KMTNet Detection Algorithm

Atousa Kalantari, Somayeh Khakpash

Overview of the KMTNet (Kim et al. (2018))

The standard microlensing model is:

$$F(t) = f_s A[u(t; t_0, u_0, t_E)] + f_b; \qquad u(t) = \sqrt{\frac{(t - t_0)^2}{t_E^2} + u_0^2}; \qquad A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}.$$

- 5 parameters total:
 - Linear: f_s (source flux), f_b (blend flux)
 - Non-linear: t_0 (time of peak), u_0 (impact parameter), t_E (Einstein timescale)

Overview of the KMTNet (Kim et al. (2018))

High magnification limit $(u_0 \to 0)$: $A_{j=1}(Q) = Q^{-1/2}$

Instead of an expensive 3D grid search over (t_0, u_0, t_E) , KMTNet applies two approximations to reduce complexity to 2D grids:

(based on Gould & Loeb 1992)

$$F(t) = f_1 A_j [Q(t; t_0, t_{eff})] + f_0;$$

$$Q(t; t_0, t_{eff}) = 1 + \left(\frac{t - t_0}{t_{eff}}\right)^2; \quad (j = 1,2)$$

$$t_{eff} \rightarrow u_0 t_E$$

$$(f_{1'} \ f_{0}) \rightarrow (f_{s}/u_{0'} \ f_{b})$$
 Low magnification limit $(u_{0}=1)$:
$$A_{j=2}(Q) = \frac{Q+2}{\sqrt{Q(Q+4)}} = \left[1-\left(\frac{Q}{2}+1\right)^{-2}\right]^{-1/2}$$
 $(f_{1'} \ f_{0}) \rightarrow (f_{s'} \ f_{b})$

KMTNet Grid Strategy

- Season duration: ~250 days
- Cadence: about 1 hour

To efficiently search for microlensing events, KMTNet uses a **2D grid over** t_0 and $t_{
m eff}$:

• $t_{
m eff,1}=0.56$ days, increasing geometrically to ~99 days:

$$t_{ ext{eff},k+1} = (1+\delta)\,t_{ ext{eff},k}, \quad \delta = rac{1}{3}.$$

• For each $t_{\text{eff},k}$, t_0 values follow:

$$t_{0,k,l+1} = t_{0,k,l} + \delta\,t_{ ext{eff},k}$$

Each trial fit uses data within:

$$[t_0-Zt_{
m eff},\ t_0+Zt_{
m eff}],\quad Z=5$$

and requires at least 50 datapoints in this window

Rubin Grid Strategy

We choose:

- $\cdot \delta = \frac{1}{3}$
- $oldsymbol{\cdot} t_{ ext{eff}} = 1$ to 100 days
- Fit window: Z=7
- Minimum: ≥ 10 datapoints in the window

We find the best-fit parameters by minimizing the chi-squared function in two magnification regimes (high and low) over the defined grid and fit window. The parameters yielding the lowest chi-squared are selected as the best microlensing fit.

Next, using the same fit window defined by these best parameters, we fit a linear model to the data and compute its chi-squared. We then define the metric:

$$\Delta \chi^2 \equiv \left(\frac{\chi^2_{\mu lens}}{\chi^2_{flat}} - 1\right)$$

ANT2023wuk92lk9fz76_Microlensing

Delta Chi2=0.962

Delta Chi2=0.959

ANT202306emoursp7gp_Microlensing

Delta Chi2=0.954

Delta Chi2=0.939

ANT2020b23ci_nonMicrolensing

Delta Chi2=0.863

Delta Chi2=0.882

ANT2024s9bydyskkdg2_nonMicrolensing (Supernova)

Delta Chi2=0.923

Delta Chi2=0.952

ANT2020b2ppw_nonMicrolensing

Delta Chi2=0.025

Delta Chi2=0.167

ANT2019klw2u_nonMicrolensing

Delta Chi2=0.432

Delta Chi2=0.698

ANT2020ar224_nonMicrolensing

Delta Chi2=0.010

Delta Chi2=0.158