Seguridad y Protección de Sistemas Informáticos Grado en Ingeniería Informática UNIVERSIDAD DE GRANADA

24 de diciembre de 2019

Observaciones para el examen.

EJERCICIO 1. Cifrado de Vigenere.

Solución. El cifrado de vigenere consiste en una clave $\alpha \in \exp(\mathcal{A})^*$ y sendas funciones E_{α} y D_{α} , para cifrar y descifrar respectivamente. Podemos definir E_{α} : $\exp(\mathcal{A})^* \to \exp(\mathcal{A})^*$ como:

$$E_{\alpha}(s) = \langle f^{-1}((f(s_j) + f(\alpha^l e n(s))_j) \mod n) \rangle_j$$

Teniendo en cuenta que:

- *f* es la inyección que asigna a cada letra un entero.
- Consideramos $\alpha^l en(s)$ para tener claro que existe una letra en la posición j. Es decir en verdad solo estamos repitiendo muchas veces la clave (sea α = HOLA, pues α^3 =HOLAHOLAHOLA).
- $\langle \rangle_j$ representa que es una palabra.
- *n* es el cardinal del alfabeto empleado.

De modo análogo se define $E_{\alpha}: \exp(\mathcal{A})^* \to \exp(\mathcal{A})^*$ como:

$$D_{\alpha}(s) = \langle f^{-1}((f(s_i) - f(\alpha^l en(s))_i) \mod n) \rangle_i$$

Se puede comprobar fácil que *D* es la inversa de *E* por izquierda y derecha.

Como último queda un resultado útil para ver que en realidad ambas funcione son solo un mismo sistema con diferente clave.

Sea α una clave, entonces definiendo $\alpha' = \langle (-\alpha_j) \mod n \rangle_j$

EJERCICIO 2. Explicar la transformación SubBytes() que es parte del algoritmo simétrico de cifrado AES.

EJERCICIO 3. Limitaciones de los sistemas simétricos de cifrado en la comunicación y cómo la criptografíade clave pública los ha resuelto.

EJERCICIO 4. Explicar los fundamentos de la criptografía de clave pública y las líneas fundamentales de lafirma a través de la misma.

EJERCICIO 5. Enumerar resumidamente las precauciones más destacables a tomar al generar un cículo decomunicación basado en RSA.

EJERCICIO 6. Protocolo de intercambio de llaves según el esquema de Diffie-Hellman y explicación de susupuesta fortaleza.

EJERCICIO 7. Explicación del criptosistema de ElGamal.

EJERCICIO 8. Explicación del algoritmo de firma estándar (DSA).

EJERCICIO 9. Rasgos esenciales de SSH: cifrado, funcionamiento, negociación de cifrado para la sesión yautenticación del acceso del usuario al servidor