Assignment - Individual			
Course	Pengantar Pembelajaran Mesin (3 SKS)		
Lecturer	Dr. Bambang Heru Iswanto		
Due date	(see Epsilon)		
Instruction	 Tulis nama anda dan NIM Jawaban dan program dengan Jupyter Notebook/Google Colab Upload jawaban ke Epsilon dalam format: ipynb dan .html 		

Session:

Evaluasi Model

1. *Confusion Matrix*. Anda memiliki dataset untuk membangun model klasifikasi apakah suatu email tergolong "spam" atau "non-spam". Setelah melatih model klasifikasi, Anda mendapatkan *confusion matrix* berikut:

	<u>Actual</u>		
<u>Predicted</u>	Spam	Non-Spam	
Spam	90	10	
Non-Spam	20	180	

- a. Berapa jumlah email yang diklasifikasikan dengan benar oleh model Anda?
- b. Hitunglah akurasi, presisi, recall, dan F-Measure;
- c. Jelaskan apa arti dari nilai-nilai yang Anda peroleh dari hasil (c)?

Note: perhitungan boleh manual atau menggunakan paket program yang tersedia;

- 2. **Cross-Validation**. Misalkan Anda memiliki data berukuran 1000 sampel dengan 10 fitur yang digunakan untuk klasifikasi citra toraks menjadi dua kelas: "cancer" dan "non-cancer". Untuk evaluasi performa model, Anda ingin menggunakan validasi silang (*cross validation*) 5-fold.
 - a. Jelaskan bagaimana proses validasi silang 5-fold dan jelaskan pula apa keuntungan menggunakan validasi silang dalam evaluasi model?
 - b. Apabila ternyata model memiliki akurasi rata-rata sebesar 90% namun pada satu fold tertentu memiliki performa sangat buruk dengan akurasi hanya 60%, apa yang dapat Anda simpulkan dan bagaimana menanganinya?
- 3. **Receiver Operating Characteristic** (**ROC**). Anda telah melatih sebuah model klasifikasi untuk memprediksi apakah seorang pasien memiliki penyakit X berdasarkan sejumlah fitur medis. Setelah melatih model, performa model dievaluasi menggunakan data uji dari 200 pasien. Berikut adalah probabilitas positif yang diprediksi oleh model untuk 20 pasien pertama:

Probabilitas Positif: 0.75, 0.65, 0.82, 0.57, 0.41, 0.36, 0.93, 0.79, 0.68, 0.61, 0.53, 0.49, 0.81, 0.72, 0.67, 0.74, 0.55, 0.48, 0.39, 0.71

Anda memiliki label sebenarnya untuk setiap pasien, di mana Berikut adalah label sebenarnya untuk 20 pasien pertama, dimana "1" untuk pasien memiliki penyakit X dan "0" sebaliknya.

Label Sebenarnya: 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1

Jawablah pertanyaan-pertanyaan berikut:

- a. Urutkan probabilitas positif dan label sebenarnya berdasarkan probabilitas positif yang diprediksi dari yang tertinggi hingga terendah.
- b. Gambarkan kurva ROC menggunakan data ini.
- c. Hitunglah nilai AUC (Area Under the Curve) dari kurva ROC.
- d. Jika Anda harus memilih threshold probabilitas positif tertentu untuk mengklasifikasikan pasien sebagai positif atau negatif, bagaimana Anda akan memilih threshold tersebut berdasarkan kurva ROC?