Tutorial Sheet 3

Please prioritise the questions marked with an asterisk (*) and the multiple-choice questions. If time permits, feel free to attempt the remaining questions. I will be reviewing all questions during the tutorial.

Probability Mass Distributions

Question 1 *

1. The probability mass function of a discrete random variable X is given in the following table:

i	1	2	3	4	5
x	0	1	2	3	4
p(x)	0.1	0.2	0.4	0.2	0.1

- i. Find the E[X] and Var[X].
- ii. Sketch the probability mass function.
- iii. Give the cumulative probability mass function of a discrete random variable X.
- iv. Sketch the cumulative probability mass function

Question 2

2. The probability mass function of a discrete random variable X is given in the following table:

i	0	1	2	3	4
X	-2	-1	0	1	2
p(x)	0.1	0.3	0.3	p3	0.1

- i. Show that p3 = 0.2
- ii. Calculate the E[X] and Var[X].
- iii. Sketch the distribution.

Question 3 *

20% of the Irish population watched Ireland beat France in the Rugby World Cup 2019. A representative from TV3 marketing was sent to Grafton Street to ask passersby their opinion of the match coverage. Let X denote the number of people need to be asked til the marketer successfully finds someone who watched the game.

- i. Give the Geometric probability mass function for X.
- ii. Find the probability that the marketer had to ask exactly 2 people.
- iii. What is the $\mathrm{E}[\mathrm{X}]$ and $\mathrm{Var}[\mathrm{X}]$ of the distribution.

Very Optional Question 4

4. The probability mass function of a Bernoulli random variable X is given in the following table:

$$\frac{\mathbf{x}}{\mathbf{p}(\mathbf{x})} \quad \frac{\mathbf{0}}{\mathbf{q}} \quad \mathbf{p}$$

Find the mean E[X] and variance Var[X].

Multiple-Choice Questions

MCQ Question 5

Which of the following is true about a probability mass function (PMF) of a discrete random variable?

- A) The PMF can take any value greater than or equal to 0.
- B) The sum of all values of a PMF is 1.
- C) The PMF can take negative values.
- D) The PMF is defined for continuous random variables.

MCQ Question 6

The probability mass function of a discrete random variable X is given in the following table:

i	1	2	3	4
X	-4	-2	2	6
p(x)	0.1	0.3	0.4	0.2

What is the probability that X takes a value greater than -2?

- A) 0.1
- B) 0.2
- C) 0.6
- D) 0.4
- E) 0.7

MCQ Question 7

Which of the following best describes the geometric distribution?

- A) It models the number of successes before the first failure in a series of independent Bernoulli trials.
- B) It models the number of trials until the first success in a series of independent Bernoulli trials.
- C) It models the number of failures before the first success in a series of dependent Bernoulli trials.
- D) It models the number of trials until the first success in a series of dependent Bernoulli trials.

MCQ Question 8

Spot three reasons why the following table cannot be a probability mass function of a discrete random variable X:

x	4	-2	2	6
p(x)	0.1	-0.3	0.4	0.2

MCQ Question 9

What is the variance of a Bernoulli random variable with success probability p = 0.6?

- A) 0.24
- B) 0.36
- C) 0.4
- D) 0.6

MCQ Question 10

Which statement best describes a cumulative distribution function (CDF)?

- A) It gives the probability of a specific value.
- B) It gives the probability that a variable is greater than a value.
- C) It gives the probability that a variable is less than or equal to a value.
- D) It gives the expected value of a distribution.

Question 11

Write your own question for a geometric distribution.