Final Answer key GUJCET-E-2014

Test Booklet No.

10425

Test Booklet Code

A

This booklet contains 52 pages.

DO NOT open this Test Booklet until you are asked to do so.

Important Instructions:

- This test consists 120 questions of Physics, Chemistry and Biology. Each question carries 1 mark. For each correct response the candidate will get 1 mark. For each incorrect response ¼ mark will be deducted. Maximum marks is 120.
- 2) This Test is of 3 hours duration.
- 3) Use Black Ball Point Pen only for writing particulars on OMR Answer Sheet and marking answers by darkening the circle '.
- Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5) On completion of the test, the candidate must handover the Answer Sheet to the Invigilator in the Room / Hall. The candidates are allowed to take away this Test Booklet with them.
- 6) The CODE for this Booklet is A. Make sure that the CODE printed on the Answer Sheet is the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7) The candidate should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet.
- Do not write your Seat No. anywhere else, except in the specified space in the Test Booklet / Answer Sheet.
- 9) Use of White fluid for correction is not permissible on the Answer Sheet.
- 10) Each candidate must show on demand his / her Admission Card to the Invigilator.
- No candidate, without special permission of the Superintendent or Invigilator, should leave his /her seat.
- 12) Use of Manual Calculator is permissible.
- 13) The candidate should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and must sign the Attendance Sheet (Patrak 01). Cases where a candidate has not signed the Attendance Sheet (Patrak 01) be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- 14) The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 16) The candidates will write the Correct Test Booklet Code as given in the Test Booklet / Answer Sheet in the Attendance Sheet. (Patrak - 01)

Candidate's Name :	
Exam. Seat No. (in figures)	(in words)
Name of Exam. Centre :	Exam. Centre No.:
Test Booklet Code :	Test Booklet No. :
	Exam. Seat No. (in figures) Name of Exam. Centre:

Candidate's Sign Block Supt. Sign

SEAL

PHYSICS

Dimensional formula for electric field is 1) (B) M1 L2 T-3 A-1 (A) M¹ L² T⁻³ A⁻² (C) MILIT-3 A-1 (D) M⁰L⁰T⁰A⁰ A particle having mass m and charge q is at rest. On applying a uniform 2) electric field E on it, it starts moving. What is the kinetic energy when it travels a distance x in the direction of force? (B) $q^2E x$ (A) qE² x (C) qE x2 Two spheres having same radius and mass are suspended by two strings of 3) equal length from the same point, in such a way that their surfaces touch each other. On depositing charge 4 × 10-6 C on them they repel each other in such a way that in equillibrium the angle between their strings becomes 60°. If the distance from the point of suspension to the center of the sphere is 10 cm. Find the mass of each sphere. ($K = 9 \times 10^9 \text{ SI and } g = 10 \text{ ms}^{-2}$.) 0.6235 kg (A) 0.3117 kg (D) 1.2468 kg (C) 0.1559 kg

(Space for Rough Work)

For More GUJCET Material Visit www.VisionPapers.in!!!

4) Electric field produced due to an infinitely long straight uniformly charged wire at perpendicular distance of 2 cm is 3 × 10⁸ NC⁻¹. Then linear charge density on the wire is ______.

$$(K = 9 \times 10^9 \text{ SI unit})$$

$$333\frac{\mu c}{m}$$

(B)
$$3.33 \frac{\mu c}{m}$$

(C)
$$666 \frac{\mu c}{m}$$

(D)
$$6.66 \frac{\mu c}{m}$$

5) Two identical thin rings each of radius R m are kept on the same axis at a distance of R m apart. If the charges on them are 10 C and 5 C respectively, Calculate the work done in moving charge q C from the center of one ring to that of another.

(A)
$$\frac{5q}{4\pi \epsilon_0 R} \left[\frac{\sqrt{2} - 1}{2} \right] J$$

$$\int_{A}^{B} \frac{5q}{4\pi \epsilon_0 R} \left[1 - \frac{1}{\sqrt{2}} \right] J$$

(C)
$$\frac{15q}{4\pi \epsilon_0 R} \left[\frac{\sqrt{2} - 1}{\sqrt{2}} \right] J$$

(D)
$$\frac{10q}{4\pi \epsilon_0 R} \left[\frac{\sqrt{2} - 1}{\sqrt{2}} \right] J$$

(Space for Rough Work)

For More GUJCET Material Visit www.VisionPapers.in!!!

- 6) Q amount of electric charge is present on the surface of a sphere having radius R. Then electrical potential energy of this system is ______.
 - (A) $\frac{KQ^2}{R}$

(B) $\frac{KQ^2}{R^2}$

- (D) $\frac{1}{2} \frac{KQ^2}{R^2}$
- 7) A wire is bent in the form of circle of radius 2m. Resistance per unit length of wire is $1/\pi \Omega/m$. Battery of 6V is connected between A & B. $|AOB = 90^{\circ}$. Find the current through the battery.

(Space for Rough Work)

8)	The carbon resistor has three orange bands. The maximum value of resistance offered by the resistor will be
	(A) $49.6 \text{ K} \Omega$
\	39.6 K Ω
	(C) 33 K Ω
	(D) 26.4 K Ω
9)	Two wires of same material having lengths and radii in the ratio of 3:4 and 3:2 respectively are connected in parallel with a potential source of 6V.
	The ratio of currents flowing through them, $I_1:I_2 =$
.5%	(A) 1:3
	(C) 1:2 (D) 2:1
10)	For the galvanometer working as a voltmeter is connected with the coil of the galvanometer.
	(A) high resistance in parallel
	high resistance in series
	(C) low resistance in parallel
	(D) low resistance in series
	(Space for Rough Work)
	(opace see see see

11) The ratio of periods of ∞ – particle and proton moving on circular path in uniform magnetic field is ______.

2:1

(B) 1:2

(C) 4:1

- (D) 1:4
- 12) Two concentric rings are kept in the same plane. Number of turns in each ring is 25. Their radii are 50 cm and 200 cm and they carry electric currents of 0.1 A and 0.2 A respectively, in mutually opposite directions. The magnitude of the magnetic field produced at their centre is ______T.
 - $(A) \ 4 \ \mu_0$

(B) 2 μ₀

(C) $\frac{10}{4} \mu_0$

- $\frac{5}{4} \mu_0$
- 13) The magnetic susceptibility of a paramagnetic material is 1.0×10^{-5} at 27° C temperature. Then, at what temperature its magnetic susceptibility would be 1.5×10^{-5} ?
 - (A) 18° C

(B) 200° C

-73° C

(D) -18° C

(Space for Rough Work)

14)	The Earth's magnetic field at some place on magnetic equator of Earth is 0.5×10^{-4} T. Consider the radius of Earth at that place as 6400 km. Then, magnetic dipole moment of the Earth is Am^2 ($\mu_0 = 4\pi\times 10^{-7}$ TmA ⁻¹)
	(A) 1.05×10^{23}
,	$(B) 1.31 \times 10^{23}$
	(C) 1.15×10^{23}
	(D) 1.62×10^{23}
15)	Antistokes lines is Raman Scattering are the lines of frequency andwavelength.
	(A) low, high
	(B) low, low
	(C) high, high
	(D) high, low
16)	The time taken by the sunlight to reach the bottom of a tank of depth 4.5m filled completely with water is ns. The refractive index of water is 4/3.
	(A) 2
	(C) 15 (D) 200

(Space for Rough Work)

17) A plano convex lens fits exactly into plano concave lens as shown in figure. Their plane surfaces are parallel to each other. If the lens are made of different materials of refractive indices 1.6 & 1.5 respectively. If R is the radius of curvature of curved surfaces of lenses. Then the focal length of the combination.

- (A) $\frac{R}{6.2}$
- (B) $\frac{R}{0.2}$
- (C) $\frac{R}{3.1}$

- 18) A body of mass 100 g moves at the speed of 36 km/hr. The de Broglie wave length related to it is of the order _____ m (h = 6.626×10^{-34} Js)
 - (A) 10⁻¹⁴

(B) 10⁻²⁴

10-34

(D) 10⁻⁴⁴

(Space for Rough Work)

For More GUJCET Material Visit www.VisionPapers.in!!!

- 19) If the kinetic energy of free electron is made double, the new de Broglie wave length will be ______ times that of initial wave length.
 - (A) √2

(C) 2

- (D) $\frac{1}{2}$
- 20) Threshold wave length for lithium metal is 6250 Å. For photo emission, the wave length of the incident light must be
 - (A) More than 6250 Å
 - (B) Exactly equal to 6250 Å
 - (C) Equal to or more than 6250 Å
 - Equal to or less than 6250 Å
- 21) The dimensional formula of magnetic flux is ______.
 - (A) M1 L2 T-3 A-1
 - M1 L2 T-2 A-1
 - (C) M-1 L-2 T2 A1
 - (D) $M^1 L^3 T^{-2} \Lambda^{-1}$

(Space for Rough Work)

For More GUJCET Material Visit www.VisionPapers.in!!!

22)	A conducting Coil having 500 turns has cross - sectional area $0.15~\text{m}^2$. A magnetic field of strength $0.2~\text{T}$ linked perpendicular to this area changes to $1.0~\text{T}$ in $0.4~\text{sec}$. The induced emf produced in the coil will bevolt.			
	(A)) 10.0 (B) 15.0		
	(C)	75.0 (D) 150.0		
23)	The	e output power in step-up transformer used in practice is		
	(A)	Greater than the input power		
	(B)	Equal to the input power		
	Ver	Less than the input power		

- (D) None of these
- 24) A lamp consumes only 50% of maximum power applied in an A.C. circuit. What will be the phase difference between applied voltage and circuit current?
 - (A) $\frac{\pi}{6}$ rad

(B) $\frac{\pi}{3}$ rad
(D) $\frac{\pi}{2}$ rad

(C) $\pi/4$ rad

(Space for Rough Work)

For More GUJCET Material Visit www.VisionPapers.in!!!

- 25) An electric current has both D.C. and A.C. Components D.C. Component of 8A and A.C. Component is given as I = 6 sinwt A. So I_{rms} value of resultant current is ______.
 - (A) 8.05 A

(B) 9.05 A

(C) 11.58 A

(D) 13.58 A

- 26) The wave length of the short radio waves, micro waves, ultraviolet waves are λ_1 , λ_2 and λ_3 respectively. Arrange them in decreasing order.
 - (A) $\lambda_1, \lambda_3, \lambda_2$

(B) $\lambda_1, \lambda_2, \lambda_3$

(C) $\lambda_3, \lambda_2, \lambda_1$.

- (D) $\lambda_2, \lambda_1, \lambda_3$
- 27) The unit of permeability of Vacuum (μ₀) is ______.
 - (A) $\frac{N}{A}$

 $(B) \frac{N}{A^2}$

(C) NA

- (D) J/A^2
- 28) In young's double slit experiment, if the width of 4^{th} bright fringe is 2×10^{-2} cm, then the width of 6^{th} bright fringe will be _____ cm.
 - (A) 10⁻²

(B) 3×10^{-2}

 (ϵ) 2 × 10⁻²

(D) 1.5 × 10⁻²

(Space for Rough Work)

29)	Unp	olarized light falls first	on polarizer (P) and then on analyzer (A). If the
	inter	nsity of the transmitted	light from the analyzer is $\frac{1}{8}$ th of the incident
	unpo	olarized light. What wi	ll be the angle between optic axes of P & A?
	(A)	30°	(B) 45°
	(C)	0°	(D) 60°
30)	leng	th of light used is 5000 point like objects to be	of human eye is 2.5 mm. Assuming the wave Å. What must be the minimum distance between seen clearly if they are at a distance of 5 m from
	(A)	$1.34 \times 10^{-3} \text{ m}$	(B) $1.22 \times 10^{-3} \text{ m}$
	(C)	$1.5 \times 10^{-3} \text{ m}$	(D) $1.6 \times 10^{-3} \text{ m}$
1)		$ \lambda_1 $ and $ \lambda_2 $ are the wave then series respectively	length of the first numbers of the Lyman and λ_1 : λ_2
1)	Pasc		
1)	Pasc (A)	hen series respectively	7. Then $\lambda_1: \lambda_2$
1)	Pasc (A)	hen series respectively 1:3	Then $\lambda_1: \lambda_2$ (B) $1:30$
	Pasc (A) (C)	hen series respectively 1:3	7. Then $\lambda_1 : \lambda_2$ (B) $1 : 30$
(32)	Pasc (A) (C) The	hen series respectively 1:3 7:50	7. Then $\lambda_1 : \lambda_2$ (B) $1 : 30$

33) In the radio active transformation

$$_{Z}X^{A} \longrightarrow _{Z+1}X_{1}^{A} \longrightarrow _{Z-1}X_{2}^{A-4} \longrightarrow _{Z-3}X_{3}^{A-8}$$

Which are successively emitted radioactive radiations?

(Α) α, β-, β-

(B) β-, α, β-

 β -, α , α

(D) α, β-, α

34) The binding energy per nuclean of ${}_8O^{16}$ is 7.97 MeV and that of ${}_8O^{17}$ is 7.75 MeV. The energy required to remove one neutron from ${}_8O^{17}$ is _____ MeV.

(A) 3.52

(B) 3.62

(C) 4.23

(D) 7.86

The half life of a radio active substance is 20 days. If $\frac{2}{3}$ part of the substance has decayed in time t_2 and $\frac{1}{3}$ part of it has decayed in time t_1 then the time interval between t_2 and t_1 is $(t_2 - t_1) =$ ______.

(A) 5 days

(B) 10 days

(C) 20 days

(D) 40 days

36) The frequency of the output signal becomes ______ times by doubling the value of the capacitance in the LC oscillator circuit.

(B) $\sqrt{2}$

(C) $\frac{1}{2}$

(D) 2

(Space for Rough Work)

37) In a zener diode, the reverse bias voltage is 3V and the width of the depl			letion
	region is 300 A°, the electri	c field intensity will be	c_{cm} .
	(A) 10 ⁴	106	
	(C) 10 ⁸	(D) 10 ⁻²	
38)	current is 10 µA in the absen	ge in CE transistor amplifier is 10V. The ace of the signal voltage and the voltage better is 4V. The current gain (β) of a transist and resistance R _L .	ween
	(A) 1 K Ω	(B) 2 K Ω	
	3 K Ω	(D) 4 K Ω	
39)	The range of frequency of a	udio signal is	
	(A) 0 to 2 KHz	(B) 20 Hz to 20 MHz	
	20 Hz to 20 KHz	(D) 20 KHz to 200 KHz	
40)		I wave, the maximum amplitude is found de is found to be 4V. The modulation ind _%.	
	(A) 25	50	
	(C) 75	(D) 20	
y	54		
	(Space	for Rough Work)	

GUJCET-E-2014 BOOKLET A

[15]

(P.T.O.)

CHEMISTRY

- 41) The atoms of element 'Y' form hexagonal close packing and the atoms of element X occupies $\frac{2}{3}$ portion of the number of tetrahedral voids. Write the formula of the compound formed by X and Y.
 - (A) X_2Y_3
 - (B) X₂ Y
 - (C) X₃Y₄
 - (D) X₄ Y₃
- 42) What is the difference between the number of atoms per unit cell in face centred cube and the number of atoms per unit cell in body centred cube?
 - (A) 2
 - (B) 1
 - (C) 4
 - (D) 6
- What will be the value of molality for an aqueous solution of 10% w/w NaOH. (Na = 23, O = 16, H = 1)
 - 2.778
 - (B) 5
 - (C) 10
 - (D) 2.5

(Space for Rough Work)

For More GUJCET Material Visit www.VisionPapers.in!!!

CONTRACTOR STATES THE SECTION SHOULD THE

44) From the given graph at constant temperature, which gas has the least solubility?

- (A) gas D
- (C) gas A

- (B) gas B
- (D) gas C

45) If 10 ml of 0.1 M aqueous solution of NaCl is divided in to 1000 drops of equal volume, what will be the concentration of one drop?

(A) 0.01 M

(B) 0.10 M

(C) 0.001 M

(D) 0.0001 M

46) Which of the following will give $H_{2(g)}$ at cathode and $O_{2(g)}$ at anode on electrolysis using platinum electrodes?

- (A) molten NaCl
- (B) concentrated aq.solution of NaCl
- dilute aq. solution of NaCl
 - (D) solid NaCl

(Space for Rough Work)

- **47)** Which of the following statement is incorrect with respect to metallic or electronic conductivity?
 - (A) metallic conductivity depends on the structure of metal and its characteristics
 - (B) metallic conductivity depends on the number of electrons in the valence shell of atom of metal
 - The electrical conductivity of metal increases with increase in temperature
 - (D) There is no change in the structure of metal during electrical conduction
- 48) Which of the following is concentration cell?

(A)
$$Cu_{(s)}/Cu_{(aq, 1M)}^{2+} /\!\!/ Cu_{(aq, 1M)}^{2+}/Cu_{(s)}$$

(B)
$$Cu_{(s)}/Cu_{(aq,0.5M)}^{2+}/\!\!/ Cu_{(aq,0.5M)}^{2+}/\!\!/ Cu_{(s)}$$

(C)
$$Zn_{(s)}/Zn_{(aq,0.5M)}^{2+} /\!\!/ Cu_{(aq,0.1M)}^{2+}/Cu_{(s)}$$

- 49) Which of the following metal is purified by Mond Carbonyl method?
 - (A) Zr

(B) Ti

0.9

(C) Ge

(D) Ni

(Space for Rough Work)

- 50) Which oxide is colourless and neutral?
 - (A) N,O

(B) N₂O₃

(C) N₂O₄

- (D) N₂O₅
- 51) What is the geometrical shape of XeO₃?
 - (A) Planar triangular

Trigonal pyramidal

(C) Square planar

- (D) Tetrahydral
- 52) Aqueous solution of which of the following acid can not be kept in glass bottle?
 - HF

(B) HI

(C) HCI

- (D) HBr
- 53) Which of the following is the correct order for strength of C X bond.
 - (A) CH₃F > CH₃Cl > CH₃Br > CH₄I
 - (B) CH₃F < CH₃Cl < CH₃Br < CH₃I
 - (C) $CH_3I > CH_3F > CH_3Cl > CH_4Br$
 - (D) CH₃Cl > CH₃Br > CH₃F > CH₃I

(Space for Rough Work)

- 54) Which one is the Swartz reaction from the following?
 - (A) CH₃Cl + NaI __acetone CH₃I + NaCl
 - (B) $CH_3Br + NaI \xrightarrow{acetone} CH_3I + NaBr$
 - C CH₃Br + AgF \longrightarrow CH₃F + AgBr
 - (D) $2 \text{ CH}_3\text{Cl} + 2 \text{ Na} \xrightarrow{\text{Dry ether}} \text{CH}_3 \cdot \text{CH}_3 + 2 \text{ NaCl}$
- 55) Which of the following statement is incorrect for bimolecular nucleophylic substitution reaction (SN²)?
 - (A) It is a second order reaction
 - (B) In SN² reaction the substrate does not undergo heterolytic fission
 - The rate of SN² reaction does not depends on concentrations of both substrate and nucleophilic reagent
 - (D) SN² reaction occurs in single step without forming intermediate
- 56) Which of the following alcohol has highest solubility in water?
 - (A) Secondary butyl alcohol
 - (B) Tertiary butyl alcohol
 - (C) Ethelene glycol
 - (b) Glycerol

(Space for Rough Work)

For More GUJCET Material Visit www.VisionPapers.in!!!

- 57) In which of the following reactions of alcohol there is no cleavage of C-O bond?
 - Oxidation reaction of alcohol
 - (B) Dehydration reaction of alcohol
 - (C) Reduction reaction of alcohol
 - (D) Reaction of alcohol with phosphorous tribromide
- **58)** Which one of the following compounds do not give a primary alcohol on reduction?
 - (A) Propanoic acid

- (B) Propanal
- (C) Methyl propanoate
- Propan 2 one
- 59) The half life period for a first order reaction is _____
 - (A) Proportional to concentration
 - (B) Independent of concentration
 - (C) Inversely proportional to concentration
 - (D) Inversely proportional to the square of the concentration
- **60)** According to Arrhenius equation, the slope of $\log k \rightarrow \frac{1}{T}$ plot is _____.
 - (A) $\frac{-Ea}{2.303}$

 $\frac{-\text{Ea}}{2.303\,\text{R}}$

(C) $\frac{-\text{Ea}}{2.303\,\text{RT}}$

(D) $\frac{\text{Ea}}{2.303\,\text{RT}}$

(Space for Rough Work)

(Space for Rough Work)

For More GUJCET Material Visit www.VisionPapers.in!!!

65) Which of the following option is the correct order for the basic strength of metallic hydroxides?

(A) Al(OH)₃ < Lu(OH)₃ < Ce(OH)₃ < Ca(OH)₂

- (B) Ca(OH)₂ < Al(OH)₃ < Lu(OH)₃ < Ce(OH)₃
- (C) Lu(OH)₃ < Ce(OH)₃ < Al(OH)₃ < Ca(OH)₂
- (D) Lu(OH)₃ < Ce(OH)₃ < Ca(OH)₂ < Al(OH)₃
- 66) Which of the following compound is used in gas lighter.
 - (A) CeO,

(B) Pyrophoric Misch metal

(C) Nichrome

- (D) Nitinol
- 67) Which of the following complex does not show optical isomerism?
 - (A) [Cr (C₂O₄)₃]³-

- (B) Cis $[Pt (Br)_2 (en)_2]^{2+}$
- (C) [CrCl₂ (NH₃)₂ en]+
- (D) [Cr (NH₃)₄ SO₄]⁺
- 68) Which of the following complex ion has least stability?
 - (A) [Co (CN)₆]³⁻

(6) [Co (NH₂),]²⁺

(C) $[Co(NH_3)_6]^{3+}$

(D) [Co (CO)₆]³⁺

(Space for Rough Work)

For More GUJCET Material Visit www.VisionPapers.in!!!

69)	Which of the following ligand pos	ssess only one co-ordination site?	
•	O2-	(B) CO ₃ ²⁻	
	(C) SO ₄ ²⁻	(D) [OX] ²⁻	
70)	Which of following is the correct		
	(A) CH ₃ COOH > CICH ₂ COOH		
•	Cl, C.COOH > Cl, CH.COO	H > Cl-CH, COOH > CH, COOH	
	(C) $CH_3COOH > Cl_3 \cdot C \cdot COOH >$	Cl ₂ CH·COOH > Cl·CH ₂ COOH	
	(D) CH ₃ COOH > CICH ₂ COOH	> Cl ₂ ·CH·COOH > Cl ₃ ·C·COOH	
71)	The solution of Fehling B contains		
	(A) Alkaline sodium potassium o	eitrate	
	(B) Acidified Rochelle salt		
•	(c) Alkaline sodium potassium t	artarate	
	(D) Acidified sodium potassium		
72)	Which of the following compound does not react with concentrated alkali to give corresponding alcohol and salt of carboxylic acid?		
	(A) Benzaldehyde	(B) Trimethyl acetaldehyde	
	100		

	which of the following reac	tion does not occur?		
	(A) Tri propyl amine + ber	zene sulphonyl chloride		
	(B) Di propyl amine + ben	zene sulphonyl chloride		
	(C) Propyl amine + benzen	e sulphonyl chloride		
	(D) Propyl amine + p-tolue	ne sulphonyl chloride		
74)	Presently which reagent is us	sed for separation of 1°, 2° and 3° amines?		
	(B) Benzene sulphonyl chlo			
	(C) p - Amino benzene sulp			
	(D) m - toluene sulphonyl c			
75)	Which vitamin is not obtained from plants?			
	(A) Thiamine	(B) Cyanocobalamine		
#	(C) Pyridoxine	(D) α - Tocopherol		
76)	When sucrose is heated to 483 K temperature, it loses water and forms a brown amorphous substance called			
	(A) Aspartame	(B) Caramel		

,	******	ch of the following annin	o acid is neut	idi:
•	(A)	Glycine	(B)	Aspartic acid
	(C)	Lysine	(D)	Arginine
78)	Whi	ch of the following polyn	ner form net l	like structure?
	(A)	Polythene	(B)	Butyl rubber
	(C)	Polystyrene	LEDT	Melamine polymer
79)	Whi	ch of the following pair of	monomers ar	re used in preparation of PHBV?
`	(A)	β - Hydroxy butyric acid	d, β - hydroxy	y valeric acid
	(B)	β - Hydroxy valeric acid	d, Amino capi	roic acid
	(C)	β - Hydroxy butyric acid	d, Adipic acid	1
E)	(D)	Lactic acid, Adipic acid		
80)	Whi	ch of the following is use	ful as a food	preservative?
,	S	Salts of sorbic acid	(B)	Sucrolose
		Ascorbic acid	(D)	Citric acid