Text Analytics

Jason Peter Cairns

Supervised by Chris Wild

Bachelor of Science (Honours)
Department of Statistics
The University of Auckland
New Zealand

Todo list

should this be an abstract?
common functions: sentiment, summarisation, scoring 9
Existing Systems
current issues
What iNZight is - capabilities, popularity, etc
how our program fits in - shiny, inzight lite etc
Copy over from notes, flesh out a bit
Praise tidytext book, complain about the package
types of text that we can work with: novels, free response data etc 9
discuss limitations placed: not going into linguistic territory etc 9
Explain broadness of term
compile glossary from terms here
Areas of text analytics in a data science framework
what we have done
what we haven't done
terms and their centrality
generalisation: n-grams, sentences etc
computer science vs statistics - reflection in data science 10
why process
stopwords, lemmatisation etc
modelling vs db joins - more info in notes
why compute scores & statistics
scoring - tf-idf, word count
Suggestions for further research - more on the statistics of words 10
recount the book of John text analysis
why sentiment
Process of sentiment
sentiment modelling vs db joins
our implementation and why
reviews
issues
why compute summarisations
lexrank textrank - include notes on lexrank

other methods	10
reddit bot example	10
topic modelling	10
Term correlation	10
modelling based on linguistic features	10
talk about score vs structure	10
complain about tag clouds	10
talk about ggpage	10
discuss our experimentations with some alternative visualisations	10
why R	11
Why Shiny	11
why tidyverse	11
possible future: datatables, futures, etc	11
why functional	11
Why lossless data	11
Why structure it like it has been	11
make graph of architecture	11
Describe package and package creation	11
following three sections copy and paste from the notes - buffing up as	
necessary	11
include screenshots	11
summarise successes	12
summarise failures	12
general thoughts on the topic	12
educational potential of text analytics	12

Acknowledgements

Contents

Li	Listings 5					
Ta	Tables 6					
Fi	gure	${f s}$	7			
1	Intr	roduction	9			
	1.1	Intention	9			
	1.2	Background: Text Analytics (incl. examples)	9			
	1.3	Background: inZight	9			
	1.4	Literature Review (existing packages in R)	9			
	1.5	Scope of work	9			
2	Tex	t Analytics Prolusion	10			
	2.1	overview	10			
	2.2	terms	10			
	2.3	Historical Background	10			
	2.4	Processing	10			
	2.5	scores & statistics	10			
	2.6	Sentiment	10			
	2.7	Summarisation	10			
	2.8	what we didn't do (yet)	10			
	2.9	Visualisation	10			
3	Pro	gram Structure	11			
	3.1	Program Architecture	11			
	3.2	Import	11			
	3.3	Insight	11			
	3.4	Visualisation	11			
	3.5	User Interface	11			
4	Cor	nclusion	12			
	4.1	Summary	12			
	4 2		12			

5 Appendix	13
Glossary	30
Index	30
Bibliography	31

List of source codes

List of Tables

List of Figures

Introduction

1.1 Intention

Text Analytics serves to glean insight from a body of text. Within the broad category of text analytics, we seek to answer questions about what the text is communicating, what is felt about it, and how this information is structured. In this dissertation, we demonstrate the creation of a user-friendly program to perform text analytics functions using modern R with the Shiny web application framework. In a literate style, we illustrate top-down the structure of such a program, as well as the data structures and computational processes that have established their value for such a program.

1.2 Background: Text Analytics (incl. examples)

1.3 Background: inZight

1.4 Literature Review (existing packages in R)

1.5 Scope of work

should this be an abstract?

common func-

tions: sentiment,

summarisation, scoring

Existing Systems

current

What iNZight is - capabilities, popularity, etc.

how our program fits in

Text Analytics Prolusion

Program Structure

Conclusion

Appendix

The following pages are a copy of the documentation for the R package created as a part of this dissertation. They were automatically generated through the Roxygen2 system.

Package 'inzightta'

August 16, 2019

Title iNZight Text Analytics				
Version 0.0.0.9000				
Description Provides text analytics functions for the importation, analysis, and visualisation of text. This package is designed specifically for output in shiny, with the analytical functions all working well with dplyr tools.				
License GPL-3				
Encoding UTF-8				
LazyData true				
Imports readr, tibble, stringr, dplyr, readxl, purrr, tidytext, textstem, magrittr, stats, textrank, lexRankr				
RoxygenNote 6.1.1				
R topics documented:				
aggregate_sentiment				
determine_stopwords				
get_bigram				
get_chapters				
get_filetype				
get_parts 5 get_search 6				

2 aggregate_sentiment

	get_sections	6
	get_sw	7
	get_valid_input	7
	ifexp	8
	import_base_file	8
	import_csv	9
	import_excel	9
	import_files	10
	import_txt	10
	index_bigram	11
	keywords_tr	11
	key_sentences	12
	table_textcol	12
	term_count	13
	term_freq	13
	text_prep	14
	ungroup_by	14
	word_sentiment	15
Index		16

aggregate_sentiment Get statistics for sentiment over some group, such as sentence.

Description

Get statistics for sentiment over some group, such as sentence.

Usage

```
aggregate_sentiment(.data, aggregate_on, statistic)
```

Arguments

.data	character vector of words
aggregate_on	vector to aggregate .data over; ideally, sentence_id, but could be chapter, document, etc.
statistic	function that accepts na.rm argument; e.g. mean, median, sd.

determine_stopwords 3

determine_stopwords

determine stopword status

Description

determine stopword status

Usage

```
determine_stopwords(.data, ...)
```

Arguments

.data vector of words... arguments of get_sw

Value

a [tibble][tibble::tibble-package] equivalent to the input dataframe, with an additional stopword column

format_data

formats imported data into an analysis-ready format

Description

formats imported data into an analysis-ready format

Usage

```
format_data(data)
```

Arguments

data

a tibble formatted with a text and (optional) group column

Value

a [tibble][tibble::tibble-package] formatted such that columns correspond to identifiers of group, line, sentence, word (groups ignored)

get_chapters

 ${\tt get_bigram}$

 $Determine\ bigrams$

Description

Determine bigrams

Usage

```
get_bigram(.data)
```

Arguments

.data

character vector of words

Value

character vector of bigrams

get_chapters

sections text based on chapters

Description

sections text based on chapters

Usage

```
get_chapters(.data)
```

Arguments

.data

vector to section

Value

vector of same length as .data with chapter numbers

get_filetype 5

 ${\tt get_filetype}$

Get filetype

Description

Get filetype

Usage

```
get_filetype(filepath)
```

Arguments

filepath

string filepath of document

Value

filetype (string) - NA if no extension

get_parts

sections text based on parts

Description

sections text based on parts

Usage

```
get_parts(.data)
```

Arguments

.data

vector to section

Value

vector of same length as .data with part numbers

get_sections

 ${\tt get_search}$

creates a search closure to section text

Description

creates a search closure to section text

Usage

```
get_search(search)
```

Arguments

search

a string regexp for the term to seperate on, e.g. "Chapter"

Value

closure over search expression

get_sections

sections text based on sections

Description

sections text based on sections

Usage

```
get_sections(.data)
```

Arguments

.data

vector to section

Value

vector of same length as .data with section numbers

get_sw 7

get_sw

Gets stopwords from a default list and user-provided list

Description

Gets stopwords from a default list and user-provided list

Usage

```
get_sw(lexicon = "snowball", addl = NA)
```

Arguments

lexicon a string name of a stopword list, one of "smart", "snowball", or "onix"

addl user defined character vector of additional stopwords, each element being a stop-

word

Value

a [tibble][tibble::tibble-package] with one column named "word"

get_valid_input

helper function to get valid input (recursively)

Description

helper function to get valid input (recursively)

Usage

```
get_valid_input(options, init = TRUE)
```

Arguments

options vector of options that valid input should be drawn from

init whether this is the initial attempt, used only as recursive information

Value

readline output that exists in the vector of options

8 import_base_file

ifexp

scheme-like if expression, without restriction of returning same-size table of .test, as ifelse() does

Description

scheme-like if expression, without restriction of returning same-size table of .test, as ifelse() does

Usage

```
ifexp(.test, true, false)
```

Arguments

. test predicate to test

true expression to return if .test evals to TRUE false expression to return if .test evals to TRUE

Value

either true or false

import_base_file

Base case for file import

Description

Base case for file import

Usage

```
import_base_file(filepath)
```

Arguments

filepath string filepath of file for import

Value

imported file with document id

import_csv 9

import_csv

Import csv file

Description

Import csv file

Usage

```
import_csv(filepath)
```

Arguments

filepath

a string indicating the relative or absolute filepath of the file to import

Value

a [tibble][tibble::tibble-package] of each row corrresponding to a line of the text file, with the column named "text"

import_excel

Import excel file

Description

Import excel file

Usage

```
import_excel(filepath)
```

Arguments

filepath

a string indicating the relative or absolute filepath of the file to import

Value

a [tibble][tibble::tibble-package] of each row corrresponding to a line of the text file, with the column named "text"

10 import_txt

import_files

Import any number of files

Description

Import any number of files

Usage

```
import_files(filepaths)
```

Arguments

filepaths

char vector of filepaths

Value

a [tibble][tibble::tibble-package] imported files with document id

 ${\tt import_txt}$

Import text file

Description

Import text file

Usage

```
import_txt(filepath)
```

Arguments

filepath

a string indicating the relative or absolute filepath of the file to import

Value

a [tibble][tibble::tibble-package] of each row corrresponding to a line of the text file, with the column named "text"

index_bigram 11

index_bigram

get bigram at index i of list1 & 2

Description

```
get bigram at index i of list1 & 2
```

Usage

```
index_bigram(i, list1, list2)
```

Arguments

i numeric index to attain bigram at
 list1 list or vector for first bigram token
 list2 list or vector for second bigram token

Value

bigram of list1 and list2 at index i, skipping NA's

keywords_tr

Determine textrank score for vector of words

Description

Determine textrank score for vector of words

Usage

```
keywords_tr(.data)
```

Arguments

.data

character vector of words

Value

vector of scores for each word

12 table_textcol

key_sentences

get score for key sentences as per Lexrank

Description

get score for key sentences as per Lexrank

Usage

```
key_sentences(.data, aggregate_on)
```

Arguments

.data character vector of words

aggregate_on vector to aggregate .data over; ideally, sentence_id

 $table_textcol$

Interactively determine and automatically mark the text column of a table

Description

Interactively determine and automatically mark the text column of a table

Usage

```
table_textcol(data)
```

Arguments

data

dataframe with column requiring marking

Value

same dataframe with text column renamed to "text"

term_count 13

term_count

Determine the number of terms at each aggregate level

Description

Determine the number of terms at each aggregate level

Usage

```
term_count(.data, aggregate_on)
```

Arguments

. data character vector of terms
aggregate_on vector to split .data on for insight

Value

vector of number of terms for each aggregate level, same length as .data

term_freq

Determine term frequency

Description

Determine term frequency

Usage

```
term_freq(.data)
```

Arguments

.data

character vector of terms

Value

numeric vector of term frequencies

14 ungroup_by

text_prep

takes imported one-line-per-row data and prepares it for later analysis

Description

takes imported one-line-per-row data and prepares it for later analysis

Usage

```
text_prep(.data, lemmatize = TRUE, stopwords = TRUE,
   sw_lexicon = "snowball", addl_stopwords = NA)
```

Arguments

.data tibble with one line of text per row lemmatize boolean, whether to lemmatize or not

stopwords boolean, whether to remove stopwords or not sw_lexicon string, lexicon with which to remove stopwords

addl_stopwords char vector of user-supplied stopwords

Value

a [tibble][tibble::tibble-package] with one token per line, stopwords removed leaving NA values, column for analysis named "text"

ungroup_by

helper function to ungroup for dplyr. functions equivalently to group_by() but with standard (string) evaluation

Description

helper function to ungroup for dplyr. functions equivalently to group_by() but with standard (string) evaluation

Usage

```
ungroup_by(x, ...)
```

Arguments

x tibble to perform function on ... string of groups to ungroup on

Value

```
x with ... no longer grouped upon
```

word_sentiment 15

word_sentiment

Determine sentiment of words

Description

Determine sentiment of words

Usage

```
word_sentiment(.data, lexicon = "afinn")
```

Arguments

.data vector of words

lexicon sentiment lexicon to use, based on the corpus provided by tidytext

Value

vector with sentiment score of each word in the vector

Index

```
{\tt aggregate\_sentiment, 2}
determine_stopwords, 3
format\_data, 3
get_bigram, 4
{\tt get\_chapters}, {\tt 4}
get_filetype, 5
get_parts, 5
get_search, 6
get_sections, 6
get_sw, 7
{\tt get\_valid\_input, 7}
ifexp, 8
import\_base\_file, 8
import_csv, 9
import_excel, 9
import_files, 10
import_txt, 10
index_bigram, 11
key_sentences, 12
keywords\_tr, 11
table_textcol, 12
term_count, 13
term_freq, 13
text\_prep, 14
ungroup_by, 14
word_sentiment, 15
```

Glossary

term "a word or expression that has a precise meaning in some uses or is peculiar to a science, art, profession, or subject'[1] — here text analysts have capitalised on the generalisation of "term'to include subcomponents or aggregations of words. 9

Bibliography

[1] Merriam-Webster Dictionary, ed. $Term - Definition \ of \ Term$. 17th Aug. 2019. URL: https://www.merriam-webster.com/dictionary/term (cit. on p. 30).