Définition 12.1 - intégrale impropre

Soit $f \in \mathcal{CM}([a; b[, \mathbb{K}])$. On dit que l'intégrale impropre $\int_a^b f(t) dt$ converge lorsque la fonction $x \mapsto \int_a^x f(t) dt$ possède une limite finie en b.

Autrement, on dit que l'intégrale impropre $\int_a^b f(t) dt$ diverge.

Définition 12.5 - reste d'une intégrale impropre convergente

Soit $f \in \mathcal{CM}\Big([a;\,b[,\mathbb{K}\Big)$ telle que l'intégrale $\int_a^b f(t)\,\mathrm{d}t$ converge. L'application :

$$R: [a; b[\longrightarrow \mathbb{K}]$$
$$x \longmapsto \int_{a}^{b} f(t) dt$$

est appelée reste de l'intégrale impropre convergente.

Théorème 12.6 - de la limite monotone

Soit $f: I \to \mathbb{R}$ une fonction croissante. Quand x tend vers la borne supérieure de I (au sens large), f(x) tend vers la borne supérieure (au sens large) de f sur I:

$$\lim_{x \to \sup I} f(x) = \sup\{f(x), x \in I\}$$

Proposition 12.8 - caractérisation de la convergence d'une intégrale impropre

Soit $f \in \mathcal{CM}([a; b[, \mathbb{R}_+)])$. L'intégrale $\int_a^b f(t) dt$ converge si et seulement si la fonction $x \mapsto \int_a^x f(t) dt$ est majorée sur [a; b[.

Définition 12.14 - fonction intégrable

Soit $f:[a;b]\to\mathbb{C}$ un fonction continue par morceaux. On dit que f est intégrable lorsque l'intégrale impropre $\int_a^b |f|(t)\,\mathrm{d}t$ est convergente. Le cas échéant on dit aussi que l'intégrale impropre $\int_a^b f(t)\,\mathrm{d}t$ est absolument convergente.

Théorème 12.16 - convergence absolue implique convergence

Soit $f:[a;b]\to \mathbb{C}$ un fonction continue par morceaux. Si f est intégrable sur [a;b[, alors l'intégrale impropre $\int_a^b f(t) dt$ est convergente.

Théorème 12.19 - fonction de Riemann

Soit $\alpha \in \mathbb{R}$. La fonction de Riemann $x \mapsto \frac{1}{x^{\alpha}}$ définie sur $]0; +\infty[$ est :

- 1. intégrable en 0 si et seulement si $\alpha < 1$
- 2. intégrable en $+\infty$ si et seulement si $\alpha > 1$

Théorème 12.20 - fonction de référence

Soit $\alpha \in \mathbb{R}$. La fonction $x \mapsto e^{-\alpha x}$ est intégrable sur $[0; +\infty[$ si et seulement si $\alpha > 0$. Le cas échéant :

$$\int_0^{+\infty} e^{-\alpha t} \, \mathrm{d}t = \frac{1}{\alpha}$$