbf{0} = (0, 0, \dots, 0)$.

MA225 July-Nov 2022

Def: Two RVs X and Y are said to have the same distribution, denoted by $X \stackrel{d}{=} Y$, if $F_X(\cdot) = F_Y(\cdot)$.

Theorem: Let X and Y be two RVs. Let $M_X(t) = M_Y(t)$ for all t in a neighborhood around 0, then $X \stackrel{d}{=} Y$.

Theorem: X and Y are independent iff $M_{X,Y}(t_1,t_2)=M_X(t_1)M_Y(t_2)$.

Example 3: Let X_i , $i=1,2,\ldots,k$ be independent $Bin(n_i,p)$ RVs. Then $\sum X_i \sim Bin(\sum n_i,p)$.

Example 4: Let X_i , i = 1, 2, ..., k be iid $Exp(\lambda)$ RVs. Then $\sum X_i \sim Gamma(k, \lambda)$.

Example 5: Let X_i , $i=1,2,\ldots,k$ be independent $N(\mu_i,\sigma_i^2)$ RVs. Then $\sum X_i \sim N(\sum \mu_i,\sum \sigma_i^2)$.

5/6

MA225 July-Nov 2022

Expectation and Variance of a Random Vector

Expectation of a random vector is given by

$$E(\mathbf{X}) = (EX_1, EX_2, \dots, EX_n) = \boldsymbol{\mu}.$$

The variance-covariance matrix of a n-dimensional random vector, denoted by $\boldsymbol{\Sigma},$ is defined by

$$\Sigma = [Cov(X_i, X_j)]_{i,j=1}^n = E(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^t.$$

MA225