Some problems on modular group algebras

Diego García-Lucas

Universidad de Murcia, Spain

Groups and their actions Levico Terme, 2024

Tensor factorizations

- ▶ *k* field.
- ► *A k*-algebra.

Tensor factorizations

- ▶ *k* field.
- ► A k-algebra.

Definition

A has the tensor Krull-Schmidt property if whenever

- $ightharpoonup A\cong igotimes_{i=1}^n A_i\cong igotimes_{j=1}^m B_j$, and
- \triangleright each of the A_i 's and B_i 's is tensor indecomposable,

then n = m and $A_i \cong B_i$ after (possibly) rearranging the indices.

Tensor factorizations

- ▶ *k* field.
- ► A k-algebra.

Definition

A has the tensor Krull-Schmidt property if whenever

- $ightharpoonup A\cong igotimes_{i=1}^n A_i\cong igotimes_{j=1}^m B_j$, and
- \triangleright each of the A_i 's and B_i 's is tensor indecomposable,

then n = m and $A_i \cong B_i$ after (possibly) rearranging the indices.

This is not the case in general:

$$\mathbb{C} \otimes_{\mathbb{R}} \mathbb{H} \cong \mathbb{C} \otimes_{\mathbb{R}} M_2(\mathbb{R}),$$

where \mathbb{H} is the ring of real quaternions.

There are no examples of local algebras for which the tensor Krull-Schmidt property fails.

There are no examples of local algebras for which the tensor Krull-Schmidt property fails.

▶ Let \mathbb{L}_k be the class of local augmented k-algebras.

Theorem (Horst, 1987)

Suppose that

- $1. \ char(k) = 0,$
- 2. $N \otimes R \cong N \otimes S$ in \mathbb{L}_k , and
- 3. R is noetherian and N artinan.

Then $R \cong S$.

Theorem (Horst, 1987)

Suppose that

- $1. \ char(k) = 0,$
- 2. $A \in \mathbb{L}_k$ is noetherian.

Then there is a decomposition

$$A \cong B \otimes A_1 \otimes \cdots \otimes A_n$$

such that

- 1. each A_i is tensor indecomposable, and
- 2. B has no artinian tensor factors.

Moreover, this decomposition is unique up to isomorphism and reordering.

Theorem (Horst, 1987)

Suppose that

- 1. char(k) = 0,
- 2. $A \in \mathbb{L}_k$ is noetherian.

Then there is a decomposition

$$A \cong B \otimes A_1 \otimes \cdots \otimes A_n$$

such that

- 1. each A_i is tensor indecomposable, and
- 2. B has no artinian tensor factors.

Moreover, this decomposition is unique up to isomorphism and reordering.

No analogue is known when char(p) > 0.

In 1995 Carson and Kovacs addressed this problem restricted to group rings.

- ▶ *k* field of characteristic *p*,
- ► *G* finite *p*-group.

In 1995 Carson and Kovacs addressed this problem restricted to group rings.

- k field of characteristic p,
- ► *G* finite *p*-group.

Observe that

 $\{\text{group rings over } k\} \cap \mathbb{L}_k = p\text{-group rings over } k$

In 1995 Carson and Kovacs addressed this problem restricted to group rings.

- k field of characteristic p,
- ► *G* finite *p*-group.

Observe that

 $\{\text{group rings over } k\} \cap \mathbb{L}_k = p\text{-group rings over } k$

Question

Does kG have the Krull-Schmidt property in \mathbb{L}_k ?

Tensor factorizations of local commutative group algebras

Theorem (Carlson-Kovacs, 1995)

Suppose that

- 1. G abelian finite p-group, and
- 2. $kG = A_1 \otimes A_2$.

Then $G = G_1 \times G_2$ such that $A_i \cong kG_i$ for each i.

Tensor factorizations of local commutative group algebras

Theorem (Carlson-Kovacs, 1995)

Suppose that

- 1. G abelian finite p-group, and
- 2. $kG = A_1 \otimes A_2$.

Then $G = G_1 \times G_2$ such that $A_i \cong kG_i$ for each i.

This implies that kG, if G is abelian, has the tensor Krull-Schmidt property.

Tensor factorizations of local commutative group algebras

Theorem (Carlson-Kovacs, 1995)

Suppose that

- 1. G abelian finite p-group, and
- 2. $kG = A_1 \otimes A_2$.

Then $G = G_1 \times G_2$ such that $A_i \cong kG_i$ for each i.

This implies that kG, if G is abelian, has the tensor Krull-Schmidt property.

Let's drop the commutativity assumption.

Question

▶ Does every tensor factorization of kG come from a direct decomposition of G?

Let's drop the commutativity assumption.

Question

- ▶ Does every tensor factorization of kG come from a direct decomposition of G?
- ► Does every directly indecomposable group have tensor indecomposable group algebra over k?

Tensor factorizations with a commutative factor

Does every tensor factorization of kG come from a direct decomposition of G?

Theorem (GL-del Río-Sakurai, in progress)

Suppose that

- 1. $\mathbb{F}_pG = A_1 \otimes A_2$, and
- 2. A_1 is commutative.

Then $G = G_1 \times G_2$ and $A_i \cong \mathbb{F}_p G_i$ for each i.

Tensor factorizations with a commutative factor

Does every tensor factorization of kG come from a direct decomposition of G?

Theorem (GL-del Río-Sakurai, in progress)

Suppose that

- 1. $\mathbb{F}_pG = A_1 \otimes A_2$, and
- 2. A_1 is commutative.

Then $G = G_1 \times G_2$ and $A_i \cong \mathbb{F}_p G_i$ for each i.

This implies that \mathbb{F}_pG admits a unique decomposition $A_1\otimes A_2$ with A_1 commutative and A_2 without commutative tensor factors.

Tensor indecomposability

Does every directly indecomposable group have tensor indecomposable group algebra over *k*?

Tensor indecomposability

Does every directly indecomposable group have tensor indecomposable group algebra over *k*?

Carlson and Kovacs consider this last question in their paper, providing a positive answer if

- either G is abelian,
- ▶ or *G* has order 8.

Tensor indecomposability

Does every directly indecomposable group have tensor indecomposable group algebra over k?

Carlson and Kovacs consider this last question in their paper, providing a positive answer if

- either G is abelian,
- or G has order 8.

Corollary (GL, del Río, Sakurai)

Suppose that G is indecomposable and

- ▶ either G can be generated by 3 elements, or
- \triangleright G' is cyclic.

Then \mathbb{F}_pG is indecomposable.

Question

What information about G can be recovered from kG?

Question

What information about G can be recovered from kG? And how?

Question

What information about G can be recovered from kG? And how?

Question (Modular Isomorphism Problem)

Can the isomorphism type of G be recovered from \mathbb{F}_pG ?

Question

What information about G can be recovered from kG? And how?

Question (Modular Isomorphism Problem)

Can the isomorphism type of G be recovered from \mathbb{F}_pG ?

Answer:

- ▶ If p = 2, it can't (GL-Magolis-del Río, 2022).
- ▶ If p > 2, we do not know.

Question (Modular Isomorphism Problem)

Can the isomorphism type of G be recovered from \mathbb{F}_pG ?

Yes, provided that one of the following holds:

- ► *G* is abelian (Deskins, 1956).
- ► *G* is metacyclic (Bagiński 1988, Sandling 1996).
- $\gamma_2(G)^p \gamma_3(G) = 1$ (Sandling, 1989).
- **.**..

Question (Modular Isomorphism Problem)

Can the isomorphism type of G be recovered from \mathbb{F}_pG ?

Yes, provided that one of the following holds:

- ► *G* is abelian (Deskins, 1956).
- ► *G* is metacyclic (Bagiński 1988, Sandling 1996).
- $\gamma_2(G)^p \gamma_3(G) = 1$ (Sandling, 1989).
- **.**..

Theorem (GL-Brenner)

Suppose that

- ▶ *p* > 2 and
- $ightharpoonup |G:Z(G)| \leq p^3$.

Then the isomorphism type of G can be recovered from \mathbb{F}_pG .

Theorem (GL-Brenner)

Suppose that

- ▶ *p* > 2 and
- $ightharpoonup |G:Z(G)| \leq p^3.$

Then the isomorphism type of G can be recovered from \mathbb{F}_pG .

Theorem (GL-del Río)

Suppose that

- ▶ p > 2,
- G can be generated by 2 elements,
- ► G' is cyclic, and
- either $|G'| \leq p^3$ or $|\gamma_3(G)| \leq p$.

Then the isomorphism type of G is determined by \mathbb{F}_pG .

Theorem (GL-Brenner)

Suppose that

- ightharpoonup p > 2 and
- $ightharpoonup |G:Z(G)| \leq p^3.$

Then the isomorphism type of G can be recovered from \mathbb{F}_pG .

Theorem (GL-del Río)

Suppose that

- ▶ p > 2,
- G can be generated by 2 elements,
- ► G' is cyclic, and
- either $|G'| \le p^3$ or $|\gamma_3(G)| \le p$.

Then the isomorphism type of G is determined by \mathbb{F}_pG .

These results both fail when p = 2.

Thanks for your attention.