Examen M2 SeCReTS (seconde session) : Rappels de mathématiques

Remarques:

- Pour chacune des questions, on demande de justifier les étapes en mentionnant notamment les algorithmes utilisés.
- Aucun document ni aucune calculatrice ne sont admis.
- La durée de l'examen est de deux heures.

Partie I: Théorie.

Question 1 (question de cours)

- 1. Montrer le théoreme de Lagrange.
- 2. Montrer que $a \in (\mathbb{Z}_n, *)$ est inversible si et seulement il existe un plus grand commun diviseur de a et de n valant 1.

Question 2 (application de la théorie)

Considérons les nombres $m_1, m_2, m_3 \in \mathbb{N} \setminus \{0, 1\}$. Il est possible de montrer que tout nombre (naturel) X dans l'intervalle $[0, m_1 \cdot m_2 \cdot m_3[$ peut s'écrire de façon unique comme

$$X = \mu_1 + \mu_2 \cdot m_1 + \mu_3 \cdot m_1 \cdot m_2 \tag{1}$$

avec $\mu_i \in [0, m_i[$ (naturel) pour i = 1, 2, 3.

Notre objectif est de trouver l'ensemble des solutions du système de congruences :

$$X \equiv a_1 \mod m_1$$

$$X \equiv a_2 \mod m_2$$

$$X \equiv a_3 \mod m_3$$
(2)

où les nombres $m_1, m_2, m_3 \in \mathbb{N} \setminus \{0, 1\}$ sont relativement premiers deux à deux et $a_1, a_2, a_3 \in \mathbb{Z}$.

- 1. Exprimer les coefficients μ_1 , μ_2 , μ_3 (voir équation (1)) en fonction de a_1 , a_2 , a_3 , m_1 , m_2 , m_3 de telle sorte que X soit solution du système de congruences (2)
- 2. Déduisez-en l'ensemble des solutions du système de congruences (2).

- Expliquez comment évaluer les différents formules (pour μ₁, μ₂ et μ₃) le plus efficacement possible.
- 4. Résoudre le système (2) avec les formules obtenues précédemment lorsque $a_1 = 1$, $a_2 = 2$, $a_3 = 3$ et $m_1 = 3$, $m_2 = 5$, $m_3 = 7$.

Partie II: Applications.

Question 3

- a. Considérons le groupe multiplicatif de $(\mathbb{Z}_{539}, +, *)$.
 - Calculer le nombre d'éléments de ce groupe en justifiant le raisonnement.
- b. Considérons le polynôme irréductible

$$P(X) = X^3 + 2X + 1 \in \mathbb{Z}_3[X]$$

et le corps fini

$$\mathbb{Z}_3[X]/(P(X))$$
.

- 1. Déterminer le nombre d'éléments de ce corps.
- 2. Soit les classes de représentants $A = 2X^2 + 1$ et $B = X^2$. Donner le représentant minimal de la somme et du produit de ces classes.
- 3. En utilisant un algorithme systématique, donner le représentant minimal de l'inverse de la classe dont le présentant est X^2+1

Question 4

- 1. Calculez un représentant minimal de la classe [44 + 9Z],
- Calculez le représentant minimal de la classe [13 + 14Z]¹⁴
- 3. Calculez la cardinalité du sous-groupe multiplicatif de $(\mathbb{Z}_{14},+,\cdot), \bullet$
- 4. Calculez 343 mod 14,
- 5. Soit $P(X) = X^2 + 1 \in \mathbb{Z}_2[X]$. Est-ce que $\mathbb{Z}_2[X]/(P(X))$. Est-ce un champ? Justifiez.

