Chapter 8

Dynamic Programming

Dynamic Programming

Dynamic Programming is a general algorithm design technique for solving problems defined by or formulated as recurrences with overlapping subinstances

- Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems and later assimilated by CS
- "Programming" here means "planning"
- Main idea:
 - set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
 - solve smaller instances once
 - record solutions in a table
 - extract solution to the initial instance from that table

Example: Fibonacci numbers

• Recall definition of Fibonacci numbers:

$$F(n) = F(n-1) + F(n-2)$$

 $F(0) = 0$
 $F(1) = 1$

Computing the nth Fibonacci number recursively (top-down):

$$F(n)$$
 $F(n-1) + F(n-2)$
 $F(n-2) + F(n-3) + F(n-4)$

Example: Fibonacci numbers (cont.)

Computing the *n*th Fibonacci number using bottom-up iteration and recording results:

```
F(0) = 0

F(1) = 1

F(2) = 1+0 = 1

...

F(n-2) = 0

F(n-1) = 0

F(n-1) = 0
```


Efficiency:

- time

 \mathbf{n}

- space

n

What if we solve it recursively?

Examples of DP algorithms

- Computing a binomial coefficient
- Longest common subsequence
- Warshall's algorithm for transitive closure
- Floyd's algorithm for all-pairs shortest paths
- Constructing an optimal binary search tree
- Some instances of difficult discrete optimization problems:
 - traveling salesman
 - knapsack

Computing a binomial coefficient by DP

```
Binomial coefficients are coefficients of the binomial formula:

(a + b)^n = C(n,0)a^nb^0 + ... + C(n,k)a^{n-k}b^k + ... + C(n,n)a^0b^n
```

```
Recurrence: C(n,k) = C(n-1,k) + C(n-1,k-1) for n > k > 0

C(n,0) = 1, C(n,n) = 1 for n \ge 0
```

Value of C(n,k) can be computed by filling a table:

analysis

```
ALGORITHM
                 Binomial(n, k)
     //Computes C(n, k) by the dynamic programming algorithm
     //Input: A pair of nonnegative integers n \ge k \ge 0
     //Output: The value of C(n, k)
     for i \leftarrow 0 to n do
          for i \leftarrow 0 to min(i, k) do
              if j = 0 or j = i
                   C[i, j] \leftarrow 1
              else C[i, j] \leftarrow C[i-1, j-1] + C[i-1, j]
Time efficiency: @(nk)
```

Space efficiency: $\Theta(nk)$

Knapsack Problem by DP

integer weights: w_1 w_2 ... w_n values: v_1 v_2 ... v_n

a knapsack of integer capacity W

find most valuable subset of the items that fit into the knapsack

Consider instance defined by first i items and capacity j ($j \le W$). Let V[i,j] be optimal value of such an instance. Then

$$V[i,j] \begin{cases} \max \{V[i-1,j], v_i + V[i-1,j-w_i]\} & \text{if } j-w_i \ge 0 \\ V[i-1,j] & \text{if } j-w_i < 0 \end{cases}$$

Initial conditions: V[0,j] = 0 and V[i,0] = 0

Knapsack Problem by DP

Franglen Kneesack of capacity W = 5

<u>item </u>	we ^{light}	<u>value</u>
1	2	\$12
2	1	\$10
3	3	\$20
4	2	\$15

capacity *j*

\mathbf{O}	T		9	'
0	12			
10	12	22	22	22
10	12	22	30	32
10	15	25	30	37
	10 10	10 12	10 12 22 10 12 22	0 12 10 12 22 22 10 12 22 30 10 15 25 30

Backtracing finds the actual optimal subset, i.e. solution.

5

Memory function

```
ALGORITHM MFKnapsack(i, j)
Input: A if V[i, j] < 0
if j <Weights[i]
value \leftarrow MFKnapsack(i - 1, j)
else
value←max(MFKnapsack(i – 1, j),Values[i]+ MFKnapsack(i – 1, j
  -Weights[i]))
V[i, j] \leftarrow value
return V[i, j ]
```

Longest Common Subsequence (LCS)

• A subsequence of a sequence/string *S* is obtained by deleting zero or more symbols from *S*. For example, the following are **some** subsequences of "president": pred, sdn, predent. In other words, the letters of a subsequence of *S* appear in order in *S*, but they are not required to be consecutive.

 The longest common subsequence problem is to find a maximum length common subsequence between two sequences.

LCS

For instance,

Sequence 1: president

Sequence 2: providence

Its LCS is priden.

LCS

Another example:

Sequence 1: algorithm

Sequence 2: alignment

One of its LCS is algm.

How to compute LCS?

- Let $A=a_1a_2...a_m$ and $B=b_1b_2...b_n$.
- len(i, j): the length of an LCS between $a_1a_2...a_i$ and $b_1b_2...b_j$
- With proper initializations, len(i, j) can be computed as follows.

$$len(i, j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ len(i-1, j-1) + 1 & \text{if } i, j > 0 \text{ and } a_i = b_j, \\ \max(len(i, j-1), len(i-1, j)) & \text{if } i, j > 0 \text{ and } a_i \neq b_j. \end{cases}$$

procedure *LCS-Length(A, B)*

- 1. **for** $i \leftarrow 0$ **to** m **do** len(i,0) = 0
- 2. **for** $j \leftarrow 1$ **to** n **do** len(0,j) = 0
- 3. **for** $i \leftarrow 1$ **to** m **do**
- 4. **for** $j \leftarrow 1$ **to** n **do**

6. else if
$$len(i-1, j) \ge len(i, j-1)$$

8. else
$$\begin{bmatrix} len(i,j) = len(i,j-1) \\ prev(i,j) = \end{bmatrix}$$

9. **return** *len* and *prev*

Running time and memory: O(mn) and O(mn).

The backtracing algorithm

```
procedure Output-LCS(A, prev, i, j)

1 if i = 0 or j = 0 then return

2 if prev(i, j) = " " then \begin{bmatrix} Output - LCS(A, prev, i-1, j-1) \\ print a_i \end{bmatrix}

3 else if prev(i, j) = " " then Output-LCS(A, prev, i-1, j)

4 else Output-LCS(A, prev, i, j-1)
```


Warshall's Algorithm: Transitive Closure

- Computes the transitive closure of a relation
- Alternatively: existence of all nontrivial paths in a digraph
- Example of transitive closure:

Warshall's Algorithm

Constructs transitive closure T as the last matrix in the sequence of n-by-n matrices $R^{(0)}$, ..., $R^{(k)}$, ..., $R^{(n)}$ where

 $R^{(k)}[i,j] = 1$ iff there is nontrivial path from i to j with only the first k vertices allowed as intermediate

Note that $R^{(0)} = A$ (adjacency matrix), $R^{(n)} = T$ (transitive closure)

Warshall's Algorithm (recurrence)

On the k-th iteration, the algorithm determines for every pair of vertices i, j if a path exists from i and j with just vertices 1,...,k allowed as intermediate

Warshall's Algorithm (matrix generation)

Recurrence relating elements $R^{(k)}$ to elements of $R^{(k-1)}$ is:

$$R^{(k)}[i,j] = R^{(k-1)}[i,j]$$
 or $(R^{(k-1)}[i,k]$ and $R^{(k-1)}[k,j])$

It implies the following rules for generating $R^{(k)}$ from $R^{(k-1)}$:

- Rule 1 If an element in row i and column j is 1 in $R^{(k-1)}$, it remains 1 in $R^{(k)}$
- Rule 2 If an element in row i and column j is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row i and column k and the element in its column j and row k are both 1's in $R^{(k-1)}$

Warshall's Algorithm (example)

$$\mathbf{R}^{(0)} = \begin{array}{c|cccc} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$$

$$R^{(1)} = \begin{array}{c|ccc} & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$$

$$R^{(2)} = \begin{array}{c|cccc} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 \\ \hline & 1 & 1 & 1 & 1 \end{array}$$

$$R^{(3)} = \begin{array}{c} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 1 \end{array}$$

$$R^{(4)} = \begin{array}{c} 0 & 0 & 1 & 0 \\ 1 & \mathbf{1} & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array}$$

Warshall's Algorithm (pseudocode and analysis)

```
ALGORITHM
                       Warshall(A[1..n, 1..n])
       //Implements Warshall's algorithm for computing the transitive closure
       //Input: The adjacency matrix A of a digraph with n vertices
       //Output: The transitive closure of the digraph
       R^{(0)} \leftarrow A
       for k \leftarrow 1 to n do
            for i \leftarrow 1 to n do
                  for j \leftarrow 1 to n do
R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] \text{ or } (R^{(k-1)}[i, k] \text{ and } R^{(k-1)}[k, j]) Time efficiency: R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] = R^{(k-1)}[i, k]
Space efficiency: Matrices can be written over their predecessors
                    (with some care), so it's \Theta(n^2).
```

Floyd's Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between

every pair of vertices

Same idea: construct solution through series of matrices $D^{(0)}$, ..., $D^{(n)}$ using increasing subsets of the vertices allowed as intermediate

Example:

0	∞	4	∞
1	0	4	3
∞	∞	0	∞
6	5	1	0

Floyd's Algorithm (matrix generation)

On the k-th iteration, the algorithm determines shortest paths between every pair of vertices i, j that use only vertices among 1,...,k as intermediate

$$D^{(k)}[i,j] = \min \{D^{(k-1)}[i,j], D^{(k-1)}[i,k] + D^{(k-1)}[k,j]\}$$

Initial condition?

Floyd's Algorithm (example)

$$D^{(0)} = \begin{bmatrix} 0 & \infty & 3 & \infty \\ 2 & 0 & \infty & \infty \\ \infty & 7 & 0 & 1 \\ 6 & \infty & \infty & 0 \end{bmatrix}$$

$$D^{(1)} = \begin{array}{c|ccc} 0 & \infty & 3 & \infty \\ \hline 2 & 0 & 5 & \infty \\ \infty & 7 & 0 & 1 \\ 6 & \infty & 9 & 0 \end{array}$$

$$D^{(2)} = \begin{array}{cccc} 0 & \infty & 3 & \infty \\ 2 & 0 & 5 & \infty \\ \mathbf{9} & 7 & 0 & 1 \\ 6 & \infty & 9 & 0 \end{array}$$

$$D^{(3)} = \begin{cases} 0 & \mathbf{10} & 3 & \mathbf{4} \\ 2 & 0 & 5 & \mathbf{6} \\ 9 & 7 & 0 & 1 \\ \hline 6 & \mathbf{16} & 9 & 0 \end{cases}$$

$$D^{(4)} = \begin{pmatrix} 0 & 10 & 3 & 4 \\ 2 & 0 & 5 & 6 \\ 7 & 7 & 0 & 1 \\ 6 & 16 & 9 & 0 \end{pmatrix}$$

Floyd's Algorithm (pseudocode and analysis)

```
ALGORITHM Floyd(W[1..n, 1..n])

//Implements Floyd's algorithm for the all-pairs shortest-paths problem

//Input: The weight matrix W of a graph with no negative-length cycle

//Output: The distance matrix of the shortest paths' lengths

D \leftarrow W //is not necessary if W can be overwritten

for k \leftarrow 1 to n do

for i \leftarrow 1 follows + D[k,j] < D[i,j] then P[i,j] \leftarrow k

for j \leftarrow 1 to n do

Time efficiency: O[n^3] \leftarrow \min\{D[i,j], D[i,k] + D[k,j]\}

Space efficiency: Matrices can be written over their predecessors
```

Note: Works on graphs with negative edges but without negative cycles. Shortest paths themselves can be found, too. How?

ake

Optimal Binary Search Trees

Problem: Given n keys $a_1 < ... < a_n$ and probabilities p_1 , ..., p_n searching for them, find a BST with a minimum average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by C(2n,n)/(n+1), which grows exponentially, brute force is hopeless.

Example: What is an optimal BST for keys *A*, *B*, *C*, and *D* with search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

DP for Optimal BST Problem

Let C[i,j] be minimum average number of comparisons made in T[i,j], optimal BST for keys $a_i < ... < a_j$, where $1 \le i \le j \le n$. Consider optimal BST among all BSTs with some a_k ($i \le k \le j$) as their root; T[i,j] is the best among them.

DP for Optimal BST Problem

s = i

After simplifications, we obtain the recurrence for C[i,j]: $C[i,j] = \min \{C[i,k-1] + C[k+1,j]\} + \sum p_s \text{ for } 1 \leq i \leq j \leq n$

Example: key A B C D probability 0.1 0.2 0.4 0.3

The tables below are filled diagonal by diagonal: the left one is filled using the recurrence $C[i,j] = \min \{C[i,k-1] + C[k+1,j]\} + \sum_i p_{s_i} C[i,i] = p_i;$

the right one, for trees' rios ks,≤ gicords k's values giving the minisma i

j i	0	1	2	3	4
1	0	.1	.4	1.1	1.7
2		0	.2	.8	1.4
3			0	.4	1.0
4				0	.3
5					0

j i	0	1	2	3	4
1		1	2	3	3
2			2	3	3
3				3	3
4					4
5					

Optimal Binary Search Trees

```
ALGORITHM
                  OptimalBST(P[1..n])
     //Finds an optimal binary search tree by dynamic programming
     //Input: An array P[1..n] of search probabilities for a sorted list of n keys
     //Output: Average number of comparisons in successful searches in the
                optimal BST and table R of subtrees' roots in the optimal BST
     for i \leftarrow 1 to n do
          C[i, i-1] \leftarrow 0
          C[i,i] \leftarrow P[i]
          R[i,i] \leftarrow i
    C[n+1,n] \leftarrow 0
    for d \leftarrow 1 to n-1 do //diagonal count
         for i \leftarrow 1 to n - d do
              i \leftarrow i + d
              minval \leftarrow \infty
              for k \leftarrow i to i do
                   if C[i, k-1] + C[k+1, j] < minval
                        minval \leftarrow C[i, k-1] + C[k+1, j]; kmin \leftarrow k
              R[i, j] \leftarrow kmin
              sum \leftarrow P[i]; for s \leftarrow i + 1 to j do sum \leftarrow sum + P[s]
              C[i, j] \leftarrow minval + sum
    return C[1, n], R
```

Analysis DP for Optimal BST Problem

Time efficiency: $\Theta(n^3)$ but can be reduced to $\Theta(n^2)$ by taking advantage of monotonicity of entries in the root table, i.e., R[i,j] is always in the range between R[i,j-1] and R[i+1,j]

Space efficiency: $\Theta(n^2)$

Method can be expanded to include unsuccessful searches