

Table of contents

Table of contents

Introduction

Problem Formulation & Motivation

Death of boy, 11, who fell 17 floors after failing his exams for the first time ruled a suicide

-Straits time, 2016

Today Online, 2016 -

Death of Pri 5 student a deliberate act of suicide: Coroner's Court

MOE, MSF 'very concerned' about spike in youth suicides; experts say more support and awareness necessary

-CNA 2019

How can we optimise the environment to improve Students' Grades?

1

How can we sieve out students who are in need of help?

What are the factors that are important in determining our grades?

Problem Formulation & Motivation

- Too ingrained within us to change
- Prevention is better than cure
- Too late to deal with after it happens

Introduction to dataset

UCI MACHINE LEARNING · UPDATED 7 YEARS AGO

New Notebook

Student Alcohol Consumption

Social, gender and study data from secondary school students

Cleaning the Dataset: Redundant Variables

Cleaning the Dataset: Outlier removal

15: 81 16: 102 17: 97 18: 77 19: 11 20: 1 22: 1

EDA: Alcohol Consumption

1: Very low

2: Low

3: Medium

4: High

5: Very High

Weekly Alcohol Consumption

0: Little

1-3: Some

4-6: Medium

>6: High

EDA: Alcohol Consumption 100 overall_grades 20

EDA: Parents education

EDA: Parents education Total_Grades Pedu

EDA: Family Relationships 100 overall_grades 60 20 2 famrel

¹Uni-Variate

Linear Regression Model

² Multi-Variate

Linear Regression Model

Uni-Variate Regression Model

Uni-Variate Regression Model

Multivariate Regression Model

	Predictors	Coe	fficients
0	traveltime		-1.947805
1	activities		0.889190
2	romantic		-2.967059
3	famrel		-0.297625
4	goout		-1.360746
5	total_absences		-0.157849
6	weekly		-0.868633
7	Pedu		1.778763

Intercept of Regression
 : b = [71.36950508]

Multivariate Regression Model

Multivariate Regression Model

Goodness of Fit of Model Train Dataset

Explained Variance (R²) : 0.12323366964013271

Mean Squared Error (MSE) : 251.61932840302885

Root Mean Squared Error (RMSE) : 15.862513306630474

Goodness of Fit of Model Test Dataset

Explained Variance (R^2) : 0.15049097506415288

Mean Squared Error (MSE) : 218.69132979566993

Root Mean Squared Error (RMSE) : 14.788215909827322

New and Beyond!

OLS (Ordinary Least Square) Regression 2 Feature [°] Importance

Random Forest

OLS Regression

OLS Regression Results

Dep. Variable: overall_grades R-squared: 0.131 Model: OLS Adj. R-squared: 0.111 Method: Least Squares F-statistic: 6.753 Date: Sat, 22 Apr 2023 Prob (F-statistic): 2.94e-08 Time: 06:50:30 Log-Likelihood: -1533.9 No. Observations: 368 AIC: 3086. **Df Residuals:** BIC: 3121. 359

Covariance Type: nonrobust

Df Model:

P>Itl [0.025 0.975] coef std err 70.8660 5.252 13.493 0.000 60.537 81.195 const -2.6115 1.223 -2.135 0.033 -5.017 -0.206 traveltime 1.8803 1.673 1.124 0.262 -1.409 5.170 activities -3.3179 1.782 -1.862 0.063 -6.822 0.187 romantic -0.1153 0.926 -0.125 0.901 -1.936 1.705 famrel -1.8425 0.801 -2.301 0.022 -3.417 -0.268 goout total absences -0.1476 0.077 -1.907 0.057 -0.300 0.005 weekly -0.6156 0.474 -1.299 0.195 -1.548 0.317 Pedu 1.9909 0.435 4.579 0.000 1.136 2.846

New Model

OLS Regression Results

overall_grades Dep. Variable: R-squared: 0.112 Model: OLS Adj. R-squared: 0.100 Method: Least Squares F-statistic: 9.113 Date: Sat, 22 Apr 2023 Prob (F-statistic): 3.54e-08 06:54:19 Time: Log-Likelihood: -1537.9 No. Observations: 368 AIC: 3088. Df Residuals: BIC: 3111. 362

Df Model: 5

Covariance Type: nonrobust

 const
 std err
 t
 P>ltl
 [0.025]
 0.975]

 const
 70.0269
 5.260
 13.314
 0.000
 59.684
 80.370

 traveltime
 -2.8647
 1.212
 -2.363
 0.019
 -5.249
 -0.480

 romantic
 -3.5445
 1.785
 -1.986
 0.048
 -7.054
 -0.035

 famrel
 0.2678
 0.917
 0.292
 0.770
 -1.535
 2.071

 goout
 -2.3768
 0.741
 -3.208
 0.001
 -3.834
 -0.920

 Pedu
 1.9896
 0.434
 4.589
 0.000
 1.137
 2.842

Random forest

Is like a classification tree but done multiple times to get different trees

Feature Importance

G2	absences	G1	age

Feature	0.840337	0.076088	0.012519	0.009485
Importance	0.040007	0.07 0000	0.012010	0.000 100

goout	studytime	health	failures	Walc
0.008711	0.008008	0.007836	0.006891	0.004808

Sub-problem 1

How can we sieve out students who are in need of help?

Sub-problem 2

What are the factors that are important in determining our grades?

Factors

traveltime

Time taken to travel to school

Pedu

Parents education

romantic

Whether the student is in a romantic relationship

famrel

Family Relations

Disclaimer

Since correlation != causation,

We cannot be 100% sure if these solution can improve grades

But there is definitely a good chance that it can impact grades based on our statistic analysis

traveltime

traveltime -2.8647

Provide dorms or integrate home-based learning into curriculum

Romantic romantic -3.5445

Have lessons on healthy relationships

Pedu

Pedu 1.9896

Have online materials for parents so they can help their child with schoolwork.

famrel

famrel 0.2678

Provide family counseling services

Conclusion

With our solutions to our subproblems

- We will be able to identify students that need help
- We are able to address the social factors that impact grades

Conclusion

Optimisation of the environment to improve students' grades can be achieved!

