

Prédiction de consommations et d'émissions des bâtiments

Guilhem Berthou - Pierre-Antoine Ganaye (mentor)

Introduction

<u>Problématique</u>: Prédire la consommation totale d'énergie et les émissions de CO2 des bâtiments non destinés à l'habitation de la ville de Seattle.

⇒ <u>Interprétation</u>: Il s'agit d'un problème de **régression**. Nous allons tenter de **prédire** les **variables cibles** (*target*) à partir des **variables présentes dans la base de donnée** (*features*).

Sommaire

1. Préparation de la donnée

- a. Nettoyage
- b. Exploration et Feature Engineering
- c. Pre-processing

2. Méthodologie de modélisation

- a. Entraînement des modèles
 - Modèle linéaires
 - ii. Modèles non linéaires
 - iii. Modèles ensemblistes
- b. Métriques d'évaluation de la performance des modèles
- c. Optimisation des hyperparamètres des modèles

3. Synthèse

- a. Comparaison des résultats
- b. Sélection du meilleur modèle Chronologie des améliorations réalisées
- c. Impact de l'ENERGYSTAR SCORE

Sommaire

1. Préparation de la donnée

- a. Nettoyage
 - i. Harmonisation des datasets
 - ii. Suppression des données non nécessaires
- b. Exploration et Feature Engineering
 - i. Analyse du type de bâtiments
 - ii. Feature Engineering
 - iii. Analyse des targets
 - 1. Analyse bivariées
 - Traitement des outliers
 - 3. Analyse univariée
- c. Pre-processing
 - i. Standardisation
 - ii. Prévention de la fuite de donnée Binarisation des sources d'énergie
 - iii. Encodage des variables catégorielles

2. Méthodologie de modélisation

- a. Entraînement des modèles
 - Modèle linéaires
 - ii Modèles non linéaires
 - iii. Modèles ensemblistes
- b. Métriques d'évaluation de la performance des modèles
- c. Optimisation des hyperparamètres des modèles

3. Synthèse

- a. Comparaison des résultats
- b. Sélection du meilleur modèle Chronologie des améliorations réalisées
- c. Impact de l'ENERGYSTAR SCORE

- Préparation de la donnée
 - a. Nettoyage
 - Exploration et Feature Engineering
 - c. Pre-processing

- > Harmonisation des colonnes des deux datasets
 - o Différences de libellés :
 - Contrôle des magnitudes similaires et modification des libellés
 - Différences de formats :
 - Séparation des adresses (2015) en latitudes et longitudes
- Suppression des données non nécessaires
 - Suppression bâtiments résidentiels
 - Suppression des doublons
 - Conservation de la dernière valeur disponible
 - Suppression des variables non pertinentes
 - Variables de description insuffisante (Weather Normalized)
 - Unités redondantes
 - Variables éparses (Comments, outliers)
 - Suppression des lignes dont les *Targets* sont manquantes
- ⇒ <u>Conclusion</u>: Nous obtenons un dataset propre de **1676 lignes** et **39 colonnes** sur lequel nous pouvons commencer l'exploration de la donnée.

- Préparation de la donnée
 - Nettovage
 - b. Exploration et Feature Engineering
 - c. Pre-processing

Analyse du type de bâtiments

- Les sous-catégories majoritaires sont :
 - Small and Mid-Sized Office (17%)
 - Other (11%)
 - Warehouse (11%)
- Six sous-catégories < 1% :
 - Hôpitaux
 - Laboratoire
 - etc.

⇒ <u>Conclusion</u>: Nous supposons de *a priori* que les catégories de bâtiments puissent avoir un impact sur nos cibles. Nous veillerons à ce que certaines données ne soient pas des **outliers**.

- 1. Préparation de la donnée
 - a. Nettovage
 - b. Exploration et Feature Engineering
 - c. Pre-processing

Feature Engineering :

- Création d'une date d'un âge de bâtiment
 - BuildingAge
- Construction d'une variable unique pour prise en compte des longitudes et latitudes :
 - Haversine Distance

⇒ <u>Conclusion</u>: Nous allons maintenant pouvoir analyser nos variables cibles, notamment *par* rapport à ces variables.

- Préparation de la donnée
 - Nettovade
 - b. Exploration et Feature Engineering
 - Pre-processing

Analyse bivariée des targets :

En fonction de la Distance de Haversine

Energy Use vs geographical data

- Préparation de la donnée
 - a. Nettovage
 - b. Exploration et Feature Engineering
 - Pre-processing

Analyse bivariée des targets :

En fonction de la **Distance de Haversine**

CO2 Emissions vs geographical Data

- Préparation de la donnée
 - Nettovage
 - b. Exploration et Feature Engineering
 - . Pre-processing

Analyse bivariée des targets :

En fonction de l'âge des bâtiments (Building Age)

- Préparation de la donnée
 - a. Nettoyage
 - b. Exploration et Feature Engineering
 - Pre-processing

Analyse bivariée des targets :

En fonction de l'âge des bâtiments (Building Age)

Analyse bivariée des targets : En fonction du

type de bâtiments

Energy use and CO2 Emissions per PrimaryPropertyType

Exploration et Feature Engineering

- 1. Préparation de la donné
 - Nettovage
 - b. Exploration et Feature Engineering
 - c. Pre-processing

Conclusion - Analyse bivariée des targets :

- O Distance de Harvesine :
 - Impact possible, non clairement défini
- Building Age :
 - Impact possible, non clairement défini
- Type de bâtiments :
 - Fort Impact de certaines catégories
 - ⇒ À prendre en compte dans notre identification des outliers.

- 1. Preparation de la donnée
 - Nettovage
 - b. Exploration et Feature Engineering
 - c. Pre-processing

Traitement des outliers : Analyse Multivariée

Electricity consumption by total floor area and PrimaryPropertyType

⇒ <u>Conclusion</u>: Présence d'outliers - nous supprimons les données dont la consommation électrique est > 0.3E8 (kBtu).

- Préparation de la donnée
 - a. Nettovage
 - b. Exploration et Feature Engineering
 - . Pre-processing

Traitement des outliers : Analyse Multivariée

Electricity consumption by total floor area and building type

⇒ <u>Conclusion</u>: Après suppression des outliers (54 points - 3% du dataset), nous obtenons une population plus harmonieuse.

- Préparation de la donnée
 - Nettovage
 - b. Exploration et Feature Engineering
 - . Pre-processing

Analyse multivariée des targets :

Matrice de corrélation

- Préparation de la donnée
 - Nettovage
 - b. Exploration et Feature Engineering
 - Pre-processing

Analyse univariée des targets :

Test de Normalité - Kolmogorov-Smirnov

Energy use distribution (2015-2016)

- Préparation de la donnée
 - Nettovage
 - b. Exploration et Feature Engineering
 - . Pre-processing

Analyse univariée des targets :

Test de Normalité - Kolmogorov-Smirnov

CO2 emissions distribution (2015-2016)

- Préparation de la donnée
 - Nettovage
 - b. Exploration et Feature Engineering
 - c. Pre-processing

> Conclusion:

- Analyse multivariée Matrice de corrélation :
 - Suppression des données de relevés nécessaire pour éviter la fuite de données.
 - La transformation de ces données en variables plus simples est à considérer.
- Analyse univariée Test de Normalité :
 - Standardisation nécessaire pour obtenir des features plus homogènes.

⇒ A prendre en compte dans notre **pre-processing**.

- Préparation de la donnée
 - a. Nettoyag
 - Exploration et Feature Engineering
 - c. Pre-processing

> Standardisation des données :

- Distribution centrées-réduites via StandardScaler (module preprocessing scikit-learn)
 - Modalités détaillées dans la méthodologie de modélisation (cf 2.)

> Prévention de la fuite de donnée :

- o **Binarisation** des sources d'énergie
- Suppression des sources d'énergie

Encodage des variables catégorielles :

- OneHotEncoder (Get_dummies)
- Mean Target Encoding
 - Modalités détaillées dans la synthèse des améliorations réalisées (cf 3.)

⇒ <u>Conclusion</u>: Nous obtenons un dataset préparé de **1520 lignes** et **15 colonnes** sur lequel nous pouvons commencer la *modélisation*.

Sommaire

1. Préparation de la donnée

- a. Nettoyage
- b. Exploration et Feature Engineering
- c. Pre-processing

2. Méthodologie de modélisation

- Entraînement des modèles
 - i. Modèle linéaires
 - Régression linéaire
 - 2. Régression Ridge
 - 3. Régression Lasso
 - ii. Modèles non linéaires
 - 1. KNN
 - 2. Arbre de décision
 - iii. Modèles ensemblistes
 - 1. Bagging (Random Forest)
 - 2. Boosting (LGBM)
- b. Métriques d'évaluation de la performance des modèles
 - i. Mean Absolute Error / Mean Absolute Percentage Error
 - i. R Squared
- c. Optimisation des hyperparamètres des modèles
 - i. Cross Validation
 - GridSearchCV

3. Synthèse

- a. Comparaison des résultats
- b. Sélection du meilleur modèle Chronologie des améliorations réalisées
- c. Impact de l'ENERGYSTAR SCORE

- Méthodologie de modélisation
 - a. Entraînement des modèles
 - b. Métriques d'évaluation de la performance
 - Optimisation des hyperparamètres
- Rappel de l'objectif du projet : Prédire les variables cibles (targets : Consommation d'énergie et Emissions de CO2) à partir des variables présentes dans la base de donnée (features).
 - Division de la base préparée en jeux d'entraînement / jeux de test :
 - train_test_split (Scikit Learn)
 - Proportion : **70% 30%**
 - Harmonisation : stratification via **qcut** (*pandas*)
 - Reproductibilité : random_state
 - Standardisation des données
 - Données d'entraînement :
 - Apprentissage des paramètres de normalisation sur le *training set*, puis transformation ;
 - Données de test :
 - Transformation du testing set en appliquant les paramètres appris sur le training set;
 - Séparation de nos targets en deux variables uniques

- Modèles linéaires
 - Régression linéaire
 - Régression Lasso
 - Régression Ridge
- Modèles non-linéaires
 - K-Nearest Neighbours (KNN)
 - Arbre de décision (*Decision Tree*)
- Modèles ensemblistes
 - Bagging (Random Forest)
 - Boosting (LGBM)

- 2. Méthodologie de modélisation
 - a. Entraînement des modèles
 - b. Métriques d'évaluation de la performance
 - Optimisation des hyperparamètres

- Méthodologie de modélisation
 - a. Entraînement des modèles
 - Métriques d'évaluation de la performance
 - Optimisation des hyperparamètres

- Modèles linéaires
 - Régression linéaire
 - Explique de manière linéaire, une variable Y (variable à expliquer target) en fonction de variables explicatives X
 - Régression Ridge
 - Forme de **régularisation** de la régression linéaire (via l'hyper-paramètre *L2*)
 - Permet d'éviter le sur-apprentissage en réduisant l'amplitude des coefficients de régression
 - Parameters : alpha = facteur de régularisation (multiplie L2)
 - Régression Lasso (Least Absolute Shrinkage and Selection Operator)
 - Forme de **régularisation** de la régression linéaire (via l'**hyper-paramètre** *L1*)
 - Méthode de sélection des variables (Modèle parcimonieux)
 - Parameters: alpha = facteur de régularisation (multiplie L1)

- Méthodologie de modélisation
 - a. Entraînement des modèles
 - b. Métriques d'évaluation de la performance
 - Optimisation des hyperparamètres

- Modèles non-linéaires
 - K-Nearest Neighbours (KNN)
 - Parameters :
 - N_neighbors : nombre de voisins considérés pour l'interpolation locale
 - Weights: (uniform vs distance) pondération des voisins

- Méthodologie de modélisation
 - a. Entraînement des modèles
 - b. Métriques d'évaluation de la performance
 - Optimisation des hyperparamètres

- Modèles non-linéaires
 - Arbre de décision (*Decision Tree*)
 - Parameters :
 - Max depth
 - Min Samples split
 - Min Samples leaf

- Méthodologie de modélisation
 - a. Entraînement des modèles
 - b. Métriques d'évaluation de la performance
 - Optimisation des hyperparamètres

- Modèles ensemblistes
 - Bagging (Random Forest)
 - Créer plusieurs copies d'un même modèle en entraînant chaque copie sur une partie aléatoire du dataset (boostraping)

- Modèles ensemblistes
 - Boosting (LGBM)
 - Entraîner les modèles à la suite des autres en leur demandant de corriger les erreurs de leurs prédécesseurs.

- Méthodologie de modélisation
 - Entraînement des modèles
 - b. Optimisation des hyperparamètres
 - . Métriques d'évaluation de la performance

Optimisation des hyperparamètres des modèles :

- Calcul de performance via Cross Validation
 - Evaluer la performance de généralisation d'un modèle

- Méthodologie de modélisation
 - Entraînement des modèles
 - b. Optimisation des hyperparamètres
 - . Métriques d'évaluation de la performance

- Optimisation des hyperparamètres des modèles :
 - Recherche des hyperparamètres via GridSearchCV :
 - Définition d'une plage de valeurs possibles pour les hyperparamètres (grid)
 - Evaluation des performances des modèles pour chaque combinaison d'hyperparamètres
 - Calcul de la performance réalisé par Cross Validation (nombre de split par défaut, cv = 5)

- Méthodologie de modélisation
 - Entraînement des modèles
 - b. Optimisation des hyperparamètres
 - c. Métriques d'évaluation de la performance

- Métriques d'évaluation de la performance des modèles :
 - Module metrics de sklearn
 - Mean Absolute Error (MAE) I Mean Absolute Percentage Error (MAPE)

$$MAE = \frac{1}{m} \sum |y_{vrai} - y_{pred}|$$

■ Mean Squared Error (MSE) / Root Mean Squared Error (RMSE)

$$MSE = \frac{1}{m} \sum (y_{vrai} - y_{pred})^2$$

- Méthodologie de modélisation
 - a. Entraînement des modèles
 - b. Optimisation des hyperparamètres
 - Métriques d'évaluation de la performance

- Métriques d'évaluation de la performance des modèles :
 - Coefficient de détermination (R Squared)
 - Évalue la performance du modèle par rapport au niveau de variation présent dans les données
 - Numérateur = *Erreur quadratique*
 - Dénominateur = Variance

$$R2 = 1 - \frac{\sum (y_{vrai} - y_{pred})^2}{\sum (y_{vrai} - \overline{y_{vrai}})^2}$$

- Valeurs possibles
 - R2 = 1
 - Erreurs commises par le modèle << Variance des données
 - R2 = 0
 - Modèle prédit la moyenne (indépendant des features)
 - R2 < 0
 - Erreurs commises par le modèle >> Variance des données

Sommaire

1. Préparation de la donnée

- a. Nettoyage
- b. Exploration et *Feature Engineering*
- c. Pre-processing

2. Méthodologie de modélisation

- a. Entraînement des modèles
 - Modèle linéaires
 - ii. Modèles non linéaires
 - iii. Modèles ensemblistes
- b. Métriques d'évaluation de la performance des modèles
- c. Optimisation des hyperparamètres des modèles

3. Synthèse

- a. Comparaison des résultats
- b. Sélection du meilleur modèle Chronologie des améliorations réalisées
 - i. Analyse d'erreur par type de bâtiments
 - ii. Mean Target Encoding
 - iii. Analyse de la Feature Importance
- c. Impact de l'ENERGYSTAR SCORE

Comparaison des résultats

Comparaison	doc	rácultata	

a. Comparaison des résultats

- Sélection meilleur modèle Chronologie des améliorations
- c. Impact de l'ENERGYSTAR Score

Target	Model	r2_test	mae_test	mape_test
SiteEnergyUse(kBtu)	LinearRegression()	0.68	2,193,562.93	0.69
SiteEnergyUse(kBtu)	Ridge()	0.68	2,191,454.62	0.68
SiteEnergyUse(kBtu)	Lasso(max_iter=2000, tol=0.1)	0.68	2,193,559.37	0.69
SiteEnergyUse(kBtu)	DecisionTreeRegressor()	0.68	2,165,096.37	0.60
SiteEnergyUse(kBtu)	KNeighborsRegressor()	0.55	2,193,420.51	0.55
SiteEnergyUse(kBtu)	SVR()	-0.14	4,140,205.72	1.42
SiteEnergyUse(kBtu)	LGBMRegressor()	0.71_	1,890,701.11	0.59
SiteEnergyUse(kBtu)	RandomForestRegressor()	0.73	1,903,699.17	0.52

Target	Model	r2_test	mae_test	mape_test
TotalGHGEmissions	Ridge()	0.41	77.37	2.05
TotalGHGEmissions	Lasso(max_iter=2000, tol=0.1)	0.40	78.08	2.10
TotalGHGEmissions	DecisionTreeRegressor()	0.61	62.75	0.98
TotalGHGEmissions	KNeighborsRegressor()	0.30	65.30	0.99
TotalGHGEmissions	SVR()	0.07	77.59	0.97
TotalGHGEmissions	LGBMRegressor()	0.56	57.53	1.14
TotalGHGEmissions	RandomForestRegressor()	0.58	58.65	1.03

Conclusion : Le Random Forest réalise la meilleure qualité de prédiction.

La hiérarchie des performances des modèles nous alerte sur la cohérence des résultats.

- Synthèse
 - a. Comparaison des résultats
 - Sélection meilleur modèle Chronologie des améliorations
 - c. Impact de l'ENERGYSTAR Score

Prévention du sur-apprentissage

- Validation croisée (Cross Validation)
- Suppression des variables les moins importantes (features selection)

Détection du sur-apprentissage

Comparaison des performances obtenues sur le training set et testing set :

```
Target Model r2_train r2_test mae_test mape_test
SiteEnergyUse(kBtu) RandomForestRegressor() 0.938373 0.816616 1.514868e+06 0.433147
```

Conclusion: Les performances obtenues sur le testing set sont cohérentes avec celles obtenues sur le jeu d'apprentissage. L'écart constaté n'est pas trop important et ne traduit pas un trop fort sur-apprentissage.

- Synthèse
 - Comparaison des résultats
 - Sélection meilleur modèle Chronologie des améliorations
 - Impact de l'ENERGYSTAR Score

Sélection du meilleur modèle - Améliorations réalisées

Analyse d'erreur par type de bâtiments

TotalGHGEmissions prediction error by LargestPropertyUseType

- Synthèse
 - a. Comparaison des résultats
 - Sélection meilleur modèle Chronologie des améliorations
 - c. Impact de l'ENERGYSTAR Score

> Sélection du meilleur modèle - Améliorations réalisées

One Hot Encoding

Chaque modalité de variable catégorielle est remplacée par une colonne binaire

id	color	One Hot Encoding	id	color_red	color_blue	color_green
1	red		1	1	Θ	0
2	blue		2	0	1	0
3	green		3	0	0	1
4	blue		4	0	1	Θ

<u>Mean Target Encoding</u>

Chaque variable catégorielle est remplacée par une moyenne de la target étant donné la modalité considérée sur le training set.

- Synthèse
 - a. Comparaison des résultats
 - Sélection meilleur modèle Chronologie des améliorations
 - Impact de l'ENERGYSTAR Score

Sélection du meilleur modèle - Améliorations réalisées

Analyse de la Feature Importance

Feature Importance du RandomForestRegressor sur la consommation d'énergie

- Synthèse
 - Comparaison des résultat
 - Sélection meilleur modèle Chronologi des améliorations
 - c. Impact de l'ENERGYSTAR Score

Impact de l'ENERGYSTAR Score

Performances obtenues :

without ENERGYSTAR Score

with ENERGYSTAR Score

Conclusion: L'ENERGYSTAR Score permet d'améliorer la qualité de prédiction du modèle.

- Comparaison des résultat
- Sélection meilleur modèle Chronologi des améliorations
- c. Impact de l'ENERGYSTAR Score

Conclusion: La modification de l'importance des features confirme l'impact positif de l'ENERGYSTAR Score.

Conclusion

> Les modèles testés permettent de prédire avec une précision limitée les variables cibles

L'impact positif de l'ENERGYSTAR Score

- La hiérarchie des performances des modèles obtenue nous alerte :
 - Rassembler <u>plus de données</u> pour valider l'exactitude des prédictions
 - Ajouter des métriques pour analyser avec plus de précision la génération d'erreurs

Synthèse des remarques examinateur

- Attention à la **traduction dans l'utilisation finale** lors de la **création de variables** (Feature Engineering) :
 - Définir des règles de suppression des outliers plus précises (ex : type de bâtiments, surface, nombre de bâtiments par catégorie) afin de pouvoir produire une notice explicative claire au client
 - Définir des règles évidentes qui permettraient d'exclure dans tous les cas des points du dataset
 - <u>Ex :</u> Le modèle est utilisable tant que les bâtiments ne sont pas des hôpitaux ou des datacenters.
 - Variable binaire créée non-utilisable en pratique (son calcul nécessite de connaître la distribution de la variable sur la période et donc de faire des relevés) : A SUPPRIMER
- Analyse du sur-apprentissage à réaliser