Esercitazione di Informatica A

Codifiche numeriche: Conversioni da e per basi 2^n ; Virgola fissa, virgola mobile

Stefano Cherubin <nome>.<cognome>@polimi.it

Esercitazione 4 30 Ottobre 2015

Recall: Conversione da decimale a binario

Algoritmo

Dividere ripetutamente per la base (2). Scrivere i resti della divisione in ordine inverso.

Stefano Cherubin Oct-Hex-Float 30 Ottobre 2015 3 / 29

Recall: Conversione da base 2 a decimale

Algoritmo

Moltiplicare il valore di ciascuno dei bit di modulo per 2 elevato alla rispettiva posizione. Sommare il tutto.

0	0	1	0	1	0	1	0
	2^{6}	2^{5}	2^{4}	2^3	2^2	2^1	2^{0}
土	modulo						

Conversione da decimale a base b

Algoritmo

Dividere ripetutamente per la base b. Scrivere i resti della divisione in ordine inverso.

Stefano Cherubin Oct-Hex-Float 30 Ottobre 2015 5 / 29

Conversione da base b a decimale

Algoritmo

Moltiplicare il valore di ciascuno dei bit di modulo per la base b elevata alla rispettiva posizione. Sommare il tutto.

Conversione da oct a binario

Algoritmo

Ogni cifra ottale può essere convertita in un blocco di 3 bit. La rappresentazione in binario si ottiene concatenando i blocchi così ottenuti.

oct	bin	oct	bin
0	000	4	100
1	001	5	101
2	010	6	110
3	011	7	111

5	1	4		
101	001	100		

 $514_8 = 101001100_2$

Conversione da binario a oct

Algoritmo

Raggruppare i bit in blocchi da 3 partendo dal bit meno significativo (LSB). In caso di necessità estendere in segno per raggiungere un numero di bit multiplo di 3. Convertire ciascun blocco da binario a ottale e concatenare i risultati.

	0	1	1	0	1
0	0	1	1	0	1
U	U	1	1	0	_1_
	1			5	

 $01101_2 = 15_8$

Conversione da hex a binario

Algoritmo

Ogni cifra esadecimale può essere convertita in un blocco di 4 bit. La rappresentazione in binario si ottiene concatenando i blocchi così ottenuti.

hex	bin	hex	$_{ m bin}$	ł	ıex	$_{ m bin}$	hex	$_{ m bin}$
0	0000	4	0100		8	1000	С	1100
1	0001	5	0101		9	1001	D	1101
2	0010	6	0110		A	1010	\mathbf{E}	1110
3	0011	7	0111		В	1011	\mathbf{F}	1111

$$D5_{16} = 11010101_2$$

Conversione da binario a hex

Algoritmo

Raggruppare i bit in blocchi da 4 partendo dal bit meno significativo (LSB). In caso di necessità estendere in segno per raggiungere un numero di bit multiplo di 4. Convertire ciascun blocco da binario a esadecimale e concatenare i risultati.

	1	0	1	1	0	1	1
0	1	0	1	1	0	1	1
5				В			

 $1011011_2 = 5B_8$

Conversione a base n

Convertire il seguente numero binario in base 12

• 1101001

Per semplicità è opportuno portare il numero binario in base 10 e poi convertire a base 12

$$1101001_2 = 105_{10} = 89_{12}$$

Aritmetica in base 16: 1F + A3

Eseguire la seguente operazione in base 16:

$$1F + A3$$

$$\begin{array}{ccc}
1 & F & + \\
A & 3 & = \\
\hline
C & 2 & =
\end{array}$$

Aritmetica in base 16...

Eseguire la seguente operazione in base 16:

$$CC + FF$$

$$\begin{array}{ccc}
C & C & + \\
F & F & = \\
\hline
1 & C & B
\end{array}$$

...per chi ha dimenticato a casa la laurea in matematica

$$x_{16} + y_{16} = x_{10} + y_{10}$$

$$CC_{16} = C \cdot 16^{0} + C \cdot 16^{1} = 12 \cdot 1 + 12 \cdot 16 = 204_{10}$$

$$FF_{16} = F \cdot 16^{0} + F \cdot 16^{1} = 15 \cdot 1 + 15 \cdot 16 = 255_{10}$$

$$204 + 255 = 459$$

$$\frac{459 \mid 16}{28 \mid B} \uparrow$$

$$CC_{16} + FF_{16} = 204_{10} + 255_{10} = 459_{10} = 1CB_{16}$$

Stefano Cherubin Oct-Hex-Float 30 Ottobre 2015 14 / 29

Virgola: not this one

Figura: Virgola http://nonciclopedia.wikia.com/wiki/File:Virgola_impiccato.jpeg

Stefano Cherubin Oct-Hex-Float 30 Ottobre 2015 16 / 29

Notazione fixed point

Si assegnano un numero fisso di bit per la parte intera e un numero fisso di bit per la parte decimale.

106.85

- È possibile che venga rappresentata solo una approssimazione del numero decimale equivalente (non ho infiniti decimali)
 - L'errore di approssimazione è fisso in valore assoluto.

Stefano Cherubin Oct-Hex-Float 30 Ottobre 2015 17 / 29

Conversione da fixed point a decimale

Algoritmo

Moltiplicare il valore di ciascuno dei bit di modulo per 2 elevato alla rispettiva posizione, relativamente alla virgola. Sommare il tutto.

$$2^{3} + 2^{1} + 2^{-2} + 2^{-3} = 8 + 2 + \frac{1}{4} + \frac{1}{8} = 10.375$$

Stefano Cherubin Oct-Hex-Float 30 Ottobre 2015 18 / 29

Conversione da decimale a binario (fixed point)

Algoritmo

Si procede con l'algoritmo a divisioni successive per la parte intera. I bit relativi alla componente decimale si ottengono con un simile algoritmo per moltiplicazioni successive in cui le cifre da considerare sono date dalle unità intere generate come risultato delle moltiplicazioni.

12.375

12	2	
6	0	†
3	0	\uparrow
1	1	\uparrow
0	1	\uparrow

$$\begin{array}{c|cc} & .375 & 2 \\ \hline 0 & .75 & \downarrow \\ 1 & .5 & \downarrow \\ 1 & .0 & \downarrow \\ \end{array}$$

19 / 29

 $12.375_{10} = 1100.011$

Notazione floating point

Si ricorre alla notazione scientifica e si assegnano un numero fisso di bit per la mantissa e un numero fisso di bit per l'esponente.

$$1.0537E^{+14}$$

1.
$$\underbrace{0537}_{mantissa} E^{\underbrace{+14}_{exp}}$$

- È possibile che venga rappresentata solo una approssimazione del numero decimale equivalente (non ho infiniti decimali)
 - L'errore di approssimazione non è fisso in valore assoluto ma aumenta al crescere del numero rappresentato.
- La notazione scientifica per i numeri in binario è simile: $1.mantissa \cdot 2^{exp}$

float single precision (32 bit)

- 1 bit per il segno
- 8 bit per l'esponente
- 23 bit per la mantissa

Attenzione

L'esponente viene memorizzato come numero senza segno, sfasato di +127. Occorre tenerlo presente quando si ricostruisce il valore decimale.

Mantissa:
$$2^{-1} + 2^{-4} + 2^{-5} = 0.5 + 0.0625 + 0.03125 = 0.59375$$

Esponente+127: $2^{0} + 2^{2} + 2^{5} + 2^{7} = 1 + 4 + 32 + 128 = 165$

Esponente: 165 - 127 = 38

$$+1.59375 \cdot 2^{38}$$

Operazioni in virgola fissa

Esegui le seguenti operazioni in binario senza segno, virgola fissa, rispettando come vincoli di rappresentazione 4 bit per la parte intera, 4 bit per la parte decimale

- 4.5 + 1.75
- \bullet 3.875 + 2.125

Operazioni in virgola fissa: 4.5 + 1.75

Convertiamo gli operandi in binario

$$\bullet$$
 4.5₁₀ = 100.1₂

$$\bullet$$
 1.75₁₀ = 1.11₂

Fissiamo la rappresentazione a 4+4 bit senza segno

- 0100.1000
- 0001.1100

Eseguiamo la somma

$$100.1 + 1.11 = 110.01$$

 $4.5 + 1.75 = 6.25$

Operazioni in virgola fissa: 3.875 + 2.125

Convertiamo gli operandi in binario

$$\bullet$$
 3.875₁₀ = 11.111₂

$$2.125_{10} = 10.001_2$$

Fissiamo la rappresentazione a 4+4 bit senza segno

- 0011.1110
- 0010.0010

Eseguiamo la somma

$$11.111 + 10.001 = 110$$

 $3.875 + 2.125 = 6$

Operazioni in virgola mobile

Eseguire le seguenti operazioni in virgola mobile (float single precision - standard 32 bit)

- $1.875 \cdot 2^5 + 6.25 \cdot 2^{23}$
- $1.5 \cdot 2^4 2 \cdot 2^5$

Operazioni in virgola mobile: $1.875 \cdot 2^5 + 6.25 \cdot 2^{23}$

- $1.875_{10} = 1.111_2$
- \bullet 6.25₁₀ = 110.01₂
 - $\bullet \ 6.25 \cdot 2^{23} = 1.5625 \cdot 2^{25}$

Portare le mantisse tutte al maggiore degli esponenti in gioco (25)

- $0. \quad 00000000000000000001111 \quad +$
- 1. 100100000000000000001111

Operazioni in virgola mobile: $1.5 \cdot 2^4 - 2 \cdot 2^5$ (1/2)

$$\bullet$$
 1.5₁₀ = 1.1₂

$$2_{10} = 10_2$$

$$-2 \cdot 2^5 = -1 \cdot 2^6$$

Si portano tutte le mantisse al maggiore degli esponenti in gioco (6); si calcola il complemento a 2 delle mantisse negative e si esegue la somma.

Stefano Cherubin Oct-Hex-Float 30 Ottobre 2015 27 / 29

Operazioni in virgola mobile: $1.5 \cdot 2^4 - 2 \cdot 2^5$ (2/2)

- 1. 011000000000000000000000

A priori si sa che il risultato sarà negativo (perché l'operando negativo ha esponente maggiore). Si calcola quindi il complemento a 2 del risultato (per tornare in notazione modulo e segno), si normalizza in modo da ottenere la forma 1.mantissa e si setta il bit di segno.

Stefano Cherubin

¹approfondimenti sulle operazioni in virgola mobile http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.flpt.html

Fine

Queste slides contengono elementi tratti da materiale di Gerardo Pelosi redatto per il corso di Fondamenti di Informatica per Ingegneria dell'Automazione a.a. 2014/15.

Grazie per l'attenzione!

Licenza Beerware²

Queste slides sono opera di Stefano Cherubin. Mantenendo questa nota, puoi fare quello che vuoi con quest'opera. Se ci dovessimo incontrare e tu ritenessi che quest'opera lo valga, in cambio puoi offrirmi una birra.

Stefano Cherubin Oct-Hex-Float 30 Ottobre 2015 29 / 29

²http://people.freebsd.org/~phk/