概率基础

常见分布

分布	期望E	方差D	表达式
两点分布(伯努利分布、0-1分布)	p	p(1-p)	
二项分布(n重伯努利分布) $B(n,p)$	np	np(1-p)	$p = C_n^x p^x (1-p)^{n-x}$
泊松分布 $p(\lambda)$	λ	λ	$p=rac{\lambda^x}{x!}e^{-\lambda}$
均匀分布 $U[a,b]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$p=rac{x_2-x_1}{b-a}$
指数分布 $E(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$p=rac{1}{e^{x_1\lambda}}-rac{1}{e^{x_2\lambda}}$
正态分布 $N(\mu, \sigma^2)$	μ	σ^2	$\Phi(rac{x_2-\mu}{\sigma}) - \Phi(rac{x_1-\mu}{\sigma})$

其中:

$$C_n^m = rac{n!}{m!(n-m)!}$$

正态函数

$$f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

期望

• 离散: $E(x) = \sum_{i=1}^{\infty} x_i p_i$ • 连续: $E(x) = \int_{-\infty}^{+\infty} x f(x) dx$

公式:

$$E(C) = C$$

$$E(Cx) = CE(x)$$

$$E(x\pm y)=E(x)\pm E(y)$$
 —— X, Y独立

$$E(xy)=E(x)E(y)$$
—— X, Y独立

方差

• 离散: $D(x) = \sum [x_i - E(x)]^2 \cdot p_i$

• 连续: $D(x) = E(x^2) - E^2(x)$

公式:

$$D(C) = 0$$

$$D(Cx) = C^2 D(x)$$

$$D(x \pm y) = D(x) \pm D(y)$$

数理统计

抽样分布

正态分布的性质

• $X \sim N(\mu, \sigma^2)$, $\mathbb{U}a + bx \sim N(a + b\mu, b^2\sigma^2)$

ullet $X\sim N(\mu,\sigma_1^2); Y\sim N(\mu,\sigma_2^2), \;\; extstyle extstyle X+Y\sim N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2)$

卡方分布

$$x_i \sim N(0,1) \ \ \,
ightarrow \ \, x_1{}^2 + x_2{}^2 + x_3{}^2 + \ldots + x_n{}^2 \sim \chi^2(n)$$

$$\chi^2 \sim N(n,2n)$$

当n>45时, $\chi^2_lpha(n)=n+\sqrt{2n}\cdot u_lpha$

T分布

 $X\sim N(0,1); Y\sim \chi^2(n)$,则

$$T = rac{X}{\sqrt{Y/n}} \sim t(n)$$

性质:

$$t_{1-lpha}(n) = -t_lpha(n)$$

因为t分布为偶函数,当n>45时,由 $f_n(t) o rac{1}{\sqrt{2\pi}}e^{-rac{t^2}{2}}$,推出 $t_lpha(n)=u_lpha$

F分布

$$X\sim \chi^2(n_1); Y\sim \chi^2(n_2)$$
,则

$$F=rac{X/n_1}{Y/n_2}\sim F(n1,n2)$$

性质:

$$F_{1-lpha}(n1,n2) = rac{1}{F_{lpha}(n2,n1)}$$

[例]
$$x_1 \dots x_9$$
来自 $X \sim N(0,3^2)$, $Y_1 \dots Y_9$ 来自 $Y \sim N(0,3^2)$,求 $U = \frac{x_1 + \dots + x_9}{\sqrt{Y_1^2 + \dots Y_9^2}}$ 的分布

$$x_i \sim N(0,9)$$
,则 $\sum_{i=1}^9 x_i \sim N(0,81)$

则
$$rac{\left(\sum_{i=1}^9 x_i
ight)-0}{\sqrt{81}}\sim N(0,1)$$
(正态分布标准化)

$$\mathbb{N}rac{\sum_{i=1}^9 x_i}{9} = V$$

又
$$Y_i \sim N(0,9)$$
,则 $(rac{Y_i}{3})^2 \sim \chi^2(1)$,(正态分布标准化)

则
$$\sum_{i=1}^9(rac{Y_i}{3})^2\sim\chi^2(9)=W$$

最终:

$$U=rac{9V}{\sqrt{9W}}=rac{9V}{3\sqrt{W}}=rac{3V}{\sqrt{W}}=rac{V}{\sqrt{W/9}}\sim t(9)$$

[例] $X\sim N(0,1)$,有 $x_1\sim x_6;Y=(x_1+x_2+x_3)^2+(x_4+x_5+x_6)^2$,试确定C,使得 $CY\sim \chi^2$ 解:

$$x_1+x_2+x_3\sim N(0,3)$$
 ; $x_4+x_5+x_6\sim N(0,3)$ $-----$ 标准化: $\dfrac{(x_1+x_2+x_3)-0}{\sqrt{3}}\sim N(0,1)$; $\dfrac{(x_4+x_5+x_6)-0}{\sqrt{3}}\sim N(0,1)$

$$\left[rac{1}{\sqrt{3}}(x_1+x_2+x_3)
ight]^2+\left[rac{1}{\sqrt{3}}(x_4+x_5+x_6)
ight]^2=rac{1}{3}Y\sim\chi^2(2)$$
 at $C=rac{1}{3}$

假设检验

假设检验 与 区间估计 ,先判断是 正态母体 还是 大样本母体

- 止心母体:
 - 题目说了服从正态
 - 。 数量n,小于50
- 大柱本舟体:
 - 。 没说是正态分布, 没说是啥分布, 说了个其他什么分布二项分布之类的, 有时候要自己

正态假设检验

都用 S^* ,不用S。

$$S^* = \sqrt{\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}}$$

假设一个H0,写出它的相反事件H1,根据公式计算**拒绝域**,落在拒绝域就拒绝H0,否则接收H0

单参数

双侧

假设H0	H1	已知条件	拒绝域
$\mu = \mu_0$	$\mu eq \mu_0$	已知 σ	$ rac{x-\mu_0}{\sigma/\sqrt{n}} \geq \mu_{lpha/2}$
		未知σ	$ rac{x-\mu_0}{S^*/\sqrt{n}} \geq t_{lpha/2}(n-1)$
$\sigma=\sigma_0$	$\sigma eq \sigma_0$	-	$rac{(n-1)S^{*2}}{\sigma_0^2} \geq \chi_{2/lpha}^2(n-1)$ 或 $rac{(n-1)S^{*2}}{\sigma_0^2} \leq \chi_{1-2/lpha}^2(n-1)$

单侧

假设H0	H1	已知条件	拒绝域
$\mu \leq \mu_0$	$\mu > \mu_0$	已知 σ	$rac{x-\mu_0}{\sigma/\sqrt{n}} \geq \mu_lpha$
		未知 σ	$rac{x-\mu_0}{S^*/\sqrt{n}} \geq t_lpha(n-1)$
$\mu \geq \mu_0$	$\mu < \mu_0$	已知 σ	$rac{x-\mu_0}{\sigma/\sqrt{n}} \leq -\mu_lpha$
		未知 σ	$rac{x-\mu_0}{S^*/\sqrt{n}} \leq -t_lpha(n-1)$
$\sigma \leq \sigma_0$	$\sigma > \sigma_0$	-	$rac{(n-1)S^{*2}}{\sigma_0^2} \geq \chi_lpha^2(n-1)$
$\sigma \geq \sigma_0$	$\sigma < \sigma_0$	-	$rac{(n-1)S^{*2}}{\sigma_0^2} \leq \chi_{1-lpha}^2(n-1)$

双参数

$$S_w = \sqrt{rac{(n_1-1){S_1^*}^2 + (n_2-1){S_2^*}^2}{n_1+n_2-2}}$$

双侧

假设H0	H1	已知条件	拒绝域
$\mu_1 - \mu_2 = \delta$	$\mu_1-\mu_2 eq \delta$	已知 σ	$ rac{x_1 - x_2 - \delta}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}} \geq u_{lpha/2}$
		未知σ	$ rac{x_1-x_2-\delta}{S_w\sqrt{rac{1}{n_1}+rac{1}{n_2}}} \geq t_{lpha/2}(n_1+n_2-2)$
$\sigma_1^2=\sigma_2^2$	$\sigma_1^2 eq \sigma_2^2$	-	$rac{s_1^{*2}}{s_2^{*2}} \geq F_{lpha/2}(n_1-1,n_2-1)$ 或 $rac{s_1^{*2}}{s_2^{*2}} \leq F_{1-lpha/2}(n_1-1,n_2-1)$

单侧

假设H0	H1	已知条件	拒绝域
$\mu_1-\mu_2\leq \delta$	$\mu_1-\mu_2>\delta$	已知 σ_1,σ_2	$rac{x_1-x_2-\delta}{\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}}\geq u_lpha$
		未知 σ_1,σ_2	$rac{x_1 - x_2 - \delta}{S_w \sqrt{rac{1}{n_1} + rac{1}{n_2}}} \geq t_lpha(n_1 + n_2 - 2)$
$\mu_1-\mu_2\geq \delta$	$\mu_1 - \mu_2 < \delta$	已知 σ_1,σ_2	$rac{x_1-x_2-\delta}{\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}}\leq -u_lpha$
		未知 σ_1,σ_2	$ rac{x_1 - x_2 - \delta}{S_w \sqrt{rac{1}{n_1} + rac{1}{n_2}}} \leq -t_lpha(n_1 + n_2 - 2)$
$\sigma_1^2 \leq \sigma_2^2$	$\sigma_1^2 > \sigma_2^2$	-	$rac{s_1^{*2}}{s_2^{*2}} \geq F_lpha(n_1-1,n_2-1)$
$\sigma_1^2 \geq \sigma_2^2$	$\sigma_1^2 < \sigma_2^2$	-	$rac{s_1^{*2}}{s_2^{*2}} \leq F_{1-lpha}(n_1-1,n_2-1)$

正态区间估计

求均值 μ 或 σ^2 的置信区间,置信度为 $1-\alpha$

• 实际上就是上面这一堆公式做一下移项,列出一些常用的置信区间公式,剩下的,根据对应 情况移项即可

要估计的值	已知条件	置信区间
μ	已知 σ	$(\overline{x}-rac{\sigma}{\sqrt{n}}u_{lpha/2},\overline{x}+rac{\sigma}{\sqrt{n}}u_{lpha/2})$
	未知σ	$(\overline{x}-rac{S^*}{\sqrt{n}}t_{lpha/2}(n-1),\overline{x}+rac{S^*}{\sqrt{n}}t_{lpha/2}(n-1))$
σ^2	-	$(rac{(n-1){S^*}^2}{\chi^2_{lpha/2}(n-1)},rac{(n-1){S^*}^2}{\chi^2_{1-lpha/2}(n-1)})$

大样本假设检验

- 只用S,不用S*
- 只用u检测,不用t和 χ^2

如果已知具体概率分布,那么S就是概率分布的方差D(x)开方, μ 就是概率分布的期望E(x)

$$S = \sqrt{rac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}} = \sqrt{rac{1}{n} \sum_{i=1}^{n} {x_i}^2 - \overline{x}^2}$$

单参数

双侧

假设H0	H1	已知条件	拒绝域
$\mu=\mu_0$	$\mu eq \mu_0$	已知 σ	$ rac{\overline{x}-\mu_0}{\sigma/\sqrt{n}} \geq u_{lpha/2}$
		未知σ	$ rac{\overline{x}-\mu_0}{S/\sqrt{n}} \geq u_{lpha/2}$

单侧

假设H0	H1	已知条件	拒绝域
$\mu \leq \mu_0$	$\mu>\mu_0$	已知 σ	$rac{\overline{x}-\mu_0}{\sigma/\sqrt{n}} \geq u_lpha$
		未知σ	$rac{\overline{x}-\mu_0}{S/\sqrt{n}} \geq u_lpha$
$\mu \geq \mu_0$	$\mu < \mu_0$	已知σ	$rac{\overline{x}-\mu_0}{\sigma/\sqrt{n}} \leq -u_lpha$
		未知σ	$rac{\overline{x}-\mu_0}{S/\sqrt{n}} \leq -u_lpha$

单参数方差分析

问你某因素是否显著影响

单因素方差分析表

• 把上面这一堆填进来

方差来源	平方和	自由度	均方	F比
因素	S_A	类型数-1	$\overline{S_A}$	$F_{\scriptscriptstyle ext{tt}} = rac{\overline{S_A}}{\overline{S_E}}$
误差	S_E	数据总数-类型数	$\overline{S_E}$	
总和	S_T	数据总数-1		

$$F_{\alpha} = F_{\alpha}$$
(类型数 -1 , 数据总数 $-$ 类型数)

最后, 判断是否影响显著:

如果下式成立,则影响显著,否则不显著

$$F_{\scriptscriptstyle
m lt} \geq F_{lpha}$$
(类型数 -1 , 数据总数 $-$ 类型数)

双参数方差分析(复习题有,考试没考过)

一元线性回归

所求线性方程

$$y = \hat{a} + \hat{b}x$$

求线性方程

就是求 \hat{b} 和 \hat{a}

参数	公式
\hat{b}	$\hat{b}=rac{S_{xy}}{S_{xx}}=rac{\overline{x}\overline{y}-\overline{x}\cdot\overline{y}}{\overline{x^2}-\overline{x}^2}$
â	$\hat{a}=rac{y_1++y_n}{n}-rac{x_1++x_n}{n}\hat{b}=\overline{y}-\hat{b}\overline{x}$

其中:

$$egin{aligned} S_{xy} &= (x_1y_1+x_2y_2+\ldots+x_ny_n) - rac{(y_1+\ldots+y_n)(x_1+\ldots+x_n)}{n} \ S_{xy} &= n\cdot [\overline{xy}-\overline{x}\cdot \overline{y}] \end{aligned}$$

问线性关系是否显著

就是求方差 $\hat{\sigma^*}^2$

$$egin{align} \hat{\sigma^*}^2 &= rac{S_{yy} - \hat{b}S_{xy}}{n-2} \ \hat{\sigma^*}^2 &= rac{S_{yy} - \hat{b^2}S_{xx}}{n-2} \ \hat{\sigma^*}^2 &= rac{n\cdot[(\overline{y^2} - \overline{y}^2) - \hat{b}\cdot(\overline{xy} - \overline{x}\cdot\overline{y})]}{n-2}
onumber \end{array}$$

判断是否显著

判别式成立就显著

$$rac{|\hat{b}|}{\sigma^*}\sqrt{S_{xx}} \geq t_{lpha/2}(n-2)$$

方差区间估计

置信区间:

$$(\hat{b}-t_{lpha/2}(n-2)rac{\hat{\sigma}}{\sqrt{S_{xx}}},\hat{b}+t_{lpha/2}(n-2)rac{\hat{\sigma}}{\sqrt{S_{xx}}})$$

点估计

矩估计

- 1. 写出E(x)与所求未知数的关系
- 2. 将1.的结果整理为 $_{\text{未知数}} = \text{关于} E(x)$ 的表达式的形式
- 3. 根据样本, 算出实际E(x)
- 4. 求未知数

双参数据估计

- 1. 写出E(x)与 $E(x^2) = D(x) + E^2(x)$ 与戴求数的关系
- 2. 将1.的结果整理成_{未知数} = $\xi \in E(x)$ 和 $E(x^2)$ 的形式
- 3. 根据样本,算出实际的E(x), $E(x^2)$
- 4. 算出未知数

极大似然估计

- 1. 将 $x_1, x_2, x_3...$)带入函数表达式,进行**连乘**
- 2. 对1的结果即取ln,变成求和
- 3. 依次对2的结果求导
- 4. 令3的结果导数为0

点估计的无偏估计

如果 $\hat{\theta}$ 为估计值, θ 为真实值

如果:

$$E(\hat{\theta}) = \theta$$

则称 $\hat{\theta}$ 是 θ 的无偏估计