S2 File. Examples description

Examples repository: https://osf.io/pw2dx/

Files needed by each example were placed in example directories:

- Example_1
- Example_2
- Example_3
- Example_4
- Example 5

Each example directory contains subdirectories: input_data, queries and results.

Subdirectory *input data* contains all input data needed to do all example tasks.

Subdirectory *queries* contains all GVC queries used by example and may be used when

user do not want to manually (or do not know how to) properly fill query forms to filter data.

Subdirectory *results* contain results for each example stage allowing to fast jump to any other example stage without need to conduct all stages (some of them are time-consuming).

Example 1 contains set of easy, unassociated, one stage tasks demonstrating unique and most useful features of software using very simple artificial dataset. It may be used as reference when conducting other examples. Datasets are so small and simple that it was possible to show input and output data in the form of color tables to make understanding more easy.

Other examples contain real, scientific datasets and are more complex (many stages) and were presented as flowcharts with descriptions and notes.

In order to make text more readable some conventions were used:

- file names and paths are written using mono font and coloured darkgreen.
- software menu options were italicized and mono font was used.
- data tables column names were in coloured purple.
- rejected data rows are strikethrough
- · stage descriptions on flowcharts are in blue rectangles and notes ale in gray rectangles.

Directory structure:

Example_1 – main directory containing example files
Example_1/input_data/ – input files for individual stages
Example_1/results – output files for individual stages
Example_1/queries – query files for individual stages

Filtering on the base of samples (column SAMPLE) where only proteins (column PROTEIN) present in > 50% of samples are selected

SAMPLE	PROTEIN	SCORE
sample1	protein1	0.1
sample1	protein2	0.5
sample1	protein3	0.8
sample1	protein4	0.9
sample2	protein1	0.6
sample2	protein4	0.8
sample2	protein8	1.0
sample2	protein9	0.3
sample3	protein1	0.4
sample3	protein12	0.6
sample4	protein13	0.6
sample4	protein14	1.1

SAMPLE	PROTEIN	SCORE
sample1	protein1	0.1
sample1	protein2	0.5
sample1	protein3	0.8
sample1	protein4	0.9
sample2	protein1	0.6
sample2	protein4	0.8
sample2	protein8	1.0
sample2	protein9	0.3
sample3	protein1	0.4
sample3	protein12	0.6
sample4	protein13	0.6
sample4	protein14	1.1

menu: File -> Open File -> Example_1/input_data/example_input_file1.txt

menu: View -> Advanced mode

menu: Queue -> Add query -> Sample Filter:

Sample columns: **SAMPLE**Analysed columns: **PROTEIN**IS PRESENT IN 50% OF SAMPLES

Note: Query is saved as file Example_1/queries/q1.que Saved result file is Example_1/results/r1.txt

Horizontal joining of the files on the base of one column (column PROTEIN)

	MAIN DATA			EXTERNAL DATA		
	SAMPLE	PROTEIN	SCORE		PROTEIN	DESCRIPTION
*	sample1	protein1	0.1	—	protein1	desc1p1
	sample1	protein2	0.5		protein1	desc2p1
	sample1	protein3	0.8	—	protein3	descp3
	sample1	protein4	0.9	4	protein4	descp4
	sample2	protein15	0.6		protein5	descp5
	sample2	protein41	0.8		protein10	descp10
	sample2	protein8	1.0		protein11	descp11
	sample2	protein9	0.3		protein12	descp12
	sample3	protein51	0.4		protein50	descp50
	sample3	protein12	0.6		protein610	descp610
	sample3	protein13	0.6		protein611	descp611
	sample3	protein14	1.1		protein612	descp612

^{*-&}quot;REPEAT DATA ROW WHEN MORE THAN ONE EXTERNAL DATA ROWS MATCH" option active

^{* -} system columns from external data not showed

RESULT

SAMPLE	PROTEIN	SCORE	PROTEIN	DESCRIPTION
sample1	protein1	0.1	protein1	desc1p1
sample1	protein1	0.1	protein1	desc2p1
sample1	protein2	0.5		
sample1	protein3	0.8	protein3	descp3
sample1	protein4	0.9	protein4	descp4
sample2	protein1	0.6		
sample2	protein4	0.8		
sample2	protein8	1.0		
sample2	protein9	0.3		
sample3	protein51	0.4		
sample3	protein12	0.6	protein12	descp12
sample3	protein13	0.6		
sample3	protein14	1.1		

menu: File -> Open File -> Example_1/input_data/example_input_file2a.txt

menu: File -> Open Second File -> Example_1/input_data/example_input_file2b.txt

menu: *View -> Advanced mode*

menu: Queue -> Add query -> External Data Filter/Merger:

Select columns and condition: Columns: Column: PROTEIN

Select columns and condition: Columns [external data]: Column: PROTEIN

Select columns and condition: =

Select action: Add all columns from external data matching rows

Select action: do not filter - merge only

Select action: repeat data row when more than one external data rows match

Note:

Query is saved as file Example_1/queries/q2.que Saved result file is Example_1/results/r2.txt

Horizontal joining of the files on the base of one column (column PROTEIN) with filtering

MAIN DATA			EXTERNAL DATA			
	SAMPLE	PROTEIN	SCORE		PROTEIN	DESCRIPTION
*	sample1	protein1	0.1	—	protein1	desc1p1
	sample1	protein2	0.5		protein1	desc2p1
	sample1	protein3	0.8	•	protein3	descp3
	sample1	protein4	0.9	-	protein4	descp4
	sample2	protein15	0.6		protein5	descp5
	sample2	protein41	0.8		protein10	descp10
	sample2	protein8	1.0		protein11	descp11
	sample2	protein9	0.3		protein12	descp12
	sample3	protein51	0.4		protein50	descp50
	sample3	protein12	0.6		protein610	descp610
	sample3	protein13	0.6		protein611	descp611
	sample3	protein14	1.1		protein612	descp612

^{*-,}REPEAT DATA ROW WHEN MORE THAN ONE EXTERNAL DATA ROWS MATCH" option active

SAMPLE	PROTEIN	SCORE	PROTEIN	DESCRIPTION
sample1	protein1	0.1	protein1	desc1p1
sample1	protein1	0.1	protein1	desc2p1
sample1	protein3	0.8	protein3	descp3
sample1	protein4	0.9	protein4	descp4
sample3	protein12	0.6	protein12	descp12

menu: File -> Open File -> Example_1/input_data/example_input_file2a.txt

menu: File -> Open Second File -> Example_1/input_data/example_input_file2b.txt

menu: View -> Advanced mode

menu: Queue -> Add query -> External Data Filter/Merger:

Select columns and condition: Columns: Column: PROTEIN

Select columns and condition: Columns [external data]: Column: PROTEIN

Select columns and condition: =

Select action: Add all columns from external data matching rows

Select action: repeat data row when more than one external data rows match

Note:

Query is saved as file Example_1/queries/q3.que Saved result file is Example_1/results/r3.txt

Filtering one file using another file on the base of one column (column PROTEIN) without joining

EXTERNAL DATA MAIN DATA **DESCRIPTION SAMPLE PROTEIN SCORE PROTEIN** protein1 desc1p1 0.1 sample1 protein1 protein1 desc2p1 0.5 sample1 protein2 protein3 descp3 sample1 8.0 protein3 protein4 descp4 sample1 protein4 0.9 sample2 0.6 protein5 descp5 protein15 protein10 descp10 sample2 protein41 8.0 protein11 descp11 sample2 protein8 1.0 descp12 sample2 protein9 0.3 protein12 protein50 descp50 0.4 sample3 protein51 protein610 descp610 sample3 protein12 0.6 protein611 descp611 sample3 protein13 0.6 protein612 descp612 sample3 protein14 1.1

^{*-,}REPEAT DATA ROW WHEN MORE THAN ONE EXTERNAL DATA ROWS MATCH" option active

SAMPLE	PROTEIN	SCORE
sample1	protein1	0.1
sample1	protein3	8.0
sample1	protein4	0.9
sample3	protein12	0.6

menu: File -> Open File -> Example_1/input_data/example_input_file2a.txt

menu: File -> Open Second File -> Example_1/input_data/example_input_file2b.txt

menu: View -> Advanced mode

menu: Queue -> Add query -> External Data Filter/Merger:

Select columns and condition: Columns: Column: PROTEIN

Select columns and condition: Columns [external data]: Column: PROTEIN

Select columns and condition: Condition: =

Select action: Filter only

Query is saved as file Example_1/queries/q4.que Saved result file is Example_1/results/r4.txt

Selecting unique rows on the base of two columns (columns PROTEIN and REGION)

SAMPLE	PROTEIN	REGION
sample1	protein1	20
sample1	protein2	5
sample1	protein3	8
sample1	protein4	9
sample2	protein1	6
sample2	protein4	9
sample2	protein8	1
sample2	protein9	33
sample3	protein1	4
sample3	protein12	0
sample3	protein9	33
sample3	protein9	33

menu: File -> Open File -> Example_1/input_data/example_input_file3.txt

menu: View -> Advanced mode

menu: Queue -> Add query -> Data preprocessing:

Select unique rows in all data
On the base of columns: PROTEIN
REGION

Note: Query is saved as file Example_1/queries/q5.que Saved result file is Example_1/results/r5.txt Selecting unique rows within each sample (column "SAMPLE") on the base of two columns (PROTEIN and REGION)*.

SAMPLE	PROTEIN	REGION
sample1	protein1	20
sample1	protein2	5
sample1	protein3	8
sample1	protein4	9
sample2	protein1	6
sample2	protein4	9
sample2	protein8	1
sample2	protein9	33
sample3	protein1	4
sample3	protein12	0
sample3	protein9	33
sample3	protein9	33

menu: File -> Open File -> Example_1/input_data/example_input_file3.txt

menu: View -> Advanced mode

menu: Queue -> Add query -> Data preprocessing:

Select unique rows in each sample

Sample columns: **SAMPLE**

On the base of columns: PROTEIN REGION

Note:
Query is saved as file
Example_1/queries/q5.que
Saved result file is
Example_1/results/r5.txt

^{*-} the result data set is identical with selecting unique rows on the base of three columns "SAMPLE", "PROTEIN" and "REGION".

Result of filtering on the base of genome location

REGION	CHR	START	STOP
region1	chr1	20	500
region2	chr2	500	1000
region3	chr3	400	4000
region4	chr1	30	500
region5	chr2	500	1000
region6	chr3	400	4000

REGION	CHR	START	STOP
region1	chr1	20	500
region2	chr2	500	1000
region3	chr3	400	4000
region4	chr1	30	500
region5	chr2	500	1000
region6	chr3	400	4000

menu: File -> Open File -> Example_1/input_data/example_input_file4a.txt

menu: *View -> Advanced mode*

menu: Queue -> Add query -> Location Filter:

Select columns or create locus: Multiple Column Locus Select columns or create locus: Chromosome column: CHR Select columns or create locus: Start position column: START Select columns or create locus: Stop position column: STOP

Locus search: Chromosome: 1 Locus search: Start pos.: 30 Locus search: Stop pos.: 500

Locus search: Length:

Locus search: Overlap at least [%]: 0 (means any overlap percent is allowed)

Note: Query is saved as file Example_1/queries/q7.que Saved result file is

Example_1/results/r7.txt

Result of filtering on the base of genome location

REGION	CHR	START	STOP
region1	chr1	20	500
region2	chr2	500	1000
region3	chr3	400	4000
region4	chr1	30	500
region5	chr2	500	1000
region6	chr3	400	4000

menu: File -> Open File -> Example_1/input_data/example_input_file4a.txt

menu: View -> Advanced mode

menu: Queue -> Add query -> Location Filter:

Select columns or create locus: Multiple Column Locus Select columns or create locus: Chromosome column: CHR Select columns or create locus: Start position column: START Select columns or create locus: Stop position column: STOP

Locus search: Chromosome: 1 Locus search: Start pos.: 30 Locus search: Stop pos.: 500

Locus search: Length:

Locus search: Overlap at least [%]: 100 (means only 100 % overlap are selected)

Note: Query is saved as file Example_1/queries/q8.que Saved result file is Example_1/results/r8.txt

Horizontal joining of the files on the base of genome location

MAIN DATA

REGION	CHR	START	STOP
region1	chr1	20	500
region2	chr2	500	1000
region3	chr3	400	4000
region4	chr1	30	500
region5	chr2	500	1000
region6	chr3	400	4000

EXTERNAL DATA

FEATURE	CHR	START	STOP	DESCRIPTION
promoterX	chr1	10	200	Description of promotor X
regulatory sequenceY	chr1	100	1000	Description of regulatory sequence Y
promoterZ	chr2	10	100	Description of promotor Y
regulatory sequenceQ	chr2	390	460	Description of regulatory sequence Q
promoterW	chr3	10	200	Description of promotor Y
regulatory sequenceW	chr3	10	300	Description of regulatory sequence Q

REGION	CHR	START	STOP	FEATURE	DESCRIPTION	external_da ta_found_ro ws
region1	chr1	20	500	promoterX	Description of promotor X	2
region4	chr1	30	500	promoterX	Description of promotor X	2
region1	chr1	20	500	regulatory sequenceY	Description of regulatory sequence Y	2
region4	chr1	30	500	regulatory sequenceY	Description of regulatory sequence Y	2

```
menu: File -> Open File -> Example_1/input_data/example_input_file4a.txt
```

menu: File -> Open Second File -> Example_1/input_data/example_input_file4b.txt

menu: View -> Advanced mode

menu: Queue -> Add query -> External Data Filter /Merger (Location):

Select columns or create locus: Multiple Column Locus

Select columns or create locus: Chromosome column: CHR Select columns or create locus: Start position column: START Select columns or create locus: Stop position column: STOP

Select columns or create locus (external data): Multiple Column Locus Select columns or create locus (external data): Chromosome column: CHR Select columns or create locus (external data): Start position column: START Select columns or create locus (external data): Stop position column: STOP

Condition: overlaps at least 0% of main data location

Select action: ADD SELECTED COLUMNS FROM EXTERNAL DATA MATCHING ROWS

Select columns: FEATURE DESCRIPTION

"REPEAT DATA ROW WHEN MORE THAN ONE EXTERNAL DATA ROWS MATCH" option active "ADD BASIC STATISTICS" option active

Note: Query is saved as file Example_1/queries/q9.que Saved result file is Example_1/results/r9.txt

Vertical joining of the files with partially the same column names

REGION	CHR	START	STOP
region1	chr1	20	500
region2	chr2	500	1000
region3	chr3	400	4000
region4	chr1	30	500

REGION	CHR	START	STOP	DESCRIPTION
region1	chr1	2000	50000	DESC1
region2	chr2	50000	100000	DESC2
region3	chr3	40000	400000	DESC3
region4	chr1	3000	50000	DESC4

menu: File -> Open directory ->
Example_1/input_data/input_files5a5b

menu: Data -> Show system columns (unchecked)

Note: Saved result file is Example_1/results/r10.txt

Directory structure:

st5.que

```
Example_2 – main directory containing example files

Example_2/input_data/platypus_vcf – vcf files produced by Platypus (http://www.well.ox.ac.uk/platypus)

Example_2/input_data/seattleseq134 – files produced by SeattleSeq (http://snp.gs.washington.edu/)

Example_2/results – output files for individual stages

Example_2/queries – query files for individual stages
```

```
input data

    intervals with col headers.bed

    platypus vcf
        AP-1 aln n30 N100 0x0004 filtered sorted.bam.vcf
        AP-2 aln n30 N100 0x0004 filtered sorted.bam.vcf
      - AP-3 aln n30 N100 0x0004 filtered sorted.bam.vcf
        AP-4_aln_n30_N100_0x0004_filtered_sorted.bam.vcf

    AP-5 aln n30 N100 0x0004 filtered sorted.bam.vcf

        AP-6 aln n30 N100 0x0004 filtered sorted.bam.vcf
        AP-7 aln n30 N100 0x0004 filtered sorted.bam.vcf
        AP-8 aln n30 N100 0x0004 filtered sorted.bam.vcf
    seattleseq134
        SeattleSegAnnotation134.AP-1 aln n30 N100 0x0004 filtered sorted.bam.vcf.245647667364.txt
        SeattleSeqAnnotation134.AP-1_aln_n30_N100_0x0004_filtered_sorted.bam.vcf.245705740173.txt
        SeattleSegAnnotation134.AP-2 aln n30 N100 0x0004 filtered sorted.bam.vcf.245649049586.txt
        SeattleSeqAnnotation134.AP-2_aln_n30_N100_0x0004_filtered_sorted.bam.vcf.245706569206.txt
        SeattleSegAnnotation134.AP-3 aln n30 N100 0x0004 filtered sorted.bam.vcf.245650093533.txt
        SeattleSegAnnotation134.AP-3 aln n30 N100 0x0004 filtered sorted.bam.vcf.245710002010.txt
        SeattleSeqAnnotation134.AP-4_aln_n30_N100_0x0004_filtered_sorted.bam.vcf.245650643836.txt
        SeattleSegAnnotation134.AP-4 aln n30 N100 0x0004 filtered sorted.bam.vcf.245712178025.txt
        SeattleSeqAnnotation134.AP-5_aln_n30_N100_0x0004_filtered_sorted.bam.vcf.245651221106.txt
        SeattleSegAnnotation134.AP-5 aln n30 N100 0x0004 filtered sorted.bam.vcf.245714132870.txt
        SeattleSegAnnotation134.AP-6 aln n30 N100 0x0004 filtered sorted.bam.vcf.245652094290.txt
        SeattleSegAnnotation134.AP-6 aln n30 N100 0x0004 filtered sorted.bam.vcf.245716307661.txt
        SeattleSegAnnotation134.AP-7 aln n30 N100 0x0004 filtered sorted.bam.vcf.245652712335.txt
        SeattleSegAnnotation134.AP-7 aln n30 N100 0x0004 filtered sorted.bam.vcf.245716589511.txt
        SeattleSegAnnotation134.AP-8 aln n30 N100 0x0004 filtered sorted.bam.vcf.245653191154.txt
        SeattleSeqAnnotation134.AP-8_aln_n30_N100_0x0004_filtered_sorted.bam.vcf.245717027188.txt
results
   - st1.txt
    st2.txt
    st3.txt
    st4a.txt
   - st4b.txt

    st5 sel columns.txt

   - st5.txt
queries
    st1.aue
   st2.que
   - st3.que
   - st4a.que
   - st4b1.que
    st4b.aue
```


Directory structure:

```
Example_3 – main directory containing example files

Example_3/input_data/conservation_all_headers_corrected/

– evolutionary conservation files (subdirectory chr_col_added contain the same files extended by required columns with chromosome name)

Example_3/results – output files for individual stages

Example 3/queries – query files for individual stages
```


Directory structure: Example_4 – main directory containing example files Example 4/input data/vcf – vcf files Example 4/results – output files for individual stages Example 4/saved gueries – guery files for individual stages – input data - Supporting_Table_S2.csv └─ vcf ├─ 608P.bam_PASS_filter_only.txt.vcf 642P.bam_PASS_filter_only.txt.vcf 903P_PASS_filter_only.bam.vcf 915P.bam PASS filter only.txt.vcf 916P.bam PASS filter only.txt.vcf 924P PASS filter only.bam.vcf - queries - st1.que — st2.que — st3.que - results — final 608h_608h.txt 608h_608m.txt 608h 608t.txt 608h all.txt 608h_null.txt 642h_642h.txt 642h_642m.txt 642h_642t.txt 642h all.txt 642h_null.txt 903h 903m.txt 903h 903t.txt 903h_all.txt 903h_null.txt 915h 915h.txt 915h_915m.txt 915h_915t.txt 915h_all.txt 915h_null.txt 916h_916h.txt 916h 916m.txt 916h 916t.txt 916h_all.txt 916h_null.txt 924h_924h.txt 924h_924m.txt 924h 924t.txt 924h_all.txt 924h_null.txt - st1.txt - st2.txt st3.txt

Supporting_Table_S2_st1.txt

The sample names unification is required in column vcf_sample_name (see note). Save result file as st2.txt (menu: File > Save report...)

Note: The sample names unification in st1.txt file is required (column vcf sample name). (menu: Queue > Add query > Simple filter > input data preprocessing) The sample names should be in scheme [number]H, eg. 924H. Any other substrings should be removed so eg. string "galaxy41-[ap924p sam-tobam on data 23 converted bam]" should first be reduced to "924p" and next the letter "p" in resultant sample name string should be replaced by letter "H" giving string "924H". The operation may be accomplished using replacing options in "Simple filter" tab of "Add guery" window ("input data preprocessing" form). (menu: Queue > Add query > Simple

Unification queries were saved as file: Example 4/queries/stl.que

Open file

Example_4/input_data/Supporting_Table_S1.csv

Remove numbers "1" or "1,2" at the end of strings in column patient so that cell content was eg. 924T

instead 924T1,2

(menu: View > Advanced mode)

(menu: Oueue > Add query > Simple filter)

(menu: View > Advanced mode)
(menu: Queue > Add query > Simple filter)
Save result file as Supporting_Table_S2_st1.txt
(menu: File > Save report...)

Note: Query is saved as file Example_4/queries/st2.que

Open file st3.txt

Each sample need operation described below (on the example of sample 608H)

(menu: View > Basic mode)
(button: Filter)

Select only rows containing string "608H" in column vcf sample name

(button: Filter)

filter)

Save result file 608h_all.txt Open result file 608h_all.txt

(button: Filter)

Select only rows containing string "608H" in column patient

(button: Filter)

Save result file 608h_608h.txt

Select only rows containing string "608T" in column patient

(button: Filter)

Save result file 608h 608t.txt

Select only rows containing string "608M" in column patient

(button: Filter)

Save result file 608h 608m.txt

Select only rows containing string "null" in column patient

(button: Filter)

Save result file 608h null.txt

Query is saved as file Example_4/queries/st3.que

Note: Saved result files are in directory Example_4/results/final/

Directory structure:

Example_5 – main directory containing example files Example_5/results – output files for individual stages

Table 1. Software/command equivalents for sample tasks that can performed with HTDP to achieve the same goal.

There are many command line tools, software packages and programming languages that provide alternative ways to perform complex operations on text files with the same results. Many of them are native to linux/unix systems. The table below briefly presents a choice of the most obvious methods to achieve the analogous outcome as the results that were delivered by HTDP in examples as described in the paper (S2 file) (https://osf.io/pw2dx/). The file names used are real and can be found in "input data" or "results" subfolders of the relevant example. Despite availability of many ready-to-use tools, some stages of data processing are difficult to achieve using relatively short commands - in such cases writing specific scripts is necessary. All presented examples print results to the standard output which may redirected to a file with '> output_file_name.txt' string added at the end of command.

EXAMPLE NO AND STAGE NO	COMMAND/SOFTWARE	NOTES
1 Filtering on the basis of samples (column SAMPLE) where only proteins (column PROTEIN) present in > 50% of samples are selected	custom script	This task may be carried out using many programing languages (bash script, perl, php, using sql database depending on data amount). The script should make an array of proteins from column "PROTEIN" and samples from column "SAMPLE", count the percentage of presence of each protein in each sample and select only proteins meeting the critera and next select only rows containing names of selected proteins.
1 Horizontal joining of the files on the basis of one column (column PROTEIN) with filtering and without filtering	joinheader -a 1 -1 2 -2 1 <(sort -k 2,2 example_input_file2a.txt) <(sort -k 1,1 example_input_file2b.txt) joinheader -1 2 -2 1 <(sort -k 2,2 example_input_file2a.txt) <(sort -k 1,1 example_input_file2b.txt)	join - bash command writing to standard output a line for each pair of input lines that have identical join fields.
1 Filtering one file using another file on the basis of one column (column PROTEIN) without joining	awk 'NR==FNR{pats[\$1]; next} \$2 in pats' example_input_file2b.txt example_input_file2a.txt	awk command searches files for text containing a pattern. When a line or text matches, awk performs a specific action on that line/text.
1 Selecting unique rows on the basis of two columns (columns PROTEIN and REGION)	sort -u -k2,3 example_input_file3.txt awk -F"\t" '!seen[\$2, \$3]++' example_input_file3.txt	sort command - write sorted concatenation of all file(s) to standard output.
1 Selecting unique rows within each sample (column "SAMPLE") on the basis of two columns (PROTEIN and REGION)*.	sort -u -k1,3 example_input_file3.txt awk -F"\t" '!seen[\$2, \$3]++' example_input_file3.txt	

EXAMPLE NO AND STAGE NO	COMMAND/SOFTWARE	NOTES
1 Filtering on the basis of genome location Horizontal joining of the files on the basis of genome location	custom script	This task may be carried out using many programming languages (bash script, perl, php, using sql database depending on data amount). The script should first associate columns with genomic location information fields: chromosome start and end position. All rows with unwanted chromosomes may be filtered out in first step (eg. join command) and next the rows are selected by comparing numbers in start and end positions
1 Vertical joining of the files with partially the same column names	custom script	This task may be carried out using many programming languages (bash script, perl, php). The simplest method is to read each file to multidimensional arrays storing data from each column and then organize data by joining the data from columns with the same name.
2 stages 1, 4	custom script	the same as in example 1 - Vertical joining of the files
2 stages: 2, 3	custom script	the same as example 1 - Horizontal joining of the files on the basis of genomic location
2 stage: 5, 6	awk 'NF' *.txt > test.csv sed '/^#/ d' < test.csv awk -v ss='none' '\$1 == ss' test.csv	Vertical joining of the files (awk), deleting comment rows starting with '#' (sed) , simple filtering of rows on the basis of selected column value (awk)
2 stage: 7, 8	awk '{if (\$13=="missense" \$13=="stp- gained" \$13=="frameshift" \$13=="coding") print}' st2.txt	filtering on the basis of list of values
2 stage: 9	awk '{print \$28\$29\$1, \$0}' st4a.txt > st4atxt awk '{print \$5\$6\$7, \$0}' st4b.txt > st4btxt joinheader -a 1 -1 1 -2 1 <(sort -k 1,1 st4atxt) <(sort -k 1,1 st4btxt)	joining on the basis of three columns requires creating of additional column with combined values (awk) and then standard joining using join command
2 stage: 10	awk '{print \$51,\$52,\$53,\$54,\$55,\$56, \$57, \$58,\$59,\$60,\$61,\$62,\$63,\$64,\$65,\$66,\$67,\$68,\$69,\$70,\$71,\$72,\$73,\$74,\$75,\$76,\$77,\$78}' st5.txt	removing columns from the file
3 stages 1,2,3, 4, 5, 6	custom script	the same as in example 1 - Horizontal joining of the files on the basis of genomic location
3 stage: 7	custom_script	the same as in example 1 - Horizontal joining of the files on the basis of genome location, vertical joining of the files

EXAMPLE NO AND STAGE NO	COMMAND/SOFTWARE	NOTES
3 stage: 8	awk -v threshold=0.85 '\$41 > threshold' st2_report_strict.txt	simple filtering rows on the basis of selected column value > 0.85
4 stage: 1	vcf-merge 608P.bam_PASS_filter_only.txt.vcf 903P_PASS_filter_only.bam.vcf 916P.bam_PASS_filter_only.txt.vcf 642P.bam_PASS_filter_only.txt.vcf 915P.bam_PASS_filter_only.txt.vcf 924P_PASS_filter_only.bam.vcf	joining of vcf files. vcf-merge is included in VCFtools package
4 stage: 2, 3	custom script	sample names unification
4 stage: 4	custom script	the same as in example 1 - horizontal joining of the files on the basis of genomic location
4 stage: 5	awk -v ss='608H' '\$37 == ss' st3.txt	simple filtering of rows on the basis of selected column value
5 stages: 1, 2, 3	awk '{print \$1 \$4 \$5 \$6 \$7 \$8 \$9}' 540237_41071_Area1_2012-06- 25_25000bp_avg_segMNT.gff cut -f1,4- 540237_41071_Area1_2012-06- 25_25000bp_avg_segMNT.gff	removing columns from the file (vcf file need to be treated specifically - in some cases custom script may be required)