

# 提高算法班树状数组

Mas



树状数组/二叉索引树(Binary Index Tree), 又以其发明者命名 Fenwick Tree 树状数组是一种简洁优美的数据结构

普通树状数组维护的信息及运算要满足 结合律 且 可差分

如加法、乘法、异或等

模意义下的乘法若要可差分,需保证每个数都存在逆元

#### 结合律

 $(x \circ y) \circ z = x \circ (y \circ z)$ , 其中  $\circ$  是一个二元运算符

#### 可差分

具有逆运算的运算即已知  $x \circ y$  和 x 可以求出 y



最简单的树状数组支持两种操作,时间复杂度均为  $O(\log n)$ 

- 单点修改: 更改数组中一个元素的值
- 区间查询: 查询一个区间内所有元素的和

常见的运算是求和,由于加法满足相减性,即可以利用前缀查询做到区间查询

树状数组和线段树具有相似的功能

树状数组 支持的操作 线段树 一定支持, 线段树 支持的操作 树状数组 不一定支持

但 树状数组 的代码要比 线段树 短, 思维更清晰,速度也更快

在解决一些单点修改的问题时,树状数组 是不二之选



考虑区间求和,预处理前缀和可做到 O(1) 询问

若考虑单点修改可做到 O(1) 修改,但需重新计算前缀和,时间复杂度O(n)

考虑一个节点维护若干个小区间

- 单点修改时 只更新包含该元素的区间
- 求前缀和时将区间进行拆分,再对用到的区间求和

不难想到如右图所示的数组划分方式

每个节点需存储/管理其左右孩子对应区间信息

对于叶子节点仅管理单个元素信息





#### 若仅考虑前缀求和

发现部分节点在实际计算中并不需要

如管理元素  $A_2$  的节点可被管理  $A_{1\sim 2}$  的节点完全替代管理元素  $A_{3\sim 4}$  的节点可被管理  $A_{1\sim 4}$  的节点完全替代

管理元素  $A_{5\sim8}$  的节点可被管理  $A_{1\sim8}$  的节点完全替代

发现每一层的偶数节点存在没有意义





将无意义节点移除,发现仅剩下 n 个节点,若规定最底层为第 0 层,发现第 i 层管理的元素个数为  $2^i$ 

将这些节点编号后可放入一个数组 C 内

在数组 C 中编号为节点管理最后的元素在原数组 A 中的编号

发现在节点在数组 C 中编号,其二进制位

#### 最低且为 1 的位权代表节点管理元素个数

如右图中

 $C_7$  管理  $A_7$ 

C<sub>6</sub>管理 A<sub>5~6</sub>

*C*<sub>4</sub> 管理 *A*<sub>1~4</sub>





考虑在精简后的数组中进行求和

如求  $\sum_{i=1}^{7} A_i$ 

尝试找出与  $\sum_{i=1}^{7} A_i$  相关的区间, 其显然与  $C_7$  有关

观察 7 二进制形式

$$(7)_{10} = (0111)_2$$

可分别查询(6,7],(4,6],(0,4]对应节点信息再相加

上述区间端点二进制  $(0110_2,0111_2]$  ,  $(0100_2,0110_2]$  ,  $(0000_2,0100_2]$ 

不断地减去区间右端点二进制位最低且为 1 的位权

即可得到拆分区间

(0110, 0111]

(0100, 0110]

(0000, 0100]

#### 实验舱 青少年编程 <sub>走近科学 走进名校</sub>

### 树状数组

定义整数 x 的二进制位中最低且为 1 的位权为 lowbit(x)

如 lowbit(7) = 1, lowbit(12) = 4

那么  $C_x$  维护区间 (x - lowbit(x), x] 的信息

对于求  $\sum_{i=1}^{x} A_i$ 

累加  $C_x$  并不断令  $x \leftarrow x - lowbit(x)$ , 直到 x 变为 0 时停止

若有 n 个元素每次减去 lowbit 可看作消去一位二进制 1

所以考察的区间数不超过  $\log n$  个

时间复杂度  $O(\log n)$ 



### lowbit



考虑求出 lowbit(x)

$$lowbit(x) = x \& -x$$

计算机里有符号数一般是以 补码 的形式存储

在补码表示, x 的相反数  $-x = \sim x + 1$ 

-x 相当于 x 按位取反再加 1, 会把结尾处原来 1000 ... 的形式,变成0111 ... ,再变成1000 ...

而前面每一位都与原来相反,再将其和x按位与,得到的结果便是 lowbit(x)

原 01001000

反 10110111

补 10111000

00001000

原 01100000

反 10011111

补 10100000

00100000



记 l(x) = x - lowbit(x) + 1 即 l(x) 为 C[x] 管辖左端点

对于任意正整数 x, 总能将 x 表示为  $s \times 2^{k+1} + 2^k$ , 其中  $s \in N$  且  $2^k = lowbit(x)$ 

下列描述中使用 C[x] 表示 C[x] 所辖区间

• 对于  $x \le y$  要么有 C[x] 和 C[y] 不相交要么有 C[x] 包含于 C[y]

假设 C[x] 与 C[y] 相交,即 [l(x),x] 与 [l(y),y] 相交 有  $l(y) \le x \le y$ 

设 
$$y = s \times 2^{k+1} + 2^k$$
 那么  $l(y) = s \times 2^{k+1} + 1$ 

设 
$$x = s \times 2^{k+1} + b$$
 其中  $1 \le b \le 2^k$ 

显然 lowbit(x) = lowbit(b),又由于  $b - lowbit(b) \ge 0$  所以

$$l(x) = x - lowbit(x) + 1 = s \times 2^{k+1} + b - lowbit(b) + 1$$

$$\geq s \times 2^{k+1} + 1 = l(y)$$

显然  $l(y) \le l(x) \le x \le y$ , 命题得证



• 在 C[x] 真包含于 C[x + lowbit(x)]

设 
$$y = x + \text{lowbit}(x), x = s \times 2^{k+1} + 2^k$$
, 则  $y = (s+1) \times 2^{k+1}$ ,  $l(x) = s \times 2^{k+1} + 1$ 

不难发现 lowbit(y)  $\geq 2^{k+1}$ 

所以

$$l(y) = (s + 1) \times 2^{k+1} - lowbit(y) + 1 \le s \times 2^{k+1} + 1 = l(x)$$

即  $l(y) \le l(x) \le x < y$ , 命题得证

• 对于任意 x < y < x + lowbit(x), 有 C[x] 和 C[y] 不相交

设 
$$x = s \times 2^{k+1} + 2^k$$
, 则  $y = x + b = s \times 2^{k+1} + 2^k + b$ , 其中  $1 \le b < 2^k$ 

不难发现 lowbit (y) = lowbit (b),又因为  $b - \text{lowbit } (b) \ge 0$  所以

$$l(y) = y - lowbit(y) + 1 = x + b - lowbit(b) + 1 > x$$

即 
$$l(x) \le x < l(y) \le y$$
, 命题得证



• 若 $u = s \times 2^{k+1} + 2^k$ ,则其儿子数量为 $k = \log_2 \text{lowbit}(u)$  编号分别为 $u - 2^t (0 \le t < k)$ 

x 减去  $2^t$  其二进制第 t 位反转更低位不变

考虑 u 的儿子 v 有 v + lowbit(v) = u, 即  $v = u - 2^t$  且 lowbit(v) =  $2^t$ 

设  $u = s \times 2^{k+1} + 2^k$ 

考虑  $0 \le t < k$ 

u 的第 t 位及其后均为 0 , 所以  $v = u - 2^t$  的第 t 位变为 1 其后仍为 0 满足 lowbit(v) =  $2^t$ 

考虑 t = k

 $v = u - 2^k$ , v 的第 k 位变为 0 不满足 lowbit(v) =  $2^t$ 

考虑 t = k

 $v = u - 2^k$ , v 的第 k 位是 1,所以 lowbit(v) =  $2^k$  不满足 lowbit(v) =  $2^t$ 



考虑更新单点的值,更新单点需将所有受影响的区间更新

观察发现更新是不断向上爬升完成的

如更新  $A_2$  的值, 那么  $C_2$  、  $C_4$  、  $C_8$  会受到影响

即区间  $(0000_2,0010_2]$ ,  $(0010_2,0100_2]$ ,  $(0100_2,1000_2]$ 

若要更新  $A_x$  考虑正确修改包含  $A_x$  的 C 数组信息

不断令  $x \leftarrow x + lowbit(x)$  就能跳到 x 的上一级节点

不断修改,直到再无上一级节点时停止

树状数组若有n个元素,上跳区间数不超过 $\log n$ 个

时间复杂度  $O(\log n)$ 







根据上述实现进行单点更新

对于区间 [L,R] 求和

求出  $sum_R$  和  $sum_{L-1}$  计算  $Sum_R - Sum_{L-1}$  即可

#### O(n) 建立树状数组

- 每一个节点的值是由所有与自己直接相连的儿子的值求和得到的 每次确定完儿子的值后,用自己的值更新自己的直接父亲即可
- 2. 由于  $C_x$  维护区间 (x lowbit(x), x] 的信息 预处理一个前缀和数组 sum,  $C_x = sum_x - sum_{x-lowbit_x}$

```
int lowbit(int x)
{
    return x & (-x);
}

void update(int pos, int val)
{
    for (int i = pos; i <= n; i += lowbit(i))
        c[i] += val;
}

int query(int pos)
{
    int res = 0;
    for (int i = pos; i >= 1; i -= lowbit(i))
        res += c[i];
    return res;
}
```



### #936、树状数组1:单点修改,区间查询

#### 题目描述

给定数列  $a_1, a_2, \ldots, a_n$  ,你需要依次进行 q 个操作,操作有两类:

- 1 i x : 给定 i,x ,将  $a_i$  加上 x
- 2 1  $\mathbf{r}$  : 给定 l,r ,求  $\sum_{i=l}^r a_i$  的值(换言之,求  $a_l+a_{l+1}+\cdots+a_r$  的值)

#### 输入格式

第一行包含 2 个正整数 n,q ,表示数列长度和询问个数

保证  $1 \le n, q \le 10^6$  。

第二行 n 个整数  $a_1,a_2,\ldots,a_n$  ,表示初始数列。保证  $|a_i| \leq 10^6$  。

接下来 q 行,每行一个操作,为以下两种之一:

- 1 i x : 给定 i,x ,将  $a_i$  加上 x
- 21r:给定 l,r ,求  $\sum_{i=l}^r a[i]$  的值

保证  $1 \leq l \leq r \leq n, \ |x| \leq 10^6$ 

#### 输出格式

对于每个 2 1 r 操作输出一行,每行有一个整数,表示所求的结果

#### 样例输入

3 2 1 2 3 1 2 0 2 1 3

#### 样例输出

5

#### 数据范围与提示

对于所有数据,  $1 \leq n, q \leq 10^6, \;\; |a_i| \leq 10^6$  ,  $\; 1 \leq l \leq r \leq n, \;\; |x| \leq 10^6$ 



### #900、树状数组 2: 区间修改,单点查询

#### 题目描述

给定数列  $a[1],a[2],\ldots,a[n]$  ,你需要依次进行 q 个操作,操作有两类:

- 「11rx」: 给定 l,r,x ,对于所有  $i\in [l,r]$  ,将 a[i] 加上 x (换言之,将  $a[l],a[l+1],\ldots,a[r]$  分别加上 x )
- 2 i : 给定 i ,求 a[i] 的值

#### 输入格式

第一行包含 2 个正整数 n,q ,表示数列长度和询问个数。保证  $1 \le n,q \le 10^6$  第二行 n 个整数  $a[1],a[2],\ldots,a[n]$  ,表示初始数列。保证  $|a[i]| \le 10^6$  接下来 q 行,每行一个操作,为以下两种之一:

- 11rx:对于所有  $i \in [l,r]$  ,将 a[i] 加上 x
- 2 i : 给定 i ,求 a[i] 的值。

保证  $1 \leq l \leq r \leq n, \ |x| \leq 10^6$ 

#### 输出格式

对于每个 2 i 操作,输出一行,每行有一个整数,表示所求的结果

#### 样例输入

3 2 1 2 3 1 1 3 0 2 2

#### 样例输出

2

#### 数据范围与提示

对于所有数据,  $1 \leq n, q \leq 10^6, \;\; |a[i]| \leq 10^6$  ,  $\; 1 \leq l \leq r \leq n, \;\; |x| \leq 10^6$ 

### 区间修改、单点查询



通过差分可将问题转为单点修改、区间查询

原数组为 A ,记差分数组为 d

根据差分数组定义

$$A_{x} = \sum_{i=1}^{x} d_i$$

对于区间 [L,R] 加上定值 v 只需要令

$$d_L += v$$

$$d_{R+1} = v$$

单点查询直接查询  $\sum_{i=1}^{x} d_i$  即可

单次修改/查询  $O(\log n)$ 

### #937、树状数组 3: 区间修改,区间查询

#### 题目描述

给定数列  $a[1],a[2],\ldots,a[n]$  ,你需要依次进行 q 个操作,操作有两类:

 $\lfloor l \rfloor r \rfloor : 给定 \lfloor l, r, x \rfloor$ ,对于所有  $i \in [l, r]$ ,将 a[i] 加上 x (换言之,将  $a[l], a[l+1], \ldots, a[r]$  分别加上 x )

2  $\ell$  r : 给定 l,r ,求  $\sum_{i=l}^r a[i]$  的值(换言之,求  $a[l]+a[l+1]+\cdots+a[r]$  的值)

#### 输入格式

第一行包含 2 个正整数 n,q ,表示数列长度和询问个数。保证  $1 \leq n,q \leq 10^6$ 

第二行 n 个整数  $a[1],a[2],\ldots,a[n]$  ,表示初始数列。保证  $|a[i]|\leq 10^6$ 

接下来 q 行,每行一个操作,为以下两种之一:

1 し r x z z y チ所有  $i\in [l,r]$  ,将 a[i] 加上 x

2 l r : 輸出  $\sum_{i=1}^r a[i]$  的值

保证  $1 \le l \le r \le n, \ |x| \le 10^6$ 

#### 输出格式

#### 数据范围与提示

#### 样例输入

| 5 | 10 |   |     |
|---|----|---|-----|
| 2 | 6  | 6 | 1 1 |
| 2 | 1  | 4 |     |
| 1 | 2  | 5 | 10  |
| 2 | 1  | 3 |     |
| 2 | 2  | 3 |     |
| 1 | 2  | 2 | 8   |
| 1 | 2  | 3 | 7   |
| 1 | 4  | 4 | 10  |
| 2 | 1  | 2 |     |
| 1 | 4  | 5 | 6   |
| 2 | 3  | 4 |     |

#### 样例输出

### 区间修改、区间求和



根据差分数组定义

$$\sum_{i=1}^{x} A_i = \sum_{i=1}^{x} \sum_{j=1}^{i} d_j = \sum_{i=1}^{x} (x - i + 1) \times d_i$$

$$= (x+1) \times \sum_{i=1}^{x} d_i - \sum_{i=1}^{x} (d_i \times i)$$

维护两个数组  $C1_i = d_i$  ,  $C2_i = d_i \times i$ 

对于区间 [L,R] 加上定值 v

$$\diamondsuit C1_L += v, C1_{R+1} -= v$$

同时令 
$$C2_L += v \times L$$
,  $C2_{R+1} -= v \times (R+1)$ 

对于求和累加  $(x+1) \times C1_x - C2_x$  即为答案

单次修改/查询  $O(\log n)$ 

### 二维树状数组



- 单点修改、区域查询增加一个维度即可
- 区间修改、单点查询二维差分数组维护即可
- 区域修改、区域查询

$$\sum_{i=1}^{x} \sum_{j=1}^{y} A_{ij} = \sum_{i=1}^{x} \sum_{j=1}^{y} \sum_{k=1}^{i} \sum_{h=1}^{j} d_{kh} =$$

$$(x+1)\times(y+1)\times\sum_{i=1}^{x}\sum_{j=1}^{y}(d_{ij})-(y+1)\times\sum_{i=1}^{x}\sum_{j=1}^{y}(d_{ij}\times i)-(x+1)\times\sum_{i=1}^{x}\sum_{j=1}^{y}(d_{ij}\times j)+\sum_{i=1}^{x}\sum_{j=1}^{y}(d_{ij}\times i\times j)$$

参考一维差分,分别使用四个数组维护

### #322、逆序对数



#### 题目描述

给你一个n个数的数组,逆序对定义为:

存在两个整数 i < j 使得  $a_i > a_j$ 

你需要求出逆序对的个数

#### 输入

第一行 n ,代表数组长度 第二行 n 个数,代表  $a_i (1 \leq i \leq n)$ 

#### 输出

输出逆序对数

#### 输入样例

4 4 3 2 1

#### 输出样例

5

#### 数据规模

对于 10% 的数据,  $n \leq 100, 1 \leq a_i \leq 100$ 对于 40% 的数据,  $n \leq 10000, 1 \leq a_i \leq 10^9$ 对于 100% 的数据,  $n \leq 100000, 1 \leq a_i \leq 10^9$ 

### #322、逆序对数



可以将数组各值离散化后处理, 维护各值出现的次数

• 逆序遍历数组,对于当前元素  $A_i$ 

若知道 j > i 且  $A_j < A_i$  值的数量,即为  $A_i$  能构成的逆序对数量

同时将  $A_i$  所在位置点的个数加一

这是一个单点修改、区间求和的问题

可以考虑树状数组优化,时间复杂度  $O(n \log n)$ 

• 顺序遍历数组,对于当前元素  $A_i$ 

设 x 为  $A_i$  插入之前有小于 $A_i$ 数的数量,那么 i-x 就是 在  $A_i$  插入之前的大于 $A_i$  数的个数,累加即可

同样可以考虑数组数组优化,时间复杂度 $O(n \log n)$ 





#### 题目描述

设有整数序列  $b_1, b_2, b_3, \ldots, b_m$ 

若存在

$$i_1 < i_2 < i_3 < \ldots < i_n$$

且

$$b_{i_1} < b_{i_2} < \cdots < b_{i_n}$$

则称  $b_1, b_2, b_3, \ldots, b_m$  中有长度为 m 的不下降序列

$$b_{i_1},b_{i_2},\ldots,b_{i_n}$$

求序列  $b_1, b_2, b_3, \ldots, b_m$  中所有长度(n)最大不下降子序列

#### 输入格式

第一行一个整数 M (  $M \leq 10000$  ) 接下来输入 M 个用空格隔开的整数  $(\leq 20000)$  序列;

#### 输出格式

可以将数组各值离散化后处理

记 dp[i] 表示 以 A[i] 结尾的最长上升子序列长度

将 dp 数组根据值 A[i] 大小映射到树状数组上

逆序遍历数组,对于当前元素 A[i]

查询  $1 \sim A[i] - 1$  范围内查询最大值,最大值 +1 即为答案





#### 区间查询

以查询  $\max_{L \le i \le R} a_i$  为例

从 R 沿着 lowbit 一直向前跳,但不可跳到 L 的左边

若跳到了 C[x] 需判断 x - lowbit(x)

- 若 $x \text{lowbit}(x) \ge L$

说明没越界, 正常合并 c[x],然后跳到 C[x - lowbit(x)] 即可

考虑 R 和 L 不同的最高位, 必有 R 在该位为 1, 而 L 在该位为 0

若 R 在该位后仍然有 1 ,必有 R − lowbit(R) ≥ L , 下一步即为将 R 的最低位 1 填为 0

若 R 的这一位 1 就是 R 的最低位 1, 无论是  $R \leftarrow R$  — lowbit(R) 还是  $R \leftarrow R$  — 1, R 的这一位 1 一定会变为 0

```
int queryMax(int l, int r)
{
    int res = 0;
    while (r >= l)
    {
        res = max(res, a[r--]);
        for (; r - lowbit(r) >= l; r -= lowbit(r))
            res = max(res, C[r]);
    }
    return res;
}
```

循环条件不可写为  $R - lowbit(R) + 1 \ge L$ 





因此 R 经过至多  $\log n$  次变换后 R 和 L 不同的最高位必可下降一位时间复杂度  $O(\log^2 n)$ 

#### 单点更新

以  $a[x] \leftarrow p$  后续查询最大值为例, 记 y 为 x 在树状数组中的上级编号

$$C[y] = \max(C[y], p) ?$$

$$C[y] = p$$
?

模拟 A = [1,2,3,4,5,0,0,0] 将 3 修改成 4?

移除时对区间信息而言相当于做逆运算

修改可视为将原数从区间移除再加入新数

由于不可差分信息不存在逆运算,所以无法直接修改达成目的





### 不可差分信息

考虑对于每个 C[y] 重构区间信息

事实上 C[y] 的子节点信息必然正确(先更新子节点再更新父节点)

由于子节点组成了 (y - lowbit(y), y - 1)

那么再合并一个 a[y] 即可合并得出 (y - lowbit(y), y]

至多用  $\log n$  个区间重构合并出续修改的 C[y]

即用 C[y-1], C[y-2], C[y-4],  $\cdots$ , C[y-lowbit(y)] 与 a[y] 得出正确的 (y-lowbit(y), y]

由于至多上跳  $\log n$  个节点,每个节点进行  $\log n$  次合并

单点修改时间复杂度为  $O(\log^2 n)$ 

线段树仅需  $O(\log n)$  即可实现单调修改、区间查询





#### 题目描述

给你一个长度为 n 整数数组 A 以及一个整数 k

数组 
$$A$$
 有  $\dfrac{n imes(n+1)}{2}$  个连续区间  $A_l,A_{l+1},\cdots,A_{r-1},A_r$ 

请你统计有多少个连续子区间的算术平均值大于等于 k

#### 输入格式

第一行输入两个正整数 n,k接下来每行一个正整数  $A_i$ 

#### 输出格式

请你输出有多少个连续子区间的算术平均值大于等于 k

#### 数据规模

对于 15% 的数据  $1 \leq N \leq 1000$ 对于全部的数据  $1 \leq N \leq 2 \times 10^5, 1 \leq k, a_i \leq 10^9$ 

#### 输入样例1

```
3 6
7
5
7
```

#### 输出样例1

```
5
```

#### 样例解释1

—共 5 个区间满足条件  $\{7\}$  ,  $\{7,5\}$  ,  $\{7,5,7\}$  ,  $\{5,7\}$  ,  $\{7\}$ 

### #2639、子段的平均数



求出前缀和数组 sum

要求二元组 (l,r) 满足  $sum_r - sum_{l-1} \ge (r-l+1) \times K$  的数量

不妨令  $A_i$  ←  $A_i$  – K

再求出前缀和 sum

问题转化为

要求二元组 (l,r) 满足  $sum_r \ge sum_{l-1}$  的数量

将 sum 离散化后使用权值树状数组维护

时间复杂度  $O(N \log N)$ 

### #707、数星星 Stars



#### 题目描述

天空中有一些星星,这些星星都在不同的位置,每个星星有个坐标

如果一个星星的左下方(包含正左和正下)有 k 颗星星,就说这颗星星是 k 级的



例如,上图中星星 5 是 3 级的 ( 1,2,4 在它左下) ,星星 2,4 是 1 级的

例图中有 1 个 0 级, 2 个 1 级, 1 个 2 级, 1 个 3 级的星星

给定星星的位置,输出各级星星的数目

-**句话题意**给定 n 个点,定义每个点的等级是在该点左下方(含正左、正下)的点的数目,试统计每个等级有多少个点

#### 数据范围与提示

对于全部数据,  $1 \leq N \leq 1.5 imes 10^4, 0 \leq x,y \leq 3.2 imes 10^4$ 

#### 输入格式

第一行一个整数 N ,表示星星的数目接下来 N 行给出每颗星星的坐标,坐标用两个整数 x,y 表示

不会有星星重叠

星星按 y 坐标增序给出, y 坐标相同的按 x 坐标增序给出

#### 输出格式

N 行,每行一个整数,分别是 0 级, 1 级, 2 级,....., N-1 级的星星的数目

### #707、数星星 Stars



由于y 轴已经有序,仅需考虑x 轴

对于每个点  $(x_i, y_i)$  , 仅需知道 j < i 且  $x_j \le x_i$  的星星数量(二维偏序)

树状数组维护即可

注意坐标可能为 0, 将下标 统一 +1 处理

时间复杂度  $O(N \log \max(x))$ 



## 谢谢观看