

Пробоподготовка и методы исследования различных объектов на ИК фурье-спектрометре с приставками, включая ИК микроскоп и МНПВО, при проведении криминалистических экспертиз

Ежевская Т.Б., канд. техн. наук Бубликов А.В., вед. инженер Научно-производственная фирма «Люмэкс-Сибирь», <u>tania@isp.nsc.ru</u>, 630090, г. Новосибирск, Институтская, 2, тел/факс 8 (383) 330-47-24, 330-99-13

ИК спектроскопия является одним из наиболее эффективных методов исследования объектов, применяемым в экспертно-криминалистической практике. Во многих случаях только по ИК спектру можно сделать однозначный вывод о свойствах анализируемого объекта. Ценность результатов, полученных с помощью ИК фурье-спектрометра, заключается в том, что это метод прямой регистрации полос поглощения, характерных только для данного образца. Немаловажным достоинством является также тот факт, что в процессе измерений, особенно при использовании современных высокоэффективных приставок и устройств, не происходит разрушения и утраты исследуемой пробы.

Изложенные в данной статье общие правила и рекомендации могут быть особенно полезны для экспертов, недавно начавших осваивать спектральный анализ, для сотрудников лабораторий, уже имеющих в арсенале фурье-спектрометры и планирующих расширить возможности приборов за счет приобретения дополнительных принадлежностей к ним.

<u>Содержание</u>

1. Регистрация ИК спектров твердых образцов

- 1.1.Тонкие пленки
- 1.2. Порошкообразные образцы Изготовление таблеток с бромидом калия Изготовление суспензий с вазелиновым маслом Использование приставки диффузного отражения Использование метода МНПВО
- 1.3. Волокна
- 1.4. Образцы в виде фрагментов значительной толщины и неправильной формы, которые невозможно измельчить до порошкообразного состояния или получить слой в виде тонкой пленки

Твердые и шероховатые образцы Эластичные образцы

- 1.5. Фрагменты лакокрасочных покрытий (ЛКП)
- 1.6. Материалы документов

Регистрация ИК спектров пропускания штриха после экстрагирования его с бумаги

Регистрация спектра диффузного отражения пасты непосредственно с бумажного носителя

Регистрация спектра МНПВО (НПВО) пасты с бумажного носителя

Регистрация спектра пасты на бумажном носителе с помощью ИК микроскопа с объективом ATR (НПВО)

- 2. Регистрация ИК спектров жидких и пастообразных образцов
 - 2.1. Использование приставки МНПВО
 - 2.2. Использование жидкостных кювет
 - 2.3. Использование окон-подложек из кристаллов
- 3. Регистрация ИК спектров газообразных веществ
 - 4. Обработка результатов измерений

Тип образца — основной критерий при выборе аппаратуры и методики для его исследования. В первую очередь он определяется агрегатным состоянием образца — твердое, жидкое или газообразное. В экспертно-криминалистической практике наиболее часто встречаются первые два типа объектов. Важны и прочие физико-химические свойства: размеры, твердость, вязкость, возможность измельчения, качество поверхностного слоя, возможная химическая агрессивность веществ, предположительно входящих в состав образца, и т.п.

1. Регистрация ИК спектров твердых образцов 1.1. Тонкие пленки

Из-за небольшой толщины у тонких пленок нет широких полос сплошного поглощения, затрудняющих работу со спектром, а для закрепления пленки в простейшем держателе достаточно иметь образец площадью в 1 см². Существуют держатели и для небольших образцов — от 1 мм². При исследовании пленок форма спектра может быть несколько искажена вследствие интерференции в тонком плоскопараллельном слое — меняется, как правило, форма и соотношение интенсивности пиков поглощения, однако, если речь идет не о количественном анализе, а только об идентификации вещества, на достоверность результатов это практически не влияет.

Интерференция отсутствует при исследовании методом одно- и многократного нарушенного полного внутреннего отражения (НПВО и МНПВО). Объект просто прижимается к поверхности призмы — при этом на форму спектра не влияет дисперсия (изменение показателя преломления в зависимости от длины волны), отсутствует интерференция и рассеяние, и при любой толщине образца вклад в образование полос поглощения вносит лишь прилегающий к рабочей грани слой в несколько микрон (рис. 1 и рис. 2).

Рис. 1

Рис. 2

Рис. 3

На рис. З приведены спектры тонкой пленки, полученные методом МНПВО (верхняя кривая) и методом пропускания (нижняя кривая, отчетливо видны интерференция и искажение формы некоторых полос).

1.2. Порошкообразные образцы

Очень часто в криминалистической практике приходится исследовать порошкообразные образцы либо образцы, которые без труда можно измельчить, — например, фармпрепараты в виде таблеток, отдельные слои лакокрасочных покрытий (об исследовании фрагментов ЛКП см. п.1.5).

<u>Изготовление таблеток с бромидом калия</u>

Классическая методика — регистрация спектров пропускания после смешивания исследуемых порошкообразных образцов с микрокристаллическим бромидом калия (КВr) в пропорции 1:50 — 1:30 и последующего прессования из этой смеси микротаблетки.

Достоинства метода: небольшой расход пробы и возможность получить хорошо выраженные, удобные для интерпретации спектры пропускания.

Недостатки метода:

криминалист -

- для определения правильных пропорций смеси и изготовления качественной, прозрачной таблетки необходим некоторый опыт;
- KBr должен быть чистым (марки XЧ или ОСЧ) и сухим;
- спектры имеют общий наклон базовой линии, обусловленный дисперсией и рассеянием.

При наличии в КВг влаги и прочих загрязнений необходимо регистрировать опорные спектры (background) не с пустым образцовым отсеком, а после установки в держатель таблетки, спрессованной только из этого бромида калия. Смешивают пробу обычно в агатовой, яшмовой или сапфировой ступке, в работе используют шпатели из нержавеющей стали, следя при этом, чтобы частицы образцов с лезвия случайно не попали в емкость для хранения КВг. Специальные пресс-формы также изготавливаются из легированной нержавеющей стали с последующей закалкой до достижения высокой степени твердости.

Если исследуемого вещества много, можно, используя гидравлический пресс, спрессовать таблетки большого диаметра (12—13мм) и исследовать их на пропускание.

При исследовании малого количества вещества для повышения чувствительности метода лучше прессовать маленькие таблетки (пресс-формы с рабочим диаметром 2—3,5 мм) и использовать микрофокусирующую приставку. Для получения качественной прессовки в данном случае достаточно ручного пресса. Расход бромида калия и трудоемкость подготовки пробы будет меньше. Большие количества вещества также можно исследовать, прессуя маленькие таблетки.

Детали прессов и пресс-форм после завершения работы необходимо тщательно очищать от остатков бромида калия во избежание коррозии.

Изготовление суспензий с вазелиновым маслом

Иногда вместо КВг эксперты используют вазелиновое масло. В этом случае проба в виде суспензии наносится на прозрачное для ИК излучения окно-подложку. Метод несколько удобнее, чем прессование, однако вазелиновое масло имеет собственные полосы поглощения — это необходимо учитывать при дальнейшей работе со спектром.

Ниже приведены материалы из экспертной практики Южного регионального центра судебной экспертизы МЮ РФ, г. Ростов-на-Дону (рис. 4а, 4б и 5а, 5б), где с 2001 года используется ИК фурье-спектрометр «Инфралюм ФТ-801».

Экспертизы проводил ведущий эксперт, к.х.н. Бессонов В.В. Спектры записаны с образцов, приготовленных в виде суспензий на чистом медицинском вазелиновом масле (его спектр хорошо известен), без компенсации спектра масла. Поглощение в областях около 1380 см⁻¹, 1470 см⁻¹, 2800—3000 см⁻¹ вызвано присутствием собственно масла, что, однако, не помешало идентифицировать искомые химические соединения (ИК спектры суспензий в областях 550—1300 см⁻¹, 1500—2700 см⁻¹ и свыше 3000 см⁻¹ содержат только полосы поглощения исследуемых соединений).

Рис. 4б

Рис. 4. а) 3,4-Бенз (а) пирен — опасное канцерогенное соединение, идентифицировано по ИК спектру аналитическим методом, с помощью полученной из различных источников справочной информации по молекулярной спектроскопии; б) часть того же спектра в увеличенном масштабе.

Рис. 5а

Рис. 5б

Рис. 5. а) «Цефотаксим» («Клафоран») — антибиотик нового поколения, идентифицирован по спектральным базам данных; б) часть того же спектра в увеличенном масштабе.

Использование приставки диффузного отражения

Порошок в смеси с КВг можно просто насыпать в специальную ячейку, имеющуюся в комплекте приставки диффузного отражения, однако данный метод имеет два существенных недостатка. Первый связан с большими потерями энергии излучения при диффузном рассеянии и, соответственно, более низким качеством полученных спектров. Второй обусловлен наличием дисперсионных искажений полос поглощения и вследствие этого, необходимостью применения ко всему спектру либо к части диапазона математической коррекции.

Рис. 6

Приведенные на рис. 6 спектры наглядно иллюстрируют коррекцию спектра отражения, содержащего искаженные полосы в виде производных (верхняя кривая) по методике Крамерса-Кренига, что позволяет представить спектр в классическом, удобном для интерпретации виде (нижняя кривая).

Для более достоверной идентификации и сравнения кривых используется также представление спектров отражения в единицах функции Кубелки-Мунка $F(R) = (1-R)^2/2R$, где R- коэффициент отражения.

Современное программное обеспечение, как правило, обеспечивает широкие возможности по математической обработке результатов, в том числе и применение упомянутых выше типов коррекций.

<u>Использование метода МНПВО</u>

При исследовании порошкообразных веществ методом МНПВО основной трудностью является невозможность в большинстве случаев обеспечить хороший контакт между микрочастицами порошка и поверхностью кристалла, не повредив при этом последний. Микрочастицы неправильной формы имеют лишь слабый точечный контакт с призмой, а качество спектра, напротив, напрямую зависит от площади контакта и силы прижатия поверхностей. Но благодаря более высокой чувствительности, которую обеспечивает данный метод, а также отсутствию искажений в спектрах, удается, как правило, получить пригодный для дальнейшей обработки спектр порошкообразной пробы.

Стоит заметить, что приставки с многократным отражением, имеющие элемент в виде призмы, позволяют получить хорошо выраженный спектр в случае контакта образца со всей рабочей поверхностью кристалла. Если размеры пробы менее 2 мм², нужно располагать ее в пределах одного пятна отражения, расположенного в центре призмы, и использовать для прижатия точечный сменный наконечник — в данном случае зарегистрирован будет спектр однократного полного внутреннего отражения. Это относится и к малым количествам сыпучих образцов — в данном случае для удобства используется дополнительная накладка на призму в виде воронки.

Если предполагается исследовать преимущественно микрообразцы, можно сразу приобрести приставку однократного полного внутреннего отражения с точечным элементом диаметром 1-2 мм. Чувствительность при измерениях в данном случае будет несколько ниже.

Наиболее универсальными являются приставки с точечными составными элементами многократного отражения, в том числе с рабочей частью, выполненной из алмаза. Они обладают достоинствами обоих типов приставок — т.е. позволяют получать хорошо выраженный спектр многократного НПВО от очень маленьких образцов, но из-за сложности оптической схемы они достаточно дорого стоят.

1.3. Волокна

Образцы в виде *волокон* также можно исследовать при помощи приставки МНПВО. Прижимать волокно к кристаллу следует осторожно, свернув предварительно для увеличения площади контакта в несколько раз, если позволяет длина.

Если прижимное устройство МНПВО имеет рабочую поверхность с резиновым покрытием, необходимо проложить между исследуемым волокном и резиной тонкую чистую фольгу — для исключения контакта резины с кристаллом.

Минимальный размер волокон для исследования— несколько десятых долей миллиметра и длина— $1\,\mathrm{mm}$. Более мелкие волокна, с размерами от нескольких десятков микрон, в естественном виде можно исследовать только с помощью ИК микроскопа, подключаемого к фурье-спектрометру.

Наименьший линейный размер образца, спектральная характеристика которого может быть получена с помощью современного микроскопа — 10—20 микрон. При этом пользователь полностью контролирует процесс измерений, выделяя при помощи диафрагм желаемые участки объекта и выбирая оптимальные режимы регистрации спектров. На ИК микроскопе можно снимать спектры пропускания, зеркального и диффузного отражения, а также, используя специальные объективы, нарушенного полного внутреннего отражения.

1.4. Образцы в виде фрагментов значительной толщины и неправильной формы, которые невозможно измельчить до порошкообразного состояния или получить слой в виде тонкой пленки

<u>Твердые и шероховатые образцы</u>. Для исследования твердых образцов со значительной шероховатостью поверхности удобнее пользоваться приставкой диффузного отражения.

Эластичные образцы (резиновые и полимерные фрагменты произвольной формы, частицы пластика и т.п.). Для исследования наиболее удобен метод МНПВО, т.к. можно обеспечить хороший контакт между поверхностью объекта и плоскостью кристалла.

1.5. Фрагменты лакокрасочных покрытий (ЛКП)

Микрофрагмент ЛКП обычно состоит из нескольких слоев (краска, лак, грунт). Образец ЛКП разделяется на составляющие до исследования.

Если после разделения получились элементы площадью более $0.5~{\rm km^2}-{\rm можно}$ использовать для исследования приставку НПВО или МНПВО с точечным элементом.

Если после разделения элементы еще меньше — можно спрессовать таблетку с KBr и исследовать ее на пропускание.

Если есть ИК микроскоп, слои ЛКП можно исследовать, используя три режима: первые два режима — для разделенных слоев ЛКП, третий применяется к целому фрагменту — без разделения слоев:

Режим двойного пропускания: образец раскатывается по стальной зеркальной пластине при помощи полированного ролика, излучение дважды проходит сквозь тонкий слой вещества, отражаясь от поверхности подложки.

Режим пропускания: микрочастица раздавливается между двумя плоскопараллельными поверхностями кристаллов в алмазной ячейке.

Режим диффузного отражения

Во всех зарубежных ИК микроскопах спектры диффузного отражения можно получить, используя только режим зеркального отражения. В ИК микроскопе «МИКРАН» (г.Новосибирск) имеется отдельный канал диффузного отражения, который дает в несколько раз более высокую чувствительность метода, поэтому можно получить спектр диффузного отражения от каждого слоя фрагмента ЛКП, не разделяя его предварительно на части. Микрочастица закрепляется вертикально в слое сургуча с последующей шлифовкой верхнего среза и снимается спектр диффузного отражения каждого слоя. Этот метод может позволить провести сравнительное исследование нескольких фрагментов ЛКП, что во многих случаях является достаточным для экспертного заключения. Рекомендуется накапливать и создавать свои спектральные базы данных, т.к. новые марки покрытий появляются гораздо быстрее, чем обновляются базы.

1.6. Материалы документов

Фрагменты текста на бумаге также очень специфический и актуальный объект исследования в криминалистике. По ИК спектру можно сделать вывод о составе основных компонентов пасты: красителей, смол и растворителей для свеженанесенных штрихов и проб, взятых непосредственно из стержней; только красителей и смол для паст штрихов с большой давностью выполнения.

Регистрация ИК спектров пропускания штриха после экстрагирования его с бумаги при помощи диметилформамида (ДМФ) и осаждения из раствора на прозрачную подложку из ZnSe или KRS с последующим высушиванием. Эта методика применяется повсеместно, ее очевидные минусы: достаточно трудоемкая

пробоподготовка (нанесение и высушивание производится многократно слой на слой), частичное разрушение исследуемого документа при отборе фрагментов, возможное влияние на результаты анализа химических компонентов бумаги. Спектр пропускания может регистрироваться с помощью микрофокусирующей приставки или ИК микроскопа. Если нет ни микрофокуса, ни ИК микроскопа, но есть приставка НПВО, можно нанести слои прямо на ее кристалл и измерить спектр НПВО.

Регистрация спектра диффузного отражения пасты непосредственно с бумажного носителя с вычитанием спектра бумаги от соседнего участка кажется очень привлекательной, но имеет следующие недостатки:

- влияние неоднородности состава бумаги даже в пределах небольшого участка;
- влияние фактуры поверхности, например, пишущая часть ручки «заглаживает» микронеровности, а на чистых участках поверхность более шероховатая, поэтому в разностном спектре останутся нескомпенсированные отличия;
- влияние сильного поглощения излучения бумагой на качество спектра (снижается отношение сигнал/шум).

При использовании этого неразрушающего метода требуется разработка методики: сопоставление результатов с теми, которые получены первым методом, исследование всевозможных сочетаний разных типов паст и бумаги.

На рис. 7 приведены спектры, полученные на ИК микроскопе МИКРАН двумя этими методами: верхняя кривая — спектр диффузного отражения штриха (после вычитания спектра соседнего со штрихом участка бумаги), нижняя кривая — спектр пропускания пасты после экстракции и осаждения на ZnSe подложке.

Видно, что спектры диффузного отражения хорошо выражены. Они имеют характерные для спектров отражения искажения, которые устраняются математической коррекцией (см. выше пояснения к рис. 6).

Регистрация спектра МНПВО (НПВО) пасты с бумажного носителя. Прижимая штрих к кристаллу, МНПВО (НПВО) регистрируется спектр лишь тонкого поверхностного слоя, и влияние собственного поглощения бумаги меньше. Но к приставкам МНПВО

(НПВО) должны предъявляться специальные требования. Метод НПВО с маленьким кристаллом недостаточно чувствителен. Метод МНПВО чувствителен, но размеры кристалла должны быть сравнимы с размерами штриха, т.е. приставка МНПВО должна иметь минимальные размеры рабочей зоны, соответствующую ей контактную область с образцом и возможность визуализации зоны контакта для точной наводки на наиболее выраженный участок штриха.

Импортные приставки типа «DuraScope», удовлетворяющие этим условиям, существуют, но их стоимость сопоставима с универсальным ИК микроскопом, поэтому мы разработали недорогую отечественную приставку МНПВО оригинальной конструкции, с микрокристаллом и визуализацией изображения. Приставка находится в стадии запуска в серийное производство в качестве дополнительного оборудования к фурье-спектрометру «Инфралюм ФТ-801», используемому во многих экспертно-криминалистических организациях России.

Регистрация спектра пасты на бумажном носителе с помощью ИК микроскопа с объективом ATR (НПВО)

Опыт эксплуатации в экспертных подразделениях импортных ИК микроскопов с объективами однократного нарушенного полного внутреннего отражения (ATR) не показал высокого качества и повторяемости результатов, что связано с неизбежно большими энергетическими потерями в самом микроскопе. Точная наводка через ATR-объектив с ZnSe элементом затруднена плохой прозрачностью последнего в видимой области спектра, не всегда удается обеспечить и оптимальную степень контакта с образцом, несмотря на наличие сенсора давления, встроенного в предметный столик.

2. Регистрация ИК спектров жидких и пастообразных образцов

2.1. Использование приставки МНПВО

Для жидкостей и паст наиболее удобным и универсальным является метод МНПВО. Основное условие — жидкость не должна химически повредить кристалл. Пробу можно наносить или ровным слоем по всей поверхности, или в виде капли — толщина слоя не влияет на качество спектра; для легколетучих соединений существуют специальные герметизирующие ячейки. МНПВО вообще значительно упрощает и в несколько раз увеличивает скорость проведения измерений, в том числе и при исследовании жидких и пастообразных образцов. Единственное, за чем нужно внимательно следить, — чтобы после очистки между анализом двух последовательных проб с поверхности элемента полностью испарился растворитель (это легко контролировать по виду 100% линии прибора, включив слежение за текущим спектром — видно, как от скана к скану уменьшается интенсивность полос до их полного исчезновения, после чего можно наносить очередную пробу).

Приставка МНПВО незаменима, например, при проведении экспертиз и создании баз данных по таким объектам, как масла и прочие горюче-смазочные материалы, — благодаря быстроте получения, абсолютной однородности и легкой интерпретации результатов.

2.2. Использование жидкостных кювет

Жидкостные кюветы полезны при регистрации спектров слабопоглощающих жидкостей, обладающих хорошей текучестью. Полость кюветы заполняется при помощи капиллярного дозатора или шприца, а толщину слоя устанавливают, используя сменные тефлоновые (фторопластовые) или свинцовые прокладки.

Регистрацию спектров в кюветах нельзя отнести к экспресс-методам из-за значительного времени, необходимого для промывки рабочей полости и подбора прокладок нужной толщины. В слое жидкости с показателем преломления, значительно отличающимся от показателя преломления окон кюветы, неизбежно возникает интерференция. По этой причине опорные спектры регистрируются без кюветы (устанавливать в отсек пустую кювету не рекомендуется), а для количественных измерений проводится калибровка.

2.3. Использование окон-подложек из кристаллов

При исследовании вязких жидкостей и пастообразных образцов можно воспользоваться окнами-подложками из прозрачных в ИК области кристаллов, нанося пробу либо на поверхность окна, без какого-либо контроля толщины слоя, либо в пространство между двумя окнами (толщина слоя при этом задается не прокладкой, а степенью взаимного прижатия окон).

Недостатки метода: влияние интерференции и неравномерности слоя вещества, что приводит к изменению интенсивности полос спектра.

Достоинства метода: окна-подложки, как правило, недорогие, и на них можно исследовать и твердые вещества — после экстракции и многократного повторного осаждения на небольшой участок окна с последующим высушиванием слоев.

3. Регистрация ИК спектров газообразных веществ

В данном случае используются специальные газовые кюветы. Однопроходные кюветы с фиксированной длиной (обычно 100 мм) представляют собой герметичный стеклянный баллон в виде цилиндра с расположенными на торцах прозрачными для ИК излучения окнами. Для заполнения кюветы используются два вентиля.

Если необходимо детектирование газов с малыми концентрациями (1—10) ррт нужно использовать многопроходную кювету с большой длиной оптического пути (2—10 м). Многопроходные кюветы представляют собой емкость с расположенной внутри системой позолоченных зеркал и бывают перестраиваемыми и с фиксированной длиной оптического хода лучей. Необходимое спектральное разрешение 0,5—1 см⁻¹ (для жидкостей и твердых образцов достаточно 2—4 см⁻¹). Одно из довольно редких применений газового анализа в криминалистике — исследование изомеров на сопряженном с хроматографом фурье-спектрометре.

Для детектирования газов с концентрацией менее 1 ppm нужны спектрометры с разрешением лучше $0.1\ \text{cm}^{-1}$.

4. Обработка результатов измерений

После регистрации спектра бывает целесообразно применить к нему определенные виды коррекций, в

частности, для более надежной идентификации по спектральным базам и наглядного представления результатов экспертизы.

- * Коррекция полос поглощения СО2 и Н2О. Все современные фурье-спектрометры построены по однолучевой схеме, вследствие чего на полученных спектрах сказывается изменение концентраций атмосферных газов. Автоматическая или ручная коррекция обязательна, если указанные пики соизмеримы по интенсивности с собственными полосами поглощения пробы.
- * Спрямление диапазона. Можно использовать для устранения нехарактерных полос, например, вазелинового масла.
- * Нормировка общей амплитуды спектра по границам 0—100%. Используется для более удобного сравнения кривых, в том числе, с библиотечными спектрами.
- * Сглаживание спектра. Применяется к сильно «зашумленным» диапазонам для выявления полос поглощения с интенсивностью, соизмеримой с уровнем шума.
- * Коррекция базовой линии. Используется для исправления общего наклона спектра или его части, причиной которого в большинстве случаев является дисперсия и рассеяние.
- * Конверсия представление спектра в отличном от исходного виде, т.е. преобразование, например, спектра пропускания в спектр поглощения (абсорбции) или отражения, в том числе с использованием методики Кубелки-Мунка. Применяется для более наглядного представления спектров и удобной работы с базами данных. Сюда можно отнести также изменение единиц шкалы спектра микроны или нанометры вместо волновых чисел, использование десятичной шкалы вместо 100%, введение реверсивной шкалы волновых чисел.
- * Коррекция по методу Крамерса-Кренига используется при работе со спектрами отражения, содержащими полосы в форме производных. Применять коррекцию необходимо только к искаженным участкам спектрограммы, в противном случае произойдет ухудшение формы полос и их смещение по волновому числу, что может привести к неверным результатам идентификации.
- * Прочие математические операции с одним или несколькими спектрами: взаимное деление и вычитание двух спектров с предварительным умножением на переменные коэффициенты, умножение спектра на число и т.п. В ряде случаев это позволяет выделить из спектра смеси одно из веществ, например, скомпенсировать полосы вазелинового масла в суспензии, пики поглощения растворителей.

Но если одно из веществ имеет узкие полосы (героин), а другое — широкие (например, крахмал, глюкоза, сахароза, мука и пр.), то из предполагаемой смеси не удастся выделить полосы, достаточные для идентификации наркотического вещества. Широкие полосы сплошного поглощения полностью «уничтожат» узкие пики присутствующего в смеси героина, поэтому в подобных случаях решающую роль играет пробоподготовка — предварительное химическое разделение компонентов пробы.

Общее правило: любые коррекции необходимо применять крайне внимательно, обязательно сохраняя отдельно исходный спектр. В результате обработки нельзя нарушать уникальное для каждого вещества соотношение интенсивностей полос поглощения и их форму, надо следить, чтобы нечаянно не удалились пики поглощения, присущие искомому веществу.

Идентификация веществ при помощи спектральных библиотек

Работа эксперта с полученными спектрами и использованием программы поиска по ним не автоматическая, а творческая. Необходимо учитывать, что все алгоритмы поиска построены таким образом, что на фактор совпадения влияют в первую очередь пики наибольшей интенсивности и площади, поэтому целесообразно при поиске разбивать анализируемый спектр на поддиапазоны, в зависимости от амплитуды и ширины пиков, а затем сопоставлять полученные результаты.

Не существует четкого определения того, какую точность совпадения спектров (в %) считать достаточной для выдачи положительного заключения по экспертизе. Это нужно подбирать эксперту, исходя из сложности объекта.

Подводя итог, следует отметить, что современное оборудование для фурье-спектроскопии предоставляет эксперту максимально широкие возможности для анализа всех видов проб, но качественный результат, по-прежнему, связан с качеством пробоподготовки. Поэтому значительные усилия разработчиков приборов и методического обеспечения направлены на минимизацию подготовительного этапа, обеспечение возможности проведения экспресс-анализа образцов. Выпускаемые в настоящее время ИК микроскопы и приставки МНПВО уже значительно упрощают спектральный анализ, позволяя исследовать большинство объектов без предварительной химической и механической обработки.

В завершение мы хотели бы выразить надежду на продолжение темы и дальнейшие публикации совместно со специалистами экспертных лабораторий, посвященные специфике проведения отдельных видов экспертиз с использованием ИК фурье-спектрометров, включая описание интересных методов подготовки проб и опыта эксплуатации того или иного оборудования. Обращайтесь по нашим телефонам и электронному адресу, указанному в начале статьи и на последней обложке этого журнала.

Хроматография на самообеспечении

Г.Л. Пасторе, ведущий специалист НПП «Химэлектроника»

Хроматография — замечательный метод анализа смеси веществ, один из самых селективных и чувствительных, причем очень широко применяемый.

Газовый хроматограф точно измеряет состав смесей, причем не так часто газов, как жидкостей и твердых веществ. Однако для его работы требуются чистые газы. Ему нужны газ-носитель, водород и воздух для ДИП (детектора ионизации в пламени), а иногда также примесные газы.

Обеспечение питания приборов — головная боль и большие расходы, особенно для маленьких лабораторий, особенно для расположенных вдали от заводов, выпускающих чистые газы. Даже только организация баллонной эстакады и разводки газов, согласованной с контролирующими инстанциями, доставит мало удовольствия. К тому же баллонные газы даже особой чистоты недостаточно чисты, когда работа идет на пределе чувствительности.

К счастью, хроматография — не только способ анализа, это и способ очистки веществ. Она сама дает средства для производства чистых газов непосредственно в лаборатории. Серийно выпускается гамма приборов, дающих нужные газы, воздух и воду.

Газ-носитель азот получают из воздуха методом БКА — методом безнагревной короткоцикловой адсорбции. Воздух пропускается вперед через колонку, в которой кислород отстает от азота, пока не подходит время выхода

Пока левая колонка очищает газ, из правой сбрасываются накопившиеся загрязнения.