ТЕМА 3. РЕЛЯЦИОННАЯ МОДЕЛЬ ДАННЫХ

Основы реляционной модели данных были впервые изложены в статье Е.Кодда в 1970 г. В настоящее время эта модель является фактическим стандартом, на который ориентируются практически все современные коммерческие СУБД.

Реляционная модель состоит из трех частей:

- Структурной части.
- Целостной части.
- Манипуляционной части

Декартово произведение: Для заданных конечных множеств $D_1, D_2, ..., D_n$ (не обязательно различных) декартовым произведением $D_1*D_2*...*D_n$ называется множество произведений вида: $d_1*d_2*...*d_n$, где $d_1 \in D_1$, $d_2 \in D_2$, ..., $d_n \in D_n$

Отношение: Отношением R, определенным на множествах $D_1, D_2, ..., D_n$ называется подмножество декартова произведения $D_1 * D_2 * ... * D_n$. При этом:

- $_{\circ}$ множества $D_{l},D_{2},...,D_{n}$ называются **доменами** отношения
- $_{\circ}\;$ элементы декартова произведения $d_{1}^{*}d_{2}^{*}...^{*}d_{n}^{}\;$ называются **кортежами**
- \circ число *n* определяет **степень отношения** (*n*=1 унарное, *n*=2 бинарное, ..., *n*-арное)
- о количество кортежей называется мощностью отношения

Отношения представляются в виде плоских таблиц. Столбцы в таблице, представляющей реляционное отношение, называются **атрибутами (поля)**. Именованное множество пар "имя атрибута — имя домена" называется **схемой отношения**. Набор именованных схем отношений представляет из себя **схему базы данных**.

Множество пар {имя атрибута, значение}, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения, называется кортежем (запись).

Домен – это семантическое понятие, рассматриваемое как подмножество значений некоторого типа данных имеющих определенный смысл. Свойства домена:

- имеет уникальное имя (в пределах базы данных).
- определен на некотором простом типе данных или на другом домене.
- может иметь логическое условие, позволяющее описать подмножество допустимых данных;
 - несет определенную смысловую нагрузку.

	целое	строка		целое		Типы данных
	номер	имя	должность	деньги		Домены
Отношение	Табельный номер	Имя	Должность	Оклад	Премия	Атрибуты
	2934 2935 2936	Иванов Петров Сидоров	инженер вед.инженер бухгалтер	112 144 92	40 50 35	Кортежи

Основные компоненты реляционного отношения.

Свойства отношений

– отсутствие кортежей-дубликатов (тело отношения есть множество кортежей и, следовательно, не может содержать неразличимые элементы);

- отсутствие упорядоченности кортежей (тело отношения есть множество);
- отсутствие упорядоченности атрибутов (ссылка на атрибут осуществляется по имени, атрибут имеет уникальное имя);
- атомарность значений атрибутов (определены на домене, т.е. на подмножестве простого типа).

номер_отдела	ОТДЕЛ СОТР_НОМЕР СОТР_ИМЯ СОТР_ЗАРП	
310	2934 Иванов 112,000 2935 Петров 112,500	
313	2937 Федоров 110,000	
315	2938 Иванова 112,000	

Пусть дано отношение R. Подмножество атрибутов K отношения R будем называть **потенциальным ключом**, если K обладает следующими свойствами:

- 1. *Свойством уникальности* в отношении не может быть двух различных кортежей, с одинаковым значением K.
- 2. *Свойством неизбыточности* никакое подмножество в K не обладает свойством уникальности.

Любое отношение имеет по крайней мере один потенциальный ключ. Действительно, если никакой атрибут или группа атрибутов не являются потенциальным ключом, то, в силу уникальности кортежей, все атрибуты вместе образуют потенциальный ключ

Потенциальный ключ, состоящий из одного атрибута, называется **простым**. Потенциальный ключ, состоящий из нескольких атрибутов, называется **составным**.

Отношение может иметь несколько потенциальных ключей. Традиционно, один из потенциальных ключей объявляется **первичным**, а остальные - **альтернативными**.

Замечание.

- 1. Понятие потенциального ключа является *семантическим* понятием и отражает некоторый смысл (трактовку) понятий из конкретной предметной области.
- 2. <u>Замечание</u>. Потенциальные ключи служат единственным *средством адресации* на уровне кортежей в отношении. Точно указать какой-нибудь кортеж можно только зная значение его потенциального ключа.

В реляционной модели данных (в отличие от иерархической и сетевой) отсутствует понятие группового отношения. Для отражения ассоциаций между кортежами разных отношений используется дублирование их ключей.

Переход к реляционной модели данных

1. Каждой сущности ставится в соответствие отношение реляционной модели данных. При этом имена сущности и отношения могут быть различными, потому что на имена сущностей могут не накладываться дополнительные синтаксические ограничения, кроме уникальности имени в рамках модели. Имена отношений могут быть ограничены требованиями конкретной СУБД, чаще всего эти имена являются идентификаторами в некотором базовом языке, они ограничены по длине и не должны содержать пробелов и некоторых специальных символов. Например, сущность может быть названа "Книжный

каталог", а соответствующее ей отношение желательно назвать, например, BOOKS (без пробелов и латинскими буквами).

- 2. Каждый атрибут сущности становится атрибутом соответствующего отношения. Переименование атрибутов должно происходить в соответствии с теми же правилами, что и переименование отношений в п.1. Для каждого атрибута задается конкретный допустимый в СУБД тип данных и обязательность или необязательность данного атрибута (то есть допустимость или недопустимость NULL значений для него).
- 3. Первичный ключ сущности становится PRIMARY KEY соответствующего отношения. Атрибуты, входящие в первичный ключ отношения, автоматически получают свойство обязательности (NOT NULL).
- 4. В каждое отношение, соответствующее подчиненной сущности, добавляется набор атрибутов основной сущности, являющейся первичным ключом основной сущности. В отношении, соответствующем подчиненной сущности, этот набор атрибутов становится внешним ключом (FOREIGN KEY).
- 5. Для моделирования необязательного типа связи на физическом уровне у атрибутов, соответствующих внешнему ключу, устанавливается свойство допустимости неопределенных значений (признак NULL). При обязательном типе связи атрибуты получают свойство отсутствия неопределенных значений (признак NOT NULL).
- 6. Для отражения категоризации сущностей при переходе к реляционной модели возможны несколько вариантов представления. Возможно создать только одно отношение для всех подтипов одного супертипа. В него включают все атрибуты всех подтипов. Однако тогда для ряда экземпляров ряд атрибутов не будет иметь смысла. И даже если они будут иметь неопределенные значения, то потребуются дополнительные правила различения одних подтипов от других. Достоинством такого представления является то, что создается всего одно отношение.
- 7. При втором способе для каждого подтипа и для супертипа создаются свои отдельные отношения. Недостатком такого способа представления является то, что создается много отношений, однако достоинств у такого способа больше, так как вы работаете только со значимыми атрибутами подтипа. Кроме того, для возможности переходов к подтипам от супертипа необходимо в супертип включить идентификатор связи.
- 8. Дополнительно при описании отношения между типом и подтипами необходимо указать тип дискриминатора. Дискриминатор может быть взаимоисключающим (M/E, mutually exclusive) или нет. Если установлен данный тип дискриминатора, то это значит, что один экземпляр сущности супертипа связан только с одним экземпляром сущности подтипа и для каждого экземпляра сущности супертипа существует потомок. Кроме того, необходимо указать для второго способа, наследуется ли только идентификатор супертипа в подтипы или наследуются все атрибуты супертипа.

Разрешение связей типа "многие-ко-многим".

Так как в реляционной модели данных поддерживаются между отношениями только связи типа "один-ко-многим", а в ER-модели допустимы связи "многие-ко-многим", то необходим специальный механизм преобразования, который позволит отразить множественные связи, неспецифические для реляционной модели, с помощью допустимых для нее категорий. Это делается введением специального дополнительного связующего отношения, которое связано с каждым исходным связью "один-ко-многим", атрибутами этого отношения являются первичные ключи связываемых отношений.