Tensor Methods for Neural Network Compression

Lokesh Veeramacheneni

Moritz Wolter

Fraunhofer SCAI

Prof. Jochen Garcke

Table of contents

- 1. Why tensor decomposition?
- 2. What are tensors?
- 3. Candecomp/PARAFAC decomposition
- 4. AlexNet architecture
- 5. CP decomposition on AlexNet
- 6. Results

Why tensor decomposition?

- Training a CNN on low end hardware
 - Memory constraint
 - Computational Speed
 - Power intensive
- FPGA based ConvNet [1]
 - Inapplicability on high end architectures
 - Change in architecture requires complete redesigning
- Early attempts made using tensor decomposition [2]
 - CP Decomposition Nonlinear Least Squares (NLS)
 - Performed on second layer of AlexNet and CharNet
 - Rank 140 approximation

What is a Tensor?

• Tensor is a d-dimensional array

Figure 1: Representation of tensor upto four dimensions [3]

Unfolding a tensor (3D)

$$\mathbf{X}_{(1)} = \begin{bmatrix} 0.3 & 0.9 & 0.1 & 0.6 & 0.9 & 0.5 \\ 0.8 & 0.2 & 0.1 & 0.5 & 0.6 & 0.4 \\ 0.4 & 0.3 & 0.9 & 0.1 & 0.4 & 0.1 \end{bmatrix} n_1 \times n_2 n_3$$

$$(i_1, i_2, i_3) \rightarrow (i_2, i'_2), \quad i'_2 = (i_3 - 1)n_1 + i_1$$

$$\mathbf{X}_{(2)} = \begin{bmatrix} 0.3 & 0.8 & 0.4 & 0.6 & 0.5 & 0.1 \\ 0.9 & 0.2 & 0.3 & 0.9 & 0.6 & 0.4 \\ 0.1 & 0.1 & 0.9 & 0.5 & 0.4 & 0.1 \end{bmatrix} n_2 \times n_1 n_3$$

$$(i_1, i_2, i_3) \rightarrow (i_3, i'_3), \quad i'_3 = (i_2 - 1)n_1 + i_1$$

$$\mathbf{X}_{(3)} = \begin{bmatrix} 0.3 & 0.8 & 0.4 & 0.9 & 0.2 & 0.3 & 0.1 & 0.1 & 0.9 \\ 0.6 & 0.5 & 0.1 & 0.9 & 0.6 & 0.4 & 0.5 & 0.4 & 0.1 \end{bmatrix}$$

$$n_3 \times n_1 n_2$$

Figure 2: Illustration of unfolding a 3d tensor [4]

Kronecker Product

- Generalization of outer product of vectors to matrices
- Denoted by ③

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \otimes \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} & 2 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} & 2 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} \\ 3 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} & 4 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 & 5 & 0 & 10 \\ 6 & 7 & 12 & 14 \\ 0 & 15 & 0 & 20 \\ 18 & 21 & 24 & 28 \end{bmatrix}$$

Figure 3: Illustration of kronecker product over matrices [5]

Khatri-Rao Product

- Column wise kronecker product
- Denoted by ⊙

$$\mathbf{C} = \left[egin{array}{c|c} \mathbf{C}_1 & \mathbf{C}_2 & \mathbf{C}_3 \end{array}
ight] = \left[egin{array}{c|c} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{array}
ight], \quad \mathbf{D} = \left[egin{array}{c|c} \mathbf{D}_1 & \mathbf{D}_2 & \mathbf{D}_3 \end{array}
ight] = \left[egin{array}{c|c} 1 & 4 & 7 \ 2 & 5 & 8 \ 3 & 6 & 9 \end{array}
ight]$$

$$\left[egin{array}{c|c} \mathbf{C}_1\otimes\mathbf{D}_1 & \mathbf{C}_2\otimes\mathbf{D}_2 & \mathbf{C}_3\otimes\mathbf{D}_3 \end{array}
ight] = \left[egin{array}{c|c} 1 & 8 & 21 \ 2 & 10 & 24 \ 3 & 12 & 27 \ 4 & 20 & 42 \ 8 & 25 & 48 \ 12 & 30 & 54 \ 7 & 32 & 63 \ 14 & 40 & 72 \ 21 & 48 & 81 \end{array}
ight]$$

Figure 4: Illustration of khatri-rao product over matrices [5]

Candecomp/PARAFAC (CP) decomposition

- CP-decomposition can be viewed as matrix SVD generalized to tensors
- Unlike SVD, no orthogonality constraints are required
- It is defined as sum of d-dimensional outer products

Singular Value Decomposition

$$\mathbf{X} pprox \sum_{r=1}^{R} \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$$

CP Decomposition

CP Decomposition

- Computed using Alternating Least Squares(ALS) method
- In 3-way decomposition, A, B and C are optimized sequentially [1]
- In ALS, we minimize the cost function $||X-M||^2$

$$\begin{split} \min_{\hat{\mathbf{A}}} \|\mathbf{X}_{(1)} - \hat{\mathbf{A}}(\mathbf{C} \odot \mathbf{B})^{\mathsf{T}}\|_{F}, \\ \hat{\mathbf{A}} &= \mathbf{X}_{(1)} \left[(\mathbf{C} \odot \mathbf{B})^{\mathsf{T}} \right]^{\dagger}. \end{split}$$

Equation representing the optimization of variables in ALS method [1]

CP-ALS algorithm

```
procedure CP-ALS(\mathbf{X}, R) initialize \mathbf{A}^{(n)} \in \mathbb{R}^{I_n \times R} for n = 1, \dots, N repeat for n = 1, \dots, N do \mathbf{V} \leftarrow \mathbf{A}^{(1)^{\intercal}} \mathbf{A}^{(1)} * \dots * \mathbf{A}^{(n-1)^{\intercal}} \mathbf{A}^{(n-1)} * \mathbf{A}^{(n+1)^{\intercal}} \mathbf{A}^{(n+1)} * \dots * \mathbf{A}^{(N)^{\intercal}} \mathbf{A}^{(N)} \rightarrow \mathbf{A}^{(n)} \leftarrow \mathbf{X}^{(n)} (\mathbf{A}^{(N)} \odot \dots \odot \mathbf{A}^{(n+1)} \odot \mathbf{A}^{(n-1)} \odot \dots \odot \mathbf{A}^{(1)}) \mathbf{V}^{\intercal} normalize columns of \mathbf{A}^{(n)} (storing norms as \boldsymbol{\lambda}) end for until fit ceases to improve or maximum iterations exhausted return \boldsymbol{\lambda}, \mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \dots, \mathbf{A}^{(N)} end procedure
```

Algorithm 1: ALS algorithm to compute decomposition factors [3]

CP Decomposition

- Input tensor shape (2 x 3 x 3)
- Approximation by various ranks

Figure 2: Convergence of ALS method with different ranks

CP Decomposition

- Unit tested with tensorly implementation
- Parameters
 - Rank: 2
 - o Maximum iterations: 100

Reconstruction error	0.315	0.591
[[[-1.4192, -0.5040, 0.4957],	[[[-1.2103, -0.3307, 0.5578],	[[[-1.2102, -0.3308, 0.5573],
[-0.9996, 0.8199, 0.6812],	[-1.3484, 0.5286, 0.3366],	[-1.3483, 0.5285, 0.3363],
[1.0946, -2.0008, 0.7139]]	[0.8815, -2.1799, 0.3622]],	[0.8820, -2.1798, 0.3621]]
[[0.6136, 1.2167, -0.5914],	[[0.3615, 1.4637, -0.5998],	[[0.3618, 1.4638, -0.5998],
[-0.0321, 1.2354, -0.4008],	[0.2641, 0.9407, -0.3974],	[0.2639, 0.9406, -0.3971],
[0.2624, 1.1269, 0.4031]]]	[0.1108, 0.7960, -0.2941]]]	[0.1120, 0.7961, -0.2945]]
Input Tensor	Reconstruction from ALS method	Reconstruction from tensorly

AlexNet

- Convolutional Neural Network (CNN)
- First five convolutional layers
- Last three fully connected layers act as classifier

Figure 3: AlexNet architecture [6]

AlexNet

- Convolutional Neural Network (CNN)
- First five convolutional layers
- Last three fully connected layers act as classifier

Figure 3: AlexNet architecture [6]

AlexNet Results

- Classification task on CIFAR 10 dataset
- Learning rate: 0.002
- Original rank: 256
- Approximated rank: 45
- Maximum iterations: 10

	Without CP Decomposition	With CP Decomposition
Classification accuracy	84%	65%

Future Work

- Perform hyper parameter tuning over AlexNet
- Investigate vanishing gradient problem on increase of learning rate

References

- [1] Farabet, Clément, Yann LeCun, Koray Kavukcuoglu, Eugenio Culurciello, Berin Martini, Polina Akselrod, and Selcuk Talay. "Large-scale FPGA-based convolutional networks." *Scaling up Machine Learning: Parallel and Distributed Approaches* (2011): 399-419.
- [2] Lebedev, Vadim, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky. "Speeding-up convolutional neural networks using fine-tuned cp-decomposition." *arXiv* preprint arXiv:1412.6553 (2014).
- [3] Kolda, Tamara G., and Brett W. Bader. "Tensor decompositions and applications." *Society for Industrial and Applied Mathematics* (SIAM) review 51, no. 3 (2009): 455-500.
- [4] The Canonical Polyadic Tensor Decomposition and Variants for Mining Multi-Dimensional Data, https://drive.google.com/file/d/117GmqErogAnEeNJycvOw7IhA70A9Mcn6/view, Accessed 25-October-2020.
- [5] Kronecker Product, https://en.wikipedia.org/wiki/Kronecker_product, Accessed 25-October-2020.
- [6] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." In *Advances in neural information processing systems*, pp. 1097-1105. 2012.

Tensor Methods for Neural Network Compression