Homework 10

Jacob Taylor Cassady

Semiconductor Development Fundamentals

April 9, 2020

You are working at a fabless company, and need to find a foundry to make 1,000 chips. This is a small production run. You talk to two potential vendors.

Vendor A says that they are using a slightly older, more mature, technology on 200 mm diameter wafers, with a defect density of only 0.2 cm⁻². You estimate you will need 1 cm² of area to make a single die using their process. The photomask cost (one-time cost) is \$100,000. The cost per wafer is \$3,000.

Vendor B is using a newer process (1 generation newer) with 300 mm diameter wafers. The feature size for Vendor B is 0.7x the feature size for Vendor A, so each die takes up ½ the area. However, their defect density is 0.4 cm⁻² (2x higher), the wafer cost is \$6,000 (2x higher), and the photomask cost is 2x higher (\$200,000).

1.1 FILL IN THE FOLLOWING TABLE.

1000 Chips

variable	Vendor A	Vendor B	
Photomask cost	\$ 100,000.00	\$ 200,000.00	
Wafer diameter (cm)	20	30	
Wafer cost	\$ 3,000.00	\$ 6,000.00	
Defect density	0.2	0.4	
Chip area (cm^2)	1	0.5	
# chips / wafer	20	60	
Yield	0.818730753	0.818730753	
# good chips / wafer (round down)	16	49	
# wafers required	63	21	
Total run cost (wafers + photomask	\$ 289,000.00	\$ 326,000.00	
Cost per chip (total run cost / 1000 chips)	\$ 289.00	\$ 326.00	

1.2 WHICH VENDOR WOULD YOU CHOOSE FOR THE INITIAL RUN? Vendor A. It is cheaper.

You change jobs, and are now working for a company that makes chips for a big market. You will need to produce 1,000,000 chips per year. All the other parameters remain the same (same vendors, same chip size).

Make a new table for making 1,000,000 chips. What is the cost per chip for each vendor? Which vendor would you choose to produce the 1,000,000 chips?

2.1 FILL IN THE FOLLOWING TABLE.

1,000,000 Chips

variable	Vendor A		Vendor B	
Photomask cost	\$	100,000.00	\$	200,000.00
Wafer diameter (cm)		20		30
Wafer cost	\$	3,000.00	\$	6,000.00
Defect density		0.2		0.4
Chip area (cm^2)		1		0.5
# chips / wafer		20		60
Yield		0.818730753		0.818730753
# good chips / wafer (round down)		16		49
# wafers required		62500		20409
Total run cost (wafers + photomask	\$ 18	7,600,000.00	\$ 12	22,654,000.00
Cost per chip (total run cost / 1000 chips)	\$	187.60	\$	122.65

2.2 WHICH VENDOR WOULD YOU CHOOSE?

Vendor B. It is cheaper.