Quantum Computing 2019 Set 2

Due October 10th October 3rd

Instructions: Solutions should be legibly handwritten or typset. Sets are to be returned in the mailbox outside 615 Soda Hall.

Problem 1. (2 points) In the proof of BQP \subseteq GapP, we assumed that we can find a complete gate set where every gate can be expressed as a unitary matrix with only real entries. i.e. quantum computing with real amplitudes is just as powerful as allowing complex amplitudes. Show this is possible.

Problem 2. Consider a device that ideally produces the state $|\psi_0\rangle$ but due to manufacturing defects produces the state $|\psi_1\rangle$. We will show that if $|\psi_0\rangle$ and $|\psi_1\rangle$ have large overlap $|\langle\psi_0|\psi_1\rangle|$, then no quantum process can distinguish these two devices with high probability. For any process P, quantify how well it distinguishes $|\psi_0\rangle$ and $|\psi_1\rangle$ by:

$$\Delta \stackrel{\text{def}}{=} |\Pr(P(|\psi\rangle_0) \text{ outputs } 0) - \Pr(P(|\psi\rangle_1) \text{ outputs } 0)|$$

1. **(2 points)** Consider the simplest strategy: measure in a basis for which $|\psi_0\rangle$ is a basis vector and guess 0 if the measurement is $|\psi_0\rangle$ and 1 otherwise. Show that then

$$\Delta = 1 - \left| \langle \psi_0 | \psi_1 \rangle \right|^2.$$

2. **(2 points)** This strategy is not optimal. Find a better measurement for which

$$\Delta = \sqrt{1 - \left| \langle \psi_0 | \psi_1 \rangle \right|^2}. \tag{*}$$

(Hint: There is a 2-dimensional space containing $|\psi_0\rangle$ and $|\psi_1\rangle$. It may be useful to remember the trignometric identities of $2\sin x \sin y = \cos(x-y) - \cos(x+y)$ and $\cos 2x = 2\cos^2 x - 1$.)

We will show that this second strategy is indeed optimal. To show the upper bound of (\star) , we will first introduce a generalized form of measurement called a *positive-operator valued measurement* (POVM). A POVM is a set of Hermitian positive semidefinite operators $\{M_i\}$ on a Hilbert space \mathcal{H} that sum up to identity

$$\sum_{i=1}^n M_i = \mathbb{I}_{\mathcal{H}}.$$

The probability of measuring outcome i is given by $\Pr(i) = \langle \psi | M_i | \psi \rangle$. This generalizes a basis measurement as we can consider $M_i = |b_i\rangle\langle b_i|$ for any basis $\{|b_i\rangle\}$. An important difference between basis measurements and POVMs are that the element of a POVM are not necessarily orthogonal and, therefore, the number of elements can be larger than the dimension of the Hilbert space \mathcal{H} .

Instead, POVMs are exactly as descriptive as as applying a unitary U to the state and ancilla $|\psi\rangle\otimes|0\ldots0\rangle$ followed by a measurement of some of the qubits.

3. **(2 points)** For any POVM $\{M_i\}$, let $A_i = \sqrt{M_i}$, consider the following partial transformation:

$$U:\ket{\psi}\ket{0}_{\mathsf{ancilla}}\mapsto \sum_{i=1}^n A_i\ket{\psi}\ket{i}_{\mathsf{ancilla}}.$$

Conclude that *U* followed by a measurement of the ancilla register gives the same statistics as the POVM.

4. **(2 points)** Given a unitary *U* acting on the state and some ancilla of dimension *n* initialized to zero, construct a POVM equivalent to applying *U* and measuring the ancilla in the standard basis.

Returning to the problem at hand, we can generalize the distinguishing measurement as a POVM with two elements M and $\mathbb{I}-M$, with the two outcomes corresponding to answering 0 and 1, respectively. Attempt the next four parts if you are able to – if not, you will get another chance to return to them when we will have covered some more background material in class.

5. **(2 points)** Show that then the optimal value of Δ is

$$\Delta_{\mathrm{opt}} = \max_{0 \le M \le \mathbb{I}} \mathrm{Tr}\left(M\rho\right)$$

where
$$\rho = |\psi_0\rangle\langle\psi_0| - |\psi_1\rangle\langle\psi_1|$$
.

6. (2 points) Conclude that

$$\max_{0 \leq M \leq \mathbb{I}} \operatorname{Tr}\left(M\rho\right) = \frac{1}{2}\operatorname{Tr}\sqrt{\rho^2}.$$

(Hint: Consider an optimal M in the basis where ρ is diagonal).

7. **(2 points)** Finish by showing

$${
m Tr}\,\sqrt{
ho^2}=2\sqrt{1-|\langle\psi_0|\psi_1
angle|^2}.$$

(Hint: ρ is a rank 2 matrix; therefore it has only 2 non-zero eigenvalues. Now express $\operatorname{tr}(\rho^2)$ in two ways.)

8. **(1 point)** Give a justification as to why the maximizing *M* and the measurement you gave in Part 2 are the same.

Problem 3. (6 points) Show that $BQP^{BQP} = BQP$. More formally, let f be a language $\in BQP$ and let g be a language $\in BQP^f$, a language decidable by a BQP device with access to f. Then show that $g \in BQP$.

(Hint: it might help to prove a rigorous version of the statement: If a binary measurement on a quantum state outputs 0 with high probability, then the post-measurement state on output 0 has high overlap with the pre-measurement state.)

Problem 4. (2 points) Raz and Tal showed that \exists an oracle A such that $\mathsf{BQP}^A \not\subset \mathsf{PH}^A$. The oracle they used to show this result is the "forrelation" oracle. The oracle consists of two functions $f,g:\{0,1\}^n \to \{\pm 1\}$ with the promise¹ that either $\Phi_{f,g} \geq 3/5$ or $|\Phi_{f,g}| \leq 1/100$ for

$$\Phi_{f,g} \stackrel{\text{def}}{=} 2^{-3n/2} \sum_{x,y \in \{0,1\}^n} f(x) (-1)^{x \cdot y} g(y).$$

Show that these two cases can be distinguished with high probability given quantum access to f and g.

¹The reason for the asymmetry in one promise being for $\Phi_{f,g}$ while other for its absolute value is technical and if interested, one should look at the paper of Aaronson and Ambainis introducing the problem.