European Doctoral School of Demography 2018-19

EDSD 220 - Statistical Demography

Logistic Regression

GIANCARLO CAMARDA Institut National d'Etudes Démographiques

December 2018 University of Southern Denmark, Odense

The Logistic Regression Model A Unified Framework

Example 2: Fertility Data

▶ Dataset with aggregate info on 1607 currently married and fecund women in Fiji in 1975

Age	Education	Desires More Children?	Contraceptive Use		Total
			No	Yes	· Total
	Lower	Yes	53	6	59
<25		No	10	4	14
	Upper	Yes	212	52	264
		No	50	10	60
	Lower	Yes	60	14	74
25-29		No	19	10	29
	Upper	Yes	155	54	209
		No	65	27	92
	Lower	Yes	112	33	145
30-39		No	77	80	157
	Upper	Yes	118	46	164
		No	68	78	146
	Lower	Yes	35	6	41
40-49		No	46	48	94
	Upper	Yes	8	8	16
		No	12	31	43
Total			1100	507	1607

- ► Here current use of contraception is the response and age, education and desire for more children are the as covariates
- ► Contraceptive use as binary response

Introduction The Logistic Regression Model

Example 1: Donner Party

- ▶ Dataset about 69 American pioneers who set out for California in a wagon train in 1846
- ▶ The group was decimated by spending a cold winter in the Sierra Nevada

TOtal	
Total	
10	
12	
6	
6	
2	
9	
8	
16	
69	

▶ Our aim is to understand the effect of age and sex on the probability of surviving such harsh experience

EDSD 2018-19 - Statistical Demography G. Camarda Logistic Regression

The Logistic Regression Model

Bernoulli Distribution

 \triangleright Binary response: Y_i with

$$P[Y_i = 1] = \pi_i$$

 $P[Y_i = 0] = 1 - \pi_i$ $\Rightarrow Y_i \sim \text{Bernoulli with parameter } \pi_i$

$$P[Y_i = y_i] = \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$
 for $y_i = 0, 1$

► Expected values: $\mu_i = E[Y_i | \mathbf{X}_i = x_i] = P[Y_i = 1 | \mathbf{X}_i = x_i] = \pi_i \in [0, 1]$

► Variance: $\sigma_i^2 = var[Y_i | \mathbf{X}_i = x_i] = \pi_i (1 - \pi_i)$ (non constant)

▶ Both μ_i and σ_i^2 depend on π_i : factors affecting probability alter both mean and variance of the observations

Binomial Distribution

- ightharpoonup We classify units according to factors into k groups: all individuals in a group have identical values of all covariates
- \triangleright n_i : number of observations in group i
- \triangleright y_i : number of units have the attribute of interest (e.g. use contraceptive, surviving) in group i
- \triangleright y_i is a realization of a random variable Y_i that takes values $0, 1, \ldots, n_i$
- ▶ If n_i are independent with the same probability π_i , then Y_i is a Binomial with parameters π_i and n_i :

$$P[Y_i = y_i] = \binom{n_i}{y_i} \pi_i^{y_i} (1 - \pi_i)^{n_i - y_i}$$
 for $y_i = 0, 1, \dots, n_i$

- $E(Y_i) = \mu_i = n_i \pi_i$ $var(Y_i) = \sigma_i^2 = n_i \pi_i (1 \pi_i)$

EDSD 2018-19 - Statistical Demography G. Camarda Logistic Regression

The Logistic Regression Model A Unified Framework

Looking at the Logit

The Logistic Regression Model

The Logit Transformation

- \triangleright Probabilities π_i depend on observed covariates x_i
- ▶ Simplest approach: $\pi_i = \mathbf{x}_i' \boldsymbol{\beta}$
- ▶ Problem: $\pi_i \in [0,1]$, but $\mathbf{x}_i' \boldsymbol{\beta} \in [-\infty, +\infty]$
- \triangleright Simple solution: transform π_i
 - \blacktriangleright move from probability π_i to the odds:

$$\mathsf{odds}_i = \frac{\pi_i}{1 - \pi_i} \qquad \in [0, +\infty]$$

▶ take the logarithm of the odds (*logit* of π_i):

$$\eta_i = \operatorname{logit}(\pi_i) = \operatorname{ln} \frac{\pi_i}{1 - \pi_i} \in [-\infty, +\infty]$$

- \blacktriangleright Logits map probabilities from the range (0,1) to the entire real line
- ► Logits may be defined in terms of the binomial mean

$$\eta_i = \ln \frac{\mu_i}{1 - \mu_i} = \ln \frac{n_i \pi_i}{1 - n_i \pi_i}$$

The Logistic Regression Model

Donner Party data using a Linear Model

- ▶ Let's estimate the *linear probability model*: $\pi_i = \mathbf{x}_i' \boldsymbol{\beta}$
- ► ~ Linear Model on our Donner Party data using age as only covariate

 $\blacktriangleright \hat{\pi}_i \notin [0,1]$

Logit on our data

- ► Fertility Data
 - ► 507 among 1607 women use contraception
 - ► Probability: 507/1607 = 0.316
 - ► Odds: 507/1100 = 0.461
 - ► Non-users outnumber users roughly two to one
 - ► Logit: ln(0.461) = -0.775

- ► Donner Party Data
 - ► 41 among 69 pioneers survived
 - ► Probability: 41/69 = 0.594
 - ► Odds: 41/28 = 1.464
 - ► Survivors are about one and half times larger than deaths
 - ightharpoonup Logit: ln(1.464) = 0.381

EDSD 2018-19 - Statistical Demography

G. Camarda Logistic Regression

The Logistic Regression Model

Probabilities, Odds and Log-Odds

- \triangleright β_i represents the change in the logit of the probability associated with a unit change in the *j*-th covariate holding all other covariate constant
- ► Exponentiating the linear predictor:

$$\exp \eta_i = \frac{\pi_i}{1 - \pi_i} = \exp\{ oldsymbol{x}_i' oldsymbol{eta} \}$$

- ▶ Multiplicative model for the odds: if we were to change the j-th covariate by one unit (holding all other constant), we would multiply the odds by $\exp\{\beta_i\}$
- \triangleright exp{ β_i } represents an odds ratio
- \blacktriangleright Solving the logit for the probability π_i we obtain the *antilogit*:

$$\pi_i = \mathsf{logit}^{-1}(\eta_i) = rac{e^{\eta_i}}{1 + e^{\eta_i}} = rac{e^{\mathbf{x}_i'oldsymbol{eta}}}{1 + e^{\mathbf{x}_i'oldsymbol{eta}}}$$

The Logistic Regression Model

- \blacktriangleright We have k independent observations y_1, \ldots, y_k
- ▶ i-th observation can be treated as a realization of a random variable Y_i
- ► Which distribution? (stochastic structure)

$$Y_i \sim B(n_i, pi_i)$$

▶ What type of relationship? (systematic structure)

$$\mathsf{logit}(\pi_i) = \eta_i = \mathbf{x}_i' \boldsymbol{\beta}$$

 $\triangleright \eta_i$ is called linear predictor

EDSD 2018-19 - Statistical Demography

G. Camarda

The Logistic Regression Model

Logistic Regression - Fitting via MLE

► Likelihood:

$$L(oldsymbol{eta}) = \prod_i egin{pmatrix} n_i \ y_i \end{pmatrix} \pi_i^{y_i} \, (1-\pi_i)^{n_i-y_i}$$

▶ Log-likelihood:

$$I(\beta) = \sum_{i} \{y_i \ln(\pi_i) + (n_i - y_i) \ln(1 - \pi_i)\}$$

where $logit(\pi_i) = \mathbf{x}_i' \boldsymbol{\beta}$

- ► System of equation $\frac{\partial I}{\partial \beta_i} = 0$ \Rightarrow no closed-form solution
- ► Numerical optimization via iteratively weighted least-squares (IWLS)

Logistic Regression in R

► In R. we use:

glm(y ~ x1 + x2 + ..., data, family=binomial(link=logit)) where data and therefore y, x1, x2, ... can be provided in two ways:

- 1. aggregate/tabular format: the response is a two-column matrix it is assumed that the first column holds the number of successes and the second holds the number of failures for each trial. Consequently, covariates are provided for each combination of covariates.
- 2. individual format: the response is a logical vector (or a two-level factor) and each row represent a specific individual

EDSD 2018-19 - Statistical Demography

G. Camarda Logistic Regression

17

The Logistic Regression Model A Unified Framework

Latent Variable and Manifest Response

 \triangleright Y_i : surviving / use contraception

 \triangleright Y_i^* : health condition or vitality / attitude toward contraceptive

Other Choices of Link

► Any transformation that maps probabilities into the real line could be used

$$\pi_i = F(\eta_i)$$
 \Rightarrow $\eta_i = F^{-1}(\pi_i)$
 $0 < \pi_i < 1$ $-\infty < \eta_i < +\infty$

- ▶ We could use a *latent* variable formulation. Let's assume:
 - $ightharpoonup Y_i$: (binary) manifest response
 - $ightharpoonup Y_i^*$: (continuous) latent response
 - \bullet $\pi_i = P[Y_i = 1] = P[Y_i^* > \theta]$
 - $ightharpoonup \theta = 0$
 - ▶ $sd(Y_i^*) = 1$

EDSD 2018-19 - Statistical Demography

G. Camarda Logistic Regression

The Logistic Regression Model

Introducing covariates

▶ In a regression setting, outcomes depends on covariates

$$Y_i^* = \mathbf{x}_i' \mathbf{\beta} + U_i = \eta_i + U_i$$

where U_i is an error term, note necessarily normally distributed

► Let's derive the probability of observing a positive outcome:

$$\pi_i = P[Y_i > 0]$$

$$= P[U_i > -\eta_i]$$

$$= 1 - F(-\eta_i)$$

 \blacktriangleright If distribution of U_i is symmetric about zero,

$$F(u) = 1 - F(-u) \Rightarrow \pi_i = F(\eta_i)$$

Three possible links

1. Probit:

$$U_i \sim N(0,1) \quad \Rightarrow \quad \pi_i = \Phi(\eta_i) \quad \Rightarrow \quad \eta_i = \Phi^{-1}(\pi_i)$$

 Φ^{-1} have no closed form

2. Logistic

$$U_i \sim {\sf Logistic} \quad \Rightarrow \quad \pi_i = rac{e^{\eta_i}}{1+e^{\eta_i}} \quad \Rightarrow \quad \eta_i = {\sf In}\,rac{\pi_i}{1+\pi_i}$$

Symmetric around 0, heavier tail compared to Normal

3. Complementary Log-Log

$$U_i \sim \text{Extreme-value} \quad \Rightarrow \quad \pi_i = 1 - e^{-e^{\eta_i}} \quad \Rightarrow \quad \eta_i = \ln(-\ln(1 - \pi_i))$$

Useful in Discrete Time Models

EDSD 2018-19 - Statistical Demography

G. Camarda Logistic Regression

Goodness of Fit Statistics - Deviance

► A measure of discrepancy between observed and fitted values is the deviance statistic:

$$D = 2 \sum_{i} \left\{ y_{i} \ln \left(\frac{y_{i}}{\hat{\mu}_{i}} \right) + (n_{i} - y_{i}) \ln \left(\frac{n_{i} - y_{i}}{n_{i} - \hat{\mu}_{i}} \right) \right\}$$

- ▶ It is twice a sum of "observed times log of observed over expected", where the sum is over both successes and failures
- ▶ With grouped data, the distribution of the deviance statistic as the group sizes $n_i \to \infty$ for all i, converges to a chi-squared distribution with n - p d.f.

The Logistic Regression Model

Looking at the link functions

EDSD 2018-19 - Statistical Demography

Goodness of Fit Statistics - Pearson

► Alternatively, one can use Pearson's chi-squared statistic:

$$\chi_p^2 = \sum_i \frac{n_i (y_i - \hat{\mu}_i)^2}{\hat{\mu}_i (n_i - \hat{\mu}_i)}$$

- ► Each term in the sum is the squared difference between observed (y_i) and fitted values $(\hat{\mu}_i)$, divided by the variance
- \blacktriangleright χ_p^2 Asymptotically equivalent to the deviance

Assessing the Logistic Regression: Overall effect

- ► Comparing nested models using deviance values
 - null hypothesis:

$$H_0: \beta_{q+1} = \ldots = \beta_p = 0$$

► alternative hypothesis:

 H_A : larger model valid

test statistics:

$$W = D_{q+1} - D_{p+1} = -2 \, \ln rac{L(\mu_{q+1})}{L(\mu_{p+1})}, \quad ext{if H_0 true } : W \sim \chi^2_{p-q}$$

where where χ^2_{p-q} is the chi-squared distribution with p-qdegrees of freedom and D_r is the deviance for the model with rparameters

EDSD 2018-19 - Statistical Demography

G. Camarda Logistic Regression

Diagnostics

Assessing the Logistic Regression: Residuals

- ▶ Discrepancy between observed y_i and fitted $\hat{y}_i = \hat{\mu}_i$
- ▶ In Linear Model: $\hat{\epsilon} = y_i \hat{y}_i$
- ► More general version:
 - Pearson residuals: $r_{i,P} = \frac{y_i \hat{\mu}_i}{\sqrt{\text{var}[\hat{\mu}_i]}}$
 - ▶ Deviance residuals: $r_{i,D} = \operatorname{sign}(y_i \hat{\mu}_i) \sqrt{d_i}$, with $D = \sum_i d_i$ standardising: $r'_{i,\cdot} = \frac{r_{i,\cdot}}{\sqrt{1-h_i}}$
- ► What to check?
 - ► random noise when plotted against linear predictor
 - ► standardized Pearson/Deviance residuals should be approximately normal for large n_i

Assessing the Logistic Regression: Partial effect

- \blacktriangleright Is the covariate x_i statistically related to the response y, after controlling for the other covariates?
 - ► null hypothesis:

$$H_0: \beta_j = 0$$

alternative hypothesis:

$$H_A: \beta_j \neq 0$$

test statistics:

$$z = \frac{\hat{\beta}_j}{\hat{se}[\hat{\beta}_j]}$$

▶ Wald statistics z^2 , if H_0 true: $z^2 \sim \chi_1^2$

EDSD 2018-19 - Statistical Demography

G. Camarda Logistic Regression

The Logistic Regression Model

The Logit as GLM

Model				
Linear	Logit	Log-linear	General (GLM)	
$N(\mu_i, \sigma^2)$	$B(n_i,\pi_i)$	$P(n_i\lambda_i)$	exponential family $(oldsymbol{ heta},\phi)$	
μ_i	$\mu_i = n_i \pi_i$	$\mu_i = n_i \lambda_i$	$b'(\theta)$	
σ^2	$n_i\pi_i(1-\pi_i)$	$n_i\lambda_i$	$b^{\prime\prime}(oldsymbol{ heta})a(\phi)$	
$\sum x_i \boldsymbol{\beta}$	$\sum x_i \beta$	$\sum x_i \boldsymbol{\beta}$	$\sum x_i \boldsymbol{\beta}$	
	$\ln \frac{\mu_i}{\mu_i}$	In u	continuous differentiable	
μ_I	$1-\mu_i$	μ_{l}	function	
	$N(\mu_i, \sigma^2)$ μ_i σ^2	$ \begin{array}{ll} N(\mu_i, \sigma^2) & B(n_i, \pi_i) \\ \mu_i & \mu_i = n_i \pi_i \\ \sigma^2 & n_i \pi_i (1 - \pi_i) \end{array} $ $ \sum x_i \beta \qquad \sum x_i \beta$	LinearLogitLog-linear $N(\mu_i, \sigma^2)$ $B(n_i, \pi_i)$ $P(n_i \lambda_i)$ μ_i $\mu_i = n_i \pi_i$ $\mu_i = n_i \lambda_i$ σ^2 $n_i \pi_i (1 - \pi_i)$ $n_i \lambda_i$ $\sum x_i \beta$ $\sum x_i \beta$ $\sum x_i \beta$	

- ► Stochastic component
- ► Systematic component
- ► Link function (canonical)