Скорость роста вектора состояний обобщенной линейной стохастической системы с симметричной матрицей

Щетанов Петр Александрович, 522-я группа

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель — доцент к.ф.-м.н. Н.К. Кривулин Рецензент — доцент к.ф.-м.н. А.Ю. Пономарева

> Санкт-Петербург 2008г.

Область применения моделей

Синхронизационные модели применяется для описания:

- производственных процессов;
- процессов управления;
- бизнес систем;
- транспортных систем.

Основной инструмент для моделирования:

Идемпотентная алгебра

Идемпотентная алгебра

Идемпотентное полукольцо:

$$\mathfrak{R} = (X, \oplus, \otimes, -\infty, 0), \quad X = R \cup -\infty$$

Операции обобщенного сложения и умножения:

$$x \oplus y = max(x, y), \quad x \otimes y = x + y$$

Свойства обобщенных операций:

- ▶ Коммутативность. Операции ⊕ и ⊗ коммутативны;
- ▶ Ассоциативность. Операции ⊕ и ⊗ ассоциативны;
- ▶ Дистрибутивность. Операции ⊗ дистрибутивна относительно ⊕;
- lacktriangle Идемпотентность. Операции \oplus идемпотентна, т. е. $x\oplus x=x$.

Рассматриваемые случаи. Постановка задачи

Рассмотрим линейную систему, динамика которой описывается уравнением:

$$z(k) = A(k) \otimes z(k-1)$$

A(k) симметричная матрица:

$$A(k) = \left(\begin{array}{cc} \alpha_k & c \\ c & \beta_k \end{array}\right),\,$$

A(k) несимметричная матрица :

$$A(k) = \begin{pmatrix} \alpha_k & \delta_k \\ \gamma_k & \beta_k \end{pmatrix}.$$

Последовательности случайных величин независимы и экспоненциально распределены.

$$\lambda = \lim_{k \to \infty} \frac{1}{k} ||z(k)|| = \lim_{k \to \infty} \frac{1}{k} E ||z(k)||.$$

Постановка задачи. Вычисление функций распределений

Вектор состояния:

$$z(k) = \left(\begin{array}{c} x(k) \\ y(k) \end{array}\right).$$

Идемпотентная норма:

$$||z(k)|| = x(k) \oplus y(k) = max(x(k), y(k)).$$

Новые случайные величины:

$$Z(k) = ||z(k)|| - ||z(k-1)||, \quad Y(k) = y(k) - x(k),$$

и заметим, что $\|z(k)\| = Z(1) + \ldots + Z(k)$ Функции распределения: $\Phi_k(t), \Psi_k(t)$.

E[Z(k)] сходится к E[Z], поэтому

$$\lambda = \lim_{k \to \infty} \frac{1}{k} E \|z(k)\| = \lim_{k \to \infty} \frac{1}{k} \sum_{m=1}^{k} E \|Z(m)\| = E[Z].$$

Моделирование. Первый пример

Программы VC++ 6.0, MatLAB 5.6. Моделирование λ методом Монте-Карло.

Доверительный интервал:

$$\bar{x} - \frac{s}{\sqrt{n}} t_{\frac{1+\gamma}{2}}^{n-1} < a < \bar{x} + \frac{s}{\sqrt{n}} t_{\frac{1+\gamma}{2}}^{n-1},$$

Матрица имеет вид:

$$A(k) = \left(\begin{array}{cc} \alpha_k & c \\ c & \beta_k \end{array}\right),\,$$

Последовательности α_k и β_k независимы и экспоненциально распределены.

График и таблица.

С	μ	ν	λ	low	upper
0.0	1	1	1.2377	1.2207	1.2547
0.1	1	1	1.2456	1.2306	1.2606
0.2	1	1	1.2590	1.2430	1.2750
0.3	1	1	1.2794	1.2604	1.2984
0.4	1	1	1.3098	1.2928	1.3268
0.5	1	1	1.3466	1.3336	1.3596

График и таблица.

 $\operatorname{Puc.}$: График λ от c

Второй случай.

С	μ	ν	λ	low	upper
1	0.10	0.10	12.478	12.298	12.6573
1	0.11	0.11	11.357	11.200	11.5131
1	0.12	0.12	10.422	10.284	10.5594
1	0.13	0.13	9.632	9.498	9.765
1	0.14	0.14	8.954	8.815	9.092
1	0.15	0.15	8.367	8.247	8.486

Второй случай. График

 ${\sf Puc.:}\ {\sf График}\ \lambda\ {\sf от}\ \nu$

Третий случай.

С	μ	ν	λ	low	upper
0	0.10	0.10	12.349	12.170	12.527
0	0.11	0.11	11.226	11.076	11.375
0	0.12	0.12	10.291	10.152	10.429
0	0.13	0.13	9.499	9.361	9.636
0	0.14	0.14	8.820	8.681	8.958
0	0.15	0.15	8.232	8.111	8.352

Третий случай. График

 ${\sf Puc.:}\ {\sf График}\ \lambda\ {\sf от}\ \nu$

Четвертый случай.

Матрица:

$$A(k) = \left(\begin{array}{cc} \alpha_k & \beta_k \\ \beta_k & \delta_k \end{array}\right).$$

σ	μ	ν	λ	low	upper
0.1	0.1	0.1	16.675	16.268	17.080
0.2	0.2	0.2	8.337	8.099	8.574
0.3	0.3	0.3	5.513	5.370	5.656
0.4	0.4	0.4	4.071	3.972	4.170
0.5	0.5	0.5	3.335	3.253	3.417

Четвертый случай. График

 ${\sf Puc.}$: График λ от u

Пятый случай.

Матрица:

$$A(k) = \left(\begin{array}{cc} \alpha_k & \beta_k \\ \gamma_k & \delta_k \end{array}\right),\,$$

μ	σ	ν	au	λ	low	upper
0.1	0.1	0.1	0.1	17.519	17.237	17.799
0.1	0.2	0.2	0.2	11.737	11.463	12.011
0.1	0.3	0.3	0.3	10.643	10.405	10.880
0.1	0.4	0.4	0.4	10.588	10.332	10.844
0.1	0.5	0.5	0.5	10.068	9.797	10.338

Пятый случай. График

 ${\sf Puc.:}$ График λ от u

Заключение.

- В работе рассмотрены малоизученные линейные стохастические динамические системы с экспоненциально распределенными независимыми параметрами;
- Промоделирован параметр \(\lambda \) в зависимости от входных параметров для систем, не имеющих на данный момент алгерабраического решения;