

Computers Fundamentals

Subject 2. Principles of digital design

Aims and objectives

- What a logic function is and its mathematical representation
- How to design basic logic circuits
- Fundamentals of Boole's Algebra
- How to simplify circuits.
 - Karnaugh's Maps

Outline

- Introduction
- Logic functions and truth tables
- Basic logic gates
- Boole's Algebra
- Canonical forms of boolean functions
- Logic function's simplification
 - Karnaugh's maps

http://en.wikipedia.org/wiki/Canonical_form_(Boolean_algebra)

Introduction

- Transistor
 - Minimal digital design-unit of design
- Logic gate
 - Minimal logic-unit of digital design
- Combinatorial circuit
 - Output values only depend on input values at any time

Introduction

- Sequential circuits
 - Output values depend on the input values and on the memory of the circuit.
- Functional unit
 - A circuit that realize a well defined function

Logic functions and thruth tables

FCO

Logic function

- Mathematical representation of the behavior of a digital circuit
- Used to evaluate the output's circuit value in function of the values of the input variables
- Arity= total number of input variables
- Valuation= the value to which a logic function evaluates when each one of the input variables are assigned a value 1 (for truth) or 0 (for falsity).

http://en.wikipedia.org/wiki/Truth_table http://en.wikipedia.org/wiki/Propositional_formula

Logic functions and truth tables

Truth tables

- Tabular representation of a logic function
- A truth table has as many columns as input variables has the logic function
- Each row of the table correspond to a valuation of the logic function
 - The total number of different valuations of a logic function is: 2^{arity}
- Table organization:
 - Left columns corresponds to Input variable(s)
 - Right column/columns corresponds/correspond to output/outputs

Interior light of a car

- Given the input variables R, L (right and left doors of a 2 doors car) you have to design a logic circuit for turning on or off the interior light (IL) of a car.
- Behavior:
 - If at least one door of the car is open the IL is on.
 - If both doors are closed the IL is off.

R	L	IL
0 0 1	0 1 0	0 1 1
1	1	1

Interior light of a car (version 2)

- Most cars have a special input for turning on or off the interior light independent of the doors state (open or close)
- We add a input variable M corresponding to the manual turn on/off of the IL.
- Behavior:
 - If input *M* is activated (*M*=1) IL is on, even if the doors of the car are closed
 - If input *M* is not activated (*M=0*) IL state (on or off) depends on the state of the doors
 - If at least one door of the car is open the IL is on.
 - If both doors are closed the IL is off.

- Functions with don't care inputs
 - Depending on the function, there are valuations for which inputs values do not care when evaluating the value of the output because:
 - The behavior of the circuit is not defined for some combination(s) of the input values
 - The nature of the circuit does not allow such input combination
 - Output value for *don't care inputs* is X

FCO

Car's light flasher

- Given the control input signals:
 left flasher (<u>LF</u>), right flasher (*RF*) and breakdown (*BD*)
- You have to generate the output values that activate the light flashers of a car, Left light flasher (LLF) right light flasher (RLF)

BD	LF	RF	LLF	RLF
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	X	X
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	X	X

Truth Table of a function with don't care inputs

Composition of functions

- Composite function: a function whose values are found from two given functions by applying one function to an independent variable and then applying the second function to the result
- Example: Car's interior light with manual control

Logic gates

 Logic gate: electronic circuit that implements a basic logic function

- Types
 - Active-high outputs: AND, OR, NOT, XOR
 - Active-low outputs: NAND, NOR, XNOR

- Technologies
 - TTL, CMOS

Logic gates

- AND
- Logical conjunction
- Arity: 2,3,...

a	a-b
b)——

b	а	a-b
0	0	0
0	1	0
1	0	0
1	1	1

- OR
- Logical disjunction
- Arity: 2,3,...

a		a+b
b	>	

b	а	a+b
0	0	0
0	1	1
1	0	1
1	1	1

- NOT
- Logical negation ("inverter")
- Arity: 1

а	a
0	1
1	0

- XOR
- Exclusive disjunction
- Arity: 2

<u>a</u>	_//	
b		<u>}a⊕l</u>
	/ /	

b	a	a⊕b
0	0	0
0	1	1
1	0	1
1	1	0

Logic gates with low-level output

FCO

- NAND = NOT (AND)
- Arity: 2,3,...

b	а	a-b
0	0	1
0	1	1
1	0	1
1	1	0

- NOR = NOT (OR)
- Arity: 2,3,...

b	а	a+b
0	0	1
0	1	0
1	0	0
1	1	0

XNOR = NOT (XOR)
 Arity: 2

b	а	a⊕b
0	0	1
0	1	0
1	0	0
1	1	1

Logic gates. Technologies

- Each technology uses different physical elements (transistors) and different power levels to represent logical values 0 and 1
- TTL = Transistor-Transistor Logic
 - Based on bipolar transistors
 - High speed, high power consumption, hard integration
- CMOS = Complementary Metal Oxide Semiconductor
 - Based on MOSFET transistors
 - Speed slower than bipolar, low power consumption, large scale of integration

NAND (TTL) Physical Implementation

Logic gates: Technologies

Function Table

$$Y = \overline{AB}$$

Inputs		Output	
Α	В	XBAY =	
L	L	HS as	
L	Н	Н	
Н	L	Н	
Н	Н	L	

H = High Logic Level

L = Low Logic Level

Inverter implemented using CMOS Tech.

Level of a logic circuit

FCO

Level

- Number of gates that a signal need to go through before it can get out from the circuitry of the logic circuit.
 - If there are many paths to go through a circuit It is considered the worst case
- It is a figure-of-merit of the circuit delay
- Each gate has a delay of T
- Inputs are at level 0

Circuit Analysis

- Given a logic circuit it is necessary to obtain its logic function and its truth table
 - Logic function: It is obtained doing the composition of the sub functions of each node of the circuit
 - Truth table: obtained evaluating the output for each possible combination of the values that the inputs can take

Circuit Analysis

- George Boole (s. XIX)
- English mathematician and philosopher
- Boole developed an algebraic structure based on 2 values (true, false) and 2 composition laws (and, or)
- Boole's studies have been used to formalize the rules of logical reasoning

Precedence (if there is no parenthesis)

- Claude Shannon (1938, Bell Labs.)
- Adapted boole's algebra to computer science
 - Values 0 y 1, composition laws AND y OR
- Shannon studies have been used to formalize the rules of logic circuit design

Puerta Iógica	Símbolo estándar
AND	•
OR	+
NOT	_
XOR	•

Axioms of the Boole's Algebra

FCO

Commutativity of addition and multiplication

Distributivity

$$(a + b) \cdot (a + c) = a + (b \cdot c)$$

 $(a \cdot b) + (a \cdot c) = a \cdot (b + c)$

Axioms of the Boole's Algebra

FCO

Neutral elements

$$a + 0 = a$$

$$a \cdot 1 = a$$

Complements

$$a + \overline{a} = 1$$

 $a \cdot \overline{a} = 0$

FCO

Associativity

$$(a + b) + c = a + (b + c) = a + b + c$$

 $(a \cdot b) \cdot c = a \cdot (b \cdot c) = a \cdot b \cdot c$

 Associativity allows to increment the arity of gates starting from gates with small arity

- Associativity
 - Be careful with gates with output active at low level

$$\overline{a+b+c} = \overline{(a+b)+c}$$

$$b = b = c$$

Idempotence

$$a + a = a$$
 $a \cdot a = a$

$$a + a = a$$

$$a = a$$

$$a = a$$

 Idempotence allows to build not gates from NAND gates or NOR gates

$$\overline{a+a} = \overline{a} = \overline{a \cdot a}$$

$$a \overline{a} \equiv a$$
 $\overline{a} \equiv a$ $\overline{a} \equiv a$ $\overline{a} \equiv a$

Involution

$$\overline{a} = a$$

$$a \longrightarrow \overline{a} \longrightarrow a$$

De Morgan's Laws

$$(\overline{a+b+...+n}) = \overline{a} \cdot \overline{b} \cdot ... \cdot \overline{n}$$
$$(\overline{a \cdot b \cdot ... \cdot n}) = \overline{a} + \overline{b} + ... + \overline{n}$$

– ¡Be careful!

$$(a + b) = a + b$$

$$(\overline{a+b}) = \overline{a} \cdot \overline{b}$$

Canonical forms in Boole's Algebra

- Canonical form (noun): the simplest form of something
- Any Boolean function can be expressed in a canonical form using the dual concepts of minterms and maxterms.

Canonical forms: Minterm of order n

- For a boolean function of n variables, a product term in which each of the n variables appears once (in either its complemented or uncomplemented form) is called a minterm.
- A minterm is a logical expression of n variables that employs only the complement operator and the conjunction operator.
- Minterm of order n
 - A product term in which each of the n input variables appears once
 - A variable appears complemented if its value is 0
 - Each valuation provides a different minterm
 - Minterms are numbered

Canonical forms: Maxterm of order n

- For a boolean function of n variables, a sum term in which each
 of the n variables appears once (in either its complemented or
 uncomplemented form) is called a maxterm.
- A maxterm is a logical expression of n variables that employs only the complement operator and the disjunction operator.
- Maxterm of order n
 - A sum term in which each of the n input variables appears once
 - A variable appears complemented if its value is 1
 - Each valuation provides a different maxterm
 - Minterms are numbered

Disjunctive canonical form

- Disjunctive canonical form or sum of products (SoP)
 - Sum of the minterms pertaining to the function
 - Pertains to the function those minterms which valuations are equal to 1

 \sum (numbered list of the function's min terms)

list of the input variables

b a	f	minterm	nº
0 0 0 1 1 0	0 1 0		0 1 2 3

Canonical form
$$f = \sum_{b,a} (1,3) = \overline{b} \cdot a + b \cdot a$$

Equivalent algebraic expression

Conjunctive canonical form

- Conjunctive canonical form or product of sums (PoS)
 - Product of the maxterms pertaining to the function
 - Pertains to the function those maxterms which valuations are equal to 0

\[\int\text{(numbered list of the function's max terms)}\]

list of the input variables

b	а	f	maxterm	nº
0	0	0	b + a	0
0	1	1	$b + \overline{a}$	1
1	0	0	<u>b</u> + a	2
1	1	1	b + a	3

Canonical form
$$f = \prod_{b,a} (0,2) = (b+a) \cdot (\overline{b} + a)$$

Equivalent algebraic expression

Why are interesting the canonical forms? FCO

- It is a mathematical expression unique and compact of a logic function
- It is the first aproximation to the synthesis of a circuit starting from a truth table

b	а	f	b ~
0 0 1 1	0 1 0 1	0 1 0 1	$f = \sum_{b,a} (1,3) = \overline{b} \cdot a + b \cdot a$

 Any logical function can be implemented by a circuit of level ≤ 3

Canonical forms with don't care inputs

- Canonical forms for functions with don't care inputs
 - The valuations are grouped separately as follows:

	а	pi	pd	id
0	0	0	0	0
1	0	0	1	1
2 3	0	1	0	0
	0	1	1	X
4 5	1	0	0	1
	1	0	1	1
6	1	1	0	1
7	1	1	1	X

$$id = \sum_{a, pi, pd} (1, 4, 5, 6) + \sum_{\phi} (3, 7)$$

$$id = \prod_{a, pi, pd} (0, 2) \bullet \prod_{\phi} (3, 7)$$

Functions simplification

Function Simplification

- Get an algebraic expression equivalent to the starting expression but smaller (less valuations which implies terms with less variables)
- Aim: reduce the complexity of a circuit that implements a function

Methodology

- Algebraic. Applying axioms and properties of Boole's Algebra
 - Complementary element, neutral element, distributivity and associativity
- Graphical. Karnaugh's map

Karnaugh's simplification

Karnaugh's map

- Matrix representation of a Truth table
- A cell of the map represents a valuation of the Truth table
- Inside a cell it is written the output of a valuation of the Truth table
- The spatial distribution of the cells is made in such a way that adjacent terms of the valuations are written in adjacent cells
- Two terms are said adjacent if their validations differn only in just one variable
- The corners of the karnaugh's map are adjacent

Karnaugh's simplification

Maps for functions with 2, 3 and 4 variables

Greater-weight variable

Cell number/ term number $(2_{10} \Rightarrow b=1, a=0)$

Cell numbering is made using Grey's code

Adjacent cells to cell 13

Adjacent cells to cell 10

Karnaugh's simplification

Method

- Adjacent cells with the same value are grouped
- The number of adjacent cells must be a multiple of 2ⁿ
- The groups should be the biggest possible
- The total number of groups created should be the minimal one possible
- A cell can be in several different groups

Ones-simplification's Method

- Adjacent cells with value one are grouped
- Each group represents a product term (It is not a minterm. Why?).
- Variables with value 0 will apper in its complemented form
- A group of 2^k cell cancel k variables in the resulting expression, in other words: the resulting expression will contains n-k variables
- When obtaining the simplified expression, the variables whose value changes are not included

Each cell with value one represents a minterm of the function

- The function without simplification includes all the minterms

$$f = \sum_{c,b,a} (1, 2, 6) = \overline{a} \cdot \overline{b} \cdot c + \overline{a} \cdot b \cdot \overline{c} + a \cdot b \cdot \overline{c}$$

- Adjacent cells-groups detect minterms with a common value

Its addition can be simplified. In algebraic form

ASOCIATIVA

DISTRIBUTIVA

ELEM. COMPLEM.

ELEM. NEUTRO

$$\overline{c} \cdot b \cdot \overline{a} + c \cdot b \cdot \overline{a} = \overline{c} \cdot (b \cdot \overline{a}) + c \cdot (b \cdot \overline{a}) = (\overline{c} + c) \cdot (b \cdot \overline{a}) = 1 \cdot (b \cdot \overline{a}) = b \cdot \overline{a}$$

– Karnaugh gets the same result:

c = 0/1, eliminated b = 1, included a = 0, complemented

Examples

• Examples (cont.)

ba 00	00	0	01 1 ⁴	11	2	10
01	1	1	1 ⁵	1	3	9
11	1	3	7	1	5	11
10	1	2	6	1	4	10

Zeros-simplification

- Group cells with value 0
- Each group represents a sum term (It is not a maxterm because it does not contain all input variables). Variables with value 1 will appear in its complemented form
- A group of 2^k cells cancels k variables from the resultant term and the term will have n-k variables
- When a group is formed, variables with different value (inside the group) are eliminated

Zeros-simplification

FCO

Examples

$$f = (\overline{d} + c) \cdot (\overline{c} + \overline{b})$$

ba	00	01	11	10
00	0	4	12	0 °
01	0	5	13	0 9
11	0 3	7	15	0 ¹¹
10	02	6	14	0 ¹⁰

ba do	00	01	11	10
00	0	4	12	8
01	1	5	013	0 9
11	03	0 ′	015	11
10	0 ²	0 6	014	0]0

do ba	00	01	11	10	
00	0	4	12	Õ	3
01	1	0 5	01β	0	9
11	3	0 7	015	0	1
10	2	6	14	0)

Simplification. Don't care inputs

FCO

 Cell with X value are very important. They can be grouped with 0's or with 1's

Simplification. Don't care inputs

FCO

- Common mistakes:
- Using all "x"

Grouping "x"when not needed

Computers Fundamentals

Subject 1. Introduction to computers