

LOGIC and Computer Design Fundamentals

CHAPTER 1

Digital Systems and Information

施青松

Asso. Prof. Shi Qingsong College of Computer Science and Technology, Zhejiang University zjsqs@zju.edu.cn

Course Outline

Signal

Digital Systems

Digital Computer

Organization Of Computer

Number Systems & Codes

Signal

□ Information variables

represented by physical quantities.

□ For digital systems

- the variables take on discrete values
- Two level, or **binary values** are the most prevalent values in digital systems

□ Represented abstractly by:

- digits: 0 \ 1
- symbols:
 - □ False (F) 、 True (T)
 - \square Low (L) \square High (H)
 - On Off
- Binary values are represented by values or ranges of values of physical quantities

Time Sequence Signal

Physical Quantity Example: Voltage

The most commonly used two-valued information

E is an electrical signal - voltage or current

typically two discrete values represented

the voltage range of values

Why not use the decimal?

Binary Values: Other Physical Quantities

■ What are other physical quantities represent

0 and **1**?

CPU

Voltage

Disk

Magnetic Field Direction

CD

Surface Pits/Light

Dynamic RAM

Electrical Charge

Course Outline

Signal

Digital Systems

Digital Computer

Organization Of Computer

Number Systems & Codes

Digital System

- Takes a set of discrete information inputs
- and discrete internal information (system state)
- and generates a set of discrete information outputs.

Types of Digital Systems

- **□ Combinational Logic System**
 - No state present
 - Output function: f_{Output} = Function(Input) General multivariate, multi-output function
- **Sequential System**
 - State present
 - State updated at discrete times
 - **■** Synchronous Sequential System
 - State updated at any time
 - **■** Asynchronous Sequential System
 - State Function : f_{State} = Function (State, Input)
 - Output Function : $f_{\text{Output}} = \text{Function (State)}$ Or $f_{\text{Output}} = \text{Function (State, Input)}$

Digital System Example:

A Digital Counter (e. g., odometer):

Inputs: Count Up, Reset

Outputs: Visual Display

State: "Value" of stored digits

Synchronous or Asynchronous?

Course Outline

Signal

Digital Systems

Digital Computer

Organization Of Computer

Number Systems & Codes

Digital Computer Example

A common system used on

the discrete elements in the information processing

Digital Computer

1. Features: commonality, flexibility, versatility

 A common System for processing the discrete elements of the information

2. Information representation within Computer

- used the binary numerical system: 0和1。
- A binary signal is represents one bit (bit) .
- Multi-digit bit used to represent data & Instructions can be executed in the computer
- Analog done automatically converted into a digital-value used on analog-to-digital conversion apparatus

Course Outline

Signal

Digital Systems

Digital Computer

Organization Of Computer

Number Systems & Codes

Computer Architecture

■ Memory

- Can be stored Program and Data from input & output, and intermediate results
 - Main Memory
 - The external memory (as part of the peripheral)
 - Cache

□ Datapath(BUS)

- The channel between the processor, memory, and input / output device (connection)
 - Processor bus (within CPU)
 - I/O BUS:Different data transfer rates of the two buses,
 - different bus data communication through the completion of the bus interface hardware

Computer Architecture--2

□ Control unit

Monitoring the exchange of information between the different parts

□ CPU(Central processor Unit)

- Composed by the data path and control unit. The modern processor comprises 4 functional modules: CPU, FPU, MMU & Internal cache
 - FPU(Floating-point unit): specific to the implementation of floating-point operations ∘
 - MMU (Memory Management Unit): see the CPU storage device the size of multi-size larger than the actual physical RAM.

Computer Architecture--2

□ Input/Output device (I/O)

 Device for information processing systems interact with each other

And Beyond – Embedded Systems

- **□** Specific computer systems
 - Computers as integral parts of other products
- **■** Examples of embedded computers
 - Microcomputers
 - Microcontrollers
 - Digital signal processors

Examples of Embedded

Examples of Embedded Systems Applications

- Cell phones/Smart phone
- Automobiles
- Video games
- Copiers
- Dishwashers
- Flat Panel TVs
- Global Positioning Systems
- AI Accelerate

Course Outline

Signal

Digital Systems

Digital Computer

Organization Of Computer

Number Systems & Codes

Number Systems

- The rule of the number system that constraints on the number Value
 - The most commonly encountered daily in the **decimal** counting system, in Digital system widely used in the computer **binary**, **octal and hexadecimal**.

Number Systems: Positional Arry

Positional Number System

■ Three important factors: radix、cardinalit、Weight

Cardinality—Represents the number of digital collection (basic symbols) within Counting system radix—Size of the collection(base)

```
e.g.: assume radix: R
R basic symbols, 0, 1, 2.....,R
Every R Carry in 1
```


Weight

or Bit weights: Determine the digit position

(Weight value of Digit at some position)

Each Weight is a **Power** of R corresponding to the digit's position

E.g.: 2356 in Decimal, 3' Weight is 10²

for 8421 Coder first bit Weight is 8

NUMBER SYSTEMS: Representation

□ Representation Method for R Arry

- N Bit digits from left to right
- \blacksquare Size: m + n

represented by a string of digits $0 \le A \le R$

(N)
$$_{R} = (A_{n-1}A_{n-2}A_{n-3}...A_{1}A_{0} \cdot A_{-1}A_{-2}A...A_{-m+1}A_{m})_{R}$$

MSD

LSD

Represents the power series (N)
$$R = (\sum_{i=-m}^{n-1} A_i R^i)R$$

Instance represents a decimal number

radix: R=10

basic symbols : 0,1,2,3...9

Weight: $Wi = 10^i$

Representation:

(N)
$$_{10} = (\sum_{i=-m}^{n-1} A_i 10^i)_{10} =$$

$$A_{n-1} \cdot 10^{n-1} + A_{n-2} \cdot 10^{n-2} + \dots + A_1 \cdot 10^1 + A_0 \cdot 10^0 + A_{-1} \cdot 10^{-1} + \dots + A_{-m} \cdot 10^{-m}$$

e.g.
$$(123.45)_{10} = 1.10^2 + 2.10^1 + 3.10^0 + 4.10^{-1} + 5.10^{-2}$$

Instance represents a binary number

Representation

radix:

R=2

basic symbols: 0, 1

Weight:

 $Wi=2^i$

Representation

(N)
$$_{2} = (\sum_{i=-m}^{n-1} A_{i} 2^{i})_{2} =$$

$$A_{n-1} \cdot 2^{n-1} + A_{n-2} \cdot 2^{n-2} + \ldots + A_1 \cdot 2^1 + A_0 \cdot 2^0 + A_{-1} \cdot 2^{-1} + \ldots + A_{-m} \cdot 2^{-m}$$

e.g.: $(1011.101)_2 = 1.2^3 + 0.2^2 + 1.2^1 + 1.2^0 + 1.2^{-1} + 0.2^{-2} + 1.2^{-3}$

2. Rules of operation

ADD:
$$0+0=0$$
 $0+1=1$ $1+0=1$ $1+1=10$

MUL:
$$0 \times 0 = 0$$
 $0 \times 1 = 0$

$$1 \times 0 = 0$$
 $1 \times 1 = 1$

3. Physical representation

Convenience: with transistors or magnetic

Trouble: written , memory –

Octal or hexadecimal abbreviations

The high / low voltage can be used to represent

the binary number 1,0.

4. May use Boolean algebra

Common values

n 2 ⁿ n 2 ⁿ	n	2 ⁿ
0 1 8 256 1 2 9 512 2 4 10 1,024 3 8 11 2,048 4 16 12 4,096 5 32 13 8,192 6 64 14 16,384 7 128 15 32,768	16 17 18 19 20 21 22 23	65,536 131,072 262,144 524,288 1,048,576 2,097,152 4,194,304 8,388,608

Instance represents a octal number

radix: R=8

basic symbols: $0, 1, 3, \dots, 7$

Weight: $Wi = 8^i$

Representation:

(N)
$$s = (\sum_{i=-m}^{n-1} A_i 8^i)_8 =$$

$$A_{n-1} \cdot 8^{n-1} + A_{n-2} \cdot 8^{n-2} + \ldots + A_1 \cdot 8^1 + A_0 \cdot 8^0 + A_{-1} \cdot 8^{-1} + \ldots + A_{-m} \cdot 8^{-m}$$

e.g.: (567.125)8

Instance represents a Hexadecimal number

radix: R=16

basic symbols: $0, 1, 3, \dots, 9, A, B, \dots, F$

Weight: $Wi = 16^{i}$

Representation:

(N)
$$_{16} = (\sum_{i=-m}^{n-1} A_i 16^i)_{16} =$$

$$A_{n-1} \cdot 16^{n-1} + A_{n-2} \cdot 16^{n-2} + \ldots + A_1 \cdot 16^1 + A_0 \cdot 16^0 + A_{-1} \cdot 16^{-1} + \ldots + A_{-m} \cdot 16^{-m}$$

e.g. (5AF.9B)₁₆

If remember then benefit

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

ARITHMETIC OPERATIONS

1. Adds and subtracts

example 1:
$$1100+10001=11101$$

01100

+ 10001

11101

$$10011 - 111110 = -01011$$

11110

- 10011

-01011

(Set minus sign for difference if Small minus big number)

ARITHMETIC OPERATIONS: octal & Hexadecimal

example 3:

$$(59F)_{16} + (E46)_{16} = (13E5)_{16}$$

$$59F$$
+ E46
$$13E5$$

43772

2. Multiplication

example 1:

$$(762)$$
8× (45) 8 = (43772) 8

 762
× 45
 4672
 3710

ARITHMETIC: BCD OPERATIONS

3. BCD adder

example:

$$448 + 489 = (0100\ 0100\ 1000)_{BCD} + (0100\ 1000\ 1001)_{BCD}$$

$$0100\ 0100\ 1000$$

$$+ 0100\ 1000\ 1$$

$$1000\ 1101\ 0001$$

$$+ 0110\ 0110$$

illustrate: When each the sum is greater than 9 or Carry, need to adjustments with using plus 6

1001 0011 0111

Number Systems

Converting from 2, 8, 16:

- 1. The right expansion method
- 2. Fractional shift method
- 3. Digital replacement method

Converting between binary and octal

Digital replacement

方法: 以小数点为中心 —— 整数右对齐

—— 小数左对齐

例: $(67.731)_8 = (110\ 111\ .111\ 011\ 001)_2$

 $(312.64)_8 = (011\ 001\ 010\ .\ 110\ 1)_2$

 $(11\ 111\ 101\ .\ 010\ 011\ 11)_2 = (375.236)_8$

 $(10\ 110.11)_2 = (26.6)_8$

Converting between binary and Hexadecimal

Digital replacement

原理:由于24=16 故四位二进制能表示为一位十六进制数

方法: 以小数点为中心——整数右对齐

——小数左对齐

例: $(3AB4.1)_{16} = (0111\ 1010\ 1011\ 100\ .0001)_2$

 $(21A.5)_{16} = (0010\ 0001\ 1010\ .\ 0101)_2$

 $(1001101.01101)_2 = (0100 1101.01101000)_2 = (4D.68)_{16}$

 $(111\ 1101\ .\ 0100\ 1111)_2 = (7D.4F)_{16}$

 $(110\ 0101.101)_2 = (65.A)_{16}$

Converting between binary and decimal

Converting Binary to Decimal

Right expansion

原理: 权展开表达式

方法: 权相加 ---- 权展开十进制相加

例: $(110\ 0101.101)_2 = 1*2^6 + 1*2^5 + 0*2^4 + 0*2^3 + 1$

 $+1*2^{2}+0*2^{1}+1*2^{0}+1*2^{-1}+0*2^{-2}+1*2^{-3}$

 $=(813.625)_{10}$

Converting Decimal to Binary

原理: The integer—权展开式除2,余数构成最低位

Fractional — 权展开式乘2,整数构成最高位

方法:整数 —— 除2取余

小数 — 乘2取整

例: (725.678)=(10 1101 0101.1010 1101 1001)₂ =(2D5.AD9)₁₆

1. The integer portion: divided by 2, to get the remainder

e.g.: Converting $(725)_{10}$ to Binary

$$(725)_{10} = (k_{n-1} \ k_{n-2} \cdots k_1 \ k_o)_2$$

$$= k_{n-1} \times 2^{n-1} + k_{n-2} \times 2^{n-2} + \cdots k_1 \times 2^1 + k_o \times 2^0$$

$$= 2(k_{n-1} \times 2^{n-2} + k_{n-2} \times 2^{n-3} + \cdots k_1) + k_o$$

$$(362 + \frac{1}{2})_{10} = k_{n-1} \times 2^{n-2} + k_{n-2} \times 2^{n-3} + \dots + k_1 + \frac{k_o}{2}$$

$$(181 + \frac{0}{2})_{10} = k_{n-1} \times 2^{n-3} + k_{n-2} \times 2^{n-4} + \dots + k_2 + \frac{k_1}{2}$$

$$(725)_{10} = (10 \ 1101 \ 0101)_2$$

• short division: The integer portion:

divided by 2, to get the remainder

$$2 \boxed{7} 2 \boxed{5}$$
 $(725)_{10} = (10 \ 1101 \ 0101)_2$

2. Fractional part: multiplied by 2, to take the integral number

e.g.: Converting $(0.678)_{10}$ to Binary

$$(0.678)_{10} = \frac{k_{-1}}{2} + \frac{1}{2} (k_{-2} \times 2^{-1} + \dots + k_{-m} \times 2^{-m+1})$$

$$(1+0.356)_{10} = k_{-1} + (k_{-2} \times 2^{-1} + \dots + k_{-m} \times 2^{-m+1})$$

$$(0+0.712)_{10} = k_{-2} + (k_{-3} \times 2^{-1} + \dots + k_{-m} \times 2^{-m+2})$$

$$(1+0.424)_{10} = a_{-3} + (k_{-4} \times 2^{-1} + \dots + k_{-m} \times 2^{-m+3})$$

$$\vdots$$

 $(0.678)_{10} = (0.1010 \ 1101 \ 1001)_2$

Note: can not be accurately converted

Fractional part: multiplied by 2, $2 \times 0.678...$ to take the integral number = 1.3563.3 $2 \times 0.356.... = 0.712$ $2 \times 0.712.... = 1.424$ $2 \times 0.424.... = 0.848$ $2 \times 0.848...$ = 1.696 $2 \times 0.696...$ = 1.392 $2 \times 0.392.... = 0.784$ $2 \times 0.784...$ =1.568 $2 \times 0.568...$ =1.136 $2 \times 0.136.... = 0.272$ $2 \times 0.272.... = 0.544$ $2 \times 0.544.... = 1.088$ $(0.678)_{10} = (0.1010 \ 1101 \ 1001),$

Course Outline

Signal

Digital Systems

Digital Computer

Organization Of Computer

Number Systems & Codes

Coding with Binary Numeric

Binary Code Decimal

Binary Numbers and Binary Coding

□ Flexibility of representation

- Within constraints below, can assign any binary combination (called a code word) to any data
- as long as data is uniquely encoded

□ Information Types

Numeric

- Must represent range of data needed
- Very desirable to represent data such that simple, straightforward computation for common arithmetic operations permitted
- □ Tight relation to binary numbers

■ Non-numeric

- □ Greater flexibility since arithmetic operations not applied.
- Not tied to binary numbers

Non-numeric Binary Codes

- □ Given n binary digits (called bits), a binary code is a mapping from a set of represented elements to a subset of the 2^n binary numbers.
- Example: A binary code for the seven colors of the rainbow
- Code 100 is not used

Color	Binary Number
Red	000
Orange	001
Yellow	010
Green	011
Blue	101
Indigo	110
Violet	111

Number of Bits Required

□ Given M elements to be represented by a binary code, the **minimum number of bits**, *n*, needed, satisfies the following relationships:

$$2^n \ge M > 2^{(n-1)}$$

 $n = \lceil \log_2 M \rceil = \text{where } \lceil x \rceil$,
called the *ceiling function*:
is the integer greater than or equal to x

■ Example: How many bits are required to represent decimal digits with a binary code?

$$n = \log_2 10 = ?$$

Number of Elements Represented

- \square Given n digits in radix r, there are r^n distinct elements that can be represented
- But, you can represent m elements, $m < r^n$
- **Examples:**
 - You can represent 4 elements in radix r = 2 with n = 2 digits: (00, 01, 10, 11).
 - You can represent 4 elements in radix r = 2 with n = 4 digits: (0001, 0010, 0100, 1000).
 - This second code is called a "one hot" code.

DECIMAL CODES - Binary Codes for Decimal Digits

There are over 8,000 ways that you can chose 10 elements from the 16 binary numbers of 4 bits. A few are useful:

Decimal	8,4,2,1	Excess3	8,4,-2,-1	Gray
0	0000	0011	0000	0000
1	0001	0100	0111	0100
2	0010	0101	0110	0101
3	0011	0110	0101	0111
4	0100	0111	0100	0110
5	0101	1000	1011	0010
6	0110	1001	1010	0011
7	0111	1010	1001	0001
8	1000	1011	1000	1001
9	1001	1100	1111	1000

Binary Coded Decimal (BCD)

- □ The BCD code is the 8,4,2,1 code.
 - 8, 4, 2, and 1 are weights
- BCD is a *weighted* code
 - This code is the simplest, most intuitive binary code for decimal digits and uses the same powers of 2 as a binary number, but only encodes the first ten values from 0 to 9

Example: 1001 (9) = 1000 (8) + 0001 (1)

- How many "invalid" code words are there?
- What are the "invalid" code words?

Excess 3 Code and 8, 4, -2, -1 Code

Decimal	Excess 3	8, 4, -2, -1
0	0011	0000
1	0100	0111
2	0101	0110
3	0110	0101
4	0111	0100
5	1000	1011
6	1001	1010
7	1010	1001
8	1011	1000
9	1100	1111

What interesting property is common to these two codes?

Warning: Conversion or Coding?

■ Do NOT mix up *conversion* of a decimal number to a binary number with *coding* a decimal number with a BINARY CODE.

$$\square 13_{10} = 1101_2$$

- This is *conversion*)
- $\square 13 \Leftrightarrow 0001 \ 0011$
 - This is *coding*

编码的"0"不能省略!!!

BCD Arithmetic

Given a BCD code, we use binary arithmetic to add the digits:

Note that the result is MORE THAN 9, so must be represented by two digits!

To correct the digit, subtract 10 by adding 6 modulo 16.

```
Eight
              1000
             +0101 Plus 5
<u>+5</u>
              1101 is 13 (> 9)
             +0110 so add 6
  carry = 1 \quad 0011 \quad leaving 3 + cy
                      Final answer (two digits)
       0001 0011
```

If the digit sum is > 9, add one to the next significant digit

BCD Addition Example

 \square Add 2905_{BCD} to 1897_{BCD} showing carries and digit corrections.

0001 1000 1001 0111 + 0010 1001 0000 0101

Parity Bit Error-Detection Codes

- **Redundancy** (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors.
- A simple form of redundancy is **parity**
 - an extra bit appended onto the code word to make the number of 1's odd or even
 - Parity can detect all single-bit errors and some multiple-bit errors
- □ A code word has *even* parity
 - if the number of 1's in the code word is even
- A code word has *odd* parity
 - if the number of 1's in the code word is odd

4-Bit Parity Code Example

□ Fill in the even and odd parity bits:

Even Parity Message - Parity	Odd Parity Message - Parity
000 -	000 _
001 _	001 _
010 _	010 _
011 _	011 <u></u>
100 _	100 _
101 _	101 _
110 _	110 _
111 _	111 -

□ The codeword "1111" has *even parity* and the codeword "1110" has *odd parity*. Both can be used to represent 3bit data

GRAY CODE – Decimal

Decimal	8,4,2,1	Gray
0	0000	0000
1	0001	0100
2	0010	0101
3	0011	0111
4	0100	0110
5	0101	0010
6	0110	0011
7	0111	0001
8	1000	1001
9	1001	1000

■ What special property does the Gray code have in relation to adjacent decimal digits?

Optical Shaft Encoder

- Does this special Gray code property have any value?
- An Example: Optical Shaft Encoder

100 000 101 001 G 2 111 110 010

(a) Binary Code for Positions 0 through 7

(b) Gray Code for Positions 0 through 7

Shaft Encoder (Continued)

■ How does the shaft encoder work?

■ For the binary code, what codes may be produced if the shaft position lies between codes for 3 and 4 (011 and 100)?

□ Is this a problem?

Shaft Encoder (Continued)

■ For the Gray code, what codes may be produced if the shaft position lies between codes for 3 and 4 (010 and 110)?

□ Is this a problem?

■ Does the Gray code function correctly for these borderline shaft positions for all cases encountered in octal counting?

Several decimal coding table

Decimal	8421	5421	2421	Excess 3	GRAY1
0	0000	0000	0000	0011	0000
1	0001	0001	0001	0100	0001
2	0010	0010	0010	0101	0011
3	0011	0011	0011	0110	0010
4	0100	0100	0100	0111	0110
5	0101	0101	0101	1000	0111
6	0110	0110	0110	1001	0101
7	0111	0111	0111	1010	0100
8	1000	1011	1110	1011	1100
9	1001	1100	1111	1100	1000

Coding with Binary Non-numeric

Character Code

ALPHANUMERIC CODES - ASCII Character Codes

- American Standard Code for Information Interchange
 - This code is a popular code used to represent information sent as character-based data. It uses 7-bits to represent:
 - 94 Graphic printing characters.
 - 34 Non-printing characters
- □ Some non-printing characters are used for text format
 - e.g. BS = Backspace, CR = carriage return
- Other non-printing characters are used for record marking and flow control
 - e.g. STX and ETX start and end text areas

7 BIT ASCII CODE TABLE

b6b5b4 B3b2b1b0	000	001	010	011	100	1 <i>0</i> 1	1 <mark>1</mark> 0	1 <i>1</i> 1
0000	NUL	DLE	SP	0	@	Р	,	р
0001	SOM	DC	!	1	Α	Q	а	q
0010	STX	DC	"	2	В	R	b	r
0011	ETX	DC	#	3	С	S	С	S
0100	EOT	DC	\$	4	D	Т	d	t
0101	ENQ	NAA	%	5	E	U	е	u
0110	ACA	SYN	&	6	F	V	f	V
0111	BEL	ETB	,	7	G	W	g	w
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	у
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	Α	[k	
1100	FF	FS	,	<	L	١	I	I
1101	CR	GS	_	=	M]	m	
1110	so	RS	•	>	N		n	~
1111	SI	US	1	?	0	←	0	DEL

ASCII Properties

ASCII has some interesting properties:

Digits 0 to 9 span Hexadecimal values 30₁₆ to 39₁₆

Upper case A- Z span

Lower case a-z span (

Lower to upper case

Delete (DEL) is all bit punched paper tape

versa)
oing bit 6
n when
ssages

Punching all holes in a row erased a mistake!

UNICODE

- UNICODE extends ASCII to 65,536 universal characters codes
 - For encoding characters in world languages
 - Available in many modern applications
 - 2 byte (16-bit) code words
 - See Reading Supplement Unicode on the Companion Website http://www.prenhall.com/mano

Assignment

Ch1

1-3,1-9,1-12,1-13,1-16,1-18,1-19,1-28

Too simple, do not have much time

Thank you!