一、单项选择
1. 数据结构就是一门研究非数值计算得程序设计问题中,数据元素得①_C、数据信息在计算机中得②A以及一组相关得运算
等得课程.
① A. 操作对象 B. 计算方法 C。逻辑结构 D.数据映象
② A.存储结构 B. 关系 C。运算 D. 算法
2. 以下数据结构中,
A.广义表 B.二叉树 C。稀疏矩阵 D。串
3. 从逻辑上可以把数据结构分为C两大类。
A.动态结构与静态结构 B.顺序结构与链式结构
C.线性结构与非线性结构 D.初等结构与构造型结构
4. 以下数据结构中,D 就是线性结构。
A.广义表 B.二叉树 C。稀疏矩阵 D.串
5. 以下数据结构中,D 就是非线性结构。
A。栈 B.二叉树 C。队列 D。字符串
6. 数据结构 DS (Data Struct)可以被形式地定义为 DS = (D, R),其中 D就是①B_得有限集合,R就是 D上得②
限集合。
① A.算法 B. 数据元素 C。数据操作 D.数据对象
② A. 操作 B.映象 C.存储 D。关系
7. 线性表得顺序存储结构就是一种① <u>A</u> 得存储结构,线性表得链式存储结构就是一种得 <u>② B</u> 存储结构。
A。随机存取 B。顺序存取 C. 索引存取 D.散列存取
8. 线性表得逻辑顺序与存储顺序总就是一致得,这种说法_B。
A、 正确 B、 不正确
9. 下面那一条就是顺序存储结构得优点? (A)
A 、 存储密度大 B、 插入运算方便 C、 删除运算方便
D、可以方便得用于各种逻辑结构得存储表示
10. 线性表采用链式存储结构时,要求内存中可用得存储单元得地址、

A 、 必须就是连续得 B、 部分地址必须就是连续得 C、 一定不连续
D、 连续与不连续都可以
11. 表长为 n 得顺序存储得线性表, 当在任何位置上插入与删除一个元素得概率相等时, 插入一个元素所需要移动元素得平均次数为
\mathbf{E} , 删除一个元素所需要移动元素得平均次数为 \mathbf{A}
A, $(n-1)/2$ B, n C, $n+1$ D, $n-1$ E, $n/2$ F, $(n+1)/2$ G, $(n-2)/2$
12. 带头结点得单链表 head 为空得判定条件就是_B
A, $h e a d = NULL$ B, $h e ad \rightarrow nex t = NULL$
C, head \rightarrow ne x t= =he a d D, head! =NULL
13. 在一个单链表中, 若删除 p 所指向结点得后继结点,则执行 A 。
A, $p \rightarrow next = p \rightarrow n e xt$ B, $p = p \rightarrow n e x t$; $p \rightarrow n e x t = p \rightarrow n e xt$ n ext
C, $p = p$ —>nex t —>next D, $p = p$ —> $n ext$
14. 若已知一个栈得入栈序列就是 1 , 2 , 3 , … , n , 其输出序列为 p 1 , p 2 , p3 , … ,pn,若 p 1 =n , 则 pi 为_C。
A、 i B、 n=i C、 n—i+ 1 D、 不确定
15. 设栈得输入次序为: 1 , 2, 3, 4, 5,则不可能就是其出栈序列 <u>、</u>
A, 5 4321 B, 4 5 3 2 1 C, 4 3512 D, 12 3 45
16. 一个递归算法必须包括
A、 递归部分 B、 终止条件与递归部分
C、 迭代部分 D、 终止条件与迭代部分
17. 用链接方式存储得队列, 在进行删除操作时
A 仅修改头指针 B、 仅修改尾指针
C、 头尾指针都要修改 D、 头尾指针可能都要修改
18. 数组 A $[m]$ 存放循环队列得元素, 其头尾指针分别就是 f ront f rear, 则当前队列得元素个数就是 f A f 。
A, $(rear-front+m)\%m$ B, $(front-rear+m)\%m$ C, $front-rear+1$ D, $rear-front+1$
19. 栈与队列得共同特点C。
A、 都就是先进先出 B、 都就是先进后出
C、 允许在端点插入与删除元素 D、 没有共同点

21. A. 22. A. C.	一个栈得入栈序列 a,b,c,d,e,则栈得输出序列就是 <u>A</u> . A、edcba B、de c b a C、d c eab D、ab c de 栈得特点就是_B_, 队列得特点就是_A_。 先进先出 B、先进后出 从一个栈顶指针 HS 得链表中删除一个结点, 用 x 保存被删除得结点值,执行得语句为_C_。 x = HS; H S = HS -> ne x t B、HS = HS -> ne x t; x = HS -> d a t a x = HS -> d a t a; H S = HS -> ne x t D、HS -> n ext = HS; x = HS -> data 在链队列 Q 中,插入 s 所指向得结点执行得语句为_C
	Q, fro n t \longrightarrow next=s; Q, rea r->ne x t=s; Q, rea r=s
	$s-\rangle$ next=Q, rear; Q, rear=s D, $s-\rangle$ next=Q, front; Q, front=s
24.	空串与空格串就是相同得,这种说法B。
A	正确 B、不正确
25.	下面关于串得叙述, 哪一个就是不正确得_B_。
A,	串就是字符得有限序列 B、 空串就是由空格构成得串
C_{γ}	匹配模式就是串得一种重要运算 D、 串可以采用链式存储结构
26.	设有两个串 p 与 q,求 q 在 p 中首次出现得位置得运算称作B_。
A,	连接 。 B、 模式匹配
C_{γ}	求子串 。D、 求串长
27.	若串 s=' so f tware', 其子串得数目为B
Α,	8 B, 37 C, 36 D, 9
28.	二维数组 A 中,每个元素 A 得长度为 3 个字节,行下标 i 从 0 到 7 ,列下标 j 从 0 到 9 从首地址 S A 开始连续存放在存储器内,该
	数组按行存放时,数组元素 A [7] [4]得起始地址为C。
Α,	SA+1 4 1 B、 SA+144 C、 SA+22 2 D、 SA+ 2 25
29.	对稀疏矩阵进行压缩存储得目得就是C_、
A	便于进行矩阵运算 B、 便于输入输出
C	节省存储空间 D、 降低运算得时间复杂度

30. 在以下叙述中正确得就是
A. 线性表得线性存储结构优于链表存储结构
B. 二维数组可以瞧成就是其数据元素为线性表得线性表
C. 栈得操作方式就是先进先出
D. 队列得操作方式就是先进后出
31. 广义表((a), a) 得表头为C, 表尾为C、
A_{s} () B_{s} a C_{s} (a) D_{s} $((a))$
32. 已知广义表 L=((x,y,z),a,(u,t,w)), 从 L 中取出原子项 t 得运算为D
A, Head (Tail(L))) B, Tail (Head (Head (Tail(L))))
C, Head (Tail (Head (Tail(L)))) D, Head (Tail (Head (Tail (Tail (L)))))
33. 树最适合用来表示B
A、 有序得数据元素 B、 数据之间具有分支层次关系得数据
C、 无序得数据元素 D、 无太多关系得数据元素
34. 如果某二叉树得前根次序遍历结果为 stuwv,中序遍历为 u wtvs,那么该二叉树得后序为B。
A. uwvts B. vwuts C. wuvts D. wutsv
35. 某二叉树得前序遍历结点访问顺序就是 abdg c efh, 中序遍历得结点访问顺序就是 dgb a e c h f,则其后序遍历得结点访问顺序就是
_D
A, bdg c e f h a B, gdbe c fha C, b dg a echf D, g db e hf c a
36. 在一非空二叉树得中序遍历序列中,根结点得右边A。
A、 只有右子树上得所有结点 B、 只有右子树上得部分结点
C、 只有左子树上得部分结点 D、 只有左子树上得所有结点
37. 设 m 与 n 就是一棵二叉树上得两个结点,在中序遍历, n 在 m 前得条件就是 C
A、 n 在 m 得 右 f
C、 n 在 m 得左方
38. 深度为 5 得二叉树至多有C
A、16 B、32 C、31 D、10
A 10 B 32 C 31 B 10

39.	由权(8,2,5,7)得四个叶子结点构造一棵哈夫曼树,该树得带权路径长度为 <u>D</u>
Α,	23 B, 37 C, 46 D, 43
40.	利用二叉链表存储树,则根结点得右指针就是C
Α,	指向最左孩子 B、 指向最右孩子 C、 空 D、 非空
41.	下列存储方式中,哪一个不就是树得存储形式?D
Α,	双亲表示法 B、 孩子链表表示法 C、 孩子兄弟表示法 D、 顺序存储表示法
42.	在一个无向图中,所有顶点得度数之与等于所有边数得C倍。
Α,	1/2 B, 1 C, 2 D, 4
43.	具有 n 个顶点与多于 n-1 条边得无向图B、
Α,	有可能就是树 B、 一定不就是树 C、 一定就是树 D、 以上答案都不对
44.	具有 6 个顶点得无向图至少应有A条边才能确保就是一个连通图。
Α,	5 B, 6 C, 7 D, 8
45.	无向图 $G=(V, E)$, 其中: $V=\{a, b, c, d, e, f\}$, $E=\{(a,b), (a,e), (a,c), (b, e), (c, f), (f, d), (e,d)\}$, 则
	对该图进行深度优先遍历, 得到得序列为:D
Α,	ab e cdf B, a cfe b d C, aebcfd D, ae d f c b
46.	下述几种排序方法中,要求内存量最大得就是D
A٠	插入排序 B、 选择排序 C、 快速排序 D、 归并排序
47.	排序方法中,从未排序序列中依次取出元素与已排序序列(初始时为空)中得元素进行比较,将其放入已排序序列得正确位置上得方
	法, 称为C。
Α,	希尔排序 B、 起泡排序 C、 插入排序 D、 选择排序
48.	在待排序得元素序列基本有序得前提下,效率最高得排序方法就是A_。
	插入排序 B、选择排序 C、快速排序 D、归并排序
	下列排序算法中, 哪一个就是稳定得排序算法? <u>B</u>
	直接选择排序 B、 二分法插入排序 C、 希尔排序 D、 快速排序
	将两个各有 n 个元素得有序表归并成一个有序表,其最少得比较次数 $_{}$ A
A٠	n B, $2n-1$ C, $2n$ D, $n-1$

二、填空题

- 1. 算法得五个重要特性就是 有穷性,确定性,可行性,输入与输出、
- 2. 数据得树型结构与图(网)状结构合称 非线性结构 、
- 3. 抽象数据类型得定义仅取决于它得一组 逻辑特性 , 而与 数据在计算机中得表示与实现 无关、
- 4. 评价算法质量得指标就是 正确性,易读性,健壮性,高效性、
- 5. 数据结构中评价算法得两个重要指标就是: 时间复杂度与空间复杂度、
- 6. 分析下面算法(程序段),得时间复杂度就是__O (mn) ____。

s =0; f o r (i=0; i < n;i++) fo r (j=0; j < m;j++) s+= B [i][j];

- 7. 当线性表元素得总数基本稳定,且很少进行删除与插入操作时,但就是要求以最快得速度存取线性表中得元素,应该采取<u>顺</u>序存储结构、
- 8. 顺序表中逻辑上相邻得元素得物理位置 必定 相邻, 而单链表中逻辑上相邻得元素得物理位置 不一定 相邻、
- 9. 在各个结点查找概率相等得情况下,从 n 个结点得单链表中查找一个结点, 平均要访问___n / 2_个结点、
- 10. 在单链表中设置头指针得作用就是: 简化操作, 减少边界条件得判断、
- 11. 在单链表中, 除首元结点外, 任一结点得存储位置由 其直接前驱得指针域 指示、
- 12. 对于一个具有 n 个结点得单链表, 在已知 p 所指向结点后插入一个新结点得时间复杂度就是 O(1) , 在值域为给定值得结点后插入一个新结点得时间复杂度为 O(n) 、
- 13. 在双链表中,每个结点有两个指针域,一个指向_前驱结点__,另一个指向__后继结点____.
- 14. 根据线性表得链式存储结构中每一结点包含得指针个数, 将线性表分成 单链表 与 多重链表、
- 15. 在非空双向链表中, 在结点 q 得前面插入结点 p 得过程如下, 请补充

p ->pr i or= q ->prior; q-> pr i or->ne x t= p; p-> n e xt=q; q-> p rior=p;

- 16. 一般情况下, 将递归算法转换成等价得非递归算法应该设置 栈、 17. 在解决计算机主机与打印机速度不匹配问题时, 通常设置一个打印数据缓冲区, 该缓冲区通常就是一个 队列 数据结构、 18. 循环队列得引入, 目得就是为了克服 假溢出 现象、 19. 在栈顶指针为 HS 得链栈中, 判断栈空得条件就是 HS=NULL、 20. 在具有 n 个单元得循环队列中, 如果不专门设置队满标志, 则队满时共 n-1 有个元素、 21. 实现字符串拷贝得函数如下, 请补足 Void strep y (char *s, char *t) { while ($(*s + + = *t + +)! = '\0'$;} 22. 空格串就是____由一个或多个空格字符组成得串____, 其长度等于__其包含得空格个数 . 23. 空串就是 不包含任何字符得串 , 其长度为 0 、 24. 设 s=' I AM A STUDE NT', 其长度为: 14 、 25. 组成串得元素只能就是: 字符 、 26. 设 s1=' G ood', s2=' ', s3='bye!', 则 s 1,s 2 与 s3 连接得结果就是 Good bye! 27. 若广义表中每个元素都就是原子时, 广义表便成为 线性表 、 28. 广义表得表尾就是指除第一个元素外, 剩余元素组成得表 、 29. 广义表 A=((a,b,c,d))得表头为 (a,b,c,d) ,表尾为 () 、 30. 数组得存储结构采用 顺序 存储方式、 31. 设二维数组 a [0、、5, 0、、6], 其每个字节占 5 个字节, 第一个元素得存储地址为 1000, 若按列存储, 则元素 a[5,5] 存储地址为 1175 、 32. 高度为 k 得完全二叉树至少有 个叶子结点、 33. 若一棵二叉树有 50 个叶子结点,则该二叉树得总结点数至少就是 99、 34. 有 n 个叶子结点得哈夫曼树得结点总数为 2n-1 、
- 36. 某棵二叉树得中序遍历序列为 a bcdefg, 后序遍历序列为 bdcaf g e, 则该二叉树得前序遍历序列<u>ea c bdgf</u>, 该二叉树对应得森林包含 <u>2</u>棵二叉树、
- 37. 若二叉树采用二叉链表存储结构, 要交换其所有分支结点得左,右子树得位置,利用____中序_遍历方法最为合适、

35. 根据二叉树得定义, 具有三个结点得二叉树有 4 种、

- 38. 线索二叉树得左线索指向其 前驱 , 右线索指向其 后继 、
- 39. 树所对应得二叉树其根结点得 右 子树一定为空、
- 40. 利用树得孩子兄弟表示法存储, 可以将一棵树转化成 二叉树、
- 41. 设无向图得顶点个数为 n, 则该图最多有 n(n-1)/2 条边、
- 42. n 个顶点得连通图至少有 n-1 条边、
- 43. 已知一个图用领接矩阵表示, 计算第 i 个结点得入度得方法就是 求第 i 列非零元素得与 、
- 44. G就是一个非连通得无向图, 共有28条边, 则该图至少有 9 个顶点、
- 45. 一个图得 邻接矩阵 表示法就是唯一得, 而 邻接表 表示法就是不唯一得。
- 46. 从邻接矩阵可以瞧出, 该图共有 3 个顶点, 如果就是无向图, 则共有 2 条边、
- 47. n个顶点得连通图用邻接矩阵表示时,则该矩阵至少有 2(n-1)个顶点、
- 48. 设图中有n个顶点, e条边, 如果用邻接表表示图, 进行深度优先搜索遍历得时间复杂度为 O(n+e) , 如果用邻接矩阵表示图, 时间复杂度为
- 49. 从平均时间性能而言, 快速排序 排序最佳、
- 50. 堆排序就是一种<u>选择</u>排序, 堆实质上就是 <u>一棵完全二叉树</u>结点得层次序列、 对于含有n个元素得排序, 堆排序得时间复杂度为 __、 所需附加得存储结点就是 <u>O(1)</u>、

三、用图表回答下列问题

- 1. 设某通信系统使用 A, B, C, D, E, F,G, H个字符, 出现得频率 w={5,29,7,8,14,23,3,11},试构造对应得哈夫曼树(请按左子树根结点得权小于右子树树根结点得权得次序构造)? 答案如图:
 - 2. 根据下面得邻 100 元, 画出相应得图,写出每个顶点得度, 并用邻接矩阵表示、

V 4: 2 V5: 4 V6: 2

3. 画出下列树对应得二叉树,并写出其先根遍历序列:


```
(1) L-> n ext=NULL; (2) p! =NULL; (3) q! = NULL; (4) p->n e x t= r \rightarrownex t
     (5) r\rightarrownext=p,
2. 阅读下列算法,说明该算法得作用。
Status a l g orithm1(LinkQueue &Q) {
   SqStacko Stack;
   QElemType Element;
   Init Stack (Stack);
   while (! Que u e Em p ty(Q)) {
   DeQueue (Q, Element);
   •Push (Stack, Element):
   while (!Stack Empty(Stack)) {
      Pop(S t a c k, Element);
  En Q ueue(Q,El e ment);
0}
    利用栈实现队列得逆置、
3. 阅读下列算法,说明该算法得作用。
Status algorith m2(Stack S, int e) {
   Stack T:
ointo d:
   I nitS t a ck (T);
•while (! StackEm pty(S)) {
   • Pop (S, d);
ooif(d!=e) Push(T, d);
```

```
6}
  while (!StackEmpty(T)) {
   •Pop (T, d);
∞Push(S, d);
答: 利用辅助栈 T, 将栈 S 中得元素 e 删除、
4. 将下面程序改写成递归过程、
void algorithm3 (int n) {
ointoi=n;
     while (i) 1) {
ooprintf(i--);
(ه
void algorithm4 (int j){
   if (j) 1) {
      printf(j);
      alg o rithm4 (j-1)
  阅读下列算法,说明该算法得作用。
Bi Tree algorithm5 (Elem Type Pre[], Elem Type In[]) {
   int PreLen, InLen;
∘int i, j;
   B i Tree BT;
```

```
•ElemType *sub Pre, *sub In;
    P r e Len = str l en (Pre);
oIn Len = strlen (In);
   if (PreLen!=InLen | | PreLen==0) return NULL;
•for ( i =0; i <InLen && In[i]! =Pr e [0]; i++);
    i f(i == I n L e n) return NULL;
   BT = (BiTNode*) mallo c (s i zeof(B i T Node));
   BT\longrightarrow da t a = Pre[0];
   sub P re = (E l emType *) mallo c ((i+1)* s i z e o f (ElemT y pe));
•s u bI n = (ElemT y pe *) ma l loc((i+1) * si z e o f (ElemType));
•for (j=0; j< i; j++) {
   \circs u bP r e[j] = Pre [j+1];
       subIn [j] = In[i];
0}
\operatorname{sub} \Pr[j] = ' \setminus 0'; \quad \operatorname{sub} \operatorname{In} [j] = ' \setminus 0';
   BT—> 1 c hild = Crea t B T (subP r e, su b In);
• subPre = (ElemType *) malloc((PreLen-i) *sizeof(ElemType));
   subIn = (ElemType *) malloc ((PreLen-i) *size of(ElemType));
•for (j=i+1; j (Pre Len; j++) {
\circ \text{subPr e } [j - i - 1] = \text{Pre } [j];
• subIn[j - i - 1] = In[j];
   subP r e [j—i-1] = '\0'; s u bIn [j-i-1] = '\0';
   BT \rightarrow r child = C r e a t B T (subPr e, subI n);
• r eturn BT:
```

答: 利用一棵二叉树得先序遍历与中序遍历还原该二叉树、

五、算法设计题

```
1. 设顺序表 L 中得数据元素递增有序、 试写一个算法,将 e 插入顺序表中, 要求插入后保持该表得有序性、
void InsertElem (SqList &L, ElemType) {
  j=L, length-1;
 while(L, e l e m[j]>e) {
  L, elem[j+1] =L, elem[j];
  j++
 L, elem[j+1] = e;
 L, length++;
2. 已知 la 就是带头结点得单链表得头指针,试编写一个逆序输出表中各个元素得递归算法、
void TraverseLink (LinkList p){
  i f (p\rightarrow next) Traver selink (p\rightarrow next);
 printf (p—) data);
3. 写一算法,统计二叉树得结点得总个数。
//利用中序遍历方法,或者先序、后序均可以
void Leaf (Bi Tree T, int &m) {
  if (T! =NULL) {
    Leaf(T-) lchi | d, m); //中根遍历左子树
                    / / 计算结点
    m++:
    Leaf(T—>rchild, m); //中根遍历右子树
```

```
4. 写一算法, 求二叉树得高度。
i nt heigh t (BiTree T) {
   i f (T == NULL) return 0;
    e lse {
      int hl=height (T-> 1 child);
     int h r = height (T-) r c h i l d);
     ret u r n 1 + (hl > h r?hl:h r ); //1 加上 hl 与 hr 得较大值
5. 写一算法,交换二叉树得左右子树。
BiTNode Permute_child (BiTNode *T) {
      BiTN o de * temp;
    if (T) {
        Permute_chi l d (T—>l c hi l d);
          Perm u t e ch i ld(T-) rchild);
         temp=T-> 1 c hil d;
         T- lch i ld=BT- rchild;
          T-> r chil d = t e m p;
  已知二叉树采用二叉链表存储, 设计算法, 判定两棵二叉树就是否相似、
                            BiTree T) {
S tatues like (Bi Tree S,
     if (T==NULL & & S==NULL) return 1;
     else if(S && T)
         return (like(S-> l child, T-> lchild) && like(S-> rchild, T-> rchild));
    else return 0;
```

}			