Алгебра II, листочек 1

- 1. Пусть $f(x), g(x) \in K[x]$. Пусть $h(x) \in \overline{K}[x]$ НОД многочленов f(x), g(x), рассмотренных как многочлены над алгебраическим замыканием \overline{K} . Докажите, что $h(x) \in K[x]$. Пусть $\tilde{h}(x) \in K[x]$ НОД многочленов f(x), g(x) в K[x]. Тогда $\tilde{h}(x) \mid f(x), g(x)$, тогда $\tilde{h}(x) \mid h(x)$ в $\overline{K}[x]$ по свойству НОДа. С другой стороны есть соотношение Безу в K[x], а именно мы найдём u(x) и v(x) в K[x], что $\tilde{h}(x) = u(x)f(x) + v(x)g(x)$, и так как $h(x) \mid f(x), g(x)$ в \overline{K} , то $h(x) \mid \tilde{h}(x)$ в $\overline{K}[x]$. У нас есть делимость в обе стороны в $\overline{K}[x]$ и так как оба многочлена приведены, то они совпадают и $h(x) = \tilde{h}(x) \in K[x]$.
- 2. Докажите, что если расширение L/K сепарабельно и чисто несепаребельно, то L=K. Так как L/K сепарабельно, то каждый элемент $\alpha \in L$ имеет сепарабельный неприводимый минимальный многочлен $\operatorname{Irr}_{\alpha}^{K}(x)$. С другой стороны $\alpha^{p^n} \in K$ для $p=\operatorname{char} K>0$ и для $n\geq 0$. Возьмём такое наименьшее n. Тогда $x^{p^n}-\alpha^{p^n}\in (\operatorname{Irr}_{\alpha}^{K}(x))_{K[x]}$, а значит $\operatorname{Irr}_{\alpha}^{K}(x)\mid x^{p^n}-\alpha^{p^n}=(x-\alpha)^{p^n}$. Это означает, что $\operatorname{Irr}_{\alpha}^{K}(x)=(x-\alpha)^m$, но так как это многочлен неприводим и сепарабелен, то m=1. А значит $x-\alpha\in K[x]$ и $\alpha\in K$, откуда получаем, что L=K.
- 3. Докажите, что любое конечное поле совершенно, то есть любое его алгебраическое расширение сепарабельно.

Пусть K – конечное поле характеристики p, а \overline{K} его алгебраическое замыкание. Пусть $\alpha \in \overline{K}$, тогда $K(\alpha)$ конечное поле порядка q. Тогда полином $x^q - x$ очевидно зануляется на всех элементах $K(\alpha)$ и раскладывается в произведение различных мономов вида x - a, где $a \in K(\alpha)$ и коих ровно q штук. Тогда этот полином не имеет кратных корней и зануляет α , а тогда сепарабелен α . Это верно для всех элементов \overline{K} , а значит \overline{K}/K сепарабельно и K идеально.

4. Докажите, что если расширение L/K нормально, то расширение L^{sep}/K нормально.

Пусть $K < L < L^{\text{sep}} < \overline{L} = \overline{K}$ – башня полей. Оба замыкания совпадают, так как K < L в частности алгебраично. Пусть $\sigma : L^{\text{sep}} \to \overline{K} = \overline{L}$ гомоморфизм над K. Тогда по нормальности K < L, $\sigma[L] = L$. Тогда для $\alpha \in L^{\text{sep}}$ будет неприводимый сепарабельный многочлен f(x). Тогда $f(x) = (x - \alpha_1) \dots (x - \alpha_n)$ не имеет кратных корней, тогда по инъективности σ , $f^{\sigma}(x) = (x - \alpha_1^{\sigma}) \dots (x - \alpha_n^{\sigma})$ тоже и так как $f^{\sigma}(x) \in L[x]$ и $f^{\sigma}(\alpha^{\sigma}) = 0$, то α^{σ} сепарабелен над L и $\sigma[L^{\text{sep}}] \subseteq L^{\text{sep}}$.

Для включения в обратную сторону заметим, что $f^{\sigma^{-1}}(x) \in L[x]$, так как $\sigma[L] = L$ и он однозначно определен, так как σ инъективен. Тогда мы знаем, что существуют $u,v \in L[x]$, что fu+f'v=1. Тогда верно и $f^{\sigma^{-1}}u^{\sigma^{-1}}+(f^{\sigma^{-1}})'v^{\sigma^{-1}}=1$, а значит $f^{\sigma^{-1}}$ не имеет кратных корней в \overline{L} , а тогда $f^{\sigma^{-1}}=(x-\alpha_1)\dots(x-\alpha_n)$, где очевидно $\alpha_i \in L^{\text{sep}}$, так как они корни многочлена без кратных корней. Тогда по предыдущему наблюдению $\alpha_i^{\sigma} \in L^{\text{sep}}$ тоже. Но так как α один из корней f(x), то $\alpha=\alpha_i^{\sigma}$ для какого-то сигма, а тогда $L\subseteq \sigma[L]$, а значит $L^{\text{sep}}=\sigma[L^{\text{sep}}]$ и $K< L^{\text{sep}}$ нормально.

5. Докажите, что расширение $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$ чисто несепарабельно; проверьте, что $[F_p(x,y):F_p(x^p,y^p)]=p^2;$ убедитесь, что существует бесконечное количество промежуточных полей K таких, что

$$\mathbb{F}_p(x^p, y^p) < K < \mathbb{F}_p(x, y)$$

Пусть $Q \in \mathbb{F}_p(x,y)$, тогда очевидно, что $Q^p \in \mathbb{F}_p(x^p,y^p)$, так как гомоморфизм фробениуса и каждое слагаемое будет возведено в степень p.

Заметим, что в башне $\mathbb{F}_p(x^p,y^p) < \mathbb{F}_p(x,y^p) < \mathbb{F}_p(x,y^p)$ первый этаж является расширением по многочлену $t^p-x^p=(t-x)^p$, у которого единственный корень x и очевидно, что $(t-x)^i \notin \mathbb{F}_p(x^p,y^p)[t]$ для 0 < i < p, так как свободным коэффициентом будет $x^i \notin \mathbb{F}_p(x^p,y^p)$. Тогда t^p-x^p неприводим и $\mathbb{F}_p(x,y^p)$ – расширение по t^p-x^p над $\mathbb{F}_p(x^p,y^p)$. И его степень расширения – p. Аналогично получим, что степень расширения второго этажа также p. Тогда степень $[F_p(x,y):F_p(x^p,y^p)]=p^2$ равна произведению степеней.

Заметим, что для любого $\alpha \in \mathbb{F}_p(x,y) \setminus \mathbb{F}_p(x^p,y^p)$. Мы можем аналогично построить расширение по неприводимому многочлену $t^p - \alpha^p$, будем называть такое расширение K_α . Теперь осталось сделать правильный выбор таких α . Положим $\alpha_i = x^{ip+1} + y$. Пусть для краткости $K_{\alpha_i} = K_i$. Если $K_i = K_i$ для разных i и j, то

$$(x^{ip+1} + y) - x^{jp+1} + y = x^{ip+1} - x^{jp+1} \in K_i$$

тогда $x(x^{ip}-x^{jp})\in K_i$, и так как $0\neq x^{ip}-x^{jp}\in K_i$, то $x\in K_i$. Но тогда $y\in K_i$, а значит $K_i=\mathbb{F}_p(x,y)$, чего не может быть, так как тогда расширение будет степени p^2 , а оно степени p.

- 6. (Теорема о примитивном элементе) Пусть K бесконечное поле, и $K(\alpha,\beta)/K$ сепарабельное расширение, причем $[K(\alpha,\beta):K]=n$ и $\mathrm{Aut}(K(\alpha,\beta)/K)=G$. Докажите, что
 - (a) существует элемент $c \in K$ такой, что $|G(\alpha + c\beta)| = n$, то есть G-орбита $G(\alpha + c\beta)$ элемента $\alpha + c\beta$ содержит ровно n элементов

Как мне кажется в этом задании есть ошибка, так как вообще не факт, что в группе G найдется n различных элементов, так как каждый автоморфизм переставляет корни минимальных многочленов элементов α и β и этой перестановкой определен. Но у нас могут быть не все корни, и тогда элементов не хватит на n перестановок. Например есть расширение $\mathbb{Q}(\sqrt[3]{2},\sqrt[3]{2})/\mathbb{Q}$. Поэтому нужно заменить автоморфизмы на вложения в поле разложения $\operatorname{Irr}_{B}^{K}(x)$ и $\operatorname{Irr}_{B}^{K}(x)$, назовём это поле F.

Так как расшерение сепарабельно, то существует ровно n вложений. Вообще вложения обычно рассматриваются в алгебраическое замыкание, но так как корни можно отправить только в корни того-же многочлена, то достаточно рассмотреть поле разложения. Если бы расширение было к тому же нормальным, то вложения были бы автоморфизмами, как в задаче и спрашивается. Назовем эти вложения σ_i для $1 \leq i \leq n$. Теперь пусть $c \in K$ такое, что $\sigma_i(\alpha) + c\sigma_i(\beta) = \sigma_j(\alpha) + c\sigma_j(\beta)$ для $i \neq j$. Тогда $c = (\sigma_i(\alpha) - \sigma_j(\alpha))/(\sigma_j(\beta) - \sigma_i(\beta))$. Выкинем все такие элементы, коих не больше n. Тогда возьмём какой-нибудь оставшийся ненулевой. Он всегда будет, так как поле K бесконечно. Тогда для такого c, вложения σ_i дадут нам n различных образов элемента $\alpha + c\beta$.

- (b) **если** $|G(\alpha + c\beta)| = n$, **то** $[K(\alpha + c\beta) : K]_{sep} \ge n$ Так как мы получили n различных образов $\alpha + c\beta$, то у $\mathrm{Irr}_{\alpha+c\beta}^K(x)$ есть как минимум n корней и они различны. Тогда степень расширения равна степени полином, которая больше или равна n, в сепрабельном случае степень расширения совпадает с сепарабельной степенью.
- (c) **если** $|G(\alpha + c\beta)| = n$, **то** $K(\alpha + c\beta) = K(\alpha, \beta)$ Но $K < K(\alpha + c\beta) \le K(\alpha, \beta)$, а значит $[K(\alpha + c\beta) : K] \le n$, но тогда там равенство и по мультипликативности степени будет $[K(\alpha + c\beta) : K(\alpha, \beta)] = 1$, то есть $K(\alpha + c\beta) = K(\alpha, \beta)$.
- (d) если L/K конечно и сепарабельно, то $L = K(\alpha)$. Как обычно построим башню.

$$K < K(\alpha_1) < \dots < K(\alpha_1, \dots, \alpha_m) = L$$

Пусть гипотезой индукции будет $K(\alpha_1,\ldots,\alpha_i)=K(\alpha)$ для некоторого α . Тогда для i=1 она очевидно верна. Пусть она верна для i=k, тогда $K(\alpha_1,\ldots,\alpha_k,\alpha_{k+1})=K(\alpha_1,\ldots,\alpha_k)(\alpha_{k+1})=K(\alpha,\alpha_{k+1})$. Тогда по предыдущему пункту мы получим $K(\alpha,\alpha_{k+1})=K(\alpha')$. По индукции это будет верно и для L.