

Reconfiguration of k-Path Vertex Covers

Hoang Anh Duc

December 05, 2019

hoanganhduc@ces.kyutech.ac.jp

Research Seminar at Kyutech Algorithms Group

Outline

- 1 Introduction
 - k-Path Vertex Cover Reconfiguration
 - Summary of Achieved Results
- 2 Reconfiguring k-Path Vertex Covers on Trees under TJ
- 3 Open Problems

Introduction

Reconfiguration Problems

■ Given:

- Two configurations *A*, *B*. E.g., two states of Rubik's Cube Puzzle.
- A reconfiguration rule (defining whether two arbitrary configurations are adjacent).
 E.g., rotating one face of the cube 90, 180, or 270 degrees.
- Question: Does there exist a sequence of adjacent configurations that transforms *A* into *B*?

Figure 1: An instance of Rubik's Cube Puzzle.

k-Path Vertex Cover (k-PVC)

I is a k-path vertex cover $(k \ge 2)$ of a graph G if each path on k vertices in G contains at least one vertex from I. If k = 2, the set I is a vertex cover.

Figure 2: $I = \{v_2, v_3\}$ is a 3-path vertex cover but not a vertex cover.

Theorem (Brešar et al. 2011)

It is NP-complete to decide if there is a k-PVC ($k \ge 2$) of size at most s, where s is a given positive integer.

Imagine that each vertex of a k-PVC contains a token Two k-PVCs I

and J are given

Imagine that each vertex of a k-PVC contains a token

Two k-PVCs I and J are given

Token Sliding (TS): A token can only move to one of its unoccupied neighbors

Question: Is there a sequence of adjacent *k*-PVCs under TS that transforms *I* into *J*?

Example: 3-path vertex covers in C_4

Imagine that each vertex of a k-PVC contains a token

Two k-PVCs I and J are given

Token Sliding (TS): A token can only move to one of its unoccupied neighbors

Question: Is there a sequence of adjacent *k*-PVCs under TS that transforms *I* into *J*?

Example: 3-path vertex covers in C_4

Imagine that each vertex of a k-PVC contains a token Two k-PVCs I

and J are given

Example: 3-path vertex covers in C_4

Imagine that each vertex of a k-PVC contains a token

Two k-PVCs I and J are given

Token Jumping (TJ): A token can move to any unoccupied vertex (not necessarily its neighbor)

Question: Is there a sequence of adjacent k-PVCs under TJ that transforms I into J?

Example: 3-path vertex covers in C_4

Imagine that each vertex of a k-PVC contains a token

Two k-PVCs I and J are given

Token Jumping (TJ): A token can move to any unoccupied vertex (not necessarily its neighbor)

Question: Is there a sequence of adjacent k-PVCs under TJ that transforms I into J?

Example: 3-path vertex covers in C_4

Imagine that each vertex of a k-PVC contains a token Two k-PVCs I

and J are given

k-Path Vertex Cover Reconfiguration under $\mathsf{TAR}(u)$

Imagine that each vertex of a k-PVC contains a token

Two k-PVCs I and J are given

Token Addition and Removal (TAR(u)): Fither add or remove a

token s.t. #tokens $\leq u$

Question: Is there a sequence of adjacent k-PVCs under TAR(u) that transforms I into J?

Example: 3-path vertex covers in C_4

Imagine that each vertex of a k-PVC contains a token

Two k-PVCs I and J are given

Token Addition and Removal (TAR(u)): Either add or remove a

Question: Is there a sequence of adjacent k-PVCs under TAR(u) that transforms I into J?

token s.t. #tokens $\leq u$

Example: 3-path vertex covers in C_4

Figure 3: Our Results (joint work with A. Suzuki and T. Yagita). To appear in WALCOM 2020. arXiv:1911.03026

Figure 4: Our Results (joint work with A. Suzuki and T. Yagita). To appear in WALCOM 2020. arXiv:1911.03026

Theorem (Hoang, Suzuki, and Yagita 2019)

$$\begin{array}{l} (T,I,J,\mathsf{TJ}) \text{ is a yes-instance} \\ \Leftrightarrow |I| = |J| = s \end{array}$$

Idea: Find a canonical k-PVC I^{\star}

- \blacksquare Partition T (assume it is rooted)
 - Find a subtree T_v : rooted at v and $T_v v$ has no k-path
 - lacktriangle Place a token lacktriangle at v
 - \blacksquare Repeat with $T-T_v$

Theorem (Hoang, Suzuki, and Yagita 2019)

 (T,I,J,TJ) is a yes-instance $\Leftrightarrow |I| = |J| = s$

Idea: Find a canonical k-PVC I*

- \blacksquare Partition T (assume it is rooted)
 - Find a subtree T_v : rooted at v and $T_v v$ has no k-path
 - lacktriangle Place a token lacktriangle at v
 - \blacksquare Repeat with $T-T_v$

Theorem (Hoang, Suzuki, and Yagita 2019)

 (T, I, J, TJ) is a yes-instance $\Leftrightarrow |I| = |J| = s$

given I*

Idea: Find a canonical k-PVC I^*

- \blacksquare Partition T (assume it is rooted)
 - Find a subtree T_v : rooted at v and $T_v v$ has no k-path
 - Place a token \bigcirc at v
 - \blacksquare Repeat with $T-T_n$

Theorem (Hoang, Suzuki, and Yagita 2019)

 (T, I, J, TJ) is a yes-instance $\Leftrightarrow |I| = |J| = s$

given T*

Idea: Find a canonical k-PVC I[⋆]

- \blacksquare Partition T (assume it is rooted)
 - Find a subtree T_v : rooted at v and $T_v v$ has no k-path
 - Place a token \bigcirc at v
 - lacksquare Repeat with $T-T_v$
- Add token(s) arbitrarily until having s tokens

Theorem (Hoang, Suzuki, and Yagita 2019)

 (T,I,J,TJ) is a yes-instance $\Leftrightarrow |I|=|J|=s$

given /

Idea: Find a canonical k-PVC I^{\star}

How to transform I into I^* ?

- Handle tokens $\bigcirc \in I^*$
 - Each partition has exactly one token $\bigcirc \in I^*$ and at least one token $\bigcirc \in I$

Theorem (Hoang, Suzuki, and Yagita 2019)

(T, I, J, TJ) is a yes-instance $\Leftrightarrow |I| = |J| = s$

Idea: Find a canonical k-PVC I^*

How to transform I into I^* ?

- Handle tokens \bigcirc ∈ I^*
 - Each partition has exactly one token $\bigcirc \in I^*$ and at least one token $\bullet \in I$
 - Jump a token $\bullet \in I$ inside the partition to that vertex
- Handle tokens \bigcirc \in I^*
 - Jump arbitrarily

Open Problems

* Marcin Kamiński, Paul Medvedev, and Martin Milanič (2012). "Complexity of Independent Set Reconfigurability Problems". In: *Theoretical Computer Science* 439, pp. 9–15. DOI: 10.1016/j.tcs.2012.03.004

* Erik D. Demaine et al. (2015). "Linear-Time Algorithm for Sliding Tokens on Trees". In: *Theoretical Computer Science* 600, pp. 132–142. DOI:

10.1016/j.tcs.2015.07.037

k-Path Vertex Cover Reconfiguration

For k=2, the problem is PSPACE-complete for bounded treewidth graphs under each of TS, TJ, or TAR [Wrochna 2018]. It is unknown whether it can be solved in polynomial time even for outerplanar graphs (whose treewidth ≤ 2).

¹This is an open problem proposed by Amer Mouawad (American University of Beirut, Lebanon) at CoRe 2019. See https://pagesperso.g-scop.grenoble-inp.fr/~bousquen/CoRe_2019/CoRe_2019_Open_Problems.pdf for a list of open reconfiguration problems proposed at this conference.

Bibliography i

Brešar, Boštjan, František Kardoš, Ján Katrenič, and Gabriel Semanišin (2011). "Minimum k-path vertex cover". In: Discrete Applied Mathematics 159.12, pp. 1189–1195. DOI: 10.1016/j.dam.2011.04.008.

Demaine, Erik D., Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro Ito, Hirotaka Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada (2015). "Linear-Time Algorithm for Sliding Tokens on Trees". In: *Theoretical Computer Science* 600, pp. 132–142. DOI: 10.1016/j.tcs.2015.07.037.

Hoang, Duc A., Akira Suzuki, and Tsuyoshi Yagita (2019). "Reconfiguring k-path vertex covers". In: arXiv preprints. arXiv: 1911.03026.

Bibliography ii

Kamiński, Marcin, Paul Medvedev, and Martin Milanič (2012). "Complexity of Independent Set Reconfigurability Problems". In: *Theoretical Computer Science* 439, pp. 9–15. DOI: 10.1016/j.tcs.2012.03.004.

Wrochna, Marcin (2018). "Reconfiguration in Bounded Bandwidth and Treedepth". In: *Journal of Computer and System Sciences* 93, pp. 1–10. DOI: 10.1016/j.jcss.2017.11.003.