```
In [2]: # Importing libraries
    import pandas as pd
    import plotly.express as px
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import statsmodels.api as sm
    import statsmodels.formula.api as smf
    from sklearn.linear_model import LinearRegression
In [3]: # Load .csv File
    df= pd.read_csv('US_Stock_Data.csv')
In [4]: # view data types and basic structure
    df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1013 entries, 0 to 1012
Data columns (total 39 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	1013 non-null	int64
1	Date	1013 non-null	object
2	Natural_Gas_Price	1013 non-null	float64
3	Natural_Gas_Vol.	1009 non-null	float64
4	Crude_oil_Price	1013 non-null	float64
5	Crude_oil_Vol.	990 non-null	float64
6	Copper_Price	1013 non-null	float64
7	Copper_Vol.	976 non-null	float64
8	Bitcoin_Price	1013 non-null	object
9	Bitcoin_Vol.	1013 non-null	int64
10	Platinum_Price	1013 non-null	object
11	Platinum_Vol.	636 non-null	float64
12	Ethereum_Price	1013 non-null	object
13	Ethereum_Vol.	1013 non-null	int64
14	S&P_500_Price	1013 non-null	object
15	Nasdaq_100_Price	1013 non-null	object
16	Nasdaq_100_Vol.	1012 non-null	float64
17	Apple_Price	1013 non-null	float64
18	Apple_Vol.	1013 non-null	int64
19	Tesla_Price	1013 non-null	float64
20	Tesla_Vol.	1013 non-null	int64
21	Microsoft_Price	1013 non-null	float64
22	Microsoft_Vol.	1013 non-null	int64
23	Silver_Price	1013 non-null	float64
24	Silver_Vol.	967 non-null	float64
25	Google_Price	1013 non-null	float64
26	Google_Vol.	1013 non-null	int64
27	Nvidia_Price	1013 non-null	float64
28	Nvidia_Vol.	1013 non-null	int64
29	Berkshire_Price	1013 non-null	object
30	Berkshire_Vol.	1013 non-null	int64
31	Netflix_Price	1013 non-null	float64
32	Netflix_Vol.	1013 non-null	int64
33	Amazon_Price	1013 non-null	float64
34	Amazon_Vol.	1013 non-null	int64
35	Meta_Price	1013 non-null	float64
36	Meta_Vol.	1013 non-null	int64
37	Gold_Price	1013 non-null	object
38	Gold_Vol.	1011 non-null	float64
dtype	es: float64(19), in	t64(12), object(8)
memo	ry usage: 308.8+ KB	}	

In [4]: list (df.columns.values)

```
Out[4]: ['Unnamed: 0',
          'Date',
          'Natural_Gas_Price',
          'Natural_Gas_Vol.',
          'Crude_oil_Price',
          'Crude_oil_Vol.',
          'Copper_Price',
          'Copper_Vol.',
          'Bitcoin_Price',
          'Bitcoin_Vol.',
          'Platinum_Price',
          'Platinum Vol.',
          'Ethereum_Price',
          'Ethereum_Vol.',
          'S&P_500_Price',
          'Nasdaq_100_Price',
          'Nasdaq_100_Vol.',
          'Apple_Price',
          'Apple Vol.',
          'Tesla_Price',
          'Tesla_Vol.',
          'Microsoft_Price',
          'Microsoft_Vol.',
          'Silver_Price',
          'Silver_Vol.',
          'Google_Price',
          'Google Vol.',
          'Nvidia_Price',
          'Nvidia_Vol.',
          'Berkshire_Price',
          'Berkshire_Vol.',
          'Netflix_Price',
          'Netflix Vol.',
          'Amazon_Price',
          'Amazon_Vol.',
          'Meta_Price',
          'Meta_Vol.',
          'Gold_Price',
          'Gold_Vol.']
In [5]: # Check if any null values
        print(df.isnull().sum())
```

```
Unnamed: 0
                         0
                         0
Date
Natural_Gas_Price
                         0
Natural_Gas_Vol.
                         4
Crude_oil_Price
                         0
Crude oil Vol.
                        23
Copper_Price
                         0
                        37
Copper Vol.
Bitcoin_Price
                         0
Bitcoin_Vol.
                         0
Platinum_Price
                         0
Platinum_Vol.
                      377
Ethereum Price
                         0
Ethereum Vol.
                         0
S&P_500_Price
                         0
Nasdaq_100_Price
                         0
Nasdaq_100_Vol.
                         1
Apple_Price
                         0
Apple_Vol.
                         0
Tesla_Price
                         0
Tesla Vol.
                         0
Microsoft_Price
                         0
Microsoft_Vol.
                         0
Silver_Price
                         0
Silver_Vol.
                        46
Google_Price
                         0
Google_Vol.
                         0
Nvidia_Price
                         0
Nvidia Vol.
                         0
Berkshire_Price
                         0
Berkshire Vol.
                         0
Netflix_Price
                         0
Netflix Vol.
                         0
Amazon_Price
                         0
Amazon_Vol.
                         0
                         0
Meta_Price
Meta_Vol.
                         0
Gold_Price
                         0
Gold_Vol.
                         2
dtype: int64
```

```
In [6]: # Drop rows with any null
df = df.dropna()
```

```
In [7]: # Check if any null values
print(df.isnull().sum())
```

Unnamed: 0	0
Date	0
Natural_Gas_Price	0
Natural_Gas_Vol.	0
Crude_oil_Price	0
Crude_oil_Vol.	0
Copper_Price	0
Copper_Vol.	0
Bitcoin_Price	0
Bitcoin_Vol.	0
Platinum_Price	0
Platinum_Vol.	0
Ethereum_Price	0
Ethereum_Vol.	0
S&P_500_Price	0
Nasdaq_100_Price	0
Nasdaq_100_Vol.	0
Apple_Price	0
Apple_Vol.	0
Tesla_Price	0
Tesla_Vol.	0
Microsoft_Price	0
Microsoft_Vol.	0
Silver_Price	0
Silver_Vol.	0
Google_Price	0
Google_Vol.	0
Nvidia_Price	0
Nvidia_Vol.	0
Berkshire_Price	0
Berkshire_Vol.	0
Netflix_Price	0
Netflix_Vol.	0
Amazon_Price	0
Amazon_Vol.	0
Meta_Price	0
Meta_Vol.	0
Gold_Price	0
Gold_Vol.	0
dtype: int64	

```
In [8]: # view data types and basic structure
    df.info()
```

<class 'pandas.core.frame.DataFrame'>
Index: 609 entries, 28 to 867
Data columns (total 39 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	609 non-null	int64
1	Date	609 non-null	object
2	Natural_Gas_Price	609 non-null	float64
3	Natural_Gas_Vol.	609 non-null	float64
4	Crude_oil_Price	609 non-null	float64
5	Crude_oil_Vol.	609 non-null	float64
6	Copper_Price	609 non-null	float64
7	Copper_Vol.	609 non-null	float64
8	Bitcoin_Price	609 non-null	object
9	Bitcoin_Vol.	609 non-null	int64
10	Platinum_Price	609 non-null	object
11	Platinum_Vol.	609 non-null	float64
12	Ethereum_Price	609 non-null	object
13	Ethereum_Vol.	609 non-null	int64
14	S&P_500_Price	609 non-null	object
15	Nasdaq_100_Price	609 non-null	object
16	Nasdaq_100_Vol.	609 non-null	float64
17	Apple_Price	609 non-null	float64
18	Apple_Vol.	609 non-null	int64
19	Tesla_Price	609 non-null	float64
20	Tesla_Vol.	609 non-null	int64
21	Microsoft_Price	609 non-null	float64
22	Microsoft_Vol.	609 non-null	int64
23	Silver_Price	609 non-null	float64
24	Silver_Vol.	609 non-null	float64
25	Google_Price	609 non-null	float64
26	Google_Vol.	609 non-null	int64
27	Nvidia_Price	609 non-null	float64
28	Nvidia_Vol.	609 non-null	int64
29	Berkshire_Price	609 non-null	object
30	Berkshire_Vol.	609 non-null	int64
31	Netflix_Price	609 non-null	float64
32	Netflix_Vol.	609 non-null	int64
33	Amazon_Price	609 non-null	float64
34	Amazon_Vol.	609 non-null	int64
35	Meta_Price	609 non-null	float64
36	Meta_Vol.	609 non-null	int64
37	Gold_Price	609 non-null	
38	_	609 non-null	-
	es: float64(19), ir		
	ry usage: 190.3+ KE	•	
	,		

In [9]: df.head()

file: ///Users/sudip/Desktop/GGU/ITM/FAll%202024/MSBA%20320%20/Final%20Project/Python%20Project.html (Continuous) and the project of the pr

Out[9]:		Unnamed: 0	Date	Natural_Gas_Price	Natural_Gas_Vol.	Crude_oil_Price	Crude_oil
	28	28	21- 12- 2023	2.572	84550.0	73.89	2519
	29	29	20- 12- 2023	2.447	125260.0	74.22	2733
	30	30	19- 12- 2023	2.492	170440.0	73.44	25(
	31	31	18- 12- 2023	2.503	154300.0	72.47	739
	32	32	15- 12- 2023	2.491	189240.0	71.43	95!

5 rows × 39 columns

In [10]: print(df.head().to_string(header=False, index=False))

28 21-12-2023 2.572 84550.0 73.89 251980.0 3.9175 70080.0 43,865.90 48960 9 70.3 26550.0 2,239.62 471460 4,746.75 16,757.41 217170000.0 194.68 44080000 254.50 108960000 373.54 17630000 24.585 46760.0 140.42 27400000 489.90 29920 000 5,41,000 7700 491.61 2750000 153.84 35950000 354.09 15220000 2,041.80 540.0

29 20-12-2023 2.447 125260.0 74.22 273360.0 3.9060 66320.0 43,662.80 70190 974 30010.0 2,202.19 440350 4,701.19 16,554.16 275300000.0 194.83 50130000 247.14 124130000 370.62 26020000 24.631 46980.0 138.34 48940000 481.11 39400 000 5,43,740 8150 489.27 4520000 152.12 50000000 349.28 15990000 2,038.10 260.0

30 19-12-2023 2.492 170440.0 73.44 25690.0 3.8980 84950.0 42,259.30 55290 9 65.8 25860.0 2,177.44 400940 4,768.37 16,811.86 228940000.0 196.94 40230000 257.22 106290000 373.26 20530000 24.321 37540.0 136.65 25440000 496.04 46310 000 5,54,650 7500 495.02 3840000 153.79 42890000 350.36 17660000 2,042.60 470.0

31 18-12-2023 2.503 154300.0 72.47 73940.0 3.8520 54990.0 42,659.70 61580 9 54.3 26230.0 2,218.80 388260 4,740.56 16,729.80 249620000.0 195.89 55750000 252.08 116420000 372.65 21800000 24.107 42680.0 135.80 32260000 500.77 41260 000 5,51,182 10460 486.12 6410000 154.07 62510000 344.62 18360000 2,030.90 250.0

32 15-12-2023 2.491 189240.0 71.43 95510.0 3.8905 73670.0 41,929.00 45280 9 52.6 38070.0 2,220.41 349630 4,719.19 16,623.45 982560000.0 197.57 128540000 253.50 135930000 370.73 78500000 24.154 57000.0 132.60 50850000 488.90 47990 000 5,44,478 8430 472.06 7840000 149.97 110090000 334.92 31780000 2,026.00 630.0

In [11]: df.tail()

Out[11]:

	Unnamed: 0	Date	Natural_Gas_Price	Natural_Gas_Vol.	Crude_oil_Price	Crud
863	863	7/8/2020	2.238	206250.0	41.22	
864	864	6/8/2020	2.165	161990.0	41.95	
865	865	5/8/2020	2.191	182430.0	42.19	
866	866	4/8/2020	2.193	230890.0	41.70	
867	867	3/8/2020	2.101	381970.0	41.01	

5 rows × 39 columns

In [12]: print(df.tail().to_string(header=False, index=False))

863 7/8/2020 2.238 206250.0 41.22 399000.0 2.8020 310.0 11,592.00 517000 977.4 340.0 379.57 8340000 3,351.28 11,139.39 178260000.0 111.11 198050000 9 6.85 133450000 212.48 27820000 27.540 283920.0 74.92 27730000 112.00 3425000 0 3,14,334 440 494.73 5910000 158.37 78720000 268.44 72770000 2,028.00 3981 30.0

864 6/8/2020 2.165 161990.0 41.95 359610.0 2.9190 290.0 11,757.10 554850 1,0 20.80 820.0 394.83 7920000 3,349.16 11,267.08 166940000.0 113.90 202430000 9 9.31 89880000 216.35 32660000 28.400 236120.0 75.25 33310000 113.36 2443000 0 3,07,455 440 509.08 3730000 161.25 78810000 265.28 45240000 2,069.40 3127 60.0

865 5/8/2020 2.191 182430.0 42.19 491270.0 2.9250 30.0 11,735.10 570830 994.9 260.0 400.79 8740000 3,327.77 11,125.44 153580000.0 110.06 121990000 9 9.00 74670000 212.94 28860000 26.890 212520.0 73.95 29150000 112.87 2505000 0 3,05,200 560 502.11 4310000 160.25 78600000 249.12 13090000 2,049.30 3663 80.0

866 4/8/2020 2.193 230890.0 41.70 451580.0 2.9030 50.0 11,184.70 485790 961 200.0 389.62 9840000 3,306.51 11,096.54 187550000.0 109.67 172790000 99. 13 126220000 213.29 49280000 26.028 157040.0 73.67 37210000 112.28 31030000 3,00,330 270 509.64 5610000 156.94 93890000 249.83 17180000 2,021.00 27442 0.0

867 3/8/2020 2.101 381970.0 41.01 338330.0 2.9205 40.0 11,224.40 470240 938 90.0 385.8 9920000 3,294.61 11,055.08 188620000.0 108.94 308150000 99.00 132140000 216.54 78980000 24.417 78820.0 74.14 45520000 110.10 41300000 2,98,800 470 498.62 5880000 155.59 101490000 251.96 23130000 1,986.30 17875 0.0

In [13]: # Summary statistics
 df.describe().round(0)

Out[13]:

	Unnamed: 0	Natural_Gas_Price	Natural_Gas_Vol.	Crude_oil_Price	Crude_oil_Vol
coun	t 609.0	609.0	609.0	609.0	609.0
mear	n 528.0	4.0	127938.0	74.0	338257.
sto	223.0	2.0	56208.0	21.0	142336.
mir	n 28.0	2.0	2350.0	36.0	17020.0
25%	393.0	3.0	92080.0	62.0	279000.
50%	552.0	3.0	125390.0	73.0	349080.
75%	710.0	5.0	159820.0	87.0	421770.0
max	k 867.0	10.0	381970.0	124.0	722480.

8 rows × 31 columns

print(df.describe().round(0).to_string(header=False, index=False)) 609.0 4.0 127938.0 74.0 338257.0 4.0 29899.0 80110861.0 8637.0 28 153227.0 227534089.0 148.0 94598785.0 245.0 104910690.0 274.0 28492874.0 2 4.0 66682.0 116.0 32586223.0 216.0 45025813.0 2388.0 446.0 6464269.0 1 50.0 71898112.0 270.0 23777553.0 189749.0 2.0 56208.0 21.0 142336.0 1.0 38977.0 415806239.0 8756.0 188 917026.0 86844503.0 22.0 42209925.0 63.0 58481994.0 44.0 10188901.0 2.0 38283.0 22.0 13179950.0 99.0 19122496.0 2199.0 135.0 7694205.0 22.0 29305811.0 65.0 13739298.0 79755.0 2350.0 36.0 17020.0 28.0 2.0 3.0 20.0 260.0 0.0 75180.0 68570000.0 107.0 24040000.0 92.0 29400000.0 200.0 9380000.0 1 0.0 70.0 9310000.0 108.0 9790000.0 130.0 166.0 1140000.0 91.0 21620000.0 109.0 5470000.0 160.0 3.0 92080.0 62.0 279000.0 4.0 280.0 71430.0 830.0 619620.0 177200000.0 130.0 67810000.0 210.0 67970000.0 240.0 21900000.0 2 3.0 47280.0 101.0 23970000.0 138.0 29750000.0 980.0 362.0 3270000.0 1 38.0 51960000.0 215.0 15800000.0 147260.0 3.0 125390.0 73.0 349080.0 1 552.0 4.0 1620.0 106440.0 4900.0 070000.0 212830000.0 148.0 85590000.0 241.0 90850000.0 272.0 26120000.0 4.0 60020.0 118.0 29760000.0 188.0 43150000.0 1810.0 489.0 4710000.0 1 57.0 64300000.0 276.0 20520000.0 177710.0 2 710.0 5.0 159820.0 87.0 421770.0 4.0 63830.0 228650.0 14020.0 320000.0 251200000.0 165.0 109300000.0 287.0 123520000.0 303.0 33110000.0 2 6.0 76730.0 136.0 37320000.0 247.0 56390000.0 2680.0 534.0 7090000.0 1 66.0 84250000.0 327.0 28130000.0 229880.0 867.0 10.0 381970.0 124.0 722480.0 5.0 176040.0 4470000000.0 42830.0 1790 000000.0 982560000.0 198.0 345940000.0 410.0 666380000.0 383.0 90430000.0 2 9.0 355280.0 150.0 123200000.0 504.0 146370000.0 10660.0 692.0 133390000.0 1 87.0 272660000.0 382.0 188120000.0 565000.0 In [15]: #format inconcistent date values df['Date'] = pd.to_datetime(df['Date'], format='mixed', dayfirst=True, error In [16]: #Check for any null dates. print(df[df['Date'].isnull()])

Empty DataFrame Columns: [Unnamed: 0, Date, Natural_Gas_Price, Natural_Gas_Vol., Crude_oil_P rice, Crude_oil_Vol., Copper_Price, Copper_Vol., Bitcoin_Price, Bitcoin_Vo l., Platinum_Price, Platinum_Vol., Ethereum_Price, Ethereum_Vol., S&P_500_Pr ice, Nasdaq_100_Price, Nasdaq_100_Vol., Apple_Price, Apple_Vol., Tesla_Pric e, Tesla Vol., Microsoft Price, Microsoft Vol., Silver Price, Silver Vol., G oogle Price, Google Vol., Nvidia Price, Nvidia Vol., Berkshire Price, Berksh ire Vol., Netflix Price, Netflix Vol., Amazon Price, Amazon Vol., Meta Pric e, Meta_Vol., Gold_Price, Gold_Vol.] Index: [] [0 rows x 39 columns] In [20]: $df['S\&P_500_Price'] = df['S\&P_500_Price'].replace({',': ''}, regex=True)$ df['Bitcoin_Price'] = df['Bitcoin_Price'].replace({',': ''}, regex=True) In [21]: df['S&P_500_Price'] = pd.to_numeric(df['S&P_500_Price'], errors='coerce') df['Bitcoin_Price'] = pd.to_numeric(df['Bitcoin_Price'], errors='coerce') In [23]: #Set Date Index df.set_index('Date', inplace=True) # Plot price trends for df[['S&P_500_Price', 'Crude_oil_Price', 'Bitcoin_Price']].plot(figsize=(10, plt.title('Price Trends for S&P 500, Crude Oil, and Bitcoin') plt.xlabel('Date') plt.vlabel('Price') plt.legend(loc='best')

plt.show()


```
In [69]: # columns to visualize
    columns = ['Bitcoin_Price']

# visualize
    for col in columns:
        plt.figure(figsize=(24, 10))
        plt.plot(df.index, df[col], label=col, color='Black', linewidth=0.5)
        plt.title(f'{col} Over Time')
        plt.xlabel('Year')
        plt.ylabel('Price ($)')
        plt.legend()
        plt.grid()
        plt.show()
```



```
In [68]: # columns to visualize
    columns = ['Crude_oil_Price']

# visualize
    for col in columns:
        plt.figure(figsize=(24, 10))
        plt.plot(df.index, df[col], label=col, color='Black', linewidth=0.5)
        plt.title(f'{col} Over Time')
        plt.xlabel('Year')
        plt.ylabel('Price ($)')
        plt.legend()
        plt.grid()
        plt.show()
```



```
In [67]: # columns to visualize
columns = ['S&P_500_Price']
```

```
# visualize
for col in columns:
    plt.figure(figsize=(24, 10))
    plt.plot(df.index, df[col], label=col, color='Black', linewidth=0.5)
    plt.title(f'{col} Over Time')
    plt.xlabel('Year')
    plt.ylabel('Price ($)')
    plt.legend()
    plt.grid()
    plt.show()
```



```
In [31]: # Calculate the 10-year moving average for S&P 500 Price
df['S&P_500_Price_MovingAvg'] = df['S&P_500_Price'].rolling(window=20, min_c
# Plot S&P 500 Price and its moving average
plt.figure(figsize=(12, 6))
plt.plot(df.index, df['S&P_500_Price'], label='Original S&P 500 Price', alph
plt.plot(df.index, df['S&P_500_Price_MovingAvg'], label='Moving Average for
plt.xlabel('Year')
plt.ylabel('Price ($)')
plt.title('Each 20 rows Moving Average of S&P 500 Price')
plt.legend()
plt.grid(True)
plt.show()
```



```
In [33]: # Calculate the 10-year moving average for Crude Oil Price
    df['Crude_oil_Price_MovingAvg'] = df['Crude_oil_Price'].rolling(window=20, n

# Plot Crude Oil Price and its moving average
    plt.figure(figsize=(12, 6))
    plt.plot(df.index, df['Crude_oil_Price'], label='Original Crude Oil Price',
        plt.plot(df.index, df['Crude_oil_Price_MovingAvg'], label='Moving Average of
        plt.xlabel('Year')
        plt.ylabel('Price ($)')
        plt.title('Each 20 rows Moving Average of Crude Oil Price')
        plt.legend()
        plt.grid(True)
        plt.show()
```



```
In [34]: # Calculate the 10-year moving average for Bitcoin Price
df['Bitcoin_Price_MovingAvg'] = df['Bitcoin_Price'].rolling(window=20, min_r

# Plot Bitcoin Price and its moving average
plt.figure(figsize=(12, 6))
plt.plot(df.index, df['Bitcoin_Price'], label='Original Bitcoin Price', alph
plt.plot(df.index, df['Bitcoin_Price_MovingAvg'], label='20 rows Moving Aver
plt.xlabel('Year')
plt.ylabel('Year')
plt.ylabel('Price ($)')
plt.title('20 rows Moving Average of BTC')
plt.legend()
plt.grid(True)
plt.show()
```



```
In [41]: # 20 Rows rolling means
SP_MA = df['S&P_500_Price'].rolling(window=20).mean()
Crude_oil_MA = df['Crude_oil_Price'].rolling(window=20).mean()
Bitcoin_MA = df['Bitcoin_Price'].rolling(window=20).mean()

df_rm = pd.concat([SP_MA, Crude_oil_MA, Bitcoin_MA], axis=1)

df_rm.columns = ['S&P 500', 'Crude 0il', 'Bitcoin']

df_rm.plot(figsize=(20, 10), linewidth=5, fontsize=20)

plt.xlabel('Year', fontsize=20)
plt.ylabel('$', fontsize=20)
plt.title('20 Rows Moving Averages for S&P 500, Crude 0il, and BTC', fontsize)
plt.legend(loc='best', fontsize=15)
plt.grid(True)
plt.show()
```



```
In [49]: from statsmodels.tsa.seasonal import seasonal_decompose
```

```
In [52]: #Time series Decomposition and plot
    decomposed = seasonal_decompose(df['S&P_500_Price'], model='multiplicative',
    decomposed.plot()
    plt.show()
```



```
In [53]: #Time series Decomposition and plot
    decomposed = seasonal_decompose(df['Crude_oil_Price'], model='multiplicative
    decomposed.plot()
    plt.show()
```



```
In [54]: #Time series Decomposition and plot
    decomposed = seasonal_decompose(df['Bitcoin_Price'], model='multiplicative',
    decomposed.plot()
    plt.show()
```



```
In [57]: # Correlation matrix
    correlation_matrix = df[['S&P_500_Price', 'Crude_oil_Price']].corr()
    print(correlation_matrix)

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
    plt.title('Correlation Matrix')
    plt.show()
```



```
In [58]: # Correlation matrix
    correlation_matrix = df[['S&P_500_Price', 'Bitcoin_Price']].corr()
    print(correlation_matrix)

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
    plt.title('Correlation Matrix')
    plt.show()
```

 S&P_500_Price
 Bitcoin_Price

 S&P_500_Price
 1.000000
 0.696271

 Bitcoin_Price
 0.696271
 1.000000


```
In [60]: # Correlation matrix
    correlation_matrix = df[['Crude_oil_Price', 'Bitcoin_Price']].corr()
    print(correlation_matrix)

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
    plt.title('Correlation Matrix')
    plt.show()
```

Crude_oil_Price Bitcoin_Price
Crude_oil_Price 1.000000 0.221003
Bitcoin_Price 0.221003 1.000000


```
In [56]: # Correlation matrix
    correlation_matrix = df[['S&P_500_Price', 'Crude_oil_Price', 'Bitcoin_Price'
    print(correlation_matrix)

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
    plt.title('Correlation Matrix')
    plt.show()
```

	S&P_500_Price	Crude_oil_Price	Bitcoin_Price
S&P_500_Price	1.000000	0.522395	0.696271
Crude_oil_Price	0.522395	1.000000	0.221003
Bitcoin Price	0.696271	0.221003	1.000000


```
In [61]: from statsmodels.tsa.arima.model import ARIMA

In [63]: # ARIMA BTC
    arima_model = ARIMA(df['Bitcoin_Price'], order=(1, 1, 1))
    arima_result = arima_model.fit()

# Print ARIMA model summary and Forecast
    print(arima_result.summary())

forecast = arima_result.forecast(steps=30)
    plt.plot(df['Bitcoin_Price'], label='Historical')
    plt.plot(forecast, label='Forecast', linestyle='--')
    plt.legend()
    plt.title('Bitcoin_Price_Forecast')
    plt.show()
```

```
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p
y:473: ValueWarning: A date index has been provided, but it has no associate
d frequency information and so will be ignored when e.g. forecasting.
 self. init dates(dates, freq)
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p
y:473: ValueWarning: A date index has been provided, but it is not monotonic
and so will be ignored when e.g. forecasting.
 self._init_dates(dates, freq)
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p
y:473: ValueWarning: A date index has been provided, but it has no associate
d frequency information and so will be ignored when e.g. forecasting.
 self._init_dates(dates, freq)
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p
y:473: ValueWarning: A date index has been provided, but it is not monotonic
and so will be ignored when e.g. forecasting.
 self._init_dates(dates, freq)
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p
y:473: ValueWarning: A date index has been provided, but it has no associate
d frequency information and so will be ignored when e.g. forecasting.
 self._init_dates(dates, freq)
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p
y:473: ValueWarning: A date index has been provided, but it is not monotonic
and so will be ignored when e.g. forecasting.
 self._init_dates(dates, freq)
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p
y:836: ValueWarning: No supported index is available. Prediction results wil
l be given with an integer index beginning at `start`.
  return get_prediction_index(
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p
y:836: FutureWarning: No supported index is available. In the next version,
calling this method in a model without a supported index will result in an e
xception.
```

return get_prediction_index(

SARIMAX Results

=======		:=======		====	========		=======
==							
Dep. Varia	able:	Bitcoin_Pr	rice	No.	Observations:	:	6
09							
Model:		ARIMA(1, 1,	1)	Log	Likelihood		-5406.6
70	C	± 21 D	0024	A T.C			10010 2
Date: 41	Sa	at, 21 Dec 2	2024	AIC			10819.3
Time:		14:58	R • 00	BIC			10832.5
71		14.50	.00	DIC			1003213
Sample:			0	HQIC			10824.4
88			-	•			
		_	609				
Covariance	e Type:		opg				
=======			=====	====			=======
==					5	[0.005	
5]	coef	std err		Z	P> z	[0.025	0.97
2]							
ar.L1	-0.3648	6.512	-0.	056	0.955	-13.128	12.3
99							
ma.L1	0.3611	6.534	0.	055	0.956	-12.446	13.1
68							
-	3.117e+06	1.13e+05	27.	646	0.000	2 . 9e+06	3.34e+
06							
=======			=====	====			=======
======	(L1) (Q):		0	00	Jarque-Bera	(1D) •	
253 . 91	(LI) (Q):		0.	UU	Jai que-bei a	(JD):	
Prob(Q):			۵	99	Prob(JB):		
0.00			0.	55	1100(30):		
	dasticity (H):		1.	82	Skew:		
-0.01	, , ,						
Prob(H) (two-sided):		0.	00	Kurtosis:		
6.17							
========	=========		=====	====			=======

======

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (compl ex-step).


```
In [64]: # Define Crude Oil
    arima_model = ARIMA(df['Crude_oil_Price'], order=(1, 1, 1))
    arima_result = arima_model.fit()

# Print ARIMA model summary and Forecast
    print(arima_result.summary())

# Forecast future values
    forecast = arima_result.forecast(steps=30)
    plt.plot(df['Crude_oil_Price'], label='Historical')
    plt.plot(forecast, label='Forecast', linestyle='--')
    plt.legend()
    plt.title('Crude Oil Price Forecast')
    plt.show()
```

```
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p
y:473: ValueWarning: A date index has been provided, but it has no associate
d frequency information and so will be ignored when e.g. forecasting.
 self. init dates(dates, freq)
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p
y:473: ValueWarning: A date index has been provided, but it is not monotonic
and so will be ignored when e.g. forecasting.
 self._init_dates(dates, freq)
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p
y:473: ValueWarning: A date index has been provided, but it has no associate
d frequency information and so will be ignored when e.g. forecasting.
 self._init_dates(dates, freq)
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p
y:473: ValueWarning: A date index has been provided, but it is not monotonic
and so will be ignored when e.g. forecasting.
 self._init_dates(dates, freq)
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p
y:473: ValueWarning: A date index has been provided, but it has no associate
d frequency information and so will be ignored when e.g. forecasting.
 self._init_dates(dates, freq)
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p
y:473: ValueWarning: A date index has been provided, but it is not monotonic
and so will be ignored when e.g. forecasting.
 self._init_dates(dates, freq)
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/statespace/sarim
ax.py:978: UserWarning: Non-invertible starting MA parameters found. Using z
eros as starting parameters.
 warn('Non-invertible starting MA parameters found.'
```

file:///Users/sudip/Desktop/GGU/ITM/FAII%202024/MSBA%20320%20/Final%20Project/Python%20Project.html

SARIMAX Results

========		:=======	=====	=====	========		=======
== Dep. Variab 09	ole: Cr	ude_oil_Pr	ice	No.	Observations:	:	6
Model: 94	A	RIMA(1, 1,	1)	Log	Likelihood		-1387.9
Date: 88	Sat	, 21 Dec 2	024	AIC			2781.9
Time: 19		15:00	:25	BIC			2795.2
Sample:			0	HQIC			2787.1
36		_	609				
Covariance			opg				
=======================================	=========	========	=====		=========	========	=======
5]	coef	std err		Z	P> z	[0.025	0.97
ar.L1 87	0.9938	0.047	20	.952	0.000	0.901	1.0
	-0.9965	0.044	-22	.538	0.000	-1.083	-0.9
-	5.6280	0.163	34	.551	0.000	5.309	5.9
========		=======	=====		========	=======	=======
Ljung-Box (L1) (Q):		0	.36	Jarque-Bera	(JB):	
955.47 Prob(Q):			0	.55	Prob(JB):		
	sticity (H):		0	.16	Skew:		
0.54 Prob(H) (tw 9.04	vo-sided):		0	.00	Kurtosis:		
	:========	:=======	=====	=====	=========	=======	=======

======

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (compl ex-step).

/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p
y:836: ValueWarning: No supported index is available. Prediction results wil
l be given with an integer index beginning at `start`.
 return get prediction index(

/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.p y:836: FutureWarning: No supported index is available. In the next version, calling this method in a model without a supported index will result in an exception.

return get_prediction_index(

Crude Oil Price Forecast

In []: