Exercises

(p.248) In Exercise 1-4, find the indicated determinant.

1.
$$\begin{vmatrix} -1 & 3 \\ 5 & 0 \end{vmatrix}$$

$$3. \begin{array}{|c|c|c|c|c|}\hline 3. & -3 \\ 5 & 0 \\ \hline \end{array}$$

(p.248) In Exercise 6-9, find the indicated determinant.

$$6. \begin{vmatrix} 1 & 4 & -2 \\ 5 & 13 & 0 \\ 2 & -1 & 3 \end{vmatrix}$$

$$9. \begin{vmatrix} 2 & -1 & 1 \\ -1 & 0 & 3 \\ 2 & 1 & -4 \end{vmatrix}$$

(p.248) In exercise 13-18, find $\mathbf{a} \times \mathbf{b}$.

13.
$$a = 2i - j + 3k, b = i + 2j$$

15.
$$a = -i + 2j + 4k, b = 2i - 4j - 8k$$

(p.248) In exercise 10-12, show the followings by direct computation.

10. a.
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$$
b.
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \end{vmatrix} = 0$$

b.
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \end{vmatrix} = 0$$

11.
$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = - \begin{vmatrix} b_1 & b_2 \\ a_1 & a_2 \end{vmatrix}$$

12.
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = - \begin{vmatrix} a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

(p.249) In Exercise 25-32, find the area of the given geometric configuration.

- 25. The triangle with vertices (-1,2),(3,-1), and (4,3)
- 27. The triangle with vertices (2, 1, -3), (3, 0, 4),and (1, 0, 5)
- 31. The parallelogram with vertices (1,0,1), (3,1,4), (0,2,9), and (-2,1,6)

(p.249) In Exercise 45-48, use a determinant to ascertain wether the given points lie on a line in \mathbb{R}^2 . [HINT: What is the area of a "parallelogram" with collinear vertices?]

45.
$$(0,0), (3,5), (6,9)$$

46.
$$(0,0), (4,2), (-6,-3)$$

(p.249) In Exercise 49-52, use a determinant to ascertain wether the given points lie in a plane in \mathbb{R}^3 . [HINT: What is the "volume" of a box with coplanar vertices?]

49.
$$(0,0,0), (1,4,3), (2,5,8), (-1,2,-5)$$

50.
$$(0,0,0), (2,1,1), (3,-2,1), (-1,2,3)$$

(p.248) Answer the followings.

- 19. Mark each of the following True or False.
 - a. The determinant of a 2×2 matrix is a vector.
 - b. If two rows of a 3×3 matrix are interchanged, the sign of the determinant is changed.
 - c. The determinant of a 3×3 matrix is zero if two rows of the matrix are parallel vector in \mathbb{R}^3 .
 - d. In order for the determinant of a 3×3 matrix to be zero, two rows of the matrix must be parallel vectors in \mathbb{R}^3
 - e. The determinant of a 3×3 matrix is zero if the points in \mathbb{R}^3 given by rows of the matrix lie in plane.
 - f. The determinant of a 3×3 matrix is zero if the points in \mathbb{R}^3 given by rows of the matrix lie in plane trough the origin.
 - g. The parallelogram in \mathbb{R}^2 determined by nonzero vectors **a** and **b** is a square if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.
 - h. The box in \mathbb{R}^3 determined by vectors \mathbf{a}, \mathbf{b} , and \mathbf{c} is a cube if and only if $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c} = \mathbf{b} \cdot \mathbf{c} = 0$ and $\mathbf{a} \cdot \mathbf{a} = \mathbf{b} \cdot \mathbf{b} = \mathbf{c} \cdot \mathbf{c}$.
 - i. If the angle between vectors **a** and **b** in \mathbb{R}^3 in $\pi/4$, then $\|\mathbf{a} \times \mathbf{b}\| = |\mathbf{a} \cdot \mathbf{b}|$.
 - j. For any vector \mathbf{a} in \mathbb{R}^3 , we have $\|\mathbf{a} \times \mathbf{a}\| = \|\mathbf{a}\|^2$.
- (p.261) In Exercise 1-10, find the determinant of the given matrix.

$$1. \begin{bmatrix} 5 & 2 & 1 \\ 1 & -1 & 4 \\ 3 & 0 & 2 \end{bmatrix}$$

$$3. \begin{bmatrix} 3 & 2 & 4 \\ 0 & 1 & 2 \\ 1 & 4 & 1 \end{bmatrix}$$

$$7. \begin{bmatrix} 2 & 3 & 4 & 6 \\ 2 & 0 & -9 & 6 \\ 4 & 1 & 0 & 2 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

9.
$$\begin{bmatrix} 1 & 2 & 0 & -1 & 2 & 4 \\ 6 & 2 & 8 & 1 & -1 & 1 \\ 4 & 2 & 1 & 2 & 2 & -5 \\ 4 & 5 & 4 & 5 & 1 & 2 \\ 1 & 2 & 0 & -1 & 2 & 4 \\ 1 & 0 & 1 & 8 & 1 & 5 \end{bmatrix}$$

(p.262) In Exercise 15-20, let A be a 3×3 matrix with det(A) = 2.

- 15. find $det(A^2)$
- 16. find $det(A^k)$
- 17. find det(3A)
- 18. find det(A+A)
- 19. find $det(A^{-1})$
- 20. find $det(A^T)$

(p.262) Answer the followings.

- 21. Mark each of the followings True or False.
 - a. The determinant det(A) is defined for any matrix A.
 - b. The determinant det(A) is defined for each square matrix A.
 - c. The determinant of a square matrix is a scalar.
 - d. If a matrix A is multiplied by a scalar c, the determinant of resulting matrix is $c \cdot det(A)$.
 - e. If an $n \times n$ matrix A is multiplied by a scalar c, the determinant of the resulting matrix is $c^n \cdot det(A)$.
 - f. For every square matrix A, we have $det(AA^T) = det(A^TA) = [det(A)]^2$.
 - g. If two rows and also two columns of a square matrix A are interchanged, the determinant changes sign.

3

- h. The determinant of an elementary matrix is nonzero.
- i. If det(A) = 2 and det(B) = 3, then det(A + B) = 5.
- j. If det(A) = 2 and det(B) = 3, then det(A + B) = 6.
- (p.262) In Exercise 26-29, find the values of λ for which the given matrix is singular.

$$27. \begin{bmatrix} -\lambda & 5\\ 2 & 3-\lambda \end{bmatrix}$$

$$29. \begin{bmatrix} 1-\lambda & 0 & 2\\ 0 & 4-\lambda & 3\\ 0 & 4 & -\lambda \end{bmatrix}$$

(p.262) Answer the followings.

- 30. If A and B are $n \times n$ matrices and if A is singular, prove (without using Theorem 4.4) that AB is also singular. [HINT: Assume that AB is invertible, and derive a contradiction.]
- 32. if A and C are $n \times n$ matrices, with C invertible, prove that $det(A) = det(C^{-1}AC)$.
- (p.271) In Exercise 1-10, find the determinant of the given matrix.

1.
$$\begin{bmatrix} 2 & 3 & -1 \\ 5 & -7 & 1 \\ -3 & 2 & -1 \end{bmatrix}$$

$$5. \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 3 & -1 & 2 & 0 & 0 \\ 0 & 4 & 1 & -1 & 2 \\ 0 & 0 & -3 & 2 & 4 \\ 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

$$9. \begin{bmatrix} 2 & -1 & 3 & 0 & 0 \\ 0 & 1 & 4 & 0 & 0 \\ -5 & 2 & 6 & 0 & 0 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & -2 & 8 \end{bmatrix}$$

$$10. \begin{bmatrix} 0 & 0 & 0 & 3 & -4 \\ 0 & 0 & 0 & 2 & 1 \\ -1 & 2 & 4 & 0 & 0 \\ 3 & 1 & 2 & 0 & 0 \\ 5 & 1 & 5 & 0 & 0 \end{bmatrix}$$

(p.271) Answer the followings.

- 11. The matrix in Exercises 9 has zero entries except for entries in an $r \times r$ submatrix R and a separates $s \times s$ submatrix S whose main diagonals lie on the main diagonal of the whole $n \times n$ matrix, and where r+s=n. Prove that, if A is such a matrix with submatrices R and S, then $det(A)=det(R)\cdot det(S)$.
- 12. The matrix A in exercise 10 has a structure similar to that discussed in exercise11, except that the square submatrices R and S lie along the order diagonal. State and prove a result similar to that in exercise 11 for such a matrix.
- 13. State and prove a generalization of the result in exercise 11, when the matrix A has zero entries except for entries in k submatrices positioned along the diagonal.

(p.271-272) In Exercise 14-19, find A^{-1} if A is invertible.

17.
$$\begin{bmatrix} 3 & 0 & 4 \\ -2 & 1 & 1 \\ 3 & 1 & 2 \end{bmatrix}$$

$$19. \begin{bmatrix} 2 & 1 & 3 \\ 0 & 1 & 4 \\ 1 & 2 & 1 \end{bmatrix}$$

(p. 272) Answer the followings.

- 35. Let A be a square matrix. Mark each of the following True or False.
 - a. The determinant of a square matrix is the product of the entries on its main diagonal.
 - b. The determinant of an upper-triangular square matrix is the product of the entries on its main diagonal.
 - c. The determinant of a lower-triangular square matrix is the product of the entries on its main diagonal.
 - d. A square matrix is nonsingular if and only if its determinant is positive.
 - e. The column vectors of an $n \times n$ matrix are independent if and only if the determinant of the matrix is nonzero
 - f. A homogeneous square linear system has a nontrivial solution if and only if the determinant of its coefficient matrix is zero.
 - g. The product of a square matrix and its adjoint is the identity matrix.
 - h. The product of a square matrix and its adjoint is equal to some scalar times the identity matrix.
 - i. The transpose of the adjoint of A is the matrix of cofactors of A.
 - j. The formula $A^{-1} = (1/det(A))adj(A)$ is of practical use in computing the inverse of a large nonsingular matrix.

(p.300) In Exercise 2-16, find the characteristic polynomial, find the real eigenvalues, and the corresponding eigenvectors of the given matrix.

$$3. \begin{bmatrix} -1 & -2 \\ 4 & 5 \end{bmatrix}$$

$$5. \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

11.
$$\begin{bmatrix} -2 & 0 & 0 \\ -5 & -2 & -5 \\ 5 & 0 & 3 \end{bmatrix}$$

13.
$$\begin{bmatrix} -1 & 0 & 1 \\ -7 & 2 & 5 \\ 3 & 0 & 1 \end{bmatrix}$$

(p.300-301) In Exercise 17-22, find the eigenvalue λ , and the corresponding eigenvectors \mathbf{v}_j of the linear transformation T.

5

17. T defined on
$$\mathbb{R}^2$$
 by $T([x,y]) = [2x - 3y, -3x + 2y]$

19. T defined on
$$\mathbb{R}^3$$
 by $T([x_1, x_2, x_3]) = [x_1 + x_3, x_2, x_1 + x_3]$

21. T defined on
$$\mathbb{R}^3$$
 by $T([x_1, x_2, x_3]) = [x_1, -5x_1 + 3x_2, -3x_1 - 2x_2]$

(p.301) Answer the followings.

- 23. Mark each of the following True or False.
 - a. Every square matrix has real eigenvalues.
 - b. Every $n \times n$ matrix has n distinct (possibly complex) eigenvalues.
 - c. Every $n \times n$ matrix has n not necessarily distinct and possibly complex eigenvalues.
 - d. There can be only one eigenvalue associated with an eigenvalue of a linear transformation.
 - e. There can be only one eigenvector associated with an eigenvalue of a linear transformation.
 - f. if v is an eigenvector of a matrix A, then v is an eigenvector of A + cI for all scalars c.
 - g. if λ is an eigenvalue of a matrix A, then λ is an eigenvalue of A + cI for all scalars c.
 - h. if \mathbf{v} is an eigenvector of an invertible matrix A, then $c\mathbf{v}$ is an eigenvector of A^-1 for all nonzero scalars c.
 - i. Every vector in a vector space V is an eigenvector of the identity transformation of V into V.
 - j. Every nonzero vector in a vector space V is an eigenvector of the identity transformation of V into V.

(p.300-301) Answer the followings.

1. Consider the matrices

$$A_1 = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}, A_2 = \begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

and the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_5 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

List the vectors that are eigenvectors of A_1 and the ones that are eigenvectors of A_2 . Give the eigenvalue in each case.

- 25. Prove that if A is a square matrix, then AA^{T} and $A^{T}A$ have same eigenvalues.
- 32. Let A be an $n \times n$ matrix and let I be the $n \times n$ identity matrix. Compare the eigenvectors and eigenvalues of A with those of A + rI for a scalar r.
- 34. Let A be an $n \times n$ real matrix. An eigenvector **w** in \mathbb{R}^n and a corresponding eigenvalue α of A^T are also called a left eigenvector and eigenvalue of A. Explain the reason for this name.
- 35. (Principle of biorthogonality) Let A be an $n \times n$ real matrix. Let \mathbf{v} in \mathbb{R}^n be an eigenvector of A with corresponding eigenvector λ , and let $\mathbf{w} \in \mathbb{R}^n$ be an eigenvector of A^T with corresponding eigenvalue α . Prove that if $\lambda \neq \alpha$, then \mathbf{v} and \mathbf{w} are perpendicular vectors. [HINT: Refer to exercise 34, and compute $\mathbf{w}^T A \mathbf{v}$ in two ways, using associativity of matrix multiplication.]
- 36. Answer the followings.
 - a. Prove that the eigenvalues of an $n \times n$ real matrix A are the same as the eigenvalues of A^T .
 - b. With reference to part(a), show by a counterexample that an eigenvector of A need not be an eigenvector of A^T .
- 39. Cayley-Hamilton theorem: Every square matrix A satisfies its characteristic equation. That is, if the characteristic equation is $p_n\lambda^n + p_{n-1}\lambda^{n-1} + \cdots + p_1\lambda + p_0 = 0$, then $p_nA^n + p_{n-1}A^{n-1} + \cdots + p_1A + p_0I = O$, the zero matrix. Illustrate the Cayley-Hamilton theorem for the matrix $\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$.

6