ELEKTRONIKA

Viera Stopjaková (<u>viera.stopjakova@stuba.sk</u>) Ústav elektroniky a fotoniky FEI STU

Kombinačné obvody

Obsah

- Kombinačné logické obvody a ich realizácia
 - Charakteristika a rozdelenie KO
 - Najpoužívanejšie KO
- Parametre kombinačných obvodov
 - Logický zisk
 - Hazardy

Charakteristika KO

- Obvody zložené zo základných a komplexných logických členov
 - o výstupné dáta závisia len od vstupných premenných (dát)
 - o obvod je opísateľný Boolovskou funkciou alebo pravdivostnou tabuľkou
 - o časovo nezávislá funkcia

Rozdelenie KO (v CMOS)

Kombinačné obvody

- Najpoužívanejšie kombinačné obvody
 - Aritmetická sčítačka / odčítačka
 - Multiplexor / Demultiplexor
 - Selektor
 - Komparátor
 - Kóder / Dekóder
 - Boothova bunka

- Aritmeticky sčíta dve čísla v (priamom) binárnom kóde
 - Niekoľko topológií a architektúr
- Polosčítačka (Half Adder HA)
 - neuvažuje vstupný prenos z vyššieho rádu

- Úplná sčítačka (Full Adder FA)
 - uvažuje vstupný prenos

Navrhnite 1-bitovú aritmetickú polosčítačku (HA)

		21	2 0
A	В	C _{OUT}	Y
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Navrhnite 1-bitovú aritmetickú úplnú sčítačku (FA)

			2 ¹	2 0
C _{IN}	A	В	C _{OUT}	Y
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Navrhnite 1-bitovú aritmetickú úplnú sčítačku (FA)

			2 ¹	2 ⁰
C _{IN}	A	В	C _{OUT}	Y
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$Y = A \oplus B \oplus C_{IN}$$

 $C_{OUT} = A.B + C_{IN}.A + C_{IN}.B$

Navrhnite 1-bitovú aritmetickú úplnú sčítačku (FA)

$$Y = A \oplus B \oplus C_{IN} = (A \oplus B) \oplus C_{IN}$$

 $C_{OUT} = A.B + C_{IN}.A + C_{IN}.B = A.B + C_{IN}.(A \oplus B)$

- Paralelná 4-bitová sčítačka/odčítačka najjednoduchší prípad
 - Zložená z identických segmentov
 - Posúvanie prenosu z predchádzajúceho rádu
 - Jednoduchá implementácia
 - Neoptimálne parametre šírenie prenosu do vyššieho rádu

Rôzne typy sčítačiek

- Carry look-ahead sčítačka
- Carry skip, Carry select, Carry save sčítačka
- Pre-Fix sčítačka
- Pipeline paralelná sčítačka
- Multi-operandová sčítačka
- Manchesterská sčítačka

Rôzne parametre: spotreba, zložitosť, výkon, rýchlosť...

- Pred samotným sčítaním vypočíta propagáciu (šírenie) prenosu do vyššieho rádu na základe vstupných dát
 - Redukovaný čas potrebný na výpočet prenosu
 - Vyššia zložitosť a spotreba obvodu (hlavne pri viacbitovom slove)

- Zložená z troch častí:
 - Propagate / Generate generátor
 - Look-Ahead Carry generátor
 - Sumátor

- Propagate/Generate generátor buď vygeneruje prenos do vyššieho rádu alebo ho len prenesie z nižšieho rádu
 - Krok je vykonaný na všetkých vstupných bitoch naraz, oneskorenie tvorí teda len jedno hradlo

$$P_i = A_i \oplus B_i$$

 $G_i = A_i B_i$

 Look-Ahead Carry a Sumátor moduly pracujú na základe signálov z Propagate/Generate modulu a prenosu z nižšieho rádu

$$S_i = P_i \oplus C_{i-1}$$

4-bitová CLA sčítačka

$$C_{i+1} = G_i + P_i C_i$$

$$C_{1} = G_{0} + P_{0}C_{0}$$

$$C_{2} = G_{1} + P_{1}C_{1} = G_{1} + P_{1}(G_{0} + P_{0}G_{0}) = G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{3} = G_{2} + P_{2}C_{2} = G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0}C_{0}$$

$$C_{4} = G_{3} + P_{3}C_{3} = G_{3} + P_{3}G_{2} + P_{3}P_{2}G_{1} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}P_{1}P_{0}C_{0}$$

Multiplexor

- Prenáša dáta z vybraného vstupného kanála na výstup
- Dátové vstupné kanály (X₀ a X₁)
- Adresné (selektovacie) vstupy (A₀)
- Jeden dátový výstup (Y)

Multiplexor

- Navrhnite multiplexor s dvomi dátovými vstupmi (MUX 1 z 2)
 - A₀ je selektovací vstup

A ₀	X _o	X ₁	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$Y = A_0.X_1 + \overline{A_0}.X_0$$

Multiplexor

- Navrhnite multiplexor s dvomi dátovými vstupmi (MUX 1 z 2)
 - A₀ je selektovací vstup

$$Y = A_0.X_1 + \overline{A_0}.X_0$$

Demultiplexor

- Opačná funkcia multiplexora
- Prenáša vstupné dáta na jeden vybraný výstup
- Jeden dátový vstupný kanál (X)
- Adresné (selektovacie) vstupy (A₀)
- Dátové výstupné kanály (Y₀,Y₁)

Demultiplexor

- Navrhnite demultiplexor so štyrmi výstupnými kanálmi
 - o na výstupe neaktívneho kanála je LOG 0

A_0	A ₁	X	Yo	Y ₁	Y ₂	Y ₃
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	1	0
1	1	0	0	0	0	0
1	1	1	0	0	0	1

$$Y_0 = \overline{A_0} \overline{A_1} X$$

$$Y_1 = \overline{A_0} A_1 X$$

$$Y_2 = A_0 \overline{A_1} X$$

$$Y_3 = A_0 A_1 X$$

Demultiplexor

- Navrhnite demultiplexor so štyrmi výstupnými kanálmi
 - o na výstupe neaktívneho kanála je LOG 0

$$Y_0 = \overline{A_0} \overline{A_1} X$$

$$Y_1 = \overline{A_0} A_1 X$$

$$Y_2 = A_0 \overline{A_1} X$$

$$Y_3 = A_0 A_1 X$$

Binárny komparátor

- Paralelný obvod na porovnanie dvoch slov
- Porovnáva jednotlivé bity vstupných čísel
- Výstupom je logická hodnota na príslušnom výstupe obvodu

Kóder / Dekóder

- Obvod na prevod rôznych kódov
 - Priamy, Inverzný, Doplnkový binárny kód
 - BCD kód Binary Coded Decimal
 - Grayov kód
 - Johnsonov kód
 - Adresné dekódery v RAM

Vlastnosti KO – Logický zisk

Logický zisk (Fanout)

- O Parameter určujúci zaťažiteľnosť logického hradla (počet členov na výstupe)
- Statický a dynamický logický zisk
- Max. počet pripojených hradiel na výstupe hradla pri dodržaní dynamických parametrov
- Parazitná kapacita a odpor vstupu hradiel
- zvyčajne 10

Vlastnosti KO – Hazardy

- Hazardy v logických obvodoch
 - Vznikajú kvôli nedokonalostiam a parazitným vplyvom v reálnych obvodoch (časovanie, oneskorenie...)
 - Dochádza k nežiadúcej zmene hodnoty výstupu na krátky moment
 - zvyčajne pri <u>zmene oboch</u> premenných na vstupe <u>toho istého hradla</u>
- Statické hazardy
- Dynamické hazardy
- Funkčné hazardy

Statické hazardy

- Hazard statickej 1
 - Keď signál nežiaduco zmení hodnotu na LOG 0 (má byť 1)
- Hazard statickej 0
 - Keď signál nežiaduco zmení hodnotu na LOG 1 (má byť 0)

- Odstrániteľné pomocou pridanej logiky
 - Redudantné slučky v Karnaughovej mape
 - Kompromis medzi zložitosťou/optimalizáciou obvodu a počtom hazardov
 - o tzv. Huffmanova metóda

Príklad statického hazardu - statická 1

$$Y = AB + \overline{AC}$$

Pri prechode vstupov z 011 do 111, výstup Y neostáva v LOG 1

→ vzniká statický hazard!

Príklad statického hazardu - statická 1

- Redudantná slučka/hradlo
- Výstup je podržaný v jednotke pri prechode na vstupoch z 011 do 111

Dynamické hazardy

- Viacnásobná zmena výstupu pred ustálením, pri jednej zmene vstupu
- Nastávajú ak existuje viac ciest zo vstupu na výstup (vetvenie obvodu) a signálové vetvy majú rôzne oneskorenie (často ☺)
- Na <u>odstránenie dynamických hazardov</u> treba odstrániť všetky statické hazardy, čo nie je vždy možné / ekonomické

Príklad dynamického hazardu

^{*} Oneskorenie hradiel: d1 << d2 << d3

Ďakujem za pozornosť.