对于线性规划问题:

$$\min x_1 + \alpha x_2 + x_3$$
s.t. $x_1 + 2x_2 - 2x_3 \le 0$

$$-x_1 + x_3 \le -1$$

$$x_1, x_2, x_3 \ge 0$$

- (1) 当 $\alpha = -1$ 时用单纯形法求该问题的最优解和最优值;
- (2) α 取何值时,该问题无界;
- (3) α 取何值时,该问题的对偶问题无界。

解:

$$\min x_1 + \alpha x_2 + x_3 + My$$

$$s.t. \quad x_1 + 2x_2 - 2x_3 + x_4 = 0$$

$$x_1 \quad -x_3 \quad -x_5 + y = 1$$

$$x_1, x_2, x_3, x_4, x_5, y \ge 0$$

	1	α	1	0	0	M	
	x_1	x_2	x_3	X_4	x_5	У	
$0 x_4$	1	2	-2	1	0	0	0
M y	1	0	-1	0	-1	1	1
	M-1	-α	-M-1	0	-M	0	M

	1 x ₁	α x_2	1 x ₃	0 x ₄	0 x_5	М у	
1 x ₁	1	2	-2	1	0	0	0
<i>M</i> y	0	-2	1	-1	-1	1	1
	0	-2M+2-α	M-3	1	-M	0	M

	1	α	1	0	0	M	
	\mathcal{X}_1	x_2	x_3	x_4	x_5	у	
1 x ₁	1	-2	0	-1	-2	2	2
$1 x_3$	0	-2	1	-1	-1	1	1
	0	$-4-\alpha$	0	-2	-3	3-M	3

 $\alpha = -1$ 时,为最优表,最优解 $\boldsymbol{x}^* = (2,0,1)^T$,最优值 $\boldsymbol{z}^* = 3$ 。

(2) $-4-\alpha > 0$, 即 $\alpha < -4$ 原问题无界。

(3) 因原问题有可行解,所以对偶问题不会无界;