10.637: IN CLASS WORKSHEET, LAB 5

This worksheet should be filled in to the best of your ability during in-class time and returned to myself or the TA at

			23 or uploaded to ork with a partner a	•		()		1
~~	Wenha		<u>*</u>		<u> </u>		<u> </u>	
A. C ₂ H ₄ bas	sis set	t extrapolati	on energies					
1. What is	the o	difference be	tween HF/cc-p	VTZ and th	ne comp	lete basi	is set res	ult from the
			answer to kcal/1		0023			
2. Which cl	noice	of $n-1$ and	n in the two-p	oint formula	gives t	he close	st agreem	ent with the
		y fitting form			S		υ	
			e: planar or pyra					
			ne total energy (in					
•			*/6-311++G(d,p					
bent structure	with	respect to the	planar structure					ıl.
		TO 2 G	E _{planar} (Ha)	E _{bent} (Ha)	Δ	E (kcal/r	nol)	
		TO-3G	-55.438	-55.455		-11.1		
		-31G	-56.166	-56.1		-0.000	63	
		-31G*	-56.174	-56.18	-	-6.51		
	6	-311++G(d,p	-56.207	-56.2	:15	-4.63		
		`	0-3G/6-31G/6-3	1G*), which	one giv	es the m	ost incor	rect ∆E with
respect to th	e larg	ge basis (6-31	$1++G(d,p)$?_	STO-3	G			
3. Of the th	ree ba	asis sets (STO	D-3G/6-31G/6-3	31G*) which	one giv	es the m	ost accu	rate ∆E with
respect to th	e larg	ge basis (6-31	1++G(d,p))?_	6-31	G*	_		
4. Fill in the t	able b	elow with the	N-H distance (in	Å) and H-N-	H angle ((in degree	s) you obta	ained for each
			set (STO-3G/6-3	,	_	` •	, •	
,		,	d(N-H) _{bent} (Å)	d(N-H) _{pla}	0		·H _{bent} (°)	
	STC		1.0032	1.005	5	104.	2	
	6-31		0.9913	0.991	4	116.	1	
	6-31	G*	1.0025	0.988	5	107.	2	
	6-31	1++G(d,p)	1.0003	0.987	5	108.	3	
5. Of the thr	ee ba	sis sets (STO	-3G/6-31G/6-3	1G*), which	gives th	e best ag	reement i	for the planar
ammonia N	-H bo	nd length wit	th respect to 6-3	11++G(d,p)	?	6-31G*		_
6. Of the thi	ee ba	sis sets (STC	0-3G/6-31G/6-3	1G*, which	gives the	e worst a	agreemen	t for the bent
		`	-311++G(d,p)?		C		S	
C. Orthogo	nal b	asis set cont	ributions: the t	etracene mo	olecule.			
_			total energy you			is set for t	he tetracer	ne molecule.
		6-31G	6-31G**	6-311G	6-31+-		6-311++	
E (Ha)		-688.380	-688.640	-688.491	-688	3.498	-688.76	1
			the rel. energy i	,	•			
measure the	conti	ribution of tri	ple-zeta/double	-zeta split va	lence, p	olarizatio	on, and di	ffuse:
triple-zeta split valence polarization diffuse functions								

relative E (kcal/mol) -69.6 -163.2 -74.0

Hint: If you don't remember which symbol corresponds to what basis function, consult your notes

C	\boldsymbol{T}		_
from	IOI	pic	Э.

- 3. Rank the contributions from largest to smallest: triple-zeta split valence (i.e., vs double-zeta split valence), polarization, or diffuse functions according to their contribution to the total energy. *Put the rank order to the left of each contribution below*:
- 3 triple-zeta split valence
- ___ polarization
- **2** diffuse functions
- 4. Estimate the energy (in Ha) of the tetracene molecule at the HF/6-311++G(d,p) level using the additivity concept discussed in class. ______688.869
- 5. What % of the energy difference between HF/6-311++G(d,p) and HF/6-31G did the additivity concept estimate recover?
- 6. What % of the total wall time did the sum of the four needed individual calculations that you carried out take vs. the large calculation result? 71%
- 7. If we gave you a much bigger molecule to study that had > 50 heavy atoms, how do you expect your answer to the last question to change? _____ the time will differ more largely