Solution

$$\int \frac{1}{\sqrt{x^2 + 6x + 5}} dx = \int \frac{1}{\sqrt{x^2 + 6x + 9 - 9 + 5}} dx$$
$$= \int \frac{1}{\sqrt{(x+3)^2 - 9 + 5}} dx$$
$$= \int \frac{1}{\sqrt{(x+3)^2 - 4}} dx$$

If u = x + 3, then du = dx so the integral above is equal to

$$\int \frac{1}{\sqrt{u^2 - 4}} \, du$$

The integral above can be completed several ways:

1. Using the substitution $w = \frac{u}{2}$,

$$\int \frac{1}{\sqrt{u^2 - 4}} du = \int \frac{1}{\sqrt{4(\frac{1}{4}u^2 - 1)}} du$$

$$= \frac{1}{2} \int \frac{1}{\sqrt{\frac{1}{4}u^2 - 1}} du$$

$$= \frac{1}{2} \int \frac{1}{\sqrt{(\frac{u}{2})^2 - 1}} du$$

$$= \frac{1}{2} \cdot 2 \int \frac{1}{\sqrt{w^2 - 1}} dw$$

$$= \int \frac{1}{\sqrt{w^2 - 1}} dw$$

Let $w = 1 \sec \theta$ with θ in quadrants I or III. So, $dw = 1 \sec \theta \tan \theta d\theta$ and we use $\sec \theta = \frac{w}{1}$ to draw a right triangle with w as the hypotenuse side and 1 as the adjacent side. The side opposite to θ is $\sqrt{w^2 - 1}$, which is found using the Pythagorean Theorem, and we have

Then $\tan \theta = \frac{\sqrt{w^2 - 1}}{1}$. Based on this equation, we will use $1 \tan \theta = \sqrt{w^2 - 1}$ if it is helpful. Since $\cos \theta = \frac{1}{w}$, we will use $w = \frac{1}{\cos \theta} = 1 \sec \theta$ if it is helpful.

So the integral becomes

$$\int \frac{1}{\sqrt{w^2 - 1}} dw = \int \frac{1}{\tan \theta} \sec \theta \tan \theta d\theta$$

$$= \int \sec \theta d\theta$$

$$= \ln|\tan \theta + \sec \theta| + C$$

$$= \ln\left|\sqrt{w^2 - 1} + w\right| + C$$

$$= \ln\left|\sqrt{(u/2)^2 - 1} + \frac{u}{2}\right| + C$$

$$= \ln\left|\sqrt{((x+3)/2)^2 - 1} + \frac{x+3}{2}\right| + C$$

1

2. An alternate method (probably the more typical method) to find

$$\int \frac{1}{\sqrt{u^2 - 4}} \, du$$

is as follows: Let $u = 2 \sec \theta$ with θ in quadrants I or III. So, $du = 2 \sec \theta \tan \theta \, d\theta$ and we use $\sec \theta = \frac{u}{2}$ to draw a right triangle with u as the hypotenuse side and 2 as the adjacent side. The side opposite to θ is $\sqrt{u^2 - 4}$, which is found using the Pythagorean Theorem, and we have

Then $\tan \theta = \frac{\sqrt{u^2 - 4}}{2}$. Based on this equation, we will use $2 \tan \theta = \sqrt{u^2 - 4}$ if it is helpful. Since $\cos \theta = \frac{2}{u}$, we will use $u = \frac{2}{\cos \theta} = 2 \sec \theta$ if it is helpful.

So, the integral we have becomes

$$\int \frac{1}{\sqrt{u^2 - 4}} du = \int \frac{1}{2 \tan \theta} 2 \sec \theta \tan \theta d\theta$$

$$= \int \sec \theta d\theta$$

$$= \ln|\tan \theta + \sec \theta| + C$$

$$= \ln\left|\frac{\sqrt{u^2 - 4}}{2} + \frac{u}{2}\right| + C$$

$$= \ln\left|\frac{\sqrt{(x+3)^2 - 4}}{2} + \frac{x+3}{2}\right| + C$$