1

Vector Arithmetic (Section Formula)

AI24BTECH11021 - Manvik Muthyapu

Question:

Show that the points $\mathbf{A}(-6, 10)$, $\mathbf{B}(-4, 6)$ and $\mathbf{C}(3, -8)$ are collinear and prove that $AB = \frac{2}{9}AC$.

Solution:

If this determinant is zero, $\begin{vmatrix} 1 & 1 & 1 \\ -6 & -4 & 3 \\ 10 & 6 & -8 \end{vmatrix}$ then A, B, and C are collinear.

$$Det = \begin{vmatrix} 1 & 1 & 1 \\ -6 & -4 & 3 \\ 10 & 6 & -8 \end{vmatrix} = 1 \cdot ((-4)(-8) - (3)(6)) - 1 \cdot ((-6)(-8) - (3)(10)) + 1 \cdot ((-6)(6) - (-4)(10))$$
$$= 1 \cdot (32 - 18) - 1 \cdot (48 - 30) + 1 \cdot (-36 + 40)$$

 $= 1 \cdot 14 - 1 \cdot 18 + 1 \cdot 4 = 14 - 18 + 4 = 0$

 \therefore A, B, and C are collinear.

Using the section formula, if B divides AC in the ratio m:n, then:

$$B\left(\frac{m\cdot 3 + n\cdot (-6)}{m+n}, \frac{m\cdot (-8) + n\cdot 10}{m+n}\right) = (-4, 6)$$

Equating the coordinates, we get

$$\frac{m}{n} = \frac{2}{7}$$

 \therefore It confirms that B divides AC in the ratio 2:7. Since B divides AC in the ratio 2:7, we have:

$$\frac{AB}{AC} = \frac{2}{2+7} = \frac{2}{9}$$

Hence, $AB = \frac{2}{9}AC$, as required.

