

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

«Стохастический анализ и моделирование»

Студент 415 группы А. А. Пилюшенок

Руководитель практикума д.ф.-м.н., профессор С. Н. Смирнов

Содержание

1	Задание 1	3
2	Задание 2	3
3	Задание 3	3
4	Задание 4	3
5	Задание 5	3
6	Задание 6	3
7	Задание 7	3
8	Bera	3

- 1 Задание 1
- 2 Задание 2
- 3 Задание 3
- 4 Задание 4
- 5 Задание 5
- 6 Задание 6
- 7 Задание 7
- 8 Вега

Доказательство. Определим $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ — фильтрованное вероятностное пространство: $\mathbb{F} = (\mathcal{F}_t)_{t \geqslant 0}, \ \mathcal{F}_s \subseteq \mathcal{F}_t \subseteq \mathcal{F}, \ s \leqslant t.$

Напомним определения момента остановки, локального мартингала и супермартингала.

Определение 1. Неотрицательная случайная величина τ называется моментом остановки по отношению κ фильтрации \mathbb{F} , если

$$\{\omega: \ \tau(\omega) \leqslant t\} \in \mathcal{F}_t, \ \forall t \geqslant 0.$$

Определение 2. Согласованный с фильтрацией \mathbb{F} процесс X_t ($X_t - \mathcal{F}_t$ -измеримая с.в. $\forall t$) с $\mathbb{E}|X_0| < \infty$ называется локальным мартингалом, если \exists последовательность моментов остановки τ_n (локализующая последовательность) такая, что

- 1. $\tau_n \leqslant \tau_{n+1}, \ \forall n = 1, 2, \dots; \ \tau_n \to \infty \ n.H.$
- 2. X_{τ_n} мартингал $\forall n = 1, 2, ...$

Определение 3. Процесс X_t является супермартингалом на заданном фильтрованном вероятностном пространстве, если

- 1. X_t согласован с \mathbb{F} .
- 2. $\mathbb{E}|X_t| < \infty, \ \forall t \geqslant 0.$
- 3. $\mathbb{E}(X_t \mid \mathcal{F}_s) \leqslant X_s, \ \forall t \geqslant s.$

Нам также потребуется условная лемма Φ ату: пусть дана σ -алгебра $\zeta \subseteq \mathcal{F}$. Тогда

$$\xi_n \geqslant \eta, \mathbb{E}\eta > -\infty \implies \mathbb{E}(\underline{\lim} \ \xi_n \mid \zeta) \leqslant \underline{\lim} \ \mathbb{E}(\xi_n \mid \zeta) \text{ a.s.}$$

Выберем локализующую последовательность $\{\tau_k\}_{k=1}^\infty$ для локального мартингала X_t . Построим последовательность остановленных процессов $Y_t^k = X_{\tau_k \wedge t}$. Из определения X_t следует, что Y_t^k — последовательность мартингалов.

Заметим, что $\lim_{k\to\infty}Y_t^k=X_t,\ \lim_{k\to\infty}Y_s^k=X_s.$ Так как данные пределы существуют, то их соответствующие частичные пределы совпадают между собой. Кроме того, $\exists \, c \in \mathbb{R}: \, Y^k_t \geqslant c$ п.н. из-за ограниченности снизу процесса X_k , что позволяет применить условную лемму Фату. Выберем $\tau\leqslant s$ и рассмотрим

$$\mathbb{E}(X_t\mid \mathcal{F}_s) = \mathbb{E}(\lim Y_t^k\mid \mathcal{F}_s) = \mathbb{E}(\underline{\lim}\ Y_t^k\mid \mathcal{F}_s) \leqslant \underline{\lim}\ \mathbb{E}(Y_t^k\mid \mathcal{F}_s) = \\ = \{Y_t^k \text{ является мартингалом}\} = \underline{\lim}\ Y_s^k = \lim Y_s^k = X_s.$$

Таким образом, получили $\mathbb{E}(X_t \mid \mathcal{F}_s) \leqslant X_s$.

Осталось показать, что $\mathbb{E}|X_t| < \infty$, $\forall t$.

Имеем $X_t-c\geqslant 0$. Тогда $0\leqslant \mathbb{E}(X_t-c)\leqslant \mathbb{E}(X_0-c)<\infty$. Из $\mathbb{E}|X_t-c|<\infty$ следует $\mathbb{E}|X_t|<\infty$.