Announcements
- HW2 due today it 5:00

STAT 430: Lecture 7
Discrete Random Variables
Chapter 2

Course page: imouzon.github.io/stat430

What is a "Random" Variable?

Meaning

Random Variables

So we've got this idea that we can define a probability on the outcomes of an experiment. For instance, if we toss a coin three times we can define the sample space as:

 $\Omega = \{ \underline{HHH}, \underline{HHT}, \underline{HTH}, \underline{THH}, \underline{HTT}, \underline{THT}, \underline{TTH}, \underline{TTT} \}$

and (assuming the coin is fair) we can assign a probability of 1/8 to each outcome.

Then we can talk about things like $P(\{"first flip is H"\})$

But what if the scenario is not so simple? What if we are dealing with a situation where all the probabilities are not the same? Or if there are an infinite number of outcomes?

Many common real world scenarios can lead to such problems.

Meaning

Random Variables, cont.

Essentially a random variable is a *function* that takes elements of the sample space to the set of real numbers. Defining a function like this does two things for us

- 1. It moves elements ω from a sample space Ω that may be strange or hard to describe to the set of real numbers, which we have many tools to work with
- 2. Commonly occurring types of random variables can be explored more fully apart from the details of the scenario (coin flips, dice rolls, etc. can all be handled as a common type of random variable).

Random Variables, cont.

Meaning

Notice that if we can talk about $A \subset \Omega$ then we can also talk about $\{\omega \in \Omega : X(\omega) = x\}$.

Illustration

P(A) = P({u en: u ea}')

the probability is

= P({u ev: x(m) = x3) = P(X = x)

If we can define a probability on on then that structure transfers to our real numbers × morzs between sets) Ex Flip a coin twice,
record the number of Limes
heads occurs as x

$$X(\{HH\}) = 2$$
 $X(\{HT\}) = 1$
 $X(\{TH\}) = 1$
 $X(\{TT\}) = 0$

$$P(x=0) = \frac{1}{4}$$

Random Variables, cont.

Meaning

There are two main types of random variables: **Discrete** and **Continous**

Types

Discrete Random Variable A function whose domain is the sample space and whose range is a countable subset of \mathbb{R}

Continuous Random Variable A function whose domain is the sample space and whose range is a non-countable subset of \mathbb{R}

Discrete random variables are based on **counting** measurements, continuous random variables are based on a distance measurement.

Density and Mass Functions

Meaning

Since we are dealing with real numbers when we deal with random variables, we can talk about their probabilities in terms of functions:

In continuous case

area under

P(a= X=b)

the ero between

represents

the probability

that a < X < b | prob. Jensity function 7/13

Cumulative Probability Functions

Meaning

A way of adding up all the probabilities up to a certain value of x.

Types

The Piscrete Case

Density/Mass Functions

represent how much probability is at the value of X or below

Q:P(X:2.5)=F(2.5)

Cumulative Functions

Discrete Random Variables

The Common Types

Discrete Random Variables

Bernoulli Experiments

Motivation: "I have an experiment that can be thought of as having two outcomes"

Bernoulli

In a Bernoulli Experiment, we have the following:

- A single outcome of interest ("success" and "failure")
- A probability associated with success, *p*

Examples:

- I flip a coin and hope I get a heads
- I draw a card from a deck and hope I get an Ace
- I run a marathon and hope to beat my previous record

successo brak

Discrete Random Variables

Bernoulli Random Variables

If we have a Bernoulli experiment, then we can define a **Bernoulli Random Variable** by writing:

Bernoulli

Let A be an event composed of outcomes ω of the sample space Ω with P(A)=p. Then a random variable defined as

$$X(\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A \end{cases}$$

is a **Bernoulli Random Variable**. In this case, we would refer to A as the set of all "successful" outcomes. Further, P(X = 1) = p and we can call the probability of success p

P(A) =
$$P(X=1) = P$$

Discrete Random Variables

Example: Rolling dice

Scenario: we are rolling a fair six-sided die.

Our goal is to roll higher than 3 but lower than 6.

Bernoulli

Our goal is to roll a pair of dice and get a double

$$X("no+doubles") = 0$$

 $Y("no+doubles") = 0$
 $P(X=1) = \frac{6}{36}$