EPIZOOTIOLOGY OF PARASITIC DISEASES

- > The general principals of the epizootiology of parasitic disease;
- Mechanisms Pathogenicity;
- Ways of parasite transmission;
- > Natural focus of contagious parasitic diseases; zoonoses;

INTRODUCTION TO PROTOZOOLOGY

- General taxonomy one-cell parasites;
- > Intracelular structure and mode of reproduction;

prof. Alica Kočišová, DVM, Ph.D. September 27, 2023

PARASITOSIS (PARASOTOSES)

Is a term for an infection or infestation caused by parasites, regardless of whether it is associated with clinical symptoms or not.

- > Nomeclature
- ➤ WAAVP
- > "-osis" (Trypanosoma trypanosom + osis = trypanosomosis)

CATEGORY	Definition
Ectoparasites	Parasites living on or in the skin or in cavities directly connected with the external environment
Endoparasites	Parasites of internal organs of a host
Obligate parasites	Depending on the ir host
Facultative parasites	Living only occasionally as parasites
Opportunistic parasites	Infect/infest a host under favourable conditions (e.g. impaired immune defence), possibly causing damage
Temporary parasites	Living only a short period on or in a host
Stationary parasites	Living all the times on or in a host
Permanent parasites	All developmental stages are parasitic
Periodic parasites	Only certain stages are parasitic
Monoxenic parasites	With one obligatory host species
Heteroxenic parasites	Able to use several obligatory host species
Stenoxenic parasites	Narrow host range
Euryxenic parasites	Broad host rang

The general principals of the epizootiology of parasitic disease

Epizootiology:

the science concerned with the factors involved in the occurrence and spread of pathogens of animal diseases.

explains the emergence, expansion, developmental specificity, course and occurrence of parasitosis (the parasitic/etiological agent /pathogen-induced disease process).

INFECTION -

– P inside the H

INFESTATION - P on the H

CONTAMINATION - presence of parasite and its developmental forms in the external environment (water, food, soil).

Epizootiology Triad-Related Concepts

Infectivity (ability to infect)

(number infected / number susceptible) x 100

Pathogenicity (ability to cause disease)

(number with clinical disease / number infected) x 100

Virulence (ability to cause death)

(number of deaths / number with disease) x 100

All are dependent on host factors

Ecological Factors in Infections

Altered environment {Air conditioning}

Changes in food production & handling

{intensive husbandry with antibiotic protection; deep-freeze; fast food industry}

Climate changes

(Global warming)

Deforestation

Ownership of (exotic) pets

Air travel & Exotic journeys / Global movements

Increased use of immunosuppressives/ antibiotics

Endemic - Epidemic - Pandemic

Sporadic level: occasional cases occurring at irregular intervals

Endemic level: persistent occurrence with a low to moderate level

Epidemic or outbreak: occurrence clearly in excess of the expected level for a given time period

Pandemic: epidemic spread over several countries or continents, affecting a large number of people

Expression of parasitological status via two basic parameters

- Prevalence
 Moderate intensity

PREVALENCE (%) is the proportion of infected individuals showing disease in a group of animals in a certain date. (number of infected hosts/number of hosts examined x

MODERATE INTENSITY represents the average number of specimens of the parasite species on/in one infected host (total number of parasites of the species in the host sample / number of infected individuals in the host sample);

Other epizootiologic expressions:

Incidence (%) - number of new disease cases in the population over a given period/number of healthy individuals in the population at the beginning x 100 follow-

Morbidity - total number of disease cases within a given population of animals in a defined time period.

Mortality – total number of deaths within a given population of animals in a defined time period.

Lethality - total number of disease associated cases of death within a given population of diseased animals in a defined time period.

Epizootiology of parasitoses

ABUNDANCE = number of individuals of a particular parasite species in the total host population (calculation: average parasite prevalence x average infection intensity).

AVERAGE ABUNDANCE = total number of individuals of the given parasite species on the total number of all tested hosts;

DENSITY = number of individuals of a particular parasite species in a sample unit taken from a habitat related to unit area, volume or weight.

Epizootiology of parasitic diseases

Prepatented time: time period between infection of a host by a parasite and first release of products of reproduction – oocysts, eggs, larvae, etc.

Incubation time: time between infection and manifestation of disease symptom.

What is the Life Cycle

Life cycle described the **ontogenesis**, **development** and **reproduction of the parasite**, tracking it through the various phases of its life history which will encompass both parasitic and non-parasitic stages.

The key to understanding the transmission of a parasite species and parasitic disease is its life-cycle;

Generalized stages of a parasite's life cycle

- > Stage in human/animal host (linking to pathogenesis)
- > Stage to discharge (diagnostic stage)
- > Stage developing outside human/animal host (in external environment, intermediate host or insect host)--- (linking to transmission)
- > Stage infecting human/animal (infective stage)

How parasites enter their hosts

PASSIVE INFECTION Ingestion

- faecal-oral contamination with food, water, hands by cysts
- \succ uncooked or undercooked foods
- eating paratenic or intermediate hosts
- > inhalation

ACTIVE INFECTION

- > penetration of the skin
- inoculation of infective stages by vector

Transmission mechanisms of parasites

- ➤ HORIZONTAL between individuals of the same generation
 - transmission through contact (e.g. sexual)
 - transmission through vectors
 - contamination (mechanical)
 - · inoculation (bite; blood)
- ➤ VERTICAL from one host generation to the following generation
 - Transplacental
 - Lactogenic
- IATROGENIC (G. iatros: physician) transmission by physician or veterinarian; e.g. through contaminated injection needles

Adverse effects of parasites on hosts **PATHOGENICITY**

- Is a property of a species;
- > Within a species various strains can exist with different degrees of virulence, ranging from low to high.
- > A host species is susceptible or not to certain pathogen due to its genetic constitution.
- > Individuals may exist that are fully susceptible or partially resistant. (This resistance is an innate property and need to be distinguished from

Mechanisms of pathogenicity

The adverse effects that parasites exert on their hosts are extremely diverse and complex, and represent the result of PARASITE-HOST INTERACTIONS.

- 1. Direct damage e.g. mechanically, blockade, tissue destruction, compression of organs, destruction cells; 1. Competition for hosts nutrients
- Losses of nutrients
- Inflammatory response
- Immunopathological effects
- Cytopathogenicity
- Immune responses
 Blood loss
- 2. Indirect effects parasites signals with host reactions

2. Destruction of hosts tissues

4. Toxins, poisons and secretions

Immunology of parasitoses

- > Vertebrates are equipped with two functionally closely related defence systems to fight pathogens:
 - 1. innate immune system non-specific
 - 2. acquired or adaptive immune system specific

Immunology of parasitoses

> INNATE IMMUNE SYSTEM

includes physical and chemical barriers = first non-specific line of defense skin,

= secretions: saliva, digestive enzymes,

> Should a parasite evade these barriers, are

cellular components: phagocytes, natural killer, T-cells

The earliest effect:

Inflammation (vasodilatation, increasing of blood flow and vascular permeability)
Phagocytosis (neutrophils and macrophages)

Immunology of parasitoses

> ADAPTIVE IMMUNE RESPONSE

regulate and control the course of primary infections and protect an organism completely or partially from:

- 1. re-infection (anti-infectious immunity)
- 2. clinical consequences of an infection (protection from the disease)
- Subsequent responses then occur at 2 broad levels:
 Cellular immune reactions by T lymphocytes
 - Cellular immune reactions by T lymphocytes
 Humoral immune reactions by B lymphocytes and B lymphocyte derived plasma cells, producing antibodies (lgM, lgG, lgA, lgE...)

Immunological effector mechanisms against protozoa.

Immunological effector mechanisms against tissue stages of helminths

Self-cure reactions are a particular type of immune elimination of helminths by rapid expulsion of living larvae or adults;

Local hypersensitivity reaction Local hypersensitivity reaction Late/Delayed type (24-48 hours) Tlymphocytes Komplement Activation of Lymphokines Activation of basophils (IgE) Tlymphocytes Infiltration - mast cells, eosinophils, mononuclear cells Infilammation IgE in the dermo-epidermal layer of the skin

Immune evasion strategies of parasites

SEQUESTRATION – retreat of parasites into sites that are relatively inacceptable to immune effects (immunoprivileged organs/cells, formationa constructed by parasites, including protective sheaths or cysts – Echinococcus, Trichinella).

MASKING OR CHANGING IMMUNOGENIC PROPERTIES – by incorporation or adhesion of host molecules or mimicry by synthesis of host-connatural antigens or antigenic variation by changing of antigenic structure.

Masking – achieved by absorption of host albumin and immunoglobulins onto surface of parasites (*Schistosoma*, nematode larva)

Stage – specific antigenes (*Trypanosoma*)

- IMPAIRMENT OF IMMUNOLOGICAL EFFECTOR MECHANISMS shedding of antigen antibody complexes, enzymatic cleavage of antibodies, inhibition of oxidative products of effector cells.
- Parasites expose their surface antigens to recognition;
- They even show the host highly antigenic surface structures thatcan be shed after binding to antibodies (antigen shedding) – Babesia, Plasmodium

- MODULATION OF HOST'S IMMUNE MECHANISMS modulation of the immune response or immuno-suppression.
- ➤ INFLUENCING APOPTOSIS OF HOST CELLS enhancement of apoptosis of immune cells or inhibition of apoptosis in infecting host cels (*Toxoplasma*, *Leishmania* – cause an enhanced apoptosis of CD4⁺T cells.
- FURTHER STRATEGIES HYPOBIOSIS (Cyathostomum), DORMOZOITES (Cystoisospora).

What are zoonotic diseases?

A zoonotic disease is any disease which may be passed from animals to people or from people to animals (that is, they are common to animals and humans).

Vector-borne Parasites

- A vector is an agent which transfers a parasite from one host to another;
- Typical parasite vectors: fleas, ticks, mites, mosquitoes, flies, and other insects;
- People become infected when a vector picks up the parasite from an infected animal and infects a human;

Waterborne Parasites

- Spread when humans/animals come into contact with water that has been contaminated by an infected animal/human;
- > Common waterborne parasites include

≻Giardia

> Cryptosporidium

Fecal-Oral Transmission

- Most common way people/animals become infected with zoonotic parasites;
- Parasites are spread to humans/animals when they ingest the eggs from the faeces of an infected animal;
- Parasites spread by faecal oral transmission generally live in the intestinal tract;
 - ➢ Hookworms➢ Roundworms➢ Hydatid Disease➢ Toxoplasmosis

Contaminated Meat

- ➤ Meat can be contaminated with harmful bacteria and can also **contain parasitic cysts** which may infect people.
- ➤ Common Parasites Found in Meat
 - **≻Toxoplasma**
 - **≻**Trichinella
 - **≻**Taenia
 - **≻**Gnathostoma

Summary

- >Zoonotic parasites have many routes of transmission to people/animals
 - Vectors
 - Water, soil
 - Fecal Contamination
 - Infected Meat

INTRODUCTION TO PROTOZOOLOGY

- General taxonomy one-cell parasites;
- > Intracelular structure and mode of reproduction;
- General classification of KINETOPLASTA

What are Protozoa?

proto = first

zoa = animals

uni-celled eukaryotic organisms

General Concepts

- ➤ Eukaryotic Organisms
- ➤ Generally unicellular
- > Found in every conceivable damp habitat
- ➤ Approximately 60,000 living species
- ➤ Largest visible to the naked eye
- > Smallest only seen with the EM
- > Have all necessary life activities.

Protozoa

- ➤ Most species are free living, but all higher animals are infected with one or more species of protozoa.
- ➤ Infections range from asymptomatic to life threatening, depending on the species and strain of the parasite and the resistance of the host.

Structure

- ➢ Protozoa are microscopic unicellular eukaryotes that have a relatively complex internal structure and carry out complex metabolic activities.
- ➤ Some protozoa have structures for propulsion or other types of movement.

Protozoan Motility

Mechanism	Subgroup
ameboid movement	amebas
flagella	flagellates
cilia	ciliates
gliding motility	sporozoa

Protozoan Reproduction

Sexual

Protozoan Life Styles

- absorb solutes (osmotrophy)
- ingest particulates (phagotrophy)
 - > predation on bacteria or other protozoa
 - pinocytosis (fluid uptake)
- photosynthetic (autotrophy)
- > combinations (heterotrophy)

free-living vs. symbiosis parasitic

Life cycle stages

- The stages of parasitic protozoa that actively feed and multiply are frequently called trophozoites; in some protozoa, other terms are used for these stages.
- Cysts are stages with a protective membrane or thickened wall. Protozoan cysts that must survive outside the host usually have more resistant walls than cysts that form in tissues.

Classification

On the basis of light and electron microscopic morphology, the protozoa are currently classified into seven phyla.

Most species causing human/animal diseases are members of the phyla METAMONADA, PARABASALA and ALVEOLATA.

