Algorithms Design and Analysis

Day 5 Traversing a Graph

2015, AUT-CJLU

Day 5 Traversing a Graph

Part I: Depth First Search

Graph Traversal

Question

If I use a digraph to store a collection of data, how can I search for information in the graph?

Answer

Traverse through each node of the graph.

Graph Traversal

Graph Traversal

String: Keep track of the path we are currently on

Chalk: Mark a node after we have finished visiting it

Simulating String and Chalk

Question

Can we use an algorithm to simulate the "string+chalk" procedure to traverse a graph?

Simulating String and Chalk

Question

Can we use an algorithm to simulate the "string+chalk" procedure to traverse a graph?

- Stage 1. A node is discovered (preprocessed): the first time it is visited
- Stage 2. A node is finished (postprocessed): the last time it is visited

Simulating String and Chalk

Question

Can we use an algorithm to simulate the "string+chalk" procedure to traverse a graph?

Strategy: Each node is processed in two stages:

- Stage 1. A node is discovered (preprocessed): the first time it is visited
- Stage 2. A node is finished (postprocessed): the last time it is visited

Graph Traversal Problem

INPUT: A (representation of) digraph *G* OUTPUT: Enumeration of all nodes in the digraph

We would like a traversal algorithm that reveals also the link topology of the graph.

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

- Stage 1. A node is discovered: the first time it is visited
- Stage 2. A node is finished: the last time it is visited

Depth First Search: Recursive Implementation

Maintain visited(v) for every $v \in V$.

```
Algorithm explore(G, v)

INPUT: A digraph G and a node v

visited(v) \leftarrow true

call discover(v) (perform operations to discover v)

for (v, u) \in E do

if \neg visited(u) do

call explore(G, u)

call finish(v) (perform operations to finish v)
```

```
Algorithm dfs(G)
```

```
INPUT: A digraph G
for v \in V do
    visited(v) \leftarrow false
for v \in V do
    if \neg visited(v) do
    call explore(G, v)
```

Depth First Search: Stack Implementation

Note: The current path changes in a FILO order.

```
Algorithm explore_stack(G, v)
INPUT: A digraph G, and a starting node v
create an empty stack S
push v to S
visited(v) \leftarrow true
while S \neq \emptyset do
     u \leftarrow \text{top element of } S
     call discover(u)
     w \leftarrow \text{first node such that } (u, w) \in E \text{ and visited}(w) \text{ is}
false
     if w does not exist then do
          call finish(u)
          pop u from S
     else do
          push w to S
          visited(w) \leftarrow true
```

Analysis

Analysis

- Discover and finish each node
- Visiting the out-neighbours of each node

Analysis

- Discover and finish each node: O(n)
- Visiting the out-neighbours of each node: O(n + m) (with adj.list); $O(n^2)$ (with adj.matrix)

Analysis

- Discover and finish each node: O(n)
- Visiting the out-neighbours of each node: O(n + m) (with adj.list); $O(n^2)$ (with adj.matrix)

Fact

The DFS algorithm takes O(n + m) time with adjacency list and $O(n^2)$ with adjacency matrix.

Definition: Reachability

We say a node *u* is reachable from a node *v* in a graph *G* if there is a path that starts at *v* and ends at *u*.

Definition: Reachability

We say a node *u* is reachable from a node *v* in a graph *G* if there is a path that starts at *v* and ends at *u*.

Fact.

Suppose we run explore(G, v) on input graph G and node v in G, any node u is visited by the algorithm if and only if it is reachable from v.

Definition: Reachability

We say a node *u* is reachable from a node *v* in a graph *G* if there is a path that starts at *v* and ends at *u*.

Fact.

Suppose we run explore(G, v) on input graph G and node v in G, any node u is visited by the algorithm if and only if it is reachable from v.

Why?

Definition: Reachability

We say a node *u* is reachable from a node *v* in a graph *G* if there is a path that starts at *v* and ends at *u*.

Fact.

Suppose we run explore(G, v) on input graph G and node v in G, any node u is visited by the algorithm if and only if it is reachable from v.

Why?

1. If u is visited, then u is reachable.

True, as we only followed edges in *G*.

Definition: Reachability

We say a node *u* is reachable from a node *v* in a graph *G* if there is a path that starts at *v* and ends at *u*.

Fact.

Suppose we run explore(G, v) on input graph G and node v in G, any node u is visited by the algorithm if and only if it is reachable from v.

Why?

- 1. If *u* is visited, then *u* is reachable. True, as we only followed edges in *G*.
- 2. If *u* is reachable, then *u* is visited.

Definition: Reachability

We say a node *u* is reachable from a node *v* in a graph *G* if there is a path that starts at *v* and ends at *u*.

Fact.

Suppose we run explore(G, v) on input graph G and node v in G, any node u is visited by the algorithm if and only if it is reachable from v.

Why?

1. If u is visited, then u is reachable.

True, as we only followed edges in *G*.

2. If u is reachable, then u is visited.

Proof. Suppose w is reachable but not visited.

Then there is a path $v \rightsquigarrow w$.

Take the last visited u on the path $(v \rightsquigarrow u \rightarrow u' \rightsquigarrow w)$.

Then we must visit u' from u. Contradiction.

Definition [Search Forest]

- A forest is a collection of trees.
- DFS defines a forest in the digraph. We call this forest the DFS forest.
- The DFS forest contains all paths DFS used to visit nodes in G.

Definition [Search Forest]

- A forest is a collection of trees.
- DFS defines a forest in the digraph. We call this forest the DFS forest.
- The DFS forest contains all paths DFS used to visit nodes in *G*.

Question

How could we identify the search forest while running DFS?

Definition [Search Forest]

- A forest is a collection of trees.
- DFS defines a forest in the digraph. We call this forest the DFS forest.
- The DFS forest contains all paths DFS used to visit nodes in *G*.

Question

How could we identify the search forest while running DFS?

Solution

Maintain a timer in the algorithm, and two times pre(u) and post(u) for each node u

pre(u) and post(u)

procedure discover(v)	procedure finish(v)
	$\begin{array}{c} - \\ \hline \text{post}(v) \leftarrow clock \\ \text{clock} \leftarrow clock + 1 \end{array}$

pre(u) and post(u)

$$\frac{\mathsf{procedure\ discover}(v)}{\mathsf{pre}(v) \leftarrow \mathit{clock}} \qquad \frac{\mathsf{procedure\ discover}(v)}{\mathsf{procedure\ discover}(v)} \leftarrow \frac{\mathsf{procedure\ discover}(v)}{\mathsf{procedure\ discover}(v)}$$

$$\frac{\text{procedure finish}(v)}{\text{post}(v) \leftarrow \textit{clock}} \\ \text{clock} \leftarrow \textit{clock} + 1$$

Observation

If u is an ancestor of v, then

If v is an ancestor of v, then

If neither case, then

$$pre(u) < post(u) < pre(v) < post(v)$$
 or $pre(v) < post(v) < pre(u) < post(u)$

Therefore we can represent the search forest in parenthesis form:

DFS-Forest(*G*)

Write down a sequence of symbols (n and n), where $n \in \{1, ..., n\}$ such that:

If pre(u) = k, then the kth symbol is (u If post(u) = k, then the kth symbol is u)

e.g. (0 (5 (2 (3 (7 (8 8) 7) 3) (6 (4 (9 9) 4) 6) 2) 5) 0) (1 1)

Day 5 Traversing a Graph

Part IV: Cyclicity and Linearisations

Definition [DAG]

A directed acyclic graph (dag) is a digraph that does not contain a cycle.

Question

Given a digraph, decide if the digraph is a dag.

Definition [Edge Classification]

Let *T* be the DFS forest in *G*. There are four types of edges in *G*:

- If (u, v) belongs to the search forest, (u, v) is a tree edge;
- Otherwise if u is an ancestor of v in T, (u, v) is a forward edge;
- Otherwise if v is an ancestor of u in T, (u, v) is a back edge;
- Otherwise (u, v) is a cross edge.

Tree edges: (0,5)(5,2),(2,6),(2,3),(3,7),(7,8),(6,4),(4,9)

Definition [Edge Classification]

Let *T* be the DFS forest in *G*. There are four types of edges in *G*:

- If (u, v) belongs to the search forest, (u, v) is a tree edge;
- Otherwise if u is an ancestor of v in T, (u, v) is a forward edge;
- Otherwise if v is an ancestor of u in T, (u, v) is a back edge;
- Otherwise (u, v) is a cross edge.

Tree edges: (0.5)(5.2),(2.6),(2.3),(3.7),(7.8),(6.4),(4.9)

Forward edges: (0,6),(3,8)

Definition [Edge Classification]

Let *T* be the DFS forest in *G*. There are four types of edges in *G*:

- If (u, v) belongs to the search forest, (u, v) is a tree edge;
- Otherwise if u is an ancestor of v in T, (u, v) is a forward edge;
- Otherwise if v is an ancestor of u in T, (u, v) is a back edge;
- Otherwise (u, v) is a cross edge.

Tree edges: (0.5)(5.2),(2.6),(2.3),(3.7),(7.8),(6.4),(4.9)

Forward edges: (0,6),(3,8) Back edges: (8,2)

Definition [Edge Classification]

Let *T* be the DFS forest in *G*. There are four types of edges in *G*:

- If (u, v) belongs to the search forest, (u, v) is a tree edge;
- Otherwise if u is an ancestor of v in T, (u, v) is a forward edge;
- Otherwise if v is an ancestor of u in T, (u, v) is a back edge;
- Otherwise (u, v) is a cross edge.

Tree edges: (0,5)(5,2),(2,6),(2,3),(3,7),(7,8),(6,4),(4,9)

Forward edges: (0,6),(3,8) Back edges: (8,2)

Cross edges: (4,3),(1,3),(1,4)

Fact.

Let *G* be a digraph. Then the following are equivalent:

- (1). *G* is a DAG
- (2). the DFS forest has no back edge.

Fact.

Let *G* be a digraph. Then the following are equivalent:

- (1). *G* is a DAG
- (2). the DFS forest has no back edge.

Proof.

Fact.

Let *G* be a digraph. Then the following are equivalent:

- (1). *G* is a DAG
- (2). the DFS forest has no back edge.

Proof.

 \Rightarrow Suppose *G* is a dag, then the search forest doesn't have a back edge as otherwise, there will be a cycle.

Fact.

Let *G* be a digraph. Then the following are equivalent:

- (1). *G* is a DAG
- (2). the DFS forest has no back edge.

Proof.

- ⇒ Suppose *G* is a dag, then the search forest doesn't have a back edge as otherwise, there will be a cycle.
- Suppose G is not a dag, then there is a cycle C in G.
 Let v be the first node discovered by the DFS in C.
 Let (u, v) be the edge in C that goes into v.
 Then in the search tree v is an ancestor of u.
 Then (u, v) is a back edge.

Fact

The following algorithm runs in time O(n + m) and decides whether any given digraph G is a dag.

Fact

The following algorithm runs in time O(n + m) and decides whether any given digraph G is a dag.

Algorithm: acyclic(G)

INPUT: A digraph G

OUTPUT: Return if *G* is a dag

Run DFS(*G*) with the following modification:

Whenever discover a node u, do for every edge (u, v) out of u

if pre(v) < pre(u) and post(v) is undefined

Declare *G* has a cycle and return

Declare that *G* is a dag.

Definition [Linearisations]

A linearization or (topological sort) of a digraph G is a list of all nodes in G such that if G contains an edge (u, v) then u appears before v in the list.

Topological Sorts: 0,5,2,6,1,4,3,7,9,8 1.0.5,2,6,4.9,3,7.8

In what order should I put on my cloths?

Possible orderings are linearisations of the dependency graph:

Possible order 1: Shirt, Socks, Undershorts, Watch, Pants, Tie, Belts, Iacket, Shoes

Possible order 2: Watch, Undershorts, Socks, Pants, Shoes, Shirt, Belt, Tie, Jacket

Application of Linearisation

- Job/Task/Instruction scheduling
- Project Evaluation and Review Technique (PERT)
- makefiles in Unix / APT in Ubuntu Linux
- Class/Package dependency in a software project

Question

Is there a digraph that can not be linearized?

Question

Is there a digraph that can not be linearized?

Answer: Yes! Digraphs with cycles.

Question

Is there a digraph that can not be linearized?

Answer: Yes! Digraphs with cycles.

Question

What dags can be linearized?

Question

Is there a digraph that can not be linearized?

Answer: Yes! Digraphs with cycles.

Question

What dags can be linearized?

Answer: All of them!

Algorithm: ZeroInDegree(*G*)

The Zero In-degree algorithm finds a linearization for a dag:

```
INPUT: a DAG G
OUTPUT: a linearisation of G
list ← an empty list
while G is not empty do
    for each u in V
        if inDegree(u) = 0 then
            Add u to the end of list
            Delete u from G
return list
```

The Zero In-degree algorithm finds a linearization for a dag:

```
Algorithm: ZeroInDegree(G)

INPUT: a DAG G

OUTPUT: a linearisation of G

list ← an empty list

while G is not empty do

for each u in V

if inDegree(u) = 0 then

Add u to the end of list

Delete u from G

return list
```

Shortcoming: The algorithm runs in time O((n + m)n).

Fact

Let *G* be a dag. If (u, v) is an edge in *G*, then post(v) < post(u).

Fact

Let *G* be a dag. If (u, v) is an edge in *G*, then post(v) < post(u).

Proof

There are two cases:

Fact

Let *G* be a dag. If (u, v) is an edge in *G*, then post(v) < post(u).

Proof

There are two cases:

Case 1. u is discovered earlier than v is.

Then *v* must be finished before *u* is finished.

Fact

Let *G* be a dag. If (u, v) is an edge in *G*, then post(v) < post(u).

Proof

There are two cases:

Case 1. u is discovered earlier than v is.

Then *v* must be finished before *u* is finished.

Case 2. v is discovered earlier than u is.

Since G is acyclic, there is no path that goes from v to u.

Hence v is again finished earlier than u is finished.

We obtain an easy algorithm for graph linearisation in time O(m + n): Output the list of nodes in decreasing finishing order

We obtain an easy algorithm for graph linearisation in time O(m + n): Output the list of nodes in decreasing finishing order

Algorithm: DFS-Linearize(*G*)

INPUT: a dag G

OUTPUT: a linearisation of *G*

 $stack \leftarrow$ an empty stack

Run DFS, in addition:

When a node is finished, push it to *stack*.

return elements in stack in the same order as they are popped out

We obtain an easy algorithm for graph linearisation in time O(m + n): Output the list of nodes in decreasing finishing order

Algorithm: DFS-Linearize(*G*)

INPUT: a dag *G*

OUTPUT: a linearisation of *G*

 $stack \leftarrow$ an empty stack

Run DFS, in addition:

When a node is finished, push it to *stack*.

return elements in stack in the same order as they are popped out

DFS-Linearize(G):

1, 0, 5, 2, 6, 4, 9, 3, 7, 8

Further Comments

Acyclicity and Linearizability

 We established two characterizations of linearizability of a digraph:

A digraph is linearizable if and only if

- it is acyclic
- the DFS forest has no back edge
- In other words

Linearizable \equiv Acyclicity \equiv No-Back-edgeness

 With this understanding we are able to design algorithms for deciding these properties.

Day 5 Traversing a Graph

Part V: Connectivity and Components

Decomposing Graphs

Why decompose graphs?

[Divide-and-Conquer] Often, when we solve a problem on graph, it is much more efficient to decompose the graph into components, solve the problem on individual components, then combine the solutions.

Subgraphs

Definition [Subgraphs]

Let $E \subseteq V^2$, and $V' \subseteq V$.

- we use $E \upharpoonright V'$ to denote the set $\{(u, v) \in E \mid u, v \in V'\}$.
- A subgraph of a digraph G = (V, E) is a digraph G' = (V', E') where $V' \subseteq V$ and $E' \subseteq E \upharpoonright V'$.
- If $E' = E \upharpoonright V'$, then G' is an induced subgraph of G.

Subgraphs

Definition [Subgraphs]

Let $E \subseteq V^2$, and $V' \subseteq V$.

- we use $E \upharpoonright V'$ to denote the set $\{(u, v) \in E \mid u, v \in V'\}$.
- A subgraph of a digraph G = (V, E) is a digraph G' = (V', E') where $V' \subseteq V$ and $E' \subseteq E \upharpoonright V'$.
- If $E' = E \upharpoonright V'$, then G' is an induced subgraph of G.

Let $V' = \{3, 9, 10, 11\}$. $E \upharpoonright V' = \{(10, 11), (11, 10), (3, 10), (11, 9)\}$ A subgraph is $(\{3, 9, 10, 11\}, \{(3, 10), (10, 11), (11, 9)\})$

Subgraphs

Definition [Subgraphs]

Let $E \subseteq V^2$, and $V' \subseteq V$.

- we use $E \upharpoonright V'$ to denote the set $\{(u, v) \in E \mid u, v \in V'\}$.
- A subgraph of a digraph G = (V, E) is a digraph G' = (V', E') where $V' \subseteq V$ and $E' \subseteq E \upharpoonright V'$.
- If $E' = E \upharpoonright V'$, then G' is an induced subgraph of G.

Let $V' = \{3, 9, 10, 11\}$. $E \upharpoonright V' = \{(10, 11), (11, 10), (3, 10), (11, 9)\}$ An induced subgraph is $(\{3, 9, 10, 11\}, \{(3, 10), (10, 11), (11, 9), (11, 10)\})$

Connectivity in Undirected Graphs

 Recall a node is reachable from another if there is a path linking these two nodes

Connectivity in Undirected Graphs

- Recall a node is reachable from another if there is a path linking these two nodes
- Here reachability is an equivalence relation:
 - (reflexivity) Any node *u* is reachable from itself.
 - (symmetry) If v is reachable from u then u is reachable from v.
 - (transitivity) If v is reachable from u, u is reachable from w, then v is reachable from w.

Connectivity in Undirected Graphs

- Recall a node is reachable from another if there is a path linking these two nodes
- Here reachability is an equivalence relation:
 - (reflexivity) Any node *u* is reachable from itself.
 - (symmetry) If v is reachable from u then u is reachable from v.
 - (transitivity) If v is reachable from u, u is reachable from w, then v is reachable from w.
- We may decompose the graph into equivalence classes:
 Two nodes are in the same class if they are reachable from each other
- Each equivalence class is a connected component

Definition [Undirected Connectivity]

A connected components is the induced subgraph of a maximal set of nodes that are pairwise reachable.

An undirected graph is connected if it contains only one connected component.

Definition [Undirected Connectivity]

A connected components is the induced subgraph of a maximal set of nodes that are pairwise reachable.

An undirected graph is connected if it contains only one connected component.

DFS and CC

- We may use DFS to decide if two nodes are in the same CC.
- Running time O(m + n).

Definition [Directed Connectivity]

In a digraph G, we say that two nodes u, v are in the same strongly connected component (SCC) if there is a path from u to v and a path from v to u. A digraph is strongly connected if it contains only one SCC.

Definition [Directed Connectivity]

In a digraph G, we say that two nodes u, v are in the same strongly connected component (SCC) if there is a path from u to v and a path from v to u. A digraph is strongly connected if it contains only one SCC.

Extreme special cases:

Extreme special cases:

• If *G* is acyclic, then every node is itself a SCC. Therefore there are *n* SCCs in *G*.

Extreme special cases:

- If *G* is acyclic, then every node is itself a SCC.
 Therefore there are *n* SCCs in *G*.
- If *G* is a cycle, then *G* is a SCC.
 Therefore there is only 1 SCCs in *G*.

Extreme special cases:

- If *G* is acyclic, then every node is itself a SCC. Therefore there are *n* SCCs in *G*.
- If *G* is a cycle, then *G* is a SCC.
 Therefore there is only 1 SCCs in *G*.
- If G is undirected, then u, v are in the same SCC whenever u can reach v.
 - Therefore checking SCC is same as reachability.

Extreme special cases:

- If *G* is acyclic, then every node is itself a SCC.
 Therefore there are *n* SCCs in *G*.
- If G is a cycle, then G is a SCC.
 Therefore there is only 1 SCCs in G.
- If G is undirected, then u, v are in the same SCC whenever u can reach v.
 - Therefore checking SCC is same as reachability.

Question

Given a digraph, find all the strongly connected components.

Meta-Graph

Definition [Meta-Graph]

Given a graph G. If we collapse all nodes in the same SCCs together, only keeping the edges between different components, then we get the meta-graph, G^{SCC} .

Meta-Graph

Let *G* be a digraph, and *G*^{SCC} be its meta-graph after collapsing every SCC into one node.

• The meta-graph G^{SCC} must be acyclic. Why?

Meta-Graph

Let *G* be a digraph, and *G*^{SCC} be its meta-graph after collapsing every SCC into one node.

- The meta-graph G^{SCC} must be acyclic. Why?
- We can linearize G^{SCC} .

Meta-Graph

Let *G* be a digraph, and *G*^{SCC} be its meta-graph after collapsing every SCC into one node.

- The meta-graph G^{SCC} must be acyclic. Why?
- We can linearize G^{SCC} .
- Source: A meta-node in G^{SCC} with no incoming edge.
- Sink: A meta-node in G^{SCC} with no outgoing edge.

Consider the following meta-graph:

A is a source, *D* is a sink.

Observation

If we run DFS on a node in a sink, then we will find all nodes in this sink.

Consider the following meta-graph:

A Plan for Finding SCC

Given *G*. Repeat the following:

- 1. Find a node u in a sink
- 2. Run $dfs_explore(G, u)$
- 3. Declare all visited nodes an SCC. Take those nodes out.

Problem

How do we find a node in a sink?

Problem

How do we find a node in a sink?

Observe

Problem

How do we find a node in a sink?

Observe

- We are given the graph G, but no information about G^{SCC} .

Problem

How do we find a node in a sink?

Observe

- We are given the graph G, but no information about G^{SCC} .
- We can find a node in a source:
 Run DFS. Take the node that is finished last.

Problem

How do we find a node in a sink?

Observe

- We are given the graph G, but no information about G^{SCC} .
- We can find a node in a source:
 Run DFS. Take the node that is finished last.

- But running DFS on a source does not work.

Source and Sink

Does finding a source node help in finding a sink node?

Source and Sink

Does finding a source node help in finding a sink node?

Fact

Let G be a digraph. Let G^T be the transpose of G: the digraph obtained from G by reversing the direction of every edge.

Finding SCC

Source and Sink

Does finding a source node help in finding a sink node?

Fact

Let G be a digraph. Let G^T be the transpose of G: the digraph obtained from G by reversing the direction of every edge.

• G and G^T have the same SCCs.

Finding SCC

Source and Sink

Does finding a source node help in finding a sink node?

Fact

Let G be a digraph. Let G^T be the transpose of G: the digraph obtained from G by reversing the direction of every edge.

- G and G^T have the same SCCs.
- A source in G becomes a sink in G^T .

Example. When the edges are reversed, *A*, *B*, *C*, *D* are still SCCs.

Example. When the edges are reversed, *A*, *B*, *C*, *D* are still SCCs. Let *x* be the last finished node in DFS.

Running dfs_explore(G^T , x) will compute A.

Example. When the edges are reversed, A, B, C, D are still SCCs. Let x be the last finished node in DFS.

Running dfs_explore(G^T , x) will compute A.

Let *y* be the last node that is finished in the remaining graph.

Running dfs_explore(G^T , y) will compute C.

Example. When the edges are reversed, *A*, *B*, *C*, *D* are still SCCs. Let *x* be the last finished node in DFS.

Running dfs_explore(G^T , x) will compute A.

Let *y* be the last node that is finished in the remaining graph.

Running dfs_explore(G^T , y) will compute C.

Continue for *B*, *D* (decreasing order of *post*)

The following algorithm takes as input any digraph G, outputs all the SCCs of G. The algorithm runs in time O(m + n).

The following algorithm takes as input any digraph G, outputs all the SCCs of G. The algorithm runs in time O(m + n).

```
Algorithm SCC(G)
```

```
INPUT: a digraph G
OUTPUT: SCCs of G
stack \leftarrow empty stack
Run dfs(G), at the same time do:

When a node is finished, push it onto a stack
G^T \leftarrow G with all edges reversed
for each u in stack (in popped order)

Run dfs_explore(G^T, u)
The nodes visited by explore is the SCC of u.
```

Discussion

- Essentially, the algorithm runs DFS twice: first time on G, then on G^T .
 - In the second time, when no where to go, select the next node in decreasing order of finishing time of the first DFS.

Discussion

- Essentially, the algorithm runs DFS twice: first time on G, then on G^T .
 - In the second time, when no where to go, select the next node in decreasing order of finishing time of the first DFS.
- The algorithm is called the Kosaraju-Sharir algorithm

"At some point, the learning stops and the pain begins."

----- S. Rao Kosaraju

Summary

- DFS is a linear time (O(m + n)) graph traversal algorithms.
- DFS implementation: Recursive or Stack-based
- Nodea are processed in two stages: discovered, finished.
- The DFS algorithm computes a DFS forest in the graph; edges in the graph are classified into tree edges, forward edges, back edges and cross edges

Using DFS we can also answer the following questions about a graph:

- Reachability: Given to nodes *u*, *v*, is *u* reachable from *v*?
- Cyclicity: Is the graph acyclic? If it contains a cycle, find a cycle.
- Linearisation: If the graph is acyclic, find a linearisation.
- Connectivity: Is the graph connected?
- Connected component: If the graph is undirected, what are the connected components of it?
 If the graph is directed, what are the strongly connected components of it?