FINAL EXAMINATION

June 2017

Duration: 120 minutes

SUBJECT: REAL ANALYSIS	
Head of Dept. of Mathematics:	Lecturer:
Assoc. Prof. Pham Huu Anh Ngoc	Assoc. Prof. Nguyen Ngoc Hai

INSTRUCTIONS: Each student is allowed a scientific calculator and a maximum of two double-sided sheets of reference material (size A4 or similar), stapled together and marked with their name and ID. All other documents and electronic devices are forbidden.

Question 1 Let f be integrable on E.

- (a) (15 marks) Show that $\int_E f d\mu = \int_A f d\mu$ where $A = \{x \in E : f(x) \neq 0\}$.
- (b) (15 marks) Show that $\int_E f d\mu \le \int_P f d\mu$ where $P = \{x \in E : f(x) \ge 0\}$.

Question 2 (15 marks) Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \frac{1}{2^n}$$
 if $n - 1 \le |x| < n$, $n = 1, 2, \dots$

Evaluate $\int_{\mathbb{R}} f dm$ where m is the Lebesgue measure on \mathbb{R} .

Question 3 (15 marks) Suppose that $f, g, f_1, f_2, ...$ are measurable functions on X, $|f_n| \leq g$ for all n, g^2 is integrable on X, and $f_n \to f$ a.e. Show that f^2 is integrable and $\int_X |f_n - f|^2 d\mu \to 0$ as $n \to \infty$.

Question 4 (20 marks) Suppose that f is of bounded variation on [a, b] and there is a real constant c > 0 such that $f \ge c$ on [a, b]. Show that 1/f is of bounded variation on [a, b].

Question 5

- (a) (10 marks) Let A be a negative set for a signed measure ν and let B be a nonempty measurable subset of A. Show that B is also a negative set for ν .
- (b) (10 marks) Let $X = P \cup N$ be a Hahn decomposition for ν where $\nu(P) \geq 0$ and $\nu(N) \leq 0$. For each measurable subset E of X, set $\varphi(E) = -\nu(E \cap N)$. Show that

$$\varphi(E)=\sup\big\{-\nu(F): F\subset E,\ F\ \text{is measurable}\big\}.$$
 (Hint: If $F\subset E$, then $E\cap N=(F\cap N)\cup \lceil (E\setminus F)\cap N\rceil.$)

REAL ANALYSIS-JUNE, 2017 SOLUTIONS

Question 1 (a) Let $B = \{x \in E : f(x) = 0\}$. Then A and B are measurable, $A \cap B = \emptyset$, and $E = A \cup B$. Thus

$$\int_{E} f d\mu = \int_{A} f d\mu + \int_{B} f d\mu = \int_{A} f d\mu + \int_{B} 0 d\mu = \int_{A} f d\mu.$$

(b) Let $N = \{x \in E : f(x) < 0\}$. Since N is measurable and f < 0 on N, $\int_N f d\mu \le 0$. Noting that $P \cap N = \emptyset$ and $E = P \cup N$, we have

$$\int_{E} f d\mu = \int_{P} f d\mu + \int_{N} f d\mu \le \int_{P} f d\mu.$$

Solution 2. Since $f\chi_P \geq 0$ and $f \leq f\chi_P$, we get $\int_E f d\mu \leq \int_E f \chi_P d\mu = \int_P f d\mu$.

Solution 3. If f(x) < 0, then $(f\chi_P)(x) = 0 = f^+(x)$; if $f(x) \ge 0$, then $(f\chi_P)(x) = f(x) = f^+(x)$. Thus $f\chi_P = f^+$, implying $\int_P f d\mu = \int_X f\chi_P d\mu = \int_X f^+ d\mu \ge \int_X f^+ d\mu - \int_X f^- d\mu = \int_X f d\mu$.

Question 2 Let $A_n = \{x \in \mathbb{R} : n-1 \le |x| < n\}, n = 1, 2, \dots$ Then A_n is Lebesgue measurable and $f = \sum_{n=1}^{\infty} \frac{1}{2^n} \chi_{A_n}$. Thus,

$$\int_{\mathbb{R}} f dm = \sum_{n=1}^{\infty} \int_{\mathbb{R}} \frac{1}{2^n} \chi_{A_n} dm = \sum_{n=1}^{\infty} \frac{1}{2^n} m(A_n) = \sum_{n=1}^{\infty} \frac{2}{2^n} = 2.$$

Question 3 As $f_n^2 \leq g^2$ for all n, $0 \leq f^2 = \lim_{n \to \infty} f_n^2 \leq g^2$. By assumption, g^2 is integrable. It follows that f_n^2 and f^2 are integrable, too. Thus f_n and f are finite a.e. and so $f_n - f$ is defined a.e. Also $|f_n - f|^2 \leq (|f_n| + |f|)^2 \leq 4g^2$, which is integrable. Applying the Dominated Convergence Theorem we get

$$\lim_{n \to \infty} \int_X |f_n - f|^2 d\mu = \int_X \left(\lim_{n \to \infty} |f_n - f|^2 \right) d\mu = \int_X 0 d\mu = 0.$$

Question 4 Let $P = \{a = x_0, x_1, \dots, x_n = b\}$ be a partition of [a, b]. We have

$$V\left(\frac{1}{f};P\right) = \sum_{i=1}^{n} \left| \frac{1}{f(x_{i-1})} - \frac{1}{f(x_i)} \right| = \sum_{i=1}^{n} \frac{|f(x_i) - f(x_{i-1})|}{f(x_i)f(x_{i-1})}$$
$$\leq \frac{1}{c^2} \sum_{i=1}^{n} |f(x_{i-1}) - f(x_i)| = \frac{1}{c^2} V(f;P) \leq \frac{1}{c^2} V_a^b(f).$$

As $V_a^b(f) < \infty$, 1/f is of bounded variation on [a, b].

Question 5 (a) Suppose C is a measurable subset of B. As $B \subset A$, C is a measurable subset of A. Since A is a negative set for ν , we have $\nu(C) \leq 0$. By definition, B is a negative set for ν .

(b) As $F \subset E$, we express $E \cap N$ as a disjoint union $E \cap N = (F \cap N) \cup \big[(E \setminus F) \cap N\big]$ and obtain

$$\nu(E\cap N) = \nu(F\cap N) + \nu\big[(E\setminus F)\cap N\big] \leq \nu(F\cap N) \leq \nu(F\cap N) + \nu(F\cap P) = \nu(F)$$

(since N is negative and P is positive for ν). Thus $\varphi(E) = -\nu(E \cap N) \ge -\nu(F)$ so that

$$\varphi(E) \ge \sup \{ -\nu(F) : F \subset E, F \text{ is measurable} \}.$$

Conversely, let $F_0 = E \cap N$. Clearly F_0 is a measurable subset of E and $-\nu(F_0) = -\nu(E \cap N) = \varphi(E)$. Therefore, $\varphi(E) = \sup \{ -\nu(F) : F \subset E, F \text{ is measurable} \}$.