Tjaša Vrhovnik

Mentor: prof. dr. Franc Forstnerič Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za matematiko

10. maj 2020

Načrt

- Motivacija
- Osnovne definicije
- Minimalne ploskve
- Aproksimacija minimalnih ploskev
- Primeri

Motivacija

- ploskve z lokalno minimalno ploščino
- Euler, Lagrange, Meusnier (18. st.)
- Plateaujev problem
- Riemannove ploskve

Definicija

Naj bo $n \in \mathbb{N}_0$. Topološki prostor M z lastnostmi:

- M je Hausdorffov,
- M je 2-števen,
- **③** M je lokalno evklidski prostor dimenzije n (za vsak $x \in M$ obstajata odprta okolica $U \subset M$ in homeomorfizem $\phi : U \to \phi(U) \subset \mathbb{R}^n$, kjer je $\phi(U)$ odprta množica),

imenujemo topološka mnogoterost dimenzije n.

Definicija

Riemannova ploskev je kompleksna mnogoterost kompleksne dimenzije 1.

Definicija

Naj bo $n \in \mathbb{N}_0$. Topološki prostor M z lastnostmi:

- M je Hausdorffov,
- M je 2-števen,
- **③** M je lokalno evklidski prostor dimenzije n (za vsak $x \in M$ obstajata odprta okolica $U \subset M$ in homeomorfizem $\phi : U \to \phi(U) \subset \mathbb{R}^n$, kjer je $\phi(U)$ odprta množica),

imenujemo topološka mnogoterost dimenzije n.

Definicija

Riemannova ploskev je kompleksna mnogoterost kompleksne dimenzije 1.

Definicija

Naj bo $f: M \to N$ gladka preslikava med gladkima mnogoterostima. Preslikava f se imenuje imerzija, če je njen diferencial d f_x injektiven v vsaki točki $x \in M$.

Na prostoru \mathbb{R}^n s koordinatami $x = (x_1, \dots, x_n)$ je definirana *Evklidska metrika*

$$ds^{2} = (dx_{1})^{2} + \dots + (dx_{n})^{2}.$$
 (1)

Naj bo D domena v \mathbb{R}^2 in $x: D \to \mathbb{R}^n$ imerzija, podana s predpisom $x(u_1,u_2)=(x_1(u_1,u_2),\ldots,x_n(u_1,u_2)),\ (u_1,u_2)\in D$. Pripadajoča metrika na D je enaka

$$g = x^* ds^2 = g_{1,1} du_1^2 + g_{1,2} du_1 du_2 + g_{2,1} du_2 du_1 + g_{2,2} du_2^2,$$
 (2)

$$g_{1,1} = |x_{u_1}|^2, \ g_{1,2} = g_{2,1} = x_{u_1} \cdot x_{u_2}, \ g_{2,2} = |x_{u_2}|^2.$$
 (3)

Definicija

Naj bo $f: M \to N$ gladka preslikava med gladkima mnogoterostima. Preslikava f se imenuje imerzija, če je njen diferencial d f_x injektiven v vsaki točki $x \in M$.

Na prostoru \mathbb{R}^n s koordinatami $x = (x_1, \dots, x_n)$ je definirana *Evklidska metrika*

$$ds^{2} = (dx_{1})^{2} + \dots + (dx_{n})^{2}.$$
 (1)

Naj bo D domena v \mathbb{R}^2 in $x: D \to \mathbb{R}^n$ imerzija, podana s predpisom $x(u_1,u_2)=(x_1(u_1,u_2),\ldots,x_n(u_1,u_2)),\ (u_1,u_2)\in D.$ Pripadajoča metrika na D je enaka

$$g = x^* ds^2 = g_{1,1} du_1^2 + g_{1,2} du_1 du_2 + g_{2,1} du_2 du_1 + g_{2,2} du_2^2,$$
 (2)

$$g_{1,1} = |x_{u_1}|^2, \ g_{1,2} = g_{2,1} = x_{u_1} \cdot x_{u_2}, \ g_{2,2} = |x_{u_2}|^2.$$
 (3)

Definicija

1 Naj bo M gladka kompaktna ploskev z robom, $n \ge 3$ in naj bo preslikava $x: M \to \mathbb{R}^n$ imerzija razreda \mathscr{C}^2 . Variacija preslikave x s fiksnim robom je 1-parametrična družina \mathscr{C}^2 preslikav

$$x^t : M \to \mathbb{R}^n, \ t \in (-\varepsilon, \varepsilon) \subset \mathbb{R},$$
 (4)

če je $x^0 = x$ in za vse t z intervala velja $x^t = x$ na bM.

② Naj bo $p \in M$. Variacijsko vektorsko polje preslikave x^t je vektorsko polje, definirano kot

$$E(p,t) = \frac{\partial x^{t}(p)}{\partial t} \in \mathbb{R}^{n}.$$
 (5)

Definicija

Naj bo $x: M \to \mathbb{R}^n$ imerzija razreda \mathscr{C}^2 . Ploskev M imenujemo minimalna ploskev, če za vsako kompaktno domeno $D \subset M$ z gladkim robom bD in vsako gladko variacijo x^t preslikave x s fiksnim robom velja

$$\frac{d}{dt}\Big|_{t=0} Area(x^t(D)) = 0.$$
 (6)

Ekvivalentno pravimo, da je minimalna ploskev stacionarna točka ploskovnega funkcionala Area: $D \to \mathbb{R}$.

Izrek (Prva variacijska formula)

Naj bo M gladka kompaktna ploskev z robom, $n \ge 3$ in $x : M \to \mathbb{R}^n$ imerzija razreda \mathscr{C}^2 . Naj bo $E = \partial x^t/\partial t|_{t=0}$ variacijsko vektorsko polje preslikave x^t pri t=0, \mathbf{H} vektorsko polje povprečne ukrivljenosti preslikave x in dA ploščinski element glede na Riemannovo metriko $x^* ds^2$, definirano na M. Potem za vsako gladko variacijo $x^t : M \to \mathbb{R}^n$ imerzije x s fiksnim robom velja

$$\frac{d}{dt}\Big|_{t=0} Area(x^t(M)) = -2 \int_M E \cdot \mathbf{H} dA. \tag{7}$$

Izrek

Naj bo M odprta Riemannova ploskev, $n \ge 3$ in $x = (x_1, ..., x_n) : M \to \mathbb{R}^n$ konformna imerzija razreda \mathscr{C}^2 . Ekvivalentno je:

- x je minimalna ploskev.
- Vektorsko polje povprečne ukrivljenosti preslikave x je ničelno.
- x je harmonična.
- **③** 1-forma $\partial x = (\partial x_1, ..., \partial x_n)$ z vrednostmi v \mathbb{C}^n je holomorfna in velja

$$(\partial x_1)^2 + \dots + (\partial x_n)^2 = 0.$$
 (8)

 Naj bo θ holomorfna 1-forma na M, ki ni nikjer enaka 0. Potem je preslikava f = 2∂x/θ: M → Cⁿ holomorfna z vrednostmi na ničelni kvadriki

$$\mathbf{A} = \{ (z_1, \dots, z_n) \in \mathbb{C}^n; \ z_1^2 + \dots + z_n^2 = 0 \}.$$
 (9)

Nadalje je Riemannova metrika na M, inducirana s konformno imerzijo x, enaka

$$g = x^* ds^2 = |dx_1|^2 + \dots + |dx_n|^2 = 2(|\partial x_1|^2 + \dots + |\partial x_n|^2).$$
 (10)

Izrek (Weierstrassova predstavitev konformnih minimalnih ploskev)

Naj bo $n \ge 3$ in M odprta Riemannova ploskev, na kateri definiramo holomorfno 1-formo $\phi = (\phi_1, \dots, \phi_n)$ z vrednostmi v \mathbb{C}^n , ki je povsod neničelna, in zadošča

- ② $\Re \int_C \phi = 0$ za vse [C] ∈ $H_1(M, \mathbb{Z})$.

Potem za poljuben izbor točk $p_0 \in M$ in $x_0 \in \mathbb{R}^n$ predpis $x : M \to \mathbb{R}^n$,

$$x(p) = x_0 + \Re \int_{p_0}^{p} \phi, \ p \in M,$$
 (11)

podaja dobro definirano konformno minimalno imerzijo. Zanjo velja

$$2\partial x = \phi$$
 in $g = x^* ds^2 = |dx|^2 = \frac{1}{2}|\phi|^2$. (12)

Izreki o aproksimaciji in interpolaciji

Izrek (Bishop-Mergelyanov aproksimacijski izrek)

Naj bo M odprta Riemannova ploskev in K njena kompaktna podmnožica brez lukenj (K je Rungejeva v M). Potem lahko vsako funkcijo v $\mathscr{A}(K)$ aproksimiramo enakomerno na K s funkcijami v $\mathscr{O}(M)$.

Izrek (Weierstrass-Florackov interpolacijski izrek)

Naj bo M odprta Riemannova ploskev in K njena Rungejeva podmnožica. Naj bo $A = \{a_i\}_{i=1}^\infty$ zaprta diskretna podmnožica v M, U odprta podmnožica M, tako da je $A \cup K \subset U$ in f meromorfna funkcija na U z ničlami in poli le v točkah množice A. Potem za izbrane $\varepsilon > 0$ in števila $k_i \in \mathbb{N}$ obstaja meromorfna funkcija F na M, za katero velja:

- $|F(z) f(z)| < \varepsilon \text{ za vse } z \in K,$
- v točkah a_i je razlika F f ničelna do reda k_i,
- § F nima ničel in polov na M\A.

Aproksimacija minimalnih ploskev

Trditev

Naj bo M odprta Riemannova ploskev in θ povsod neničelna holomorfna 1-forma na M. Naj bo S povezana dopustna množica, ki je Rungejeva v M, in $A = \{a_1, \dots, a_k\} \subset S$. Naj bosta $r, s \in \mathbb{N}$. Potem lahko vsako posplošeno konformno minimalno imerzijo $(x, f\theta) \in GCMl^r(S, \mathbb{R}^n)$ aproksimiramo s konformnimi minimalnimi imerzijami $X : M \to \mathbb{R}^n$ razreda \mathscr{C}^r , za katere velja $\mathsf{Flux}_X = \mathsf{Flux}_X$.

Aproksimacija minimalnih ploskev

Izrek (Mergelyanov izrek za konformne minimalne ploskve)

Naj bo M odprta Riemannova ploskev, θ povsod neničelna holomorfna 1-forma na M, $n \geq 3$ in $r \geq 1$. Naj bo S dopustna Rungejeva množica v M in A zaprta diskretna podmnožica M. Naj bo $x \colon S \to \mathbb{R}^n$ posplošena konformna minimalna imerzija razreda $\mathscr{C}^r(S,\mathbb{R}^n)$, ki je konformna minimalna imerzija v okolici vsake točke iz A.

Za izbrane $\varepsilon > 0$, preslikavo $k : A \to \mathbb{N}$ in homomorfizem grup $\mathfrak{p} : H_1(M,\mathbb{Z}) \to \mathbb{R}^n$, $\mathfrak{p}|_{H_1(S,\mathbb{Z})} = \operatorname{Flux}_x$, obstaja konformna minimalna imerzija $\tilde{x} : M \to \mathbb{R}^n$, za katero velja:

- ② Razlika $\tilde{x} x$ je ničelna do reda k(p) v vsaki točki $p \in A$.
- **③** Če je n ≥ 5 in je x : $A \to \mathbb{R}^n$ injektivna preslikava, potem je \tilde{x} injektivna imerzija.
- Če je n = 4 in ima x enostavne dvojne točke na množici A, potem je x imerzija z enostavnimi dvojnimi točkami na A.

KATENOID

$$x \colon \mathbb{R}^2 \to \mathbb{R}^3$$
$$x(u,v) = (\cos u \cdot \cosh v, \sin u \cdot \cosh v, v)$$

HELIKOID

$$x \colon \mathbb{R}^2 \to \mathbb{R}^3$$

$$x(u, v) = (\sin u \cdot \sinh v, -\cos u \cdot \sinh v, u)$$

Primeri

