ЕМ алгоритм

Виктор Китов

v.v.kitov@yandex.ru

Содержание

- Перавенство Йенсена
- 2 ЕМ-алгоритм
- 3 ЕМ с регуляризацией
- 4 Независимые наблюдения (x_n, z_n)

Строго выпуклые функции

• Множество X выпукло, если $\forall x,y\in X,\, \forall \alpha\in (0,1)$:

$$\alpha x + (1 - \alpha)y \in X$$

• Функция f(x) строго выпукла на выпуклом X, если $\forall \alpha \in (0,1), \, \forall x_1 \neq x_2 \in X$:

$$f\left(\alpha x_1 + (1-\alpha)x_2\right) < \alpha f(x_1) + (1-\alpha)f(x_2)$$

 Что можно сказать о минимумах выпуклых/строго выпуклых ф-ций и достаточном условии минимума?

Признаки и свойства1

• f(x) строго выпукла <=> она всегда выше касательной

$$f(y) > f(x) + \nabla f(x)^{T} (y - x) \quad \forall y \neq x \in X$$

- Если $\nabla^2 f(x) \succ 0 \quad \forall x \in X$, то f(x) строго выпукла на X.
- ullet Если f(x) строго выпукла, то выполнено нер-во Йенсена

$$\mathbb{E}[f(X)] > f(\mathbb{E}X) \quad \forall X \overset{\text{п.в.}}{\neq} const$$

 $^{^{1}}$ Докажите утверждения. Верны ли они в обратную сторону?

Доказательство неравенства Йенсена

Для строго выпуклой f(x):

$$f(x) > f(y) + \nabla f(y)^T (x - y)$$

в частности, для не константной X подставим x=X и $y=\mathbb{E} X$

$$f(X) > f(\mathbb{E}X) + \nabla f(\mathbb{E}X)^T (X - \mathbb{E}X)$$

 $\mathbb{E}: \quad \mathbb{E}f(X) > f(\mathbb{E}X) + \nabla f(\mathbb{E}X)^T (\mathbb{E}X - \mathbb{E}X) = f(\mathbb{E}X)$

Для $X\stackrel{\text{п.в.}}{=} \mathbb{E} X$:

$$f(X) = f(\mathbb{E}X)$$

 $\mathbb{E}: \quad \mathbb{E}f(X) = \mathbb{E}f(\mathbb{E}X) = f(\mathbb{E}X)$

...

- 1 Неравенство Йенсена
- 2 ЕМ-алгоритм
- 3 ЕМ с регуляризацией
- $oldsymbol{4}$ Независимые наблюдения (x_n,z_n)

Вероятностная модель

Рассмотрим вероятностную модель с наблюдаемыми переменными x и ненаблюдаемыми (латентными) переменными z.

ullet обозначим $X=[x_1,x_2,...x_N]$, и $Z=[z_1,z_2,...z_M]$. Для нахождения $\widehat{ heta}$ решим:

$$L(\theta) = \ln p_{\theta}(X) = \ln \sum_{Z} p_{\theta}(X, Z) \rightarrow \max_{\theta}$$

- Решение $p_{\theta}(X,Z) o \max_{\theta}$ не применимо, т.к. не знаем Z.
- ullet Оценим распределение $Z \sim q(Z)$, зная X, и решим $\mathbb{E}_Z p_ heta(X,Z) o \mathsf{max}_ heta.$
- Повторять до сходимости (ЕМ алгоритм):
 - ullet E шаг: оценить, как распределено Z при $\widehat{ heta}$
 - М шаг: максимизировать $\ln p_{\theta}(X,Z)$, усредненное по вариантам Z.

Общая идея ЕМ алгоритма

$$L(heta) \geq G(q(Z), heta) \ orall q(Z), orall heta \ (G$$
-нижняя граница $L \ orall heta$ и $orall q(Z))$

- ullet Инициализировать $\widehat{ heta}_0$ случайно, t=0
- Повторять до сходимости:
 - $lacksymbol{0}$ Выбрать $q(Z|\widehat{ heta}_t)$ так, что $L(\widehat{ heta}_t) = G(q(Z),\widehat{ heta}_t)$
 - $\widehat{\theta}_{t+1} = \operatorname{arg\ max}_{\theta} G(q(Z|\widehat{\theta}_t), \theta)$
 - **3** t = t + 1

Комментарии

- ullet Е-шаг: $G(q(Z),\widehat{ heta}_t)= ext{arg max}_{p(Z)} \, G(p(Z),\widehat{ heta}_t)$
- М-шаг: $\widehat{\theta}_{t+1} = \operatorname{arg\ max}_{\theta} \mathsf{G}(q(Z), \theta)$
- ЕМ алгоритм метод покоординатного подъема нижней границы $G(p(Z), \theta)$.
- $L(\widehat{\theta}_t)$ сходится, т.к.

 - $igl\{L(\widehat{ heta}_t)igr\}$ ограничена сверху, т.к. $L(heta)=\ln p(X| heta)\leq \ln 1)$

Вывод нижней оценки

Пусть q(Z) - некоторое распределение над $Z,\ q(Z) \geq 0,$ $\sum_{Z} q(Z) = 1.$ Тогда

$$L(\theta) = \ln p_{\theta}(X) = \ln \sum_{Z} p_{\theta}(X, Z)$$

$$= \ln \sum_{Z} q(Z) \frac{p_{\theta}(X, Z)}{q(Z)}$$
(1)

$$\geq \sum_{Z} q(Z) \ln \frac{p_{\theta}(X,Z)}{q(Z)} = G(q(Z),\theta) \qquad (2)$$

Использовали неравенство Йенсена $f\left(\mathbb{E}U\right)\geq\mathbb{E}\left(fU\right)$ \forall сл.вел. U и вогнутой f.

1
$$f(x) = \ln x$$
 вогнута, т.к. $(\ln x)'' = -\frac{1}{x^2} < 0$

② сл. вел.
$$U$$
: $p\left(U=rac{p(X,Z, heta)}{q(Z)}
ight)=q(Z)$ для всевозможных Z .

E-шаг: делаем нижнюю грань точной при $\widehat{ heta}_t$

- Неравенство Йенсена: $f(\mathbb{E}U) \geq \mathbb{E}(fU)$, при этом $f(\mathbb{E}U) = \mathbb{E}(fU) <=> U \stackrel{\text{п.в.}}{=} c = const$:
- ullet $L(\widehat{ heta}_t) = G(q(Z), \widehat{ heta}_t)$ при

$$U = \frac{p_{\widehat{\theta}_{t}}(X, Z)}{q(Z)} = c \quad \forall Z$$

$$cq(Z) = p_{\widehat{\theta}_{t}}(X, Z)$$

$$c \sum_{Z} q(Z) = \sum_{Z} p_{\widehat{\theta}_{t}}(X, Z)$$

$$c = p_{\widehat{\theta}_{t}}(X)$$

$$q(Z) = \frac{p_{\widehat{\theta}_{t}}(X, Z)}{p_{\widehat{\theta}_{t}}(X)} = p_{\widehat{\theta}_{t}}(Z|X)$$

M-шаг: усредненный $log(правдоподобия) \rightarrow max$

M-шаг: усредненный $log(правдоподобия) \rightarrow max$

$$\begin{split} \hat{\theta}_{t+1} &= \arg\max_{\theta} \{ \sum_{Z} q(Z) \ln \frac{p_{\theta}(X,Z)}{q(Z)} \} \\ &= \arg\max_{\theta} \{ \sum_{Z} q(Z) \ln p_{\theta}(X,Z) - \overbrace{\sum_{Z} q(Z) \ln q(Z)}^{const(\theta)} \} \\ &= \arg\max_{\theta} \{ \sum_{Z} q(Z) \ln p_{\theta}(X,Z) \} \\ &= \arg\max_{\theta} \{ \mathbb{E}_{Z \sim q(Z)} \ln p_{\theta}(X,Z) \} \end{split}$$

Замечание: от heta зависит лишь $p_{ heta}(X,Z)$, $q(Z)=p_{\widehat{ heta}_t}(Z|X)$ - не зависит

ЕМ алгоритм

ВХОД:

выборка $X = [x_1, ... x_N]$, критерий сходимости

АЛГОРИТМ:

Инициализировать $t=0\,,\;\theta_0$ - случайно

ПОВТОРЯТЬ до сходиомти:

Е-шаг: уточнить распределение

над латентными переменными:

$$q(Z) = p(Z|X, \hat{\theta}_t)$$

М-шаг: уточнить параметры θ :

$$\hat{\theta}_{t+1} = \operatorname{arg\,max}_{\theta} \{ \sum_{Z} q(Z) \ln p(X, Z | \theta) \}$$

 $t = t+1$

ВЫХОД:
$$\hat{\theta}_{t+1}$$

Комментарии по ЕМ алгоритму

- Возможные критерии сходимости:
 - $\bullet \ \left\| \widehat{\theta}_{t+1} \widehat{\theta}_{t} \right\| < \varepsilon$
 - $L(\widehat{\theta}_{t+1}) L(\widehat{\theta}_t) < \varepsilon$
 - #итераций>порога
- ЕМ сходится к локальному оптимуму
 - можно перезапустить несколько раз из разных $\widehat{\theta}_0$ и выбрать лучшее решение
- Обобщеный EM алгоритм (generalized EM, GEM)
 - ullet для сходимости достаточно выбрать $\widehat{ heta}_{t+1}$ так, что

$$G(q(Z), \widehat{\theta}_{t+1}) > G(q(Z), \widehat{\theta}_t)$$

- например, сделать один шаг в оптимизации
- ullet а не решать $heta_{t+1} = ext{arg max}_{ heta} \; G(q(Z), heta)$ точно.

Содержание

- Перавенство Йенсена
- 2 ЕМ-алгоритм
- 3 ЕМ с регуляризацией
- $oldsymbol{4}$ Независимые наблюдения (x_n,z_n)

ЕМ алгоритм с регуляризацией

• Добавим регуляризацию $R(\theta)$ в задачу

$$L(\theta) = \ln p(X|\theta) - \lambda R(\theta) \rightarrow \max_{\theta}$$

- $R(\theta)$ штрафует сложность
- ullet нужно вычитать, т.к. $\ln p(X|\theta)$ максимизируется.
- Байесовская МАР оценка: $\ln p(X,\theta) = \ln p(X|\theta)p(\theta) = \ln p(X|\theta) + \underbrace{\ln p(\theta)}_{\lambda R(\theta)} \to \max_{\theta}$
- ullet Нижняя грань: $L(heta) \lambda R(heta) \geq G(q(Z), heta) \lambda R(heta) \ orall q(Z), orall heta$

ЕМ алгоритм с регуляризацией

• Е-шаг: не меняется (равенство из неравенства Йенсена)

$$q(Z) = p_{\widehat{\theta}_t}(Z|X)$$

• М-шаг:

$$\widehat{\theta} = \arg\max_{\theta} \left\{ \mathbb{E}_{Z \sim q(Z)} \ln p_{\theta}(X, Z) - \lambda R(\theta) \right\}$$

Содержание

- Перавенство Йенсена
- 2 ЕМ-алгоритм
- 3 ЕМ с регуляризацией
- lacktriangledown Независимые наблюдения (x_n,z_n)

E-шаг для независимых (x_n, z_n)

- Рассмотрим частный случай независимых наблюдений $\{(x_n, z_n)\}_{n=1}^N$, x_n наблюдаемые, z_n латентные пример: смесь Гауссиан, z_n -#компоненты, x_n -реализация.
- Е-шаг становится:

$$q(Z) = p(Z|X,\theta) = p(z_1|x_1,\theta)...p(z_N|x_N,\theta) = q_1(z_1)...q_N(z_N)$$
$$q_n(z_n) = p(z_n|x_n,\theta)$$

M-шаг для независимых (x_n, z_n)

Для независимых объектов (x_n, z_n) :

$$\sum_{Z} q(Z) \ln p(X, Z|\theta) \} = \sum_{z_1, \dots z_N} q_1(z_1) \dots q_N(z_N) \ln \prod_{n=1}^N p(x_n, z_n|\theta)$$

$$= \sum_{z_1, \dots z_N} q_1(z_1) \dots q_N(z_N) \ln p(x_n, z_n|\theta) =$$

$$= \sum_{n=1}^N q_n(z_n) \ln p(x_n, z_n|\theta) \prod_{k \neq n} \left(\sum_{z_k} q_k(z_k) \right)$$

$$= \sum_{n=1}^N q_n(z_n) \ln p(x_n, z_n|\theta) \to \max_{\theta}$$