Contents

Remedial Measures (Ch. 11	 1

Handout 8: Remedial Measures

Remedial Measures (Ch. 11)

1. A brief summary of diagnostics

- Check normality of the residuals with a normal Q-Q plot and tests.
- Plot the residuals versus predicted values, versus each of the X's and, when appropriate, versus time.
- Examine the partial regression plots:
 - Use the graphics smoother to see if there appears to be a curvilinear pattern.
- Examine for outlier and influential cases:
 - Studentized deleted residuals.
 - Leverages (from the hat matrix).
 - Dffits, Cook's D, and the DFBETAS.
 - Check observations that are extreme on these measures relative to the other observations.
- Examine the VIF (i.e., 1/tolerance) for each X. If there are predictors with high VIF, do more model building:
 - Recode variables.
 - Variable selection.

2. A brief overview of remedial measures

- In Ch.3, we discussed a few remedial measures, such as transforming the data and building more complex models.
- For data with non-constant error variance: Weighted Least Squares, etc.
- For data with multicollinearity: Ridge Regression, Principle Component Analysis, Factor analysis, etc.
- For outliers and influential cases: Robust Regression, Weighted Least Squares, etc.

- For non-Normal and/or non-linear data: Generalized Linear model, Loess methods, Regression and classification tree, etc.
- For dependent/correlated errors: Time series, General Linear model (repeated measure), etc.
- > Use other methods (such as bootstrap) for statistical inference.

3. Weighted Least Squares

 \triangleright Recall OLS: find $b=(b_0, b_1, b_2, ..., b_{p-1})^T$ such that

$$Q = \sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2 = \sum_{i=1}^{n} \left(Y_i - (b_0 + b_1 X_{i1} + b_2 X_{i2} + \dots + b_{p-1} X_{i,p-1}) \right)^2$$

is minimized. In matrix form, $b = (X^T X)^{-1} X^T Y$

Weight Least Squares: Assign a weight w_i to each case, find $b_w = (b_0, b_1, b_2, ..., b_{p-1})^T$ such that

$$Q_{w} = \sum_{i=1}^{n} w_{i} \left(Y_{i} - \hat{Y}_{i} \right)^{2} = \sum_{i=1}^{n} w_{i} \left(Y_{i} - (b_{0} + b_{1}X_{i1} + b_{2}X_{i2} + \dots + b_{p-1}X_{i,p-1}) \right)^{2}$$

is minimized.

- Let W be a diagonal matrix of weights (i.e., the weight matrix), W = diag (w₁, ..., w_n). The weighted least squares estimate of β is $b_w = (X^T W X)^{-1} X^T W Y$.
- To solve the issues on non-constant error variance (i.e., heteroscedasticity, heterogeneity), let $w_i = 1/\sigma_i^2$.
 - Why would this work?
 - Some math/stat background

$$\begin{split} Y_i &\sim N\Big((b_0 + b_1 X_{i1} + b_2 X_{i2} + \ldots + b_{p-1} X_{i,p-1}), \quad \sigma_i^2\Big) \\ Y_i^* &= \frac{1}{\sigma_i} Y_i \sim N\bigg(\frac{1}{\sigma_i} (b_0 + b_1 X_{i1} + b_2 X_{i2} + \ldots + b_{p-1} X_{i,p-1}), \quad 1\bigg) \\ Q_w &= \sum_{i=1}^n \Big(Y_i^* - \hat{Y}_i^*\Big)^2 \\ &= \sum_{i=1}^n \bigg(\frac{1}{\sigma_i} Y_i - \frac{1}{\sigma_i} (b_0 + b_1 X_{i1} + b_2 X_{i2} + \ldots + b_{p-1} X_{i,p-1})\bigg)^2 \\ &= \sum_{i=1}^n \frac{1}{\sigma_i^2} \Big(Y_i - (b_0 + b_1 X_{i1} + b_2 X_{i2} + \ldots + b_{p-1} X_{i,p-1})\bigg)^2 \end{split}$$

- Weighted least square can be considered as an OLS on the transformed data.
 The transformation is built in the method, though it is not shown in the spread sheet.
- Weighted least squares estimates are the same as the MLE in the above setting.
- > Determination of the weights.
 - If σ_i^2 's are known, $w_i = 1/\sigma_i^2$.
 - If σ_i^2 , i = 1, 2, ..., n, are unknown, find a way to estimate them. Here are a few choices:
 - Use grouped data or approximately grouped data to estimate the variance.
 - Find a relationship between the <u>squared residual</u> and another predictor variable and use this as a model for the variance. Let \hat{v}_i be the estimated variance of the i-th case. Set $w_i = \frac{1}{|\hat{v}_i|}$
 - Find a relationship between the <u>absolute residual</u> and another predictor variable and use this as a model for the standard deviation. Let \hat{s}_i be the estimated standard deviation of the i-th case. Set $w_i = \frac{1}{(\hat{s}_i)^2}$
 - Often, the weights are estimated in an iterative fashion to improve the results.
 This is also known as the Iterative Weighted Least Squares.
- See R and SPSS lab for a complete example.
- Weighted least squares may be used in other scenarios.
 - Account for the sampling weights, or to adjust the sampling weights.
 - Lower the influence from some outliers.
 - Work with correlated data. (More advance. Need to estimate the correlation structure first.)

4. Ridge Regression

- An old idea from numerical analysis: if (X^TX) is difficult to invert (near singular) then approximate by inverting $(X^TX + \lambda I)$.
- \triangleright Using standardized data, Y* and X*, $b_{Ridge} = ((X^*)^T(X^*) + \lambda I)^{-1}(X^*)^TY^*$, where the constant λ is the "ridge parameter."
- Estimates of the regression coefficients are biased but have smaller standard errors.
- \succ To choose the optimal λ , use a "ridge trace" plot or other estimation procedures. See example in text, p.434, 435, and in R handout.

In SPSS, you will have to use syntax to program for ridge regression. In R, check the Im.ridge() function in the MASS library.

5. Robust regression

- The Basic idea is to have a procedure that is not sensitive to outliers.
- ➤ Alternatives to least squares:
 - Minimize the sum of the absolute values of the residuals: $\sum_{i=1}^n |Y_i \hat{Y}_i|$.
 - Minimize the median of the squares of the residuals: $median(Y_i \hat{Y_i})^2$.
- > Do weighted regression with weights based on residuals, and iterate.
- More computationally intensive, usually no closed-form solution and requires numerical solutions.

6. Bootstrap

- > It is based on simulation and resampling.
- Sample with replacement from the data and repeatedly refit the model to get the sampling distribution of the parameter of interest.
- ➤ It is a very important theoretical development that has had a major impact on applied statistics.

7. Other remedial measures

- > Principle component analysis and factor analysis.
 - Reduce multicollinearity.
 - Reduce the dimension (number of predictors) of the problem.
- ➤ Non-parametric methods:
 - Smoothing, piece-wise regression fit (loess fit).
 - Regression tree, decision tree, classification and regression tree (CART).