

SHISHUKOVA-PORETSKAYA, V.S.

Fossil diatoms of southern Sakhalin (marine Neogene). Vest.LGU
14 no.15:36-55 '59. (MIRA 14:4)
(Sakhalin--Diatoms, Fossil)

SHESHUKOVA-PORETSKAYA, V.S.

Diatoms of some peat bogs of the Baltic shore; the Estonian
S.S.R. and Kaliningrad Province. Uch. zap. LGU no.313:137-170
'62. (MIRA 15:12)

(Estonia--Diatoms)
(Kaliningrad Province--Diatoms)

SHESHUKOVA-PORETSKAYA, V.S.; GLEZER, Z.I.

Diatoms, Silicoflagellatae and Ebriideae from Maikop
sediments in the Shibik River; Krasnodar Territory. Uch.
zap. LGU no. 313:171-202 '62. (MIRA 15:12)
(Shibik River--Algae, Fossil)

SHESHUKOVA-PORETSKAYA, V.S.

New and rare Bacillariophyta from the diatom series of Sakhalin.
Uch. zap. LGU no. 313:203-211 '62. (MIRA 15:12)
(Sakhalin--Diatoms, Fossil)

SHESHULIN, G.I.

Composition of gas-liquid inclusions in minerals of spodumene.
Geol.mest.red.elem. no.9:67-79 '61. (MIR 14:9)
(Spodumene) (Pegmatites)

PUZANOV, L.S.; SUDERKIN, A.I.; SHESHULIN, G.I.; DORZAKOV, B.A.;
SUDKOV, A.S., nauchnyy red.; SEMILETKOVA, Ye.K., red.
izd-va; SIMAKOVA, T.M., tekhn. red.

[Industry's requirements as to the quality of mineral raw
materials]Trebovaniia proryshlennosti k kachestvu mineral'-
nogo syr'ia; spravochnik dlia geologov. Moskva, Gosgeol-
tekhizdat. No.31[Piezoelectric and optical minerals]P'ezo-
elektricheskoe i opticheskoe syr'e. Izd.2., perer. 1962. 46 p.
(MIRA 15:10)

1. Moscow. Vsesoyuznyy nauchno-issledovatel'skiy institut mi-
neral'nogo syr'ya.
(Quartz) (Iceland spar) (Fluorite)

SHEŠHULKĀ, V.

The relation between ten percent and flash equilibrium distillation curves [of coal tar]. S. Izunda and V. Šesulka, *Polita* 35, 263-7(1955).—Various articles dealing with this relation for crude oils have been published, but not for tar. To remedy this situation, tars obtained from various coals and processes were investigated. A flash b.p. equil. distn. app. was constructed, consisting of: const.-temp. bath with mixt. of NaNO₃ and KNO₃ salts in mol. ratio, elec. mixer, flash evaporator with thermometer on top and also condenser with thermometer insert for liquid fractions. The bottom part contained 2 openings, one for 3-part spray nozzles and the 2nd for removal of the nonliquid portion of tar. The results of Engler-type distn. were compared to flash evapn. A series of curves was constructed showing that the middle point of Engler distn. was also the center for flash equil. distn. curves. From the slope of 10% distn. curves the slope of flash distn. curves was detd. mathematically. I

Jos. Lederer

(2)

BUTSLOV, M.M.; MEDVEDEV, M.N.; FILIPPOV, P.I.; CHUVILO, I.V.; SHESHENOV,
V.M.

Recording of a Vavilov-Cherenkov radiation cone from isolated
particles. Atom. energ. 12 no.5:412 My '62. (MIRA 15:5)
(Cherenkov radiation)

SHESHUNOVA, V.

Sheeshunova, V. (Exchange of Experience) Help in the work of the regional mining inspectors of the Central Statistical Bureau, USSR. P. 61

SO: Herald of Statistics (Vestnik), No. 2, 1951

SHESKIN, A.

Tool for sharpening safety-razor blades. Prom. koop. no. 8:29-31
(MLRA 9:1)
Ag '55.

1. Starshiy inzhener proizvodstvenno-tehnicheskogo upravleniya
promsoveta Estonskoy SSR.
(Razors)

"APPROVED FOR RELEASE: 07/13/2001

CIA-RDP86-00513R001549120016-2

1. 17. . . j.

... effect of the influence of pneumatic hammers. Sverdlovsk, Gos.
nauk.-tekhn. izd-vo na Nauk. i Tekhn. Lit-ru, 1946. 31 p. (50-2414)

TJ2005.84

APPROVED FOR RELEASE: 07/13/2001

CIA-RDP86-00513R001549120016-2"

SIVAKOV, F. I.

SIVAKOV, F. I. -- "The Use of Streptomycin in Tuberculosis of the Kidneys." Kiev Order of Labor Med Banner Medical Inst imeni Academician A. A. Boroviklets. Kiev, 1956.
(Dissertations for the Degree of Candidate in Medical Sciences).

su: Knizhnaya Letopis', No 9, 1956.

SHESKIN, F.M., kand.med.nauk

Conservative treatment in tuberculous epididymitis. Vrach.
(MIRA 15:6)
delo no.5:150-151 My '62.

1. Poliklinicheskoye otdeleniye 2-y bol'nitsy Oktyabr'skogo
rayona Kiyeva.
(EPIDIDYMIS—TUBERCULOSIS)

195. ON FOCUSING THE RAYS IN OPTICAL ARRANGEMENTS AT DISTANCES WHICH ARE FINITELY SMALL. D. V. KARAPETYAN. "Mechanika i Optika," No. 45, Vol. 12, 1952, pp. 193-200.

To select paraxial rays at least two diaphragms are required. The optical laws of Gauss are, however, applicable only to the case when the apertures in the diaphragms are minutely small. This paper discusses the aberrations introduced when the aperture in one or the other diaphragm is finite.

PROCEDURE AND PROPERTY INDEX											
<p>Microchemical determination of sulfur in minerals and ores. I. P. Alimarin and A. Ya. Shekot'kaya (All Union Inst. Mineral Raw Materials, Moscow). Zhur. Anal. Khim. 1, 100-75(1946). A titration procedure is described in which all S is converted into sulfate by fusion with Na_2CO_3 and KNO_3, and the aq. soln. of the melt is treated with a HCl soln. of BaCrO_4, as in the method of Hinman (<i>Am. J. Sci. and Arts</i> 114, 478(1877)) except that the chromate equiv. to the sulfate is detd. by adding a definite quantity of standard ferrous soln., and the excess is measured by titration with standard $\text{Ce}(\text{SO}_4)_2$ soln. A colorimetric detn. is described in which the chromate is detd. in a small aliquot by the reaction with diphenylcarbazide (cf. Koess, <i>C.A.</i> 33, 10239).</p>											
M. Hoseh											
LITERATURE CLASSIFICATION											
2000 MAP DMT ONE			MAP DMT ONE			8-27-1963-1					
1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12

"APPROVED FOR RELEASE: 07/13/2001

CIA-RDP86-00513R001549120016-2

CONFIDENTIAL

APPENDIX 1. ANALYST'S COMMENTS: "MATERIALS, POWDER (PVC)

and a Comparative Microchemical Determination of Sulphur in "Kerosene and Oil,"

By Dr. ANALYST, M.Sc., Ph.D., K.M.

APPROVED FOR RELEASE: 07/13/2001

CIA-RDP86-00513R001549120016-2"

SHESKOL'SKAYA; A. Ya.

✓ 7586

BENZOATE METHOD OF ALUMINUM DETERMINATION.

A. I. Ponomarev and A. Ya. Shekol'skaya. (Balkov Moscow)

(Inst. of Metallurgy). Zhurn. Anal. Khim. 11, 102-5 (1956) Feb.

(In Russian)

A newly developed weighing method for the determination of aluminum in iron ores and industrial products has indicated that the quickest and most reliable precipitation of aluminum is effected by ammonium benzoate in a medium

of weak acetic acid. The iron reduced by sodium hydro-sulfite to a bivalent state does not interfere with the determination of Al. The method permits a quick qualitative determination of aluminum in the presence of a high content of iron. (fr-auth)

SHESKOL'SKAYA A.YA.

168. Determination of niobium in the presence of large amounts of titanium. A. I. Ponomarev and A. Ya. Shekol'skaya (A. A. Bakov Inst. of Metallurgy Acad. Sci. USSR, Moscow). Zhar. Anal. Khim., 1957, 12 (3), 355-358.—The use of ascorbic acid to form a complex with Ti which is not pptd. by tannin is recommended. The sample (0.5 g), e.g., of perovskite, is decomposed with H_2SO_4 and HF, etc., and the residue after evaporation of H_2SO_4 followed by re-evaporation after addition of water is treated with 6 ml of water and 10 ml of conc. HCl. The soln. is treated with 0.1 g of ascorbic acid and 2 g of NH_4Cl , diluted to 100 ml, mixed at 50° with 10 to 20 ml of a 1% freshly prepared soln. of tannin added dropwise, and with paper pulp when the soln. becomes cloudy, and then set aside at 50° for 2 to 3 hr. The niobium complex with tannin is filtered off from the cold soln. and washed with cold 4% HCl soln. After ignition the ppt. if white is fused with 0.5 to 1 g of K_2SO_4 , and the melt is dissolved in 20 ml of 5% H_2SO_4 soln. with the addition of 1 or 2 drops of H_2O_2 . If the soln. is yellow, indicating the presence of Ti, the colour is matched with a standard soln. of Ti. The calculated amount of TiO_2 is deducted from the wt. of the impure Nb_2O_5 . With a coloured ppt. the Nb is re-pptd. after dissolution of the ppt. in H_2SO_4 and HF, etc. The method gave satisfactory results with samples containing 0.3 to 0.6% of Nb.

G. S. SMITH

S-4E3D
1-4E2C

N5

5(2), 5(3)

AUTHORS: Ponomarev, A. I., Shekol'skaya, A. Ya. SOV/75-14-1-15/52

TITLE: Determination of niobium in the Presence of Tungsten by the Aid of Cupferron (Osnovaniye niobiya v prisutstvii vol'frama pri pomoshchi kupferona)

JOURNAL: Zhurnal analiticheskoy khimii, 1959, Vol 14, Nr 1, pp 67-70
(USSR)

ABSTRACT: A method is devised in the present paper, permitting the determination of niobium in alloys, steels and other objects containing tungsten, without prior separation of the two elements. 3 niobium standard solutions were employed for the elaboration of this method: with tartaric acid, with oxalic acid and with ammonium oxalate. The determination takes place by precipitation of niobium with a 3% aqueous solution of cupferron from hydrochloric solution, containing one of the three mentioned complex-forming compounds. The precipitate is filtered off, annealed and then decomposed with potassium pyrosulfate. After cooling, a solution of oxalic acid, ammonium oxalate or tartaric acid is added, wherein the melt is soluble on heating. The solution obtained is acidified with hydrochloric acid and precipitation of niobium with cupferron is repeated. The

Card 1/3

Determination of Niobium in the Presence of
Tungsten by the Aid of Cupferron

SOV/75-14-1-13/32

precipitate obtained is annealed ($\sim 1000^\circ$) and weighed out as Nb_2O_5 . The precipitation with cupferron takes place at room temperature. Filtering and washing of the precipitate is rapid and reliable. The results obtained from the determination show that for determining niobium in the presence of tungsten all three mentioned complex formers are suitable to the same degree for the masking of tungsten. By the aid of the radioactive isotope W^{185} the precipitates of Nb_2O_5 were investigated as to their tungsten content. The amount of tungsten co-precipitated was found to be dependent on that of niobium. On precipitating 10 mg Nb in the presence of 100 mg W more pure Nb_2O_5 containing no tungsten is obtained. Investigation of the precipitates that are obtained from the alloys W - Si - Nb showed co-precipitation of tungsten to occur only with niobium contents $> 30\%$. The method devised is both rapid and accurate and permits the determination of niobium in the presence of

Card 2/3

Determination of Niobium in the Presence of
Tungsten by the Aid of Cupferron

SCU 75-14-1-13/22

large quantities of tungsten. Very detailed working
instructions for the niobium determination based on this
method are given with respect to ω -Cr-Al alloys and
tungsten-containing steels. There are 4 tables and
9 references, all of which are Soviet.

Author: N. V. Kostylev (Institute of Metallurgy, Academy of Sciences of the USSR, Moscow)

Date: March 8, 1956

Card 3/3

S/509/60/000/004/022/024
E111/E152

AUTHORS: Ponomarev, A.I., and Sheskol'skaya, A.Ya.

TITLE: Determination of Niobium in Cast Irons

PERIODICAL: Akademiya nauk SSSR, Institut metallurgii.
Trudy, No.4, 1960. Metallurgiya, metallovedeniye,
fiziko-khimicheskiye metody issledovaniya, pp.240-242

TEXT: The object of this work was to find a method of determining niobium in cast iron in the presence of iron and titanium, without their preliminary separation. Ascorbic acid C₆H₈O₆ was used to form a complex with titanium and for reducing iron to the bivalent form in which it stays in solution. After preliminary experiments the following procedure was developed. 1-1.5 g of the sample is treated with 5 ml of 1.40 s.g. nitric acid. After evaporation almost to dryness on a sand bath, the solution is completed by adding 30 ml of 1:2 hydrochloric acid and boiling. The volume of the solution is maintained by adding water. Ignoring any black light residue the solution is diluted to 180-190 ml, 1-2 g of ammonium chloride and 0.1-0.2 g of ascorbic acid are added and the temperature is raised to 70-80 °C. Card 1/3 ✓

S/509/60/000/004/022/024
E111/E152

Determination of Niobium in Cast Irons

10 ml of freshly prepared 1% aqueous tannide solution are slowly added with stirring, the heating being continued for 2-3 hours. Macerated paper is added and after cooling the precipitate is filtered and washed 6-8 times with cold 4% hydrochloric acid. The precipitate and paper are heated in a platinum crucible until all graphite has burned off. A few drops of water, 10-20 drops of 1:1 sulphuric acid and 2.3 ml of hydrofluoric acid are added and the crucible is gradually heated on a sand bath until SO₂ fumes have been evolved for 5 min. 1-2 ml of water are added to the cooled crucible and evaporation is carried out until only 2-3 drops of sulphuric acid remain. After cooling, 1-2 ml of water and 5 ml of hydrochloric acid (s.g. 1.19) are added and the crucible is heated until all salts have dissolved. The solution is transferred to a beaker, diluted to 80-90 ml and the niobium is precipitated as before after addition of 0.10 g of ascorbic acid. The filtered and washed precipitate and filter paper are heated to 1000 °C for 5-7 minutes in a platinum crucible which is then cooled in a desiccator and weighed. The residue is fused

Card 2/3

S/509/60/000/004/022/024
E111/E152

Determination of Niobium in Cast Irons

with potassium pyrosulphate (0.5-1.0 g) and the melt is dissolved in 20 ml of 5% sulphuric acid with 1-2 drops of hydrogen peroxide. If the solution is colourless titanium is absent; if it is pale yellow it is diluted to 25 ml and its coloration compared with that of a standard titanium solution, the equivalent weight of titanium dioxide being subtracted from the weight of the niobium pentoxide precipitate. There are 2 tables and 5 references: 3 Soviet, 1 English and 1 German.

Card 3/3

S/075/62/017/003/004
I017/I217

AUTHOR. Sheskol'skaya, A. Y.

TITLE: Determination of zirconium and niobium in their binary alloys using cupferron

PERIODICAL. Zhurnal analyticheskoy khimii, v. 17, no. 3, 1962, 327-329

TEXT A rapid and precise method for the determination of zirconium and niobium in their binary alloys, based on the successive precipitation of these elements using cupferron.

A review of the problem in the literature is given. Works of Alimarin and Schröder are cited and adapted.

The results of a series of determinations of Nb and Zr in synthetic solutions containing tartaric acid are tabulated and the error calculated. The error varies in this case between 0-3% (relative).

The method of analysis of solutions containing Zr and Nb in a ratio of 1:1 and 3:1 is identical with that described here for samples of unknown composition.

PROCEDURE: 1) Determination of zirconium — 0.1 g of the sample is dissolved in a Pt-crucible by addition of 2-3 ml KF and a few drops of HNO₃, to the complete dissolution of the alloy. Then 3-4 ml H₂SO₄ (Sp. gr = 1.84) are added and heated in a sand bath, for 10-15 min. until white vapors appear and all the HNO₃ is removed. After cooling, 25 ml 4% solution of tartaric acid and 10 ml 2% soln. of NH₄fluoride are added and the solution is transferred to a 300 ml beaker. The solution (100-125 ml), is neutralised by

Card 1/2

Determination of...

S/075/62/017/003/003/004
I017/I217

ammonia using phenol-red indicator. the color changes from red, through yellow, to red; 2 drops ammonia are added in excess. The solution is cooled to room temp. and Zr is precipitated by addition of 10-15 ml 6% aqueous cupferron soln. ,which is added slowly with stirring, the soln. is left in the cold one night. The precipitate is filtered off using a filter of 9 cm. M (white band), and washed 5-6 times with cold water. The precipitate with the filter paper is placed in a weighed Pt or porcelain crucible, ignited for 10-20 min. at 1000°C, cooled in a desiccator and ZrO_2 is weighed. The factor for Zr calculation from ZrO_2 is 0.7403.

2) Determination of niobium — 50 ml 2% soln. of boric acid, 5 ml HCl, 20-25 ml 6% aqueous soln. of cupferron are added to the filtrate obtained after the separation of the Zr by vigorous and constant stirring to complete coagulation of the precipitate. After filtration carried out under the same conditions as for the Zr separation, the 20 ml 6% aqueous cupferron soln. The precipitate with the filter is ignited in Pt or porcelain crucible for 15-20 min. at 1000°C cooled in a desiccator and the Nb_2O_4 weighed. The factor for the Nb calculation from Nb_2O_4 is 0.6990.

ASSOCIATION. Institut metallurgii im. A.A. Baykova, Akademii Nauk SSSR. (Institute of metallurgy im. A. A. Baykov, Academy of Sciences, USSR) Moscow

SUBMITTED: May 8, 1961

Card 2/2

Determination of zirconium in the ... S/075/b2/017/008/001/004
 E071/E135

ASSOCIATION: Institut metallurgii im. A.A. Baykova, Moskva
(Institute of Metallurgy imeni A.A. Baykov, Moscow)
SUBMITTED: January 19, 1962

Card 2/2

KIRILOV, V.A.; SHECKUKOV, N.I.

Prospects for finding oil in the Grenburg portion of the Kama-Kinel' system of troughs. Neftegaz. geol. i geofiz. no. 5:8-11 '63.
(MIRA 17:5)

1. Vsesoyuznyy nauchno-issledovatel'skiy geologorazvedochnyy neftyanoy institut i Neftepromyslovoy upravleniye "Buruuslarneft".

"Initial Dates of Our Aviation and Aeronautics"

Donald L. Dugay, M.Sc., 1981

Introduction - Donald Dugay

7
Spectrographic determination of beryllium in magnesium
and aluminum alloys. M. Shashoua^{1,2}, Zviadikova²
Lab. I, No. 1, 43(1983). Be in Mg and Al alloys was
det. at concn. of 0.01-0.075% with an accuracy to
10-20%, by the method of Nachm and Stauden, C. A.
120, 3200. Mg affects the sensitivity of the method
considerably and Al but little. Chas Blame

ASU SEA METALLURGICAL LITERATURE CLASSIFICATION

Oil refractometer and its application. M. Shevintsev.
Mashinostroenie Zhurnal Delo 13, No. 2, 20-7 (1987). The
construction and use of a modified Abbe refractometer is
described.

Chas. Blank

SIE Plan, .

Mos., All-Union Electro-Technical Inst., Moscow, -1946-. "The Limiting System Aberration Effect on the Illumination of a Screen by an Infinitesimal Source of Light," Zhur. Tekh. Fiz., 1st, Nos. 4-5, 1944; "On the Influence of Spheric Aberration on the Photometric Characteristics of Optical Apparatus," ibid., 16, No. 2, 1946; "On the Question of the Distribution of the Illumination in the Plane of the Image of Photographic Objectives," ibid., No. 4, 1946.

SHESMINTSEV, M.A.; YAKOVLEV, N.V.

High-illuminance mirror-lens systems used for image transmission.
Opt.-mekh.prom. 25 no.5:24-25 My '58. (MIRA 11:9)
(Optical instruments)

ACCESSION NR: AR4041593

S/0137/64/000/005/D038/D038

SOURCE: Ref. zh. Metallurgiya, Abs. 5D225

AUTHOR: Shesno, L. P.; Shevchenko, G. A.

TITLE: Influence of method of heating of bilayer billets (steel E1847-armco iron) under hot rolling on inclination in intercrystalline corrosion of steel E1847 in Hotrolled clad pipes

CITED SOURCE: Sb. Proiz-vo trub. Vy*p. 10. M., Metallurgizdat, 1963, 106-109

TOPIC TAGS: bilayer billet, bilayer billet heating, hot rolling, intercrystalline corrosion, clad pipe/E1847 steel

TRANSLATION: In investigation conducted for clarification of the influence of the method of heating of bilayer billets under rolling on inclination of steel E1847 to intercrystalline corrosion, for abutment boundary contact with Armco Fe hot-rolled billet of steel E1847 from automatic mill was used, which after boring and

Card 1/3

"APPROVED FOR RELEASE: 07/13/2001

CIA-RDP86-00513R001549120016-2

ACCESSION NR: AR4041593

line corrosion, as conducted investigations showed on hot-rolled pipes of steel EI847 with cladding of Armco Fe is usually of a local character, whereupon with strengthening of degree of corrosion the area of sections affected by it increases, including the entire surface of bending of sample. Bibliography: 6 references.

SUB CODE: MM

ENCL: 00

Card 3/3

APPROVED FOR RELEASE: 07/13/2001

CIA-RDP86-00513R001549120016-2"

SHESTAK, G.A., kand. tekhn. nauk

Recurrence of basic parameters of one-story industrial buildings
of the machinery industry. Prom. stroi. 37 no.6:48-50 Je '59.
(MIRA 12:8)

(Factories---Designs and plans)

KIKIN, A.I., prof.; SEL'NIYA, Ye.I., prof.; STRELET'SKIY, N.S., prof., doktor tekhn. nauk; LESSIG, Ye.N., dots.; PASHKOV, K.K., dots.; DUBINSKIY, G.S., dots.; SLESIAK, G.A., dots.; IGRAT'YEVA, V.S., dots.; ANZAKOV, V.M., dots.; GENTIEV, A.N., prof.; VEDENIKOV, G.S., dots.; TUBIN, S.M., kand. tekhn. nauk, nauchnyy red.; BEGAK, B.A., red. izd-va; OSENKO, L.M., tekhn. red.

[Metal construction; present state and outlook for future development] Metallicheskie konstruktsii; sostoienie i perspektivy razvitiia. Pod obshchei red. N.S. Streletskogo. Moskva, Gos. izd-vo lit-ry po stroit., arkhit. i stroit. materialam, 1961. 333 p. (MIRA 15:4)

1. Moscow. Moskovskiy inzhenerno-stroitel'nyy institut.
2. Kafedra metallicheskikh konstruktsiy Moskovskogo inzhenerno-stroitel'nogo instituta imeni V.V. Kuybysheva (for all except Tubin, Begak, Osenko).
(Building, Iron and steel)
(Aluminum, Structural)

"APPROVED FOR RELEASE: 07/13/2001

CIA-RDP86-00513R001549120016-2

APPROVED FOR RELEASE: 07/13/2001

CIA-RDP86-00513R001549120016-2"

SHESTAK, Georgiy Andriancvich, kand. tekhn. nauk; GENIYEV, A.N.,
prof., retsenzent; ZELYATOROV, V.N., inzh., nauchn. red.

[Designing steel structures for one-story industrial buildings]
Proektirovanie stal'nykh konstruktsii odnoetazhnogo promysh-
lennogo zdanija. Moskva, Stroizdat, 1964. 169 p.
(MIRA 17:4)

1. Kafedra metallicheskikh konstruktsiy Leningradskogo inzhe-
nerno-stroitel'nogo instituta (for Geniyev).

SHESTAK, N.A.

Melting glass in furnaces with divided zones. Stek. i ker.
18 no.6:6-7 Je '61. (MIRA 14:7)
(Glass furnaces)

SHESTAK, N.A.; ROKFLIM, P.N.

Regenerative glass furnace with crosscurrent alignment of the flame.
Stek. i ker. 19 no.1:12-14 Ja '62. (MIRA 15:3)
(Glass furnaces)

SHESTAK, N.A.

Operation of glass furnaces on natural gas. Stek. i ker. 20
(MIRA 17:1)
no.12:24-26 D '63.

SHESTAK, N.D., inzhener.

Apparatus for unloading loose materials from railroad platforms.
Avt.der.18 no.6:26 0 '55. (MLRA 9:2)
(Leading and unloading)

SHESTAK, N.D., inzhener.

Erecting the framework of concrete plants. Avt.dor. 19 no.9:11-12
S '56. (MLRA 9:11)
(Concrete plants)

SHESTAK, N. P.

S
S/081/62/000/006/099/117
B162/B101

AUTHORS: Dorogochinskiy, A. Z., Bashilov, A. A., Chertoryzhskiy, A. V.,
Arutyunova, O. L., Krechetova, P. I., Shestak, N. P. 10

TITLE: The problem of the choice of solvent for polymerization of
ethylene into polyethylene at low pressure

PERIODICAL: Referativnyy zhurnal. Khimiya, no. 6, 1962, 614, abstract
6P35 (Tr. Groznensk. neft. in-t, v. 3, sb. 25, 1961, 17-29) 15

TEXT: An investigation is made of the possibility of using extraction
benzine as a solvent for ethylene when polymerizing it into polyethylene
at low pressure. It is shown that the following are suitable: an extrac-
tion benzine fraction evaporating at 65-90°C with an aromatic hydrocarbon
content of 3.8% before de-aromatization and of 0.7% after de-aromatization,
or a fraction evaporating at 75-95°C in the case of which de-aromatization
is not needed (aromatic hydrocarbon concentration 0.7%). It is shown that
the presence of aromatic hydrocarbons has no effect on the polymerization
process, but impairs the regenerability of the solvent. [Abstracter's
note: Complete translation.] 20
21

Card 1/1

30

SHESTAK, N. P.; CHERTORIZHSKIY, A. V.; MIRSKIY, Ya. V.; MITROFANOV,
M. G.; DEMENKOV, I. A.

Adsorption properties of synthetic zeolites-molecular sieves
and their use in the advanced-stage dehydration of monomers.
Neftekhimia 2 no.4:512-518 Jl-Ag '62.
(MIRA 15:10)

1. Groznenskiy nauchno-issledovatel'skiy neftyanoy institut i
Groznenskiy khimicheskiy zavod.

(Zeolites) (Monomers)

GARBER, K.S., dotsent; NIKITIN, A.I.; LYAUDIS, B.V.; MALINOVSKIY,
B.N., kand. tekhn.nauk; BEL'SKIY, O.I.; VOLKOV, L.G.;
KUZNETSOV, M.P.; KUTSENKO, A.D., SOROKIN, A.A.; STAKHURSKIY,
A.D.; TRUBITSYN, L.M.; TRUSEYEV, A.I.; SHAFRAN, I.K., inzh.;
SHESTAK, P.I.; UL'YANOV, D.P.

Automatic control of converter smelting by means of compu' "s.
(MIRA 16:9)
Stal' 23 no. 7:608-610 Jl '63.

1. Dneprodzerzhinskiy metallurgicheskiy zavod-vtuz im. M.I.
Arsenicheva (for Garger). 2. Institut kibernetiki AN UkrSSR
(for Malinovskiy). 3. Zavod im. Dzerzhinskogo (for Shafran).

Construction of the 1,160 blooming mill drives at the
Zaporozhstal Metallurgical Plant. Tel' 74 no. 5; 436-455
by 1964.

1. Zaporozhstal metallurgical plant in Dzerzhinsk.

SHESTAK, S., podpolkovnik yustitsii

Temporary center of legal information. Komm.Vooruzh.Sil 3
no.22:92 N '62. (MIRA 15:12)
(Military law—Study and teaching)

LUZANSKIY, Dora Isaakovna; SHFARLINSKIY, V.M., spets. red.;
AYNZAFT, Yu.S., red.; SHESTAK, S.N., red.

[Inland-water fisheries of the U.S.S.R. (lakes, rivers,
and reservoirs); a guide] Rybokhoziaistvennoe ispol'zovanie
vnutrennikh vodoemov SSSR (ozer, rek i vodokhranilishch);
spravochnik. Moskva, Pishchevaiia promyshlennost', 1965.
(MIRA 18:7)
597 p.

LAZAREVA, V.S., assist.; SHESTAK, S.S.

Determining the toxicology of grain and combined feeds. Veterinariia
(MLRA 10:11)
34 no.10:70 0 '57.

1. Chkalovskiy gosmedinstroj (for Lazareva). 2. Zaveduyushchiy
khimiko-toksikologicheskim otdelenijem Chkalovskoy nauchno-issledovatel'-
skoy veterinarnoy stantsii (for Shestak)
(Feeding and feeding stuffs--Toxicology)

SHESTAK, S.S., nauchnyy sotrudnik; KORENEV, G.P.; KORENEVA, T.A.;
SAPOGOV, A.G., nauchnyy sotrudnik

Use of SZHK (pregnant mare's serum). Veterinariia 37 no.1:10-12
(MIRA 16:6)
Ja '60.

1. Orenburgskaya nauchno-issledovatel'skaya veterinarnaya stantsiya
(for Shestak). 2. Direktor Simferopol'skoy mezhsovkhoznoy labora-
torii (for Korenev). 3. Simferopol'skaya mezhsovkhognaya
laboratoriya (for Koreneva). 4. Turkmeneskaya NIIZhV (for Sapogov).
(Serum therapy) (Veterinary medicine)

SHESTAKOV, A.

Reducing the cost of transportation. MTO 2 no.1:22-24
Ja '60. (MIRA 13:5)

1. Predsedatel' pravleniya Nauchno-tokhnicheskogo obshchestva
Omskoy zheleznoy dorogi.
(Omsk--Railroad research)

SHESTAKOV, A., tekhnik-stroitel'; DIKIY, V.; TUMASYAN, I.; KLOKOV, N.,
inzhener-stroitel'; POPOV, F., inzh.

Readers' letters. Sel'. stroi. 15 no. 4:27 Ap '61. (MIRA 14:6)

1. Sel'khozinspeksiya Orshanskogo rayona, Mariyskoy ASSR (for Shestakov).
2. Predsedatel' kolkhoza imeni Kirova Yegorlyksogo rayona, Rostovskoy oblasti (for Dikiy).
3. Sekretar' partynoy organizatsii kolkhoza imeni Kirova Yegorlykskogo rayona, Rostovskoy oblasti (for Tumasyan).
4. Sel'khozinspeksiya Khorol'skogo rayona, Primorskogo kraya (for Klokov).
(Farm buildings)

TSURIKOV, V. (Bryansk); SHESTAKOV, A.

From the history of fire prevention. Pozh.delo 8 no.6:32
Je '62. (MIRA 15:6)
(Firemen)

SHESTAKOV, Anatoliy, inzh.

Tuning up and launching into operation of the Maritsa-Iztok
I. Thermolectric Plant. Elektroenergiia 13 no.5/6:34-37
My-Je '62.

1. Gl. inzhener na grupata suvetski spetsiali pri Teploelektri-
cheskata tsentrala "Maritsa-Iztok I."

25(1)

PHASE I BOOK EXPLOITATION

SOV/2330

Shestakov, Andrian Andrianovich

Machinist parovozdushnogo molota (Steam Hammer Operator) Moscow, Mashgiz, 1959.
118 p. Errata slip inserted. 8,000 copies printed.

Reviewer: P. G. Levandovskiy, Engineer; Eds.: B.N. Kazarinov, Engineer, and
S. G. Puchkov, Engineer; Tech. Ed.: N. A. Dugina; Executive

Ed.: A. V. Kaletina, Engineer (Ural-Siberian Division, Mashgiz).

PURPOSE: This book is intended as a manual for steam hammer operators and re-
pairmen, and may also be used by forging machine workers.

COVERAGE: The book provides information on open and closed die forging processes,
on forgeability of metals, and equipment for heating forging stock. This book
is primarily concerned with the constructions and performance of steam forging
hammers and hydraulic and crank presses. No personalities are mentioned. There
are 10 references, all Soviet.

TABLE OF CONTENTS:

General Information on Open Die and Closed Die Forging	3
Concept of the processes of open die and closed die forging	3

Card 1/4

Steam Hammer Operator SOY/2330

Review problems	45
Operation and Maintenance of Drop Hammers	46
Automatic control mechanism of a drop hammer	46
Mechanizing operating processes of a drop hammer	54
Manipulator control and operating rules	64
Duty of the mechanic operating a drop hammer with manipulator	64
Methods of setting drop-hammer heads	66
Review problems	68
Closed Die Steam Hammers	69
Characteristics of the closed die hammer working principles	69
Control of steam distributors of closed die hammers	74
Duty of the mechanic operating steam-air drop hammer	77
Review Problems	79
Lubrication of Drop Hammers	80
Rules for lubricating drop hammers	80
Equipment for lubricating drop hammers	84
Review Problems	86

Card 3/4

SHESTAKOV, Andrian Andrianovich; LEVANDOVSKIY, P.G., inzh., retsenzent;
KAZARINOV, B.N., inzh., red.; PUCHKOV, S.G., inzh., red.;
DUGINA, N.A., tekhn.red.

[Steam and pneumatic hammer operator] Mashinist parovozdushnogo
molota. Moskva, Gos.snauchno-tekhn.izd-vo mashinostroit.lit-ry,
1959. 118 p. (MIRA 12:4)
(Forging machinery)

SHESTAKOV, A.; GOLOV, Yu.

From the history of fire departments. Pozh.delo 8 no.4:30
Ap '62. (MIRA 15:4)
(Fire departments)

СИДОРЕНКО, А. А., канд. физико-матем. наук.

Dissertation: "Behavior of Integral Curves of a System of Differential Equations in the Vicinity of a Singular Point of Higher Order." Sci Res Inst. of Mathematics, Moscow Order of Lenin State U imeni M. V. Lomonosov., 17 Dec 47.

SO: Vechernyaya Moskva, Dec 1947 (Project #17836)

MF 3000 1, A. A.

Mar., Sci. Res. Inst. Math., Moscow State Univ. -cl 1948-. Mar., Geophysics Inst., Dept. Physico-Math. Sci., Acad. Sci., -cl 1949-. "Behavior of Integral Curves of the System of Ordinary Differential Equations in the Vicinity of a Singular Point," Dok. AN, 62, No. 2, 1948; "The Asymptotic Behavior of the Solutions of a Non-Linear System of Differential Equations," ibid., 62, No. 5, 1948; "The Behavior of Integral Curves of a System of Differential Equations in the Neighborhood of a Singular Point of Higher Order," ibid., 65, No. 2, 1949.

~~Shestakov, A.A.~~3
0
0

Šestakov, A. A. On the behavior of the integral curves of a system of ordinary differential equations in the neighborhood of a singular point. Doklady Akad. Nauk SSSR (N.S.) 62, 171-174 (1948). (Russian)

The equations

$$(1) \quad \dot{x}_1 = \sum_{j=1}^n c_j x_j, \quad \dot{x}_i = \sum_{j=1}^m a_{ij} x_j + X_i(x_1, x_2, \dots, x_n), \quad i = 2, \dots, n,$$

are considered, $O: x_1 = \dots = x_n = 0$ being an isolated singular point and the X_i being power series beginning with terms of at least the second degree. The characteristic roots λ_j of the matrix (a_{ij}) , $i, j = 2, \dots, n$, are supposed to have non-vanishing real parts. Theorem 1. If $\Re(\lambda_j) > 0$, $j = 1, \dots, k-1$; $\Re(\lambda_j) < 0$, $j = k, \dots, n$, and if $c_m > 0$, then given any system of k sufficiently small numbers x_1^0, \dots, x_k^0 ($x_i^0 > 0$), there is one and only one system x_{k+1}^0, \dots, x_n^0 such that the solution passing through the point (x_1^0, \dots, x_n^0) tends to O as $t \rightarrow -\infty$.

The singular point is classified as a node, a generalized saddle of the 1st, 2d or 3d type or a saddle-node, according to the signs of c_m and of the $\Re(\lambda_j)$ and whether m is even or odd. Theorem 2. If the λ_j are real and negative, $m \geq 2$, the solutions tending to O are tangent at the origin to the curve defined by equating to zero the second members of the last $n-1$ equations (1).

J. L. Massera.

Source: Mathematical Reviews.

Vol. 10 No. 4

SHESTAKOV, A.A.

8
g
g

Šestakov, A. A., and Palvin, A. U. On the asymptotic behavior of solutions of nonlinear systems of differential equations. Doklady Akad. Nauk SSSR (N.S.) 62, 495-498 (1948). (Russian)

The asymptotic behavior as $t \rightarrow \infty$ of the stable solutions of the system

$$\frac{dx_i}{dt} = \sum_{k=1}^n a_{ik}x_k + \varphi_i(x_1, x_2, \dots, x_n, t), \quad i = 1, 2, \dots, n$$

(a_{ii} constant, $\varphi_i(0, 0, \dots, 0, t) = 0$), has been studied by O. Perron [Math. Z. 29, 129-160 (1928)] and by I. G. Petrovsky [Rec. Math. [Mat. Sbornik] (1) 41, 107-155 (1934)]. In the present note some of those results are stated under weaker hypotheses. Not all of the proofs are given.

W. Wasow (Swarthmore, Pa.).

Source: Mathematical Reviews, Vol 10 No 8

SHESTAKOV, A.A.

Shestakov, A. A. The behavior of the integral curves of a system of the form

$$\frac{dx_1}{dt} = X_1(x_1), \quad \frac{dx_i}{dt} = \varphi_i(x_1, x_i) + X_i(x_1, x_2, \dots, x_n)$$

in the neighborhood of a singular point. Doklady Akad. Nauk SSSR (N.S.) 62, 591-594 (1948). (Russian)

Previous results of the author [see the preceding review] are generalized to the present systems. He assumes that $O: x_1 = \dots = x_n = 0$ is an isolated singular point; that $x_1 = 0$ is an isolated root of X_1 , that $J = \int_0^{\infty} X_1^{-1} dx_1$ diverges, that $0 < m < |[\varphi_i(x_1, x_i) - \varphi_i(x_1, \bar{x}_i)]/(x_i - \bar{x}_i)| < M$ if $x_i \neq \bar{x}_i$ ($i = 2, \dots, n$) and that the X_i have continuous first partial derivatives vanishing at the origin. Theorem 2 of the previous paper is generalized as follows. In order that the integral curves which tend to O enter the origin along one and only one direction, the assumption $dX_i/dx_1 \rightarrow 0$ as $x_1 \rightarrow 0$ is sufficient.

J. L. Massera (Montevideo).

Source: Mathematical Reviews.

Vol 10 No. 4

*SMW
good*

, A. A.

1942. L. T. I., . . . PATRICK, A. J. -- O neimotocnemkovoye vvedeniye
na literaturnykh i literatsional'nykh uravneniy. Doklady akad. Nauk SSSR,
Novaya seriya. T. 33(1). No 5, 1943. S. 425-26

in: Litteraturnye Statey, Vol. 47, 1943

GTRSPN, NO. 45

Shestakov, A.A. (F.E. Dzerzhinski Moscow Electromechanical Institute of Engineers of
Railroad Transportation). Some theorems on instability in the sense of Lyapunov. 25-8

Akademiya Nauk, S.S.R., Doklady, vol. 79, No. 1 1951

SHESTAKOV, A.A.

3
2/23

Šestakov, A. A. On the behavior of the integral curves of a system of n differential equations ($n \geq 3$) near to a singular point of higher order. Doklady Akad. Nauk SSSR (N.S.) 79, 205-208 (1951). (Russian)

Let $\dot{x}_i = X_i(x_1, \dots, x_n)$, where the X_i vanish at the origin and are holomorphic in its neighborhood; the developments may begin with terms of degree higher than one. The author proves the existence of families of integral curves given by equations $x_i = (a_i + z_i t^{-1}) t^{p_i}$ where the p_i are integers, a_i constants and $z_i \rightarrow 0$ as $t \rightarrow 0$; the precise statement is too lengthy to be formulated here. There are several printing errors.

J. L. Massera (Montevideo)

Source: Mathematical Reviews, Vol. 13 No. 5
Moscow Electromechanical Inst. R.R. Transport Engineers.
in F. E. Dargusinsky

SHESTAKOV, A. A.

2
8

Shestakov, A. A. Some theorems on stability in Lyapunov's sense. Doklady Akad. Nauk SSSR (N.S.) 79, 25-28 (1951). (Russian)

Let $\dot{x}_i = X_i^{(m)}(x_1, \dots, x_n) + L_i(x_1, \dots, x_n)$, where the $X_i^{(m)}$ are relatively prime homogeneous polynomials of degree m and $L_i = O(r^{m+1})$, $r^2 = x_1^2 + \dots + x_n^2$. Any solution $(\dot{x}_1, \dots, \dot{x}_n)$ of the system $x_1/X_1^{(m)} = \dots = x_n/X_n^{(m)}$ is a "critical direction" and, if m is odd, it is called "positive" whenever the ratio $x_i/X_i^{(m)}$ is positive. The following results are proved:

(1) If a critical direction exists (m even) or if a positive critical direction exists (m odd), the origin is unstable; (2) if n is odd, there is always a critical direction; (3) as a corollary, the case n odd, m even, is always unstable. Another criterion of instability is derived for the case $m=1$ when several characteristic exponents vanish.

J. L. Massera.

Sme

Source: Mathematical Reviews, Vol 13 No 5

SHESTAKOV, A. A.

USSR/Mathematics - Nonlinear Mechanics 1 Jul 51
Stability, Servo

"Certain Theorems Concerning Stability in Liapounoff's Sense," A. A. Shestakov, Moscow Electromech Inst of Engineers of Railroad Transport imeni F. E. Dzerzhinsky

"Dok Ak Nauk SSSR" Vol LXXIX, No 1, pp 25-28

Considers the system of differential eqs of disturbed motion: $x'_s = F_s(x_1, \dots, x_n)$, where $F_s(0, \dots, 0) = 0$ ($s = 1, \dots, n$). Derives some new criteria governing the stability or instability (e.g., nature of the roots of the characteristic eq), in the form of 4 theorems. Presented by Acad I. G. Petrovskiy 28 Apr 51.

210T51

SEBISTANOV, A. A.

"Distrilikut os Singular Points of a System of n Differential Equations", Tr. Kazansk. Aviats. In-ta, Vol 27, 1953, pp 41-50.

The author presents a development of Poincare's investigations of the distribution of singular points of a system of n differential equations inside an (n - 1) dimensional manifold, where n is greater than or equal to 3. The system discussed is the following:

$$\frac{dx_s}{dt} = x_s (x_1, \dots, x_n), \quad s = 1, 2, \dots, n,$$

where x_s and the partial derivative of x_s with respect to x_i are continuous and bounded in a bounded region $F(x_1, \dots, x_n) < 0$ of n-dimensional space. (RZhMat, No 1, 1955).

SO: Sum. No. 443, 5 Apr. 55

FUKS, Boris Abramovich, prof.; BAKHSHIYAN, F.A., prof.; ANDRIYEVSKIY,
F.P., dotsent; MIROSHKOV, R.K., dotsent; NAGAYEVA, V.M., dotsent;
SOBOLEV, N.I., dotsent; SOKOLOV, A.M., dotsent; SHAPIRO, Z.Ya.,
dotsent; SHUSHARA, G.N., dotsent; KAPLAN, I.B., starshiy pre-
podavatel'; POLOZKOV, A.P., starshiy prepodavatel'; POLOZKOV,
D.P., starshiy prepodavatel'; TOPAZOV, N.G., starshiy prepoda-
vatel'; SHCHERBAKOV, S.S., starshiy prepodavatel'; Prinimali
uchastiye: GOL'DENVEYZER, A.L., prof.; BARANENKOV, G.S., dotsent;
BERMAN, Ya.R., dotsent; LUNTS, G.L., dotsent; SHESTAKOV, A.A.,
dotsent; GMURMAN, V.Ye., starshiy prepodavatel'; Rozental', M.F.,
assistant; SOKOLOVA, L.A., assistant. ROZANOVA, G.K., red.izd-va;
KUZ'MINA, N.S., tekhn.red. (Continued on next card)

FUKS, Boris Abramovich--(continued) Card 2.

[Higher mathematics; methodological instructions and control assignments for the students of correspondence technical schools of university level] Vysshiaia matematika; metodicheskie ukazaniia i kontrol'nye zadaniia dlja studentov zaochnykh vysshikh tekhnicheskikh uchebnykh zavedenii. Izd.9. Pod red. B.A.Fuksa. Moskva, Gos.izd-vo "Sovetskaja nauka," 1958. 179 p.
(MIRA 12:9)

1. Russia (1923- U.S.S.R.) Ministerstvo vysshego obrazovaniya.

Metodicheskoye upravleniye.

(Mathematics--Study and teaching)

ZAPOROZHETS, G.I.; SHESTAKOV, A.A., red.; MEDVEDEVA, M.A., tekhn.red.

[Methodological handbook for solving problems on mathematical analysis] Metodicheskoe rukovodstvo k resheniiu zadach po matematicheskому analizu, Moskva, Vses.saochnyi in-t inzhenerov zhel-dor.transports. Pt.1. 1959. 202 p. (MIRA 13:5)
(Mathematical analysis)

20

16(1)

Shestakov, A.A.

SOV/42-14-1-23/27

AUTHOR:

TITLE: Theorems on the Existence of Integral and Critical Straight Lines of a Homogeneous System of n Differential Equations ($n \geq 3$)
(Teoremy o sushchestvovanii integral'nykh i kriticheskikh pryamykh odnorodnoy sistemy n differentsiyal'nykh uravneniy ($n \geq 3$))

PERIODICAL: Uspekhi matematicheskikh nauk, 1959, Vol 14, Nr 1, pp 245-248 (USSR)

ABSTRACT: The author considers the system

$$(1) \quad \frac{dx_s}{dt} = X_s^{(m)}(x_1, \dots, x_n), \quad m \geq 2, \quad n \geq 3,$$

where the $X_s^{(m)}$ are forms of m -th degree. The real solutions $g = (g_1, g_2, \dots, g_n)$ of the algebraic equations $x_1:X_1^{(m)}=x_2:X_2^{(m)}=\dots=x_n:X_n^{(m)}$ define the straight lines $x_p:x_n=g_p:g_n$; these are integral curves of (1). Theorem 1 is already announced in [Ref 1].

Theorem 2: If m is odd, then (1) has at least one integral straight line. Definition: If a solution runs at infinity in

Card 1/2

Theorems on the Existence of Integral and
Critical Straight Lines of a Homogeneous
System of n Differential Equations ($n \geq 3$)

SCV/42-14-1-23/27

the direction $g = (g_1, \dots, g_n)$, then this straight line is called
critical.

Theorem: The critical straight lines are integral straight lines.
There are 2 references, 1 of which is Soviet, and 1 German.

SUBMITTED: November 4, 1957

Card 2/2

AUTHORS: Pshakadze, A.V., and Shestakov, A.A. SOV/39-49-1-1/5
(Moscow)

FILE On the Classification of Singular Points of a First Order
Differential Equation Where the Derivative is Not Given Explicitly

PERIODICAL: Matematicheskiy sbornik, 1959, Vol 49, Nr 1, pp 3-12 (USSR)

ABSTRACT: Given the Differential equation

(1) $F(x,y,y') = 0$.
To the solutions $y = f(x)$ there correspond those curves of the
surface

(S) $F(x,y,p) = 0$

for which

(2) $-p dx + dy = 0$.

The equations of these curves are

(3) $\frac{dx}{dt} = -F_p, \quad \frac{dy}{dt} = -p F_p, \quad \frac{dp}{dt} = F_x + p F_p$.

The singular points (x_0, y_0, p_0) of (3) are defined by $F = 0$,
 $F_p = 0$, $F_x + p F_p = 0$. Definition: If $(x_0, y_0, p_0) \in S$ is a singular
point of (3), then (x_0, y_0) is called a singular point of (1).

Cart 1/2

On the Classification of Singular Points of a
First Order Differential Equation Where the
Derivative is Not Given Explicitly

SOV/39-49-1-1/5

This definition deviates from the definition of J.G.Petrovskiy
[Ref 1] and gives the possibility of a classification of the
singular points of (1). With the aid of the Taylor development
of F the authors obtain the "differential equation of the first
approximation":

$$(7) \quad \frac{1}{2}(F_{pp})p^2 + (F_{xp})xp + \frac{1}{2}(F_{xx})x^2 + F_y = 0,$$

where $O(x^3+p^3)$ is neglected since these terms have no influence
on the behavior of the integral curves in the neighborhood of the
singular point. Differentiating (7) with respect to x and
considering p as a function of x, then there follows

$$(8) \quad \frac{dp}{dx} = \frac{2\beta x + (\alpha + \gamma)p}{\delta x - 2p},$$

where α, β, γ are certain constants. Now the classification of the
singular points is transferred from (13) to (7) and further to (1),
where three principal types are distinguished: elliptic, hyperbolic,
and parabolic singular points. There are 5 figures, and 2 references,
1 of which is Soviet, and 1 French.

SUBMITTED, November 18, 1957

Lar: 2/2

13

69986

S/020/60/131/05/14/069

Asymptotic Behavior of Solutions to Multi-dimensional Systems of Ordinary Differential Equations Having a Singular Point of Higher Order

author asserts that (1) has families of solutions of certain dimensions which along these parabolas run through the origin. The author distinguishes several cases. There are 4 long theorems.

There are 2 Soviet references.

ASSOCIATION: Vsesoyuznyy zaochnyy institut inzhenerov zheleznodorozhnogo transporta (All-Union Correspondence Institute for Engineers of Railroad Transportation)

PRESENTED: December 18, 1959, by I.G.Petrovskiy, Academician

SUBMITTED: December 15, 1959

X

Card 2/2

31100

S/199/61/002/005/004/006

B112/B138

Asymptotic behavior of the...

$x = (\omega + y)\tau$ and $\bar{\tau} = (c_o - t)^r$, $x = (\bar{\omega} + \bar{y})\bar{\tau}$. The eigenvalues of L and M are characteristic of the asymptotic behavior of the solutions. Several theorems concerning this behavior are derived. There are 10 Soviet references.

SUBMITTED: August 13, 1960

Card 2/2

KHRIPUNOV, A.M., inzh.; SHESTAKOV, A.D., inzh.; SHEPILOV, M.Ye., inzh.

Our method to secure an accurate performance of the regenerative
braking circuit of the VL8 electric locomotive; from the practices
of the Zlatoust Depot of the Southern Urals Railroad. Elek. 1
tepl.tiaga no.8:13-16 Ag '63. (MIRA 16:?)

1. Depo Zlatoust Yuzhno-Ural'skoy dorogi.
(Electric locomotives—Brakes)

SHESTAKOV, A.I., red.; IVANUSHKO, N.D., red.; SVESHNIKOV, A.A.,
tekhn. red.

[Programmed teaching and cybernetic teaching machines; col-
lection of scientific and technical articles] Programmiro-
vannoe obuchenie i kiberneticheskie obuchaiushchie mashiny;
nauchno-tekhnicheskii sbornik statei. Moskva, "Sovetskoe
radio," 1963. 247 p. (MIRA 17:3)

82292
S/135/60/000/007/010/014
A006/A002

18.7240

AUTHORS:

Gritsenko, A.F., and Shestakov, A.I., Engineers

TITLE:

Pressure-Butt Welding of Aluminum-Magnesium Alloy Parts of up to
10,000 mm² Cross Section

PERIODICAL: Svarochnoye proizvodstvo, 1960, No. 7, pp. 30-33

TEXT: The Laboratory of Electrothermics of the Institut elektrotekhniki AN USSR (Institute of Electric Engineering AS UkrSSR) and a machinebuilding plant developed a technology of pressure-butt welding of aluminum-magnesium alloy blanks (AMr-5BM(AMg5VM) and AMr3(AMg3)) of up to 10,000 mm² cross section. The experimental investigation was carried out on a special installation designed by P.A. Pleskanovskiy (Figure 1). The ring-shaped blanks to be welded were decreased and heated up to 450°C. To carry out additional heating of high-strength alloys the installation was equipped with an induction heater. Welding was performed at a specific reduction pressure of 120 kg/mm² (the reduction rate was 0.5 m/min, the magnitude of reduction was 140 mm). One half of the specimens cut out from the weld joints were annealed at 280°C, and were then subjected to tension and bending tests. During tension the specimens broke down in the base metal. The weld joints had a high ductility. Macro- and micro-investigations showed the absence of inter-

Card 1/2

82292

S/135/60/000/007/010/014
A006/A002

Pressure-Butt Welding of Aluminum-Magnesium Alloy Parts of up to 10,000 mm² Cross Section

face boundaries, pores and cracks. Due to the presence of vanadium in the AMg5VM alloy, relatively short heating and low temperatures, the tendency to grain growth under pressure welding conditions did not considerably affect the mechanical properties of weld joints. The structure of AMg3 alloy joints was slightly coarser grained than that in the initial alloy. A slight increase in hardness was observed in the transition areas of the base metal to the butt. X-ray examination of AMg5VM specimens of 4,500-6,000 mm² cross section did not reveal any defects. The tests proved that the strength of weld joints produced by the described technology was equal to that of the base metal, with satisfactory bending angle values. Annealing to 280°C did not have any essential effect on the mechanical properties of the joints. The method is simple and economical. There are 5 photographs and 1 table.

Card 2/2

HL620
S/135/63/000/001/003/016
A006/A101

AUTHORS: Khrenov, K. K., Academician of AS UkrSSR, Shestakov, A. I.,
Engineer

TITLE: On plastic deformation in pressure butt welding

PERIODICAL: Svarochnoye proizvodstvo, no. 1, 1963, 11 - 12

TEXT: It is proposed to determine plastic deformation in cold and pressure butt-welding from the volume of the extruded metall (burr). The metal cut-off during welding is weighed and the value obtained is divided by the specific metal weight. The proposed method is illustrated by examples which show that the notion of the "deformation degree" should be replaced by the term "deformation value", which can be experimentally determined. Butt welding should be performed with optimum deformation value. It is the decisive factor of the process: lower deformation reduces the strength and ductility of the weld and increased deformation raises the metal consumption. There are 4 figures.

ASSOCIATION: Institut elektrotekhniki AN UkrSSR (Institute of Electric Engineering, AS UkrSSR)

Card 1/1

S/125/62/000/005/009/010
D040/D113

Pressure welding of rolled....

upsetting is doubled. The metal is heated to plastic state, clamped in special holding clamps, and upset in several reprisals. The clamps have a large gripping surface, hold the metal by friction, and thus do not deform the surfaces. Metal with surface defects and oxide films is squeezed out into the burr. Metallographic investigation of samples taken at different stages of the process reveals diffusion, fine metal structure, and absence of an overheated zone. The structure in the butt joint zone consists mainly of a solid solution of Mg in Al, and a very small β -phase. In tests, the bend angle of metal specimens from the joint is lower than in the base metal, and the impact strength 50% lower, simply because of the anisotropy of Al-Mg alloys. Conclusions: (1) Al-Mg alloy elements can be pressure butt-welded; (2) the quality of welded joints is high; (3) the techniques introduced at some heavy-machinery plants and developed for pressure butt welding elements with a cross section area of up to 10,000 mm² are recommended for extensive application. There are 3 figures and 2 tables.

ASSOCIATION: Institut elektrotekhniki AN USSR (Electrical Engineering Institute,
AS UkrSSR)

SUBMITTED: February 10, 1962

Card 2/2

KHRENOV, K.K., akademik; SHESTAKOV, A.I., inzh.

Plastic deformation during pressure butt welding. Svar.proizv.
(MIRA 16:2)
no.1:11-12 Ja '63.

1. Institut elektrotekhniki AN UkrSSR. 2. AN UkrSSR (for
Khrenov).
(Welding) (Deformations (Mechanics))

"APPROVED FOR RELEASE: 07/13/2001

CIA-RDP86-00513R001549120016-2

GRITSENKO, A.F., inzh.; SHESTAKOV, A.I., inzh.; YERMOLENKO, D.Ye., inzh.

Cold-pressure welding of dissimilar metals. Svar. proizv. no.2:32-33
F '63. (MIRA 16:2)

(Cold welding)

APPROVED FOR RELEASE: 07/13/2001

CIA-RDP86-00513R001549120016-2"

ACCESSION NR: AP4037197

S/0125/64/000/005/0010/0014

AUTHOR: Shestakov, A. I. (Engineer)

TITLE: Cold and press welding of light alloys

SOURCE: Avtomaticheskaya svarka, no. 5, 1964, 10-14

TOPIC TAGS: aluminum alloy, titanium alloy, aluminum alloy welding, titanium alloy welding, cold welding, press welding, aluminum alloy press welding, aluminum alloy cold welding, titanium alloy press welding, titanium alloy cold welding

ABSTRACT: An experimental study of the potentialities of cold and press welding of aluminum-magnesium alloys (AMg3, AMg5V, AMg6), thermally-hardened alloys D16AT, ATsM, V92, titanium alloys VT1, VT6, and various combinations of the above is reported. The effects of temperature, deformation, pressure, and time upon the quality of the joints were determined. Al alloys were welded at 0.7-0.8 of their melt temperature (AMg5V at 450C). Three types of clamps were tested with different ratios of the clamping pressure to the upsetting pressure.

Card 1/2

L 2097-66 EWP(e)/EPA(s)-2/EWT(m)/EPF(c)/EWP(i)/EPA(w)-2/EWP(t)/EWP(k)/EWP(z)/EWP(b)
IJP(c) JD/WW/WH

ACCESSION NR: AP5022538

UR/0226/65/000/009/0001/0005

AUTHOR: Zemskov, G. V.; Shestakov, A. I.

TITLE: Diffusion impregnation of graphite powders

SOURCE: Poroshkovaya metallurgiya, no. 9, 1965, 1-5

TOPIC TAGS: graphite powder, powder particle, graphite particle impregnation, phase impregnation, chromium impregnated graphite, titanium impregnated graphite, molybdenum impregnated graphite, tungsten impregnated graphite

ABSTRACT: A method of diffusion impregnation of graphite powder with carbide-forming elements in the gaseous phase is proposed. The method is based on a reaction between graphite powder mixed with the impregnation metal particles and a vaporized halide of the same metal transported by an inert gas or hydrogen. In the experiments, graphite powder was impregnated with chromium using liquid bromine as the halide and helium for bromine-vapor transport. The impregnation was conducted at 1000—1200°C for up to 90 min. It was found that the optimum conditions for obtaining the thickest impregnated layer were a bromine temperature of 25°C, a feed of helium and bromine of 7 ml/sec and 0.05 ml/min, respectively, and a weight ratio of chromium particles to graphite powder in the mixture equal to 6. The reaction temperature had the

58
55
B

Card 1/3

L 2097-66

ACCESSION NR: AP5022538

greatest effect on the impregnated layer thickness (see Fig. 1 of the Enclosure). Dense, uniform, strongly adhering layers were obtained on graphite grains 60 and 200 mesh with a 50-min reaction at 200°C. X-ray structural analysis showed that all coatings consisted of Cr_3C_2 and Cr_7C_3 carbides with a microhardness of 1840—2440 dan/mm². In further experiments, dense, ductile coatings consisting of TiC with a microhardness of 1300—3000 dan/mm² were obtained on graphite particles with a 70-mm reaction at 1200°C. Mo_2C coatings were obtained with a 50-min reaction at 1200°C. Tungsten-carbide coatings were also obtained on graphite particles with a reaction at 1300°C. Orig. art. has: 5 figures. [MS]

ASSOCIATION: Odesskiy politekhnicheskiy institut (Odessa Polytechnic Institute)

SUBMITTED: 13Feb65

ENCL: 01

SUB CODE: MT, MM

NO REF Sov: 000

OTHER: 002

ATD PRESS: 4113

Card 2/3

L 2097-66
ACCESSION NR: AP5022538

ENCLOSURE: 01

Fig. 1. Dependence of the layer thickness on the temperature and duration of impregnation process

1 - 1200C; 2 - 1100C; 3 - 1000C.

Card 3/3

(N) L 12920-66 EWP(e)/EWT(m)/I/EWP(t)/EWP(k)/EWP(z)/EWP(b)/EWA(c) JD
ACS NR: AP6001008

SOURCE CODE: UR/0286/65/000/022/0079/0079

AUTHORS: Zemskov, G. V.; Shestakov, A. I.

ORG: none

TITLE: A method for thermodiffusional surface saturation of metals and alloys. Class 48, No. 176475

SOURCE: Byulleten' izobreteniy i tovarnykh znakov, no. 22, 1965, 79

TOPIC TAGS: metallurgy, metal powder, halogen, iodine compound, metal diffusion, alloy

ABSTRACT: This Author Certificate presents a thermodiffusional method for surface saturating of powdered metals and alloys in the atmosphere of halides. To eliminate the harmful effect of nitrogen absorption resulting from the use of ammonium chloride, solid halogen compounds of IC₂ or IBr are used as sources of halogens.

SUB CODE: 13,11/

SUBM DATE: 04May64

UDC: 621.793.6

Card 1/1 HW

2

ACC NR: AP6029075

SOURCE CODE: 11/13/64/ 11-14 162-492

47
B

INVENTOR: Zemskov, G. V.; Ghestakov, A. I.

ORG: none

TITLE: Method of applying a diffusion coating on graphite. Class 48, No. 164093

SOURCE: Izobret prom obraz tov zn, no. 14, 1966, 131

TOPIC TAGS: diffusion coating, graphite ~~coating~~, metal coating, METAL DIFFUSION
PLATING

ABSTRACT: This Author Certificate introduces a method of applying metal diffusion coating on graphite. To ensure the homogeneity of the diffusion layers, the process is carried out in an atmosphere of halides, such as bromides, of the metal used as a coating medium. In a modification of the above method, the metal halides are carried into the reaction chamber by an inert gas, such as helium or argon. [TD]

SUB CODE: 11, 13/ SUBM DATE: 20Mar64/ ATD PRESS: 5066

Card 1/1 LC UDC: 621.793.6:546.26-162-492.2

ACC NR: AP7001929

as produced by a pneumatic hammer. Welds in aluminum wire 3.5 mm in diameter produced with vibrations had a strength of 11.5 kg, roughly the same as that of welds produced by a static load (11 kg/mm^2), but required lighter equipment. Static cold welding of AMg5V alloy specimens with a cross section of 250 mm^2 requires a press with 50-ton capacity weighing 1.5 ton. The vibration welding device for the same specimens weighs 10 kg. Orig. art. has: 5 figures.

SUB CODE: 13/ SUBM DATE: 11Oct63/ ORIG REF: 004/ ATD PRESS: 5111

Card 2/2

SHESTAKOV, A.I.

Experience with operating electric and diesel locomotives on the Omsk Railroad. Zhel.dor.transp.37 no.4:23-27 Ap '56. (MLRA 9:7)

1.Glavnyy inzhener Omskoy doregii.
(Electric locomotives) (Diesel locomotives)

SHESTAKOV, Aleksandr Ivanovich; TIKHONOV, K.K., dotsent, red.; MEDVEDEVA, M.A., tekhn.red.

[Organization of the operation of trains with electric and diesel traction; practices of the Omsk Railroad] Opyt organizatsii poezdnoi raboty pri elektricheskoi i teplovoznoi tiage; iz praktiki Omskoi dorogi. Moskva, Gos.transp.zhel-dor.izd-vo, 1959. 65 p.

(Railroads--Management)

SHESTAKOV, A.I.

How to improve the methodology for calculating the traffic
capacity of railroads. Zhel.dor.transp. 42 no.5:51-56 My
'60. (MIRA 13:9)

1. Glavnnyy inzhener Omskoy dorogi.
(Railroads--Traffic)

BAYEV, N.V.; BOBROV, Ye.G.; DEMIDOV, G.A.; DENISOV, A.D.; ZHUKOV, N.Ya.;
LELEKOV, Yu.S.; POZDNYAKOV, I.M.; POLKOVNIKOV, B.M.; TRIBURT, I.I.;
TYURIKOV, A.A.; SHESTAKOV, A.I., inzh.; PESKOVA, L.N., red.;
KHITROVA, N.A., tekhn. red.

[Advanced technology on railroads] Peredovaia tekhnologija na
zheleznoi doroge. Moskva, Vses. izdatel'sko-poligr. ob"edine-
nie M-va putei soobshchenija, 1961. 84 p. (MIRA 14:12)
(Railroads)