Matrix Equations

Patrick Chen

Sept 12, 2024

Suppose $v_1
ldots v_m$ are vectors in \mathbb{R}^n . Let $A = [v_1
ldots v_m]$. If A is a $n \times m$ matrix and x is a vector in \mathbb{R}^m . We define $Ax = x_1v_1 + x_2v_2 + \dots + x_mv_m$.

$$\begin{bmatrix} 2 & 3 \\ 1 & -1 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = -1 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}$$

When we create a matrix, it describes a linear combination of its columns

Determining if a vector is in the span of a set of vectors

$$Ax = b$$
 where $A = \begin{bmatrix} v_1 & v_2 & \dots & v_m \end{bmatrix}$

The above equation is equivalent to determining if b is a linear combination of $v_1 \dots v_m$. x represents the coefficients of the linear combination.

In \mathbb{R}^n for any n, the span of a single non-zero vector is a line. Any two non-zero vectors will span a line or a plane. If you want to determine if vectors $v_1 \dots v_m$ in \mathbb{R}^n , row reduce the matrix formed by all the vectors. If every row in the matrix has a leading 1, it will span all of \mathbb{R}^n .