

ORGANIZAÇÃO E ARQUITETURA DE COMPUTADORES

Estrutura interna de computadores - Hamming

Prof^a. Fabiana F F Peres

Apoio: Camile Bordini

Memória

- Ordem dos bytes Aula passada
 - Big endian
 - Little endian
- Paridade
- Palavra de memória (armazenada na memória)
- Palavra de Código (transmitida contendo bits de paridade para detector e corrigir erros)

Memória - Detecção e Correção de erros

Memória - Detecção e Correção de erros

 O dados armazenados em memória podem ocasionalmente ser alterados (ex: oscilações na tensão)

- Como prevenção, algumas memórias usam um código junto às informações que permite a correção ou detecção de erros
 - Acrescenta-se bits extras a cada palavra de memória
 - Os bits armazenados permitem verificar a ocorrência eventual de erros que tenham corrompido a informação

Memória - Detecção e Correção de erros

Necessitam de placa mãe adequada para isso

Necessitam de processadores adequados para isso

Identificadas como Memórias ECC (Error Correcting Codes)

Utilizadas em servidores

Paridade

- Usado para detectar erros
 - Adiciona-se 1 bit de paridade na palavra
 - Pode-se usar paridade par ou paridade ímpar:
 - Paridade par: a quantidade de 1s na palavra é par;
 - Paridade ímpar: a quantidade de 1s na palavra é ímpar;
 - Exemplos: Palavra (4 bits) 1 1 1 0 1
 - Paridade impar: Palavra (4 bits) 0 1 1 0 1

Ex1: Paridade impar

A palavra está correta?

Ex1: Paridade impar

A palavra está correta? Não!

Ex2: Paridade impar

A palavra está correta?

Ex2: Paridade impar

A palavra está correta? Também não!

Adiciona-se vários bits de paridade a palavra de memória

 Os bits da palavra são <u>numerados começando</u> de 1 da esquerda para a direita

 Todos os bits cuja numeração seja uma potência de 2 são bits de paridade

Nomenclatura:

Hamming (nº de bits da palavra de código, nº de bits da palavra de memória

Exemplo: **Hamming** (**7**,**4**)

– Palavra de memória de 4 bits:

Palavra da memória

Posição dos bits na palavra

Palavra de código de 7 bits

• Exemplo: Hamming (12,8)

– Palavra de memória de 8 bits:

 Palavra da memória
 1 1 0 1 0 1 1 1

 Posição dos bits na palavra
 1 2 3 4 5 6 7 8

Palavra de código de 12 bits

13

• Exemplo: Palavra da memória 1 1 0 1 0 1 1 1 1 Posição dos bits na palavra 1 2 3 4 5 6 7 8

Palavra da código			1		1	0	1		0	1	1	1
	p1	p2	d1	p3	d2	d3	d4	p4	d5	d6	d7	d8
Posição dos bits na palavra	1(20)	2(21)	3	4(22)	5	6	7	<i>8</i> (2 ³)	9	10	11	12

Número de bits de paridade: r

 Tamanho da Palavra de código (bits de dados + bits de paridade): 2^r – 1

 Tamanho da Palavra de memória (bits de dados): 2^r – 1 – r

Nº de bits de paridade	Palavra de código MÁXIMA	Nº de bits de dados MÁXIMO	Nomenclatura
2	$2^2 - 1 = 3$	$2^2 - 2 - 1 = 1$	Hamming(3,1)
3	$2^3 - 1 = 7$	$2^3 - 3 - 1 = 4$	Hamming(7,4)
4	$2^4 - 1 = 15$	$2^4 - 4 - 1 = 11$	Hamming(15,11)
5	$2^5 - 1 = 31$	$2^5 - 5 - 1 = 26$	Hamming(31,26)
6	$2^6 - 1 = 63$	$2^6 - 6 - 1 = 57$	Hamming(63,57)
7	$2^7 - 1 = 127$	$2^7 - 7 - 1 = 120$	Hamming(127,120)
8	$2^8 - 1 = 255$	$2^8 - 8 - 1 = 247$	Hamming(255,247)
9	$2^9 - 1 = 511$	$2^9 - 9 - 1 = 502$	Hamming(511,502)
10	$2^{10} - 1 = 1023$	$2^{10} - 10 - 1 = 1013$	Hamming(1023,1013)

Nº de bits de dados	N° de bits de paridade	Tamanho da palavra de código	Nomenclatura
1	2	3	Hamming(3,1)
2	3	5	Hamming(5,2)
3	3	6	Hamming(6,3)
4	3	7	Hamming(7,4)
5	4	9	Hamming(9,5)
6	4	10	Hamming(10,6)
7	4	11	Hamming(11,7)
8	4	12	Hamming(12,8)
9	4	13	Hamming(13,9)
10	4	14	Hamming(14,10)
11	4	15	Hamming(15,11)
12	5	17	Hamming(17,12)
13	5	18	Hamming(18,13)
14	5	19	Hamming(19,14)
15	5	20	Hamming(20,15)

Menor código de Hamming

Exercício 1: Para a palavra de memória com os seguintes bits de dados 0001

- a) qual a quantidade de bits de paridade necessária?
- b) qual será o tamanho da palavra de código total?
- c) qual a sequência de bits na palavra de código resultante?

Exercício 2: faça o mesmo para a palavra 00011

Matriz Geradora

Matriz Geradora

- Exemplo 1:
 - Palavra de memória de 4 bits (0001)
 - Bits de paridade: 3
 - Palavra de código: 7

Portanto, a matriz geradora terá dimensões
 7x4 e será preenchida conforme a seguir

 Obs: para todos os exemplos, vamos utilizar sempre a paridade par

		1		1	0	1
001	010	01 <mark>1</mark>	100	10 <mark>1</mark>	11 <mark>0</mark>	11 <mark>1</mark>
p1	p2	d1	p3	d2	d3	d4
		_		_		_
		1		1	0	1
001	010	011	100	1 <mark>0</mark> 1	1 <mark>1</mark> 0	1 <mark>1</mark> 1
p1	p2	d1	р3	d2	d3	d4
		1		1	0	1
			I			
001	010	011	100	101	110	111

	d1	d2	d3	d4
p1	1	1	0	1
p2	1	0	1	1
d1	1	0	0	0
p3	?	?	?	?
d2	?	?	?	?
d3	?	?	?	?
d4	?	?	?	?

		1		1	0	1
001	010	01 <mark>1</mark>	100	10 <mark>1</mark>	11 <mark>0</mark>	11 <mark>1</mark>
p1	p2	d1	p3	d2	d3	d4
		1		1	0	1
001	010	0 <mark>1</mark> 1	100	1 <mark>0</mark> 1	1 <mark>1</mark> 0	1 <mark>1</mark> 1
001	UIU	O I			-	
p1	p2	d1	р3	d2	d3	d4
				_	_	
		d1		d2	d3	d4

	d1	d2	d3	d4
p1	1	1	0	1
p2	1	0	1	1
d1	1	0	0	0
р3	0	1	1	1
p3 d2	0	1	0	0
d3	0	0	1	0
d4	0	0	0	1

Nº de bits de dados	Nº de bits de paridade	Tamanho da palavra de código	Nomenclatura
1	2	3	Hamming(3,1)
2	3	5	Hamming(5,2)
3	3	6	Hamming(6,3)
4	3	7	Hamming(7,4)
5	4	9	Hamming(9,5)
6	4	10	Hamming(10,6)
7	4	11	Hamming(11,7)
8	4	12	Hamming(12,8)
9	4	13	Hamming(13,9)
10	4	14	Hamming(14,10)
11	4	15	Hamming(15,11)
12	5	17	Hamming(17,12)
13	5	18	Hamming(18,13)
14	5	19	Hamming(19,14)
15	5	20	Hamming(20,15)

Menor código de Hamming

Como será montada a matriz neste exemplo?

0001	0010	0011	0100	0101	0110	0111	1000	1001	1010
p1	p2	d1	р3	d2	d3	d4	p4	d5	d6

- 0000 (se não ocorreu erro)
- Se ocorreu erro: consterá o valor 1 no(s) bit(s) de paridade correspondentes ao bit onde ocorreu o erro

Referências Bibliograficas

Tanenbaum, A S "Organização Estruturada de Computadores" – Prentice Hall do Brasil 5^a edição, 2006; capitulo 2(Tanenbaum): $2.1 \rightarrow 2.1.1$, 2.1.2 (pg 29.); $2.2 \rightarrow 2.2.1$, 2.2.2, 2.2.3 e 2.2.4

Video aula da USP:

http://eaulas.usp.br/portal/video.action?idItem=7727