Lecture 3: Merge sort and Asymptotic Notation Introduction

CS303: Algorithms

Prepared on January 13, 2014

1 Review

We learned insertion sort and studied its correctness. We also discussed how to analyze the efficiency of algorithms: worst case, best case, and average case. We prefer the worst case in general because it offers the upper bound of an algorithm's efficiency.

2 Introduction to Asymptotic Notations

When we compare algorithm efficiency, we can propose to compare the running time of algorithms. But that depends on the computer/programmer \rightarrow compare them for relative speed (on the same machine with the same programmer) \rightarrow Big idea: asymptotic analysis (why algorithm analysis is so successful)

Adopt asymptotic notation

 $\theta(n)$: drop low order terms and ignore leading constants

e.g. As $n \to \inf$, $\theta(n^2)$ always beats $\theta(n^3)$

2.1 Difference amongst various efficiency classes

Hypothetically, if we are dealing with a problem and we design several algorithms with different efficiencies, What do we expect about their performances?

We compare log(n), n and n^2 If I use three computers with the following speed,

My first pc Pentium 3: 300M Hz (2²⁸ operations per second, flops)

My current computer: 3G Hz (2^{32} flops) One of the supper computers: 2^{66} flops

Input Size n	log(n)	n	n^2
100,000	62ns	$2.33 \times 10^4 \mathrm{ns}$.14ns
10,000,000	87ns	$2.33 \times 10^{6} \text{ns}$	$1360 \mathrm{ns}$
1,000,000,000	111ns	.23s	.013s
100,000,000,000	136ns	23.3s	2.26m
1,000,000,000,000	149ns	233s	3.76h

Now let's analyze the worst case running time of the insertion sort T(n): the total work in the big for loop

$$T(n)=\sum_{j=2}^n j*c=c\times\sum_{j=2}^n j=\frac{(n-1)(n+1)}{2}=\theta(n^2)$$
 Q:/ Is insertion fast?

A:/ moderately so for small n (less than 30), not at all for large n Can we do better?

2.2 Merge sort

```
Merge sort A[1,\ldots,n]
1. if n==1, done
2. recursively sort A[1,\ldots,\lceil\frac{n}{2}\rceil] and A[\lceil\frac{n}{2}\rceil+1,\ldots,n]
3. merge 2 sorted sublist
```

2.2.1 Merge sub-routine

```
sublist 1: 2 7 13 20
sublist2: 1 4 11 12
```

Idea: pick the smallest element in the two list and put it in the output array. Use i, j as pointers that points to the next element of the two sub arrays

```
Q:/ What is the worst case for this merge sub-routine? A:/ Time is \theta(n) on n total elements
```

```
Q:/ What is the running time of merge sort?
A:/ T(n)=constant time (\theta(1) for step 1) + T(n/2) + T(n/2)
```

If we rewrite $\theta(n)$ as cn then from the recursion tree on the next page, we can see that the running time of merge sort is $\theta(nlgn)$

