has holes

Prereqs RA-02

It is well known that the square root of 2 is not a rational number. In particular, one can say \mathbb{Q} has a *hole* at $\sqrt{2}$. We will try to capture this idea in mathematical terms. i.e., we will try to rigorously define what exactly constitutes a *hole*.

Consider $S = \{x \in \mathbb{Q} \mid x \geq 0 \text{ and } x^2 < 2\}$. This is clearly bounded above by 2, for $x^2 < 2$ implies $x^2 < 4$, in turn implies x < 2. We don't worry about absolute value when taking square roots in the last step because $x \geq 0$.

Recall in the examples in RA-02, we were able to find some number α such that nothing smaller than α was an upper bound of the set. Can we do the same here?

As it turns out, the answer is no, we can't. In fact, we can *prove* that S has no least upper bound in \mathbb{Q}

Lemma 1. S has no least upper bound in \mathbb{Q}

Proof. Let $p \in \mathbb{Q}$ be so that $p \geq 0$. We will observe a few things about p.

First, $p^2 \neq 2$. In the case that $p^2 < 2$, $p \in S$. In the case that $p^2 > 2$, p is an upper bound of S.

We wish to show p is not a least upper bound of S. We do so by exhibiting another upper bound of S which is smaller than p. Let

$$q = p - \frac{p^2 - 2}{p + 2} = \frac{2p + 2}{p + 2}$$

Since $p^2 - 2 > 0$, we subtract a positive quantity from p and thus q < p. q is clearly > 0 because p > 0. Now observe

$$q^{2} - 2 = \frac{(2p+2)^{2}}{(p+2)^{2}} - 2$$

$$= \frac{4p^{2} + 8p + 4}{p^{2} + 4p + 4} - 2$$

$$= \frac{4p^{2} + 8p + 4 - 2p^{2} - 8p - 8}{(p+2)^{2}}$$

$$= \frac{2(p^{2} - 2)}{(p+2)^{2}}$$

Again since $p^2 - 2 > 0$, we get that $q^2 - 2 > 0$, so q is an upper bound of S!

Here, have some intuition. Consider the interval $[0, \sqrt{2}]$ as a subset of \mathbb{R} . I know the least upper bound α has the property that any x smaller than it satisfies $x^2 < 2$ (compare to above) and any x greater than it satisfies $x^2 > 2$. The least upper bound is thus forced to satisfy $x^2 = 2$. Since no such number exists in \mathbb{Q} , there's a hole there.