Appunti di Elementi di Analisi Matematica 1 Giuseppe Criscione

AVVISO: I presenti appunti possono contenere (anzi sicuramente conterranno) errori e/o ripetizioni. Essi non intendono sostituire alcun libro di teoria e/o esercizi.

Indice

1	Insi	emi numerici 3		
	1.1	Definizione di sottrazione in \mathbb{N}		
	1.2	Definizione di quoziente in \mathbb{N}		
	1.3	Proprietà dei numeri razionali		
	1.4	Operazione di potenza		
	1.5	Numeri reali		
		1.5.1 Proprietà dei numeri reali		
		1.5.2 Potenza con esponente razionale		
		1.5.3 Potenza con esponente un numero razionale		
		1.5.4 Potenza con un numero reale		
	1.6	Proprietà delle potenze (con esponente reale)		
	1.7	Proprietà di monotonia		
2	Not	azioni 12		
3	Log	aritmi 13		
	3.1	Proprietà		
	3.2	Proprietà di monotonia		
4	Valo	ore assoluto 14		
	4.1	Proprietà		
5	Funzioni 14			
	5.1	Concetto di funzione		
	5.2	Definizioni principali		
		5.2.1 Restrizioni e Prolungamenti		
	5.3	Funzioni definite per casi		
	5.4	Crescenza e decrescenza		
	5.5	Maggioranti e minoranti di una funzione		
	5.6	Funzioni composte		
6	Suc	cessioni numeriche 19		
	6.1	Definizione di successione numerica		
	6.2	Successioni monotone		
	6.3	Limiti		
		6.3.1 Carattere di una successione		
		6.3.2 Operazioni sui limiti		
		6.3.3 Successione reciproca		
		6.3.4 Successione quoziente		
		6.3.5 Limiti Notevoli		
	6.4	Limiti di successioni notevoli		
	6.5	Limite delle successioni monotone		
	6.6	Il numero di Nepero		

	6.8 6.9	Successioni estratte
7	Into	rni 3
8	Lim	iti di funzioni 3
	8.1	Convergenza e divergenza
	8.2	Teoremi fondamentali
	8.3	Limiti laterali
	8.4	Teorema Ponte
	8.5	Limiti di funzioni trigonometriche
	0.0	8.5.1 Limiti notevoli di funzioni trigonometriche
	8.6	Limiti di funzioni composte
	8.7	Limiti di funzioni monotone
	8.8	Funzioni continue
	8.9	Discontinuità di una funzione
	0.0	8.9.1 Discontinuità eliminabile
		8.9.2 Discontinuità di prima specie
		8.9.3 Discontinuità di seconda specie
	8.10	Proprietà delle funzioni continue in intervalli
9	Deri	ivate 4
	9.1	Derivata destra e sinistra
		9.1.1 Rapporto incrementale
	9.2	Relazione tra continuità e derivabilità
	9.3	Derivate di funzioni elementari
	9.4	Regole di derivazione
	9.5	Derivata di una funzione composta
	9.6	Derivata della funzione inversa
		9.6.1 Esempi di derivate di funzioni inverse
10		lio di funzioni 50
	10.1	Asintoti al grafico di una funzione
	10.2	Estremi relativi
	10.3	Teoremi fondamentali
		10.3.1 Conseguenze del teorema di Lagrange
1	Ir	nsiemi numerici
		$= \{1,2,3,4,\}$ numeri naturali
		$= \{0, \pm 1, \pm 2, \ldots\} \text{ numeri interi}$
	• Q	$= \{\frac{m}{n}, m, n \in \mathbb{Z}, n \neq 0\}$ numeri razionali
	$ullet$ \mathbb{R}	= numeri reali

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$

1.1 Definizione di sottrazione in \mathbb{N}

Siano a,b $\in \mathbb{N}$ con a > b.

$$a-b \stackrel{\mathrm{def}}{=} d \in \mathbb{N} : b+d=a$$

1.2 Definizione di quoziente in \mathbb{N}

Siano a,b $\in \mathbb{N}$ con a > b.

$$a \div b \stackrel{\mathrm{def}}{=} q \in \mathbb{N} : q \cdot b = a$$

1.3 Proprietà dei numeri razionali

 $(\mathbb{Q},\;+,\;\cdot\;,\;\leq)$ è un campo. $\forall\;a,b,c\in\mathbb{Q}$ valgono le seguenti proprietà:

1.
$$a + b = b + a$$

2.
$$a + (b + c) = (a + b) + c$$

3.
$$a + 0 = 0 + a = a$$
 (esistenza dell'elemento neutro)

4.
$$a + (-a) = 0$$

5.
$$a \cdot b = b \cdot a$$

6.
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

7.
$$a \cdot 1 = a$$

8. se
$$a \neq 0 \Rightarrow \exists ! \ a^{-1} \in \mathbb{Q} : a \cdot a^{-1} = 1$$

 a^{-1} è detto **reciproco** di $a \left(\frac{1}{a}\right)$

9.
$$a \cdot (b+c) = a \cdot b + a \cdot c$$

10.
$$a \leqslant b \Rightarrow a + c \leqslant b + c$$

11. se
$$c > 0 \Rightarrow a \leqslant b \Leftrightarrow a \cdot c \leqslant b \cdot c$$

se $c < 0 \Rightarrow a \leqslant b \Leftrightarrow a \cdot c \geqslant b \cdot c$

1.4 Operazione di potenza

Siano $a \in \mathbb{Q}$ e $n \in \mathbb{N}$. Chiamiamo potenza di base a ed esponente n:

$$a^n \stackrel{\text{def}}{=} \begin{cases} a & \text{se } n = 1\\ \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ volte}} & \text{se } n > 1 \end{cases}$$

Problema

Determinare un numero $d \in \mathbb{Q}^+$ tale che $d^2 = 2$

Teorema 1.1

Non esiste alcun numero razionale d tale che $d^2 = 2$

Dimostrazione. (per assurdo)

Supponiamo che: $\exists d \in \mathbb{Q}$: $d^2 = 2$. Allora $d = \frac{m}{n}$ con $m, n \in \mathbb{Z}$ ed $n \neq 0$. Inoltre, poniamo M.C.D(m,n) = 1 (m ed n primi tra di loro).

pointains
$$M.C.D(m, n) = 1$$
 ($m \text{ cd } n$)
$$\left(\frac{m}{n}\right)^2 = 2 \Rightarrow \frac{m^2}{n^2} = 2 \Rightarrow m^2 = 2n^2$$
Allors m^2 à pari

Poiché $m^2 = 2n^2 \Rightarrow 2n^2 = 4k^2 \Rightarrow n^2 = 2k^2 \Rightarrow n^2$ è pari \Rightarrow n è pari. **Assurdo!** Perché avevamo supposto m, n primi tra loro.

1.5 Numeri reali

Definizione 1.1

Chiamiamo numero reale un simbolo del tipo $\pm M$, $C_1C_2...C_n$ con $M \in \mathbb{N}$ e $C_i \in \{0, 1, ..., 9\} \ \forall i \in \mathbb{N}$.

Se $C_1, ..., c_n$ è periodico il numero si dice **razionale**, altrimenti si dice **irrazionale**. L'insieme dei numeri reali si indica con \mathbb{R} .

I numeri reali preceduti dal segno $+ (+M, C_1C_2...C_n)$ si dicono **reali positivi**. I numeri reali preceduti dal segno $- (-M, C_1C_2...C_n)$ si dicono **reali negativi**.

Definizione 1.2

Sia α un numero \mathbb{R} . Si chiama **valore assoluto** di α un numero reale definito come:

$$|\alpha| \stackrel{\text{def}}{=} \begin{cases} \alpha, & se \ \alpha \in \mathbb{R}^+ \\ 0, & se \ \alpha = 0 \\ -\alpha & se \ \alpha \in \mathbb{R}^- \end{cases}$$

Proprietà 1.1

Il valore assoluto di α è un valore reale non negativo $\forall \alpha$.

- $|\alpha| = 0 \Leftrightarrow \alpha = 0$
- $|\alpha| \in \mathbb{R}^+ \Leftrightarrow \alpha \neq 0$

Proprietà 1.2

Il valore assoluto di α è uguale al valore assoluto dell'opposto di α $(-\alpha)$. $|\alpha| = |-\alpha| \ \forall \ \alpha \in \mathbb{R}$.

Definizione 1.3

Siano $\alpha, \beta \in \mathbb{R}$. Con $\alpha = \pm M, C_1C_2...C_n$ $e \beta = \pm N, D_1D_2...D_n$. α è uguale a β se hanno lo stesso segno e se M = N e $C_i = D_i \ \forall i \in \mathbb{N}$.

Definizione 1.4

Siano $\alpha, \beta \in \mathbb{R}^+$ con $\alpha \neq \beta$. Si dice che α è minore di β e scriviamo $\alpha < \beta$ se la parte intera di α è minore della parte intera di β oppure se la parte intera di α è uguale alla parte intera di β e c'è una cifra decimale \overline{r} di α che è minore della corrispondente cifra decimale di β . Se \overline{r} è maggiore di 1, tutte quelle precedenti devono essere uquali.

$$\alpha < \beta \ se \ M < N \ \text{oppure se} \ M = N \ \text{e} \begin{cases} \exists \ \overline{r} \in \mathbb{N} \ tale \ che \ C_{\overline{r}} < D_{\overline{r}} \ e \ se \\ \overline{r} > 1 \ allora \ C_i = D_i \ \forall \ i = 1, ..., \overline{r} - 1 \end{cases}$$

Se $\alpha, \beta \in \mathbb{R}^-$ diremo che $\alpha < \beta$ se $-\beta < -\alpha$

Diremo che β è maggiore di α e scriviamo $\beta > \alpha$ se $\alpha < \beta$.

Diremo che α è maggiore o uguale a β e scriviamo $\alpha \leq \beta$ se $\alpha < \beta$ o $\alpha = \beta$.

Proprietà 1.3

Siano $\alpha, \beta, \gamma \in \mathbb{R}$

- 1. $\alpha \leqslant \beta$ e $\beta \leqslant \gamma \Rightarrow \alpha \leqslant \gamma$ proprietà transitiva
- 2. $\alpha \leqslant \beta \in \beta \leqslant \alpha \Rightarrow \alpha = \beta$ proprietà antisimmetrica

Definizione 1.5 (Definizione di potenza)

Siano $a \in \mathbb{R}$ e $n \in \mathbb{N}$. Chiameremo potenza di base a ed esponente n e scriviamo a^n il numero così definito:

$$a^{n} \stackrel{\text{def}}{=} \begin{cases} a & se \ n = 1\\ \underbrace{a \cdot a \cdot \dots \cdot a}_{n \ volte} & se \ n > 1 \end{cases}$$

Se $a \neq 0$ per definizione $a^0 \stackrel{\text{def}}{=} 1$ e $a^{-n} \stackrel{\text{def}}{=} \frac{1}{a^n}$.

Teorema 1.2 (Esistenza della radice n-esima aritmetica)

Siano $a \in \mathbb{R}$ con $a \ge 0$ e $n \in \mathbb{N}$.

Allora esiste uno e uno solo numero reale positivo b tale che $b^n = a$.

Definizione 1.6 (Radice n-esima aritmetica)

Chiamiamo radice n-esima aritmetica di a e la indichiamo con il simbolo $\sqrt[n]{a}$ quell'unico numero reale non negativo d tale che $d^n = a$.

Se $a \ge 0$ ed $n \in \mathbb{N}$ con $n \ge 2$ allora:

$$\sqrt[n]{a} \stackrel{\text{def}}{=} b \geqslant 0 \text{ tale che } b^n = a.$$

Se a < 0 e n è pari **non esiste** alcun numero reale d tale che $b^n = a$.

Se
$$n \ \dot{e} \ dispari - \sqrt[n]{-a} \ \dot{e} \ tale \ che:$$
 $(-\sqrt[n]{a})^n = [(-1)\sqrt[n]{-a}]^n = (-1)^n\sqrt[n]{a^n} = (-1)(-a) = a.$

1.5.1 Proprietà dei numeri reali

Proprietà 1.4 (Proprietà di completezza o Dedekind) Siano $A, B \subseteq \mathbb{R}$ con $A, B \neq \emptyset$ tali che $a < b \ \forall a \in A \ e \ \forall b \in B$.

Allora esiste almeno un numero reale c tale che:

 $a \leqslant c \leqslant b \ \forall a \in A \ e \ \forall b \in B. \ c \ \dot{e} \ detto \ elemento \ separatore.$

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$.

Definizione 1.7

Un numero reale k si dice **maggiorante** di A se $a \leq k \ \forall a \in A$.

Definizione 1.8

Un numero reale h si dice **minorante** di A se $a \ge h$ $\forall a \in A$.

Conseguenza 1.1

- $k \in \mathbb{R}$ non maggiorante di A se esiste almeno un elemento $\overline{a} \in A$ tale che $\overline{a} > k$.
- $h \in \mathbb{R}$ non minorante di A se esiste almeno un elemento $\overline{a} \in A$ tale che $\overline{a} < h$.

Definizione 1.9

Un insieme si dice dotato di massimo se:

$$\exists M \in A \ tale \ che \ a \leq M \ \forall a \in A.$$

M si chiama **massimo** di A e si indica con max A.

Definizione 1.10

Un insieme si dice dotato di minimo se:

$$\exists m \in A \text{ tale che } m \leq a \ \forall a \in A.$$

m si chiama **minimo** di A e si indica con minA.

Conseguenza 1.2

•
$$M \in \mathbb{R}$$
 $M = \max A \stackrel{\text{def}}{\Leftrightarrow} 1) M \in A$
2) $a \leqslant M \ \forall a \in A$

•
$$m \in \mathbb{R}$$
 $m =$

$$\max A \iff 1 \ m \in A$$

$$2) \ m \leqslant a \ \forall a \in A$$

Proprietà 1.5

Se A è dotato di massimo (minimo) il maxA (minA) è unico.

Dimostrazione. Siano:

$$M_1 = \max A \stackrel{\text{def}}{\Leftrightarrow} 1) \quad M_1 \in A$$

 $2) \quad M_1 \geqslant a \quad \forall a \in A$

е

$$M_2 = \max A \stackrel{\text{def}}{\Leftrightarrow} 3) \quad M_2 \in A$$
 $4) \quad M_2 \geqslant a \quad \forall a \in A$

allora:

$$(1) + 4) \Rightarrow M_2 \geqslant M_1$$

$$(2) + 3) \Rightarrow M_1 \geqslant M_2$$
.

Ne viene che $M_1=M_2$ per la proprietà antisimmetrica dell'ordinamento.

Proprietà 1.6

Se $A \subseteq \mathbb{R}$ è finito allora esistono il $\max A$ e $\min A$.

Esempio 1.1 (Insieme dotato di maggiorante ma privo di massimo)

Consideriamo l'insieme A così definito $A = \{a \in \mathbb{R} \mid a < 0\}.$

A è dotato di maggioranti (ad esempio 0). Ogni numero positivo è maggiorante dell'insieme A.

Proviamo che A non è dotato di massimo.

Supponiamo per assurdo che A sia dotato di massimo e lo indichiamo con M.

$$M = \max A \stackrel{\text{def}}{\Leftrightarrow} \begin{array}{c} i) \ M \in A \\ ii) \ M \geqslant a \ \forall a \in A \end{array}$$

Per la i) M è negativo. Per la ii) $M\geqslant a \ \forall a\in A \ \Rightarrow \ \frac{M}{2}$ è minore di 0 ed $\frac{M}{2}\in A$.

Poiché
$$M < 0 \Rightarrow M < \frac{M}{2}$$
.

ASSURDO poiché
$$M = \max A \in \frac{M}{2} \in A$$
.

Proprietà 1.7 (Proprietà del buon ordinamento)

Nell'insieme dei numeri naturali vale la proprietà del buon ordine.

Se $A \subseteq \mathbb{N}$ con $A \neq \emptyset$. A è dotato di massimo.

Dimostrazione.

Poiché $A \neq 0$ possiamo prendere un elemento $\overline{a} \in A$.

Costruiamo l'insieme X formato da tutti gli elementi minori o uguali ad \overline{a} .

$$X = \{ x \in A \mid x \leqslant \overline{a} \}.$$

X è finito, pertanto è dotato di minimo $\Rightarrow \exists minX \Rightarrow \exists m = minX$. Proviamo che m è il min A.

8

Poiché
$$m = minX \Rightarrow 1$$
) $m \in X$
2) $m \le x \ \forall x \in X$.

Dalla 1) segue che $m \in X \stackrel{\text{def}}{\Leftrightarrow} m \in A \ e \ m \leq \overline{a}$. Provo che $m \leq a \ \forall a \in A$.

Sia
$$a \in A$$

$$\begin{cases} a \leqslant \overline{a} \Rightarrow a \in X & e \ m \leqslant a \ per \ la \ 2) \\ a \geqslant \overline{a} \geqslant m \ per \ la \ 1) \end{cases}$$

Definizione 1.11

Diremo che A è limitato superiormente se è dotato di maggioranti.

Diremo che A è limitato inferiormente se è dotato di minoranti.

Diremo che A è **limitato** se è limitato superiormente e inferiormente.

A limitato superiormente $\stackrel{\text{def}}{\Leftrightarrow} \exists k \in \mathbb{R} : k \geqslant a \ \forall a \in \mathbb{R}.$

A limitato inferiormente $\stackrel{\text{def}}{\Leftrightarrow} \exists h \in \mathbb{R} : h \leqslant a \ \forall a \in \mathbb{R}.$

 $A \ limitato \ \stackrel{\text{def}}{\Leftrightarrow} \ \exists \ h,k \in \mathbb{R} \ : \ h \leqslant a \geqslant k \ \forall a \in \mathbb{R}.$

Proprietà 1.8

 $A \ \dot{e} \ limitato \ se \ e \ solo \ se \ \exists \ H > 0 \ : \ H \geqslant |a| \ \forall a \in A$

Conseguenza 1.3

Dato un insieme $A = \{a \in \mathbb{R} \mid a < 0\}$ limitato superiormente. L'insieme dei maggioranti di $A \in B = \{b \in \mathbb{R} \mid b > 0\}$.

Teorema 1.3 (Esistenza dell'estremo superiore)

Sia $A \subseteq R$, $A \neq \emptyset$ limitato superiormente.

Allora l'insieme dei maggioranti di A è dotato di minimo.

Dimostrazione.

Poiché A è limitato superiormente è dotato di maggioranti.

Sia B l'insieme dei maggioranti di A. Segue che:

 $B = \{b \in B : b \text{ è maggiorante di A}\}$. Pertanto $B \neq \emptyset$ vale $a \leqslant b \ \forall a \in A \text{ e } \forall b \in B$. Per la proprietà di completezza $\exists c \in \mathbb{R} : a \leqslant c \leqslant b \ \forall a \in A \text{ e } \forall b \in B$.

Poiché $c \geqslant a \ \forall a \in A \ c$ è un maggioratene di A. Quindi $c \in B$ ed essendo $c \leqslant b \ \forall b \in B$ c è il minimo dell'insieme B

Conseguenza 1.4

Il minimo dei maggioranti di un insieme si chiama estremo superiore.

Definizione 1.12

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$ limitato superiormente. Si chiama **estremo superiore** di A e si indica con supA il minimo dei maggioranti di A.

Teorema 1.4 (Proprietà caratteristiche del sup)

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$ limitato superiormente e $L \in \mathbb{R}$.

Allora L è l'estremo superiore di A se e solo se:

$$L = \sup A \iff 1) \ a \leqslant L \ \forall a \in A$$
$$2) \ \forall \varepsilon > 0 \ \exists \ \overline{a} \in A : \ \overline{a} > L - \epsilon$$

Proprietà 1.9

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$ limitato superiormente.

Per ipotesi: $sup A \in A$. Allora $\exists \max A = sup A$.

Proprietà 1.10

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$ dotato di massimo.

Allora A sarà limitato superiormente e $supA = \max A$.

Dimostrazione. Il max A è un maggiorante quindi A è limitato superiormente e $supA \le \max A$ perché [supA è il minimo dei maggioranti di A. Ma il $\max A \in A$. Allora $\max A \le \sup A$ poiché il sup è un maggiorante di A.

Teorema 1.5

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$ limitato inferiormente.

Allora l'insieme dei minoranti di A è dotato di minimo.

Definizione 1.13

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$ limitato inferiormente.

Si chiama estremo inferiore e si indica con infA il massimo dei minoranti di a.

$$infA \stackrel{\text{def}}{=} \max\{h \in \mathbb{R} : h \text{ minorante } di \mathbb{R}\}.$$

Teorema 1.6 (Proprietà caratteristica dell'inf)

Siano $A \subseteq \mathbb{R}$, $A \neq \emptyset$ limitato inferiormente e $l \in \mathbb{R}$. Allora:

$$l = infA \iff 1) \ l \leqslant a \ \forall a \in A$$
$$\Leftrightarrow 2) \ \forall \epsilon > 0 \ \exists \ \overline{a} \in A : \ \overline{a} < l + \epsilon$$

Conseguenza 1.5

Se A è un insieme non limitato superiormente diremo che sup $A = \infty$.

Definizione 1.14

Se A non è limitato superiormente (dalla definizione) si ha che $\forall k \in \mathbb{R} \ \exists \ \overline{a} \in \mathbb{A} : \overline{a} > k$).

Allora:

$$SupA \stackrel{\text{def}}{=} +\infty$$

Definizione 1.15

Se A non è limitato inferiormente (dalla definizione) si ha che $\forall h \in \mathbb{R} \ \exists \ \overline{a} \in \mathbb{A} : \overline{a} < h$).

Allora:

$$InfA \stackrel{\text{def}}{=} -\infty$$

Definizione 1.16

Definiamo $\overline{\mathbb{R}}$ l'insieme dei numeri reali tale che:

$$\overline{\mathbb{R}} \stackrel{\text{def}}{=} \mathbb{R} \cup \{-\infty, +\infty\}$$

Segue che:

- \bullet $-\infty < a \ \forall \ a \in \mathbb{R}$
- \bullet $+\infty > a \ \forall \ a \in \mathbb{R}$

1.5.2 Potenza con esponente razionale

Siano $a \in \mathbb{R} \ e \ \frac{m}{n} \in \mathbb{Q}^+ \ \text{con} \ m, n \in \mathbb{N}.$

$$a^{\frac{m}{n}} \stackrel{\text{def}}{=} \sqrt[n]{a^m}$$

- 1. $a \ge 0$ con a, m, n qualsiasi
- 2. a < 0 con n dispari e m qualsiasi
- 3. a < 0 con n pari e m qualsiasi

1.5.3 Potenza con esponente un numero razionale

Sia $a \in \mathbb{R}$, $\frac{m}{n} \in \mathbb{Q}^+$ con $(m, n \in \mathbb{N})$.

Si definisce: $a^{\frac{m}{n}} \stackrel{\text{def}}{=} \sqrt[n]{a^m}$. Se $a \neq 0$, allora $a^{-\frac{m}{n}} \stackrel{\text{def}}{=} \frac{1}{a^{\frac{m}{n}}}$ in tutti i casi in cui è definita $a^{\frac{m}{n}}$.

1.5.4 Potenza con un numero reale

Siano $a \in \mathbb{R}$, a > 0 e $b \in \mathbb{R}$. Vogliamo definire la potenza a^b . Sia $b > 0 \Rightarrow b = M, C_1, C_2, ..., C_n$. Consideriamo

- $b_0 = M$
- $b_1 = M, C_1$
- $b_2 = M, C_1, C_2$
- ...
- $b_n = M, C_1, C_2, ..., C_n$

Per ogni n questi sono numeri razionali \Rightarrow I numeri b_n con $n \in \mathbb{N}_0$ sono numeri razionali poiché per a > 0 le potenze $a^{b_0}, a^{b_1}, ..., a^{b_n}$ sono ben definite. A partire da un certo indice esse presentano la stessa parte intera che chiamiamo γ . Poi si stabilizza la prima cifra decimale γ_1 , così come γ_2 fino a γ_n . Il numero $\gamma, \gamma_1, \gamma_2, ... \gamma_n$ per definizione si chiama **potenza di base** a **ed esponente** b.

Si pone anche $a^{-b} \stackrel{\text{def}}{=} \frac{1}{a^b}$.

Definizione 1.17

Se b > 0 è definita anche $0^b \stackrel{\text{def}}{=} 0$. Quindi a^b con b > 0 si definisce per $b \ge 0$.

1.6 Proprietà delle potenze (con esponente reale)

Siano $a, b, c \in \mathbb{R}$ con a > 0.

1.
$$a^b > 0$$

2.
$$a^b * a^c = a^{b+c}$$

$$3. \ \frac{a^b}{a^c} = a^{b-c}$$

$$4. \ a^b \cdot c^b = (a \cdot c)^b \text{ con } c > 0$$

$$5. \ \frac{a^b}{c^b} = \left(\frac{a}{c}\right)^b$$

6.
$$(a^b)^c = a^{b \cdot c}$$

1.7 Proprietà di monotonia

Siano $x_1 \in x_2 \in \mathbb{R}$.

• Se
$$a > 1$$
 allora $x_1 < x_2 \Leftrightarrow a^{x_1} < a^{x_2}$

• Se
$$0 < a < 1$$
 allora $x_1 < x_2 \Leftrightarrow a^{x_1} > a^{x_2}$

Siano $x_1, x_2 > 0$ e $a \in \mathbb{R}$

• Se
$$a > 0$$
 allora $x_1 < x_2 \Leftrightarrow x_1^{\alpha} < x_2^{\alpha}$

• Se
$$a < 0$$
 allora $x_1 < x_2 \Leftrightarrow x_1^{\alpha} < x_2^{\alpha}$

2 Notazioni

Siano $a, b \in \mathbb{R}$ con a > b.

• [
$$a,b$$
] $\stackrel{\mathrm{def}}{=}$ { $x \in \mathbb{R} : a \leqslant x \leqslant b$ } intervallo chiuso e limitato di estremi a e b .

•
$$[a, b \mid \stackrel{\text{def}}{=} \{x \in \mathbb{R} : a \leq x < b\}$$
 intervallo semiaperto a destra e limitato di estremi $a \in b$.

•]
$$a,b$$
] $\stackrel{\text{def}}{=}$ $\{x \in \mathbb{R} : a < x \leq b\}$ intervallo semiaperto a sinistra e limitato di estremi a e b .

•]
$$a, b$$
 [$\stackrel{\text{def}}{=} \{x \in \mathbb{R} : a < x < b\}$ intervallo aperto e limitato di estremi a e b .

•
$$[a, +\infty [\stackrel{\text{def}}{=} \{x \in \mathbb{R} : x \geqslant a\}$$
 intervallo chiuso non limitato superiormente.

•]
$$a, +\infty$$
 [$\stackrel{\text{def}}{=}$ { $x \in \mathbb{R} : x > a$ } intervallo aperto non limitato superiormente.

•]
$$-\infty, a$$
] $\stackrel{\text{def}}{=} \{x \in \mathbb{R} : x \leqslant a\}$ intervallo chiuso non limitato inferiormente.

•]
$$-\infty, a$$
 [$\stackrel{\text{def}}{=}$ { $x \in \mathbb{R} : x < a$ } intervallo aperto non limitato inferiormente.

•]
$$-\infty, +\infty$$
 [$\stackrel{\text{def}}{=}$ \mathbb{R}

3 Logaritmi

Siano $a, b \in \mathbb{R}$ con a, b > 0

Problema

Determinare, se esiste, almeno una $x \in \mathbb{R}$ tale che $a^x = b$ (1)

• se a = 1, $a^x = 1 \ \forall x \in \mathbb{R}$.

Allora la (1) non ha soluzioni reali se $b \neq 1$. Invece ha infinite soluzioni se b = 1.

Teorema 3.1

Siano a > 0, $a \ne 1$ e b > 0. Allora esiste uno ed un solo numero reale x tale che:

$$a^x = b$$

Definizione 3.1

Siano a > 0, $a \neq 1$ e b > 0. Chiamiamo **logaritmo** in base a di b e lo indichiamo con log_ab :

$$log_a b \stackrel{\text{def}}{=} x \in \mathbb{R} \ tale \ che \ a^x = b.$$

- a si chiama base del logaritmo
- b si chiama argomento del logaritmo

Conseguenza 3.1

Dalla definizione si ha che $a^{log_ab} = b$.

Conseguenza 3.2

$$log_a 1 = 0$$

Conseguenza 3.3

 $log_a a = 1$

3.1 Proprietà

- 1. $log_a b + log_a c = log_a (b * c)$
- $2. \log_a b \log_a c = \log_a (b/c)$
- 3. $log_a b^{\gamma} = \gamma log_a b$ con $\gamma \in \mathbb{R}$
- 4. $log_a b = \frac{log_c b}{log_c a}$ $con c > 0, c \neq 1$

3.2 Proprietà di monotonia

Siano $x_1, x_2 > 0$.

- Se a > 1 allora $x_1 < x_2 \Leftrightarrow log_a x_1 < log_a x_2$
- Se 0 < a < 1 allora $x_1 < x_2 \Leftrightarrow log_a x_1 > log_a x_2$

13

4 Valore assoluto

Sia $x \in \mathbb{R}$.

$$|x| \stackrel{\text{def}}{=} \begin{cases} x & \text{se } x > 0 \\ 0 & \text{se } x = 0 \\ -x & \text{se } x < 0 \end{cases}$$

4.1 Proprietà

1. $|x| \geqslant 0 \ \forall x \in \mathbb{R}$

$$|x| = 0$$
 se e solo se $x = 0$. $|x| > 0 \Leftrightarrow x \neq 0$

- 2. $|x| = |-x| \quad \forall x \in \mathbb{R}$
- 3. $|x * y| = |x| * |y| \quad \forall x \in \mathbb{R}$
- 4. $\left| \frac{x}{y} \right| = \frac{|x|}{|y|} \quad \forall x \in \mathbb{R}, y \neq 0$
- 5. $|x+y| \le |x| + |y|$

$$|x - y| \leqslant |x| - |y|$$

$$||x-y|| \le |x \pm y| \le |x| + |y|$$

6. Dato $k \in \mathbb{R}$, k > 0 allora:

$$|x| < k \Leftrightarrow -k < x < k$$

$$|x| > k \Leftrightarrow x < -k, \ x > k$$

5 Funzioni

5.1 Concetto di funzione

Siano $A, B \neq \emptyset$ e f una legge che associa **ad ogni** elemento di A un solo elemento di B. La terna (A, B, f) si chiama **funzione definita in** A **a ha valori in** B.

A si chiama **dominio** della funzione.

B si chiama **codominio** della funzione

f si chiama legge di definizione.

Scriviamo quindi: $f: A \to B$.

Preso $x \in A$ la legge f associa ad x un solo elemento di B che indichiamo con f(x). Quindi:

$$A \ni x \longrightarrow f(x) \in B$$
.

f(x) si chiama valore assunto dalla funzione f in x o **immagine di** x **tramite** f.

5.2 Definizioni principali

Definizione 5.1

Data una funzione $f: A \to B$, si chiama **immagine di** f l'insieme Imf formato dai valori assunti dalla funzione.

$$Imf \stackrel{\text{def}}{=} \{f(x), x \in A\}.$$

Oppure: $Im f = \{ y \in B \mid \exists x \in A : f(x) = y \}.$

Definizione 5.2

Data una funzione $f:A\to B$, si chiama **grafico di** f l'insieme Imf formato dai valori assunti dalla funzione.

$$Gf \stackrel{\text{def}}{=} \{(x, f(x)), x \in A\}.$$

Oppure: $Gf = \{(x, y), x \in A, y = f(x)\}.$

Definizione 5.3

Si chiama **funzione reale** una funzione il cui codominio è tutto \mathbb{R} $(B = \mathbb{R})$. Se $A \subseteq \mathbb{R}$ diremo che f è una funzione di **variabile reale**.

Definizione 5.4

Diremo f iniettiva se $\forall x_1 \ e \ x_2 \in A \ con \ x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$. (f non e iniettiva se $\exists x_1, x_2 \in A \ con \ x_1 \neq x_2 \Rightarrow f(x_1) = f(x_2)$).

Definizione 5.5

Diremo f suriettiva se $Im f = B \Leftrightarrow \forall y \in B \exists x \in A : f(x) = y$.

Definizione 5.6

Diremo f biettiva se f è iniettiva e surriettiva.

Definizione 5.7 (Funzione invertibile)

Diremo f invertibile se $\forall y \in Imf \exists ! x \in A : F(x) = y$.

Se f è invertibile possiamo definire la funzione $f^{-1}: Imf \to A$ come segue:

$$f^{-1}(x) \stackrel{\text{def}}{=} !x \in A : f(x) = y \ \forall y \in Imf.$$

5.2.1 Restrizioni e Prolungamenti

Definizione 5.8

Data $f: A \to B$ e $x \subset A$. Sia $g: X \to B$ definita da $g(x) = f(x) \ \forall x \in X$. Diremo che $g \ e$ la **restrizione** di f all'insieme X e si scrive $g = f_{|X}$

Definizione 5.9

Siano $f: A \to B$ e $g: X \to B$ con $A \subset X$ tale che $f(x) = g(x) \ \forall x \in A$. Ossia $g_{|A} = f$. In tale caso si dice che $g \ e$ un **prolungamento** di f.

definita da $g(x) = f(x) \ \forall x \in X$. Diremo che $g \ è$ la **restrizione** di f all'insieme X e si scrive $g = f_{|X}$

5.3 Funzioni definite per casi

Siano $A_1, A_2, ..., A_n \neq \emptyset$ e $B_1, B_2, ..., B_n \neq \emptyset$ a due a due disgiunti. Siano inoltre:

$$f_1:A_1\to B_1$$

$$f_2:A_2\to B_2$$

...

$$f_n:A_n\to B_n$$

Chiamiamo A = $\bigcup_{i=1}^n A_i$ e $\bigcup_{i=1}^n B_i$. Sia $g:A\to B$ definita come segue:

$$g(x) = \begin{cases} f_1(x) & \text{se } x \in A_1 \\ f_2(x) & \text{se } x \in A_2 \\ & \dots \\ f_n(x) & \text{se } x \in A_n \end{cases}$$

Si dice che g è una funzione **definita per casi**.

5.4 Crescenza e decrescenza

Sia $A \subseteq \mathbb{R}, A \neq \emptyset$ e $f: A \to \mathbb{R}$.

Diremo che f è **crescente** se: $\forall x_1, x_2 \in A \ con \ x_1 < x_2 \Rightarrow f(x_1) \leqslant f(x_2)$. Diremo che f è **strettamente crescente** se: $\forall x_1, x_2 \in A \ con \ x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.

Diremo che f è decrescente se: $\forall x_1, x_2 \in A \ con \ x_1 < x_2 \Rightarrow f(x_1) \geqslant f(x_2)$.

Diremo che f è **strettamente decrescente** se: $\forall x_1, x_2 \in A \ con \ x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$.

Definizione 5.10

Le funzioni crescenti, decrescente, strettamente crescenti e strettamente decrescenti si dicono monotone. In particolare quelle strettamente crescenti e strettamente decrescenti si dicono strettamente monotone.

Proprietà 5.1

Se $f: A \to \mathbb{R}$ una funzione strettamente monotona. Allora f è iniettiva.

Dimostrazione.

Supponiamo che f sia strettamente decrescente.

Siano x_1 e $x_2 \in A, x_1 \neq x_2$. Abbiamo due casi:

1)
$$x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

2)
$$x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$$

In entrambi i casi si ha che $f(x_1) \neq f(x_2)$.

5.5 Maggioranti e minoranti di una funzione

Sia $f: A \to \mathbb{R}, A \subseteq \mathbb{R}, A \neq \emptyset$.

Definizione 5.11

Un numero $k \in \mathbb{R}$ si chiama **maggiorante** di f (**minorante** di f) se è un maggiorante (minorante) dell'insieme Im f.

Poiché $Imf \stackrel{\text{def}}{=} \{f(x), x \in A\}$, preso un $k \in \mathbb{R}$, si chiama:

maggiorante di $f \stackrel{\text{def}}{\Leftrightarrow} k \geqslant f(x) \ \forall x \in A.$

minorante di $f \stackrel{\text{def}}{\Leftrightarrow} h \leqslant f(x) \ \forall x \in A.$

 $k \ non \ \grave{e} \ maggiorante \ di \ f \ \stackrel{\mathrm{def}}{\Leftrightarrow} \ \exists \ \overline{x} \in A : f(\overline{x}) > k.$

Definizione 5.12

Diremo che f è dotata di massimo (minimo) se l'Imf è dotata di massimo (minimo). Se f è dotata di massimo (minimo), si chiama massimo di f (minimo di f) e si indica con $\max_{x \in A} f$, $\max_{x \in A} f(x)$, $\max f \left(\min_{x \in A} f, \min_{x \in A} f(x), \min f\right)$ il $\max Imf \left(\min Imf\right)$.

 $f \ dotata \ di \ massimo \ \stackrel{\text{def}}{\Leftrightarrow} \ \exists \ \overline{x} \in A : f(\overline{x}) \geqslant f(x) \ \forall x \in A.$

 $f \ dotata \ di \ minimo \ \stackrel{\text{def}}{\Leftrightarrow} \ \exists \ \overline{\overline{x}} \in A : f(\overline{\overline{x}}) \leqslant f(x) \ \forall x \in A.$

 \overline{x} si chiama punto di massimo. Quindi $\max_{A} f = f(\overline{x})$.

 $\overline{\overline{x}}$ si chiama punto di minimo. Quindi $\min_{A} f = f(\overline{\overline{x}})$.

Definizione 5.13

Se $f \ \dot{e} \ dotata \ di \ massimo \ (minimo), \ il \ \max f(\min f) \ \dot{e} \ unico.$

Proprietà 5.2

Se f è dotata sia di max che di min allora il min $f \leqslant \max f$.

Definizione 5.14

Diremo che f è limitata superiormente (inferiormente) se è dotata di maggioranti (minoranti).

 $f \text{ limitata superiormente} \stackrel{\text{def}}{\Leftrightarrow} \exists k \in \mathbb{R} : k \geqslant f(x) \ \forall x \in A.$

 $f \ limitata \ inferiormente \ \stackrel{\rm def}{\Leftrightarrow} \ \exists \ h \in \mathbb{R} : h \leqslant f(x) \ \forall x \in A.$

Definizione 5.15

 $Diremo\ che\ f\ \grave{e}\ limitata\ se\ \grave{e}\ limitata\ superiormente\ e\ inferiormente.$

$$f \ limitata \stackrel{\text{def}}{\Leftrightarrow} \exists \ h, k \in \mathbb{R} : h \leqslant f(x) \leqslant k \ \forall x \in A.$$

Proprietà 5.3

 $f \ limitata \stackrel{\mathrm{def}}{\Leftrightarrow} \ \exists \ H > 0 : |f(x)| \leqslant H \ \forall x \in A.$

Definizione 5.16

Se f è limitata superiormente chiamiamo **estremo superiore** di f e lo indichiamo con $\sup_{x \in A} f$, $\sup_{x \in A} f(x)$, $\sup_{x \in A} f$ l'estremo superiore del Imf.

$$\sup_{x \in A} f \ \stackrel{\mathrm{def}}{\Leftrightarrow} \ \sup Im f$$

Definizione 5.17

Se f è limitata inferiormente chiamiamo **estremo inferiore** di f e lo indichiamo con $\inf_{x \in A} f$, $\inf_{x \in A} f(x)$, $\inf_{x \in A} f$ estremo superiore del Imf.

$$\inf_{x \in A} f \stackrel{\text{def}}{\Leftrightarrow} \inf Im f$$

Proprietà 5.4

Sia $f: A \to \mathbb{R}$ limitata superiormente. Preso un $L \in \mathbb{R}$ segue:

$$L = \sup_{A} f \iff i) \ f(x) \leqslant L \ \forall x \in A$$
$$ii) \ \forall \ \varepsilon > 0 : \exists \ x_{\varepsilon} \in A : f(x_{\varepsilon}) > L - \varepsilon$$

Proprietà 5.5

Sia $f: A \to \mathbb{R}$ limitata inferiormente. Preso un $l \in \mathbb{R}$ segue:

$$l = \sup_{A} f \iff i) \ f(x) \geqslant l \ \forall x \in A$$
$$ii) \ \forall \varepsilon > 0 : \exists \ x_{\varepsilon} \in A : f(x_{\varepsilon}) < l + \varepsilon$$

Definizione 5.18

Diremo che f non è limitata superiormente (inferiormente) se non è dotata di maggioranti (minoranti).

f non limitata superiormente $\stackrel{\text{def}}{\Leftrightarrow} \forall k \in \mathbb{R} \ \exists \ x^* \in A : f(x^*) > k$

 $f \ non \ limitata \ inferiormente \ \stackrel{\mathrm{def}}{\Leftrightarrow} \ \forall h \in \mathbb{R} \ \exists \ x^{**} \in A : f(x^{**}) < k$

Conseguenza 5.1

Sia f una funzione:

se f non è limitata superiormente poniamo $\sup_{\Lambda} f = +\infty$

se f non è limitata inferiormente poniamo $\inf_A f = -\infty$

$$se f: A \to \mathbb{R} \Rightarrow \inf_A f \leqslant \sup_A f.$$

$$\inf_{A} \leqslant f(x) \leqslant \sup_{A} \ \forall x \in A.$$

Definizione 5.19

 $Sia\ A\subseteq\mathbb{R}, A\neq\emptyset.$

Diremo che A è simmetrico rispetto all'origine se $x \in A \Rightarrow -x \in A$.

Definizione 5.20

Sia $A \subseteq \mathbb{R}, A \neq \emptyset$. Simmetrico rispetto all'origine. Sia $f: A \to \mathbb{R}$. Se:

- i) $f(x) = f(-x) \ \forall x \in A \ allora \ f \ e \ una \ funzione \ pari.$
- ii) $f(x) = -f(-x) \ \forall x \in A \ allora \ f \ \grave{e} \ una \ funzione \ dispari.$

5.6 Funzioni composte

Siano $A, B \subseteq \mathbb{R}, A, B \neq \emptyset. f : A \to \mathbb{R}, g : B \to \mathbb{R}. Im f \subseteq B.$ Allora la funzione: $g \circ f : A \to \mathbb{R}$ definita dalla legge:

$$(g \circ f)(x) \stackrel{\text{def}}{=} g(f(x)) \ \forall x \in A$$

si chiama funzione composta tramite f e g. f e g si chiameranno funzioni componenti.

6 Successioni numeriche

6.1 Definizione di successione numerica

Definizione 6.1

Chiamiamo successione numerica una funzione $f: \mathbb{N} \to \mathbb{R}$.

Indichiamo con a_n (termine generale) il numero \mathbb{R} che la successione associa ad n. In questo caso la successione si indica con $\{a_n\}$ detta successione di termine generale a_n .

Esempi di successioni

- $\{\frac{1}{n}\}$ è la successione che associa ad ogni $n \in \mathbb{N}$ il suo **reciproco**.
- $\{n^2\}$ è la successione che associa ad ogni $n \in \mathbb{N}$ il suo quadrato.
- $\{(-1)^n\}$ è la successione che associa ad ogni $n \in \mathbb{N}$ $\begin{cases} -1 & \text{con } n \text{ } dispari \\ 1 & \text{con } n \text{ } pari \end{cases}$

Quindi per assegnare una successione numerica basta assegnare il suo termine generale.

Definizione 6.2

Sia $\{a_n\}$ una successione numerica. L'immagine di $\{a_n\}$ ossia l'insieme numerico $\{\{a_n\}, n \in \mathbb{N}\}$ si chiama **insieme dei termini** (o sostegno) della successione.

Definizione 6.3

Sia $\{a_n\}$ una successione di numeri \mathbb{R} .

- Un numero $k \in \mathbb{R}$ si chiama **maggiorante** di $\{a_n\}$ se $k \geqslant a_n \ \forall n \in \mathbb{N}$.
- Un numero $h \in \mathbb{R}$ si chiama **minorante** di $\{a_n\}$ se $h \leqslant a_n \ \forall n \in \mathbb{N}$.

Osservazione 1

 $k \in \mathbb{R} \ \textit{non} \ \grave{e} \ \textit{maggiorante} \ di \{a_n\} \ \stackrel{\text{def}}{\Leftrightarrow} \ \exists \ \overline{n} \in \mathbb{N} : a_{\overline{n}} > k$

Osservazione 2

 $h \in \mathbb{R} \ \textit{non} \ \grave{e} \ \textit{minorante} \ di \ \{a_n\} \ \stackrel{\text{def}}{\Leftrightarrow} \ \exists \ \overline{\overline{n}} \in \mathbb{N} : a_{\overline{\overline{n}}} < k$

Definizione 6.4

Diremo che $M \in \mathbb{R}$ è il **massimo** di $\{a_n\}$ (max) se i) $\exists \overline{n} \in \mathbb{N} : M = a_{\overline{n}}$ ii) $M \geqslant a_n \in \mathbb{N}$

19

Definizione 6.5

 $\{a_n\}$ è dotata di massimo se $\exists \overline{n} \in \mathbb{N} : a_n \leqslant a_{\overline{n}}.$ $a_{\overline{n}}$ si chiama **massimo** di $\{a_n\}$ e si indica con $\max\{a_n\}$.

Definizione 6.6

 $\{a_n\}$ è dotata di minimo se $\exists \overline{n} \in \mathbb{N} : a_{\overline{n}} \leqslant a_n$. $a_{\overline{n}}$ si chiama **minimo** di $\{a_n\}$ e si indica con $\min\{a_n\}$.

Definizione 6.7

 $\{a_n\}$ si dice **limitata superiormente** $\stackrel{\text{def}}{\Leftrightarrow} \exists k \in \mathbb{R} : k \geqslant a_n \ \forall n \in \mathbb{N}.$

Definizione 6.8

 $\{a_n\}$ si dice **limitata inferiormente** $\stackrel{\text{def}}{\Leftrightarrow} \exists h \in \mathbb{R} : h \leqslant a_n \ \forall n \in \mathbb{N}.$

Definizione 6.9

 $\{a_n\}$ si dice **limitata** $\stackrel{\text{def}}{\Leftrightarrow} \exists h, k \in \mathbb{R} : h \leqslant a_n \leqslant k \ \forall n \in \mathbb{N}.$

Proprietà 6.1

 $\{a_n\}$ è limitata se e solo se $\exists H > 0 : H \geqslant |a_n| \ \forall n \in \mathbb{N}.$

Definizione 6.10

Sia $\{a_n\}$ limitata superiormente. Chiamiamo **estremo superiore** di suc l'estremo superiore del sul sostegno e lo indichiamo con sup $\{a_n\}$. Quindi:

$$\sup\{a_n\} \stackrel{\text{def}}{\Leftrightarrow} \sup\{a_n, \ n \in \mathbb{N}\}.$$

Proprietà 6.2 (Proprietà caratteristica del sup)

 $Sia \{a_n\}$ una successione limitata superiormente. $Sia L \in \mathbb{R}$. Allora:

$$L = \sup\{a_n\} \stackrel{\text{def}}{\Leftrightarrow} i) \ a_n \leqslant L \ \forall n \in \mathbb{N}$$
$$ii) \ \forall \varepsilon > 0 \ \exists \ \overline{n} \in \mathbb{N} : a_{\overline{n}} > L - \varepsilon$$

Se $\{a_n\}$ non è limitata superiormente allora $\sup\{a_n\} = +\infty$.

Proprietà 6.3 (Proprietà caratteristica del inf)

Sia $\{a_n\}$ una successione limitata inferiormente. Sia $l \in \mathbb{R}$. Allora:

$$l = \inf\{a_n\} \stackrel{\text{def}}{\Leftrightarrow} i) \ l \leqslant a_n \ \forall n \in \mathbb{N}$$
$$ii) \ \forall \varepsilon > 0 \ \exists \ \overline{n} \in \mathbb{N} : a_{\overline{n}} < l + \varepsilon$$

Se $\{a_n\}$ non è limitata inferiormente allora $\inf\{a_n\} = -\infty$.

6.2 Successioni monotone

Sia $\{a_n\}$ una successione numerica.

- $\{a_n\}$ è crescente $\stackrel{\text{def}}{\Leftrightarrow} \forall n, m \in \mathbb{N} n < m \Rightarrow a_n \leqslant a_m \Leftrightarrow a_n \leqslant a_{n+1} \ \forall n \in \mathbb{N}$
- $\{a_n\}$ è strettamente crescente $\stackrel{\text{def}}{\Leftrightarrow} \forall n, m \in \mathbb{N} \ n < m \Rightarrow a_n < a_m \Leftrightarrow a_n < a_{m+1} \ \forall n \in \mathbb{N}$

- $\{a_n\}$ è decrescente $\stackrel{\text{def}}{\Leftrightarrow} \forall n, m \in \mathbb{N} n < m \Rightarrow a_n \geqslant a_m \Leftrightarrow a_n \geqslant a_{n+1} \ \forall n \in \mathbb{N}$
- $\{a_n\}$ è strettamente decrescente $\stackrel{\text{def}}{\Leftrightarrow} \forall n, m \in \mathbb{N} n < m \Rightarrow a_n > a_m \Leftrightarrow a_n > a_{n+1} \ \forall n \in \mathbb{N}$

Osservazione 3

- Se $\{a_n\}$ è crescente (s. crescente) $\Rightarrow \exists \min \{a_n\} = a_1$
- Se $\{a_n\}$ è decrescente (s. decrescente) $\Rightarrow \exists \max\{a_n\} = a_1$

6.3 Limiti

Sia $\{a_n\}$ una successione numerica.

Definizione 6.11

Diremo che $\{a_n\}$ converge a $l \in \mathbb{R}$ e si scrive:

$$\lim_{n \to +\infty} a_n = l$$

Se:

$$\forall \varepsilon > 0 \; \exists \; \overline{n} \in \mathbb{N} : \forall n > \overline{n} \Rightarrow |a_n - l| < \varepsilon.$$
$$(l - \varepsilon < a_n < l + \varepsilon).$$

Segue che:

$$\lim_{n \to +\infty} a_n = l \stackrel{\text{def}}{\Leftrightarrow} \forall \, \varepsilon > 0 \, \exists \, \overline{n} \in \mathbb{N} : \forall n > \overline{n} \Rightarrow l - \varepsilon < a_n < l + \varepsilon.$$

Definizione 6.12

Diremo che la successione $\{a_n\}$ diverge positivamente e scriviamo:

$$\lim_{n \to +\infty} a_n = +\infty$$

Se

$$\forall k > 0 \; \exists \; \overline{n} \in \mathbb{N} : n > \overline{n} \Rightarrow a_n > k.$$

Definizione 6.13

Diremo che la successione $\{a_n\}$ diverge negativamente e scriviamo:

$$\lim_{n \to +\infty} a_n = -\infty$$

Se

$$\forall \ \varepsilon > 0 \ \exists \ \overline{n} \in \mathbb{N} : n > \overline{n} \Rightarrow a_n < \varepsilon.$$

Definizione 6.14

Diremo che $\{a_n\}$ è **regolare** se esiste il $\lim_{n\to+\infty} a_n$.

Esempio 6.1 (Esempio di successione non regolare o oscillante)

$$(-1)^n = \begin{cases} 1 & con \ n \ pari \\ -1 & con \ n \ dispari \end{cases}$$

Dimostrazione. Dalla definizione di limite si ha:

$$\forall \ k > 0 \ \exists \ \overline{n} \in \mathbb{N} : \forall \ n > \overline{n} \Rightarrow (-1)^n > k.$$

Se prendo
$$k = 1$$
 ho un assurdo.

Definizione 6.15

Una successione $\{a_n\}$ a termini non tutti nulli si dice **alternante** (o a segni alterni) se:

$$a_n \begin{cases} \geqslant 0 & (\leqslant 0) \quad con \ n \ dispari \\ \leqslant 0 & (\geqslant 0) \quad con \ n \ pari \end{cases}$$

Teorema 6.1 (Teorema di unicità del limite)

Ogni successione regolare ha un unico limite.

Supponiamo che esistano due limiti l e m.

Poniamo quindi per ipotesi che:

$$\lim_{n \to +\infty} a_n = l \in \overline{\mathbb{R}}$$

$$\lim_{n \to +\infty} a_n = m \in \overline{\mathbb{R}}$$

La tesi sarà dunque: l = m.

Dimostrazione. Supponiamo per assurdo che $l \neq m$ e siano $l, m \in \mathbb{R}$ con l > m. Allora $\frac{l-m}{2} > 0$.

Poiché
$$\lim_{n \to +\infty} a_n = l \stackrel{\text{def}}{\Leftrightarrow} \forall \varepsilon > 0 \; \exists \; \overline{n} \in \mathbb{N} : \forall n > \overline{n} \Rightarrow l - \varepsilon < a_n < l + \varepsilon.$$
 (1).

Scriviamo la (1) in corrispondenza di $\varepsilon = \frac{l-m}{2}$ e trovo che:

$$preso \ \overline{n}_1 \in \mathbb{N} : \forall \ n > \overline{n}_1 \Rightarrow l - \frac{l-m}{2} < a_n < l + \frac{l-m}{2}$$
 (3).

Si ha anche che:

$$\lim_{n \to +\infty} a_n = m \stackrel{\text{def}}{\Leftrightarrow} \forall \ \varepsilon > 0 \ \exists \ \overline{\overline{n}} \in \mathbb{N} : \forall n > \overline{\overline{n}} \Rightarrow m - \varepsilon < a_n < m + \varepsilon. \ (2).$$

Scriviamo la (2) in corrispondenza di $\varepsilon = \frac{l-m}{2}$ e trovo che:

$$preso \overline{\overline{n}}_1 \in \mathbb{N} : \forall n > \overline{\overline{n}}_1 \Rightarrow m - \frac{l-m}{2} < a_n < m + \frac{l-m}{2}$$
 (4).

Se prendo $n > \max\{\overline{n}_1, \overline{\overline{n}}_1\}$ valgono contemporaneamente la 3 e la 4.

Pertanto possiamo scrivere:

$$l - \frac{l - m}{2} < a_n < m + \frac{l - m}{2}$$
. Segue $\frac{2l - l + m}{2} < a_n < \frac{2m - l + m}{2} \implies \frac{l + m}{2} < \frac{l + m}{2} \implies \text{ASSURDO}$.

Teorema 6.2 (Teorema della permanenza del segno)

 $Sia \lim_{n \to +\infty} a_n = l \in \overline{\mathbb{R}}$. Allora:

Se l > 0 oppure $l = +\infty$ allora $\exists \overline{n} \in \mathbb{N} : a_n > 0 \forall n > \overline{n}$.

Se l < 0 oppure $l = -\infty$ allora $\exists \overline{n} \in \mathbb{N} : a_n < 0 \forall n > \overline{n}$.

Dimostrazione.

(1) Se
$$\lim_{n \to +\infty} a_n = -\infty \stackrel{\text{def}}{\Leftrightarrow} \forall k > 0 \exists \overline{n} \in \mathbb{N} : \forall n > \overline{n} \Rightarrow a_n < -k$$
.

(2) Se
$$\lim_{n \to +\infty} a_n = l \in \mathbb{R} \stackrel{\text{def}}{\Leftrightarrow} \forall \varepsilon > 0 \ \exists \ \overline{n} \in \mathbb{N} : \forall n > \overline{n} \Rightarrow l - \varepsilon < a_n < l + \varepsilon.$$

Poiché l>0posso prendere 0 < $\varepsilon < l.$ Scrivo la (2) in corrispondenza a 0 < $\varepsilon < l$ e trovo $\overline{n} \in \mathbb{N} : \forall n > \overline{n} \Rightarrow l - \varepsilon < a_n < l + \varepsilon$.

Poiché $l - \varepsilon > 0$ (per la scelta di ε) ho la tesi.

Corollario 6.2.1

Sia $\{a_n\}$ una successione tale che: $a_n = \begin{cases} > 0 & per infiniti casi di n \\ < 0 & per infiniti casi di n \end{cases}$ Allora $\exists \lim_{n \to +\infty} a_n \Rightarrow \lim_{n \to +\infty} a_n = 0.$

Dimostrazione. Se fosse $\lim_{n\to+\infty} a_n = l \text{ con } l > 0 (l < 0)$ oppure $l = +\infty (-\infty)$ per il teorema della permanenza del segno $\exists \ \overline{n} \in \mathbb{N} : a_n > 0 (a_n < 0) \ \forall \ n > \overline{n}$. ASSURDO.

Esempio 6.2

Se $\{(-1)^n\}$ fosse dotata di limite per il corollario precedente dovrebbe essere: $\lim_{n\to+\infty} (-a)^n =$ 0 che per definizione: $\forall \varepsilon > 0 \; \exists \; \overline{n} \in \mathbb{N} : \forall \; n > \overline{n} \Rightarrow |(-1)^n - 0| < \varepsilon$. Se prendo $\varepsilon = \frac{1}{2}$ e determino $\overline{n} \in \mathbb{N} : |(-1)^n - 0| < \frac{1}{2}$. ASSURDO.

Teorema 6.3 (Primo teorema del confronto (o dei carabinieri))

Siano $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ tre successioni.

Supponiamo che:

1.
$$\exists \overline{n} \in \mathbb{N} : b_n \leqslant a_n \leqslant c_n \ \forall n > \overline{n}$$
.

2.
$$\lim_{n \to +\infty} b_n = \lim_{n \to +\infty} c_n = l \in \mathbb{R}$$
.

Allora

$$\lim_{n \to +\infty} a_n = l$$

Dimostrazione.

Bisogna provare che $\forall \varepsilon > 0 \; \exists \; \overline{n} \in \mathbb{N} : \; \forall \; n > \overline{n} \Rightarrow l - \varepsilon < a_n < l + \varepsilon.$

Poiché $\lim_{n \to +\infty} b_n = l$ allora $\forall \varepsilon > 0 \; \exists \; n_1 \in \mathbb{N} : \; \forall \; n > n_1 \Rightarrow l - \varepsilon < b_n < l + \varepsilon$.

Analogamente.

$$\lim_{n \to +\infty} c_n = l \text{ allora } \forall \varepsilon > 0 \ \exists \ n_2 \in \mathbb{N} : \ \forall \ n > n_2 \Rightarrow l - \varepsilon < c_n < l + \varepsilon.$$

Allora segue che $l - \varepsilon < b_n \leqslant a_n \leqslant c_n < l + \varepsilon$.

Trovo quindi che $l - \varepsilon < a_n < l + \varepsilon$.

Posto $n_o = \max{\{\overline{n}, n_1, n_2\}}$ ho la tesi.

Teorema 6.4 (Secondo teorema del confronto)

Siano $\{a_n\}$, $\{b_n\}$ due successioni numeriche. Supponiamo che:

1.
$$\exists \overline{n} \in \mathbb{N} : a_n \geqslant b_n \ \forall \ n > \overline{n}$$
.

$$2. \lim_{n \to +\infty} b_n = +\infty.$$

Allora:

$$\lim_{n \to +\infty} a_n = +\infty$$

Teorema 6.5 (Terzo teorema del confronto)

Siano $\{a_n\}$, $\{b_n\}$ due successioni numeriche. Supponiamo che:

1.
$$\exists \overline{n} \in \mathbb{N} : a_n \leq b_n \ \forall \ n > \overline{n}$$
.

2.
$$\lim_{n \to +\infty} b_n = -\infty.$$

Allora:

$$\lim_{n \to +\infty} a_n = -\infty$$

6.3.1 Carattere di una successione

Sia $\{a_n\}$ una successione di numeri reali. Vogliamo studiare il carattere di $\{|a_n|\}$.

Teorema 6.6

$$Se \lim_{n \to +\infty} a_n = l \in \mathbb{R} \Rightarrow \lim_{n \to +\infty} |a_n| = |l|.$$

Non vale il viceversa.

Basta considerare la successione $\{(-1)^n\} \forall n \in \mathbb{N}$.

Il valore assoluto $|a_n| = 1 \ \forall n \in \mathbb{N}$. Questo implica che $\lim_{n \to +\infty} |a_n| = 1$. FALSO perché non esiste il $\lim_{n \to +\infty} a_n$.

Teorema 6.7

$$Se \lim_{n \to +\infty} a_n = +\infty(-\infty) \in \mathbb{R} \Rightarrow \lim_{n \to +\infty} |a_n| = +\infty.$$

Non vale il viceversa.

Basta considerare la successione $\{(-1)^n n\} \forall n \in \mathbb{N}$.

Non esiste il $\lim_{n\to+\infty} (-1)^n n$ perché $(-1)^n n$ è alternante quindi ha infiniti termini positivi e negativi. Se fosse dotata di limite dovrebbe essere $\lim_{n\to+\infty} (-1)^n n = 0$ se e solo se $\lim_{n\to+\infty} |(-1)^n n| = 0$, ASSURDO.

Definizione 6.16

Se il $\lim_{n\to+\infty} a_n = 0$ diremo che $\{a_n\}$ è **infinitesima**.

Definizione 6.17

Se il $\lim_{n\to+\infty} a_n = +\infty$ diremo che $\{a_n\}$ è **infinitivamente grande** e scriveremo $\lim_{n\to+\infty} a_n = \infty$.

Teorema 6.8

Se
$$\lim_{n \to +\infty} a_n = l \in \mathbb{R} \Rightarrow \{a_n\}$$
 è **limitata**.

Dimostrazione.

$$\lim_{n \to +\infty} a_n = l \stackrel{\text{def}}{\Leftrightarrow} \forall \ \varepsilon > 0 \ \exists \ \overline{n} \in \mathbb{N} : \forall n > \overline{n} \Rightarrow l - \varepsilon < a_n < l + \varepsilon.$$

Fisso $\varepsilon > 0$ e determino $\overline{n} : l - \varepsilon < a_n < l + \varepsilon \forall n > \overline{n}$.

Sia $k = \max\{a_1, a_2, ..., a_{\overline{n}}, l + \varepsilon\}$. k esiste perché $\{a_1, a_2, ..., a_{\overline{n}}, l + \varepsilon\}$ è finito. Infatti ha $\overline{n}+1$ elementi. Inoltre $k \geqslant a_1$. $k \geqslant a_1,...,k \geqslant a_{\overline{n}}$. $k \geqslant l+\varepsilon \geqslant a_n$ se $n > \overline{n}$. Quindi $k \geqslant a_n \ \forall n \in \mathbb{N}. \ (1).$

Analogamente posto $h = \min\{a_1, a_2, ..., a_{\overline{n}}, l - \varepsilon\}$ trovo che $h \leqslant a_1, ..., h \leqslant a_{\overline{n}}$ e $h \leqslant l - \varepsilon \leqslant a_n \ \forall n > \overline{n}$. Quindi $h \leqslant a_n \ \forall n \in \mathbb{N}$.(2).

Da (1) e (2)
$$\Rightarrow h \leqslant a_n \leqslant k \ \forall n \in \mathbb{N}$$
. Quindi per definizione a_n è limitata.

Teorema 6.9

$$Se \lim_{n \to +\infty} a_n = +\infty \Rightarrow i) \sup\{a_n\} = +\infty$$

 $ii) \inf\{a_n\} \in \mathbb{R}$

Teorema 6.10

$$Se \lim_{n \to +\infty} a_n = -\infty \Rightarrow i) \sup\{a_n\} \in \mathbb{R}$$

 $ii) \inf\{a_n\} = -\infty$

Operazioni sui limiti

Siano $\{a_n\}$, $\{b_n\}$ due successioni numeriche.

Teorema 6.11

Se
$$\lim_{n \to +\infty} a_n = l \in \mathbb{R}$$
 e $\lim_{n \to +\infty} b_n = l \in \mathbb{R}$ \Rightarrow i) $\lim_{n \to +\infty} (a_n + b_n) = l + m$ ii) $\lim_{n \to +\infty} (a_n \cdot b_n) = l \cdot m$

Dimostrazione.

Ipotesi:

(1)
$$\lim_{n \to +\infty} a_n = l \stackrel{\text{def}}{\Leftrightarrow} \forall \delta > 0 \quad \exists \ n_1 \in \mathbb{N} : \forall n > n_1 \Rightarrow |a_n - l| < \delta$$

(2)
$$\lim_{n \to +\infty} b_n = m \Leftrightarrow \forall \delta > 0 \exists n_2 \in \mathbb{N} : \forall n > n_2 \Rightarrow |b_n - m| < \delta$$

Tesi:

•
$$\lim_{n \to +\infty} a_n \cdot b_n = l \cdot m \stackrel{\text{def}}{\Leftrightarrow} \forall \varepsilon > 0 \ \exists \ n_3 \in \mathbb{N} : \forall n > n_3 \Rightarrow |a_n \cdot b_n - l \cdot m| < \varepsilon$$

Fisso $\varepsilon > 0$ nella tesi.

Consideriamo $|a_n \cdot b_n - l \cdot m| = |a_n \cdot b_n - l \cdot b_n + l \cdot b_n - l \cdot m| = |(a_n - l)b_n + (b_n - m)l| \le |(a_n - l)b_n| + |(b_n - m)l| = |a_n - l| \cdot |b_n| \cdot |b_n - m| \cdot |l| \le H \cdot |a_n - l| + (|l| + 1) \cdot |b_n - m|$. (*)

Poiché b_n è convergente, segue che b_n è limitata. Cioè:

 $\exists H > 0 : |b_n| \leqslant H \ \forall n \in \mathbb{N}.$

Scrivo la (1) con $\delta = \frac{\varepsilon}{2H}$ e trovo $n_1 \in \mathbb{N} : |a_n - l| < \frac{\varepsilon}{2H} \, \forall n > n_1$. (3). Scrivo la (2) con $\delta = \frac{\varepsilon}{2(|l|+1)}$ e trovo $n_2 \in \mathbb{N} : |b_n - l| < \frac{\varepsilon}{2(|l|+1)} \, \forall n > n_2$. (4). Se $n > \max(n_1, n_2)$ valgono la (3) e la (4).

E quindi dalla (*) si ha:

$$|a_n b_n - lm| < H \cdot \frac{\varepsilon}{2H} + (|l| + 1) \cdot \frac{\varepsilon}{2(|l| + 1)} = \varepsilon.$$

Posto $n_3 = \max(n_1, n_2) \stackrel{\text{def}}{\Leftrightarrow} \forall \varepsilon > 0 \ \exists \ n_3 \in \mathbb{N} : \forall n > n_3 \Rightarrow |a_b b_n - le| < \varepsilon.$

Conseguenza 6.1

- $Se \lim_{n \to +\infty} a_n = l \in \mathbb{R} \ e \ k \in \mathbb{R} \Rightarrow \lim_{n \to +\infty} k \cdot a_n = k \cdot l.$
- $Se \lim_{n \to +\infty} a_n = l \in \mathbb{R}, \lim_{n \to +\infty} b_n = m \in \mathbb{R} \ e \ k_1, k_2 \in \mathbb{R} \Rightarrow \lim_{n \to +\infty} k_1 \cdot a_n + k_2 \cdot b_n = k_1 \cdot l + k_2 \cdot m.$

Teorema 6.12 (Teorema della permanenza del segno generalizzato)

Siano $\lim_{n \to +\infty} a_n = l \in \mathbb{R} \ e \ l < m(l > m).$

Allora:

$$\exists \ \overline{n} \in \mathbb{N} : a_n < m \ \forall n > \overline{n}.$$

Dimostrazione. Consideriamo $\{a_n - m\}$. Allora il $\lim_{n \to +\infty} a_n - m = l - m < 0 \implies \exists n_1 \in \mathbb{N} : a_n - m < 0 \ \forall n > n_1$. Si ha quindi la tesi.

Teorema 6.13

Se $\lim_{n\to+\infty} a_n = +\infty$ e $\{b_n\}$ è limitata inferiormente.

Allora:

$$\lim_{n \to +\infty} \left(a_n + b_n \right) = +\infty.$$

Teorema 6.14

Se $\lim_{n \to +\infty} a_n = -\infty$ e $\{b_n\}$ è limitata superiormente.

Allora:

$$\lim_{n \to +\infty} \left(a_n + b_n \right) = -\infty.$$

Conseguenza 6.2

$$Se \lim_{n \to +\infty} a_n = +\infty \ e \lim_{n \to +\infty} b_n = l \in \mathbb{R}.$$

Allora:

$$\lim_{n \to +\infty} (a_n + b_n) = +\infty.$$

Osservazione. Se lim $b_n = l \in \mathbb{R}$ o lim $b_n = +\infty$ allora $\{b_n\}$ è limitata inferiormente.

Conseguenza 6.3

$$Se \lim_{n \to +\infty} a_n = +\infty \ e \lim_{n \to +\infty} b_n = +\infty.$$

Allora:

$$\lim_{n \to +\infty} \left(a_n + b_n \right) = +\infty.$$

Osservazione. Se lim $b_n = l \in \mathbb{R}$ o lim $b_n = -\infty$ allora $\{b_n\}$ è limitata superiormente.

Teorema 6.15

$$Se \lim_{n \to +\infty} a_n = +\infty(-\infty) \ e \lim_{n \to +\infty} b_n = l \in \mathbb{R}.$$

Allora:

$$\lim_{n \to +\infty} (a_n \cdot b_n) = \begin{cases} +\infty(-\infty) & \text{se } l > 0 \\ ? & \text{(F.I.)} & \text{se } l = 0 \\ -\infty(+\infty) & \text{se } l < 0 \end{cases}$$

$$Se \lim_{n \to +\infty} a_n = +\infty(-\infty) e \lim_{n \to +\infty} b_n = -\infty.$$

Allora:

$$\lim_{n \to +\infty} (a_n + b_n) = ? \text{ (F.I.) } +\infty - \infty \text{ } \hat{e} \text{ } una \text{ } forma \text{ } indeterminata.$$

Teorema 6.16

$$Se \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = +\infty(-\infty) \ allora \lim_{n \to +\infty} (a_n \cdot b_n) = +\infty.$$

Teorema 6.17

$$Se \lim_{n \to +\infty} a_n = +\infty \ e \lim_{n \to +\infty} b_n = -\infty \ allora \lim_{n \to +\infty} (a_n \cdot b_n) = -\infty.$$

Teorema 6.18

Il prodotto tra una successione infinitesima e una successione limitata è a sua volta un'infinitesima.

Siano
$$\lim_{n\to+\infty} a_n = 0$$
 e $\{b_n\}$ limitata. Allora

$$\lim_{n \to +\infty} (a_n \cdot b_n) = 0 \text{ (successione infinitesima)}.$$

Dimostrazione.

Se il $\lim_{n\to+\infty} a_n = 0$ allora anche il $\lim_{n\to+\infty} |a_n| = 0$. (1) Per ipotesi la successione $\{b_n\}$ è limitata, quindi $\exists H > 0 : |b_n| \leqslant H \ \forall n \in \mathbb{N}$. (2)

Ne viene che $0 \leq |a_n \cdot b_n| = |a_n| \cdot |b_n| \leq H \cdot |a_n| \ \forall n \in \mathbb{N}.$

Per il teorema dei carabinieri, il $\lim_{n \to +\infty} |a_n \cdot b_n| = 0$.

6.3.3 Successione reciproca

Sia $\{a_n\}$ una successione numerica tale che $a_n \neq 0 \ \forall n \in \mathbb{N}$.

La successione $\left\{\frac{1}{a_n}\right\}$ si chiama successione reciproca di $\{a_n\}$

1.
$$\lim_{n \to +\infty} a_n = l \in \mathbb{R} \ l \neq 0 \Rightarrow \lim_{n \to +\infty} \frac{1}{n} = \frac{1}{l}$$
.

2.
$$\lim_{n \to +\infty} a_n = 0 \implies \lim_{n \to +\infty} \left| \frac{1}{a_n} \right| = +\infty.$$

3.
$$\lim_{n \to +\infty} a_n = +\infty \implies \lim_{n \to +\infty} \frac{1}{a_n} = 0.$$

Successione quoziente

Siano $\{a_n\}$ e $\{b_n\}$ due successioni numeriche con $b_n \neq 0 \forall n \in \mathbb{N}$.

La successione $\left\{\frac{a_n}{b_n}\right\}$ si chiama successione rapporto o quoziente tra $\{a_n\}$ e $\{b_n\}$.

Limiti Notevoli

 $\{n^{\alpha}\}\ \mathbf{con}\ \alpha\in\mathbb{R}$

$$\lim_{n \to +\infty} n^{\alpha} = \begin{cases} +\infty & \text{se } \alpha > 0 \\ 1 & \text{se } \alpha = 0 \\ 0 & \text{se } \alpha < 0 \end{cases}$$

 $\{a^n\}$ con $a \in \mathbb{R}$

$$\lim_{n \to +\infty} a^n = \begin{cases} +\infty & \text{se } a > 1\\ 1 & \text{se } a = 1\\ 0 & \text{se } -1 < a < 1\\ \nexists & \text{se } a \leqslant -1 \end{cases}$$

 $\{n^n\}$

 $\forall n \in \mathbb{N}$ per il secondo teorema del confronto si ha:

$$\lim_{n \to +\infty} n^n = +\infty$$

 $\{n!\}$

 $\forall n \in \mathbb{N}$ per il secondo teorema del confronto si ha:

$$\lim_{n \to +\infty} n! = +\infty$$

6.4Limiti di successioni notevoli

Successione polinomiale

$$\lim_{n \to +\infty} \left[a_0 n^p + a_1 n^{p-1} + \dots + a_p \right] = \lim_{n \to +\infty} n^p \left[a_0 + \frac{a_1}{n} + \frac{a_2}{n^2} + \dots + \frac{a_p}{n^p} \right] = \begin{cases} +\infty & \text{se } a_0 > 0 \\ -\infty & \text{se } a_0 < 0 \end{cases}$$

Successione polinomiale fratta

$$\lim_{n \to +\infty} \frac{a_0 n^p + a_1 n^{p-1} + \ldots + a_p}{b_0 n^q + b_1 n^{q-1} + \ldots + a_q} = \lim_{n \to +\infty} \frac{n^p \left[a_0 + \frac{a_1}{n} + \frac{a_2}{n^2} + \ldots + \frac{a_p}{n^p} \right]}{n^q \left[b_0 + \frac{b_1}{n} + \frac{b_2}{n^2} + \ldots + \frac{b_q}{n^q} \right]} = n^{-1} \left[\frac{a_0 n^p + a_1 n^{p-1} + \ldots + a_p}{n^p + a_1 n^{p-1} + \ldots + a_q} \right]$$

$$= \lim_{n \to +\infty} n^{p-q} \cdot \frac{\left[a_0 + \frac{a_1}{n} + \frac{a_2}{n^2} + \ldots + \frac{a_p}{n^p}\right]}{\left[b_0 + \frac{b_1}{n} + \frac{b_2}{n^2} + \ldots + \frac{b_q}{n^q}\right]} = \begin{cases} +\infty & \text{se } p > q, \frac{a_0}{b_0} > 0 \\ -\infty & \text{se } p > q, \frac{a_0}{b_0} < 0 \end{cases}$$

$$0 & \text{se } p < q$$

$$\frac{a_0}{b_0} & \text{se } p = q$$

6.5 Limite delle successioni monotone

Teorema 6.19 (Delle successioni monotone)

Ogni successione monotona è regolare. In particolare, se $\{a_n\}$ è crescente (s. crescente) allora il $\lim_{n\to+\infty} a_n = \sup\{a_n\}$. Invece se $\{a_n\}$ è decrescente (s. decrescente) allora il $\lim_{n \to +\infty} a_n = \inf \{a_n\}.$

Ipotesi: $\{a_n\}$ è crescente.

Tesi:
$$\lim_{n\to+\infty} a_n = \sup\{a_n\}.$$

Distinguiamo due casi:

Caso 1.

 $Sia \sup \{a_n\} \in \mathbb{R} \ e \ sia \ L = \sup 1\{a_n\}.$

Bisogna provare che:
$$\lim_{\substack{n \to +\infty \\ Fisso \ \varepsilon > 0}} a_n = L \overset{\text{def}}{\Leftrightarrow} \forall \ \varepsilon > 0 \ \exists \ \overline{n} \in \mathbb{N} : n > \overline{n} \Rightarrow L - \varepsilon < a_n < L + \varepsilon \ \textbf{(1)}.$$

Fisso
$$\varepsilon > 0$$
.

$$L = \sup\{a_n\} \Leftrightarrow \begin{cases} i) & a_n \leqslant L \forall n \in \mathbb{N} \Rightarrow a_n \leqslant L + \varepsilon \ \forall n \in \mathbb{N} \ (2) \\ ii) & \forall \ \sigma > 0 \exists n_0 \in \mathbb{N} : a_{n_0} > l - \sigma \end{cases}$$

Scrivo la ii) con $\sigma = \varepsilon$ e determino $n_0 \in \mathbb{N} : a_{n_0} > L - \varepsilon$.

Se prendo $n > n_0 \Rightarrow a_n \geqslant a_{n_0} > L - \varepsilon$ (3).

 $Dalla (2) + (3) \Rightarrow L - \varepsilon < a_n < L + \varepsilon \ \forall n > n_0.$ Se prendo $\overline{n} = n_0$ ho la tesi.

Caso 2.

Sia sup $\{a_n\} = +\infty$. Provo che $\lim_{n \to +\infty} a_n = +\infty \stackrel{\text{def}}{\Leftrightarrow} \forall k > 0 \; \exists \; \overline{n} \in \mathbb{N} : \forall n > \overline{n} \Rightarrow a_n > k$. Fisso k > 0. k non \grave{e} maggiorante di $\{a_n\} \Leftrightarrow \exists n_0 \in \mathbb{N} : a_{n_0} > k$.

Poiché $\{a_n\}$ è crescente, se $n > n_0 \Rightarrow a_n > a_{n_0} > k$.

6.6 Il numero di Nepero

Consideriamo la successione numerica $\{a_n\}$. Possiamo osservare che:

- $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$ è una successione strettamente crescente
- $2 \leqslant \left(1 + \frac{1}{n}\right)^n \leqslant 3 \ \forall n \in \mathbb{N}$

Per il teorema sulle successioni monotone possiamo dire che $\exists \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$ ed è $\sup\left\{\left(1+\frac{1}{n}\right)^n\right\} \leqslant 3.$

Possiamo quindi definire:

$$e \stackrel{\text{def}}{=} \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$$

Si può provare che e è un numero irrazionale $(e \in \mathbb{R} \setminus \mathbb{Q} \Rightarrow 2 < e < 3)$.

Criterio del rapporto (per le successioni)

Sia $\{X_n\}$ una successione di numeri reali. Supponiamo che $X_n > 0 \ \forall n \in \mathbb{N}$

e che
$$\lim_{n \to +\infty} \frac{X_n + 1}{X_n} = l < 1.$$

Allora:

$$\lim_{n \to +\infty} X_n = 0.$$

Confronto tra infiniti

•
$$\lim_{n \to +\infty} log_a n = \begin{cases} +\infty & \text{se } a < 1 \\ -\infty & \text{se } 0 < a < 1 \end{cases}$$

•
$$\lim_{n \to +\infty} n^b = +\infty$$
 se $b \geqslant 0$

- $\bullet \lim_{n \to +\infty} a^n = +\infty \ se \ a > 1$
- $\bullet \lim_{n \to +\infty} n! = +\infty$
- $\bullet \lim_{n \to +\infty} n^n + \infty$

Si prova che:

1.
$$\lim_{n \to +\infty} \frac{\log_a n}{n^b} = 0 \text{ con } a > 0, a \neq 1, b > 0$$

2.
$$\lim_{n \to +\infty} \frac{n^n}{a^n} = 0 \text{ con } b > 0, a > 1$$

$$3. \lim_{n \to +\infty} \frac{a^n}{n!} = 0 \text{ con } a > 1$$

$$4. \lim_{n \to +\infty} \frac{n!}{n^n} = 0$$

6.8 Successioni estratte

Definizione 6.18

Sia $\{a_n\}$ una successione numerica di numeri reali, e sia $\{n_k\}$ una successione numerica di numeri naturali strettamente crescente tale che:

$$\mathbb{N} \ni k \xrightarrow{\{n_k\}} n_k \in \mathbb{N}z \xrightarrow{\{a_n\}} a_{n_k}$$

La successione $\{a_{n_k}\}$ è detta successione estratta da $\{a_n\}$.

Teorema 6.20

Se
$$il \lim_{n \to +\infty} a_n = l \in \mathbb{R} \Rightarrow \lim_{n \to +\infty} a_{n_k} = l.$$

Teorema 6.21

Se
$$il \lim_{n \to +\infty} a_{2k} = \lim_{n \to +\infty} a_{2k-1} = l \in \overline{\mathbb{R}} \Rightarrow \lim_{n \to +\infty} a_n = l.$$

6.9 Teorema di Bolzano-Weistrass

Teorema 6.22

Ogni successione limitata ha un'estratta convergente.

7 Intorni

Siano $x_0 \in \mathbb{R} \text{ e } \sigma > 0.$

Definizione 7.1

Si chiama intorno circolare di centro x_0 e raggio δ , l'insieme:

$$I_{\delta}(x_0) \stackrel{\text{def}}{=} \{x \in \mathbb{R} : |X - x_0| < \delta\} =] x_0 < \delta, x_0 + \delta [.$$

Siano δ_1 e $\delta_2 > 0$. Allora:

$$I_{\delta_1}(x_0) \cap I_{\delta_2}(x_0) = \begin{cases} I_{\delta_1}(x_0) & se \ \delta_1 \leqslant \delta_2 \\ I_{\delta_2}(x_0) & se \ \delta_1 > \delta_2 \end{cases}$$

 $I_{\delta_1}(x_0) \cap I_{\delta_2}(x_0)$ è l'interno circolare con centre x_0 e raggio $\delta_{\min} = \min \{\delta_1, \delta_2\}$

Definizione 7.2

Si chiama intorno circolare di $+\infty$ l'insieme:

$$I_{\delta}(+\infty) \stackrel{\text{def}}{=} \{x \in \mathbb{R} : x > \delta\}$$

Definizione 7.3

Si chiama intorno circolare di $-\infty$ l'insieme:

$$I_{\delta}(-\infty) \stackrel{\text{def}}{=} \{x \in \mathbb{R} : x < \delta\}$$

Dati $\delta_1, \delta_2 > 0$.

$$I_{\delta_1}(+\infty) \cap I_{\delta_2}(+\infty) = I_{\delta_{\max}}(+\infty).$$

$$I_{\delta_1}(-\infty) \cap I_{\delta_2}(-\infty) = I_{\delta_{\max}}(-\infty).$$

Siano $A \subseteq \mathbb{R}, A \neq \emptyset, x_0 \in \mathbb{R}$.

Definizione 7.4

Diremo che x_0 è un **punto di accumulazione di** A se ogni intorno (circolare) di x_0 contiene almeno un punto di A distinto da x_0 . L'insieme formato dai punti di accumulazione di A si chiamano **derivato** di A e si indica con DA.

$$x_0 \in DA \stackrel{\mathrm{def}}{\Leftrightarrow} \forall \delta > 0 \; \exists \; x_1 \in A \cap I_\delta(x_0) : x_1 \neq x_0$$

ovvero $A \cap \{I_{\delta}(x_0) \setminus \{x_0\}\} \neq \emptyset$.

Teorema 7.1

Se l'insieme A è finito allora non ha punti di accumulazione ($DA = \emptyset$).

Conseguenza 7.1

 $DA \neq \emptyset \Rightarrow A$ infinito. Ma non vale il viceversa.

Definizione 7.5

Se $x_0 \in A$ e $x_0 \notin DA$ diremo che x_0 è un **punto isolato** dell'insieme A.

Definizione 7.6 (Punto interno ad un insieme)

 $x_0 \in A$ si dice interno ad A se <u>esiste</u> un intorno circolare di x_0 contenuto in A. L'insieme formato dai punti interni di A si chiama **interno** di A e si indica con \mathring{A} .

Definizione 7.7

Diremo che A è aperto solo se è formato da punti interni.

$$A \ aperto \overset{\text{def}}{\Leftrightarrow} A = \mathring{A}.$$

Definizione 7.8

Diremo che A è chiuso se $\mathbb{R} \setminus A$ è aperto.

Definizione 7.9

 $x_0 \in \mathbb{R}$ si dice **punto di frontiera di** A se ogni intorno di x_0 contiene punti di A e punti che non appartengono ad $A(\mathbb{R} \setminus A)$.

L'insieme dei punti di frontiera di A si chiama **frontiera dell'insieme** A e si indica con FA.

Definizione 7.10

Si chiama **chiusura di** A e si indica con \overline{A} l'insieme così definito:

$$\overline{A} \stackrel{\text{def}}{=} A \cup FA = A \cup DA.$$

8 Limiti di funzioni

8.1 Convergenza e divergenza

Sia $A \in \mathbb{R}$ e $x_0 \in \mathbb{R}$ tale che $x_0 \in DA$. Allora:

$$x_0 \in DA \stackrel{\text{def}}{\Leftrightarrow} \forall \delta > 0 \exists x_1 \in A \cap I_{\delta}(x_0) : x_1 \neq x_0.$$

Sia inoltre $f: A \to \mathbb{R}$.

Definizione 8.1

La funzione f converge $a \ l \in \mathbb{R}$ per $x \longrightarrow x_0$ e si scrive:

$$\lim_{x \to x_0} f(x) = l.$$

Se $\forall \varepsilon > 0 \; \exists \; \delta > 0 : \forall x \in A \cap I_{\delta}(x_0) \; e \; x \neq x_0 \Rightarrow |f(x) - l| < \varepsilon$.

Definizione 8.2

Diremo che f diverge positivamente per $x \longrightarrow x_0$ e si scrive:

$$\lim_{x \to x_0} f(x) = +\infty.$$

Se $\forall k > 0 \; \exists \; \delta > 0 : \forall x \in A \cap I_{\delta}(x_0) \; e \; x \neq x_0 \Rightarrow f(x) > k$.

Definizione 8.3

Diremo che f diverge negativamente per $x \longrightarrow x_0$ e si scrive:

$$\lim_{x \to x_0} f(x) = -\infty.$$

Se $\forall k > 0 \exists \delta > 0 : \forall x \in A \cap I_{\delta}(x_0) \ e \ x \neq x_0 \Rightarrow f(x) < -k$. $f \ e \ detta \ oscillante$

Definizione 8.4

Se $\exists \lim_{x \to x_0} f(x)$ diremo che f è **regolare** per $x \longrightarrow x_0$.

Sia adesso A non limitato superiormente (non ha maggioranti). Per definizione $\forall \delta \in \mathbb{R} \ \exists \ \overline{x} \in A : \overline{x} > \delta$.

Definizione 8.5

Diremo che la funzione f **converge** a $l \in \mathbb{R}$ per $x \longrightarrow +\infty$ e si scrive:

$$\lim_{x \to +\infty} f(x) = l$$

Se
$$\forall \varepsilon > 0 \ \exists \ \delta > 0 : \forall x \in A : x > \delta \Rightarrow |f(x) - l| < \varepsilon$$
.

Definizione 8.6

Diremo che la funzione f diverge positivamente per $x \longrightarrow +\infty$ e si scrive:

$$\lim_{x \to +\infty} f(x) = +\infty$$

Se
$$\forall k > 0 \; \exists \; \delta > 0 : \forall x \in A : x > \delta \Rightarrow f(x) > k$$
.

Definizione 8.7

Diremo che la funzione f diverge negativamente per $x \longrightarrow +\infty$ e si scrive:

$$\lim_{x \to +\infty} f(x) = -\infty$$

Se
$$\forall k > 0 \; \exists \; \delta > 0 : \forall x \in A : x > \delta \Rightarrow f(x) < -k$$
.

Sia adesso A non limitato inferiormente (non ha minoranti). Per definizione $\forall \delta \in \mathbb{R} \exists \overline{x} \in A : \overline{x} < \delta$.

Definizione 8.8

Diremo che la funzione f converge a $l \in \mathbb{R}$ per $x \longrightarrow -\infty$ e si scrive:

$$\lim_{x \to -\infty} f(x) = l$$

Se
$$\forall \varepsilon > 0 \; \exists \; \delta > 0 : \forall x \in A : x < -\delta \Rightarrow |f(x) - l| < \varepsilon$$
.

Definizione 8.9

Diremo che la funzione f diverge positivamente per $x \longrightarrow -\infty$ e si scrive:

$$\lim_{x \to -\infty} f(x) = +\infty$$

Se
$$\forall k > 0 \; \exists \; \delta > 0 : \forall x \in A : x < -\delta \Rightarrow f(x) > k$$
.

Definizione 8.10

Diremo che la funzione f diverge negativamente per $x \longrightarrow -\infty$ e si scrive:

$$\lim_{x \to -\infty} f(x) = -\infty$$

Se
$$\forall k > 0 \ \exists \ \delta > 0 : \forall x \in A : x < -\delta \Rightarrow f(x) < -k$$
.

8.2 Teoremi fondamentali

Teorema 8.1 (Di unicità del limite)

Se esiste il $\lim_{x\to x_0} f(x)$ allora esso è **unico**.

Teorema 8.2 (Della permanenza del segno)

Sia:

1.
$$\lim_{x \to x_0} f(x) = l \in \mathbb{R} \ l > 0 \ (l < 0) \ oppure$$

$$2. \lim_{x \to x_0} f(x) = +\infty(-\infty)$$

Allora:

$$\exists \sigma > 0 : f(x) > 0 \ (f(x) < 0) \ \forall x \in A \cap I_{\delta}(x_0) \ x \neq x_0$$

Teorema 8.3 (Del confronto (1°))

Siano f, g, h tre funzioni definite da $A \to \mathbb{R}$. Sia $x_0 \in DA$ oppure $x_0 = \pm \infty$. Se:

1.
$$\exists \delta > 0 : g(x) \leqslant f(x) \leqslant h(x) \ \forall x \in A \cap I_{\delta}x_0 \ x \neq x_0$$

2.
$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = l \in \mathbb{R}$$

Allora:

$$\lim_{x \to x_0} f(x) = l.$$

Teorema 8.4 (Del confronto (2°))

Siano f, g due funzioni definite da $A \to \mathbb{R}$. Sia $x_0 \in DA$ oppure $x_0 = \pm \infty$. Se:

1.
$$\exists \delta > 0 : f(x) \geqslant g(x) \ \forall x \in A \cap I_{\delta}x_0 \ x \neq x_0$$

$$2. \lim_{x \to x_0} g(x) = +\infty$$

Allora:

$$\lim_{x \to x_0} f(x) = +\infty.$$

8.3 Limiti laterali

Sia $A \neq \emptyset$, $A \in \mathbb{R}$, $x_0 \in \mathbb{R}$ e $f : A \to R$.

Indichiamo con $A^+ = \{x \in A : x > x_0\} \in A^- = \{x \in A : x < x_0\}.$

Limite laterale destro

Supponiamo che:

- i) $A^+ \neq \emptyset$
- ii) $x_0 = DA^+$

Consideriamo la restrizione della funzione f all'insieme A^{+1} . Consideriamo quindi il $\lim_{x \to x_0} f_{/_{A^+}}(x)$.

Se $\exists \lim_{x \to x_0} f_{/_{A^+}}(x)$ diremo che f è dotata di limite laterale destro per $x \to x_0$ e scriviamo:

$$\lim_{x \to x_0^+} f(x) \stackrel{\text{def}}{=} \lim_{x \to x_0} f_{/_{A^+}}(x).$$

Analogamente

$$\lim_{x \to x_0^+} f(x) = +\infty \ (-\infty) \ \stackrel{\text{def}}{\Leftrightarrow} \lim_{x \to x_0^+} f_{/_{A^+}}(x) = +\infty \ (-\infty) \ \stackrel{\text{def}}{\Leftrightarrow} \forall k > 0 \ \exists \ \delta > 0 : \forall x \in A^+ \cap I_{\delta}(x_0) \ x \neq x_0 \Rightarrow f(x) > k \ (f(x) < -k).$$

Limite laterale sinistro

Supponiamo che:

- i) $A^- \neq \emptyset$
- ii) $x_0 = DA^-$

Dalla i) possiamo definire $f_{/_{A^-}}:A^-\to\mathbb{R}.^2$ Dalla ii) possiamo considerare il $\lim_{x\to x_0}f_{/_{A^-}}(x)$.

Se $\exists \lim_{x \to x_0} f_{/_{A^-}}(x)$ diremo che f è dotata di limite laterale sinistro per $x \to x_0$ e scriviamo:

$$\lim_{x \to x_0^-} f(x) \stackrel{\text{def}}{=} \lim_{x \to x_0} f_{/_{A^-}}(x).$$

Teorema 8.5

Supponiamo che A^+ e $A^- \neq \emptyset$ e $x_0 \in (DA^-) \cap (DA^+)$. Allora:

$$\lim_{x \to x_0} f(x) = \overline{\mathbb{R}} \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = l.$$

$$^{2}f_{/_{A^{-}}}(x) \stackrel{\text{def}}{=} f(x) \, \forall x \in A^{-}$$

¹Indicata come: $f_{/_{A^+}}:A^+\to\mathbb{R}$ tale che $f_{/_{A^+}}(x)\stackrel{\mathrm{def}}{=} f(x)\;\forall x\in A^+$

8.4 Teorema Ponte

Siano $f: A \to \mathbb{R}, \emptyset \neq A \subseteq \mathbb{R}, x_0 \in DA$ oppure $x_0 = \pm \infty$. Allora:

$$\lim_{x \to x_0} f(x) = l \in \overline{\mathbb{R}} \Leftrightarrow \forall \{x_n\} \subset A \setminus \{x_0\} : \lim_{n \to +\infty} x_n = x_0 \Rightarrow \lim_{x \to x_0} f(x_n) = l.$$

8.5 Limiti di funzioni trigonometriche

Sia $x_0 \in \mathbb{R}$.

- $\bullet \lim_{x \to x_0} \sin x = \sin x_0$
- $\bullet \lim_{x \to x_0} \cos x = \cos x_0$
- Se $x_0 \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \Rightarrow \lim_{x \to x_0} \tan x = \tan x_0$

8.5.1 Limiti notevoli di funzioni trigonometriche

1)

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Dimostrazione.

Dimostriamo che $\lim_{x\to 0} \frac{\sin x}{x} = 1$ tramite il teorema del confronto.

• Se $0 < x < \frac{\pi}{2}$ si ha:

 $\sin x < x < \tan x$

dividendo per $\sin x \ \left(\sin x > 0 \ \forall x \in \ \right] \, 0, \pi/2 \, [\)$ si ottiene:

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x} \Rightarrow 1 > \frac{\sin x}{x} > \cos x$$
. Quindi:

$$\cos x < \frac{\sin x}{x} < 1 \ \forall x \in] \ 0, \pi/2 \ [\ (1)$$

• Se $x \in]-\pi/2,0[$ allora $-x \in]0,\pi/2[$ e quindi vale la **(1)**.

$$\cos(-x) < \frac{\sin(-x)}{(-x)} < 1 \Leftrightarrow \cos x < \frac{-\sin x}{-x} < 1.$$

Conclusione

$$\cos x < \frac{\sin x}{x} < 1 \ \forall x \in]-\pi/2, \pi/2[\setminus \{0\}$$

Quindi per il teorema dei carabinieri troveremo che $\lim_{x\to x_0} \frac{\sin x}{x} = 1$.

Conseguenza.

$$\lim_{x \to 0} \frac{\tan x}{x} = 1.$$

Poiché:

$$\frac{\tan x}{x} = \frac{\frac{\sin x}{\cos x}}{x} = \frac{\sin x}{x} \cdot \frac{1}{\cos x}$$

2)

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

Dimostrazione.

Sia $x \neq 0$.

$$\frac{1-\cos x}{x} = \frac{(1-\cos x)\cdot(1+\cos x)}{x\cdot(1+\cos x)} = \frac{1-\cos^2 x}{x\cdot(1+\cos x)} = \frac{\sin^2 x}{x\cdot(1+\cos x)} = \frac{\sin^2 x}{x} \cdot \frac{1}{(1+\cos x)} = \frac{$$

3)

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

Dimostrazione.

Stesso procedimento di $\frac{1-\cos x}{x}$ ma con x^2 .

8.6 Limiti di funzioni composte

Teorema 8.6 (Sul limite delle funzioni composte)

Date due funzioni:

$$f:A\to\mathbb{R}\ con\ A\subseteq\mathbb{R},\ A\neq\emptyset$$

$$q: B \to \mathbb{R} \ con \ B \subseteq \mathbb{R}, \ B \neq \emptyset$$

 $e \ f(x) \in B \ \forall x \in A. \ Allora:$

$$A \ni x \xrightarrow{f} f(x) \xrightarrow{g} g(f(x))$$

Dimostrazione.

Sia $x_0 \in DA$ oppure $x_0 = \pm \infty$.

Supponiamo che il $\lim_{x\to x_0} f(x) = y_0 \in \overline{\mathbb{R}}$. (1).

Se $y_0 \in \mathbb{R}$ supponiamo valga l'ipotesi che $\exists \delta 0 : \forall x \in A \cap I_{\delta}(x_0) \ e \ x \neq x_0 \Rightarrow f(x) \neq y_0$. (2) e che $\lim y \to y_0 g(y) = l \in \mathbb{R}$. (3).

Allora:

$$\lim_{x \to x_0} g(f(x)) = l.$$

8.7 Limiti di funzioni monotone

Teorema 8.7 (Sul limite delle funzioni monotone)

Supponiamo di avere una funzione $f:(a,b)\to\mathbb{R}$ e $x_0\in]a,b[$. Supponiamo che f sia $\overline{crescente}$ o strettamente crescente. Allora:

i)
$$\lim_{x \to x_0^-} f(x) = \sup_{(a,x_0[} f(x) \leqslant f(x_0).$$

ii)
$$\lim_{x \to x_0^+} f(x) = \inf_{]x_0, b)} f(x) \leqslant f(x_0).$$

Allora si potrà dire che:

iii)
$$\lim_{x \to a^+} f(x) = \inf_{[a,b)} f(x) \leqslant f(x_0).$$

iv)
$$\lim_{x \to b^{-}} f(x) = \sup_{(a,b]} f(x) \leqslant f(x_0).$$

8.8 Funzioni continue

Definizione 8.12

Sia $f: A \to \mathbb{R}$ e $x_0 \in A$. Quindi la funzione nel punto x_0 è definita. Diremo che f è **continua ne punto** x_0 se:

$$\forall \varepsilon > 0 \; \exists \; \delta > 0 : \forall x \in A \cap \delta(x_0) \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Distinguiamo due casi:

Caso 1. Se $x_0 \in DA$

 $f \ \grave{e} \ continua \ in \ x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$

Caso 2. Se $x_0 \notin DA$

In questo caso x_0 è un punto isolato dell'insieme A. Quindi:

$$\exists \, \overline{\delta} > 0 : I_{\overline{\delta}}(x_0) \cap A = \{x_0\}$$

Se prendiamo $x \in I_{\overline{\delta}}(x_0) \cap A$ allora $x = x_0$ e quindi $|f(x) - f(x_0)| = |f(x_0) - f(x_0)| = 0 < \varepsilon \ \forall \varepsilon > 0$.

Conclusione.

Se $x \in I_{\overline{\delta}}(x_0) \cap A \Rightarrow |f(x) - f(x_0)| < \varepsilon \ \forall \varepsilon > 0$ allora $f \ \dot{e}$ continua nel punto x_0 .

Teorema 8.8 (della continuità per le successioni)

 $f \ \grave{e} \ continua \ in \ x_0 \Leftrightarrow \forall \{x_n\} \subseteq A : \lim_{n \to +\infty} x_n = x_0 \Rightarrow \lim_{n \to +\infty} f(x_n) = f(x_0).$

Definizione 8.13

Diremo che f è continua in A se è continua in ogni punto dell'insieme A.

Teorema 8.9

Date due funzioni $f, g: A \to \mathbb{R}$ e un punto $x_0 \in A$ tale che f e g siano continue in x_0 .

- i) f + q e $f \cdot q$ sono continue in x_0
- ii) Se $g(x_0) \neq 0 \Rightarrow \frac{1}{q} e^{-\frac{1}{f}}$ sono continue in x_0
- iii) |f| è continua in x_0

Conseguenze.

- 1) La funzione razionale intera (o polinomio) $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n \quad \forall x \in \mathbb{R}$ essendo $n \in \mathbb{N}$ e $a_0, a_1, ..., a_n \in \mathbb{R}$. In questo caso ciascun addendo è continua. Quindi la funzione è continua in \mathbb{R} .
- 2) La funzione $f(x) = \frac{N(x)}{D(x)}$ con N(x) e D(x) polinomi, è una funzione continua nell'insieme $\{x \in \mathbb{R} : D(X) \neq 0\}.$
- 3) La funzione $f(x) = \tan x \stackrel{\text{def}}{=} \frac{\sin x}{\cos x} \ \forall x \in \mathbb{R} \ x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$, è continua in $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$
- **4)** La funzione $f(x) = \cot x \stackrel{\text{def}}{=} \frac{\cos x}{\sin x} \ \forall x \in \mathbb{R} \ x \neq k\pi, \ k \in \mathbb{Z}$, è continua in $\mathbb{R} \setminus \{k\pi, \ k \in \mathbb{Z}\}$

Teorema 8.10 (Continuità delle funzioni composte)

Date due funzioni:

$$f: A \to \mathbb{R} \ con \ A \subseteq \mathbb{R}, \ A \neq \emptyset$$

$$g: B \to \mathbb{R} \ con \ B \subseteq \mathbb{R}, \ B \neq \emptyset$$

 $e\ f(x) \in B\ \forall x \in A$. Considero la funzione $g \circ f: A \to \mathbb{R}$ così definita: $(g \circ f)(x) =$ $q(f(x)) \ \forall x \in A. \ Sia \ x_0 \in A.$

Supponiamo che: i) f continua in x_0 ii) g continua in $y_0 = f(x_0)$

Allora:

 $f \circ q \ \dot{e} \ continua \ nel \ punto \ x_0$

Teorema 8.11 (Della permanenza del segno per le funzioni continue) Se:

1.
$$f: A \to \mathbb{R}$$

2.
$$x_0 \in A$$

3. f continua in x_0 e $f(x_0) > 0$ (< 0)

Allora:

$$\exists \ \delta > 0 : f(x) > 0 \ (< 0) \ \forall x \in A \cap I_{\delta}(x_0)$$

Dimostrazione.

Essendo $x_0 \in DA$ allora F è continua in x_0 . Quindi $\lim_{x \to x_0} f(x) = f(x_0) > 0$.

Applico il teorema della permanenza del segno.

Se x_0 è un punto isolato allora $\exists \bar{\delta} > 0 : A \cap I_{\bar{\delta}}(x_0) = \{x_0\}.$

Se
$$x \in I_{\overline{\delta}}(x_0) \cap A$$
 allora $x = x_0$ e $f(x) = f(x_0) > 0$.

8.9 Discontinuità di una funzione

Definizione 8.14

Una funzione è discontinua in un punto se non è continua in quel punto.

8.9.1 Discontinuità eliminabile

Sia $x_0 \in DA$ e x_0 sia un punto di discontinuità di f.

Se $\lim_{x\to x_0} f(x) = l \in \mathbb{R}$, ed f non è definita in x_0 oppure f è definita in x_0 ma $f(x_0) \neq l$. Allora diremo che x_0 è un punto di discontinuità **eliminabile**.

In questo caso la funzione

$$g: A \cup \{x_0\} \to \mathbb{R}$$
 definita dalla legge: $g(x) = \begin{cases} f(x) & \text{se } x \in A \ e \ x \neq x_0 \\ l & \text{se } x = x_0 \end{cases}$

è continua in x_0 , perché $\lim_{x \to x_0} g(x) = \lim_{x \to x_0} f(x) = l \stackrel{\text{def}}{=} g(x_0)$.

g si chiama prolungamento per continuità della funzione f.

8.9.2 Discontinuità di prima specie

Se:

1.
$$\lim_{x \to x_0^+} f(x) = l_1 \in \mathbb{R}$$

$$2. \lim_{x \to x_0^-} f(x) = l_2 \in \mathbb{R}$$

3.
$$l_1 \neq l_2$$

Allora:

 x_0 è un punto di **discontinuità di prima specie** (o di salto).

 $|l_1 - l_2|$ si chiama **salto** della funzione f nel punto x_0

8.9.3 Discontinuità di seconda specie

Se <u>almeno</u> uno dei limiti $\lim_{x\to x_0^+} f(x)$ o $\lim_{x\to x_0^-} f(x)$ non esiste oppure esiste ma non è finito, diremo che x_0 è un punto di **discontinuità di seconda specie**

8.10 Proprietà delle funzioni continue in intervalli

Teorema 8.12 (Di esistenza degli zeri)

Data una funzione $f:[a,b] \to \mathbb{R}$, f continua nell'intervallo, e che assuma agli estremi dell'intervallo valori di segno opposto cioè: $f(a) \cdot f(b) < 0$.
Allora:

$$\exists c \in]a,b[:f(c)=0.$$

Si dice che $c \ \dot{e} \ zero \ di \ f$.

Teorema 8.13 (Di esistenza dei valori intermedi)

Sia $f:(a,b) \to \mathbb{R}$ continua $e x_1, x_2 \in (a,b)$ con $f(x_1) \neq f(x_2)$. Allora f assume tutti i valori compresi tra $f(x_1)$ e $f(x_2)$.

Sia $f(x_1) < \gamma < f(x_2) \Rightarrow \exists \ c \ appartenente \ all'intervallo \ di \ estremi \ x_1 \ e \ x_2 \ tale \ che \ f(c) = \gamma.$

Teorema 8.14 (Caratterizzazione dell'immagine di una funzione continua in un intervallo)

 $Sia\ f:(a,b)\to\mathbb{R}\ continua.\ Allora:$

$$]\inf_{(a,b)}f,\sup_{(a,b)}f[\ \subseteq Imf\subseteq\ [\inf_{(a,b)}f,\sup_{(a,b)}f]$$

Osservazione.

Il teorema stabilisce che se f è continua in (a,b) all'ora l'immagine della funzione (Imf) è uno dei quattro intervalli:

$$]\inf_{(a,b)}f,\sup_{(a,b)}f[, [\inf_{(a,b)}f,\sup_{(a,b)}f],]\inf_{(a,b)}f,\sup_{(a,b)}f], [\inf_{(a,b)}f,\sup_{(a,b)}f[$$

Cioè: se f è continua in (a,b) allora Im f è un intervallo.

Teorema 8.15 (Teorema di Weierstrass)

Una funzione continua in un intervallo chiuso e limitato è dotata di massimo e minimo.

$$f: [a,b] \to \mathbb{R} \ continua \Rightarrow \exists \min_{[a,b]} f \ e \max_{[a,b]} f \Leftrightarrow \exists x_0, x_1 \in [a,b] : f(x_0) \leqslant f(x) \leqslant f(x_1) \ \forall x \in [a,b].$$

Utilizzando il teorema di esistenza dei valori intermedi si ha il **secondo Teorema di** Weierstrass:

Data una funzione $f:[a,b] \to \mathbb{R}$ continua allora la funzione assume tutti i valori compresi tra $\min_{[a,b]} f = \max_{[a,b]} f$

Osservazione.

Se $f:[a,b] \to \mathbb{R}$ continua, allora:

$$Imf = \begin{cases} \left\{ \min_{[a,b]} f \right\} = \left\{ \max_{[a,b]} f \right\} & se & \min_{[a,b]} f = \max_{[a,b]} f \\ \left[\min_{[a,b]} f = \max_{[a,b]} f \right] & se & \min_{[a,b]} f < \max_{[a,b]} f \end{cases}$$

Non vale il viceversa (tranne se consideriamo una funzione monotona).

Teorema 8.16 (Criterio di continuità delle funzioni monotone)

Sia $f:[a,b]\to\mathbb{R}$ continua e monotona. Se f assume tutti i valori compresi tra f(a) e f(b). Allora:

 $f \ \dot{e} \ continua \ nell'intervallo \ [a, b].$

Teorema 8.17 (Continuità delle funzioni inverse)

Sia $f:[a,b] \to \mathbb{R}$ continua e invertibile.

9 Derivate

Sia $f:8a,b)\to\mathbb{R},\ x_0\in(a,b)$. La quantità $\Delta f=f(x)-f(x_0)\ \forall x\in(a,b)$ si chiama incremento della funzione f nel passaggio da x a x_0 .

La funzione $R(x) = \frac{f(x) - f(x_0)}{x - x_0} \ \forall x \in (a, b) \ x \neq x_0$ si chiama **rapporto incrementale** della funzione f nel punto x_0

Definizione 9.1

Se esiste finito il $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ diremo che f è **derivabile** nel punto x_0 .

In tale caso il numero che indico $f'(x_0) \stackrel{\text{def}}{=} \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ si chiama **derivata della funzione** f in x_0 e si indica anche con $[Df(x)]_x$ oppure $\left(\frac{df}{dx}\right)_{x=x_0}$.

9.1Derivata destra e sinistra

Se $x_0 \in]a,b[$ possiamo considerare il $\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0}$ e $\lim_{x\to x_0^-} \frac{f(x)-f(x_0)}{x-x_0}$.

Definizione 9.2

Se esiste finito il $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$ diremo che f è dotata ti **derivata destra** (sinistra) in x_0 in tale caso il numero $f'_+(x_0) \stackrel{\text{def}}{=} \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$ si chiama **derivata destra** (sinistra) in x_0

Conseguenza 9.1

$$\exists f'(x_0) \Leftrightarrow \exists f'_+(x_0), f'_-(x_0) \ e \ f'_+(x_0) = f'_-(x_0) = f'(x_0).$$

Esempi di funzioni continue non derivabili in un punto

1)
$$f(x) = |x| \ \forall x \in \mathbb{R}$$

Studiamo la derivabilità di f in $x_0 = 0$.

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{|x|}{x}.$$

$$\frac{|x|}{x} = \begin{cases} 1 & \text{se } x > 0 \\ -1 & \text{se } x < 0 \end{cases}.$$

Quindi il
$$\lim_{x\to 0^+} \frac{|x|}{x} = 1 \text{ e } \lim_{x\to 0^-} \frac{|x|}{x} = -1$$

Quindi nel punto 0 non è derivabile (non esiste il limite) ma esistono le derivate laterali.

2)
$$f(x) = \sqrt{x} \ \forall x \geqslant 0$$

Studio la derivabilità in $x_0 = 0$.

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sqrt{x}}{x} = \lim_{x \to 0^+} \frac{\sqrt{x} \cdot \sqrt{x}}{x \cdot \sqrt{x}} = \lim_{x \to 0^+} \frac{1}{\sqrt{x}} = +\infty \Rightarrow \nexists f'(x_0)$$

Definizione 9.3

Diremo che f è derivabile in (a,b) se è derivabile in ogni punto di (a,b).

Supponiamo che f sia derivabile in $(a,b) \stackrel{\text{def}}{\Leftrightarrow} \forall x \in (a,b) \exists f'(x)$.

Allora posso definire $f':(a,b)\to\mathbb{R}$.

$$(a,b) \ni x \xrightarrow{f'} f'(x)$$

La funzione f' si chiama **funzione derivata prima di** f **in** (a,b).

Se f' è derivabile in un punto $x_0 \in (a, b)$ diremo che f è dotata di **derivata seconda** in x_0 . In tal caso

$$f''(x_0) \stackrel{\text{def}}{=} [Df'(x)]_{x=x_0}$$

si chiama derivata seconda di f nel punto x_0 e si indica anche con $[D^2 f(x)]_{x=x_0}$ oppure $\left(\frac{d^2 f}{dx^2}\right)_{x=x_0}$.

Se f è dotata di derivata seconda in ogni punto di (a,b) diremo che f è **derivabile tre volte**. In tal caso

44

$$f'''(x_0) \stackrel{\text{def}}{=} [Df'(x)]_{x=x_0}$$

si chiama derivata terza di f nel punto x_0 e si indica anche con $[D^3 f(x)]_{x=x_0}$ oppure $\left(\frac{d^3 f}{dx^3}\right)_{x=x_0}$.

9.1.1 Rapporto incrementale

Il rapporto incrementale di f in x_0 si può scrivere come:

$$\frac{f(x_0+h)-f(x_0)}{h}$$
 con $h=x-x_0, h\neq 0$ tale che $x_0+h\in (a,b)$

Se esiste finito il limite del rapporto incrementale $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} \Rightarrow f$ è derivabile in x_0 .

 $\frac{f(x_0+h)-f(x_0)}{h}$ è il **coefficiente angolare** della retta secante il grafico di f in $(x_0+h,f(x_0+h)),(x_0,f(x_0))$

Supponiamo che f è derivabile in x_0 . La retta t di equazione

$$y - f(x_0) = f'(x_0)(x - x_0)$$

si chiama **retta tangente** al Gf in $(x_0, f(x_0))$.

9.2 Relazione tra continuità e derivabilità

Teorema 9.1

Sia $f:(a,b)\to\mathbb{R}$, $x_0\in(a,b)$. Se esiste la derivata prima di f nel punto x_0 allora $f \in continua$ nel punto x_0 .

Dimostrazione. Per ipotesi esiste finito il $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \in \mathbb{R}$.

Dobbiamo provare che $\lim_{x\to x_0} f(x) = f(x_0)$ ovvero $\lim_{x\to x_0} [f(x) - f(x_0)] = 0$.

Ma
$$\lim_{x \to x_0} [f(x) - f(x_0)] = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0) = 0.$$

Quindi se f è derivabile in x_0 allora f è continua in x_0 .

Non vale il viceversa.

Sia $f:(a,b)\to\mathbb{R},\ x_0\in]a,b[,\ f \text{ continua in }x_0,\ f \text{ non derivabile in }x_0.$ Distinguiamo tre casi:

1 caso.

$$f$$
 è dotata di f'_+ e f'_- in x_0 . Cioè $\exists f'_+(x_0) \stackrel{\text{def}}{=} \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$ e

$$\exists f'_{-}(x_0) \stackrel{\text{def}}{=} \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \in \mathbb{R}.$$

In questo caso diremo che x_0 è un **punto angoloso** e la retta t_+ e t_- definite come $t_+: y - f(x_0) = f'_+(x_0) \cdot (x - x_0)$ e $t_-: y - f(x_0) = f'_-(x_0) \cdot (x - x_0)$.

2 caso.

$$\lim_{x\to x_0^+}\frac{f(x)-f(x_0)}{x-x_0}=+\infty(-\infty)\ \mathrm{e}\ \lim_{x\to x_0^-}\frac{f(x)-f(x_0)}{x-x_0}=-\infty(+\infty).\ \mathrm{Allora\ il\ punto}\ x_0\ \mathrm{e}\ \mathrm{un\ punto\ cuspidale\ e\ la\ retta}\ \mathrm{(verticale)}\ \mathrm{di\ equazione}\ x=x_0\ \mathrm{si\ chiama\ retta}$$
 tangente al Gf nel punto x_0 .

3 caso.

Se esiste il $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = +\infty(-\infty)$ diremo che x_0 è un **punto di flesso a tangente verticale**.

La retta di equazione $x = x_0$ si chiama **retta tangente** al Gf in $(x_0, f(x_0))$.

9.3 Derivate di funzioni elementari

1)
$$f(x) = k \ \forall x \in \mathbb{R}, k \in \mathbb{R}$$
.

Sia
$$x \in \mathbb{R}$$
 allora il $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{k-k}{h} = 0.$

Cioè
$$\exists f'(x) = 0 \ \forall x \in \mathbb{R}.$$

$$2) \ f(x) = x \ \forall x \in \mathbb{R}.$$

Sia
$$x \in \mathbb{R}$$
 allora il $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{x+h-x}{h} = 1.$

Cioè
$$\exists f'(x) = 1 \ \forall x \in \mathbb{R}.$$

3)
$$f(x) = x^n \ \forall x \in \mathbb{R}, n \in \mathbb{N}.$$

Sia
$$x \in \mathbb{R} \setminus \{0\}$$
 allora il $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = \lim_{h \to 0} \frac{x(1+\frac{h}{x})^n - x^n}{h} = \lim_{h \to 0} \frac{x^n((1+\frac{h}{x})^n - 1)}{x \cdot \frac{h}{x}} = \lim_{h \to 0} x^{n-1} \frac{(1+\frac{h}{x})^n - 1}{\frac{h}{x}} = n \cdot x^{n-1}.$

Se x = 0.

If
$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h^n - 0}{h} = \lim_{h \to 0} h^{n-1} = 0.$$

Cioè
$$\exists f'(x) = 0 \ per \ x = 0 \ e \ \exists f'(x) = nx^{n-1} \ \forall x \in \mathbb{R} \smallsetminus 0$$

3)
$$f(x) = x^{\alpha} \ \forall x \in]0, +\infty[, \alpha \in \mathbb{R}.$$

Si trova con lo stesso procedimento del caso 3.

 $\exists f'(x) = \alpha x^{\alpha-1} \forall x > 0$. Se $\alpha > 0$ allora $f(x) = x^{\alpha}$ è definita anche per $x_0 = 0$. Studiamo le derivate in $x_0 = 0$.

Il
$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h^{\alpha} - 0}{h} = \lim_{h \to 0} h^{\alpha - 1} = \begin{cases} 0 & \text{se } \alpha > 1 \\ 1 & \text{se } \alpha = 1. \\ +\infty & \text{se } \alpha < 1 \end{cases}$$

Quindi $f(x) = x^{\alpha}$ per $0 < \alpha < 1$ non è derivabile in x_0 .

4)
$$f(x) = a^x \ \forall x \in \mathbb{R}, a > 0, a \neq 1.$$

$$\exists f'(x) = a^x \log a \ \forall x \in \mathbb{R}$$

In particulare se $f(x) = e^x \ \forall x \in \mathbb{R}$ allora $f'(x) = e^x \ \forall x \in \mathbb{R}$.

5)
$$f(x) = \log_a x \ \forall x \in]0, +\infty[.$$

$$\exists f'(x) = \frac{1}{x} \log_a e \ \forall x \in]0, +\infty[$$

In particolare se a = e allora $f(x) = \log x \ \forall x > 0$.

Quindi
$$f'(x) = \frac{1}{x} \ \forall x > 0.$$

6)
$$f(x) = \sin x \ \forall x \in \mathbb{R}.$$

$$\exists f'(x) = \cos x \ \forall x \in \mathbb{R}$$

6)
$$f(x) = \cos x \ \forall x \in \mathbb{R}.$$

$$\exists f'(x) = -\sin x \ \forall x \in \mathbb{R}$$

9.4 Regole di derivazione

Siano $f, g:(a, b) \to \mathbb{R}$. $x_0 \in (a, b)$ e siano f, g derivabili in x_0 . Allora:

1) f + g è derivabile in x_0 e:

$$[D(f(x) + g(x))]_{x=x_0} = f'(x_0) + g'(x_0)$$

2) $f \cdot g$ è derivabile in x_0 e:

$$[D(f(x) \cdot g(x))]_{x=x_0} = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

Dimostrazione.

Per ipotesi:

i)
$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

ii)
$$\exists \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = g'(x_0)$$

Costruiamo il rapporto incrementale di $f \cdot g$.

Prendiamo $x \in (a, b), x \neq x_0$. Allora:

$$\frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x_0)g(x) + f(x_0)g(x) - f(x_0)g(x_0)}{x - x_0} = \frac{g(x)[f(x) - f(x_0)] + f(x_0)[g(x)g(x_0)]}{x - x_0} = g(x)\frac{f(x) - f(x_0)}{x - x_0} + f(x)\frac{g(x) - g(x_0)}{x - x_0} \xrightarrow{x \to x_0} g(x_0)f'(x_0) + f(x_0)g'(x_0).$$

Conseguenza.

Sia $k \in \mathbb{R}$ e f derivabile in x_0 . Allora:

$$[Dkf(x)]_{x=x_0} = f'(x_0)k + 0f(x_0) = kf'(x_0)$$

3) $\frac{1}{g}$ è derivabile in x_0 e:

$$\left[D\frac{1}{g(x)}\right]_{x=x_0} = -\frac{g'(x)}{[g(x_0)]^2}$$

4) $\frac{f}{g}$ è derivabile in x_0 e:

$$\left[D\frac{f(x)}{g(x)}\right]_{x=x_0} = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{[g(x_0)]^2}$$

9.5 Derivata di una funzione composta

Teorema 9.2

Date due funzioni così definite:

$$f:(a,b)\to\mathbb{R}$$

$$g:(c,d)\to\mathbb{R}\ con\ f(x)\in(c,d)\ \forall x\in(a,b)$$

 $(a,b) \ni x \xrightarrow{f} f(x) \in (c,d) \xrightarrow{g} g(f(x))$. Supponiumo che f sia derivabile in $x_0 \in (a,b)$ e g risulti derivabile in $y_0 = f(x_0)$. Allora:

i) $q \circ f \ \hat{e} \ derivabile \ in \ x_0$

ii)
$$[Dg(f(x))]_{x=x_0} = [Dg(y)]_{y=y_0} \cdot f'(x_0)$$

Se f è derivabile in (a, b), A > 0, $A \neq 1$. Allora:

•
$$D(A^{f(x)}) = A^{f(x)} \cdot f'(x) \cdot \log A$$

•
$$D(e^{f(x)}) = e^{f(x)} \cdot f'(x)$$

•
$$D(\sin f(x)) = (\cos f(x)) \cdot f'(x)$$

•
$$D(\cos f(x)) = -(\sin f(x)) \cdot f'(x)$$

•
$$D(\sqrt{f(x)}) = \frac{1}{2\sqrt{f(x)}} \cdot f'(x)$$

9.6 Derivata della funzione inversa

Teorema 9.3

Data una funzione $f:[a,b] \to \mathbb{R}$ continua e strettamente crescente(decrescente).

Preso un $x_0 \in (a,b)$ e supponiamo che $\exists f'(x) \neq 0$. Allora:

$$f^{-1}[f(a), f(b)] \rightarrow [a, b] \ (crescente)$$

$$f^{-1}[f(b), f(a)] \rightarrow [a, b] \ (decrescente)$$

è derivabile in $y_0 = f(x_0)$ e si ha:

$$\left[Df^{-1}(y)\right]_{y=y_0} = \frac{1}{f'(x_0)}.$$

Esempi di derivate di funzioni inverse

1)
$$y = \sin x \ x \in \mathbb{R}$$

 $f(x) = \sin x$ non è invertibile in \mathbb{R} .

Però $\sin x: \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to [-1, 1]$ è strettamente crescente quinti è invertibile.

La sua funzione inversa si chiama funzione $\arcsin y$.

$$\arcsin y: [-1,1] \to [-\pi/2,\pi/2].$$

$$\forall y \in [-1, 1] \ \arcsin y \stackrel{\text{def}}{=} x \in [-\pi/2, \pi/2] \ \text{tale che } \sin x = y.$$

Sia $y_0 \in [-1, 1]$ e studio la derivabilità di arcsin y nel punto y_0 .

Determino
$$x_0 \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 tale che $f(x) = y_0 \Rightarrow \sin x_0 = y_0$.

Determino $x_0 \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ tale che $f(x) = y_0 \Rightarrow \sin x_0 = y_0$. La funzione $f(x) = \sin x$ è derivabile nel punto x_0 e la due derivata prima è il $\cos x$. $(f'(x_0) = \cos x_0).$

Per poter applicare il teorema di derivazione della funzione inversa serve che il $\cos x_0 \neq 0$. Ciò vuol dire che $x_0 \neq \pm \frac{\pi}{2} \Leftrightarrow y_0 \neq \pm 1$.

Possiamo applicare quindi il teorema di derivazione delle funzioni inverse se $y_0 \in]-1,1[$, e si ha:

$$\exists [D \arcsin y]_{y=y_0} = \frac{1}{\cos x_0} = \frac{1}{\sqrt{1 - \sin^2 x_0}} = \frac{1}{\sqrt{1 - y^2}}.$$

Per l'arbitrarietà di y_0 arcsin y è derivabile in]-1,1[e:

$$D\arcsin y = \frac{1}{\sqrt{1-y^2}} \forall y \in]-1,1[.$$

$$2) y = \cos x \ x \in \mathbb{R}$$

Consideriamo la funzione $\cos x:[0,\pi]\to[-1,1]$

La funzione **non** è invertibile in \mathbb{R} . Però la restrizione è continua e strettamente decrescente. Poiché è strettamente crescente è invertibile. La sua inversa si chiama **funzione** arccos y, ed è così definita:

$$\arccos y : [-1, 1] \to [0, \pi]$$

$$\forall y \in [-1, 1] : \arccos y \stackrel{\text{def}}{=} x \in [0, \pi] : \cos x = y.$$

La funzione arccos è continua e strettamente decrescente in]-1,1[. La funzione è derivabile in]-1,1[, e la sua derivata vale:

$$D\arccos y = \frac{1}{\sqrt{1 - y^2}} \ \forall y \in] -1, 1[$$

3)
$$\tan x = \frac{\sin x}{\cos x}$$
 $x \in \mathbb{R}, x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$

La funzione $\tan x$ non è invertibile in nel suo insieme di definizione. Però $\tan x:]-\pi/2, \pi/2[\to \mathbb{R}$ è strettamente crescente e continua e quindi invertibile. La sua funzione inversa si chiama **funzione** arctan y, ed è così definita:

$$\arctan y: \mathbb{R} \to \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$$

$$\forall y \in \mathbb{R} : \arctan y \stackrel{\text{def}}{=} x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[: \tan x = y.$$

Si prova che

$$\exists D \arctan y = \frac{1}{1+y^2} \ \forall y \in \mathbb{R}$$

10 Studio di funzioni

10.1 Asintoti al grafico di una funzione

Asintoto obliquo destro

Data una funzione $f:(a,+\infty)\to\mathbb{R}$.

Sia r una retta parallela all'asse \overrightarrow{y} di equazione r: y = mx + q.

Sia $x \in (a, +\infty)$, consideriamo il punto (x, f(x)) e calcoliamo la sua distanza da r.

$$d((x, f(x)), r) = \frac{|mx - f(x) + q|}{\sqrt{1 + m^2}}.$$

Se accade che $\lim_{x\to +\infty} d(x, f(x)), r = 0$ allora diremo che r è un asintoto obliquo **destro** (o per $x \to +\infty$) al Gf(a f).

Asintoto obliquo sinistro

Data una funzione $f:(-\infty,a)\to\mathbb{R}$.

Sia r una retta parallela all'asse \overrightarrow{y} di equazione r: y = mx + q.

Sia $x \in (-\infty, a)$, consideriamo il punto (x, f(x)) e calcoliamo la sua distanza da r. $d((x, f(x)), r) = \frac{|mx - f(x) + q|}{\sqrt{1 + m^2}}.$

$$d((x, f(x)), r) = \frac{|mx - f(x) + q|}{\sqrt{1 + m^2}}.$$

Se accade che $\lim_{x\to -\infty} d(x, f(x)), r = 0$ allora diremo che r è un asintoto obliquo **sinistro** (o per $x \to -\infty$) al Gf(a f).

Teorema 10.1

 $Sia\ f:(a,+\infty)\to\mathbb{R}.$

La retta di equazione y = mx + q è asintoto obliquo destro (sinistro) ovvero:

i)
$$\lim_{x \to +\infty} \frac{f(x)}{x} = m \in \mathbb{R}$$

ii)
$$\lim_{x \to +\infty} [f(x) - mx] = q \in \mathbb{R}$$

Se m = 0, l'asintoto si dice **orizzontale**. Allora y = q è asintoto orizzontale destro di $f \Leftrightarrow \lim_{x \to +\infty} f(x))q.$

Asintoti verticali

Definizione 10.1

Dato $x_0 \in (a,b)$ e una funzione $f:(a,b) \to \mathbb{R} \setminus \{x_0\}$ oppure $f:(a,b) \to \mathbb{R}$.

Se $\lim_{x\to x_0+} f(x) = +\infty(-\infty)$ la retta di equazione $x=x_0$ si dice **asintoto verticale** destro della funzione f.

Se $\lim f(x) = +\infty(-\infty)$ la retta di equazione $x = x_0$ si dice asintoto verticale sinistro della funzione f.

Se i limiti sono uguali, l'asintoto si dice **completo**.

10.2Estremi relativi

Sia
$$f:(a,b)\to\mathbb{R}$$
 e $x_0\in(a,b)$.

Definizione 10.2

Diremo che x_0 è un **punto di massimo** (minimo) **relativo** o locale della funzione fse:

$$\exists \triangle > 0 : \forall x \in (a,b) \cap I_{\triangle}(x_0) : f(x) \leqslant f(x_0) \left(f(x) \geqslant f(x_0) \right)$$

Teorema 10.2 (Di Fermat)

Sia $f:(a,b)\to\mathbb{R}$, $x_0\in [a,b]$ con x_0 punto di estremo relativo ed esiste $f'(x_0)$. Allora:

$$f'(x_0) = 0.$$

Dimostrazione.
$$f'(x_0) \stackrel{\text{def}}{=} \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \text{ perch\'e } x_0 \text{ non \'e un estremo.}$$

Se x_0 è un punto di minimo relativo allora per definizione $\exists \ \delta > 0 : f(x) \leqslant f(x_0) \ \forall x \in (a,b) \cap I_{\delta}(x_0).$

Possiamo "calibrare" δ in modo che $I_{\delta}(x_0)$ sia tutto contenuto in (a,b). Si ha quindi che $f(x) \leq f(x_0) \ \forall x \in [x_0 - \delta, x_0 + \delta[$. Allora:

$$\frac{f(x) - f(x_0)}{x - x_0} = \begin{cases} \leqslant 0 & \text{se } x_0 < x < x_0 + \delta \text{ (1)} \\ \geqslant 0 & \text{se } x_0 - \delta < x < x_0 \text{ (2)} \end{cases}$$

Dalla (1)
$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Dalla (2)
$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

$$Da (1) e (2) \Rightarrow f'(x_0) = 0.$$

Definizione 10.3

Si chiamano **punti stazionari** i punti in cui la derivata prima assume valore 0.

10.3 Teoremi fondamentali

Teorema 10.3 (Di Rolle)

Sia $f:[a,b]\to\mathbb{R}$ continua e derivabile in [a,b] con f(a)=f(b). Allora:

$$\exists c \in]a, b[: f'(c) = 0.$$

Dimostrazione.

Per il teorema di Weierstrass f è dotata di massimo e minimo in [a, b]. Quindi $\exists x_0, x_1 \in [a, b] \ tale \ che$

$$f(x_0) = \max_{[a,b]} f \ e \ f(x_1) = \min_{[a,b]} f$$

Distinguiamo due casi:

Caso 1. $x_0 = a, x_1 = b$ oppure $x_0 = b, x_1 = a$

Poiché f(a) = f(b) si ha che $f(x_0) = f(x_1)$ cioè $\max_{[a,b]} f = \min_{[a,b]} f$ il che significa che f(x)è costante $\forall x \in [a,b]$ quindi $f'(x_0) = 0 \ \forall x \in [a,b]$. Pertanto possiamo prendere $c \in [a, b[$ arbitrario.

Caso 2. Almeno uno dei due punti x_0 e x_1 è interno all'intervallo [a,b]

Supponiamo che sia $x_0 \in]a, b[$. Allora:

- 1. $x_0 \in]a, b[$
- 2. $\exists f'(x_0)$
- 3. x_0 è un punto di estremo relativo

Allora per il teorema di Fermat $f'(x_0) = 0$.

Il teorema garantisce l'esistenza di un punto nel grafico in cui la tangente è parallela all'asse \overrightarrow{x} .

Teorema 10.4 (Di Lagrange)

Sia $f:[a,b] \to \mathbb{R}$ continua e derivabile in [a,b[. Allora:

$$\exists c \in]a, b[tale che \frac{f(b) - f(a)}{b - a} = f'(c).$$

Dimostrazione.

Consideriamo la funzione $g:[a,b] \to \mathbb{R}$ definita dalla legge:

 $g(x) = f(x) - kx \ \forall x \in [a,b] \ con \ k \in \mathbb{R} \ da \ determinare in modo che g verifichi le ipotesi del teorema di Rolle.$

Osservo che g è continua in [a,b] perché combinazione lineare di funzioni ivi continue. g è derivabile in [a,b] perché combinazione lineare di funzioni continue. Quindi:

$$g(a) = g(b) \Leftrightarrow f(a) - ka = f(b) - kb \Leftrightarrow k(b - a) = f(b) - f(a) \Leftrightarrow \frac{f(b) - f(a)}{b - a}$$
 (1)

Se definisco g prendendo k come in (1) definisco l'ipotesi del teorema di Rolle. Quindi $\exists c \in a;]a,b[:g'(c)=0.$ Ma g'(c)=f'(x)-k $\forall x \in]a,b[.$ Quindi $0=f'(c)-k \Rightarrow f'(c)=k.$

10.3.1 Conseguenze del teorema di Lagrange

1) Sia $f:(a,b) \to \mathbb{R}$ continua e derivabile in]a,b[. Se $f'(x) = 0 \ \forall x \in]a,b[$ allora:

$$f(x)$$
 è costante $\forall x \in (a, b)$.

Basta provare che $\forall x_1, x_2 \in]a, b[$ con $x_1 \neq x_2$ $f(x_1) = f(x_2)$.

Siano $x_1, x_2 \in (a, b)$ con $x_1 < x_2$. Perché $x_! = x_2$ sarebbe ovvio. Considero $f: [x_1, x_2] \to \mathbb{R}$. Sia f continua in $[x_1, x_2]$ e derivabile in $]x_1, x_2[$. Quindi applicando il Teorema di Lagrange esisterà $c \in]x_1, x_2[_f(x_2) - f(x_2) = f'(c)(x_2 - x_1)$. Ma f'(c) = 0 perché $f'(c) = 0 \ \forall x \in]a, b[$ per ipotesi. Quindi:

$$f(x_2) - f(x_1) = 0 \Rightarrow f(x_2) = f(x_1)$$

2) Sia $f:(a,b) \to \mathbb{R}$ continua e derivabile in]a,b[. Se $f'(x) > 0 \ \forall x \in]a,b[$ allora:

f(x) è strettamente crescente $\forall x \in (a,b)$.

Basta provare che $\forall x_1, x_2 \in (a, b)$ con $x_1 \neq x_2 : x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$. Si utilizza lo stesso procedimento del punto 1). Si ottiene quindi $f(x_2) - f(x_1) = f'(c)(x_2 - x_1) > 0$ perché f'(c) > 0 per ipotesi e $(x_2 - x_1) > 0$ perché $x_2 > x_1$. Allora:

$$f(x_2) - f(x_1) > 0 \Leftrightarrow f(x_2) > f(x_1).$$

3) Siano $f, g:(a, b) \to \mathbb{R}$ continue e derivabili in]a, b[. Se $f'(x) = g'(x) \ \forall x \in]a, b[$. Allora:

$$\exists k \in \mathbb{R} : f(x) - g(x) > k \ \forall x \in (a, b).$$

Per dimostrare ciò applico il corollario 1) alle funzioni f(x) - g(x).

4) Sia $f:(a,b)\to\mathbb{R}$ continua. $x_0\in]a,b[$ e supponiamo che f sia derivabile in $]a,b[\setminus\{x_0\}]$.

Supponiamo che $\exists \delta Z0 : f'(x) > 0 \ \forall x \in]x_0, x_0 + \delta[ef'(x) < 0 \ \forall x \in]x_0 - \delta, x_0[.$

Dimostrazione.

f è strettamente crescente in $[x_0, x_0 + \delta[\Rightarrow f(x) \geqslant f(x_0) \ \forall x \in [x_0, x_0 + \delta[$. f è strettamente decrescente in $]x_0 - \delta, x_0] \Rightarrow f(x) \geqslant f(x_0) \ \forall x \in]x_0 - \delta, x_0]$. Quindi:

$$f(x) \geqslant f(x_0) \ \forall x \in]x_0 - \delta, x_0 + \delta[.$$

Tesi: x_0 è un punto di massimo relativo.

5) Sia $f:[a,b] \to \mathbb{R}$ continua. Sia $x_0 \in]a,b[$ ed f derivabile in $]a,b[\setminus \{x_0\}$. Se $\lim_{x\to x_0^+} f'(x) = l_1 \in \overline{\mathbb{R}}$ e $\lim_{x\to x_0^-} f'(x) = l_2 \in \overline{\mathbb{R}}$. Allora:

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = l_1 e \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = l_2$$

Osservazione. Se $l_1, l_2 \in \mathbb{R}$ allora $\exists f'_+ = l_1 \in \exists f'_- = l_2$

Teorema 10.5 (Di De L'Hôpital)

Siano $f, g: (a, b) \setminus \{x_0\} \to \mathbb{R}$ derivabili, con $g'(x) \neq 0 \ \forall x \in (a, b) \setminus \{x_0\}$.

Supponiamo che $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ e supponiamo che $\exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l \in \overline{\mathbb{R}}.$

Allora:

$$\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = l$$

Osservazione. Il teorema continua a valere anche quando $x_0 = +\infty$ o $x_0 = -\infty$.

Teorema 10.6 (Secondo teorema di De L'Hôpital)

Siano $f, g: (a, b) \setminus \{x_0\} \to \mathbb{R}$ derivabili, con $g'(x) \neq 0 \ \forall x \in (a, b) \setminus \{x_0\}$. Supponiamo che $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \pm \infty$ e supponiamo che $\exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l \in \overline{\mathbb{R}}$. Allora:

$$\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = l$$

Osservazione. Il teorema continua a valere anche quando $x_0 = \pm \infty$.

Finito di scrivere giorno 04/07/2018 alle ore 11:55.