1 т.

Дефиниране на вълновото число и запис на уравнението чрез k

10. Каква е разликата в дифракционната картина, която се полу тази разлика?	чава зад кръгъл отвор и кръгла преграда? Защо се получава
Описание на разликата (светло или тъмно петно в средата)	1 т.
Построяване на зоните на Френел в двата случая	3 т.
Пресмятане на амплитудата зад отвора (преградата)	3 т.

11. Абсолютно черно тяло. Закон на Кирхоф за топлинното излъчване.

АЧТ	2 т.
Правилна формулировка на закона (с думи и формула)	3 т.
Следствия, примери за приложение	2 т.

12. Вълни на дьо Бройл.

Основание за предположението на дьо Бройл	2 т.
Получаване на формулата (от $E=pc$ и $E=hv=hc/\lambda$)	2 т.
Физически смисъл	3 т.

Въпроси с максимален брой точки – 10 (3+7 – за въпросите с избираем отговор).

13. По два успоредни праволинейни проводника с еднаква дължина протичат токове I_1 и I_2 (I_1 =2 I_2). За силите, с които си взаимодействат проводниците (съответно F_1 и F_2), е изпълнено:

a)
$$\vec{F}_1 = 2\vec{F}_2$$
:

- a) $\vec{F}_1 = 2\vec{F}_2$; b) $\vec{F}_1 = \vec{F}_2$; c) $\vec{F}_1 = -\vec{F}_2$; d) $F_1 \sim I_1$ in $F_2 \sim I_2$; e) $F_1 = F_2$.

Правилен чертеж, съобразен със законите в двата случая +3 T. Пресмятане на големината на силата +4 T.

14. На графиката са представени зависимостите на отклонението x, скоростта vи ускорението a на хармоничното трептение с уравнение $x=0.5\sin 2t$ от времето. Кривите 1, 2 и 3 се отнасят съответно за: d) a,x,v; a) x,a,v; b) *x*,*v*,*a*; c) v,x,a; e) *a*,*v*,*x*.

d) 1 x(0) = 0+2 T. Намиране на скоростта (и ускорението) +3 T.

+2 T.

Определяне на v(0) или a(0)

- 15. Интерференчен максимум се наблюдава в точки от пространството, в които разликата Δ в оптичните пътища на двете кохерентни вълни е (λ – дължина на вълната, k – цяло число):
 - a) $\Delta = \lambda$;
- b) $\Delta = \lambda/2$;
- c) $\Delta = k\lambda/2$;
- d) $\Delta = k\lambda$; e) $\Delta = (2k+1)\lambda/2$.

c) 1 a) 2 b) 0 d) 3 e) 0

Формула за амплитудата на сумарното трептение в дадената точка +3 T.

Извод на формулата за Δ

+4 т.