Innovation Booms, Easy Financing, and Human Capital Accumulation

Johan Hombert HEC Paris

Adrien Matray
Stanford GSB

Goethe University, September 7 2023

Motivation

Intense technological change often comes with financial speculation

⇒ Easy financing for innovative firms

... can pay high wages and attract talent

⇒ Reallocation of high-skill workers to booming innovative sector

... exposes their human capital to new technologies

Examples: current AI boom, late 1990s dot-com bubble, etc.

⇒ Matters for aggregate labor productivity

Questions

Effect of innovation booms and easy financing on human capital?

1. Effect of joining a booming new technology sector on skilled workers' human capital?

2. Role of financial capital flows?

Effect on human capital ex ante unclear

Potential upside: Exposure to new technologies ⇒ workers acquire valuable skills

// Growth-enhancing tech bubbles (Olivier 2000; Caballero Farhi Hammour 2006)

Potential downside:

Effect on human capital ex ante unclear

Potential upside: Exposure to new technologies ⇒ workers acquire valuable skills

// Growth-enhancing tech bubbles (Olivier 2000; Caballero Farhi Hammour 2006)

- Potential downside: Skills rapidly lose value
 - Skills linked to rapidly evolving technology ⇒ vintage-specific human capital (Chari Hopenhayn 1991; Deming Noray 2020)
 - Easy financing ⇒ lower quality projects

Effect on human capital ex ante unclear

Potential upside: Exposure to new technologies ⇒ workers acquire valuable skills

// Growth-enhancing tech bubbles (Olivier 2000; Caballero Farhi Hammour 2006)

- Potential downside: Skills rapidly lose value
 - Skills linked to rapidly evolving technology ⇒ vintage-specific human capital (Chari Hopenhayn 1991; Deming Noray 2020)
 - Easy financing ⇒ lower quality projects
- Role of financial capital flows?
 - Allocation effect: does capital flow to firms whose effect on workers' HK is >0 or <0?
 - Direct effect of capital flows on a firm's workers' human capital?

Empirical design

- Setup: Information and Communications Technology (ICT) late 1990s boom
 - Large
 - Plausibly accompanied by speculative capital flows
 - Possible to study long-run effects

Data: Administrative employer-employee panel data for France (1994–2015)

- 1. Sizeable reallocation of K and skilled L to ICT sector during boom
 - 1/3 of new cohorts of skilled workers start in ICT during boom

- 1. Sizeable reallocation of K and skilled L to ICT sector during boom
 - 1/3 of new cohorts of skilled workers start in ICT during boom
- 2. Wage pattern for these workers fifteen years out:
 - 6% lower
 - Not explained by demand effects
 - Not explained by selection effects
 - ⇒ Lower value of human capital

- 1. Sizeable reallocation of K and skilled L to ICT sector during boom
 - 1/3 of new cohorts of skilled workers start in ICT during boom
- 2. Wage pattern for these workers fifteen years out:
 - 6% lower
 - Not explained by demand effects
 - Not explained by selection effects
 - ⇒ Lower value of human capital
- 3. Capital flows amplify the effect

- 1. Sizeable reallocation of K and skilled L to ICT sector during boom
 - 1/3 of new cohorts of skilled workers start in ICT during boom
- 2. Wage pattern for these workers fifteen years out:
 - 6% lower
 - Not explained by demand effects
 - Not explained by selection effects
 - ⇒ Lower value of human capital
- 3. Capital flows amplify the effect
- 4. Mechanism: accelerated skill obsolescence

Literature

 Financing cycles and innovation. Quantity (Kortum Lerner 2000; Brown Fazzari Petersen 2009; Bernstein 2015) Composition (Nanda Rhodes-Kropf 2013, 2017; Townsend 2015; Howell Lerner Nanda Townsend 2021; Bernstein McQuade Nanda Roth 2019) Overvaluation (Fedyk Hodson 2022)

This paper: Impact on human capital

 Impact of financing booms and wage premia on talent allocation and long-run productivity growth. Rent seeking (Baumol 1990; Philippon 2010; Glode Green Lowery 2012; Gupta Hacamo 2022) Growth enhancing bubbles (Olivier 2000; Caballero Farhi Hammour 2006)

This paper: Reallocation to, and HK accumulation in technology sector

3. Sectoral allocation and human capital accumulation. Mostly low skill sectors (Charles Hurst Notowidigdo 2018; Carrillo 2020; Choi Lou Mukherjee 2022)

This paper: High-skill, innovative sector

 Technology vintages Chari Hopenhayn 1991; Violante 2002; Deming Noray 2020; Kogan Schmidt Seegmiller 2022; Ma 2022

This paper: Impact of technology & financing boom

Roadmap

The ICT Boom

Wage Dynamics

Role of Capital Flows

Mechanism

Wrap-up

- 1. Workers: matched employer-employee data for random 1/24th of employees
 - High-skill workers: executives and higher intellectual professions
- 2. Firms: universe of tax files

The Information and Communication Technology (ICT) Sector

ICT industries	Share of	Share of
	total employment	skilled employment
	(%)	(%)
ICT: Services	1.9	7.8
IT consultancy	0.7	3.4
Software	0.7	3.2
Data processing	0.3	0.8
Maintenance computers	0.1	0.2
Other data/computer-related services	0.1	0.2
ICT: Telecommunications	1.4	2.2
Telecommunications	1.4	2.2
ICT: Manufacturing	1.7	3.7
Electronic/communication equipment	0.8	1.8
Measurement/navigation equipment	0.5	1.2
Accounting/computing equipment	0.2	0.7
Insulated wire and cable	0.1	0.1
ICT: Wholesale	0.5	1.2
Computers, electronics, telecoms	0.5	1.2
ICT: Total	5.4	14.9

OECD (2002) definition, Universe of matched employer-employee data in France (1994–2008)

ICT boom: equity valuation

- Cumulative stock return: boom → bust → normalization
- (Similar pattern for stock price/sales)

ICT boom: capital reallocation

- Equity issuance/Total assets for universe of listed+private firms
- (Similar pattern for business creation)

Labor reallocation: the role of the extensive margin

- Reallocation of skilled workers to ICT sector (% skilled employment in ICT)

Labor reallocation: the role of the extensive margin

- Reallocation of skilled workers to ICT sector (% skilled employment in ICT)
- Dynamics driven by workers entering the labor market (= extensive margin)

ICT boom: taking stock

- 1. Large reallocation of capital & skilled labor
- 2. ...that delineates three cohorts of workers: pre-boom, boom, post-boom

Exposure to the boom across cohorts

Equity issuance/Total assets

(Labor market entry)

Roadmap

The ICT Boom

Wage Dynamics

Role of Capital Flows

Mechanism

Wrap-up

Wage dynamics: Across workers within boom cohort

- Sample: skilled workers starting between 1998 and 2001

Baseline regression:

$$\log(wage_{i,t}) = \beta_t \cdot ICT_{i,0} + \delta_t + \delta_t \times X_i + \epsilon_{i,t}$$

 $ICT_{i,0} = 1$ if worker i starts career in ICT sector

→ wage premium can reflect sector reallocation post entry

 X_i = entry year, sex, age, age squared, two-digit occupation at entry

Wage dynamics of boom cohort

- 5% higher entry wage

Wage dynamics of boom cohort

- No premium after boom → standard boom-bust

Wage dynamics of boom cohort

- 6% lower wage fifteen years out

- Heterogeneous workers i (productivity and preferences), overlapping cohorts c, choose sector at entry k
- Human capital has two components:
 - **Fixed** component (≈ education, ability): $\theta_{i,k}$
 - **On-the-job** accumulation/depreciation: $dh_{c,k,t}$
- Two types of sectoral shocks:
 - Productivity shocks in sector k (all cohorts)
 - HK shocks to dh_{c,k,t} (sector-cohort specific)

- Log wage of individual *i* from cohort *c* in sector *k* at time *t*:

$$w_{i,c,k,t} = w_{k,t} + \theta_{i,k} + \sum_{\tau=c+1}^{t} dh_{c,k,\tau}$$

$$\frac{\text{demand/}}{\text{supply}} \quad \text{worker quality} \quad \text{accumulated human capital}$$

Log wage of individual i from cohort c in sector k at time t:

$$w_{i,c,k,t} = w_{k,t} + \theta_{i,k} + \sum_{\tau=c+1}^{t} dh_{c,k,\tau}$$

$$\frac{\text{demand/}}{\text{supply}} \quad \text{worker quality} \quad \text{accumulated human capital}$$

 $\Rightarrow \Delta$ average wage between two sectors for cohort *c* at time *t*:

$$\Delta \overline{w}_{c,t} = \Delta w_t + \Delta \overline{\theta}_c + \sum_{\tau=c+1}^t \Delta dh_{c,\tau}$$

- Log wage of individual *i* from cohort *c* in sector *k* at time *t*:

$$w_{i,c,k,t} = w_{k,t} + \theta_{i,k} + \sum_{\tau=c+1}^{t} dh_{c,k,\tau}$$

$$\frac{\text{demand/}}{\text{supply}} \quad \text{worker quality} \quad \text{accumulated human capital}$$

 $\Rightarrow \Delta$ average wage between two sectors for cohort c at time t:

$$\Delta \overline{w}_{c,t} = \Delta w_t + \Delta \overline{\theta}_c + \sum_{\tau=c+1}^t \Delta dh_{c,\tau}$$

Tighter identification (across cohorts) rules out demand/supply and selection

Ruling out labor market imbalance

$$\Delta \overline{W}_{c,t} = \Delta W_t + \Delta \overline{\theta}_c + \sum_{\tau=c+1}^t \Delta dh_{c,\tau}$$

demand/
supply worker quality (selection) accumulated human capital

- Hypothesis: low labor demand/oversupply of labor in ICT after the boom
- Implication: post-boom cohort should also experience wage decline

Wage dynamics of **post-boom** cohort (2003–2005)

Inconsistent with labor market imbalance [statistical difference]

Ruling out selection

$$\Delta \overline{W}_{c,t} = \Delta W_t + \Delta \overline{\theta}_c + \sum_{\tau=c+1}^t \Delta dh_{c,\tau}$$

$$\begin{array}{ccc} \text{demand/} & \text{worker quality} & \text{accumulated human capital} \end{array}$$

- Hypothesis: boom attracts less able workers
- Implication: pre-boom cohort should <u>not</u> display wage decline

Wage dynamics of **pre-boom** cohort (1994–1996)

- Inconsistent with selection [statistical difference]
- Consistent with HK depreciation for all cohorts experiencing the boom

Ruling out selection

Other tests of negative selection:

- No decline in education
- Quantile regressions: not an additional mass of bad outcomes

Taking stock

What explains the wage discount?

$$\Delta \overline{W}_{c,t} = \Delta W_t + \Delta \overline{C}_c + \sum_{\tau=c+1}^t \Delta dh_{c,\tau}$$

$$\frac{\text{demand/}}{\text{supply}} \quad \text{worker quality} \quad \text{accumulated human capital}$$

Main specification: across sectors + across cohorts

- Sample: boom cohort (1998–2001) + post-boom cohort (2003–2005)
- Estimating equation

$$\log(\textit{wage}_{i,c,t}) = \beta_t \cdot \textit{ICT}_{i,0} \times \textit{BoomCohort}_c + \delta_t \times \textit{ICT}_{i,0} + \alpha_i + \gamma_{c,t} \times \textit{X}_{i,0} + \epsilon_{i,t}$$

 $-\beta_t$ = wage premium in year t of workers starting

in ICT sector vs. other sectors

during the boom vs. after the boom

Long-term wage decline

- Starting in ICT during boom (98–01) ⇒ **7% slower** long-term wage growth from 2003 to 2015

	log(wage)
$ICT_0 \times BoomCohort \times 2003-05$	0.001 (0.013)
$ICT_0 \times BoomCohort \times 2006\text{-}10$	-0.035** (0.014)
$ICT_0 \times BoomCohort \times 2011-15$	-0.073*** (0.019)
$\begin{array}{l} \text{ICT}_0 \times \text{Year FE} \\ \text{Worker controls} \times \text{Cohort} \times \text{Year FE} \\ \text{Worker FE} \\ \text{Observations} \end{array}$	√ √ − 93,304

Long-term wage decline

- Starting in ICT during boom (98-01) ⇒ 7% slower long-term wage growth from 2003 to 2015
- Worker FE → control for non-random attrition + selection on levels

	log(wage)		
$ICT_0 \times BoomCohort \times 2003-05$	0.001 (0.013)	ref.	
$ICT_0 \times BoomCohort \times 2006\text{-}10$	-0.035** (0.014)	-0.048*** (0.010)	
$ICT_0 \times BoomCohort \times 2011-15$	-0.073*** (0.019)	-0.077*** (0.015)	
ICT ₀ × Year FE Worker controls × Cohort × Year FE Worker FE Observations	√ √ − 93,304	√ √ √ 92,901	

Ruling out other confounding

- 1. Robust to restricting the sample to US firms (e.g., Microsoft France)
- 2. Robust to controlling for job termination

[Alternative check: Job termination \uparrow 7pp + Job termination associated with 3.5% long-term wage loss \Rightarrow Explains <0.3 pp wage loss]

- 3. Constant effect across the wage distribution in quantile regressions (no winner-take-all)
- 4. Pattern of attrition is not different for the boom cohort
- 5. Robust to accounting for profit participation participation in firm profit

Roadmap

The ICT Boom

Wage Dynamics

Role of Capital Flows

Mechanism

Wrap-up

Capital Flows

Do capital flows amplify the negative effect on aggregate HK?

- 1. Allocative effect: depends on which ICT firms receive the most capital
 - Firms whose workers' HK depreciate the most? The least?
 - → Cov[Capital flow, HK accumulation]?

(K flow versus L flow)

Allocative effect: Capital flows to firms with largest HK depreciation

- Wage discount only in firms with above-median capital availability
- Cov[Capital flow, HK accumulation] < 0 ⇒ aggregate labor productivity ↓

	log(Wage)				
Proxy of capital availability:	1999 return (Industry level)	1999 P/S (Industry level)	Equity issuance (Industry×geo ×entry-year level)		
	(1)	(2)	(3)		
$ICT_0 \times Boom \ cohort \times 2011-15$	0.022	0.007	-0.029		
	(0.044)	(0.042)	(0.025)		
$ICT_0 \times Capital \ availability \times Boom \ cohort \times 2011\text{-}15$	-0.129***	-0.113**	-0.081***		
	(0.049)	(0.047)	(0.031)		
ICT ₀ × Year FE	✓	√ ✓	√		
Worker controls×Cohort×Year FE	✓		√		
Worker FE	√	60,420	√		
Observations	60,420		85,128		

Direct effect: Does capital flow **cause** faster HK depreciation?

- 2. Direct effect: easy financing may worsen average project quality and causally accelerates individual-level HK depreciation
 - Alternatively, Cov[Capital flow, HK depreciation] may be driven by omitted factor: technology change ⇒ capital flow and HK depreciation
 - Test: re-estimate Cov holding technology fixed → within narrow sectors

Direct effect: Capital flow causes faster HK depreciation?

Industry × Cohort × Year FE = within industry, across geography → control for technology shocks

	log(Wage)			
Proxy of capital availability:	ility: Equi (Industry×ge			
	(3)	(4)		
ICT ₀ × Boom cohort × 2011-15	-0.029 (0.025)			
$ICT_0 \times Capital$ availability \times Boom cohort \times 2011-15	-0.081*** (0.031)	-0.083** (0.035)		
ICT ₀ × Year FE Worker controls×Cohort×Year FE Worker FE Industry×Cohort×Year FE Observations	√ √ √ − 85,128	% % 85,128		

Roadmap

The ICT Boom

Wage Dynamics

Role of Capital Flows

Mechanism

Wrap-up

What drives human capital depreciation?

Hypothesis: Skill obsolescence

- Skills are vintage specific → made obsolete by technological change
- Test: compare jobs with different level of technological content

Skill obsolescence

- Universe of workers by occupation level: high / middle / low skill
- Wage decline largest in high-skill occupations

	log(Wage)					
	High	-skill	Middle-skill		Low-skill	
	(1)	(2)	(3)	(4)	(5)	(6)
ICT ₀ × Boom cohort × 2011-15	-0.077*** (0.015)	-0.029 (0.025)	-0.068*** (0.014)	-0.039* (0.023)	-0.022 (0.020)	-0.027 (0.040)
$ICT_0 \times Capital \ availability \times Boom \ cohort \times 2011\text{-}15$		-0.081*** (0.031)		-0.033 (0.029)		-0.004 (0.041)
Worker controls×Cohort×Year FE Worker FE Observations	√ √ 92,901	√ √ 85,128	√ √ 206,918	√ √ 186,477	√ √ 250,620	√ √ 218,927

Skill obsolescence

- Universe of workers by occupation level: high / middle / low skill
- Wage decline largest in high-skill occupations
- ... particularly so if large inflow of capital

	log(Wage)					
	High-skill		Middle-skill		Low-skill	
	(1)	(2)	(3)	(4)	(5)	(6)
$ICT_0 \times Boom \ cohort \times 2011-15$	-0.077*** (0.015)	-0.029 (0.025)	-0.068*** (0.014)	-0.039* (0.023)	-0.022 (0.020)	-0.027 (0.040)
$ICT_0 \times \textbf{Capital availability} \times \textbf{Boom cohort} \times \textbf{2011-15}$		-0.081*** (0.031)		-0.033 (0.029)		-0.004 (0.041)
Worker controls×Cohort×Year FE Worker FE Observations	√ √ 92,901	√ √ 85,128	√ √ 206,918	√ √ 186,477	√ √ 250,620	√ √ 218,927

Roadmap

The ICT Boom

Wage Dynamics

Role of Capital Flows

Mechanism

Wrap-up

Wrap-up

Two main results:

- 1. Skilled workers starting in booming tech sector eventually lose human capital
 - Wage 6%-8% lower fifteen years out
 - Explained by skill obsolescence not by labor market imbalance and selection
- 2. Aggregate skill obsolescence amplified by easy financing

Implications:

- Skill-biased technological change?
 - Our paper: within skilled workers, those who develop and implement new technologies (who represent one-third of the boom cohort) lose out
- Growth-enhancing technology bubble?
 - Maybe positive externalities, but
 - Capital allocated to firms that do not enhance their workers' human capital → lower aggregate labor productivity

ICT boom: stock price/sales per share

ICT boom: firm entry/stock of firms

ICT boom: capital reallocation

ICT boom: skilled labor market entrants

Back

Wage premium: boom cohort vs. post boom cohort

Wage premium: boom cohort vs. pre boom cohort

Worker controls

	log(Wage)				
	(1)	(2)	(3)	(4)	(5)
$\overline{ICT_0 \times Boom \; cohort \times 2006-10}$	-0.035** (0.014)	-0.048*** (0.010)	-0.043*** (0.010)	-0.041*** (0.011)	-0.045*** (0.013)
$ICT_0 \times Boom\ cohort \times 2011-15$	-0.073*** (0.019)	-0.077*** (0.015)	-0.075*** (0.015)	-0.067*** (0.016)	-0.078*** (0.019)
Worker controls×Cohort×Year FE Worker FE	✓ _	√ √	√ √	√ √	✓ ✓
Entry wage quintile×Cohort×Year FE	_	_	\checkmark	_	_
Commuting zone×Cohort×Year FE		_	_	\checkmark	_
Four-digit sector×Year FE	_	_	_	_	\checkmark
Observations	93,304	92,901	92,901	92,719	91,343

Firm controls

- 250 pseudo firms: quintiles of employment, firm age, labor productivity, and whether the firm belongs to a conglomerate ($5 \times 5 \times 5 \times 2 = 250$)
- 5-year growth rate = $[S_{t+5} S_t]/[(S_{t+5} + S_t) \times 0.5]$

	log(Wage)			
	(1)	(2)	(3)	
ICT ₀ × Boom cohort × 2011-15	-0.065*** (0.016)	-0.070*** (0.018)	-0.074*** (0.024)	
Worker controls×Cohort×Year FE	✓	✓	✓	
Worker FE	\checkmark	\checkmark	\checkmark	
Commuting zone×Cohort×Year FE	_	_	\checkmark	
Entry wage quintile×Cohort×Year FE	_	_	\checkmark	
Four-digit sector×Year FE	_	_	\checkmark	
Pseudo firm FE×Year FE	\checkmark	\checkmark	\checkmark	
Sales growth $(t \rightarrow t + 5)$ Quintile FE×Year FE	_	\checkmark	\checkmark	
Observations	92,714	90,473	88,586	

Job losses explain a tiny part of the wage decline

Job loss within first four years after entry: employment at initial employer ↓ at least 10% + transition to less-paid
job

	log(Wage)				
Control for:	-				
	(1)	(2)	(3)		
$ICT_0 \times Boom cohort \times 2011-15$	-0.077*** (0.015)	-0.076*** (0.015)	-0.069*** (0.017)		
ICT ₀ ×Year FE	✓	√	✓		
Worker controls×Cohort×Year FE	\checkmark	\checkmark	\checkmark		
Job loss×Year FE	_	\checkmark	_		
Job loss×ICT ₀ ×Cohort×Year FE	_	_	✓		
Worker FE	\checkmark	\checkmark	✓		
Observations	92,901	92,901	92,901		

Robustness: account for "stock options"

- Use net income from tax file, merge with matched employer-employee

_	log(Wage)		log(Wage-	+Cap.income)
	Excl. finance	US firms	Capital inco CEOs	me assigned to Skilled workers
	(1)	(2)	(3)	(4)
$ICT_0 \times Boom \ cohort \times 2006-10$	-0.049***	-0.033	-0.051***	-0.052***
	(0.010)	(0.032)	(0.011)	(0.011)
$ICT_0 \times Boom\ cohort \times 2011\text{-}15$	-0.079***	-0.074*	-0.076***	-0.081***
	(0.015)	(0.044)	(0.015)	(0.016)
Worker controls×Cohort×Year FE	√	√	√	√
Worker FE	√	√	√	√
Observations	87,522	11,359	92,901	92,901

Robustness: focus on US firms

- Use firm ownership structure → identify US firms

_	log(Wage)		log(Wage-	+Cap.income)
	Excl. finance	US firms	Capital inco CEOs	me assigned to Skilled workers
	(1)	(2)	(3)	(4)
$ICT_0 \times Boom \ cohort \times 2006-10$	-0.049***	-0.033	-0.051***	-0.052***
	(0.010)	(0.032)	(0.011)	(0.011)
$ICT_0 \times Boom\ cohort \times 2011-15$	-0.079***	-0.074*	-0.076***	-0.081***
	(0.015)	(0.044)	(0.015)	(0.016)
Worker controls×Cohort×Year FE	√	√	√	√
Worker FE	√	√	√	√

Robustness: remove workers starting in finance

	log(V	Vage)	log(Wage-	+Cap.income)
	Excl. finance	US firms	Capital inco CEOs	me assigned to Skilled workers
	(1)	(2)	(3)	(4)
$ICT_0 \times Boom cohort \times 2006-10$	-0.049***	-0.033	-0.051***	-0.052***
	(0.010)	(0.032)	(0.011)	(0.011)
$ICT_0 \times Boom\ cohort \times 2011-15$	-0.079***	-0.074*	-0.076***	-0.081***
	(0.015)	(0.044)	(0.015)	(0.016)
Worker controls×Cohort×Year FE	√ ✓	√	√	√
Worker FE		√	√	√

Capital flow versus labor flow

Winner-take-all?

- Quantile regressions
- Entire wage distribution shifts to the left

	Wage quantiles				
	P10	P25	P50	P75	P90
$ICT_0 \times Capital$ availability \times Boom cohort \times 2011-15	-0.056 (0.036)	-0.065** (0.026)	-0.077*** (0.018)	-0.089*** (0.023)	-0.098*** (0.032)
Worker controls	✓	✓	✓	✓	✓
Cohort × Year FE	✓	\checkmark	\checkmark	\checkmark	\checkmark
Worker FE	✓	\checkmark	\checkmark	\checkmark	\checkmark
Observations	93,306	93,306	93,306	93,306	93,306