MA 341: HW 2

Jason Shipp

September 8, 2016

Problem 1

Question

Prove that if X is a set, $\mathfrak{T} \subseteq \mathfrak{P}(X)$ is a topology on X, and $I \subseteq \mathfrak{T}$ is a finite set, then $(\bigcap_{U \in I} U) \in \mathfrak{T}$

Answer

If $I \subseteq \mathcal{T}$ then all $U \subseteq \mathcal{T}$ by transitivity of sets. Using the second property of topologies $U_1, U_2 \in \mathcal{T}$ states $U_1 \cap U_2 \in \mathcal{T}$ Continuing to choose an arbitrary element $U_3 \in \mathcal{T}$ implies $\bigcap_{U \in \mathcal{U}} U \in \mathcal{T}$

Problem 2

Question

Under what conditions on a set X does X have a unique topology?

Answer

X has a unique topology when $X = \{\emptyset\} or X = \{x\}$

Every set X has the Indiscrete and Discrete Topologies, and the only way to set these equal to one another is to allow X to be the emptyset or the singleton set.

Problem 3

Let X be a set and define $\mathfrak{I}_{co-fin} \subseteq \mathfrak{P}(X)$ by $\mathfrak{I}_{co-fin} = \{A \subseteq X | X - A \text{ is finite } \} \cup \{\emptyset\}.$

Question

- a Prove that $(T)_{co-fin}$ is a topology on X
- b Prove that if X is infinite, then $\mathfrak{I}_{co-fin} \neq \mathfrak{I}_{dis}$ where \mathfrak{I}_{dis} is the discrete topology on X.
- c Prove that if |X| > 1, then $\mathfrak{I}_{co-fin} \neq \mathfrak{I}_{triv}$ where \mathfrak{I}_{triv} is the trivial topology.

Answer

a (i) $\emptyset \in \mathcal{T}_{co-fin}$ by construction.

The complement of X is \emptyset which is in \mathfrak{I}_{co-fin} by definition, thus $X \in \mathfrak{I}_{co-fin}$

- (ii) For $U_1, U_2 \in \mathfrak{T}_{co-fin}$ states each sets compliment is finite. Thus $(A U_1) \cap (A U_2)$ is finite and in A. Therefore $U_1 \cap U_2 \in \mathfrak{T}_{co-fin}$
- (iii) The compliment of I is finite by definition of \mathfrak{T}_{co-fin}

Each compliment $U \in I$ is finite as well thus each U is closed.

The union of closed sets are all closed

$$U \in \mathfrak{I}_{co-fin}$$

b By construction the discrete space is Hausdorff

If $U_1, U_2 \in \mathcal{T}_{co-fin}$ then $X - U_1$ and $X - U_2$ are both finite

$$(X - U_1) \cup (X - U_2) = X - (U_1 \cap U_2)$$
 and $U_1 \cap U_2 \in \mathcal{T}_{co-fin}$

Because X is infinite $U_1 \cap U_2 \neq \emptyset$

This implies \mathfrak{T}_{co-fin} is not a Hausdorff space and $\mathfrak{T}_{co-fin} \neq \mathfrak{T}_{disc}$

c If |X| > 1, then $\exists x, y \in X$ such that $N_x \neq N_y$ for $N_x, N_y \in \mathcal{T}_{co-fin}$ because each neighborhood is closed

Therefore the cofinite topology on X is at least T_0 which the trivial topology cannot be. Therefore the are not equal.

Problem 4

Let (X, \mathfrak{I}) be a topological space and $A \subseteq X$

Question

- a Prove that $Int(X A) = X \overline{A}$
- b Prove that $\overline{X-A} = X \text{Int}A$

Answer

a $\operatorname{Int}(X - A) = x \in U \in X$ and $x \ni A$

X - \overline{A} removes all references to elements of A in X $A \cap X = \emptyset$

Therefore Int(X - A) = X - Int(A)

b
$$x \in \overline{X - A}$$
 implies $x \in X$

A

X - Int(A) = Elements of X which are not in any $U \in A$ such that $x \in U$

 $=x\in U\in X$ and $xniA=x\in X$

 \underline{A}

 $\overline{X - A} = X - \text{Int}A$

Problem 5

Question

Let (X,\mathcal{T}) be a topological space. Prove that for $C\subseteq X,C$ is a closed subset if and only if $C=\overline{C}$.

Answer

 $\overline{C} = \bigcap_{\substack{A \subseteq U \subseteq XX - C \in \mathfrak{T} \\ closed}} U \text{ by definition C is closed, and the intersection of closed sets is closed, therefore } \overline{C} \text{ is } closed$

If $C = \overline{C}$ then C is closed.

If C is closed then $C\in \bigcap\limits_{A\subseteq U\subseteq XX-C\in \mathfrak{I}}U$

By set inclusion C is the minimal set thus $C = \overline{C}$

Problem 6

Question

Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Prove that A is discrete if and only if $\mathcal{T}_{A,X}$ is discrete where $\mathcal{T}_{A,X}$ is the subspace topology on A

Answer

If $\mathfrak{T}_{A,X}$ is discrete then $\mathfrak{T}_{A,X}$ then A is necessarily discrete because it contains the intersection of all points that contain A in $\mathfrak{T}_{A,X}$ which is equal to the powerset of A If A is discrete then every point $x \in A$ there is an open subset where $U \cap A = \{x\}$.

This creates all subsets in A and it follows that since every subset in A is uniquely definited then the subspace topology which is the intersection of all these sets is the subset of all sets as well, and discrete.

Problem 7

Question

Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Prove that A is dense if and only if for each non-empty open subset $U \in \mathcal{T}$ that $A \cap U \neq \emptyset$.

Answer

Contrapositive: If A is not dense, $\overline{A} \neq X$

Given $\overline{A} \neq X$ then $X - \overline{A} \neq \emptyset$, which is \mathfrak{T} -open. Therefore there exists some $U \in A$ such that $A \cap U \neq \emptyset$

If $A \cap U = \emptyset$ then there exists a non-empty open set disjoint from A.

The complement of this open set is closed and contains A, but $A \neq X$ so $\overline{A} \neq X$

Problem 8

Question

Let (X, \mathcal{T}) be a topological space such that $U \subseteq X$ is an open dense subset and $D \subseteq X$ is a dense subset. Prove that $U \cap D$ is dense.

Answer

Because U is open there exists all $x \in U$ and $x \in X$. Because U is dense then the closure of U is X. $x \in \overline{D}$ because the closure of D is equal to X. $x \in \overline{D} \cap \overline{U}$ therefore $\overline{D} \cap \overline{U} = X$ and is dense

Problem 9

Question

Let X, \mathcal{T} be a topological space. Prove that $A \subseteq X$ is nowhere dense if and only if $X - \overline{A}$ contains an open, dense subset of X. Prove that if A_1, A_2 are nowhere dense subsets of X, then $A_1 \cup A_2$ is a nowhere dense subset of X.

Answer

Given A is nowhere dense Int(closure of A) = \emptyset X $Int(\overline{A} = X \ \overline{XX} = X \ Therefore X - A is dense in X and contains a dense open subset$