

MITx: 6.008.1x Computational Probability and Inference

Heli

Bookmarks

- Introduction
- Part 1: Probability and Inference
- Part 2: Inference in Graphical Models

Week 5: Introduction to Part 2 on Inference in Graphical Models

Week 5: Efficiency in Computer Programs

Exercises due Oct 20, 2016 at 02:30 IST

Week 5: Graphical Models

Exercises due Oct 20, 2016 at 02:30 IST

Week 5: Homework 4

Homework due Oct 20, 2016 at 02:30 IST

Week 6: Inference in Graphical Models -Marginalization Part 2: Inference in Graphical Models > Week 5: Graphical Models > Trees

Trees

☐ Bookmark this page

TREES

A *tree* is a graph for which there are no loops, and we can reach from any node to any other node (moving along edges in the graph). We'll be seeing trees quite a bit so here are some basics of trees.

Example:

This graph is not a tree since there is no path from X_1 to X_2 .

Example:

Exercises due Oct 27, 2016 at 02:30 IST

Week 6: Special Case: Marginalization in Hidden Markov Models

Exercises due Oct 27, 2016 at 02:30 IST

Week 6: Homework 5

Homework due Oct 27, 2016 at 02:30 IST

Weeks 6 and 7: Mini-project on Robot Localization (to be posted)

This graph is a tree since there are no loops and we can reach from any node to any other node.

Example:

This graph is a tree since there are no loops and we can reach from any node to any other node.

Theorem: For any graph that has n nodes, if the graph is a tree, then it will always have exactly n-1 edges.

Proof: We use induction.

Base case n=1: There is only 1 node so there are no edges, so the claim clearly holds.

Inductive step: Suppose the claim holds for every tree of size (i.e., number of nodes) up to $\pmb k$. Thus, every tree of size $\pmb k$ nodes has $\pmb k-1$ edges. Now consider a tree $\pmb T$ with $\pmb k+1$ nodes. Take a leaf node $\pmb v$ from $\pmb T$ and note that the tree $\pmb T$ with $\pmb v$ removed is a tree $\pmb T'$ of size $\pmb k$, which by the inductive hypothesis has $\pmb k-1$ edges. Since $\pmb v$ is a leaf node though, it has exactly 1 neighbor, which means that the tree $\pmb T$ has 1 more edge than the tree $\pmb T'$, i.e., $\pmb T$ has $\pmb k$ edges. This finishes the inductive step. \square

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

