INSTYTUT INFORMATYKI, AUTOMATYKI I ROBOTYKI POLITECHNIKI WROCŁAWSKIEJ

I-6

LABORATORIUM URZĄDZEŃ I UKŁADÓW AUTOMATYKI

Ćwiczenie nr 3

REGULATORY DWUSTAWNE I TRÓJSTAWNE

1.Cel ćwiczenia

Celem ćwiczenia jest nabycie umiejętności konfigurowania regulatorów dwustawnych i trójstawnych o różnych algorytmach działania oraz badanie ich własności statycznych i dynamicznych.

2. Zakres ćwiczenia.

Konfigurowane i badane będą regulatory RE10 i RE11 produkowane przez LUMEL (Zielona Góra) . Badane będą struktury regulatorów dwu- i trójstawnych z histerezą oraz struktury PID z wyjściem zdyskretyzowanym.

Program éwiczenia zawiera:

- zapoznanie się ze schematem blokowym i parametrami technicznymi,
- zapoznanie się z możliwościami i obsługą regulatorów,
- konfigurowanie regulatorów,
- ustawianie trybów alarmowania,
- programowanie zmian wartości zadanej,
- badanie charakterystyk statycznych i dynamicznych regulatorów.

3. Opis przebiegu ćwiczenia.

3.1. Regulator dwustawny RE10.

Mikroprocesorowy regulator dwustawny RE10-1-1 jest regulatorem parametrycznym przeznaczonym do regulacji temperatury w zakresie 0 - 600 °C. Sygnałem wejściowym jest sygnał z czujnika Pt100 wg PN-83/M-53852.

Na wyjściu regulatora są dostęne dwa przekaźniki elektromagnetyczne o obciążeniu styków 220V/4,5A (tor główny i tor pomocniczy).

Zakresy nastaw regulatora są następujące:

,	e a 3 c	
*	zakres proporcjonalności	$Xp = 0 \dots 200 \%,$
*	stała czasowa całkowania	$Ti = 0.1 \dots 99.9 \text{ min}$
*	stała czasowa różniczkowania	Td = 0 199 sek
*	okres impulsowania	To = 199 sek,
*	histereza toru regulacyjnego	$H = 0.01 \dots 9.99 \%,$
*	histereza alarmu	HAL = 0.01 9.99 %
*	zakres alarmu	Al = $0.1 \dots 99.9 \%$ zakresu regulatora,

Sposób zadawania wartości zadanej:

- * stałowartościowa
- * programowa

ilość odcinków 0 ...9 czas trwania odcinka 0 ... 99 h 59 min

Algorytmy regulacji są następujące:

- * dwustawny z histereza (Xp = 0, H = xx),
- * P proporcionalny, impulsowy (To = xx, Xp = xx, Td = 0, Ti = 99.9 min),

- * PI proporcjonalno całkujący (To = xx, Xp = xx, Td = 0, Ti = xx),
- * PD proporcjonalno różniczkujący (To = xx, Xp = xx, Td = xx, Ti = 99,9 min),
- * PID proporcjonalno całkująco różniczkujący (To = xx, Xp = xx, Td = xx, Ti =xx),

xx - wartości wprowadzane przez użytkownika z dopuszczalnego zakresu nastaw

Rys. 3.1. Płyta czołowa regulatora RE10.

Na płycie czołowej znajdują się: wyświetlacz 7-segmentowy, diody sygnalizacyjne i cztery przyciski. Zielona dioda I sygnalizuje działanie toru głównego, zaś czerwona dioda II działanie toru pomocniczego. Żółte diody W i E informują o wyświetlaniu na wyświetlaczu odpowiednio: wartości zadanej i odchyłki regulacji. Żółta dioda R sygnalizuje załączenie regulacji.

Dostępne są dwa tryby pracy regulatora:

- 1 sterowanie procesem i przeglądanie parametrów procesu,
- 2 przeglądanie i/lub zmiana parametrów konfiguraracyjnych regulatora.

Przejście z jednego trybu pracy w drugi odbywa się przy pomocy klawisza P. Po włączeniu zasilania regulator znajduje się w trybie 1. W trybie tym realizować można pięć funkcji operatorskich:

- uruchomienie i zatrzymanie funkcji regulacji

Funkcję regulacji można uruchomić przez równoczesne naciśnięcie klawiszy ↓ i↑. Zostaje wtedy zapalona dioda R, a diody I i II wskazują stan wyjść przekaźnikowych. Ponowne naciśnięcie dwóch klawiszy powoduje wyłączenie funkcji regulacji.

- zmiana wartości zadanej dla regulacji stałowartościowej

Jednoczesne wciśnięcie klawiszy ↓ i P z przytrzymaniem ich przez chwilę powoduje wyświet-lenie aktualnej wartości zadanej oraz możliwość zmiany poprzez zwiększanie klawiszem ↑ cyfry wyświetlanej przez jedno z trzech pól wyświetlacza. Pole wyświetlacza wybiera się klawiszem ←. Gotowość pola wyświetlacza do przyjęcia zmian sygnalizowana jest migotaniem cyfry.

- wznowienie pracy od początku programu dla regulacji programowej

Jednoczesne naciśnięcie klawiszy ← i → powoduje rozpoczęcie programowej zmiany wartości zadanej od poczatku.

- przejście do trybu pracy 2 (konfigurowanie)

Przechodzenie między trybami pracy 1 i 2 odbywa się przy pomocy klawisza P.

- przeglądanie parametrów procesu regulacji

Kolejne przyciskanie klawisza † powoduje wyświetlanie wartości następujących parametrów:

- zmiennej obiektowej (wielkość regulowana) zgaszone diody W i E,
- wartości zadanej dioda W zapalona, E zgaszona,
- odchyłki regulacji dioda W zgaszona, E zapalona,
- wyjście regulatora PID w % diody W i E zapalone,
- w przypadku regulacji programowej (W i E zgaszone):

czas trwania odcinka

godziny h.xx (xx liczba godzin) minuty n.xx (xx - liczba minut)

numer odcinka od.x (x - numer odcinka),

Jeżeli wartości wyświetlanych parametrów nie mieszczą się w granicach -99 ...999, to wyświetlane są wartości graniczne zakresów w sposób nieciągły (migająca liczba -99, gdy przekroczony jest dolny zakres lub 999 - gdy górny).

W *trybie pracy 2* możliwe jest przeglądanie i zmiana parametrów konfiguracyjnych. Lista parametrów regulatora przedstawiona jest w tablicy 3 na str.10 fabrycznej instrukcji obsługi regulatora RE10 . Tryb ten jest wywoływany przyciskiem P. Na wyświetlaczu pojawi się pierwszy parametr z tablicy 3.1. Kolejne wciśnięcia przycisku ↑ powodują zmianę wyświetlanego parametru w takiej kolejności jak podaje kolumna druga tablicy 3 (instrukcja obsługi RE10). Gdy na wyświetlaczu pojawi się komunikat jak w kolumnie 2, można przejść klawiszem → na poziom II (kolumna 3 w tablicy 3). Na tym poziomie może pojawić się wartość parametru (zgodnie z zakresem wartości podanym w kolumnie 5 tabeli) lub kolejny komunikat, gdy przeglądamy parametry złożone: wartość zadana SP (4) lub nastawy regulatoram ALg (5). W tym przypadku poruszanie się w pionie w kolumnie 3 znów wymaga przyciskania klawisza → , zaś przejście do poziomu III przyciśnięcia klawisza → . Powtórne przyciśnięcie klawisza → powoduje powrót do poziomu II, zaś powrót do poziomu I nastąpi po przejściu (klawiszem ↑) wszystkich parametrów poziomu II. Jeśli wyświetlana wartość wymaga zmiany należy wcisnąć jednocześnie przyciski → i P. Są tu możliwe dwa przypadki:

- możliwość zmian nie jest blokowana (kod bezpieczeństwa = 000),

W wyświetlanej wartości zaczyna mrugać pole pierwsze wyświetlacza, co oznacza gotowość do przyjmowania zmian (cyklicznego wyboru cyfry 0 ...9 poprzez przyciskanie klawisza ↑). Wybór pola następuje klawiszem ← . Akceptacja zmiany odbywa się klawiszem ↓ .

- możliwość zmian blokowana (kod bezpieczeństwa > 000),

Konieczne jest przed wprowadzeniem zmian podanie poprawnego kodu bezpieczeństwa.

Wszystkie wprowadzane parametry pamiętane są w pamięci EEPROM.

Przykład 1. Zmiana maksymalnej wartości zadanej na 300 °C przy założeniu kodu bezpieczeństwa = 000.

Przycisk	Przycisk Skutek	
P	Wejście w tryb pracy 2	SPL
4	Wyświetlanie wartości aktualnej	XXX
₄ i P	Gotwość do zmiany na polu pierwszym (wyświetlana cyfra miga)	GXX
\uparrow	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "3")	3XX
←	Zmiana pola gotowego do modyfikacji	3XG
\uparrow	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "0")	3X0
←	Zmiana pola gotowego do modyfikacji	3G0
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "0")	300
4	Zaakceptowanie wprowadzonej wartości	out
P	Powrót do trybu pracy 1	taka jak przed wejsciem w tryb 2

Wartość SPL można ustawiać od 0 do 600 °C co 1 °C. Wszystkie parametry podawane w % przy konfigurowaniu regulatora (patrz tabela 3.1) odnoszone są do nastawionej wartości SPL.

Przykład 2.

Przypisanie wyjściu pomocniczemu (tor 2) funkcji alarmu górnego bezwzględnego z histerezą, który będzie się włączał, gdy wartość sygnału wejściowego przekroczy 275 °C i wyłączał się, gdy temperatura spadnie poniżej 265 °C. (rys.3.2)

Rys. 3.2. Alarm górny bezwzględny z histerezą.

Podczas ustawiania należy zadać następujące parametry (SPL = 300 °C):

- przypisać kanałowi pomocniczemu funkcję alarmu górnego bezwzględnego Ahi,
- poziom alarmu górnego bezwzględnego bez histerezy wynosi 0.5*(275 + 265) °C = 270 °C, czyli parametr AL = 90 % (270 °C = 0.9 * SPL),
- histereza alarmu wynosi 275 °C 265 °C = 10 °C , czyli parametr H.AL = 3,3% (10 °C stanowi 3,3% wartości SLP = 300 °C)

Przycisk	Skutek	Stan wyświetlacza
P	Wejście w tryb pracy 2	SPL
\uparrow	Zmiana parametru	out
↓	Wyświetlanie funkcji wyjścia pomocniczego	Eou
₁i P	Gotwość do zmiany wybranej funkcji kanału pomocniczego	Eou (miga)
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę funkcji kanału pomocniczego (wybierz Ahi)	Ahi(miga)
ل	Zaakceptowanie wybranej funkcji	SEt
\uparrow	Cykliczna zmiana parametru (ustaw ALg)	ALg
4	Zaakceptowanie wybranego parametru (wejście w poziom II listy parametrów)	P
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę parametrów poziomu II (wybierz AL)	AL
- ↓	Wyświetlenie wartości parametru AL	XX.X
₁i P	Gotwość do zmiany na polu pierwszym (wyświetlana cyfra miga)	GX.X
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "9")	9X.X
\leftarrow	Zmiana pola gotowego do modyfikacji	9X.G
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "0")	9X.0
\leftarrow	Zmiana pola gotowego do modyfikacji	9G.0
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "0")	90.0
ل	Zaakceptowanie wprowadzonej wartości	AL
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę parametrów poziomu II (wybierz H.AL)	H.AL
ل	Wyświetlenie wartości parametru H.AL	X.XX
. i P	Gotwość do zmiany na polu pierwszym (wyświetlana cyfra miga)	G.XX
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "3")	3.XX
\leftarrow	Zmiana pola gotowego do modyfikacji	3.XG
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "0")	3.X0
\leftarrow	Zmiana pola gotowego do modyfikacji	3.G0
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "3")	3.30
1	Zaakceptowanie wprowadzonej wartości	H.AL
P	Powrót do trybu pracy 1	taka jak przed wejsciem w tryb 2

Przykład 3.

Wybranie algorytmu regulatora PI z wyjściem nieciągłym (tor I - główny) z nastawami: zakres proporcjonalności Xp=50%, czas całkowania Ti=2 min, czas impulsowania To=30 sek.

Przycisk	Przycisk Skutek	
P	Wejście w tryb pracy 2	SPL
\uparrow	Kolejne wciskanie klawisza powoduje cykliczną zmianę parametru (wybierz ALg)	ALg
. ↓	Wyświetlanie parametrów poziomu II	P
4	Wyświetlanie wartości parametru P	XXX
↓ i P	Gotwość do zmiany na polu pierwszym (wyświetlana cyfra miga)	GXX
\uparrow	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "0")	0XX
\leftarrow	Zmiana pola gotowego do modyfikacji	0XG
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "0")	0X0
\leftarrow	Zmiana pola gotowego do modyfikacji	0G0
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "5")	050
4	Zaakceptowanie wprowadzonej wartości	P
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę parametru poziomu II (ustaw ti)	ti
→	Wyświetlenie wartości parametru ti	XX.X
₊i P	Gotwość do zmiany na polu pierwszym (wyświetlana cyfra miga)	GX.X
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "0")	0X.X
\leftarrow	Zmiana pola gotowego do modyfikacji	0X.G
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "0")	0X.0
\leftarrow	Zmiana pola gotowego do modyfikacji	0G.0
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "2")	02.0
4	Zaakceptowanie wprowadzonej wartości	ti
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę parametru poziomu II (ustaw td)	td
Uwaga!	Ustaw w sposób podany uprzednio wartość parametru td = 000 i zaakceptuj	td
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę parametru poziomu II (ustaw to)	to
Uwaga!	Ustaw w sposób podany uprzednio wartość parametru to = 30 i zaakceptuj	to
P	Powrót do trybu pracy 1	taka jak przed wejsciem w tryb 2

Przykład 4.

Programowanie przebiegu wartości zadanej o postaci jak na rys. 3.3. Stan pomocniczego wyjścia przekaźnikowego (toru II) może być zadawany dla każdego odcinka po wybraniu jak w przykładzie 2 funkcji Eou. W czasie trwania odcinka drugiego będzie ono nieaktywne (OFF).

I II III 0 3 5 6 [min]

Rys.3.3. Przebieg zmian wartości zadanej do przykładu 4.

Przycisk	Skutek	Stan wyświetlacza
P	Wejście w tryb pracy 2	SPL
\uparrow	Zmiana parametru (wybierz out)	out
4	Wyświetlanie funkcji wyjścia pomocniczego	Ahi
₄ i P	Gotwość do zmiany wybranej funkcji kanału pomocniczego	Ahi(miga)
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę funkcji kanału pomocniczego (wybierz Eou)	Eou
4	Zaakceptowanie wybranej funkcji	SEt
4	Wyświetlanie aktualnego sposobu zadawania wartości zadanej	con albo prg
₄ i P	Gotwość do zmiany sposobu zadawania wartości zadanej	con albo prg (miga)
↑	Kolejne wciskanie klawisza powoduje przełaczanie między regulacją stałowartościową (con) a programową (prg) - wybierz prg	prg (miga)
4	Zaakceptowanie wyboru	SP
4	Wejście w programowanie wartości zadanej	0.SP
4	Wyświetlenie aktualnej wartości zadanej, początkowej	XXX
₁i P	Gotwość do zmiany na polu pierwszym (wyświetlana cyfra miga)	GXX
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "0")	0XX
←	Zmiana pola gotowego do modyfikacji	0XG
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "5")	0X5
\leftarrow	Zmiana pola gotowego do modyfikacji	0G5
↑	Kolejne wciskanie klawisza powoduje cykliczną zmianę cyfry na pozycji oznaczonej G (ustaw "5")	025
4	Zaakceptowanie wprowadzonej wartości	0.SP
\uparrow	Przejście do następnego parametru poziomu II	0.Eo
٦	Wyświetlenie początkowego stanu toru II (przed uruchomieniem funkcji regulacji)	on albo oFF
. i P	Gotwość do zmiany (wyświetlany stan miga)	on albo oFF
↑	Kolejne wciskanie klawisza powoduje cykliczne przełączanie	on

C WICZCIIIC S	1 Regulatory amusianite i ir ojstanite	501. 7
	stanu toru II (wybierz on)	
4	Zaakceptowanie zadanego stanu	0.Eo
\uparrow	Przejście do następnego parametru poziomu II	1.hh
٦	Wyświetlenie długości trwania odcinka I - składnik godzinowy z gotowością do zmiany wartości w polu G	h.GX
Uwaga!	Ustaw w sposób podany w poprzednich przykładach wartość h.00 i zaakceptuj	1.hh
\uparrow	Przejście do następnego parametru poziomu II	1.nn
4	Wyświetlenie długości trwania odcinka I - składnik minutowy z gotowością do zmiany wartości w polu G	n.GX
Uwaga!	Ustaw w sposób podany w poprzednich przykładach wartość n.03 i zaakceptuj	1.nn
\uparrow	Przejście do następnego parametru poziomu II	1.SP
4	Wyświetlenie wartości zadanej na końcu odcinka I z gotowością do zmiany wartości w polu G	GXX
Uwaga!	Ustaw w sposób podany w poprzednich przykładach wartość 120 i zaakceptuj	1.SP
\uparrow	Przejście do następnego parametru poziomu II	1.Eo
4	Wyświetlenie stanu toru II w czasie trwania odcinka I z gotwością do zmiany (wyświetlany stan miga)	on albo oFF
\uparrow	Kolejne wciskanie klawisza powoduje cykliczne przełączanie stanu toru II (wybierz on)	on
4	Zaakceptowanie zadanego stanu	1.Eo
Uwaga!	Ustaw w sposób podany uprzednio parametry dla odcinka II i III z rys. 10.3. Dla odcinka IV wpisać należy h.00 oraz n.00, co spowoduje zakończenie procesu programowania wartiości zadanej i przejście do następnej grupy parametrów poziomu I regulatora.	ALg
P	Powrót do trybu pracy 1	taka jak przed wejsciem w tryb 2

3.2. Badanie charakterystyk regulatora RE10.

3.2.1. Badanie charakterystyki statycznej regulatora dwupołożoniowego z histerezą.

Jeżeli podczas wyboru algorytmu regulatora ustawi się Xp = 000 to otrzymuje się algorytm regulacji dwustawnej z histerezą i do ustawienia pozostaje tylko jeden parametr - szerokość pętli histerezy H (ustawiana od 0.01 do 9.99% wartości SPL). Charakterystyka statyczna takiego regulatora przedstawiona jest na rys. 3.4.

Badanie charakterystyki sprowadza się do określenia położenia punktów X1 i X2 i porównania otrzymanych wyników z nastawami regulatora. Po ustawieniu wartości zadanej i histerezy należy włączyć funkcję regulacyjną wciskając równocześnie ↑ i → (dioda R - świeci). Na wejście regulatora należy podać sygnał z kalibratora lub opornicy dekadowej, symulując pomiar termorezystorem Pt100. Zwiększając ten sygnał obserwuje się diodę I sygnalizującą stan kanału głównego. Należy zanotować wartość sygnału wejściowego, przy której następuje rozwarcie styków przekaźnika (dioda gaśnie). Następnie zmniejszać poziom sygnału wejściowego i zanotować wartość, przy której styki są zwierane (dioda zapala się). W przypadku użycia opornicy dekadowej z charakterystyki czujnika Pt100 (PN-83/M-53852) określić temperatury odpowiadające zanotowanym wartościom rezystancji. Na tej podstawie określić wartość zadaną i histerezę i porównać z nastawionymi wartościami tych parametrów.

Rys. 3.4. Charakterystyka statyczna regulatora dwupołożeniowego z histerezą

3.2.2. Badanie charakterystyk dynamicznych regulatora dwupołożeniowego PID z wyjściem nieciągłym

Badanie charakterystyk dynamicznych polega na określeniu odpowiedzi regulatora na wymuszenie skokowej zmiany błędu regulacji. W regulatorze RE10 ciągły sygnał wyjściowy układu realizującego transmitancję PID wykorzystywany jest do modulacji wypełnienia sygnału wysciowego regulatora o stałym okresie To (czas impulsowania To jest jednym z ustawianych parametrów regulatora).

Rys. 3.5. Odpowiedzi na wymuszenie skokowe regulatorów o algorytmach P i PI (E - uchyb regulacji, Yw - wyjście ciągłe układu realizującego algorytmy typu P i PI, Y - stan styków toru głownego na wyjściu regulatora)

Badanie odpowiedzi regulatora dwupołożeniowego typu P o wyjściu nieciągłym.

- Wejść w tryb 2 (konfigurowanie parametrów),
- Ustawić SPL = 200°C, SEt = con, P=100%, Ti = 99,9 min, Td = 0, To = 10 sek,
- Powrócić do trybu 1,
- Na wejściu regulatora ustawić przy pomocy zadajnika małych napięć sygnał odpowiadający temperaturze 0 °C,
- Jednoczesne wciśnięcie klawiszy → i P i przytrzymanie ich przez chwilę powoduje wyświetlenie aktualnej wartości zadanej oraz możliwość zmiany poprzez zwiększanie klawiszem ↑ cyfry wyświetlanej przez jedno z trzech pól wyświetlacza. Pole wyświetlacza wybiera się klawiszem ←. Gotowość pola wyświetlacza do przyjęcia zmian sygnalizowana jest migotaniem cyfry. Ustawić wartość zadaną 50°C. Tym samym uchyb regulacji E = SP wartość mierzona = 50°C 0°C = 50°C.
- Uruchomić funkcję regulatora. (Funkcję regulacji można uruchomić przez równoczesne naciśnięcie klawiszy → i↑. Zostaje wtedy zapalona dioda R.),
- Obserwować diodę toru I i wyświetlaną wartość sygnału sterującego (diody W i E -zapalone). Wybór wartości wyświetlanej dokonywany jest przyciskiem ↑.

Ponieważ wartość wymuszenia skokowego E = 50 °C wynosi 25% zakresu zmiennośći wartości zadanej (SPL = 200 °C), zaś wzmocnienie regulatora Kr = (1/P)*100% = 1, to odpowiedzią regulatora będzie sygnał równy 25% zakresu wyjściowego. Maksymalna wartość wyjściowa równa 100% odpowiada ciągłemu zwarciu styków toru głównego. Stąd 25% zakresu wyjściowego oznacza, że w każdym okresie impulsowania wypełnienie będzie wynosić 25%. W naszym przykładzie (To = 10 sek) styki toru głównego będą zwierane na 2,5 sek i rozwierane na 7,5 sek.

- Przy pomocy stopera sprawdzić słuszność zależności między czasem trwania zwarcia styków tz, a wartością sygnału sterującego (tz/To) * 100% = Yw.

3.3. Regulator RE11

Mikroprocesorowy regulator RE11-23-2-11-1 jest regulatorem parametrycznym przeznaczonym do regulacji temperatury w zakresie 0 - 400 °C. Sygnałem wejściowym jest sygnał z czujnika termorezystancyjnego Pt-100 wg PN-83/M-53852. Na wyjściu regulatora są dostęne trzy przekaźniki elektromagnetyczne o obciążeniu styków 220V/2A (tor główny i dwa tory pomocnicze).

Zakresy nastaw regulatora są następujące:

* zakres proporcjonalności	$Xp = 0 \dots 999,9 \%,$
* stała czasowa całkowania	Ti = 1 9999 sek,
* stała czasowa różniczkowania	Td = 0 9999 sek,
* okres impulsowania	To = 1600 sek,
* okres próbkowania	Tp = 1 99 sek,
* histereza toru regulacyjnego	$H = 0,1 \dots 9,99 \%,$
* strefa nieczułości (dla reg. krokowej)	$2N = 0.1 \dots 99.9\%$
* strefa rozsunięcia (dla reg. trójpołożeniowej)	$Yd = -99.9 \dots 99.9\%$ (z wyłączeniem 0),
* histereza alarmu	HAL = 099,9 %,
* zakres alarmu	Al = -99,9%99,9 % zakresu regulatora.

Sposób zadawania wartości zadanej:

- * stałowartościowa
- * programowa

liczba odcinków 0 ...30

czas trwania odcinka 0 ... 99 h 59 min

liczba cykli 1 ... 99 (99 - zadanie nieskończonej liczby cykli)

* z wejścia dodatkowego

Algorytmy regulacji są następujące:

- * dwustawny z histerezą,
- dwustawny PID,
- * trójstawny z histerezą,
- * trójstawny PID,
- * trójstawny krokowy z histerezą,
- trójstawny krokowy PID.

Badany regulator ma wbudowany interfejs komunikacyjny RS485 przeznaczony do współpracy z systemem nadrzędnym.

Dodatkowe wejście prądowe Xo musi być zasilone prądem 4 ... 20 mA.

Uwaga! W ramach ćwiczenia badane będą tylko funkcje regulatora trójsatwnego z histerezą oraz trójstawnego PID. Parametry regulatora dotyczące innych algorytmów nie będą omawiane.

Rys.3.6. Panel operatorski regulatora RE11

Panel operatorski regulatora RE11 zawiera: dwa czteropozycyjne wyświetlacze 7-segmentowe, 6 diod sygnalizacyjnych i pięć przycisków. Diody 1,2,3 sygnalizują odpowiednio stan styków wyjść przekaźnikowych toru głównego Y i torów pomocniczych Y2, Y3. Czerwona dioda R

sygnalizuje załączenie regulacji. Żółte diody E i T sygnalizują odpowiednio wyświetlanie odchyłki regulacji i czas trwania odcinka w regulacji programowej.

Dostępne są trzy tryby pracy regulatora:

- 1 sterowanie procesem i przeglądanie parametrów procesu,
- 2 przeglądanie i/lub zmiana parametrów konfiguracyjnych regulatora,
- 3 sterowanie ręczne.

Przechodzenie między trybami pracy 1 i 2 odbywa się przy pomocy klawisza P, zaś między trybami pracy 1 i 3 - przy pomocy klawisza pracy ręcznej .

Górny wyświetlacz służy do wskazywania wartości mierzonej (w trybie pracy 1) lub nazwy parametru podczas konfigurowania (tryb 2). Dolny wyświetlacz wskazuje w trybie I wartości parametrów zgodnie z tabelą 3.1.

Tabela 3.1. Lista parametrów w	yświetlanych v	v trybie pr	acy 1 na d	dolnym wyswie	tlaczu.
				Tylko dla	Tylko

Lp.	Nazwa parametru	Wyswietlacz	Dioda E	Dioda T	Tylko dla regulacji programowej	Tylko dla regulacji trójstawnej
1	Wartość zadana SP (w °C)	XXX.X				
2	Odchyłka regulacji E	±XX.X	✓			
3	Wartość sygnału sterującego Y toru głównego I (w %)	yXX.X				
4	Wartość sygnału sterującego Y2 toru pomocniczego II (w %)	PXX.X				✓
5	Wartość zmierzona na wejściu dodatkowym (w %)	uXX.X				
6	Czas trwania bieżącego odcinka	XXXX a b		√	√	
7	Stan wejścia binarnego hold (zatrzymanie zmian SP)	h on hoFF			✓	
8	Numer aktualnie wykonywa- nego odcinka czasowego	odXX			✓	
9	Liczba cykli pozostajacych do wykonania	LcXX			√	

Uwaga! Czas trwania bieżącego odcinka podawany jest następująco: dwie pierwsze cyfry (a) podają liczbę godzin lub minut, dwie ostatnie cyfry liczbę minut lub sekund, w zależności od jednostek ustawionych przy programowaniu czasowych zmian wartości zadanej.

Tryb pracy 1 (sterowanie procesem)

Po włączeniu zasilania regulator znajduje się w trybie 1. W trybie tym istnieje siedem funkcji operatorskich:

- uruchomienie i zatrzymanie funkcji regulacji

Funkcję regulacji można uruchomić przez równoczesne naciśnięcie klawiszy ↓ i ↑. Zostaje wtedy zapalona dioda R, a diody 1, 2 i 3 wskazują stan wyjść przekaźnikowych. Ponowne naciśnięcie dwóch klawiszy powoduje wyłączenie funkcji regulacji.

- zmiana wartości zadanej dla regulacji stałowartościowej

Wciśnięcie klawisza → powoduje wyświetlenie aktualnej wartości zadanej oraz możliwość zmiany poprzez przytrzymanie klawisza ↑ (zwiększanie) lub klawisza ↓ (zmniejszanie). Gotowość pola wyświetlacza do przyjęcia zmian sygnalizowana jest mruganiem cyfry.

- wznowienie pracy od początku programu dla regulacji programowej

Należy zatrzymać proces regulacji przez równoczesne naciśnięcie klawiszy \downarrow i \uparrow .Jednoczesne naciśnięcie klawiszy \downarrow i \downarrow powoduje wtedy ustawienie programowej zmiany wartości zadanej na początek . Start procesu regulacji wymaga ponownego równoczesnego naciśniecia klawiszy \downarrow i \uparrow .

- przeglądanie parametrów procesu regulacji

Kolejne przyciskanie klawisza ↑ powoduje wyświetlanie wartości parametrów zgodnie z tabelą 10.1.

- przejście do trybu pracy 2 (konfigurowanie)

Przechodzenie między trybami pracy 1 i 2 odbywa się przy pomocy klawisza P.

- przejście do trybu pracy 3 (sterowanie ręczne)

Przechodzenie między trybami pracy 1 i 3 odbywa się przy pomocy klawisza pracy ręcznej ...

- przejście do procedury kalibracji

Jednoczesne naciśnięcie klawiszy ↓ i P powoduje przejście do procedury kalibracji, umożliwiającej uwzględnienie rezystancji linii doprowadzających sygnał pomiarowy.

Tryb pracy 2 (konfigurowanie)

W trybie pracy 2 możliwe jest przeglądanie i zmiana parametrów konfiguracyjnych. Lista parametrów regulatora przedstawiona jest w tablicach 3, 4, 5 i 6 fabrycznej instrukcji obsługi regulatora RE11. Tryb ten jest wywoływany przyciskiem P. Na wyświetlaczu górnym pojawi się nazwa pierwszego parametru z tablicy 3, a jego wartość - na wyświetlaczu dolnym Kolejne wciśnięcia przycisku \uparrow lub \downarrow powodują wybór parametru wg kolumny 2 tablicy 3. Wciśnięcie klawisza \lrcorner pozwala zwiększać lub zmniejszać wartość parametru przyciskami \uparrow lub \downarrow . Dla parametrów złożonych SP (w regulacji programowej), Alg° i IntE na wyświetlaczu górnym pojawi się komunikat PAr , a na dolnym nazwa parametru złożonego. Wyjątkiem jest ustawianie SP (w regulacji programowej), gdy na górnym wyświetlaczu pojawia się komunikat SP, a na dolnym - prog. Aby obejrzeć składowe parametrów złożonych należy wcisnąć klawisz \lrcorner . W górnym oknie pojawia się wtedy nazwa parametru, a w dolnym jego wartość. Wybór parametrów w grupie odbywa się przyciskami \uparrow i \downarrow . Wciśnięcie klawisza \lrcorner pozwala zwiększać lub zmniejszać wartość parametru przyciskami \uparrow lub \downarrow . Akceptacja zmiany wartości następuje przy pomocy klawisza \lrcorner . Wyczerpanie listy przeglądanych parametrów w grupie powoduje powrót do głównej listy parametrów.

Uwaga! Możliwość zmian może być blokowana przez ustawienie kodu bezpieczeństwa na wartość inną niż 0000.

Wszystkie wprowadzane parametry pamiętane są w pamięci EEPROM.

Przykład 6.

Wybranie algorytmu regulatora trójstawnego PID z wyjściami nieciągłymi (tor I, główny - grzanie, tor II, pomocniczy - chłodzenie, tor III, pomocniczy - wyjście binarne) z nastawami: górna granica wartości zadanej SPL = 300 °C, zakres proporcjonalności Xp1 = 50%, Xp2 = 100%, czas całkowania Ti1 = 2 min, Ti2 = 3 min, czas różniczkowania Td1 = 30 sek, Td2 = 45 sek, czas

impulsowania To = 20 sek, czas próbkowania Tp = 1 sek. Przesunięcie wartości zadanej dla toru pomocniczego (chłodzenia) względem toru głównego (grzania) yd = 10%. Wartość zadana powinna zmieniać się jak na rys.10.7. Stan pomocniczego wyjścia przekaźnikowego (toru III) tylko dla drugiego odcinka - załączony (ON). Liczba powtórzeń programu czasowego Lc = 2.

Rys. 3.7. Przebieg sygnału wartośći zadanej dla przykładu 6.

		Stan wyświetlacza	
Przycisk	sk Skutek		dolnego
P	Wejście w tryb pracy 2	SPL	0XXX
4	Gotowość do zmiany parametru (migotanie ostatniego pola)	SPL	0XXX
↑ lub ↓	Zmiana wartości (ustaw 0300)	SPL	0300
₊	Zaakceptowanie wprowadzonej wartości	SPL	0300
\uparrow	Zmiana parametru wg listy	SEt	XXXX
-	Gotowość do zmiany parametru (migotanie ostatniego pola)	SEt	XXXX
↑ lub ↓	Zmiana wartości (ustaw prog)	SEt	prog
-	Zaakceptowanie wprowadzonej wartości	SEt	prog
	W podobny sposób ustaw outP = F (wyjście trójstawne)	outP	F
	y3 = Eout (wyjście binarne)		Eout
\uparrow	Zmiana parametru wg listy	SP	prog
4	Akceptacja wyboru grupy, przegląd parametrów grupy	Lc	XX
4	Gotowość do zmiany parametru (migotanie ostatniego pola)	Lc	XX
↑ lub ↓	Zmiana wartości (ustaw 02)	Lc	02
4	Zaakceptowanie wprowadzonej wartości	Lc	02
\uparrow	Zmiana parametru w grupie wg listy	Unit	XXXX
	W podobny sposób ustaw Unit = nnSS (wybór minut i sekund),	Unit	nnSS
	bL = 0 (blokada programu wyłączona)	bL	0
	odXX = od00 (nr odcinka = 0)	od00	
	SP00 = 20 (wartość pocz. 1 odcinka)	SP00	020.0
	y300 = oFF (początkowy stan toru III)	y300	oFF
	odXX = od01 (nr odcinka = 1)	od01	
	t 01 = 0100 (czas trwania odc.1)	t 01	0100

Cwiczer	nie 3- Regulatory dwustawne i trójstav	vne		str. 16
	SP01 = 100) (wartość pocz. 2 odcinka)	SP01	100.0
	y301 = oFF	(stan toru III na odc.1)	y301	oFF
	odXX = od	02 (nr odcinka =2)	od02	
	t 02 = 0130	0 (1,5 min = 1 min 30 sek)	t02	0130
	SP02 = 40	(wartość końc. 2 odcinka)	SP02	040.0
	y302 = on ((stan toru III na odc.2)	y302	on
	odXX = od	03 (nr odcinka = 3)	od03	
	t 03 = 0000	0 (brak odcinka)	t 03	0000
٦	Akceptacja odcinka o długości zer złożonego SP	ro. Powrót do parametru	SP	prog
\uparrow	Zmiana parametru wg listy		Par	ALg°
4	Akceptacja wyboru grupy, prrzegląd pa	rametrów grupy	yd	$\pm XX.X$
₊	Gotowość do zmiany parametru (migo	tanie ostatniego pola)	yd	$\pm XX.X$
↑ lub ↓	Zmiana wartości (ustaw 10)		yd	10.0
₊	Zaakceptowanie wprowadzonej wartości	ci	yd	10.0
\uparrow	↑ Zmiana parametru w grupie wg listy		P1	XXX.X
	W podobny sposób ustaw :			
	P1 = 50 % (zakres proporcjonalności o	dla toru I)	P1	050.0
	Ti1 = 2 min (czas całkowania dla toru I		Ti1	0120
	Td1 = 30 sek (czas różniczkowania dla	toru I)	Td1	0030
	to1 = 20 sek (okres impulsowania w tor	ze I)	To1	0020
	P2 = 100 % (zakres proporcjonalności	dla toru I)	P2	100.0
	Ti2 = 3 min (czas całkowania dla toru I)	Ti2	0180
	Td2 = 45 sek (czas różniczkowania dla	toru I)	Td2	0045
	to2 = 20 sek (okres impulsowania w tor	ze I)	To2	0020
	tP = 1 sek (okres próbkowania wejścia	pomiarowego)	tP	01
	C_Ac = inu (działanie inwersyjne)		C_Ac	inu
\uparrow	Zmiana parametru wg listy		HAnd	XXX
P	Powrót do trybu pracy 1		taki jak przed tryl	•

Tryb pracy 3 (sterowanie ręczne)

Przejście do trybu 3 może być dokonane zarówno przy włączonej funkcji regulacji, jak i przy wyłączonej. Po przełączeniu na pracę ręczną (dioda R migająca) możliwe jest zwiększenie lub zmniejszenie sygnału wyjściowego przyciskami ↑ i ↓ w obu torach regulacji (I i II). Wybór toru odbywa się przyciskiem ⊔ . Na pierwszym polu dolnego wyświetlacza pojawia się litera H dla toru głównego lub L dla toru pomocniczego. Na pozostałych trzech polach wyświetlana jest wartość sygnału wyjściowego w %. Wprowadzenie w trybie 2 (konfigurowania) ujemnej wartości przesunięcia yd pozwala na jednoczesne działanie dwóch torów (I i II). Dodatnia wartość yd nie pozwala na włączanie obu torów. Zabezpiecza to przed próbą jednoczesnego grzania i chłodzenia obiektu.

3.4. Badanie charakterystyk regulatorów RE11.

3.2.1. Badanie charakterystyki statycznej regulatora trójstawnego z histerezą.

Jeżeli podczas wyboru algorytmu regulatora ustawi się Xp1= 000.0 % oraz Xp2 = 000.0 % to otrzymuje się algorytm regulacji trójstawnej z histerezą i do ustawienia pozostają tylko następujące parametry: przesunięcie yd, okres próbkowania tP, rodzaj działania regulatora C_Ac (ustawić inu), szerokość pętli histerezy toru głównego H1 oraz toru pomocniczego H2. Charakterystyka statyczna takiego regulatora przedstawiona jest na rys. 3.8.

Rys. 3.8. Charakterystyka statyczna regulatora trójstawnego z histerezą

Badanie charakterystyki sprowadza się do określenia położenia punktów X1, X2,X3,X4 i porównania otrzymanych wyników z nastawami regulatora. Po ustawieniu wartości zadanej toru głównego SP i pozostałych parametrów należy włączyć funkcję regulacyjną wciskając równocześnie ↑ i → (dioda R - świeci). Na wejście regulatora nalęzy podać sygnał rezystancyjny z opornicy dekadowej, symulując pomiar termometrem oporowym Pt100. Zwiększając ten sygnał obserwuje się diody 1 i 2 sygnalizujące stan toru głównego i pomocniczego. Należy zanotować wartości sygnału wejściowego (X2 i X4), przy których następuje rozwarcie styków przekażnika toru głównego (dioda 1 gaśnie), a następnie włączenie toru pomocniczego (dioda 2 zaczyna świecić). Zmniejszając poziom sygnału wejściowego, zanotować wartości (X3, X1), przy których styki toru pomocniczego są rozwierane (dioda 2 gaśnie), a styki toru głównego są zwierane (dioda 1 zapala się). Z charakterystyki czujnika Pt100 (PN-83/M-53852) określić temperatury odpowiadające zanotowanym wartościom rezystancji. Na tej podstawie określić wartość zadaną SP, przesunięcie yd , szerokości pętli histerezy H1 i H2 oraz porównwć z nastawionymi wartościami tych parametrów.

3.4.2. Badanie charakterystyk dynamicznych regulatora trójstawnego PID z wyjściem nieciągłym

Badanie charakterystyk dynamicznych polega na określeniu odpowiedzi regulatora na wymuszenie skokowej zmiany błędu regulacji. W regulatorze RE11 ciągły sygnał wyjściowy układu realizującego transmitancję PID w każdym z torów wykorzystywany jest do modulacji wypełnienia

sygnału wysciowego regulatora o stałym okresie To (czas impulsowania To jest jednym z ustawianych parametrów , niezależnie dla każdego toru regulatora).

Rys. 3.9. Odpowiedzi obu torów regulatora trójstawnego na wymuszenie skokowe (E - uchyb regulacji, Yw - wyjście ciągłe układu realizującego algorytmy typu PID i PI, Y - stan styków toru głownego na wyjściu regulatora)

Przykład 7.

Badanie odpowiedzi regulatora trójstawnego typu PID dla toru głównego i PI dla toru pomocniczego.

- Wejść w tryb 2 (konfigurowanie parametrów),
- Ustawić SPL = 300°C, SEt = con, P1=100%, P2 = 100%, Ti1 = 5 min, Ti2 = 2 min, Td1 = 80 sek, Td2 = 0 sek, To1 = 10 sek, To2 = 20 sek, yd = 10%, tP = 5 sek, C Ac = inu.

- Powrócić do trybu 1,
- Na wejściu regulatora ustawić przy pomocy opornicy dekadowej sygnał odpowiadający temperaturze 0 °C,
- Jednoczesne wciśnięcie klawisza → powoduje wyświetlenie aktualnej wartości zadanej oraz możliwość jej zmiany. Ustawić wartość zadaną 50°C. Tym samym uchyb regulacji E = SP wartość mierzona = 50°C 0°C = 50°C.
- Uruchomić funkcję regulatora. (Funkcję regulacji można uruchomić przez równoczesne naciśnięcie klawiszy → i↑. Zostaje wtedy zapalona dioda R.),
- Obserwować diodę toru głównego (dioda 1) i wyświetlaną wartość sygnału sterującego (na wyświetlaczu dolnym yXX.X). Wybór wartości wyświetlanej dokonywany jest przyciskiem ↑. Przejść na wyświetlanie toru II.
- Ustawić na opornicy dekadowej wartość odpowiadającą 50°C. Zmienić wartość zadaną SP na 0°C. Wyłączyć funkcję regulacji i włączyć ją ponownie. Obserwować diodę toru pomocniczego (dioda 2) i wyświetlaną wartość sygnału sterującego (na wyświetlaczu dolnym PXX.X).
- Oszacować stałą całkowania i wzmocnienie w obu torach regulacji na podstawie obserwacji sygnału sterującego.

3.4. Rejestracja przebiegu wyjściowego regulatorów RE10 lub RE11.

Do rejestracji przebiegów wykorzystuje się rejestrator cyfrowy zrealizowany programowo w stacji operatorskiej współpracjacej ze sterownikiem GE –FANUC 90-30. W tym celu należy wywołać na stole centralnym program rejestratora i ustawić jego parametry na:

zakres prądu 4.÷20 mA interwał czasowy 5 min.

Na stanowisku regulatorów ustawić zadajnik ANS 11 na 50% (I= 12 mA).

Wykonać poniższe połączenia:

Rys.3.10. Rejestracja przebiegów wyjściowych regulatorów RE10 lub RE11.

Uwaga!

Wydruk przebiegów odbywa się na stanowisku laboratoryjnym II (drukarka sieciowa) lub na drukarce podłączonej do komputera na stole współpracy.

4. Zadania do wykonania.

- 1. Zapoznać się z parametrami technicznymi, obsługą i konfigurowaniem regulatorów.
- 2. Ustawić maksymalną wartość zadaną w regulatorze RE10.
- 3. Przypisać wyjściu pomocniczemu regulatora RE10 funkcję alarmu.
- 4. Wybrać algorytm PI dla regulatora RE10.
- 5. Zaprogramować przebieg wartości zadanej dla regulatorów RE10 i RE11.
- 6. Zdjąć charakterystyki statyczne dla regulatorów RE10 i RE11.
- 7.Przeanalizować odpowiedzi regulatorów RE10 i RE11 na wymuszenie skokowej zmiany błędu regulacji.

Uwaga! Zadania 2 - 7 realizować z parametrami podanymi przez osobę prowadzącą.

5. Wykaz aparatury i urządzeń.

- 1. Mikroprocesorowy regulator RE10 z instrukcją obsługi.
- 2. Mikroprocesorowy regulator RE11 z instrukcją obsługi.
- 3. Zadajnik prądowy ANS -11.
- 4. Stoper.
- 5. Opornica dekadowa.
- 6. Zadajnik małych napięć.
- 7. Norma PN-83/M-53852 (Charakterystyka R=f(t) termorezystora Pt100).

6. Pytania i zadania kontrolne:

- 1. Jakie funkcje realizują regulatory RE10 i RE11?
- 2. Omów charakterystyki statyczne regulatrów dwu- i trójstawnych.
- 3. Omów odpowiedzi na skok jednostkowy uchybu regulatorów PID z wyjściem nieciągłym.
- 4. Jak odbywa się modulacja wypełnienia sygnałów wyjściowych regulatorów nieciągłych?

Opracowanie: mgr inż. Jan Klimesz

dr inż. Zbigniew Zajda

Wrocław 15.07.2005r.