

Multiplexer-Based Array Multipliers

Presented by:

Kevin Biswas

April 1, 2005

Supervisor:

Dr. M. Ahmadi

University of Windsor Electrical and Computer Engineering

Background

- In modern digital systems, the component responsible for handling arithmetic operations is known as the Arithmetic Logic Unit (ALU)
- These lie in the critical data path of the core data processing elements – CPU, DSP, and ASIC/FPGA processing and addressing ICs
- Performance of the system, in regards to numerical applications is directly related to the structure and design of the ALU which performs:
 - addition/subtraction
 - multiplication
 - shift/extension
 - exponentiation
 - many others

Background

- The most critical function carried out by ALU is multiplication
- Digital multiplication is not the most fundamentally complex operation, but is the most extensively used operation (especially in signal processing)
- Innumerable schemes have been proposed for realization of the operation

Basics of Digital Multiplication

- Digital multiplication entails a sequence of additions carried out on partial products
- The method by which this partial product array is summed to give the final product is the key distinguishing factor amongst the numerous multiplication schemes

A 16-bit Partial Product Array [Courtesy: Gary Bewick, Stanford]

Serial Multiplication (Shift-Add)

Standard shift-add multiplier implementation

[Courtesy: Gary Bewick, Stanford]

- Serial Multiplication (High Radix Multipliers)
 - Increased throughput by using more bits of the multiplier
 - Separate register required storing multiples of the multiplicand

Shift-Add implementation of a basic radix-4 multiplier

Parallel Multipliers

- Serial multiplication implementations are primitive with simple architectures (used when there is a lack of a dedicated hardware multiplier)
- Parallel implementations are used for high performance machines, where computation latency needs to be minimized
- Two branches of parallel multipliers:
 - Column compression
 - Linear parallel
- Partial products are generated simultaneously

• Tree Multiplier

- Offers potential for multiplication in time O(log n)
- Once partial product array is formed, bits are passed to reduction network
- Here column-wise compression of the bits takes place, yielding two final partial products
- Final product is obtained by addition of these two partial products
- Considered to be irregular in form and does not permit efficient VLSI realization

[Courtesy: Gary Bewick, Stanford]

Array Multiplier

- Partial products are independently computed in parallel
- Consider two binary numbers A and B, of m and n bits, respectively:

$$A = \sum_{i=0}^{m-1} A_i 2^i$$

$$B = \sum_{j=0}^{n-1} B_j 2^j$$

$$P = A \cdot B = \sum_{i=0}^{m-1} A_i 2^i \cdot \sum_{j=0}^{m-1} B_j 2^j \qquad P = \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} A_i B_j 2^{i+j}$$

$$P = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} A_i B_j 2^{i+j}$$

$$P = \sum_{k=0}^{mn-1} P_k 2^k$$

• P_k is known as the partial product term, also called the summand

Array Multiplier

- There are mn summands that are produced in parallel by a set of mn AND gates
- $n \times n$ multiplier requires n(n-2) full adders, n half-adders and n^2 AND gates
- Worst case delay would be $(2n+1)t_d$

 Basic cell of a parallel array multiplier

Array structure of parallel multiplier

[Courtesy: Karteek Chada, Texas A&M]

Multiplexer-Based Array Multiplier

- New multiplication algorithm based on a different mechanism has been proposed by Dr. Pekmestzi (National Technical University of Athens)
- Algorithm is symmetric because at each step one bit of the multiplier and one bit of the multiplicand are processed
- Mathematically, this method can be described:

Consider two positive integer numbers, X and Y:

$$X = X_{n-1} X_{n-2} \dots X_0 = \sum_{j=0}^{n-1} X_j 2^j$$

$$Y = y_{n-1}y_{n-2}...y_0 = \sum_{j=0}^{n-1} y_j 2^j$$

Also. define:

$$X_{n-1} = X_{n-2}X_{n-3}...X_0 = \sum_{j=0}^{n-2} X_j 2^j$$
 and $X = X_{n-1} + 2^{n-1}X_{n-1}$

$$Y_{n-1} = y_{n-2}y_{n-3}...y_0 = \sum_{j=0}^{n-2} y_j 2^j$$
 and $Y - Y_{n-1} + 2^{n-1}y_{n-1}$

Product of the numbers X and Y is therefore:

$$\begin{split} P &= XY = \left\{2^{n-1} x_{n-1} + X_{n-1}\right\} \left\{2^{n-1} y_{n-1} + Y_{n-1}\right\} \\ &= 2^{2n-2} x_{n-1} y_{n-1} + 2^{n-1} \left\{x_{n-1} Y_{n-1} + y_{n-1} X_{n-1}\right\} + X_{n-1} Y_{n-1} \end{split}$$

Now define: $P_{n-1} = X_{n-1}Y_{n-1}$ and generally, $P_j = X_jY_j$

Where X_j and Y_j are the numbers formed by the j least significant bits of X and Y respectively. The product P_j can then be expressed using the following recursive equation:

$$\begin{split} P_{j} &= X_{j} Y_{j} \\ &= 2^{2j-2} X_{j-1} Y_{j-1} + 2^{j-1} \Big\{ X_{j-1} Y_{j-1} + Y_{j-1} X_{j-1} \Big\} + X_{j-1} Y_{j-1} \\ &= 2^{2j-2} X_{j-1} Y_{j-1} + 2^{j-1} \Big\{ X_{j-1} Y_{j-1} + Y_{j-1} X_{j-1} \Big\} + P_{j-1}. \end{split}$$

P = XY can now be expressed with the following summations:

$$P = \sum_{j=0}^{n-1} x_j y_j 2^{2j} + \sum_{j=1}^{n-1} \left\{ x_j Y_j + X_j y_j \right\} 2^j$$

Where, $Z_j = X_j Y_j + X_j Y_j$ and therefore: $P = \sum_{j=0}^{n-1} X_j y_j 2^{2j} + \sum_{j=1}^{n-1} Z_j 2^j$

- Above equation can be illustrated in this schematic
- Grouping of partial products are distinguished by connecting them with solid lines
- Folding the array along the line of symmetry gives the final form of the algorithm

 Looking at the truth table for Z_j, it can be seen that computation is only required when x_i and y_i are both equal to 1

Truth Table for Z_i

X _j	Уj	Z_{j}
0	0	0
0	1	X_{j}
1	0	Y_{j}
1	1	$X_j + Y_j = S_j$

At each step, j, only s_j and c_{j+1} are new. The rest of the bits of S_j have been formed in the previous j-1 steps according to the relation:

$$S_j = S_{j-1} + X_{j-1} + Y_{j-1}$$

 S_j can be generated using a carry-propagate adder consisting of full-adders (FA):

S_i is found to be:

$$S_j = c_j s_{j-1} s_{j-2} \dots s_0$$

- Based on the truth table shown before, each term of the partial products Z_i can be selected accordingly
- This operation can be realized using a 4x1 multiplexer with bits x_j and y_j being the selection bits

MUX

4x1

MUX

4x1

0 x, y, s,

MUX

MUX

• Implementation of the terms $Z_j 2^j$ and $x_j y_j 2^{2j}$

In the parallel realization of the algorithm, the terms $Z_j 2^j$ and $x_j y_j 2^{2j}$ are produced in the j^{th} row of multiplexers, and are subsequently summed

[Courtesy: Kiamal Pekmestzi]

Detail of Cell Types

- Cell I consists of:
 - 4 x 1 multiplexer
 - Full-Adder
 - Input bits x_j and y_j are broadcast to n-1-i cells of first type a the ith horizontal row of the array
 - As well, they are broadcast to j+1 diagonally placed cells of the array

Detail of Cell Types

- Cell II consists of:
 - Full-Adder which produces new bits s_i=s_i and c_{i+1}
 - Bits s_i along with x_j and y_j are broadcast to all first type cells of the ith row of the array
 - Bits c_{j+1} are propagated to the next second type cells
 - Bottom circuit completes addition of the term Z_j by summing the last bit of this term while at the same time generates x_jy_j which is required in computing the final product

Multiplexer-Based Array Multiplier

- Small complexity 2-bit carry-lookahead adders are used in the addition of the outputs of the right boundary cells
- Overall the total multiplier circuit consists of:

$$- \frac{n(n-1)}{2} + 2n + 1 \quad \text{full-adders}$$

$$- \frac{n(n-1)}{2} \quad \text{multiplexers}$$

- 2n AND gates
- n-2 two-bit carry-lookahead (CLA) adders
- Multiplexer-based array multiplication scheme yields almost the same complexity with arrays based on the more common Modified Booth's algorithm while requiring a considerably smaller number of gates or transistors compared to other arrays

Circuit Comparison

- Exact gate number:
 - $8.5n^2+16.5n-22$ (Multiplexer-Based)
 - 10*n*²+23*n*+13 (Modified Booth)
- Transistor number:
 - 21*n*²+37*n*-99 (Multiplexer-Based)
 - 21*n*²+52*n*+31 (Modified Booth)
- Theoretical operation delay:
 - T = (n+1)t_{FA} (Multiplexer-Based)
 - $T = nt_{FA}/2 + nt_{FA}$ (Modified Booth)
- Literature shows that multiplexer-based array multiplier outperforms modified Booth multiplier in both speed and power dissipation up to 26%!

Conclusions

- Multiplexer-based multiplication algorithm compares favourably to the most common array multipliers
- While having a circuit complexity similar to other array multipliers, multiplexer-based multipliers outperform them in terms of speed and power dissipation
- Implementation of multiplexer-based multipliers with faster and lower power consumption full-adder circuits could further improve performance
- The array structure of the multiplexer-based multiplier permits efficient VLSI implementation. However, the "zig-zag" shape could most likely be modified to a more rectangular form which would contribute to significant area-savings.

References

- Kiamal Z. Pekmestzi, "Multiplexer-Based Array Multipliers", IEEE Transactions on Computers, Vol. 48, No. 1, January 1999.
- Pedram Mokrian, "A Reconfigurable Digital Multiplier Architecture" A Master's Thesis, Department of Electrical and Computer Engineering, University of Windsor, April 2003.
- Gary W. Bewick, "Fast Multiplication: Algorithms and Implementation", A Ph.D Dissertation, Stanford University, 1994.
- D. Radhakrishnan, "Low Voltage CMOS Full Adder Cells," Electronics Letters, Vol. 35, pp. 1792-94, October 1999.
- Anant Yogeshwar Chitari, "VLSI Architecture for a 16-bit Multiply-Accumulator (MAC)
 Operating in Multiplication Time", A Master's Thesis, Department of Electrical
 Engineering, Texas A&M University Kingsville, May 2000.
- Behrooz Parhami, "Computer Arithmetic: Algorithms and Hardware Designs", Oxford University Press, New York, 2000.