

DATIS: DRAM Architecture and Technology Integrated Simulation

Paper ID: 198

Shiyu Xia, Chen Zhang*, Guangyu Sun, Guohao Dai, Runsheng Wang, Zhigang Ji*, Ru Huang Shanghai Jiao Tong University xiashiyu@sjtu.edu.cn

Background: Why DRAM and DTCO Matter

- DRAM is a cornerstone of modern memory architecture
- DTCO improves DRAM reliability, performance, and efficiency in AI and data-driven systems

DRAM accounts for over 37% of AI server costs

DTCO optimizes:

optimizing system reliability

accelerating application kernels

enhancing architectural performance and energy efficiency

DTCO has become essential

Motivation- DTCO Case I (refresh strategies)

■ Retention-aware refresh improves throughput (↑50%) and power (↓40%) [1]

DRAM cells leak charge over time

different cells lose charge at different speeds

These architecture-level optimizations are highly related to process variation

Motivation- DTCO Case II (RowHammer)

Mitigate RowHammer effect by new refresh algorithms [1]

RowHammer effect

RowHammer related to process

Address RowHammer effect by new refresh algorithm

These optimizations are highly related to process variation

Motivation- DTCO Case III (CIM)

■ Error of compute in memory (e.g. bulk bitwise AND and OR operations) related to device-level behavior (e.g. leakage and crosstalk) [1]

CIM (AND/OR) by charge sharing

Compute error in DRAM due to device-level non-ideal factors (e.g. leakage and crosstalk)

The bit error rate in CIM is highly related to process

Motivation

■ DRAM and memory architecture evolve quickly (DDR4, LPDDR5, HBM, HBM3E, DDR6)

Previous work

- Existing architectural simulators ignore device-level behaviors, which are vital for DTCO studies
- A fast and extensible simulator with device-level models is very much needed

		With device-level model
USIMM	2012	×
DRAMSim2	2011	×
DRAMSim3	2020	×
Ramulator	2015	×
Ramulator2	2023	×
This work	2025	

What is DATIS

Input

Memory command:

Activate, Read, Write, Pre-charge, Refresh...

Interaction Structure

Mechanism:

Crosstalk, Coupling...

Problems:

RowHammer, Retention...

Application:

Processing-in-memory...

Physical Simulation

Physical params:

Temperature, Electric field...

Device params:

Technology, Area, Delay, Leakage...

Output

Performance, Security issue, Reliability issue:

Power, Error rate...

Overview of the DATIS Framework

- DATIS bridges DRAM device and architecture
- Based on Ramulator, with analog device modeling
- Supports multiple DRAM standards

DATIS - Hierarchical structure

- Standard hierarchy (Rank/Bank/Subarray) -- similar to prior work
- Cell/geometry abstraction -- DATIS Highlights

DATIS Internals: cell-abstract

- Supports diverse DRAM cell structures across technologies
- Abstracts them into a unified leakage-aware circuit model

(a) Leakage Current Diagram

(b) The Leakage Curve Over Time

Mechanism	Types	Formulas
Generation-	GIDL	$I_{\text{GIDL}} = A_{\text{GIDL}} \exp\left(-\frac{E_a}{kT}\right)$
Recombination	$_{ m GIJL}$	$I_{ m GIDL} = A_{ m GIDL} \exp\left(-rac{E_a}{kT} ight)$ $I_{ m GIJL} = A_{ m GIJL} \exp\left(-rac{E_a}{kT} ight)$
Drift-Diffusion	Sub-threshold	$I_{\mathrm{D-D}} = A_{\mathrm{D-D}} \exp\left(-\frac{E_a}{kT}\right)$
	P-N junction	$I_{\mathrm{D-D}} = A_{\mathrm{D-D}} \exp\left(-\frac{1}{kT}\right)$
	drift/diffusion	
Tunneling through oxide	Gate leakage	$I_{\text{GATE_LEAKAGE}} = \sum_{i=1}^{n} \Delta I_{\text{IT}}(i)$
$I_{leakage} = I_{GIDL} + I_{GIJL} + I_{DD} + I_{GATE_LEAKAGE}$		

(c) Table of Leakage Mechanisms and Corresponding Formulas

Different DRAM cell structure

Device Leakage Model in DATIS

Different DRAM cell designs can be unified under DATIS's cell-abstraction

DATIS Internals: geometry-abstract

- Supports different DRAM process and layout structures
- Abstracts each cell as a node and interactions as edges
- Graph-based modeling enables efficient crosstalk simulation

Different DRAM process and geometry structures

Graph IR to model interaction crosstalks.

Crosstalk effects are efficiently modeled under DATIS's geometry-abstract

Case Study I – Retention & Leakage

■ DATIS reproduces temperature-dependent retention behavior as observed in prior work

Cumulative distribution function (CDF) of retention time at 325K / 375K / 425K

DATIS accurately captures retention times as reported in prior studies

Case Study II – RowHammer

■ DATIS reproduces RowHammer error rates and evaluates mitigation algorithms (e.g., PARA, ProHIT)

Error rate with respect to varied access pattern (a-c) and processes(d)

Simulation of two refreshing algorithms for RowHammer

DATIS accurately captures RowHammer effect as reported in prior studies

Case Study III - CIM in DRAM

■ DATIS simulates analog CIM behavior and error rates across operation cases

Case	Computation Complexity
Case 1	Convolution x1
Case 2	Convolution x1 & Multiplication x1
Case 3	Convolution x2
Case 4	Convolution x1 & Multiplication x2
Case 5	Convolution x2 & Multiplication x1
Case 6	Convolution x2 & Multiplication x2
Case 7	Convolution x2 & Multiplication x3

Figure 11. Error rate under different cases

DATIS accurately captures CIM error trends as reported in prior studies

ISEDA 20 25 International Symposium of EDA

Conclusion

- Extend DATIS to support stochastic computing in DRAM
- Evaluate precision, energy, and variation effects in SC logic
- Enable fast DTCO evaluation of SC-friendly DRAM designs

Future Work

- Extend DATIS to support stochastic computing in DRAM
- Evaluate precision, energy, and variation effects in SC logic
- Enable fast DTCO evaluation of SC-friendly DRAM designs

System Behavior Impacted (RowHammer, CIM Errors)

Physical Effects (Leakage, Crosstalk, etc.)

Technology Scaling (smaller nodes, more complex)

X Existing Simulators Ignore
These Links

Need DTCO: Joint Simulation of Device to Architecture

Our Solution: DATIS

Q & A

Thank you for your time and attention.

Questions are welcome.

