

GEOMETRY

Part 1- Angles & Plane figures

TYPES OF ANGLES

- Line, Parallel lines, Intersecting lines, Transversal
- ➤ Right Angle
- ➤ Acute Angle
- ➤Obtuse Angle
- ➤ Reflex Angle
- Complementary Angles
- ➤ Supplementary Angles
- ➤ Vertically Opposite Angles

ANGLES IN PARALLEL LINES

In the adjoining figure, find the measure of ∠c.

(1) 110° ✓

 $(2)70^{\circ}$

(3)80°

(4)90°

Find the value of x°.

- $(1)45^{\circ}$
- (3)35° <

- $(2)40^{\circ}$
- (4)50°

In the following diagram $\angle B$: $\angle C = 3:4$. Find the measure of $\angle B$.

Find the value of x in the following figure.

- $(1)70^{\circ}$
- (3) 110° ✓

- $(2)80^{\circ}$
- (4) 120°

In the given figure, if ∠DBG is equal to 55° and ∠CBF is equal to 115°, then find the measure of ∠GBE.

- $(1)70^{\circ}$
- $(3)80^{\circ}$

- (2) 125°
- (4) 30°

TRIANGLE PROPERTIES

- 1. The sum of three interior angles of a triangle is 180.
- 2. The exterior angle of a triangle is equal to sum of the two interior opposite angles.
- 3. The sum of two sides of a triangle is always greater than the third

i.e., AB + BC > AC and the difference between the two sides is less than the third, AB - BC < AC.

4. The side opposite of the biggest angle is the longest side and vice versa.

1. Area of a Triangle, $A = 1/2 \times bh$.

2. Area of an Equilateral Triangle = $A = (\sqrt{3})/4 \times a^2$.

AREA OF TRIANGLE

3. Area of Triangle with Three Sides (Heron's Formula)

$$ext{Area} = \sqrt{s(s-a)(s-b)(s-c)}$$

Area = area

8 = semi-perimeter

a = length of side a

b = length of side b

c = length of side of

- 4. Triangle area for Two Sides and the Included Angle = $\frac{1}{2}$ bc sin A.
- 5. Area = $r \times S$, r is inradius.
- 6. Area of Triangle = abc/4R, where R is circumradius.

AREA OF TRIANGLE

2. Area of an Equilateral Triangle, $A = \frac{\sqrt{3}}{4}a^2$

Area of Triangle with Three Sides (Heron's Formula)

$${\rm Area}\,=\sqrt{s(s-a)(s-b)(s-c)}$$

Area = area

s = semi-perimeter

a = length of side a

b = length of side b

c = length of side c

- 4. Triangle area for Two Sides and the Included Angle is $\frac{1}{2}$ bc sin A.
- 5. Area = $r \times S$, r is inradius.
- 6. Area of Triangle = $\frac{abc}{4R}$ where R is circumradius.

SIMILAR AND CONGRUENT

Similar Triangles

Same shape but different in size.

Congruent Triangles

Same shape and same size.

CONDITION FOR SIMILARITY

- * AA condition
- **SSS** condition
- **SAS** condition

Note: In Similar, corresponding angles are equal and corresponding sides are in proportion.

CONDITION FOR CONGRUENCY

- SAS condition
- *ASA condition
- **SSS** condition
- **❖**RHS condition

Note: In Congruency, corresponding angles and sides are equal.

Angle Bisector Theorem:

Mid-point Theorem:

Basic Proportionality Theorem:

$$AD/DB = AE/EC$$

Apollonius Theorem:

REGULAR POLYGON

- A polygon with all sides are equal length.
- The sum of interior angles is $(n-2) \times 180$, where n is the number of sides.
- All the interior angles in a regular polygon are equal.
- ❖The sum of exterior angles of a polygon is 360°.
- The number of diagonals in a polygon = n(n-3)/2, where n is the number of polygon sides.

PARALLELO GRAM

RHOMBUS

RECTANGLE

SQUARE

TRAPEZIUM

KITE

IMPORTANT LINES & POINTS IN A TRIANGLE

Median – Centroid

❖Angle bisector – Incentre

IMPORTANT LINES & POINTS IN A TRIANGLE

Perpendicular bisector – Circum-centre

Altitudes— orthocentre

In the given figure XY | | BC. Find the length of XY.

- (1)4
- 3)3 ✓

- (2)1
- (4)2

In $\triangle ABC$, right angled at A, AD is perpendicular to BC and $\angle B = 45^{\circ}$. If AB = x, find the length of AD in terms of x.

Ans: $x/\sqrt{2}$

In the given figure AD is the bisector of \angle BAC meeting BC, at D. If AB = 16 units and AC = 8 units, then find BD : CD.

- (1)3:2
- (3)2:6

- (2)3:
- (4) 2:1 ✓

9. Perimeter of a \triangle with integer sides is equal to 15. How many such triangles are possible?

- a. 7 🗸
- b. 6
- **c.** 8
- d. 5

10. Area of a Rhombus of perimeter 56 cm is 100 sq. cms. Find the sum of the lengths of its diagonals

- a. 33.40
- b. 34.40 ✓
- **c.** 31.20
- d. 32.30

THANK YOU