INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 5.14] IMPLICIT DIFFERENTIATION – MORE KINEMATICS

Compiled by Christos Nikolaidis

O. Practice questions

1. [Maximum mark: 8] [without GDC]

Consider the equation $xy + x^2y^2 = e^x - e^y + 2$

- (a) Confirm that P(1,1) lies in the curve.
- (b) Find (i) $\frac{dy}{dx}$ in terms of x and y (ii) $\frac{dy}{dx}$ at P. [5]

[1]

(c) Find the equations of the tangent and normal lines in the form $y - y_1 = m(x - x_1)$ [2]

(a) $|+|0| = \emptyset - \emptyset + 3$ $\lambda = 2$, Point lies in the cannel. (b) $\lambda = 2$, Point lies in the cannel. (i) $\lambda = 2$, $\lambda =$ 2. [Maximum mark: 15] [without GDC]

The curve of the equation $x^2 - xy + y^2 = 3$ is shown below.

(a) Show that $\frac{dy}{dx} = \frac{2x - y}{x - 2y}$

(b) Find the coordinates of the points where the tangent lines are parallel to

(i) the line y = x (ii) the x-axis (iii) y-axis (iii) y-axis (iv) y = x (iii) y = x (iv) y = x (iv)

1 - V = V - 1 - V T	ーコ
\mathcal{M} \mathcal{T} \mathcal{X} \mathcal{A} .	d.
	
$\Delta \sqrt{-} \sqrt{-}$	人
V X	U \
· · · · · /	

[3]

[12]

3*. [Maximum mark: 10] [without GDC]

The curve of the equation $x^2 - xy + y^2 = 3$ is shown below.

The line y = mx + 2 is tangent to the curve.

qx =0

[8]

[2]

(a) Find the values of m.

(b) Draw the corresponding tangent lines on the diagram above.

braw the corresponding tangent lines on the diagram above.
$(\alpha) 2x - x \frac{dy}{dx} - y + 2y \frac{dy}{dx} = 0$
$\frac{\partial y}{\partial x}(2y-x)=y-2x$
$\frac{dy}{dy} = \frac{y-2x}{2} \qquad \frac{1}{2} = \frac{1}{2y-x}$
24-4x
$W = \overline{\lambda - 3x}$ $X = 0$
m = 2 (0) - (0)(y) + $y = 3$
$\frac{7}{4}$ $\frac{(0)}{4}$ $\frac{(2)}{3}$
$m=\frac{1}{2}$ $\sqrt{1-1}$

A. Exam style questions (SHORT)

4. [Maximum mark: 5] [without GDC]

Find the gradient of the tangent to the curve $3x^2 + 4y^2 = 7$ at the point where x = 1 and y > 0.

5CI) 4

.....

5. [Maximum mark: 5] **[without GDC]**

If $2x^2 - 3y^2 = 2$, find the two values of $\frac{dy}{dx}$ when x = 5.

$$\frac{d}{dx} = 4x - 6y = 0$$

$$\frac{dy}{dx} = 4y$$

$$\frac{dy}{dx} = 4$$

dx y(s) - 5 dx 164x 16

 $\frac{dy}{dx} = \frac{4(5)}{16(-4)} = \frac{5}{16}$

6. [Maximum mark: 6] **[without GDC]**

Consider the equation $2xy^2 = x^2y + 3$.

- (a) Find y and y < 0 when x = 1 and y < 0.
- (b) Find $\frac{dy}{dx}$ when x = 1 and y < 0.

7. [Maximum mark: 6] [without GDC]

The point P(1, p), where p > 0, lies on the curve $2x^2y + 3y^2 = 16$.

- (a) Calculate the value of $\,p\,$.
- (b) Calculate the gradient of the tangent to the curve at $\,P\,$

.....

.....

Maximum mark: 6] [without GDC] A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	Maximum mark: 6] <i>[without GDC]</i> Curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	aximum mark: 6] [without GDC] curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curv	ind	the gradient of the normal to the curve $3x^2y + 2xy^2 = 2$ at the point (1, -2).
Maximum mark: 6] [without GDC] A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	Maximum mark: 6] <i>[without GDC]</i> Curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	aximum mark: 6] <i>[without GDC]</i> surve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cure point (1, 1).		
Maximum mark: 6] [without GDC] Courve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cume point (1, 1).	Maximum mark: 6] [without GDC] Source has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curble point (1, 1).	eximum mark: 6] <i>[without GDC]</i> curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).		
Maximum mark: 6] <i>[without GDC]</i> In curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	Maximum mark: 6] <i>[without GDC]</i> a curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curble point (1, 1).	aximum mark: 6] [without GDC] curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).		
Maximum mark: 6] <i>[without GDC]</i> In curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	Maximum mark: 6] <i>[without GDC]</i> a curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curble point (1, 1).	eaximum mark: 6] [without GDC] curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).		
Maximum mark: 6] [without GDC] A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	Maximum mark: 6] [without GDC] a curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	eximum mark: 6] [without GDC] curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cure point $(1, 1)$.		
Maximum mark: 6] [without GDC] A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	Maximum mark: 6] [without GDC] A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cur the point $(1, 1)$.	aximum mark: 6] <i>[without GDC]</i> surve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cure point (1, 1).		
Maximum mark: 6] <i>[without GDC]</i> Source has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	Maximum mark: 6] <i>[without GDC]</i> Courve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curne point (1, 1).	aximum mark: 6] [without GDC] curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cure point (1, 1).		
Maximum mark: 6] <i>[without GDC]</i> Source has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	Maximum mark: 6] <i>[without GDC]</i> Courve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curne point (1, 1).	aximum mark: 6] [without GDC] curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cure point (1, 1).		
Maximum mark: 6] [without GDC] A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	Maximum mark: 6] [without GDC] A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	aximum mark: 6] [without GDC] curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cure point (1, 1).		
Maximum mark: 6] [without GDC] A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	Maximum mark: 6] [without GDC] A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	aximum mark: 6] [without GDC] curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cure point (1, 1).		
Maximum mark: 6] [without GDC] A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	Maximum mark: 6] [without GDC] A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cur ne point (1, 1).	aximum mark: 6] <i>[without GDC]</i> curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cure point (1, 1).		
Maximum mark: 6] <i>[without GDC]</i> A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	Maximum mark: 6] [without GDC] A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cur ne point (1, 1).	aximum mark: 6] <i>[without GDC]</i> curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cure point (1, 1).		
Maximum mark: 6] [without GDC] A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	Maximum mark: 6] [without GDC] A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cur ne point (1, 1).	aximum mark: 6] [without GDC] curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cure point (1, 1).		
a curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	a curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cure point (1, 1).		
a curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	a curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curve point (1, 1).	curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cure point (1, 1).		
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this cur
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this current (1, 1).
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this current (1, 1).
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this current (1, 1).
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this current (1, 1).
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this current (1, 1).
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this current (1, 1).
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curboint (1, 1).
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curpoint (1, 1).
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curpoint (1, 1).
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curpoint (1, 1).
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curboint (1, 1).
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curpoint (1, 1).
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curpoint (1, 1).
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curpoint (1, 1).
			cu	rve has equation $xy^3 + 2x^2y = 3$. Find the equation of the tangent to this curboint (1, 1).

10.	[Maximum mark: 6] [without GDC]
	A curve has equation $x^3y^2 = 8$. Find the equation of the normal to the curve at the point
	(2, 1).
11.	[Maximum mark: 7] [without GDC]
	Find the equation of the normal to the curve $5xy^2 - 2x^2 = 18$ at the point (1, 2).

- •	the equation of the normal to the curve $x^3 + y^3 - 9xy = 0$ at the point (2, 4)
	angent to the curve $y^2 = x^3$ at the point P(1, 1) meets the x -axis at Q and s at R. Find the ratio PQ : QR.
	angent to the curve $y^2 = x^3$ at the point P(1, 1) meets the x -axis at Q and s at R. Find the ratio PQ : QR.
	s at R. Find the ratio PQ : QR.
	s at R. Find the ratio PQ : QR.
	s at R. Find the ratio PQ : QR.
	s at R. Find the ratio PQ : QR.
xi	s at R. Find the ratio PQ : QR.
xi	s at R. Find the ratio PQ : QR.
χi	s at R. Find the ratio PQ : QR.
ıxi	s at R. Find the ratio PQ : QR.
ıxi	s at R. Find the ratio PQ : QR.
ıxi	s at R. Find the ratio PQ : QR.
ıxi	s at R. Find the ratio PQ : QR.
ıxi	s at R. Find the ratio PQ : QR.
xi	s at R. Find the ratio PQ : QR.

a)	Find in terms of k , the gradient of the curve at the point $(-1, k)$.
b)	Given that the tangent to the curve is parallel to the $\it x$ -axis at this point, find the value of $\it k$.
Max	kimum mark: 6] [without GDC]
ind	the gradient of the tangent to the curve $x^3y^2 = \cos(\pi y)$ at the point (-1, 1).

16.	[Maximum mark: 6]		
	Given that $3^{x+y} = x^3$	$+3y$, find $\frac{dy}{dx}$.	
17.	[Maximum mark: 6]	[without GDC]	
	Given that $e^{xy} - y^2 \ln x$	$x = e$ for $x \ge 1$, find $\frac{dy}{dx}$ at the point	(1, 1).

18.	[Max	imum mark: 9]			
	Consider the curve $x^3 + y^2 = xy$, $x \neq 0$, $y \neq 0$				
	(a)	Find $\frac{dy}{dx}$.	[3]		
	(b)	Find the coordinates of the point on the curve where the tangent line is parallel to			
		x-axis.	[3]		
	(c)	Find the coordinates of the point on the curve where the tangent line is parallel to			
		y -axis.	[3]		

	$ \ln\left(\frac{1}{3}(1+e^{-2x})\right) $, show that $\frac{dy}{dx} = \frac{2}{3}(e^{-y} - 3)$.

20*.	[Maximum mark: 7]	
	Find the gradient of th	e curve $2\sin(xy) = 1$ when $y = \frac{1}{2}$ and $\pi < x < 2\pi$.
21.	[Maximum mark: 5]	
	_	() on both sides and then use implicit differentiation to find the
	derivative of the functi	on $y = x^x$ in terms of x .

22.	[Maximum mark: 5]	[without GDC]
	Take the logarithm ln	() on both sides and then use implicit differentiation to find the
	derivative of the funct	ion $y = (x^2 + 1)^x$ in terms of x .
23.	[Maximum mark: 5]	[without GDC]
	Take the logarithm ln	() on both sides and then use implicit differentiation to find the
	derivative of the functi	ion $y = x^{x^2+1}$ in terms of x .

THE DERIVATIVE OF THE INVERSE FUNCTION

O. Practice questions

24. [Maximum mark: 6] [without GDC]

Consider the curve $x^3 + y^2 = xy$, $x \ne 0$, $y \ne 0$.

Find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ to verify that $\frac{dy}{dx} = \left(\frac{dx}{dy}\right)^{-1}$

.....

25. [Maximum mark: 5] *[without GDC]*

Given that the derivative of $f(x) = e^x$ is known, use the property $\frac{dy}{dx} = \left(\frac{dx}{dy}\right)^{-1}$ to show

that the derivative of its inverse function $y = \ln x$ is $\frac{dy}{dx} = \frac{1}{x}$

20.	[Maximum mark. 5] [without GDC]
	Given that the derivative of $f(x) = x^2$ is known, use the property $\frac{dy}{dx} = \left(\frac{dx}{dy}\right)^{-1}$ to show
	that the derivative of its inverse function $y = \sqrt{x}$ is $\frac{dy}{dx} = \frac{1}{2\sqrt{x}}$
27.	[Maximum mark: 5] [without GDC]
	For $y = f(x)$ and a point (a, b) on the curve,
	the property $\frac{dy}{dx} = \frac{1}{\frac{dx}{dx}}$ implies that $f'(a) = \frac{1}{f^{-1}'(b)}$
	Confirm the result for the function $f(x) = x^2, x \ge 0$ at the point (3,9).

A. Exam style questions (SHORT)

28. [Maximum mark: 6] [without GDC]

Given that the derivative of $f(x) = \sin x$ is known, use the property $\frac{dy}{dx} = \left(\frac{dx}{dy}\right)^{-1}$ to

show that the derivative of its inverse function $y = \arcsin x$ is $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$

29. [Maximum mark: 6] *[without GDC]*

Given that the derivative of $f(x) = \cos x$ is known, use the property $\frac{dy}{dx} = \left(\frac{dx}{dy}\right)^{-1}$ to find the derivative of its inverse function $y = \arccos x$.

 	 	 	 	 	 •••••
 	 	 	 	 	 •••••
 	 	 	 	 	 •••••

30.	[Max	imum mark: 7]	[without GDC]	
	(a)	Use the quotient	It rule to show that the derivative of $\tan x$ is $\sec^2 x$.	[2]
	(b)	Hence by using	$\frac{dy}{dx} = \left(\frac{dx}{dy}\right)^{-1}$, show that the derivative of $\arctan x$ is $\frac{1}{1+x^2}$.	[5]
				,
				•

MORE KINEMATICS

Notice:

If the velocity is given in terms of time t then

$$a = \frac{\mathrm{d}v}{\mathrm{d}t}$$

If the velocity is given in terms of the displacement s, then

$$a = \frac{dv}{dt} = \frac{dv}{ds} \frac{ds}{dt} = v \frac{dv}{ds}$$

In fact, in the second case we use implicit differentiation with respect to t.

For example,

If
$$v = t^2$$
, then $a = \frac{dv}{dt} = 2t$

If
$$v = s^2$$
, then $a = \frac{dv}{dt} = 2s \frac{ds}{dt} = 2s \times s^2 = 2s^3$ (since $\frac{ds}{dt} = v$)

O. Practice questions

- **31.** [Maximum mark: 5] [without GDC]
 - (a) A particle moves along a straight line and its velocity at time t is given by

$$v = 5 + 10t.$$

Find its acceleration.

[2]

(b) A particle moves along a straight line and its velocity is given by

$$v = 5 + 10s$$
.

where s is the displacement. Find its acceleration in terms of s. [3]

.....

.....

.....

.....

Α.	Exam	style questions	(SHORT)	
32.	[Max	kimum mark: 6]	[without GDC]	
	(a)	Given that $v = t^2$	$t^2 + 10e^t$, find the acceleration when $t = 0$.	[3]
	(b)	Given that $v = s^2$	$^{2}+10e^{s}$, find the acceleration when $s=0$.	[3]
33.	[Max	ximum mark: 6]	[without GDC]	
	A pa	rticle moves along	g a straight line. When it is in distance s from a fixed point,	
			ity is given by $v = \frac{(3s+2)}{(2s-1)}$. Find the acceleration when $s=2$.	