

Multimodal Disease Progression Modeling via Spatiotemporal Disentanglement and Multiscale Alignment

Chen Liu¹, Wenfang Yao¹, Kejing Yin² [⋈], William K. Cheung², Jing Qin¹

¹School of Nursing, The Hong Kong Polytechnic University ² Department of Computer Science, Hong Kong Baptist University

https://github.com/Chenliu-svg/DiPro

Motivation: Multimodal Longitudinal Modeling for Enhanced Diagnosis

A real case from MIMIC:

Single-timepoint CXR

Manifestations

Pleural Effusion
Pulmonary Edema
Lung Opacity

Progression?

Unknown!

Diagnosis?

Pneumonia? CHF? ARDS?

High uncertainty!

Pleural Effusion
Pulmonary Edema
Lung Opacity

Unchanged Worsened Worsened

Multimodal disease progression

Heart Rate
MAP
Respiratory Rate

Increase

Decrease

Increase

Severe Sepsis

Enhanced diagnosis

Challenges: Redundancy & Temporal misalignments

Redundancy in clinical image sequences

Static anatomical features dominate.

Diluting pathological changes.

Temporal misalignments across modalities

EHR: high-frequency

VS CXR: irregular snapshots

Blurring rapid clinical changes.

Our Solution: <u>Di</u>sease <u>Progression-Aware Clinical Prediction (DiPro)</u>

Spatiotemporal
Disentanglement (STD)

Dynamic pathological changes **Static** anatomical structures

Learns progression direction via **reversal**

Clinical Tasks

Disease Progression

General ICU Predictions

Multiscale Multimodal Fusion (MMF)

Local (pairwise interval-level)

Global (full-sequence)

Our Solution: Spatiotemporal Disentanglement (STD)

Goal: Disentangle region-based time-invariant (static) and time-variant (dynamic) information.

Feature extraction:

Static feature: $\mathbf{S}_i^r = f_s([\mathbf{F}_{t_i}^r || \mathbf{F}_{t_{i+1}}^r])$

Dynamic feature: $\mathbf{D}_i^r = f_d([\mathbf{F}_{t_i}^r || \mathbf{F}_{t_{i+1}}^r])$

Orthogonal disentanglement loss:

$$\mathcal{L}_{ ext{orth}} = rac{1}{(T-1)R} \sum_{i=1}^{T-1} \sum_{r=1}^{R} \left(ext{sim}(\mathbf{S}_i^r, \mathbf{D}_i^r)
ight)^2$$

Temporal consistency for static features:

$$\mathcal{L}_{ ext{temp}} = rac{1}{N} \sum_{r=1}^{R} \sum_{i=1}^{T-2} \left\| \mathbf{S}_i^r - \mathbf{S}_{i+1}^r
ight\|_2^2$$

Our Solution: Progression-Aware Enhancement (PAE)

Goal: Improve the model's sensitivity to progression direction.

Reversed dynamic and static features:

Reversed static feature: $ilde{\mathbf{S}}_i^r = f_s([\mathbf{F}_{t_{i+1}}^r || \mathbf{F}_{t_i}^r])$

Reversed dynamic feature: $\mathbf{\widetilde{D}}_i^r = f_d([\mathbf{F}_{t_{i+1}}^r || \mathbf{F}_{t_i}^r])$

Region-based disease progression prediction:

Predicted original direction: $\hat{y}_i^{r,k} = f_k(\mathbf{D}_i^r)$

Predicted reversed direction: ${ ilde y}_i^{r,k} = f_k({f \widetilde D}_i^r)$

Training objective: Original label Reversed label

$$\mathcal{L}_{ ext{PAE}} = \sum_{r=1}^{R} \sum_{k=1}^{K} \Bigl[ext{CE}(\hat{y}_i^{r,k}, oldsymbol{y}_i^{r,k}) + ext{CE}(ilde{y}_i^{r,k}, oldsymbol{-y}_i^{r,k}) \Bigr]$$

$$+ \lambda_{ ext{static}} \sum_{r=1}^{R} \left\| \mathbf{S}_{i}^{r} - \mathbf{ ilde{S}}_{i}^{r}
ight\|_{2}^{2}
ightarrow ext{Static consistency}$$

Our Solution: Multiscale Multimodal Fusion (MMF)

Goal: Integrate temporally misaligned CXR and EHR data via local and global fusion.

Final static fusion and prediction

Local EHR Encoding:

Cross-attention: Interval time embeddings (Query)

& Global EHR features (Key and Value)

$$\mathbf{E}_i^{ ext{local}} = ext{softmax}igg(rac{\mathbf{Q}\mathbf{K}^ op}{\sqrt{d}} + \mathbf{AttnMask}igg) \cdot \mathbf{V}$$

$$ext{AttnMask}_{ij} = egin{cases} -ig|t_j - rac{t_i + t_{i+1}}{2}ig|, & ext{if } t_j \in [t_i, t_{i+1}], \ -\infty, & ext{otherwise}. \end{cases}$$

Local CXR-EHR Fusion:

$$\mathbf{D}_i^{ ext{fuse}} = ext{LayerNorm}(ext{CrossAttn}(\mathbf{D}_i^{ ext{local}}, [\mathbf{E}_i^{ ext{local}}||\mathbf{D}_i^{ ext{local}}])$$

Global Hierarchical Fusion:

$$\mathbf{H}^{ ext{global}} = ext{LayerNorm}(ext{CrossAttn}(\mathbf{E}^{ ext{global}}, \mathbf{D}^{ ext{global}}))$$

Experiment Results: Disease Progression Identification

Method	Precision	Recall	F1	AUPRC	AUROC					
Unimodal Methods (CXR)										
CheXRelNet [14]	$0.\overline{3}9\overline{5}\pm0.\overline{0}15$	$0.\overline{392}\pm 0.0\overline{10}$	-0.389 ± 0.010	$0.\overline{394}\pm 0.0\overline{10}$	$0.\overline{574}\pm0.0\overline{11}$					
CheXRelFormer [33]	0.389 ± 0.044	0.379 ± 0.033	0.354 ± 0.032	0.372 ± 0.023	0.551 ± 0.041					
SDPL [13]	0.408 ± 0.006	0.406 ± 0.020	0.393 ± 0.010	0.417 ± 0.032	0.609 ± 0.031					
DiPro (ours)	0.475 ± 0.004	0.452 ± 0.011	0.453 ± 0.009	0.468 ± 0.013	0.651 ± 0.016					

> DiPro excels in modeling disease progression in sequential CXRs.

Disentangled temporal features → clearer disease dynamics

Progression-aware Enhancement → emphasizes progression semantics

> Adding EHR boosts unimodal DiPro

Confirms effective use of complementary EHR features

Experiment Results: General ICU Prediction

	CXR Used		Mortality		Length of Stay	
Method	Last	Long.	AUPRC	AUROC	Kappa	ACC
UTDE [19]	√		0.717±0.019	0.887 ± 0.004	0.160 ± 0.016	0.381 ± 0.013
		\checkmark	0.710 ± 0.019	0.887 ± 0.012	0.195 ± 0.031	0.400 ± 0.021
UMSE [20]	\checkmark		0.722 ± 0.039	0.896 ± 0.012	0.217 ± 0.013	0.419 ± 0.010
		\checkmark	0.712 ± 0.028	0.891 ± 0.011	0.204 ± 0.019	0.410 ± 0.013
MedFuse [17]	√		0.686 ± 0.018	0.869 ± 0.011	0.213 ± 0.012	0.413±0.004
		\checkmark	0.716 ± 0.018	0.881 ± 0.005	0.210 ± 0.039	0.412 ± 0.027
DrFuse [18]	\checkmark		0.709 ± 0.012	0.865 ± 0.014	0.114 ± 0.048	0.338 ± 0.041
		\checkmark	0.684 ± 0.008	0.854 ± 0.017	0.142 ± 0.014	0.360 ± 0.011
DiPro (Ours)			0.712+0.009	0.885+0.003	0.226+0.019	0.427+0.014
		\checkmark	$0.742 {\pm} 0.003$	$0.897 {\pm} 0.002$	$\overline{0.248 {\pm} 0.008}$	0.440 ± 0.007

- > Existing models experience performance drop with longitudinal CXRs.
- > DiPro alleviates redundancy and misalignment in longitudinal CXRs and EHR.

Experiment Results: General ICU Prediction

Averaged attention weights of CXR regions in different tasks:

Shared pathological regions

DiPro echoes with clinical knowledge

Conclusion: Key Takeaways

- > **Disentangle** Dynamic from Static Representations:
 - → Mitigate redundancy & improve temporal feature fidelity.
- ➤ Incorporate Progression-Direction Awareness:
 - ➡ Enhances the model's sensitivity of disease evolution patterns.
- Multiscale Fusion of Longitudinal Multimodal Data:
 - → Achieves comprehensive integration across modalities.

Thank you!

Poster session: Thu 4 Dec 4:30 p.m. — 7:30 p.m.