Hard Shadows

Shadow Map Filtering

Unfiltered

3x3 PCF

Shadow Map Filtering

- Depth Values are not "blendable"
 - Traditional bilinear filtering is inappropriate

Percentage Closer Filtering

[Reeves et al. 1987]

Average comparison results, not depth values

3.2 > 3 1.5 > 3
1(lit) 0 (shadowed)

$$(1+0)/2 = 0.5$$

Percentage Closer Filtering - Practice

- 2D filter kernel
- Here 3x3
- Need shadow test result before filtering
 - Pre-filtering does not work
- Depth texture uses 2x2 PCF if GL_LINEAR

113	112	112
113	23	23
113	24	24

Percentage Closer Filtering - Results

PCF + Bilinear Lookups

- Nearest neighbour lookups
 - → quantization artifacts
- Bilinear lookups
 - For 2x2 kernel size straight forward
 - For bigger kernel sizes
 - Poisson disk + bilinear lookups (hack)
 - Exact bicubic convolution using 2x2 bilinear lookups [Hadwiger, GPU Gems 2]

Percentage Closer Filtering

- Good quality needs big kernel size
 - Bandlimiting for oversampled areas!
- Big kernel size is slow (quadratic growth)
- Pre-filtering desirable
 - Only filter once
 - Less texture lookups
 - Big kernels cheaper

- Estimate PCF outcome with statistics
 - A representation that filters linearly
 - Use mean and variance of depth samples inside kernel
 - Can be calculated from linearized depth map

4	4	1	1	1	
4	1	1	1	4	σ
1	1	1	1	4	
1	4	4	4	4	μ

- Estimate PCF outcome with statistics
 - Really want a cumulative distribution function (CDF) of a set of depths
 - F(t) = $P(x \le t)$
 - F(t) is the probability that a fragment at distance "t" from the light is in shadow

- **Mean** = μ = E(x)
- Variance = $\sigma^2 = E(x^2) E(x)^2$
- \rightarrow Approximate fraction of distribution that is more distant than shaded point d ($P(x \ge d)$)
- Prefiltering (for a certain kernel size)
 - E(x) on kernel simple to calculate from input depth texture
 - E(x²) on kernel simple to calculate from input depth texture squared
- Estimate PCF shadow test outcome with Chebyshev's Inequality

[Donnelly and Lauritzen 2006]

- Chebyshev's inequality
 - Given a shadow map depth value distribution with mean and variance (for certain kernel), the probability P(x >= d) that a random depth value z drawn from this distribution (this kernel) is greater or equal to a given depth value d (current fragment depth) has an upper bound of

$$p(d) = \frac{\sigma^2}{\sigma^2 + (d - \mu)^2} \ge P(x \ge d)$$

 Percentage of fragments over the filter region that are more distant than the current fragment

- Inequality only gives an upper bound
 - Becomes equality for single planar occluder and receiver
 - In small neighbourhood occluder and receiver have constant depth and thus p(d) will provide a close approximation to P(x >= d)
- In practice
 - Store E(x) and $E(x^2)$
 - Pre-filter for certain kernel (mipmapping!)
 - Rendering: evaluate p(d) for each fragment

[Donnelly and Lauritzen 2006]

shadow Map

variance Shadow Map

[Donnelly and Lauritzen 2006]

shadow Map

bilinear PCF

variance Shadow Map

- P(d) works in many situations
- When σ^2 is large "light bleeding"
 - "Layer" several VSM to alleviate these problems

Revisiting the Shadow Map Test

- **x** ∈ R³
- **p** ∈ R²
- x equals p just in different spaces
- Shadow function:

$$s(\mathbf{x}) := f(d(\mathbf{x}), z(\mathbf{p}))$$

- Binary result:
 - 1 if $d(\mathbf{x}) \leq z(\mathbf{p})$
 - o else (shadow)

Shadow Test Function: S(X)

• What kind of function is $S(\mathbf{X})$?

Heaviside Step Function: H(d-z)

Convolution Shadow Maps

[Annen et al. 2007]

- Shadow test is a step function
- Idea: transform depth map such that we can write the shadow test as a sum
- Use convolution formula with Fourier expansion

Important Properties of a Fourier Series

Step function becomes sum of weighted sin() and cos()

$$H(t) \approx c_1$$

Series is separable!

$$\sin(d-z) = \sin(d)\cos(z) - \cos(d)\sin(z)$$

- One term depends on shadow map
- One term depends on lookup value
- Pre-filtering possible!

Filtering Example

After filtering

Filtering Example

original

after filtering

Mipmapped CSM recovers fine details (SM: 2048²)

CSM Blurred Shadows

Issues with a Fourier series

- Ringing suppression
 - Reduce higher frequencies

Issues with a Fourier series

- Ringing suppression
 - Reduce higher frequencies
- Steepness of "ramp"
 - Offset (transl. invariance!)
 - Shift shadow test
 - Increases lightness prob.

Issues with a Fourier series

- Ringing suppression
 - Reduce higher frequencies
- Steepness of "ramp"
 - Offset (transl. invariance!)
 - Shift shadow test
 - Increases lightness prob.
 - Scaling
 - Scale shadow test
 - Decreases filtering

Limitations and drawbacks

Influence of reconstruction order M

$$\mathbf{M} = 36$$

- Memory consumption increases as M grows
- Performance (filtering) decreases as M grows

VSM vs CSM

Exponential Shadow Maps

[Annen et al. 2008]

- Same general idea as CSM
 - "Linearize" shadow test
- Core idea:
 - Assume $(d(\mathbf{x}) z(\mathbf{p})) >= 0$
 - →Assume shadow map represents visible front
- → Can use exponential

$$f(d(x), z(p)) \approx e^{-c(d(x) - z(p))}$$
= $e^{-cd(x)} e^{cz(p)}$

Exponential Shadow Maps

[Annen et al. 2008]

- Same approach as CSM, but uses exponential
- Exponential is separable
- Less memory and faster

Filtering Example

Original e^{cz}

After filtering e^{cz}

Results: Quality Comparison

Faces: 365K, SM resolution: 2Kx2K

Efficient Filtering with Summed Area Tables

- Build summed-area table from the shadow map
 - Can be done efficiently on the GPU
- Summing arbitrary rectangles is O(1)!

Efficient Filtering with Summed Area Tables

Summing arbitrary rectangles

$$average = \frac{LR - UR - LL + UL}{w*h}$$