Bias and Fairness in ML

Fairness Definitions

Equality of Treatment

- Fairness through Unawareness
 - An algorithm is fair if protected attributes are not explicitly used in the decision-making process
- Counterfactual Fairness
 - An algorithm is fair if its output remains the same when the protected attribute is flipped to its counterfactual value

Equality of Outcomes

- Demographic Parity
 - Members of groups have an equal probability of being assigned to the positive class
- Conditional Statistical Parity
 - Demographic parity holds given a set of legitimate factors
- Fairness Through Awareness
 - An algorithm is fair if it gives similar predictions to similar individuals

Equality of Performance/ Error

- Predictive Parity
 - Equalizing $FDR_g = \frac{FP_g}{FP_g + TP_g}$
- Sufficiency
 - Equalizing FDR_g and $FOR_g = \frac{FN_g}{FN_\sigma + TN_\sigma}$
- Equal Opportunity
 - Equalizing $FNR_g = \frac{FN_g}{FN_g + TP_g}$
- Equalized Odds
 - \bullet Equalizing $\textit{FNR}_{\textit{g}}$ and $\textit{FPR}_{\textit{g}} = \frac{\textit{FP}_{\textit{g}}}{\textit{FP}_{\textit{g}} + \textit{TN}_{\textit{g}}}$
- Treatment Equality
 - Equalizing $\frac{FP_g}{FN_g}$
- Test Fairness
 - Considers complete score distribution across groups
 - ightarrow Notions are in conflict with each other and with overall accurace

Table: Confusion matrix

David Start

	Prediction			
		0	1	
D-f	0	TN	FP	N'
Reference	1	FN	TP	P'
		N	Р	

Equality of Performance/ Error

- Predictive Parity
 - Equalizing $FDR_g = \frac{FP_g}{FP_g + TP_g}$
- Sufficiency
 - Equalizing FDR_g and $FOR_g = \frac{FN_g}{FN_\sigma + TN_\sigma}$
- Equal Opportunity
 - $_{\rm \bullet}$ Equalizing $\it FNR_g = \frac{\it FN_g}{\it FN_g + \it TP_g}$
- Equalized Odds
 - \bullet Equalizing $\mathit{FNR}_{\mathit{g}}$ and $\mathit{FPR}_{\mathit{g}} = \frac{\mathit{FP}_{\mathit{g}}}{\mathit{FP}_{\mathit{g}} + \mathit{TN}_{\mathit{g}}}$
- Treatment Equality
 - Equalizing $\frac{FP_g}{FN_g}$
- Test Fairness
 - Considers complete score distribution across groups
 - → Notions are in conflict with each other and with overall accuracy

Table: Confusion matrix

	Prediction			
		0	1	
Reference	0	TN	FP	N'
	1	FN	TP	P'
		N	Р	

- 1 Individual Fairness: Give similar predictions to similar individuals
- ② Group Fairness: Treat different groups equally
- Subgroup Fairness: Extend group fairness to large collection of subgroups

Table: Categorizing Fairness Notions (Mehrabi et al. 2019)

	Group	Individual
Demographic parity	Х	
Conditional statistical parity	X	
Equalized odds	X	
Equal opportunity	X	
Fairness through unawareness		X
Fairness through awareness		×
Counterfactual fairness		×

Figure: Choosing Fairness Metrics (Saleiro et al. 2018)

Methods for Fair MI

Methods for Fair ML

Some Potential Solutions (Berk et al. 2017)

- Pre-processing
 - Eliminating sources of unfairness in data before model training
 - Remove linear dependence between legitimate and protected predictors
 - Re-label some response values to make base rates comparable
 - Perturb class membership for protected attributes for some cases
- In-processing
 - Making fairness adjustments as part of the model building process
 - Add fairness penalty to loss function
- Post-processing
 - Adjust model output post-training to make it more fair
 - Randomly re-assign some predicted class labels

Software Resources

Resources for R

- PDP, ICE, ALE
 - Plot model surfaces: plotmo
 - Partial Dependence Plots: pdp
 - ICE plots: ICEbox
 - ALE plots: ALEPlot
- Interpretable Machine Learning in R: iml
- Descriptive mAchine Learning EXplanations: DALEX

References

- Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A. (2019). A Survey on Bias and Fairness in Machine Learning. https://arxiv.org/abs/1908.09635.
- Molnar, C. (2019). Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. https://christophm.github.io/interpretable-ml-book/.
- Rodolfa, K. T., Saleiro, P., Ghani, R. (2019). Bias and Fairness. In: Foster, I., Ghani, R., Jarmin, R. S., Kreuter, F., and Lane, J. (Eds.). Big Data and Social Science: A Practical Guide to Methods and Tools. https://coleridge-initiative.github.io/big-data-and-social-science/.

References

- Apley, D. W. (2016). Visualizing the effects of predictor variables in black box supervised learning models. https://arxiv.org/abs/1612.08468.
- Berk, R., Heidari, H., Jabbari, S., Kearns, M., Roth, A. (2017). Fairness in Criminal Justice Risk Assessments: The State of the Art. https://arxiv.org/abs/1703.09207
- Fisher, A., Rudin, C., Dominici, F. (2018). Model Class Reliance: Variable importance measures for any machine learning model class, from the 'Rashomon' perspective. http://arxiv.org/abs/1801.01489.
- Friedman, J. (2001). Greedy Function Approximation: A Gradient Boosting Machine. *The Annals of Statistics*, 29(5), 1189–1232.
- Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E. (2014). Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation. https://arxiv.org/abs/1309.6392.
- Lum, K. and Isaac, W. (2016). To predict and serve? Significance 13, 14–19.
- Murdoch, W., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B. (2019). Interpretable machine learning: definitions, methods, and applications. https://arxiv.org/abs/1901.04592.
- Ribeiro, M. T., Singh, S., Guestrin, C. (2016). Why should I trust you?: Explaining the predictions of any classifier. https://arxiv.org/abs/1602.04938.
- Saleiro, P., Kuester, B., Stevens, A., Anisfeld, A., Hinkson, L., London, J., Ghani, R. (2018). Aequitas: A Bias and Fairness Audit Toolkit. https://arxiv.org/abs/1811.05577