Lecture 19: The Inexact Newton-Krylov Algorithm

COMP5930M Scientific Computation

Today

Iterative linear algebra

Convergence

Inexact Newton-Krylov

Summary

Case studies

Porous medium equation

Newton's method + iterative linear solver

- We now have 2 levels of iteration
 - An outer iteration for the nonlinear system: Newton's Method
 - An inner iteration for the linear system at each nonlinear step:
 Preconditioned Krylov-subspace iterations
- It is important to consider the effect of approximate solution of the (inner) linear system on the (outer) nonlinear system solution

Convergence control

- Iterative solution of the linear system is approximate
 - We monitor the residual norm $R_i = ||\mathbf{r}_i||$
- ► The Newton iteration is also approximate
 - We monitor the nonlinear function norm $F_k = ||\mathbf{F}(\mathbf{U}_k)||$
- ▶ While *F_k* is large we do not require *R_i* to be completely converged
 - ► We require sufficient accuracy
- We do not have this flexibility with direct solution

Exact Newton iteration: find δ_k s.t.

$$J(\mathbf{x}_k)\boldsymbol{\delta}_k = -\mathbf{F}(\mathbf{x}_k)$$
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \boldsymbol{\delta}_k$$

where $\alpha > 0$ is found through a line-search procedure

Inexact Newton iteration: for given $0 \le \eta_k < 1$, find δ_k s.t.

$$\|\mathbf{J}(\mathbf{x}_k)\delta_k + \mathbf{F}(\mathbf{x}_k)\| \leq \eta_k \|\mathbf{F}(\mathbf{x}_k)\|$$
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \delta_k$$

Exact Newton iteration: find δ_k s.t.

$$J(\mathbf{x}_k)\delta_k = -\mathbf{F}(\mathbf{x}_k)$$

 $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \delta_k$

where $\alpha > 0$ is found through a line-search procedure

Inexact Newton iteration: for given $0 \le \eta_k < 1$, find δ_k s.t.

$$\|\mathbf{J}(\mathbf{x}_k)\boldsymbol{\delta}_k + \mathbf{F}(\mathbf{x}_k)\| \leq \eta_k \|\mathbf{F}(\mathbf{x}_k)\|$$
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \boldsymbol{\delta}_k$$

Exact Newton iteration: find δ_k s.t.

$$\mathbf{J}(\mathbf{x}_k)\boldsymbol{\delta}_k = -\mathbf{F}(\mathbf{x}_k)$$
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \boldsymbol{\delta}_k$$

where $\alpha > 0$ is found through a line-search procedure

Inexact Newton iteration: for given $0 \le \eta_k < 1$, find δ_k s.t.

$$\|\mathbf{r}_k\| \le \eta_k \|\mathbf{F}(\mathbf{x}_k)\|$$
 (linear residual) $\mathbf{x}_{k+1} = \mathbf{x}_k + \boldsymbol{\delta}_k$

Theorem: With some mild assumptions, the inexact Newton iteration converges linearly. If $\eta_k \to 0$, convergence is superlinear.

Exact Newton iteration: find δ_k s.t.

$$\mathbf{J}(\mathbf{x}_k)\boldsymbol{\delta}_k = -\mathbf{F}(\mathbf{x}_k)$$

 $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \boldsymbol{\delta}_k$

where $\alpha > 0$ is found through a line-search procedure

Inexact Newton iteration: for given $0 \le \eta_k < 1$, find δ_k s.t.

$$\|\mathbf{r}_k\| \le \eta_k \|\mathbf{F}(\mathbf{x}_k)\|$$
 (linear residual) $\mathbf{x}_{k+1} = \mathbf{x}_k + \boldsymbol{\delta}_k$

Theorem: With some mild assumptions, the inexact Newton iteration converges linearly. If $\eta_k \to 0$, convergence is superlinear.

Implementation

At inexact Newton iteration step k, the linear system is solved to the tolerance $\|\mathbf{r}_k\| \le \eta_k \|\mathbf{F}(\mathbf{x}_k)\|$ using iterative linear solvers.

Standard choices of η_k :

- ► Eisenstat-Walker: $\eta_k = C \frac{\|\mathbf{f}(\mathbf{x}_k)\|^2}{\|\mathbf{f}(\mathbf{x}_{k-1})\|^2}$, where $0 < C \le 1$
- ► Kelley:

$$\eta_k = \min \left\{ \eta_{\text{max}}, \max \left(\eta_k^{\text{safe}}, C \frac{\|\mathbf{F}(\mathbf{x}_k)\|^2}{\|\mathbf{F}(\mathbf{x}_{k-1})\|^2} \right) \right\}$$

where $\eta_{\rm max} < 1$ and $\eta_k^{\rm safe}$ is chosen to ensure that the η_k do not approach 0 too rapidly

(for details, see Kelley CT. Solving nonlinear equations with Newton's method. SIAM, 2003)

Implementation

At inexact Newton iteration step k, the linear system is solved to the tolerance $\|\mathbf{r}_k\| \le \eta_k \|\mathbf{F}(\mathbf{x}_k)\|$ using iterative linear solvers.

Standard choices of η_k :

- ▶ Eisenstat-Walker: $\eta_k = C \frac{\|\mathbf{F}(x_k)\|^2}{\|\mathbf{F}(x_{k-1})\|^2}$, where $0 < C \le 1$
- ► Kelley:

$$\eta_k = \min \left\{ \eta_{\text{max}}, \max \left(\eta_k^{\text{safe}}, C \frac{\|\mathbf{F}(\mathbf{x}_k)\|^2}{\|\mathbf{F}(\mathbf{x}_{k-1})\|^2} \right) \right\}$$

where $\eta_{\rm max}<1$ and $\eta_k^{\rm safe}$ is chosen to ensure that the η_k do not approach 0 too rapidly

(for details, see Kelley CT. Solving nonlinear equations with Newton's method. SIAM, 2003)

The Inexact Newton-Krylov Algorithm

- k = 0
- Specify or compute U₀
- $\qquad \qquad \textbf{Compute } \mathbf{F}_0 = \mathbf{F}(\mathbf{U}_0)$
- ▶ While $|\mathbf{F}_k| > Tol$
 - $\qquad \qquad \mathsf{Compute} \ \mathbf{J}_k \ = \ \mathbf{J}(\mathbf{U}_k)$
 - ightharpoonup Assemble preconditioner matrix \mathbf{M}_k
 - ▶ Solve $\mathbf{J}_k \delta_k = -\mathbf{F}_k$ to tolerance $tol = \eta_k \|\mathbf{F}_k\|$ using Krylov-subspace iterative method and preconditioner \mathbf{M}_k
 - Update $\mathbf{U}_{k+1} = \mathbf{U}_k + \delta_k$
 - ightharpoonup Compute $\mathbf{F}_{k+1} = \mathbf{F}(\mathbf{U}_{k+1})$
 - ▶ k = k + 1

Convergence of residuals: exact vs. inexact Newton

Figure 1. Illustration of the oversolving phenomenon.

Summary

The combination of:

- Newton's method:
- inexact solution of the linear system;
- preconditioned Krylov-subspace iterative techniques;
- matrix-permutation algorithms;
- approximate matrix factoring algorithms;

enables the efficient solution of very large, sparse, highly-nonlinear systems

Case study: Porous-medium equation

u(x, y) represents concentration of some property

$$\frac{\partial}{\partial x} \left(g(u) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(g(u) \frac{\partial u}{\partial y} \right) = 0$$

where

$$g(u) = 1 + \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2$$

Defined on a spatial region Ω with boundary conditions $u = U_1(x,y)$ on boundary $\partial \Omega$

Spatial approximation

- ► A linear triangular finite element method is used (equivalent to FDM in 1-D)
- The resulting Jacobian is sparse and symmetric positive definite and can be approximated analytically

Numerical method

- A Newton-Krylov solution strategy
- Preconditioned Conjugate Gradient iterations for the Jacobian system
- A state-of-the-art multigrid preconditioner¹ was tested for the CG iterations

¹Recall idea of using multiple levels of discrete grids to find initial conditions, can also be used here to generate efficient preconditioners

Case studies

└ Porous medium equation

Timing results

Equations	Newton	Sparse direct	CG iterations
N	iterations	Time (s)	Time (s)
9 ²	10	0.9	0.1
17 ²	12	21.6	0.6
33^{2}	13	382.6	2.7
65 ²	15	-	12.7
129 ²	17	-	57.1
257^{2}	19	-	261.6