Codificación de canal e interleaving en OFDM

Introducción

Teorema de Shannon (Noisy Channel Coding)

En un canal con una capacidad C (bits/seg) se podrá transmitir información con una tasa de error de bit arbitrariamente baja utilizando "códigos apropiados" si la tasa de transmisión es inferior a C.

¿Códigos apropiados?

Shannon demostró que existen códigos infinitamente largos que permiten alcanzar la capacidad de canal.

Estos códigos SON IRREALIZABLES en la práctica.

Códigos

- En los sistemas actuales se utilizan:
 - Códigos en bloques
 - Códigos convolucionales
 - Códigos Trellis
 - Turbo coding
 - LDPC
- En combinación con la codificación de canal:
 - Interleaving

Multipath Radio Channel

OFDM

La codificación es clave para lograr sistemas robustos al ruido, a interferencias, a imperfecciones de RF, etc

Codificación en OFDM

- En OFDM se puede utilizar codificación en ambas dimensiones.
 - frecuencia y tiempo → obteniendose inmunidad a canales selectivos en frecuencia y en tiempo.

Un bloque de datos de entrada de k bits es mapeado en un bloque de salida de n bits (n>k).

n-k bits de paridad son calculados siguiendo un predeterminado procedimiento algebraico.

n/k → incremento del ancho de banda

- El codigo de salida es elegido de forma tal que la minima distancia de Hamming es maximizada.
- El codigo en bloques se caracteriza por: (n,k,d)
- Distancia de Hamming: Número de bits en que difieren dos palabras de código

$$d_H(\mathbf{x}, \mathbf{y}) = \sum_n |x_n - y_n|$$

$$\mathbf{x} = [x_1, x_2, \dots, x_N] \ \mathbf{y} = [y_1, y_2, \dots, y_N]$$

 $x, y \in [0, 1]$

Distancia Euclediana: es la distancia geométrica entre dos vectores

$$\mathbf{x} \in \mathbf{y} : d_E^2(x, y) = \sum_n |x_n - y_n|$$

- En el receptor, el bloque de n bits es recuperado.
- El decoder encuentra las palabras de codigo con distancia de Hamming mas cercana al bloque recibido.
- Si d=2t+1 → hasta t errores dentro del bloque pueden ser corregidos

Desempeño

Si aumentamos la longitud del bloque, nos acercamos al sistema ideal

Codificación en bloques - CRC

- Un codigo en bloques muy sencillo es el CRC (cyclic redundance check).
- Un número fijo de bits son agregados a un bloque.
- Si el receptor detecta un error, solicita una re-transmisión de la trama.
- El proceso de codificación emplea un registro de desplazamiento cuyo patrón de conexión es definido por un polinomio.
- Idem en el decoder.

CRC

Codigos Convolucionales

Caracteristicas

- La salida es función de los bits actuales y de los bits previos→memoria.
- Parametros
 - n número de bits de salida.
 - K número de bits de entrada.
 - M- número de registros de memoria.
 - k / n code rate.
 - Constraint Length L= k (m-1)

Codigos Convolucionales

CODIGOS CONVOLUCIONALES

CODIGOS CONVOLUCIONALES

■ Free distance

- La distancia libre mínima determina el desempeño del codigo convolucional.
- La distancia mínima es la minima distancia de Hamming entre todos los pares de palabras de codigo.

Cøding Gain

Reducción del SNR requerido para obtener un determinado BER en un canal AWGN.

$$C_{gain} = 10\log_{10}(CR.d_{free})$$

Codigos convolucionales en WiFi

IEEE802.11a

- \blacksquare M=6 , $g_1 = 133_8$ $g_2 = 177_8$
- Code rate = 1/2
- Modulation : BPSK, QPSK, 16QAM, 64QAM
- Example
 - Data Rate = 12 Mbps
 - BPSK, no coding
 - QPSK , coding ½ code rate.
- IEEE 802.11a
 - Data Rate = 6, 9, 12, 18, 24, 36, 48, 54 Mbps

Velocidad de transferencia

WIFI IEEE802.11c

Data rate (Mbps)	Modulation scheme	Coding rate	Coded bits per subcarrier	Code bits per OFDM symbol	Data bits per OFDM symbol
6	BPSK	$\frac{1}{2}$	1	48	24
9	BPSK	$\frac{3}{4}$	1	48	36
12	QPSK	1	2	96	48
18	QPSK	$\frac{1}{2}$ $\frac{3}{4}$	2	96	72
24	16-QAM	$\frac{1}{2}$	4	192	96
36	16-QAM	$\frac{1}{2}$ $\frac{3}{4}$	4	192	144
48	64-QAM		6	288	192
54	64-QAM	$\frac{2}{3}$ $\frac{3}{4}$	6	288	216

Puncturing Codes

- ¿Como obtener diferentes tasas de transmisión?
 - Tamaño de constelación.
 - Codigo convolucional.
 - Puncturing encoders
 - Algunos de los bits de salida no son transmitidos
 - The bit selection rule is changed to aenerate different rates of codes

$$CR = \frac{1}{CR_{or}.PR}$$

Puncturing Rate =2/3

Code rate=3/4

Puncturing Rate =3/4

Code rate=2/3

Puncturing Codes

Code rates	Punctured Free Distance	Punctured Coding Gain	Optimum Free Distance	Optimum Coding Gain
1/2	-	-	10	10.0 dB
2/3	6	6.0 dB	7	6.7 dB
3/4	5	5.7	6	6.5

Puncturing Codes – Recuperación bits

Punctured

Punctured

Coded

data

Matrix

 $y = (B_{11}B_{12}, XB_{22}, B_{31}X, ..., B_{L1}X)$

Received **Punctured Data**

L- Length of the information stream

Parámetros de Wifi

Table 1.4. Key Parameters of the OFDM Standards			
Data Rate	6, 9, 12, 18, 24, 36, 48, 54 Mbps		
Modulation	BPSK, QPSK, 16-QAM, 64-QAM		
Coding Rates	1/2, 9/16, 2/3, 3/4		
Number of Subcarriers	52		
Number of Pilot Tones	4		
OFDM Symbol Duration	4 ∞sec		
Guard interval	800 η sec, 400 η sec (optional)		
Subcarrier Spacing	312.5 kHz		
Signal Bandwidth	16.66 MHz		
Channel Spacing	20 MHz		

Data rate=(bits/simbolo)*Número de subportadoras activas* Coding rate/Ts

Ejemplo: BPSK, coding rate=1/2 Dr=1*52*1/2/4us=6Mbps EON

Decoding

- Viterbi decoding
 - Estimador de Maximum likelihood
 - Hard decoding
 - Los símbolos recibidos a la salida del demodulador son cuantizados en dos niveles, y enviados al decoder. La distancia de Hamming es calculada.
 - Soft decoding
 - Los símbolos recibidos a la salida del demodulador son cuantizados en mas de dos níveles (o valores nocuantizados) y enviados al decoder. La distancia euclediana es calculada.

Soft-Decoding

K	g _o	g ₁	d _{free}
7	554(octal) 1011011(binary)	744(octal) 1111001(binary)	10

Interleaver

- Errores en forma de rafaga
- Capacidad de corrección de codigo
- Interlegver
 - La rafaga de errores es transformada en errores independientes

Interleaver

Interleaver - IEEE802.11a

- Interleaving en frecuencia
 - Depth: 1 OFDM symbol
 - Channel
 - Quasi-static.
 - Frequency selective fading
 - Time interleaving is not applied

Metric weighting

Hay subportadoras mas "confiables"

- Data conveyed by carriers having a high SNR are a priori more reliable than those conveyed by carriers having low SNR.
 - Extra a priori information is usually known as channel-state information (CSI).
- The Viterbi metrics for each bit should be weighted according to the SNR of the carrier by which it traveled. The bits from the nulled carriers are effectively flagged as having "no confidence".

$$p_n = \left| H_k \right|^2 \left| \hat{b}_n - b_n \right|^2$$

Simulaciones

Diagrama en bloques OFDM

Simulation software from

"OFDM Wireless LANs" book.

Simulaciones

Coding

QPSK - code rate=1/2 BPSK - No coding

2.9 dB

Simulaciones

■ Interleaver

BPSK - code rate=1/2

Data Rate = 6 Mbps

Codificación concatenada

 Combina codigos en bloques y codigos convolucionales

Codificación concatenada

- Codificación en bloques + convolucional
- Inner code: se utiliza cod. convolucional

 Outer code: es la codificación aplicada inicialmente (se utiliza cod. Bloques)

Codificación Trellis

- Es similar a la cod. Convolucional.
- Se aplica en el proceso de modulación (no es un proceso separable).
- La decodificación es basada en la distancia Euclediana.
- La redundancia es agregada utilzando constelaciones con mayor cantidad de puntos.
- Normalmente se duplica el tamaño de la constelación.
- El número de simbolos por segundo NO se modifica. → NO SE MODIFICA EL ANCHO DE BANDA REQUERIDO.

Trellis

С	В	С	В	
D	Α	D	Α	
С	В	С	В	
D	Α	D	Α	

 Solo determinados puntos de la constelación son permitidos.

Trellis

12 e 13 determinan que elemento del sub-set corresponde. El bit 11 alimenta un codigo convolucional con tasa ½ y determina el subset

utilizado.

Trellis – Un ejemplo. QPSK →8-PSK

En este ejemplo, la longitud de memoria es 2 → 4 estados posibles 00, 01, 10, 11. + el bit de C2 →8-PSK simbolos

00/1

10/5

Trellis

Turbo Coding

- TC alcanzan desempeño cercanos al limite de Shannon.
- Un turbo encoder esta formado por una concatenación de dos codigos convolucionales conectados a traves de un interleaver.
- Es adoptado por UMTS y LTE.

Turbo coding

Coder (generico)

Rate=
$$1/1+N$$

Figure 14.15 Structure of a turbo encoder. Π denotes interleavers.

Turbo Coding

Figure 10.7 Schematic view of parallel turbo code used in LTE and UMTS [10]. Reproduced by permission of © 3GPP.

Elevada complejidad de implementación !!!

Los datos de entrada son codificados dos veces (con y sin interleaver) y genera dos sets distintos de bits de paridad.

La tasa del código de la figura es 1/3.

Métodos de decodificación iterativa son empleados en el receptor.

Turbo coding

Coder

Original rate 1/3

Puede aplicarse puncturing para obtener otras tasas.

Turbo: Decodificacion iterativa

- •Se pueden decodificar los dos codigos convolucionales que conforman el TC en forma separada y luego combinar la información de ambos decoders.
- •Los TC son decodificados en forma iterativa empleando intercambio de información soft ente los decoders de los codigos constituyentes.

Turbo: Decodificacion iterativa

Figure 14.19 Bit error rate of a $R_c = 1/2$ turbo code with interleaver length 64,000 for different numbers of iterations in an additive white Gaussian noise channel.

Codigos LDPC

- Desempeño cercano a Shannon con menor complejidad que TC (8 veces menor).
- Son codigos lineales por bloques.
- Fueron propuestos por Gallager en 1960.
- Recien a fines de los 90's se volvieron a considerar.
- WiMAX y TV digital lo incluyen en el estandard (opcionales).
- **■** COMPLEJIDAD!!

Codigos LDPC

Short-range communication (UWB)

Adaptación de enlace

- Link adaptation:
 - En los enlaces celulares, la calidad de la señal recibida depende de: a) canal, b) interferencias y c) nivel de ruido.

Para optimizar la cobertura y el desempeño del sistema, la tasa de transmisión se ajusta en función de la calidad de la señal recibida.

AMC

ADAPTIVE MODULATION AND CODING - AMC

Esquema de modulación: QPSK a 64-OAM Tasa de codigo: se adapta aplicando técnicas de puncturing

CQI: channel quality information.

En LTE, la UE (unidad movil, user equipment), puede ser configurada para reportar CQIs a la estación base, y de este modo poder seleccionar una modulación adecuada.

AMC y calidad de canal

La AMC se selecciona para obtener una block error rate (BLER) <10^-1</p>

AMC y calidad de canal

La tasa de transmisión es función del CQI

CQI index	Modulation	Approximate code rate	Efficiency (information bits per symbol)		
0	No transmission				
1	QPSK	0.076	0.1523		
2	QPSK	0.12	0.2344		
3	QPSK	0.19	0.3770		
4	QPSK	0.3	0.6016		
5	QPSK	0.44	0.8770		
6	QPSK	0.59	1.1758		
7	16QAM	0.37	1.4766		
8	16QAM	0.48	1.9141		
9	16QAM	0.6	2.4063		
10	64QAM	0.45	2.7305		
11	64QAM	0.55	3.3223		
12	64QAM	0.65	3.9023		
13	64QAM	0.75	4.5234		
14	64QAM	0.85	5.1152		
15	64QAM	0.93	5.5547		

Imperfecciones de RF en OFDM

Desafíos en OFDM

- Elevado PAPR
 - Distorsión nolineal
 - Reducida eficiencia
 - Interferencia
- Desbalance I/Q
 - Reducción de desempeño
- Carrier frequency offset
 - Reducción de desempeño
- Ruido de fase
- Conversión A/D y D/A,

Front-end

Desafíos en OFDM

Respuesta de un amplificador

Señal OFDM

Pout Saturation Pout Saturation Pin Average Peak power power

Distorsión

Power efficiency %

Out-ofband distortion

Power Spectral Density

Frequency [MHz]

PSD [dB]

Power efficiency VS IBO

Power Efficiency = 10.32%

How much distortion can be allowed?

In-band distortion

Punto de operación amplificador

$$\tilde{x}_{L}[n] = \begin{cases} Ae^{j \angle x(n)}, & f \mid x[n] > A \\ x[n], & f \mid x[n] \le A \end{cases}$$

$$\gamma \triangleq \frac{A}{\sqrt{E\{|x[n]|^2\}}} = \frac{A}{\sqrt{\mathcal{E}_x}}.$$

Distorsion nolineal

 $x_{PA} = c_1 x + c_3 x |x|^2 + c_5 x |x|^4 + \cdots$

Distorsión nolineal

Termino lineal

Modelo linealizado

$$x_{PA}(n) = c_1 x(n) + d(n)$$

Ruido aditivo, media cero y varianza

 σ_d^2

BER y spectral regrowth

HMC904 – amplificador WIMAX

DESBALANCE I/Q

I/Q imbalance – Direct conversion receiver

DESBALANCE I/Q (transmisor/receptor)

Un sistema con desbalance I/Q se modela:

$$K_1 = \cos(\theta/2) - j\beta\sin(\theta/2)$$

Desbalance en fase

$$K_2 = \beta \cos(\theta/2) + j \sin(\theta/2).$$

Dominio tiempo

$$x(n) = K_1 x(n) + K_2 x^*(n)$$

Desbalance en amplitud

pominio frecuencia (subportadora k)

$$X(k) = K_1 X(k) + K_2 X^* (N - k)$$

Símbolo espejo

DESBALANCE I/Q

The design of low-cost direct-conversion receivers typically yields an IQ imbalance on the order of 3-5° and 5% of amplitude imbalance

Without IQ compensation
With IQ compensation

700 MHz to 2700 MHz Quadrature Modulator

Data Sheet AD8349

FEATURES

Output frequency range: 700 MHz to 2700 MHz

Modulation bandwidth: dc to 160 MHz (large signal BW)

1 dB output compression: 5.6 dBm @ 2140 MHz

Output disable function: output below -50 dBm in < 50 ns

Noise floor: -156 dBm/Hz

Phase quadrature error: 0.3 degrees @ 2140 MHz

Amplitude balance: 0.1 dB Single supply: 4.75 V to 5.5 V

Pin compatible with AD8345/AD8346s 16-lead, exposed-paddle TSSOP package

APPLICATIONS

Cellular/PCS communication systems infrastructure WCDMA/CDMA2000/PCS/GSM/EDGE Wireless LAN/wireless local loop LMDS/broadband wireless access systems

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

.O = 2140 MHz					
Output Power		-2	2.4	5.1	dBm
Output P1dB			5.6		dBm
Carrier Feedthrough			-42	-30	dBm
Sideband Suppression	La		-43	-36	dBc
Third Harmonic ¹	Pour – $(FLO + (3 \times FBB))$, Pour = 2.4 dBm		-37	-36	dBc
Output IP3	F1ss = 3 MHz, F2ss = 4 MHz, Pout = -6.5 dBm		19		dBm
Quadrature Error			0.3		degree
VQ Amplitude Balance			0.1		dB
Noise Floor	20 MHz offset from LO, all BB inputs 400 mV dc bias only		-156		dBm/Hz
	20 MHz offset from LO, BB inputs = 1.2 V p-p differential on 400 mV dc		-151		dBm/Hz
WCDMA Noise Floor	LO = 2140 MHz. 30 MHz offset from LO, P _{CHAN} = -17.3 dBm		-156		dBm/Hz
		_	,	•	

Carrier frequency offset

Carrier frequency offset

Normalized Cfo=0.05

CFO + IQ imbalance

Ruido de fase

MODELO RUIDO DE FASE

$$H(f) = 10^{-c} + \begin{cases} 10^{-a} & |f| \le f_1 \\ 10^{b(f_1 - f)/(f_2 - f_1) - a} & f > f_1 \\ 10^{b(f_1 + f)/(f_2 - f_1) - a} & f < -f_1 \end{cases}.$$

Ideal local oscillator

Power Spectral Density

real" local oscillator EON

Ruido de fase

La señal recibida en dominio frecuencia

$$Y_{k} = \sum_{l=0}^{N-1} X_{l}Q_{l-k} + N_{k}$$

$$= X_{k}Q_{0} + \sum_{\substack{l=0 \ l \neq k}}^{N-1} X_{l}Q_{l-k} + N_{k}$$

$$= Y_{CPE_{k}} + Y_{ICI} + N_{k}$$

Sin considerar el efecto de canal

$$Q_0 = \frac{1}{N} \sum_{m=0}^{N-1} \exp(j\phi_m)$$

otación

$$Q_k = \frac{1}{N} \sum_{m=0}^{N-1} \exp(j\phi_m) \exp\left(j\frac{2\pi km}{N}\right)$$

ICI- ruido aditivo gausiano

Modelo de ruido de fase

Ruido de fase

- Ondas milimétricas
- VER MATERIAL ADICIONAL: "WF on Phase Noise Modeling"

Ruido de fase

Phase noise

Common phase error

Intercarrier interference (ICI)

real

CFO + ruido de fase

Modelo

$$\begin{bmatrix} Y_0 \\ Y_1 \\ \vdots \\ Y_{N-2} \\ Y_{N-1} \end{bmatrix} = \begin{bmatrix} Q_0 & Q_{N-1} & \cdots & Q_1 \\ Q_1 & Q_0 & \cdots & Q_2 \\ \vdots & \vdots & \vdots & \vdots \\ Q_{N-2} & Q_{N-3} & \cdots & Q_1 \\ Q_{N-1} & Q_{N-2} & \cdots & Q_0 \end{bmatrix} \begin{bmatrix} C_0 & C_{N-1} & \cdots & C_{N-1} \\ C_1 & C_0 & \cdots & \cdots & C_{N-1} \\ \vdots & \vdots & \vdots & \cdots & C_{N-2} & \cdots \\ C_{N-1} & C_{N-2} & \cdots & C_{N-3} & \cdots \\ C_{N-1} & C_{N-2} & \cdots & C_{N-2} & \cdots \end{bmatrix}$$

Matrix PHN

Varia símbolo a símbolo

Matrix CFO

Varia lentamente en el tiempo (doppler)

Matrix canal

Imperfecciones de RF

- Oscilador local- Ruido de fase
 - ICI
 - Common phase error rotation.
- Carrier frequency offset
 - ICI
 - Common phase error rotation
- Amplificacion nolineal
 - Escalamiento
 - Ruido aditivo

Imperfecciones de RF

- Conversores A/D y D/A
 - Ruido de cuantización → ruido aditivo.
- Desbalance en modulador I/Q
 - Rotacion
 - Interferencia espejo

Soluciones?

- Mejora en el diseño de RF → elevado costo →
 NO es util para productos de uso masivo!!
- -Técnicas de compensacion en el dominio digital banda-base