Homework Assignment 4 (NYC Crash Data Cleaning)

Ammar Alsadadi

Table of contents

1	Cont	text	2
	1.1	Overview	2
	1.2	Historical Context	2
	1.3	Data Dictionary	2
2	Exlp	loring data	3
	2.1	Exploring	3
		2.1.1 Dataset Overview	6
3	Solvi	ing Questions	7
	3.1	Part A	7
	3.2	Part B	7
	3.3	Part C	8
	3.4	Part D	9
	3.5	Part E	19
	3.6	Part F	20
	3.7	PART G	20
	3.8	Part H	21
		3.8.1 Filling Missing Boroughs and ZIP Codes	23
		3.8.2 First Attempt: Dataset Mapping	23
		3.8.3 Second Attempt: Nominatim API	24
		3.8.4 Third Attempt: OpenCage Geocoder	24
		3.8.5 Final Fix: Using County Data	24
		3.8.6 Lessons Learned	24
	3.9	Part I	24
	3.10	Part J	25
	3.11	Part K	26
	3.12	Part L	26
	0 10	70 - 17	

1 Context

1.1 Overview

The Motor Vehicle Collisions dataset contains details on crashes in NYC. Each row represents a crash event reported by the NYPD. The data includes occurrences of injuries, fatalities, and location details. Reports are required when an injury, fatality, or at least \$1000 in damage occurs.

1.2 Historical Context

The NYPD launched TrafficStat in 1998 to track fatal incidents. In 1999, the Traffic Accident Management System (TAMS) improved data collection. Vision Zero began in 2014 to reduce fatalities, and in 2016, FORMS replaced TAMS, allowing officers to record crash data electronically.

1.3 Data Dictionary

Column Name	Description	Data Type
CRASH DATE	Date of collision occurrence	Floating
		Timestamp
CRASH TIME	Time of collision occurrence	Text
BOROUGH	Borough where collision occurred	Text
ZIP CODE	Postal code of incident	Text
LATITUDE	Latitude coordinate	Number
LONGITUDE	Longitude coordinate	Number
LOCATION	Latitude, Longitude pair	Location
ON STREET NAME	Street where the collision occurred	Text
CROSS STREET NAME	Nearest cross street to the collision	Text
OFF STREET NAME	Street address if known	Text
NUMBER OF PERSONS	Number of persons injured	Number
INJURED		
NUMBER OF PERSONS	Number of persons killed	Number
KILLED		
NUMBER OF	Number of pedestrians injured	Number
PEDESTRIANS INJURED		
NUMBER OF	Number of pedestrians killed	Number
PEDESTRIANS KILLED		
NUMBER OF CYCLISTS	Number of cyclists injured	Number
INJURED		
NUMBER OF CYCLISTS	Number of cyclists killed	Number
KILLED		
NUMBER OF MOTORISTS	Number of motorists injured	Number
INJURED		

Column Name	Description	Data Type
NUMBER OF MOTORISTS	Number of motorists killed	Number
KILLED		
CONTRIBUTING FACTOR	Contributing factor for vehicle 1	Text
VEHICLE 1		
CONTRIBUTING FACTOR	Contributing factor for vehicle 2	Text
VEHICLE 2		
CONTRIBUTING FACTOR	Contributing factor for vehicle 3	Text
VEHICLE 3		
CONTRIBUTING FACTOR	Contributing factor for vehicle 4	Text
VEHICLE 4		
CONTRIBUTING FACTOR	Contributing factor for vehicle 5	Text
VEHICLE 5		
UNIQUE KEY	Unique identifier for each crash event	Text
VEHICLE TYPE CODE 1	Vehicle type code for vehicle 1	Text
VEHICLE TYPE CODE 2	Vehicle type code for vehicle 2	Text
VEHICLE TYPE CODE 3	Vehicle type code for vehicle 3	Text
VEHICLE TYPE CODE 4	Vehicle type code for vehicle 4	Text
VEHICLE TYPE CODE 5	Vehicle type code for vehicle 5	Text

2 Exlploring data

2.1 Exploring

```
import pandas as pd

# Load the dataset
file_path1 = "C:/Users/Ammar/Downloads/Motor_Vehicle_Collisions_-_Crashes_20250214.csv"

df1 = pd.read_csv(file_path1)

# Display basic info about the dataset
df1_info = df1.info()

# Show first few rows
df1_head = df1.head()

# Check for missing values
missing_values1 = df1.isnull().sum()

df1_info, df1_head, missing_values1
```

 ${\tt C:\Wsers\Ammar\AppData\Local\Temp\ipykernel_38792\2397593892.py:6:} \ {\tt DtypeWarning:}$

Columns (3) have mixed types. Specify dtype option on import or set low_memory=False.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2155718 entries, 0 to 2155717
Data columns (total 29 columns):

#	Column	Dtype
0	CRASH DATE	object
1	CRASH TIME	object
2	BOROUGH	object
3	ZIP CODE	object
4	LATITUDE	float64
5	LONGITUDE	float64
6	LOCATION	object
7	ON STREET NAME	object
8	CROSS STREET NAME	object
9	OFF STREET NAME	object
10	NUMBER OF PERSONS INJURED	float64
11	NUMBER OF PERSONS KILLED	float64
12	NUMBER OF PEDESTRIANS INJURED	int64
13	NUMBER OF PEDESTRIANS KILLED	int64
14	NUMBER OF CYCLIST INJURED	int64
15	NUMBER OF CYCLIST KILLED	int64
16	NUMBER OF MOTORIST INJURED	int64
17	NUMBER OF MOTORIST KILLED	int64
18	CONTRIBUTING FACTOR VEHICLE 1	object
19	CONTRIBUTING FACTOR VEHICLE 2	object
20	CONTRIBUTING FACTOR VEHICLE 3	object
21	CONTRIBUTING FACTOR VEHICLE 4	object
22	CONTRIBUTING FACTOR VEHICLE 5	object
23	COLLISION_ID	int64
24	VEHICLE TYPE CODE 1	object
25	VEHICLE TYPE CODE 2	object
26	VEHICLE TYPE CODE 3	object
27	VEHICLE TYPE CODE 4	object
28	VEHICLE TYPE CODE 5	object
dtype	es: $float64(4)$, $int64(7)$, object	t(18)

memory usage: 477.0+ MB

(None,

CRASH DATE CRASH TIME BOROUGH ZIP CODE LATITUDE LONGITUDE \
0 09/11/2021 2:39 NaN NaN NaN NaN

1	03/26/2022	11:45	NaN	NaN	NaN	NaN	
2	11/01/2023	1:29	BROOKLYN	11230.0	40.62179	-73.970024	
3	06/29/2022	6:55	NaN	NaN	NaN	NaN	
4	09/21/2022	13:21	NaN	NaN	NaN	NaN	
0	LC	OCATION NaN NaN		ON STREE FONE EXPR RO BRIDGE	ESSWAY	OSS STREET NA 20 AVEN	
2	(40.62179, -73.9		QUEENSES.	OCEAN P		AVENUE	
3	(10.02175, 70.0	NaN	THR	DGS NECK			NaN
4		NaN		BROOKLYN			NaN
-		wan	•	DICOUNTIN	DICIDGE	1	vaiv
0	OFF STREET NAME NaN	C	ONTRIBUTIN		VEHICLE 2	\	
1	NaN				NaN		
2	NaN			Un	specified		
3	NaN			Un	specified		
4	NaN			Un	specified		
0 1 2 3 4	CONTRIBUTING FAC	Unspe	NaN NaN ecified NaN NaN	ONTRIBUTI OLLISION_ 44557 45135 46753	ID \ 65 47	VEHICLE 4 NaN NaN NaN NaN NaN	•
3			NaN	45419	03		
4			NaN	45661	31		
0		VEHICLI		dan	CLE TYPE (Sedan	
1				dan		NaN	
2				ped		Sedan	
3				dan -	Pick-up		
4	Station Wagon/Sp	ort Ut	ility Vehi	cle		NaN	
0 1 2		DE 3 VEI NaN NaN edan	HICLE TYPE	CODE 4 V NaN NaN NaN	EHICLE TYF	PE CODE 5 NaN NaN NaN	
3		NaN		NaN		NaN	

4 NaN	NaN	NaN
[[]		
[5 rows x 29 columns],	0	
CRASH DATE	-	
CRASH TIME	0	
BOROUGH	667415 667683	
ZIP CODE LATITUDE	239663	
LONGITUDE	239663	
LOCATION	239663	
ON STREET NAME	463684	
CROSS STREET NAME	822176	
OFF STREET NAME	1784407	
NUMBER OF PERSONS INJURED	18	
NUMBER OF PERSONS KILLED	31	
NUMBER OF PEDESTRIANS INJURED	0	
NUMBER OF PEDESTRIANS KILLED	0	
NUMBER OF CYCLIST INJURED	0	
NUMBER OF CYCLIST KILLED	0	
NUMBER OF MOTORIST INJURED	0	
NUMBER OF MOTORIST KILLED	0	
CONTRIBUTING FACTOR VEHICLE 1	· ·	
CONTRIBUTING FACTOR VEHICLE 2	341042	
CONTRIBUTING FACTOR VEHICLE 3		
CONTRIBUTING FACTOR VEHICLE 4		
CONTRIBUTING FACTOR VEHICLE 5		
COLLISION_ID	0	
VEHICLE TYPE CODE 1	15087	
VEHICLE TYPE CODE 2	423849	
VEHICLE TYPE CODE 3	2006218	
VEHICLE TYPE CODE 4	2121619	
VEHICLE TYPE CODE 5	2146357	
dtype: int64)		

2.1.1 Dataset Overview

• Total Records: 2,155,718

• Total Columns: 29

• Data Type Warning: Mixed types due to inconsistent entries

• Missing Values:

BOROUGH: Around 31% missingZIP CODE: Around 31% missing

- VEHICLE TYPE CODE 3-5: Mostly empty

- Key Issues Identified:
 - Geographical Data: Significant missing values in boroughs, zip codes, and coordinates
 - Vehicle & Contributing Factors: Sparse data for secondary vehicle details
 - Time Format: CRASH DATE & CRASH TIME require conversion to datetime format

3 Solving Questions

3.1 Part A

- 1. Use the filter on the website to obtain crash data for the week of June 30, 2024, in CSV format.
- 2. Open a terminal or command prompt and run to create data directory:

```
mkdir data
```

3. Navigate to your downloads folder and move the file to data/:

```
mv "C:\Users\Ammar\Downloads\Motor_Vehicle_Collisions_-_Crashes_06302024.csv" data/
```

4. Rename the file to make it more informative:

```
mv data/Motor_Vehicle_Collisions_-_Crashes_06302024.csv
data/nyccrashes_2024w0630_by20240916.csv
```

5. Commit the data directory to repo:

```
git add data/
git commit -m "Added data directory"
git push origin main
```

3.2 Part B

Clean up the variable names. Use lower cases and replace spaces with underscores.

Standardizing column names improves data consistency and simplifies manipulation. I convert names to lowercase and replace spaces with underscores for easier access and readability.

```
import pandas as pd
# Load the dataset
file path = "C:/Users/Ammar/ids-s25/4-nyc-crash-data-cleaning-CoderAmmar0/data/nyccrashes 2024w06
df = pd.read_csv(file_path)
# Convert column names to lowercase and replace spaces with underscores
df.columns = df.columns.str.lower().str.replace(" ", "_")
# Display cleaned column names
df.columns
Index(['crash_date', 'crash_time', 'borough', 'zip_code', 'latitude',
       'longitude', 'location', 'on_street_name', 'cross_street_name',
       'off_street_name', 'number_of_persons_injured',
       'number_of_persons_killed', 'number_of_pedestrians_injured',
       'number_of_pedestrians_killed', 'number_of_cyclist_injured',
       'number_of_cyclist_killed', 'number_of_motorist_injured',
       'number_of_motorist_killed', 'contributing_factor_vehicle_1',
       'contributing_factor_vehicle_2', 'contributing_factor_vehicle_3',
       'contributing_factor_vehicle_4', 'contributing_factor_vehicle_5',
       'collision_id', 'vehicle_type_code_1', 'vehicle_type_code_2',
       'vehicle_type_code_3', 'vehicle_type_code_4', 'vehicle_type_code_5'],
      dtype='object')
```

3.3 Part C

Check the crash date and time to see if they really match the filter we intented. Remove the extra rows if needed.

Seems like the following Sunday is included in the dataset (7/07) so I will remove it.

3.4 Part D

Get the basic summaries of each variables: missing percentage; descriptive statistics for continuous variables; frequency tables for discrete variables.

```
import numpy as np
# Calculate missing percentage for each column
missing_percentage = df.isnull().sum() / len(df) * 100
# Get descriptive statistics for continuous variables
continuous vars = df.select dtypes(include=[np.number]).describe()
# Get frequency tables for discrete (categorical) variables
categorical_vars = df.select_dtypes(include=['object'])
frequency_tables = {col: categorical_vars[col].value_counts() for col in categorical_vars.columns
# Create a DataFrame for missing percentages
missing_df = pd.DataFrame(missing_percentage, columns=["missing_percentage"])
# Display the missing percentage summary
print("Missing Percentage Summary:")
print(missing_df)
# Display descriptive statistics for continuous variables
print("\nDescriptive Statistics for Continuous Variables:")
print(continuous_vars)
# Display frequency tables for categorical variables
print("\nFrequency Tables for Categorical Variables:")
for col, freq_table in frequency_tables.items():
    print(f"\n{col}:\n{freq_table}")
```

Missing Percentage Summary:

	missing_percentage
crash_date	0.000000
crash_time	0.000000
borough	28.477612
zip_code	28.477612
latitude	6.985075
longitude	6.985075
location	6.985075
on_street_name	28.835821
cross_street_name	49.194030
off_street_name	71.164179
number_of_persons_injured	0.000000
number_of_persons_killed	0.000000
<pre>number_of_pedestrians_injured</pre>	0.000000
number_of_pedestrians_killed	0.000000
number_of_cyclist_injured	0.000000
number_of_cyclist_killed	0.000000
number_of_motorist_injured	0.000000
number_of_motorist_killed	0.000000
<pre>contributing_factor_vehicle_1</pre>	0.477612
<pre>contributing_factor_vehicle_2</pre>	23.402985
<pre>contributing_factor_vehicle_3</pre>	90.865672
contributing_factor_vehicle_4	97.253731
<pre>contributing_factor_vehicle_5</pre>	99.164179
collision_id	0.000000
vehicle_type_code_1	1.611940
vehicle_type_code_2	33.492537
vehicle_type_code_3	91.522388
vehicle_type_code_4	97.432836
vehicle_type_code_5	99.164179

Descriptive Statistics for Continuous Variables:

	zip_code	latitude	longitude	<pre>number_of_persons_injured</pre>	\
count	1198.000000	1558.000000	1558.000000	1675.000000	
mean	10895.911519	40.639880	-73.778445	0.625075	
std	530.386669	1.787455	3.242765	0.928941	
min	10001.000000	0.000000	-74.237366	0.000000	
25%	10456.000000	40.661310	-73.967592	0.000000	
50%	11208.000000	40.712446	-73.924315	0.000000	
75%	11237.000000	40.766748	-73.870863	1.000000	
max	11694.000000	40.907246	0.000000	11.000000	

number_of_persons_killed number_of_pedestrians_injured \
count 1675.000000 1675.000000

```
0.004776
                                                        0.093134
mean
                        0.109200
                                                        0.343458
std
min
                        0.000000
                                                        0.000000
25%
                        0.000000
                                                        0.000000
50%
                        0.000000
                                                        0.000000
75%
                        0.000000
                                                        0.000000
                        4.000000
                                                        7.000000
max
       number_of_pedestrians_killed
                                      number_of_cyclist_injured
                         1675.000000
                                                     1675.000000
count
                            0.002985
                                                        0.067463
mean
                            0.100729
                                                        0.250897
std
min
                            0.000000
                                                        0.000000
25%
                            0.00000
                                                        0.000000
50%
                            0.000000
                                                        0.000000
75%
                            0.00000
                                                        0.000000
                            4.000000
                                                        1.000000
max
       number_of_cyclist_killed
                                 number_of_motorist_injured
                          1675.0
                                                  1675.000000
count
                             0.0
                                                     0.438806
mean
                             0.0
std
                                                     0.902829
                             0.0
min
                                                     0.00000
25%
                             0.0
                                                     0.00000
50%
                             0.0
                                                     0.00000
75%
                             0.0
                                                     1.000000
                             0.0
                                                    11.000000
max
       number_of_motorist_killed
                                   collision_id
                                   1.675000e+03
count
                      1675.000000
mean
                         0.001791
                                  4.738503e+06
std
                         0.042295
                                  1.760799e+03
                                  4.736561e+06
min
                         0.000000
25%
                         0.000000
                                  4.737588e+06
50%
                                   4.738146e+06
                         0.000000
75%
                                   4.738778e+06
                         0.000000
                         1.000000
                                   4.765601e+06
Frequency Tables for Categorical Variables:
crash_date:
crash_date
07/03/2024
              258
07/05/2024
              254
07/02/2024
              252
```

```
06/30/2024
              249
07/01/2024
              247
07/06/2024
              212
              203
07/04/2024
Name: count, dtype: int64
crash_time:
crash_time
0:00
         34
15:00
         19
19:00
         18
13:00
         17
14:30
         15
         . .
17:32
         1
0:23
          1
11:58
          1
0:59
          1
0:37
          1
Name: count, Length: 736, dtype: int64
borough:
borough
BROOKLYN
                  416
QUEENS
                  336
MANHATTAN
                  212
BRONX
                  189
                   45
STATEN ISLAND
Name: count, dtype: int64
location:
location
(40.668507, -73.92561)
                            4
(40.848038, -73.93285)
                            3
(0.0, 0.0)
                            3
(40.753326, -73.8718)
                            3
(40.669476, -73.919975)
                            3
                           . .
(40.610367, -73.95438)
                            1
(40.763042, -73.956535)
                            1
(40.881073, -73.878494)
                            1
(40.58038, -73.967606)
                            1
(40.574085, -73.97672)
                            1
Name: count, Length: 1493, dtype: int64
```

```
on_street_name:
on_street_name
BELT PARKWAY
                               28
FDR DRIVE
                               15
LONG ISLAND EXPRESSWAY
                               14
BROADWAY
                               13
BROOKLYN QUEENS EXPRESSWAY
                               12
                               . .
G.C.P. / LAGUARDIA (CDR)
                                1
YORK AVENUE
                                1
81 STREET
                                1
71 PLACE
                                1
WEIHER COURT
                                1
Name: count, Length: 651, dtype: int64
cross_street_name:
cross_street_name
BROADWAY
                       16
BRUCKNER BOULEVARD
                       10
3 AVENUE
                       8
                        7
2 AVENUE
SHORE PARKWAY
                        6
                       . .
EAST 66 STREET
                       1
WEST 7 STREET
                        1
BRONXDALE AVENUE
                        1
ARLINGTON AVENUE
                        1
WEST 51 STREET
                        1
Name: count, Length: 604, dtype: int64
off_street_name:
off_street_name
369
          HYLAN BOULEVARD
                                2
1825
          EASTCHESTER ROAD
                                2
2724
          UNIVERSITY AVENUE
66-50
          73 PLACE
555
          KAPPOCK STREET
                                1
149
          WEST 37 STREET
                                1
88-48
          COOPER AVENUE
                                1
205
          CHESTNUT STREET
                                1
30
          KENMARE STREET
                                1
2951
          WEST 8 STREET
Name: count, Length: 480, dtype: int64
```

<pre>contributing_factor_vehicle_1:</pre>	
contributing_factor_vehicle_1	
Unspecified	423
Driver Inattention/Distraction	404
Failure to Yield Right-of-Way	109
Following Too Closely	89
Unsafe Speed	74
Passing or Lane Usage Improper	67
Other Vehicular	60
Traffic Control Disregarded	51
Alcohol Involvement	50
Passing Too Closely	50
Backing Unsafely	45
Driver Inexperience	45
Turning Improperly	40
Unsafe Lane Changing	22
Pedestrian/Bicyclist/Other Pedestrian Error/Confusion	22
Reaction to Uninvolved Vehicle	14
Aggressive Driving/Road Rage	13
View Obstructed/Limited	13
Pavement Slippery	9
Fell Asleep	8
Oversized Vehicle	8
Brakes Defective	6
Tire Failure/Inadequate	5
Lost Consciousness	5
Outside Car Distraction	4
Illnes	3
Failure to Keep Right	3
Glare	3
Fatigued/Drowsy	2
Steering Failure	2
Pavement Defective	2
Obstruction/Debris	2
Accelerator Defective	2
Tow Hitch Defective	2
Tinted Windows	2
Cell Phone (hand-Held)	2
Driverless/Runaway Vehicle	2
Passenger Distraction	2
Cell Phone (hands-free)	1
Lane Marking Improper/Inadequate	1
Name: count, dtype: int64	

contributing_factor_vehicle_2:

contributing_factor_vehicle_2		
Unspecified		1087
Driver Inattention/Distraction		63
Other Vehicular		26
Unsafe Speed		19
Following Too Closely		13
Failure to Yield Right-of-Way		13
Passing or Lane Usage Improper		10
Pedestrian/Bicyclist/Other Pede	strian Error/Confusion	9
Traffic Control Disregarded		9
Turning Improperly		4
Aggressive Driving/Road Rage		4
Driver Inexperience		4
Passing Too Closely		4
Unsafe Lane Changing		4
Alcohol Involvement		3
View Obstructed/Limited		3
Reaction to Uninvolved Vehicle		2
Backing Unsafely		2
Passenger Distraction		1
Drugs (illegal)		1
Failure to Keep Right		1
Fatigued/Drowsy		1
Name: count, dtype: int64		
<pre>contributing_factor_vehicle_3:</pre>		
contributing_factor_vehicle_3		
Unspecified	147	
Other Vehicular	3	
Unsafe Speed	2	
Aggressive Driving/Road Rage	1	
Name: count, dtype: int64		
<pre>contributing_factor_vehicle_4:</pre>		
contributing_factor_vehicle_4		
Unspecified	45	
Aggressive Driving/Road Rage	1	
Name: count, dtype: int64	_	
amo. coamo, acypor more		
<pre>contributing_factor_vehicle_5:</pre>		
contributing_factor_vehicle_5		
Unspecified 14		
Name: count, dtype: int64		
vehicle_type_code_1:		

vehicle_type_code_1	
Sedan	769
Station Wagon/Sport Utility Vehicle	570
Taxi	49
Bike	37
Pick-up Truck	35
Motorcycle	24
Box Truck	23
Bus	22
E-Bike	14
Moped	13
Tractor Truck Diesel	11
E-Scooter	11
Ambulance	10
Van	6
Convertible	5
Dump	5
Motorscooter	4
subn	3
Tractor Truck Gasoline	3
Garbage or Refuse	3
Flat Bed	3
PK	3
Chassis Cab	3
MOPED	2
Beverage Truck	2
Motorbike	2
Armored Truck	2
Flat Rack	1
Pedicab	1
Tow Truck / Wrecker	1
MTA BUS	1
R/V	1
PICK UP	1
Multi-Wheeled Vehicle	1
FDNY FIRE	1
U-Haul	1
moped	1
AMBULANCE	1
LIMO TRUCK	1 1
UNK	1
	1
Name: count, dtype: int64	

vehicle_type_code_2:

vehicle_type_code_2	
Sedan	447
Station Wagon/Sport Utility Vehicle	319
Bike	76
Box Truck	34
Moped	32
Pick-up Truck	27
E-Scooter	24
Taxi	23
E-Bike	22
Bus	22
Motorcycle	20
Tractor Truck Diesel	13
Van	6
Garbage or Refuse	5
PK Changin Cab	4
Chassis Cab	4 4
Carry All Ambulance	3
Dump	3
Motorbike	3
Unknown	2
UNKNOWN	2
Convertible	2
Flat Bed	2
PASSENGER	1
TRUCK	1
COURIER VA	1
3-Door	1
UHAUL VAN	1
Sprinter V	1
UK	1
SCOOTER	1
Scooter	1
MOPED	1
FORKLIFT	1
Tow Truck / Wrecker	1
Power shov	1
Van Camper	1
Motorscooter	1
Name: count, dtype: int64	
<pre>vehicle_type_code_3:</pre>	
vehicle_type_code_3	
Sedan	73

Station Wagon/Sport Utility Vehicle Pick-up Truck Bus Taxi	51 5 5 2 2						
Tractor Truck Diesel							
Moped Bike	1 1						
Van	1						
Motorcycle	1						
Name: count, dtype: int64							
<pre>vehicle_type_code_4: vehicle_type_code_4 Station Wagon/Sport Utility Vehicle Sedan Convertible Pick-up Truck Motorcycle</pre>	21 19 1 1						
Name: count, dtype: int64	-						
<pre>vehicle_type_code_5: vehicle_type_code_5 Sedan</pre>	9						
Station Wagon/Sport Utility Vehicle	3						
Bike	1						
Box Truck	1						
Name: count, dtype: int64							

Looking at the dataset, I noticed that many columns have missing values, especially for borough (28%), cross street names (49%), and off-street names (71%). There are also a lot of missing entries for contributing factors and vehicle types beyond the second vehicle, which suggests that most crashes involved only one or two vehicles. This could make it harder to analyze multi-vehicle crashes accurately.

In terms of injuries, most crashes didn't result in fatalities, but injuries were fairly common, with motorists being the most affected, followed by pedestrians and cyclists. Brooklyn had the highest number of crashes, and driver inattention/distraction was the most frequently reported cause, though many records simply list "Unspecified." Sedans and SUVs were by far the most common vehicle types involved in crashes, which makes sense given their high presence on NYC roads.

It seems like the dataset has some gaps in reporting, which could affect deeper analysis and limit the accuracy of certain insights.

3.5 Part E

120

Lets check for blank and 0 values:

Check for null values in latitude and longitude columns null_lat_long = df[['latitude', 'longitude']].isnull().sum() # Check for zero values in latitude and longitude columns zero_lat_long = (df[['latitude', 'longitude']] == 0).sum() # Display results null_lat_long, zero_lat_long (latitude 117 117 longitude dtype: int64, 3 latitude longitude 3 dtype: int64) There is 117 rows with blank values and 3 with values of 0 so lets replace them. # Replace zero values and blank values with "NA" df.loc[df['latitude'] == 0, 'latitude'] = "NA" df.loc[df['longitude'] == 0, 'longitude'] = "NA" df.loc[df['latitude'].isnull(),'latitude'] = "NA" df.loc[df['longitude'].isnull(), 'longitude'] = "NA" # Check for the number of "NA" values in latitude and longitude columns na_lat_long_count = ((df['latitude'] == "NA") | (df['longitude'] == "NA")).sum() # Display the count of "NA" values na_lat_long_count C:\Users\Ammar\AppData\Local\Temp\ipykernel_38792\241116059.py:2: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of ${\tt C:\Wsers\Ammar\AppData\Local\Temp\ipykernel_38792\241116059.py:3: Future\Warning:}$ Setting an item of incompatible dtype is deprecated and will raise an error in a future version o

Are their invalid longitude and latitude in the data? If so, replace them with NA.

3.6 Part F

missing_both_together_count

477

```
Are there zip_code values that are not legit NYC zip codes? If so, replace them with NA Lets check for blank values:
```

```
# Check for null values in zip_code column
null_zip_code_count = df['zip_code'].isnull().sum()
# Display the number of null zip code values
null_zip_code_count
477
There is 477 blank values so lets replace them.
# Replace null values in zip_code column with "NA"
df.loc[df['zip_code'].isnull(), 'zip_code'] = "NA"
# Check if the null values were replaced by "NA"
na_zip_code_count = (df['zip_code'] == "NA").sum()
# Display the count of "NA"
na_zip_code_count
C:\Users\Ammar\AppData\Local\Temp\ipykernel_38792\533630329.py:2: FutureWarning:
Setting an item of incompatible dtype is deprecated and will raise an error in a future version of
477
3.7 PART G
Are there missing in zip_code and borough? Do they always co-occur?
# Check if zip_code is "NA" and borough is null (Since we didn't change it yet to NA)
missing_both_together = (df['zip_code'] == "NA") & df['borough'].isnull()
# Count rows where zip_code is "NA" and borough is null
missing_both_together_count = missing_both_together.sum()
```

20

They seem to co-occur, lets replace null values with NA for borough:

```
# Replace null values in borough column with "NA"
df.loc[df['borough'].isnull(), 'borough'] = "NA"

# Check if the null values were replaced by "NA"
na_borough_count = (df['borough'] == "NA").sum()

# Display the count of "NA"
na_borough_count
```

3.8 Part H

except ValueError:

Are there cases where zip_code and borough are missing but the geo codes are not missing? If so, fill in zip_code and borough using the geo codes.

```
missing_zip_borough_geo_non_missing = ((df['zip_code'] == "NA") &
                                        (df['borough'] == "NA") &
                                        (df['latitude'] != "NA") &
                                        (df['longitude'] != "NA"))
# Count rows where zip code and borough are "NA" but geo codes are not missing
missing zip borough geo non missing count = missing zip borough geo non missing.sum()
# Display the count of such cases
missing_zip_borough_geo_non_missing_count
370
Seems like 370 cases have the geo location values so lets update them.
from opencage.geocoder import OpenCageGeocode
import time
# OpenCage API Key
OPENCAGE_API_KEY = "e5faf2c7a6cb40bab9d3f01a57ff8670"
geocoder = OpenCageGeocode(OPENCAGE_API_KEY)
# Ensure latitude and longitude are numeric (convert and handle errors)
def convert_to_float(value):
    try:
        return float(value)
```

```
return None # Return None for invalid values
df['latitude'] = df['latitude'].apply(convert_to_float)
df['longitude'] = df['longitude'].apply(convert_to_float)
# Function for reverse geocoding using only "county" and mapping it to borough names
def get_location_info(lat, lon, retries=3, delay=2):
    if lat is None or lon is None: # Skip if invalid coordinates
        return "NA", "NA"
    for _ in range(retries):
        try:
            result = geocoder.reverse_geocode(lat, lon)
                components = result[0]["components"]
                zip_code = components.get("postcode", "NA")
                # Extract county from OpenCage response
                county = components.get("county", "NA")
                # Map county names to boroughs
                borough_map = {
                    "New York County": "Manhattan",
                    "Kings County": "Brooklyn",
                    "Bronx County": "Bronx",
                    "Queens County": "Queens",
                    "Richmond County": "Staten Island"
                borough = borough_map.get(county, county) # Convert county to borough name if ap
                return borough, zip_code
        except Exception as e:
            print(f"Error: {e}, retrying...")
            time.sleep(delay)
    return "NA", "NA"
# Find rows where ZIP code and borough are missing but latitude/longitude are available
missing_geo = (df['zip_code'] == "NA") & (df['borough'] == "NA") & df['latitude'].notnull() & df[
# Apply reverse geocoding
for index, row in df.loc[missing_geo].iterrows():
    borough, zip_code = get_location_info(row['latitude'], row['longitude'])
    df.at[index, 'borough'] = borough # Store mapped borough
    df.at[index, 'zip_code'] = zip_code
```

#Check the data if changed
df.head(20)

	$crash_date$	crash_time	borough	zip_code	latitude	longitude	location	on_
0	06/30/2024	23:17	BRONX	10460.0	40.838844	-73.878170	(40.838844, -73.87817)	ΕA
1	06/30/2024	8:30	BRONX	10468.0	40.862732	-73.903330	(40.862732, -73.90333)	WI
2	06/30/2024	20:47	Manhattan	10019	40.763630	-73.953300	(40.76363, -73.9533)	FD
3	06/30/2024	13:10	BROOKLYN	11234.0	40.617030	-73.919890	(40.61703, -73.91989)	$\mathrm{E}\mathrm{A}$
4	06/30/2024	16:42	NA	NA	NaN	NaN	NaN	33
5	06/30/2024	13:40	QUEENS	11379.0	40.713800	-73.880165	(40.7138, -73.880165)	Na
6	06/30/2024	21:03	BRONX	10458.0	40.859875	-73.893230	(40.859875, -73.89323)	$\mathrm{E}\mathrm{A}$
7	06/30/2024	12:15	BROOKLYN	11239.0	40.644040	-73.877525	(40.64404, -73.877525)	SE
8	06/30/2024	0:51	Brooklyn	11252	40.604850	-74.025590	(40.60485, -74.02559)	BE
9	06/30/2024	1:36	QUEENS	11374.0	40.730930	-73.864586	(40.73093, -73.864586)	QU
10	06/30/2024	16:00	QUEENS	11362.0	40.760128	-73.731590	(40.760128, -73.73159)	Na
11	06/30/2024	0.35	BROOKLYN	11213.0	40.669270	-73.939995	(40.66927, -73.939995)	Na
12	06/30/2024	23:21	QUEENS	11420.0	40.680496	-73.821365	(40.680496, -73.821365)	LE
13	06/30/2024	8:08	MANHATTAN	10013.0	40.723747	-74.006120	(40.723747, -74.00612)	VA
14	06/30/2024	1:10	QUEENS	11354.0	40.775110	-73.844505	(40.77511, -73.844505)	Na
15	06/30/2024	10:00	BROOKLYN	11207.0	40.677470	-73.898766	(40.67747, -73.898766)	Na
16	06/30/2024	20:36	BROOKLYN	11208.0	40.674652	-73.877120	(40.674652, -73.87712)	MI
17	06/30/2024	7:17	QUEENS	11367.0	40.726048	-73.824005	(40.726048, -73.824005)	141
18	06/30/2024	17:30	NA	NA	NaN	NaN	(0.0, 0.0)	Na
19	06/30/2024	16:42	Staten Island	10314	40.581764	-74.156060	(40.581764, -74.15606)	Na

3.8.1 Filling Missing Boroughs and ZIP Codes

I initially tried filling missing boroughs and ZIP codes using latitude and longitude by matching existing values within the dataset or using a geocoding API. However, multiple challenges made this more complex than expected.

3.8.2 First Attempt: Dataset Mapping

I rounded latitude and longitude to two decimal places and used the most frequent ZIP code and borough for each coordinate pair. While this worked in some cases, issues arose:

- Some lat/lon points mapped to multiple ZIP codes, causing incorrect assignments.
- Certain locations were missing entirely in the dataset.
- The most frequent ZIP code wasn't always accurate.

3.8.3 Second Attempt: Nominatim API

I then used the Nominatim API (OpenStreetMap's geocoder), but it had issues:

- Slow response times and frequent timeouts.
- Rate limits blocked requests after a few queries.

3.8.4 Third Attempt: OpenCage Geocoder

OpenCage was more stable, but it labeled boroughs as counties, returning only "New York" for many locations. However, I found that boroughs were stored under "county," which led to the final solution.

3.8.5 Final Fix: Using County Data

I extracted the "county" field and mapped it to boroughs:

- New York County \rightarrow Manhattan
- Kings County \rightarrow Brooklyn
- Bronx County \rightarrow Bronx
- Queens County \rightarrow Queens
- Richmond County \rightarrow Staten Island

This method successfully assigned missing boroughs and ZIP codes accurately.

3.8.6 Lessons Learned

- Internal dataset mapping can help but has limitations.
- API responses vary in format, requiring careful inspection.
- Rate limits and timeouts need handling when using geocoders.
- Sometimes, useful data exists in unexpected fields, like "county" instead of "borough."

Despite unexpected challenges, this approach provided a reliable way to fill in missing boroughs and ZIP codes.

3.9 Part I

Is it redundant to keep both location and the longitude/latitude at the NYC Open Data server?

Storing both location and latitude/longitude can be redundant since location is derived from the other two. However, keeping it improves usability for different users and tools. Removing location would save space, but retaining it adds convenience for analysis and accessibility.

3.10 Part J

Check the frequency of crash_time by hour. Is there a matter of bad luck at exactly midnight? How would you interpret this?

```
# Convert crash time to datetime format to extract hour
df['crash_time'] = pd.to_datetime(df['crash_time'], format='%H:%M', errors='coerce')
# Extract hour from crash_time
df['crash_hour'] = df['crash_time'].dt.hour
# Count occurrences of crashes by hour
crash_hour_counts = df['crash_hour'].value_counts().sort_index()
crash_hour_counts
crash_hour
0
      104
       55
1
2
       57
3
       36
4
       40
5
       37
6
       37
7
       47
8
       65
9
       52
10
       59
11
       61
12
       72
13
       94
14
       97
15
       92
16
      101
17
       99
18
       86
19
       96
20
       68
21
       81
22
       78
23
       61
Name: count, dtype: int64
```

The spike in crashes at midnight (00:00) is likely due to fatigue, nightlife- related driving, shift changes, and potential data entry defaults. The increase around 16:00 (4 PM) may be linked

to the afternoon rush hour and workers heading home. Both times indicate higher-risk driving conditions.

3.11 Part K

Are the number of persons killed/injured the summation of the numbers of pedestrians, cyclist, and motorists killed/injured? If so, is it redundant to keep these two columns at the NYC Open Data server?

```
# Check if the total number of persons killed is the sum of pedestrians, cyclists, and motorists
df["calculated_persons_killed"] = (
    df["number_of_pedestrians_killed"].fillna(0) +
    df["number of cyclist killed"].fillna(0) +
    df["number_of_motorist_killed"].fillna(0)
)
df["calculated_persons_injured"] = (
    df["number_of_pedestrians_injured"].fillna(0) +
    df["number_of_cyclist_injured"].fillna(0) +
    df["number_of_motorist_injured"].fillna(0)
)
# Check if the values match the provided total persons killed/injured columns
killed_match = (df["calculated_persons killed"] == df["number_of_persons killed"]).all()
injured_match = (df["calculated_persons_injured"] == df["number_of_persons_injured"]).all()
killed_match, injured_match
(True, False)
```

The "persons killed" column matches the sum of pedestrians, cyclists, and motorists killed, but the "persons injured" column does not fully align. This may indicate data inconsistencies or additional factors. NYC Open Data may retain these columns for validation, easier aggregation, or quick access to totals. The mismatch in injuries suggests both columns provide useful information.

3.12 Part L

Print the whole frequency table of contributing_factor_vehicle_1. Convert lower cases to uppercases and check the frequencies again.

```
# Print the entire frequency table
print(df["contributing_factor_vehicle_1"].value_counts().to_string())
```

contributing_factor_vehicle_1	
Unspecified	423
Driver Inattention/Distraction	404
Failure to Yield Right-of-Way	109
Following Too Closely	89
Unsafe Speed	74
Passing or Lane Usage Improper	67
Other Vehicular	60
Traffic Control Disregarded	51
Alcohol Involvement	50
Passing Too Closely	50
Backing Unsafely	45
Driver Inexperience	45
Turning Improperly	40
Unsafe Lane Changing	22
Pedestrian/Bicyclist/Other Pedestrian Error/Confusion	22
Reaction to Uninvolved Vehicle	14
Aggressive Driving/Road Rage	13
View Obstructed/Limited	13
Pavement Slippery	9
Fell Asleep	8
Oversized Vehicle	8
Brakes Defective	6
Tire Failure/Inadequate	5
Lost Consciousness	5
Outside Car Distraction	4
Illnes	3
Failure to Keep Right	3
Glare	3
Fatigued/Drowsy	2
Steering Failure	2
Pavement Defective	2
Obstruction/Debris	2
Accelerator Defective	2
Tow Hitch Defective	2
Tinted Windows	2
Cell Phone (hand-Held)	2
Driverless/Runaway Vehicle	2
Passenger Distraction	2
Cell Phone (hands-free)	1
Lane Marking Improper/Inadequate	1

Now changing to Uppercase:

 ${\it\# Convert values in "contributing_factor_vehicle_1" to uppercase}$

```
df["contributing_factor_vehicle_1"] = df["contributing_factor_vehicle_1"].astype(str).str.upper()
# Print the entire frequency table
print(df["contributing factor vehicle 1"].value counts().to string())
contributing_factor_vehicle_1
UNSPECIFIED
                                                           423
DRIVER INATTENTION/DISTRACTION
                                                           404
FAILURE TO YIELD RIGHT-OF-WAY
                                                           109
FOLLOWING TOO CLOSELY
                                                            89
UNSAFE SPEED
                                                            74
PASSING OR LANE USAGE IMPROPER
                                                            67
OTHER VEHICULAR
                                                            60
TRAFFIC CONTROL DISREGARDED
                                                            51
ALCOHOL INVOLVEMENT
                                                            50
PASSING TOO CLOSELY
                                                            50
BACKING UNSAFELY
                                                            45
DRIVER INEXPERIENCE
                                                            45
TURNING IMPROPERLY
                                                            40
UNSAFE LANE CHANGING
                                                            22
PEDESTRIAN/BICYCLIST/OTHER PEDESTRIAN ERROR/CONFUSION
                                                            22
REACTION TO UNINVOLVED VEHICLE
                                                            14
AGGRESSIVE DRIVING/ROAD RAGE
                                                            13
VIEW OBSTRUCTED/LIMITED
                                                            13
PAVEMENT SLIPPERY
                                                             9
FELL ASLEEP
                                                             8
OVERSIZED VEHICLE
                                                             8
NAN
                                                             8
BRAKES DEFECTIVE
                                                             6
                                                             5
TIRE FAILURE/INADEQUATE
                                                             5
LOST CONSCIOUSNESS
OUTSIDE CAR DISTRACTION
                                                             4
ILLNES
                                                             3
FAILURE TO KEEP RIGHT
                                                             3
                                                             3
GLARE
FATIGUED/DROWSY
                                                             2
STEERING FAILURE
                                                             2
PAVEMENT DEFECTIVE
                                                             2
                                                             2
OBSTRUCTION/DEBRIS
ACCELERATOR DEFECTIVE
                                                             2
TOW HITCH DEFECTIVE
                                                             2
TINTED WINDOWS
                                                             2
CELL PHONE (HAND-HELD)
                                                             2
DRIVERLESS/RUNAWAY VEHICLE
                                                             2
```

2

PASSENGER DISTRACTION

CELL	PHONE (H	IANDS-FREE)	1
LANE	MARKING	IMPROPER/INADEQUATE	1

The most common contributing factor in crashes is "UNSPECIFIED" (423 cases), followed by "DRIVER INATTENTION/DISTRACTION" (404 cases) and "FAILURE TO YIELD RIGHT-OF-WAY" (109 cases). This suggests that inattentiveness and failure to follow right-of-way rules are significant contributors to accidents, while many cases lack specific attributions.

3.13 Part M

Provided an opportunity to meet the data provider, what suggestions would you make based on your data exploration experience? If I had the chance to meet the data provider, I would recommend:

- Reducing Missing or Unspecified Data: Encouraging detailed reporting and refining data collection methods could improve accuracy.
- Clarifying Injury Data: Investigating why total injuries don't fully match pedestrian, cyclist, and motorist counts could enhance reliability.
- Standardizing Formatting: Enforcing uniform capitalization and structured input methods would improve consistency in categorical data.
- Improving Location Accuracy: Addressing missing or incorrect latitude, longitude, and borough data would benefit spatial analysis.
- Providing Context on Data Collection: Clear documentation on how factors like injuries and contributing causes are determined would help analysts interpret data correctly.

These enhancements could improve data quality, making it more valuable for policy decisions and public safety initiatives.