Automi a pila PushDown Automaton (PDA)

PDA

la pila può crescere arbitrariamente, ma può essere usata solo in questo modo:

- -- si guarda la cima delle pila e poi....
- → la si lascia com'è
- → push: si inseriscono nuove cose in cima alla pila
- >pop: si toglie la cima della pila

restrizione

per vedere A devo togliere gli elementi che sono sopra A e quindi li perdo

il controllo a stati finiti:

- -legge il prossimo input
- -guarda il simbolo in cima alla pila
- -fa una transizione in cui può:
- ----cambiare stato (o no)
- ----consumare l'input (o no con ε)
- ----eliminare, tenere o cambiare la cima della pila

esempio:

Lww r ={ ww r | w in {0,1}*}, sono i palindromi pari

PDA che accetta Lww^r:

- --uno stato di partenza q0 che scorre l'input e lo copia sullo stack e ad ogni passo può,
- --sia continuare
- --sia invece indovinare di aver percorso metà dell'input (nella pila c'è w^r) e quindi iniziare il match del resto dell'input (w^r) contro lo stack
- nondeterministico

se alla fine dell'input, lo stack è vuoto allora OK

Definizione di PDA:

$$P=(Q, \Sigma, \Gamma, \delta, q0, Z_0, F)$$

- --Q = insieme finito di stati, con q0 stato iniziale
- $--\Sigma$ insieme finito di simboli di input
- -- Γ insieme finito di alfabeto dello stack, con Z_0 simbolo iniziale,
- --F contenuto in Q sono gli stati finali

- -- δ è la funzione di transizione che riceve come argomento una tripla (q, a, X) dove
- -q è uno stato,
- -a è l'input corrente (o ε),
- -X è il simbolo in cima della pila (sempre non vuota per applicare δ)

 $\delta(q,a/\epsilon,X)$ è un insieme finito di coppie (p,γ) , dove p è uno stato e γ una stringa in Γ^* che rimpiazza X. Se γ è vuota allora si fa un pop, se γ =X allora lo stack non cambia e altrimenti si fa un push.

PDA per Lww r ={ ww r | w in {0,1}*}

```
P=(\{q0,q1,q2\},\{0,1\},\{0,1,Z0\},\delta,q0,Z0,\{q2\}) con \delta come segue:
```

--
$$\delta(q0,0,Z0)=\{(q0,0Z0)\}\ e\ \delta(q0,1,Z0)=\{(q0,1Z0)\}$$

--
$$\delta(q0,0,0) = \{(q0,00)\}, \delta(q0,1,0) = \{(q0,10)\} \text{ ecc.}$$

$$--\delta(q0,\epsilon,Z0) = \{(q1,Z0)\},\$$

$$\delta(q0,\epsilon,0) = \{(q1,0)\}\ e\ \delta(q0,\epsilon,1) = \{(q1,1)\}\$$

$$--\delta(q1,0,0)=\{(q1,\epsilon)\}, \delta(q1,1,1)=\{(q1,\epsilon)\}$$

$$--\delta(q1, \epsilon, Z0) = \{(q2, Z0)\},\$$

notazione grafica per PDA

- -nodi corrispondono agli stati
- -si distingue lo stato iniziale con una freccia
- -gli archi corrispondono alle transizioni e hanno etichette che rappresentano cosa succede su input e stack:

se $\delta(q,a,X)$ contiene (p, ε) allora:

PDA per Lww $=\{ww | w \text{ in } \{0,1\}^*\}$ $0, Z_0/0Z_0$ $1,Z_0/1Z_0$ 0,0/00 0,1/01 $0,0/\epsilon$ 1,0/10 $1,1/\varepsilon$ 1,1/11 q1 q0 ε , Z_0/Z_0 ε , Z_0/Z_0 ϵ , 0/0ε, 1/1

Descrizioni istantanee (ID)

supponiamo che $\delta(q,a,X)$ contenga (p,α) , allora

 $(q,aw,X\beta)$ |- $(p,w,\alpha\beta)$

come al solito rappresentiamo la chiusura di |- come |-*

calcolo del PDA di ww^r

intuizione: posso aggiungere stringhe non usate all'input e allo stack, mantenendo la computazione (simile a context freeness)

Teorema 6.5

dato un PDA P, se (q,x,α) |-* (p,y,β) , allora per ogni stringa w e γ è vero che

 $(q,xw,\alpha\gamma)$ |-* $(p,yw,\beta\gamma)$

l'inverso è falso

però vale per l'input:

Teorema 6.6

se (q,xw,α) |-* (p, yw,β) allora è vero che (q,x,α) |-* (p, y,β)

Dimostrazione: non si può rigenerare l'input, quindi w veramente non influenza il calcolo

Modalità di accettazione:

--per stato finale:

Dato P, L(P) è { w | w in Σ^* , (q0,w,Z0) |- (qf, ϵ , α), con qf stato finale}

--con stack vuoto

 $N(P)=\{w \mid w \text{ in } \Sigma^*, (q0,w,Z0) \mid -*(q,\varepsilon,\varepsilon)\}$

per un dato PDA P, L(P) e N(P) possono essere diversi

Il PDA che accetta ww^R , i palindromi di lunghezza pari, ha $N(P)=\emptyset$, ma è facile modificarlo

è sempre possibile passare da un PDA P che accetta in uno dei due modi ad un'altro P' che accetta nell'altro modo e accetta lo stesso linguaggio di P.

da P che accetta per stack vuoto a P' che accetta per stato finale $\epsilon, X_0/\epsilon$

Dimostrazione:

w è in N(P) sse è in L(P') (=>) esiste (q_0,w,Z_0) |-* (q, ϵ, ϵ) per il Teorema 6.5, (q_0,w,Z_0X_0) |-* (q, ϵ,X_0)

e per costruzione esiste

 $(q, \varepsilon, X_0) \mid - (qf, \varepsilon, \varepsilon)$

infine esiste: $(p0,w,X_0)$ |- $(q0,w,Z_0X_0)$

(<=) per costruzione una computazione di P' è: $(p0,w,X_0)|-(q0,w,Z_0X_0)|-*(q,\epsilon,X_0)|-(pf,\epsilon,\epsilon)$ dove questa è una computazione di P

<u>esempio</u>: un PDA che accetta con stack vuoto le stringhe in {i,e}* tali che il numero di e supera quello degli i (insomma sono i programmi sbagliati)

attenzione: Z_0 è Z

ma questi 2 PDA accettano proprio quello che vorremmo ?

differenza tra i 2 modi di accettazione

Da stato finale P a stack vuoto P'

 X_0 previene che P svuoti lo stack inavvertitamente (che diventerebbe accettazione in P'), visto che P non ha mosse per X_0

 $(N(P') \text{ include } L(P)) \text{ se } (q0,w,Z_0)|-*(qf, \epsilon,\alpha) \text{ allora}$ $(p0,w,X_0)|-(q0,w,Z_0X_0)|-*(qf, \epsilon,\alpha X_0)|-*(p,\epsilon,\epsilon)$ (L(P) include N(P)) è l'inversa