Populating the interactive namespace from numpy and matplotlib

▼ 2.6. Nonparametric Correlation

Basic Idea:

- Instead of using the values x_i
- use the rank place r_i of x_i
- in a sorted series $x_{r_1} \leq x_{r_2} \leq \ldots \leq x_{r_N}$

Example

i	x	У	r	s
1	3.1	2.2	3	2
2	1.1	1.2	1	1
3	2	3	2	4
4	4.5	4	5	5
5	4	2.5	4	3

[2 1 5 3 4]

$$\bar{r} = \bar{s} = 3, r_{sp} = \frac{0+4+(-1)+4}{10} = \frac{7}{10}$$

1 of 5

Motivation:

- more generally applicable
- robustness: more robust against measurement errors
- better statistical interpretation

What do we do if $x_i = x_j$?

- these are called 'ties'
- jitter x_i, x_j , i.e. add a small random number
- this results in different rankings k and k + 1.
- ullet assign to both data points the mean rank k+1/2
- ullet apply the analogue procedure for q>2 equal values.

Ranks offer better statistical means of interpretation, because the distribution of ranks is better specified: typically it is a uniform distribution from 1 to N.

2 of 5 18-11-07, 13:56

▼ 2.6.2. Spearman's Rank Correlation Coefficient

Let $\{r_i\}, \{s_i\}$ be the ranks of $\{x_i\}, \{y_i\}, i = 1, ..., N$. Then the Spearman Rank Correlation Coefficient is defined as

$$r_{\text{SP}} = \frac{\sum_{i} (r_{i} - \bar{r})(s_{i} - \bar{s})}{\sqrt{\sum_{i} (r_{i} - \bar{r})^{2}} \cdot \sqrt{\sum_{i} (s_{i} - \bar{s})^{2}}}$$

• note the similarity to the definition of the linear correlation coefficient *r*

Statistical Test:

- The null hypothesis H_0 : x and y are linearly uncorrelated
- · Statistic:

$$t = r_{\rm SP} \sqrt{\frac{N-2}{1 - r_{\rm SP}^2}}$$

- Distribution of t under valid H_0 = Student-t distribution with $\nu=N-2$ degrees of freedom
- This is independent of the actual distributions of *x* and *y*

Alternative Correlation Measures

$$D = \sum_{i=1}^{N} (r_i - s_i)^2$$

- Sum of the squared rank deviations
- is 0, if the rank places are equally sorted in both features

If there are no ties, the following connection with $r_{\text{tiny SP}}$ can be found:

$$r_{SP} = 1 - \frac{6D}{N^3 - N}$$

There is no direct test for D: assuming true H_0 , D is approximately normally distributed

- with mean $\bar{D} \approx \frac{1}{6}(N^3 N)$
- and variance $Var(D) \approx \frac{(N-1)N^2(N+1)^2}{36}$
- different than in previous tests here the statistics can also be smaller than a critical level for the null hypothesis to be rejectable.
- if a D_{crit} is surpassed, the features x and y are anticorrelated, i.e. x increases while y decreases.

\blacksquare 2.6.3. Kendall's τ

Instead of using ranks, here we have an even more coarse reduction:

- higher rank
- equal rank
- lower rank

The advantage is, that no sorting is required

• since ranks are monotonous with feature values, $r_i < r_i$ is identical to $x_i < x_i$.

Point of departure:

• N data points (paired features) (x_i, y_i)

Regard all $\frac{1}{2}N(N-1)$ pairs (i,j) and count the following for quantities:

meaning	definition	name
positive slope	nr. of pairs with $(x_i - x_j)(y_i - y_j) > 0$	concordant
negative slope	$ \text{nr. of pairs with } (x_i - x_j)(y_i - y_j) < 0 $	discordant
horizontal	nr. of pairs with $x_i \neq x_j \land y_i = y_j$	extra-x
vertical	nr. of pairs with $x_i = x_j \land y_i \neq y_j$	extra-y

Statistical Test:

- Null hypothesis H₀: x and y are uncorrelated
- · Statistics:

$$\tau = \frac{\text{con - dis}}{\sqrt{\text{con + dis + extra-y}} \cdot \sqrt{\text{con + dis + extra-x}}}$$

- Note that $-1 \le \tau \le 1$ and
 - $au au = 1 \Leftrightarrow \text{only con} > 0 \Leftrightarrow x, y \text{ have same order}$
 - $au au = -1 \Leftrightarrow \text{only dis} > 0 \Leftrightarrow x, y \text{ have opposite order}$
- Remark:
 - double points (i.e. exactly identical coordinates) affect the counters nonetheless, so they cannot just be eliminated
 - as pair they count neither for extra-x nor extra-y.
- Distribution of τ under true H_0 :

$$\tau \sim N\left(\mu = 0, \sigma^2 = \frac{4N + 10}{9N(N+1)}\right)$$

- Note that $N(\mu, \sigma^2)$ = Normal distribution with mean μ and variance σ^2
- ullet The method is particularly suitable if there are very few alternative values. In this case $r_{\rm SP}$ would be dominated by mean ranks.
- Complexity: $o(N^2)$ while $r_{\rm SP}$ scales with $o(N\log(N))$
 - so could be problematic with large data sets

In []:

5 of 5