Thresholding

CSE 185

Segmentation By Thresholding

Advantages:

+ intuitive

+ simple implementation

+ comp-tutionally efficient

Disadvantages

- not effective for complex images

Intensity Furesholding Busis

Suppose image has intensity histogram of 10.35(a)

> light objects on dark background

- intensity values grouped into two dominant modes

Obvious way h "extract" objects from background is
As select a throshold T that separates these two modes.

Any pt. (x,y) at which f(x,y) >T is called an object pt. Otherwise, a background pt.

segmented image glary) given by

 $g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T \\ 0 & \text{if } f(x,y) \leq T \end{cases}$

If constant T is used for whole image them have global thresholding

when T changes have variable thresholding.

Local or regional thresholding refers to case where

T at any pt. (x,y) depends on properties

of neighborhood of (x,y). (ex: average of pixel values
in neighborhood)

Consider 10.35(6). Now three dominant modes. Two types of objects?

Now, can use multiple thresholding:

$$g(x,y) = \begin{cases} a & \text{if } f(x,y) > T_2 \\ b & \text{if } T_1 < f(x,y) \leq T_2 \end{cases}$$

$$c & \text{if } f(x,y) \leq T_1$$

where ash, a are distinct intensity values.

Picking more than two global thresholds is difficult and usually better using adaptive thresholding.

2 Thresholding

Success of intensity thresholding depends on width and depth of valleys separating the histogram modes:

Key factors affecting the properties of the valleys are

- 1) Separation between peaks
- 2) Noise content of images (modes broaden as noise increases)
- 3) Relative sizes of objects and background
- 4) Uniformity of illumination source
- 5) Uniformity of reflectance properties of make

Noise and Thresholding

Consider 10.36

Illumination / Reflectance and Thresholding

Consider 10.37

Basic Global Thresholding

Even if have an image whose intensity histogram has distinct modes, still need to decide threshold value T.

Iterative algorithm for pickins global threshold T:

- 1. select an estimate for T
- 2. Segment image using F. This will result in two groups of pixels:

G: all pixels with intensity >T Gz: all pixels with intensity =T

- 3. Compute mean , values M, and Mz of G, and Gz
- 4. Compute new threshold

T= { (n,+mz)

5. Repeat steps 2-4 until difference between values of T in successive iterations is smaller than predefined parameter &T.

3) Thresholding

Algorithm works well when clear valley between modes of histogram related to objects and background.

Example in 10.35

Final value for T= 125.4
3 iterations
T=mean initially

Optimum Global Thresholding Using Otsu's Method

Maximizes the between-class variance

class a group of pixels besigned to object

Adea: well-thresholded classes should be distinct with respect to the intensity values of their pixels

Uses histogram of image to comple IT that results in maximum between-class variance.

MxN pixels

n; = # of pixels with intensity i

So MN = En;

Normalized histogram components p; = n; mn

Have $\sum_{i=0}^{L-1} p_i = 1$ $p_i \ge 0$.

Suppose pick threshold T(k)=k, 0 < k < L-1 and threshold image into two classes C1, Cz

Probability Pi(k) that a pixel is assigned to class of is given by conclutine sum

P, (k) = & P;

Thresholding

(4)

Pick) = probability of class c, occurring,

Similarly

Pz(k) = E Pi = 1-P,(k) = probability of class Cz occurring.

Mean intensity of pixels assigned to class C, is

m,(k) = \(\xi \) i P(i|Ci)

P(i)(i) = probability of pixel having intensity i given that it is in (1.

Using Bayes' fomula

So
$$M_1(k) = \sum_{i=0}^{k} \frac{P(C_i)}{P(C_i)}$$

But P(C, 1i) = 1 because only dealths with values i from class Ci.

50

$$m_i(k) = \frac{1}{P_i(k)} \sum_{i=0}^{k} i P_i$$

Similarly $m_z(k) = \sum_{i=k+1}^{L-1} i P(i|C_z) = \frac{1}{-1} \sum_{i=k+1}^{L-1} i p_i$

Comulative mean up to level to is given by $m(k) = \sum_{i=0}^{k} ip_i = m$

Global mean

thresholding (5) Can show P, (k) M, (k) + P2 (WM2(k) = MG or P, M, + P2 M2 = MG P, (k) + Pz(k) = 1 0- P, +Pz=1 Evaluate the "goodnes" of threshold at level to through $\eta = \frac{\sigma^2 B}{\sigma_G^2} = \frac{\text{between class variance}}{\text{global variance}}$ σ= ξ(1-mg)2 p; 08 = P(Cm, -M4)2 + P2 (M2-Mc)2 Can rewrite σβ= P.Pz (m,-nz)2 = (m4P,-m)2 more efficient to P. (I-P.) evaluate for different threshold values k sonly M. P. change The further M, and Mz are apart, the large of and large of (02 is constant) > Maximoze on wrt k To summarize n(k) = OB(k) OB2(k) = [M&P,(k)-m(k)]2 P. (k) [1 - P. (h)] Optimum threshold is value k* that maximizes of(k) k = arg max of (k). To find kt, simply evaluate of (k) for all integer

FOPS 35500

phreshold 6 once k* is chosen, use to threshold mage. p(k)= 03(k+) indicates how good segmentation is. o = y(k*)= | lage = better Ex. 10.39 Threshold by standard alsorithm = 169
" " Otso's nethod= 181 Surmary of Otsu's algorithm: 1. Compute normalized histogram of input image: Pi, i=0, ..., 2-1 2. Compute cumulative sums P, (k) for k=0,..., 1-1 3. Compute comulative means much for te=0, ... , L-1 4. Compute global mean Mg 5. Compute between class variance of (k) for k=0,..., L-1 6. Obtain k# for which of ckl is nax. 7. Obtain separability measure 1th.