1. Решите систему линейных уравнений. Для соответствующей однородной системы определите базис (фундаментальную систему решений) и размерность пространства ее решений.

$$\begin{cases} 2x_1 + x_2 - x_3 + x_4 = 1, \\ x_1 - 2x_2 + x_3 + x_4 = 2, \\ 3x_1 - x_2 + 2x_4 = 0. \end{cases}$$

2. Для линейного оператора $f: \mathbb{R}^3 \to \mathbb{R}^3$, заданного условием

2. Для линейного оператора
$$f(\vec{x}) = \frac{(\vec{x}, \vec{b})}{(\vec{a}, \vec{b})} \cdot \vec{a}, \ \vec{x} = (x_1; x_2; x_3) \in \mathbb{R}^3, \ \vec{a} = (1; -1; 0), \ \vec{b} = (2; 1; 4),$$
 найдите

матрицу A, ядро KerA и область значений $\operatorname{Im} A$ в базисе \vec{l} , \vec{J} , \vec{k} .

краевую задачу $\frac{\partial^2 u}{\partial t^2} = 25 \frac{\partial^2 u}{\partial x^2}$, $u(x,0) = 6 \sin \frac{2\pi x}{5}$.

3. Решите красьую
$$\frac{\partial u}{\partial t}(x,0) = 0, x \in [0,5], u(0,t) = u(5,t) = 0, t \ge 0.$$

4. Найдите допустимые экстремали функционала

4. Найдите допустимые зисту
$$J[y(x)] = \int_{0}^{\ln 2} \left(y'^2 + 2y^2 + 2y \right) e^{-x} dx, \ y(0) = y(\ln 2) = 0.$$

уравнение разностное Решите 5. y(0) = 0, y(1) = 0.

- 1. Выясните, образует ли линейное пространство множество всех векторов из R^3 , параллельных прямой $\frac{x}{1} = \frac{y-1}{-2} = \frac{z+7}{4}$, с естественными операциями сложения двух векторов и умножения вектора на действительное число. В случае положительного ответа укажите размерность и какой-либо базис этого линейного пространства.
- **2.** Для линейного оператора $f: R^3 \to R^3$, заданного условием $f(\vec{x}) = (2x_1 + 3x_3; x_1 + x_2 + x_3; -3x_1 + 4x_3)$, найдите матрицу A, ядро *KerA* и область значений Im A в базисе \vec{i} , \vec{j} , \vec{k} .
- 3. Разложите в ряд Фурье 2π периодическую функцию $f(x) = \begin{cases} 1, & -\pi \le x \le 0, \\ 2-x, & 0 < x < \pi, \end{cases}$ заданную на промежутке $[-\pi;\pi)$.

Постройте графики функции f(x) и суммы S(x) ее ряда Фурье.

- 4. Используя гамма- и бета-функции, вычислите интеграл $\int\limits_{0}^{+\infty} \frac{dx}{\sqrt[4]{(1+x^2)^3}}.$
- 5. Решите задачу Коши операционным методом $y'' + 2y = 2 + e^t$, y(0) = 1, y'(0) = 2.

- 1. Докажите, что данный набор векторов $\vec{e}_1=(1;-1;-1), \ \vec{e}_2=(0;1;0), \ \vec{e}_3=(1;3;2)$ образует базис линейного пространства $V=R^3$, и найдите координаты вектора $\vec{y}=(-1;4;2)$ в этом базисе.
- **2.** Для линейного оператора $f: R^3 \to R^3$, заданного условием $f(\vec{x}) = (3x_2; x_1 2x_2; 2x_2 + x_3)$, найдите собственные значения и собственные векторы в базисе \vec{i} , \vec{j} , \vec{k} .
- 3. Постройте разложение функции f(x) = 2x, $x \in [0;1)$, в тригонометрический ряд Фурье, полагая, что функция определена на полупериоде и является нечетной. Постройте графики функции f(x) и суммы S(x) ее ряда Фурье.
- 4. Найдите допустимые экстремали функционала

$$J[y(x)] = \int_{0}^{1} (y^{2} + y'^{2} + 2 \cdot y \cdot e^{x}) dx, \ y(0) = y(1) = 0.$$

5. Найдите Z – преобразование решетчатой функции $y(n) = n \cdot \cos \frac{\pi n}{2}$.

1. Докажите, что данный набор векторов $A_1 = \begin{pmatrix} 1 & 0 \\ -6 & 4 \end{pmatrix}, \ A_2 = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}, \ A_3 = \begin{pmatrix} -1 & 0 \\ 1 & -2 \end{pmatrix}, \ A_4 = \begin{pmatrix} 1 & 0 \\ -1 & 3 \end{pmatrix}$ образует

базис линейного пространства V всех матриц второго порядка, и найдите координаты вектора $Y = \begin{pmatrix} 6 & 0 \\ -1 & 1 \end{pmatrix}$ в этом базисе.

- **2.** Постройте ортонормированный базис в пространстве R^3 по данному базису $\vec{x}_1=(1;1;1), \ \vec{x}_2=(1;-2;-1), \ \vec{x}_3=(2;-1;1).$ Докажите, что полученная система векторов является ортонормированной.
- 3. Постройте разложение функции f(x) = x 1, $x \in [0;2)$, в тригонометрический ряд Фурье, полагая, что функция определена на полупериоде и является четной. Постройте графики функции f(x) и суммы S(x) ее ряда Фурье.
- **4.** Используя гамма- и бета-функции, вычислите интеграл $\int\limits_0^1 x^3 \bigg(\ln \frac{1}{x} \bigg)^5 dx \, .$
- **5.** Найдите изображение функции $f(t) = t \cdot \text{ch} 2t \cdot \cos 2t$.

- 1. Докажите, что данный набор векторов $f_1(x) = -1$, $f_2(x) = x 1$, $f_3(x) = x^2 + 4$, $f_4(x) = x^3 + x + 1$ образует базис линейного пространства V всех многочленов, степень которых не превосходит 3, и найдите координаты вектора $Y(x) = 3x^3 + 2x^2 x + 3$ в этом базисе.
- **2.** Выясните, является ли пространство R^2 евклидовым пространством, если каждой паре векторов $\vec{x}=(x_1;x_2)$ и $\vec{y}=(y_1;y_2)$ поставлено в соответствие число (\vec{x},\vec{y}) , определяемое равенством $(\vec{x},\vec{y})=2x_1y_1+2x_1y_2+2x_2y_1+5x_2y_2$. В случае положительного ответа найдите косинус угла между векторами $\vec{a}=(-1;1)$ и $\vec{b}=(2;-1)$.
- 3. Найдите комплексную форму ряда Фурье функции $f(x) = e^{-2x}$, $(-\pi;\pi)$.
- 4. . Найдите допустимые экстремали функционала

$$J[y(x)] = \int_{1}^{2} (3 \cdot x \cdot (y')^{5} - 5 \cdot y \cdot (y')^{4}) dx, \ y(1) = 1, \quad y(2) = 4.$$

5. Найдите решетчатую функцию по ее Z – преобразованию $F(z) = \frac{z-1}{\left(z+2\right)^3}$.

1. Решите систему линейных уравнений. Для соответствующей однородной системы определите базис (фундаментальную систему решений) и размерность пространства ее решений.

$$\begin{cases} x_1 - 3x_2 + 4x_3 - x_4 = 2, \\ 2x_1 + 3x_2 + x_3 + 5x_4 = 3, \\ 3x_1 + 5x_3 + 4x_4 = 6. \end{cases}$$

2. Выясните, является ли линейное пространство всех матриц второго порядка евклидовым пространством, если каждой паре векторов $\vec{x} = A$ и $\vec{y} = B$, $A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$, $B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$, поставлено в соответствие число (\vec{x}, \vec{y}) , определяемое равенством $(A, B) = 2a_1 \cdot a_2 + a_1 \cdot b_2 + a_2 \cdot b_1 + b_1 \cdot b_2 + c_1 \cdot c_2 + d_1 \cdot d_2$. В случае положительного ответа найдите косинус угла между векторами $\vec{a} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$ и $\vec{b} = \begin{bmatrix} 0 & 2 \\ -1 & 1 \end{bmatrix}$.

3. Разложите в ряд Фурье по многочленам Лежандра функцию $f(x) = -x^3 + x^2 - x + 3$, $x \in [-1;1]$. Выполните проверку.

4. Используя гамма- и бета-функции, вычислите интеграл

$$\int_{0}^{1} \sqrt[3]{\frac{1-x}{x}} \, \frac{dx}{(x-2)^{2}} \, .$$

5. Найдите оригинал по данному изображению $F(p) = \frac{p+2}{(p+1)\cdot (p-2)\cdot (p^2+4)}$.

1. В пространстве C[a;b] всех непрерывных на отрезке [a;b] функций с метрикой $\rho(f(x),g(x))=\max_{[a;b]}|f(x)-g(x)|$ найдите расстояние между

функциями $f(x) = 4\sin x + 4\sqrt{3}\cos x$, g(x) = 3 на отрезке $\left[-\frac{\pi}{3}; \frac{5\pi}{3} \right]$.

- **2.** Для линейного оператора $f: R^3 \to R^3$ зеркального отражения векторов пространства R^3 относительно плоскости Oxy, найдите матрицу A, ядро KerA и область значений Im A в базисе \vec{i} , \vec{j} , \vec{k} .
 - 3. Найдите синус-преобразование Фурье функции

$$f(x) = \begin{cases} \sin\frac{x}{3}, & 0 \le x \le 3\pi, \\ 0, & x > 3\pi. \end{cases}$$

4. Найдите допустимые экстремали функционала

4. Handure donyermans
$$J[y(x)] = \int_{0}^{1} [y^{2}(x) + y'^{2}(x) + 2y(x)e^{x}]dx, \ y(0) = y(1) = 0.$$

5. Решите разностное уравнение $y(n+2) - 5y(n+1) + 4y(n) = 2 \cdot (-1)^n$, y(0) = 0, y(1) = 1.

CHIH

НКЦИЙ

Билет 8

- 1. В пространстве $C_2[a;b]$ всех непрерывных на отрезке [a;b] функций с метрикой $\rho(f(x),g(x))=\begin{pmatrix} b \\ j (f(x)-g(x))^2 dx \end{pmatrix}^{1/2}$ найдите расстояние между функциями $f(x)=\cos x$, g(x)=x на отрезке $[0;\pi]$.
- **2.** Для линейного оператора $f: R^3 \to R^3$ поворота векторов пространства R^3 относительно оси Ox в положительном направлении на угол $\frac{\pi}{2}$, найдите собственные значения и собственные векторы в базисе \vec{i} , \vec{j} , \vec{k} .
- 3. Найдите косинус-преобразование Фурье функции $f(x) = \begin{cases} \cos 2x, & 0 \le x \le \frac{\pi}{2}, \\ 0, & x > \frac{\pi}{2}. \end{cases}$
- **4.** Используя гамма- и бета-функции, вычислите интеграл $\int_{0}^{3} \frac{dx}{\sqrt[5]{x^3 \cdot (3-x)^2}}.$
- **5.** Решите задачу Коши операционным методом $y'' + y = \sinh t$, y(0) = 0, y'(0) = 1.

1. Вынените, образует ли линейное пространетво множество всех плоских векторов, перпендикулярных прямой 3x+4y-8=0, с естественными операциями сложения двух векторов и умножения вектора на действительное число. В случае положительного ответа укажите размерность и какой-либо базис этого линейного пространства.

2. Для линейного оператора $f: \mathbb{R}^3 \to \mathbb{R}^3$, заданного условием $f(\bar{x}) = \bar{x} - 6 \cdot (\bar{x}, \bar{a}) \cdot \frac{\bar{a}}{|\bar{a}|^2}, \quad \bar{x} = (x_1; x_2; x_3) \in \mathbb{R}^3, \quad \bar{a} = (-1; -2; 1),$ найдите

матрицу A, ядро KerA и область значений $\operatorname{Im} A$ в базисе \overline{i} , \overline{j} , \overline{k} .

3. Решите краевую задачу $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$, $u(x,0) = 4 \sin \frac{\pi x}{2}$, $\frac{\partial u}{\partial t}(x,0) = 0$, $x \in [0, 2], \ u(0, t) = u(2, t) = 0, \ t \ge 0.$

4. Найдите допустимые экстремали функционала

$$J[y(x)] = \int_{0}^{1} (12xy + yy' + y'^{2}) dx, \ y(0) = 1, \ y(1) = 4.$$

5. Решите разностное уравнение $y(n+2) - 5y(n+1) + 6y(n) = 2 \cdot 4^n$, y(0) = 0, y(1) = 1.

- 1. В пространстве C[a;b] всех непрерывных на отрезке [a;b] функций с нормой $||f(x)|| = \max_{[a;b]} |f(x)|$ найдите норму функции $f(x) = 2^{-x^2} + 2x + 8$ на отрезке [-1;2].
- **2.** В пространстве всех верхних треугольных матриц второго порядка со скалярным произведением $(A,B) = a_1a_2 + b_1b_2 + c_1c_2$, $A = \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix}$,

 $B = \begin{bmatrix} a_2 & b_2 \\ 0 & c_2 \end{bmatrix}$, постройте ортонормированный базис по данному базису

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

3. Дана функция $f(x) = \begin{cases} \cos \frac{x}{3}, |x| \le \frac{3\pi}{2}, \\ 0, |x| > \frac{3\pi}{2}. \end{cases}$. Представьте функцию f(x)

интегралом Фурье.

- 4. Используя гамма- и бета-функции, вычислите интеграл $\int_{1}^{+\infty} (\ln x)^5 \cdot \frac{dx}{x^2}$.
- **5.** Решите задачу Коши операционным методом $y'' y' = t^2$, y(0) = 0, y'(0) = 1.

- Билет 11 1. В пространстве $C_2[a;b]$ всех непрерывных на отрезке [a;b] функций с нормой $||f(x)|| = {b \choose f(x)^2 dx}^{1/2}$ найдите норму функции $f(x) = \cos x$ на отрезке $\left[0; \frac{\pi}{4}\right]$.
- **2.** Для линейного оператора $f: \mathbb{R}^3 \to \mathbb{R}^3$, заданного условием $f(\vec{x}) = (-3x_1 + 2x_2; -2x_1 + x_2; 15x_1 - 7x_2 + 4x_3)$, найдите собственные значения и собственные векторы в базисе \vec{i} , \vec{j} , \vec{k} . F(z)
- функции преобразование Фурье прямое Найдите $f(x) = \begin{cases} \sin x, |x| \le \pi, \\ 0, |x| > \pi. \end{cases}$
- 4. Найдите допустимые экстремали функционала

4. Найдите допустиме
$$J[y(x)] = \int_{0}^{1} (y + 2xy' + y'^2) dx$$
, $y(0) = y(1) = 0$.

5. Решите разностное уравнение при данных начальных условиях. y(n+2)-16y(n) = -15, y(0) = 1, y(1) = 5.

- 1. Найдите косинус угла между функциями f(x) и g(x) евклидова пространства C[a,b] со скалярным произведением $(f(x),g(x))=\int\limits_{a}^{b}f(x)\cdot g(x)dx$, если $f(x)=x,g(x)=\cos x,a=0,b=\frac{\pi}{2}$.
- **2.** Постройте ортонормированный базис в пространстве R^3 по данному базису $x_1 = (-1, -1, 1)$, $x_2 = (-2, 2, 1)$, $x_3 = (0, -2, 1)$. Докажите, что полученная система векторов является ортонормированной.
- 3. Разложите в ряд Фурье 2π периодическую функцию $f(x) = \begin{cases} -2, & -\pi < x \leq 0, \\ 4, & 0 < x < \pi, \end{cases}$ заданную на промежутке $(-\pi;\pi)$. Постройте графики функции f(x) и суммы S(x) ее ряда Фурье.
- **4.** Используя гамма- и бета-функции, вычислите интеграл $\int_{0}^{1} \frac{x^{6}}{\sqrt[3]{1-x^{3}}} dx$.
- **5.** Найдите изображение F(p) по заданному оригиналу $\int\limits_0^t \tau \cdot \sin 2\tau \cdot d\tau$.

Consequent (10) or y(2) (10) - 1

Superior (10) or y(2)

Superior (1

 $\vec{e}_1 = (0, 1; 2), \vec{e}_2 = (1; 0; 1), \vec{e}_3 = (-1; 2; 4)$ образует базис линейного пространства $V = R^3$, и найдите координаты вектора $\vec{y} = (-2; 4; 5)$ в

2. В пространстве C[a;b] всех непрерывных на отрезке [a;b] функций е метрикой $\rho(f(x),g(x))=\max_{[a;b]}|f(x)-g(x)|$ найдите расстояние между

функциями $f(x) = x^2 - 1$, g(x) = x + 3, на отрезке [0, 1].

3. Постройте разложение функции $f(x) = \cos \frac{x}{\pi}$, $x \in (0; \pi)$, в тригонометрический ряд Фурье, полагая, что функция определена на полупериоде и является нечетной. Постройте графики функции f(x) и суммы S(x) ее ряда Фурье.

4. Найдите допустимые экстремали функционала

$$J[y(x)] = \int_{0}^{1} (y'^4 - 6 \cdot y'^2) dx$$
, $y(0) = y(1) = 0$.

5. Решите разностное уравнение при данных начальных условиях. y(n+2)-7y(n+1)+12y(n)=6, y(0)=1, y(1)=2.

len

Докажите, что данный набор векторов $A_{1} = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}, A_{2} = \begin{pmatrix} -1 & 0 \\ 3 & 2 \end{pmatrix}, A_{3} = \begin{pmatrix} -1 & 3 \\ 8 & 9 \end{pmatrix}, A_{4} = \begin{pmatrix} 0 & -3 \\ 1 & -2 \end{pmatrix}$

базис линейного пространства V всех матриц второго порядка, и найдите координаты вектора $Y = \begin{pmatrix} 4 & 9 \\ 47 & 49 \end{pmatrix}$ в этом базисе.

- **2.** В пространстве $C_2[a;b]$ всех непрерывных на отрезке [a;b] функций с метрикой $\rho(f(x),g(x)) = \left(\int_{a}^{b} (f(x)-g(x))^2 dx\right)^{1/2}$ найдите расстояние между функциями $f(x) = \ln x$, $g(x) = \frac{1}{\sqrt{x}}$ на отрезке [1;e].
- 3. Постройте разложение функции $f(x) = \begin{cases} 1, 0 < x \le 3, \\ 0, 3 < x < \pi, \end{cases}$, $x \in (0; \pi)$, в тригонометрический ряд Фурье, полагая, что функция определена на полупериоде и является четной. Постройте графики функции f(x) и суммы S(x) ее ряда Фурье.
- 4. Используя гамма- и бета-функции, вычислите $\int_{1}^{2} \sqrt[3]{(2-x)^2 \cdot (x-1)} dx.$

5. Найдите изображение F(p) по заданному оригиналу $\frac{\sin^2 3t}{t}$.

1. Докажите, что данный набор векторов $f_1(x) = 1$, $f_2(x) = x + 1$, $f_3(x) = (x + 1)^2$, $f_4(x) = (x + 1)^3$ образует базис линейного пространства V всех многочленов, степень которых не превосходит 3, и найдите координаты вектора $Y(x) = x^3 - 2x^2 + 3x - 4$ в этом базисе.

ние

- **2.** Выясните, является ли пространство R^2 евклидовым пространством, если каждой паре векторов $\vec{x} = (x_1; x_2)$ и $\vec{y} = (y_1; y_2)$ поставлено в соответствие число (\vec{x}, \vec{y}) , определяемое равенством $(\vec{x}, \vec{y}) = x_1 y_1 + x_1 y_2 + 2 x_2 y_1 + 2 x_2 y_2$. В случае положительного ответа найдите косинус угла между векторами $\vec{a} = (-1;1)$ и $\vec{b} = (2;-1)$.
- 3. Найдите комплексную форму ряда Фурье функции $f(x) = \begin{cases} 0, -2 < x \le 0, \\ 1, 0 < x < 2, \end{cases} x \in (-2;2).$
- 4. . Найдите допустимые экстремали функционала

$$J[y(x)] = \int_{0}^{1} (e^{x+y} - y' - \sin x) dx, \ y(0) = 2, \quad y(1) = 0.$$

5. Решите разностное уравнение при данных начальных условиях. $y(n+2) + y(n) = 1 - (-1)^n$, y(0) = 0, y(1) = 1.

1. Решите систему линейных уравнений. Для соответствующей однородной системы определите базис (фундаментальную систему решений) и размерность пространства ее решений.

$$\begin{cases} 9x_1 - 3x_2 + 5x_3 + 6x_4 = 4, \\ 6x_1 - 2x_2 + 3x_3 + 4x_4 = 5, \\ 3x_1 - x_2 + 3x_3 + 14x_4 = -8. \end{cases}$$

2. Выясните, является ли линейное пространство всех многочленов степени не выше двух евклидовым пространством, если каждой паре векторов $\vec{x} = f(x)$ и $\vec{y} = g(x)$ поставлено в соответствие число (\vec{x}, \vec{y}) , определяемое равенством

 $(\vec{x}, \vec{y}) = f(1) \cdot g(1) - 2f(1) \cdot g(0) - 2f(0) \cdot g(1) + 5f(0) \cdot g(0) + f(2) \cdot g(2)$. В случае положительного ответа найдите косинус угла между векторами $\vec{a} = -x^2 + x + 2$ и $\vec{b} = 3x - 1$.

3. Разложите в ряд Фурье по многочленам Лежандра функцию $f(x) = 5x^3 - 3x + 2x - 1$, $x \in [-1;1]$. Выполните проверку.

4. Используя гамма- и бета-функции, вычислите интеграл

$$\int\limits_{0}^{+\infty}x^{3}\cdot e^{-2x}dx.$$

5. Решите задачу Коши операционным методом $2y'' - y' = \sin 3t$, y(0) = 2, y'(0) = -1.

- **1.** В пространстве C[a;b] всех непрерывных на отрезке [a;b] функций с нормой $\|f(x)\| = \max_{[a;b]} |f(x)|$ найдите норму функции $f(x) = x \cdot e^{-x^2/2}$
- 2. В пространстве всех многочленов, степень которых не выше двух, со скалярным произведением $(f(x),g(x))=\int_a^b f(x)\cdot g(x)dx$ постройте ортонормированный базис по данному базису $f_1(x) = 1$, $f_2(x) = 2x$, $f_3(x) = -x^2$ на отрезке [-1;1]. Фурье
- функции косинус-преобразование $f(x) = \begin{cases} \sin \frac{x}{3}, & 0 \le x \le 3\pi, \\ 0, & x > 3\pi. \end{cases}$
- **4.** Вычислите $J_{\frac{7}{2}}(x)$.
- 5. Найдите изображение F(p) по заданному оригиналу $\int_{0}^{t} \tau^{2} \cdot e^{-\tau} \cdot d\tau$.

Suger 20

- 1. Выясните, образует ли линейное пространство множество всех векторов, параллельных плоскости x-3y+2z=0, с естественными операциями сложения двух векторов и умножения вектора на действительное число. В случае положительного ответа укажите размерность и какой-либо базис этого линейного пространства.
- 2. Для линейного оператора $f: R^3 \to R^3$, заданного условием $f(\vec{x}) = (4x_1 x_2 x_3; x_1 + 2x_2 x_3; x_1 x_2 + 2x_3)$, найдите собственные значения и собственные векторы в базисе \vec{i} , \vec{j} , \vec{k} .
- 3. Вычислите $J_{-\frac{7}{2}}(x)$.
- 4. Найдите допустимые экстремали функционала

$$J[y(x)] = \int_{1}^{3} xy' (6 + x^{2}y') dx, \ y(1) = 5, \ y(3) = 3.$$

5. Решите задачу Коши операционным методом y'' + y' - 2y = -2(t+1), y(0) = 1, y'(0) = 1.

- 1. Выясните, образует ли линейное пространство множество всех векторов из R^3 , перпендикулярных плоскости 3x-5y+7z+2=0, с естественными операциями сложения двух векторов и умножения вектора на действительное число. В случае положительного ответа укажите размерность и какой-либо базис этого линейного пространства.
- **2.** Для линейного оператора $f: R^3 \to R^3$, заданного условием $f(\vec{x}) = (6x_1 + x_2 x_3; 2x_1 + 5x_2 2x_3; x_1 x_2 + 4x_3)$, найдите матрицу A, ядро KerA и область значений $Im\ A$ в базисе \vec{i} , \vec{j} , \vec{k} .
- 3. Разложите в ряд Фурье 2π периодическую функцию $f(x) = \begin{cases} -1, & -\pi \leq x \leq 0, \\ 2x, & 0 < x < \pi, \end{cases}$ заданную на промежутке $[-\pi;\pi)$.

Постройте графики функции f(x) и суммы S(x) ее ряда Фурье.

- **4.** Используя гамма- и бета-функции, вычислите интеграл $\int\limits_{0}^{+\infty}e^{-3x^{2}}\cdot x^{4}dx\,.$
- **5.** Решите задачу Коши операционным методом $y'' + y = 6e^{-t}$, y(0) = 3, y'(0) = 1.

- **1.** Докажите, что данный набор векторов $\vec{e}_1 = (-5; 2; -3), \ \vec{e}_2 = (1; -1; 0), \ \vec{e}_3 = (-4; 1; 6)$ образует базис линейного пространства $V = R^3$, и найдите координаты вектора $\vec{y} = (1; -7; -6)$ в этом базисе.
- **2.** Для линейного оператора $f: \mathbb{R}^3 \to \mathbb{R}^3$, заданного условием $f(\vec{x}) = (9x_1 6x_2 6x_3; -2x_1 + 5x_2 2x_3; -2x_1 + 2x_2 13x_3)$, найдите собственные значения и собственные векторы в базисе \vec{i} , \vec{j} , \vec{k} .
- **3.** Постройте разложение функции f(x) = 1 x, $x \in [0;1)$, в тригонометрический ряд Фурье, полагая, что функция определена на полупериоде и является нечетной. Постройте графики функции f(x) и суммы S(x) ее ряда Фурье.
- 4. Найдите допустимые экстремали функционала

$$J[y(x)] = \int_{1}^{2} y'(1+x^{2}y')dx$$
, $y(1) = 3$, $y(2) = 5$.

5. Найдите Z – преобразование решетчатой функции $y(n) = n^2 \cdot (-1)^n$.

- 1. Докажите, что данный набор векторов $A_1 = \begin{pmatrix} 5 & -1 \\ 0 & 5 \end{pmatrix}, \ A_2 = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}, \ A_3 = \begin{pmatrix} 0 & -2 \\ 3 & 4 \end{pmatrix}, \ A_4 = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} \text{ образует}$ базис линейного пространства V всех матриц второго порядка, и найдите координаты вектора $Y = \begin{pmatrix} 12 & -6 \\ 4 & 17 \end{pmatrix}$ в этом базисе.
- **2.** Постройте ортонормированный базис в пространстве R^3 по данному базису $\vec{x}_1 = (-1;1;1)$, $\vec{x}_2 = (-2;1;-1)$, $\vec{x}_3 = (-2;0;2)$. Докажите, что полученная система векторов является ортонормированной.
- 3. Постройте разложение функции f(x) = 2 + 3x, $x \in [0;3)$, в тригонометрический ряд Фурье, полагая, что функция определена на полупериоде и является четной. Постройте графики функции f(x) и суммы S(x) ее ряда Фурье.
- **4.** Используя гамма- и бета-функции, вычислите интеграл $\int\limits_{0}^{\pi/2} (\sin x + \cos x)^{3} \cdot \sin^{-1/2} x \cdot \cos^{-1/2} x dx.$
- **5.** Найдите изображение функции $f(t) = t^2 \cdot \cosh 2t$.

- 1. Докажите, что данный набор векторов $f_1(x) = 1$, $f_2(x) = -2x + 1$, $f_3(x) = x^2 2x 3$, $f_4(x) = x^3 1$ образует базис линейного пространства V всех многочленов, степень которых не превосходит 3, и найдите координаты вектора $Y(x) = 3x^3 7x^2 + 4x + 15$ в этом базисе.
- 2. Выясните, является ли пространство R^2 евклидовым пространством, если каждой паре векторов $\vec{x}=(x_1;x_2)$ и $\vec{y}=(y_1;y_2)$ поставлено в соответствие число (\vec{x},\vec{y}) , определяемое равенством $(\vec{x},\vec{y})=2x_1y_1+7x_1y_2+3x_2y_1+x_2y_2$. В случае положительного ответа найдите косинус угла между векторами $\vec{a}=(-1;1)$ и $\vec{b}=(2;-1)$.
- 3. Найдите комплексную форму ряда Фурье функции $f(x) = e^{-3x}$, (-1;1).
- 4. . Найдите допустимые экстремали функционала

$$[[y(x)] = \int_{1}^{e} (x \cdot (y')^{2} - 2y') dx, \ y(1) = 1, \ y(e) = 2.$$

Найдите решетчатую функцию по ее Z – преобразованию $=\frac{z+3}{z^2-2z-9}$.

1. Решите систему линейных уравнений. Для соответствующей однородной системы определите базис (фундаментальную систему решений) и размерность пространства ее решений.

$$\begin{cases} x_1 + 2x_2 + 2x_3 - x_4 = 1, \\ 2x_1 + 2x_2 + x_3 + 3x_4 = 10, \\ x_1 + 2x_2 - x_3 + x_4 = 8. \end{cases}$$

2. Выясните, является ли линейное пространство всех матриц второго порядка евклидовым пространством, если каждой паре векторов $\vec{x} = A$

и $\vec{y} = B$, $A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$, $B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$, поставлено в соответствие число

- (\vec{x}, \vec{y}) , определяемое равенством $(A, B) = a_1 \cdot b_2 + a_2 \cdot b_1 c_1 \cdot d_2 c_2 \cdot d_1$. В случае положительного ответа найдите косинус угла между векторами $\vec{a} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$ и $\vec{b} = \begin{bmatrix} 0 & 2 \\ -1 & 1 \end{bmatrix}$.
- **3.** Разложите в ряд Фурье по многочленам Лежандра функцию $f(x) = 2x^3 x^2 + 3x 1$, $x \in [-1;1]$. Выполните проверку.

спользуя гамма- и бета-функции, вычислите интеграл

$$\frac{-x)}{-dx}$$
.

5. Найдите оригинал по данному изображению

$$F(p) = \frac{p^2 + 2p - 1}{p^3 - 2p^2 + 2p - 1}.$$

1. В пространстве C[a;b] всех непрерывных на отрезке [a;b] функций с метрикой $\rho(f(x),g(x))=\max_{[a;b]}|f(x)-g(x)|$ найдите расстояние между функциями $f(x)=-2x^2+3$, g(x)=5x на отрезке [-2;1].

Билет 27

- **2.** Для линейного оператора $f: R^3 \to R^3$ зеркального отражения векторов пространства R^3 относительно плоскости Oyz, найдите матрицу A, ядро KerA и область значений $Im\ A$ в базисе \vec{i} , \vec{j} , \vec{k} .
- 3. Найдите синус-преобразование Фурье функции

$$f(x) = \begin{cases} 4x - 1, & 0 \le x \le \frac{1}{4}, \\ 0, & \frac{1}{4} < x < +\infty. \end{cases}$$

4. Найдите допустимые экстремали функционала

$$J[y(x)] = \int_{0}^{\frac{\pi}{6}} [y^{2} - 9y^{2} + 4xy \sin x] dx, \ y(0) = -\frac{1}{16}, \quad y\left(\frac{\pi}{6}\right) = \frac{\pi}{48}.$$

5. Найдите решетчатую функцию по ее Z – преобразованию $F(z) = \frac{z+3}{z^2+3z-10}$.

- 1. В пространстве $C_2[a;b]$ всех непрерывных на отрезке [a;b] функций с метрикой $\rho(f(x),g(x))=\begin{pmatrix} b \\ \int (f(x)-g(x))^2 dx \end{pmatrix}^{1/2}$ найдите расстояние между функциями $f(x)=\sin x$, g(x)=x на отрезке $[0;\pi]$.
- **2.** Для линейного оператора $f: R^3 \to R^3$ поворота векторов пространства R^3 относительно оси Oy в отрицательном направлении на угол $\frac{\pi}{2}$, найдите собственные значения и собственные векторы в базисе \vec{i} , \vec{j} , \vec{k} .
- **3.** Найдите косинус-преобразование Фурье функции $f(x) = e^{-\frac{x}{3}}, \quad x \ge 0.$
- **4.** Используя гамма- и бета-функции, вычислите интеграл $\frac{\pi}{\int_{0}^{2} \sqrt{1 \frac{1}{2} \sin^{2} x} dx}.$
- **5.** Решите задачу Коши операционным методом $y'' + 4y' + 29y = e^{-2t}$, y(0) = 0, y'(0) = 1.

- 1. Выясните, образует ли линейное пространство множество всех плоских векторов, сумма координат которых равна нулю, с естественными операциями сложения двух векторов и умножения вектора на действительное число. В случае положительного ответа укажите размерность и какой-либо базис этого линейного пространства.
- **2.** Для линейного оператора $f: R^3 \to R^3$, заданного условием $f(\vec{x}) = -2\vec{x} + 3 \cdot (\vec{x}, \vec{a}) \cdot \frac{\vec{a}}{|\vec{a}|}$, $\vec{x} = (x_1; x_2; x_3) \in R^3$, $\vec{a} = (1; 2; -2)$, найдите

матрицу A , ядро KerA и область значений $\mathrm{Im}\,A$ в базисе \vec{i} , \vec{j} , \vec{k} .

- 3. Решите краевую задачу $\frac{\partial^2 u}{\partial t^2} = 25 \frac{\partial^2 u}{\partial x^2}$, $u(x,0) = 5 \sin 3\pi x$, $\frac{\partial u}{\partial t}(x,0) = 20\pi \sin 4\pi x$, $x \in [0,3]$, u(0,t) = u(3,t) = 0, $t \ge 0$.
- 4. Найдите допустимые экстремали функционала

$$J[y(x)] = \int_{0}^{\pi} [4y\cos x + y'^{2} - y^{2}]dx, \ y(0) = 0, \quad y(\pi) = 0.$$

5. Найдите решетчатую функцию по ее Z – преобразованию $F(z) = \frac{z-1}{(z+1)\cdot(z+2)^2}$.

- 1. В пространстве C[a;b] всех непрерывных на отрезке [a;b] функций с нормой $\|f(x)\| = \max_{[a;b]} |f(x)|$ найдите норму функции $f(x) = 5^{-x^2 + x + 1}$ на отрезке [-1;2].
- **2.** В пространстве всех верхних треугольных матриц второго порядка со скалярным произведением $(A,B) = a_1 \cdot a_2 b_1 \cdot b_2 + c_1 \cdot c_2 d_1 \cdot d_2$, $A = \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix}$, $B = \begin{bmatrix} a_2 & b_2 \\ 0 & c_2 \end{bmatrix}$, постройте ортонормированный базис по

данному базису $E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $E_2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $E_3 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

3. Дана функция $f(x) = \begin{cases} \cos \frac{x}{2}, |x| < 2\pi, \\ 0, |x| > 2\pi. \end{cases}$. Представьте функцию f(x)

интегралом Фурье.

- 4. Используя гамма- и бета-функции, вычислите интеграл $\int_{0}^{\pi} \frac{dx}{\sqrt{1-\frac{1}{2}\sin^2 x}} \, .$
- 5. Решите задачу Коши операционным методом $y'' + y' + y = 7e^{2t}$, y(0) = 1, y'(0) = 4.