

IN THE CLAIMS:

Please amend the claims as follows:

Claim 1 (original): A compound of the formula (I):

wherein:

Ring A is a heterocyclyl, wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from K;

R¹ is a substituent on carbon and is selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, aryl, aryloxy, arylC₁₋₆alkyl, heterocyclic group, (heterocyclic group)C₁₋₆alkyl, or a group (B-E-); wherein R¹, including group (B-E-), may be optionally substituted on carbon by one or more W; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by J;

W is halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, or a group (B'-E'-); wherein W, including group (B'-E'-), may be optionally substituted on carbon by one or more Y;

Y and Z are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)sulphamoyl or N,N-(C₁₋₆alkyl)₂sulphamoyl;

G, J and K are independently selected from C₁₋₈alkyl, C₂₋₈alkenyl, C₁₋₈alkanoyl, C₁₋₈alkylsulphonyl, C₁₋₈alkoxycarbonyl, carbamoyl, N-(C₁₋₈alkyl)carbamoyl, N,N-(C₁₋₈alkyl)carbamoyl, benzyloxycarbonyl, benzoyl, phenylsulphonyl, aryl, arylC₁₋₆alkyl or (heterocyclic group)C₁₋₆alkyl; wherein G, J and K may be optionally substituted on carbon by one or more Q; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by hydrogen or C₁₋₆alkyl;

Q is halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, aryl, aryloxy, aryl C₁₋₆alkyl, arylC₁₋₆alkoxy, heterocyclic group, (heterocyclic group)C₁₋₆alkyl, (heterocyclic group)C₁₋₆alkoxy, or a group (B"-E"-); wherein Q, including group (B"-E"-), may be optionally substituted on carbon by one or more Z;

B, B' and B" are independently selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₃₋₈cycloalkylC₁₋₆alkyl, aryl, arylC₁₋₆alkyl, heterocyclic group, (heterocyclic group)C₁₋₆alkyl, phenyl or phenylC₁₋₆alkyl; wherein B, B' and B" may be optionally substituted on carbon by one or more D; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from G;

E, E' and E" are independently selected from -N(R^a)-, -O-, -C(O)O-, -OC(O)-, -C(O)-, -N(R^a)C(O)-, -N(R^a)C(O)N(R^b)-, -N(R^a)C(O)O-, -OC(O)N(R^a)-, -C(O)N(R^a)-, -S(O)_r-, -SO₂N(R^a)-, -N(R^a)SO₂-; wherein R^a and R^b are independently selected from hydrogen or C₁₋₆alkyl optionally substituted by one or more F and r is 0-2;

D and F are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)sulphamoyl or N,N-(C₁₋₆alkyl)₂sulphamoyl;

m is 0, 1, 2, 3 or 4; wherein the values of R¹ may be the same or different;

R² is halo;

n is 0, 1 or 2; wherein the values of R² may be the same or different;

R³ is amino or hydroxy;

R⁴ is halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₃alkyl, C₂₋₃alkenyl, C₂₋₃alkynyl, C₁₋₃alkoxy, C₁₋₃alkanoyl, C₁₋₃alkanoyloxy, N-(C₁₋₃alkyl)amino, N,N-(C₁₋₃alkyl)₂amino, C₁₋₃alkanoylamino, N-(C₁₋₃alkyl)carbamoyl, N,N-(C₁₋₃alkyl)₂carbamoyl, C₁₋₃alkylS(O)_a wherein a is 0 to 2, C₁₋₃alkoxycarbonyl, N-(C₁₋₃alkyl)sulphamoyl, N,N-(C₁₋₃alkyl)₂sulphamoyl;

p is 0, 1 or 2; wherein the values of R⁴ may be the same or different;

or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester or amide thereof,

with the proviso that said compound is not

N-(2-amino-6-hydroxyphenyl)-4-(1-methylhomopiperazin-4-yl)benzamide;

N-(2-amino-6-methylphenyl)-4-(1-methylhomopiperazin-4-yl)benzamide;

N-(2-aminophenyl)-4-(1-*t*-butoxycarbonylhomo piperazin-4-yl)benzamide; or

N-(2-aminophenyl)-4-(1-methylhomopiperazin-4-yl)benzamide.

Claim 2 (original): A compound of the formula (I) according to claim 1 wherein:

Ring A is a pyridyl, quinolyl, indolyl, pyrimidinyl, morpholinyl, piperidinyl, piperazinyl, pyradazinyl, pyrazinyl, thiazolyl, thienyl, thienopyrimidinyl, thienopyridinyl, purinyl, triazinyl, oxazolyl, pyrazolyl, or furanyl; wherein if Ring A contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from K.

Claim 3 (original): A compound of the formula (I) according to claim 1 wherein:

R¹ is a substituent on carbon and is selected from halo, amino, C₁₋₆alkyl, C₁₋₆alkoxy, N-(C₁₋₆alkyl)amino, aryl, aryloxy, arylC₁₋₆alkyl, heterocyclic group, (heterocyclic group)C₁₋₆alkyl, or a group (B-E-); wherein R¹, including group (B-E-), may be optionally substituted on carbon by one or more W; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by J;

W is hydroxy, mercapto, C₁₋₆alkyl, C₁₋₆alkoxy, N,N-(C₁₋₆alkyl)₂amino or a group (B'-E'-); wherein W, including group (B'-E'-), may be optionally substituted on carbon by one or more Y;

Y and Z are independently selected from halo, nitro, cyano, hydroxy, C₁₋₆alkoxy, N,N-(C₁₋₆alkyl)₂amino or C₁₋₆alkanoylamino;

G, J and K are independently selected from C₁₋₈alkyl, C₂₋₈alkenyl, C₁₋₈alkanoyl, aryl, arylC₁₋₆alkyl or (heterocyclic group)C₁₋₆alkyl; wherein G, J and K may be optionally substituted on carbon by one or more Q; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by hydrogen or C₁₋₆alkyl;

Q is cyano, hydroxy, C₁₋₆alkoxy, C₁₋₆alkanoyloxy, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, aryl, aryloxy or a group (B"-E"-); wherein Q, including group (B"-E"-), may be optionally substituted on carbon by one or more Z;

B, B' and B" are independently selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₃₋₈cycloalkylC₁₋₆alkyl, aryl, arylC₁₋₆alkyl, heterocyclic group, (heterocyclic group)C₁₋₆alkyl, phenyl or phenylC₁₋₆alkyl; wherein B, B' and B" may be optionally substituted on carbon by one or more D; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from G;

E, E' and E" are independently selected from -N(R^a)-, -O-, -C(O)O-, -OC(O)-, -C(O)-, -N(R^a)C(O)-, -N(R^a)C(O)N(R^b)-, -N(R^a)C(O)O-, -OC(O)N(R^a)-, -C(O)N(R^a)-, -S(O)_r-, -SO₂N(R^a)-, -N(R^a)SO₂-; wherein R^a and R^b are independently selected from hydrogen or C₁₋₆alkyl optionally substituted by one or more F and r is 0-2;

D and F are independently selected from halo, C₁₋₆alkoxy or N,N-(C₁₋₆alkyl)₂amino.

Claim 4 (original): A compound of the formula (I) according to claim 1 wherein m is 1.

Claim 5 (original): A compound of the formula (I) according to claim 1 wherein R² is fluoro and

n is 0 or 1.

Claim 6 (original): A compound of the formula (I) according to claim 1 wherein R³ is amino.

Claim 7 (original): A compound of the formula (I) according to claim 1 wherein p is 0.

Claim 8 (original): A compound of formula (I) according to claim 1 wherein:

Ring A is a pyridyl, quinolyl, indolyl, pyrimidinyl, morpholinyl, piperidinyl, piperazinyl, pyradazinyl, pyrazinyl, thiazolyl, thienyl, thienopyrimidinyl, thienopyridinyl, purinyl, triazinyl, oxazolyl, pyrazolyl, or furanyl; wherein if Ring A contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from K;

R¹ is a substituent on carbon and is selected from halo, amino, C₁₋₆alkyl, C₁₋₆alkoxy, N-(C₁₋₆alkyl)amino, aryl, aryloxy, arylC₁₋₆alkyl, heterocyclic group, (heterocyclic group)C₁₋₆alkyl, or a group (B-E-); wherein R¹, including group (B-E-), may be optionally substituted on carbon by one or more W; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by J;

W is hydroxy, mercapto, C₁₋₆alkyl, C₁₋₆alkoxy, N,N-(C₁₋₆alkyl)₂amino or a group (B'-E'-); wherein W, including group (B'-E'-), may be optionally substituted on carbon by one or more Y;

Y and Z are independently selected from halo, nitro, cyano, hydroxy, C₁₋₆alkoxy, N,N-(C₁₋₆alkyl)₂amino or C₁₋₆alkanoylamino;

G, J and K are independently selected from C₁₋₈alkyl, C₂₋₈alkenyl, C₁₋₈alkanoyl, aryl, arylC₁₋₆alkyl or (heterocyclic group)C₁₋₆alkyl; wherein G, J and K may be optionally substituted on carbon by one or more Q; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by hydrogen or C₁₋₆alkyl;

Q is cyano, hydroxy, C₁₋₆alkoxy, C₁₋₆alkanoyloxy, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, aryl, aryloxy or a group (B"-E"-); wherein Q, including group (B"-E"-), may be optionally substituted on carbon by one or more Z;

B, B' and B" are independently selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₃₋₈cycloalkylC₁₋₆alkyl, aryl, arylC₁₋₆alkyl, heterocyclic group, (heterocyclic group)C₁₋₆alkyl, phenyl or phenylC₁₋₆alkyl; wherein B, B' and B" may be optionally substituted on carbon by one or more D; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from G;

E, E' and E" are independently selected from -N(R^a)-, -O-, -C(O)O-, -OC(O)-, -C(O)-, -N(R^a)C(O)-, -N(R^a)C(O)N(R^a)-, -N(R^a)C(O)O-, -OC(O)N(R^a)-, -C(O)N(R^a)-, -S(O)_r-, -SO₂N(R^a)-, -N(R^a)SO₂-; wherein R^a and R^b are independently selected from hydrogen or C₁₋₆alkyl optionally substituted by one or more F and r is 0-2;

D and F are independently selected from halo, C₁₋₆alkoxy or N,N-(C₁₋₆alkyl)₂amino;

m is 0, 1, 2, 3 or 4; wherein the values of R¹ may be the same or different;

R² is fluoro or chloro;

n is 0, 1 or 2, wherein the values of R² may be the same or different;

R³ is amino or hydroxy;

R⁴ is halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy or carbamoyl;

p is 0, 1 or 2, wherein the values of R⁴ may be the same or different;

or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester or amide thereof.

Claim 9 (original): A compound of formula (**I**) according to claim 1 wherein:

Ring A is pyridin-4-yl, pyridin-3-yl, pyridin-2-yl, quinolin-8-yl, pyrimidin-6-yl, pyrimidin-5-yl, pyrimidin-4-yl, morpholin-4-yl, piperidin-4-yl, piperidin-3-yl, piperdin-2-yl,

piperazin-4-yl, pyridazin-5-yl, pyrazin-6-yl, thiazol-2-yl, thien-2-yl, thieno[3,2d]pyrimidinyl, thieno[3,2b]pyrimidinyl, thieno[3,2b]pyridinyl, purin-6-yl or triazin-6-yl; wherein if Ring A contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from K;

R¹ is a substituent on carbon and is selected from fluoro, chloro, amino, methyl, ethyl, propyl, methoxy, N-methylamino, N-ethylamino, N-propylamino, N-butylamino, phenyl, naphthylethyl, piperazin-1-yl, piperidin-1-yl, piperidin-4-yl, 2-(thiomethyl)-pyrimidin-4-yl, tetrahydrofuran-2-ylmethyl, tetrahydropyran-2-ylmethyl, 1,2,5-thiadiazol-3-ylethyl, piperidin-1-ylmethyl, pyridin-2-ylmethyl, or a group (B-E-); wherein R¹, including group (B-E-), may be optionally substituted on carbon by one or more W; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by J;

W is hydroxy, methyl, ethyl, ethoxy, N,N-(diethyl)amino, N,N-(dibutyl)amino, or a group (B'-E'-); wherein W, including group (B'-E'-), may be optionally substituted on carbon by one or more Y;

Y and Z are independently selected from fluoro, chloro, bromo, nitro, cyano, hydroxy, methoxy, N,N-(dimethyl)amino or methylcarbonylamino;

G, J and K are independently selected from methyl, ethyl, propyl, pentyl, 2-methylbutyl, butyl, acetyl, benzyl, 3-(pyrrol-1-yl)propyl or pyrrolidin-2-one-(5S)-methyl; wherein G, J and K may be optionally substituted on carbon by one or more Q; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by hydrogen or methyl;

Q is cyano, hydroxy, methoxy, ethoxy, methylcarbonyloxy, methoxycarbonyl, t-butoxycarbonylamino, phenyl or a group (B''-E''); wherein Q, including group (B''-E''), may be optionally substituted on carbon by one or more Z;

B, B' and B'' are independently selected from methyl, ethyl, propyl, cyclohexyl, phenyl, benzyl, 1,2,3,4-tetrahydroquinolinyl, 3-morpholinopropyl, 2-morpholinoethyl, 2-pyrrolidin-1-ylethyl, 3-morpholinopropyl, 3-(4-methylpiperazin-1-yl)propyl, 2-piperidin-1-ylethyl, 3-piperidin-1-ylpropyl, pyridin-3-ylmethyl or imidazol-1-ylpropyl; wherein B, B' and B'' may be optionally substituted on carbon by one or more D; and wherein if said

heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from G;

E, E' and E'' are independently selected from -N(R^a)-, -O-, -C(O)-, -NHC(O)-, -N(R^a)C(O)O-; wherein R^a is hydrogen or methyl optionally substituted by one or more F;

D and F are independently selected from fluoro, methoxy or ethoxy;

m is 0, 1, or 2; wherein the values of R¹ may be the same or different;

R² is fluoro;

n is 0 or 1;

R³ is amino;

R⁴ is halo;

p is 0, 1 or 2, wherein the values of R⁴ may be the same or different;

or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester or amide thereof.

Claim 10 (original): A process for preparing a compound of formula (I) or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester thereof, according to claim 1, which process comprises of:

(a) the reaction of a compound of the formula (II)

wherein X is a reactive group, with a compound of the formula (III)

wherein L¹ and L² are ligands;

(b) the reaction of a compound of the formula (IV)

wherein L¹ and L² are ligands, with a compound of the formula (V)

wherein X is a reactive group; or

(c) the reaction, in the presence of 4-(4,6-dimethoxy-1,3,5-triazinyl-2-yl)-4-methylmorpholinium chloride, of a compound of the formula (VI)

(VI)

with a compound of the formula (VII)

and thereafter if necessary:

- i) converting a compound of the formula (I) into another compound of the formula (I); and/or
- ii) removing any protecting groups.

Claim 11 (currently amended): A pharmaceutical composition which comprises a compound of the formula (I), or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester or amide thereof, according to any one of claims 1 to 9 in association with a pharmaceutically-acceptable diluent or carrier.

Claims 12-13 (cancelled).

Claim 14 (currently amended): A method for producing a HDAC inhibitory effect in a warm-blooded animal, such as man, in need thereof, of such treatment which comprises administering to said animal an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester or amide thereof, according to any one of claims 1 to 9.

Claim 15 (cancelled).

Claim 16 (currently amended): A method of treating cancer in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester or amide thereof, according to any one of claims 1 to 9.

Claim 17 (cancelled).