

Accelerating DICe on an FPGA

Atiyeh Panahi, Keaten Stokke Advisor: David Andrews September, 4th 2018

Thank You for Supporting this Project!

Atiyeh Panahi, Keaten Stokke

Advisor: Dr. David Andrews

Accomplishments to Date

HDL Implementation

- Beta version nearly finished
 - Need guidance on data output format to complete last IP
 - FPGA inputs & outputs need to be established
- Current system processing is about 1/100th to scale
 - Parameter/BRAM/etc scale up required to handle full image size and increased frame count
 - Core functionality complete. Not all DICe's functionality accounted for yet
- Not fully functional yet!

What We've Accomplished

Design

- DICe software split into multiple IP's
 - Each IP handles a specific function
 - Design Modularized to support future development
- State machine structured IP's
 - FSM's enable more control over operations
 - Promotes better scalability and performance
- Floating-point function improvements
 - Removed the "function" keyword; caused timing errors and constraints
 - Building functions as FSM's yielded major clock speedup
 - Previous clock speed: <30 MHz; Current clock speed: 150 MHz

What We've Accomplished

MicroBlaze

- The Xilinx soft processor is the powerhouse within the system
 - Global system controller
 - Allows introduction of operating system, middleware, device drivers
 - Helps to debug the system

AXI4 Lite Standard Bus

- MicroBlaze controls the system-wide AXI4-Lite bus
- Allows for processor control over each individual IP
- Speeds up testing by bypassing other IP's

• Ethernet Driver

MicroBlaze will control the Ethernet that streams the FPGA's inputs

Current Status

Design is working

- Successful simulation and synthesis
 - Design meets timing constraints
 - Identical outputs are produced

Testing Data

- Design compares just 2 frames
 - Used to verify IP functionality, buffers, end to end flow
 - Image size used (x1)
 - 64*48 = 3,072 pixels, 98,304 bits at 32 bits per pixel (IEEE format)
 - Actual image size needed (x100)
 - 640*480 = 307,200 pixels, 9,830,400 bits at 32 bits per pixel (IEEE format)
 - Scaling now only requires parameter changes, not to FSMs, system architecture

Reference image VS. Deformed image

HDL VS. GUI - Execution time comparison

Testbench	Frequency	HDL Exe Time	DICe Exe Time
64*48 – BRAM	100 MHz	3.5 ms	13 ms/ 58 ms
64*48 – BRAM	150 MHz	2.5 ms	13 ms/ 58 ms

Linear growth expected!

Resource Utilization

• Reports from 150 MHz design

Resource	Utilization	Available	Utilization %	
LUT	19108	203800	9.38	
LUTRAM	404	64000	0.63	
FF	14821	407600	3.64	
BRAM	45	445	10.11	
DSP	12	840	1.43	
IO	3	500	0.60	
BUFG	6	32	18.75	
MMCM	1	10	10.00	

Simulation Waveforms

Synthesis Waveforms

Name	Value	Direction	Activity	VIO
🖶 👆 design_1_i/Gamma_0_addr_def_ints_0[11:0]	[H] BF8	Input		hw_vio_4
design_1_i/Gamma_0_addr_grad_y_0[11:0]	[H] BF8	Input		hw_vio_4
design_1_i/Gamma_0_addr_ref_ints_0[11:0]	[H] BF8	Input		hw_vio_4
⊕ design_1_i/Gamma_0_debug1_0[31:0]	[H] 7F80_0000	Input		hw_vio_4
🖶 🍓 design_1_i/Gamma_0_debug2_0[31:0]	[H] 3830_0000	Input		hw_vio_4
design_1_i/Gamma_0_debug4_0[31:0]	[H] 3830_0000	Input		hw_vio_4
design_1_i/Gamma_0_debug6_0[31:0]	[H] 41F0_0000	Input		hw_vio_4
te design_1_i/Gamma_0_disp_x_0[31:0]	[H] 0000_0000	Input		hw_vio_4
b design_1_i/Gamma_0_gam_done_0	[B] 1	Input		hw_vio_4
te design_1_i/Gamma_0_addr_grad_x_0[11:0]	[H] BF8	Input		hw_vio_4
🖶 👆 design_1_i/Gamma_0_debug3_0[31:0]	[H] 3830_0000	Input		hw_vio_4
⊕ design_1_i/Gamma_0_debug5_0[31:0]	[H] 3830_0000	Input		hw_vio_4
te design_1_i/Gamma_0_disp_y_0[31:0]	[H] 3830_0000	Input		hw_vio_4
⊕ design_1_i/Gamma_0_disp_z_0[31:0]	[H] 3FC8_F57D	Input		hw_vio_4

Demo

Let's show you some of our work in Vivado!

Next Steps

Full-scale DICe HDL

- Scale up BRAM sizing (x100)
 - Expecting images of 640*480 = 307,200 pixels
 - Handle a much larger frame count

Extend Functionality

- Ability to have multiple subsets (currently just 1)
- Handle various subset shapes (based on required needs)

Network I/O

- Python program to intermediate (start, video conversion, FPGA communication)
- Ethernet IP/Drivers to stream images
- Desired output type? Text file?

Next Steps

Optimization & Performance

• Memory and resources

Reduce memory and resource usage to account for design scale-up

Increased clock speed

- Current design operates at 150 MHz
- Potential to increase clock speed to 200 MHz

System-wide speed-up

- Leverage ability to parallelize multiple IP's
- Implement various pipelining techniques
- Compare HDL and HLS results for efficiency

Clean up

- Improve readability of Verilog code
- Will enable ease of future development

Questions From Us...

- 1) Are square subsets okay, or are unique subset shapes required?
- 2) Can we assume we will be sticking with black & white video?
- 3) Do you want us to set up a GitHub repository of our work and share the link to monitor progress?
- 4) Would it be possible to get a screen-recorded video of how your teams use the DICe software on some sample video, along with the total execution time?
- 5) I/O specifics for the FPGA

Questions For Us?

Honeywell