Transformers and multilinguality

Содержание курса

- 1. Архитектура Transformer
- 2. Предобученные трансформеры: BERT и его друзья
- з. Решение задач NLU с помощью трансформеров
- 4. Трансформеры для генерации текста
- 5. Решение sequence-to-sequence задач с помощью трансформеров
- 6. Мультиязычные трансформеры
- 7. Сжатие и ускорение трансформеров
- 8. Трансформеры для работы с графами
- 9. Мультимодальные и картиночные трансформеры
- 10. Трансформеры для последовательностей событий

Agenda

- Multilingual resources, tasks and difficulties
- Sentence encoders (from lecture 3)
- Text retrieval (from lecture 3)
- Multilingual models
- Tricks and recipes for multilingual NLP

Why multilingual?

- Languages other than English or Russian do exist.
 - And as empires fall apart, new languages get official status and wider usage
 - Users want their content in their own languages
- It is expensive to support separate NLP models for each language
- Most languages are "low-resource"
 - Monolingual models for them are often not good enough
 - But we can transfer NLP knowledge across languages
 - For closely related languages (e.g. ru->by), it can be transferred directly
 - For more distant languages, translation might be required
 - For good translation, we need parallel corpora to train
 - To collect parallel corpora, we need good NLU models...

The language space: WALS typology

The World Atlas of Language Structures stores unified language features

Feature 131A: Numeral Bases

The language space: WALS typology

2,676 languages, 192 attributes

ID#	Feature Name	Category	Feature Values
1	Consonant Inventories	Phonology (19)	{1:Large, 2:Small, 3:Moderately Small, 4:Moderately Large, 5:Average}
23	Locus of Marking in the Clause	Morphology (10)	{1:Head, 2:None, 3:Dependent, 4:Double, 5:Other}
30	Number of Genders	Nominal Categories (28)	{1:Three, 2:None, 3:Two, 4:Four, 5:Five or More}
58	Obligatory Possessive Inflection	Nominal Syntax (7)	{1:Absent, 2:Exists}
66	The Perfect	Verbal Categories (16)	{1:None, 2:Other, 3:From 'finish' or 'already', 4:From Possessive}
81	Order of Subject, Object and Verb	Word Order (17)	{1:SVO, 2:SOV, 3:No Dominant Order, 4:VSO, 5:VOS, 6:OVS, 7:OSV}
121	Comparative Constructions	Simple Clauses (24)	{1:Conjoined, 2:Locational, 3:Particle, 4:Exceed}
125	Purpose Clauses	Complex Sentences (7)	{1:Balanced/deranked, 2:Deranked, 3:Balanced}
138	Tea	Lexicon (10)	{1:Other, 2:Derived from Sinitic 'cha', 3:Derived from Chinese 'te'}
140	Question Particles in Sign Languages	Sign Languages (2)	{1:None, 2:One, 3:More than one}
142	Para-Linguistic Usages of Clicks	Other (2)	{1:Logical meanings, 2:Affective meanings, 3:Other or none}

Example from Georgi, Xia and Lewis (2010)

Examples of multilingual tasks

- Translation between multiple languages (e.g. FLORES)
- MASSIVE NLU benchmark in 51 language from Amazon Alexa
 - Recognize intents and slots in dialogues with assistant in any language
- NeuCLIR benchmark in cross-language information retrieval
 - Search among Zh, Fa and Ru documents with En queries
- Multilingual News Article <u>Similarity</u>
- Multilingual Complex Named Entity <u>Recognition</u>
- Composite benchmarks: XTREME, XGLUE

Why is it difficult to translate?

in the in-city exploded a car-bomb

German: In der Innenstadt explodierte eine Autobombe

English: A car bomb exploded downtown.

Translationese: In the inner city, there exploded a car bomb.

etape patte

JOURNEY ANIMAL BIRD

HUMAN

jambe pied

ושבתה

and her saturday and that in tea and that her daughter ו+שבת+ה ו+ש+ב+תה ו+ש+בת+ה

Эти типы стали есть на складе

- Материал находится на складе
- Люди едят на складе
- Сталь нужно есть на складе

Examples of parallel corpora

- Important books
 - Bible, Tanzil (Quran)
- Governmental texts
 - Europarl, UN corpus, etc.
- Subtitles
 - OpenSubtitles, TED, etc.
- Computer manuals
 - PHP, Ubuntu, etc.
- Aligned web data
 - ParaCrawl, WikiMatrix, CCMatrix, etc.
- A major repository: <u>OPUS</u>

Sentence encoders

Sentence encoders

- A sentence encoder is a model that converts a sentence (or another short text) to one fixed-size vector
 - BERT instead turns a text into a sequence of vectors (one per token)
 - But if we pool them (average or the embedding of [CLS]), it is a sentence encoder
- Applications:
 - Semantic similarity of sentences
 - Dot product or cosine similarity
 - Used e.g. for fast semantic search
 - Features for text classification
 - Works well in few-shot setting, especially with KNN
 - Cross-lingual transfer

Training sentence encoders

- Backbone model: transformer encoder¹²³⁴⁵, CNN¹³
- $\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \frac{e^{sim(x_i, y_i)/\tau}}{\sum_{j=1}^{N} e^{sim(x_i, y_j)/\tau}}$

- Pretraining: MLM²⁴⁵, translation MLM⁵
- Training objectives:
 - Unsupervised contrastive learning⁴
 - Positive examples are created by augmentation (by simply applying dropout)

A typical loss for contrastive learning: softmax

with (x_i, y_i) pairs as positive examples, (x_i, y_i) as negatives

- All other sentences in the batch are negative examples
- Translation ranking³⁵
 - Positive examples are sentences with the same meaning in another language
- NLI¹²³⁴
 - entailment for positive examples, contradiction for negative examples
- Skip-thought¹, predicting dialogue response¹³, various classification tasks¹
- 1. Cer et al, 2018, <u>Universal Sentence Encoder</u>
- 2. Reimers et al, 2019, <u>Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks</u>
- 3. Yang et al, 2019, Multilingual Universal Sentence Encoder for Semantic Retrieval
- Gao et al, 2021, SimCSE: Simple Contrastive Learning of Sentence Embeddings
- 5. Feng et al, 2022, Language-agnostic BERT Sentence Embedding

Some pretraining tasks for USE

Input-Response Prediction

Skip-thought Task Structure

Document

Evaluating sentence encoders

Sentence encoders can be evaluated on multiple tasks:

- Probing tasks: evaluate linguistic capacities
 - Predicting sentence length, dependency tree depth, word order, verb tense, etc.
- Downstream tasks: evaluate applications
 - Sentiment analysis (MR, CR, SST)
 - Subjectivity classification (SUBJ)
 - Opinion polarity (MPQA)
 - Question type detection (TREC)
 - NLI (SICK, SNLI)
 - Semantic similarity (STS, SICK)
 - Image-caption retrieval (COCO)

Model	MR	CR	SUBJ	MPQA	TREC	SST	MRPC
		E	inglish Me	odels			
InferSent	81.1	86.3	92.4	90.2	88.2	84.6	76.2
Skip-Thought LN	79.4	83.1	93.7	89.3	_	-	-
Quick-Thought	82.4	86.0	94.8	90.2	92.4	87.6	76.9
USE _{Trans}	82.2	84.2	95.5	88.1	93.2	83.7	-
		Mu	ltilingual	Models			
m-USE _{Trans}	78.1	87.0	92.1	89.9	96.6	80.9	_
LaBSE	79.1	86.7	93.6	89.6	92.6	83.8	74.4

A table from Feng et al, 2022, Language-agnostic BERT Sentence Embedding

- Sentence encoders are often used as fixed feature extractors
 - In contrast with other benchmarks such as SuperGLUE, where models are typically fine-tuned on each evaluation problem

Some applications of sentence encoders

- Classifiers over fixed embeddings for few-shot classification or cross-lingual transfer
 - Efficient Intent Detection with Dual Sentence Encoders
 - Cross-language sentiment analysis of European Twitter messages during the COVID-19 pandemic
 - EMET: Embeddings from Multilingual-Encoder Transformer for Fake News Detection
 - Deep Learning Models for Multilingual Hate Speech Detection
- Retrieval of relevant sentences and paragraphs
 - ReQA: An Evaluation for End-to-End Answer Retrieval Models
 - <u>Intelligent Translation Memory Matching and Retrieval with Sentence Encoders</u>
 - WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia

Text retrieval

Information retrieval

= Finding material that fulfills an information need from within a large collection of unstructured documents.

Expression of Information Need	Potential Query	Potential Collection
Find related literature	The full text of the BERT paper	ACL anthology; arXiv CL
Recommend me a TV show to watch	[no explicit query!]	Netflix shows
Find every relevant patent	Boolean query with technical terms	U.S. Patents
Buy a new laptop	Short conversation: system asks questions to ascertain your criteria	E-commerce platforms

Source: http://web.stanford.edu/class/cs224u/

Non-neural search

- The problem:
 - Find (and rank) the most relevant documents related to the query
 - Do it fast!
- The basic solution: inverted index
 - Split the documents into words
 - Create the mapping from words to document ids
 - Consider only documents that contain the words from the query
 - Rank documents by TF-IDF, BM25, etc.
 - By remembering word positions in the document, we can look up by word n-grams

Transformers for text retrieval

Retrievers:

- Relevance = cosine_similarity(encoder(query), encoder(passage))
- Passage embeddings can be precomputed once
- Query and passage can be encoded with the same or different models ("Siamese network")
- Cosine similarity is equivalent to Euclidean distance → fast (approximate) nearest neighbor lookup is possible (e.g. FAISS)

Rerankers:

- Relevance = classifier(encoder(query + passage))
- Works slower but better than retrievers due to cross-attention between query and passage
- The reranker can be combined with the reader
- The retriever or reranker can be trained jointly with the reader

Source: https://github.com/danqi/acl2020-openqa-tutorial/

Late document-query interaction

Alternative neural ranking paradigms

- (a) Learned Term Weights
 - ✓ Independent Encoding
- X Bag-of-Words Matching

- (b) Representation Similarity
- ✓ Independent, Dense Encoding
- X Coarse-Grained Representation

- (c) Query-Document Interaction
 - Fine-Grained Interactions
 - X Expensive Joint Conditioning

- (d) <u>Late Interaction</u> (i.e., ColBERT)
 - Independent Encoding
 - Fine-Grained Representations
 - End-to-End Retrieval (pruning!)

Sources: http://web.stanford.edu/class/cs224u/slides/CS224U-IR-part-5.pdf

https://arxiv.org/abs/2004.12832 (ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT)

Fast neighbor search

- Find the top k nearest neighbors among N d-dimensional vectors
- Linear search: O(N) (omitting k and d)
- Faster approaches:
 - KD tree, ball tree: use branching to eliminate the points far away, O(log(N))
- Approximations:
 - Locality-sensitive hashing: split space into buckets
 - HNSW: split space into hierarchy of buckets with increasing detail
- A popular implementation: <u>FAISS</u>
 - Example: match En and De Wikipedias in 3 hours (on 8 GPUs)

Multilingual models

How multilingual is multilingual BERT?

- The most typical multilingual pretrained models are BERT-like
 - E.g. multilingual BERT (2018), XLM(2019), XLM-R (2020), mDeBERTaV3 (2021)
- Most of them (except XLM) are fully unsupervised
- Still, they can perform cross-language transfer
- How does it even work???
 - Common vocabulary
 - Some mapping between vocabularies of similar languages
 - E.g. Hindi (Devanagari script) vs Urdu (Arabic script)
 - Generalization depends on the number of shared WALS features
- Perhaps, alignment occurs via shared words (e.g. URLs)

Figure 1: Zero-shot NER F1 score versus entity word piece overlap among 16 languages. While performance using EN-BERT depends directly on word piece overlap, M-BERT's performance is largely independent of overlap, indicating that it learns multilingual representations deeper than simple vocabulary memorization.

Multilingual generation

- XGLM by Meta
 - Pretrain a GPT-like model on a balanced corpus of 30 languages
 - Probe with few-shot in-context learning
 - SOTA in some generation tasks for lower-resourced languages
 - Capable of few-shot translation
- mGPT by Sber
 - Pretrained on 60 languages from Wikipedia and MC4
 - High scores in many zero-shot and few-shot tasks
- Both models can be fine-tuned for specific tasks

Multilingual seq2seq models

• mT5

- Pretrained with a standard monolingual T5 denoising objective on mC4 (100 langs)
- Fine-tuned for each task separately
- SOTA on some multilingual NLI, NER and QA benchmarks

mBART

- Pretrained with a standard BART denoising objective on 25 languages; later extended to 50 languages
- Language id is specified by the BOS token
- Fine-tuned on translation pairs, achieved SOTA on low- and mid-resource languages
- M2M100 and related models
 - An mBART-like transformer trained to translate between 2200 language pairs and 100 languages
 - The encoder produces nearly language-agnostic embeddings

Adapting BERTs to new languages

- Simplest: fine-tune the model on the target language
- Vocabulary adaptation: more efficient, but more complex
 - Remove unused tokens from the vocabulary (based on a target-lang corpus)
 - Add new tokens (e.g. by adding producing some BPE merges)
 - Initialize new embeddings using average embeddings of their constituents or source-language tokens aligned with them
 - Fine-tune the model on the target-lang (with e.g. MLM loss)
 - To speed it up, only embeddings can be fine-tuned (at least, for the 1st epoch)
- Training from scratch (which is more expensive)

Tips for multilingual classification

- Augmentation with translated data helps
- Domain and task adaptation usually helps
- Multilanguage training usually helps
- Zero-shot transfer works OK, but worse than

Model	Data	DE	FR	JA	ES	
multi-target	target	94.1	93.8	91.1	78.1	
multi-all	all	93.8	94.3	91.4	77.7	
zero-shot	EN	92.7	92.6	88.5	72.1	

	Adapt.		CLS				HATEVAL					
Model		Aug.	EN	DE	FR	JA	AVG	EN	EN^{\dagger}	ES	AVG	AVG [†]
mono-target												
	×	×	$94.7_{0.4}$	90.90.6	$95.2_{0.0}$	88.70.3	92.4	44.45.3	58.56.2	75.60.6	60.0	67.1
	^	✓	$95.3_{0.3}$	$92.0_{0.2}$	$95.6_{0.3}$	$89.3_{0.02}$	93.0	$46.1_{2.6}$	$60.6_{3.2}$	$76.0_{1.7}$	61.0	68.3
RoBERTa (EN)	TAPT	×	$94.9_{0.1}$	$91.6_{0.1}$	$95.4_{0.1}$	$89.3_{0.3}$	92.8	$45.4_{1.9}$	$59.9_{2.7}$	$76.1_{1.1}$	60.8	68.0
BERT (OTHERS)	IAFI	✓	$95.0_{0.4}$	$92.3_{0.4}$	$95.8_{0.2}$	$89.7_{0.4}$	93.2	$44.7_{1.5}$	$59.2_{1.7}$	$76.9_{1.4}$	60.8	68.0
	TAPT+	×	$94.9_{0.4}$	$91.8_{0.2}$	$95.5_{0.3}$	$89.5_{0.2}$	92.9	$48.0_{1.5}$	$63.1_{2.6}$	$76.3_{1.1}$	62.2	69.7
	DAPT	✓	$95.3_{0.1}$	$93.0_{0.8}$	$95.9_{0.1}$	$89.9_{0.4}$	93.5	$46.0_{4.3}$	$60.2_{4.4}$	$76.9_{0.6}$	61.4	68.5
multi-target												
	×	×	92.50.4	93,00.2	92.50.3	90.40.5	92.1	47.22.0	61.41.9	74.80.5	61.0	68.1
		/	$93.3_{0.1}$	$94.0_{0.2}$	$93.8_{0.2}$	$90.3_{0.3}$	92.8	$45.6_{1.6}$	$59.3_{2.5}$	$77.0_{1.1}$	61.3	68.1
WALD DEDE	TIA DE	×	$92.7_{0.5}$	93.50.5	93.90.3	90.30.1	92.6	$47.0_{2.7}$	62.43.3	$76.1_{1.4}$	61.6	69.2
XLM-RoBERTa	TAPT	✓	$93.4_{0.6}$	$94.0_{0.3}$	$93.8_{0.5}$	$90.5_{0.4}$	92.9	$47.9_{1.3}$	$63.5_{1.5}$	$77.9_{0.9}$	62.9	70.7
	TAPT+	×	$93.1_{0.6}$	$93.0_{0.5}$	$93.6_{0.1}$	$90.8_{0.3}$	92.6	$49.9_{2.5}$	65.62 4	$76.5_{1.0}$	63.2	71.0
	DAPT	✓	$94.0_{0.3}$	94.1 _{0.4}	$93.8_{0.3}$	$91.1_{0.4}$	93.2	$46.6_{2.1}$	$61.7_{2.5}$	78.1 _{0.8}	62.3	69.9
multi-all												
	×	×	92.40.3	$92.6_{0.4}$	93.30.4	$90.4_{0.4}$	92.2	48.43.5	63.14.5	77.50.4	62.9	70.3
		/	$93.4_{0.3}$	$93.3_{0.2}$	$94.0_{0.2}$	$90.4_{0.5}$	92.8	49.83.5	$66.0_{4.6}$	77.80.9	63.8	71.9
WILL DEPT	a TAPT	×	$92.5_{0.4}$	$93.0_{0.3}$	$93.9_{0.3}$	$90.9_{0.3}$	92.6	$48.4_{2.7}$	$64.2_{3.5}$	$77.4_{0.9}$	62.9	70.8
XLM-RoBERTa		✓	$93.5_{0.4}$	$93.4_{0.5}$	$94.1_{0.2}$	$91.1_{0.2}$	93.0	$50.0_{2.2}$	$66.5_{2.6}$	$77.8_{0.6}$	63.9	72.2
	TAPT+	×	$92.7_{0.3}$	93.30.2	$94.0_{0.3}$	$91.2_{0.3}$	92.8	47.13.9	$62.7_{5.3}$	$77.4_{1.0}$	62.3	70.1
	DAPT	7	$93.5_{0.3}$	$93.8_{0.2}$	$94.3_{0.3}$	91.4 _{0.2}	93.3	50.7 _{1.1}	67.4 _{1.4}	$77.7_{0.7}$	64.2	72.6

How to bootstrap NLP for a new language?

XLM-R —> universal sentence encoder

- Use XLM-R as a fixed feature extractor
- Train a weighed average pooler and FFN head to extract cross-lingual embeddings
 - It is possible to train it even an unsupervised way: with cycle consistency and adversarial loss
- Such a model can be used for matching sentences in unseen languages
 - (Because XLM-R has already seen them)

Iterative back-translation

Unsupervised word translation

- Hypothesis: Word embedding spaces in two languages are isomorphic
 - One embedding space can be linearly transformed into another
 - Give monolingual embeddings X and Y, learn a (orthogonal) matrix, such that, WX = Y
- Use adversarial learning to learn W:
 - If WX and Y are perfectly aligned, a discriminator shouldn't be able to tell
 - Discriminator: Predict whether an embedding is from Y or the transformed space WX.
 - Train W to confuse the discriminator

After aligning words, a sentence translation model can be trained:

- Pretrain with monolingual denoising
- Finetune with back-translation

What is next?

- Towards the Next 1000 Languages in Multilingual Machine Translation: Exploring the Synergy Between Supervised and Self-Supervised Learning, a recent paper by Google
- The bootstrapping pipeline for 1000 languages
 - Language identification
 - Monolingual denoising pretraining in all languages
 - Fine-tuning on en->xx and xx->en pairs
 - Good translation for some zero-resource languages

Figure 2: Unsupervised/zero-resource BLEU on 30 new languages. The x-axis depicts the amount of monolingual data available for the language, while the y-axis depicts the BLEU score of the 1.6B parameter Transformer model after fine-tuning with online back-translation. The data point corresponding to each language is represented by its BCP-47 language code.

Conclusions

- Multilanguage NLP is difficult and important
- Multilingual sentence encoders are an important resource
- There are multilingual encoder, decoder, and enc+dec transformers
- NLP resources for new languages can be bootstrapped