VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ Ústav elektrotechnologie

LABORATORNÍ CVIČENÍ Z PŘEDMĚTU VYBRANÉ PARTIE Z OBNOVITELNÝCH ZDROJŮ A UKLÁDÁNÍ ENERGIE (BPC-OZU)

Číslo úlohy: 6

Název úlohy: Charakterizace vrtulového systému

Jméno a příjmení, ID:	Atmosférický tlak:	Teplota okolí:	Relativní vlhkost:		
Tomáš Vavrinec, 240893	1012.8 hPa	22.4°C	21.1%		
Měřeno dne: 25.2.2023	Odevzdáno dne:	Ročník, stud. skupina: 2	Kontrola:		

Spolupracovali:

Kateřina Koudelková

Zadání

- 1. Sestavte graf závislosti $v_{air} = F(U)$ a $n_t = F(U)$.
- 2. Vypočtěte účinnost η zdroje větrné energie z dodaného příkonu do motorku a výstupní hustoty výkonu větru pro napájecí napětí U=6[V] a U=12[V] v ustáleném stavu. Účinnosti porovnejte.
- 3. Sestavte graf závislosti výstupního napětí generátoru na otáčkách genterátoru $U_{out} = F(n_g)$ v semilogaritmických souřadnicích.
- 4. Vypočtěte počet pólových dvojic použitého stejnosměrného motoru pracující v generátorickém režimu.
- 5. Stanovte startovací rychlost větru v_{air} zkoumaného systému.

1 Měření

1.1 úkol 1

U[V]	0	1	2	3	4	5	6	7	8	9	10	11	12
$V_{air}[ms^{-1}]$	0	0	0.3	0.9	1.6	2.2	2.8	3.2	3.7	4.1	4.7	4.9	5.2
n[ot/min]	0	260	686	996	1332	1638	1902	2155	2390	2583	2768	2947	3101
I[mA]							340						750
$P_V[W]$	0	0	$5.48 \cdot 10^{-4}$	0.0158	0.0832	0.216	0.446	0.666	1.029	1.401	2.110	2.391	2.857
$P_{IN}[W]$							2.040						9.0
$\eta [\%]$							21.9						31.7

Table 1: První úloha

Příklady výpočtů:

$$\begin{split} P_V &= \tfrac{1}{2} \rho v^3 r^2 \pi = (\tfrac{1}{2} 1.293715.2^3) [W m^{-2}] \cdot (0.1^2 \pi) [m^2] = 2.857 [W] \\ P_{IN} &= U I = (12 \cdot 750 \cdot 10^{-3}) [W] = 9 [W] \\ \eta &= \tfrac{P_V}{P_{IN}} \cdot 100\% = \tfrac{9}{2.857} \cdot 100\% = 31.7 [\%] \end{split}$$

1.2 úkol 2

U[V]	7	8	9	10	11	12
$U_{out_P-P}[V]$	1.06	1.175	1.56	1.713	2.625	3.35
$n_{primar}[ot/min]$	2155	2390	2583	2768	2947	3101
$n_{gen}[ot/min]$	50	167	303	518	1691	1919
$V_{air}[ms^{-1}]$	3.2	3.7	4.1	4.7	4.9	5.2
$f_{puls}[Hz]$	4.13	16.949	28.9	56.18	149.25	187.27

Table 2: První úloha

Příklady výpočtů:

$$p=\frac{f_{puls-i}\cdot 60}{n_{gen-i}}=\frac{187.27\cdot 60}{1919}=5.855=>$$
generátor má šest pólů

1.3 Závěr

Podle našeho měření má generátor šest pólů. Startovací rychlost větru určuji na $4.8[ms^{-1}]$, protože kolem této hodnoty prudce rostou otáčky generátoru.