Lecture 13: Physics of MOS transistors (5)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Channel-length modulation

Don't be confused!

- Long (or short) channel device is an electronic device. (System)
- The channel-length modulation occurs at both cases. (Phenomena)
- Only for the short channel device, its effect is significant.

Mid-term examination

- Time and location
 - April 20 (Mon), 13:00 ~ 14:40
 - Room 229, College building A
- Coverage
 - Ch. 2, Ch. 3, Ch. 6
 - Additionally, Ch. 17 (Up to Lecture 14)
- Problems (tentative)
 - Total twenty (20) problems
 - Five (5) minutes for each problem
 - 100 minutes long
- Policy
 - No cellphone, no calculator

Office hour before mid-term

- A special session (<u>April 17</u>)
 - The group study room (Room 304) in the library is reserved.
 - The reservation is valid from 14:00 ~ 17:00.

(college.gist.ac.kr)

Large-signal model (1/2)

Saturation region

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

- Drain current is determined by gate voltage. (voltage-controlled current source)
- Channel-length modulation?

Large-signal model (2/2)

Triode region

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{GS} - V_{TH}) V_{DS} - V_{DS}^2 \right]$$

Still, it can be described by a voltage-controlled current source.

Example 6.13

- Always in the saturation region!
 - Any necessary condition?

Gate and drain are tied.

They are connected to V_{DD} .

Small-signal model

- The large-signal model is complete (within its accuracy limitation).
 - But, for small-signal analysis, it is convenient to have the small-signal model.

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

What is g_m and r_o ?

Time-dependent one?

- Everything was in the dc steady-state...
 - How about the frequency-dependent case?
 - Capacitive components can be seen.
 - Their physical origin?

High-frequency, equivalent-circuit model for the case in which the source is connected to the substrate

CMOS

- 9's complementary of 123?
 - **876**
- Complementary MOS
 - Here we have an NMOSFET.
 - A device where the transport is dominated by holes

Why is it important?

Reading your textbook

- We covered the remaining part of Ch. 6.
- On Wednesday, we will cover Sec. 17. 1.