Bernoulli - Binomialverteilung

2

3

3

1

4

Aufgabe 1:

Im Folgenden werden zwei Würfel stets gemeinsam geworfen. Bei jedem der beiden Würfel sind die Seiten mit den Zahlen von 1 bis 6 durchnummeriert.

a Die beiden Würfel werden einmal geworfen. Begründen Sie, dass die Wahrscheinlichkeit dafür, dass dabei keine "6" auftritt, ²⁵/₃₆ beträgt.

b Die beiden Würfel werden 36-mal geworfen. Die binomialverteilte Zufallsgröße X gibt die Anzahl der Würfe an, bei denen keine "6" auftritt. Begründen Sie für jede der folgenden Abbildungen, dass sie nicht die Wahrscheinlichkeitsverteilung von X zeigt.

Aufgabe 2:

a Die Zufallsgröße X ist binomialverteilt; die Trefferwahrscheinlichkeit beträgt $\frac{1}{4}$. Vervollständigen Sie die folgende Gleichung zur Berechnung einer Wahrscheinlichkeit:

$$P(X =) = \begin{pmatrix} 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \end{pmatrix}^2 \cdot \left(\frac{1}{4}\right)^3$$

b Die Abbildung zeigt die symmetrische Wahrscheinlichkeitsverteilung einer binomialverteilten Zufallsgröße Y.

Gegeben sind die Wahrscheinlichkeitswerte $P(Y \le 15) \approx 0.78$ und $P(Y = 12) \approx 0.13$. Berechnen Sie unter Verwendung dieser Werte den zugehörigen Wert für die Wahrscheinlichkeit P(Y = 14).

Aufgabe 3:

a Die binomialverteilte Zufallsgröße X_1 hat die Parameter $n_1 = 4$ und p_1 sowie den Erwartungswert 2. Bestimmen Sie die Wahrscheinlichkeit $P(X_1 = 4)$.

b Die binomialverteilte Zufallsgröße X_2 hat die Parameter n_2 und $p_2=0,2$. Formulieren Sie dazu eine Aufgabenstellung, die sich mithilfe des Ansatzes $1-0.8^{n_2}<0.3$ lösen lässt.

Aufgabe 4:

Bei einem Spiel gewinnt man mit einer Wahrscheinlichkeit von 30 % einen Zitronenbonbon und mit einer Wahrscheinlichkeit von 50 % einen Orangenbonbon. Die Wahrscheinlichkeit dafür, dass man keinen Gewinn erzielt, beträgt 20 %.

a Eine Person nimmt zehnmal an dem Spiel teil. Geben Sie dazu ein Ereignis an, dessen Wahrscheinlichkeit mit dem Term $\binom{10}{7} \cdot 0.8^7 \cdot 0.2^3$ berechnet werden kann.

b Eine andere Person gewinnt sechs Bonbons. Sie wählt zwei dieser Bonbons zufällig aus und verschenkt sie. Die Wahrscheinlichkeit dafür, dass sie einen Zitronenbonbon und einen Orangenbonbon verschenkt, beträgt $\frac{3}{5}$. Ermitteln Sie, wie viele Orangenbonbons diese Person gewonnen hat.