

Bruce M. Boghosian

conditional probabilitie

Sufficiency

Discussio

Summary

Properties of Estimators

Sufficiency

Bruce M. Boghosian

Department of Mathematics

Tufts University

- 1 Joint and conditional probabilities
- Sufficiency
- Discussion
- Summary

Joint and conditional probabilities

Bruce M. Boghosian

Joint and conditional probabilities

Sufficience

Discussio

_

- Joint prob., "A and B", denoted $P(A \cap B)$ or P(A, B)
- Conditional prob., "A given B", denoted P(A | B)
- Demand P(A, B) = P(A | B)P(B) = P(B | A)P(A), so

$$P(A | B) = \frac{P(A, B)}{P(B)}$$
 and $P(B | A) = \frac{P(A, B)}{P(A)}$

Joint and conditional probabilities

- You roll pair of dice, but not allowed to see the outcome.
- You would like to know if the sum is an even number.
- Two people see the outcome, and they each give you information about it.
 - Person A tells you that the sum is ≤ 7 .
 - Person B tells you that the sum is an odd number.
- Whose information was more helpful?

Sufficiency

Whose information was more helpful?

$$\begin{split} \textit{P}(\mathsf{Sum} \; \mathsf{is} \; \mathsf{even} \; | \; \mathsf{Sum} \; \leq \; 7) &= \frac{\textit{P}(2) + \textit{P}(4) + \textit{P}(6)}{\textit{P}(2) + \textit{P}(3) + \textit{P}(4) + \textit{P}(5) + \textit{P}(6) + \textit{P}(7)} \\ &= \frac{\frac{1}{36} + \frac{3}{36} + \frac{5}{36}}{\frac{1}{36} + \frac{2}{36} + \frac{3}{36} + \frac{4}{36} + \frac{5}{36} + \frac{6}{36}} \\ &= \frac{9}{21} \end{split}$$

P(Sum is even | Sum is odd) = 0.

- Clearly, Person B's information was more helpful.
- Person B's information was sufficient.
- Person A's information was not sufficient.

Bruce M. Boghosian

Joint and conditional probabilities

Sufficiency

Discussio

Summar

- Bernoulli PDF: $p_X(k; p) = p^k (1-p)^k$ where k = 0, 1
- Sample *n* Bernoulli-distributed random numbers and find

$$X_1 = k_1, \quad X_2 = k_2, \quad X_3 = k_3, \quad \dots \quad , X_n = k_n$$

- Maximum likelihood estimator $\hat{p}(\vec{X}) = \frac{1}{n} \sum_{j=1}^{n} X_j$.
- Maximum likelihood estimate $p_e = \frac{1}{n} \sum_{j=1}^{n} k_j$.
- Is \hat{p} a *sufficient estimator* for p?

Sufficiency

- Is \hat{p} a sufficient estimator for p? What would this mean?
 - It means that
 - conditional probability of the observation, given the estimate, is independent of p.
 - $P(X_1 = k_1, ..., X_n = k_n \mid \hat{p} = p_e)$ is independent of p.
 - while the joint probability $P(X_1 = k_1, \dots, X_n = k_n)$ may depend on \vec{k} and \vec{p} , when conditioned on the observation made, namely $\hat{p} = p_e$, the dependence on p disappears.
 - everything data can tell us about p contained in est. p_e .
 - prob. of sample can be determined without knowing p.
 - Returning to example, is the following independent of p?

$$P(X_1 = k_1, \dots, X_n = k_n \mid \hat{p} = p_e)$$

Bruce M. Boghosian

Joint and conditiona probabilities

Sufficiency

Discussion

Summa

- Is $P(X_1 = k_1, ..., X_n = k_n \mid \hat{p} = p_e)$ independent of p?
- We have

$$P(X_1 = k_1, ..., X_n = k_n \mid \hat{p} = p_e) = \frac{P(X_1 = k_1, ..., X_n = k_n, \hat{p} = p_e)}{P(\hat{p} = p_e)}$$

$$= \frac{P(X_1 = k_1, ..., X_n = k_n)}{P(\hat{p} = p_e)}$$

Let's calculate the numerator and denominator separately.

Bruce M. Boghosian

Joint and conditiona probabilities

Sufficiency

Discussion

Summar

Numerator:

$$P(X_1 = k_1, ..., X_n = k_n) = p^{k_1} (1 - p)^{1 - k_1} \cdots p^{k_n} (1 - p)^{1 - k_n}$$

$$= p^{k_1 + \dots + k_n} (1 - p)^{(1 - k_1) + \dots + (1 - k_n)}$$

$$= p^{np_e} (1 - p)^{n - np_e}$$

Denominator:

$$P(\hat{
ho}=p_e)=P\left(\sum_{j=1}^n X_j=np_e\right)=\binom{n}{np_e}p^{np_e}(1-p)^{n-np_e}$$

Quotient is independent of n so estimator \hat{p} is sufficient:

$$P(X_1 = k_1, \dots, X_n = k_n \mid \hat{p} = p_e) = \frac{p^{np_e}(1-p)^{n-np_e}}{\binom{n}{np_e}p^{np_e}(1-p)^{n-np_e}} = \frac{1}{\binom{n}{np_e}}$$

Sufficiency

Redo Example 2 with estimator $\hat{p}^*(\vec{X}) = X_1$, so $p_a^* = k_1$.

- Define $\overline{k} := \frac{1}{n} \sum_{i=1}^{n} k_i$.
- Find the conditional probability of the particular observation, given the estimate

$$P(X_1 = k_1, ..., X_n = k_n \mid \hat{p}^* = k_1)$$

$$= \frac{p^{n\overline{k}}(1-p)^{n-n\overline{k}}}{p^{k_1}(1-p)^{1-k_1}}$$

$$= p^{n\overline{k}-k_1}(1-p)^{n-1-n\overline{k}+k_1}.$$

This depends on p, so the estimator \hat{p} is not sufficient.

Sufficiency

Recall the PDF:

$$f_Y(y) = \begin{cases} \frac{2y}{\theta^2} & \text{if } 0 \le y \le \theta \\ 0 & \text{otherwise} \end{cases}$$

The method of moments estimator for this is

$$\hat{\theta} = \frac{3}{2}\overline{Y} = \frac{3}{2n}\sum_{j=1}^{n}Y_{j}$$

lacksquare If $\hat{ heta}$ were sufficient, any two random samples, with same value of θ_{e} should yield exactly same information about θ .

Bruce M. Boghosian

Joint and conditional probabilities

Sufficiency

Discussio

Summar

If $\hat{\theta}$ were sufficient, any two random samples, with same value of θ_e should yield exactly same information about θ .

■ To demonstrate that is not the case, consider:

• Case 1:
$$\vec{y} = \{3, 4, 5\}$$
 so that $\theta_e = \frac{3}{2} \cdot \frac{1}{3}(3 + 4 + 5) = 6$

Case 2:
$$\vec{y} = \{1, 3, 8\}$$
 so that $\theta_e = \frac{3}{2} \cdot \frac{1}{3}(1 + 3 + 8) = 6$

■ In spite of the fact that $\theta_e = 6$ for both cases, note:

• Case 1: true
$$\theta$$
 could be = 7, because $y_1, y_2, y_3 < 7$.

• Case 2: true
$$\theta$$
 could not be = 7, because $y_3 = 8 > 7$.

■ Hence, without even calculating the conditional probability, we know
$$\hat{\theta}$$
 is not sufficient.

Formal definition of sufficiency

Sufficiency

Let $X_1 = k_1, \dots, X_n = k_n$ be a random sample of size n from $p_X(k;\theta)$. The statistic $\hat{\theta}(X_1,\ldots,X_n)$ is sufficient for θ if the likelihood function, $L(\theta)$, factors into the product of the pdf for $\hat{\theta}$ and a constant that does not involve θ ,

$$L(\theta) = \prod_{i=1}^{n} p_{X}(k_{j}; \theta) = p_{\hat{\theta}}(\theta_{e}; \theta) b(k_{1}, \dots, k_{n}).$$

- Example 1 again:
 - $L(p) = P(X_1 = k_1, ..., X_n = k_n) = p^K (1-p)^{n-K}$
 - $f_{\hat{p}}(p) = \binom{n}{n n} p^K (1-p)^{n-K}$
 - Hence $L(p) = f_{\hat{p}}(p) \left[\binom{n}{np_e} \right]^{-1}$ where $p_e = \frac{1}{n} \sum_{j=1}^{n} k_j$.

Why is sufficiency desirable

Bruce M. Boghosian

Joint and conditional probabilities

Sufficiend

Discussio

 For any unknown pdf parameter, there will be an infinity of unbiased estimators.

- Some subset of these will be sufficient estimators, or functions of sufficient estimators.
- The variance of any unbiased estimator based on a sufficient estimator will be lower than that of any unbiased estimator that is not based on a sufficient estimator.
- Hence, sufficient estimators tend to be more efficient.

Tufts The idea behind sufficiency

- Estimators, by their very nature, discard data, $\hat{\theta}(\vec{X})$
- In doing so, they accomplish a kind of data reduction.
- For example, if you can reduce 10⁶ normally distributed numbers to a mean and a variance, you have accomplished substantial data reduction.
- You need all 10⁶ numbers to estimate mean and variance, since you want to estimate those as accurately as possible.
- Once you have $\hat{\mu}(\vec{X})$ and $\hat{\sigma}^2(\vec{X})$, you don't need \vec{X} .
- A sufficient estimator does not needlessly discard data.
- If estimator $\hat{\theta}$ is sufficient, everything that can be known about the parameter θ has been extracted from the data. and nothing has been left behind.

Relation between sufficiency and other properties

Bruce M. Boghosian

Joint and conditiona probabilities

_. .

Discussio

Summar

- Given n pieces of data $\vec{X} = \langle X_1, \dots, X_n \rangle$
- An estimator can be unbiased, but not sufficient
- $\hat{\mu}_n(\vec{X}) = X_1$ is unbiased, but not sufficient
 - Unbiased because $E(\hat{\mu}_n) = E(X_1) = \mu$
 - Not sufficient because it wastes n-1 of the numbers in the sample \vec{X}
- An estimator can be sufficient, but not unbiased
 - If $\hat{\theta}$ sufficient for θ , any invertible function of $\hat{\theta}$ is likewise.
 - ullet e.g., $\hat{ heta}_2=\hat{ heta}^3$ has the same information content as $\hat{ heta}$.
 - lacksquare One would not expect $E\left(\hat{ heta}^3
 ight)=E\left[\left(\hat{ heta}
 ight)
 ight]^3$ so not unbiased

Tufts Summary

Summary

- We have defined and studied sufficiency of estimators.
- We have looked at examples of estimators that are sufficient and not sufficient.
- We have discussed the relationship between sufficiency and other properties of estimators.