Proposta per l'elaborato di matematica e fisica

Per lo studente

Massimi, minimi e flessi di una funzione e potenziale elettrico

Rifletti sulla teoria

- Enuncia e dimostra il teorema di Fermat e spiega se si tratta di una condizione necessaria e/o sufficiente per l'esistenza di un massimo o di un minimo relativo. Aiutati con esempi e controesempi.
- Scrivi la definizione di asintoto e di asintoto obliquo. Scrivi una funzione che ammetta un asintoto orizzontale e una funzione che ammetta un asintoto obliquo.
- Enuncia il teorema De L'Hospital e dimostralo.
- Considera un conduttore carico in equilibrio elettrostatico. Sia *A* un punto all'interno del conduttore e *B* un punto sulla sua superficie. Quanto vale il campo elettrostatico nel punto *A*? Com'è orientato il campo elettrostatico nel punto *B* rispetto alla superficie del conduttore?
- Enuncia e dimostra il teorema di Coulomb.
- Spiega come calcolare la capacità di tre condensatori in serie e di tre condensatori in parallelo.

Mettiti alla prova

Considera la funzione $V(x) = (3x^2 + 4x - 1)e^{-x}$.

- **1.** Trova l'asintoto orizzontale. La funzione V(x) ammette un asintoto obliquo?
- 2. Determina i punti di massimo, di minimo e di flesso.
- **3.** Rappresenta il grafico di V(x).
- **4.** Consider ala funzione V'(x). Che cosa rappresentano i punti di flesso di V(x) per la funzione V'(x)?

La funzione V(x) rappresenta, con le opportune unità di misura, il potenziale elettrico di una carica vincolata a muoversi lungo l'asse x.

- **5.** Considerando questa contestualizzazione fisica, che cosa rappresenta la funzione V'(x)?
- 6. Come puoi trovare i punti di equilibrio della forza elettrica?
- 7. Si tratta di equilibrio stabile o instabile?

Possibili integrazioni multidisciplinari

- Il tema dell'infinito è stato oggetto di riflessione nei secoli da artisti e filosofi. Scegli un autore e spiega in che modo ha affrontato il tema dell'infinito.
- L'avvento dell'energia elettrica ha suscitato curiosità e ha avuto un'influenza sulla produzione di molti artisti. Mostra l'evoluzione della rappresentazione delle fonti di luce nelle opere pittoriche scegliendo alcuni esempi significativi.

Per l'insegnante

Possibili domande da fare durante il colloquio

In sede d'esame, per verificare l'effettiva comprensione della parte teorica, si possono fare allo studente le seguenti domande.

- Spiega come cercare gli estremi relativi di una funzione.
- Spiega come puoi usare il metodo delle derivate successive per individuare se un punto sia un punto di massimo o minimo relativo o un punto di flesso ascendente o discendente.
- Illustra il significato geometrico della derivata.
- Spiega cosa si intende per equilibrio elettrostatico.
- Spiega come calcolare la resistenza di tre resistori in serie e di tre resistori in parallelo.
- Qual è il lavoro che deve compiere un generatore di potenziale per stabilire una differenza di potenziale
 ΔV tra le due armature di un condensatore di capacità C?

Traccia di svolgimento del Mettiti alla prova

1. Asintoto orizzontale ed eventuale asintoto obliquo di V(x).

Il dominio della funzione V(x) è $D: \mathbb{R}$.

Il limite per $x \to +\infty$ è una forma indeterminata del tipo $\infty \cdot 0$. Per il teorema di De l'Hospital:

$$\lim_{x \to +\infty} V(x) = \lim_{x \to +\infty} (3x^2 + 4x - 1)e^{-x} = \lim_{x \to +\infty} \frac{(3x^2 + 4x - 1)}{e^x} = \lim_{x \to +\infty} \frac{6x + 4}{e^x} = \lim_{x \to +\infty} \frac{6}{e^x} = 0 \to 0$$

y = 0 asintoto orizzontale destro.

Il limite di V(x) per $x \to -\infty$ è $+\infty$, quindi la funzione non ammette un asintoto orizzontale sinistro. Poiché:

$$\lim_{x \to -\infty} \frac{V(x)}{x} = \lim_{x \to -\infty} \frac{(3x^2 + 4x - 1)e^{-x}}{x} = -\infty,$$

la funzione non ammette asintoto obliquo per $x \to -\infty$.

2. Massimi e minimi relativi e flessi.

$$V'(x) = (6x + 4)e^{-x} - e^{-x}(3x^2 + 4x - 1) \rightarrow$$

$$V'(x) = -e^{-x}(3x^2 - 2x - 5)$$

Il dominio di V'(x) è \mathbb{R} . Studiamo il suo segno.

$$V'(x) = 0 \rightarrow 3x^2 - 2x - 5 \ x = 0 \rightarrow x = -1 \ \forall \ x = \frac{5}{3}$$

$$V'(x) > 0 \rightarrow 3x^2 - 2x - 5 < 0 \rightarrow -1 < x < \frac{5}{3}$$

V(x) ha un minimo relativo in x=-1 e un massimo relativo in $x=\frac{5}{3}$.

$$V(-1) = -2e$$
, $V\left(\frac{5}{3}\right) = 14e^{-\frac{5}{3}}$.

x = -1 è anche il punto di minimo assoluto.

$$V''(x) = e^{-x}(3x^2 - 2x - 5) - e^{-x}(6x - 2) \rightarrow$$

$$V''(x) = e^{-x}(3x^2 - 8x - 3)$$

Il dominio di V''(x) è \mathbb{R} . Studiamo il suo segno.

$$V''(x) = 0 \rightarrow 3x^2 - 8x - 3 = 0 \rightarrow x = -\frac{1}{2} \lor x = 3$$

$$V''(x) > 0 \to 3x^2 - 8x - 3 > 0 \to x < -\frac{3}{3} \lor x > 3$$

V(x) ha due punti di flesso in $x = -\frac{1}{3}$ e in x = 3.

$$V\left(-\frac{1}{3}\right) = -2e^{\frac{1}{3}}, \quad V(3) = 38e^{-3}.$$

Prosegue >>

3. Grafico di V(x).

4. Significato punti di flesso di V(x) per V'(x).

V(x) ha concavità rivolta verso l'alto per $x<-\frac{1}{3}$ v x>3, mentre la sua concavità è rivolta verso il basso per $-\frac{1}{3}< x<3$. Pertanto, V'(x) è crescente per $x<-\frac{1}{3}$ v x>3 e decrescente per $-\frac{1}{3}< x<3$. Inoltre, in $x=-\frac{1}{3}$ e x=3 la funzione V''(x) si annulla. Quindi, i punti di flesso di V(x) sono rispettivamente un massimo relativo di V'(x) per $x=-\frac{1}{3}$ e un minimo relativo di V'(x) per x=3.

5. Significato fisico di V'(x).

Se V(x) rappresenta, con le opportune unità di misura, il potenziale elettrico di una carica vincolata a muoversi lungo l'asse x, allora $V'(x) = \frac{dV}{dx}$ rappresenta l'opposto dell'intensità del campo elettrico a cui è sottoposta la carica, infatti $E(x) = -\frac{dV}{dx}$.

6. Punti di equilibrio del campo.

I punti di equilibrio del campo sono gli zeri della funzione E(x), ovvero i punti in cui l'intensità della forza applicata alla carica di prova è nulla. I punti di equilibrio, quindi, corrispondono ai punti stazionari di V(x): x = -1 e $x = \frac{5}{2}$.

7. Equilibrio stabile o instabile.

Poiché x=-1 è un minimo relativo per il potenziale l'equilibrio è stabile, mentre per $x=\frac{5}{3}$ il potenziale ammette un massimo relativo e quindi in questo punto l'equilibrio è instabile.