Nome: Raylander Marques Melo Matrícula:494563

- 1) D)
- 2) E)
- 3) A)
 - Possui um desempenho maior devido ao paralelismo real;
 - A criação de uma trhead é mais rápido do que um processo;
 - As trheads podem se comunicar entre se pois elas dividem a mesma memória;

B)

O cancelamento de trhead é para seu processamento, ou seja, antes que seu processo seja concluído.

- Cancelamento Assíncrono de trhead é quando uma trhead tem a possibilidade de finalizar outra trhead naquele instante.
- Cancelamento Adiado de trhead é quando uma trhead identifica se ela mesmo deve ser cancelada ou não e se for necessário ela própria executa seu cancelamento.

D)

A desvantagem deste modelo quando for criada uma trhead de usuário será necessário que seja criado também uma trhead de kernel que irá corresponder a mesma.

4) A)

FCFS:

P ₄	P ₃	P ₂	P ₁	P ₅			
0	4 8	3 1	4 1	6 18			

Tempo de chegada: $P_1 = 14-3 = 11$, $P_2 = 8-2 = 6$, $P_3 = 4-1 = 3$, $P_4 = 0$ e $P_5 = 16-7 = 9$.

Tempo de Execução: $P_1 = 2$, $P_2 = 6$, $P_3 = 4$, $P_4 = 4$ e $P_5 = 2$.

Média do tempo de turnaround: ((11 + 2) + (6 + 6) + (3 + 4) + (0 + 4) + (9 + 2))/5 = 9,4.

SIF:

••••				
P ₄	P_1	P ₃	P ₅	P_2
0	4 (5 1	0 1	2 18

Tempo de chegada: $P_1 = 4-3 = 1$, $P_2 = 12-2 = 10$, $P_3 = 6-1 = 5$, $P_4 = 0$ e $P_5 = 10-7 = 3$.

Tempo de execução: $P_1 = 2$, $P_2 = 6$, $P_3 = 4$, $P_4 = 4$ e $P_5 = 2$.

Média do tempo de turnaround: ((1+2)+(10+6)+(5+4)+(0+4)+(3+2))/5=7,4.

RR:

Tempo de chegada: $P_1 = 6-3 = 3$, $P_2 = (4 + 14-6 + 0) = 12-2 = 10$, $P_3 = (2 + 12-4) = 10-1 = 9$, $P_4 = (0 + 10-2) = 8-0 = 8$ e $P_5 = 8-7 = 1$.

Tempo de execução: $P_1 = 2$, $P_2 = 6$, $P_3 = 4$, $P_4 = 4$ e $P_5 = 2$.

Média do tempo de turnaround: ((3 + 2) + (10 + 6) + (9 + 4) + (8 + 4) + (1 + 2))/5 = 9.8.

Prioridade:

	P ₄	P ₃	P ₅	P ₂		P ₁
0		4 8	3	10	16	18

Tempo de chegada: $P_1 = 16-3 = 13$, $P_2 = 10-2 = 8$, $P_3 = 4-1 = 3$, $P_4 = 0$ e $P_5 = 8-7 = 1$. Tempo de Execução: $P_1 = 2$, $P_2 = 6$, $P_3 = 4$, $P_4 = 4$ e $P_5 = 2$.

Média do tempo de turnaround: ((13 + 2) + (8 + 6) + (3 + 4) + (0 + 4) + (1 + 2))/5 = 8,6.

B)

FCFS:

	P ₄	P ₃	P ₂	P ₁	P ₅
0	4	4 8	3 1	4 1	.6 18

Tempo de chegada: $P_1 = 14-3 = 11$, $P_2 = 8-2 = 6$, $P_3 = 4-1 = 3$, $P_4 = 0$ e $P_5 = 16-7 = 9$. Média do tempo de chegada: (11 + 6 + 3 + 0 + 9)/5 = 5,8.

SJF:

	P ₄	P ₁	P ₃	P ₅	P ₂
0	4	4 (5 :	10 1	12 18

Tempo de chegada: $P_1 = 4-3 = 1$, $P_2 = 12-2 = 10$, $P_3 = 6-1 = 5$, $P_4 = 0$ e $P_5 = 10-7 = 3$. Média do tempo de chegada: (1 + 10 + 5 + 0 + 3)/5 = 3,8.

RR:

P ₄		P ₃	P ₂	P ₁	P ₅	P ₄	P ₃	P ₂	P ₂	
0	2	4	ļ	6	8	10	12 1	14 1	16 1	8

Tempo de chegada: $P_1 = 6-3 = 3$, $P_2 = (4 + 14-6 + 0) = 12-2 = 10$, $P_3 = (2 + 12-4) = 10-1 = 9$, $P_4 = (0 + 10-2) = 8-0 = 8$ e $P_5 = 8-7 = 1$.

Média do tempo de chegada: (3 + 10 + 9 + 8 + 1)/5 = 6,2.

Prioridade:

-									
	P_4	P ₃	P ₅	P ₂		P ₁			
0		4	8	10	16	18			

Tempo de chegada: $P_1 = 16-3 = 13$, $P_2 = 10-2 = 8$, $P_3 = 4-1 = 3$, $P_4 = 0$ e $P_5 = 8-7 = 1$. Média do tempo de chegada: (13 + 8 + 3 + 0 + 1)/5 = 5.

C)

O SJF resultou nesse caso no menor média de tempo de espera.

5) A)

É quando um processo permanece em um loop enquanto ele espera uma resposta externa (Exemplo: uma entrada de dado do cliente) para poder concluir sua execução. E sua consequência é a perda de tempo enquanto ele espera a resposta.

B)

O problema leitor/escritor consiste em:

Leitor: percorre fila com o intuito de apresentar ao usuário o conteúdo da fila; Escritor: irá modificar os valores da fila.

Ou seja, dessa forma percebemos que para o Leitor várias trheads podem executar ao mesmo tempo pois não tem possibilidade de haver problema pois só é leitura, já a Escrita ela tem que ter acesso único a fila sem haver concorrência com outras trheads, caso contrário de um processo de escrita estiver sendo executado e houver outras mudanças pode acontecer perdas atrapalhando no desempenho do sistema.