

TMA1201 Discrete Structures & Probability Faculty of Computing & Informatics Multimedia University

What you will learn in this lecture:

- Mathematical Induction
- Strong Induction

Motivation

Consider the following property of positive integer:

The sum of the first n positive integers is $\frac{(n)(n+1)}{2}$

Often such property (and many others) can be represented as a predicate, P(n), and the property said that P(n) is true for all positive integers n.

How to prove them?

Use mathematical induction

The Principles of Mathematical Induction

The Principles of Mathematical Induction:

A technique for proving certain types of mathematical statements is true for all positive integers, or for all positive integers from some point on.

The Principles of Mathematical Induction

Let P(n) be a proposition depending on n, where n is a **positive** integer.

To prove P(n) is true for all positive integers, it suffices to prove:

- *P*(1) is true
- For all $k \ge 1$, P(k + 1) is true whenever P(k) is true: $P(k) \rightarrow P(k + 1)$

$$[P(1) \land \forall k \{P(k) \rightarrow P(k+1)\}] \Rightarrow \forall n P(n)$$

The 3 Steps of Mathematical Induction (for nonnegative or positive integers)

1. Inductive base:

Show that P(base value) is true. Note that base value not always =1.

2. Inductive hypothesis:

Assume P(k) is true.

3. Inductive step:

Show that P(k + 1) is true on the basis of the inductive hypothesis.

Example 1: Use Mathematical Induction to prove that the sum of the first n positive integers is $\frac{n(n+1)}{2}$.

Solution:

Let P(n) be the proposition that $1+2+3+\cdots+n=\frac{n(n+1)}{2}$, for n=1,2,3,...

Proof by induction.

3) Inductive step:
$$n = k + 1$$

 $1 + 2 + 3 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{k(k+1) + 2(k+1)}{2} = \frac{(k+1)(k+2)}{2}$

We have shown that P(k + 1) is true whenever P(k) is true. By mathematical induction, P(n) is true for all $n \ge 1$.

Example 2: Use mathematical induction to prove the inequality $n < 2^n$ for all positive integers n.

Solution:

Let P(n) be the proposition $n < 2^n$, for n = 1, 2, 3, ...

- 1) Inductive base: n = 1LHS of the inequality = 1, RHS of the inequality = $2^1 = 2$ Since 1 < 2, P(1) is true.
- 2) Inductive hypothesis: n = kAssume P(k) is true, which means $k < 2^k$.
- 3) Inductive step: n = k + 1We want to show that P(k+1) is true, i.e. we want to show that $k+1 < 2^{k+1}$. Now, $k+1 \le k+k=2k < 2(2^k)=2^{k+1}$. By assuming P(k) is true, we have shown that P(k+1) is true.

Thus by mathematical induction, P(n) is true for all $n \ge 1$.

Strong Induction

- Similar steps as the ordinary mathematical induction.
- However, the basis step may contain the proof for more than one initial values.
- Also the assumption is made for not just one value of *n*, but for all values throughout *k*.

Example 3:

Prove that every integer in the sequence a_0 , a_1 , a_2 , ... that is defines as $a_0 = 2$, $a_1 = 6$, $a_n = a_{n-1} + a_{n-2}$ for all n >= 2 is even.

Solution:

1) Inductive base: n = 0 and n = 1Given that $a_0 = 2$, $a_1 = 6$ thus a_n is even for n = 0 and n = 1

- 2) Inductive hypothesis: n = 0, 1, 2, ... kAssume that a_n is even for n = 0, 1, 2, ... k
- 3) Inductive step: n = k + 1From inductive hypothesis, a_k is even so $a_k = 2m$ for integer m and $a_{k-1} = 2n$ for integer n

$$a_{k+1} = a_k + a_{k-1} = 2m + 2n = 2(m+n)$$

Thus a_{k+1} is even whenever a_n is even for n = 0, 1, 2, ... k

Try this:

Use mathematical induction to prove that 3 divides $n^3 - n$, where n is positive integer.

11

Summary

We have discussed the concepts related to the principles of mathematical induction:

- There are 3 steps to prove by induction (ordinary or strong):
 - 1. Inductive base
 - 2. Inductive hypothesis
 - 3. Inductive step
- You should always take note on the differences between ordinary induction and strong induction.

Exercise 1

Infer a formula for the sum of the first *n* positive odd integers. Then using mathematical induction, prove your inference.

Solution:

13

Exercise 2

Use mathematical induction to show that for all positive integers $n \ge 4$,

Solution: