

Preliminary Technical Information

TrenchGate Power MOSFET HiperFET™

IXFN360N10T

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

T $V_{DSS} = 100V$ $I_{D25} = 360A$ $R_{DS(on)} \le 2.6mΩ$

G = Gate D = DrainS = Source

Either Source Terminal S can be used as the Source Terminal or the Kelvin Source (Gate Return) Terminal.

Features

- International Standard Package
- 175°C Operating Temperature
- High Current Handling Capability
- Avalanche Rated
- Fast Intrinsic Rectifier
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC-DC Converters
- Battery Chargers
- Switched-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25$ °C to 175°C	100	V	
V _{DGR}	$T_J = 25^{\circ}C$ to 175°C, $R_{GS} = 1M\Omega$	100	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
 _{D25}	T _C = 25°C (Chip Capability)	360	A	
I _{LRMS}	Lead Current Limit, RMS $T_{\rm C}=25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	200 900	A A	
I _A E _{AS}	$T_c = 25^{\circ}C$ $T_c = 25^{\circ}C$	100 2	A J	
$\mathbf{P}_{\scriptscriptstyle \mathrm{D}}$	T _C = 25°C	830	W	
T _J T _{JM} T _{stg}		-55 +175 175 -55 +175	°C °C °C	
T _L	1.6mm (0.062 in.) from Case for 10s Plastic Body for 10s	300 260	°C	
V _{ISOL}	50/60 Hz, RMS $t = 1$ Minute $I_{ISOL} \le 1$ mA $t = 1$ Second	2500 3000	V~ V~	
M _d	Mounting Torque Terminal Connection Torque	1.5/13 1.3/11.5	Nm/lb.in. Nm/lb.in.	
Weight		30	g	

			ues (.			
BV _{DSS}	$V_{GS} = 0V, I_{D} = 1mA$		100			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250\mu A$		2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				±200	nA
I _{DSS}	$V_{DS} = V_{DSS}$				50	μΑ
	$V_{GS} = 0V$	$T_J = 150^{\circ}C$			5.0	mΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, No.$	ote 1			2.6	mΩ

Symbol	Symbol Test Conditions C			haracteristic Values		
$(T_J = 25^{\circ}C)$	C, Unless Otherwise Specified)	Min.	Тур.	Max.		
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	100	160	S		
C _{iss})		36	nF		
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		3130	pF		
\mathbf{C}_{rss})		330	pF		
t _{d(on)}	Resistive Switching Times		52	ns		
t _r			142	ns		
t _{d(off)}	$\begin{cases} V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 100A \\ R_{G} = 1\Omega \text{ (External)} \end{cases}$		63	ns		
t _f)		26	ns		
$Q_{g(on)}$)		505	nC		
\mathbf{Q}_{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		145	nC		
\mathbf{Q}_{gd}			135	nC		
R _{thJC}				0.18 °C/W		
R _{thCS}			0.05	°C/W		

.084

.004

-.002

26.90 4.42 4.85 25.07

0.1

-0.05

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C, l)$	Jnless Otherwise Specified)	/lin.	Тур.	Max	
I _s	$V_{GS} = 0V$			360	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			1000	A
V _{SD}	$I_F = 100A, V_{GS} = 0V, Note 1$			1.2	V
t _{rr} l _{RM} Q_{RM}	$I_F = 100A$, $V_{GS} = 0V$ -di/dt = $100A/\mu s$ $V_R = 50V$		82 4.8 196		ns A nC

Note 1: Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ 25°C

Fig. 3. $R_{DS(on)}$ Normalized to I_D = 180A Value vs. Junction Temperature

Fig. 5. Drain Current vs. Case Temperature

Fig. 2. Output Characteristics @ 150°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 180A Value vs. Drain Current

Fig. 6. Input Admittance

Fig. 8. Forward Voltage Drop of **Intrinsic Diode** 360 320 280 240 Is - Amperes 200 160 $T_{J} = 150^{\circ}C$ 120 80 $T_J = 25^{\circ}C$ 40 0 0.3 0.4 0.5 0.6 0.7 0.9 1.0 1.1 V_{SD} - Volts

Fig. 11. Maximum Transient Thermal Impedance

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 12. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 14. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs. Drain Current

Fig. 13. Resistive Turn-on Rise Time vs. Drain Current

Fig. 15. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs. Gate Resistance

