Applications

- X-band radar
- Data Links

Product Features

Frequency Range: 8 – 11 GHz
P_{SAT}: 47 dBm @ P_{IN} = 23 dBm
PAE: 34% @ P_{IN} = 23 dBm

• Power Gain: 24 dB @ PIN = 23 dBm

• Small Signal Gain: >28 dB

• Return Loss: > 9 dB

• Bias: $V_D = 28 \text{ V}$, $I_{DQ} = 650 \text{ mA}$, $V_G = -2.6 \text{ V}$ Typical (Pulsed $V_{D:}$ PW = 100 μ s and DC = 10 %)

• Package Dimensions: 15.2 x 15.2 x 3.5 mm

Package base is pure Cu offering superior thermal management

Functional Block Diagram

General Description

TriQuint's TGA2238-CP is a packaged, high power X-band amplifier fabricated on TriQuint's 0.25 um GaN on SiC production process. Operating from 8 – 11 GHz, the TGA2238-CP achieves 50 W saturated output power with 24 dB power gain and 34 % power-added efficiency.

The TGA2238-CP is packaged in a 10-lead 15 \times 15 mm bolt-down package with a Cu base for superior thermal management. Both RF ports (RF input internally DC blocked) are matched to 50 ohms allowing for simple system integration.

The TGA2238-CP is ideally suited for both military and commercial x-band radar systems and data links.

Lead-free and RoHS compliant.

Evaluation boards are available upon request.

Pad Configuration

Pad No.	Symbol
1, 5	V _G
2, 4, 7, 9	GND
3	RF In
6, 10	V _D
8	RF Out

Ordering Information

Part	ECCN	Description
TGA2238-CP	3A001.b.2.b	8 – 11 GHz 50 W GaN Power Amplifier

TGA2238-CP

8 - 11 GHz 50 W GaN Power Amplifier

Absolute Maximum Ratings

Parameter	Value
Drain Voltage (V _D)	40 V
Gate Voltage Range (V _G)	-8 to 0V
Drain Current (I _D)	8 A
Gate Current (I _G) @ T _{CH} = 200°C	-26 to 62 mA
Power Dissipation (P _{DISS}), 85°C Pulsed: PW = 100 µs, DC = 10%	158 W
Input Power (P_{IN}), 50Ω , 85° C, $V_D = 28V$. Pulsed: $PW = 100 \ \mu s$, $DC = 10\%$	30 dBm
Input Power (P_{IN}), 85°C, VSWR 3:1, $V_D = 28V$, Pulsed: PW = 100 μ s, DC = 10%	30 dBm
Channel Temperature (T _{CH})	275 °C
Mounting Temperature (30 seconds)	260 °C
Storage Temperature	-55 to 150 °C

Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

Recommended Operating Conditions

Parameter	Value
Drain Voltage (V _D): Pulsed	28 V
Drain Current (I _{DQ})	650 mA
Gate Voltage (V _G)	-2.6 V (Typ.)

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Test conditions unless otherwise noted: 25 °C, V_D = 28 V, I_{DQ} = 650 mA, V_G = -2.6 V Typical, Pulsed V_D: PW = 100 μs, DC = 10 %

Parameter	Min	Typical	Max	Units
Operational Frequency Range	8		11	GHz
Small Signal Gain		>28		dB
Input Return Loss		>9		dB
Output Return Loss		>10		dB
Output Power (Pin = 23dBm)		47		dBm
Power Added Efficiency (Pin = 23dBm)		34		%
Power Gain (Pin = 23dBm)		24		dB
Small Signal Gain Temperature Coefficient		- 0.056		dB/°C

Thermal and Reliability Information

Test Conditions	Value	Units
Vo = 28 V Ipo = 650 mA	0.66	°C/W
	97	°C
- Jase Jiss	2.0 x 10^12	Hrs
	VD = 28 V, IDQ = 650 mA, T _{base} = 85 °C, P _{DISS} = 18.2 W	VD = 28 V, IDQ = 650 mA,

Thermal Resistance (θ _{JC}) ⁽¹⁾	VD = 28 V, IDQ = 650 mA,	0.76	°C/W
Channel Temperature (T _{CH}) (Under RF drive)	(Pulsed V_D : PW = 100 μ s, DC = 10 %), $T_{base} = 85$ °C, $V_D = 28$ V, $I_{D Drive} = 5.9$ A,	167	°C
Median Lifetime (T _M)		2.89 x 10^9	Hrs

Notes:

Test Conditions: $V_D = 40 \text{ V}$; Failure Criteria = 10% reduction in I_{D_MAX}

^{1.} Thermal Resistance measured to back of package.

Typical Performance: Small Signal (CW Operation)

Typical Performance: Small Signal (CW Operation)

Application Circuit

Notes:

- 1. V_G must be biased from both sides (Pins 1 and 5)
- 2. V_D must be biased from both sides (Pins 6 and 10)

Bias-up Procedure

- 1. Set power supply: I_D limit to 7 A, I_G limit to 20 mA
- 2. Apply -5.0 V to V_G (for pinch-off)
- 3. Increase V_D to +28 V; Ensure I_{DQ} is approx. 0 mA
- 4. Adjust V_G more positive until $I_{DQ} = 650$ mA $V_G \sim -2.6 \text{ V typical}$
- 5. Apply RF signal

Bias-down Procedure

- 1. Turn off RF signal
- 2. Reduce V_G to -5.0 V; Ensure $I_{DQ} \sim 0$ mA
- 3. Reduce V_D to 0 V
- 4. Turn off V_D supply
- 5. Turn off V_G supply

Pin Description

Pin No.	Symbol	Description
1,5	V_{G}	Gate Voltage; Bias network is required; must be biased from both sides; see recommended Application Information above.
3	RF _{IN}	Input; matched to 50 Ω; DC blocked
2,4,7,9	GND	Must be grounded on the PCB.
6,10	V _D	Drain voltage; Bias network is required; must be biased from both sides; see recommended Application Information above.
8	RF _{OUT}	Output; matched to 50 Ω; DC shorted to ground.

Evaluation Board Layout

Notes: Both Top and Bottom VD and VG must be biased.

Bill of Material				
Reference Des.	Value	Description	Manuf.	Part Number
C1, C2, C7, C8	0.01 µF	Cap, 0402, 50 V, 10%, X7R	Various	
C3, C4, C9, C10	0.1 μF	Cap, 0402, 50 V, 10%, X7R	Various	
C5, C6	10 μF	Cap, 1206, 50 V, 20%, X5R	Various	
R1, R2	10 Ohm	Res, 0402, 5%, SMD	Various	
R3, R4	5.1 Ohm	Res, 0402, 5%, ROHS	Various	
R5, R6	0 Ohm	Res, 0402, SMD, jumpers required for the above EVB	Various	

Assembly Notes

- 1. Clean the board or module with alcohol. Allow it to dry fully.
- 2. Nylock screws are recommended for mounting the TGA2238-CP to the board.
- 3. To improve the thermal and RF performance, we recommend the following:
 - a. Apply thermal compound or 4 mils indium shim between the package and the board.
 - b. Attach a heat sink to the bottom of the board and apply thermal compound or 4 mils indium shim between the heat sink and the board.
- 4. Apply solder to each pin of the TGA2238-CP.
- 5. Clean the assembly with alcohol.

Mechanical Information

Units: inches

Tolerances: unless specified

 $x.xx = \pm 0.01; \quad x.xxx = \pm 0.005$

Materials:

Base: Copper Leads: Alloy 194

Lid: LCP (Liquid Crystal Polymer)

Finish: Gold Part is epoxy sealed

Marking:

TGA2238-CP: Part number

YY: Part Assembly year WW: Part Assembly week ZZZ: Serial Number

MXXX: Batch ID

TGA2238-CP

8 - 11 GHz 50 W GaN Power Amplifier

Product Compliance Information

ESD Sensitivity Ratings

Caution! ESD-Sensitive Device

ESD Rating: TBD Value: TBD

Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

MSL Rating

Level 5A at +260 °C convection reflow The part is rated Moisture Sensitivity Level 5A at 260°C per JEDEC standard IPC/JEDEC J-STD-020

Solderability

Compatible with the latest version of J-STD-020, Lead-free solder, 260°C

RoHS Compliance

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

ECCN

US Department of Commerce: 3A001.b.2.b

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: <u>www.triquint.com</u> Tel: +1.972.994.8465 Email: <u>info-sales@triquint.com</u> Fax: +1.972.994.8504

For technical questions and application information: **Email:** <u>info-products@triquint.com</u>

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.