UCB Math 110, Fall 2010: Midterm 2

Prof. Persson, November 8, 2010

SID: Section:		 					Grad		5	
		Circle your discussion section below:							/ 18	
	Sec	Tim	ie	Room	GSI			2		/ 6
	01	Wed	l 8am - 9am	87 Evans	D. Penneys	_		3		/ 6
	02	Wed	l 9am - 10am	2032 Valley LSB	C. Mitchell					, 0
	03	Wed	l 10am - 11am	B51 Hildebrand	D. Beraldo			4		/ 10
	04	Wed	l 11am - 12pm	B51 Hildebrand	D. Beraldo					/ 40
	. 05	Wed	l 12pm - 1pm	75 Evans	C. Mitchell					/ 40
	07	Wed	l 2pm - 3pm	87 Evans	C. Mitchell	-		4 J		
	08	Wed	l 9am - 10am	3113 Etcheverry	I. Ventura					
	09	Wec	l 2pm - 3pm	3 Evans	D. Penneys					
	10	Wed	l 12pm - 1pm	310 Hearst	I. Ventura					

Instructions:

- One double-sided sheet of notes, no books, no calculators.
- Exam time 50 minutes, do all of the problems.
- You must justify your answers for full credit.
- Write your answers in the space below each problem.
- If you need more space, use reverse side or scratch pages. Indicate clearly where to find your answers.

- 1. (6 problems, 3 points each) Label the following statements as TRUE or FALSE, giving a short explanation (e.g. a proof or a counterexample).
 - a) Let $A, B \in M_{5\times 5}(R)$ such that AB = -BA. Then either A or B is non-invertible.

b) Every matrix $A \in M_{5\times 5}(R)$ has an eigenvector in \mathbb{R}^5 .

TRUE FALSE (circle one)

Since the characteristic polynomial of
A has degree 5, it must have at
least one real root by the
intermediate value theorem. Hence

c) Let $A, B \in M_{n \times n}(F)$, and suppose A is similar to B. Then A^k is similar to B^k for any positive integer k.

TRUE FALSE (circle one)

we induct on
$$k$$
.

 $k=l=A-B \implies 7Q \in M_n(F)$ invertible s.t.

 $A=Q^{-1}BQ$.

1. (cont'd)

d) If 0 is the only eigenvalue of a linear operator T, then T = 0.

Consider $L_A: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ where $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Since A is upper triangular we see the eigenvalues are both o,

e) If a matrix $A \in M_{n \times n}(F)$ can be transformed into a diagonal matrix by a sequence of elementary row operations of type 3, then A is diagonalizable.

The matrix [oi] is not diagonalizable but can be reduced to [oi].

f) Let V be a finite dimensional vector space and γ be a basis for V*. Then there exists a basis β for V such that $\beta^* = \gamma$.

Consider Y^* a basis for V^{**} . We know the map $C: V \rightarrow V^{**}$ $C(x) = \hat{x}$ is an isomorphism of $Y^{**} = \{\hat{x}_1, \dots, \hat{x}_n\}$ we let

 $\beta = \{X_1, \dots, X_n\}$ where $X_i = \mathcal{C}'(\hat{X}_i)$ b/c Ci's an isomorphism β i's a basi's

and i't is easy to see $\beta \neq X_i = X_i$

2. (6 points) Find bases for the null space $N(L_A)$ and for the range $R(L_A)$ where

$$A = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 4 & -4 & 5 & -2 \\ 2 & -2 & -1 & -8 \end{pmatrix} . \longrightarrow \begin{pmatrix} 1 & -(& 1 & -(1 & -(& 1 & -(& 1 & -(1 & -(1 & 1 & -(1 & -(1 & 1 & -(1 & 1 & -(1 & 1 & -(1 & 1 & -(1 & 1 & -(1 & 1 & -(1 &$$

Basis for
$$N(L_A)$$
: $\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ -2 \\ 1 \end{pmatrix} \right\}$

3. (6 points) Let $V = \mathbb{R}^2$ and define $f, g \in V^*$ as follows:

$$f(x,y) = x + y$$
, $g(x,y) = x - 2y$.

Find a basis β for V such that its dual basis $\beta^* = (f, g)$.

Solve the system to yet the dosined result.

4. (10 points) Consider the linear operator T on $P_3(R)$ defined by

$$\mathsf{T}(p(x)) = (x^2 + 1)p''(x).$$

Determine if T is diagonalizable, and if so, find a basis β for $P_3(R)$ such that $[T]_{\beta}$ is a diagonal matrix.

One can guess a basis of eigenvectors:

$$\beta : \{1, x, 1+x^2, x+x^3\}$$

 β is a linearly independent set (the four polynomials have different degrees) and $|\beta| = 4$, so β is a basis for $P_3(R)$.

Now, observe that

$$T(1) = 0$$

 $T(x) = 0$
 $T(1+x^2) = 2 \cdot (x^2 + 1) = 2 \cdot (1+x^2)$
 $T(x+x^3) = (x^2 + 1)(6x) = 6(x+x^3)$
So β is a basis of eigenvectors.
 $[T]_{\beta} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$