Big players		Herschel Rabitz		Princeton University, h-index 96
8 F,		F. K. Wilhelm		Saarland University, h-index 45
		2 . 10. 11 micini		Canada Chivolotty, it much 40
Algorithm			alva	Velleye Imperation Phys. Companies
S			ака	Yellow: Innovation, Blue: Comparison
GRAPE	2-Dec-04	Steffen Glaser		Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient
				ascent algorithms minimize the time required to produce a given
				unitary propagator
	4-Aug-11	Ilya Kuprov		Second order gradient ascent pulse engineering
				more accurate gradients, convergence
				acceleration using the BFGS quasi-Newton
				algorithm, faster control derivative calculation algorithms
	12-Oct-17	Alexandre Blais		Resonator reset in circuit QED by optimal
	<u> </u>			control for large open quantum systems
				large open quantum systems, avoids explicit
				matrix exponential calculations, polynomial
				speedup, reduced memory, empty the cavity
				from measurement photons 4 times faster than passive reset
				Dassive reset
Automatic				Speedup for quantum optimal control from
differentia	13-Apr-17	David Schuster		automatic differentiation based on graphics
tion	0 r ,			processing units
				advanced optimization criteria and incorporate
				them in the optimization process with ease,
				fine-grained evaluation of performance at each
				intermediate time step
				intricate control on the evolution path,
				suppression of departures from the truncated model subspace, as well as minimization of the
				physical time
				Gradient-based optimal control of open
	20-May-19	David Schuster		quantum systems using quantum trajectories
	•			and automatic differentiation
				quantum trajectories, less computational cost
				than the regular density matrix approaches, an
				improved-sampling algorithm which
			-	minimizes the number of trajectories needed
				the use of quantum trajectories significantly
				reduces the computation complexity while
				achieving a multitude of simultaneous optimization targets.
			t	state-transfer fidelities despite dissipation, gate
				times, readout fidelity while maintaining the
				quantum nondemolition, fast resonator reset.
	18-Feb-20	David Schuster		Universal gates for protected superconducting
	10 100 20	2 4 1 4 5 6 1 4 5 6 1		qubits using optimal control
				heavy-fluxonium qubit and the o-π qubit,
				disjoint support of low-lying wave functions
				prevents direct population transfer between
				the computational-basis states.

			Instead, optimal control favors dynamics involving higher-lying levels, effectively lifting the protection for a fraction of the gate duration. O-π qubit, offset-charge dependence
Krotov	1992	David J. Tannor	Control of Photochemical Branching: Novel Procedures for Finding Optimal Pulses and Global Upper Bounds
	26-Nov-02	David J. Tannor	NA Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger nonlinear Schrödinger equation (NLSE), a BEC
			initially at rest in a harmonic trap, A phase develops across the BEC when an optical lattice potential is turned on, goal is to counter this effect
	24-May-11	David J. Tannor	Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods
			monotonic increase of the objective, significant savings over gradient (first-order) methods, significantly faster growth of the objective at early iterations than in gradient methods drawback: problematic when high fidelity is desired. Achievement: enhanced convergence (second-order or quasi-Newton) as the optimal solution is approached, controlling electron in the Na atom
	9-Dec-03	Ronnie Kosloff	Optimal control theory for unitary transformations implementation of Fourier transform in the
	30-Oct-09	S G Schirmer	Na2 molecule for up to five qubits Implementation of fault-tolerant quantum logic gates via optimal control
			extremely difficult to implement using conventional techniques, T-gate for the five-qubit stabilizer code
	9-Mar-12	Christiane P. Koch	Monotonically convergent optimization in quantum control using Krotov's method a large class of quantum control problems: nonlinear equations of motion, non-unitary time evolution, nonlinear dependencies of the Hamiltonian on the control, time-dependent targets.
			optimization functionals that depend to higher than second order on the time-evolving states
	16-Jul-18	Kurt Jacobs	Efficient optimization of state preparation in quantum networks using quantum trajectories wave-function Monte-Carlo = quantum-jump trajectories, allows efficient simulation of open systems by independently tracking the evolution of many pure-state "trajectories". generating entangled states in a network
			consisting of systems coupled in a unidirectional chain

	13-Aug-08	Regina de Vivie-Riedle	Monotonic Convergent Optimal Control Theory with Strict Limitations on the Spectrum of Optimized Laser Fields modified optimal control scheme based on the Krotov method, allows for strict limitations on the spectrum of the optimized laser fields A frequency constraint is introduced and derived mathematically correct, without losing monotonic convergence of the algorithm. challenging control of nonresonant Raman transitions, molecular vibrational qubits
Closed- loop Nelder- Mead with ORBIT	20-Jun-14	John M. Martinis	Optimal Quantum Control Using Randomized Benchmarking
			closed-loop Nelder-Mead algorithm with ORBIT for automated tune-up as it is a gradient-free method, and therefore less sensitive to noise improve singleand two-qubit gates, minimize gate bleedthrough, where a gate mechanism can cause errors on subsequent gates, and identify control crosstalk in superconducting qubits
Ad-HOC	20-Jun-14	F. K. Wilhelm	Adaptive Hybrid Optimal Quantum Control for Imprecisely Characterized Systems quantum optimal control's experimental application, is hindered by imprecise knowledge of the input variables, the quantum
			system's parameters adaptive hybrid optimal control, using a protocol named Ad-HOC. enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful. combines open- and closed-loop optimal control by first performing a gradient search then an experimental fidelity estimation with a gradient-free method combines a model based gradient search and the model free Nelder-Mead (NM) algorithm
GOAT	9-Apr-18	F. K. Wilhelm	Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits Gradient Optimization of Analytic conTrols (GOAT). experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific constraints.
			Superconducting qubits present the additional requirement that pulses must have simple parameterizations, so they can be further calibrated in the experiment

			fast coherence-limited pulses for two leading superconducting qubits architectures - fluxtunable transmons and fixed-frequency transmons with tunable couplers. GRAPE and Krotov fail criterion (i) flexibility. In contrast, GOAT, which does not derive from the variational formulation, does not require back propagation GRAPE and Krotov fail criterion (ii) numerical accuracy. GOAT, which allows arbitrary piecewise-continuous controls, does not suffer from this problem.
Digital Single- Flux Quantum Pulses	29-Aug-16	F. K. Wilhelm	Optimal Qubit Control Using Single-Flux Quantum Pulses
FIIISES			Single-flux quantum pulses are a natural candidate for on-chip control of superconducting qubits. can drive high-fidelity single-qubit rotations—even in leaky transmon qubits—if the pulse sequence is suitably optimized. We achieve this objective by showing that, for these restricted all-digital pulses , genetic algorithms can be made to converge to arbitrarily low error.
			verified up to a reduction in gate error by 2 orders of magnitude compared to an evenly spaced pulse train.
Rapid monotonic ally convergent (Rabitz)	4-Jun-98	Herschel Rabitz	Rapidly convergent iteration methods for quantum optimal control of population
			quadratic and monotonic convergence, within very few steps, the optimized objective functional comes close to its convergent limit
	29-Jun-98	Herschel Rabitz	A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator
			quadratic and monotonic convergence, within very few steps, the optimized objective functional comes close to its convergent limit
	12-Mar-04	Herschel Rabitz	Generalized monotonically convergent algorithms for solving quantum optimal control problems
			many cost functionals can be reduced to two basic functionals by the introduction of product spaces. generalized pulse design equations can be derived from the basic functionals.

	1		form level med all restaurance levels
			four-level model systems employing stationary
			and/or nonstationary targets in the absence
<u> </u>			and/or presence of relaxation.
			slow convergence may often be attributed to
1			"trapping" and that relaxation processes may
<u> </u>			remove such unfavorable behavior
1			Monotonically convergent algorithms for
1	19-Mar-07	Herschel Rabitz	solving quantum optimal control problems
			described by an integrodifferential equation of
<u> </u>			motion
1			inhomogeneous integrodifferential equation of
1			motion, four-level model system under the
<u> </u>			influence of non-Markovian relaxation
	3-Oct-07	Herschel Rabitz	Quantum Control Landscapes
			this simplicity originates in universal
1			properties of the solution sets to quantum
1			control problems that are fundamentally
			different from their classical counterparts.
			globally efficient quantum control algorithms
	40 Y 3	Uorgal 15 1	Exploring quantum control landscapes:
	12-Jul-11	Herschel Rabitz	Topology, features, and optimization scaling
		1	effort required to find an optimal control field
1			appears to be essentially invariant to the
1			complexity of the system, number of states N
1			ranging from 5 through 100
			topology of quantum control landscapes, 5000
1			individual optimization test cases, at least
			99.9%, invariance of required search effort to
1			system dimension N
			distance traveled on the control landscape
1			during a search and the magnitude of the
1			control landscape slope
	° L	Harril 1D 11	Characterization of control noise effects in
1	2-Dec-14	Herschel Rabitz	optimal quantum unitary dynamics
			a geometric interpretation of stochastic noise
1			effects, more robust optimal controls are
1			associated with regions of small overlap
1			between landscape curvature and the noise
			correlation function
			distinct noise spectral regimes that better
			support robust control solutions
	00 4	Cobriel T	New formulations of monotonically convergent
	23-Apr-03	Gabriel Turinici	quantum control algorithms
			relationship between Krotov and Rabitz, a
			unified formulation that comprises both
			algorithms and that extends to a new class of
			monotonically convergent algorithms
	Q_Mov_o=	S Vollzwein	Formulation and numerical solution of finite-
	0-may-07	S.Volkwein	level quantum optimal control problems
			a cascadic non-linear conjugate gradient
<u> </u>			scheme and a monotonic scheme are discussed
			A cascadic monotonic time-discretized
	7-Oct-07	A.Borzi	algorithm for finite-level quantum control
<u> </u>			computation
			A computer package (CNMS) is presented
	<u>I</u>	L	r · · · · · · · · · · · · · · · · · · ·

Machine learning	9-Mar-92	Herschel Rabitz	Teaching Lasers to Control Molecules
			teach a laser pulse sequences to excite specified rotational states in a diatomic molecule. Over a series of pulses the algorithm learns an optimal sequence.
	24-Apr-18	Herschel Rabitz	Data-driven gradient algorithm for high- precision quantum control
			GRAPE's performance is often hindered by deterministic or random errors in the system model and the control electronics. jointly learn from the design model and the experimental data obtained from process
			tomography, data-driven (d-GRAPE) more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space.
	27-Sep-18	Pankaj Mehta	Reinforcement Learning in Different Phases of Quantum Control performance is comparable to optimal control
			methods a single scalar reward (the fidelity of the resulting state), a spin-glass-like phase transition in the space of protocols as a function of the protocol duration
	23-Apr-19	Hartmut Neven	Universal quantum control through deep reinforcement learning
Onen			trusted-region-policy-optimization, reinforcement learning harness non-local regularities of noisy control trajectories and facilitate transfer learning between tasks. simultaneously optimize the speed and fidelity against leakage and stochastic control errors. two-order-of-magnitude reduction in average- gate-error over GRAPE, one-order-of- magnitude reduction in gate time from optimal gate synthesis counterparts
Open source packages			
SIMPSON	8-Dec-08	Niels Chr.Nielsen	Optimal control in NMR spectroscopy: Numerical implementation in SIMPSON GRAPE
Spinach	17-Nov-10	Ilya Kuprov	Spinach – A software library for simulation of spin dynamics in large spin systems
DYNAMO	3-Aug-11	S G Schirmer	GRAPE Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework GRAPE methods which update all controls
			concurrently, and Krotov-type methods which do so sequentially

QuTiP	28-Feb-12	Franco Nori	QuTiP: An open-source Python framework for the dynamics of open quantum systems GRAPE
			ORUE
Applicatio ns			
determinin g optimized pulse sequences	15-Sep-10	David G.Cory	Application of optimal control to CPMG refocusing pulse design GRAPE
designing high- fidelity quantum gates	2-Jan-07	F. K. Wilhelm	Optimal control of coupled Josephson qubits
			GRAPE, two qubit CNOT gate fidelity 1-1e-9, leakage is below 1%, five times faster than the pioneering experiment, TOFFOLI gate in three linearly coupled charge qubits, 13 times faster than decomposing it
	12-Feb-09	F. K. Wilhelm	into a circuit of nine CNOT gates Optimal control of a leaking qubit
			GRAPE, We apply optimal control theory to the envelope of a resonant Rabi pulse in a qubit in the presence of a single weakly off-resonant leakage level.
			The gate error of a spin-flip (NOT) operation reduces by orders of magnitude compared to simple pulse shapes.
			Near-perfect gates can be achieved for any pulse duration longer than an intrinsic limit given by the nonlinearity. also discuss ways to improve the pulse shapes.
	2-Mar-09	F. K. Wilhelm	Optimal Control of a Qubit Coupled to a Non- Markovian Environment
			open systems GRAPE, decoupling the qubits from the intrinsic noise of the material, paradigmatic, non-Markovian model: a single- qubit coupled to a two-level system exposed to a heat bath
	8-Sep-09	F. K. Wilhelm	Simple Pulses for Elimination of Leakage in Weakly Nonlinear Qubits
			simple qubit control fails on short time scales because of coupling to leakage levels, analytic formula, adding a second control that is proportional to the time derivative of the first
			These results show that even weak anharmonicity is sufficient and in general not a limiting factor for implementing quantum gates.
	26-Nov-13	F. K. Wilhelm	Optimized controlled-Z gates for two superconducting qubits coupled through a resonator

		77 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	•	GRAPE, fast entangling gates to minimize the effects of decoherence Training Schrödinger's cat: quantum optimal
	17-Dec-15	F. K. Wilhelm		control
			l e	state-of-the-art quantum control techniques are reviewed, address key challenges and sketch a roadmap for future developments
	30-Oct-09	S G Schirmer		Implementation of fault-tolerant quantum logic gates via optimal control
				GRAPE, all of the elementary logic gates for the five-qubit stabilizer code
preparing entangled states	28-Feb-14	Jörg Wrachtrup		High-fidelity spin entanglement using optimal control
				GRAPE, scalable room temperature spin-based quantum information devices