COMP5212: Machine Learning

Lecture 7

Lecture 8

Logistics

- Programming Homework 1 is out
 - Due on Oct 18
- Term project proposal
 - Due on this Friday

A simple solution

- For each particular h,
 - $P[|E_{tr}(h) E(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$
- If we have a hypothesis set \mathcal{H} , we want to derive the bound for $P[\sup_{h\in\mathcal{H}}|E_{tr}(h)-E(h)|>\epsilon]$

Where did the $|\mathcal{H}|$ come from?

- The Bad events \mathscr{B}_m :
 - $|E_{\mathsf{tr}}(h_m) E(h_m)| > \epsilon$ with probability $\leq 2e^{-2\epsilon^2 N}$

Where did the $|\mathcal{H}|$ come from?

- The Bad events \mathscr{B}_m :
 - $|E_{\mathsf{tr}}(h_m) E(h_m)| > \epsilon$ with probability $\leq 2e^{-2\epsilon^2 N}$
- The union bound:

$$\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \dots \text{ or } \mathcal{B}_M] \leq \underline{\mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \dots + \mathbb{P}[\mathcal{B}_M]} \leq 2 \, |\, \mathcal{H} \, |\, e^{-2\epsilon^2 N}$$

consider worst case: no overlaps

No overlap: bound is tight

Large overlap

A simple solution

- For each particular h,
 - $P[|E_{tr}(h) E(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$
- If we have a hypothesis set \mathscr{H} , we want to derive the bound for $P[\sup_{h\in\mathscr{H}}|E_{tr}(h)-E(h)|>\epsilon]$
 - $P[|E_{tr}(h_1) E(h_1)| > \epsilon]$ or ... or $P[|E_{tr}(h_{|\mathcal{H}|}) E(h_{|\mathcal{H}|})| > \epsilon]$

$$\leq \sum_{m=1}^{\mathcal{H}} P[|E_{tr}(h_m) - E(h_m)| > \epsilon] \leq 2|\mathcal{H}|e^{-2\epsilon^2 N}$$

• Because of union bound inequality $P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i)$

Uniform convergence

- When our learning algorithm \mathscr{A} picks the hypothesis g:
 - $P[\exists h \in \mathcal{H} | E_{tr}(h) E(h) | > \epsilon] \le 2 | \mathcal{H} | e^{-2\epsilon^2 N}$
- Subtract both sides from 1

$$P[\neg \exists h \in \mathcal{H} | E_{tr}(h) - E(h) | > \epsilon] = P[\forall h \in \mathcal{H} | E_{tr}(h) - E(h) | \le \epsilon]$$
$$\ge 1 - 2 |\mathcal{H}| e^{-2\epsilon^2 N}$$

$$P[\neg \exists h \in \mathcal{H} | E_{tr}(h) - E(h) | > \epsilon] = P[\forall h \in \mathcal{H} | E_{tr}(h) - E(h) | \le \epsilon]$$
$$\ge 1 - 2 |\mathcal{H}| e^{-2\epsilon^2 N}$$

- Given ϵ and some $\delta > 0$, how large must N be before we can guarantee that with probability at least 1δ , training error will be within ϵ of generalization error?
 - Set $\delta = 2 |\mathcal{H}| e^{-2\epsilon^2 N}$, solve N

$$N \ge \frac{1}{2\epsilon^2} \log \frac{2|\mathcal{H}|}{\delta}$$

 The training set size N that a certain method or algorithm requires in order to achieve a certain level of performance is also called the algorithm's sample complexity

$$P[\neg \exists h \in \mathcal{H} | E_{tr}(h) - E(h) | > \epsilon] = P[\forall h \in \mathcal{H} | E_{tr}(h) - E(h) | \le \epsilon]$$
$$\ge 1 - 2 |\mathcal{H}| e^{-2\epsilon^2 N}$$

• Given N and some δ , we have

•
$$|E_{tr}(h) - E(h)| \le \sqrt{\frac{1}{2N} \log \frac{2|\mathcal{H}|}{\delta}}$$

• i.e $|E_{tr}(h) - E(h)| \le \gamma$ for all $h \in \mathcal{H}$

$$P[\neg \exists h \in \mathcal{H} | E_{tr}(h) - E(h) | > \epsilon] = P[\forall h \in \mathcal{H} | E_{tr}(h) - E(h) | \le \epsilon]$$
$$\ge 1 - 2 |\mathcal{H}| e^{-2\epsilon^2 N}$$

• Given N and some δ , we have

•
$$|E_{tr}(h) - E(h)| \le \sqrt{\frac{1}{2N} \log \frac{2|\mathcal{H}|}{\delta}}$$

- i.e $|E_{tr}(h) E(h)| \le \gamma$ for all $h \in \mathcal{H}$
- What about the best hypothesis in training data?

• Given N and some δ , we have

•
$$|E_{tr}(h) - E(h)| \le \sqrt{\frac{1}{2N} \log \frac{2|\mathcal{H}|}{\delta}}$$

- i.e $|E_{tr}(h) E(h)| \le \gamma$ for all $h \in \mathcal{H}$
- . What about the best hypothesis in training data? $\hat{h} = \arg\min_{h \in \mathcal{H}} E_{tr}(h)$
- . Define the best hypothesis as $h^* = \arg\min_{h \in \mathcal{H}} E(h)$
- We have $E(\hat{h}) \le E_{tr}(\hat{h}) + \gamma \le E_{tr}(h^*) + \gamma \le E(h^*) + 2\gamma$

- . What about the best hypothesis in training data? $\hat{h} = \arg\min_{h \in \mathscr{H}} E_{tr}(h)$
 - . Define the best hypothesis as $h^* = \arg\min_{h \in \mathcal{H}} E(h)$
 - We have $E(\hat{h}) \leq E_{tr}(\hat{h}) + \gamma \leq E_{tr}(h^*) + \gamma \leq E(h^*) + 2\gamma$
 - So we have

$$E(\hat{h}) \le (\min_{h \in \mathcal{H}} E(h)) + 2\sqrt{\frac{1}{2N} \log \frac{2|\mathcal{H}|}{\delta}}$$

Connection with bias/variance tradeoff

- . What about the best hypothesis in training data? $\hat{h} = \arg\min_{h \in \mathscr{H}} E_{tr}(h)$
 - . Define the best hypothesis as $h^* = \arg\min_{h \in \mathcal{H}} E(h)$
 - We have $E(\hat{h}) \le E_{tr}(\hat{h}) + \gamma \le E_{tr}(h^*) + \gamma \le E(h^*) + 2\gamma$
 - · So we have

$$E(\hat{h}) \le (\min_{h \in \mathcal{H}} E(h)) + 2\sqrt{\frac{1}{2N} \log \frac{2|\mathcal{H}|}{\delta}}$$

- Connection with bias/variance tradeoff
- Further, given ϵ and some $\delta > 0$, is suffices that

•
$$N \ge \frac{1}{2\epsilon^2} \log \frac{2|\mathcal{H}|}{\delta} = O(\frac{1}{\epsilon^2} \log \frac{|\mathcal{H}|}{\delta})$$

• The event that $|E_{\rm tr}(h_1)-E(h_1)|>\epsilon$ and $|E_{\rm tr}(h_2)-E(h_2)|>\epsilon$ are largely overlapped

What can we replace $|\mathcal{H}|$ with?

• Instead of the whole input space

What can we replace $|\mathcal{H}|$ with?

- Instead of the whole input space
- Let's consider a finite set of input points

What can we replace $|\mathcal{H}|$ with?

- Instead of the whole input space
- Let's consider a finite set of input points
- How many patterns of colors can you get?

Dichotomies: mini-hypotheses

- A hypothesis: $h: \mathcal{X} \to \{-1, +1\}$
- A dichotomy: $h: \{x_1, x_2, ..., x_N\} \rightarrow \{-1, +1\}$

Dichotomies: mini-hypotheses

- A hypothesis: $h: \mathcal{X} \to \{-1, +1\}$
- A dichotomy: $h: \{x_1, x_2, ..., x_N\} \rightarrow \{-1, +1\}$
- Number of hypotheses $|\mathcal{H}|$ can be infinite
- Number of dichotomies $|\mathcal{H}(x_1, x_2, ..., x_N)|$ at most 2^N

Dichotomies: mini-hypotheses

- A hypothesis: $h: \mathcal{X} \to \{-1, +1\}$
- A dichotomy: $h: \{x_1, x_2, ..., x_N\} \rightarrow \{-1, +1\}$
- Number of hypotheses $|\mathcal{H}|$ can be infinite
- Number of dichotomies $|\mathcal{H}(x_1, x_2, ..., x_N)|$ at most 2^N
 - → Candidate for replacing | ℋ |
 - Why?

Symmetrization lemma

• Imagine we have the ghost dataset S' with also size N:

•
$$P[SUP_{h\in\mathcal{H}}|E_{tr}(h)-E(h)|>\epsilon]\leq 2P[SUP_{h\in\mathcal{H}}|E_{tr}(h)-E'_{tr}(h)|>\frac{\epsilon}{2}]$$

Growth function

• Imagine we have the ghost dataset S' with also size N:

•
$$P[SUP_{h\in\mathcal{H}}|E_{tr}(h)-E(h)|>\epsilon]\leq 2P[SUP_{h\in\mathcal{H}}|E_{tr}(h)-E'_{tr}(h)|>\frac{\epsilon}{2}]$$

• By union bound:

$$P[\mathsf{SUP}_{h \in \mathcal{H}_{S \cup S'}} | E_{tr}(h) - E_{tr}'(h) | > \frac{\epsilon}{2}] \leq |\mathcal{H}_{S \cup S'}| P[|E_{tr}(h) - E_{tr}'(h)| > \frac{\epsilon}{2}]$$

Growth function

• Imagine we have the ghost dataset S' with also size N:

•
$$P[SUP_{h\in\mathcal{H}}|E_{tr}(h)-E(h)|>\epsilon]\leq 2P[SUP_{h\in\mathcal{H}}|E_{tr}(h)-E'_{tr}(h)|>\frac{\epsilon}{2}]$$

• By union bound:

$$P[\mathsf{SUP}_{h \in \mathscr{H}_{S \cup S'}} | E_{tr}(h) - E'_{tr}(h) | > \frac{\epsilon}{2}] \leq |\mathscr{H}_{S \cup S'}| P[|E_{tr}(h) - E'_{tr}(h)| > \frac{\epsilon}{2}]$$

• How to bound $|\mathcal{H}_{S\cup S'}|$

Deduce the dimension

- Why do we need to consider every possible hypothesis?
 - $P[SUP_{h \in \mathcal{H}} | E_{tr}(h) E(h) | > \epsilon]$
 - If we omit one hypothesis, we might miss the biggest gap
- However, are the events of each hypothesis having a big generalization gap are likely to be independent?

The growth function

• The growth function counts the most dichotomies on any N points:

$$\mathbf{m}_{\mathcal{H}}(N) = \max_{x_1, \dots, x_N \in \mathcal{X}} | \mathcal{H}(x_1, \dots, x_N) |$$

The growth function

The growth function counts the most dichotomies on any N points:

$$\mathbf{m}_{\mathcal{H}}(N) = \max_{x_1, \dots, x_N \in \mathcal{X}} | \mathcal{H}(x_1, \dots, x_N) |$$

The growth function satisfies:

$$m_{\mathcal{H}}(N) \leq 2^N$$
 this growth function should only satisfy this binary classification?

• Compute $m_{\mathcal{H}}(3)$ in 2-D space

• What's $|\mathcal{H}(x_1, x_2, x_3)|$?

• Compute $m_{\mathcal{H}}(3)$ in 2-D space when \mathcal{H} is perceptron (linear hyperplanes)

• Compute $m_{\mathcal{H}}(3)$ in 2-D space when \mathcal{H} is perceptron (linear hyperplanes)

• Compute $m_{\mathscr{H}}(3)$ in 2-D space when \mathscr{H} is perceptron (linear hyperplanes)

Doesn't matter because we only counts the most dichotomies

• What's $m_{\mathcal{H}}(4)$?

- What's $m_{\mathcal{H}}(4)$?
- (At least) missing two dichotomies:

- What's $m_{\mathcal{H}}(4)$?
- (At least) missing two dichotomies:

•
$$m_{\mathcal{H}}(4) = 14 < 2^4$$

Example I: positive rays

Example II: positive intervals

- \mathcal{H} is set of $h: \mathbb{R}^2 \to \{-1, +1\}$
 - h(x) = +1 is convex
- How many dichotomies can we generate?

- \mathcal{H} is set of $h: \mathbb{R}^2 \to \{-1, +1\}$
 - h(x) = +1 is convex
- How many dichotomies can we generate?

- \mathcal{H} is set of $h: \mathbb{R}^2 \to \{-1, +1\}$
 - h(x) = +1 is convex
- How many dichotomies can we generate?

- \mathcal{H} is set of $h: \mathbb{R}^2 \to \{-1, +1\}$
 - h(x) = +1 is convex
- $m_{\mathscr{H}}(N) = 2^N$ for any $N \Rightarrow$ We say the N points are "shattered" by h

Shattered

• Given a set $S = \{x^{(i)}, ..., x^{(d)}\}$ (no relation to the training set) of points $x^{(i)} \in \mathcal{X}$, we say that \mathcal{H} shatters S if \mathcal{H} can realize any labeling on S. I.e, if for any set of labels $\{y^{(i)}, ..., y^{(d)}\}$, there exist some $h \in \mathcal{H}$ so that $h(x^{(i)}) = y^{(i)}$ for all i = 1, ..., d

The 3 growth functions

- \mathscr{H} is positive rays:
 - $m_{\mathcal{H}}(N) = N + 1$
- \mathcal{H} is positive intervals:

•
$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

- \mathcal{H} is convex sets:
 - $m_{\mathcal{H}}(N) = 2^N$

we want polynomial; we do not want shattered case: as the size of the hypothesis could be much reduced

What's next?

- Remember the inequality
 - $\mathbb{P}[|E_{\mathsf{in}} E_{\mathsf{out}}| > \epsilon] \le 2 |\mathcal{H}| e^{-2\epsilon^2 N}$
- What happens if we replace $|\mathcal{H}|$ by $m_{\mathcal{H}}(N)$
 - $m_{\mathcal{H}}(N)$ polynomial \Rightarrow Good!

What's next?

- · Remember the inequality
 - $\mathbb{P}[|E_{\mathsf{tr}} E| > \epsilon] \le 2 |\mathcal{H}| e^{-2\epsilon^2 N}$
- What happens if we replace $|\mathcal{H}|$ by $m_{\mathcal{H}}(N)$
 - $m_{\mathcal{H}}(N)$ polynomial \Rightarrow Good!
 - Why?

how to derive the growth function for other hypothesis (more complicated model)

• How to show $m_{\mathscr{H}}(N)$ is polynomial?