$Quiz\ 7.6-Rotational\ Motion$

Name:
New Coordinate Systems
For rotations (and other systems, later) we will use non-cartesian coordinate systems. For cylindrical and spherical polar coordinates give:
$\circ~$ The Laplacian operator $(abla^2)$
· Cylindrical:
· Spherical Polar:
The Jacobian (infinitesimal volume element)
· Cylindrical:
· Spherical Polar:
$\circ~$ An integral of function $F(\tau)$ over all space, with the correct limits of integration and Jacobian $\cdot~$ Cylindrical:
· Spherical Polar:
Rotation and Quantum Numbers
Quantum mechanical states are labeled by their <i>quantum numbers</i> . Give the symbol, name, and relation to observable properties for the quantum numbers in the following systems:
o Particle on a Ring
o Rigid Rotor

Rigid Rotor

Consider a 3-dimensional rigid rotor with a moment of inertia $I=7.4\times 10^{-47}~kgm^2$

 $\circ~$ Give the energy (in J) and total angular momentum of the l=2 energy level

 \circ List all of the allowed values for the *z*-component of the angular momentum

o List all the observables of a rigid rotor which we can know simultaneously

o List all pairs of observables for which there exists an uncertainty relationship