Übungsblatt 7

Aufgabe 1

Multiplizieren → gegeben Block 1 (UND-Gatter)

Addieren mit vor. Übertrag → gegeben Block 2 (Volladdierer)

Addieren ohne vor. Übertrag → gegeben Block 3 (Halbaddierer)

Mit erweiterte Testergebnisse:

Signals	Waves								
Time)	10 ns	20 ns	30 ns	40 ns	50 ns	60 ns	70 ns	80 ns
x[3:0]	10		9		15		1	12	
y[3:0]	13	7	13	7	o	15	9	4	
z[7:0]	130	70	117	63	o	225	9	48	

Aufgabe 2

c. Je mehr Bits die Eingabe hat, desto komplizierter der paralleler Multiplizier (PM) ist. Z.B. für 32-Bit PM braucht man 1024 Gatter/Addierer insgesamt und das kann lang dauern. PM ist aber einfacher bei Implimentierung, da man nur mit Basic-Gattern arbeitet (AND, OR, XOR).

Für Add-Shift-Multiplizier (ASM) muss man nur die Mutiplikator und Multiplikanden beliebig Mal verschieben sowie addieren. Z.B. für 32-Bit ASM braucht man maximal nur 32 Schiebungen und/oder 32 Additionen. ASM ist aber komplexer bei Implimentierung, da man Bits schieben muss und dafür braucht man Schieberegister, welche auch Flip-Flops braucht.