

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior listings of claims in the application:

1. (CURRENTLY AMENDED) A composition comprising a pharmaceutically acceptable formulation of formula 1

Formula 1

wherein

R₃ is C₁-C₁₀ alkyl;

R₄ to R₇ are independently selected from the group consisting of -H, C₁-C₁₀ alkoxy, C₁-C₁₀ polyalkoxyalkyl, C₁-C₂₀ polyhydroxyalkyl, C₅-C₂₀ polyhydroxyaryl, saccharides, amino, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C₁-C₁₀ alkyl, C₁-C₁₀ aryl, -SO₃T, -CO₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOOC(CH₂)_bSO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aNHCO(CH₂)_bSO₃T, -(CH₂)_aNHCONH(CH₂)_bSO₃T, -(CH₂)_aPO₃HT, -(CH₂)_aPO₃T₂, -(CH₂)_aOPO₃HT, -(CH₂)_aOPO₃T₂, -(CH₂)_aNHPO₃HT, -(CH₂)_aNHPO₃T₂, -(CH₂)_aCO₂(CH₂)_bPO₃HT, -(CH₂)_aCO₂(CH₂)_bPO₃T₂, -(CH₂)_aOOC(CH₂)_bPO₃T₂, -(CH₂)_aCONH(CH₂)_bPO₃HT, -(CH₂)_aCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCO(CH₂)_bPO₃HT, -(CH₂)_aNHCO(CH₂)_bPO₃T₂, -(CH₂)_aNHCONH(CH₂)_bPO₃HT, -(CH₂)_aNHCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCSNH(CH₂)_bPO₃HT, -(CH₂)_aNHCSNH(CH₂)_bPO₃T₂, -(CH₂)_aOCONH(CH₂)_bPO₃HT, -(CH₂)_aOCONH(CH₂)_bPO₃T₂, -CH₂(CH₂-O-CH₂)_c-CH₂-OH, -(CH₂)_d-CO₂T, -CH₂-(CH₂-O-CH₂)_e-CH₂-CO₂T, -(CH₂)_f-NH₂, -CH₂-(CH₂-O-CH₂)_g-CH₂-NH₂, -(CH₂)_h-N(R_a)-(CH₂)_i-CO₂T, and -(CH₂)_j-N(R_b)-CH₂-(CH₂-O-CH₂)_k-CH₂-CO₂T;

Y₁ is selected from the group consisting of C₅-C₂₀ polyhydroxyaryl, saccharides, hydrophilic peptides, arylpolysulfonates, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOOC(CH₂)_bSO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aNHCO(CH₂)_bSO₃T, -(CH₂)_aNHCONH(CH₂)_bSO₃T, -(CH₂)_aNHCSNH(CH₂)_bSO₃T, -(CH₂)_aOCONH(CH₂)_bPO₃HT, -(CH₂)_aPO₃HT, -(CH₂)_aPO₃T₂, -(CH₂)_aOPO₃HT, -(CH₂)_aOPO₃T₂, -(CH₂)_aNHPO₃HT, -(CH₂)_aNHPO₃T₂, -(CH₂)_aCO₂(CH₂)_bPO₃HT, -(CH₂)_aCO₂(CH₂)_bPO₃T₂, -(CH₂)_aOOC(CH₂)_bPO₃HT,

$-(CH_2)_aOCO(CH_2)_bPO_3T_2$, $-(CH_2)_aCONH(CH_2)_bPO_3HT$, $-(CH_2)_aCONH(CH_2)_bPO_3T_2$,
 $-(CH_2)_aNHCO(CH_2)_bPO_3HT$, $-(CH_2)_aNHCO(CH_2)_bPO_3T_2$, $-(CH_2)_aNHCONH(CH_2)_bPO_3HT$,
 $-(CH_2)_aNHCONH(CH_2)_bPO_3T_2$, $-(CH_2)_aNHCSNH(CH_2)_bPO_3HT$, $-(CH_2)_aNHCSNH(CH_2)_bPO_3T_2$,
 $-(CH_2)_aOCONH(CH_2)_bPO_3HT$, $-(CH_2)_aOCONH(CH_2)_bPO_3T_2$, $-CH_2(CH_2-O-CH_2)_c-CH_2-OH$; and
 $-(CH_2)_n-N(R_a)-(CH_2)_c-CO_2T$; $-(CH_2)_n-N(R_a)-(CH_2)_c-CO_2^-$

W_1 is $-CR_cR_d$;

a, b, d, f, h, i, and j independently vary from 1-10;

c, e, g, and k independently vary from 1-100;

R_a , R_b , R_c , and R_d are defined in the same manner as Y_1 ; and

T is either H or a negative charge.

2-3. (CANCELED)

4. (WITHDRAWN) A method for performing a diagnostic procedure which comprises administering to an individual an effective amount of a composition comprising formula 1

Formula 1

wherein R_3 to R_7 , and Y_1 are independently selected from the group consisting of $-H$, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, C6-amino, C1-C10 aminoalkyl, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C6-C10 alkyl, C1-C10 aryl, $-SO_3T$, $-CO_2T$, $-OH$, $-(CH_2)_aSO_3T$, $-(CH_2)_aOSO_3T$, $-(CH_2)_aNHSO_3T$, $-(CH_2)_aCO_2(CH_2)_bSO_3T$, $-(CH_2)_aOCO(CH_2)_bSO_3T$, $-(CH_2)_aCONH(CH_2)_bSO_3T$, $-(CH_2)_aNHCO(CH_2)_bSO_3T$, $-(CH_2)_aNHCONH(CH_2)_bSO_3T$, $-(CH_2)_aNHCSNH(CH_2)_bSO_3T$, $-(CH_2)_aOCONH(CH_2)_bSO_3T$, $-(CH_2)_aOCONH(CH_2)_bPO_3HT$, $-(CH_2)_aOCONH(CH_2)_bPO_3T_2$, $-(CH_2)_aOPO_3HT$, $-(CH_2)_aOPO_3T_2$, $-(CH_2)_aNHPO_3HT$, $-(CH_2)_aNHPO_3T_2$, $-(CH_2)_aCO_2(CH_2)_bPO_3HT$, $-(CH_2)_aCO_2(CH_2)_bPO_3T_2$, $-(CH_2)_aOCO(CH_2)_bPO_3HT$, $-(CH_2)_aOCO(CH_2)_bPO_3T_2$, $-(CH_2)_aCONH(CH_2)_bPO_3HT$, $-(CH_2)_aCONH(CH_2)_bPO_3T_2$, $-(CH_2)_aNHCO(CH_2)_bPO_3HT$, $-(CH_2)_aNHCO(CH_2)_bPO_3T_2$, $-(CH_2)_aNHCONH(CH_2)_bPO_3HT$, $-(CH_2)_aNHCONH(CH_2)_bPO_3T_2$, $-(CH_2)_aNHCSNH(CH_2)_bPO_3HT$, $-(CH_2)_aNHCSNH(CH_2)_bPO_3T_2$.

$-(CH_2)_aNHCSNH(CH_2)_bPO_3T_2$, $-(CH_2)_aOCONH(CH_2)_bPO_3HT$, and $-(CH_2)_aOCONH(CH_2)_bPO_3T_2$,
 $-CH_2(CH_2-O-CH_2)_c-CH_2-OH$, $-(CH_2)_d-CO_2T$, $-CH_2-(CH_2-O-CH_2)_e-CH_2-CO_2T$, $-(CH_2)-NH_2$, $-CH_2-(CH_2-O-CH_2)_g-CH_2-NH_2$, $-(CH_2)_h-N(R_a)-(CH_2)_i-CO_2T$, and $-(CH_2)_j-N(R_b)-CH_2-(CH_2-O-CH_2)_k-CH_2-CO_2T$; W_1 is selected from the group consisting of $-CR_cR_d$, $-O-$, and $-NR_c$; a , b , d , f , h , i , and j independently vary from 1-10; c , e , g , and k independently vary from 1-100; R_a , R_b , R_c , and R_d are defined in the same manner as Y_1 ; T is either H or a negative charge.

5. (WITHDRAWN) The method for performing the diagnostic or therapeutic procedure of claim 4 which comprises administering to an individual an effective amount of the composition wherein R_3 to R_7 , and Y_1 are independently selected from the group consisting of C1-C5 alkoxyl, C1-C5 polyalkoxyalkyl, C1-C10 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, mono- and disaccharides, nitro, hydrophilic peptides, arylpolysulfonates, C1-C10 aryl, $-SO_3T$, $-CO_2T$, $-OH$, $-(CH_2)_aSO_3T$, $-(CH_2)_aOSO_3T$, $-(CH_2)_aNHSO_3T$, $-(CH_2)_aCO_2(CH_2)_bSO_3T$, $-(CH_2)_aOCO(CH_2)_bSO_3T$, $-CH_2(CH_2-O-CH_2)_c-CH_2-OH$, $-(CH_2)_d-CO_2T$, $-CH_2-(CH_2-O-CH_2)_e-CH_2-CO_2T$, $-(CH_2)-NH_2$, $-CH_2-(CH_2-O-CH_2)_g-CH_2-NH_2$, $-(CH_2)_h-N(R_a)-(CH_2)_i-CO_2T$, and $-(CH_2)_j-N(R_b)-CH_2-(CH_2-O-CH_2)_k-CH_2-CO_2T$; W_1 is selected from the group consisting of $-CR_cR_d$, $-O-$, and $-NR_c$; a , b , d , f , h , i , and j independently vary from 1-5; c , e , g , and k independently vary from 1-20; R_a , R_b , R_c , and R_d are defined in the same manner as Y_1 ; T is a negative charge.

6. (WITHDRAWN) The method for performing the diagnostic or therapeutic procedure of claim 5 which comprises administering to an individual an effective amount of the composition wherein each R_3 , R_4 , R_6 and R_7 is H, R_5 is SO_3T , Y_1 is $-(CH_2)_3SO_3T$; W_1 is $-C(CH_3)_2$; T is a negative charge.

7. (WITHDRAWN) The method of claim 4 wherein said procedure utilizes light of wavelength in the region of 350-1300 nm.

8. (WITHDRAWN) The method of claim 4 wherein said diagnostic procedure comprises monitoring a blood clearance profile by fluorescence wherein light of wavelength in the region of 350 to 1300 nm is utilized.

9. (WITHDRAWN) The method of claim 4 wherein said diagnostic procedure comprises monitoring a blood clearance profile by absorption wherein light of wavelength in the region of 350 to 1300 nm is utilized.

10. (WITHDRAWN) The method of claim 4 wherein said procedure is for physiological function monitoring.

11. (WITHDRAWN) The method of claim 10 wherein the diagnostic procedure is for renal function monitoring.
12. (WITHDRAWN) The method of claim 10 wherein the diagnostic procedure is for cardiac function monitoring.
13. (WITHDRAWN) The method of claim 10 wherein the diagnostic procedure is for kidney function monitoring.
14. (WITHDRAWN) The method of claim 10 wherein the diagnostic procedure is for determining organ perfusion in vivo.
15. (CANCELED)
16. (WITHDRAWN) A method for performing a diagnostic procedure which comprises administering to an individual an effective amount of formula 1

Formula 1

wherein R₃ to R₇, and Y₁ are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, C1-C10 aminoalkyl, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C6-C10 alkyl, C1-C10 aryl, -SO₃T, -CO₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aNHCO(CH₂)_bSO₃T, -(CH₂)_aNHCONH(CH₂)_bSO₃T, -(CH₂)_aNHCSNH(CH₂)_bSO₃T, -(CH₂)_aOCONH(CH₂)_bSO₃T, -(CH₂)_aPO₃HT, -(CH₂)_aPO₃T₂, -(CH₂)_aOPO₃HT, -(CH₂)_aOPO₃T₂, -(CH₂)_aNHPO₃HT, -(CH₂)_aNHPO₃T₂, -(CH₂)_aCO₂(CH₂)_bPO₃HT, -(CH₂)_aCO₂(CH₂)_bPO₃T₂, -(CH₂)_aOCO(CH₂)_bPO₃HT, -(CH₂)_aOCO(CH₂)_bPO₃T₂, -(CH₂)_aCONH(CH₂)_bPO₃HT, -(CH₂)_aCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCO(CH₂)_bPO₃HT, -(CH₂)_aNHCO(CH₂)_bPO₃T₂, -(CH₂)_aNHCONH(CH₂)_bPO₃HT, -(CH₂)_aNHCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCSNH(CH₂)_bPO₃HT,

$-(CH_2)_aNHCSNH(CH_2)_bPO_3T_2$, $-(CH_2)_aOCONH(CH_2)_bPO_3HT$, and $-(CH_2)_aOCONH(CH_2)_bPO_3T_2$,
 $-CH_2(CH_2-O-CH_2)_c-CH_2-OH$, $-(CH_2)_dCO_2T$, $-CH_2-(CH_2-O-CH_2)_e-CH_2-CO_2T$, $-(CH_2)_fNH_2$, $-CH_2-(CH_2-O-CH_2)_g-CH_2-NH_2$, $-(CH_2)_h-N(R_a)-(CH_2)_iCO_2T$, and $-(CH_2)_j-N(R_b)-CH_2-(CH_2-O-CH_2)_k-CH_2-CO_2T$; W_1 is selected from the group consisting of $-CR_cR_d$, $-O-$, $-NR_c$, and $-S-$; a , b , d , f , h , i , and j independently vary from 1-10; c , e , g , and k independently vary from 1-100; R_a , R_b , R_c , and R_d are defined in the same manner as Y_1 ; T is either H or a negative charge; with the proviso that when W_1 is $-S-$, R_3-R_7 are not -H or C1-C10 alkyl; and Y_1 is not -H.

17. (PREVIOUSLY PRESENTED) The composition of claim 1 wherein R_3 is C_1 alkyl.

18. CANCELED

19. (PREVIOUSLY PRESENTED) The composition of claim 17 wherein each of R_4 to R_7 is independently -H or $-SO_3T$.

20-22. CANCELED

23. (PREVIOUSLY PRESENTED) The composition of claim 1 wherein each of R_4 to R_7 is independently -H or $-SO_3T$.

24-26. CANCELED