EMBEDDED VISION DESIGN 3

TENSORFLOW & KERAS HANDS-ON

JEROEN VEEN

CONTENTS

- Deep learning workshop organization
- Deep learning
- Deep learning frameworks
- Installing TensorFlow 2
- Image classification exercise

ORGANIZATION OF THE WORKSHOP

- Theory with integrated quizzes.
- Hands-on with 2 mini-projects
- Final mark:80% ML + DL report,20% quiz results
- Live demo or short video clip, showing your deployed model

15/11/2021 Neural Networks Transfer learning Transfer lear	2.1/A		1	Network (ANN)	Biological neuron Perceptron Multi-layer perceptron (MLP) Backpropagation Regression and classification MLP	Workshop organization Deep learning Frameworks Installing TensorFlow 2 Image classification exercise			279-307	849-858
22/11/2021 Neural Network CNN vs MLP Reap convolution Avoiding overfitting Using the Keras tuner Transfer Learning and Tensorflow hub CNN architecture CNN architectur	,			Neural Networks	training optimization Learning rate scheduling Regularization	Tensorboard, visualizing the training process Storing and loading models Fine-tuning neural network hyperparameters		Resit Full ML report	308-373	
29/11/2021 Copyright				Neural Network	CNN vs MLP Recap convolution Convolutional layer Pooling layer CNN architecture	gradients Avoiding overfitting Using the Keras tuner Transfer Learning and Tensorflow hub	ANN		445-483	
2.6/F 50			29/11/2021		Object tracking Semantic segmentation Variational autoencoder Edge computing	.			483-496, 567-591,	
Cognitive Science 13/12/2021 Introduction Cognitive approach Cognitive approach Mind as a web Al				- ouest opeaner				Preliminary DL report, Ch. 1-3	<u> </u>	
52 27/12/2021			13/12/2021	Cognitive Science introduction	Visual perception Cognitive approach Mind as a web Al					
1 03/01/2022 2.8/H 2 10/01/2022 2.9/I 3 17/01/2022 No class resit 4,5 Full report					Work on portfolio	Work on portfolio				
2.8/H 2 10/01/2022 No class		52	<u> </u>		4					
2.9/I 3 17/01/2022 No class resit 4,5 Full report	7.56	1				4				
		_					20.4.5	5.11		
0.40/1.4 0.4/04/0000	2.9/I 2.10/J	+	24/01/2022		No class		resit 4,5	Full report		\vdash

DL PORTFOLIO TEMPLATE

TABLE OF CONTENTS

1	INTRODUCTION	3
2	PROBLEM STATEMENT	4
3	DATA AUGMENTATION AND PREPROCESSING	5
4	CNN ARCHITECTURE AND TRAINING	6
5	DEPLOY AND TEST	7
6	CONCLUSION	8
7	REFERENCES	9
CODI	E APPENDICES	.10

NEURAL NETWORKS

Classification

Source: Géron, ISBN: 9781492032632

DEEP LEARNING FRAMEWORKS

Pro's

- Standardized environment
- Reduce time, costs, complexity of development
- Problem domain specific, e.g. decision support, financial, end-user application, web

Con's

- Steep learning curve
- Inefficient use of resources

TENSORFLOW TOOLKIT

https://developers.google.com/machine-learning/crash-course/first-steps-with-tensorflow/toolkit

KERAS

- Using the TensorFlow framework directly is a lot of hard work.
- Extremely verbose and prone to subtle, hard-to-catch bugs
- Steep learning curve

Solution: use API like Keras (or TFLearn)

- Fast experimentation.
- Capable of running on top of TensorFlow, CNTK, or Theano.

https://datascience.stackexchange.com/questions/25317/what-are-the-pros-and-consof-keras-and-tflearn

MORE ON KERAS

• https://www.youtube.com/watch?v=tDaGT4N4aCA&t=141s

INSTALLING TENSORFLOW 2

https://www.tensorflow.org/install

```
$ python3 -m pip install --upgrade tensorflow
```


For GPU support, at the time of this writing you need to install tensorflow-gpu instead of tensorflow, but the TensorFlow team is working on having a single library that will support both CPU-only and GPU-equipped systems. You will still need to install extra libraries for GPU support (see https://tensorflow.org/install for more details). We will look at GPUs in more depth in Chapter 19.

To test your installation, open a Python shell or a Jupyter notebook, then import TensorFlow and tf.keras and print their versions:

```
>>> import tensorflow as tf
>>> from tensorflow import keras
>>> tf.__version__
'2.0.0'
>>> keras.__version__
'2.2.4-tf'
```

KERAS SEQUENTIAL MODEL

- https://www.youtube.com/watch?v=qFJeN9V1ZsI&t=401s
 up to 10:30
- Terminology:
 - x =samples =input data
 - y = labels = target data = classes
- https://www.youtube.com/watch?v=qFJeN9V1ZsI&t=1150s up to 23:27
- https://www.youtube.com/watch?v=qFJeN9V1ZsI&t=1508s
 up to 29:33

EXERCISE: BASIC IMAGE CLASSIFICATION

- https://www.tensorflow.org/tutorials/keras/classification
- Train a shallow net, see also Géron pp. 297-307
- Trouble downloading the datasets? Let me know
- Training can take quite some time...
 - >> Use a small number of weights in the hidden layers
 - >>Work on colab.research.google.com
- Train and validate (see Géron p. 303)!

Instead of passing a validation set using the validation_data argument, you could set validation_split to the ratio of the training set that you want Keras to use for validation. For example, validation_split=0.1 tells Keras to use the last 10% of the data (before shuffling) for validation.

EXERCISE: CONFUSION MATRIX

- Hint 1:
 - The model returns probabilities, find the most probable class using np.argmax(...., axis=1)
- Hint 2: from sklearn.metrics import confusion_matrix

REFERENCES

- http://tflearn.org/
- https://www.tensorflow.org/
- https://keras.io/
- https://www.tensorflow.org/tensorboard/
- https://developers.google.com/machine-learning/crash-course/mlintro
- https://developers.google.com/machinelearning/glossary/tensorflow