SOUMYA DUTTA

Second year Graduate Student, Arizona Śtate University

Soumya Dutta

▼ sdutta46@asu.edu

+1 480-904-7193

Tempe, Arizona, USA

soumya-dutt n soumya-dutta1

EDUCATION

Doctor of Philosophy in Chemistry/Biochemistry 8/2022 - Present

School of Molecular Sciences, Arizona State University

Advisor - Dr. Abhishek Singharoy

Research - Computational Biophysics, development and application of Molecular Dynamics simulations

and Machine Learning on biomedical and biochemical applications.

GPA - 3.85 of 4.00 (Up until second semester)

7/2020 - 6/2022 **Master of Science in Chemistry** Indian Institute of Technology, Guwahati

Major focus in Physical and Computational Chemistry

CPI - 9.66 of 10.00

7/2017 - 6/2022 **Bachelor of Science in Chemistry** University of Calcutta, RKMRC Narendrapur

With Minors in Physics and Mathematics

CPI - 8.71 of 10.00

PROJECTS -

2/2023 - Present

Drug discovery focused:

Investigation of the origins of immunomodulatory drugs-resistance in myeloma patients using **Molecular Dynamics simulations**

In collaboration with Mayo Clinic

Contributions:

- Developed hypotheses on the potential point of failures of existing drugs due to particular mutations and deletions in substrate receptor of E3-ligase.
- Generated models to accurately depict the deletions in E3-Ligase.
- · Identified a conformationally-coupled disassembly pathway of the deformed E3-Ligase system from large-scale MD simulations.

4/2023 - Present

Molecular targeting of Cholangiocarcinoma: Overcoming drug resistive mutations

In collaboration with Mayo Clinic

Contributions:

- · Designing models and simulations to investigate the molecular reason for the failure of existing
- · Exploring the molecular characteristics of existing pharmaceuticals through MD simulations and incorporating this insight into the pharmacophore modeling of extensive drug libraries to overcome mutations.

5/2023 - Present

Conducting mechanistic investigations into the polymodal activation of human TRPV1 by heat, protons, and ligands, and elucidating the distinctions in their allosteric pathways

Contributions:

- · Designing coarse-grained simulations and normal mode analysis calculations to determine probable pathways for allosteric changes in the TRPV1 channel.
- · Finding suitable small molecules that will potentially be able to activate the proton and heat decoupled allosteric change, to minimize side effects.

12/2021 - 4/2022 Targeting the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) with synthetic/designer unnatural nucleoside analogs

Contributions:

- Designed Molecular docking and pharmacophore modeling of nucleoside analogs.
- · Designed MD simulations to investigate the binding kinetics of nucleoside analogs with RdRp of SARS-CoV-2 to test their efficacy.

Biophysics focused:

11/2022 - Present

Investigating the effect of catch-bond formation at the PDZ domain of junctional protein Afadin under mechanical stress.

Contributions:

- Conducted Steered Molecular Dynamics simulations replicating the stress conditions cell junctions face in biological conditions
- · Calculated probable free energy pathways in the event of catch-bond formation.

12/2022 - Present Investigating how biophysical constraints of foldability shaped the early selection of amino acids in the pre-cellular world.

Contributions:

- Created a comprehensive dataset of peptide sequences and structures by utilizing the ESMFold, AI model from META.
- · Created a new dataset of proteins with modifications in the peptide sequences to investigate their effects on folding.

PUBLICATIONS

Published:

2023

Bag SS, Sinha S, Dutta S, Baishya HJ, Paul S. Targeting the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) with synthetic/designer unnatural nucleoside analogs: an in silico study. J Mol Model. 2023 Nov 11;29(12):366. doi: 10.1007/s00894-023-05767-2. PMID: 37950101.

Under Preparation:

2023 - 2024 catch-bond formation at the PDZ domain of junctional protein Afadin under mechanical stress

2023 - 2024 Investigation of the origins of immunomodulatory drugs-resistance in myeloma patients using Molecular Dynamics simulation

AWARDS AND ACHIEVEMENTS ————————————————————————————————————		
2017	INSPIRE Scholarship	Department of Science and Technology (DST), Govt of India
2020	All India Ranking (AIR) 196 in IIT-JAM 2020	conducted by Indian Institute of Technology, Kanpur
2021	All India Ranking (AIR) 41 (JRF Qualified) in CSIR-UGC	NET Council of Scientific and Industrial Research, India
2022	All India Ranking (AIR) 213 in GATE-2022	conducted by Indian Institute of Technology Kharagpur

TECHNICAL SKILLS

Molecular Dynamics related

NAMD, GROMACS, MELD (Modeling Employed Limited Data), OpenMM, VMD, Pymol, Discovery Studio, AutoDock

Programming Languages

Python, Pytorch, TCL, BASH, Fortran

IT

Linux. HPC

Supercomputer

Arizona State University - AGAVE, SOL

Oak Ridge National Lab - FRONTIER (ALCC - Oak Ridge Leadership Computing Facility)

TEACHING EXPERIENCE -

8/2022 - Present **Mentor at Biosense Network** Arizona State University

· Taught high school students and teachers in Biosense network how to use VMD and NAMD to run molecular dynamics simulations.

8/2022 - 4/2023 Graduate Teaching Assistant

· Taught general chemistry to undergraduates.

8/2022 - present Lab Mentor

School of Molecular Sciences, Singharoy Lab

· Taught Biophysics to 2 undergraduate students and a high school student, and trained them in molecular dynamics simulations. One of the undergrads and the high school student are in the process of co-publishing with me.

CONFERNCES

2/2024 **Biophysical Society 2024** Philadelphia, Pennsylvania

School of Molecular Sciences

Accepted for poster presentation

EXTRACURRICULAR ACTIVITIES

10/2022 - Present Member at Biophysical Society Arizona Chapter

ASU and UA

REFERENCES -

Dr. Abhishek Singharoy (PhD advisor) Associate Professor, School of Molecular Sciences Arizona State University Tempe, Az Email - asinghar@asu.edu

Dr. Mitesh J. Borad, M.D.

Oncology (Medical) Mayo Clinic Comprehensive Cancer Center Phoenix, Az Email - Borad.Mitesh@mayo.edu