

Introduction, Measurement, Estimating

CHAPTER-OPENING QUESTIONS—Guess now!

- 1. How many cm^3 are in $1.0 m^3$?
- (a) 10. (b) 100. (c) 1000. (d) 10,000. (e) 100,000. (f) 1,000,000.
- **2.** Suppose you wanted to actually measure the radius of the Earth, at least roughly, rather than taking other people's word for what it is. Which response below describes the best approach?
- (a) Use an extremely long measuring tape.
- **(b)** It is only possible by flying high enough to see the actual curvature of the Earth.
- (c) Use a standard measuring tape, a step ladder, and a large smooth lake.
- (d) Use a laser and a mirror on the Moon or on a satellite.
- (e) Give up; it is impossible using ordinary means.

[We start each Chapter with a Question—sometimes two. Try to answer right away. Don't worry about getting the right answer now—the idea is to get your preconceived notions out on the table. If they are misconceptions, we expect them to be cleared up as you read the Chapter. You will usually get another chance at the Question(s) later in the Chapter when the appropriate material has been covered. These Chapter-Opening Questions will also help you see the power and usefulness of physics.]

CHAPTER 1

CONTENTS

- 1-1 The Nature of Science
- 1-2 Physics and its Relation to Other Fields
- 1–3 Models, Theories, and Laws
- 1–4 Measurement and Uncertainty; Significant Figures
- 1–5 Units, Standards, and the SI System
- 1-6 Converting Units
- 1–7 Order of Magnitude: Rapid Estimating
- *1-8 Dimensions and Dimensional Analysis

hysics is the most basic of the sciences. It deals with the behavior and structure of matter. The field of physics is usually divided into classical physics which includes motion, fluids, heat, sound, light, electricity, and magnetism; and *modern physics* which includes the topics of relativity, atomic structure, quantum theory, condensed matter, nuclear physics, elementary particles, and cosmology and astrophysics. We will cover all these topics in this book, beginning with motion (or mechanics, as it is often called) and ending with the most recent results in fundamental particles and the cosmos. But before we begin on the physics itself, we take a brief look at how this overall activity called "science," including physics, is actually practiced.

1–1 The Nature of Science

The principal aim of all sciences, including physics, is generally considered to be the search for order in our observations of the world around us. Many people think that science is a mechanical process of collecting facts and devising theories. But it is not so simple. Science is a creative activity that in many respects resembles other creative activities of the human mind.

One important aspect of science is **observation** of events, which includes the design and carrying out of experiments. But observation and experiments require imagination, because scientists can never include everything in a description of what they observe. Hence, scientists must make judgments about what is relevant in their observations and experiments.

Consider, for example, how two great minds, Aristotle (384–322 B.C.; Fig. 1–1) and Galileo (1564–1642; Fig. 2–18), interpreted motion along a horizontal surface. Aristotle noted that objects given an initial push along the ground (or on a tabletop) always slow down and stop. Consequently, Aristotle argued, the natural state of an object is to be at rest. Galileo, the first true experimentalist, reexamined horizontal motion in the 1600s. He imagined that if friction could be eliminated, an object given an initial push along a horizontal surface would continue to move indefinitely without stopping. He concluded that for an object to be in motion was just as natural as for it to be at rest. By inventing a new way of thinking about the same data, Galileo founded our modern view of motion (Chapters 2, 3, and 4), and he did so with a leap of the imagination. Galileo made this leap conceptually, without actually eliminating friction.

FIGURE 1–1 Aristotle is the central figure (dressed in blue) at the top of the stairs (the figure next to him is Plato) in this famous Renaissance portrayal of The School of Athens, painted by Raphael around 1510. Also in this painting, considered one of the great masterpieces in art, are Euclid (drawing a circle at the lower right), Ptolemy (extreme right with globe), Pythagoras, Socrates, and Diogenes.

Observation, with careful experimentation and measurement, is one side of the scientific process. The other side is the invention or creation of **theories** to explain and order the observations. Theories are never derived directly from observations. Observations may help inspire a theory, and theories are accepted or rejected based on the results of observation and experiment.

Theories are inspirations that come from the minds of human beings. For example, the idea that matter is made up of atoms (the atomic theory) was not arrived at by direct observation of atoms—we can't see atoms directly. Rather, the idea sprang from creative minds. The theory of relativity, the electromagnetic theory of light, and Newton's law of universal gravitation were likewise the result of human imagination.

The great theories of science may be compared, as creative achievements, with great works of art or literature. But how does science differ from these other creative activities? One important difference is that science requires testing of its ideas or theories to see if their predictions are borne out by experiment. But theories are not "proved" by testing. First of all, no measuring instrument is perfect, so exact confirmation is not possible. Furthermore, it is not possible to test a theory for every possible set of circumstances. Hence a theory cannot be absolutely verified. Indeed, the history of science tells us that long-held theories can sometimes be replaced by new ones, particularly when new experimental techniques provide new or contradictory data.

A new theory is accepted by scientists in some cases because its predictions are quantitatively in better agreement with experiment than those of the older theory. But in many cases, a new theory is accepted only if it explains a greater range of phenomena than does the older one. Copernicus's Sun-centered theory of the universe (Fig. 1–2b), for example, was originally no more accurate than Ptolemy's Earth-centered theory (Fig. 1–2a) for predicting the motion of heavenly bodies (Sun, Moon, planets). But Copernicus's theory had consequences that Ptolemy's did not, such as predicting the moonlike phases of Venus. A simpler and richer theory, one which unifies and explains a greater variety of phenomena, is more useful and beautiful to a scientist. And this aspect, as well as quantitative agreement, plays a major role in the acceptance of a theory.

FIGURE 1-2 (a) Ptolemy's geocentric view of the universe. Note at the center the four elements of the ancients: Earth, water, air (clouds around the Earth), and fire; then the circles, with symbols, for the Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn, the fixed stars, and the signs of the zodiac. (b) An early representation of Copernicus's heliocentric view of the universe with the Sun at the center. (See Chapter 5.)

An important aspect of any theory is how well it can quantitatively predict phenomena, and from this point of view a new theory may often seem to be only a minor advance over the old one. For example, Einstein's theory of relativity gives predictions that differ very little from the older theories of Galileo and Newton in nearly all everyday situations. Its predictions are better mainly in the extreme case of very high speeds close to the speed of light. But quantitative prediction is not the only important outcome of a theory. Our view of the world is affected as well. As a result of Einstein's theory of relativity, for example, our concepts of space and time have been completely altered, and we have come to see mass and energy as a single entity (via the famous equation $E = mc^2$).

FIGURE 1–3 Studies on the forces in structures by Leonardo da Vinci (1452–1519).

1–2 Physics and its Relation to Other Fields

For a long time science was more or less a united whole known as natural philosophy. Not until a century or two ago did the distinctions between physics and chemistry and even the life sciences become prominent. Indeed, the sharp distinction we now see between the arts and the sciences is itself only a few centuries old. It is no wonder then that the development of physics has both influenced and been influenced by other fields. For example, the notebooks (Fig. 1–3) of Leonardo da Vinci, the great Renaissance artist, researcher, and engineer, contain the first references to the forces acting within a structure, a subject we consider as physics today; but then, as now, it has great relevance to architecture and building.

Early work in electricity that led to the discovery of the electric battery and electric current was done by an eighteenth-century physiologist, Luigi Galvani (1737–1798). He noticed the twitching of frogs' legs in response to an electric spark and later that the muscles twitched when in contact with two dissimilar metals (Chapter 18). At first this phenomenon was known as "animal electricity," but it shortly became clear that electric current itself could exist in the absence of an animal.

Physics is used in many fields. A zoologist, for example, may find physics useful in understanding how prairie dogs and other animals can live underground without suffocating. A physical therapist will be more effective if aware of the principles of center of gravity and the action of forces within the human body. A knowledge of the operating principles of optical and electronic equipment is helpful in a variety of fields. Life scientists and architects alike will be interested in the nature of heat loss and gain in human beings and the resulting comfort or discomfort. Architects may have to calculate the dimensions of the pipes in a heating system or the forces involved in a given structure to determine if it will remain standing (Fig. 1–4). They must know physics principles in order to make realistic designs and to communicate effectively with engineering consultants and other specialists.

FIGURE 1–4 (a) This bridge over the River Tiber in Rome was built 2000 years ago and still stands. (b) The 2007 collapse of a Mississippi River highway bridge built only 40 years before.

From the aesthetic or psychological point of view, too, architects must be aware of the forces involved in a structure—for example instability, even if only illusory, can be discomforting to those who must live or work in the structure.

The list of ways in which physics relates to other fields is extensive. In the Chapters that follow we will discuss many such applications as we carry out our principal aim of explaining basic physics.

1–3 Models, Theories, and Laws

When scientists are trying to understand a particular set of phenomena, they often make use of a model. A model, in the scientific sense, is a kind of analogy or mental image of the phenomena in terms of something else we are already familiar with. One example is the wave model of light. We cannot see waves of light as we can water waves. But it is valuable to think of light as made up of waves, because experiments indicate that light behaves in many respects as water waves do.

The purpose of a model is to give us an approximate mental or visual picture—something to hold on to—when we cannot see what actually is happening. Models often give us a deeper understanding: the analogy to a known system (for instance, the water waves above) can suggest new experiments to perform and can provide ideas about what other related phenomena might occur.

You may wonder what the difference is between a theory and a model. Usually a model is relatively simple and provides a structural similarity to the phenomena being studied. A theory is broader, more detailed, and can give quantitatively testable predictions, often with great precision. It is important, however, not to confuse a model or a theory with the real system or the phenomena themselves.

Scientists have given the title **law** to certain concise but general statements about how nature behaves (that electric charge is conserved, for example). Often the statement takes the form of a relationship or equation between quantities (such as Newton's second law, F = ma).

Statements that we call laws are usually experimentally valid over a wide range of observed phenomena. For less general statements, the term principle is often used (such as Archimedes' principle). We use "theory" for a more general picture of the phenomena dealt with.

Scientific laws are different from political laws in that the latter are prescriptive: they tell us how we ought to behave. Scientific laws are descriptive: they do not say how nature should behave, but rather are meant to describe how nature does behave. As with theories, laws cannot be tested in the infinite variety of cases possible. So we cannot be sure that any law is absolutely true. We use the term "law" when its validity has been tested over a wide range of cases, and when any limitations and the range of validity are clearly understood.

Scientists normally do their research as if the accepted laws and theories were true. But they are obliged to keep an open mind in case new information should alter the validity of any given law or theory.

1-4 Measurement and Uncertainty; **Significant Figures**

In the quest to understand the world around us, scientists seek to find relationships among physical quantities that can be measured.

Uncertainty

Reliable measurements are an important part of physics. But no measurement is absolutely precise. There is an uncertainty associated with every measurement.

FIGURE 1–5 Measuring the width of a board with a centimeter ruler. Accuracy is about ± 1 mm.

Among the most important sources of uncertainty, other than blunders, are the limited accuracy of every measuring instrument and the inability to read an instrument beyond some fraction of the smallest division shown. For example, if you were to use a centimeter ruler to measure the width of a board (Fig. 1–5), the result could be claimed to be precise to about 0.1 cm (1 mm), the smallest division on the ruler, although half of this value might be a valid claim as well. The reason is that it is difficult for the observer to estimate (or "interpolate") between the smallest divisions. Furthermore, the ruler itself may not have been manufactured to an accuracy very much better than this.

When giving the result of a measurement, it is important to state the **estimated uncertainty** in the measurement. For example, the width of a board might be written as 8.8 ± 0.1 cm. The ± 0.1 cm ("plus or minus 0.1 cm") represents the estimated uncertainty in the measurement, so that the actual width most likely lies between 8.7 and 8.9 cm. The **percent uncertainty** is the ratio of the uncertainty to the measured value, multiplied by 100. For example, if the measurement is 8.8 cm and the uncertainty about 0.1 cm, the percent uncertainty is

$$\frac{0.1}{8.8} \times 100\% \approx 1\%,$$

where \approx means "is approximately equal to."

Often the uncertainty in a measured value is not specified explicitly. In such cases, the

uncertainty in a numerical value is assumed to be *one or a few units* in the last digit specified.

For example, if a length is given as 8.8 cm, the uncertainty is assumed to be about 0.1 cm or 0.2 cm, or possibly even 0.3 cm. It is important in this case that you do not write 8.80 cm, because this implies an uncertainty on the order of 0.01 cm; it assumes that the length is probably between about 8.79 cm and 8.81 cm, when actually you believe it is between about 8.7 and 8.9 cm.

CONCEPTUAL EXAMPLE 1–1 Is the diamond yours? A friend asks to borrow your precious diamond for a day to show her family. You are a bit worried, so you carefully have your diamond weighed on a scale which reads 8.17 grams. The scale's accuracy is claimed to be ± 0.05 gram. The next day you weigh the returned diamond again, getting 8.09 grams. Is this your diamond?

RESPONSE The scale readings are measurements and are not perfect. They do not necessarily give the "true" value of the mass. Each measurement could have been high or low by up to 0.05 gram or so. The actual mass of your diamond lies most likely between 8.12 grams and 8.22 grams. The actual mass of the returned diamond is most likely between 8.04 grams and 8.14 grams. These two ranges overlap, so the data do not give you a strong reason to doubt that the returned diamond is yours.

Significant Figures

The number of reliably known digits in a number is called the number of **significant figures**. Thus there are four significant figures in the number 23.21 cm and two in the number 0.062 cm (the zeros in the latter are merely place holders that show where the decimal point goes). The number of significant figures may not always be clear. Take, for example, the number 80. Are there one or two significant figures? We need words here: If we say it is *roughly* 80 km between two cities, there is only one significant figure (the 8) since the zero is merely a place holder. If there is no suggestion that the 80 is a rough approximation, then we can often assume (as we will in this book) that it has 2 significant figures: so it is 80 km within an accuracy of about 1 or 2 km. If it is precisely 80 km, to within \pm 0.1 or \pm 0.2 km, then we write 80.0 km (three significant figures).

When specifying numerical results, you should avoid the temptation to keep more digits in the final answer than is justified: see boldface statement on previous page. For example, to calculate the area of a rectangle 11.3 cm by 6.8 cm, the result of multiplication would be 76.84 cm². But this answer can not be accurate to the implied 0.01 cm² uncertainty, because (using the outer limits of the assumed uncertainty for each measurement) the result could be between $11.2 \text{ cm} \times 6.7 \text{ cm} = 75.04 \text{ cm}^2$ and $11.4 \text{ cm} \times 6.9 \text{ cm} = 78.66 \text{ cm}^2$. At best, we can quote the answer as 77 cm², which implies an uncertainty of about 1 or 2 cm². The other two digits (in the number 76.84 cm²) must be dropped (rounded off) because they are not significant. As a rough general "significant figure" rule we can say that

the final result of a multiplication or division should have no more digits than the numerical value with the fewest significant figures.

In our example, 6.8 cm has the least number of significant figures, namely two. Thus the result 76.84 cm² needs to be rounded off to 77 cm².

EXERCISE A The area of a rectangle 4.5 cm by 3.25 cm is correctly given by (a) 14.625 cm²; (b) 14.63 cm^2 ; (c) 14.6 cm^2 ; (d) 15 cm^2 .

When adding or subtracting numbers, the final result should contain no more decimal places than the number with the fewest decimal places. For example, the result of subtracting 0.57 from 3.6 is 3.0 (not 3.03). Similarly 36 + 8.2 = 44, not 44.2.

Be careful not to confuse significant figures with the number of decimal places.

EXERCISE B For each of the following numbers, state the number of significant figures and the number of decimal places: (a) 1.23; (b) 0.123; (c) 0.0123.

Keep in mind when you use a calculator that all the digits it produces may not be significant. When you divide 2.0 by 3.0, the proper answer is 0.67, and not 0.666666666 as calculators give (Fig. 1-6a). Digits should not be quoted in a result unless they are truly significant figures. However, to obtain the most accurate result, you should normally keep one or more extra significant figures throughout a calculation, and round off only in the final result. (With a calculator, you can keep all its digits in intermediate results.) Note also that calculators sometimes give too few significant figures. For example, when you multiply 2.5×3.2 , a calculator may give the answer as simply 8. But the answer is accurate to two significant figures, so the proper answer is 8.0. See Fig. 1-6b.

CONCEPTUAL EXAMPLE 1–2 Significant figures. Using a protractor (Fig. 1–7), you measure an angle to be 30°. (a) How many significant figures should you quote in this measurement? (b) Use a calculator to find the cosine of the angle you measured.

RESPONSE (a) If you look at a protractor, you will see that the precision with which you can measure an angle is about one degree (certainly not 0.1°). So you can quote two significant figures, namely 30° (not 30.0°). (b) If you enter cos 30° in your calculator, you will get a number like 0.866025403. But the angle you entered is known only to two significant figures, so its cosine is correctly given by 0.87; you must round your answer to two significant figures.

NOTE Trigonometric functions, like cosine, are reviewed in Chapter 3 and Appendix A.

Scientific Notation

We commonly write numbers in "powers of ten," or "scientific" notation—for instance 36,900 as 3.69×10^4 , or 0.0021 as 2.1×10^{-3} . One advantage of scientific notation (reviewed in Appendix A) is that it allows the number of significant figures to be clearly expressed. For example, it is not clear whether 36,900 has three, four, or five significant figures. With powers of 10 notation the ambiguity can be avoided: if the number is known to three significant figures, we write 3.69×10^4 , but if it is known to four, we write 3.690×10^4 .

EXERCISE C Write each of the following in scientific notation and state the number of significant figures for each: (a) 0.0258; (b) 42,300; (c) 344.50.

(a)

FIGURE 1–6 These two calculations show the wrong number of significant figures. In (a), 2.0 was divided by 3.0. The correct final result would be 0.67. In (b), 2.5 was multiplied by 3.2. The correct result is 8.0.

PROBLEM SOLVING

Report only the proper number of significant figures in the final result. But keep extra digits during the calculation

FIGURE 1–7 Example 1–2. A protractor used to measure an angle.

* Percent Uncertainty vs. Significant Figures

The significant figures rule is only approximate, and in some cases may underestimate the accuracy (or uncertainty) of the answer. Suppose for example we divide 97 by 92:

$$\frac{97}{92} = 1.05 \approx 1.1.$$

Both 97 and 92 have two significant figures, so the rule says to give the answer as 1.1. Yet the numbers 97 and 92 both imply an uncertainty of \pm 1 if no other uncertainty is stated. Both 92 \pm 1 and 97 \pm 1 imply an uncertainty of about 1% (1/92 \approx 0.01 = 1%). But the final result to two significant figures is 1.1, with an implied uncertainty of \pm 0.1, which is an uncertainty of about 10% (0.1/1.1 \approx 0.1 \approx 10%). It is better in this case to give the answer as 1.05 (which is three significant figures). Why? Because 1.05 implies an uncertainty of \pm 0.01 which is 0.01/1.05 \approx 0.01 \approx 1%, just like the uncertainty in the original numbers 92 and 97.

SUGGESTION: Use the significant figures rule, but consider the % uncertainty too, and add an extra digit if it gives a more realistic estimate of uncertainty.

Approximations

Much of physics involves approximations, often because we do not have the means to solve a problem precisely. For example, we may choose to ignore air resistance or friction in doing a Problem even though they are present in the real world, and then our calculation is only an approximation. In doing Problems, we should be aware of what approximations we are making, and be aware that the precision of our answer may not be nearly as good as the number of significant figures given in the result.

Accuracy vs. Precision

There is a technical difference between "precision" and "accuracy." **Precision** in a strict sense refers to the repeatability of the measurement using a given instrument. For example, if you measure the width of a board many times, getting results like 8.81 cm, 8.85 cm, 8.78 cm, 8.82 cm (interpolating between the 0.1 cm marks as best as possible each time), you could say the measurements give a *precision* a bit better than 0.1 cm. **Accuracy** refers to how close a measurement is to the true value. For example, if the ruler shown in Fig. 1–5 was manufactured with a 2% error, the accuracy of its measurement of the board's width (about $8.8 \, \text{cm}$) would be about 2% of $8.8 \, \text{cm}$ or about $\pm 0.2 \, \text{cm}$. Estimated uncertainty is meant to take both accuracy and precision into account.

1–5 Units, Standards, and the SI System

The measurement of any quantity is made relative to a particular standard or **unit**, and this unit must be specified along with the numerical value of the quantity. For example, we can measure length in British units such as inches, feet, or miles, or in the metric system in centimeters, meters, or kilometers. To specify that the length of a particular object is 18.6 is insufficient. The unit *must* be given, because 18.6 meters is very different from 18.6 inches or 18.6 millimeters.

For any unit we use, such as the meter for distance or the second for time, we need to define a **standard** which defines exactly how long one meter or one second is. It is important that standards be chosen that are readily reproducible so that anyone needing to make a very accurate measurement can refer to the standard in the laboratory and communicate with other people.