Classification + KNN

Week 05 - Day 01

Yes, I know the meaning of KNN in Hokkien!

Classification

Classification = predicting a class

Regression = predicting a number

Pregnant or not?

Apple, orange or pinapple?

Marry him/her or run away?

Will she churn or not?

Binary vs. Multiclass

Example

tinder

tinder

Sean Rad, 29 o

Verified

♥ Like Me On Tinder

Rosette, 32

Vice President, Global Communications & Bra...

Like Me On Tinder

Should I date him/her?

Previous experiences

Experiences from friends

Hotness

New point - prediction?

Possible solution?

Baseline

What's a simple baseline?

Baseline: most frequent class

- KNN - K-Nearest Neighbors

Predicting a new point:

Predicting a new point:

1) Calculate the distance to all other points

Predicting a new point:

- 1) Calculate the distance to all other points
- 2) Find the k-nearest neighbors

What's the best k? (2,5,10,100,1000)

Small K - what happens?

Small K - Noise + variance

Big K - what happens?

Big K - too "general"

Best K? Tuning!

Euclidean Distance

Euclidean distance =
$$\sqrt{(x_1-x_2)^2+(y_1-y_1)^2}$$

Point 2 (x_2,y_2)
 y_2-y_1

Point 1 (x_1,y_1) x_2-x_1

It can be applied to n-dimensional vectors

(a parameter to tune)

There are other distances you can use

Features Scaling: Yes or not?

Features scaling: Yes or Not?

Features scaling: Yes!

Is KNN a linear model?

No...and this is good!

The model

Linear regression = one formula

KNN = ???

Linear regression = one formula

KNN = the entire dataset

Training VS. Prediction

Linear regression:

Training time: fast/slow?

Prediction time: fast/slow?

Linear regression:

Training time: **slow**

Prediction time: **fast**

KNN:

Training time: fast/slow?

Prediction time: fast/slow?

KNN:

Training time: **fast**

Prediction time: slow

Assumptions

Summary

1. Classification: predicting a class

- 1. Classification: predicting a class
- 2. KNN: simple algorithm based on distances

- 1. Classification: predicting a class
- 2. KNN: simple algorithm based on distances
- 3. K needs to be tuned

- 1. Classification: predicting a class
- 2. KNN: simple algorithm based on distances
- 3. K needs to be tuned
- 4. Fast for training, slow for predictions

- 1. Classification: predicting a class
- 2. KNN: simple algorithm based on distances
- 3. K needs to be tuned
- 4. Fast for training, slow for predictions
- 5. Scale your features!

- 1. Classification: predicting a class
- 2. KNN: simple algorithm based on distances
- 3. K needs to be tuned
- 4. Fast for training, slow for predictions
- 5. Scale your features!
- 6. KNN doesn't usually perform well