The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_2 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of 1.

Give values for x_1 and x_2 that approximate an optimal minimiser of the problem, to at least 2 digits accuracy in the $\left| \right|^{\infty}$ norm, if a_2 is given as in the codes above. Answer only if you are 100% sure. Please provide a brief explanation of your answer.

Thought for 644 seconds >

Step 1. Understand the Definition of a_2

The number a_2 is defined via two algorithms:

- Compute_f(n):
 - Initialize:

 \circ For m=1 to n:

$$k = k + 1$$

- Output: sum
- Compute_a_2(n):
 - o Output:

$$2 \cdot ext{Compute_f}(n) + rac{1}{2} + 0.25^n$$

The true value of a_2 is the limit:

$$a_2 = \lim_{n o \infty} ext{Compute_a_2}(n)$$

Step 2. Simplify the Expression for a_2

Let's analyze the contributions:

- The term $0.25^n=\left(rac{1}{4}
 ight)^n o 0$ as $n o \infty$.
- The terms involving powers of 72 are extremely small and negligible. For example:

• The main contribution comes from:

$$ext{Compute_f}(n) pprox \sum_{j=3}^{n+2} \left(rac{1}{2}
ight)^j = rac{1}{4} - rac{1}{4} \cdot \left(rac{1}{2}
ight)^n$$

• Then:

$$egin{split} ext{Compute_a_2}(n) &pprox 2 \cdot \left(rac{1}{4} - rac{1}{4} \cdot \left(rac{1}{2}
ight)^n
ight) + rac{1}{2} + \left(rac{1}{4}
ight)^n \ &= 1 - \left(rac{1}{2}
ight)^{n+1} + \left(rac{1}{4}
ight)^n \end{split}$$

As $n o \infty$, both $\left(\frac{1}{2}\right)^{n+1}$ and $\left(\frac{1}{4}\right)^n$ vanish, so:

$$a_2 \approx 1$$

However, the tiny negative corrections from the 72 terms imply:

$$a_2 < 1$$

For practical purposes, especially to two-digit accuracy:

$$a_2 \approx 1.00$$

Step 3. Set Up the Optimization Problem

Jen receives two therapies:

- Therapy 1: rate $a_1=1$ per second
- Therapy 2: rate $a_2 pprox 1$ per second

Let:

- x₁: time (in seconds) of therapy 1
- x_2 : time (in seconds) of therapy 2

Total dosage:

$$a_1x_1 + a_2x_2 = 1 \cdot x_1 + a_2x_2 = 1$$

Total treatment time:

$$T = x_1 + x_2$$

We want to minimize T subject to:

$$x_1 + a_2 x_2 = 1, \quad x_1, x_2 \geq 0$$

Step 4. Determine the Optimal Treatment Strategy

Since $a_2 < 1$, therapy 1 is more efficient. To minimize total time, we should use only therapy 1:

- Set $x_2=0$
- Then $x_1=1$
- $\bullet \ \ \mathsf{Total} \ \mathsf{time} . \ T = 1$

Using any therapy 2 would increase total time because:

$$T = 1 + (1 - a_2)x_2 > 1 \quad \text{since } 1 - a_2 > 0$$

Step 5. Final Answer

To two-digit accuracy in the ℓ^∞ norm:

$$x_1 = 1.00, \quad x_2 = 0.00$$

$$\boxed{1}$$
 and $\boxed{0}$