Assignment1: Optimization for Machine Learning

-by Enric Fita Sanmartin and Shivali Dubey

Exercise 1.1

A graphical model consists of a graph, $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, discrete space of all labellings \mathcal{Y}_v and a corresponding cost vector θ . Here, \mathcal{V} and \mathcal{V} represent the nodes and edges respectively of a given graph \mathcal{G} . Our main goal while labelling the nodes for a given graphical model is to minimize the cost, $\theta_u(s)$ we pay for assigning label $s \in \mathcal{Y}_u$ to the node $u \in \mathcal{V}u$. Hence, it becomes an optimization problem of labeling y^* with minimal total cost. This is called energy minimization or maximum a posteriori problem and can be expressed as:

$$y^* = argmin_{y \in \mathcal{Y}_v} \left[E(y; \theta) = \sum_{u \in \mathcal{V}} \theta_u(y_u) + \sum_{uv \in \mathcal{E}} \theta_{uv}(y_u, y_v) \right]$$

here, θ_u is called the *unary cost*, which is the preference for a label y_u . On the other hand, θ_{uv} are the dependencies between labels $(y_u \text{ and } y_v)$ assigned to different nodes (u and v) which are defined for each edge $uv \in \mathcal{E}$ in the following way:

$$\theta_{uv}(st) = [0, s = t; \alpha, s \neq t]$$

These are called *pairwise costs*. Here, s and t are any pair of labels such that $(s,t) \in \mathcal{Y}_u \times \mathcal{Y}_v$.