Practical Deep Neural Networks

GPU computing perspective

Machine Learning Basics

Yuhuang Hu Chu Kiong Loo

Advanced Robotic Lab
Department of Artificial Intelligence
Faculty of Computer Science & IT
University of Malaya

Outline

- Introduction
- 2 Learning Algorithms
 - Supervised Learning
 - Unsupervised Learning
- 3 Linear Regression
- Generalization, Capacity, Overfitting and Underfitting
- Maximum Likelihood Estimation
 References

Assumed prerequisites

- ☆ Basic Linear Algebra (DL book chapter 2)
- Basic Probability and Information Theory (DL book chapter 3)
- ☆ Basic Numerical Computation (DL book chapter 4)

Suggest Readings

- CS229 lecture notes 1 and 4:
 - http://cs229.stanford.edu/notes/cs229-notes1.pdf http://cs229.stanford.edu/notes/cs229-notes4.pdf
- Pattern Recognition and Machine Learning: Chapter 1 and 2.
- Machine Learning: A probabilistic perspective: Chapter 1 and 2.
- CS231n: Image Classification: Data-driven Approach, k-Nearest Neighbor, train/val/test splits http://cs231n.github.io/classification/

Definition of Learning Algorithm

- "A computer program is said to learn from
 - \checkmark experience E with respect to
 - \checkmark some class of tasks T and
 - \checkmark performance measure P,

if its performance at tasks in T, as measured by P, improves with experience E" (Mitchell, 1997)

The task T

The performance measure P

The experience E

Q& A

References I

Mitchell, T. M. (1997). Machien learning. New York: McGraw-Hill.