§2. Centrale thermique (à flamme)

Cycle de Rankine

Combustible:

- gaz naturel
- charbon
- mazout

Tour de refroidissement

§3. Centrale nucléaire

Réaction nucléaire: réaction en chaîne contrôlée

 $U^{235} + 1$ neutron = $Ba^{137} + Kr^{84} + 2,5$ neutrons + 180 MeV

Réacteur nucléaire à eau pressurisée

2. Ralentit les neutrons augmentant la probabilité de

fission de U²³⁵

Parois en zirconium

§5. Pompe à chaleur (géothermique)

Circuit de chauffage (eau)

Circuit de captage (éthylène glycol)

$$q_2+w=q_1$$

Rendement thermique = coefficient de performance

$$e_{PAC} = \frac{\text{effet util}}{\text{effet coûteux}} = \frac{q_1}{w} = \frac{q_1}{q_1 - q_2} > 1!$$

Quelque soit le design de la pompe à chaleur, son coefficient de performance, voire rendement thermique, est toujours supérieur à 100%.

Il n'y a pas de contradiction avec le principe de conservation d'énergie (1^{er} principe):

On n'a pas produit la chaleur q₁ à partir de rien. On a consommé peu de travail (grandeur coûteuse w) mais on a profité de la <u>chaleur q₂ gratuite</u> (chaleur du sol).

Ainsi la conservation d'énergie $q_2+w=q_1$ est toujours vérifiée.