```
In [88]: import tensorflow as tf
         import pandas as pd
         from tensorflow.keras import layers
         from tensorflow import keras
In [89]:
         mydata=pd.read_csv(r"C:\Users\ANKIT SINGH\Desktop\internship\DataSets-master\500_Person_Gender_Height_Weight_Index.csv")
In [90]: mydata[:2]
Out[90]:
             Gender Height Weight Index
                      174
                              96
               Male
                                    4
               Male
                      189
                              87
                                    2
```

In [91]: X=mydata.iloc[:,0:3]

Y=mydata.iloc[:,3] #output is index

In [134]: X

Out[134]:

	Gender	Height	Weight
0	0	174	96
1	0	189	87
2	1	185	110
3	1	195	104
4	0	149	61
5	0	189	104
6	0	147	92
7	0	154	111
8	0	174	90
9	1	169	103
10	0	195	81
11	1	159	80
12	1	192	101
13	0	155	51
14	0	191	79
15	1	153	107
16	1	157	110
17	0	140	129
18	0	144	145
19	0	172	139
20	0	157	110
21	1	153	149
22	1	169	97
23	0	185	139
24	1	172	67

	Gender	Height	Weight
25	1	151	64
26	0	190	95
27	0	187	62
28	1	163	159
29	0	179	152
470	0	147	142
471	0	154	112
472	1	178	65
473	0	195	153
474	1	167	79
475	0	183	131
476	1	164	142
477	0	167	64
478	1	151	55
479	1	147	107
480	1	155	115
481	1	172	108
482	1	142	86
483	0	146	85
484	1	188	115
485	0	173	111
486	1	160	109
487	0	187	80
488	0	198	136
489	1	179	150
490	1	164	59

	Gender	Height	Weight
491	1	146	147
492	1	198	50
493	1	170	53
494	0	152	98
495	1	150	153
496	1	184	121
497	1	141	136
498	0	150	95
499	0	173	131

500 rows × 3 columns

```
5
          479
                 5
          480
          481
                 4
          482
                 5
          483
          484
          485
          486
                 5
                 2
          487
          488
          489
          490
          491
                 5
          492
                 0
          493
                 1
          494
                 5
                 5
          495
                 4
          496
          497
                 5
          498
                 5
          499
          Name: Index, Length: 500, dtype: int64
In [137]: Index_name=pd.Series(["Extremely Weak","Weak","Normal","Overweight","Obesity","Extreme Obesity"])
          Index_name
Out[137]: 0
                Extremely Weak
                          Weak
          1
          2
                        Normal
                    Overweight
                       Obesity
               Extreme Obesity
          dtype: object
In [138]: X["Gender"]=X["Gender"].map({"Male":0,"Female":1})
In [94]: XA=X.values
          YA=Y.values
```

localhost:8888/notebooks/DAY 9 (tensorflow and Keras).ipynb#

```
In [95]: XA
Out[95]: array([[ 0, 174, 96],
                  0, 189, 87],
                   1, 185, 110],
                [ 1, 141, 136],
                [ 0, 150, 95],
                [ 0, 173, 131]], dtype=int64)
In [96]: YA
Out[96]: array([4, 2, 4, 3, 3, 3, 5, 5, 3, 4, 2, 4, 3, 2, 2, 5, 5, 5, 5, 5, 5, 5, 5,
                4, 5, 2, 3, 3, 1, 5, 5, 5, 1, 1, 5, 5, 4, 3, 4, 5, 2, 4, 5, 2, 5,
                4, 2, 4, 4, 3, 5, 5, 1, 5, 4, 4, 3, 4, 5, 3, 5, 0, 5, 0, 2, 5, 5,
                4, 2, 4, 4, 2, 4, 5, 2, 3, 4, 4, 4, 4, 0, 3, 5, 3, 4, 5, 0, 5, 5,
                5, 5, 5, 3, 3, 2, 4, 5, 4, 5, 1, 0, 4, 5, 5, 4, 4, 4, 5, 5, 4, 3,
                4, 5, 4, 2, 4, 3, 2, 5, 5, 5, 4, 4, 4, 5, 5, 4, 4, 4, 5, 2, 5, 2,
                5, 4, 5, 5, 5, 3, 5, 5, 2, 4, 5, 5, 5, 4, 3, 5, 3, 3, 0, 3, 3, 5,
                5, 4, 3, 5, 3, 4, 2, 2, 3, 5, 4, 2, 4, 5, 3, 2, 4, 5, 5, 4, 4, 4,
                4, 3, 5, 3, 3, 4, 4, 2, 3, 3, 5, 3, 5, 4, 5, 5, 4, 5, 5, 5, 4, 4,
                5, 5, 1, 3, 4, 4, 5, 4, 5, 4, 3, 4, 4, 5, 5, 5, 0, 5, 5, 5, 5,
                2, 5, 4, 5, 0, 5, 3, 4, 5, 5, 4, 2, 3, 3, 4, 3, 5, 5, 2, 5, 3, 2,
                1, 5, 0, 5, 3, 5, 3, 4, 3, 5, 5, 5, 5, 2, 4, 5, 5, 4, 5, 5, 5, 2,
                4, 5, 5, 5, 5, 1, 5, 5, 4, 0, 3, 3, 4, 2, 3, 1, 1, 5, 5, 4, 4, 4,
                4, 5, 2, 5, 4, 3, 3, 4, 5, 5, 2, 4, 3, 4, 5, 4, 2, 4, 5, 4, 5, 5,
                1, 5, 5, 5, 5, 2, 2, 5, 3, 5, 4, 5, 4, 4, 5, 5, 4, 2, 2, 4, 3, 3,
                5, 4, 2, 2, 2, 5, 5, 4, 5, 3, 4, 4, 3, 4, 4, 2, 2, 5, 2, 2, 2,
                2, 5, 0, 3, 4, 5, 1, 4, 1, 4, 5, 4, 5, 5, 3, 4, 5, 4, 3, 5, 1, 2,
                4, 5, 5, 5, 5, 3, 5, 1, 4, 5, 5, 2, 5, 4, 3, 2, 2, 2, 2, 3, 5, 3,
                3, 5, 3, 5, 3, 4, 2, 4, 4, 5, 2, 5, 5, 5, 1, 4, 5, 5, 5, 4, 5, 2,
                5, 2, 1, 5, 5, 4, 1, 1, 4, 4, 4, 4, 2, 5, 5, 4, 2, 5, 5, 5, 1, 5,
                4, 2, 5, 5, 4, 5, 4, 4, 5, 5, 5, 4, 5, 0, 2, 2, 4, 2, 4, 5, 4, 5,
                1, 5, 2, 5, 3, 5, 5, 3, 5, 5, 2, 5, 3, 4, 5, 2, 2, 5, 5, 4, 5, 4,
                4, 4, 5, 2, 4, 5, 2, 5, 0, 1, 5, 5, 4, 5, 5, 5], dtype=int64)
In [97]: print("Type od XA {} and Type of YA {}".format(type(XA),type(YA)))
```

Type od XA <class 'numpy.ndarray'> and Type of YA <class 'numpy.ndarray'>

localhost:8888/notebooks/DAY 9 (tensorflow and Keras).ipynb#

```
In [98]: Yc=tf.keras.utils.to_categorical(YA,num_classes=6,dtype="float32")
          Yc
Out[98]: array([[0., 0., 0., 0., 1., 0.],
                 [0., 0., 1., 0., 0., 0.]
                 [0., 0., 0., 0., 1., 0.],
                 [0., 0., 0., 0., 0., 1.],
                 [0., 0., 0., 0., 0., 1.],
                 [0., 0., 0., 0., 1.]], dtype=float32)
In [99]: type(Yc)
 Out[99]: numpy.ndarray
In [100]: from sklearn.model selection import train test split
In [123]: xtrain,xtest,ytrain,ytest=train test split(XA,Yc,test size=.30,random state=101)
In [124]: model=tf.keras.Sequential()
In [125]:
          model.add(layers.Dense(20,input dim=3,activation="relu"))
          model.add(layers.Dense(20,activation="relu"))
          model.add(layers.Dense(6,activation='softmax'))
          #compiling model
          model.compile(loss="categorical crossentropy",optimizer="adam",metrics=['accuracy'])
```

```
model.fit(xtrain,ytrain,epochs=500,batch size=100)
In [126]:
         Epoch 492/500
         350/350 [================== ] - 0s 43us/sample - loss: 0.5694 - acc: 0.7400
         Epoch 493/500
         350/350 [=============== ] - 0s 37us/sample - loss: 0.5619 - acc: 0.7429
         Epoch 494/500
         350/350 [=============== ] - 0s 34us/sample - loss: 0.5609 - acc: 0.7429
         Epoch 495/500
         350/350 [=============== ] - 0s 34us/sample - loss: 0.5749 - acc: 0.7314
         Epoch 496/500
         350/350 [================ ] - 0s 40us/sample - loss: 0.5640 - acc: 0.7429
         Epoch 497/500
         350/350 [=============== ] - 0s 37us/sample - loss: 0.5606 - acc: 0.7629
         Epoch 498/500
         350/350 [=============== ] - 0s 43us/sample - loss: 0.5702 - acc: 0.7229
         Epoch 499/500
         350/350 [=============== ] - 0s 46us/sample - loss: 0.5521 - acc: 0.7457
         Epoch 500/500
         350/350 [=============== ] - 0s 40us/sample - loss: 0.5722 - acc: 0.7571
Out[126]: <tensorflow.python.keras.callbacks.History at 0x25ee0104160>
In [148]: | score=model.evaluate(xtest,ytest)
         150/150 [==================== ] - 0s 62us/sample - loss: 0.4804 - acc: 0.8000
In [149]: | s=score[1]
         s*100
Out[149]: 80.0000011920929
In [150]: import numpy as np
In [151]: a=[0,-1,2.,3]
In [152]: | s=tf.nn.softmax(a)
```

```
In [154]: with tf.Session() as sess:
    print(sess.run(s))
    #print(sess.run(a))
```

[0.03467109 0.01275478 0.25618663 0.69638747]