CS101 Algorithms and Data Structures

Graphs
Textbook Ch B.4, B.5.1, 22.1

Outline

- Definitions
 - Undirected graphs
 - Directed graph
- Representation
 - Adjacency matrix
 - Adjacency list

Undirected Graphs

We will define an Undirected Graph ADT as a collection of *vertices*

$$V = \{v_1, v_2, ..., v_n\}$$

The number of vertices is denoted by

$$|V| = n$$

– Associated with this is a collection E of <u>unordered</u> pairs $\{v_i, v_j\}$ termed edges which connect the vertices

Undirected Graphs

Consider this collection of vertices

$$V = \{v_1, v_2, ..., v_9\}$$

where |V| = n = 9

Undirected graphs

Associated with these vertices are |E| = 5 edges

$$E = \{\{v_1, v_2\}, \{v_3, v_5\}, \{v_4, v_8\}, \{v_4, v_9\}, \{v_6, v_9\}\}$$

- The pair $\{v_j, v_k\}$ indicates that both vertex v_j is adjacent to vertex v_k and vertex v_k is adjacent to vertex v_j

Undirected graphs

We will assume that a vertex is never adjacent to itself

- For example, $\{v_1, v_1\}$ will not define an edge

The maximum number of edges in an undirected graph is

$$|E| \le {|V| \choose 2} = \frac{|V|(|V|-1)}{2} = O(|V|^2)$$

An undirected graph

Example: given the |V| = 7 vertices

$$V = \{A, B, C, D, E, F, G\}$$

and the |E| = 9 edges

$$E = \{\{A, B\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, E\}, \{C, E\}, \{C, F\}, \{D, E\}\}\}$$

Degree

The degree of a vertex is defined as the number of adjacent vertices

$$degree(A) = degree(D) = degree(C) = 3$$

 $degree(B) = degree(E) = 4$
 $degree(F) = 1$
 $degree(G) = 0$

Those vertices adjacent to a given vertex are its *neighbors*

Sub-graphs

A *sub-graph* of a graph contains a *subset* of the vertices and a subset of the edges that connect the *subset* of the vertices in the original graph

Sub-graphs

A *sub-graph* of a graph contains a subset of the vertices and a subset of the edges that connect the subset of the vertices in the original graph

Vertex-induced sub-graphs

A *vertex-induced sub-graph* contains a subset of the vertices and all the edges in the original graph between those vertices

A path in an undirected graph is an ordered sequence of vertices

$$(v_0, v_1, v_2, ..., v_k)$$

where $\{v_{j-1}, v_j\}$ is an edge for j = 1, ..., k

- Termed a path from v_0 to v_k
- The length of this path is k

A path of length 4:

(A, B, E, C, F)

A path of length 5:

(A, B, E, C, B, D)

A trivial path of length 0:

(A)

Simple path

A *simple path* has no repetitions (other than perhaps the first and last vertices)

Simple cycle

A simple cycle is a simple path of at least two vertices with the first and last vertices equal

Connectedness

Two vertices v_i , v_j are said to be *connected* if there exists a path from v_i to v_j

A graph is connected if there exists a path between any two vertices

A weight may be associated with each edge in a graph

- This could represent distance, energy consumption, cost, etc.
- Such a graph is called a weighted graph

The *length* of a path within a weighted graph is the sum of all of the edges which make up the path

- The length of the path (A, D, G) in the following graph is 5.1 + 3.7 = 8.8

Different paths may have different weights

- Another path is (A, C, F, G) with length 1.2 + 1.4 + 4.5 = 7.1

Problem: find the shortest path between two vertices

- Here, the shortest path from A to G is (A, C, F, D, E, G) with length 5.7

Trees

A graph is a tree if it is connected and there is a unique path between any two vertices

Example: three trees on the same eight vertices

Properties:

- The number of edges is |E| = |V| 1
- The graph is acyclic, that is, it does not contain any cycles
- Adding one more edge must create a cycle
- Removing any one edge creates two unconnected sub-graphs

Trees

Any tree can be converted into a rooted tree by:

- Choosing any vertex to be the root
- Defining its neighboring vertices as its children

and then recursively defining:

 All neighboring vertices other than that one designated its parent to be its children

Forests

A forest is any graph that has no cycles

Consequences:

- The number of edges is |E| < |V|
- The number of trees is |V| |E|
- Removing any one edge adds one more tree to the forest

Here is a forest with 22 vertices and 18 edges

There are four trees

Outline

- Definitions
 - Undirected graphs
 - Directed graph
- Representation
 - Adjacency matrix
 - Adjacency list

Directed graphs

In a *directed graph*, the edges on a graph are be associated with a direction

- Edges are ordered pairs (v_j, v_k) denoting a connection from v_j to v_k
- The edge (v_i, v_k) is different from the edge (v_k, v_j)

Streets are directed graphs:

In most cases, you can go two ways unless it is a one-way street

Directed graphs

Given a graph of nine vertices $V = \{v_1, v_2, ... v_9\}$

- These six pairs (v_j, v_k) are directed edges

$$E = \{(v_1, v_2), (v_3, v_5), (v_5, v_3), (v_6, v_9), (v_8, v_4), (v_9, v_4)\}$$

Directed graphs

The maximum number of directed edges in a directed graph is

$$|E| \le 2 {|V| \choose 2} = 2 \frac{|V|(|V|-1)}{2} = |V|(|V|-1) = O(|V|^2)$$

In and out degrees

The degree of a vertex in a directed graph:

- The out-degree of a vertex is the number of outward edges from the vertex
- The in-degree of a vertex is the number of inward edges to the vertex

In this graph:

```
in_{degree}(v_1) = 0 out_degree(v_1) = 2
in_{degree}(v_5) = 2 out_degree(v_5) = 3
```


Sources and sinks

Definitions:

- Vertices with an in-degree of zero are described as sources
- Vertices with an out-degree of zero are described as sinks

In this graph:

- Sources: v_1 , v_6 , v_7

- Sinks: v_2, v_9

A path in a directed graph is an ordered sequence of vertices

$$(v_0, v_1, v_2, ..., v_k)$$

where (v_{j-1}, v_j) is an edge for j = 1, ..., k

A path of length 5 in this graph is $(v_1, v_4, v_5, v_3, v_5, v_2)$

A simple cycle of length 3 is (v_8, v_4, v_5, v_8)

Connectedness

Two vertices v_j , v_k are said to be *connected* if there exists a path from v_j to v_k

 A graph is strongly connected if there exists a directed path between any two vertices

- A graph is *weakly connected* there exists a path between any two vertices that ignores the direction v_2

In this graph:

- The sub-graph $\{v_3, v_4, v_5, v_8\}$ is strongly connected
- The sub-graph {v₁, v₂, v₃, v₄, v₅, v₈} is weakly connected

Weighted directed graphs

In a weighted directed graphs, each edge is associated with a value

If both (v_j, v_k) and (v_k, v_j) are edges, it is not required that they have the same weight

Outline

- Definitions
 - Undirected graphs
 - Directed graph
- Representation
 - Adjacency matrix
 - Adjacency list

The Graph ADT

The Graph ADT describes a container storing an adjacency relation

- Queries include:
 - The number of vertices
 - The number of edges
 - List the vertices adjacent to a given vertex
 - Are two vertices adjacent?
 - Are two vertices connected?
- Modifications include:
 - Inserting or removing an edge
 - Inserting or removing a vertex (and all edges containing that vertex)

The run-time of these operations will depend on the representation

Binary-relation list

The most inefficient is a relation list:

A container storing the edges

$$\{(1, 2), (1, 4), (3, 5), (4, 2), (4, 5), (5, 2), (5, 3), (5, 8), (6, 9), (7, 9), (8, 4)\}$$

- Requires $\Theta(|E|)$ memory
- Determining if v_j is adjacent to v_k is O(|E|)
- Finding all neighbors of v_i is $\Theta(|E|)$

Requiring more memory but also faster, an adjacency matrix

- The matrix entry (j, k) is set to true if there is an edge (v_j, v_k)

	1	2	3	4	5	6	7	8	9
1		T		T					
2									
3					T				
4		T			T				
5		T	T					T	
6									T
7									T
8 <u>9</u>	9 . <i>j k</i> ,								
_	- Finding all neighbors of v_i is $\Theta(V)$								

Most efficient for algorithms is an adjacency list

Each vertex is associated with a list of its neighbors

$$\begin{array}{ccc}
1 & \bullet \rightarrow 2 \rightarrow 4 \\
2 & \bullet \\
3 & \bullet \rightarrow 5 \\
4 & \bullet \rightarrow 2 \rightarrow 5 \\
5 & \bullet \rightarrow 2 \rightarrow 3 \rightarrow 8 \\
6 & \bullet \rightarrow 9 \\
7 & \bullet \rightarrow 9 \\
8 & \bullet \rightarrow 4
\end{array}$$

- On average:
 - Determining if v_j is adjacent to v_k is

• Finding all neighbors of v_j is

A graph of *n* vertices may have up to

$$\binom{n}{2} = \frac{n(n-1)}{2} = \mathbf{O}(n^2)$$

edges

The first straight-forward implementation is an adjacency matrix

Define an $n \times n$ matrix $\mathbf{A} = (a_{ij})$ and if the vertices v_i and v_j are connected with weight w, then set $a_{ij} = w$ and $a_{ji} = w$

That is, the matrix is symmetric, e.g.,

	0	1	2	3	4	5
0		0.83		0.65		0.51
1	0.83		0.67	0.72	0.46	0.90
2		0.67		0.39		
3	0.65	0.72	0.39		0.24	
4		0.46		0.24		
5	0.51	0.90				

An unweighted graph may be saved as an array of Boolean values

- vertices v_i and v_j are connected then set $a_{ij} = a_{ji} = true$

	0	1	2	3	4	5
0		Т	F	Т	F	Т
1	Т		Т	Т	Т	Т
2	F	Т		Т	F	F
3	Т	Т	Т		Т	F
4	F	Т	F	Т		F
5	Т	Т	F	F	F	

If the graph was directed, then the matrix would not necessarily be symmetric

First we must allocate memory for a two-dimensional array

C++ does not have native support for anything more than onedimensional arrays, thus how do we store a two-dimensional array?

as an array of arrays

Suppose we require a 16×16 matrix of double-precision floating-point numbers

Each row of the matrix can be represented by an array

The address of the first entry must be stored in a pointer to a double:

double *

However, because we must store 16 of these pointers-to-doubles, it makes sense that we store these in an array

What is the declaration of this array?

Well, we must store a pointer to a pointer to a double

That is: double **

Thus, the address of the first array must be declared to be: double **matrix;

Default Values

Question: what do we do about vertices which are not connected?

- the value 0
- a negative number, e.g., -1
- positive infinity: ∞

The last is the most logical, in that it makes sense that two vertices which are not connected have an infinite distance between them

The distance from a node to itself is 0

Sparse Matrices

- The memory required for creating an $n \times n$ matrix using a 2D array is $\Theta(n^2)$ bytes
- This could potentially waste a significant amount of memory:
 - Consider a friendship graph: nodes represent persons and edges represent friendship
 - − The world population is 7.4 billion => the size of the matrix is $(7.4 \times 10^9)^2$ $\approx 55 \times 10^{18}$
 - However, each person on average has, say, 100 friends. Hence only $\frac{100}{7.4\times10^9}$ of the matrix elements are true. The other elements are the default value: false.

- For an undirected graph, use an array of linked lists to store edges
 - Each vertex has a linked list that stores all the edges connected to the vertex
 - Each node in a linked list must store two items of information: the connecting vertex and the weight

- To store a directed graph
 - Each vertex has a linked list that stores all the edges originated from the vertex
 - Each node in a linked list stores two items of information: the vertex that the edge connects to, the weight

Summary

- Definitions
 - Undirected graphs
 - Directed graph
- Representation
 - Adjacency matrix
 - Adjacency list