

Asymptotic Performance

- In this course, we care most about *asymptotic* performance
 - How does the algorithm behave as the problem size gets very large?
 - Running time
 - Memory/storage requirements
 - o Bandwidth/power requirements/logic gates/etc.

Asymptotic Notation

- Intuitive feel for asymptotic (big-O) notation:
 - What does O(n) running time mean? O(n²)? O(n lg n)?
 - How does asymptotic running time relate to asymptotic memory usage?
- We will define this notation more formally and completely

Analysis of Algorithms

- Analysis is performed with respect to a computational model
- We will usually use a generic uniprocessor randomaccess machine (RAM) – all operations cost const
 - All memory equally expensive to access
 - No concurrent operations
 - All reasonable instructions take unit time
 - Except, of course, function/method calls
 - Constant word size
 - o Unless we are explicitly manipulating bits

Input Size

- Time and space complexity
 - This is generally a function of the **input size**
 - E.g., sorting, multiplication
 - How we characterize input size depends:
 - o Sorting: number of input items
 - o Multiplication: total number of bits
 - o Graph algorithms: number of nodes & edges
 - o Etc

Running Time

- Number of primitive steps that are executed
 - Except for time of executing a function/method call most statements roughly require the same amount of time
 - $\mathbf{o} \mathbf{y} = \mathbf{m} * \mathbf{x} + \mathbf{b}$
 - $_{o}$ c = 5 / 9 * (t 32)
 - z = f(x) + g(y)

Analysis

- Worst case
 - Provides an upper bound on running time
 - An absolute guarantee
- Average case
 - Provides the expected running time
 - Very useful, but treat with care: what is "average"?
 - o Random (equally likely) inputs
 - Real-life inputs

Worst vs Average case Analysis

Worst case running time analysis

- 1. Gives an upper bound on the running time for any input (guarantee)
- 2. For some algorithms, worst case occurs fairly often
- 3. Average case as bad as worst case

Induction Example: Gaussian Closed Form • Prove 1 + 2 + 3 + ... + n = n(n+1) / 2 • Basis: • If n = 0, then 0 = 0(0+1) / 2 • Inductive hypothesis: • Assume 1 + 2 + 3 + ... + n = n(n+1) / 2 • Step (show true for n+1): 1 + 2 + ... + n + n+1 = (1 + 2 + ... + n) + (n+1) = n(n+1)/2 + n+1 = [n(n+1) + 2(n+1)]/2 = (n+1)(n+2)/2 = (n+1)(n+1+1) / 2

Induction Example: Geometric Closed Form

• Prove $a^{0} + a^{1} + ... + a^{n} = (a^{n+1} - 1)/(a - 1)$ for all $a \neq 1$ • Basis: show that $a^{0} = (a^{0+1} - 1)/(a - 1)$ • Inductive hypothesis:

• Assume $a^{0} + a^{1} + ... + a^{n} = (a^{n+1} - 1)/(a - 1)$ • Step (show true for n + 1): $a^{0} + a^{1} + ... + a^{n+1} = a^{0} + a^{1} + ... + a^{n} + a^{n+1}$ $= (a^{n+1} - 1)/(a - 1) + a^{n+1} = (a^{n+1+1} - 1)/(a - 1)$

Induction

- We've been using weak induction
- Strong induction also holds
 - Basis: show S(o)
 - Hypothesis: assume S(k) holds for arbitrary $k \le n$
 - Step: Show S(n+1) follows
- Another variation:
 - Basis: show S(0), S(1)
 - Hypothesis: assume S(n) and S(n+1) are true
 - Step: show S(n+2) follows