MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. E GESTÃO INDUSTRIAL | 2020-21

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 1h30m (10m de tolerância)

1ª Prova de Reavaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular e microcomputadores;
- * Resolva cada um dos <u>quatro grupos</u> utilizando <u>folhas de capa distintas</u>. Na resolução da prova deve utilizar uma esferográfica azul ou preta. Em cada pergunta da prova é apresentada a cotação prevista.

GRUPO I

1. [7,0] Considere o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}\} \subset \mathbb{R}^4$, onde $\vec{a} = (2,1,1,-1)$, $\vec{b} = (1,-1,1,0)$ e $\vec{c} = (1,2,1,0)$. Seja $H = \{(x,y,z,w) \in \mathbb{R}^4 : y = 0 \land z - 2w = 0\}$ um subespaço de \mathbb{R}^4 .

Determine:

- a) O subespaço gerado pelo conjunto S, L(S), e conclua em relação à sua dimensão. Indique uma base, U, para o subespaço obtido que inclua o maior número possível de elementos de S. Justifique.
- **b)** A dimensão do subespaço H e uma base, W, para o espaço \mathbb{R}^4 que inclua dois elementos não ortogonais de H e um elemento de L(S). Justifique.

GRUPO II

- **2.** [3,5] Sejam \vec{a} , \vec{b} , \vec{c} e \vec{d} vetores do espaço \mathbb{R}^3 , tais que $\|\vec{a} \vec{b}\| = 1$, $\|\vec{c}\| = \sqrt{2}$, $S = \{\vec{a}, \vec{b} \times \vec{c}\}$ é um conjunto ortonormal, $\theta = \angle(\vec{a}, \vec{c}) = \pi/3$, $\alpha = \angle(\vec{b}, \vec{c}) = \pi/6$ e $\vec{d} = \vec{a} \vec{b} + 2(\vec{a} \times \vec{c})$. Calcule:
 - a) A norma do vetor $\vec{a} \times \vec{b}$.
 - **b)** A norma de vetor \vec{d} .

.....(continua no verso)

MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. E GESTÃO INDUSTRIAL | 2020-21

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 1h30m (10m de tolerância)

1ª Prova de Reavaliação

GRUPO III

- **3.** [3,8] Sejam as retas $r: X(u) = R + u\vec{a}$, $u \in \mathbb{R}$, em que R = (1,-1,2) e $\vec{a} = (1,-1,1)$, e $s: X(v) = S + v\vec{b}$, $v \in \mathbb{R}$, tal que S = (2,2,2) e $\vec{b} = (-1,2,1)$. Determine a equação cartesiana do plano, M, que é paralelo às retas dadas e que passa no ponto, P, do eixo dos yy mais próximo do ponto R.
- **4.** [2,0] Sejam os vetores \vec{a} e \vec{b} do espaço \mathbb{R}^3 , tais que $\vec{a} \times \vec{b} \neq \vec{0}$, e o ponto P.
 - a) Mostre que qualquer ponto X que verifique a condição $(X-P)\cdot\vec{a}\times\vec{b}=0$, pertence ao plano $M=\{P+s\vec{a}+t\vec{b}\ ,\ s,t\in\mathbb{R}\}$.
 - **b)** Recorrendo à Identidade de Lagrange, mostre que $\|\vec{a} \times \vec{b}\| = \|\vec{a}\| \|\vec{b}\| \operatorname{sen}(\theta)$, em que θ é o ângulo formado pelos vetores \vec{a} e \vec{b} .

GRUPO IV

5. [3,7] Considere o plano M: x+y=1 e a reta, r, com a equação vetorial $X(t) = P + t\vec{a}$, $t \in \mathbb{R}$, tal que P = (0,1,3) e $\vec{a} = (1,1,1)$. Obtenha a equação vetorial de uma reta, h, que passa no ponto Q = (2,0,-1), é concorrente com a reta r e faz o ângulo $\alpha = \pi/6$ com o plano M.