KNN and K-means

. K-means is an unsupervised learning algorithm used for clustering problem whereas KNN is a supervised learning algorithm used for classification and regression problem.

KNN: Classification Approach

- An object (a new instance) is classified by a majority votes for its neighbor classes.
- The object is assigned to the most common class amongst its K nearest neighbors.(measured by a distant function)

- 1. Calculate distance
- 2. Find closest neighbors
- 3. Vote for labels

KNN

K-Nearest Neighbor Algorithm

- All the instances correspond to points in an n-dimensional feature space.
- Each instance is represented with a set of numerical attributes.
- Each of the training data consists of a set of vectors and a class label associated with each vector.
- 4. Classification is done by comparing feature vectors of different K nearest points.
- 5. Select the K-nearest examples to E in the training set.
- 6. Assign E to the most common class among its K-nearest neighbors.

KNN: Example

Customer	Age	Income	No. credit cards	Class
George	35	35₭	3	No
Rachel	22	50K	2	Yes
Steve	63	200K	1	No
Tom	59	170K	1	No
Anne	25	40K	4	Yes
John	37	50K	2	YES

Distance from John
sqrt [(35-37) ² +(35-50) ² +(3- 2) ²]=15.16
sqrt [(22-37) ² +(50-50) ² +(2- 2) ²]=15
sqrt [(63-37) ² +(200-50) ² +(1- 2) ²]=152.23
sqrt [(59-37) ² +(170-50) ² +(1- 2) ²]=122
sqrt [(25-37) ² +(40-50) ² +(4- 2) ²]=15.74

How to choose K?

3 ways to choose k

1.
$$k = 3$$

2.
$$k = \lfloor \sqrt{N} \rfloor$$

3. Validation or cross validation k-NN rule hypotheses g⁻ constructed on training set, tested on validation set, and best k is picked

Feature Normalization

- Distance between neighbors could be dominated by some attributes with relatively large numbers.
- Arises when two features are in different scales.
- Important to normalize those features. $a_i = \frac{v_i \min v_i}{\max v_i \min v_i}$
 - — Mapping values to numbers between 0-1.

KNN

Strengths of KNN

- Simple and intuitive.
- Can be applied to the data from any distribution.
- Good classification if the number of samples is large enough.

Weaknesses of KNN

- Takes more time to classify a new example.
- need to calculate and compare distance from new example to all other examples.
- Choosing k may be tricky.

What is clustering?

- The organization of unlabeled data into similarity groups called clusters.
- A cluster is a collection of data items which are "similar" between them, and "dissimilar" to data items in other clusters.

Clustering techniques

Clustering techniques

- Hierarchical algorithms find successive clusters using previously established clusters. These algorithms can be either agglomerative ("bottom-up") or divisive ("top-down"):
 - Agglomerative algorithms begin with each element as a separate cluster and merge them into successively larger clusters;
 - Oivisive algorithms begin with the whole set and proceed to divide it into successively smaller clusters.
- Partitional algorithms typically determine all clusters at once, but can also be used as divisive algorithms in the hierarchical clustering.
- Bayesian algorithms try to generate a posteriori distribution over the collection of all partitions of the data.

K-Means clustering

- K-means (MacQueen, 1967) is a partitional clustering algorithm
- Let the set of data points D be $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$, where $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{ir})$ is a vector in $X \square R^r$, and r is the number of dimensions.
- The k-means algorithm partitions the given data into k clusters:
 - Each cluster has a cluster center, called centroid.
 - k is specified by the user

K-means algorithm

- Given *k*, the *k-means* algorithm works as follows:
 - 1. Choose *k* (random) data points (seeds) to be the initial centroids, cluster centers
 - Assign each data point to the closest centroid
 - Re-compute the centroids using the current cluster memberships
 - 4. If a convergence criterion is not met, repeat steps 2 and 3

K-means convergence (stopping) criterion

- no (or minimum) re-assignments of data points to different clusters, or
- no (or minimum) change of centroids, or
- minimum decrease in the sum of squared error (SSE),

$$SSE = \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_j} d(\mathbf{x}, \mathbf{m}_j)^2$$

K-means clustering example: step 1

Randomly initialize the cluster centers (synaptic weights)

K-means clustering example – step 2

K-means clustering example – step 3

Re-estimate cluster centers (adapt synaptic weights)

K-means clustering example

Result of first iteration

K-means clustering example

Second iteration

K-means clustering example

Result of second iteration

How many clusters?

- Possible approaches
 - fix the number of clusters to k
 - find the best clustering according to the criterion function (number of clusters may vary)

How to choose K?

Elbow Method:

Compute the sum of squared error (SSE) for some values of k (for example 2, 4, 6, 8, etc.). The SSE is defined as the sum of the squared distance between each member of the cluster and its centroid.

Mathematically:

$$SSE = \sum_{i=1}^K \sum_{x \in c_i} dist(x, c_i)^2$$

If you plot k against the SSE, you will see that the error decreases as k gets larger; this is because when the number of clusters increases, they should be smaller, so distortion is also smaller. The idea of the elbow method is to choose the k at which the SSE decreases abruptly.

Why use K-means?

- Strengths:
 - Simple: easy to understand and to implement
 - Efficient: Time complexity: O(tkn),
 where n is the number of data points,
 k is the number of clusters, and
 t is the number of iterations.
 - Since both k and t are small. k-means is considered a linear algorithm.
- K-means is the most popular clustering algorithm.

Weaknesses of K-means

- The algorithm is only applicable if the mean is defined.
 - For categorical data, k-mode the centroid is represented by most frequent values.
- The user needs to specify k.
- The algorithm is sensitive to outliers
 - Outliers are data points that are very far away from other data points.

Outliers

(A): Undesirable clusters

(B): Ideal clusters

Dealing with outliers

- Remove some data points that are much further away from the centroids than other data points
 - To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.
- Perform random sampling: by choosing a small subset of the data points, the chance of selecting an outlier is much smaller
 - Assign the rest of the data points to the clusters by distance or similarity comparison, or classification

Sensitivity to initial

Random selection of seeds (centroids)

Iteration 1

Iteration 2

Random selection of seeds (centroids)

Iteration 1

Iteration 2

k-Means Initialization Improvements

- **kmeans++**: <u>http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf</u>
- We begin by choosing a random point from the data.
- Then, we choose the next point such that is more probable to lie at a large distance from the first point. We do so by sampling a point from a probability distribution that is proportional to the squared distance of a point from the first center.
- The remaining points are generated by a probability distribution that is proportional to the squared distance of each point from its closest center. So, a point having a large distance from its closest center is more likely to be sampled.

Special data structures

• The *k*-means algorithm is not suitable for discovering clusters that are not hyper-ellipsoids (or hyper-spheres).

(A): Two natural clusters

(B): k-means clusters

Hyperspherical Clusters

k-Means Limitations

Original Data

16

24 22 22 20

Results of *k*-means Clustering

Data available at: http://cs.joensuu.fi/sipu/datasets/

Original data source: Fu, L. and E. Medico. BMC bioinformatics, 2007. 8(1): p. 3.

K-means summary

- Despite weaknesses, k-means is still the most popular algorithm due to its simplicity and efficiency
- No clear evidence that any other clustering algorithm performs better in general
- Comparing different clustering algorithms is a difficult task. No one knows the correct clusters!