

Circuitos Digitais I - 6878

Nardênio Almeida Martins

Universidade Estadual de Maringá Departamento de Informática

Bacharelado em Ciência da Computação

Aula de Hoje

- · Circuitos Sequenciais:
 - · Flip-Flop Tipo RS
 - · Flip-Flop Tipo D

Circuitos Sequenciais

<u>Circuitos Sequenciais:</u> As saídas dependem das entradas atuais e também das entradas anteriores.

Flip-Flops (FF): São circuitos sequenciais que podem ser usados como memória para armazenar 1 bit.

Símbolo

Condição do FF:

As saídas Q e Q são complementares

Se
$$\begin{cases} Q=0 \Rightarrow \overline{Q}=1 \\ Q=1 \Rightarrow \overline{Q}=0 \end{cases}$$

Circuito do FF RS

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Nomenclatura

Estudo de Casos

Qa = saída anterior

Qf = saída final

5	R	Qa	Q	Qf	ď
0	0	0	1		

Estudo de Casos

Caso 0

5	R	Qa	Qa	Qf	Qf
0	0	0	1	0	1

Manteve o estado anterior das saídas

Estudo de Casos

5	R	Qa	Qa	Qf	Qf
0	0	1	0		

Estudo de Casos

Caso 1

5	R	Qa	Qa	Qf	Qf
0	0	1	0	1	0

Manteve o estado anterior das saídas

Estudo de Casos

5	R	Qa	Qa	Qf	Q
0	1	0	1		

Estudo de Casos

Caso 2

5	R	Qa	Qa	Qf	Q f
0	1	0	1	0	1

Qf=0 ⇒ Reset da saída

Estudo de Casos

5	R	Qa	Q	Qf	ď
0	1	1	0		

Estudo de Casos

Caso 3

5	R	Qa	Q	Qf	ଦ
0	1	1	0		

Estado instável das saídas

Estudo de Casos

Caso 3

5	R	Qa	Q	Qf	ଦ
0	1	1	0		

Estado instável das saídas

Estudo de Casos

5	R	Qa	Qa	Qf	Qf
0	1	1	0		

Estudo de Casos

Caso 3

5	R	Qa	ď	Qf	ď
0	1	1	0	0	1

Qf=0 ⇒ Reset da saída

Estudo de Casos

5	R	Qa	Qa	Qf	Qf
1	0	0	1		

Estudo de Casos

Caso 4

5	R	Qa	Q	Qf	ଦ
1	0	0	1		

Estado instável das saídas

Estudo de Casos

5	R	Qa	Qa	Qf	Qf
1	0	0	1		

Estudo de Casos

5	R	Qa	Q	Qf	Qf
1	0	0	1		

Estudo de Casos

5	R	Qa	Qa	Qf	Qf
1	0	0	1		

Estudo de Casos

Caso 4

5	R	Qa	Q	Qf	ď
1	0	0	1	1	0

 $Qf=1 \Rightarrow Set da saída$

Estudo de Casos

5	R	Qa	Qa	Qf	Q f
1	0	1	0		

Estudo de Casos

Caso 5

5	R	Qa	Qa	Qf	Q f
1	0	1	0	1	0

 $Qf=1 \Rightarrow Set da saída$

Estudo de Casos

5	R	Qa	Qa	Qf	Q f
1	1	0	1		

Estudo de Casos

Caso 6

5	R	Qa	ď	Qf	ď
1	1	0	1		

Estado instável das saídas

Estudo de Casos

Caso 6

5	æ	Q	ď	Ğ	ၓ
1	1	0	1	1	1

Estado instável das saídas

Qf=Qf=1 Viola a condição do FF RS

Estudo de Casos

5	R	Qa	Qa	Qf	Qf
1	1	1	0		

Estudo de Casos

Caso 7

5	R	Qa	Qa	Qf	ଫ୍
1	1	1	0		

Estado instável das saídas

Estudo de Casos

Caso 7

5	æ	Q	ď	Ğ	ଫ୍
1	1	1	0	1	1

Estado instável das saídas

Qf=Qf=1 Viola a condição do FF RS

Tabela Verdade do FF RS

5	R	Qa	Qf	
0	0	0	0	Qf=Qa Mantém a saída anterior
0	0	1	1	WI-Wa Maniem a saida aniemon
0	1	0	0	
0	1	1	0	Qf=0 Reset da saída anterior
1	0	0	1	
1	0	1	1	Qf=1 Set da saída anterior
1	1	0	X	Entradas não permitidas
1	1	1	X	Entradas não permitidas

Flip-Flop RS - Sem Clock

Circuito do Latch ou FF RS

Se o clock=0 \Rightarrow FF permanece no seu estado anterior, mesmo que variem as entradas S e R

Se o clock=1 \Rightarrow FF funciona como um FF RS

<u>Ck=0</u>

TV da NAND

A	В	5
0	0	1
0	1	1
1	0	1
1	1	0

<u>Ck=0</u>

Para clock=0 ⇒ FF permanece no seu estado anterior

<u>Ck=0</u>

<u>Ck=0</u>

Para clock=0 ⇒ FF permanece no seu estado anterior

Flip-Flop RS com entrada clock

Símbolo FF RS com entrada clock

Flip-Flop sensível ao nível do clock

- Flip-Flop sensível ao nível do clock dispara sempre que o clock está num determinado estado lógico (chamado de <u>LATCH</u>)
- Alguns FFs são disparados pelo nível lógico 1 e alguns pelo nível lógico 0
- O FF abaixo é sensível ao nível porque ele responde às suas entradas R e S sempre que o clock está em ALTO

Tarefinha

Mostre que o Flip-Flop RS com clock=1 opera normalmente como um FF RS

<u>Ck=1</u>

Caso O

TV da NAND

A	В	5
0	0	1
0	1	1
1	0	1
1	1	0

<u>Ck=1</u>

Caso O

<u>Ck=1</u>

<u>Ck=1</u>

<u>Ck=1</u>

<u>Ck=1</u>

<u>Ck=1</u>

Ck=1

<u>Ck=1</u>

<u>Ck=1</u>

Ck=1 Caso 3

<u>Ck=1</u>

<u>Ck=1</u>

Ck=1

<u>Ck=1</u>

<u>Ck=1</u> <u>Caso 4</u>

<u>Ck=1</u> <u>Caso 4</u>

<u>Ck=1</u>

<u>Ck=1</u> <u>Caso 5</u>

<u>Ck=1</u>

<u>Ck=1</u>

<u>Ck=1</u>

<u>Ck=1</u>

<u>Ck=1</u>

Ck=1

Exercício

1. Faça o diagrama de forma de onda da saída Q de um Flip-Flop RS com entrada clock igual a 1. Considere que a saída Q é inicialmente 0.

1. Faça o diagrama de forma de onda da saída Q de um Flip-Flop RS com entrada clock igual a 1. Considere que a saída Q é inicialmente 0.

Flip-Flop Tipo D com entrada clock

Flip-Flop Tipo D com entrada clock

Flip-Flop Tipo D com entrada clock

Símbolo FF Tipo D com entrada clock

FF sensivel ao nível do clock

- <u>Problema:</u> Flip-Flop sensível ao nível do clock é instável para certas aplicações
- A saída atual do FF D (Q) é realimentada através de um circuito combinacional para gerar uma nova entrada D
- Quando o FF é disparado o valor de D é transferido para a saída para gerar novo valor de Q⁺
- Se o clock é sensível ao nível então Q pode viajar pelo circuito combinacional e mudar o valor de D e consequentemente a saída Q
- Para evitar esse problema o pulso de clock deveria ser muito estreito

Resumo da Aula de Hoje

Tópicos mais importantes:

- · Circuitos Sequenciais:
 - · Flip-Flop Tipo RS
 - · Flip-Flop Tipo D

