Hyperbolic Functions

The hyperbolic sine, cosine, tangent, secant, cotangent and cosecant functions sinh, cosh, tanh, sech, coth and cosech are defined by

$$\sinh x = \frac{e^x - e^{-x}}{2},$$

$$\cosh x = \frac{e^x + e^{-x}}{2},$$

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1},$$

$$\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}},$$

$$\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}} = \frac{e^{2x} + 1}{e^{2x} - 1} \qquad (x \neq 0),$$

$$\operatorname{cosech} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}} \qquad (x \neq 0).$$

Properties of the Hyperbolic Functions

- (1) $\sinh 0 = 0$, $\sinh(-x) = -\sinh x$ for all x.
- (2) $\cosh 0 = 1$, $\cosh(-x) = \cosh x$ for all x.
- (3) $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$ for all x, y.
- (4) $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$ for all x, y.
- (5) $\sinh 2x = 2 \sinh x \cosh x$ for all x.
- (6) $\cosh 2x = \cosh^2 x + \sinh^2 x$ for all x.
- (7) $\cosh^2 x \sinh^2 x = 1$ for all x.

(8)
$$\frac{d}{dx}(\sinh x) = \cosh x$$
, $\frac{d}{dx}(\cosh x) = \sinh x$, $\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$, $\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x$.

- (9) $\cosh x \geqslant 1$ and $\cosh x > \sinh x$ for all x.
- (10) $\tanh x \to 1$ as $x \to \infty$. $\tanh x \to -1$ as $x \to -\infty$.
- (11) Graphs

<u>Proofs</u>

- (1) and (2) are clear.
- (3)

Figure 6:

Figure 7: