FULL STACK WEB DEVELOPER

FERNANDO LIRA

INTRODUÇÃO À PROGRAMAÇÃO

APRESENTAÇÃO - FERNANDO LIRA

it.fernandolira@gmail.com

https://www.linkedin.com/in/fernandolira74/

+351 93 317 99 21

@fernandolira74

Agenda

- Introdução à Programação
- Conceitos fundamentais
- Algoritmos e seus elementos

Objetivos

- Saber o que é umalgoritmo
- Reconhecer os principais elementos de um algoritmo
- Reconhecer conceitos fundamentais associados à programação

Conceitos Fundamentais

- Dispositivo elétrico/eletrónico que manipula dados
 - Recebe inputs através de rato, teclado, placa de rede ou muitas outras fontes
 - Pode ter em conta esses inputs e dados em memória para efetuar algum processamento/transformação
 - Devolve um output para um monitor, placa de rede, impressora, etc.
- Dados são manipulados de forma automática mas de acordo com um programa
- Output para um mesmo programa pode ser diferente consoante o input

Programa

- Conjunto de instruções que implementam uma tarefa específica
- É executado por um computador, sequencialmente, instrução a instrução
- É escrito por um programador, numa linguagem de programação específica, que é depois transformado em código máquina
 - Um computador apenas consegue "ler" instruções em códigomáquina
- Podem ser expressos sob a forma de um algoritmo

8

- Arte (ou ciência?) de escrever programas de computador para resolver um determinado problema
- 1. Abstrair o problema da sua descrição
- 2. Gerar sub-problemas
- 3. Transformar sub-problemas em sub-soluções
- 4. Integrar as sub-soluções num programa funcional
- Avaliar/Testar (e repetir)

Perceber/Interpretar

Planear

Implementar

- Linguagem de programação

- Uma linguagem de programação é utilizada para criar programas que implementam algoritmos específicos
- Como qualquer outra linguagem, tem
 - Um conjunto de palavras válidas (instruções)
 - Uma sintaxe (conjunto de regras que define como a linguagem deve ser utilizada)

```
#include <stdio.h>
      void imprimeLista(int lista[], int tam)
18 □ {
          for (i=0;i<tam;i++)
21
              printf("Posição: %d | Valor: %d\n", i, lista[i]);
          printf("Fim da lista.");
25
      int main(int argc, char** argv)
29
30
          int lista[] = {3,5,3,1,2};
31
32
          imprimeLista(lista, 5);
33
          return (0);
```

- É uma sequência de passos para a realização de uma tarefa ou a resolução de um problema
- "Exemplos"
 - Receita num livro de culinária
 - Guia de reparação de uma oficina
 - O ...
- Na escrita de um algoritmo é necessário identificar
 - Dados de entrada
 - Resultados de saída esperados
 - Processo pelo qual se obtémos resultados esperados

INGREDIENTES

- 1,5 kg amēijoas depuradas
- 1 cebola
- 6 dentes de alho
- 4 c. sopa azeite
- 1 molho de coentros
- 3 c. sopa vinho branco
- 1 limão

PREPARAÇÃO

- 1. Certifique-se de que as amêijoas estão bem depuradas, lave-as em água corrente e deixe-as escorrer dentro de um coador de rede.
- Leve a cebola e os dentes de alho, finamente picados, ao lume com o azeite até comecarem a alourar.
- 3. Adicione os pés dos coentros picados, incorpore as amêijoas e mexa
- 4. Regue com o vinho branco, tape e cozinhe em lume moderado cerca de 5 minutos ou até as amêijoas abrirem, agitando o tacho de vez em quando para que todas recebam calor por igual.
- 5. Polvilhe com as folhas dos coentros e regue com o sumo do limão.

- Um algoritmo pode ser expresso de diferentes formas
 - Fluxograma
 - Pseudocódigo linguagem informal, "inventada", próxima da natural (próxs. slides)

Utilizado no início efim de um processo

Utilizado para processamento de um modogeral

Utilizado para operações de entrada e saída de dados

Utilizado para tomada dedecisões

Utilizado para mostrar informações eresultados

Início

Considere o seguinte problema: O João está na posição (3,9) e quer sair da sala

Considere uma "linguagem de programação" constituída pelas seguintes instruções
Caminhar em frente (Iquadrícula)
Caminhar para trás (Iquadrícula)

- Rodar 90º esquerda
- Rodar 90º direita
- Abrir porta
- Fechar porta
- Quais os dadosde entrada?
- Qual o resultado esperado?
- Qual a sequência de instruções necessária para o João sair da sala?

? – Algoritmos

Caminhar em frente
Rodar 90° direita
Caminhar em frente
Abbitar porta
porta

- O que acontece à medidaque cada linha do algoritmo é executada?
- Qual o resultado final?
- Pode dizer-se que o algoritmo resolve o problema?

Caminhar em frente
Rodar 90° direita
Caminhar em frente
Caminhar em frente
Caminhar em frente
Caminhar em frente
Abeniar porta
porta

Correção (Correctness)

- Um algoritmo ou programa dizse correto quando resolve o problema para o qual foi desenhado
- Um programa deve ser testado em diferentes cenários oucasos de uso
 - Há programas que resolvem apenas uma parte do problemaou que falham em determinadas condições
- O algoritmo à direita, resolve o problema?

Caminhar em frente Rodar 90° direita Caminhar em frente Rodar 90° direita Caminhar em frente Caminhar em frente Caminhar em frente Abrir porta Caminhar em frente Fechar porta

?

Outra linguagem

- Imaginemos agora que, em vez da linguagem apresentada, tínhamos ao dispor uma linguagem que nos permitia controlar cada músculo do João individualmente
 - Seria mais fácil ou mais difícil resolver o problema?
 - Teríamos maior ou menor controle sobre oJoão?
 - Implicaria maior ou menor conhecimento sobre o sistema para o qual estamos a programar? (O João)
 - O programa/algoritmo seria maior ou menor?
- E se tivéssemos que programar ao nível do cérebro e, controlando as sinapes, decidir que sinais elétricos enviar aos músculos das pernas e mãos, para assim controlar o João?

Alto nível vs. Baixo nível

- As linguagens são frequentemente caracterizadas como sendo de alto nível ou baixo nível
- Uma linguagem de baixonível
 - Está próxima do hardware, implica conhecimento dosistema
 - É geralmente mais eficiente
 - Permite major controlo
- Uma linguagem de alto nível
 - É mais abstrata, mais próxima da linguagem natural
 - Permite fazer mais com menos código
 - Tende a ser mais fácil de aprender
- Não há uma linguagem melhor ou pior, tudo depende do problema a resolver

\bigcirc

- Múltiplas Soluções

- Os dois algoritmos à direita resolvem o problema, no entanto são diferentes
- Existem muitas soluções diferentes para o mesmo problema
 - Cada programador desenvolve mecanismos mentais etécnicas de resolução de problemas próprios
 - Algumas soluções são melhores que outras

Caminhar em frente Rodar 90° direita Caminhar em frente Caminhar em frente Caminhar em frente Abrir porta Caminhar em frente Fechar porta

Caminhar em frente Caminhar para trás Caminhar para trás Rodar 90° direita Caminhar em frente Caminhar em frente Caminhar em frente Abrir porta Caminhar em frente Fechar porta

Complexidade

- Os problemas (e a sua resolução) podem ser classificados de acordo com a sua dificuldade/complexidade
- Um problema (ou um programa) mais complexo vai requerer mais recursos para ser resolvido
 - No exemplo anterior, a solução da direita tem 4 instruções a mais
- Um programador deve ter como preocupação implementar programas que façam uma gestão adequada da memória e do processamento necessário para executar o programa

Condições

- Por vezes um programa (ou nós próprios) executa(mos) instruções diferentes consoante uma determinada condição é verdadeira ou não
 - "Se está a chover, levo casaco"
 - "Se está a chover, levo casaco, senão levo camisola"
 - "Se está a chover, levo casaco, senão, se está sol, levo t-shirt, senão levo camisola"
- No exemplo do João, poderia dar-se o caso de a porta já estar aberta quando ele lá chega
- Que alterações fazer ao algoritmo?

Condições

- Estruturas de controlo condicional como o "se/senão" permitem escolher um de vários caminhos de código, segundo uma condição
 - Tal como aconteceu no fluxograma apresentado atrás
- Condições são expressões que apenas admitem um valor verdadeiro ou falso

Caminhar em frente Rodar 90° direita Caminhar em frente Caminhar em frente Caminhar em frente Se porta_aberta Caminhar em Frente Senão

Abrir Porta Caminhar em frente Fechar porta

Condições

- Estruturas de controlo condicional como o "se/senão" permitem escolher um de vários caminhos de código, segundo uma condição
 - Tal como aconteceu no fluxograma apresentado atrás
- Condições são expressões que apenas admitem um valor verdadeiro ou falso

Caminhar em frente Rodar 90° direita Caminhar em frente Caminhar em frente Caminhar em frente Se porta fechada Abrir Porta Caminhar em frente Fechar porta

Ciclos

- Há situações em que uma instrução ou conjunto de instruções iguais são repetidas N vezes
- Se a sala tivesse uma dimensão de 1000 x 1000, teríamos que escrever a instrução "Caminhar em frente" centenas de vezes

Caminhar em frente Rodar 90° direita Caminhar em frente Caminhar em frente Caminhar em frente Abrir porta Caminhar em frente Fechar porta

- Ciclos

- Algumas linguagens de programação têm mecanismos que permitem repetir uma instrução ou conjuntode instruções
- Isto permite reduzir significativamente a quantidade de código produzida (entre outras vantagens a abordarposteriormente)
- Existem diferentes tipos de ciclos

Repetir 5 vezes

Caminhar em frente
Rodar 90° direita
Repetir 3 vezes

Caminhar em frente
Abrir porta
Caminhar em frente
Fechar porta

Enquanto passos < 5
Caminhar em frente
Rodar 90° direita
Enquanto passos < 8
Caminhar em frente
Abrir porta
Caminhar em frente
Fechar porta

Ciclos

- Esta solução implica que o João tenha a capacidade de contar passos
 - Em cada momento o João tem que saber quantos passosjá deu
- Algures, na memória doJoão, existe um espaço destinado a guardar o número de passos dados
 - Este número é atualizadoa cada passo

Enquanto passos < 5
Caminhar em frente
Rodar 90° direita
Enquanto passos < 8
Caminhar em frente
Abrir porta
Caminhar em frente
Fechar porta

Variável

- Uma variável é um espaço em memória no qual é possível guardar um valor (numérico ou outro)
- A memória é constituída por muitos destes "espaços" que, enquanto programadores, podemos utilizar
- Variáveis são declaradas sempre que for necessário guardar um determinado valor ou conjunto de valores
 Há linguagens de programação (tal como o C) em que é necessário definir o tipo de
 - Há linguagens de programação (tal como o C) em que é necessário definir o tipo de uma variável no momento da sua declaração
- Uma variável é identificada por um nome (passos, no exemplo)
- Uma variável pode ser lida ou escrita pelo programa, durante a sua execução

? Variável

- Qual o valor da variável passos ao longo do programa?
 - o Admita que quando o programa começão João não tinha dado qualquer passo
- Quando o programa termina, qual o valor da variável passos?

Enquanto passos < 5
Caminhar em frente
Rodar 90° direita
Enquanto passos < 8
Caminhar em frente
Abrir porta
Caminhar em frente
Fechar porta

Traçagem (Dry Run)

- O que foi feito no slide anterior, ainda que de forma simples, é uma traçagem
 - Testar o algoritmo numa determinada situação, anotando o valor de cada variável à medida que cada instrução éexecutada
 - Permite perceber como evolui o estado doprograma
- Geralmente é feita uma tabela
 - Em cada coluna está uma variável
 - Existe uma linha por cada instrução executada
 - Em cada célula está o valor de cada variável, após a execução da instrução dessa linha

Estado

- Quando um programa está emexecução, tem dados guardados em variáveis que estão em memória
- O conteúdo de todas estas localizações de memória constituem o estado do programa
- Quando um programa não funciona como esperado, é fundamental saber o seu estado no momento do erro paraperceber em que situação e por que razão o erro ocorre
- Existem ferramentas que ajudamna inspeção do estado doprograma

Recapitulando

- O que é um algoritmo?
- Quais os principais elementos de um algoritmo?
- Como corre um programa?
- Quais os passos para programar?

The psychological profiling [of a programmer] is mostly the ability to shift levels of abstraction, from low level to high level. To see something in the small and to see something in the large.

Donald Knuth

Conceitos fundamentais

Em suma:

Linguagens + Algoritmos

Linguagem: sistema de comunicação através de signos

Algoritmo: sequência finita de instruções para a realização de uma tarefa

Computador digital

Máquina programável que processa dados, eletrónica e automaticamente, para a realização detarefas

Programação

Arte de definir um conjunto de instruções que implementam, numa *máquina* computacional, a execução de tarefas

\$

Laboratório de programação

Linguagens + Algoritmos

Computador digital

Programação

Oconhecimento

Oinstrumento

A arte

Linguagem de programação

Linguagem de programação

Para que serve uma linguagem?

Para comunicar entre duas ou mais entidades

Linguagem natural

- Descreveideias, ações, sentimentos, emoções, etc.
- Apresenta um vocabulário rico e regras gramaticais complexas
- É muitas vezes ambígua

Linguagem de programação

Linguagem de programação:

- Descreve operações a serem executadas por um computador
- Apresenta um vocabulário limitado e regras gramaticais simples
- É sempre clara e concisa

Permite que um programador especifique precisamente sobre que dados um computador vai atuar, como serão armazenados ou transmitidos estes dados e que ações devem ser tomadas em diversas circunstâncias bem definidas (por outras palavras, expressa um algoritmo que possa ser executado por um computador)

Linguagem de programação

Linguagem caracteriza-se porpossuir:

- <u>Semântica ou terminologia</u> conjunto de termos, palavras ou sinais que assumem determinados significados para o processador
- <u>Sintaxe ou conjunto de regras</u> estipulam o modo correto de utilizar e estruturar os termos da linguagem para formular instruções válidas para a máquina

O que é um computador digital?

Linguagem + Algoritmo + Computador + Processo = Programação?

Fonte: https://en.wikiversity.org/wiki/File:Programming.png

Programação

Programar é a arte (ou ciência?) de escrever programas para resolver um determinado problema.

Para os resolver, de um modo organizado e sistematizado, podemos ter em consideração a seguinte abordagem:

- ¹ Identificar o problema
- 2. Planear a solução
- 3. Escrever o programa
- 4. Verificar a solução

1 Identificar o problema

- O que é pretendidofazer?
 - Requisitos
 - Especificação

Como será feito?

3 Escrever o programa

- <u>"Instruir"</u> o computador
 - Código
 - Compilação
 - Debugging

 <u>Testar</u> para verificar se o programa faz opretendido

Destes passos, apenas o terceiro é habitualmente denominado de "programação", mas como verá mais tarde, é provavelmente o passo menos importante do processo.

Introdução à Programação

Desafios

Dado um valor inteiro de x e y, calcular a soma dos dois valores.

Dado o valor da precipitação em polegadas, fazer a conversão desse valor para milímetros.

1 pol = 2.540 cm

Dada uma temperatura em graus Celsius, converter esse valor para graus Fahrenheit.

Calcule a área (A) e o volume (V) de uma esfera, sabendo que

- A = $4 \times \pi \times r^2$
- $V = \frac{4 \times \pi \times r^3}{3}$

onde r identifica o raio da esfera.

Introdução à Programação

Desafios

Apresentar o maior de dois números inteiros x e y.

Apresentar o mínimo de três números reais x, y e z.

Numa empresa o vencimento dos colaboradores 'e calculado a partir de um vencimento base (VB) e tem em considera 'e a sua idade (ID), número de filhos (NF) e anos de serviço (AS). O cálculo do salário final 'e feito de acordo com as seguintes parcelas:

- 1% de VB para cada ano de ID superior a 25;
- 3% por cada ano de serviço até perfazer 5 anos; sendo 52 por cada ano extra;
- 2% por cada filho, considerando o valor mínimo de 2 filhos.

Calcular o valor a receber por cada colaborador da empresa. Tome como exemplo um colaborador cujo $VB = 900 \, e \, ID = 27$, $AS = 1 \, e \, NF = 1$. Para esta situação o valor final a receber será de $Vencimento \, Final = VB + 0.01 \times 2 \times VB + 0.03 \times 1 \times VB = 945$.