mpxtractor: A flexible R package to process data from different plate reader machines

Student: Martin Banchero

Supervisor: Douwe Molenaar, PhD

High-throughput experiments

Broad popularity:

- Drug discovery
- Food research
- Biofuels
- Test hundreds of samples simultaneously.
- Allow to collect, analyze data about complex interactions within biological systems.

Microplate reader machines in the lab

FluoStar Omega

- Fluorescence intensity,
- Time-resolved fluorescence
- Absorbance
- Luminescence.

Multiskan GO

- Spectral scanning
- Single point in time (endpoint)
- Over specified period of time (Kinetic)

SpectraMax

- Optical density (OD)
- endpoint
- kinetic
- spectral scan

Microplate reader machines: Raw data

Output file FLUOStar Omega

Measures at 6 time points

```
Path: C:\Program Files (x86)\BMG\Omega\User\Data\
1 User: USER
2 Test ID
  221
3 Test Name: Test Fluorescence
                                  Date: 29/08/2019
                                                           Time:
  15:04:05
4 ID1: Reading
5 ID2:
  Fluorescence
 6 Fluorescence
  (FI)
9 "Well
          "Well
10 Row"
11 Col"
          Content
                          "Raw Data (485, 520)
                  "Raw Data (485, 520)
      0 h 2 min
                          "Raw Data (485, 520)
                          "Raw Data (485, 520)
                          "Raw Data (485, 520)
      0 h 17 min "
                          "Raw Data (485, 520)
176 - 0 h 22 min "
                          "Raw Data (485, 520)
                                                                           0.29222222
                                                                                            0.376666667
19 A
                  Sample X1
                                           186950
                                                                           191198
20 A
                  Sample X2
                                  186784 186224
                                                                   188480
                                                                           188519
                                                                                              Fluorescence
```

Schematic representation 96 microplate

Microplate reader machines: Raw data

Output file Multiskan GO: List format

1 Plate	Well	Group	Type	Sample	Wavelength	Reading	Abs	Meas. Ti
2 Plate 1	C02	Assay	Calibrator	1 1/1	340	1	0.231	0.330
3 Plate 1	C02	Assay	Calibrator	1 1/1	340	2	0.233	30.320
4 Plate 1	C02	Assay	Calibrator	1 1/1	340	3	0.235	60.320
5 Plate 1	C02	Assay	Calibrator	1 1/1	340	4	0.237	90.320
6 Plate I			Calibrator		340	1		0.690
7 Plate 1			Calibrator		340	2	0.239	30.690
8 Plate 1	D02	Assay	Calibrator	2 1/1	340	3	0.240	60.690
9 Plate 1	D02	Assay	Calibrator	2 1/1	340	4	0.242	90.690
10 Plate 1	E02	Assay	Calibrator	3 1/1	340	1	0.241	1.020
11 Plate 1	E02	Assay	Calibrator	3 1/1	340	2	0.244	31.020
12 Plate 1	E02	Assay	Calibrator	3 1/1	340	3	0.246	61.020
13 Plate 1	E02	Assay	Calibrator	3 1/1	340	4	0.250	91.020
14 Plate 1	F02	Assay	Calibrator	4 1/1	340	1	0.231	1.390
15 Plate 1	F02	Assay	Calibrator	4 1/1	340	2	0.235	31.380
16 Plate 1	F02	Assay	Calibrator	4 1/1	340	3	0.238	61.380
17 Plate 1	F02	Assay	Calibrator	4 1/1	340	4	0.242	91.380
18 Plate 1	C03	Assay	Control	5 1/1	340	1	0.240	0.350
19 Plate 1	C03	Assay	Control	5 1/1	340	2	0.246	30.340
20 Plate 1	C03	Assay	Control	5 1/1	340	3	0.251	60.340
21 Plate 1	C03	Assay	Control	5 1/1	340	4	0.257	90.340
22 Plate 1			Control	6 1/1	340	1	0.240	0.680
		,						

4 readings every 30 seconds

 No time present in table format

Output file Multiskan GO: Table format

```
1Results of Photometric1
2
3     Plate: Plate 1 - Wavelength: 600
4
5     Reading: 1
6     0.088    0.090    0.090    0.088    0.090    0.091    0.090    0.090    0.089
0.091    0.093    0.090    0.090    0.089    0.089    0.088    0.088    0.089    0.089
0.088    0.089    0.089
```


Microplate reader machines: Raw data

Output file SpectraMax(.txt)

	U	cpac		Spc		41°14	~(: -	,				
1	.Time(hh	:mm:ss)	Tempera	ture(°C)	A1	A2	A3	A4	A5	A6	Α7	A8
1	A1/	A18	A19	A20	A21	A22	A23	A24	B1	B2	B3	B4
	B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24
	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20
	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15	D16
	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
	E21	E22	E23	E24	F1	F2	F3	F4	F5	F6	F7	F8
	F17	F18	F19	F20	F21	F22	F23	F24	G1	G2	G3	G4
	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	G23	G24
	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
	15	16	17	18	19	I10	I11	I12	I13	I14	I15	I16
	J1	J2	J3	J4	J5	J6	J7	J8	J9	J10	J11	J12
	J21	J22	J23	J24	K1	K2	K3	K4	K5	K6	K7	K8
	K17	K18	K19	K20	K21	K22	K23	K24	L1	L2	L3	L4
	L13	L14	L15	L16	L17	L18	L19	L20	L21	L22	L23	L24
	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
	N5	N6	N7	N8	N9	N10	N11	N12	N13	N14	N15	N16
	01	02	03	04	05	06	07	08	09	010	011	012
	021	022	023	024	P1	P2	P3	P4	P5	P6	P7	P8
4	P17	P18	P19	P20	P21	P22	P23	P24	0.15	0 144	0 1404	0 1206
1	0,1526	30,00 0,1343	0,0821 0,1551	0,1387 0,1399	0,1438 0,1458	0,1558 0,0833	0,1416 0,1552	0,1425 0,2537	0,15 0,2535	0,144 0,2781	0,1404 0,2708	0,1396 0,2755
	0,1320	0,1343	0,1331	0,1399	0,1438	0,0633	0,1332	0,2337	0,2559	0,2781	0,2708	0,2733
	0,2709	0,2400	0,2439	0,2621	0,2329	0,2023	0,2662	0,2632	0,2535	0,134	0,1330	0,2329
	0,3045	0,2796	0,2774	0,2822	0,2748	0,2748	0,2002	0,2878	0,2792	0,2302	0,2203	0,2330
	0,1655	0,2730	0,1709	0,1728	0,1718	0,1803	0,1702	0,171	0,1694	0,1779	0,1707	0.1744
	0,1715	0,1757	0,1418	0,2444	0,2708	0.2746	0,2765	0,2851	0,2832	0,2881	0,2845	0,284
	0.2801	0.2912	0.294	0.296	0.2817	0.1929	0.1425	0.2675	0.2616	0.2755	0.281	0.2843

 Different researchers using different formats, .txt, .csv, xlsx

A	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	AA	AB	AC	AD	AE	AF	AG	AH	Al
1 Time(hh:mm:ss)	Temperature(°C)	A1	A2	A3	A4	A5	A6	A7	A8	A9				B1	B2	B3	B4 E	35	B6	B7	B8	B9			B12	C1	C2	C3	C4 (C5 (C6 C	7	C8	C9
2 0:00	37							0.3911	0.3963	0.3995										0.7936	0.6018	0.8342										1.2167	0.8148	1.2405
3 0:05	37							0.3902	0.3969	0.4003										0.7962	0.6028	0.836										1.2196	0.8231	1.2427
4 0:10	37							0.3908	0.3969	0.4011										0.7971	0.6031	0.8368										1.221	0.8243	1.2438
5 0:15	37							0.3907	0.3969	0.4013										0.7979	0.6034	0.8374										1.2218	0.8259	1.2442
6 0:20	37							0.3909	0.3969	0.4007										0.7985	0.6039	0.8377										1.2234	0.8284	1.2459
7 0:25	37							0.3909	0.3973	0.4004										0.7993	0.6042	0.8381										1.2241	0.8289	1.2464
8 0:30	37							0.391	0.3974	0.4008										0.8	0.6046	0.8388										1.2252	0.8299	1.247
9 0:35	37							0.3911	0.3975	0.4008										0.8004	0.6048	0.84										1.2255	0.8307	1.2471
													-																_	_				

Experimental design: Layout files

Layout files contain:

- A description of the location and content of each well.
- Indicating if the well is control or a sample
- Control variables, like concentration or pH.
- Information in layout files not present in raw output files from plate readers.

A	В	С	D	E		F	G		Н		J	K	
strain	1	. 2		3	4	5		6	7	8	9		10
A	water	water	water	water	W	vater	water		water	water	water	water	
В	water	MG1363	MG1363	MG1363	N	/IG1363	MG1363		MG1363	MG1363	MG1363	MG1363	
С	water	MG1363	MG1363	MG1363	N	/IG1363	MG1363		MG1363	MG1363	MG1363	MG1363	
D	water	MG1363	MG1363	MG1363	N	/G1363	MG1363		MG1363	MG1363	MG1363	MG1363	
E	water	MG1363	MG1363	MG1363	N	/G1363	MG1363		MG1363	MG1363	MG1363	MG1363	
F	water	MG1363	MG1363	MG1363	N	/IG1363	MG1363		MG1363	MG1363	MG1363	MG1363	
G	water	MG1363	MG1363	MG1363	N	/IG1363	MG1363		MG1363	MG1363	MG1363	MG1363	
H	water	MG1363	MG1363	MG1363		/IG1363	MG1363			MG1363	MG1363	MG1363	
I	water	MG1363	MG1363	MG1363	N	/IG1363	MG1363		MG1363	MG1363	MG1363	MG1363	
J	water	MG1363	MG1363	MG1363	N	/IG1363	MG1363			MG1363	MG1363	MG1363	
K	water	MG1363	MG1363	MG1363	N	/IG1363	MG1363		MG1363	MG1363	MG1363	MG1363	
L	water	MG1363	MG1363	MG1363	N	/IG1363	MG1363		MG1363	MG1363	MG1363	MG1363	
M	water	MG1363	MG1363	MG1363	N	/IG1363	MG1363		MG1363	MG1363	MG1363	MG1363	
N	water	NCDO712	NCDO712	NCDO712	N	ICDO712	NCDO712		NCDO712	NCDO712	NCDO712	NCDO712	
О	water	water	water	water	W	vater	water		water	water	water	water	
P	water	water	water	water	W	vater	water		water	water	water	water	
concentration	1	. 2	2	3	4	5		6	7	8	9		1
A	100	20)	4	8.0	0.16	0.	.032	0.0681	0.00128	0.000256	5.12	E-0
В	100	20)	4	8.0	0.16	0.	.032	0.0681	0.00128	0.000256	5.12	E-0
С	100			4	8.0	0.16	0.	.032	0.0681	0.00128	0.000256	5.12	E-0
D	100			4	8.0	0.16	0.	.032	0.0681	0.00128	0.000256	5.12	E-0
E	100	20		4	8.0	0.16	0.	.032	0.0681	0.00128	0.000256	5.12	E-0
F	100			4	8.0	0.16		.032		0.00128	0.000256	5.12	E-0
G	100	20)	4	8.0	0.16	0.	.032	0.0681	0.00128	0.000256	5.12	E-0
H	100				8.0	0.16		.032		0.00128	0.000256	5.12	E-0
I	100				8.0	0.16		.032		0.00128			
J	100	20)	4	8.0	0.16	0.	.032	0.0681	0.00128	0.000256	5.12	E-0
K	100			4	8.0	0.16		.032		0.00128	0.000256		
L	100	20)	4	8.0	0.16	0.	.032	0.0681	0.00128	0.000256	5.12	E-0
M	100				8.0	0.16		.032		0.00128	0.000256		
N	100				8.0	0.16		.032		0.00128			
О	100			4	8.0	0.16	0.	.032	0.0681	0.00128	0.000256	5.12	E-0
P	100	20		4	8.0	0.16	0.	.032	0.0681	0.00128	0.000256	5.12	E-0
<u>I</u>	100	20)	4	8.0	0.16	0.	.032	0.0681	0.00128	0.000256	5.12	E-0
basic	1	. 2	2	3	4	5		6	7	8	9		1
A	control	control	control	control	С	ontrol	control		control	control	control	control	
В	control	sample	sample	sample	s	ample	sample		sample	sample	sample	sample	
С	control	sample	sample	sample	s	ample	sample		sample	sample	sample	sample	
D	control	sample	sample	sample	s	ample	sample		sample	sample	sample	sample	
E	control	sample	sample	sample	c	ample	sample		sample	sample	sample	sample	

Recap:

- Different possible output files formats.
 - .txt, csv, xlsx depends on the user
 - Different data representation, i.e multiskan GO list or table format depending on the manufacturer.
- Information in layout files not included in raw data files.

Previous packages to process microplate raw data

- cellHTS2(2006)
 - Framework for RNAi screening
 - Raw files has to be formatted before analysis
 - Ref: M. Boutros, L. P. Brás, and W. Huber, "Analysis of cell-based RNAi screens," Genome Biol.
- Douwe first package(2010)
 - O Parser only for SpectraMax, also need for update
- Plater package(2016)
 - O Designed to read plate-shaped file format of experimental design into tidy data frame.
 - \bigcirc Also, allows the conversion of a tidy data frame into plate-shaped data.
 - Ref: S. M. Hughes, "plater: Read, Tidy, and Display Data from Microtiter Plates."

Tidy data

- Tidy data is a standard way to organize data
- Well suited for vectorised programming languages like R
- Easy to plug into tidyverse collection of R packages for data analysis

Variables

#>	# A tibb	le: 6 x 4)
#>	Wells	Time	Temperature	Measurement
#>	< ₩ r>	<e*></e	<chr< td=""><td><e**></e</td></chr<>	<e**></e
#>	1 A)1	00:(0):00	30,0	0.0321
#>	2 A)1	00:(2:00	30,0	0.0311
#>	3 A 1	00:(1:00	30,0	0.031
#>	4 A 2	00:(0):00	30,0	0.189
#>	5 A 2	00:(2:00	30,0	0.0318
#>	6 A 2	00:44:00	30,0	0.4 22
	•		. •	•

 Each variable represented as column

Observations

/					
	#>	# A tibb	le: 6 x 4		
	#>	Wells	Time	Temperature	Measurement
	#>	1chr>	<chr></chr>	<chr></chr>	<dbl></dbl>
	#>	1 A01	00:00:00	30,00	0.0821
	#>	2		,	
	#>	3 Å01	00:04:00	30,00	0.081
	#>	4		,	—
	#>	5 A02	00:02:00	30,00	0.0818
١	#>	6	00.01.00	50,00	0.002
	•				4

 Each observation represented by a row

 Each value belong to one cell

H. Wickham, "Tidy data," J. Stat. Softw., vol. 59, no. 10, pp. 1–23, Sep. 2014.

Project goal

The main goal of this research project is to develop an R package to:

- Reduce the time of data pre-processing in high-throughput experiments and improve standardization.
 - Process different output files from micro-plates readers. Store this information as tidy data.
 - Process layout files. Store this into tidy data
 - Combine output files with layout files into one tidy tibble object.

mpxtractor

- The main function of mpxtractor is to provide a simple method that can process raw data from microplate readers:
 - SpectraMax
 - FluorStar
 - MultiscanGO
- This package generates tidy tibble objects, this data can be easily combined with layout files.
- Growth rates can be calculated and plot over a microplate-shape format.

Package available here:

https://github.com/MartinBanchero/mpxtractor

open source license GPL-3

Data

SpectraMax

2 files:

Time: 26 hs and 16 hs, interval 2 minutes. Temperature: 30°C

Multiskan GO:

2 files: 1000 readings Time interval 2 minutes. Demo files for list format.

FluorStar:

2 files:

Time 20 hs 30 minutes Time interval 2 minutes

Sieze Douwenga, PhD student at Systems Biology lab-VU

Mpxtractor: flowchart

- Wrangling functions
- Plotting functions

Wrangling functions: SpectraMax files

Caption raw file SpectraMax

		- 1				$\overline{}$	•					
1	Time(hh	:mm:ss)	Temperat	ture(°C)	A1	A2	A3	A4	A5	A6	A7	A8
	A17	A18	A19	A20	A21	A22	A23	A24	B1	B2	B3	B4
	B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24
	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20
	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15	D16
	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
	E21	E22	E23	E24	F1	F2	F3	F4	F5	F6	F7	F8
	F17	F18	F19	F20	F21	F22	F23	F24	G1	G2	G3	G4
	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	G23	G24
	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
	15	I6	I7	18	19	I10	I11	I12	I13	I14	I15	I16
	J1	J2	J3	J4	J5	J6	J7	J8	J9	J10	J11	J12
	J21	J22	J23	J24	K1	K2	K3	K4	K5	K6	K7	K8
	K17	K18	K19	K20	K21	K22	K23	K24	L1	L2	L3	L4
	L13	L14	L15	L16	L17	L18	L19	L20	L21	L22	L23	L24
	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
	N5	N6	N7	N8	N9	N10	N11	N12	N13	N14	N15	N16
	01	02	03	04	05	06	07	08	09	010	011	012
	021	022	023	024	P1	P2	P3	P4	P5	P6	P7	P8
- 6	P17	P18	P19	P20	P21	P22	P23	P24				
	0:00	30,00	0,0821	0,1387	0,1438	0,1558	0,1416	0,1425	0,15	0,144	0,1404	0,1396
	0,1526	0,1343	0,1551	0,1399	0,1458	0,0833	0,1552	0,2537	0,2535	0,2781	0,2708	0,2755
	0,2769	0,2466	0,2459	0,2505	0,2529	0,2623	0,2626	0,2708	0,2559	0,134	0,1536	0,2529
	0,3049	0,2984	0,2645	0,2621	0,26	0,2732	0,2662	0,2632	0,2606	0,2302	0,2265	0,2956
	0,2775	0,2796	0,2774	0,2822	0,2748	0,2748	0,2737	0,2878	0,2792	0,2786	0,273	0,282
	0,1655	0,17	0,1709	0,1728	0,1718	0,1803	0,1702	0,171	0,1694	0,1779	0,1707	0,1744
	0,1715	0,1757	0,1418	0,2444	0,2708	0,2746	0,2765	0,2851	0,2832	0,2881	0,2845	0,284
	A 28A1	A 2912	A 294	A 296	A 2817	ค 1979	A 1425	A 2675	A 2616	A 2755	A 281	A 2843

- Example of usage and output of read_spectramax_data()
- R> data_spectramax <- mpxtractor::read_spectramax_data(file = file_path)</p>
- R> head(data_spectramax)

#> # A tibb	le: 6 x 4		
#> Wells	Time	Temperature	Measurement
#> <chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>
#> 1 A 01	00:00:00	30,00	0.0821
#> 2 A 01		30,00	0.0811
#>3A01	00:04:00	30,00	0.081
#>4A02	00:00:00	30,00	0.139
#> 5 A 02		30,00	0.0818
#> 6 A 02	00:04:00	30,00	0.0822

Wrangling functions: Multiskan GO files

Caption raw file: table format

R> data multiscan <- mpxtractor::read_multiscango_data(file = file_path, time_interval = "2.5 min")
R> head(data multiscan)

0.081

#> # A tibble: 6 x 5 Reading wavelength Measurement Time <chr>> <chr> <dbl> #> 1 A01 00:00:00 600 0.081 #> 2 A01 00:02:30 0.081 600 #> 3 A01 00:05:00 600 0.081 #> 4 A01 00:07:30 600 0.081#> 5 A01 00:10:00 600 0.081

600

#> 6 A01

00:12:30

Example of usage and output of read_multiscan_data()

Wrangling functions: Multiskan GO files

Caption raw file: List format

1 Plate		Well	Group	Туре	Sample		Wavelength	Reading	Abs	Meas.	Time	[s]
2 Plate	1	C02	Assay	Calibrator	1 1/1		340	1	0.231	0.330	7	
3 Plate	1	C82	Assay	Calibrator	1 1/1		340	2	0.233	30.320		
4 Plate	1	C82	Assay	Calibrator	1 1/1		348	3	0.235	60.320		
5 Plate	1	C02	Assay	Calibrator	1 1/1		340	4	0.237	90.320		
6 Plate	1	D82	Assay	Calibrator	2 1/1		348	1	0.234	0.690		
7 Plate	1	D82	Assay	Calibrator	2 1/1		348	2	0.239	30.698		
8 Plate	1	D82	Assay	Calibrator	2 1/1		340	3	0.240	60.698	0	
9 Plate	1	D82	Assay	Calibrator	2 1/1		348	4	0.242	90.698		
10 Plate	1	E02	Assay.	Calibrator	3 1/1		340	1	0.241	1.020	_	
11 Plate	1	E02	Assay	Calibrator	3 1/1		348	2	0.244	31.020		
12 Plate	1	E02	Assay	Calibrator	3 1/1		348	3	0.246	61.020		
13 Plate	1	E02	Assay	Calibrator	3 1/1		340	4	0.250	91.020		
14 Plate	1	F82	Assay	Calibrator	4 1/1		348	1	0.231	1.390		
15 Plate	1	F02	Assay	Calibrator	4 1/1		340	2	0.235	31.388		
16 Plate	1	F02	Assay	Calibrator	4 1/1		340	3	0.238	61.380		
17 Plate	1	F82	Assay	Calibrator	4 1/1		348	4	0.242	91.388		
18 Plate	1	C03	Assay	Control	5 1/1		340	1	0.240	0.350		
19 Plate	1	C83	Assay.	Control	5 1/1		348	2	0.246	30.340		
28 Plate	1	C83	Assay	Control	5 1/1		348	3	0.251	60.348		
21 Plate	1	C03	Assay	Control	5 1/1		340	4	0.257	90.340		
22 Plate				Control	6 1/1		348	1	0.240	0.680		
23 Plate	1	D83	Assay	Control	6 1/1		348	2	0.246	30.678		
24 Plate	1	D83	Assay	Control	6 1/1		340	3	0.252	60.670		
25 Plate	1	D83	Assay	Control	6 1/1		348	4	0.259	90.678		
26 Plate	1	E03	Assay	Control	7 1/1		340	1	0.274	1.040		
27 Plate	1	E03	Assay	Control	7 1/1		348	2	0.281	31.030		
28 Plate	1	E03	Assay	Control	7 1/1		348	3	0.289	61.030		
29 Plate	1	E03	Assay	Control	7 1/1		340	4	0.296	91.040		
38 Plate	1	882	Assay	Blank	Blank_Assay	1/1	348	1	0.231	0.000		
31 Plate	1	B82	Assay	Blank	Blank Assay	1/1	340	2	0.230	30.608		
32 Plate	1	882	Assay	Blank	Blank_Assay	1/1	340	3	0.231	60.000		
33 Plate	1	882	Assay	Blank	Blank Assay	1/1	348	4	0.231	90.000		

R> data_multiscan <- mpxtractor::read_multiscango_data(file_path, input_type = "list")
R> head(data_multiscan)

Wells <chr></chr>		Measurement <dbl></dbl>	Plate <chr></chr>			Sample schr>	Wavelength <dbi></dbi>	Reading <dbl></dbl>	Mejas.time.sec <dbl></dbl>
C02	00:00:00	0.231	Plate 1	Assay	Calibrator 1	1/1	340	1	0.33
C02	00:00:30	0.233	Plate 1	Assay	Calibrator 1	1/1	340	2	30.32
C02	00:01:00	0.235	Plate 1	Assay	Calibrator 1	1/1	340	3	60.32
C02	00:01:30	0.237	Plate 1	Assey	Calibrator 1	1/1	340	4	90.32
D02	00:00:00	0.236	Plate 1	Assay	Calibrator 2	1/1	340	1	0.69
D02	00:00:30	0.239	Plate 1	Assay	Calibrator 2	1/1	340	2	30.69

Example of usage and output of read_multiscan_data()

Wrangling functions: FluorStar files

Caption raw file

Example of usage and output of read_fluorstar_data()

R> data_fluorstar <- mpxtractor::read_fluorstar_data(file = file_path)
R> head(data_fluorstar)

#> # A tibb	le: 6 x 5			
#> Wells	Sample	Time	Measurement	wavelength
#> <chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>
#> 1 A01	" X1"	00:00:00	186705	485, 520
#> 2 A01	" X1"	00:02:00	186950	485, 520
#> 3 A01	" X1"	00:07:00	188978	485, 520
#> 4 A01	" X1"	00:12:00	189018	485, 520
#> 5 A01	" X1"	00:17:00	189620	485, 520
#> 6 A01	" X1"	00:22:00	191198	485, 520

Read multiple data files

Usage and output of read_multiple_data_files

plate 2

plate 2

plate 2

plate 2

plate 2

```
R> data_multiple_spectramax <- mpxtractor::read_multiple_data_files(
reader type = "spectramax",
filesname = file path.
plate names = c("plate 1", "plate 2")
R> head(data multiple spectramax)
#> # A tibble: 6 x 5
    Wells Time
                   Temperature Measurement plate filename
                                                <chr>
    <chr> <chr>
                     <chr>
                                   <dbl>
#> 1 A01
         00:00:00
                     30,00
                                  0.0821
                                               plate 1
                     30,00
                                               plate 1
#> 2 A01
         00:02:00
                                  0.0811
         00:04:00
                     30.00
                                               plate 1
#> 3 A01
                                  0.081
         00:00:00
                     30,00
                                  0.139
                                               plate 1
                                               plate 1
#> 5 A02
         00:02:00
                     30.00
                                  0.0818
#> 6 A02
         00:04:00
                     30.00
                                  0.0822
                                               plate 1
R> tail(data multiple spectramax)
#> # A tibble: 6 x 5
                   Temperature Measurement plate filename
    Wells Time
    <chr> <chr>
                     <chr>
                                  <dbl>
                                               <chr>
                    30.00
                                0.0801
                                               plate 2
         00:00:00
```

0.0799

0.0812

0.0811

0.0815

0.08

00:02:00

00:04:00

00:00:00

00:02:00

#> 6 P24 00:04:00

30.00

30.00

30.00

30.00

30.00

This function take as argument the type of reader machine(blue) and the name of the file(red)

Read layout files

Caption layout file

	B			E	F					K		M
1 basic	1	2		3 4	. 5	- 6	7		9	10	11	12
2 A	contr	sample	sample	sample	sample	sample	sample	control	sample	sample	sample	control
3 B	contr	sample	sample	sample	sample	sample	sample	control	sample	sample	sample	control
4 C	contr	sample	sample	sample	sample	sample	sample	control	sample	sample	sample	control
5 D	contr	sample	sample	control	sample	sample	sample	control	sample	sample	sample	control
6 E 7 F	contr	sample	sample	sample	sample	sample	sample	control	sample	sample	sample	control
	contr	sample	sample	затріе	sample	sample	sample	control	sample	sample	sample	control
8 G.	contr	sample	sample	sample	sample	sample	sample	control	sample	sample	sample	control
9 H	contr	sample	sample	semple	sample	sample	sample	control	sample	sample	sample	control
11 medium	-	- 5					7			10	11	12
12 A	milk	mik	milk	milk	mik sun	mik sup	milk sup	mik sun	fit mik sup			
13 8		milk	milk	mik					fit mik sup			
14 C		milk	milk	mik					fit milk sup			
15 D		milk	milk.	milk					St mik sup			
16 E		milk	milk	mik					fit milk sup			
17 F	yndk	milk	milk	milk					fit mik sup			
18 6	milk	milk	milk	milk	mik sup	mik sup	milk sup	milk sup	fit mik sup	fit milk sup	filt milk sup	filt milk sup
19 H	milk	milk	milk	milk	milk_sup	mik_sup	mik_sup	milk_sup	fit mik sup	tit mik sup	filt milk sup	fit mik sup
21 concentration	1			3 4	5	6	7	8	9	10	11	
22 A	100	20		4 0.8	0.16	0.032	0.0064	0.00128	0.000256	5.12E-05	1.024E-05	
23 8	100	26		4 0.8	0.16	0.032	0.0064	0.00128	0.000256	5.12E-05	1.024E-05	
24 C	100	26		4 0.8	0.16	0.032	0.0064	0.00128	0.000256	5.12E-05	1.024E-05	
E D	100	20		4 0.8	0.16	0.032	0.0064	0.00128	0.000256	5.12E-05	1.024E-05	
26 E	100	20	1	0.6	0.16	0.032	0.0064	0.00128	0.000256	5.12E-05	1.024E-05	
27 F	100			4 0.4	0.16	0.032	0.0064	0.00128	0.000256	5.126-05	1.0246-05	
78 G	100			4 0.8				0.00128	0.000256	5.12E-05		
79 H	100	26		4 0.8	0.16	0.032	0.0064	0.00128	0.000256	5.12E-05	1.024E-05	- 0

R> df layout <- mpxtractor::read layout file(file)

R> head(df layout)

Wells <chr></chr>	<pre>basic <chr></chr></pre>	medium <chr></chr>	concentration <dbl></dbl>
1 A01	control	milk	100
2 A02	sample	milk	20
3 A03	sample	milk	4
4 A04	sample	milk	0.8
5 A05	sample	milk_sup	0.16
6 A06	sample	milk_sup	0.032

Example of usage and output of read_layout_file()

read_layout_file() similar to
 read plate() from plater package
S. M. Hughes, "plater: Read, Tidy, and Display Data from Microtiter Plates."

Combine data files with layout files

df data: Raw data into tibble

Reader_type: Specified reader machine

```
R> df_data_fl <- mpxtractor::read_fluorstar_data(file_fl)
R> df_data_layout <- mpxtractor::combine_data_with_lay out(
    df_data = df_data_fl,
    reader_type = "fluorstar",
    layout_files = file
    )
R> head(df_data_layout)
```

	tibble: Wells <chr></chr>	Sample <chr></chr>	Time <chr></chr>	Measurement <dbl></dbl>	wavelength <chr></chr>	basic <chr></chr>	medium <chr>></chr>	concentrat	ion layout_file <chr></chr>
1	A01	" X1"	00:00:00	3.5	600	control	milk	100	test_fluorstar_layout
2	A01	* X1*	00:02:00	3.44	600	control	milk	100	test_fluorstar_layout
3	A01	" X1"	00:07:00	3.5	600	control	milk	100	test fluorstar layout
4	A01	" X1"	00:12:00	3.5	600	control	milk	100	test fluorstar layout
5	A01	" X1"	00:17:00	3.21	600	control	milk	100	test fluorstar layout
6	A01	" X1"	00:22:00	3.35	600	control	milk	100	test fluorstar layout

Raw data combined with layout file

Plot layout file

Representation up to 2 variables through shape, color and concentration(optional)

Layout file

	A	8											
	basic	1	2	1 1	3 4		6	7		. 9	30	11	12
1	Δ.	contr	sample	sample	sample	sample	sample	sample	control	sample	sample	sample	control
3	В	contr	sample	sample	sample	sample	sample	sample	control	sample	sample	sample	control
4	C		sample	sample		sample	sample	sample	control	sample	sample	sample	control
5	D		sample	sample	control	sample	sample	sample	pontrol	sample	sample	sample	control
6	E		sample	sample	sample	sample	sample	sample	control	sample	sample	sample	control
7	F		затріе	sample	затріе	sample	sample	sample	control	sample	sample	sample	control
8	G		sample	sample		sample	sample	sample	control	sample	sample	sample	control
2	P11	contr	sample	sample	semple	sample	sample	sample	control	sample	sample	sample	control
Ø	5355000												
1	medium	. 1	2		3 4	. 8	6	7	8		10		12
16	ALC: N		mik	milk	milk					fit_mik_sup			
	8		milk	milk	mik					fit mik sup			
14	C		milk	mlk	milk					\$1 milk sup			
15	D		milk	milk	milk					Bit milk sup			
16	E		milk	milk	milk					fit milk sup			
17	F		mik	milk	milk					fit_mik_sup			
18	G		milk	milk	mik					fit_mik_sup			
19	н	milk	milk	milk	milk	Link arb	milk sup	mes sup	sear and	fit mik sup	git was onb	MI MIK SUP	ust was and
20 21	concentration	1									10	11	12
22	A:	100			4 0.8								
#	0	100			4 0.8								
23 24	o c	100			4 0.8								
윰	0	100			4 0.5								
26	E	100			4 0.1								-
27		100			4 0.1								
28	rs.	100			4 0.6								
29	н	100			4 0.8								


```
R> growth_rate_plot<- mpxtractor::plot_gr_microplate(
    df_data = df_corrected,
    var_gr = "Measurement",
    cond_to_col = "condition",
    plate_file = NULL,
    ws = "2hs",
    output_filename = NULL)</pre>
```

Plot growth rates

compute_growth_rates()
 This function calculate growth rate using
 Savitzky and Golay filter from package
 Signal.

Sav-Gol filter:

- Type of low pass filter used to smooth the data, improve graphical output due to large number of data points and random noise.
- It can be used to compute smoothed first order derivatives to obtain the growth rates.
- Use a moving window average to fit a polynomial function through the data points

Time series

Plot growth rates

```
#> # A tibble: 6 x 9
    Wells Sample Time Measurement wavelength Basic condition concentration
                                                                                layout file
     <cr> <chr> <chr> <chr> <dhl>
                                      <chr>
                                                                   <dbl>
                                                                                 <chr>
                                                <chr> <chr>
          " X1" 00:00:00 3.5
                                                   poor
                                                         milk
                                                                            test fluorstar layout
          " X1" 00:02:00
                                        600
                                                                            test fluorstar layout
                                                   poor
                                                         milk
           " X1" 00:07:00
                                        600
                                                         milk
                                                                     100
                                                                            test fluorstar layout
                                                   poor
          " X1" 00:12:00
                                        600
                                                                     100
                                                                            test fluorstar lavout
                                                         milk
                                                   poor
                                        600
                                                                            test fluorstar layout
                                                   poor
                                                         milk
#> 6 A01 "X1" 00:22:00 3.35
                                        600
                                                         milk
                                                                            test fluorstar layout
                                                   poor
```

Time series has to be fixed by user before calculate the growth rates, otherwise mpxtractor through an error.

Remark: missing values

- Missing values in column "Measurements" are imputed by taking the average between surrounding numbers.
- In this case mpxtractor shows a warning letting the user know about the imputation.

Results

Validation: Growth rates

Fluorstar data

	m	pxtractor	data	Validation data				
Wells	Time(hs	log(Abs)	Growth rate	Time(h s)	log(Abs)	Growth rate		
A01	0.03333	-0.84373	-0.07818094	0.00000	-0.843738	-0.078181		
:	:	:	:	:	:	:		
A01	1.28333	-1.175061	0.1089509	1.25000	-1.175061	0.108951		
A01	1.36666	-0.717644	0.06203398	1.3333	-0.717645	-inf		
:	:	:	:	:	:	:		
A01	2.28333	-1.161871	-0.05384393	2.25000	-1.16187	-inf		
A01	2.36666	-1.010418	0.057739	2.3333	-inf	-inf		
A01	2.45000	-0.858965	0.00011882	2.41666	-0.858966	inf		
:	:	:	:	:	:	:		
A01	3.36666	-0.999400	0.06919943	3.3333	-0.999401	inf		
A01	3.45000	-0.857078	0.08525832	3.41666	-0.857079	0.085258		
:	:	:	:	:	:	:		
A01	16.1166	-0.797175	-0.1556584	16.0833	-0.797175	0.073194		
A01				20.4166	-0.920299	0.057739		

Ws = 2hs

Value corresponding to background absorbance

Values imputed by taking the average of the surrounding values

Results

Validation: Growth rates

Multiskan Go data

		mpxtrac	ctor data	Valida	ation data
Wells	Time(hs)	log(Abs)	Growth rate	log(Abs)	Growth rate
A01	0.000000	-6.907755	0.6355529	-Inf	NaN
:	:	:	:	:	:
A01	0.666667	-6.907755	0.6355529	-Inf	NaN
A01	0.708333	-6.907755	0.6355529	-6.907755	NaN
:	:	:	:	:	:
A01	0.958333	-6.907755	0.6355529	-6.907755	NaN
A01	1.000000	-6.907755	0.6355529	-6.907755	Inf
:	:	:	:	:	:
A01	1.666667	-6.214608	0.8386713	-6.214608	Inf
A01	1.708333	-5.809143	0.8284531	-5.809143	0.828453
:	:	:	:	:	:
A01	41.625000	-4.710531	-0.0173069	-4.710531	-0.0173069

Value corresponding to background absorbance

Values imputed by taking the average of the surrounding values

Results

Validation: Growth rates

SpectraMax data

	1						
		mpxtract	or data	П	Validation data		
Wells	Time(hs)	log(Abs)	Growth rate		log(Abs)	Growth rate	
A01	0.0000	-7.264430	-0.238977	П	-7.264430	-0.238978	
:	:	:	:	П	:	:	
A01	1.1000	-6.907755	-0.384584	П	-6.907755	-0.384584	
A01	1.1333	-6.907755	-0.412485	П	-6.907755	-Inf	
:	:	:	:	П	:	:	
A01	2.1000	-7.600902	0.033795	П	-7.600902	-Inf	
A01	2.1333	-7.600902	0.031808	П	-Inf	-Inf	
A01	2.1666	-7.600902	0.007807	П	-7.600902	Inf	
:	:	:	:	П	:	:	
A01	3.1333	-7.130899	0.357646	П	-7.130899	Inf	
A01	3.1666	-7.600902	0.339011		-7.600902	0.339011	
A01	26.1333	-6.645391	0.032598		-6.645391	0.032599	

Value corresponding to background absorbance

Values imputed by taking the average of the surrounding values

Conclusion

- Reduction of the time to process raw files into tidy data.
- Improvement in standardization, only two types of files.
- plate readers, acceptable number of different plate machinesrom three different

• taking the mean of the surrounding data points. Jes in the data and imputes by

Help to improve reproducibility

Future improvements

- Improve robustness of mpxtractor through users' reports of bugs in the package repository.
- More testing
- Addition of features:
 - To process data from other machines
 - Calculate enzyme rates
- Increase user friendliness using R-shiny

Acknowledgments

Systems Biology Lab-VU:

Supervisor: Douwe Molenaar PhD

Sieze Douwenga, PhD student

Vera Benavente, Lab technician

Dennis Botman, Phd student Laura Guilherme Luzia, Phd student

Einde

Questions?

supplementary

Set of parameters

Type of argument	Value	R parameter	Python parameter	
Window length = window size / diff time	wl= (2/ 0.0333) hs	n=60	window_length=60	
Filter order	1	p=1	polyorder=1	
Derivative order	1	m=1	derivative=1	

supplementary

Input raw file for cellHTS with fluorescence values.

1	FT01-G01	A01	887763
2	FT01-G01	A02	958308
3	FT01-G01	A03	1012685
4	FT01-G01	A04	872603
5	FT01-G01	A05	1179875
6	FT01-G01	A06	1213279
7	FT01-G01	A07	1182103
8	FT01-G01	A08	1353041
9	FT01-G01	A09	1236055
10	FT01-G01	A10	1228895
11	FT01-G01	A11	1308768
12	FT01-G01	A12	1313472
13	FT01-G01	A13	1404374