SoSe 2024 Dr. A. Kaltenbach

Aufgabe 1

Sei $p \in [1, \infty]$. Zeigen Sie, dass die folgenden Aussagen gelten:

- (i) $(L^p(I;X), \|\cdot\|_{L^p(I;X)})$ ist ein normierter Vektorraum.
- (ii) Falls $X \hookrightarrow Y$, dann gilt

$$L^p(I;X) \hookrightarrow L^p(I;Y)$$
.

(iii) Falls $A: X \to Y$ linear und stetig ist, dann ist der (linear-)induzierte Operator $\mathcal{A}: L^p(I;X) \to L^p(I;Y)$, für alle $u \in L^p(I;X)$ definiert durch

$$(\mathcal{A}u)(t) := A(u(t))$$
 in Y für f.a. $t \in I$,

wohldefiniert, linear und stetig. Insbesondere gilt für alle $u \in L^p(I;X)$, dass

$$\|\mathcal{A}u\|_{L^p(I;Y)} \le \|A\|_{\mathcal{L}(X,Y)} \|u\|_{L^p(I;X)}$$
.

Aufgabe 2 (Folgerungen aus der Hölder'schen Ungleichung (vgl. Satz 2.5))

Zeigen Sie, dass die folgenden Aussagen gelten:

(i) Falls $1 \le p \le q \le \infty$ und $I \subseteq \mathbb{R}$ beschränkt, dann gilt

$$L^q(I;X) \hookrightarrow L^p(I;X)$$
.

(ii) Falls $1 \le p \le r \le q \le \infty$, dann gilt

$$L^p(I;X) \cap L^p(I;X) \hookrightarrow L^r(I;X)$$
.

Genauer gilt für alle $u \in L^p(I;X) \cap L^p(I;X)$, dass $u \in L^r(I;X)$ mit

$$||u||_{L^r(I;X)} \le ||u||_{L^q(I;X)}^{1-\theta} ||u||_{L^p(I;X)}^{\theta}$$

wobei $\theta \in [0,1]$, sodass $\frac{1}{r} = \frac{1-\theta}{q} + \frac{\theta}{p}$. (iii) Seien $1 \le p, q, r \le \infty$ mit $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ und $B \colon X \times Y \to Z$ bilinear und stetig. Dann ist der (bilinear-)induzierte operator $\mathcal{B}: L^p(I;X) \times L^q(I;Y) \to L^r(I;Z)$, für alle $(u,v)^{\top} \in L^p(I;X) \times L^q(I,Y)$ definiert durch

$$\mathcal{B}(u,v)(t) := B(u(t),v(t))$$
 in Z für f.a. $t \in I$,

wohldefiniert, bilinear und stetig. Insbesondere gilt für alle $(u,v)^{\top} \in L^p(I;X) \times$ $L^q(I,Y)$, dass

$$\|\mathcal{B}(u,v)\|_{L^r(I;Z)} \le \|B\|_{\mathcal{L}(X\times Y,Z)} \|(u,v)^\top\|_{L^p(I;X)\times L^q(I;Y)}$$
.