第四章 文件管理

2022年9月28日 星期三 23:44

基本概念

文件是什么? • 文件是以硬盘为载体的存储在计算机上的信息集合 • 文件可以是文本文档,图片,程序 • 用户进行的输入输出中,以文件为基本单位 文件由什么组成? 1. 一块存储空间 2. 分类和索引的信息 3. 关于访问权限的信息 文件有什么特性? 1. 可以长期存储在硬盘中 2. 允许可控制的进程间共享访问 3. 能够被组织成复杂的结构 文件的属性/元数据 | • 文件名; 文件类型 • 创建者; 所有者 • 位置; 大小; 保护; 创建信息

```
文件的数据结构
                                                 │ <mark>相关概念</mark> ● 目录项/FCB = 用来记录文件的名字,索引节点指针以及其他目录项的层级关联关系
                                                                         • 目录 = 目录项的集合
                                                                         • 目录也被视作一个文件,该文件叫做目录文件
                                                                         • 目录项是又内核维护的一个数据结构,缓存在内存
                                                                         • 目录项文件存储在磁盘
                                                  包含信息 • 基本信息: 文件名; 文件物理位置, 文件逻辑结构, 文件物理结构
                                                                         • 存取控制信息: 文件主或核准用户或一般用户的存取权限
                                                                         • 使用信息: 文件创立时间,上次修改时间
                                               概念 • 索引节点是用来记录文件的元信息,是文件的唯一表示
                                                                  • 索引节点同样占用磁盘空间
                                                                     磁盘索引节点
                                                                         • 指存放在磁盘上的索引节点,每个文件有一个唯一的磁盘索引节点
                                                                         • 包含内容: 文件主标识符; 文件类型; 文件存取权限; 文件物理地址; 文件长度; 文件链接计数; 文件存取时间
                                                                     内存索引节点
                                                                         • 指存放在内存中的索引节点,文件打开后,将磁盘索引节点复制到内存中
                                                                          • 新增内容: 索引节点编号; 状态; 访问计数; 逻辑设备号; 链接指针
           两者的关系图
                                                                                                                                                                      超级块
                                                                                                                                                                   索引节点区
                                                                                                                                                       索引节点 1
                                          文目录

representation of the second se
                                                                                                                                           索引节点 2
                                                                                                   索引节点指针
                                                                                                                                                     索引节点 3
                                                                                                                                                                     数据块区
                                                                                   父目录
```

文件的操作

○ 解决对文件的读,写,执行的许可问题

非访问控制方法		1.口令	2.加密保护		
	定义	用户建立一个文件时需要提供口令用户请求访问时必须提供相应口令	• 对文件进	行加密,访问时需要密钥	
	优点	• 时间空间开销不多	• 保密性强	1,节省了存储空间	
	缺点	• 口令直接存在系统内部,不安全	• 编码和译	码需要时间	
访问控制方法	""" "" "	<mark>副的目的</mark> :用于控制用户对文件的访问之 <mark>副的对象:读;写;执行;添加;删除:</mark>			
方法一		方法二			
	定义	• 为每个文件和目录增加一个访问控制	引列表ACL	• 采用精简的访问列表	
		• 该表规定每个用户名及其所允许的空	宮间管理	• 该列表采用拥有者,组和	1其他三种用户类型
	优点	• 可以使用复杂的访问方法		• 只需要三个域即可列出说	访问表中这三类用户的访问权限
	缺点	• 长度无法预计并且可能导致复杂的空	 ≧间管理		

文件的逻辑结构【用户角度的文件组织形式】

```
• 即文件中的数据在逻辑层面是如何组织起来的
无结构文件/流式文件 • 最简单的文件组织形式,是有序相关信息项的集合,以字节为单位
           • 对基本信息单元操作不多的文件适合该方式,如源代码文件,目标代码文件
有结构文件/记录式文件 顺序文件 • 串结构: 只能按顺序查找,费时
                  • 顺序结构:可采用折半查找,检索效率高
            索引文件 • 提高了存取速度,但索引表增加了存储空间
            索引顺序文件 • 提高了存取速度,但索引表增加了存储空间
```

‡的物理结构【文件在外	·存上的存储	组织形式】		
定义	 研究文件数据在物理存储设备上是如何分布和组织的 文件在磁带上>连续存放方式 文件在磁盘上>不采用连续存放方式 文件在内存上>随机存放方式 			
文件的存储方式	• 文件的存储就是对磁盘非空闲块的管理			
	方式 访问磁盘次数 优点 缺点			
	顺序分配	需访问磁盘 1 次	顺序 存取速度快,当文件是定长时 可以根据文件起始地址及记录长度 进行随机访问	要求连续的存储空间,会产生 外部碎片,不利于文件的动态 扩充
	链表分配	需访问磁盘 n 次	无外部碎片,提高了外存空间 的利用率,动态增长较方便	只能按照文件的指针链顺序访问, 查找效率低 ,指针信息存放消耗内存或磁盘空间
	索引分配	m 级需访问磁盘 m+1 次	可以 随机访问,易于文件的增 删	索引表增加存储空间的开销, 索引表的查找策略对文件系统 效率影响较大
文件的存储空间管理	• 文件的存储空间管理就是对磁盘空闲块的管理			

基本概念和目标

• 文件系统 = OS中负责管理持久数据的子系统 • 文件系统 = 与文件管理有关的软件 + 被管理的文件 + 试试文件管理所需的数据结构 • 文件系统需先挂在到某个目录才可正常使用 • 文件的基本操作单位就是数据块 1. 实现对文件的基本操作 = 按名存储和查找文件 + 组织成合适的结构 + 文件共享 + 文件保护【用户角度】 2. 管理与磁盘的信息交换 + 完成逻辑结构和物理结构的变换【OS角度】 3. 组织文件在磁盘上的存放 + 采取好的文件排放顺序和磁盘调度方法【OS角度】 <mark>磁盘的文件系统</mark> • 它是直接把数据存储在磁盘中,比如 Ext 2/3/4、XFS 等都是这类文件系统 内存的文件系统 • 这类文件系统的数据不是存储在硬盘的,而是占用内存空间 • 我们经常用到的 /proc 和 /sys 文件系统都属于这一类 • 读写这类文件,实际上是读写内核中相关的数据 网络的文件系统 • 用来访问其他计算机主机数据的文件系统,比如 NFS、SMB 等等

文件系统的层次结构

	主要功能和介绍		
I/O控制	设备驱动程序 • 将输入的命令翻译成底层硬件的特定指令 中断处理程序 • 利用指令使IO设备与系统交互		
基本文件系统	• 向对应的设备驱动程序发送通用命令,以读取和写入磁盘的物理块• 管理内存缓冲区,保存各种文件系统,目录和数据块的缓冲		
文件组织模块	组织文件及其逻辑块和物理块可以将逻辑地址转换为物理地址有空闲空间管理器,以跟踪未分配的块,根据需要提供给文件组织模块		
逻辑文件系统	用于管理元数据信息(包括文件系统的所有结构,不包括文件内容)管理目录结构通过FCB维护文件结构负责文件保护		

文件系统的布局

外存空闲空间管理

Image: section of the content of the		• 是指是对空闲块的组织和管理,包括空闲块的组织,分配,回收
方	方法1:空闲表法	• 表内容 = 空闲区第一个块号 + 该空闲区的块个数
方	方法2:空闲链表法	• 每个空闲块里有一个指针指向下一个空闲块
方	方法3:位示图法	• 0表示盘块空闲,1表示盘块被分配
方	方法4:成组链接法	• 结合空闲表和空闲链表的优点,克服表长的缺点

虚拟文件系统VFS

(大)下水河(V) (5	
目的	• 为用户体用文件系统操作的统一结构,屏蔽了不同文件系统差异和操作细节
特性	1. 能提高系统性能
	2. 不是一种实际的文件系统
	3. 只存在与内存中,不存在与任何外存空间中
	4. 在系统启动时建立,在系统关闭时消亡
VFS的数据结构	1. 超级块对象
	2. 索引节点对象
	3. 目录项对象
	4. 文件对象
	特性

用户空间,系统调用,虚拟文件系统,缓存,文件系统和存储之间的关系

- 一个磁盘可划分为多个区,每个分区都可以创建单独的文件系统,每个分区都可包含不同的操作系统
- 文件在使用前必须先安装(即挂载)

目录管理要求 1. 实现"按名存取"

- 2. 要提高目录的检索速度 3. 需要提供用于控制访问文件的信息
- 4. 允许不同用户对不同文件采用系统的名字

目录结构

定义	优点	缺点
整个文件系统只建立一张目录表每个文件占一个目录项		查找速度慢文件不允许重名不便于文件共享不适合多用户的OS
文件目录分为主文件目录MDF和用户文件目录UFDMDF记录用户名UFD所在的存储位置UFD记录用户文件的FCB信息	解决了多用户之间的文件重名问题文件系统可以在目录上实现访问限制	• 缺乏灵活性,不能对文件分类
使用绝对路径,相对路径,当前路径的结构大多OS采用这种目录结构	• 可以很方便的对文件进行分类 • 能够有效地进行文件的管理和保护	利于文件共享查找文件增加了磁盘访问次数,会影响查询速度
在树形目录结构上加入有向边,组成一个有向无环图	• 实现了文件共享	• 使系统的管理变得更加复杂

目录的操作

搜索文件	创建文件	删除文件		
创建目录	删除目录	移动目录	修改目录	显示目录

目录的查询

概念	• 目录查询通过在磁盘上反复搜索完成,需要不断进行I/O操作,开销大						
	• 可以把当前使用的文件目录复制到内存,从而降低磁盘操作次数,提高系统速度						
实现方法		定义	优点	缺点			
	线性列表 【对应线性查找】	• 采取线性列表存储文件目录项	• 实现简单	● 查找费时			
	哈希表 【对应散列查找】	• 采取哈希表存储文件目录项	• 查找迅速 • 插入删除简单	• 需要一些措施来避免冲突			
	概念	概念	 概念 ● 目录查询通过在磁盘上反复搜索完成,需要不断进行 ● 可以把当前使用的文件目录复制到内存,从而降低磁 实现方法 发性列表 【对应线性查找】 哈希表 ● 采取哈希表存储文件目录项 	 ● 目录查询通过在磁盘上反复搜索完成,需要不断进行I/O操作,开销大 ● 可以把当前使用的文件目录复制到内存,从而降低磁盘操作次数,提高 实现方法 定义 线性列表 【对应线性查找】 ● 采取线性列表存储文件目录项 ● 变现简单 哈希表 ● 采取哈希表存储文件目录项 ● 查找迅速 			

文件	共享					
	概念	• 文件共享使多个用户共享同一个文件,系统只需保留该文件的一个副本				
	文件共享方式	基于索引节点的关系方式【硬链接】	 硬链接就是多个指针指向一个索引节点 只要还有一个指针在,索引节点就不会被删除 文件的物理地址和其他文件属性信息放在索引节点中 硬链接不可用于跨文件系统 硬链接查找速度比软链接快 			
		基于符号链实现文件共享【软链接】	软链接相当于重新创建一个文件新文件只包含被链接文件的路径名软链接可以跨文件系统			