Элементарная теория кривых второго порядка

Лекция 2 (2 триместр, ПМИ) Определение. *Кривыми второго порядка* называются плоские линии, определяемые в прямоугольной декартовой системе координат *Оху* уравнением второй степени

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$$
,

где хотя бы один из коэффициентов $A, B, C \neq 0$.

Окружность

Определение. Окружностью называется геометрическое место точек плоскости, равноудаленных от данной точки, называемой центром.

Пусть C(a, b) — центр окружности. Расстояние любой точки окружности до центра обозначим r — paduyc окружности.

Пусть M(x, y) — любая (текущая) точка окружности.

Определение. Уравнение вида $(x-a)^2 + (y-b)^2 = r^2$ называется *нормальным уравнением* окружности. Если центр окружности лежит в начале системы координат, то уравнение вида $x^2 + y^2 = r^2$ называют *каноническим уравнением* окружности.

Пример. Построить кривую $x^2 + y^2 - 2x + 6y + 6 = 0$.

Решение:

Выделяя полные квадраты, получим

$$(x^2-2x+1)-1+(y^2+6y+9)-9+6=0$$
 или $(x-1)^2+(y+3)^2=4$, т. е.

уравнение окружности с центром в точке M_0 (1; – 3) и радиусом r = 2.

Эллипс

Определение. Эллипс — геометрическое место точек плоскости, сумма расстояний от каждой из которых до двух фиксированных точек F_1 и F_2 , называемых фокусами, есть величина постоянная, большая чем расстояние между фокусами.

Постоянную сумму расстояний произвольной точки эллипса до фокусов принято обозначать через 2a. Фокусы эллипса обозначаются F_1 и F_2 ; расстояние между ними — через 2c.

Определение эллипса выражается формулой $MF_1 + MF_2 = 2a$. Обозначим расстояние $F_1F_2 = 2c$ (c>0) как фокусное расстояние. Тогда из треугольника ΔMF_1F_2 получим 2c < 2a, откуда c < a.

Выведем уравнение эллипса. Для начала рассмотрим систему координат Оху.

Во введенной системе координат фокусы расположены на оси Ox и имеют координаты $F_1\left(-c;\ 0\right)$ и $F_2\left(c;\ 0\right)$. Пусть точка $M\left(x,y\right)$ принадлежит эллипсу.

Тогда
$$MF_1 = \sqrt{(x+c)^2 + y^2}$$
, $MF_2 = \sqrt{(x-c)^2 + y^2}$:

Тогда
$$MF_1 = \sqrt{(x+c)^2 + y^2}$$
, $MF_2 = \sqrt{(x-c)^2 + y^2}$:

$$2a = \sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2}.$$

Перенеся первый радикал из правой части в левую и возведя в квадрат, имеем

$$4a^{2} + (x+c)^{2} + y^{2} - 4a\sqrt{(x+c)^{2} + y^{2}} = (x-c)^{2} + y^{2},$$

или

$$4a^{2} + x^{2} + 2cx + c^{2} + y^{2} - 4a\sqrt{(x+c)^{2} + y^{2}} = x^{2} - 2xc + c^{2} + y^{2}.$$

Приводя подобные члены, получим, что $4a^2 + 4cx = 4a\sqrt{(x+c)^2 + y^2}$. Затем (после деления на 4) снова возведем в квадрат:

$$a^4 + 2a^2cx + c^2x^2 = a^2(x^2 + 2cx + c^2 + y^2).$$

$$a^4 + 2a^2cx + c^2x^2 = a^2(x^2 + 2cx + c^2 + y^2).$$

Последнее уравнение можно упростить, если раскрыть скобки и привести подобные члены:

$$a^{4} + 2a^{2}cx + c^{2}x^{2} = a^{2}x^{2} + 2a^{2}cx + a^{2}c^{2} + a^{2}y^{2},$$
$$-(a^{2} - c^{2})x^{2} = -a^{2}(a^{2} - c^{2}) + a^{2}y^{2}.$$

Поскольку из определения эллипса следует, что a > c, то число $a^2 - c^2 > 0$ и можно обозначить $b^2 = a^2 - c^2 > 0$. Тогда уравнение запишется: $-b^2x^2 = -a^2b^2 + a^2y^2$ или $a^2b^2 = b^2x^2 + a^2y^2$.

Разделив это уравнение на $a^2b^2 > 0$, получим

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \ \text{где } b^2 = a^2 - c^2 \,.$$
 Такое уравнение эллипса называется *каноническим*.

Форма эллипса

Исследуем форму эллипса. Если в уравнении эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ заменить x на (-x), то оно не изменится. Это означает, что если точка M(x,y) принадлежит кривой, то точка $M_1(-x,y)$ также принадлежит этой кривой, т. е. кривая симметрична относительно оси ординат. Эллипс симметричен и относительно оси абсцисс, потому что его уравнение не меняется при замене y на (-y).

Таким образом, эллипс симметричен относительно точки O- *центра эллипса*. Учитывая это, достаточно изучить форму эллипса только в первой четверти, т. е. для $x, y \ge 0$.

При $x, y \ge 0$ из канонического уравнения можно получить уравнение кривой в явном виде, т. е. $y = \frac{b}{a} \sqrt{a^2 - x^2}$, $(0 \le x \le a)$. Из этого уравнения ясно, что кривая проходит через точки, B(0;b) и A(a;0). Эти точки называются вершинами эллипса.

Из явного уравнения эллипса ясно, что ордината y при непрерывном возрастании x на отрезке [0; a] монотонно убывает. Построим по явному уравнению часть эллипса в первой четверти. В остальных четвертях кривая строится с учетом симметрии относительно координати у осей.

натных осей.

Характеристики эллипса

Числа a и b называются *полуосями эллипса*. При этом a называется большой полуосью, а b — малой полуосью эллипса.

При a = b эллипс представляет собой окружность $x^2 + y^2 = a^2$.

Определение. Эксцентриситетом эллипса называется число

$$\varepsilon = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a}$$

 $\frac{H_0}{0 < \epsilon < 1}$ скольку из определения эллипса следует, что $\mathbf{a} > \mathbf{c} > 0$, то

Эксцентриситет є эллипса характеризует степень вытянутости эллипса. Чем ближе эксцентриситет к нулю, тем больше эллипс похож на окружность. Чем ближе эксцентриситет к 1, тем сильнее вытянут эллипс. **Определение.** Две прямые, перпендикулярные бо́льшей оси эллипса, проходящие от его центра на расстоянии $\frac{a}{\varepsilon}$, называются директрисами эллипса. Уравнения директрис имеют вид

$$x = \pm \frac{a}{\varepsilon}$$

Пример. Составить уравнение эллипса при следующих условиях и найти недостающие параметры: c = 2, $\epsilon = \frac{2}{3}$.

Решение:

Каноническое уравнение эллипса имеет вид $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$: (a > b)

$$a = \frac{c}{\varepsilon} = 3$$
 — большая полуось;

$$b = \sqrt{a^2 - c^2} = \sqrt{5}$$
 — малая полуось;

$$\frac{x^2}{9} + \frac{y^2}{5} = 1$$
 — каноническое уравнение искомого эллипса;

$$F_1$$
 (-2; 0), F_2 (2; 0) — фокусы эллипса;

$$A_1$$
 (-3; 0), A_2 (3; 0), B_1 (0; $-\sqrt{5}$), B_2 (0; $\sqrt{5}$) – вершины эллипса;

$$x = \pm \frac{a}{\epsilon} = \pm \frac{9}{2}$$
 — уравнение директрис эллипса.

Свойства эллипса

 Φ окальное свойство эллипса: эллипс есть геометрическое место точек, сумма расстояний от которых до двух фокусов, постоянна и равна 2a.

Директориальное свойство эллипса:

Теорема. Пусть r — расстояние произвольной точки M(x, y) до ближайшего фокуса, d — расстояние от этой же точки до односторонней с фокусом директрисы. Тогда $\frac{r}{d}$ есть постоянная величина, равная эксцен-

триситету эллипса:

Оптическое свойство эллипса: касательная в любой точке эллипса образует с фокальными радиусами точки касания равные острые углы.

Пусть F_1 и F_2 — фокусы эллипса, M — произвольная точка на эллипсе. Тогда нормаль (перпендикуляр к касательной) к эллипсу в точке M делит угол F_1MF_2 пополам.

Данное свойство имеет достаточно простой физический смысл. Если из одного фокуса выходит в плоскости эллипса луч света, то, отразившись от самого эллипса, он обязательно пройдет через другой фокус. Возьмем поверхность, образованную вращением эллипса вокруг большой оси, и будем считать, что внутри она зеркальная. В один из фокусов поместим источник света. Тогда все лучи, выходящие из источника, отражаясь от поверхности, пройдут через другой фокус, т. е. освещенность в обоих фокусах будет одинаковой.

Аналогичное явление происходит и при отражении звука. На этом последнем свойстве было основано устройство «галерей шепота»: два человека, стоящих в фокусах эллиптической галереи, могли переговариваться вполголоса, тогда как остальные посетители галереи их не слышали.

Различные положения эллипса

Уравнение эллипса с центром в точке $O_1(x_0, y_0)$ имеет вид

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1.$$

Так, например, эллипс $\frac{(x+4)^2}{9} + \frac{(y-3)^2}{4} = 1$ имеет вид

Если в уравнении $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ b > a, то большая ось и фокусы этого эллипса лежат на оси Oy, а малая ось — на оси Ox. Для такого эллипса $F_1(0;-c)$, $F_2(0;c)$, $c^2 = b^2 - a^2$, $\varepsilon = \frac{c}{b}$.

Например, эллипс $\frac{x^2}{4} + \frac{y^2}{9} = 1$ имеет следующий вид:

Касательная к эллипсу

Уравнение касательной в точке $M(x_0, y_0)$, лежащей на эллипсе

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, имеет вид $\frac{x \cdot x_0}{a^2} + \frac{y \cdot y_0}{b^2} = 1$.

Если центр эллипса смещен в точку $C(x_0, y_0)$, но его оси параллельны осям координат, то уравнение эллипса имеет вид

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1.$$

При этом координаты фокусов

$$F_1(-c+x_0, y_0), F_2(c+x_0, y_0),$$

координаты вершин эллипса

$$A_1(-a+x_0, y_0), A_2(a+x_0, y_0), B_1(x_0, -b+y_0), B_2(x_0, b+y_0),$$

уравнения директрис:
$$x - x_0 = \pm \frac{a}{\epsilon}$$
.

