第二章 逻辑门电路

第一节 晶体管一晶体管逻辑门电路(TTL)

- 一、电路结构
- 1、输入与门——多射极晶体管

2、输出非门——推拉式输出

 T_2 :提供 T_4 、 T_5 一对极性相反的驱动信号

T₃:电平配置(BE结)

三、TTL与非门的主要外特性

1、电压传输特性 $v_0 = f(v_1)$

2、输入特性 *i_I=f(v_I)* 当输入*ABC* = 110 时

$$I_{IL} = \frac{V_{CC} - V_{b1}}{R_1} = \frac{5 - 1}{4} \approx 1.0 mA$$

当输入ABC = 111 时

+ 灌电流与门的个数有关, 拉电流与输入端的个数有关

3、输入负载特性 $v_I = f(R_I)$

☆多余输入端的处理

全悬空相当于输入接高电平"1"。

$$F = \overline{1 \cdot 1 \cdot 1} = 0$$

防干扰,将空脚通过电阻接电源

$$F = \overline{A \cdot B \cdot 1} = \overline{AB}$$

将空脚和其它输入脚接在一起

$$F = \overline{AB}$$

☆根据已知电路写出逻辑表达式。

最大允许權电流 I_{LM} (=40mA) 扇出数

• 当本极门输出高电平3.6V时

最大允许拉电流 I_{HM} (\approx 400 μ A) 扇入数

5、平均传输延迟时间

tpHI: 导通延迟时间

t_{PLH}: 截止延迟时间

 t_{pd} : 平均延迟时间

$$t_{\rm pd} = \left(t_{\rm PHL} + t_{\rm PLH}\right)/2 \le 40ns$$

时差 --- 竞争 --- 险象

$$\rightarrow$$
 $\leftarrow 3t_{pd}$

TTL门电路芯片简介

如: TTL门电路芯片(四2输入与非门,型号74LS00)

线与逻辑

当 $F_1 = 1$, $F_2 = 0$ 时,

或 $F_1 = 0$, $F_2 = 1$ 时,损坏晶体管

→ TTL与非门不能线与工作

晶体管反相器能不能线与工作?

四、其他类型的TTL门电路

当
$$F = 0$$
 (V_{OL})时

$$I + m'I_{\rm IL} \le I_{\rm LM}$$

$$R \ge \frac{V_{CC} - V_{OL}}{I_{LM} - m'I_{IL}}$$

当
$$F = 1 (V_{OH})$$
时

$$I = mI_{\rm IH} + nI_{\rm OH}$$

$$R \le \frac{V_{CC} - V_{OH}}{I}$$

$$= \frac{V_{CC} - V_{OH}}{mI_{IH} + nI_{OH}}$$

$$\frac{V_{CC} - V_{OL}}{I_{LM} - m'I_{IL}} \le R \le \frac{V_{CC} - V_{OH}}{mI_{IH} + nI_{OH}}$$

2、三态门 (TS门)

当EN=0 时,D导通, $V_{B1}=1$ V, T_2 和 T_5 截止; $V_{C2}=1$ V, T_4 截止 —— 高阻态

TTL门输出有两种状态: 逻辑0 这两种状态都是低阻输出。

逻辑0

三态门输出有三种状态:逻辑1

高阻状态 相当于输出悬空

三态门逻辑符号:

高电平有效

$$\overline{EN} = 0$$
工作

低电平有效

三态门的应用

仅有两个三态门时,

约束条件: $EN_1EN_2=0$

总线结构,分时传送,任何时刻仅有一个EN=1,把选中的门输出传送到总线,未选中的门输出相当于和总线断开。

第二节 MOS逻辑门

双极型三极管

半导体三极管分为:

场效应三极管

结型场效应

绝缘栅场效应管

绝缘栅场效应管

增强型: $V_{GS} = 0$, 无导电沟道, $I_D = 0$

耗尽型: $V_{GS} = 0$, 有导电沟道, $I_D \neq 0$

MOS逻辑门分为三类: NMOS、PMOS和CMOS

GHS PMOS

增强型MOS管的转移特性曲线

一、NMOS逻辑门

NMOS反相器电路组成:

集成电路 中非常不希望 有大电阻,相 20 20 20 因此采用 MOS 管做负载管。

★ 负载管一直导通, 当驱动管导通时, 电源与地之间有静态电流, 所以功耗大。

NMOS,PMOS电 路存在三个问题:

- ightharpoonup要保证输出低电平,要求 r_{d2} 》 r_{d1} 不利于大规模集成。
- \star 当驱动管截止时,由于负载管导通电阻 r_{d2} 很大,对容性负载充电时间很长,使电路工作速度缓慢。

CMOS集成电路由 P 沟道和 N 沟道增强型 MOS 管串连组成, CMOS电路能有效解决上述问题。

1. CMOS反相器

CMOS: 由一个NMOS和一个PMOS 组成的互补器件

$$A = 0$$
 时,
$$A = 0$$
 时,

$$T_{
m N}: V_{
m GS} = 0 \ {
m V} < V_{
m TN}$$
 ,截止 $($ 漏源电阻 $10^8 \sim 10^{10} \Omega)$

$$T_{
m P}$$
: $V_{
m GS}$ = $-10~{
m V}$ < $V_{
m TP}$,导通 (漏源电阻< $1{
m k}\Omega$)

$$F=1$$

当
$$A=1$$
 时,

$$T_{N}: V_{GS} = 10V > V_{TN}$$
,导通

$$T_{\rm P}: V_{
m GS} = 0
m V > V_{
m TP}$$
,截止

$$F=0$$

当 $0 \le v_A \le V_{DD}$ 时,保护电路不起作用。

当 V_{A} ≥ V_{DD} + V_{DF} 时, D_1 ON,保证 C_2 上的压降不超过 V_{DD} + V_{DF}

当 v_A ≤-0.7V时, D_2 ON,保证 C_1 上的压降不超过 V_{DD} + V_{DF}

- 1. 静态功耗小 —— 集成度高
- CMOS电路的优点: 2. 允许电源电压范围宽(3~18V)
 - 3. 扇出系数大, 抗噪容限大
- 2. CMOS反相器的电压传输特性曲线

门限电平: $\frac{1}{2}V_{DD}$

3. 其他CMOS门电路

• CMOS 传输门

CMOS门电路能否线与工作? 不能

• CMOS三态门

—— 输出高阻态

当
$$\overline{EN} = 0$$
时, TG开启,

当
$$\overline{EN}=1$$
时, TG关闭,

输出高阻态

$$\begin{array}{c}
A \longrightarrow \& \\
B \longrightarrow & F
\end{array}$$

$$EN \longrightarrow F$$

$$\begin{array}{c}
A \longrightarrow & & \\
B \longrightarrow & & \\
\hline
EN \longrightarrow & & \\
\hline
FN \longrightarrow & & \\
\hline
FN \longrightarrow & & \\
\end{array}$$

