1.

- 1. Q 函数的策略评价算法,使用公式 $q_{t+1}(s,a)=R(s,a)+\gamma\sum_{\acute{s}\in S}P^a_{s\acute{s}}\sum_{\acute{a}\in A}\pi(\acute{a}|\acute{s})q_t(\acute{s},\acute{a})$,对当前策略下的 Q 函数进行迭代。
- 2. Q 函数的策略迭代算法,即在上一步收敛之后,改进策略为 $\overset{'}{\pi}=argmax_{\acute{a}}(q_{\pi}(s,a))$,即取迭代后求得的对 s 获得最大 q 值的行为。
- 3. 即通过1更新一次q函数,随后更新一次策略。
- 2. ε-greedy 策略能够保持策略一定的随机性,在训练过程中更充分地探索环境,可能导致 Q 函数带有随机性,减缓收敛。greedy 策略不具有随机性,在确定性问题中能够更快收敛,在有随机的环境中可能陷入局部最优解。

3.

1. 随机策略评价:

The World But William				
3.30909299	8.78938844	4.42771562	5.32246388	1.49227497
1.52168472	2.99241443	2.25023639	1.907668	0.54749892
0.05091914	0.73826716	0.6732097	0.35828252	-0.40304492
-0.97349566	-0.43539886	-0.35478583	-0.58550878	-1.18297885
-1.8576039	-1.3451347	-1.22917082	-1.42282184	-1.97508282

2. 策略迭代结果:

1. 收敛曲线

2. 最优值函数

21.9774703176665 24.4194124671652 21.9774703176665 19.4194124671652 17.4774703176665 19.7797225034216 21.9774703176665 19.7797225034216 17.8017502530874 16.0215711909029 17.8017502530874 19.7797225034216 17.8017502530874 16.0215711909029 14.4194124671652 16.0215711909029 17.8017502530874 16.0215711909029 14.4194124671652 12.9774703176665 14.4194124671652 16.0215711909029 14.4194124671652 12.9774703176665 11.6797225034216

3. 最优策略

3 0 2 0 2 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3. 值迭代收敛曲线

