INFSCI 0419: Final Exam, Fall 2019

Study Guide

- 1. Measurement scales: nominal, ordinal, interval, ratio
- Measures of central tendency, how they are affected by different distributions and by outliers
- 3. Missing data
 - a. Data missing completely at random (MCAR)
 - b. Data missing at random (MAR)
 - c. Data missing not at random (MNAR)
- 4. Approaches to dealing with missing values
 - a. Converting the missing values into a new value
 - b. Creating new categories (i.e. "MISSING")
 - c. Discarding rows / columns with missing values
 - d. Discarding columns with missing values
 - e. Replace missing values with mean, median, mode, or predicted / estimated value
- 5. Outliers, what they are, how they occur, how they affect distributions, biases, and ML algorithm selection
- 6. Scaling, centering, and transforming data
- 7. Simple linear regression
 - a. How OLS algorithm works
 - b. How to interpret the model (i.e. what do the coefficients indicate)
 - c. How to evaluate the model (R-squared vs. adjusted R-squared vs. RMSE)
 - d. Residuals
 - e. Statistical assumptions
- 8. Supervised vs. unsupervised machine learning
- 9. Bias / variance trade-off in ML
- 10. Probabilities
- 11. Naive Bayes, SVM, kNN, Decision Trees, Random Forest
 - a. How each algorithm works
 - b. What are the key parameters
 - c. When to use
 - d. Weaknesses
 - e. Strengths
- 12. Evaluating classifiers
 - a. Confusion matrix
 - i. True positive, false positive, true negative, false negative
 - b. Accuracy score
 - c. Cross-validated accuracy score

- d. ROC/AUC
- e. Sensitivity vs. Specificity
- 13. Model validation
 - a. Cross-validation
 - b. Holdout method
 - c. Leave-one-out
 - d. Stratified cross-validation
- 14. Dimensionality reduction
 - a. Collinearity
 - b. Features with low variance
 - c. Univariate feature selection
 - d. Backward feature elimination
 - e. Forward feature selection
 - f. Random forest feature scores
- 15. k-Means Clustering
 - a. Algorithm
 - b. Stop conditions
 - c. Evaluating using the elbow method
- 16. ML Algorithm Selection
 - a. Bias/variance trade-off
 - b. Size of training set
 - c. The accuracy of the model
 - d. The interpretability of the model
 - e. The complexity of the model
 - f. The scalability of the model
 - g. How long does it take to build, train, and test the model?
 - h. How long does it take to make predictions using the model?
 - i. Linearity
 - j. Number of parameters
 - k. Number of features