N01 2025 模拟赛 day2

2025年6月23日

题目名称	种树	分布式计算	药丸称重
题目类型	传统型	传统型	传统型
目录	plant	compute	pills
可执行文件名	plant	compute	pills
输入文件名	plant.in	compute.in	pills.in
输出文件名	plant.out	compute.out	pills.out
每个测试点时限	1.5 秒	2.0 秒	4.0 秒
内存限制	512 MB	512 MB	1024 MB
测试点数目	20	20	25

提交源程序文件名

对于 C++ 语言	plant.cpp	compute.cpp	pills.cpp
-----------	-----------	-------------	-----------

编译选项

对于 C++ 语言	-02 -std=c++14
-----------	----------------

注意事项 (请仔细阅读)

- 1. 选手提交的源程序请直接放在个人目录下, 无需建立子文件夹;
- 2. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 3. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
- 4. 对于因未遵守以上规则对成绩造成的影响,相关申诉不予受理。
- 5. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 6. 若无特殊说明,每道题的代码大小限制为 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。

N01 2025 模拟赛 day2 1 种树 (PLANT)

种树 (plant)

【题目描述】

昨天小 A 把全世界所有的树都砍了,于是今天小 B 决定重新种一棵树。小 B 要种一棵 **最小生成树**。

现在有一张 n 个点的无向图,其中任意两个不同点之间都有可能有一条权值在 $1 \sim m$ 之间的边,每条边是否出现以及边的权值是独立随机的。具体的,对于每条边 (u,v),其有 $\frac{p_0}{100}$ 的概率不出现,出现且权值为 1 的概率是 $\frac{p_0}{100}$,……,出现且权值为 m 的概率是 $\frac{p_0}{100}$ 。

对于这样一张随机生成的图,小 B 想知道这张图的最小生成树边权和是什么。请你 对 s 从 n-1 到 m(n-1) 分别求出,存在最小生成树且其边权和为 s 的概率是多少?答 案对 10^9+7 取模。

【输入格式】

从文件 plant.in 中读入数据。

本题每个测试点有多组测试数据:

第一行一个整数 T 表示测试数据组数。

对于每组测试数据:

第一行两个整数 n, m, 表示图中节点数和最大边权。

接下来一行 m+1 个正整数 p_0, p_1, \ldots, p_m , $\sum_{i=0}^m p_i = 100$, 表示每条边不出现和对应权值的概率。

【输出格式】

输出到文件 plant.out 中。

对于每组测试数据,输出一行 (m-1)(n-1)+1 个整数,第 i 个整数表示最小生成 树存在且边权和为 i+n-2 的概率,对 10^9+7 取模。

【样例 1 输入】

3 3 2 0 50 50 2 1 100 0 5 3

25 25 25 25

【样例 1 输出】

500000004 375000003 125000001

0

784950262 273168566 557370190 190968515 146759988 943528182

888933188 870250708 589744572

【样例 2 输入/输出】

见下发文件中 plant2.in/ans。

【测试点约束】

对于所有测试点, $1 \le T \le 5$, $1 \le n \le 50$, $1 \le k \le 10$, $0 \le p_i \le 100$, $\sum_{i=0}^{m} p_i = 100$ 。

测试点	$n \leq$	$m \leq$
$1 \sim 2$	5	5
$3 \sim 6$	20	10
$7 \sim 10$	50	1
$11 \sim 20$	50	10

分布式计算 (compute)

【题目描述】

小 A 有一个由 n 个计算节点组成的网络,有 n-1 条通信线路,每条通信线路连接两个节点,并且图中任意两个节点间都可以通过若干条通信线路互相通信,简单地说,所有节点和通信线路组成一棵树。

每一个节点初始时有一个负载值 a_i 和一个数据量 l_i 。第 0 秒时,i 号节点存储的数据量恰为 l_i ,之后每一秒开始时,它会新产生一些计算结果,存储的数据量会增大 a_i 。有时候小 A 希望获取到目前为止所有的计算结果,他会选择一个计算节点 u,要求所有节点将目前存储的所有数据都通过通信线路发送到节点 u,代价是 $f(u) = \sum_v l_v \times \operatorname{dis}(u,v)$,其中 $\operatorname{dis}(u,v)$ 表示 u 到 v 路径上的边数。小 A 总是会选择代价最小的 u 来进行这一操作。

接下来会依次发生 Q 个事件, 第 i 个事件有两种可能的类型:

- 1 x_i u_i v_i w_i : 第 x_i 秒结束时,对于两个相邻的节点 u_i, v_i ,将 u_i 的一部分工作量分给 v_i ,使 a_{u_i} 减小 w_i , a_{v_i} 增大 w_i 。保证 u_i, v_i 之间有边,且操作后 $a_{u_i} \ge 0$ 。
- 2 x_i : 第 x_i 秒结束时,小 A 想获取所有数据,请你求出最小代价 $\min_{u} f(u)$ 。

【输入格式】

从文件 compute.in 中读入数据。

第一行两个整数 n,Q,分别表示节点数和事件数。

第二行 n 个整数 a_1, \ldots, a_n ,表示初始时每个节点的负载值每秒增大的量。

第三行 n 个整数 l_1, \ldots, l_n ,表示初始时每个节点的负载值。

接下来 n-1 行, 每行两个整数 u,v 表示一条通信线路。

接下来Q行,每行描述一个事件,格式见题目描述,保证事件按发生顺序给出,即给出的 x_i 严格单调递增。

【输出格式】

输出到文件 compute.out 中。

对于每次查询(2 类事件),输出一行一个整数表示当前的 $\min f(u)$ 。

【样例 1 输入】

```
5 10
1 1 4 5 1
4 1 9 1 9
1 2
2 3
2 4
1 5
2 1
1 2 3 2 3
1 3 4 2 4
1 4 2 1 8
2 5
1 6 1 5 7
2 7
2 8
2 9
2 10
```

【样例 1 输出】

```
44
83
116
134
146
158
```

【样例 2 输入/输出】

见下发文件中 compute2.in/ans。

【样例 3 输入/输出】

见下发文件中 compute3.in/ans。

【测试点约束】

对于所有测试点, $1 \le n, Q \le 5 \times 10^5$, $0 \le a_i, l_i \le 1000$, $1 \le x_i \le 10^9$, 1 类事件给出的 u_i, v_i 之间有边,所有事件给出的 x_i 严格单调递增。

测试点	$n,Q \leq$	特殊性质
$1 \sim 4$	5000	无
$5 \sim 8$	10^{5}	所有1类事件都发生在所有2类事件之前
$9 \sim 10$	5×10^5	$\forall 1 \leq i < n$, 点 i 和点 $i+1$ 之间有边
$11 \sim 14$	10^{5}	无
$15 \sim 20$	5×10^5	无

药丸称重 (pills)

【题目描述】

小 A 在医院工作。他面前有 n 个装药丸的罐子,第 i 个罐子中有 a_i 颗药丸。在所有的药丸中恰好有一颗是次品,它的重量比其它的药丸重,其它所有正常药丸的重量都是一样的。

小 A 想要找出那颗超重的药丸。他有一个电子秤,并且他知道一颗正常药丸的重量是多少,每次他可以选择其中一罐药丸,取出这罐药丸中任意一个药丸的子集来称重,就可以确定超重药丸是否在这个子集里面。注意,他一次只能选择一罐药丸,不能从多罐中每罐取出一些放在一起称重。

小 A 有 Q 次询问,每次小 A 假设超重的药丸一定位于第 l 罐到第 r 罐中的某一罐药丸中,请你帮小 A 确定,此时在最优策略下,最多需要多少次称重就一定能够找出超重药丸。

【输入格式】

从文件 pills.in 中读入数据。

第一行包含三个整数 n, m, q,分别表示有多少罐药丸, a_i 的二进制位数,以及询问次数。

接下来 n 行,第 i 行一个长度为 m 的 01 串为 a_i 的二进制表示(从高位到低位)。接下来 Q 行,每行两个整数 l,r 表示一次询问。

【输出格式】

输出到文件 pills.out 中。

对于每次询问,输出一行一个整数表示在最优策略下,最多需要多少次称重就一定能够找出超重药丸。

【样例 1 输入】

2 2 1

11

01

1 2

【样例 1 输出】

2

【样例 1 解释】

第一罐药丸有3颗,第二罐药丸只有1颗。

小 A 可以从第一罐药丸中取出 2 颗称重,如果超重药丸在这 2 颗之中就只需要再称一次就可以找出,如果不在这 2 颗中就在第一罐剩下那一颗或第二罐的那一颗之中,再称一次也可以找出,因此最多需要称 2 次。

【样例 2 输入】

```
5 3 5
100
100
101
001
111
1 3
1 3
3 3
4 4
5 5
```

【样例 2 输出】

【样例 3 输入/输出】

见下发文件中 pills3.in/ans。

【测试点约束】

对于所有测试点, $1 \le n, Q \le 5 \times 10^4$, $1 \le m \le 1000$, $1 \le a_i \le 2^m - 1$, $1 \le l \le r \le n$.

测试点	特殊性质
$1 \sim 2$	n = 1
$3 \sim 6$	m=2
$7 \sim 9$	n=2
$\boxed{10 \sim 14}$	$n, Q \le 100$
$15 \sim 25$	无