CAS CS 210 - Computer Systems Fall 2016

PROBLEM SET 3 (PS3) (CACHING AND VIRTUAL MEMORY)
OUT: Nov 15
Due: Dec 6, 1:30 pm

NO LATE SUBMISSIONS WILL BE ACCEPTED

Problem 1

The following problem concerns basic cache lookups.

- The memory is byte addressable.
- Memory accesses are to 1-byte words (not 4-byte words).
- Physical addresses are 13 bits wide.
- The cache is 2-way set associative, with a 4 byte line size and 16 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the cache are as follows:

	2-way Set Associative Cache											
Index	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3
0	09	1	86	30	3F	10	00	0	99	04	03	48
1	45	1	60	4F	E0	23	38	1	00	BC	0B	37
2	EB	0	2F	81	FD	09	0B	0	8F	E2	05	BD
3	06	0	3D	94	9B	F7	32	1	12	08	7B	AD
4	C7	1	06	78	07	C5	05	1	40	67	C2	3B
5	71	1	0B	DE	18	4B	6E	0	B0	39	D3	F7
6	91	1	A0	B7	26	2D	F0	0	0C	71	40	10
7	46	0	B1	0A	32	0F	DE	1	12	C0	88	37

Part 1

The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that would be used to determine the following:

- CO The block offset within the cache line
- CI The cache index
- CT The cache tag

Part 2

For the given physical address, indicate the cache entry accessed and the cache byte value returned in hex. Indicate whether a cache miss occurs.

If there is a cache miss, enter "-" for "Cache Byte returned".

Physical address: 0A35

A. Physical address format (one bit per box)

12	11	10	9	8	7	6	5	4	3	2	1	0	
0	1	0	l	0	O	0	1	1	0		0	П	_

B. Physical memory reference

Parameter	Value
Byte offset	0x 01
Cache Index	0x 0≤
Cache Tag	0x 51
Cache Hit? (Y/N)	N
Cache Byte returned	0x —

Problem 3

After watching the presidential election you decide to start a business in developing software for electronic voting. The software will run on a machine with a 1024-hyte direct-mapped data cache with 64 byte blocks.

You are implementing a prototype of your software that assumes that there are 7 candidates. The C-structures you

are using are:

You have to decide between two alternative implementations of the routine that initializes the array vote_array. You want to choose the one with the better cache performance.

You can assume:

- sizeof(int) = 4
- vote_array begins at memory address 0
- The cache is initially empty.
- The only memory accesses are to the entries of the array vote_array. Variables i, j and k are stored in registers.

A. What percentage of the writes in the following code will miss in the cache?

```
for (i=0; i<16; i++) {
    for (j=0; j<16; j++) {
        vote_array[i][j].valid=0;
    }
}

for (i=0; i<16; i++) {
    for (j=0; j<16; j++) {
        for (k=0; k<7; k++) {
            vote_array[i][j].candidates[k] = 0;
    }
}

i(25c) + i(5c) = 2048 accesses
```

Total number of misses in the first loop: 128

Total number of misses in the second loop: 128

Overall miss rate for writes to vote_array: 12.5%

256 =

B. What percentage of the writes in the following code will miss in the cache?

```
for (i=0; i<16; i++) {
    for (j=0; j<16; j++) {
        for (k=0; k<7; k++) {
            vote_array[i][j].candidates[k] = 0;
        }
        vote_array[i][j].valid=0; ] 25(,)
}
```

,	PS3 - B00	k Problems	V	Vidya Akaron 11/21/16					
	4) 6.30 p.652 A. The size	20] → 8 sets . 4							
	8. Corrererororororo								
	5) le. 37 p. les								
j	function 1	N=64	N=60						
	sumA	257.	257.						
-	_ sum'B	100%	25%						
	sumC	507.	254.						
	6) 9.11 p. 877								
	VA → Ox 0270	2	_						
	13 12 0 12		4 5, 4 4	2 1 0					
	A. 00000			100					
	B. Parameter		Value Dr9						
	VPN TLB index	 -	0×1						
	- ILB tag		Or2						
	ILB hit?		<u> </u>						
	Page faul	+1	N						
	PPN		Ox 17						
	- U 0 9	0							
	D. Parameter		Nue	-					
	Byte off	et O	~ ~						
,	. Caele à	der 0	ж Г.						
	_ Cache t	<u> </u>	x17						
	· Cache hi	it ? / ^	1						
	Byte re	aturned -							

c and D do not need to be done; page fault!