Primera exposición

Jorge Alejandro Rodríguez Aldana

Viernes 30 de julio de 2021

Escuela de Ciencias Físicas y Matemáticas

proyectado por una lente

Desplazamiento axial de un objeto

Problema 6:

Un objeto es ubicado a una distancia U a la izquierda de una lente delgada, y su imagen es formada a una distancia V a la izquierda del mismo lente. Si ahora el objeto se desplaza axialmente una pequeña distancia $\mathrm{d}U$ a la izquierda, halle la expresión para el desplazamiento correspondiente $\mathrm{d}V$ de la imagen. $\frac{\mathrm{d}V}{\mathrm{d}U}$ es llamada "magnificación longitudinal". Muestre que esta es igual al cuadrado de la magnificación lateral.

Figura 1: Problema 6

Problema 6:

Figura 2: Problema 6

Matrices:

$$\begin{pmatrix} 1 & U \\ 0 & 1 \end{pmatrix} \tag{1}$$

$$\begin{pmatrix} 1 & -V \\ 0 & 1 \end{pmatrix} \tag{3}$$

Matriz del sistema

$$\begin{pmatrix} 1 & -V \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -P & 1 \end{pmatrix} \begin{pmatrix} 1 & U \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1+PV & U-V+PUV \\ -P & 1-PU \end{pmatrix}$$

Buscamos el punto donde está su imagen

El elemento U - V + PUV debe ser igual a cero

(b) If B=0, the equation for y_2 reads $y_2=Ay_1+0V_1=Ay_1$. This means that all rays leaving the point O (characterized by y_1) in RP₁ will pass through the same point I (characterized by y_2) in RP₂. Thus O and I are object and image points, so that RP_1 and RP_2 are now conjugate planes. In addition, $A=y_2/y_1$ gives the magnification produced by the system in these circumstances (see Figure II.6).

Figura 3: Explicación de por que este término se anula

Un poco de álgebra

Entonces con un poco de álgebra despejamos V:

$$V - V + PUV = 0$$
$$V = \frac{U}{1 - PU}$$

Y derivando:

$$\frac{\mathrm{d}V}{\mathrm{d}U} = \frac{1}{(1 - PU)^2} \tag{4}$$

$$\mathrm{d}V = \frac{\mathrm{d}U}{(1 - PU)^2} \tag{5}$$

Tabla de referencia

System parameter	Меави	red		Special case
described	From	To	matrix elements	$n_1 = n_2 = 1$
First focal point	RP ₁	F ₁	n_1D/C	D/C
First focal length	F ₁	Нı	- n ₁ /C	- 1/C
First principal point	RP ₁	н1	$n_1(D-1)/C$	(D ~ 1) /C
First nodal point	RP ₁	L1	$(Dn_1 - n_2)/C$	(D - 1) /C
				j
Second focal point	RP ₂	F2	$-n_2A/C$	- A/C
Second focal length	H ₂	F2	- n ₂ /C	- 1/C
Second principal point	RP ₂	H ₂	$n_2(1-A)/C$	(1 - A)/C
Second nodal point	RP ₂	$_{\rm L_2}$	$(n_1 - An_2)/C$	(1 - A) /C

Figura 4: Tabla de referencia tomada del libro