# Time Series: A First Course with Bootstrap Starter

## Lesson 2-1: Random Vectors

- A time series sample is a finite stretch of realizations, i.e., a vector.
- A vector of random variables is called a random vector:  $\underline{X} = [X_1, \dots, X_n]'$ .

#### Mean and Covariance

- The mean of  $\underline{X}$  is a vector, each of whose components is the expectation of the corresponding random variable:  $\mathbf{E}[X_i]$ .
- The covariance matrix of  $\underline{X}$  has entries given by the covariance between the corresponding components of the random vector:  $\text{Cov}[X_j, X_k]$ .
- The covariance matrix  $Cov[\underline{X}]$  of a random vector is non-negative definite and symmetric. Its eigenvalues are real and non-negative.

#### Affine Transforms

- $\underline{Y} = A\underline{X} + \underline{b}$  is an affine transform of  $\underline{X}$ .
- If  $\mathbf{E}\underline{X} = \mu$  and  $\mathrm{Cov}[\underline{X}] = \Sigma$ , then  $\mathbf{E}\underline{Y} = A\mu + \underline{b}$  and  $\mathrm{Cov}[\underline{Y}] = A\Sigma A'$ .

#### Covariance Decomposition

• We can decompose a symmetric matrix  $\Sigma$  as

$$\Sigma = P\Lambda P'$$

for an orthogonal matrix P (i.e.,  $P' = P^{-1}$ ), and where  $\Lambda$  is a diagonal matrix consisting of the real eigenvalues of  $\Sigma$ .

- A symmetric non-negative definite matrix  $\Sigma$  can be decomposed as  $\Sigma = BB'$ , and B is called a square root (it is not unique). One such square root is the *Cholesky* factor.
- If  $\underline{Z}$  has i.i.d. components with mean zero and variance one, then  $\underline{X} = B\underline{Z} + \underline{\mu}$  is a random vector with mean  $\mu$  and covariance matrix BB'.

## Simulation Example

• Simulate a bivariate random vector with mean [1,2] and covariance matrix

$$\Sigma = \left[ \begin{array}{cc} 2 & 1 \\ 1 & 4 \end{array} \right].$$

```
Sigma <- rbind(c(2,1),c(1,4))
mu <- c(1,2)
B <- t(chol(Sigma))
z <- matrix(rnorm(2*100),nrow=2)
x <- B %*% z + mu
print(colMeans(t(x)))</pre>
```

```
## [1] 1.214893 2.085173
```

# print(var(t(x))) ## [,1] [,2]

```
## [1,] 1.934534 1.298926
## [2,] 1.298926 4.206345
```

#### Gaussian Random Vectors

• A random vector  $\underline{Y}$  is Gaussian with mean  $\mu$  and non-singular covariance matrix  $\Sigma$  if its joint pdf is

$$p_{\underline{Y}}(\underline{y}) = (2\pi)^{-n/2} (\det \Sigma)^{-1/2} \exp\{-(\underline{y} - \underline{\mu})' \Sigma^{-1} (\underline{y} - \underline{\mu})/2\}.$$

- Denoted by writing  $\underline{Y} \sim \mathcal{N}(\mu, \Sigma)$ .
- An affine transformation of a Gaussian vector is still Gaussian. In particular, sub-vectors are Gaussian.
- We can decorrelate a Gaussian random vector:  $\underline{X} = B^{-1}\underline{Y}$  has  $Cov[\underline{X}] = B^{-1}\Sigma B^{-1\prime} = 1_n$ , the identity matrix.
- The quadratic form

$$(\underline{Y} - \mu)' \Sigma^{-1} (\underline{Y} - \mu)$$

has a  $\chi^2$  distribution on n degrees of freedom.

# Lesson 2-2: Stochastic Processes

- A collection of random variables indexed by time is called a *stochastic process*, denoted as  $\{X_t\}$ . The curly brackets let us know  $\{X_t\}$  is the process, whereas  $X_t$  is a single random variable (at time t).
- Usually time is  $t \in \mathbf{Z}$ , the integers.
- There are also continuous-time stochastic processes (another subject).

## Realization is Sample Path

- A random variable  $X_t$  has realization  $x_t$ .
- Example:  $X_t \sim \mathcal{N}(0,1)$  has realization -0.5604756.
- Put this together for all  $t \in \mathbf{Z}$ , and the realization is called the *sample path*.

#### Example: Heavy-tailed Sample Path

```
set.seed(777)
n <- 100
z <- rt(n+1,df=4)  # heavy-tailed input
theta <- .8
x <- z[-1] + theta*z[-(n+1)]
plot(ts(x),xlab="Time",ylab="")</pre>
```



- As usual, we connect the dots when graphing the sample path.
- $\bullet\,$  Here is another realization, or sample path, of the same stochastic process.

```
set.seed(888)
n <- 100
z <- rt(n+1,df=4)  # heavy-tailed input
theta <- .8
x <- z[-1] + theta*z[-(n+1)]
plot(ts(x),xlab="Time",ylab="")</pre>
```



# Common Examples of Stochastic Processes

## Example 2.2.8. Process A: i.i.d.

ullet An i.i.d. process, where each  $X_t$  has the same distribution and is independent of the rest.

```
set.seed(111)
n <- 100
x <- runif(n)
plot(ts(x),xlab="Time",ylab="")</pre>
```



# Example 2.2.9. Process B: Cosine

• Suppose  $X_t = A\cos(\vartheta t + \Phi)$ , where  $\vartheta$  is given, and A and  $\Phi$  are independent random variables.

```
n <- 100
set.seed(222)
A <- rnorm(1)
set.seed(223)
phi <- 2*pi*runif(1)
lambda <- pi/6
set.seed(224)
x <- A*cos(seq(1,n)*lambda + phi)
plot(ts(x),xlab="Time",ylab="")</pre>
```



## Example 2.2.12. Process E: Random Walk

• Suppose  $X_t$  is current location on a straight line, and we step forward or backward at time t + 1. Let the step size be given by random variable  $Z_{t+1}$ , independent of where we are. Then our new location is

$$X_{t+1} = X_t + Z_{t+1}.$$

This is called a random walk.

• We can initialize with  $X_0 = 0$ , for example.

```
set.seed(333)
n <- 100
z <- rnorm(n)
x <- rep(0,n)
x0 <- 0
x[1] <- x0 + z[1]
for(t in 2:n) { x[t] <- x[t-1] + z[t] }
plot(ts(x),xlab="Time",ylab="")</pre>
```



# Lesson 2-3: Stationarity

• We want to generalize the concept of identical distribution to a stochastic process.

## **Marginal Distributions**

- First marginals are just the  $X_t$  random variables' distributions.
- Second marginals are joint distributions for all pairs  $(X_t, X_s)$ .
- Third marginals are joint distributions for all triplets, etc.

#### Same First Marginals

- Saying  $\{X_t\}$  has same first marginal is same as saying they are identically distributed.
- Sometimes called First Order Stationary.
- In particular, all means are the same:  $\mathbf{E}[X_t] = \mathbf{E}[X_s]$  for all t,s.

#### Second Marginals Under Shift

• Suppose all pairs have the same distribution when shifted:

$$(X_1, X_2) \sim (X_2, X_3) \sim (X_3, X_4) \dots$$

- Then second marginal distribution only depends on lag h, i.e., distribution of  $(X_t, X_{t-h})$  does not depend on t.
- Sometimes called Second Order Stationary.

• Then the product mean (the covariance) depends only on lag:

$$\mathbf{E}[X_t X_{t-h}].$$

It does not depend on t.

## **Example: Visualizing Stationarity**

- We generate 100 simulations of a Gaussian AR(1), and generate a scatterplot of  $(X_1, X_2)$
- We repeat with  $(X_3, X_4)$

```
x1 <- NULL
x2 <- NULL
x3 <- NULL
x4 <- NULL
for(i in 1:100) {
z <- rnorm(10)
x \leftarrow rep(0,10)
phi <- .9
x0 <- rnorm(1)/sqrt(1-phi^2)</pre>
x[1] \leftarrow phi*x0 + z[1]
for(t in 2:10) { x[t] \leftarrow phi*x[t-1] + z[t] }
x1 \leftarrow c(x1,x[1])
x2 \leftarrow c(x2,x[2])
x3 \leftarrow c(x3,x[3])
x4 \leftarrow c(x4,x[4])
plot(x2,x1,xlab="X Past",ylab="X Present")
```



plot(x4,x3,xlab="X Past",ylab="X Present")



## Lesson 2-4: Autocovariance

• Now we study the autocovariance function.

## Strict and Weak Stationarity

- Strict stationarity: all marginals (of all orders) are time shift invariant.
- Weak stationarity: the time series has finite variance, constant mean  $\mu$ , and covariance only depends on lag h:

$$\gamma(h) = \text{Cov}[X_t, X_{t-h}] = \mathbf{E}[X_t X_{t-h}] - \mu^2.$$

This function is called the **autocovariance**.

- So the variance is  $\gamma(0)$ .
- The autocorrelation is

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)}.$$

• Weak stationarity is sometimes called covariance stationarity.

## Example: Autocorrelation of an AR(1)

• We plot  $\rho(h)$  versus h (on x-axis).

```
phi <- .8
rho <- phi^seq(0,20)
plot(ts(rho,start=0),xlab="Lag",ylab="Rho",type ="h")</pre>
```



#### White Noise

- A key example is a *white noise* stochastic process.
- This is any weakly stationary process  $\{Z_t\}$  with mean zero such that  $\gamma(h)=0$  for  $h\neq 0$ .
- Written compactly as  $Z_t \sim \text{WN}(0, \sigma^2)$ , where  $\sigma^2 = \gamma(0)$  is the variance, and the mean is  $\mu = 0$ .

#### Covariance Matrix of Sample Vector

- The time series variables corresponding to a sample are  $X_1, \ldots, X_n$ , which can be put into a random vector X.
- The covariance matrix of  $\underline{X}$  is denoted by  $\Gamma_n$  when the stochastic process is weakly (or strictly) stationary. The entry in row j and column k is

$$\Gamma_n(j,k) = \text{Cov}[X_i, X_k] = \gamma(k-j).$$

This only depends on the difference between row and column index! Such a matrix is constant along diagonals, and is called *Toeplitz*.

```
rho <- .8
gamma <- rho^seq(0,5)/(1-rho^2)
gamma_mat <- toeplitz(gamma)
gamma_mat

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 2.7777778 2.222222 1.777778 1.422222 1.137778 0.9102222
## [2,] 2.2222222 2.777778 2.222222 1.777778 1.422222 1.1377778
## [3,] 1.7777778 2.222222 2.777778 2.222222 1.777778 1.4222222</pre>
```

```
## [4,] 1.422222 1.777778 2.222222 2.777778 2.222222 1.7777778
## [5,] 1.1377778 1.422222 1.777778 2.222222 2.777778 2.222222
## [6,] 0.9102222 1.137778 1.422222 1.777778 2.222222 2.7777778
```

## Properties of Autocovariance

- 1.  $\gamma(0) \ge 0$ 2.  $\gamma(h) = \gamma(-h)$
- 3.  $|\gamma(h)| \leq \gamma(0)$ .
- 4.  $\gamma(h)$  is a non-negative definite sequence.

This last property means that  $\Gamma_n$  is a non-negative definite matrix for all n. (Recall from multivariate analysis: covariance matrices are non-negative definite, and are positive definite if all eigenvalues are positive.)

# Lesson 2-5: Autoregression and Moving Average

• Examples of weakly stationary stochastic process.

## Example 2.5.1. AR(1) Process

• Let  $Z_t \sim \text{i.i.d.}(0, \sigma^2)$  and  $\{X_t\}$  defined via

$$X_t = \phi \, X_{t-1} + Z_t$$

for  $t \ge 1$ , where  $|\phi| < 1$ .

- This is a recursion, called an *order 1 autoregression*, or AR(1).
- How to define  $X_0$ ? If  $X_0 \sim (0, \sigma^2/(1-\phi^2))$ , then  $\{X_t\}$  is weakly stationary and

$$\gamma(h) = \sigma^2 \frac{\phi^{|h|}}{1 - \phi^2}.$$

Formula only makes sense when  $|\phi| < 1$ . This is a stationarity condition.

```
n <- 100
set.seed(123)
z <- rnorm(n)
x <- rep(0,n)
phi <- .9
x0 <- rnorm(1)/sqrt(1-phi^2)
x[1] <- phi*x0 + z[1]
for(t in 2:n) { x[t] <- phi*x[t-1] + z[t] }
plot(ts(x),xlab="Time",ylab="")</pre>
```



# Example 2.5.5. MA(1) Process

• Let  $Z_t \sim \text{i.i.d.}(0, \sigma^2)$  and  $\{X_t\}$  defined via

$$X_t = Z_t + \theta \, Z_{t-1}$$

for  $t \geq 1$ , where  $\theta$  is any real number.

- This process is called an order 1 moving average, or MA(1).
- It is weakly stationary, with

$$\gamma(h) = \begin{cases} (1+\theta^2)\sigma^2 & \text{if } h = 0\\ \theta\sigma^2 & \text{if } h = \pm 1\\ 0 & \text{if } |h| > 1. \end{cases}$$

```
set.seed(777)
n <- 100
z <- rnorm(n+1)  # Gaussian input
theta <- .8
x <- z[-1] + theta*z[-(n+1)]
plot(ts(x),xlab="Time",ylab="")</pre>
```



## Example 2.5.6. MA(2) Process

• Let  $Z_t \sim \text{i.i.d.}(0, \sigma^2)$  and  $\{X_t\}$  defined via

$$X_t = Z_t + \theta_1 \, Z_{t-1} + \theta_2 \, Z_{t-2}$$

for  $t \geq 2$ , where  $\theta_1, \theta_2$  are any real numbers.

- This process is called an order 2 moving average, or MA(2).
- It is weakly stationary, with

$$\gamma(h) = \begin{cases} (1 + \theta_1^2 + \theta_2^2)\sigma^2 & \text{if } h = 0\\ (\theta_1 + \theta_1\theta_2)\sigma^2 & \text{if } h = \pm 1\\ \theta_2\sigma^2 & \text{if } h = \pm 2\\ 0 & \text{if } |h| > 2. \end{cases}$$

```
set.seed(555)
n <- 100
z <- rnorm(n+2)  # Gaussian input
theta1 <- .9
theta2 <- .2
x <- z[-c(1,2)] + theta1*z[-c(1,n+2)] + theta2*z[-c(n+1,n+2)]
plot(ts(x),xlab="Time",ylab="")</pre>
```



## Lesson 2-6: White Noise Processes

- White noise is a fundamental building block for time series models.
- Any  $\{X_t\}$  i.i.d. with mean zero and variance  $\sigma^2$  is a WN $(0, \sigma^2)$ .
- Here we provide three examples of white noise.

## Example 2.6.1. Dependent White Noise

- Consider  $X_t = Z_t \cdot Z_{t-1}$ , where  $Z_t$  is i.i.d. N(0,1).
- Then  $X_t \sim WN(0,1)$ , but  $\{X_t\}$  is not i.i.d.

```
n <- 101
z <- rnorm(n)
x <- z[-n]*z[-1]
plot(ts(x),xlab="Time",ylab="")</pre>
```



#acf(x)

## Example 2.6.2. Non-identically Distributed White Noise

• Let  $\{Y_t\}$  and  $\{Z_t\}$  be independent of each other. Set  $Z_t$  i.i.d. N(0,1) and  $Y_t$  i.i.d. uniform on  $(-\sqrt{3},\sqrt{3})$ . Let

$$X_t = \begin{cases} Z_t & t \text{ even} \\ Y_t & t \text{ odd} \end{cases}$$

• Then  $X_t \sim WN(0,1)$ , although the process is not stationary (since the marginal distribution depends on t).

```
n <- 100
z <- rnorm(n)
y <- runif(n,-3^(1/2),3^(1/2))
x <- matrix(t(cbind(y,z)),ncol=1)
plot(ts(x),xlab="Time",ylab="")</pre>
```



#acf(x)

# Example 2.6.3. ARCH Process

- Model of Engel (1982), a Nobel laureate.
- Set  $Z_t$  i.i.d. N(0,1), and  $X_t = Z_t \sqrt{\alpha + \beta X_{t-1}^2}$ .
- Then  $X_t \sim WN(0, \alpha/(1-\beta))$ .

```
n <- 101
z <- rnorm(n)
alpha <- .2
beta <- .3
x <- 0
for(t in 2:n) { x <- c(x,z[t]*sqrt(alpha + beta*x[t-1]^2)) }
plot(ts(x),xlab="Time",ylab="")</pre>
```



#acf(x)