DATA:12/12/2018 CLASSE:4E

ALLIEVO: Grossi Marco

I.I.S. "Luigi Galvani" Milano MI

Sez. I.T. - A.S. 2018-2019

RELAZIONE DI LABORATORIO 1

OGGETTO: ENERGIA ELETTRICA, POTENZA ELETTRICA

SCHEMA ELETTRICO:

ELENCO STRUMENTI

/

ELENCO COMPONENTI

- Alimentatore variabile a bassa tensione.
- Un DMM
- Un resistore da 100 Ω
- Un resistore da 1k Ω
- Una cassetta di resistenza decadici

OBIETTIVI

- Intendere e verificare il bilancio energetico in un circuito elettrico e verificare il massimo trasferimento di potenza elettrica su un carico.

CALCOLI - TABELLA DELLE MISURE - GRAFICI

$R_{L}[\Omega]$	U _L [V]	I [mA]	P _{Ld} [mW]	$U_{Ri} = V_t - U_L$ [V]	P _{Ri} = U _{Ri} x I [mW]	$P_{Td} = P_{Ri} + P_{Ld}$ $[mW]$
200	1,66	83,33	138,32	8,34	694,97	833,29
400	2,85	71,43	203,57	7,15	510,72	714,29
600	3,75	62,56	234,6	6,25	391	625,6
800	4,44	55,55	246,64	5,56	308,86	555,5
1 k	4,99	50	249,5	5,01	250,5	500
1,2 k	5,45	45,46	247,75	4,55	206,84	454,59
1,4 k	5,83	41,66	242,87	4,17	173,72	416,59
1,6 k	6,15	38,47	236,59	3,85	148,11	384,7
1,8 k	6,42	33,71	216,41	3,58	120,68	337,09
2 k	6,66	33,33	221,97	3,34	111,32	333,29
5 k	8,33	16,66	138,77	1,67	27,82	166,59

$R_L[\Omega]$	U _L [V]	I [mA]	P _{Ld} [mW]
20	1,66	0,083	0,138
40	2,85	0,071	0,202
60	3,75	0,063	0,236
80	4,44	0,056	0,249
100	4,99	0,05	0,25
120	5,45	0,045	0,245
140	5,83	0,042	0,244
160	6,15	0,038	0,234
180	6,42	0,036	0,231
200	6,66	0,033	0,22
500	8,33	0,017	0,142

TEORIA

Energia Elettrica:

L'energia è un'entità invisibile, ma gli effetti che produce sulle cose e sugli esseri viventi sono ben visibili dai nostri sensi. L'energia è nello stesso tempo la capacità di un corpo o di un sistema a compiere del lavoro, ad esempio, la capacità che ha ognuno di noi di muoversi, oppure un ceppo di legno che arde, oppure il calore che sprigiona il vapore, o la luce che scaturisce da una lampadina.

Potenza Elettrica:

Si dice potenza di un componente elettrico il prodotto della sua tensione per la sua corrente. La potenza la indichiamo con la lettera P.

Formula: P = V I

Unità di misura della potenza è il Watt, che si abbrevia: W.

In circuito elettrico la somma delle potenze di tutti i generatori presenti deve essere uguale alla somma delle potenze di tutti gli utilizzatori.

Si dice energia di un componente il prodotto della sua potenza per il tempo considerato; il tempo, di solito, si misura in ore. L'energia la indichiamo con la lettera W.

Formula: W = Pt

RELAZIONE

- 1. Misura le resistenze dei resistori da 100Ω e da $1k\Omega$ e realizza il circuito in cui la resistenza interna del generatore R_i è simulata col resistore da $1k\Omega$ e il carico R_L è rappresentato dalla cassetta di resistenze.
- 2. Regola la tensione d'alimentazione su un valore di 10 V e poni R_L = 200 Ω . Aumenta gradualmente il carico nella maniera indicata nella tabella 1 e in corrispondenza di ciascun passo misura la c.d.t. U_L su di esso e il valore della corrente I nel circuito. Registra i corrispondenti valori nella tabella.
- 3. Sostituisci il resistore da $1k\Omega$ con quello da 100Ω . Aumenta gradualmente il carico nella maniera indicata nella tabella 2 e in corrispondenza di ciascun passo misura la c.d.t. su di esso e il valore della corrente nel circuito. Registra i corrispondenti valori nella tabella.
- 4. In entrambe le tabelle, calcola e registra la potenza dissipata per ogni valore della resistenza di carico. Usa la formula: $P_{I d} = U_{I} \times I$.
- 5. Completa la tabella calcolando e registrando la c.d.t. U_{Ri} su R_i , la potenza dissipata P_{Ri} ($P_{Ri} = U_{Ri} \times I$) su R_i , la potenza totale dissipata P_{Td} ($P_{Td} = P_{Ri} + P_{Ld}$).