

### **BASIC CONCEPTS**

| 1. | The  | mass of one mole of electron i                   | s:                  |                                                                  |
|----|------|--------------------------------------------------|---------------------|------------------------------------------------------------------|
|    | (a)  | 1.008 mg                                         | <b>(b)</b>          | 0.184 mg                                                         |
|    | (c)  | 0.54 mg                                          | <b>(d)</b>          | 0.054 mg                                                         |
| 2. | 27 g | of Al will react with how muc                    | h ma                | ss of O <sub>2</sub> to produce Al <sub>2</sub> O <sub>3</sub> : |
|    | (a)  | 8 g of oxygen                                    | <b>(b)</b>          | 16 g of oxygen                                                   |
|    | (c)  | 32 g of oxygen                                   | <b>(d)</b>          | 24 g of oxygen                                                   |
| 3. | The  | number of moles of NO <sub>2</sub> whic          | h co <mark>n</mark> | tains 16 g o <mark>f o</mark> xygen:                             |
|    | (a)  | 0.25                                             | <b>(b)</b>          | 0.50                                                             |
|    | (c)  | 1.0                                              | (d)                 | 1.50                                                             |
| 4. | The  | volume occupied by 2.0 g of N                    | le at S             | STP:                                                             |
|    | (a)  | 2.24 dm <sup>3</sup>                             | <b>(b)</b>          | 22.4 dm <sup>3</sup>                                             |
|    | (c)  | 1.12 dm <sup>3</sup>                             | <b>(d)</b>          | 112 cm <sup>3</sup>                                              |
| 5. | A sa | imple in the ionizatio <mark>n ch</mark> ambe    | er of 1             | mass spectrometer is ionized by:                                 |
|    | (a)  | Electrons                                        | <b>(b)</b>          | Proton                                                           |
|    | (c)  | Neutron                                          | <b>(d)</b>          | Nucleus                                                          |
| 6. | Whi  | ich one of the following pair is                 | not is              | so-electronic:                                                   |
|    | (a)  | $CO, N_2$                                        | <b>(b)</b>          | Na <sup>+</sup> , Ne                                             |
|    | (c)  | Ca, Ar                                           | <b>(d)</b>          | $K^+$ , $Ar$                                                     |
| 7. | Whi  | ich on <mark>e of the f</mark> ollowing is not a | n mol               | ecular ion:                                                      |
|    | (a)  | $N_2^+$                                          | <b>(b)</b>          | $\mathrm{CH}_4^+$                                                |
|    | (c)  | $C_6H_8^+$                                       | ( <b>d</b> )        | $\mathrm{NH}_{4}^{+}$                                            |
|    |      | 0                                                | ( )                 | -                                                                |

| 8.         | 180 g of glucose contains number of hydrogen atoms: |                                                              |              |                                                   |
|------------|-----------------------------------------------------|--------------------------------------------------------------|--------------|---------------------------------------------------|
|            | (a)                                                 | $3.6 \times 10^{23}$                                         | <b>(b)</b>   | $6.0 \times 10^{23}$                              |
|            | <b>(c)</b>                                          | $7.2 \times 10^{23}$                                         | ( <b>d</b> ) | $7.2 \times 10^{24}$                              |
| 9.         | Who                                                 | o first of all determined atomic                             | e mas        | ses of elements:                                  |
|            | (a)                                                 | J. Berzelius                                                 | <b>(b)</b>   | J.J. Thomson                                      |
|            | <b>(c)</b>                                          | Johon Dalton                                                 | <b>(d)</b>   | Democritus                                        |
| 10.        | The                                                 | mass of H-atom is 1.008 a.m.u                                | ı. Its       | mass in kg should be———:                          |
|            | (a)                                                 | $1.008 \times 1.661 \times 10^{-23} \text{ kg}$              | <b>(b)</b>   | $\frac{1.008}{1.661 \times 10^{-27}} \mathrm{kg}$ |
|            | (c)                                                 | $1.008 \times 1.661 \times 10^{-27} \text{ kg}$              | <b>(d)</b>   | $1.661 \times 10^{-27} \mathrm{kg}$               |
| 11.        | The                                                 | atomicity of one molecule of I                               | Iaem         | oglobin is:                                       |
|            | ( <b>a</b> )                                        | 10,000                                                       | <b>(b)</b>   | 68,000                                            |
|            | (c)                                                 | 17,000                                                       | <b>(d)</b>   | 100,000                                           |
| 12.        | For                                                 | mation of uninegative ion is:                                |              |                                                   |
|            | (a)                                                 | Exothermic                                                   | <b>(b)</b>   | Endothermic                                       |
|            | (c)                                                 | Both (a) & (b)                                               | (d)          | None of these                                     |
| 13.        | Whi                                                 | ich of the following elements h                              | as nii       | ne isotopes:                                      |
|            | (a)                                                 | Ca                                                           | <b>(b)</b>   | Pd                                                |
|            | (c)                                                 | Cd                                                           | <b>(d)</b>   | Sn                                                |
| 14.        | Whi                                                 | ich of the followin <mark>g w</mark> ill <mark>form</mark> s | ingle        | <mark>pe</mark> ak in mass spectrograph:          |
|            | (a)                                                 | Iodine                                                       | <b>(b)</b>   | Arsenic                                           |
|            | <b>(c)</b>                                          | Fluorine                                                     | ( <b>d</b> ) | All of these                                      |
| <b>15.</b> | Whi                                                 | ich one of the following contain                             | ns ma        | ximum no. of molecules:                           |
|            | (a)                                                 | 16.0 g of CH <sub>4</sub>                                    | <b>(b)</b>   | 16.0 g of O <sub>2</sub>                          |
|            | <b>(c)</b>                                          | 16.0 g of SO <sub>2</sub>                                    | <b>(d)</b>   | 16.0 g of H <sub>2</sub> O                        |
| 16.        | Ato                                                 | ms <mark>of all the ele</mark> ments always c                | ontai        | n in nucleus:                                     |
|            | ( <b>a</b> )                                        | Proton                                                       | <b>(b)</b>   | Proton and neutron                                |
|            | (c)                                                 | Neutron                                                      | <b>(d)</b>   | Electron and neutron                              |
| 17.        |                                                     | ual <mark>yi</mark> eld of a chemical reac<br>ause:          | tion         | is always less than theoretical yield             |

|     | (a)        | Side reactions                                                          | <b>(b)</b>   | Wastage of products                               |
|-----|------------|-------------------------------------------------------------------------|--------------|---------------------------------------------------|
|     | (c)        | Reversible reactions                                                    | ( <b>d</b> ) | All of these                                      |
| 18. | Mas        | ss of sodium in 53 g of Na <sub>2</sub> CO <sub>3</sub>                 | is:          |                                                   |
|     | (a)        | 23 g                                                                    | <b>(b)</b>   | 46 g                                              |
|     | (c)        | 92 g                                                                    | <b>(d)</b>   | 106 g                                             |
| 19. |            | noles each of Mg and O <sub>2</sub> react lld be:                       | to fo        | rm MgO. The amount of MgO formed                  |
|     | (a)        | 20 g                                                                    | <b>(b)</b>   | 400 g                                             |
|     | (c)        | 800 g                                                                   | <b>(d)</b>   | 1600 g                                            |
| 20. | The        | number of peaks obtained in 1                                           | mass         | spectrometry shows:                               |
|     | (a)        | Charge on isotope                                                       | <b>(b)</b>   | Mass of isotope                                   |
|     | (c)        | Number of isotopes                                                      | <b>(d)</b>   | Relative abundance of isotopes                    |
| 21. | Mol        | ecular mass of water (18 g) me                                          | eans:        |                                                   |
|     | (a)        | Mole                                                                    | <b>(b)</b>   | Gram mole                                         |
|     | <b>(c)</b> | Gram molecule                                                           | ( <b>d</b> ) | All of these                                      |
| 22. | Whi        | ich of the following ion format                                         | ion is       | always exothermic:                                |
|     | (a)        | Uninegative                                                             | <b>(b)</b>   | Unipositive                                       |
|     | <b>(c)</b> | Dinegative                                                              | ( <b>d</b> ) | Dipositive                                        |
| 23. |            | number of isotopes of <mark>el</mark> emen<br>iber are:                 | ts wit       | th even mass number and even atomic               |
|     | (a)        | 280                                                                     | <b>(b)</b>   | 300                                               |
|     | (c)        | 154                                                                     | <b>(d)</b>   | 54                                                |
| 24. | Whi        | ich one of th <mark>e follow</mark> ing is <mark>not</mark> t           | he m         | ono isotopic element:                             |
|     | (a)        | Arsenic                                                                 | <b>(b)</b>   | Uranium                                           |
|     | <b>(c)</b> | Iodine                                                                  | <b>(d)</b>   | Gold                                              |
| 25. | Per        | ce <mark>nta</mark> ge of oxyg <mark>e</mark> n in calcium ca           | arbor        | nate is:                                          |
|     | (a)        | 40%                                                                     | <b>(b)</b>   | 48%                                               |
|     | (c)        | 12%                                                                     | <b>(d)</b>   | 16%                                               |
| 26. |            | ich o <mark>ne</mark> of the following substar<br>l <mark>ysi</mark> s: | nces i       | is used as CO <sub>2</sub> absorber in combustion |

|            | (a)                                                              | Mg(ClO <sub>4</sub> ) <sub>2</sub>                                     | ( <b>b</b> ) | 50% KOH                                |  |
|------------|------------------------------------------------------------------|------------------------------------------------------------------------|--------------|----------------------------------------|--|
|            | (c)                                                              | Lime water                                                             | <b>(d)</b>   | Dilute NaOH                            |  |
| <b>27.</b> | Which one of the following properties is always in whole number: |                                                                        |              |                                        |  |
|            | (a)                                                              | Atomic mass                                                            | <b>(b)</b>   | Atomic radius                          |  |
|            | <b>(c)</b>                                                       | Atomic volume                                                          | ( <b>d</b> ) | Atomic number                          |  |
| 28.        | Wh                                                               | at is the mass of one mole of Io                                       | dine:        |                                        |  |
|            | (a)                                                              | 53 g                                                                   | <b>(b)</b>   | 74 g                                   |  |
|            | <b>(c)</b>                                                       | 127 g                                                                  | ( <b>d</b> ) | 254 g                                  |  |
| 29.        | 0.5                                                              | moles of H <sub>2</sub> SO <sub>4</sub> contains "X" n                 | noles        | of oxygen atoms "X" is:                |  |
|            | (a)                                                              | 0.5                                                                    | <b>(b)</b>   | 1.0                                    |  |
|            | (c)                                                              | 2.0                                                                    | ( <b>d</b> ) | 4.0                                    |  |
| <b>30.</b> | Wh                                                               | at will weigh more:                                                    |              |                                        |  |
|            | (a)                                                              | 2 mole N <sub>2</sub>                                                  | <b>(b)</b>   | 1 mole O <sub>3</sub>                  |  |
|            | <b>(c)</b>                                                       | 2 mole O <sub>2</sub>                                                  | ( <b>d</b> ) | 2 mole CO <sub>2</sub>                 |  |
| 31.        | The                                                              | number of electrons in one me                                          | ole of       | $\mathbf{H}_2$ is:                     |  |
|            | (a)                                                              | $6.02 \times 10^{23}$                                                  | <b>(b)</b>   | $3.01 \times 10^{23}$                  |  |
|            | (c)                                                              | $12.04 \times 10^{23}$                                                 | (d)          | Indefinite                             |  |
| 32.        | CO                                                               | is an example of:                                                      |              |                                        |  |
|            | (a)                                                              | Free radical                                                           | <b>(b)</b>   | Cationic molecular ion                 |  |
|            | <b>(c)</b>                                                       | Anionic molecular ion                                                  | (d)          | Stable molecule                        |  |
| 33.        |                                                                  | ative atomic mass is the mass of some atom of:                         | f an a       | atom of an element as compared to the  |  |
|            | (a)                                                              | Oxygen                                                                 | <b>(b)</b>   | Hydrogen                               |  |
|            | <b>(c)</b>                                                       | Nitrogen                                                               | ( <b>d</b> ) | Carbon                                 |  |
| 34.        | Per                                                              | ce <mark>nt</mark> age of oxyg <mark>en</mark> in H <sub>2</sub> O is: |              |                                        |  |
|            | (a)                                                              | 80%                                                                    | ( <b>b</b> ) | 88.8%                                  |  |
|            | (c)                                                              | 8.8%                                                                   | ( <b>d</b> ) | 9.8%                                   |  |
| 35.        | Lar                                                              | ge n <mark>o o</mark> f isotopes are known for                         | the e        | elements whose masses are multiple of: |  |
|            | (a)                                                              | Two                                                                    | ( <b>b</b> ) | Four                                   |  |
|            |                                                                  |                                                                        |              |                                        |  |

(c) Six

(d) Eight

36. The least no of molecules is present in 30 g of:

(a)  $N_2O$ 

**(b)** NO

(c)  $NO_2$ 

 $(\mathbf{d})$   $N_2O_3$ 

37. How many atoms of carbon are present in 18 g of glucose  $C_6H_{12}O_6$ :

(a)  $6.02 \times 10^{22}$ 

**(b)**  $3.6 \times 10^{23}$ 

(c)  $6.0 \times 10^{23}$ 

(d)  $3.6 \times 10^{24}$ 

38. The relative atomic mass of oxygen according to C –12.000 a.m.u standard is:

(a) Less than 16

**(b)** More than 16

**(c)** 16 only

(d) No relationship

39. An organic compound contains 2% of sulphur. The molar mass of compound is:

**(a)** 200

**(b)** 800

**(c)** 1600

**(d)** 3200

40. The mass of 0.5 mole of Aluminium is:

**(a)** 13 g

**(b)** 13.5 g

(c) 14 g

(**d**) 27 g

| 1.  | (c) | 2.  | (d) | 3.  | (b) | 4.  | (a) | 5.  | (a) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 6.  | (c) | 7.  | (d) | 8.  | (d) | 9.  | (a) | 10. | (c) |
| 11. | (a) | 12. | (a) | 13. | (c) | 14. | (d) | 15. | (a) |
| 16. | (a) | 17. | (d) | 18. | (a) | 19. | (c) | 20. | (c) |
| 21. | (d) | 22. | (a) | 23. | (c) | 24. | (b) | 25. | (b) |
| 26. | (b) | 27. | (d) | 28. | (d) | 29. | (c) | 30. | (d) |
| 31. | (c) | 32. | (b) | 33. | (d) | 34. | (b) | 35. | (b) |
| 36. | (d) | 37. | (b) | 38. | (a) | 39. | (c) | 40. | (b) |



# EXPERIMENTAL TECHNIQUES IN CHEMISTRY

| 1. | Flut | ed filter paper is used to:                                  |            |                              |
|----|------|--------------------------------------------------------------|------------|------------------------------|
|    | (a)  | Filter hot solution                                          | <b>(b)</b> | Decrease the area            |
|    | (c)  | Avoid premature crystallization                              |            | Speed up filtration          |
| 2. | Safe | and most reliable met <mark>ho</mark> d of d                 | lryin      | g crystals is through:       |
|    | (a)  | Filter paper                                                 | <b>(b)</b> | Desicator                    |
|    | (c)  | Oven                                                         | (d)        | None                         |
| 3. | A pı | rocess controlled by <mark>distrib</mark> utio               | n lav      | v:                           |
|    | (a)  | Crystallization                                              | <b>(b)</b> | Sublimation                  |
|    | (c)  | Solvent extraction                                           | (d)        | Filtration                   |
| 4. | The  | te <mark>c</mark> hnique use <mark>d t</mark> o separate ins | olub       | le particles from liquid is: |
|    | (a)  | Crystallization Crystallization                              | <b>(b)</b> | Sublimation                  |
|    | (c)  | Filtration                                                   | (d)        | Solvent extraction           |
| 5. | The  | solid which is left over the filte                           | er pa      | per is called:               |
|    | (a)  | Filtrate                                                     | <b>(b)</b> | Residue                      |
|    | (c)  | Crystals                                                     | (d)        | Mud                          |
| 6. | The  | solution left behind after the s                             | epar       | ation of crystals is called: |
|    | (a)  | Residue                                                      | <b>(b)</b> | Mud                          |
|    | (c)  | Crystals                                                     | <u>(d)</u> | Mother liquor                |
| 7. | Size | of filter paper is selected accor                            | rding      | g to the amount of:          |

| OBJE | CTIVE            | CHEMISTRY PART-I                                 |            |                               | ع<br>ع |
|------|------------------|--------------------------------------------------|------------|-------------------------------|--------|
|      | (a)              | Solution                                         | <b>(b)</b> | Precipitates                  |        |
|      | (c)              | Water                                            | (d)        | Solid particles               |        |
| 8.   | Goo              | och crucibles are made up of:                    |            |                               |        |
|      | (a)              | Plastic                                          | <b>(b)</b> | Glass                         |        |
|      | <u>(c)</u>       | Porcelain                                        | (d)        | Steel                         |        |
| 9.   | Sint             | tered crucible is made up of:                    |            |                               |        |
|      | (a)              | Plastic                                          | <b>(b)</b> | Glass                         |        |
|      | (c)              | Porcelain                                        | (d)        | Steel                         |        |
| 10.  | Wh               | ich of the following can't be f                  | iltered    | l by sintered glass crucible: |        |
|      | (a)              | KMnO <sub>4</sub> solution                       | <b>(b)</b> | Concentrated HCl              |        |
|      | (c)              | Concentrated HF                                  | (d)        | AgCl precipitates             |        |
| 11.  | Tip              | of funnel should be along the                    | side o     | of breaker to avoid:          |        |
|      | (a)              | Leakage                                          | <b>(b)</b> | Splashing                     |        |
|      | (c)              | Sampling                                         | (d)        | All of above                  |        |
| 12.  | Mix              | ture of NaCl and NH4Cl can                       | be sep     | parated by:                   |        |
|      | (a)              | Filtration                                       | <b>(b)</b> | Crystallization               |        |
|      | (c)              | Sublimation                                      | (d)        | Solvent extraction            |        |
| 13.  | Col              | d f <mark>ing</mark> er is used for effective:   |            |                               |        |
|      | (a)              | Filtration                                       | <b>(b)</b> | Crystallization               |        |
|      | (c)              | Sublimation                                      | (d)        | Chromatography                |        |
| 14.  | Pb <sup>2-</sup> | <sup>†</sup> in paper chromatography ai          | re loca    | ated by using:                |        |
|      | (a)              | Rubeanic acid                                    | <b>(b)</b> | Carbon disulphide             |        |
|      | (c)              | Ninhydrin                                        | (d)        | Hydrogen sulphide             |        |
| 15.  | Cry              | stallization does not involve:                   |            |                               |        |
|      | (a)              | Heating                                          | <b>(b)</b> | Sublimation                   |        |
|      | (c)              | Cooling                                          | (d)        | Vaporization                  |        |
| 16.  | In C             | CCl <sub>4</sub> solvent, I <sub>2</sub> show——— | — со       | lour:                         |        |
|      | (a)              | Red                                              | (b)        | Purple                        |        |
|      |                  |                                                  |            |                               |        |

| ODUL | OTIVE      | OHEIMOTKI I AKI-I                          |               |                                                                   |
|------|------------|--------------------------------------------|---------------|-------------------------------------------------------------------|
|      | (c)        | Blue                                       | (d)           | Yellow                                                            |
| 17.  | In a       | dsorption chromatogra                      | aphy alumina  | a and silica gel are used as:                                     |
|      | (a)        | Mobile phase                               | <b>(b)</b>    | Stationary phase                                                  |
|      | (c)        | Mixed phase                                | (d)           | Single phase                                                      |
| 18.  | The        | solvent or mixture of s                    | olvent used 1 | for separation of <mark>compou</mark> nds is <mark>called:</mark> |
|      | (a)        | Mobile phase                               | <b>(b)</b>    | Stationary phase                                                  |
|      | (c)        | Mixed phase                                | (d)           | Static phase                                                      |
| 19.  |            | separation of two mising points is called: | scible liquid | by heating due to difference of their                             |
|      | (a)        | Vaporization                               | <b>(b)</b>    | Condensation                                                      |
|      | <u>(c)</u> | Distillation                               | (d)           | Sublimation                                                       |
| 20.  | The        | component which show                       | vs maximum    | affinity for stationary phase will have:                          |
|      | (a)        | Large R <sub>f</sub> value                 | (b)           | Small R <sub>f</sub> value                                        |
|      | (c)        | Intermediate R <sub>f</sub> value          | (d)           | None of above                                                     |

| 1.  | (d) | 2.  | (b) | 3.  | (c) | 4.  | (c) | 5.  | (b) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 6.  | (d) | 7.  | (b) | 8.  | (c) | 9.  | (b) | 10. | (c) |
| 11. | (b) | 12. | (c) | 13. | (c) | 14. | (d) | 15. | (b) |
| 16. | (b) | 17. | (b) | 18. | (a) | 19. | (c) | 20. | (b) |



#### **GASES**

|           |      | WOLIN EE                                                                                 |               | L QUESTIONS                                      |
|-----------|------|------------------------------------------------------------------------------------------|---------------|--------------------------------------------------|
| 1.        | Line | d's method is employed                                                                   | for:          |                                                  |
|           | (a)  | Separation of gases                                                                      | (b)           | Expansion of gases                               |
|           | (c)  | Compression of gases                                                                     | ( <b>d</b> )  | Liquification of gases                           |
| 2.        |      | at will be the pressure cm <sup>3</sup> volume:                                          | of 1 mole of  | an ideal gas maintained at 300 K and             |
|           | (a)  | 98.5 atm                                                                                 | (b)           | 96.7 atm                                         |
|           | (c)  | 95.8 atm                                                                                 | (d)           | 97.1 atm                                         |
| <b>3.</b> | •    | _                                                                                        | _             | idly than volume of an unknown gas,              |
|           |      | ar mass of unknown <mark>g</mark> a                                                      |               |                                                  |
|           |      | 16 g-mol <sup>-1</sup>                                                                   | (b)           | 32 g-mol <sup>-1</sup> 64 g-mol <sup>-1</sup>    |
|           | (c)  | $48 \text{ g-mol}^{-1}$                                                                  | (d)           | 64 g-mol <sup>-1</sup>                           |
| 4.        | The  | hig <mark>hest te</mark> mper <mark>atur</mark> e a                                      | t which a su  | bstance can exist as a liquid is called          |
|           | its: |                                                                                          |               |                                                  |
|           | (a)  | Critical temperature                                                                     | <b>(b)</b>    | Transition temperature                           |
|           | (c)  | Absolute temperature                                                                     | (d)           | Standard temperature                             |
| <b>5.</b> |      | expression for root me                                                                   | an square ve  | locity is:                                       |
|           | (a)  | $C_{\rm rms} = \left(\frac{3RT}{M}\right)^{1/2}$                                         | (b)           | $C_{\rm rms} = \left(\frac{3PV}{M}\right)^{1/2}$ |
|           | (c)  | $C_{rms} = \left(\frac{3RT}{M}\right)^{1/2}$ $C_{rms} = \left(\frac{3P}{d}\right)^{1/2}$ | <u>(d)</u>    | All are correct                                  |
| 6.        | The  | kinetic molecular theo                                                                   | ry of gases w | as put forward in 1738 by:                       |
|           | (a)  | Boltzman                                                                                 | <b>(b)</b>    | Maxwell                                          |
|           | (c)  | Clausius                                                                                 | (d)           | Bernouli                                         |
| 7.        | The  | spreading of fragrance                                                                   | in air is due | e to:                                            |
|           | (a)  | Diffusion                                                                                | <b>(b)</b>    | Effusion                                         |
|           | (c)  | Density                                                                                  | (d)           | Compression                                      |

| OBJE       | CIIVE | CHEWISTRY PART-I                                        |                        |                                      | UU  |
|------------|-------|---------------------------------------------------------|------------------------|--------------------------------------|-----|
| 8.         | The   | partial pressure of oxyger                              | in air is:             |                                      |     |
|            | (a)   | 760 torr                                                | <b>(b)</b>             | 323 torr                             |     |
|            | (c)   | 159 torr                                                | (d)                    | 116 torr                             |     |
| 9.         | Wh    | at is the simplest form of n                            | natter:                |                                      |     |
|            | (a)   | Solid                                                   | <b>(b)</b>             | Liquid                               |     |
|            | (c)   | Gas                                                     | (d)                    | Plasma                               |     |
| 10.        | The   | equation $V_T = V_o \left( 1 + \frac{t}{273} \right)$   | ) is based             | l on:                                |     |
|            | (a)   | Farenheight scale                                       | <b>(b)</b>             | Celsius scale                        |     |
|            | (c)   | Kelvin scale                                            | (d)                    | None of these                        |     |
| 11.        | Crit  | tical temperature of a gas o                            | depends u              | ipon:                                |     |
|            | (a)   | Size of molecule                                        | (b)                    | Shape of molecule                    |     |
|            | (c)   | Intermolecular forces                                   | (d)                    | All of these                         |     |
| 12.        | The   | diffusion of gases at absol                             | ute zero v             | vill be:                             |     |
|            | (a)   | Unchanged                                               | (b)                    | Slightly decreased                   |     |
|            | (c)   | Slightly increased                                      | (d)                    | Zero                                 |     |
| 13.        |       | constant temperature the comes:                         | pressure               | of an ideal gas is doubled, its dens | ity |
|            | (a)   | Half                                                    | <b>(b)</b>             | Double                               |     |
|            | (c)   | Same                                                    | (d)                    | None                                 |     |
| 14.        | The   | densities of gases are expr                             | essed in:              |                                      |     |
|            | (a)   | $kg-m^{-3}$                                             | (b)                    | g-cm <sup>-3</sup>                   |     |
|            | (c)   | $g-dm^{-3}$                                             | (d)                    | All of these                         |     |
| 15.        | 0.5   | mo <mark>le of NO</mark> 2 an <mark>d</mark> 0.5 mole o | of SO <sub>3</sub> gas | s have equal:                        |     |
|            | (a)   | Volume                                                  | <b>(b)</b>             | Molecules                            |     |
|            | (c)   | Mass                                                    | (d)                    | Atoms                                |     |
| 16.        | Wh    | ich o <mark>ne</mark> has the lowest dens               | sity at roo            | om temperature:                      |     |
|            | (a)   | Ne                                                      | <b>(b)</b>             | $N_2$                                |     |
|            | (c)   | $NH_3$                                                  | (d)                    | CO                                   |     |
| <b>17.</b> | Wh    | ich of these gases diffuse m                            | ore quicl              | kly than oxygen:                     |     |
|            | (a)   | $H_2S$                                                  | <b>(b)</b>             | NO                                   |     |
|            | (c)   | $Cl_2$                                                  | ( <b>d</b> )           | $N_2O$                               |     |
| 18.        | Wh    | ich of the following is not a                           | ın interm              | olecular force between molecules:    |     |
|            | (a)   | Covalent bonds                                          | (b)                    | Hydrogen bond                        |     |
|            | (c)   | Debye forces                                            | (d)                    | Ion-dipole force                     |     |

| OBJEC | TIVE         | CHEMISTRY PART-I                                               |                 | 07                                                             |
|-------|--------------|----------------------------------------------------------------|-----------------|----------------------------------------------------------------|
| 19.   | The          | weakest intermolecular force                                   | is:             |                                                                |
|       | (a)          | Hydrogen bonding                                               | <b>(b)</b>      | Debye force                                                    |
|       | (c)          | London force                                                   | (d)             | Ion-dipole force                                               |
| 20.   | Und          | er what conditions real gases                                  | deviat          | e from ideal behaviour:                                        |
|       | <u>(a)</u>   | High temperature                                               | <b>(b)</b>      | Low temperature                                                |
|       | (c)          | High pressure                                                  | (d)             | Both (b) and (c)                                               |
| 21.   | _            | al masses of methane and or<br>C. The fraction of total pressu |                 | are mixed in an empty container at rted by oxygen is:          |
|       | (a)          | $\frac{1}{3}$                                                  | <b>(b)</b>      | $\frac{8}{9}$                                                  |
|       | (c)          | $\frac{1}{9}$                                                  | (d)             | 16<br>17                                                       |
| 22.   | The          | molar volume of CO2 is maxi                                    | mum :           | at:                                                            |
|       | (a)          | STP                                                            | (b)             | 127°C and 1 atm                                                |
|       |              | 0°C and 2 atm                                                  | (d)             | 273°C and 2 atm                                                |
| 23.   |              | ich of the following gase <mark>s</mark> diffu                 | ise mo          | re rapidly:                                                    |
|       | (a)          | $Cl_2$                                                         |                 | $CO_2$                                                         |
|       | (c)          | CH <sub>4</sub>                                                | (d)             | $N_2$                                                          |
| 24.   | For          | a gas obeying Boyle's law if p                                 | ressur          | e is doubled the volume becomes:                               |
|       | (a)          | Double                                                         | ( <del>b)</del> | One half                                                       |
|       | (c)          | One forth                                                      | (d)             | Remains constant                                               |
| 25.   | Acc<br>ratio |                                                                | rate of         | f diffusion of H <sub>2</sub> and O <sub>2</sub> gases has the |
|       | (a)          | 1:4                                                            | <b>(b)</b>      | $1:\sqrt{4}$                                                   |
|       | (FIF         | <b>7</b> 4 : 1                                                 | (d)             | 3:32                                                           |
| 26.   | Boy          | le's law is represented as:                                    |                 |                                                                |
|       | (a)          | V ∝ T                                                          | <b>(b)</b>      | $V \propto P$                                                  |
|       | ( Constant   | $V \propto \frac{1}{P}$                                        | (d)             | $P \propto \frac{1}{T}$                                        |
| 27.   | Abs          | olute zero is equal to:                                        |                 |                                                                |
|       | (a)          | –273.15 K                                                      | <b>(k)</b>      | −273.15°C                                                      |
|       | (c)          | 273.15°C                                                       | (d)             | −273.15°C<br>−237.15°C                                         |
| 28.   | ` ′          | ich one of the following gases i                               | ` ′             |                                                                |
|       | (a)          | $SO_2$                                                         | (b)             | NH <sub>3</sub>                                                |
|       |              | $H_2$                                                          | (d)             | $H_2S$                                                         |
|       |              |                                                                |                 |                                                                |

| 29.        | Which gas deviate more f                         | rom ideal behaviour at high pressure:                          |
|------------|--------------------------------------------------|----------------------------------------------------------------|
|            | (a) $H_2$                                        | <b>(b)</b> He                                                  |
|            | (c) Ar                                           | $NH_3$                                                         |
| 30.        | Eight grams each of O2 ar                        | ad $ m H_2$ at 27°C will have total K.E in the ratio:          |
|            | <b>(a)</b> 1:1                                   | <b>(b)</b> 16:1                                                |
|            | (c) 8:1                                          | ( <b>1</b> ) 1:16                                              |
| 31.        | Which pair of gases do no                        | t obey Dalton's law of partial pressure:                       |
|            | (a) $H_2$ and $O_2$                              | <b>(b)</b> $N_2$ and $O_2$                                     |
|            | $($ NH $_3$ and HCl                              | (d) $H_2$ and $He$                                             |
| <b>32.</b> | Which gas cannot be drie                         | d by passing over H <sub>2</sub> SO <sub>4</sub> :             |
|            | (a) $SO_2$                                       | (b) H2                                                         |
|            | (c) $NO_2$                                       | $\mathcal{H}_2S$                                               |
| 33.        | One dm <sup>3</sup> of H <sub>2</sub> at STP cor | itains numbe <mark>r</mark> of molecul <mark>es:</mark>        |
|            | (a) $6.022 \times 10^{23}$                       | <b>(b)</b> $6.022 \times 10^{22}$                              |
|            | (4) 2.68 × 10 <sup>22</sup>                      | (d) $3.01 \times 10^{23}$                                      |
| 34.        | Which one of the followin                        | g <mark>h</mark> as least crit <mark>ic</mark> al temperature: |
|            | $(a)$ $O_2$                                      | <b>(b)</b> NH <sub>3</sub>                                     |
|            | (c) H <sub>2</sub> O                             | (d) HCl                                                        |
| 35.        | Which one of the follow velocity at 25°C:        | ring molecules have maximum root mean square                   |
|            | (a) $CO_2$                                       | (b) $H_2S$                                                     |
|            | ( <b>9</b> ) NH <sub>3</sub>                     | ( <b>d</b> ) CO <sub>2</sub>                                   |
|            |                                                  |                                                                |

| 1.  | (d) | 2.  | (a) | 3.  | (b) | 4.  | (a) | 5.  | (d) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 6.  | (d) | 7.  | (a) | 8.  | (c) | 9.  | (c) | 10. | (b) |
| 11. | (d) | 12. | (d) | 13. | (b) | 14. | (c) | 15. | (b) |
| 16. | (c) | 17. | (b) | 18. | (a) | 19. | (c) | 20. | (d) |
| 21. | (a) | 22. | (b) | 23. | (c) | 24. | (b) | 25. | (c) |
| 26. | (c) | 27. | (b) | 28. | (c) | 29. | (d) | 30. | (d) |
| 31. | (c) | 32. | (d) | 33. | (c) | 34. | (a) | 35. | (c) |



## **LIQUIDS AND SOLIDS**

| 1.        | VV 111 | which one of the following is psuedo sond.                 |              |                             |  |  |  |  |  |  |  |
|-----------|--------|------------------------------------------------------------|--------------|-----------------------------|--|--|--|--|--|--|--|
|           | (a)    | $CaF_2$                                                    | <b>(b)</b>   | Glass                       |  |  |  |  |  |  |  |
|           | (c)    | NaCl                                                       | <b>(d)</b>   | All                         |  |  |  |  |  |  |  |
| 2.        | In li  | In liquids, intermolecular forces are:                     |              |                             |  |  |  |  |  |  |  |
|           | (a)    | Very weak                                                  | (b)          | Very strong                 |  |  |  |  |  |  |  |
|           | (c)    | Negligi <mark>ble</mark>                                   | (d)          | Reasonably strong           |  |  |  |  |  |  |  |
| <b>3.</b> | Whi    | ich one is false for evar                                  | oration:     |                             |  |  |  |  |  |  |  |
|           | (a)    | Surface phenomenon                                         | (b)          | Continuous                  |  |  |  |  |  |  |  |
|           | (c)    | Exothermic                                                 | (d)          | Cause cooling               |  |  |  |  |  |  |  |
| 4.        | Vap    | our pressure of water                                      | at 100°C is: |                             |  |  |  |  |  |  |  |
|           | (a)    | 55 mm Hg                                                   | <b>(b)</b>   | 760 mm Hg                   |  |  |  |  |  |  |  |
|           | (c)    | 355 mm Hg                                                  | ( <b>d</b> ) | 1489 mm Hg                  |  |  |  |  |  |  |  |
| <b>5.</b> | Whi    | Which one of the following does not show hydrogen bonding: |              |                             |  |  |  |  |  |  |  |
|           | (a)    | Water                                                      | <b>(b)</b>   | Ethyl alcohol               |  |  |  |  |  |  |  |
|           | (c)    | Phenol                                                     | <b>(d)</b>   | Diethyl ether               |  |  |  |  |  |  |  |
| 6.        | Liqu   | uid <mark>c</mark> rystal is di <mark>sc</mark> overe      | d by:        |                             |  |  |  |  |  |  |  |
|           | (a)    | William Cro <mark>oks</mark>                               | <b>(b)</b>   | Fredrick Reinitzer          |  |  |  |  |  |  |  |
|           | (c)    | J.J. Thomson                                               | ( <b>d</b> ) | Braxis                      |  |  |  |  |  |  |  |
| 7.        | Hyd    | lroge <mark>n</mark> bonding involve                       | es in:       |                             |  |  |  |  |  |  |  |
|           | (a)    | So <mark>lu</mark> bility                                  | <b>(b)</b>   | Detergent                   |  |  |  |  |  |  |  |
|           | (c)    | Biological molecules                                       | (d)          | All of these                |  |  |  |  |  |  |  |
| 8.        | Wat    | ter has maxim <mark>um dens</mark>                         | ity at:      |                             |  |  |  |  |  |  |  |
|           | (a)    | 0°C                                                        | <b>(b)</b>   | 2°C                         |  |  |  |  |  |  |  |
|           | (c)    | _4°C                                                       | <b>(d)</b>   | 100°C                       |  |  |  |  |  |  |  |
| 9.        | The    | conversion of vapours                                      | back into th | eir liquid state is called: |  |  |  |  |  |  |  |
|           | (a)    | Crystallization                                            | <b>(b)</b>   | Vaporization                |  |  |  |  |  |  |  |
|           | (c)    | Distillation                                               | (d)          | Condensation                |  |  |  |  |  |  |  |

| 10. | The            | boiling point increases dow                                          | n the ze         | ro group element due to:                      |
|-----|----------------|----------------------------------------------------------------------|------------------|-----------------------------------------------|
|     | (a)            | Ion dipole forces                                                    | <del>-(b)</del>  | London forces                                 |
|     | (c)            | Hydrogen bonding                                                     | (d)              | Dipole-dipole forces                          |
| 11. | Vap            | our pressure is not affected                                         | by:              |                                               |
|     | <u>(a)</u>     | Surface area                                                         | <b>(b)</b>       | Temperature                                   |
|     | (c)            | Pressure                                                             | (d)              | Intermolecular forces                         |
| 12. | Risi           | ng of a wetting liquid in a c                                        | apillary         | tube is due to:                               |
|     | (a)            | Surface tension                                                      | <b>(b)</b>       | Cohesive forces                               |
|     | <del>(c)</del> | Adhesive forces                                                      | (d)              | Viscosity                                     |
| 13. | Ker            |                                                                      | -                | ecause it has surface te <mark>ns</mark> ion: |
|     | (a)            | Very strong                                                          | <b>(b)</b>       | Very weak                                     |
|     | (c)            | Zero                                                                 | (d)              | No effect on surface tension                  |
| 14. |                | ar heat of vaporization of w                                         |                  |                                               |
|     | (a)            | 40.7 KJ/mole                                                         | (b)              | 40.7 J/mole                                   |
|     | (c)            | 40.7 cal/mole                                                        | (d)              | 40.7 KCal/mole                                |
| 15. |                | olid may be made up of:                                              |                  |                                               |
|     | (a)            | Atoms                                                                | (b)              | Ions                                          |
|     | (c)            | Molecules                                                            | ( <del>d</del> ) | All                                           |
| 16. |                | $b \neq c$ , $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$ is repr |                  |                                               |
|     | (a)            | Monoclinic                                                           | (h)              | Triclinic                                     |
|     | (c)            | Hexagonal                                                            | (d)              | Trigonal                                      |
| 17. |                | ich solids ar <mark>e called</mark> true sol                         |                  |                                               |
|     | (a)            | Metallic                                                             | (b)              | Amorphous                                     |
|     |                | Crystalline                                                          | (d)              | Vitreous                                      |
| 18. |                | k <mark>y b</mark> alls is an a <mark>ll</mark> otropic fori         |                  |                                               |
|     | (a)            | •                                                                    | <del>(b)</del>   | Carbon                                        |
|     | (c)            | Silica                                                               | (d)              | Tin                                           |
| 19. |                | <mark>ich one</mark> of the following is is                          | otropic:         |                                               |
|     | (a)            | Graphite Graphite                                                    | <u>(b)</u>       | Mercury                                       |
|     | (c)            | Borax                                                                | (d)              | Brass                                         |
| 20. | Inst           | antaneous dipole and induc                                           | e dipole         | force is also called:                         |
|     | (a)            | Debye force                                                          | <del>(b)</del>   | London disperssion force                      |
|     | (c)            | Van der Waal's force                                                 | (d)              | Hydrogen bonding                              |
| 21. | Pola           | rizability generally———                                              | —— dov           | vn the group:                                 |
|     | <del>(a)</del> | Increases                                                            | <b>(b)</b>       | Decreases                                     |
|     | (c)            | Negligible                                                           | (d)              | Remain constant                               |

| 22.        | Eva            | Evaporation of water is possible at:                                      |                |                                           |  |  |  |  |
|------------|----------------|---------------------------------------------------------------------------|----------------|-------------------------------------------|--|--|--|--|
|            | (a)            | 0°C                                                                       | <b>(b)</b>     | 100°C                                     |  |  |  |  |
|            | (c)            | Above 100°C                                                               | (d)            | All temperature                           |  |  |  |  |
| 23.        | Who            | en external pressure is 23.7 tor                                          | r, boi         | iling point of water is:                  |  |  |  |  |
|            | (a)            | 200°C                                                                     | <b>(b)</b>     | 100°C                                     |  |  |  |  |
|            | (c)            | 98°C                                                                      | <del>(d)</del> | 25°C                                      |  |  |  |  |
| 24.        | Exis           | stence of an element in more th                                           | an or          | ne form is known as:                      |  |  |  |  |
|            | <del>(a)</del> | Allotropy                                                                 | <b>(b)</b>     | Isomorphism                               |  |  |  |  |
|            | (c)            | Isotropy                                                                  | (d)            | None of these                             |  |  |  |  |
| <b>25.</b> | Mol            | ecular crystals are generally:                                            |                |                                           |  |  |  |  |
|            | (a)            | Hard                                                                      | <del>(b)</del> | - Relatively soft                         |  |  |  |  |
|            | (c)            | Unstable                                                                  | <b>(d)</b>     | Do not exist                              |  |  |  |  |
| <b>26.</b> | Whi            | ich pair of molecules have Deb                                            | ye fo          | rces in them:                             |  |  |  |  |
|            | (a)            |                                                                           | (b)            | Argon and water                           |  |  |  |  |
|            | (c)            | Na <sup>+</sup> ion and water                                             | (d)            | Water and water                           |  |  |  |  |
| 27.        | Whi            | ich one of the following liquid                                           | has lo         | w vapour p <mark>re</mark> ssure at 25°C: |  |  |  |  |
|            | (a)            | Water                                                                     | (b)            | Ethyl alcohol                             |  |  |  |  |
|            | (c)            | Acetone                                                                   | (d)            | Diethyl ether                             |  |  |  |  |
| 28.        |                | shape of diamond crystal is:                                              |                |                                           |  |  |  |  |
|            | <u>(a)</u>     | _Cubic                                                                    | (b)            | Hexagonal                                 |  |  |  |  |
|            | (c)            | Tetragonal                                                                | (d)            | Orthorhombic                              |  |  |  |  |
| 29.        | Whi            | ich pair of <mark>co</mark> mpou <mark>n</mark> ds a <mark>re</mark> ison | norpł          | nic in nature:                            |  |  |  |  |
|            | (a)            | NaCl and KNO <sub>3</sub>                                                 | <b>(b)</b>     | KNO <sub>3</sub> and MgO                  |  |  |  |  |
|            | ` ,            | MgO and NaF                                                               | <b>(d)</b>     | NaF and CaCO <sub>3</sub>                 |  |  |  |  |
| 30.        | Cry            | st <mark>al</mark> line solids d <mark>o</mark> not have:                 |                |                                           |  |  |  |  |
|            | (a)            | Rigidity                                                                  | <b>(b)</b>     | Characteristic geometry                   |  |  |  |  |
|            | <del>(c)</del> | <del>Compre</del> ssibility                                               | <b>(d)</b>     | All above                                 |  |  |  |  |
|            |                |                                                                           |                |                                           |  |  |  |  |

| 1.  | (b) | 2.  | (d) | 3.  | (c) | 4.  | (b) | 5.  | (d) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 6.  | (b) | 7.  | (d) | 8.  | (c) | 9.  | (d) | 10. | (b) |
| 11. | (a) | 12. | (c) | 13. | (b) | 14. | (a) | 15. | (d) |
| 16. | (b) | 17. | (c) | 18. | (b) | 19. | (b) | 20. | (b) |
| 21. | (a) | 22. | (d) | 23. | (d) | 24. | (a) | 25. | (b) |
| 26. | (b) | 27. | (a) | 28. | (a) | 29. | (c) | 30. | (c) |



## **ATOMIC STRUCTURE**

| 1. | The        | maximum num                                    | ber of electrons in a              | sub-shell with $l = 3$ is:   |
|----|------------|------------------------------------------------|------------------------------------|------------------------------|
|    | (a)        | 6                                              | <b>(b)</b>                         | 10                           |
|    | <u>(c)</u> | 14                                             | (d)                                | 18                           |
| 2. | Rad        | ius of the third                               | shell of H-atom is:                |                              |
|    | (a)        | 5.716°A                                        | <u>(b)</u>                         | 4.761°A                      |
|    | (c)        | 6.671°A                                        | (d)                                | 3.716°A                      |
| 3. | Colo       | our of fluorescei                              | nce pro <mark>du</mark> ced by cat | hode rays depends upon:      |
|    | (a)        | Temperature                                    | (b)                                | Pressure                     |
|    | (c)        | Volume                                         | <u>-(d)</u>                        | Composition of glass         |
| 4. | A fa       | st moving <mark>ne</mark> utr                  | on c <mark>an ejec</mark> t from n | itrogen:                     |
|    | (a)        | γ-rays                                         | (b)                                | α-rays                       |
|    | (c)        | β-rays                                         | (d)                                | Electrons                    |
| 5. | Pres       | ss <mark>ur</mark> e in gas dis <mark>c</mark> | harge tube was kept                | t <b>:</b>                   |
|    | (a)        | 10 torr                                        | (b)                                | 1 torr                       |
|    | (c)        | 0.1 torr                                       | <del>(d)</del>                     | <b>Q</b> .01 torr            |
| 6. | Ang        | <mark>le of d</mark> eflection (               | of cathode rays in el              | ectric field was studied by: |
|    | (a)        | Hit <mark>or</mark> ff                         | <b>(b)</b>                         | Stoney                       |
|    | (0)        | Thomson                                        | (d)                                | Perrin                       |
| 7. | Posi       | tive rays give fla                             | ash on:                            |                              |
|    | (a)        | AgNO <sub>3</sub> plate                        | <b>(b)</b>                         | AgCl plate                   |
|    | (c)        | ZnO                                            | <del>- (d)</del>                   | ZnS                          |
| 8. | Free       | e neutron chang                                | e into proton with t               | he emission of:              |
|    | (a)        | Energy                                         | (b)                                | Positron                     |
|    | (c)        | Electron                                       | (d)                                | Meson                        |

| 9.         | The        | value of e/m ratio of e                                                                    | lectron is —                |                                                              |
|------------|------------|--------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------|
|            | (a)        | $6.02 \times 10^{23}$                                                                      | <b>(b)</b>                  | $1.7588 \times 10^{20}$                                      |
|            | (c)        | $9.1095 \times 10^{-31}$                                                                   | <b>(a</b> )                 | $1.7588 \times 10^{11}$                                      |
| 10.        | Cha        | rge of electron was me                                                                     | asured by:                  |                                                              |
|            | (a)        | J.J Thomson                                                                                | (Ch)                        | Millikan                                                     |
|            | (c)        | Rutherford                                                                                 | (d)                         | Perrin                                                       |
| 11.        | Ang        | gular momentum of an                                                                       | electron:                   |                                                              |
|            | (a)        | $mv = \frac{nh}{2\pi}$                                                                     | (b)                         | $mvr = \frac{nh^2}{4\pi}$                                    |
|            | (c)        | $mv = \frac{nh}{2\pi}$                                                                     | <del>(d)</del>              | $-mvr = \frac{nh}{2\pi}$                                     |
| 12.        | Plar       | ık's equation is:                                                                          |                             |                                                              |
|            | (a)        | $E = mc^2$                                                                                 | (b)                         | $mvr = \frac{nh}{2\pi}$                                      |
|            | (c)        | E = hv                                                                                     | (d)                         | $\lambda = \frac{h}{mv}$                                     |
| 13.        | Mill       | likan used ————                                                                            | i <mark>n</mark> his atomiz | er:                                                          |
|            | (a)        | Milk                                                                                       | (b)                         | Honey                                                        |
|            | <u>(c)</u> | Oil                                                                                        | (d)                         | Water                                                        |
| 14.        | Who        | en electron de-excite ba                                                                   | ack into orbit              | 1, then series obtained is:                                  |
|            | <u>(3)</u> | Lyman                                                                                      | (b)                         | Paschen                                                      |
|            | (c)        | P fund                                                                                     | ` ′                         | Brackets                                                     |
| 15.        |            | w <mark>ave number of the li</mark><br>el <mark>ength of this <mark>li</mark>ght wi</mark> |                             | by a certain source is $2 \times 10^6$ m <sup>-1</sup> . The |
|            | (a)        | 500 nm                                                                                     | <b>(b)</b>                  | 500 m                                                        |
|            | (c)        | 200 nm                                                                                     | (d)                         | $5 \times 10^7 \mathrm{m}$                                   |
| 16.        | Qua        | <mark>intum</mark> number values f                                                         | or 2p orbitals              | s are:                                                       |
|            | <b>(a)</b> | n = 2, l = 1                                                                               | <b>(b)</b>                  | n = 1, l = 2                                                 |
|            | (c)        | n = 1, l = 0                                                                               | (d)                         | n = 2, l = 0                                                 |
| <b>17.</b> | Who        | en 6d orbital is comple                                                                    | te, entering e              | lectron goes into:                                           |
|            | (a)        | 7f                                                                                         | <b>(b)</b>                  | 7s                                                           |
|            | (c)        | 7p                                                                                         | (d)                         | 7d                                                           |
| 18.        | The        | e/m value for the posit                                                                    | tive rays is m              | aximum for:                                                  |
|            | <u>(a)</u> | Hydrogen                                                                                   | <b>(b)</b>                  | Helium                                                       |
|            | (c)        | Nitrogen                                                                                   | (d)                         | Oxygen                                                       |

| ODJE | OTIVE OTIENIOTICT TART-I                  |                 |                                      | 100 |
|------|-------------------------------------------|-----------------|--------------------------------------|-----|
| 19.  | The radius of first orbit of h            | ydrogen ato     | om is:                               |     |
|      | (a) $0.329^{\circ}$ A                     | (b)             | 0.429°A                              |     |
|      | <b>(c)</b> 0.529°A                        | (d)             | 0.229°A                              |     |
| 20.  | <b>Total number of d-electrons</b>        | in an atom      | of atomic number 26 is:              |     |
|      | (a) 4                                     | (b)             | 5                                    |     |
|      | (c) 6                                     | (d)             | 7                                    |     |
| 21.  | Which of the following orbit              | al is not pos   | ssible:                              |     |
|      | <b>(a)</b> 3p                             | (b)             | 4s                                   |     |
|      | <b>(c)</b> 2d                             | (d)             | 1s                                   |     |
| 22.  | Spin quantum number was a                 | given by:       |                                      |     |
|      | (a) Aufbau                                | (b)             | Bohr                                 |     |
|      | (c) Sommerfeld                            | <del>(</del> d) | Goudsmit & Uhlenbech                 |     |
| 23.  | X-rays have same nature as:               | :               |                                      |     |
|      | (a) Alpha rays                            | (b)             | Beta rays                            |     |
|      | (c) Gamma rays                            | (d)             | Cathode rays                         |     |
| 24.  | The value of Rhdberg consta               | ant is:         |                                      |     |
|      | (a) $1.6 \times 10^7 \mathrm{m}^{-1}$     | (b)             | $1.9768 \times 10^7 \mathrm{m}^{-1}$ |     |
|      | (c) $1.09678 \times 10^7 \mathrm{m}^{-1}$ | (d)             | $1.7904 \times 10^7 \mathrm{m}^{-1}$ |     |
| 25.  | Balmer series lie in:                     |                 |                                      |     |
|      | (a) UV region                             | <b>(b)</b>      | Visible region                       |     |
|      | (c) IR region                             | (d)             | Radio wave region                    |     |
| 26.  | Which one of the following o              | orbital will l  | oe first filled:                     |     |
|      | (a) 4f                                    | <b>(b)</b>      | 5d                                   |     |
|      | (c) 3d                                    | <del>(d)</del>  | 4s                                   |     |
| 27.  | An orbital can accommodate                | e max. of:      |                                      |     |
|      | (a) 2 electrons                           | <b>(b)</b>      | 1 electron                           |     |
|      | (c) 8 electrons                           | (d)             | 18 electrons                         |     |
| 28.  | The orbital which is spheric              | ally symmet     | trical is:                           |     |
|      | <b>(a)</b> p                              | (b)             | d                                    |     |
|      | <b>(c)</b> f                              | <u> (d)</u>     | S                                    |     |
| 29.  | The SI unit of wave number                | is:             |                                      |     |
|      | (a) Cycle per second                      | <del>(b)</del>  | $\mathrm{m}^{-1}$                    |     |
|      | (c) cm                                    | (d)             | m                                    |     |

| 30. | X-rays | were | discovered | by: |
|-----|--------|------|------------|-----|
|     |        |      |            |     |

(a) Rutherford

(b) Schrodinger

(c) Bohr

(d) Roentgen

#### 31. Which of the following particles contain 20n, 19p and 18e:

 $(a) K^+$ 

**(b)** K

(c) Ar

(d)  $Ca^{2+}$ 

#### 32. The electrons in K-shell of the atom will differ in:

- (a) Principle quantum number (n) (b) Azimuthal quantum number (l)
- (c) Magnetic quantum number (m) (d) Spin quantum number (s)

#### 33. The no. of electrons in the M. shell of the element with atomic number 24 is:

**(a)** 8

**(b)** 12

**(c)** 13

(d) 14

#### 34. The value of Plank's constant 'h' is:

- (a)  $6.625 \times 10^{-27}$  ergs-sec
- **(b)**  $66.256 \times 10^{-27}$  ergs-sec
- (c)  $6.02 \times 10^{-15}$  ergs-sec
- (d)  $3.01 \times 10^{-23}$  ergs-sec

#### 35. If "r" is the radius of first orbit, the radius of "nth" orbit of H-atom will be:

(m)  $rn^2$ 

**(b)** rn

(c)  $\frac{r}{n}$ 

(d)  $r^2n^2$ 

| 1.  | (c) | 2.  | (b) | 3.  | (d) | 4.  | (b) | 5.  | (d) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 6.  | (c) | 7.  | (d) | 8.  | (c) | 9.  | (d) | 10. | (b) |
| 11. | (d) | 12. | (c) | 13. | (c) | 14. | (a) | 15. | (a) |
| 16. | (a) | 17. | (c) | 18. | (a) | 19. | (c) | 20. | (c) |
| 21. | (c) | 22. | (d) | 23. | (c) | 24. | (c) | 25. | (b) |
| 26. | (d) | 27. | (a) | 28. | (d) | 29. | (b) | 30. | (d) |
| 31. | (a) | 32. | (d) | 33. | (a) | 34. | (a) | 35. | (a) |



## **CHEMICAL BONDING**

| 1.        | Whic  | h of the followi               | ng has higher ele               | ctr | ron affinity:                              |
|-----------|-------|--------------------------------|---------------------------------|-----|--------------------------------------------|
|           | (a)   | F                              | <b>(b)</b>                      | }   | C1                                         |
|           | (c)   | Br                             | (d                              | )   | I                                          |
| 2.        | Whic  | h one is not the               | absolute term of                | th  | e element:                                 |
|           | (a)   | I.E                            | <b>(b</b> )                     | )   | E.A                                        |
|           | (c)   | E.N                            | (d)                             | )   | Atomic size                                |
| <b>3.</b> |       |                                | ng has <mark>m</mark> aximum    | nı  | <mark>um</mark> ber of unpaired electrons: |
|           | (a)   | ${}_{6}\mathrm{C}^{12}$        | (b)                             | )   | $7N^{14}$                                  |
|           | (c)   | $_{9}F^{19}$                   | (d                              | )   | $_{13}Al^{27}$                             |
| 4.        | Elem  | ents with <mark>hi</mark> gh i | o <mark>nization</mark> potenti | al  | values are:                                |
|           | (a)   | Metals                         | (b)                             | )   | Liquids                                    |
|           | · · · | Solids                         | (d                              | _   | Non-metals                                 |
| 5.        | The g | g <mark>eo</mark> metry of [Cu | $(NH_3)_4]^{2+}$ should         | be  | e:                                         |
|           | (a)   | Tetrahedral Tetrahedral        | <b>-(b</b>                      | )   | Square planer                              |
|           | (c)   | Trigonal                       | (d)                             | )   | Trigonal bipyramidal                       |
| 6.        |       |                                | ng elements has l               | eas | st electron affinity value:                |
|           |       | ${}_{6}C^{12}$                 | <b>(b</b> )                     |     | $_{7}N^{14}$                               |
|           | (c)   | $_8\mathrm{O}^{16}$            | (d)                             | )   | ${}_{9}F^{19}$                             |
| 7.        | Whic  | <mark>h h</mark> as the minin  | num bond angle:                 |     |                                            |
|           | (a)   | $H_2O$                         | <b>—(b</b>                      | )   | H <sub>2</sub> S<br>NF <sub>3</sub>        |
|           | (c)   | $NH_3$                         | (d)                             | )   | $NF_3$                                     |
| 8.        | Whic  | h of the followi               | ng molecule has z               | zer | o dipole moment:                           |
|           | (a)   | $ClO_2$                        | <b>(b)</b>                      | )   | $\mathrm{CS}_2$                            |
|           | (c)   | $NO_2$                         | (b)<br>(d)                      | )   | $\mathrm{SO}_2$                            |
| 9.        | In wh | nich of the follo              | wing contain co-o               | rd  | linate covalent bond:                      |
|           | (a)   | BaCl <sub>2</sub>              | (B)                             | )   | $NH_4^+$                                   |

| OBJE       | CTIVE    | CHEMISTRY PART-I                                                             |          |             |                  |         |         |             | 172         |  |  |  |
|------------|----------|------------------------------------------------------------------------------|----------|-------------|------------------|---------|---------|-------------|-------------|--|--|--|
|            | (c)      | CsCl                                                                         |          | (d)         | $H_2O$           |         |         |             |             |  |  |  |
| 10.        | In v     | which of the comp                                                            | ound, 1  | there is an | electrovalei     | at linl | kage:   |             |             |  |  |  |
|            | (a)      | $\mathrm{O}_2$                                                               |          | <b>(b)</b>  | $CCl_4$          |         |         |             |             |  |  |  |
|            | (c)      | CHCl <sub>3</sub>                                                            |          | <b>(d)</b>  | NaBr             |         |         |             |             |  |  |  |
| 11.        | Val      | ence bond theory                                                             | was pr   | oposed by:  |                  |         |         |             |             |  |  |  |
|            | (a)      | Sidgewick and I                                                              | Powell   | <b>(b)</b>  | L. Pauling       | 3       |         |             |             |  |  |  |
|            | (c)      | Lewis and Koss                                                               | el       | (d)         | Nhylholm         | and (   | Gillesp | ic          |             |  |  |  |
| <b>12.</b> | Wh       | Which of the following molecules has zero dipole moment:                     |          |             |                  |         |         |             |             |  |  |  |
|            | (a)      | $NH_3$                                                                       |          | <b>(b)</b>  | $CHCl_3$         |         |         |             |             |  |  |  |
|            | (c)      | $H_2O$                                                                       |          | (d)         | ,                |         |         |             |             |  |  |  |
| 13.        |          | Which of the hydrogen halides has the highest percentage of ionic character: |          |             |                  |         |         |             |             |  |  |  |
|            | (a)      |                                                                              |          | <b>(b)</b>  | HBr              |         |         |             |             |  |  |  |
|            | (c)      | HC1                                                                          |          | <b>(d)</b>  | HI               |         |         |             |             |  |  |  |
| 14.        |          | ich of the follov                                                            | ving m   | olecules ha | s unpaired       | elec    | trons   | in ar       | ıti-bonding |  |  |  |
|            |          | ecular orbitals:                                                             |          |             | 3.7              |         |         |             |             |  |  |  |
|            | (a)      | $O_2$                                                                        |          | (b)         | $N_2$            |         |         |             |             |  |  |  |
| 15         | (c)      | $B_2$                                                                        |          | (d)         | $F_2$            |         |         |             |             |  |  |  |
| 15.        |          | et rule is not follo                                                         | owed by  |             | CE               |         |         |             |             |  |  |  |
|            | (a)      | NF <sub>3</sub>                                                              |          | (b)         | CF <sub>4</sub>  |         |         |             |             |  |  |  |
| 1.0        | (c)      | CCl <sub>4</sub>                                                             |          | (d)         | PCl <sub>5</sub> |         | . C.    |             |             |  |  |  |
| 16.        |          | Some covalent compounds are soluble in water because of:  (b) Hydrolygic     |          |             |                  |         |         |             |             |  |  |  |
|            | (a)      | Hydration                                                                    |          | (b)         | Hydrolysi        | S       |         |             |             |  |  |  |
| 17.        | (c)      | H-bonding                                                                    | ng golid | (d)         | None             | alant   | handı   |             |             |  |  |  |
| 1/.        | _        | ich of the followi                                                           | ng sona  |             |                  | aieiii  | bonu:   |             |             |  |  |  |
|            | (2)      | Copper                                                                       |          | (b)         | Ice<br>Craphita  |         |         |             |             |  |  |  |
| 10         | (c)      | Diamond                                                                      |          | (d)         | Graphite         | l       | 4 •     | <b>.</b> 4. |             |  |  |  |
| 18.        |          | ich one of the fol                                                           | lowing   | C           |                  | narac   | ter in  | It:         |             |  |  |  |
|            | ` '      | HF                                                                           |          | (b)         | HC1              |         |         |             |             |  |  |  |
| 10         | (c)      | H <sub>2</sub> O                                                             |          | (d)         | $H_2$            |         |         |             |             |  |  |  |
| 19.        |          | ich of the followi                                                           | ng mole  | -           |                  |         |         |             |             |  |  |  |
|            | (a)      | CCl <sub>4</sub>                                                             |          | (b)         | HCl              |         |         |             |             |  |  |  |
| 20         | (c)      | BF <sub>3</sub>                                                              |          | (d)         | $CO_2$           |         |         |             |             |  |  |  |
| 20.        | <b>\</b> | ich one of the fol                                                           | lowing   |             |                  |         |         |             |             |  |  |  |
|            | (a)      | $CO_2$                                                                       |          | (b)         | $NH_3$           |         |         |             |             |  |  |  |
| 0.1        | (c)      | CH <sub>4</sub>                                                              |          | (d)         | H <sub>2</sub> O |         | • \     |             |             |  |  |  |
| 21.        |          | ich of the foll                                                              | lowing   | molecule    | (or molec        | ular    | ion)    | has         | maximum     |  |  |  |
|            | par      | amagnetism:                                                                  |          |             |                  |         |         |             |             |  |  |  |

|            | <b>(a)</b> | $O_2$                                         | (b)                                      | $O_2^+$                            |
|------------|------------|-----------------------------------------------|------------------------------------------|------------------------------------|
|            | (c)        | $O_2^-$                                       | (d)                                      | $O_2^{-2}$                         |
| 22.        | Carl       | bon atoms in acetylen                         | e (C <sub>2</sub> H <sub>2</sub> ) are – | hybrid:                            |
|            | (a)        | sp                                            | (b)                                      | $sp^2$                             |
|            | (c)        | $sp^3$                                        | (d)                                      | $dsp^2$                            |
| 23.        | The        | shape of SnCl <sub>2</sub> molec              | ule is:                                  |                                    |
|            | (a)        | Linear                                        | <b>(b)</b>                               | Angular                            |
|            | (c)        | Tetrahedral                                   | (d)                                      | Trigonal planer                    |
| 24.        | The        | shape of H2O molecu                           | le is:                                   |                                    |
|            | <b>(a)</b> | Linear                                        | <b>(b)</b>                               | Tetrahedral                        |
|            | (4)        | Angular                                       | (d)                                      | Pyramidal                          |
| 25.        | Whi        | ch one of the followin                        | g molecule h <mark>a</mark>              | ve angle of 120°:                  |
|            | (a)        | $BeCl_2$                                      |                                          | BF <sub>3</sub>                    |
|            | (c)        | CH <sub>4</sub>                               | (d)                                      | NH <sub>3</sub>                    |
| <b>26.</b> |            | Debye is equal to:                            |                                          |                                    |
|            | (a)        | $1.66 \times 10^{-24} \text{ C.m}$            | (b)                                      | $9.1 \times 10^{-31} \text{ C.m}$  |
|            | (c)        | $6.02 \times 10^{-23} \text{ C.m}$            | <b>(d)</b>                               | $3.33 \times 10^{-30} \text{ C.m}$ |
| 27.        | Coo        | rdinate covalent b <mark>on</mark> d          | l is present in:                         |                                    |
|            | (a)        | NH <sub>4</sub> <sup>+</sup>                  | (b)                                      | H <sub>3</sub> O+                  |
|            | (c)        | $N_2H_5^+$                                    | (d)                                      | All of these                       |
| 28.        | Whi        | ch of the following me                        | olecule is not l                         | inear:                             |
|            | (a)        | $CO_2$                                        | <b>(b)</b>                               | $CS_2$                             |
|            | (0)        | $SO_2$                                        | (d)                                      | HCN                                |
| 29.        | The        | bond order of H <sub>2</sub> <sup>+</sup> is: |                                          |                                    |

#### 30. What type of bonding is present in NH<sub>4</sub>Cl:

(a) Ionic(c) Coordinate covalent

(a)

(c)

One

Two

**(b)** Covalent

(d) One and half

(b) Half

(d) All of these

| 1.  | (b) | 2.  | (c) | 3.  | (b) | 4.  | (d) | 5.  | (b) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 6.  | (b) | 7.  | (b) | 8.  | (b) | 9.  | (b) | 10. | (d) |
| 11. | (b) | 12. | (d) | 13. | (a) | 14. | (a) | 15. | (d) |

#### **OBJECTIVE CHEMISTRY PART-I**

| 16. | (c) | 17. | (a) | 18. | (a) | 19. | (b) | 20. | (a) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 21. | (a) | 22. | (a) | 23. | (b) | 24. | (c) | 25. | (b) |
| 26. | (d) | 27. | (d) | 28. | (c) | 29. | (b) | 30. | (d) |

CHAPTER

## **THERMOCHEMISTRY**

|    |                                  | MULTIPLE (                                                                                                 |                | = QUESTIC                 | JNS |  |  |  |  |  |  |  |  |
|----|----------------------------------|------------------------------------------------------------------------------------------------------------|----------------|---------------------------|-----|--|--|--|--|--|--|--|--|
| 1. | Cal                              | Calorie is equivalent to:                                                                                  |                |                           |     |  |  |  |  |  |  |  |  |
|    | (a)                              | 0.4184 J                                                                                                   | <b>(b)</b>     | 41.84 J                   |     |  |  |  |  |  |  |  |  |
|    | <b>(e)</b>                       | 4.184 J                                                                                                    | (d)            | 418.4 J                   |     |  |  |  |  |  |  |  |  |
| 2. |                                  | If an exothermic reaction is allowed to take place very rapidly in air, th temperature of surrounding air: |                |                           |     |  |  |  |  |  |  |  |  |
|    | <b>(</b> a)                      | Increases                                                                                                  | (b)            | Decreases                 |     |  |  |  |  |  |  |  |  |
|    | (c)                              | Remains constant                                                                                           | (d)            | Both (a) and (b)          |     |  |  |  |  |  |  |  |  |
| 3. | The                              | spontaneous reaction                                                                                       | are usually:   |                           |     |  |  |  |  |  |  |  |  |
|    | (a)                              | Exothermic                                                                                                 | (b)            | Fast                      |     |  |  |  |  |  |  |  |  |
|    | (c)                              | Endothermic                                                                                                | (d)            | Both (a) and (b)          |     |  |  |  |  |  |  |  |  |
| 4. | In an exothermic reaction ΔH is: |                                                                                                            |                |                           |     |  |  |  |  |  |  |  |  |
|    | (a)                              | Unity                                                                                                      | <b>(b)</b>     | Zero                      |     |  |  |  |  |  |  |  |  |
|    | <b>(c)</b>                       | Less than zero                                                                                             | (d)            | More than unity           |     |  |  |  |  |  |  |  |  |
| 5. | The                              | The enthalpy of an element in standard states is:                                                          |                |                           |     |  |  |  |  |  |  |  |  |
|    | (a)                              | 1 KJ-mol <sup>-1</sup>                                                                                     | <b>(b)</b>     | Zero                      |     |  |  |  |  |  |  |  |  |
|    | (c)                              | 298 KJ-mol <sup>-1</sup>                                                                                   | (d)            | None of these             |     |  |  |  |  |  |  |  |  |
| 6. | Firs                             | <mark>t law</mark> of thermodynam                                                                          | ics is represe | nted as:                  |     |  |  |  |  |  |  |  |  |
|    | <b>(</b> a)                      | $\Delta E = q + RT$                                                                                        | (b)            | $\Delta E = \Delta H$     |     |  |  |  |  |  |  |  |  |
|    | (c)                              | $\Delta E = q + W$                                                                                         | (d)            | $\Delta E = q + \Delta P$ |     |  |  |  |  |  |  |  |  |
| 7. | The                              | conditions for standar                                                                                     | d enthalpy c   | hange is:                 |     |  |  |  |  |  |  |  |  |
|    | (a)                              | 1 atm and 273 K                                                                                            | <b>(b)</b>     | 1 atm and 298 K           |     |  |  |  |  |  |  |  |  |
|    | (c)                              | 1 atm and 0 K                                                                                              | (d)            | 1 atm and -273°C          |     |  |  |  |  |  |  |  |  |
| 8. | The                              | unit of enthalpy chang                                                                                     | ge is:         |                           |     |  |  |  |  |  |  |  |  |

(a) 57 KJ (c) Zero

| OBJE       | CTIVE | CHEMISTRY PART-I                             |                    |                      |
|------------|-------|----------------------------------------------|--------------------|----------------------|
|            | (a)   | Joule                                        | (b)                | Coulomb              |
|            | (c)   | Volt                                         | <b>(d)</b>         | $kgm^{-1}.s^{-1}$    |
| 9.         | Wh    | ich substance has $\Delta E = \Delta H$ a    | nd no p            | ressure-volume work: |
|            | (a)   | Liquids only                                 | <b>(b)</b>         | Solids only          |
|            | (c)   | Gases only                                   | (d)                | Liquids and solids   |
| 10.        | In t  | hermochemistry force displa                  | cement             | work is replaced by: |
|            | (a)   | Pressure volume work                         | <b>(b)</b>         | Pressure temperature |
|            | (c)   | Temperature volume work                      | (d)                | None of these        |
| 11.        | An    | isothermal process is one in                 | which:             |                      |
|            | (a)   | $\Delta E = 0$                               | (b)                | $\Delta T = 0$       |
|            | (c)   | $\Delta V = 0$                               | (d)                | $\Delta E = W$       |
| <b>12.</b> | At o  | constant pressure, heat of rea               | ection is          | represented by:      |
|            | (a)   | ΔΗ                                           | (b)                | ΔΕ                   |
|            | (c)   | ΔS                                           | (d)                | ΔΡ                   |
| 13.        | At o  | constant volume, heat o <mark>f r</mark> eac | tion is            | represented by:      |
|            | (a)   | ΔΗ                                           | (b)                | ΔΕ                   |
|            | (c)   | $\Delta S$                                   | (d)                | $\Delta G$           |
| 14.        | The   | smallest unit of heat energy                 | is:                |                      |
|            | (a)   | Calorie                                      | (b)                | Joule                |
|            | (c)   | Erg                                          | (d)                | Kilo Joule           |
| 15.        | ΔHı   | n f <mark>or</mark> the reaction NaOH + C    | H <sub>3</sub> COC | OH is:               |

#### answers

(b) Less than 57 KJ

(d) More than 57 KJ

| 1.  | (c) | 2.  | (a) | 3.  | (a) | 4.  | (c) | 5.  | (b) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 6.  | (c) | 7.  | (b) | 8.  | (a) | 9.  | (d) | 10. | (a) |
| 11. | (b) | 12. | (a) | 13. | (b) | 14. | (c) | 15. | (b) |



## **CHEMICAL EQUILIBRIUM**

#### MULTIPLE CHOICE QUESTIONS

| 1.        | The pOH of 10 <sup>-3</sup> mol. dm                     | $n^{-3}$ of $H_2SO_4$ solution is:      |  |  |  |  |  |  |  |
|-----------|---------------------------------------------------------|-----------------------------------------|--|--|--|--|--|--|--|
|           | <b>(a)</b> 3.0                                          | <b>(b)</b> 11.3                         |  |  |  |  |  |  |  |
|           | <b>(c)</b> 2.0                                          | <b>(d)</b> 1.5                          |  |  |  |  |  |  |  |
| 2.        | 2. Strength of an acid can be determined by:            |                                         |  |  |  |  |  |  |  |
|           | (a) pKa                                                 | <b>(b)</b> pH                           |  |  |  |  |  |  |  |
|           | <b>(c)</b> Ka                                           | (d) All of these                        |  |  |  |  |  |  |  |
| <b>3.</b> | Strength of an acid is dir                              | ectly related to the value of:          |  |  |  |  |  |  |  |
|           | (a) pKa                                                 | <b>(b)</b> pH                           |  |  |  |  |  |  |  |
|           | ( <b>c</b> ) Ka                                         | ( <b>d</b> ) Kw                         |  |  |  |  |  |  |  |
| 4.        | The value of PK <sub>w</sub> at 25°C                    | C is:                                   |  |  |  |  |  |  |  |
|           | (a) $10^{14}$                                           | <b>(b)</b> $10^{-14}$                   |  |  |  |  |  |  |  |
|           | (c) 14                                                  | (d) 7                                   |  |  |  |  |  |  |  |
| 5.        | The sum of [H <sup>+</sup> ] and [OH                    | [] in pure water is:                    |  |  |  |  |  |  |  |
|           | (a) 7                                                   | <b>(b)</b> 14                           |  |  |  |  |  |  |  |
|           | (c) $10^{-14}$                                          | (d) $2 \times 10^{-7}$                  |  |  |  |  |  |  |  |
| 6.        | Almost forward reaction                                 | is complete when:                       |  |  |  |  |  |  |  |
|           | (a) K <sub>C</sub> is very large                        | <b>(b)</b> K <sub>C</sub> is very small |  |  |  |  |  |  |  |
|           | (c) Moderate K <sub>C</sub> value                       | ( <b>d</b> ) None of these              |  |  |  |  |  |  |  |
| 7.        | Ka val <mark>ue</mark> for aceti <mark>c a</mark> cid ( | CH <sub>3</sub> COOH at 25°C is:        |  |  |  |  |  |  |  |
|           | (a) $1.85 \times 10^{-5}$                               | <b>(b)</b> $1.85 \times 10^{-10}$       |  |  |  |  |  |  |  |
|           | (c) $1.85 \times 10^{-15}$                              | <b>(d)</b> $1.85 \times 10^{-20}$       |  |  |  |  |  |  |  |

The unit of "Kc" for the reaction

8.

| OBJE       | CTIVE       | CHEMISTRY PART-I                                                   |                       |                                  |
|------------|-------------|--------------------------------------------------------------------|-----------------------|----------------------------------|
|            | <b>2</b> SO | $O_{2(g)} + O_{2(g)} \xrightarrow{V_2O_{5(s)}} 2SO$                | ) <sub>3(g)</sub> is: |                                  |
|            | (a)         | $mol.dm^{-3}$                                                      | <b>(b</b> )           | $\text{mol}^{-1}.\text{dm}^{+3}$ |
|            | (c)         | $\text{mol}^2.\text{dm}^{-6}$                                      | (d)                   | No unit                          |
| 9.         | The         | pOH value of 0.001 M HCl s                                         | solution              | in water is:                     |
|            | 4           | 11                                                                 | (b)/                  | 2                                |
|            | (c)         | 4                                                                  | <b>(d)</b>            | Zero                             |
| 10.        | pН          | of human blood is:                                                 |                       |                                  |
|            | (a)         | 7.0                                                                | (b)                   | 7.35                             |
|            | <b>(c)</b>  | 7.85                                                               | (d)                   | 6.65                             |
| 11.        | The         | molarity of pure water is:                                         |                       |                                  |
|            | (a)         | 7 M                                                                | <b>(b)</b>            | 22.4 M                           |
|            | (c)         | -55.5 M                                                            | <b>(d)</b>            | 14 M                             |
| 12.        | The         | sum of PK <sub>a</sub> and PK <sub>b</sub> is:                     |                       |                                  |
|            | (a)         | Zero                                                               | <b>(b)</b>            | Seven                            |
|            | <b>(c)</b>  | $10^{-14}$                                                         | <del>(d)</del>        | 14                               |
| 13.        | The         | pH of 0.001 M NaOH solution                                        | on is:                |                                  |
|            | (a)         | 11                                                                 | <b>(b)</b>            | 8                                |
|            | (c)         | 3                                                                  | (d)                   | 12                               |
| 14.        | A so        | olution having zero pH <mark>va</mark> lue                         | will be               |                                  |
|            | ( <u>a)</u> | Highly acidic                                                      | <b>(b)</b>            | Neutral                          |
|            | (c)         | Basic                                                              | (d)                   | Highly basic                     |
| <b>15.</b> | Wh          | ich of the f <mark>ollo</mark> wing <mark>can affec</mark>         | t the K               | c value of a reaction:           |
|            | (2)         | Temperature                                                        | <b>(b)</b>            | Pressure                         |
| •          | (c)         | Catalyst                                                           | <b>(d)</b>            | None of these                    |
| 16.        | The         | K <sub>sp</sub> has units of mol <sup>2</sup> .dm <sup>-6</sup> ir | ı:                    |                                  |
|            | (2)         | $AgCl \longrightarrow Ag^+ + Cl^-$                                 | <b>(b)</b>            | $2NO_2 \implies 2NO + O_2$       |

(a) 
$$> 7$$

**(c)** 7

**(b)** < 7

(d) Zero

| 18. | If [S      | Salt] = [Acid] then pH of an a                                   | cidic b             | uffer will be:                                        |
|-----|------------|------------------------------------------------------------------|---------------------|-------------------------------------------------------|
|     | (a)        | Equal to pKa                                                     | <b>(b)</b>          | Less than pKa                                         |
|     | (c)        | More than pKa                                                    | <b>(d)</b>          | No effect on pH                                       |
| 19. | For        | $N_2 + 3H_2 \rightleftharpoons 2NH_3$                            |                     |                                                       |
|     | (a)        | $K_C = Kp$                                                       | <b>(b)</b>          | $Kp = K_C(RT)^1$                                      |
|     | (c)        | $Kp = K_C(RT)^{-2}$                                              | <b>(d)</b>          | $Kp = K_C(RT)^{-1}$                                   |
| 20. | _          | of a buffer solution having $a = 4.74$ ) is:                     | 0.01N               | I CH <sub>3</sub> COONa and 0.1M CH <sub>3</sub> COOH |
|     | (a)        | 4.74                                                             | (b)                 | <b>-</b> 3.74                                         |
|     | <b>(c)</b> | 5.74                                                             | <b>(d)</b>          | 0                                                     |
| 21. |            | which system does the acentration) <sup>-1</sup> :               | equili              | brium constant, K <sub>C</sub> has units of           |
|     | (a)        | $N_2 + 3H_2 \rightleftharpoons 2NH_3$                            | <b>(b)</b>          | $H_2 + I_2 \Longrightarrow 2HI$                       |
|     | (c)        | $2NO_2 \Longrightarrow N_2O_4$                                   | <b>(d)</b>          | $2HF \Longrightarrow H_2 + F_2$                       |
| 22. | The        | pH of 10 <sup>-3</sup> mol.dm <sup>-3</sup> of H <sub>3</sub> B0 | O <sub>3</sub> solu | tion is:                                              |
|     | (a)        | 3.0                                                              | <b>(b)</b>          | 2.7                                                   |
|     | (c)        | 2.0                                                              | ( <b>d</b> )        | 10.5                                                  |
| 23. |            | Ksp of AgCl is $2.0 \times 10^{-10}$ ions in the solution is:    | mol <sup>2</sup> .d | lm <sup>-6</sup> . The maximum concentration of       |
|     | (a)        | $2.0 \times 10^{-10} \text{ mol-dm}^{-3}$                        | (b)                 | $1.41 \times 10^{-5} \text{ mol-dm}^{-3}$             |
|     | (c)        | $1.0 \times 10^{-5} \text{ mol-dm}^{-3}$                         | (d)                 | $4.0 \times 10^{-20} \text{ mol-dm}^{-3}$             |
| 24. | Uni        | t of K <sub>w</sub> are:                                         |                     |                                                       |
|     | (a)        | mol-dm <sup>-3</sup>                                             | (b)                 | $mol^2$ - $dm^{-6}$                                   |
|     | (c)        | mol <sup>2</sup> -dm <sup>-3</sup>                               | (d)                 | $mol^2$ - $dm^{+3}$                                   |
| 25. | Buf        | fe <mark>r action can be</mark> explained b                      | <b>y:</b>           |                                                       |
|     | (a)        | Common ion effect                                                | <b>(b)</b>          | Law of mass action                                    |
|     | (c)        | Le-Chatlier's principle                                          | (d)                 | All of these                                          |
| 26. | Solu       | ibility of Ca(OH) <sub>2</sub> is exother                        | mc, its             | solubility will increase:                             |
|     | (a)        | At high temperature                                              | ( <b>b</b> )        | At low temperature                                    |
|     |            |                                                                  |                     | -                                                     |
|     |            |                                                                  |                     |                                                       |

(c) Temperature independent

(d) None

27. The substance which increases the rate of reaction, but remains unchanged at the end of reaction is called:

(a) Indicator

**(b)** Promoter

(c) Catalyst

(d) Activated complex

28. The suppression of ionization of weak electrolyte in the presence of strong electrolyte with one same ion is called:

(a) Hydration

(b) Common ion effect

(c) Hydrolysis

(d) Electrolysis

29. Which of the following will form a stable acidic buffer:

(a) CH<sub>3</sub>COOH + NaOH

(b)  $H_2S + NaOH$ 

(c)  $NH_4OH + HCl$ 

(d)  $Ca(OH)_2 + HCl$ 

30. Which of the following efforts will change  $K_C$  for the reaction:

(a) Adding catalyst

(b) Decreasing pressure

(c) Increasing concentration

(d) Increasing temperature

| 1.  | (b) | 2.  | (d) | 3.  | (c) | 4.  | (c) | 5.  | (d) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 6.  | (a) | 7.  | (a) | 8.  | (b) | 9.  | (a) | 10. | (b) |
| 11. | (c) | 12. | (d) | 13. | (a) | 14. | (a) | 15. | (a) |
| 16. | (a) | 17. | (b) | 18. | (a) | 19. | (c) | 20. | (b) |
| 21. | (c) | 22. | (a) | 23. | (b) | 24. | (b) | 25. | (d) |
| 26. | (b) | 27. | (c) | 28. | (b) | 29. | (a) | 30. | (d) |



## **SOLUTIONS**

|           |            | MULTIPLE CHO                                        | OICE                | E QUESTIONS                                           |
|-----------|------------|-----------------------------------------------------|---------------------|-------------------------------------------------------|
| 1.        | _          | g glucose is dissolved in 90 g<br>sure is equal to: | g of wa             | ater. The relative lowering of vapour                 |
|           | (a)        | $\frac{1}{5}$                                       | <b>(b)</b>          | 5.1                                                   |
|           | (9)        | <u>1</u> 51                                         | ( <b>d</b> )        | 6                                                     |
| 2.        | A so       | lution of glucose is 10%. The v                     | olum <mark>e</mark> | to which 1g mole of it dissolved will be:             |
|           | (a)        | $1 \text{ dm}^3$                                    | (b)                 | 1.8 dm <sup>3</sup>                                   |
|           | <b>(c)</b> | 200 cm <sup>3</sup>                                 | (d)                 | 900 cm <sup>3</sup>                                   |
| <b>3.</b> | Whi        | ch of the following liqu <mark>id</mark> pai        | rs will             | obey the Raoult's law:                                |
|           | <b>(a)</b> | $C_2H_5OH + H_2O$                                   | <b>(b)</b>          | CH <sub>3</sub> COCH <sub>3</sub> + CHCl <sub>3</sub> |
|           | <b>(c)</b> | $C_2H_5I + C_2H_5Br$                                | (d)                 | $HC1 + H_2O$                                          |
| 4.        | 10g        | of NaOH has been dis <mark>solved</mark> po         | er dm³              | of solution. The molarity of solution is: $ \\$       |
|           | <b>(a)</b> | 0.5 M                                               | <b>(b)</b>          | 0.25 M                                                |
|           | <b>(c)</b> | 1 M                                                 | <b>(d)</b>          | 2 M                                                   |
| <b>5.</b> | The        | sum of mole fraction of all th                      | e com               | ponents of solution is always equal to:               |
|           | <b>(a)</b> | Unity                                               | <b>(b)</b>          | 100                                                   |
|           | (c)        | Less than one                                       | <b>(d)</b>          | Less than 100                                         |
| 6.        | Whi        | <mark>ch of the foll</mark> owing concentra         | tion u              | nit is used for very dilute solutions:                |
|           | (a)        | Mo <mark>lar</mark> ity                             | <b>(b)</b>          | Normality                                             |
|           | <b>(c)</b> | Molality                                            | <b>(q)</b>          | ppm                                                   |

| 7.  | Whi        | ich of the following is affected                                          | d by ter             | mperature change:                     |
|-----|------------|---------------------------------------------------------------------------|----------------------|---------------------------------------|
|     | (a)        | Molality                                                                  | <b>(b)</b>           | Molarity                              |
|     | <b>(c)</b> | Mole fraction                                                             | <b>(d)</b>           | None of these                         |
| 8.  | The        | substance which has water o                                               | of cryst             | allization in it, is called:          |
|     | (a)        | Hydrate                                                                   | <b>(b)</b>           | Hydride                               |
|     | <b>(c)</b> | Hydrolysis                                                                | <b>(d)</b>           | Complex                               |
| 9.  | Hyd        | lrolysis of CH3COOK will pr                                               | oduce:               |                                       |
|     | (a)        | Acidic solution                                                           | <b>(b)</b>           | Basic solution                        |
|     | <b>(c)</b> | Neutral solution                                                          | <b>(d)</b>           | None of these                         |
| 10. | The        | molarity of 2% $\frac{W}{V}$ NaOH so                                      | lution i             | is:                                   |
|     | (a)        | 2                                                                         | <b>(b)</b>           | 0.25                                  |
|     | <b>(c)</b> | 0.05                                                                      | <del>(d)</del>       | 0.5                                   |
| 11. | If 9.      | 8g H <sub>2</sub> SO <sub>4</sub> is present in one di                    | m <sup>3</sup> of so | olution, the solution is:             |
|     | (a)        | 0.1 N                                                                     | <b>(b)</b>           | 0.1 M                                 |
|     | <b>(c)</b> | 0.1 m                                                                     | ( <b>d</b> )         | 0.5 M                                 |
| 12. | Whi        | ich one of the following salts                                            | do not               | hydrolyse:                            |
|     | (a)        | CuSO <sub>4</sub>                                                         | <b>(b)</b>           | Na <sub>2</sub> CO <sub>3</sub>       |
|     | (c)_       | Na <sub>2</sub> SO <sub>4</sub>                                           | <b>(d)</b>           | $Al_2(CO_3)_3$                        |
| 13. | An a       | aqueous solution b <mark>oil</mark> at <mark>1</mark> 00.5                | 52°C. I              | t <mark>s</mark> hould freeze at:     |
|     | (a)        | 0°C                                                                       | (b)                  | −1.86°C                               |
|     | (c)        | −2°C                                                                      | <b>(d)</b>           | +1.86°C                               |
| 14. |            | urea is disso <mark>lved</mark> in 180 cm<br>ssu <mark>re</mark> will be: | <sup>3</sup> of wa   | ater. The relative lowering of vapour |
|     | (a)        | 0.024                                                                     | <b>(b)</b>           | 25.024                                |
|     | (c)        | 2.5                                                                       | <b>(d)</b>           | 10.25                                 |
| 15. | Whi        | ich ha <mark>s maxim</mark> um freezing po                                | oint:                |                                       |
|     | (a)        | 1m NaCl                                                                   | <b>(b)</b>           | 1m KCl                                |
|     | (c)        | 1m CaCl <sub>2</sub>                                                      | (d)                  | 1m Urea                               |
| 16. | Whi        | ich cation has least heat of hy                                           | dratio               | n:                                    |

(a) Li<sup>+</sup>

**(b)** Na<sup>+</sup>

 $(\mathbf{c})$   $\mathbf{K}^+$ 

(**d**)  $Mg^{+2}$ 

17. 10% aqueous solution of glucose freezes at:

(a)  $0^{\circ}$ C

(b) Less than 0°C

(c) Greater than 0°C

(d) Greater than 10°C

18. A mixture of benzene and toluene form:

(a) Ideal solution

**(b)** Non-ideal solution

(c) Azeotropic mixture

(d) Suspension

19. Which pair of mixture is called ideal solution:

(a)  $C_6H_5Cl + C_6H_5Br$ 

**(b)**  $H_2O + C_2H_5OC_2H_5$ 

(c)  $C_2H_5OH + H_2O$ 

(d)  $HCl + H_2O$ 

20. In a solution 7.8g benzene and 46g toluenc (C<sub>6</sub>H<sub>5</sub>CH<sub>3</sub>) is present, the mole fraction of benzene is:

(a)  $\frac{1}{2}$ 

**(b)**  $\frac{1}{3}$ 

(c)  $\frac{1}{5}$ 

(d)  $\frac{1}{6}$ 

| 1.  | (c) | 2.  | (b) | 3.  | (c) | 4.  | (b) | 5.  | (a) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 6.  | (d) | 7.  | (b) | 8.  | (a) | 9.  | (b) | 10. | (d) |
| 11. | (b) | 12. | (c) | 13. | (b) | 14. | (a) | 15. | (d) |
| 16. | (c) | 17. | (b) | 18. | (a) | 19. | (a) | 20. | (d) |



## **ELECTROCHEMISTRY**

|    |                | MULTIF                       | LE CH                         |                                  | QUES                       | STIONS                             |           |
|----|----------------|------------------------------|-------------------------------|----------------------------------|----------------------------|------------------------------------|-----------|
| 1. | The            | oxidation state              | e of carbon is                | C <sub>6</sub> H <sub>12</sub> O | 6 is:                      |                                    |           |
|    | (2)            |                              |                               | (b)                              |                            |                                    |           |
|    | (c)            | -6                           |                               | (d)                              | +12                        |                                    |           |
| 2. | Whi            | ch of the follow             | ving has same                 | oxidati                          | on state in a              | ll of its compo                    | unds:     |
|    | <del>(2)</del> | Be                           |                               | (b)                              | Br                         |                                    |           |
|    | (c)            | C1                           |                               | (d)                              | N                          |                                    |           |
| 3. | In w           | hich of the foll             | low <mark>ing react</mark> io | ns, hyd                          | <mark>ro</mark> gen behave | e as an oxidizi                    | ng agent: |
|    | (a)            | $H_2 + Cl_2 \longrightarrow$ | > 2HCl                        | (b)                              | $C_2H_4 + H_2 -$           | $\longrightarrow C_2H_6$           |           |
|    | <u>(c)</u>     | $2Na + H_2$                  | → 2NaOH                       | (d)                              | $N_2 + 3H_2 -$             | $\longrightarrow$ 2NH <sub>3</sub> |           |
| 4. | The            | change in oxid               | lation state of               | nitroge                          | n in the follo             | wing reaction                      | is:       |
|    |                | Cu +                         | $-HNO_3 \longrightarrow$      | Cu(NO                            | $(v_3)_2 + NO_2 + 1$       | $H_2O$                             |           |
|    | (a)            | +5 to -2                     |                               | <u>(b)</u>                       | +5 to +4                   |                                    |           |
|    | (c)            | +5 to 0                      |                               | (d)                              | 0 to -4                    |                                    |           |
| 5. | The            | colour of K <sub>2</sub> M   | nO <sub>4</sub> solution i    | is:                              |                            |                                    |           |
|    | (a)            | Pink                         |                               | <b>(b)</b>                       | Violet                     |                                    |           |
|    | (c)            | Green                        |                               | (d)                              | Purple                     |                                    |           |
| 6. | The            | oxidation state              | e of Mn in K <sub>2</sub> N   | MnO4 is                          | :                          |                                    |           |
|    | (a)            | +7                           |                               | <u>(b)</u> -                     | +6                         |                                    |           |
|    | (c)            | +5                           |                               | (d)                              | +4                         |                                    |           |
| 7. | The            | overall positiv              | e reaction pot                | ential v                         | alue predicts              | s that process i                   | is:       |
|    | (a)            | Not feasible                 |                               | <u>(b)</u>                       | Feasible                   |                                    |           |
|    | (c)            | Impossible                   |                               | (d)                              | No identifica              | ation                              |           |
|    |                |                              |                               |                                  |                            |                                    |           |

| UBJE | CIIVE                                                            | CHEMISTRY PART-I                                                               |                                    |                                                | 304                             |  |  |  |  |  |
|------|------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------|------------------------------------------------|---------------------------------|--|--|--|--|--|
| 8.   | Val                                                              | ue of standard reduction                                                       | potential f                        | or strong reducing :                           | agent is:                       |  |  |  |  |  |
|      | (a)                                                              | Large and positive                                                             | (b)                                | Zero                                           |                                 |  |  |  |  |  |
|      | (c)                                                              | Large and negative                                                             | (d)                                | Any of above                                   |                                 |  |  |  |  |  |
| 9.   | Fue                                                              | Fuel cell are the means by which chemical energy is converted into:            |                                    |                                                |                                 |  |  |  |  |  |
|      | (a)                                                              | Heat energy                                                                    | <u>_(h)</u>                        | <b>b)</b> Electrical energy                    |                                 |  |  |  |  |  |
|      | (c)                                                              | Magnetic energy                                                                | (d)                                | Sound energy                                   |                                 |  |  |  |  |  |
| 10.  | The                                                              | oxidation number of sul                                                        | phur in Na                         | <sub>2</sub> S <sub>4</sub> O <sub>6</sub> is: |                                 |  |  |  |  |  |
|      | (a)                                                              | +2                                                                             | (b)                                | +4                                             |                                 |  |  |  |  |  |
|      | (c)                                                              | +2.5                                                                           | (d)                                | +6                                             |                                 |  |  |  |  |  |
| 11.  |                                                                  | which of the following ative:                                                  | compoun                            | ds oxid <mark>ation num</mark>                 | ber <mark>of s</mark> ulphur is |  |  |  |  |  |
|      | (a)                                                              | $\mathrm{SO}_2$                                                                | (b)                                | $H_2SO_4$                                      |                                 |  |  |  |  |  |
|      | <b>(c)</b>                                                       | $H_2S$                                                                         | (d)                                | Na <sub>2</sub> SO <sub>4</sub>                |                                 |  |  |  |  |  |
| 12.  | In s                                                             | ilver oxide battery anode                                                      | is made up                         | o of:                                          |                                 |  |  |  |  |  |
|      | (a)                                                              | <u>Zn</u>                                                                      | (b)                                | NiO <sub>2</sub>                               |                                 |  |  |  |  |  |
|      | (c)                                                              | $Ag_2O$                                                                        | (d)                                | Cd                                             |                                 |  |  |  |  |  |
| 13.  | Which of the following is a primary cell:                        |                                                                                |                                    |                                                |                                 |  |  |  |  |  |
|      | (a)                                                              | Fuel cell                                                                      | (b)                                | Lead accumulator                               |                                 |  |  |  |  |  |
|      | (c)                                                              | Alkaline dry cell                                                              | (d)                                | Daneil cell                                    |                                 |  |  |  |  |  |
| 14.  | In superoxides, the oxidation number of oxygen is:               |                                                                                |                                    |                                                |                                 |  |  |  |  |  |
|      | (a)                                                              | 0                                                                              | <b>(b)</b>                         | +1                                             |                                 |  |  |  |  |  |
|      | (c)                                                              | -1                                                                             | <del>(d)</del> -                   | $-\frac{1}{2}$                                 |                                 |  |  |  |  |  |
| 15.  |                                                                  | e ce <mark>ll i</mark> n which <mark>a</mark> non-spon<br>tricity is known as: | itaneous re                        | dox reaction takes                             | place as a result of            |  |  |  |  |  |
|      | (a)                                                              | Voltaic cell                                                                   | (b)                                | Electrolytic cell                              |                                 |  |  |  |  |  |
|      | (c)                                                              | Da <mark>ni</mark> al cell                                                     | (d)                                | Dry cell                                       |                                 |  |  |  |  |  |
| 16.  | Which of the following is a reducing agent in following reaction |                                                                                |                                    |                                                |                                 |  |  |  |  |  |
|      |                                                                  | $P + HNO_3$ —                                                                  | $\longrightarrow$ H <sub>3</sub> P | $O_4 + NO + H_2O$                              |                                 |  |  |  |  |  |
|      | <del>(a)</del>                                                   | Phosphorous                                                                    | <b>(b)</b>                         | Nitrogen                                       |                                 |  |  |  |  |  |
|      | (c)                                                              | Nitric acid                                                                    | (d)                                | Water                                          |                                 |  |  |  |  |  |
| 17.  | Red                                                              | luction potential of SHE i                                                     | s 0.00 volts                       | its oxidation poten                            | tial will be:                   |  |  |  |  |  |
|      | (a)                                                              | 0.1 volts                                                                      | (b)                                | 2 volts                                        |                                 |  |  |  |  |  |
|      | (c)                                                              | 1.0 volt                                                                       | (d)                                | 0.0 volts                                      |                                 |  |  |  |  |  |

| 18. | The increase in positive oxidation state is called: |                                       |                             |                                 |  |  |  |
|-----|-----------------------------------------------------|---------------------------------------|-----------------------------|---------------------------------|--|--|--|
|     | (a)                                                 | Displacement                          | (h)                         | Oxidation                       |  |  |  |
|     | (c)                                                 | Reduction                             | (d)                         | Redox                           |  |  |  |
| 19. | Whi                                                 | ch of the following is n              | ot the reduct               | ion:                            |  |  |  |
|     | (a)                                                 | Gain of electron                      | (b)                         | Gain of hydrogen                |  |  |  |
|     | (c)                                                 | Loss of electrons                     | <del>(d)</del>              | Decrease in oxidation state     |  |  |  |
| 20. | In w                                                | hich compound oxidat                  | ion state of cl             | hlorine is +5:                  |  |  |  |
|     | (a)                                                 | NaCl                                  | (b)                         | HOCI                            |  |  |  |
|     | (c)                                                 | NaClO <sub>3</sub>                    | (d)                         | NaClO <sub>4</sub>              |  |  |  |
| 21. | In le                                               | ead accumulator, catho                | de is made uj               | p of:                           |  |  |  |
|     | (a)                                                 | Pb                                    | <del>-(b</del> )            | Pb coated with PbO <sub>2</sub> |  |  |  |
|     | (c)                                                 | PbSO <sub>4</sub>                     | (d)                         | $H_2SO_4$                       |  |  |  |
| 22. | Whi                                                 | ch of the following can               | not conduc <mark>t (</mark> | electricity:                    |  |  |  |
|     | (a)                                                 | $NaCl_{(l)}$                          |                             | $NaCl_{(s)}$                    |  |  |  |
|     | (c)                                                 | $Graphite_{(s)}$                      | (d)                         | NaCl <sub>(aq)</sub>            |  |  |  |
| 23. | Dow                                                 | n's cell is used for the              | extraction of               |                                 |  |  |  |
|     | (a)                                                 | Al                                    | (b)                         | Cu                              |  |  |  |
|     | ` '                                                 | Na                                    | (d)                         | NaOH                            |  |  |  |
| 24. |                                                     | ing electrolysis reaction             | _                           |                                 |  |  |  |
|     | (a)                                                 | Oxidation                             | ` ,                         | Reduction                       |  |  |  |
|     | (c)                                                 | Redox                                 | (d)                         | None of these                   |  |  |  |
| 25. |                                                     | en Brine solution is harged at anode: | electrolysed                | which of the following ions get |  |  |  |
|     | (a)                                                 | OH <sup>-</sup>                       | <del>(b)</del>              | Cl <sup>-</sup>                 |  |  |  |
|     | (c)                                                 | Na <sup>+</sup>                       | (d)                         | $H^{+}$                         |  |  |  |
|     |                                                     |                                       |                             |                                 |  |  |  |
|     |                                                     |                                       | answei                      | rs                              |  |  |  |

| 1.  | (a) | 2.  | (a) | 3.  | (c) | 4.  | (b) | 5.  | (c) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 6.  | (b) | 7.  | (b) | 8.  | (c) | 9.  | (b) | 10. | (c) |
| 11. | (c) | 12. | (a) | 13. | (c) | 14. | (d) | 15. | (b) |
| 16. | (a) | 17. | (d) | 18. | (b) | 19. | (d) | 20. | (c) |
| 21. | (b) | 22. | (b) | 23. | (c) | 24. | (b) | 25. | (b) |



## **REACTION KINETICS**

| 1. | The            | unit of rate constant 'K' fo                    | or a first     | order reaction:                         |
|----|----------------|-------------------------------------------------|----------------|-----------------------------------------|
|    | <b>(</b> a)    | $sec^{-1}$                                      | (b)            | mol.dm <sup>-3</sup> .sec               |
|    | (c)            | $mol.dm^{-3}.sec^{-1}$                          | (d)            | mol <sup>-1</sup> .dm <sup>3</sup> .sec |
| 2. |                |                                                 |                | pe decreases from 200 cpm to 25 cpm     |
|    | aftei          | r 24 hours. What is its <mark>ha</mark> lf      | life:          |                                         |
|    | (a)            | 3 hours                                         | <b>(b)</b>     | 4 hours                                 |
|    | (c)            | 6 hours                                         | <b>(q)</b>     | 8 hours                                 |
| 3. | In a           | multistep reaction, the slov                    | west step      | is:                                     |
|    | (a)            | Mechanism step                                  | <b>(b)</b>     | Rate determing step                     |
|    | (c)            | Enthalpy determing step                         | (d)            | None of above                           |
| 4. | The            | rate of reaction between tw                     | vo specifi     | c time intervals is called:             |
|    | (a)            | Rate of reaction                                | <del>(b)</del> | Average rate                            |
|    | (c)            | I <mark>ns</mark> tantaneous <mark>ra</mark> te | (d)            | None                                    |
| 5. | Whe            | en r <mark>ate of reacti</mark> on is retard    | led by ad      | ding a substance, it is said to be:     |
|    | (a)            | Catalyst                                        | (b)            | Negative catalyst                       |
|    | (c)            | Autocatalyst                                    | (d)            | None of the above                       |
| 6. | Rate           | $e = K[A]^2[B]$ for the reacti                  | on 2A +        | B Product and 'A' is present in         |
|    |                | e excess, then order of reac                    |                | -                                       |
|    | <b>(a)</b>     | 1                                               | <b>(b)</b>     | 2                                       |
|    | (c)            | 3                                               | (d)            | 4                                       |
| 7. | The            | unit of the rate constant is                    | the same       | e as that of the rate of reaction is:   |
|    | (a)            | 1 <sup>st</sup> order reaction                  | <b>(b)</b>     | 2 <sup>nd</sup> order reaction          |
|    | <del>(c)</del> | Zero order reaction                             | (d)            | 3 <sup>rd</sup> order reaction          |
|    |                |                                                 |                |                                         |

| ODJI | CIIVL                                                                                          | SILMISTRI FART-I                                 |                            |                                                   | 330            |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------|---------------------------------------------------|----------------|--|--|--|--|--|
| 8.   | The                                                                                            | rate equation for a rea                          | ction is Rate              | = K[A], what are the ur                           | its of K:      |  |  |  |  |  |
|      | (a)                                                                                            | $S^{-1}$                                         | (b)                        | $mol.dm^{-3}$                                     |                |  |  |  |  |  |
|      | (c)                                                                                            | $mol.dm^{-3}.s^{-1}$                             | (d)                        | $\text{mol}^{-1}.\text{dm}^3.\text{s}^{-1}$       |                |  |  |  |  |  |
| 9.   | The                                                                                            | half life of zero order                          | reaction is:               |                                                   |                |  |  |  |  |  |
|      | (a)                                                                                            | Proportional to initial                          | concentration              | of reactants                                      |                |  |  |  |  |  |
|      | (b)                                                                                            | Independent of initial concentration of reactant |                            |                                                   |                |  |  |  |  |  |
|      | (c)                                                                                            | Inversely proportional                           | to initial conc            | centration of reactant                            |                |  |  |  |  |  |
|      | (d)                                                                                            | None of these                                    |                            |                                                   |                |  |  |  |  |  |
| 10.  | Pho                                                                                            | tosynthesis has order o                          | f reaction:                |                                                   |                |  |  |  |  |  |
|      | (a)                                                                                            | 0                                                | <b>(b)</b>                 | 1                                                 |                |  |  |  |  |  |
|      | <del>(c)</del>                                                                                 | 2                                                | (d)                        | Fractional order                                  |                |  |  |  |  |  |
| 11.  |                                                                                                |                                                  | "K" is mol <sup>–1</sup> . | .dm <sup>3</sup> .sec <sup>-1</sup> for a chemica | l reaction the |  |  |  |  |  |
|      | orde                                                                                           | er of reaction is:                               |                            |                                                   |                |  |  |  |  |  |
|      | (a)                                                                                            | 0                                                | (b)                        | 1                                                 |                |  |  |  |  |  |
|      | _(c)                                                                                           | 2                                                | (d)                        | 3                                                 |                |  |  |  |  |  |
| 12.  |                                                                                                | ich types of metals are                          |                            |                                                   |                |  |  |  |  |  |
|      | (a)                                                                                            | Coinage metal                                    | (b)                        | Alkali metals                                     |                |  |  |  |  |  |
|      | ` ′                                                                                            | Transition metal                                 | (d)                        |                                                   |                |  |  |  |  |  |
| 13.  | A substance which itself is not a catalyst but increases the activity of a catalyst is called: |                                                  |                            |                                                   |                |  |  |  |  |  |
|      | <del>(a)</del>                                                                                 | Promoter                                         | (b)                        | Poison                                            |                |  |  |  |  |  |
|      | (c)                                                                                            | Inhibitor                                        | (d)                        | Enzyme                                            |                |  |  |  |  |  |
| 14.  | Enz                                                                                            | ymes are:                                        |                            |                                                   |                |  |  |  |  |  |
|      | (a)                                                                                            | Micro-organism                                   | <del>(b)</del>             | Proteins                                          |                |  |  |  |  |  |
|      | (c)                                                                                            | Moulds                                           | (d)                        | Inorganic compound                                |                |  |  |  |  |  |
| 15.  | The                                                                                            |                                                  |                            | ts or products per unit t                         | me is called:  |  |  |  |  |  |
|      | (a)                                                                                            | Rat <mark>e l</mark> aw                          | <u>(b)</u>                 | Rate of reaction                                  |                |  |  |  |  |  |
|      | (c)                                                                                            | Rate constant                                    | (d)                        | Rate equation                                     |                |  |  |  |  |  |
| 16.  |                                                                                                | -                                                |                            | ne absorption of radiation                        | ons:           |  |  |  |  |  |
|      | ` ′                                                                                            | Spectrometry                                     | (b)                        | Dilatometric method                               |                |  |  |  |  |  |
|      | (c)                                                                                            | Refractometric method                            | ` '                        | Optical rotation method                           |                |  |  |  |  |  |
| 17.  |                                                                                                | ich property of a liquid                         |                            | v .                                               |                |  |  |  |  |  |
|      | (a)                                                                                            | Conductance                                      | (b)                        | Refractive index                                  |                |  |  |  |  |  |
|      | (c)                                                                                            | Optical activity                                 | (d)                        | Change in volume                                  |                |  |  |  |  |  |

| 1.  | (a) | 2.  | (d) | 3.  | (b) | 4.  | (b) | 5.  | (b) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 6.  | (a) | 7.  | (c) | 8.  | (a) | 9.  | (a) | 10. | (a) |
| 11. | (c) | 12. | (c) | 13. | (a) | 14. | (b) | 15. | (b) |
| 16. | (a) | 17. | (c) |     |     |     |     |     |     |