Partial Differential Equations Qualifying Exam Spring 1992

- **1.** Let Ω be a bounded smooth domain in \mathbb{R}^2 and $f \in C^1(\partial\Omega)$.
 - (i) Is the following Neumann problem well posed? Why?

$$\begin{cases} \Delta u = 0\\ \frac{\partial u}{\partial n} | \partial \Omega = f \end{cases}$$

- (ii) Find a necessary condition for this problem to have a solution and prove your result.
- **2.** Suppose $u(x,t), x \in \mathbb{R}^1, t > 0$ is a solution of $\frac{\partial^2 u}{\partial x^2} \frac{\partial^2 u}{\partial t^2} = 0$. Suppose that on $I = [a,b] \subseteq \mathbb{R}, u(x,0) = \frac{\partial u}{\partial t}(x,0) = 0$. Show that $u \equiv 0$ in $\Omega = \left\{(x,t) = 0 \le t \le \frac{a+b}{2}, \left|x \frac{a+b}{2}\right| \le \frac{a+b}{2} t\right\}$. HINT: Consider the energy integral $E(t) = \frac{1}{2} \int_{B_t} (u_t)^2 + |\nabla u|^2 dx$, where

$$B_t = \left\{ x : \left| x - \frac{a+b}{2} \right| \le \frac{a+b}{2} - t \right\}.$$

3. Consider the half disc Ω in \mathbb{R}^2 as in Fig. 1 below. Find a solution u(x,y) of the Dirichlet problem

$$\begin{cases} \Delta u &= 0 \text{ in } \Omega \\ u(x,0) &= 0,-1 \leq x \leq 1 \\ u|_{\partial \Omega - [-1,1]} &= 1. \end{cases}$$

- **4.** Suppose u is a continuous function on a domain $\Omega \subset \mathbb{R}^n$ which satisfies the mean value property, that is, whenever $B \subset \Omega$ is a ball centered at x then $u(x) = \frac{1}{|\partial B|} \int_{\partial B} u(y) dy$. Show that u(x) is a harmonic function and is also C^{∞} on Ω .
- 5. Let f be a C^2 function and ϕ be a C^1 function on R^1 . Consider the conservation law of nonlinear flow

$$\begin{cases} u_t + (f(u))_x &= 0\\ u(0, x) &= \phi(x), \end{cases}$$

where u = u(t, x) is the density of this flow. Show that if f is convex and ϕ is decreasing then this flow must undergo a blow-up at some time $t_0 > 0$.

- **6.** Let Ω be a smooth bounded domain in \mathbb{R}^n . Let $f \in C(\partial\Omega)$ be fixed. Consider the functional $Du = \int_{\Omega} |\nabla u|^2 dx$ where $u|_{\partial\Omega} = f$. Show that Du achieves a minimum when u is harmonic.
- 7. Suppose $\Delta u + u = 0$ in \mathbb{R}^3 and $|u(x)|_{\partial B_R}| \leq \frac{C}{1+R^2}$ for some constant c > 0, where $B_R = \{x \in \mathbb{R}^3 : ||x|| = R\}$. Does $u \equiv 0$? Give your argument.
- 8. (i) Give an example that a function is weakly differentiable but not differentiable Give also the weak derivatives for your example.
 - (ii) Let Ω be an open bounded set with smooth boundary in \mathbb{R}^3 . If a function $u \in W_0^{2,2}(\Omega)$, is u(x) classically differentiable? Why?
- **9.** Let H be a real Hilbert space and A a densely defined linear selfadjoint operator on H. Assume $\langle Au, u \rangle \geq c \parallel u \parallel^2, \forall u \in H$, where c > 0 is a constant. Let $f \in H$ be given.

1

- (i) Show that if $u_0 \in H$ minimizes the functional $F(u) = \langle Au, u \rangle 2\langle f, u \rangle$, then $Au_0 = f$.
- (ii) In the case that $H=L^2(\Omega), A=-\Delta$ under the homogeneous Dirichlet boundary condition. Specify the constant c above.