强化训练

A 组 夯实基础

1. (2023•重庆期中)

下列叙述能组成集合的是()

- A. 接近 0 的数
- B. 数学成绩好的同学
- C. 中国古代四大发明
- D. 跑得快的运动员
- 1. C

解析: A 项, 要多接近 0 才算接近 0? 没有准确的标准,不满足集合元素的确定性,不能构成集合,故 A 项错误;

- B项,数学成绩好的标准不清晰,不能构成集合,故B项错误;
- C 项,中国古代四大发明指造纸术、指南针、火药、印刷术,对象明确,可以构成集合,故 C 项正确;
- D 项, 跑得快标准不清晰, 不能构成集合, 故 D 项错误.
- 2. (2024 江苏常州模拟) (多选)

下列各组中 M, P 表示不同集合的是 ()

A.
$$M = \{3, -1\}$$
, $P = \{(3, -1)\}$

B.
$$M = \{(3,1)\}, P = \{(1,3)\}$$

C.
$$M = \{y \mid y = x^2 + 1, x \in \mathbb{R}\}\$$
, $P = \{x \mid x = t^2 + 1, t \in \mathbb{R}\}\$

D.
$$M = \{y \mid y = x^2 - 1, x \in \mathbf{R}\}$$
,

$$P = \{(x, y) \mid y = x^2 - 1, x \in \mathbf{R}\}\$$

2. ABD

解析: A 项,M和 P 看起来像,但它们的元素其实完全不同! M 是由 3 和 -1 这两个实数构成的集合,是数集,而 P 是由一个有序实数对 (3,-1) 构成的集合,(3,-1) 也可以看成点的坐标,所以 P 是点集,故 M 与 P 必定不同;

B项,M是由点(3,1)构成的集合,P是由点(1,3)构成的集合,两个点不同,所以M与P不同;

C 项, 因为 $x \in \mathbb{R}$, 所以 $y = x^2 + 1 \ge 1$, 故 $M = \{y \mid y \ge 1\}$,

同理, $t \in \mathbf{R}$, 所以 $x = t^2 + 1 \ge 1$, 故 $P = \{x \mid x \ge 1\}$,

尽管两个集合看起来不一样,但它们都表示不小于 1 的实数构成的集合,里面的元素相同,所以 M = P;

D项,因为 $x \in \mathbb{R}$,所以 $y = x^2 - 1 \ge -1$,从而 $M = \{y \mid y \ge 1\}$

-1},故M是由全体不小于-1的实数构成的集合,

而 P 的代表元素是 (x,y),满足 $y=x^2-1$,所以 P 是二次

函数 $y = x^2 - 1$ 图象上的点构成的集合, 是点集,

故M与P不同.

3. (2023 • 浙江台州期中) (多选)

下列元素与集合的关系中,正确的是()

$$A. -1 \in \mathbb{N}$$

B.
$$0 \notin \mathbf{N}^*$$

C.
$$\sqrt{2} \notin \mathbf{Q}$$

D.
$$\pi \notin \mathbf{Q}$$

3. BCD

解析: A 项, -1 不是自然数, 即 -1 ∉ N, 故 A 项错误;

B 项, 0 不是正整数, 即 $0 \notin \mathbb{N}^*$, 故 B 项正确;

C 项, $\sqrt{2}$ 不是有理数, 即 $\sqrt{2} \notin \mathbf{Q}$, 故 C 项正确;

D项, π 不是有理数, 即 $\pi \notin \mathbf{Q}$, 故 D 项正确.

B组 强化能力

4. (2024 • 湖北武汉模拟)

集合
$$A = \left\{ \frac{6}{3-x} \in \mathbf{Z} \middle| x \in \mathbf{N}^* \right\}$$
 用列举法可以表示为_____.

4. $\{3,6,-6,-3,-2,-1\}$

解析: 由题意, A 是由 $\frac{6}{3-x}$ 的所有可能取值构成的集合,

集合 A 的代表元素 $\frac{6}{3-r}$ 只能为整数,又 $x \in \mathbb{N}^*$, 所以只需看 x 取哪些正整数,能使 $\frac{6}{3-r}$ 为整数,

要使
$$\frac{6}{3-x}$$
为整数,则 $-6 \le 3-x \le 6$ 且 $3-x \ne 0$,

所以 $-3 \le x \le 9$ 且 $x \ne 3$,结合 $x \in \mathbb{N}^*$ 可得x只可能为1,2,4,5,6,7,8,9,

经检验, 当且仅当x=1, 2, 4, 5, 6, 9时,

 $\frac{6}{3-x}$ 分别取整数 3, 6, -6, -3, -2, -1,

所以 $A = \{3,6,-6,-3,-2,-1\}$.

5. (2024 • 湖南怀化模拟)

已知集合 $P = \{x \mid x = 2k, k \in \mathbb{Z}\}\$, $Q = \{x \mid x = 2k - 1,$

$$k \in \mathbb{Z}$$
}, $M = \{x \mid x = 4k + 1, k \in \mathbb{Z}\}$, $\exists a \in P$,

 $b \in Q$,则()

A. $a+b \in P$ B. $a+b \in Q$

C. $a+b\in M$ D. 以上都不对

5. B

解法 1: 由题意可知集合 P 是全体偶数构成的集合, Q 是全体奇数构成的集合,

又 $a \in P$, $b \in Q$, 所以a为偶数,b为奇数,

从而 a+b 为奇数,故 $a+b \in Q$,故 B 项正确;

这里集合M中的元素显然也都是奇数,那为什么C项不对?我们来看看a+b的取值和M中的元素有何区别,

因为a+b能取全体奇数,而M中的元素是除以4余1的奇数,不是全体奇数,所以存在 $a+b \notin M$,下面举个例子, 取 a=0 , b=3 可得 $a+b=3 \notin M$, 故 C 项错误.

解法 2: P, Q, M中的元素都有明显的规律,也可考虑通过罗列它们的部分元素,寻找规律,从而判断选项,

由题意,集合 $P = \{\cdots, -4, -2, 0, 2, 4, 6, \cdots\}$,

 $Q = \{\cdots, -5, -3, -1, 1, 3, 5, \cdots\}$, $M = \{\cdots, -7, -3, 1, 5, 9, \cdots\}$,

我们取几组a,b的值来看看a+b是什么情况,

取 a = -2 , b = 1 可得 $a + b = -1 \in Q$,

取 a = -4, b = 5 可得 $a + b = 1 \in Q$,

取 a = 2, b = -5 可得 $a + b = -3 \in Q$,

由此可猜测 $a+b \in O$, 故尝试分析理由,

因为 $a \in P$, $b \in Q$, 所以a为偶数,b为奇数,

从而 a+b 为奇数,故 $a+b \in Q$,此为单选题,故选 B.

6. (2024 • 全国模拟)

已知 $M = \{a-3, 2a-1, a^2+1\}$, $N = \{-2, 4a-3, a^2+1\}$, $N = \{-2, 4a-3, a^2+1\}$

3a-1} , 若 M=N , 则实数 a 的值为 .

6. 1

解析: 观察发现 N 中有已知的元素 -2, 故只需讨论 M 中谁是 -2, 求出 a 的值,

因为M=N, $-2 \in N$, 所以 $-2 \in M$,

故 a-3=-2 或 2a-1=-2 或 $a^2+1=-2$,

当a-3=-2 时,a=1,注意,由-2∈M 只能保证 M,N都有元素-2,不一定满足 M=N,故还需代回去检验,

此时 $M = \{-2,1,2\}$, $N = \{-2,1,2\}$, 满足 M = N ;

$$\cong 2a-1=-2$$
 时, $a=-\frac{1}{2}$,此时 $M=\left\{-\frac{7}{2},-2,\frac{5}{4}\right\}$,

$$N = \left\{-2, -5, -\frac{5}{2}\right\}$$
, 不满足 $M = N$, 不合题意;

当 $a^2+1=-2$ 时,此方程在实数集上无解,不合题意;

综上所述,实数 a 的值为 1.

7. (2023 • 江西模拟)

已知实数集合 $A = \{1, a, b\}$, $B = \{a^2, a, ab\}$, 若

$$A = B$$
, $\iint a^{2023} + b^{2023} = ($

7. A

解析:观察发现两个集合中都有元素 a,故就看 1,b 怎样与 a^2 ,ab 对应了,有两种可能的情况,故讨论,

由题意,
$$A=B$$
, 所以
$$\begin{cases} 1=a^2 \\ b=ab \end{cases}$$
 或
$$\begin{cases} 1=ab \\ b=a^2 \end{cases}$$
,

若
$$\begin{cases} 1=a^2 \\ b=ab \end{cases}$$
,则 $\begin{cases} a=1 \\ b\in \mathbf{R} \end{cases}$ 或 $\begin{cases} a=-1 \\ b=0 \end{cases}$,

当 a=1 时,集合 A, B 都不满足元素互异,舍去,所以只能 $\begin{cases} a=-1 \\ b=0 \end{cases}$,此时 $A=\{1,-1,0\}$, $B=\{1,-1,0\}$,满足题意;

若
$$\begin{cases}1=ab\\b=a^2\end{cases}$$
,则 $\begin{cases}a=1\\b=1\end{cases}$,集合 A,B都不满足元素互异,舍去;

综上所述, a=-1, b=0, 所以 $a^{2023}+b^{2023}=-1$.

8. (2024 • 江西萍乡期末)

已知集合 $A = \{-1, a^2 - 2a + 1, a - 4\}$, 若 $4 \in A$,则 a 的值可能为(

A.
$$-1, 3$$

C.
$$-1$$
, 3, 8 D. -1 , 8

8. D

解析: 因为 $4 \in A$, 所以 $a^2 - 2a + 1 = 4$ 或a - 4 = 4,

解得: a = -1 或 3 或 8, 经检验, 当 a = 3 时,

a-4=-1,集合A不满足元素互异,

当a=-1或8时,集合A满足元素互异,故a=-1或8.

9. (2024 • 重庆期末)

已知集合 $A = \{x \in \mathbb{R} \mid x^2 - ax - a + 1 < 0\}$,若 $2 \in A$,则实数 a 的取值范围是(

A.
$$\left\{ a \middle| a > \frac{5}{3} \right\}$$
 B. $\left\{ a \middle| a < \frac{5}{3} \right\}$

B.
$$\left\{ a \middle| a < \frac{5}{3} \right\}$$

C.
$$\{a \mid a < 5\}$$

D.
$$\{a \mid a < 3\}$$

9. A

解析:因为 $2 \in A$,所以x = 2满足不等式 $x^2 - ax - a + 1$

<0,
$$\mbox{ \mathbb{M} in } 2^2 - a \cdot 2 - a + 1 < 0$$
, $\mbox{ \mathbb{M} $a > \frac{5}{3}$}$.

10. (2024 • 广东惠州模拟)

集合 $A = \left\{ x \in \mathbb{R} \middle| \frac{x-a}{2x+1} > 0 \right\}$,若 $3 \in A$ 且 $-1 \notin A$,则 a 的取值范围是(

A.
$$a < 3$$

B.
$$a \leq -1$$

C.
$$a \leq 3$$

D.
$$-1 < a < 3$$

10. B

解析: 因为3∈A, -1∉A, 所以x=3满足不等式

$$\frac{x-a}{2x+1} > 0$$
 , $x = -1$ 不满足该不等式,

故
$$\frac{3-a}{2\times 3+1} > 0$$
 且 $\frac{-1-a}{2\times (-1)+1} \le 0$,解得: $a \le -1$.

C 组 拓展提升

11. (2024 • 江苏南通期末(改))

集合 $A = \{x \in \mathbb{R} \mid ax^2 - 3x + 2 = 0, a \in \mathbb{R}\}$,若 A 中的元素至少有 1 个,则 a 的取值范围是_____.

11.
$$\left\{ a \middle| a \le \frac{9}{8} \right\}$$

解析: A 中至少 1 个元素即方程 $ax^2 - 3x + 2 = 0$ 至少 1 个实数解,该方程的平方项系数为字母,其是否为 0 对方程类型有影响, 考虑的方法不同, 故据此讨论,

当 a = 0 时, $ax^2 - 3x + 2 = 0$ 即为 -3x + 2 = 0,

解得:
$$x = \frac{2}{3}$$
, 所以 $A = \left\{ \frac{2}{3} \right\}$, 满足题意;

当 $a \neq 0$ 时,要使方程 $ax^2 - 3x + 2 = 0$ 至少1个实数解,

应有
$$\Delta = (-3)^2 - 4a \cdot 2 \ge 0$$
 , 解得: $a \le \frac{9}{8} (a \ne 0)$;

综上所述,a 的取值范围是 $\left\{ a \middle| a \leq \frac{9}{8} \right\}$.

12. (2024 • 四川成都期末)

已知集合 $A = \{1,2,3\}$, 则集合 $B = \{(x,y) | x \in A,$

 $y \in A, |x - y| \in A$ } 中所含元素的个数为(

A. 2

B. 4

D. 8

12. C

解析:在集合B中,x和y都来自集合A,不难发现它们可能的组合方式不多,故考虑逐一罗列来看,

因为 $x \in A$, $y \in A$, 所以x, y的可能取值如下表,

x	1	1	1	2	2	2	3	3	3
y	1	2	3	1	2	3	1	2	3
x-y	0	1	2	1	0	1	2	1	0

由表可知满足
$$|x-y| \in A$$
的有 $\begin{cases} x=1 \\ y=2 \end{cases}$, $\begin{cases} x=1 \\ y=3 \end{cases}$, $\begin{cases} x=2 \\ y=1 \end{cases}$

$$\begin{cases} x=2 \\ y=3 \end{cases}, \begin{cases} x=3 \\ y=1 \end{cases}, \begin{cases} x=3 \\ y=2 \end{cases}, \not\pm 6 \not\mp,$$

所以集合 B 中有 6 个元素.

13. (2024•江西模拟)

若集合
$$M = \{(x - y, x + y) | y = 2x\}$$
, 则()

A.
$$(1,3) \in M$$

A.
$$(1,3) \in M$$
 B. $(-1,3) \in M$

C.
$$(-1,2) \in M$$
 D. $(1,2) \in M$

D.
$$(1,2) \in M$$

13. B

解法 1:集合中的元素是 (x-y,x+y) ,故将选项代入可建立方程组,求出 x 和 y,再检验是否满足 y=2x 即可,

A 项, 若
$$(1,3) \in M$$
, 则 $\begin{cases} x-y=1 \\ x+y=3 \end{cases}$, 解得: $\begin{cases} x=2 \\ y=1 \end{cases}$,

经检验,不满足 y=2x ,所以 $(1,3)\not\in M$,故 A 项错误;

B 项, 若
$$(-1,3) \in M$$
, 则 $\begin{cases} x-y=-1 \\ x+y=3 \end{cases}$, 解得: $\begin{cases} x=1 \\ y=2 \end{cases}$

经检验,满足 y=2x ,所以 $(-1,3)\in M$,故 B 项正确;

C 项,若
$$(-1,2) \in M$$
,则 $\begin{cases} x-y=-1 \\ x+y=2 \end{cases}$,解得: $\begin{cases} x=\frac{1}{2} \\ y=\frac{3}{2} \end{cases}$

经检验,不满足 y=2x ,所以 $(-1,2) \notin M$,故 C 项错误;

D 项,若
$$(1,2) \in M$$
,则 $\begin{cases} x-y=1\\ x+y=2 \end{cases}$,解得: $\begin{cases} x=\frac{3}{2}\\ y=\frac{1}{2} \end{cases}$

经检验,不满足 y = 2x,所以 $(1,2) \notin M$,故 D 项错误.

解法 2:集合 M 描述法"|"左侧的代表元素格式较复杂,可考虑将其换元,把代表元素化简,以便于判断选项,

$$\diamondsuit \begin{cases} a = x - y \\ b = x + y \end{cases}, \quad \mathbb{M} \ x = \frac{a + b}{2} \ , \quad y = \frac{b - a}{2} \ ,$$

所以
$$y = 2x$$
 即为 $\frac{b-a}{2} = 2 \cdot \frac{a+b}{2}$, 化简得: $b = -3a$,

所以集合 M可改写为 $\{(a,b)|b=-3a\}$,结合选项可知只有 a=-1, b=3满足 b=-3a, 所以 $(-1,3)\in M$,故选 B.

14. (2023 • 河南模拟) (多选)

若集合 $\{x \in \mathbb{R} \mid ax^2 + x + a = 0\} = \{x \mid x - b = 0\}$, 则 b 的值可能为 ()

A. -1

B. 0

C. $\frac{1}{2}$

D. 1

14. ABD

解析:观察发现方程x-b=0容易求解,故先求解该方程,将问题明朗化,

由x-b=0可得x=b,所以题设条件等价于

 ${x \in \mathbf{R} \mid ax^2 + x + a = 0} = {b}$ ①,

故方程 $ax^2 + x + a = 0$ 有且仅有一个实数解 x = b,

该方程平方项系数为字母, 其是否为 0 对方程的类型有影响, 分析方法也不同, 故据此讨论,

当 a = 0 时, 方程 $ax^2 + x + a = 0$ 即为 x = 0,

所以①即为 $\{0\} = \{b\}$,故b = 0;

当 $a \neq 0$ 时,要使方程 $ax^2 + x + a = 0$ 有且仅有一个实数

解,应有 $\Delta = 1^2 - 4a^2 = 0$,解得: $a = \pm \frac{1}{2}$,

若 $a = \frac{1}{2}$, 则代回原方程化简得: $(x+1)^2 = 0$,

所以x=-1,此时①即为 $\{-1\}=\{b\}$,故b=-1;

若 $a = -\frac{1}{2}$, 则代回原方程化简得: $(x-1)^2 = 0$,

所以x=1,此时①即为 $\{1\}=\{b\}$,故b=1;

综上所述,b的值可能为0, -1, 1.

15. (2024 • 上海奉贤期末)

一数•高中数学一本通

集合 $A = \{x \mid (x-1)(x^2-4x+a) = 0, a \in \mathbb{R}\}$ 中恰好有 2 个元素,则实数 a 满足的条件是.

15. a = 4 或 3

解析: 由 $(x-1)(x^2-4x+a)=0$ 可得 x=1 或 x^2-4x

+a=0,所以1∈A,怎样能使A中恰有 2个元素?要么方程 $x^2-4x+a=0$ 只有 1 个实数解,且这个解不是 1,要么该方程有 2 个实数解,且其中 1 个恰好是 1,故讨论,

若方程 $x^2 - 4x + a = 0$ 恰有 1 个实数解,

则 $\Delta = (-4)^2 - 4a = 0$,解得: a = 4,

代回原方程可得 $x^2-4x+4=0$,即 $(x-2)^2=0$,

解得: x=2, 所以 $A=\{1,2\}$, 满足题意;

若方程 $x^2 - 4x + a = 0$ 有 2 个实数解,则其中 1 个解为 1,

所以 $1^2 - 4 \times 1 + a = 0$,解得: a = 3,

此时原方程即为 $x^2 - 4x + 3 = 0$,解得:x = 1或3,

所以 $A = \{1,3\}$,满足题意;

综上所述,实数a满足的条件是a=4或3.