Optimization

First order methods: Step size and Optimality

Learning goals

- LEARNING GOAL 1
- LEARNING GOAL 2

CONTROLLING STEP SIZE

In every iteration t, we need to choose not only a descent direction $\mathbf{d}^{[t]}$, but also a step size $\alpha^{[t]}$:

- If $\alpha^{[t]}$ is too small, the procedure may converge very slowly (left).
- If $\alpha^{[t]}$ is too large, the procedure may not converge, because we "jump" around the optimum (right).

© August 25, 2022 Optimization - 1 / 12

STEP SIZE CONTROL: FIXED STEP SIZE

Use fixed step size α in each iteration:

$$\alpha^{[t]} = \alpha$$

Steps of a line search for $f(\mathbf{x}) = 10x_1^2 + 0.5x_2^2$, left 100 steps with fixed step size, right only 40 steps with adaptively selected step size.

Problem: Difficult to determine the optimal step size and depending on the problem the optimal step size has different values at different times.

© August 25, 2022 Optimization - 2 / 12

STEP SIZE CONTROL: DIMINISHING STEP SIZE

ullet A natural way of selecting α is to decrease its value over time

Example: GD on f(x) = |x| with diminishing step size $\alpha^{[t]} = \frac{1}{t}$, with t being the iteration of GD. In this case a diminishing step length is absolutely necessary in order to reach a point close to the minimum.

© August 25, 2022 Optimization - 3 / 12

STEP SIZE CONTROL: EXACT LINE-SEARCH

Use the **optimal** step size in each iteration:

$$\alpha^{[t]} = \arg\min_{\alpha \in \mathbb{R}_{>0}} g(\alpha) = \arg\min_{\alpha \in \mathbb{R}_{>0}} f(\mathbf{\textit{x}}^{[t]} + \alpha \mathbf{\textit{d}}^{[t]})$$

In each iteration an **univariate optimization problem** arg min $g(\alpha)$ must be solved with methods of univariate optimization (e.g. golden ratio). However, exact line-search is often too expensive for practical purposes and prone to poorly conditioned problems.

© August 25, 2022 Optimization - 4 / 12

ARMIJO RULE

Inexact line search are efficient procedures of computing a step size that minimizes the objective "sufficiently", without computing the optimal step size exactly. A common condition that ensures that the objective

ARMIJO RULE

A step size α is said to satisfy the **Armijo rule** in \boldsymbol{x} for the descent direction \boldsymbol{d} if for a fixed $\gamma \in (0,1)$ the following applies:

$$f(\mathbf{x} + \alpha \mathbf{d}) \leq f(\mathbf{x}) + \gamma \alpha \nabla f(\mathbf{x})^{\top} \mathbf{d}.$$

ARMIJO RULE

If **d** is a descent direction, then for each $\gamma \in (0, 1)$ there exists a step size α , which fulfills the Armijo rule (feasibility).

In many cases, the Armijo rule guarantees local convergence of line

BACKTRACKING LINE SEARCH

Backtracking line search is based on the Armijo rule.

Idea: Decrease α until the Armijo rule is met.

Algorithm Backtracking line search

1: Choose initial step size $\alpha=\alpha^{[0]},$ 0 < γ < 1 and 0 < τ < 1

2: while $f(\mathbf{x} + \alpha \mathbf{d}) > f(\mathbf{x}) + \gamma \alpha \nabla f(\mathbf{x})^{\top} \mathbf{d}$ do

3: Decrease α : $\alpha \leftarrow \tau \cdot \alpha$

4: end while

The procedure is simple and shows good performance in practice.

© August 25, 2022 Optimization - 6 / 12

- GD is a greedy algorithm: In every iteration, it makes locally optimal moves.
- If $\mathcal{R}(\theta)$ is **convex** and **differentiable**, and its gradient is Lipschitz continuous, GD is guaranteed to converge to the global minimum (for small enough step-size).
- However, if $\mathcal{R}(\theta)$ has multiple local optima and/or saddle points, GD might only converge to a stationary point (other than the global optimum), depending on the starting point.

© August 25, 2022 Optimization - 7 / 12

We assume that the gradient of the convex and differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is Lipschitz continuous with L > 0:

$$||\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})|| \le L||\mathbf{x} - \mathbf{y}||$$
 for all x, y

This means that the gradient can't change arbitrarily fast.

Now we have a look at the convergence of gradient descent with a fixed step size $\alpha \le 1/L$.

Convergence: Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and have L-Lipschitz continuous gradients and assuming that the global minimum x^* exists. Then gradient descent with k iterations with a fixed step-size $\alpha \leq 1/L$ will yield a solution $f(x^k)$, which satisfies

$$f(x^k) - f(x^*) \le \frac{||x^0 - x^*||^2}{2\alpha k}$$

This means, that GD converges with rate $\mathcal{O}(1/k)$.

Proof: The assumption that ∇f is Lipschitz continuous implies that $\nabla^2 f(x) \leqslant LI$ for all x. The generalized inequality $\nabla^2 f(x) \leqslant LI$ means that $LI - \nabla^2 f(x)$ is positive semidefinite. This means that $v^{\top} \nabla^2 f(u) v \le L||v||^2$ for any u and v.

Therefore, we can perform a quadratic expansion of f around \tilde{x} obtaining the following inequality:

$$f(x) \approx f(\tilde{x}) + \nabla f(\tilde{x})^{\top} (x - \tilde{x}) + 0.5(x - \tilde{x})^{\top} \nabla^{2} f(\tilde{x}) (x - \tilde{x})$$

$$\leq f(\tilde{x}) + \nabla f(\tilde{x})^{\top} (\tilde{x}) + 0.5L||x - \tilde{x}||^{2},$$

as the blue term is at most $0.5L||x - \tilde{x}||^2$. This is called the descent lemma.

Now, we are doing one update via gradient descent with a step size $\alpha < 1/L$:

$$\tilde{\mathbf{x}} = \mathbf{x}^{t+1} = \mathbf{x}^t - \alpha \nabla f(\mathbf{x}^t)$$

and plug this in the descent lemma.

We get

$$f(x^{t+1}) \leq f(x^{t}) - \nabla f(x^{t})^{\top} (x^{t+1} - x^{t}) + \frac{1}{2} L ||x^{t+1} - x^{t}||^{2}$$

$$= f(x^{t}) + \nabla f(x^{t})^{\top} (x^{t} - \alpha \nabla f(x^{t}) - x^{t}) + \frac{1}{2} L ||x^{t} - \alpha \nabla f(x^{t}) - x^{t}||^{2}$$

$$= f(x^{t}) - \nabla f(x^{t})^{\top} \alpha \nabla f(x^{t}) + \frac{1}{2} L ||\alpha \nabla f(x^{t})||^{2}$$

$$= f(x^{t}) - \alpha ||\nabla f(x^{t})||^{2} + \frac{1}{2} L \alpha^{2} ||\nabla f(x^{t})||^{2}$$

$$= f(x^{t}) - (1 - \frac{1}{2} L \alpha) \alpha ||\nabla f(x^{t})||^{2}$$

$$\leq f(x^{t}) - \frac{1}{2} \alpha ||\nabla f(x^{t})||^{2},$$

where we used $\alpha \leq 1/L$ and therefore $-(1-\frac{1}{2}L\alpha) \leq \frac{1}{2}L\frac{1}{L}-1=-\frac{1}{2}$. Since $\frac{1}{2}\alpha||\nabla f(x^l)||^2$ is always positive unless $\nabla f(x)=0$, it implies that f strictly decreases with each iteration of GD until the optimal value is reached. So, it is a bound on guaranteed progress, when $\alpha \leq 1/L$.

© August 25, 2022 Optimization - 10 / 12

Now, we bound f(x) in terms of $f(x^*)$ and use that f is convex:

$$f(x) \le f(x^*) + \nabla f(x)^T (x - x^*)$$

When we combine this and the bound derived before, we get

$$f(x^{t+1}) - f(x^*) \leq \nabla f(x)^{\top} (x - x^*) - \frac{\alpha}{2} ||\nabla f(x)||^2$$

$$= \frac{1}{2\alpha} (||x - x^*||^2 - ||x - x^* - \alpha \nabla f(x)||^2)$$

$$= \frac{1}{2\alpha} (||x - x^*||^2 - ||x^{t+1} - x^*||^2)$$

This holds for every iteration of GD.

Summing over iterations, we get:

$$\sum_{t=0}^{k} f(x^{t+1}) - f(x^{*}) \leq \sum_{t=0}^{k} \frac{1}{2\alpha} \left(||x^{t} - x^{*}||^{2} - ||x^{t+1} - x^{*}||^{2} \right)$$

$$= \frac{1}{2\alpha} \left(||x^{0} - x^{*}||^{2} - ||x^{k} - x^{*}||^{2} \right)$$

$$\leq \frac{1}{2\alpha} \left(||x^{0} - x^{*}||^{2} \right),$$

where we used that the LHS is a telescoping sum. In addition, we know that f decreases on every iteration, so we can conclude that

$$f(x^k) - f(x^*) \le \frac{||x^0 - x^*||^2}{2\alpha k}$$

© August 25, 2022 Optimization - 12 / 12