```
Arch=cell(numel(net.Layers),5);
for i=[2 6 10]
    l=net.Layers(i);
    Arch{i,1}=1.Name;
    Arch{i,2}='Convolution2D';
    Arch{i,3}=1.NumFilters;
    Arch{i,4}=num2str(1.FilterSize);
    Arch{i,5}=numel(1.Weights)+numel(1.Bias);
end
for i=[3 7 11]
    l=net.Layers(i);
    Arch{i,1}=1.Name;
    Arch{i,2}='BatchNOrmalization';
end
for i=[4 8 12]
    l=net.Layers(i);
    Arch{i,1}=1.Name;
    Arch{i,2}='ReLU';
end
for i=[5 9]
    l=net.Layers(i);
    Arch{i,1}=1.Name;
    Arch{i,2}='MaxPooling';
end
l=net.Layers(14);
Arch{14,1}=1.Name;
Arch{14,2}='Softmax';
l=net.Layers(15);
Arch{15,1}=1.Name;
Arch{15,2}='ClassificationOutput';
l=net.Layers(1);
Arch{1,1}=1.Name;
Arch{1,2}='ImageInput';
l=net.Layers(13);
Arch{13,1}=1.Name;
Arch{13,2}='FullyConnected';
Arch{13,5}=numel(1.Weights)+numel(1.Bias);
table(Arch)
```

ans =  $15 \times 1$  table

|   | Arch         |              |    |       |     |
|---|--------------|--------------|----|-------|-----|
| 1 | 'imageinput' | 'ImageInput' |    |       | 0   |
| 2 | 'conv_1'     | 'Convoluti   | 16 | '3 3' | 160 |
| 3 | 'batchnor    | 'BatchNOr    |    |       | 0   |
| 4 | 'relu_1'     | 'ReLU'       |    |       | 0   |
|   |              |              |    |       |     |

| 5  | 'maxpool_1'   | 'MaxPooling' |    |       |       |
|----|---------------|--------------|----|-------|-------|
| 6  | 'conv_2'      | 'Convoluti   | 32 | '3 3' | 4640  |
| 7  | 'batchnor     | 'BatchNOr    | 0  | 0     | 0     |
| 8  | 'relu_2'      | 'ReLU'       | 0  | 0     | 0     |
| 9  | 'maxpool_2'   | 'MaxPooling' | 0  | 0     | 0     |
| 10 | 'conv_3'      | 'Convoluti   | 64 | '3 3' | 18496 |
| 11 | 'batchnor     | 'BatchNOr    | 0  | 0     | 0     |
| 12 | 'relu_3'      | 'ReLU'       | 0  | 0     | 0     |
| 13 | 'fc'          | 'FullyConn   | 0  | 0     | 31370 |
| 14 | 'softmax'     | 'Softmax'    | 0  | 0     | 0     |
| 15 | 'classoutput' | 'Classificat | 0  | 0     |       |

ii)

```
for i=[2 6 10]
    layer=net.Layers(i);
    W=layer.Weights;
    a=ceil(sqrt(size(W,3)*size(W,4)));
    figure
    l=1;
    for j=1:size(W,3)
        for k=1:size(W,4)
            subplot(a,a,l)
            imagesc(W(:,:,j,k))
            axis off
            colormap gray
            l=l+1;
        end
    end
    suptitle(['Layer Number ' num2str(i)])
end
```

#### Layer Number 2



#### Layer Number 6

医多位氏疗法 医骶线 医双环状态 医毛线 医克里拉氏病 化自动电流 经保险证券 医克克氏性 医克里氏 医电流电影 医电流 医拉克氏氏 医拉拉曼尼斯 医斯拉曼氏病 医二氏病 医二氏病 医拉斯氏氏试验检试验检 医克拉斯氏试验检试验检验 化拉克曼克尼曼 医双环球虫 医多耳氏性肾炎 医多种毒素 医多种性抗性 医多种动物 医多种性原生的 医多种毒素的 医多克克氏试验医克氏试验检 医多多氏病 医多氏病 经 医乳腺经济性溶解 医医骨髓 医多克特氏病 医多氏氏管的 医克勒氏氏性皮肤性结肠炎 医克勒氏氏 医皮肤性毒素 医医克耳耳氏氏征氏征检检检检尿病性病性皮肤炎症 医格尔氏性医疗性医院性神经 医拉拉氏氏试验检尿病 医乳乳性皮肤 医甲基氏性动物 医多克克氏性动物 医克里曼氏囊性纤维性 医内耳氏性皮肤炎 医多种性坏疽性 医内侧线连续电影运送电影电影运用电影电影电影电影 化电影 医马克克氏征 医克里氏氏 医克里氏 医克里氏氏病 医多形皮肤 医多种性 医多种性 医多种性 医多种性 医多种性 医 经经营制度证

#### Layer Number 10

#### iii)

```
im=imgDataTest(:,:,1,1);
for i=[2 6 10]
    act=activations(net,im,Arch{i,1});
    a=ceil(sqrt(size(act,3)));
    figure
    for j=1:size(act,3)
        subplot(a,a,j)
        imagesc(act(:,:,j))
        axis off
        colormap gray
    end
    suptitle(['Results from Layer Number ' num2str(i)])
end
```







#### iv)

```
for i=[2 6 10]
  maxact=deepDreamImage(net,i,1:Arch{i,3},'PyramidLevels',1);
  a=ceil(sqrt(size(maxact,4)));
  figure
  for j=1:size(maxact,4)
      subplot(a,a,j)
      imagesc(maxact(:,:,1,j))
      axis off
      colormap gray
  end
  suptitle(['Results from Layer Number ' num2str(i)])
end
```

| Iteration | Activation | Pyramid Level              |  |  |  |  |
|-----------|------------|----------------------------|--|--|--|--|
|           | Strength   |                            |  |  |  |  |
|           | =========  | ========================== |  |  |  |  |
| 1         | 0.73       | 1                          |  |  |  |  |
| 2         | 0.63       | 1                          |  |  |  |  |
| 3         | 1.99       | 1                          |  |  |  |  |
| 4         | 3.35       | 1                          |  |  |  |  |
| 5         | 4.71       | 1                          |  |  |  |  |
| 6         | 6.07       | 1                          |  |  |  |  |
| 7         | 7.43       | 1                          |  |  |  |  |
| 8         | 8.80       | 1                          |  |  |  |  |

| ļ | 9         | 10.16     | 1            | L  |   |
|---|-----------|-----------|--------------|----|---|
|   | 10        | 11.52     | 1            | 1  |   |
|   | ========= | ========= | ============ | == | l |



| Iteration  <br> | Activation  <br>Strength | Pyramid Level |
|-----------------|--------------------------|---------------|
|                 |                          |               |
| 1               | 0.06                     | 1             |
| 2               | 0.05                     | 1             |
| 3               | 0.03                     | 1             |
| 4               | 0.02                     | 1             |
| 5               | 0.00                     | 1             |
| 6               | 0.01                     | 1             |
| 7               | 0.02                     | 1             |
| 8               | 0.04                     | 1             |
| 9               | 0.05                     | 1             |
| 10              | 0.06                     | 1             |
| 1               |                          |               |



|           | == | =========              | ==:  |                      |
|-----------|----|------------------------|------|----------------------|
| Iteration |    | Activation<br>Strength | <br> | Pyramid Level        |
| ========  | == | =========              | ==:  | ==================== |
| 1         |    | 0.05                   |      | 1                    |
| 2         |    | 0.09                   |      | 1                    |
| 3         |    | 0.13                   |      | 1                    |
| 4         |    | 0.16                   |      | 1                    |
| 5         |    | 0.18                   |      | 1                    |
| 6         |    | 0.21                   |      | 1                    |
| 7         |    | 0.23                   |      | 1                    |
| 8         |    | 0.25                   |      | 1                    |
| 9         |    | 0.27                   |      | 1                    |
| 10        |    | 0.29                   |      | 1                    |
|           | == | =========              | ==:  |                      |

