Long	Oniz	#1 (04	Feb).	CSC-2259.	Discrete	Structures,	Sn	2019
Long	Quiz	$\pi_{\mathbf{I}}$ (0.	ı renj.	CSC-2239.	DISCICIO	on actures,	ъþ	4017

LastName:

FirstName

Your answers must be to the point. Total = 100; marks for each question is shown in [].

1. State one of the DeMorgan's laws and one of the Distributive laws for set operations. [2+3]

(a) (b)

Complete the equations below in terms of |A|, |B|, $|A \cap B|$, etc. [2+4+4]

- (a) $|A \cup B| = \dots$
- (b) $|A \cup B \cup C| = \dots$
- (c) $\max |A \cup B \cup C| = \dots$ and $\min |A \cup B \cup C| = \dots$
- 2. For three sets A, B, and C, express the numbers in (a)-(b) in terms of |A|, |B|, |C|, $|A \cap B|$, ..., $|A \cap B \cap C|$. [3+5+2]
 - (a) #(items in A and not in $B \cup C$) =
 - (b) #(items in exactly 1 of A, B, and C) =
 - (c) Draw a Venn-diagram and shade the area for items in exactly 1 of A, B, and C.

- 3. Complete the sentences below. [2+(4+2)+2+2+3]
 - (i) The number of *m*-subsets of the *n*-set $\{x_1, x_2, \dots, x_n\}$ is denoted by $C(\dots, \dots)$.
 - (ii) For $m \ge 1$, the m-subsets of $\{x_1, x_2, \dots, x_n\}$ are of two types: (a) does not contain x_n , and (b) contains x_n . For n = 4 and m = 3, show the m-subsets of type (a) and type (b) below; also show the (m-1)-subsets of the (n-1)-set $\{x_1, x_2, x_3\}$.

3-subsets of $\{x_1, \dots, x_4\}$ not containing x_4 (type (a))	3-subsets of $\{x_1, \dots, x_4\}$ containing x_4 (type (b))	2-subsets of $\{x_1, x_2, x_3\}$

Draw lines from subsets in column 2 to those in column 3 to show a suitable relationship between them.

- (iv) This gives the total number of *m*-subsets of an *n*-set =
- (v) Thus, =

	(a)	The total number of subsets of an n -set =
	(b)	$C(n,0) + C(n,1) + \dots + C(n,n) = $ the total
	(c)	Thus, $2^n = \dots$
	(d)	The symmetry property of $C(n, m)$ means $C(n, m) = \dots$
5.	the mer	spose Ω = Universe of discourse (the set of things under consideration), H = the set of things in Ω that I have, and W = set of things in Ω that I want. Express each of the following using set notations (subset, union, intersection, complete, etc) unless indicated otherwise. (Use of Venn-diagram's maybe helpful.) [2+2+2+2+2] I have every thing I want:
	(b)	I have nothing that I want:
	(c)	I only have things that I want (i.e., I don't have any thing that I don't want):
	(d)	I have nothing that I don't want:
	(e)	Express $H \supseteq W^c$ in another way using set notations but without using complement.
	(f)	Complete the sentence below to express in English the situation $H\supseteq W^c$ (without using set terminology). I have
6.		e a clean and efficient code for testing whether $H = W$ or not. Do the same for testing $H \subseteq W$. Assume that sets H are given as $0/1$ -arrays. [10+4]

- 7. Consider a given Ω and a subset H of Ω , where $0 \le m = |H| \le |\Omega| = n$. [2+2+2]
 - (a) Give #(subsets W of Ω such that $H \subseteq W$).
 - (b) Give #(subsets W' of Ω such that $H \cap W' = \emptyset$).

4. Complete the statements equations below. [2+2+2+2]

(c) How are the sets W in (a) related to the sets W' in (b)?

8	Suppose we	have 1	0 straigtlines	I. I	I	[3+4+3]
ο.	Suppose we	mave 1	o suargumes	$L_1, L_2,,$	L 10.	JT4TJ

- (a) Why is the maximum number of intersection points of these lines is C(10, 2) = 45?
- (b) Give two reasons why the maximum number of triangles formed by these lines must be less than C(45, 3)?
 - (i)
 - (ii)
- (c) Explain why the maximum number of triangles formed by these intersection points is 120?
- 9. Consider an $m \times n$ 2-dimensional grid of unit squares; shown below is such a grid for m = 4 and n = 3.

Answer the following questions. [4+2+(2+2)]

- (a) Give the number of rectangles of area 2 (i.e., 2×1 or 1×2) that can be formed using the unit squares for an $m\times n$ grid.
- (b) Give the number of paths from the left bottom corner (0, 0) to the top right corner (m, n) when we consider only east-moves and north-moves (but avoid west-moves and south-moves).
- (c) If we have an $m \times n \times p$ 3-dimensional grid, then give the number of paths from (0, 0, 0) to (m, n, p) when we only consider horizontal east-moves (E), horizontal north-moves (N), and vertical upward-moves (U).

Give one such move-sequence for m = 4, n = 3, p = 3.