Hadoop Distributed File System

ISTD, SUTD

Feb 21, 2023

Plan of Attack

- ▶ Week 10: Hadoop HDFS, Data Parallelism, MapReduce
- ▶ Week 11: Spark RDD, Spark Dataframe
- ► Week 12: Spark Scheduling, YARN

Big Data

- It is a technology?
 - Or a business problem?
- Core of the modern technology stack, because of business analytics, AI, cloud computing
- ▶ 3 Vs definition : (Volume, Velocity, Variety)
 - 2 more Vs
 - V _ _ _ _ _
 - V______

Hadoop Distributed File System

By the end of this lesson, you are able to

- Explain the file system model of HDFS
- Explain the architecture of HDFS
- Explain the replication placement strategy
- Explain the operation of HDFS client
- Explain the use of erasure coding

History of Hadoop

- ► Created in 2005
- ▶ in Yahoo! to support Nutch seach feature
- ▶ Became the industry standard for Big Data System

High level of Architecture of Hadoop

- MapReduce Data Processing Layer
- Hadoop Distributed File System Data Storage Layer
- ► YARN Resource Management Layer

Hadoop Distributed File System

- ▶ An open source implementation of the the Google File System
 - ► The Google file system, Sanjay Ghemawat, Howard Bradley Gobioff and Shun-Tak Leung, ACM SIGOPS 2005

Why a Distributed File System

- ► Challenges Google faced (then, in 2003)
 - Databases were expensive
 - ▶ They have a lot of non-table data (one of the V of Big Data)
 - ► 10s/PB
 - ▶ slow disk throughput 100-200MB/s
- But disks were cheap

Backblaze Average Cost per GB for Hard Drives

By Quarter: Q1 2009 - Q2 2017

Why Google FS

- Network File System has the following limitation
 - ► A file must reside on one and only one machine
 - No reliability guarantee
 - ► Not scalable!
 - ▶ 1 disk has 0.001 fail rate, what if we have 1000 disks in the NFS, which has no replica?
 - ► Network I/O will be high

Why Google FS

The list of features we want

- 1. Support many clients
- 2. Support many disks
- 3. Support many PBs
- 4. Fault tolerant
- 5. Read/write like normal files

No system can achieve all. Something must be let go.

Why Google FS

The list of features we want

- 1. Support many clients
- 2. Support many disks
- 3. Support many PBs
- 4. Fault tolerant
- 5. Read/write like normal files

No system can achieve all. Something must be let go.

How Google FS differs from normal files?

Normal file

- ► Read randomly
- Write/update randomly

Google FS

- Read sequentially
- Append only

Can you think of some applications operating like this?

A quick summary

- ► Google FS is designed to simplify distributed file system by throwing away random read and write
- ► HDFS is strongly influenced by Google FS

HDFS File System Model

Most of the file systems adopt a model with a hierarchical name space,

```
|- A
| |- B
| |- mydoc.txt
| |- B'
| |- B''
|- A'
```

File System Model

e.g. /A/B/mydoc.txt

File System Model

A file consists of blocks of data

- Good design, simple abstraction
- A file might be larger than a physical disk
- We can distribute blocks belonging to a file into multiple disks/hosts (distributed)

Block Size

- ► Normal file system 4KB
- ► RDBMS 4-32KB
- ► HDFS 64MB (configurable)

HDFS Architecture

Figure 2: HDFS Architecture

- A Master-worker architecture
- ▶ Why not a peer to peer?

HDFS Architecture

Figure 3: HDFS Architecture

- ▶ Block Size (default 64MB v1, 128MB v2+)
- ► Each block is replicated (Recommended 3 or any odd number > 3). But why?

HDFS Architecture

Given a file request, Namenode

- 1. file (full path name) -> block IDs
- 2. block IDs -> actual data

Replica Placement Strategy

- ► HDFS is a logical cluster
- Some physical location info will help, e.g. Rack
- ► Goals:
 - Maximize chance of survival
 - Maximize load balance

Replica Placement Strategy

- Max 1 replica per datanode
- ► Max 2 replicas per rack
- ▶ Num of racks for replication < RF

Replica Placement Strategy

Figure 4: Replace placement strategy

- ▶ Replica 1: rack 1 (first datanode contacted during write)
- ▶ Replica 2: different rack than rack 1, let's say rack 2
- ► Replica 3: rack 2, min
- ► Replica >=4: random

HDFS client operation - Read

HDFS client operation - Write

- If it is an append, the last block loc is returned.
- ▶ Repeat steps 2 5 if there are more blocks
- ► Retry steps 3 5 if fail

HDFS client operation - Write

If some data node fails during the write of a data block (a) The written ones are retained; (b) The namenode will be informed that the data block is under replication; (c) The pipeline will re-initialized for the next data block

HDFS client operation - Write

One issue with the replication is that given Replication Factor = N,

- ▶ we have (N 1)*100% storage overhead
- ► (1/N) storage efficiency
- N 1 as fault tolerance.

In Hadoop v3, besides replicas, we have another option - Erasure Coding.

Recall that XOR operation ⊕ on bits

IN	IN	XOR
0	0	0
1	0	1
0	1	1
1	1	0

having some nice properties

$$X \bigoplus Y = Y \bigoplus X$$
$$(X \bigoplus Y) \bigoplus Z = X \bigoplus (Y \bigoplus Z)$$
$$X \bigoplus Y = Z \Rightarrow X \bigoplus Z = Y$$

We can use the result of XOR to recover if one of the inputs is lost.

What if we lose more than one input?

Reed-Solomon EC

Figure 5: Erasure Coding

 G^T is called a *Generator Matrix*.

HDFS Erasure Coding - A Concreate example

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

G^T Data Codeword

- A property of G^T : all $k \times k$ sub matrices must be non-singular (an inverse exists), where k is the size of the data.
- Note it is a bad idea to use binary data here. However for demonstration purposes, we stick with binary data and hand pick a sub-matrix that is non-singular

HDFS Erasure Coding - A Concreate example

Let's say we lose the 2nd and 4th cells in the Codeword, and want to recover the data, We remove the correspondent rows from the G^T , the following equation still holds

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$G_{\neg(1,3)}^T$$

Data Codeword

HDFS Erasure Coding - A Concreate example

We find the inverse of $G_{\neg(1,3)}^T$ and multiply it to both sides

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

$$G_{\neg(1,3)}^{T-1} \qquad G_{\neg(1,3)}^{T} \qquad \text{Data} \qquad G_{\neg(1,3)}^{T-1} \quad \text{Codeword}$$

HDFS Erasure Coding - A Concrete example

We cancel
$$G_{\neg(1,3)}^{T-1} \times G_{\neg(1,3)}^{T}$$
 from the LHS

$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

Data $G_{\neg(1,3)}^{\mathcal{T}^{-1}}$ Codeword

- Note that G^T is fixed for all data.
- For RS(k,m) we have m/k storage overhead and k / (k + m) storage efficiency, where k is the data size and m is the parity size.
- ► Some popular choices of k and m for HDFS are (6,3) and (10,4)
 - \triangleright RS(6,3) we have
 - ightharpoonup 3 / 6 = 50% storage overhead
 - ightharpoonup 6 / 9 = 66.6% storage efficiency
 - Fault tolerance (can afford losing 3 rows from the codeword out of 9).
 - ► RS(10,4) we have
 - ightharpoonup 4 / 10 = 40% storage overhead
 - ▶ 10 / 14 = 71.4% storage efficiency
 - Fault tolerance (can afford losing 4 rows from the codeword out of 14).

HDFS Erasure Coding references

- https://blog.cloudera.com/introduction-to-hdfs-erasurecoding-in-apache-hadoop/
- https://www.backblaze.com/blog/reed-solomon/

Summary

- Google File System hugely influential
 - Scalable, fault-tolerant
 - Designed for specific workloads
- ► HDFS implements GFS
- ► HDFS de-facto distributed file system in the cloud
 - All cloud-based data analytics systems support reading from HDFS

In class discussion 1

- Consider HDFS append operation, it doesn't provide correctness! Give an example of how incorrect append could happen.
- 2. Why do you think it's difficult to guarantee correctness for append?

In class discussion 2

In an hadoop setup, the erasure coding configuration is RS(12,6)

- 1. What is the storage overhead?
- 2. What is the storage efficiency?
- 3. What is the fault tolerance level?
- 4. What is the dimension of the Generator Matrix?

In class discussion 3

Suppose you are engaged by a client to setup a HDFS for data computation. Here is the user requirement

- Existing active data size 5TB
- Estimated year-over-year data growth rate 80%
- ▶ 50% buffer space for intermediate/temp data file
- HDFS replication factor 3
- 1. What is the projected disk space requirement for HDFS in 3 years time?
- 2. What is the projected disk space requirement for HDFS in 3 years time, if we replace RF=3 by RS(10,4)?