1. We want to find the  $(x_1, x_2)$  that minimizes the following objective function  $f(x_1, x_2)$ . Assuming gradient descent works, what values of  $x_1$  and  $x_2$  would it return? How do you know? (2 points)

$$f(x_1, x_2) = x_1^2 + x_2^2$$

2. Recall our regularized loss function. In this particular loss function, we have used a square loss  $(y-\hat{y})^2$  with a  $\lambda ||w||^2$  regularizer. The  $\frac{1}{2}$  just helps when doing derivatives. Find  $\nabla L_w$  and  $\frac{\delta L}{\delta b}$ . (5 points)

$$L(w,b) = \sum_{n} (y - (w \bullet x_n + b))^2 + \frac{\lambda}{2} ||w||^2$$

3. What are the possible outcomes of gradient descent on the following function? Explain and indicate on the graph what might happen. IGNORE THE  $x_0$  AND  $x_1$ . THEY ARE JUST PART OF A GRAPH I STOLE FROM SOMEWHERE ELSE. (3 points)



1. We want to find the  $(x_1, x_2)$  that minimizes the following objective function  $f(x_1, x_2)$ . Assuming gradient descent works, what values of  $x_1$  and  $x_2$  would it return? How do you know? (2 points)

$$f(x_1, x_2) = x_1^2 + x_2^3$$

2. Use gradient descent to minimize the following objective function. You only need to run 3 iterations. Show your work. Start at  $x_{init} = (0,0,0)$ , and use learning rate  $\eta = 0.1$ . (5 points)

$$f(x_1, x_2, x_3) = (x_1 + 10)^2 + 2x_2^3 + 10x_3$$

3. What are the possible outcomes of gradient descent on the following function? Explain and indicate on the graph what might happen. IGNORE THE  $x_0$  AND  $x_1$ . THEY ARE JUST PART OF A GRAPH I STOLE FROM SOMEWHERE ELSE. (3 points)

