Advanced Microeconomics II Problem Set 2

WISE, Xiamen University

Spring 2013

- 1. Each of n people chooses whether or not to contribute a fixed amount toward the provision of a public good. The good is provided if and only if at least k people contribute, where $2 \le k \le n$; if it is not provided, contributions are not refunded. Each person ranks outcomes from best to worst as follows:
 - (i) any outcome in which the good is provided and she does not contribute,
 - (ii) any outcome in which the good is provided and she contributes,
 - (iii) any outcome in which the good is not provided and she does not contribute,
 - (iv) any outcome in which the good is not provided and she contributes.
 - (a) Formulate this situation as a strategic game.
 - (b) Find its Nash equilibria.
- 2. (Gibbons 1.2) Players 1 and 2 are bargaining over how to split five dollars. Both players simultaneously name shares they would like to have, s_1 and s_2 , where $0 \le s_i \le 5$, i = 1, 2. If $s_1 + s_2 \le 5$, then the players receive the shares they named; if $s_1 + s_2 > 5$, then both players receive zero.
 - (a) Consider a symmetric (non-pure) mixed strategy equilibrium, where each player chooses between two numbers a and b, a < b.
 - i. Prove or disprove that to be a mixed strategy equilibrium $a + b \leq 5$.
 - ii. Prove or disprove that to be a mixed strategy equilibrium $a+b \geq 5$.
 - iii. Derive such a mixed strategy equilibrium where a = 1 and b = 4.
- 3. Consider the finite strategic game $G = \{N, (A_i), (u_i)\}$. Let $B_i(\alpha_{-i})$ be the best-response of player i in G. Let $B(\alpha) = \times_{i \in N} B_i(\alpha_{-i})$. Prove or disprove that for all $b \in B(\alpha)$, for all $i \in N$, $U_i(b) \geq U_i(\alpha'_i, b_{-i})$ for all $\alpha'_i \in \Delta(A_i)$.
- 4. Consider the strategic game described in the following table.

$$\begin{array}{c|cc}
 & L & R \\
 U & 3,3 & 1,4 \\
 D & 4,1 & 0,0
\end{array}$$

- (a) What are the set of mixed strategy Nash equilibria for this game.
- (b) Construct a correlated equilibrium for this game with payoffs that are equal to the payoffs in one of the Nash equilibria you constructed in (a).
- (c) Construct a correlated equilibrium where payoffs for each player are equal to 2.5.