Mathematics Notes for

Computer Science Information Technology

Hazer-BJTU

2024 / 2 / 16

目录

0.1	深度学	:习中的线性代数/概率论	4
	0.1.1	多元函数微分	4
	0.1.2	线性回归模型的解析解	5
	0.1.3	SVD奇异值分解	6
	0.1.4	极大似然估计与最小化交叉熵损失	7
0.2	算法/基础数学		
	0.2.1	离散傅里叶变换DFT与快速傅里叶变换FFT	7

4 目录

0.1 深度学习中的线性代数/概率论

0.1.1 多元函数微分

考虑定义在 \mathbb{R}^n 上的函数f,其输出为一个向量 $\mathbf{y} \in \mathbb{R}^m$,如果存在线性函数L,使得:

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + L(\mathbf{h}) + O(\|\mathbf{h}\|_{2})$$

其中线性函数L满足:

$$L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y})$$
$$L(\lambda \cdot \mathbf{x}) = \lambda \cdot L(\mathbf{x}), \lambda \in \mathbb{R}$$

那么我们就认为该函数f是**可微的**,一般来说,我们可以将线性函数L简单理解为线性变换,如果我们限制函数f的输出为一个实数 $y \in \mathbb{R}$,则微分也可以被表示为如下形式:

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \mathbf{w}^{\mathsf{T}} \mathbf{h} + O(\|\mathbf{h}\|_{2}), \mathbf{w} \in \mathbb{R}^{n}$$

一个基本的事实是可微⇒偏导数存在,因为:

$$\frac{f(\mathbf{x} + \mathbf{h}_i) - f(\mathbf{x})}{\Delta \mathbf{x}_i} = \frac{\mathbf{w}_i \cdot \Delta \mathbf{x}_i}{\Delta \mathbf{x}_i} + \frac{O(\Delta \mathbf{x}_i)}{\Delta \mathbf{x}_i} = \mathbf{w}_i + \frac{O(\Delta \mathbf{x}_i)}{\Delta \mathbf{x}_i}$$

$$\Rightarrow \lim_{\Delta \mathbf{x}_i \to 0} \frac{f(\mathbf{x} + \mathbf{h}_i) - f(\mathbf{x})}{\Delta \mathbf{x}_i} = \mathbf{w}_i + \lim_{\Delta \mathbf{x}_i \to 0} \frac{O(\Delta \mathbf{x}_i)}{\Delta \mathbf{x}_i} = \mathbf{w}_i$$

$$\Rightarrow \frac{\partial f}{\partial \mathbf{x}_i} = \mathbf{w}_i$$

由此可见,实际上向量 \mathbf{w} 就是由函数f关于各分量的偏导数构成的:

$$\mathbf{w} = \left(\frac{\partial f}{\partial \mathbf{x}_1}, \frac{\partial f}{\partial \mathbf{x}_2}, \frac{\partial f}{\partial \mathbf{x}_3}, \dots, \frac{\partial f}{\partial \mathbf{x}_n}\right)^{\top}$$

定义对于向量 $\mathbf{x} \in \mathbb{R}^n$: $d\mathbf{x} = (d\mathbf{x}_1, d\mathbf{x}_2, d\mathbf{x}_3, \dots, d\mathbf{x}_n)$,则根据全微分公式可以得出如下关系:

$$d\mathbf{x}^{\top}\mathbf{x} = 2\mathbf{x}^{\top}d\mathbf{x}$$
$$d(\mathbf{x} + \mathbf{y}) = d\mathbf{x} + d\mathbf{y}$$
$$d\mathbf{A}\mathbf{x} = \mathbf{A}d\mathbf{x}$$
$$d\mathbf{x}^{\top}\mathbf{A}\mathbf{x} = 2\mathbf{x}^{\top}\mathbf{A}d\mathbf{x}$$

在此只证明最后一条,注意到:

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{A}_{i,j} \mathbf{x}_{i} \mathbf{x}_{j}$$

$$\frac{\partial}{\partial \mathbf{x}_{i}} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 2 \mathbf{A}_{i,i} \mathbf{x}_{i} + 2 \sum_{1 \leq j \leq n, j \neq i} \mathbf{A}_{i,j} \mathbf{x}_{j} = 2 \sum_{j=1}^{n} \mathbf{A}_{i,j} \mathbf{x}_{j}$$

$$\Rightarrow d\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 2 \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{A}_{i,j} \mathbf{x}_{j} d\mathbf{x}_{i} = 2 \mathbf{x}^{\top} \mathbf{A} d\mathbf{x}$$

与一元函数同理,如果上述函数f满足二阶偏导数连续的条件,则我们也可以利用Hessian矩阵做出更高阶的估计:

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \mathbf{w}^{\mathsf{T}} \mathbf{h} + \frac{1}{2} \mathbf{h}^{\mathsf{T}} \mathbf{H} \mathbf{h} + O(\|\mathbf{h}\|_{2}^{2})$$

其中Hessian矩阵的形式为:

$$\mathbf{H}_{i,j} = \frac{\partial^2 f}{\partial \mathbf{x}_i \partial \mathbf{x}_j}$$

0.1.2 线性回归模型的解析解

一般的线性模型可以被描述为以下形式,其中 $\hat{y} \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^d, \mathbf{w} \in \mathbb{R}^d$:

$$\hat{y} = \mathbf{w}^{\top} \mathbf{x} + \mathbf{b}$$

而对于批量的样本数据,使用 $\mathbf{X} \in \mathbb{R}^{n \times d}$ 表示 n 组样本, $\hat{\mathbf{Y}} \in \mathbb{R}^n$ 表示对于数据集上所有样本的 预测结果向量,则可以进行如下矩阵表示:

$$\hat{\mathbf{Y}} = \mathbf{X}\mathbf{w} + \mathbf{B}$$

对于真实的数据Y,线性回归要求我们最小化损失 $\|\hat{\mathbf{Y}} - \mathbf{Y}\|_2$,这是一个十分简单的优化问题,存在解析解,证明如下:

$$\begin{split} \left\| \hat{\mathbf{Y}} - \mathbf{Y} \right\|_2 &= \sqrt{(\hat{\mathbf{Y}} - \mathbf{Y})^\top (\hat{\mathbf{Y}} - \mathbf{Y})} \\ &= \sqrt{(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})^\top (\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})} \end{split}$$

故问题转化为最小化 $(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})^{\mathsf{T}}(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})$,这是一个二次型,我们对于 \mathbf{w} 求导:

$$d(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})^{\top}(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y}) = 2(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})^{\top}d(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})$$
$$= 2(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})^{\top}\mathbf{X}d\mathbf{w}$$
$$= 0$$

故可以得到:

$$(\mathbf{X}\mathbf{w} + \mathbf{B} - \mathbf{Y})^{\top}\mathbf{X} = \mathbf{O}$$

等式两边同时取转置可知:

$$\begin{split} \mathbf{X}^\top (\mathbf{X} \mathbf{w} + \mathbf{B} - \mathbf{Y}) &= \mathbf{O} \\ \mathbf{X}^\top \mathbf{X} \mathbf{w} &= \mathbf{X}^\top (\mathbf{Y} - \mathbf{B}) \\ \mathbf{w} &= (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top (\mathbf{Y} - \mathbf{B}) \end{split}$$

即可得到参数的最优解,前提是矩阵 $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ 可逆。

6

0.1.3 SVD奇异值分解

一般来说,任何实矩阵 $\mathbf{A} \in \mathbb{R}^{n \times m}$ 都可以被无条件地分解为如下三个矩阵的乘积:

$$\mathbf{A}_{n imes m} = \mathbf{U}_{n imes n} \mathbf{\Sigma}_{n imes m} \mathbf{V}_{m imes m}^{ op}$$

其中U.V均为正交矩阵,并且 Σ 满足:

$$\Sigma_{i,j} = \begin{cases} \sqrt{\lambda_i} & i = j \\ 0 & i \neq j \end{cases}$$

考虑 $\mathbf{A}^{\mathsf{T}}\mathbf{A}$,这是一个实对称矩阵,故其一定可以被正交对角化,也即存在正交矩阵 \mathbf{V} ,使得:

$$\mathbf{A}^{\top}\mathbf{A} = \mathbf{V}\boldsymbol{\Lambda}\mathbf{V}^{\top}$$

其中:

$$oldsymbol{\Lambda}_{m imes m} = egin{bmatrix} \lambda_1 & & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_m \end{bmatrix}$$

考虑如下一组向量,我们断言它们之间是互相正交的:

$$\frac{\mathbf{A}\mathbf{v}_1}{\sqrt{\lambda_1}}, \frac{\mathbf{A}\mathbf{v}_2}{\sqrt{\lambda_2}}, \frac{\mathbf{A}\mathbf{v}_3}{\sqrt{\lambda_3}}, \dots, \frac{\mathbf{A}\mathbf{v}_m}{\sqrt{\lambda_m}}$$

证明如下:

$$\frac{\mathbf{A}\mathbf{v}_i}{\sqrt{\lambda_i}} \cdot \frac{\mathbf{A}\mathbf{v}_j}{\sqrt{\lambda_j}} = \frac{\mathbf{v}_i^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{v}_j}{\sqrt{\lambda_i \lambda_j}} = \frac{\lambda_j \mathbf{v}_i^{\top} \mathbf{v}_j}{\sqrt{\lambda_i \lambda_j}} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

若m > n, 考虑如下矩阵:

$$\mathbf{U}_{n \times n} = \left(\frac{\mathbf{A}\mathbf{v}_1}{\sqrt{\lambda_1}}, \frac{\mathbf{A}\mathbf{v}_2}{\sqrt{\lambda_2}}, \frac{\mathbf{A}\mathbf{v}_3}{\sqrt{\lambda_3}}, \dots, \frac{\mathbf{A}\mathbf{v}_n}{\sqrt{\lambda_n}}\right)$$

根据上述证明, U是正交矩阵, 并且满足:

$$\begin{split} \mathbf{U} \boldsymbol{\Sigma} &= \mathbf{A} \mathbf{V} \\ \mathbf{A} &= \mathbf{A} \mathbf{V} \mathbf{V}^\top = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^\top \end{split}$$

 $\Xi m < n$,我们可以反过来对 \mathbf{A}^{T} 做奇异值分解,也可以得到相同的结果,奇异值分解告诉我们: 任何线性变换都可以被分解为一次旋转(旋转、反射或其复合),一次维度变换及拉伸,一次旋转的复合。除此之外,其还可以被用于求一般矩阵的"逆":

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{ op}$$
 $\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^{ op}$

其中 Σ +由将 Σ 中非零元素取倒数后再转置得到。

0.2. 算法/基础数学 7

0.1.4 极大似然估计与最小化交叉熵损失

0.2 算法/基础数学

0.2.1 离散傅里叶变换DFT与快速傅里叶变换FFT

对于数列 $\{a_n\}$, $\{b_n\}$, $0 \le n < N$,我们可以如下定义其离散卷积:

$$(a * b)_k = \sum_{i=0}^k a_i b_{k-i}$$
$$0 < k < N$$

我们记单位根 $e^{\frac{2k\pi i}{n}}=\omega_n^k$,则可以如下定义其离散傅里叶变换及其逆变换:

$$DFT(a)_k = \sum_{t=0}^{N-1} a_t \cdot \omega_N^{-kt}$$
$$a_k = \frac{1}{N} \sum_{t=0}^{N-1} DFT(a)_t \cdot \omega_N^{kt}$$

其中逆变换的证明如下:

$$\frac{1}{N} \sum_{t=0}^{N-1} DFT(a)_t \cdot \omega_N^{kt} = \frac{1}{N} \sum_{t=0}^{N-1} \left(\sum_{u=0}^{N-1} a_u \cdot \omega_N^{-tu} \right) \cdot \omega_N^{kt}
= \frac{1}{N} \sum_{t=0}^{N-1} \sum_{u=0}^{N-1} a_u \cdot \omega_N^{t(k-u)}
= \frac{1}{N} \sum_{u=0}^{N-1} \sum_{t=0}^{N-1} a_u \cdot \omega_N^{t(k-u)}$$

首先考虑如果u = k,则有下式成立:

$$\omega_N^{t(k-u)} = \omega_N^0 = 1$$

$$\sum_{t=0}^{N-1} a_u \cdot \omega_N^{t(k-u)} = Na_u = Na_k$$

然后考虑如果 $u \neq k$,注意到 $\omega_N^N = 1$,则有下式成立:

$$\sum_{t=0}^{N-1} a_u \cdot \omega_N^{t(k-u)} = a_u \sum_{t=0}^{N-1} \omega_N^{t(k-u)}$$

$$= a_u \cdot \frac{1 - \omega_N^{N(k-u)}}{1 - \omega_N^{k-u}}$$

$$= 0$$

故综上所述, 逆变换得证:

$$\frac{1}{N} \sum_{t=0}^{N-1} DFT(a)_t \cdot \omega_N^{kt} = \frac{1}{N} \cdot Na_k = a_k$$

接着我们引入卷积定理的离散形式:

$$a * b = DFT^{-1}(DFT(a) \odot DFT(b))$$

为了证明上式,我们只需要证明:

$$(a * b)_k = DFT^{-1} \left(DFT(a) \odot DFT(b) \right)_k$$
$$0 < k < N$$

利用定义展开右式,同理可证:

$$DFT^{-1} (DFT(a) \odot DFT(b))_{k}$$

$$= \frac{1}{N} \sum_{t=0}^{N-1} (DFT(a) \odot DFT(b))_{t} \cdot \omega_{N}^{kt}$$

$$= \frac{1}{N} \sum_{t=0}^{N-1} DFT(a)_{t} \cdot DFT(b)_{t} \cdot \omega_{N}^{kt}$$

$$= \frac{1}{N} \sum_{t=0}^{N-1} \left(\sum_{n=0}^{N-1} a_{n} \cdot \omega_{N}^{-tn} \right) \cdot \left(\sum_{m=0}^{N-1} b_{m} \cdot \omega_{N}^{-tm} \right) \cdot \omega_{N}^{kt}$$

$$= \frac{1}{N} \sum_{t=0}^{N-1} \left(\sum_{n=0}^{N-1} \sum_{m=0}^{N-1} a_{n} b_{m} \cdot \omega_{N}^{-t(n+m)} \right) \cdot \omega_{N}^{kt}$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} \sum_{t=0}^{N-1} a_{n} b_{m} \cdot \omega_{N}^{t(k-n-m)}$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} [n+m=k] N a_{n} b_{m}$$

$$= \sum_{n=0}^{k} a_{n} b_{k-n}$$

$$= (a * b)_{k}$$