Solution to assignment #2

Introduction to GR, 2020 Fall

International Centre for Theoretical Sciences Instructor: Prof. Bala Iyer, Tutor: Md Arif Shaikh¹

1 Parallel transport along r =constant line on the surface of a cone

We have a cone with opening angle 2α embedded in the 3-dimensional flat space. r is the distance measured from the apex. A constant r line on the surface of the cone would be parameterised by the angle ϕ . The 3-dimensional flat metric in spherical polar coordinate is given by

$$ds_{3d}^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2. \tag{1}$$

 θ is the angle w.r.t to the z-axis. On the surface of the cone, $\theta = \alpha = \text{constant}$. Thus the metric on the surface of the cone becomes

$$ds^2 = dr^2 + r^2 \sin^2 \alpha d\phi^2.$$
 (2)

What is parallel transport of a tensor? Parallel transport is defined in the following way: A tensor field $T^{\mu\dots}_{\nu\dots}$ is said to be *parallel transported* along a curve $\gamma:=x^{\alpha}(\lambda)$ if the covariant derivative of the tensor field along the curve vanishes: $D_{\lambda}T^{\mu\dots}_{\nu\dots}=u^{\eta}\nabla_{\eta}T^{\mu\dots}_{\nu\dots}=0$, where $u^{\eta}=dx^{\eta}/d\lambda$.

In the given problem we are asked to compute the rotation of a vector V^{μ} when it is parallel transported along the r = constant line from $\phi = 0$ to $\phi = 2\pi$. Thus the curve γ is represented by $x^{\mu}(\lambda) = (r_0, \phi(\lambda))$. The condition for parallel transport of V^{μ} along γ then becomes

$$u^{\mu}\nabla_{\mu}V^{\nu} = 0 \rightarrow \dot{\phi}\nabla_{\phi}V^{\mu} = 0 \rightarrow \nabla_{\phi}V^{\mu} = 0 \rightarrow \boxed{\partial_{\phi}V^{\mu} + \Gamma^{\mu}_{\phi\nu}V^{\nu} = 0}.$$
 (3)

To find out the Christofell symbols we use the geodesic equations. The geodesic equations could be obtained from the Lagrangian $L=(1/2)g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}$ where $\dot{x}^{\mu}=dx^{\mu}/d\tau$ (we take $\lambda=\tau$ the propertime). The geodesic e.o.m is given by

$$\frac{d}{d\tau} \left(\frac{\partial L}{\partial \dot{x}^{\mu}} \right) - \frac{\partial L}{\partial x^{\mu}} = 0 \tag{4}$$

¹arif.shaikh@icts.res.in

With the Lagrangian given by

$$L = \frac{1}{2}(\dot{r}^2 + r^2\sin^2\alpha\dot{\phi}^2) \tag{5}$$

The e.o.m for r becomes

$$\ddot{r} - r\sin^2\alpha\dot{\phi}^2 = 0,\tag{6}$$

which provides $\Gamma_{\phi\phi}^r = -r \sin^2 \alpha$. Similarly e.o.m for ϕ is given by

$$\ddot{\phi} + \frac{2}{r}\dot{r}\dot{\phi} = 0,\tag{7}$$

which provides $\Gamma^{\phi}_{r\phi} = \Gamma^{r}_{\phi r} = \frac{1}{r}$. Thus we have

$$\Gamma_{\phi\phi}^{r} = -r\sin^{2}\alpha, \qquad \Gamma_{r\phi}^{\phi} = \Gamma_{\phi r}^{r} = \frac{1}{r}.$$
 (8)

Thus Eq. (3) becomes

$$\partial_{\phi}V^{\mu} + \Gamma^{\mu}_{\phi\nu}V^{\nu} = 0. \tag{9}$$

For $\mu = r, \phi$ this gives the following equations

$$\partial_{\phi}V^{r} + \Gamma^{r}_{\phi\nu}V^{\nu} = 0, \qquad \partial_{\phi}V^{\phi} + \Gamma^{\phi}_{\phi\nu}V^{\nu} = 0. \tag{10}$$

which using Eq. (8) becomes

$$\partial_{\phi}V^{r} + \Gamma^{r}_{\phi\nu}V^{\nu} = 0, \qquad \partial_{\phi}V^{\phi} + \Gamma^{\phi}_{\phi\nu}V^{\nu} = 0. \tag{11}$$

or after differentiating with respect to ϕ ,

$$\partial_{\phi}^{2}V^{r} + \sin^{2}\alpha V^{r} = 0, \qquad \partial_{\phi}^{2}V^{\phi} + \sin^{2}\alpha V^{\phi} = 0 \tag{12}$$

Which has the following general solutions

$$V^r = A_1^r \sin(\sin\alpha\phi) + A_2^r \cos(\sin\alpha\phi), \quad V^\phi = A_1^\phi \sin(\sin\alpha\phi) + A_2^\phi \cos(\sin\alpha\phi). \tag{13}$$

Denoting the values of the components at $\phi = 0$ with suffix '0' the solutions becomes

$$V^r = A_1^r \sin(\sin \alpha \phi) + V_0^r \cos(\sin \alpha \phi), \quad V^{\phi} = A_1^{\phi} \sin(\sin \alpha \phi) + V_0^{\phi} \cos(\sin \alpha \phi). \tag{14}$$

Now, the constants are not all independent, there are only two independent constants. Thus the other two components could be written in terms of the A_0^r and A_0^ϕ using equation (11). This provides

$$A_1^r = r \sin \alpha V_0^{\phi}, \quad A_1^{\phi} = -V_0^r/r \sin \alpha.$$
 (15)

Thus finally we have the solutions

$$V^{r} = V_{0}^{\phi} r \sin \alpha \sin(\phi \sin \alpha) + V_{0}^{r} \cos(\phi \sin \alpha), \quad V^{\phi} = -\frac{V_{0}^{r}}{r \sin \alpha} \sin(\phi \sin \alpha) + V_{0}^{\phi} \cos(\phi \sin \alpha).$$
 (16)

Now we move to a orthonormal set of basis given by $E_r = \partial_r$, $E_{\phi} = (1/\sin\alpha)\partial_{\phi}$. In this basis, we can rewrite the components of the V as

$$\hat{V}^r = V^r, \quad \hat{V}^\phi = r \sin \alpha V^\phi. \tag{17}$$

Thus in this basis, we have the transformation

$$\begin{bmatrix} \hat{V}^r \\ \hat{V}^{\phi} \end{bmatrix} = \begin{bmatrix} \cos(\phi \sin \alpha) & \sin(\phi \sin \alpha) \\ -\sin(\phi \sin \alpha) & \cos(\phi \sin \alpha) \end{bmatrix} \begin{bmatrix} \hat{V}_0^r \\ \hat{V}_0^{\phi} \end{bmatrix}$$
(18)

Thus the components are rotated by an angle $\beta = \phi \sin \alpha$. For $\alpha = 2\pi$ this rotation equals $\beta = 2\pi \sin \alpha$.