Promethee

- Warianty powinny być porównywane parami
- metoda powinna być zrozumiała dla człowieka
- preferencja, nierozróżnialność, nieporównywalność
- liczba nieporównywalności może być zmniejszana, ale tylko wtedy, gdy jest to realistyczne i pożądane

Obserwacje na temat metody

- rozważane są różnice pomiędzy ocenami wariantów na każdym kryterium
- decydent powinien skojarzyć niewielką preferencję dla lepszego wariantu, przy znaczacych różnicach preferencja powinna być większa (rola decydenta)

Kroki metody

1. określenie cząstkowej funkcji preferencji dla kryterium.

Mamy ich 6 ogólnych typów:

najbardziej standardowa

inne

The intensity of preference of a over b on criterion g_i is a function $\pi_i(a,b)$ of the difference (amplitude) $g_i(a)-g_i(b)$

Always, i.e., for all types of preference functions, when a is not better than b, then $\pi_i(a,b) = 0$

The intensity of preference of a over b on criterion g_i is a function $\pi_i(a,b)$ of the difference (amplitude) $g_i(a) - g_i(b)$

Decydent podaje próg nieroróżnialności i preferencji:

300

example		qi	
indifference and preference	g ₂	0	
thresholds	g_3	100	

3. Następnie porównujemy przykłady parami, np. wybieram Włochy (ITA) i porównuję z innymi krajami według kryterium. Na dole przykład po jednym kryterium.

Let us compare ITA with all the remaining alternatives on g₂ given the marginal preference function

Alt. (b)	g ₂ ↑	d ₂ (ITA,b)	π ₂ (ITA,b)
ITA	8	0	0
BEL	0	8	1
GER	5	3	1
SWE	3	5	1
AUT	7	1	0.5
FRA	10	-2	0

- $\pi_2(ITA,BEL) = 1$, because $g_2(ITA) g_2(BEL) = 8 0 = 8 > 2$ ITA is better than BEL by 8, which is greater than $p_2 = 2$
- $\pi_2(ITA,FRA) = 0$, because $g_2(ITA) g_2(AUT) = 8 10 = -2 \le 0$ ITA is worse than FRA by 2, i.e., it is not better by at least $g_2 = 0$
- $\pi_2(ITA,AUT) = 0.5$, because $0 < g_2(ITA) g_2(AUT) = 8 7 = 1 \le 2$ ITA is better than AUT by 1, which is greater than $q_2 = 0$ and less than $p_2 = 2$ (between the two, exactly in half)

I robimy tak dla wszystkich kryteriów (na dole g3). UWAGA NA KOSZT I ZYSK.

Let us compare ITA with all the remaining alternatives on g_3 given the marginal preference function

- = π_3 (ITA,BEL) = 1, because g_3 (BEL) g_3 (ITA) = 800 400 = 400 > 300 ITA is better than BEL by 400, which is greater than p_3 = 300
- π_3 (ITA,AUT) = 0, because g_3 (AUT) − g_3 (ITA) = 200 − 400 = -200 ≤ 300 ITA is worse than AUT by 200, i.e., it is not better by at least g_3 = 100
- $\pi_3(ITA,SWE) = 0.5$, bec. $100 < g_3(SWE) g_3(ITA) = 600 400 = 200 \le 300$ ITA is better than SWE by 200, which is greater than $q_3 = 100$ and less than $p_3 = 300$ (between the two, exactly in half)

So far, we have used just the most standard marginal preference function. Where are the 6 types?

4. Konstruujemy relacje przewyższania dla wszystkich par wariantów na wszystkich kryteriach.

π ₁ (.,.)	ITA	BEL	GER	SWE	AUT	FRA
ITA	0	1	1	1	1	1
BEL	0	0	0	0	0	0
GER	0	1	0	0	0	0
SWE	0	1	1	0	0	0
AUT	0	1	1	1	0	1
FRA	0	1	1	1	0	0

π ₂ (.,.)	ITA	BEL	GER	SWE	AUT	FRA
ITA	0	1	1	1	0.5	0
BEL	0	0	0	0	0	0
GER	0	1	0	1	0	0
SWE	0	1	0	0	0	0
AUT	0	1	1	1	0	0
FRA	1	1	1	1	1	0

π ₃ (.,.)	ITA	BEL	GER	SWE	AUT	FRA
ITA	0	1	1	0.5	0	0.5
BEL	0	0	0.5	0	0	0
GER	0	0	0	0	0	0
SWE	0	0.5	1	0	0	0
AUT	0.5	1	1	1	0	1
FRA	0	0.5	1	0	0	0

- In view of the marginal preference indices, what is the comprehensive support given to the hypothesis that a is preferred to b?
- AUT seems to be very strong compared to BEL
- SWE seems to be very weak compared to FRA
- For ITA and AUT the results are not univocal
- In the real world, in most cases there are criteria on which a is better than b, and criteria on which b is better than a
- Dostajemy wagi kryteriów, które są uwzględniane przy obliczeniu globalnego współczynnika preferencji.

Weight	g_1	g ₂	g_3
w _i	3	2	5

6. Obliczamy **globalny współczynnik preferencji**, który dla danej pary jest średnią ważoną cząstkowych współczynników preferencji na wszystkich kryteriach.

COMPREHENSIVE PREFERENCE INDEX

$$\pi(a,b) = \frac{\sum_{i=1,...,m} w_i \cdot \pi_i(a,b)}{\sum_{i=1,...,m} w_i}$$

π(.,.)	ITA	BEL	GER	SWE	AUT	FRA
ITA	0	1	1	0.75	0.4	0.55
BEL	0	0	0.25	0	0	0
GER	0	0.5	0	0.2	0	0
SWE	0	0.75	0.8	0	0	0
AUT	0.25	1	1	1	0	0.8
FRA	0.2	0.75	1	0.5	0.2	0

	g ₁	g ₂	g_3
weight w _i	3	2	5
$\pi_i(\text{BEL},\text{GER})$	0	0	0.5
$\pi_i(GER,BEL)$	1	1	0

$$\pi(BEL,GER) = \frac{3 \cdot 0 + 2 \cdot 0 + 5 \cdot 0.5}{3 + 2 + 5} = 0.25$$

$$\pi(GER,BEL) = \frac{3 \cdot 1 + 2 \cdot 1 + 5 \cdot 0}{3 + 2 + 5} = 0.50$$

7. Obliczamy przepływ dodatni i przepływ ujemny. Przepływ dodatni to suma po wierszach powyższej tabeli, a przepływ ujemny to suma po kolumnach. Przepływ dodatni mówi jak bardzo dana opcja jest lepsza od reszty, a ujemny jak bardzo dana opcja jest gorsza od

Promethee 1

8. Konstruujemy dwa rankingi oparte na przepływie dodatnim (preferowane wyższe wartości) i przepływie ujemnym (preferowane niższe wartości).

The greater $\Phi^+(a)$, the better The lesser $\Phi^-(a)$, the better

Alt.	Ф+(.)	Ф-(.)
ITA	3.70 (2)	0.45 (1)
BEL	0.25 (6)	4.00 (5)
GER	0.70 (5)	4.05 (6)
SWE	1.55 (4)	2.45 (4)
AUT	4.05 (1)	0.60 (2)
FRA	2.65 (3)	1.35 (3)

9. Konstruujemy ranking końcowy.

Promethee 2

Obserwacje i uwagi:

- czasami potrzebujemy rankingu zupełnego oferuje go promethee 2
- oblicza przepływ całkowity = przepływ dodatni przepływ ujemny
- preferencja zachodzi, jeśli przepływ jest wyższy od innego, nierozróżnialność gdy przepływy są równe
- nie ma już par nieporównywalnych
- w rzeczywistym wspomaganiu decyzji korzysta się jednocześnie z promethee 1 i 2
- 8. Obliczamy przepływ całkowity.

π(.,.)	Ф+(.)	Φ-(.)	Ф-(.)
ITA	3.7	0.45	3.25 (2)
BEL	0.25	4.0	-3.75 (6)
GER	0.7	4.05	-3.35 (5)
SWE	1.55	2.45	-0.90 (4)
AUT	4.05	0.6	3.45 (1)
FRA	2.65	1.35	1.30 (3)

$$\Phi^+(ITA) = 3.7 - 0.45 = 3.25$$

9. Wyznaczamy ranking

Promethee 5

Obserwacje i uwagi:

- metoda wykorzystuje przepływy całkowite z promethee 2
- formułuje binarny problem programowania matematycznego
- maksymalizuje sumę przepływów związanych z wybranymi wariantami

8. Obliczamy przepływ całkowity.

π(.,.)	Ф+(.)	Φ-(.)	Ф-(.)
ITA	3.7	0.45	3.25 (2)
BEL	0.25	4.0	-3.75 (6)
GER	0.7	4.05	-3.35 (5)
SWE	1.55	2.45	-0.90 (4)
AUT	4.05	0.6	3.45 (1)
FRA	2.65	1.35	1.30 (3)

$$\Phi^+(ITA) = 3.7 - 0.45 = 3.25$$

9. Zdefiniowanie ograniczeń i założeń. Przykład z prezentacji: wybór podzbioru co najwyżej dwóch wariantów, które nie przekroczyłyby kosztów utrzymania w wysokości 40 mln euro.

Alternative	Ф(.)	Maintenance cost
ITA (a ₁)	3.25	22
BEL (a ₂)	-3.75	17
GER (a ₃)	-3.35	25
SWE (a ₄)	-0.90	28
AUT (a ₅)	3.45	20
FRA (a ₆)	1.30	18

10. Formułujemy równanie i je maksymalizujemy (bądź minimalizujemy). W praktyce, strzelam, robi to solver. Na egzaminie też.

$$max\ 3.25 \cdot x_1 + (-3.75) \cdot x_2 + (-3.35) \cdot x_3 + (-0.90) \cdot x_4 + 3.45 \cdot x_5 + 1.30 \cdot x_6$$
 subject to:

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 2$$

 $22 \cdot x_1 + 17 \cdot x_2 + 25 \cdot x_3 + 28 \cdot x_4 + 20 \cdot x_5 + 18 \cdot x_6 \le 40$
 $x_1, x_2, x_3, x_4, x_5, x_6 \in \{0, 1\}$

Optimal solution: select AUT and FRA

$$x_1 = 0$$
, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 1$, $x_6 = 1$
objective function = 3.45 + 1.30 = 4.75
cardinality = 2 ($x_5 = 1$, $x_6 = 1$)

comprehensive maintenance cost = 20 + 18 = 38

- funkcja wartości, która tłumaczy na każdym kryterium do wartości cząstkowych, a następnie agreguje do wartości całkowitych
- porównywanie parami
- tworzy ranking zupełny
- dopuszcza jedynie preferencje i nierozróżnialność
- ranking liczbowy lub kardynalny
- ma rację bytu, jeżeli kryteria są od siebie niezależne
- preferencja zachodzi, jeżeli wartość globalna x jest większa od wartości globalnej y, a nierozróżnialność gdy wartości te są równe

Ranking problem

Kroki postępowania

1. Dostajemy dane

Alternative	g ₁↑	g ₂↑	g ₃↑
Andreev	26	40	44
Brown	2	2	68
Calvet	18	17	14
Dubov	35	62	25
Elmendi	7	55	12
Ferret	25	30	12
Grishuk	9	62	88
Hornet	0	24	73
Ishak	6	15	100
Jope	16	9	0
Kante	26	17	17
Liu	62	43	0

2. Poznajemy cząstkową funkcję wartości dla różnych kryteriów.

Dostajemy wagi kryteriów od decydenta.

$$u_1(a) w_1 = 0.40$$

$$v_2 = 0.25$$

$$\uparrow u_3(a)$$
 $w_3=0.35$

 Obliczamy wartość globalną dla przykładu. Jest to suma ważona wartości funkcji cząstkowych dla kryteriów w ramach jednego przykładu.

An additive value function: a comprehensive value is a weighted sum of marginal values

$$U(\mathbf{a}) = \sum_{i=1,\dots,n} \mathbf{w}_i \cdot \mathbf{u}_i(g_i(\mathbf{a})) = \mathbf{w}_1 \cdot \mathbf{u}_1(g_1(\mathbf{a})) + \dots + \mathbf{w}_n \cdot \mathbf{u}_n(g_n(\mathbf{a}))$$

$$(\mathbf{a}) = \sum_{i=1,\dots,n} \mathbf{w}_i \cdot \mathbf{u}_i(g_i(\mathbf{a})) = \mathbf{w}_1 \cdot \mathbf{u}_1(g_1(\mathbf{a})) + \dots + \mathbf{w}_n \cdot \mathbf{u}_n(g_n(\mathbf{a}))$$

$$(\mathbf{a}) = \sum_{i=1,\dots,n} \mathbf{w}_i \cdot \mathbf{u}_i(g_i(\mathbf{a})) = \mathbf{w}_1 \cdot \mathbf{u}_1(g_1(\mathbf{a})) + \dots + \mathbf{w}_n \cdot \mathbf{u}_n(g_n(\mathbf{a}))$$

$$(\mathbf{a}) = \sum_{i=1,\dots,n} \mathbf{w}_i \cdot \mathbf{u}_i(g_i(\mathbf{a})) = \mathbf{w}_1 \cdot \mathbf{u}_1(g_1(\mathbf{a})) + \dots + \mathbf{w}_n \cdot \mathbf{u}_n(g_n(\mathbf{a}))$$

$$(\mathbf{a}) = \sum_{i=1,\dots,n} \mathbf{w}_i \cdot \mathbf{u}_i(g_i(\mathbf{a})) = \mathbf{w}_1 \cdot \mathbf{u}_1(g_1(\mathbf{a})) + \dots + \mathbf{w}_n \cdot \mathbf{u}_n(g_n(\mathbf{a}))$$

$$(\mathbf{a}) = \sum_{i=1,\dots,n} \mathbf{w}_i \cdot \mathbf{u}_i(g_i(\mathbf{a})) = \mathbf{w}_1 \cdot \mathbf{u}_1(g_1(\mathbf{a})) + \dots + \mathbf{w}_n \cdot \mathbf{u}_n(g_n(\mathbf{a}))$$

$$(\mathbf{a}) = \sum_{i=1,\dots,n} \mathbf{w}_i \cdot \mathbf{u}_i(g_i(\mathbf{a})) = \mathbf{w}_1 \cdot \mathbf{u}_1(g_1(\mathbf{a})) + \dots + \mathbf{w}_n \cdot \mathbf{u}_n(g_n(\mathbf{a}))$$

$$(\mathbf{a}) = \sum_{i=1,\dots,n} \mathbf{w}_i \cdot \mathbf{u}_i(g_i(\mathbf{a})) = \mathbf{w}_1 \cdot \mathbf{u}_1(g_1(\mathbf{a})) + \dots + \mathbf{w}_n \cdot \mathbf{u}_n(g_n(\mathbf{a}))$$

$$(\mathbf{a}) = \sum_{i=1,\dots,n} \mathbf{u}_i(g_i(\mathbf{a})) + \dots + \mathbf{u}_n(g_n(\mathbf{a}))$$

$$(\mathbf{a}) = \sum_{i=1,\dots,n} \mathbf{u}_i(g_i(\mathbf{a})) + \dots$$

Compensatory model: good values on one criterion can compensate bad values on another criterion

Value function function distinguishes only 2 possible relations between alternatives:

- Preference relation (P, >): $a > b \Leftrightarrow U(a) > U(b)$ (asymmetric and transitive)
- Indifference relation (I, ~): a ~ b ⇔ U(a) = U(b) (symmetric, reflexive, and transitive)
- 5. Dla podanych cząstkowych funkcji użyteczności:

Assume the marginal value functions and weights are given

Odczytujemy wartości funkcji użyteczności cząstkowej:

	g ₁↑	g ₂↑	g ₃↑
Α	26	40	44
В	2	2	68
С	18	17	14
D	35	62	25
E	7	55	12
F	25	30	12
G	9	62	88
Н	0	24	73
-1	6	15	100
J	16	9	0
K	26	17	17
L	62	43	0

read off
marginal
values u _i (a)
•

	u ₁ (a)	u ₂ (a)	u ₃ (a)
Α	0.629	0.413	0.440
В	0.048	0.000	0.680
С	0.435	0.100	0.140
D	0.782	1.000	0.250
Е	0.169	0.813	0.120
F	0.605	0.187	0.120
G	0.218	1.000	0.880
Н	0.000	0.147	0.730
- 1	0.145	0.087	1.000
J	0.387	0.047	0.000
K	0.629	0.100	0.170
L	1.000	0.493	0.000

6. Obliczamy użyteczności globalne dla przykładów:

COMPREHENSIVE
$$U(A) = \sum_{i=1,...,n} w_i \cdot u_i(g_i(A)) = w_1 \cdot u_1(26) + w_2 \cdot u_2(40) + w_3 \cdot u_3(44) = 0.40 \cdot 0.629 + 0.25 \cdot 0.413 + 0.35 \cdot 0.440 = 0.509$$

7. Sporządzamy ranking:

		U(a)	Rank
	Α	0.509	4
	В	0.257	10
	С	0.248	11
е	D	0.650	1
	Е	0.313	8
	F	0.331	7
	G	0.645	2
	Н	0.292	9
	- 1	0.430	5
1	J	0.167	12
	K	0.336	6
	L	0.523	3

Ułatwienie interpretacyjne wag - dotychczas cząstkowe funkcje użyteczności były w zakresie [0, 1]. Mogą być jednak w zakresie $[0, swoja_waga]$. Nie trzeba wtedy mnożyć $u_i(a)$ przez

wagę.

It is possible to incorporate weights into marginal value function by assuming $w_i = u_i(\beta_i)$, for all criteria

Then, the comprehensive value can be computed as a sum of marginal values

$$U(a) = \sum_{i=1,...,n} u_i(g_i(a)) = \sum_{i=1,...,n} u_i(a)$$

The criterion's contribution in the comprehensive value is controlled by the maximal marginal value

Relacja konieczna

A > N B - dla kazdego u(A) >= u(B)

Relacja możliwa

□ A >P B - istnieje takie u(A) >= u(B)

Jak tworzyć addytywną funkcję użyteczności

- wykorzystujemy łatwe preferencje
- 1. Pytamy decydenta jakie warianty woli (porównujemy je parami).

Czysta UTA

wymaga pośredniej informacji preferencyjnej

 jeżeli decydent stwierdza, że przykład a jest preferowany nad b, to jego użyteczność globalna powinna być większa. Globalne wartości powinny być równe w przypadku nierozróżnialności.

$$U(a) > U(b) \Leftrightarrow a > b$$
$$U(a) = U(b) \Leftrightarrow a \sim b$$

Kroki postępowania

1. Konstruujemy znormalizowaną funkcje użyteczności. Suma najlepszych wartości cząstkowych funkcji powinna być równa 1.

Uwaga: początek i koniec skali mogą wyznaczać najgorsze i najlepsze przykłady dla danego kryterium (jak na slajdach), albo np. od 0 do 100.

Przykład nr 1: rozważamy trzy warianty X, Y, Z. Preferencje: X > Y > Z

Alt.	g ₁↑	g ₂ ↑	• X
X	10	0	>
Υ	5	5	• Y
Z	0	10	• Z

Z preferencji wynika, że:

Reconstruction works for any:

$$u_1(10) > u_2(10)$$

 $u_1(10) + u_2(10) = 1$

Przyjmujemy jakieś cząstkowe funkcje użyteczności. Mogą być takie:

albo takie:

2. Obliczamy użyteczności globalne przykładów na podstawie wzoru:

Comprehensive value function:

$$U(a) = \sum_{i=1}^{n} u_{i} [g_{i}(a)] = u_{1} [g_{1}(a)] + u_{2} [g_{2}(a)] = \frac{g_{1}(a)}{\beta_{1}} u_{1}(\beta_{1}) + \frac{g_{2}(a)}{\beta_{2}} u_{2}(\beta_{2})$$

$$U(X) = \frac{10}{10}u_1(10) + \frac{0}{10}u_2(10) = u_1(10)$$

٧

$$U(Y) = 0.5u_1(10) + 0.5u_2(10)$$

٧

$$U(Z) = \frac{0}{10}u_1(10) + \frac{10}{10}u_2(10) = u_2(10)$$

		u₁(a)	u ₂ (a)	U(a)
	X	0.75	0.0	0.75
)	Υ	0.375	0.125	0.5
′	Z	0.0	0.25	0.25

Przykład nr 2: rozważamy trzy warianty X, Y, Z.

Preferencje: X > Z > Y

• nie da się odtworzyć za pomocą liniowych funkcji wartości i spełnić warunków:

It is not possible to reconstruct the ranking with linear marginal value functions, i.e., to find $u_1(10)$ and $u_2(10)$ satisfying the constrains

$$U(X) = u_1(10)$$
 > $U(Z) = u_2(10)$ > $U(Y) = 0.5u_1(10) + 0.5u_2(10)$

$$u_1(10) > u_2(10) > u_1(10)$$

Należy więc złamać funkcje użyteczności:

2. Obliczamy użyteczności globalne przykładów.

Alt.	u₁(a)	u₂(a)	U(a)
X	0.6	0.0	0.6
Y	0.1	0.2	0.3
Z	0.0	0.4	0.4

Przejście z UTA do UTA-GMS

Algorytm

1. Ranking referencyjny

$$U(a) \ge U(b) + \varepsilon \Leftrightarrow a > b \\ U(c) = U(d) \qquad \Leftrightarrow c \sim d$$
 $\forall a,b \in A^{R} \\ \forall c,d \in A^{R}$

 Normalizacja addytywnej funkcji użyteczności. Suma cząstkowych dla max powinna wynosić 1.

$$\sum_{i=1}^{n} u_i(\beta_i) = 1$$

$$u_i(\alpha_i) = 0, \quad \forall i \in I$$

3. Monotoniczność i non-negativity.

$$u_i(\alpha_i) = 0, \quad \forall i \in I$$

 $u_i(x_i^{j+1}) - u_i(x_i^j) \ge 0, \quad j = 0, ..., \gamma_i - 1; \ \forall i \in I$
 $u_i(x_i^j) \ge 0, \ \forall i \text{ and } j$

1. Dostajemy dane

	Alt.	g ₁↑	g ₂↑	g ₃↑
	Dubov	35	62	25
æ	Elmendi	7	55	12
	Ferret	25	30	12
	Grishuk	9	62	88

Oraz preferencje i funkcje uzytecznosci:

Z preferencji wynika:

$$\begin{split} u_1(35) + u_2(62) + u_3(25) &= u_1(9) + u_2(62) + u_3(88) \\ u_1(9) + u_2(62) + u_3(88) &\geq u_1(25) + u_2(30) + u_3(12) + \varepsilon \\ u_1(25) + u_2(30) + u_3(12) &\geq u_1(7) + u_2(55) + u_3(12) + \varepsilon \end{split}$$

2. Normalizujemy:

$$u_1(62) + u_2(62) + u_3(100) = 1$$

 $u_1(0) = 0$, $u_2(2) = 0$, $u_3(0) = 0$

3. Zachowujemy monotonicznosc i non-negativity.

$$\begin{split} u_1(31) &\geq u_1(0), u_1(62) \geq u_1(31) \\ u_2(32) &\geq u_2(2), u_2(62) \geq u_2(32) \\ u_3(100) &\geq u_3(50), u_3(50) \geq u_3(0) \\ u_1(0), u_1(31), u_1(62), u_2(2), u_2(32), u_2(62), \\ u_3(0), u_3(50), u_3(100) &\geq 0 \end{split}$$

Maksymalizujemy epsilon!!! Jeżeli epsilon jest większy od 0, to przynajmniej jedna funkcja wartości jest spójna z dostarczoną informacją preferencyjną.

- If ε*>0 and C(R) is feasible, then the polyhedron of feasible solutions for u_i(a) is not empty, and there exists at least one v. f. U(a) compatible with DM's reference ranking on A^R
- · Let us inspect an example, compatible model

Alt.	g ₁↑	g ₂↑	g ₃↑	• D ~ G
D	35	62	25	\
E	7	55	12	• F
F	25	30	12	— >
G	9	62	88	• E

4. Odczytujemy wartości cząstkowe:

	u ₁ (a)	u ₂ (a)	u ₃ (а)
Α	0.168	0.377	0.119
В	0.013	0.000	0.176
С	0.116	0.175	0.038
D	0.213	0.450	0.068
E	0.045	0.427	0.032
F	0.161	0.327	0.032
G	0.058	0.450	0.222
Н	0.000	0.257	0.188
1	0.039	0.152	0.250
J	0.103	0.082	0.000
κ	0.168	0.175	0.046
L	0.300	0.387	0.000

5. Obliczamy globalne wartości użyteczności i tworzymy ranking.

	u ₁ (a)	u ₂ (a)	u ₃ (a)	U(a)	Rank
Α	0.168	0.377	0.119	0.663	4
В	0.013	0.000	0.176	0.189	11
С	0.116	0.175	0.038	0.329	10
D	0.213	0.450	0.068	0.730	1
Ε	0.045	0.427	0.032	0.504	6
F	0.161	0.327	0.032	0.520	5
G	0.058	0.450	0.222	0.730	1
Н	0.000	0.257	0.188	0.445	7
1	0.039	0.152	0.250	0.440	8
J	0.103	0.082	0.000	0.185	12
κ	0.168	0.175	0.046	0.389	9
L	0.300	0.387	0.000	0.687	3

6. Ranking zgadza się z rankingiem preferencji.

Comprehensive values of references alternatives:

$$U(D) = u_1(35) + u_2(62) + u_3(25) = 0.730$$

$$U(G) = u_1(9) + u_2(62) + u_3(88) = 0.730$$

$$U(F) = u_1(25) + u_2(30) + u_3(12) = 0.520$$

$$U(E) = u_1(7) + u_2(55) + u_3(12) = 0.504$$

The reference ranking D \sim G > F > E is reproduced because:

$$U(D) = U(G) > U(F) > U(E)$$

Modeli spójnych z preferencjami klienta może być nieskończenie wiele. Przedstawiony poniżej również działa:

- Let us inspect another solution (e.g., corresponding to max ϵ^*)
- Increased maximal share in the comprehensive value of criterion g₁ and g₃ (the shapes are more concave) and zeroed maximal share of criteria g₂

Alt.	g ₁ ↑	g ₂↑	g ₃ ↑	• D ~ G
D	35	62	25	<u> </u>
E	7	55	12	• F
F	25	30	12	<u> </u>
G	9	62	88	• E

	u ₁ (a)	u ₂ (a)	u₃(a)	U(a)	Rank
Α	0.315	0.000	0.456	0.771	1
В	0.024	0.000	0.527	0.551	5
С	0.218	0.000	0.145	0.363	10
D	0.386	0.000	0.259	0.645	2
Ε	0.085	0.000	0.124	0.209	11
F	0.303	0.000	0.124	0.427	9
G	0.109	0.000	0.536	0.645	2
Н	0.000	0.000	0.529	0.529	6
1	0.073	0.000	0.542	0.614	4
J	0.194	0.000	0.000	0.194	12
κ	0.315	0.000	0.176	0.491	7
L	0.458	0.000	0.000	0.458	8

Comprehensive values of references alternatives:

$$U(D) = u_1(35) + u_2(62) + u_3(25) = 0.645$$

$$U(G) = u_1(9) + u_2(62) + u_3(88) = 0.645$$

$$U(F) = u_1(25) + u_2(30) + u_3(12) = 0.427$$

$$U(E) = u_1(7) + u_2(55) + u_3(12) = 0.209$$

The reference ranking D \sim G > F > E is reproduced because:

$$U(D) = U(G) > U(F) > U(E)$$

There might be some changes in the ranking depending on the selected compatible model

Jak wybrać jeden model?

- wybór pozostawiamy użytkownikowi
- skorzystanie z predefiniowanych reguł wyboru jednej, spójnej funkcji wartości np. wybór modelu centralnego o średnich wartościach cząstkowych albo wybranie maksymalnego podkreślenia konsekwencji porównań parami dokonywanych przez decydenta, czyli jeżeli

twierdził on, że a jest lepsze od b, to a powinno być możliwie jak najbardziej lepsze od b, co odpowiada maksymalizacji epsilona

uwzględnienie wszystkich spójnych funkcji wartości jednocześnie!!!

UTA - GMS

- wykorzystuje porównania parami
- przeprowadza analizę odporności, czyli badanie stabilności oferowanego wyniku w zależności od wyboru spójnej instancji założonego modelu preferencji
- skupiamy się na jednoczesnym wykorzystaniu wszystkich funkcji, a może być ich nieskończenie wiele

Kroki metody

- Sprawdzenie spójności informacji preferencyjnej z założonym modelem preferencji. Patrz: przejście uta - uta gms.
- 2. Punkty charakterystyczne funkcji cząstkowych są zdefiniowane we wszystkich unikalnych ocenach wariantów na kryteriach. Jeśli optymalny eps > 0, to istnieje co najmniej jedna funkcja spójna z preferencjami decydenta. Zazwyczaj istnieje wiele takich funkcji.
- Sprawdzenie, czy prowadzą one do spójnych rekomendacji konstrukcja preferencji możliwej i koniecznej.
 - relacja konieczna zachodzi gdy wariant a jest co najmniej tak dobry jak wariant b dla wszystkich spójnych funkcji wartości. Ma globalną wartość zawsze większą równą
 wariant b nie jest ściśle lepszy od wariantu a
 - 2. relacja możliwa zachodzi gdy wariant a jest co najmniej tak dobry jak b dla co najmniej jednej spójnej funkcji wartości. jego globalna wartość jest większa równa dla co najmniej jednego dozwolonego scenariusza -> w zbiorze spójnych

funkcji wartości maksymalna różnica między wartościami globalnymi wariantów a i b jest większa równa od zera

Może zachodzic relacja konieczna dla pary (a,b) i relacja możliwa dla pary (b,a).

- Weryfikacja prawdziwości dwóch relacji dla danej pary wariantów.
 - relacja możliwa maksymalizujemy różnicę między globalnymi wartościami wariantów a i b przy zbiorze ograniczeń. Jeśli ta różnica jest większa równa od zera, to jest prawdziwa.
 - 2. relacja możliwa -
 - 3. relacja konieczna minimalizacja
 - relacja konieczna -
- 5. slajd 29, 30

GRIP

- posiada wszystkie cechy GMS
- dopuszcza informację preferencyjną innego typu dotyczącą intensywności preferencji, np. wariant x > y bardziej, tak samo lub co najmniej tak bardzo jak w > z

The Most Representative Value Function

- wybór najbardziej reprezentatywnej funkcji funkcji najbardziej odpornej
- pojedynczy model, który reprezentuje wszystkie pozostałe, a te wszystkie pozostałe przyczynią się do jego wyboru Metoda:
- dla par wariantów, dla których zachodzi relacja konieczna chcemy maksymalizować różnicę między ich wartościami globalnymi tak, by relacja preferencji stała się dla nich tak wyraźna jak się da
- 2. potem dla par wariantów, dla których relacja konieczna nie zachodzi, chcemy minimalizować różnicę między ich wartościami globalnymi

Informacja preferencyjna jest niespójna z modelem

Co zrobić?

- 1. zwiększenie liczby liniowych odcinków dla funkcji wartości cząstkowych
- szukać modelu, który jest suboptymalny pod względem pewnego błędu, jeśli nie da się zapewnić pełnej spójności, to chcemy by była tak wysoka jak się da
- przyjmujemy, że popełniono jakiś błąd, albo stwierdzenia dotyczące preferencji są niespójne ze sobą, albo nie są zgodne z modelem addytywnym - zmieniamy informację

preferencyjną, eliminując lub zmieniając niektóre jej elementy Kroki:

 znajdujemy minimalny podzbiór ograniczeń, które należy usunąć, aby przywrócić spójność slajdy 39, 40, 41

Wprowadzenie do teorii gier

- gra sekwencyjna akcje następują jedna po drugiej
- gry kooperacyjne self-explenatory
- gra z niepełną informacją gracze nie znają wszystkich ruchów już wykonanych przez przeciwników
- gra symetryczna wypłaty zależą od akcji, a nie od tego, kto je wybiera
- strategia czysta strategia odpowiada wybraniu jakiejś akcji
- równowaga Nasha profil złożony z jednej akcji dla każdego gracza, dla którego dla każdego gracza wybrana przez niego akcja jest najlepszą odpowiedzią na akcje wybrane przez wszystkich pozostałych graczy. żaden z graczy nie ma motywacji do jednostronnego odstąpienia od przypisanej strategii. reprezentuje stabilny wynik.
- pareto-optymalność profil akcji dominuje w sensie pareto inny profil, jeśli użyteczność, do której prowadzi dla wszystkich graczy, jest co najmniej tak wysoka jak użyteczność związana z drugim profilem i jest ściśle wyższa dla co najmniej jednego gracza
- profil akcji efektywny w sensie pareto niezdominowany przez żaden inny profil
- gra koordynacyjna gracz uzyska wyższą uzyteczność, gdy wybierze ten sam sposób działania co inny gracz
- gra o sumie zerowej suma wypłat graczy jest równa zero

Formalizmy:

Gra - krotka <N, A, u>

N - gracze

A - akcje

u - funkcje wypłat

Strategie mieszane

- wsparcie strategii mieszanej zbiór akcji związanych z dodatnimi prawdopodobieństwami
 - strategia mieszana jest czysta, jeśli jej wsparcie jest pojedynczą gra
 - strategie mieszana jjest prawdziwie mieszana, jeśli nie jest czysta, są co najmniej dwie akcje, które można zrealizować w różnych scenariuszach
 - strategia jest w pełni mieszana, jeśli jej wsparciem jest pełny zbiór akcji

O \ M	A	В
A	2\4	0 \ 0
В	0 \ 0	8\3

Suppose Oliwia chooses to go to the ballet (B) with 75% probability $s_1 = (1/4, 3/4)$ $s_2 = (1, 0)$ Mateusz chooses to go to the races (A) with certainty (pure strategy) $s = (s_1, s_2) = ((1/4, 3/4), (1, 0))$

Obliczamy:

O \ M	A (1)	B (0)
A (1/4)	2 \ 4	0 \ 0
B (3/4)	0 \ 0	8\3

$$s_1 = (1/4, 3/4)$$
 $s_2 = (1, 0)$
 $s = (s_1, s_2) = ((1/4, 3/4), (1, 0))$

Thus:
$$\mathbf{u_1}(s) = 2 \cdot (1/4 \cdot 1) + 0 \cdot (1/4 \cdot 0) + 0 \cdot (3/4 \cdot 1) + 8 \cdot (3/4 \cdot 0) = 1/2$$

 $\mathbf{u_2}(s) = 4 \cdot (1/4 \cdot 1) + 0 \cdot (1/4 \cdot 0) + 0 \cdot (3/4 \cdot 1) + 3 \cdot (3/4 \cdot 0) = 1$

Równowaga Nasha

Definicja:

 Profil złożony z jednej akcji dla każdego gracza, dla którego dla każdego gracza wybrana przez niego akcja jest najlepszą odpowiedzią na akcje wybrane przez wszystkich pozostałych graczy. Żaden z graczy nie ma motywacji do jednostronnego odstąpienia od przypisanej strategii. Oznacza stabilny wynik.

Sposób obliczania

Recall:

A world with just two drivers Which side of the road to use?

	L	R
П	1\1	0\0
R	0\0	1\1

For this game, it is easy to guess what the Nash equilibria are:

- Pure NE: both pick left (L) with certainty: ((1,0), (1,0))
- Pure NE: both pick right (R) with certainty: ((0,1), (0,1))
- Both choose fifty-fifty: ((1/2,1/2), (1/2,1/2))

Suppose we have guessed (correctly) that this game has exactly one NE (s_1, s_2) and that it is fully mixed. How to compute it?

	L (q)	R (1-q)
T (p)	6\4	7\5
B (1-p)	3 \2	8\1

Let $s_1 = (p,1-p)$ and $s_2 = (q,1-q)$. If you use a mixed strategy, you must be indifferent between your two actions.

Thus: Player 1 is indifferent: $6 \cdot q + 7 \cdot (1-q) = 3 \cdot q + 8 \cdot (1-q) \rightarrow q = 1/4$ Player 2 is indifferent: $4 \cdot p + 2 \cdot (1-p) = 5 \cdot p + 1 \cdot (1-p) \rightarrow p = 1/2$

Mixed Nash Equilibrium: $(s_1, s_2) = ((1/2, 1/2), (1/4, 3/4))$

O \ M	S (q)	G (1-q)
S (p)	0\0	- 5 \ 10
G (1- <i>p</i>)	10\-5	-20\-20

$$\mathbf{s_0} = (p, 1-p)$$
$$\mathbf{s_M} = (q, 1-q)$$

best response of player O depends on q

```
Player O is indifferent if u_0(S,q) = u_0(G,q): 0 \cdot q + -5 \cdot (1-q) = 10 \cdot q + -20 \cdot (1-q) \rightarrow q = 3/5 if u_0(S,q) = u_0(G,q), i.e., if q = 3/5 Player O would play S if u_0(S,q) > u_0(G,q): 0 \cdot q + -5 \cdot (1-q) > 10 \cdot q + -20 \cdot (1-q) \rightarrow q < 3/5 Player O would play G if u_0(S,q) < u_0(G,q): 0 \cdot q + -5 \cdot (1-q) < 10 \cdot q + -20 \cdot (1-q) \rightarrow q > 3/5 if u_0(S,q) < u_0(G,q): u_0(G,q) = 0 if u_0(S,q) < u_0(G,q), i.e., if q > 3/5
```

Summary: best response of player O depends on q

$$p \in best_{0}(q) = \begin{cases} 1 & \text{if } q < 3/5 \\ [0,1] & \text{if } q = 3/5 \\ 0 & \text{if } q > 3/5 \end{cases}$$

O \ M	S (q)	G (1-q)
S (p)	0\0	-5 \ 10
G (1- <i>p</i>)	10\-5	-20\-20

$$\mathbf{s_0} = (p, 1-p)$$
$$\mathbf{s_M} = (q, 1-q)$$

best response of player M depends on p

Player *M* is indifferent if
$$u_{M}(S,p) = u_{M}(G,p)$$
: $q \in best_{2}(p) = [0,1]$
 $0 \cdot p + -5 \cdot (1-p) = 10 \cdot p + -20 \cdot (1-p) \rightarrow p = 3/5$ if $u_{M}(S,p) = u_{M}(G,p)$, i.e., if $p = 3/5$

Summary: best response of player M depends on p

$$q \in \text{best}_{M}(p) = \begin{cases} 1 & \text{if } p < 3/5 \\ [0,1] & \text{if } p = 3/5 \\ 0 & \text{if } p > 3/5 \end{cases}$$

Analyze all intersections of best responses curves:

```
Pure NE: (\mathbf{s_1}, \mathbf{s_2}) = ((0,1), (1,0)) Pure NE: (\mathbf{s_1}, \mathbf{s_2}) = ((1,0), (0,1)) Mixed NE: (\mathbf{s_1}, \mathbf{s_2}) = ((3/5, 2/5), (3/5, 2/5))
```

Dwie czyste równowagi, jedna mieszana.

Player 1 is indifferent:
$$6 \cdot q + 7 \cdot (1-q) = 3 \cdot q + 8 \cdot (1-q) \rightarrow q = 1/4$$

Player 2 is indifferent: $4 \cdot p + 2 \cdot (1-p) = 5 \cdot p + 1 \cdot (1-p) \rightarrow p = 1/2$

Analyze all intersections of best response curves:

Mixed NE:
$$(s_1, s_2) = ((1/2, 1/2), (1/4, 3/4))$$

Jedna równowaga mieszana.

Mieszana równowaga Nasha

Definicja:

- na poziomie pojedynczego gracza jakaś strategia mieszana jest najlepszą odpowiedzią danego gracza na strategie mieszane pozostałych graczy, jeśli nie ma innej strategii mieszanej dostępnej dla tego gracza, która prowadzi go do większej użyteczności oczekiwanej przy ustalonych strategiach pozostałych graczy
- na poziomie grupy profil strategii mieszanych jest mieszaną równowagą Nasha, jeśli mieszana strategia każdego gracza jest najlepszą odpowiedzią na strategie pozostałych graczy.
 - Oznacza stabilny wynik. Żaden gracz nie ma motywacji do jednostronnej zmiany swojej strategii.

Twierdzenie Nasha - każda skończona gra w postaci normalniej ma co najmniej jedną równowagę Nasha. Może ona być czysta lub prawdziwie mieszana.

Strategie ściśle dominujące

• Action a_i∈S_i is strictly dominated by strategy s_i*∈S_i if:

$$u_i(s_i^*, a_{-i}) > u_i(a_i, s_{-i})$$
 for all $s_{-i} \in S_{-i}$

If we assume i is rational, action a can be eliminated

This induces a solution concept:

all mixed-strategy profiles of the reduced game that survive iterated elimination of strictly dominated strategies (IESDS)

Example (where the dominating strategies happen to be pure):

	L	R		R		
Т	4\4	1\6	Т	1\6	_	R O) O
В	6\1	2 \2	В	2 \2	B	2\2

Nie ma znaczenia kto najpierw wykreśla swoje akcje - wierszy czy kolumny. I tak kończymy w tym samym miejscu.

Inclusions between sets of strategy profiles that are solutions for a given game according to certain solution concepts

$$\begin{array}{ccc}
Dom \subseteq PureNash \subseteq Nash \subseteq CorrEq \subseteq IESD \\
\hline
might be empty & always non-empty
\end{array}$$

Gry zatłoczenia, gry rozległe

- gry zatłoczenia charakteryzują się akcjami dotyczącymi pewnych zasobów, zawsze mają
 w sobie czystą równowagę Nasha, narzędziem do ich analizy będą tzw. gry potencjalne
- gry rozległe ich wyróżnikiem jest sekwencja ruchów, akcje następują po sobie, a nie są realizowane jednocześnie

Gry zatłoczenia

Definicja: <N, R, A, d>

gdzie:

- N {1..n} gracze
- R {1...m} zasoby
- A A1x...xAn akcje
- d zbiór funkcji opóźnień (kosztów) związanych z zasobami

Gry potencjalne

 narzędzie do badania gier zatłoczenia
 Definicja: gra w postaci normalnej składająca się z takich samych elementów jak gra strategiczna (N, A, u) o specyficznej funkcji użyteczności wszystkich graczy (warunek P)

O \ M	С	D	P(
C	-10 \ -10	-25 \ 0	P(P(
D	0\-25	-20 \ -20	P(

$$P(C,C) = 50$$

 $P(C,D) = 60$
 $P(D,C) = 60$
 $P(D,D) = 65$

Każda gra potencjalna ma co najmniej jedną czystą równowagę Nasha. Dowód: wystartuj z profilu akcji, z którym skojarzona jest najwyższa wartość funkcji potencjału. Obojętnie kto od tego profilu odstąpi, nie zwiększy swojego potencjału.

Każda gra zatłoczenia jest grą potencjalną, dlatego istnieje dla niej NE.

Twierdzenie Moderera i Shapleya: każda gra potencjalna ma własność skończonej poprawialności.

Cena anarchii

<u>So</u>: in a congestion game, the natural better-response dynamics will always lead us to a pure NE. Nice. <u>But</u>: how good is that equilibrium? Recall our **traffic congestion example**:

10 people overall top delay = 10 minutes bottom delay = # on route

If $x \le 10$ players use bottom route, social welfare (sum of utilities) is:

$$sw(x) = -[x \cdot x + (10 - x) \cdot 10] = -[x^2 - 10 \cdot x + 100]$$

- This function is maximal for x = 5 and minimal for x = 0 and x = 10
- In equilibrium, 9 or 10 people will use the bottom route (10 is worse)

The so-called Price of Anarchy (PoA) of this game is:

$$sw(10)/sw(5) = -100/-75 = 4/3$$

Gry rozległe (z pełną informacją)

- ruchy wykonywane sekwencyjnie, nie jednoczenie
- można przekształcić do postaci normalnej
- tw. Zermelo

Modelowane w postaci drzewa:

Player 1 chooses a division of a given amount of money.
Player 2 accepts this division or rejects it (in which case both get nothing).

The pure strategies of the players:

- $A_1^* = \{50:50, 70:30, 90:10\}$
- A_2^* = {Acc-Acc-Acc, Acc-Rej-Acc, Acc-Rej-Rej, Rej-Acc-Acc, Rej-Acc-Rej, Rej-Rej-Acc, Rej-Rej-Rej}

	Acc-Acc-Acc	Acc-Acc-Rej	Acc-Rej-Acc	
50:50	5 \ 5	5\5	5 \ 5	
70:30	7 \3	7\3	0 \ 0	
90:10	9\1	0 \ 0	9\1	

Możemy modelować grę rozległą jako normalną, ale nie zawsze jest to możliwe w drugą stronę.

Twierdzenie Zormelo

Każda gra rozległa ma co najmniej jedną czystą równowagę Nasha.

AHP

wspomaganie problemów wielokryterialnego porządkowania i wyboru

Przykład: wybór studenta do udziału w projekcie badawczym

Etapy metody:

- 1. określenie celu, identyfikacja i porządkowanie kryteriów, rozpoznanie wariantów
- pozyskanie informacji preferencyjnej porównywanie parami pod kątem ich wpływu na element znajdujący się nad nimi w hierarchii, prosimy o oceny decydenta
- 3. preferencje są przekształcane w priorytety, na tym etapie może się okazać, że preferencje decydenta są niespójne, metoda prosi o zmianę porównań parami
- 4. obliczenie kompleksowych ocen wariantów
- porównywanie parami może odbywać się w dwóch trybach:
 - 1. podać liczbę wyrażającą intensywność preferencji jednego elementu nad drugim
 - 2. słowny opis intensywności preferencji

Number	Verbal judgment	
1	Equal importance	
3	Moderate (weakly more important)	
5	Strong (much more important)	
7	Very strong (very much more important)	
9	Extreme (absolutely more important)	
2, 4, 6, 8	Intermediate values (2 – equal to moderate)	

Kroki postępowania:

1. Macierz porównania parami:

g ₁	g ₁₁	g ₁₂	g ₁₃
g ₁₁	1	2	6
g ₁₂	1/2	1	3
g ₁₃	1/6	1/3	1

AHP dopuszcza do 10% niespójności.

- 2. GDY MACIERZ JEST SPÓJNA: Przekształcenie macierzy w priorytety:
 - 1. Obliczamy sumę w kolumnach

g ₁	g ₁₁	g ₁₂	g ₁₃
g ₁₁	1	2	6
g ₁₂	1/2	1	3
g ₁₃	1/6	1/3	1
Sum	10/6	10/3	10/1

2. Obliczamy odwrotności sum, które wskazują na wagi.

Sum	10/6	10/3	10/1
Inverse	6/10	3/10	1/10

- 2. GDY MACIERZ NIE JEST SPÓJNA: obliczenie wektora własnego macierzy A i zamiana w priorytety
- 1. sumowanie elementów w każdej kolumnie

a _{ij}	g ₂₁	g ₂₂	g ₂₃	
g ₂₁	1	2	5	
g ₂₂	1/2	1	3	
g ₂₃	1/5	1/3	1	
col	17/10	10/3	9/1	

2. dzielimy każdy element przez sumę ze swojej kolumny

a _{ij}	g ₂₁	g ₂₂	g ₂₃	
g ₂₁	1	1 2		
g ₂₂	1/2	1	3	
g ₂₃	1/5	1/3	1	
col	17/10	10/3	9/1	

Normalized matrix A'					
a' _{ij}	g ₂₃				
g ₂₁	g ₂₁ 10/17		5/9		
g ₂₂	5/17	3/10	3/9		
g ₂₃	2/17	1/10	1/9		

3. średnie z macierzy

Nor	ix A'			
a' _{ij}	g ₂₁	g ₂₂	g ₂₃	
g ₂₁ 10/1		6/10	5/9	
g ₂₂	5/17	3/10	3/9	
g ₂₃	2/17	1/10	1/9	

w'	w	w'
g ₂₁	10/17 + 6/10 + 5/9 = 1.744	1/3·1.744 = 0.581
g ₂₂	5/17 + 3/10 + 3/9 = 0.927	1/3·0.927 = 0.309
g ₂₃	2/17 + 1/10 + 1/9 = 0.329	1/3-0.329 = 0.110

LUB

1. podniesienie macierzy do kwadratu

A ₁	g ₂₁	g ₂₂	g ₂₃
g ₂₁	1	2	5
g ₂₂	1/2	1	3
g ₂₃	1/5	1/3	1

$$A_2 = A_1 \cdot A_1 \quad \bigvee$$

A ₂	g ₂₁	g ₂₂	g ₂₃
g ₂₁	3	5.67	16
g ₂₂	1.60	3	8.50
g ₂₃	0.57	1.07	3

2. sumujemy po wierszach i normalizujemy

A ₂	g ₂₁	g ₂₂	g ₂₃	Row sum	w'
g ₂₁	3	5.67	16	24.67	0.582
g ₂₂	1.60	3	8.50	13.10	0.309
g_{23}	0.57	1.07	3	4.63	0.109

- 3. powtarzamy proces
- 3. Robimy tak dla każdego kryterium.

For programming (inconsistent)

						_
g ₁₁	Α	В	С	D		
A	1	2	5	1		
В	1/2	1	3	2		
С	1/5	1/3	1	1/4		
D	1	1/2	4	1		
					.	Г

w	w'
1.473	0.379
1.129	0.290
0.289	0.074
1.000	0.257
4.191	
	1.473 1.129 0.289 1.000

For math (inconsistent)

g ₁₂	Α	В	С	D	
A	1	2	1/2	2	
В	1/2	1	1/3	3	
C	2	3	1	4	
D	1/2	1/3	1/4	1	

g ₁₂	w	w'
Α	2.610	0.254
В	1.886	0.184
С	4.762	0.464
D	1.000	0.097
λ	4.124	

For physics (inconsistent)

g ₁₃	Α	В	С	D
A	1	4	5	4
В	1/4	1	3	1/2
С	1/5	1/3	1	1/3
D	1/4	2	3	1

g ₁₃	w	w'
Α	2.724	0.569
В	0.709	0.148
С	0.353	0.074
D	1.000	0.209
λ	4.158	

For visual arts (consistent)

	Α	В	С	D	
Α	1	1 1/3		3	
В	B 3		3	9	
С	1	1/3	1	3	
D	D 1/3		1/3	1	

g ₂₂	w	w'
Α	3	0.188
В	9	0.563
С	3	0.188
D	1	0.063
λ	4	

The preference elicitation mode and the way of computing the priorities is the same:

- irrespective of the hierarchy level
- irrespective of whether we deal with criteria, sub-criteria, or alternatives

For cognitive sciences (inconsistent)

g ₂₃	Α	В	С	D
Α	1	1/7	1/3	1/5
В	7	1	5	3
С	3 1/5 1		1	1/3
D	5	1/3	3	1

g ₂₃	w	w'
A	0.220	0.058
В	2.155	0.564
С	0.448	0.117
D	1.000	0.262
λ	4.117	

LAMBxDA - ŚREDNIA ARYTMETYCZNA Z W

4.

5. Obliczamy globalne priorytety poprzez mnożenie wag, kryteriów i wariantów i sumowanie wierszami.

The aggregation of the local, sub-criteria, and macro criteria prioritizations leads to **global prioritizations**

$$Score(A) = 0.379 \cdot 0.6 \cdot 0.75 + 0.254 \cdot 0.3 \cdot 0.75 + 0.569 \cdot 0.1 \cdot 0.75 + 0.308 \cdot 0582 \cdot 0.25 + 0.188 \cdot 0.309 \cdot 0.25 + 0.058 \cdot 0.109 \cdot 0.25 = 0.331$$

6. Na podstawie wyników robimy ranking.

Scores can also be computed for any sub-hierarchy, e.g., g_1 and g_2

	Sc	$Sc(g_1)$	Sc(g ₂)
Α	0.331	0.360	0.243
В	0.292	0.244	0.437
С	0.178	0.191	0.138
D	0.199	0.204	0.182
Sum	1	1	1

CI -	$\lambda_{max} - n$	n	1	2	3	4	5	6	7	8	9	10	11	CP _ CI
CI =	n – 1	RI	0	0	0.58	0.9	1.12	1.24	1.32	1.41	1.45	1.49	1.51	RI

For visual arts

g ₂₂	Α	В	С	D		g ₂₂	w	w'
Α	1	1/3	1	3		Α	3	0.188
В	3	1	3	9		В	9	0.563
С	1	1/3	1	3		С	3	0.188
D	1/3	1/9	1/3	1		D	1	0.063
		n =	: 4	λ _{max}	4			

g ₁₁	Α	В	С	D	g ₁₁	w	w'
Α	1	2	5	1	Α	1.473	0.379
В	1/2	1	3	2	В	1.129	0.290
С	1/5	1/3	1	1/4	С	0.289	0.074
D	1	1/2	4	1	D	1.000	0.257

λ_{max} 4.191

For programming

$$CI = (4-4)/(4-1) = 0$$
 Full
 $CR = CI/0.9 = 0/0.9 = 0 \le 0.1$ consistency

Satisfactory
$$Cl = (4.191 - 4) / (4 - 1) = 0.064$$

consistency $CR = Cl / 0.9 = 0.064 / 0.9 = 0.071 \le 0.1$

n = 4

For some unknown criterion

g ?	Α	В	С	D
Α	1	1/3	1	3
В	3	1	3	9
С	1	1/3	1	3
D	1/3	1/9	1/3	1

g ?	w	w'
Α	2.241	0.350
В	1.232	0.192
С	1.936	0.302
D	1.000	0.156
λ_{max}	7.503	

$$CI = (7.503 - 4) / (4 - 1) = 1.17$$

 $CR = CI / 0.9 = 1.17 / 0.9 = 1.30 > 0.1$

The judgments are more random than an average randomly filled matrix of size 4×4 Unacceptable!

Wady:

- wymaga porównań parami wszystkich elementów, stosowanie AHP ogranicza się więc do małych problemów
- transformacja skali słownej do ocen liczbowych może być sprzecza z prawdziwymi intencjami użytkowników, skala od 1 do 9 może być zbyt skąpa
- jeżeli wynik jednego porównania parami jest większy od drugiego, powinno to również znaleźć odzwierciedlenie w stosunku uzyskanych priorytetów. w AHP tak nie jest.
- odwrócenie rangi Zalety:
- intuicyjne porównywanie parami
- opiera się na ocenach decydentów
- można sprawdzić spójność postulatów decydenta
- elastyczność hierarchicznej dekompozycji i strukturyzacji

Model sumy ważonej/suma ważona

- Four students: Ana, Brooke, Caden, and Demi
- Three criteria of gain type:

 g_1 – math

g₂ – physics

g₃ – literature

M/a:abt	W ₁	W ₂	W ₃	Example computations of the weighted sums			
Weight	3/8	3/8	2/8				
Alt.	g ₁	g ₂	g ₃	ws	Rank		
Α	18	16	14	3/8·18 + 3/8·16+ 2/8·14 = 16.25	1		
В	18	14	16	3/8·18 + 3/8·14+ 2/8·16 = 16.00	2		
С	14	16	14	3/8·14 + 3/8·16+ 2/8·14 = 14.75	3		
D	14	14	16	3/8·14 + 3/8·14+ 2/8·16 = 14.50	4		

Model ma sens, gdy wszystkie oceny są wyrażone w dokładnie tych samych jednostkach, ew. normalizacja ocen.

Całka Choquet

	W ₁	W ₂	W ₃
Weight	3/8	3/8	2/8
Alt.	g ₁	g ₂	g ₃
Α	18	16	14

$$WS(\mathbf{A}) = w_1 \cdot g_1(\mathbf{A}) + w_2 \cdot g_2(\mathbf{A}) + w_3 \cdot g_3(\mathbf{A}) = 18 \cdot w_1 + 16 \cdot w_2 + 14 \cdot w_3 =$$

$$= (14 + 4) \cdot w_1 + (14 + 2) \cdot w_2 + 14 \cdot w_3 = 14 \cdot (w_1 + w_2 + w_3) + 4 \cdot w_1 + 2 \cdot w_2 =$$

$$= 14 \cdot (w_1 + w_2 + w_3) + (2 + 2) \cdot w_1 + 2 \cdot w_2 = 14 \cdot (w_1 + w_2 + w_3) + 2(w_1 + w_2) + 2 \cdot w_1 =$$

$$= 14 \cdot (w_1 + w_2 + w_3) + 2(w_1 + w_2) + 2 \cdot w_1 =$$

$$= (14 - 0) \cdot (w_1 + w_2 + w_3) + (16 - 14) \cdot (w_1 + w_2) + (18 - 16) \cdot w_1 =$$

$$= (g_3(\mathbf{A}) - 0) \cdot (w_1 + w_2 + w_3) + (g_2(\mathbf{A}) - g_3(\mathbf{A})) \cdot (w_1 + w_2) + (g_1(\mathbf{A}) - g_2(\mathbf{A})) \cdot w_1$$

Nadal model sumy ważonej

Kroki metody:

- 1. porządkujemy oceny wariantu: 18 (g1), 16 (g2), 14 (g3), 0
- obliczamy wagi dla wszystkich podzbiorów kryteriów (na razie jako sumy wag kryteriów), czyli:

•
$$\{g1, g3\} = w1 + w3 = 5/8$$

•
$$\{g2, g3\} = 5/8$$

3. Obliczamy globalną wartość:

$$WS(A) = [14-0] \{g1, g2, g3\} + [16-14] \{g1, g2\} + [18-16] * \{g1]\} = 16.25$$

Inny przykład:

	W ₁	W ₂	W ₃
Weight	3/8	3/8	2/8
Alt.	g ₁	g ₂	g ₃
В	18	14	16

- 1. porządkujemy oceny wariantu: 18 (g1), 16 (g3), 14 (g2), 0
- 2. obliczamy wagi dla podzbiorów:
 - $\{g1, g2\} = 6/8$
 - $\{g1, g3\} = 5/8$
 - $\{g2, g3\} = 5/8$
 - $\{g1, g2, g3\} = 1$
- 3. Obliczamy globalną:

$$WS(B) = [14-0] \{g1, g2, g3\} + [16-14] \{g1, g3\} + [18-16] * \{g1\} = 16$$

Prawdziwa całka

- suma wag kryteriów nie musi być wagą podzbioru kryterium
- 1. porządkujemy oceny wariantu: 18 (g1), 16 (g2), 14 (g3), 0
- 2. dostajemy/zakładamy wagi dla pozbiorów:
 - $\{0\} = 0$
 - $\{g1,g2,g3\} = 1$
 - $\{g1\} = \{g2\} = 0.45$
 - $\{g3\} = 0.3$
 - $\{g1, g2\} = 0.5$
 - $\{g1, g3\} = \{g2, g3\} = 0.85$
- Obliczamy globalną:

$$Ch(A) = [14-0] \{g1, g2, g3\} + [16-14] \{g1, g2\} + [18-14] * \{g1\} = 15.9$$

Wady:

- konieczność wyrażenia ocen na tej samej skali
- konieczność określenia wag dla wszystkich podzbiorów kryteriów

Podwójna całka

- If $\mu(\{1,2\}) \mu(\{1\}) \mu(\{2\}) < 0$ (i.e., $\mu(\{1,2\}) < \mu(\{1\}) + \mu(\{2\})$), then the interaction is negative
- If $\mu(\{1,2\})$ $\mu(\{1\})$ $\mu(\{2\})$ > 0 (i.e., $\mu(\{1,2\})$ > $\mu(\{1\})$ + $\mu(\{2\})$, then the interaction is positive

Let us formulate the Choquet integral as:

$$Ch(a) = m(\{1\}) \cdot g_1(a) + m(\{2\}) \cdot g_2(a) + m(\{1,2\}) \cdot \min\{g_1(a), g_2(a)\}$$

where $m(\{1\})$, $m(\{2\})$ are weights of individual criteria and $m(\{1,2\})$ is the interaction coefficient

- $m(\{1\}) = \mu(\{1\}), m(\{2\}) = \mu(\{2\}), m(\{1,2\}) = \mu(\{1,2\}) \mu(\{1\}) \mu(\{2\})$
- We change symbols from μ to m to avoid confusion between different notations
- 2 OSTATNIE SLAJDY todo

Electre

Może prowadzić do rankingu zupełnego bądź częściowego.

Przykład: elektrownie

Alt.	g ₁	 g n
а	$g_1(a)$	$g_{n}(a)$
b	$g_1(b)$	$g_{n}(b)$
С	$g_1(c)$	$g_{\rm n}(c)$
m	g ₁ (m)	$g_{n}(m)$

Alt.	g ₁↑	g ₂↑	g ₃↓
ITA	90	4	600
BEL	58	0	200
GER	66	7	400
AUT	74	8	800
FRA	98	6	800

Electre III

- rozmyta relacja przewyższania Kroki metody:
- 1. Procedura porządkowania podstawowy pomysł zakłada konstrukcję dwóch preporządków zupełnych z wykorzystaniem procedur destylacji: porządek zstępujący jest konstruowany od najlepszego do najgorszego, porządek wstępujący jest od najgorszego do najlepszego. Obliczane są siły, słabości oraz jakości wszystkich wariantów. np. siła Włoch to 1, bo przewyższają tylko Belgię, natomiast słabość to 2, bo przewyższają je Niemcy i Francja. jakość to różnica, czyli 1-2 = -1 teraz identyfikujemy wariant najgorszy i najlepszy (dla zstępującej i wstępującej). dodajemy do rankingu na górze lub dole porządku, eliminujemy ze zbioru i powtarzamy procedurę tak dlugo az wyczerpiemy przypadki. w przypadku remisu staramy się go rozstrzygnąć zapuszczając procedurę destylacji tylko dla podzbioru remisujących wariantów
- destylacja zstępująca identyfikujemy najlepszy wariant i dodajemy go na najniższej pozycji w konstrowanym rankingu

S	I	В	G	Α	F	s	w	q
I	1	0	1	0	0	1	2	-1
В	0	1	0	0	1	1	1	0
G	1	1	1	0	0	2	2	0
Α	0	0	0	1	1	1	0	1
F	1	0	1	0	1	2	2	0

Add **A** to the lowest position and eliminate 1. wykreślamy przykład i robimy nową tabelkę, identyfikujemy nowy najlepszy przykład

١

2. powtarzamy krok

S	I	В	G	s	w	q	 	
I	1	0	1	1	1	0		Add G to
В	0	1	0	0	1	-1	'F	the lowest
G	1	1	1	2	1	1	Ġ	position and eliminate
								and cilininate

3. w przypadku nierozstrzygalnego remisu dodajemy dwie pozycje.

 destylacja wstępująca - identyfikujemy najgorszy wariant z najmniejszą jakością, dodajemy go do najwyższej pozycji

	q	w	s	F	Α	G	В	I	S
Add I to	-1	2	1	0	0	1	0	1	I
the highest	0	1	1	1	0	0	1	0	В
position	0	2	2	0	0	1	1	1	G
and eliminate	1	0	1	1	1	0	0	0	Α
	0	2	2	1	0	1	0	1	F

2. konstruujemy ranking

Electre IV

gdyby decydent nie mógł podać wag kryteriów