Optimisation du camouflage d'un objet coloré dans un décor naturel par IA

HURET Alexandre

Année 2024-2025

Introduction

• Thème "Cycle et boucle" :

- Les algorithmes d'analyse d'image, comme les réseaux neuronaux convolutionnels (CNN), fonctionnent par cycles d'apprentissage.
- Ces boucles permettent de détecter les zones pertinentes d'une image et guider le placement de la balle.

Objectif:

• Concevoir un algorithme qui place automatiquement une balle colorée dans une image de décor naturel pour qu'elle soit bien intégrée mais encore visible.

Enjeux :

• Trouver un équilibre entre invisibilité et détectabilité, en jouant sur la couleur, la taille et la position.

Problématique

Question centrale

Comment un algorithme peut-il placer une balle colorée dans une image pour qu'elle s'intègre harmonieusement au décor tout en restant trouvable par un observateur attentif ?

- Perception humaine :
 - Le cerveau cherche des anomalies ou ruptures visuelles.
- IA et camouflage :
 - L'algorithme doit apprendre à "imiter" les textures et couleurs de l'environnement tout en gardant une subtilité pour être repéré.

Ce que je compte faire (1/2)

• Phase 1 : Préparation des données

- Sélectionner une dizaine d'images variées (forêt, ville, plage, intérieur...)
- Identifier les zones pertinentes pour intégrer une balle (perspective, profondeur...)

Phase 2 : Définition des critères

- Établir ce qu'on entend par une bonne intégration visuelle
- Définir des contraintes : visibilité minimale, intégration harmonieuse. . .

• Phase 3 : Conception de l'approche algorithmique

- Réfléchir à une méthode pour détecter les zones où placer la balle
- Choisir les caractéristiques à prendre en compte (couleurs, contrastes, contours...)

Ce que je compte faire (2/2)

• Phase 4 : Implémentation

- Développer l'algorithme en Python
- Intégrer une balle dans chaque image selon les critères définis

Phase 5 : Analyse des résultats

- Vérifier si les balles sont bien intégrées mais restent repérables
- Faire évaluer le résultat par des observateurs humains

• Phase 6 : Améliorations et conclusion

- Identifier les limites de l'approche
- Proposer des pistes d'amélioration ou d'automatisation plus fine

Phase 1 — Analyse de l'image 1

chemin_vers_image_1.jpg

