§1. Производная функции в точке. Односторонние и бесконечные производные

Определение 1.1. Пусть функция y = f(x) определена на некоторой окрестности точки x_0 . Предел отношения $\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{\Delta y}{\Delta x}$ при $\Delta x \to 0$, если он существует и конечен, называется *производной* этой функции в точке x_0 и обозначается следующими символами: $f'(x_0), \frac{df(x_0)}{dx}, y'(x_0), \frac{dy}{dx}_{|x=x_0}, \dot{y}$.

Таким образом,

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}.$$
 (1.1)

Замечание 1.1. Символы $\frac{df(x_0)}{dx}$, $\frac{dy}{dx}$, $\frac{dy}{dx}$, $\frac{dy}{dx}$ были введены немецким математиком, философом и физиком Г. В. Лейбницем (1646-1716), а символы $f'(x_0)$, $y'(x_0)$ — французским математиком и механиком Ж. Л. Лагранжем (1736-1813). Символ \dot{y} ввёл И. Ньютон (1643-1727), в настоящее время он употребляется только в том случае, когда под независимой переменной понимается время.

Пример 1.1. Найти по определению f'(1), если $f(x) = x^3 - x$.

►
$$f'(1) = \lim_{\Delta x \to 0} \frac{\Delta f(1)}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\Delta x + 3(\Delta x)^2 + (\Delta x)^3}{\Delta x}$$
 (выражение для $\Delta f(1)$

приведено в примере 1.1 главы 4 раздела 4). Сократив оба члена дроби под знаком предела на Δx , получим $f'(1) = \lim_{\Delta x \to 0} (2 + 3\Delta x + (\Delta x)^2) = 2$.

Определение 1.2. Пусть функция y = f(x) определена на промежутке $(x_0 - \delta, x_0]$ $([x_0, x_0 + \delta))$, δ — некоторое положительное число. Если существует предел отношения $\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{\Delta y}{\Delta x}$ при $\Delta x \to -0$ ($\Delta x \to +0$), то он называется левой (правой) производной этой функции в точке x_0 и обозначается $f'_-(x_0)$ (или $f'_+(x_0)$). Итак,

$$f'_{-}(x_0) = \lim_{\Delta x \to -0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to -0} \frac{\Delta y}{\Delta x},$$
 (1.2)

$$f'_{+}(x_0) = \lim_{\Delta x \to +0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to +0} \frac{\Delta y}{\Delta x}.$$
 (1.3)

Замечание 1.2. Левая и правая производные объединяются термином односторонние производные.

Замечание 1.3. Из существования производной $f'(x_0)$ следует существование односторонних производных $f'_-(x_0)$, $f'_+(x_0)$ и равенство

$$f'_{-}(x_0) = f'_{+}(x_0) = f'(x_0) \tag{1.4}$$

(теорема 1.2 главы 3 раздела 4). Обратно, если существуют равные $f'_-(x_0)$ и $f'_+(x_0)$, то существует и $f'(x_0)$ и верно равенство (1.4). Если $f'_-(x_0)$ и $f'_+(x_0)$ существуют, но не равны, то функция f(x) не имеет производной в точке x_0 .

Пример 1.2. Показать, что не существует f'(-1), если f(x) = x | x + 1 |.

 $ightharpoonup \Delta f(-1) = f(-1 + \Delta x) - f(-1) = (-1 + \Delta x) |\Delta x|$ Из (1.2) и (1.3) имеем:

$$f'_{-}(-1) = \lim_{\Delta x \to -0} \frac{(-1 + \Delta x)(-\Delta x)}{\Delta x} = 1, \ f'_{+}(-1) = \lim_{\Delta x \to +0} \frac{(-1 + \Delta x)(\Delta x)}{\Delta x} = -1.$$

Поскольку $f'_{-}(-1) \neq f'_{+}(-1)$, то не существует f'(-1) (замечание 1.3).

Определение 1.3. Если существует $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \pm \infty$, то говорят, что в точке x_0 функция f(x) имеет бесконечную производную.

Пример 1.3. Показать по определению, что $f'(1) = +\infty$, если $f(x) = \sqrt[3]{x-1}$.

$$f'(1) = \lim_{\Delta x \to 0} \frac{\Delta f(1)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt[3]{1 + \Delta x - 1} - \sqrt[3]{1 - 1}}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\sqrt[3]{(\Delta x)^2}} = +\infty.$$

Аналогично вводится понятие *односторонних бесконечных производных*. **Пример 1.4.** Показать по определению, что $f'_{-}(1) = -\infty$, а $f'_{+}(1) = +\infty$, если $f(x) = \sqrt[3]{(x-1)^2}$.

$$f'_{-}(1) = \lim_{\Delta x \to -0} \frac{\Delta f(1)}{\Delta x} = \lim_{\Delta x \to -0} \frac{\sqrt[3]{(1 + \Delta x - 1)^2} - \sqrt[3]{(1 - 1)^2}}{\Delta x} = \lim_{\Delta x \to -0} \frac{1}{\sqrt[3]{\Delta x}} = -\infty,$$

$$f'_{+}(1) = \lim_{\Delta x \to +0} \frac{1}{\sqrt[3]{\Delta x}} = +\infty. \blacktriangleleft$$