Total No. of Questions: 6

(a) GaAs

(b) Silicon

Total No. of Printed Pages:3

Faculty of Engineering

End Sem (Even) Examination May-2019
EC3CO14 / EI3CO14 Fiber Optic Communications
Programme: B.Tech. Branch/Specialisation: EC/EI

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1 i. In an optical fibre, the concept of Numerical aperture is applicable in 1 describing the ability of (a) Light Collection (b) Light Scattering (c) Light Dispersion (d) Light Polarization Which among the following do/does not support/s the soot formation 1 process? (a) OVPO (b) MCVD (c) PCVD (d) All of these In single-mode fibers, how does the fraction of energy traveling 1 through bound mode appear in the cladding? (a) As a crescent wave (b) As a gibbous wave (c) As an evanescent wave (d) All of these Which splicing technique involves the alignment and locking of 1 broken fiber edges by means of positioning devices & optical cement? (a) Fusion (b) Mechanical (c) Both (a) and (b) (d) None of these The lower energy level contains more atoms than upper level under 1 the conditions of _ (b) Population inversion (a) Isothermal packaging (d) Pumping (c) Thermal equilibrium

Which of the following materials is not suitable for making an LED 1

(c) InGaAsP (d) GaAlAs

P.T.O.

Write a short note on optical isolators and optical circulators.

What is wavelength division multiplexing and how it is used in 5

5

5

What are optical sensors? Explain any one.

optical communication?

i.

vii.	Which of the following detectors give amplified output?		
	(a) p-n Photodiode	(b) p-i-n Photodiode	
	(c) Avalanche photodiode	(d) Photovoltaic detector	
viii.	Which of the following is an	inherent property of an optical signal	1
	and cannot be eliminated even		
		(b) Shot noise	
	(c) Environmental noise		
ix.		an example of an intensity-modulated	1
	(a) A sensor based on the relat	tive displacement of two fibers.	
	(b) A fiber-optic gyroscope	1	
	(c) A Mach-Zehnder interferor	meter	
	(d) All of these		
х.	The function of wavelength-di	vision multiplexer is to	1
	<u> </u>	rent wavelengths and couple them to	
	different detectors.	2	
	(b) Combine signals at diffe	erent wavelengths to pass through a	
	single fiber.		
	(c) Tap off part of the energy	of the incoming signal.	
	(d) Change the transmission s		
	. ,		
i.	What are meridional rays and	screw rays?	2
ii.	What is NA? Derive its expres	ssion.	3
iii.	=	ptical communication system. Discuss	5
	the mode theory in step index	-	
iv.	• •		5
	method in detail with diagram	· ·	
i.	Define Intramodal & intermod	lal dispersion.	2
ii.		e expression for Waveguide & material	8
	dispersion.	1	-
iii.	*	signal degradation factors in optical	8
-	• •	to optical windows). Also discuss the	-

design of dispersion shifted and dispersion flattened fibers.

Q.2

OR

Q.3

OR

Marking Scheme

EC3CO14 / EI3CO14 Fiber Optic Communications

Q.1	i.	In an optical fibre, the concept of Numerical aperture is applicable in describing the ability of	1		
	ii.	(a) Light CollectionWhich among the following do/does not support/s the soot formation process?(c) PCVD	1		
	iii.	In single-mode fibers, how does the fraction of energy traveling through bound mode appear in the cladding? (c) As an evanescent wave	1		
	iv.	Which splicing technique involves the alignment and locking of broken fiber edges by means of positioning devices & optical cement?	1		
	v.	(b) Mechanical The lower energy level contains more atoms than upper level under the conditions of	1		
	vi.	 (c) Thermal equilibrium Which of the following materials is not suitable for making an LED 1 (b) Silicon 			
	vii.	Which of the following detectors give amplified output? (c) Avalanche photodiode			
	viii.	Which of the following is an inherent property of an optical signal and cannot be eliminated even in principle? (b) Shot noise			
	ix.	Which of the following is an example of an intensity-modulated 1 sensor?			
	х.	(a) A sensor based on the relative displacement of two fibers.The function of wavelength-division multiplexer is to(b) Combine signals at different wavelengths to pass through a single fiber.			
Q.2	i.	Meridional rays 1 mark	2		
	ii.	Screw rays 1 mark Definition of Numerical Aperture 1 mark Diagram 1 mark Derivation 1 mark	3		

	iii.	Modes in optical communication system	2 marks	5
		Mode theory in step index fibre.	3 marks	
OR	iv.	Names of different methods of fibre fabrication	1 mark	5
		Any one method	2 marks	
		Diagram	2 marks	
Q.3	i.	Definition of Intramodal	1 mark	2
		Definition of intermodal dispersion.	1 mark	
	ii.	Dispersion	1 mark	8
		Expression for Waveguide	3.5 marks	
		Expression for Material dispersion.	3.5 marks	
OR	iii.	Types of signal degradation factors	2 marks	8
		Window Attenuation diagram	2 marks	
		Design of dispersion shifted	2 marks	
		Dispersion flattened fibers.	2 marks	
Q.4	i.	LED modulation bandwidth.		3
		For Optical	1.5 marks	
		For electrical	1.5 marks	
	ii.	LED	1 mark	7
		SLED	2 marks	
		Diagram	1 mark	
		ELED	2 marks	
		Diagram	1 mark	
OR	iii.	Laser-Optical cavity	2 marks	7
		Laser oscillations	2 marks	
		Threshold condition of laser.	3 marks	
Q.5	i.	Quantum efficiency	1 mark	3
		Responsivity of a photo detector	1 mark	
		Derive the expression	1 mark	
	ii.	Name the different types of photodetectors	1 mark	7
		Two Photodetectors explanation		
		2 marks each (2 mark * 2)	4 marks.	
		Diagram 1 mark for each (1 mark * 2)	2 marks	
OR	iii.	Name of different types of optical amplifiers	2 marks	7
		Diagram	2 marks	
		Theory	3 marks	

Q.6		Attempt any two:		
	i.	Optical sensors	1 mark	5
		Explanation of any one	3 marks	
		Diagram	1 mark	
	ii.	Optical isolators	1.5 marks	5
		Diagram	1 mark	
		Optical circulators.	1.5 marks	
		Diagram	1 mark	
	iii.	Wavelength division multiplexing	2 marks	5
		Diagram	1 mark	
		Applications of optical communication	2 marks	
