A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 4EI

Bookmark

Show all steps: ON

Problem

Recall that V_n is the multiplicative group of all the invertible elements in \mathbb{Z}_n . If V_n happens to be cyclic, say $V_n = \langle m \rangle$, then any integer $a \equiv m \pmod n$ is called a *primitive root* of n.

Suppose a is a primitive root of m. Prove: If b is any integer which is relatively prime to m, then $b \equiv a^k \pmod{m}$ for some $k \ge 1$.

Step-by-step solution

Step 1 of 3

Here, objective is to prove that, b is relatively prime to m such that $b = a^k \pmod{m}$ for $k \ge 1$

Comment

Step 2 of 3

Primitive root of *n*:

 V_n is the multiplicative group of all the invertible elements in Z_n . If V_n happens to be cyclic $V_n = m$. Then any integer $a = m \pmod n$ is called a primitive root of n.

Relatively prime:

If (a,b) are relatively prime, then gcd(a,b) = 1

Comment

Let a = 2 is a primitive root m = 5

Then,

 $2^1 \bmod 5 = 2$

 $2^2 \mod 5 = 4$

 $2^3 \mod 5 = 3$

By observing, $b = 2^k \mod 5$ is relatively prime to $\mod 5$ for any integer k.

Therefore,

If a is a primitive root of m, then b is relatively prime to m such that $b = a^k \pmod{m}$ for $k \ge 1$

Hence, proved

Comment