#### Title

Computer Science 604
Advanced Algorithms
Lecture 9
David Juedes
School of EECS
juedes@cs.ohiou.edu

— Computer Science

### **Examples**

Consider the minimization problem

MIN Vertex Cover

Given: a graph G = (V, E).

Find:  $C \subseteq V$  such that for all  $(u, v) \in E$ , either  $u \in C$  or  $v \in C$  and |C| is the minimal.

Remark: It is well-known that the decision problem

Vertex Cover: given a graph G and an integer k, determine whether G has a vertex cover of size k

is NP-complete.

— Computer Science

# An approximation algorithm for VC

An approximation algorithm for MIN Vertex cover is based on algorithms for maximal matching.

A matching in a graph G = (V, E) is a set  $E' \subseteq E$  such that no two edges in E' share a common endpoint.

A matching  $E' \subseteq E$  is maximal if every remaining edge in E - E' shares a common endpoint with an edge in E'.

CS604 — Computer Science



It is easy to construct a polynomial-time algorithm to produce a maximal matching.

How do you do this?

Computer Science

# An algorithm for Vertex Cover

- (i) Set E'' = E;  $C = \emptyset$
- (ii) Pick an edge  $(u,v) \in E''$ , put u and v in C
- (iii) Put  $(u,v) \in E'$ ;
- (iv) Eliminate all edges in E'' that are incident upon u or v
- (v) Repeat (ii), (iii), and (iv) until  $E'' = \emptyset$

Is it clear that this algorithm runs in polynomial time?

# **Analysis**

What do we know about E'?

Is C a vertex cover? Why?

How close is it to optimal?

CS604

Computer Science

#### MIN Vertex Cover

The performance of the approximation algorithm for MIN Vertex Cover

Let I be an instance of the Vertex cover problem. Then, our approximation algorithm achieves

$$A(I) \leq 2 * OPT(I)$$
.

Why?

Notice that our algorithm constructs a maximal matching E'.

If we examine a vertex cover V', then at least one vertex from each edge in E' must be in V'. Thus,  $|V'| \ge |E'|$ .

CS604 — Computer Science

### Maximal Matching vs. VC

Now, the vertex cover constructed in our algorithm has size  $2 \cdot |E'|$ . Hence, the size of our vertex cover is at most 2 \* OPT(I).

CS604 — Computer Science

# Is our analysis optimal???

Can you give an example of a graph where

- 1. Our approximation algorithm produces a solution of size n, and
- 2. The optimal solution is of size n/2?

Computer Science

# Conclusion

Hence, the approximation ratio for this algorithm is exactly 2.