Normed Vector Spaces

Vector Spaces

Throughout, $\mathbb{F}=\mathbb{R}$ or \mathbb{C} . A **vector space** over \mathbb{F} is a nonempty set V equipped with two operations: vector addition and scalar multiplication.

$$V \times V \xrightarrow{+} V$$
 $(v, w) \mapsto v + w$ Vector Addition $F \times V \to V$ $(\alpha, v) \mapsto \alpha v$ Scalar Multiplication

The vector space is an Abelian group, where $u, v, w \in V$ and $\alpha, \beta \in \mathbb{F}$, we have:

- (i) u + (v + w) = (u + v) + w
- (ii) $\exists 0_v \in V$ with $\forall v \in V$, $0_v + v = v + 0_v = v$
- (iii) $(\forall v \in V)(\exists w \in V)$ with $v + w = 0_v$
- (iv) $\forall v, w \in V, v + w = w + v$
- (v) $\alpha(v+w) = \alpha v + \alpha w$, $(\alpha + \beta)v = \alpha v + \beta v$
- (vi) $\alpha(\beta w) = (\alpha \beta) w$
- (vii) $1 \cdot v = v$

Remarks:

- (a) 0_v is unique and known as the zero vector.
- (b) The vector w in (iii) is unique, and denoted -v.
- (c) $0 \cdot v = 0_v$
- (d) $(-1) \cdot v = -v$
- (e) Property (iv) follows from all the other axioms.
- (f) For $n \in \mathbb{N}$, $n \cdot v = \underbrace{v + v + \dots + v}_{n \text{ times}}$

Subspaces

Let V be a vector space over \mathbb{F} . A **subspace** is a nonempty subset $W \subseteq V$ satisfying the following:

- (i) $w \in W, \alpha \in \mathbb{F} \to \alpha w \in W$.
- (ii) $w_1, w_2 \in W \Rightarrow w_1 + w_2 \in W$.

Remark: 0_{ν} is always a member of any subspace; a subspace is also a vector space.

Proposition: Intersection of Subspaces

If $\{W_i\}_{i\in I}$ is a family of subspaces of V, then, $\bigcap W_i$ is a subspace of V.

Proposition: Union of Subspaces

It is not the case that the union of subspaces of V also a subspace. For example, consider \mathbb{R}^2 with the traditional vector space operations:

$$\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$$
$$\alpha \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha x \\ \alpha y \end{pmatrix}$$

If $W_1, W_2 \in V$ are subspaces such that $W_1 \cup W_2$ is a subspace, then $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Generated Subspaces

Let $S \subseteq V$ be any subset of a vector space V. Then,

$$\operatorname{span}(S) = \left\{ \sum_{j=1}^{n} \alpha_{j} v_{j} \mid \alpha_{1}, \dots, \alpha_{n} \in \mathbb{F}, v_{1}, \dots, v_{n} \in S \right\}$$

Remarks:

- span(S) $\subseteq V$ is a subspace.
- $\operatorname{span}(S) = \bigcap W$, where $S \subseteq W$ and $W \subseteq V$ is a subspace. Thus, $\operatorname{span}(S)$ is the "smallest" subspace containing S, or the subspace generated by S.

Proposition: Quotient Group on Vector Space

Let V be a vector space, and let $W \subseteq V$ is a subspace. Define $u \sim_W v \leftrightarrow u - v \in W$.

- (1) \sim_W is an equivalence relation.
- (2) If $[v]_W$ denotes the equivalence class of v, then $[v]_W = v + W = \{v + w | w \in W\}$.
- (3) $V/W := \{ [v]_W | v \in V \}$ is a vector space with $[v_1]_W + [v_2]_W = [v_1 + v_2]_W$ and $\alpha[v]_W = [\alpha v]_W$.

Proof of (1):

- Reflexive: $u \sim_W u$, since $u u = 0 \in W$.
- Transitive: Suppose $u \sim_W v$, and $v \sim_W z$. Then, $u v \in W$, and $v z \in W$. So, $(u v) + (v z) \in W$, so $u z \in W$. Whence, $u \sim_W z$.
- Symmetric: If $u \sim_W v$, then $u v \in W$, so $-1 \cdot (u v) \in W$, so $v u \in W$. Whence, $v \sim_W u$.

Proof of (2):

$$[v]_{W} = \{u \in V \mid u \sim_{W} v\}$$

$$= \{u \in V \mid u - v \in W\}$$

$$= \{u \in V \mid u = v + w \text{ some } w \in W\}$$

$$= \{v + w \mid w \in W\}$$

$$= v + W$$

Proof of (3): Prove that the operation is well-defined.

Bases

Let V be a vector space and $S \subseteq V$ be a subset.

- (1) S is said to be spanning for V if span(S) = V.
- (2) S is linearly independent if, for $\sum_{j=1}^{n} \alpha_j v_j = 0_v$ with $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$, $v_1, \ldots, v_n \in S$, then $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.
- (3) S is a basis for V if S is linearly independent and spanning for V.

Proposition: Existence of Basis

Every vector space admits a basis. If $B_0 \subseteq V$ is linearly independent, $\exists B \subseteq V$ such that B is a basis and $B \supseteq B_0$.

Background: A relation on a set X is a subset $R \subseteq X \times X$. If R is reflexive $(x \sim x)$, transitive $(x \sim y, y \sim z \rightarrow x \sim z)$, and antisymmetric $(x \sim y, y \sim x \rightarrow x = y)$, then R is an ordering, and we write $x \leq y$.

If \leq is an ordering of X such that $\forall x, y \in X$, $x \leq y$ or $y \leq x$, then \leq is a total (or linear) ordering.

Let \leq be an ordering of X, let $Y \subseteq X$. An upper bound for Y is an element $u \in X$ such that $y \leq u \ \forall y \in Y$. A maximal element in X is an element $m \in X$ such that $x \in X$, $x \geq m \to x = m$.

Example: \mathbb{N} under the division ordering defines $a \leq b \Leftrightarrow a|b$. If we want to find the maximal elements of $A = \{2, 6, 9, 12\}$, we would see that they are 9 and 12 (since no element of A can be divided by 9 and 12). Meanwhile, \mathbb{N} itself has no maximal elements.

This leads us to ask: given an ordered set, (X, \leq) , does X admit maximal elements.

Zorn's Lemma (or Axiom): Let (X, \leq) be an ordered set. Suppose that every totally ordered subset, $Y \subseteq X$ has an upper bound in X. Then, X admits at least one maximal element.

The proof of Zorn's Lemma relies on the Axiom of Choice (and Zorn's Lemma is equivalent to the Axiom of Choice).

Proof: Let $X = \{D \mid B_0 \subseteq D \subseteq V\}$ with D linearly independent. Since $B_0 \subseteq X$, $X \neq \emptyset$. Define $D, E \in X$, $D \subseteq E \Leftrightarrow D \subseteq E$. We will show that X has a maximal element.

Consider any totally ordered subset, $Y = \{D_i\}_{i \in I}$. Consider $D = \bigcup D_i$. Clearly, $B_0 \subseteq D \subseteq V$. Suppose $\sum \alpha_k v_k = 0_v$ with $v_1, \ldots, v_n \in D$. Therefore, $\exists D_j$ with $v_1, \ldots, v_n \in D_j$ because Y is totally ordered. However, by definition, D_j is a linearly independent set — therefore, $\alpha_k = 0$. Thus, D is linearly independent.

Since D is linearly independent, and $B_0 \subseteq D$, it must be the case that $D \in X$. D is also an upper bound for Y. So, by Zorn's Lemma, X has a maximal element, B.

So, $B_0 \subseteq B \subseteq V$, B is independent, and B is maximal in X. We claim that B is a basis for V. Suppose toward contradiction that $\exists v \in V$ such that $v \notin \text{span}(B)$. Consider $B' = B \cup \{v\}$.

Then, $B_0 \subseteq B'$, and B' is linearly independent — if $\sum \alpha_k v_k + \alpha v = 0$, where $v_1, \ldots, v_n \in B$, then either:

- If $\alpha = 0$, then $\alpha_k v_k = 0 \Rightarrow \alpha_k = 0$.
- If $\alpha \neq 0$, then $\sum \alpha_k v_k = -\alpha v$, which means $v \in \text{span}(B)$. \perp

Thus, we have a linearly independent set, B', with $B \subseteq B'$, and $B_0 \subseteq B'$. Therefore, $B' \in X$. However, this contradicts the maximality of B. Therefore, span(B) = V, and B is a basis for V.

Examples: Vector Spaces

(1) n-Dimensional Vectors:

$$\mathbb{F}^{n} = \left\{ \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \mid x_{j} \in \mathbb{F} \right\}$$

$$\begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} + \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix} = \begin{pmatrix} x_{1} + y_{1} \\ \vdots \\ x_{n} + y_{n} \end{pmatrix}$$

$$\alpha \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} \alpha x_{1} \\ \vdots \\ \alpha x_{n} \end{pmatrix}$$

$$B = \{e_{1}, \dots, e_{n}\}$$

where e_i denotes the unit vector at position i.

(2) $m \times n$ Matrices:

$$\mathbb{M}_{m,n}(\mathbb{F}) = \left\{ \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \mid a_{ij} \in \mathbb{F} \right\}$$
$$(a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij})$$
$$\alpha(a_{ij}) = (\alpha a_{ij})$$
$$B = \{e_{ij}\}$$

where e_{ij} denotes a matrix of 0 everywhere except column i and row j.

(3) Functions with domain Ω :

$$\mathcal{F}(\Omega, \mathbb{F}) = \{ f \mid f : \Omega \to \mathbb{F} \}$$
$$(f+g)(x) = f(x) + g(x)$$
$$(\alpha f)(x) = \alpha f(x)$$

(4) Bounded functions with domain Ω :

$$\ell_{\infty}(\Omega, \mathbb{F}) = \{ f \in \mathcal{F}(\Omega, \mathbb{F}) \mid ||f||_{u} \le \infty \}$$
$$||f||_{u} = \sup_{x \in \Omega} |f(x)|$$

Exercises:

• Triangle Inequality: $||f + g||_u \le ||f||_u + ||g||_u$

• Scalar Multiplication/Absolute Homogeneity: $\|\alpha f\|_u = |\alpha| \|f\|_u$

• Positive Definite: $||f||_u = 0 \Rightarrow f = 0$

Proof of Triangle Inequality: Given $x \in \Omega$,

$$|(f+g)(x)| = |f(x) + g(x)|$$

 $\leq |f(x)| + |g(x)|$
 $\leq ||f||_u + ||g||_u$

Therefore.

$$\sup |(f+g)(x)| \le ||f||_u + ||g||_u$$
$$||f+g||_u < ||f||_u + ||g||_u$$

(5) Continuous functions on closed and bounded intervals:

$$C([a, b], \mathbb{F}) = \{f : [a, b] \to \mathbb{F} \mid f \text{ continuous}\}\$$

Check that $C([a, b], \mathbb{F}) \subseteq \ell_{\infty}([a, b], \mathbb{F})$ is a subspace.

(6) Let $f:[a,b] \to \mathbb{R}$ be any function. Let $\mathcal{P}: a = x_0 < x_1 < x_2 < \cdots < x_n = b$.

$$\operatorname{var}(f; \mathcal{P}) := \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})|$$

$$\operatorname{var}(f) = \sup_{\mathcal{P}} \operatorname{var}(f; \mathcal{P})$$

$$\operatorname{BV}([a, b]) = \{f : [a, b] \to \mathbb{R} \mid \operatorname{var}(f) < \infty\}$$

$$\|f\|_{\operatorname{BV}} = |f(a)| + \operatorname{var}(f)$$

BV([a, b]) is a vector space.

Question: Is $\mathbb{1}_{\mathbb{Q}} \in BV([0,1])$?

(7) Suppose $K \subseteq V$ is a *convex* subset of a vector space: $v, w \in K, t \in [0, 1] \Rightarrow (1 - t)v + tw \in K$. Let $Aff(K) = \{f : K \to \mathbb{R} \mid f \text{ is affine}\}$, where f is affine if $\forall v, w \in K, t \in [0, 1], f((1 - t)v + tw) = (1 - t)f(v) + tf(w)$.

Exercise: Show that $Aff(K) \subseteq \mathcal{F}(K, \mathbb{R})$ is a subspace.

(8) Let S be defined as

$$S = \{(a_k)_{k=1}^{\infty} \mid a_k \in \mathbb{F}\}.$$

Under pointwise operations, S is a vector space.

$$(a_k)_k + (b_k)_k = (a_k + b_k)_k$$
$$\alpha(a_k)_k = (\alpha a_k)_k$$

Note 1: $S = \mathcal{F}(\mathbb{N}, \mathbb{F})$.

Note 2: $c_{00} \subseteq \ell_1 \subseteq c_0 \subseteq c \subseteq \ell_\infty \subseteq S$.

- $c_{00} = \{(a_k)_k \mid \text{finitely many } a_k \neq 0\}$
- $c_0 = \{(a_k)k \mid (a_k)_k \to 0\}$
- $c = \{(a_k)_k \mid (a_k)_k \rightarrow a < \infty\}$
- $\ell_{\infty} = \{(a_k)_k \mid ||(a_k)_k||_u < \infty\}$
- $\ell_1 = \{(a_k)_k \mid \sum_{k=1}^{\infty} |a_k| = a < \infty \}$
- (9) $C_C(\mathbb{R}) \subseteq C_0(\mathbb{R}) \subseteq \ell_\infty(\mathbb{R})$ are all subspaces.
 - $C_C(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{F} \mid f \text{ compactly supported}\}: f : \mathbb{R} \to \mathbb{F} \text{ is compactly supported if } \exists [a, b] \text{ such that } x \notin [a, b] \Rightarrow f(x) = 0.$
 - $C_0(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{F} \mid f \text{ continuous, } \lim_{x \to \pm \infty} f(x) = 0 \}$
- (10) Let S be any non-empty set.

$$\mathbb{F}(S) := \{ f : S \to \mathbb{F} \mid f \text{ finitely supported} \}$$

$$\mathsf{supp}(f) = \{ x \in S \mid f(x) \neq 0 \}$$

We claim that $\mathbb{F}(S) \subseteq \mathcal{F}(S,\mathbb{F})$ is a subspace. Consider $e_t : S \to \mathbb{F}$ defined as follows:

$$e_t(s) = \begin{cases} 1 & s = t \\ 0 & s \neq t \end{cases}.$$

We claim that $\xi = \{e_t\}_{t \in S}$ is a basis for $\mathbb{F}(S)$.

Indeed, given $f \in \mathbb{F}(S)$, we know that $\operatorname{supp}(f) = \{t_1, \ldots, t_n\} \subseteq S$. Therefore, $f = \sum_{k=1}^n f(t_k) e_{t_k} \in \operatorname{span}(\xi)$. Therefore, ξ is spanning for $\mathbb{F}(S)$. Suppose $\sum_{k=1}^n \alpha_{t_k} e_{t_k} = \mathbb{O}$ for some $\alpha_k \in \mathbb{F}$, $t_k \in S$.

$$\left(\sum_{k=1}^{lpha_{t_k}}e_{t_k}
ight)=\mathbb{O}(t_1)$$
 $lpha_{t_1}=0.$

Similarly, $\alpha_{t_j} = 0$ for j = 1, ..., n. Therefore, ξ is linearly independent. Since ξ is linearly independent and spanning, ξ forms a basis for $\mathbb{F}(S)$.

Note: The free vector space, $\mathbb{F}(S)$, displays the universal property.

There are functions $\iota: S \to \mathbb{F}(S)$, where $\iota(t) = e_t$, and given any map $\varphi: S \to V$ for V a vector space over \mathbb{F} , $\exists !$ linear map $T_{\varphi}: \mathbb{F}(S) \to V$ such that $\iota \circ T_{\varphi} = \varphi$.

Proof: Every $f \in \mathbb{F}(S)$ has a unique expression $f = \sum_{k=1}^{n} f(t_k) e_{t_k}$, where $\text{supp}(f) = \{t_1, \dots, t_n\}$. Therefore,

$$T_{\varphi}(f) := \sum_{k=1}^{n} f(t_k) \varphi(t_k)$$

Exercise: Show T_{φ} is linear and unique.

Exercise 2: Suppose V is a vector space over \mathbb{F} with basis B. Show that $\mathbb{F}(B) \cong V$. Remember that $V \cong W$ if \exists $T : V \to W$ such that T is bijective and linear.

Normed Spaces

To every vector $v \in V$, we want to assign a length to v, ||v||.

A **norm** on a vector space V is a map

$$\|\cdot\|:V\to\mathbb{R}^+$$
$$v\mapsto\|v\|\geq0$$

such that

(i) Homogeneity: $\|\alpha v\| = |\alpha| \|v\|$

(ii) Triangle Inequality: $||v + w|| \le ||v|| + ||w||$

(iii) Positive definiteness: $||v|| = 0 \Rightarrow v = \mathbb{O}_V$.

If $p: V \to \mathbb{R}^+$ satisfies (i) and (ii), then p is a **seminorm**.

The pair $(V, \|\cdot\|)$ is called a normed space.

Two norms, $\|\cdot\|$ and $\|\cdot\|'$ are called **equivalent** if $\exists c_1, c_2 \geq 0$ with, $\forall v \in V$,

$$||v|| \le c_1 ||v||'$$

 $||v||' \le c_2 ||v||$

Note: On \mathbb{R}^n , all norms are equivalent.

Exercise: If p is any seminorm on V, then $|p(v) - p(w)| \le p(v - w)$.

Notation: If V is a normed space, then $B_V = \{v \in V \mid ||v|| \le 1\}$, and $U_V = \{v \in V \mid ||v|| < 1\}$ are the closed and open unit ball respectively.

Examples of Normed Spaces

(1) Given
$$V = \mathbb{F}^n$$
 and $X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, we have different norms:

$$||x||_1 = \sum_{j=1}^n |x_j|$$

$$||x||_{\infty} = \max_{1 \le j \le n} |x_j|$$

$$||x||_2 = \left(\sum_{j=1}^n |x_j|^2\right)^{1/2}.$$

In general, for $1 \le p < \infty$,

$$||x||_p = \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{1/p}.$$

Exercise: Show that $\|\cdot\|_1$ and $\|\cdot\|_\infty$ are norms. Show that $\lim_{p\to\infty}\|x\|_p=\|x\|_\infty$

We want to show that $\|\cdot\|_p$ defines a norm for $1 \le p < \infty$. If $1 \le p < \infty$, its conjugate index $q \in [1, \infty]$ whereby $\frac{1}{p} + \frac{1}{q} = 1$. For example, if p = 1, then $q = \infty$, and if $p = \infty$, then q = 1.

Lemma 1: For $1 , <math>p^{-1} + q^{-1} = 1$, $f: [0, \infty) \to \mathbb{R}$, $f(t) = \frac{1}{p}t^p - t + \frac{1}{q}$. Then, $f(t) \ge 0$ for all $t \ge 0$.

Proof 1: We can see that $f'(t) = t^{p-1} - 1$. Then, f'(t) = 0 at t = 1; f'(t) > 0 for t > 1 and f'(t) < 0 for $t \in [0, 1)$.

So, since f(t) > f(1) for all t > 0, and f(1) = 0, f(t) > 0 for all t > 0.

Lemma 2: For $1 , <math>p^{-1} + q^{-1} = 1$, $z, y \ge 0$, $xy \le \frac{1}{p}x^p + \frac{1}{q}y^q$.

Proof 2: We know from Lemma 1, $t \leq \frac{1}{p}t^p + \frac{1}{q}$. Multiply by y^q to get

$$ty^q \leq \frac{1}{p}t^p y^q + \frac{1}{q}y^q$$
.

Set $t = xy^{1-q}$. Then

$$xy^{1-q}y^{q} \le \frac{1}{p}x^{p}y^{p-pq}y^{q} + \frac{1}{q}y^{q}.$$

Since $\frac{1}{p} + \frac{1}{q} = 1$, p - pq = -q, so

$$xy \le \frac{1}{p}x^p + \frac{1}{q}y^q.$$

With these two lemmas in mind, we get two important inequalities.

Hölder's Inequality: For $1 \le p \le \infty$, $p^{-1} + q^{-1} = 1$. Then, for $x, y \in \mathbb{F}^n$,

$$\left|\sum_{j=1}^n x_j y_j\right| \leq \|x\|_\rho \|y\|_q.$$

Proof of Hölder's Inequality: For p = 1, the solution is as follows:

$$\left| \sum_{j=1}^{n} x_j y_j \right| \le \sum_{j=1}^{n} |x_j| |y_j|$$

$$\le \sum_{j=1}^{n} |x_j| ||y||_{\infty}$$

$$= ||x||_q ||y||_{\infty},$$

and similarly for $p = \infty$, q = 1.

For $1 , assume <math>||x||_p = ||y||_q = 1$.

$$\left| \sum_{j=1}^{n} x_{j} y_{j} \right| \leq \sum_{j=1}^{\infty} |x_{j}| |y_{j}|$$

$$\leq \sum_{j=1}^{n} \left(\frac{1}{p} |x_{j}|^{p} + \frac{1}{q} |y_{j}|^{q} \right)$$

$$= \frac{1}{p} \left(\sum_{j=1}^{n} |x_{j}|^{p} \right) + \frac{1}{q} \left(\sum_{j=1}^{n} |y_{j}|^{q} \right)$$

$$= \frac{1}{p} + \frac{1}{q}$$

$$= 1$$

If $||x||_p = 0$ or $||y||_q = 0$, then $x = \mathbb{O}_{\mathbb{F}}$ or $y = \mathbb{O}_{\mathbb{F}}$, the inequality still holds.

Assume $||x||_p \neq 0$, $||y||_p \neq 0$. Set

$$x' = \frac{x}{\|x\|_p}$$
$$y' = \frac{y}{\|y\|_p}.$$

It can be verified that $||x'||_p = 1 = ||y'||_q$. Therefore,

$$\left| \sum_{j=1}^{n} x_j' y_j' \right| \le 1$$

$$\left| \sum_{j=1}^{n} \frac{x_j}{\|x\|_p} \frac{y_j}{\|y\|_q} \right| \le 1$$

$$\left| \sum_{j=1}^{n} x_j y_j \right| \le \|x\|_p \|y\|_q$$

Minkowski's Inequality: Given $x, y \in \mathbb{F}^n$, $1 \le p \le \infty$, $\frac{1}{p} = \frac{1}{q} = 1$,

$$||x + y||_p \le ||x||_p + ||y||_p$$

Proof of Minkowski's Inequality: We can verify for p = 1, $q = \infty$, and vice versa.

Assume 1 . Then,

$$||x + y||_{p}^{p} = \sum_{j=1}^{n} |x_{j} + y_{j}|^{p}$$

$$= \sum_{j=1}^{\infty} |x_{j} + y_{j}||x_{j} + y_{j}|^{p-1}$$

$$\leq \sum_{j=1}^{\infty} |x_{j}||x_{j} + y_{j}|^{p-1} + \sum_{j=1}^{n} |y_{j}||x_{j} + y_{j}|^{p-1}$$

$$\leq \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{1/p} \left(\sum_{j=1}^{n} |x_{j} + y_{j}|^{pq-q}\right)^{1/q} + \left(\sum_{j=1}^{n} |y_{j}|^{p}\right)^{1/p} \left(\sum_{j=1}^{n} |x_{j} + y_{j}|^{pq-q}\right)^{1/q}$$

$$= ||x||_{p} ||x + y||_{p}^{p/q} + ||y||_{p} ||x + y||_{p}^{p/q}$$

$$= (||x||_{p} + ||y||_{p}) ||x + y||_{p}^{p-1}$$
Hölder's Inequality

Divide by $||x + y||_{\rho}^{\rho-1}$ to get desired inequality.

(2) $\ell_{\infty}(\Omega, \mathbb{F})$ with $\|\cdot\|_u$. This includes subspaces that inherit the norm, such as

$$C([a,b]) \subseteq \ell_{\infty}(\Omega)$$
$$\ell_{\infty}(\mathbb{R}) \supseteq C_{0}(\mathbb{R}) \supseteq C_{C}(\mathbb{R})$$

Exercise: Show that $C_0(\mathbb{R}) \subseteq \ell_\infty(\mathbb{R})$ is a subspace

(3) $\Omega = \mathbb{N}$, $\ell_{\infty} = \ell_{\infty}(\mathbb{N})$ with $\|\cdot\|_{\infty}$. Subspaces that inherit the norm are

$$c_{00}\subseteq c_0\leq \ell_{\infty}$$
.

(4) ℓ_1 with $\|\cdot\|_1$,

$$||(a_k)_k||_1 = \sum_{k=1}^n |a_k|.$$

(5) C([a,b]) with

$$||f||_1 = \int_a^b |f(x)| dx.$$

(6) Let $1 \le p < \infty$.

$$\ell_{p} = \left\{ (a_{k})_{k=1}^{\infty} \mid \sum_{k=1}^{\infty} |a_{k}|^{p} < \infty \right\}$$

is a normed space with

$$\|(a_k)_k\|_p = \left(\sum_{k=1}^{\infty} |a_k|^p\right)^{1/p}$$

We will show that the triangle inequality holds for this norm.

$$\left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{1/p} = \left\| \begin{bmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{bmatrix} \right\|_{\ell_p^n}$$

$$= \left\| \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} + \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \right\|_{\ell_p^n}$$

$$\leq \left\| \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \right\| + \left\| \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \right\|_{\ell_p^\infty}$$

$$\leq \left\| (a_k)_k \right\|_p + \left\| (b_k)_k \right\|_p.$$

Taking the limit as $n \to \infty$ (by the definition of an infinite series), we find that $\|(a_k)_k + (b_k)_k\|_p \le \|(a_k)_k\|_p + \|(b_k)_k\|_p$.

(7) $\mathsf{BV}([a,b]) = \{f : [a,b] \to \mathbb{R} \mid \mathsf{Var}(f) < \infty\}$ with the norm $||f||_{\mathsf{BV}} = |f(a)| + \mathsf{Var}(f)$ is a normed space:

$$||f||_{\mathsf{BV}} = 0$$

$$|f(a)|=0$$

$$Var(f) = 0$$

given $t \in (a, b]$, look at the partition $a < t \le b$. Then,

$$Var(f) \ge |f(t) - f(a)| + |f(b) - f(t)|$$

$$f(t) = 0$$

$$f = 0_f.$$

(8) $\mathbb{M}_{m,n}(\mathbb{F})$ with

$$||a||_{\text{op}} = \sup_{\|\xi\|_{\ell_2^n} \le 1} ||a\xi||_{\ell_2^n}$$

is a normed vector space. If $||a||_{op} = 0$, then

$$ae_j = 0$$

 $\forall j \in \{1, \ldots, n\}.$

take the dot product with $i \neq j$

$$ae_j \cdot e_i = a_{ij}$$
$$= 0$$

so $a_{ij} = 0$ for all a_{ij} , so a is the 0 matrix.

(9) Let V,W be vector spaces over \mathbb{F} . Then, $\mathcal{L}(V,W)=\{T\mid T:V\to W \text{ linear}\}$, where $T(\alpha v_1+\beta v_2)=\alpha T(v_1)+\beta T(v_2)$.

 $\mathcal{L}(V,W)$ is a vector space with operations

$$(T+S)(v) = T(v) + S(v)$$
$$(\alpha T)(v) = \alpha T(v).$$

Notation: $\mathcal{L}(V) := \mathcal{L}(V, V)$ is all linear operators on V. $\mathcal{L}(V, \mathbb{F}) = V'$ is all linear functionals.

Suppose V and W are normed vector spaces. If $T: V \to W$, set

$$||T||_{\text{op}} := \sup_{\|v\|_{v} \le 1} ||T(v)||_{W},$$

$$\mathbb{B}(V, W) = \{ T \in \mathcal{L}(V, W) \mid ||T||_{op} \le \infty \},$$

where $\mathbb{B}(V, W)$ is referred to as the set of all bounded linear maps from V to W. $\mathbb{B}(V, W)$ with $\|\cdot\|_{op}$ is a normed space.

• Homogeneity:

$$\begin{aligned} \|\alpha T\|_{[op]} &= \sup_{\|v\|_{V} \le 1} \|\alpha T(v)\|_{W} \\ &= \sup_{\|v\|_{V} \le 1} |\alpha| \|T(v)\|_{W} \\ &= |\alpha| \sup_{\|v\|_{V} \le 1} \|T(v)\|_{W} \\ &= |\alpha| \|T\|_{\text{op}}. \end{aligned}$$

• Triangle Inequality: for $||v||_V \le 1$,

$$|| (T + S) (v) ||_{W} = ||T(v) + S(v)||_{W}$$

$$\leq ||T(v)||_{W} + ||S(v)||_{W}$$

$$\leq ||T||_{op} + ||S||_{op}$$

SO

$$||T + S||_{\text{op}} = \sup_{\|v\| \le 1} ||T + S(v)||$$
$$\le ||T||_{\text{op}} + ||S||_{\text{op}}$$

• Positive Definite: If $||T||_{op} = 0$, then T(v) = 0 for all $v \in V$, $||v|| \le 1$.

Let $v \in V$, $v \neq 0$. Then, $\frac{v}{\|v\|} \in B_V$.

$$T\left(\frac{v}{\|v\|}\right) = 0$$
$$\frac{1}{\|v\|}T(v) = 0$$
$$T(v) = 0$$

Special Cases: $\mathbb{B}(V) = \mathbb{B}(V, V), V^* = \mathbb{B}(V, \mathbb{F}).$

Exercise: $\mathcal{L}(\mathbb{F}^n, \mathbb{F}^m) = \mathbb{B}(\ell_2^n, \ell_2^m)$.

(10) Inner Product Spaces (expanded upon below).

Inner Product Spaces

An inner product on a vector space V is a pairing

$$V \times V \xrightarrow{\langle \cdot, \cdot \rangle} \mathbb{F}$$

that satisfies

(i)
$$\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle$$
, $\langle \alpha v, w \rangle = \alpha \langle v, w \rangle$.

(ii)
$$\langle v, w \rangle = \overline{\langle w, v \rangle}$$

(iii)
$$\langle v, v \rangle \geq 0$$
.

(iv) If
$$\langle v, v \rangle = 0$$
, then $v = 0$.

The pair $(V, \langle \cdot, \cdot \rangle)$ is known as an inner product space.

Remarks:
$$\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle, \ \langle v, \alpha w \rangle = \overline{\alpha} \langle v, w \rangle.$$

If $\langle \cdot, \cdot \rangle$ is an inner product on a linear space V, then set

$$||v||_2 := \langle v, v \rangle^{1/2}$$
.

Exercise: $\|\alpha v\|_2 = |\alpha| \|v_2\|, \|v\|_2 = 0 \Rightarrow v = 0.$

 $v, w \in (V, \langle, \cdot, \cdot\rangle)$ are orthogonal if $\langle v, w \rangle = 0$.

The Pythagoran theorem states that for $v_1, \ldots, v_n \in V$ mutually orthogonal, then

$$\left\| \sum_{i=1}^{n} v_i \right\|^2 = \sum_{i=1}^{n} \|v_i\|^2.$$

For two vectors $v, w \in V$, $P_w(v) = \frac{\langle v, w \rangle}{\langle w, w \rangle} w$.

Exercise: Check that $\langle P_w(v), v - P_w(v) \rangle$, meaning

$$||v||^2 = ||P_w(v)||^2 + ||v - P_w(v)||^2$$

Cauchy-Schwarz Inequality: In any inner product space,

$$|\langle v, w \rangle| \leq ||v|| \cdot ||w||$$
.

Proof of Cauchy-Schwarz: From the exercise,

$$||v|| \ge ||P_w(v)||$$

$$||v|| \ge \left\| \frac{\langle v, w \rangle}{\langle w, w \rangle} w \right\|$$

$$= \frac{|\langle v, w \rangle|}{||w||^2} ||w||$$

therefore.

$$||v|||w|| \ge |\langle v, w \rangle|$$

The triangle inequality follows from the Cauchy-Schwarz inequality.

Proof of Triangle Inequality:

$$||v + w||_{2}^{2} = \langle v + w, v + w \rangle$$

$$= \langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + \langle w, w \rangle$$

$$= ||v||^{2} + ||w||^{2} + \langle v, w \rangle + \overline{\langle v, w \rangle}$$

$$= ||v||^{2} + ||w||^{2} + 2\operatorname{Re}\langle v, w \rangle$$

$$\leq ||v||^{2} + ||w||^{2} + 2|\langle v, w \rangle|$$

$$\leq ||v||^{2} + ||w||^{2} + 2||v|||w||$$

$$= (||v|| + ||w||)^{2}.$$

Take square roots on both sides.

Cauchy-Schwarz Inequality

(1) $\ell_2^n = \mathbb{F}^n$ with

$$\left\langle \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right\rangle = \sum_{i=1}^n x_i \overline{y_i}.$$

Cauchy-Schwarz is found as

$$\left| \sum_{j=1}^{n} x_{j} \overline{y_{j}} \right| \leq \left(\sum_{j=1}^{n} |x_{j}|^{2} \right)^{1/2} \left(\sum_{j=1}^{n} |y_{j}|^{2} \right)^{1/2}.$$

(2) ℓ_2 with

$$\langle (a_j)_j, (b_j)_j \rangle = \sum_{i=1}^{\infty} a_j \overline{b}_j.$$

We can see that for any finite n, the Cauchy-Schwarz inequality in ℓ_2^n states

$$\left| \sum_{j=1}^{n} a_{j} \overline{b_{j}} \right| \leq \left(\sum_{j=1}^{n} |a_{j}|^{2} \right)^{1/2} \left(\sum_{j=1}^{n} |b_{j}|^{2} \right)^{1/2}$$

$$\leq \left(\sum_{j=1}^{\infty} |a_{j}|^{2} \right)^{1/2} \left(\sum_{j=1}^{\infty} |b_{j}|^{2} \right)^{1/2}.$$

Taking the limit as $n \to \infty$, we see that $\langle (a_j)_j, (b_j)_j \rangle$ is convergent.

(3) C([a, b]) with

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} dx.$$

(4) Let $V = \mathbb{M}_n(\mathbb{C})$.

Recall that if

$$a=(a_{ij})_{i,j},$$

then

$$a^* = (\overline{a_{ii}})_{i,i}$$

Let Tr : $\mathbb{M}_n(\mathbb{C}) \to \mathbb{C}$, $\operatorname{Tr}((a_{ij})) = \sum_{i=1}^n a_{ii}$.

- $\operatorname{Tr}(I_n) = n$
- $Tr(a + \alpha b) = Tr(a) + \alpha Tr(b)$
- Tr(ab) = Tr(ba)

Then, if $Tr(a^*a) = 0$, then $a = \mathbb{O}_{M_n}$.

$$a^* a = (\overline{a_{ji}})_{i,j} (a_{ij})_{i,j}$$

$$= \left(\sum_{k=1}^n \overline{ki} a_{kj}\right)_{i,j}$$

$$\operatorname{Tr}(a^* a) = \sum_{i=1}^n \sum_{k=1}^n \overline{a_{ki}} a_{ki}$$

$$= \sum_{i,k=1}^n |a_{ki}|^2$$

$$= \sum_{i,j=1}^n |a_{ij}|^2.$$

If $Tr(a^*a) = 0$, then $a_{ij} = 0$ for all i, j.

We define

$$\langle a, b \rangle_{HS} = \operatorname{Tr}(b^*a).$$

(i)
$$(b_1 + b_2)^* = b_1^* + b_2^*$$

(ii)
$$(\alpha b)^* = \overline{\alpha} b^*$$

(iii)
$$(b_1b_2)^* = b_2^*b_1^*$$

(iv)
$$b^{**} = b$$

The norm is defined as

$$||a||_{HS} = \langle a, a \rangle^{1/2}$$

$$= \operatorname{Tr}(a^* a)^{1/2}$$

$$= \left(\sum_{i,j=1}^n |a_{ij}|^2\right)^{1/2}$$

Metric Spaces

We looked at normed spaces, where we attach a length ||v|| to very vector v. We can also speak of the distance between two vectors, defined as d(v, w) = ||v - w||.

Notice that the following hold:

•
$$d(v, w) \geq 0$$

•

$$d(v, w) = ||v - w||$$

$$= ||(-1)(w - v)||$$

$$= |-1|||w - v||$$

$$= ||w - v||$$

•

$$d(u, w) = ||u - w||$$

$$= ||u - v + v - w||$$

$$\leq ||u - v|| + ||v - w||$$

$$= d(u, v) + d(v, w).$$

•
$$d(v, v) = ||v - v|| = 0$$
. If $d(v, w) = 0$, then $||v - w|| = 0$, so $v - w = 0$, so $v = w$.

In Real Analysis I, we studied the properties (such as convergence, limits, and continuity) of a particular normed vector space, namely $(\mathbb{R}, |\cdot|)$. We will expand these concepts to all metric spaces.

Definition of a Metric Space

Let X be a non-empty set. A **metric** on X is a map

$$d: X \times X \to \mathbb{R}^+$$
$$(x, y) \mapsto d(x, y) \ge 0$$

such that

(i) Symmetry: d(x, y) = d(y, x) for all $x, y \in X$.

- (ii) Triangle Inequality: $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in X$.
- (iii) Zero Distance: d(x, x) = 0
- (iv) Definite: $d(x, y) = 0 \Rightarrow x = y$

If d satisfies (i), (ii), and (iii), then d is called a semi-metric. If d satisfies (iv) as well, then d is a metric.

If d is a (semi-)metric on X, the pair (X, d) is called a (semi-)metric space.

Two metrics, d and ρ , on X, are equivalent if $\exists c_1, c_2 \geq 0$ such that $d(x,y) \leq c_1 \rho(x,y)$ and $\rho(x,y) \leq c_2 d(x,y)$ for all x,y.

Examples of Metric Spaces

(1) Discrete Metric:

$$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

for X any set.

(2) Hamming distance: between two bit strings of equal length. Let

$$X = \{0, 1\}^{n}$$

$$= \{0, 1\} \underbrace{\times \cdots \times}_{n \text{ times}} \{0, 1\}$$

$$d_{H}((x_{i})_{1}^{n}, (y_{j})_{1}^{n}) = |\{j \mid x_{j} \neq y_{i}\}|.$$

(3) Any normed space $(V, \|\cdot\|)$ is a metric space.

$$d(v, w) = ||v - w||.$$

Exercise: Show that if two norms are equivalent, their induced metrics are equivalent.

- (4) Subset of Metric Space: If (X, d) is a metric space, and $Y \subseteq X$ is non-empty. Then, (Y, d) is a metric space.
- (5) Paris metric: let (X, ρ) be a metric space. Let $p \in X$ be a fixed point.

$$\rho(x,y) := \begin{cases} 0 & x = y \\ \rho(x,p) + \rho(p,y) & x \neq y \end{cases}$$

(6) Bounded metric: Let ρ be a (semi-)metric on X. Set

$$d(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)}.$$

We claim that d is a (semi-)metric. Notice that $0 \le d(x, y) \le 1$.

Proof: Clearly, d(x,y) = d(y,x). Additionally, d(x,x) = 0. If d(x,y) = 0 and ρ is a metric, then $\rho(x,y) = 0$, so x = y.

To show the triangle inequality, we examine the function

$$f(t) = \frac{t}{1+t}$$

$$f'(t) = \frac{1}{(1+t)^2} > 0.$$

Since ρ satisfies the triangle inequality, $\rho(x,z) \le \rho(x,y) + \rho(y,z)$. Apply f on both sides. Then,

$$\underbrace{\frac{\rho(x,z)}{1+\rho(x,z)}}_{d(x,z)} \le \frac{\rho(x,y)+\rho(y,z)}{1+(\rho(x,y)+\rho(y,z))}
= \frac{\rho(x,y)}{1+\rho(x,y)+\rho(y,z)} + \frac{\rho(y,z)}{1+\rho(x,y)+\rho(y,z)}
\le \underbrace{\frac{\rho(x,y)}{1+\rho(x,y)}}_{d(x,y)} + \underbrace{\frac{\rho(y,z)}{1+\rho(y,z)}}_{d(y,z)}.$$

(7) If d_1, \ldots, d_n are metrics on $X, c_1, \ldots, c_n \ge 0$. Then,

$$d(x,y) = \sum_{k=1}^{n} c_k d_k(x,y)$$

is a metric.

(8) Let $\{\rho_k\}_{k=1}^{\infty}$ be a family of semi-metrics. Assume the family is separating — for all $x \neq y$, there exists k such that $\rho_k(x,y) \neq 0$.

Let d_k be defined as

$$d_k(x,y) = \frac{\rho_k(x,y)}{1 + \rho_k(x,y)}.$$

Note that $\{d_k\}_{k=1}^{\infty}$ is also separating.

Then,

$$d(x,y) = \sum_{k=1}^{\infty} 2^{-k} d_k(x,y)$$

is a metric.

We will now define the Frechet Metric using this method. Let $X = C(\mathbb{R})$. For each k = 1, 2, 3, ..., set $p_k(f) = \sup_{x \in [-k,k]} |f(x)|$.

We can verify that p_k defines a seminorm. We can then check $\rho_k(f,g) = p_k(f-g)$ is a semi-metric.

We claim that $\{\rho_k\}$ is separating: if $f \neq g$, then there exists $x_0 \in \mathbb{R}$ with $f(x_0) \neq g(x_0)$. Since f and g are continuous, there is a neighborhood $[x_0 - \delta, x_0 + \delta]$ such that $f(x) \neq g(x)$ for all $x \in [x_0 - \delta, x_0 + \delta]$. Find k such that $[x_0 - \delta, x_0 + \delta] \subseteq [-k, k]$. Then, $\rho_k(f - g) > 0$.

Construct d_k as above, and then d as follows:

$$d_{\mathsf{F}} = \sum \frac{2^{-k} p_k(f - g)}{1 + p_k(f - g)}$$

(9) Product of metric spaces: let $(X_k, \rho_k)_{k=1}^{\infty}$ be a countable family of metric spaces. For each k, let

$$d_k(x,y) = \frac{\rho_k(x,y)}{1 + \rho_k(x,y)}.$$

Remark: If the ρ_k are already uniformly bounded, let $d_k = \rho_k$.

Let

$$X = \prod_{k=1}^{\infty} X_k$$

$$= \{(x_k)_k \mid x_k \in X_k\}$$

$$= \left\{ f : \mathbb{N} \to \bigsqcup_{k=1}^{\infty} X_k \mid f(k) \in X_k \right\}.$$

Define $D: X \times X \to [0, \infty)$ as

$$D(x,y) = \sum_{k=1}^{\infty} 2^{-k} \rho_k(x_k, y_k),$$

$$D(f,g) = \sum_{k=1}^{\infty} 2^{-k} \rho(f(k), g(k)).$$

For example, for each k, let $X_k = \{0, 1\}$ with the discrete metric. Let

$$\Delta = \prod_{k \in \mathbb{N}} \{0, 1\}$$

$$= \{(x_k)_k \mid x_k \in \{0, 1\}\}$$

$$D(x, y) = \sum_{k=1}^{\infty} 2^{-k} |x_k - y_k| \qquad (x_k)_k, (y_k)_k \in \Delta.$$

 Δ is known as the abstract Cantor set; every compact metric space is a surjective image of the abstract Cantor set.

(10) Geodesic Distance: let $\langle \cdot, \cdot \rangle$ be the standard dot product on $\mathbb{R}^3(\mathbb{R}^n)$, then

$$S^{2} = \left\{ x \in \mathbb{R}^{3} \mid ||x||_{2} = 1 \right\}$$
$$S^{n-1} = \left\{ x \in \mathbb{R}^{n} \mid ||x||_{2} = 1 \right\}.$$

To find the geodesic distance, we take $d(x, y) = \arccos(\langle x, y \rangle)$. We claim d is a metric.

- Symmetry: self-evident.
- $d(x, x) = \arccos(1) = 0$. Suppose d(x, y) = 0. Then, (x, y) = 1, meaning $||x y||^2 = 0$, so x = y.
- Let $\theta = \arccos(\langle x, y \rangle)$, $\varphi = \arccos(\langle y, z \rangle)$, where $\theta, \varphi \in [0, \pi]$.

$$p_{x} = \frac{\langle x, y \rangle}{\langle y, y \rangle} y$$

$$= \cos(\theta) y$$

$$x = \cos(\theta) y + \sin(\theta) u$$

where

$$u = \frac{x - p_x}{\|x - p_x\|}.$$

Similarly, we can take

$$z = \cos(\varphi)y + \sin(\varphi)v$$

where

$$v = \frac{z - p_z}{\|z - p_z\|}.$$

So,

$$\begin{aligned} \langle x, z \rangle &= \cos(\theta) \cos(\varphi) + \sin(\theta) \sin(\varphi) \langle u, v \rangle \\ &\geq \cos(\theta) \cos(\varphi) - \sin(\theta) \sin(\varphi) \\ &= \cos(\theta + \varphi). \end{aligned} \qquad \langle u, v \rangle \geq -1$$

Since arccos is decreasing,

$$\begin{aligned} \arccos(\langle x, z \rangle) &\leq \arccos(\cos(\theta + \varphi)) \\ &= \theta + \varphi \\ &= \arccos(\langle x, y \rangle) + \arccos(\langle y, z \rangle). \end{aligned}$$

Therefore, $d(x, y) \le d(x, y) + d(y, z)$.

• Let $\Gamma = (V, E)$ be a simple connected graph. We define $d : V \times V \to [0, \infty)$ to be the length of the shortest path between vertices u and v.

Exercise: Show this is a metric.

(11) Let (X, d) be any metric space. If $E \subseteq X$, define $\operatorname{diam}(E) = \sup_{x,y \in E} d(x,y)$. E is bounded if $\operatorname{diam}(E) < \infty$.

Exercise: If $(V, \|\cdot\|)$ is a normed space, $E \subseteq V$ is a subset, show the following are equivalent:

- (i) *E* is bounded (in the metric sense)
- (ii) $\sup_{v \in E} ||v|| < \infty$
- (iii) $\exists r > 0$ such that $E \subseteq rB_V$.

Let Ω be any set. The function $f:\Omega\to X$ is bounded if $f(\Omega)\subseteq X$ is bounded. We let.

$$Bd(\Omega, X) = \{f : \Omega \to X \mid f \text{ is bounded}\}.$$

Remark: $Bd(\Omega, \mathbb{F}) = \ell_{\infty}(\Omega, \mathbb{F}).$

(12) $Bd(\Omega, X)$ with

$$D_u(f,g) = \sup_{x \in \Omega} d(f(x), g(x)).$$

Exercise: Show that D_u defines a metric.

Consider $Bd(\Omega, \mathbb{F}) = \ell_{\infty}$. Look at the subset

$$E = \{ f \in \mathsf{Bd}(\Omega, \mathbb{F}) \mid f(x) \in \{0, 1\} \}.$$

Then,

$$D_u(f,g) = \sup_{x \in \Omega} |f(x) - g(x)|.$$

$$= \begin{cases} 1 & f \neq g \\ 0 & f = g \end{cases}.$$

When we take a particular subset of $D_u(f, g)$, we find that we get the discrete metric.

Taking an overview of the concepts we have learned so far, we see

Inner Product Spaces \subseteq Normed Vector Spaces \subseteq Metric Spaces

Topology of Metric Spaces

Throughout this section, let (X, d) be a metric space.

- (1) Let $x_0 \in X$, $\delta > 0$.
 - (i) We say

$$U(x_0, \delta) = \{x \in X \mid d(x, x_0) < \delta\}$$

is the open ball centered at x_0 with radius δ .

(ii) We say

$$B(x_0, \delta) = \{x \in X \mid d(x, x_0) \le \delta\}$$

is the closed ball.

(iii) We say

$$S(x_0, \delta) = \{x \in X \mid d(x, x_0) = \delta\}$$

is the sphere.

(2) $U \subseteq X$ is open if

$$(\forall x \in U)(\exists \delta > 0)$$
 such that $U(x, \delta) \subseteq U$.

Let

$$\tau_X = \{ U \subseteq X \mid U \text{ open} \}$$
$$\subseteq \mathcal{P}(X).$$

- (3) $D \subseteq X$ is closed if D^c is open.
- (4) If $x \in U \in \tau_X$, then U is called an open neighborhood of x. If $x \in U \subseteq N$, where $U \in \tau_X$, then N is a neighborhood of x.

$$\mathcal{N}_x = \{ N \mid N \text{ is a neighborhood of } x \}$$

(5) Let $A \subseteq X$. The interior of A is

$$A^{\circ} = \bigcup \{ V \mid V \subseteq A, V \text{ open} \}$$
.

The closure of A is

$$\overline{A} = \bigcap \{D \mid A \subseteq D, D \text{ closed}\}.$$

The boundary of A is

$$\partial A = \overline{A} \setminus A^0$$
.

Exercise: $\overline{A^c} = (A^\circ)^c$, $(\overline{A})^c = (A^c)^\circ$.

Remarks: A° is the largest open set contained in A. So, if V is open and $V \subseteq A$, then $V \subseteq A^{\circ}$. Similarly, \overline{D} is the smallest closed set containing D. If C is closed and $D \subseteq C$, then $\overline{D} \subseteq C$.

- For example, $(a, b]^{\circ} = (a, b)$. This is because (a, b) is open and contained in (a, b], so $(a, b) \subseteq (a, b]^{\circ}$.
- We will show that $\overline{A^c} \subseteq (A^\circ)^c$.

$$A^{\circ} \subseteq A$$
$$(A^{\circ})^{c} \supset A^{c}$$

The union of open sets is open, so A° is open, so $(A^{\circ})^{c}$ is closed by definition. Therefore,

$$(A^{\circ})^c \supseteq \overline{A^c}$$
.

Topology of Open Sets in a Metric Space

The open sets τ_X form a topology:

- (i) \emptyset , $X \in \tau_X$.
- (ii) If $\{V_i\}_{i\in I}\subseteq \tau_X$, then

$$\bigcup_{i\in I}V_i\in\tau_X.$$

(iii) If $V_1, \ldots, V_n \in \tau_X$, then

$$\bigcap_{i=1}^n V_i \in \tau_X.$$

Remark: This is only true of finite intersections. For a counterexample, if $V_n = (-1/n, 1/n) \subseteq \mathbb{R}$ with the Euclidean metric, then the infinite intersection yields $\{0\}$, which is closed in \mathbb{R} with the Euclidean metric.

Proof:

- (1) Clearly, \emptyset (by vacuous truth) and X are open.
- (2) Let $x \in \bigcup_{i \in I} V_i$. Then, $\exists i_0 \in I$ with $x \in V_{i_0}$. Since V_{i_0} is open, $\exists \varepsilon > 0$ such that $U(x, \varepsilon) \subseteq V_{i_0} \subseteq \bigcup V_i$.
- (3) Let $x \in \bigcap_{i=1}^n V_i$. Then, $x \in V_i$ for all $i \in 1, ..., n$. Since each V_i is open, $\exists \varepsilon_1, ..., \varepsilon_n$ with $U(x, \varepsilon_i) \subseteq V_i$ for each i = 1, ..., n. Set $\varepsilon = \min\{\varepsilon_i\}_{i=1}^n$. Then, $U(x, \varepsilon) \subseteq U(x, \varepsilon_i) \subseteq V_i$ for all i. Therefore, $U(x, \varepsilon) \subseteq \bigcap_{i=1}^n V_i$.

Exercise: Show all open balls are open. In particular, show all open intervals are open.

Exercise: Show the following:

- (1) X, \emptyset are closed.
- (2) If $\{C_i\}_{i\in I}$ is a family of closed sets, then $\bigcap_{i\in I} C_i$ is closed.
- (3) For C_1, \ldots, C_n closed, then $\bigcup_{i=1}^n C_i$ is closed.
- (4) Closed balls are closed. Spheres are closed.

Let $x \in X$. Recall that \mathcal{N}_x is the set of all neighborhoods of x.

- (i) $N \in \mathcal{N}_x \Leftrightarrow \exists \delta > 0 : U(x, \delta) \in N$
- (ii) $N \in \mathcal{N}_x$, $N \subseteq M \Rightarrow M \in \mathcal{N}_x$
- (iii) $N_1, N_2 \in \mathcal{N}_x \Rightarrow N_1 \cap N_2 \in \mathcal{N}_x$

In this sense, \mathcal{N}_x is a directed set with reverse inclusion.

Pointwise Characterization of Subsets

Let $A \subseteq X$.

- (i) $x \in A^{\circ} \Leftrightarrow \exists \delta > 0 : U(x, \delta) \subseteq A$.
- (ii) $x \in \overline{A} \Leftrightarrow \forall \delta > 0 : U(x, \delta) \cap A \neq \emptyset$.
- (iii) $x \in \partial A \Leftrightarrow \forall \delta > 0 : U(x, \delta) \cap A \neq \emptyset$ and $U(x, \delta) \cap A^c \neq \emptyset$.

Proof: Let $A \subseteq X$

(i)

$$x \in A^{\circ} \Leftrightarrow x \in \bigcup_{\substack{V \in \tau_X \\ V \subseteq A}} V$$
$$\Leftrightarrow \exists V \in \tau_X, V \subseteq A, x \in V$$
$$\Leftrightarrow \exists \delta > 0 : U(x, \delta) \subseteq A.$$

(ii)

$$x \notin \overline{A} \Leftrightarrow x \in (\overline{A})^{c}$$

$$\Leftrightarrow x \in (A^{c})^{\circ}$$

$$\Leftrightarrow \exists \delta > 0 : U(x, \delta) \subseteq A^{c}$$

$$\Leftrightarrow \exists \delta > 0 : U(x, \delta) \cap A = \emptyset.$$

We negate both sides.

(iii)

$$x \in \partial A \Leftrightarrow x \in \overline{A} \setminus A^{\circ}$$

$$\Leftrightarrow x \in \overline{A} \cap (A^{0})^{c}$$

$$\Leftrightarrow x \in \overline{A} \cap \overline{A}^{c}$$

$$\Leftrightarrow x \in \overline{A} \text{ and } x \in \overline{A}^{c}$$

$$\Leftrightarrow \forall \delta > 0 : U(x, \delta) \cap A \neq \emptyset, U(x, \delta) \cap A^{c} \neq \emptyset$$

Remark: $\overline{U(v,\delta)} = B(v,\delta)$ in a normed space. $\partial U(v,\delta) = \partial B(v,\delta) = S(v,\delta)$ in a normed space. Also, $B(v,\delta)^{\circ} = U(v,\delta)$.

Proof: We show that $\overline{U}(v,\delta) = B(v,\delta)$. Since $B(v,\delta)$ is closed, and $U(v,\delta) \subseteq B(v,\delta)$, we know $\overline{U(v,\delta)} \subseteq B(v,\delta)$.

Let $w \in B(v, \delta)$. If $||w - v|| < \delta$, then $w \in U(v, \delta)$. Assume $||w - v|| = \delta$. Let $u_t = (1 - t)v + tw$, where $t \in [0, 1]$.

$$||w - u_t|| = ||w - (1 - t)v - tw||$$

$$= ||(1 - t)(w - v)||$$

$$= (1 - t)||w - v||$$

$$= (1 - t)\delta.$$

Let $\varepsilon > 0$. Let $t \in (0,1)$ such that $(1-t)\delta < \varepsilon$. Then, $u_t \in U(w,\varepsilon) \cap U(v,\delta)$. Therefore, $w \in \overline{U(v,\delta)}$.

Unions and Intersections of Closure/Interior

Let (X, d) be a metric space.

(i)

$$\left(\bigcup_{i\in I}A_i\right)^\circ\supseteq\bigcup_{i\in I}A_i^\circ$$

may be strict

(ii)

$$\overline{\bigcap_{i\in I} A_i} \subseteq \bigcap_{i\in I} \overline{A_i}$$

(iii)

$$\bigcap_{k=1}^{n} A_k^{\circ} = \left(\bigcap_{k=1}^{n} A_k\right)^{0}$$

(iv)

$$\overline{\bigcup_{k=1}^{n} D_k} = \bigcup_{k=1}^{n} \overline{D_k}$$

Proof:

(i)

$$A_{i}^{\circ} \subseteq A_{i}$$

$$\bigcup_{i \in I} A_{i}^{\circ} \subseteq \bigcup_{i \in I} A_{i}$$

$$\bigcup_{i \in I} A_{i}^{\circ} \subseteq \left(\bigcup_{i \in I} A_{i}\right)^{\circ}$$

Remark: We claim $\overline{\mathbb{Q}} = \mathbb{R}$ under the absolute value metric. We know that $\mathbb{Q} \subseteq \mathbb{R}$, \mathbb{R} is closed, meaning $\overline{\mathbb{Q}} \subseteq \mathbb{R}$. Let $t \in \mathbb{R}$, $\delta > 0$. We know that $(t - \delta, t + \delta) \cap \mathbb{Q} \neq \emptyset$. Therefore, $t \in \overline{\mathbb{Q}}$. Thus, $\overline{\mathbb{Q}} = \mathbb{R}$.

Properties of Boundary

Let $A \subseteq X$.

- (1) ∂A is closed.
- (2) $\partial A = \partial A^c$
- (3) $\overline{A} = A \cup \partial A$
- (4) $A \setminus \partial A = A^{\circ}$

Proof:

(1)

$$\partial A = \overline{A} \setminus A^{\circ}$$
$$= \overline{A} \cap (A^{\circ})^{c}.$$

- (2) Follows from pointwise characterization.
- (3) Clearly, $A \cup \partial A \subseteq \overline{A}$. Let $x \in \overline{A}$. If $x \in A$, we're done. Otherwise, $x \in \overline{A} \setminus A \subseteq \overline{A} \setminus A^{\circ} = \partial A$.
- (4)

$$A \setminus \partial A = A \cap (\partial A)^{c}$$

$$= A \cap (\overline{A} \setminus A^{\circ})^{c}$$

$$= A \cap (\overline{A} \cap (A^{\circ})^{c})^{c}$$

$$= A \cap (\overline{A}^{c} \cup A^{\circ})$$

$$= (A \cap \overline{A}^{c}) \cup (A \cap A^{\circ})$$

$$= A^{\circ}$$

Density and Separability

Let (X, d) be a metric space.

- (1) $A \subseteq X$ is *d*-dense if $\overline{A} = X$.
- (2) $N \subseteq X$ is nowhere dense if $(\overline{N})^{\circ} = \emptyset$.
- (3) (X, d) is separable if there is a countable dense subset.

Exercise: If $N \subseteq X$ is closed, then N is nowhere dense if and only if N^c is dense.

Exercise: The following are equivalent.

- (1) $A \subseteq X$ is dense.
- (2) $\forall \emptyset \neq U \in \tau_X$, $U \cap A \neq \emptyset$.
- (3) $\forall x \in X, \forall \varepsilon > 0, U(x, \varepsilon) \cap A \neq \emptyset.$
- (4) $\forall x \in X, \forall \varepsilon > 0, \exists a \in A \text{ such that } d(x, a) < \varepsilon.$

Let X be a metric space.

(1) A base for τ_X is a family of open subsets \mathcal{B} such that:

$$(\forall U \in \tau_X) \ (\forall x \in U) \exists B \in \mathcal{B} \text{ such that } x \in B \subseteq U.$$

Equivalently,

$$\forall U \in \tau_X, U = \bigcup_{i \in I} B_i.$$
 $B_i \in \mathcal{B}$

(2) We say that (X, d) is second countable if τ_X admits a countable base.

- For any (X, d) a metric space, $\mathcal{B} = \{U(x, \varepsilon) \mid x \in X, \varepsilon > 0\}$ is a base. Indeed, given any $x \in U \subseteq \tau_X$, by definition, $\exists \varepsilon > 0$ such that $U(x, \varepsilon) \subseteq U$. Alternatively, $\mathcal{B}' = \{U(x, 1/n) \mid x \in X, n \geq 1\}$ is a topological base.
- Let $X = \mathbb{R}^d$ with the Euclidean metric. Then, for $\mathcal{B} = \{U(q, 1/n) \mid n \geq 1, q \in \mathbb{Q}^d\}$, we claim this is a base.

Let $V \subseteq \mathbb{R}^d$ be open, $r \in V$. Since V is open, $\exists \delta > 0$ with $U(r, \delta) \subseteq V$. Find n large such that $1/n < \delta$. Find $q \in \mathbb{Q}^d$ with ||r - q|| < 1/2n. This is always possible as \mathbb{Q}^d is dense in \mathbb{R}^d .

Consider U(q, 1/2n). Then, $r \subseteq U(q, 1/2n) \subseteq U(r, \delta) \subseteq V$ because ||r - q|| < 1/2n, and if $t \in U(q, 1/2n)$, then

$$||t - r|| \le ||t - q|| + ||q - r||$$

 $< 1/2n + 1/2n$
 $= 1/n$
 $< \delta$.

Separable, Non-Separable, Dense, and Non-Dense Sets

(1) $(R^d, \|\cdot\|_p)$ is separable for any $p \in [1, \infty]$. Indeed, $\mathbb{Q}^d \subseteq \mathbb{R}^d$ is the countable dense subset of \mathbb{R}^d .

Let
$$r = \begin{bmatrix} r_1 \\ \vdots \\ r_d \end{bmatrix} \in \mathbb{R}^d$$
. Find $q = \begin{bmatrix} q_1 \\ \vdots \\ q_d \end{bmatrix} \in \mathbb{Q}^d$ with $|r_j - q_j| < \varepsilon/d$. Then,

$$||r - q||_1 = \sum_{j=1}^{d} |r_j - q_j|$$
 $< d.$

We know that for any vector $r \in \mathbb{R}^d$, we can find a vector q such that

$$||q - r||_{p} \le c ||q - r||_{1}$$
,

so for arbitrary p, find q such that $||q - r||_1 < \varepsilon/c$.

(2) Similarly, $\mathbb{C}_{\mathbb{Q}} = \{a + bi \mid a, b \in \mathbb{Q}\}$ is also countable, meaning $\mathbb{C}^d_{\mathbb{Q}} \subseteq \mathbb{C}^d$ is dense and \mathbb{C}^d is dense.

Proposition: Separable Subsets

If (X, d) is separable, and $Y \subseteq X$, then (Y, d) is also separable.

Let $\{a_k\}$ be a countable dense subset in X. Let $N = \{(m, n) \mid U(a_m, 1/n) \cap Y \neq \emptyset\}$. Clearly, N is nonempty. For each $(m, n) \in N$, choose $b_{(m,n)} \in Y \cap U(a_m, 1/n)$. We claim $\{b_{(m,n)} \mid m, n \geq 1\}$ is dense in Y.

Let $y \in Y$, $\varepsilon > 0$. Find N large so that $\frac{1}{n} < \varepsilon/2$. Since $A \subseteq X$ is dense, find $U(y, 1/n) \cap A \neq \emptyset$. Suppose $d(a_m, y) < 1/n$. Then,

$$d(b_{(m,n)}, y) \le d(b_{(m,n)}, a_m) + d(a_m, y)$$

$$< \frac{1}{n} + \frac{1}{n}$$

$$= \frac{2}{n}$$

$$< \varepsilon.$$

- (1) ℓ_p^n is separable.
- (2) $c_{00} = \{(a_k)_{k=1}^n \mid \text{ finitely many } a_k \neq 0\} \text{ with } \|\cdot\|_u \text{ is separable.}$

Recall that $e_k = (0, 0, \dots, 1, 0, 0, \dots)$ where 1 is at position k. Consider $E = \mathbb{Q}$ -span $\{e_k \mid k \ge 1\}$,

$$E = \left\{ \sum_{k=1}^{n} \alpha_k e_k \mid \alpha_k \in \mathbb{Q}, n \geq 1 \right\}.$$

The set E is countable. If we fix $n \ge 1$, we have

$$E_n = \left\{ \sum_{k=1}^n \alpha_k e_k \mid \alpha_k \in \mathbb{Q} \right\}.$$

Then, $E = \bigcup E_n$. Note

$$\underbrace{\mathbb{Q} \times \mathbb{Q} \times \cdots \times \mathbb{Q}}_{n} \to E_{n}$$

$$(\alpha_{1}, \dots, \alpha_{n}) \mapsto \sum_{k=1}^{n} \alpha_{k} e_{k}.$$

Thus, E_n is countable, and E is a countable union of countable sets.

We claim that E is dense. Given $z \in c_{00}$, $\varepsilon > 0$, we know that $z = \sum_{k=1}^{n} a_k e_k$ for some n and $a_k \in \mathbb{R}$. Find $\alpha_k \in \mathbb{Q}$ such that $|\alpha_k - a_k| < \varepsilon$. Set $w = \sum_{k=1}^{n} \alpha_k e_k$. Then, $||z - w||_u = \sup |\alpha_k - a_k| < \varepsilon$.

- (3) c_0 with $\|\cdot\|_u$ is separable.
- (4) ℓ_{∞} is not separable.

Suppose ℓ_{∞} were separable. Consider $E = \{(a_k)_k \in \ell_{\infty} \mid a_k \in \{0,1\}\}$. Then, E is separable. Recall that $(E, \|\cdot\|_u)$ has the discrete metric.

In the discrete metric, every subset is open, meaning every subset is closed. Therefore, if X is separable and discrete, then X is countable.

However, E is not countable by Cantor's theorem. $card(E) = 2^{\aleph_0}$.

Alternatively, we can show that

$$(a_k)_k \mapsto \sum_{k=1}^{\infty} 2^{-k} a_k$$

is onto.

Exercise: ℓ_p is separable for $1 \le p < \infty$.

(5) We will show that

$$\mathbb{P}[0,1]\left\{\sum_{k=1}^{n}a_{k}x^{k}\mid a_{k}\in\mathbb{R}, n\geq 1\right\}$$

is $\|\cdot\|_u$ -dense in C([0,1]) (see: Stone-Weierstrass Theorem). Using this, we can show that $(C([0,1]),\|\cdot\|_u)$ is separable.

The Cantor Set

$$C_0 = [0, 1]$$

$$C_1 = [0, 1/3] \cup [2/3, 1]$$

$$C_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$$

$$C_3 = [0, 1/27] \cup [2/27, 1/9] \cup \dots \cup [26/27, 1]$$

$$\vdots$$

In each step, we delete the middle third of each interval. This process repeated ad infinitum yields the Cantor set.

$$C = \bigcap_{n=1}^{\infty} \bigcup_{k=0}^{3^{n-1}-1} \left(\left[\frac{3k+0}{3^n}, \frac{3k+1}{3^n} \right] \cup \left[\frac{3k+2}{3^n}, \frac{3k+3}{3^n} \right] \right).$$

- (i) $\mathcal C$ is closed as it is the intersection of closed sets.
- (ii) length(\mathcal{C}) = 0. Look at the total length of the removed intervals,

$$I = \frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \frac{8}{81} + \cdots$$

$$= \sum_{k=1}^{\infty} \left(\frac{2^{k-1}}{3^k}\right)$$

$$= \frac{1}{2} \sum_{k=1}^{n} \left(\frac{2}{3}\right)^k$$

$$= 1.$$

Thus, length(C) = 0.

(iii) \mathcal{C} is nowhere dense — $(\overline{\mathcal{C}})^{\circ} = \emptyset$. Since \mathcal{C} is closed, $\mathcal{C}^{\circ} = \emptyset$.

Suppose $C^{\circ} \neq \emptyset$. Then, $\exists x \in C, \varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subseteq C$. So, $(x - \varepsilon, x + \varepsilon) \subseteq C_n$ for all n.

Note C_n is the disjoint union of 2^n subintervals, each with length $1/3^n$. Find m so large such that $3^{-m} < \varepsilon$. We know that $(x - \varepsilon, x + \varepsilon) \subseteq C_m$.

However, $(x - \varepsilon, x + \varepsilon)$ has length $2\varepsilon > \frac{2}{3^m}$. Each subinterval in C_m has length $1/3^m$. This implies C_m contains an interval of length greater than $\frac{2}{3^m}$. \bot

(iv) $\operatorname{card}(\mathcal{C}) = \operatorname{card}(\mathbb{R})$

Claim 1: Given $n \ge 1$,

$$E_n = \left\{ \sum_{k=1}^n \frac{w_k}{3^k} \mid w_k \in \{0, 2\} \right\}$$

is precisely the set of *left* endpoints of the subintervals of C_n .

For n = 1, if $w_1 = 0$, then we get 0, and $w_1 = 2$ yields 2/3. Meanwhile, if n = 2, then we have

$$w_1 = 0, w_2 = 0 \mapsto 0$$

 $w_1 = 0, w_2 = 2 \mapsto 2/9$
 $w_1 = 2, w_2 = 0 \mapsto 2/3$
 $w_1 = 2, w_2 = 2 \mapsto 8/9$.

By induction, we have shown for n = 1, 2. Assume this is true for n.

$$\sum_{k=1}^{n+1} w_k 3^{-k} = \underbrace{\sum_{k=1}^{n} w_k 3^{-k}}_{(1)} + \underbrace{w_{n+1} 3^{-(n+1)}}_{(2)}$$

Part (1) denotes one of the left endpoints of C_n , called $C_{n,k}$ for some $1 \le k \le 2^n$. Then, if $w_{n+1} = 0$, we get the left endpoint of $C_{n+1,2k-1}$, and if $w_n = 2$, we get the left endpoint of $C_{n+1,2k}$.

Claim 2:

$$C = \left\{ \sum_{k=1}^{\infty} w_k 3^{-k} \mid w_k \in \{0, 2\} \right\}$$

is precisely the Cantor set.

Let $x = \sum_{k=1}^{\infty} w_k 3^{-k}$. We will show that $x \in C_n$ for all n. Fix $n \ge 1$. Then,

$$x = \underbrace{\sum_{k=1}^{n} w_k 3^{-k}}_{y} + \underbrace{\sum_{k>n} w_k 3^{-k}}_{z}.$$

From our previous claim, y is the left endpoint of some subinterval of C_n . Additionally,

$$z = \sum_{k>n} w_k 3^{-k}$$

$$\leq 2 \sum_{k>n} 3^{-k}$$

$$= \frac{2}{3^{n+1}} \left(1 + \frac{1}{3} + \frac{1}{9} + \cdots \right)$$

$$= \frac{1}{2^n}.$$

Since the length of a subinterval in C_n is exactly 3^{-n} , it is the case that x = y + z remains an element of $C_{n,k}$.

Let $x \in \mathcal{C}$. Then, $x \in \mathcal{C}_n$ for all n. Then, $x \in \mathcal{C}_1$, so let x_1 be the left endpoint of the interval $\mathcal{C}_{1,j}$ that contains x. Then, $|x - x_1| < \frac{1}{3}$, and $x_1 = w_1 3^{-1}$ for some $w_1 \in \{0, 2\}$.

Let x_2 be the left endpoint of the subinterval $C_{2,j}$ that contains x. Then, $|x-x_2|<\frac{1}{3^2}$. Therefore,

$$x_2 = x_1 + w_2 3^{-2}$$

= $w_1 3^{-1} + w_2 3^{-2}$.

Iterating, we have x_n , the left endpoint of the subinterval $C_{n,j}$ that contains x.

$$x_n = \sum_{k=1}^n w_k 3^{-k}$$
.

We have that $|x - x_n| < 3^{-n}$.

Therefore, $(x_n)_n \to x$. Also,

$$x_{n} = \sum_{k=1}^{n} w_{k} 3^{-k}$$

$$\to \sum_{k=1}^{n} w_{k} 3^{-k}.$$

Thus,

$$x = \sum_{k=1}^{\infty} w_k 3^{-k}.$$

To prove $\operatorname{card}(\mathcal{C}) = \operatorname{card}(\mathbb{R})$, we will show that $\operatorname{card}(\{0,1\}^{\mathbb{N}}) = \operatorname{card}(\mathcal{C})$.

$$(a_k)_k \mapsto \sum_{k=1}^{\infty} 2a_k 3^{-k}.$$

Relative (or Subspace) Topology

We know that if (X, d) is a metric space, and $Y \subseteq X$ is any subset, then (Y, d) is a metric space. The question now is: what are the open sets of Y?

For example, let $X = \mathbb{R}$, Y = [0, 1]. Consider U = [0, 1/2). U is not open in \mathbb{R} , as if x = 0, then there is no open ball completely contained in U. However, in Y, U is open.

Let (X, d) be a metric space, $Y \subseteq X$ any subset. $V \subseteq Y$ is open if and only if $\exists U \subseteq X$ open such that $V = U \cap Y$. That is, $\tau_Y = \{U \cap Y \mid U \in \tau_X\}$.

Let V be open in Y. Then, $\forall x \in V$, $\exists \delta_x > 0$ such that $U_Y(x, \delta_x) \subseteq V$. We have $U_Y(x, \delta_x) = \{y \in Y \mid d(y, x) < \delta_x\}$. Let

$$U = \bigcup_{x \in V} U_X(x, \delta_x)$$

$$U \cap Y = \left(\bigcup_{x \in V} U_X(x, \delta_x)\right) \cap Y$$

$$= \bigcup_{x \in V} U_X(x, \delta_x) \cap Y$$

$$= \bigcup_{x \in V} U_Y(x, \delta_x).$$

Let *U* be open in *X*. Then, for $x \in U \cap Y$, $\exists \delta_x$ such that $U(x, \delta_x) \subseteq U$.

(1) ℓ_{∞} is not a discrete metric space. However, $E = \{(a_k)_k \mid a_k \in \{0,1\}\}$ with the induced metric. Then, E is a discrete metric space.

Convergent Sequences

Fix a metric space (X, d). A sequence in X is a map $x : \mathbb{N} \to X$, $n \mapsto x(n) = x_n$.

A natural sequence $(n_k)_k$ is a sequence in $\mathbb N$ with $n_k \ge k$ for all k. A subsequence of $(x_n)_n$ is a sequence $(x_{n_k})_k$, where $(n_k)_k$ is a natural sequence.

A sequence $(x_n)_n$ converges to $x \in X$ if $\forall \varepsilon > 0$, $\exists N_\varepsilon \in \mathbb{N}$ such that $n \ge N_\varepsilon$ implies $d(x_n, x) < \varepsilon$. We write $(x_n)_n \stackrel{d}{\to} x$.

Exercise: A sequence can have at most one limit, as metric spaces are Hausdorff.

Proposition: Equivalent Definitions of Convergence

Given $(x_n)_n \in X$, $x \in X$, the following are equivalent.

- (i) $(x_n)_n \to x$ in X
- (ii) $(d(x_n, x))_n \to 0$ in \mathbb{R}
- (iii) $\forall V \in \mathcal{N}_x$, $\exists N \in \mathbb{N}$ with $n \geq N \Rightarrow x_n \in V$.

Exercise: Let (X, ρ) be a metric space, let $d(x, y) = \frac{\rho(x, y)}{1 + \rho(x, y)}$. A sequence $(x_n)_n \xrightarrow{d} x$ if and only if $(x_n)_n \xrightarrow{\rho} x$.

Proposition: Convergent Sequences are Bounded

Let $(x_n)_n \to x$ in (X, d). Let $\varepsilon = 1$. Then, $\exists N \in \mathbb{N}$ large such that for $n \ge N$, $d(x_n, x) < 1$.

If $m, n \ge N$, then $d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < 2$. Let $c = \max_{1 \le n, m \le N} d(x_n, x_m)$. Then,

$$d(x_n, x_m) \le d(x_n, x_N) + d(x_n, x_m)$$

$$\le 1 + c.$$

Let $k = \max\{1 + c, 2\}$. Then, diam $(\{x_n\}) \le k$.

Convergence in Different Metric Spaces

Convergence for Bounded Functions: Recall that for (Y, d) a metric space is

$$Bd(\Omega, Y) = \{f : \Omega \to Y \mid f \text{ bounded}\}\$$
$$D_u(f, g) = \sup_{x \in \Omega} d(f(x), g(x)).$$

Then, $(f_n)_n \to f$ in $Bd(\Omega, Y)$ if and only if $D_u(f_n, f) \to 0$ in \mathbb{R} .

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N})$$
 such that $n \geq N \Rightarrow D_u(f_n, f) < \varepsilon$

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N})$$
 such that $n \geq N \Rightarrow \sup_{x \in \Omega} d(f_n(x), f(x)) < \varepsilon$

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N})$$
 such that $n \ge N \Rightarrow \forall x, \ d(f_n(x), f(x)) < \varepsilon$.

This is exactly the definition of uniform convergence.

Since $\ell_{\infty}(\Omega) = \mathsf{Bd}(\Omega, \mathbb{F})$, convergence in $\ell_{\infty}(\Omega)$ is uniform convergence. This is also the case for subspaces, such as c, c_0 , and c_{00} .

Convergence in the Frechet Metric: Consider a separating family of semimetrics ρ_k on a set X. Set $d_k = \frac{\rho_k}{1+\rho_k}$. We saw that

$$d(x,y) = \sum_{k=1}^{\infty} 2^{-k} d_k(x,y)$$

is a metric on X.

We claim that $(x_n)_n \to x$ in (X, d) if and only if for all $k \ge 1$, $\rho_k(x_n, x) \to 0$.

In the forward direction, we know that $(x_n)_n \to x$ with respect to d if and only if $d(x_n, x) \to 0$ in \mathbb{R} . Since $0 \le 2^{-k} d_k(x_n, x) \le d(x_n)$ for fixed k, we have that

$$0 < d_k(x_n, x) < 2^k d(x_n, x),$$

and as $n \to \infty$, $d(x_n, x) \to 0$, meaning $d_k(x_n, x) \to 0$. Therefore, $\rho_k(x_n, x) \to 0$.

In the reverse direction, suppose $\rho_k(x_n,x) \to 0$ in $\mathbb R$ as $n \to \infty$ for all $k \ge 1$. Thus, $d_k(x_n,x) \to 0$ as $n \to \infty$ for all $k \ge 1$.

Let $\varepsilon > 0$. Let K be so large such that

$$\sum_{k\geq K} 2^{-k} < \varepsilon/2.$$

Therefore, $d_k(x_n, x) \to 0$ for all k = 1, ..., K. Therefore, $\exists N_1, ..., N_K$ such that for $n \ge N_K$,

$$d_k(x_n,x)<\frac{\varepsilon}{2}.$$

Let $N = \max\{N_1, \dots, N_K\}$. Therefore, for $n \ge N$,

$$d_k(x_n,x)<\frac{\varepsilon}{2}$$

for all $k = 1, \ldots, K$.

Thus, for all $n \geq N$,

$$d(x_{n}, x) = \sum_{k=1}^{\infty} 2^{-k} d_{k}(x_{n}, x)$$

$$= \sum_{k=1}^{K} 2^{-k} d_{k}(x_{n}, x) + \sum_{k=K+1}^{\infty} 2^{-k} d_{k}(x_{n}, x)$$

$$\leq \frac{\varepsilon}{2} \sum_{k=1}^{K} 2^{-k} + \frac{\varepsilon}{2}$$

$$< \varepsilon$$

Therefore, $(x_n)_n \to x$.

Recall that, for the Frechet metric, our set was $X = C(\mathbb{R})$. For $k = 1, 2, 3, \ldots$, we had

$$p_k(f) = \sup_{[-k,k]} |f(x)|$$

as our seminorm, and our semimetric was

$$\rho_k(f,g) = p_k(f-g).$$

We also showed that the ρ_k family is separating. We make $d_k(f,g) = \frac{\rho_k(f,g)}{1+\rho_k(f,g)}$ as the bounded family of separating metrics, and

$$d_F(f,g) = \sum_{k=1}^{\infty} \frac{2^{-k} \rho_k(f-g)}{1 + \rho_k(f-g)}.$$

In $(C(\mathbb{R}), d_F)$, $(f_n)_n \to f$ if and only if $\rho_k(f_n, f) \to 0$ for all k, meaning $(f_n)_n \to f$ uniformly on [-k, k] for all k.

This is known as convergence on compact subsets.

Convergence in a Product Space: Let (X, d) and (Y, ρ) be metric spaces. Then,

$$X \times Y = \{(x, y) \mid x \in X, y \in Y\},\$$
$$D_1((x, y), (x', y')) = d(x, x') + \rho(y, y')$$
$$D_{\infty}((x, y), (x', y')) = \max\{d(x, x'), \rho(y, y')\}.$$

Both D_1 and D_{∞} are equivalent metrics.

Exercise: $((x_n, y_n))_n \to (x, y)$ if and only if $(x_n)_n \stackrel{d}{\to} x$ and $(y_n)_n \stackrel{\rho}{\to} y$.

Series in a Normed Vector Space

Let $(V, \|\cdot\|)$ be a normed vector space. Consider a sequence $(v_k)_k$ of vectors.

$$s_1 = v_1$$

$$s_2 = v_1 + v_2$$

$$\vdots$$

$$s_n = \sum_{k=1}^n v_k.$$

If $s_n \to s$ in $(V, \|\cdot\|)$, meaning $\|s_n - s\| \to 0$, then we say the series $\sum_{k=1}^{\infty} v_k$ converges to s. We write

$$\sum_{k=1}^{\infty} v_k = s.$$

The series converges absolutely if

$$\sum_{k=1}^{\infty} \|v_k\|$$

converges in \mathbb{R} .

Proposition: Sequential Characterization of Closure

Let (X, d) be a metric space with $A \subseteq X$. $x \in \overline{A}$ if and only if $\exists (a_n)_n$ in A with $(a_n)_n \to X$.

In the forward direction, recall that $x \in \overline{A}$ if and only if $\forall \delta > 0$, $U(x, \delta) \cap A \neq \emptyset$. If $x \in \overline{A}$, then set $\varepsilon_n = 1/n$, and since $U(x, 1/n) \cap A \neq \emptyset$. Let $a_n \in U(x, 1/n) \cap A$. Then, $d(a_n, x) < 1/n \to 0$, meaning $a_n \to x$ and $a_n \in A$.

In the reverse direction, if $(a_n)_n \to x$ and $\varepsilon > 0$, $\exists N$ with $n \ge N \Rightarrow a_n \in U(x, \varepsilon) \cap A$. Thus, $x \in \overline{A}$.

Proposition: Sequential Characterization of Closed Sets

If (X, d) is a metric space, $A \subseteq X$, then the following are equivalent:

- (i) A is closed.
- (ii) Whenever $(a_n)_n$ in A with $(a_n)_n \stackrel{d}{\to} x$ in X, then $x \in A$.

Continuous Bounded Functions: $C([a,b]) \subseteq \ell_{\infty}([a,b])$ is closed under $\|\cdot\|_u$, since if $(f_n)_n \to f$ uniformly, and f_n is continuous, then f is continuous.

Sequence Closure: $c_0 \subseteq \ell_\infty$ is closed under $\|\cdot\|_u$. Let $(f_n)_n$ be a sequence

$$f_1 = (f_1(1), f_1(2), \dots)$$

 $f_2 = (f_2(1), f_2(2), \dots)$
 $\lim_{k \to \infty} f_n(k) = 0$ $\forall n$

Suppose $(f_n)_n \xrightarrow{\|\cdot\|_{\infty}} f \in \ell_{\infty}$.

Let $\varepsilon > 0$. Then, $\exists n \in \mathbb{N}$ such that for $n \geq N$, $\|f - f_n\|_{\infty} < \varepsilon/2$. Also, $\lim_{k \to \infty} f_N(k) = 0$. Then, $\exists K \in \mathbb{N}$ such that for $k \geq K$, $|f_N(k)| < \varepsilon/2$. Thus, for $k \geq K$,

$$|f(k)| = |f(k) - f_N(k) + f_N(k)|$$

$$\leq |f(k) - f_N(k)| + |f_N(k)|$$

$$\leq ||f - f_N||_{\infty} + |f_N(k)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

Thus, $f \in c_0$.

Distance to a Set

Let (X, d) be a metric space, $A \subseteq X$. Then, $\operatorname{dist}_A : X \to [0, \infty)$ is defined as

$$\operatorname{dist}_A(x) = \inf_{a \in A} d(x, a).$$

- (1) $\overline{A} = \{x \mid \text{dist}_A = 0\}$
- (2) $\operatorname{dist}_{A}(\cdot) = \operatorname{dist}_{\overline{A}}(\cdot)$
- (3) $|\operatorname{dist}_A(x) \operatorname{dist}_A(y)| \le d(x, y)$

Proof of (1): Let $x \in \overline{A}$. Then, $\exists (a_n)_n$ such that $(a_n)_n \to x$. Then, $d(a_n, x) \to 0$. Since $0 \le \operatorname{dist}_A(x) \le d(x, a_n)$, $\operatorname{dist}_A(x) = 0$.

Let x be such that $\operatorname{dist}_A(x)=0$. By the definition of inf, we construct a_n by finding $a_n\in U(x,1/n)\cap A$. Thus, $d(a_n,x)\to 0$, meaning $(a_n)_n\to x$, so $x\in \overline{A}$.

Proof of (2): Exercise; use (1).

Proof of (3): For all $a \in A$,

$$dist_A(x) \le d(x, a)$$

$$\le d(x, y) + d(y, a).$$

Therefore,

$$\begin{aligned} \operatorname{dist}_{A}(x) - d(x, y) &\leq d(y, a) \\ \operatorname{dist}_{A}(x) - d(x, y) &\leq \inf_{a \in A} d(y, a) \\ &= \operatorname{dist}_{A}(y) \\ \operatorname{dist}_{A}(x) - \operatorname{dist}_{A}(y) &\leq d(x, y). \end{aligned}$$

Similarly,

$$\operatorname{dist}_A(y) - \operatorname{dist}_A(x) \le d(y, x) = d(x, y)$$

meaning

$$|\operatorname{dist}_A(y) - \operatorname{dist}_A(x)| \le d(x, y).$$

Continuity

Let (X, d) and (Y, ρ) be metric spaces. A map $f: X \to Y$

(1) is continuous at $x_0 \in X$ if

$$(\forall \varepsilon > 0)(\exists \delta > 0) \text{ such that } d(x, x_0) < \delta \Rightarrow \rho(f(x), f(x_0)) < \varepsilon$$
$$(\forall \varepsilon > 0)(\exists \delta > 0) \text{ such that } x \in U_X(x_0, \delta) \Rightarrow f(x) \in U_Y(f(x_0), \varepsilon)$$
$$(\forall \varepsilon > 0)(\exists \delta > 0) \text{ such that } f(U_X(x_0, \delta)) \subseteq U_Y(f(x_0), \varepsilon).$$

(2) is continuous if f is continuous at every $x_0 \in X$.

Proposition: Equivalent Continuity Criteria

Let $f:(X,d)\to (Y,\rho),\ x_0\in X.$ The following are equivalent:

- (1) f is continuous at x_0 ;
- (2) $(\forall V \in \mathcal{N}_{f(x_0)})(U \in \mathcal{N}_{x_0})$ such that $f(U) \subseteq V$.
- (3) $\forall (x_n)_n \to x_0, (f(x_n))_n \to f(x_0).$
- $(1) \Leftrightarrow (2)$: Clearly follows from definitions.
- (1) \Rightarrow (3): Let $(x_n)_n \to x_0$. Let $\varepsilon > 0$. Then, $\exists \delta > 0$ such that $d(x, x_0) < \delta$ implies $\rho(f(x), f(x_0)) < \varepsilon$.

Thus, $\exists N \in \mathbb{N}$ such that $n \geq N$ implies $d(x_n, x_0) < \delta$. So, if $n \geq N$, $d(x_n, x_0) < \delta$, implying $\rho(f(x_n), f(x_0)) < \varepsilon$. So, $(f(x_n))_n \to f(x_0)$.

(3) \Rightarrow (1): Suppose toward contradiction that $\exists \varepsilon_0 > 0$ such that for $\delta = 1/n$ where $n \in \mathbb{N}$, $\exists (x_n)_n : d(x_n, x_0) < \delta$ and $\rho(f(x_n), f(x_0)) \geq \varepsilon_0$. Then, $(x_n)_n \to x_0$, but $f(x_n)_n \nrightarrow f(x_0)$. \bot

Proposition: Topological Criterion for Continuity

Let $f:(X,d)\to (Y,\rho)$. The following are equivalent:

- (1) f is continuous.
- (2) $\forall V \in \tau_Y, f^{-1}(V) \in \tau_X$.
- (3) $\forall x \in X, \forall (x_n)_n \to x$, we have $(f(x_n))_n \to f(x)$.

Proof: Exercise.

Proposition: Composition of Functions

Let $(X, d) \xrightarrow{f} (Y, \rho) \xrightarrow{g} (Z, p)$. If f and g are continuous, then $g \circ f$ is continuous.

Proof: Exercise.

Uniform Continuity

Let $f:(X,d)\to (Y,\rho)$.

(1) f is uniformly continuous if

$$(\forall \varepsilon > 0)(\exists \delta > 0)$$
 such that $\forall x, x' \in X, d(x, x') < \delta \Rightarrow d(f(x), f(x')) < \varepsilon$

(2) f is Lipschitz if $\exists c > 0$ with

$$\rho(f(x), f(x')) \le cd(x, x')$$

for all $x, x' \in X$.

(3) If $\rho(f(x), f(x')) = d(x, x')$, then f is an isometry. Isometries are always injective.

Exercise:

 $Isometry \Rightarrow Lipschitz \Rightarrow Uniformly Continuous \Rightarrow Continuous.$

For example, $f(x) = x^2$ on $[0, \infty)$ is continuous but not uniformly continuous, and \sqrt{x} on [0, 1] is uniformly continuous but not Lipschitz.

If $(V, \|\cdot\|)$ is a normed space, we might want to care that the following operations are continuous:

• $a: V \times V \rightarrow V$, a(v, w) = v + w:

$$||a(v, w) - a(v', w')|| = ||v + w - (v' + w')||$$

$$= ||v - v' + w - w'||$$

$$\leq ||v - v'|| + ||w - w'||$$

$$= d(v, v') + d(w, w')$$

$$= d_1((v, w), (v', w')),$$

meaning a is Lipschitz.

• $m : \mathbb{F} \times V \to V$, $m(\alpha, v) = \alpha v$;

$$||m(\alpha, v) - m(\beta, w)|| = ||\alpha v - \beta w||$$

$$= ||\alpha v - \alpha w + \alpha w - \beta w||$$

$$\leq |\alpha| ||v - w|| + |\alpha - \beta| ||w||$$

If $(\alpha_n)_n \to \beta$ and $(v_n)_n \to w$, then

$$\|\alpha_n v_n - \beta w\| \le |\alpha_n| \|v_n - w\| + |\alpha_n - \beta| \|w\|$$

 $\to 0.$

• $\|:\|V \to \mathbb{F}:$

$$|||v|| - ||w||| \le ||v - w||$$
,

meaning $\|\cdot\|$ is Lipschitz.

Let (X, d) be a metric space. Then, $\operatorname{dist}_A: X \to [0, \infty)$, $\operatorname{dist}_A(x) = \inf_{a \in A} d(x, a)$ is continuous. We had shown

$$|\operatorname{dist}_A(x) - \operatorname{dist}_A(y)| \le d(x, y),$$

meaning dist $_A$ is Lipschitz.

Proposition: Normal Property of Metric Spaces

Given $A, B \subseteq X$ with $A \cap B = \emptyset$, then $\exists U, V \in \tau_X$ with $A \subseteq U, B \subseteq V$, and $U \cap V = \emptyset$.

Proof: Set

$$f(x) = \frac{\operatorname{dist}_{A}(x)}{\operatorname{dist}_{A}(x) + \operatorname{dist}_{B}(x)}.$$

Note that $\operatorname{dist}_A(x) + \operatorname{dist}_B(x) = 0$ if and only if $x \in \overline{A} = A$ and $x \in \overline{B} = B$. Therefore, the denominator in f(x) is always positive.

Additionally, $f: X \to [0,1]$ is continuous. Note that f(a) = 0 for all $a \in A$ and f(b) = 1 for all $b \in B$.

Let $U = f^{-1}((-1/2, 1/2)) = f^{-1}([0, 1/2))$, and $V = f^{-1}((1/2, 3/2)) = f((1/2, 1])$. Obviously, $U \subseteq A$ and $V \subseteq B$, and $U \cap V = \emptyset$.

Proposition: Quotient Space

Let $(V, \|\cdot\|)$ be a normed space, and let $W \subseteq V$ be a closed subspace. Then, V/W is a normed space with

$$||v + W|| = \operatorname{dist}_{W}(v)$$

$$= \inf_{w \in W} ||v - w||.$$

Proposition: Uniform Continuity of Linear Transformations

Let $T: V \to W$ be a linear transformation between two normed spaces. The following are equivalent:

- (1) T is continuous at 0_V .
- (2) T is continuous.
- (3) T is uniformly continuous.
- (4) T is Lipschitz.
- (5) $\exists c \geq 0$ such that $||T(v)|| \leq c ||v||$ for all $v \in V$.
- (6) $||T||_{op} = \sup_{||v|| \le 1} ||T(v)|| < \infty$. In other words, T is bounded linear.

Proof:

- $(4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$: Obvious.
- (6) \Rightarrow (5) Let $v \in V$. If $v = 0_V$, then $T(v) = 0_W$. Suppose $v \neq 0_V$. We know

$$\left\| T \left(\frac{v}{\|v\|} \right) \right\| \le \|T\|_{\text{op}}$$

$$\frac{1}{\|v\|} \|T(v)\| \le \|T\|_{\text{op}}$$

$$\|T(v)\| \le \|T\|_{\text{op}} \|v\|.$$

Therefore, $c = ||T||_{op}$.

- (5) \Rightarrow (6): We will have $||T(v)|| \le c$ for all $v \in B_V$. Thus, $||T||_{op} \le c$ for such c.
- $(5) \Rightarrow (4)$: Let $v, w \in V$. Then,

$$||T(v) - T(w)|| = ||T(v - w)||$$

 $\leq c ||v - w||,$

meaning T is Lipschitz.

(1) \Rightarrow (5): Let $\varepsilon = 1$. Then, $\exists \delta$ such that

$$T(U_V(0,\delta)) \subseteq U(T(0),1).$$

Since *T* is linear,

$$T(U_V(0,\delta)) \subseteq U_W(0,1).$$

Let $v \in V \neq 0_V$. We know $\frac{\delta v}{2||v||} \in U_V(0, \delta)$. Then,

$$\left\| T\left(\frac{\delta v}{2 \|v\|}\right) \right\| \le 1,$$

$$\frac{\delta}{2 \|v\|} \|T(v)\| \le 1$$

$$\|T(v)\| \le \frac{2}{\delta} \|v\|.$$

Set $c = \frac{2}{\delta}$. Clearly, $\|T(0)\| \leq \frac{2}{\delta} \|0\|$.

A corollary to this is that any linear map $T: \ell_p^n \to W$ for W a normed space is uniformly continuous.

Proposition: Continuous Functions on Dense Sets

Let (X, d), (Y, ρ) be metric spaces, and $A \subseteq X$ dense. If $f, g: X \to Y$ and f(A) = g(A), then f(X) = g(X).

Proof: Given $x \in X$, there exists $(a_n)_n \to x$. We know that $(g(a_n))_n \to g(x)$ and $(f(a_n))_n \to f(x)$. Since $f(a_n) = g(a_n)$ for all a_n , it is the case that f(x) = g(x).

Morphisms in the Category of Metric Spaces

Let (X, d) and (Y, ρ) be metric spaces, $f: X \to Y$ a map.

- (1) f is a homeomorphism if f is bijective, continuous, and has a continuous inverse. We write $X \cong Y$ are homeomorphic.
- (2) f is a uniformism if f is bijective, uniformly continuous, and has a uniformly continuous inverse. We write $X \cong Y$ are uniformly isomorphic.
- (3) f is a metric isomorphism if f is bijective, Lipschitz, and has a Lipschitz inverse. We write $X \cong Y$ are metrically isomorphic.
- (4) f is an isometric isomorphism if f is bijective and isometric. We write $X \cong Y$ are isometrically isomorphic.

For example, $R \cong (-\pi/2, \pi/2)$ are homeomorphic (using $\tan : (-\pi/2, \pi/2) \to \mathbb{R}$). However, \mathbb{R} is not uniformly isomorphic to $(-\pi/2, \pi/2)$.

Suppose $f:(-\pi/2,\pi/2)\to\mathbb{R}$ is a uniformism. Let $(x_n)_n=\pi/2-1/n$. Then, $(x_n)_n$ is Cauchy. Therefore, $(f(x_n))_n$ is Cauchy. Since \mathbb{R} is complete, $(f(x_n))_n\to y$ for some $y\in\mathbb{R}$. Then, $f^{-1}(f(x_n))_n\to f^{-1}(y)$, meaning $(x_n)_n\to f^{-1}(y)\in(-\pi/2,\pi/2)$. However, $(x_n)_n\to\pi/2\notin(-\pi/2,\pi/2)$.

Completeness

Proposition: Weierstrass *M***-Test**

Let V be a Banach space (complete normed vector space). Suppose $(v_k)_k$ is such that $\sum ||v_k||$ is convergent. Then, $(s_n)_n = \sum_{k=1}^n v_k$ converges in V. Additionally,

$$\left\| \sum_{k=1}^{\infty} v_k \right\| \leq \sum_{k=1}^{\infty} \|v_k\|.$$

Proof: Let $s_n = \sum_{k=1}^n v_k$, and $t_n = \sum_{k=1}^n ||v_k||$. Let n > m. Then,

$$||s_n - s_m|| = \left\| \sum_{k=m+1}^n v_k \right\|$$

$$\leq \sum_{k=m+1}^n ||v_k||$$

$$= |t_n - t_m|.$$

Since $(t_n)_n$ converges, it is Cauchy, and thus s_n is Cauchy. Since V is complete, $(s_n)_n$ converges.

$$||s_n|| = \left\| \sum_{k=1}^n v_k \right\|$$

$$\leq \sum_{k=1}^n ||v_k||$$

$$\leq \sum_{k=1}^\infty ||v_k||.$$

Let $n \to \infty$. Using the continuity of the norm, we get

$$\left\| \sum_{k=1}^{\infty} v_k \right\| \leq \sum_{k=1}^{\infty} \|v_k\|.$$

Proposition: Convergence in Hilbert Space

Let H be a Hilbert space (inner product space with a complete norm). Let $(e_n)_n$ be an orthonormal sequence in H. Let $(t_k)_k$ be a sequence in ℓ_2 . Then, $\sum_{k=1}^{\infty} t_k e_k$ converges in H, but not absolutely.

Proof: Let $s_n = \sum_{k=1}^n t_k e_k$. For n > m,

$$||s_n - s_m||^2 = \left\| \sum_{k=m+1}^n t_k e_k \right\|^2$$

$$= \sum_{k=m+1}^n ||t_k e_k||^2$$
Pythagorean Theorem
$$= \sum_{k=m+1}^n |t_k|^2$$

Since $(t_k)_k \in \ell_2$, we know that $(t_k)_k$ is convergent and thus Cauchy. Thus, $(s_n)_n$ is Cauchy.

Note that for $t_k = \frac{1}{k}$, $(t_k)_k$ is square-summable, but not summable in absolute value.

Exercise: Show that

$$\left\|\sum_{k=1}^{\infty} t_k e_k\right\|^2 = \sum_{k=1}^{\infty} |t_k|^2.$$

This result is known as Parseval's Theorem.

Extensions of Continuous Functions

Lemma: Cauchy Sequences in Uniformly Continuous Functions

Let $f:(X,d)\to (Y,\rho)$ be uniformly continuous. If $(x_n)_n$ is Cauchy, then $(f(x_n))_n$ is Cauchy.

Proof: Let $\varepsilon > 0$. Then, $\exists \delta > 0$ such that

$$d(x, x') < \delta \Rightarrow d(f(x), f(x')) < \varepsilon$$
.

Similarly, there exists $N \in \mathbb{N}$ such that for $p, q \geq N$, $d(x_p, x_q) < \delta$. So, for $p, q \geq N$, $d(f(x_p), f(x_q)) < \varepsilon$.

Remark: This is not true for continuous functions. For example, if f(t) = 1/t on (0,1), $x_n = 1/n$ is Cauchy but not convergent.

Theorem: Extension on a Dense Subset

Let (X, d) be a metric space with $A \subseteq X$ dense. Suppose $f : A \to Y$ is uniformly continuous with (Y, ρ) complete. Then, $\exists !$ uniformly continuous extension, $\tilde{f} : X \to Y$ that agrees with f on A.

Proof: Let $x \in X$. Then, $\exists (a_n)_n \in A$ with $(a_n)_n \to x$. Therefore, $(a_n)_n$ is Cauchy, and since f is uniformly continuous, we know that $(f(a_n))_n$ is Cauchy. Thus, $\lim_{n\to\infty} (f(a_n))_n = \tilde{f}(x)$ exists.

To show \tilde{f} is well-defined, suppose $(b_n)_n$ is another sequence in A with $(b_n)_n \to x$. Consider $(c_n)_n = (a_1, b_1, a_2, b_2, \dots)$. It must be the case that $(c_n)_n \to x$. Thus, $(f(c_n))_n$ converges to $y \in Y$. The subsequence of $(f(a_n))_n \to y$ and $(f(b_n))_n \to y$. So, we must have $\lim f(a_n) = \lim f(b_n)$.

Note that $\tilde{f}(a) = f(a)$ for all $a \in A$, by choosing the sequence (a, a, a, ...).

We claim that \tilde{f} is uniformly continuous. Let $\varepsilon > 0$. We know $\exists \delta > 0$ such that for any $a, b \in A$, with $d(a, b) < \delta$, then $\rho(f(a), f(b)) < \varepsilon/2$. Now, let $x, x' \in X$ with $d(x, x') < \delta/4$. Find sequences $(a_n)_n \to X$ and $(b_n)_n \to X'$ with $(a_n)_n, (b_n)_n \in A$. Find N large such that $n \ge N$ implies $d(a_n, x) < \delta/4$ and $d(b_n, x') < \delta/4$. For $n \ge N$, we have

$$d(a_n, b_n) \le d(a_n, x) + d(x, x') + d(x', b_n)$$

$$< \frac{3\delta}{4}$$

$$< \delta$$

Thus, for $n \ge N$, $\rho(f(a_n), f(b_n)) < \varepsilon/2$. By continuity of ρ , taking $n \to \infty$, we get $\rho(\tilde{f}(x), \tilde{f}(x')) < \varepsilon/2$. Therefore, we have $d(x, x') < \delta/4 \Rightarrow d(\tilde{f}(x), \tilde{f}(x')) < \varepsilon$. Therefore, \tilde{f} is uniformly continuous.

Suppose $g:X\to Y$ is another continuous extension of f. Therefore, $g(a)=\tilde{f}(a)$ for all $a\in A$. However, A is dense. Therefore, $g=\tilde{f}$.

Completion of a Metric Space

Let (X, d) be a fixed metric space. A completion of X is a pair $((Z, \rho), i)$.

- (i) (Z, ρ) is a complete metric space.
- (ii) $i: X \to Z$ is an isometry.
- (iii) $\overline{i(X)}^{\rho} = Z$.

For example, the completion of (0,1) is $(([0,1],|\cdot|),i(t)=t)$.

Isometric Isomorphism of Completions

Given $((Z, \rho), i)$ and $((Z', \rho'), j)$ completions of X, then there exists a unique isometric isomorphism $\varphi : Z \to Z'$ such that the following diagram commutes.

Corollary: Isometric Map and Completion of Metric Space

If (X, d) is a metric space, and $i: (X, d) \to (Y, \rho)$ is an isometry into a complete metric space, then $(\overline{i(X)}, \rho), i$ is the completion of X.

Theorem: Every Metric Space has a Completion

Consider the Banach space $(C_b(X), \|\cdot\|_u)$. We embed $X \hookrightarrow C_b(X)$ as follows. Fix $x_0 \in X$. Given $x \in X$, $i(x) = X \to \mathbb{F}$ where $i(x)(t) = d(t, x) - d(t, x_0)$.

Clearly, i(x) is continuous for all x as the distance function is continuous. Also,

$$|i(x)(t)| = |d(t,x) - d(t,x_0)|$$

 $\leq d(x,x_0)$
 $||i(x)||_{u} \leq d(x,x_0).$

We need only show that i(x) is an isometry.

$$||i(x) - i(y)||_u = \sup_{t \in X} |i(x)(t) - i(y)(t)|$$

=
$$\sup_{t \in X} |d(t, x) - d(t, y)|$$

=
$$d(x, y).$$

Nowhere Dense Sets

Let (X, d) be a metric space. Recall that a subset A if $(\overline{A})^{\circ} = \emptyset$. For example, $G = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$ is nowhere dense.

Proposition: Equivalent Conditions for Nowhere Dense Sets

For a $A \subseteq X$, the following are equivalent:

- (i) A is nowhere dense.
- (ii) $\exists F \subseteq X$ closed with $F^{\circ} = \emptyset$, $A \subseteq F$.
- (iii) $\exists U \subset X$ open and dense with $U \subset A^c$.

Proof:

- (i) \Rightarrow (ii): Take $F = \overline{A}$.
- (ii) \Rightarrow (i): $\overline{A} \subseteq \overline{F}$, so $\overline{A}^{\circ} \subseteq \overline{F}^{\circ} = \emptyset$
- (ii) \Rightarrow (iii): Take $U = F^c$. Note that $U = F^c \subseteq A^c$. Then, $\overline{U} = \overline{F^c} = (F^\circ)^c = X$. Therefore, U is dense and open, and U is contained in A^c .
- (iii) \Rightarrow (ii): Take $F = U^c$.

A point $x \in X$ is isolated if $\exists \varepsilon > 0$ such that $U(x, \varepsilon) = \{x\}$.

Proposition: Extension of Nowhere Dense Sets

Let (X, d) be a metric space.

- (i) If $A \subseteq X$ is nowhere dense and $B \subseteq A$, then B is nowhere dense.
- (ii) If $A \subseteq X$ is nowhere dense, then \overline{A} is nowhere dense.
- (iii) Let A_1, \ldots, A_n be nowhere dense. Then, $\bigcup A_i$ is nowhere dense.
- (iv) If X has no isolated points, then every finite set is nowhere dense.

Proof:

- (i) $B \subseteq A$ implies $\overline{B} \subseteq \overline{A}$, so $\overline{B}^{\circ} = \emptyset$, so B is nowhere dense.
- (ii) If A is nowhere dense, then $\overline{\overline{A}}^{\circ} = \overline{A}^{\circ} = \emptyset$.
- (iii) Let A_1 and A_2 be nowhere dense. By the alternate characterization, $U_1 \subseteq A_1^c$, where U_1 is open and dense. Similarly, $U_2 \subseteq A_2^c$, where U_2 is open and dense.

$$(A_1 \cup A_2)^c = A_1^c \cap A_2^c$$

\(\text{\tint{\tint{\tint{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\tint{\tint{\tint{\tint{\text{\tint{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\tint{\tin{\tint{\tint{\text{\text{\text{\text{\tinit}\text{\text{\tinit}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texitilent{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}\text{\text{\text{\text{\tinit}}}}}}}}}}}}}}}}}}}}}}}}}} \endreminture}}}} \end{righthand{righthand{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}}}}}}}}}}}}} \end{righthand{\text{\texi}\text{\text{\text{\tex{\text{\text{\text{\tiint{\text{\text{\text{\text{\tinit}}}}}}}}}

We know $U_1 \cap U_2$ is open. We claim that $U_1 \cap U_2$ is dense.

Let $x \in X$, $\varepsilon > 0$. We want to show that $U(x, \varepsilon) \cap (U_1 \cap U_2) \neq \emptyset$. Since U_1 is dense, we know $U_1 \cap U(x, \varepsilon) \neq \emptyset$. Let $z \in U_1 \cap U(x, \varepsilon)$. Therefore, $\exists \delta > 0$ such that $U(z, \delta) \subseteq U_1 \cap U(x, \varepsilon)$. Since U_2 is dense, $U(z, \delta) \cap U_2 \neq \emptyset$. Therefore, $\emptyset \neq U(z, \delta) \cap U_2 \subseteq U(x, \varepsilon) \cap (U_1 \cap U_2)$.

By induction, assuming $A_1 \cup \cdots \cup A_{n-1}$ are nowhere dense, then $(A_1 \cup \cdots \cup A_{n-1}) \cup A_n$ is nowhere dense.

(iv) Since X has no isolated points, $\{x\}$ is closed but not open. Therefore, $(\overline{\{x\}})^{\circ} = \emptyset$. Use (iii).

Remark: Note that $\mathbb Q$ is not nowhere dense, but $\mathbb Q$ is the countable union of nowhere dense sets.

Meager Sets

Let (X, d) be a metric space.

- (i) $A \subseteq X$ is meager if A is the countable union of nowhere dense sets. Or, A is of the first category.
- (ii) $B \subseteq X$ is called residual if B^c is meager.

Examples: $\mathbb{Q} \subseteq \mathbb{R}$ is meager, so $\mathbb{R} \setminus \mathbb{Q} \subseteq \mathbb{R}$ is residual. $\mathbb{Z} \subseteq \mathbb{R}$ is meager, but $\mathbb{Z} \subseteq \mathbb{Z}$ is not meager.

Proposition: Extension of Meager Sets

- (i) If A is meager, and $B \subseteq A$, then B is meager.
- (ii) If A_k is meager for k = 1, ..., then A_k is meager.
- (iii) If X has no isolated points, then every countable set is meager.

Proof:

- (i) $A = \bigcup A_k$, with A_k nowhere dense. Then, $B = B \cap A = \bigcup B \cap A_k$.
- (ii) Each A_k is meager, meaning $A_k = \bigcup A_{k_j}$ with A_{k_j} nowhere dense. Thus, $A = \bigcup A_k$ is the countable union of A_{k_i} . Thus, A is meager.
- (iii) Since singleton sets are nowhere dense, we write the countable set as the union of singleton sets.

Proposition: Cantor's Intersection Theorem

Let (X, d) be a complete metric space, and $F_1 \supseteq F_2 \supseteq \cdots$ be a sequence of closed, nonempty sets with $(\text{diam}(F_n))_n \to 0$. Then, $\bigcap F_n = \{x\}$ for some $x \in X$.

Proof: Let $x_n \in F_n$ for $n \ge 1$. Note that $(x_n)_n$ is Cauchy. For $\varepsilon > 0$, let N be large such that $n \ge N \Rightarrow \operatorname{diam}(F_n) < \varepsilon$. For $m, n \ge N$, $d(x_n, x_m) < \varepsilon$ because $x_n, x_m \in F_N$. Therefore, $(x_n)_n \to x$ for $x \in X$.

We claim that $\{x\} = \bigcap F_n$. To see this, fix $m \in \mathbb{N}$, and consider $(x_{m+k})_k \in F_m$. The tail sequence $(x_{m+k})_k \to x$. Since F_m is closed, we know $x \in F_m$. Therefore, since m is arbitrary, $x \in \bigcap F_n$.

Now, suppose $\exists x, x' \in \bigcap F_n$ distinct. Then, d(x, x') > 0. However, $\exists N \in \mathbb{N}$ large with $\operatorname{diam}(F_N) < d(x, x')$. However, $x, x' \in F_N$, which is a contradiction. Therefore, $\bigcap F_n = \{x\}$.

Baire's Theorem

Let (X, d) be a complete metric space.

- (i) If $\{V_k\}_{k\geq 1}$ is a countable family of open and dense subsets, then $\bigcap V_k$ is dense.
- (ii) X is not meager.

Proof:

(i) Let U_0 be any open ball. Since V_1 is open and dense, $U_0 \cap V_1$ is open and nonempty. So, $\exists U_1$ with $B_1 = \overline{U_1} \subseteq U_0 \cap V_1$. We can assure that $\operatorname{diam}(B_1) < 1$.

Consider $U_1 \cap V_2$. Since V_2 is dense and open, $U_1 \cap V_2$ is open and nomempty. Therefore, there must be $B_2 = \overline{U_2} \subseteq U_1 \cap V_2$. We can insure that $\text{diam}(B_2) < 1/2$.

Now, with $U_2 \cap V_3$, we have $B_3 = \overline{U_3} \subseteq U_2 \cap V_3$, with diam $(B_3) < 1/3$.

Inductively, we have U_1, \ldots, U_{n-1} and B_1, \ldots, B_{n-1} , we see that $U_{n-1} \cap V_n$ is open and nonempty, so we have U_n with $B_n = \overline{U_n} \subseteq U_{n-1} \cap V_n$, with diam $(B_n) < 1/n$.

Observe that we have $B_1 \supseteq U_1 \supseteq B_2 \supseteq U_2 \cdots$. In particular, $\{B_n\}_{n \ge 1}$ is a nested sequence of closed sets with diam $(B_n) \to 0$. Therefore, $\bigcap B_n = \{x\}$.

We claim that $x \in U_0 \cap (\bigcap V_k)$. Note that $B_n \subseteq U_{n-1} \cap V_n \subseteq V_n$, Therefore, $x \in \bigcap B_n$ implies $x \in \bigcap V_n$. Also, $x \in B_1 = \overline{U_1} \subseteq U_0 \cap V_n \subseteq U_0$. Therefore, $\bigcap V_k$ is dense.

(ii) Suppose $X = \bigcup A_k$ for A_k nowhere dense. Therefore, $\exists V_k$ open and dense with $V_k \subseteq A_k^c$. Then,

$$\emptyset = X^{c}$$

$$= \left(\bigcup A_{k}\right)^{c}$$

$$= \bigcap A_{k}^{c}$$

$$\supseteq \bigcap V_{k}.$$

Therefore, by the previous result, $\bigcap V_k$ is open and dense, which is a contradiction. Therefore, X is not meager.

Question: Is $\mathbb{Q} \subseteq \mathbb{R}$ meager? Yes, \mathbb{Q} is the countable union of singleton sets. Is $\mathbb{R} \setminus \mathbb{Q}$ meager? The answer is no — otherwise, we would write $\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q})$ would be a union of meager sets, but \mathbb{R} is complete.

Applying Baire's Theorem

Let (X, d) be a metric space.

(i) $G \subseteq X$ is a G_{δ} -set if

$$G = \bigcap_{k \ge 1} V_k$$

with V_k open.

(ii) $F \subseteq X$ is a F_{σ} -set if

$$F = \bigcup_{k \ge 1} C_k$$

with C_k closed.

For example, $\mathbb{Q} \subseteq \mathbb{R}$ is F_{σ} , since \mathbb{Q} is the countable union of singleton sets (which are closed in \mathbb{R}). It can be shown that A is F_{σ} if and only if A^{c} is G_{δ} .

We claim that \mathbb{Q} is not G_{δ} .

Proof: If \mathbb{Q} is G_{δ} , then $\mathbb{R} \setminus \mathbb{Q}$ is F_{σ} , so

$$\mathbb{R}\setminus\mathbb{Q}=\bigcup F_k$$

for F_k closed. Thus,

$$\mathbb{R} = \mathbb{Q} \setminus \mathbb{R} \setminus \mathbb{Q}$$
$$= \bigcup \{q_k\} \cup \bigcup F_k.$$

Therefore, \mathbb{R} is the countable union of closed sets. Since \mathbb{R} is complete, by Baire's Theorem, we must have $\{q_k\}^{\circ} \neq \emptyset$, or that $F_k^{\circ} \neq \emptyset$ for some k. However, $\{q_k\}^{\circ} = \emptyset$, and $F_k^{\circ} = \emptyset$ since $F_k \subseteq \mathbb{R} \setminus \mathbb{Q}$, and $\mathbb{R} \setminus \mathbb{Q}$ cannot contain an interval. Therefore, \mathbb{Q} is not G_{δ}

Let (X, d) be a metric space. If A is closed, then A is G_{δ} .

Proof: Recall dist_A: $X \to \mathbb{R}$ is continuous. Therefore, dist_A⁻¹((-1/n, 1/n)) = $\{x \mid \text{dist}_A(x) < 1/n\}$ is open. Recall that $x \in A$ if and only if dist_A(x) = 0.

Therefore, we can write

$$A = \bigcap_{n \ge 1} \{x \mid \mathsf{dist}_A(x) < 1/n\}.$$

Therefore, A is G_{δ} .

It follows that if A is open, then A is F_{σ} .

Theorem: Set of Continuities

Let $f:(X,d)\to (Y,\rho)$ be a map. Then, $C_f:=\{x\in X\mid f\text{ is continuous at }x\}$ is a G_δ set.

Oscillation of a Function

Let $f:(X,d)\to (Y,\rho)$. Fix $x_0\in X$. The oscillation $\omega_f(x_0)=\inf_{\delta>0}\mathrm{diam}(f(U(x,\delta)))$, or

$$\omega_f(x_0) = \inf_{\delta > 0} \left(\sup_{x, x' \in U(x, \delta)} \rho(f(x), f(x')) \right).$$

Note that $\omega_f(x_0) \in [0, \infty]$.

- (i) f is continuous at x_0 if and only if $\omega_f(x_0) = 0$.
- (ii) Given c > 0, $\{x \mid \omega_f(x_0) < c\} \subseteq X$ is open.

Proof:

(i) Suppose f is continuous at x_0 . Let $\varepsilon > 0$. Then, $\exists \delta > 0$ such that $d(x, x_0) < \delta \Rightarrow \rho(f(x), f(x_0)) < \varepsilon/2$. Therefore.

$$diam(f(U(x_0, \delta))) \le \varepsilon$$
,

since for $x, x' \in U(x_0, \delta)$, we have

$$\rho(f(x), f(x')) \le \rho(f(x), f(x_0)) + \rho(f(x_0), f(x'))$$
 $< \varepsilon.$

In particular, $\omega(f(x_0)) \le \varepsilon$. Since ε was arbitrary, we have $\omega_f(x_0) = 0$.

Suppose $\omega_f(x_0) = 0$. Let $\varepsilon > 0$. By the property of infimum, then $\exists \delta > 0$ such that

$$\operatorname{diam}(f(U(x_0,\delta))) < \varepsilon.$$

In particular, if $d(x, x_0) < \delta$, then $\rho(f(x), f(x_0)) < \varepsilon$. Thus, f is continuous at x_0 .

(ii) Let $V = \{x \mid \omega_f(x_0) < c\}$. Let $x_0 \in V$. Since $x_0 \in V$, $\omega_f(x_0) < c$. By the property of infimum, $\exists \delta > 0$ such that $\operatorname{diam}(f(U(x_0, \delta))) < c$. Let $\varepsilon = \delta/2$. We claim that $U(x_0, \varepsilon) \subseteq V$.

Let $z \in U(x_0, \varepsilon)$. Note that $U(z, \delta/2) \subseteq U(x_0, \delta)$. Therefore, $f(U(z, \delta/2)) \subseteq f(U(x_0, \delta))$. Thus, $\operatorname{diam}(f(U(z, \delta))) \leq \operatorname{diam}(f(U(x_0, \delta))) < c$.

By property of oscillation, $\omega_f(z) < c$. So, $U(x_0, \varepsilon) \subseteq V$.

Proof of Theorem:

$$C_f = \{x \mid f \text{ is continuous at } x\}$$
$$= \bigcap_{n \ge 1} \underbrace{\{x \mid \omega_f(x) < 1/n\}}_{\text{open sets}}$$

meaning $x \in C_f \leftrightarrow \omega_f(x) = 0 \leftrightarrow \omega_f(x) < 1/n$ for all n.

Applying Set of Continuities

There does exist a function continuous at every irrational point and discontinuous at every rational point. Recall from Real Analysis that such f is

$$f(x) = \begin{cases} 0 & x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{q} & x = \frac{p}{q} \text{ in lowest terms} \end{cases}$$

However, there does not exist $f: \mathbb{R} \to \mathbb{R}$ with $C_f = \mathbb{Q}$, since the set of continuities is always a G_δ set.

Nowhere Differentiable Functions

Does there exist a function $f:[0,1] \to \mathbb{R}$ such that f is continuous on [0,1] but differentiable nowhere? The answer is ves.

$$f(x) = \sum_{n>1} a^n \cos(b^n x),$$

where 0 < a < 1 and ab > 1 is such a function. This is known as the Weierstrass function.

Such functions are not rare at all.

In the complete normed vector space $X = (C[0,1], \|\cdot\|_u), \{f \in X \mid f \text{ differentiable nowhere}\}$ is the complement of a meager set (meaning it is topologically "big").

Compactness

Compactness can best be analogized to finite dimensionality in a metric space.

Let (X, d) be a metric space, and let $K \subseteq X$.

(1) A cover for K is a family of subsets $\mathcal{U} = \{U_i\}_{i \in I} \subseteq \mathcal{P}(X)$ with $K \subseteq \bigcup U_i$.

The cover \mathcal{U} is called an open cover if each $U_i \subseteq X$ is open. The cover \mathcal{U} is called finite if I is finite. If \mathcal{U} is a cover for K, a subcover of \mathcal{U} is a subfamily $\mathcal{V} = \{U_i\}_{i \in J}$, with $J \subseteq I$, and $K \subseteq \bigcup_{i \in J} U_i$.

(2) K is called compact if every open cover of K admits a finite subcover. If $\{U_i\}_{i\in I}$ is any family that covers K, then there exists a finite $F\subseteq I$ such that $\{U_i\}_{i\in F}$ covers K.

For example, the set $(0,1] \subseteq \mathbb{R}$ is not compact, because

$$(0,1]\subseteq\bigcup_{n\in\mathbb{N}}(1/n,3/2)$$

does not admit a finite subcover.

Any finite set is compact.

A discrete metric space is X is compact if and only if X is finite.

Let (X, d) be a metric space, and $Y \subseteq X$. Let $K \subseteq Y$; K is compact in X if and only if K is compact in Y. This can be shown by taking the relative topology of Y on every open cover of K in X.

Proposition: Properties of Compactness

Let (X, d) be a metric space.

- (1) If $K \subseteq X$ is compact, then K is closed and bounded.
- (2) If X is a compact metric space, and $K \subseteq X$ is closed, then K is compact.

Proof of (2): Let $K \subseteq \bigcup U_i$, with $U_i \subseteq X$ open. Then, $X = (X \setminus K) \cup (\bigcup_{i \in I} U_i)$. This is an open cover for X, meaning it admits a finite subcover $F \subseteq I$ such that $X = (X \setminus K) \cup \bigcup_{i \in F} U_i$. Clearly, $K \subseteq \bigcup_{i \in F} U_i$. Thus, K is compact.

Proof of (1): Let $K \subseteq X$ be compact. Then,

$$K \subseteq \bigcup_{x \in K} \bigcup U(x, 1).$$

Since K is compact, there exist $\{x_1, \ldots, x_n\}$ with $K \subseteq \bigcup_{j=1}^n U(x_j, 1)$. Let $c = \max d(x_i, x_j)$. If $x, y \in K$, then $x \in U(x_i, 1)$ and $y \in U(x_j, 1)$ for some x_i, x_j . Then,

$$d(x,y) \le d(x,x_i) + d(x_i,x_j) + d(x_j,y)$$

< 1 + c + 1 = 2 + c.

Thus, diam $(K) < \infty$.

We will show that K^c is open. Let $x_0 \notin K$. For each $x \in K$, there exist $\delta_x > 0$ with $U(x, \delta_x) \cap U(x_0, \delta_x) = \emptyset$. Then,

$$K\subseteq\bigcup_{x\in K}U(x,\delta_x).$$

Since K is compact, there exist $\{x_1,\ldots,x_n\}$ with $K\subseteq\bigcup U(x_j,\delta_{x_i})$. Let $\delta=\min\{\delta_{x_i}\}>0$. Then, $U(x_0,\delta)\subseteq K^c$.

Proposition: Compactness and Intersections of Closed Sets

Let (X, d) be a metric space. The following are equivalent.

- (1) X is compact;
- (2) If $\{C_i\}_{i\in I}$ is a family of closed sets with the finite intersection property (i.e., the intersection of finitely many elements of $\{C_i\}$ is non-empty), then $\bigcap_{i\in I} C_i \neq \emptyset$.

Proposition: Separability of Compact Metric Spaces

Let (X, d) be a compact metric space. Then, (X, d) is separable.

Proof: For fixed $n \ge 1$, consider the cover

$$X = \bigcup U(x, 1/n).$$

By compactness, there exist $\{x_{n,1}, \ldots, x_{n,m_n}\}$ with

$$X=\bigcup_{j=1}^{m_n}U(x_{n,j},1/n).$$

Let $S = \{x_{n,i} \mid n \in \mathbb{N}, 1 \le j \le m_n\}$. Then, S is countable.

Let $x \in X$, $\varepsilon > 0$. Let N be large such that $N^{-1} < \varepsilon$. So,

$$x \in \bigcup_{j=1}^{m_N} U(x_{N,j}, 1/N),$$

so $x \in U(x_{N,j}, 1/N)$ for some j, whence $d(x, x_{N,j}) < 1/N < \varepsilon$, so $x_{N,j} \in U(x, \varepsilon)$. So, $\overline{S} = X$.

Proposition: Sequential Compactness

Let (X, d) be a metric space, $K \subseteq X$. We say K is sequentially compact if every sequence in K admits a convergent subsequence in K.

From Bolzano-Weierstrass, we know that $[a,b] \subseteq \mathbb{R}$ is sequentially compact.

If K is compact, then K is sequentially compact.

Proof: Let
$$(x_k)_k \in K$$
. Let $C_0 = \overline{\{x_1, x_2, \dots\}}$, $C_1 = \overline{\{x_2, x_3, \dots\}}$, etc. such that $C_n = \overline{\{x_{n+1}, x_{n+2}, \dots\}}$.

Observe that $C_0 \supseteq C_1 \supseteq C_2 \supseteq \cdots$. Additionally, $\{C_n\}$ has the finite intersection property. Since K is compact, the previous proposition states that $\bigcap C_n \neq \emptyset$. Let $x \in \bigcap C_n$.

 $x \in C_1$, meaning $\exists k_1 > 1$ with $d(x, x_{k_1}) < 1$. $x \in C_{k_1}$, meaning $\exists k_2 > k_1$ with $d(x, x_{k_2}) < 1/2$. $x \in C_{k_2}$, meaning $\exists k_3 > k_2$ with $d(x, x_{k_3}) < 1/3$. Continuing, we have $(x_{k_j})_j \in K$ with $d(x, x_{k_j}) < 1/j$. Thus, $(x_{k_j})_j \to x$.

If (X, d) is sequentially compact, then X is complete.

Lemma: If $(x_n)_n$ is Cauchy, and $(x_n)_n$ admits a convergent subsequence, then $(x_n)_n$ is convergent.

Proof of Lemma: Given $\varepsilon > 0$, $\exists N \in \mathbb{N}$ such that for $p, q \geq N$, $d(x_p, x_q) < \varepsilon/2$.

Also, suppose $(x_{n_k})_k \to x$. Then, $\exists K \in \mathbb{N}$ large such that for $k \geq K$, $d(x_{n_k}, x) < \varepsilon/2$.

Therefore, for $n \ge N$, find $k \ge \max\{N, K\}$, we have

$$d(x_n, x) \le d(x_n, x_{n_k}) + d(x_{n_k}, x)$$
$$< \varepsilon/2 + \varepsilon/2$$
$$= \varepsilon$$

Proof: If (X, d) is sequentially compact, for $(x_n)_n$ a Cauchy sequence in (X, d), we have that $(x_n)_n$ admits a convergent subsequence. Then, we use the lemma.

Total Boundedness

Let (X, d) be a metric space. $K \subseteq X$ is totally bounded if $\forall \delta > 0$, $\exists x_1, \ldots, x_n \in K$ such that $K \subseteq \bigcup_{i=1}^n U(x_i, \delta)$.

Exercise: If K is totally bounded, then K is bounded. If $L \subseteq K$, and K is totally bounded, then L is totally bounded.

Sequential Compactness and Total Boundedness

Let (X, d) be a metric space. Let $K \subseteq X$ be sequentially compact. Then, K is totally bounded.

Proof: Suppose K is not totally bounded. Then, $\exists \delta_0 > 0$ such that $K \nsubseteq \bigcup_{x \in F} U(x, \delta_0)$ for any finite F.

Let $x_1 \in K$. Since $K \nsubseteq U(x_1, \delta_0)$, so let $x_2 \in K \setminus U(x_1, \delta_0)$. Since $K \nsubseteq U(x_1, \delta_0) \cup U(x_2, \delta_0)$, let $x_3 \in K \setminus (U(x_1, \delta_0) \cup U(x_2, \delta_0))$. Continuing, we find $x_n \in K \setminus \bigcup_{j=1}^{n-1} U(x_j, \delta_0)$.

Thus, we have a sequence $(x_n)_n$. By sequential compactness, $(x_n)_n$ admits $(x_{n_k})_k \to x \in K$. Since $(x_{n_k})_k$ is convergent, $(x_{n_k})_k$ is Cauchy. But, $d(x_p, x_q) \ge \delta_0$, since, without loss of generality, for p > q, $x_p \notin U(x_q, \delta_0)$. \bot

Corollary: Compact Subsets of Real Numbers

If $K \subseteq \mathbb{R}$ is compact, sup $K \in K$ and inf $K \in K$.

Proof: We can always construct sequences $(x_n)_n \to \sup K$ and $(y_n)_n \to \inf K$ in K. Since $\sup K < \infty$ and $\inf K < \infty$, since K is compact, and thus bounded.

Since K is also closed, sup $K \in K$ and inf $K \in K$.

Theorem: Equivalence of Compactness Definitions

Let (X, d) be a metric space. The following are equivalent.

- (1) X is compact.
- (2) X is sequentially compact.
- (3) X is complete and totally bounded.

Proof: We proved that $(1) \Rightarrow (2) \Rightarrow (3)$. We will now prove $(3) \Rightarrow (1)$.

Suppose \mathcal{V} is an open cover of X that fails to admit a finite subcover. Let $\varepsilon = 1$. Since X is totally bounded $X = \bigcup_{j=1}^{m_1} U_{1,j}$, where $U_{1,j}$ are open balls of radius 1.

There must be some open ball among the $U_{1,j}$ not covered by finitely many members of \mathcal{V} . Call this ball $U(x_1,1)$. Let $\varepsilon=1/2$. By total boundedness, $X=\bigcup_{j=1}^{m_2}U_{2,j}$, where $U_{2,j}$ are open balls of radius 1/2. Then, $U(x_1,1)=\bigcup (U(x_1,1)\cap U_{2,j})$. So, there must be an open ball of radius 1/2, $U(x_2,1/2)$, such that $U(x_1,1)\cap U(x_2,1/2)$

cannot be covered by finitely many members of \mathcal{V} .

Continuing, we have a sequence $(x_n)_n$, where $F_n = U(x_1, 1) \cap U(x_2, 1/2) \cap \cdots \cap U(x_n, 1/n)$ cannot be covered by finitely many members of \mathcal{V} .

Let $C_n = \overline{F_n}$. Notice that $F_1 \supseteq F_2 \supseteq \ldots$, meaning $C_1 \supseteq C_2 \supseteq \ldots$. We see that $\operatorname{diam}(C_n) = \operatorname{diam}(F_n) \le 2/n$. Applying Cantor's intersection theorem, we have $\bigcap C_n = \{x\}$.

Since $\mathcal V$ is an open cover, locate $V\in\mathcal V$ such that $x\in V$. Since V is open, there exists $\varepsilon>0$ such that $U(x,\varepsilon)\subseteq V$. Choose N large such that $2/N<\varepsilon$. Since $x\in C_N$, $d(z,x)\leq 2/N<\varepsilon$ for all $z\in C_N$, meaning $F_N\subseteq C_N\subseteq U(x,\varepsilon)\subseteq V$.

Therefore, $\{V\}$ is a cover for F_N . \perp

Proposition: Multi-dimensional Bolzano-Weierstrass Theorem

Let $\mathcal{R} = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d] = \prod_{i=1}^d [a_i, b_i] \subseteq \ell_p^d$. Then, \mathcal{R} is sequentially compact, so \mathcal{R} is compact.

Proof: The proof in \mathbb{R}^d works similarly to the proof in \mathbb{R}^2 . Consider $\pi_x : \mathbb{R}^2 \to \mathbb{R}$ and $\pi_y : \mathbb{R}^2 \to \mathbb{R}$. We saw that $(v_n)_n \to v$ in ℓ_p^2 if and only if $(\pi_x(v_n))_n \to \pi_x(v)$ and $(\pi_y(v_n))_n \to \pi_y(v)$.

If $(v_n)_n \in \mathcal{R}$, then $(\pi_x(v_n))_n \in [a_1, b_1]$. By Bolzano-Weierstrass, there is a convergent subsequence $(\pi_x(v_{n_k}))_k \to x \in [a_1, b_1]$.

Now, consider $(\pi_y(v_{n_k}))_k \in [a_2, b_2]$. By Bolzano-Weierstrass, there is a convergent subsequence $(\pi_y(v_{n_{k_j}}))_j \to y \in [a_2, b_2]$. Thus, $(v_{n_k})_j \to (x, y)$ in \mathcal{R} .

Heine-Borel Theorem

Let $K \subseteq \mathbb{R}^d$. The following are equivalent:

- (i) K is compact;
- (ii) K is sequentially compact;
- (iii) K is closed and bounded.

Proof: We have (i) \Leftrightarrow (ii), and (i) \Rightarrow (iii). We will show (iii) \Rightarrow (ii).

If K is bounded, then $K \subseteq \mathcal{R} = \prod_{j=1}^d [a_j, b_j]$. Let $(v_n)_n$ be a sequence in K. By the previous proposition, there exists a subsequence $(v_{n_k})_k \to v \in \mathcal{R}$. Since K is closed, $v \in K$. Therefore, K is sequentially compact.

There are many examples of closed and bounded sets that are not compact (in infinite-dimensional vector spaces).

For example, in $\ell_1 = \{a = (a_k)_k \mid \sum_{k=1}^\infty |a_k| < \infty\}$, we have $e_n = (0,0,\ldots,0,1,0,\ldots)$, with 1 at the *n*th coordinate. For the sequence $(e_n)_n$, $\|e_k\|_1 = 1$ for all e_k , so $(e_n)_n \in \mathcal{B}_{\ell_1}$, which is closed and bounded. Observe that $\|e_n - e_m\| = 2$ for all $m \neq n$, so there does not exist a convergent subsequence. Thus, ℓ_1 is not sequentially compact.

Remark: We will show that for a normed space, $(V, \|\cdot\|)$, B_V is compact if and only if $\dim(V) < \infty$.

Proposition: Continuous Image of Compact Sets

If $f:(X,d)\to (Y,\rho)$ is continuous, and $K\subseteq X$ is compact, then $f(K)\subseteq Y$ is compact.

Proof: Let $\bigcup_{i \in I} V_i$ be an open cover for f(K), where $V_i \subseteq Y$ open. Taking the preimage, we have

$$K \subseteq f^{-1}(f(K))$$

$$\subseteq f^{-1}\left(\bigcup_{i \in I} V_i\right)$$

$$= \bigcup_{i \in I} f^{-1}(V_i)$$

since f is continuous, $f^{-1}(V_i) \subseteq X$ are open. By compactness, there exists $F \subseteq I$ finite such that

$$K\subseteq\bigcup_{i\in F}f^{-1}(V_i).$$

Taking the image, we have

$$f(K) \subseteq f\left(\bigcup_{i \in F} f^{-1}(V_i)\right)$$
$$= \bigcup_{i \in F} f(f^{-1}(V_i))$$
$$= \bigcup_{i \in F} V_i.$$

Thus, f(K) has a finite subcover.

Corollary: Compactness under Topologically Equivalent Metrics

Let d_1 and d_2 be topologically equivalent (id_X : $(X, d_1) \to (X, d_2)$ is a homeomorphism). Then, $K \subseteq X$ is d_1 -compact if and only if K is d_2 -compact.

Corollary: Heine-Borel Theorem Extension

For $K \subseteq \ell_p^n$, K is compact if and only if K is closed and bounded.

Extreme Value Theorem

Let (X, d) be a metric space, $K \subseteq X$ compact, and $f : X \to \mathbb{R}$ continuous. Then, $\sup_{x \in X} f(x) = f(x_M)$ and $\inf_{x \in X} f(x) = f(x_M)$ for some $x_M, x_m \in K$.

Proof: We know that $f(K) \subseteq \mathbb{R}$ is compact. Then, $\inf f(K)$ and $\sup f(K)$ are elements of f(K).

Proposition: Compactness of Closed Unit Ball

Let V be a finite-dimensional vector space over \mathbb{F} .

- (1) All norms on V are equivalent.
- (2) For any norm, $\|\cdot\|$ on V, $B_{(V,\|\cdot\|)}=\{v\in V\mid \|v\|\leq 1\}$ is compact.

Proof of (1): Let $\{v_1, \ldots, v_n\}$ be a linear basis for V. Define

$$\left\| \sum_{j=1}^{n} t_{j} v_{j} \right\|_{1} = \sum_{j=1}^{n} |t_{j}|.$$

This is a norm on V.

Then, $\varphi: \ell_1^n \to V$

$$\varphi\left(\sum_{j=1}^n t_j e_j\right) = \sum_{j=1}^n t_j v_j$$

is a linear isometric isomorphism. Since $B_{\ell_1^n}$ is compact, so too is $\varphi(B_{\ell_1^n})$, so $B_{(V,\|\cdot\|)}$ is compact.

Then, $S_1 := \{v \in V \mid ||v||_1 = 1\}$ is compact since $S_1 \subseteq B_{(V,||\cdot||)}$ is closed.

Let $\|\cdot\|$ be any norm on V. We will show that $\|\cdot\|$ is equivalent to $\|\cdot\|_1$. Note that

$$\left\| \sum_{j=1}^{n} t_j v_j \right\| \le \sum_{j=1}^{n} |t_j| \|v_j\|$$

$$\le c \sum_{j=1}^{n} |t_j|$$

$$= c \left\| \sum_{j=1}^{n} t_j v_j \right\|_{1}$$

where $c = \max ||v_j||$. Consider $g: (V, ||\cdot||_1) \to \mathbb{R}$, with g(v) = ||v||.

$$|g(v) - g(w)| = ||v|| - ||w|||$$

 $\leq ||v - w||$
 $\leq c ||v - w||_1$

so g is Lipschitz, and thus continuous. S_1 is compact in $(V, \|\cdot\|)$, so by the extreme value theorem, $\inf_{v \in S_1} g(v) = g(v_0) = \|v_0\|$ for some $v_0 \in S_1$. Note that $D := \|v_0\| > 0$, else $v_0 = 0$. Thus, $g(v) \ge D$ for all $v \in S_1$

$$||v|| \ge D$$
 $\forall v \in S_1$

Let $0 \neq v$. Then,

$$\frac{v}{\|v\|_1} \in S_1$$

$$\left\| \frac{v}{\|v\|_1} \right\| \ge D$$

so

$$\|v\| \geq D \|v\|_1.$$

Therefore, we have $||v||_1 \le \frac{1}{D} ||v||$. Thus, any two norms on V are equivalent.

Proof of (2): Exercise.

Corollary: Finite-Dimensional Subspaces

Let V be a normed space, and $W \subseteq V$ finite-dimensional. Then, $W \subseteq V$ is closed.

Proof: We know there is a linear uniformism $\varphi: W \to \ell_1^n$, for $\dim(W) = n$. If $(w_n)_n \to v \in V$, where $(w_n)_n \in W$, then $(w_n)_n$ is Cauchy. Therefore, $(\varphi(w_n))_n$ is Cauchy in ℓ_1^n . Since ℓ_1^n is complete, $(\varphi(w_n))_n \to z \in \ell_1^n$. Since φ^{-1} is uniformly continuous, $(w_n)_n = (\varphi^{-1}(\varphi(w_n)))_n \to \varphi^{-1}(z) \in W$. Thus, $\varphi^{-1}(z) = v$, so $v \in W$.

Proposition: Uncountable Basis of Banach Space

If V is an infinite-dimensional Banach space, then $\dim(V)$ is uncountable.

Proof: Let $\{e_n\}$ be a linearly independent set. Let $W_n = \text{span}\{e_1, \dots, e_n\}$. So, W_n is closed, and $W_n \neq V$. We can see that $W_1 \subseteq W_2 \subseteq \cdots$.

We claim that $W_n^{\circ} = \emptyset$. Suppose $\exists U(x, \varepsilon) \subseteq W_n$ for some $\varepsilon > 0$. Given any $v \in V$ with $v \neq 0$, we take $\frac{\varepsilon}{2} \frac{v}{\|v\|} + x \in W_n$. Thus, we have $\frac{\varepsilon}{2} \frac{v}{\|v\|} \in W_n$, so $v \in W_n$, meaning $V \subseteq W_n$.

By Baire's Theorem, $\bigcup W_n \neq V$.

Proposition: Compact Unit Ball and Finite Dimensions

Let V be a normed space, and $B_V := \{v \mid ||v|| \le 1\}$. The following are equivalent:

- (i) B_V is compact;
- (ii) $\dim(V) < \infty$.

Riesz's Lemma: Let V be a normed space, and W a proper closed subspace. For every $t \in (0,1)$, there exists $v_t \in V$ with $||v_t|| = 1$ and $\mathrm{dist}_W(v_t) \geq t$.

Proof of Riesz's Lemma: Find $v_0 \in V \setminus W$. We know $\operatorname{dist}_W(v_0) := \delta > 0$. Recall that $\operatorname{dist}_W(v_0) = \inf_{w \in W} \|v_0 - w\|$. Note that $t\delta < \delta$. So, $\delta < \frac{\delta}{t}$. Find $w_0 \in W$ with $\delta \leq \|v_0 - w_0\| < \frac{\delta}{t}$. Let $v_t = \frac{v_0 - w_0}{\|v_0 - w_0\|}$. Then, $\|v_t\| = 1$. We claim that v_t satisfies the lemma.

If $w \in W$ arbitrary, then

$$||v_{t} - w|| = \left\| \frac{v_{0} - w_{0}}{||v_{0} - w_{0}||} - w \right\|$$

$$= \frac{1}{||v_{0} - w_{0}||} \left\| v_{0} - \underbrace{(w_{0} + w ||v_{0} - w_{0}||)}_{\in W} \right\|$$

$$> \frac{t}{\delta} \cdot \delta$$

$$= t.$$

Thus, $\operatorname{dist}_W(v_t) \geq t$.

Proof: To show (i) \Rightarrow (ii), we need Riesz's Lemma. Let B_V be compact. Suppose toward contradiction that $\dim(V) = \infty$.

Choose $v_1 \in V$ with $||v_1|| = 1$. Let $W_1 = \text{span}\{v_1\} \subset V$. Then, W is closed and proper, meaning $\exists v_2 \in V$ with $||v_2|| = 1$ with $\text{dist}_{W_1}(v_2) \ge 1/2$. Let $W_2 = \text{span}\{v_1, v_2\}$. Then, W_2 is a proper, closed subspace, meaning $\exists v_3 \in V$ with $||v_3|| = 1$ and $\text{dist}_{W_2}(v_3) \ge 1/2$.

Continuing, we find $\exists v_n \in V$ with $||v_n|| = 1$ and $\operatorname{dist}_{W_{n-1}}(v_n) \geq 1/2$, where $W_{n-1} = \operatorname{span}\{v_1, \dots, v_{n_1}\}$. We have a sequence $(v_n)_n \in B_V$. Since B_V is compact, $\exists (v_{n_k})_k \to v \in B_V$, meaning B_V is Cauchy. However, since $||v_n - v_m|| \geq 1/2$ for all n and m. \bot

Proposition: Compact Domain and Uniform Continuity

If $f:(X,d)\to (Y,\rho)$ is continuous, and X is compact, then f is uniformly continuous.

Proof: Let $\varepsilon > 0$. For each $x \in X$, we have $\exists \delta_x > 0$ such that for $d(z,x) < \delta_x \Rightarrow \rho(f(z),f(x)) < \varepsilon/2$.

Since $X = \bigcup_{x \in X} U(x, \delta_x/2)$, by compactness, we have x_1, \dots, x_n with $X = \bigcup_{i=1}^n U(x_i, \delta_{x_i}/2)$. Take $\delta = \min\{\delta_{x_i}/2\}$.

Let $x, x' \in X$ arbitrary with $d(x, x') < \delta$. Locate $x \in U(x_j, \delta_{x_i}/2)$ for some j. Then,

$$d(x', x_j) \le d(x', x) + d(x, x_j)$$

$$< \delta + \delta_{x_j}/2$$

$$\le \delta_{x_j}.$$

Therefore,

$$\rho(f(x), f(x')) \le \rho(f(x), f(x_j)) + \rho(f(x_j), f(x'))$$

$$< \varepsilon/2 + \varepsilon/2$$

$$= \varepsilon.$$

Compactness and Uniform Convergence

(1) Let $f_n:(0,1)\to\mathbb{R}$ with $f_n(t)=t^n$. Pointwise, $(f_n)_n\to\mathbb{O}$, meaning for $(f_n(t))_n\to\mathbb{O}(t)=0$ for all $t\in(0,1)$. However, the convergence is not uniform. We have $\|f_n-\mathbb{O}\|_{\mu}=\|f_n\|_{\mu}=1$.

Note that $f_n(t)$ decreases pointwise to 0 for all $t \in (0,1)$, meaning $f_1(t) \ge f_2(t) \ge f_3(t) \ge \cdots$.

(2) Consider the sequence of functions defined by

$$f_n(x) = \begin{cases} 0 & x \in (-\infty, n) \\ x - n & x \in [n, n + 1] \\ 1 & x \in (n_1, \infty) \end{cases}$$

Notice that $f_n(t)$ is decreasing in n for all t and $(f_n)_n \to 0$ pointwise, but convergence is not uniform, as $||f_n||_u = 1$ for all n.

Dini's Theorem

If (X, d) is a compact metric space, and $(f_n : X \to \mathbb{R})_n$ is a sequence of continuous real-valued functions with $\forall x \in X$, $(f_n(x))_n \to 0$ is decreasing. Then, $(f_n)_n \to 0$ uniformly.

Proof: Let $\varepsilon > 0$. For each $n \ge 1$, take $U_n = \{x \mid f_n(x) < \varepsilon/2\}$. Then $U_n = f_n^{-1}((-\infty, \varepsilon/2))$. Since f_n is continuous, and $(-\infty, \varepsilon/2)$, so too is U_n in X.

Notice that $U_1 \subseteq U_2 \subseteq \cdots$, as if $x \in U_n$, then $f_{n+1}(x) \le f_n(x) < \varepsilon/2$, meaning $x \in U_{n+1}$. Then, we have that $\bigcup U_n = X$, as for all x, $f_n(x) \to 0$. Since X is compact, we have $X = \bigcup U_{n_k} = U_{n_K}$. For any $x \in X$, $f_{n_K}(x) < \varepsilon/2$. Thus, $||f_{n_K}|| \le \varepsilon/2 < \varepsilon$, so we have uniform convergence.

Compactness in C(X)

If X is a compact metric space, then, by the Extreme Value Theorem, $C(X) = C_b(X)$. We can see that $C_b(X)$ is complete under $\|\cdot\|_u$. We may ask when $\mathcal{F} \subseteq C(X)$ is compact.

A family $\mathcal{F} \subseteq C(X)$ is equicontinuous if and only if $\forall \varepsilon > 0, \exists \delta > 0$ such that $\forall x,y \in X$ with $d(x,y) < \delta$, then $|f(x) - f(y)| < \varepsilon$ for all $f \in \mathcal{F}$.

Exercise: For $\mathcal{F} \subseteq C(X)$ with \mathcal{F} finite, then \mathcal{F} is always equicontinuous.

Since every $f \in \mathcal{F}$ is uniformly continuous, take the minimum value of δ .

Arzelà-Ascoli Theorem

Let (X, d) be a compact metric space. The family $\mathcal{F} \subseteq C(X)$ is compact if and only if \mathcal{F} is closed, bounded, and equicontinuous.

Proof: Let \mathcal{F} be compact. Then, \mathcal{F} is complete, and thus closed and totally bounded, meaning \mathcal{F} is bounded. Thus, we need to show \mathcal{F} is equicontinuous.

Let $\varepsilon > 0$. By total boundedness, $\exists f_1, \dots, f_n \in \mathcal{F}$ with $\mathcal{F} \subseteq \bigcup_{j=1}^n U(f_j, \varepsilon/3)$. Each f_j is uniformly continuous since X is compact. Thus, $\exists \delta_j$ with $x, y \in X$ and $d(x, y) \leq \delta_j$, then $|f_j(x) - f_j(y)| < \varepsilon/3$.

Let $\delta = \min\{\delta_j\}$. Given any $f \in \mathcal{F}$, we have $\mathcal{F} \in U(f_j, \varepsilon/3)$ for some j. For any $x, y \in X$ with $d(x, y) < \delta$, we have

$$|f(x) - f(y)| \le |f(x) - f_j(x)| + |f_j(x) - f_j(y)| + |f_j(y) - f(y)|$$

$$\le ||f - f_j||_u + |f_j(x) - f_j(y)| + ||f - f_j||_u$$

$$< 2\varepsilon/3 + \varepsilon/3$$

$$= \varepsilon$$

Let \mathcal{F} be closed, bounded, and equicontinuous. Since $\mathcal{F}\subseteq \mathcal{C}(X)$ is closed, \mathcal{F} is complete. We need only show \mathcal{F} is totally bounded.

Let $\varepsilon > 0$. Since \mathcal{F} is equicontinuous, $\exists \delta > 0$ such that for all $x, y \in X$ with $d(x, y) < \delta$, then $|f(x) - f(y)| < \varepsilon/4$ for any $f \in \mathcal{F}$.

Since X is compact, X is totally bounded, so $\exists x_1, \ldots, x_n \in X$ with $X \subseteq \bigcup_{j=1}^n U(x_j, \delta)$. Consider the set $C_{\mathcal{F}} := \{(f(x_1), \ldots, f(x_n)) | f \in \mathcal{F}\} \subseteq \mathbb{R}^n$.

Since \mathcal{F} is bounded, we have that $||f||_u \leq M$ for all $f \in \mathcal{F}$ for some M > 0. Thus, $|f(x_j)| \leq ||f||_u \leq M$ for $j = 1, \ldots, n$. Thus, $C_{\mathcal{F}}$ is bounded in \mathbb{R}^n .

Exercise: $S \subseteq \mathbb{R}^n$ is bounded if and only if S is totally bounded.

Thus, $C_{\mathcal{F}}$ is totally bounded. Therefore, $\exists f_1, \ldots, f_m \in \mathcal{F}$ with $C_{\mathcal{F}} \subseteq \bigcup_{i=1}^m U((f_i(x_1), \ldots, f_i(x_n)), \varepsilon/4)$.

If $f \in \mathcal{F}$, then $\exists i = 1, ..., m$ (*) such that $\|(f(x_1), ..., f(x_n)) - (f_i(x_1), ..., f_i(x_n))\|_1 < \varepsilon/4$. Thus,

$$\sum_{j=1}^{n} |f(x_j) - f_i(x_j)| < \varepsilon/4.$$

We claim that $F \subseteq \bigcup_{i=1}^m U(f_i, \varepsilon)$. Let $f \in \mathcal{F}$ and $x \in X$. Pick i as in (*), and j with $x \in U(x_j, \delta)$. Then,

$$|f(x) - f_i(x)| \le |f(x) - f(x_j)| + |f(x_j) - f_i(x_j)| + |f_i(x_j) - f_i(x)| < 3\varepsilon/4$$

SO

$$||f - f_i|| \le 3\varepsilon/4$$

 $< \varepsilon.$

Stone-Weierstrass Theorem

Let (X, d) be a compact metric space. Suppose $A \subseteq C(X; \mathbb{R})$ with

- $f, g \in A \Rightarrow f + g \in A$;
- $f \in A, \alpha \in \mathbb{F} \Rightarrow \alpha f \in A$;
- $f, g \in A \Rightarrow fg \in A$;
- $\mathbb{1}_X \in A$;
- A is separating if $x \neq y$ in X, then $\exists f \in A$ with $f(x) \neq f(y)$.

We say A is a unital separating subalgebra of C(X).

Then, $\overline{A}^{\|\cdot\|_u} = C(X; \mathbb{R})$ (A is uniformly dense).

Uniform Approximation by Polynomials

For example, considering $\mathcal{P} = \{x \mapsto \sum_{k=0}^n a_k x^k \mid a_k \in \mathbb{R}\} \subseteq C([0,1])$. We can see that \mathcal{P} is a separating unital subalgebra. Thus, \mathcal{P} is dense.

Let f(x) = |x| on [-1, 1]. Consider the sequence $P_n(x)$ given by

$$P_0(x) = 0$$

$$P_{n+1}(x) = P_n(x) + \frac{x^2 - (P_n(x))^2}{2}.$$

For example, $P_1(x) = x^2/2$, $P_2(x) = \frac{x^2}{2} + \frac{x^2 - x^4/4}{2}$. Then, $(P_n)_n \xrightarrow{\|\cdot\|_u} f$.

Proof: We claim that $0 \le P_n(x) \le f(x)$ for all $x \in [-1, 1]$. Clearly, $0 \le P_0(x) \le |x|$, and $0 \le P_1(x) \le |x|$. Assume it is the case that $0 < P_n(x) \le |x|$. Then,

$$0 \le P_n(x) \le |x|$$

$$0 \le P_n^2(x) \le x^2$$

$$x^2 - P_n^2(x) \ge 0$$

$$P_{n+1}(x) = P_n(x) + \frac{x^2 - P_n^2(x)}{2} \ge 0$$

and

$$|x| - P_{n+1}(x) = |x| - P_n(x) - \frac{|x|^2 - P_n(x)}{2}$$

$$= |x| - P_n(x) - \frac{(|x| - P_n(x))(|x| + P_n(x))}{2}$$

$$= (|x| - P_n(x)) \left(1 - \frac{|x| + P_n(x)}{2}\right)$$

$$> 0$$

Observe that $P_n(x) \le P_{n+1}(x)$. For every x, $(P_n(x))_n$ is increasing and bounded above by |x|. So, $P_n(x) \to L_x$.

$$P_{n+1}(x) = P_n(x) + \frac{x^2 - P_n^2(x)}{2}$$

$$L_x = L_x + \frac{x^2 - L_x^2}{2}$$

$$L_x = \sqrt{x^2} = |x|.$$

Thus, $(P_n)_n$ converges pointwise on [-1, 1]. So, $(f - P_n) \to 0$ is decreasing pointwise. Whence, by Dini's Theorem, $||f - P_n||_{\mu} \to 0$.

Connectedness

Let (X, d) be a metric space.

(1) Let $Y \subseteq X$. A splitting for Y in X is an inclusion $Y \subseteq U \cup V$, where $U, V \in \tau_X$ with $Y \cap U \cap V = \emptyset$.

Remark: If we set $U_1 = U \cap Y$ and $V_1 = V \cap Y$, then U_1 and V_1 are open in Y with the relative topology. We have $Y = U_1 \sqcup V_1$. Also note that U_1 and V_1 are clopen in Y.

- (2) A splitting for Y is called trivial if either $Y \cap U = \emptyset$ or $Y \cap V = \emptyset$.
- (3) Y is connected in X if every splitting for Y in X is trivial. Otherwise, we say Y is disconnected.

Exercise: Suppose $C \subseteq Y \subseteq X$. C is connected in Y if and only if C is connected in X.

Connectedness of Subsets in $\mathbb R$

We have $[a, b] \subseteq \mathbb{R}$ is connected.

Proof: Suppose $[a, b] \subseteq U \cup V$ is a splitting.

- If a = b or a > b, clearly the splitting is trivial.
- Assume a < b. Without loss of generality, $a \in U$. Suppose toward contradiction that $[a, b] \cap V \neq \emptyset$. Set $c = \inf[a, b] \cap V$.

We claim that a < c; since U is open, $\exists \varepsilon > 0$ such that $(a - \varepsilon, a + \varepsilon) \subseteq U$. So, $V \cap [a, b] \subseteq [a + \varepsilon, b]$. Therefore, $c \ge a + \varepsilon$. Thus, $[a, c) \subseteq U$.

We claim $c \in V$. Since U is open, we cannot have c < b and $c \in U$. Also, if $c \in U$ and c = b, then $[a, b] \cap V = \emptyset$.

Since V is open, $\exists \delta > 0$ with $(c - \delta, c + \delta) \subseteq V$. However, this means $c \neq \inf V \cap [a, b]$.

Thus, $V \cap [a, b] = \emptyset$.

We have that $\mathbb{Q} \subseteq \mathbb{R}$ is disconnected.

Proof: We have $\mathbb{Q} \subseteq (-\infty, \pi) \cup (\pi, \infty)$ is a non-trivial splitting.

Proposition: Intervals in \mathbb{R}

Every interval $I \subseteq \mathbb{R}$ is connected.

Proof: Let $I \subseteq U \cup V$ be a non-trivial splitting. Therefore, $U \cap I \neq \emptyset$, and $V \cap I \neq \emptyset$. Let $a \in I \cap U$ and $b \in I \cap V$. Without loss of generality, a < b. Then, by the definition of an interval, $[a, b] \subseteq I \subseteq U \cup V$.

However, at the same time, $[a, b] \cap U \cap V \subseteq I \cap U \cap V = \emptyset$. So, we have a splitting for [a, b]. This splitting for [a, b] is non-trivial, since $[a, b] \cap U \neq \emptyset$ and $[a, b] \cap V \neq \emptyset$. However, we had shown that [a, b] is connected.

If $I \subseteq \mathbb{R}$ is connected, then I is an interval.

Proof: Let $a = \inf I$ and $b = \sup I$. It is possible for a to equal $-\infty$ and b to equal $+\infty$. We claim that $(a, b) \subseteq I$.

If $\exists c \in I$ with $c \notin (a, b)$, then we have a non-trivial splitting $I \subseteq (-\infty, c) \cup (c, \infty)$, which would contradict the assumption that I is connected. Thus, $(a, b) \subseteq I$.

If $s, t \in I$ with $s \le t$, then $s \ge a$ or s > a, or $t \le b$ or t < b. By cases, we find $[s, t] \subseteq I$, meaning I is an interval.

Exercise: If $Y \subseteq X$ is connected, then \overline{Y} is connected.

Connected Components and Clopen Sets

Let (X, d) be a metric space. We define \sim_X on X as $x \sim_X y$ if there is a connected $C \subseteq X$ with $x, y \in C$. This is an equivalence relation.

We have that $x \sim_X x$ by taking $C = \{x\}$, so the relation is reflexive. Clearly, the relation is symmetric. To show transitivity, we need the following lemma:

Lemma: If $Y_1, Y_2 \subseteq X$ are connected with $Y_1 \cap Y_2 \neq \emptyset$, then $Y_1 \cup Y_2$ is connected.

Proof of Lemma: Let $Y_1 \cup Y_2 \subseteq U \cup V$ be a splitting. Note that $Y_i \subseteq U \cup V$, and $Y_i \cap U \cap V = \subseteq (Y_1 \cup Y_2) \cap U \cap V = \emptyset$. For i = 1, 2, since Y_i are connected, so we have splittings for Y_i . Since the Y_i are connected, these splittings are trivial.

Since the splitting for Y_1 is trivial, $Y_1 \subseteq U$, or $Y_1 \subseteq V$. Similarly, since the splitting for Y_2 is trivial, $Y_2 \subseteq U$ or $Y_2 \subseteq V$.

Suppose $Y_1 \subseteq U$ and $Y_2 \subseteq U$. Then, $Y_1 \cup Y_2 \subseteq U$, and our original splitting is trivial.

Suppose $Y_1 \subseteq U$ and $Y_1 \subseteq V$. Then, $\emptyset \neq Y_1 \cap Y_2 = (Y_1 \cap U) \cap (Y_2 \cap V) = (Y_1 \cap Y_2) \cap (U \cap V) \subseteq (Y_1 \cup Y_2) \cap U \cap V = \emptyset$.

Other cases follow similarly.

If $x \sim_X y \sim_X z$, then there exist connected subsets $C, D \subseteq X$ with $x, y \in C$ and $y, z \in D$. Since $y \in C \cap D$, we have that $C \cup D$ is connected, so $x, z \in C \cup D$, which is connected.

The equivalence classes of X under \sim_X are called components.

Remark: $[x]_{\sim} = \{y \in X \mid y \sim_X x\} = \bigcup_{x \in C} C$ with C connected. This is the largest connected subset of X containing X. We have that $X = \bigcup_{i \in I} [x_i]_{\sim}$.

If (X, d) is a metric space, and $C \subseteq X$ is clopen and connected, then C is a component in X.

Proof: Let $x \in C$. We claim that $C = [x]_{\sim}$.

Clearly, $C \subseteq [x]_{\sim}$. Suppose $y \in [x]_{\sim}$ and $y \notin C$.

Since $y \in [x]_{\sim}$, there is a connected $D \subseteq X$ with $x, y \in D$. We have that $D \subseteq C \cup (X \setminus C)$. This is a non-trivial splitting for D, meaning D is disconnected. \bot

Totally Disconnected Metric Spaces

Consider the set $X = \{0\} \cup \{1/n \mid n \ge 1\}$ with the topology inherited from \mathbb{R} . We want to find the connected components.

Solution: The set $\{1/n\}$ for each n is connected in \mathbb{R} , meaning it is connected in X. Since $\{1/n\}$ is closed in \mathbb{R} , it is also closed in X. We also have that $\{1/n\} = X \cap (1/n - \delta_n, 1/n + \delta_n)$, with $\delta_n = \frac{1}{n(n+1)}$.

Since each $\{1/n\}$ is clopen and connected, each $\{1/n\}$ is a component. Additionally, $\{0\}$ is necessarily a component of X since it is left over after we take $X \setminus \{1/n \mid n \ge 1\}$. We see that every connected component of X is a singleton.

For $X = \mathbb{Z}$, we see that the components are singletons.

For $X = \mathbb{Q}$, we need a little bit more machinery to find the components.

Solution: Suppose $q, r \in \mathbb{Q}$ with $r \sim_{\mathbb{Q}} q$. Then, $\exists D \subseteq \mathbb{Q}$ connected with $r, q \in D$. If $r \neq q$, then let $x \in \mathbb{R} \setminus \mathbb{Q}$ with x strictly between r and q. Without loss of generality, r < q. Then, $D \subseteq ((-\infty, x) \cap \mathbb{Q}) \cup ((x, \infty) \cap \mathbb{Q})$ is a non-trivial splitting, meaning D is not connected.

Therefore, r = q, meaning the components of \mathbb{Q} are singletons.

If (X, d) is a metric space where every connected component is a singleton, then X is totally disconnected.

Exercise: The Cantor set is totally disconnected.

Proposition: Open Sets in \mathbb{R}

If $U \subseteq \mathbb{R}$ is open, then $U = \bigsqcup_{i \in I} V_i$, where each $V_i \subseteq \mathbb{R}$ is an open interval and I is countable.

Proof: Let U be the metric space with the topology inherited from \mathbb{R} . Then, $U = \bigsqcup_{i \in I} V_i$, with $V_i \subseteq U$ are the connected components in U.

Since V_i is connected in U, V_i is connected in \mathbb{R} . Thus, V_i is an interval. We will show that each V_i is open in \mathbb{R} .

Let $x \in V_i$. Since U is open, $\exists \varepsilon > 0$ with $(x - \varepsilon, x + \varepsilon) \subseteq U$. Since $x \in (x - \varepsilon, x + \varepsilon)$, and $(x - \varepsilon, x + \varepsilon)$, it is the case that $(x - \varepsilon, x + \varepsilon) \subseteq [x]_{\sim_U} = V_i$. Thus, V_i is open.

Now, we need to show that I is countable. Consider $N:I\to\mathbb{Q};\ N(i)=q_i\in V_i,\ \text{with}\ q_i\in\mathbb{Q}.$ If $i\neq j,$ then N(i)=N(j) since $V_i\cap V_i\neq\emptyset$. Hence, N is injective, so I is countable.

Proposition: Connectedness and Continuity

If $f: X_1 \to X_2$ is continuous and $Y \subseteq X_1$ is connected, then $f(Y) \subseteq X_2$ is connected.

Proof: Let $f(Y) \subseteq U \cup V$ is a splitting of $f(Y) \subseteq X_2$.

Taking the preimage, we have $Y \subseteq f^{-1}(f(Y)) \subseteq f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$. We have that $f^{-1}(U)$ and $f^{-1}(V)$ are open in X_1 . Additionally,

$$Y \cap f^{-1}(U) \cap f^{-1}(V) = Y \cap f^{-1}(U \cap V)$$

$$\subseteq f^{-1}(f(Y)) \cap f^{-1}(U \cap V)$$

$$\subseteq f^{-1}(f(Y)) \cap f^{-1}(U \cap V)$$

$$= \emptyset$$

Thus, $Y \subseteq f^{-1}(U) \cup f^{-1}(V)$ is a splitting. Since Y is connected, the splitting is trivial, meaning without loss of generality, $Y \subseteq f^{-1}(U)$. So, $f(Y) \subseteq U$.

Intermediate Value Theorem

Let $f:[a,b]\to\mathbb{R}$ is continuous. If $f(a)\leq\lambda\leq f(b)$, then $\lambda\in f([a,b])$.

Proof: Since [a, b] is compact and connected, and f is continuous, $f([a, b]) \subseteq \mathbb{R}$ is also connected. So, f([a, b]) is a compact and connected interval.

Since f(a), $f(b) \in f([a, b])$, and f([a, b]) is an interval, $\lambda \in f([a, b])$.

Proposition: Continuous Map to Totally Disconnected Set

Let X be connected, Y totally disconnected, and $f: X \to Y$ continuous. Then, f is a constant map.

Proof: The continuous image of a connected set is connected, and the only connected sets in Y are singletons, meaning the image of X is a singleton.

Path-Connectedness

Let (X, d) be a metric space.

- (i) A path in X is a continuous map $\gamma: [0,1] \to X$. If $\gamma(0) = x_0$ and $\gamma(1) = x_1$, we say the path connects x_0 to x_1 .
- (ii) X is said to be path-connected if for any two points x_0 and x_1 , there exists a path. $Y \subseteq X$ is path connected if Y is connected.
- (1) Let V be any normed space, and $C \subseteq V$ convex. By definition, C is path-connected. Indeed, $\gamma(t) = (1-t)x_0 + x_1$.
- (2) The metric space $\mathbb{R}^2 \setminus \{0\}$ is path-connected.

Proposition: Composition of Paths

Let $\gamma:[0,1]\to X$ is a path from x_0 to x_1 , and $\sigma:[0,1]\to X$ is a path from x_1 to x_2 . Then, the following are all true.

- (1) $\gamma^{-1}: [0,1] \to X$, with $\gamma^{-1}(t) = \gamma(1-t)$, is a path from x_1 to x_0 .
- (2) $\sigma \cdot \gamma : [0,1] \to X$ is a path from x_0 to x_2 , with $\sigma \cdot \gamma(t)$ defined as follows:

$$\sigma \cdot \gamma(t) = \begin{cases} \gamma(2t) & 0 \le t \le 1/2 \\ \sigma(2t-1) & 1/2 \le t \le 1 \end{cases}.$$

Lemma: Base Point and Path-Connectedness

Let (X, d) be a metric space, and $x_0 \in X$ fixed. Suppose $\forall x, \exists$ a path from x_0 to x. Then, X is path-connected.

(1) The unitary group is path-connected.

$$U_n(\mathbb{C}) = \{ U \in \mathbb{M}_n(\mathbb{C}) \mid U^*U = I_n = UU^* \}$$

$$d(U, V) = \|U - V\|_{\text{on}}$$

Let $U \in U_n(\mathbb{C})$. By the spectral theorem via a unitary; there exists $V \in U_n(\mathbb{C})$ with $V^*UV = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$, with $|\lambda_i| = 1$. Write $\lambda_i = e^{i\theta_i}$, with $\theta_i \in [0, 2\pi)$.

Consider $U_t = V \operatorname{diag}\left(e^{it\theta_1}, \dots, e^{it\theta_n}\right) V^*$. Clearly, $U_t \in \mathbb{M}_n(\mathbb{C})$. Additionally, $U_0 = I_n$, and $U_1 = U$. We have

$$||U_{s} - U_{t}|| = ||V^{*} \Lambda_{s} V - V \Lambda_{t} V^{*}||$$

$$= ||V(\Lambda_{s} - \Lambda_{t}) V^{*}||$$

$$\leq ||V|| ||\Lambda_{s} - \Lambda_{t}|| ||V^{*}||$$

$$= ||\Lambda_{s} - \Lambda_{t}||$$

$$\to 0.$$

Thus, U_t is continuous, meaning we have a path from I_n to U. Thus, $U_n(\mathbb{C})$ is path-connected.

Proposition: Path-Connectedness implies Connectedness

If (X, d) is a path-connected metric space, then X is connected.

Proof: Let $X = U \sqcup V$ be a splitting. Suppose $\exists x_0 \in U$ and $x_1 \in V$. We know $\exists \gamma : [0,1] \to X$ with $\gamma(0) = x_0$ and $\gamma(1) = x_1$. Since [0,1] is connected and γ is continuous, $\gamma([0,1]) \subseteq X$ is connected. However, $\gamma([0,1]) \subseteq U \cup V$ is a non-trivial splitting. \bot

Exercise: If $f: X_1 \to X_2$ is continuous, and $Y \subseteq X_1$ is path-connected, then $f(Y) \subseteq X_2$ is path-connected.

Proof of Exercise: Let $f(y_1), f(y_2) \in f(Y)$. We have that $\gamma : [0, 1] \to Y$ is a path. Thus, $f \circ \gamma : [0, 1] \to f(Y)$ is a path.

A Connected Space that is not Path-Connected

Set $Y_0 = \{0\} \times [-1,1] \subseteq \mathbb{R}^2$, and $Y_1 = \{(x,\sin(1/x)) \mid x \in (0,1]\}$. Let $Y = Y_0 \cup Y_1$. This space is known as the topologist's sine curve, and it is connected but not path-connected.

Proof: We can see that Y_1 is the continuous image of a connected set, so Y_1 is connected.

We also see that Y is connected, as $Y = \overline{Y_1}$.

We claim that Y is not path-connected. There does not exist a path $\gamma:[0,1]\to Y$ with $\gamma(0)\in Y_0$ and $\gamma(1)\in Y_1$. Suppose toward contradiction that such a path existed. Let $\gamma^{-1}(Y_0):=F$, with γ^{-1} being the inverse image (not inverse path). Since Y_0 is closed, we have $F\subseteq [0,1]$ is closed, so $u=\sup F\in F$, and u<1.

By replacing [0,1] by [u,1], we may assume a new path $\gamma':[0,1]\to Y$ is a path with $\gamma_1(t)\in(0,1]$, for $\gamma'(t)=(\gamma_1'(t),\gamma_2'(t))$.

Let r > 0 be small such that $[-1,1] \supset [\gamma_2'(0) - r, \gamma_2'(0) + r]$. Since γ_2' is continuous at t = 0, we know $\exists \varepsilon > 0$ with $\gamma_2'([0,\varepsilon]) \subseteq (\gamma_2'(0) - r, \gamma_2'(0) + r)$.

Since $\gamma_1'([0,\varepsilon])$ is connected, and hence an interval, and $\gamma_1'(t) > 0$ for all $t \in (0,1]$, we can find δ small such that $[0,\delta] \subseteq \gamma_1'([0,\varepsilon))$.

We have that $\gamma_2'(t) = \sin\left(\frac{1}{\gamma_1'(t)}\right)$ for t > 0. Therefore,

$$[-1, 1] = \left\{ \sin\left(\frac{1}{x}\right) \mid 0 < x < \delta \right\}$$

$$\subseteq \left\{ \sin\left(\frac{1}{\gamma_1'(t)}\right) \mid 0 < t < \varepsilon \right\}$$

$$= \gamma_2'((0, \varepsilon))$$

$$\subseteq (\gamma_2'(0) - r, \gamma_2'(0) + r)$$

$$\subset [-1, 1].$$

Proposition: Connectedness in a Normed Space

Let V be a normed space, and $Y \subseteq V$ is open and connected, then Y is path-connected.

Proof: Fix $y_0 \in Y$. Consider the set $W = \{y \in Y \mid \exists \gamma \text{ from } y_0 \text{ to } y\}$. We claim that W is open in Y.

Let $y \in W$. Since Y is open, $\exists \delta > 0$ with $U(y, \delta) \subseteq Y$. If $w \in U(y, \delta)$, $\exists \gamma$ from y to w. Concatenating, we get a path from y_0 to w. Thus, $U(y, \delta) \subseteq W$.

We also claim W is closed in Y.

Measurable Spaces

The theory of integration is tied to notions of length, area, volume, etc. The Riemann integral

$$\int_0^1 f(x)dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right),$$

is defined through the length of a subinterval. We took the interval [0, 1], calculated base multiplied by height, and found the area of the rectangle.

It's easy to compute the length of an interval. However, Lebesgue integration does the opposite; it subdivides the range of f into subintervals I_k , and calculates the "length" of $f^{-1}(I_k)$.

We need a more rigorous treatment of length (or area, or volume) to deal with Lebesgue integration.

Given $E \subseteq \mathbb{R}^n$, with E "sufficiently nice," we want to assign an extended positive real number $\lambda(E) \in [0, \infty]$, such that certain natural properties are satisfied.

- $\lambda(\emptyset) = 0$
- $\bullet \ \lambda\left(\prod_{i=1}^n[a_j,b_j]\right)=\prod_{i=1}^n(b_j-a_j)$
- $\lambda(x+E) = \lambda(E)$
- $\bullet \ \lambda \left(\bigsqcup_{k=1}^{\infty} E_k \right) = \sum_{k=1}^{n} E_k$
- if $E \subseteq F$, then $\lambda(E) \le \lambda(F)$

Proposition: Non-existence of λ

There is no $\lambda: \mathcal{P}(\mathbb{R}) \to [0, \infty]$ that satisfies the properties above.

Proof: Consider the equivalence relation on [0, 1], with $x \sim y \Leftrightarrow x - y \in \mathbb{Q}$.

So, $[0,1] = \bigsqcup_{i \in I} [x_i]$, with $x_i \in [0,1]$. Let $\{r_k\}_{k=1}^{\infty}$ be an enumeration of $\mathbb{Q} \cap [-1,1]$. Let $N = \{x_i\}_{i \in I}$ (possible with the axiom of choice).

Consider the set $E_k = r_k + N$.

- E_k are pairwise disjoint; if $r_k + x_i = r_\ell + x_i$, then $x_i x_i = r_k r_\ell \in \mathbb{Q}$, meaning $x_i \sim x_i$.
- $E_k \subseteq [-1, 2]$.

If $t \in [0,1]$, then $t \sim x_i$ for some $i \in I$. So, $t - x_i \in \mathbb{Q}$, and $t - x_i \in [-1,1]$, so $t - x_i = r_k$ for some k. Thus, $t \in E_k$. Thus, we have shown that $[0,1] \subseteq I$ $E_k \subseteq [-1,2]$.

If λ were such a mapping, we have

$$1 = \lambda([0, 1])$$

$$\leq \lambda(\bigsqcup E_k)$$

$$= \sum \lambda(E_k)$$

$$= \sum \lambda(r_k + N)$$

$$= \sum \lambda(N).$$

If
$$E = \bigsqcup E_k$$
, then $\lambda(E) \leq 3$ and $\lambda(E) = \sum \lambda(N)$. \perp .

Thus, we conclude that some sets are not measurable. We might then ask what sets are able to be measured.

- Intervals:
- open sets;
- closed sets.

We will eventually define a class of measurable sets, \mathcal{L} , and we will also construct a measure $\lambda: \mathcal{L} \to [0, \infty]$ satisfying the above properties.

Measurable Spaces and σ -Algebras

Let $\Omega \neq \emptyset$.

- (1) An algebra of subsets of Ω is a nonempty family $\mathcal{M} \subseteq \mathcal{P}(\Omega)$ such that
 - If $E \in \mathcal{M}$, then $E^c \in \mathcal{M}$:
 - If $E, F \in \mathcal{M}$, then $E \cup F \in \mathcal{M}$
- (2) A nonempty collection $\mathcal{M} \subseteq \mathcal{P}(\Omega)$ is a σ -algebra of subsets of Ω if
 - (i) If $E \in \mathcal{M}$, then $E^c \in \mathcal{M}$;
 - (ii) If $\{E_k\}_{k=1}^{\infty} \in \mathcal{M}$, then $\bigcup E_k \in \mathcal{M}$.
- (3) A measurable space is a pair (Ω, \mathcal{M}) with $\Omega \neq \emptyset$ a set and \mathcal{M} is a σ -algebra.

Let \mathcal{M} be an algebra of subsets of Ω . Then, the following are true.

- (i) \emptyset , $\Omega \in \mathcal{M}$;
- (ii) If $E_1, \ldots, E_n \in \mathcal{M}$, then $\bigcup E_k \in \mathcal{M}$;
- (iii) If $E_1, \ldots, E_n \in \mathcal{M}$, then $\bigcap E_k \in \mathcal{M}$;
- (iv) If $E, F \in \mathcal{M}$, then $E \setminus F \in \mathcal{M}$.

Proof:

- (i) Since \mathcal{M} is not empty, there is an $E \in \mathcal{M}$, so $E^c \in \mathcal{M}$, so $E \cup E^c = \Omega \in \mathcal{M}$,and $(E \cup E^c)^c = \emptyset \in \mathcal{M}$.
- (ii) Induction.
- (iii) We have $\bigcap E_k = \left(\bigcup_{i=1}^{\infty} E_k^c\right)^c \in \mathcal{M}$.
- (iv) We have $E \setminus F = E \cap F^c \in \mathcal{M}$.

If \mathcal{M} is a σ -algebra, then (1) through (4) hold for countable families as well.

- (1) $(\Omega, \mathcal{P}(\Omega))$ is a measurable space.
- (2) $(\Omega, \{\emptyset, \Omega\})$ is a measurable space.

- (3) For Ω uncountable, let $\mathcal{M} = \{ E \subseteq \Omega \mid E \text{ countable or } E^c \text{ countable} \}$. Then, (Ω, \mathcal{M}) is a measurable space.
- (4) If $\{\mathcal{M}_i\}_{i\in I}$ is a family of σ -algebras on Ω , then $\bigcap \mathcal{M}_i$ is a σ -algebra on Ω .

If $0 \neq \mathcal{E} \subseteq \mathcal{P}(\Omega)$, the σ -algebra generated by \mathcal{E} is

$$\sigma(\mathcal{E}) = \bigcap_{\substack{\mathcal{M}_i \text{ } \sigma\text{-algebra} \\ \mathcal{E} \subset \mathcal{M}_i}} \mathcal{M}_i.$$

Borel σ -Algebra

Let (X, d) be a metric space. Let $\tau_d = \{U \mid U \subseteq X \text{ open}\}$. The Borel σ -algebra on X is

$$\mathcal{B}_X = \sigma(\tau_d)$$
.

Remark: \mathcal{B}_X contains all open sets, closed sets, F_σ sets, G_δ sets, etc.

Proposition: Borel σ -Algebra on \mathbb{R}

Consider the families of $\mathcal{P}(\mathbb{R})$,

$$\mathcal{E}_{1} = \{(a, b) \mid a < b\}
\mathcal{E}_{2} = \{[a, b] \mid a < b\}
\mathcal{E}_{3} = \{(a, b) \mid a < b\}
\mathcal{E}_{4} = \{[a, b) \mid a < b\}
\mathcal{E}_{5} = \{(-\infty, b) \mid b \in \mathbb{R}\}
\mathcal{E}_{6} = \{(-\infty, b) \mid a \in \mathbb{R}\}
\mathcal{E}_{7} = \{(a, \infty) \mid a \in \mathbb{R}\}
\mathcal{E}_{8} = \{[a, \infty) \mid a \in \mathbb{R}\}.$$

For i = 1, ..., 8, we have $\sigma(\mathcal{E}_i) = \mathcal{B}_{\mathbb{R}}$.

Proof: Note that $\mathcal{E}_1 \subseteq \tau_d \subseteq \sigma(\tau_d) \subseteq \mathcal{B}_{\mathbb{R}}$. Thus, $\sigma(\mathcal{E}_1) \subseteq \mathcal{B}_{\mathbb{R}}$. Let $U \in \mathbb{R}$ be open. Then, $U = \bigsqcup I_j$, with I_j open. Consider any open interval I. If I is bounded, then $I \in \mathcal{E}_1$. If I is not bounded, then $I = \bigcup_{k=1}^{\infty} J_k$ with J_k bounded open intervals. Since each $J_k \in \mathcal{E}_1$, then $I \in \sigma(\mathcal{E}_1)$. Therefore, each $I_j \in \sigma(\mathcal{E}_1)$, so $U \in \sigma(\mathcal{E}_1)$. Thus, $\tau_d \subseteq \sigma(\mathcal{E}_1)$, so $\mathcal{B}_{\mathbb{R}} \subseteq \sigma(\mathcal{E}_1)$.

Thus, $\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{E}_1)$.

We have that $[a,b) = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n},b\right) \in \sigma(\mathcal{E}_1)$. Therefore, $\mathcal{E}_4 \in \sigma(\mathcal{E}_1)$, thus $\sigma(\mathcal{E}_4) \subseteq \sigma(\mathcal{E}_1)$. Additionally, $(a,b) = \bigcup_{n=1}^{\infty} \left[a + \frac{1}{n},b\right] \in \sigma(\mathcal{E}_4)$. So, $\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_4) = \mathcal{B}_{\mathbb{R}}$.

Measure and Measure Spaces

Let (Ω, \mathcal{M}) be a measurable space.

- (1) A function $\mu: \mathcal{M} \to [0, \infty]$ is a measure on (Ω, \mathcal{M}) if
 - (i) $\mu(\emptyset) = 0$;
 - (ii) if $\{E_k\}_{k\geq 1}\in \mathcal{M}$ are pairwise disjoint, then $\mu(\coprod E_k)=\sum \mu(E_k)$. Notice that $\mu(E_k)\geq 0$ for all E_k , so the order of the sum does not matter.
- (2) If \mathcal{M} is an algebra (or σ -algebra), and μ satisfies $\mu(E \sqcup F) = \mu(E) + \mu(F)$ for $E, F \in \mathcal{M}$, then μ is called a finitely additive measure.
- (3) A measure space is a triple $(\Omega, \mathcal{M}, \mu)$, where (Ω, \mathcal{M}) is a measurable space and μ is a measure.
- (4) A measure space $(\Omega, \mathcal{M}, \mu)$ is called finite if $\mu(\Omega) < \infty$. If $\mu(\Omega) = 1$, then $(\Omega, \mathcal{M}, \mu)$ is called a probability space, with Ω the sample space and \mathcal{M} the collection of events.

- (5) A measure μ is σ -finite if there exists $\{E_k\}_{k\geq 1}\subseteq \mathcal{M}$ with $\Omega=\bigcup JE_k$ and $\mu(E_k)<\infty$ for each k.
- (6) A measure μ on (Ω, \mathcal{M}) is semi-finite if $\forall E \in \mathcal{M}$ with $\mu(E) = \infty$, $\exists F \subseteq E$ with $0 < \mu(F) < \infty$.

Exercise: Show that σ -finite implies semi-finite.

Examples of Measure Spaces

(i) Consider $(\Omega, \mathcal{P}(\Omega))$. Fix $x \in \Omega$, with $\delta_x : \mathcal{P}(\Omega) \to [0, \infty]$, with

$$\delta_x(E) = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}.$$

We can see that δ_x is a probability measure, known as the Dirac measure.

- (ii) If μ is a measure on (Ω, \mathcal{M}) , and $t \in [0, \infty)$, then $(t\mu)(E) = t(\mu(E))$ is a measure.
- (iii) If μ_1, \ldots, μ_n are measures on (Ω, \mathcal{M}) , then $\mu(E) = \sum \mu_j(E)$ is a measure.
- (iv) If $0 \le t_1, \ldots, t_n \le 1$ with $\sum t_j = 1$, and $x_1, \ldots, x_n \in X$, we have

$$\mu(E) = \sum t_j \delta_{x_j}$$

is a probability measure on $(\Omega, \mathcal{P}(\Omega))$

(v) Suppose $f: \Omega \to [0, \infty]$ is any function. We get a measure on $(\Omega, \mathcal{P}(\Omega))$. We get that

$$\mu(E) = \sum_{x \in F} f(x) := \sup \left\{ \sum_{x \in F} f(x) \mid F \subseteq \Omega \text{ finite} \right\}.$$

If f(x) = 1 for all elements of Ω , then μ is called the counting measure, with $\mu(E) = \operatorname{card}(E)$.

Proposition: Properties of Measures

Let $(\Omega, \mathcal{M}, \mu)$ be a measure space.

- (i) Monotonality: let $E, F \subseteq \mathcal{M}$ with $E \subseteq F$, then $\mu(E) \leq \mu(F)$
- (ii) Subadditivity: let $\{E_k\}_k \ge 1 \subseteq M$. Then, $\mu(\bigcup E_k) \le \sum \mu(E_k)$.
- (iii) Continuity (from below): say $\{E_k\}_{k\geq 1}\subseteq \mathcal{M}$ with $E_1\subseteq E_2\subseteq E_3\subseteq\ldots$ Then,

$$\mu\left(\bigcup E_k\right) = \lim_{k \to \infty} \mu(E_k)$$
$$= \sup \mu(E_k).$$

- (iv) Set subtraction: if $E, F \subseteq \mathcal{M}$ with $E \subseteq F$ and $\mu(F) < \infty$, then $\mu(F \setminus E) = \mu(F) \mu(E)$.
- (v) Continuity (from above): let $\{E_k\}_{k\geq 1}\subseteq \mathcal{M}$ with $E_1\supseteq E_2\supseteq E_3\supseteq\ldots$ and $\mu(E_1)<\infty$. Then,

$$\mu\left(\bigcap E_{k}\right) = \lim_{k \to \infty} \mu(E_{k})$$
$$= \inf \mu(E_{k}).$$

Proof:

- (i) We have that $\mu(F) = \mu(E) + \mu(F \setminus E) \ge \mu(E)$.
- (ii) Let $F_1=E_1$, $F_2=E_2\setminus E_1$, $F_3=E_3\setminus (E_1\cup E_2)$. Continuing, we have $F_n=E_n\setminus \bigcup_{k=1}^{n-1}E_k$. Notice

$$\Box F_k = \bigcup E_k$$

$$\mu \left(\bigcup E_k\right) = \mu \left(\bigcup F_k\right)$$

$$= \sum \mu(F_k)$$

$$\leq \sum \mu(E_k).$$

(iii) Let $F_1 = E_1$, $F_2 = E_2 \setminus E_1$, etc. with $F_k = E_k \setminus E_{k-1}$. Notice that

$$\mu\left(\bigcup_{i} F_{k}\right) = \mu\left(\bigcup_{i} E_{k}\right)$$

$$\mu\left(\bigcup_{i} E_{k}\right) = \sum_{n \to \infty} \mu(F_{k})$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \mu(F_{k})$$

$$= \lim_{n \to \infty} \mu\left(\bigcup_{k=1}^{n} F_{k}\right)$$

$$= \lim_{n \to \infty} \mu(E_{n}).$$

- (iv) For $E \subseteq F$, we have $\mu(F) = \mu(E) + \mu(F \setminus E)$. Subtracting, we have $\mu(F) \setminus \mu(E) = \mu(F \setminus E)$, provided $\mu(F)$ is finite.
- (v) Exercise.

Complete Measure Spaces

If $(\Omega, \mathcal{M}, \mu)$ is a measures space, a subset $N \subseteq \Omega$ is μ -null if $N \in \mathcal{M}$ and $\mu(N) = 0$.

Remark: If N is μ -null, and $M \subseteq N$, then M is not necessarily μ -null, because we do not know if $M \in \mathcal{M}$.

A measure space $(\Omega, \mathcal{M}, \mu)$ is said to be complete if for any N μ -null and $M \subseteq N$, then M is μ -null.

If
$$(\Omega, \mathcal{M}, \mu)$$
, and $\mathcal{N} = \{ N \in \mathcal{M} \mid \mu(N) = 0 \}$, we set

$$\overline{\mathcal{M}} = \{ E \cup F \mid E \in \mathcal{M}, F \subseteq N \in \mathcal{N} \text{ for some } N \in \mathcal{N} \}.$$

We have that $\overline{\mathcal{M}}$ is a σ -algebra with $\mathcal{M} \subseteq \overline{\mathcal{M}}$ and $\exists ! \overline{\mu} : \overline{\mathcal{M}} \to [0, \infty]$, with $\overline{\mu}(E) = \mu(E)$ for all $E \in \mathcal{M}$, such that $(\Omega, \overline{\mathcal{M}}, \overline{\mu})$ is a complete measure space.

Outer Measures

An outer measure on a set Ω is a map $\theta: \mathcal{P}(\Omega) \to [0, \infty]$ such that

- (i) $\theta(\emptyset) = 0$
- (ii) $E \subseteq F \Rightarrow \theta(E) \leq \theta(F)$
- (iii) $\theta(\bigcup E_k) \leq \sum \theta(E_k)$

Remark: Any measure is an outer measure.

We will construct outer measures from covering families equipped with a notion of measure.

Proposition: Constructing an Outer Measure

Let $\mathcal{E}\subseteq\mathcal{P}(\Omega)$ be a "covering family" — $\forall A\subseteq\Omega$, $A\subseteq\bigcup_{k\geq 1}E_k$, where $E_k\in\mathcal{E}$. Let $\rho:\mathcal{E}\to[0,\infty]$ such that $\rho(\emptyset)=0$.

Set $\theta_{\rho}: \mathcal{P}(\Omega) \to [0, \infty]$; set

$$\theta_{\rho}(A) = \inf \left\{ \sum \rho(E_k) \mid A \subseteq \bigcup E_k, E_k \in \mathcal{E} \right\}.$$

Then, θ_{ρ} is an outer measure.

Proof: Clearly, $\theta_{\rho}(\emptyset) = 0$.

Suppose $A \subseteq B$. If $B \subseteq \bigcup E_k$, then $A \subseteq \bigcup E_k$. Therefore, $\theta_\rho(A) \leq \sum \rho(E_k)$. By definition, it is then the case that $\theta_\rho(A) \leq \theta_\rho(B)$.

Let $\{A_k\}_{k\geq 1}\subseteq \mathcal{P}(\Omega)$. Let $\varepsilon>0$. For each k, we can find a cover $A_k\subseteq \bigcup_{i=1}^\infty E_{k,j}$ such that

$$\theta_{
ho}(A_k) + rac{arepsilon}{2^k} > \sum_{j=1}^{\infty}
ho(E_{k_j})$$

$$\sum_{k=1}^{\infty} \theta_{\rho}(A_k) + \varepsilon > \sum_{j,k=1}^{\infty} \rho(E_{k,j}).$$

Since $\bigcup A_k \subseteq \bigcup_{k,i=1}^{\infty} E_{k,j}$, it must be the case that

$$\theta_{\rho}\left(\bigcup A_{k}\right) \leq \sum_{k,j=1}^{\infty} \rho(E_{k,j}).$$

Therefore, we have

$$\theta_{\rho}\left(\bigcup A_{k}\right) \leq \sum \theta_{\rho}(A_{k}) + \varepsilon.$$

Since ε was arbitrary, it must be the case that we get countable subadditivity.

Measurable Sets in Outer Measures

Let θ be an outer measure on Ω .

A subset $M \subseteq \Omega$ is said to be θ -measurable if $\forall E \subseteq \Omega$, $\theta(E \cap M) + \theta(E \cap M^c) = \theta(E)$. Essentially, M is a good "cookie-cutter" for any subset of Ω .

Remark: We always have $\theta(E) = \theta((E \cap M) \cup (E \cap M^c)) \le \theta(E \cap M) + \theta(E \cap M^c)$. So, in order to show M is θ -measurable, all we need show is that $\theta(E \cap M) + \theta(E \cap M^c) \le \theta(E)$.

This inequality always holds if $\theta(E) = \infty$.

Carathéodory's Theorem

Let $\theta: \mathcal{P}(\Omega) \to [0, \infty]$ be an outer measure on Ω .

- (i) $\mathcal{M}_{\theta} = \{ M \subseteq \Omega \mid M \text{ is } \theta\text{-measurable} \}$ is a σ -algebra.
- (ii) $\theta|_{\mathcal{M}_{\theta}}: \mathcal{M}_{\theta} \to [0, \infty]$ is a complete measure.

Proof: We will show systematically via a series of claims.

Claim 1: \mathcal{M}_{θ} is an algebra of subsets.

• We have that $\emptyset \in \mathcal{M}_{\theta}$.

$$\theta(E) \ge \theta(E \cap \emptyset) + \theta(E \cap \emptyset^c)$$

= 0 + \theta(E).

- Let $M \in \mathcal{M}_{\theta}$. Clearly, M^c is measurable, since the definition of measurable is symmetric.
- Suppose M_1 , M_2 are measurable. We will show that $M_1 \cap M_2$ is measurable.

$$\theta(E) \ge \theta(E \cap M_{1}) + \theta(E \cap M_{1}^{c})
\ge \theta(E \cap M_{1} \cap M_{2}) + \theta(E \cap M_{1} \cap M_{2}^{c}) + \theta(E \cap M_{1}^{c} \cap M_{2}) + \theta(E \cap M_{1}^{c} \cap M_{2}^{c}) + \theta$$

Thus, $M_1 \cap M_2$ is measurable.

Claim 2: $\theta|_{\mathcal{M}_{\theta}}$ is a finitely additive measure. Let M_1 , $M_2 \in \mathcal{M}_{\theta}$ with $M_1 \cap M_2 = \emptyset$.

$$\theta(M_1 \sqcup M_2) = \theta(M_1 \sqcup M_2 \cap M_1) + \theta(M_1 \sqcup M_2 \cap M_1^c) = \theta(M_1) + \theta(M_2).$$

Claim 3: If $\{M_k\}_{k\geq 1}\subseteq \mathcal{M}_{\theta}$ are pairwise disjoint, then $\forall E\subseteq \Omega$, $\theta(E\cap \coprod M_k)=\sum \theta(E\cap M_k)$.

$$\theta\left(E\cap\bigsqcup_{k=1}^n M_k\right)=\theta\left(\bigsqcup_{k=1}^n E\cap M_k\right)$$

cutting with M_n , we have

$$= \theta \left(\bigsqcup_{k=1}^{n} E \cap M_{k} \cap M_{n} \right) + \theta \left(\bigsqcup_{k=1}^{n} E \cap M_{k} \cap M_{n}^{c} \right)$$
$$= \theta \left(E \cap M_{n} \right) + \theta \left(\bigsqcup_{k=1}^{n-1} E \cap M_{k} \right)$$

cutting with M_{n-1} , we get

$$=\theta(E\cap M_n)+\theta(E\cap M_{n-1})+E\left(\bigsqcup_{k=1}^{n-2}E\cap M_k\right).$$

Continuing inductively, we have

$$\theta\left(E\cap\bigsqcup_{k=1}^n M_k\right)=\sum_{k=1}^n \theta(E\cap M_k).$$

In the infinite case,

$$\sum \theta(E \cap M_k) \ge \theta \left(\bigsqcup E \cap M_k \right)$$

$$= \bigsqcup \theta \left(E \cap \bigsqcup M_k \right)$$

$$\ge \theta \left(E \cap \bigsqcup_{k=1}^n M_k \right)$$

$$= \bigsqcup_{k=1}^n \theta(E \cap M_k).$$

Letting $n \to \infty$, we are done.

Claim 4: \mathcal{M}_{θ} is a σ -algebra. Additionally, $\theta|_{\mathcal{M}_{\theta}}$ is a measure.

Let $\{M_k\}_{k\geq 1}\subseteq \mathcal{M}_{\theta}$ be pairwise disjoint. Let $M=\coprod M_k$. We will show M is measurable. Let $P_n=\coprod_{k=1}^n M_k$. For $E\subseteq \Omega$,

$$\theta(E) \ge \theta(E \cap P_n) + \theta(E \cap P_n^c)$$
 Claim 1

$$\ge \sum_{k=1}^n \theta(E \cap M_k) + \theta(E \cap M^c).$$
 Monotonicity

Letting $n \to \infty$,

$$\theta(E) \ge \sum_{k=1}^{\infty} \theta(E \cap M_k) + \theta(E \cap M_c)$$

$$= \theta(E \cap M) + \theta(E \cap M^c)$$
Claim 3

Thus, M is measurable. Taking $E = \Omega$ in Claim 3, we show that $\theta|_{\mathcal{M}_{\theta}}$ is a measure.

Claim 5: $\theta|_{\mathcal{M}_{\theta}}$ is complete.

Let $N \subseteq \Omega$ with $\theta(N) = 0$. Then, for all $E \subseteq \Omega$,

$$\theta(E \cap N) + \theta(E \cap N^{c}) \le \theta(N) + \theta(E)$$
$$= \theta(E).$$

Thus, $N \in \mathcal{M}_{\theta}$. If $M \in \mathcal{M}_{\theta}$ and $\theta(M) = 0$, and $N \subseteq M$, then by monotonicity we have $\theta(N) = 0$, so $N \in \mathcal{M}_{\theta}$.

Remark: If $\theta(N) = 0$, then $N \in \mathcal{M}_{\theta}$, and $\theta(E \cup N) = \theta(E)$ and $\theta(E \setminus N) = \theta(E)$.

$$\theta(E) \le \theta(E \cup N)$$

$$\le \theta(E) + \theta(N)$$

$$= \theta(E)$$

$$\theta(E) = \theta(N \cup (E \setminus N))$$

$$\le \theta(N) + \theta(E \setminus N)$$

$$= \theta(E \setminus N)$$

$$< \theta(E)$$

Lebesgue Measure over $\mathbb R$

Consider the family $\mathcal{E} = \{(a, b) \mid a \leq b\}$. Let $\lambda_0 : \mathcal{E} \to [0, \infty]$, with $\lambda_0((a, b)) = b - a$.

We see that \mathcal{E} is a covering family with $\emptyset \in \mathcal{E}$. Notice that $\lambda_0(\emptyset) = 0$. As a result, we get the Lebesgue *outer* measure, $\lambda^* : \mathcal{P}(\mathbb{R}) \to [0, \infty]$, with

$$\lambda^*(E) := \inf \left\{ \sum_{k=1}^{\infty} \lambda_0(I_k) \mid E \subseteq \bigcup_{k=1}^{\infty} I_k, \ I_k \in \mathcal{E} \right\}.$$

We thus define the Lebesgue σ -algebra as

$$\mathcal{L} = \{ E \subseteq \mathbb{R} \mid E \text{ is } \lambda^*\text{-measurable} \}.$$

The Lebesgue measure is $\lambda := \lambda^*|_{\mathcal{L}}$. We know from Carathéodory's theorem that λ is complete.

Properties of the Lebesgue Measure

Proposition: Countable Subsets are Lebesgue Measurable

If $D \subseteq \mathbb{R}$ is countable, then $D \in \mathcal{L}$ and $\lambda(D) = 0$.

Proof: It suffices to show that for $t \in \mathbb{R}$, $\{t\}$ is Lebesgue measurable.

We have, for any $\varepsilon > 0$,

$$\{t\}\subseteq \left(t-\frac{\varepsilon}{2},t+\frac{\varepsilon}{2}\right)\in \mathcal{E}.$$

Thus, $\lambda^*(\{t\}) \leq \lambda_0\left(\left(t - \frac{\varepsilon}{2}, t + \frac{\varepsilon}{2}\right)\right) = \varepsilon$. Since ε was arbitrary, we have that $\lambda^*(\{t\}) = 0$.

Thus, we have $\{t\} \in \mathcal{L}$. If $D = \{t_k\}_{k \geq 1}$ is countable, since each $\{t_k\} \in \mathcal{L}$, we have

$$D = \bigcup_{k=1}^{\infty} \{t_k\} \in \mathcal{L},$$
 $\lambda(D) = \sum_{k=1}^{\infty} \lambda(\{t_k\})$ $= 0.$

The converse is not true: the Cantor set has measure 0.

Proposition: Borel Sets are Lebesgue Measurable

$$\mathcal{B}_{\mathbb{R}}\subseteq\mathcal{L}$$
.

Proof: We show that $(-\infty, b) = l \in \mathcal{L}$ for any $b \in \mathbb{R}$. This is because $\sigma(\{(-\infty, b) \mid b \in \mathbb{R}\}) = \mathcal{B}_{\mathbb{R}}$, we will have that $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{L}$.

Let $E \subseteq \mathbb{R}$. Let $F = E \setminus \{b\}$. Let $F_1 = F \cap I = F \cap (-\infty, b)$, $F_2 = F \cap I^c = F \cap [b, \infty) = F \cap (b, \infty)$. Assume $F \subseteq \bigcup_{k=1}^{\infty} I_k$, with I_k open.

Let $L_k = (-\infty, b) \cap I_k$, $U_k = (b, \infty) \cap I_k$. Notice that L_k and U_k are open intervals, and $F_1 \subseteq \bigcup_{k=1}^{\infty} L_k$, $F_2 \subseteq \bigcup_{k=1}^{\infty} U_k$.

$$\lambda^*(F \cap I) + \lambda^*(F \cap I^c) = \lambda^*(F_1) + \lambda^*(F_2)$$

$$\leq \sum_{k=1}^{\infty} \lambda_0(L_k) + \sum_{k=1}^{\infty} \lambda_0(U_k)$$

$$= \sum_{k=1}^{\infty} (\lambda_0(L_k) + \lambda_0(U_k))$$

$$= \sum_{k=1}^{\infty} \lambda_0(I_k)$$

meaning

$$\lambda^*(F \cap I) + \lambda^*(F \cap I^c) \le \lambda^*(F).$$

Therefore, F is λ^* -measurable. Notice that $E \cap I = F \cap I = F_1$, and $E \cap I^c = E \cap [b, \infty) \subseteq F_2 \cup \{b\}$. We have

$$\lambda^*(E \cap I) + \lambda^*(E \cap I^c) \le \lambda^*(F_1) + \lambda^*(F_2 \cup \{b\})$$

$$\le \lambda^*(F_1) + \lambda^*(F_2) + \lambda^*(\{b\})$$

$$= \lambda^*(F_1) + \lambda^*(F_2)$$

$$\le \lambda^*(F)$$

$$\le \lambda^*(E).$$

Thus, E is λ^* -measurable.

Remark: Every Borel set, including closed sets, open sets, compact sets, F_{σ} -sets, G_{δ} -sets, etc., is Lebesgue measurable.

Proposition: Measure of an Interval

If I is any interval, then $\lambda(I)$ is equal to the length of I.

Proof: Let I = [a, b]. For all $\varepsilon > 0$, we have

$$I\subseteq\left(a-\frac{\varepsilon}{2},b+\frac{\varepsilon}{2}\right)$$
,

meaning $\lambda^*(I) \leq (b-a) + \varepsilon$. Thus, we have $\lambda(I) = \lambda^*(I) \leq b-a$. To show the reverse direction, let

$$I \subseteq \bigcup_{k=1}^{\infty} I_k$$
 I_k open.

It suffices to show that

$$\sum_{k=1}^{\infty} \lambda_0(I_k) \ge b - a.$$

Since I is compact, $\exists n$ with

$$I \subseteq \bigcup_{k=1}^{n} I_k$$
.

Let $\ell = \sum_{k=1}^{n} I_k$ (*).

Without loss of generality, let $a \in I_1 = (a_1, b_1)$. If $b_1 \ge b$, we are done. If not, we have $a_1 < a < b_1 < b$.

Now, $b_1 \in I \setminus I_1$. Without loss of generality, $b_1 \in I_2 = (a_2, b_2)$. If $b_2 \ge b$, we are done, as

$$\ell \ge (b_1 - a_1) + (b_2 - a_2)$$

$$= b_2 - (a_2 - b_1) - a_1$$

$$\ge b - a_1$$

$$\ge b - a.$$

We continue this process; it must terminate, as there are finitely many such intervals, meaning $b_m \ge b$ for some m. We have a subcollection $\{(a_k, b_k)\}_{k=1}^m$, with $a_1 < a$, $a_2 < b_1 < b_2$, etc. all the way to $a_m < b_{m-1} < b_m$, and $b_m \ge b$.

$$\ell \geq \sum_{k=1}^{m} \lambda_0(a_k - b_k)$$

$$= (b_m - a_m) + (b_{m-1} - a_{m-1}) + \dots + (b_1 - a_1)$$

$$= b_m - (a_m - b_{m-1}) - (a_{m-1} - b_{m-1}) - (a_2 - b_1) - a_1$$

$$= b_m + (b_{m-1} - a - m) + (b_{m-2} + a_{m-1}) + \dots + (b_1 - a_2) - a_1$$

$$\geq b_m - a_1$$

$$\geq b - a_1$$

$$\geq b - a_1$$

Thus, $\lambda^*([a, b]) = \lambda([a, b]) = b - a$.

Let I = (a, b]. Let $I_n = [a + 1/n, b]$. Then, $I = \bigcup_{n=1}^{\infty} [a + 1/n, b]$.

$$\lambda(I) = \lambda \left(\bigcup_{n=1}^{\infty} I_n \right)$$

$$= \lim_{n \to \infty} \lambda(I_n)$$

$$= \lim_{n \to \infty} (b - a) - (1/n)$$

$$= b - a.$$

Similarly for $\lambda([a, b)) = b - a$, and $\lambda((a, b)) = b - a$.

If I is unbounded, for every n, we can find a closed and bounded $I_n \subseteq I$ with $\lambda(I_n) = n$. Therefore, $\lambda(I) \ge \lambda(I_n) = n$. Therefore, $\lambda(I) = \infty$.

Lemma: Translation-Invariance of the Outer Measure

For $E \subseteq \mathbb{R}$, $t \in \mathbb{R}$, $\lambda^*(E+t) = \lambda * *(E)$.

Proof: Given that $E \subseteq \bigcup_{k \ge 1} I_k$, then $E + t \subseteq \bigcup_{k \ge 1} (I_k + t)$. We have that $I_k + t$ are still open intervals. Note that $\lambda_0(I_k + t) = \lambda_0(I_k)$.

Therefore,

$$\lambda^*(E+t) \leq \sum_{k=1}^{\infty} \lambda_0(I_k+t)$$

$$= \sum_{k=1}^{\infty} \lambda_0(I_k).$$

By definition, $\lambda^*(E+t) \leq \lambda^*(E)$.

Additionally,

$$\lambda^*(E) = \lambda^*(E + t - t)$$

$$\leq \lambda^*(E + t).$$

Proposition: Translation-Invariance of the Lebesgue Measure

If $M \in \mathcal{L}$, and $t \in \mathbb{R}$, then $M + t \in \mathcal{L}$ and $\lambda(M + t) = \lambda(M)$.

Proof: Let $E \subseteq \mathbb{R}$.

$$\lambda^{*}(E) = \lambda^{*}(E - t)$$

$$= \lambda^{*}((E - t) \cap M) + \lambda^{*}((E - t) \cap M^{c}) \qquad M \in \mathcal{L}$$

$$= \lambda^{*}((E - t) \cap M + t) + \lambda^{*}((E - t) \cap M^{c} + t)$$

$$= \lambda^{*}(E \cap (M + t)) + \lambda^{*}(E \cap (M + t)^{c}).$$

Therefore, $M + t \in \mathcal{L}$, and

$$\lambda(M+t) = \lambda^*(M+t)$$
$$= \lambda^*(M)$$
$$= \lambda(M).$$

Thus, we have our measure space, $(\mathbb{R}, \mathcal{L}, \lambda)$, with

- λ complete;
- $\mathcal{B}_{\mathbb{R}} \subset \mathcal{L}$;
- $\lambda(I) = \text{length}(I)$;
- $\lambda(E+t) = \lambda(E)$;
- λ is σ -finite.

Regularity of the Lebesgue Measure

Theorem: Approximating a Measurable Set

Let $M \in \mathcal{L}$.

- (1) $\forall \varepsilon > 0$, $\exists U \subseteq \mathbb{R}$ open with $M \subseteq U$ and $\lambda(U \setminus M) < \varepsilon$.
- (2) There is a G_{δ} set $V \subseteq \mathbb{R}$ with $M \subseteq V$ and $\lambda(V \setminus M) = 0$.
- (3) $\forall \varepsilon > 0$, $\exists C \subseteq \mathbb{R}$ closed with $C \subseteq M$ and $\lambda(M \setminus C) < \varepsilon$.
- (4) There is a F_{σ} set with $F \subseteq M$ and $\lambda(M \setminus F) = 0$.

Proof of (1): If $M \in \mathcal{L}$, then $\lambda(M) = \lambda^*(M)$. By definition, given $\varepsilon > 0$, $\exists M \subseteq \bigcup_{k > 1} I_k$, with I_k open, and

$$\lambda(M) + \varepsilon > \sum_{k=1}^{\infty} \lambda_0(I_k)$$

$$= \sum_{k=1}^{\infty} \lambda(I_k)$$

$$\geq \lambda \left(\bigcup_{k=1}^{\infty} I_k\right).$$

Set
$$U = \bigcup_{k=1}^{\infty} I_k$$
.

If $\lambda(M) < \infty$, then $\lambda(U \setminus M) = \lambda(U) - \lambda(M) < \varepsilon$. Otherwise, if $\lambda(M) = \infty$, then $M = \bigsqcup_{k=1}^{\infty} M_k$, where each $\lambda(M_k) < \infty$.

For each M_k , find U_k open with $U_K \supseteq M_k$ and $\lambda(U_k \setminus M_k) = \lambda(U_k) \setminus \lambda(M_k) < \varepsilon \cdot 2^{-k}$. Set $U = \bigcup U_k \supseteq M$. Then,

$$\lambda(U \setminus M) = \lambda \left(\bigcup_{k=1}^{\infty} \setminus \bigcup_{k=1}^{\infty} M_k \right)$$

$$= \lambda \left(\bigcup_{k=1}^{\infty} (U_k \setminus M_k^c) \right)$$

$$\leq \sum_{k=1}^{\infty} \lambda(U_k \setminus M_k)$$

$$\leq \sum_{k=1}^{\infty} \varepsilon \cdot 2^{-k}$$

$$= \varepsilon.$$

Proof of (2): For every $n \ge 1$, find an open $U_n \subseteq \mathbb{R}$ with $U_n \supseteq M$ and $\lambda(U_n \setminus M) < 1/n$. Set $V = \bigcap_{n=1}^{\infty} U_n$.

$$\lambda(V \setminus M) = \lambda(V \cap M^c)$$

$$= \lambda \left(\bigcap_{n=1}^{\infty} (U_n \setminus M) \right)$$

$$\leq \lambda(U_n \setminus M)$$

$$< 1/n$$

 $\forall n$

meaning

$$\lambda(V \setminus M) = 0.$$

Proof of (3): $M^c \in \mathcal{L}$. Use (1) to prove.

Proof of (4): Use (3).

Corollary: Completion of the Borel Measure Space

$$(\mathbb{R}, \mathcal{L}, \lambda) = (\mathbb{R}, \overline{\mathcal{B}}_{\mathbb{R}}, \overline{\mu}),$$

where $\mu = \lambda|_{\mathcal{B}_{\mathbb{R}}}$.

Proof: We want to show that if $M \in \mathcal{L}$, then $M = B \cup E$, where $E \subseteq N \in \mathcal{B}_{\mathbb{R}}$, where $\mu(N) = 0$.

We know $\exists V \ \mathsf{G}_{\delta}$ and $F \ \mathsf{F}_{\sigma}$, with $F \subseteq M \subseteq V$, $\lambda(M \setminus F) = \lambda(V \setminus M) = \emptyset$.

Set $M = F \cup (M \setminus F)$. We have F Borel, and $M \setminus F \subseteq V \setminus F$. We know that $\mu(V \setminus F) = 0$.

Corollary: Inner and Outer Regularity

Let $M \in \mathcal{L}$. Then,

- Outer regularity: $\lambda(M) = \inf \{ \lambda(U) \mid U \supseteq M, U \text{ open} \}$
- Inner regularity: $\lambda(M) = \sup \{\lambda(K) \mid K \subseteq M, K \text{ compact}\}\$

Proof of (1): If $\lambda(M) = \infty$, the proof is clear.

Assume $\lambda(M) < \infty$. The \leq direction is clear.

Let $\varepsilon > 0$; we have $\exists U \subseteq \mathbb{R}$ with $M \subseteq U$ and $\lambda(U \setminus M) < \varepsilon$, so $\lambda(U) < \lambda(M) + \varepsilon$.

Proof of (2): Assume M is bounded. Given $\varepsilon > 0$, find C closed with $C \subseteq M$ and $\lambda(M \setminus C) < \varepsilon$. Since C is bounded, we have C is compact. Since M is bounded, $\lambda(M) < \infty$. Therefore, $\lambda(C) < \infty$, meaning $\lambda(M) - \varepsilon < \lambda(C)$. Since $\lambda(M)$ is an upper bound for the right hand side, we are done.

Suppose M is not bounded. Set $M_n = M \cap [-n, n]$. Notice that $M_1 \subseteq M_2 \subseteq \cdots$, with $\bigcup M_n = M$. Therefore,

$$\lambda(M) = \sup M_n$$
.

Case 1: $\lambda(M) = +\infty$. For every n, find a compact $K_n \subseteq M_n$ (which is possible as the M_n are bounded) and $\lambda(M_n) - 1 < \lambda(K_n)$. Letting $n \to \infty$, we have $\lambda(K_n) \to \infty$. Therefore, $\sup \lambda(K_n) = \infty$.

Case 2: $\lambda(M) < \infty$. Given $\varepsilon > 0$, find n with $\lambda(M) - \varepsilon/2 < \lambda(M_n)$. There is a compact K with $K \subseteq M_n$ and $\lambda(M_n) - \varepsilon/2 < \lambda(K)$. Therefore, $K \subseteq M$ with $\lambda(M) - \varepsilon < \lambda(K)$.

Proposition: Symmetric Difference Approximation

Let $M \in \mathcal{L}$ with $\lambda(M) < \infty$. Given $\varepsilon > 0$, there is an open $V = \bigsqcup_{i=1}^{n} (a_{j}, b_{j})$ such that $\lambda(M \triangle V) < \varepsilon$.

Proof: There is an open set U with $M \subseteq U$ and $\lambda(U \setminus M) = \lambda(U) - \lambda(M) < \varepsilon/2$. Since every open set is a disjoint union of open intervals, we have $U = \bigsqcup_{j=1}^{\infty} (a_j, b_j)$. Therefore, $\sum \lambda(a_j, b_j) \le \lambda(M)$. Thus, $\exists n$ large such that $\sum_{j=n+1}^{\infty} \lambda(a_j, b_j) < \varepsilon/2$. Set $V = \bigsqcup_{j=1}^{n} (a_j, b_j)$.

Vitali's Theorem

Given $E \subseteq \mathbb{R}$ with $\lambda^*(E) > 0$, $\exists N \subseteq E$ with $N \notin \mathcal{L}$.

Proof: Assume E is bounded; $E \subseteq [-a, a]$. Put an equivalence relation on E: $x \sim y$ if and only if $x - y \in \mathbb{Q}$. Therefore, $E = \bigsqcup_{i \in I} [x_i]$, with $x_i \in E$. Set $N = \{x_i\}_{i \in I}$. We claim that N is not measurable.

Let $\{r_k\}_{k=1}^{\infty}$ be an enumeration of the rationals inside $\mathbb{Q} \cap [-2a, 2a]$. Notice that $\{r_K + N\}_{k=1}^{\infty}$ are pairwise disjoint. Also, $E \subseteq \bigsqcup_{k=1}^{\infty} r_k + N$, since, given $x \in E$, we have $x \sim x_i$ for some $x_i \in N$, so $x - x_i \in \mathbb{Q} \cap [-2a, 2a]$, meaning $x - x_i = r_k$ for some $r_k \in \mathbb{Q} \cap [-2a, 2a]$, meaning $x \in r_k + N$.

If N were measurable, then

$$0 < \lambda^*(E)$$

$$\leq \lambda^* \left(\bigsqcup_{k=1}^{\infty} r_k + N \right)$$

$$= \sum_{k=1}^{\infty} \lambda(r_k + N)$$

$$= \sum_{k=1}^{\infty} \lambda(N).$$

We also have $\lambda(N) = \lambda^*(N) \le \lambda^*(E) \le 2a$. Together, we arrive at a contradiction.

If *E* is not bounded, let $E_n = \cap [-n, n]$. Then,

$$0 < \lambda^*(E)$$

$$= \lambda^*(E_n)$$

$$\leq \sum_{n=1}^{\infty} \lambda^*(E_n).$$

Since $\lambda^*(E) > 0$, there must exist some E_n with $\lambda^*(E_n) > 0$, meaning E_n contains a non-measurable subset, so E has a non-measurable subset.

Cantor-Lebesgue Function

To find a non-Borel, Lebesgue-measurable set, we must construct and explore the properties of the Cantor-Lebesgue function.

Proof: Consider the Cantor set:

$$C_{0} = [0, 1]$$

$$C_{1} = [0, 1/3] \cup [2/3, 1]$$

$$C_{2} = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$$

$$C_{n} = \frac{1}{3} (C_{n-1} \cup (2 + C_{n-1}))$$

$$C = \bigcap_{n=0}^{\infty} C_{n}.$$

To find $\lambda(\mathcal{C})$, notice that \mathcal{C} is closed (and thus Borel), meaning $\lambda(\mathcal{C}) = \lim_{n \to \infty} \lambda(\mathcal{C}_n)$, meaning $\lambda(\mathcal{C}) = 0$.

We will build a function from the removed intervals of the Cantor set. Let

•
$$G_1 = C_0 \setminus C_1 = \underbrace{(1/3, 2/3)}_{I_{1,1}}$$

•
$$G_2 = C_1 \setminus C_2 = \underbrace{(1/9, 2/9)}_{I_{2,1}} \sqcup \underbrace{(7/9, 8/9)}_{I_{2,2}}$$

•
$$G_3 = C_2 \setminus C_3 = \underbrace{(1/27, 2/27)}_{I_{3,1}} \cup \underbrace{(7/27, 8/27)}_{I_{3,2}} \cup \underbrace{(19/27, 20/27)}_{I_{3,3}} \cup \underbrace{(25/27, 26/27)}_{I_{3,4}}.$$

At each step, we have $G_k = C_{k-1} \setminus C_k = \bigsqcup_{j=1}^{2^{k-1}} I_{k,j}$. If we let $L_k = \bigsqcup_{j=1}^k G_j$. Notice that $L_k \sqcup C_k = [0,1]$.

Let

$$\begin{split} g_k &= \sum_{j=1}^{2^{k-1}} \frac{2j-1}{2^k} \mathbb{1}_{I_{k,j}} \\ g_1 &= \frac{1}{2} \mathbb{1}_{(1/3,2/3)} \\ g_2 &= \frac{1}{4} \mathbb{1}_{(1/9,2/9)} + \frac{3}{4} \mathbb{1}_{(7/9,8/9)} \\ g_3 &= \frac{1}{8} \mathbb{1}_{(1/27,2/27)} + \frac{3}{8} \mathbb{1}_{(7/27,8/27)} + \frac{5}{8} \mathbb{1}_{(19/27,20/27)} + \frac{7}{8} \mathbb{1}_{(25/27,26/27)}. \end{split}$$

Now, let $f_n = \sum_{k=1}^n g_k$.

Let φ_n : $[0,1] \to [0,1]$ be the unique continuous extension of f_n , where $\varphi(0) = 0$, $\varphi(1) = 1$, and φ_n is linear on C_n .

We claim that $(\varphi_n)_n$ are uniformly Cauchy. Note that

$$|\varphi_{k+1}(x)-\varphi_k(x)|<\frac{1}{2^k}.$$

So, for m > n,

$$\begin{aligned} |\varphi_{m}(x) - \varphi_{n}(x)| &\leq |\varphi_{m}(x) - \varphi_{m-1}(x)| + \dots + |\varphi_{n+1}(x) - \varphi_{n}(x)| \\ &\leq 2^{1-m} + \dots + 2^{-n} \\ &\leq 2^{1-n} \\ &\|\varphi_{m}(x) - \varphi_{n}(x)\|_{u} \leq 2^{1-n}. \end{aligned}$$

Since C([0,1]) is complete, we must have that $(\varphi_n)_n \xrightarrow{\|\cdot\|_u} \varphi \in C([0,1])$. We call φ the Cantor-Lebesgue Function.

Properties of the Cantor-Lebesgue Function:

- (1) φ is increasing;
- (2) φ is constant on $[0,1] \setminus \mathcal{C}$;
- (3) $\varphi([0,1]) = [0,1];$
- (4) $\varphi(C) = [0, 1].$

Proof of Properties of Cantor-Lebesgue Function:

- (1) If $x \le y$, then $\varphi_n(x) \le \varphi_n(y)$, meaning $\varphi(x) \le \varphi(y)$ as $n \to \infty$.
- (2) If $x \notin \mathcal{C}$, then $x \in \bigcup_{k=1}^{\infty} \mathcal{L}_k$. Let $x \in \mathcal{L}_{\ell}$. Thus, $\varphi(x) = \lim_{n \to \infty} \varphi_n(x) = \lim_{n \to \infty} f_n(x) = f_{\ell}(x)$.
- (3) Intermediate value theorem.
- (4) We can see that $\mathcal{C} \sqcup \underbrace{[0,1] \setminus \mathcal{C}}_{L} = [0,1].$ Thus,

$$\varphi([0,1]) = \varphi(\mathcal{C}) \sqcup \varphi(L).$$

We can see that $\lambda(\varphi(L)) = 0$, since $\varphi(L)$ is a countable set. Thus, $\lambda(\varphi(C)) = 1$.

Since C is compact, $\varphi(C)$ is compact, and thus closed.

If $\exists t \in [0,1] \setminus \varphi(\mathcal{C})$, then $\exists \delta > 0$ such that $(t-\delta,t+\delta) \in [0,1] \setminus \varphi(\mathcal{C})$, implying $\lambda(\varphi(\mathcal{C})) < 1$.

Properties of a New Function: Let $\psi : [0, 1] \to [0, 2], \ \psi(x) = x + \psi(x)$.

- (1) ψ is strictly increasing
- (2) $\psi:[0,1] \rightarrow [0,2]$ is bijective
- (3) $\lambda(\psi(\mathcal{C})) = 1$

Proof of Properties of New Function:

- (1) Trivial.
- (2) Intermediate Value Theorem.
- (3)

$$\psi(L) = \psi\left(\bigsqcup L_k\right)$$
$$= \bigsqcup \psi(L_k).$$

Notice that

$$\psi(I_{k,j}) = \{x + \varphi(x) \mid x \in I_{k,j}\}$$
$$= \left\{x + \frac{2j-1}{2^k} \mid x \in I_{k,j}\right\}$$
$$\lambda(\psi(I_{k,j})) = \lambda(I_{k,j}).$$

Therefore, we see that

$$\lambda(\psi(G_k)) = \lambda \left(\psi \left(\bigsqcup_{j=1}^{2k-1} I_{k,j} \right) \right)$$

$$= \lambda \left(\bigsqcup \psi(I_{k,j}) \right)$$

$$= \sum_{j=1}^{2k-1} \lambda(\psi(I_{k,j}))$$

$$= \sum_{j=1}^{2k-1} \lambda(I_{k,j})$$

$$= \lambda(G_k).$$

Thus,

$$\lambda(\psi(L)) = \sum \lambda(\psi(G_k))$$

$$= \sum \lambda(G_k)$$

$$= \sum \lambda\left(\bigcup G_k\right)$$

$$= 1,$$

meaning

$$[0,2] = \psi([0,1])$$

$$= \psi(\mathcal{C} \sqcup L)$$

$$= \psi(\mathcal{C}) \sqcup \psi(L)$$

$$\Rightarrow \lambda(\psi(\mathcal{C})) = 1.$$

Proposition: There is a set $E \in \mathcal{L} \setminus \mathcal{B}_{\mathbb{R}}$.

Proof of Proposition: We had $\psi:[0,1] \to [0,2]$ a continuous bijection with $\lambda(\psi(\mathcal{C}))=1$. By Vitali's theorem, $\exists N \in \psi(\mathcal{C})$ with $N \notin \mathcal{L}$.

Set $E = \psi^{-1}(N) \subseteq \mathcal{C}$. Since $\lambda(\mathcal{C}) = 0$, and $E \subseteq \mathcal{C}$, $E \in \mathcal{L}$ (the Lebesgue measure is complete). Assume $E \in \mathcal{B}_{\mathbb{R}}$.

Since $\beta = \psi^{-1}$ is a continuous bijection, we have $N = \beta^{-1}(E)$ is Borel. \perp

Exercise: Let $f: X \to Y$ is a continuous map between two metric spaces. If $B \in \mathcal{B}_Y$, then $f^{-1}(B) \in \mathcal{B}_X$.

Measurable Functions

Measurable functions are morphisms in the category of measurable spaces.

Let (ω, \mathcal{M}) and (Λ, \mathcal{N}) be measurable spaces. $f: \Omega \to \Lambda$ is called \mathcal{M} - \mathcal{N} -measurable if $E \subseteq \mathcal{N}$ implies $f^{-1}(E) \in \mathcal{M}$.

When mapping into \mathbb{R} or \mathbb{C} , we assume the codomain is equipped with the Borel σ -algebra.

- (1) $f: \Omega \to \mathbb{F}$ is measurable if $f^{-1}(B) \in \mathcal{M} \ \forall B \in \mathcal{B}_{\mathbb{F}}$.
- (2) For $S \subseteq \mathbb{R}$, $f: S \to \mathbb{F}$ is measurable if it is $\mathcal{L}_S \mathcal{B}_{\mathbb{F}}$ -measurable.

Proposition: Measurability On a Generated σ -Algebra

Suppose $\sigma(\mathcal{E}) = \mathcal{N}$. Then, $f: \Omega \Rightarrow *$ is measurable if and only if $f^{-1}(E) \in \mathcal{M} \ \forall E \in \mathcal{E}$.

Proof: The forward direction is clear.

In the reverse direction, let $\mathcal{F} = \{ F \subseteq \Lambda \mid f^{-1}(F) \in \mathcal{M} \}$. We have that $\mathcal{E} \subseteq \mathcal{F}$. All we need do is show that \mathcal{F} is a σ -algebra, so $\mathcal{N} \subseteq \mathcal{F}$.

Thus, if $f: X \to Y$ is continuous between metric spaces, then f is \mathcal{B}_{X} - \mathcal{B}_{Y} -measurable.

Additionally, $f: \Omega \to \mathbb{R}$ is measurable if and only if $[f < b] := \{x \in \Omega \mid f(x) < b\}$, or $[f < b] = f^{-1}((-\infty, b))$ is in \mathcal{M} for all $b \in \mathbb{R}$.

Extended Real Numbers

We sometimes work with the extended real numbers $\overline{\mathbb{R}} = [-\infty, \infty] = \mathbb{R} \cup \{\pm \infty\}$. It isn't a field, but $-\infty \le a \le \infty$ for all $a \in \overline{\mathbb{R}}$.

Exercise: $\mathcal{B}_{\overline{\mathbb{R}}} = \{ E \subseteq \overline{\mathbb{R}} \mid E \cap \mathbb{R} \in \mathcal{B}_{\mathbb{R}} \}$ is a σ -algebra on $\overline{\mathbb{R}}$.

A member of $\mathcal{B}_{\mathbb{R}}$ looks like $B, B \cup \{\infty\}, B \cup \{-\infty\}, B \cup \{\pm\infty\}$ where $B \in \mathcal{B}_{\mathbb{R}}$.

- (1) $f: \Omega \to \overline{\mathbb{R}}$ is measurable if it is \mathcal{M} - $\mathcal{B}_{\overline{\mathbb{R}}}$ -measurable.
- (2) $S \subseteq \mathbb{R}$, $f: S \to \overline{\mathbb{R}}$ is measurable if f is \mathcal{L}_S - $\mathcal{B}_{\overline{\mathbb{R}}}$ -measurable.

Proposition: Preservation of Measurability under Operations

If $f, g: \Omega \to \mathbb{R}$ are measurable, then

- (1) $\alpha \in \mathbb{R}$, αf is measurable;
- (2) $f \pm g$ is measurable;
- (3) fg is measurable;
- (4) $\frac{f}{g}$ is measurable provided $g \neq 0$ on Ω .

Proof of (2): Fix $b \in \mathbb{R}$. We want to show that $[f+g < b] \in \mathcal{M}$. Let $x \in \Omega$ such that f(x) + g(x) < b. Then, f(x) < b - g(x).

So, $\exists r \in \mathbb{Q}$ with f(x) < r < b - g(x). So, g(x) < b - r. Therefore, $[f + g < b] \subseteq \bigcup_{r \in \mathbb{Q}} ([f < r] \cap [g < b - r])$. Reverse inclusion is straightforward.

Proof of (3): First, we will show that f^2 is measurable.

If $b \le 0$, then $[f^2 < b] = \emptyset$.

Let b > 0. Then, $[f^2 < b] = [-\sqrt{b} < f < \sqrt{b}] = f^{-1}((-\sqrt{b}, \sqrt{b}))$.

We have $fg = \frac{1}{2} \left((f+g)^2 - f^2 - g^2 \right)$, so from (1), (2), and above, we have fg is measurable.

Exercise: $\sigma(\{[-\infty,b)\mid b\in\mathbb{R}\})=\sigma(\{[-\infty,b]\mid b\in\mathbb{R}\})=\mathcal{B}_{\overline{\mathbb{R}}}.$ When checking if $f:\Omega\to\overline{\mathbb{R}}$ is measurable, we need only check $f^{-1}([-\infty,b])$ is measurable.

Proposition: More Preservation of Measurability

Let $f, g: \Omega \to \overline{\mathbb{R}}$. Then,

- (1) max(f, g) is measurable;
- (2) min(f, g) is measurable;
- (3) $f^+ = \max(f, 0)$ and $f^- = -\min(f, 0)$ are measurable;
- (4) |f| is measurable.

Proof: Fix $b \in \mathbb{R}$.

(1)

$$[\max(f, g) < b] = [f < b] \cap [g < b].$$

(2)

$$[\min(f, g) < b] = [f < b] \cup [g < b].$$

(3)

$$[\max(f, 0) < b] = [f < b] \cap [0 < b]$$
$$[-\min(f, 0) < b] = [-f < b] \cup [0 < b].$$

(4)
$$|f| = f^+ + f^-$$
.

Proposition: Sequence of Measurable Functions

Let $(f_n : \Omega \to \overline{\mathbb{R}})_n$ be a sequence of measurable functions. Then,

- (1) sup f_n is measurable;
- (2) inf f_n is measurable;
- (3) $\limsup f_n$ is measurable;
- (4) $\lim \inf f_n$ is measurable.

Proof: Let $b \in \mathbb{R}$.

(1)

$$[\sup f_n \le b] = \bigcap_{n=1}^{\infty} [f_n \le b]$$

(2)

$$[\inf f_n < b] = \bigcup_{n=1}^{\infty} [f_n < b]$$

(3)

$$\limsup f_n = \inf_{m \ge 1} \left(\sup_{n \ge m} f_n \right)$$

(4)

$$\liminf f_n = \sup_{m \ge 1} \left(\sup_{n \ge m} f_n \right)$$

Proposition: Pointwise Convergence of Measurable Functions

Let $(f_n : \Omega \to \overline{\mathbb{R}})$ be a sequence of measurable functions with $(f_n)_n \to f$ pointwise. Then, f is measurable.

Proof: If $(f_n)_n \to f$ pointwise, then $f = \limsup f_n = \liminf f_n$.

Simple Functions

(1) for $E \subseteq \Omega$, then $\mathbb{1}_E : \Omega \to \mathbb{R}$, the characteristic function of E, is defined by

$$\mathbb{1}_{E}(x) = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}.$$

If $E = \{x_0\}$, then we write $\mathbb{1}_E = \delta_{x_0}$.

(2) A simple function $\phi:\Omega\to\mathbb{R}$ is a linear combination of characteristic functions.

$$\phi = \sum_{k=1}^{n} c_k \mathbb{1}_{E_k}.$$
 $c_k \in \mathbb{R}, E_k \subseteq \Omega$

Remark: ϕ can assume finitely many values, specifically at most 2^n .

If $ran(\phi) = \{d_1, \dots, d_m\}$, where d_j are distinct. Write $D_j = \phi^{-1}(\{d_j\})$. Then,

$$\phi = \sum_{j=1}^m d_j \mathbb{1}_{D_j}$$

is known as the *standard form*, where d_j are distinct, and $\bigsqcup D_j = \Omega$.

Exercise 1: Given $\phi = \sum_{k=1}^{n} c_k \mathbb{1}_{E_k}$, ϕ is measurable if and only if $E_k \in \mathcal{M}$.

Exercise 2: If X is a metric space, $\mathbb{1}_E$ is continuous if and only if E is clopen in X.

Proposition: Properties of Characteristic Functions

(1)

$$\mathbb{1}_{\bigsqcup D_j} = \sum_{j=1}^m \mathbb{1}_{D_j}$$

(2)

$$\mathbb{1}_E \cdot \mathbb{1}_F = \mathbb{1}_{E \cap F}$$

(3)

$$\begin{split} & \Sigma(\Omega) := \{\phi \mid \phi : \Omega \to \mathbb{R} \text{ simple} \} \\ & \Sigma(\Omega, \mathcal{M}) := \{\phi \mid \phi : \Omega \to \mathbb{R} \text{ simple and measurable} \} \end{split}$$

is a unital separating subalgebra of $\mathcal{F}(\Omega, \mathbb{R})$.

(4) Let X be a compact, totally disconnected metric space. Then,

$$\mathfrak{C} := \operatorname{span}\{\mathbb{1}_E \mid E \subseteq X \text{ clopen}\}$$

is a unital separating subalgebra for C(X).

Therefore, $\overline{\mathfrak{C}}^{\|\cdot\|_u} = C(X)$.

Theorem: Pointwise Convergence of Simple Measurable Functions

If (Ω, \mathcal{M}) is a measurable space, and $f: \Omega \to \overline{\mathbb{R}}$ is measurable, there is a sequence $(\phi_n)_n$ of simple measurable functions such that $\phi_n(x) \to f(x)$ for all $x \in \Omega$.

If $f \geq 0$, we can take $(\phi_n)_n$ to be pointwise increasing.

If f is bounded, then $(\|f - \phi_n\|_u)_n \to 0$, and ϕ_n are uniformly bounded: $\sup \|\phi_n\|_u < \infty$.

Proof: Assume that $f \ge 0$. For each n, partition $[0, 2^n]$ into subintervals of length 2^{-n} . We will have 2^{2n} subintervals:

$$I_{n,0} = \left[0, \frac{1}{2^n}\right]$$

$$I_{n,k} = \left(\frac{k}{2^n}, \frac{k+1}{2^n}\right],$$

with $k = 1, 2, ..., 2^{2n} - 1$. We define $J_n = (2^n, \infty]$.

Let
$$E_{n,k} = f^{-1}(I_{n,k})$$
, with $k = 1, 2, ..., 2^{2n} - 1$. Let $F_n = f^{-1}(J_n)$.

Notice that
$$\left(\bigsqcup_{k=1}^{2^{2n}-1} E_{n,k}\right) \sqcup F_n = \Omega$$
, and $E_{n,k}$, F_n are measurable.

Let

$$\phi_n = \sum_{k=0}^{2^{2n}-1} \frac{k}{2^n} \mathbb{1}_{E_{n,k}} + 2^n \mathbb{1}_{F_n}.$$

We see that ϕ_n are simple, measurable, and positive.

Fix $x \in \Omega$. If f(x) is finite, there is a large N with $f(x) \le 2^N$. Fix $n \ge N$. Then, $\exists ! k$ with $x \in E_{n,k}$, meaning that $\frac{k}{2^n} < f(x) \le \frac{k+1}{2^n}$.

Thus, we have

$$|f(x) - \phi_n(x)| = \left| f(x) - \frac{k}{2^n} \right|$$

$$\leq \frac{1}{2^n}.$$

Thus, as $n \to \infty$, we have $(\phi_n(x)) \to f(x)$.

If $f(x) = +\infty$, then $x \in F_n$ for all n. So, $\phi_n(x) = 2^n$ for all n, which converges to f(x).

If f is bounded, then for large n, $F_n = \emptyset$. So, $||f - \phi_n||_u \le 2^{-n}$, since our choice of N above works for all x. Thus, $(\varphi_n)_n \xrightarrow{\|\cdot\|_u} f$, and clearly $\sup ||\phi_n||_u \le ||f||_u$.

If $f: \Omega \to \overline{\mathbb{R}}$ is measurable, then $f = f^+ - f^-$, where f^+ and f^- are positive and measurable. Perform the above procedure for f^+ and f^- , and subtract.

Proposition: Measure on set of Measurable Functions

Let (Ω, \mathcal{M}) be a measurable space.

$$L_0(\Omega, \mathcal{M}) := \{ f : \Omega \to \mathbb{R} \mid f \text{ measurable} \}$$

is a unital, commutative algebra. Let μ be a measure on (Ω, \mathcal{M}) . Define a relation on $L_0(\Omega, \mathcal{M})$:

$$f \sim_{\mu} g \Leftrightarrow \mu \left(\underbrace{\left\{x \mid f(x) \neq g(x)\right\}}_{\left(\left\{f-g\right\}^{-1}\left(\left\{0\right\}\right)\right\}^{c}}\right) = 0.$$

Then, \sim_{μ} is an equivalence relation.

We define

$$L(\Omega, \mathcal{M}, \mu) := L_0(\Omega, \mathcal{M}) / \sim_{\mu}$$

is a unital, commutative algebra.

$$[f]_{\mu} + [g]_{\mu} = [f + g]_{\mu}$$

 $\alpha[f]_{\mu} = [\alpha f]_{\mu}$
 $[f]_{\mu} \cdot [g]_{\mu} = [fg]_{\mu}$.

Proof: Reflexivity and symmetry are clear.

Let $f \sim_{\mu} g \sim_{\mu} h$. Let $N := \{x \mid f(x) \neq g(x)\}$ and $M = \{x \mid g(x) \neq h(x)\}$. We know that $\mu(N) = 0 = \mu(M)$.

$$N^{c} \cap M^{c} \subseteq \{x \mid f(x) = h(x)\}.$$
$$\{x \mid f(x) \neq h(x)\} \subseteq N \cup M.$$

Since $\mu(N \cup M) = 0$, so too is $\mu(\{x \mid f(x) \neq h(x)\})$.

Essentially Bounded Functions

Let $(\Omega, \mathcal{M}, \mu)$ be a measure space. Suppose $f \in L_0(\Omega, \mathcal{M})$.

- (1) $c \ge 0$ is an essential bound for f if $\mu(\{x \mid |f(x)| > c\}) = 0$. If f admits an essential bound, f is called essentially bounded.
- (2) The essential supremum, $\operatorname{ess\,sup}(f) = \inf(\{c \mid c \text{ is an essential bound}\})$. We say $\operatorname{ess\,sup}(f) = \infty$ if f has no essential bound.

For example, if $f = \mathbb{1}_{\mathbb{Q}}$, then $\operatorname{ess\,sup}(f) = 0$. At the same time, $\|f\|_u = 1$.

Lemma: Essential Supremum Property

Let $(\Omega, \mathcal{M}, \mu)$ be a measure space. For $f \in L_0(\Omega, \mathcal{M})$, $|f(x)| \le \operatorname{ess\,sup}(f)$ for almost every $x \in \Omega$ (μ -almost everywhere). We say μ -a.e. if $x \in \Omega$ means $\forall x \in \Omega \setminus N$, where $\mu(N) = 0$.

Proof: If $ess sup(f) = \infty$, then we are done.

Suppose $c_f = \operatorname{ess\,sup}(f) < \infty$. For $n \ge 1$, \exists essential bound c_n for f such that $c_f + 1/n > c_n$.

Let $N_n = \{x \mid |f(x)| > c_n\}$. Since c_n is an essential bound, $\mu(N_n) = 0$.

$$\mu\left(\left\{x\mid|f(x)|\leq c_f\right\}^c\right) = \mu\left(\left\{x\mid|f(x)|>c_f\right\}^c\right)$$

$$= \mu\left(\bigcup_{n\geq 1}\left\{x\mid|f(x)|>c_f+1/n\right\}\right)$$

$$\subseteq \mu\left(\bigcup_{n\geq 1}\left\{x\mid|f(x)|>c_n\right\}\right)$$

$$= \mu\left(\bigcup_{n\geq 1}N_n\right)$$

$$= 0.$$

Proposition: Arithmetic Operations of Essential Supremum

Let $(\Omega, \mathcal{M}, \mu)$ be a measure space, and $f, g \in L_0(\Omega, \mathcal{M})$. Then,

- (1) $\operatorname{ess\,sup}(f+g) \le \operatorname{ess\,sup}(f) + \operatorname{ess\,sup}(g)$
- (2) $\operatorname{ess\,sup}(\alpha f) = |\alpha| \operatorname{ess\,sup}(f)$
- (3) $\operatorname{ess\,sup}(fg) \le (\operatorname{ess\,sup}(f)) (\operatorname{ess\,sup}(g))$
- (4) $\operatorname{ess\,sup}(f) = 0 \Rightarrow f = 0 \ \mu\text{-a.e.}$, so $[f]_0 = L(\Omega, \mathcal{M}, \mu)$
- (5) $\operatorname{ess\,sup}(\mathbb{1}_\Omega) = 1$
- (6) $ess sup(f) \le ||f||_{H}$
- (7) $f \sim_{\mu} g \Rightarrow \operatorname{ess\,sup}(f) = \operatorname{ess\,sup}(g)$.

Proof of (1): Assume $c_f = \operatorname{ess\,sup}(f)$, $c_g = \operatorname{ess\,sup}(g)$, with c_f , $c_g < \infty$.

Let $N = \{x \mid |f(x)| > c_f\}$ and $M = \{x \mid |g(x)| > c_g\}$. Both N and M are μ -null, by the lemma.

$$\underbrace{\{x \mid |(f+g)(x)| > c_f + c_g\}}_{\mu\text{-null } (f+g \text{ measurable})} \subseteq N \cup M.$$

Therefore, $c_f + c_g$ is an essential bound for f + g. Thus, $\operatorname{ess\,sup}(f + g) \le c_f + c_g$.

Proof of (7): Let $N = \{x \mid f(x) \neq g(x)\}$. It is the case that $\mu(N) = 0$. Let $c_f = \operatorname{ess\,sup}(f)$ and $N_f = \{x \mid |f(x)| > c_f\}$, which is is μ -null by the lemma.

Then, $\{x \mid |g(x)| > c_f\} \subseteq N_f \cup N$ is μ -null.

Therefore, c_f is an essential bound for g. Thus, $\operatorname{ess\,sup}(g) \leq c_f$.

Similarly, ess sup $(f) \leq c_q$.

Proposition: Properties of L_{∞}

Let $(\Omega, \mathcal{M}, \mu)$ be a measure space.

$$\{[f] \in L(\Omega, \mathcal{M}, \mu) \mid \operatorname{ess\,sup}(f) < \infty\}$$

is a unital commutative Banach algebra with norm $\|[f]_{\mu}\|_{\infty} = \operatorname{ess\,sup}(f)$. It is denoted $L_{\infty}(\Omega,\mu)$.

Proof: All we need show is completeness.

Let $(f_n)_n$ be Cauchy in $L_\infty(\Omega,\mu)$. Then, $|f_n(x)| \leq ||f_n||_\infty$ for all $x \in N_n^c$, where $\mu(N_n) = 0$. Let $N = \bigcup_{n \geq 1} N_n$. Then, $\mu(N) = 0$.

For all $x \in \mathbb{N}^c$, we have $|f_n(x)| \le \|f_n\|_{\infty}$ for all n. Set

$$g_n(x) = \begin{cases} f_n(x) & x \in \mathbb{N}^c \\ 0 & x \in \mathbb{N} \end{cases}.$$

Then, $g_n = f_n$ in $L_{\infty}(\Omega, \mu)$. Note that $(g_n : \Omega \to \mathbb{R})_{n \ge 1}$ are uniformly Cauchy in $\ell_{\infty}(\Omega)$ (in N^c , $|g_n - g_m| = |f_n - f_m| < \varepsilon$, and in N, $|g_n - g_m| = 0$).

Since $\ell_{\infty}(\Omega)$ is complete, we know $(g_n)_n \to g$ in $\ell_{\infty}(\Omega)$. Certainly, $g \in L_{\infty}(\Omega, \mu)$. Thus,

$$||f_n - g||_{\infty} = ||g_n - g||_{\infty}$$

$$\leq ||g_n - g||_{u}$$

$$\to 0.$$

so $L_{\infty}(\Omega, \mu)$ is complete.

Lebesgue Integration

Fix a measure space $(\Omega, \mathcal{M}, \mu)$.

Define $\phi:\Omega\to[0,\infty)$ be simple, positive, and measurable, given by

$$\phi = \sum_{k=1}^n d_k \mathbb{1}_{D_k}.$$

Standard Form

Then,

$$\int_{\Omega} \phi \ d\mu := \sum_{k=1}^n d_k \mu(D_k),$$

with the convention that $0 \cdot \infty = 0$.

Fact: If $\phi = \sum_{j=1}^m c_j \mathbb{1}_{E_j}$, with $c_j \geq 0$ and $E_j \in \mathcal{M}$, not necessarily in standard form. Then,

$$\int_{\Omega} \phi \ d\mu = \sum_{j=1}^{m} c_{j} \mu(E_{j}).$$

Properties of Integral of Simple Functions

Let $\phi, \psi: \Omega \to [0, \infty)$ be simple, measurable, and positive. Then,

(i)

$$\int_{\Omega} (\phi + \psi) \ d\mu = \int_{\Omega} \phi \ d\mu + \int_{\Omega} \psi \ d\mu$$

(ii) For $\alpha \geq 0$

$$\int_{\Omega} \alpha \phi \ d\mu = \alpha \int_{\Omega} \phi \ d\mu.$$

(iii) If $0 \le \phi \le \psi$, then

$$\int_\Omega \phi \ d\mu \leq \int_\Omega \psi \ d\mu$$

Proof of (iii): Let

$$\phi = \sum_{k=1}^n c_k \mathbb{1}_{E_k}$$
 $\psi = \sum_{\ell=1}^m d_\ell \mathbb{1}_{F_\ell}$

be standard representations. Consider a common refinement $\{E_k \cap F_\ell\}_{k,\ell}$. Then,

$$\begin{split} \mathbb{1}_{E_k} &= \mathbb{1}_{\bigsqcup_{\ell} E_k \cap F_{\ell}} \\ &= \sum_{\ell=1}^m \mathbb{1}_{E_k \cap F_{\ell}}. \end{split}$$

Thus,

$$\phi = \sum_{k=1}^{n} c_k \sum_{\ell=1}^{m} \mathbb{1}_{E_k \cap F_\ell}$$
$$= \sum_{k \ell} c_{k,\ell} \mathbb{1}_{E_k \cap F_\ell},$$

where

$$c_{k,\ell} = \begin{cases} 0 & E_k \cap F_\ell = \emptyset \\ c_k & E_k \cap F_\ell \neq \emptyset \end{cases}.$$

Similarly,

$$\psi = \sum_{k,\ell} d_{k,\ell} \mathbb{1}_{E_k \cap F_\ell},$$

$$d_{k,\ell} = \begin{cases} d_\ell & E_k \cap F_\ell \neq \emptyset \\ 0 & E_k \cap F_\ell = \emptyset \end{cases}.$$

Then, $c_{k,\ell} \leq d_{k,\ell}$.

$$\int_{\Omega} \phi \ d\mu = \sum_{k,\ell} c_{k,\ell} \mu(E_k \cap F_\ell)$$

$$\leq \sum_{k,\ell} d_{k,\ell} \mu(E_k \cap F_\ell)$$

$$= \int_{\Omega} \psi \ d\mu.$$

Definition of the Lebesgue Integral

Let $f: \Omega \to [0, \infty]$ be measurable. Then,

$$\int_{\Omega} f \ d\mu := \sup \left\{ \int_{\Omega} \phi \ d\mu \mid 0 \le \phi \le f, \text{ simple, measurable} \right\}$$

For $E \in \mathcal{M}$, we define

$$\int_{E} f \ d\mu = \int_{\Omega} (f) \left(\mathbb{1}_{E} \right) \ d\mu.$$

We say f is (Lebesgue) integrable if $\int_{\Omega} f \ d\mu < \infty$.

Exercise:

$$\int_{(0,1]} \frac{1}{x} \ d\lambda = +\infty.$$

Proposition: Properties of the Lebesgue Integral

The following follow from the results about simple functions. Let $f, g: \Omega \to [0, \infty]$ measurable.

(1) For $\alpha \geq 0$

$$\int_{\Omega} (\alpha f) \ d\mu = \alpha \int_{\Omega} f \ d\mu;$$

(2) For $0 \le f \le g$

$$\int_{\Omega} f \ d\mu \leq \int_{\Omega} g \ d\mu.$$

Theorem: Monotone Convergence of Lebesgue Integral

Suppose $(f_n : \Omega \to [0, \infty])_{n \ge 1}$ are positive, measurable, and pointwise increasing. Let $f : \Omega \to [0, \infty]$ defined by $f(x) = \lim_{n \to \infty} f_n(x)$. Then,

$$\int_{\Omega} f \ d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \ d\mu$$
$$= \sup \int_{\Omega} f_n \ d\mu.$$

Proof: Note that $\lim_{n\to\infty} f_n(x) \in [0,\infty]$ always exists, since $(f_n(x))_n$ is an increasing sequence.

Also, f is measurable (pointwise limit of measurable functions). Moreover,

$$\int_{\Omega} f_n \ d\mu \leq \int_{\Omega} f_{n+1} \ d\mu.$$

Therefore,

$$\lim_{n\to\infty}\int_\Omega f_n\ d\mu=\sup\int_\Omega f_n\ d\mu$$

exists in $[0,\infty]$. Note that $\int_{\Omega} f_n \ d\mu \leq \int_{\Omega} f \ d\mu$, since $f_n \leq f$. Thus, $\sup \int_{\Omega} f_n \ d\mu \leq \int_{\Omega} f \ d\mu$.

Let 0 < t < 1. Let $\phi : \Omega \to [0, \infty)$ be simple and measurable with $0 \le \phi \le f$.

Set $E_n = \{x \in \Omega \mid f_n(x) \ge t\phi(x)\}$. Note $E_1 \subseteq E_2 \subseteq \cdots$ (since f_n are increasing). Additionally,

$$\bigcup_{n\geq 1} E_n = \Omega.$$

Notice that E_n are also measurable.

If $A \subseteq \Omega$ is any measurable set. Then, $A \cap E_1 \subseteq A \cap E_2 \subseteq \cdots$, and $\bigcup_{n \geq 1} (A \cap E_n) = A$. Therefore, $(\mu(A \cap E_n))_n \to \mu(A)$ by continuity of μ .

Suppose $\phi = \sum_{k=1}^m a_k \mathbb{1}_{A_k}$. Then,

$$\phi \mathbb{1}_{E_n} = \sum_{k=1}^m a_k \mathbb{1}_{A_k \cap E_n}$$

$$\int_{\Omega} \phi \mathbb{1}_{E_n} d\mu = \sum_{k=1}^m a_k \mu(A_k \cap E_n)$$

$$\to \sum_{k=1}^m a_k \mu(A_k)$$

$$= \int_{\Omega} \phi d\mu.$$

Therefore,

$$\int_{\Omega} f_n \ d\mu \ge \int_{\Omega} f_n \mathbb{1}_{E_n} \ d\mu$$

$$\ge \int_{\Omega} t \phi \mathbb{1}_{E_n} \ d\mu$$

$$= t \int_{\Omega} \phi \mathbb{1}_{E_n} \ d\mu$$

$$\lim_{n \to \infty} \int_{\Omega} f_n \ d\mu \ge t \int_{\Omega} \phi \ d\mu.$$

Taking the supremum over all ϕ ,

$$t\int_{\Omega}f\ d\mu\leq\lim_{n\to\infty}\int_{\Omega}f_n\ d\mu,$$

and taking the supremum over all t, we get

$$\int_{\Omega} f \ d\mu \leq \lim_{n \to \infty} \int_{\Omega} f_n \ d\mu.$$

Remark: Given $f:\Omega\to [0,\infty]$ measurable, we proved that there exists a sequence $(\phi_n)_n$ of positive, simple, measurable functions with $(\phi_n)_n\to \phi$ pointwise increasing. Thus, by the monotone convergence theorem, $\int_\Omega \phi\ d\mu\to \int_\Omega f\ d\mu$.

Linearity of the Lebesgue Integral over $[0, \infty]$

Let $f, g: \Omega \to [0, \infty]$ be measurable. Then,

$$\int_{\Omega} (f+g) \ d\mu = \int_{\Omega} f \ d\mu + \int_{\Omega} g \ d\mu.$$

Proof: Use the Monotone Convergence Theorem and the earlier remark.

Lebesgue Integral over $\overline{\mathbb{R}}$

Let $f: \Omega \to \overline{\mathbb{R}}$ be measurable.

(1) If either f^+ or f^- is measurable, then

$$\int_{\Omega} f \ d\mu := \int_{\Omega} f^+ \ d\mu - \int_{\Omega} f^- \ d\mu.$$

(2) f is said to be integrable if both f^+ and f^- are integrable.

Lemma: Absolute Value of Integrable Function

f is integrable if and only if |f| is integrable.

Proof: If f is integrable, then f^+ and f^- are integrable, meaning

$$|f| = f^+ + f^-$$

$$\int_{\Omega} |f| \ d\mu = \int_{\Omega} f^+ \ d\mu + \int_{\Omega} f^- \ d\mu.$$

If |f| is integrable, then $\int_{\Omega} f \ d\mu \leq \int_{\Omega} |f| \ d\mu < \infty$.

Proposition: Linearity of the Lebesgue Integral over $\mathbb R$

Let $f, g: \Omega \to \mathbb{R}$ be integrable.

(1)

$$\int_\Omega \alpha f \ d\mu = \alpha \int_\Omega f \ d\mu$$

(2)

$$\int_{\Omega} (f+g) \ d\mu = \int_{\Omega} f \ d\mu + \int_{\Omega} g \ d\mu.$$

(3) If $f \leq g$, then

$$\int_{\Omega} f \ d\mu \leq \int_{\Omega} g \ d\mu$$

(4)

$$\left| \int_{\Omega} f \ d\mu \right| \leq \int_{\Omega} |f| d\mu$$

Proof of (2): Write h as f + g. Note that $|h| \le |f| + |g|$, so h is integrable. Then,

$$h^+ - h^- = f^+ - f^- + g^+ - g^-$$

 $h^+ + f^- + g^- = f^+ + g^+ + h^-.$

Integrating and using linearity, we get

$$\int h^{+} d\mu + \int g^{-} d\mu + \int f^{-} d\mu = \int f^{+} d\mu + \int g^{+} d\mu + \int h^{-} d\mu$$

$$\int h^{+} d\mu - \int h^{-} d\mu = \int f^{+} d\mu - \int f^{-} d\mu + \int g^{+} d\mu - \int g^{-} d\mu$$

$$\int h d\mu = \int f d\mu + \int g d\mu.$$

Proof of (3): If $f \leq g$, then $g - f \geq 0$, so $\int (g - f) d\mu \geq 0$, meaning $\int g d\mu - \int f d\mu \geq 0$.

Proof of (4): $-|f| \le f \le |f|$. Using (3) and (1),

$$-\int |f| \ d\mu \le \int f \ d\mu \le \int |f| \ d\mu$$
$$\left| \int f \ d\mu \right| \le \int |f| \ d\mu.$$

Proposition: Integrable Function over Extended Real Line

Let $f: \Omega \to \overline{\mathbb{R}}$ is integrable. Then, f is finite μ -almost everywhere.

Proof: Let $E = \{x \mid |f(x)| = \infty\}$. For any $n \in \mathbb{N}$, $|f| \ge n\mathbb{1}_E$.

Therefore, we have $\infty > \int_{\Omega} f \ d\mu \ge \int_{\Omega} n \mathbb{1}_E = n\mu(E)$. Since this is true for any n, it must be the case that $\mu(E) = 0$.

Proposition: Chebyshev's Inequality

Let $f: \Omega \to [0, \infty]$ be integrable. Then, $\mu(\{x \mid f(x) \ge t\}) \le \frac{1}{t} \int_{\Omega} f \ d\mu$.

Proof: Let $E_t = \{x \mid f(x) \ge t\}$. Thus, $f1_{E_t} \ge t1_E$. Thus,

$$\int_{\Omega} f \ d\mu \ge \int_{\Omega} f \mathbb{1}_{E_t} \ d\mu$$

$$\ge \int_{\Omega} t \mathbb{1}_{E_t} \ d\mu$$

$$= t\mu(E_t).$$

Proposition: Zero Definiteness

Let $f: \Omega \to \overline{\mathbb{R}}$ be measurable. Then,

$$\int_{\Omega} |f| \ d\mu = 0 \Leftrightarrow f = 0 \ \mu$$
-a.e.

Proof: Suppose f = 0 μ -a.e., and we can assume f is positive.

Suppose $0 \le \phi \le f$ with ϕ simple and measurable. Then, $\phi = 0$ μ -a.e. If

$$\phi = \sum_{k=1}^n c_k \mathbb{1}_{E_k},$$

then

$$\int_{\Omega} \phi \ d\mu = \sum_{k=1}^{n} c_k \mu(E_k).$$

If $c_k \neq 0$, then $\mu(E_k) = 0$ (by the definition of μ -a.e.) Thus, $\int_{\Omega} \phi \ d\mu = 0$, meaning $\int_{\Omega} f \ d\mu = 0$.

Suppose $\int_{\Omega} |f| \ d\mu = 0$. Consider $\{x \mid f(x) > 0\} = \bigcup_{n \geq 1} \{x \mid f(x) > 1/n\}$, meaning

$$\mu\left(\left\{x\mid f(x)\geq 1/n\right\}\right)\leq n\int_{\Omega}f\ d\mu=0,$$
 Chebyshev's Inequality

so $\mu(\{x \mid f(x) > 0\}) = 0$.

Exercise: If $f: \Omega \to \overline{\mathbb{R}}$ is integrable, and $\mu(N) = 0$, then $\int_N f \ d\mu = 0$.

Proposition: Equivalent Integrals

Let $f, g: \Omega \to \overline{\mathbb{R}}$ integrable, and $f = g \mu$ -a.e. Then, $\int_{\Omega} f \ d\mu = \int_{\Omega} g \ d\mu$.

Proof: We find $\int_{\Omega} (f - g) \ d\mu = 0$. Since \int is linear, we are done.

Defining L_1

Let $(\Omega, \mathcal{M}, \mu)$ be a measure space. Then,

$$L_1(\Omega, \mu) := \{ [f]_{\mu} \in L(\Omega, \mu) \mid f \text{ integrable} \}.$$

Proposition: Properties of L^1

- (1) $L_1(\Omega, \mu) \to \mathbb{R}$, $[f]_{\mu} \mapsto \int_{\Omega} f \ d\mu$ and $[f]_{\mu} \mapsto \int_{\Omega} |f| \ d\mu$ are well-defined maps.
- (2) $L_1(\Omega, \mu)$ equipped with

$$||[f]_{\mu}||_{1} = \int_{\Omega} |f| \ d\mu$$

is a Banach space.

Proof:

- (1) Exercise.
- (2) We have already shown that $||[f]_{\mu}||_1$ is a norm.

Convergence of Integrable Functions

Fix a measure space $(\Omega, \mathcal{M}, \mu)$. If $(f_n : \Omega \to \mathbb{R})_n$ is a sequence of integrable functions with $(f_n)_n \to f$ pointwise, with f integrable, can we ensure

$$\int_{\Omega} f_n \ d\mu \to \int_{\Omega} f \ d\mu.$$

Alternatively, can we ensure

$$||f_n - f||_1 \to 0.$$

One way we can ensure it is if $(f_n)_n \to f$ uniformly and $\mu(\Omega) < \infty$, we find

$$\int |f_n - f| \ d\mu \le \int_{\Omega} ||f_n - f||_u \ d\mu$$

$$\le \mu(\Omega) ||f_n - f||_u$$

$$\to 0.$$

However, this condition is too strong.

- (1) Consider $(f_n : \mathbb{R} \to \mathbb{R})_n$, $f_n = n\mathbb{1}_{(0,1/n)}$. We see that $(f_n)_n \to \mathbb{0}$ pointwise, but $\int_{\mathbb{R}} f_n \ d\mu = 1$.
- (2) Let $g_n = \mathbb{1}_{(0,1/n)}$. We see that $(g_n)_n \to 0$ pointwise, but $\int_{\mathbb{R}} g_n \ d\mu = n$.
- (3) Let $h_n = \mathbb{1}_{(n,n+1)}$. Then, $(h_n)_n \to 0$ pointwise, but $\int_{\mathbb{R}} h_n \ d\mu = 1$.
- (4) Let $(k_n : \mathbb{R} \to \mathbb{R})_n$ be defined by $k_n = \frac{1}{n}\mathbb{1}_{(0,n)}$. Then, $(k_n)_n \to \mathbb{0}$ uniformly, but $\int_{\mathbb{R}} k_n \ d\mu = 1$.

Convergence in Measure

Let $f: \Omega \to \mathbb{R}$ be measurable, and $(f_n: \Omega \to \mathbb{R})_n$ be a sequence of measurable functions. Then, $(f_n)_n \to f$ in measure if $\forall \delta > 0$, $\mu(\{x \mid |f_n(x) - f(x)| \ge \delta\}) \xrightarrow{n \to \infty} 0$.

In all the above examples, we can see that $(f_n)_n$ and $(g_n)_n$ converge to $\mathbb O$ in measure. Additionally, we see $(k_n)_n \to \mathbb O$ in measure (for any $\delta > 0$, $\exists N$ large such that $1/N < \delta$). However, $(h_n)_n$ does not converge to $\mathbb O$ in measure (set $\delta = 1/2$).

Exercise: If $(f_n)_n \to f$ in L_1 , then $(f_n)_n \to f$ in measure. (Use Chebyshev's Inequality)

Fatou's Lemma

Let $(f_k : \Omega \to [0, \infty])_k$ be a sequence of measurable functions. Then,

$$\int_{\Omega} \liminf f_k \ d\mu \le \liminf \int_{\Omega} f_k \ d\mu.$$

Proof: Let
$$f := \liminf f_k = \sup_{n \ge 1} \left(\underbrace{\inf_{k \ge n} f_k}_{q_n} \right)$$

Notice that $(g_n)_n$ increase pointwise to f. By monotone convergence,

$$\sup_{n\geq 1}\int_{\Omega}g_n\ d\mu=\int_{\Omega}f\ d\mu.$$

Now, fix n. Note that $g_n \leq f_k$ for all $k \geq n$, meaning

$$\begin{split} &\int_{\Omega} g_n \ d\mu \leq \int_{\Omega} f_k \ d\mu \\ &\int_{\Omega} g_n \ d\mu \leq \inf_{k>n} \int_{\Omega} f_k \ d\mu \\ &\sup_{n\geq 1} \int_{\Omega} g_n \ d\mu \leq \sup_{n\geq 1} \left(\inf_{k\geq n} \int_{\Omega} f_k \ d\mu\right) \\ &\int_{\Omega} \liminf f_k \leq \liminf \int_{\Omega} f_k \ d\mu. \end{split}$$

Theorem: Lebesgue's Dominated Convergence

Let $(f_n : \Omega \to \mathbb{R})_n$ be a sequence of measurable functions with $(f_n)_n \to f$ pointwise. Suppose $\exists g : \Omega \to [0, \infty]$ integrable with $|f_n| \leq g$ for all n^1 . Then, $(f_n)_n$ and f are integrable, and

$$\int_{\Omega} f_n \ d\mu \to \int_{\Omega} f \ d\mu,$$

and $||f_n - f||_1 \to 0$.

Proof: The proof amounts to applying Fatou's Lemma to $g - f_n$ and $g + f_n$.

First, $|f_n| \le g$, so each f_n is integrable, meaning $|f| \le g$ and f is integrable.

$$\begin{split} \int_{\Omega} g \ d\mu + \int_{\Omega} f \ d\mu &= \int_{\Omega} (g+f) d \ \mu \\ &= \int_{\Omega} \liminf (g+f_n) \ d\mu \\ &\leq \liminf \int_{\Omega} (g+f_n) \ d\mu \\ &\leq \liminf \left(\int_{\Omega} g \ d\mu + \int_{\Omega} f_n \ d\mu \right) \\ &\leq \overbrace{\int_{\Omega} g \ d\mu + \liminf \int_{\Omega} f_n \ d\mu}. \end{split}$$

Thus,

$$\int_{\Omega} f \ d\mu \leq \liminf \int_{\Omega} f_n \ d\mu.$$

 $^{^{1}}$ Both pointwise convergence and $|f_{n}| \leq g$ apply μ -a.e.

Additionally,

$$\begin{split} \int_{\Omega} g \ d\mu - \int_{\Omega} f \ d\mu &= \int_{\Omega} (g - f) \ d\mu \\ &= \int_{\Omega} \liminf(g - f_n) \ d\mu \\ &\leq \liminf \int_{\Omega} g - f_n \ d\mu \\ &= \liminf \left(\int_{\Omega} g \ d\mu + \int_{\Omega} -f_n \ d\mu \right) \\ &\leq \int_{\Omega} g \ d\mu + \liminf \left(-\int_{\Omega} f_n \ d\mu \right) \\ &= \int_{\Omega} g \ d\mu - \limsup \int_{\Omega} f_n \ d\mu, \end{split}$$

meaning

$$\limsup \int_{\Omega} f_n \ d\mu \leq \int_{\Omega} f \, d\mu.$$

Thus, $\int_{\Omega} f_n \ d\mu = \int_{\Omega} f \ d\mu$.

Note that $|f-f_n| \to 0$ pointwise, and $|f-f_n| \le 2g$, with 2g still integrable. By above, we see that $\int_{\Omega} |f-f_n| \ d\mu \to 0$, which is convergence in L^1 .

Addenda

Using Dominated Convergence, we find that $C_c(\mathbb{R}) \subseteq L^1(\mathbb{R}, \lambda)$ is $\|\cdot\|_1$ -dense.

- $f \ge 0$ integrable implies the existence of $0 \le \phi_n \le f$ a sequence of simple functions increasing to f.
- If ϕ is simple and integrable, then $\phi = \sum_{k=1}^{n} c_k \mathbb{1}_{E_k}$, with E_k bounded. We see that there exist $\lambda(U \triangle E_k) < \varepsilon$ with U open in \mathbb{R} .
- We approximate each $\mathbb{1}_{E_k}$ with a continuous bump function on U.

Riesz Representation Theorem

Let X be a compact metric space. Let $\varphi: C(X) \to \mathbb{R}$ be bounded linear, positive $(f \ge 0 \Rightarrow \phi(f) \ge 0)$, and $\varphi(\mathbb{1}_X) = 1$. We call φ a state.

Then, there exists a unique regular Borel probability measure $\mu: \mathcal{B}_X \to [0,1]$ with

$$\phi(f) = \int_{\Omega} f \ d\mu.$$

Proof: We will prove this for $X = \Delta$, where Δ is the Cantor set.