Incendio Forestal

ExactasPrograma

Facultad de Ciencias Exactas y Naturales, UBA

Verano 2020

Incendio Forestal

INCENDIO DE COPAS

Sistemas complejos

- Sistemas en los cuales el comportamiento colectivo es difícil de anticipar a partir del comportamiento individual de sus elementos.
- Las reglas a nivel microscópico pueden ser muy simples pero generar propiedades emergentes a nivel macroscópico sorprendentes.

La computadora nos permite programar, simular, explorar y detectar estas cosas.

La verdad sobre China: ¿El embotellamiento más largo del mundo duró 12 días?

Daniel Canal | 13-01-2015 - 05:40:58

Mito: En China el tráfico vehicular es tal que la peor congestión registrada en la historia ocurrió en Beijing y duró 12 días.

Realidad: Cuando el conductor de un Peugeot 404 pasa de segunda marcha a tr del cuento "Autopista al sur", de Juli- Carro un embotall----dura lo suficiente no:

El 14 de agosto de 2010 empezó el embotellamiento más demorado en la historia, en la autopista 1 que conecta a Beijing, la capital china, con el Tibet. Este atasco se demoró 12 días en descongestionarse y se extendió a lo largo de 100 kilómetros. Lo particular es que el embotellamie ocurrió sin ninguna razón aparente, solo porque había muchos autos en la vía, contrario al de Paricial de la vía contrario al de Paricial de la vía como el de Chicago en 2011, que fueron consecuencia del mal clima.

Veredicto: Sí, el embotellamiento más demorado del mundo ocurrió en China en una carretera al de Beijing. Los chinos debieron vivir casi dos semanas en sus autos, y como el protagonista de Cortázar, cuando se en la carros y pasaron de segunda a tercora una la carros y pasaron de segunda a tercora una la carros y pasaron de segunda a tercora una la carros y pasaron de segunda a tercora una la carros y pasaron de segunda a tercora una la carros y pasaron de segunda a tercora una la carros y pasaron de segunda a tercora una la carros y pasaron de segunda a tercora una la carros y pasaron de segunda a tercora una la carros y pasaron de segunda a tercora una la carretera al de Beijing.

¿Por qué incendios de bosques?

Fue uno de los primeros modelos (~ 1992), con el de avalanchas en pilas de arena.

Buscaba modelar la dinámica de un bosque, que consiste en el crecimiento de árboles y la aparición de incendios que los eliminan. Entender por qué los bosques tienen los tamaños que tienen, y se alternan sectores con árboles y sectores sin árboles. Hay mil variantes, pero ninguna explica ningún bosque conocido. ¿Por qué no nos olvidamos del modelo, entonces?

Porque se aplica en otros problemas, como epidemias o la difusión de noticias/rumores...

Experimentando la dinámica

Modelaremos ciclos de un año donde a cada posición del bosque le suceden cosas.

Bosque es lineal, dividido en n celdas, y cada una puede:

- tener un árbol
- no tener nada

Evolución se suceden una serie de etapas: Brotes, Caída de rayos, Propagación de incendios, y Limpieza

Etapas

- Brotes: en cada celda vacía, puede brotar un nuevo árbol (o no).
- Caída de rayos: caen rayos en algunas posiciones incendiando dichos árboles.
- Propagación de incendios: Cuando un árbol se incendia, propaga el fuego a los arboles de celdas vecinas, y estos a su vez a su vecinos... y así, hasta que todo árbol incendiado incendió a todos sus vecinos y el incendio no puede propagarse más.
- Limpieza: los árboles incendiados degradan y dejan la posición vacía, lista para que vuelva a comenzar el ciclo.

Al final del primer año: 1 árbol.

Al final del segundo año: 0 árboles.

Limpieza

Inicio

Brotes

Rayos

Al final del tercer año: 4 árboles.

Al final del cuarto año: 1 árbol.

Inicio

Brotes

Rayos

Propagación

Limpieza

Experimentando la dinámica

Pre-requisitos:

- Una computadora donde poder correr random.random().
- Una tarjeta blanca, una verde y una roja.
- Determinar quiénes son tus vecinos.

A simular

- Todos empiezan siendo celdas vacías.
- Todos los que saquen menos de 0.8 se transforman en árboles.
- Todos los que saquen menos de 0.3 se prenden fuego.
- A propagar.
- Limpiar.
- Otra vez.

Modelo de incendios de bosques

Queremos tomar los ingredientes básicos del problema real y construir un modelo.

- Bosque: tenemos n celdas, y en cada una puede crecer un solo árbol.
- ullet Brotes: brota un arbol en cada celda vacía, con probabilidad p (la calidad del terreno).
- Caída de rayos: cae un rayo en cada celda con probabilidad f. Si la celda tiene un árbol, se prende fuego.
- Propagación de incendios: si un árbol esta prendido fuego y tiene al lado un árbol sano, este también se prende fuego. Se termina cuando no queda ningún árbol sano con un vecino prendido fuego.
- Limpieza: los árboles quemados se retiran dejando la celda vacía.

Representación

¿Cómo representar esto en la máquina?

- **Terreno:** tomamos una lista de n posiciones, una al lado de la otra, indexadas del 0 al n-1.
- Árboles: representamos las posiciones como:
 - 0 si está vacía,
 - 1 si hay un árbol vivo,
 - -1 si hay un árbol prendido fuego.

Problemas interesantes a resolver hoy:

- ¿Cuál es el valor de p que maximiza la cantidad de árboles que sobreviven cada año?
- 3 ¿Y si modelamos un sistema dónde la propagación no sólo se da entre vecinos?

Ideas para el problema 1

Simulaciones: armamos una grilla de 100 lugares y tomemos un p arbitrario. Entonces, en el bosque...

- brota un árbol con probabilidad p en cada lugar vacío, cae un rayo con probabilidad 0.02, se propaga, limpiamos los quemados, y contamos cuántos quedan. En el bosque que queda...
- brota un árbol con probabilidad p en cada lugar vacío, cae un rayo con probabilidad 0,02, se propaga, limpiamos los quemados, y contamos cuántos quedan. En el bosque que queda...
- brota un árbol con probabilidad p en cada lugar vacío, cae un rayo con probabilidad 0.02, se propaga, limpiamos los quemados, y contamos cuántos quedan. En el bosque que queda...

Lo hacemos 1000 veces, y calculamos el promedio.

Ideas para el problema 1

Y esto lo hacemos explorando valores de p entre 0 y 1:

Es similar a la clase anterior, cuando había que verificar que un álbum estaba lleno.

Ideas para el problema 1

Ahora buscamos cuándo se alcanza el máximo ¿Cómo?

¡Graficando!

Para cada probabilidad marcamos con un punto en el plano la cantidad de árboles sobrevivientes.

¿Puede Python ayudarnos con esta tarea? ¡Claro!

MatplotLib.Pyplot

- Al igual que random o numpy, es un módulo que nos deja elegir una lista como eje x, una como eje y, y graficar.
- Para importarlo, hay que usar

```
import matplotlib.pyplot as plt
```

Ejemplo de Gráfico

¿Qué dirían que hace este código?

```
v1 = []
v2 = []
v3 = []
numero = 0
numero_final = 10
while numero <= numero_final:
    v1.append(numero)
    v2.append(numero ** 2)
    v3.append(numero ** 3)
    numero = numero + 1</pre>
```

La lista v1 tiene los números del 0 al 10, la lista v2 tiene sus cuadrados, y la lista v3 tiene sus cubos.

¡Grafiquémoslo!

Comandos para graficar

El siguiendo código hace el dibujo:

```
plt.plot(v1, v2, " . ")
plt.plot(v1, v3, " . ")
plt.show()
```

Adicionalmente, podemos definir el título, el nombre de los ejes, etc. Por ejemplo, en nuestro caso:

```
plt.title("titulo del grafico")
plt.xlabel("valores de x", fontsize = 16)
plt.ylabel("valores de y", color = "blue")
plt.plot(v1, v2, " . ")
plt.plot(v1, v3, " . ")
plt.show()
```

¡No se olviden de importar random y numpy además de pyplot!

Gráficos

¡A trabajar!

¡A pensar en el resto! (¡Y no olviden enviarlo al terminar!)

```
Material http://campus.exactas.uba.ar Formulario http://bit.do/entregas-v2020
```