Multinomial Logistic Regression

The Basics

Dr. Maria Tackett

11.04.19

Click for PDF of slides

Announcements

- Reading 11 for Monday
- HW 05 due Wed, Nov 6 at 11:59p
- Extra credit

HW 03 data analysis

Multinomial Logistic Regression

Generalized Linear Models (GLM)

- In practice, there are many different types of response variables including:
 - Binary: Win or Lose
 - Nominal: Democrat, Republican or Third Party candidate
 - Ordered: Movie rating (1 5 stars)
 - and others...
- These are all examples of **generalized linear models**, a broader class of models that generalize the multiple linear regression model
- See <u>Generalized Linear Models: A Unifying Theory</u> for more details about GLMs

Binary Response (Logistic)

■ Given
$$P(y_i = 1 | x_i) = p_i$$
 and $P(y_i = 0 | x_i) = 1 - p_i$
$$\log \left(\frac{p_i}{1 - p_i} \right) = \beta_0 + \beta_1 x_i$$

• We can calculate p_i by solving the logit equation:

$$p_i = \frac{\exp\{\beta_0 + \beta_1 x_i\}}{1 + \exp\{\beta_0 + \beta_1 x_i\}}$$

Binary Response (Logistic)

• Suppose we consider y = 0 the *baseline category* such that

$$P(y_i = 0|x_i) = p_{i0}$$
 and $P(y_i = 1|x_i) = p_{i1}$

■ Then the logit model is

$$\log\left(\frac{p_{i1}}{p_{i0}}\right) = \beta_0 + \beta_1 x_i$$

- Slope, β_1 : When x increases by one unit, the odds of Y=1 versus the baseline Y=0 are expected to multiply by a factor of $\exp\{\beta_1\}$
- Intercept, β_0 : When x = 0, the odds of y = 1 versus the baseline y = 0 are expected to be $\exp{\{\beta_0\}}$

Multinomial response variable

- Suppose the response variable y is categorical and can take values 1, 2, ..., k such that (k > 2)
- Multinomial Distribution:

$$P(Y = 1) = p_1, P(Y = 2) = p_2, \dots, P(Y = k) = p_k$$

such that
$$\sum_{j=1}^{k} p_j = 1$$

Multinomial Logistic Regression

- If we have an explanatory variable x, then we want $P(y = j) = p_j$ to be a function of x
- Choose a baseline category. Let's choose y = 1. Then,

$$\log\left(\frac{p_{ij}}{p_{i1}}\right) = \beta_{0j} + \beta_{1j}x_i$$

- In the multinomial logistc model, we have a separate equation for each category of the response relative to the baseline cateogry
 - If the response has k possible categories, there will be k-1 equations as part of the multinomial logistic model

Multinomial Logistic Regression

- Suppose we have a response variable Y that can take three possible outcomes that are coded as "1", "2", "3"
- Let "1" be the baseline category. Then

$$\log\left(\frac{p_{i2}}{p_{i1}}\right) = \beta_{02} + \beta_{12}X_i$$

$$\log\left(\frac{p_{i3}}{p_{i1}}\right) = \beta_{03} + \beta_{13}X_i$$

Multinomial Regression in R

Use the multinom() function in the nnet package

```
library(nnet)
my.model <- multinom(Y ~ X1 + X2 + ... + XP, data=my.data)
tidy(my.model, exponentiate = FALSE) #display log-odds model</pre>
```

```
# calculate predicted probabilities
pred.probs <- predict(my.model, type = "probs")</pre>
```


NHANES Data

- National Health and Nutrition Examination Survey is conducted by the National Center for Health Statistics (NCHS)
- The goal is to "assess the health and nutritional status of adults and children in the United States"
- This survey includes an interview and a physical examination

NHANES Data

- We will use the data from the **NHANES** R package
- Contains 75 variables for the 2009 2010 and 2011 2012 sample years
- The data in this package is modified for educational purposes and should **not** be used for research
- Original data can be obtained from the <u>NCHS website</u> for research purposes
- Type **?NHANES** in console to see list of variables and definitions

NHANES: Health Rating vs. Age & Physical Activity

- Question: Can we use a person's age and whether they do regular physical activity to predict their self-reported health rating?
- We will analyze the following variables:
 - **HealthGen:** Self-reported rating of participant's health in general. Excellent, Vgood, Good, Fair, or Poor.
 - **Age:** Age at time of screening (in years). Participants 80 or older were recorded as 80.
 - PhysActive: Participant does moderate to vigorous-intensity sports, fitness or recreational activities

The data

Variables: 4

```
library(NHANES)

nhanes_adult <- NHANES %>%
  filter(Age >= 18) %>%
  select(HealthGen, Age, PhysActive) %>%
  drop_na() %>%
  mutate(obs_num = 1:n())

glimpse(nhanes_adult)

## Observations: 6,710
```

\$ HealthGen <fct> Good, Good, Good, Vgood, Vgood

Exploratory data analysis

Exploratory data analysis

HealthGen vs. Age and PhysActive

Put results = "hide" in the code chunk header to suppress convergence output

HealthGen vs. Age and PhysActive

```
tidy(health_m, exponentiate = FALSE, conf.int = TRUE) %>%
kable(digits = 3, format = "markdown")
```

y.level	term	estimate	std.error	statistic	p.value	conf.low	conf.high
Vgood	(Intercept)	1.205	0.145	8.325	0.000	0.922	1.489
Vgood	Age	0.001	0.002	0.369	0.712	-0.004	0.006
Vgood	PhysActiveYes	-0.321	0.093	-3.454	0.001	-0.503	-0.139
Good	(Intercept)	1.948	0.141	13.844	0.000	1.672	2.223
Good	Age	-0.002	0.002	-0.977	0.329	-0.007	0.002
Good	PhysActiveYes	-1.001	0.090	-11.120	0.000	-1.178	-0.825
Fair	(Intercept)	0.915	0.164	5.566	0.000	0.592	1.237
Fair	Age	0.003	0.003	1.058	0.290	-0.003	0.009
Fair	PhysActiveYes	-1.645	0.107	-15.319	0.000	-1.856	-1.435
Poor	(Intercept)	-1.521	0.290	-5.238	0.000	-2.090	-0.952
Poor	Age	0.022	0.005	4.522	0.000	0.013	0.032
Poor	PhysActiveYes	-2.656	0.236	-11.275	0.000	-3.117	-2.194

Interpreting coefficients

- 1. What is the model baseline category?
- 2. Write the model for the odds that a person rates themselves as having "Fair" health versus the model baseline category.
- 3. Interpret the coefficient for Age in terms of the odds that a person rates themselves has having "Poor" heath versus the model's baseline category

Calculating probabilities

• For $j=2,\ldots,k$, we calculate the probabilities, p_{ij} as

$$p_{ij} = \frac{\exp\{\beta_{0j} + \beta_{1j}X_i\}}{1 + \sum_{j=2}^{k} \exp\{\beta_{0j} + \beta_{1j}X_i\}}$$

lacktriangle For the baseline category, j=1, we calculate the probability p_{i1} as

$$p_{i1} = 1 - \sum_{j=2}^{k} p_{ij}$$

Model assessment

For each category of the response, *j*:

- Analyze a plot of the binned residuals vs. predicted probabilities
- Analyze a plot of the binned residuals vs. each continuous predictor variable
- Look for any patterns in the residuals plots
- For each categorical predictor variable, examine the average residuals for each category of the response variable

NHANES: Predicted probabilities

0.156 0.397 0.349 0.0894 0.00865

0.156 0.396 0.353 0.0883 0.00791

```
#calculate predicted probabilities
pred_probs <- as.tibble(predict(health_m, type = "probs")) %>%
                         mutate(obs num = 1:n())
pred_probs %>%
  slice(1:10)
## # A tibble: 10 x 6
##
      Excellent Vgood Good Fair Poor obs_num
          <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
                                             <int>
##
##
        0.0707 0.243 0.457 0.196 0.0328
##
        0.0707 0.243 0.457 0.196 0.0328
##
        0.0707 0.243 0.457 0.196 0.0328
##
        0.0700 0.244 0.437 0.203 0.0454
##
        0.155 0.392 0.360 0.0859 0.00648
##
        0.155 0.392 0.360 0.0859 0.00648
                                                 6
##
        0.155 0.392 0.360 0.0859 0.00648
##
   8
        0.156 0.400 0.343 0.0916 0.0103
                                                 8
```

9

10

##

##

10

NHANES: Residuals

```
#calculate residuals
residuals <- as.tibble(residuals(health_m)) %>% #calculate residu
  setNames(paste('resid.', names(.), sep = "")) %>% #update column
  mutate(obs_num = 1:n()) #add obs number

residuals %>%
  slice(1:10)
```

```
## # A tibble: 10 x 6
     resid.Excellent resid.Vgood resid.Good resid.Fair resid.Poor obs_num
##
##
               <dbl>
                           <dbl>
                                      <dbl>
                                                < dbl >
                                                           <fdb>>
                                                                   <int>
                          -0.243
                                     0.543
                                              -0.196
##
   1
             -0.0707
                                                        -0.0328
                                                                       1
##
   2
             -0.0707
                          -0.243
                                     0.543
                                              -0.196
                                                        -0.0328
                                                                       3
##
             -0.0707
                          -0.243
                                     0.543
                                              -0.196
                                                        -0.0328
##
             -0.0700
                          -0.244
                                     0.563
                                              -0.203
                                                        -0.0454
##
   5
                          0.608
                                     -0.360
                                                                       5
             -0.155
                                              -0.0859
                                                        -0.00648
##
                           0.608
                                     -0.360
                                              -0.0859
                                                        -0.00648
                                                                       6
             -0.155
##
   7
                                                                       7
             -0.155
                           0.608
                                     -0.360
                                              -0.0859
                                                        -0.00648
##
   8
             -0.156
                           0.600
                                     -0.343
                                              -0.0916
                                                        -0.0103
                                                                       8
##
   9
                                                                       9
             -0.156
                           0.603
                                     -0.349
                                              -0.0894
                                                        -0.00865
##
  10
             -0.156
                          -0.396
                                     -0.353
                                               0.912
                                                        -0.00791
                                                                      1-0
```


Make "augmented" dataset

\$ resid.Fair

```
health_m_aug <- inner_join(nhanes_adult, pred_probs) #add pred pro
  health_m_aug <- inner_join(health_m_aug, residuals) #add residuals
  health_m_aug %>%
        glimpse()
## Observations: 6,710
## Variables: 14
## $ HealthGen
                                                             <fct> Good, Good, Good, Vgood, Vgood,
## $ Age
                                                             <int> 34, 34, 34, 49, 45, 45, 45, 66, 58, 54, 50, 33,
## $ PhysActive
                                                             <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1
## $ obs num
## $ Excellent
                                                             <dbl> 0.07069715, 0.07069715, 0.07069715, 0.07003173,
## $ Vgood
                                                             <dbl> 0.2433979, 0.2433979, 0.2433979, 0.2444214, 0.39
## $ Good
                                                             <dbl> 0.4573727, 0.4573727, 0.4573727, 0.4372533, 0.35
## $ Fair
                                                             <dbl> 0.19568909, 0.19568909, 0.19568909, 0.20291032,
## $ Poor
                                                             <dbl> 0.032843150, 0.032843150, 0.032843150, 0.0453833
## $ resid.Excellent <dbl> -0.07069715, -0.07069715, -0.07069715, -0.07069715,
## $ resid.Vgood
                                                             <dbl> -0.2433979, -0.2433979, -0.2433979, -0.2444214,
                                                            <dbl> 0.5426273, 0.5426273, 0.5426273, 0.5627467, -0.3
## $ resid.Good
```

<dbl> -0.19568909, -0.19568909, -0.19568909, -0.202910

Binned residuals vs. pred. probabilities

Binned residuals vs. Age

Residuals vs. PhysActive

Actual vs. Predicted Health Rating

- We can use our model to predict a person's health rating given their age and whether they exercise
- For each observation, the predicted health rating is the one with the highest predicted probability

```
health_m_aug <-
  health_m_aug %>%
  mutate(pred_health = predict(health_m, type = "class"))
```


Actual vs. Predicted Health Rating

```
health m aug %>%
  count(HealthGen, pred_health, .drop = FALSE) %>%
  pivot_wider(names_from = pred_health, values_from = n)
## # A tibble: 5 x 6
##
   HealthGen Excellent Vgood Good Fair Poor
  ##
## 1 Excellent
                      550
                           223
                                       0
## 2 Vgood
                   0 1376 785
## 3 Good
                   0 1255 1399
## 4 Fair
                          642
                   0 300
## 5 Poor
                    24
                         156
#rows = actual, columns = predicted
```


Predictions

```
## # A tibble: 5 x 6
    Excellent Vgood Good Fair Poor pred_health
##
        <dbl> <dbl> <dbl> <dbl>
                                   <dbl> <fct>
##
## 1
       0.0707 0.243 0.457 0.196
                                0.0328
                                        Good
## 2
       0.0707 0.243 0.457 0.196
                                 0.0328 Good
## 3
                                 0.0328 Good
       0.0707 0.243 0.457 0.196
                                 0.0454 Good
## 4
       0.0700 0.244 0.437 0.203
## 5
       0.155 0.392 0.360 0.0859 0.00648 Vgood
```

