MATH 2301

* Determinish c finite automata (DFA)

** Def: A DFA consists of the following prieces of data:

- 1) An alphabet Σ
- 2) A set Q of "states"
- 3) A start state g. EQ on a hanging incoming amow
- 4) A set of accept states A = Q on doubly-circled
- 5) A transition function $\delta: Q \times \Sigma' \to Q$ Twhere you state you're letter end up you read

** Example

8: Q X I -0Q

go the start state

Q	Σ	output in Q
વ્રુ.	0	31
3.	1	31
81	0	200
91	1	3 1

** Reading strings (examples)

Let
$$w = 01101$$

2) Read w from left to right, letter by letter, and follow

the labelled arrows.

State	Letter read	
90	0	Since we auded at a
81	1	Since we ended at q, and q, &A, we REJECT
21	1	wor giff, we issue
81	0	Other accepted words include
20	1	$\omega = \mathcal{E}$ $\omega = 00$, $\omega = 0.0$
81	(end)	

This machine will accept
$$w = 01101$$

It will accept w = 0, w = 111, w = 001It will reject w = 10, $w = \varepsilon$, w = 00

** The language of a DFA

Let M be a DFA The language of M, denoted L(M), is the set of strings that M accepts

** Question: Is there any relationship between languages of regular expressions and languages of DFAS?

** Example

$$M = \rightarrow 30$$

$$0,1$$

$$0 \text{ Where } r = (011)1^*0$$

** Let's try to "convert" regexs into machines, ie, given a regex τ , we'll try to build M such that $L(\tau) = L(M)$

"Easy" cases, say [= {0,13}

1)
$$\Upsilon = \phi$$
 , $L(\Upsilon) = \phi$

(and many other options ...)

3)
$$r = a$$
 for some $a \in \Sigma$
 $L(r) = [a]$
Eg: $\gamma = 0$

$$90$$
 1 91 90 only accepts 1 92 92

4)
$$r = r_1 r_2$$
, $L(r) = L(r_1) \circ L(r_2)$

 $Q: Given M_1 & M_2 DFAs$ such that L(Mi) = L(Yi), consmuct a machine M_s such that L(M) = L(Y)