SRM Institute of Science and Technology

Tiruchirappalli Campus, Trichy – 621 105
Faculty of Engineering and Technology

21ECC205T: ELECTROMAGNETIC THEORY AND INTERFERENCE

ASSIGNMENT – 02

Date of Submission 25.09.2023

PART A

IAN	11		
	BiotSavart law in magnetic field is analogous to which law in electric field?		
1.	A. Gauss law	B. Faraday law	
	C. Coulomb's law	D. Ampere law	
	Find the magnetic field	of a finite current element with 2A current and height	
2.	$1/2\pi$ is		
۷.	A. 1	B.2	
	C. 1/2	D. 1/4	
	The curl of the magnetic field intensity is		
3.	A. Conservative	B. Rotational	
	C. Divergent	D. Conduction current density	
4.	In the conversion of line integral of H into surface integral, which theorem is		
	used?		
	A. Green theorem	B. Gauss theorem	
	C. Stokes theorem	D. It cannot be converted	
5.	Find the conduction current density of a material with conductivity 200units		
	and electric field 1.5 units.		
	A. 150	B. 30	
	C. 400/3	D. 300	
6.	Ampere law states that,		
	A. Divergence of H is same as the flux		
	B. Curl of D is same as the current		
	C. Divergence of E is zero		
	D. Curl of H is same as the current density		
7.	Given the magnetic field is 2.4 units. Find the flux density in air(in 10-		
	6 order).		
	A. 2	B. 3	
	C. 4	D. 5	
8.	Which of the following cannot be computed using the Biot Savart law?		
	A. Magnetic field intens	ity B. Magnetic flux density	
	C. Electric field intensity D. Permeability		
9.	The energy stored in a capacitor is		
	A. 0.5 C V^2	B. $3C V^2$	
	$C. 0.5 C^2 V$	D. $3 C^2 V$	

4.0	T 1 0 1 1 1			
10.	The Magnetic field intensity due to the co-axial cable in the region of $0 \le \rho \le$			
	is			
	A. Directly proportional to the current I			
	B. Inversely proportional to the current I			
	C. Independent of the current I			
	-	to the square root of the current I		
11.	The intrinsic impedance is the ratio of square root of			
	_	ability B. Permeability to permittivity		
	C. Phase constant to wavelength D. Wavelength to phase constant			
	C. I hase constant to wavelength D. Wavelength to phase constant			
12.	The skin depth of a conductor with attenuation constant of 7 neper/m is			
	A. 14	B. 49		
	C. 7	D. 1/7		
	C. 7	D. 1/7		
13.	The mode which has the highest wavelength is called			
	A. Dominant mode	B. Evanescent mode		
	C. Generate mode	D. Degenerate mode		
	C. Generate mode	D. Degenerate mode		
14.	The real part of the propagation constant is the			
	A. Attenuation constant			
	C. Permittivity	D. Permeability		
15.	For conductors, the loss	tangent will be		
	A. Zero	_		
	C. Maximum	B. Unity D. Minimum		
	C. Maximulli	D. Millimuni		
16.	Calculate the phase cons	tant of a conductor with attenuation constant given by		
	0.04 units.			
	A. 0.02	B. 0.08		
	C. 0.0016	D. 0.04		
17.	The intrincia impedence	of frag anges is		
	The intrinsic impedance A. 489	B. 265		
	C. 192			
	C. 192	D. 377		
18.	The cut off wavelength of	of the TE ₁₀ mode having a broad wall dimension of		
	5cm is	_		
	A. 0.1	B. 1		
	C. 10	D. 0.01		
19.				
	For a dielectric, the cond			
	A. $\sigma/\omega \varepsilon > 1$	B. $\sigma/\omega \varepsilon < 1$		
	C. $\sigma = \omega \varepsilon$	D. $\omega \varepsilon = 1$		
20.	In transverse electric wa	ves, which of the following is true?		
	A. E is parallel to H			
	B. E is parallel to wave direction C. E is transverse to wave direction D. H is transverse to wave direction			

PART – B

	-		
	Derive the expression for Magnetic Field \vec{H} intensity due to straight conductor		
1.	and show that $\vec{H} = \frac{\mu_0 I}{4\pi a} [\sin \phi_2 + \sin \phi_1] \cdot \hat{a}_r$		
2.	State and explain Biot-Savart's law		
3.	Define Gaus's law and derive its point form.		
4.	Find the incremental field strength at P ₂ due to current element of $2\pi \hat{a}_z \mu A/m$		
	at P_1 . The co-ordinates of P_1 and P_2 are $(4,0,0)$ and $(0,3,0)$ respectively.		
5.	Write short notes on Displacement current and derive the expression for		
	displacement current density.		
6.	Calculate the skin depth and wave velocity at 2 MHz in Aluminium with		
	conductivity 40 MS/m and $\mu_r = 1$.		
7.	Write the expression for average power transmission and attenuation of the waveguide.		
8.	In a lossless dielectric for which $\eta = 60Z$, $\mu_r = 1$. Find ε_r .		
9.	A plane wave propagating through a medium with $\varepsilon_r = 8$, $\mu_r = 2$. Determine		
9.	i) Wave impedance ii) Wave velocity		
10.	Compare Transverse magnetic and transverse electric wave.		
11.	Differentiate Transverse Electric (TE) Mode and Transverse Magnetic (TM) Mode.		
12.	From Propagation constant explain Cut-off, Evanescent and Propagation mode		
12.	of TM wave in rectangular wave guide.		

PART – C

1.	Derive the magnetic field intensity for infinitely long straight current carrying		
	conductor using Biot-Savart's law.		
2.	Derive the magnetic field intensity for infinite sheet of current.		
3.	Derive the magnetic field intensity for Co-axial cable in various regions.		
4.	Derive the four Maxwell's equations in point and integral form for time varying field.		
5.	Derive the Electromagnetic wave equation for lossy dielectric medium.		
6.	Derive the Electromagnetic wave equation for a good conductor.		
7.	Obtain the E and H field components for a Rectangular Waveguide.		
8.	Explain in detail about the TM waves of rectangular waveguides.		
9.	A rectangular waveguide with dimensions $a = 2.5 cm$, $b = 1 cm$ is to operate below		
	15.1 <i>GHz</i> . How many TE & TM modes can the waveguide transmit if the guide		
	is filled with a medium characterized by $\sigma = 0$, $\varepsilon = 4.\varepsilon_0$, $\mu_r = 1$? Calculate the cutoff		
	frequencies of the modes.		
	In a rectangular waveguide for which a=1.5cm, b=0.8cm, σ =0, μ = μ_o , ϵ = 4 ϵ_o		
	$H_x = 2\sin\left(\frac{\pi x}{a}\right)\cos\left(\frac{3\pi y}{b}\right)\sin(\pi \times 10^{11}t - \beta z)A/m$		
10.	The waveguide is operating in TM ₁₃ mode. Determine		
10.	(i) The Cut off Frequency		
	(ii) Phase Constant		
	(iii) Propagation Constant.		
	(iv) Intrinsic impedance.		