

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1804543 А3

(51)5 Е 21 В 29/10

ГОСУДАРСТВЕННОЕ ПАТЕНТНОЕ
ВЕДОМСТВО СССР
(ГОСПАТЕНТ СССР)

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К ПАТЕНТУ

(2) 4362860/03

(3) 25.06.90

(6) 1983 93 явл. № 11

(71) Всесоюзный научно-исследовательский
институт по строительству сква-
жин и бурению раствором

(72) А. Г. Яроц, В. Г. Никитченко, М. Г. Сисель-
ский, В. А. Мицкевич

(53) А. Г. Яроц

(56) Татент СССР № 2017451-кп, 285-37,
1985

Авторское свидетельство СССР

№ 907220, кн. № 216 29/02 1980

2

(54) СОЕДИНЕНИЕ ПЛАСТЫРЕЙ ДЛЯ РЕ-
МОНТА ОБСАДНЫХ КОЛОНН

(55) Использование при ремонте обсадных
колонн и отключений нефтяных и газовых
скважин. Сущность: концевые цилиндриче-
ские участки пластырей выполнены с ответ-
ственными выступами и впадинами в виде
кольцевых конических участков. Концевая
часть внутренней трубы выполнена с про-
дольными прорезями, длина которых меньше
длины соединенного участка.
Наибольшая толщина концевых участков в
зоне сопряжения выбирается по определен-
ному соотношению.

Изобретение относится к эксплуатации
нефтяных и газовых скважин, частности к соеди-
нению торцово-концевых пластырей, исполь-
зуемых при ремонте обсадных колонн и
отключении нефтяных и газовых пластов.

Целью изобретения является сохране-
ние герметичности соединения секций пла-
стыря после его распрессовки.

На фиг.1 представлено срединение сек-
ций пластира, на фиг.2 - сечение наружной
и внутренней секции в профильной части;
на фиг.3 - сечение пластира в месте их со-
единения.

В обсадную колонну 1 спускаются сек-
ции пластира, состоящие из наружной 2 и
внутренней 3 секций, профильно-фори-
рованных труб с цилиндрическим участком 4 в
зоне сопряжения, осаженным до описанной
окружности профильной части пластира и
имеющим толщину стенки 5 и 6, составляю-
щую 2/3 или менее их толщины в профиль-
ной части.

На наружной секции выполнены кони-
ческие кольцевые канавки 7, а на внутрен-
ней - конические выступы 8 и продольные
прорези 9.

Для изготовления пластира используют
две трубные заготовки длиной по 9 метров.
Их торфферуют по всей длине, оставляя не-
профилированными концевые участки дли-
ной до 250 мм. Этот участок определяет
длину сопряжения наружной и внутренней
секции пластира при их соединении. Цилин-
дрические концевые участки заготовок про-
тачивают, уменьшая их толщину,
обеспечивающую условие $S_1/S_2 \leq 2/3$, где
 S_1 - толщина каждой стенки на участке их
сопряжения, а S_2 - толщина стенки профиль-
но-форированых труб, причем на участке
внутренней секции пластира нарезают 3 ко-
нических выступа длиной до 70 мм с углом
наклона около 1° , а на участке наружной
секции пластира нарезают ответные для вы-
ступов конические канавки и заплечники.

(19) SU (11) 1804543 А3

BEST AVAILABLE COPY

которыми они входят при сборке секций над устьем скважины.

После этого вдоль образующей цилиндрических участков под углом 120° прорезаются три прорези шириной 2-3 мм, длиной не более 200 мм и отверстием диаметром 4-6 мм в нижней части прорези, что позволяет усилить прочностные свойства концевого участка секции.

Пластырь собирается на устье скважины. Сначала на фланге с расширяющимся концом конуса опускаются в скважину внутренние секции из пластико-цилиндрической вставки, а затем из нее цилиндрический участок вниз насаживается секция. Далее ставится втулочный заслон на начальную прорезь и прорезь волнистый внутренней секции. В фланцевую коническую вставку изнутри конические втулки в внутренней секции входят в замковое зацепление. После этого обрашивается дополнительное кольцо, которое осевое перемещение секции относительно конуса блокирует.

Собраные секции пластира спускают в скважину в вертикальном ремонтируемой колодце и раздвигают винтами с торцовющим устройством для полного контакта со стенками скважины.

Установление предложенного соединения гарантирует герметичность зоны на-

рушения обсадных колонн, обеспечивая герметичность соединения секций после его распрессовки в процессе ремонтно-изоляционных работ в скважине.

5

Формула изобретения

Соединение пластира для ремонта обсадных колонн, включающее сочененные посредством ответных выступов и впадин цилиндрические концевые участки продольно-гофрированных труб, отличающееся тем, что, с целью сохранения герметичности соединения после его распрессовки, выступы и впадины на концевых участках выполнены в виде кольцевых конических участков, при этом концевая часть внутренней трубы выполнена с продольными прорезями, длина которых меньше длины сочененного участка, а толщина стенки участков соединения выбирается из соотношения

25

$$\frac{S_1}{S_2} \leq \frac{2}{3}$$

где S_1 - толщина каждой стенки на участке их соединения;
 S_2 - толщина стенки продольно-гофрированных труб.

30

BEST AVAILABLE COPY

Фиг. 1

Фиг. 2

Фиг. 3

Редактор

Составитель А. Ярыш
Техред М. Моргентал

Корректор Л. Ливринц

Заявка 1074

Тираж

Подписьное

ВНИИГП Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул. Гагарина, 101

[state seal] Union of Soviet Socialist
 Republics
USSR State Patent Office
(GOSPATENT SSSR)

(19) SU (11) 1804543 A3
(51)5 E 21 B 29/10

PATENT SPECIFICATION

(21) 4862860/03
(22) June 25, 1990
(46) March 28, 1993, Bulletin No. 11
(71) All-Union Scientific-Research and
Planning Institute of Well Casing and
Drilling Muds
(72) A. T. Yarysh, V. G. Nikitchenko, M.
L. Kiselman, and V. A. Mishchenko
(73) [illegible]
(56) US Patent No. 2017451, cl. 285-
37 (1935).
USSR Inventor's Certificate No.
907220, cl. E 21 B 39/[illegible] (1980)
[illegible].

(54) CONNECTION OF PATCHES
FOR REPAIR OF CASINGS
(57) Use: In repair of casings and shut-in
of oil and gas wells.
Essence: Terminal cylindrical portions of
the patch are made with reciprocal ridges
and grooves in the form of circular conic
sections. The terminal portion of the
inner tube is made with longitudinal slots,
the length of which is less than the length
of the joined portion. The greatest
thickness of the terminal sections in the
joining zone is selected according to a
certain ratio. 3 drawings.

[vertically along right margin]

(19) SU (11) 1804543 A3

The invention relates to operation of oil and gas wells, in particular to connection of corrugated patches that can be used in repair of casings and shut-in of oil and gas formations.

The aim of the invention is to maintain leaktight sealing of the connection of patch sections after pressing.

Fig. 1 shows the connection of the patch sections; Fig. 2 shows a cross section of the outer and inner sections of the shaped portion; Fig. 3 shows a cross section of the patch where they are joined.

Patch sections are lowered into casing 1 that consist of outer 2 and inner 3 sections of longitudinally corrugated tubes with cylindrical portion 4 in the joining zone, swaged to the diameter of the described circumference of the shaped part of the patch and having wall thickness 5 and 6, equal to 2/3 or less of their thickness in the shaped part.

Circular conical grooves 7 are made in the outer section, while conical ridges 8 are made in the inner section.

Two tube blanks of length 9 meters each are used to make the patch. They are corrugated over the entire length, leaving uncorrugated the terminal portions, of length up to 250 mm. This portion determines the joining length of the outer and inner sections of the patch when they are joined together. The cylindrical terminal portions of the blanks are lathed, reducing their thickness, ensuring the condition $S_1/S_2 \leq 2/3$, where S_1 is the thickness of each wall in their joining portion, and S_2 is the wall thickness for the longitudinally corrugated tubes, where 3 conical ridges of length up to 70 mm with tilt angle of about 1° are cut in a portion of the inner patch section, and cut in a portion of the outer patch section are conical grooves reciprocal to the ridges [illegible]

which they are inserted in assembling the sections above the wellhead.

After this, along the generatrix of the cylindrical portions at an angle of 120°, three slots are cut of width 2-3 mm, length no greater than 200 mm, and a hole of diameter 4-5 mm is cut in the lower portion of the slot, which makes it possible to enhance the elastic properties of the terminal portion of the inner section.

The patch is assembled at the wellhead. First, inner section 3 of the patch is lowered downhole, cylindrical portion facing upward, on a rod with an expander tool, and then section 2 is forced downward onto its cylindrical portion. This becomes possible because of the presence of longitudinal slots 9 in the inner section. As a result, conical grooves 7 of the outer section and conical ridges 8 of the inner section lock together, [illegible] joining, eliminating axial movement of the sections relative to each other.

The assembled patch sections are lowered to the location of the damage to the string to be repaired, and are expanded [illegible] by the coring device until they are in close contact with the casing wall.

Use of the proposed patch connection makes it possible to seal off the damaged zone

of casings, ensuring leaktightness of the connection of the sections after they are pressed in during downhole repair and isolation operations.

Claim

A connection of patches for repair of casings, including cylindrical terminal portions of longitudinally corrugated tubes joined by means of reciprocal ridges and grooves, *distinguished by the fact that*, with the aim of keeping the connection leaktight after it is pressed in, the ridges and grooves on the terminal portions are implemented in the form of circular conic sections, where the terminal portion of the inner tube is implemented with longitudinal slots, the length of which is less than the length of the joined portion, and the wall thickness in the joining portions is selected from the relationship

$$\frac{S_1}{S_2} \leq \frac{2}{3}$$

where S_1 is the thickness of each wall in the portion where they are joined;
 S_2 is the wall thickness for the longitudinally corrugated tubes.

1804543

[see Russian original for figure]

A

A

A—A

[see Russian original for figure]

Fig. 2

B

B

[see Russian original for figure]

B—B

Fig. 1

Fig. 3

Compiler A. Yarysh
Editor Tech. Editor M. Morgental Proofreader L. Livrints

Order 1074

Run

Subscription edition

All-Union Scientific Research Institute of Patent Information and Technical and Economic
Research of the USSR State Committee on Inventions and Discoveries of the State
Committee on Science and Technology [VNIIPi]
4/5 Raushkaya nab., Zh-35, Moscow 113035

“Patent” Printing Production Plant, Uzhgorod, 101 ul. Gagarina

TRANSUPERFECT | TRANSLATIONS

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following Patents and Abstracts from Russian to English:

ATLANTA	<i>Patent 1786241 A1</i>
BOSTON	<i>Patent 989038</i>
BRUSSELS	<i>Abstract 976019</i>
CHICAGO	<i>Patent 959878</i>
DALLAS	<i>Abstract 909114</i>
DETROIT	<i>Patent 907220</i>
FRANKFURT	<i>Patent 894169</i>
HOUSTON	<i>Patent 1041671 A</i>
LONDON	<i>Patent 1804543 A3</i>
LOS ANGELES	<i>Patent 1686123 A1</i>
MIAMI	<i>Patent 1677225 A1</i>
MINNEAPOLIS	<i>Patent 1698413 A1</i>
NEW YORK	<i>Patent 1432190 A1</i>
PARIS	<i>Patent 1430498 A1</i>
PHILADELPHIA	<i>Patent 1250637 A1</i>
SAN DIEGO	<i>Patent 1051222 A</i>
SAN FRANCISCO	<i>Patent 1086118 A</i>
SEATTLE	<i>Patent 1749267 A1</i>
WASHINGTON, DC	<i>Patent 1730429 A1</i>
	<i>Patent 1686125 A1</i>
	<i>Patent 1677248 A1</i>
	<i>Patent 1663180 A1</i>
	<i>Patent 1663179 A2</i>
	<i>Patent 1601330 A1</i>
	<i>Patent SU 1295799 A1</i>
	<i>Patent 1002514</i>

PAGE 2
AFFIDAVIT CONTINUED
(Russian to English Patent/Abstract Translations)

Kim Stewart

Kim Stewart
TransPerfect Translations, Inc.
3600 One Houston Center
1221 McKinney
Houston, TX 77010

Sworn to before me this
9th day of October 2001.

Maria A. Serna

Signature, Notary Public

Stamp, Notary Public

Harris County

Houston, TX