Primatity Testing

Input: A positive integer N. (n bits long)

Output: 1 if N is prime;

O otherwise.

· If N is 1 or even: output 0; if N=2: output 1.

• If $N = a^b$, for some $a, b \ge 2$: output 0.

· Set Flag = False.

REPEAT (o) Pick $a \in \{1,2,...,N-1\}$ at random.

O) If $\gcd(a,N) \geqslant 2$: output O.

O) If $a^{N-1} \neq 1 \pmod{N}$: output O.

Times (N-1)/2 $\neq \pm 1 \pmod{N}$: output O.

O) If $a \neq \pm 1 \pmod{N}$: output O.

O) If a = -1: Flag = True.

(mod N)

· If Flag = True: output 1 Else output O.

Efficiency:

From our earlier discussion, all steps can be performed in $O(n^3)$ steps.

N not prime
$$\Rightarrow$$
 Pr[error] $\leq \frac{1}{2}5$.

In the following assume $a \in \{1,2,...,N-1\}$

FACT 1: N prime
$$\Rightarrow$$
 $a = 1 \pmod{N}$

• N prime
$$\Rightarrow$$
 $a = 1$ $a = -1$

FACT 2: Suppose N is not a prime power. Suppose there is an a such that $a = -1 \pmod{N}$. Then, for at least half the elements a such that $a = 1 \pmod{N}$, we have $a \neq \pm 1$ $\text{Exercise:} \quad \text{Fact 2} \Rightarrow \begin{cases} N \text{ composite} \\ N \text{ composite} \end{cases}$