GEOMETRICAL ANALYSIS OF THE PERCEPTRON

MATT RAYMOND

Lemma 0.1. Define D to be the set of input-output pairs. We call the elements of D datapoints. Fix $(\mathbf{x}_i, y_i) \in D$, $\mathbf{w} \in \mathbb{R}^n$ and $\varphi : \mathbb{R} \to \{-1, 1\}$ the binary step activation function.

- (a) The datapoint (\mathbf{x}_i, y_i) is misclassified if and only if $y_i(\varphi(\mathbf{w}^T\mathbf{x}_i)) \leq 0$.
- (b) The inequality $y_i(\varphi(\mathbf{w}^T\mathbf{x}_i)) > 0$ holds if and only if (\mathbf{x}_i, y_i) was classified correctly.

Proof. If $y_i(\varphi(\mathbf{w}^T\mathbf{x}_i)) \leq 0$ then $y_i > 0$ and $\varphi(\mathbf{w}^T\mathbf{x}_i) < 0$ or $y_i < 0$ and $\varphi(\mathbf{w}^T\mathbf{x}_i) > 0$. It follows that either $y_i > \varphi(\mathbf{w}^T\mathbf{x}_i)$ or $y_i < \varphi(\mathbf{w}^T\mathbf{x}_i)$. In both cases, $y_i \neq \varphi(\mathbf{w}^T\mathbf{x}_i)$. Hence, (\mathbf{x}_i, y_i) is misclassified. By a similar argument, it is easy to show the converse. Then (a) holds. Since (b) is the contrapositive of (a), (b) holds. This completes the proof.

Definition 0.2. Let V be a k-dimensional vector space over \mathbb{R} . A subspace H is called a hyperplane if it has codimension 1.

Theorem 0.3. For each \mathbf{x}_i , define a orthogonal hyperplane $H(\mathbf{x}_i)$ to \mathbf{x}_i . That is, for each $\mathbf{w} \in H(\mathbf{x}_i)$, $\mathbf{w}^T \mathbf{x}_i = 0$. Define $W_{\uparrow}(\mathbf{x}_i)$ to be the set of $\mathbf{w} \in \mathbb{R}^n$ with $\mathbf{w}^T \mathbf{x}_i < 0$, and $W_{\downarrow}(\mathbf{x}_i)$ the set of $\mathbf{w} \in \mathbb{R}^n$ with $\mathbf{w}^T \mathbf{x}_i > 0$.

- (a) If $y_i > 0$, then any \mathbf{w} with $y_i(\varphi(\mathbf{w}^T\mathbf{x}_i)) > 0$ is an element of $W_{\uparrow}(\mathbf{x}_i)$.
- (b) If $y_i < 0$, then any \mathbf{w} with $y_i(\varphi(\mathbf{w}^T\mathbf{x}_i)) > 0$ is an element of $W_{\downarrow}(\mathbf{x}_i)$.
- (c) The complement of $W_{\uparrow}(\mathbf{x}_i) \cup W_{\downarrow}(\mathbf{x}_i)$ is $H(\mathbf{x}_i)$.

Proof. If $y_i > 0$ and $y_i(\varphi(\mathbf{w}^T \mathbf{x}_i)) > 0$ then $\varphi(\mathbf{w}^T \mathbf{x}_i) > 0$. It follows that $\mathbf{w}^T \mathbf{x}_i > 0$, so $\mathbf{w} \in W_{\uparrow}(\mathbf{x}_i)$. Hence (a) holds. The proof of (b) is so similar it is omitted. If \mathbf{w} is in the complement of $W_{\uparrow}(\mathbf{x}_i) \cup W_{\downarrow}(\mathbf{x}_i)$, then $0 \leq \mathbf{w}^T \mathbf{x}_i$ and $\mathbf{w}^T \mathbf{x}_i \leq 0$. It follows that $\mathbf{w}^T \mathbf{x}_i = 0$ so $\mathbf{w} \in H(\mathbf{x}_i)$. The other inclusion is similar, so (c) holds. This completes the proof.

Corollary 0.4. $Fix \mathbf{x}_i \in \mathbb{R}^n$.

- (a) The union $H(\mathbf{x}_i) \cup W_{\uparrow}(\mathbf{x}_i) \cup W_{\downarrow}(\mathbf{x}_i) = \mathbb{R}^n$.
- (b) The intersection $H(\mathbf{x}_i) \cap W_{\uparrow}(\mathbf{x}_i) \cap W_{\downarrow}(\mathbf{x}_i) = \varnothing$.

Theorem 0.5. (Rosenblatt) If there exists some \mathbf{w}^* with $y_i(\varphi(\mathbf{x}_i^T\mathbf{w}^*)) > 0$ for every choice of (\mathbf{x}_i, y_i) , then the perceptron learning algorithm converges in a finite number of steps.

Definition 0.6. Let $W_{\uparrow}^*(D)$ be the intersection of sets $W_{\uparrow}(\mathbf{x}_i)$ such that every $\mathbf{w} \in W_{\uparrow}(\mathbf{x}_i)$ has $y_i(\varphi(\mathbf{w}^T\mathbf{x}_i) > 0$. Similarly, let $W_{\downarrow}^*(D)$ be the intersection of sets $W_{\downarrow}(\mathbf{x}_i)$ such that every $\mathbf{w} \in W_{\downarrow}(\mathbf{x}_i)$ has $y_i(\varphi(\mathbf{w}^T\mathbf{x}_i)) > 0$.

Definition 0.7. Suppose D is a dataset. The set D is not linearly separable if there does not exist an $\mathbf{w}^* \in \mathbb{R}^n$ such that for each $(\mathbf{x}_i, y_i) \in D$, $y_i(\varphi(\mathbf{x}_i^T \mathbf{w}^*)) > 0$.

Lemma 0.8. Let D be a dataset. Then the following are equivalent.

- (a) The set D is not linearly separable.
- (b) The set $W_{\uparrow}^*(D)$ fails to intersect $W_{\downarrow}^*(D)$.
- (c) The learning algorithm does not converge in D.

Proof. Suppose D is not linearly separable. Since $W^*_{\uparrow}(D) \cap W^*_{\downarrow}(D)$ is a subset of \mathbb{R}^n , it is clear that (a) implies (b). Suppose $W^*_{\uparrow}(D)$ and $W^*_{\downarrow}(D)$ do not intersect but D is linearly separable. Then there is some $\mathbf{w}^* \in \mathbb{R}^n$ such that for each $(\mathbf{x}_i, y_i) \in D$, $y_i(\varphi(\mathbf{x}_i^T \mathbf{w}^*)) > 0$. It follows that $W^*_{\uparrow}(D)$ and $W^*_{\downarrow}(D)$ intersect, which is a contradiction. Hence (b) implies (a). Suppose the learning algorithm converges in D. Then there is some \mathbf{w}^* with $y_i(\varphi(\mathbf{x}_i^T \mathbf{w}^*)) > 0$ for every choice of (\mathbf{x}_i, y_i) . Then $\mathbf{w}^* \in W^*_{\uparrow}(D) \cap W^*_{\downarrow}(D)$, so (b) implies (c). The other direction is clear. This completes the proof. \square Example 0.9. Let $D = \{((-1, -1), -1), ((1, -1), 1), ((1, 1), -1), ((-1, 1), 1)\}$. This is the XOR problem.

It is clear that

 $W_{\uparrow}^{*}(D) \cap W_{\downarrow}^{*}(D) = W_{\uparrow}((1,-1)) \cap W_{\uparrow}((-1,1)) \cap W_{\downarrow}((-1,-1)) \cap W_{\downarrow}((1,1)) = \emptyset.$

From the previous lemma, it follows that the learning algorithm does not converge in D.

Date: March 30, 2020.

(0.10)