lecture 14, syntax of MPL

phil1012 introductory logic

overview

this lecture

- the syntax of MPL
- formal specification of the vocabulary and syntax of MPL
- how formulas of MPL are constructed
- the notions of logical operators, the scope of a quantifier, free and bound variables, open and closed formulas

learning outcomes

- after doing the relevant reading for this lecture, listening to the lecture, and attending the relevant tutorial, you will be able to:
 - \circ identify well-formed formulas of MPL $\,$
 - \circ construct construction tables for formulas of MPL
 - \circ identify the main operator of a formula of MPL
 - identify the scope of a quantifier
 - \circ identify free and bound variables and open and closed formulas of $\ensuremath{\mathsf{MPL}}$

required reading

• section 8.4 of chapter 8

syntax of MPL

syntax of MPL

 \bullet we can give a precise specification of the syntax of MPL as we did for PL.

```
• the symbols of MPL are:
    o names:
    o a,b,c,...,t
    variables:
    o x,y,z,u,v,w
    predicates:
    o A,B,C,...,X,Y,Z
    five connectives:
    o \neg \land \lor \rightarrow \leftrightarrow
```

```
    the symbols of MPL (continued) are:
    two quantifier symbols:
    ∀ ∃
    two punctuation symbols (parentheses):
    ( )
```

- terms are defined as follows:
 - a name is a term
 - a variable is a term
 - nothing else is a term
- wffs of MPL are defined as follows:
 - \circ (3i) where P is a predicate and \underline{t} is a term, the following is a wff:
 - $\circ Pt$
 - \circ (3ii) where α and β are wffs and \underline{x} is a variable, the following are wffs:
 - $\circ \neg \alpha \,,\, (\alpha \land \beta) \,,\, (\alpha \lor \beta) \,,\, (\alpha \to \beta) \,,\, (\alpha \leftrightarrow \beta) \,,\, \forall \underline{x}\alpha \,,\, \exists \underline{x}\alpha \,,\, \forall \underline{x}\alpha \,,\, \exists \underline{x}\alpha \,,\, \forall \underline{x}\alpha \,,\, \exists \underline{x}$
 - nothing else is a wff

constructing wffs

constructing wffs

- \bullet given this syntax for MPL we can show how any well formed formula of MPL is constructed.
- suppose we want to construct
 - $\circ (\forall xRx \rightarrow \exists xPx)$
- \bullet we might construct it as follows

Ste	wff	constructed at	this	step	From	steps/by	clause
1		Rx				/(3i)	
2		P_X				/(3i)	

Step	Wff	${\tt constructed}$	at t	his	step	From	steps/by	clause
1		Rx					/(3i)	·
2		P_X					/(3i)	
3		$\forall xR$	X				1, /(3ii	\forall)
4		$\exists x P x$	Y			:	2, /(3ii	∃)

Step	Wff	constructed at thi	s step	From	steps/by	clause
1		Rx			/(3i)	
2		Px			/(3i)	
3		$\forall x R x$			1, /(3ii	\forall)
4		$\exists_X P_X$			2, /(3ii	∃)
5		$(\forall x R x \to \exists x P x)$		3	,4 /(3ii	ightarrow)

- ullet a logical operator is a connective or a quantifier
- the main operator (c.f. main connective) is the last operator added in the construction of the wff
- any wff constructed along the way is a subformula
- ullet suppose we want to construct
 - $\circ \ \forall x(\ Rx \to \exists xPx)$.
- we might construct it as follows

StepW	ff constructed	at this	step From	steps/by	clause
1	Rx			/(3i)	
2	P_X			/(3i)	

Step	Wff constructed at this step	From steps/by clause
1	Rx	/(3i)
2	P_X	/(3i)
3	$\exists_X P_X$	2, /(3ii ∃)

Step	Wff constructed at this	step From steps/by clause
1	Rx	/(3i)
2	P_X	/(3i)
3	$\exists_X P_X$	2, /(3ii ∃)
4	$(Rx \to \exists xPx)$	1,3 $/$ (3ii \rightarrow)

Step	Wff constructed at this ster	From steps/by clause
1	Rx	/(3i)
2	P_X	/(3i)
3	$\exists_X P_X$	2, /(3ii ∃)
4	$(Rx \to \exists x Px)$	1,3, $/(3ii \rightarrow)$
5	$\forall x (Rx \rightarrow \exists x Px)$	4/(3ii ∀)

quantifier scope

quantifier scope

- if a wff has a quantifier in it, then it must have got there by being stuck on the front of some sub-formula α (by 3ii \forall or 3ii \exists) at some stage in the construction
- \bullet for any quantifier appearing in a wff, we call this subformula α the ${\bf scope}$ of the quantifier
- ullet in $(\ \forall xRx
 ightarrow \exists xPx)$, the scope of the quantifier $\forall x$ is the wff Rx
- ullet to see this, consider how we would construct $(\ \forall xRx
 ightarrow \exists xPx)$

Step Wff	constructed at	this step	From steps/by	clause
1	Rx		/(3i)	
2	Px		/(3i)	

Step	Wff constructed at	this step	From	steps/by	clause
1	Rx			/(3i)	
2	P_X			/(3i)	
3	$\forall xRx$		1	., /(3ii	\forall)
4	$\exists x P x$		2	2, /(3ii	∃)

- in $\forall x(\ Rx \to \exists xPx)$, the scope of the quantifier $\forall x$ is the wff $(\ Rx \to \exists xPx)$.
- ullet to see this, consider the construction table for $\forall x(\ Rx o \exists x Px)$

Ste) Wff	constructed at	this	step	From	steps/by	clause
1		Rx				/(3i)	
2		Px				/(3i)	
3		$\exists_X P_X$] :	2, /(3ii	∃)
4		$(Rx \rightarrow \exists xPx)$	x)		1,	3, /(3ii	ightarrow)

Step	Wff	constructed	at	this	step	From	steps/by	clause
1		Rx					/(3i)	

```
 \begin{array}{c|ccccc} 2 & Px & /(3i) \\ 3 & \exists x Px & 2, /(3ii \; \exists) \\ 4 & (Rx \rightarrow \exists x Px) & 1,3, /(3ii \; \rightarrow) \\ 5 & \forall x (Rx \rightarrow \exists x Px) & 4, /(3ii \; \forall) \end{array}
```

free and bound variables

free and bound variables

- an occurrence of a variable in a wff is **bound** if it is in the scope of a quantifier that contains that variable.
- an occurrence of a variable that is not bound in a wff is free.
- consider:
 - $\circ (F_X \to \exists_X G_X)$
- ullet the first occurrence of x is free.
- the second—the one in the quantifier—is bound.
- the third is bound.
- if a variable falls within the scope of multiple quantifiers containing that variable, it is bound by the one added first (in the construction of the wff).
- consider:
 - $\circ \ \forall x (\ Fx \to \exists x Gx)$
- the second occurrence of x is bound by $\forall x$.
- the fourth occurrence of x is bound by $\exists x$.
- an occurrence of a quantifier is **vacuous** if the variable in the quantifier does not occur free within the scope of the quantifier.
- consider:
 - ∃xPy
- ullet this occurrence of $\exists x$ is vacuous.
- we distinguish between the quantifier symbols \forall and \exists and quantifiers $\forall x$ and $\exists x$.
- a quantifier consists of a quantifier symbol and a variable.
- the variable which is a constituent of a quantifier is not free. (is it bound?)
- this variable is sometimes called the operator variable.

open and closed wffs

open and closed wffs

- corresponding to the notion of free and bound variables is the notion of open and closed wffs
- a wff with no free occurrences of variables is a **closed** wff. • e.g. $\forall x(\ Fx \to \exists x Gx)$
- a wff with one or more free occurrences of variables is an **open** wff. e.g. ($Fx \to \exists x Gx$)
- open and closed wffs are equally well-formed.
- but open wffs do not express propositions—they cannot themselves be

```
true or false.
```

- consider: Rx
 - this doesn't express a proposition
 - \circ $\exists x R x$ does, however

wrapping up

this lecture

- the syntax of MPL
- \bullet formal specification of the vocabulary and syntax of MPL
- how formulas of MPL are constructed
- the notions of logical operators, the scope of a quantifier, free and bound variables, open and closed formulas

next lecture

• lecture 15, the semantics of MPL, part 1