Chapter 6: The Riemann-Stieltjes Integral

Exercise 6.1. Suppose α increases on [a,b], $a \leq x_0 \leq b$, α is continuous at x_0 , $f(x_0) = 1$, and f(x) = 0 if $x \neq x_0$. Prove that $f \in \mathcal{R}(\alpha)$ and that $\int f d\alpha = 0$.

Given any partition $P = \{a = p_0, p_1, ..., p_{n-1}, p_n = b\}$, where $a = p_0 \leq p_1 \leq \cdots \leq p_{n-1} \leq p_n = b$. We might compute $L(P, f, \alpha)$ and $U(P, f, \alpha)$ by using ϵ - δ argument since we are hinted by the condition that α is continuous. A function which is continuous at x_0 has a nice property near x_0 and this property would help us estimate $U(P, f, \alpha)$ near x_0 . On the contrary, if both f and α are discontinuous at x_0 , it might be $f \notin \mathcal{R}(\alpha)$. Besides, if f has too many points of discontinuity $(f(x) = 0 \text{ if } x \in \mathbb{Q} \text{ and } f(x) = 1 \text{ otherwise, for example), then } f$ might not be Riemann-integrable on [0, 1].

Claim 1. $L(P, f, \alpha) = 0$.

Proof of Claim 1. $m_i = 0$ since $\inf f(x) = 0$ on any subinterval of [a,b]. So $L(P,f,\alpha) = \sum m_i \Delta \alpha_i = 0$. Here we don't need the condition that α is continuous at x_0 . \square

Claim 2. For any $\epsilon > 0$, there exists a partition P such that $U(P, f, \alpha) < \epsilon$. Proof of Claim 2. Let $x_0 \in [p_{i_0-1}, p_{i_0}]$ for some i_0 . Then $M_i = \sup_{p_{i-1} \le x \le p_i} f(x) = 0$ if $i \ne i_0$, and $M_{i_0} = 1$. So

$$U(P, f, \alpha) = \sum M_i \Delta \alpha_i = \Delta \alpha_{i_0}.$$

It is not true for any arbitrary α . (For example, α has a jump on $x=x_0$.) In fact, Exercise 6.3 shows this. Luckily, α is continuous at x_0 . So for $\epsilon>0$, there exists $\delta>0$ such that $|\alpha(x)-\alpha(x_0)|<\frac{\epsilon}{2}$ whenever $|x-x_0|<\delta$ (and $x\in[a,b]$). Now we pick a nice partition

$$P = \{a, x_0 - \delta_1, x_0 + \delta_2, b\},\$$

where $\delta_1 = \min(\delta, x_0 - a) \ge 0$ and $\delta_2 = \min(\delta, b - x_0) \ge 0$. (It is a trick about resizing " δ " to avoid considering the edge cases $x_0 = a$ or $x_0 = b$ or a = b.) Then $x_0 \in [x_0 - \delta_1, x_0 + \delta_2]$ and $\Delta \alpha$ on $[x_0 - \delta_1, x_0 + \delta_2]$ is

$$\alpha(x_0 + \delta_2) - \alpha(x_0 - \delta_1) = (\alpha(x_0 + \delta_2) - \alpha(x_0)) + (\alpha(x_0) - \alpha(x_0 - \delta_1))$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Therefore, $U(P, f, \alpha) < \epsilon$. \square

Proof (Definition 6.2). By Claim 1 and 2 and notice that $U(P, f, \alpha) \geq 0$ for any

partition P,

$$\int_{a}^{b} f d\alpha = \inf U(P, f, \alpha) = 0,$$
$$\int_{a}^{b} f d\alpha = \sup L(P, f, \alpha) = 0,$$

the inf and sup again being taken over all partitions. Hence $f \in \mathcal{R}(\alpha)$ and that $\int f d\alpha = 0$ by Definition 6.2. \square

Proof (Theorem 6.5). By Claim 1 and 2,

$$0 \le U(P, f, \alpha) - L(P, f, \alpha) < \epsilon.$$

Hence $f \in \mathcal{R}(\alpha)$ by Theorem 6.5. Furthermore,

$$\int f d\alpha = \int_a^b f d\alpha = \sup L(P, f, \alpha) = 0.$$

Proof (Theorem 6.10). $f \in \mathcal{R}(\alpha)$ by Theorem 6.10. Thus, by Claim 1

$$\int f d\alpha = \int_a^b f d\alpha = \sup L(P, f, \alpha) = 0.$$