SESSION // 03 TRAINING NEURAL NETWORKS

MANCHESTER 1824 The University of Manchester

FACULTY OF
SCIENCE AND ENGINEERING
+++

Diego Corona Lopez – AI Technical Specialist

AGENDA

Introduction to Convolutional Neural Networks (CNNs)

• Understanding what makes CNNs unique for image processing

The Convolution Operation

- Mathematical foundations of convolution
- Key parameters: kernel size, stride, padding, dilation

Filters in CNNs

- Understanding what filters detect in images
- Different types of filters for edge detection, sharpening, etc.

Image Data Preparation

Data Loading for Deep Learning

Simple CNN Implementation

Advanced CNN Components

Case Study: Crack Detection in Historical Buildings

Popular CNN Architectures

CNN

Convolutional Neural Networks (CNNs) are specialized neural networks designed for processing structured grid-like data, such as images

- Inspired by visual cortex organization
- Revolutionized computer vision

03

WHY STANDARD NEURAL NETWORKS STRUGGLE WITH IMAGES

Spatial Relationships: Standard networks don't account

for spatial relationships between pixels

Parameter Explosion: A 224×224×3 image would

require over 150,000 weights per neuron

Translation Invariance: Objects can appear anywhere in

an image but have the same meaning

Feature Hierarchy: Images contain low-level features

that compose into higher-level features

SE04 O4

CONVOLUTION

Definition: A mathematical operation that slides a filter over an input, performing element-wise multiplication and summation

05

KEY PARAMETERS IN CONVOLUTION

- **Kernel Size:** The dimensions of the filter
- **Stride:** How many pixels the filter shifts
- Padding: Adding extra pixels around the border
- **Dilation:** Spacing between kernel elements

FILTERS IN CNNS

Filters are small matrices that detect specific patterns in images

- Different filters detect different features (edges, textures, etc.)
- Weights in filters are learned during training

SHARPENING

EDGE DETECTION

EMBOSSING

SE04

PREPARING IMAGES

Need to convert images into proper format for CNNs

- PyTorch expects 4D tensors: (batch_size, channels, height, width)
- Data augmentation techniques increase training set diversity

 $[3 \times 5 \times 4]$

BATCHES x CHANNELS x HEIGHT x WIDTH [N x 3 x 5 x 4]

[BxCxHxW]

[BxHxWxC]

IMAGE TRANSFORMATIONS AND

AUGMENTATION

Artificially expanding dataset by applying transformations

Benefits:

- Prevents overfitting
- Improves model generalization
- Handles varied real-world conditions
- Addresses class imbalance

COLOR JITTER

RESIZED

HORIZONTAL FLIP

COMBINED

CENTER CROP

RND ROTATION

NORMALISED

AUGMENTATION TECHNIQUES

- Geometric: Flips, rotations, scaling, cropping
- Color: Brightness, contrast, saturation adjustments
- Noise: Adding random noise for robustness
- Occlusion: Random erasing to simulate partial obscuring

Combining multiple augmentations:

- Domain-specific augmentations (e.g., for medical images)
- Online vs. offline augmentation

DATASET ORGANISATION

For CNN projects, proper dataset organization is crucial. A well-structured dataset allows for:

- Data Splitting Strategies
- Train/Validation/Test Split
- Stratified Splitting: Ensures class distribution is maintained across splits
- Cross-Validation: For smaller datasets or when maximum data usage is needed

SE04 1.3

IMAGEFOLDER: SMART DATASET MANAGEMENT

EFFICIENT BATCH PROCESSING

THE HISTORICAL CRACK DATASET: PRESERVING OUR HERITAGE

Dataset Overview

- 757 crack images / 3,139 non-crack images
- · First dataset specifically for historical building monitoring
- Captures unique patterns in traditional materials

Why It Matters

- Manual inspection is time-consuming, costly, and error-prone
- Historical buildings require specialized monitoring approaches
- Early crack detection can prevent catastrophic structural failure
- AI solutions can scale inspection across multiple heritage sites

Technical Applications

- Automated drone surveys for continuous monitoring
- Mobile applications for conservation specialists
- Detection of early-stage deterioration before visible to human eye

SIMPLE CNN

CNN Components:

- Conv2D
- ReLU
- Fully connected layers
- Information flow through the network
- Parameter sharing and local connectivity

REGULARISATION TECHNIQUES

- **Dropout:** Prevents co-adaptation of neurons
- **Batch normalization:** Stabilises and accelerates training
- Weight decay: Penalises large weights
- Early stopping: Prevents overfitting

VGG16

Developed by Visual Geometry Group (Oxford, 2014)

Revolutionary simple yet effective design principles:

- Very deep network (16 weight layers)
- Small 3×3 convolution filters throughout
- Consistent doubling of filter count (64→128→256→512)
- Max pooling for dimension reduction

SE04

TINY VGG

Simplified version of VGG with 3 convolutional blocks

• Input \rightarrow Conv \rightarrow BatchNorm \rightarrow ReLU \rightarrow Pool \rightarrow (repeat 3x) \rightarrow FC \rightarrow Output

Regularization:

- BatchNorm + Dropout (p=0.1) to prevent overfitting
- Progressive Feature Maps: 3→16→32→64 channels
- Dimensionality Reduction: Using pooling to reduce spatial dimensions
- Consistent Pattern: Conv → BatchNorm → ReLU → Pool at each level

BEST PRACTICES FOR CNNS

- Start with simple architectures and gradually increase complexity
- Use appropriate regularization techniques

- Apply proper data augmentation
- Monitor training with validation metrics
- Practice transfer learning when possible