C-523

M. A./M. Sc. (Second Semester) (Main/ATKT) EXAMINATION, May-June, 2019

:MATHEMATICS

Paper Fifth

(Advanced Discrete Mathematics-II)

Time: Three Hours]

[Maximum Marks : 80

Note: Attempt all Sections as directed.

Section-A.

1 each

(Objective/Multiple Choice Questions)

Note: Attempt all questions.

Choose the correct answer:

- 1. Two graphs are called isomorphic, if:
 - (a) They have same number of edges
 - (b) They have same number of vertices
 - (c) They have equal number of vertices with given degree
 - (d) All of these
- 2. Which of the following graphs are Eulerian?
 - (a) The complete graph K₃
 - (b) The complete bipartite graph K2,3
 - (c) The Peterson graph
 - (d) None of these

- 3. A vertex of degree one is called:
 - (a) Isolated vertex
 - (b) Pendant vertex
 - (c) Even vertex
 - (d) None of these
- A connected planar graph with n vertices and e edges has r regions given by:
 - (a) r=e-n+1
 - (b) r=e-n+k
 - (c) r=e-n+2
 - $(d) \quad r = e n + 3$
- 5. A finite state machine $M = \langle I, S, O, \delta, \lambda \rangle$ is said to be reduced if and only if $S_i = S_j$ implies that:
 - (a) S_i≠S_j
 - (b) $S_i = S_j$
 - (c) $S_i \neq S_j = 0$
 - (d) None of these
- 6. A turing machine contains everything included in finite state automata together with tape that is:
 - (a) Finite in both directions
 - (b) Infinite in both directions
 - (c) Finite in left and infinite in right directions
 - (d) None of these
- 7. The nullity of connected graph is:
 - (a) e-n+k
 - (b) e-n+1
 - (c) n-1
 - (d) None of these

- 8. Let G be a single graph with 5 vertices. If G has 2 components then the maximum number of edges that G can have is:
 - (a)
 - (b)
 - (c)
 - (d)
- 9. A state of finite state machine M (with output alphabet O = {0, 1}) is said to be rejected state if its output is:
 - (a)
 - **(b)**
 - (c)
 - All of these
- 10. Two states S, and S, of a finite state machine are said to be K. equivalent if their successors are:
 - K-equivalent
 - (K-1) equivalent
 - K + I equivalent (c)
 - K 2 equivalent
- 11. In a Mealy machine the value of the output function depends оп:
 - Present State (a)
 - Present input (b)
 - Present State and Present input both (c)
 - None of these
- 12. Warshall's algorithm is used to find the:
 - Incidence matrix (a)
 - Path matrix Ф)
 - Adjacency matrix (c)
 - None of these (b)

- 13. Ring sum of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is a graph denoted by $G_1 \oplus G_2 = :$
 - $=(V_1 \cup V_2, E_1 \cup E_2)$
 - $=(V_1 \cap V_2, E_1 \cap E_2)$
 - $G_1 \cup G_2 = G$ and $G_1 \cap G_2 = a$ null graph
 - None of these
- 14. A non-deterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where δ is:
 - a finite non-empty internal state
 - a finite non-empty set inputs (b)
 - Next state function
 - None of these
- 15. Two states S, and S, of a finite machine if the states S, and S, have the same output, said to be:
 - (c) O-equivalent
 - **(b)** K-equivalent
 - (c) (K - 1) equivalent
 - (강) (K + 1) equivalent
- 16. A strictly binary tree has an :
 - odd number of vertices (a)
 - even number of vertices (t)
 - odd and even number of vertices (c)
 - None of these (b)
- 17. All the vertices of an Eulerian graph are of:
 - odd degree . (a)
 - even degree (t)
 - odd and even degree (c)
 - None of these **(**3)

[0]

- 18. A circuit is said to be simple, if:
 - (a). it does not includes the same edge twice
 - (b) it does not meet the same vertex twice -
 - (c) it includes the same edge twice
 - (d) It meets the same vertex twice
- 19. If H = (V, E) and K = (V', E'), then H and K are said to be vertex disjoint subgraphs if:
 - (a) V∩V'≠ of then clearly E'∩E= of
 - (b) V∩V'= \$\phi\$ then clearly E∩E' ≠ \$\phi\$
 - (c) V∩V'≠¢ then clearly E∩E'≠¢
 - (d) $V \cap V' = \phi$ then clearly $E \cap E' = \phi$
- 20. The maxium number of edges in a complete bipartite graph of n vertices is:
 - (a) $4n^2$
 - (b) n^2
 - (c) $\frac{n^2}{2}$
 - (d) $\frac{n^2}{4}$

Section-B

2 each

(Very Short Answer Type Questions)

Note: Attempt all questions in 2-3 sentences.

- Define Regular Graph.
- 2. Define fundamental cut sets.
- Define Pendant Vertex.
- 4. Define Finite State Machine.

- 5. Define Binary tree.
- Define Directed Graph.
- 7. Define Moore Machine.
- 3. Define Eulerian circuit.

Section-C

3 each

(Short Answer Type Questions)

Note: Attempt all questions in less than 75 words

- 1. Prove that A tree T with n vertices has n-1 edge.
- 2. Define a Turing Machine.
- 3. Define Complete Bipartite Graphs with an example.
- 4. Find the adjacency matrix of the given graph.

- Define Reduced machine.
- 6. Find the shortest path from a to f in the following graph using Dijkstra's algorithm:

- 7. Define Partial Recursive functions.
- Define Planar graphs with an example.

Section-D

5 each

(Long Answer Type Questions)

Note: Attempt all questions.

1. Let G be a simple graph with n vertices. If G has k components, then the maximum number of edges that G can have is $\frac{(n-k)(n-k+1)}{2}$.

Or

Define with example:

- (i) Complete graph
- (ii) Degree of Vertex -
- (iii) Tree
- (iv) Path
- (v) Acyclic graph
- Using Kruskal's algorithm, find minimum spanning tree of the given graph:

Explain the incidence matrix and adjacency matrix.

3. Let the preorder and inorder search of a binary tree T yield the following sequence of vertices (nodes):

Inorder: dbphqseacrkfl Preorder: abdehpqscfkrl

(C-89)

Consider the finite automation given by table convert this finite automation into a Moore machine:

Present State	Next State		
	a = 0	a=1	
S ₀	S ₂	Sı	
· S ₁	S ₃ .	S₀	
S ₂	So	S	
S,	S _I	· S ₂	

4. Show that the following two machines M₁ and M₂ are equivalent:

Mı						
State	. In	Output				
	1	2				
⇒A	. В	С	0			
В	F	D	0			
С	G	E	0			
D	н	B	. 0			
E	. в	F	1			
F	D	н	. 0			
G.	E	В	0			
Н	В	c	1			

	.[9]	ı	C-523			
M ₂						
State	Input		Outroop			
State	1	2	Output			
⇒A	В.	С	0			
В	. c .	D	0			
c	D	Œ	0			
D	E	В	0			
E	В	С	. 1			
	Or		<u> </u>			

Construct the state diagram for the finite state machine with the state table as given below:

		nput	g Output	
State ·	0	1	0	1
	S ₁	So	1	0 .
S ₀		Sı	0	1
Sı	S₂	S,	1	i
S ₂	S₃	Sı	0	0
S ₃	S ₂	31	<u> </u>	