Cálculo y presupuesto de un sistema de riego para 10 ha de plátano en El Zamorano.

Dideloteda Wilson Poperdo Decusta Agrecola Pamamericara Apariado 43 Techoibalpa Honguras

Teddy Joffre Abril Vanegas

ZAMORANO

Carrera de Ciencia y Producción Agropecuaria Abril, 2000

CALCULATION AND BUDGET FOR AN IRRIGATION SYSTEM FOR 10 HA OF PLANTAINS IN ZAMORANO.

Teddy Joffre Abril Vanegas

ZAMORANO
April, 2000

2

ZAMORANO Carrera de Ciencia y Producción Agropecuaria

Cálculo y presupuesto de un sistema de riego para 10 ha de plátano en El Zamorano.

Tesis presentada como requisito parcial para optar al título de Ingeniero Agrónomo en el Grado Académico de Licenciatura

presentado por

Teddy Joffre Abril Vanegas

Honduras: Abril, 2000

El autor concede a El Zamorano permiso para reproducir y distribuir copias de este trabajo para fines educativos. Para otras personas físicas y jurídicas se reservan los derechos de autor.

Teddy Joffre Abril Vanegas

Zamorano, Honduras Abril, 2000

Cálculo y presupuesto de un sistema de riego para 10 ha de plátano en El Zamorano.

Presentado por:

Teddy Joffre Abril Vanegas

Aprobada:

Pablo Quintana

Asesor Principal

Odilo Duarte, Ph.D.

Asesor Secundario

Francisco Alvarez, Ing. Agr.

Asesor Secundario

Odilo Doarte_Ph_D

Coordinador PIA

Jorge Restrepo, M.B.A. Coordinador de la Carrera de

Ciencia y Producción Agropecuaria

Antonio Flores, Ph.D.

Decano

Keith Andrews, Ph.D

Director General

DEDICATORIA

A mis abuelos Nelson Abril y Rafaela Muñoz por la confianza que depositaron en mi.

A mi abuela Alejandrina por haber sido mi gran apoyo emocional, y mi fuente de inspiración.

A mis padres Ausberto Abril y Carmita Vanegas, por haber hecho de mi un hombre de bien.

A mis hermanos Nelson y Yeltsin, por ser mi base para luchar por mi futuro y el de ellos,

A mis tíos, en especial a Jorge Abril por ser un ejemplo de superación para mi persona. A mis primos, primos hermanos e inolvidables amigos.

A mi compañero de cuarto John Vallejo por ser como un hermano.

A mis amigos Lenin Gualoto, Francisco Zaconeta, Euro Torres, John Vallejo por su amistad incondicional y por los grandes momentos que tuvimos y que nos ayudo a olvidarnos de nuestras penas y hacer mas amena la estadía en Honduras.

A mi descendencia zamorana, Eli Sánchez, Luis Cisneros y Gonzalo Caamaño.

A Iris Santamaria por haberme dado todo el apoyo necesario para seguir adelante en el Zamorano.

A Walter Lasso y Marilú Bravo, mis segundos padres, por ser especiales y una gran ayuda a mi formación.

A mi colonia Orense.

A mi ALMA MATER ("El Zamorano") por haberme forjado como profesional, y haberme permitido vivir en su corazón.

AGRADECIMIENTO

A mi Dios todopoderoso y a la Virgen Santisima de El Cisne por haberme dado la dicha de poder graduarme por segunda vez y por haberme escuchado en todo momento.

A mis abuelitos Nelson y Rafaela por haber confiado y apoyado siempre.

A mi abuelita Alejandrina por haberme cuidado siempre, por sus preocupaciones, su amor de madre, su apoyo y consejos, por ella lo hice todo y donde ella se encuentre esta viendo el fruto de su amor.

A mis padres Ausberto y Carmen por haberme dado la dicha de tener vida, por apoyarme y darme todo el cariño necesario.

A mis hermanos Nelson, Yeltsin, Gloria, Yenny, Mercy, Alfredo por no olvidarse de mi. A Eduardo Abad por todos su sabios consejos y su apoyo que me ha dado desde pequeño y que me ha ayudado a seguir adelante.

A mis tíos, tías, por estar pendiente de mi todo este tiempo.

A mis primos, primas por acordarse de su primo a la distancia,

A Marcos S., Christian C., Geovanny C., Guido, Edinson, Paola C., Hugo A., Ingerborth, Yasmin P., Evelyn J., Carla M., Freddy Z., amigos y amigas en general por mantenerse siempre cerea de mf.

A mis amigos Victor Arias, Franco Sangolnisa, Leonidas Tavares, Melvin Medina, Erick Naranjo, Ignacio Pimentel, Alvaro Zuñiga, Byron Reyes, Eduardo Rivera, Vilma Tarifa, Diana Rivera por su amistad sincera.

A mi colonia orense por ser como mi familia en esta escuela, en especial a Johanna Córdova y a Motgomery Sanchez.

A mis amigas y amigos en general del zamorano, en especial a Yamile M., Ximena S.

A mis nictos Eli Sánchez, Luis Cisneros y Gonzalo Caamaño, por recordarme lo que es vivir en Zamorano.

Al Sr. Pablo Quintana por su conocimientos y por todo el apoyo desinteresado que me brindó. Al Dr. Odilo Duarte por su carisma, comprensión y ayuda brindada.

A todo el personal de ZESA por su ayuda incondicional.

ACRADECIMIENTO A PATROCINADORES

A mis abuelos Nelson Abril y Rafaela Muñoz por su preocupación y por todo el esfuerzo e inversión que hicieron en mí, para ayudar a forjarme como un profesional.

A mis padres Ausberto Abril y Carmen Vanegas por el soporte económico y emocional que me brindaron durante estos cuatro años.

RESUMEN

Abril, Teddy. 2000. Cálculo y presupuesto de un sistema de riego para 10 ha de plátano en la Escuela Agrícula Panamericana. Proyecto Especial del Programa de Ingeniero Agrónomo. El Zamorano, Honduras, 51p.

El plátano es un cultivo de alta importancia socioeconómica por su contribución en la generación de divisas, trabajo para el país y su alto consumo humano. Debido a sus características fisiológicas requiere una dotación de agua adecuada y constante para cubrir sus necesidades con el menor esfuerzo posible. Cuando la cantidad de lluvia no es suficiente en determinada época del año o no llueve, es necesario proporcionar agua de riego para evitar el estrés de la planta, por eso un buen diseño del sistema de riego hará que los rendimientos en las plataneras sean óptimos, si las demás prácticas se hacen adecuadamente. Este proyecto se planeó para las vegas 2, 3 y 5 de Monte Redondo en el El Zamorano. Como este proyecto es con fines educativos se diseñaron dos tipos de riego. para comparar su eficiencia y su costo: a) uno subfoliar, con aspersores marca Senninger 2014HD, cuya descarga es de 2.16 galones/minuto a 40 PSI, una capacidad de aplicación de 0.13"/h y un diámetro mojado de 70', con un espaciamiento de 36' × 42' y una eficiencia de aplicación de 75.20%; b) otro de microaspersión, con microaspersores Bowsmith 50J, una descarga de 0.25 galones/minuto a 15 PSI, cuya capacidad de aplicación es de 0.119"/h, un espaciamiento de 12.30' × 16.41' y una eficiencia de aplicación de 90%. Se determinó que el costo de materiales e instalación por hectárea para microaspersión es de \$3008.92 y para subfoliar \$2662.43, con una cantidad de agua a usar de 8000 gl/h/ha y de 9204 gl/h/ha, respectivamente. Se decidió instalar estos dos sistemas debido a que las eficiencias de aplicación de agua son más altos que las de cualquier otro aplicable al cultivo. El consumo de energía está dentro de un rango de 0.45-0.75 HP por hectárea, el más bajo dentro de todo lo conocido. El método de microaspersión puede estar limitado en la aplicación, porque no todos los productores tienen instalado el cable de apoyo, que es la estructura que se aprovecha para instalarlo.

Palabras claves: Característicus fisiológicas, costo, diámetro mojado, estrés, microaspersión, subfoliar.

Dr. Abelino Pitty

NOTA DE PRENSA

¿Es rentable la irrigación en plátano?

El plátano es un cultivo de mucha importancia para los países que lo producen por la generación de trabajo, ingreso de divisas y por su alto consumo humano. Debido a que es una planta grande, requiere de una dotación constante de agua para cubrir sus necesidades.

Este cultivo por lo general no requiere irrigación ya que siempre se ha sembrado en lugares con altas incidencias de lluvias, pero en zonas donde la cantidad de agua lluvia no es suficiente en determinada época del año o no llueve, es necesario proporcionar agua de riego para que la planta no sufra, teniendo siempre fruta de alta calidad, por eso una buena irrigación evitará que los rendimientos en las plantaciones plataneras disminuyan, siempre y cuando las demás prácticas se realizan adecuadamente.

Zamorano se propone instalar un proyecto un sistema de riego para 10 ha, usando dos tipos de riego: a) el de aspersión subfoliar con una descarga de 2.16 galones por minuto (gal/min) a 40 libras de presión (PSI); b) otro de microaspersión cuya descarga es de 0.25 galones por minuto (gal/min) a 15 libras de presión (PSI).

Se determinó que la inversión por hectárea para microaspersión es de 3008,92 dólares y para subfoliar 2662.43 dólares, la cantidad de agua que ocupa cada riego por hectárea es de 9204 galones por hora por hectárea (gl/h/ha) para subfoliar y de 8000 galones por hora por hectárea (gl/h/ha) para microaspersión.

Las ventajas de estos tipos de riego comparados con otros es el buen uso del agua y que el consumo de energía para bombear es menor. El método de microaspersión puede estar limitado en la aplicación, ya que no todos los productores tienen instalado el cable de apoyo, que es la estructura que se aprovecha para instalarlo.

Se espera que con estos sistemas de riego la conversión sea de 1.38 cajas por racimo, la cual sin riego sería de 0.73 cajas por racimo; esto nos dice la importancia de invertir en un buen sistema de riego para que nuestros rendimientos no disminuyan y así poder tener ingresos satisfactorios.

Lic/Sobeyda Alvarez

INDICE GENERAL

		Pag.,
Por	rtadilla	î
	rechos de autor	ii
Αpı	robación	ΪΪ
De	dicatoria	iv
Agu	radecimientos	V
	radecimientos a patrocinad ores	vj
_	sumen.	vii
No	ta de Prensa.,	viii
	fice General	ìχ
Ind	lice de Cuadros	xii
Ind	lice de Figuras	xiii
Ind	lice de Anexos	xiv
1.	INTRODUCCION	1
	I.1 ANTECEDENTES	
	1.2 OBJETTVOS.	2
	1.2.1 Objetivo General	
	1.2,2 Objetivo Especifico	2
		-
2.	REVISIÓN DE LITERATURA	3
•	2.1 RJEGO	3
	2.1.1 Principales sistemas de riego aplicados al plátano	4
	2.1.1.1 Por Gravedad	4
	2.1.1.2 Por Aspersión	5
	2.1.1.2.1 Sobre el follaje.	5
	2.1.1.2.2 Bajo el follaje.	5
	2.1.1.2.2.1 Microaspersión (Riego de bajo volumen)	_
	2.1.1.3 Por goteo	
	2.1.2 Selección del sistema de riego	6
	2.1,2.1 Cultivo.	-
	2.1,2.2 Suelo	_
	2.1.2.3 Topografia.	
	2.1.2.4 Costos	
	2.1.2.5 Clima	
	2.1.2.6 Cantidad y calidad del agua	

	2.1.3 Determinación de los parametros basicos para el	
	diseño de sistemas de riego	9
	2.1.3.1 Textura y estructura del suelo	9
	2.1.3.2 Densidad aparente	
	2.1.3.3 Capacidad de retención del agua o capacidad de campo	
	2.1.3.4 Infiltración	
	2.1.3.5 Uso consuntivo	
	2.1.3.6 Lámina de riego	
	2.1.3.7 Frequencia de riego.	17
	2.2 DRENAJE	
	2.2.1 Sistema de drenaje	
	2.2.1.1 Drenajes primarios o colectores	
	2.2.1.2 Canales secundarios	
	2.2.1.3 Canales terciarios o boquetes	
	2.2.1.4 Canales cuatemarios	
	2.2.2 Estudios básicos para determinar el sistema de drenaje	
	2.2.2.1 Estudio topográfico	
	2.2.2.2 Análisis de perfil del suelo	
	2.2.2.3 Conductividad hidráulica	
	2.2.2.4 Calidad de agua	
	2.2.2.5 Estudios hidrológicos	
	2.2.2.6 Propiedades físicas de los suelos	
	2.2.2.7 Estudios freatimétricos	.17
3.	MATERIALES Y MÉTODOS	18
	3.1 UBICACIÓN DEL PROYECTO	18
	3.1.1 Historial climático del terreno	18
	3.2 DEFINICIÓN DE LÍMITES	.19
	3.3 ANÁLISIS DE SUELO	.19
	3.4 NIVELACIÓN	.19
	3.5 DIVISIÓN DEL ÁREA	20
	3.6 TIPO DE RIEGO	
	3.7 MEMORIA DE CÁLCULO HIDRÁULICO	
1	RESULTADOS Y DISCUSIÓN	21
· T.	4.1 NIVELACIÓN	71 71
	4.2 PARÁMETROS DE DISEÑO	.21
	4.2 1 Pierra por expansión	.21
	4.2.1 Riego por aspersión	∴! Эт
	4.2.2 Riego por microaspersión.	21
	4.3 MEMORIA DE CÁLCULO HIDRÁULICO	22
	4.4 LISTA DE MATERIALES	0ئ. مم
	4.4.1 Riego por aspersión	υ.
	4.4.2 Riego por microaspersión.	.32
	4.5 PRESUPUESTO	32
	4.5.1 Para el sistema de riego.	.32

	4.5.2 Construcción de un pozo mecánico de 300 pies de profundidad ademado con tubería PVC 10"	32
	4.5.3 Equipo para bombeo	33
_	GONG! HOLONDS	
3.	CONCLUSIONES	34
6.	RECOMENDACIONES	35
7.	BIBLIOGRAFÍA	36
8.	ANEXOS	38

INDICE DE CUADROS

Cu	adro	Pag.
1.	Producción de banano, con riego y sin riego	.4
2.	Rangos normales de densidad aparente según clase textural	10
3.	Profundidad requerida del nivel freático después de la regarga (Aplicable al plátano)	16
4.	Clasificación de la conductividad hidrántica del suelo	. 17
5.	Valores medios de macroporosidad del suelo	17
G.	Datos climatológicos de la estación meteorológica de El Zamorano, Junio 1999 – Febrero 2000	18
7.	Análisis de suelo	19
8.	Análisis hidráulico para el elevador y el nudo de válvula de bioque. Proyecto Plátano, sistema SP:	22
	Diseño hidráulico de tuberío principal y sub — principal, aspersión subfoliar	 22
10	. Diseño hidráulico de múltiples, aspersión subfoliar	. 23
ΙΙ	. Diseño hidráulico de tubería principal y sub - principal, Microaspersión	25
12	Diseño hidráulico de múltiples, microaspersión	., 27

INDICE DE FIGURAS

Fig	figura Indices tínicos de infiltración para varios suclos	
1.	Indices típicos de infiltración para varios suelos	.[]
2.	Sección de corte de un canal	14

INDICE DE ANEXOS

Λn	exo	Pag.
1.	Sistema de dreoujes de uoa plantación bananeru	. 39
2.	Construcción de drenajes,	.40
3.	Drenaje secundario	.40
4.	Drenaje tereiario o boquete	.41
5.	Precipitación mensual 1942 – 1999 Estación Zamorano	. 42
6.	Hoja de cálculo de área para riego por aspersión	.43
7.	Datos de nivelación para el área de riego por aspersión	44
8.	Plano de bloques, tuberfas principales y cable vfa	51

1. INTRODUCCION

El plátano es un cultivo de alta importancia socioeconómica. Su valor se ha venido incrementando a través del tiempo ya que no sólo es un componente principal en la canasta familiar sino también por su contribución en la generación de divisas y trabajo, así como su alto consumo humano y animal.

La planta de plátano, por sus características botánicas, requiere una adecuada y constante dotación de humedad en el suelo que le permita obtener el agun para sus necesidades fisiológicas con el menor esfuerzo posible. Cuando la cantidad de lluvia no es suficiente en determinada época del año o no llueve, es necesario proporcionar agua de riego para evitar el sufrimiento o estrés de la planta.

Entre tantas definiciones de riego que existen, "echarle agua al suelo para que puedan erecer las plantas", es la más sencilla que sobre riego puede expresarse (Gunderson, 1979).

La naturaleza es pródiga pero no siempre podemos confiar en ella, por eso el riego permite un mayor control de los factores de la producción que cualquier otro sistema en la agricultura.

1.1 ANTECEDENTES

El arte de regar está unido al desarrollo de las más antiguas civilizaciones (Deloye *et ul.*, 1967). En la era moderna la civilización se ha preocupado en aumentar la producción para satisfacer sus necesidades.

En el pasado el manejo que se le daba al plátano era rústico debido a su poca demanda; en la actualidad es un rubro de exportación al cual se le esta dando una importancia parecida al banano, debido a que bastantes personas que lo consumen han formado significativos grupos poblacionales en otros países al emigrar.

El sistema de riego es uno de los principales costos en una plantación, y como en la mayoría de proyectos se debe hacer un buen análisis técnico-financiero para tomar en cuenta la operación eficiente en combinación con el costo y los riesgos que esto implica,

Según Withers y Vipond (1978), el riego se diseña con la intención de producir un patrón conveniente de crecimiento para el cultivo. Un sistema de riego mal diseñado puede causar serios problemas en la producción ya que debe de tener un balance entre planta, suelo y el agua.

El drenaje de las aguas juega un papel complementario en el diseño de riegos porque se debe eliminar el excedente de agua generado por la lluvia o por el mismo riego.

La elaboración de un sistema eficiente de riego requiere de muchos cuidados y estudios bien realizados sobre suelos, estudios topográficos y de recursos de agua.

1.2 OBJETIVOS

1.2.1 Objetivo general

 Elaborar el diseño del sistema de riego por aspersión subfoliar y micro aspersión en las Vegas de Monte Redondo en la Escuela Agrícola Panamericana con su respectivo análisis de costos, para una plantación de 10 ha de plátano.

1.2.2 Objetivos específicos

- Demostrar los beneficios de un sistema de riego bien planificado.
- Cubrir la demanda hídrica requerida por el cultivo y determinar la frecuencia entre riegos.

2. REVISION DE LITERATURA

2.1 RIEGO

El plátano, siendo una hierba gigante con una superficie foliar muy grande, transpira en grandes cantidades por lo que necesita una dotación constante de humedad en el suelo para crecer normalmente (Duarte, 1991). La pluviosidad debe satisfacer los requerimientos hídricos de la planta, por eso el régimen de lluvias debe se lo más regular posible, sin períodos secos prolongados que puedan tener efectos desfavorables en el desarrollo de la planta y por ende de la producción.. Se dice que el plátano requiere de 150 a 160 mm por mes, o sea, 4 6 5 mm diarios (Soto, 1985). Sin embargo es obvio que el mínimo aceptable debe variar con el suelo y, presumiblemente, también con la temperatura (Simmonds, 1973).

Desde el punto de vista técnico, el riego se justifica para cualquier cultivo o zona cuando "el requerimiento de agua del cultivo no es llenado por el suministro hídrico". En términos generales, cuando la evaporación de un lugar es mayor que la precipitación, todos los cultivos necesitan riego (Belalcázar, 1991).

Según Soto (1985), hay coincidencia de varios autores, en que la cosecha aumenta con la aplicación de riego, a la vez que se obtiene fruta de mejor calidad para los mercados. Por otro lado, un déficit de agua induce a una maduración prematura del fruto, con los consecuentes problemas de mercado.

Según Belalcazar (1991), en la región de Urabá-Colombia, las lluvias alcanzan promedios superiores a los 2500 mm, utilizando un coeficiente K=I (cultivo denso plenamente desarrollado). Los resultados comparativos de regar vs no regar obtenidos en rendimientos de plátano se pueden observar en el Cuadro I, en que se nota claramente la diferencia en racimos embolsados, peso por racimo, porcentaje de recobro, número de racimos rechazados/ha y producción. Se debe tomar en cuenta que en esta región las lluvias son uniformes durante todo el año, en el caso de Zamorano que tiene una época de sequía de 6 meses bien acentuadas, la diferencia en rendimiento va a ser bien significativa y la inversión en un sistema de riego es indispensable.

Cuadro I. Producción de banano, con riego y sin riego. (Salazar, 1987).

Período	Embo Rac/h	lse a-Scm.	Peso Racim	o(Kg)	De Recobr	o	Racimo Rechaz	vs rados/ha	Produc 1=1,000	
	Con Riego	Sin Riego	Con Riego	Sin Riego	Con Riego	Sin Riego	Con Riego	Sin Riego	Con Riego	Sin Riego
1	44.01	39.28	33.32	33.49	99.58	99.78	0.19	0.32	1.000	1.000
2	46.20	39.48	32.24	32.34	97.57	95.63	0.20	0.39	0.964	0.876
3	46.06	34.63	32.30	31.09	95.06	85.55_	0.49	1.23	1.037	0.830
4	45.94	32,16	30.82	23.40	90.40	69.85	0,62	2.71	1.092	0.637
5	47.80	36,00	30.78	27.84	93.14	73.28	0.71	4.01	0.993	0.626
6	50.46	42.37	30.73	25.87	94.55	82.56	0.89	5.36	1.050	0.566
7	55.04	48,61	30.00	24.33	95.17	89.74	0.71	8.07	0.983	0.524
8	51.94	56.19	32.90	24,63	91,33	90.16	0.26	2.37	1.072	0.597
9	44.79	58.29	31.18	24.61	96.71	94.00	0.46	2,46	1.140	0.732
10	38.72	50.73	30.59	25.67	95.30	98.42	0.61	1.70	1.203	0.917
11	39.73	43.29	32.08	29.37	94.57	96.74	0.37	0.67	1.181	1.192
12	47.95	45.26	30.23	29.33	89.55	85.91	0.61	0.86	0.909	1.097
13	51.78	46,30	31.95	31.31	91.53	86.28	0.09	0.18	0.851	1.023

Nota: El 28 de mayo se cortó fruta regada, con un rendimiento de 1.38 cajas/racimo. El 31 de mayo se cortó fruta no regada, con un rendimiento de 0.73 cajas/racimo.

Fuente: Belalcázar, 1991

2.1.1 Principales sistemas de riego aplicados al plátano

2.1.1.1 Por Gravedad. Es conveniente para los suelos permeables y porosos. Este sistema es recomendable cuando los recursos de agua son abundantes y económicos. El agua baja por canales abiertos, con la pendiente apropiada. Es un método barato pero no permanente, por lo que requiere de mucho mantenimiento para distribuir el agua (Soto, 1985). Según Belsicázar (1991), exige más mano de obra que los demás sistemas para su distribución y no produce incrementos considerables en la humedad relativa.

El método mas usado es el riego por surco aunque en la realidad no es el mas apropiado en plátano, el agua debe llegar de una manera ni demasiado lenta, ni demasiado rápida, con el fin de evitar erosión o que se produzca sedimentación (Soto, 1985). Con el tiego en surcos se aborda un método en que sólo una parte del suelo recibe directamente el agua, el resto se humedece por infiltración lateral (Deloye et ul., 1967).

En comparación con otras prácticas de riego de superficie, el de surco ofrece una menor superficie abierta del agua y, por ende, menos pérdidas por evaporación desde los surcos, se reduce el riesgo de batir o amasar los suelos arcillosos y tanto los hombres como las máquinas pueden entrar a trabajar al terreno antes, y luego de la aplicación del agua (Withers y Vipond, 1978).

2.1.1.2 Por Aspersión. Método que consiste en aplicar agua a la superficie del terreno, rociándolo a manera de una lluvia ordinaria. La aspersión es producida por el choque con el aire del flujo de agua que sale bajo presión a través de pequeños orificios o boquillas. La presión generalmente es producida por bombeo, aunque se puede producir por gravedad si la fuente de agua está a suficiente elevación sobre el área que se va a regar. Los aspersores son dispositivos que separan el fiquido en gotas y las distribuyen en el campo en un círculo o en parte de este (Soto, 1985). Existen varios sistemas para riego por aspersión:

2.1.1.2.1 Sobre el follaje. Se usa un sistema de tubería metálica fija, torres o tubos verticales que sobresalen de la plantación, en que se conectan aspersores tipo "cañón" con diámetros de cobertura 70-100 metros y caudales de aplicación superiores a 25lts/s (¹).

Según Soto (1985), entre las ventajas de este sistema están: elimina el peligro de erosión del suelo, consigue altos rendimientos, es posible aplicar fertilizantes solubles en agua y pesticidas, se puede regular la penetración del fertilizante en el momento oportuno durante el riego, se puede regar eficientemente en terrenos con pendiente. Según Vélez (1985), otras ventajas son que se logra un traslape uniforme, exige menos calidad de agua y tiene un mantenimiento fácil y de bajo costo relativamente.

Según Duarte (1991), las desventajas que presenta este sistema son: requiere una alta inversión inicial, el viento puede desviar el agua, se necesita potencia y energia en abundancia, hay un lavado de pesticidas de las hojas y la cuida de gotas grandes desde lo alto puede ayudar a trasmitir enfermedades de hoja a hoja.

2.1.1.2.2 Bajo el follaje. Se basa en pequeños aspersores colocados a unos 10 a 18 metros y que asperjan sin mojar el follaje al utilizar ángulos de 12º a 14º (²).

Las ventajas comparadas al sistema sobre el follaje son: volúmenes de agua requeridos más bajos, menores requerimientos de energía, no se moja el follaje, necesita menor capacidad de bombeo, riega menos áreas no cultivadas, no hay distorsión por viento en la cobertura (Vélez, 1985). Según Duarte (1991), otras ventajas a citarse son que hay menos salpicaduras que pueden trasmitir enfermedades foliares y no se lavan los pesticidas de las hojas.

Según Vélez (1985), las desventajas que presenta este sistema son: susceptible a daños y sabotaje (robo), el rociador (sprinkler) debe ser culibrado y nivelado cuidadosamente para evitar un mal traslape y daños a las plantas, las plantas interfieren con el riego, el alto costo de instalación y puede causar erosión.

y OUINTANA, P. 2000, Riego, EAP, Zamonino, (Comun. Pers.)

2.1.1.2.2.1 Microaspersión (Riego de bajo volumen). Modificaciones de este sistema, permiten el uso de instalaciones de cable aéreo en las plantaciones de doble surco, donde se instalan aspersores pequeños colgados del alambre de apuntalamiento separados en un rango de 3 a 5 metros y alineados por tubería aérea. Este sistema de baja presión tiene grandes ventajas sobre los otros métodos de aspersión (Soto, 1985).

2.1.1.3 Por goteo. Consiste en la distribución de agua al suelo por medio de pequeños orificios. Estos orificios están calculados para una emisión de agua a razón de 1 a 8 litros por hora. El agua llega hasta los orificios a truvés de tubería de plástico, que por lo general se tiende sobre la superficie del suelo o por medio de cables aéreos, aunque también pueden enterrarse (Soto, 1985).

Según Duarte (1991), cada gotero esta colocado cada 1-1.50 metros que descargan solo agua o con fertilizante, mojando la zona radicular bajo ellos.

En suelos pesados de buena permeabilidad, la distribución del agua es altamente eficiente y ha mostrado rendimientos favorables en el número de cajas por racimo y por hectárea (Belalcázar, 1991).

Según Duarte (1991), este sistema ahorra una gran cantidad de agua, requiere de bajas presiones, no necesita un terreno nivelado, mejora los rendimientos, pues mantiene a la planta "cómoda" en todo momento con agua y alimento a su disposición. Se puede automatizar y así tener un sistema confiable con posibilidades de error reducidos.

Según Vélez (1985), las desventajas de este sistema son: alto costo de instalación, susceptible a daños y sabotaje, requiere alta calidad de agua, alto costo de mantenimiento y es más apropiado para plantaciones mantenidas en doble surco.

2.1.2 Selección del sistema de riego

En la selección de un sistema de riego es conveniente tener en cuenta no sólo los aspectos técnicos, sino también las condiciones sociales y culturales de la zona, (Belalcázar, 1991).

Según (Grassí, s.f.) la selección se basa en criterios que tienen relación con el cultivo, el suelo, la topografía, costos, el clima, cantidad y calidad de agua; todo esto implica tomar decisiones con respecto al planeamiento integral del predio y al grado de sistematización del terreno. A continuación se discuten estos criterios de selección de sistema de riego:

2.1.2.1 Cultivo. Este es un criterio que básicamente en muchos casos determina el sistema de riego a emplear. Por ejemplo el arroz se riega casi en la generalidad de los casos por inundación, otros cultivos como los frutales son regados por sureo o por

aspersión; todo esto va a depender de la importancia y rendimiento del cultivo (Grassi, s.f.).

Según (Belaicázar, 1991), desde el punto de vista del cultivo del plátano el sistema a escoger debe cumplir con algunos requisitos mínimos:

- 1. Distribución uniforme del agua.
- 2. Mantenimiento estable de la humedad relativa del microclima en el interior del cultivo.
- Dosificación del riego con la mayor frecuencia posible.
- 4. En las zonas con problemas fitosanitarios, el sistema de riego no debe mojar el follaje para evitar el lavado de los protectantes químicos.
- 2.1.2.2 Suelo. Las relaciones de suelo deben ser buenas para el desarrollo del cultivo. Comprende las características internas del perlil del suelo: profundidad, textura y estructura, drenabilidad; contenido de fragmentos gruesos y en particular los aspectos de relación agua suelo vinculados al riego, tales como la capacidad de almacenaje de agua y la velocidad de penetración del agua en el suelo (Grassi, s.f.).

Las texturas más recomendables para obtener una buena cosecha econômica de bananos, son las medias, desde franco arenosos muy finos y finos hasta franco areillosos (Soto, 1985). Las estructuras de suelo del tipo granular, angular y sub angular en los primeros horizontes, son las más adecuadas para el cultivo ya que permiten el desarrollo y la respiración de las raíces. Los suelos deben ser ligeramente ácidos, con un pH entre 5.5 y 6.0 (CORBANA et al., 1996).

Según Belalcázar (1991), la textura y la estructura pueden ser consideradas como las características físicas esenciales para el establecimiento y desarrollo de la planta, ya que de ellas depende el intercambio de iones y libre movimiento del agua y el aire por los espacios porosos.

Se requiere además de una profundidad efectiva de 1,2 a 1,5 m y de la ausencia de capas duras impermeables que eviten la evacuación de excesos de agua en el perfil (CORBANA et al., 1996).

Según Thorne y Peterson (1963), la rapidez de infiltración del agua en el suclo es importante, los suelos que absorben el agua lentamente deben regarse por un método que permita al agua permanecer en la superficie del suelo durante largos periodos sin que se produzea un desperdicio excesivo por el escurrimiento, los suelos que tienen baja permeabilidad pueden producir la saturación temporal de la zona de las raíces.

2.1.2.3 Topografía. Según Grassi (s.f.), la topografía y el valor de la pendiente dan una pauta del sistema de diseño a emplear, el criterio topográfico está intimamente unido a las posibilidades de nivelación.

Las pendientes aptas para la producción del plátano pueden variar desde plano (0%) hasta firertemente escarpada (40%). La topografía en gran medida determinará las prácticas agronómicas y el nivel de tecnología que puede usarse en la intensificación de la producción. Ejemplo, pendientes menores del 2% permiten la utilización de sistemas de riego económicos. En pendiente mayores al 5% deberán de adoptarse prácticas orientadas a la conservación de suelos y humedad (FHIA, 1995).

- 2.1.2.4 Costos. Se debe tomar en cuenta que tan rentable es el cultivo, porque los costos de desarrollo y operación del riego a nivel predial afectan en forma directa la selección del método de riego. También un agua cara va a obligar a bacer un uso más eficiente y al empleo de métodos de riego que garanticen el logro de estas altas eficiencias (Grassi, s.f.).
- 2.1.2.5 Clima. El clima de la zona debe caracterizarse por ser cálido y de si es posible alta pluviosidad para reducir la cantidad de horas de riego. Bajas temperaturas retrasan el crecimiento y la cosecha. A grandes rasgos, la temperatura debiera oscilar entre los 20 y 30° (CORBANA et al., 1996).

Según Soto (1990), un aspecto importante es la lumino sidad, en banano para tener productividades satisfactorías, se debe contar con 4 horas diarias de brillo solar en promedio.

Un aspecto importante a tomar en cuenta, es el viento. Zonas muy ventosas incrementan el riesgo de pérdidas severas por volcamiento. Vientos superiores a los 40 ó 50 km/hora provocan serios daños (CORBANA et al., 1996). Según Grassi (s.f.), vientos predominantes de alta velocidad pueden ser suficientes para proscribir el riego por aspersión.

2.1.2.6 Cantidad y calidad del agua. El recurso agua en cuanto a caudal, tiempo e intervalo de entregas, es sin duda un criterio de peso tal, que puede prácticamente determinar el método de riego a utilizar (Grassi, s.f.).

Si la cantidad total de agua es pequeña, entonces se deberá utilizar con la mayor eficiencia posible. Las altas eficiencias no se obtienen en general con métodos superficiales, a menos que el diseño, el funcionamiento y la administración sean muy elevados y que los canales de distribución estén revestidos. (Withers y Vipond, 1978).

En plátano las altas eficiencias no se obtienen con métodos superficiales, sino con métodos de riego que nebulizan la gota de agua como el de micro aspersión y aspersión.

La presencia de sedimentos en el agua impide el uso de rociadores y el método de goteo, a menos que se utilice un equipo complejo de filtración. Este equipo suele ser costoso y crea dificultades de operación y mantenimiento (Withers y Vipond, 1978).

La calidad del agua va a facilitar el mantenimiento del sistemo de riego a emplear y a facilitar el buen desarrollo del cultivo (Keidar, 1983).

2.1.3 Determinación de los parámetros básicos para el diseño de sistemas de riego

Estos parâmetros son aplicables a cualquier zona y cultivo y se deben determinar para lograr un diseño técnico acorde con el área (Belalcázar, 1991).

2.1.3.1 Textura y estructura del suelo. Están dadas por el tamaño y la forma de agregación o granuloción de los partículas individuales que conforman el suelo (Belalcázar, 1991). Es decir el porcentaje de partículas gruesas, medias y finas de arena, limo y arcilla respectivamente (Keidar, 1983).

Según Belalcázar (1991), se hacen análisis de laboratorios para determinar la textura, la prueba de campo es de menor costo aunque exige cierto grado de experiencia, pero es muy valiosa en el sentido de determinar con cierta facilidad las texturas gruesas y finas. Dicha prueba consiste en tomar una porción del suelo húmedo entre las manos y analizar su plasticidad que se basa en la facilidad para dejarse moldear, la consistencia, la rugosidad y su fluidez. Ejemplo:

- Suelo areilloso.- Al moldearlo con la mano forma bola füeilmente, con superficies lisas de buena consistencia. Si la humedad es alta tiende a brotar entre los dedos.
- Suelo arenoso.- No forma bola, es rugoso al tacto y cuando la humedad es alta forma bola de poca consistencia.

2.1.3.2 Densidad aparente. Es una forma de expresar el peso del suelo y se define como el peso de la masa del suelo (incluyendo espacio poroso) que ocupa un volumen unitario de peso seco, expresado en gr/cm² (FHIA, 1995). La prueba de campo consiste en extraer una muestra de suelo de volumen conocido, la cual se pesa, se coloca al horno a 105 ° C durante 24 horas y luego se vuelve a pesar (Belalcázar, 1991).

Según FHIA (1995), la obtención de los valores de la densidad aparente en suelos que se evalúan por su potencial de uso en plátano, puede brindar información con respecto al estado de agregación del suelo o compactación y porosidad del mismo (Cuadro 2).

Cuadro 2. Rangos normales de densidad aparente según clase textural.

TEXTURA	g/cm³
Arena	1.65
Arena franca	1.60-1.65
Franco arcnoso	1.40-1.60
Franco	1.35-1.50
Franco limoso	1.35-1.45
Franco arcillo arenoso	1,40-1.55
Franco arcilloso	1.30-1.40
Arcillo limoso	1,25-I.30
Arcillo arenoso	1.35-1.45
Arcilloso	1.20-1.35

Fuente: FHIA, 1995

2.1.3.3 Capacidad de retención del agua o capacidad de campo. Es quizá el parámetro más importante a tener en cuenta en los estudios de riego, puesto que determina la capacidad del suelo para almacenar agua y al mismo tiempo la disponibilidad de ésta (Belajcázar, 1991). Las plantas alcanzan su punto óptimo de desarrollo cuando el suelo se encuentra con un contenido de agua en capacidad de campo o cerca de ella. La humedad retenida en el suelo puede expresarse como "tensión" de humedad (Keidar, 1983).

Debe obtenerse una curva de retención de humedad, realizada por un laboratorio especializado. Las tensiones normales de análisis varían entre 0.1, 0.33, 1, 3 y 5 atmósferas, valores mayores de einco atmósferas no tienen mucha aplicación práctica (Belalcázar, 1991).

2.1.3.4 Infiltración. Determina la velocidad con que el agua penetra en el suelo. Este parámetro condiciona no sólo el método de riego sino también los equipos a utilizar y el tiempo de riego requerido (Belalcázar, 1991). El índice de infiltración del suelo es el ritmo máximo al que el agua entrará a la masa de tierra, a través de la superficie (Withers y Vipond, 1978).

Según Withers y Vipond (1978), la infiltración puede cambiar durante la temporada de riego debido a varios factores: el paso de agua sobre el suelo, que provoca el desplazamiento de las particulas más pequeñas que pueden bloquear los poros del estrato superficial y la compactación provocada por el paso de maquinaria (Figura 1).

La mayor velocidad de infiltración se produce al comienzo de la aplicación del aguaniego. Una vez saturada la capa superficial, la arcilla comienza a cerrarse (se hincha) y disminuye gradualmente la infiltración hasta alcanzar un punto en el cual casi se mantiene constantemente (Keidar, 1983). 2.1.3.5 Uso Consuntivo. Conocido como demanda de agua, es el valor más importante en el diseño de sistemas de riego; es también el más dificil de estimar con precisión (Belaicázar, 1991). Las necesidades de agua de las plantas varian con el clima y con las especies y según el desarrollo de la vegetación (Deloye et al., 1967).

El consumo de agua por las plantas generalmente se denomina con el nombre de evapotranspiración (ETP), en él influye la pérdida del agua por evaporación de la superficie del suelo y las pérdidas por la transpiración de las plantas (Keidar, 1983). Según Soto (1985), en estudios realizados en Honduras por la United Fruit Co., el consumo de agua diario aumentó de 7 mm a 26°C, hasta 9.2 mm a 26.6°C por día en el período de septiembre a marzo y bajó a 3.9 mm en el período de abril hasta agosto.

Para la obtención de cosechas económicamente rentables, se considera suficiente suministrar de 100 a 180 mm de agua por mes, para cumplir con los requerimientos necesarios de la planta (Soto, 1985). El patrón de uso de agua por los cultivos, dejando amplísimo margen para las precipitaciónes pluviales y las pérdidas operacionales, determina alternativamente las capacidades de los canales, las tuberías, el almacenamiento y el bombeo del sistema.

Figura 1. Índices típicos de infiltración para varios suelos.

2.1.3.6 Lámina de riego. Según Belakázar (1991), es el rango del contenido de humedad para el cual el cultivo en particular representa el desarrollo óptimo. Técnicamente el rango óptimo de humedad se puede definir en función del potencial del trabajo del cultivo, tensión de succión a la cual el cultivo es capaz de trabajar.

Lá lámina de agua total disponible en un horizonte del suelo dado se calcula así:

$$d = \frac{CC - PMP}{100} \quad (da) \quad (D)$$

Donde:

d= lámina de agua a reponer en cms.

CC= % de humedad al punto de Capacidad de Campo (1/3 atmósfera)

PMP= % de humedad al punto de Marchitéz Permanente (15 atmósferas)

da= densidad aparente (g / cm³)

D= profundidad de suelo considerada, en ems.

Cuando no existe un método más exacto de definirlo al momento del riego, el máximo agotamiento permitido de ésta lámina es 50%.

Según Belalcazar (1991), cuando se dispone de un equipo de riego que cubre toda el área plantada y cantidad suficiente de agua, se puede reducir al máximo la variación en el contenido de humedad del suelo, reduciendo al mínimo el estrés de la planta. Por el contrario, cuando el agua es escasa y el equipo de riego se debe rotar para cubrir toda el área, se debe permitir que la planta consuma hasta el 50% del agua disponible en el suelo. A mayor rango de humedad menor es el costo del equipo de riego requerido.

2.1.3.7 Frecuencia de riego. El tiempo que debe transcurrir entre la aplicación de una lámina de agua a la siguiente, depende del uso consuntivo del cultivo, el caudal disponible de agua para regar y de la capacidad de almacenamiento del suelo en la zona radicular (FHIA, 1995). Según Belalcázar (1991), la frecuencia de riego teóricamente se define en función de la lámina de riego (d) y el uso consuntivo (Uc).

Fr=d/Uc

2.2 DRENAJE

Según FHIA (1995), el drenaje tiene como objeto la eliminación de los excesos de agua de los suelos a fin de proporcionar a los cultivos un medio adecuado para su normal desarrollo, el drenaje según la localización de los excesos de agua puede ser:

- a. Superficial.- Consiste en la remoción del exceso de agua sobre la superficie del terreno.
- b. Interno o sub superficial.- aquel que se destina a evacuar los excesos de agua acumulados en el perfil del suelo.

Se debe tener presente que las raíces del plátano debido a su constitución no soportan el exceso ni la deficiencia de agua, desarrollándose mejor en un suelo bien aireado y con suficiente humedad, por lo tanto si se presentan problemas de exceso de agua, es indispensable el mantenimiento de un buen sistema de drenaje (Vélez, 1985).

El exceso de agua sobre los terrenos puede ser ocasionado por cuatro causas principales: precipitación, inundaciones, limitaciones topográficas y limitaciones edáficas. La principal consecuencia para los cultivos del mai drenaje superficial es la limitación del intercambio gaseoso entre las taíces de las plantas y la atmósfera (FHIA, 1995).

Las necesidades del drenaje se dan como consecuencia de la profundidad crítica del nivel freático mínimo para el cultivo y que en el caso del banano no puede ser menor de 1.80m (Soto, 1985). La forma práctica de verificar si un cultivo necesita o no drenaje, es mediante la construcción de un pozo en medio del cultivo, examinando la profundidad del nivel freático y midiendo la velocidad de descenso, posterior a un aguacero que satura el suelo en mm/día (Belalcázar, 1991).

2.2.1 Sistema de drenaje

En el cultivo del piátano se debe tener cuidado especial en el diseño esquemático del sistema de drenajes (Ver Anexo 1). Se debe efectuar una planificación integral de vías, cables para el transporte de la fruta, canales de riego y drenaje (Belalcázar, 1991).

Es muy importante en el diseño del sistema de drenajes, que sea orientado en forma regular y perpendicular, cuando se construye en zonas planas. El sistema regular, permite una buena distribución administrativa de la plantación y facilitará las operaciones del cultivo y cosecha (Soto, 1985).

2.2.1.1 Drenajes primarios o colectores. Son zanjas o canales colectores que evacuan en forma pronta las aguas sobrantes del sistema; éstos pueden ser naturales como ríos, quebradas o depresiones; o artificialmente construidos de acuerdo a las necesidades. Debido a su tamaño es necesario el uso de maquinaria hidráulica a fin de disminuir los

costos durante su establecimiento (Ver Anexo 2). El cálculo está dado por el caudal de agua a evacuar y por lo general está incluido entre los siguientes ámbitos (Figura 2) (Soto, 1985).

Corte	2,5 a 6,0 metros
Boca	6,0 a 10,0 metros
Fondo	1,0 a 3,0 metros
Gradiente	1,5 a 2,0 por mil
Frecuencia	400 a 1,200 metros
T	í a massanin

Longituda La necesaria

Talud de las paredes Textura media o ligeramente liviana: 30 a 45 por ciento

Textura liviana: 45 a 60 por ciento.

Figura 2. Sección de corte de un canal,

Fuente: Soto, 1985

2.2.1.2 Canales secundarios. Constituyen la base del sistema. La profundidad y frecuencia de éstos, determinan el nivel freático en los suelos, es por ello que su cálculo y construcción debe ser muy preciso (Soto, 1985). Según Duarte (1995), estos canales son alimentados por canales terciarios y estos a su vez van conectados a los cuaternarios que desembocan en ellos y que se usan para evacuar el agua superficial o para zonas especificas de la plantación (Ver Anexo 3).

Según Soto (1985), los canales secundarios se construyen dentro de las siguientes medidas:

Corte 2.5 a 4.0 metros. 4.0 a 6.0 metros Boca 1.0 metro Fondo

Gradiente 1,5 a 2,0 por mil 80 a 125 metros Frecuencia 200 a 600 metros Longitud

Textura media a ligeramente liviana: 30 a 45 por ciento Talud de las paredes

Textura liviana: 45 a 60 por ciento.

2.2.1.3 Canales terciarios o boquetes. Según Soto (1985), mantienen el nivel freático a la profundidad deseada en las áreas de topografía crítica, son de corto recorrido y se construyen dentro de la plantación sin modificar las distancias de siembra, y recogen las aguas superficiales a fin de que la humedad no afecte el sistema radical. Este sistema está en verdadero contacto con la planta de banano, y es el de mayor capacidad para evacuar agua al sistema de drenaje de la plantación (Ver Anexo 4).

Los boquetes, no se calculan con el sistema, sino que se construyen donde las variaciones de microrelieve indican que es necesario; o donde las plantas de bananos por su anormal desarrollo muestran la necesidad de construir un drenaic (Soto, 1995).

Según Soto (1985), tienen las siguientes características:

Corte 1,2 a 2,5 metros Boca 2.0 a 4.0 metros Fondo 0.60 a 1.0 metro Gradiente 1,5 a 2,0 por mil Frecuencia 40 a 60 metros Longitud 50 a 60 metros

Taiud de las paredes Textura media a ligeramente liviana: 30 a 45 por ciento

Textura liviana: 45 a 60 por ciento.

2.2.1.4 Canales cuaternarios. Según Soto (1985), evacuan el agua superficial de pequeñas áreas y bien localizadas, su construcción es muy sencilla y de bajo costo, y no requiere de equipo o personal especializado. Presenta las siguientes medidas:

Corte 0,90 a 0,30 metros Boca 1,50 a 0,60 metros Fondo 0.30 a 0.60 metros

Frecuencia La necesaria

No más de 30 metros Longitud

2.2.2 Estudios básicos para determinar el sistema de drenaje

2,2,2,1 Estudio topográfico. Además de contar con un croquis del área y la ubicación de los drenes naturales, es indispensable elaborar un plano de curvas de nivel máximo cada 0.5 m (Belalcázar, 1991).

Según Luthin (1967), el levantamiento topográfico debe indicar la posible dirección y alineamiento de los drenes, el tipo del sistema de drenaje que se debení usar y, hasta cierto grado, su factibilidad económica.

2.2.2.2 Análisis de perfil del suelo. Según Belalcázar (1991), es básico construir calicatas que permitan analizar las variaciones de nivel freático y los cambios de textura en la profundidad del perfil, sobre todo localizar estratos arcillosos de baja permeabilidad y la profundidad de la barrera impermeable (Cuadro 3).

Cuadro 3. Profundidad requerida del nivel freático después de la recarga (Aplicable al

plátano) (Salazar, 1987).

Días	Profundidad (m)
1	1.10
[2	1.30
3	1.40

Fuente: Belaicázar, 1991

2.2.2.3 Conductividad hidráulica. Esté parâmetro define la capacidad del suelo para permitir el paso del agua a través de él. Condiciona por lo tanto la mayor o menor permeabilidad del suelo (Belalcázar, 1991). Según Luthin (1967), la conductividad hidráulica depende principalmente de la estructura del suelo, la estabilidad de tal estructura es de esencial importancia (Cuadro 4).

Cuadro 4. Clasificación de la conductividad hidráulica del suelo (Salazar, 1987).

Clase	K (m/dfa)
Muy alta	5.00
Alta	∮5.00 – 1.00
Media	1.00 - 0.30
Bajo	0.30 - 0.05
Muy bajo	0.05

Fuente: Belaicázar, 1991

- 2.2.2.4 Calidad de agua. Aunque no siempre es necesario es recomendable analizar el agua freática, estableciendo las posibilidades de salinización y sodificación por efecto de ascenso de nivel freático (Belalcázar, 1991).
- 2.2.2.5 Estudios hidrológicos. Se requieren para determinar las lluvias críticas, que producen un incremento máximo en la elevación del nível freático (Belalcázar, 1991).
- 2.2.2.6 Propiedades físicas de los suelos. Según Belalcázar (1991), los valores de densidad aparente, porosidad, macroporosidad, tienen gran importancia para determinar el comportamiento del suelo en relación con los problemas de drenaje (Cuadro 5).

Cuadro 5. Valores medios de macroporosidad del suelo (Johnson, 1966)

Material	Limites	Media	_
Arcilla	0.15	0.02	
Limo	0.03-0,19	0.08	
Arcillo – arenoso	0.03-0.12	0.07	
Arena fina	0.10-0.32	0.21	
Arena media	0.15-0.32	0,26	
Arena gruesa	0.20-0.35	0.27	

Fuente: Belalcázar, 1991

2.2.2.7 Estudios freatimétricos. Consisten en la instalación de pozos de observación para determinar la posición de la capa freática en diferentes puntos de la zona y en varios estratos del suelo (Luthin, 1967). Según Belalcázar (1991), se toman registros periódicos de la máxima altura del nivel freático durante las épocas de lluvias y se grafican los valores críticos, elaborando un plano a curvas de nivel freático.

3. MATERIALES Y MÉTODOS

3.1 UBICACIÓN DEL PROYECTO

Este proyecto de diseño de un sistema de riegos se realizó para las vegas 2, 3 y 5 de Monte Redondo, en la Escuela Agrícola Panamericana, El Zamorano, ubicada en el valle del río Yeguare, al oriente de Tegucigalpa en el Departamento de Feo. Morazán (Honduras), a una latitud de 14º norte y 87º oeste. Se encuentra a una altura de 742 msns, con una temperatura promedio anual de 24 °C y una precipitación anual promedio de 1100 mm.

3.1.1 Historial climático del terreno. El Zamorano goza de dos estaciones climáticas bien marcadas, una seca y una lluviosa de 6 meses cada una, con una canicula aproximada de 30 días. Este clima obliga que en toda esta zona se necesite sistema de riego para poder producir los cultivos eficientemente.

Es muy importante para determinar la necesidad del cultivo, tipo y frecuencia de riego a usar en una zona, en el Zamorano los datos climáticos fluctúan cada año (Ver Anexo 5).

La estación meteorológica es de mucha ayuda y da una panta para determinar las variaciones del clima en la zona, para mayor precisión del diseño se obtuvo datos de los últimos meses del año 1999 y los primeros del 2000 como se ve en el Cuadro 6.

Cuadro 6. Datos climatológicos de la estación meteorológica de El Zamorano. Junio 1999 - Febrero 2000.

MES 4	PRECIPIT: X	(EVAPAX(mm)	HR X (%)	TEMP. X (°C)
סואטג	4.3	2.7	75.5	30.3
JJJJO	4.9	4.3	78.8	24.0
AGOSTO	5,6	4.6	82.1	24.3
SEPTIEMBRE	11.0	3.6	84.9	24,4
OCTUBRE	6.9	3.67	85.6	22.9
NOVIEMBRE	0.9	3.36	82.3	20.8
DICIEMBRE	1.0	3,60	79.5	20.5
ENERO	0.3	3.90	76.9	20.0
FEBRERO	0.02	4.43	76.1	21.1

Fuente: ZESA, 2000

3.2 DEFINICIÓN DE LÍMITES

El área utilizada para el proyecto es de 10 ha, tomando en consideración que el terreno es irregular y que sufrió algunos daños ocasionado por el Huracán Mitch, sólo se tomó el área que no fue afectada.

La definición se realizó por el método de poligonales con ángulos a la derecha. Según Brinker y Wolf (1982), los ángulos son medidos en el sentido de rotación del reloj desde un visual hacia atrás según la línea anterior, con los platos ajustados a cero, en vez de estario al acimut inverso; este método es adecuado para el arregio de las graduaciones de los circulos de todos los tránsitos y teodolitos, inclusive de los instrumentos direccionales.

Los instrumentos que se usaron para la medición fueron:

- Teodolito
- 2. Estadia o estadal
- Estacas
- 4. Cinta métrica
- 5. Brújula

Para facilidad de manejo de datos para el área de riego por aspersión subfoliar, se usó un programa de cálculo de área de poligonal del INA (Ver Anexo 6).

3.3 ANÁLISIS DE SUELO

El análisis de suelo fue realizado en el año de 1997 en el Laboratorio de Suelos de El Zamorano, como se ve en el Cuadro 7.

Cuadro 7. Análisis de suelo

## Muestra Lab.		Textura %				PH 1/2 (HZO) M.O	% N	Ppm(Disponible)				
Lab.	28 2			大学人	-		· ·	1	P .	Κ.		Mg
453	Monte Redondo V2	Franco	42	38	20	5.15	1.93	0.11	25	197	[434	001
454	Monte Redondo V3	Franco	52	30	18	4,90	2,05	0.10	29	168	1435	75

Fuente: Laboratorio de Suelos de El Zamorano

3.4 NIVELACIÓN

Se diseñó por el método de centroide o mínimos cuadrados (Ver Anexo 7).

3.5 DIVISIÓN DEL ÁREA

Se dividió el área en bloques para facilitar el diseño de riego y su manejo posterior, también con el propósito de llevar estadísticas de rendimiento (Ver Planos en Anexo 8).

3.6 TIPO DE RIEGO

Como este proyecto tiene fines educativos se planteó dos tipos de riego, el de aspersión o sub-foliar y el de microaspersión (Ver Planos en Anexo 8).

3.7 MEMORIA DE CÁLCULO HIDRÁULICO

Para el cálculo de la tubería tanto central como para los dos tipos de riego, se usó una hoja de cálculo proporcionada por Pablo Quintana, en la cuál utiliza la fórmula de Hazen-Williams y Darcy Weisbach como comprobación.

La variación máxima de presión dentro de cada bloque es de menos de 20% para tener un coeficiente de uniformidad de 90%.

4. RESULTADOS Y DISCUSIÓN

4.1 NÍVELACIÓN

Los datos que se obtuvieron en la medición indican que la pendiente del terreno es casi uniforme y muy reducida, pero con muchas irregularidades que dificultarian el drenaje superficial. En vista de lo anterior se decidió efectuar una nivelación de precisión que permita la evacuación rápida y efectiva de los excesos de aguas de lluvia. Esta preparación permite construir sistemas de drenaje altamente eficientes, diferentes al enfoque tradicional de drenaje bananero con grandes canales.

4.2 PARÁMETROS DE DISEÑO

Cultivo: Plátano Tipos de suelo: Franco

4.2.1 Riego por aspersión.

1. Método de riego: Subfoliar

2. Aspersor seleccionado: Senninger 2014HD, boquilla 7SPNV

Q=2.16 GPM a 40 PSI, Diámetro mojado = 70'

- 3. Grupos de riego por sistema: 6
- 4. Máximo número de horas de operación por diseño: 17 h/dia
- Capacidad de aplicación en pulgadas/hora: 0.13"/h
- 6. Espaciamiento: 36' × 40'
- Eficiencia de aplicación diseñada: 75,20 %

4.2.2 Riego por microaspersión.

I. Aspersor seleccionado: Bowsmith 50 J,

Q=0.25 GPM a 15 PSI Diámetro mojado = 17

- 2. Grupos de riego por sistema: 4
- 3. Máximo número de horas de operación por diseño: 12 h/dia
- Capacidad de aplicación en pulgadas/hora: 0.119"/h
- Espaciamiento: 12.30' × 16.41'
- 6. Eficiencia de aplicación diseñada: 90%

4.3 MEMORIA DE CÁLCULO HIDRÁULICO

Determinamos mediante un análisis hidráulico la tuberia requerida para los dos métodos de riego, como lo vemos en los cuadros 8, 9, 10, 11 y 12.

Cuadro 8. Análisis hidráulico para el elevador y el nudo de válvula de bloque. Proyecto Plátano, sistema SF.

	Punto	Dist./	DΓ	Flujo en	Bloque	Pérdida	Veloci.
	ſt	Fley	Tuberia	GPM	acum.	H. ft.	ft./seg.
					Flujo GPM		,
Elevador Plá SCH40 1/2"	1	3	0.662	2,16	_	0.09	2.0
Altura del elevador		3				3.00	
Presión en la base del aspersor				1.10		2.54	
Presión de operación promedio del aspersor			40,000			92.40	
Mínimo de presión en la salida más lejana del múltiple						98.03	
Lateral con la pérdida máxima						10.51	
Pérdida en válvula de bloque, factor K=0,14			3,000		220	0.22	
Pérdida en codos del nudo del bloque, factor K= 0.54			3.000		220	0,84	
						11,56	
Mínima presión disponible a						109.59	47 PSI
la entrada de la válvula							

Fuente: El autor, en hoja de cálculo de Pablo Quintana, 2000.

Cuadro 9. Diseño hidráulico de tubería principal y sub - principal, aspersión subfoliar.

Fca. Plátano	"Monte Redo	ndo" 🔻	El Zamor	ano		
Tipo de	Aspersor	Dist.	Diám.	GPM	GPM/AC.	Pérd. Hf/ft.
<u>tuberfa</u>	<u> </u>	ft.	_Tu <u>beria</u> j	Bloque	Bloques	L
	Aná	I i ș i	s del	Late	ral	
1/2™	Ī	42	0.75	2.160	2.160	0.70
						0.70
1/2"	1	36,75	0.75	4.320	4,320	2,20
1/2"	2	42.00	0.75	2.160	2.160	0.70
ļ						2.90
I/2"	I	5.25	0.75	6.480	6,480	0.67
1/2"	2	42,00	0.75	4.320	4.320	2.52
1/2"	3	42.00	0.75	2.160	2.160	0.70

Fuente: El autor, en hoja de cálculo de Pablo Quintana, 2000.

				10,49	1	10.49						
8,0	0.30	93,16	93,46	6-07	00.0	0.07	6,48	6.48	1.780	36		on.
2 - 2	4.37	93.16	93,53	0.42	0.00	0.42	17.28	10.80	1.780	36	00.0	Ð
3.6	6.79	93.15	93.95	1.03	0.00	1.03	28.08	10.80	1.783	36	00.0	1~
5.0	1.82	93.16	94.98	1.38	0.00	1.98	38,68	10.80	1.780	36	0.00	9
₹:	3,70	93.16	96.86	0.99	0,00	0.99	49.68	10.80	2.229	36	0.30	ιn
3.0	4.69	93.16	97.85	1.43	0.00	1,43	60.48	10.80	2.229	36	0.00	7.5
ą.	6.12	93.16	99.28	1.93	00.0	1.93	71.28	10.00	2.239	36	0.00	r.
6.8	8.¢5	93.16	101,23	2.51	0.00	2.51	95.08	10,80	2.229	36	0.00	77
3.4	10.57	93.16	103.73	0.22	0.00	0.33	92,38	10.80	3.330	18	0.00	-
3.4			103.95	0.00		0.00	92,88		3,330			
ft/sec,	a/ft.	PRESICW ft.	EXCESO ft	TOTAL. ft	£t/PUMIO	Hf/fr	BLOQUE	ENTERNE	COBE.	ť	ç	PUNTO
VELOCIDAD	DELTA	MINIMO EXCE.	PRESION	PERO.	Dif.Elev.	PERD.	GPM/ACDM.	FLUJO	DIAM.	DIST.	ELEV. / St.	
								3PM	BLOQUE 4E/43SP/92.88GPM	E 4E/4	Brogu	
				9,97		9.97						
7	0.82	93.16	93.66	0.38	00.0	0.18	10.80	10.80	1.780	90	00'0	a)
2.8	1.00	93.16	94.16	0.63	0.00	0.63	21.60	10.30	1,780	90	0.00	œ
2.7	1.63	93.16	94.79	0.45	00.0	0.45	32.40	10.90	2.229	36		τ~
e, e	2.0E	93.16	95.24	0.77	0.00	0.77	43.23	10.80	2,229	رو ۳	0.00	Ġ
4.4	5.85	93.16	96.01	1.16	3.00	1.16	54.00	10.80	2,229	th th		ս
u,	4.40	93.15	97.16	1.62	0.00	1.62	64.80	10,80	2.239	36	00.0	4
2.0	5.63	93.16	98.79	2.16	0.00	2.16	75,60	10.60	2.239	36	00.00	r-ì
7.1	7.78	91.16	100.94	2,76	0.00	2.76	86.40	10.80	8.238	6) B	00.0	51
3,6	10,55	93,16	103,71	0.24	0.00	0.24	97,20	10.80	3.330	18	00.00	-
3.6			103.95	0.00		0.00	97,20		3,330			
ft/sec.	B/ft.	PRESTON ft.	EXCESO ft	TOTAL, ft	ft/PONTO	H£/ft	BLOQUE	LATERAL	TUBE.	ä	9	PUNTO
VELOCIDAD	DELTA	NIMIMO ENCE.	PRESION	PERD.	Dif, Elev.	PERD.	GPM/ACIM.	FLUJO	oran.	DIST.	ELEV, /ft.	
								Ma	3E/455P/97.2CPM		BLOCOLE	
				10.51		10,51						
1.4	0.28	93.16	93.44	0.18	0.00	0.13	10.80	10.80	1,780	3.6	00.00	2
2.8	96.0	93,16	93.62	0.63	00.00	0.63	22.50	10.80	1.780	36	00.00	ı,
r-,	1.09	93.16	94.25	0.45	00.0	3,45	32.40	10.80	2.229	36	0.00	æ
e Fi	1.54	93.16	94.70	6.17	00.0	7.1C	43.20	10.80	2,229	36	0.30	~
Ф°.	2.31	93.16	95.47	1.15	0.0	1.16	54.30	10.80	2,229	36	00.00	9
5.3	3.46	93,16	96.52	1.62	00.0	1,62	64.30	10.80	2.229	36	0,00	មា
6,2	5,09	93.16	98.25	2,16	0.00	2.16	75,60	10.80	2,229	36	00.00	4
7.1	7.24	93,16	100.40	2.76	0.30	2.76	86.40	10.80	2,229	36	00.00	m
3.6	10.01	93.16	103.17	0.49	0.00	0,49	97.20	10.80	3.330	3.6	0.00	14
0,4	10,49	93.16	103,65	0.30	0.00	0.30	108,00	10.80	3,330	18		-
4.0			103.95	00.0		00.00	108.30		3.330			
£t/set,	H/1E,	PRESICH ft.	EXCESO ft	TOTAL. řt	ft/Pub#O	H£/ft	andore	LATERAL	TUBE.	££	ē	PUNEO
VELOCIDAD	DELTA	MINIMO EXCE.	PRESION	PERO.	Dif.Blev.	PERD.	GPM/ACUK,	57,870		DIST.	ELEV. /ft.	
				1 108GPM	La.	50.0	3-00, 4-00,	2-0e, 2-E, 3	1-E, 2-C	1+De	BLOODE	
				Zamorano.	EI	** I	e Redondo"	. "Monte	Finda Plátano "Mont	Finca		

k	
ů	R
-	т

	ELEV./ft.	DIST.	DIAM.	FLOJO	GPM/ACUM.	PERD.	Dif.Elev.	PERD.	Presion	MINIMO EXCE.	DELTA	VELOCIDA
PUNTO		£t	TUBE.	LATERAL	BLOCUE	Hf/£t	ft/punto	TOTAL.ft	EXCESO it	PRESION Et.	H/ft.	ft/sec.
			3.330		84.24	0.00		0.00	103.95			3,1
1	0.00	18	2.229	10.60	84.24	1.32	უ.და	1.32	102.53	93.16	9.47	6.9
2	0.00	36	2.229	10,80	73.44	2.04	0.00	2.04	100.59	93.16	7,43	ő.O
3	0.00	36	2.229	10.90	62.64	1.52	0,00	1.52	99.06	93.16	5.90	5.2
4	0.00	36	2.229	10.80	51.84	1.07	0.00	1.07	97.99	93.16	4.83	4.3
5	0.00	36	1.760	10,80	41.04	2.09	0.00	2,08	95.91	93.16	2.75	5.3
ę	0.00	36	1.780	10.80	30.24	1.18	0,00	1.18	94.73	93.16	1.57	3.9
7	0.00	36	1.780	10.80	19.44	0.52	0.00	0.52	94.21	93.16	1.05	2.5
3	0.00	36	1.780	8.64	B.64	0.12	0.03	0.12	94.09	93.16	0.93	1.1
						9.86		9,86				
	BLOQU	E 650/20	82/43.20	GPM .					<u> </u>			
1	ELEV./ft.	DIST.	DIAK.	FLUJO	GFM/ACUM.	PERD.	Dif.Elev.	PERD.	PRESION	MINIMO EXCE.	DELTA	VELOCIDA
PHNTO		ft	TUBE.	LATERAL	PLOCUE	Hf/ft	ft/punto	TOTAL Et	EXCESO Ét	PRESION ft.	H/ft.	ft/sec.
			3.330		43.20	0.00		0.00	103.95			1.6
1	0.00	18	1.780	10.80	43.20	1,14	0.00	1.14	102.81	93.16	9.65	5.6
2	0.00	35	1.780	8.64	32.40	1.34	0.00	1.34	101.46	93.16	8.30	4.2
3	0.00	36	1.760	8.64	23.76	0.76	0.00	0.76	100.71	93.16	7.55	3.1
4	0.00	36	1.780	6.4E	15.12	0.33	0.00	0.33	100.38	93.16	7.22	2.0
5	0.00	3 G	1.780	4,32	8.64	0.12	0.00	0.12	100,27	93.16	7.11	1.1
6	0.00	36	1.780	4.32	4.32	0.03	3.00	0.03	100.23	93,16	7.07	0.6
						3.72		3.72				

Fuente: El autor, en hoja de cálculo de Pablo Quintana, 2000

microaspersión. RI/Pt 0.52 0.41 0.31 0.22 0.03 0.03 0.04 1.74 15 .15 0.41 0.31 0.32 0.15 0.09 0.04 1.22 0.04 0.01 0.05 00.00 40.01 .03 28 .0. .0. .53 .31 0.31 0.22 0.15 0.09 0.04 0.01 PERD 당당 66 00000 0000 00 000 sub-principal BLOQUES GPM/AC. 750 500 250 1.000 0.750 0.500 0.250 .250 .000 .750 .300 250 000 750 500 250 1.750 1.500 1.250 1.000 0.750 0.500 0.250 2.000 1.750 1.500 1.250 1.000 0.750 0.500 .500 200 .250 444000 ō 00 o. 00 d - 000 1.500 1.250 1.000 0.750 0.500 2.000 1.750 1.500 1.250 1.000 0.750 0.500 500 250 .750 .500 1.250 1.000 0.750 0.500 0.250 .500 750 250 250 000 750 500 250 900 50 BLOOM principal Y. N Zamorano 00 4444000 000 4000 О LATERAL TUBERTA ද ස 99. 90 60 60 50 60 60 60 0.60 99 60 දි 88 60 9 69 99999 60 60 60 9 9 DIM. 딥 000 000 Ψļ cubería 00000000 00 00 00 00 000 0000000 30 30 8888 26883 30 30 30 30 9899999 98999999 90 30 "Monte Redondo" AMPLISIS DIST. <u>8</u>, NNN NNNN 12222 2222222 12 NN ने न न **→** ¬ ¬ 그 그 그 ㅋㅋㅋ မ hidraul! $H \otimes M$ 1 0 m 4 പരുതഴത ω ω ω ω しゅうちょうりょ 7 н ки ф б ф г ф Plátano Diseño Tipo de Tubería 95500 95500 PE600 PE600 PE600 PE600 PE 600 PE600 PE600 PE600 PE600 PE600 PE600 00934 PE 600 609 PE600 PE600 PE600 600 PE600 PE600 PE600 PE600 PE600 PE600 PE600 PE 600 PE600 PE 600 PEGCO PE 600 PE600 PE600 PE600 듸 Cuadro

0.65	'n	*	0.31	e.	ᅻ	۹,	0	٥,	e,		. 4	0.52			"	Γ,	9	٥.		7		οį	٠,	ω,	ĸ.	4.	u,	Ŋ,	٦.	0	0	0.01	Η,	1 J T	+ T T C	0.0	0.55	0.52	0.41	16.0	20.0	0.15 2.15	00.0	n 0.0		5.24	
	•	•	1.500	•	•	•		•			•	2,000			•	•	•					7	2.500	•	•	•	•	•		•	7	٠,		3,000				2.000	•	, ,	, ,	•					
2.250	9	Ŀ.	1.500	•	•	•	•	0.250				2.000		-	•	•	•		•			•	2.500	•	•	•	•				•	•		3,000		•		2,000	•			. ,				2	
	•		09.0	•	•	•		•				0.60										0.60	0.60							0.60		•						0.60	•				٠.		•		
12.30	ď	ςi	12.30	ď	ö	ĸ,	Ň	Ŕ		ď	l d	12,30	N	8	N	ď	ď	ς,	2			'n	12,30	ŵ	Ŕ	ĸi.	ĸŀ.	ei.	ς.	ä	ď	'n.		Ń	Q.	2	N	12.30	Ń	N	'n		'n	: <	; ,	,	
- -1		m	ચ*	ιΩ	Q	ſ.	ထ	a١		•	. ~	ı m	- 534	ភ	φ	t-	00	ďì	10			7	7	m	ę	ďì	ø	r-	83	ðι	10	11		н	. 2	m	₹*	ហ	9	r ~	œ	: Ø1	, Ç	3 =	10	7	
00924	PE600	DE600	PE600	PE600	PE600	PE600	PE600	009Zd		PE600	PR600	PEGOG	PE600	PEGOU	PE600	PEGUO	PE600	0093d	PE600		,	PE600	PE600	PE600	PE600	DD924	PE600	PE600	PE600	P8600	щ	PE600		PE600	PE600	PE600	PE600	PE600	PB600	PE600	\$E600	PE600	98500	PE600	DE-500	22224	

2000. autor, en hoja de cálculo de Pablo Quintana, H Fuente:

				70-9		60.9						
5.1	92.21	00.02	9 2169	60.0	0	60,0	00.4	00. \$	681.1	16,41	0	6
6.5	96'61	00.02	55.65	66,0	0	€E10	00.8	4,00	681"1	16.41	Đ	Э
2,5	19.61	00,08	63.63	69.0	a	69.0	75,00	OC.4	1.189	16-41	Ð	£
9.0	16-37	20109	46.19	81.1	Ó	9 1 '1	16.00	0016	581°T	16.41	0	9
8.2	99 * \$1	60.08	95.89	8411	C C	87. I	20.00	4.00	601'1	76.41	Q	S
τ.ε	\$6.71	00.62	65179	86.0	a	25.0	24,00	4.00	1.760	Tt 91	0	þ
9.5	89 ° 41	00.08	89.79	45.0	O	44.0	28.00	0016	ŋ8ί.Ι	16.41	0	ε
τ-3	18772	00109	61,69	09'0	D	09.0	00 ↑25	00.4	087.1	16.41	¢.	7
3.9	24,81	30.08	\$4,69	99'0	0	99.0	ዕዕ.ቅፎ	30.1	084°τ	12,24	0	τ
3.0			02169	00.0		00.0	0D.8E		622.5			
.596/33		PRESION IE.	ar deadxa	11 LATOT	OINDS/21	93/36	⊒ΩζΩТЯ	TASBIAI	TOBE.	11		orana
VELOCIDAD	.Ji\H ATI30	MINIMO EXCE:	DBESICM	10834	Dif.Elev.	' 0838	GPM/ACUM.	00003	.MACC	.TSId	reariter	Ξ
									Mad.	9E/SNVV	IZ 5-0 0 \I	nõotei
				93.4		85**	•	·				
1.1	27,41	00.08	ST.93	80.0	0	80.0	87.8	\$٢ . ٤	1':183	19791	٥	6
0,Z	11.80	00°05	08,49	92.0	٥	92,0	00.7	37.5	681°E	16,81	0	6
0.8	90'51	60.08	90.59	26.0	O-	25.0	\$2°01	3.25	68I.I	16.41	٥	L
6.€	49"51	00.08	<u> 45.25</u>	98.0	Ó	38,0	05'51	3.25	601,1	16.41	0	9
6.3	\$0.31	00.02	10.99	SE,1	0	1.32	00.71	02,5	681.I	11.91	Û	S
9-2	97.71	00'09	87.78	92.0	ů.	9210	05102	05°E	1.780	17'91	Û	b
1.2	50.81	00,02	SO.89	SE*0	D.	\$E*Q	24.00	08°E	084.1	16.41	Q	ε
8.€	76,81	00.02	75.69	21.0	0	26.0	03.72	09.8	087.1	16.41	Û	2
0.4	28.61	00,05	58+83	86.0	0	96.0	00.16	03.E	087.1	96'E1	Ů	τ
9.2			02169	00.0		00.0	00°7£		622.2			
.D98\JI		PRESION IF:	EMCESO EF	JI LATOT	es/annso	2 7/1 H	вгосов	LATERAL	TUBE	1 3		OTKOS
VELOCICAD	. #114 ATJBG	KIMINO EXCE'	иотеля	.0839	DTE ESGA'	-Q9.24	CPM/ACOM.	Ergno	*WY10	.TgIo	.33\.Val	
						<u>-</u>	· · · · · · · · · · · · · · · · · · ·	<u>.</u>	Идэт	<i>E/8442</i> 1	/37 3050) TE
						60.3						
5,1	13.21	00.05	12,59	60.0	¢.	60.0	4,00	00.4	6 81' \	15.31	0	Qī
5.3	73°30	00.08	35.68	56.0	0	ξΕ.O	00.8	00*\$	€81.1	16.41	0	G
8°E	£9.£1	20,02	59.59	69.0	0	69.0	12.00	00.4	4.139	16.41	0	θ
9*5	2E. 41	00.08	56.48	31.1	Ð	51.1	87.81	27.£	981.I	16,41	¢	۷
5.8	9 6.21	00 ⁴05	91.29	27.1	Ó	07,1	08.61	27.5	6 01. 1	16.91	a	9
0.2	71,71	00-08	71.7a	56.0	Ü	ξΕ,Ο	23,25	94°€	097,£	14.81	٥	ç
2.5	05'41	60.08	02.70	0 ÷ 0	0	P# 10	00-72	27.5	034.1	19.91	0	Б
0.0	£6°41	00.02	£6,7a	95.0	0	ቅ ટ. ű	24,08	27.£	087.1	16,81	0	ε
S*†	18*43	00.08	61.83	69.0	0	6910	D2.PE	57,E	087.1	16.41	Ò	2
6->	81. 61	00'05	81169	21.0	0	51.0	00.86	06.5	087,£	2'16	G.	ť
3'7			OE-69	00.0		00.0	00.80		625.2			
,098\13		PRESION IF.	al osabys	11 IATOT	ef/Funto	33/FK	300048	1 ልጸ፭ ፒ ጲኂ	.580T	33		OTMUG
dAGICOLAV	.11\H AT130	MINIMO EXCE:	PRESION	PERD.	Dif.Elev.	PERD,	GPM/ACOM.	orata	.MAIG	.Telo	****/*********************************	а
]								N	3088 /SM	ZST /80	-I ZAĞOI	æ

tinca Platano "Monte Redondo" ** El Zamorano.

					4.89		4.89						
	1,2	19.41	00.05	64.41	0.10	0	0::0		4.25	4,25			1,189 4,25
	2.4	14.51	50.00	64.51	0.35	0	0.35		8,25	4.00 B.25		4.00	16.41 1,189 4.00
	en en	14.86	50.00	64.86	0.72	0	0.72		12.25	4.00 12.25	4.00	4.00	15.41 1.189 4.00
	j- ;	15.58	50.00	65.5B	1.21	0	1,21		16.25	4.00 15.25	4.00	1.189 4.00	15.41 1.189 4.00
	о 10	16.79	50.00	66.79	1.83		1.83		20,25	4.00 20.25		4.00	1.189 4.00
	3.1	18.62	20.00	66,62	0,36	٥	0.36		24.25			4.00	16.41 1.780 4.00
	m,	16.99	50.00	96.39	0.32	0	0.32		28,25	4,00 28,25		4,00	11.19 1.780 4.00
	2.3			69.30	0.00		00.0		28.25				
	ft/sec.		PRESION St.	EXCESO FE	TOTAL ft	##/PUNTO	Hf/ft		BLOQUE	LATERAL BLOQUE	LATERAL	LATERAL	TUGE. LATERAL
	verccidad	DELTA H/Ec.	MINING EXCE.	PRESTON	PERD.	Dif.Elev.	PESO.		сем/ясти.	TLUJO GPM/ACUM,	ови/ясо	TLUJO GPM/ACU	DIAM. TLUJO GPK/ACU
													/113MS/28.25GPM
					5.73		5.73	ł					
_	1.2	13.57	50.00	63.57	60.0	Ü	63.0		4,00	4.00 4.00		4.00	1.169 4.00
_	2.3	13.66	50.00	63.66	0.33	٥	0.33		8.00	4.00 B.00		4.00	16.41 1.189 4.00
	() ()	13.59	50.00	53,99	69.0	o	69.0		12.00	4.00 12.00		4.00	1.189 4.00
_	4.6	14,68	30.00	54.68	1,18	o	1.18		16.00			4.00	1.189 4.00
	5,8	15.66	50.00	98*59	1,78	o	1.78		20.00			4.30	1,189 4,00
	e,	17,65	50,00	67.55	0.35	•	3.35		24.00			4,30	1.780 4.30
	3.6	18.00	50.00	68.00	0.47	0	1.47		28,00		4.00	1,780 4.00	16.41 1.780 4.00
	4.1	18.47	50.30	68.47	09.0	0	0,63		32.00		4.00	1.783 4.00	1.783 4.00
	 	13.06	50.00	69.36	0.24	0	0.24		36,00	4.00 36,00	4.00	4.00	1,783 4.00
	3.0			69.30	0.00		0.00		36.00	36.00	2.229 36.00		
	£t/\$ec.		PRESION ft.	EXCESO ft	TOTAL ft	ft/PUNTO	H£/E¢		300CTB	LATERAL BLOGOE		LATERAL	TUBE. LATERAL
	i i	4		:	;	:							0/144MS/36CEM
					5.63		5,63						
	0.8	13.67	50.00	63.67	50.0	0	0.05		2,75		2,15	1.189 2.75	1.189 2.75
	2.3	13.71	50.00	63,71	0.33	0	0.33		8.00			5,23	16.41 1.189 5.25
	3.5	14.04	50.00	64.04	69.0	0	69.0				4.00	1.189 4.00	1.189 4.00
	4.0	14,73	50.00	64.73	1.16	o	1.18		16.30			1.189 4.00	1.189 4.00
	9 . 5	15.91	50.00	65.91	1.76	o	1.78		20.00			1.189 4.00	16.41 1.189 4.00
	3.1	37.72	50.00	67.70	0.35	ō	0.35		24.00		4.00	1,780 4.00	16.41 1.780 4.00
_	es es	18.05	50.00	68.05	0.47	0	0.47		28.00		4.00	1.780 4.00	16.41 1.780 4.00
	4.1	18.51	50.00	69.51	09.0	ā	0.60		32.00		4.00	1,780 4.00	1,780 4.00
	۵.	19.11	50.00	69.11	0.19	0	0.19		36.00	4.00 35.00	4.00	4.00	1.780 4.00
_	3.0			69.30			0.00		36.00			2,229	2,229
_	£t/sec.	•	PRESION fc.	EXCESO ft	TOTAL Et	fc/PUNTO	HE/It		BLOCUE	-7	LATERAL	LATERAL	TUBE, LATERAL
_	arranaan)	the fit weeden	**************************************	かつがことびょ	CEND.		*0244		SERVING.	ENGTH NEWS		940HT	940HT

	٦,
ı.	,

					PARTITION.	renu,	DIZ.ELEV,	PEKD.	LKE21 on	REHIMO EXCE.	OBER WILL	AFPORTOND
реило		it.	TUBE.	LATERAL	BLOCUE	Hf/2t	ft/PUNTO	TOTAL IT	EXCESS ft	PRESION it.		ft/sec.
			2.229		14-75	0.00		0.00	69.30			1.2
1	0	1.71	1,189	1,75	14.75	0.11	0	0.11	69.19	\$2.00	19.19	4.3
2	٥	16.41	1.189	1.75	13.00	0.80	ø	0.80	68.39	50.00	18.39	3.8
3	e	16.41	1,189	1.75	11.25	0.61	0	0.61	67.78	50.00	17.78	3.3
4	c	16.41	1.189	1.75	9.50	0.45	a	0.45	67.23	50.00	17.33	2.7
5	E	16.41	1,189	1.75	7.75	0.31	0	0.31	67.C2	50.00	17,02	2.2
6	C	15.41	1.185	1.50	6,00	0.19	0	0.19	65.83	\$0.00	16.83	1.7
7	C	15.41	1,199	1.50	4.50	0.11	D.	0.11	66.71	50.00	16.71	1.3
8	3	15.41	1.189	1,20	3.00	0.05	o	0.05	66.66	50.00	16.56	0.9
9	ā	16,41	1.189	1,50	1.50	0.01	0	0.01	66.65	50.00	16.65	0.4
						A 4-		h cn				
						2.65		2.65			_ _	
	BLOQUE 4E	/49MS/1	2.25GPM		<u></u> -	2.05		4.65				·
	BLOQUE 41 BLEV./ft.	-	2.25GPM DIAM.	FLTJO	GRM/ACUM.	PERD.	Dif.Elev,	FERD.	PRESION	MINIMO EXCE.	DELTA H/ft.	VELOCICAD
OTHOS	ELEV./ft.	-		FLIJO LATERAL	GRM/ACUM. BLCQUE		Dif.Elev.		PRESION EXCESO Et	MINIMO EXCE. PRESION IT.	DELTA H/IC.	VELOCITAD
	ELEV./ft.	mist.	DIAM.			PERD.	_	PERD.			DELTA H/It.	
	ELEV./ft.	mist.	DIAM. TUBE.		BLCQUE	PERD. Hf/ft	_	FERD. TOTAL ft	EXCESO EF		DELTA H/ft.	ft/sec.
OTHO	ELEV-/ft.	pist.	DIAM. TUBE. 2,229	LATERAL	BLCQUE	PERD. Hf/ft 0.00	OTKUR\33	FERD. TOTAL ft 0.00	EXCESO Et 69.30	PRESIÓN Et.		ft/sec. 1.0
PORTO	ELEV./ft.	DIST. ft 14.70	DIAM. TUBE. 2,229 1,169	LATERAL 2.00	BLCQUE 12,25 12,25	PERD. Hf/ft 0.00	EE/PUNTO 0	FERD. TOTAL ft 0.00 0.64	EXCESO Et 69.30 68.66	PRESION ft. 50.30	16.66	ft/sec. 1.0 3.5
2 1 2	0 0	DIST. ft 14.70 16.41	DIAM. TUBE. 2,229 1,169 1,259	1.00 2.00 2.00	BLCQUE 12.25 12.25 10.25	PERD. Hf/ft 0.00 0.64 0.52	0 0 0	FERD. TOTAL ft 0.00 0.64 0.52	EXCESO Et 69.30 68.56 68.14	PRESION Et. 50.30 50.30	16.66 18.1 4	ft/sec. 1.0 3.5 2.0
2 3	0 0 0	DIST. ft 14.70 16.41 16.41	DIAM. TUBE. 2,229 1,189 1,189	2.00 2.00 2.00 2.00	BLCQUE 12,25 12,25 15,25 8,25	PERD. Hf/ft 0.00 0.64 0.52 0.35	0 0 0	FERD. TOTAL ft 0.00 0.64 0.52 0.35	EXCESO Et 69.30 68.56 68.14 67.79	98ESION Et. 50.30 50.30 50.30	18.66 18.14 17.75	ft/sec. 1.0 3.5 2.0 2.4
2 2 3 4	0 0 0 0	215T. ft 14.70 16.41 16.41	DIAM. TUBE. 2,229 1.189 1.389 1.189	2.00 2.00 2.00 2.00 2.00	BLCQUE 12,25 12,25 16,25 8,25 6,25	PERD. Hf/ft 0.00 0.64 0.52 0.35	0 0 0 0	FERD. TOTAL ft 0.00 0.64 0.52 0.35	EXCESO Et 69.30 68.56 68.14 67.79 67.59	98ESION Et. 50.30 50.30 50.30 50.30	16.66 18.14 17.75 17.59	ft/sec. 1.0 3.5 2.0 2.4 1.8

Fuenta: El autor, en hoja de cálculo de Pablo Quintana, 2000.

4.4 LISTA DE MATERIALES

Con ayuda del diseño en el plano y el cálculo de la memoria hidráulica de cada tipo de riego, sacamos la lista de materiales a ocupar.

4.4.1 Riego por aspersión

Accesorios de PVC, accesorios, válvulas y manguera de polictileno.

· · · · · · · · ·		<u> </u>	
<u>Diámetro</u>	<u>SDR</u>	<u>Clase</u>	Cantid <u>ad</u>
6"	41	100	130 tubos 20 ft
4"	4 I	100	125
3"	41	100	90
2"	32,5	125	285
1 1/2"	32.5	125	824
1"	32.5	125	370
<i>ነ</i> ሪ"	13.5	315	1320
1∕2 ⁿ	SCH40		100

Tees SCI140		
<u>Diámetro</u>	<u>Côdigo</u>	<u>Cantidad</u>
6"	401-060	5
6" × 3"	401-530	5
4" × 3"	401-422	14
3"	401-030	25
3" × 2"	401-338	4
3" × ⅓"	401-333	25
2"	401-020	35
2" × ⅓"	401-247	105
[%"×]%"×%"	401-209	450
$I_n \times I_n \times N_n$	401-130	100
1∕2"	401-005	600
Codos de 90°		
6"	406-060	4
4"	406-04 0	2
3"	406-030	45
2"	406-020	65
1%"	406-015	100
I	406-010	10
₹u	406-005	250

Reductores		
<u>Diámetro</u>	<u>Có</u> digo	<u>Cantidad</u>
6" × 4"	437-532	
6" × 3"	437-530	2 3 2
4" × 3"	437-422	2
3" × 2"	437-338	50
2" × 11/2"	437-251	80
$2^n \times 1^n$	437-249	ĩõ
1¼" × 1"	437-211	90
Adaptadores macho		
3"	436-030	50
2"	436-020	50
I.%	436-015	10
1"	436-010	15
•	430+()1()	10
Adaptadores hembra		
№"	435-005	700
¼" × ¾"	435-074	500
Tapón hembra roseado		
I.X."	448-015	1.5
1"	448-010	15
	440-010	10
Bridas		
3"	851-030	46
2"	\$51-020	10
Pernos y tuercas		
5/8" × 3½"		90
		90
Válvulas de bronce con disco		
sólido tipo cuña		
3"		25
2"		5
F		•
Empaques de hule rojo		
3"		50
2" .		10
Aspersores Senninger		
2014-I-½" M Boquilla #7		600
3023-2-%" M Boquilla #9x5		500
,		300

4.4.2 Riego por microaspersión

Manguera de polictileno y accesorios.	<u>Cantidad</u>
Manguera de polietileno 600 ID 0.600	15000ft
Microtubo flexible de vinil 0,150" ID	1500ft
Acople 0.150" para tuberia tipo púa BC187	2000
Tees S3t anilio, estilo 565	100
Codos SELL, estilo 565	150
SY/"MA acople Y/" roscado x anillo, estilo 565	100
SC acople anillo, estilo 565	150
Figura 8	200
Microaspersor para trabajo volteado hacia arriba 0.25 GPM = 15 GPH	
a 15PSI. Rango de diámetro mínimo 12-16, Bowsmith	1500
Producto AG filtro 4E-4" bridado, malia mesh 100	1
Tapón de doble uso	500

4.5 PRESUPUESTO

4.5.1 Para el sistema de riego (S)

	Microaspersión (1.68 ha)	Subfoliar (7.72 ha)
Materiales	3555	16000
Instalaciones	<u>1500</u>	<u>.4554</u>
TOTAL	5055	20554

4.5.2 Construcción de un pozo mecánico de 300 pies de profundidad ademado con tuberia PVC 10" (S)

Fase exploratoria con barreno de \$.5" de diámetro Registro eléctrico y litología SUBTOTAL	4650 _ <u>300</u> 49 50
Sifonco Ampliación con barreno de 18" si el análisis del registro eléctrico combinado con la litología y el sifonco indica una alta probabilidad de producción a los niveles requeridos	400 4750
Terminación	<u>60</u> 62
TOTAL	16162

4.5.3 Equipo para bombeo (\$)

Bomba para pozo, sumergible ST 7T-356, 25 HP, 300 GPM a 265	2700
ft CDT 72.5% eficiencia a 3500 RPM	
Control 230V/ 3PH/ 60HZ	900
Bomba centrifuga modelo B 21/2 5PBM para río de 20 HP, 300	2100
GPM a 150 ft CDT 65%eficiencia a 1760 RPM	
Control 230V/3HP/60HZ	<u>900</u>
TOTAL	6600

4.5.4 Presupuesto consolidado (\$)

Riego subfoliar	20554
Riego microaspersión	5055
Pozo mecánico	16162
Equipo para bombeo	6600
TOTAL	48371

5. CONCLUSIONES

- El uso de irrigación en plátano es altamente rentable ya que mantiene los rendimientos adecuados en lugares con épocas de sequía.
- Un diseño bien elaborado de un sistema de riego beneficia a los productores ya que pueden mantener la demanda hídrica del cultivo y calendarizar el riego.
- La diferencia en la cantidad de agua demandada entre el sistema de riego por aspersión subfoliar y microaspersión no es significativa, lo único es que el de microaspersión puede estar limitado en la aplicación porque no todos los productores tienen instalado el cable de apoyo que es la estructura que se aprovecha para instalario.
- La potencia para bombear que requiere el sistema de riego por microaspersión es menor que para el subfoliar, ahorrando considerable gasto en energía.
- La nivelación del terreno facilita el diseño del sistema y disminuye los costos ya que no se necesita un sistema de drenajes tradicional.

6. RECOMENDACIONES

- Realizar un estudio en la época seca, comparando en cada sistema de riego el rendimiento del cultivo, la demanda de agua y el gasto de energía para bombear.
- Elaborar curvas de retención de humedad del suclo, para poder determinar con más precisión la lámina de agua a reponer.
- Adaptar un sistema de fertitrigación a cada tipo de riego y medir su eficiencia.
- Ejecutar el proyecto en su totalidad y que se le de seguimiento, con el fin de hacer las correcciones debidas.
- Proporcionar seguridad al proyecto en todas sus etapas, en especial cuando ya este ejecutado, ya que donde se desarrollará este proyecto al lado del río Yeguare, existe un tránsito de personas ajenas al Zamorano, y esto representa un riesgo para los equipos e instalaciones que tienen un costo muy elevado.
- Hacer un pozo profundo para tener una dotación constante de agua, pues siendo el río Yeguare la fuente principal para este proyecto, y dado que en los últimos meses la disminución del caudal ha sido bastante significativa hasta llegar al punto de pronosticar que no habrá agua suficiente como para abastecer al proyecto, esto debido al incremento aguas arriba de áreas productoras de caña de azúcar.

7. BIBLIOGRAFIA

- BELALCÁZAR, S. 1991. El cultivo del plátano en el trópico. Cali, Colombia, Instituto Colombiano Agropecuario. 376 p.
- BRINKER, R.; WOLF, P. 1982. Topografia moderna. Traducido por Dolores García y Rafael García. Sexta ed. México 4, D.F. Lito Offset California. 542 p.
- CORBANA; CINDE; EARTH. 1996. Validación de un proyecto de plátano altamente tecnificado para la exportación. snt. [167] p.
- DELOYE, M.; REBOUR, H.; TRINTIGNAC, M. 1967. El riego. Trad. Por Rafael Corvera Alvarez. Madrid, España. Ediciones Mundi – Prensa. 291 p.
- DUARTE, O. 1991. Manual para el cultivo del banano. Departamento de horticultura. Escuela Agricola Panamericana. Honduras C.A. 49 p.
- FHIA, 1995. Manual de plátano. San Pedro Sula, Honduras. 131 p.
- GUNDERSEN, W. 1979. Riego y manejo del agua. Impresos Lou, Guatemala, Guatemala. 353 p.
- GRASSI, C. S.f. Métodos do riego. CIDINT. 265 p.
- KEIDAR, A. 1983. Agua-suelo-planta. <u>In</u> El Riego. Comayaguela, D.C. Honduras. 30p.
- LUTHIN, J. 1967. Drenaje de tierras agrícolas. Editorial Limusa, S.A. de C.V. México, D.F. 684 p.
- SIMMONDS, N.W. 1973. Los plátanos. Trad. por Esteban Riambau. Barcelona, España. Editorial Blume. 539 p.
- SOTO, M. 1985. Banano, cultivo y comercialización. San José, Costa Rica. Litografía e Imprenta LIL, S.A. 627 p.
- THORNE, D.W.; PETERSON, H.B. 1963. Técnica del riego, fertilidad y
 explotación de los suelos. México 22, DF. Compañía Editorial Continental, S.A.
 496 p.

- VÉLEZ, J. 1985. Riego y drenaje. <u>In Curso sobre producción de musáceas</u>. Ed. Centro de Tecnología Agrícola (CENTA). San Andrés, La Libertad, El Salvador, C.A. pp 10-12.
- WITHERS, B.; VIPOND, S. 1978. El riego, diseño y práctica. Trad. Por Agustín Contin. México 12, D.F. Editorial DIANA, S.A. 350 p.

Anexo 1. Sistema de drenajes de una plantación bananera,

Fig. 5.5 Sistema de drenajes de una plantación bananera.

Sistema natural primario

Process Orenales secundarios espadadas acta 125 m

Orenales ferciónios numerados

Cable Camit

Fuente: Soto, 1985

Anexo 2. Construcción de drenajes.

Fuente: Soto, 1985

Anexo 3. Drenaje secundario.

Fuente: Soto, 1985

Anexo 4. Drenaje terciario o boquete

Fuente: Soto, 1985

														TATOURES	
_	co 5.				-	942 - 199			_	SEP	oct	VOM	DIC	TOT/mm	TOT/pul
0.	ANO	ENE	FEB	MAR	ABR	MAY	JUN 154.9	JUL	185,1	182,6	106.7	22.6	36,3	1011111111	101/pu
<u> </u>	1942				3.8	251,2		164.1	50.3			29,0	6.4	797.0	31.4
2	1943	0.0	0.0	0.0	0.0	90,7 85.4	83.3 424.4	96.8	203,7	175.8 182.6	264.7 42.2	38 4	4.6	1200.8	47.3
3	1944	8,6	5.6	10.7	22.4 17.5	175,3	240.5	79.0	198.1	330.7	144.5	61.7	11.4	1290.0	50.8
5	1945 1946	14,2 18,8	6A 47.2	6.4	3.8	110.5	107.2	87.4	131,6	207,3	150.4	56.1	11.7	938.6	37.0
5 5	$\overline{}$	21.3	13.0	7.4	2.5	28.4	162,6	220.7	177.0	148.6	194.6	116,1	34.5	1128.7	44.4
7	1947 1948	12.5	10.4	4.1	6.6	164.3	363.7	184.4	-77.0-	188,2	175.5	42.2	13.0	1242.3	48.9
8	1949	11.2	7.4	0.0	20	42.9	262,4	112.5	55.9	216.4	255.8	34.8	19.3	1020.5	40.2
9 (1950	42.7	0.0	6.1	0.0	40.6	310.6	182.9	126.3	144.3	307.6	56.1	0,0	1219.2	48.0
10	1951	2.6	0.0	0.0	3.6	99.3	276.9	124.7	50.8	209.3	86.9	18.3	8.9	881.3	34.7
11	1952	10,4	4.1	67.8	50.5	143.8	449.8	171,5	150.5	185.7	963	53.1	2.0	1385.6	54.6
IZ	1953	00	9.7	0.8	7.9	127.0	84.1	59.7	133.1	275.6	178.8	2.8	26,7	906,2	35.7
13	1954	10.4	5.3	6,9	21.6	175.8	407.2	146.8	187.2	251.0	181.9	3.3	6,4	1403.8	55.3
14	1955	0.3	5.1	5.8	45.2	70.1	100.6	392.9	331.5	323.6	351.8	34.7	16.8	1688.4	66.5
15	1956	1.5	8.6	3.6	25.1	160,3	233.2	141.7	55.4	212.3	76,2	58.2	150	991.1	39.0
16	1957	23.1	4.3	1.3	55.5	240.0	142.7	111.3	99.I	223.8	98.8	10.8	13.7	1040.4	41.0
17	1958	8.2	0.8	6.6	38.1	212.3	189.0	216.2	ाध्य, छ	179.1	161.8	34.5	5.8	1157.3	45.6
8	1959	24,1	2.3	10	157.6	125.7	187.2	87.1	2007	100.9	791.7 =	869	13.5		├
9	1960	nn -	-	\ 	137.2	343.4	220.2	947		192.8	204.5	65.5		804.5	25.4
20	1961	22.1	21.1	2.5	15.0	21,3	236.7	191.8	93.0	95.5	99.5	55.5	27.2	891,3	35.1
žť.	1962	0.8	0.0	0.3	67,1	55.1	236.7	133.4	79.8	99.6	100.8		0.0	830,2	32.7
22	1963	26.1	11.7	16,3	11.2	47.2	139.4	173.7	105.9	120.7	195.9	102.9	0.3	952.3	37.5
23	1964	30,2	12.2	0.3	58.9	92.5	268.2	172.7	182.4	215.1	59.4	62.5	8,1	1162.5	45.8
24	1965	6,4	26.2	6.1	20.6	212.3	189.7	127.0	93.2	191.0	102,4	41.1	14.7	1030.7	40.6
25	1966	4,6	1,8	73.4	48.8	165.6	205.7	165.9	129,3	189.2	186.7	20.1	9,4	1201.5	47.3
2f	1967	9,9	7.6	59.2	83.6	7.4	216.4	158.5	102,4	164.8	39.4	28.2	18,3	895.7	35.3
27	1968	22.4	6,9	0.8	4.1	251.7	160.8	80.8	118.4	140.7	107.4	47.8	21.6	953.6	37.9
228	1969	20,1	4,3	29.7	4.6	303.0	280.2	139.2	313.2	333.8	289.3	50.5	13.5	1781,4	70.1
29_	1970	9,4	5.8	0.8	47.5	164.6	124.2	209.8	192.5	224.8	127.3	38.6	5.3	1150.6	45,3
30	1971	7.9	7.6	1.5	0.0	199.9	75.9	112.8	148,1	184.7	203.5	22.9	33.5	998.3	39.3
31 32	1972	12.9	0.6	1.5	46.0	172.7 144.0	102.4 153.4	99.1 155.4	101.9	91.4 142.5	89,3 354.8	62.5 64.5	13.2 G.4	751.2 1241.2	29.6 48.9
33		26,7	0.8	1.5	3.6	117,6	234,7	136,7	135.4	199.6	89.7	13.0	128,2	1085.5	
34	1974 1975	12.0	1.0	17.0	71.1	192,0	40.9	141./	140.2	378.2	237,7	149.1	120,2	1000.0	42.7
36	1976	-12.0	2.8	2.5	3.6	89.4	312.2	91.4	67.B	97.3	221.2	53.6		 -	
36	1977		0.0	0.0	25.4	214,6	199.4	90,2	58.4	306.1	48.3	63.0	8,6	 -	
37	1978	4.8	6.6	9.7	18.0	194.1	1321	182,6	169.9	197.1	34.3	49.3	20.8	1018.1	40.1
38	1979	4.6	15.7	14.5	102.1	137.4	349.0	161.0	148.1	206.8	118.6	89.5	57,2	1403.8	553
39	1980	1.5	5.1	3.6	48.3	314.2	236.7	226.6	109.2	215.9	217,7	17,3	4.8	1400,9	55.2
40	1981	10.7	15.7		5.4	1/2.7	228.1	79.2	310.3	97.8	114.8	13.2	99.6	1212.4	47.7
41	1982	43.7	9.1	3.0	0.5	240,8	214.1	93,0	73,7	138.4	107.2	73.7	1.3	1001,5	39.4
42	1983	3,0	14.0	8.9	40.6	521	129.3	165.5	133.4	239.3	72.4	63.0	20,1	941.7	37.1
43	1984	15,1	2.6	5,3	10.4	156.0	216.6	174.9	226.9	230.4	162,8	15.5	15.5	1232.0	48.5
44	1985	5,4	6.1	7,0	126.9	99.5	40.8	85,2	92.2	138.1	142.3	16.2	46.0	805.7	31.7
45	1986	12,9	4.8	0.0	3.9	212.4	88.8	140.9	79.8	230.0	85.0	97.2	10.9	964.6	38.0
(6 .	1987	0.7	0,0	97.2	7.6	133.0	160.5	196.7	133.9	220.4	49,1	9,1	10.0	1018.2	40.1
17	1388	6,5	8,3	47,4	84.0	115.0	212.0	128.3	311,6	281.9	176,9	13.7	4.7	1370.3	53.9
-8	1989	16.3	82	1 1,1	7.7	125.5	161.5	110.9	150.8	350.2	92.4	41.7	11.5	1091.9	43.0
18	1990	24,2	7.7	4.3	3.7	111.4	131.8	67.7	163.0	278.2	85.2	110.3	14.7	1005.2	39.6
80_	1991	11,3	5.8	1.0	1.8	106.8	167.0	57.7	84.5	171,6	117.6	11.3	16.5	752.9	29.6
Ħ	1992	6.7	51	8.9	121.8	205.3	222.9	135.0	55.9	238.4	111.5	23.2	16.5	1151.2	45.3
Ξ	1993	8.7	2.2	0.7	163.5	327,5	389.3	170.5	128.3	175.3	82.5	27.5	15.5	1511.9	59.5
埬	1994	65	9.3	0.0	21.7	157,8	143.2	77.0	70.2 367.3	195.6	135.0 133.8	27.8	18.9	853.0 1350.6	34.0
_	1995	6.8	2.4	18.4	129.5	66.9	138.3 60.8	95.6		271.6		773.0	32.6	1350.6	53.2
<u>8</u>	1996	28.7 12.5	12,9	3.9 32.6	14,6	175.1 17.2	324.9	201.9 105.7	211.2 77.4	115.4 185.5	270.4 134.2	73.9 118.3	1.4	1167.6	45.0
7	1997	_	8,6	5.5	28.4	229,99	133,19		202,85	87.2	572.38	52.0	136	1046.7 1573.1	
₩. ₩.	1998	3,2	3,0	0.9	0.6	**************************************	112,9	272.65 151.2	172,5	328.3	214,9	27.8	30	1057,5	61.9 41.6
-	PROM.	10.2	7.2	12,0	34.3	149,0	199,5	143.5	145.1	203.3	155.5	48,8	18.4	1118.6	44.0
				12,0	1 ~~	15,0	1-1-1-1		,		,		1 +4.4		<u>,</u>
·EBB	rnto: ZES	A, 2000	,												

Anexo 6. Hoja de cálculo de área para riego por aspersión subfoliar.

			PROYECCIONES COORDENADAS						
EST	RÚMBO	DISTANCIA	N+ / S-	E+. /W	N±./ S	Et./ W-	ļ. <u> </u>		
0	N 80°0'W	40.00	6.95	-39,39		-39.39	0.00		
1	N 84°12'W	49.90	5.04	-49.64			0.00		
2	N 85°43'W	125.00	9.34	-124.65			0.00		
3	S_7°32′W	49.50	-49.07	-6.49	-27.75	-220.18	0.00		
4	S 6° 5'W	101.48	-100.91	-10,75	-128.66		0,00		
5	S 5°57W	104.18	-100,63	-10.52		-241.45	0.00		
Ó	S 6°30'W	101,28	-100.63	-11.49	-329.92	-252,94	0.00		
7	S 3°56'W	29.88	-29,81	-2.06	-359.73	-255.00	0,00		
8	S 78° 5'E	51.00	+10.52	49.90	-370.25	-205.10	0.00		
9	S 80° 8'E	51,00	+8.74	50,25	-378.99	-154.85	0.00		
10	N 81°43'Ë	8.20	I.18	11,8	377.80	-146.74	0.00		
II	N 59°15'E	59.78	30,57	51.38	-347.24	-95.36	0,00		
12	N 43°18'E	22.70	15.10	16.95	-332.14	-78,42	0.00		
13	N 35°13'E	41.60	33.99	23.99		+54.43	0.00		
14	N 14°18'E	23.10	22.38	5.71	-275.77	-48.72	0.00		
15	N 14°10'E	78.50	76 <u>.</u> 11	19.21	-199.66	-29,51	0.00		
16	N 12°52'E	58.68	57.21	13.07	-142,45	-16.44			
17	N 6° 5'E	93,91	93,38	9.95	-49.07	-6,49	0.00		
18	N 7'32'E	49.50	49.07	6,49	-0.00	-0.00	0.00		
	L			<u> </u>		<u> </u>			

Perfmetro= 1136,19	· · · · · · · · · · · · · · · · · · ·
Suma Proyecciones NORTE=	400.32
Suma Proyecciones SUR=	400.30
Suma Proyecciones ESTE=	255.00
Suma Proyecciones OESTE=	255.00
Error Angular=	0 Grados 0 minutos
Error Lineal	0.01 Metros
Precision=	1/ 91724.74

Fuente: ZESA, 2000

Anexo 7. Datos de nivelación para el área de riego por aspersión.

<u>Estación</u>	<u> </u>	H.I.	<u> </u>	Elevación
AO	0.882	100.882		100
A1		<u> </u>	1.980	98.902
A2			2,058	98.824
АЗ			2.156	98,726
A4			2.102	98.780
A5			2.105	98,777
A6			2.0 <u>75</u>	98.807
A7			3,589	97,293
B0			2.415	98.467
B1 _			2,689	98.193
B2			2.616	98.266
B3			2.619	98,263
B4 _			2.446	98.435
B5			2.268	98.614
B6		-	2.340	98.542
B7		<u></u>	2,498	98,384
B8			3,052	97.830
CO	<u> </u>		3.244	97.638
C1		-	3.238	97.644
C2			3.022	97,860
C3			3.027	97.855
C4			2.721	98.161
C5			2,602	98.280
C6			2.580	98,302
C7			2.609	98.273
C8			2.915	97,967
C9			3,625	97.257
PC1	2.389	99.646		Ţ
D0		 	2.045	97,601
D1			2.281	97.365
D2			2.018	97.628
D3			1.985	97.661
D4			1.693	97.953
D5			1,633	98.013
D6			1,633	98.013
D7			1.445	98.201
D8			1.691	97.955
D9			2,218	97.428
E0			2.445	97.201

Estación	+	H.t.	-	Elevación
PC2	2.090	99.291		
D10			3,313	95,978
E1	 -		2.131	97.160
E2			1.717	97.574
E3			1.766	97.525
E4		<u> </u>	<u>1.</u> 570	97.721
E5	<u> </u>	<u> </u>	1.399	97.892
E6			1,420	97.871
<u>E7</u>			1,123	98.168
E8			1.342	97.949
E9			1.604	97.687
E10		 	2.122	97.169
F0			2,320	96.971
F1			2.267	97.024
F2		- -	1.955	97,336
F3	_ 	Ţ _	1,980	97.311
F4			1,859	97.432
F5			1,560	97.731
F6			1.442	97.849
F7		ļ — . <u>—</u>	1,189	98.102
F8			1.522	97.769
F9		ļ ——	1.602	97.689
F10		i	2.167	97.124
G0			1.621	97.670
G1		<u> </u>	2.513	96.778
G2]	2.296	96.995
G3			2.271	97.020
G4			2.035	97.256
G5			1.707	97.584
G6		[1,588	97.703
G7			1.305	97.986
G8			1,645	97.646
G9			1.725	97.566
G10_			2.155	97.136
PC3_	1,342	98.478		
HO			1.048	97.430
H1			1,858	96.620
<u>H2</u>		<u> </u>	1,743	96.735
<i>H</i> 3			1.753	96.725

Estación	+	H,1,	<u> </u>	Elevación
PC3	1,342	98.478	·	
H4	·		1,485	96.993
<u>H5</u>			1.149	97.329_
H <u>6</u>			1,062	97,416
<u>H7</u>			0.771	97.707
H8			1,140	97.338
H9		_	1.160	97.318
H10			1.765	96.713
10		1	1.0 <u>5</u> 5	97.423
11			1.900	96.578
/2	<u>"</u>		1,870	96,608
13			1.916	96.562
14			1.715	96.763
15	<u></u>		1,465	97.013
16			1.283	97.195
17	_ _		1.141	97.337
/8			1.400	97.078
19			1.447	97.031
110			1.975	96.503
PC4	1.872	98.375		<u> </u>
JO			0,872	97.503
J1			1.945	96,430
J2			1,932	96,443
J3			1.979	96.396
J4			1.822	96.553
J5		<u> </u>	1,635	96.740
J 6		<u> </u>	1.524	96,851
J7	_ _	 -	1.260	97.115
J8			1.501	96.874
J9 .			1.633	96.742
J10	,		2.12	96.255
J11			2,410	95,965
KO			0,790	97.585
K1		<u> </u>	2.012	96,363
K2			1.987	96,388
К3			2.032	96,343
K4			1.918	96,457
<u>K5</u>		<u> </u>	1.749	96,626
K6	<u> </u>		1.707	96,668

Estación	+	H.I <u>.</u>	+	Elevación
PC4	1.872	98.375		<u> </u>
K7			1.455	96.920
K8			1.695	96.680
K9		<u></u>	1.840	96.535
K10	· 		2,405	95.970
K11			2.415	95,960
PC5	1,755	97,715		
LO			0.811	96.904
L1			1.589	96.126
L2			1.542	96.173
L3	<u> </u>		1.625	96.090
L,4			1.549	96,166
L5	· · ·	† -	1.427	96,288
L,6			1.258	96.457
<u>L7</u>		-	1,063	96,652
L8			1.265	96.450
L9			1.417	96.298
L10	·	†	1.790	95.925
L11			2.385	95,330
MO		·	0.935	96,780
M1		-	1.535	96.180
M2		·	1,574	96,141
МЗ			1.696	96.019
M4			1.561	96,154
M5			1,500	96,215
M6		 	1.355	96.360
M7			1.112	96.603
M8			1.313	96.402
M9			1.510	96,205
M10			1,895	95,820
M11			2.672	95.043
NO	 :	· · · ·	1.019	96.696
N1		<u> </u>	1,595	96,120
N2		<u> </u>	1.649	96.066
N3			1.659	96.056
N4			1,622	96,093
PC6	1.524	97.617		
N5			1,393	96,224
N6			1.338	96.279

Estación	+	H.i.	+_	Elevación
PC6	1.524	97.617		
N7			1,085	96.532
N8			1.293	96,324
N9			1.505	96.112
N10			1.930	95,687
N11			2.582	95.035
00			1.019	96,598
01			1.595	96.022
02		<u> </u>	1.456	96.161
03			1,582	96.035
04	<u> </u>		1.510	96.107
05			1,388	96.229
06		<u> </u>	1.331	96.286
07			1.138	96.479
08		-	1.375	96.242
09			1.632	95.985
010			1,425	96.192
011			1.815	95,802
P0			1,105	96,512
P1	_ _		1.642	95.975
P2			1.512	96,105.
P3			1.612	96,005
P4			1.604	96.013
P5			1.436	96.181
P6			1.285	96.332
<i>P</i> 7			1.215	96.402
<i>P</i> 8			1,530	96.087
P9			1,696	95.921
P10			2.148	95.469
P11			2.86 5	94.752
Q0		_	1.153	96.464
Q1			1.772	95,845
Q2			1.603	96.014
୍ଦ ପ୍ର			1,622	95,995
Q4			1,657	95,960
Q <u>5</u>			1,465	96.152
୍ଦ 6			1,244	96,373
Q7			1,318	96,299
ପ୍ଟ			1.572	96.045

Estación	+	<u>H</u> .I.	*	Elevación
PC6	1.524	97.617		<u></u>
Q8			1.572	96,045
Q9			1.855	95.762
Q10			2.300	95,317
Q11			3.015	94,602
PC7	2.865	97,467	<u> </u>	
R0			1,078	96.389
R1			1.670	95.797
R2	<u> </u>	_	1,470	95.997
R3			1.601	95,866
R4		<u> </u>	1.527	95.940
R5			1.368	96,099
R6			1.215	96.252
R7		·	1.251	96,216
R8	<u> </u>	 	1,515	95,952
R9	·	<u> </u>	1.738	95.729
R10		 	2.122	95.345
R11		- · · · · · · · · · · · · · · · · · · ·	2.975	94.492
so		 	1,112	96,355
<u>S1</u>			1.663	95.804
52	·	 	1.473	95.994
53			1.563	95,904
S4			1.518	95.949
S5		 	1,423	96.044
S6		 	1.385	96.082
S7			1.412	96.055
			1.641	95,826
\$9			1,830	95,637
S10	· .		2.270	95,197
S11		 	3.105	94.362
TO		<u> </u>	1.154	96,313
PC8	1,595	97.908		23,010
T1			1,948	95.960
T2			1.954	95.954
T3			1.952	95.956
T4		 	1.921	95.987
<i>T5</i>	<u>.</u>	 	1,830	96,078
T6			1,851	96,057
77 _	· · · · · · · · · · · · · · · · · · ·		1.979	95,929

Estación	+	H.I.		Elevación
PC8	1.595	97.908		
<u>T8</u>			2,374	95,534
T9			2,555	95.353
<u>T</u> 10	<u>_</u>		2,990	94.918
T11			3.365	94,543

Fuente: ZESA, 2000

Anexo 8. Plano de bloques, tuberías principales y cable vía.

.

Fuente: El autor