## Domanda 1

Risposta non data

Punteggio max.: 1,00

Suppose your input is a  $x^{< i>}$  vector with three elements and you use the following Recurrent Neural Network (RNN) for a regression task, with which you want to predict a single value. This Network consists in a Bidirectional RNN with each hidden layer of 5 units, and a Dense layer with 2 units.



How many parameters does this Network have (including the bias parameters)?

Remember Bidirectional recurrent neural networks(RNN) are two independent RNNs putting together.

Risposta:

| Domanda 2                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Risposta non data  Punteggio max.: 1,00                                                                                                                                                                                                                                                                                                                                                         |
| Tulloggio max 1,00                                                                                                                                                                                                                                                                                                                                                                              |
| If your Neural Network model seems overfit, what of the following would be promising thing to try (check all that apply.)                                                                                                                                                                                                                                                                       |
| a. Make the Neural Network deeper                                                                                                                                                                                                                                                                                                                                                               |
| b. Use Data Augmentation                                                                                                                                                                                                                                                                                                                                                                        |
| _ c. Get more training data                                                                                                                                                                                                                                                                                                                                                                     |
| d. Get more test data                                                                                                                                                                                                                                                                                                                                                                           |
| e. Increase the numer of epochs                                                                                                                                                                                                                                                                                                                                                                 |
| f. Apply weight decay                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                 |
| Domanda 3                                                                                                                                                                                                                                                                                                                                                                                       |
| Risposta non data  Punteggio max.: 1,00                                                                                                                                                                                                                                                                                                                                                         |
| runteggio max 1,00                                                                                                                                                                                                                                                                                                                                                                              |
| You are building a Deep Learning system based on Computer Vision for recognizing the quality of tomato. The system has to predict 1 when you have a tomato with top quality (y=1) and zero in the opposite case (y=0). Which of the following activation functions would you recommend using for the intermediate layers? (Check all the apply.)  A. SoftMax  B. LeakyReLU  C. Sigmoid  D. Relu |
| D. neu                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                 |
| Domanda 4                                                                                                                                                                                                                                                                                                                                                                                       |
| Risposta non data  Punteggio max.: 1,00                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                 |
| Let's suppose you are using a Convolutional Networks to address a multiclass classification tasks and you are using a Softmax Activation in the last layer. Considering the following $z$ vector compute the second element of the output vector of the ConvNet: $z = \begin{bmatrix} 3 \\ 2 \\ -2 \end{bmatrix}$                                                                               |
| Round the figure to three digits after the decimal point. Use comma as separator.  Risposta:                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                 |

| Domanda 5                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Risposta non data                                                                                                                                                                                            |
| Punteggio max.: 1,00                                                                                                                                                                                         |
|                                                                                                                                                                                                              |
| Image scaling can be interpreted as a form of image resampling or image reconstruction. Upsampling to a bigger image from a smaller image can be done with the following techniques: (check all that apply.) |
| a. Nearest-neighbor interpolation                                                                                                                                                                            |
| b. Transposed Convolution                                                                                                                                                                                    |
| c. Max Pooling                                                                                                                                                                                               |
| d. Bilinear algorithm                                                                                                                                                                                        |
| e. Convolution                                                                                                                                                                                               |
| f. Sigmoid Activation function                                                                                                                                                                               |
|                                                                                                                                                                                                              |
|                                                                                                                                                                                                              |
| Domanda <b>6</b> Risposta non data                                                                                                                                                                           |
| Punteggio max.: 1,00                                                                                                                                                                                         |
|                                                                                                                                                                                                              |
| Which ones of the following statements on The Bidirectional Encoder Representations from Transformers (BERT) are true? (Check all the apply.)                                                                |
| a. BERT consists of an Encoder and a Decoder module                                                                                                                                                          |
| b. Masked Language Model is one of the techniques used to train the Networks                                                                                                                                 |
| c. The size of the input and the output volume of a encoder block is different                                                                                                                               |
| d. The encoder block uses the key concept of the ResNet                                                                                                                                                      |
| e. The size of the input and the output volume of a encoder block is the same                                                                                                                                |
| f. The training BERT strategy requires a large human annotated dataset                                                                                                                                       |
|                                                                                                                                                                                                              |

| Punteggio max.: 1,00                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                            |
| Let's suppose to have an input volume $I$ (with size 3x3x3), and apply a 1x1 Convolution layer. This layer consists in a 1x1 Convolutivo filter $F$ with padding = 0, stride=1, bias = 2 ans Activation Function=ReLU. $I$ |
| C1                                                                                                                                                                                                                         |
| 5 2 4<br>3 2 3<br>6 1 8                                                                                                                                                                                                    |
| C2                                                                                                                                                                                                                         |
| 4   1   5       5   1   1       3   6   2                                                                                                                                                                                  |
| C3                                                                                                                                                                                                                         |
| 1   5   3       7   3   3       7   5   2                                                                                                                                                                                  |
| C1, C2 and C3 are the channels of the input volume respectively.                                                                                                                                                           |
| F                                                                                                                                                                                                                          |
| 1-21                                                                                                                                                                                                                       |
| Compute the output volume $O$ the value $O_{(2,2)}.$                                                                                                                                                                       |
| Round the figure to three digits after the decimal point. Use comma as separator.                                                                                                                                          |
| Risposta:                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                            |

Domanda 7