

Low Tech Graphic Strain Sensor LTGSS-2025

General features

- Low power consumption
- Easy to use
- Low cost
- Detection of strain
- Different type of pen hardness

Description

This sensor is a strain gauge based on Graphene. Using a pencil, a layer of graphite is deposited on a sheet of paper and by exerting a stress on the sensor, the Graphene lattice will be more or less spaced, and the electrons will flow more or less easily. By using an amplifier, we can measure the signal modified by this stress and thus determine its value. The advantage of this sensor is that it's easy to use, can be modified to suit the type of pencil and gives results like those of the industrial sensor.

Pin description

Pin number	Usage
1	In
2	Out

Specifications

Туре	Graphene based sensor		
Material	Graphene (from pen)		
Sensor type	Passive		
Dimensions	3 x 1.5 cm ²		
Dimensions	Thickness: 0.2mm		
Temperature	10 to 35°C		
Pencil tone	4B to 2H		
Supply voltage	Maximum 5V (for the arduino)		

Electrical characteristics

		Values		
Pencil tone	Units	Min (compression)	Тур	Max (flexion)
НВ	ΜΩ	5.63	8.5	10.5
HB-2	ΜΩ	54.8	68.6	88.5
В	ΜΩ	/	112	298
2B	ΜΩ	24.8	35.5	71.1
3B	ΜΩ	4.45	9.06	18.2
6B	ΜΩ	0.545	0.623	0.807

Those two graph represents the variation of the resistance using the electrical presented next.

Application

This is an example of a circuit to use the LTGSS-2025

You can use an arduino device to receive the data

Thanks to this application it's possible to calculate the values of the resistivity of the graphite sensor with the following equation:

$$R_{sensor} = \left(1 + \frac{R3}{R2}\right)R1 * \frac{Vcc}{Vadc} - R1 - R5$$