COMUNICACIONES

UT Nº 4 SEÑALES DE BANDA BASE E INTRODUCCIÓN A LA TEORÍA DE LA INFORMACIÓN

Ingeniero ALEJANDRO LUIS ECHAZÚ aechazu@comunicacionnueva.com.ar

SEÑAL DE BANDA BASE

Son aquellas señales que, generadas por una fuente de información, no sufren ningún proceso de modulación o tratamiento a su salida.

Distintos tipos de codificación.

CÓDIGOS BANDA BASE O DE LÍNEA

ADAPTAN LA SEÑAL A LA LÍNEA DE COMUNICACIÓN

ABs (señal) ABl (línea)

ABs > ABl distorsión e ISI

ASPECTOS A CONSIDERAR

- Importancia de las frecuencias bajas. Problema de acoplamiento o transformadores.
- Envío de señal de sincronismo.
- Umbral de decisión. Probabilidad de error.
- Dependencia entre símbolos.
- Potencia transmitida.
- Ancho de los pulsos. Ancho de banda.

CLASIFICACIÓN DE LAS SEÑALES

Unipolar

Polar

RZ

NRZ

UTN - Sistemas - Comunicaciones

CUADRO COMPARATIVO DE CODIGOS DE LINEA

Código de línea	Regla de formación	Ancho de banda ocupado	Componente continua (valor medio distinto de 0)	Probabilidad de errores	Sincronismo	Densidad espectral de potencia	Depen- dencia entre símbolos
Unipolar NRZ	1 V+o- 0 V 0 τ=T	Menor que RZ	Si posee	Mayor que Polar	No transiciones entre bits consecutivos	Mayor que RZ y menor que Polar	No hay
Polar NRZ	1 V + 0 V - τ = T	Menor que RZ	No posee	Menor que Unipolar	No transiciones entre bits consecutivos	Mayor que Unipolar y que RZ	No hay
Unipolar RZ	1 V+o- 0 V 0 t menor T	Mayor que NRZ	Si posee	Mayor que Polar	Hay transiciones entre 1(s) consecutivos. No entre 0 (s). Mejor que NRZ	Menor que NRZ y menor que Polar	No hay
Polar RZ	1 V+ 0 V - τ menor T	Mayor que NRZ	No posee	Menor que Unipolar	Hay transiciones entre 1(s) y 0(s) consecutivos. Autosincronizante	Menor que NRZ y mayor que Unipolar	No hay
Bipolar NRZ AMI (Alternative Mark Inversion)	$ \begin{array}{ll} 1 & V+o-alt \\ 0 & V & 0 \\ \tau=T \end{array} $	Menor que RZ	No posee	Menor que Unipolar pero mayor que Polar	Hay transiciones entre 1(s). No entre 0(s). Mejor que NRZ pero peor RZ. Falta sincronismo con 0(s) seguidos	Similar a Unipolar NRZ	Si hay

Código de línea	Regla de formación	Ancho de banda ocupado	Componente continua (valor medio distinto de 0)	Probabilidad de errores	Sincronismo	Densidad espectral de potencia	Depen- dencia entre símbolos
Bipolar RZ	1 V + o - alt 0 V 0 τ menor T	Mayor que AMI	No posee	Igual que AMI	Igual que AMI	Menor que AMI	Si hay
Unipolar diferencial	transición entre V + o - y 0 no transición	Similar NRZ	Si posee	Mayor que Polar	Perdida de sincronismo	Similar Unipolares	Si hay
Polar diferencial	1 transición entre V + y - 0 no transición	Similar NRZ	No posee	Menor que Unipolar	Pérdida de sincronismo	Similar Polares	Si hay
Manchester (bifase)	1 transición + $\tau/2$ 0 transición - $\tau/2$	Similar al Polar RZ	No posee	Similar al Polar RZ	Buen sincronismo	Mayor que Polar RZ	No hay
Manchester diferencial	Siempre transición en t/2 Si 0 además transición en el inicio del Is Si 1 no transición en el inicio del Is	Menor que Manchester	No posee	Menor que Manchester	Buen sincronismo	Mayor que Manchester	Si hay
HDB-3 (High Density Binary)	Igual al AMI pero con violación al 4to 0	Similar AMI	No posee	Similar AMI	Soluciona problema de sincronismo AMI	Algo mayor que AMI	Si hay

UTN - Sistemas - Comunicaciones

C	ódigo de línea	Regla de formación	Ancho de banda ocupado	Componente continua (valor medio distinto de 0)	Probabilidad de errores	Sincronismo	Densidad espectral de potencia	Depen- dencia entre símbolos
M	liller	1 transición τ/2 0 no transición salvo que siga 0 con transición τ	Menor que Manchester	No posee	Similar Polar	Buen sincronismo	Mayor que Polar diferencial	Si hay
	MI (Coded lark Inversion)	Polar NRZ 1 alterna V en τ 0 consecutivo V en τ/2	Mayor que los NRZ comunes	No posee	Similar Polar NRZ	Mejor que Polar NRZ	Menor que Polar NRZ	Si hay
41	B-3T	Lleva 4 dígitos de 2 niveles a 3 dígitos de 3 niveles	Reduce 25%					
(S B	6ZS Sustitución inaria de 6 eros)	AMI con sustitución de 6 0(s) por combinación de 0+-0-+ o 0-+0+- según 1 sea+o-	Similar AMI			Reduce problema de sincronismo del AMI		
D	oformains:							

Referencias:

Is = Intervalo significativo

HDB-3 (High Density Bipolar – 3)

Cada 0000 se reemplazan por impulsos: R00V o 000V. ALEATORIZACIÓN.

R00V cuando es par el número de impulsos entre la violación V anterior y la que se va a introducir.

000V cuando es impar el número de impulsos entre la violación V anterior y la que se va a introducir.

CODIFICACIÓN DIFERENCIAL

La señal se codifica con transiciones. Si "1" hay transición. Si "0" no la hay. No importa la polaridad.

CÓDIGO MANCHESTER BIFASE

- •SIEMPRE TRANSICIÓN EN LA MITAD DEL INTERVALO DE BIT (IB).
- ·LA TRANSICIÓN TRANSMITE DATOS Y SINCRONIZA.
- •SI "0" LA TRANSICIÓN ES DE ALTO A BAJO.
- •SI "1" LA TRANSICIÓN ES DE BAJO A ALTO.
- •ES USADO EN REDES ETHERNET (IEEE 802.3)

CÓDIGO MANCHESTER BIFASE DIFERENCIAL

- •SIEMPRE TRANSICIÓN EN LA MITAD DEL INTERVALO DE BIT (IB).
- •SI "0" ADEMÁS HAY TRANSICIÓN EN EL INICIO DE IB.
- •SI "1" NO TRANSICIÓN EN EL INICIO DE IB.
- •ES USADO EN REDES TOKEN RING (IEEE 802.5)

ANÁLISIS ESPECTRAL DE CÓDIGOS

CUADRO DE CÓDIGOS

FILTROS

Circuitos, sistemas o partes de redes que presentan características selectivas respecto de las frecuencias.

Aplica la característica de la atenuación.

Parámetros de un filtro:

- Ancho de Banda
- Frecuencias de corte
- Selectividad

Comportamiento Ideal o Real de un filtro.

Diseño:

- Circuito L C
- Cristal
- Activos

TIPOS DE FILTROS Y SÍMBOLO

TEORÍA DE LA INFORMACIÓN

Ciencia desarrollada por Claude Shannon.

Objetivo: Mayor eficiencia en la Transmisión de la Información.

Aspectos que estudia:

- Cómo se mide la información
- •Cuál es la capacidad de un canal para transmitir info
- Aspectos sobre la codificación de la info
- Uso de los canales a plena capacidad con un mínimo de error

MEDIDA DE LA INFORMACIÓN

Un suceso contendrá mayor cantidad de información cuanto menor sea su probabilidad de ocurrencia P(x).

- La fuente tiene la posibilidad de elegir entre varios mensajes a transmitir.
- El usuario receptor tendrá incertidumbre respecto al mensaje que podrá recibir.
- Cada mensaje tiene asociada una probabilidad de ocurrencia.
- A mayor probabilidad de que un mensaje sea cierto, menor información contiene para el usuario.

UNIDADES DE INFORMACIÓN

$$I(x_i) = \log_b 1 / P(x_i)$$

Si b es e
$$\longrightarrow$$
 NAT $e = 2,718$

$$e = 2,718$$

EQUIVALENCIAS

1 Hartley = 3,32 Shannon 1 Nat = 1,44 Shannon1 Hartley = 2,30 Nat

FUENTE BINARIA EQUIPROBABLE

- Dos estados (codificación binaria)
- El "1" y el "0" son equiprobables
- Entonces:

$$I(o) = Log_2 1/0.5 = Log_2 2 = 1 SHANNON$$

$$I(1) = \text{Log }_2 1 / 0.5 = \text{Log }_2 2 = 1 \text{ SHANNON}$$

1 SHANNON = 1 BIT

BIT dígito binario. Puede tener o no información

ENTROPÍA

Valor medio de información o incertidumbre de una fuente de memoria nula. Describe la fuente.

Variable Aleatoria	1 _(x)	X_1	X_2	$\mathbf{X}_{\mathbf{k}}$	X_{k+1}
Probabilidad	$P_{(k)}$	$P_{(X1)}$	$P_{(X2)}$	$P_{(Xk)}$	$P_{(Xk+1)}$

Esperanza Matemática

$$E(X_k) = \sum_{k=1}^n I(X_k) p(X_k)$$

$$I(X_k) = \log_2 \frac{1}{p(X_k)}$$

$$I(x_{\nu}) = -\log_2 P(x_{\nu})$$

Entropía de una fuente

$$H = -\sum_{k=1}^{n} \log_2 P(X_k) p(X_k)$$

Sh/símbolo

ENTROPÍA

Propiedades matemáticas (continuidad y maximizable).

$$0 = < H(X) = < log_2 N$$

$$P(x_i)=1 \qquad P(x_i)=1/N$$

$$Minimo \qquad Maximo$$

N nº símbolos de la fuente

FUENTE BINARIA MEMORIA NULA

$$P(0)=x$$
 $P(1)=1-x$

TASA DE INFORMACIÓN DE LA FUENTE

Es la cantidad de información producida por la fte en un tiempo determinado.

$$\Gamma = \frac{H(x)}{\tau}$$

$$[\Gamma] = \frac{[Shannon/simbolo]}{\underbrace{[segundo]}}$$
 $\underline{simbolo}$

$$[\Gamma] = \frac{[Shannon]}{[segundo]}$$

FUENTE BINARIA EQUIPROBABLE

$$Sh/s = b/s (bps)$$

V tx

$$\Gamma = V \bmod * H(X)$$

$$V \mod = 1 / \tau$$