Общее задание. Исследование типовых динамических звеньев

В рамках данной лабораторной работы необходимо исследовать реальные объекты, сопоставить их с известными вам типовыми динамическими звеньями и получить их передаточные функции в инженерной форме записи через постоянные времени T. Затем записать аналитические выражения для временных (переходной и весовой) и частотных (АЧХ, ФЧХ и ЛАФЧХ) характеристик исследуемых звеньев. Провести моделирование с целью получения графического представления всех перечисленных характеристик и сравнить с теоретическими для данного типового звена.

Ожидаемые результаты (для каждого объекта):

- Тип звена.
- \bullet Передаточная функция через постоянные времени T и значения постоянных.
- Аналитические выражения для временных и частотных характеристик.
- Графики временных и частотных характеристик.
- Листинги аналитических расчетов.

Объект 1. ДПТ

Даны уравнения двигателя постоянного тока независимого возбуждения:

$$J\dot{\omega} = M, \quad M = k_m I, \quad I = \frac{U + \varepsilon_i}{R}, \quad \varepsilon_i = -k_e \omega.$$

Взять из **Таблицы 1** значения, которые соответствуют вашему варианту, для следуюших величин:

- k_m конструктивная постоянная по моменту;
- k_e конструктивная постоянная по ЭДС;
- J момент инерции ротора;
- R активное сопротивление обмоток ротора.

Входом объекта считать U(t), а выходом $\omega(t)$.

Объект 2. ДПТ 2.0

Даны уравнения двигателя постоянного тока независимого возбуждения:

$$J\dot{\omega} = M, \quad M = k_m I, \quad I = \frac{U + \varepsilon}{R}, \quad \varepsilon = \varepsilon_i + \varepsilon_s, \quad \varepsilon_i = -k_e \omega, \quad \varepsilon_s = -L\dot{I}.$$

Взять из **Таблицы 1** значения, которые соответствуют вашему варианту, для следующих величин:

- k_m конструктивная постоянная по моменту;
- k_e конструктивная постоянная по ЭДС;
- J момент инерции ротора;
- \bullet R активное сопротивление обмоток ротора;
- L индуктивность обмоток ротора.

Входом объекта считать U(t), а выходом $\omega(t)$.

Задание 3. Конденсируй-умножай

Дано уравнение конденсатора:

$$I = C \frac{dU}{dt}.$$

Взять из Таблицы 2 значение, которое соответствует вашему варианту, для следующих величин:

• C — ёмкость конденсатора.

Входом объекта считать I(t), а выходом U(t).

Объект 4. Пружинка

Рис. 1: Пружинный маятник

Даны уравнения пружинного маятника:

$$F_{\text{viid}} = -k \cdot x, \quad F = m \cdot a$$

Взять из **Таблицы 3** значения, которые соответствуют вашему варианту, для следующих величин:

- *M* масса груза;
- k коэффициент жесткости пружины.

Входом объекта считать $F_{ext}(t)$ (некую внешнюю силу, направленную соосно движению маятника), а выходом x(t). Считать, что маятник движется ортогонально силе тяжести (см. рисунок 1).

Объект 5. Что ты такое?

Рис. 2: Принципиальная схема регулятора на операционном усилителе

На рисунке 2 представлена принципиальная схема регулятора на операционном усилителе. Взять из **Таблицы 4** значения, которые соответствуют вашему варианту, для следующих величин:

- R_1 сопротивление входного резистора;
- R_2 сопротивление резистора отрицательной обратной связи;
- ullet C- емкость конденсатора отрицательной обратной связи.

Входом объекта считать $U_{\rm BX}(t)$, а выходом $U_{\rm BMX}$.

Также определите, какому типу регулятора соответствует данный объект.

Контрольные вопросы для подготовки к защите:

- 1. Какие частотные характеристики вы знаете?
- 2. Какие типовые звенья вы знаете? Каковы их передаточные функции?
- 3. Что такое частота среза?
- 4. Что такое декремент затухания?
- 5. Что такое резонанс? В каких типовых звеньях он может возникнуть?

- 6. Как построить асимптотическую ЛАЧХ?
- 7. Почему в выражении для $L(\omega)$ присутствует множитель 20?

Таблица 1: Исходные данные для Объектов 1 и 2

Вариант	$k_m, \text{ H} \cdot \text{M}/\text{A}$	$k_e, B\cdot c$	J , kg-m^2	R, Om	L , Γ H
1	0.3678	0.3678	0.0026	4.7509	1.1597
2	0.3239	0.3239	0.0018	4.6916	1.1682
3	0.3637	0.3637	0.0023	4.6050	1.1784
4	0.3800	0.3800	0.0027	4.6140	1.0216
5	0.3872	0.3872	0.0019	4.6554	1.0847
6	0.3612	0.3612	0.0031	4.7237	1.0567
7	0.3348	0.3348	0.0032	4.7391	1.1647
8	0.3509	0.3509	0.0025	4.7320	1.0910
9	0.3574	0.3574	0.0024	4.6377	1.1868
10	0.3249	0.3249	0.0016	4.6808	1.0411
11	0.3435	0.3435	0.0021	4.5920	1.0575
12	0.3658	0.3658	0.0032	4.5963	1.0338
13	0.3222	0.3222	0.0028	4.6013	1.1319
14	0.3555	0.3555	0.0031	4.7097	1.1786
15	0.3423	0.3423	0.0029	4.6730	1.1206
16	0.3378	0.3378	0.0025	4.6119	1.1147
17	0.3074	0.3074	0.0019	4.6730	1.0337
18	0.3718	0.3718	0.0028	4.6035	1.1753
19	0.3713	0.3713	0.0023	4.5850	1.1291
20	0.3361	0.3361	0.0019	4.7441	1.0749
21	0.3646	0.3646	0.0024	4.6321	1.0636
22	0.3460	0.3460	0.0019	4.6056	1.1790
23	0.3094	0.3094	0.0021	4.6792	1.1336
24	0.3866	0.3866	0.0025	4.7393	1.1467
25	0.3525	0.3525	0.0020	4.7075	1.1556
26	0.3386	0.3386	0.0016	4.6879	1.1168
27	0.3824	0.3824	0.0019	4.6296	1.1194
28	0.3593	0.3593	0.0030	4.6832	1.1470
29	0.3856	0.3856	0.0026	4.6623	1.0912
30	0.3611	0.3611	0.0024	4.6775	1.1056

Таблица 2: Исходные данные для Объекта 3

Вариант	C , мк Φ	Вариант	C , мк Φ	Вариант	C , мк Φ
1	263	11	359	21	264
2	277	12	369	22	406
3	287	13	379	23	269
4	291	14	390	24	325
5	300	15	404	25	342
6	314	16	414	26	422
7	324	17	419	27	354
8	332	18	437	28	337
9	340	19	445	29	297
10	357	20	455	30	434

Таблица 3: Исходные данные для Объекта 4

Вариант	M, кг	k, H/M	Вариант	M, кг	k, H/M	Вариант	M, кг	k, H/M
1	8	102	11	16	105	21	13	184
2	24	112	12	17	229	22	35	122
3	13	322	13	27	140	23	21	147
4	32	253	14	29	90	24	25	114
5	6	191	15	5	113	25	31	316
6	35	324	16	8	319	26	16	141
7	20	81	17	14	71	27	26	72
8	26	274	18	3	122	28	6	264
9	35	271	19	19	66	29	19	210
10	11	219	20	13	182	30	9	158

Таблица 4: Исходные данные для Объекта 5

Вариант	R_1 , Om	R_2 , Om	C , мк Φ	Вариант	R_1 , Om	R_2 , Om	C , мк Φ
1	666	13310	263	16	952	17142	414
2	7083	14165	277	17	1296	16853	419
3	917	14665	287	18	999	11990	437
4	1108	18841	291	19	2595	10380	445
5	928	16704	300	20	390	7021	455
6	6427	19282	314	21	4039	10479	345
7	2425	21827	324	22	6118	18748	312
8	3440	20639	332	23	1934	7628	381
9	1254	21326	340	24	1934	14057	358
10	1709	17094	357	25	3271	15604	412
11	665	12644	359	26	4350	20804	266
12	2593	12964	369	27	2609	13809	266
13	2253	15769	379	28	5934	8320	295
14	5031	20124	390	29	2757	10670	332
15	4110	16438	404	30	5542	15975	388