Dependência linear

Seja V um espaço vetorial sobre \mathbb{R} .

Conjunto linearmente independente (L.I.)

Dizemos que um conjunto $L=\{u_1,\ldots,u_2\}\subset V$ é linearmente independente se e somente se, uma igualdade do tipo

$$a_1u_1+\cdots+a_nu_n=e$$

onde $a\in\mathbb{R}$, for possível **somente** quando $a_1=\cdots=a_n=0$. Outro caso possível é quando o conjunto L em questão é nulo ($L=\{\emptyset\}$).

Conjunto linearmente dependente (L.D.)

Quando o conjunto não é nulo e a somatória anteriormente descrita só é possível se $\exists \ a \neq 0$.

Propriedades da dependência linear

P1. Se um conjunto $L\subset V$ contém o vetor nulo, então esse conjunto é L. D.

Demonstração: Seja $S=\{e,u_2,\ldots,u_n\}$, então

$$ae + 0u_2 + \dots + 0u_n = e$$

para todo $a \neq 0$. Isso é suficiente para concluir que S é L. D. 1

P2. Se L=u, onde $L\subset V$ e u
eq e, então L é L.I.

Demonstração: Se au=e, e $u \neq e$, então a=0. \blacksquare

P3. Se $S=\{u_1,\ldots,u_n\}\subset V$ é L.D., então um dos seus vetores é a combinação linear de todos os demais.

Demonstração: por hipótese existem números reais a_1,\ldots,a_n onde pelo menos um é igual a zero. Venhamos a estabelecer que $a_1\neq 0$ então o inverso de a_1 , (a_1^{-1}) existe e:

$$a_1u_1 + a_2u_2 + \dots + a_nu_n = e \implies u_1 = -rac{a_2u_2 + \dots + a_nu_n}{a_1} = a_1^{-1}a_2u_2 + \dots + a_1^{-1}a_nu_n$$

O que mostra que u_1 equivale à combinação linear de u_2,\ldots,u_n :

$$u_1 = [S] = \{a_1^{-1}a_2u_2 + \dots + a_1^{-1}a_nu_n \mid a_1, \dots, a_n \in \mathbb{R}\}$$

P4. Se S_1 e S_2 são subconjuntos finitos e não vazios de V, se $S_1\subset S_2$ e S_1 é L.D., então S_2 também é L.D.

Demonstração: como nem todos os escalares que figuram em S_1 são nulos, o que configura L.D., e S_2 contém S_1 , então o conjunto dos escalares em S_2 também não é inteiramente nulo.

P5. Se S_1 e S_2 são subconjuntos finitos e não vazios de V, se $S_1\subset S_2$ e S_2 é L.I., então S_2 também é L.I.

Demonstração: situação complementar à aquele da propriedade anterior.

P6. Se $S=\{u_1,\ldots,u_n\}\subset V$ é L.I, e para um certo $u\in V$ tem-se $S\cup\{u\}=\{u_1,\ldots,u_n,u\}$ L.D., então o vetor u é combinação linear dos vetores u_1,\ldots,u_n , isto é, $u\in[S]$.

Demonstração: Por hipótese tem-se uma igualdade

$$a_1u_1 + \cdots + a_nu_n + au = e$$

onde nem todos os escalares que figuram nela são nulos. Afirmamos que um dos escalares não nulos é o a. De fato, se a=0, então

$$a_1u_1+\ldots a_nu_n=e$$

Como porém o conjunto S é L.I., esta última igualdade só seria possível com $a_1=\cdots=a_n$. Daí, se a=0, então $a=a_1=\cdots=a_n=0$, o que contradiz a hipótese.

Já que $a \neq 0$, temos que:

$$a_1u_1 + \dots a_nu_n + au = e$$

$$\implies u = -rac{a_1u_1 + \cdots + a_nu_n}{a} = (a_1a^{-1})u_1 + \cdots + (a_na^{-1})u_n$$

P7. Se $S=\{u_1,\ldots,u_j,\ldots,u_n\}$ e $u_j\in[S-u_j]$ (isto é, u_j é combinação linear doutros vetores contidos em S), então

$$[S] = [S - \{u_j\}]$$

Demonstração: Faremos a prova supondo j=1, o que nada tira em generalidade. É obvio que $[S-\{u_1\}]\subset [S]$, pois $S-u_1\subset S$. Como foi dito que u_j é a combinação linear dos demais vetores, aplicando a propriedade **P3**, temos:

$$u_1 = -rac{a_2u_2 + \cdots + a_nu_n}{a_1} = b_2u_2 + \cdots + b_nu_n = [S]$$

Onde $b_i = -a_1^{-1}a_i$. Continuando,

$$b_2u_2+\cdots+b_nu_n=[S-\{u_1\}]:[S-\{u_1\}]=[S]$$