

LECTURE 3: ALGORITHM ANALYSIS

Harold Soh harold@comp.nus.edu.sg

QUESTIONS BEFORE WE GET STARTED?

LEARNING OUTCOMES

By the end of this session, you should be able to:

- Determine the computational complexity of an algorithm under the standard sequential computation model
- Use Big-Oh Notation to describe algorithm performance

DID YOU DO YOUR HOMEWORK?

Did you revise the sorting material on Visualgo?

- A. Of course!
- B. Of course ... not!
- C. well, kind of half way...
- D. Ummm.. Visualgo?

PROBLEM: CUSTOMER LOYALTY REWARDS

Get a list of customers ordered by their purchasing spend. Reward the n who spent the most.

BOSS HAS AN SOLUTION:

BogoSort

while items is not sorted
 permute(items)

NARUTO'S SOLUTION

mark first element as sorted
for each unsorted element X
 'extract' the element X
 for j = lastSortedIndex down to 0
 if current element j > X
 move sorted element to the right by 1
 break loop and insert X here

NARUTO'S SOLUTION

What kind of sort is this?

- A. Bubble Sort
- B. Insertion Sort
- C. Merge Sort
- D. I obviously didn't do my homework

```
mark first element as sorted
for each unsorted element X
  'extract' the element X
  for j = lastSortedIndex down to 0
   if current element j > X
      move sorted element to the right by 1
   break loop and insert X here
```

HOW DO WE GET AN IDEA OF WHICH IS BETTER?

without implementing and running the two algorithms on all kinds of data?

Algorithm Analysis

ALGORITHM ANALYSIS IN A NUTSHELL

How long will my program take?

How much memory will it consume?

BUT OTHER CONCERNS MAY BE RELEVANT:

In general, we want to measure usage of some resource:

- communication bandwidth
- number of processing elements required
- human computation
- etc.

but we will focus on time and memory (space)

A SIMPLE MODEL OF COMPUTATION

Random-Access Machine (RAM)

instructions are sequential (no concurrency)

Each operation takes some constant amount of time

What are instructions?

- arithmetic operations (+,-,/,* etc.)
- control (branches, function call & returns)

Simple memory: no caching

Is exponentiation a^k considered one operation?

- A. Yes
- B. No
- C. It's up to us to define in our model.

DO COMMENTS COUNT?

```
int a = 0;
// the following is a loop
for (int i=0; i<10; i++) {
    a = a + 2;
    A[i] = a;
}</pre>
```

Do comments count?

- A. Yes
- B. No
- C. Only on Facebook.
- D. Only on Piazza

Code int a = 0; for (int i=0; i<n; i++) { a = a + 2; A[i] = a; }</pre> Cost Times C₁ C₂ C₃ C₄

Code	Cost	Times
int $a = 0$;	c_1	1
for (int i=0; i <n; i++)="" td="" {<=""><td>c_2</td><td></td></n;>	c_2	
a = a + 2;	c_3	
A[i] = a;	c_4	
}		

Code	Cost	Times
int $a = 0$;	c_1	1
for (int i=0; i <n; i++)="" td="" {<=""><td>c_2</td><td>n</td></n;>	c_2	n
a = a + 2;	c_3	
A[i] = a;	c_4	
}		

Code	Cost	Times
int $a = 0$;	c_1	1
for (int i=0; i <n; i++)="" td="" {<=""><td>c_2</td><td>n</td></n;>	c_2	n
a = a + 2;	c_3	n
A[i] = a;	c_4	
}		

Code	Cost	Times
int $a = 0$;	c_1	1
for (int i=0; i <n; i++)="" td="" {<=""><td>c_2</td><td>n</td></n;>	c_2	n
a = a + 2;	c_3	n
A[i] = a;	c_4	n
}		

Code	Cost	Times
int $a = 0$;	c_1	1
for (int i=0; i <n; i++)="" td="" {<=""><td>c_2</td><td>n</td></n;>	c_2	n
a = a + 2;	c_3	n
A[i] = a;	c_4	n
}		
$T(n) = c_1 + nc_2$	$+nc_3+nc_3$	$_4 = cn + c_1$

RUNNING TIME

$$T(n) = cn + c_1$$

is a linear function

WHICH TAKES LONGER?

```
void pushAll(int n) {
    for (int i=0; i<= 100*n; i++) {
        stack.push(i);
    }
}</pre>
```

```
void pushAdd(int n) {
    for (int i=0; i<= n; i++) {
        for (int j=0; j<= n; j++) {
            stack.push(i+j);
        }
    }
}</pre>
```

Which takes longer?

- A. pushAll
- B. pushAdd
- C. Runs the same.
- D. It depends!

ANALYSIS OF PUSHALL

```
void pushAll(int n) { c_1 1 1 c_2 100*n; i++) { c_2 100n stack.push(i); c_3 100n } }
```

$$T(n) = 100cn + c_1$$

ANALYSIS OF PUSHADD

```
Cost
                                                      Times
void pushAdd(int n) {
                                             c_1
    for (int i=0; i<= n; i++) {
         for (int j=0; j <= n; j++) {
             stack.push(i+j);
          T(n) = c_1 + nc_2 + n^2c_3 + n^2c_4 = cn^2 + c_2n + c_1
                                        is a quadratic function
```

IF ALL THE CONSTANTS = 1

WHICH TAKES LONGER?

```
void pushAll(int n) {
    for (int i=0; i<= 100*n; i++) {
        stack.push(i);
    }
}</pre>
```

```
void pushAdd(int n) {
    for (int i=0; i<= n; i++) {
        for (int j=0; j<= n; j++) {
            stack.push(i+j);
        }
    }
}</pre>
```

Which takes longer if n is large (n > 1000)?

- A. pushAll
- B. pushAdd
- C. Runs the same.
- D. It depends!

WHICH TAKES MORE MEMORY ON THE STACK?

```
void pushAll(int n) {
    for (int i=0; i<= 100*n; i++) {
        stack.push(i);
    }
}</pre>
```

```
void pushAdd(int n) {
    for (int i=0; i<= n; i++) {
        for (int j=0; j<= n; j++) {
            stack.push(i+j);
        }
    }
}</pre>
```

Which takes more memory if n is large (n > 1000)?

- A. pushAll
- B. pushAdd
- C. takes the same amount of memory
- D. Naruto knows!

ANALYSIS OF PUSHALL

$$S(n) = 100cn$$

ANALYSIS OF PUSHADD

Times

Cost

SIMILAR GRAPH FOR MEMORY IF C = 1

QUESTIONS?

ORDER OF GROWTH

ORDER OF GROWTH

 $T(n)=n^2+c_2n$ as $n\to\infty$, the term c_2n becomes insignificant compared to n^2 .

We can say the T(n) is "asymptotically equivalent" to n^2 .

ASYMPTOTIC EFFICIENCY & ORDER OF GROWTH

Further simplify: drop constants and lower order terms

How the running time of the algorithm increases with input size in the limit (this is what asymptotic means).

BIG-OH O(g(n))

 $O(g(n)) = \{f(n): \text{ there exist}$ positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0\}$

BIG-OH O(g(n))

 $O(g(n)) = \{f(n): \text{ there exist}$ positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0\}$

what does this mean?!

BRIEFLY: SET THEORY

$$S = \{a, \blacksquare, \triangle, f(x)\}$$

We say an element is a member of a set using the notation:

$$a \in S$$

and if b is **not** a member:

$$b \notin S$$

BRIEFLY: SET THEORY

$$A = \{a, a, \triangle, f(x)\}$$

Is the object on the left a valid set?

- A. Yes
- B. No
- C. I don't know
- D. The triangle is pretty
- E. I'm so so confused...

 $O(g(n)) = \{f(n): \text{ there exist}$ positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0\}$

 $O(g(n)) = \{f(n): \text{ there exist}$ positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0\}$

Parsing the statement:

O(g(n)) is a <u>SET</u> that contains that are <u>smaller/larger</u> than cg(n) for large n

 $O(g(n)) = \{f(n): \text{ there exist}$ positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0\}$

Parsing the statement:

O(g(n)) is a <u>SET</u> that contains NON-NEGATIVE FUNCTIONS that are smaller/larger than cg(n) for large n

 $O(g(n)) = \{f(n): \text{ there exist}$ positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0\}$

Parsing the statement:

O(g(n)) is a <u>SET</u> that contains NON-NEGATIVE FUNCTIONS that are smaller/larger than cg(n) for large n

BUT WAIT...

If O(g(n)) is a set (a collection of things), how can we say that

$$f(n) = O(g(n))$$
?

BUT WAIT...

If O(g(n)) is a set (a collection of things), how can we say that

$$f(n) = O(g(n))$$
?

"Abuse of notation": we write f(n) = O(g(n)), but mean $f(n) \in O(g(n))$

ASYMPTOTIC EFFICIENCY & ORDER OF GROWTH

Further simplify: drop constants and lower order terms

How the running time of the algorithm increases with input size in the limit (this is what asymptotic means).

BIG OMEGA Ω AND BIG THETA Θ

What about Ω and Θ ?

Let's take a look...

BIG OMEGA Ω

 $\Omega(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } c \text{ and } n_0 \text{ such that } c \text{ and } n_0 \text{ such that } c \text{ and } n_0 \text{ such that } c \text{ and } c$

 $0 \le cg(n) \le f(n)$ for all $n \ge n_0$

O(g(n)) is a set that contains functions that are larger than cg(n) for large n and some constant c

BIG THETA O

 $\Theta ig(g(n)ig) = \{f(n) : \text{ there exist positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \}$

O(g(n)) is a set that contains functions that are larger than $c_1g(n)$ and smaller than $c_2g(n)$ for large n and some constants c_1 and c_2

WE FOCUS ON BIG-OH O(g(n))

Why do we focus on O(g(n))?

- A. we want to know the best case.
- B. we want to know the worst case.
- C. We are pessimistic people.
- D. I'm so very confused...

SOFTWARE A V.S. SOFTWARE B

Guarantees in the **best case**, it will crash only once a week

Guarantees in the worst case, it will crash only once a week

Which do you buy?

WHAT DOES BIG-OH MEAN INTUITIVELY

When we say an algorithm is $O(n^2)$:

- the worst case running time is $O(n^2)$.
- guarantee that the running time will not exceed cn^2 for large n
- the running time is upper bounded by a cn^2 for large n

DROPPING THE LOWER ORDER TERMS?

Given $f(n) = an^2 + bn$ where a, b > 0.

Show that $f(n) = O(n^2)$, i.e., that we can drop the lower order terms and ignore the coefficient for the function.

SOME PRACTICE WITH BIG-OH

Is
$$2^{n+1} = O(2^n)$$
?

- A. Yes
- B. No
- C. It depends.
- D. My dog ate my math homework.

SOME PRACTICE WITH BIG-OH

What is the worst case running time for the statement x = 1?

- A. O(n)
- B. $O(n^2)$
- C. O(1)
- D. Should have stayed at home...
- E. ... and watched Netflix

SOME PRACTICE WITH BIG-OH: IF/ELSE

```
if (n > 100) {
    for (int i=0; i<n; i++) {
        for (int j=0; j<n; j++) {
            result += 2*i + 3*j + i*j;
    return result;
} else {
    for (int i=0; i<n; i++) {
        result += 2*i + i*i;
    return result;
```

The algorithm on the left is:

- A. O(n)
- B. $O(n^2)$
- C. $O(n^3)$
- D. I'm confused!

SOME PRACTICE WITH BIG-OH: RECURSION

```
int addSum(int n) {
   if (n<=1) return n;
   if (isOdd(n)) return n;

return addSum(n-2) + 10;
}</pre>
```

What is the worst case running time for addSum(n)?

A. O(n)

B. $O(n^3)$

C. $O(2^n)$

D.

THE SHAPES OF SPIRAL GALAXIES AND HURRICANES FOLLOW THIS SEQUENCE. WHAT IS IT?

0, 1, 2, 3, 5, 8, 13, 21, 34, ...

FIBONACCI SEQUENCE

0, 1, 2, 3, 5, 8, 13, 21, 34, ...

SOME PRACTICE WITH BIG-OH: ITERATION

```
static int fibItr(int n)
    if (n == 0) return 0;
    if (n == 1) return 1;
    int prev_2 = 0;
    int prev_1 = 1;
    int result = 0;
    for (int i = 2; i <= n; i++)
        result = prev_1 + prev_2;
        prev_2 = prev_1;
        prev_1 = result;
    return result;
```

What is the worst case running time for fibltr(n)?

- A. O(n)
- B. $O(n^3)$
- C. $O(2^n)$
 -).

SOME PRACTICE WITH BIG-OH: LINKED LISTS

What is the worst case running time for inserting an object into a linked list?

- A. O(1)
- B. O(n)
- C. $O(n^2)$
- D. how to remember? that was yesterday!

SOME PRACTICE WITH BIG-OH: STACKS

What is the worst case running time for pushing an item onto a stack (implemented as an array)?

- A. O(1)
- B. O(n)
- C. $O(n^2)$
- D. Longer than it takes to read this question.

SOME PRACTICE WITH BIG-OH: LIMITATIONS

Both Selection Sort and Bubble Sort are $O(N^2)$ algorithms. Does this mean they are equivalent in terms of performance?

- A. Yes
- B. No
- C. I don't know
- D. Why so many questions today ???

BIG-OH LIMITATIONS

is a useful but coarse measure.

It hides the constants and lower order terms that can make a difference.

BACK TO OUR INITIAL PROBLEM

V.S.

NARUTO'S IDEA: INSERTION SORT

```
int n = array.length;
for (int j = 1; j < n; j++) {
    int key = array[j];
    int i = j-1;
    while ( (i > -1) && ( array [i] > key ) ) {
        array [i+1] = array [i];
        i--;
    }
    array[i+1] = key;
}
```

What is the worst case running time for insertion sort?

- A. O(n)
- B. $O(n^2)$
- C. $O(2^n)$
- D. Boss says O(n!)

BOSS'S IDEA: BOGOSORT

while items is not sorted
 permute(items)

What is the worst case running time for bogosort?

A. O(n)

B. $O(n^2)$

C. $O(2^n)$

D. $O(n \cdot n!)$

E. Boss says O(1)

THE DIFFERENCE?

WHO HAS THE BETTER IDEA?

V.S.

BOSS'S NEXT IDEA: RANDOMIZED BOGOSORT

I'MA WINNER!

while items is not sorted
 randomShuffle(items)

BOSS'S NEXT IDEA: RANDOMIZED BOGOSORT

I'MA WINNER!

while items is not sorted
 randomShuffle(items)

What is the worst case running time for randomized bogosort?

A. O(n)

B. $O(n^2)$

C. $O(2^n)$

D. Boss says O(1)

E. Unbounded

WHO HAS THE BETTER IDEA?

V.S.

QUESTIONS?

BOSS'S NEXT IDEA: RANDOMIZED BOGOSORT

BUT...

while items is not sorted
 randomShuffle(items)

What is the <u>average</u> case running time for randomized bogosort?

A. O(n)

B. $O(2^n)$

C. $O(n \cdot n!)$

D. Boss still says O(1)

E. Unbounded

Sorting the Slow Way: An Analysis of Perversely Awful Randomized Sorting Algorithms

Hermann Gruber¹, Markus Holzer², and Oliver Ruepp²

Institut für Informatik, Ludwig-Maximilians-Universität München, Oettingenstraße 67, D-80538 München, Germany gruberh@tcs.ifi.lmu.de
² Institut für Informatik, Technische Universität München, Boltzmannstraße 3, D-85748 Garching bei München, Germany {holzer, ruepp}@in.tum.de

Abstract. This paper is devoted to the "Discovery of Slowness." The archetypical perversely awful algorithm bogo-sort, which is sometimes referred to as Monkey-sort, is analyzed with elementary methods. Moreover, practical experiments are performed.

1 Introduction

To our knowledge, the analysis of perversely awful algorithms can be tracked back at least to the seminal paper on pessimal algorithm design in 1984 [2]. But what's a perversely awful algorithm? In the "The New Hacker's Dictionary" [7] one finds the following entry:

bogo-sort: /boh'goh-sort'/ /n./ (var. 'stupid-sort') The archetypical perversely awful algorithm (as opposed to \rightarrow bubble sort, which is merely the generic *bad* algorithm). Bogo-sort is equivalent to repeatedly throwing a deck of cards in the air, picking them up at random, and then testing whether they are in order. It serves as a sort of canonical example of awfulness. Looking at a program and seeing a dumb algorithm, one might say "Oh, I see, this program uses bogo-sort." Compare \rightarrow bogus, \rightarrow brute force, \rightarrow Lasherism.

International Conference on Fun with Algorithms

FUN 2007: Fun with Algorithms pp 183-197 | Cite as

LEARNING OUTCOMES

By the end of this session, you should be able to:

- Determine the computational complexity of an algorithm under the standard sequential computation model
- Use Big-Oh Notation to describe algorithm performance

OTHER TAKE AWAYS

Big-Oh is a good but coarse measurement (use it wisely)

You can use O(g(n)) to measure the performance of other kinds of resource use

BEFORE NEXT WEEK'S LECTURE

Go to Visualgo.net and do the Sorting Module:

https://visualgo.net/en/sorting

Review: 11 (Quick Sort)

Optional: 12 onwards

QUESTIONS?

