인공지능 아카데미

01강. 머신러닝 이해와 기초 파이썬

목차

- 인공지능? 머신러닝? 딥러닝?
- 파이썬으로 머신러닝 시작하기
- 타이타닉 데이터를 활용한 실습

인공지능

- 인간의 지능을 기계 등에 인공적으로 구현
- 사람이 해결하지 못하던 문제를 해결
- 사람이 하던 일을 보다 빠르고 정확하게 처리
- 생활이 편리해짐 ex) 시리, 자율주행 자동차, 추천 시스템
- 인공지능을 어떻게 만들까? => **머신러닝**

내가 내일 시험인데 이러고 있는데 충고좀

니가 지금 공부해야 나처럼 병아리 흥내 내는 알바안한다.

머신러닝 (Machine Learning)

사람이 공부를 잘하기 위해 필요한 것

- 사람
- 학습 방법
- 학습 자료
- 학습 시간
- 선생님

머신러닝 (Machine Learning)

기계가 공부를 잘하기 위해 필요한 것

- 모델(알고리즘)
- 학습 기법
- 데이터
- 학습 시간
- 사람

기계가 공부하는 과정

파이썬으로 컴퓨터와 대화하기

Google Colab으로 파이썬 시작하기

구글 드라이브에 Colab 설치

구글 드라이브에 Colab 설치

구글 드라이브에 Colab 설치

사용할 데이터 - 타이타닉

데이터 다운로드

https://dacon.io/competitions/open/235539/data/

데이터 다운로드

Colab 실행

구글 드라이브 마운트

구글 드라이브 마운트

파이썬 기초 1. 연산

[1] 1+	+1	
□ → 2		
[2] 32	2–12	
□ → 20	0	
[3] 8+	* 3	
□ → 24	4	[0] 0
[4] 5/	/2	[8] a = 3 b = 2
□ → 2.	.5	a*b
[5] 5/	1/2	C → 6
□ → 2		
[6] 5%	%2	
□ → 1		
[7] 5*		
□ → 25	5	

파이썬 기초 2.자료형

- 숫자 정수(1, 2, 3, 4...), 실수(1.24, 2.234...)
- 문자 'Hello World!'

```
[9] txt = 'hello world!'
txt

□→ 'hello world!'
```

파이썬 기초 3.자료 구조

- 리스트
 - [0,1,2,3] => 1차원 데이터
 - [[0,1], [2,3]] => 2차원 데이터 [[0,1], [2,3]]
- 튜플 (0,1,2,3)
 - 리스트와의 차이 : 저장된 요소 수정 불가
- 딕셔너리 {이름:[철수, 영희], 성별:[여자, 남자]}

Pandas 패키지

- 패키지(라이브러리) : 프로그래밍 언어에서 다양한 기능의 모음
- Pandas : 정형 데이터를 다루는 파이썬 패키지
 - 1차원 데이터 → Series
 - 2차원 데이터 → DataFrame

	이름	출석번호
0	철수	21
1	영희	22

DataFrame

Series

Pandas로 데이터 프레임 만들기

1. 데이터프레임으로 만들 딕셔너리 생성

di = {'이름':['철수', '영희'], '출석번호':[21,22]} di {'이름':['철수', '영희'], '출석번호':[21, 22]}

2. Pandas 패키지 import

import pandas as pd

3. pd.DataFrame()를 이용하여 데이터 프레임 생성

타이타닉 데이터 살펴보기

- train.csv : 타이타닉 탑승자들 중 일부의 인적정보와 생존 여부 데이터
- test.csv : 타이타닉 탑승자들 중 일부(train set의 탑승자 제외)의 인적정보 데 이터
- sample_submission.csv : submission 파일의 예시

타이타닉 데이터 살펴보기

생존 정보

	Α	В	С	D	Е	F	G	н	1	J	К	L							
1	Passenger	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked							
2	1	0	3	Braund, N	male	22	1	0	A/5 21171	7.25		S							
3	2	1	1	Cumings,	female	38	1	0	PC 17599	71.2833	C85	С							
4	3	1	3	Heikkinen	female	26	0	0	STON/O2.	7.925		S							
5	4	1	1	Futrelle, N	female	35	1	0	113803	53.1	C123	S							1 -1
6	5	0	3	Allen, Mr.	male	35	0	0	373450	8.05		합승	Y	\cdot	计 1	나 성	나 성	나 성보	다 정5
7	6	0	3	Moran, M	male		0	0	330877	8.4583		d							
8	7	0	1	McCarthy,	male	54	0	0	17463	51.8625	E46	S							
9	8	0	3	Palsson, N	male	2	3	1	349909	21.075		S							
10	9	1	3	Johnson, 1	female	27	0	2	347742	11.1333		S							
11	10	1	2	Nasser, Mi	female	14	1	0	237736	30.0708		С							
12	11	1	3	Sandstrom	female	4	1	1	PP 9549	16.7	G6	S							
13	12	1	1	Bonnell, N	female	58	0	0	113783	26.55	C103	S							
14	13	0	3	Saunderco	male	20	0	0	A/5. 2151	8.05		S							
15	14	0	3	Anderssor	male	39	1	5	347082	31.275		S							

train.csv 파일을 Excel로 열어본 모습

타이타닉 데이터 살펴보기

	Α	В	С	D	E	F	G	Н	1	J	К
1	Passenger	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
2	892	3	Kelly, Mr	male	34.5	0	0	330911	7.8292		Q
3	893	3	Wilkes, Mi	female	47	1	0	363272	7		S
4	894	2	Myles, Mr.	male	62	0	0	240276	9.6875		Q
5	895	3	Wirz, Mr. A	male	27	0	0	315154	8.6625		S
6	896	3	Hirvonen,	female	22	1	1	3101298	12.2875		S
7	897	3	Svensson,	male	14	0	0	7538	9.225		S
8	898	3	Connolly,	female	30	0	0	330972	7 6202		4
9	899	2	Caldwell, I	male	26	1	1	248738	타스 [.]	자 정보	
10	900	3	Abrahim, I	female	18	0	0	2657	H O '	小 6 工	•
11	901	3	Davies, Mi	male	21	2	0	A/4 48871	24.15		5
12	902	3	llieff, Mr. \	male		0	0	349220	7.8958		S
13	903	1	Jones, Mr.	male	46	0	0	694	26		S
14	904	1	Snyder, M	female	23	1	0	21228	82.2667	B45	S

		Α	В
	1	Passenger	Survived
	2	892	0
	3	893	1
	4	894	0
	5	895	0
		896	1
생존 여	즉	897	0
		898	1
	9	899	0
	10	900	1
	11	901	0
	12	902	0
	13	903	0
	14	904	1

test.csv 파일을 Excel로 열어본 모습

Sample_submission.csv 파일을 Excel로 열어본 모습

메모장으로 열어 본 CSV

머신러닝 과정

- 데이터 가져오기
- 데이터 전처리
- 데이터 시각화
- 특징(Feature) 선택
- 모델 설계 & 학습
- 결과 예측

Padas로 csv파일 열기 - pd.read_csv()

Train – pd.DataFrame.head()

위에서 10줄만 출력, 숫자 입력 안하면 5줄 출력

[4]	trai	in.head(10)												
₽		Passengerld	Survived	Pclass		Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3		Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bra	dley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3		a±1.01.51.01.5		26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacc			35.0	1	0	113803	53.1000	C123	s
	4	5	0	3		DataFrame		35.0	0	0	373450	8.0500	NaN	S
	5	6	0	3		Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
	6	7	0	1		McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
	7	8	0	3	Palsso	on, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
	8	9	1	3	Johnson, Mrs. Oscar W (E	Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
	9	10	1	2	Nasser, Mrs	s. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

DataFrame 정보 - pd.DataFrame.info()

결측치 - pd.DataFrame.isna()

[→		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	False	False	False	False	False	False	False	False	False	False	True	False
	1	False	False	False	False	False	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False	False	False	False	True	False
	3	False	False	False	False	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	False	False	False	True	False
	886	False	False	False	False	False	False	False	False	False	False	True	False
	887	False	False	False	False	False	False	False	False	False	False	False	False
	888	False	False	False	False	False	True	False	False	False	False	True	False
	889	False	False	False	False	False	False	False	False	False	False	False	False
	890	False	False	False	False	False	False	False	False	False	False	True	False

결측치 pd.DataFrame.sum()

train.shape (891, 12)

특정 컬럼 선택 - pd.DataFrame['column']

여러가지 통계 정보 mean(), min(), max(), median(), describe()

결측치 처리 - pd.Series.fillna()

arch	Ticket	Fare	Cabin	Embarked
0	A/5 21171	7.2500	NaN	S
0	PC 17599	71.2833	C85	С
0	STON/O2. 3101282	7.9250	NaN	S
0	113803	53.1000	C123	S
0	373450	8.0500	NaN	S
0	330877	8.4583	NaN	Q
0	17463	51.8625	E46	S
1	349909	21.0750	NaN	S
2	347742	11.1333	NaN	S
0	237736	30.0708	NaN	С

카운트 – pd.Series.value_counts()

생존자, 사망자

생존, 사망 데이터 분리

생존 데이터

[23]	survived = train[train['Survived']==1] dead = train[train['Survived']==0]												
[24]	surviv	ed											
□		Passenger I d	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
	9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С
	875	876	1	3	Najib, Miss. Adele Kiamie "Jane"	female	15.0	0	0	2667	7.2250	NaN	С
	879	880	1	1	Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)	female	56.0	0	1	11767	83.1583	C50	С
	880	881	1	2	Shelley, Mrs. William (Imanita Parrish Hall)	female	25.0	0	1	230433	26.0000	NaN	S
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
	3/12 ros	ws x 12 colum	ns										

Pclass에 따른 생존 여부

Series로 DataFrame 생성 - pd.DataFrame()

그래프 그리기 – pd.DataFrame.plot()

생존률 계산

행과열 자리 바꾸기 - pd.DataFrame.T

새로운	· 컬럼	추가 –	pd.DataFrame[new_	_column] =	pd.Series

[38]	df.T			
C>	s	urvived	dead	
	1	136	80	
	2	87	97	
	3	119	372	
				_

생존률 = 100 * 생존자 / (생존자 + 사망자)

```
[41] df = df.T

100+df['survived']/(df['survived']+df['dead'])

D+ 1 62.962963

2 47.282609

3 24.236253

dtype: float64
```

그래프~생존률 한번에

다른 컬럼 시각화

다른 컬럼 시각화

두 개의 컬럼을 이용해 새로운 컬럼 생성

```
train['family'] = train['SibSp'] + train['Parch']
```


ex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	family
ale	22.0	1	0	A/5 21171	7.2500	NaN	s	1
ale	38.0	1	0	PC 17599	71.2833	C85	С	1
ale	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s	0
ıle	35.0	1	0	113803	53.1000	C123	s	1
ale	35.0	0	0	373450	8.0500	NaN	s	0

family 컬럼 시각화

Age 컬럼 시각화

Age 컬럼 binning

- 10살 미만 => 0
- 10살 이상 20살 미만 => 1
- 20살 이상 30살 미만 => 2
- 30살 이상 40살 미만 => 3
- 40살 이상 50살 미만 => 4
- 50살 이상 60살 미만 => 5
- 60살 이상 70살 미만 => 6
- 70살 이상 => 7

pd.DataFrame.loc[조건, 컬럼] = 값

```
[ ] train.loc[train['Age'] < 10, 'Age_bin'] = 0
    train.loc[(train['Age'] >= 10) & (train['Age'] < 20), 'Age_bin'] = 1
    train.loc[(train['Age'] >= 20) & (train['Age'] < 30), 'Age_bin'] = 2
    train.loc[(train['Age'] >= 30) & (train['Age'] < 40), 'Age_bin'] = 3
    train.loc[(train['Age'] >= 40) & (train['Age'] < 50), 'Age_bin'] = 4
    train.loc[(train['Age'] >= 50) & (train['Age'] < 60), 'Age_bin'] = 5
    train.loc[(train['Age'] >= 60) & (train['Age'] < 70), 'Age_bin'] = 6
    train.loc[train['Age'] >= 70, 'Age_bin'] = 7,
    test.loc[test['Age'] < 10, 'Age_bin'] = 0
    test.loc[(test['Age'] >= 10) & (test['Age'] < 20), 'Age_bin'] = 1
    test.loc[(test['Age'] >= 20) & (test['Age'] < 30), 'Age_bin'] = 2
    test.loc[(test['Age'] >= 30) & (test['Age'] < 40), 'Age_bin'] = 3
    test.loc[(test['Age'] >= 40) & (test['Age'] < 50), 'Age_bin'] = 4
    test.loc[(test['Age'] >= 50) & (test['Age'] < 60), 'Age_bin'] = 5
    test.loc[(test['Age'] >= 60) & (test['Age'] < 70), 'Age_bin'] = 6
    test.loc[test['Age'] >= 70, 'Age_bin'] = 7
```

Age_bin 컬럼 시각화

Feature 선택

x_train=>문제, y_train=>답, test_=>시험 문제

mapping - pd.DataFrame.map()

회귀 분석(Regression Analysis)

오차(Error)

회귀 분석(Regression Analysis)

로지스틱 회귀(LogisticRegression)

로지스틱 회귀(LogisticRegression)

의사결정나무(DecisionTree)

sklearn 패키지 – 머신러닝 패키지

[77] from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier

테스트셋 예측 – model.predict()

```
[84] dt_model.predict(test_)
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
           1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
           1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1,
           0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0])
```

[85]	submissi submissi		'] = dt_mod	el.predict(test_)
₽	Pa	ssengerld	Survived	
	0	892	0	
	1	893	0	
	2	894	0	
	3	895	0	
	4	896	0	
	413	1305	0	
	414	1306	1	
	415	1307	0	
	416	1308	0	
	417	1309	0	
	418 rows	× 2 columns		

결과 저장 – pd.DataFrame.to_csv()

생존 확률 model.predict_proba()

Confusion Matrix

- True(생존)을 True(생존)으로 예측(TP)
- True(생존)을 False(사망)으로 예측(FN)
- False(사망)을 True(생존)으로 예측(FP)
- False(사망)을 False(사망)으로 예측(TN)

Confusion Matrix를 이용한 평가 지표

- 정확도(Accuracy) True를 True로 False를 False로 얼마나 맞추는가
- 정밀도(Precision) 모델이 True로 분류한 결과를 믿을 수 있는가
- 재현도(Recall) 모델이 True를 얼마나 잘 찾는가

Confusion Matrix를 이용한 평가 지표

양성률과 음성률

True Positive Rate =
$$\frac{TP}{TP + FN}$$
 (1을 맞춘 비율, TPR)

False Positive Rate =
$$\frac{FP}{FP + TN}$$
 (0을 틀린 비율, FPR)

ROC곡선과 AUC

• True 판정 기준(확률 임계값) 변화에 따른 양성률과 음성률의 변화

$$Y(p) = \begin{cases} 0 & (p < 0.5) \\ 1 & (p \ge 0.5) \end{cases}$$

- 평가에 유리한 것은?
 - 1. 0, 1로 제출
 - 2. 확률로 제출

