Midterm 1

Jaden Wang

Problem (1).

a) Given $A, B \in \mathcal{G}$, by definition of \mathcal{G} there exist $A_1, B_1 \in \mathcal{F}_1$ and $A_2, B_2 \in \mathcal{F}_2$ such that $A = A_1 \cap A_2$, $B = B_1 \cap B_2$. Then

$$A \cap B = (A_1 \cap A_2) \cap (B_1 \cap B_2)$$
$$= (A_1 \cap B_1) \cap (A_2 \cap B_2)$$

Since σ -fields $\mathcal{F}_1, \mathcal{F}_2$ are closed under intersections, it follows that $A_1 \cap B_1 \in \mathcal{F}_1, A_2 \cap B_2 \in \mathcal{F}_2$. Hence $A \cap B \in \mathcal{G}$, and \mathcal{G} is a π -system by definition.

b) We wish to show double containment. Given $a \in \mathcal{G}$, there exists $A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2$ such that $a \in A_1 \cap A_2$. Since $\mathcal{F}_1, \mathcal{F}_2$ are σ -fields, the complements $A_1^c \in \mathcal{F}_1, A_2^c \in \mathcal{F}_2 \Rightarrow A_1^c \cup A_2^c \in \mathcal{F}_1 \cup \mathcal{F}_2$. Then $(A_1^c \cup A_2^c)^c = A_1 \cap A_2 \in \sigma(\mathcal{F}_1 \cup \mathcal{F}_2) \Rightarrow \mathcal{G} \subseteq \sigma(\mathcal{F}_1 \cup \mathcal{F}_2)$. Since a σ -field is also a λ -system, by Dynkin's π - λ theorem, $\sigma(\mathcal{G}) \subseteq \sigma(\mathcal{F}_1 \cup \mathcal{F}_2)$.

Now let's show the other direction. Given $b \in \mathcal{F}_1 \cup \mathcal{F}_2$, there exist $B_1 \in \mathcal{F}_1, B_2 \in \mathcal{F}_2$ such that $b \in B_1 \cup B_2 = (B_1^c \cap B_2^c)^c$. Clearly $B_1^c \in \mathcal{F}_1, B_2^c \in \mathcal{F}_2$, so $B_1^c \cap B_2^c \in \mathcal{G} \Rightarrow (B_1^c \cap B_2^c)^c \in \sigma(\mathcal{G}) \Rightarrow b \in \sigma(\mathcal{G}) \Rightarrow \mathcal{F}_1 \cup \mathcal{F}_2 \subseteq \sigma(\mathcal{G})$. Again by Dynkin's Theorem, $\sigma(\mathcal{F}_1 \cup \mathcal{F}_2) \subseteq \sigma(\mathcal{G})$. Therefore, we obtain $\sigma(\mathcal{G}) = \sigma(\mathcal{F}_1 \cup \mathcal{F}_2)$.

Problem (2). We would like to prove by contradiction. Suppose there exists an atom $A \in \mathcal{F}$ such that P(A) > 0 and $\forall B \in \mathcal{F}, B \subseteq A$, we have P(B) = 0 or P(B) = P(A). Let's define

$$B_n = \begin{cases} A_n & \text{if } P(A_n \cap A) = P(A) \\ A_n^c & \text{if } P(A_n^c \cap A) = P(A) \end{cases}$$

Notice that since each B_n only depends on A_n , and A_n are independent, we know B_n are independent too. This definition intuitively means that all the

 B_n always contain the mass of A. In other words,

$$P(A) \leq P(B_1 \cap B_2 \cap \ldots)$$

= $P(B_1)P(B_2)\ldots$ by independence
= $p_1 \cdot p_2 \cdot \ldots$

where we let $p_n = P(B_n)$ for convenience. Recall that $1 - x \le e^{-x} \Rightarrow x \le e^{-(1-x)}$, applying to each p_n and we have

$$P(A) \le e^{-(1-p_1)}e^{-(1-p_2)}\dots$$

$$\ln P(A) \le -\sum_{n=1}^{\infty} (1-p_n) \quad \text{by monotonicity of ln}$$

$$\sum_{n=1}^{\infty} (1-p_n) \le -\ln P(A) = \ln \frac{1}{P(A)}$$

Since P(A) > 0, $\ln \frac{1}{P(A)}$ is a constant so $\sum_{n=1}^{\infty} (1 - p_n) < \infty$. Now consider

$$\sum_{n} \min\{P(A_n), 1 - P(A_n)\} = \sum_{n} \min\{P(B_n), 1 - P(B_n)\} \le \sum_{n} (1 - p_n) < \infty.$$

This contradicts with our assumption, therefore we prove that the probability space must be non-atomic.

Problem (3). Naturally we apply Borel-Cantelli Lemma (i) and obtain $P\left(\limsup_n (A_n \cap A_{n+1}^c)\right) = 0$. Also by Theorem 4.1, $P\left(\liminf_n A_n\right) \leq \liminf_n P(A_n) = 0 \Rightarrow P\left(\liminf_n A_n\right) = 0$. By homework 2.6,

$$P\left(\limsup_{n} A_{n}\right) = P\left(\limsup_{n} (A_{n} \cap A_{n+1}^{c}) \cup \liminf_{n} A_{n}\right)$$

$$\leq P\left(\limsup_{n} (A_{n} \cap A_{n+1}^{c}) + P\left(\liminf_{n} A_{n}\right) \text{ by subadditivity}$$

$$= 0 + 0 = 0$$

Again by Theorem 4.1, $\limsup_{n \to \infty} P(A_n) \leq P(\limsup_n A_n) = 0 \Rightarrow \limsup_n P(A_n) = 0 = \liminf_n P(A_n) \Rightarrow \lim_{n \to \infty} P(A_n) = 0$ by definition of the limit of reals.

Problem (4). We would like to show that $\{\omega : X(\omega) \leq x\} \in \mathcal{F} \ \forall \ x \in \mathbb{R}$.

Case. $x \geq 0$, then

$$\{\omega: X(\omega) \le x\} = \{\omega: \lim_{n \to \infty} X_n(\omega) \le x\} \cup \{\omega: \lim_{n \to \infty} X_n(\omega) \text{ diverges}\}$$

In class we have already show that the first set is in \mathcal{F} . Notice that $\{\omega : \lim_{n \to \infty} X_n(\omega) \text{ diverges}\} = \{\omega : \lim_{n \to \infty} X_n(\omega) \text{ exists}\}^c$, which we showed in class that it is in the tail σ -field. Since the tail σ -field is the smallest σ -field containing the tail event, and the tail event is clearly contained in \mathcal{F} , the tail σ -field must be a subset of \mathcal{F} . It follows that $\{\omega : \lim_{n \to \infty} X_n(\omega)\} \in \mathcal{F}$, which implies the complement $\{\omega : \lim_{n \to \infty} X_n(\omega) \text{ diverges}\} \in \mathcal{F}$. Therefore, the union of two sets, $\{\omega : X(\omega) \le x\} \in \mathcal{F}$.

Case. x < 0, then $\{\omega : X(\omega) \le x\} = \{\omega : \lim_{n \to \infty} X_n(\omega) \le x\} \in \mathcal{F}$ as shown in class.

Hence for all $x \in \mathbb{R}$, we show that $\{\omega : X(\omega) \leq x\}$, proving that X is a random variable.