计算机组成原理 实验报告

实验题目: 运算器及其原理

学生姓名: 阿非提

学生学号: PB20111633

完成日期: 2022.3.26

实验目的

- · 掌握算术逻辑单元(ALU)功能
- 掌握数据通路和控制器的设计
- 掌握组合电路和时序电路,以及参数化和结构化的Verilog描述方法
- 了解查看电路性能和资源使用情况

实验平台

Vivado

实验过程与结果

• 题目1

```
32位操作数计算逻辑单元
```

代码

```
module alu#(parameter WIDTH=32) (
input [WIDTH-1:0] a,b,
input [2:0] f,
output reg [WIDTH-1:0] y,
output z
);
    assign z=(y==0)?1:0;
    always@(*)begin
        case(f)
             3'd0: y=a+b;
             3'd1: y=a-b;
             3'd2: y=a\&b;
             3'd3: y=a|b;
             3'd4: y=a^b;
             default:;
        endcase
    end
```

endmodule

RTL 电路

综合电路

资源使用情况

仿真结果

• 题目2

六位操作数算术逻辑单元

实例化上述ALU单元用于计算,用三个reg类型变量存储a, b, f的值。

代码

```
module ALU6bit(
    input clk,
    input en,
    input [1:0] sel,
    input [5:0] x,
    output [5:0] y,
    output z
);
reg [5:0] a,b;
reg [2:0] f;
alu #(6) alu(.a(a),.b(b),.f(f),.y(y),.z(z));
always@(posedge clk)begin
    if(en)begin
        case(sel)
            2'b00:a<=x;
            2'b01:b<=x;
            2'b10:f<=x[2:0];
            2'b11:begin
                 a<=0;
```

```
b<=0;
    f<=0;
    end
        default:;
    endcase
    end
end
end
endmodule</pre>
```

RTL 电路

综合电路

时间性能报告

Design Timing Summary

etup		Hold		Pulse Width					
Worst Negative Slack (WNS):	8.730 ns	Worst Hold Slack (WHS):	0.147 ns	Worst Pulse Width Slack (WPWS):	4.500 ns				
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns				
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0				
Total Number of Endpoints:	3	Total Number of Endpoints:	3	Total Number of Endpoints:	16				

All user specified timing constraints are met.

Q -	= 🖪 🐵 🛄 💿 Intra-Clock Paths - sys_clk_pin - Setup													
Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock	Destination Clock	Exception	Clock Un
3 Path 1	8.730	1	2	13	f_reg[0]/C	f_reg[0]/D	1.134	0.773	0.361	10.0	sys_clk_pin	sys_clk_pin		
3 Path 2	8.745	1	2	7	f_reg[1]/C	f_reg[1]/D	1.119	0.773	0.346	10.0	sys_clk_pin	sys_clk_pin		
3 Path 3	8.745	1	2	7	f_reg[2]/C	f_reg[2]/D	1.119	0.773	0.346	10.0	sys_clk_pin	sys_clk_pin		

仿真结果

运行结果

• 题目3

FLS

作出状态转化图

由此可知需要三种状态,分别记为state0、state1、state2。

由数列表达式可知 $F_n=F_{n-1}+F_{n-2}$ 可知,只需要两个变量存储当前项和前一项,分别记 f、 f_0 。计算下一项只需 $f=f+f_0$ 。

需要注意的是 en 输入需要去除毛刺和取边缘。

代码

```
module FLS(
    input clk,rst,en,
    input [6:0] d,
    output reg [6:0] f
);
reg [6:0] f0;
wire [6:0] sum of f0 f;
alu #(7) alu(.a(f0),.b(f),.f(0),.y(sum_of_f0_f));
parameter state0 = 2'b00;
parameter state1 = 2'b01;
parameter state2 = 2'b10;
parameter reset = 7'b0;
reg [1:0] current_state;
reg [1:0] next state;
//jitter cleaning
reg [3:0] cnt;
wire clean_button;
always@(posedge clk)begin
    if(en==1'b0)cnt<=4'b0;
    else if(cnt<4'h8)cnt<=cnt+4'b1;</pre>
end
assign clean_button=cnt[3];
//edge detection
reg b1,b2;
wire EN;
always@(posedge clk)b1<=clean_button;</pre>
always@(posedge clk)b2<=b1;</pre>
```

```
assign EN = b1&(\sim b2);
//NS
always@(*)begin
    if(EN)begin
        case(current_state)
             state0: next_state = state1;
             state1: next state = state2;
             state2: next_state = state2;
             default:;
        endcase:
    end
    else next_state = current_state;
end
//CS
always@(posedge clk)begin
    if(rst)
        current_state <= state0;</pre>
    else
        current_state <= next_state;</pre>
end
//output
always@(posedge clk)begin
    if(rst)
        f <= 7'd0;
    else if(EN) begin
        case(current_state)
             state0: f <= d;
             state1: begin
                 f0 <= f;
                 f <= d;
             end
             state2: begin
                 f0 <= f;
                 f <= sum_of_f0_f;
             end
             default:;
        endcase
    end
```

end

endmodule

RTL电路

综合电路

资源使用情况

时间性能报告

Design Timing Summary

etup		Hold		Pulse Width				
Worst Negative Slack (WNS):	7.063 ns	Worst Hold Slack (WHS):	0.137 ns	Worst Pulse Width Slack (WPWS):	4.500 ns			
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns			
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0			
Total Number of Endpoints:	38	Total Number of Endpoints:	38	Total Number of Endpoints:	23			

Q — 🖪 🐵 III 🌑 Intra-Clock Paths - sys_clk_pin - Setup														
Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock	Destination Clock	Exception	Clock Uncertainty
3 Path 1	7.063	4	5	4	f_reg[1]/C	f_reg[6]/D	2.801	1.855	0.946	10.0	sys_clk_pin	sys_clk_pin		0.035
3 Path 2	7.109	4	5	4	f_reg[1]/C	f_reg[5]/D	2.755	1.949	0.806	10.0	sys_clk_pin	sys_clk_pin		0.035
3 Path 3	7.199	3	4	4	f_reg[1]/C	f_reg[3]/D	2.665	1.723	0.942	10.0	sys_clk_pin	sys_clk_pin		0.035
3 Path 4	7.234	4	5	4	f_reg[1]/C	f_reg[4]/D	2.630	1.825	0.805	10.0	sys_clk_pin	sys_clk_pin		0.035
3 Path 5	7.274	3	4	4	f_reg[1]/C	f_reg[2]/D	2.590	1.644	0.946	10.0	sys_clk_pin	sys_clk_pin		0.035
→ Path 6	7.503	1	2	7	current_state_reg[0]/C	f0_reg[0]/CE	2.115	0.773	1.342	10.0	sys_clk_pin	sys_clk_pin		0.035
→ Path 7	7.503	1	2	7	current_state_reg[0]/C	f0_reg[1]/CE	2.115	0.773	1.342	10.0	sys_clk_pin	sys_clk_pin		0.035
3 Path 8	7.503	1	2	7	current_state_reg[0]/C	f0_reg[2]/CE	2.115	0.773	1.342	10.0	sys_clk_pin	sys_clk_pin		0.035
→ Path 9	7.503	1	2	7	current_state_reg[0]/C	f0_reg[3]/CE	2.115	0.773	1.342	10.0	sys_clk_pin	sys_clk_pin		0.035
4 Path 10	7.503	1	2	7	current_state_reg[0]/C	f0_reg[4]/CE	2.115	0.773	1.342	10.0	sys_clk_pin	sys_clk_pin		0.035

仿真结果

运行结果

总结与思考

- 通过本次试验我学会了如何通过Vivado仿真工具进行Verilog 进行仿真,查看并分析波形文件。
- 本次试验难易程偏低。
- 本次试验任务量适中。