

MODAL DECOMPOSITION

Pattern detection Reconstruction **Prediction**

HODMD

Autoencoders

Pattern detection

DEEP LEARNING

Reconstruction

Superresolution

Full DL

Prediction

Hybrid

HODMD

ModelFLOWs

HOSVD

Superresolution

Data Repairing

ModelFLOWs APP

MODAL DECOMPOSITION

Pattern detection Reconstruction **Prediction**

HOSVD

HODMD

ModelFLOWs

Data Repairing

Superresolution

HODMD

Autoencoders

DEEP LEARNING

Pattern detection

Reconstruction

Superresolution

Full DL

Prediction

Hybrid

Motivation

Forecasting through deep learning and modal decomposition in two-phase concentric jets

León Mata^a, Rodrigo Abadía-Heredia^{a,*}, Manuel Lopez-Martin^a, José M. Pérez^a, Soledad Le Clainche^a

^aETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros, 3, Madrid, 28040, Madrid, Spain

https://doi.org/10.48550/arXiv.2212.12731

Forecasting through deep learning and modal decomposition in two-phase concentric jets

ModelFLOWs

Motivation

Forecasting through deep learning and modal decomposition in two-phase concentric jets

León Mata^a, Rodrigo Abadía-Heredia^{a,*}, Manuel Lopez-Martin^a, José M. Pérez^a, Soledad Le Clainche^a

^aETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros, 3, Madrid, 28040, Madrid, Spain

https://doi.org/10.48550/arXiv.2212.12731

ModelFLOWs

Motivation

Forecasting through deep learning and modal decomposition in two-phase concentric jets

León Mata^a, Rodrigo Abadía-Heredia^{a,*}, Manuel Lopez-Martin^a, José M. Pérez^a, Soledad Le Clainche^a

^aETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros, 3, Madrid, 28040, Madrid, Spain

https://doi.org/10.48550/arXiv.2212.12731

Forecasting through deep learning and modal decomposition in two-phase concentric jets

- In this work we proposed two forecasting models based entirely on deep learning.
- In contrast to the other published works (HybridDL) in this case the data sets are directly pass into the models with no previous preprocess like SVD.

Methodology

Full DL

Methodology

Database & Data preparation

Full DL

Both models RNN and CNN have been developed to receive as input two data sets:

Training data set

Testing data set

Database & Data preparation

Full DL

Both models RNN and CNN have been developed to receive as input two data sets:

Database & Data preparation

One of the data sets used in our paper:

- Stream wise velocity -> 1 component
- X-axis discretized in 100 nodes.
- Y-axis discretized in 100 nodes.
- 351 snapshots

$$\{N_v, N_x, N_y, N_t\} \rightarrow \{1, 100, 100, 351\}$$

Full DL

Hyperparameters		Restrictions	Recommendations
raining size	p_{train}	≤ 80 % <i>p</i>	≤ 80 %

Hyperparam	eters	Restrictions	Recommendations
Training size	p_{train}	$\leq 80 \% p$	≤ 80 %
Model to use		RNN Model CNN Model	CNN Model

Full DL

Hyperparam	neters	Restrictions	Recommendations
Training size	p_{train}	≤ 80 % <i>p</i>	≤ 80 %
Model to use		RNN Model CNN Model	CNN Model
Batch size	N _{batch}	$< p_{train} - 10$	32, 64, 128,

Full DL

Hyperparan	neters	Restrictions	Recommendations
Training size	p_{train}	≤ 80 % <i>p</i>	≤ 80 %
Model to use		RNN Model CNN Model	CNN Model
Batch size	N _{batch}	$< p_{train} - 10$	32, 64, 128,

Full DL

Calibration

Hyperparame	eters	Restrictions	Recommendations
Training size	p_{train}	≤ 80 % <i>p</i>	≤ 80 %
Model to use		RNN Model CNN Model	CNN Model
Batch size	N_{batch}	$< p_{train} - 10$	32, 64, 128,
Epochs number	N _{epoch}	> 0	100, 200, 500,

 $p \rightarrow N^{o}$ samples in training data set

Batch size

Results

Both models return two data sets containing the two predictions that are obtained from the testing data set. It also allows to plot a qualitative comparison of the predictions and target.

Results

Full DL

Both models return two data sets containing the two predictions that are obtained from the testing data set. It also allows to plot a qualitative comparison of the predictions and target.

Qick here for more information


```
Thanks for
watching! Visit us
on:
http://modelflows.e
S
```