SPECIFICATION FOR LCD MODULE

Model No. GVLCM240320G-13705A (TFT) (2.4"TFT)

Approved	Checked	Department

CONTENTS

	Page
1.General Specifications	3
2.Outline Drawing	4
3.Absolute Maximum Ratings	5
4.Electrical Characteristics	5
5.Module Function Description	5
5-1.InterFace Signal	6
5-2.Interface Timing Chart	6
5-3.Instruction Code	8
6.Electro-Optical Characteristics	11
7.Lightguide Specification	14
8. Reliability	15
8-1.MTBF	15
8-2.Content Of Reliability Test	15
9.Inspection Criteria	15

1. General Specifications:

1.1. FEATURES

Dianlay Mada	Transmissive and Negative type
Display Mode	TFT
Display Format	Graphic 240 (RGB)* 320 Dot-matrix (262K Color)
Viewing Direction	12:00 O'clock
Multiplexing Ratio	1/320 Duty
Screen size(inch)	2.4(Diagonal)
Controller	UC8230S
Data Transfer	16 BITS 8080 PARALLEL INTERFACE
VDD	2.8~3.3V

1-2. MECHANICAL SPECIFICATION

Item	Specifcation	Unit
Viewing Area	37.72(W)x54.4(H)	mm
Active Area	36.72(W)x50.06(H)	mm
Dots pitch	0.153(H)X0. 153 (W)	mm
Outline	40.7(W)x57.1(H)x2.75(D)	ma ma
Dimensional	Refer to outline drawing on next page	mm
Blacklight type	White LED*4	_
VLED	3.0V(typ.)	V

^{*}Exclude FPC outline

2. Outline Drawing

3.Absolute Maximum Ratings(Ta=25℃)

Item	Symbol	Min	Max	Unit	Note
Supply voltage	Vdd	-0.3	4.6	V	
Supply voltage (Logic)	VDDI	-0.3	4.6	V	
Supply voltage (Digital)	VCC	-0.3	2.4	V	
Driver supply Voltage	VGH-	-0.3	33	V	
	VGL				
Input Voltage	Vin	-0.3	VddI+0.3	V	1,2
Logic Output voltage	VO	-0.3	VddI+0.3	V	
range					
Operating temperature	Topr	-20	70	$^{\circ}\mathbb{C}$	
Storage temperature	Tstr	-30	80	$^{\circ}\!\mathbb{C}$	
Humidity	-	-	90	%RH	

Note:

1. If the module is above these absolute maximum ratings. It may become permanently damaged.

Using the module within the following electrical characteristic conditions are also exceeded,

the module will malfunction and cause poor reliability.

2. VDD >VSS must be maintained.

4. Electrical Characteristics(Ta=25°C)

Item		Symbol	Min	Тур	Max	Unit	Note
Input Voltage	'H'	Vih	0.8Vdd	-	Vdd	V	
(VDD=2.8V)	'L'	Vil	Vss	1	0.2Vdd		
Output Voltage	'H'	Vih	0.8Vdd	-	Vdd	V	
(VDD=2.8V)	L'	Vil	Vss	-	0.2Vdd		
Current Congumentia	Normal Mode	-	25.5	-	mA	1,3	
Current Consumption		Partiall Mode	-	TBD	TBD	uA	2

Note:

- 1: Display full white. Backlight on state.
- 2: IC on standby mode.
- 3: the default voltage is 2.8V, for N lights in series, the power is that the current multiply N.

5. Module Function Description

5-1. Interface Signal

Pin No.	Symbol	Level	Description
1-3,5	NC	_	No connection
4	IM3	I	NC (Connected to GND interal)
6	RESET	I	Reset input pin
7	VSYNC	I	Frame synchronization signal
8	HSYNC		Line synchronization signal
9	DOTCLK		DOT clock
10	DEN		Enable signal in RGB mode
11-28	D17-D0		Data bus
29	RD	I	Read/write control pin
30	WR	I	Read/write execution control pin
31	DC	I	Register selection input pin
32	/CS	I	Chip select input pins
33	VSS	0V	Ground
34	VDD	3.3V	Power supply voltage for logic
35	LED_K	_	Back light-
36	LED_A	_	Back light+

5-2. Interface Timing Chart

Inter 80 system CPU interfac

 $(1.65V \le V_{DD} < 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
tcycw	WR	Bus cycle time Write		200	-	nS
t _{CYCR}	RD	Read		400		
PW _{LW}	WR	Write low-level pulse width		90	_	nS
PW _{LR}	RD	Read low-level pulse width		350	_	nS
PW _{HW}	WR	Write high-level pulse width		90	-	nS
PW _{HR}	RD	Read high-level pulse width		400	-	nS
t _{WRr} , t _{WRf}	WR,RD	Write/Read rise/fall time			25	nS
tas	RS to CS,WR,RD	Set up time		10	_	nS
t _{AH}	RS to CS,WR,RD	Address hold time		5		nS
t _{DSW}	WR	Write data set up time		5		nS
t _{HWR}	RD	Write data hold time		60		nS
toor	WR	Read data delay time			200	nS
t _{DHR}	RD	Read data hold time		5		nS

5-3. Instruction Code

GOLDEN-VIEW

	Command	Reg.	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
1.	Index	IR	W	0	0	0	0	0	0	0	0	0				ID[7	7:0]				
2.	Status	SR	R	0	0	0	0	0	0	0	0	0	0	TE	MTPS	0	0	0	0	0	
3.	Set Display Enable	R00H	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	AOF	MAN	OS	
4.	Device Code Read Drive Output Control	R01H	R	1	1	0	0	0	0	0 SM	1	0 SS	0	0	1	1 0	0	0	0	0	0000H
٥. ۵	LCD Drive Waveform Control	R02H	W	1	0	0	0	0	0	1	BC0	EOR	0	0	0	0	0	0	0	0	0400H
7.	Entry Mode	R03H	W	1	TRI	DFM	0	BGR	0	0	0	0	ORG	0	ID1	ID0	AM	0	0	0	0030H
8.	Resize Control	R04H	W	1	0	0	0	0	0	0	RCV	[1:0]	0	0	RC	H[1:0]	0	0	RSZ	[1:0]	0000H
9.	Display Control (1)	R07H	w	1	0	0	PTDE	[1:0]	0	0	0	BASE E	0	VON	GON	DTÉ	COL	0	D1	D0	
10.	Display Control (2)	R08H	w	1	0	0	0	0		FP1	3:01		0	0	0	0		BP(:	3:01		0808H
	Display Control (3)	R09H	W	1	0	0	0	0	0	0	PTS	[1:0]	0	0	_	G[1:0]	1	ISC			0000H
12.	Display Control (4)	R0AH	w	1	0	0	0	0	0	0	0	0	0	0	0	0	FMAR KOE		FMI[2:0]	1	
13.	Ext. Display Interface Ctrl 1	R0CH	W	1	0	E	NC[2:	0]	0	0	0	RM	0	0	DN	1[1:0]	0	0	RIM		0000H
14.	Frame Marker Control	R0DH	W	1	0	0	0	0	0	0	0		\mathcal{L}			FMP[8:0				I V	0000H
15.	Ext. Display Interface Ctrl 2	R0FH	W	1	0	0	0	0	0	0	0	0	0	0	0	VSPL	HSPL	0	EPL	DPL	0000H
П	Power Control (1) Power Control (2)	R10H R11H	W	1	0	0	0	SAP 0	0	0	BT[2:0] DC1	[4-0]	APE 0	0		P[1:0] 0[1:0] //	0	DSTB	SLP VC[2:0]	0	0000H
16.			 		P5V	_		_		-				PON	_	· -	U	_			
	Power Control (3)	R12H	W	1	MD	0	0	0	0	PDC4	PDC2	PDC1	1	4	PON2	PON1		VRH	[3:0]		00F0H
	Power Control (4)	R13H	W	1	0	0				/[5:0]			0	0			VCM[_	DOS	$\vdash \vdash \vdash$
17. 18.	Setting Disable RAM Address Set - Horizontal	R17H R20H	W	1	0	0	0	0	0	0	0	0	0	0	0	0 ADI	7:01	0	0	PSE	$\vdash \vdash \vdash$
19.	RAM Address Set - Vertical	R21H	W	1	0	0	0	0	0	0	0	U		$\overline{}$	4	AD[16:8					
Н		R22H	W	1									WR17-(0							
20.	RAM Data Write / Read		R	1		\mathcal{A}	1		A P				RD17-0								
П	y- Control (1)	R30H	W	1	0	0	0	0	0		KP1[2:	_	0	0	0	0	0	_	KP0[2:0	_	00H
П	y- Control (2) y- Control (3)	R31H R32H	W	1	0	0	0	0	0		KP3[2:0 KP5[2:0		0	0	0	0	0		KP2[2:0 KP4[2:0		00H
П	y- Control (4)	R33H	W	1	0	0	0	0	0	0	PFP		0	0	0	0	0	0	0	0	00H
П	y- Control (5)	R34H	W	1	0	0	0	0	0	0	0	0	0	0	0	0	ő	0	_	2[1:0]	00H
П	y- Control (6)	R35H	W	1	0	0	0	0	0	-	RP1[2:		0	0	0	0	0	_	RP0[2:0		00H
21.	y- Control (7)	R36H	W	1	0	0	0		V	RP1[4:	0]		0	0	0		VF	RP0[4:0]		00H
Γ	y- Control (8)	R37H	W	1	0	0	0	0	0		KN1[2:0		0	0	0	0	0		KN0[2:0		00H
П	y- Control (9)	R38H R39H	W	1	0	0	0	0	0		KN3[2:	•	0	0	0	0	0		KN2[2:	•	00H
П	y- Control (10) y- Control (11)	R3AH	W	1	0	0	0	0	0	0	KN5[2:	uj 1[1:0]	0	0	0	0	0	0	KN4[2:	0	00H
П	v- Control (12)	R3BH	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PFN2		00H
П	y- Control (13)	R3CH	W	1	0	0	0	0	0	Р	RN1[2:	0]	0	0	0	0	0	F	RN0[2:		00H
Ц	y- Control (14)	R3DH	W	1	0	0	0		V	RN1[4:	0]		0	0	0		VF	RN0[4:0	1		00H
22.	Checksum Control	R41H	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DAE	IRE	0000H
23. 24.	IR Checksum DT Checksum	R42H R43H	w	1	0	0	0	0	0	0	0	0	ACK[15	-01		IRCk	([7:0]				0000H
25	Windows Horizontal Start Addr.	R50H	W	1	0	0	0	0	0	0	0	0	HUNIIS	.0]		HSA	.r7·01			_	UUUUN
26.	Windows Horizontal End Addr.	R51H	W	1	0	0	0	0	0	0	0	0				HEA					
27.	Windows Vertical Start Addr.	R52H	W	1	0	0	0	0	0	0	0		•			VSA[8:0	<u> </u>				
28.	Windows Vertical End Addr.	R53H	W	1	0	0	0	0	0	0	0					VEA[8:0					
29.	Driver Output Control	R60H	W	1	GS	0				[5:0]			0	0	_		SCN[10.5	DC1	$\vdash \vdash \vdash$
30.	Base Image Display Control Vertical Scroll Control	R61H R6AH	W	1	0	0	0	0	0	0	0	0	0	0	0	0 VL[8:0]	0	NDL	VLE	KEV	$\vdash \vdash \vdash$
32	Partial Image 1 Display Position	R80H	W	1	0	0	0	0	0	0	0				F	VL[8:0] PTDP0[8:	:01				$\vdash \vdash \vdash$
33.	Partial Image 1 Start RAM Addr.	R81H		1	0	0	0	0	0	0	0					PTSA0[8:					\Box
34.	Partial Image 1 End RAM Addr.	R82H	W	1	0	0	0	0	0	0	0				F	PTEA0[8:	0]				
35.	Partial Image 2 Display Position	R83H	_	1	0	0	0 0	0	0	0	0					PTDP1[8:					igsquare
36.	Partial Image 2 Start RAM Addr.	R84H	W	1	0	0	0	0	0	0	0					PTSA1[8:					\vdash
3/.	Partial Image 2 End RAM Addr. Panel Interface Control 1	R85H R90H	W	1	0	0	0	0	0	0	0 DIV	1:01	0	0	0	PTEA1[8		TNI[4:0]	1		$\vdash \vdash \vdash$
	Panel Interface Control 2	R92H	W	1	0	0	0	0	0		OWI[2:		0	0	0	0	0	0	0	0	$\vdash \vdash \vdash$
38.	Panel Interface Control 3	R93H	W	1	0	0	0	0	0	0	0	0	0	0	0	0	Ö	_	MCPI[2:0		
JO.	Panel Interface Control 4	R95H	W	1	0	0	0	0	0	0	DIVE	[1:0]	0	0			RTNE				
	Panel Interface Control 5	R97H	W	1	0	0	0	0			E[3:0]		0	0	0	0	0	0	0	0	$\vdash \vdash$
39.	Panel Interface Control 6 Calibration Control	R98H RA4H	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ICPE[2:	0] CALB	$\vdash \vdash \vdash$
50.	Address of the second set													_						27.722	
	Command	Reg.	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
40.	MTP Register	R46H	w	1								MAT			MP1	MP0			MTPig n	MTP_ EN	
41.	MTP Timer	RC9H	W	1				WR	TIMER							RDT	MER				
42	MTP Cell	RCAH	W	1		PID				V[5:0]								CM[5:0	1		
12.	501	NOMIT	**	L '	[1	:0]			MIVU	*[v.v]							No. V	Jiniju.U	1		

6. Electro-Optical Characteristics

Item	Symbol		Condition	Min.	Тур.	Max.	Unit	Note	
Brightness	ı	Вр	<i>θ</i> =0°	-	200	-	Cd/m ²	1	
Uniformity	Δ	∆Вр	Ф=0°	80%	-	-		1,2	
Viewing	(Φ	<i>0</i> 1 =90° 270°)	Cr≥10	-:	27~+60			3	
Angle	(Φ=		01210	-	50~+50		Deg	3	
Contrast Ratio		Cr	<i>θ</i> =0°		301.5		-	4	
Response	t _{on}				15	30	ms	5	
Time		t _{off}		-	35	50	ms	5	
	W	х		-	-	-	-		
	V V	У		-	-	-	-		
	R	х		-	-	-	-		
Color of CIE		У		-	-	-	-		
Coordinate	G	х	<i>θ</i> =0° Φ=0°	-	-	-	-	1,6	
	G	У	Φ=0	-	-	-	-		
	В	х		-	-	-	-		
		У		-	-	-	-		
NTSC Ratio	s			60.5%	-				

Note: The parameter is slightly changed by temperature, driving voltage and materiel.

Note 1: The data are measured after LEDs are turned on for 5 minutes. LCM displays full white.

The brightness is the average value of 9 measured spots. Measurement equipment PR-705 (Φ8mm)

Measuring condition:

- Measuring surroundings: Dark room.
- Measuring temperature: Ta=25°C.
- Adjust operating voltage to get optimum contrast at the center of the display. Measured value at the center point of LCD panel after more than 5 minutes whilebacklight turning on.

Note 2: The luminance uniformity is calculated by using following formula.

 \triangle Bp = Bp (Min.) / Bp (Max.)×100 (%)

Bp (Max.) = Maximum brightness in 9 measured spots

Bp (Min.) = Minimum brightness in 9 measured spots.

Measurement equipment PR-705 (Φ8mm)

Note 3: The definition of viewing angle:

Refer to the graph below marked by θ and Φ

Note 4: The definition of contrast ratio (Test LCM using PR-705):

Luminance When LCD is at "White" state

Contrast Ratio(CR)=

Luminance When LCD is at "Black" state

(Contrast Ratio is measured in optimum common electrode voltage)

Note 5: Definition of Response time. (Test LCD using DMS501):

The output signals of photo detector are measured when the input signals are changed

from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively. The

response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

The definition of response time

Note 6: Definition of Color of CIE Coordinate and NTSC Ratio.

Color gamut:

$$S = \frac{area \ of \ RGB \ triangle}{area \ of \ NTSC \ triangle} \times 100\%$$

7. Lightguide specification

Item		Symbol	Min	Тур	Max	Unit	Condition
Forward vol	tage	Vf	-	3.3	3.4	V	If=60mA
Forward Cur	rent	If	-	60	-	mA	
Luminance	Master Screen	Lv	2000	2500	-	Cd/m²	If=30mA

Colour acordinata	X	0.260	0.315	If-20m A
Colour coordinate	Y	0.260	0.315	If=30mA

Note:

- 1. Average Luminous Intensity of P1 ~ P9
- 2. Luminous Uniformity = (MIN / MAX)*100%
- 3. Luminous Uniformity required ≥80%

8. Reliability

8-1.MTBF

The LCD module shall be designed to meet a minimum MTTF value of 50000 hours with normal. (25°C in the room without sunlight)

8-2. Content of Reliability Test

NO.	Test Item	Content of Test	Condition
1	High Temperature Storage	Endurance test applying the high	+80°C,
		temperature for a long time	96H
2	Low Temperature Storage	Endurance test applying the low	-30°C,
		temperature for a long time	96H
3	High Temperature/Humidity	Endurance test applying the high	60°C,
	Storage	temperature and	90% RH,
		high humidity for a long time	96H
4	Heat Shock	Endurance test applying The low and high temperature cycles $-20^{\circ}\text{C} \longleftrightarrow 25^{\circ}\text{C} \longleftrightarrow +70^{\circ}\text{C}$	-20°C/+70°C 5 cycle
		$(30\min) \longleftrightarrow (5\min) \longleftrightarrow (30\min)$ 1 Cycle	

Note: Test after 2 hours in room temperature.

9. Inspection Criteria

9-1. Environmental conditions

The environmental conditions for inspection shall be as follows

Room temperature: 20±3°C Humidity: 65±20%RH

9-2. The external visual inspection

With a single 20-watt fluorescent lamp as the light source, the inspection was in the distance of 30cm or more from the LCD to the inspector's eyes.