ECE322L -Homework 4 (100 points) Assigned on Thursday, 02/20/2020-11 am Due on Thursday, 02/27/2020-11 am

The ac equivalent circuit of a CMOS amplifier is shown below. (a) Identify the type of configuration. (b) Determine the small-signal voltage gain, the input resistance, and the output resistance.

The transistor parameters for M_1 are $V_{TN}\!\!=\!\!0.5$ V, $k_n\!\!'=\!\!85~\mu A/V^2$, $(W/L)_1\!\!=\!\!50$, $\lambda=0.05$ V⁻¹, and for M_2 and M_3 are $V_{TP}\!\!=\!\!-0.5$ V, $k_p\!\!'=\!\!40$ mA/V², $(W/L)_{2,3}\!\!=\!\!50$ and $\lambda=\!\!0.075$ V⁻¹.

(a) Common gate

(b)
$$r_{0_1} = \frac{1}{\lambda_1 I_D} = \frac{1}{(0.05V^{-1})(100\mu A)} = 200k\Omega$$

 $r_{0_2} = \frac{1}{\lambda_2 I_D} = \frac{1}{(0.075V^{-1})(100\mu A)} = 133.333k\Omega$
 $g_{m_1} = 2\sqrt{K_n I_D} = 2\sqrt{\frac{k'_n}{2} \left(\frac{W}{L}\right)_1 I_D} = 2\sqrt{\frac{85\frac{\mu A}{V^2}}{2}} (50) 100\mu A = 921.95\frac{\mu A}{V}$
 $R_{in_1} = \frac{1}{g_{m_1}} = \frac{1}{921.95\frac{\mu A}{V}} = 1.0847k\Omega$
 $V_{GS_1} = -\left(\frac{R_{in_1}}{R_{in_1} + R_{sig}}\right) V_{in} \rightarrow \frac{V_{GS_1}}{V_{in}} = -\left(\frac{R_{in_1}}{R_{in_1} + R_{sig}}\right)$
 $\frac{V_{GS_1}}{V_{in}} = -\frac{1.0847k\Omega}{1.0847k\Omega + 50\Omega} = -955.94mV$

$$\begin{split} A_v &= -g_{m_1} \left(r_{0_1} \parallel r_{0_2} \right) \frac{V_{GS_1}}{V_{in}} = -\left(921.95 \frac{\mu A}{V} \right) \left(200 k \Omega \parallel 133.33 k \Omega \right) \left(-955.94 mV \right) \\ A_v &= 70.506 \left(\frac{V}{V} \right) \\ R_{in} &= \frac{1}{g_m} + R_{sig} = \frac{1}{921.95 \frac{\mu A}{V}} + 50 \Omega = 1.1347 k \Omega \\ R_{out} &= r_{0_1} \parallel r_{0_2} = 200 k \Omega \parallel 133.33 k \Omega = 80 k \Omega \end{split}$$