Artificial Intelligence

Adversarial Search

Outline

- History / Overview
- Minimax for Zero-Sum Games
- α-β Pruning
- Finite lookahead and evaluation

Checkers, Chess, Go

A brief history

Checkers:

- 1950: First computer player.
- 1959: Samuel's self-taught program.
- 1994: First computer world champion: Chinook defeats Tinsley
- 2007: Checkers solved! Endgame database of 39 trillion states

Chess:

- 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, McCarthy.
- 1960s onward: gradual improvement under "standard model"
- 1997: Deep Blue defeats human champion Gary Kasparov
- 2021: Stockfish rating 3551 (vs 2870 for Magnus Carlsen).

Go:

- 1968: Zobrist's program plays legal Go, barely (b>300!)
- 1968-2005: various ad hoc approaches tried, novice level
- 2005-2014: Monte Carlo tree search -> strong amateur
- 2016-2017: AlphaGo defeats human world champions

Pacman

Types of Games

Game = task environment with > 1 agent

Axes:

- Deterministic or stochastic?
- Perfect information (fully observable)?
- One, two, or more players?
- Turn-taking or simultaneous?
- Zero sum?

Want algorithms for calculating a contingent plan (a.k.a. strategy or policy)
 which recommends a move for every possible eventuality

"Standard" Games

- Standard games are deterministic, observable, two-player, turn-taking, zero-sum
- Game formulation:
 - Initial state: s₀
 - Players: Player(s) indicates whose move it is
 - Actions: Actions(s) for player on move
 - Transition model: Result(s,a)
 - Terminal test: Terminal-Test(s)
 - Terminal values: Utility(s,p) for player p
 - Or just Utility(s) for player making the decision at root

Zero-Sum Games

- Zero-Sum Games
 - Agents have opposite utilities
 - Pure competition:
 - One *maximizes*, the other *minimizes*

General Games

- Agents have independent utilities
- Cooperation, indifference, competition, shifting alliances, and more are all possible

Adversarial Search

Single-Agent Trees

Value of a State

Tic-Tac-Toe Game Tree

Minimax Values

Terminal States:

$$V(s) = known$$

Minimax algorithm

- Choose action leading to state with best minimax value
- Assumes all future moves will be optimal
- = => rational against a rational player

Implementation

```
function minimax-decision(s) returns an action return the action a in Actions(s) with the highest minimax_value(Result(s,a))
```



```
function minimax_value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX then return max<sub>a in Actions(s)</sub> minimax_value(Result(s,a))
if Player(s) = MIN then return min<sub>a in Actions(s)</sub> minimax_value(Result(s,a))
```

Generalized minimax

What if the game is not zero-sum, or has multiple players?

Minimax Efficiency

- How efficient is minimax?
 - Just like (exhaustive) DFS
 - Time: O(b^m)
 - Space: O(bm)
- Example: For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - Humans can't do this either, so how do we play chess?

Game Tree Pruning

Minimax Example

Alpha-Beta Example

α = best option so far from anyMAX node on this path

The order of generation matters: more pruning is possible if good moves come first

Minimax Decision = MAX{MIN{3,5,10},MIN{2,2}}

 $= MAX{3,2}$

= 3

Minimax Decision = MAX{MIN{3,5,10}, MIN{2,a,b}, MIN{2,7,3}}

 $= MAX{3,c,2}$

= 3

Alpha-Beta Quiz

Alpha-Beta Quiz 2

Alpha-Beta Quiz 2

Alpha-Beta Pruning

- General case (pruning children of MIN node)
 - We're computing the MIN-VALUE at some node n
 - We're looping over n's children
 - n's estimate of the childrens' min is dropping
 - Who cares about *n*'s value? MAX
 - Let α be the best value that MAX can get so far at any choice point along the current path from the root
 - If n becomes worse than α , MAX will avoid it, so we can prune n's other children (it's already bad enough that it won't be played)
- Pruning children of MAX node is symmetric
 - Let β be the best value that MIN can get so far at any choice point along the current path from the root

MIN

Alpha-Beta Implementation

```
\alpha: MAX's best option on path to root \beta: MIN's best option on path to root
```

```
def max-value(state, \alpha, \beta):
  initialize v = -\infty
  for each successor of state:
  v = \max(v, value(successor, \alpha, \beta))
  if v \ge \beta
      return v
  \alpha = \max(\alpha, v)
  return v
```

```
\label{eq:def-min-value} \begin{split} & \text{def min-value}(\text{state }, \alpha, \beta): \\ & \text{initialize } v = +\infty \\ & \text{for each successor of state:} \\ & v = \min(v, \text{value}(\text{successor}, \alpha, \beta)) \\ & \text{if } v \leq \alpha \\ & \text{return } v \\ & \beta = \min(\beta, v) \\ & \text{return } v \end{split}
```

Alpha-Beta Pruning Properties

- Theorem: This pruning has no effect on minimax value computed for the root!
- Good child ordering improves effectiveness of pruning
 - Iterative deepening helps with this
- With "perfect ordering":
 - Time complexity drops to O(b^{m/2})
 - Doubles solvable depth!

- This is a simple example of metareasoning (reasoning about reasoning)
- For chess: only 35⁵⁰ instead of 35¹⁰⁰!! Yaaay!!!!!

Resource Limits

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution 1: Bounded lookahead
 - Search only to a preset depth limit or horizon
 - Use an evaluation function for non-terminal positions
- Guarantee of optimal play is gone
- More plies make a BIG difference
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - Chess with alpha-beta, $35^{(8/2)} = ^{\sim} 1M$; depth 8 is good

Depth Matters

- Evaluation functions are always imperfect
- Deeper search => better play (usually)
- Or, deeper search gives same quality of play with a less accurate evaluation function
- An important example of the tradeoff between complexity of features and complexity of computation

Pacman with Depth-2 Lookahead

Pacman with Depth-10 Lookahead

Evaluation Functions

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

- Typically weighted linear sum of features:
 - EVAL(s) = $w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$
 - E.g., $w_1 = 9$, $f_1(s) = (num white queens num black queens), etc.$
- Or a more complex nonlinear function (e.g., NN) trained by self-play RL
- Terminate search only in quiescent positions, i.e., no major changes expected in feature values

Evaluation for Pacman

Generalized minimax

What if the game is not zero-sum, or has multiple players?

Emergent coordination in ghosts

Games with uncertain outcomes

Chance outcomes in trees

100

Minimax

```
function decision(s) returns an action
```

return the action a in Actions(s) with the highest minimax_value(Result(s,a))

Expectiminimax

```
function decision(s) returns an action
```

return the action a in Actions(s) with the highest value(Result(s,a))


```
function value(s) returns a value if Terminal-Test(s) then return Utility(s) if Player(s) = MAX then return \max_{a \text{ in Actions(s)}} \text{value(Result(s,a))} if Player(s) = MIN then return \min_{a \text{ in Actions(s)}} \text{value(Result(s,a))} if Player(s) = CHANCE then return \sup_{a \text{ in Actions(s)}} \text{Pr(a)} * \text{value(Result(s,a))}
```

Summary

- Games require decisions when optimality is impossible
 - Bounded-depth search and approximate evaluation functions
- Games force efficient use of computation
 - Alpha-beta pruning
- Game playing has produced important research ideas
 - Reinforcement learning (checkers)
 - Iterative deepening (chess)
 - Rational metareasoning (Othello)
 - Monte Carlo tree search (Go)
 - Solution methods for partial-information games in economics (poker)
- Video games present much greater challenges lots to do!
 - $b = 10^{500}$, $|S| = 10^{4000}$, m = 10,000