Family list.
2 family member for:
JP2002217421
Derived from 1 application.

1 PORTABLE ELECTRONIC EQUIPMENT
Publication info: JP3535132B2 B2 - 2004-06-07
JP2002217421 A - 2002-08-02

Data supplied from the esp@cenet database - Worldwide

PORTABLE ELECTRONIC EQUIPMENT

Patent number:

JP2002217421

Publication date:

2002-08-02

Inventor:

YAMAZAKI SHUNPEI; ARAI YASUYUKI; TERAMOTO

SATOSHI

Applicant:

SEMICONDUCTOR ENERGY LAB

Classification:

- international:

C08J7/04; G02F1/1333; G02F1/1345; G02F1/1368; H01L29/786; C08J7/00; G02F1/13; H01L29/66; (IPC1-7): H01L29/786; C08J7/04; G02F1/1333; G02F1/1345;

C08L101/00

- european:

Application number: JP20010340759 20011106 Priority number(s): JP20010340759 20011106

Report a data error here

Abstract of JP2002217421

PROBLEM TO BE SOLVED: To obtain a mechanically flexible and which can be made light-weight configuration, in portable electronic equipment having an active-matrix type liquid crystal display. SOLUTION: A semiconductor device has a flexible resin substrate, a resin layer that is provided at an upper section on the flexible resin substrate, and a thin-film transistor that is provided at the upper section on the resin layer. The semiconductor device is further provided in card-type calculators, portable computers, the portable electronic equipment, such as various kinds of communication equipment, and card-type electronic equipment.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12)公開特許公報 (A)

(11)特許出願公開番号 特開2002-217421

(P2002-217421A)

(43)公開日 平成14年8月2日(2002.8.2)

(51) Int. Cl. 7		識別記号	FΙ				テーマコート・	(参考)
H01L 29	/786		C081	7/04	CEZ	Z 2	H090	
C08J 7	/04	CEZ	G02F	1/1333	500	2	H092	
G02F 1	/1333	500			505	4	F006	
		505		1/1345		5F110		
1.	/1345		C08L101:00					
•		審	査請求 有	請求項の数23	OL	(全8頁) 最終頁	に続く

(21)出願番号

特願2001-340759(P2001-340759)

(62)分割の表示

特願平9-314392の分割

(22)出願日

平成6年12月27日(1994.12.27)

(71)出願人 000153878

株式会社半導体エネルギー研究所

神奈川県厚木市長谷398番地

(72)発明者 山崎 舜平

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

荒井 康行 (72)発明者

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

(74)代理人 100103159

弁理士 加茂 裕邦

最終頁に続く

(54) 【発明の名称】携帯型電子機器

(57)【要約】

【課題】アクティブマトリクス型の液晶表示装置を有す る携帯型電子機器において、機械的にフレキシブルでし かも軽量化された構成を得る。

【解決手段】可撓性を有する樹脂基板、該可撓性を有す る樹脂基板の上方に設けられた樹脂層及び該樹脂層の上 方に設けられた薄膜トランジスタを有する半導体装置を 備えたことを特徴とするカード型計算機や携帯型コンピ ュータ、さらには各種通信機器等の携帯型電子機器、お よびカード型電子機器。

【請求項1】可撓性を有する樹脂基板、該可撓性を有する樹脂基板の上方に設けられた樹脂層及び該樹脂層の上方に設けられた薄膜トランジスタを有する半導体装置を

備えたことを特徴とする携帯型電子機器。

【請求項2】可撓性を有するプラスチック基板、該可撓性を有するプラスチック基板の上方に設けられた樹脂層及び該樹脂層の上方に設けられた薄膜トランジスタを有する半導体装置を備えたことを特徴とする携帯型電子機器。

【請求項3】可撓性を有する基板、前記可撓性を有する 基板の上方に設けられた樹脂層及び前記樹脂層の上方に 設けられた薄膜トランジスタを有する半導体装置を備え た携帯型電子機器であって、

前記可撓性を有する基板は、ポリエチレンテレフタレート基板、ポリエチレンナフタレート基板、ポリエチレン サルファイト基板またはポリイミド基板であることを特徴とする携帯型電子機器。

【請求項4】可撓性を有する樹脂基板、該可撓性を有する樹脂基板の上方に設けられた樹脂層及び該樹脂層の上 20方に設けられた逆スタガ型の薄膜トランジスタを有する半導体装置を備えたことを特徴とする携帯型電子機器。

【請求項5】可撓性を有するプラスチック基板、該可撓性を有するプラスチック基板の上方に設けられた樹脂層及び該樹脂層の上方に設けられた逆スタガ型の薄膜トランジスタを有する半導体装置を備えたことを特徴とする携帯型電子機器。

【請求項6】可撓性を有する基板、前記可撓性を有する 基板の上方に設けられた樹脂層及び前記樹脂層の上方に 設けられた逆スタガ型の薄膜トランジスタを有する半導 30 体装置を備えた携帯型電子機器であって、

前記可撓性を有する基板は、ポリエチレンテレフタレート基板、ポリエチレンナフタレート基板、ポリエチレン サルファイト基板またはポリイミド基板であることを特 徴とする携帯型電子機器。

【請求項7】請求項1乃至請求項6のいずれか一項において、前記可撓性を有する基板は、凹凸を有することを 特徴とする携帯型電子機器。

【請求項8】請求項1乃至請求項7のいずれか一項において、前記樹脂層は、アクリル樹脂層であることを特徴 40とする携帯型電子機器。

【請求項9】請求項1乃至請求項7のいずれか一項において、前記樹脂層は、アクリル酸メチルエステル層、アクリル酸エチルエステル層、アクリル酸プチルエステル層またはアクリル酸2-エチルヘキシルエステル層であることを特徴とする携帯型電子機器。

【請求項10】請求項1乃至請求項9のいずれか一項に おいて、前記樹脂層の表面は、平坦であることを特徴と する携帯型電子機器。

【請求項11】請求項1乃至請求項10のいずれか一項 50

において、前記携帯型電子機器は、カード型計算機であることを特徴とする携帯型電子機器。

【請求項12】請求項1乃至請求項10のいずれか一項において、前記携帯型電子機器は、携帯型コンピュータであることを特徴とする携帯型電子機器。

【請求項13】請求項1乃至請求項10のいずれか一項において、前記携帯型電子機器は、通信機器であることを特徴とする携帯型電子機器。

【請求項14】可撓性を有する樹脂基板、該可撓性を有 10 する樹脂基板の上方に設けられた樹脂層及び該樹脂層の 上方に設けられた薄膜トランジスタを有する半導体装置 を備えたことを特徴とするカード型電子機器。

【請求項15】可撓性を有するプラスチック基板、該可 撓性を有するプラスチック基板の上方に設けられた樹脂 層及び該樹脂層の上方に設けられた薄膜トランジスタを 有する半導体装置を備えたことを特徴とするカード型電 子機器。

【請求項16】可撓性を有する基板、前記可撓性を有する基板の上方に設けられた樹脂層及び前記樹脂層の上方に設けられた薄膜トランジスタを有する半導体装置を備えたカード型電子機器であって、

前記可撓性を有する基板は、ポリエチレンテレフタレート基板、ポリエチレンナフタレート基板、ポリエチレン サルファイト基板またはポリイミド基板であることを特 徴とするカード型電子機器。

【請求項17】可撓性を有する樹脂基板、該可撓性を有する樹脂基板の上方に設けられた樹脂層及び該樹脂層の上方に設けられた逆スタガ型の薄膜トランジスタを有する半導体装置を備えたことを特徴とするカード型電子機器。

【請求項18】可撓性を有するプラスチック基板、該可 撓性を有するプラスチック基板の上方に設けられた樹脂 層及び該樹脂層の上方に設けられた逆スタガ型の薄膜ト ランジスタを有する半導体装置を備えたことを特徴とす るカード型電子機器。

【請求項19】可撓性を有する基板、前記可撓性を有する基板の上方に設けられた樹脂層及び前記樹脂層の上方に設けられた逆スタガ型の薄膜トランジスタを有する半導体装置を備えたカード型電子機器であって、

前記可撓性を有する基板は、ポリエチレンテレフタレート基板、ポリエチレンナフタレート基板、ポリエチレン サルファイト基板またはポリイミド基板であることを特 徴とするカード型電子機器。

【請求項20】請求項14乃至請求項19のいずれか一項において、前記可撓性を有する基板は、凹凸を有することを特徴とするカード型電子機器。

【請求項21】請求項14乃至請求項20のいずれか一項において、前記樹脂層は、アクリル樹脂層であることを特徴とするカード型電子機器。

【請求項22】請求項14乃至請求項20のいずれか一

10

項において、前記樹脂層は、アクリル酸メチルエステル層、アクリル酸エチルエステル層、アクリル酸プチルエステル層またはアクリル酸2-エチルヘキシルエステル層であることを特徴とするカード型電子機器。

【請求項23】請求項14乃至請求項22のいずれか一項において、前記樹脂層の表面は、平坦であることを特徴とするカード型電子機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本明細書で開示する発明は、 樹脂基板(工業用プラスチック基板を含む)等の可撓性 (フレキシブルな機械的な性質)を有する基板上に形成 された薄膜トランジスタの構成およびその作製方法に関 する。また、この薄膜トランジスタを用いて構成された アクティブマトリクス型の液晶表示装置に関する。

[0002]

【従来の技術】ガラス基板や石英基板上に形成された薄膜トランジスタが知られている。このガラス基板上に形成される薄膜トランジスタは、アクティブマトリクス型の液晶表示装置に主に利用されている。アクティブマト 20 リクス型の液晶表示装置は、高速動画や微細な表示を行うことができるので、単純マトリクス型の液晶表示装置に代わるものと期待されている。

【0003】アクティブマトリクス型の液晶表示装置というのは、各画素のそれぞれに1つ以上の薄膜トランジスタをスイッチング素子として配置し、画素電極に出入りする電荷をこの薄膜トランジスタで制御するものである。基板としてガラス基板や石英基板が用いられるのは、液晶表示装置を可視光が透過する必要があるからである。

【0004】一方、液晶表示装置は極めて応用範囲の広い表示手段として期待されている。例えば、カード型の計算機や携帯型のコンピュータ、さらには各種通信機器等の携帯型の電子機器に用いられる表示手段として期待されている。そしてこれら携帯型の電子機器に利用される表示手段においては、取り扱う情報の高度化に従って、より高度な情報の表示が求められている。例えば、数字や記号のみではなく、より微細な画像情報や動画を表示する機能が求められている。

【0005】液晶表示装置により微細な画像情報や動画 40 を表示する機能を求める場合、アクティブマトリクス型の液晶表示装置を利用する必要がある。しかし、基板としてガラス基板や石英基板を用いた場合、

- ・液晶表示装置自体の厚さを薄くすることに限界がある。
- ・重量が大きくなる。
- ・軽量化しようとして基板の厚さを薄くすると、基板が 割れる。
- ・基板に柔軟性がない。

といった問題を有している。

【0006】特にカード型の電子機器は、その取扱において、多少の応力が働いても破損しない柔軟性が要求されるので、その電子機器に組み込まれる液晶表示装置にも同様な柔軟性(フレキシピリティー)が要求される。 【0007】

【発明が解決しようとする課題】本明細書で開示する発明は、柔軟性を有するアクティブマトリクス型の液晶表示装置を提供することを課題とする。

[0008]

【課題を解決するための手段】液晶表示装置に柔軟性を与える方法としては、基板として透光性を有するプラスチック基板や樹脂基板を用いる方法がある。しかし、樹脂基板はその耐熱性の問題からその上に薄膜トランジスタを形成することは技術的に困難であるという問題がある。

【0009】そこで、本明細書で開示する発明は、以下に示すような構成を採用することにより、上記の困難性を解決することを特徴とする。本明細書で開示する発明の一つは、フィルム状の樹脂基板と、前記樹脂基板の表面に形成された樹脂層と、前記樹脂層上に形成された薄膜トランジスタと、を有することを特徴とする。

【0010】上記構成の具体的な例を図1に示す。図1に示す構成においては、フィルム状の樹脂基板であるPETフィルム(厚さ100μm)に接して、樹脂層102が形成されており、さらにその上にInvertedstaggered型の薄膜トランジスタが形成されている。

【0011】フィルム状の樹脂基板としては、PET (ポリエチレンテレフタレート)、PEN (ポリエチレ ンナフタレート)、PES (ポリエチレンサルファイト)、ポリイミドから選ばれたものを用いることができる。ここで必要とされる条件は、可撓性を有すること、それに透光性を有すること、である。またなるべく高い温度に耐えることができることが望ましい。一般的にこれら樹脂基板は、加熱温度を200℃程度以上に上げていくと、表面にオリゴマー(直径1μm程度の重合体)が析出したり、ガスを発生したりし、その上に半導体層を形成することは著しく困難になる。従って、その耐熱温度がなるべく高いものである必要がある。

【0012】上記構成において樹脂層は、樹脂基板の表面を平坦化するための機能を有している。この平坦化という意味には、半導体層の形成等の加熱が伴う工程において、樹脂基板の表面にオリゴマーが発生することを防ぐ機能も含まれる。

【0013】この樹脂層としては、アクリル酸メチルエステル、アクリル酸エチルエステル、アクリル酸プチルエステル、アクリル酸2エチルヘキシルエステルから選ばれたアクリル樹脂を用いることができる。この樹脂層を形成することで、樹脂基板を用いた場合でも、上述した薄膜トランジスタを作製する場合の不都合を抑制する

ことができる。

【0014】他の発明の構成は、フィルム状の樹脂基板 上に樹脂層を形成する工程と、前記樹脂層上に半導体層 をプラズマCVD法で形成する工程と、前記半導体層を 用いて薄膜トランジスタを形成する工程と、を有するこ とを特徴とする。

【0015】他の発明の構成は、フィルム状の樹脂基板 を所定の温度で加熱処理し樹脂基板からの脱ガス化を計 る工程と、フィルム状の樹脂基板上に樹脂層を形成する 工程と、前記樹脂層上に半導体層をプラズマCVD法で 10 形成する工程と、前記半導体層を用いて薄膜トランジス 夕を形成する工程と、を有することを特徴とする。

【0016】上記構成において、加熱処理を施し樹脂基 板からの脱ガス化を計るのは、後の加熱を従うプロセス において、樹脂基板から脱ガス化現象が起こることを防 ぐためである。例えば、樹脂基板上に半導体薄膜を形成 している最中に樹脂基板からの脱ガス化が起こると、半 導体薄膜に大きなピンホールが形成されることになり、 その電気特性は大きく損なわれたものとなってしまう。 度よりも高い温度で加熱処理を行い、樹脂基板中からの 脱ガス化を行っておくことによって、後の工程における 樹脂基板からの脱ガス現象を抑制することができる。

【0017】他の発明の構成は、フィルム状の樹脂基板 を所定の温度で加熱処理する工程と、フィルム状の樹脂 基板上に樹脂層を形成する工程と、前記樹脂層上に半導 体層をプラズマCVD法で形成する工程と、前記半導体 層を用いて薄膜トランジスタを形成する工程と、を有 し、前記プラズマCVD法での半導体層の形成に際し て、前記所定の温度以下の温度で加熱を行うことを特徴 30 とする。

【0018】他の発明の構成は、フィルム状の樹脂基板 を所定の温度で加熱処理する工程と、フィルム状の樹脂 基板上に樹脂層を形成する工程と、前記樹脂層上に半導 体層をプラズマCVD法で形成する工程と、前記半導体 層を用いて薄膜トランジスタを形成する工程と、を有 し、前記所定の温度は、他の工程における加熱温度より 高い温度であることを特徴とする。

【0019】他の発明の構成は、一対のフィルム状の樹 脂基板と、前記樹脂基板間に保持された液晶材料と、前 40 記一対の樹脂基板の少なくとも一方の表面上に形成され た画素電極と、前記画素電極に接続された薄膜トランジ スタと、を有し、前記薄膜トランジスタは樹脂基板上に 形成されており、前記一対のフィルム状の樹脂基板の表 面にはその表面を平坦化するための樹脂層が形成されて いることを特徴とする。

> 成膜温度(基板を加熱する温度) 反応圧力 RF (13.56 MHz) 反応ガス

【0020】上記構成の具体的な例を図3に示す。図3 に示す構成には、一対の樹脂基板301と302、これ ら樹脂基板間に保持された液晶材料309、画素電極3 06、画素電極306に接続された薄膜トランジスタ3 05、樹脂基板301の表面を平坦化するための樹脂層 303が示されている。

[0021]

【実施例】 {実施例1] 本実施例は、Inverted staggered型の薄膜トランジスタを有機樹脂 基板であるPET(ポリエチレンテレフタレート)基板 上に形成する例を示す。

【0022】まず図1 (A) に示すように厚さ100 µ mのPETフィルム101を用意し、脱ガス化のための 加熱処理を加える。この加熱処理は、後のプロセスにお いて加わる最も高い温度以上の温度である必要がある。 本実施例で示すプロセスでは、プラズマCVD法による 非晶質珪素膜の成膜時における160℃の温度が最高加 熱温度であるので、このPETフィルムからの脱ガス化 を計るための加熱処理は180℃で行う。

従って、予め後のプロセス中において加えられる加熱温 20 【0023】このPETフィルム上にアクリル樹脂の層 102を形成する。アクリル樹脂としては例えばアクリ ル酸メチルエステルを用いることができる。このアクリ ル樹脂の層102は、後の熱が加わるプロセスにおい て、PETフィルムの表面にオリゴマーが発生すること を防ぐためのものである。また、このアクリル樹脂の層 102は、PETフィルム表面の凹凸を平坦にする機能 を有している。一般にPETフィルムの表面は普通数百 A~1μmオーダーの凹凸を有している。このような凹 凸は、厚さが数百人である半導体層に対して電気的に大 きな影響を与えるこになる。従って、半導体層が形成さ れる下地を平坦化することは極めて重要なこととなる。

> 【0024】次にアルミニウムでなるゲイト電極103 を形成する。このゲイト電極の形成は、スパッタ法によ ってアルミニウム膜2000~5000Å (ここでは3 000A) の厚さに成膜し、さらにフォトリソグラフィ ー工程による公知のパターニングを行うことにより行わ れる。またパターンの側面はテーパー状になるようにエ ッチングを行う。(図1(A))

> 【0025】次にゲイト絶縁膜として機能する酸化珪素 膜104をスパッタ法で1000人の厚さに成膜する。 ゲイト絶縁膜としては、酸化珪素膜ではなく窒化珪素膜 を用いてもよい。

> 【0026】次にプラズマCVD法を用いて実質的に真 正(I型)の非晶質珪素膜105を500人の厚さに成 膜する。以下に成膜条件を示す。

[0027]

160℃

0.5Torr

 $20\,\mathrm{mW/c\,m^{1}}$

SiH.

ここでは平行平板型のプラズマCVD装置を用いて成膜 を行う。また加熱は、樹脂基板が置かれる基板ステージ 内に配置されたヒーターによる基板の加熱温度である。 このようにして図1 (B) に示す状態を得る。

【0028】さらに後の工程において、エッチングスト ッパーして機能する酸化珪素膜をスパッタ法で成膜し、

> 成膜温度(基板を加熱する温度) 反応圧力 RF (13.56 MHz) 反応ガス

【0030】こうして図1 (C) に示す状態を得る。そ の後、N型の非晶質珪素膜107と実質的に真正(I 型)の非晶質珪素膜105とに対してドッライエッチン グによるパターニングを行う。そしてアルミニウム膜を 3000Aの厚さにスパッタ法で成膜する。さらにこの アルミニウム膜とその下のN型の非晶質珪素膜とをエッ チングすることにより、ソース電極108とドレイン電 極109を形成する。このエッチング工程において、エ ッチングストッパー106の作用によって、ソース/ド レインの分離が確実に行われる。(図1 (D))

【0031】そして、酸化珪素膜またはポリイミド等の 樹脂材料を用いて層間絶縁層110を6000人の厚さ に形成する。酸化珪素膜を形成する場合には、酸化珪素 被膜形成用の塗布液を用いればよい。最後にコンタクト ホールの形成を行い、ITOを用いて画素電極111を 形成する。以上のようにして、透光性を有する樹脂基板 を用いて、アクティブマトリクス型の液晶表示装置の各 画素電極に配置される薄膜トランジスタを得ることがで きる。(図1(E))

【0032】 [実施例2] 本実施例は、実施例1に示し 30 た薄膜トランジスタを利用して、アクティブマトリクス 型の液晶表示装置を構成する場合の例を示す。図3に本 実施例に示す液晶電気光学装置の断面を示す。

【0033】図3において、301と302とが一対の 基板を構成する厚さ100μmのPETフィルムであ る。303で示されるのが平坦化層として機能するアク リル樹脂層である。306が画素電極である。図3に は、2画素分の構成が示されている。

> 成膜温度(基板を加熱する温度) 反応圧力 RF (13.56 MHz)

反応ガス

ここでは平行平板型のプラズマCVD装置を用いて成膜

【0039】さらにN型の非晶質珪素膜を平行平板型の

成膜温度(基板を加熱する温度) 反応圧力

RF (13.56 MHz)

反応ガス

【0040】そしてN型の非晶質珪素膜をパターニング 50 して、ソース領域205とドレイン領域204を形成す

パターニングを施すことによりエッチングストッパー1 06を形成する。

【0029】次にN型の非晶質珪素膜107を平行平板 型のプラズマCVD法で300人の厚さに成膜する。以 下に成膜条件を示す。

160℃

0. 5Torr

2 0 mW/c m1

 $B_1 H_1 / S_1 H_1 = 1 / 100$

【0034】304は対向電極である。そして307と 308が液晶309を配向させる配向膜である。液晶3 09は、TN型液晶やSTN型液晶、さらには強誘電性 液晶等を用いることができる。一般的にTN液晶が利用 される。また液晶層の厚さとしては、数 μ m~10 μ m 程度が利用される。

【0035】画素電極306には、薄膜トランジスタ3 05が接続されており、この画素電極306に出入りす る電荷は、薄膜トランジスタ305によって制御され 20 る。ここでは、1つの画素電極306における構成を代 表的に示すが、他に必要とする数で同様な構成が形成さ

【0036】図3に示すような構成においては、基板3 01と302とが、可撓性を有しているので、液晶パネ ル全体をフレキシブルなものとすることができる。

【0037】 (実施例3) 本実施例は、アクティブマト

リクス型の液晶表示装置に利用されるCoplanar 型の薄膜トランジスタを作製する場合の例を示す。 図2 に本実施例に示す薄膜トランジスタの作製工程を示す。 まずフィルム状の有機樹脂基板として、厚さ100μm のPETフィルム201を用意する。そして180℃の 加熱処理を加えて、PETフィルム中からの脱ガス化を 促進させる。そしてその表面にアクリル樹脂からなる層 202を形成する。ここでは、アクリル樹脂としてアク

【0038】次にチャネル形成領域が形成される実質的 に真正(Ⅰ型)な半導体層203をプラズマCVD法で 成膜する。以下に成膜条件を示す。

160℃

0. 5.Torr

リル酸エチルエステルを用いる。

2 0 mW/c m'

S i H.

プラズマCVD法で300Aの厚さに成膜する。以下に 成膜条件を示す。

160℃

0. 5Torr

 $20 \,\mathrm{mW/cm^2}$

 $B_1H_1/S_1H_1=1/100$

る。(図2(A))

【0041】そしてゲイト絶縁膜として機能する酸化珪 素膜または窒化珪素膜をスパッタ法で成膜し、パターニ ングを施すことにより、ゲイト絶縁膜206を形成す る。さらにアルミニウムによりゲイト電極207を形成 する。(図2(B))

【0042】次に層間絶縁膜としてポリイミドの層20 8を5000人の厚さに成膜する。さらにコンタクトホ

成膜温度(基板を加熱する温度)

反応圧力

RF (13.56 MHz)

反応ガス

ここでは平行平板型のプラズマCVD装置を用いて成膜 を行う。

【0044】次にN型の微晶質珪素膜を成膜する場合の

成膜温度(基板を加熱する温度)

反応圧力

RF (13.56 MHz)

反応ガス

【0045】一般的に投入パワーを100~200mW 20 【発明の効果】本明細書に開示する発明を採用すること /cm² とすることによって、微結晶珪素膜を得ること ができる。またⅠ型の半導体層の場合には、パワーを高 くするのに加えて、シランを水素で10~50倍程度希 釈すると効果的である。しかしながら水素希釈を行う と、成膜速度が低下する。

【0046】〔実施例5〕本実施例は、他の実施例で示 すようなプラズマCVD法で形成れた珪素膜に対して、 フィルム状の基体(基板)を加熱しない程度のパワーで レーザー光を照射する構成に関する。

【0047】ガラス基板上に形成された非晶質珪素膜に 30 対してレーザー光 (例えばKrFエキシマレーザー光) を照射して、結晶性珪素膜に変成する技術が知られてい る。また珪素膜に対して、一導電型を付与する不純物イ オンを注入した後に、レーザー光を照射することによっ て、結晶化(イオンの注入により珪素膜は非晶質化す る)と不純物イオンの活性化を行う技術が知られてい る。

【0048】本実施例に示す構成は、上記のようなレー ザー光の照射プロセスを利用したものであって、図1の 非晶質珪素膜105や図2の非晶質珪素膜203や20 40 4に対して極弱いレーザー光を照射し、非晶質珪素膜を 結晶化させることを特徴とする。また予め成膜される膜 が微結晶珪素膜である場合には、その結晶性を向上させ ることができる。

【0049】レーザー光としては、KrFエキシマレー ザーやXeCIエキシマレーザーを用いればよい。また その照射エネルギーは、10~50mJ/cm とし、 樹脂基板101または201に対して熱的なダメージを 与えないようにすることが重要である。

{0050}

ールの形成を行い、画素電極となるITO電極209を スパッタ法で形成し、薄膜トランジスタを完成させる。 (図2 (C))

[0043] 〔実施例4〕本実施例では、実施例1また は実施例2に示した構成において、半導体層を微結晶半 導体膜で構成する場合の例を示す。まず実質的に真正な 半導体層を微結晶(マイクロクリスタル)半導体層とす る場合の成膜条件を示す。

160℃

0. 5Torr

150mW/cm'

 $S i H_1/H_1 = 1/30$

成膜条件を示す。この場合も平行平板型のプラズマCV D装置を用いて成膜を行う場合の例である。

160℃

0. 5Torr

150mW/cm'

 $B_1H_4/S_1H_4=1/100$

により、アクティブマトリクス型の液晶表示装置におい

- ・装置自体の厚さを薄くすることができる。
- ・重量を軽くすることができる。
- ・外力によって基板が割れたりしないものを得ることが できる。
- ・柔軟性を有するものを得ることができる。

このような液晶表示装置は、広い用途に利用することが でき、極めて有用なものである。

【0051】本発明においては、以上のように薄膜トラ ンジスタを用いて構成されたアクティブマトリクス型の 液晶表示装置を、カード型の計算機や携帯型のコンピュ ータ、さらには各種通信機器等の携帯型の電子機器、す なわち携帯型電子機器に用いるに際して(本明細書00 01~0007段落等)、上記0050段落等に記載の ように、アクティブマトリクス型の液晶表示装置の厚さ を薄くし、かつ重量を軽くすることができるため、軽量 化された携帯型電子機器とすることができる。また、特 にカード型の電子機器においては、多少の応力が働いて も破損のない柔軟性(フレキシビリティー)を有するカ ード型の電子機器とすることができる。

【図面の簡単な説明】

【図1】実施例の薄膜トランジスタの作製工程を示す

【図2】実施例の薄膜トランジスタの作製工程を示す

【図3】液晶パネルの断面の概略を示す図。

【符号の説明】

PETフィルム基板(ポリエチレン 101, 201 '50 テレフタレート)

		- · · ·	
	11		12
301, 302	一対の樹脂基板	1 1 0	層間絶縁膜
102,202	アクリル樹脂層	111,209	画素電極
3 0 3	樹脂層	205.	ソース領域
103.207	ゲイト電極	204	ドレイン領域
104,206	ゲイト絶縁膜	3 0 4	対向電極
105,203	実質的に真正な非晶質珪素膜	305	薄膜トランジスタ
106	エッチングストッパー層	3 0 6	画素電極
107	N型の非晶質珪素膜	307.308	配向膜
108	ソース電極	309	液晶材料
109	ドレイン電極	10	

【図1】

【図2】

【図3】

フロントページの続き、

(51) Int. C1.7

識別記号

// C08L 101:00

(72)発明者 寺本 聡

神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内 FΙ

H01L 29/78

テーマコード(参考)

6 2 6 C

Fターム(参考) 2H090 HB07X JB03 JC03 JD13

LA04

2H092 JA26 PA06 RA10

4F006 AA35 AA39 AA40 AB24 BA00

CA08 EA05

5F110 AA30 BB01 CC01 CC07 DD01

DD12 DD25 EE03 EE23 EE44

FF02 FF03 FF28 GG02 GG13

GG14 GG15 GG25 GG35 GG45

HK03 HK09 HK14 HK15 HK16

HK21 HK33 HK35 HL07 NN02

NNO4 NN12 NN23 NN27 NN34

NN72 PP03 QQ19