

CZ4031: DATABASE SYSTEM PRINCIPLES

Assignment 1
3 October 2021

Group 20

Tok Jing Xian Chan Zhao Hui Leow Wei Thou, Samuel Soham Bhadra (U1822379K)

Table of Contents

INTRODUCTION	3
Description	3
Implementation overview	
Dataset attributes	
STORAGE COMPONENT	4
Record	4
Disk Block	4
EXPERIMENTS	5
Experiment 1	

INTRODUCTION

Description

In this project, we design and implement a simple storage and database system using C++ that uses B+ trees for indexing records. We support inserting, searching for and deleting records. We use a single C++ file containing all the functions.

Implementation overview

Dataset attributes

The dataset (data.tsv) used for this project contains IMDb IDs, ratings and votes for movies. The following are the attributes in the dataset:

- tconst: alphanumeric unique identifier of the title
- averageRating: weighted average of all the individual user ratings
- numVotes: number of votes the title has received

The following experiments are written in the C++ programming language to design the storage of data and the B+ tree.

Sample record in data.tsv:

Attribute	Data type	Data example
tconst	String	tt0000001
averageRating	float	5.6
numVotes	int	1645

Data types used in this project:

Data Type	Storage
Integer / Unsigned Integer	4 bytes
Float	4 bytes

STORAGE COMPONENT

As per the project requirements, we have defined the disk size as 10⁸ bytes or 100 MB and the block size as 100 bytes.

```
#define DISK_SIZE 100000000
#define BLOCK_SIZE 100
#define BLOCKS_IN_DISK (DISK_SIZE/BLOCK_SIZE)
#define RECORD_SIZE sizeof(Record)
#define RECORDS_PER_BLOCK ((BLOCK_SIZE-sizeof(int))/RECORD_SIZE)
#define POINTER_SIZE sizeof(uintptr_t)//4
#define DATA_FILE "dataTest.tsv"
```

Record

Attribute	Data Type	Information
id	int	tconst (only the numeric value is use)
avg_rating	float	Average rating
num_of_votes	int	Number of votes

Total size of 1 record = 12 bytes.

Disk Block

Attribute	Data Type	Information
id	int	Header of the disk block
Record	Object	Records size

To get number of records stored in a disk block, we use the following calculation:

For block size = 100 bytes:

Number of records per block = (Block size - size of Integer) / Record size = 8

For block size = 100 bytes:

Number of records per block = (Block size - size of Integer) / Record size = 41

EXPERIMENTS

Experiment 1

Block size = 100 bytes Number of blocks utilized: 133790 Size of database: 12.7592MB

Block size = 500 bytes Number of blocks utilized: 26106 Size of database: 12.4483MB