P. Maurer ENS Rennes

Leçon 121. Nombres premiers. Exemples et applications.

Devs:

- Loi de réciprocité quadratique
- Théorème des deux carrés

Références:

- 1. Gourdon, Algèbre
- 2. Caldero, H2G2
- 3. Perrin, Cours d'algèbre
- 4. Ulmer, Théorie des groupes
- 5. Gozard, Théorie de Galois
- 6. FGN, Oraux X-ENS Algèbre 1
- 7. Carrega, Théorie des corps
- 8. Plans de Owen et de 20-sided dice (c'est peut être dans le De Konick, Mercier : Introduction à la théorie des nombres, mais il est à 110 euros sur Amazon, et introuvable ailleurs)...

Dans ce qui suit, n désigne un entier naturel.

1 Arithmétique dans \mathbb{Z}

1.1 Nombres premiers entre eux, nombres premiers, et décomposition en facteurs premiers

Définition 1. Soit a_1, \ldots, a_n des entiers. Il existe un unique entier d tel que $a_1 \mathbb{Z} + \cdots + a_n \mathbb{Z} = d\mathbb{Z}$. L'entier d est appelé le pgcd de a_1, \ldots, a_n et on note $d = \operatorname{pgcd}(a_1, \ldots, a_n)$. L'entier d est le plus grand entier naturel qui divise tous les a_i . On note aussi $a \wedge b := \operatorname{pgcd}(a, b)$ pour $a, b \in \mathbb{Z}$.

Définition 2. On dit que $a_1, ..., a_n$ sont premiers entre eux (dans leur ensemble) lorsque $\operatorname{pgcd}(a_1, ..., a_n) = 1$. On dit qu'ils sont premiers entre eux deux à deux si pour tout $i \neq j \in [\![1, n]\!]$, on a $\operatorname{pgcd}(a_i, a_j) = 1$.

Proposition 3. Pour $a, a_1, \ldots, a_n \in \mathbb{Z}$, on a $\operatorname{pgcd}(a a_1, \ldots, a_n) = |a| \operatorname{pgcd}(a_1, \ldots, a_n)$.

Théorème 4. (Bézout). Des entiers $a_1, ..., a_n$ sont premiers entre eux dans leur ensemble si et seulement si il existe des entiers $u_1, ..., u_n$ tels que $a_1 u_1 + \cdots + a_n u_n = 1$.

Proposition 5. (Algorithme d'Euclide).

Soit a et b deux éléments non nuls d'un anneau euclidien A, soit $(r_i)_i$ la suite d'élements définie par $r_0=a$, $r_1=b$, puis, pour $r\geq 2$, $r_i=\operatorname{rem}(r_{i-2},r_{i-1})$, où $\operatorname{rem}(x,y)$ désigne la fonction qui a (x,y) associe le reste dans la division de x par y dans A.

Alors la suite $(r_i)_i$ est finie : il existe un entier n+1 pour lequel $r_{n+1}=0$ et $\operatorname{pgcd}(a,b)=r_n$.

Définition 6. On dit qu'un entier $p \ge 2$ est premier si ses seuls diviseurs sont p, -p, 1 et -1. On notera dans la suite \mathbb{P} l'ensemble des nombres premiers.

Théorème 7. (Fondamental de l'arithmétique). Tout entier naturel $n \ge 2$ s'écrit de manière unique sous la forme

$$n = p_1^{\alpha_1} \cdots p_k^{\alpha_k},$$

où les p_i sont des nombres premiers distincts et les α_i des entiers naturels non nuls. On appelle cette égalité la décomposition de n en facteurs premiers.

Proposition 8. Soit $p \in \mathbb{P}$ et $a_1, \ldots, a_n \in \mathbb{Z}$. Si p divise $a_1 \cdots a_n$, alors p divise au moins l'un des a_i .

Proposition 9. L'ensemble des nombres premiers est infini.

Proposition 10. Soit $p \in \mathbb{P}$, et $1 \le k \le p-1$ un entier. Alors p divise $\binom{k}{p}$.

Théorème 11. (Fermat). Soit $p \in \mathbb{P}$. Alors pour tout $a \in \mathbb{Z}$ $a^p \equiv a[p]$ et si $p \nmid a$, $a^{p-1} \equiv 1[p]$

Théorème 12. (Wilson). Soit $p \ge 2$ un entier. Alors $p \in \mathbb{P} \iff (p-1)! \equiv -1[p]$.

Exemple 13. On pose $F_n = 2^{2^n} + 1$. Fermat avait conjecturé, à tort, que tous les nombres F_n étaient premiers. On montre en fait que F_5 ne l'est pas : les nombres F_n qui sont bel et bien premiers s'appellent nombres premiers de Fermat.

Théorème 14. (Gauss-Wantzel)

Soit p un nombre premier impair, et $\alpha \in \mathbb{N}^*$. Alors l'angle $\frac{\widehat{2\pi}}{p^{\alpha}}$ est constructible si et seulement si $\alpha = 1$ et p est un nombre premier de Fermat, c'est-à-dire $p = 1 + 2^{2^{\beta}}$ pour un certain $\beta \in \mathbb{N}$.

1.2 Fonctions arithmétiques

Définition 15. (Indicatrice d'Euler)

Section 2

Pour $n \ge 1$, on définit la fonction indicatrice d'Euler par

$$\varphi \colon \left\{ \begin{array}{ll} \mathbb{N}^* & \to & \mathbb{N}^* \\ n & \mapsto & \mathrm{Card}(\{x \in [\![1,n]\!] : \ x \wedge n = 1\}) \end{array} \right. .$$

Proposition 16. On a $\varphi(1) = 1$. Si $n \ge 2$, $\varphi(n)$ est le nombre de générateurs du groupe $(\mathbb{Z}/n\mathbb{Z}, +)$, et $\varphi(n)$ est l'ordre du groupe $((\mathbb{Z}/n\mathbb{Z})^{\times}, \times)$ des éléments inversibles de l'anneau $\mathbb{Z}/n\mathbb{Z}$.

Proposition 17. Soit p un nombre premier, et $n \in \mathbb{N}^*$. On a $\varphi(p^n) = p^n - p^{n-1}$.

Théorème 18. (Euler). Soit $n \ge 2$ un entier, et a un entier relatif premier avec n. Alors $a^{\varphi(n)} \equiv 1[n]$.

Théorème 19. (des restes chinois). Soient $n, m \in \mathbb{N}$ avec $n, m \geq 2$ et $n \wedge m = 1$. Alors les anneaux $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ et $\mathbb{Z}/mn\mathbb{Z}$ sont isomorphes.

Corollaire 20. Soit $n, m \in \mathbb{N}$ avec $n, m \ge 2$ et $n \land m = 1$. Alors $\varphi(nm) = \varphi(n) \varphi(m)$.

Corollaire 21. Soit $n \ge 2$ un entier, décomposé en facteurs premiers sous la forme $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$. Alors $\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_k}\right)$.

Proposition 22. (formule de Gauss). Pour $n \in \mathbb{N}^*$, $n = \sum_{d \mid n} \varphi(d)$.

Définition 23. On définit la fonction de Möbius μ : $\mathbb{N}^* \to \{0,1,-1\}$ par $\mu(1)=1$, $\mu(n)=0$ si n contient un facteur carré, et $\mu(p_1 \cdots p_r) = (-1)^r$ si p_1,\ldots,p_r sont des nombres premiers distincts.

Proposition 24. Soit $n, m \in \mathbb{N}$ avec $n, m \ge 2$ et $n \land m = 1$. Alors $\mu(nm) = \mu(n) \mu(m)$.

Proposition 25. (Formule d'inversion de Möbius). Soit $f: \mathbb{N}^* \to \mathbb{C}$ une application. On pose $g(n) = \sum_{d \mid n} f(d)$. Alors $f(n) = \sum_{d \mid n} \mu(\frac{n}{d}) g(d)$.

Application 26. On a $\varphi(n) = \sum_{d|n} \mu(\frac{n}{d}) d$.

1.3 Recherche et répartition des nombres premiers

Proposition 27. Soit $n \in \mathbb{N}^*$. Alors n est premier si et seulement si il n'admet aucun diviseur inférieur à \sqrt{n} .

Proposition 28. (Crible d'Eratosthène). On souhaite déterminer $[\![1,n]\!] \cap \mathbb{P}$ pour $n \geq 2$. On pose $\mathbb{P}_1 = [\![2,n]\!]$ et $\mathbb{P}_2 = \emptyset$. Tant que $P_1 \neq \emptyset$, on fait $\mathbb{P}_2 \leftarrow \mathbb{P}_2 \cup \{\min \mathbb{P}_1\}$ et $\mathbb{P}_1 \leftarrow \mathbb{P}_1 \setminus (\min \mathbb{P}_1) \mathbb{N}^*$.

Cet algorithme termine et lorsqu'il termine, l'ensemble \mathbb{P}_2 renvoyé correspond à $[1, n] \cap \mathbb{P}$.

Définition 29. On note $\pi(x) = \text{Card}(\mathbb{P} \cap [0, x])$.

Proposition 30. Pour tout $x \ge 2$, on $a \pi(x) \ge \ln(\ln(x))$.

Théorème 31. (Théorème des nombres premiers, admis). On a $\pi(x) \underset{x \to +\infty}{\sim} \frac{x}{\ln(x)}$.

Théorème 32. La série $\sum_{p\in\mathbb{P}} \frac{1}{p}$ diverge.

Théorème 33. (Kurschak). Pour $n \ge m \in \mathbb{N}$, on a $\sum_{i=m}^{n} \frac{1}{i} \in \mathbb{N} \iff n = m = 1$.

2 Etude des corps finis

Dans ce qui suit, on se donne $p \in \mathbb{P}$ et on note $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$. On rappelle que \mathbb{F}_p est un corps à p éléments.

2.1 Définitions et propriétés

Proposition 34. Soit K un corps, et $\varphi: \mathbb{Z} \to K$ l'homomorphisme d'anneau défini par $\varphi(n) = n \cdot 1 = 1 + \cdots + 1$. L'ensemble $\operatorname{Ker} \varphi$ est un idéal de \mathbb{Z} , donc de la forme $p\mathbb{Z}$ et comme $\mathbb{Z}/p\mathbb{Z} \simeq \operatorname{Im}(\varphi) \subset K$ est intègre, $p\mathbb{Z}$ est un idéal premier. Il y a donc deux cas : p est nul ou p est premier.

Définition 35. On appelle caractéristique de K l'entier p tel que $\operatorname{Ker} \varphi = p\mathbb{Z}$, et on le note $\operatorname{car}(K)$. On a donc $\operatorname{car}(K) = 0$ ou $\operatorname{car}(K) \in \mathbb{P}$.

Proposition 36. Si car(K) = p > 0, alors pour tout $x \in K$, on a px = 0.

Exemple 37. Les corps de caractéristique nulle sont infinis.

Exemple 38. Si K est fini, alors $\operatorname{car}(K) = p > 0$, et $\mathbb{F}_p \subset K$. Le théorème de la base téléscopique donne alors $|K| = q = p^n$ pour un certain n > 1.

Proposition 39. Soit K un corps de caractéristique p > 0. L'application $F: K \to K$ définie par $x \mapsto x^p$ est un morphisme de corps appelé morphisme de Frobenius. Si K est fini, c'est un automorphisme, et si $K = \mathbb{F}_p$, c'est l'identité.

Théorème 40. Soit $n \in \mathbb{N}^*$. On pose $q = p^n$. Alors il existe un corps K à q éléments, c'est le corps de décomposition du polynôme $X^q - X$ sur \mathbb{F}_p . En particulier, K est unique à isomorphisme près.

Théorème 41. (Wedderburn). Tout corps fini est commutatif.

Etude des p-groupes 3

2.2 Carrés dans \mathbb{F}_n

Notation 42. On pose \mathbb{F}_q^2 :={ $y \in \mathbb{F}_q$: $\exists x \in \mathbb{F}_q$, $y = x^2$ }, et \mathbb{F}_q^{*2} := $\mathbb{F}_q^* \cap \mathbb{F}_q^2$

Proposition 43. Si p = 2, on a $\mathbb{F}_q^2 = \mathbb{F}_q$. Si p > 2, on a $|\mathbb{F}_q^2| = \frac{q+1}{2}$ et $|\mathbb{F}_q^{*2}| = \frac{q-1}{2}$.

Proposition 44. On suppose p > 2 et on se donne $a \in \mathbb{F}_q^*$. Alors

$$a^{\frac{q-1}{2}} = \begin{cases} 1 & \text{si a est un carr\'e dans } \mathbb{F}_q^* \\ -1 & \text{si a n'est pas un carr\'e dans } \mathbb{F}_q^* \end{cases}$$

Définition 45. On définit le symbole de Legendre pour p > 2 et $a \in \mathbb{F}_p$ par

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{si a est un carr\'e dans } \mathbb{F}_p^*, \\ -1 & \text{si a n'est pas un carr\'e dans } \mathbb{F}_p^*, \\ 0 & \text{si } a = 0. \end{cases}$$

Remarque 46. D'après ce qui précède, pour $a \neq 0$ on a donc $\left(\frac{a}{n}\right) = a^{\frac{p-1}{2}}$. En particulier, le symbole de Legendre est multiplicatif, au sens où $\left(\frac{a}{p}\right) \times \left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$

Proposition 47. Soit p un nombre premier impair et a un élément de \mathbb{F}_p^* . On a

$$|\{x \in \mathbb{F}_p : ax^2 = 1\}| = 1 + \left(\frac{a}{p}\right).$$

Développement 1 :

Théorème 48. (Loi de réciprocité quadratique) Soit p et q deux nombres premiers impairs distincts. Alors on a

$$\left(\frac{p}{q}\right)\cdot\left(\frac{q}{p}\right)=\left(-1\right)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}$$

Exemple 49. Calcul du symbol de Legendre :

$$\left(\frac{23}{59}\right) = (-1)^{11.29} \left(\frac{59}{23}\right) = -\left(\frac{13}{23}\right) = \dots = \left(\frac{2}{3}\right) = -1.$$

Lemme 50. Pour tout nombre premier p impair, 8 divise $p^2 - 1$.

Proposition 51. Pour tout nombre premier p impair, on $a\left(\frac{2}{n}\right) = (-1)^{(p^2-1)/8}$.

2.3 Réduction modulo p et résolution de problèmes arithmétiques

Théorème 52. (Critère d'Eisenstein)

Soit
$$P = \sum_{i=1}^{n} a_i X^i \in \mathbb{Z}[X]$$
, avec $n \ge 1$. On suppose qu'il existe $p \in \mathbb{P}$ tel que :

- p divise a_i pour tout $i \in [0, n-1]$.
- p ne divise pas a_n .
- p^2 ne divise pas a_0 .

Alors P est irréductible dans $\mathbb{Q}[X]$

Théorème 53. Soit $P = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$, et \overline{P} sa réduction sur \mathbb{F}_p , c'est-à-dire $\overline{P} = \sum_{i=0}^{n} \overline{a_i} X^i$. Si \overline{P} est irréductible sur \mathbb{F}_p , alors P est irréductible sur \mathbb{Q} .

Exemple 54. $X^3 + X + 1$ est irréductible sur \mathbb{Z} .

Remarque 55. La réciproque est fausse, par exemple en prenant $P = X^4 + 1$.

Théorème 56. Pour $n \ge 1$, le $n^{\text{ème}}$ polynôme cyclotomique $\Phi_n(X) = \prod_{\substack{\zeta^n = 1 \\ \forall k < n, \zeta^k \ne 1}} X - \zeta$.

Alors Φ_n est de degré $\varphi(n)$, vérifie $X^n - 1 = \prod_{d \mid n} \Phi_d$, est à coefficients dans $\mathbb Z$ et irréductible sur $\mathbb Z$.

Définition 57. On note $\mathbb{Z}[i] := \{a+ib : a \in \mathbb{Z} \text{ et } b \in \mathbb{Z}\}\$ l'anneau des entiers de Gauss. On définit sur $\mathbb{Z}[i]$ l'application $N: \mathbb{Z}[i] \to \mathbb{N}$, $a+ib \mapsto a^2+b^2$. Pour $z \in \mathbb{Z}[i]$, N(z) est appelé la norme de l'entier de Gauss z. On remarque que N est multiplicative : $\forall z$, $z' \in \mathbb{Z}[i]$. N(zz') = N(z)N(z').

On note $\Sigma := \{n \in \mathbb{Z} : \exists a, b \in \mathbb{Z} \mid n = a^2 + b^2\}$ l'ensemble des entiers qui s'écrivent comme somme de deux carrés.

Proposition 58. $\mathbb{Z}[i]$ est euclidien pour l'application N, donc principal.

Développement 2 :

Théorème 59. (Des deux carrés). Soit p un nombre premier impair. Alors $p \in \Sigma \iff p \equiv 1[4]$.

3 Etude des p-groupes

3.1 Résultats sur les *p*-groupes

Définition 60. Soit p un nombre premier. On appelle p-groupe un groupe fini d'ordre une puissance de p.

Section 3

Définition 61. On appelle ensemble des points fixes de X sous G l'ensemble :

$$X^G = \{x \in X : \forall g \in G \quad g.x = x\}$$

Proposition 62. On suppose que G est un p-groupe et que X est fini. Alors on a :

$$|X| \equiv |X^G| \pmod{p}$$

Corollaire 63. Le centre d'un p-groupe distinct de {1} n'est pas réduit à {1}.

Corollaire 64. Soit p un nombre premier. Alors tout groupe fini G de cardinal p^2 est abélien, et plus précisément isomorphe à $(\mathbb{Z}/p\mathbb{Z})^2$ ou bien à $\mathbb{Z}/p^2\mathbb{Z}$.

Exemple 65. Le corollaire devient faux pour les groupes d'ordre p^k avec $k \ge 3$. On peut donner en exemple le sous-groupe $T_3(\mathbb{F}_p)$ de $\mathrm{GL}_3(\mathbb{F}_p)$ constitué des matrices triangulaires supérieures avec des 1 sur la diagonale, ou encore le groupe des quaternions, défini par : $\mathbb{H}_{8} := \{1, -1, i, -i, j, -j, k, -k\}$ où $(-1)^2 = 1, -1 \times a = a \times -1 = -a$ pour tout $a \in \mathbb{H}_8$ et $i^2 = j^2 = k^2 = ijk = -1$.

Théorème 66. (Cauchy)

Soit G un groupe fini et p un diviseur premier de l'ordre de G. Alors G comprend au moins un élémnt d'ordre p.

3.2 Théorèmes de Sylow

Définition 67. Soit G un groupe de cardinal $n = p^{\alpha}m$ avec p premier avec $p \nmid n$. On appelle p-Sylow de G tout sous-groupe de cardinal p^{α} .

Exemple 68. Soit $n = p^{\alpha}m$ avec $p \nmid m$. Alors $\mathbb{Z}/n\mathbb{Z}$ a un unique p-Sylow donné par $\langle m \rangle$. L'ensemble $T_n(\mathbb{F}_p)$ des matrices triangulaires supérieures de taille n avec des 1 sur la diagonale est un p-Sylow de $GL_n(\mathbb{F}_p)$.

Théorème 69. (Sylow) [DEV 1]

Soit G un groupe d'ordre $p^{\alpha}m$ avec $p \nmid m$. Alors :

- 1. G possède au moins un p-Sylow.
- 2. Les p-Sylow sont tous conjugués entre eux.
- 3. En notant k le nombre de p-Sylow, on a $k \equiv 1 \pmod{p}$ et k divise m.

Exemple 70. Tout groupe d'ordre 15 est isomorphe à $\mathbb{Z}/15\mathbb{Z}$.

Exemple 71. Il n'existe pas de groupe simple d'ordre 63 et 255.