Estimação Pontual

Luan Fiorentin

UFPR - DEST

2019-05-04

Sumário

- Introdução
- 2 Conceitos de Inferência Estatística
- 3 Métodos de Estimação Pontual
- 4 Estimação Pontual
- 5 Distribuições Amostrais

Introdução

- Seja X uma variável aleatória com função densidade (ou de probabilidade) denotada por $f(x;\theta)$, em que θ é um parâmetro desconhecido.
- Chama-se de **inferência estatística** o problema que consiste em especificar um ou mais valores para θ , baseado em um conjunto de valores X.
- A inferência estatística pode ser feita por meio de:
 - Estimativa pontual.
 - Estimativa intervalar.

- Um experimentador usa as informações em uma amostra aleatória $X_1, X_2, ..., X_n$ para fazer **inferências sobre** θ .
- Normalmente o tamanho da amostra é bastante grande e fica inviável tirar conclusões baseadas em uma grande quantidade de dados.
- Assim, um dos objetivos da inferência estatística é **resumir** as informações de uma amostra, da maneira mais compacta possível, mas que ao mesmo tempo também seja informativa.
- Normalmente, esse resumo é feito por meio de **estatísticas**:
 - Média amostral.
 - Mediana amostral.
 - Variância amostral.
 - . . .

- População: conjunto de valores (ou itens) de uma característica associada a uma coleção de indivíduos ou objetos de interesse.
- Amostra: conjunto de dados coletados e/ou selecionados de uma população por um procedimento estatístico. Os elementos de uma amostra são conhecidos como pontos amostrais, unidades amostrais ou observações.

"Amostra aleatória é uma sequência $X_1, X_2, ..., X_n$ de n variáveis aleatórias independentes e identicamente distribuídas (iid) com função densidade (ou de probabilidade) $f(x;\theta)$ ".

ullet Normalmente n>1, então fdp ou fp conjunta será

$$f(x; \theta) = f(x_1, x_2, ..., x_n; \theta) = \prod_{i=1}^{n} f(x_i; \theta).$$

• Parâmetro:

População ightarrow censo ightarrow parâmetro

Uma medida numérica que descreve alguma **característica da população** é usualmente representada por letras gregas: $\theta, \mu, \sigma, ...$

Exemplo: Média populacional (μ) .

• Estatística:

População ightarrow amostra ightarrow estatística

Uma medida numérica que descreve alguma **característica da amostra** é usualmente denotada pela letra grega do respectivo parâmetro com um acento circunflexo: $\hat{\theta}$, $\hat{\mu}$, $\hat{\sigma}$,..., ou letras do alfabeto comum.

Exemplo: Média amostral (\bar{x}) .

• Estatística:

Qualquer função da amostra que não depende de parâmetros desconhecidos, denotada por $T(\mathbf{X}) = T(X_1, X_2, ..., X_n)$

Exemplos:

$$T_{1}(\mathbf{X}) = \sum_{i=1}^{n} X_{i} = X_{1} + X_{2} + \dots + X_{n}$$

$$T_{2}(\mathbf{X}) = \sum_{i=1}^{n} \frac{X_{i}}{n}$$

$$T_{3}(\mathbf{X}) = \prod_{i=1}^{n} X_{i} = X_{1} \cdot X_{2} \cdot \dots \cdot X_{n}$$

$$T_{4}(\mathbf{X}) = X_{min}$$

$$T_{5}(\mathbf{X}) = \sum_{i=1}^{n} (X_{i} - \mu)^{2}$$

Verificamos que T_1, T_2, T_3, T_4 são **estatísticas**, mas T_4 não.

Como as demais é uma função da amostra, então uma estatística também é uma variável aleatória. Logo, tem uma **distribuição** amostral.

- Espaço paramétrico: é o conjunto Θ em que θ pode assumir valores.
- Estimador: qualquer estatística que assume valores em Θ é um estimador para θ .
- Estimador pontual: um estimador pontual para θ é qualquer estatística que possa ser usada para estimar esse parâmetro, ou seja,

$$\hat{\theta} = T(\boldsymbol{X}).$$

Observação:

- Todo estimador é uma estatística, mas nem toda estatística é um estimador.
- O valor assumido pelo estimador pontual é chamado de **estimativa pontual**,

$$\theta = T(\mathbf{X}) = T(X_1, X_2, ..., X_n) = t.$$

• Então, o estimador é uma **função da amostra**, e a estimativa é o **valor observado** de um estimador (um número) de uma amostra particular.

Métodos de Estimação Pontual

- Método da Máxima Verossimilhança
- Método dos Momentos
- Método dos Mínimos Quadrados

Método da Máxima Verossimilhança

- Consiste em encontrar valor para os parâmetros de maneira a maximizar a probabilidade dos dados observados (isto é, busca parâmetros que maximizem a função de verossimilhança).
- Considere uma população e uma variável aleatória X, com fp $p(x,\theta)$ (se X é V.A. discreta) ou fdp $f(x,\theta)$ (se X é V.A. contínua), sendo θ o **parâmetro desconhecido**.

 Se X for variável aleatória contínua, a função de verossimilhança L é definida por

$$L(\theta; x_1, \dots, x_n) = f(x_1; \theta) \times \dots \times f(x_n; \theta) = \prod_{i=1}^n f(x_i; \theta).$$

 Se X for variável aleatória discreta, a função de verossimilhança L é definida por

$$L(\theta; x_1, \dots, x_n) = p(x_1; \theta) \times \dots \times p(x_n; \theta) = \prod_{i=1}^n p(x_i; \theta).$$

- O estimador de máxima verosssimilhança é equivalente ao estimador de máxima log-verossimilhança:
 - Melhor desempenho computacional.
 - Cálculos se tornam mais "fáceis".
- A função de log-verossimilhança l é definida por

$$l(\theta, x_1, \dots, x_n) = lnL(\theta, x_1, \dots, x_n) = \sum_{i=1}^n ln[f(\theta, x_1, \dots, x_n)].$$

Em muitos casos, o estimador de máxima verossimilhança pode ser encontrado seguindo os passos abaixo:

- Encontrar a função de verossimilhança.
- Aplicar a função log.
- **3** Derivar em relação ao parâmetro θ .
- Igualar o resultado a zero.
- \bullet Isolar o parâmetros de interesse θ .

Método do Momentos

- Consiste em igualar os **momentos populacionais** (definidos através da amostra) com os **momentos da distribuição**.
- Seja $X_1, ..., X_n$ uma amostra de uma população com distribuição de probabilidade f(x). O **k-ésimo momento da distribuição** é definido por

$$E(X^k)$$
.

• O momento **k-ésimo populacional** correspondente é dado por

$$\frac{1}{n} \sum_{i=1}^{n} X_i^k,$$

 Assim, o método dos momentos é definido igualando-se o momento populacional com o momento da distribuição.

Para ilustrar, o primeiro momento da distribuição é

$$E(X^1) = E(X) = \mu,$$

e o primeiro momento populacional é

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{1}=\bar{x}.$$

Portanto, o **estimador de momentos** para a média é $\mu = \bar{x}$.

Exercício 1

Dado o modelo abaixo, encontre o estimador para o parâmetro desconhecido λ pelo método de máxima verossimilhança (MMV) e pelo método dos momentos (MM).

$$f(x_i; \lambda) = \lambda e^{\lambda x_i},$$

onde $\lambda > 0$ e $x_i = 1, 2, ..., n$.

Estimação Pontual

- Quando a **amostragem** é feita a partir de uma população descrita por uma função $f(x,\theta)$, o conhecimento de θ a partir da amostra, gera todo o **conhecimento para a população**.
- Assim, é natural que se procure um método para se achar um bom estimador para θ .
- Existem algumas **propriedades** que definem o que é um bom estimador, ou o "melhor" estimador entre uma série de candidatos.

Qual o **melhor** estimador para a amostra de alturas (em metros) dada a seguir?

$$\mathbf{x} = \{1, 65; 1, 57; 1, 72; 1, 66; 1, 71; 1, 74; 1, 81; 1, 68; 1, 60; 1, 77\}$$

- Estimador μ₁: média artimética entre os valores mínimo e máximo da amostra.
- **2** Estimador μ_2 : primeiro valor sorteado da amostra.
- \odot Estimador μ_3 : média artimética dos valores da amostra.

$$\hat{\mu}_1 = \frac{1,57+1,81}{2} = 1,69$$

$$\hat{\mu}_2 = 1,65$$

$$\hat{\mu}_3 = \frac{1,57 + \dots + 1,81}{2} = 1,69$$

- O "bom" estimador para o parâmetro deve apresentar as seguintes propriedades:
 - Não viciado.
 - Consistente.
 - Eficiente

Erro Quadrático Médio

O Erro Quadrático Médio (EQM) de um estimador $\hat{\theta}$ de θ é dado por

$$EQM[\hat{\theta}] = E[(\hat{\theta} - \theta)^2],$$

$$EQM[\hat{\theta}] = Var[\hat{\theta}] + B[\hat{\theta}]^2,$$

em que

$$B[\hat{\theta}]^2 = E[\hat{\theta}] - \theta$$

é denominado de vício do estimador $\hat{\theta}$. Portanto, dizemos que um estimador é não viciado quando

$$B[\hat{\theta}] = 0 \Rightarrow E[\hat{\theta}] = \theta.$$

Vício

Seja $(X_1, X_2, ..., X_n)$ uma amostra aleatória de uma variável aleatória com fdp ou fp $f(x, \theta)$, em que $\theta \in \Theta$, dizemos que o estimador $\hat{\theta} = T(X)$ é não viciado para θ se

$$E[\hat{\theta}] = E[T(\boldsymbol{X})] = \theta.$$

Um estimador $\hat{\theta}$ é dito assintoticamente não viciado se

$$\lim_{n \to \infty} E[\hat{\theta}] = \theta.$$

Isso quer dizer que para as amostras suficientemente grande, $\hat{\theta}$ passa a ser imparcial.

Consistência

Seja $(X_1, X_2, ...; X_n)$ uma amostra aleatória de uma variável aleatória com fdp ou fp $f(x, \theta)$, em que $\theta \in \Theta$, o estimador $\hat{\theta} = T(X)$ é consistente para θ se satisfaz simultaneamente

$$\lim_{n\to\infty} E[\hat{\theta}] = \theta$$

$$\lim_{n \to \infty} Var[\hat{\theta}] = 0.$$

Exemplo

• considere a média amostral como um estimador da média populacional μ :

$$E[\bar{x}] = E\left[\frac{1}{n}\sum_{i=1}^{n}x_i\right] = \mu$$

$$Var[\bar{x}] = Var\left[\frac{1}{n}\sum_{i=1}^{n}x_i\right] = \frac{\sigma^2}{n}$$

Logo, \bar{x} é um estimador não viciado e consistente para μ .

Eficiência

Sejam $\hat{\theta}_1 = T_1(\boldsymbol{X})$ e $\hat{\theta}_2 = T_2(\boldsymbol{X})$ dois estimadores pontuais não viciados para θ . A eficiência relativa de $\hat{\theta}_1$ em relação a $\hat{\theta}_2$ é

$$ER[\hat{\theta}_1; \hat{\theta}_2] = \frac{Var[\hat{\theta}_1]}{Var[\hat{\theta}_2]}.$$

Logo, se

 $ER[\hat{\theta}_1; \hat{\theta}_2] > 1$, então $\hat{\theta}_2$ é mais eficiente.

 $ER[\hat{\theta}_1; \hat{\theta}_2] < 1$, então $\hat{\theta}_1$ é mais eficiente.

Exemplo

• Considere a média amostral $\hat{\mu}_1 = \bar{X}$ e a mediana amostral $\hat{\mu}_2 = mediana(X_1, ..., X_n)$ como estimadores não viciados, e as respectivas variâncias dadas por $Var(\hat{\mu}_1 = \sigma^2/n)$ e $Var(\hat{\mu}_2 = (\pi/2)\sigma^2/n)$. Qual é mais eficiente?

$$ER(\hat{\mu}_1, \hat{\mu}_2) = \frac{Var(\hat{\mu}_1)}{Var(\hat{\mu}_2)} = \frac{\sigma^2/n}{(\pi/2)\sigma^2/n} = \frac{2}{\pi} = 0,63.$$

Logo, como 0,63 < 1, então $Var(\hat{\mu}_1) < Var(\hat{\mu}_2)$. Assim, conclui-se que $\hat{\mu}_1$ é mais eficiente que $\hat{\mu}_2$.

- O erro padrão de um estimador dá uma ideia da precisão da estimativa.
- \bullet O erro padrão (EP) de um estimador é seu desvio-padrão (raíz quadrada da variância), ou seja

$$EP[\hat{\theta}] = \sqrt{Var[\hat{\theta}]}.$$

Exemplo:

Sabemos que a distribuição de \bar{x} tem média μ e variância σ^2/n . Então, o erro padrão de \bar{x} é

$$EP[\hat{\theta}] = \sqrt{Var[\hat{\theta}]} = \sqrt{\frac{\sigma^2}{n}} = \frac{\sigma}{\sqrt{n}}.$$

Distribuições Amostrais

- Uma amostra de tamaho n é descrita pelos valores $x_1, x_2, ..., x_n$ das variáveis aleatórias $X_1, X_2, ..., X_n$, configurando uma **amostra aleatória**.
- No caso de uma Amostragem Aleatória Simples (AAS) com reposição, $X_1, X_2, ..., X_n$ serão variáveis aleatórias independentes e identicamentes distribuídas (iid) com função de probabilidade (fp) ou função densidade de probabilidade (fdp) conjunta dada por

$$f(x_1, x_2, ..., x_n; \boldsymbol{\theta}) = f(x_1; \boldsymbol{\theta}) \cdot f(x_2; \boldsymbol{\theta}) \cdot ... \cdot f(x_n; \boldsymbol{\theta}) = \prod_{i=1}^n f(x_i; \boldsymbol{\theta}),$$

sendo que o mesmo valor do parâmetro θ é utilizado em cada um dos termos no produto.

- Quando uma **amostra** $X_1, X_2, ..., X_n$ é obtida, geralmente estamos interessados em um resumo destes valores, que pode ser expresso matematicamente pela estatística $T(x_1, x_2, ..., x_n)$.
- Dessa forma, $Y = T(x_1, x_2, ..., x_n)$ é também uma variável aleatória.
- Se Y é uma V. A., então ela possui uma distribuição de probabilidade.
- Uma vez que a distribuição de Y é derivada da amostra $X_1, X_2, ..., X_n$, vamos denominá-la de **distribuição amostral** de Y.

- A distribuição de probabilidade de uma estatística qualquer $Y = T(x_1, x_2, ..., x_n)$ é denominada de distribuição amostral de Y.
- Assim, uma estatística também é uma variável aleatória, pois seus valores mudam conforme a **amostra aleatória**.
- Duas estatísticas comumente utilizadas para o resumo de uma amostra aleatória são a **média amostral** (\bar{x}) e a **proporção amostral** (\bar{p}) . Cada uma delas também possui uma distribuição amostral.

Distribuição Amostral da Média

Para estudarmos a distribuição amostral da estatística \bar{x} , considere uma população identificada pela V. A. X, com parâmetros de média $(E[X] = \mu)$ e variância $(Var[X] = \sigma^2)$ conhecidos.

Em seguida, realiza-se os seguintes passos:

- Retira-se m amostras aleatórias (com reposição) de tamanho n dessa população.
- Para cada uma das m amostras, calcula-se a média amostral \bar{x} .
- ullet Verifica-se a distribuição das m médias amostrais e estudamos suas propriedades.

Seja $X \sim N(10, 16)$, como se comporta \bar{x} para n = 10, 30, 50, 100?

Figura 1: Distribuição amostral da média

 Através do estudo da distribuição da média amostral chegamos em um dos resultados mais importantes da inferência estatística.

Distribuição Amostral da Média

$$E[\bar{X}] = \mu_{\bar{X}} = \mu$$

 $Var[\bar{X}] = \sigma_{\bar{X}}^2 = \sigma^2/n$
Portanto, se

$$X \sim N(\mu, \sigma^2)$$
, então $\bar{X} \sim N(\mu_{\bar{X}}, \sigma_{\bar{X}}^2)$.

Mas como $\mu_{\bar{X}}=\mu$ e $\sigma_{\bar{X}}^2=\sigma^2/n,$ então a distribuição amostral da média amostral \bar{X} é

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right).$$

- Para amostras suficientemente grandes, a **média amostral** \bar{X} **converge para o verdadeiro valor da média populacional** μ (é um estimador não viesado de μ).
- Além disso, a variância das médias amostrais $\sigma_{\bar{X}}^2$ tende a diminuir conforme $n \to \infty$ (é um estimador consistente).
- Esses resultados sugerem que, quando o tamanho da amostra aumenta, independente do formato da distribuição da população original, a **distribuição amostral de** \bar{X} aproxima-se cada vez mais de uma distribuição Normal.
- Esse é um resultado fundamental na teoria de probabilidade, conhecido como **Teorema Central do Limite**.

Teorema Central do Limite (TCL)

Para amostras aleatórias $(X_1, X_2, ..., X_n)$, retiradas de uma população com média μ e variância σ^2 , a distribuição amostral da média \bar{X} , terá forma dada por

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

no limite, quando $n \to \infty$, $Z \sim N(0, 1)$.

Se a população apresentar distribuição Normal, então \bar{X} terá distribuição exata normal.

A rapidez da convergência para a normal depende da distribuição da população da qual as amostras foram geradas.

- O teorema TCL garante que, para n grande, a distribuição da média amostral, devidamente padronizada, se comporta segundo um modelo normal com média 0 e variância 1.
- Pelo teorema, temos que quanto maior o tamanho da amostra, melhor é a aproximação.
- Estudos envolvendo simulações mostram que, em muitos casos, valores de n ao redor de 30 fornecem aproximações bastante boas para as aplicações práticas.

Distribuição amostral da proporção

• Muitas vezes, o interesse é conhecer uma **proporção**, e não a média de uma população.

Suponha que uma amostra de tamanho n foi obtida de uma população, e que x < n observações nessa amostra pertençam a uma classe de interesse (ex.: pessoas do sexo masculino).

Dessa forma, a **proporção amostral** é dada pelo **número de sucessos** (x) pelo total de tentativas (n),

$$\hat{p} = \frac{x}{n},$$

onde \hat{p} o melhor estimador para a proporção populacional p. Observação: n e p são os parâmetros da Distribuição Binomial.

- A distribuição amostral de uma proporção é a distribuição das proporções de todas as possíveis amostras de tamanho n retiradas de uma população.
 - Considere uma moeda que é lançada n=10,30,50,100 vezes, e a proporção de caras é registrada.
 - Esse processo é repetido m=1000 vezes.

Conclui-se que:

- A média das proporções para $n \to \infty$ tende para a verdadeira proporção populacional p = 0, 5.
- A distribuição amostral das proporções é aproximadamente uma distribuição normal.

Seja $P \sim Bin(n, 0.5)$, como se comporta \bar{p} para n = 10, 30, 50, 100?

Figura 2: Distribuição amostral da proporção

 Através do estudo da distribuição da média amostral chegamos em um dos resultados mais importantes da inferência estatística.

Distribuição Amostral da Proporção

$$E[\hat{p}] = \mu_{\bar{p}} = p$$

$$Var[\hat{p}] = \sigma_{\hat{p}}^2 = \frac{p(1-p)}{n}$$

Portanto, a distribuição amostral de \hat{p} é dada

$$\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right).$$

Ainda, \hat{p} um estimador não viciado e consistente para p.

• O erro padrão de \hat{p} é dado pelo

$$EP[\hat{p}] = \sqrt{Var[\hat{p}]} = \sqrt{\frac{p(1-p)}{n}}.$$

• Pelo TCL, a quantidade

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0, 1).$$

Exercício 2

Suponha que a proporção de peças fora da especificação em um lote é de 40%. Uma amostra de 30 peças foi selecionada. Qual é a probabilidade da proporção de peças defeituosas ser menor do que 0,5?

- Faça o cálculo considerando a distribuição Binomial.
- Faça o cálculo considerando uma aproximação pela distribuição Normal.

Exercício 2

• Distribuição Binomial: $X \sim Bin(n = 30, p = 0, 4)$.

$$P(\hat{p} < 0, 5) = P(X < 15) = \sum_{x=0}^{14} {30 \choose x} 0, 4^x 0, 6^{30-x} = 0,825.$$

2 Aproximação pela distribuição Normal.

$$\hat{p} \sim N\left(0, 4, \frac{0, 4(1-0, 4)}{30}\right)$$

•

$$P(\hat{p} < 0, 5) \approx P\left(\frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} < \frac{0, 5 - 0, 4}{\sqrt{\frac{0, 4(1-0, 4)}{30}}}\right)$$

$$P(\hat{p} < 0, 5) \approx P(Z < 1, 12) = 0,869.$$