

L1-MATH - STATISTIQUES DESCRIPTIVES

CONTRÔLE CONTINU N° 2

Enseignants: H. El-Otmany & V. Darrigrand

A.U.: 2014-2015

La qualité de la rédaction sera prise en compte dans la note. Les réponses devront être justifiées.

Documents interdits, calculatrice UPPA autorisée.

Exercice $n^{\circ}1$ [3 points] Soit $(x_1, y_1), \dots, (x_n, y_n)$ une série bivariée correspondant à deux variables quantitatives.

- 1. Rappeler la formule de la covariance et du coefficient de corrélation linéaire ρ_{xy} . Quelles sont les valeurs possibles pour ρ_{xy} ?
- 2. Qu'est-ce qu'un nuage de points ? Représenter graphiquement la forme du nuage de points dans les trois cas suivants : $\rho_{xy} < 0$, $\rho_{xy} = 0$, $\rho_{xy} > 0$.
- 3. Énoncer l'équation d'analyse de la variance. Quel est l'intérêt de cette équation pour la régression linéaire ?

Exercice n°2 [5 points] Le centre de transfusion sanguine de Pau a observé la répartition suivante sur 10000 donneurs en 2014.

Groupe Facteur	О	A	В	AB
Rhésus +	2592	4387	587	194
Rhésus -	939	996	232	73

- 1. Quelle est la population étudiée ? Quelles sont les variables étudiées ? Préciser leur nature.
- 2. Calculer la distribution du rhésus
 - (a) sachant que le donneur possède un groupe sanguin de type O;
 - (b) sachant que le donneur possède un groupe sanguin de type A;
 - (c) sachant que le donneur possède un groupe sanguin de type B;
 - (d) sachant que le donneur possède un groupe sanguin de type AB;
- 3. Calculer la distribution conditionnelle du Groupe sachant que le Rhésus est négatif.
- 4. Calculer la fréquence conditionnelle du Groupe sachant que le Rhésus est positif.
- 5. Déterminer le mode de la distribution bivariée.
- 6. Calculer le coefficient Φ^2 de Pearson. Peut-on affirmer que les deux variables sont indépendantes ?

Exercice $n^{\circ}3$ [12 points] On considère une automobile roulant sur une route mouillée à une certaine vitesse v. Cette automobile freine brusquement pour simuler un freinage d'urgence. On note d la distance de freinage qui est fonction de la vitesse v. Les données recueillies sont les suivantes :

Vitesse v (Km/h)							
Distance d (m)	10	21	34	49	66	85	106

Le plan est muni d'un repère orthogonal. On prendra pour unité sur l'axe des abscisses 1 cm pour 10 Km/h et sur l'axe des ordonnées 1 cm pour 15m.

- 1. Quelles sont les natures des deux variables étudiées?
- 2. Tracer le nuage de points. Le nuage de points vous semble-t-il aligné le long d'une droite? Quel est le signe du coefficient de corrélation linéaire (sans effectuer de calculs)?
- 3. On suppose qu'il existe une relation linéaire entre la vitesse v (Km/h) et la distance d (m) de la forme : $d = \alpha v + \beta$.
 - (a) Trouver la droite de régression des distances en fonction des vitesses.
 - (b) Tracer la droite obtenue dans le graphique précédent.
 - (c) Quelle est la distance estimée de freinage si la vitesse est de 95 Km/h? 130 Km/h? 150 Km/h?
 - (d) Que deviennent α et β si on exprime la distance en kilomètres et non pas en mètres?
 - (e) Calculer le coefficient de corrélation linéaire entre d et v. Commenter.
 - (f) Rappeler la **définition** du coefficient de détermination. Donner sa valeur sans effectuer de calcul.
 - (g) Déterminer la variance des résidus.
- 4. On suppose qu'il existe une relation quadratique entre les deux variables, i.e. une relation de la forme $d = av^2 + b$.
 - (a) Ouelles sont les unités de a et b.
 - (b) Déterminer a et b par la méthode des moindres carrés.
 - (c) Représenter la courbe obtenue sur le graphique de la question??.
 - (d) Quelle est la distance estimée de freinage si la vitesse est de 95 Km/h? 130 Km/h? 150 Km/h? Comparer les résultats avec ceux de la question ??.
 - (e) Que deviennent a et b si on exprime la distance en kilomètres et non pas en mètres?
 - (f) Que vaut le le coefficient de corrélation linéaire ? Commenter.
 - (g) Que vaut le coefficient de détermination?
 - (h) Déterminer la variance des résidus pour ce nouveau modèle.
- 5. Trois autres expériences supplémentaires ont été menées :

Vitesse v (Km/h)	110	120	130
Distance d (m)	129	154	181

- (a) Déterminer les nouvelles valeurs de a et de b par la méthode des moindres carrés, en limitant le nombre de calculs. On expliquera la démarche adoptée.
- (b) Que vaut le coefficient de détermination ? Comparer avec celui précédemment obtenu et commenter.
- (c) Quelle est la distance estimée de freinage si la vitesse est de 95 Km/h? 130 Km/h? 150 Km/h? Comparer avec les résultats obtenus précédemment et commenter.
- 6. Dans cette question, on compare les deux ajustements à l'aide de tableau suivant :

Vitesse v_i (Km/h)	50	60	70	80	90	100	110	
Distance d_i (m)	10	21	34	49	66	85	106	
$ d_i - (\alpha v_i + \beta) $								$T_1 = ?$
$ d_i - (av_i^2 + b) $								$T_2 = ?$

Les deux totaux calculés T_1 et T_2 évaluent, pour chaque ajustement, la somme des écarts entre les ordonnées des points du nuage et les ordonnées des points de même abscisse de l'ajustement.

- (a) Donnez les arrondis à 10^{-2} près des deux totaux T_1 et T_2 calculés ci-dessus.
- (b) Déduisez l'ajustement qui paraît le mieux adapté.