Teoremas integrales

Teorema de Cauchy

Sea $\mathcal C$ una curva del plano, cerrada, simple y suave o suave a trozos, con orientación antihoraria. Si f(z) es una función con derivada f'(z) continua en un conjunto abierto $D \subset \mathbb C$ que contiene a $\mathcal C$ y a la región R interior a $\mathcal C$,entonces: $\oint f(z)dz = 0$

Observar: la hipótesis de continuidad de f'(z) presupone que f(z) es analítica en D

<u>Dem</u>: Si f(z) = u(x,y) + iv(x,y) entonces como f'(z) existe en D resulta f(z) analítica en D, valiendo entonces las condiciones de

Cauchy-Riemann (CR) en todo punto
$$(x,y) \in D$$
:
$$\begin{cases} u_x = v_y & (1) \\ u_y = -v_x & (2) \end{cases}$$

Además:
$$f'(z) = u_x(x, y) + iv_x(x, y)$$

Siendo f'(z) continua en D resultan u_x , v_x continuas allí. Y por CR, también u_y , v_y son continuas en D. Es decir: $u,v\in C^1(D)$. Entonces el teorema de Green es aplicable a los campos vectoriales $\ddot{G}(x,y)=\langle u(x,y),-v(x,y)\rangle$, $\ddot{H}(x,y)=\langle v(x,y),u(x,y)\rangle$

Luego,

$$\oint_{\mathcal{C}} u \ dx - v \ dy = \iint_{\mathcal{R}} (-v_x - u_y) dA = 0$$
 pues por (2), $u_y = -v_x$ en D y en particular en R .

Análogamente:

$$\oint_{\mathcal{C}} v \ dx + u \ dy = \iint_{\mathcal{R}} (u_x - v_y) dA = 0$$
 pues por (1), $u_x = -v_y$ en D y en particular en R .

Por lo tanto:

$$\oint_{\mathcal{C}} f(z)dz = \oint_{\mathcal{C}} u \, dx - v \, dy + i \oint_{\mathcal{C}} v \, dx + u \, dy = 0 + i \, 0 = 0$$

El matemático Édouard Goursat (1858-1936) enunció y demostró una versión "más fuerte" del teorema de Cauchy, en la que se prescinde de la hipótesis de continuidad de la derivada. El resultado, cuya demostración omitimos, es el siguiente.

Teorema de Cauchy-Goursat

Sea $\mathcal C$ una curva del plano, cerrada, simple y suave o suave a trozos, con orientación antihoraria. Si f(z) es una función analítica en un conjunto abierto $D \subset \mathbb C$ que contiene a $\mathcal C$ y a la región R interior a $\mathcal C$, entonces:

Ejemplo Suponiendo orientación antihoraria, calcular las siguientes:

a)
$$\oint_{\mathcal{C}} \frac{\sin(1/z)}{z^2 - 2iz + 8} dz$$
, $\mathcal{C}: |z - 2i| = 1$.

- b) $\oint_{\mathcal{C}} \frac{\cos(\operatorname{Ln}(z))}{e^{i\pi z} ie^{i\pi z/2}} dz$, \mathcal{C} : frontera del cuadrado de vértices 2, $3 \pm i$, 4.
- c) $\oint_{\mathcal{C}} \frac{dz}{(z^2+4)\sin^2(\pi z/2)}$, \mathcal{C} : frontera del triángulo de vértices 1, 1 + i, i.
- d) $\oint_{\mathcal{C}} \frac{e^{1/(z^2+1)}}{\operatorname{Ln}\left(1-\frac{z}{4}\right)} dz$, \mathcal{C} frontera del cuadrado de vértices 1,2 $\pm i$, 3.
- d*) $\oint_{\mathcal{C}} \frac{\operatorname{Ln}(iz)}{2\pi + i \operatorname{Ln}(\frac{z}{2})} dz$, $\mathcal{C}: |z 3| = 2$.
- e) $\oint_{\mathcal{C}} \frac{1}{z^3 + 8i} dz$, $\mathcal{C}: |z| = 1$.

<u>Rta</u>

a)

$$\oint_C \frac{\operatorname{sen}(1/z)}{z^2 - 2iz + 8} dz$$

 \mathcal{C} : |z - 2i| = 1 con orientación antihoraria.

 $\mathcal C$ es una circunferencia así que es curva cerrada, simple y suave. Su orientación es antihoraria como lo establece el enunciado. Sea R la región interior limitada por $\mathcal C$.

El integrando es $f(z) = \frac{N(z)}{D(z)}$ donde

 $N(z) = \operatorname{sen}(1/z)$ es analítica en $\mathbb{C} - \{0\}$ (composición de analíticas)

 $D(z) = z^2 - 2iz + 8$ es analítica en \mathbb{C} (polinómica). Entonces:

$$D_{ana}(f) = \mathbb{C} - (\{0\} \cup \{z: D(z) = 0)\})$$

$$D(z) = 0 \Leftrightarrow z^2 - 2iz + 8 = 0 \Leftrightarrow z = \frac{2i \pm \sqrt{(-2i)^2 - 4 \times 8}}{2} \Leftrightarrow z = \frac{2i \pm \sqrt{-36}}{2} \Leftrightarrow z = i \pm 3i \Leftrightarrow z = -2i \lor z = 4i$$

Así,

 $D_{ana}(f) = \mathbb{C} - \{0, -2i, 4i\}$. Entonces, como se aprecia en la figura:

 $\mathcal{C} \cup R \subseteq D_{ana}(f)$. Luego, por el teorema de Cauchy-Goursat:

$$\oint_{\mathcal{C}} \frac{\operatorname{sen}(1/z)}{z^2 - 2iz + 8} dz = 0$$

$$\oint_{\mathcal{C}} \frac{\cos(\operatorname{Ln}(z))}{e^{i\pi z} - ie^{i\pi z/2}} dz$$

 \mathcal{C} : frontera antihoraria del cuadrado de vértices 2, 3 $\pm i$, 4.

 $\mathcal C$ es curva cerrada, simple y suave a trozos. Su orientación es antihoraria como lo establece el enunciado. Sea R la región interior limitada por $\mathcal C$.

El integrando es $f(z) = \frac{N(z)}{D(z)}$ donde $N(z) = \cos(\operatorname{Ln}(z))$ es analítica en $\mathbb{C} - \{x + iy : y = 0 , x \le 0\}$ (composición de analíticas)

 $D(z) = e^{i\pi z} - ie^{i\pi z/2}$ es analítica en $\mathbb C$ (resta de analíticas). Entonces:

$$D_{ana}(f) = \mathbb{C} - (\{x + iy : y = 0 , x \le 0\} \cup \{z : D(z) = 0)\})$$

$$D(z) = 0 \Leftrightarrow e^{i\pi z} - ie^{\frac{i\pi z}{2}} = 0 \Leftrightarrow e^{\frac{i\pi z}{2}} \left(e^{\frac{i\pi z}{2}} - i\right) = 0 \Leftrightarrow e^{\frac{i\pi z}{2}} - i = 0 \Leftrightarrow$$

$$\Leftrightarrow e^{\frac{i\pi z}{2}} = i \Leftrightarrow \frac{i\pi z}{2} \in \ln(i) \Leftrightarrow \frac{i\pi z}{2} = \ln|i| + i \arg(i) \Leftrightarrow$$

$$\frac{i\pi z}{2} = \ln 1 + i\left(\frac{\pi}{2} + 2k\pi\right), k \in \mathbb{Z} \iff z = (1+4k), k \in \mathbb{Z}$$

$$D_{ana}(f) = \mathbb{C} - (\{x + iy : y = 0, x \le 0\} \cup \{1 + 4k : k \in \mathbb{Z})\}).$$

Vemos que: $\mathcal{C} \cup R \subseteq D_{ana}(f)$. Luego, por el teorema de Cauchy-Goursat:

$$\oint_{C} \frac{\cos(\operatorname{Ln}(z))}{e^{i\pi z} - ie^{i\pi z/2}} dz = 0$$

<u>Rta</u>

c)

$$\oint_{\mathcal{C}} \frac{dz}{(z^2+4)\mathrm{sen}^2 (\pi z/2)}$$

C: frontera antihoraria del triángulo de vértices 1, 1 + i, i.

 \mathcal{C} es curva cerrada, simple y suave a trozos. Su orientación es antihoraria como lo establece el enunciado. Sea R la región interior limitada por \mathcal{C} .

El integrando es $f(z) = \frac{N(z)}{D(z)}$ donde

N(z) = 1 es analítica en \mathbb{C}

 $D(z) = (z^2 + 4) \operatorname{sen}^2(\pi z/2)$ es analítica en \mathbb{C} (producto de analíticas).

Entonces:

$$D_{ana}(f) = \mathbb{C} - (\{z: z^2 + 4 = 0\} \cup \{z: \text{sen}(\pi z/2) = 0\}))$$

$$\text{sen}(\pi z) = 0 \Leftrightarrow \pi z = k \in \mathbb{Z} \Leftrightarrow z = 2k k \in \mathbb{Z} \text{ (entered)}$$

$$\operatorname{sen}\left(\frac{\pi z}{2}\right) = 0 \Leftrightarrow \frac{\pi z}{2} = k\pi, k \in \mathbb{Z} \Leftrightarrow z = 2k, k \in \mathbb{Z} \text{ (enteros pares)}$$

$$D_{ana}(f) = \mathbb{C} - (\{2i, -2i\} \cup \{2k: k \in \mathbb{Z})\}).$$

Entonces, como se aprecia en la figura:

 $\mathcal{C} \cup R \subseteq D_{ana}(f)$. Luego, por el teorema de Cauchy-Goursat:

$$\oint_{\mathcal{C}} \frac{1}{(z^2+4)\mathrm{sen}^2 (\pi z/2)} dz = 0$$

d)

$$\oint_{\mathcal{C}} \frac{e^{1/(z^2+1)}}{\operatorname{Ln}\left(1-\frac{z}{4}\right)} dz$$

 \mathcal{C} frontera antihoraria del cuadrado de vértices 1,2 $\pm i$, 3.

 $\mathcal C$ es curva cerrada, simple y suave a trozos. Su orientación es antihoraria como lo establece el enunciado.

Sea R la región interior limitada por C.

El integrando es $f(z) = \frac{N(z)}{D(z)}$ donde

$$N(z) = e^{1/(z^2+1)}$$
es analítica en $\mathbb{C} - \{i, -i\}$

 $D(z) = \operatorname{Ln}\left(1 - \frac{z}{4}\right)$ es analítica en $\mathbb C$ (composición de analíticas) excepto cuando:

$$\operatorname{Im}\left(1-\frac{z}{4}\right) = 0 \quad \wedge \operatorname{Re}\left(1-\frac{z}{4}\right) = 0$$

Si
$$z = x + iy$$
 lo anterior equivale a: $1 - \frac{y}{4} = 0$ \wedge $1 - \frac{x}{4} \le 0$

Esto sucede cuando: $y = 0 \land x \ge 4$.

Además:
$$\operatorname{Ln}\left(1-\frac{z}{4}\right)=0 \iff 1-\frac{z}{4}=1 \iff z=0.$$
 Entonces: $D_{ana}(f)=\mathbb{C}-\left(\{0,i,-i\}\cup\{x+iy:y=0 \land x\geq 4\}\right)$

Como se aprecia en la figura: $\mathcal{C} \cup R \subseteq D_{ana}(f)$. Luego, por el teorema de Cauchy-Goursat:

$$\oint_{\mathcal{C}} \frac{e^{1/(z^2+1)}}{\operatorname{Ln}\left(1-\frac{z}{4}\right)} dz = 0$$

$$\oint_{\mathcal{C}} \frac{\operatorname{Ln}(iz)}{2\pi + i \operatorname{Ln}\left(\frac{z}{2}\right)} dz$$

$$C: |z - 3| = 2.$$

 ${\cal C}$ es curva cerrada, simple y suave. Su orientación es antihoraria.

Sea R la región interior limitada por \mathcal{C} . El integrando es $f(z) = \frac{N(z)}{D(z)}$ donde

$$N(z) = \operatorname{Ln}(iz)$$
 es analítica en $\mathbb{C} - \{x + iy : x = 0, y \ge 0\}$

$$D(z) = 2\pi + i \operatorname{Ln}\left(\frac{z}{2}\right)$$
 es analítica en $\mathbb{C} - \{x + iy : y = 0 , x \le 0\}$

Veamos si D(z) se anula:

$$D(z) = 0 \iff 2\pi + i \operatorname{Ln}\left(\frac{z}{2}\right) = 0 \iff i \operatorname{Ln}\left(\frac{z}{2}\right) = -2\pi \iff \operatorname{Ln}\left(\frac{z}{2}\right) = 2\pi i \implies \frac{z}{2} = e^{2\pi i} \implies z = 2$$

Sin embargo: $D(2) = 2\pi + i \operatorname{Ln}\left(\frac{2}{2}\right) = 2\pi + i \operatorname{Ln}(1) = 2\pi \neq 0$. Luego, D(z) no se anula nunca.

Entonces:
$$D_{ana}(f) = \mathbb{C} - (\{x + iy : x = 0, y \ge 0\} \cup \{x + iy : y = 0, x \le 0\})$$

Como $\mathcal{C} \cup R \subseteq D_{ana}(f)$, entonces por el teorema de Cauchy-Goursat:

$$\oint_{\mathcal{C}} \frac{\operatorname{Ln}(iz)}{2\pi + i \operatorname{Ln}\left(\frac{z}{2}\right)} dz = 0$$

$$\oint_{\mathcal{C}} \frac{1}{z^3 + 8i} dz$$

 \mathcal{C} : |z| = 1 con orientación antihoraria.

 $\mathcal C$ es curva cerrada, simple y suave. Su orientación es antihoraria como lo establece el enunciado. Sea R la región interior limitada por $\mathcal C$.

El integrando es una función racional $f(z) = \frac{1}{z^3 + 8i}$ cuyo denominador es $D(z) = z^3 + 8i$.

$$z^{3} + 8i = 0 \Leftrightarrow z^{3} = -8i \Leftrightarrow z = \sqrt[3]{-8i} \Leftrightarrow z = \sqrt[3]{8}e^{i\left(-\frac{\pi}{2} + 2k\pi\right)/3}, k = 0,1,2 \Leftrightarrow$$

$$\Leftrightarrow z = 2e^{-i\pi/6} \lor z = 2e^{i\frac{\pi}{2}} \lor z = 2e^{i\frac{\pi}{6}} \Leftrightarrow \downarrow y$$

$$\Leftrightarrow z = \sqrt{3} - i \lor z = 2i \lor z = -\sqrt{3} - i \qquad z \neq z$$

Por lo tanto, $D_{ana}(f) = \mathbb{C} - \{\sqrt{3} - i, 2i, -\sqrt{3} - i\}$

Como se aprecia en la figura: $\mathcal{C} \cup R \subseteq D_{ana}(f)$.

Luego, por el teorema de Cauchy-Goursat:

$$\oint_{\mathcal{C}} \frac{1}{z^3 + 8i} dz = 0$$

Corolario 3.5.5

Sean C, C_1 , ..., C_N curvas del plano, cerradas, simples y suaves o suaves a trozos,

tales que:

- los interiores de C_1 , ..., C_N son interiores a C.
- los interiores de C_1 , ..., C_N son disjuntos dos a dos.
- C, C_1 , ..., C_N tienen todas las misma orientación.

Sea R la región interior a \mathcal{C} y exterior a las \mathcal{C}_1 , ..., \mathcal{C}_N .

Si f(z) es una función analítica en un conjunto abierto $D \subset \mathbb{C}$ que contiene a \mathcal{C} , , \mathcal{C}_1 , ..., \mathcal{C}_N y a la región R entre ellas, entonces:

$$\oint_{C} f(z)dz = \sum_{n=1}^{N} \oint_{C_{n}} f(z)dz$$

<u>Ejemplo</u>: Calcular $\oint_{\mathcal{C}} \frac{dz}{iz+1}$ si \mathcal{C} : $4x^2 + (y+1)^2 = 16$ con orientación antihoraria.

Rta El denominador de la función racional $f(z) = \frac{1}{iz+1}$ se anula cuando: $iz+1=0 \iff iz=-1 \iff z=-\frac{1}{i} \iff z=i$

$$iz + 1 = 0 \iff iz = -1 \iff z = -\frac{1}{i} \iff z = i$$

Luego, $D_{ana}(f) = \mathbb{C} - \{i\}$. El punto z = i es interior a \mathcal{C} (no puede aplicarse el teorema de Cauchy-Goursat). Tampoco es sencillo calcular la integral dada parametrizando \mathcal{C} . Entonces buscamos una curva auxiliar adecuada que "reemplace a \mathcal{C} ". Conviene considerar \mathcal{C}_1 : |z-i|=1 con orientación antihoraria. Ambas curvas son cerradas, simples y suaves y poseen la misma orientación. Además, \mathcal{C}_1 es interior a \mathcal{C} . Como z=i es interior a \mathcal{C} , no está ni sobre las curvas ni en la región R entre ellas, así que $R \cup \mathcal{C} \cup \mathcal{C}_1 \subseteq D_{ana}(f)$. Podemos aplicar el corolario anterior. Se verifica pues:

$$\oint_{\mathcal{C}} \frac{dz}{iz+1} = \oint_{\mathcal{C}_1} \frac{dz}{iz+1}$$

Calculemos la integral de la derecha parametrizando \mathcal{C}_1 : $z = i + e^{it}$, $t \in [0,2\pi]$

$$\oint_{\mathcal{C}_1} \frac{dz}{iz+1} = \int_0^{2\pi} \frac{ie^{it}}{i(i+e^{it})+1} dt = \int_0^{2\pi} \frac{ie^{it}}{-1+ie^{it}+1} dt = \int_0^{2\pi} dt = 2\pi \begin{bmatrix} e^{it} & e^{i$$

Luego:

$$\oint_{\mathcal{C}} \frac{dz}{iz+1} = 2\pi$$

Teorema 3.5.8

Sea $\mathcal C$ curva del plano, cerrada, simple, suave o suave a trozos, con orientación antihoraria y sea R la región interior a $\mathcal C$. Si f(z) es una función analítica sobre $\mathcal C$ y en R, excepto posiblemente en un número finito de puntos interiores a $\mathcal C$ en cada uno de los cuales f tiene límite, entonces:

$$\oint_{\mathcal{C}} f(z)dz = 0$$

 $\underline{\text{Dem}} \text{ La haremos para el caso que } f(z) \text{ sea analítica sobre } \mathcal{C} \text{ y en } R \text{, excepto posiblemente en un único punto } z_0 \text{ interior a } R \text{ tal que } \lim_{z \to z_0} f(z) = \alpha \in \mathbb{C} \text{ existe. Dado que } \lim_{z \to z_0} |f(z)| = |\alpha| \text{ entonces existe } r_0 > 0 \text{ tal que } |f(z)| \le |\alpha| + 1 \text{ para todo } z \text{ tal que } |z - z_0| \le r_0$

Sea C_r^* : $|z - z_0| = r$ con orientación antihoraria y $0 < r \le r_0$ suficientemente pequeño para que C_r^* sea interior a C. Como sobre C, C_r^* y en la región comprendida entre ellas es f(z) analítica, entonces por el corolario 3.5.5:

$$\oint_{\mathcal{C}} f(z)dz = \oint_{\mathcal{C}_r^*} f(z)dz$$

Sobre C_r^* es $|f(z)| \le |\alpha| + 1$ así que aplicando la propiedad "ML" de acotación, se tiene:

$$\left| \oint_{\mathcal{C}_r^*} f(z) dz \right| \le (|\alpha| + 1) \cdot \log(\mathcal{C}_r^*) = (|\alpha| + 1) 2\pi r$$

Luego,

$$0 \le \left| \oint_{\mathcal{C}} f(z) dz \right| = \left| \oint_{\mathcal{C}_r^*} f(z) dz \right| \le (|\alpha| + 1) 2\pi r$$

Así, $0 \le \left| \oint_{\mathcal{C}} f(z) dz \right| \le (|\alpha| + 1) 2\pi r$, $\forall r \le r_0$

Tomando valores de r>0 cada vez más pequeños, se deduce que $|\oint_{\mathcal{C}} f(z)dz|$ es arbitrariamente pequeño, es decir:

$$\oint_{\mathcal{C}} f(z)dz = 0$$

<u>Ejemplo</u>: Calcular $\oint_{\mathcal{C}} \frac{\cos(\pi/z)}{\operatorname{Ln}(z/2)} dz$ si \mathcal{C} : |z-2|=1 (sentido antihorario).

<u>Rta</u>

La curva es cerrada, simple y suave y su orientación es antihoraria. Sea R la región interior a \mathcal{C} .

El integrando f(z) es cociente entre $N(z) = \cos(\pi/z)$ y $D(z) = \operatorname{Ln}(z/2)$. Es sencillo ver que $D_{ana}(f) = \mathbb{C} - (\{0\} \cup \{x+iy: y=0, x\leq 0\})$. Entonces f es analítica sobre \mathcal{C} y en R, excepto en $z_0 = 2$ punto interior a \mathcal{C} . Ahora bien, aplicando la regla de L'Hôpital se tiene:

$$\lim_{z \to 2} f(z) = \lim_{z \to 2} \frac{\cos(\pi/z)}{\ln(z/2)} \stackrel{\text{indet.}}{=} \lim_{z \to 2} \frac{\frac{\pi \operatorname{sen}(\pi/z)}{z^2}}{\frac{1}{z}} = \lim_{z \to 2} \frac{\pi \operatorname{sen}(\pi/z)}{z} = \frac{\pi}{2}$$

Esto muestra que f está acotada en un entorno de $z_0=2$. Luego, por el teorema anterior:

$$\oint_{\mathcal{C}} \frac{\cos(\pi/z)}{\operatorname{Ln}(z/2)} dz = 0$$

Fórmula Integral de Cauchy "FIC"

Sean $\mathcal C$ curva del plano, cerrada, simple, suave o suave a trozos, con orientación antihoraria y z_0 un punto interior a $\mathcal C$. Si f(z) es una función analítica sobre $\mathcal C$ y en la región R interior a ella, entonces:

Dem

$$\oint_{\mathcal{C}} \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

$$\oint_{\mathcal{C}} \frac{f(z)}{z - z_0} dz = \oint_{\mathcal{C}} \frac{f(z) - f(z_0) + f(z_0)}{z - z_0} dz$$

$$= \underbrace{\oint_{\mathcal{C}} \frac{f(z) - f(z_0)}{z - z_0} dz}_{(1)} + f(z_0) \underbrace{\oint_{\mathcal{C}} \frac{dz}{z - z_0}}_{(2)}$$

Como $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0)$, entonces por el corolario 3.5.8:

$$\oint_{\mathcal{C}} \frac{f(z) - f(z_0)}{z - z_0} dz = 0$$

Sea r>0 suficientemente pequeño de modo que C_r^* : $|z-z_0|=r$ sea interior a \mathcal{C} . Si la orientamos en sentido antihorario,

por el corolario 3.5.5:

$$\oint_{\mathcal{C}} \frac{dz}{z - z_0} = \oint_{\mathcal{C}_r^*} \frac{dz}{z - z_0}$$

Parametrizando C_r^* : $z=z_0+re^{it}$, $t\in[0,2\pi]$, se tiene

$$\oint_{C_r^*} \frac{dz}{z - z_0} = \int_0^{2\pi} \frac{ire^{it}}{z_0 + re^{it} - z_0} dt = i \int_0^{2\pi} dt = 2\pi i$$

Por lo tanto:

$$\oint_{C} \frac{f(z)}{z - z_0} dz = 0 + f(z_0) 2\pi i = 2\pi i f(z_0)$$

Ejemplo Suponiendo orientación antihoraria, calcular las siguientes:

a)
$$\oint_{\mathcal{C}} \frac{\cos(\pi z)}{z} dz$$
 , $\mathcal{C}: |z| = 1$.

b) $\oint_{\mathcal{C}} \frac{e^{\pi z^2}}{z^3 - 2iz} dz$, \mathcal{C} : frontera del triángulo de vértices $1, 2 \pm 2i, 2i$.

c)
$$\oint_{\mathcal{C}} \frac{3\text{Ln}(z)}{(z^2-9)\text{Ln}(z/9)} dz$$
, $\mathcal{C}: (x-4)^2+4y^2=4$.

d)
$$\oint_{\mathcal{C}} \frac{\cos(\pi z)}{z^2 - 3z} dz$$
, $\mathcal{C}: |z - 2| = 4$.

<u>Rta</u> Todas las curvas de los distintos incisos son cerradas, simples y tienen orientación antihoraria. Son suaves excepto en b) donde la curva es suave por tramos.

a)

$$\oint_{\mathcal{C}} \frac{\cos(\pi z)}{z} dz$$

 \mathcal{C} : |z| = 1

El único punto donde el integrando no es analítico es $z_0=0$, el cual es interior a \mathcal{C} .

El integrando puede escribirse como $\frac{f(z)}{z-z_0}$ donde $f(z)=\cos(\pi z)$ es analítica sobre $\mathcal C$ y en la región interior a ella. Entonces, por la FIC:

$$\oint_{\mathcal{C}} \frac{\cos(\pi z)}{z} dz = \oint_{\mathcal{C}} \frac{\cos(\pi z)}{z - 0} dz = 2\pi i f(0) = 2\pi i \cos(\pi z) \Big|_{z=0} = 2\pi i$$

$$\oint_C \frac{e^{\pi z^2}}{z^3 - 2iz} dz$$

C: frontera del triángulo de vértices $1,2 \pm 2i,2i$.

El integrando, siendo cociente de analíticas en todo el plano, deja de ser analítico en tres puntos, las raíces complejas del polinomio denominador:

$$z^{3} - 2iz = 0 \Leftrightarrow z(z^{2} - 2i) = 0 \Leftrightarrow z = 0 \lor z^{2} = 2i$$

$$z^{2} = 2i \Leftrightarrow z = \sqrt{2}e^{i\left(\frac{\pi}{2} + 2k\pi\right)/2}, k = 0, 1 \Leftrightarrow z = \sqrt{2}e^{i\pi/4} \lor z = \sqrt{2}e^{\frac{i5\pi}{4}} \Leftrightarrow$$

$$\Leftrightarrow z = \sqrt{2}\left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right) \lor z = \sqrt{2}\left(-\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}\right) \Leftrightarrow z = 1 + i \lor z = -1 - i$$

Los puntos $z_1=0$, $z_2=-1-i$ son exteriores a $\mathcal C$ en tanto $z_0=1+i$ es interior.

El integrando puede escribirse como $\frac{f(z)}{z-z_0}$ donde $f(z)=\frac{e^{\pi z^2}}{z(z+1+i)}$ es analítica sobre $\mathcal C$ y en la región interior a ella. Entonces, por la FIC:

$$\oint_{\mathcal{C}} \frac{e^{\pi z^2}}{z^3 - 2iz} dz = \oint_{\mathcal{C}} \frac{\frac{e^{\pi z^2}}{z(z+1+i)}}{z - (1+i)} dz = 2\pi i \frac{e^{\pi z^2}}{z(z+1+i)} \Big|_{z=1+i} = \frac{\pi i e^{i2\pi}}{(1+i)^2} = \frac{\pi}{2}$$

$$\oint_{\mathcal{C}} \frac{3\operatorname{Ln}(z)}{(z^2 - 9)\operatorname{Ln}(z/9)} dz$$

$$C: (x-4)^2 + 4y^2 = 4.$$

El integrando es analítico excepto en el origen, sobre el semieje real negativo y en los puntos 3 y 9 (ejercicio). Por lo tanto es analítico sobre $\mathcal C$ y en su interior excepto en el punto interior $z_0=3$, como se ve en la figura.

El integrando puede escribirse como $\frac{f(z)}{z-z_0}$ donde $f(z)=\frac{3\mathrm{Ln}(z)}{(z+3)\mathrm{Ln}(z/9)}$ es analítica sobre $\mathcal C$ y en la región interior a ella. Entonces, por la FIC:

$$\oint_{\mathcal{C}} \frac{3\operatorname{Ln}(z)}{(z^{2} - 9)\operatorname{Ln}(z/9)} dz = \oint_{\mathcal{C}} \frac{\frac{3\operatorname{Ln}(z)}{(z + 3)\operatorname{Ln}(z/9)}}{\frac{z - 3}{2}} dz = 2\pi i f(3)$$

$$= 2\pi i \frac{3\operatorname{Ln}(z)}{(z + 3)\operatorname{Ln}(z/9)} \Big|_{z=3} = \frac{i\pi\operatorname{Ln}(3)}{\operatorname{Ln}(1/3)} = \frac{i\pi\operatorname{Ln}(3)}{(-\operatorname{Ln}(3))} = -i\pi$$

$$\oint_C \frac{\cos(\pi z)}{z^2 - 3z} dz$$

$$C: |z - 2| = 4.$$

El integrando es analítico excepto en los puntos 0 y 3, ambos interiores a \mathcal{C} . Aplicando el corolario 3.5.5 vamos a "separar" en dos integrales, cada una con un único punto de no analiticidad interior.

Sean C_1 : |z| = 1, C_2 : |z - 3| = 1, ambas con orientación antihoraria. Son curvas cerradas, simples y suaves y se ajustan a las condiciones del corolario mencionado. Además, el integrando es analítico sobre C, C_1 y C_2 y en la región entre ellas. Luego,

$$\oint_{\mathcal{C}} \frac{\cos(\pi z)}{z^2 - 3z} dz = \oint_{\mathcal{C}_1} \frac{\cos(\pi z)}{z^2 - 3z} dz + \oint_{\mathcal{C}_2} \frac{\cos(\pi z)}{z^2 - 3z} dz$$

Aplicando apropiadamente el TIC a las dos integrales del miembro derecho, se tiene:

$$\oint_{\mathcal{C}_1} \frac{\cos(\pi z)}{z^2 - 3z} dz = \oint_{\mathcal{C}_1} \frac{\frac{\cos(\pi z)}{z - 3}}{\frac{z - 0}{z - 0}} dz = 2\pi i \frac{\cos(\pi z)}{\frac{z - 3}{z - 3}} \Big|_{z = 0} = 2\pi i \frac{\cos(0)}{(-3)} = -\frac{2\pi i}{3}$$

$$\oint_{\mathcal{C}_2} \frac{\cos(\pi z)}{z^2 - 3z} dz = \oint_{\mathcal{C}_2} \frac{\frac{\cos(\pi z)}{z - 3}}{z - 3} dz = 2\pi i \frac{\cos(\pi z)}{z} \Big|_{z = 3} = 2\pi i \frac{\cos(3\pi)}{3} = -\frac{2\pi i}{3}$$

Por lo tanto:

$$\oint_{\mathcal{C}} \frac{\cos(\pi z)}{z^2 - 3z} dz = -\frac{2\pi i}{3} - \frac{2\pi i}{3} = -\frac{4\pi i}{3}$$

Ejercicio: Calcular

a)

$$\oint_{\mathcal{C}} \frac{\cos(\pi z)}{z^2 - 4z} dz$$

 \mathcal{C} : |z-2|=4. Elija una orientación.

b)

$$\oint_{\mathcal{C}} \frac{e^{\frac{\operatorname{Ln}(iz)}{\operatorname{Ln}(z)}}}{z^2 + 1} dz$$

 \mathcal{C} : |z+i|=1 con orientación antihoraria.

c)

$$\oint_{\mathcal{C}} \frac{z^2}{(z^2 - 16)\left(1 + \cos\left(\frac{\pi z}{2}\right)\right)} dz$$

 \mathcal{C} : |z-4|=1 con orientación antihoraria.

Lema (optativo) Sean \mathcal{C} curva del plano, cerrada, simple, suave o suave a trozos, con orientación antihoraria y f(w) función continua sobre \mathcal{C} y en la región R interior a ella. Entonces para todo $n \in \mathbb{N}$ la función:

$$H_n(z) = \oint_{\mathcal{C}} \frac{f(w)}{(w-z)^n} dw$$

es analítica en el interior de \mathcal{C} y se verifica allí:

Fórmula Integral de Cauchy de las Derivadas "FICD"

Sean $\mathcal C$ curva del plano, cerrada, simple, suave o suave a trozos, con orientación antihoraria y z_0 un punto interior a $\mathcal C$. Si f(z) es una función analítica sobre $\mathcal C$ y en la región R interior a ella, entonces f(z) admite derivada de cualquier orden en z_0 y para todo $n \in \mathbb N$ se verifica:

$$\oint_{\mathcal{C}} \frac{f(z)}{(z-z_0)^{n+1}} dz = 2\pi i \frac{f^{(n)}(z_0)}{n!}$$

Justificación informal (optativo):

Por la FIC sabemos que para todo z_0 punto interior a $\mathcal C$ se verifica: $\oint_{\mathcal C} \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$

$$\oint_{\mathcal{C}} \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

Renombrando z como w y luego z_0 por z, podemos anotar lo anterior como la siguiente igualdad de funciones:

$$\oint_{\mathcal{C}} \frac{f(w)}{w - z} dw = 2\pi i f(z), \text{ para todo } z \text{ interior a } \mathcal{C}$$

Con la notación del lema anterior:

$$f(z) = \frac{1}{2\pi i} H_1(z)$$
, para todo z interior a \mathcal{C}

De acuerdo con el lema, $H_1(z)$ posee derivada de cualquier orden en todo punto interior a \mathcal{C} , de manera que lo mismo puede afirmarse de f(z). Además, por el mismo lema:

$$f'(z) = \frac{1}{2\pi i}H_1'(z) = \frac{1}{2\pi i}H_2(z)$$
, para todo z interior a \mathcal{C}

Del mismo modo:

$$f''(z) = \frac{1}{2\pi i} H_2'(z) = \frac{2}{2\pi i} H_3(z)$$
, para todo z interior a \mathcal{C}

$$f^{(3)}(z) = \frac{2}{2\pi i}H_3'(z) = \frac{2\times 3}{2\pi i}H_4(z)$$
, para todo z interior a \mathcal{C}

$$f^{(4)}(z) = \frac{2 \times 3}{2\pi i} H_4'(z) = \frac{2 \times 3 \times 4}{2\pi i} H_5(z)$$
, para todo z interior a \mathcal{C}

Así siguiendo, se demuestra por inducción completa:

$$f^{(n)}(z) = \frac{n!}{2\pi i} H_{n+1}(z)$$
, para todo z interior a \mathcal{C}

Es decir:

$$\oint_{\mathcal{C}} \frac{f(w)}{(w-z)^{n+1}} dw = 2\pi i \frac{f^{(n)}(z)}{n!}, \text{ para todo } z \text{ interior a } \mathcal{C}$$

En particular:

$$\oint_{\mathcal{C}} \frac{f(w)}{(w - z_0)^{n+1}} dw = 2\pi i \frac{f^{(n)}(z_0)}{n!}$$

Ejemplo Suponiendo orientación antihoraria, calcular las siguientes:

1)

$$\oint_{\mathcal{C}} \frac{\operatorname{Ln}(z/2)}{(z-2)^3} dz \, , \, \mathcal{C}: |z-3| = 2$$

2)

$$\oint_{\mathcal{C}} \frac{\operatorname{sen}(\operatorname{Ln}(z/2))}{(z-2)^2} dz, \, \mathcal{C}: |z-2| = 1$$

3)

$$\oint_{\mathcal{C}} \frac{\cos(\pi z)}{z^2(z-3)} dz$$

 \mathcal{C} la frontera del rectángulo de vértices (5,2), (-2,2), (-2,-2), (5,-2).

<u>Rta</u>

1)

$$\oint_{\mathcal{C}} \frac{\operatorname{Ln}(z/2)}{(z-2)^3} dz$$

$$C: |z - 3| = 2.$$

La curva $\mathcal C$ es cerrada, simple y suave. Su orientación es antihoraria como expresa el enunciado. Sea R la región limitada por $\mathcal C$, es decir $R=\{z\in\mathbb C\colon |z-3|\le 2\}$. Sea $f(z)=\operatorname{Ln}(z/2)$.

Se tiene: $D_{ana}(f) = \mathbb{C} - \{x + iy : y = 0 \land x \le 0\}.$

En la figura se ve que $C \subseteq D_{ana}(f)$ y $R \subseteq D_{ana}(f)$,

de modo que f es analítica sobre \mathcal{C} y en su interior.

El punto $z_0 = 2$ es interior a \mathcal{C} .

La fórmula integral de derivadas, con n=2, permite

afirmar que:

$$\oint_{\mathcal{C}} \frac{\operatorname{Ln}(z/2)}{(z-2)^3} dz = \oint_{\mathcal{C}} \frac{f(z)}{(z-2)^3} dz = 2\pi i \frac{f^{(2)}(2)}{2!} = \pi i \frac{d^2}{dz^2} (\operatorname{Ln}(z/2)) \Big|_{z=2} = \pi i \frac{d}{dz} \left(\frac{1}{z}\right) \Big|_{z=2} = \pi i \left(-\frac{1}{z^2}\right) \Big|_{z=2} = -\frac{i\pi}{4}$$

Ejemplo Suponiendo orientación antihoraria, calcular las siguientes:

1)

$$\oint_{\mathcal{C}} \frac{\operatorname{Ln}(z/2)}{(z-2)^3} dz \, , \, \mathcal{C}: |z-3| = 2$$

2)

$$\oint_{\mathcal{C}} \frac{\operatorname{sen}(\operatorname{Ln}(z/2))}{(z-2)^2} dz, \, \mathcal{C}: |z-2| = 1$$

3)

$$\oint_{\mathcal{C}} \frac{\cos(\pi z)}{z^2(z-3)} dz$$

 \mathcal{C} la frontera del rectángulo de vértices (5,2), (-2,2), (-2,-2), (5,-2).

$$\oint_{\mathcal{C}} \frac{\cos(\pi z)}{z^2(z-3)} dz$$

 $\mathcal C$ la frontera del rectángulo de vértices (5,2), (-2,2), (-2,-2), (5,-2), así que es curva cerrada, simple y suave a trozos. Su orientación es antihoraria por enunciado.

Dado que hay dos puntos interiores a $\mathcal C$ donde el integrando no es analítico (z=0 y z=3), los separamos mediante las curvas auxiliares $\mathcal C_1$: $x^2+y^2=1$, $\mathcal C_2$: $(x-3)^2+y^2=1$, ambas cerradas, simples, suaves, con orientación antihoraria. Sea R la región limitada por $\mathcal C$, $\mathcal C_1$ y $\mathcal C_2$, es decir

$$R = \{x + iy \in \mathbb{C}: -1 \le x \le 4, -1 \le y \le 1, x^2 + y^2 \ge 1, (x - 3)^2 + y^2 \ge 1\}.$$

Sea $f(z) = \frac{\cos(\pi z)}{z^2(z-3)}$. Se tiene: $D_{\mathrm{ana}}(f) = \mathbb{C} - \{0,3\}$.

Es claro entonces que C, C_1 , $C_2 \subseteq D_{ana}(f)$ y $R \subseteq D_{ana}(f)$.

Aplicando la generalización del teorema de

Cauchy-Goursat:

La función $f_1(z) = \frac{\cos(\pi z)}{z-3}$ es analítica sobre \mathcal{C}_1 y en su interior. El punto $z_0 = 0$ es interior a \mathcal{C}_1 . Por la fórmula de las derivadas (n = 1):

$$I_1 = \oint_{\mathcal{C}_1} \frac{\cos(\pi z)}{z^2(z-3)} dz = \oint_{\mathcal{C}_1} \frac{\frac{\cos(\pi z)}{z-3}}{z^2} dz = \oint_{\mathcal{C}_1} \frac{f_1(z)}{(z-0)^2} dz =$$

$$= 2\pi i f_1'(0) = 2\pi i \frac{d}{dz} \left(\frac{\cos(\pi z)}{z - 3} \right) \Big|_{z=0} =$$

$$= 2\pi i \frac{d}{dz} \left(\frac{-\pi \operatorname{sen}(\pi z)(z-3) - \cos(\pi z)}{(z-3)^2} \right) \Big|_{z=0} = -\frac{2\pi i}{9}$$

La función $f_2(z) = \frac{\cos(\pi z)}{z^2}$ es analítica sobre \mathcal{C}_2 y en su interior. El punto $z_0 = 3$ es interior a \mathcal{C}_2 . Por la fórmula integral de Cauchy:

$$I_{2} = \oint_{\mathcal{C}_{1}} \frac{\cos(\pi z)}{z^{2}(z-3)} dz = \oint_{\mathcal{C}_{1}} \frac{\frac{\cos(\pi z)}{z^{2}}}{z-3} dz = \oint_{\mathcal{C}_{1}} \frac{f_{2}(z)}{z-3} dz =$$

$$= 2\pi i f_2(3) = 2\pi i \frac{\cos(\pi z)}{z^2} \Big|_{z=3} = -\frac{2\pi i}{9}$$

Por lo tanto,

$$\oint_{\mathcal{C}} \frac{\cos(\pi z)}{z^2(z-3)} dz = I_1 + I_2 = -\frac{2\pi i}{9} - \frac{2\pi i}{9} = -\frac{4\pi i}{9}$$

<u>Ejercicio</u>: Con orientación antihoraria, calcular a)

$$\oint_{\mathcal{C}} \frac{\operatorname{Ln}(z/2)}{(z^2 - 4)^2} dz$$

 \mathcal{C} frontera del triángulo de vértices: 1-2i, 3, 1+2i.

b)

$$\oint_{\mathcal{C}} \frac{\operatorname{Ln}(i-z)}{z^2 \operatorname{Ln}(i+z)} dz$$

C: |z| = 0.5

c)

$$\oint_{\mathcal{C}} \frac{e^{-i\pi z}}{(z-2)^2 z} dz$$

$$C: |z - 1| = 2$$