Laboratório de ECAi05

Universidade Federal de Itajubá – Campus Avançado de Itabira

Disciplina: ECAi05 - Laboratório de Sistemas de Controle I

Objetivo

Este laboratório tem como finalidade analisar os sistemas dinâmicos de 1ª e 2ª ordem por meio de simulação computacional.

Respostas típicas de sistemas dinâmicos de 1ª e 2ª ordem

- 1. O objetivo dessa experiência é analisar a resposta de um sistema dinâmico de 1^a ordem, que pode ser definido em função da sua constante de tempo τ .
 - (a) Abrir o programa

```
lab2_prg1
```

Nele, tem-se um circuito RC com um gerador de onda quadrada variando de 0 a 1 V com a frequência de 50 Hz. Definir o valor do resistor R como 100 k Ω e o valor do capacitor C como 33 nF dando um duplo clique sobre o resistor e o capacitor no circuito. Na Janela de Comandos, digitar:

```
>> R = 100e3;
>> C = 33e-9;
```

Nota-se que é possível ver o sinal de tensão de entrada e o sinal de tensão de saída no *Scope*. Rode o programa e esboce as formas de onda, de um período de $v_i(t)$ e $v_o(t)$ no gabarito abaixo.

(b) Anote o tempo gasto pela saída $v_o(t)$ para variar de 0 a 0,63 V. Utilize o zoom do Scope. Esse valor pode ser determinado analiticamente? t=3,3 ms. Se $\tau=RC$, 100 k Ω multiplicado por 33 nF serão os mesmos $\frac{3}{3},\frac{3}{3}$ ms encontrados no gráfico.

(c) Altere o valor do resistor R para 20 k Ω e anote os resultados obtidos. Sabendo que o circuito RC tem o modelo abaixo, justifique a alteração na saída $v_o(t)$ com a alteração do resistor.

$$G(s) = \frac{1}{\tau s + 1}$$
 com $\tau = RC$

 $t=687~\mu s$. O valor do resistor menor diminui o valor da constante de tempo, fazendo a tensão de saída crescer mais rapidamente.

(d) Modifique a amplitude da entrada $v_i(t)$ e verifique os resultados obtidos. Pode se garantir que o sistema dinâmico em questão é linear? Justifiquese.

O sistema é linear, pois uma amplitude de entrada de 1 V resultou em uma saída de 1 V no valor final, e uma amplitude de entrada de 0,5 V resultou em uma saída de 0,5 V, e e uma amplitude de entrada de 1,5 V, que é a soma dessas duas entradas resultou em uma saída de 1,5 V que é igual à soma das saídas.

2. Outra maneira de analisar a resposta de um sistema dinâmico é o domínio da frequência. Se a entrada $v_i(t)$ for excitada por uma onda senoidal de amplitude fixa e de frequência variável, então, a partir da amplitude e da defasagem da onda senoidal de saída $v_o(t)$, é possível traçar a resposta em frequência, determinando assim a função de transferência do sistema dinâmico.

$$\omega = 2\pi f = \frac{2\pi}{T}$$

$$\varphi = 2\pi \frac{t_o}{T} \quad \text{ou} \quad \varphi = 360 \frac{t_o}{T}$$

$$A = 20 \log \frac{A_o}{A_i}$$

(a) No mesmo programa utilizado no exercício anterior, alterar a forma de onda dando um duplo click com o mouse, sobre o Manual Switch e manter o valor do resistor R em 20 k Ω . Ajuste a forma de onda senoidal de amplitude de 1 V para frequência de 1000 [rad/s] e rode o programa. Com o gráfico gerado, realizar os cálculos necessários para preenchimento da tabela. Anote na tabela abaixo a amplitude e defasagem da onda senoidal de saída $v_o(t)$. Utilize o zoom do Scope.

$\omega[rad/s]$	f[Hz]	T[ms]	$A_0[V]$	$t_0[ms]$	A	φ [°]
100	16	32,80	0,99	-0,70	-0,09	-7,24
300	48	20,90	0,98	-0,65	-0,18	-11,20
500	80	12,60	0,95	-0,64	-0,45	-18,29
700	111	9,00	0,91	-0,62	-0,82	-24,80
900	143	7,00	0,86	-0,60	-1,31	-30,71
1000	159	6,28	0,83	-0,56	-1,62	-32,10
3000	477	2,10	0,44	-0,37	-7,13	-63,43
5000	796	1,30	0,29	-0,25	-10,75	-69,23
7000	1114	0,90	0,24	-0,19	-12,40	-76
9000	1432	0,70	0,19	-0,15	-14,42	-77,14
10000	1592	0,63	0,15	-0,14	-16,48	-80

(b) Repita o procedimento do **item (a)** de forma a completar a tabela acima. Com base no ganho (em decibéis) e na defasagem dos sinais, trace o diagrama de Bode desse sistema no gráfico acima. Baseado na resposta em frequência, é possível garantir que o sistema dinâmico em questão é linear?

- 3. O objetivo dessa experiência é analisar a resposta de um sistema dinâmico de 2^a ordem, que pode ser definido em função do fator de amortecimento ζ e da frequência natural ω_n .
 - (a) Abrir o programa

```
lab2_prg2
```

Nele, tem-se um circuito RLC com um gerador de onda quadrada variando de 0 a 1 V com a frequência de 1,5 kHz. Definir o valor do resistor R como 10 Ω , o valor do capacitor C como 33 nF e o indutor L igual a 27 μ H. No *Command Window*, digitar:

```
>> R = 10;
>> C = 33e-9;
>> L = 27e-6;
>> wn = 1/sqrt(L*C);
>> zeta = (R/2)*sqrt(C/L);
```

Nota-se que é possível ver o sinal de tensão de entrada e o sinal de tensão de saída no *Scope*. Rode o programa e esboce as formas de onda, de um período de $v_i(t)$ e $v_o(t)$ no gabarito abaixo.

(b)	Anote o valor de pico da saída $v_o(t)$. Calcule o valor da ultrapassagem.

(c)	Altere o resistor R para 100 Ω e 2 k Ω , e verifique os resultados obtidos.
	Sabendo que o circuito RLC tem o modelo abaixo, justifique a alteração na
	saída $v_o(t)$ com a alteração do resistor.

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

com

$$\zeta = \frac{R}{2} \sqrt{\frac{C}{L}}$$

е

$$\omega_n = \frac{1}{\sqrt{LC}}$$

Atividades Complementares

O relatório deve ser entregue APENAS em formato PDF até **7 dias** após a aula prática conforme tarefa cadastrada no SIGAA. O guia deve ser entregue com os itens preenchidos. As atividades complementares devem ter o <u>enunciado</u>, <u>desenvolvimento</u> e <u>conclusões</u> também anexados ao guia. Não há necessidade de capa e afins, apenas identificação de nome e número de matrícula da dupla.

1.	No circuito RLC, como a frequência natural ω_n poderia ser alterada? Isso altera-
	ria o fator de amortecimento ζ desse sistema? Justifique-se.