电子科技大学 计算机科学与工程学院

标准实验报告

(实验)课程名称 计算思维导引

电子科技大学教务处制表

电子科技大学

电子科技大学 实 验 报 告

学生姓名: 雷劲祺 学号: 2021080902005 指导教师: 罗嘉庆 实验地点: 主楼 A2-413 实验时间: 2022.3.26

一、实验室名称: 计算机学院实验中心

二、实验项目名称:调度问题程序设计

三、实验学时: 4 学时

四、实验原理:

编程要点:

1. 程序总框架:在主程序框架下,采用子程序的方式添加程序。

2. 随机生成加工时间: 随机生成加工时间。

3. FCFS 算法演示: FCFS 程序的一个示例,要求设计程序性能优于 FCFS 程序,并完成对比分析。

五、实验目的:

1. 用 C 设计和实现 $1||\Sigma Cj$ 和 1||Lmax 单机调度算法,掌握 FCFS、SJF 和 EDD 等。

六、实验内容:

1. 完成 FCFS、SJF 和 EDD 算法,并采用手动输入的方式,验证算法的正

确性。

案例1($1 \| \Sigma C_j$)

优化目标: $\min \Sigma C_j$

先来先服务 (FCFS):

j	1	2	3	4	5	6	7	8	9	10
C_j	2	8	18	26	29	34	38	51	62	69
ΣC_j	337									

短作业优先(SJF):

j	1	2	3	4	5	6	7	8	9	10
C_j	2	5	9	14	20	27	35	45	56	69
ΣC_j	282									

案例2($1||L_{max}$)

优化目标: min L_{max}

先来先服务 (FCFS):

j	1	2	3	4	5	6	7	8
Cj	2	8	18	26	29	34	46	53
L_j	-2	-1	3	13	9	27	18	34
Lmax	34							

最早工期优先 (EDD):

j	1	2	3	4	5	6	7	8
C_j	2	7	13	21	31	43	50	53
L_j	-2	0	4	8	16	25	31	33
Lmax	33							

短作业优先(SJF):

j	1	2	3	4	5	6	7	8
C_j	2	5	8	13	20	28	38	50
L_j	-2	-4	-12	6	1	15	23	32
Lmax	32							

案例2($1||L_{max}$)(实验必选题)

七、实验器材(设备、元器件):

PC 微机一台

八、实验步骤:

- 1、明确两个任务的内容及要求
- 2、编写程序框架
- 3、对具体函数进行实现
- 4、测试运行
- 5、带入数据运算得实验结果

九、实验数据及结果分析:

- 1、案例一中 SJF 算法即是最优解,其结果优于包括 FCFS 在内的任何算法。
- 2、案例二中是为了求得最大等待时间的最小值,其优化目标可能是为了保证用户的体验,根据案例提供的数据得出结果是 SJF 算法最优,FCFS 算法最劣。

十、实验结论:

- 1、案例一的情况 SJF 算法为最优解。
- 2、案例二的情况 SJF、EDD 算法均优于 FCFS 算法

十一、总结及心得体会:

- 1、使用模块化方法提高代码复用性,提高了代码可读性以及减少了工作量。
- 2、使用希尔排序,其时间复杂度在 o(n)与 o(n^2)之间,对于较为有序序列性能较好,优于冒泡排序。

十二、对本实验过程及方法、手段的改进建议:

- 1、可以将一些为了减少代码量而少定义的变量定义出来,提高代码可读性。
- 2、对于案例二还可以尝试 HRRN 高响应比优先算法,将任务截止时间和任务加工时间同时纳入考虑。
- 3、相对于使用 FCFS、SJF、EDD、HRRN 此类已有排序方案的算法,还可以使用类似于 GA 遗传算法、贪心算法此类算法对问题进行求解,力求逼近最优解,对于求解部分不存在固定最优方案的案例有较好效果。

报告评分:

指导教师签字: