Differentiable Probabilistic Models

William Watson

nextbillyonair@gmail.com

Abstract

d

Contents

1	Intro	oduction	4
	1.1	Philosophy	4
2	Preli	minary	4
	2.1	Gradients	4
	2.2	Jacobian	4
	2.3	Hessian	4
	2.4	Newton Optimization	4
3	Distr	ributions	4
	3.1	Distribution	4
	3.2	Arcsine	4
	3.3	Bernoulli	4
	3.4	Beta	4
	3.5	Categorical	4
	3.6	Cauchy	4
	3.7	Chi Square	4
	3.8	Conditional Model	4
	3.9	Convolution	4
	3.10	Data	4
	3.11	Dirac Delta	4
	3.12	Dirichlet	4
	3.13	Exponential	4
	3.14	Fisher-Snedcor (F-Distribution)	4
	3.15	Gamma	4
	3.16	Generator	4
	3.17	Gumbel Softmax	4
	3.18	Gumbel	4
	3.19	Half Cauchy	4
	3.20	Half Normal	4
	3.21	Hyperbolic Secant	4
	3.22	Langevin	4
	3.23	Laplace	4
	3.24	Log Cauchy	4
	3.25	Log Laplace	4
	3.26	Log Normal	4
		Logistic	4
	3.28	Normal (Multivariate)	4
	3.29	Rayleigh	4

	3.30	Relaxed Bernoulli	4
	3.31	Student T	4
	3.32	Transformed Distribution	4
	3.33	Uniform	4
4	Mixt	ure Models	4
	4.1	Mixture Model	4
	4.2	Gumbel Mixture Model	4
	4.3	Infinite Mixture Model	4
5	Tran	sforms	4
	5.1	Transform	_
	5.2	Inverse Transform	_
	5.3	Affine	_
	5.4	Exp	_
	5.5	Expm1	_
	5.6	Gumbel	_
	5.7	Log	_
	5.8	Logit	_
	5.9	Power	_
		F	_
	5.11	Sigmoid	_
	5.12	SinhArcsinh	_
	5.13	Softplus	_
			_
			_
	5.16	Tanh	4
6	Dive	rgences	4
	6.1	Cross-Entropy	4
	6.2	Perplexity	4
	6.3	Forward KL Divergence	_
	6.4	Reverse KL Divergence	_
	6.5	Jensen-Shannon Divergence	_
	6.6	Earth Mover's Distance	_
7	ELB	0	4
8	Mod	els	4
	8.1	Linear Model	4
	8.2	Linear Regression (Normal)	_

	8.3	L1 Regression (Laplace)	4
	8.4	Ridge Regression (Normal + Normal Prior on Weights)	4
	8.5	Lasso Regression (Normal + Laplace Prior on Weights)	4
	8.6	Logistic Regression (Bernoulli)	4
	8.7	Softmax Regression (Categorical)	4
9	Adve	ersarial Loss	4
	9.1	Adversarial Loss	4
	9.2	GAN Loss	4
	9.3	MMGAN Loss	4
	9.4	WGAN Loss	4
	9.5	LSGAN Loss	4
	9.6	Gradient Penalty	4
	9.7	Spectral Norm	4
10	Mon	te Carlo	4
10		Monte Carlo Approximation	4
10	10.1		_
10	10.1 10.2	Monte Carlo Approximation	4
10	10.1 10.2 10.3	Monte Carlo Approximation	4
10	10.1 10.2 10.3 10.4	Monte Carlo Approximation	4 4
10	10.1 10.2 10.3 10.4 10.5	Monte Carlo Approximation	4 4 4
10	10.1 10.2 10.3 10.4 10.5	Monte Carlo Approximation	4 4 4 4
	10.1 10.2 10.3 10.4 10.5 10.6	Monte Carlo Approximation	4 4 4 4 4
	10.1 10.2 10.3 10.4 10.5 10.6	Monte Carlo Approximation Linear Congruential Generator Inverse Transform Sampling Box-Muller Marsaglia-Bray Rejection Sampling kov Chain Monte Carlo (MCMC)	4 4 4 4 4
	10.1 10.2 10.3 10.4 10.5 10.6 Mar l	Monte Carlo Approximation Linear Congruential Generator Inverse Transform Sampling Box-Muller Marsaglia-Bray Rejection Sampling kov Chain Monte Carlo (MCMC) Metropolis	4 4 4 4 4 4
	10.1 10.2 10.3 10.4 10.5 10.6 Mari	Monte Carlo Approximation Linear Congruential Generator Inverse Transform Sampling Box-Muller Marsaglia-Bray Rejection Sampling kov Chain Monte Carlo (MCMC) Metropolis Metropolis-Hastings	4 4 4 4 4 4
	10.1 10.2 10.3 10.4 10.5 10.6 Mar 11.1 11.2 11.3	Monte Carlo Approximation Linear Congruential Generator Inverse Transform Sampling Box-Muller Marsaglia-Bray Rejection Sampling kov Chain Monte Carlo (MCMC) Metropolis	4 4 4 4 4 4

1 Introduction

- 1.1 Philosophy
- 2 Preliminary
- 2.1 Kronecker Product
- 2.2 Gradients
- 2.3 Jacobian
- 2.4 Hessian
- 2.5 Newton Optimization
- 3 Distributions
- 3.1 Distribution
- 3.2 Arcsine
- 3.3 Bernoulli
- 3.4 Beta
- 3.5 Categorical
- 3.6 Cauchy
- 3.7 Chi Square
- 3.8 Conditional Model
- 3.9 Convolution
- 3.10 Data
- 3.11 Dirac Delta
- 3.12 Dirichlet
- 3.13 Exponential
- 3.14 Fisher-Snedcor (F-Distribution)
- **3.15** Gamma
- 3.16 Generator
- 3.17 Gumbel Softmax
- 3.18 Gumbel
- 3.19 Half Cauchy
- 3.20 Half Normal
- 3.21 Hyperbolic Secant
- 3.22 Langevin
- 3.23 Laplace
- 3.24 Log Cauchy
- 3.25 Log Laplace
- 3.26 Log Normal
- 3.27 Logistic