Задача А. Логотип из букв L

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Пока неизвестная компания «LLL Company» хочет создать логотип. После долгого обсуждения дизайнеры поняли, что логотип должен состоять из трех букв L как-то нарисованных.

Чтобы с чего-то начать дизайнеры нарисовали n строк по m точек в каждой так, чтобы точки образовали прямоугольное поле. Они также покрасили каждую точку либо в белый, либо в черный цвет. На следующем изображении пример того, что они могли получить для n=4 и m=5:

Дизайнеры договорились нарисовать каждую букву L как объединение горизонтального и вертикального отрезка, пересекающиеся в их левом и нижнем концах, соответственно. Отрезки должны быть положительной длины, и их концы должны лежать на белых точках. Все точки, на которых лежат отрезки также должны быть белыми. На следующих картинках показаны правильные буквы L:

Заметьте, что ни букву, ни поле нельзя вращать.

Последнее требование — все три буквы должны не пересекаться. То есть, любая белая точка должна быть покрыта не более чем одной буквой.

Вам задано поле из n строк и m столбцов. Найдите число различных способов нарисовать логотип из трех букв L. Два логотипа считаются различными, если существует пара точек, соединенных отрезком ровно в одном из этих двух логотипов.

Формат входных данных

Первая строка содержит два целых числа n и m ($2 \le n, m \le 30$).

Каждая из следующих n строк содержит m символов. Каждый символ — либо '.', либо 'X', обозначающее цвет соответствующей точки белым или черным, соответственно.

Формат выходных данных

Выведите одно целое число: число различных способов нарисовать логотип.

Зимняя ШОП 2020, день 2, advanced contest Россия, Иннополис, 16 февраля 2020

стандартный ввод	стандартный вывод
2 6	1
4 5	3
. XX	
. X . X .	
$X \dots X$	
4 4	4
X	
X.	
2 2	0
4 4	12
. X . X	
. X . X	
• • • •	

Задача В. Heavy-Light декомпозиция

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 6 секунд Ограничение по памяти: 512 мегабайт

Heavy-Light декомпозиция — это способ разбить дерево на множество путей так, что из любой вершины до корня можно добраться за $O(\log n)$ переходов между путями. В этой задачи от вас требуется поддерживать heavy-light декомпозицию двоичного дерева, у которого листья удаляются один за другим.

Рассмотрим двоичное дерево T с n вершинами, пронумерованными от 1 до n. У каждой вершины может быть левый ребенок и правый ребенок. Вершина с номером 1 является корнем дерева, она не является ребенком какой-либо вершины. Любая другая вершина является ребенком какой-нибудь вршины. Вершина, у которой нет детей называется <u>листом</u>. Размером вершины называется число вершин в ее поддереве. Говорят, что ребро, ведущее из вершины u в ее ребенка v, <u>тяжелое</u>, если размер вершины v больше, чем размер другого ребенка v, или если v единственный ребенок v. Если у вершины v есть два ребенка v0 они одинакового размера, то изначально тяжелым ребром является то, которое ведет в левого ребенка v0.

Сначала требуется найти все тяжелые ребра в дереве и вывести сумму номеров вершин, в которые эти ребра ведут. После этого, нужно обработать m запросов: удалить лист с номером u_i из дерева, обновить множество тяжелых ребер и вывести сумму номеров вершин, в которые теперь ведут эти тяжелые ребра. Если после удаления вершины из дерева у какой-то вершины оба ребенка одинакового размера, то тяжелое ребро из нее не меняется.

Формат входных данных

Входные данные состоят из нескольких тестов.

Первая строка каждого теста содержит целое число n — число вершин в дереве ($2 \le n \le 200\,000$). Следующие n строк содержат описание дерева. i-я из этих строк состоит из двух целых чисел: L_i и R_i — номера левого и правого детей вершины i, или 0, если у i-й вершины нет соответствующего ребенка.

Следующая строка содержит целое число m — число листьев, которые требуется удалить $(1\leqslant m\leqslant n-1)$. В следующей строке содержится m чисел: u_1,u_2,\ldots,u_m — номера вершин, которые требуется удалить. Гарантируется, что после всех предыдущих удалений, вершины u_i стала листом.

Входные данные завершаются строкой, которая содержит n=0.

Сумма всех значений n не превосходит $200\,000$.

Формат выходных данных

Для каждого теста выведите m+1 чисел. Первое из них должно быть суммой вершин, в которые ведут тяжелые ребра в изначально дереве. Следующие m чисел должны соответствовать сумме после того, как были удалены некоторые вершины.

Система оценки

Номер	Баллы	Ограничения
подзадачи		Высота дерева
1	37	не превосходит 50
2	63	не ограничена

Зимняя ШОП 2020, день 2, advanced contest Россия, Иннополис, 16 февраля 2020

стандартный ввод	стандартный вывод
8	20
2 3	21
4 5	15
0 0	7
6 7	6
0 8	2
0 0	3
0 0	0
0 0	
7	
6 7 8 5 4 2 3	
0	

Задача С. Карликовая башня

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Маленький Вася играет в новую игру, которая называется «Карликовая башня». В этой игре есть n различных предметов, которые можно надеть на героя. Предметы занумерованы числами от 1 до n. Вася хочет получить предмет с номером 1.

Есть два способа получить предмет:

- Можно купить предмет. i-й предмет стоит c_i денег.
- Можно изготовить предмет. Эта игра поддерживает только m типов производства. Чтобы произвести предмет, нужно отдать два различных предмета и получить один в качестве результата.

Помогите Васе потратить минимальное количество денег, чтобы получить предмет с номером 1.

Формат входных данных

Первая строка содержит два целых числа n и m ($1 \le n \le 10\,000; 0 \le m \le 100\,000$) — количество различных предметов и типов производства, соответственно.

Вторая строка содержит n целых чисел c_i — стоимости предметов ($0 \le c_i \le 10^9$).

Следующие m строк описывают типы производства, каждая строка состоит из трех различных целых чисел a_i, x_i, y_i — предмет a_i можно получить из предметов x_i и y_i ($1 \le a_i, x_i, y_i \le n$; $a_i \ne x_i$; $x_i \ne y_i; y_i \ne a_i$).

Формат выходных данных

Выведите одно целое число: минимальное количество денег.

Система оценки

Номер	Голи.	Ограничения	
подзадачи	Баллы	n,m	
1	23	$1 \leqslant n \leqslant 10000, 0 \leqslant m \leqslant 100000$	Никакой предмет невозможно изготовить из предмета с таким же номером за одно или несколько производств
2	29	$1 \leqslant n \leqslant 100, 0 \leqslant m \leqslant 100$	
3	20	$1 \leqslant n \leqslant 10000, 0 \leqslant m \leqslant 100000$	
4	28	$1 \leqslant n \leqslant 200000, 0 \leqslant m \leqslant 500000$	

стандартный ввод	стандартный вывод
5 3	2
5 0 1 2 5	
5 2 3	
4 2 3	
1 4 5	

Задача D. Префикс суффикс

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

Существует две строки $s=s_1s_2...s_n$ и $t=t_1t_2...t_m$. Дается несколько запросов вида (l_s,r_s,l_t,r_t) , и для каждого запроса вы должны посчитать количество пар (x,y) таких что:

- $l_s \leqslant x \leqslant r_s$,
- $l_t \leqslant y \leqslant r_t$ и
- \bullet строка $s_x s_{x+1} \dots s_n t_1 t_2 \dots t_y$ подстрока s или t.

Формат входных данных

Входной файл содержит несколько тестов. Для каждого теста:

Первая строка содержит три целых числа n, m и q, длины s и t, а также число запросов $(1 \le n, m, q \le 5 \times 10^5)$.

Вторая строка содержит строку s длины n. И третья строка содержит строку t длины m. Обе строки состоят только из прописных букв английского алфавита.

Каждая из последующих q строк содержит по 4 целых числа l_s, r_s, l_t, r_t представляющих запрос $(1 \le l_s \le r_s \le n, 1 \le l_t \le r_t \le m)$.

Сумма значений n во всех тестах не превосходит 5×10^5 . Сумма значений m во всех тестах не превосходит 5×10^5 . Сумма значений q во всех тестах не превосходит 5×10^5 .

Формат выходных данных

Для каждого запроса выведите целый ответ на задачу.

стандартный ввод	стандартный вывод
3 3 3	3
aaa	0
aaa	1
1 3 1 3	
1 1 2 2	
3 3 1 1	

Задача Е. Удаление символов

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вам даны две строки: *а* и *b*, состоящие из строчных латинских букв. Вы хотите сделать строки равными. Вам разрешено удалить любое подмножество символов, минимизируйте количество различных символов среди тех, которые вы удалите.

Формат входных данных

В первой строке содержится непустая строка а, длина которой не превышает 1000.

Во второй строке содержится непустая строка b, длина которой не превышает $1\,000$.

Строки состоят из строчных латинских букв.

Формат выходных данных

Выведите единственное целое число: минимальное количество различных символов, которое можно удалить, чтобы получить две равные строки.

стандартный ввод	стандартный вывод
acabc	1
accabcc	
aabbcc	2
ccbbaa	
aaaabc	1
bcaaaaa	
abcde	0
abcde	
abcdefghijklm	26
nopqrstuvwxyz	

Задача F. Древний язык

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Ученые нашли текст, написанный на каком-то древнем языке. При написании текста использовалось два типа иероглифов. Первый тип использует только заглавные латинские буквы, второй тип — только прописные латинские буквы. При написании текста типы иероглифов чередуются, то есть соседние два иероглифа имеют разный тип. Например, текст AaAbBaAcCaAa является валидным, но текст ACbD нет.

У ученых есть гипотеза, что найденный ими текст является последовательностью слов. Каждый из этих слов состоит из двух иероглифов разных типов. Например, текст может быть составлен из слов Aa, bB и bC.

Слова в тексте могут перекрываться, например, текст AaAbB может быть рассмотрен как последовательность слов Aa, aA и bB.

Теперь же ученые хотят узнать, какое минимальное количество различных слов может быть в тексте. Например, AaAbBaAcCaAa может быть представлен в виде последовательности слов Aa, aA, bB, aA, cC, aA и Aa, в которой используются всего 4 различных слова: Aa, aA, bB и cC.

Ученые просят вас посчитать минимально возможное количество различных слов, которые использовались при составлении текста.

Формат входных данных

Дана строка, состоящая из чередующихся заглавных и прописных латинских букв. В строке от 2 до 2500 букв.

Формат выходных данных

Выведите минимально возможное количество различных слов, которые использовались при составлении текста.

стандартный ввод	стандартный вывод
AaAbBaAcCaAa	4
AbAb	1
аВаВ	1
AaBb	2

Задача G. Возврастающие последовательности

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вам дано два массива чисел l и r длины n каждый.

Найти количество строго возрастающих последовательностей целых чисел $a_0 < a_1 < \ldots < a_{n-1}$ таких, что $l_i \leqslant a_i \leqslant r_i$. Найдите ответ по модулю 998244353.

Формат входных данных

Первая строка содержит число n ($1 \le n \le 300$).

Следующие две строки содержат по n чисел каждая — массивы l и r соответсвенно $(1 \le l_i \le r_i \le 10^9)$.

Формат выходных данных

Выведите количество строго возрастающих последовательностей целых чисел, удовлетворяющих условиям, по модулю 998244353.

стандартный ввод	стандартный вывод
4 1 3 1 4 6 5 4 6	4
2 10 30 20 40	121
2 30 10 40 20	0
7 4 46 46 35 20 77 20 41 65 84 90 49 86 88	2470
1 1 1000000000	1755647