MA571 Homework 13

Carlos Salinas

November 24, 2015

PROBLEM 13.1 (MUNKRES §58, Ex.9(A,B,C))

We define the *degree* of a continuous map $h: S^1 \to S^1$ as follows:

Let b_0 be the point (0,1) of S^1 ; choose a generator γ for the infinite cyclic group $\pi_1(S^1,b_0)$. If x_0 is any point of S^1 , choose a path α in S^1 from b_0 to x_0 and define $\gamma(x_0) := \hat{\alpha}(\gamma)$. Then $\gamma(x_0)$ generates $\pi_1(S^1,x_0)$. The element $\gamma(x_0)$ is independent of the choice of the path α , since the fundamental group of S^1 is Abelian.

Now given $h: S^1 \to S^1$, choose $x_0 \in S^1$ and let $h(x_0) = x_1$. Consider the homomorphism

$$h_*: \pi_1(S^1, x_0) \longrightarrow \pi_1(S^1, x_1).$$

Since both groups are infinite cyclic, we have

$$h_*(\gamma(x_0)) = d \cdot \gamma(x_1) \tag{*}$$

for some integer d, if the group is written additively. The integer d is called the *degree* of h and is denoted by deg h.

The degree of h is independent of the choice of the generator γ ; choosing the other generator woul merely change the sign of both sides of (*).

(e) Show that if $h, k : S^1 \to S^1$ have the same degree, they are homotopic.

Proof.

PROBLEM 13.2 (MUNKRES §69, Ex. 1)

Check the details of Example 1.

Proof. The following is the statement of Example 1 as found in the book:

Examples 1. Consider the group P of bijections of the set $\{0,1,2\}$ with itself. For i=1,2, define an element π_1 of P by setting $\pi_i(i)=i-1$ and $\pi_i(i-1)=i$ and $\pi_i(j)=j$ otherwise. Then π_i generates a subgroup G_i of P of order 2. The group G_1 and G_2 generate P, as you can check. But P is not their free product. The reduced words (π_1, π_2, π_1) and (π_2, π_1, π_2) , for instance, represent the same element of P.

PROBLEM 13.3 (MUNKRES §69, Ex. 2(A,B,C))

Let $G = G_1 * G_2$, where G_1 and G_2 are nontrivial groups.

- (a) Show G is not Abelian.
- (b) If $x \in G$, define the *length* of x to be the length of the unique reduced word in the elements of G_1 and G_2 that represents x. Show that if x has even length (at least 2), then x does not have finite order. Show that if x has odd length (at least 3), then x is conjugate to an element of shorter length.
- (c) Show that the only elements of G that have finite order are the elements of G_1 and G_2 that have finite order, and their conjugates.

Proof.

PROBLEM 13.4 (MUNKRES §69, Ex. 3)

Let $G = G_1 * G_2$. Given $c \in G$, let cG_1c^{-1} denrote the set of all elements of the form cxc^{-1} , for $x \in G_1$. It is a subgroup of G; show that the intersection with G_2 is the identity alone.

Proof.

PROBLEM 13.5

Proof.

PROBLEM 13.6

Proof.

PROBLEM 13.7

Proof.

PROBLEM 13.8

Proof.