Protein Structure Explorer: Mutation Analysis of 1AKE

Ekaterina Paramonova

1. Research question & motivation

Adenylate kinase (**1AKE**) is a benchmark model for studying conformational switching in energy-metabolism enzymes.

Goal: Quantify how single-point mutations alter 1AKE's structural stability.

Why it matters: insights guide protein-engineering, inhibitor design and the interpretation of disease-linked variants.

2. Methods

- Data source crystal structure downloaded from the RCSB PDB (mmCIF format).
- Parsing BioPython (PDB / MMCIF parsers) for coordinate extraction.
- **In-silico mutagenesis** side-chain replaced and rotated by a fixed 45 ° about the Cα atom (fast, geometry-only).
- Metrics
 - o **RMSD**: Cα-based superposition of wild-type vs. mutant;
 - o **COM shift**: Euclidean distance between mass centres of Cα atoms.

3. Mutation panel

Fifteen mutants spanning functional / structural categories:

#	WT res	Pos	Mut	Category	
		•			
1	K	13	Α	Catalytic neutralisation	
2	R	36	Α	Catalytic neutralisation	
3	Α	37	G	Flexibility ↑	
4	I	53	Р	Fold-kink probe	
5	L	82	D	Hydrophobe → charged	
6	D	93	N	Charge removal	
7	R	119	Е	Charge swap	
8	F	120	Α	Hydrophobe → Ala	

9	G	122	Р	Proline rigidification	
10	L	134	P Helix breaker		
11	V	148	W	Bulky hydrophobe → Trp	
12	R	156	Α	Catalytic neutralisation	
13	D	158	N	Charge removal	
14	Υ	171	F	Aromatic H-bond loss	
15	Т	175	Α	Ser/Thr scan	

4. Key results

Mutation	RMSD (Å)	COM shift (Å)	Comment
R36A	3.27	0.005	largest global distortion
K13A	2.76	0.003	catalytic Lys removal
L134P	2.55	0.003	helix kink introduced
mean (15)	1.78	0.002	most mutants localised

- RMSD plot broad spread: 0.0 Å (G122P) → 3.3 Å (R36A).
- **COM shift plot** ≤ 0.005 Å for all mutants \rightarrow global fold largely retained.

(Figures included in the PDF: mutation_rmsd.png & mutation_com_shift.png.)

5. Limitations

- Geometry-only mutagenesis; no energy minimisation or solvation.
- Insertion codes and long chain identifiers not handled.
- Metrics omit side-chain clashes and functional assays.

6. Future work

- Integrate molecular-dynamics minimisation for realistic energetics.
- Generalise residue-mapping (PDB ≠ UniProt) with insertion codes.
- Apply workflow to additional kinases; correlate with enzymatic activity.