CLAIMS

WHAT IS CLAIMED:

1	1. A method for dynamically reconfiguring a computing system, the method
2	comprising:
3	detecting a predetermined condition triggering a reconfiguration of the computing
4	system; and
5	dynamically reconfiguring a signal path affected by the condition from a first mode to
6	a second mode responsive to detecting the condition.
1	2. The method of claim 1, wherein detecting the predetermined condition
2	includes one of:
3	detecting a failure;
4	detecting an opportunity to repair a previously detected failure, and
5	detecting an opportunity to take a system domain affected by the condition off-line so
6	that other system domains do not have to be reconfigured.
1	3. The method of claim 2, wherein the computing system includes at least one
2	system control board and wherein detecting the failure includes detecting the failure from the
3	system control board.
1	4. The method of claim 1, wherein the computing system includes a plurality of
2	system domains and detecting the predetermined condition includes detecting the
3	predetermined condition from one of the system domains.
1	5. The method of claim 4, wherein the computing system includes at least one
2	system control board and the method further comprises notifying the system control board of
3	the error from an affected system domain.
1	6. The method of claim 2, wherein detecting the failure includes detecting the
2	failure during normal operations.
1	7. The method of claim 1, wherein dynamically reconfiguring the signal path
2	includes:
3	configuring an I/O switch defining a first end of the affected signal path from the first

to the second mode; and

2

2

3

б

1

2

3

1

2

1

5

6

2

configuring a crossbar switch electrically defining a second end of the affected signal	al
path from the first mode to the second mode.	

- 8. The method of claim 1, further comprising defining a plurality of system domains between which the affected signal path runs.
- 9. The method of claim 8, wherein configuring the affected system domains includes:
 - configuring a first switch in a first affected domain defining a first end of the affected signal path from the first to the second mode; and
 - configuring a crossbar switch defining a second end of the affected signal path from the first mode to the second mode.
- 10. The method of claim 8, wherein the computing system includes a system control board and configuring the affected system domains includes configuring the system domains from the system control board.
 - 11. The method of claim 1, further comprising: operating the affected signal path in the first mode prior to reconfiguration; and operating the affected signal path in the second mode subsequent to the reconfiguration.
 - 12. The method of claim 11, wherein:
 - operating the affected signal path in the first mode includes separating a plurality of information in a transaction into two messages and transmitting the two messages in parallel, each on a respective half of the affected signal path; and operating the affected signal path in the second mode includes transmitting the two messages in series on a single half of the affected signal path.
- 13. The method of claim 1, wherein dynamically reconfiguring the signal path includes:

disabling the affected signal path;

reconfiguring the hardware elements of the disabled signal path from the first mode to the second mode; and

re-enabling the signal path.

1	14. The method of claim 13, wherein reconfiguring the hardware elements of the
2	signal path includes:
3	configuring a first switch defining a first end of the affected signal path from the first
4	to the second mode;
5	configuring a crossbar switch defining a second end of the affected signal path from
6	the first mode to the second mode.
1	15. The method of claim 1, wherein dynamically reconfiguring the affected signal
2	path includes dynamically reconfiguring the affected signal path from a normal mode to a
3	degraded mode.
1	16. The method of claim 1, wherein dynamically reconfiguring the affected signal
2	path includes dynamically reconfiguring the afected signal path from a degraded mode to a
3	normal mode.
1	17. A computing system, comprising:
1	a plurality of I/O switches;
2	a crossbar switch;
3	·
4	a plurality of signal paths, each signal path being defined by one of the I/O switches
5	and the crossbar switch; and
6	a system controller capable of detecting a condition triggering a reconfiguration and
7	dynamically reconfiguring at least one of the signal paths affected by the
8	condition from a first mode to a second mode.
1	18. The computing system of claim 17, wherein the system controller is capable of
2	detecting one of:
3	detecting a failure;
4	detecting an opportunity to repair a previously detected failure, and
5	detecting an opportunity to take a system domain affected by the condition off-line so
6	that other system domains do not have to be reconfigured.
1	19. The computing system of claim 18, wherein the computing system includes at

H - 1 - 1

least one system control board.

3

2

1

2

3

5

1

2

3

1

2

3

5

6

1

2

- 20. The computing system of claim 18, wherein detecting the failure includes detecting the failure during normal operations.
- 21. The computing system of claim 17, wherein dynamically reconfiguring the signal path includes:

configuring the I/O switch from the first to the second mode; configuring the crossbar switch from the first mode to the second mode.

- 22. The computing system of claim 17, further comprising a plurality of system domains between which the affected signal path runs.
 - 23. The computing system of claim B70, wherein:

the first mode includes separating a plurality of information in each transaction into two messages and transmitting the two messages in parallel; and

the second mode includes transmitting the two messages in series on a single half of the signal path.

24. The computing system of claim 17, wherein dynamically reconfiguring the signal path includes:

disabling the affected signal path;

reconfiguring the hardware elements of the disabled signal path from the first mode to the second mode;

re-enabling the signal path; and

repeating the previous three steps if a deadlock occurs.

- 25. The computing system of claim 24, wherein reconfiguring the hardware elements of the signal path includes:
 - configuring a first switch defining a first end of the signal path from the first to the second mode; and
 - configuring a crossbar switch defining a second end of the signal path from the first mode to the second mode.
- 26. The computing system of claim 17, wherein dynamically reconfiguring a signal path affected by the condition from a first mode to a second mode includes

4

3

- dynamically reconfiguring the signal path affected condition from a normal mode to a degraded mode.
 - 27. The computing system of claim 17, wherein dynamically reconfiguring a signal path affected by the condition from a first mode to a second mode includes dynamically reconfiguring the signal path affected condition from a degraded mode to a normal mode.