COMP302: Programming Languages and Paradigms

Week 12: Polymorphic Type Inference

Prof. Brigitte Pientka < bpientka@cs.mcgill.ca>

School of Computer Science, McGill University

Recap: typing with contexts

Operations op ::=
$$+ |-| *| < |=$$

Expressions e ::= $n | e_1$ op $e_2 |$ true | false | if e then e_1 else $e_2 |$ | $|x|$ | let $|x|$ | $|x|$ | let $|x|$ | $|x|$ |

$$\frac{\Gamma \vdash e : \text{bool} \quad \Gamma \vdash e_1 : T \quad \Gamma \vdash e_2 : T}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : T} \text{ T-IF} \quad \frac{\Gamma(x) = T}{\Gamma \vdash x : T} \text{ T-VAR}$$

$$\frac{\Gamma \vdash e_1 : T_1 \quad \Gamma, x : T_1 \vdash e_2 : T}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 \text{ end } : T} \text{ T-LET } x \text{ must be new}$$

Generalizing to functions and function application

$$\frac{\Gamma, x : T_1 \vdash \ e : T_2}{\Gamma \vdash \text{fn } x : T_1 \Rightarrow e : T_1 \rightarrow T_2} \text{ T-FN } \frac{\Gamma \vdash e_1 : T_2 \rightarrow T \quad \Gamma \vdash e_2 : T_2}{\Gamma \vdash e_1 \ e_2 : T} \text{ T-APP}$$

Read T-FN rule as:

Expression fn x => e has type $T_1 \to T_2$ in a typing context Γ , if expression e has type T_2 in the extended context $\Gamma, x: T_1$

Issue: The rule T-FN cannot be used for type inference...

Where is the type of $x:T_1$ coming from?

Simple Answer: Provide type annotation and write $fn \times T_1 \Rightarrow e!$

A better anwer: Hindley-Milner Polymorphic Type Inference

Main Idea

$$\frac{\Gamma, x: T_1 \vdash e: T_2}{\Gamma \vdash \text{ fn } x \Rightarrow e: T_1 \rightarrow T_2} \text{ T-FN}$$

Type Inference:

Given assumptions in Γ and fn $x \Rightarrow e$, we want to infer a type

- Make a recursive call and infer in the extended context $\Gamma, x: T_1$ the type of e
- We don't have $T_1!$ We can't make that recursive call!
- Introduce a place holder (type variable) α for T_1 and let's figure out later, when analyzing e what type x must have.

Make a recursive call in the he extended context Γ , $x:\alpha$ – We succeed if there exists an instantiation for α s.t. fn $x \Rightarrow e$ has type $\alpha \to T_2$

$$\frac{\Gamma, x : \alpha \vdash e : T_2}{\Gamma \vdash \text{fn } x \Rightarrow e : \alpha \to T_2} \text{ T-FN}$$

Type Variables – Two Different Views

Types
$$T$$
 ::= int | bool | $T_1 o T_2 \mid \alpha$

 $\Gamma \vdash e : T$ "Expression e has type T in the context Γ " where T and Γ may contain type variables

TID

View A. Are *all* substitution instances of e well-typed? That is for every type substitution σ , we have $[\sigma]\Gamma \vdash e : [\sigma]T$. Type checking

Examples for A.

$$\vdash \text{fn } x \Rightarrow x \qquad \text{has type} \quad \alpha \to \alpha$$

$$\vdash \text{fn } f \Rightarrow \text{fn } x \Rightarrow f(f(x)) \qquad \text{has type} \qquad (\alpha \to \alpha) \to \alpha \to \alpha$$

$$x : \alpha \vdash \text{fn } f \Rightarrow f x \qquad \text{has type} \qquad (\alpha \to \beta) \to \beta$$

$$\downarrow f \in \mathcal{A}$$

Type Variables – Two Different Views

Types
$$T$$
 ::= int | bool | $T_1 o T_2 \mid lpha$

 $\Gamma \vdash e : T$ "Expression e has type T in the context Γ " where T and Γ may contain type variables

View B. Is *some* substitution instance of e well-typed? That is we can find a type substitution σ , such that $[\sigma]\Gamma \vdash e : [\sigma]T$. Type inference

Examples for B.

$$\vdash \text{fn } x \Rightarrow x+1 \quad \text{has type} \quad \alpha \to \alpha \quad \text{choosing int for } \alpha \text{ (i.e. int}/\alpha)$$

$$\vdash \text{fn } x \Rightarrow x+1 \quad \text{has type} \quad \alpha \to \beta \quad \text{choosing int for } \alpha$$

$$\quad \text{choosing int for } \beta$$

$$\quad \text{(i.e. int}/\alpha, \text{ int}/\beta)$$

$$x: \alpha \vdash \text{fn } f \Rightarrow f x \quad \text{has type} \quad \beta \to \gamma \quad \text{choosing } (\alpha \to \gamma) \text{ for } \beta$$

Which substitution to pick, under the inference view?

$$x: \alpha \vdash \text{fn } f \Rightarrow f x \text{ has type } \beta \rightarrow \gamma \text{ choosing } (\alpha \rightarrow \gamma) \text{ for } \beta$$
 (i.e. $(\alpha \rightarrow \gamma)/\beta$)

What about choosing int/ α , (int $\rightarrow \gamma$)/ β ?

This gives us that

$$[fn \ f \Rightarrow fx]$$
 has type $[(int \rightarrow \gamma) \rightarrow \gamma]$ under the assumption x : int

which is a solution.

But it's not the most general solution!

Damas-Hindley-Milner Style Type Inference - Recipe

 $\Gamma \vdash e \Rightarrow T$ Given a typing context Γ and an expression e, infer a type T (and some constraints)

The type T is a skeleton that may contain type variables.

- Analyze e as before following the given typing rules
- When we analyze e recursively and we miss type information, introduce a new type variable α and possibly generate constraints.

For example:

$$\frac{\Gamma \vdash e_1 \Rightarrow T_1 \quad \Gamma \vdash e_2 \Rightarrow T_2}{\Gamma \vdash e_1 \ e_2 \Rightarrow \alpha} \text{ T-APP where } \alpha \text{ is new and } T_1 = (T_2 \to \alpha)$$

Damas-Hindley-Milner Style Type Inference - Recipe

 $\Gamma \vdash e \Rightarrow T$ Given a typing context Γ and an expression e, infer a type T (and some constraints)

The type T is a skeleton that may contain type variables.

- Analyze e as before following the given typing rules
- When we analyze e recursively and we miss type information, introduce a new type variable α and possibly generate constraints.

For example:

$$\frac{\Gamma \vdash e \Rightarrow T \qquad \Gamma \vdash e_1 \Rightarrow T_1 \quad \Gamma \vdash e_2 \Rightarrow T_2}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 \Rightarrow T_1} \text{ T-IF where } T = \text{bool and } T_1 = T_2$$

Damas-Hindley-Milner Style Type Inference - Recipe

 $\Gamma \vdash e \Rightarrow T$ Given a typing context Γ and an expression e, infer a type T (and some constraints)

The type T is a skeleton that may contain type variables.

- Analyze e as before following the given typing rules
- When we analyze e recursively and we miss type information, introduce a new type variable α and possibly generate constraints.

For example:

$$rac{\Gamma dash e_1 \Rightarrow T_1 \quad \Gamma dash e_2 \Rightarrow T_2}{\Gamma dash e_1 + e_2 \Rightarrow ext{int}}$$
 T-PLUS where $T_1 = ext{int}$ and $T_2 = ext{int}$

• To determine whether *e* is well-typed, solve the constraints! – If the constraints can be solved, then there exists a substitution instance for the type variables s.t. *e* is well-typed.

Inferring Types and Constraints by Example

How to infer the type of fn
$$x \Rightarrow$$
 fn $y \Rightarrow$ if $f \times$ then $y \text{ else } 2 + x$?

$$A = B \Rightarrow B'$$

$$TVAR$$

[m->6001/9, m1B, m18]

solution.

How to solve constraints?

Examples ... Can we solve the following constraints?

```
• \{\alpha = \text{int}, \ \alpha \to \beta = \text{int} \to \text{bool}\} \text{MT/}\alpha, \text{bool}/\beta

• \{\alpha_1 \to \alpha_2 = \text{int} \to \beta, \ \beta = \text{bool}\} \text{bool}/\beta, \text{bool}/\beta, \text{int}/\alpha]

• \{\alpha_1 \to \alpha_2 = \text{int} \to \beta, \ \beta = \alpha_2 \to \alpha_2\} \text{int}/\alpha, \alpha_2 = \beta \beta = \alpha_2 \to \alpha_2
```

Constraint Solving via Unification

Two types T_1 and T_2 are *unifiable* if there exists an instantiation σ for the type variables in T_1 and T_2 s.t. $[\sigma]T_1 = [\sigma]T_2$, i.e $[\sigma]T_1$ is syntactically equal to $[\sigma]T_2$.

Unification via Rewriting Constraints

Given a set of constraints C try to simplify the set until we derive the empty set.

We write C for C_1, \ldots, C_n and we assume constraints can be reordered.

Example:
$$\alpha = \beta \rightarrow \gamma$$
, $\beta = \alpha \implies$? Far

To summarize ...

Unification is a fundamental algorithm to determine whether two objects can be made syntactically equal.

Take-Away

Two Uses and Views of Type variables:

- Polymorphism: For all instantiations of a type variable, the expression is well-typed.
- Polymorphic Type Inference: There **exists** an instantiation for the type variables s.t. the expression is well-typed

Unification:

• Find an instantiations for (type) variables s.t. all equations (constraints) are true

Polymorphic Type Inference:

- Follows typing rules, introduces type variables for unknown types, and generates constraints.
- We succeed, if the constraints are unifiable (i.e. can be solved).