The Spectral Theorem for Sesquilinear Forms

Kexing Ying

January 14, 2021

Definition 0.1 (Sesquilinear Form). Let M be a module over the ring R and let σ be an R-antiautomorphism (or equivalently, an isomorphism $\sigma: R \simeq R^{\mathrm{op}}$), then the function $\phi: V \times V \to R$ is a σ -sesquilinear form if and only if for all $x, y, z \in M$, $\alpha \in R$,

- $\phi(x+z,y) = \phi(x,y) + \phi(z,y);$
- $\phi(x, y + z) = \phi(x, y) + \phi(y, z);$
- $\phi(\alpha x, y) = \alpha \phi(x, y);$
- $\phi(x, \alpha y) = \sigma(\alpha)\phi(x, y)$.

A typical example of a sesquilinear form are the inner products of any real or complex vector spaces.

Definition 0.2 (Adjoint Maps). Let ϕ_1, ϕ_2 be sesquilinear forms on the modules M, N respectively, and let $f: N \to M, g: M \to N$ be linear maps. Then we say f and g are adjoints if and only if for all $x \in M, y \in N$,

$$\phi_1(x, f(x)) = \phi(g(x), y).$$