Molécula diatômica

May 22, 2013

Este é apenas um breve comentário sobre o caso de um gás formado de moléculas diatômicas (sem spin). Claro que imaginaremos que a temperatura não é suficientemente grande para que as flutuações energéticas superem a energia de dissociação da molécula, gerando coisas indesejáveis. Há dois novos termos na energia que devem ser levados em conta: a rotação e a vibração. Quanticamente, podemos escrever estes dois termos como

$$E_1 = \frac{mv^2}{2} + \frac{J^2}{2I} + \hbar\omega\left(n + \frac{1}{2}\right).$$

Naturalmente, a função de partição de uma partícula será dada por

$$Z_1 = Z_t Z_r Z_v$$

com Z_t a função de partição gerada pela energia cinética,

$$Z_r = \sum e^{-\beta \frac{J^2}{2I}}$$

e

$$Z_v = \sum e^{-\beta\hbar\omega n} e^{-\beta\frac{\hbar\omega}{2}}.$$

Ambas Z_t e Z_v foram intensivamente estudadas ao longo das últimas semanas, mas o termo Z_r é novidade. Vamos tratá-lo em separado.

O operador J^2 admite uma série de autovalores $\hbar^2 j(j+1)$, com j=0,1,2,3... Cada autovalor, no entanto, tem degenerescência de 2j+1. Caso tenham dificuldades com isso, vocês podem revisar no Cohen sobre a diagonalização conjunta de J^2 e J_z^1 . Dessa forma, a energia de rotação pode ser

 $^{^1{\}rm Tamb\acute{e}m}$ podem rapidamente ver http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/rotrig.html

rescrita como

$$\frac{J^2}{2I} = \frac{\hbar^2}{2I}j(j+1).$$

Substituindo para a função de partição,

$$Z_r = \sum_{j=0}^{\infty} e^{-\beta \frac{J^2}{2I}} = \sum_{j=0}^{\infty} (2j+1)e^{-\beta \frac{\hbar^2}{2I}j(j+1)} \approx \int_0^{\infty} dx (2x+1)e^{-\beta \frac{\hbar^2}{2I}j(j+1)},$$

em que o último passo foi feito supondo que

$$\frac{\hbar^2}{2I} \ll kT$$

e tomando apenas o primeiro termo da serie de Taylor-Maclaurin. A integral pode ser facilmente resolvida: faça a mudança de variáveis

$$u = x(x+1)$$

$$du = d(x^2 + x) = 2xdx + dx = (2x + 1)dx$$

е

$$\int_0^\infty dx (2x+1) e^{\beta \frac{\hbar^2}{2I} j(j+1)} = \int_0^\infty du e^{-\beta \frac{\hbar^2}{2I} u} = -\frac{2I}{\beta \hbar^2} (0-1) = \frac{2I}{\beta \hbar^2} = \frac{2Ik}{\hbar^2} T.$$

Notem que é diretamente proporcional à temperatura. Isso seria suficiente em termos de prova. No entanto, caso haja interesse, posso mostrar que esta não é uma aproximação tão boa e que tomar outros termos da série de Taylor-Maclaurin para aproximar a integral pode ser uma boa ideia.

Sugestões: calculem energia média e entropia. Façam o limite de altas e baixas temperaturas.