LWTs in practice

Christopher Batey
@chbatey
The Last Pickle

Overview

Review of Cassandra's consistency model

What are LWTs?

Why do we need them?

How do they work?

How do you use them?

Writes

Concurrent writes

QUORUM based consistency

QUORUM based consistency

QUORUM based consistency

Voucher example

```
CREATE TABLE vouchers_mutable (
name text PRIMARY KEY,
sold int
)
```

Read and write race condition with Quorum

- Client A read the number of ticket sales at 299
- Client B read the number of ticket sales at 299
- Client A sells ticket 300
- Client B sells ticket 300

Compare and set

Enter Light Weight Transactions

- Client A read the number of ticket sales at 299
- Client B read the number of ticket sales at 299
- Client A sells ticket 300 if total sold is 299
- Client B sells ticket 300 if total sold is 299

Examples

Uniqueness

```
CREATE TABLE users (

user_name text PRIMARY KEY,

email text,

password text
)
```

```
INSERT INTO users (user_name, password, email )
    VALUES ( 'chbatey', 'different',
'adifferentchris@gmail.com' ) IF NOT EXISTS
```

Finite resource

```
CREATE TABLE vouchers_mutable (
name text PRIMARY KEY,
sold int
)
```

```
UPDATE vouchers_mutable SET sold = 1
WHERE name = free tv' IF sold = 0;
```

Immutable events

```
CREATE TABLE vouchers (
name text,
when timeuuid,
who text,
PRIMARY KEY (name, when)
);
```

Batches + LWTs

```
CREATE TABLE vouchers (
name text,
when timeuuid,
sold int static,
who text,
PRIMARY KEY (name, when)
);
```

```
INSERT INTO vouchers (name, sold) VALUES
( 'free tv', 0);
```

Batches + LWTs

```
BEGIN BATCH

UPDATE vouchers SET sold = 1 WHERE name = 'free tv' IF sold = 0

INSERT INTO vouchers (name, when, who) VALUES ( 'free tv', now(), 'chris')

APPLY BATCH;

[applied]

True
```

Batches + LWTs

How they work

LWTs be puzzling

- 1. Why does a LWT have two consistency levels?
- 2. What is this SERIAL consistency I keep hearing about?
- 3. What are SERIAL reads?
- 4. Why does my LWT fail but the value still get written?
- 5. Why are they so damn slow?

Consensus for a partition

Consensus for a partition

Stages of a LWT

- Prepare and promise
- Read existing value
- Propose and accept
- Commit

Consensus for a partition

Prepare and promise - rejection

Prepare and promise - rejection

Client

Rejected

ClientRequest.CASWrite.contentions

Prepare and promise - trace

Parsing insert into users (user_name, password, email) values ('chbatey', 'chrisrocks', 'christopher.batey@gmail.com') if not exists; [SharedPool-Worker-1] | 2016-08-22 12:38:44.132000 | 127.0.0.1 | 1125

Sending PAXOS_PREPARE message to /127.0.0.3 [MessagingService-Outgoing-/127.0.0.3] | 2016-08-22 12:38:44.141000 | 127.0.0.1 | 10414

Sending PAXOS_PREPARE message to /127.0.0.2 [MessagingService-Outgoing-/127.0.0.2] | 2016-08-22 12:38:44.142000 | 127.0.0.1 | 10908

Promising ballot fb282190-685c-11e6-71a2-e0d2d098d5d6 [SharedPool-Worker-1] | 2016-08-22 12:38:44.147000 | 127.0.0.3 | 4325

Prepare and promise - trace

Promising ballot fb282190-685c-11e6-71a2-e0d2d098d5d6 [SharedPool-Worker-1] | 2016-08-22 12:38:44.147000 | 127.0.0.3 | 4325

Promising ballot fb282190-685c-11e6-71a2-e0d2d098d5d6 [SharedPool-Worker-3] | 2016-08-22 12:38:44.166000 | 127.0.0.1 | 35282

Read

LOCAL_SERIAL => LOCAL_QUORUM

SERIAL => QUORUM

ClinetRequest.CASWrite.conditionNotMet

Propose and accept

Propose and accept

Propose and accept - rejection

Client

ClientRequest.CASWrite.contentions

Propose and accept - trace

Sending PAXOS_PROPOSE message to /127.0.0.3 [MessagingService-Outgoing-/127.0.0.3] | 2016-08-22 12:38:44.197000 | 127.0.0.1 | 66139

Propose and accept - trace

Accepting proposal Commit(fb282190-685c-11e6-71a2-e0d2d098d5d6, [lwts.users] key=chbatey columns=[[] | [email password]]\n Row: EMPTY | email=christopher.batey@gmail.com, password=chrisrocks) [SharedPool-Worker-2] | 2016-08-22 12:38:44.199000 | 127.0.0.1 | 67804

Commit

The normal consistency is now used for the commit

Consensus for a partition

SERIAL reads

o.a.c.s.StorageProxy.readWithPaxos

- For a single partition
- Runs a prepare and ensures all replicas have the latest commit
- Then runs the read at either Q or LQ

Write timestamps

Write timestamps

Write timestamps

Some numbers

Setup

4 * i2xLarge

RF = 3

10 clients trying to buy 1000 vouchers each - 10k total operations

Contention: all clients buying the same voucher (same partitoin)

No contention: all clients after different vouchers (different partition)

Mutable field

```
CREATE TABLE vouchers_mutable (
name text PRIMARY KEY,
sold int
)
```

```
UPDATE vouchers_mutable SET sold = 1

WHERE name = 'free tv'
```

```
UPDATE vouchers_mutable SET sold = 1

WHERE name = 'free tv' IF sold = 0;
```

Histogram

Histogram

Batches

```
CREATE TABLE vouchers (
   name text,
   when timeuuid,
   sold int static,
   who text,
   PRIMARY KEY (name, when)
);
```

```
BEGIN BATCH
    UPDATE vouchers SET sold = 1 WHERE name = 'free tv' IF sold = 0
    INSERT INTO vouchers (name, when, who) VALUES ( 'free tv', now(), 'charlie')
APPLY BATCH;
```

Histogram

Histogram

Summary

LWT	Batch	Contention	Incorrect results	99th %ile (milliseconds)
N	N	Υ	87% Lost	48
Y	N	Y	0% Lost 1% Unknown 81% CNM	191
Y	N	N	0% Lost 0% Unknown 0% CNM	52
Y	Υ	Υ	0% Lost <1% Unknown 82% CNM	192

Summary

Summary

- LWTs are expensive
- They are more complex and less mature than the regular read and write path
- Might be a lot easier than bringing in a second technology

Questions?

Christopher Batey

@chbatey

The Last Pickle