Proposition 1. Let M be a subset in \mathbb{R}^3 , and let $p \in M$ be an arbitrary point. Consider a bijective smooth map $x: U \to x(U) \subseteq M$ such that $p \in x(U)$ and Dx(u,v) has full rank for all $(u,v) \in U$. Then x^{-1} is continuous, and thus x is indeed a parametrization for M around p.