Transistor de Efeito de Campo de Porta Isolada MOSFET - Revisão

Polarização de MOSFETs

- Regiões de operação:
 - Nível de inversão: tem relação com a densidade de carga de inversão (portadores) que é formada na superfície do substrato e que compõe o "canal" entre dreno e fonte. Esta carga é induzida devido ao efeito "capacitor MOS", estando relacionada à polarização V_{GS} (ou V_{GB}). Divide-se em 3 níveis: fraca (WI), moderada e forte (SI).

ENG04055 - Concepção de Cl Analógicos - Eric Fabris

Polarização de MOSFETs

- Regiões de operação:
 - Condição de saturação: tem relação com a deformação do canal, provocada pela diferença de potencial aplicada entre dreno e fonte. Em SI, quando o potencial V_{DS} for superior a V_{GS} - V_T , ocorre o estrangulamento do canal, o que provoca o aumento súbito da impedância entre dreno e fonte. Divide-se em 2 regiões: "linear" (ou ôhmica ou triodo) e saturação.

ENG04055 - Concepção de Cl Analógicos - Eric Fabris

Saturação do canal:

- Redução da condutividade local em função de ${\it v_{\scriptscriptstyle DS}}$
- Quando $v_{DS} = v_{GS} V_{t}$, o canal "descola-se" do dreno (pinch-off)
- Aumento \mathbf{v}_{DS} acima de \mathbf{v}_{GS} \mathbf{V}_{t} tem pouco efeito na forma do canal (corrente passa a ser independente de \mathbf{v}_{GS})

Polarização de MOSFETs

NMOS: i_D x v_{GS} erros nas aproximações de WI e SI

ENG04055 – Concepção de Cl Analógicos – Eric Fabris

MOSFET Modelos

Modelagem de Dispositivos MOS

Comportamento Físico versus Modelo Analítico:

- o conhecimento do <u>comportamento físico</u> de um dispositivo é essencial no desenvolvimento de circuitos
- modelo é uma representação matemática que se comporta de forma parcialmente análoga a um sistema físico real
- o comportamento físico é relacionado ao modelo através de <u>parâmetros elétricos</u> extraídos experimentalmente
- o projeto de circuitos eletrônicos depende do modelo dos dispositivos utilizados:
 - modelos simples (e imprecisos) para cálculo analítico (à mão)
 - modelos complexos (e precisos) para simulação elétrica

ENG04055 – Concepção de Cl Analógicos – Eric Fabris

Modelagem de Dispositivos MOS

- O modelo de um dispositivo consiste de equações, circuitos equivalentes e parâmetros que representam seu comportamento elétrico.
 - Modelo de grandes sinais:
 - Modelos não-lineares (dispositivos não-lineares)
 - · Modelos estáticos: comportamento DC
 - Modelos dinâmicos: comportamento AC (Capacitâncias)
 - Efeitos de segunda ordem: efeito de corpo, modulação do comprimento de canal, efeitos de canal curto, subthreshold...
 - · Componentes parasitas externos: L, R e C.
 - Modelo de pequenos sinais: modelo linearizado (incremental)
 - Modelo de ruído
 - Efeito da temperatura (modelo térmico)
 - Outros...

Polarização

$$\frac{\text{Região de Saturação}}{I_D = \frac{1}{2}k_n \frac{W}{L}(V_{GS} - V_t)^2}$$

$$V_{GS} + R_S I_D = V_{SS}$$

$$\frac{\text{Região de Triodo}}{I_D = k_n \frac{W}{L}[(V_{GS} - V_t)V_{DS} - \frac{1}{2}V_{DS}^2]}$$

$$V_{GS} + R_S I_D = V_{SS}$$

$$V_{DS} = V_{DD} + V_{SS} - (R_D + R_S)I_D$$

ENG04055 - Concepção de CI Analógicos - Eric Fabris

Autopolarização

$$V_{DS} = V_{GS} \longrightarrow V_{DS} > V_{GS} - V_t$$

O transistor está sempre em Saturação!

Região de Saturação:

$$\begin{cases} I_D = \frac{1}{2} k_n \frac{W}{L} (V_{GS} - V_t)^2 \\ V_{GS} + RI_D = V_{DD} \end{cases}$$

Espelho de corrente

Necessita transistores IDÊNTICOS!!!

$$V_{GS2} = V_{GS1} \longrightarrow I_{D2} \cong I_{D1}$$

Desde que ambos estejam saturados!

A corrente de dreno de Q2 é resultado da

ENG04055 - Concepção de Cl Analógicos - Eric Fabris

Polarização na região de triodo

Dados:

$$V_{GS} = V_{DD} \quad V_{DS} = 0.1V$$

Supondo: $V_t = 1V$

$$V_{DS} < V_{GS} - V$$

Supondo.
$$V_{t} = IV$$

$$V_{DS} < V_{GS} - V_{t}$$
Calcular I_{D} e R_{D} . Estime r_{ds} .

Região de Triodo:
$$I_{D} = k_{n}^{'} \frac{W}{L} \left[(V_{GS} - V_{t}) V_{DS} - \frac{1}{2} V_{DS}^{2} \right]$$

$$V_{GS} = V_{DD}$$

$$V_{DS} = V_{DD} - R_{D}I_{D}$$

$$V_{DS} = V_{DD} - R_D I_D$$

Modelos Elétricos - SPICE

		Time Dependence	
		Time Independent	Time Dependent
Linearity	Linear	Small-signal, midband R_{in}, A_{v}, R_{out} (.TF)	Small-signal frequency response-poles and zeros (.AC)
	Nonlinear	DC operating point $i_D = f(v_D, v_G, v_S, v_B)$ (.OP)	Large-signal transient response - Slew rate (.TRAN)

ENG04055 – Concepção de CI Analógicos – Eric Fabris

O MOSFET como Amplificador

