- Previous video: "Parameters required to compare between different Architectures."
 - Memory bandwidth and instructions throughput.
- The real issue is addressing only the theoretical occupancy.

- Occupancy is a measure of the utilization of the resources in a GPU.
- Occupancy is categorized into two distinct types:
 - Theoretical occupancy: the ideal case.
 - Achieved occupancy: the actual usage of the GPU's resources

The theoretical occupancy calculation:

- For RTX 3090:
 - Maximum threads/SM are: 1536.
 - Maximum warps/SM are: 48 warps.

The theoretical occupancy calculation:

- Example 1:
 - Assuming a kernel utilizes 48 warps.

- Example 2:
 - Assuming a kernel utilizes 16 warps.

The theoretical occupancy summary:

 $\frac{warp\ used\ in\ a\ kernel}{\max warps\ per\ SM}$

- Refers to the ideal circumstances.
- Optimal conditions where there are enough independent tasks.
 - Without being bottlenecked by memory, computation, dependency.

The achieved occupancy :

- The achieved occupancy:
 - 1 block/SM. Block size = 512 threads.
 - Total warps/SM = 16 warps.
 - Theoretical occupancy = 100%.
- There are examples when warps are not ready
 - Warp is awaiting a value from memory.
 - During this wait, other warps may be scheduled for execution.
- If all warps encounter significant memory requests
 - Cycles where no warp is ready for execution.
 - Stall cycles, which occur due to these stalled warps.

The achieved occupancy: scenario 2, memory request

Assume:

- 1 block/SM. Block size = 512 threads.
- Total warps/SM = 16 warps.
- Theoretical occupancy = 100%.
- The achieved occupancy is = ?!

Assume regular balance workload for all SMs and partitions.

Occupancy and hiding latency: scenario 1, no memory or dependency

cycle	warp		1
0		Warp 0	Warp 0 2 3 4
1			5
2			
3			1 2
4		Warp 1	Warp 1 3
5			5 6
6			
7			1 2
8		Warp 2	Warp 2 3
9			5
10			
11			1 2
12		Warp 3	Warp 3 3 4
13			5

Remember: warp=32 threads execute same instruction on different data.

Occupancy and hiding latency: scenario 2, memory request

cycle	warp		1 FMUL R3 R4 R5 2 FMUL R6 R7 R8
0		Warp 0	3 ISETP.GE.AND P12 P21 R13 4 LDG.E.SYS R3289426 R0
1			5 IMAD R14162 R14162 R12370 6 FFMA R33 R31 R32 R136 7 IADD3 R11 P12624 R23 R24 8 STG.E.SYS R0 R3354962
2			
3			1 FMUL R3 R4 R5 2 FMUL R6 R7 R8
4		Warp 1	3 ISETP.GE.AND P12 P21 R13 P 4 LDG.E.SYS R3289426 R0 5 IMAD R14162 R14162 R12370 6 FFMA R33 R31 R32 R136 7 IADD3 R11 P12624 R23 R24
5			
6			8 STG.E.SYS RØ R3354962 1 FMUL R3 R4 R5
7			2 FMUL R6 R7 R8 3 ISETP.GE.AND P12 P21 R13
8		Warp 2	4 LDG.E.SYS R3289426 R0 5 IMAD R14162 R14162 R1237
9			6 FFMA R33 R31 R32 R136 7 IADD3 R11 P12624 R23 R24
10			8 STG.E.SYS R0 R3354962 1 FMUL R3 R4 R5
11			2 FMUL R6 R7 R8 3 ISETP.GE.AND P12 P21 R13
12		Warp 3	4 LDG.E.SYS R3289426 R0 5 IMAD R14162 R14162 R1237
13			6 FFMA R33 R31 R32 R136 7 IADD3 R11 P12624 R23 R24 8 STG.E.SYS R0 R3354962

Remember: warp=32 threads execute same instruction on different data.

- This computation is replicated for each of the 4 partitions within an SM.
- The average of all petitions is calculated. (occupancy/SM).
- This methodology is applied across all SMs.
- Overall achieved occupancy value is determined by averaging the values across all SMs.

The summary:

- Surprisingly, high occupancy doesn't always equate to high performance.
 - Indicate that a significant portion of the GPU's resources are being utilized.
- Identifying and understanding occupancy can help us pinpoint performance issues.
- Low occupancy, on the other hand, suggests that there's a bottleneck preventing the GPU from being fully utilized.
- I want to say" For further information, I recommend visiting this webpage.

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm

The summary:

- The theoretical depends on the number of warps and the maximum warps.
- The achieved occupancy depends on other factors
 - Memory requests, instructions dependencies
- Each scheduler in each partition attempts to issue instructions from a warp on each clock cycle.
- To hide latencies: each scheduler must have at least one warp eligible to issue an instruction every clock cycle.

Occupancy calculator (excel file)