The Sidelnikov-Shestakov's Attack applied to the Chor-Rivest Cryptosystem

Sylvain Colin & Gaspard Férey

 $March\ 5,\ 2014$

Contents

1	Introduction	1
	1.1 Our Work	1
2	Preliminaries2.1 A cryptosystem based on Reed-Solomon codes	1 1 2
3	The Sidelnikov-Shestakov Attack	2
4	Application to the Chor-Rivest Cryptosystem	3
	4.1 The Chor-Rivest Cryptosystem	3
	4.2 A First Attack using Reed-Solomon codes	4
	4.2.1 Problem	5
	4.2.2 Further	5
	4.3 Vaudenay attack	6
5	Conclusions	6

${\bf Abstract}$ In this article, we discuss about the Sidelnikov-Shestakov Attack on cryptosystems based on

In this article, we discuss about the Sidelnikov-Shestakov Attack on cryptosystems based on Reed-Solomon codes. Then we describe how this algorithm can be used to attack the Chor-Rivest Cryptosystem.

1 Introduction

Preliminaries

intro

1.1 Our Work

_

2.1 A cryptosystem based on Reed-Solomon codes

We study here the public-key cryptosystem introduced by Sidelnikov and Shestakov [2] applied to the generalized Reed-Solomon codes. Let \mathbb{F}_q be a finite field with $q = p^h$ elements and $\mathbb{F} = \mathbb{F}_q \cup \{\infty\}$, where ∞ has usual properties ($1/\infty = 0$, etc). We call \mathfrak{A} the following matrix:

$$\mathfrak{A}(\alpha_{1}, \ldots, \alpha_{n}, z_{1}, \ldots, z_{n}) := \begin{pmatrix} z_{1}\alpha_{1}^{0} & z_{2}\alpha_{2}^{0} & \cdots & z_{n}\alpha_{n}^{0} \\ z_{1}\alpha_{1}^{1} & z_{2}\alpha_{2}^{1} & \cdots & z_{n}\alpha_{n}^{1} \\ & & \ddots & \\ z_{1}\alpha_{1}^{k-1} & z_{2}\alpha_{2}^{k-1} & \cdots & z_{n}\alpha_{n}^{k-1} \end{pmatrix} \in \mathcal{M}_{\mathbb{F}_{q}}(k, n)$$

where $\alpha_i \in \mathbb{F}$ and $z_i \in \mathbb{F}_q \setminus \{0\}$ for all $i \in \{1,...,n\}$. Note that, if $\alpha_i = \infty$, we replace the i^{th} column by the vector $z_i(0,...,0,1)^T$, so that all the coefficients of the matrix are finite.

In the considered cryptosystem, the secret key consists of

- The set $\{\alpha_1, ..., \alpha_n\}$;
- The set $\{z_1, ..., z_n\}$;
- A random nonsingular $k \times k$ -matrix H over \mathbb{F}_q .

The public key is

- The representation of the field \mathbb{F}_q , that is the polynomial used to define \mathbb{F}_q over \mathbb{F}_p ;
- The two integers k and n such that $0 < k < n \le q$.
- $M := H \cdot \mathfrak{A}(\alpha_1, \ldots, \alpha_n, z_1, \ldots, z_n).$

The codewords are then the vectors c = b.M where $b \in \mathbb{F}_q^k$. So, the different codewords have necessarily the following form :

$$c = (z_i f_c(\alpha_i))_{1 \le i \le n}$$

where f_c is a polynomial whose degree is at most k-1.

Thus, given a message to send, which is actually a vector b of \mathbb{F}_q^k , one will have to transmit the vector b.M + e where e is a random vector of \mathbb{F}_q^n with Hamming weight at most $t = \lfloor \frac{n-k}{2} \rfloor$. So, since a GRS code correct at most $t = \lfloor \frac{n-k}{2} \rfloor$ error, the original message can be recovered by computing b' = b.M, finding the closest codeword from the received message, and then computing $b'M^{-1}$. However, the original message can not be easily recovered when not knowing the GRS code used in the secret key.

2.2 Equivalence between Reed-Solomon codes

Sidelnikov and Shestakov show [2] that for all $a \in \mathbb{F}_q \setminus \{0\}$ and $b \in \mathbb{F}_q$, there exists $H_1, H_2, H_3 \in \mathcal{M}_{F_q}(k, k)$ invertible such that

$$H_{1}\mathfrak{A}(a \cdot \alpha_{1} + b, \dots, a \cdot \alpha_{n} + b, c_{1}z_{1}, \dots, c_{n}z_{n}) = \mathfrak{A}(\alpha_{1}, \dots, \alpha_{n}, z_{1}, \dots, z_{n})$$

$$H_{2}\mathfrak{A}\left(\frac{1}{\alpha_{1}}, \dots, \frac{1}{\alpha_{n}}, d_{1}z_{1}, \dots, d_{n}z_{n}\right) = \mathfrak{A}(\alpha_{1}, \dots, \alpha_{n}, z_{1}, \dots, z_{n})$$

$$H_{3}\mathfrak{A}(\alpha_{1}, \dots, \alpha_{n}, a \cdot z_{1}, \dots, a \cdot z_{n}) = \mathfrak{A}(\alpha_{1}, \dots, \alpha_{n}, z_{1}, \dots, z_{n})$$

This means that for any cryptosystem $M = H\mathfrak{A}(\alpha_1, \ldots, \alpha_n, z_1, \ldots, z_n)$, for any birationnal transformation

$$\phi: x \mapsto \frac{ax+b}{cx+d}$$

 $M = H_{\phi}\mathfrak{A}(\phi(\alpha_1), \ldots, \phi(\alpha_n), z'_1, \ldots, z'_n)$ and by using the unique transformation ϕ that maps $(\alpha_1, \alpha_2, \alpha_3)$ to $(0, 1, \infty)$, we get that for any cryptosystem $M = H\mathfrak{A}(\alpha_1, \ldots, \alpha_n, z_1, \ldots, z_n)$, M can be uniquely written

$$M = H'\mathfrak{A}(0, 1, \infty, \alpha'_4, \ldots, \alpha'_n, z'_1, \ldots, z'_n)$$

with H' nonsingular, $z'_i \neq 0$ and α_i distincts elements of $\mathbb{F}_q - \{0, 1, \infty\}$.

So, when M is given, it is impossible to compute the original matrices $\mathfrak A$ and H since many pairs of such matrices lead to the same public matrix M. However, computing an equivalent pair is sufficient since it will allow to decipher the messages as well as the original secret pair of matrices. So, the attack will consist of finding H and $\mathfrak A(0,1,\infty,\alpha_4',\ldots,\alpha_n',z_1',z_2',\ldots,z_n')$, equivalent to the original pair. We can also assume that $z_1'=1$. Indeed, if we multiply all the elements z_i' by a factor $a \in \mathbb{F}_q$ and all the elements of the matrix H by a^{-1} , the resulting matrix M will be the same.

3 The Sidelnikov-Shestakov Attack

The attack of Sidelnikov-Shestakov consists of the following steps.

First we assume that the public key is as described in the previous section:

$$M=H'\mathfrak{A}(0,1,\infty,\alpha_4',\ \dots\ ,\alpha_n',1,z_2',\ \dots\ ,z_n')$$

We compute then the echelon form of M.

$$E(M) = \begin{pmatrix} 1 & 0 & \cdots & 0 & b_{1,k+1} & \cdots & b_{1,n} \\ 0 & 1 & \cdots & 0 & b_{2,k+1} & \cdots & b_{2,n} \\ & & \ddots & & \vdots & & \vdots \\ 0 & \cdots & 0 & 1 & b_{k,k+1} & \cdots & b_{k,n} \end{pmatrix} = H'' \cdot M$$

Since the echelon form can be computed only with left multiplication of the matrix M, the k lines of E(M) are codewords. As a consequence, if we call f_i the polynomial associated to the i^{th} line, we have :

- $\forall 1 \leq i \leq k, f_i(\alpha_i) = 1$
- $\forall 1 \leq i \neq j \leq k, f_i(\alpha_i) = 0$
- $\forall 1 \le i \le k \ \forall \ k+1 \le j \le n, \ f_i(\alpha_i) = b_{i,j}$

So, since all the α_i are different, the polynomial f_i has k-1 simple roots. As a consequence, $b_{i,j} \neq 0$ for all $1 \leq i \leq k$ and $k+1 \leq j \leq n$. Moreover, we know the general form of the polynomial f_i :

$$f_i(X) = c_i \cdot \prod_{1 \le j \le k, i \ne j} (X - \alpha_j)$$

where $c_i \in \mathbb{F} \setminus 0$.

For $2 \le k \le n-2$, this attack works with a complexity of ...

4 Application to the Chor-Rivest Cryptosystem

4.1 The Chor-Rivest Cryptosystem

Secret keys consist of

- \bullet an element $t \in \mathbb{F}_q$ with algebraic degree h
- a generator g of \mathbb{F}_q^*
- an integer $d \in \mathbb{Z}_{q-1}$
- a permutation π of $\{0, ..., p-1\}$.

Public keys consist of all

$$c_i = d + \log_q(t + \alpha_{\pi(i)}) \mod q - 1$$

The message consists in a bitstring $m = [m_0...m_{p-1}]$ of length p such that $\sum_i m_i = h$. The ciphertext is

$$E(M) := \sum_{i=0}^{p-1} m_i c_i$$

To decipher this message, we compute

$$g^{E(M)-hd} = \prod_{i} (t + \alpha_{pi(i)})^{c_i}$$

When we attack this cryptosystem, we can consider a generator $g_0 = g^u$ with u unknown and gcd(u, q - 1) = 1 we then have

$$g_0^{c_i} = (g^d (t + \alpha_{\pi(i)}))^u = (A + \alpha_{\pi(i)} \cdot B)^u$$

We can then consider that the secret key is

- $A \in \mathbb{F}_q$.
- $B \in \mathbb{F}_q$ such that $t = A \cdot B^{-1}$ has algebraic degree h.
- 0 < u < q 1 prime with q 1.
- the permutation π of $\{0, ..., p-1\}$.

and public key consists in all the

$$d_i := \left(A + \alpha_{\pi(i)} \cdot B\right)^u \in \mathbb{F}_q$$

The ciphertext becomes

$$E'(M) := \prod_{i=0}^{p-1} d_i^{m_i} = g^{uE(M)} = B^{uh} \left(\prod_i (t + \alpha_{pi(i)})^{c_i} \right)^{u}$$

Knowing u, B and h, it is easy to compute from E'(M), the following quantity

$$\prod_{i} \left(t + \alpha_{pi(i)} \right)^{c_i}$$

which allow us to retrieve all the c_i .

4.2 A First Attack using Reed-Solomon codes

We have for all j

$$g^{c_j} = g^d \cdot (t + \alpha_{\pi(j)}) = A + \alpha_{\pi(j)} \cdot B$$

where $\alpha_{\pi(j)} \in \mathbb{F}_p$ and A and B are elements of $\mathbb{F}_{p^h} \subset \mathbb{F}_p[X]$ and can be seen as polynomials of the variable X with coefficients in \mathbb{F}_p . Then if we consider an other generator g_0 of \mathbb{F}_q^* , we have $g_0 = g^u$ and

$$g_0^{c_j} = (A(X) + \alpha_{\pi(j)} \cdot B(X))^u \mod \mu(X)$$

where μ is the polynomial of degree h defining the field \mathbb{F}_q .

As an attempt to guess g, we can choose a random generator g_0 and compute the quantities

$$g_0^{c_j} = \sum_{i=0}^{h-1} P_i(\alpha_{\pi(j)}) X^i$$

where P_i is a polynomial with coefficients in \mathbb{F}_p . P_i depends on A(X), B(X), u and obviously on i. However, P_i does not depend on j.

Besides, we have

- deg P_i ≤ u since the coefficients of (A(X) + α_{π(j)} · B(X))^u seen in F_p[X] are polynomials of degree smaller than u in α_{π(j)}.
 When we compute the remain in the division of this polynomial by μ(X), these coefficients remain polynomials of degree smaller than u in α_{π(j)}.
- deg $P_i < p$ since $\alpha_{\pi(j)}^p = \alpha_{\pi(j)}$.

We now consider the matrix

$$\mathfrak{A} := \left(\alpha_{\pi(j)}^i\right)_{0 \le i, j \le p-1} \in \mathcal{M}_{\mathbb{F}_p}(p, p)$$

We call

- $P_i[j] \in \mathbb{F}_p$ the j-th coefficient of the polynomial P_i .
- $H = (P_i[j])_{i,j} \in \mathcal{M}_{\mathbb{F}_p}(h,p)$
- $M = (P_i(\alpha_{\pi(j)}))_{i,j} \in \mathcal{M}_{\mathbb{F}_p}(h,p).$

$$H \cdot \mathfrak{A} = M$$

We suppose now that we try to guess the private generator g but only find a generator g_0 such that $g_0 = g^u$ with u < h.

We can compute the elements $g_0^{c_j} \in \mathbb{F}_q$, the coefficients $P_i(\alpha_{\pi(j)}) \in \mathbb{F}_p$ and eventually the matrix M.

Since deg $P_i \leq u$, we know that only the u first columns of the matrix H are non zero. Therefore we consider now the matrix H' build from the u first columns of H (the other columns being equal to 0) and \mathfrak{A}' the u first rows of \mathfrak{A} . We get

$$H' \cdot \mathfrak{A}' = M$$

We suppose now that the first u rows of M are linearly independent. This allow us to consider only the first u lines of the matrices H' and M (H'' and M'') which gives us

$$H'' \cdot \mathfrak{A}' = M''$$

with

- $H'' \in \mathcal{M}_{\mathbb{F}_n}(u, u)$
- $\mathfrak{A}' \in \mathcal{M}_{\mathbb{F}_n}(u,p)$
- $M'' \in \mathcal{M}_{\mathbb{F}_p}(u,p)$

We use then the attack described in the first section to compute \mathfrak{A}' which yields the permutation π .

4.2.1 Problem

It seems quite unlikely that $g_0 = g^u$ with a small u. Indeed, there are $\phi(p^h - 1)$ generators which is comparable to p^h and the order of h is only (in the suggested parameters) around 24.

This could be solved if we had a way to rapidly check whether one generator is a small power of another.

4.2.2 Further...

If u is a small multiple of p, the previous arguments still apply since then u = pu' with u' < h and we get

$$g_0^{c_j} = \left(\left(A(X) + \alpha_{\pi(i)} B(X) \right)^p \right)^{u'} = \left(A^p(X) + \alpha_{\pi(i)}^p B^p(X) \right)^{u'} = \left(A'(X) + \alpha_{\pi(i)} B'(X) \right)^{u'}$$

This only changes the polynomials A and B but still allow to compute the permutation $\pi(i)$ on these conditions.

We actually also have this conclusion if u is a small multiple of p^r for all $0 \le r < h$. In fact a condition for the previous to work is that when u is written in base p, the sum of its digits does not exceed h.

Remains to see how many different u this methods allows to check... Is it reasonable to try this method with several value for g_0 until we find g? I guess not...

Besides, as explained in Sidelnikov and Shestakov's article, if the previous reasoning excludes a set of candidates u_i , it also excludes $p \cdot u_i$ and even $p^r \cdot u_i$ for all $0 \le r < h$. Actually, this doesn't excludes any more candidate since the writing of $p \cdot u_i$ and u^i modulo $p^h - 1$ in base p are just rotated.

4.3 Vaudenay attack

We can see that the previous attack requires to find a generator of \mathbb{F}_q among the elements that can be written g^u with $w_p(u) \leq h$. Since there are very few of such elements compared to the $\phi(p^h)$ different generators of \mathbb{F}_q , Vaudenay suggests [3] to consider a generator g_{p_r} of the sub-field \mathbb{F}_{p^r} of \mathbb{F}_{p^h} . He introduces the following theorem

Theorem 1. For any factor r of h, there exists a generator g_{p^r} of the multiplicative group of the subfield \mathbb{F}_{p^r} of \mathbb{F}_q and a polynomial Q with degree h/r whose coefficients are in \mathbb{F}_{p^r} and such that -t is a root and that, for any i, we have $Q(\alpha_{\pi(i)} = g_{p^r}^{c_i})$.

If we chose a base $(e_i)_{1 \leq i \leq r}$ of \mathbb{F}_{p^r} , we can write the coefficients of $g_{p^r}^{c_i}$ in this base as polynomials Q_j in $\alpha_{\pi(i)}$. We get

$$g_{p^r}^{c_i} = \sum_{j=1}^r Q_j(\alpha_{\pi(i)})e_j$$

5 Conclusions

References

erH86

hes92

Vau01

[1] H. Niederreiter. Knapstack-type cryptosystems and algebraic coding theory. *Probl. Control and Inform. Theory*, 15:19–34, 1986.

[2] V. M. Sidelnikov and S. O. Shestakov. On insecurity of cryptosystems based on generalized reed-solomon codes. *Discrete Math. Appl.*, 2(4):439–444, 1992.

[3] S. Vaudenay. Cryptanalysis of the chor–rivest cryptosystem. *Journal of Cryptology*, 14:87–100, 2001.