A Comprehensive Study of Deep Learning Techniques for Supply Chain Demand Forecasting

IPE 4000

Submitted by,
Asef Shahriar
Roll no. 1611010
Department of IEM, KUET

Supervised by,
Md. Al Amin
Assistant Professor
Department of IEM, KUET

Significance Overview

Demand forecast has always been a vital part of supply chain.

Accurate forecasts = More Response, Failure Resiliency, Profit

Forecasting error = Costs to the organization

Traditional methods have low accuracy.

Today's supply chain demand is more complex incorporating more variables, seasonal components, special days, e-commerce etc..

Deep Learning have the potential to address these problems.

Objectives

To study different deep learning techniques for supply chain demand forecasting.

To evaluate the performance of advanced deep learning techniques in forecasting demand with high variability and seasonal components.

Methodology

Forecasting problem can be modeled as a supervised learning problem:

$$y = f(x)$$

Where, x is previous demand data and y is the forecast output.

Methodology-Data

- Two datasets:
 - Simulated Supply Chain
 - Real-world
- Windowing

Methodology

Methodology-Models

Model optimization

- Number of hidden layers
- Learning rate
- Choice of activation function
- Window size

State-of – the-art techniques	Hybrid- models	Other approaches
ANNCNNRNNLSTM	CNN- RNNCNN- LSTM	 Decomposition-based model Auxiliary variable addition Transfer Learning

Methodology

Methodology-Benchmarking

Three metrics:

•
$$RMSE = \sqrt{\frac{\sum_{1}^{n}(\hat{y}-y)^{2}}{n}}$$

•
$$MAPE = \frac{1}{n} \sum_{1}^{n} \left| \frac{y - \hat{y}}{y} \right|$$

Data costs

Reduced RMSE and MAPE.

Low data and development costs.

Expected Results

Model feasibility considering costs and other challenges.

Timeframe

Literature Study – Already completed

Data Collection – by February 2020

Model Implementation and Benchmarking - by March 2020

Results and Discussion – by April 2020

Thank you!

