Cours Code		PCS21E04J	Course Name	ADVANCED MACHINE LEARNING					y	D	Discipline Elective Course L T P 3 0 2							C 4							
Pre-requisite Courses Machine Learning Co-requisite Courses Nil Course Offering Department Computer Science Data Book / Codes/Standards							7	Pro	gress	sive C	ours	es				Nil			1	Nil	<u> </u>	<u> </u>	<u> </u>		<u> </u>
Course (CLR):	Learning F	Rationale The p	purpose of learni	ing this course	e is to:		L	earnir	ng	à		7	b		Pro	gram l	Learn	ing O	utco	mes (PLO)				
CLR-1: CLR-2: CLR-3: CLR-4: CLR-5:	CLR-2: To understand algorithms for analyzing data CLR-3: To learn advanced algorithms for analytics CLR-4: To discover patterns in the user data								Attainment (%)		Knowledge →	Concepts	3 patr	Knowledge	ialization c	6	7 Buile	pret Data ∞	Skills	ing Skills 01	on Skills	12	13	14	15
	Course Learning Outcomes (CLO): At the end of this course, learners will be able to:						د Level of Thinking	Expected Proficiency	Expected Atta	100	Fundamental	= Application of	Link with Rela	edural	-Skills in Spec	Ability to Utilize Knowledge	Ills in M	Analyze, Interpret	Investigative	Problem Solving	Communication	Analytical Skills	PSO 1	. PSO 2	PSO 3
CLO-2: CLO-3:	CLO-2: Develop a Learning System CLO-3: Understand and Apply Machine Learning inreal time problem CLO-4: Learn the basics of data collection						3 3 3 3	85 75 85 85	75 70 80 75	7.56	M M M	H H H	M M M	M H H	L	-		-					-		-
Duratio	on (Hour)	Ī	15		15	15	, V, -	3	A MIN					15	5			T				15			
S-1					Euclidean Distance	Role of Distance Measures				532	Implementing any one classification algorithm														
	SLO-2 Types of learning K-Nearest Neighbors Hamming Distance SLO-1 Supervised learning Classification accuracy Manhattan Distance				Hamming Distance Manhattan Distance		Information Retrieval and Extraction Categorization					_	Model Selection Tree Models												
S-2	SLO-2 SLO-1	Unsupervised lea	arning	Intro	oduction to Decision trees	Minkowski Distance		Clustering Boosting Border increment text mining algorithm Tensorflow							; ;										
S-3	SLO-1	Issues in Machine Learning Splitting approaches in decision tree Similarity Functions Perspectives Gini Impurity Error measures						compare the various distance calculation methods Keras						7 V											
S4-5	SLO-1 SLO-2	Laboratory 1: Co	ncept Learning t	ask	oratory 4:Extract the data from abase	Laboratory 7:Implement decisi	on tre	Laboratory10: compare the various			L	Laboratory13: Implement Text Mining				ning									
C G	SLO-1	Concept Learnin	g as a search	Info	rmation Gain	K-Means algorithm				_	Implement K-Means Algorithm					Α	dvan	ced R	egres	sion					
S-6	SLO-2	Issues regarding		Chi-	-square	Fuzzy C Means algorithm				_	_		Cluste					_			Proces				
S-7	SLO-1	Issues regarding	Prediction	Clas	ssification by decision tree action	Expectation approach	, or				-300:	THE STATE OF	lecisio	111				200	K07/C205308	032-2-04/03/0	Netw	520 W. 150 W.			
0	SLO-2	Various types of Bayesian Classit			e pruning methods	Maximization approach	Linear Regression				S	Semantic Segmentation													
S-8					t complexity pruning	Probabilistic clustering algorith							gressi					_			Models	-	$\overline{}$		

Duratio	n (Hour)	15	15	15	15	15	
	SLO-2		Implementation of learning models for real time problem	Introduction to text analytics	Naive Bayes	Model Interpretation	
S9-10 -	SLO-1 SLO-2	Laboratory2: Design a Learning System	Laboratory 5: Implement Bayesian classification	Laboratory 8: Learn Waikato Environment for Knowledge Analysis tool to pre-process the data	Laboratory 11: Implement K-Means Algorithm	Laboratory 14: Implement various operations of text analytics	
S-11 -	SLO-1	Reinforcement Learning	Implement k-nearest neighbours classification	Chi square pruning	Implement various operations of text analytics	Convolutional Neural Networks	
5-11		Classification based on concepts from association rule mining	Issues in decision trees	Al in text mining	Implement NLP	Benefits of CNN	
S-12	SLU-1	Goals and applications of machine learning	Extended Decision Trees	Pre-processing techniques	Explore NLP	Recurrent Neural Networks	
	SLO-2	Logistic Regression	Fuzzy decision trees	Feature selection using dimensionality reduction	Over fitting	Overview of RNN	
S-13	SLO-1	Overview of classification	Hierarchical clustering algorithm	Summarization	validation dataset	Benefits of RNN	
5-13	SLO-2	setup	Mixture of Gaussian algorithm	Foundations of NLP	training, test	Drawbacks of RNN	
14- 15		Laboratory 3: Implementation of learning models for real time problem	Laboratory 6: Implement k-nearest neighbours classification	Laboratory 9: Implement weka tool for Hospital management	Laboratory 12:Implement any one clustering algorithm	Laboratory 15:Implement NLP	

Learning Resources	1. 2. 3.	EthemAlpaydin, Introduction to Machine Learning, Third edition, The MIT Press Cambridge. Tom M Mitchell, Machine Learning, McGraw Hill Education Jiawei Han and Micheline Kamber, —Data Mining: Concepts and Techniques, Morgan Kaufmann	4. 5.	LiorRokach and OdedMaimon, —Data Mining and Knowledge Discovery Handbook, Springer, 2nd edition, 2010. Ronen Feldman and James Sanger, —The Text Mining Handbook: Advanced Approaches in
		Publishers, 3rd ed, 2010.	()	Analyzing Unstructured Datall, Cambridge University Press, 2006.

2000	Diaguala			Contino	us Learning Asses	sment(50% Weig	htage)			Final Examination (50% weightage)
	Bloom's el of Thinking	CLA - 1	(10%)	CLA -	2 (10%)	CLA -	3 (20%)	CLA -	4# (10%)		
Leve	er or rninking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
	Understand		ale	\		1, 1/					3
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
	Analyze		4 D		/	AME.		1			
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Create					- 10		7 <		2	×
	Total	100	%	10	0 %	10	0 %	10	0 %	100%	6

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr. S. Karthik, Assistant Consultant, Tata Consultancy Services	Dr. S. Sasikala, Associate Professor and Head, Dept. of Computer Science, University of Madras	Dr. Arul Leena Rose Dr. S. P. Angelin Claret