- **1.** Se consideră matricea $A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$, cu $a, b \in \mathbb{R}$ și $b \neq 0$.
- **5p** a) Să se arate că dacă matricea $X \in \mathcal{M}_2(\mathbb{R})$ verifică relația AX = XA, atunci există $u, v \in \mathbb{R}$, astfel încât $X = \begin{pmatrix} u & v \\ v & u \end{pmatrix}$.
- **5p b)** Să se arate că $\forall n \in \mathbb{N}^*$, $A^n = \begin{pmatrix} x_n & y_n \\ y_n & x_n \end{pmatrix}$, unde $x_n = \frac{(a+b)^n + (a-b)^n}{2}$, $y_n = \frac{(a+b)^n (a-b)^n}{2}$.
- **5p c**) Să se rezolve în mulțimea $\mathcal{M}_2(\mathbb{R})$ ecuația $X^3 = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.
 - **2.** Se consideră $a \in \mathbb{Z}_7$ și polinomul $f = X^6 + aX + \hat{5} \in \mathbb{Z}_7[X]$.
- **5p** a) Să se verifice că, pentru orice $b \in \mathbb{Z}_7$, $b \neq \hat{0}$, are loc relația $b^6 = \hat{1}$.
- **5p b)** Să se arate că $x^6 + \hat{5} = (x^3 \hat{4})(x^3 + \hat{4}), \forall x \in \mathbb{Z}_7$.
- **5p** c) Să se demonstreze că pentru orice $a \in \mathbb{Z}_7$, polinomul f este reductibil în $\mathbb{Z}_7[X]$.

SUBIECTUL II (30p) Varianta 2

- **1.** Se consideră matricea $A \in \mathcal{M}_2(\mathbb{R})$, $A = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$.
- a) Să se arate că există $a \in \mathbb{R}$ astfel încât $A^2 = aA$.
- **5p b**) Să se calculeze $(A A^t)^{2009}$.

5p

- **5p** c) Să se rezolve ecuația $X^5 = A$, $X \in \mathcal{M}_2(\mathbb{R})$.
 - 2. Pentru \mathbf{a}, \mathbf{b} din mulțimea $\mathbf{M} = [0, \infty)$ se definește operația $\mathbf{a} * \mathbf{b} = \ln(\mathbf{e}^{\mathbf{a}} + \mathbf{e}^{\mathbf{b}} 1)$.
- **5p** a) Să se arate că dacă $a, b \in M$, atunci $a * b \in M$.
- **5p b)** Să se arate că legea de compoziție "*" este asociativă.
- 5p c) Pentru $n \in \mathbb{N}$, $n \ge 2$, să se determine $a \in M$ astfel încât $\underbrace{a * a * ... * a}_{\text{de } n \text{ ori } a} = 2a$.

- **1.** Se consideră matricea $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$
- **5p** a) Să se verifice egalitatea $A^2 A = 2I_3$.
- **5p b**) Să se calculeze A^{-1} .
- **5p** c) Să se arate că $A^{2009} + A^{2008} = 2^{2008} (A + I_3)$.
 - **2.** Se consideră cunoscut că $(\mathbb{Z}, *, \circ)$ este un inel comutativ, unde $\mathbf{x} * \mathbf{y} = \mathbf{x} + \mathbf{y} 3$ și $\mathbf{x} \circ \mathbf{y} = \mathbf{x} \cdot \mathbf{y} 3\mathbf{x} 3\mathbf{y} + 12$, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{Z}$.
- **5p** a) Să se arate că elementul neutru al legii de compoziție "°" este 4.
- **5p b)** Să se determine $\mathbf{a}, \mathbf{b} \in \mathbb{Z}$ astfel încât între inelele $(\mathbb{Z}, *, \circ)$ și $(\mathbb{Z}, +, \cdot)$ să existe un izomorfism de forma $\mathbf{f} : \mathbb{Z} \to \mathbb{Z}$, $\mathbf{f}(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x} + \mathbf{b}$.
- **5p** c) Să se rezolve în mulțimea \mathbb{Z} ecuația $\underbrace{\mathbf{x} \circ \mathbf{x} \circ ... \circ \mathbf{x}}_{\text{de } 2009 \text{ ori } \mathbf{x}} = 2^{2009} + 3$.

- **1.** Se consideră matricea $A = \begin{pmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix}$.
- **5p a**) Să se calculeze rangul matricei A.
- **5p b**) Să se demonstreze că $det(A^t \cdot A) = 0$.
- **5p** c) Să se determine o matrice nenulă $B \in \mathcal{M}_{3,2}(\mathbb{Q})$ astfel încât $AB = O_2$.
 - 2. Se știe că (G, \circ) este grup, unde $G = (3, \infty)$ și $x \circ y = (x-3)(y-3) + 3$. Se consideră funcția $f:(0, \infty) \to G$, f(x) = x + 3.
- **5p** a) Să se calculeze $4 \circ 5 \circ 6$.
- **5p b**) Să se demonstreze că funcția f este un izomorfism de grupuri, de la $(0, \infty)$, ·) la (G, \circ) .
- 5p c) Să se demonstreze că dacă H este un subgrup al lui G care conține toate numerele naturale $k \ge 4$, atunci H conține toate numerele raționale q > 3.

5p

- 1. Se consideră punctele A(0, 6), B(1, 4), C(-1, 8) și matricea $M = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & a \\ 6 & 4 & 8 & b \end{pmatrix}$, unde $a, b \in \mathbb{R}$.
- a) Să se arate că punctele A, B, C sunt coliniare.
- **5p b)** Să se determine rangul matricei M în cazul a = 3, b = 0.
- **5p c**) Să se arate că dacă unul dintre minorii de ordin trei ai lui M, care conțin ultima coloană, este nul, atunci rang(M) = 2.
 - 2. Pe mulțimea \mathbb{Z} definim legea de compoziție x * y = 5xy + 6x + 6y + 6.
- **5p** a) Să se arate că legea "*" este asociativă.
- **5p b**) Să se determine elementele simetrizabile ale mulțimii \mathbb{Z} în raport cu legea "*".
- 5p c) Să se rezolve ecuația $\underbrace{\mathbf{x} * \mathbf{x} * \mathbf{x} * \dots * \mathbf{x}}_{\text{de } 2009 \text{ ori } \mathbf{x}} = -1$.

- 1. Se consideră permutarea $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix} \in \mathbf{S}_5$.
- **5p** a) Să se calculeze σ^{2009}
- **5p b**) Să se dea exemplu de o permutare $\tau \in S_5$ astfel încât $\tau \sigma \neq e$ și $(\tau \sigma)^2 = e$.
- $\mathbf{5p} \quad \mathbf{c}) \text{ Să se demonstreze că, pentru orice } \tau \in S_5 \text{ , există } \mathbf{p} \in \mathbb{N}^* \text{ astfel încât } \tau^p = \mathbf{e} \text{ .}$
 - 2. Se consideră $\mathbf{a} \in \mathbb{C}$, \mathbf{x}_1 , \mathbf{x}_2 , $\mathbf{x}_3 \in \mathbb{C}$ rădăcinile ecuației $\mathbf{x}^3 2\mathbf{x}^2 + 2\mathbf{x} \mathbf{a} = 0$ și determinantul

$$\Delta = \begin{vmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \\ \mathbf{x}_3 & \mathbf{x}_1 & \mathbf{x}_2 \\ \mathbf{x}_2 & \mathbf{x}_3 & \mathbf{x}_1 \end{vmatrix}.$$

- **5p** a) Pentru a = 1, să se determine x_1 , x_2 și x_3 .
- **5p b)** Să se arate că, pentru orice $a \in \mathbb{R}$, ecuația are o singură rădăcină reală.
- **5p** | **c**) Să se arate că valoarea determinantului Δ nu depinde de **a**.

1. Se consideră matricele
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix}$ și sistemul $\begin{cases} x + 2y + 3z + 4t = 3 \\ y + 2z + 3t = 2 \\ z + 2t = 1 \end{cases}$

- **5p** a) Să se determine rangul matricei A.
- **5p b**) Să se determine mulțimea soluțiilor sistemului.
- **5p** c) Să se demonstreze că ecuația XA = B nu are soluții $X \in \mathcal{M}_{1,3}(\mathbb{C})$.
 - 2. Se consideră mulțimea $G = \left\{ A(k) = \begin{pmatrix} 2^k & 2^k \\ 2^k & 2^k \end{pmatrix} \middle| k \in \mathbb{Z} \right\}$, și pentru fiecare $t \in \mathbb{Z}$ notăm cu

 $H_t = \left\{ \left. A\big(kt-1\big) \,\middle|\, k \in \mathbb{Z} \right. \right\} \text{. Se admite faptul că } \left(G, \cdot \,\right) \text{ este un grup, unde ,,} \cdot \text{`` este înmulțirea matricelor.}$

- **5p** | a) Să se arate că \forall n, p \in \mathbb{Z} , A(n) \cdot A(p) = A(n+p+1).
- **5p b**) Să se demonstreze că, pentru orice $t \in \mathbb{Z}$, H_t este un subgrup al grupului (G, \cdot) .
- **5p** c) Să se demonstreze că grupurile (G, \cdot) și $(\mathbb{Z}, +)$ sunt izomorfe.

1. Se consideră matricea
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$
.

- **5p** a) Să se calculeze det(A).
- **5p b)** Să se arate că $A^{2n} = \frac{2^{2n}-1}{3}A + \frac{2^{2n}+2}{3}I_3$, pentru orice $n \in \mathbb{N}^*$.
- **5p c**) Să se determine A^{-1} .
 - 2. Se consideră $a \in \mathbb{R}$ și ecuația $x^3 x + a = 0$, cu rădăcinile complexe x_1, x_2, x_3 .
- **5p** a) Să se calculeze $(x_1 + 1)(x_2 + 1)(x_3 + 1)$.
- **5p b**) Să se determine \mathbf{x}_2 și \mathbf{x}_3 știind că $\mathbf{x}_1 = 2$.
- **5p** c) Să se determine $a \in \mathbb{R}$ pentru care x_1, x_2, x_3 sunt numere întregi.

- **1.** Fie $A(x_A, y_A)$, $B(x_B, y_B)$, $C(x_C, y_C)$ trei puncte din plan și matricea $M = \begin{pmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$.
- **5p** a) Să se arate că, dacă A, B, C se află pe dreapta de ecuație y = 2x, atunci det(M) = 0.
- **5p b**) Să se arate că, dacă triunghiul ABC este dreptunghic și are catetele de lungime 1, atunci $\det(M) = \pm 1$.
- **5p** c) Să se arate că, dacă matricea M este inversabilă, atunci suma elementelor matricei M⁻¹ este 1.
 - 2. Se consideră mulțimea de matrice $A = \left\{ \begin{pmatrix} a & b \\ -3b & a \end{pmatrix} \middle| \ a,b \in \mathbb{Z} \right\}$.
- **5p** a) Să se arate că, dacă $X \in A$ și $Y \in A$, atunci $X + Y \in A$.
- **5p b**) Să se arate că, dacă $X \in A, Y \in A$ și $XY = O_2$, atunci $X = O_2$ sau $Y = O_2$.
- **5p c)** Admitem cunoscut faptul că A este inel în raport cu adunarea și înmulțirea matricelor. Să se determine elementele inversabile ale acestui inel.

- 1. Se consideră permutările $\mathbf{e}, \alpha \in \mathbf{S}_3, \mathbf{e} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \alpha = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$
- **5p** a) Să se calculeze α^3 .
- **5p b**) Să se rezolve ecuația $\alpha^{2009} \cdot \mathbf{x} = \mathbf{e}$, $\mathbf{x} \in S_3$.
- 5p c) Să se demonstreze că, oricare ar fi ordinea factorilor, produsul tuturor permutărilor din S₃ este permutare impară.
 - 2. Fie inelul $\mathbb{Z}[\mathbf{i}] = \{a + b\mathbf{i} | a, b \in \mathbb{Z}\}.$
- **5p** a) Să se dea exemplu de un număr complex z astfel încât $z \notin \mathbb{Z}[i]$ și $z^2 \in \mathbb{Z}[i]$.
- **5p b**) Să se determine elementele inversabile ale inelului $\mathbb{Z}[i]$.
- **5p** c) Să se arate că mulțimea $H = \{(m+n) + (m-n)i | m, n \in \mathbb{Z}\}$ este parte stabilă a lui $\mathbb{Z}[i]$ în raport cu înmulțirea.

- $\textbf{1. Pentru } a,b,c,d \in \mathbb{R} \text{ , se consideră matricea } A = \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix} \text{ și matricea transpusă } A^t.$
- a) Pentru $\mathbf{a} = \mathbf{c} = 1$ și $\mathbf{b} = \mathbf{d} = 0$, să se calculeze $\det(\mathbf{A})$. 5p
- **b)** Să se arate că $A \cdot A^t = \alpha \cdot I_4$, unde $\alpha = a^2 + b^2 + c^2 + d^2$. 5p
- c) Să se demonstreze că dacă $A \neq O_4$, atunci A este inversabilă. **5**p
 - **2.** Se consideră $a, b, c \in \mathbb{R}$ și polinomul $f = X^3 + aX^2 + bX + c$, cu rădăcinile $x_1, x_2, x_3 \in \mathbb{C}$, astfel încât $|\mathbf{x}_1| \le 1, |\mathbf{x}_2| \le 1, |\mathbf{x}_3| \le 1.$
- a) Să se demonstreze că $|a| \le 3$. **5p**
- b) Să se arate că, dacă c < 0, polinomul are cel puțin o rădăcină reală în intervalul $(0, \infty)$. **5p**
- c) Să se arate că, dacă a = 1, c = -1, atunci b = -1. 5p

 $\begin{aligned} & \textbf{SUBIECTUL II (30p)} \frac{Varianta \ 12}{1}. & \text{Se consideră polinoamele} & \ f,g \in \mathbb{R}\big[\,X\,\big], \ \ f = X^{\,2} + X + 1 \,, \, \text{cu rădăcinile complexe} \ \ x_1,\,x_2 \ \text{și} \end{aligned}$

$$\mathbf{g} = \mathbf{a}\mathbf{X}^2 + \mathbf{b}\mathbf{X} + \mathbf{c} \text{, cu } \mathbf{a} \neq 0 \text{. Fie matricele } \mathbf{A}, \mathbf{V} \in \mathcal{M}_3 \left(\mathbb{C} \right), \ \mathbf{A} = \begin{pmatrix} \mathbf{c} & \mathbf{b} & \mathbf{a} \\ \mathbf{a} & \mathbf{c} & \mathbf{b} \\ \mathbf{b} & \mathbf{a} & \mathbf{c} \end{pmatrix} \text{ si } \mathbf{V} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & x_1 & x_2 \\ 1 & x_1^2 & x_2^2 \end{pmatrix}.$$

- a) Să se arate că $\det(V) = 3(x_2 x_1)$.
- $\textbf{b) Să se arate că } A \cdot V = \begin{pmatrix} g(1) & g(x_1) & g(x_2) \\ g(1) & x_1 g(x_1) & x_2 g(x_2) \\ g(1) & x_1^2 g(x_1) & x_2^2 g(x_2) \end{pmatrix}.$ **5**p
- c) Să se arate că det(A) = 0 dacă și numai dacă a + b + c = 0 sau a = b = c. 5p
 - **2.** Se consideră funcția $f: \mathbb{Z}_5 \to \mathbb{Z}_5$, $f(x) = x^4 + \hat{4}x$.
- a) Să se calculeze $f(\hat{0})$ și $f(\hat{1})$. 5p
- b) Să se arate că funcția f nu este surjectivă. **5p**
- c) Să se descompună polinomul $X^4 + \hat{4}X \in \mathbb{Z}_5[X]$ în factori ireductibili peste \mathbb{Z}_5 .

 $\textbf{1.} \ \ \text{Se consideră sistemul de ecuații} \ \begin{cases} x-y+z=1 \\ x+y+z=3 \\ mx+y+z=3m \end{cases} \ , \ \text{unde} \ \ m \in \mathbb{R} \ . \ \text{Pentru fiecare} \ \ m \in \mathbb{R} \ , \ \text{notăm cu} \ \ S_m$

mulțimea soluțiilor reale ale sistemului.

- **5p** a) Să se determine $m \in \mathbb{R}$ pentru care sistemul are soluție unică.
- **5p b**) Să se arate că pentru orice $\mathbf{m} \in \mathbb{R}$ sistemul este compatibil.
- $\mathbf{5p} \quad \mathbf{c}) \ \, \text{Să se determine } \min \left\{ x^2 + y^2 + z^2 \, \big| \ \, (x,\,y,\,z) \in S_1 \right\}.$
 - $\textbf{2.} \text{ Se consideră matricele } \mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \ \mathbf{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \mathbf{C} = \mathbf{A} \cdot \mathbf{B} \text{ și mulțimea}$ $\mathbf{G} = \left\{ \ \mathbf{X} \in \mathcal{M}_2\left(\mathbb{C}\right) \ \middle| \ \det\left(\mathbf{X}\right) = 1 \right\}.$
- **5p** a) Să se verifice că $A^4 = B^6 = I_2$.
- **b)** Să se arate că (G, \cdot) este un subgrup al grupului multiplicativ al matricelor inversabile de ordin doi, cu elemente numere complexe.
- **5p** c) Să se demonstreze că $\mathbb{C}^n \neq I_2$, pentru orice $n \in \mathbb{N}^*$.

- 1. Se consideră matricea $A = \begin{pmatrix} a & b & c \\ 2a & 2b & 2c \\ 3a & 3b & 3c \end{pmatrix}$, unde $a, b, c \in \mathbb{R}^*$.
- **5p a**) Să se calculeze rangul matricei A.
- **5p b)** Să se arate că există $\mathbf{d} \in \mathbb{R}$ astfel încât $\mathbf{A}^2 = \mathbf{d}\mathbf{A}$.
- $\mathbf{5p} \quad \mathbf{c}) \ \, \text{Să se arate că există matricele} \ \, \mathbf{K} \in \mathbf{M}_{3,1} \big(\mathbb{R} \big) \, \, \text{și} \, \, \mathbf{L} \in \mathbf{M}_{1,3} \big(\mathbb{R} \big) \, \, \text{astfel încât} \, \, \mathbf{A} = \mathbf{K} \cdot \mathbf{L} \, .$
 - **2.** Se consideră numărul $\mathbf{a} = \sqrt{3} \mathbf{i} \in \mathbb{C}$ și polinomul $\mathbf{f} \in \mathbb{Q}[X]$, $\mathbf{f} = X^4 4X^2 + 16$.
- **5p** a) Să se arate că f(a) = 0.
- **5p b**) Să se determine rădăcinile polinomului f.
- **5p** c) Să se arate că polinomul f este ireductibil în $\mathbb{Q}[X]$.

1. Fie
$$a, b, c \in \mathbb{Z}$$
 și matricea $A = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$.

- **5p** a) Să se calculeze det(A).
- **5p b)** Să se arate că dacă $a+b+c\neq 0$ și A nu este inversabilă în $\mathcal{M}_3(\mathbb{Q})$, atunci a=b=c.

5p c) Să se arate că sistemul de ecuații liniare
$$\begin{cases} ax + by + cz = \frac{1}{2}x \\ cx + ay + bz = \frac{1}{2}y \text{ admite numai soluția } x = y = z = 0. \\ bx + cy + az = \frac{1}{2}z \end{cases}$$

- **2.** Se consideră polinomul $f \in \mathbb{R}[X]$, $f = X^4 5X^2 + 5$, cu rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$.
- **5p** a) Să se calculeze $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4}$.
- **5p b)** Să se arate că polinomul f are toate rădăcinile reale.
- 5p c) Să se arate că dacă g este un polinom cu coeficienți reali care are proprietatea că pentru orice x real $|g(x)| \le |f(x)|$, atunci există $a \in [-1, 1]$ astfel încât g = af.

- 1. Se consideră mulțimea $G = \left\{ X = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \middle| a, b \in \mathbb{R}, a > 0 \right\}.$
- **5p** a) Să se arate că dacă $A, B \in G$, atunci $AB \in G$.
- **5p** | **b**) Să se găsească două matrice $C, D \in G$ pentru care $CD \neq DC$.
- **5p** c) Să se arate că dacă $A \in G$, atunci $I_2 A + A^2 \in G$.
 - 2. Se consideră $a,b,c \in \mathbb{Q}$ și polinomul $f = X^3 + aX^2 + bX + c$.
- **5p** a) Să se determine a, b, c astfel încât polinomul f să aibă rădăcinile $x_1 = x_2 = 1$ și $x_3 = -2$.
- **5p b)** Să se arate că dacă f are rădăcina $\sqrt{2}$, atunci f are o rădăcină rațională.
- **5p** c) Să se arate că dacă $a, b, c \in \mathbb{Z}$, iar numerele f(0) și f(1) sunt impare, atunci polinomul f nu are rădăcini întregi.

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix}$ și $B = \begin{pmatrix} -3 & -8 \\ 1 & 3 \end{pmatrix}$.
- **5p** a) Să se calculeze $A^2 B^2$.
- **5p b)** Să se calculeze $\det(\mathbf{I}_2 + \mathbf{A} + \mathbf{A}^2 + \mathbf{A}^3 + \mathbf{A}^4)$.
- **5p** c) Să se arate că ecuația $X^2 = I_2$ are o infinitate de soluții în $M_2(\mathbb{Z})$.
 - 2. Se consideră polinoamele $f, g \in \mathbb{Q}[X]$, $f = X^4 + X^3 + X^2 + X + 1$, cu rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$ și $g = X^2 1$.
- **5p** a) Să se determine restul împărțirii polinomului f la polinomul g.
- **5p b**) Să se calculeze $(1-\mathbf{x}_1) \cdot (1-\mathbf{x}_2) \cdot (1-\mathbf{x}_3) \cdot (1-\mathbf{x}_4)$.
- **5p** | **c**) Să se calculeze $g(x_1) \cdot g(x_2) \cdot g(x_3) \cdot g(x_4)$.

- **1.** Se consideră matricea $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$.
- **5p** a) Să se calculeze A³.
- **5p b)** Să se afle rangul matricei $I_3 + A + A^t$.
- **5p c**) Să se determine inversa matricei $I_3 + A$.
 - **2.** Se consideră $\mathbf{a}, \mathbf{b} \in \mathbb{R}$ și polinomul $\mathbf{f} = \mathbf{X}^3 + 4\mathbf{a}\mathbf{X}^2 + 20\mathbf{X} + \mathbf{b}$, cu rădăcinile $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \in \mathbb{C}$.
- **5p** a) Să se determine \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 în cazul $\mathbf{a} = 2$, $\mathbf{b} = 0$.
- **5p b)** Să se demonstreze că $(\mathbf{x}_1 \mathbf{x}_2)^2 + (\mathbf{x}_1 \mathbf{x}_3)^2 + (\mathbf{x}_2 \mathbf{x}_3)^2 = 8(4\mathbf{a}^2 15)$.
- 5p c) Să se determine a,b astfel încât polinomul f să aibă o rădăcină dublă egală cu -a.

1. Se consideră sistemul
$$\begin{cases} x+y+z+t=1\\ x-y+z+t=0\\ x+y-z+t=0\\ x+y+z-t=0 \end{cases}$$
 și A matricea sistemului.

- **5p** a) Să se calculeze det(A).
- **5p b**) Să se rezolve sistemul.
- **5p c**) Să se determine A^{-1} .
 - **2.** Fie polinomul $\mathbf{f} = \mathbf{X}^4 + 2\mathbf{X}^3 + \mathbf{a}\mathbf{X}^2 2\mathbf{X} + 1 \in \mathbb{R}[\mathbf{X}]$ și $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 \in \mathbb{C}$ rădăcinile sale.
- **5p** a) Să se calculeze $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4}$.
- **5p b)** Să se arate că $f(x) = x^2 \left[\left(x \frac{1}{x} \right)^2 + 2 \left(x \frac{1}{x} \right) + a + 2 \right], \forall x \in \mathbb{R}^*.$
- **5p** c) Să se determine $a \in \mathbb{R}$ pentru care toate rădăcinile polinomului f sunt numere reale.

- 1. Se consideră triunghiul ABC, cu laturile AB = c, BC = a, CA = b și sistemul $\begin{cases} ay + bx = c \\ cx + az = b \end{cases}$ bz + cy = a
- **5p** a) Să se rezolve sistemul în cazul a = 3, b = 4, c = 5.
- **5p b**) Să se demonstreze că, pentru orice triunghi, sistemul are soluție unică.
- **5p** c) Știind că soluția sistemului este $(\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0)$, să se demonstreze că $\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0 \in (-1, 1)$.
 - 2. Se consideră mulțimea $G = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \middle| a,b \in \mathbb{Z}_3 \right. \right\}$
- **5p** a) Să se determine numărul elementelor mulțimii G.
- **5p b**) Să se arate că $AB \in G$, pentru orice $A, B \in G$.
- **5p** c) Să se determine numărul matricelor din mulțimea G care au determinantul nul.

- 1. Pentru $a, b, c \in \mathbb{R}^*$, se consideră sistemul $\begin{cases} ax + by + cz = b \\ cx + ay + bz = a \\ bx + cy + az = c \end{cases}$, $x, y, z \in \mathbb{R}$.
- **5p** a) Să se arate că determinantul sistemului este $\Delta = (\mathbf{a} + \mathbf{b} + \mathbf{c})(\mathbf{a}^2 + \mathbf{b}^2 + \mathbf{c}^2 \mathbf{ab} \mathbf{ac} \mathbf{bc})$.
- **5p b**) Să se rezolve sistemul în cazul în care este compatibil determinat.
- 5p c) Știind că $\mathbf{a}^2 + \mathbf{b}^2 + \mathbf{c}^2 \mathbf{ab} \mathbf{ac} \mathbf{bc} = 0$, să se arate că sistemul are o infinitate de soluții $(\mathbf{x}, \mathbf{y}, \mathbf{z})$, astfel încât $\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{z} 1$.
 - $\textbf{2. Se consideră mulțimea} \ \ G = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| \ \ a,b,c \in \mathbb{Z}_4 \right\}.$
- **5p** a) Să se determine numărul elementelor mulțimii G.
- **5p b)** Să se dea un exemplu de matrice $A \in G$ cu proprietatea că det $A \neq \hat{0}$ și det $A^2 = \hat{0}$.
- **5p** c) Să se determine numărul soluțiilor ecuației $X^2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}, X \in G$.

- 1. Fie sistemul $\begin{cases} \mathbf{x} + \mathbf{y} + \mathbf{z} = 0 \\ \mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} + \mathbf{c}\mathbf{z} = 0 \\ \mathbf{a}^3\mathbf{x} + \mathbf{b}^3\mathbf{y} + \mathbf{c}^3\mathbf{z} = 1 \end{cases}$, cu $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}$, distincte două câte două și A matricea sistemului.
- 5p a) Să se arate că $\det(A) = (a+b+c)(c-b)(c-a)(b-a)$.
- **5p b**) Să se rezolve sistemul în cazul $a + b + c \neq 0$.
- $\mathbf{5p}$ c) Să se demonstreze că dacă $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$, atunci sistemul este incompatibil.
 - 2. Se consideră șirul de numere reale $(a_n)_{n\in\mathbb{N}}$, cu $a_0=0$ și $a_{n+1}=a_n^2+1$, \forall $n\in\mathbb{N}$ și polinomul $f\in\mathbb{R}[X]$, cu f(0)=0 și cu proprietatea că $f(x^2+1)=(f(x))^2+1$, \forall $x\in\mathbb{R}$.
- **5p** a) Să se calculeze f (5).
- **5p b**) Să se arate că \forall $n \in \mathbb{N}$, $f(a_n) = a_n$.
- **5p c**) Să se arate că f = X.

- **1.** Se consideră matricea $A = \begin{pmatrix} 0 & 5 \\ 1 & 0 \end{pmatrix}$ și mulțimea $C(A) = \left\{ X = \begin{pmatrix} a & 5b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{C} \right\}$.
- **5p** a) Să se arate că $\forall X \in C(A), XA = AX$.
- **5p b**) Să se arate că dacă $Y \in C(A)$ și $Y^2 = O_2$, atunci $Y = O_2$.
- $\mathbf{5p}$ \mathbf{c} Să se arate că dacă $\mathbf{Z} \in \mathbf{C}(\mathbf{A}), \mathbf{Z} \neq \mathbf{O}_2$ și \mathbf{Z} are toate elementele raționale, atunci $\det \mathbf{Z} \neq \mathbf{0}$.
 - **2.** Se consideră $\mathbf{a} \in \mathbb{Z}_3$ și polinomul $\mathbf{f} = \mathbf{X}^3 + \hat{\mathbf{2}}\mathbf{X}^2 + \mathbf{a} \in \mathbb{Z}_3[\mathbf{X}]$.
- **5p** a) Să se calculeze $f(\hat{0}) + f(\hat{1}) + f(\hat{2})$.
- **5p b**) Pentru $\mathbf{a} = \hat{2}$, să se determine rădăcinile din \mathbb{Z}_3 ale polinomului \mathbf{f} .
- **5p** c) Să se determine $a \in \mathbb{Z}_3$ pentru care polinomul f este ireductibil în $\mathbb{Z}_3[X]$.

- 1. Se consideră o matrice $A \in \mathcal{M}_3(\mathbb{C})$. Se notează cu A^t transpusa matricei A.
- **5p** a) Să se demonstreze că $\forall z \in \mathbb{C}, \forall X \in \mathcal{M}_3(\mathbb{C}), \det(zX) = z^3 \det(X)$.
- **5p b)** Să se demonstreze că $\det(A A^t) = 0$.
- **5p** c) Stiind că $A \neq A^t$, să se demonstreze că rang $(A A^t) = 2$.
 - 2. Se consideră polinomul $f \in \mathbb{Q}[X]$, cu $f = X^4 5X^2 + 4$.
- 5p a) Să se determine rădăcinile polinomului f.
- **5p b)** Să se determine polinomul $h \in \mathbb{Q}[X]$, pentru care h(0) = 1 și ale cărui rădăcini sunt inversele rădăcinilor polinomului f.
- **5p** c) Știind că g este un polinom cu coeficienți întregi, astfel încât g(-2) = g(-1) = g(1) = g(2) = 2, să se arate că ecuația g(x) = 0 nu are soluții întregi.

- 1. În mulțimea S_3 a permutărilor de 3 elemente se consideră permutarea $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$.
- **5p** a) Să se verifice că permutarea σ este pară.
- **5p b**) Să se determine toate permutările $x \in S_3$, astfel încât $x\sigma = \sigma x$.
- **5p** c) Să se rezolve ecuația $\mathbf{x}^2 = \sigma$, cu $\mathbf{x} \in \mathbf{S}_3$.
 - 2. Se consideră matricea $\mathbf{A} = \begin{pmatrix} 2 & 2 \\ -1 & -1 \end{pmatrix}$ și mulțimea $\mathbf{G} = \left\{ \mathbf{X} \left(\mathbf{a} \right) = \mathbf{I}_2 + \mathbf{a} \mathbf{A} \mid \mathbf{a} \in \mathbb{R} \setminus \left\{ -1 \right\} \right\}$.
- **5p** a) Să se arate că $\forall a, b \in \mathbb{R} \setminus \{-1\}$, X(a)X(b) = X(ab+a+b).
- **5p b**) Să se arate că (G, \cdot) este un grup abelian, unde "·" reprezintă înmulțirea matricelor.
- **5p** c) Să se determine $t \in \mathbb{R}$ astfel încât X(1)X(2)...X(2009) = X(t-1).

- 1. Se consideră matricele $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ și $B = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$, cu $t \in \mathbb{R}$.
- $\begin{array}{ll} \textbf{5p} & \textbf{a)} \quad \text{Să se arate că dacă matricea} \quad \textbf{X} \in \mathcal{M}_2(\mathbb{R}) \ \text{verifică relația} \quad \textbf{AX} = \textbf{XA} \,, \, \text{atunci există} \quad \textbf{a}, \textbf{b} \in \mathbb{R} \,, \\ & \text{astfel încât} \quad \textbf{X} = \begin{pmatrix} \textbf{a} & -\textbf{b} \\ \textbf{b} & \textbf{a} \end{pmatrix}. \end{array}$
- **5p b)** Să se demonstreze că \forall $n \in \mathbb{N}^*$, $B^n = \begin{pmatrix} \cos nt & -\sin nt \\ \sin nt & \cos nt \end{pmatrix}$.
- **5p** c) Să se rezolve în mulțimea $\mathcal{M}_2(\mathbb{R})$ ecuația $X^2 = A$.
 - **2.** Se consideră $\mathbf{a} \in \mathbb{R}$ și polinomul $\mathbf{f} = 3\mathbf{X}^4 2\mathbf{X}^3 + \mathbf{X}^2 + \mathbf{a}\mathbf{X} 1 \in \mathbb{R}[\mathbf{X}]$.
- **5p** a) Să se calculeze $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4}$, unde $x_1, x_2, x_3, x_4 \in \mathbb{C}$ sunt rădăcinile polinomului f.
- **5p b)** Să se determine restul împărțirii polinomului f la $(X-1)^2$.
- **5p** c) Să se demonstreze că f nu are toate rădăcinile reale.

- **1.** În mulțimea $\mathcal{M}_2(\mathbb{C})$, se consideră matricele $\mathbf{A} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ și $\mathbf{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Să se determine rangul matricei $A + I_2$.
- **5p** c) Să se demonstreze că ecuația $Y^2 = A$ nu are nicio soluție în mulțimea $\mathcal{M}_2(\mathbb{C})$.
 - 2. Pe mulțimea \mathbb{R} se definește legea de compoziție $\mathbf{x} * \mathbf{y} = \mathbf{x} + \mathbf{y} + \mathbf{x}\mathbf{y}$.
- **5p** a) Să se arate că legea "*" este asociativă.
- $5\mathbf{p}$ **b)** Fie funcția $\mathbf{f}: \mathbb{R} \to \mathbb{R}$, $\mathbf{f}(\mathbf{x}) = \mathbf{x} + 1$. Să se verifice relația $\mathbf{f}(\mathbf{x} * \mathbf{y}) = \mathbf{f}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{y})$, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}$.
- **5p** c) Să se calculeze $1*\frac{1}{2}*\frac{1}{3}*...*\frac{1}{2008}*\frac{1}{2009}$.

- 1. Se consideră matricea $A = \begin{pmatrix} 1 & 0 \\ 0 & 8 \end{pmatrix}$.
- **5p** a) Să se rezolve ecuația $\det(\mathbf{A} \mathbf{x}\mathbf{I}_2) = 0$.
- **5p b)** Să se arate că dacă matricea $\mathbf{X} \in \mathcal{M}_2(\mathbb{C})$ verifică relația $\mathbf{A}\mathbf{X} = \mathbf{X}\mathbf{A}$, atunci există $\mathbf{a}, \mathbf{b} \in \mathbb{C}$ astfel încât $\mathbf{X} = \begin{pmatrix} \mathbf{a} & \mathbf{0} \\ \mathbf{0} & \mathbf{b} \end{pmatrix}$
- **5p** c) Să se determine numărul de soluții ale ecuației $X^3 = A$, $X \in \mathcal{M}_2(\mathbb{C})$.
 - $\textbf{2. Se consideră mulțimea de funcții } G = \left\{ \begin{array}{l} f_{a,\,b} : \mathbb{R} \to \mathbb{R} \; \middle| \; f_{a,\,b} \left(\, x \right) = ax + b, \; a \in \mathbb{R}^{\, *}, \; b \in \mathbb{R} \, \right\}.$
- **5p** a) Să se calculeze $f_{-1,2} \circ f_{-1,2}$, unde " \circ " este compunerea funcțiilor.
- **5p b**) Să se demonstreze că (G, \circ) este un grup.
- **5p c**) Să se arate că grupul **G** conține o infinitate de elemente de ordin 2.

1. Se consideră sistemul
$$\begin{cases} \mathbf{x} + \mathbf{y} + \mathbf{z} = 0 \\ \mathbf{m}\mathbf{x} + \mathbf{y} + \mathbf{z} = \mathbf{m} - 1, \ \mathbf{m} \in \mathbb{R} \ \text{şi matricea} \ \mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{m} & 1 & 1 \\ 1 & \mathbf{m} & 2 \end{pmatrix}.$$

- **5p** a) Să se determine $m \in \mathbb{R}$ pentru care $\det(A) = 0$.
- **5p b**) Să se arate că pentru orice $\mathbf{m} \in \mathbb{R}$ sistemul este compatibil.
- **5p** c) Să se determine $\mathbf{m} \in \mathbb{R}$ știind că sistemul are o soluție $(\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0)$ cu $\mathbf{z}_0 = 2$.
 - $\textbf{2. Se consideră mulțimea} \ \ \mathcal{M}_2\left(\mathbb{Z}_3\right), \ \text{submulțimea} \ \ G = \left\{ \left. \textbf{X} \in \mathcal{M}_2\left(\mathbb{Z}_3\right) \right| \ \ \textbf{X} = \begin{pmatrix} \textbf{a} & \hat{2}\textbf{b} \\ \textbf{b} & \textbf{a} \end{pmatrix} \right\} \ \text{și matricele}$

$$\mathbf{O}_2 = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix} \text{ și } \mathbf{I}_2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}.$$

- **5p** a) Să se verifice că dacă $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_3$, atunci $\mathbf{x}^2 + \mathbf{y}^2 = \hat{0}$ dacă și numai dacă $\mathbf{x} = \mathbf{y} = \hat{0}$.
- **5p b)** Să se arate că mulțimea $H = G \setminus \{O_2\}$ este un subgrup al grupului multiplicativ al matricelor inversabile din $\mathcal{M}_2(\mathbb{Z}_3)$.
- **5p** c) Să se rezolve ecuația $X^2 = I_2$, $X \in G$.

$SUBIECTUL~II~(30p) \frac{Varianta~30}{}$

1. Se consideră numerele reale a,b,c, funcția $f:\mathbb{R}\to\mathbb{R},\ f(x)=x^3+2x+3$ și determinanții

$$A = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix}$$
 si
$$B = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ f(a) & f(b) & f(c) \end{vmatrix}.$$

- **5p** a) Să se arate că A = (a-b)(b-c)(c-a)(a+b+c)
- **5p b**) Să se arate că A = B.
- **5p c**) Să se arate că, pentru orice trei puncte distincte, cu coordonate naturale, situate pe graficul funcției f, aria triunghiului cu vârfurile în aceste puncte este un număr natural divizibil cu 3.
 - **2.** Se consideră matricea $A = \begin{pmatrix} -1 & 3 \\ 3 & -9 \end{pmatrix}$ și mulțimea $G = \{X(a) = I_2 + aA \mid a \in \mathbb{R}\}$.
- **5p** a) Să se arate că $\forall a,b \in \mathbb{R}$, X(a)X(0) = X(a) și X(a)X(b) = X(a+b-10ab).
- **5p b)** Să se arate că mulțimea $\mathbf{H} = \left\{ \mathbf{X} \left(\mathbf{a} \right) \, \middle| \, \mathbf{a} \in \mathbb{R} \setminus \left\{ \frac{1}{10} \right\} \right\}$ este parte stabilă a lui $\mathcal{M}_2(\mathbb{R})$ în raport cu înmulțirea matricelor.
- **5p** c) Să se rezolve ecuația $X^2 = I_2$, $X \in G$.

- **1.** Pentru $\mathbf{x} \in \mathbb{C}$ se consideră matricea $\mathbf{A}(\mathbf{x}) = \begin{pmatrix} \mathbf{x}+1 & \mathbf{x}^2-1 \\ 1 & \mathbf{x}-1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{C})$.
- **5p** a) Să se verifice că $(A(x))^2 = 2xA(x)$.
- **5p b)** Să se determine toate numerele complexe x pentru care $(A(x))^4 + (A(x))^2 = O_2$.
- **5p** c) Să se arate că ecuația $X^2 = A(0), X \in M_2(\mathbb{C})$ nu are soluții.
 - 2. Se consideră polinomul $f \in \mathbb{C}[X]$, $f = (X+i)^{100} + (X-i)^{100}$, care are forma algebrică $f = a_{100}X^{100} + a_{99}X^{99} + ... + a_1X + a_0$.
- **5p** a) Să se calculeze $\mathbf{a}_{100} + \mathbf{a}_{99}$.
- **5p b**) Să se determine restul împărțirii polinomului f la $X^2 1$.
- **5p** | **c**) Să se demonstreze că polinomul **f** are toate rădăcinile reale.

- 1. Se consideră în \mathbb{R}^3 sistemul $\begin{cases} ax + y + z = 1 \\ x + ay + z = 1 \\ x + y + az = a \end{cases}$
- **5p** a) Să se arate că determinantul matricei sistemului are valoarea $(a+2)(a-1)^2$.
- **5p b)** Să se rezolve sistemul în cazul în care este compatibil determinat.
- **5p** c) Să se rezolve sistemul în cazul a = -2.
 - 2. Se consideră mulțimea $G \subset \mathcal{M}_2(\mathbb{Q})$, $G = \left\{ \begin{pmatrix} a & 10b \\ b & a \end{pmatrix} \mid a, b \in \mathbb{Q}, a^2 10b^2 = 1 \right\}$.
- **5p** a) Să se verifice că $A = \begin{pmatrix} 19 & 60 \\ 6 & 19 \end{pmatrix} \in G$.
- **5p b)** Să se arate că $X \cdot Y \in G$, pentru oricare $X, Y \in G$.
- 5p | c) Să se demonstreze că mulțimea G este infinită.

- **1.** Se consideră matricele $\mathbf{I}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ și $\mathbf{A} = \mathbf{aI}_3 + \mathbf{bB} + \mathbf{cB}^2$, $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}$.
- **5p** a) Să se calculeze B^3 .
- **5p b)** Să se calculeze B^{-1} .
- **5p** c) Să se demonstreze că \forall a, b, $c \in \mathbb{R}$, $(a+b+c)\det(A) \ge 0$.
 - **2.** Se consideră corpul $(\mathbb{Z}_7,+,\cdot)$ și $\mathbf{H} = \{\mathbf{x}^2 \mid \mathbf{x} \in \mathbb{Z}_7\}$.
- **5p** a) Să se arate că $H = \{\hat{0}, \hat{1}, \hat{2}, \hat{4}\}$.
- **5p b)** Să se arate că, pentru orice $\mathbf{a} \in \mathbb{Z}_7$ există $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_7$ astfel încât $\mathbf{a} = \mathbf{x}^2 + \mathbf{y}^2$.
- **5p** c) Să se arate că $\{x^{2000} \mid x \in \mathbb{Z}_7\} = H$.

- **1.** Se consideră matricele $K = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \in M_{1,3}(\mathbb{R}), L = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \in M_{3,1}(\mathbb{R})$ și A = LK.
- **5p** a) Să se calculeze suma elementelor matricei A.
- **5p b)** Să se arate că $A^2 = 32A$.
- **5p** c) Să se arate că rangul matricei A^n este 1, oricare ar fi $n \in \mathbb{N}^*$.
 - 2. Pe mulțimea \mathbb{R} se consideră legea de compoziție $\mathbf{x} * \mathbf{y} = \mathbf{a}\mathbf{x}\mathbf{y} \mathbf{x} \mathbf{y} + \mathbf{6}$, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}$, unde a este o constantă reală.
- **5p** a) Pentru $\mathbf{a} = \frac{1}{3}$, să se demonstreze că legea "*" este asociativă.
- **5p b)** Să se arate că legea "*" admite element neutru dacă și numai dacă $a = \frac{1}{3}$.
- **5p c**) Să se arate că, dacă intervalul [0, 6] este parte stabilă a lui \mathbb{R} în raport cu legea "*", atunci $\mathbf{a} \in \left[\frac{1}{6}, \frac{1}{3}\right]$.

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 2 & 0 \\ 1 & 4 & -3 \end{pmatrix}$ și $B = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}$.
- **5p** a) Să se arate că ecuația AX = B are o infinitate de soluții $X \in \mathcal{M}_{3,1}(\mathbb{C})$.
- **5p b)** Să se verifice că $A^3 = 10A$.
- **5p c**) Să se determine rangul matricei A*, adjuncta matricei A.
 - $\begin{aligned} \textbf{2.} & \text{ Se consideră mulțimea } \mathbb{Z}[\sqrt{2}\,] = \{\, a + b\sqrt{2} \,\,\big| \,\, a,b \in \mathbb{Z} \,\} \,, \, \text{funcția } f: \mathbb{Z}[\sqrt{2}\,] \to \mathbb{Z} \,, \\ & f\left(a + b\sqrt{2}\,\right) = a^2 2b^2 \,, \,\, \forall a,b \in \mathbb{Z} \,\,\text{și mulțimea } A = \left\{x \in \mathbb{Z}\Big\lceil \sqrt{2} \,\,\big| \right| \,\, f\left(x\right) = -1 \right\}. \end{aligned}$
- **5p** a) Să se arate că $7 + 5\sqrt{2} \in A$.
- **5p b**) Să se arate că, pentru orice $x, y \in \mathbb{Z} \lceil \sqrt{2} \rceil$, f(xy) = f(x) f(y).
- **5p c**) Să se arate că mulțimea A este infinită.

- 1. Se consideră matricele $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ și $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$, cu proprietatea că $A^2 = O_2$.
- **5p** a) Să se arate că $\mathbf{a} + \mathbf{d} = 0$.
- $5\mathbf{p}$ **b**) Să se arate că matricea $I_2 + A$ este inversabilă.
- $\mathbf{5p}$ c) Să se arate că ecuația $\mathbf{AX} = \mathbf{O}_2$ are o infinitate de soluții în mulțimea $\mathcal{M}_2(\mathbb{R})$.
 - 2. Se consideră polinomul $\mathbf{f} = \mathbf{X}^4 2\mathbf{X}^2 + 9$, cu rădăcinile $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 \in \mathbb{C}$, numărul $\mathbf{a} = \sqrt{2} + \mathbf{i}$ și mulțimile $\mathbf{A} = \left\{ g(\mathbf{a}) \mid g \in \mathbb{Q}[\mathbf{X}] \right\}$ și $\mathbf{B} = \left\{ h(\mathbf{a}) \mid h \in \mathbb{Q}[\mathbf{X}], \operatorname{grad}(h) \leq 3 \right\}$.
- **5p** a) Să se calculeze f (a).
- **5p b)** Să se calculeze $|x_1| + |x_2| + |x_3| + |x_4|$.
- **5p** c) Să se arate că A = B.

- 1. Se consideră matricea $A = \begin{pmatrix} a & a+1 & a+2 \\ b & b+1 & b+2 \\ 1 & 1 & a \end{pmatrix}$, cu $a,b \in \mathbb{R}$.
- **5p** a) Să se arate că $\det(A) = (a-b)(a-1)$.
- **5p b**) Să se calculeze $\det(A A^t)$.
- **5p** c) Să se arate că rang $A \ge 2$, $\forall a, b \in \mathbb{R}$.
 - **2.** Se consideră polinomul $f \in \mathbb{R}[X]$, $f = X^3 + pX^2 + qX + r$, cu $p, q, r \in (0, \infty)$ și cu rădăcinile $x_1, x_2, x_3 \in \mathbb{C}$.
- **5p** a) Să se demonstreze că f nu are rădăcini în intervalul $[0, \infty)$.
- **5p b)** Să se calculeze $\mathbf{x}_1^3 + \mathbf{x}_2^3 + \mathbf{x}_3^3$ în funcție de \mathbf{p} , \mathbf{q} și \mathbf{r} .
- 5p c) Să se demonstreze că dacă a, b, c sunt trei numere reale astfel încât a+b+c<0, ab+bc+ca>0 și abc<0, atunci $a, b, c \in (-\infty, 0)$.

- 1. Se consideră matricea $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$ și mulțimea de matrice $M = \left\{ \begin{pmatrix} \mathbf{a} & 0 & 0 \\ \mathbf{b} & \mathbf{a} & 0 \\ \mathbf{c} & \mathbf{b} & \mathbf{a} \end{pmatrix} \mid \mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{C} \right\}$.
- **5p** | a) Să se calculeze A^3 .
- **5p b)** Să se arate că dacă $X \in \mathcal{M}_3(\mathbb{C})$ și AX = XA, atunci $X \in M$.
- **5p** c) Să se arate că ecuația $X^2 = A$ nu are soluții în $M_3(\mathbb{C})$.
 - 2. Se consideră polinomul $f = aX^4 + bX + c$, cu $a, b, c \in \mathbb{Z}$.
- **5p a)** Să se arate că numărul f(3) f(1) este număr par.
- **5p b)** Să se arate că, pentru orice $x, y \in \mathbb{Z}$, numărul f(x) f(y) este divizibil cu x y.
- **5p** c) Să se determine coeficienții polinomului \mathbf{f} știind că $\mathbf{f}(1) = 4$ și $\mathbf{f}(\mathbf{b}) = 3$.

- 1. Se consideră sistemul $\begin{cases} \mathbf{x} + \mathbf{y} + \mathbf{z} = 0 \\ \mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} + \mathbf{c}\mathbf{z} = 0 \\ \mathbf{b}\mathbf{c}\mathbf{x} + \mathbf{a}\mathbf{c}\mathbf{y} + \mathbf{a}\mathbf{b}\mathbf{z} = 0 \end{cases}$, cu $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^*$ și A matricea sistemului.
- **5p** a) Să se calculeze det(A).
- **5p b)** Să se rezolve sistemul, în cazul în care **a**,**b**,**c** sunt distincte două câte două.
- **5p** c) Să se determine mulțimea soluțiilor sistemului, în cazul în care $a = b \neq c$.
 - 2. Se consideră mulțimea $M = \left\{ a + b\sqrt{5} \mid a, b \in \mathbb{Z}, \ a^2 5b^2 = 1 \right\}.$
- **5p** a) Să se arate că $\mathbf{x} = 9 + 4\sqrt{5} \in \mathbf{M}$.
- **5p b**) Să se demonstreze că M este grup în raport cu înmulțirea numerelor reale.
- **5p c**) Să se demonstreze că mulțimea M are o infinitate de elemente.

SUBIECTUL II (30p) Varianta 40

1. Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 9 & 6 \\ 2 & 6 & 4 \end{pmatrix}$, $X = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$, $Y = \begin{pmatrix} 1 & 3 & 2 \\ 1 & 3 & 2 \end{pmatrix}$,

$$B = I_3 + A$$
, $C = I_3 + aA$, cu $a \in \mathbb{R}$.

- **5p** a) Să se calculeze S = A XY.
- **5p b)** Să se determine $a \in \mathbb{R}$ astfel încât $BC = I_3$.
- **5p** c) Să se arate că $A^{n+1} = 14A^n$, $\forall n \in \mathbb{N}^*$.
 - 2. Se consideră polinomul $f = X^3 1 \in \mathbb{R}[X]$ și numărul $\epsilon \in \mathbb{C} \setminus \mathbb{R}$, astfel încât $f(\epsilon) = 0$.
- **5p** a) Să se demonstreze că $\varepsilon^2 + \varepsilon + 1 = 0$.
- **5p b)** Să se rezolve în mulțimea numerelor complexe sistemul $\begin{cases} x + y + z = 0 \\ x + y\epsilon + z\epsilon^2 = 0 \\ x + y\epsilon^2 + z\epsilon = 0 \end{cases}$
- **5p c)** Să se arate că, dacă **f** divide $\mathbf{f}_1(\mathbf{X}^3) + \mathbf{X}\mathbf{f}_2(\mathbf{X}^3) + \mathbf{X}^2\mathbf{f}_3(\mathbf{X}^3)$, unde \mathbf{f}_1 , \mathbf{f}_2 , \mathbf{f}_3 sunt polinoame cu coeficienți complecși, atunci fiecare dintre polinoamele \mathbf{f}_1 , \mathbf{f}_2 , \mathbf{f}_3 este divizibil cu $\mathbf{X} 1$.

$$\mbox{\bf 1. Pentru } \mbox{ p, q, r} \in \mathbb{C} \mbox{ , se consideră sistemul } \begin{cases} x + py + p^2z = p^3 \\ x + qy + q^2z = q^3 \\ x + ry + r^2z = r^3 \end{cases} .$$

- **5p** a) Să se arate că determinantul sistemului este $\Delta = (p-q)(q-r)(r-p)$.
- **5p b**) Dacă **p**, **q**, **r** sunt distincte, să se rezolve sistemul.
- **5p** c) Să se arate că, dacă sistemul are soluția (-1,1,1), atunci cel puțin două dintre numerele p,q,r sunt egale.
 - $\textbf{2. Se consideră inelul } \left(\, A, +, \cdot \right) \text{ unde } A = \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) | \ a, b \in \mathbb{Z}_5 \right\}.$
- **5p** a) Să se determine numărul elementelor mulțimii A.
- **5p b)** Să se rezolve în mulțimea A ecuația $X^2 = I_2$.
- **5p** c) Să se arate că $(A,+,\cdot)$ nu este corp.

- **1.** Se consideră matricele $\mathbf{A}, \mathbf{B} \in \mathcal{M}_2(\mathbb{C})$, cu $\mathbf{A}\mathbf{B} \mathbf{B}\mathbf{A} = \mathbf{A}$ și matricele $\mathbf{A}_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{B}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.
- **5p a**) Să se determine rangul matricei A_0 .
- **5p b**) Să se arate că $A_0B_0 B_0A_0 = A_0$.
- **5p** c) Să se demonstreze că $A^nB BA^n = nA^n$, pentru orice $n \in \mathbb{N}$, $n \ge 2$.
 - 2. Se consideră polinomul $f \in \mathbb{R}[X]$, $f = 4X^3 12X^2 + aX + b$.
- **5p** a) Să se determine $a, b \in \mathbb{R}$, astfel încât polinomul f să se dividă cu polinomul $X^2 1$.
- **5p b**) Să se determine $a,b \in \mathbb{R}$, astfel încât ecuația f(x) = 0 să aibă soluția $x = i \in \mathbb{C}$.
- **5p** c) Să se determine $a, b \in \mathbb{R}$, astfel încât polinomul să aibă rădăcinile x_1, x_2, x_3 în progresie aritmetică și, în plus, $x_1^2 + x_2^2 + x_3^2 = 11$.

- 1. Se consideră mulțimea $\mathbf{M} = \left\{ \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} | \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{N} \right\}$ și matricea $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \in \mathbf{M}$.
- **5p** a) Câte matrice din mulțimea M au suma elementelor egală cu 1?
- **5p b**) Să se arate că $A^{-1} \notin M$.
- $5p \mid c$) Să se determine toate matricele inversabile $B \in M$ care au proprietatea $B^{-1} \in M$.
 - 2. Se consideră ecuația $\mathbf{x}^4 8\mathbf{x}^3 + \mathbf{a}\mathbf{x}^2 + 8\mathbf{x} + \mathbf{b} = 0$, cu $\mathbf{a}, \mathbf{b} \in \mathbb{R}$ și cu soluțiile $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 \in \mathbb{C}$.
- **5p** a) Să se arate că $(x_1 + x_4)(x_2 + x_3) + x_1x_4 + x_2x_3 + (x_1 + x_4)x_2x_3 + (x_2 + x_3)x_1x_4 = a 8$.
- **5p b**) Să se determine $a \in \mathbb{R}$ astfel încât $x_1 + x_4 = x_2 + x_3$.
- **5p** c) Să se determine $a, b \in \mathbb{R}$, astfel încât x_1, x_2, x_3, x_4 să fie în progresie aritmetică.

- 1. Se consideră matricele $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$ şi $\mathbf{B} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.
- **5p** a) Să se calculeze AB + BA.
- **5p b**) Să se arate că $\operatorname{rang}(A+B) = \operatorname{rang} A + \operatorname{rang} B$.
- **5p** c) Să se demonstreze că $(A+B)^n = A^n + B^n$, $\forall n \in \mathbb{N}^*$.
 - **2.** Se consideră polinomul $\mathbf{f} = \mathbf{X}^4 + a\mathbf{X}^3 + 4\mathbf{X}^2 + 1 \in \mathbb{C}[\mathbf{X}]$ cu rădăcinile $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 \in \mathbb{C}$.
- **5p** a) Să se determine $a \in \mathbb{C}$ astfel încât polinomul f să se dividă cu X + 1.
- **5p b)** Să se arate că polinomul $g = X^4 + 4X^2 + aX + 1$ are rădăcinile $\frac{1}{x_1}, \frac{1}{x_2}, \frac{1}{x_3}, \frac{1}{x_4}$.
- **5p** c) Să se arate că, pentru orice $a \in \mathbb{C}$, polinomul f nu are toate rădăcinile reale.

- **1.** Se consideră matricele $\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 3 & 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ și mulțimea $\mathbf{C}(\mathbf{A}) = \{ \mathbf{X} \in \mathcal{M}_2(\mathbb{R}) \mid \mathbf{X}\mathbf{A} = \mathbf{A}\mathbf{X} \}$.
- **5p** a) Să se arate că $B \in C(A)$.
- **5p b)** Să se arate că dacă $X \in C(A)$, atunci există $x, y \in \mathbb{R}$, astfel încât $X = \begin{pmatrix} x & 0 \\ y & x \end{pmatrix}$.
- **5p** c) Să se rezolve ecuația $X + X^2 = A$.
 - 2. Se consideră mulțimea G=(-1,1), funcția $f:G\to\mathbb{R}$, $f\left(x\right)=\frac{1-x}{1+x}$ și corespondența

$$(x,y) \to x*y \text{ , unde } x*y = \frac{x+y}{1+xy}, \ \forall \ x, \ y \in G \ .$$

- **5p** a) Să se arate că această corespondență definește o lege de compoziție pe G.
- **5p** | **b**) Să se arate că $\forall x, y \in G$, f(x * y) = f(x) f(y).
- **5p** c) Știind că operația "*" este asociativă, să se calculeze $\frac{1}{2} * \frac{1}{3} * ... * \frac{1}{9}$.

- 1. Se consideră matricea $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$.
- **5p** a) Să se demonstreze că $\forall x \in \mathbb{R}$, $\det(A xI_2) = x^2 (a + d)x + ad bc$.
- **5p b**) Dacă $A^2 = O_2$, să se demonstreze că a + d = 0.
- **5p** c) Știind că $A^2 = O_2$, să se calculeze $det(A + 2I_2)$.
 - 2. Se consideră mulțimea $G = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a^2 3b^2 = 1\}$ și operația

$$(a,b)*(c,d)=(ac+3bd,ad+bc).$$

- **5p** a) Să se determine $a \in \mathbb{Z}$ pentru care $(a,15) \in G$.
- 5p b) Să se arate că, pentru orice $(a, b), (c, d) \in G$, $(a, b) * (c, d) \in G$.
- **5p** c Să se arate că (G, *) este grup.

1. Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ și funcția $f : \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$,

f(X) = AX - XA.

- **5p** a) Să se determine rangul matricei A.
- 5p **b**) Să se calculeze f(B).
- **5p** c) Să se arate că ecuația f(X) = B nu are soluții.
 - **2.** Se consideră polinoamele $f, g \in \mathbb{R}[X]$, $f = X^3 + a^2X a$, $g = aX^3 a^2X^2 1$, cu $a \in \mathbb{R}^*$ și $x_1, x_2, x_3 \in \mathbb{C}$ rădăcinile polinomului f.
- **5p** a) Să se calculeze $x_1^2 + x_2^2 + x_3^2$.
- **5p b**) Să se arate că rădăcinile polinomului g sunt inversele rădăcinilor polinomului f.
- **5p** c) Să se arate că polinoamele f și g nu au rădăcini reale comune.

SUBIECTUL II (30p) Varianta 48

5p

- 1. Se consideră sistemul $\begin{cases} x + 2y + z = 1 \\ 2x y + z = 1 \\ 7x y + az = b \end{cases}$, unde **a** și **b** sunt parametri reali.
- **5p** a) Să se determine $\mathbf{a} \in \mathbb{R}$ pentru care determinantul sistemului este egal cu zero.
 - b) Să se determine valorile parametrilor $a, b \in \mathbb{R}$ pentru care sistemul este incompatibil.
- 5p c) Să se arate există o infinitate de valori ale numerelor a și b pentru care sistemul admite o soluție (x, y, z), cu x, y, z în progresie aritmetică.
 - $\textbf{2. Se consideră mulțimea } G = \left\{ \begin{array}{ll} X\left(t\right) = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{array} \right) \bigg| \, t \in \mathbb{R} \, \right\}.$
- **5p** a) Să se arate că $X(t) \cdot X(u) = X(t+u), \forall t, u \in \mathbb{R}$.
- **5p b**) Să se determine $t \in \mathbb{R}$ știind că $X(t) \in \mathcal{M}_2(\mathbb{Z})$.
- **5p** c) Să se arate că mulțimea G formează grup abelian în raport cu înmulțirea matricelor.

- 1. Se consideră $a \in \mathbb{R}$, sistemul $\begin{cases} x + ay = 1 \\ y + az = a \text{ și } A \text{ matricea sa.} \\ z + x = 1 \end{cases}$
- **5p** a) Să se arate că det $A \neq 0$.

5p

- 5p b) Să se arate că soluția sistemului este formată din trei numere în progresie geometrică.
- **5p c**) Să se determine inversa matricei A.
 - 2. Se consideră pe \mathbb{R} legea de compoziție dată de relația $\mathbf{x} * \mathbf{y} = \mathbf{x}\mathbf{y} 5\mathbf{x} 5\mathbf{y} + 30$, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}$ și mulțimea $\mathbf{G} = (5, \infty)$.
- **5p** a) Să se arate că legea "*" are element neutru.
 - b) Să se demonstreze că G este grup abelian în raport cu legea "*".
- 5p c) Să se rezolve în grupul (G, *) sistemul $\begin{cases} x * y = z \\ y * z = x \\ z * x = y \end{cases}$

- 1. Se consideră matricele $A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \in \mathcal{M}_{2,3}(\mathbb{R})$, transpusa $A^t \in \mathcal{M}_{3,2}(\mathbb{R})$, $B = AA^t$, și punctele $P_k(a_k, b_k)$, unde $k \in \{1, 2, 3\}$.
- **5p** a) Să se calculeze B știind că $P_1(1,2)$, $P_2(2,4)$, $P_3(-3,-6)$.
- **5p b**) Să se arate că $det(B) \ge 0$, oricare ar fi punctele P_1 , P_2 , P_3 .
- 5p c) Să se arate că det(B) = 0 dacă și numai dacă punctele P_1 , P_2 , P_3 sunt coliniare pe o dreaptă care trece prin originea axelor.
 - $\textbf{2. Se consideră mulțimea } M = \left\{ \begin{pmatrix} \hat{1} & \textbf{a} & \textbf{b} \\ \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix} \middle| \textbf{a}, \textbf{b} \in \mathbb{Z}_5 \right\}.$
- **5p** a) Să se determine numărul elementelor mulțimii M.
- **5p b)** Să se arate că $AB \in M$, pentru orice $A, B \in M$.
- **5p c**) Să se arate că (M,·) este un grup, unde "·" este înmulțirea matricelor.

- **1.** Fie şirul $(F_n)_{n\geq 0}$, dat de $F_{n+1}=F_n+F_{n-1}$, $\forall n\in\mathbb{N}^*$, $F_0=0$, $F_1=1$ şi matricea $A=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.
- **5p** a) Să se verifice relația $A^2 = A + I_2$.
- **5p** b) Să se arate că, dacă $X \in M_2(\mathbb{Q})$, $X \neq O_2$ și AX = XA, atunci X este inversabilă.
- $\begin{array}{|c|c|c|c|c|} \hline \textbf{5p} & \textbf{c)} & \text{Să se arate că} & A^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}, \, \forall n \geq 1. \end{array}$
 - **2.** Fie $\sigma, \pi \in S_5$, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$, $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}$.
- **5p** a) Să se demonstreze că σπ ≠ πσ.
- $\mathbf{5p} \quad \mathbf{b)} \quad \text{Să se determine numărul elementelor mulțimii} \quad \mathbf{H} = \left\{ \pi^n \mid n \in \mathbb{N}^* \right\}.$
- $\textbf{5p} \quad \textbf{c}) \quad \text{Să se arate că} \quad H = \left\{ \pi^n \mid n \in \mathbb{N}^* \right\} \ \text{este un subgrup al grupului} \ (S_5, \cdot) \ .$

- **1.** Se consideră permutarea $\sigma \in S_6$, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 3 & 6 & 1 \end{pmatrix}$.
- **5p** a) Să se determine σ^{-1} .
- **5p** | **b**) Să se arate că permutările σ și σ^{-1} au același număr de inversiuni.
- **5p** c) Să se arate că ecuația $\mathbf{x}^4 = \sigma$ nu are soluții în grupul (S_6, \cdot) .
 - **2.** Fie legea de compoziție " \circ ", definită pe \mathbb{R} prin $\mathbf{x} \circ \mathbf{y} = \mathbf{x}\mathbf{y} \mathbf{x} \mathbf{y} + 2$, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}$, și funcția $\mathbf{f} : \mathbb{R} \to \mathbb{R}$, $\mathbf{f}(\mathbf{x}) = \mathbf{x} + 1$.
- **5p** a) Să se arate că (1,∞) este parte stabilă în raport cu "∘".
- **5p** b) Să se demonstreze că $f(xy) = f(x) \circ f(y)$ pentru orice $x, y \in \mathbb{R}$.
- 5p c) Știind că legea "•" este asociativă, să se rezolve în \mathbb{R} ecuația $\underbrace{\mathbf{x} \circ \mathbf{x} \circ ... \circ \mathbf{x}}_{\text{de } 10 \text{ ori } \mathbf{x}} = 1025.$

1. Pentru orice matrice $A \in \mathcal{M}_2(\mathbb{C})$, se notează $C(A) = \{X \in \mathcal{M}_2(\mathbb{C}) \mid AX = XA\}$. Se consideră matricele

$$\mathbf{E}_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \mathbf{E}_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \mathbf{E}_3 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{E}_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

- **5p** a) Să se arate că dacă $X, Y \in C(A)$, atunci $X + Y \in C(A)$.
- **5p** b) Să se arate că dacă $E_1, E_2 \in C(A)$, atunci există $\alpha \in \mathbb{C}$ astfel încât $A = \alpha I_2$.
- **5p** $| \mathbf{c} |$ Să se arate că dacă $\mathbf{C}(\mathbf{A})$ conține trei dintre matricele $\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3, \mathbf{E}_4$, atunci o conține și pe a patra.
 - **2.** Fie $\mathbf{a} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix}$ două permutări din grupul (\mathbf{S}_5, \cdot) .
- **5p** a) Să se rezolve în S_5 ecuația ax = b.
- **5p b**) Să se determine ordinul elementului **ab** în grupul (S_5, \cdot) .
- **5p** c) Fie $k \in \mathbb{Z}$ cu $b^k = e$. Să se arate că 6 divide k.

- **1.** Se consideră matricele $\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ și $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$.
- **5p** a) Să se verifice că $AB \neq BA$.
- **5p b**) Să se arate că $A^4 + B^6 = 2I_2$.
- **5p** c) Să se arate că, pentru orice $n \in \mathbb{N}^*$, $(AB)^n \neq I_2$.
 - **2.** Se consideră șirul $\left(F_n\right)_{n\in\mathbb{N}}$, $F_0=0$, $F_1=1$, $F_{n+1}=F_n+F_{n-1}$, $\forall n\geq 1$ și polinoamele
 - $P, Q_n \in \mathbb{Z}[X], P = X^2 X 1, Q_n = X^n F_n X F_{n-1}, \forall n \ge 2.$
- **5p** a) Să se arate că polinomul $X^3 2X 1$ este divizibil cu P.
- **5p b**) Să se determine rădăcinile reale ale polinomului Q_3 .
- **5p** c) Să se arate că, pentru orice $n \ge 2$, polinomul Q_n este divizibil cu P.

 $\textbf{1.} \ \, \text{Matricea} \ \, A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \ \, \text{\vec{s} i şirurile } \left(\left. x_n \right)_{n \in \mathbb{N}}, \left(\left. y_n \right)_{n \in \mathbb{N}} \ \, \text{verifică} \left(\left. \left. \left(\left. x_{n+1} \right)_{n+1} \right) \right. \right) = A \begin{pmatrix} \left. x_n \right)_{n \in \mathbb{N}}, \forall n \in \mathbb{N} \right.$

5p a) Să se arate că $x_{n+1}^2 + y_{n+1}^2 = (a^2 + b^2)(x_n^2 + y_n^2)$, $\forall n \in \mathbb{N}$.

5p b) Să se arate că, dacă $a^2 + b^2 \le 1$, atunci șirurile $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$ sunt mărginite.

5p c) Să se arate că, dacă a = 1 și $b = \sqrt{3}$, atunci $x_{n+6} = 64x_n$, $\forall n \ge 0$.

2. Se consideră corpul $(\mathbb{Z}_{11},+,\cdot)$.

5p a) Să se arate că ecuația $\mathbf{x}^2 = \hat{\mathbf{8}}$ nu are soluții în \mathbb{Z}_{11} .

5p b) Să se determine numărul polinoamelor de grad doi din $\mathbb{Z}_{11}[X]$.

5p c) Să se arate că polinomul $X^2 + X + \hat{1}$ este ireductibil în $\mathbb{Z}_{11}[X]$.

SUBIECTUL II (30p) Varianta 56

1. Se consideră matricea $A = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ și funcția $f : \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$, f(X) = AX.

5p a) Să se arate că $f(A) = I_2$.

5p b) Să se arate că $f(X + f(X)) = X + f(X), \forall X \in \mathcal{M}_2(\mathbb{R}).$

5p c) Să se arate că funcția **f** este bijectivă.

2. Se consideră matricea $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ și mulțimea $M = \{X \in \mathcal{M}_2(\mathbb{R}) \mid AX = XA\}.$

5p a) Să se arate că dacă $X, Y \in M$, atunci $XY \in M$.

5p b) Să se arate că $G = \{X \in M \mid \det X \neq 0\}$ este grup în raport cu înmulțirea matricelor.

5p c) Să se determine elementele de ordin doi din grupul G, definit la punctul b).

$$\textbf{1.} \text{ Fie matricele } A = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \text{ } \\ \text{$\text{$\vec{y}$}$ } \left(\begin{matrix} \textbf{x}_n \\ \textbf{y}_n \end{matrix} \right) \in M_{2,1}(\mathbb{R}), \text{ } \\ \text{$\text{$cu$}$ } \left(\begin{matrix} \textbf{x}_{n+1} \\ \textbf{y}_{n+1} \end{matrix} \right) = A \begin{pmatrix} \textbf{x}_n \\ \textbf{y}_n \end{matrix}), \forall n \in \mathbb{N} \text{ } \\ \text{\vec{y}} \text{ } \text{\vec{y}} \text{ } = 1, \textbf{y}_0 = 0 \text{ } .$$

- **5p** a) Să se determine x_1, x_2, y_1 și y_2 .
- **5p b**) Să se arate că $x_n + y_n \sqrt{2} = (3 + 2\sqrt{2})^n$, $\forall n \in \mathbb{N}$.
- **5p** c) Să se arate că $\mathbf{x}_{n+2} 6\mathbf{x}_{n+1} + \mathbf{x}_n = 0, \ \forall n \ge 0$.
 - **2.** Se consideră mulțimile de clase de resturi $\mathbb{Z}_7 = \{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}, \hat{5}, \hat{6}\}\$ și $\mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}\$.
- **5p** a) Să se rezolve în corpul $(\mathbb{Z}_7, +, \cdot)$ ecuația $3x^2 + 4 = 0$.
- **5p b**) Să se determine ordinul elementului $\hat{3}$ în grupul (\mathbb{Z}_7^*, \cdot) .
- **5p** c) Să se arate că nu există niciun morfism de grupuri $\mathbf{f}: (\mathbb{Z}_6, +) \to (\mathbb{Z}_7^*, \cdot)$ cu $\mathbf{f}(\overline{2}) = \hat{3}$.

1. Fie
$$a,b,c,d>0$$
, matricea $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ şi funcția $f:(0,\infty) \to (0,\infty)$, $f(x) = \frac{ax+b}{cx+d}$.

Se notează
$$A^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$$
, unde $n \in \mathbb{N}^*$.

- **5p** a) Să se arate că dacă det A = 0, atunci f este funcție constantă.
- **5p b**) Să se arate că, dacă det $A \neq 0$, atunci funcția f este injectivă.

- **2.** Se consideră matricele $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ și mulțimea $\mathbf{G} = \{\mathbf{I}_2 + \mathbf{a}\mathbf{A} + \mathbf{b}\mathbf{B} \mid \mathbf{a}, \mathbf{b} \in \mathbb{R}, \mathbf{a} \neq -1\}$.
- **5p** a) Să se arate că orice matrice din G este inversabilă.
- $\overline{\mathbf{5p}}$ **b**) Să se arate că \mathbf{G} este un subgrup al grupului multiplicativ al matricelor inversabile din $\mathcal{M}_2(\mathbb{R})$.
- **5p** c) Să se arate că ecuația $X^2 = I_2$ are o infinitate de soluții în G.

- 1. Se consideră sistemul $\begin{cases} \mathbf{m}\mathbf{x} + \mathbf{y} + \mathbf{z} = 0 \\ \mathbf{x} + 3\mathbf{y} + 2\mathbf{z} = 0 \text{, cu } \mathbf{m} \in \mathbb{R} \\ -\mathbf{x} \mathbf{y} + 4\mathbf{z} = 0 \end{cases}$
- **5p** a) Să se determine $m \in \mathbb{R}$ pentru care matricea sistemului are determinantul nenul.
- **5p b**) Să se determine $\mathbf{m} \in \mathbb{R}$ astfel încât sistemul să admită cel puțin două soluții.
- **5p** c) Să se determine $\mathbf{m} \in \mathbb{R}$ pentru care dreptele $\mathbf{d}_1 : \mathbf{m}\mathbf{x} + \mathbf{y} + 1 = 0$, $\mathbf{d}_2 : \mathbf{x} + 3\mathbf{y} + 2 = 0$, $\mathbf{d}_3 : -\mathbf{x} \mathbf{y} + 4 = 0$ sunt concurente.
 - 2. Se consideră mulțimea $\mathbf{H} = \left\{ \begin{pmatrix} \mathbf{m} & \mathbf{n} \\ \hat{\mathbf{0}} & \hat{\mathbf{1}} \end{pmatrix} | \, \mathbf{m}, \mathbf{n} \in \mathbb{Z}_5 \,, \, \mathbf{m} = \pm \hat{\mathbf{1}} \right\}.$
- **5p a)** Să se verifice că dacă $\mathbf{A} = \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{0} & \hat{1} \end{pmatrix}$ și $\mathbf{B} = \begin{pmatrix} \hat{4} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}$, atunci $\mathbf{B} \cdot \mathbf{A} = \mathbf{A}^{-1} \cdot \mathbf{B}$.
- **5p b**) Să se arate că H este un grup cu 10 elemente în raport cu înmulțirea matricelor.
- **5p** c) Să se determine numărul elementelor de ordinul 2 din grupul H.

SUBIECTUL II (30p)

- **1.** Se consideră matricea $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}$ și funcția $\mathbf{f} : \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$, $\mathbf{f}(\mathbf{X}) = \mathbf{A}\mathbf{X}$.
- $5p \mid a$) Să se calculeze f(A).
- **5p b**) Să se arate că $(f \circ f)(X) = O_2, \forall X \in \mathcal{M}_2(\mathbb{R}).$
- **5p** c) Să se arate că $f(X) + f(Y) \neq I_2, \forall X, Y \in \mathcal{M}_2(\mathbb{R}).$
 - 2. Se consideră mulțimea $P = \left\{ A \in \mathcal{M}_2\left(\mathbb{R}\right) \mid AA^t = I_2 \right\}$, unde A^t este transpusa matricei A.
- **5p** a) Să se verifice dacă matricea $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ aparține mulțimii P.
- **5p** b) Să se arate că înmulțirea matricelor determină pe mulțimea P o structură de grup necomutativ.
- **5p** c) Să se arate că, dacă $A, B \in P, X \in \mathcal{M}_2(\mathbb{R})$ și AX = B, atunci $X \in P$.

- 1. Se consideră mulțimea $G = \left\{ \mathbf{M}_{\mathbf{a},\mathbf{b}} \mid \mathbf{M}_{\mathbf{a},\mathbf{b}} = \begin{pmatrix} 1 & \mathbf{a} & \mathbf{b} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{a}, \mathbf{b} \in \mathbb{R} \right\} \subset \mathcal{M}_3(\mathbb{R}).$
- a) Să se arate că $M_{a,b}\cdot M_{c,d}=M_{a+c,b+d}$, $\forall~a,b,c,d\in\mathbb{R}.$ 5p
- b) Să se arate că orice matrice din G este inversabilă. **5**p
- c) Să se calculeze, în funcție de a și b, rangul matricei $M_{a,b} M_{a,b}^t$ ($M_{a,b}^t$ este transpusa lui $M_{a,b}$). **5p**
 - 2. Se consideră un grup (K,\cdot) , unde $K = \{e,a,b,c\}$, e este elementul neutru și $a^2 = b^2 = c^2 = e$.
- a) Să se rezolve în grupul K ecuatia $x^3 = e$. **5p**
- **b)** Să se arate că ab = c. **5p**
- c) Să se arate că grupul (K,\cdot) nu este izomorf cu grupul $(\mathbb{Z}_4,+)$. **5p**

- 1. Fie matricea $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ cu proprietatea că $A^2 = 2A$.
- a) Să se arate că matricea $B = \begin{pmatrix} 3 & 1 \\ -3 & -1 \end{pmatrix}$ verifică relația $B^2 = 2B$. 5p
- **b**) Să se arate că, dacă $\mathbf{a} + \mathbf{d} \neq 2$, atunci $\mathbf{A} = \mathbf{O}_2$ sau $\mathbf{A} = 2\mathbf{I}_2$. **5p**
- c) Să se arate că, dacă $\mathbf{a} + \mathbf{d} = 2$, atunci $\det(\mathbf{A}) = 0$. **5**p
 - **2.** Se consideră polinoamele $f, g \in \mathbb{Q}[X], f = X^4 1, g = X^6 1$.
- a) Să se arate că un cel mai mare divizor comun al polinoamelor f și g este X^2-1 . **5**p
- b) Să se determine numărul soluțiilor complexe distincte ale ecuației f(x)g(x) = 0. **5p**
- c) Să se descompună polinomul f în factori ireductibili în $\mathbb{Q}[X]$.

- $\textbf{1.} \ \ \text{Se consideră mulțimile} \ \ P = \left\{S \in \mathcal{M}_2(\mathbb{R}) \ | \ S^t = S \right\} \ \ \text{$\vec{\mathsf{yi}}$} \ \ Q = \left\{A \in \mathcal{M}_2\left(\mathbb{R}\right) \ | \ A^t = -A \right\}.$
- **5p** a) Să se arate că $\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \in \mathbf{P}$ şi $\begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix} \in \mathbf{Q}$.
- **5p** \mid **b**) Să se arate că, dacă $A, B \in Q$, atunci $AB \in P$.
- **5p** c) Să se arate că $det(X) \ge 0$, oricare ar fi $X \in Q$.
 - 2. Se consideră polinoamele $\mathbf{f} = \mathbf{X}^3 + 2\mathbf{X}^2 + 3\mathbf{X} + 45 \in \mathbb{Z}[\mathbf{X}]$ și $\hat{\mathbf{f}} = \mathbf{X}^3 + \mathbf{X} + \hat{\mathbf{1}} \in \mathbb{Z}_2[\mathbf{X}]$.
- **5p** a) Să se arate că rădăcinile din \mathbb{C} ale polinomului f nu sunt toate reale.
- $[\mathbf{5p} \mid \mathbf{b})$ Să se arate că polinomul $\hat{\mathbf{f}}$ nu are rădăcini în \mathbb{Z}_2 .
- **5p c**) Să se demonstreze că polinomul **f** nu poate fi scris ca produs de două polinoame neconstante, cu coeficienți întregi.

- **1.** Fie mulțimea $\mathbf{M} = \left\{ \begin{pmatrix} \mathbf{x} & 3\mathbf{y} \\ \mathbf{y} & \mathbf{x} \end{pmatrix} | \mathbf{x}, \mathbf{y} \in \mathbb{Z} \right\}$ și matricea $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$.
- **5p** a) Să se arate că dacă $Y \in \mathcal{M}_2(\mathbb{Z})$ și AY = YA, atunci $Y \in M$.
- **5p b**) Să se arate că dacă $X \in M$ și det(X) = 0, atunci $X = O_2$.
- **5p** c) Să se arate că $A^n \in M, \forall n \in \mathbb{N}^*$.
 - **2.** Se consideră polinomul $\mathbf{f} = \mathbf{X}^5 \mathbf{X}^4 + 3\mathbf{X}^3 \mathbf{X}^2 2 \in \mathbb{C}[\mathbf{X}].$
- **5p** a) Să se determine o rădăcină întreagă a polinomului f.
- **5p b**) Să se calculeze $\mathbf{x}_1^2 + \mathbf{x}_2^2 + ... + \mathbf{x}_5^2$, unde $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_5$ sunt rădăcinile polinomului \mathbf{f} .
- **5p** c) Să se arate că f are o singură rădăcină reală.

1. Se consideră sistemul
$$\begin{cases} ax + y + z = 4 \\ x + 2y + 3z = 6, \text{ cu } a, b \in \mathbb{R}. \\ 3x - y - 2z = b \end{cases}$$

- **5p** | a) Să se determine a,b pentru care sistemul are soluția (1, 1, 1).
- **5p** | **b**) Să se determine **a**,**b** astfel încât sistemul să fie incompatibil.
- **5p** c) Să se arate că pentru orice $a \in \mathbb{Z}$ există $b \in \mathbb{Z}$ astfel încât sistemul să admită soluții cu toate componentele numere întregi.
 - 2. Se consideră mulțimea de matrice $\mathbf{A} = \left\{ \begin{pmatrix} \mathbf{a} & \hat{\mathbf{0}} & \hat{\mathbf{0}} \\ \hat{\mathbf{0}} & \mathbf{a} & \hat{\mathbf{0}} \\ \mathbf{b} & \mathbf{c} & \mathbf{a} \end{pmatrix} | \mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{Z}_2 \right\}.$
- **5p** | a) Să se determine numărul elementelor mulțimii A.
- **5p b)** Să se arate că, pentru orice $X \in A$, $X^2 = I_3$ sau $X^2 = O_3$.
- **5p** c) Să se determine numărul matricelor X din mulțimea A care au proprietatea $X^2 = O_3$.

- 1. Fie dreptele $d_1: x+2y=3, d_2: 3x-4y=-1, d_3: 4x+3y=m$, unde $m\in\mathbb{R}$.
- **5p** | a) Să se determine m astfel încât dreptele să fie concurente.
- **5p b**) Să se demonstreze că există o infinitate de valori ale lui **m** pentru care vârfurile triunghiului determinat de cele trei drepte au toate coordonatele întregi.
- **5p** c) Să se calculeze valorile lui **m** pentru care triunghiul determinat de cele trei drepte are aria 1.
 - **2.** Fie polinomul $f = 2X^3 aX^2 aX + 2$, cu $a \in \mathbb{R}$ și cu rădăcinile complexe x_1, x_2, x_3 .
- **5p** \mid **a**) Să se calculeze f(-1).
- **5p b**) Să se determine a pentru care polinomul are trei rădăcini reale.
- **5p** | **c**) Să se determine a astfel încât $|\mathbf{x}_1| + |\mathbf{x}_2| + |\mathbf{x}_3| = 3$.

1. Fie sistemul
$$\begin{cases} x+y+z=1 \\ x+my+z=1 \\ x+my+mz=-2 \end{cases}$$
, cu $m \in \mathbb{R}$ şi matricea $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & m & 1 \\ 1 & m & m \end{pmatrix}$.

- **5p** a) Să se calculeze det(A).
- **5p** | **b**) Să se arate că rang (A) \neq 2, oricare ar fi $\mathbf{m} \in \mathbb{R}$.
- 5p c) Să se determine valorile întregi ale lui m≠1, pentru care sistemul are soluție cu componente întregi.
 - **2.** Fie permutările $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}, \gamma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$, elemente ale grupului (S_4, \cdot) .
- **5p** a) Să se verifice că γ este soluție a ecuației $\alpha x = x\beta$.
- **5p b**) Să se arate că $\alpha^4 = \beta^4$.
- **5p** c) Să se determine o soluție a ecuației $x\beta^3 = \alpha^3 x$ în S_4 .

- 1. Se consideră matricele $A \in \mathcal{M}_3(\mathbb{R})$ și $B = A + A^t$, unde A^t este transpusa matricei A.
- **5p a**) Să se arate că $B^t = B$.
- **5p** | **b**) Să se demonstreze că, dacă $\mathbf{B} = 2\mathbf{I}_2$, atunci $\det(\mathbf{A}) \ge 1$.
- **5p** c) Să se demonstreze că, dacă $x, y \in \mathbb{C}$ și matricea $xA + yA^t$ este inversabilă, atunci $x + y \neq 0$.
 - **2.** Se consideră ecuația $\mathbf{x}^3 + \mathbf{p}\mathbf{x} + \mathbf{q} = 0$, $\mathbf{p}, \mathbf{q} \in \mathbb{R}$, și $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ soluțiile complexe ale acesteia.
- **5p** a) Știind că p=1 și q=0, să se determine x_1, x_2, x_3 .
- **5p b**) Să se determine **p** și **q** știind că $\mathbf{x}_1 = 1 + \mathbf{i}$.
- **5p** c) Să se arate că $12(\mathbf{x}_1^7 + \mathbf{x}_2^7 + \mathbf{x}_3^7) = 7(\mathbf{x}_1^3 + \mathbf{x}_2^3 + \mathbf{x}_3^3)(\mathbf{x}_1^2 + \mathbf{x}_2^2 + \mathbf{x}_3^2)^2$.

- **1.** Fie matricea $\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$
- **5p** a) Să se verifice relația $A^3 A = A^2 I_3$.
- **5p b**) Să se arate că $A^n A^{n-2} = A^2 I_3, \forall n \in \mathbb{N}, n \ge 3$.
- **5p** c) Să se arate că, pentru orice $n \in \mathbb{N}^*$, suma elementelor matricei A^n este n+3.
 - 2. Pentru fiecare $n \in \mathbb{N}^*$ se definește polinomul $P_n = X^n 1 \in \mathbb{C}[X]$.
- **5p** a) Să se determine rădăcinile complexe ale polinomului P_4 .
- **5p b**) Să se descompună polinomul P_3 în factori ireductibili în $\mathbb{C}[X]$.
- **5p** \mid **c**) Să se descompună polinomul P_6 în factori ireductibili în $\mathbb{R}[X]$.

- 1. Pentru orice două matrice $A, B \in \mathcal{M}_2(\mathbb{R})$ se definește matricea [A, B] = AB BA.
- **5p** a) Pentru $A \in \mathcal{M}_2(\mathbb{R})$, să se calculeze $[A, A^2]$.
- **5p b**) Să se arate că, pentru orice $A \in \mathcal{M}_2(\mathbb{R})$, $[A, A^*] = O_2$, unde A^* este adjuncta matricei A.
- $\textbf{5p} \quad \textbf{c}) \quad \text{Să se arate că, pentru orice } A,B,C \in \mathcal{M}_2(\mathbb{R}) \,, \, \big[A,[B,C]\big] + \big[B,[C,A]\big] + \big[C,[A,B]\big] = O_2.$
 - **2.** Se consideră intervalul H = (0,1).
- 5p b) Să se arate că funcția $f:(0,+\infty) \to (0,1)$, $f(x) = \frac{x}{x+1}$ are proprietatea $f(xy) = f(x) \circ f(y)$, $\forall x, y > 0$, unde legea " \circ " este definită la punctul **a**).
- **5p** c) Știind că legea "o" definită la punctul a) este asociativă, să se rezolve în mulțimea (H, \circ) ecuația $\mathbf{x} \circ \mathbf{x} \circ \mathbf{x} = \frac{1}{2}$.

1. Se consideră determinantul de ordin
$$\mathbf{n} \ge 2$$
, $\mathbf{D_n} = \begin{bmatrix} 2 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \dots & \dots & 1 & 0 \\ 0 & 0 & \dots & \dots & \dots & 1 & 2 \\ 0 & 0 & \dots & \dots & \dots & 1 & 2 \end{bmatrix}$

5p a) Să se calculeze
$$\mathbf{D}_3 = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix}$$
.

- **5p** | **b**) Să se verifice că $D_n = 2D_{n-1} D_{n-2}$, $\forall n \ge 4$.
- **5p** c) Să se arate că $D_n = n+1$, $\forall n \ge 2$.
 - **2.** Un grup (G, \cdot) , cu elementul neutru **e**, are proprietatea (p) dacă $x^2 = e$, $\forall x \in G$.
- **5p** a) Să se verifice că mulțimea $\mathbb{Z}_2 \times \mathbb{Z}_2$, împreună cu legea de compoziție dată de $(a,b) \cdot (c,d) = (a+c,b+d), \forall a,b,c,d \in \mathbb{Z}_2$ este un grup care are proprietatea (p).
- **5p** b) Să se arate că dacă un grup G are proprietatea (p), atunci $(xy)^2 = x^2y^2$, $\forall x, y \in G$.
- **5p** c) Să se arate că orice grup care are proprietatea (p) este comutativ.

- **1.** Se consideră matricea $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$
- **5p** a) Să se rezolve ecuația $\det(\mathbf{I}_3 + \mathbf{x}\mathbf{A}^2) = 0, \mathbf{x} \in \mathbb{R}$.
- **5p b**) Să se determine o matrice $B \in \mathcal{M}_3(\mathbb{R})$ cu proprietatea $B^2 = A$.
- **5p** c) Să se arate că $\forall C \in M_3(\mathbb{R}), \forall x \in \mathbb{R}, \det(C + xA)\det(C xA) \leq (\det C)^2$.
 - **2.** Se consideră polinomul $\mathbf{p} = \mathbf{X}^3 \mathbf{X} + \mathbf{m}$ cu $\mathbf{m} \in \mathbb{R}$ și cu rădăcinile $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \in \mathbb{C}$.
- **5p** | **a**) Ştiind că $\mathbf{m} = -6$, să se determine $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$.
- **5p b)** Să se calculeze $x_1^4 + x_2^4 + x_3^4$.
- **5p** c) Să se determine $m \in \mathbb{R}$ pentru care polinomul p are toate rădăcinile întregi.

- 1. Fie matricea $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. Se asociază fiecărui punct A(x,y) punctul $A_M(x',y')$, unde $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.
- $\mathbf{5p} \quad | \ \, \mathbf{a}) \ \, \text{Stiind că } \mathbf{a} = 1, \mathbf{b} = 2, \mathbf{c} = 3, \mathbf{d} = 4 \ \, \text{si că } \mathbf{A}(-1,1) \, , \, \text{să se determine coordonatele punctului} \ \, \mathbf{A}_{M} \, \, .$
- **5p** b) Știind că a = 1, b = 2, c = 2, d = 4, să se arate că toate punctele A_M se află pe dreapta y = 2x.
- **5p** c) Fie A, B, C trei puncte în plan. Dacă se notează cu S și S_M ariile triunghiurilor ABC, respectiv $A_M B_M C_M$, atunci $S_M = S \cdot |\det M|$.
 - 2. Se consideră mulțimea $A = \left\{ \begin{pmatrix} a & b & c \\ \hat{0} & a & d \\ \hat{0} & \hat{0} & a \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}_2 \right\}.$
- **5p** a) Să se determine numărul elementelor mulțimii A.
- **5p b)** Să se arate că mulțimea A este parte stabilă în raport cu înmulțirea matricelor din $\mathcal{M}_3(\mathbb{Z}_2)$.
- **5p** c) Să se rezolve ecuația $X^2 = X$, cu $X \in A$.

- **1.** Se consideră matricea $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{pmatrix}$.
- **5p** a) Să se calculeze det A.
- **5p b**) Să se verifice relația $A(A^2 + 6I_3) = O_3$.
- **5p** c) Să se arate că $\det(\mathbf{I}_3 + \mathbf{x} \mathbf{A}^2) \ge 0$, $\forall \mathbf{x} \in \mathbb{R}$.
 - **2.** Se consideră $\mathbf{a}, \mathbf{b} \in \mathbb{Z}$ și polinomul $\mathbf{p} = \mathbf{X}^3 + \mathbf{a}\mathbf{X}^2 + \mathbf{X} + \mathbf{b}$, cu rădăcinile $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \in \mathbb{C}$.
- **5p** a) Știind că a = b = 1, să se afle rădăcinile polinomului p.
- **5p b**) Să se determine a și b, știind că polinomul p are rădăcina dublă 1.
- 5p c) În cazul b=1, să se determine valorile lui a pentru care polinomul p are o rădăcină rațională.

- 1. Se consideră matricele $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ și $M_x = \frac{x}{3}A + \frac{1}{3x^2}B$, cu $x \in \mathbb{R}^*$.
- **5p a**) Să se calculeze produsul **AB**.
- **5p b**) Să se arate că $M_x M_y = M_{xy}$, $\forall x, y \in \mathbb{R}^*$.
- **5p** c) Să se arate că, pentru orice x real nenul, $det(M_x) \neq 0$.
 - **2.** Se consideră polinomul $p = X^4 aX^3 aX + 1$, cu $a \in \mathbb{R}$ și cu rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$.
- **5p** a) Să se verifice că $\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 = \frac{1}{\mathbf{x}_1} + \frac{1}{\mathbf{x}_2} + \frac{1}{\mathbf{x}_3} + \frac{1}{\mathbf{x}_4}$.
- **5p b**) Să se arate că polinomul **p** nu este divizibil cu $X^2 1$ pentru nicio valoare a lui **a**.
- **5p** c) Să se arate că dacă $\mathbf{a} = \frac{1}{2}$, atunci toate rădăcinile polinomului \mathbf{p} au modulul 1.

- 1. Se consideră matricea $A = \begin{pmatrix} 1+a^2 & ab & ac \\ ba & 1+b^2 & bc \\ ca & cb & 1+c^2 \end{pmatrix}$, cu $a,b,c \in \mathbb{R}$ și A^* adjuncta sa.
- **5p** a) Să se calculeze determinantul matricei A.
- **5p b**) Să se verifice că $\det(A^*) = (\det A)^2$.
- **5p** c) Să se arate că matricea $A-I_3$ are rangul cel mult 1.
 - 2. Fie (G,\cdot) un grup. Pentru fiecare element $a\in G$ se definește funcția $f_a:G\to G,\ f_a(x)=ax, \forall\, x\in G.$
- **5p** a) Să se arate că f_a este bijectivă, pentru orice $a \in G$.
- $5p \mid b$) Să se arate că $f_a \circ f_b = f_{ab}, \ \forall a,b \in G$.
- **5p** c) Fie $\mathcal{F}(G) = \{ f_a : G \to G \mid a \in G \}$. Să se arate că $\mathcal{F}(G)$ împreună cu operația de compunere a funcțiilor formează un grup.

1. Se consideră sistemul
$$\begin{cases} x - y - mz = 1 \\ mx + y + mz = 1 - m, m \in \mathbb{R}. \\ mx + 3y + 3z = -1 \end{cases}$$

- **5p** a) Să se calculeze determinatul matricei sistemului.
- **5p b**) Să se arate că, pentru orice $\mathbf{m} \in \mathbb{R}$, matricea sistemului are rangul cel puțin egal cu 2.
- 5p c) Să se determine m∈ R pentru care sistemul este incompatibil.
 2. Se consideră α > 0 un număr real şi mulțimea G_α = (α,∞). Pe R se defineşte legea de compoziție x * y = 3xy 6(x + y) + 7α.
- **5p** a) Să se arate că pentru $\alpha = 2$, cuplul $(G_2, *)$ este grup abelian.
- **5p** b) Să se arate că grupurile $(G_2,*)$ și (\mathbb{R}_+^*,\cdot) sunt izomorfe, prin funcția $f:G_2 \to \mathbb{R}_+^*$, f(x) = 3x 6.
- **5p** c) Să se arate că, pentru orice $\alpha \ge 2$, mulțimea G_{α} este parte stabilă a lui \mathbb{R} în raport cu operația "*".

$$\label{eq:considerate} \textbf{1. Se consideră sistemul} \begin{cases} 2x-3y+4z-5t=-1 \\ x+9y+mz+t=3 \\ 5x-6y+10z+nt=p \end{cases}, \ m,n,p\in\mathbb{R}.$$

- **5p** a) Să se determine **p** astfel încât sistemul să admită o soluție $(\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0, \mathbf{t}_0)$ cu $\mathbf{z}_0 = \mathbf{t}_0 = 0$.
- **5p** b) Să se arate că, pentru orice $m, n \in \mathbb{R}$, rangul matricei sistemului este mai mare sau egal cu 2.
- **5p** c) Să se determine $m, n, p \in \mathbb{R}$ pentru care sistemul este compatibil, iar matricea sistemului are rangul 2.
 - $\textbf{2.} \text{ Fie multimea } \mathbf{Q}_0 = \left\{ \frac{m}{n} \mid m,n \in \mathbb{Z}, \text{ m si n suntimpare} \right\} \text{ si } \mathbf{G} = \mathbf{Q}_0 \times \mathbb{Z} \text{ . Pe G se define ste legea de compoziție } \left(\mathbf{q}_1,\mathbf{k}_1 \right) * \left(\mathbf{q}_2,\mathbf{k}_2 \right) = \left(\mathbf{q}_1\mathbf{q}_2,\mathbf{k}_1+\mathbf{k}_2 \right), \ \forall \ \mathbf{q}_1,\mathbf{q}_2 \in \mathbf{Q}_0, \forall \ \mathbf{k}_1,\mathbf{k}_2 \in \mathbb{Z}.$
- **5p** a) Să se arate că (G,*) este grup abelian.
- **5p b**) Să se calculeze (1,1)*(1,2)*...*(1,10).

1. Se consideră sistemul
$$\begin{cases} x + my + 2z = 1 \\ x + (2m-1)y + 3z = 1 \\ x + my + (m-3)z = 2m-1 \end{cases}, m \in \mathbb{R}.$$

- **5p** a) Să se determine $m \in \mathbb{R}$ pentru care sistemul are soluție unică.
- **5p** b) Să se determine $m \in \mathbb{R}$ pentru care sistemul este compatibil nedeterminat.
- **5p** c) Pentru $\mathbf{m} = 1$ să se determine soluțiile reale $(\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0)$ ale sistemului pentru care $2\mathbf{x}_0^2 \mathbf{y}_0^2 + 3\mathbf{z}_0^2 = 14$.
 - 2. Pe mulțimea G = [0,1) se definește legea de compoziție $x * y = \{x + y\}$, unde $\{a\}$ este partea fracționară a numărului real a.
- **5p** a) Să se calculeze $\frac{2}{3} * \frac{3}{4}$.
- **5p b**) Să se arate că (**G**,*) este grup abelian.
- **5p** c) Să se rezolve ecuația $\mathbf{x} * \mathbf{x} * \mathbf{x} = \frac{1}{2}, \mathbf{x} \in \mathbf{G}$.

- **1.** Fie permutarea $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix} \in \mathbf{S}_5$ și mulțimea $\mathbf{A} = \left\{ \sigma^{\mathbf{n}} \mid \mathbf{n} \in \mathbb{N}^* \right\}$.
- **5p** a) Să se determine numărul inversiunilor lui σ .
- **5p** | **b**) Să se determine numărul elementelor mulțimii A.
- **5p** c) Fie τ∈ S₅ astfel încât $τσ^2 = σ^2τ$. Să se arate că τσ = στ.
 - $\textbf{2.} \ \text{Fie} \ \ f:\mathbb{R} \to \mathbb{R} \ \ \text{o funcție și mulțimea} \ \ H = \left\{T \in \mathbb{R} \ | \ f\left(x+T\right) = f\left(x\right), \ \forall \ x \in \mathbb{R}\right\}.$
- **5p** a) Să se arate că, dacă $T \in H$, atunci $-T \in H$.
- **5p b**) Să se demonstreze că H este subgrup al grupului $(\mathbb{R},+)$.
- **5p** c) Să se determine mulțimea H pentru funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \{x\}$.

1. Fie $m \in \mathbb{R}$ și punctele A(m,1), B(1-m,2), C(2m+1,2m+1). Se consideră matricea

$$\mathbf{M} = \begin{pmatrix} \mathbf{m} & 1 & 1 \\ 1 - \mathbf{m} & 2 & 1 \\ 2\mathbf{m} + 1 & 2\mathbf{m} + 1 & 1 \end{pmatrix}$$

- 5p a) Să se calculeze det(M).
- **5p b**) Să se arate că punctele A, B, C sunt necoliniare, oricare ar fi $m \in \mathbb{R}$.
- **5p** c) Să se arate că aria triunghiului ABC este mai mare sau egală cu $\frac{15}{32}$.
 - 2. Fie mulțimea de matrice $A = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} | a, b \in \mathbb{Z}_5 \right\}$.
- **5p** a) Să se dea un exemplu de matrice nenulă din mulțimea A care are determinantul $\hat{0}$.
- **5p b)** Să se arate că există o matrice nenulă $M \in A$ astfel încât $\begin{pmatrix} \hat{2} & \hat{1} \\ -\hat{1} & \hat{2} \end{pmatrix} \cdot M = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}$.
- **5p c**) Să se rezolve ecuația $\mathbf{X}^2 = \begin{pmatrix} \hat{2} & \hat{1} \\ -\hat{1} & \hat{2} \end{pmatrix}$.

- 1. Se consideră sistemul de ecuații liniare cu coeficienți reali $\begin{cases} x + ay + (b + c)z = 0 \\ x + by + (c + a)z = 0 \end{cases}$ x + cy + (a + b)z = 0
- **5p** | **a**) Să se calculeze determinantul matricei sistemului.
- [5p] b) Să se arate că, pentru orice $a,b,c \in \mathbb{R}$., sistemul admite soluții nenule.
- [5p] c) Să se rezolve sistemul, știind că a ≠ b și că (1,1,1) este soluție a sistemului.
 - 2. Se consideră mulțimea $G = \left\{ \begin{pmatrix} x & iy \\ iy & x \end{pmatrix} \middle| x, y \in \mathbb{R}, x^2 + y^2 \neq 0 \right\}.$
- $5p \mid a$) Să se demonstreze că G este parte stabilă în raport cu înmulțirea matricelor din $\mathcal{M}_2(\mathbb{C})$.
- **5p b**) Să se arate că (G,·) este grup abelian.
- **5p** c) Să se arate că funcția $f: (\mathbb{C}^*, \cdot) \to (G, \cdot)$ cu $f(x+iy) = \begin{pmatrix} x & iy \\ iy & x \end{pmatrix}$, $\forall x, y \in \mathbb{R}$ este izomorfism de grupuri.

1. Fie sistemul de ecuații liniare
$$\begin{cases} x-y+z=1\\ x+(m^2-m-1)y+(m+1)z=2\\ 2x+(m^2-m-2)y+2(m+1)z=3 \end{cases}$$
, unde $m\in\mathbb{R}$.

- **5p** a) Să se demonstreze că sistemul are soluție unică dacă și numai dacă $\mathbf{m} \in \mathbb{R} \setminus \{0,1\}$.
- **5p b**) Să se arate că pentru $\mathbf{m} \in \{0,1\}$ sistemul este incompatibil.
- **5p** c) Să se arate că dacă $(\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0) \in \mathbb{R}^3$ este soluție a sistemului, atunci $\mathbf{x}_0 \mathbf{y}_0 + 2009 \cdot \mathbf{z}_0 = 1$.
 - $\textbf{2. Se consideră mulțimile } H = \{a^2 \mid a \in \mathbb{Z}_7\} \text{ și } G = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid a,b \in \mathbb{Z}_7, a \neq \hat{0} \text{ sau } b \neq \hat{0} \right\}.$
- **5p** a) Să se determine elementele mulțimii H.
- **5p b**) Fie $x, y \in H$ astfel încât $x + y = \hat{0}$. Să se arate că $x = y = \hat{0}$.
- **5p** c) Să se arate că G este grup abelian în raport cu operația de înmulțire a matricelor.

- 1. Se consideră sistemul de ecuații liniare $\begin{cases} x + 2y 3z = 3 \\ 2x y + z = m, \text{ unde } m, n \in \mathbb{R}. \\ nx + y 2z = 4 \end{cases}$
- **5p** a) Să se determine **m** și **n** pentru care sistemul admite soluția $\mathbf{x}_0 = 2$, $\mathbf{y}_0 = 2$, $\mathbf{z}_0 = 1$.
- **5p** \mid **b**) Să se determine $n \in \mathbb{R}$ pentru care sistemul are soluție unică.
- **5p** c) Să se determine **m** și **n** pentru care sistemul este compatibil nedeterminat.
 - 2. Se consideră mulțimea $G = \left\{ \begin{pmatrix} \hat{1} & a & b \\ \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix} \middle| a,b \in \mathbb{Z}_3 \right\}.$
- **5p** a) Să se determine numărul de elemente ale mulțimii G.
- $\mathbf{5p} \mid \mathbf{b})$ Să se arate că \mathbf{G} este grup în raport cu operația de înmulțire a matricelor din $\mathcal{M}_3(\mathbb{Z}_3)$.
- **5p** c) Să se arate că $X^3 = I_3$, oricare ar fi $X \in G$.

- 1. Fie A matricea coeficienților sistemului $\begin{cases} 2\mathbf{x} + \mathbf{y} + \mathbf{z} = 0 \\ 3\mathbf{x} \mathbf{y} + \mathbf{mz} = 0 \text{, unde } \mathbf{m} \in \mathbb{R}. \\ -\mathbf{x} + 2\mathbf{y} + \mathbf{z} = 0 \end{cases}$
- **5p** a) Să se calculeze det(A).
- **5p** \mid **b**) Să se determine $\mathbf{m} \in \mathbb{R}$ astfel încât sistemul să admită soluții nenule.
- **5p** c) Să se arate că, dacă $\mathbf{m} = 0$, atunci expresia $\frac{\mathbf{z}_0^2 + \mathbf{y}_0^2 + \mathbf{x}_0^2}{\mathbf{z}_0^2 \mathbf{y}_0^2 \mathbf{x}_0^2}$ este constantă, pentru orice soluție nenulă $(\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0)$ a sistemului.
 - **2.** Se consideră $\mathbf{a}, \mathbf{b} \in \mathbb{R}$ și polinomul $\mathbf{f} = \mathbf{X}^4 4\mathbf{X}^3 + 6\mathbf{X}^2 + a\mathbf{X} + b$, care are rădăcinile complexe $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$.
- **5p** a) Să se determine a și b știind că f are rădăcina i.
- **5p b**) Să se calculeze $(\mathbf{x}_1 1)^2 + (\mathbf{x}_2 1)^2 + (\mathbf{x}_3 1)^2 + (\mathbf{x}_4 1)^2$.
- **5p** c) Să se determine valorile reale ale numerelor **a** și **b** știind că toate rădăcinile polinomului **f** sunt reale.

- 1. Se consideră sistemul $\begin{cases} x + ay + (a+b)z = a+b \\ x + a^2y + (a^2 + b^2)z = a^2 + b^2, \text{ unde } a, b \in \mathbb{R}. \\ x + a^3y + (a^3 + b^3)z = a^3 + b^3 \end{cases}$
- **5p** a) Să se calculeze determinantul matricei sistemului.
- **5p** \mid **b**) Să se determine $a,b \in \mathbb{R}$ astfel încât sistemul să fie compatibil determinat.
- **5p** c) Să se arate că, pentru orice valori rele ale parametrilor **a** și **b** sistemul are soluție.
 - **2.** Se consideră polinomul $\mathbf{f} = \hat{2}\mathbf{X} + \hat{1} \in \mathbb{Z}_4[\mathbf{X}]$.
- **5p** \mid **a**) Să se determine gradul polinomului \mid **f** \mid .
- **5p b)** Să se arate că polinomul **f** este element inversabil al inelului $(\mathbb{Z}_4[X], +, \cdot)$.
- **5p** c) Să se determine toate polinoamele $g \in \mathbb{Z}_4[X]$ de gradul 1 cu proprietatea că $g^2 = \hat{1}$.

- 1. Fie matricea $A \in \mathcal{M}_3(\mathbb{R})$, care are toate elementele egale cu 1.
- **5p** a) Să se demonstreze că $A^2 = 3A$.
- **5p b**) Să se calculeze $\det(\mathbf{I}_3 + \mathbf{A}^3)$.
- **5p** c) Să se demonstreze că dacă $B \in \mathcal{M}_3(\mathbb{R})$ este o matrice cu proprietatea AB = BA, atunci suma elementelor de pe fiecare linie și de pe fiecare coloană ale lui B este aceeași.
 - **2.** Fie $\varepsilon = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$ și $\mathbb{Q}(\varepsilon) = \{a + b\varepsilon | a, b \in \mathbb{Q}\}$.
- **5p** a) Să se arate că $\varepsilon^2 \in \mathbb{Q}(\varepsilon)$.
- **5p b**) Să se demonstreze că inversul oricărui element nenul din $\mathbb{Q}(\varepsilon)$ aparține mulțimii $\mathbb{Q}(\varepsilon)$.
- $\mathbf{5p} \ \Big| \ \mathbf{c}) \ \text{Să se arate că mulțimea} \ M = \Big\{ \mathbf{a}^2 \mathbf{ab} + \mathbf{b}^2 \, \Big| \ \ \mathbf{a}, \mathbf{b} \in \mathbb{Z} \Big\} \ \text{este parte stabilă a lui} \ \mathbb{Z} \ \text{în raport cu înmulțirea}.$

1. Fie
$$\mathbf{m} \in \mathbb{R}$$
 și $\mathbf{A} = \begin{pmatrix} 2 & 1 & -1 \\ -1 & \mathbf{m} & -1 \\ 3\mathbf{m} + 4 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

- **5p** a) Să se calculeze det(A).
- $5p \mid b$) Să se determine $m \in \mathbb{R}$ astfel încât matrice A să fie inversabilă.
- $[5p \mid c)$ Să se determine $m \in \mathbb{R}$ astfel încât $A^{-1} = A^*$.
 - **2.** Se consideră corpul $(\mathbb{Z}_3,+,\cdot)$ și polinoamele $f,g\in\mathbb{Z}_3,\ f=X^3-X,\ g=X^3+\hat{2}X+\hat{2}$.
- **5p** a) Să se determine rădăcinile din \mathbb{Z}_3 ale polinomului f.
- **5p b**) Să se arate că polinomul g este ireductibil în $\mathbb{Z}_3[X]$.
- $\mathbf{5p} \ \middle| \ \mathbf{c}) \text{ Să se determine toate polinoamele } \ \mathbf{h} \in \mathbb{Z}_3 \big[X \, \big] \text{ de gradul trei, astfel încât } \ \mathbf{h} \big(x \big) = g \big(x \big) \text{ , oricare ar fi } \ x \in \mathbb{Z}_3 \, .$

- 1. Se consideră sistemul de ecuații liniare $\begin{cases} x_1-x_2=a\\ x_3-x_4=b\\ x_1+x_2+x_3+x_4=1 \end{cases}, \text{ unde } a,b\in\mathbb{R}.$
- **5p** a) Să se arate că, pentru orice valori ale lui a și b, sistemul este compatibil.
- **5p b)** Să se determine $\mathbf{a}, \mathbf{b} \in \mathbb{R}$ astfel încât sistemul să admită o soluție $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4)$ cu proprietatea că $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ și $\mathbf{x}_1 + \mathbf{x}_2$ sunt termeni consecutivi ai unei progresii aritmetice.
- **5p** $| \mathbf{c} |$ Să se demonstreze că, dacă sistemul are o soluție cu toate componentele strict pozitive, atunci $\mathbf{a} + \mathbf{b} < 1$.
 - **2.** Fie polinomul $\mathbf{f} = \mathbf{X}^3 3\mathbf{X}^2 + 5\mathbf{X} + 1 \in \mathbb{R}[\mathbf{X}]$ și $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \in \mathbb{C}$ rădăcinile sale.
- **5p** | **a**) Să se calculeze $(1-x_1)(1-x_2)(1-x_3)$.
- 5p | b) Să se arate că polinomul f nu are nicio rădăcină întreagă.
- **5p** c) Să se calculeze $\mathbf{x}_1^2 \mathbf{x}_2 + \mathbf{x}_1^2 \mathbf{x}_3 + \mathbf{x}_2^2 \mathbf{x}_1 + \mathbf{x}_2^2 \mathbf{x}_3 + \mathbf{x}_3^2 \mathbf{x}_1 + \mathbf{x}_3^2 \mathbf{x}_2$.

- **1.** Fie M mulțimea matricelor de ordin 3 cu elemente reale având proprietatea că suma elementelor fiecărei linii este 0.
- **5p** a) Să se arate că, dacă $A, B \in M$, atunci $A + B \in M$.
- 5p b) Să se arate că orice matrice din M este neinversabilă.
- $[\mathbf{5p} \mid \mathbf{c})$ Să se demonstreze că, dacă $A \in M$, atunci $A^2 \in M$.
 - **2.** Se consideră inelele $\mathbb{Z}\left[\sqrt{2}\right] = \left\{a + b\sqrt{2} \mid a,b \in \mathbb{Z}\right\}$ și $\mathbb{Z}\left[\sqrt{3}\right] = \left\{a + b\sqrt{3} \mid a,b \in \mathbb{Z}\right\}$.
- **5p** a) Să se arate că, dacă $\mathbf{x} \in \mathbb{R}$ și $\mathbf{x}^2 = 3 + 2\sqrt{2}$, atunci $\mathbf{x} \in \mathbb{Z}\left[\sqrt{2}\right]$.
- **5p b**) Să se arate că $\mathbb{Z}\left[\sqrt{2}\right] \cap \mathbb{Z}\left[\sqrt{3}\right] = \mathbb{Z}$.
- **5p** c) Să se demonstreze că nu există morfisme de inele de la $\mathbb{Z}\left[\sqrt{2}\right]$ la $\mathbb{Z}\left[\sqrt{3}\right]$.

- **1.** Se consideră matricea $A = \begin{pmatrix} 1 & 2 \\ x & 4 \end{pmatrix}$, unde $x \in \mathbb{R}$.
- **5p** a) Să se determine $x \in \mathbb{R}$ știind că $A^2 = 5A$.
- **5p b)** Pentru $\mathbf{x} = 2$ să se calculeze \mathbf{A}^{2009} .
- **5p** c) Să se determine $x \in \mathbb{R}$ pentru care rang $(A + A^t) = 1$.
 - **2.** Fie $a,b,c \in \mathbb{R}$ şi polinomul $f = 2X^4 + 2(a-1)X^3 + (a^2+3)X^2 + bX + c$.
- **5p** a) Să se determine a,b,c, știind că a=b=c, iar restul împărțirii lui f la X+1 este 10.
- **5p** b) Știind că $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 \in \mathbb{C}$ sunt rădăcinile lui \mathbf{f} , să se calculeze $\mathbf{x}_1^2 + \mathbf{x}_2^2 + \mathbf{x}_3^2 + \mathbf{x}_4^2$.
- **5p** c) Să se determine $a,b,c \in \mathbb{R}$ și rădăcinile polinomului f în cazul în care f are toate rădăcinile reale.

- **1.** Fie matricea $A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ și mulțimea $G = \{X \in \mathcal{M}_2(\mathbb{R}) \mid AXA^t = O_2\}$, unde A^t este transpusa matricei A.
- 5p a) Să se arate că dacă $X, Y \in G$, atunci $X + Y \in G$.
- $\mathbf{5p} \mid \mathbf{b})$ Să se arate că, dacă $\mathbf{X} \in \mathbf{G}$, atunci suma elementelor lui \mathbf{X} este egală cu $\mathbf{0}$.
- **5p** c) Să se arate că dacă $X \in G$ și det X = 0, atunci $X^n \in G$ pentru orice $n \in \mathbb{N}^*$.
 - **2.** Se consideră polinomul $f = X^4 6X^3 + 18X^2 30X + 25 \in \mathbb{C}[X]$.
- **5p** a) Să se arate că polinomul f se divide cu $X^2 2X + 5$.
- 5p b) Să se arate că polinomul f nu are nicio rădăcină reală.
- **5p** | c) Să se arate că rădăcinile polinomului f au același modul.

- **1.** Se consideră matricea $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$.
- **5p** | a) Să se calculeze A^3 .
- **5p b**) Să se determine $(A \cdot A^t)^{-1}$.
- **5p** c) Să se rezolve ecuația $X^2 = A$, $X \in \mathcal{M}_2(\mathbb{R})$.
 - **2.** Fie $a, b \in \mathbb{R}$ şi polinomul $f = X^{30} 3X^{20} + aX^{10} + 3X^{5} + aX + b \in \mathbb{R}[X]$.
- **5p** a) Să se arate că restul împărțirii polinomului f la X +1 nu depinde de a.
- $[\mathbf{5p} \mid \mathbf{b})$ Să se determine $[\mathbf{a} \mid \mathbf{b} \mid \mathbf{b}]$ astfel încât restul împărțirii polinomului $[\mathbf{f} \mid \mathbf{a} \mid \mathbf{X}^2 \mathbf{X}]$ să fie $[\mathbf{X} \mid \mathbf{b}]$.
- **5p** c) Să se determine \mathbf{a} și \mathbf{b} astfel încât polinomul \mathbf{f} să fie divizibil cu $(\mathbf{X} 1)^2$.

- 1. Fie $a,b,c \in \mathbb{R}^*$ și matricea $A = \begin{pmatrix} a & a-b & a-b \\ 0 & b & b-c \\ 0 & 0 & c \end{pmatrix}$.
- **5p** a) Să se arate că A este matrice inversabilă.
- $\begin{array}{|c|c|c|c|c|c|} \textbf{5p} & \textbf{b}) \text{ Să se demonstreze că } A^n = \begin{pmatrix} a^n & a^n b^n & a^n b^n \\ 0 & b^n & b^n c^n \\ 0 & 0 & c^n \end{pmatrix}, \text{ oricare ar fi } n \in \mathbb{N}^*.$
- **5p** c) Să se calculeze A^{-1} .
 - **2.** Fie $f \in \mathbb{R}[X]$ un polinom astfel încât $f(X^2 + 3X + 1) = f^2(X) + 3f(X) + 1$ şi f(0) = 0.
- **5p** a) Să se determine f(-1).
- **5p b**) Să se determine restul împărțirii polinomului f la X-5.
- $5p \mid c$) Să se demonstreze că f = X.

- 1. Se consideră $n \in \mathbb{N}^*$ și matricea $A_n \in \mathcal{M}_n(\mathbb{R})$, care are elementele de pe diagonala principală egale cu 2 și restul elementelor egale cu 1.
- **5p** a) Să se calculeze $\det(2A_2)$.
- **5p** | **b**) Să se determine $\mathbf{x} \in \mathbb{R}$ pentru care $\det(\mathbf{A}_3 + \mathbf{x}\mathbf{I}_3) = 0$.
- **5p** c) Să se arate că A_4 are inversă, aceasta având elementele de pe diagonala principală egale cu $\frac{4}{5}$ și restul elementelor egale cu $-\frac{1}{5}$.
 - **2.** Fie $a,b,c \in \mathbb{R}$ și polinomul $f = X^3 aX^2 + bX c \in \mathbb{R}[X]$ cu rădăcinile $x_1,x_2,x_3 \in \mathbb{C}$.
- **5p** a) Să se determine a,b,c pentru care $x_1 = 2$ și $x_2 = 1 + i$.
- **5p b**) Să se arate că resturile împărțirii polinomul f la $(X-1)^2$ și la $(X-2)^2$ nu pot fi egale, pentru nicio valoare a parametrilor a, b, c.
- **5p** c) Să se arate că, dacă toate rădăcinile polinomului f sunt reale și a,b,c sunt strict pozitive, atunci x_1,x_2,x_3 sunt strict pozitive.

- 1. Pentru orice matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2\left(\mathbb{R}\right)$ se notează $tr\left(A\right) = a + d$.
- **5p** a) Să se verifice că $A^2 tr(A) \cdot A + (det A) \cdot I_2 = 0_2$.
- **5p** b) Să se demonstreze că, dacă $\operatorname{tr}(A) = 0$, atunci $A^2B = BA^2$, pentru orice matrice $B \in \mathcal{M}_2(\mathbb{R})$.
- **5p** c) Să se arate că dacă $\operatorname{tr}(A) \neq 0$, $B \in \mathcal{M}_2(\mathbb{R})$ și $A^2B = BA^2$, atunci AB = BA.
 - **2.** Fie $\mathbf{a}, \mathbf{b} \in \mathbb{R}$ şi polinomul $\mathbf{f} = \mathbf{X}^4 6\mathbf{X}^3 + 13\mathbf{X}^2 + \mathbf{a}\mathbf{X} + \mathbf{b} \in \mathbb{R}[\mathbf{X}]$.
- **5p** a) Să se calculeze suma pătratelor celor 4 rădăcini complexe ale polinomului f.
- **5p** b) Să se determine a,b astfel încât polinomul f să fie divizibil cu (X-1)(X-3).
- **5p c**) Să se determine **a**,**b** astfel încât polinomul **f** să aibă două rădăcini duble.

1. Fie
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$
.

- **5p** a) Să se arate că $\det(\mathbf{A} \cdot \mathbf{A}^t) \ge 0$.
- **5p b**) Să se arate că, dacă $\mathbf{A} \cdot \mathbf{A}^t = \mathbf{A}^t \cdot \mathbf{A}$, atunci $(\mathbf{a} \mathbf{d})(\mathbf{b} \mathbf{c}) = 0$.
- $\mathbf{5p} \quad \mathbf{c}) \text{ Să se demonstreze că, dacă } \left(\mathbf{A} \mathbf{A}^t\right)^{2009} = \mathbf{A} \mathbf{A}^t \text{ , atunci } \left|\mathbf{b} \mathbf{c}\right| \in \left\{0,1\right\}.$
 - **2.** Se consideră corpul $(\mathbb{Z}_7,+,\cdot)$.
- **5p** a) Să se rezolve în \mathbb{Z}_7 ecuația 2x = 3.
- **5p b)** Să se arate că polinomul $\mathbf{p} = \hat{2}\mathbf{X}^2 + \hat{4} \in \mathbb{Z}_7[\mathbf{X}]$ nu are rădăcini în \mathbb{Z}_7 .
- $\mathbf{5p} \quad \mathbf{c}) \text{ Să se demonstreze că funcția } \mathbf{f}: \mathbb{Z}_7 \to \mathbb{Z}_7 \text{ , } \mathbf{f}\left(\mathbf{x}\right) = \hat{2}\mathbf{x} \text{ este un automorfism al grupului } \left(\mathbb{Z}_7, +\right).$

- 1. Fie sistemul de ecuații liniare $\begin{cases} mx+y-z=1\\ x+y-z=2 \text{, unde } m\in\mathbb{R}.\\ -x+y+z=0 \end{cases}$
- **5p** a) Să se determine $m \in \mathbb{R}$ astfel încât matricea sistemului să aibă rangul 2.
- **5p b**) Să se determine $\mathbf{m} \in \mathbb{R}$ astfel încât sistemul să aibă soluții $(\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0) \in \mathbb{R}^3$ care verifică relația $\mathbf{x}_0 + \mathbf{y}_0 + \mathbf{z}_0 = 4$.
- **5p** c) Să se determine $\mathbf{m} \in \mathbb{Z}$ astfel încât sistemul să aibă o soluție unică $(\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0) \in \mathbb{Z}^3$.
 - **2.** Fie $p \in \mathbb{R}$ şi polinomul $f = X^4 4X + p \in \mathbb{R}[X]$.
- **5p** a) Să se determine p astfel încât polinomul f să fie divizibil cu X + 1.
- $\mathbf{5p}$ **b**) Să se determine \mathbf{p} astfel încât polinomul \mathbf{f} să aibă o rădăcină reală dublă.
- $[\mathbf{5p} \mid \mathbf{c})$ Să se arate că, pentru orice $\mathbf{p} \in \mathbb{R}$, polinomul \mathbf{f} nu are toate rădăcinile reale.

- $\textbf{1.} \text{ Fie matricele } A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \,, \ B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \, \text{ și funcția } f: \mathbb{R} \to \mathbb{R}, \ f(x) = \det(AA^t + xB) \,.$
- **5p** a) Să se calculeze AA^t.
- **5p b**) Să se arate că $f(0) \ge 0$.
- 5p | c) Să se arate că există $m, n \in \mathbb{R}$ astfel încât f(x) = mx + n, pentru oricare $x \in \mathbb{R}$.
 - 2. Se consideră mulțimea de numere complexe $G = \{\cos q\pi + i \sin q\pi | q \in \mathbb{Q}\}.$
- **5p** a) Să se arate că $\frac{1}{2} + i \frac{\sqrt{3}}{2} \in G$.
- **5p b**) Să se arate că G este parte stabilă a lui \mathbb{C} în raport cu înmulțirea numerelor complexe.
- **5p** c) Să se arate că polinomul $f = X^6 1 \in \mathbb{C}[X]$ are toate rădăcinile în G.

- **1.** Fie matricea $A = \begin{pmatrix} 3 & -2 \\ 6 & -4 \end{pmatrix}$.
- **5p** a) Să se demonstreze că $(I_2 + A)^2 = I_2 + A$.
- **5p b**) Să se demonstreze că mulțimea $\{A^n \mid n \in \mathbb{N}^*\}$ este finită.
- **5p** c) Să se rezolve ecuația $X^3 = A$, $X \in \mathcal{M}_2(\mathbb{R})$.
 - **2.** Fie $n \in \mathbb{N}$, $n \ge 3$, $a_0, a_1, ..., a_n \in \mathbb{Z}$ și polinomul $f = a_n X^n + a_{n-1} X^{n-1} + ... + a_1 X + a_0$.
- **5p** a) Să se arate că f(1) + f(-1) este număr par.
- **5p b**) Să se arate că, dacă **f** (2) și **f** (3) sunt numere impare, atunci polinomul **f** nu are nicio rădăcină întreagă.
- **5p** c) Să se arate că polinomul $g = X^3 X + 3a + 1$, $a \in \mathbb{Z}$, nu poate fi descompus în produs de două polinoame neconstante, cu coeficienți întregi.