

EEE 6212 Semiconductor Materials

Lecture 24: LASER principles

EEE 6212 - Semiconductor Materials

2

Lecture 24: LASER principles

- · interference and coherence
- · temporal and spatial coherence
- spontaneous emission
- stimulated emission (needs population inversion)
- feedback (needs resonating cavity)
- gain
- types of semiconductor solid-state LASERS

EEE 6212 - Semiconductor Materials **coherence**

4

temporal coherence time: $\tau \approx \pi/\Delta \omega$

A monofrequent wave without any broadening $\Delta \omega$ would be perfectly temporally coherent.

similarly:

spatial coherence length: $x \approx \pi/\Delta k$

A wave of fixed wavevector $\underline{\mathbf{k}}$ ($\Delta\underline{\mathbf{k}}$ =0) would be spatially coherent. Often, this is written in terms of angles: $\Delta\Omega = \lambda^2/\Delta A$, where ΔA is the area of the light source. A perfectly spatially coherent wave would come from a single, perfect point (ΔA =0).

EEE 6212 - Semiconductor Materials **absorption**

5

consider transitions between **two** discrete energy levels E_1 and E_2 that are occupied by N_1 and N_2 electrons, respectively:

probability for absorption of photon by atom in ground state E_1 : $dN_1/dt = -B_{12}N_1 \rho_{12}$

with Einstein coefficient B_{12} for induced absorption and spectral energy density ρ_{12} of the radiation

EEE 6212 - Semiconductor Materials spontaneous emission

6

consider transitions between two discrete energy levels E_1 and E_2 that are occupied by N_1 and N_2 electrons, respectively:

probability for spontaneous emission of photon by excited atom which returns to ground state by itself, without external influence: $dN_2/dt = -A_{21}N_2$

with Einstein coefficient $A_{21} = 1/\tau_{21}$ for spontaneous emission. This spontaneous emission is isotropic and can therefore often be neglected.

EEE 6212 - Semiconductor Materials stimulated emission

7

consider transitions between two discrete energy levels E_1 and E_2 that are occupied by N_1 and N_2 electrons, respectively:

probability for stimulated emission of photon by atom in excited state E_2 caused by external radiation field: $\frac{dN_2}{dt} = -B_{21}N_2 \rho_{21}$

with Einstein coefficient B_{21} for induced or stimulated emission.

EEE 6212 - Semiconductor Materials 8 photon generation rate in 2-level system

Einstein could show that $B_{21}=B_{12}$ (without degeneration) and $A_{21}/B_{12}=$ energy \times spectral modal density $=hf \times 8\pi f^2/c^3=8\pi hf^3/c^3$.

The density of states, N_i , in thermodynamic equilibrium obeys the Fermi-Dirac (or, at elevated temperatures, the Boltzmann) statistics: $N_i \propto \exp\left[-E_i/(kT)\right]$, hence $N_2/N_1 = \exp\left[-(E_2 - E_1)/(kT)\right]$

Note for $E_2 > E_1$ at given temperature, that always $N_2 < N_1$.

Define $\Delta N = N_2 - N_1$. Hence, $\Delta N < 0$.

Number of photons generated per length unit dz in time dt=dz/c: $dQ/dz = dN_2 - dN_1 = B_{21}N_2 \rho_{21} dz/c - B_{12}N_1\rho_{21} dz/c = B_{21}\Delta N \rho_{21}/c < 0$

