音频开发快速指引

Rev 1.1

This translated version is for reference only, and the English version shall prevail in case of any discrepancy between the translated and English versions.

版权所有 2018 杰理科技有限公司未经许可,禁止转载

目 录

-,	文档说明	3
二、	版本说明	4
三、	适用 sdk 列表	5
四、	DAC 模块	6
	1、输出幅度	6
		7
五、	ADC 模块	7
	1、audio_adc 使用范例	7
	2、通话过程 mic 数据获取	
	3、省电容 mic 使用	7
六、	音量控制	7
	1、统一音量控制	8
		9
	3、常见音量使用场景	10
七、	通话算法开发调试和测试	
	1、算法离线开发	
	2、第三方算法开发	
	3、通话参数调试	11
	4、双 mic 降噪(ENC)	11

一、文档说明

本文档主要目的是为了方便客户二次开发。将不断更新一些新增功能的快速开发指引,以及通用功能的开发指引。具体可以通过版本说明,查看每个版本更新的指引。

祝你开发愉快!

珠海市杰理科技有限公司 ZHUHAI JIELI TECHNOLOGY CO.,LTD

二、版本说明

版本	更新说明	
v1.0	初始版本:清晰语音处理的开发和测试	
v1.1	增加音量控制, DAC 模块, ADC 模块, ENC 开发调试	
		()

User manual 4of12

三、适用 sdk 列表

芯片系列	SDK 类型	备注
AC897N	Earphone	
AD697N	Earphone	

User manual 5of12

四、DAC 模块

1、输出幅度

DAC 输出幅度和以下配置有关:

- (1) DAC 电源,即 DACVDD (或者叫 DAC LDO)
- (2) DAC 增益等级

最大音量等级的情况下,单端对地输出, Vpp 应该是 DACVDD - (100~150mV),比如

DACVDD LDO 1 25V

Vpp = 1.25V - 150mV = 1.10V,这个是理论值。实际测试如下:

不同的 DACVDD,对应的最大输出如下(不同芯片,会有微小差异,该测试值仅供参考):

TCFG_AUDIO_DAC_LDO_VOLT	
DACVDD_LDO_1_20V	1.02 /1.04
DACVDD_LDO_1_25V	1.06 /1.08
DACVDD_LDO_1_30V	1.10 /1.12
DACVDD_LDO_1_35V	1.14 /1.16

User manual 6of12

2、TODO

五、ADC 模块

- 1、audio_adc 使用范例
- 2、通话过程 mic 数据获取
- 3、省电容 mic 使用

请查阅"省电容 mic 使用手册.docx",了解省电容 mic 的详细用法和调试方式

六、音量控制

User manual 7of12

1、统一音量控制

music/tone 解码出来的 pcm 数据只受**④系统音量**的控制,调节系统音量会影响到整个系统的所有声音大小,对应 windows 的"扬声器音量"。系统音量的类型选择如下:

```
      284 /*

      285 *系统音量类型选择

      286 *软件数字音量是指纯软件对声音进行运算后得到的

      287 *硬件数字音量是指dac内部数字模块对声音进行运算后输出

      288 */

      289 #define VOL_TYPE_DIGITAL
      0 //软件数字音量

      290 #define VOL_TYPE_ANALOG
      1 //硬件模拟音量

      291 #define VOL_TYPE_AD
      2 //联合音量(模拟数字混合调节)

      292 #define VOL_TYPE_DIGITAL_HW
      3 //硬件数字音量

      293 #define SYS_VOL_TYPE
      VOL_TYPE_AD

      294
```

(1) 模拟音量(VOL TYPE ANALOG)

芯片内部的 DAC 增益,决定最终芯片可以输出的最大幅度,等级和步进无法修改

优点: 信噪比高, 底噪随着音量等级的减少而减少

缺点:级数和步进不可调,播放单频信号,调音量容易听到"哒哒声"

(2) 数字音量(VOL TYPE DIGITAL / VOL TYPE DIGITAL HW)

固定模拟音量到期望的最大音量,然后对 pcm 数据进行处理控制幅度。软件数字音量是通过代码实现的,硬件数字音量是通过 DAC 的硬件模块实现的

优点:可以按照自己需求配置音量级数和步进

缺点:由于模拟音量固定,底噪固定在最大音量对应的水平

(3) 联合音量 (VOL TYPE AD)

智能组合模拟音量和数字音量,解决单独调模拟音量和数字音量的缺点。实现公式如下:

pcm 数据 * 数字音量值 * 模拟音量等级 = 最终输出

优点: 自定义音量等级和步进, 音量小的时候, 底噪表现好

缺点:播放单频信号,调音量容易听到"哒哒声"

用法:打开杰理 SDK 配置工具,切换到联合音量配置标签

User manual 8of12

珠海市杰理科技有限公司 ZHUHAI JIELI TECHNOLOGY CO.,LTD

- a、配置方式支持"指定级数"(一般使用该方式)和"指定步进":配置好级数/步进和音量范围
- b、点击"设置档位",即可查看工具生成的等级和对应的增益(单位 dB)
- c、配置好系统音量和通话音量后,点击保存/保存 bin 文件即可
- d、固定模拟音量选项:勾选该选项,则模拟音量等级固定,通过修改不同的数字音量值来实现不同的增益,等效于"数字音量(VOL_TYPE_DIGITAL)"

2、独立音量控制

独立音量控制,即对每一路音频数据单独做数字音量控制管理(如上图①②③),互相不影响,对应 windows 各个应用的音量。这种情况配置如下:

#define SYS_VOL_TYPE VOL_TYPE_DIGITAL

User manual 9of12

珠海市杰理科技有限公司 ZHUHAI JIELI TECHNOLOGY CO.,LTD

即数字音量模式下,固定了模拟音量输出到期待的最大输出,通过控制每一路音频数据的数字音量,来实现独立控制,如音量结构图所示:

- ①music digital_vol 用来控制通用解码的音量,按键音量加减,就是调这里,不会影响到其他的
- ②tone digital vol 用来固定提示音的音量
- ③总数字音量用来控制混合通路的音量,如果没有该需求,可以不加

3、常见音量使用场景

(1) 提示音音量固定

这种需求,就需要选择独立音量控制,提示音播放的时候,可以指定固定的音量等级。其他的 解码音量大小,可调,但是不影响提示音音量。

七、通话算法开发调试和测试

CVP(Clear Voice Process),即清晰语音处理。主要用在蓝牙通话中,对上行数据(即耳机 mic 发给远端手机的数据)进行回音消除和降噪等处理,使得语音清晰,提升通话效果的算法处理。

1、算法离线开发

有些应用不用通话或者不用蓝牙,比如只是单纯做一个降噪处理,可以通过离线开发的方式进行开发。

实现代码: cpu/br30/audio_cvp_demo.c

2、第三方算法开发

SDK 发布默认使用原厂开发的 CVP 相关算法进行处理。如有相应算法开发能力的客户,可自行实现对语音的处理。数据流程已经写好,只需实现算法函数函数(audio_aec_run())即可。具体可以查看实现代码里面的代码注释。

实现代码: earphone/aec/br30/audio aec demo.c

实现工程: AC897N AD697N CVP.cbp

User manual 10of12

3、通话参数调试

打开杰理 SDK 工具/编译前配置工具/蓝牙配置:通话参数配置

通话参数配置 通话参数类型选择:	选择单mic通话还是双mic通话				
	TA通话调试手册.pdf 对应的参数调试手册				
MIC_AGAIN: 6 🕞 (MIC増益、0(-8-8B)) ~ 19(30-8B), 歩进: 24b 默认信: 8)					
DAC_AGAIN: 5 😝 (DAC 增益,设置范围: 0 ~ 15, 步进: 2dB 默认值: 8)					
AEC_MODE:	reduce ▼ (AEC 模式,點认值: reduce)				
UL_EQ_EN: enable ▼ (上行 EQ 使能,默认值: enable)					
AGC					
NDT_FADE_IN:	1.3 🖢 dB (单端讲话淡入步进,设置范围: 0.1 ~ 5 dB,默认值: 1.3 dB)				
NDT_FADE_OUT:	0.7 → dB (单端讲话淡出步进,设置范围: 0.1 ~ 5 dB,默认值: 0.7 dB)				
DT_FADE_IN:	1.3 🖨 dB (双端讲话淡入步进,设置范围: 0.1 ~ 5 dB,默认值: 1.3 dB)				
DT_FADE_OUT:	0.7 → dB (双端讲话淡出步进,设置范围: 0.1 ~ 5 dB, 默认值: 0.7 dB)				
NDT_MAX_GAIN:	12.0 🔤 (单端讲话放大上限, 设置范围: 0 ~ 24 dB,默认值: 12.0 dB)				
NDT_MIN_GAIN:	0.0				

也可以选择在线调试参数,sdk 配置如下:

```
//**********//
//
aec 工具在线调试
//***************//

#define TCFG_AEC_TOOL_ONLINE_ENABLE
1//aec 在线调试使能,使用蓝牙串口调试,需要打开宏 APP_ONLINE_DEBUG
```

配合安卓系统应用程序(Audio Tools),实现通过过程在线调试。调试完毕,再将配置参数更新到上面 SDK 工具里面的通话参数配置即可。

- 4、双 mic 降噪(ENC)
- (1) 双 mic 降噪配置

双 mic 降噪功能相关配置有以下宏定义:

a. 使能双 mic 降噪功能: sdk 板级配置头文件(比如: board_ad697n_demo_cfg.h)

```
/*ENC(双mic降噪)使能*/
#define TCFG AUDIO DUAL MIC ENABLE ENABLE THIS MOUDLE
```

b. 数据导出调试使能:<mark>调试使用,正常使用需要关闭</mark>

```
/*Audio数据导出配置:通过蓝牙spp导出或者sd写卡导出*/
#define AUDIO_DATA_EXPORT_USE_SD 1
#define AUDIO_DATA_EXPORT_USE_SPP 2
#define TCFG_AUDIO_DATA_EXPORT_ENABLE AUDIO_DATA_EXPORT_USE_SPP
```

c.通话在线调试功能: 单 mic/双 mic 均支持

User manual 11of12

//**********///
// aec 工具在线调试
//******************//
#define TCFG_AEC_TOOL_ONLINE_ENABLE 1//aec 在线调试使能,使用蓝牙串口调试,需要打开宏 APP_ONLINE_DEBUG

d.指标测试功能: 如果需要随时可以测试指标,则改宏定义需要常开

e.数据处理流程

apps/earphone/aec/br30/audio_aec_dms.c

(2) 指标测试

实现代码: cpu/br30/audio_dms_tool.c

实现流程:

- (1)测试仪器通过蓝牙和耳机连接,然后通过 spp 发对应的命令给小机处理
- (2) 默认的命令有:

DMS_OUTPUT_SEL_DEFAULT 输出算法处理结果,用来测试 ENC 效果

DMS_OUTPUT_SEL_MASTER 输出主 mic 的原始数据:测试 mic 的频响

DMS_OUTPUT_SEL_SLAVE 输出副 mic 的原始数据:测试 mic 的频响

(3) 通过接口 audio_aec_output_sel()控制 CVP 模块的输出,具体参数传递,请看代码注释

User manual 12of12