

Towards Coinductive Theory Exploration

Katya Komendantskaya (joint work with Yue Li, Henning Basold, John Power et al.)

Workshop WAIT'18, 29 June 2018

Outline

Problem statement

Solution

Technical details

FOL, Coinductively

- Any theory expressed in FOL may be seen inductively or coinductively,
- Depending on the chosen semantics

For example...

Given a theory in Horn Clause syntax:

```
HERIOT WATT UNIVERSITY
```

```
G ::= T | A | G \land G | G \lor G | \exists Var G
D ::= A | G \supset D | D \land D | \forall Var D
```

Given a theory in Horn Clause syntax:

$$G ::= T | A | G \wedge G | G \vee G | \exists Var G$$

$$D ::= A | G \supset D | D \wedge D | \forall Var D$$

Coinductive models of theories in Horn Clause logic

- ► Take the sets of (finite and/or infinite) ground terms
- The coinductive model is the largest set of such terms such that it satisfies the given theory
- ► (The Inductive model is the smallest such set)
- Usually these models are given by fixed point (Knaster-Tarski) construction

Given a theory in Horn Clause syntax:

$$G ::= T | A | G \wedge G | G \vee G | \exists Var G$$

$$D ::= A | G \supset D | D \wedge D | \forall Var D$$

Coinductive models of theories in Horn Clause logic

- ► Take the sets of (finite and/or infinite) ground terms
- ► The coinductive model is the largest set of such terms such that it satisfies the given theory
- ► (The Inductive model is the smallest such set)
- Usually these models are given by fixed point (Knaster-Tarski) construction

	least fixed point		greatest fixed point
finite terms	Least Herbrand mo	odels	Greatest Herbrand models
finite and infi- nite terms	Least Complete models	Herbrand	Greatest Complete Herbrand models

▶ Both inductive and coinductive semantics may suit

Example

 $\kappa_1: \forall x, nat \ x \supset nat \ (s \ x)$

 κ_2 : nat 0

	least fixed point	greatest fixed point
finite terms	{ nat 0, nat(s 0),}	{nat 0, nat(s 0),}
finite and infinite	{nat 0, nat(s 0),}	$\{nat\ 0, nat(s\ 0), \ldots, s^{\omega}\}$
terms		

... only coinductive semantics may suit

 Either semantics may work well for certain fragment of the theory

Example

 $\kappa_1: \forall x, nat \ x \supset nat \ (s \ x)$

 κ_2 : nat 0

 $\kappa_3: \forall x, nat \ x \land streamN \ y \supset streamN \ (scons \ x \ y)$

	least fixed point	greatest fixed point	
finite terms	$\{nat\ 0, nat(s\ 0), \ldots\}$	{nat 0, nat(s 0),}	
finite and infinite	$\{nat\ 0, nat(s\ 0), \ldots\}$	$\{nat 0, nat(s 0), \dots, s^{\omega}, \}$	
terms		streamN(scons 0(scons 0)),	
		streamN(scons 0(scons 1)),	
		streamN(scons 1(scons 0)),	
		streamN(scons 1(scons 1)),	
		}	

Operational semantics:

State of the art is automated invariant discovery by means of loop detection

Example

 $\forall x, streamZ \ x \supset streamZ \ (scons \ 0 \ x)$

Resolution-based search: $streamZ \ x \rightsquigarrow^{x/(scons \ 0 \ x')} streamZ \ x' \rightsquigarrow$

- ▶ Terminate the loop with $x = (scons \ 0 \ x)$.
- ▶ It is the coinductive invariant.

Operational semantics:

State of the art is automated invariant discovery by means of loop detection

Example

 $\forall x, streamZ \ x \supset streamZ \ (scons \ 0 \ x)$

Resolution-based search:

streamZ $x \rightsquigarrow^{x/(scons\ 0\ x')}$ streamZ $x' \rightsquigarrow$

- ▶ Terminate the loop with $x = (scons \ 0 \ x)$.
- ▶ It is the coinductive invariant.

Recall:

recail.	least fixed point	greatest fixed point
finite terms	Ø	0
finite and infinite	Ø	{streamZ(scons 0(scons 0))}
terms		

However, loop detection

▶ ... is not a very satisfactory solution

Why unsatisfactory?

1 it fails too often

Example

$$\forall x, from (s x) y \supset from x (scons x y)$$

Resolution-based search:

from
$$0 \times x^{x/(scons \ 0 \ x')}$$
 from $(s \ 0) \times x' \sim x'$

- No unifier exists,
- loop detection fails to find coinductive invariant

Why unsatisfactory?

1 it fails too often

Example

$$\forall x, from (s x) y \supset from x (scons x y)$$

Resolution-based search:

from 0
$$x \rightsquigarrow^{x/(scons \ 0 \ x')}$$
 from $(s \ 0) \ x' \rightsquigarrow$

- No unifier exists,
- loop detection fails to find coinductive invariant

	least fixed point	greatest fixed point
finite terms	Ø	0
finite and infinite	0	$\{from \ 0(scons \ 0(scons \ (s0) \dots))\}$
terms		

Why unsatisfactory?

 $2\,$ it is a bad indicator for coinductive meaning of the theory (Works well with existential, but not universal coinductive models)

Universal Coinductive Models

Example

$$\kappa_1: \forall x, p(f \ x) \supset p \ x$$

	least fixed point	greatest fixed point
finite terms	Ø	$\{p \ a, p(f \ a), p(f \ f \ a), \ldots\}$
finite and infinite	Ø	$\{p \mid a, p(f \mid a), p(f \mid f \mid a), \dots$
terms		$p f^{\omega}$

Universal Coinductive Models

Example

$$\kappa_1: \forall x, p(f \ x) \supset p \ x$$

	least point	fixed	greatest fixed point
finite terms	0		$\{p \ a, p(f \ a), p(f \ f \ a), \ldots\}$
finite and infinite	0		$\{p \mid a, p(f \mid a), p(f \mid f \mid a), \dots$
terms			$p f^{\omega}$ }

Invariant search:

$$p \times p(f \times) \rightarrow p(f \times) \rightarrow \dots$$

- ▶ The answer is: x = f x.
- ▶ However, f^{ω} is not all that there is in the model!

Universal Coinductive Models

Example

$$\kappa_1: \forall x, p(f \ x) \supset p \ x$$

	least point	fixed	greatest fixed point
finite terms	0		$\{p \ a, p(f \ a), p(f \ f \ a), \ldots\}$
finite and infinite	0		$\{p \mid a, p(f \mid a), p(f \mid f \mid a), \dots$
terms			$p f^{\omega}$ }

Invariant search:

$$p \times p(f \times) \rightarrow p(f \times) \rightarrow \dots$$

- ▶ The answer is: x = f x.
- ▶ However, f^{ω} is not all that there is in the model!

$$p \ a \rightarrow p(f \ a) \rightarrow p(f \ f \ a) \rightarrow \dots$$

▶ fails to find a loop

Outline

Problem statement

Solution

Technical details

Solution?

 Recast the problem of invariant search as a problem of coinductive theory exploration

Example

 $\forall x, streamZ \ x \supset streamZ \ (scons \ 0 \ x)$

Resolution-based search:

streamZ $x \rightsquigarrow^{x/(scons\ 0\ x')}$ streamZ $x' \rightsquigarrow$

- ► Terminate the loop with $x = (scons \ 0 \ x)$.
- ► It is the coinductive invariant.
- ► Find and prove *streamZ*(*zstream*)
- for $zstream = fix\lambda \ x.scons \ 0 \ x$

Example

$$\kappa_1: \forall x, p(f \ x) \supset p \ x$$

$$p \ a \rightarrow p(f \ a) \rightarrow \dots$$

- ▶ fails to find a loop
- Find and prove $\forall x, px$
- ▶ Get *p a* as a corollary

Outline

Problem statement

Solution

Technical details

Uniform proofs [Miller et al.]

- HERIOT WATT
- give proof-theoretic interpretation to goal-oriented proofuniversity search
- ▶ Uniform: one rule applies at every stage of the proof
- ▶ Proven to be a fragment of intuitionistic logic

Uniform proofs [Miller et al.]

- HERIOT WATT
- give proof-theoretic interpretation to goal-oriented proofuniversity search
- ▶ Uniform: one rule applies at every stage of the proof
- ▶ Proven to be a fragment of intuitionistic logic

FOHH and HOHH

$$G ::= T | A | G \wedge G | G \vee G | \exists Var G | D \supset G | \forall Var G$$

$$D ::= A | G \supset D | D \wedge D | \forall Var D$$

FOHC and HOHC

$$G ::= T | A | G \wedge G | G \vee G | \exists Var G$$

$$D ::= A | G \supset D | D \wedge D | \forall Var D$$

Logical rules

$$\frac{\Sigma; P \longrightarrow \top}{\Sigma; P \longrightarrow G_1} \quad \forall R$$

$$\frac{\Sigma; P \longrightarrow G_1}{\Sigma; P \longrightarrow G_1 \lor G_2} \quad \forall R$$

$$\frac{\Sigma; P, D \longrightarrow G}{\Sigma; P \longrightarrow D \supset G} \quad \supset R$$

$$\frac{\Sigma; P \longrightarrow G[x := N]}{\Sigma; P \longrightarrow \exists_{r \times} G} \quad \exists R$$

$$\frac{\Sigma; P \longrightarrow G_1 \quad \Sigma; P \longrightarrow G_2}{\Sigma; P \longrightarrow G_1 \land G_2} \land R$$

$$\frac{\Sigma; P \longrightarrow G_2}{\Sigma; P \longrightarrow G_1 \lor G_2} \lor R$$

$$\frac{c:\tau,\Sigma;P\longrightarrow G[x:=c]}{\Sigma;P\longrightarrow\forall_{\tau}x\ G}\ \forall R$$

Backchaining (resolution) rules

$$\frac{\Sigma; P \xrightarrow{D} A}{\Sigma; P \longrightarrow A} \text{ DECIDE}$$

$$\frac{\Sigma; P \xrightarrow{D} A \quad \Sigma; P \longrightarrow G}{\Sigma; P \xrightarrow{G \supset D} A} \supset L$$

$$\frac{\Sigma; P \xrightarrow{D[x:=N]} A \quad \Sigma, \emptyset \vdash N : \tau}{\Sigma; P \xrightarrow{\forall_{T} x} D A} \quad \forall L$$

COFIX rule for uniform proofs

$$\frac{\Sigma; P, M \longrightarrow \langle M \rangle}{\Sigma; P \hookrightarrow M}$$
 COFIX

COFIX rule for uniform proofs

$$\frac{\Sigma; P, M \longrightarrow \langle M \rangle}{\Sigma; P \hookrightarrow M} \text{ COFIX}$$

the guarding modality $\langle M \rangle$ must be discharged to get M (this can be done if $\langle M \rangle$ is resolved (= pattern matched) against a clause in P).

The successful proof ends with Σ ; P, $M \longrightarrow M$.

Example

 $\kappa_1: \forall x, p \ x \supset p \ x$

Find invariant for: $\underline{p} \ \underline{a} \longrightarrow p \ a \longrightarrow \dots$?

Example

 $\kappa_1: \forall x, p \ x \supset p \ x$

Find invariant for: $\underline{p} \ a \longrightarrow p \ a \longrightarrow \dots$?

	least fixed point	greatest fixed point
finite terms	0	{p a}
finite and infinite terms	Ø	{p a}

Example

$$\kappa_1: \forall x, p \ x \supset p \ x$$

Find invariant for: $p \ a \longrightarrow p \ a \longrightarrow \dots$?

$$\frac{P; p \ a \xrightarrow{p \ a} p \ a}{P; p \ a \xrightarrow{p \ a} p \ a} \xrightarrow{\text{Initial}} \frac{P; p \ a \xrightarrow{p \ a} p \ a}{P; p \ a \xrightarrow{p \ a} p \ a} \supset L$$

$$\frac{P; p \ a \xrightarrow{p \ a \supset p \ a} \langle p \ a \rangle}{P; p \ a \xrightarrow{p \ a \supset p \ a} \langle p \ a \rangle} \xrightarrow{\text{DECIDE}} \frac{P; p \ a \longrightarrow \langle p \ a \rangle}{P \hookrightarrow p \ a} \xrightarrow{\text{COFIX}}$$

Example

 $\kappa_1: \forall x, p \ x \supset p \ x$

Find invariant for: $p \ a \longrightarrow p \ a \longrightarrow \dots$?

$$\frac{P; p \ a \xrightarrow{p \ a} p \ a}{P; p \ a \xrightarrow{p \ a} p \ a} \xrightarrow{\text{Initial}} \frac{P; p \ a \xrightarrow{p \ a} p \ a}{P; p \ a \xrightarrow{p \ a} p \ a} \supset L$$

$$\frac{P; p \ a \xrightarrow{p \ a > p \ a} \langle p \ a \rangle}{P; p \ a \xrightarrow{p \ a > p \ a} \langle p \ a \rangle} \xrightarrow{\text{DECIDE}} \frac{P; p \ a \xrightarrow{p \ a} \langle p \ a \rangle}{P \hookrightarrow p \ a} \xrightarrow{\text{COFIX}}$$

QUIZ: which logic does this coinductive hypothesis and prove live in?

Not so lucky case: universal coinductive invaria HERIOT WATT

Example

 $\kappa_1: \forall x, p(f \ x) \supset p \ x$

Find invariant for: $p(a) \longrightarrow p(f \ a) \longrightarrow p(f \ f \ a) \longrightarrow \dots$?

Not so lucky case: universal coinductive invaria HERIO I

Example

$$\kappa_1: \forall x, p(f|x) \supset p|x$$

Find invariant for: $p(a) \longrightarrow p(f|a) \longrightarrow p(f|f|a) \longrightarrow \dots$?

$$\frac{P; p \ a \xrightarrow{p \ a} p(a)}{P; p \ a \xrightarrow{p \ a} p(a)} \xrightarrow{P; p \ a \xrightarrow{p \ a} p(f \ a)} \xrightarrow{???} \frac{P; p \ a \xrightarrow{p(f \ a) \supset p \ a} \langle p \ a \rangle}{P; p \ a \xrightarrow{p(f \ a) \supset p \ x} \langle p \ a \rangle} \forall L$$

$$\frac{P; p \ a \xrightarrow{\forall x, p(f \ x) \supset p \ x} \langle p \ a \rangle}{P; p \ a \xrightarrow{p \ a} \langle p \ a \rangle} \xrightarrow{DECIDE}$$

$$\frac{P; p \ a \xrightarrow{p \ a} p(a)}{P; p \ a \xrightarrow{p \ a} \langle p \ a \rangle} \xrightarrow{DECIDE}$$

Not so lucky case: universal coinductive invariant WATT

Example

$$\kappa_1 : \forall x, p(f|x) \supset p|x$$

Find invariant for: $p|a \longrightarrow p(f|a) \longrightarrow ...?$

$$\frac{P; \forall x, p \times \stackrel{p \text{ of } a)}{\rightarrow} p \text{ (f a)}}{P; \forall x, p \times \stackrel{p \text{ of } a)}{\rightarrow} p \text{ (f a)}} \forall L$$

$$\frac{P; \forall x, p \times \stackrel{p \text{ a}}{\rightarrow} p \text{ a}}{P; \forall x, p \times \stackrel{p \text{ of } a)}{\rightarrow} p \text{ (f a)}} DECIDE$$

$$\frac{P; \forall x, p \times \stackrel{p \text{ a}}{\rightarrow} p \text{ a}}{P; \forall x, p \times \stackrel{p \text{ (f a)} \supset p \text{ a}}{\rightarrow} \langle p \text{ a} \rangle} \forall L$$

$$\frac{P; \forall x, p \times \stackrel{p \text{ of } a) \supset p \text{ a}}{\rightarrow} \langle p \text{ a} \rangle}{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} DECIDE$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle}{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \forall R} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p(f(x)) \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \nabla P$$

Not so lucky case: universal coinductive invaria HERIO1 WATT

Example

$$\kappa_1 : \forall x, p(f|x) \supset p|x$$

Find invariant for: $p|a \longrightarrow p(f|a) \longrightarrow ...?$

$$\frac{P; \forall x, p \times \stackrel{p \text{ of } a)}{\rightarrow} p \text{ (f a)}}{P; \forall x, p \times \stackrel{p \text{ of } a)}{\rightarrow} p \text{ (f a)}} \forall L$$

$$\frac{P; \forall x, p \times \stackrel{p \text{ a}}{\rightarrow} p \text{ a}}{P; \forall x, p \times \stackrel{\forall x, p \times}{\rightarrow} p \text{ (f a)}} DECIDE$$

$$\frac{P; \forall x, p \times \stackrel{p \text{ of } a) \supset p \text{ a}}{\rightarrow} \langle p \text{ a} \rangle}{P; \forall x, p \times \stackrel{\forall x, p \text{ (f a)} \supset p \text{ a}}{\rightarrow} \langle p \text{ a} \rangle} \forall L$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} DECIDE$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} DECIDE$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} \forall R$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} \langle p \text{ a} \rangle} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \text{ (f (x))} \supset p \times}{\rightarrow} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \times}{\rightarrow} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \times}{\rightarrow} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \times}{\rightarrow} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \times}{\rightarrow} dR$$

$$\frac{P; \forall x, p \times \stackrel{\forall x, p \times}{\rightarrow} dR$$

Finally, get $(p \ a)$ as a corollary. ... QUIZ!

Unlucky case: implicative coinductive invariant

Example

```
\kappa_1: \forall x, p(f \ x) \land q \ x \supset p \ x
\kappa_2: q(a);
```

$$\kappa_3: \forall x, q \ x \supset q(f \ x)$$

$$\kappa_3: \forall x, q \ x \supset q(t \ x)$$

$$\underbrace{p \ a}_{p(f \ f \ a) \land q(f \ a)}^{apply} \stackrel{\kappa_1}{\longrightarrow} p(f \ a) \land q(f \ a) \xrightarrow{apply} \stackrel{\kappa_2}{\longrightarrow} p(f \ a) \xrightarrow{apply} \stackrel{\kappa_1}{\longrightarrow} p(f \ a) \land q(f \ a) \xrightarrow{apply} \stackrel{\kappa_3}{\longrightarrow} p(f \ f \ a) \land q(f \ a) \xrightarrow{apply} \stackrel{\kappa_3}{\longrightarrow} p(f \ f \ a) \land q(f \ a) \xrightarrow{apply} \stackrel{\kappa_3}{\longrightarrow} p(f \ f \ a) \land q(f \ a) \xrightarrow{apply} \stackrel{\kappa_3}{\longrightarrow} p(f \ f \ a) \land q(f \ a) \xrightarrow{apply} \stackrel{\kappa_3}{\longrightarrow} p(f \ f \ a) \land q(f \ a) \xrightarrow{apply} \stackrel{\kappa_3}{\longrightarrow} p(f \ a) \xrightarrow{apply} p(f \ a) \xrightarrow{apply}$$

$$p(\Gamma \cap a) \wedge q(\Gamma \cap a) \wedge q \cap a \longrightarrow 0$$

Unlucky case: implicative coinductive invariant

Example

$$\kappa_1: \forall x, p(f \ x) \land q \ x \supset p \ x$$

$$\kappa_2$$
: $q(a)$;

$$\kappa_3: \forall x, q \ x \supset q(f \ x)$$

Find invariant for:

$$p \xrightarrow{apply} {\kappa_1} p(f \ a) \land q \ a \xrightarrow{apply} {\kappa_2} p(f \ a) \xrightarrow{apply} {\kappa_1} {\kappa_2} p(f \ a) \xrightarrow{apply} {\kappa_1} {\kappa_2} p(f \ a) \xrightarrow{apply} {\kappa_2} p(f \ a) \xrightarrow{appl$$

	least fixed point	greatest fixed point
finite terms	$ \begin{cases} q & a, q(f & a), \\ q(f & f & a), \dots \end{cases} $	$\{p \ a, p \ (f \ a), p(f \ f \ a), \dots \}$
finite and infinite terms	$ \begin{cases} q & a, q(f & a), \\ q(f & f & a), \dots \end{cases} $	$\{p \ a, p \ (f \ a), p(f \ f \ a), \dots$ $p(f^{\omega}), q \ a, q(f \ a), \ q(f \ f \ a),$ $\dots q \ f^{\omega} \}$

SITY

Unlucky case: implicative coinductive invariant

Example

 $\kappa_1: \forall x, p(f \ x) \land q \ x \supset p \ x$

 κ_2 : q(a);

 $\kappa_3: \forall x, q \ x \supset q(f \ x)$

Find invariant for:

$$\underline{p} \xrightarrow{a} \xrightarrow{apply} {}^{\kappa_1} p(f \ a) \land q \ a \xrightarrow{apply} {}^{\kappa_2} p(f \ a) \xrightarrow{apply} {}^{\kappa_1}$$

$$p(f \ f \ a) \land q(f \ a) \xrightarrow{apply} {}^{\kappa_3} p(f \ f \ a) \land q \ a \longrightarrow \dots?$$

	least fixed point	greatest fixed point
finite terms	$\begin{cases} q & a, q(f & a), \\ q(f & f & a), \ldots \end{cases}$	$\{p \ a, p \ (f \ a), p(f \ f \ a), \dots \}$ $q \ a, q(f \ a), q(f \ f \ a), \dots \}$
finite and infinite terms	$ \begin{cases} q & a, q(f & a), \\ q(f & f & a), \dots \end{cases} $	$\{p \ a, p \ (f \ a), p(f \ f \ a), \dots$ $p(f^{\omega}), q \ a, q(f \ a), \ q(f \ f \ a),$ $\dots q \ f^{\omega} \}$

The only working coinductive invariant is $\forall x, q \ x \supset p \ x$, QUIZ!!!

Final example

• $frStr = fix \ \lambda \ f \ x.scons \ x \ (f(s \ x)) = fix \ \lambda \ f \ x.[\ x,(f(s \ x))]$

$$\frac{P; CH^{from (s C)}(frStr(s C))}{P; CH^{from (s C)}(frStr(s C))} from (s C) (frStr(s C))} + VL$$

$$\frac{P; CH^{from (s C)}(frStr(s C))}{P; CH^{from (s C)}(frStr(s C))} from C [C, frStr(s C))]} + VL$$

$$\frac{P; CH^{from (s C)}(frStr(s C)) from C [C, frStr(s C)]}{P; CH^{from (s C)}(frStr(s C))} from C [C, frStr(s C)]} + VL$$

$$\frac{P; CH^{from (s C)}(frStr(s C)) from C [C, frStr(s C)]}{P; CH^{from (s C)}(frStr(s C))} from C [C, frStr(s C)]} + from C [C, frStr(s C)]}{P; CH^{from (s C)}(frStr C)} + from C [C, frStr(s C)]} + OCCUP + OCCUP$$

Final example

• $frStr = fix \ \lambda \ f \ x.scons \ x \ (f(s \ x)) = fix \ \lambda \ f \ x.[\ x,(f(s \ x))]$

$$\frac{P; CH^{from (s C)}(frStr(s C))}{P; CH^{from (s C)}(frStr(s C))} from C [C, frStr(s C)]} = \frac{P; CH^{from (s C)}(frStr(s C))}{P; CH \rightarrow from (s C)} (frStr(s C))} + \frac{P; CH^{from (s C)}(frStr(s C))}{P; CH \rightarrow from (s C)} DECIDE} > L$$

$$\frac{P; CH^{from (s C)}(frStr(s C)) \rightarrow from C [C, frStr(s C)]}{P; CH \rightarrow from (s C)} from C [C, frStr(s C)]} + \frac{P; CH^{\forall x \ y, from (s \ x)} y \supset from \ x \ [x,y]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} DECIDE} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow from \ C \ [C, frStr(s C)]}{P; CH \rightarrow from \ C \ [C, frStr(s C)]} + \frac{P; CH \rightarrow fro$$

▶ get from 0 (frStr 0) as a corollary

QUIZ!!!

Current progress:

Analysis of coinductive properties of theories based on the language in which their coinductive invariants are expressed:

Current progress:

Analysis of coinductive properties of theories based on the language in which their coinductive invariants are expressed:

Miller and Nadathur:

Current progress:

Analysis of coinductive properties of theories based on the language in which their coinductive invariants are expressed:

Coinductive Theory exploration

Coinductive Theory exploration

QUIZ: where CoHipster's lemmas would live?

Thanks for your attention!