Functional Analysis-Summer 2023

 $\begin{array}{c} {\rm Paul~Carmody} \\ {\rm Assignment~\#1-~February~15,~2024} \end{array}$

Page. 65 #11, (Convex set, segment) A subset A of a vector space X is said to be convex if $x, y \in A$ implies

$$M = \{ z \in Z \mid z = \alpha x + (1 - \alpha)y, \, 0 \le \alpha \le 1 \} \subset A$$

M is called a closed segment with boundary points x and y; any other $z \in M$ is called an interior point of M. Show that the closed unit ball

$$\tilde{B}(0;1) = \{x \in X \mid ||x|| \le 1\}$$

in a normed space X is convex.

(b) Not convex

Let, $x, y \in \tilde{B}(0; 1)$ which implies that $||x|| \le 1$ and $||y|| \le 1$. Given any point $m \in M$ there exists α where $0 \le \alpha \le 1$, such that $m = \alpha x + (1 - \alpha)y$. Thus, $||m|| = ||\alpha x + (1 - \alpha)y||$

$$||m|| = ||\alpha x + (1 - \alpha)y||$$

$$\leq ||\alpha x|| + ||(1 - \alpha)y||$$

$$\leq |\alpha| ||x|| + |1 - \alpha| ||y||$$
Let $p = \max(||x||, ||y||)$

$$||m|| \leq |\alpha| p + |1 - \alpha| p$$

$$\leq (|\alpha| + |(1 - \alpha)|)p$$

$$\leq p$$

$$\therefore m \in \tilde{B}(0; 1)$$

x, y are arbitrary points and m is an arbitrary point between them. Hence, $\tilde{B}(0;1)$ must be convex.

Page. 70

1. Show that $c \subset \ell^{\infty}$ is a vector space of ℓ^{∞} (cf. 1.5-3) and so is c_0 , the space of all sequences of scalars converging to zero.

Given any $x, y \in \ell^{\infty}$ and c_x, c_y are bounds for these sequences with $x = (\eta_j) \le c_x$ and $y = (\xi_j) \le c_y$. Then given any $\alpha \in \mathbb{C}$ we have

$$\alpha(x+y) = \alpha(\eta_j + \xi_j)_{j=1}^{\infty}$$
 component-wise addition
$$= (\alpha\eta_j + \alpha\xi_j)_{j=1}^{\infty}$$

$$|\alpha\eta_j + \alpha\xi_j|_{j=1}^{\infty} \le |\alpha|(c_x + c_y)$$

thus we have a new bounded sequence, that is $\alpha(x+y) \in \ell^{\infty}$. Thus, ℓ^{∞} is a vector space.

Notice that if $c_x = c_y = 0$ that $|\eta_j + \xi_j| \le c_x + c_y = 0$ for all $1 \le j < \infty$, thus $x + y \in c_0$.

2. Show that c_0 in Prob 1 is a *closed* subspace of ℓ^{∞} , so that c_0 is complete by 1.5-2 and 1.4-7.

Let $x, y \in \ell^{\infty} \setminus c_0$ each converges to real numbers c_x, c_y , respectively. Note that c_x, c_y are strictly greater than zero. Thus, $d(x, y) \leq \max(c_x, c_y)$ and is distinctly not zero. Hence, given any $\epsilon > 0$ there exists $B(x; \epsilon) \subset \ell^{\infty} \setminus c_0$. Thus $\ell^{\infty} \setminus c_0$ must be open which indicates that c_0 must be closed.

- 3. In ℓ^{∞} , let Y be the subset of all sequences with only finitely many nonzero terms. Show that Y is a subspace of ℓ^{∞} but not a closed subspace.
- 8. If in a normed space X, absolute convergence of any series always implies convergence of that series, show that X is complete.
- 9. Show that in a Banach space, an absolutely convergent series is convergent.
- 10. (Schauder basis) Show that if a normed space has a Shauder basis, it is separable.
- 11. Show that (e_n) , where $e_n = (\delta_{nj})$, is a Schauder basis for ℓ^p , where $1 \le p < +\infty$.
- 15. (Product of normed spaces) If $(X_1, ||\cdot||_1)$ and $(X_2, ||\cdot||_2)$ are normed spaces, show that the product vector space $X = X_1 \times X_2$ (cf. prob 13, Sec 2.1) becomes a normed space if we define

$$||x|| = \max(||x_1||_1, ||x_2||_2)$$
 where $x = (x_1, x_2)$.

Page. 76 #1. Give examples of subspaces of ℓ^{∞} and ℓ^2 which are not closed.

