Υλοποιημένα παραδείγματα[1]

Οι ενότητες που ακολουθούν αφορούν την επίλυση προβλημάτων με διαφορετικές μεθόδους. Τα προβλήματα συγκεντρώθηκαν και επιλύθηκαν με στόχο την σύγκριση των αποτελεσμάτων και την εξαγωγή συμπερασμάτων σε επίπεδο χρονικής επίδοσης. Παράλληλα θα σχολιαστούν επιμέρους οι διάφορες παραλλαγές επίλυσης του κάθε προβλήματος. Ο πηγαίος βρίσκεται συγκεντρωμένος στον παρακάτω σύνδεσμο:

https://github.com/gkonto/openmp/

Κάθε πρόβλημα περιέχει υποφακέλους και κάθε υποφάκελος αποτελεί μια παραλλαγή του προβλήματος.

Σχήμα 1: Διάρθρωση παραδειγμάτων στο *github.com*

Αναφορά αρχιτεκτονικής μηχανήματος

Τα προβλήματα που ακολουθούν εκτελέστηκαν σε μηχάνημα λειτουργικό *linux* και μεταγλωττιστή gcc. Οι προδιαγραφές υλικού του μηχανήματος που εκτελέστηκαν τα προβλήματα, αναφέρονται στο παρακάτω παράδειγμα:

Πίνακας 1: Χαρακτηριστικά Μηχανήματος Εκτέλεσης

Architecture	x86_64
CPU op-mode(s)	32-bit, 64-bit
CPU(s)	16
Thread(s) per core	1
Core(s) per socket	8
Socket(s)	2
NUMA node(s)	4
Model name	AMD Opteron(tm) Processor 6128 HE
L1d cache	64K
L2 cache	512K
L3 cache	5118K
Memory	16036

Παράδειγμα υπολογισμού π

Στο επόμενο παράδειγμα ακολουθεί ο υπολογισμός του αριθμού π . Το πρόβλημα ανάγεται στον υπολογισμό του παρακάτω ολοκληρώματος, με τη χρήση αριθμητικών μεθόδων:

$$\pi = \int_0^1 \frac{4.0}{(1+x^2)} \, dx$$

που υπολογίζεται αριθμητικά ως:

$$\pi \approx \sum_{k=1}^{N} F(xi)\Delta x$$

Το πρόβλημα δέχεται ως παράμετρο τον αριθμό των βημάτων της αριθμητικής ολοκλήρωσης. Όσο πιο μεγάλος είναι ο αριθμός των βημάτων, τόσο πιο ακριβής είναι και ο υπολογισμός του π .

Σειριακή εκτέλεση

Η σειριακή υλοποίηση του υπολογισμού π με χρήση αριθμητικών μεθόδων, αποτελείται από ένα βρόγχο επανάληψης. Σε κάθε επανάληψη του οποίο υπολογίζεται ένα μικρό τμήμα του συνολικού ολοκληρώματος, το ίχνος του οποίο είναι ίσο με $1/num_steps$, όπως φαίνεται παρακάτω:

Συμ6. 1: Υλοποίηση σειριακής έκδοσης υπολογισμού π

```
double pi(long num_steps) {
    int upper_limit = 1;
    double step = upper_limit / (double) num_steps;
    double sum = .0, pi = .0;

    for (int i = 0; i < num_steps; ++i)
    {
        double x = (i + 0.5) * step;
        sum += 4.0 / (1.0 + x*x);
    }
    pi = step * sum;

    return pi;
}</pre>
```

Πίνακας 2: Καταγραφή χρόνων εκτέβεσης παραδειγμάτων

Αριθμός Βημάτων	Χρόνος Υπολογισμού (sec)
100000000	2.812
200000000	5.633
30000000	8.469
40000000	11.592

1.2.1.1 Σχόλιο:

Ο συγκεκριμένος αλγόριθμος λόγω του βρόγχου επανάληψης και του αθροίσματος των δεδομένων σε μια μεταβλητή, επιδέχεται πολλών παραλλαγών που υλοποιούνται στις επόμενες παραγράφους.

Παραλλαγή 1η

Στη συγκεκριμένη περίπτωση, ο αλγόριθμος παραλληλοποιείται με τη χρήση της οδηγίας pragma omp parallel. Η επαναλήψεις του βρόγχου διαμοιράζονται στα νήματα και τα απότελεσματα των υπολογισμών του κάθε νήματος αποθηκεύονται στη σχετική θέση ενός διανύσματος. Ο τελικός υπολογισμός γίνεται σειριακά, με τη χρήση του διανύσματος αυτού.

Συμ6. 2: Υπολογισμός παραλλαγής 1

```
double pi(long num_steps) {
    int num_threads = omp_get_num_threads(), nthreads = 0;
        double pi = .0;
    double *sum = new double [num_threads];
    for (int i = 0; i < num_threads; ++i) {
        sum[i] = 0.0;
    double step= 1.0/(double) num_steps;
#pragma omp parallel
    {
        int id = omp_get_thread_num();
        int nthrds = omp_get_num_threads();
        if (id == 0) nthreads = nthrds;
        for (int i = id; i < num_steps; i += nthrds) {</pre>
            double x = (i + 0.5)*step;
            sum[id] += 4.0/(1.0 + x*x);
        }
    }
    for (int i = 0; i < nthreads; ++i) {
        pi += sum[i] * step;
    delete []sum;
    return pi;
```

Πίνακας 3: Καταγραφή χρόνων εκτέβεσης παραδειγμάτων

Αριθμός Βημάτων	Χρόνος Υπολογισμού (sec)
100000000	2.71
200000000	5.41
300000000	8.11
40000000	10.796

Παραλλαγή 2η

Στη δεύτερη παραλλαγή του προβλήματος, χρησιμοποιείται η οδηγία **pragma omp critical**. Ετσι, διασφαλίζεται η σωστή ανανέωση της μεταβλητής *pi* που προστατεύεται από φαινόμενα *race condition*.

Συμ6. 3: Υλοποίηση παραλλαγής 2

```
double pi(long num_steps) {
    int nthreads = 0;
    double pi = .0;
    int num_threads = omp_get_num_threads();
    double step= 1.0/(double) num_steps;
#pragma omp parallel
        int id = omp_get_thread_num();
        int nthrds = omp_get_num_threads();
        double sum = 0.0, x = 0.0;
        if (id == 0) nthreads = nthrds;
        for (int i = id; i < num_steps; i += nthreads) {</pre>
            x = (i + 0.5)*step;
            sum += 4.0/(1.0 + x*x);
#pragma omp critical
        pi += sum * step;
    return pi;
```

Πίνακας 4: Καταγραφή χρόνων εκτέβεσης παραδειγμάτων

Αριθμός Βημάτων	Χρόνος Υπολογισμού (sec)
100000000	2.89
200000000	5.78
300000000	8.69
40000000	11.55

1.2.3.1 Σχόλιο:

Η κακή επίδοση του αλγόριθμου, οφείλεται στο γεγονός οτι η οδηγία *pragma omp* critical επιτρέπει σε ένα νήμα κάθε φορά να ενημερώνει τη μετάβλητή, με αποτέλεσμα τα υπόλοιπα νήματα να αναμένουν την αποδέσμευσή της.

Συμ6. 4: Αρχικοποίηση τιμών διανύσματος

```
double pi(long num_steps) {
    int nthreads = 0;
    double pi = .0;
    double step= 1.0/(double)num_steps;
#pragma omp parallel
        int id = omp_get_thread_num();
        int nthrds = omp_get_num_threads();
        double sum = 0.0, x = 0.0;
        if (id == 0) nthreads = nthrds;
        for (int i = id; i < num_steps; i += nthreads) {</pre>
            x = (i + 0.5)*step;
            sum += 4.0/(1.0 + x*x);
        }
        sum *= step;
#pragma omp atomic
        pi += sum;
    return pi;
```

Πίνακας 5: Καταγραφή χρόνων εκτέβεσης παραδειγμάτων

Αριθμός Βημάτων	Χρόνος Υπολογισμού (sec)
100000000	0.207
200000000	0.387
30000000	0.579
40000000	0.761

Συμ6. 5: Αρχικοποίηση τιμών διανύσματος

```
double pi(long num_steps, int num_threads) {
    double pi = .0;
    double step= 1.0/(double)num_steps;
    double sum = 0.0;
    omp_set_num_threads(num_threads);

#pragma omp parallel
    {
        double x = 0.0;

#pragma omp for reduction(+:sum)
        for (int i = 0; i < num_steps; i++) {
            x = (i + 0.5)*step;
            sum += 4.0/(1.0 + x*x);
        }
    }
    pi = step * sum;
    return pi;
}</pre>
```

Πίνακας 6: Καταγραφή χρόνων εκτέβεσης παραδειγμάτων

Αριθμός Βημάτων	Χρόνος Υπολογισμού (sec)
100000000	0.027
200000000	0.052
300000000	0.071
40000000	0.0901

Παραλλαγή 5η

Συμβ. 6: Αρχικοποίηση τιμών διανύσματος

```
int main(int argc, char **argv) {
    Opts o;
    parseArgs(argc, argv, o);
    auto seconds = omp_get_wtime();
    double step = 1.0/(double)o.num_steps;
    double sum = 0.0;
    double p = 0.0;
#pragma omp parallel
    {
    #pragma omp single
        sum = pi_comp(0, o.num_steps, step);
    }
    p = step * sum;

    std::cout << "Elapsed_Time:_" << omp_get_wtime() - seconds << std::endl;
    std::cout << "pi_Value:_" << p << std::endl;
    return 0;
}</pre>
```

Πίνακας 7: Καταγραφή χρόνων εκτέβεσης παραδειγμάτων

Αριθμός Βημάτων	Χρόνος Υπολογισμού (sec)
100000000	0.379876
200000000	0.732152
30000000	1.06563
40000000	1.44172

Συμ6. 7: Αρχικοποίηση τιμών διανύσματος

```
#define MIN_BLK 10000000
double pi_comp(int Nstart, int Nfinish, double step) {
    double x = 0.0;
    double sum = 0.0, sum1 = 0.0, sum2 = 0.0;
    if (Nfinish - Nstart < MIN_BLK) {</pre>
        for (int i = Nstart; i < Nfinish; ++i) {</pre>
            x = (i + 0.5) * step;
            sum += 4.0/(1.0 + x*x);
    } else {
        int iblk = Nfinish-Nstart;
#pragma omp task shared(sum1)
        sum1 = pi_comp(Nstart, Nfinish-iblk/2, step);
#pragma omp task shared(sum2)
        sum2 = pi_comp(Nfinish-iblk/2, Nfinish, step);
#pragma omp taskwait
        sum = sum1 + sum2;
    }
    return sum;
```

Πίνακας 8: Καταγραφή χρόνων εκτέβεσης παραδειγμάτων

Αριθμός Βημάτων	Χρόνος Υπολογισμού (sec) (MINBLK: 10000000)
100000000	0.372117
200000000	0.736442
300000000	1.09589
40000000	1.46092

Πίνακας 9: Καταγραφή χρόνων εκτέβεσης παραδειγμάτων

Αριθμός Βημάτων	Χρόνος Υπολογισμού (sec) (MINBLK: 50000000)
100000000	0.278347
200000000	0.65436
300000000	0.973535
40000000	1.45033

Πίνακας 10: Καταγραφή χρόνων εκτέβεσης παραδειγμάτων

Αριθμός Βημάτων	Χρόνος Υπολογισμού (sec) (MINBLK: 10000000)
100000000	0.340634
200000000	0.600201
300000000	1.05377
40000000	1.45176

Συμ6. 8: Υπολογισμός π

Πίνακας 11: Καταγραφή χρόνων εκτέβεσης παραδειγμάτων

Αριθμός Βημάτων	Χρόνος Υπολογισμού (sec)
100000000	5.540 -' 3.10026
200000000	10.178 -' 3.09927
300000000	14.757 - 3.09838
40000000	19.432 - 3.09866

References

[1] . 0.