Planning Exercise

V-CID [1m]

Constant Variables

E.g.:

- 1. Material of the lens
- 2. Distance y
- 3. Type of material of the glass block
- 4. Length of nichrome wire
- ☐ At least one constant variable (Not environmental variables, must be controllable)

Independent Variable:

E.g.:

- 1. Focal length of the different lenses
- 2. u (Object distance in cm)
- 3. Vertical height, h/cm

Dependent Variable:

- 1. Image distance, x
- 2. v (Image distance in cm)
- 3. Time taken, T/s for the marble to roll the distance d.

Steps:

mrc (Meaure, Record, Calculate)

- 1. Set up the apparatus as shown in the diagram
- : (Describe how to collect the dependent variable)
- n. Calculate (whatever you need for graphing [E.g.: $\frac{1}{T^2}$)
- n+1. While keeping the key variables constant, repeat steps 2 to k for a total of 6 sets of data for (independent variable) and (dependent variable)
 - ☐ Copy words from the short experiment instructions. ☐ DO NOT change them into your own words.

tgr (Tabulate, plot Graph, conclude Relationship)

- n+2. Tabulate all the readings of (whatever you need for your graph + what you originally recorded)
- n+3. Plot a graph of (variable for vertical axis) against (variable for horizontal axis)
- n+4. If the relationship is true, the graph should [E.g.: show a straight line with a positive gradient cutting through the origin]
- n+5. To determine (constant in the equation given [E.g.: G in $f=G(\frac{x}{y})$]), calculate the gradient of the graph. (Add somemore stuff if somemore manipulation is needed to determine that constant).

Accuracy and other Notes

- \square Literally everything 3 s.f.
- \square Rmb to put the correct units in the answers. E.g.: t=xs, E=xJ, $c=xJ/g^{\circ}C$, G=x (The gradient might not have any units attached)
- ☐ Careful of the table labels. Do not put units in your readings or write down the readings for the wrong units.

	No.	Instrument	Smallest div	Uncertainty / Accuracy	No. of dp	Examples
	1	Ammeter	0.02A	0.01A	2	0.20A, 0.21A
	2	Electronic Balance	0.01g	0.01g	2	121.10g, 121.01g
	3	Metre Rule	0.1cm	0.1cm	1 in cm	12.0cm, 12.1cm
	4	Measuring Cylinder	$1cm^3$	$0.5cm^{3}$	1	$18.0cm^3, 18.5cm^3$
	5	Spring Balance	0.1N	0.05N	2	3.65N, 3.70N
	6	Stopwatch	0.01s	0.01s	2	28.11s
	7	Thermometer	$1/^{\circ}C$	0.5 °C	1	23.0 °C, 23.5 °C
	8	Voltmeter	0.1V	0.05V	2	1.50V, 1.55V

- ☐ Types of relationships / graphs
 - 1. Directly Propertional Passes through the origin + Straight line (+/- gradient doesn't matter)
 - 2. Linearly related (either with +/- gradient) Doesn't cut origin + Straight line
 - 3. Inversely Propertional Looks similar to $\frac{1}{x}$. Well, by definition, it should follow a form of $y = \frac{k}{x}$, where k is constant.

Example Qns

Accuracy

- 1. Suggest two ways in which you assembled the apparatus to make the temperature readings accurate.
 - Ensure that the thermometer is clamped vertically to avoid parallex error.
 - o ENsure that the bulb of the thermometer is fully immersed in the oil.
 - Ensure the resistors are fully immersed in the oil.
- 2. Explain two sources of error in the experimental procedure that cause the value of c_1 to be different from the value of c_2 . [c_1 and c_2 are values for specific heat capacity calculated with 2 different ways]
 - o Some thermal energy is lost of the surroundings from the uncovered oil
 - The current reading drops slightly during the experiement as the resistors and the oil gets hotter. (This was an observation when actually conducting the expt)
- 3. Suggest one reason why the actual length L of the resistance wire in the coil is different from the value calculated in (h)(i) [theoretical calculation from equation given].
 - The wire on the metre rule cannot be fully straightened
 - o There is a section of resistance wire which is not coiled and also not on the metre rule
 - Temperature of resistance wire rose while current was flowing. So, resistance was not constant, and hence, the voltage recorded was affected.
- 4. Identify any key sourcesof error and explain how the yaffect the accuracy of the readings. [Find refracted angle of a ray of light in glass block expt]
 - The holes made by the pins are rather large. This affects the accuracy in constructing the path of the incident and emergent rays.

- \circ The glass block, with be velled edges, makes it hard to replace the block on the exact position each time. Thus, the value of i and r may be inconsistent.
- 5. State ONE key source of error in this experiement. [Resistance Experiment]
 - The temperature of the fixed resistor increases with time.
- 6. State **one** key source of error for this experiement.
 - \circ The sharpness of the image is an estimation. This affects the accuracy of distance x measured. [Converging Lens Expy]
 - \circ The centre of the lens may not be accurate. This affects the accuracy of distances x and y measured.
- 7. Explain whether your value for a in (d) supports the suggestion made by the student in (e).
 - o No. Suggestion in (e) does not take into account the energy lost due to friction.

Comments on Relationship

- 1. Plot a graph of d against i to find k and hence, comment on the relationship between d and i.

 Ans: d is linearly related to i with a negative gradient.
- 2. Ues the graph to relected the relationship between the voltage and the length of wire, when the current is constant. Explain your answer.

Ans: The voltage is linearly related to the length of wire when the current is constant, as the graph shows a straight line with a psoitive gradient.

