Arkadiusz Ułanowski, 320747, grupa 6, projekt 2, zadanie 43

Problematyka. Wprowadzenie

Ustalmy pewne ciało K, pewna przestrzeń liniowa nad tym ciałem: U, pewne przekształcenie liniowe $A:U\to U$. Przypomnienie: niezerowy wektor $v\in U$ taki, że istnieje $\lambda\in K$, że Av= λv nazywamy wektorem własnym przekształcenia liniowego A, a tę odpowiadającą mu wartość λ – wartością własną przekształcenia A. Opisując to słownie – wektor własny przekształcenia to wektor taki, którego skalowanie przez pewien skalar z wspomnianego wcześniej ciała daje taki sam efekt, co działanie na ten wektor przekształceniem. Oczywiście A ma reprezentację macierzowa, więc w dalszej części mówił będę o wektorach i wartościach własnych macierzy, mając na myśli wektory i wartości własne przekształceń.

W zadaniu projektowym przedstawić miałem **metodę Wielandta** – metodę numeryczną pozwalającą, dla pewnej klasy macierzy nad ciałem K, na znalezienie wartości własnej leżącej najbliżej podanej wartości $\mu \in K$. W kolejnych sekcjach zamieszczam ideę metody, a także testy jej własności numerycznych.

O metodzie Wielandta

Metoda numeryczna wykorzystuje następujące twierdzenia algebraiczne:

1. jeżeli macierz $M \in \mathbb{C}^{n \times n}$ ma n liniowo niezależnych wektorów własnych, taką niezerową wartość własną (ozn. λ_n , wektor jej odpowiadający – v_n), której moduł jest ostro mniejszy od modułów pozostałych wartości własnych, a dla wektora $w \in \mathbb{C}^n$ prawdą jest, że po zapisaniu go w bazie wektorów własnych macierzy M współczynnik przed v_n jest niezerowy,

to $\lim_{k\to\infty}\widetilde{M^{-k}w}=\pm\widetilde{v_n}, \tag{1}$ gdzie przez oznaczenie \tilde{v} rozumiemy znormowanie wektora zgodnie z ustaloną wcześniej norma wektorowa,

- 2. jeżeli λ jest wartością własną $M \in \mathbb{C}^{n \times n}$, $\mu \in \mathbb{C}$, to $\lambda \mu$ jest wartością własną $M \mu I_n$,
- 3. jeżeli v jest wektorem własnym $M \in \mathbb{C}^{n \times n}$, $\mu \in \mathbb{C}$, to v jest też wektorem własnym $M - \mu I_n$
- 4. jeżeli v jest wektorem własnym macierzy $M \in \mathbb{C}^{n \times n}$, to wartość wyrażenia

$$\frac{v^{\dagger}Mv}{v^{\dagger}v},\tag{2}$$

gdzie przez v^{\dagger} rozumie się sprzężenie hermitowskie v, stanowi odpowiadającą mu wartość własną.

Powyższe można uogólnić na dowolne ciało, jednak dla ustalenia uwagi pozostańmy przy ciele liczb zespolonych. Poszukiwanie wartości własnej $M \in \mathbb{C}^{n \times n}$ leżącej najbliżej $\mu \in \mathbb{C}$ przebiega następująco: konstruujemy macierz $M' = M - \mu I_n$. Ponieważ wartości własne M' są przesunięte względem wartości własnych M jak w fakcie 2, jeżeli w M istniała wartość własna leżąca najbliżej μ , to odpowiednia jej wartość własna M' jest wartością własną o najmniejszym module. Jeżeli M' i pewien wektor $w \in \mathbb{C}^n$ spełniają pozostałe założenia tw. 1, możemy skonstruować ciąg taki, jak w (1), zbieżny do wektora własnego M', który to, z tw. 3, jest też wektorem własnym M – wektorem odpowiadającym szukanej przez nas wartości własnej leżącej najbliżej μ . Po znalezieniu tego wektora odpowiadającą mu wartość własną wyliczyć można z (2).

Eksperymenty numeryczne

Spadek błędu ze wzrostem liczby iteracji

Dla następującej macierzy:

$$A = \begin{bmatrix} 267 & 222 & 58 & -80 \\ -23 & -20 & -11 & 12 \\ 506 & 426 & 115 & -154 \\ 1229 & 1023 & 253 & -355 \end{bmatrix}$$

o wartościach własnych: $\lambda_1=1,\ \lambda_2=-2,\ \lambda_3=5,\ \lambda_4=3$ zastosowano metodę Wielandta z wektorem początkowym $w=\begin{bmatrix}0.5&0.5&0.5\end{bmatrix}^{\mathsf{T}}$ do znalezienia wartości własnej leżącej najbliżej $\mu=7+\mathrm{i}.$ Zauważmy, że wartością własną leżącą najbliżej μ jest λ_3 , drugą najbliższą jest λ_4 .

 $\frac{|\lambda_3 - \mu|}{|\lambda_4 - \mu|} = \frac{|5 - 7 - i|}{|3 - 7 - i|} = \sqrt{\frac{5}{17}} \approx 0.542326$

Ciąg przybliżeń wektora własnego ozn. przez $v_k = (A - \mu I_4)^{-k} w$. Wtedy

$$\mu_k = \frac{v_k^{\dagger} A v_k}{v_k^{\dagger} v_k}$$

jest ciągiem przybliżeń wartości własnej leżącej najbliżej μ , czyli $\lambda_3=5$. Przez ϵ_k oznaczmy błąd w k-tej iteracji, tj. $\epsilon_k=|\lambda_3-\mu_k|$. Obserwujemy:

k	$\mu_k \; ({\rm zaokr.})$	ϵ_k	$\epsilon_k/\epsilon_{k-1}$
1	7.0013 + 1.0068i	2.2402	nie dotyczy
2	5.8294 + 0.7129i	1.0936	0.48817
3	5.2836 + 0.3781i	0.4726	0.43217
4	5.0732 + 0.1809i	0.1951	0.41280
5	5.0074 + 0.0773i	0.0777	0.39813
:			
15	≈ 5	$6.7698 * 10^{-6}$	0.51628
16	≈ 5	$3.6798 * 10^{-6}$	0.54355
17	≈ 5	$2.0254 * 10^{-6}$	0.55042
18	≈ 5	$1.1131 * 10^{-6}$	0.54959
19	≈ 5	$6.0900*10^{-7}$	0.54710
20	≈ 5	$3.3184 * 10^{-7}$	0.54490
21	≈ 5	$1.8031*10^{-7}$	0.54337
22	≈ 5	$9.7809 * 10^{-8}$	0.54244

Ilorazy kolejnych błędów od pewnego momentu przybliżają wyliczone wcześniej $\frac{|\lambda_3 - \mu|}{|\lambda_4 - \mu|}$. Jest to własność metody – błąd w kolejnej iteracji jest mniejszy od błędu z poprzedniej z mnożnikiem takim, jak dobra była nasza startowa wartość μ wokół której szukamy, czyli ilorazem odległości μ od najbliższej jej wartości własnej i odległości μ od drugiej najbliższej jej wartości własnej. Rzuca się tu w oczy wada metody – jeżeli nasze początkowe "zgadnięcie" wartości własnej μ będzie kiepskie, iloraz ten będzie duży i błąd może maleć z niewielkim mnożnikiem, a przy odrobinie nieszczęścia – wcale. Metoda aż prosi się o modyfikację, która pozwoliłaby na zmniejszanie ilorazu w kolejnych iteracjach: początkowe μ nazwijmy μ_0 , w nazwijmy v_0 , wtedy ciąg $v_k = (A - \mu_{k-1}I_n)^{-1}v_{k-1}$ (wykorzystujemy ciąg przybliżeń w. własnej zamiast sztywnie pozostawać przy początkowym μ). W literaturze anglojęzycznej taka modyfikacja funkcjonuje pod nazwą Rayleigh quotient iteration.