Introduction to Econometrics

Recite 1: Review of Probability Theory

Zhaopeng Qu

Business School, Nanjing University

Sep. 11th, 2017

- Probabilities, the Sample Space and Random Variables
- 2 Expected Values, Mean, and Variance
- Multiple Random Variables
- Properties of Joint Distributions
- Conditional Distributions
- Several Famous Distributions
- In Summary

- Probabilities, the Sample Space and Random Variables
- 2 Expected Values, Mean, and Variance
- Multiple Random Variables
- Properties of Joint Distributions
- Conditional Distributions
- Several Famous Distributions
- In Summary

- Probabilities, the Sample Space and Random Variables
- Expected Values, Mean, and Variance
- Multiple Random Variables
- Properties of Joint Distributions
- Conditional Distributions
- Several Famous Distributions
- In Summary

- 1 Probabilities, the Sample Space and Random Variables
- 2 Expected Values, Mean, and Variance
- Multiple Random Variables
- Properties of Joint Distributions
- Conditional Distributions
- Several Famous Distributions
- In Summary

- 1 Probabilities, the Sample Space and Random Variables
- 2 Expected Values, Mean, and Variance
- Multiple Random Variables
- Properties of Joint Distributions
- Conditional Distributions
- Several Famous Distributions
- In Summary

- 1 Probabilities, the Sample Space and Random Variables
- Expected Values, Mean, and Variance
- Multiple Random Variables
- Properties of Joint Distributions
- Conditional Distributions
- Several Famous Distributions
- In Summary

- 1 Probabilities, the Sample Space and Random Variables
- 2 Expected Values, Mean, and Variance
- Multiple Random Variables
- Properties of Joint Distributions
- **5** Conditional Distributions
- Several Famous Distributions
- In Summary

Probabilities, the Sample Space and Random Variables

A Fundamental Axiom of Econometrics

- Any economy can be viewed as a stochastic process governed by some probability law.
- Economic phenomenon, as often summarized in form of data, can be reviewed as a realization of this stochastic data generating process.

Probabilities and the Sample Space

- Random Phenomena, Outcomes and Probabilities
 - The mutually exclusive potential results of a random process are called the *outcomes*.
 - The **probability** of an outcome is the proportion of the time that the outcome occurs in the long run.
- The Sample Space and Random Event
 - The set of all possible outcomes is called *the sample space*.
 - An event is a subset of the sample space, that is, an event is a set of one or more outcomes.

Random Variables

Random Variables(R.V.)

A random variable (r.v.) is a function that maps from the sample space of an experiment to the real line or $X \colon \Omega \to \mathbb{R}$

- A random variable is a numerical summary of a random outcome.
 They are numeric representation of uncertain events.(thus we can use math!)
- Notation: R.V.s are usually denoted by upper case letters (e.g. X), particular realizations are denoted by the corresponding lowercase letters (e.g. x=3)

Example

Tossing a coin 5 times

- but not a random variable because it's not numeric.
- $X(\omega)=$ number of heads in the five tosses. X(HTHTT)=2

Probability Distributions

- \bullet Uncertainty over Ω uncertainty over value of . We'll use probability to formalize this uncertainty.
- The probability distribution of a r.v. gives the probability of all of the possible values of the r.v.

$$P_X(X=x) = P(\{\omega \in \Omega : X(\omega) = x\})$$

Example

Tossing two coins: let X be the number of heads.

ω	$P(\{\omega\})$	$X(\omega)$
TT	1/4	0
HT	1/4	1
TH	1/4	1
НН	1/4	2

x	P(X=x)
0	1/4
1	1/2
2	1/4

Distributional Functions of R.V.

 It is cumbersome to derive the probabilities of X each time we need them, so it is helpful to have a function that can give us the probability of values or sets of values of X.

Definition

The **cumulative distribution function** or **c.d.f** of a r.v. X, denoted $F_X(x)$, is defined by

$$F_X(x) \equiv P_X(X \le x)$$

• The c.d.f tells us the probability of a r.v. being less than some given value.

Distribution Functions of R.V.

We have two kinds of r.v.s

Definition

A r.v. X, is discrete if its range(the set of values it can take) is finite $(X \in \{x_1, x_2, ... x_k\})$ or countably infinite $(X \in \{x_1, x_2, ...\})$

• eg: the number of computer crashes before deadline

Definition

A r.v. X, is continuous if it can contain all real numbers in a interval. There are an uncountably infinite number of possible realizations.

• eg: commuting times from home to school

Probability Distribution of a Discrete R.V.

Probability mass function

Probability mass function (p.m.f.) describes the distribution of r.v. when it is discrete:

$$f_X(x_k) = P(X = x_k) = p_x, k = 1, 2, ..., n$$

FIGURE 2.1 Probability Distribution of the Number of Computer Crashes The height of each bar is Probability the probability that the 0.8 computer crashes the indicated number of times. 0.7 The height of the first bar is 0.8, so the probability 0.6 of 0 computer crashes is 80%. The height of the 0.5 second bar is 0.1, so the probability of 1 computer 0.4 crash is 10%, and so forth for the other bars. 0.3 0.2 0.1 0.0 0 2 3 Number of crashes

Probability Distribution of a Discrete R.V.

c.d.f of a discrete r.v

the c.d.f of a discrete r.v. is denoted as

$$F_X(x) = P(X \le x) = \sum_{X_k \le x} f_X(x_k)$$

TABLE 2.1 Probability of Your Computer Crashing M Times					
	Outcome (number of crashes)				
	0	1	2	3	4
Probability distribution	0.80	0.10	0.06	0.03	0.01
Cumulative probability distribution	0.80	0.90	0.96	0.99	1.00

Probability Distribution of a Continuous R.V.

Probability density function

The probability density function or p.d.f., for a continuous random variable X is the function that satisfies for any interval, B

$$P(X \in B) = \int_{B} f_{X}(x) dx$$

Probability Distribution of a *Continuous* R.V.

 Specifically, for a subset of the real line(a, b): $P(a < X < b) = \int_a^b f_X(x) dx$, thus the probability of a region is the area under the p.d.f. for that region.

(b) Probability density function of commuting time

20

15

10

25

30

35 Commuting time (minutes)

Probability Distribution of a *Continuous* R.V.

Cumulative probability distribution

just as it is for a discrete random variable, except using p.d.f to calculate the probability of x,

$$F(X) = P(X \le x) = \int_{-\infty}^{x} f_X(x) dx$$

Expected Values, Mean, and Variance

Properties of Distributions

- Probability distributions describe the uncertainty about r.v.s. The cdf/pmf/pdf give us all the information about the distribution of some r.v., but we are quite often interested in some feature of the distribution rather than the entire distribution.
 - What is the difference between these two density curves? How might we summarize this difference?
- There are two simple indictors:
 - **1 Central tendency**: where the center of the distribution is.
 - Mean/expectation (均值或期望)
 - Spread: how spread out the distribution is around the center.
 - Variance/standard deviation (方差或标准差)

The Expected Value of a Random Variable

- The expected value of a random variable X, denoted E(X) or μ_x , is the long-run average value of the random variable over many repeated trials or occurrences. it is a natural measure of central tendency.
- For a discrete r.v., $X \in \{x_1, x_2, ..., x_k\}$

$$\mu_X = E[X] = \sum_{j=1}^k x_j p_j$$

it is computed as a *weighted average* of the value of r.v., where the weights are the probability of each value occurring.

ullet For a *continuous* r.v., X, use the integral

$$\mu_X = E[X] = \int_{-\infty}^{+\infty} x f_X(x) \, dx$$

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Properties of Expectation

• Additivity: expectation of sums are sums of expectations

$$E[X+Y] = E[X] + E[Y]$$

Output Description
Output Descript

$$E[aX + b] = aE[X] + b$$

3 Law of the Unconscious Statistician, or LOTUS, if g(x) is a function of a discrete random variable, then

$$E[g(X)] = \begin{cases} \sum_{x} g(x) f_X(x) & when x \text{ is discrete} \\ \int g(x) f_X(x) dx & when x \text{ is continuous} \end{cases}$$

The Variance of a Random Variable

• Besides some sense of where the middle of the distribution is, we also want to know how spread out the distribution is around that middle.

Definition

The **Variance** of a random variable X, denoted var(X) or σ_X^2

$$\sigma_X^2 = Var(X) = E[(X - \mu_X)^2]$$

The **Standard Deviation** of X, denoted σ_X , is just the square root of the variance.

$$\sigma_X = \sqrt{Var(X)}$$

Properties of Variance

- ullet If a and b are constants, then we have the following properties:
 - **1** V(b) = 0
 - $V(aX + b) = a^2 V(X)$
 - $(X) = E[X^2] (E[X])^2$

Example

Bernoulli Distribution:

Multiple Random Variables

Why multiple random variables?

- We are going to want to know what the relationships are between variables. "The objective of science is the discovery of the relations" —I ord Kelvin
- In most cases, we often want to explore the relationship between two variables in one study.
 - eg. Mortality and GDP growth

Joint Probability Distribution

• Consider two discrete random variables X and Y with a joint probability distribution, then the joint probability mass function of (X, Y) describes the probability of any pair of values:

$$f_{X,Y}(x,y) = P(X = x, Y = y) = p_{xy}$$

TABLE 2.2 Joint Distribution of Weather Conditions and Commuting Times					
	Rain $(X=0)$	No Rain (<i>X</i> = 1)	Total		
Long commute $(Y = 0)$	0.15	0.07	0.22		
Short commute $(Y = 1)$	0.15	0.63	0.78		
Total	0.30	0.70	1.00		

Marginal Probability Distribution

 The marginal distribution: often need to figure out the distribution of just one of the r.v.s.

$$f_Y(y) = P(Y = y) = \sum_x f_{X,Y}(x, y)$$

• Intuition: sum over the probability that Y=y for all possible values of x.

TABLE 2.2 Joint Distribution of Weather Conditions and Commuting Times				
	Rain $(X=0)$	No Rain (<i>X</i> = 1)	Total	
Long commute $(Y = 0)$	0.15	0.07	0.22	
Short commute $(Y = 1)$	0.15	0.63	0.78	
Total	0.30	0.70	1.00	

Joint Probability Density Function

- Consider two *continuous* random variables X and Y with a joint probability distribution, then the joint probability density function of (X, Y) is a function, denoted as $f_{X,Y}(x, y)$ such that:
 - **1** $f_{X,Y}(x,y) \geq 0$

 - $P(a < X < b, c < Y < d) = \int_a^b \int_a^b f_{X,Y}(x,y) dxdy$, thus the probability in the $\{a, b, c, d\}$ area.

Joint Probability Density Function

Joint Probability Density Function

• The probability equals to volume above a specific region

$$P(X, Y) \in A) = \int_{(x,y)\in A} f_{X,Y}(x,y) dxdy$$

Continuous Marginal Distribution

• the marginal p.d.f of Y by integrating over the distribution of X:

$$f_Y(y) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dx$$

ullet the marginal p.d.f of X by integrating over the distribution of Y:

$$f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) \, dy$$

Continuous Marginal Distribution

• Pile up all of the joint density onto a single dimension

Joint Cumulative Distribution Function

• The joint cumulative distribution function of (X, Y) is

$$F_{X,Y}(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u,v) \ du dv$$

Transform joint c.d.f and joint p.d.f

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial y}$$

Properties of Joint Distributions

Expectations over multiple r.v.s

Expectations over multiple r.v.s

$$E[g(X, Y)] = \begin{cases} \sum_{x} \sum_{y} g(x, y) f_{X, Y}(x, y) & if \\ \int_{x} \int_{y} g(x, y) f_{X, Y}(x, y) dx dy & if \end{cases}$$

Marginal expectation

$$E[Y] = \begin{cases} \sum_{x} \sum_{y} y f_{X,Y}(x,y) & if \\ \int_{x} \int_{y} y f(x,y) dx dy & if \end{cases}$$

Independence

Independence

Two r.v.s X and Y are independent, which we denote it as $X \perp Y$, if for all sets A and B

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

- Intuition: knowing the value of X gives us no information about the value of Y.
- ullet If X and Y are independent, then
 - Joint p.d.f is the product of marginal p.d.f, thus $f_{X,Y}(x,y) = f_X(x)f_Y(y)$
 - ullet Joint c.d.f is the product of marginal c.d.f, thus $f_{X,Y}(x,y)=f_X(x)f_Y(y)$
 - functions of independent r.v.s are independent, thus $h(X) \perp g(Y)$ for any functions $h(\cdot)$ and $g(\cdot)$.

Independence

Theorem (Independence)

if X and Y are independent r.v.s, then

$$\mathit{E}[\mathit{X}\mathit{Y}] = \mathit{E}[\mathit{X}]\mathit{E}[\mathit{Y}]$$

Proof.

Skip. you could finish it by yourself.

Covariance

 If two variables are not independent, we could still measure the strength of their dependence by the definition of covariance.

Covariance

the covariance between X and Y is defined as

$$Cov[X, Y] = E\left[\left(X - E[X]\right)\left(Y - E[Y]\right)\right]$$

- Properties of covariances:
 - Cov[X, Y] = E[XY] E[X]E[Y]
 - If $X \perp Y$, Cov[X, Y] = 0

Intuition of Covariance

ullet The conditional probability mass function(conditional p.m.f) of Y conditional of X is

Covariance and Independence

- Properties of covariances:
 - Cov[X, Y] = E[XY] E[X]E[Y]
 - Cov[aX + b, cY + d] = acCoV[XY]
 - $\bullet \ Cov[X, X] = Var[X]$
- Covariance and Independence
 - If $X \perp Y$, then Cov[X, Y] = 0. thus independence $\Rightarrow Cov[X, Y] = 0.$
 - If Cov[X, Y] = 0, then $X \perp Y$? NO! $Cov[X, Y] = 0 \Rightarrow$ independence.

Covariance and Correlation

• Covariance is not scale-free. Correlation is a special form of covariance after dividing out the scales of the respective variables.

Correlation

The correlation between X and Y is defined as

$$\rho_{XY} = \frac{\mathit{Cov}[X,\,Y]}{\sqrt{\mathit{Var}[X]\,\mathit{Var}[Y]}}$$

- Correlation properties:
 - $-1 \le \rho \le 1$
 - If $|\rho_{XY}|=1$, then X and Y are perfectly correlated with a linear relationship: $Y=a+b\mathsf{X}$

Conditional Distributions

Conditional Probability function

Conditional probability mass function

The conditional probability mass functional (conditional p.m.f) of Y conditional of X is

$$f_{Y|X}(y|x) = P(Y=y \mid X=x) = \frac{P(X=x, Y=y)}{P(X=x)} = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

TABLE 2.3 Joint and Conditional Distributions of Computer Crashes (M) and Computer Age (A)						
A. Joint Distribution						
	M = 0	<i>M</i> = 1	M = 2	M = 3	M = 4	Total
Old computer $(A = 0)$	0.35	0.065	0.05	0.025	0.01	0.50
New computer $(A = 1)$	0.45	0.035	0.01	0.005	0.00	0.50
Total	0.80	0.10	0.06	0.03	0.01	1.00
B. Conditional Distributions o	f M given A					
	M = 0	<i>M</i> = 1	M=2	M = 3	M = 4	Total
$\Pr(M A=0)$	0.70	0.13	0.10	0.05	0.02	1.00
$\Pr(M A=1)$	0.90	0.07	0.02	0.01	0.00	1.00

Conditional Density Function

Conditional probability density function:

c.d.f. of Y conditional on X is

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_{X}(x)}$$

 Based on the definition of the conditional p.m.f./p.d.f., we have the following equation

$$f_{X,Y}(x,y) = f_{Y|X}(y|x) f_X(x)$$

Conditional Density Function

ullet c.d.f is proportional to joint p.d.f along x_0 like a slice of total volume.

Conditional Independence

Conditional Independence

X and Y are conditional Independent given Z, denoted as $X \perp Y \mid Z$, if

$$f_{X, Y|Z}(x, y|z) = f_{X|Z}(x|z) f_{Y|Z}(y|z)$$

- X and Y are independent within levels of Z.
- Example:
 - X = swimming accidents, Y = ice cream sold.
 - In general, two variable is highly correlated.
 - ullet If conditional on Z= temperature, then they are independent.

Conditional Expectation Function

Conditional Expectation

Conditional on X, Y's Conditional Expectation is

$$E(Y|X) = \begin{cases} \sum y f_{Y|X}(y|x) & discrete \ Y \\ \int y f_{Y|X}(y|x) dy & continuous \ Y \end{cases}$$

- Conditional Expectation Function(CEF) is a function of x, since X is a random variable, so CEF is also a random variable.
- Intuition: 期望就是求平均值,而条件期望就是"分组取平均"或 "在... 条件下的均值"。

Properties of Conditional Expectation

• $E[c(X) \mid X] = c(X)$ for any function c(X). Thus if we know X, then we also know c(X).

• eg.
$$E[(X^2 + 2X^3) \mid X] = X^2 + 2X^3$$

• if X and Y are independent r.v.s, then

$$E[Y \mid X = x] = E[Y]$$

 \bullet if X and $\,Y$ independent conditional on $\,Z,$ thus $X \perp \,Y \,|\,\, Z$,

$$E[Y \mid X = x, Z = z] = E[Y \mid Z = z]$$

Conditional Variance

Conditional Variance

Conditional on X, Y's Conditional Expectation is defined as $Var(Y|X) = E[(Y-E|Y|X])^2 \mid X]$

- Usual variance formula applied to conditional distribution.
 - Discrete

$$V[Y \mid X] = \sum_{y} (y - E[Y \mid X])^{2} f_{Y|X}(y|x)$$

Continuous

$$V[Y \mid X] = \int_{y} (y - E[Y \mid X])^{2} f_{Y|X}(y|x)$$

Several Famous Distributions

Families of distributions

- There are several important families of distributions:
 - The p.m.f./p.d.f. within the family has the same form, with parameters that might vary across the family.
 - The parameters determine the shape of the distribution
- Statistical modeling in a nutshell: to study probability distribution function.
 - Assume the data, $X_1, X_2, ..., X_n$, are independent draws from a common distribution $f_{\theta}(x)$ within a family of distributions (normal, poisson, etc)
 - Use a function of the observed data to estimate the value of the $\theta : \hat{\theta}(X_1, X_2, ..., X_n)$

The Bernoulli Distribution

Definition

X has a Bernoulli distribution if it have a binary values $X\!\in\{0,1\}$ and its probability mass function is

$$f_X(x) = P(X = x) = \begin{cases} p & if x = 1\\ 1 - p & if x = 0 \end{cases}$$

Question:

What is the *Expectation and Variance* of *X*?

$$E(X) = \sum_{j=1}^{k} x_j p_j = 0 \times (1-p) + 1 \times p = p$$

$$Var(X) = E[X - E(X)]^2 = E[X^2] - (E[X])^2 = p - p^2 = p(1 - p)$$

- ◆ロ ▶ ◆趣 ▶ ◆ 恵 ▶ ◆ 恵 • 夕 Q @

The Normal Distribution

The p.d.f of a normal random variable X is

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right], -\infty < X < +\infty$$

- if X is normally distributed with expected value μ and variance σ^2 , denoted as $X \sim N(\mu, \sigma^2)$
 - if we know these two parameters, we know everything about the distribution.
- Examples: Human heights, weights, test scores,
- If X represents wage, income or consumption etc, it will has a log-normal distribution, thus

$$log(X) \sim N(\mu, \sigma^2)$$

The Normal Distribution

FIGURE 2.5 The Normal Probability Density

The normal probability density function with mean μ and variance σ^2 is a bell-shaped curve, centered at μ . The area under the normal p.d.f. between $\mu - 1.96\sigma$ and $\mu + 1.96\sigma$ is 0.95. The normal distribution

is denoted $N(\mu, \sigma^2)$.

The Standard Normal Distribution

• A special case of the normal distribution where the mean is zero $(\mu=0)$ and the variance is one $(\sigma^2=\sigma=1)$, then its p.d.f is

$$f_X(x) = \phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}, -\infty < X < +\infty$$

- ullet if X is standard normally distributed, then denoted as $X \sim N(0,1)$
- The standard normal cumulative distribution function is denoted

$$\Phi(z) = P(Z \le z)$$

where z is a standardize r.v. thus $z=\frac{x-\mu_X}{\sigma_X}$

The Standard Normal Distribution

FIGURE 2.6 Calculating the Probability That $Y \le 2$ When Y is Distributed N(1, 4)

To calculate $\Pr(Y \le 2)$, standardize Y, then use the standard normal distribution table. Y is standardized by subtracting its mean $(\mu=1)$ and dividing by its standard deviation $(\sigma=2)$. The probability that $Y \le 2$ is shown in Figure 2.6a, and the corresponding probability after standardizing Y is shown in Figure 2.6b. Because the standardized random variable, (Y-1)/2, is a standard normal (Z) random variable, $\Pr(Y \le 1) = \Pr(\frac{Y-1}{2} \le \frac{2-1}{2}) = \Pr(Z \le 0.5)$. From Appendix Table 1, $\Pr(Z \le 0.5) = \Phi(0.5) = 0.691$.

The Chi-Square Distribution

• Let $Z_i (i = 1, 2, ..., m)$ be independent random variables, each distributed as **standard normal**. Then a new random variable can be defined as the sum of the squares of Z_i :

$$X = \sum_{i=1}^{m} Z_i^2$$

Then X has a **chi-squared distribution** with m **degrees of freedom**

- The form of the distribution varies with the number of degrees of freedom, i.e. the number of standard normal random variables Z_i included in X.
- The distribution has a long tail, or is skewed, to the right. As the
 degrees of freedom m gets larger, however, the distribution becomes
 more symmetric and ''bell-shaped.'' In fact, as m gets larger, the
 chi-square distribution converges to, and essentially becomes, a
 normal distribution.

The Chi-Square Distribution

The Student *t* Distribution

- The Student *t* distribution can be obtained from a standard normal and a chi-square random variable.
- Let Z have a standard normal distribution, let X have a chi-square distribution with m degrees of freedom and assume that Z and X are independent. Then the random variable

$$T = \frac{Z}{\sqrt{X/n}}$$

has has a t-distribution with m degrees of freedom, denoted as $T \sim t_n$.

- The shape of the t-distribution is similar to that of a normal distribution, except that the t-distribution has more probability mass in the tails.
- As the degrees of freedom get large, the t-distribution approaches **the standard normal distribution**.

The Student *t* Distribution

FIGURE B.10 The *t* distribution with various degrees of freedom.

The F Distribution

• Let $X_1 \sim \chi_m^2$ and $X_2 \sim \chi_n^2$, and assume that X_1 and X_2 are independent,

$$Z = \frac{\frac{X_1}{m}}{\frac{X_2}{n}} \sim F_{m,n}$$

thus Z has an F-distribution with (m, n) degrees of freedom.

The F Distribution

FIGURE B.11 The F_{k_1,k_2} distribution for various degrees of freedom, k_1 and k_2 .

In Summary