Multiple Access: CDMA

Dr. T. Samanta

Dept. of I.T.

Agenda

- CDMA: features
- Basic principle
- Second generation CDMA
- Third generation CDMA
- 4G standards

CDMA

- Wireless communication technology that uses spread spectrum communication
- Three ways to spread the bandwidth of the signal
 - Frequency hopping
 - Time hopping
 - Direct sequence

CDMA features

- All users use same frequency and may transmit simultaneously
- Narrowband massage signal multiplied with wideband spread signal
- Each user has its own pseudo code
- To detect at the receiver end receiver must know the transmitter codeword.

Spread Spectrum

Pros and cons of CDMA

• Advantages:

- Frequency diversity, spread out over large bandwidth, less immune to noise burst, selective fading
- Multipath resistance, less interference
- Privacy, each user has unique code
- Graceful degradation

• Disadvantages:

- Self-jamming, spreading sequences are not orthogonal
- Near-far problem
- Soft handoff, more complex than hard handoff

Periodic Binary PN Sequence

Relation between PN code sequence and binary message

User A	1	-1	-1	1	-1	1
User B	1	1	-1	-1	1	1
User C	1	1	-1	1	1	-1

User Code c = <c1, c2, c3, c4, c5, c6>

Transmit (bit 1)	1	-1	-1	1	-1	1	
Received codeword	1	-1	-1	1	-1	1	
Multiplication	1	1	1	1	1	1	=6

Transmission from A

Transmit (bit 0)	-1	1	1	-1	1	-1	
Received codeword	1	-1	-1	1	-1	1	
Multiplication	-1	-1	-1	-1	-1	-1	=-6

Transmission from A

User A	1	-1	-1	1	-1	1
User B	1	1	-1	-1	1	1
User C	1	1	-1	1	1	-1

Transmit (bit 1)	1	1	-1	-1	1	1	
Received codeword	1	-1	-1	1	-1	1	
Multiplication	1	-1	1	-1	-1	1	=0

Transmission from B, receiver attempts to recover A's transmission

Transmit (bit 1)	1	1	-1	1	1	-1	
Received codeword	1	1	-1	-1	1	1	
Multiplication	1	1	1	-1	1	-1	=2

Transmission from C, receiver attempts to recover B's transmission

Transmission from B and C, receiver attempts to recover B's transmission

B (data 1)	1	1	-1	-1	1	1	
C (data 1)	1	1	-1	1	1	-1	
Combined signal	2	2	-2	0	2	0	
Received codeword	1	1	-1	-1	1	1	
Multiplication	2	2	2	0	2	0	=8

CDMA DSSS

Direct sequence spread spectrum systems

Frequency hop spread spectrum

M = number of

frequency

m = number of bits

in a message

Frequency hop spread spectrum

- In frequency-hopping signal, the frequency is constant over one time chip, but changes from chip to chip
- Fast hop: frequency hopping takes place at a rate that is greater than the message bit rate
- Slow hop: frequency hop is less than the message bit rate
- For fast hop, $t_1 = t_m/k$, t_1 is time chip, t_m is massage bit time, k = 1,2,3...

Frequency-Hopping Transmitter

Frequency-Hopping Receiver

Second Generation CDMA

IS-95

- Second generation CDMA scheme primarily deployed in North America
- 64 logical CDMA forward channel each of 1.228MHz. bandwidth
- IS-95 forward link
 - Pilot (channel 0)
 - Synchronization
 - Paging
 - Traffic
- IS-95 reverse link
 - Access
 - Traffic

Third generation systems (IMT*-2000)

- Aim is to produce high speed communication to support multimedia, data and video in addition to voice
- Voice quality comparable to PSTN
- 144kbps data rate available to vehicles
- 384kbps available to pedestrian
- 2.048Mbps for office use
- Symmetric and asymmetric data transmission
- Support circuit switched and packet switched data traffic
- Efficient use of available spectrum
- Flexibility to allow new services and technologies

3G development groups worldwide

W-CDMA Parameters

Channel B.W.	5 MHz
Forward RF	Direct spread
channel structure	
Chip rate	3.84 Mcps
Frame length	10 ms
No. of slots/frame	15
Spreading	Balanced QPSK (forward)
modulation	Dual channel QPSK(reverse)
	Complex spreading circuit
Data modulation	QPSK
	BPSK
Coherent detection	Pilot symbol

Reverse channel multiplexing	Time multiplexing
Multirate	Various spreading and multicore
Spreading factor	4 to 256
Power control	Open and fast code loop (1.6 KHz)
Spreading (forward)	Variable length orthogonal sequence for channel separation Gold sequence for cell and user separation
Spreading (reverse)	Same as forward, different time shift in I and Q channels
Handover	Soft

CDMA design considerations

Bandwidth

- Bandwidth for channel limited to 5 MHz.

Chip rate

- Depends on data rate, need for error control, bandwidth limitation
- Chip rate 3 Mcps or more

Multirate

- Multiple fixed data-rate logical channels to a given user
- Šupports multiple simultaneous application

Multirate: TDMA and CDMA

- Different number of slots per frame are assigned to achieve different data rate within a single CDMA channel
- Multiple CDMA codes with separate coding and interleaving, mapped to separate CDMA channels

Time Multiplexing

Code Multiplexing

4G Standards

- UTRA (Universal Terrestrial Radio Access) is a 3rd generation system
- 3GPP technologies, launched a project in Dec. 2004 called Long Term Evolution (LTE) to study requirements for a new air interface called Evolved UTRA (EUTRAN)
- LTE is using OFDMA (Orthogonal Frequency Division Multiple Access) in downlink (evolved NodeB (eNodeB) => User Equipment (UE)) and SC-FDMA (Single Carrier- Frequency Division Multiple Access) in uplink (UE => eNodeB)
- While UMTS (at least FDD and 3,84Mcps TDD) used a channel bandwidth of 5MHz, LTE allows 6 different channel bandwidths: 1,4/3/5/10/15/20MHz
- Developments of the 4th generation of mobile communication system with LTE advanced

4G | LTE ARCHITECTURE

..... → Signal

— → Traffic

4G-LTE Architecture

- 1. MME→ Mobility management entity
- 2. HSS→ Home subscriber server, a central repository of information for network nodes
- 3. PCRF→ Policy and charging rules function, allocation of network resources for the IP Multimedia Systems network

Challenges of LTE Advanced

- Support of wider bandwidth: aggregation of multiple component carriers with up to 20MHz bandwidth
- Spatial multiplexing: DL up to 8 layers, UL up to 4 layers
- Coordinated multiple point transmission and reception: to improve the coverage of high data rates, the cell-edge throughput and/or to increase system throughput
- Relaying functionality: to improve the coverage of high data rates, coverage of new area, group mobility, temporary network deployment

Thank You!