1 Математическая модель

Для решения общей задачи по нахождению деформаций и напряжений в деформируемом теле, занимающем область G с границей ∂G , необходимо использовать следующие соотношения:

кинематические граничные условия

$$u(x) = u_0, \ x \in \partial G_D, \tag{1}$$

силовые граничные условия

$$\sigma(u) \cdot n = p(x), \ x \in \partial G_N, \tag{2}$$

соотношения Коши для тензора полных деформаций

$$\varepsilon(u) = \frac{1}{2} (\nabla u + (\nabla u)^T, \tag{3}$$

тензор напряжений

$$\sigma(u) = ??? \tag{4}$$

Здесь u(x) - компоненты вектора перемещения, ∂G_D - участок границы, на котором действуют кинематические условия Дирихле, ∂G_N - участок границы, на котором действуют силовые граничные условия Неймана, p(x) - вектор внешней нагрузки.

Решить данную задачу можно с помощью метода декомпозиции Шварца.

1.1 Методы Шварца

Рассмотрим классическую задачу метода Шварца для двух подобластей: имеется сложная область Ω , состоящая из объединения двух простых областей (круга Ω_1 и прямоугольника Ω_2). Рассмотрим уравнение Пуассона, цель которого найти перемещения $u:\Omega\to\mathbb{R}$ при условии, что

$$-\triangle(u) = f, \ u \in \Omega$$
$$u = 0, \ u \in \partial\Omega$$

Рис. 1: Сложная область, получившаяся из объединения двух простых областей

Классический метод Шварца это итерационный метод, основанный на решении задач меньшего масштаба в подобластях Ω_1 и Ω_2 . Один шаг итерационного процесса обновления результатов $u^n \to u^{n+1}$:

$$\begin{split} -\bigtriangleup(u^{n+1}) &= f, \;\; u \in \Omega_1 \\ u^{n+1} &= 0, \;\; u \in \partial \Omega_1 \cap \partial \Omega \text{ после чего} \\ u^{n+1} &= u^n, \;\; u \in \partial \Omega_1 \cap \bar{\Omega_2} \end{split} \qquad \begin{aligned} -\bigtriangleup(u^{n+1}) &= f, \;\; u \in \Omega_2 \\ u^{n+1} &= 0, \;\; u \in \partial \Omega_2 \cap \partial \Omega \\ u^{n+1} &= u^n, \;\; u \in \partial \Omega_2 \cap \bar{\Omega_1} \end{aligned}$$

Теперь же рассмотрим случай для произвольной области и произвольного числа подобластей. Вернёмся к нашей первоначальной задаче (ссылка здесь), представим область G в виде объединения конечного числа подобластей $G = \bigcup_{i=1}^M G_i$ с конечным числом границ $\partial G_1, \ldots, \partial G_M$, где M - число подобластей. Данные подобласти пересекаются, что требует ввода дополнительных обозначений для границ, возникающих после декомпозиции областей: $\Gamma = \bigcup_{i=1}^M \Gamma_i$.

Выберем начальное приближение для перемещений, удовлетворяющее граничным условиям (ссылка здесь). Алгоритм из классического метода Шварца можно оптимизировать для большего числа подобластей:

$$-\triangle(u^{n+\frac{i}{M}}) = f(x), \quad x \in G_i$$

$$\sigma(u^{n+\frac{i}{M}}) \cdot n = p(x), \quad x \in \partial G_N \cap \partial G_i$$

$$u^{n+\frac{i}{M}}(x) = 0, \quad x \in \partial G_D \cap \partial G_i$$

$$u^{n+\frac{i}{M}}(x) = u^{n+\frac{(i-1)}{M}}(x), \quad x \in G \setminus ((G_i \setminus \partial G_i) \cap (\partial G_N \cup \partial G_i))$$

Данный алгоритм Шварца называют мультипликативным, он последовательный и решение на каждой подобласти зависит от решения на предыдущей подобласти (или от решения на предыдущей итерации, если речь идёт о первой подобласти для итерации).

Существует также другой вариант метода Шварца, основанный на решении локальных задач для каждой подобласти без зависимости от соседних подоб-

ластей:

$$-\triangle(u^{n+\frac{i}{M}}) = f(x), \quad x \in G_i$$

$$\sigma(u^{n+\frac{i}{M}}) \cdot n = p(x), \quad x \in \partial G_N \cap \partial G_i$$

$$u^{n+\frac{i}{M}}(x) = 0, \quad x \in \partial G_D \cap \partial G_i$$

$$u^{n+1}(x) = u^n(x), \quad x \in G \setminus ((G_i \setminus \partial G_i) \cap (\partial G_N \cup \partial G_i))$$

Этот метод называется аддитивный метод Шварца. В конце каждой итерации решение вычисляется по формуле

$$u^{n+1} = u^n + \alpha \sum_{i=1}^{M} (u_i^{n+1} - u^n),$$

где коэффициент α - некоторый параметр, от которого зависит скорость сходимости итерационного процесса.

2 Численная модель

3 Краткое описание программы

4 Результаты численных расчётов

В данном разделе будут приведены расчёты четырёх тестовых задач с использованием четырёх методов. Для каждой из задач для базового случая будут приведены графики распределения напряжений вдоль поверхности, к которой приложено давление, а также графики распределения перемещений на всей расчётной области.

Для методов декомпозиции области расчётные области будут разбиты на заданное количество секторов без перекрытия $\Omega_1, \ldots, \Omega_M$ в зависимости от задачи, где M - число подобластей. Также стоит заметить, что каждая подобласть Ω_i ($i=1,\ldots,M$) в зависимости от задачи обладает своими размерными характеристиками. Подобласть G_i соответствует объединению подобласти Ω_i и дополнительных участков соседних подобластей Ω_{i-1} и Ω_{i+1} . Размеры этих дополнительных участков зависят от относительного коэффициента перекрытия (отношение размера перекрытия к размеру подобласти Ω_i).

Итерационный процесс для мультипликативного, аддитивного и двухуровневого аддитивного методов продолжается до тех пор, пока не выполнится условие критерия останова u_{err} для перемещений:

$$u_{err} = \sqrt{\left(\sum_{k=1}^{N_p} s_k \left(\frac{u_k^{m+1} - u_k^m}{u_k^{m+1}}\right)^2\right) / \left(\sum_{k=1}^{N_p} s_k\right)} < \varepsilon_0,$$

где s_k - суммарная площадь элементов сетки, в которые входит k-й узел, разделённая на количество узлов в элементе, N_{elem} - количество узлов сетки, u_k^{m+1} - решение на текущей итерации, u_k^m - решение на предыдущей итерации.

Дополнительно для каждой из задач для методов декомпозиции будут приведены таблицы зависимости количества итераций от относительного коэффициента перекрытия.

4.1 Первая тестовая задача

На рис. 2 представлена расчётная область для первой тестовой задачи - прямоугольник, закреплённый с левой и правой стороны по оси ОХ и с нижней стороны по оси ОҮ. Сверху действует распределённая нагрузка $p=50~\mathrm{M}\Pi$ а. Ширина тела $a=2~\mathrm{cm}$, высота тела $b=1~\mathrm{cm}$.

Рис. 2: Схема расчётной области

Для решения поставленной задачи примем, что материал тела имеет следующие параметры: модуль Юнга $E=70~\Gamma\Pi {\rm a}$, коэффициент Пуассона $\mu=0.34$.

Для исследования зависимости сходимости метода от размерности итоговой системы линейных уравнений рассмотрены три расчётные сетки с шагами h=0.05 (количество узлов - 994), h=0.025 (количество узлов - 3812), h=0.0125 (количество узлов - 15006).

Для аддитивного метода Шварца итерационный параметр $\alpha = 0.5$.

Для решения задачи методами декомпозиции области расчётная область разбивается по оси ОХ на заданное количество прямоугольных областей без перекрытия $\Omega_1, \ldots, \Omega_M$. Характерные размеры каждой подобласти: ширина подобласти $a_M = a/M$, высота подобласти совпадает с высотой тела $b_M = b$. На рис. 3 представлена расчётная область первой тестовой задачи, разбитая на две подобласти.

Рис. 3: Схема декомпозиции расчётной области $(\mathrm{M}=2)$

На рис. 4 приведено распределение радиальных перемещений, полученных при решении задачи во всей расчётной области без МДО, на рис. 5 - распределение узловых напряжений во всей области.

Рис. 4: Распределение перемещений во всей расчётной области

Рис. 5: Распределение узловых напряжений во всей расчётной области

4.1.1 Мультипликативный метод Шварца

В таблице 1 представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании мультипликативного метода Шварца для первой тестовой задачи (коэффициент захлёста для подобластей равен 0.3). Анализ полученных результатов показал, что:

- количество итераций не зависит от шага сетки;
- при увеличении числа подобластей количество итераций увеличивается (при увеличении количества подобластей количество итераций увеличивается примерно в M^2 раз);

Таблица 1: Количество итераций в зависимости от количества подобластей и шага сетки

Количество подобластей (М)	h = 0.05	h = 0.025	h = 0.0125	h = 0.00625
2 области	13	13	13	14
4 области	39	39	40	42
8 областей	125	124	128	135

4.1.2 Аддитивный метод Шварца

В таблице 2 представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании аддитивного метода Шварца для первой тестовой задачи (коэффициент захлёста для подобластей равен 0.3). Анализ полученных результатов показал, что:

- количество итераций несильно зависит от шага сетки;
- при увеличении числа подобластей количество итераций увеличивается (при увеличении количества подобластей количество итераций увеличивается примерно в M^2 раз);
- количество итераций по сравнению со случаем применения мультипликативного метода Шварца выросло почти в 4 раза;

 Таблица 2: Количество итераций в зависимости от количества подобластей и шага сетки

Количество подобластей (М)	h = 0.05	$\mid \mathrm{h} = 0.025$	$ \ { m h} = 0.0125$	$\mid \mathrm{h} = 0.00625 \mid$
2 области	23	24	30	29
4 области	57	69	85	80
8 областей	317	237	258	222

4.1.3 Двухуровневый аддитивный метод Шварца

Для двухуровневого аддитивного метода кроме основной сетки в расчётной области зададим грубую сетку, удовлетворяющую условиям включения всех узлов мелкой сетки в элементы грубой сетки и соответствия размеров областей.

В таблице 3 представлено количество итераций в зависимости от количества подобластей и шага грубой сетки при использовании двухуровневого аддитивного метода Шварца для первой тестовой задачи для шага мелкой сетки h=0.0125 (коэффициент захлёста для подобластей равен 0.3).

Анализ данной таблицы показывает, что для расчётов рациональнее взять шаг h=0.125, так как в этом случае количество итераций несильно зависит от количества подобластей.

На рис. 6 изображена расчётная схема области с грубой сеткой.

Рис. 6: Распределение узловых напряжений во всей расчётной области

Таблица 3: Количество итераций в зависимости от количества подобластей и шага грубой сетки для двухуровневого аддитивного метода Шварца (шаг мелкой сетки h=0.0125)

Количество подобластей	h = 1	h = 0.5	h = 0.025	h = 0.125
2 области	18	16	14	15
4 области	40	22	17	14
8 областей	86	32	19	16

В таблице 4 представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании двухуровневого аддитивного метода Шварца для первой тестовой задачи для шага грубой сетки h=0.125 (коэффициент захлёста для подобластей равен 0.3). Анализ полученных результатов показал, что:

- количество итераций не зависит от шага сетки;
- при увеличении числа подобластей количество итераций не меняется;

Таблица 4: Количество итераций в зависимости от количества подобластей и шага сетки для двухуровневого аддитивного метода Шварца

Количество подобластей	h = 0.05	h = 0.025	h = 0.0125	h = 0.00625
2 области	15	15	15	15
4 области	14	14	14	15
8 областей	16	16	16	17

В таблице 5 рассмотрена зависимость количества итераций от различных вариантов МДО и коэффициента относительного захлёста для случая M=4, шага мелкой сетки h=0.025 и шага грубой сетки h=0.125.

Из таблицы видно, что при росте коэффициента относительного захлёста количество итераций уменьшается.

Таблица 5: Количество итераций в зависимости от метода декомпозиции области и коэффициента относительного захлёста для случая M=4 и h=0.025

Коэффициент относительного захлёста	0.2	0.3	0.4
Мультипликативный МДО	55	40	31
Аддитивный МДО		85	65
Двухуровневый аддитивный МДО	15	14	14

4.2 Вторая тестовая задача

На рис. 7 представлена расчётная область для второй тестовой задачи - прямоугольник, закреплённый с левой стороны по оси ОХ и с нижней стороны по оси ОҮ. Сверху действует распределённая нагрузка $p=50~\mathrm{M}\Pi$ а. Ширина тела $a=2~\mathrm{cm}$, высота тела $b=1~\mathrm{cm}$.

Рис. 7: Схема расчётной области

Для решения поставленной задачи примем, что материал тела имеет следующие параметры: модуль Юнга $E=70~\Gamma\Pi {\rm a}$, коэффициент Пуассона $\mu=0.34$.

Для исследования зависимости сходимости метода от размерности итоговой системы линейных уравнений рассмотрены три расчётные сетки с шагами h=0.05 (количество узлов - 994), h=0.025 (количество узлов - 15006).

Для аддитивного метода Шварца итерационный параметр $\alpha = 0.5$.

Для решения задачи методами декомпозиции области расчётная область разбивается по оси ОХ на заданное количество прямоугольных областей без перекрытия $\Omega_1, \ldots, \Omega_M$. Характерные размеры каждой подобласти: ширина подобласти $a_M = a/M$, высота подобласти совпадает с высотой тела $b_M = b$. На рис. 8 представлена расчётная область вторая тестовой задачи, разбитая на две подобласти.

Рис. 8: Схема декомпозиции расчётной области $(\mathrm{M}=2)$

На рис. 9 приведено распределение перемещений, полученных при решении задачи во всей расчётной области без МДО, на рис. 10 - распределение напряжений вблизи области приложения давления.

Рис. 9: Распределение перемещений во всей расчётной области

Рис. 10: Распределение узловых напряжений во всей области

4.2.1 Мультипликативный метод Шварца

В таблице 6 представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании мультипликативного метода Шварца для второй тестовой задачи (коэффициент захлёста для подобластей равен 0.3). Анализ полученных результатов показал, что:

- количество итераций не зависит от шага сетки;
- при увеличении числа подобластей количество итераций увеличивается (при увеличении количества подобластей количество итераций увеличивается примерно в M^2 раз);

Таблица 6: Количество итераций в зависимости от количества подобластей и шага сетки

Количество подобластей (М)	h = 0.05	h = 0.025	h = 0.0125	h = 0.00625
2 области	23	23	23	22
4 области	102	100	99	99
8 областей	401	386	385	383

4.2.2 Аддитивный метод Шварца

В таблице 7 представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании аддитивного метода Шварца для второй тестовой задачи (коэффициент захлёста для подобластей равен 0.3). Анализ полученных результатов показал, что:

- количество итераций несильно зависит от шага сетки;
- при увеличении числа подобластей количество итераций увеличивается (при увеличении количества подобластей количество итераций увеличивается примерно в M^2 раз);
- количество итераций по сравнению со случаем применения мультипликативного метода Шварца выросло почти в 4 раза;

Таблица 7: Количество итераций в зависимости от количества подобластей и шага сетки

Количество подобластей	h = 0.05	h = 0.025	h = 0.0125	h = 0.00625
2 области	23	24	30	29
4 области	57	69	85	80
8 областей	317	237	258	222

4.2.3 Двухуровневый аддитивный метод Шварца

Для двухуровневого аддитивного метода кроме основной сетки в расчётной области зададим грубую сетку, удовлетворяющую условиям включения всех узлов мелкой сетки в элементы грубой сетки и соответствия размеров областей.

В таблице 8 представлено количество итераций в зависимости от количества подобластей и шага грубой сетки при использовании двухуровневого аддитивного метода Шварца для второй тестовой задачи для шага мелкой сетки h=0.0125 (коэффициент захлёста для подобластей равен 0.3).

Анализ данной таблицы показывает, что для расчётов рациональнее взять шаг h=0.125, так как в этом случае количество итераций несильно зависит от количества подобластей.

На рис. 11 изображена расчётная схема области с грубой сеткой.

| ../results/rectangle/2_fixes/core/area_coar

Рис. 11: Распределение узловых напряжений во всей расчётной области

Таблица 8: Количество итераций в зависимости от количества подобластей и шага грубой сетки для двухуровневого аддитивного метода Шварца (шаг мелкой сетки h=0.0125)

Количество подобластей	h = 1	h = 0.5	h = 0.025	h = 0.125
2 области	17	15	14	14
4 области	29	19	16	16
8 областей	42	26	17	17

В таблице 9 представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании двухуровневого аддитивного метода Шварца для второй тестовой задачи для шага грубой сетки h=0.125 (коэффициент захлёста для подобластей равен 0.3). Анализ полученных результатов показал, что:

- количество итераций не зависит от шага сетки;
- при увеличении числа подобластей количество итераций не меняется;

Таблица 9: Количество итераций в зависимости от количества подобластей и шага сетки для двухуровневого аддитивного метода Шварца

Количество подобластей	h = 0.05	h = 0.025	h = 0.0125	h = 0.00625

В таблице 10 рассмотрена зависимость количества итераций от различных вариантов МДО и коэффициента относительного захлёста для случая M=4, шага мелкой сетки h=0.025 и шага грубой сетки h=0.125.

Из таблицы видно, что при росте коэффициента относительного захлёста количество итераций уменьшается.

Таблица 10: Количество итераций в зависимости от метода декомпозиции области и коэффициента относительного захлёста для случая M=4 и h=0.025

Коэффициент относительного захлёста	0.2	0.3	0.4

4.3 Третья тестовая задача

На рис. 12 представлена расчётная область для второй тестовой задачи - сектор поперечного сечения толстостенной трубы, нагруженной внешним давлением $p=5\,$ МПа. Внутренний радиус $p_a=1\,$ см, внешний радиус $p_b=2\,$ см.

Рис. 12: Схема расчётной области третьей тестовой задачи

Для решения поставленной задачи примем, что материал тела имеет следующие параметры: модуль Юнга $E=70~\Gamma\Pi {\rm a}$, коэффициент Пуассона $\mu=0.34$.

Для исследования зависимости сходимости метода от размерности итоговой системы линейных уравнений рассмотрены три расчётные сетки с шагами h=0.05 (количество узлов - 994), h=0.025 (количество узлов - 3812), h=0.0125 (количество узлов - 15006).

Для аддитивного метода Шварца итерационный параметр $\alpha = 0.5$.

Для решения задачи методами декомпозиции области расчётная область разбивается на заданное количество секторов без перекрытия $\Omega_1, \ldots, \Omega_M$.

Характерные размеры каждой подобласти: угол каждого сектора - подобласти $\varphi_M = \pi/(2\cdot M)$. На рис. 13 представлена расчётная область третьей тестовой задачи, разбитая на две подобласти.

Рис. 13: Схема декомпозиции расчётной области (${\rm M}=2$)

Для третьей тестовой задачи известно аналитическое решение для радиального перемещения и тензора напряженийю. Тогда аналитическое радиальное перемещение считаем по формуле:

$$u_r = \frac{(1+\mu)\cdot(1-2\mu)}{E}A\cdot r + \frac{(1+\mu)}{E}\frac{B}{r},$$

где
$$A = (p_a \cdot r_a^2 - p_b \cdot r_b^2)/(r_b^2 - r_a^2), B = (p_a - p_b) \cdot (r_a r_b)^2/(r_b^2 - r_a^2).$$

Вычисление аналитического радиального и окружного напряжений производится по формуле:

 $\sigma_{r,\varphi} = A \mp \frac{B}{r^2}$

В таблице 11 представлены относительные ошибки для третьей тестовой задачи, полученные методом без применения МДО для трёх разных шагов сетки, а в таблице 12 - отношения ошибок. Относительные ошибки вычислялись по формуле:

$$\sqrt{\left(\sum_{k=1}^{N_{elem}} \left(\frac{\sigma_k^{ex} - \sigma_k^{num}}{\sigma_k^{ex}}\right)^2\right) / \left(\sum_{k=1}^{N_{elem}} s_k\right)},$$

где σ_k^{ex} - точное значение рассматриваемой компоненты тензора напряжений в центре k-ого элемента, σ_k^{num} - полученное численное значение аналогичной величины, s_k - площадь k-го элемента сетки.

Из таблицы 12 видно, что для напряжений наблюдается линейная скорость сходимости численного решения к аналитическому при измельчении сетки, для перемещений - квадратичная.

Таблица 11: Ошибки численного решения в зависимости от шага сетки

Шаг сетки	u_r	σ_r	σ_{arphi}
0.05	1.39e-04	2.93e-02	1.13e-02
0.025	3.50e-05	1.42e-02	5.60e-03
0.0125	8.72e-06	7.04e-03	2.84e-03

Таблица 12: Отношение ошибок численного решения

Шаг сетки	u_r	σ_r	σ_{arphi}
0.05	1	1	1
0.025	4	2	2
0.0125	16	4	4

На рис. 14 приведено распределение перемещений, полученных при решении задачи без методов декомпозиции области, на рис. 15 и 16- распределение узловых радиальных и трансверсальных напряжений во всей области.

Рис. 14: Распределение перемещений во всей расчётной области

Рис. 15: Распределение узловых радиальных напряжений во всей расчётной области

Рис. 16: Распределение узловых радиальных напряжений во всей расчётной области

4.3.1 Мультипликативный метод Шварца

В таблице 13 представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании мультипликативного метода Шварца в случае фиксированного относительного перекрытия подобластей (данный коэффициент равен 0.3). Анализ полученных результатов показал, что:

- количество итераций не зависит от шага сетки;
- при увеличении числа подобластей количество итераций увеличивается;

Таблица 13: Количество итераций в зависимости от количества подобластей и шага сетки для мультипликативного метода Шварца

Количество подобластей	h = 0.05	h = 0.025	h = 0.0125	h = 0.00625
2 области	44	44	44	43
4 области	178	169	169	168
8 областей	528	497	494	488

В таблице 13 представлено количество итераций и ошибки численного решения в зависимости от коэффициента сходимости при шаге сетки h=0.0125 и количестве подобластей M=8 (коэффициент захлёста равен 0.3).

Таблица 14: Количество итераций и ошибки численного решения в зависимости от коэффициента сходимости

ε_0	Количество итераций	σ_r	σ_{arphi}
1e-02	28	1.12e-02	7.84e-02
1e-03	57	7.82e-03	1.24e-02
1e-04	187	7.16e-03	4.33e-03
1e-05	494	7.04e-03	2.86e-03
1e-06	801	7.04e-03	2.84e-03

При сравнении таблиц 11 и 14 можем наблюдать, что ошибки, полученные мультипликативным МДО для $\varepsilon_0 = 10^{-6}$ не отличаются от ошибок, полученных при решении задачи на всей области без применения методов МДО.

4.3.2 Аддитивный метод Шварца

В таблице 15 представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании аддитивного метода Шварца в случае фиксированного относительного перекрытия подобластей (данный коэффициент равен 0.3). Анализ полученных результатов показал, что:

- количество итераций не зависит от шага сетки;
- при увеличении числа подобластей количество итераций увеличивается;

Таблица 15: Количество итераций в зависимости от количества подобластей и шага сетки для аддитивного метода Шварца

Количество подобластей	h = 0.05	h = 0.025	h = 0.0125
h = 0.00625		ı	'

В таблице 15 представлено количество итераций и ошибки численного решения в зависимости от коэффициента сходимости при шаге сетки h=0.0125 и количестве подобластей M=8 (коэффициент захлёста равен 0.3).

Таблица 16: Количество итераций и ошибки численного решения в зависимости от коэффициента сходимости

ε_0	Количество итераций	σ_r	σ_{arphi}
1e-02	54	1.90e-02	2.34e-01
1e-03	153	7.41e-03	3.52e-02
1e-04	272	7.00e-03	4.63e-03
1e-05	393	7.04e-03	2.87e-03
1e-06	539	7.04e-03	2.84e-03

При сравнении таблиц 11 и 16 можем наблюдать, что ошибки, полученные мультипликативным МДО для $\varepsilon_0=10^{-6}$ не отличаются от ошибок, полученных при решении задачи на всей области без применения методов МДО.

4.3.3 Двухуровневый аддитивный метод Шварца

Для двухуровневого аддитивного метода кроме основной сетки в расчётной области зададим грубую сетку, удовлетворяющую условиям включения всех узлов мелкой сетки в элементы грубой сетки и соответствия размеров областей.

В таблице 17 представлено количество итераций в зависимости от количества подобластей и шага грубой сетки при использовании двухуровневого аддитивного метода Шварца для третьей тестовой задачи для шага мелкой сетки h=0.0125 (коэффициент захлёста для подобластей равен 0.3).

Анализ данной таблицы показывает, что для расчётов рациональнее взять шаг h=0.125, так как в этом случае количество итераций несильно зависит от количества подобластей.

На рис. 17 изображена расчётная схема области с грубой сеткой.

../results/thick_walled_cylinder/pressure_c

Рис. 17: Распределение узловых напряжений во всей расчётной области

Таблица 17: Количество итераций в зависимости от количества подобластей и шага грубой сетки для двухуровневого аддитивного метода Шварца (шаг мелкой сетки h=0.0125)

Количество подобластей	h = 1	h = 0.5	h = 0.025	h = 0.125

В таблице 18 представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании двухуровневого аддитивного метода Шварца для третьей тестовой задачи для шага грубой сетки h=0.125 (коэффициент захлёста для подобластей равен 0.3). Анализ полученных результатов показал, что:

- количество итераций не зависит от шага сетки;
- при увеличении числа подобластей количество итераций не меняется;

Таблица 18: Количество итераций в зависимости от количества подобластей и шага сетки для двухуровневого аддитивного метода Шварца

Количество подобластей	h = 0.05	h = 0.025	h = 0.0125	h = 0.00625

В таблице 19 рассмотрена зависимость количества итераций от различных вариантов МДО и коэффициента относительного захлёста для случая M=4, шага мелкой сетки h=0.025 и шага грубой сетки h=0.125.

Из таблицы видно, что при росте коэффициента относительного захлёста количество итераций уменьшается.

Таблица 19: Количество итераций в зависимости от метода декомпозиции области и коэффициента относительного захлёста для случая M=4 и h=0.025

Коэффициент относительного захлёста	0.2	0.3	0.4

4.4 Четвёртая тестовая задача

На рис. 18 представлена расчётная область для четвёртой тестовой задачи - сектор поперечного сечения модели подшипника, нагруженной внешним давлением $p=5~\mathrm{M}\Pi$ а. Внутренний радиус $p_a=1~\mathrm{cm}$, внешний радиус $p_b=2~\mathrm{cm}$.

Рис. 18: Схема расчётной области третьей тестовой задачи

Для решения поставленной задачи примем, что материал тела имеет следующие параметры: модуль Юнга $E=70~\Gamma\Pi {\rm a}$, коэффициент Пуассона $\mu=0.34$.

Для исследования зависимости сходимости метода от размерности итоговой системы линейных уравнений рассмотрены три расчётные сетки с шагами h=0.05 (количество узлов - 994), h=0.025 (количество узлов - 3812), h=0.0125 (количество узлов - 15006).

Для аддитивного метода Шварца итерационный параметр $\alpha = 0.5$.

Для решения задачи методами декомпозиции области расчётная область разбивается на заданное количество секторов без перекрытия $\Omega_1, \ldots, \Omega_M$.

Характерные размеры каждой подобласти: угол каждого сектора-подобласти $\varphi_M=\pi/(2\cdot M)$. На рис. 19 представлена расчётная область третьей тестовой задачи, разбитая на две подобласти.

Рис. 19: Схема декомпозиции расчётной области третьей тестовой задачи

Для четвёртой тестовой задачи известно аналитическое решение для компонент вектора перемещений и тензора напряжений, на рис. 21 и 22- распределение узловых радиальных и трансверсальных напряжений во всей области.

Рис. 20: Распределение перемещений во всей расчётной области

Рис. 21: Распределение узловых радиальных напряжений во всей расчётной области

Рис. 22: Распределение узловых трансверсальных напряжений во всей расчётной области

4.4.1 Мультипликативный метод Шварца

В таблице 20 представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании мультипликативного метода Шварца для четвертой тестовой задачи (коэффициент захлёста для подобластей равен 0.3). Анализ полученных результатов показал, что:

- количество итераций не зависит от шага сетки;
- при увеличении числа подобластей количество итераций увеличивается;

Таблица 20: Количество итераций в зависимости от количества подобластей и шага сетки для мультипликативного метода Шварца

Количество подобластей	h = 0.05	h = 0.025	h = 0.0125	h = 0.00625
2 области	42	44	45	48
4 области	220	231	245	261
8 областей	409	509	550	592

4.4.2 Аддитивный метод Шварца

В таблице 21 представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании аддитивного метода Шварца для второй тестовой задачи (коэффициент захлёста для подобластей равен 0.3). Анализ полученных результатов показал, что:

- количество итераций не зависит от шага сетки;
- при увеличении числа подобластей количество итераций увеличивается;

Таблица 21: Количество итераций в зависимости от количества подобластей и шага сетки для аддитивного метода Шварца

Количество подобластей	h = 0.05	h = 0.025	h = 0.0125	h = 0.00625

4.4.3 Двухуровневый аддитивный метод Шварца

Для двухуровневого аддитивного метода кроме основной сетки в расчётной области зададим грубую сетку, удовлетворяющую условиям включения всех узлов мелкой сетки в элементы грубой сетки и соответствия размеров областей.

В таблице 22 представлено количество итераций в зависимости от количества подобластей и шага грубой сетки при использовании двухуровневого аддитивного метода Шварца для третьей тестовой задачи для шага мелкой сетки h=0.0125 (коэффициент захлёста для подобластей равен 0.3).

Анализ данной таблицы показывает, что для расчётов рациональнее взять шаг $h=0.125,\,$ так как в этом случае количество итераций несильно зависит от количества подобластей.

На рис. 17 изображена расчётная схема области с грубой сеткой.

Таблица 22: Количество итераций в зависимости от количества подобластей и шага грубой сетки для двухуровневого аддитивного метода Шварца (шаг мелкой сетки h=0.0125)

Количество подобластей	h = 1	h = 0.5	h = 0.025	h = 0.125

В таблице 23 представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании двухуровневого аддитивного метода Шварца для четвертой тестовой задачи для шага грубой сетки h=0.125 (коэффициент захлёста для подобластей равен 0.3). Анализ полученных результатов показал, что:

- количество итераций не зависит от шага сетки;
- при увеличении числа подобластей количество итераций не меняется;

Таблица 23: Количество итераций в зависимости от количества подобластей и шага сетки для двухуровневого аддитивного метода Шварца

Количество подобластей	h = 0.05	h = 0.025	h = 0.0125	h = 0.00625

В таблице 24 рассмотрена зависимость количества итераций от различных вариантов МДО и коэффициента относительного захлёста для случая M=4, шага мелкой сетки h=0.025 и шага грубой сетки h=0.125.

Из таблицы видно, что при росте коэффициента относительного захлёста количество итераций уменьшается.

Таблица 24: Количество итераций в зависимости от метода декомпозиции области и коэффициента относительного захлёста для случая M=4 и h=0.025

Коэффициент относительного захлёста	0.2	0.3	0.4

Рис. 23: Распределение узловых напряжений во всей расчётной области