Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas

Hoja de Problemas 2

Gramáticas Formales

NIVEL DEL EJERCICIO: (*) básico, (*) medio, (*) avanzado.

1. (\star) Obtener las derivaciones de las palabras 002 y 0001 a partir de la siguiente gramática :

$$G = (\{A, B\}, \{0, 1, 2\}, A, \{A ::= 0B, A ::= 2, B ::= 0A, B ::= 1\})$$
.

Obtener el lenguaje que genera.

Solución:

$$A \stackrel{A::=0B}{\longrightarrow} 0B \stackrel{B::=0A}{\longrightarrow} 00A \stackrel{A::=2}{\longrightarrow} 002$$

$$A \xrightarrow{A::=0B} 0B \xrightarrow{B::=0A} 00A \xrightarrow{A::=0B} 000B \xrightarrow{B::=1} 0001$$

El lenguaje que genera esta gramática son palabras que tienen un número determinado de ceros seguido de la paridad de los mismos (un 1 si el número de ceros es impar y un 2 en caso contrario):

$$L = \{0^n 2 \mid n \bmod 2 = 0\} \cup \{0^n 1 \mid n \bmod 2 = 1\}$$

2. (*) Obtener el lenguaje generado por la gramática :

$$G = (\{S\}, \{a, b\}, S, \{S ::= aSbb \mid \lambda\}).$$

Solución:

La gramática genera un lenguaje cuyas palabras están compuestas por una ristra de a's seguida por otra ristra de b's y además, el número de a's es la mitad del número de b's.

$$L = \{a^n b^{2n} \mid n \ge 0\}$$

3. (*) Construir una gramática que genere el lenguaje $L = \{a^n b^{n+1} \mid n \ge 0\}$.

Solución:

$$G = (\{S, A\}, \{a, b\}, S, \{S ::= Ab, A ::= aAb \mid \lambda\})$$

4. (*) Construir una gramática que genere el lenguaje $L = \{ \mathbf{w} \mid n_a(\mathbf{w}) \text{ y } n_b(\mathbf{w}) \text{ son pares } \}.$

Solución:

$$G = (\{S, A, B, C, D\}, \{a, b\}, S, P\})$$

$$P = \{S ::= SS \mid A \mid B \mid \lambda, A ::= aSa, B ::= bSb, C ::= DSD, D ::= ab \mid ba\}$$

5. (\star) Indicar si las gramáticas con los siguientes conjuntos de producciones son equivalentes :

$$P_1 = \{S ::= aSb \mid \lambda\},$$

$$P_2 = \{S ::= aAb \mid \lambda, A ::= aAb \mid \lambda\}.$$

Solución:

Dos gramáticas son equivalentes cuando generan el mismo lenguaje. Podemos observar que los lenguajes que generan G_1 y G_2 son los siguientes:

$$L(G_1) = \{a^n b^n \mid n \ge 0\}$$
 y $L(G_2) = \{a^n b^n \mid n \ge 0\}$

Por lo tanto, como $L(G_1) = L(G_2)$, son gramáticas equivalentes.

- 6. (*) Construir gramáticas para $\Sigma = \{a, b\}$ que generen los lenguajes cuyo conjunto de palabras sean :
 - (a) Todas las cadenas con una única a.

Solución:

$$G = (\Sigma_N, \{a, b\}, S, P)$$

$$\Sigma_N = \{S,B\}, \ P = \{S ::= BaB, B ::= bB \mid \lambda\}$$

(b) Todas las cadenas con al menos la subcadena ababb.

Solución:

$$G = (\Sigma_N, \{a, b\}, S, P)$$

$$\Sigma_N = \{S, A\}, P = \{S ::= AababbbA, A ::= aA \mid bA \mid \lambda\}$$

(c) Todas las cadenas con no más de tres a's.

Solución:

$$G = (\Sigma_N, \{a, b\}, S, P)$$

$$\Sigma_N = \{S, P, G, T, B\}, P = \{S ::= B \mid P, P ::= GaB \mid BaG \mid BaB, G ::= TaB \mid BaT \mid BaB, T ::= BaB, B ::= bB \mid \lambda\}$$

7. (⋆) Describir el lenguaje generado por la gramática cuyo conjunto de producciones es

$${S := aA \mid \lambda, A := bS}.$$

Solución:

$$L = \{(ab)^n \mid n \ge 0\}$$

8. (\star) Describir el lenguaje generado por la gramática cuyo conjunto de producciones es

$${S ::= Aa, A ::= B, B ::= Aa}.$$

Solución:

Recordemos que por definición, dada una gramática $G = (\Sigma_N, \Sigma_T, S, P)$ el lenguaje reconocido o generado por G está formado por todas las sentencias (palabras) de G:

$$L(G) = \{ x \mid S \to^* x \mathbf{y} \ x \in \Sigma_T^* \}$$

Dado que ninguna forma sentencial generada por la gramática del ejemplo es una sentencia $(x \in \Sigma_T^*)$, entonces el lenguaje generado por esta gramática es el lenguaje vacío $(L = \emptyset)$.

9. (*) Construir una gramática para cada uno de los siguientes lenguajes :

(a)
$$L_1 = \{a^n b^m \mid n \ge 0, m > n\}.$$

Solución:

$$G_1 = (\{S_1, A, B\}, \{a, b\}, S_1, \{S_1 ::= B \mid aAbB, A ::= aAb \mid \lambda, B ::= b \mid bB\})$$

(b) $L_2 = \{a^{n+2}b^n \mid n \ge 1\}.$

Solución:

$$G_2 = (\{S_2, C\}, \{a, b\}, S_2, \{S_2 ::= aaaCb, C ::= aCb \mid \lambda\})$$

(c) $L_3 = \{a^n b^{n-3} \mid n \ge 3\}.$

Solución:

Para resolver este apartado, podemos tener en cuenta que $L_3 = \{a^n b^{n-3} \mid n \geq 3\}$ es equivalente a $L_{3equiv} = \{a^{m+3}b^m \mid m \geq 0\}$ y por lo tanto, se puede resolver de forma parecida al apartado anterior.

$$G_3 = (\{S_3, D\}, \{a, b\}, S_3, \{S_3 ::= aaaD \mid \lambda, D ::= aDb \mid \lambda\})$$

(d) L_1L_2 .

Solución:

Para realizar este ejercicio, podemos utilizar las reglas de producción creadas en el apartado (a) y (b), teniendo cuidado al mezclar las producciones renombrándolas si fuese necesario, y generar otro axioma que haga uso de ellas: $S := S_1 S_2$.

$$G_4 = (\{S, S_1, S_2, A, B, C\}, \{a, b\}, S, \{S ::= S_1S_2, S_1 ::= B \mid aAbB, A ::= aAb \mid \lambda,$$

$$B := b \mid bB, S_2 := aaaCb, C := aCb \mid \lambda\})$$

Si nos damos cuenta, las producciones relativas a los elementos no terminales A y C son iguales, por lo que podemos eliminar una y retocar las reglas de producción que hagan uso de ellos. Al finalizar, la solución queda: $G_4 = (\{S, S_1, S_2, A, B, C\}, \{a, b\}, S, \{S ::= S_1S_2, S_1 ::= B \mid aAbB, A ::= aAb \mid \lambda,$

$$B ::= b \mid bB, S_2 ::= aaaAb\})$$

(e) $L_1 \cup L_2$.

Solución:

Procederemos de forma análoga al apartado anterior, símplemente varía el nuevo axioma: $S ::= S_1 \mid S_2$

(f) L_2^3 .

Solución:

ioja de i robiemas 2 (como)

De forma parecida, reutilizaremos la gramática que genera L_2 , añadiendo un nuevo axioma: $S::=S_2S_2S_2$

(g) L_1^* .

Solución:

Idem del anterior. Nuevo axioma: $S ::= SS_1$

(h) $L_4 = \{ab^n a \mid n \ge 1\}.$

Solución:

$$G_5 = (\{S_5, B\}, \{a, b\}, S_5, \{S_5 ::= aBa, B ::= bB \mid b\})$$

- 10. (*) Construir una gramática para cada uno de los siguientes lenguajes para $\Sigma = \{a\}$:
 - (a) $L_1 = \{ \mathbf{w} \mid |\mathbf{w}| \mod 3 = 0 \}.$

Solución:

$$G_1 = (\{S\}, \{a\}, S, \{S ::= aaaS \mid \lambda\}).$$

(b) $L_2 = \{ \mathbf{w} \mid |\mathbf{w}| \mod 3 > 0 \}.$

Solución:

$$G_2 = (\{S\}, \{a\}, S, \{S ::= a \mid aa \mid aaaS\}).$$

11. (*) Dado un alfabeto Σ y una palabra $\mathbf{w} \in \Sigma^*$, se dice que \mathbf{w} es un *palíndromo* si se verifica que $\mathbf{w}^{-1} = \mathbf{w}$. Dado $\Sigma_2 := \{0, 1\}$, construir una gramática que genere el lenguaje de los palíndromos sobre Σ_2 , $L_{pal}(\Sigma_2) := \{\mathbf{w} \in \Sigma_2^* \mid \mathbf{w}^{-1} = \mathbf{w}\}$.

Solución:

$$G = (\{S,A\},\{0,1\},S,\{S ::= 0S0 \mid 1S1 \mid A,\ A ::= 0 \mid 1 \mid \lambda\})$$

12. (*) Construir una grámatica que genere el lenguaje $L = \{\mathbf{ww} \mid \mathbf{w} \in \{a, b\}^*\}.$

Solución:

El lenguaje generado está formado por palabras que resultan de la concatenación de una misma palabra w dos veces, tal que $\mathbf{w} \in \{a, b\}^*$.

$$G = (\{S, X, Y, F, A, B\}, \{a, b\}, S, P)$$

110 ja de 1 10 bienias 2 (cont.)

$$P = \{S ::= XY, \\ = X ::= XaA \mid XbB \mid F, \\ = Aa ::= aA, \\ = Ab ::= bA, \\ = AY ::= Ya, \\ = Ba ::= aB, \\ = Bb ::= bB, \\ = BY ::= Yb, \\ = Fa ::= aF, \\ = Fb ::= bF, \\ = FY ::= \lambda\}$$

13. (*) Construir una grámatica que genere el lenguaje $L = \{\mathbf{www} \mid \mathbf{w} \in \{a, b\}^+\}.$

Solución:

El lenguaje generado está formado por palabras que resultan de la concatenación de una misma palabra w tres veces, tal que $\mathbf{w} \in \{a, b\}^*$.

$$G = (\{S, X, Y, Z, F, A, B\}, \{a, b\}, S, P)$$

$$P = \{S ::= XYZ, X ::= XaA \mid XbB \mid F, Aa ::= aA, Ab ::= bA, Ba ::= aB, Bb ::= bB, AY ::= YaA, BY ::= YbB, AZ ::= Za, BZ ::= Zb, Fa ::= aF, Fb ::= bF, FY ::= YF, FZa ::= \lambda, FZb ::= \lambda \}$$

- 14. (*) Sea $\Sigma := \{(,),0,1\}$. Las expresiones con paréntesis bien balanceadas se definen del siguiente modo :
 - La palabra vacía está bien balanceada.
 - 0 y 1 son palabras bien balanceadas.
 - Si $\mathbf{w} \in \Sigma^*$ es una palabra bien balanceada, entonces (\mathbf{w}) es una palabra bien balanceada.
 - Si $\mathbf{w}, \mathbf{w}' \in \Sigma^*$ son palabras bien balanceadas, entonces $\mathbf{w}\mathbf{w}'$ es una palabra bien balanceada.

Construye una gramática que genere el lenguaje de las palabras bien balanceadas.

Solución:

$$G = (\{S, W, P\}, \{0, 1\}, S, \{S ::= SWS \mid P, W ::= (W) \mid (P), P ::= OP \mid 1P \mid 0 \mid 1 \mid \lambda\})$$

15. (⋆) ¿ Son equivalentes las gramáticas cuyas producciones son las siguientes?.

$$P_1 = \{S ::= aSb \mid ab \mid \lambda\},\$$

$$P_2 = \{S ::= aAb \mid ab, A ::= aAb \mid \lambda\}.$$

Solución:

Observemos los lenguajes que genera cada una de las gramáticas:

$$L(G_1) = \{a^n b^n \mid n \ge 0\} \ y \ L(G_2) = \{a^n b^n \mid n > 0\}$$

Como podemos ver, $L(G_1)$ incluye la palabra vacía (λ) , mientras que el segundo lenguaje no la incluye, por lo tanto, al no generar el mismo lenguaje, no son equivalentes.

16. (⋆) Demostrar si las gramáticas con las siguientes producciones son ambiguas :

$${A ::= 1B \mid 11, B ::= 1},$$

$${S ::= AB \mid aaB, A ::= a \mid Aa, B ::= b}.$$

Solución:

Recordemos las definiciones.

Una gramática es ambigua si genera alguna sentencia ambigua.

Una sentencia es ambigua si puede obtenerse por medio de varias derivaciones distintas correspondientes a árboles de derivación diferentes.

110 ja de 1 100 lemas 2 (com.)

Por lo tanto, debemos encontrar una sentencia que pueda corresponderse con dos (o más) árboles de derivación.

Para la primera gramática, podemos encontrar dos árboles de derivación correspondientes a la palabra 11:

Y para la segunda gramática, podemos encontrar dos árboles de derivación para la palabra aab:

Por lo tanto, ambas gramáticas son ambiguas.