

# ML Model for Hotspot Detection – Project Summary

Michael Qu



## Agenda

- Background
- ML Model Methodology
- ML Model for Site-based Data
- ML Model for Grid-based Data
- Prototype Model
- Extension from Prototype Model
- Conclusions
- Demo on Codes
- Q & A



# Background

## Background

**Hotspot:** Problematic patterns or "design weak points". Simply adopting design rule checking (DRC) and resolution enhancement technologies (RET) such as OPC cannot guarantee to avoid the occurrence of hotspot, so additional hotspot detection is required to increase the quality of the printed patterns and to improve OPC recipes.

#### **Hotspot Detection Methods:**

- **1. Lithography Simulation**: Conventional, most accurate, but time-consuming to obtain the full chip characteristics.
- 2. Pattern Matching: To discover hotspots by comparing the pattern topology with the patterns registered in the hotspot library. Fast, but highly reliant on the hotspot library, which has weak generality for unknown hotspot patterns.
- 3. Machine Learning: To predict hotspots on new patterns using a machine learning (ML) model trained from a known database. Feature extraction can be automatically done by deep neural networks (DNN) and the model can generalize well for unknown hotspot patterns.



VLSI physical varication flow



\*Note: the "machine learning" in this presentation actually refers to "deep learning", which is a subset of machine learning, based on deep neural networks.

# ML Model Methodology

## **Terminology**



Image Classification (what?)

(Binary/Multiclass)

Prototype Model



Object Detection (what + where?)



**Extended Model** 

### Machine Learning Model Workflow

- The simplest binary classification model (HS vs NHS) is taken as an example.
- Pre-processing: The original data is first split into training set and validation set. Data augmentation is required for training set to make the data invariant to zoom, shift and flipping, and also to reduce overfitting.
- Model training & evaluation: Supervised learning is carried out by using data in training set with known HS/NHS results, and calibrated by data in validation set.
- Model testing: Data in test set will be extracted from a new chip layout. The trained ML model needs to predict HS/NHS on data in test set without knowing the result in advance.



\*The data can be in site-based or grid-based. In this figure grid-based data (image) is shown as an example.

### **Model Training**

- Loss (or Cost) Function
  - Function that compares the ground truth and our model prediction to measure our model error, or "how bad our model is doing".
  - When training, we aim to minimize this loss.
  - > For regression problem: Mean Square Error (MSE) or Mean Absolute Error (MAE)
  - For classification problem: Cross-Entropy

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left( y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)})) \right)$$

- We often plot loss function over time (epoch) to evaluate the model's learning progress and convergence
- Optimizer
  - Algorithm to find the best parameters to minimize loss function
  - ➤ The most frequently used optimizer is gradient descent method (and its variations, e.g. BGD, SGD, MGD, Adam...)

```
In [107]: opt = tf.keras.optimizers.SGD(learning_rate=0.001, momentum=0.99)
    cnn.compile(optimizer = opt, loss = 'binary_crossentropy', metrics = ['accuracy'])
```

### **Model Evaluation**

#### **Confusion Matrix**

|               |                | Pred             | iction         |
|---------------|----------------|------------------|----------------|
|               |                | 1100             |                |
|               |                | Positive (HS)    | Negative (NHS) |
| Crown d Truth | Positive (HS)  | TP (hit)         | FN (miss)      |
| Ground Truth  | Negative (NHS) | FP (false alarm) | TN             |

#### **Evaluation Metrics:**

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
 
$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 \, Score = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

- Higher accuracy means more examples (HS + NHS) are predicted correctly.
- Higher precision means the defected points are more confidently identified as HSs.
- Higher recall means the detector missed fewer real HSs.
- The precision and recall have a trade-off relationship so F1 score is introduced to evaluate the overall impact.

## ML Model for Site-based Data

### VT5 model

- Definition: VT5 is a Variable Threshold resist model that comprises 5 main parameters to fit the resist development behavior
  - Imax&Imin: maximum and minimum aerial image intensity on the fragment site within a window of size=2\*searchRange (default searchRange=0.5\*lambda/NA)
    - SearchRange is centered around reference threshold
  - Slope: aerial intensity slope @ reference Threshold
  - Curvature (factor): 2nd derivative of intensity
    - Calculated @ site perpendicular to fragment site
    - Represented the 2D behavior of that geometry
  - Convolutional kernels



#### Figure 11-1. Calculating Image Parameters for VT5 models



## Proposed Model: Artificial Neural Network (ANN)





## Data Format: Clip-by-Clip (1)

- Each input Xi is a matrix, including all the fragments on the i-th 20\*20  $\mu m$  clip -> ~200 fragments per clip
- Each output Yi has the same number of rows to label the defect information of that fragment
- Yi may not be accurate due to ~50nm tolerance of available bounding box

|          |          | Input (Xi)         |            |      |          |
|----------|----------|--------------------|------------|------|----------|
|          | Extracte | d from Post-OPC La | ayout Data | base |          |
| (xA, yA) | (xB, yB) | Orientation        | IP1        | IP2  | <br>IP15 |
|          |          | 3                  |            |      | <br>     |
|          |          | 2                  |            |      | <br>     |
|          |          | 1                  |            |      | <br>     |
|          |          | 4                  |            |      | <br>     |
|          |          |                    |            |      | <br>     |
|          |          | 2                  |            |      | <br>     |

| Outpu         | ut (Yi)    |
|---------------|------------|
| Correlated wi | th UPDM DB |
| Bridging      | Pinching   |
| 1             | 0          |
| 0             | 0          |
| 0             | 0          |
| 0             | 1          |
|               |            |
| 0             | 0          |

### Data Format: Clip-by-Clip (2)

- Each input Xi is a matrix, including all the fragments on the i-th 20\*20  $\mu m$  clip -> ~200 fragments per clip
- Each output Yi includes the defect type and coordinate of all the defects in this clip
- The tolerance of available bounding box (~50nm) can be neglected in the clip dimension

|          |          | In               | put (Xi)   |             |              |      |
|----------|----------|------------------|------------|-------------|--------------|------|
|          | Ex       | tracted from Pos | t-OPC Layo | ut Database | <del>)</del> |      |
| (xA, yA) | (xB, yB) | Orientation      | IP1        | IP2         |              | IP15 |
| •••      |          | 3                |            |             |              |      |
|          |          | 2                |            |             |              |      |
|          |          | 1                |            |             |              |      |
|          |          | 4                |            |             |              |      |
|          |          |                  |            |             |              |      |
| 2        |          | 2                |            |             |              |      |

|                | Output (Yi)   |       |
|----------------|---------------|-------|
| Correla        | ated with UPI | DM DB |
| Defect<br>Type | X             | у     |
| 3              | 23            | 34    |
| 2              | 69            | 16    |
|                |               |       |
|                |               |       |

## Data Format: Fragment-by-Fragment (1)

- Each input Xi is an array, including the information of the i-th fragment
- Each output Yi labels the defect information of Xi fragment
- Yi may not be accurate due to ~50nm tolerance of available bounding box

|          | Input (Xi) |                    |           |      |  |      |  |  |  |  |  |  |
|----------|------------|--------------------|-----------|------|--|------|--|--|--|--|--|--|
|          | Extracte   | d from Post-OPC La | yout Data | base |  |      |  |  |  |  |  |  |
| (xA, yA) | (xB, yB)   | Orientation        | IP1       | IP2  |  | IP15 |  |  |  |  |  |  |
|          |            | 3                  |           |      |  |      |  |  |  |  |  |  |

| Outpo         | ut (Yi)     |
|---------------|-------------|
| Correlated wi | ith UPDM DB |
| Bridging      | Pinching    |
| 1             | 0           |



## Data Format: Fragment-by-Fragment (2)

- Each input Xi is an array, including the information of the i-th fragment
- Each output Yi labels the defect information of Xi fragment
- Yi may not be accurate due to ~50nm tolerance of available bounding box
- If more special information is required, this method can be used

|          |          |                     |       | Input (X   | i)        |          |              |                        |
|----------|----------|---------------------|-------|------------|-----------|----------|--------------|------------------------|
| Extra    |          | Post-OPC La<br>base | ayout | (          | Calculate | d additi | onally (if r | necessary)             |
| (xA, yA) | (xB, yB) | Orientation         | IP1   | <br>I      | Hotspot s | ignatur  | е            | Signature of neighbors |
|          |          | 3                   |       | <br>F_corn | F_ext     | F_int    | F_misc       | [F1, F2, F3,, Fn]      |

| Outpu         | ut (Yi)    |
|---------------|------------|
| Correlated wi | th UPDM DB |
| Bridging      | Pinching   |
| 1             | 0          |

Fi = [F\_corn\_i, F\_ext\_i, F\_int\_i, F\_misc\_i], i = 1, 2, 3, ..., n (all the fragments within the effective region)



### Hotspot Signature Measurements

- Objective: to scan the layout and extracting useful information/data for each fragment in the layout.
- Implementation: establishing a table-structure database that can be indexed in constant time



Fig. 4. Three major types of hotspot feature measurements. (a) Corner information. (b) External length. (c) Internal length.

| Operators         | Operation Description (Features to Measure)                                                                  |
|-------------------|--------------------------------------------------------------------------------------------------------------|
| $f_{corn}(\cdot)$ | extracts information of convex and concave corners touching Frag                                             |
| $f_{ext}(\cdot)$  | returns the distance(s) between Frag and the fragments facing Frag on the external side                      |
| $f_{int}(\cdot)$  | returns the distance(s) between Frag and the fragment facing Frag on the internal side                       |
| $f_{misc}(\cdot)$ | requests extra information regarding Frag, such as fragment orientation (x or y-axis) and the length of Frag |



### Fragmentation-Based Context Characterization

- Objective: to generate a 1-D vector to include the above hotspot signature measurements of all the fragments within the effective radius, which is invariant to rotation and mirroring
- In the example below, r is set to be 2, so two neighbors on each side of F\_In, F\_Ex, F\_ExIn, F\_InEx are investigated (this can be done using BFS-based algorithm)



Fig. 5. Fragmentation-based hotspot signature extraction. (a) Effective radius centered at each fragment. (b) Fragmentation-based context characterization.

| Notation | Explanation                                           |
|----------|-------------------------------------------------------|
| F (F0)   | Current fragment of interest (detection anchor point) |
| r        | radius of interest (effective radius)                 |
| F_In     | Fragment(s) facing F internally                       |
| F_Ex     | Fragment(s) facing F externally                       |
| F_ExIn   | Fragment(s) facing F_Ex internally                    |
| F_InEx   | Fragment(s) facing F_In externally                    |
| F_+i     | ith neighbor traced from F clockwise                  |
| Fi       | -ith neighbor traced from F counter-clockwise         |
|          |                                                       |

### Fragmentation-Based Context Characterization

- Objective: to generate a 1-D vector to include the above hotspot signature measurements of all the fragments within the effective radius, which is invariant to rotation and mirroring
- In the example below:
- Step 1: look for F\_In, F\_Ex, F\_ExIn, F\_InEx (if they exist)
- Step 2: r is set to be 2, look for two neighbors on each side of F\_In, F\_Ex, F\_ExIn, F\_InEx (this
  can be done using BFS-based algorithm)
- Step 3: Extract hotspot signature measurement for all these fragments and calculate vector V\_F
- Step 4: Add V\_F to our model input for each training example



Fig. 6. Illustrative example of the vector generation process for fragment A (black color), where r is set to cover a depth of two neighboring fragments.

Next, we present the characterized context of fragment F in the format of a 1-D data vector defined as

$$V_{F} = \prod_{i}^{\widetilde{F}_{i} \in \delta_{r}^{F}} \{ f_{ext}(\widetilde{F}_{i}) \oplus f_{int}(\widetilde{F}_{i}) \oplus f_{corn}(\widetilde{F}_{i}) \oplus f_{misc}(\widetilde{F}_{i}) \}$$
 (6)

$$\widetilde{F} = [F, F\_Ex, F\_In, F\_ExIn, F\_InEx...]$$
 (7)

where F is an integer identification (ID) number representing a certain fragment in the layout, and  $\delta_r^F$  is the effective region

#### False Alarm Issue

- Problem: difficult for ML model to understand root cause feature effectively in the limited HS
  examples (small changes in geometry may avoid HS) -> large amount of false alarms
- Solution: Synthetic patterns



Fig. 2. (a) A hotspot pattern, (b-d) variants of pattern (a) which are non-hot





Fig. 4. (a) A hotspot pattern, (b-f) Synthetic patterns generated from pattern (a). Red markers indicate the subtle differences from pattern (a)

### Synthetic Pattern Generation

- Objective: to let ML model effectively learn root cause features
- Implemented in training phase only



Fig. 3. The proposed machine learning-based Hotspot detection flow

Fast DRC check is required Need to do necessary ones on a suitable size of domain to achieve desirable performance

```
def GenerateSyntheticPatterns (KnownHotspot):
   Input: A Known Hotspot, Synthetic pattern count, distance
         PDF, Edge PDF
   Result: Synthetic variants of the Hotspot
   for i in range (SynPatCount):
       HotspotPolys = All polygons in the original hotspot pattern
       for polygon in HotspotPolys:
           /* Sample the no. of edges to be
              varied
          EdgeCount = Sample from Edge PDF
          for i in range (EdgeCount):
              while EdgeAttempts < MaxEdges:
                  /* Randomly select an edge
                  edge = GetRandomEdge(polygon)
                  while DistAttempts < FixedCount:
                     dist = Sample from distance PDF
                     polygon = polygon.MoveEdge(edge,
                      /* Perform checks to avoid
                         simple DRC errors
                      MinimalDRC(ModifiedPattern)
                     if MinimalDRC == Pass:
                     go to line 5
                     else:
                         polygon = UnmodifiedPolygon
                         DistAttempts + = 1
                         try a different dist value (go to line
                  EdgeAttempts + = 1
                  try a different edge (go to line 6)
       /* All polygons with/without updates,
           together form the modified pattern
       SyntheticPattern = All Polygons (including modifications)
   /* Return patterns with variations
   return SyntheticPatterns
```

11

12

13

14

Algorithm 1: Synthetic pattern generation

## ML Model for Grid-based Data

### Proposed Model: Convolutional Neural Network (CNN)





### **Data Format**

- For single channel: each input Xi is a 2D matrix, representing the spatial distribution of a particular scalar property (geometry info, image parameter, ...) over a regular mesh on a rectangular domain
- For multiple channels: each input Xi is a 3D tensor, representing the spatial distribution of an array of properties (geometry info, image parameter, ...), over a regular, consistent mesh on a rectangular domain
- Each output Yi is a scalar (for binary classification, 1 for HS, 0 for NHS; for multiclass classification, more defect types can be defined)

|   |               |       |   |   |   |   |   |   |   | Inp             | ut ( | (Xi) |   |   |   |   |   |   |   |  |
|---|---------------|-------|---|---|---|---|---|---|---|-----------------|------|------|---|---|---|---|---|---|---|--|
|   | Geometry Info |       |   |   |   |   |   |   |   | Image Parameter |      |      |   |   |   |   |   |   |   |  |
| 0 | 0             | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0               | 0    | 0    | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 1             | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0               | 3    | 2    | 9 | 4 | 3 | 1 | 2 | 5 | 0 |  |
| 0 | 1             | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0               | 2    | 5    | 7 | 1 | 2 | 6 | 4 | 3 | 0 |  |
| 0 | 1             | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0               | 4    | 3    | 3 | 9 | 1 | 7 | 7 | 2 | 0 |  |
| 0 | 1             | 1     | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0               | 7    | 2    | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 1             | 1     | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0               | 9    | 1    | 7 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 1             | 1     | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0               | 8    | 2    | 4 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 0             | 0 2 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0               | 0    | 0    | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|   | -             |       | 1 |   |   |   |   |   |   |                 |      |      |   |   |   |   |   |   |   |  |

Output (Yi)

0 or 1 (for binary classification)

In the initial stage, IP may be sufficient because:

- Logically: IP distribution can include geometric features. We can try using IP only and check the performance.
- Implementation: Grid size for OPC/IP calculation is 10-20nm, but that for geometry output is 0.1nm. Proper mapping may be required to include geometry info. No need to make model too complicated at the initial stage.

# Prototype Model

#### ICCAD 2012 Dataset

- Used by many researchers, even in papers published in 2022
- Five sub datasets with different types of layouts. Each sub-dataset contains training and test set
- Benchmark 1 is obtained from 32 nm process and Benchmark 2-5 are obtained from 28 nm process
- Each image has 1200 x 1200 pixels, representing 1.2 x 1.2  $\mu m^2$
- It does not give any layer information or hot spot coordinates
- But it can used as a ref at the initial stage (as a part of the deliverable as well)

| Sub-dataset |      | Training Set |       |       | Test Set |        |        |  |
|-------------|------|--------------|-------|-------|----------|--------|--------|--|
|             |      | HS           | NHS   | Total | HS       | NHS    | Total  |  |
| Benchmark 1 | 32nm | 99           | 340   | 439   | 226      | 3869   | 4095   |  |
| Benchmark 2 | 28nm | 174          | 5285  | 5459  | 498      | 41298  | 41796  |  |
| Benchmark 3 | 28nm | 909          | 4643  | 5552  | 1808     | 46333  | 48141  |  |
| Benchmark 4 | 28nm | 95           | 4452  | 4547  | 177      | 31890  | 32067  |  |
| Benchmark 5 | 28nm | 26           | 2176  | 2202  | 41       | 19327  | 19368  |  |
| Total       |      | 1303         | 16896 | 18199 | 2750     | 142717 | 145467 |  |





Images with Hotspot Hotspot Images without

## **CNN** Concepts

| 1,                     | 1,0 | 1,                     | 0 | 0 |
|------------------------|-----|------------------------|---|---|
| <b>O</b> <sub>×0</sub> | 1,  | <b>1</b> <sub>×0</sub> | 1 | 0 |
| <b>0</b> <sub>×1</sub> | 0,0 | 1,                     | 1 | 1 |
| 0                      | 0   | 1                      | 1 | 0 |
| 0                      | 1   | 1                      | 0 | 0 |

| 4 |  |
|---|--|
|   |  |
|   |  |

**Image** 

Convolution operation:

Convolved Feature



Max pooling



Activation function:  $ReLU(x) = \max\{x, 0\}$ 

$$I^{(i)} \otimes K_{m \times m}(x, y)$$

$$= \sum_{i=1}^{c} \sum_{j=1}^{m} \sum_{k=1}^{m} I^{(i)}(x - j, y)$$

$$-k) K(j, k)$$

### **CNN Model Architecture**



Fully Connected Layers (Hidden and Output Layers in ANN)

### **CNN Model Architecture**

|                            |                           | Yang et al (2017) | Liao et al (2022) | Our Model    |  |
|----------------------------|---------------------------|-------------------|-------------------|--------------|--|
| Convolution                | # of Layers               | 1 + 3 x 4 = 13    | 2 x 5 = 10        | 4            |  |
| Layer                      | # of Filters 4, 8, 16, 32 |                   | 64, 128, 256, 512 | 4, 8, 16, 32 |  |
|                            | Kernel Size               | 2x2 & 3x3         | 3x3               | 3x3          |  |
| Pooling Layer              | # of Layers               | 5                 | 5                 | 4            |  |
|                            | Pool Size                 | 2x2               | 2x2               | 2x2          |  |
| Fully Connected (FC) Layer | # of Layers               | 3                 | 3                 | 3            |  |
|                            | # of Neurons              | 2048, 512, 2      | 4096, 4096, 2     | 512, 256, 1  |  |



### Pre-processing

- Tool: Keras (deep learning API running on Tensorflow)
- Data augmentation: random transformation applied on training set (e.g. zoom, shift, horizontal/vertical flip)
- No random transformation applied on test set
- Overfitting can be effectively reduced by data augmentation



Figure 7. Random Mirror Flipping with X, Y, and XY.

#### Preprocessing the Training set

```
In [3]: # https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
        # Image Parameters in the future can be added to the channels
        CHANNELS = 3
        train_datagen = ImageDataGenerator(rescale = 1./255,
                                           zoom range = 0.2,
                                            width_shift_range=0.1,
                                           height_shift_range=0.1,
                                           horizontal flip = True,
                                            vertical_flip = True)
        training_set = train_datagen.flow_from_directory(directory = 'iccad1/train',
                                                          target_size = (SIZE, SIZE),
                                                         batch_size = 32,
                                                         classes = {'NHS':0, 'HS':1},
                                                          class mode = 'binary',
                                                          shuffle = True.
                                                          seed = 42
```

Found 439 images belonging to 2 classes.

#### Preprocessing the Test set

Found 4905 images belonging to 2 classes.

## **Training**

Loss function and accuracy plotted at each epoch (# of complete passes through the training dataset)

```
In [34]:
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'y', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
```



```
[35]: acc = history.history['accuracy']
    val_acc = history.history['val_accuracy']
    plt.plot(epochs, acc, 'y', label='Training acc')
    plt.plot(epochs, val_acc, 'r', label='Validation acc')
    plt.title('Training and validation accuracy')
    plt.xlabel('Epochs')
    plt.ylabel('Accuracy')
    plt.legend()
    plt.show()
```



### Prediction

```
if result[0][0] > 0.5:
   prediction = 'HS'
else:
   prediction = 'NHS'
print(prediction)
```

```
In [63]: showPNG('test_HS12')
```

```
In [67]: showPNG('test_NHS108.png9')
```



### Discussion: No. of Convolution Stages



### Discussion: Batch Normalization



No BN

Normalize to zero mean and unit variance

After Applying BN

### Discussion: Optimizer





#### Adam (adaptive optimization algorithm): sometimes fail to generalize





$$w_{i} = w_{i} - \gamma \frac{\partial l}{\partial w_{i}}.$$

$$v = \mu v - \gamma \frac{\partial l}{\partial w_{i}}$$

$$w_{i} = w_{i} + v,$$

| Table 5. Momentum Configuration. |               |                 |  |  |  |
|----------------------------------|---------------|-----------------|--|--|--|
| $\mu$                            | Learning Rate | Validation Loss |  |  |  |
| 0.5                              | 0.001         | 0.21            |  |  |  |
| 0.9                              | 0.001         | 0.22            |  |  |  |
| 0.95                             | 0.001         | 0.21            |  |  |  |
| 0.99                             | 0.001         | 0.16            |  |  |  |

Use learning rate=0.001, momentum=0.99

SGD (stochastic gradient descent): better generalization performance

## Discussion: Dropout



(a) Standard Neural Net



(b) After applying dropout.



{'NHS': 0, 'HS': 1}

#### Without dropout: sometimes fail to generalize



Figure 5. Dropout Ratio Effect.

After applying dropout ratio = 0.4 on FC layers: better generalization performance

# Extension from Prototype

### Multiple Channel Input

- Image parameters can be viewed as multiple channels (layers) defined on the same grids.
- CNN and its training, calibration are the same. Only need to load the data in 3D tensor format (channels = # of image parameters), instead of 2D image (channels = 3 for RGB, 1 for grayscale)

Fig. 17 The example of multiple channel input for CNNs.

#### Multi-class Classification

- Different failure types (bridging, pinching) can be viewed as multiple class classification problem
- CNN and its training, calibration are the same. Only need to label the data accordingly
  and change the number of the last FC layer (output layer) to the number of failure types to
  be predicted by the model



#### **Defect Localization**

- Sliding window
  - Computation can be reduced by fast scan algorithm (conv. the clip in advance)
  - Computation can be speeded up GPU processing
- Clustering
  - > DBSCAN scan clustering algorithm: accepts clusters if more than a minimum number of HS (threshold) are detected within a specified range
- Coordinate extraction



Fig. 1 HS detection using sliding window scan and coordinate extraction.



Fig. 8 Potential HS (dots), clustered point (line circle), and not accepted clusters (dotted line circle).

### **Defect Localization**

- Sliding window
  - Computation can be reduced by fast scan algorithm (conv. the clip in advance)
  - Computation can be speeded up GPU processing
- Clustering
  - > DBSCAN scan clustering algorithm: accepts clusters if more than a minimum number of HS (threshold) are detected within a specified range
- Coordinate extraction



| CC       | 1       | CR             | CS          | CT         | CU         | CV         | CW        | CX      |
|----------|---------|----------------|-------------|------------|------------|------------|-----------|---------|
| enter_di | e_x - c | enter_die_y 💌  | site_x      | site_y ·   | die_x 🕶    | die_y      | chip_x 💌  | chip_y  |
|          | 55.48   | 6379.73        | -87232.984  | 117348.386 | -11        | 20         | 74016     | 5657836 |
|          | 55.48   | 6379.73        | -87232.952  | 117348.451 | -11        | D          | 74048     | 5657901 |
|          | 55.48   | 6379.73        | -87175.363  | 117777.548 | -11        | ь          | 131637    | 6086998 |
|          | 55.48   | 6379.73        | -87090.962  | 117601.008 | -11        | 20         | 216038    | 5910458 |
|          | 55.48   | 6379.73        | -87090.897  | 117601.008 | -11        | P          | 216103    | 5910458 |
|          | 55.48   | 6379.73        | -86793.006  | 117263.594 | -11        | D          | 513994    | 5573044 |
|          | 55.48   | 6379.73        | -87090.962  | 117600.976 | -11        | 20         | 216038    | 5910426 |
|          | 55.48   | 6379.73        | -86903.667  | 117270.386 | -11        | 20         | 403333    | 5579836 |
|          | 55.48   | 6379.73        | -86793.076  | 117263.594 | -11        | D          | 513924    | 5573044 |
|          | 55.48   | 6379.73        | -86738.343  | 117005.425 | -11        | 20         | 568657    | 5314875 |
|          | 55.48   | 6379.73        | -86792.979  | 117263.561 | -11        | 20         | 514021    | 5573011 |
|          | 55.48   | 6379.73        | -87090.928  | 117600.976 | -11        | D          | 216072    | 5910426 |
|          | 55.48   | 6379.73        | -86738.376  | 117005.425 | -11        | D          | 568624    | 5314875 |
|          | 55.48   | 6379.73        | -86738.344  | 117005.36  | -11        | 20         | 568656    | 5314810 |
|          | 55.48   | 6379.73        | -87090.896  | 117600.976 | -11        | 20         | 216104    | 5910426 |
|          | 55.48   | 6379.73        | -87090.897  | 117600.976 | -11        | D          | 216103    | 5910426 |
|          | 55.48   | 6379.73        | -86738.345  | 117005.457 | -11        | 20         | 568655    | 531490  |
|          | 55.48   | 6379.73        | -86738.441  | 117005.49  | -11        | 20         | 568559    | 5314940 |
|          | 55.48   | 6379.73        | -83404.685  | -94359.206 | -11        | - 2        | 3902315   | 3852964 |
|          | 55.48   | 6379.73        | -87090.962  | 117600.976 | -11        | b          | 216038    | 5910426 |
|          | 55.48   | 6379.73        | -86363.917  | 117725.623 | -11        | 20         | 943083    | 6035073 |
|          | 55.48   | 6379.73        | -87090.897  | 117601.041 | -11        | <b>=</b> 0 | 216103    | 5910491 |
|          | 55.48   | 6379.73        | -86889.725  | 117298.499 | -11        | ь          | 417275    | 5607949 |
|          | 55.48   | 6379.73        | -87091.027  | 117601.008 | -11        | 20         | 215973    | 5910458 |
|          | 55.48   | 6379.73        | -86738.441  | 117005.457 | -11        | 20         | 568559    | 5314907 |
|          | 55.48   | 6379.73        | -87091.027  | 117600.976 | -11        | D          | 215973    | 5910426 |
|          | 55.48   | 6379.73        | -87090.93   | 117600.976 | -11        | ь          | 216070    | 5910426 |
|          | 55.48   | 6379.73        | -86710.395  | 117049.69  | -11        | 20         | 596605    | 5359140 |
| est pa   | gf-dev- | -mfg-adpat_one | der_test_ev | gf-dev-mfg | -adpat one | eder t=(1  | 11)   gf- | dev-r   |

### Fast Scan Algorithm

- Conducted in the test stage, not in training stage
- Feature map is obtained by convolution operation performed on the entire layout
- Window scan is performed on the shared feature map, instead of on the original layout, so no redundant convolution operation is carried out
- For each window scan, only FC layer calculation is required for hotspot prediction



Fig. 6 Our HS detection framework with (a) conventional sliding window scan and (b) fast scan with shared feature map creation.

# Conclusions

### Conclusions

- ML models are proposed for both site-based data (ANN) and grid-based data (CNN).
- For site-based data, a proper input format is still needed to be determined
- The current prototype model is able to handle binary classification problem (HS/NHS) for grid-based data. It is trained and tested on the open database ICCAD2012 and reached satisfied accuracy with good generalization performance.
- The prototype model can be extended to multiclass classification (to detect different defect types) with multiple channel input (e.g. different image parameters).
- Hotspot localization can be achieved (as object detection problem) after obtaining the prediction of each scan window and clustering the probability map of the whole clip
- To further improve the computation efficiency, the ML model can be deployed on multiple machines and GPU computing can be also a good choice.



# Demo on Codes