MECH3011 Test #1, Spring 2021

- 1. Multiple choice questions: [5 points each]
- Identical drum A and B are being tested for strength (i) by continuously filling w/ water to the same height.

- a) Drum A should burst first
- b) Drum B should burst first
- c) Drum A and B should burst at same time
- d) If additional info is needed, what is it

Consider the figure of two dams below, what is the correct statement (ii A

- a) $F1_y > F2_y$
- b) $F1_y < F2_y$
- c) $F1_y = F2_y$
- d) Cannot be determined

 $u = 4xy^3$; $v = -4x^3y$. B iii) The set of equations above represents a:

- a) two-dimensional incompressible flow
- b) two-dimensional compressible flow
- c) uncertain

- A 0.3 m by 0.5 m rectangular air duct carries a flow of 0.45 m^3/s at a density of 2 k/m^3 . The velocity in the duct is
 - a) 1.5 m/s
 - b) 0.9 m/s
 - c) 3 m/s
 - d) Infinite m/s

Name:

2. Determine the gage pressure in kPa at point a, if liquid A has SG = 1.20 and liquid B has SG = 0.75. The liquid surrounding point a is water, and the tank on the left is open to the atmosphere. $\rho_{water} = 1,000 \text{ kg/m}^3$. [25pts]

= 4410 Pa = 4.41 KPa 3. This water jet of 50 mm diameter moving at 30 m/s is divided in half by a "splitter" on the stationary flat plate. Calculate the magnitude and direction of the force on the plate. Assume that flow is in a horizontal plane. $\rho_{water} = 999 \text{ kg/m}^3$. [25pts]

Conservation of mass:
$$\frac{\partial}{\partial t} \int_{CM} p dv + \int_{CM} p \nabla w_2 d\vec{\lambda} = 0$$
, $A = \pi \frac{(0.01)^2}{4} = 1.96 \times 10^{-3} \text{ m}^2$

$$A = \pi \frac{(0.07)^{\frac{1}{2}}}{4} = 1.96 \times 10^{-3} \text{ m}^{\frac{1}{2}}$$

Momenton equation =
$$F_{Sx} + T_{Bx} = \frac{3}{3t} \int_{C4} \vec{V}_{xx} f_{x} dx + \int_{G} \vec{V}_{xx} f_{x} dx$$

Rx = \$8.7012 N

4. Consider a steady, laminar, fully developed incompressible flow between two infinite parallel plates separated by a distance 2h as shown. The top plate moves with a velocity V_0 . You can neglect the effect of gravity. Derive:

a) an expression for the pressure gradient in the y-direction, [15 points]

$$\lambda: \int \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + u \frac{\partial u}{\partial z} \right) = \int g_{x} - \frac{\partial p}{\partial x} + u \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + u \frac{\partial v}{\partial z} \right) = \int g_{y} - \frac{\partial p}{\partial y} + u \left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + u \frac{\partial v}{\partial z} \right) = \int g_{y} - \frac{\partial p}{\partial y} + u \left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} + u \frac{\partial v}{\partial z} \right) = \int g_{y} - \frac{\partial p}{\partial y} + u \left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} + u \frac{\partial v}{\partial z} \right) = \int g_{y} - \frac{\partial p}{\partial y} + u \left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} + u \frac{\partial v}{\partial z} \right) = \int g_{y} - \frac{\partial p}{\partial y} + u \left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} + u \frac{\partial v}{\partial z} \right) = \int g_{y} - \frac{\partial v}{\partial y} + u \left(\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + u \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + v \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + v \frac{\partial v}{\partial z} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u}{\partial x} + v \frac{\partial v}{\partial z} \right) \\
\lambda: \int \left(\frac{\partial u$$

for 2-D flow = ** W=D, no 2 component has lest the gravity: gx=gy=gz=0 For incompressible flow: $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial u}{\partial z} = 0$, $p \in \mathbb{N}$, for a steady state: $\frac{\partial}{\partial t} = 0$ Tor tanky obeveloped flow: $\frac{\partial u}{\partial x} = 0$ $\frac{\partial v}{\partial y} = 0$ b) the velocity profile. [15 points] the velocity on the bottom place is 0, so v = 0

 $\Rightarrow \frac{39}{39} = 0$

in x : 3P = 4 3u /

O with 37 =0, P will not depond on y.

nith two Infinite parallel planes.

