Speak search: ASR-free search for speech corpus

Divya Pitta, Fang-Yi Chiu

Internet Application Traffic Forecasting

Outline

Task Scope

Dataset Setting

Baseline: ASR

Speech Encoding Result

Future Work

Task Scope

Task Scope

Current Solutions

Current Solutions

Task Scope

Dataset

- Librispeech (dev-clean version)
 - 2700 files (337 M)
 - 2 33 seconds for each file
 - Transcript available for each file
 - Audio books for fiction

Ground Truth

- Setting
 - Classical information retrieval problem
 - Text-to-text search
- Search engine library: Whoosh
 - Ranking by Okapi BM25 (Tf-Idf): top-k documents as ground truth
 - Default parsing: no stemming etc.
- Measurement
 - Precision
 - Recall

Search with ASR

Performance: precision, recall

Speech

Corpus

Search with ASR

- Problem
 - ASR Error: from both sided!!
 - Short token conversion
 - OOV

```
Antonia -> Anthony
ph d -> phD
rangitata (place) -> rangi
Hansel -> cancel
```

Speech

Can we reduce the errors propagated by ASR?

Task Setting

Find embeddings of audio files

Nearest neighbor search for each embedding

• MFCC:

- The most common feature used in ASR system
- Mimics people perceptron system and extract lower frequency features

- How do we search?
 - Each query has ~100 MFCC frames
 - Retrieve top-k NN for each query and then use majority vote and distance to rank

- Recall
- Precision

Runtime analysis

Spark cluster with 4 workers

• Total 32 cores and 240 G memory ***

K varies

Speech

- Observation:
 - Not effective even with sliding window
 - Some queries have recall of 1.00 !!

Search with Deep Autoencoder

Autoencoder representation

Sear ch

Speech

Corpus

- Autoencoder: ANN that generates output similar to the input
 - 3 Layer: [500, 180, 120]
 - Pretrain
 - Input: 100 MFCC frames = 1200
 - Sliding windows with stride = 5

Search with Deep Autoencoder

Sear ch

Speech

- Recall
- Precision
- Problem

Takeaway

Signal processing is hard

Future work

- Spectrogram:
 - Time-versus-freq. features
- Last layer encoding of ASR

