Automati

$$A = \{E, X, f, x_0, X_{\rm m}\}$$

 $E = \{e_1, e_2, ..., e_m\}$ - skup svih događaja (events) u automatu,

 $X = \{x_1, x_2, ..., x_m\}$ - skup svih stanja (states) automata,

 $f: X \times E \rightarrow X$ – prijelazna funkcija (*transition function*) automata,

 x_0 – početno stanje (*initial state*) automata,

 X_m - skup markiranih stanje ($marked\ states$) automata => stanja s osobitim svojstvima.

Automati

 $f(x,e) = y = x \log a d$ aj e je uzrok prelaska automata iz stanje x u stanje y

=> funkcija f definirana samo na dijelu domene => ako događaj e ne utječe na stanje x tada f(x,e) nije definirana => $\Gamma(x)$ ={e : postoji f(x,e)}

=> ako f (x,e) može poprimiti više vrijednosti => nedeterministički automat

$$f(y,b) = f(f(x,a)b) = f(x,ab) = z$$

niz događaj (event sequence)

E* - skup nizova događaja => jezici

Automati

Primjer: automat koji opisuje ventilator u regulaciji zagađenja tunela

$$A_{\rm F} = \{E_{\rm F}, X_{\rm F}, f_{\rm F}, x_{\rm F0}, X_{\rm Fm}\}$$

$$\begin{split} E_{\rm F} &= \big\{ {\rm ON,OFF} \big\}, \; X_{\rm F} = \big\{ 0,1 \big\}, \; X_{\rm Fm} = \big\{ 1 \big\} \\ f_{\rm F}(0,{\rm ON}) &= 1, \; f_{\rm F}(0,{\rm OFF}) = 0 \,, \; f_{\rm F}(1,{\rm OFF}) = 0 \,, \; f_{\rm F}(1,{\rm ON}) = 1 \,, \; x_{\rm F0} = 0 \end{split}$$

Primjer: automat proizvodnog sustava

Event	Description
α	arrival of part a
β	arrival of part b in machine B (processing started)
m	processing of part a in machine A started
f	replacement of part b from machine B started
r	replacement of part b from machine B completed
	replacement of part a from machine A completed
С	replacement of part a from machine A started

State	Description
I	machine A (B) idle
W	machine A (B) – work in progress
A	robot availabe
M	moving part a in machine A
2	removing part b from machine B
1	removing part a from machine A

stanje automata opisano s tri znaka:

Prvi znak – stanje robota (A,M,1,2)

Drugi znak – stanje stroja A (I,W)

Treći znak – stanje stroja B (I,W)

Formalni pristup određivanja automata

- paralelna kompozicija automata

dobiveni automat sadrži kombinacije svih stanja automata iz kojih je nastao

dobiveni automat sadrži sve događaje automata iz kojih je nastao

događaj e € E₁∩ E₂ može biti ostvaren samo ako novi automat dođe u stanje sastavljeno od stanja koja u polaznim automatima iniciraju događaj e

Ac – operacija dohvatljivosti – briše sva stanja koja nisu dohvatljiva iz početnog stanja

Primjer: automat proizvodnog sustava – formalni pristup

Automati elemenata proizvodnog sustava: a) stroj A, b) stroj B i c) robot

paralelna kompozicija automata a) i c)

- 8 stanja (4 robot x 2 stroj A): AI, MI, 1I, 2I, AW, MW, 1W i 2W
- zajednički događaji => $E_A \cap E_R = \{c, m\}$

