1

Fourier Series

EE3900: Linear Systems and Signal Processing Indian Institute of Technology Hyderabad

Aayush Prabhu AI21BTECH11002

1. Periodic Function

Let

$$x(t) = A_0 |\sin(2\pi f_0 t)| \tag{1.1}$$

1.1 Plot x(t)

Solution: Download the following Python code that plots Fig. 1.1.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Fourier/codes/1.1.py

Run the code by executing

python 1.1.py

Fig. 1.1. Plot of x(t)

1.2 Show that x(t) is periodic and find its period **Solution:** Since x(t) is the absolute value of a sinusoidal function, it is periodic, which is also evident from the plot

Consider $x(t + \frac{1}{2f_0})$

$$x\left(t + \frac{1}{2f_0}\right) = A_0 \left| \sin\left(2\pi f_0 \left(t + \frac{1}{2f_0}\right)\right) \right|$$
 (1.2)

$$= A_0 \left| \sin \left(2\pi f_0 t + \pi f_0 \right) \right| \tag{1.3}$$

$$= A_0 \left| (-1)^{f_0} \sin \left(2\pi f_0 t \right) \right| \tag{1.4}$$

$$= A_0 |\sin(2\pi f_0 t)| \tag{1.5}$$

$$= x(t) \tag{1.6}$$

Therefore, x(t) is periodic with period $\frac{1}{2f_0}$

2. Fourier Series

Consider $A_0 = 12$ and $f_0 = 50$ for all numerical calculations

2.1 If

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k f_0 t}$$
 (2.1)

show that

$$c_k = f_0 \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} x(t)e^{-j2\pi k f_0 t} dt$$
 (2.2)

Solution:

$$x(t)e^{-J2\pi nf_0t} = \sum_{k=-\infty}^{\infty} c_k e^{-J2\pi(n-k)f_0t}$$

$$\implies \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} x(t)e^{-J2\pi nf_0t} dt = \sum_{k=-\infty}^{\infty} c_k \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} e^{-J2\pi(n-k)f_0t} dt$$
(2.4)

But

$$\int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} e^{-J^{2\pi(n-k)f_0t}} dt = \begin{cases} \frac{1}{f_0} & k = n \\ 0 & k \neq n \end{cases}$$

$$= \frac{1}{f_0} \delta(n-k)$$
(2.5)

$$\sum_{k=-\infty}^{\infty} c_k \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} e^{-j2\pi(n-k)f_0 t} dt = \sum_{k=-\infty}^{\infty} c_k \frac{1}{f_0} \delta(n-k)$$

$$= \frac{1}{f_0} c_n * \delta(n) \quad (2.8)$$

$$= \frac{1}{f_0} c_n \quad (2.9)$$

Therefore

$$c_k = f_0 \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} x(t)e^{-j2\pi k f_0 t} dt$$
 (2.10)

2.2 Find c_k for (1.1)

Solution:

$$c_k = f_0 \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} A_0 \left| \sin \left(2\pi f_0 t \right) \right| e^{-j2\pi k f_0 t} dt \quad (2.11)$$

$$c_k = f_0 \int_{-\frac{1}{2f_0}}^0 A_0 \left(-\sin(2\pi f_0 t) \right) e^{-j2\pi k f_0 t} dt$$

$$+ f_0 \int_0^{\frac{1}{2f_0}} A_0 \left(\sin(2\pi f_0 t) \right) e^{-j2\pi k f_0 t} dt \quad (2.12)$$

$$c_k = f_0 \int_0^{\frac{1}{2f_0}} A_0 \sin(2\pi f_0 u) e^{J2\pi k f_0 u} dt$$
$$+ f_0 \int_0^{\frac{1}{2f_0}} A_0 \sin(2\pi f_0 t) e^{-J2\pi k f_0 t} dt \quad (2.13)$$

$$c_k = f_0 \int_0^{\frac{1}{2f_0}} A_0 \sin(2\pi f_0 t) \left(e^{J2\pi k f_0 t} + e^{-J2\pi k f_0 t} \right) dt \quad 2.4 \text{ Show that}$$

$$(2.14) \qquad \qquad x(t) = \sum_{t=0}^{\infty} A_t \int_0^{1/2f_0} A_t dt = \int_0^{1/2f$$

$$= f_0 A_0 \int_0^{\frac{1}{2f_0}} 2\sin(2\pi f_0 t) \cos(2\pi k f_0 t) dt$$
(2.15)

 $= f_0 A_0 \int_0^{\frac{1}{2f_0}} \left\{ \sin \left(2\pi (1+k) f_0 t \right) + \sin \left(2\pi (1-k) f_0 t \right) \right\} dt$ (2.16)

$$= f_0 A_0 \left[-\frac{\cos(2\pi(1+k)f_0t)}{2\pi(1+k)f_0} - \frac{\cos(2\pi(1-k)f_0t)}{2\pi(1-k)f_0} \right]_0^{\frac{1}{2f_0}}$$

$$= \frac{f_0 A_0}{2\pi f_0} \left[\frac{1 - (-1)^{1+k}}{1+k} + \frac{1 - (-1)^{1-k}}{1-k} \right]$$
(2.18)
$$= \left(1 + (-1)^k \right) \frac{A_0}{2\pi} \left[\frac{1}{1+k} + \frac{1}{1-k} \right]$$
(2.19)

$$= \left(1 + (-1)^k\right) \frac{A_0}{\pi (1 - k^2)} \tag{2.20}$$

Therefore

$$c_k = \begin{cases} \frac{2A_0}{\pi(1-k^2)} & k \text{ is even} \\ 0 & k \text{ is odd} \end{cases}$$
 (2.21)

2.3 Verify (1.1) using Python

Solution: Download the following Python code that plots Fig. 3.8.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Fourier/codes/2.3.py

Run the code by executing

python 2.3.py

Fig. 2.3. Plot of x(t) along with its complex Fourier series expansion

$$x(t) = \sum_{k=0}^{\infty} (a_k \cos(2\pi k f_0 t) + b_k \sin(2\pi k f_0 t))$$
(2.22)

and obtain the formulae for a_k and b_k

Solution:

$$dt x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k f_0 t}$$
 (2.23)

$$= c_0 + \sum_{k=1}^{\infty} c_k e^{j2\pi k f_0 t} + c_{-k} e^{-j2\pi k f_0 t}$$
 (2.24)

Thus

$$x(t) = c_0 + \sum_{k=1}^{\infty} (c_k + c_{-k}) \cos(2\pi k f_0 t) + \sum_{k=1}^{\infty} J(c_k - c_{-k}) \sin(2\pi k f_0 t)$$
 (2.25)

Therefore

$$a_k = \begin{cases} c_0 & k = 0 \\ c_k + c_{-k} & k > 0 \end{cases}$$
 (2.26)

$$b_k = j(c_k - c_{-k}) \quad k \ge 0 \tag{2.27}$$

2.5 Find a_k and b_k for (1.1)

Solution:

$$a_0 = c_0 = \frac{2A_0}{\pi} \tag{2.28}$$

For k > 0, if k is odd

$$a_k = 0 + 0 = 0 \tag{2.29}$$

and if k is even

$$a_k = \frac{2A_0}{\pi(1 - k^2)} + \frac{2A_0}{\pi(1 - k^2)} = \frac{4A_0}{\pi(1 - k^2)}$$
(2.30)

For odd or even k, $c_k = c_{-k}$ always

$$b_k = 0 \quad \forall k \ge 0 \tag{2.31}$$

Therefore

$$a_{k} = \begin{cases} \frac{2A_{0}}{\pi} & k = 0\\ \frac{4A_{0}}{\pi(1-k^{2})} & k = 2m, m \in \mathbb{N}\\ 0 & \text{otherwise} \end{cases}$$
 (2.32)

$$b_k = 0 k \ge 0 (2.33)$$

2.6 Verify (2.22) using Python

Solution: Download the following Python code that plots Fig. 2.6.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Fourier/codes/2.6.py

Run the code by executing

python 2.6.py

3. Fourier Transform

3.1

$$\delta(t) = 0 \qquad t \neq 0 \tag{3.1}$$

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$
 (3.2)

3.2 The Fourier Transform of g(t) is

$$G(f) = \int_{-\infty}^{\infty} g(t)e^{-j2\pi ft} dt \qquad (3.3)$$

Fig. 2.6. Plot of x(t) along with its Fourier series expansion

Fig. 2.6. Comparison of the Fourier series of x(t)

3.3 Show that

$$g(t-t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} G(f)e^{-j2\pi ft_0}$$
 (3.4)

Solution:

$$g(t - t_0) \stackrel{\mathcal{F}}{\longleftrightarrow} \int_{-\infty}^{\infty} g(t - t_0) e^{-j2\pi f t} dt \qquad (3.5)$$

$$= \int_{-\infty}^{\infty} g(u)e^{-j2\pi f(u+t_0)} du$$
 (3.6)

$$=e^{-j2\pi f t_0} \int_{-\infty}^{\infty} g(u)e^{-j2\pi f u} du \quad (3.7)$$

$$=G(f)e^{-j2\pi ft_0} (3.8)$$

3.4 Show that

$$G(t) \stackrel{\mathcal{F}}{\longleftrightarrow} g(-f)$$
 (3.9)

Solution:

$$G(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \int_{-\infty}^{\infty} G(t)e^{-j2\pi ft} dt$$
 (3.10)

But

$$g(t) = \int_{-\infty}^{\infty} G(f)e^{j2\pi ft} \,\mathrm{d}f \qquad (3.11)$$

$$= \int_{-\infty}^{\infty} G(u)e^{j2\pi ut} du \qquad (3.12)$$

$$\implies g(-f) = \int_{-\infty}^{\infty} G(u)e^{-j2\pi uf} du \qquad (3.13)$$
$$= \mathcal{F} \{G(t)\} \qquad (3.14)$$

3.5 Find the Fourier transform of $\delta(t)$ Solution:

$$\delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \int_{-\infty}^{\infty} \delta(t) e^{-j2\pi f t} dt$$
 (3.15)

$$= e^{-j2\pi ft} \Big|_{t=0} \tag{3.16}$$

$$=1 \tag{3.17}$$

3.6 Find the Fourier transform of $e^{-j2\pi f_0 t}$ **Solution:**

$$\delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 1$$
 (3.18)

$$\implies \delta(t - f_0) \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j2\pi f f_0} \tag{3.19}$$

$$\implies e^{-j2\pi t f_0} \stackrel{\mathcal{F}}{\longleftrightarrow} \delta(-f - f_0) \tag{3.20}$$

$$\therefore e^{-j2\pi t f_0} \stackrel{\mathcal{F}}{\longleftrightarrow} \delta(f + f_0) \tag{3.21}$$

3.7 Find the Fourier transform of $\cos(2\pi f_0 t)$ Solution:

$$\cos(2\pi f_0 t) = \frac{e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}}{2}$$
 (3.22)

$$\implies \cos(2\pi f_0 t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{\delta(f - f_0) + \delta(f + f_0)}{2}$$
(3.23)

3.8 Find the Fourier transform of x(t) and plot it. Verify using Python

Solution:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k f_0 t}$$
 (3.24)

$$\mathcal{F}\left\{x(t)\right\} = \sum_{k=-\infty}^{\infty} c_k \mathcal{F}\left\{e^{j2\pi k f_0 t}\right\}$$
 (3.25)

$$=\sum_{k=-\infty}^{\infty}c_k\delta(f-kf_0)$$
 (3.26)

$$= \frac{2A_0}{\pi} \sum_{k \text{ is even}} \frac{\delta(f - kf_0)}{1 - k^2}$$
 (3.27)

Download the following Python code that plots Fig. ??.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Fourier/codes/3.8.py

Run the code by executing

python 3.8.py

Fig. 3.8. Plot of the Fourier transform of x(t)

3.9 Show that

$$rect(t) \stackrel{\mathcal{F}}{\longleftrightarrow} sinc(f)$$
 (3.28)

Verify using Python

Solution:

$$\operatorname{rect}(t) = \begin{cases} 1 & |t| \le \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$
 (3.29)

Its Fourier transform is given by

$$\operatorname{rect}(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \int_{-\infty}^{\infty} \operatorname{rect}(t) e^{-j2\pi f t} dt$$
 (3.30)

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-j2\pi ft} dt$$
 (3.31)

$$=\frac{e^{-j\pi f}-e^{j\pi f}}{-\jmath 2\pi f} \tag{3.32}$$

$$=\frac{\sin \pi f}{\pi f} \tag{3.33}$$

$$= \operatorname{sinc}(f) \tag{3.34}$$

Download the following Python code that plots Fig. 3.9.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Fourier/codes/3.9.py

Run the code by executing

Fig. 3.9. Plot of the Fourier transform of rect(t)

Fig. 3.10. Plot of the Fourier transform of sinc(t)

python 3.9.py

3.10 Find the Fourier transform of sinc(t). Verify using Python

Solution:

$$\operatorname{rect}(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{sinc}(f)$$
 (3.35)

$$\implies$$
 sinc $(t) \stackrel{\mathcal{F}}{\longleftrightarrow}$ rect $(-f)$ (3.36)

$$= rect(f) \tag{3.37}$$

Download the following Python code that plots Fig. 3.10.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Fourier/codes/3.10.py

Run the code by executing

python 3.10.py

4. Filter

4.1 Find H(f) which transforms x(t) to DC 5 V **Solution:** Since we want a DC output, the filter we need is a low-pass filter that only lets the zero frequency component pass through, i.e., the amplitude of a frequency components with a frequency higher than the cutoff frequency f_c has to be zero

We can use a rectangular filter for this purpose

$$H(f) = k \operatorname{rect}\left(\frac{f}{2f_c}\right) = \begin{cases} k & |f| \le f_c \\ 0 & \text{otherwise} \end{cases}$$
 (4.1)

Now

$$H(0) = \frac{Y(0)}{X(0)} \tag{4.2}$$

where Y(k) and X(k) are the Fourier transforms of the output 5 V DC and the input signal respectively

$$k = \frac{5}{\frac{2A_0}{\pi}} = \frac{5\pi}{2A_0} \tag{4.3}$$

$$\therefore H(f) = \frac{5\pi}{2A_0} \operatorname{rect}\left(\frac{f}{2f_c}\right) \tag{4.4}$$

4.2 Find h(t)

Solution:

$$\sin(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \operatorname{rect}(f) \qquad (4.5)$$

$$\implies \operatorname{sinc}(2f_c t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{2f_c} \operatorname{rect}\left(\frac{f}{2f_c}\right) \qquad (4.6)$$

$$\implies \frac{5\pi}{2A_0} 2f_c \operatorname{sinc}(2f_c t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{5\pi}{2A_0} \operatorname{rect}\left(\frac{f}{2f_c}\right) \qquad (4.7)$$

$$\therefore h(t) = \frac{5\pi f_c}{A_0} \operatorname{sinc}(2f_c t) \tag{4.8}$$

4.3 Verify your result using through convolution **Solution:** Download the following Python code that plots Fig. 4.3.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Fourier/codes/4.3.py

Run the code by executing

python 4.3.py

Fig. 4.3. Plot of the convolution of x(t) and h(t)

5. FILTER DESIGN

5.1 Design a Butterworth filter for H(f)Solution: The transfer function of a Butterworth filter is given by

$$|H_n(f)| = \frac{1}{\sqrt{1 + \left(\frac{f}{f_c}\right)^{2n}}}$$
 (5.1)

where n is the order of the filter and f_c is the cutoff frequency

Let the passband and stopband frequency thresholds be 50 Hz and 100 Hz and their corresponding attenuations be -1 dB and -5 dB respectively

$$A_p = 10\log_{10} |H_n(f_p)|^2$$
 (5.2)

$$= -10\log_{10}\left(1 + \left(\frac{f_p}{f_c}\right)^{2n}\right)$$
 (5.3)

$$A_s = -10\log_{10}\left(1 + \left(\frac{f_s}{f_c}\right)^{2n}\right)$$
 (5.4)

$$\implies n = \frac{\log\left(\frac{10^{-\frac{A_p}{10}} - 1}{10^{-\frac{A_s}{10}} - 1}\right)}{2\log\left(\frac{f_p}{f_s}\right)} \approx 1.53$$
 (5.5)

Hence, we choose a 2nd order Butterworth filter with

$$f_c = \frac{f_p}{\left(10^{-\frac{A_p}{10}} - 1\right)^{\frac{1}{2n}}} \approx 77.74 \,\mathrm{Hz}$$
 (5.6)

5.2 Design a Chebyschev filter for H(f)

Solution: The transfer function of a Chebyshev filter is given by

$$|H_n(f)| = \frac{1}{\sqrt{1 + \epsilon^2 T_n^2 \left(\frac{f}{f_c}\right)}} \tag{5.7}$$

where ϵ is the ripple factor, f_c is the cutoff frequency and T_n is a Chebyshev polynomial of the n^{th} order

Assuming the same parameters as before along with a ripple of 0.1 dB, we get

$$\epsilon = \sqrt{10^{\frac{\delta}{10}} - 1} \approx 0.15 \tag{5.8}$$

Also, assume that $f_c = f_p \implies \frac{f_s}{f_c} > 1$

$$A_{s} = -10\log_{10}\left(1 + \epsilon^{2}T_{n}^{2}\left(\frac{f_{s}}{f_{c}}\right)\right) \quad (5.9)$$

$$\Longrightarrow T_n \left(\frac{f_s}{f_c} \right) = \frac{\sqrt{10^{-\frac{A_s}{10}} - 1}}{\epsilon} \tag{5.10}$$

$$\implies \cosh\left(n\cosh^{-1}\left(\frac{f_s}{f_c}\right)\right) = \frac{\sqrt{10^{-\frac{A_s}{10}} - 1}}{\epsilon}$$
(5.11)

Thus

$$n = \frac{\cosh^{-1}\left(\frac{\sqrt{10^{-\frac{A_s}{10}}}-1}{\epsilon}\right)}{\cosh^{-1}\left(\frac{f_s}{f_c}\right)} \approx 2.26$$
 (5.12)

Hence, we choose a 3rd order Chebyshev filter
5.3 Design a circuit for your Butterworth filter **Solution:** Using the table of normalized But-

Solution: Using the table of normalized Butterworth coefficients, we can see that for a 2nd order Butterworth filter

$$C_1 = 1.4142 \,\mathrm{F} \tag{5.13}$$

$$L_2 = 1.4142 \,\mathrm{H}$$
 (5.14)

On denormalizing these values, we get

$$C_1' = \frac{C_1}{2\pi f_c} = 2.89 \,\text{mF}$$
 (5.15)

$$L_2' = \frac{L_2}{2\pi f_c} = 2.89 \,\text{mH}$$
 (5.16)

5.4 Design a circuit for your Chebyschev filter **Solution:** Using the table of normalized Chebyshev coefficients, we can see that for a 3rd order Chebyshev filter

$$C_1 = 1.4328 \,\mathrm{F}$$
 (5.17)

$$L_2 = 1.5937 \,\mathrm{H}$$
 (5.18)

$$C_3 = 1.4328 \,\mathrm{F}$$
 (5.19)

Fig. 5.3. 2nd order Butterworth filter circuit

On denormalizing these values, we get

$$C_1' = \frac{C_1}{2\pi f_c} = 4.56 \,\text{mF}$$
 (5.20)

$$L_2' = \frac{L_2}{2\pi f_c} = 5.07 \,\text{mH}$$
 (5.21)

$$C_3' = \frac{C_3}{2\pi f_c} = 4.56 \,\text{mF}$$
 (5.22)

Fig. 5.4. 3rd order Chebyshev filter circuit