Assessing Performance

13 questions

1 point If the features of Model 1 are a strict subset of those in Model 2, the TRAINING error of the two models can never be the same.

True

False

1 point If the features of Model 1 are a strict subset of those in Model 2, which model will USUALLY have lowest TRAINING error?

Model 1

- Model 2
- It's impossible to tell with only this information

1 point 3. If the features of Model 1 are a strict subset of those in Model 2. which model will USUALLY have lowest TEST error?

Model 1

- Model 2
- O It's impossible to tell with only this information

1 point If the features of Model 1 are a strict subset of those in Model 2, which model will USUALLY have lower BIAS?

Model 1

- Model 2
- It's impossible to tell with only this information

1 point 5. Which of the following plots of model complexity vs. RSS is most likely from TRAINING data (for a fixed data set)?

____ a

- (t
- ___ d

1 point 6. Which of the following plots of model complexity vs. RSS is most likely from TEST data (for a fixed data set)?

	_
\cup	č
_	

	b

1	
point	

It is always optimal to add more features to a regression model.

True

False

1	
point	

 $8. \quad \text{A simple model with few parameters is most likely to suffer from:} \\$

	High	Bias
--	------	------

High Variance
ringii varianice

1	
point	

 $9. \quad \text{A complex model with many parameters is most likely to } \\ \text{suffer from:}$

High	Rias
mgn	Dias

1	
point	

 $10. \ \, \text{A model with many parameters that fits training data very} \\ \text{well but does poorly on test data is considered to be}$

accurate
accurace

biased

1	
point	

 $11. \ \, \text{A common process for selecting a parameter like the} \\ \text{optimal polynomial degree is:}$

Bootstrappir	ng
--------------	----

6/28/16, 10:11 AM Assessing Performance | Coursera

	Minimizing test error
	Minimizing validation error
1 point	12. Selecting model complexity on test data (choose all that apply):
	Allows you to avoid issues of overfitting to training data
	Provides an overly optimistic assessment of performance of the resulting model
	Is computationally inefficient
	Should never be done
point	13. Which of the following statements is true (select all that
F	apply): For a fixed model complexity , in the limit of an infinite amount of training data, The noise goes to 0
	apply): For a fixed model complexity , in the limit of an infinite amount of training data,
	apply): For a fixed model complexity , in the limit of an infinite amount of training data, The noise goes to 0
,,,,,	apply): For a fixed model complexity , in the limit of an infinite amount of training data, The noise goes to 0 Bias goes to 0
	apply): For a fixed model complexity , in the limit of an infinite amount of training data, The noise goes to 0 Bias goes to 0 Variance goes to 0
	apply): For a fixed model complexity , in the limit of an infinite amount of training data, The noise goes to 0 Bias goes to 0 Variance goes to 0 Training error goes to 0
	apply): For a fixed model complexity , in the limit of an infinite amount of training data, The noise goes to 0 Bias goes to 0 Variance goes to 0 Training error goes to 0

