Положително дефинитни квадратични форми

Определение. Нека V е линейно пространство над \mathbb{R} и $\tilde{\varphi}$ е квадратична форма във V. Ще казваме, че $\tilde{\varphi}$ е положителна дефинитна квадратична форма, ако за всеки вектор \boldsymbol{u} от V е изпълнено $\tilde{\varphi}(\boldsymbol{u}) \geq 0$, като $\tilde{\varphi}(\boldsymbol{u}) = 0$ точно когато $\boldsymbol{u} = \boldsymbol{0}$.

Нека във V е въведено скаларно произведение $(\boldsymbol{u},\boldsymbol{v})$. Да положим $\varphi(\boldsymbol{u},\boldsymbol{v})=(\boldsymbol{u},\boldsymbol{v})$. Тогава φ е симетрична билинейна форма, чиято асоциирана квадратична форма $\tilde{\varphi}$ е положително дефинитна. Обратно, нека $\tilde{\varphi}$ е положително дефинитна квадратична форма и φ е (единствената) симетрична билинейна форма, асоциирана с $\tilde{\varphi}$. Тогава във V можем да въведем скаларно произведение като положим $(\boldsymbol{u},\boldsymbol{v})=\varphi(\boldsymbol{u},\boldsymbol{v})$.

Твърдение 1. Една квадратична форма в n-мерно пространство е положително дефинитна тогава и само тогава, когато тя има каноничен вид $\lambda_1 \xi_1^2 + \dots + \lambda_n \xi_n^2$ и $\lambda_i > 0$ за $i = 1, \dots, n$, т. е. когато нормалният вид на формата е $\eta_1^2 + \dots + \eta_n^2$.

Нека $A=(a_{ij})_{n \times n}$ е квадратна матрица от ред n. Да положим $\Delta_0=1$ и

$$\Delta_k = \begin{vmatrix} a_{11} \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} \dots & a_{kk} \end{vmatrix}$$

за $k=1,\ldots,n$. Ясно е ,че $\Delta_1=a_{11}$ и $\Delta_n=\det A$. Детерминантите Δ_1,\ldots,Δ_n ще наричаме *главни минори* на матрицата A.

Твърдение 2 (метод на Якоби). Нека $\dim V = n < \infty$ и e_1, \ldots, e_n е базис на V. Нека $\tilde{\varphi}$ е квадратична форма във V и $A = (a_{ij})_{n \times n}$ е матрицата u в този базис. Тогава, ако главните минори на матрицата u са различни от нула, то съществува базис u, u, u, u, u, в който квадратичната форма има вида

$$\tilde{\varphi}(\boldsymbol{u}) = \frac{\Delta_0}{\Delta_1} \xi_1^2 + \frac{\Delta_1}{\Delta_2} \xi_2^2 + \dots + \frac{\Delta_{n-1}}{\Delta_n} \xi_n^2, \qquad \boldsymbol{u} = \sum_{i=1}^n \xi_i \boldsymbol{f}_i \in V.$$

Д о к а з а т е л с т в о. Нека $1 \leq j \leq n$. Да разгледаме системата

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1j}x_j = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2j}x_j = 0 \\ \dots \\ a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jj}x_j = 1. \end{vmatrix}$$
(1)

По-кратко k-тото уравнение на системата може да се запише във вида

$$\sum_{s=1}^{j} a_{ks} x_s = \delta_{kj} = \begin{cases} 0 & \text{при } k < j \\ 1 & \text{при } k = j \end{cases}$$

 $(k=1,\ldots,j)$. Детерминантата на системата е Δ_j и по условие $\Delta_j \neq 0$. Следователно тя има единствено решение $(x_{j1},\,x_{j2},\,\ldots,\,x_{jj})$. Замествайки в k-тото уравнение неизвестните $x_1,\,\ldots,\,x_j$ съответно с $x_{j1},\,\ldots,\,x_{jj},\,$ получаваме равенствата

$$\sum_{s=1}^{j} a_{ks} x_{js} = \delta_{kj} \tag{2}$$

 $(k=1,\ldots,j)$. От вида на свободните членове на системата (1) и от формулите на Крамер получаваме $x_{jj}=\frac{\Delta_{j-1}}{\Delta_j}$ (формулата е вярна и при j=1). В частност $x_{jj}\neq 0$ $(j=1,\ldots,n)$.

Да разгледаме матрицата

$$T = \begin{pmatrix} x_{11} & x_{21} & \dots & x_{n1} \\ & x_{22} & \dots & x_{n2} \\ & & \ddots & \vdots \\ 0 & & & x_{nn} \end{pmatrix}.$$

Матрицата T е триъгълна и в j-ия ѝ стълб $(j=1,\ldots,n)$ стоят елементите $(x_{j1},\ldots,x_{jj},0,\ldots,0)$, т. е. първите j елемента са решението на системата (1) (ще подчертаем, че **вторият индекс** на елементите от i-ия **ред** на матрицата T е равен на i). Имаме $\det T = x_{11}x_{22}\ldots x_{nn} \neq 0$ (по-точно $\det T = \frac{\Delta_0}{\Delta_1} \cdot \frac{\Delta_1}{\Delta_2} \cdots \frac{\Delta_{n-1}}{\Delta_n} = \frac{\Delta_0}{\Delta_n}$). Тъй като T е обратима матрица, тя е матрица на прехода от базиса e_1,\ldots,e_n към базис f_1,\ldots,f_n , като $f_j = x_{j1}e_1 + x_{j2}e_2 + \cdots + x_{jj}e_j$ $(j=1,\ldots,n)$. Нека $B = (b_{ij})_{n\times n}$ е матрицата на квадратичната форма $\tilde{\varphi}$ в новия базис и φ е асоциираната ѝ симетрична билинейна форма. Тогава за $1 \leq i \leq j \leq n$ имаме

$$b_{ij} = \varphi(\boldsymbol{f}_{i}, \boldsymbol{f}_{j}) = \varphi\left(\sum_{k=1}^{i} x_{ik} \boldsymbol{e}_{k}, \sum_{s=1}^{j} x_{js} \boldsymbol{e}_{s}\right)$$

$$= \sum_{k=1}^{i} \sum_{s=1}^{j} x_{ik} x_{js} \varphi(\boldsymbol{e}_{k}, \boldsymbol{e}_{s}) = \sum_{k=1}^{i} \sum_{s=1}^{j} x_{ik} x_{js} a_{ks}$$

$$= \sum_{k=1}^{i} x_{ik} \left(\sum_{s=1}^{j} a_{ks} x_{js}\right).$$

Сумата в скобите в дясната страна на това равенство е точно лявата страна на равенството (2). Следователно равенството (3) приема вида

$$b_{ij} = \sum_{k=1}^{i} x_{ik} \delta_{kj}. \tag{4}$$

Сега при i < j имаме $k \le i < j$, откъдето $\delta_{kj} = 0$ и значи $b_{ij} = 0$. Тъй като матрицата B е симетрична, то $b_{ij} = 0$ и за i > j. При i = j равенството (4)

приема вида $b_{jj}=\sum\limits_{k=1}^{j}x_{jk}\delta_{kj}=x_{jj}\delta_{jj}=x_{jj}=rac{\Delta_{j-1}}{\Delta_{j}}.$ Така намираме

$$B = \begin{pmatrix} \frac{\Delta_0}{\Delta_1} & 0 & \\ & \frac{\Delta_1}{\Delta_2} & & \\ & & \ddots & \\ & 0 & & \frac{\Delta_{n-1}}{\Delta_n} \end{pmatrix}.$$

Следователно в базиса f_1, \ldots, f_n квадратичната форма $\tilde{\varphi}$ има търсеният каноничен вид

$$\tilde{\varphi}(\boldsymbol{u}) = \frac{\Delta_0}{\Delta_1} \xi_1^2 + \frac{\Delta_1}{\Delta_2} \xi_2^2 + \dots + \frac{\Delta_{n-1}}{\Delta_n} \xi_n^2.$$

Теорема 3 (критерий на Силвестър). Една квадратична форма в крайномерно пространство V е положително дефинитна тогава и само тогава, когато главните минори на матрицата ѝ във всеки базис на V са положителни числа.

Доказателство. Нека $\tilde{\varphi}$ е квадратична форма във V и главните минори на матрицата ѝ във всеки базис на V са положителни. Тогава тя има каноничен вид, посочен в твърдение 3 и според твърдение 1 $\tilde{\varphi}$ е положително дефинитна.

Обратно, нека $\tilde{\varphi}$ е положително дефинитна квадратична форма и φ е асоциираната ѝ симетрична билинейна форма. Нека e_1,\ldots,e_n е произволен базис на V и $A=(a_{ij})_{n\times n}$ е матрицата на $\tilde{\varphi}$ в този базис. Въвеждаме във V скаларно произведение като положим $(\boldsymbol{u},\boldsymbol{v})=\varphi(\boldsymbol{u},\boldsymbol{v})$. Имаме $a_{ij}=\varphi(\boldsymbol{e}_i,\boldsymbol{e}_j)=(\boldsymbol{e}_i,\boldsymbol{e}_j)~(i,j=1,\ldots,n)$. Следователно за главните минори $\Delta_k~(k=1,\ldots,n)$ на A имаме

$$\Delta_k = \begin{vmatrix} a_{11} \dots a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} \dots a_{kk} \end{vmatrix} = \begin{vmatrix} (e_1, e_1) \dots (e_1, e_k) \\ \vdots & \ddots & \vdots \\ (e_k, e_1) \dots (e_k, e_k) \end{vmatrix} = \Gamma(e_1, \dots, e_k).$$

Тъй като векторите e_1, \ldots, e_k са линейно независими, то $\Gamma(e_1, \ldots, e_k) > 0$ $(k = 1, \ldots, n)$ (теорема 1 от § 22), т.е. $\Delta_k > 0, k = 1, \ldots, n$. С това теоремата е доказана.