Biodegradable polymers

Non-resistent to environmental degradation -have functional group Similar to functional group of Biopolymers.

Examples: Poly-B-hydroxy butyrate-co-B-hydroxy valerale (PHBV). NYION-2-NYION-6.

Molecular mass of polymers

- · Expressed as an average
- · Determined By Physical and chemical method.

Types of Rubber

(i) Natural Rubber: Linear POLYMER OF ISOPPENE (2-mettiyl-1, 3-butadiene)

VULCANISOLLION of rubber: ROW RUBBER + SULPHUR

Stiffened rubber

Neoprene

Neoprene:

Synthetic Rubber: Homopolymer of 1. 3-butadiene Derivative. Example: BUNA-S. BUNA-N

 $nCH_2 = CH - C = CH_2 - K_2S_2O_8$

 $(CH_2-CH=C-CH_2)_n$

Copolymerization: A mixture of more than one polymeric Species undergoes poluymerization.

Example:

Very large molecules having high molecular mass.

Melamine - Formaldehyde Polymer:

Preparation

Caprolactan N-OH NH2 OH Beckmann NH Rearrangement NH(CH₂)—C—NH—(CH₂)₅—C

Polymerization H2N(CH2)5COOH

Nylon-6: Homopolymer of

Polyesters

Terylene: (dacron)

nHOCH, CH, OH + nHOOC - D - COOH

Polyethyline terephthalate

Nylon-6.6: Copolymer of Adipic Acid and Hexamethylene Diammine.

Polyamudes

$$HOOC - (CH_2)_4 - COOH + nH_2N - (CH_2)_6 - NH_2$$
 $O O$
 $|| || || || || - C - (CH_2)_4 - C - NH - (CH_2)_6 - NH_2$

NYION-6.6

Thermosetting Resin

Bakelite: Phenol

Phenal

formaldehyde resin.

→Bakelite

Based on Source

Based on Structure

Natural Polymers: Found in Plants

and animals.

Examples: Protein. Cellulose.

Semi-Synthetic Polymers:

Cellulose Derivative.

Examples: Cellulose Nitrate.

SYNTHETIC POLYMER: Man-made

Polymer.

Examples: Plythene. Bung-s. Nylon-6.6.

Linear: Long and Straight chains Examples: Fibres and Plastics.

Branched: Linear chains with branches.

Examples: Amylopectin, glycogen.

Cross linked or Network Polymer:

Strong covalent bonds between various Linear polymer chains.

Examples: Bakellite, Malemine.

Based on Polymerization

Classification

Addition Polymer: Repeated Addition of Monomers containing Double or Triple bond.

Homopolyner: Single monomeric Species (Polythene).

Copolymer: Two Different Monomers.

Condensation polymer: Repeated Condensation between two differnt bi-functional or Tri-fumetional polymer.

Examples: Terylene, Nylon 6

Based on Molecular Masses

Elastomer:

Rubber Like Solids with Elastic properties. Examples: Buna-S. Buna-N

Thermoplastic polymer:

Linear or Slightly branched chain capable of repeated Softening on heating.

Examples: Polythiene, polystyrene.

fibers:

Thread forming Solids. Examples: Nylone 6.6. Terylene.

Thermosetting Polymer:

Cross linked or Heavily branched molecules on heating excessive cross linking in mould and become infusible.

Examples: Bakelite

ypes of Polymerization Re

free Radical Mechanism: Steps Involved: (a) Chain Initiation: C_6H_5 —C— $COOH + NH_2N - (CH_2) - NH_2$ $2C_6H_5$ —C— $O \rightarrow 2C_6H_5 + CO_2$ (b) Chain Propagating Step: C_6H_5 — CH_2 — CH_2 + CH_2 = CH_2 C_bH_s — CH_2 — CH_2 — CH_2 — CH_2

Addition/Chain Growth: Governed by

 C_6H_5 — $(CH_2$ — CH_2),— CH_2 — CH_2

(c) Chain Termination Step:

 $2[C_6H_5-(CH_2-CH_2)_{\mu}-CH_2-CH_2]$ C_bH_5 — $(CH_2CH_2)_{\nu}$ — CH_2CH_2 — CH_2 — $(CH_2$ — $CH_2)_{\nu}$ — C_bH_5

Condensation Step Growth: Involves Stepwise Intermolecular Condensation: N—HOCH2—CH2OH+

Terylene or Dacran