MATH5605 ASSIGNMENT 2

DUE APR 17, 2014

Problem 1: Prove that every positive operator $T \in B(\mathcal{H})$, i.e., the operator satisfying

$$\langle Tx, x \rangle \ge 0, \quad \forall x \in \mathcal{H}$$

is self-adjoint.

Problem 2: Let $T = T_A$ be a Toeplitz operator on ℓ^2 , i.e., a matrix-type operator T_A with respect to the matrix

$$A = \left\{ a_{j-k} \right\}_{j,k=1}^{\infty}$$

where $\{a_m\}_{m\in\mathbb{Z}}$ is a sequence of complex numbers.

1) Prove that T is bounded if

$$\sum_{m\in\mathbb{Z}}|a_m|<+\infty.$$

- 2) Is this condition sharp?¹
- 3) When is a Toeplitz operator Hilbert-Schmidt?

Problem 3: For $T \in B(\mathcal{H})$ show that

- 1) $(\operatorname{Im} T)^{\perp} = \operatorname{Ker} T^*$;
- 2) $(\operatorname{Ker} T)^{\perp} = \overline{\operatorname{Im} T^*}$.

Here

 $\operatorname{Im} T = \{Tx, \ x \in \mathcal{H}\} \ \text{and} \ \operatorname{Ker} T = \{x \in \mathcal{H}: \ Tx = 0\}.$

E-mail address: d.potapov@unsw.edu.au

Date: April 9, 2014.

¹This is very hard!