《电子电路与系统基础 I》期中考试试题 2021.4.16 学号: 姓名:

共三大题,卷面满分100分。全部题目在答题纸上作答,在本试题纸上作答无效。

- 一、(30 分)如图所示电路,两个受控电流源的输出电流分布为 $i_{c1}=g_{m1}v_{be1}$ 和 $i_{c2}=g_{m2}v_{be2}$,其中 v_{be1} 为 R_{b1} 两端的电压, v_{be2} 为 R_{b2} 两端的电压, $g_{m1}=1$ mS、 $g_{m2}=1$ mS 为常数。理想电压源 $v_S=1V$,已知 $R_S=5$ k Ω 、 $R_{b1}=1$ k Ω 、 $R_{b2}=2$ k Ω 、 $R_L=3$ k Ω
 - 1) 求 R_L 上的电压 V_{out}
 - 2) 求从箭头 1 看进去的等效电阻R_{in}

- 二、(31 分)如图所示电路,受控电流源 I_x 的输出电流为 $I_x = \alpha i_3$,其中 i_3 为流经电阻 R_3 的电流, $\alpha = 0.5$ 为常数。理想直流电压源 V_S 的输出电压已知,为考生学号末位 加 1 伏,已知 $R_1 = 1$ k Ω 、 $R_2 = 1$ k Ω 、 $R_3 = 2$ k Ω 、 $V_S = A_1 \sin(20\pi t) V$ 、 $I_S = A_2 \sin(20\pi t + \pi) mA$,其中 A_1 为考生学号末位加 2, A_2 为考生学号末位加 1
 - 1) 使用叠加定理求 R_3 上的电压 v_3 随时间变化的表达式
 - 2) 求 R_1 上的电压有效值
 - 3) 以mW为单位,求 R_1 消耗的瞬态功耗
 - 4) 以 dBm 为单位,求 R_2 消耗的平均功耗

- 三、(39 分)如图所示电路,电压源,电容与电感在t<0时刻均没有初始储能,已知 $v_S=3.3\times u(t)(V) \ ,\ R_1=R_2=4 \mathrm{k}\Omega\ ,\ C_1=1 \mathrm{pF}\ ,\ L_1=1 \mathrm{\mu H}$
 - 1) 写出理想电容 C_1 两端的电压 $v_c(t)$ 与流经它的电流 $i_c(t)$ 的关系
 - 2) 写出理想电感 L_1 两端的电压 $v_L(t)$ 与流经它的电流 $i_L(t)$ 的关系
 - 3)当经过足够长的时间,简单描述电路的工作状态,并求出电容上的电压 v_c 与电感上的电流 i_L 分别是多少?
 - 4) 求理想电容 C_1 两端的电压 $v_c(t)$ 与流经理想电感 L_1 的电流 $i_L(t)$ 的表达式
 - 5) 画出 $v_c(t)$ 和 $i_L(t)$ 波形随时间变化的示意图
 - 6) 分析电容容值对 $v_c(t)$ 波形变化的影响

