# Introduzione agli Algoritmi Genetici ed alle Reti Neurali

Maurizio Palesi

### Sommario

- Algoritmi Genetici
  - Introduzione e applicazioni
  - → Terminologia
  - Mutazione, ricombinazione, selezione
  - → Problemi e regole euristiche
- Reti Neurali Artificiali
  - Introduzione e applicazioni
  - Differenze con computer seriale
  - Perceptrone e perceptrone multistrato
  - → Valutazione

### Parte I

# Algoritmi Genetici

### Introduzione (1/2)

- L'obiettivo di creare l'*intelligenza artificiale* risale alle origini dell'era informatica
- Già i primi informatici inseguivano il sogno di instillare nei programmi l'intelligenza
  - La capacità di *duplicarsi* e di *imparare*, nonché quella di *controllare* l'ambiente circostante

### Introduzione (2/2)

- Il tentativo di costruire modelli per il cervello ha dato origine al settore delle reti neurali (NN)
- Quello di imitare l'apprendimento umano al settore dell'apprendimento automatico
- La simulazione dell'evoluzione biologica ha dato vita al campo della computazione evolutiva, di cui gli algoritmi genetici (GA) sono l'esempio più importante

# Ispirarsi all'Evoluzione

- Perché ispirarsi all'evoluzione per risolvere problemi computazionali?
  - →E' necessario ricercare la soluzione tra un numero enorme di possibili alternative
    - ✓ Es., Individuare una proteina con determinate proprietà tra un numero enorme di possibili sequenze di amminoacidi
  - →E' necessario che un programma funzioni anche quando l'ambiente cambia
    - ✓ Es., Problemi di controllo dei robot

### **Evoluzione**

L'evoluzione è un processo continuo distribuito su una scala temporale ampia che cambia una popolazione di organismi generando prole via via migliore attraverso la riproduzione

### Computazione Evoluzionistica

- Termine generico che indica una gamma di sistemi di risoluzione dei problemi basati sull'utilizzo del calcolatore e affini ai processi evolutivi
  - Algoritmi Genetici
  - Programmazione Evolutiva
  - Strategie Evolutive
  - Sistemi Classificatori
  - Programmazione Genetica

# **Applicazioni**

- Ottimizzazione (es., addestramento di reti neurali, minimizzazione di funzioni costo, layout di circuiti, scheduling, ...)
- Predizione (es., previsioni meteorologiche, disposizione spaziale di proteine, ...)
- Classificazione (es., verifica di qualità, ...)
- Economia (es., strategie d'offerta, valutazione del mercato, ...)
- Ecologia (es., competizione biologica, coevoluzione ospite-parassita, ...)

# Indicati per...

- Ricerca in spazi di dimensionalità elevata
  - Multimodali
  - →Non "smooth"
- Funzioni con rapporto S/N elevato
  - → Di cui non si conosce la formulazione analitica
  - O tale formulazione è estremamente complessa
- Convergenza sub-ottima ma in un tempo ragionevole

# Terminologia

- Cromosoma
  - → La codifica di una possibile soluzione per un dato problema
  - Solitamente rappresentata tarmite un array di bit o caratteri
- Gene
  - Un singolo bit o insieme di bit che codifica una parte della soluzione
- Allele
  - Uno degli elementi utilizzati per codificare i geni
- Fitness
  - Valutazione della soluzione attuale

### Simulare l'Evoluzione

- Ricombinazione
  - Generare nuove soluzioni "mescolando" due o più soluzioni esistenti
- Mutazione
  - Cambiamenti casuali nella soluzione

### Problemi di Ottimizzazione

- Lo spazio delle soluzioni possibili contiene una o più soluzioni accettabili
  - Eventualmente alcune ottime e altre sub-ottime
- Gli algoritmi di ricerca servono a localizzare tali soluzioni evitando di esplorare tutte le soluzioni possibili

# Algoritmo Genetico



# Algoritmo Genetico

- <u>1.</u> [Inizia] Genera una popolazione casuale di *n* cromosomi (soluzioni plausibili genitori)
- **2.** [Fitness] Valuta la fitness f(x) di ciascun cromosoma x nella popolazione corrente
- 3. [Nuova popolazione] Crea una nuova popolazione (prole) attraverso
  - → [Selezione] Seleziona i cromosomi genitori in base alla loro fitness
  - → [Ricombinazione] Con una certa probabilità di ricombinazione incrocia due genitori per generare un nuovo figlio. Se la ricombinazione ha probabilità nulla, il figlio è una copia esatta dei genitori
  - → [Mutazione] Con una certa probabilità di mutazione cambia gli elementi che costituiscono il figlio
  - → [Accettazione] Introduce il nuovo figlio nella popolazione
- 4. [Verifica] Se la condizione di uscita è soddisfatta, la soluzione del problema è rappresentata dall'elemento nella popolazione che presenta la migliore fitness
- 5. [Ciclo] Vai al passo 2.

### Problemi Intrinseci

- Come creare i cromosomi
  - Che tipo di codifica utilizzare
- Come selezionare i genitori per la ricombinazione
  - Nella speranza che i genitori migliori produrranno migliore prole
- Come definire la ricombinazione e la mutazione

### Codifica del Cromosoma

- Il primo passo per sviluppare un GA consiste nel definire la codifica della soluzione
  - Un cromosoma deve contenere l'informazione sulla soluzione che rappresenta
  - La codifica dipende dal problema da risolvere
    - ✓ Numeri interi, numeri reali, permutazione, alberi di parsing, ...

### Codifica del Cromosoma

- La modalità usuale di codifica consiste nell'utilizzare una stringa binaria
  - Ciascun bit nella stringa rappresenta una qualche caratteristica della soluzione
- Esempio di cromosoma
  - Rappresentazione binaria di un numero intero

Cromosoma 1: 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

Cromosoma 2: 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0

## Codifica Implicita

- La codifica binaria è la più comune codifica implicita
  - → Ogni cromosoma è una stringa di bit
  - L'implementazione di operatori genetici è immediata
  - Tuttavia non è sempre naturale per molti problemi
- <u>Esempio</u>: Problema dello zaino
  - Dato un certo numero di oggetti caratterizzati da un valore e una dimensione, massimizzare il valore degli oggetti in uno zaino che ha una capacità fissata

# Codifica Implicita

Capacità dello zaino

200

| Oggetto      | <b>Valore</b> | <b>Dimensione</b> |
|--------------|---------------|-------------------|
| Anello 1     | 20            | 5                 |
| Anello 2     | 30            | 8                 |
| Anello 3     | 35            | 7                 |
| Orologio 1   | 30            | 10                |
| Collana 1    | 50            | 15                |
| Candelabro 1 | 100           | 55                |
| Candelabro 2 | 150           | 65                |
| Quadro 1     | 200           | 70                |
| Quadro 2     | 250           | 80                |
| Quadro 3     | 100           | 50                |
| Quadro 4     | 120           | 60                |
| Pelliccia    | 150           | 120               |
|              |               | •••               |

### Cromosoma

| Anello 1     | 1 |
|--------------|---|
| Anello 2     | 1 |
| Anello 3     | 0 |
| Orologio 1   | 1 |
| Collana 1    | 1 |
| Candelabro 1 | 0 |
| Candelabro 2 | 0 |
| Quadro 1     | 1 |
| Quadro 2     | 0 |
| Quadro 3     | 0 |
| Quadro 4     | 0 |
| Pelliccia    | 0 |
|              |   |

### Codifica di Permutazioni

- Problema del commesso viaggiatore
  - →E' dato un insieme di città e le corrispondenti distanze a coppie
  - Il commesso viaggiatore deve visitarle tutte ma non vuole viaggiare più del necessario
  - →Scopo:
    - ✓ Trovare una sequenza di città che minimizza la distanza percorsa
  - →II cromosoma descrive l'ordine delle città visitate

- Sede di lavoro Springfield
- In programma la visita di
  - →Oldtown
  - → Midtown
  - → Newtown
- Si parte in auto da Springfield e si torna a Springfield
- Scopo: minimizzare i costi (tempo e/o benzina)
  - Minimizzare la lunghezza totale del tragitto

|             | Springfield | Oldtown | Midtown | Newtown |
|-------------|-------------|---------|---------|---------|
| Springfield | 0           | 54      | 17      | 79      |
| Oldtown     | 54          | 0       | 49      | 104     |
| Midtown     | 17          | 49      | 0       | 91      |
| Newtown     | 79          | 109     | 91      | 0       |

| Itinerario | Distanza totale    |   |     |  |  |  |  |
|------------|--------------------|---|-----|--|--|--|--|
| S-O-M-N-S  | 54 + 49 + 91 + 79  | = | 273 |  |  |  |  |
| S-O-N-M-S  | 54 + 104 + 91 + 17 | = | 266 |  |  |  |  |
| S-M-N-O-S  | 17 + 91 + 109 + 54 | = | 271 |  |  |  |  |
| S-M-O-N-S  | 17 + 49 + 104 + 79 | = | 249 |  |  |  |  |
| S-N-O-M-S  | 79 + 109 + 49 + 17 | = | 254 |  |  |  |  |
| S-N-M-O-S  | 79 + 91 + 49 + 54  | = | 273 |  |  |  |  |



- Quanti sono i possibili itinerari?
- ■3 città
  - 3 possibilità per la prima città
  - 2 possibilità per la seconda città
  - →1 possibilità per la terza città

$$3 \times 2 \times 1 = 6$$

- Quanti sono i possibili itinerari?
- ■10 città
  - →10 possibilità per la prima città
  - →9 possibilità per la seconda città
  - →8 possibilità per la terza città
  - **→**...
  - →1 possibilità per la decima città

$$10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 =$$

= 10! = 3.628.800

| Città | Numero di possibili itinerari |              |
|-------|-------------------------------|--------------|
| 10    | 3628800                       |              |
| 11    | 39916800                      |              |
| 12    | 479001600                     | 1 valutazion |
| 13    | 6227020800                    |              |
| 14    | 87178291200                   |              |
| 15    | 1307674368000                 |              |
| 16    | 20922789888000                |              |
| 17    | 355687428096000               |              |
| 18    | 6402373705728000              |              |
| 19    | 121645100408832000            |              |
| 20    | 2432902008176640000           |              |
| 21    | 51090942171709400000          |              |
| 22    | 1124000727777610000000        |              |
| 23    | 25852016738885000000000       |              |
| 24    | 62044840173323900000000       |              |
| 25    | 15511210043331000000000000    | 4918572      |
|       |                               |              |

# Codifica Esplicita

Il cromosoma è una sequenza di valori connessi al problema

| Tempo di | Temperatura | Quantità | Quantità |           | Quantità |
|----------|-------------|----------|----------|-----------|----------|
| cottura  | di cottura  | di sale  | di pepe  | Coperchio | di vino  |
| (sec)    | (°C)        | (gr)     | (gr)     | (Si/No)   | (ml)     |
|          |             |          |          |           |          |
| 30       | 120         | 15       | 5        | No        | 100      |

- Rappresenta la scelta migliore per l'ottimizzazione in spazi multidimensionali e/o multimodali
  - Gli operatori di ricombinazione e mutazione richiedono specifici controlli di consistenza

### Selezione

- In accordo alla teoria evoluzionistica di Darwin il migliore cromosoma sopravvive per creare nuova prole
- Per selezionare il migliore cromosoma esistono diversi criteri
  - Ordinamento (priorità diretta ai cromosomi che si sono espressi meglio)
  - Casualità (metodo della roulette)
  - **→**...

### **Selezione Tramite Roulette**

- Gli individui sono selezionati proporzionalmente alla loro fitness
  - Migliore essa è e più alta è la probabilità di selezione
- 1. Si immagina una roulette dove sono sistemati tutti i cromosomi della popolazione
- 2. La dimensione della sezione nella roulette è proporzionale al valore della fitness di ciascun cromosoma
- 3. La pallina viene lanciata all'interno della roulette e il cromosoma in corrispondenza del quale si ferma è quello selezionato



### Roulette

| Numero di individui      | 1    | ۲    | ٣    | 3    | 0    | ٦    | γ    | ٨    | ٩    | ١.   | 11   |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Fitness                  | ۲,٠  | ۸, ۱ | ۲,۱  | ٤, ١ | ۲, ۱ | ١,٠  | ٠,٨  | ۲,٠  | ٤, ٠ | ۲,٠  | ٠,٠  |
| Probabilità di selezione | ٠,١٨ | ۲۱,٠ | ٠,١٥ | ٠,١٣ | ٠,١١ | ٠,٠٩ | ٠,٠٧ | ٠,٠٦ | ٠,٠٣ | ٠,٠٢ | ٠,٠٠ |

- Generazione casuale di 6 numeri
  - →0.81, 0.32, 0.96, 0.01, 0.65, 0.42



- 0.0 0.18 0.34 0.49 0.62 0.73 0.82 0.95 1.0
- Dopo la selezione la nuova popolazione è costituita dai seguenti individui
  - **→**1, 2, 3, 5, 6, 9

### Operatore di Ricombinazione

- Il processo di ricombinazione opera su geni selezionati dal cromosoma genitore e crea nuova prole
  - →1. Selezione casuale di un *punto di* ricombinazione all'interno del cromosoma
  - 2. Copia tutti i geni precedenti questo punto dal primo genitore e poi copia tutti i geni successivi a questo punto dal secondo genitore

### Operatore di Ricombinazione



- La ricombinazione dipende principalmente dalla codifica dei cromosomi
- Una ricombinazione specifica per un dato problema può migliorare o ridurre le prestazioni di un GA

### Operatore di Mutazione

- Dopo la ricombinazione interviene il processo di mutazione
- Cambia in modo casuale un numero contenuto di bit da 0 a 1 o viceversa da 1 a 0



# Operatore di Mutazione

- La mutazione è concepita per evitare la possibile caduta delle soluzioni della popolazione in ottimi locali
- Anche la mutazione dipende dal tipo di codifica dei cromosomi
  - → Es., se si codifica per permutazioni, la mutazione può essere effettuata come scambio tra due geni

### Ricombinazione

- Per la codifica binaria esistono diverse modalità
  - Ricombinazione da un singolo punto
  - → Ricombinazione da due punti
  - → Ricombinazione uniforme
  - Ricombinazione aritmetica

#### Ricombinazione da Singolo Punto

Selezionato il punto all'interno del cromosoma, la stringa binaria compresa tra l'inizio e il punto di ricombinazione è copiata dal primo genitore, il resto è copiato dal secondo genitore



#### Ricombinazione da Due Punti

Selezionati i due punti all'interno del cromosoma, la stringa binaria compresa tra l'inizio e il primo punto di ricombinazione è copiata dal primo genitore, la parte compresa tra il primo e il secondo punto è copiata dal secondo genitore, la parte compresa tra il secondo punto e la fine del cromosoma è copiata ancora dal primo genitore



#### Ricombinazione Uniforme

I bit sono copiati casualmente dal primo o dal secondo genitore



#### Ricombinazione Aritmetica

La ricombinazione avviene attraverso l'uso degli operatori aritmetici e/o logici



## Problemi e Regole Euristiche

- Funzione costo
- Dimensione della popolazione
  - → Ridotta: convergenza veloce
  - Ampia: evitano ottimi locali ma il costo computazionale può essere critico
  - → Di solito 30-50 individui rappresentano un compromesso adeguato
- Il tasso di ricombinazione dovrebbe essere alto
  - Intorno al 90%
- Il tasso di mutazione dovrebbe essere basso
  - Circa 1% per allele
- L'elitismo dovrebbe essere implementato se non si prevedono altri meccanismi che tengono memoria delle soluzioni migliori
  - Problema della convergenza prematura

# Parte II Reti Neurali Artificiali

#### Il Dilemma dell'IA

- I computer sono eccellenti nel calcolo, ma falliscono quando si cerca di riprodurre attività tipicamente umane
  - Percezione sensoriale
  - Coordinamento senso-motorio
  - Riconoscimento di immagini
  - Capacità di adattamento

### Gli Scacchi

- Ogni posizione ammette in media 20 mosse legali
- Lo spazio di ricerca è immenso (10<sup>120</sup>)
- Potenza attuale dei computer
  - →10<sup>8</sup> 10<sup>9</sup> posizioni/sec
- Ricerca esaustiva
  - $\rightarrow 10^{111} \text{ s (U} \approx 10^{17} \text{ s)}$
  - →10<sup>94</sup> U

#### Bambino batte Computer 3 a 0

- Sebbene un computer possa battere il campione del mondo di scacchi, esso non è in grado di competere con un bambino di 3 anni nel
  - → Costruire con il Lego
  - Riconoscere il volto di una persona
  - Riconoscere la voce dei genitori

#### **Problema**

- Le azioni complesse dipendono da molti fattori, che non possono essere previsti esattamente in un programma
- Tali fattori devono essere acquisiti con *l'esperienza*, in una fase di *apprendimento*

## Esempi

- Afferraggio di un oggetto è determinato da numerosi fattori
  - La posizione dell'oggetto
  - →La nostra postura
  - → La dimensione e la forma dell'oggetto
  - Il peso previsto
  - Gli eventuali ostacoli interposti

#### Riconoscimento del Parlato

- Richiede una fase di apprendimento necessaria per
  - Adattarsi al soggetto che parla
  - → Filtrare i rumori esterni
  - → Separare eventuali altre voci

## Riconoscimento delle Immagini



# L'Approccio Neuronale

- L'estrema difficoltà di trattare questi problemi con il calcolatore ha fatto nascere l'esigenza di studiare nuove metodologie di calcolo, ispirate alle reti neuronali
  - Medici
    - ✓ Studi sul cervello
  - →Ingegneri
    - ✓ Risoluzioni di problemi

#### Evoluzione della Ricerca

- 1943, McCulloch e Pitts: nasce il primo modello neurale: il neurone binario a soglia
- 1949, Hebb: dagli studi sul cervello, emerge che l'apprendimento non è una proprietà dei neuroni, ma è dovuto a una modifica delle sinapsi
- 1962, Rosenblatt: propone un nuovo modello di neurone capace di apprendere mediante esempi: il perceptron
- 1969, Minsky e Papert: dimostrano i limiti del perceptron: crolla l'entusiasmo sulle reti neurali

#### Evoluzione della Ricerca

- 1982, Hopfield: propone un modello di rete per realizzare memorie associative
- 1982, Kohonen: propone un tipo di rete autoorganizzante (mappe recettive)
- 1985, Rumelhart, Hinton e Williams: formalizzano l'apprendimento di reti neurali con supervisione (Back-Propagation)

#### Introduzione alle Reti Neurali

- Il cervello è un calcolatore e come tale può essere riprodotto in una macchina
- E' un calcolatore che opera in parallelo, diversamente dai calcolatori tradizionali che operano in modo seriale

#### A Cosa Servono?

- Le reti neurali offrono i seguenti specifici vantaggi nell'elaborazione dell'informazione
  - Apprendimento basato su esempi (non è richiesta l'elaborazione di un modello aderente alla realtà)
  - Autoorganizzazione dell'informazione nella rete
  - → Robustezza ai guasti (codifica ridondante dell'informazione)
  - → Funzionamento in tempo reale (realizzazione HW)

## Computer Seriale (1/2)

- Processore molto veloce (10<sup>6</sup> operazioni al secondo)
- Tre tipi di memoria
  - Memoria che contiene le istruzioni
  - Memoria temporanea per i dati
  - Memoria permanente
- Programma: istruzioni organizzate in modo gerarchico e tabelle di consultazione
- L'informazione viene elaborata sequenzialmente utilizzando regole e conoscenze predefinite

## Computer Seriale (2/2)

- Molto rapido ed efficiente in particolare in compiti difficili per gli esseri umani
  - Calcoli complessi, rotazioni di immagini tridimensionali, memorizzazione di grandi quantità di dati
  - ...che possiedono una soluzione analitica
- Inefficienti in compiti facili da risolvere per gli esseri umani
  - Ttrasformazioni sensorimotorie, riconoscimento visivo

#### Cervello

- 10¹¹ neuroni che comunicano in media con 10⁴ altri neuroni
- Ciascun neurone è un elemento di elaborazione che emette una risposta in funzione del segnale globale in ingresso e della propria soglia di attivazione
- Non esiste una distinzione tra elementi di elaborazione e sistemi di immagazzinamento dell'informazione
- Le conoscenze sono incorporate nelle connessioni (sinapsi)

#### Differenze Cruciali

#### Cervello

- → Elaborazione in parallelo
- Elaborazione distribuita: molti neuroni sono coinvolti nella stessa operazione
- Accesso alle conoscenze per contenuto
- Apprendimento: modifica delle connessioni sinaptiche
- → Codifica sub-simbolica

#### Calcolatore tradizionale

- → Elaborazione seriale
- Accesso alle conoscenze per indirizzamento
- → Richiedono programmi che contengano tutte le istruzioni necessarie a risolvere un compito
- Codifica simbolica
- Manipolazione di simboli

### Le Reti Neurali

- Che cosa sono le Reti Neurali?
  - → Sono sistemi di elaborazione composti da unità di calcolo (nodi, processori) operanti in parallelo, collegati da connessioni (pesi) attraverso cui viene trasferita l'informazione
  - Ogni unità può ricevere e inviare informazione ad una o più unità contemporaneamente, l'informazione quindi è distribuita nel sistema

## Il Neurone Artificiale



#### Critiche al Modello di McCulloch-Pitts

- I neuroni reali non possono essere ridotti ad un dipositivo a soglia
- Lo spike ha la sua forma continua che ha una durata di qualche millisecondo
- Il tempo di propagazione lungo i dendriti non viene considerato
- Gli input non sono sincroni
- Le interazioni tra input non sono lineari
- I pesi sono supposti costanti

## Il Perceptrone (Rosemblatt,



# Le Reti di Perceptroni



L'apprendimento è la modifica dei parametri in funzione dei parametri di input/output

## Le Reti di Perceptroni

#### Pattern di allenamento



## I Vari Tipi di Apprendimento

- Supervisionato (learning with a teacher)
  - Viene specificato per ogni pattern di input, il pattern desiderato in input
- Non-supervisionato (learning without a teacher)
  - I neuroni verranno associati a pattern di ingresso contigui
  - →Clustering
  - Mappe neurali

# Limiti del Perceptrone

- Per apprendere una classificazione, il problema deve essere linearmente separabile
  - →I pattern appartenenti alla classe *C* devono essere contenuti in un semipiano dello spazio d'ingresso
- Con n ingressi, lo spazio d'ingresso diventa n-dimensionale e i pattern vengono separati da un iperpiano

#### Funzioni Linearmente Separabili

Le reti di perceptroni sono efficaci soltanto se gli insiemi da classificare sono linearmente separabili



#### Reti Multistrato

- Tutti i neuroni di uno strato sono connessi con tutti i neuroni dello strato successivo
- Non esistono connessioni tra neuroni dello stesso strato



#### Reti a 3 Strati

■ Sono in grado di separare regioni convesse numero di lati ≤ numero neuroni nascosti





#### Reti a 3 Strati

■ Sono in grado di separare regioni convesse numero di lati ≤ numero neuroni nascosti





#### Reti a 3 Strati

■ Sono in grado di separare regioni convesse numero di lati ≤ numero neuroni nascosti





#### Reti a 4 Strati

Sono in gradi di separare regioni qualsiasi



#### Reti a 4 Strati

L'aggiunta di altri strati non migliora la capacità di classificazione





# Implicazioni

- Per effettuare classificazioni complesse, i neuroni devono essere non lineari ed essere organizzati su più strati
- Problemi
  - Come si addestra una rete multistrato?
  - Qual è l'uscita desiderata dei neuroni nascosti?

## Generalizzazione

- E' la capacità della rete di riconoscere stimoli leggermente diversi da quelli con cui è stata addestrata
- Per valutare la capacità della rete di generalizzare gli esempi del TS, si definisce un altro insieme di esempi, detto *Validation Set* (VS)
- Terminato l'apprendimento sul TS ( $E_{TS} < \varepsilon$ ), si valuta l'errore sul VS ( $E_{VS}$ )

# **Evaluation Overfitting**

- Quando il modello è valido?
  - Rischio di Overfitting:
    - ✓ Sovrastima sui dati di training: il modello si comporta molto bene sui dati di training solo perchè è diventato troppo specifico



Tipicamente procedendo nel training

- Errore su dati training continua a diminuire.
- Error su dati di test prima diminuisce e poi cresce

#### Soluzione:

fermarsi nel training quando l'errore nell'insieme di test inizia a crescere

## Generalizzazione (1/4)

- Il numero di parametri da regolare dipende dal numero di neuroni nascosti della rete
- Pochi neuroni nascosti potrebbero non essere sufficienti a ridurre l'errore globale



## Generalizzazione (2/4)

- Troppi neuroni nascosti potrebbero fossilizzare eccessivamente la rete sugli esempi specifici del TS
- La rete risponderebbe bene sul TS, ma l'errore sarebbe elevato su altri esempi (overtraining)



## Generalizzazione (3/4)

 Per migliorare la capacità di generalizzazione si può addestrare la rete sul TS, monitorare l'errore sul VS (E<sub>vs</sub>) e fermare l'apprendimento quando E<sub>vs</sub> < ε <sub>vs</sub>



## Generalizzazione (4/4)



#### Sommario

- Algoritmi Genetici
  - Introduzione e applicazioni
  - → Terminologia
  - Mutazione, ricombinazione, selezione
  - → Problemi e regole euristiche
- Reti Neurali Artificiali
  - Introduzione e applicazioni
  - Differenze con computer seriale
  - Perceptrone e perceptrone multistrato
  - → Valutazione