WSTĘP DO RACHUNKU PRAWDOPODOBIEŃSTWA 8. ZMIENNE LOSOWE CIĄGŁE.

Definicja. Zmienną losową $X:\Omega\to\mathbb{R}$ nazywamy **ciągłą**, jeśli jej dystrybuanta $F_X:\mathbb{R}\to\mathbb{R}$, zdefiniowana wzorem

$$F_X(x) = \mathbb{P}(X \leqslant x),$$

jest ciągła w każdym punkcie.

Równoważna definicja mówi, że zmienna losowa X jest ciągła, gdy nie zawiera atomów, tzn. dla każdego $x \in \mathbb{R}$ mamy $\mathbb{P}(X = x) = 0$.

Uwaga: Nie każda zmienna losowa, która nie jest dyskretna, jest ciągła, choć każdą zmienną losową można przedstawić jako sumę zmiennej losowej dyskretnej i zmiennej losowej ciągłej.

Dla wielu zmiennych losowych ciągłych X, w tym prawie wszystkich, z którymi będziemy mieć do czynienia na ćwiczeniach, istnieje funkcja $f: \mathbb{R} \to \mathbb{R}$, zwana **gęstością**, taka, że dla każdego $x \in \mathbb{R}$ mamy:

$$F_X(x) = \mathbb{P}(X \leqslant x) = \int_{-\infty}^x f(t)dt.$$

Wtedy dla prawie wszystkich $x \in \mathbb{R}$ zachodzi:

$$f(x) = F_X'(x) .$$

Uwaga: Dystrybuanta F_X jest jednoznacznie zdefiniowana dla każdej zmiennej losowej X, natomiast jej gęstość f, nawet gdy istnieje, występuje zwykle pod całką i dlatego jest zdefiniowana z dokładnością do zbioru miary zero, czyli bez żadnych konsekwencji (z wyjątkiem braku elegancji) możemy dowolnie przedefiniować ją w kilku punktach dziedziny.

Własności gęstości:

- (i) $f(x) \ge 0$ dla prawie wszystkich $x \in \mathbb{R}$;
- (ii) $\int_{-\infty}^{\infty} f(t)dt = 1$.

Twierdzenie. Niech X będzie zmienną losową ciąglą o gęstości f i niech $g: \mathbb{R} \to \mathbb{R}$ będzie dowolną funkcją ciąglą. Wtedy zachodzi:

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(t)f(t)dt.$$

W szczególności:

$$\mathbb{E}X = \int_{-\infty}^{\infty} t \cdot f(t) dt.$$

Dodatek A. Zadania na ćwiczenia

Zadanie 1. Zmienna losowa ciągła X ma dystrybuantę daną wzorem

$$F(x) = \begin{cases} 0 & \text{dla } x \leq 0, \\ cx^3 & \text{dla } 0 \leq x \leq 1, \\ 1 & \text{dla } x \geq 1, \end{cases}$$

gdzie c jest pewną stałą. Znajdź wartość stałej c. Następnie wyznacz gęstość f(x), wartość oczekiwaną $\mathbb{E}X$ i wariancje $\operatorname{Var}X$.

Zadanie 2. Gęstość zmiennej losowej X zadana jest wzorem

$$f(x) = \begin{cases} a & \text{dla } x \in (-2, -1), \\ bx & \text{dla } x \in (1, 2), \\ 0 & \text{w pozostałych przypadkach,} \end{cases}$$

gdzie a i b są pewnymi stałymi. Znajdź stałe a i b wiedząc, że $\mathbb{E}X=0$. Następnie oblicz Var X i znajdź dystrybuantę F_X tej zmiennej losowej.

Zadanie 3. Na odcinku [0,1] wybieramy losowo dwa punkty. Niech Z będzie zmienną losową oznaczającą odległość miedzy tymi punktami.

- i) Znajdź dystrybuantę F_Z , gęstość f_Z , wartość oczekiwaną $\mathbb{E} Z$ i wariancję Var Z.
- ii) Znajdź dystrybuantę F_X zmiennej losowej $X=Z^2$, jej gęstość f_X i wartość oczekiwaną $\mathbb{E}X$. Jak obliczyć $\mathbb{E}X$ bez wyznaczania gestości f_X ?

DODATEK B. ZADANIA DOMOWE

Zadanie 1. Niech

$$F(x) = \begin{cases} 0 & \text{dla } x \le 0, \\ \frac{x^3}{8} & \text{dla } 0 < x \le 2, \\ 1 & \text{dla } x > 2. \end{cases}$$

będzie dystrybuantą zmiennej losowej X. Znajdź gęstość zmiennej losowej X i oblicz $\mathbb{E} X$.

Zadanie 2. Gęstość zmiennej losowej X wyraża się wzorem

$$f(x) = \begin{cases} \frac{1}{3} & \text{dla } x \in [0, 3], \\ 0 & \text{dla } x \notin [0, 3]. \end{cases}$$

Znajdź dystrybuantę i wartość oczekiwaną tej zmiennej losowej.

Zadanie 3. Kij o długości 1 łamiemy w losowym miejscu na dwie części. Niech X oznacza długość krótszej, a Y dłuższej z dwóch części. Znajdź dystrybuantę, gęstość i wartość oczekiwaną zmiennej losowej X. Ile wynosi wartość oczekiwana zmiennej losowej Y?

Zadanie 4. Strzelamy do tarczy o kształcie kwadratu o boku 1. Jeśli miejsce trafienia odległe jest od najbliższej krawędzi kwadratu o k, wtedy wygrywamy 2k, czyli, np. gdy trafimy w środek kwadratu to wygrywamy 1. Niech X oznacza wygraną w tej grze. Znajdź dystrybuantę, gęstość i wartość oczekiwaną zmiennej losowej X.

Zadanie 5. Nasz dobry znajomy pan January przychodzi na przystanek autobusowy w losowym momencie pomiędzy 7:00 i 8:00. Według ostatnio zmienionego rozkładu autobus przyjeżdza na przystanek pana Januarego w godzinach 7:10, 7:40 i 8:05. Niech X będzie czasem oczekiwania pana Januarego na autobus mierzonym w minutach (i ułamkach minut). Znajdź dystrybuantę i gęstość zmiennej losowej X. Zakładamy, że autobusy przyjeżdżają na przystanek dokładnie zgodnie z rozkładem.

Odpowiedzi

B1
$$\mathbb{E}X = \frac{3}{2}$$

B2 $\mathbb{E}X = \frac{3}{2}$
B3

$$F(x) = \begin{cases} 0 & \text{dla } x < 0 \\ 2x & \text{dla } 0 \leqslant x \leqslant \frac{1}{2} \\ 1 & \text{dla } x > \frac{1}{2}. \end{cases}$$

$$f(x) = \begin{cases} 2 & \text{dla } 0 \leqslant x \leqslant \frac{1}{2} \\ 0 & \text{w pozostalych przypadkach.} \end{cases}$$

$$f(x) = \begin{cases} 2 & \text{dla } 0 \leqslant x \leqslant \frac{1}{2} \\ 0 & \text{w pozostałych przypadkach.} \end{cases}$$

$$\mathbb{E}X = \frac{1}{4}, \, \mathbb{E}Y = \frac{3}{4}$$
 B4

$$F(x) = \begin{cases} 0 & \text{dla } x < 0 \\ 2x - x^2 & \text{dla } 0 \le x \le 1 \\ 1 & \text{dla } x > 1. \end{cases}$$

$$f(x) = \begin{cases} 2 - 2x & \text{dla } 0 \le x \le 1\\ 0 & \text{w pozostalych przypadkach.} \end{cases}$$

$$\mathbb{E}X = \frac{1}{3}$$
B5

$$F(x) = \begin{cases} 0 & \text{dla } x < 0\\ \frac{x}{30} & \text{dla } 0 \le x < 5\\ \frac{3x - 5}{60} & \text{dla } 5 \le x < 10\\ \frac{2x + 5}{60} & \text{dla } 10 \le x < 25\\ \frac{x + 30}{60} & \text{dla } 25 \le x < 30\\ 1 & \text{dla } x \ge 30 \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{30} & \text{dla } 0 \le x < 5\\ \frac{1}{20} & \text{dla } 5 \le x < 10\\ \frac{1}{30} & \text{dla } 10 \le x < 25\\ \frac{1}{60} & \text{dla } 25 \le x < 30\\ 0 & \text{w pozostałych przypadkach} \end{cases}$$