随机过程 B 第六周作业 10月 19日 周一

PB18151866 龚小航

2.10 到达某加油站的公路上的卡车服从参数为 λ_1 的泊松过程 $N_1(t)$, 而到达的小汽车服从参数为 λ_2 的 泊松过程 $N_2(t)$, 且过程 N_1 与 N_2 独立。

试问随机过程 $N(t) = N_1(t) + N_2(t)$ 是什么过程? 并计算在总车流数 N(t) 中卡车首先到达的概率。

解: 由教材 16 页的结论,泊松过程 N(t) 的矩母函数为:

$$g_{N(t)}(u) = g(u,t) = e^{\lambda t(e^u - 1)}$$

又由于 N_1, N_2 独立,由教材第 9 页结论: 独立随机变量和的矩母函数等于各自矩母函数的积。即有:

$$g_{N(t)}(u) = g_{N_1(t) + N_2(t)}(u) = g_{N_1(t)}(u) \cdot g_{N_2(t)}(u) = e^{\lambda_1 t(e^u - 1)} \cdot e^{\lambda_2 t(e^u - 1)} = e^{(\lambda_1 + \lambda_2)t(e^u - 1)}$$

由矩母函数的表达形式,显然 N(t) 是强度为 $\lambda_1 + \lambda_2$ 的泊松过程。

再计算总车流数 N(t) 中卡车首先到达的概率:

由教材 17 页的结论, W_n 为第 n 次事件到达或等待的时间,在泊松过程中, $W_n \sim \Gamma(n,\lambda)$

$$f_{W_n(t)} = \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}$$

此时 n=1, $f_{W_1(t)}=\lambda e^{-\lambda t}$, $F_{W_1(t)}=1-e^{-\lambda t}$

因此卡车先到的概率可以表示为:

$$P(W_{1,\lambda_1} < W_{1,\lambda_2}) = \int_0^\infty P(X_{N_1,1} = t, X_{N_2,1} > t) dt = \int_0^\infty \lambda_1 e^{-\lambda_1 t} e^{-\lambda_2 t} dt = \frac{\lambda_1}{\lambda_1 + \lambda_2}$$

- 2.12 令 N(t) 是强度函数为 $\lambda(t)$ 的非齐次泊松过程, X_1, X_2, \dots 为事件间的时间间隔。
 - (1) X_i 是否独立?
 - (2) X; 是否同分布?
 - (3) 试求 X₁ 及 X₂ 的分布。

解:对每问分析如下:

(1) 只需证明 X_1 与 X_2 不独立。 记 $\int \lambda(u) du = f(u)$

利用证明变量独立的常用方法,条件概率等于无条件概率即可:

$$P\{X_2 > h \mid X_1 = t\} = P\{N(t+h) - N(t) = 0\}$$

$$= \frac{\left(\int_t^{t+h} \lambda(u) \, \mathrm{d}u\right)^0 e^{-\int_t^{t+h} \lambda(u) \, \mathrm{d}u}}{0!} = e^{f(t) - f(t+h)}$$

显然结果和条件 $X_1 = t$ 有关,因此 X_1, X_2 不独立,故 X_i 不独立。

(2) 只需证明 X_1 与 X_2 不是同分布的即可:

$$P\{X_1 > t\} = P\{N(t) = 0\} = P\{N(t) - N(0) = 0\} = \frac{\left(\int_0^t \lambda(u) \, \mathrm{d}u\right)^0 e^{-\int_0^t \lambda(u) \, \mathrm{d}u}}{0!} = e^{-f(t)}$$

由此可以得出:

$$F_{X_1}(t) = 1 - e^{-f(t)} \; ; \; f_{X_1}(t) = \frac{\mathrm{d}F_{X_1}(t)}{\mathrm{d}t} = -\left(e^{-\int_0^t \lambda(u) \, \mathrm{d}u}\right)' = \lambda(u)e^{-\int_0^t \lambda(u) \, \mathrm{d}u} = \lambda(u)e^{-f(t)}$$

根据这些得出 X2 的分布:

$$P\{X_2 > t\} = \int_0^\infty P\{X_2 > t \mid X_1 = s\} f_{X_1}(s) \, ds = \int_0^\infty e^{f(s) - f(t+s)} \lambda(s) e^{-f(s)} \, ds = \int_0^\infty e^{-f(t+s)} \lambda(s) \, ds$$

显然, $P\{X_1 > t\}$ 和 $P\{X_2 > t\}$ 之间有关系:

$$P\{X_1 > t\} \int_0^\infty e^{f(t) - f(t+s)} \lambda(s) ds = P\{X_2 > t\}$$

这与 t 有关, 且它们不可能相同。

因此 X_1 与 X_2 不是同分布的。

(3) 结合上一问,已经求出:

$$f_{X_1}(t) = \lambda(u)e^{-f(t)}$$

再求 X₂ 的概率密度函数:

$$F_{X_2}(t) = 1 - \int_0^\infty e^{-f(t+s)} \lambda(s) \, ds ;$$

$$f_{X_2}(t) = \frac{dF_{X_2}(t)}{dt} = \int_0^\infty \lambda(s) \lambda(t+s) e^{-f(t+s)} \, ds$$

至此 X_1 与 X_2 的概率密度已经给出。

2.13 考虑对所有 t , 强度函数 $\lambda(t)$ 均大于零的非齐次泊松过程 $\{N(t), t \geq 0\}$.

令
$$m(t) = \int_0^t \lambda(u) \ du$$
 , $m(t)$ 的反函数为 $\ell(t)$, 记 $N_1(t) = N \Big(\ell(t)\Big)$

试证 $N_1(t)$ 是通常的泊松过程, 并求出 $N_1(t)$ 的强度参数 λ .

解:证明一个过程是泊松过程。需要证明以下三点:

先证明第一条性质: $\ell(0) \implies m = 0$ 解 $t \implies t = 0$

$$N_1(0) = N\big(\ell(0)\big) = N(0) = 0$$

再证明第二条性质:

利用反函数的性质,由于 m 是单调递增函数,反函数 ℓ 也是单调递增函数。再结合定义,有: 对于任意的 $0 \le t_1 < t_2 < t_3 < \cdots < t_n$,均有 $0 \le \ell(t_1) < \ell(t_2) < \ell(t_3) < \cdots < \ell(t_n)$,且:

$$N_1(t_{i+1}) - N_1(t_i) = N(\ell(t_{i+1})) - N(\ell(t_i)), \quad i = 1, 2, 3, \dots, n-1$$

由于 N(t) 是独立增量过程, $0 \le \ell(t_1) < \ell(t_2) < \ell(t_3) < \cdots < \ell(t_n)$,因此 $N(\ell(t_{i+1})) - N(\ell(t_i))$ 互相独立,即 $N_1(t_{i+1}) - N_1(t_i)$ 互相独立。因此 $N_1(t)$ 是有独立增量的过程。

最后证明第三条性质:

任取 t > 0, $s \ge 0$:

$$P\{N_{1}(t+s) - N_{1}(s) = k\} = P\{N(\ell(t+s)) - N(\ell(s)) = k\} = \frac{\left(\int_{\ell(s)}^{\ell(t+s)} \lambda(u) du\right)^{k} e^{-\int_{\ell(s)}^{\ell(t+s)} \lambda(u) du}}{k!}$$

$$= \frac{\left(\int_{0}^{\ell(t+s)} \lambda(u) du - \int_{0}^{\ell(s)} \lambda(u) du\right)^{k} e^{-\left(\int_{0}^{s\ell(t+s)} \lambda(u) du - \int_{0}^{\ell(s)} \lambda(u) du\right)}}{k!}$$

$$= \frac{\left(m(\ell(t+s)) - m(\ell(s))\right)^{k} e^{-\left(m(\ell(t+s)) - m(\ell(s))\right)}}{k!}$$

$$= \frac{t^{k} e^{-t}}{k!}$$

显然这是一个参数为 1 的泊松分布。因此第三条性质满足。

综上, $N_1(t)$ 是通常的泊松过程, 强度参数 $\lambda = 1$