第六次作业解答

(2024-2025-1)-MATH1405H-02

Thursday 7^{th} November, 2024

1 第一题解答 1

1 第一题解答

习题 1. 给定 $||u|| \le 1$ 与 $||v|| \le 1$, 证明: $\sqrt{1 - ||u||^2} \cdot \sqrt{1 - ||v||^2} \le 1 - \langle u, v \rangle$.

证明. 只需证明 $\sqrt{1-\|u\|^2}\cdot\sqrt{1-\|v\|^2}\leq 1-\|u\|\cdot\|v\|$. 平方得 $-\|u\|^2-\|v\|^2\leq -2\|u\|\cdot\|v\|$, 即 $0\leq (\|u\|-\|v\|)^2$.

习题 2. 证明: $||u+v|| \cdot ||u-v|| \le ||u||^2 + ||v||^2$.

证明. 对两侧平方, 得
$$(\|u\|^2 + \|v\|^2)^2 - 4 \langle u, v \rangle^2 \le (\|u\|^2 + \|v\|^2)^2$$
.

习题 3. 证明: $\langle u, v \rangle = 0$, 当且仅当 $||u|| \le ||u + c \cdot v||$ 对一切 $c \in \mathbb{R}$ 成立.

证明. $(\rightarrow$ 方向) 若 $\langle u,v\rangle = 0$, 往证 $||u|| \le ||u+c\cdot v||$. 等价地, 对待证式两侧平方得

$$||u||^2 \le ||u||^2 + 2c\langle u, v\rangle + c^2 ||v||^2.$$
(1.1)

消元, 并代入正交条件, 上式对一切 $c \in \mathbb{R}$ 取等.

$$(\leftarrow$$
 方向) 若不等式对一切 $c\in\mathbb{R}$ 取等, 则右式平方的一次项系数为零, 即 $\langle u,v\rangle=0$.

习题 4. 证明: 任意给定 $u \neq \mathbf{0}$, 则对一切 ||v|| = 1 均有 $||u - (||u||^{-1} \cdot u)|| \leq ||u - v||$. 换言之, 球面上 距 u 最近处恰是 u 的单位化向量.

证明. 若空间是 0 维或一维的, 则结论平凡. 不妨假定空间维数不小于 2. 以下使用反证法:

• 若存在 $v \neq ||u||^{-1}u$ 使得 $||u - (||u||^{-1} \cdot u)|| \leq ||u - v||$, 则只需要球面与二维空间 V := span(u, v)的交中找到矛盾即可.

取 V 的单位正交基 $e_1 = ||u||^{-1} \cdot u$ 与 e_2 , 则 v 位于圆周 (V 与球面的交). 圆周上的点 w 具有一般形式 $\cos \theta e_1 + \sin \theta e_2$, 此时

$$||u - w||^2 = 1 + ||u||^{-2} (1 - 2\cos\theta). \tag{1.2}$$

当 $\|u-w\|$ 取最小值时, 必有 $\cos\theta=1$. 此时 $w=e_1=\|u\|^{-1}u$, 与 v 的选取矛盾.

习题 5. 表述并证明高中所学的极化恒等式.

证明. 图形描述见教材 LADR 的 195 页. 这是半侧平行四边形法则. 常证 毕明

习题 6. 表述并证明高中所学的平行四边形恒等式.

证明. 记u与v是内积空间的向量,则

$$2(\|u\|^2 + \|v\|^2) = \|u + v\|^2 + \|u - v\|^2.$$
(1.3)

依定义展开得

- $\|u+v\|^2 = \langle u+v, u+v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle = \|u\|^2 + 2\langle u, v \rangle + \|v\|^2$,
- $||u-v||^2 = \langle u-v, u-v \rangle = \langle u, u \rangle \langle u, v \rangle \langle v, u \rangle + \langle v, v \rangle = ||u||^2 2\langle u, v \rangle + ||v||^2$.

2 第二题解答

定义 (投影矩阵). 假定 $n \ge 1$. 称 $P \in \mathbb{R}^{n \times n}$ 是 \mathbb{R}^n 上的一个投影矩阵, 当且仅当 $P^2 = P = P^T$.

习题 7. 使用相抵标准型证明, 若 P 是投影矩阵, 当且仅当存在正交矩阵 Q 使得 $Q^{-1}PQ = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$. (如果不清楚正交矩阵, 此题可以略过.)

2. 证明: 投影矩阵和子空间双射对应,具体的对应方式可以是列空间 $P \overset{1:1}{\longleftrightarrow} C(P)$. 3. 证明: 投影矩阵和子空间双射对应,具体的对应方式可以是零空间 $P \overset{1:1}{\longleftrightarrow} N(P)$. 4. 任意给定 $v \neq \mathbf{0}$,找到 P 使得 $C(P) = \mathrm{span}(v)$. 5. 任意给定 $v \neq \mathbf{0}$,找到 P 使得 $N(P) = \mathrm{span}(v)$. 6. 给定 \mathbb{R}^5 中的列向量 $S = \{(4,3,3,1,1),(6,2,2,2,1)\}$,找到 $P \in \mathbb{R}^{5\times 5}$ 使得 $C(P) = \mathrm{span}(S)$. 7. 给定 \mathbb{R}^5 中的列向量 $S = \{(4,3,3,1,1),(6,2,2,2,1)\}$,找到 $P \in \mathbb{R}^{5\times 5}$ 使得 $N(P) = \mathrm{span}(S)$.

备注: 计算得 $\|(4,3,3,1,1)\| = 6$, 以及 $\|(6,2,2,2,1)\| = 7$.

Challenge 投影矩阵的和与积都不必是投影矩阵 (实际上, 任何不可逆方阵都是有限个投影矩阵的乘积). 能否优雅地定义投影矩阵间的二元运算 □ 与 □, 使得

$$C(P_1 \sqcup P_2) = C(P_1) + C(P_2), \quad C(P_1 \sqcap P_2) = C(P_1) \cap C(P_2).$$

Problem 3 计算示例 (最小平方法).

1. 给定 $A = (a_{i,j}) \in \mathbb{R}^{m \times n}$ 与 $b = (b_i) \in \mathbb{R}^n$. 记 $x = (x_i) \in \mathbb{R}^m$, 则

$$F = ||Ax - b||^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{i,j} x_j - b_i \right)^2.$$

任给定指标 $1 \le j_0 \le n$,假设所有 x_j $(j \ne j_0)$ 均是常量,仅 x_{j_0} 是变量. 通过下式计算二次函数 $F = F(x_{j_0})$ 导数为零的点

$$\frac{dF}{dx_{j_0}} = \frac{d}{dx_{j_0}} \left[\sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{i,j} x_j - b_i \right)^2 \right] = 0.$$

* F 何时是二次函数? 我们需要排除一些平凡情形, 请稍作说明. 2. 假设上一问中 $F(x_{j_0})=0$ 的解是 $x_{j_0}=X_{j_0}$. 记解向量 $X=(X_i)\in\mathbb{R}^m$. 证明 $A^TAX=A^Tb$. 3. (自主思考, 这不是一个问题) 上式合并了有唯一解, 有无穷解, 以及无解这三种情况. 请区分, 讨论这些情况. 4. 使用最小平方法找到一条抛物线 $y=a+bx+cx^2$, 使得该抛物线可以尽可能地拟合以下所有点:

$$\{(-2,4), (-1,2), (0,1), (2,1), (3,1)\}.$$

提示: 可以考虑方程

$$\begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_1^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$$

请用严谨的数学语言解释这一所谓的拟合 (应当先定义点到抛物线的距离.).

Challenge 先前有一道证明题: \mathbb{R}^n 的任意有限个真子空间之并不是全空间. 此处有一道类似的问题: * 任取 \mathbb{R}^n 中有限个真子空间 $\{V_i\}_{i=1}^m$,则必存在补集中的向量组 $\{f_i\}_{i=1}^n \subset (\bigcup_{i=1}^m V_i)^c$,使得 $\langle f_i, f_i \rangle = \delta_{i,j}$ (单位正交关系). * 以上 $\{f_i\}_{i=1}^n$ 有无穷多种取法 (这或许是一句废话.).