

Roll No:

Printed Page: 1 of 2
Subject Code: KCS502

B TECH (SEM-V) THEORY EXAMINATION 2020-21 COMPILER DESIGN

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Qno.	Question	Marks	CO
a.	What is YACC? Discuss about it.	2	CO 1
b.	Design a DFA for the following regular expression: $(x+y)^*xyy$	2	CO 1
c.	Consider the following grammar: $S \rightarrow B SabS, B \rightarrow bB \epsilon$	2	CO 2
	Compute FOLLOW(B)		
d.	Discuss about shift-reduce parsing.	2	CO 2
e.	Find the postfix notation for the following expression: $(a+b+c)*(c+q)$	2	CO 3
f.	Discuss about non-linear type intermediate code.	2	CO 3
g.	Write short note on "Activation Record"	2	CO 4
h.	Discuss about hash table.	2	CO 4
i.	Discus about constant folding.	2	CO 5
j.	Discuss about designing issues of code generator.	2	CO 5

SECTION B

2. Attempt any *three* of the following:

 $3 \times 10 = 30$

Qno.	Question	Marks	CO
a.	Explain in detail the process of compilation for the statement a=b+c*70.	10	CO 1
b.	Construct the CLR(1) parsing table for the following grammar: $S \rightarrow AA$, $A \rightarrow aA b$	10	CO 2
c.	Consider the following grammar and give the syntax directed definition to construct parse tree for the input expression $4*7+3*9$. Also construct an annotated parse tree according to your syntax directed definition. $E \rightarrow E+T T$, $T \rightarrow T*F F$, $F \rightarrow num$.	10	CO 3
d.	Explain lexical, syntax, semantic phase errors in detail.	10	CO 4
e.	Explain in detail about loop optimization.	10	CO 5

SECTION C

3. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	 (i). Write a regular expression to represent a language consisting of strings made up of odd number of a & odd number of b. (ii). Write a CFG to represent the language L={a^{n+m}bⁿ m,n≥1}. 	10	CO 1
b.	 (i). Check whether given grammar is ambiguous or not. If ambiguous then convert it into unambiguous grammar: E→E+E E*E id (ii). Discuss about cross compiler. 	10	CO 1

				Subject Code: KCS502					5502
Roll No:									

Printed Page: 2 of 2

4. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Check whether the given grammar is LR(0) or not:	10	CO 2
	$S \rightarrow PQy, P \rightarrow Sy x, Q \rightarrow yS$		
b.	Find the precedence and function table of the following grammar by	10	CO 2
	using operator precedence technique.		
	$P \rightarrow SR S, R \rightarrow bSR bS, S \rightarrow WbS W, W \rightarrow L*W L, L \rightarrow id$		

5. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Translate the following arithmetic expression into quadruples and	10	CO 3
	triples:		
	(i). $x=y*z+y*-z$		
	(ii). $a=-b*(c+d)+b$		
b.	Generate three address code for the following code:	10	CO 3
	Switch p+q		
	{		
	case 1: $x=x+1$		
	case 2: y=y+2		
	case 3: $z=z+3$		
	default: c=c-1		
	}		

6. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	What is symbol table? Explain various data structures used for symbol table.	10	CO 4
b.	(i). Explain the function of error handling phase of a compiler.(ii). Write short note on scoping.	10	CO 4

7. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Construct the flow graph for the following code segment: fact(n) { int f=1; for(i=2; i \(\) n; i++) f=f*i; return f; }	10	CO 5
b.	Define a DAG. Construct a DAG for the expression: p+p*(q-r)+(q-r)*s	10	CO 5