ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Лабораторная работа № 2.1.6 **Эффект Джоуля–Томсона**

Дудаков Семён Группа Б01-303

Долгопрудный, 2024 г.

Цель работы: 1) Определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; 2) вычисление по результатам опытов коэффициентов Вандер-Ваальса «а» и «b».

В работе используются: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

1 Теоретическая часть

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (рис. 1). Трубка 1 хорошо тепло-изолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля—Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными сечениями I и II трубки (до перегородки и после нее). Пусть, для определенности, через трубку прошел 1 моль углекислого газа; μ – его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1, P_1, U_1 и V_2, P_2, U_2 . Для того чтобы ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right). \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu \left(v_2^2 - v_1^2 \right). \tag{2}$$

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля—Томсона газ испытывает в пористой перегородке существенное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула (1) становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью уравнения (2). Процесс Джоуля–Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость газа с обеих сторон трубки достаточно

мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. В силу сохранения энтропии в случае реального газа получаем:

$$\mu_{\text{Д-T}} = \frac{\Delta T}{\Delta P} \approx \frac{(2a/RT) - b}{C_P}.$$
 (3)

Из формулы (3) видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0,$$

т. е. газ при расширении охлаждается ($\Delta T < 0$, так как всегда $\Delta P < 0$). В обратном случае (малые a)

$$\frac{\Delta T}{\Delta P} < 0,$$

т. е. газ нагревается ($\Delta T > 0$, так как по-прежнему $\Delta P < 0$).

Этот результат нетрудно понять из энергетических соображений. Как мы уже знаем, у идеального газа эффект Джоуля—Томсона отсутствует. Идеальный газ отличается от реального тем, что в нем можно пренебречь потенциальной энергией взаимодействия молекул. Наличие этой энергии приводит к охлаждению или нагреванию реальных газов при расширении. При больших а велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении — при расширении газа — возрастает. Возрастание потенциальной энергии молекул происходит за счет их кинетической энергии — температура газа при расширении падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при больших значениях b.

Как следует из формулы (3), при температуре

$$T_{\text{инв}} = \frac{2a}{Rb}$$

коэффициент $\mu_{\text{Д-T}}$ обращается в нуль. По формулам связи параметров газа Ван-дер-Ваальса с критическими параметрами получаем:

$$T_{\text{\tiny MHB}} = \frac{27}{4} T_{\text{\tiny Kp}}.\tag{4}$$

При температуре $T_{\text{инв}}$ эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{Д-T}} > 0$, газ охлаждается), выше $T_{\text{инв}}$ эффект отрицателен ($\mu_{\text{Д-T}} < 0$, газ нагревается).

Вернемся к влиянию правой части уравнения (2) на изменение температуры расширяющегося газа. Для этого сравним изменение температуры, происходящее вследствие эффекта Джоуля—Томсона, с изменением температуры, возникающим из-за изменения кинетической энергии газа. Увеличение кинетической энергии газа вызывает заметное и приблизительно одинаковое понижение его температуры как у реальных, так и у идеальных газов. Поэтому при оценках нет смысла пользоваться сложными формулами для газа Ван-дер-Ваальса.

Заменяя в формуле (2) U через $C_V T$ и PV через RT, найдем

$$(R + C_V) (T_1 - T_2) = \mu (v_2^2 - v_1^2) / 2$$

или

$$\Delta T = \frac{\mu}{2C_P} \left(v_2^2 - v_1^2 \right).$$

В условиях нашего опыта расход газа Q на выходе из пористой перегородки не превышает $10~{\rm cm}^3/{\rm c}$, а диаметр трубки равен $3~{\rm mm}$. Поэтому

$$v_2 <= \frac{4Q}{\pi d^2} = \frac{4 \cdot \text{cm}^3/\text{c}}{3.14 \cdot (0.3)^2 \text{ cm}^2} \approx 140 \text{ cm/c}.$$

Скорость v_1 газа у входа в пробку относится к скорости v_2 у выхода из нее как давление P_2 относится к P_1 . В нашей установке $P_1=4$ атм, а $P_2=1$ атм, поэтому

$$v_1 = \frac{P_2}{P_1} v_2 = 35 \text{ cm/c}.$$

Для углекислого газа $\mu = 44 \text{ г/моль}, C_P = 40 \text{ Дж/(моль·К)};$ имеем

$$\Delta T = \frac{\mu}{2C_P} \left(v_2^2 - v_1^2 \right) \approx 7 \cdot 10^{-4} \text{ K}.$$

Это изменение температуры ничтожно мало по сравнению с измеряемым эффектом (несколько градусов).

В данной лабораторной работе исследуется коэффициент дифференциального эффекта Джоуля—Томсона для углекислого газа. По экспериментальным результатам оценивается коэффициент теплового расширения, постоянные в уравнении Ван-дер-Ваальса и температура инверсии углекислого газа. Начальная температура газа T_1 задается термостатом. Измерения проводятся при трех температурах: комнатной, 30 °C и 50 °C.

2 Экспериментальная установка

Рис. 1: Схема установки дял изучения эффектра Джоуля-Томсона

Схема установки для исследования эффекта Джоуля–Томсона в углекислом газе представлена на рисунке 1. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d=3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинных каналов. Пористость и толщина пробки (l=5 мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений $\Delta P=4$ атм (расход газа составляет около $10~{\rm cm}^3/{\rm c}$); при этом в результате эффекта Джоуля–Томсона создается достаточная разность температур.

Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется термометром $T_{\rm B}$, помещенным в термостате. Требуемая температура воды устанавливается и поддерживается во время эксперимента при помощи контактного термометра $T_{\rm K}$.

Давление газа в трубке измеряется манометром M и регулируется вентилем B (при открывании вентиля B, т. е. при повороте ручки против часовой стрелки, давление P_1 повышается). Манометр M измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Так как углекислый газ после пористой перегородки выходит в область с атмосферным давлением P_2 , то этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки $\Delta P = P_1 - P_2$.

Разность температур газа до перегородки и после нее измеряется дифференциальной термопарой медь – константан. Константановая проволока диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к цифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счет конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создает перепада давлений между внутренней полостью трубы и атмосферой.

3 Ход работы

Во время проведения эксперимента температура и давление в комнате были соответственно равны $T_{\kappa}=23.4^{\circ}C$ и $p_0=100.1$ к Π а.

Таблица 1: Результаты показаний вольтметра в зависимости от разности давления

	$T = 17^{\circ}C$	$T = 25^{\circ}C$	$T = 35^{\circ}C$	$T = 50^{\circ}C$			
Δp , бар	ΔU , мкВ						
4	175	164	159	148			
3.5	152	142	132	125			
3.0	126	121	114	108			
2.5	97	92	88	83			
2.0	86	78	70	63			
1.5	64	55	45	48			
1.0	40	38	35	24			
0.5	12	12	12	12			

Погрешности показаний приборов составили $\sigma_p = 0.1$ бар и $\sigma_U = 2$ мкВ.

Также для последующей обработки данных необходимо будет учитывать зависимость от температуры чувствительности термопары медь—константан.

Таблица 2: Зависимости приведённого напряжения от температуры

Температура, °С	0-10	10-20	20-30	30-40	40-50
мк $\mathrm{B}/^{\circ}C$	38,9	39,8	40,7	41,6	42,5

4 Обработка результатов измерений

По данным в таблицах 1 и 2 построим график зависимости $\Delta T(\Delta p)$ (3).

Рис. 2: Зависимость $\Delta T(\Delta p)$

Рис. 3: Зависимость $\mu(T)$

Из наклона графиков найдем соответствующие коэффициенты:

$$\begin{array}{l} \mu_{17} = 1.12 \pm 0.04 \ K/\text{fap}, \ \sigma_{\mu} = 4\%; \\ \mu_{25} = 1.05 \pm 0.07 \ K/\text{fap}, \ \sigma_{\mu} = 7\%; \\ \mu_{35} = 0.99 \pm 0.04 \ K/\text{fap}, \ \sigma_{\mu} = 4\%; \\ \mu_{50} = 0.93 \pm 0.04 \ K/\text{fap}, \ \sigma_{\mu} = 4\%. \end{array}$$

Вычислим параметры газа Ван-дер-Ваальса, используя коэффициенты $\mu_{\text{Д-T}}$, полученные для разных пар температур.

Пользуясь формулой (3), получим:

$$a = \frac{(\mu_1 - \mu_2) C_P R T_1 T_2}{2 (T_2 - T_1)},$$
$$b = \frac{C_P (\mu_2 T_2 - \mu_1 T_1)}{T_1 - T_2}.$$

После вычислений были получены следующие величины:

$$a_{17-25} = 0.78 \pm 0.09 \frac{\Pi a \cdot M^6}{MOJIb^2}, \, \sigma_a = 11,5\%;$$

$$a_{35-50} = 1.36 \pm 0.16 \frac{\Pi a \cdot M^6}{MOJIb^2}, \, \sigma_a = 11,5\%;$$

$$b_{17-25} = 9.18 \pm 0.92 \cdot 10^{-5} \frac{M^3}{MOJIb}, \, \sigma_b = 10\%;$$

$$b_{35-50} = 21.0 \pm 2.0 \cdot 10^{-5} \frac{M^3}{MOJIb}, \, \sigma_b = 10\%.$$

Сверим полученные результаты с табличными. Согласно справочнику для углекислого газа

$$a = 0.36 \frac{\text{\Pi a} \cdot \text{M}^6}{\text{MOJIb}^2};$$

 $b = 4.2 \cdot 10^{-5} \frac{\text{M}^3}{\text{MOJIb}}.$

Полученные данные значительно отличаются от табличных.

Используя формулу (4), по полученным параметрам газа Ван-дер-Ваальса вычислим $T_{\text{инв}}$. Также оценим погрешность по следующей формуле: $\sigma_{T_{\text{инв}}} = T_{\text{инв}} \sqrt{\varepsilon_a^2 + \varepsilon_b^2}$.

$$T_{17-25} = 2045K, \, \sigma_{T_{\text{MHB}}} = 15\%;$$

$$T_{35-50} = 1559K, \, \sigma_{T_{\text{WHB}}} = 15\%.$$

Для углекислого газа, согласно справочнику

$$T_{\text{инв}} = 2053 \text{ K}.$$

На этот раз полученные результаты не так сильно отличаются от табличных. Сильное отличие результатов от табличных данным говорит о несостоятелности формулы Ван-дер-Ваальса как количественного приближения, оставаясь при этом общепринятой качественной моделью описания реальных газов.

5 Обсуждение результатов и выводы

В ходе выполнения работы мы:

- экспериментальным методом измерили коэффициенты газа Ван-дер-Ваальса «а» и «b»;
- вычислили $T_{\text{инв}}$ для углекислого газа.

В ходе работы мы получили значения, очень сильно отличающиеся от табличных. Погрешность вычисления параметров газа Ван-дер-Ваальса составила десятки процентов. Такая большая ошибка может говорить нам о неприменимости уравнения Ван-дер-Ваальса в условия лабораторной работы. Действительно, это уравнение используется лишь для качественного описания процессов, происходящих с реальными газами. Количественный подход к этому уравнению неприменим.

Также для увеличения точности измерений можно использовать более точные методы измерения температуры. Повысить точность необходимо как у термостата, так и у вольтметра, т.к. температура на них колебалась на протяжении эксперимента, несмотря на то, что условия оставались неизменными.