Applied Machine Learning Lecture 1: Introduction

CHALMERS

Richard Johansson

January 16, 2018

welcome to the course!

- machine learning is getting increasingly popular among students
 - our courses are full!
 - many thesis projects apply ML
- ...and in industry
 - many companies come to us looking for students
 - joint research projects

why the fuss?

- media exposure; some impressive recent results
- snowball effect: everyone wants to do ML
- more data available
- lower barriers to entry: ML software is becoming user-friendly
- ML is more efficient because of improvements in hardware

topics covered in the course

- ▶ the usual "zoo": a selection of machine learning models
 - what's the idea behind them?
 - how are they implemented? (at least on a high level)
 - what are the use cases?
 - how can we apply them practically?
- but hopefully also the "real-world context":
 - extended "messy" practical assignments requiring that you think of what you're doing
 - (probably) 2 invited talks from industry
 - ethical and legal issues, interpretability

overview

practical issues about the course

basic ideas in machine learning

example of a learning algorithm: decision tree learning

machine learning libraries in Python

taxonomy of machine learning methods and use cases

course webpage

- ▶ the official course webpage is the GUL page
- ▶ (google "DIT865 GUL")

structure of teaching

- video lectures: mainly for theory
 - please watch the videos before each exercise session!
- lecture / exercise sessions (Tuesdays and Fridays)
 - some theory and introduction to ML software
 - interactive coding
 - solving exercises in groups
 - (tentatively) two industrial guest lectures
- ▶ lab sessions: you work on your assignments
 - please go to the 13-15 or the 15-17 session

assignments

- warmup exercise: quick tour of the scikit-learn library
- four compulsory assignments:
 - 1. "mini-project" where you solve a supervised learning task
 - 2. implement a classification algorithm
 - 3. neural network design
 - 4. written essay on ethics in ML
- please refer to the course PM for details about grading
- we will use the Python programming language
 - please ask for permission if you prefer to use something else

4 D > 4 P > 4 E > 4 E > 9 Q P

literature

- ► the main course book is A Course in Machine Learning by Hal Daumé III: http://ciml.info
- and additional papers to read for some topics
- example code will be posted on the course page

written exam on March 15

- ▶ a first part about basic concepts: you need to answer most of these questions correctly to pass
- a second part that requires more insight: answer these questions for a higher grade

overview

practical issues about the course

basic ideas in machine learning

example of a learning algorithm: decision tree learning

machine learning libraries in Python

taxonomy of machine learning methods and use cases

basic ideas

- given some object, make a prediction
 - is this patient diabetic?
 - is the sentiment of this movie review positive?
 - does this image contain a cat?
 - what will be tomorrow's share value of this stock?
 - what are the phonemes contained in this speech signal?

basic ideas

- given some object, make a prediction
 - is this patient diabetic?
 - is the sentiment of this movie review positive?
 - does this image contain a cat?
 - what will be tomorrow's share value of this stock?
 - what are the phonemes contained in this speech signal?
- the goal of machine learning is to build the prediction functions by observing data

why machine learning?

why would we want to "learn" the function from data instead of just implementing it?

- usually because we don't really know how to write down the function by hand
 - speech recognition
 - image classification
 - machine translation
 - **.** . . .
- might not be necessary for limited tasks where we know
- what is more expensive in your case? knowledge or data?

don't forget your domain expertise!

machine learning automatizes some tasks, but we still need our brains:

- defining the tasks, terminology, evaluation metrics
- annotating training and testing data
- having an intuition about which features may be useful can be crucial
 - in general, features are more important than the choice of learning algorithm
- error analysis
- defining constraints to guide the learner

learning from data

example: is the patient diabetic?

example: is the patient diabetic?

- ▶ in order to predict, we make some measurements of properties we believe will be useful
 - these are called the features

features: different views

many learning algorithms operate on numerical vectors:

```
features = [ 1.5, -2, 3.8, 0, 9.12 ]
```

 more abstractly, we often represent the features as attributes with values (in Python, typically a dictionary)

 sometimes, it's easier just to see the features as a list of e.g. words (bag of words)

basic ML methodology: evaluation

- select an evaluation procedure (a "metric") such as
 - classification accuracy: proportion correct classifications?
 - mean squared error often used in regression
- apply your model to a held-out test set and evaluate
 - the test set must be different from the training set
 - also: don't optimize on the test set; use a development set or cross-validation!

overview

practical issues about the course

basic ideas in machine learning

example of a learning algorithm: decision tree learning

machine learning libraries in Pythor

taxonomy of machine learning methods and use cases

classifiers as rule systems

- assume that we're building the prediction function by hand
- how would it look?
- probably, you would start writing rules like this:
 - ▶ IF the blood glucose level > 150, THEN
 - ▶ IF the age > 50, THEN return True
 - ▶ ELSE ...
 - **.** . . .
- a human would construct such a rule system by trial and error
- could this kind of rule system be learned automatically?

decision tree classifiers

- a decision tree is a tree where
 - the internal nodes represent how we choose based on a feature
 - the leaves represent the return value of the classifier
- like the example we had previously:
 - ▶ IF the blood glucose level > 150, THEN
 - ▶ IF the age > 50, THEN return True
 - ► ELSE ...
 - **•** ...

general idea for learning a tree

- it should make few errors on the training set
- and an Occam's razor intuition: we'd like a small tree
- however, finding the smallest tree is a complex computational problem
 - ▶ it is NP-hard
- instead, we'll look at an algorithm that works top-down by selecting the "most useful feature"
- ▶ the basic approach is called the ID3 algorithm
 - see e.g. Daumé III's book or http://en.wikipedia.org/wiki/ID3_algorithm

greedy decision tree learning (pseudocode)

```
def TrainDecisionTree(T)
  if T is unambiguous
     return a leaf with the class of the examples in T
  if T has no features
     return a leaf with the majority class of T
  F \leftarrow the "most useful feature" in T
  for each possible value f_i of F
     T_i \leftarrow \text{the subset of } T \text{ where } F = f_i
     remove F from T_i
     tree_i \leftarrow TrainDecisionTree(T_i)
  return a tree node that splits on F,
     where f_i is connected to the subtree tree;
```


how to select the "most useful feature"?

- there are many rules of thumb to select the most useful feature
 - ▶ idea: a feature is good if the subsets *T_i* are unambiguous
- in Daumé III's book, he uses a simple score to rank the features:
 - for each subset T_i , compute the frequency of its majority class
 - sum the majority class frequencies
- however, the most well-known ranking measure is the information gain
 - this measures the reduction of entropy (statistical uncertainty) we get by considering the feature

problems with the naive approach

- ▶ ID3 and similar decision tree learning algorithms often have troubles with large, noisy datasets
- often, performance decreases with training set size!

- can be improved by using a separate development set:
 - prune the tree by removing the nodes that don't seem to matter for accuracy on the development set

overview

machine learning libraries in Python

machine learning software: a small sample

- general-purpose software, large collections of algorithms:
 - scikit-learn: http://scikit-learn.org
 - Python library will be used in this course
 - Weka: http://www.cs.waikato.ac.nz/ml/weka
 - Java library with nice user interface
- special-purpose software, small collections of algorithms:
 - LibSVM/LibLinear for support vector machines
 - ▶ Keras, PyTorch, TensorFlow, Caffe for neural networks
 - **.** . . .
- large-scale learning in distributed architectures:
 - Spark MLLib

scikit-learn toy example: a simple training set

4 D > 4 P > 4 E > 4 E > 9 Q P

scikit-learn toy example: training a classifier

```
from sklearn.feature_extraction import DictVectorizer
from sklearn.svm import LinearSVC
from sklearn.pipeline import make_pipeline
import pickle
pipeline = make_pipeline( DictVectorizer(), LinearSVC() )
# train the classifier
pipeline.fit(X, Y)
# optionally: save the classifier to a file...
with open('weather.classifier', 'wb') as f:
    pickle.dump(pipeline, f)
```

4 D > 4 A > 4 B > 4 B > 9 Q P

explanation of the code: DictVectorizer

- internally, the features used by scikit-learn's classifiers are numbers, not strings
- ▶ a Vectorizer converts the strings into numbers more about this in the next lecture!
- rule of thumb:
 - use a DictVectorizer for attribute-value features
 - use a CountVectorizer or TfidfVectorizer for bag-of-words features

explanation of the code: LinearSVC

- ► LinearSVC is the actual classifier we're using
 - this is called a linear support vector machine
 - more about this in lecture 3
- use a decision tree instead:

perceptron:

```
from sklearn.linear_model import Perceptron
...
pipeline = Pipeline( DictVectorizer(), Perceptron() )
```

4 D > 4 A > 4 B > 4 B > 9 Q P

explanation of the code: Pipeline and fit

- in scikit-learn, preprocessing steps and classifiers are often combined into a Pipeline
 - in our case, a DictVectorizer and a LinearSVC
- ▶ the whole Pipeline is trained by calling the method fit
 - which will in turn call fit on all the parts of the Pipeline

toy example: making new predictions and evaluating

```
from sklearn.metrics import accuracy_score
Xtest = [{'city':'Gothenburg', 'month':'June'},
         {'city':'Gothenburg', 'month':'November'},
         {'city':'Paris', 'month':'June'},
         {'city':'Paris', 'month':'November'}]
Ytest = ['rain', 'rain', 'sun', 'rain']
# classify all the test instances
guesses = pipeline.predict(Xtest)
# compute the classification accuracy
print(accuracy_score(Ytest, guesses))
```


a note on efficiency

- Python is a nice language for programmers but not always the most efficient
- in scikit-learn, many functions are implemented in faster languages (e.g. C) and use specialized math libraries
- so in many cases, it is much faster to call the library once than many times:

```
import time
t0 = time.time()
guesses1 = pipeline.predict(Xtest)
t1 = time.time()
guesses2 = []
for x in Xtest:
    guess = pipeline.predict(x)
    guesses2.append(guess)
t2 = time.time()
print(t1-t0)
print(t2-t1)
```

▶ result: 0.29 sec and 45 sec

some other practical functions

making a training/test split:

evaluation, e.g. accuracy, precision, recall, F-score:

```
from sklearn.metrics import f1_score
print(f1_score(Y_eval, Y_out))
```

cross-validation over the training set:

```
from sklearn.cross_validation import cross_validate
cv_results = cross_validate(pipeline, X, Y)
```


overview

practical issues about the course

basic ideas in machine learning

example of a learning algorithm: decision tree learning

machine learning libraries in Pythor

taxonomy of machine learning methods and use cases

how can we classify machine learning methods?

- output: what are we predicting?
- supervision: what type of data? how do we use it?
- representation: how do we describe our model?
- induction: how are models selected?

types of machine learning problems: what are we predicting?

- classification: learning to output a category label
 - spam/non-spam; positive/negative; . . .
- regression: learning to guess a number
 - value of a share; number of stars in a review; ...
- structured prediction: learning to build some structure
 - speech segmentation; machine translation; . . .
- ranking: learn to order a set of items
 - search engines
- reinforcement learning: learning to act in an environment
 - dialogue systems; playing games; autonomous vehicles; . . .

types of supervision (1): supervised

- in supervised learning, we have a labeled training set consists of input-output pairs
- our goal is to learn to imitate this labeling

types of supervision (2): unsupervised

- in unsupervised learning, we are given a set of "unorganized" data
- our goal is to discover some structure in the data

types of supervision (3): variations. . .

- semisupervised learning:
 - a small set of labeled examples plus a larger unlabeled set
- active learning:
 - the learning algorithm can ask for additional labeling of targeted examples
- multitask learning:
 - learning from closely related tasks

representation of the prediction function

we may represent our prediction function in different ways:

- numerical models:
 - weight vectors, probability tables
 - networked models
- rule-based models:
 - decision trees
 - rules expressed using logic

what goes on when we "learn"?

- the learning algorithm observes the examples in the training set
- ▶ it tries to find common patterns that explain the data: it generalizes so that we can make predictions for new examples

how this is done depends on what algorithm we are using

principles of induction: how do we select "good" models?

- hypothesis space: the set of all possible outputs of a learning algorithm
 - for decision tree learners: The set of possible trees
 - for linear separators: the set of all lines in the plane / hyperplanes in a vector space
- "learning" = searching the hypothesis space
- how do we know what hypothesis to look for?

a fundamental tradeoff in machine learning

- goodness of fit: the learned classifier should be able to capture the information in the training set
 - e.g. correctly classify the examples in the training data
- regularization: the classifier should be simple

why would we prefer "simple" hypotheses?

"overfitting" and "underfitting": the bias-variance tradeoff

 $[{\sf Source} \colon {\sf Wikipedia}]$

up next

- Thursday: lab session for the noncompulsory exercise
- ▶ topic of Friday's discussion: linear classifiers and regressors
- please prepare by watching the videos

