ESEIAAT

Trajectòries interplanetàries Sense integració numèrica

Informe

Curs: Màster en Enginyeria Aeronàutica

Assignatura: Aerodinàmica, Mecànica de Vol i Orbital

Data d'entrega: 22-01-2018

Estudiants:

González García, Sílvia Kaloyanov Naydenov, Boyan Pla Olea, Laura Serra Moncunill, Josep Maria

Professor: Calaf Zayas, Jaume

Llista de continguts

Lli	lista de taules						
Llista de figures	iv						
1	Intr	oducció	1				
2	Òrb	ita el·líptica heliocèntrica	2				
	2.1	Plantejament d'equacions	2				
		2.1.1 Trajectòria el·líptica	3				
		2.1.2 Trajectòria hiperbòlica	4				
	2.2	Mètode de resolució	5				
3	Sort	ida del planeta origen	6				
	3.1	Òrbita planetocèntrica hiperbòlica	6				
	3.2	Òrbita d'aparcament	6				
	3.3	DeltaV	6				
4	Arri	bada al planeta destí	7				
	4.1	Òrbita planetocèntrica hiperbòlica	7				
	4.2	Òrbita d'aparcament	7				
	4.3	DeltaV	7				
5	Fun	cions auxiliars	8				
6	Res	ultats	9				
	6.1	Cas de la Terra a Mart	9				
	6.2	Cas de Mart a Júpiter	10				
	6.3	Cas de la Terra a Mart	10				
	6.4	Cas 1 de Mart a Júpiter	11				
	6.5	Cas 2 de la Terra a Mart	11				
	6.6	Cas 3 de la Terra a Mart	12				
	6.7	Cas 4 de la Terra a Mart	13				
	6.8	Cas 5 de la Terra a Venus	13				
	6.9	Cas 6 de Mart a la Terra	14				

Trajectòries Interplanetàries

7	Conclusions	18
	6.12 Cas 9 de la Terra a Mart	16
	6.11 Cas 8 de la Terra a Mart	15
	6.10 Cas 7 de Mart a la Terra	14

Llista de taules

6.1	Elements orbitals del primer cas resolt	Ć
6.1	Elements orbitals del segon cas resolt	10
6.1	Elements orbitals del tercer cas resolt	10
6.1	Elements orbitals del cas 1	1
6.1	Elements orbitals del cas 2	12
6.1	Elements orbitals del cas 3	12
6.1	Elements orbitals del cas 4	13
6.1	Elements orbitals del cas 5	14
6.1	Elements orbitals del cas 6	14
6.1	Elements orbitals del cas 7	14
6.1	Elements orbitals del cas 8	15
6.1	Elements orbitals del cas 9	16

Llista de figures

2.1	Òrbita interplanetària heliocèntrica del planeta d'origen al planeta de destí	2
2.1	Triangle esfèric de l'òrbita interplanetària heliocèntrica	3
6.1	Òrbita interplanetària del primer cas resolt	9
6.1	Òrbita interplanetària del tercer cas resolt	11
6.1	Òrbita interplanetària del cas 2	12
6.1	Òrbita interplanetària del cas 3	13
6.1	Òrbita interplanetària del cas 7	15
6.1	Òrbita interplanetària del cas 8	16
6.1	Òrbita interplanetària del cas 9	17

1 | Introducció

miau miau miaaauu

2 Drbita el·líptica heliocèntrica

El primer pas en la resolució de la trajectòria interplanetària és l'obtenció dels elements de l'òrbita que porta la nau d'un planeta a l'altre. Per tal de conèixer aquests elements és necessari saber quins són els punts d'origen i de destí de la nau. És a dir, cal saber la posició dels planetes en l'instant en què la sonda surt del planeta d'origen i en l'instant en què arriba al planeta de destí. Coneixent aquestes dues posicions ja és possible projectar una òrbita com la que es veu en la figura 2.1.

Figura 2.1: Òrbita interplanetària heliocèntrica del planeta d'origen al planeta de destí

2.1 Plantejament d'equacions

Com es dedueix de la figura, és possible calcular la inclinació de l'òrbita sabent la posició dels dos planetes. A partir dels vectors de posició, es pot calcular la desviació respecte de l'eclíptica dels planetes d'origen (en blau) i de destí (en groc), β_1 i β_2 respectivament. També

es pot obtenir la longitud eclíptica dels dos planetes, λ_1 i λ_2 . A partir d'aquestes variables, el problema es resol aplicant trigonometria esfèrica:

$$\cos \Delta \theta = \sin \beta_1 \sin \beta_2 + \cos \beta_1 \cos \beta_2 \cos \Delta \lambda \tag{2.1}$$

Del triangle groc s'obté:

$$\sin A = \cos \beta_2 \frac{\sin \Delta \lambda}{\sin \Delta \theta} \tag{2.2}$$

Figura 2.1: Triangle esfèric de l'òrbita interplanetària heliocèntrica

D'altra banda, del triangle esfèric de la figura 2.1 s'obtenen les següents expressions:

$$\tan \sigma = \frac{\cos \beta_1}{\tan \beta_1} \tag{2.3}$$

$$\cos i = \sin A \cos \beta_1 \tag{2.4}$$

$$\sin l = \frac{\tan \beta_1}{\tan i} \tag{2.5}$$

De la figura 2.1 també es poden deduir l'ascensió recta del node ascendent i l'argument del perigeu:

$$\Omega = \lambda_1 - l \tag{2.6}$$

$$\omega = 2\pi - (\theta_1 - \sigma) \tag{2.7}$$

2.1.1 Trajectòria el·líptica

Finalment, a partir dels vectors de posició també s'obtenen els tres elements orbitals que falten. Assumint que la trajectòria és el·líptica, els mòduls dels vectors de posició vénen donats per les expressions:

$$r_1 = \frac{a(1 - e^2)}{1 + e\cos\theta_1} \tag{2.8}$$

$$r_2 = \frac{a(1 - e^2)}{1 + e\cos(\theta_1 + \Delta\theta)}$$
 (2.9)

D'altra banda, també es pot relacionar el temps amb la posició de la sonda en l'òrbita mitjançant l'equació:

$$\frac{2\pi t}{T} = 2\arctan\left(\sqrt{\frac{1-e}{1+e}}\tan\frac{\theta_1}{2}\right) - \frac{e\sqrt{1-e^2}\sin\theta_1}{1+e\cos\theta_1}$$
 (2.10)

on T és el període en dies del planeta d'origen.

Per tant, es pot plantejar un sistema de tres equacions amb tres incògnites:

$$e = \frac{r_2 - r_1}{r_1 \cos \theta_1 - r_2 \cos (\theta_1 + \Delta \theta)}$$
 (2.11)

$$a = \frac{r_1 \left(1 + e \cos \theta_1\right)}{1 - e^2} \tag{2.12}$$

$$t_{2} - t_{1} = \frac{365.25}{2\pi} a^{3/2}.$$

$$\cdot \left[2 \arctan\left(\sqrt{\frac{1 - e}{1 + e}} \tan\frac{(\theta_{1} + \Delta \theta)}{2}\right) - \frac{e\sqrt{1 - e^{2}} \sin(\theta_{1} + \Delta \theta)}{1 + e \cos(\theta_{1} + \Delta \theta)} \right] - \frac{e\sqrt{1 - e^{2}} \sin\theta_{1}}{1 + e \cos\theta_{1}}$$
(2.13)

en què tant els vectors $\vec{r_1}$ i $\vec{r_2}$ com el semieix major a estan expressats en AU, per tal de treballar amb valors més simples.

2.1.2 Trajectòria hiperbòlica

En el cas que la trajectòria sigui hiperbòlica, les equacions varien lleugerament. Les posicions vénen donades per les expressions:

$$r_1 = \frac{a(e^2 - 1)}{1 + e\cos\theta_1} \tag{2.14}$$

$$r_2 = \frac{a(e^2 - 1)}{1 + e\cos(\theta_1 + \Delta\theta)}$$
 (2.15)

I la relació entre el temps i la posició de la sonda s'expressa amb l'equació:

$$\frac{2\pi t}{T} = \sqrt{e^2 - 1} \left[\frac{e \sin \theta}{1 + e \cos \theta} - \frac{1}{\sqrt{e^2 - 1}} \ln \left\| \frac{\tan \frac{\theta}{2} + \sqrt{\frac{e + 1}{e - 1}}}{\tan \frac{\theta}{2} - \sqrt{\frac{e + 1}{e - 1}}} \right\| \right]$$
(2.16)

Per tant, el sistema de tres equacions i tres incògnites és el següent:

$$e = \frac{r_2 - r_1}{r_1 \cos \theta_1 - r_2 \cos (\theta_1 + \Delta \theta)}$$
 (2.17)

$$a = \frac{r_1 \left(1 + e \cos \theta_1\right)}{e^2 - 1} \tag{2.18}$$

$$t_{2} - t_{1} = \frac{365.25}{2\pi} a^{3/2}.$$

$$\cdot \left[\frac{e\sqrt{e^{2} - 1}\sin(\theta_{1} + \Delta\theta)}{1 + e\cos(\theta_{1} + \Delta\theta)} - \ln \left\| \frac{\tan\frac{(\theta_{1} + \Delta\theta)}{2} + \sqrt{\frac{e+1}{e-1}}}{\tan\frac{(\theta_{1} + \Delta\theta)}{2} - \sqrt{\frac{e+1}{e-1}}} \right\| - \frac{e\sqrt{e^{2} - 1}\sin\theta_{1}}{1 + e\cos\theta_{1}} - \ln \left\| \frac{\tan\frac{\theta_{1}}{2} + \sqrt{\frac{e+1}{e-1}}}{\tan\frac{\theta_{1}}{2} - \sqrt{\frac{e+1}{e-1}}} \right\| \right]$$
(2.19)

2.2 Mètode de resolució

- 1. Es calcula la posició del planeta d'origen en l'instant de temps de sortida i la posició del planeta de destí en l'instant de temps d'arribada.
- 2. A partir dels vectors de posició es calculen les longituds i latituds eclíptiques dels planetes.
- 3. A partir del sistema d'equacions donat per 2.11, 2.12 i 2.13 s'obtenen l'excentricitat e i el semieix major a de l'òrbita, i l'anomalia vertadera de la sonda θ_1 en l'instant de sortida. Aquest sistema es resol mitjançant la funció solve de MATLAB. Si no s'obté cap solució (o les solucions no són coherents), s'assumeix que una trajectòria el·líptica no és possible i, per tant, l'òrbita ha de ser hiperbòlica. En aquest cas, es resol el sistema donat per 2.17, 2.18 i 2.19 mitjançant un mètode iteratiu.
- 4. Es calcula la inclinació a partir de les equacions donades pels triangles esfèrics 2.4.
- 5. Càlcul de la longitud eclíptica del node ascendent donat per 2.6.
- 6. Es calcula l'argument del periheli amb 2.7.

3 | Sortida del planeta origen

- 3.1 Òrbita planetocèntrica hiperbòlica
- 3.2 Òrbita d'aparcament
- 3.3 DeltaV

4 Arribada al planeta destí

- 4.1 Òrbita planetocèntrica hiperbòlica
- 4.2 Òrbita d'aparcament
- 4.3 DeltaV

| Funcions auxiliars

6 Resultats

6.1 Cas de la Terra a Mart

 \bullet Sortida: $t_1 = 2020$ Juliol 19

 \bullet Arribada: $t_2 = 2021$ Gener 25

 $\Delta\lambda = 141.693^{\circ}~\Delta\theta = 141.684^{\circ}$

a	e	θ_1	ω	i	Ω
1.33073 AU	0.23629	359.613°	0.387°	1.434°	296.515°

Taula 6.1: Elements orbitals del primer cas resolt

Figura 6.1: Òrbita interplanetària del primer cas resolt

6.2 Cas de Mart a Júpiter

 \bullet Sortida: $t_1 = 2026$ Juny 05

 \bullet Arribada: $t_2 = 2029$ Abril 25

 $\Delta\lambda = 182.835^{\circ}~\Delta\theta = 177.141^{\circ}$

a	e	θ_1	ω	i	Ω
3.45405 AU	0.59043	356.872°	176.203°	7.508°	207.127°

Taula 6.1: Elements orbitals del segon cas resolt

6.3 Cas de la Terra a Mart

ullet Sortida: $t_1=$ 2020 Març 06

• Arribada: $t_2 = 2020$ Juny 09

 $\Delta\lambda = 135.697^{\circ}~\Delta\theta = 135.670^{\circ}$

a	e	θ_1	ω	i	Ω
71.33848 AU	1.01109	306.690°	233.310°	2.514°	345.607°

Taula 6.1: Elements orbitals del tercer cas resolt

Figura 6.1: Òrbita interplanetària del tercer cas resolt

6.4 Cas 1 de Mart a Júpiter

ullet Sortida: $t_1 = 2037$ Octubre 25

ullet Arribada: $t_2=$ 2039 Octubre 15

 $\Delta\lambda = 121.960^{\circ}~\Delta\theta = 121.957^{\circ}$

a	e	$ heta_1$	ω	i	Ω
$3.87684~{\rm AU}$	0.64755	32.516°	317.644°	1.267°	52.502°

Taula 6.1: Elements orbitals del cas 1

6.5 Cas 2 de la Terra a Mart

ullet Sortida: $t_1 = 2033$ Març 13

 \bullet Arribada: $t_2 = 2033$ Agost 05

 $\Delta \lambda = 126.666^{\circ} \ \Delta \theta = 126.647^{\circ}$

a	e	θ_1	ω	i	Ω
1.34585 AU	0.26502	347.845°	192.155°	2.154°	352.263°

Taula 6.1: Elements orbitals del cas 2

Figura 6.1: Òrbita interplanetària del cas 2

6.6 Cas 3 de la Terra a Mart

ullet Sortida: $t_1 = 2031$ Gener 23

ullet Arribada: $t_2 = 2031$ Agost 01

 $\Delta\lambda = 148.092^{\circ} \ \Delta\theta = 148.071^{\circ}$

a	e	θ_1	ω	i	Ω
1.24568~AU	0.20996	1.674°	358.471°	2.293°	122.188°

Taula 6.1: Elements orbitals del cas 3

Figura 6.1: Òrbita interplanetària del cas 3

6.7 Cas 4 de la Terra a Mart

 $\Delta\lambda = 308.176^{\circ}~\Delta\theta = 51.825^{\circ}$

ullet Sortida: $t_1 = 2025$ Juliol 18

ullet Arribada: $t_2 = 2025$ Octubre 21

a	e	θ_1	ω	i	Ω
1.07039 AU	0.46551	112.076°	67.350°	0.563°	115.868°

Taula 6.1: Elements orbitals del cas 4

6.8 Cas 5 de la Terra a Venus

ullet Sortida: $t_1 = 2023$ Maig 27

ullet Arribada: $t_2=$ 2023 Novembre 01

 $\Delta\lambda = 202.000^\circ \ \Delta\theta = 157.992^\circ$

a	e	θ_1	ω	i	Ω
0.86221 AU	0.23212	147.050°	32.951°	1.678°	65.165°

Taula 6.1: Elements orbitals del cas 5

6.9 Cas 6 de Mart a la Terra

ullet Sortida: $t_1 = 2033$ Gener 18

 \bullet Arribada: $t_2 = 2033$ Agost 28

 $\Delta \lambda = 140.675^{\circ} \ \Delta \theta = 140.663^{\circ}$

a	e	θ_1	ω	i	Ω
1.31415 AU	0.24918	191.345°	207.993°	1.696°	154.559°

Taula 6.1: Elements orbitals del cas 6

6.10 Cas 7 de Mart a la Terra

ullet Sortida: t_1 =2030 Novembre 20

 \bullet Arribada: $t_2 = 2031$ Juliol 06

 $\Delta\lambda = 134.956^{\circ}~\Delta\theta = 134.927^{\circ}$

a	e	θ_1	ω	i	Ω
1.31613 AU	0.26617	184.700°	220.499°	2.572°	103.210°

Taula 6.1: Elements orbitals del cas 7

Figura 6.1: Òrbita interplanetària del cas 7

6.11 Cas 8 de la Terra a Mart

ullet Sortida: $t_1 = 2021$ Novembre 26

ullet Arribada: $t_2 = 2022$ Febrer 19

 $\Delta\lambda = 198.239^{\circ} \ \Delta\theta = 161.735^{\circ}$

a	e	θ_1	ω	i	Ω
1.34032 AU	1.44253	288.926°	251.074°	3.166°	243.635°

Taula 6.1: Elements orbitals del cas 8

Figura 6.1: Òrbita interplanetària del cas 8

6.12 Cas 9 de la Terra a Mart

ullet Sortida: $t_1 = 2022$ Gener 15

ullet Arribada: $t_2 = 2022$ Abril 20

 $\Delta\lambda = 182.508^\circ \ \Delta\theta = 176.966^\circ$

a	e	θ_1	ω	i	Ω
5.10048 AU	1.11071	280.991°	259.009°	34.288°	294.501°

Taula 6.1: Elements orbitals del cas 9

Figura 6.1: Òrbita interplanetària del cas 9

7 Conclusions

miau miau miaaauu