Московский физико-технический институт (национальный исследовательский университет)

Лабораторная работа по общему курсу физики

1.1.1. Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволки

Засимов Георгий Алексеевич Группа Б01-109

Долгопрудный 2021

Цель работы: измерить удельное сопротивление проволоки и вычислить систематические и случайные погрешности при использовании таких измерительных приборов, как линейка, штангенциркуль, микрометр, амперметр, вольтметр и мост постоянного тока.

Используемое оборудование: линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

Используются следующие методы измерений сопротивления:

- 1) Определение углового коэффициента наклона зависимости напряжения на проволоке от тока через неё, измеряемых с помощью аналоговых и цифровых вольтметров и амперметров.
- 2) Измерение с помощью моста постоянного тока. Геометрические размеры образца измеряются с помощью линейки, штангенциркуля и микрометра. Детально исследуется систематические и случайные погрешности проводимых измерений.

В данной работе мы используем оба метода и сравниваем их.

1. Теоретические сведения

Удельное сопротивленеи проволоки круглого сечения, изготовленного из однородного материала и имеющей всюду одинаковую толщину, может быть определено по формуле

$$\rho = \frac{R_{\rm np}}{L} \frac{\pi d^2}{4}$$

В этой формуле R — сопротивление измеряемого отрезка проволоки, d — диаметр проволоки, L — длина отрезка проволоки.

Так как диаметр проволоки флуктуирует в зависимости от места измерения и толщины, необходимо найти среднее значение толщины по всей длине проволоки. Также необходимо учесть погрешность измеренной средней толщины при подсчёте погрешности удельного сопротивления проволоки.

Сопротивление проволоки можно искать с помощью двух различных (очень схожих) электрических схем:

На данных схемах R_V и R_A – сопротивления вольтметра и амперметра соответственно, а R – сопротивление реостата.

Для схемы а) имеем:

$$R_{\rm np1} = \frac{V_a}{I_a} = R_{\rm np} \frac{R_V}{R_V + R_{\rm np}}$$

Здесь $R_{\rm np1}$ – измеренное сопротивление проволоки по закону Ома без учёта конечности сопротивления вольметра.

Для схемы б) имеем:

$$R_{\text{np2}} = \frac{V_6}{I_6} = R_{\text{np}} + R_A$$

Здесь $R_{\rm np2}$ – измеренное сопротивление проволоки по закону Ома без учёта того, что у амперметра есть сопротивление.

Преобразуем оба выражения:

$$R_{\rm np} = R_{\rm np1} \frac{R_V}{R_V - R_{\rm np1}} = \frac{R_{\rm np1}}{1 - (R_{\rm np1})/(R_V)} \cong R_{\rm np1} (1 + \frac{R_{\rm np1}}{R_V})$$

$$R_{\rm np} = R_{\rm np1} (1 - \frac{R_A}{R_{\rm np2}})$$

Естественно, использовтаь надо то выражение, которое даёт меньшую поправку на сопротивление.

2. Используемые оборудование и электрическая схема

Так как известно, что $R_{\rm np}\cong 5$ Ом, оценим по ранее выведенным формулам поправки на сопротивление, учитывая, что $R_V=10$ МОм и $R_A=0,5$ Ом:

$$\frac{R_{\text{IIP}}}{R_V} = 5 \cdot 10^{-6}, \ \frac{R_A}{R_{\text{IIP}}} = 1 \cdot 10^{-1} \Rightarrow \frac{R_{\text{IIP}}}{R_V} \ll \frac{R_A}{R_{\text{IIP}}}$$

Отсюда делаем вывод, что лучше использовать электрическую схему a), так как она даёт значительно меньшую поправку на сопротивление проволоки.

Оборудование	Погрешность измерения		
Штангенциркуль	0,05 мм (маркировка производителя)		
Микрометр	0,01 мм (маркировка производителя)		
Вольтметр	$\Delta = (0,003 \cdot x + 4k)$, где x – измер. величина, а $k = 0,1$ мВ		
Амперметр	$K \cdot D$, где K – класс точности, а D – цена деления		

Характеристики амперметра и вольтметра					
Характеристики	Вольтметр	Амперметр			
Система	Цифровая	Электромагнитная			
Цена деления	0,1 мВ	5 мА			
Число делений шкалы	-	150			
Чувствительность	10000 дел/В	200 дел/А			
Класс точности	-	0,5			
Предел измерений	5 B	750 мА			
Внутреннее сопротивление	10 МОм	0,5 Ом			

3. Результаты измерений диаметра проволоки

Составим таблицу на основе измеренных данных толщины проволоки с помощью штангенциркуля и микрометра:

	1	2	3	4	5	6	7	8
d_{10}, MM	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
d_{20}, MM	0,36	0,36	0,37	0,37	0,36	0,355	0,355	0,36

При измерении диаметра проволоки штангенциркулем случайная погрешность измерений отсутствует. Следовательно, точность результата определяется только точностью штангенциркуля (систематической погрешностью):

$$d_{10} = (0, 4 \pm 0, 05)$$
 mm

Из полученных значений диаметров следует, что лучше пользоваться микрометром — он более точный.

Посчитаем среднее значение для d_{20} : $\overline{d_{20}}=0,36125$ мм.

Для погрешностей имеем:

$$\sigma_{\text{с.12}} = \frac{1}{N} \sqrt{\sum_{i=0}^{n} (d_i - \overline{d_{20}})^2} = 1,54 \cdot 10^{-3} \text{ mm}$$

$$\sigma_{\text{сист}2} = 0.01 \text{ mm}$$

Поскольку $\sigma_{\rm cn2}^2 \ll \sigma_{\rm cucr2}^2$, можно считать. что проволока однородна по диаметру и погрешность фактически определяется систематической:

$$d_{20} = \overline{d_{20}} \pm \sigma_d = (0, 36125 \pm 0, 01)$$
 мм

Площадь поперечного сечения равна:

$$S = \frac{\pi \overline{d_{20}}^2}{4} = 102, 5 \cdot 10^{-3} \text{ mm}^2$$

Погрешность определим через формулу погрешностей косвенных измерений:

$$\sigma_S = \frac{\partial S}{\partial d} \sigma_d = \frac{2S}{\overline{d_{20}}} \sigma_d = 5,67 \cdot 10^{-3} \text{ mm}^2$$

4. Результаты измерений сопротивления проволоки

Соберём электрческую схему a) и проводим измерения вольт-амперной характеристики для трёх величин расстояния проволоки:

$$l_1 = (20 \pm 0, 1)$$
 cm, $l_2 = (30 \pm 0, 1)$ cm, $l_3 = (50 \pm 0, 1)$ cm

Для большей точности измерения вольт-амперной характеристики проведём при возрастающих и убывающих значениях тока. Все показания приборов заносим в таблицу:

Измерение напряжения и силы тока на проволоке						
L=20 cm		L=3	0 см	L=5		
U, B	<i>I</i> , A	U, B	I, A	U, B	<i>I</i> , A	
0,4395	0,225	0,6630	0,225	1,0666	0,220	
0,4991	0,255	0,7710	0,260	1,1646	0,235	
0,5556	0,280	0,9346	0,315	1,3515	0,275	
0,6955	0,350	1,1066	0,370	1,6372	0,330	
0,8105	0,405	1,5501	0,470	2,0074	0,400	
1,1800	0,580	2,2747	0,740	3,2820	0,640	
1,1801	0,580	1,9452	0,635	2,7892	0,550	
0,8260	0,415	1,6787	0,505	2,3468	0,465	
0,7421	0,365	1,2231	0,410	1,8276	0,365	
0,5681	0,290	1,0467	0,350	1,5032	0,305	
0,5164	0,265	0,8342	0,280	1,2345	0,250	
0,4186	0,215	0,6921	0,235	1,1332	0,230	

Строим графики зависимостей U(I) для всех для всех трёк длин отрезков проволоки, проводя прямые через экспериментальные точки. Из графиков видно, что нет различия между значениями, полученными при возрастании и при уменьшении тока.

Чтобы учесть погрешности отдельных измерений напряжения, стоит воспользоваться методом наименьших квадратов.

$$R_{\rm cp} = rac{\langle VI \rangle'}{\langle I^2 \rangle'}, \ \sigma_{R_{\rm cp}} = rac{1}{\sqrt{N}} \sqrt{rac{\langle U^2 \rangle'}{\langle I^2 \rangle'} - R_{\rm cp}^2}$$

Для измеренных данных имеем:

$$R_{\rm cp1}=1,986$$
 Ом, $R_{\rm cp2}=3,044$ Ом, $R_{\rm cp3}=4,979$ Ом
$$\sigma_{R_{\rm cp1}}=0,009$$
 Ом, $\sigma_{R_{\rm cp2}}=0,036$ Ом, $\sigma_{R_{\rm cp3}}=0,022$ Ом

Данные сопротивлений проволоки, снятые с помощью моста Уитстона, имеют вид:

$$R_{\text{мост1}} = 2,4780 \text{ Ом}, R_{\text{мост2}} = 3,4020 \text{ Ом}, R_{\text{мост3}} = 5,3711 \text{ Ом}$$

Видим, что данные сопротивлений, свнятые с помощью моста и с помощью схемы немного отличаются, так как стоит учитывать влияние человеческого фактора на эксперимент.

В нашем случае N=12 – число экспериментальных точек. Погрешность амперметра равна

$$\sigma_I = 0, 5 \cdot 5 \text{ MA} = 2, 5 \text{ MA}$$

В методе наименьших квадратов мы воспользовались погрешностями напряжений, теперь учтём и погрешность амперметра:

$$\sigma_{R_{\text{полн}}} = \sqrt{\left(\frac{\partial R}{\partial I}\sigma_I\right)^2 + \sigma_{R_{\text{cp}}}^2} = \sqrt{\left(\frac{R_{\text{cp}}}{I}\sigma_I\right)^2 + \sigma_{R_{\text{cp}}}^2}$$

Для оценки погрешности возьмём предел измерений силы тока $I=0,750~\mathrm{A}.$

Отсюда получаем следующие значения погрешностей:

$$\sigma_{R_{\text{полн1}}} = 0,027$$
 Ом, $\sigma_{R_{\text{полн2}}} = 0,015$ Ом, $\sigma_{R_{\text{полн3}}} = 0,014$ Ом

Не забываем внести поправку в значения сопротивлений с помощью формулы:

$$R_{\rm пр} = R_{\rm полн} (1 + \frac{R_{\rm полн}}{R_V})$$

Так как попроавка очень мала (даже слишком), можно считать, что $R_{\rm пр}=R_{\rm полн}$ и $\sigma_{R_{\rm пр}}=\sigma_{R_{\rm полн}}.$

Для удобства составим таблицу погрешностей измерения сопротивлений:

L, cm	20	30	50
$R_{\text{полн}}$, Ом	1,986	3,044	4,979
$R_{\rm np}$, Om	1,986	3,044	4,979
$\sigma_{R_{\text{полн}}}$, Om	0,027	0,015	0,014
$\sigma_{R_{\mathrm{np}}}$, Om	0,027	0,015	0,014
$\sigma_{R_{\text{moct}}}$, Om	2,4780	3,4020	5,3711

1.1.1

Обработка данных для поиска удельного сопротивления проволоки

Удельное сопротивление проволоки и его погрешность определяются формулами:

$$\rho = \frac{R_{\rm np}}{L} \frac{\pi \overline{d_{20}}^2}{4}$$

Здесь $\sigma_L = 0, 1$ см. Занесём все результаты в таблицу:

L, cm	20	30	50
$\rho \cdot 10^{-6}$, Om·cm	2,813	1,875	1,125

5. Выводы

Измерили удельное сопротивление проволоки и вычислили систематические и случайные погрешности при использовании таких измерительных приборов, как линейка, штангенциркуль, микрометр, амперметр, вольтметр и мост постоянного тока.