$$t = 0.00$$

La dynamique moléculaire de la fonte des glaces

La dynamique moléculaire: self assembling Peptide

The Washington Post - Corona simulator -

https://www.washingtonpost.com/graphics/2020/world/corona-simulator/

$$E = \frac{1}{2} \sum_{i=1}^{N} m_i \overrightarrow{v}_i^2 = const \quad (1) \qquad \overrightarrow{F} = \sum_{i=1}^{N} \overrightarrow{F}_i = \sum_{i=1}^{N} \overrightarrow{p}_i = 0 \quad (2)$$

$$t = 0.00$$

$$\overrightarrow{F} = \sum_{i}^{N} \overrightarrow{F}_{i} = \sum_{i}^{N} \overrightarrow{p}_{i} = 0$$
 (2)

Entre les collisions:

$$\overrightarrow{v}_i = const$$

$$\overrightarrow{r}_i(t) = \overrightarrow{r}_i(0) + t \cdot \overrightarrow{v}_i \quad (3)$$

Temps de collision :

$$(1) \Rightarrow (\overrightarrow{v}_1)^2 + (\overrightarrow{v}_2)^2 = (\overrightarrow{v}_1')^2 + (\overrightarrow{v}_2')^2$$

$$(2) \Rightarrow \overrightarrow{v}_1 + \overrightarrow{v}_2 = \overrightarrow{v}_1' + \overrightarrow{v}_2'$$

Temps de collision ?

$$(\overrightarrow{v}_1)^2 + (\overrightarrow{v}_2)^2 = (\overrightarrow{v}_1')^2 + (\overrightarrow{v}_2')^2$$
 (1)
$$\overrightarrow{r}_i(t) = \overrightarrow{r}_i(0) + t \cdot \overrightarrow{v}_i$$
 (3)
$$\overrightarrow{v}_1 + \overrightarrow{v}_2 = \overrightarrow{v}_1' + \overrightarrow{v}_2'$$
 (2)

$$t = 0.00$$

PRINCIPE DE BASE

1) Trouvez la collision la plus proche dans le futur!

$$t_{c}$$

2) Déplacez toutes les particules jusqu'au moment de la collision !

$$x_i \rightarrow x_i(t_c)$$

3) Mettrez à jour les vitesses des particules impliquées dans la collision.

$$v_{x}(k) \rightarrow v_{x}'(k)$$

4) Revenez au point 1).

$$(\overrightarrow{v}_1)^2 + (\overrightarrow{v}_2)^2 = (\overrightarrow{v}_1')^2 + (\overrightarrow{v}_2')^2$$
 (1)
$$\overrightarrow{r}_i(t) = \overrightarrow{r}_i(0) + t \cdot \overrightarrow{v}_i$$
 (3)
$$\overrightarrow{v}_1 + \overrightarrow{v}_2 = \overrightarrow{v}_1' + \overrightarrow{v}_2'$$
 (2)

$$t = 0.00$$

PRINCIPE DE BASE

1) Trouvez la collision la plus proche dans le futur!

 t_{α}

► <u>Tableau des événements:</u>

$$(\overrightarrow{v}_1)^2 + (\overrightarrow{v}_2)^2 = (\overrightarrow{v}_1')^2 + (\overrightarrow{v}_2')^2 \quad (1) \qquad \overrightarrow{r}_i(t) = \overrightarrow{r}_i(0) + t \cdot \overrightarrow{v}_i \quad (3)$$

$$\overrightarrow{v}_1 + \overrightarrow{v}_2 = \overrightarrow{v}_1' + \overrightarrow{v}_2' \quad (2)$$

$$t = 0.00$$

- 1) Trouvez la collision la plus proche dans le futur!
- 0 < EventArray[k].time < EventArray[i].time

 NextEvent = k
- 2) Déplacez toutes les particules jusqu'au moment de la collision !

$$x_i \to x_i(t_c)$$

PArray = [P_0,..., P_(N-1)] P_i = [x, y, vx, vy]

(3) \Rightarrow PArray[i].x += PArray[i].vx * EventArray[k].time

$$(\overrightarrow{v}_1)^2 + (\overrightarrow{v}_2)^2 = (\overrightarrow{v}_1')^2 + (\overrightarrow{v}_2')^2$$
 (1)
$$\overrightarrow{r}_i(t) = \overrightarrow{r}_i(0) + t \cdot \overrightarrow{v}_i$$
 (3)
$$\overrightarrow{v}_1 + \overrightarrow{v}_2 = \overrightarrow{v}_1' + \overrightarrow{v}_2'$$
 (2)

$$t = 0.15$$

1) Trouvez la collision la plus proche dans le futur!

2) Déplacez toutes les particules jusqu'au moment de la collision !

(3) ⇒ PArray[i].x += PArray[i].vx * EventArray[k].time

3) Mettrez à jour les vitesses des particules impliquées dans la collision.

PRINCIPE DE BASE

1) Trouvez la collision la plus proche dans le futur!

 t_c

PRINCIPE DE BASE

1) Trouvez la collision la plus proche dans le futur!

 t_c

2) Déplacez toutes les particules jusqu'au moment de la collision!

$$x_i \to x_i(t_c)$$

PRINCIPE DE BASE

1) Trouvez la collision la plus proche dans le futur!

 t_c

2) Déplacez toutes les particules jusqu'au moment de la collision!

$$x_i \to x_i(t_c)$$

3) Mettrez à jour les vitesses des particules impliquées dans la collision.

$$v_{x}(k) \rightarrow v_{x}'(k)$$

PRINCIPE DE BASE

1) Trouvez la collision la plus proche dans le futur!

 t_{c}

PRINCIPE DE BASE

$$,\epsilon \geq 0$$

PRINCIPE DE BASE

$$, \epsilon \geq 0$$

PRINCIPE DE BASE

1) Trouvez la collision la plus proche dans le futur!

2) Déplacez toutes les particules jusqu'au moment de la collision!

$$x_i \to x_i(t_c)$$

$$, \epsilon \geq 0$$

PRINCIPE DE BASE

1) Trouvez la collision la plus proche dans le futur!

 t_{α}

2) Déplacez toutes les particules jusqu'au moment de la collision!

$$x_i \to x_i(t_c)$$

3) Mettrez à jour les vitesses des particules impliquées dans la collision.

$$v_{x}(k) \to v_{x}'(k)$$

$$\epsilon \ge 0$$

PRINCIPE DE BASE

$$, \epsilon \geq 0$$

PRINCIPE DE BASE

PRINCIPE DE BASE

PRINCIPE DE BASE

1) Trouvez la collision la plus proche dans le futur!

 ι_{c}

PRINCIPE DE BASE

PRINCIPE DE BASE

1) Trouvez la collision la plus proche dans le futur!

 t_{c}

PRINCIPE DE BASE

$$, \epsilon \geq 0$$

https://github.com/JulianeUta/TP_Programmation2020_ForStudents

Branch: master ▼ New pull request	Create new file
JulianeUta update	
BooleanExamples	cleanup
Examples	update
InstallationInstructions	clear trouble shooting gnuplot
Pointer	Cation with function examples
RGBFigures	Wac Wac War
MDFlexBoxRadiusMass.zip	init bug
MDgtkBasicCodeWin7.zip	/Isys2 terminal
MyFirstCode.zip	update
RandomNumbers.zip	correct mixed up file names

Pas de temps constants

Pas de temps constants

$$t = dt + dt + dt + \dots$$


```
EventArray[0].type = animation;
EventArray[0].time = dt;
EventArray[0].ia = -1;
EventArray[1]
```

EventArray[4*N]

Do or not do.
[There is no try.]

PRINCIPE DE BASE

1) Trouvez l'événement le plus proche dans le futur! NextEvent = k

2)
$$p[i].x += p[i].vx * e[k].time$$

EventArray[0].time = ?

ELSE:

$$v_{\chi}(k) \rightarrow v_{\chi}'(k)$$

EventArray[0].time = ?