CS 161 Fundamentals of Artificial Intelligence Lecture 4

Informed Search Algorithms

Quanquan Gu

Department of Computer Science UCLA

Jan 19, 2023

Outline

- Best-first search
- A* search
- Heuristics

Review: Tree search

```
function Tree-Search (problem, fringe) returns a solution, or failure fringe ← Insert (Make-Node (Initial-State [problem]), fringe) loop do if fringe is empty then return failure node ← Remove-Front (fringe) if Goal-Test [problem] applied to State (node) succeeds return node fringe ← Insert All (Expand (node, problem), fringe)
```

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function for each node

- estimate of "desirability"
- \Rightarrow Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability Special cases:

greedy search A* search

Romania with step costs in km

Straight-line distant	ce
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Greedy search

```
Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal E.g., h_{\rm SLD}(n)= straight-line distance from node n to Bucharest Greedy search expands the node that appears to be closest to goal
```


Complete?? No-can get stuck in loops

Complete in finite space with repeated-state checking

 $\begin{tabular}{ll} \underline{\textbf{Complete}}?? & \textbf{No-can get stuck in loops} \\ \hline \textbf{Complete in finite space with repeated-state checking} \\ \underline{\textbf{Time}}?? & O(b^m), & m \end{tabular} is the max depth, but a good heuristic can give dramatic improvement} \\ \end{tabular}$

Complete?? No-can get stuck in loops

Complete in finite space with repeated-state checking <u>Time??</u> $O(b^m)$, m is the max depth, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

 $\label{eq:complete} \begin{array}{c} \underline{\text{Complete}??} \ \, \text{No-can get stuck in loops} \\ \hline \quad \text{Complete in finite space with repeated-state checking} \\ \underline{\text{Time}??} \ \, O(b^m), \ m \ \text{is the max depth, but a good heuristic can give dramatic improvement} \\ \underline{\text{Space}??} \ \, O(b^m) \\ \hline \quad \text{Expecial No} \\ \hline \\ \text{Optimal??} \ \, \text{No} \\ \end{array}$

A* search

	fin
Uniform cost	9(4)
Greedy	h(n)
A*	9 (m) + h(n)
at are already over	noncivo.

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t$ so far to reach node n

h(n) =estimated cost to goal from n

 $f(n) = {\it estimated total cost of path through} \,\, n \,\, {\it to goal}$

A* search uses an admissible heuristic

i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the **true** cost from n.

(Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.)

E.g., $h_{\mathrm{SLD}}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

Romania with step costs in km

Straight-line distan	ce
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G.

$$f(G_2) = g(G_2) \quad \text{since } h(G_2) = 0$$

$$> g(G) \quad \text{since } G_2 \text{ is suboptimal}$$

$$= g(n) + h^*(n) \quad \text{By the definition of } h^*(n)$$

$$\geq g(n) + h(n) \quad \text{since } h \text{ is admissible}$$

$$= f(n)$$

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion

Optimality of A* (more useful)

Lemma: A* expands nodes in order of increasing f value* Gradually adds "f-contours" of nodes (cf. breadth-first adds layers)

Contour i has all nodes with $f \leq f_i$, where $f_i < f_{i+1}$

Complete?? Yes, unless there are infinitely many nodes with $\overline{f \leq f(G)}$

Complete?? Yes, unless there are infinitely many nodes with $\overline{f \leq f(G)}$

<u>Time??</u> $O(b^{\Delta})$, $\Delta = h^* - h$, h^* : actual cost from the root to the goal; h: estimated cost

Proof idea: $f(G) - f(S) = \Delta$, S: starting node. f increase along path $\to O(b^{\Delta})$ (time complexity of BFS)

$$f(s) = g(s) + h(s) = h(s)$$

 $f(g) = h^*(s)$
 $f(g) - f(s) = h^*(s) - h(s) \stackrel{?}{=} 0$

```
Complete?? Yes, unless there are infinitely many nodes with f \leq f(G) Time?? O(b^{\Delta}), \Delta = h^* - h, h^*: actual cost from the root to the goal; h: estimated cost Proof idea: f(G) - f(S) = \Delta, S: starting node. f increase along path \to O(b^{\Delta})(time complexity of BFS) Space?? Keeps all nodes in memory
```

```
Complete?? Yes, unless there are infinitely many nodes with f \leq f(G) Time?? O(b^{\Delta}), \Delta = h^* - h, h^*: actual cost from the root to the goal; h: estimated cost Proof idea: f(G) - f(S) = \Delta, S: starting node. f increase along path \to O(b^{\Delta}) (time complexity of BFS) Space?? Keeps all nodes in memory Optimal?? Yes—cannot expand f_{i+1} until f_i is finished
```

```
Complete?? Yes, unless there are infinitely many nodes with
f < f(G)
Time?? O(b^{\Delta}), \Delta = h^* - h, h^*: actual cost from the root to the
goal; h: estimated cost
Proof idea: f(G) - f(S) = \Delta, S: starting node. f increase along
path \to O(b^{\Delta}) (time complexity of BFS)
Space?? Keeps all nodes in memory
Optimal?? Yes—cannot expand f_{i+1} until f_i is finished
A* expands all nodes with f(n) < C^*, C^* is the cost of optimal
solution path
A* expands some nodes with f(n) = C^*
A^* expands no nodes with f(n) > C^*
```

Proof of lemma: Consistency

A heuristic is consistent if

h(n)

c(n,a,n')

where c(n, a, n') is the cost of path from n to n' by choosing action a If h is consistent, we have

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, n, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$= f(n)$$

 $h(n) \le c(n, a, n') + h(n')$

I.e., f(n) is nondecreasing along any path. Thus, the goal state with the lowest f-cost will be found first Every consistent heuristic is admissible!

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) = \text{number of misplaced tiles}$

 $h_2(n) = \text{total } \mathbf{Manhattan} \text{ distance}$

(i.e., no. of squares from desired location of each tile)

7	2	4
5		6
8	3	1

Start State

1	2	3
4	5	6
7	8	

Goal State

$$\frac{h_1(S)}{h_2(S)} = ??$$

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) = \text{number of misplaced tiles}$
- $h_2(n) = \text{total } \mathbf{Manhattan} \text{ distance}$

(i.e., no. of squares from desired location of each tile)

7	2	4	
5		9	
8	3	1	

1	2	3
4	5	6
7	8	

$$\frac{h_1(S) = ?? \ 6}{h_2(S) = ?? \ 4+0+3+3+1+0+2+1 = 14}$$

Relaxed problems

Admissible heuristics can be derived from the **exact** solution cost of a **relaxed** version of the problem If the rules of the 8-puzzle are relaxed so that a tile can move **anywhere**, then $h_1(n)$ gives the shortest solution If the rules are relaxed so that a tile can move to **any adjacent square**, then $h_2(n)$ gives the shortest solution Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems contd.

Well-known example: **travelling salesperson problem** (TSP) Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O(n^2)$ and is a lower bound on the shortest (open) tour

Summary

Heuristic functions estimate costs of shortest paths Good heuristics can dramatically reduce search cost Greedy best-first search expands lowest \hbar

incomplete and not always optimal

 A^* search expands lowest g + h

- complete and optimal
- also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems

Acknowledgment

The slides are adapted from Stuart Russell, Guy Van den Broeck et al.