References

- Introduction to Modern Cryptography
 - Katz-Lindell
 - Chapter 2, Perfectly Secret Encryption

- Cryptography, Theory and Practice
 - Stinson
 - Chapter 1: Classical Cryptography
 - Chapter 2: Shannon's theory

Plan

- Motivation and background
- Measure of secrecy
- Perfect secrecy
 - Requirements long key
- ε-secrecy
 - Entropy
 - Statistical distance
 - Game-based definition

Information Theoretic Cryptography:

Confidentiality

- The oldest records from Julius Caesar (~100 BC)
- Symmetric key
- Caesar cipher:
 - $\{a,b,c...z\} \rightarrow \{0,1,...25\}$
 - Key = 3
 - 3 + plaintext
 - mod 26 mod26
 - Ciphertext 3
 - Julius → MXOLXV
- One-time-pad
 - Gilbert Vernam Joseph Mauborge : 1917
 - Stream cipher
 - Teletype+ tape

Wikipedia

Confidentiality (Shannon 1949)

- Goal: Message can only be seen by intended receiver
- Sender and receiver have a shared secret key

Enc (key, plaintext) = ciphertext Dec (key, ciphertext) = plaintext

- Example: Ceasar cipher:
- $\{a,b,c...z\} \rightarrow \{0,1,...25\}$
- Key = 3
- Enc(k, message) = 3 + message (mod 26)
- Dec(k, ciphertext) = ciphertext 3 (mod 26)

Secrecy systems Shannon 1949

- A cryptosystem is defined by a 5 tuple (%,%,%,Enc,Dec)
 - X, y, x are sets of plaintext, ciphertext and keys, respectively.
 - Enc, Dec are algorithms for encryption and decryption

Reference: Cryptography, Theory and Practice, Douglas Stinson

Secrecy systems

Passive adversary
Eavesdropping the communication

Eve knows:

- X and p(X)
- K and distribution on K, p(K) (chosen by Alice/Bob)
- Enc (K, X) =Y
- Dec (K, Y)= X
- Using these can calculate p(Y)
- p(X), $p(K) \rightarrow p(y_j)$ for all y_j

$$p(y_j) = \sum_{x_i} \sum_{\{k_t: Enc(k_t, x_i) = y_j\}} p(k_t) p(x_i)$$

Example

•
$$% = \{a,b\},$$
 $p(X=a) = 1/4,$ $p(X=b) = 3/4$
• $% = \{1,2,3\}$ $p(K=1) = 1/2,$ $p(K=2) = p(K=3) = 1/4$

•
$$\mathcal{Y} = \{1,2,3,4\}$$

•
$$p(Y = 1) = p(X = a) \times p(K = 1) = 1/4 \times 1/2 = 1/8$$

•
$$p(Y = 2) = 1/16 + 3/8 = 7/16$$

•
$$p(Y = 3) = 1/4$$

•
$$p(Y = 4) = 3/16$$

X	а	b
K		
k_1	1	2
k_2	2	3
k_3	3	4

Breaking the cipher

Publicly known:

- The algorithms
- X, K: message and key spaces

- p (X),p(K): A priori probability distributions
- \rightarrow Eve can calculate distribution on Y

"Breaking" a cipher

- Eve sees a ciphertext y (e.g. y=2)
- Finding x
- Finding k
- Which goal is less demanding?
 - Achieving it, implies the other.

Perfect Security

• An encryption system (X, Y, K, Enc, Dec) is perfectly secure if for any probability distributions on X, we have p(X|y) = p(X)

 That is for any message x, any ciphertext y satisfying p(Y=y)>0,

$$p(x|y)=p(x)$$
, for all x,y

- observing y has not changed the original probability of x
- → Distribution of messages and ciphertexts are independent
 - p(x,y) = p(x)p(y)