Preparation for D⁺→Kππ analysis

E. Bruna, M. Masera, F. Prino INFN e Università di Torino

based on E. Bruna PhD thesis

Alice Physics week - Münster - February 13th 2007

$D^+ \rightarrow K^- \pi^+ \pi^+ : motivation$

- Accurate determination of charm production cross section by measuring as many charmed hadrons as possible
- Ratios like D₀/D₊, D_s/D₊ bring information about the hadronization mechanism
- Different systematics w.r.t. the benchmark study $D^0 \rightarrow K\pi$
 - \Box D+ fully reconstructable from a 3-charged body decay instead of the 2 body decay D0 \to K\pi
 - ✓ Larger combinatorial background
 - ✓ Softer decay products ($\langle p_T \rangle \sim 0.7$ GeV/c compared to ~ 1 GeV/c of D^0 daughters)
 - D+ has a "longer" mean proper length ($c\tau \sim 312 \mu m$ compared to $\sim 123 \ \mu m$ of the D₀)
 - Possibility to exploit the resonant decay through Kbar0* to enhance the S/B ratio

D[±] statistics in PbPb

b_{\min} - b_{\max} (fm)	σ (%)	N_{cc} / ev.	D [±] yield/ev.	
0-3	3.6	118	45.8	
3-6	11	82	31.8	
6-9	18	42	16.3	
9-12	25.4	12.5	4.85	
12-18	42	1.2	0.47	

- N_{cc} = number of c-cbar pairs
 - MNR cross-section calculation
 - Includes shadowing (EKS98)
 - Shadowing centrality dependence from Emelyakov et al., PRC 61, 044904
- D± yield calculated from N_{cc}
 - ☐ Fraction $N_{D\pm}/N_{cc}$ (≈0.38) from PYTHIA fragmentation
 - D+ less abundant than Do by about a factor 3
- Geometrical acceptance and reconstruction efficiency
 - Extracted from 1 event with20000 D± in full phase space
- B. R. D $^{\pm} \rightarrow K\pi\pi = 9.2 \%$
 - Larger than the B.R. $D^0 \rightarrow K\pi$ (=3.8%)

Simulation and analysis strategy

- Pb-Pb events generated in 2005 on the italian grid
 - □ SIGNAL: 5000 events with ≈9000 D±→ Kππ (PYTHIA)
 - BACKGROUND: 20000 central Hijing events
- Starting points for Pb-Pb analysis:
 - Huge combinatorial background: 109 triplets in central Hijing event
 - Three studies with different PID information:
 - ✓ Perfect PID No PID Combined Bayesian PID (ITS+TPC+TRD+TOF+HMPID)
- pp events with parametrized TPC response generated in 2006 on the italian grid (PWG3 production)
 - ☐ Statistics = Physics run of 5.4 106 events
 - Extra events with charmed mesons forced to decay hadronically to increase the signal statistics
- Starting points for pp analysis
 - Much smaller combinatorial background (on average 100 triplets/event)
 - Much worser resolution on primary vertex position
 - For each candidate triplet, primary vertex must be recalculated removing the candidate secondary tracks
 - PID information not used

Pre-selection steps

- Cuts on single tracks (p_T , $d_0^{r_\phi}$)
 - In Pb-Pb reduce the combinatorial background from 109 to 106 triplets per event keeping ≈10% of the signal
 - \square p_T cut different for K and π (identified by the charge sign)
- Cuts on $K\pi$ candidate pairs
 - \square K and π have opposite charge sign
 - \Box Cut on the distance δ between the vertex of the 2 tracks and

Pre-selection steps

- Cuts on single tracks (p_T , $d_0^{r\phi}$)
- Cuts on $K\pi$ candidate pairs
 - $\hfill \Box$ distance δ between the 2 track vertex and the primary vertex
- ullet Build the triplets starting from two selected $K\pi$ pairs
 - \square both $K\pi$ pairs with vertex displaced from the primary vertex
- Cuts on $K\pi\pi$ candidate triplets of tracks

Decay vertex reconstruction (AliVertexerTracks::VertexForSelectedTracks)

- Tracks (helices) approximated with Straight Lines
- Vertex coordinates (x_0,y_0,z_0) from minimization of:

$$D^2 = d_{1^2} + d_{2^2} + d_{3^2}$$

with
$$d_{k^2} = \left(\frac{x_k - x_0}{\sigma_x}\right)^2 + \left(\frac{y_k - y_0}{\sigma_y}\right)^2 + \left(\frac{z_k - z_0}{\sigma_z}\right)^2$$
Secondarian

- $\ \square$ $\sigma_{xi},\,\sigma_{yi},\,\sigma_{zi}$ are the errors on the track parameters
- Calculate track dispersion around the found vertex:

$$\sigma^2 = \sum_{k=1}^{3} \left[(x_k - x_o)^2 + (y_k - y_o)^2 + (z_k - z_o)^2 \right]$$

used to select good vertices

Straight Line Approximation

- Geometrical calculation of the "error" introduced by approximating the track (helix) with a straight line close to the primary vertex.
 - ☐ Good approximation: error is negligible w.r.t. tracks $r\phi d_0$ resolution (≈ 100 μ m for 0.5 GeV/c tracks)

Vertex finder: D⁺[]Kππ

Vertex selection: D+ []Kππ

- Vertex quality selection based on track dispersion σ around the found vertex
 - Distribution of σ for signal and background $K\pi\pi$ triplets
 - Fraction of selected signal and background triplets as a function of the cut on track dispersion (σ_{MAX}).

D⁺ final selection steps (I)

Four selection variables:

- Distance between primary and secondary vertex (d_{PS})
- \square cos θ_{point}
- Sum of squared impact parameters $s = d_{01}^2 + d_{02}^2 + d_{03}^2$ PRIMARY VERTEX
- Max. p_T among the 3 tracks
 p_M =Max{ p_{T1} , p_{T2} , p_{T3} }

SEC.

D⁺ final selection steps (II)

- Fill matrices Sijkl and Bijkl
 - each matrix cell contains the number of signal and background triplets passing the set of cuts

$$d_{PS} > c^i$$
 , $cos\theta_{point} > c^j$, $s > c^k$, $p_M > c^l$

 Select the set of cuts (i.e. the matrix cell) which maximizes the significance (S/√(S+B)) in the mass

Results: PbPb (I)

- Significance and relative statistical error vs. D+ p_T
 - \square S/ev~10-3, B/ev~10-4
 - Significance and relative statistical error (=1/ \sqrt{S}) normalized to 10 7 central Pt 11

Results: PbPb (II)

• Fraction of selected signal triplets and p_T spectra $selected \ D^+$

D⁺ with 3 reconstructed daughters

□ p_T integrated fraction of selected D+ \approx 1.5% (Ideal PID), 0.6% (Real PID), 1% (no PID)

Results: pp (I)

- Significance and relative statistical error vs. D+ p_T
 - S/ev~5 10-6, B/ev ~5 10-6
 - Significance and relative statistical error (=1/ \sqrt{S}) normalized to 109 pp Minimum Bias events

Results: pp (II)

• Fraction of selected signal triplets and p_T spectra $selected \ D^+$

□ p_T integrated fraction of selected D+ \approx 4% (only NO PID case studied)

Systematic uncertainties

- Acceptance, reconstruction and PID efficiencies (~10%)
- Centrality selection (~7%)
- Nucleon-nucleon inelastic cross section (~5%)
- Parameters of the Woods-Saxon profile and nuclear density (~5%)
- Error on branching Ratio D+→Karrage (~3.6%)
- Feed-down from beauty:

$$Nc \rightarrow D\pm = ND\pm - Nb \rightarrow B \rightarrow D\pm$$

- Contamination (from MNR c.s. for c and b and B.R. for $B \rightarrow D\pm$)
 - $K = N_{b\rightarrow B} \rightarrow D\pm / N_{c\rightarrow D\pm} = 4\%$
- D+ from B are more displaced
 - ✓ The cut on distance between primary to secondary vertex increases the fraction of selected D+ coming from B decay

Perspectives for D⁺ R_{AA}

- Statistical error bars from 10⁹ pp Min. Bias events and 10⁷ central PbPb events (1 year of data taking)
 - Statistical error smaller than the syst. errors up to 10 GeV/c

Perspectives for D⁺ V₂ (I)

- GOAL: evaluate statistical error bars on the measurement of $v_2(p_T)$ of D mesons
- TOOL: fast simulation (ROOT+3 classes +1 macro)
- Ingredients for event plane resolution

Perspectives for D⁺ v₂ (II)

- Simulations performed for centrality class 6<b (fm)<9
 - ☐ To compare with model calculations at b=8 fm (see next slide)
- Multiplicity (
 | Armesto, Salgado, Wiedemann hep/ph 0407018)

$$\frac{1}{N_{part}} \frac{dN_{ch}^{AA}}{d\eta} \Big|_{\eta \sim 0} = N_0 \sqrt{s^{\lambda}} N_{part}^{\frac{1-\delta}{3\delta}}$$

- ☐ From Glauber in 6 < b < 9: < Npart > = 175 → N_{ch}(|y|<1) = 1570
- v_2 of charged hadrons = 0.125
 - I From (Low Density Limit) extrapolation of v_2/ϵ vs. 1/S dN/dy (see E. Simili)
- D+ azimuthal angle resolution from the PbPb sample of simulated signal
- D+ statistics in 6<b<9 centrality class:
 - Number of D+ per event from analysis in central events rescaled with the number of N_{cc} per event in the 2 centrality classes (=42/118)
 - Number of events in 6
b (fm)<9 (normalized to 2 100 Min. Bias events)
 $\checkmark =18\%$ (from 14% to 32%) of total inelastic cross section

Perspectives for D⁺ v₂ (III)

- Model calculations:
 - $v_2(c)$ at the LHC for b=8fm ($v_2(c)$ Ko,Chen,Zhang Braz. J. phys. To be publ.)
 - \square Hadronization vi $v_2^D(p_\perp) \approx v_2^c(\frac{5p_\perp}{6}) + v_2^q(\frac{p_\perp}{6})$ a similar velocities
- Statistical error bars quite large
 - □ Sum D⁰ → Kπ and D[±] → Kππ
 - ✓ Number of events roughly $\times 2$ → error bars on v_2 roughly $\sqrt{2}$

Semi-peripheral trigger (ex. of $v_2(p_T)$ from $2 \cdot 10^7$ semi-peripheral

Conclusions

- Monte Carlo studies on D+ \rightarrow K- π + π + show that the analysis is feasible with a pretty good significance down to p_T \approx 0.5-1 GeV/c both in PbPb and pp collisions by means of:
 - Selection strategy based on pre-selection cuts, vertex finding and maximization of the significance based on multidimensional matrices
 - Vertex Finding algorithm for secondary vertices (AliVertexerTracks::VertexForSelectedTracks)
- Analysis tools:
 - □ AliAODRecoDecayHF3prong class will be soon prototyped
 ✓ Selection strategy and cut variables are defined
- Perspectives for observables R_{AA} and v₂
 - Background "subtraction" method(s) for v₂ analysis still to be defined
 - ✓ Need for large statistics of reconstructed PbPb events with elliptic flow

Backup slides

Results scaled to a lower multiplicity scenario for Pb-Pb

- Results presented so far for Pb-Pb based on dN_{ch}/dy=6'000

 - □ BKG/ev=N(N-1)(N-2)/3! \sim 6x10¹⁰
- Extrapolations from RHIC results seem to favour a lower multiplicity scenario, dN_{ch}/dy=2'000
 - $N_{\text{tracks}} \sim 7000/3 \sim 2300$
 - □ BKG/ev ~ 2x109
- Let's consider the D+ p_T interval: $0 < p_T < 2$ GeV/c:
 - The results in the highest multiplicity scenario $(dN_{ch}/dy=6'000)$ are not satisfactory
 - BKG/ev is downscaled by a factor ~30;
 - SIG/ev not rescaled
 - □ S/ \sqrt{S} +B (normalized to 10 7 ev.) ~ 10 in case of Real PID: it is possible the study of the low-p_T spectra $_{24}$

1st step: single track cuts

- Cuts on p_T and d₀ of all tracks
- If PID information is used
 - \square Reject p, e and μ
 - $\ \square$ Different p_T cut for π and K

Selection	SIG/event	Selected SIG	BKG/even t	Selected BKG	S/B
No cuts	0.1	100%	10 ⁹	100%	10-10
$P_{\tau} \pi > 0.5$ GeV/c					
P _τ K >0.7 GeV/c	0.008	8%	106	0.1%	10-8
$d_0 = 95 \mu m$				25	

Combining Kaa triplets

- Build the triplets starting from two selected $K\pi$ pairs
 - $\ \square$ both $K\pi$ pairs with vertex displaced from the primary vertex

Vertex finder: D_sIIKKπ

R. Silvestri, E. Bruna

• Better resolution for D+ due to larger average momentum of daughter

Combinatorial background

- Huge number (≈10¹⁰ without PID) of combinatorial Kππ triplets in a HIJING central event
 - □ ≈108 triplets in mass range 1.84<M<1.90 GeV/c² (D± peak ± 3 σ)
 - ✓ Final selection cuts not yet defined
 - I Signal almost free from background only for $p_T > 6$ GeV/c
 - At lower p_T need to separate signal from background in v_2 calculation

First ideas for background

- Sample candidate $K\pi\pi$ triplets in bins of azimuthal angle relative to the event plane ($\Delta \phi = \phi \Psi_2$)
 - Build invariant mass spectra of $K\pi\pi$ triplets in $\Delta \phi$ bins
 - \square Extract number of D± in $\Delta \varphi$ bins from an invariant mass analysis
- Quantify the anisotropy from numbers of D \pm in the $\Delta \phi$ bins

Δφ D meson **Event plane** momentum as (estimator of reconstructed from Ψ_{2} the unknown the $K\pi\pi$ triplet reaction plane) X produced particles (mostly pions) Analysis in 2 bins of $\Delta \varphi$

- Non-zero v₂ □ difference between numbers of D ± in-plane and out-of-plane
- Extract number of D± in 90º "cones":
 - □ in-plane (-45< $\Delta \phi$ <45 U 135< $\Delta \phi$ <225)
 - out-of-plane ($45 < \Delta \varphi < 135 U 225 < \Delta \varphi < 315$)

Δφ

Analysis in more bins of $\Delta \varphi$

16 Δφ bins

• Fit number of D \pm vs. $\Delta \varphi$ with K[1 + 2 v_2 cos(2 $\Delta \varphi$)]

 v_2 values and error bars compatible with the ones obtained from $<\cos(2\Delta\varphi)>$

Other ideas for background

Different analysis methods to provide:

- 1. Cross checks
- 2. Evaluation of systematics
- Apply the analysis method devised for As by Borghini and Ollitrault [PRC 70 (2004) 064905 1

$$N_{\mathrm{pairs}}(M) = N_b(M) + N_{\Lambda}(M).$$

$$N_{\mathrm{pairs}}(M)v_{c,n}(M) = N_b(M)v_{c,n}^{(b)}(M) + N_{\Lambda}(M)v_{c,n}^{\Lambda},$$

$$N_{\mathrm{pairs}}(M)v_{s,n}(M) = N_b(M)v_{s,n}^{(b)}(M) + N_{\Lambda}(M)v_{s,n}^{\Lambda}.$$

- Used by STAR for Λ s
- To be extended from pairs (2 decay products) to triplets (3 decay products)
- Extract the $cos[2(\phi-\Psi_{RP})]$ distribution of combinatorial $K\pi\pi$ triplets from:
 - Invariant mass side-bands
 - Different sign combinations (e.g. $K+\pi+\pi+$ and $K-\pi-\pi-$)