```
import pandas as pd
    import matplotlib.pyplot as plt
    # Create a sample dataset
    data = {
        "Year": [1950, 1960, 1970, 1980, 1990, 2000, 2010, 2020, 2025, 2030],
        "Population": [2.5, 3.0, 3.7, 4.4, 5.3, 6.1, 6.9, 7.8, 8.1, 8.5]
    df = pd.DataFrame(data)
    # Save dataset to CSV
    df.to_csv("world_population.csv", index=False)
       Year Population
                           \blacksquare
    0 1950
                     2.5
                           ılı.
     1 1960
                     3.0
    2 1970
                     3.7
    3 1980
                     4.4
                     5.3
    4 1990
    5 2000
                     6.1
    6 2010
                     6.9
    7 2020
                     7.8
    8 2025
                     8.1
    9 2030
                     8.5
Next steps: ( Generate code with df )
                                  ( View recommended plots )
                                                                ( New interactive sheet )
    # Load dataset from CSV file
    data = pd.read_csv("world_population.csv")
    data
       Year Population
                           \blacksquare
    0 1950
                     2.5
                           16
     1 1960
                     3.0
    2 1970
                     3.7
    3 1980
                     4.4
    4 1990
                     5.3
    5 2000
                     6 1
    6 2010
                     6.9
    7 2020
                     7.8
    8 2025
                     8.1
    9 2030
                     8.5
Next steps: ( Generate code with data ) ( View recommended plots
                                                                   New interactive sheet
    # Plot line chart
    plt.figure(figsize=(10,6))
    plt.plot(data["Year"], data["Population"], marker="o", linestyle="-", color="blue", linewidth=2)
    # Labels and title
    plt.xlabel("Year", fontsize=12)
    plt.ylabel("World Population (Billions)", fontsize=12)
    plt.title("World Population Growth Over Years", fontsize=14, fontweight="bold")
    # Grid for readability
    plt.grid(True, linestyle="--", alpha=0.6)
    # Show chart
```

plt.show()

discussion = """

Discussion of Population Growth Trends:

- The world population shows a steady increase from 1950 to 2030.
- Growth was slower between 1950-1970.
- Acceleration is visible after 1980, with rapid growth.
- From 2000 to 2020, population grew from $6.1\mbox{B}$ to $7.8\mbox{B}.$
- Projections (2025-2030) indicate continued growth but at a slightly slower pace.
- Overall, the long-term trend is upward, showing global population expansion. $\hfill\Box$

print(discussion)

Discussion of Population Growth Trends:

- The world population shows a steady increase from 1950 to 2030.
- Growth was slower between 1950-1970.
- Acceleration is visible after 1980, with rapid growth.
- From 2000 to 2020, population grew from $6.1\mbox{B}$ to $7.8\mbox{B}.$
- Projections (2025–2030) indicate continued growth but at a slightly slower pace.
- Overall, the long-term trend is upward, showing global population expansion.

2)Apple Stock Dataset (AAPL.csv)

import pandas as pd
import matplotlib.pyplot as plt

```
# Load Apple stock dataset (assumed to have 'Date' and 'Close' columns)
data = pd.read_csv("AAPL.csv")
```

Convert 'Date' column to datetime format
data["Date"] = pd.to_datetime(data["Date"])

Display first few rows
data.head()

	Date	AAPL.Open	AAPL.High	AAPL.Low	AAPL.Close	AAPL.Volume	AAPL.Adjusted	dn	mavg	ир	directio
0	2015- 02-17	127.489998	128.880005	126.919998	127.830002	63152400	122.905254	106.741052	117.927667	129.114281	Increasin
1	2015- 02-18	127.629997	128.779999	127.449997	128.720001	44891700	123.760965	107.842423	118.940333	130.038244	Increasin
2	2015- 02-19	128.479996	129.029999	128.330002	128.449997	37362400	123.501363	108.894245	119.889167	130.884089	Decreasin

Next steps: (Generate code with data)

View recommended plots

New interactive sheet

```
# Plot line chart of stock prices
plt.figure(figsize=(12,6))
plt.plot(data["Date"], data["AAPL.Close"], color="green", linewidth=2)
# Labels and title
plt.xlabel("Date", fontsize=12)
plt.ylabel("Closing Price (USD)", fontsize=12)
plt.title("Apple (AAPL) Stock Price Trend", fontsize=14, fontweight="bold")
# Format x-axis for dates
plt.xticks(rotation=45)
plt.grid(True, linestyle="--", alpha=0.6)
plt.show()
```


insights = """

Insights on Apple Stock Price Trend:

- The line chart shows fluctuations in $\ensuremath{\mathsf{Apple}}\xspace's$ stock prices over time.
- Periods of sharp upward trends often align with product launches, earnings reports, or market optimism.
- Temporary declines reflect broader market corrections, global events, or company-specific news.
- The overall trend (depending on dataset time frame) is generally upward, indicating long-term growth.

print(insights)

Insights on Apple Stock Price Trend:

- The line chart shows fluctuations in Apple's stock prices over time.
- Periods of sharp upward trends often align with product launches, earnings reports, or market optimism.
- Temporary declines reflect broader market corrections, global events, or company-specific news.
- The overall trend (depending on dataset timeframe) is generally upward, indicating long-term growth.