Supplementary materials

Guolin Ke¹, Qi Meng², Thomas Finley³, Taifeng Wang¹,

Wei Chen¹, Weidong Ma¹, Qiwei Ye¹, Tie-Yan Liu¹

¹Microsoft Research ²Peking University ³ Microsoft Redmond ¹{guolin.ke, taifengw, wche, weima, qiwye, tie-yan.liu}@microsoft.com; ²qimeng13@pku.edu.cn; ³tfinely@microsoft.com;

This is the supplementary materials for paper "LightGBM: A Highly Efficient Gradient Boosting Decision Tree", which concludes the proofs of Theorem 3.2, proposition 2.1 and more details in the experiment section.

Theorem 3.2 and its proof

Theorem 3.2 Let $\bar{g}_l^j(d) = \frac{\sum_{x_i \in (A \cup A^c)_l} |g_i|}{n_l^j(d)}$ and $\bar{g}_r^j(d) = \frac{\sum_{x_i \in (A \cup A^c)_r} |g_i|}{n_r^j(d)}$. With probability at least $1 - \delta$, we have

$$\mathcal{E}_A(d) \le C_{a,b}^2 \ln 1/\delta \cdot \max \left\{ \frac{1}{n_l^j(d)}, \frac{1}{n_r^j(d)} \right\} + 2DC_{a,b} \sqrt{\frac{\ln 1/\delta}{n}}, \tag{1}$$

where $C_{a,b} = \frac{1-a}{\sqrt{b}} \max_{x_i \in A^c} |g_i|$, and $D = \max(\bar{g}_l^j(d), \bar{g}_r^j(d))$.

Proof: For a fixed d, we have

$$\begin{split} &\tilde{V}_{j}(d) - V_{j}(d) \\ &= \left(\frac{\left(\sum_{x_{i} \in A_{l}} g_{i} + \frac{1-a}{b} \sum_{x_{i} \in B_{l}} g_{i} \right)^{2}}{n_{l}^{j}(d)} + \frac{\left(\sum_{x_{i} \in A_{r}} g_{i} + \frac{1-a}{b} \sum_{x_{i} \in B_{r}} g_{i} \right)^{2}}{n_{r}^{j}(d)} \right) \\ &- \left(\frac{\left(\sum_{x_{i} \in A_{l}} g_{i} + \sum_{x_{i} \in A_{l}^{c}} g_{i} \right)^{2}}{n_{l}^{j}(d)} + \frac{\left(\sum_{x_{i} \in A_{r}} g_{i} + \sum_{x_{i} \in A_{r}^{c}} g_{i} \right)^{2}}{n_{r}^{j}(d)} \right) \\ = &C_{l} \left(\frac{1-a}{b} \sum_{x_{i} \in B_{l}} g_{i} - \sum_{x_{i} \in A_{l}^{c}} g_{i} \right) + C_{r} \left(\frac{1-a}{b} \sum_{x_{i} \in B_{r}} g_{i} - \sum_{x_{i} \in A_{r}^{c}} g_{i} \right) \end{split}$$

where
$$C_l = \frac{\left(\frac{1-a}{b}\sum_{x_i \in B_l}g_i + \sum_{x_i \in A_l^c}g_i + 2(\sum_{x_i \in A_l}g_i)\right)}{n_l^j(d)}$$

and
$$C_r = \frac{\left(\frac{1-a}{b}\sum_{x_i \in B_r} g_i + \sum_{x_i \in A_r^c} g_i + 2(\sum_{x_i \in A_r} g_i)\right)}{n_r^j(d)}$$
.

Thus, we have

$$|\tilde{V}_j(d) - V_j(d)| \le \max\{C_l, C_r\} \left| \frac{1-a}{b} \sum_{x_i \in B} g_i - \sum_{x_i \in A_c} g_i \right|$$
 (2)

Firstly, we bound C_l and C_r . Let $D_{A^c} = \max_{x_i \in A^c} |g_i|$, we have

$$C_{l} = \frac{\left(\frac{1-a}{b} \sum_{x_{i} \in B_{l}} g_{i} + \sum_{x_{i} \in A_{l}} g_{i}\right)}{n_{l}^{j}(d)} + \frac{\left(\sum_{x_{i} \in A_{l}^{c}} g_{i} + \sum_{x_{i} \in A_{l}} g_{i}\right)}{n_{l}^{j}(d)}$$
(3)

$$\leq \frac{D_{A^c} \left| \frac{1-a}{b} \sum I_{[x_i \in B_l]} - \sum I_{[x_i \in A_l^c]} \right|}{n_i^j(d)} + 2D \tag{4}$$

$$= \frac{D_{A^c}(1-a)n}{n_l^j(d)} \left| \frac{\sum I_{[x_i \in B_l]}}{bn} - \frac{\sum I_{[x_i \in A_l^c]}}{(1-a)n} \right| + 2D$$
 (5)

By Hoeffding's inequality, we have with probability at least $1 - \delta$,

$$C_l \le \frac{D_{A^c}(1-a)n}{n_l^j(d)} \sqrt{\frac{\ln 2/\delta}{2bn}} + 2D. \tag{6}$$

Similarly, we have $C_r \leq \frac{D_{A^c}(1-a)n}{n_r^j(d)} \sqrt{\frac{\ln 2/\delta}{2bn}} + 2D$.

For the term $\left(\frac{1-a}{b}\sum_{x_i\in B}g_i-\sum_{x_i\in A^c}g_i\right)$, we have with probability at least $1-\delta$,

$$\frac{1}{n} \left| \frac{1-a}{b} \sum_{x_i \in B} g_i - \sum_{x_i \in A^c} g_i \right| \le D_{A^c} (1-a) \sqrt{\frac{\ln 2/\delta}{2bn}}. \tag{7}$$

Thus, we have with probability at least $1 - \delta$

$$\begin{split} &\mathcal{E}(d) = \Big|\frac{\tilde{V}_j(d)}{n} - \frac{V_j(d)}{n}\Big| \\ &\leq \left(D_{A^c}(1-a)\max\left\{\frac{1}{n_l^j(d)}, \frac{1}{n_l^j(d)}\right\}\sqrt{\frac{n\ln 1/\delta}{2b}} + 2D\right) \, a)\sqrt{\frac{\ln 1/\delta}{2bn}} \\ &\leq \frac{D_{A^c}^2(1-a)^2\ln 1/\delta}{2b} \cdot \max\left\{\frac{1}{n_l^j(d)}, \frac{1}{n_r^j(d)}\right\} + \frac{2D \cdot D_{A^c} \cdot (1-a)}{\sqrt{2b}}\sqrt{\frac{\ln 1/\delta}{n}}. \end{split}$$

Putting $C_{a,b}$ in the above inequality, we can get the result in the theorem. \square

Discussions:

- (1) The high probability error given in the above theorem is related to $n, n_l^j(d), n_r^j(d), C_{a,b}$. The asymptotic rate of the approximated gain to the original gain is $\mathcal{O}\left(\frac{1}{n_l^j(d)} + \frac{1}{n_r^j(d)} + \frac{1}{\sqrt{n}}\right)$. If the number of instances in the two subsets after splitting are relatively balanced (i.e., $n_l^j(d) \geq \mathcal{O}(\sqrt{n})$) and $n_r^j(d) \geq \mathcal{O}(\sqrt{n})$), the approximation error will be dominated by the second term of Ineq.(1) and it will decrease as n becomes large.
- (2) For fixed b, as a becomes larger, $C_{a,b}$ will become smaller because both term 1-a and term $\max_{x_i \in A^c} |g_i|$ will become smaller. For fixed a, as b becomes larger, $\frac{1}{\sqrt{b}}$ will become smaller and the upper bound will become smaller.
- (3) Random sampling is a special case for GOSS with a=0. In many cases, GOSS could outperform random sampling. More specifically, the condition is $C_{0,\beta}>C_{a,\beta-a}$, which is equivalent to $\frac{\alpha_a}{\sqrt{\beta}}>\frac{1-a}{\sqrt{\beta-a}}$ with $\alpha_a=\max_{x_i\in A\cup A^c}|g_i|/\max_{x_i\in A^c}|g_i|$. Thus the condition for GOSS to achieve better accuracy is $\beta>\frac{1}{1-((1-a)/\alpha_a)^2}\cdot a$. For fixed β which satisfies the condition, if α_a is increasing rapidly as a is increasing, GOSS prefers a larger a. If α_a is increasing smoothly as a is increasing, GOSS prefers smaller a. For example, if a_0,a_1,a_2 are the smallest a to make $\alpha_{a_0}\geq\sqrt{2},\alpha_{a_1}\geq\sqrt{3},\alpha_{a_2}\geq 2$, then the condition for β is $\beta>2a_0,\beta>1.5a_1,\beta>1.25a_2$, respectively. α_a is increasing rapidly means that a_2-a_1 and a_1-a_0 are small values, which makes $1.25a_2$ smaller than $2a_0$ and $1.5a_1$. In this case, GOSS prefers a_2 .
- (4) Theorem 3.2 is established for any fixed split point. Thus we can bound $|\tilde{V}(d^*) V(d^*)|$. It is easier to bound $|\tilde{V}_j(\tilde{d}^*) \tilde{V}_j(d^*)|$ by using the techniques in [1, 2]. Combining them we can bound $|\tilde{V}_j(\tilde{d}^*) V(d^*)|$, which is the difference between the largest variance gain calculated by the original set $A \cup A^c$ and that calculated by the set $A \cup B$.

Accuracy guarantee for random polluting

We denote the maximal variance gain for feature j as $V_j = \max_d V_j(d)$ and the maximal variance gain as $V = \max_i V_i$. We denote the maximal variance gain with random polluting with polluting rate γ as V^{γ} . Assume that the maximal variance gain is achieved at feature j_1 , i.e., $V = V_{j_1}$ and the maximal variance gain with random polluting is achieved at feature j_2 , i.e., $V^{\gamma} = V_{j_2}^{\gamma}$, we have the following theorem.

Proposition 2.1 The difference of the maximal variance gain calculated between with and without random polluting can be bounded as below:

$$|V - V^{\gamma}| \le [(1 - \gamma)n]^{-\frac{2}{3}},$$
 (8)

where n is the number of training instances.

Proof: Since $V = V_{j_1} \ge V_{j_2}$, and $V^{\gamma} = V_{j_2}^{\gamma} \ge V_{j_1}^{\gamma}$, we have

$$V_{j_1} - V_{j_2}^{\gamma} \le V_{j_1} - V_{j_1}^{\gamma}$$

$$V_{j_2}^{\gamma} - V_{j_1} \le V_{j_2}^{\gamma} - V_{j_2}.$$

$$(9)$$

$$(10)$$

$$V_{i_2}^{\gamma} - V_{i_1} \le V_{i_2}^{\gamma} - V_{i_2}. \tag{10}$$

Using the results in [1], we have $V_{j_1} - V_{j_1}^{\gamma} \leq [(1-\gamma)n]^{-\frac{2}{3}}$ and $V_{j_2}^{\gamma} - V_{j_2} \leq [(1-\gamma)n]^{-\frac{2}{3}}$. Thus we can get the results in the theorem.

More details in experiments 3

Detailed parameter settings in experiments

The details of parameter settings used in experiments are listed in Table 1, Table 2 and Table 3. As we use XGBoost as baseline, we also use the same parameter name in their documents. For meanings of these parameters, please refer to https://github.com/dmlc/xgboost/blob/master/ doc/parameter.md. For the SGB experiments, as less data are used in training, we need to reduce the min_child_weight and min_child_data accordingly to avoid under-fitting.

The settings of a and b on the Table 4 of Experiments section in the main paper are listed on Table 4. We tune the combination of a, b under the overall sampling ratio constraint, and the listed settings can produce relatively good performance on the model accuracy.

Table 1: Common Settings.

Allstate	learning_rate=0.02, min_child_weight=100, num_round=500
Flight Delay	learning_rate=0.1, min_child_weight=100, num_round=1000
LETOR	learning_rate=0.05, min_child_weight=100, num_round=1000
KDD10	learning_rate=0.1, min_child_weight=3000, num_round=100
KDD12	learning_rate=0.1, min_child_weight=3000, num_round=100

Table 2: Settings for xgb exa.

Allstate	max_depth=12, min_split_gain=0.5
Flight Delay	max_depth=12, min_split_gain=60
LETOR	max_depth=16
KDD10	max_depth=50, min_split_gain=150
KDD12	max_depth=37, min_split_gain=100

Table 3: Settings for xgb his, lgb baseline, SGB and LightGBM.

Allstate	num_leaves=127
Flight Delay	num_leaves=255
LETOR	num_leaves=255
KDD10	num_leaves=255, min_child_data=1000
KDD12	num_leaves=255, min_child_data=1000

Table 4: Settings of GOSS in Table 4 of Experiments section in the main paper.

Sampling ratio	0.1	0.15	0.2	0.25	0.3	0.35	0.4
GOSS	a=0.05 b=0.05	a=0.05 b=0.1	a=0.1 b=0.1	a=0.15 b=0.1	a=0.2 b=0.1	a=0.25 b=0.1	a=0.15 b=0.25

3.2 Effect of γ in EFB

We evaluate the influence of using different γ in EFB on KDD10 and KDD12 datasets. The results are shown in Table 5 and Table 6. The accuracy drops if using a relative big γ , e.g. using $\gamma=0.01$ causes the accuracy on KDD2010 dropping from 0.7873 to 0.7858. And the accuracy is almost the same as baseline if using small γ . This is consistent with our theoretical analysis. We also notice the speed-up brought by enabling bundling confliction is small. It is because EFB already bundle many sparse features into very few dense features, and allowing conflict cannot further reduce it significantly. So, in our main paper, we just set $\gamma=0$. However, this does not affect the effectiveness of EFB. If the data contains many slightly conflicted sparse features, our algorithm with small γ will be significantly faster.

Table 5: Effect on accuracy by using different γ in EFB.

	baseline	$\gamma = 0.01$	$\gamma = 0.001$	$\gamma = 0.0001$	$\gamma = 0.00001$
KDD10	0.78735	0.785806	0.787218	0.78738	0.787391
KDD12	0.704854	0.703197	0.704606	0.704612	0.704757

Table 6: Effect on speed by using different γ in EFB.

	baseline	$\gamma = 0.01$	$\gamma = 0.001$	$\gamma = 0.0001$	$\gamma = 0.00001$
KDD10	6.33	5.88	6.12	6.25	6.29
KDD12	20.23	19.06	19.78	20.04	20.18

3.3 Time-accuracy curves for all datasets

In order to conduct end-to-end comparison between all algorithms, we draw the time-accuracy curves on all experiment datasets. The curves are shown in Fig. 1, Fig.2, Fig.3, Fig.4 and Fig.5.

LightGBM demonstrates good performance on all datasets. It is much faster than the other baselines while achieving the best accuracy. As KDD10 and KDD12 datasets are too large, other baselines cannot converge in reasonable time. So, our accuracy results for these two datasets on the Table 3 in the main paper are the accuracy of 100-th iteration. However, since LightGBM is much faster than other tools, we did not limit the number of iterations in Fig.4 and Fig.5. So, its convergence points are better than the values of Table 3 in the main paper.

Figure 1: Time-accuracy on Allstate dataset.

Figure 2: Time-accuracy on Flight Delay dataset.

Figure 3: Time-accuracy on LETOR dataset.

Figure 4: Time-accuracy on KDD10 dataset.

Figure 5: Time-accuracy on KDD12 dataset.

References

- [1] Moulinath Banerjee, Ian W McKeague, et al. Confidence sets for split points in decision trees. *The Annals of Statistics*, 35(2):543–574, 2007.
- [2] Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhi-Ming Ma, and Tieyan Liu. A communication-efficient parallel algorithm for decision tree. In *Advances in Neural Information Processing Systems*, pages 1271–1279, 2016.