Paper / Subject Code: 29711 / Engineering Mathematics - II

FE Sem II (R-2019 C Scheme) "All Branches" June 2023

15/6/2023

(Time: 3 hours)

Max Marks: 80

Note: (1) Question No. 1 is Compulsory.

- (2) Answer any three questions from Q.2 to Q.6.
- (3) Figures to the right indicate full marks.

Q1.

a) Solve
$$(y^2e^{xy^2} + 4x^3)dx + (2xye^{xy^2} - 3y^2)dy = 0$$

b) Solve
$$(D^2 - 4D + 4)y = e^{2x} + \cos 2x$$

Show that
$$\int_0^\infty \frac{e^{-x^3}}{\sqrt{x}} dx * \int_0^\infty y^4 e^{-y^6} dy = \frac{\pi}{9}$$

Change the order of the following integration
$$I = \int_0^1 \int_{\sqrt{2x-x^2}}^{1+\sqrt{1-x^2}} f(x,y) dy dx$$

Q2.

Evaluate
$$I = \int \int \int \frac{dx \, dy \, dz}{(x^2 + y^2 + z^2)^3/2}$$
, over the volume V bounded by the spheres $x^2 + y^2 + z^2 = a^2$ and $x^2 + y^2 + z^2 = b^2$, $(b > a)$

Show that the length of the arc of the parabola $y^2 = 4ax$ from the b) 6 vertex to the end of the latus rectum is $a[\sqrt{2} + \log(1 + \sqrt{2})]$.

Solve by using method of variation of parameters c) 8

$$\frac{d^2y}{dx^2} + y = secx \ tanx$$

Q3.

Show that
$$\int_0^\pi \frac{\log(1+\cos x)}{\cos x} dx = \pi \sin^{-1} a, 0 \le a \le 1.$$
 Hence evaluate
$$\int_0^\pi \frac{\log(1+\cos x)}{\cos x} dx$$

32782

Paper / Subject Code: 29711 / Engineering Mathematics - II

b)	The second secon	
	Evaluate $I = \iint y^2 dx dy$ over the area outside $x^2 + y^2 - ax = 0$	
	and inside $x^2 + y^2 - 2ax = 0$.	6
(c)	y = 0	

Evaluate
$$I = \int_0^1 \int_0^{1-x} \int_0^{1-x-y} x^2 y z \, dx dy dz$$

Solve
$$\cosh x \frac{dy}{dx} = 2 \cosh^2 x \sinh x - y \sinh x$$

Solve
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{e^x}$$

Show that
$$\int_0^\infty \frac{dx}{(e^x + e^{-x})^n} = \frac{1}{4}\beta\left(\frac{n}{2}, \frac{n}{2}\right)$$
, hence find the value of 8

Q5.

Evaluate
$$I = \int_{-1}^{1} \int_{0}^{1-x} x^{1/3} y^{-1/2} \left((1-x-y)^{1/2} \right) dxdy$$

b) Find the

Find the area inside the circle
$$r = a$$
 and outside the cardioide
$$r = a(1 + cos\theta)$$

Solve
$$xy(1+xy^2)\frac{dy}{dx} = 1$$
Q6.

a) Solve
$$(D^2 + 2)y = x^2e^{3x} + x\sin 3x$$

b) Solve $xe^{x}(d)$

Solve
$$xe^{x}(dx - dy) + e^{x}dx + ye^{y}dy = 0$$

Change the order of:

$$I = \int_0^a \int_0^x \frac{dxdy}{(y+a)\sqrt{(a-x)(x-y)}}$$

8