1.- Escribe la expresión algebraica correspondiente:

. Zeenee in enpresen augestanen eerresperiumente.				
Enunciado	Expresión algebraica			
Un número cualquiera	X			
El triple de X				
La mitad de su anterior				
El resultado de sumarle tres unidades	_			
La mitad de un número tres unidades mayor que X				
El triple del número que resulta de sumarle cinco unidades				
Un número cinco unidades mayor que el doble de X				

2.- Completa la siguiente tabla:

Monomio	8a	-3x	a²b	$\frac{2}{3}xy^2$	
Coeficiente					$\frac{1}{4}$
Parte Literal					ab
Grado					

- **3.-** Opera las siguientes expresiones con monomios:

 - a) a + a b) x + x + x c) $x^2 + x^2$

- d) 4a+a
- e) $m^3 + 2m^3 + 4m^3$ f) $3x^2 + 6x^2$

$$\sigma$$
) $4n^4 - n^4$

- g) $4n^4 n^4$ h) $5c^5 7c^5 + 3c^5$ i) $5a^2 9a^2$

- **4.-** Opera los siguientes monomios:
 - a) $(3x)\cdot(5x)$ b) $(-a)\cdot(4a)$ c) $\frac{x^2}{2}\cdot\frac{x^3}{3}$
- - d) $\left(\frac{x^2}{2}\right) (6x)$ e) $(4x^3y) \cdot (xy)$ f) $\frac{20x^3}{4x^2}$

 - g) $\frac{15x}{3x^2}$ h) $(-5a):(-5a^3)$ i) $\frac{12a^2}{4a^5}$

Sol: a) 2a; b) 3x; c) $2x^2$; d) 5a; e) $7m^3$; f) $9x^2$; g) $3n^4$; h) c^5 ; i) $-4a^2$

Sol: a) $15x^2$; b) $-4a^2$; c) $x^5/6$; d) $3x^3$; e) $4x^4y^2$; f) 5x; g) 5/x; h) $1/a^2$; i) $3/a^3$

- **5.-** Reduce todo lo posible:
 - a) $x^2 + 4 + x^2 + 1$ e) 3x + (3x 1)

 - b) $3x^2 + 4 x^2 + 2x 5$ f) (4x + 2) (3x + 4)

 - c) $10-3x+x^2-7-4x$ g) $(6x^2-x)-(3x^2-5x+6)$
 - d) $5x^2 3 4x^2 + 1 2x$ h) $(x-3) (x^2 + 2x + 1)$

Sol: a) $2x^2+5$; b) $2x^2+2x-1$; c) x^2-7x+3 ; d) x^2 -2x-2; e) 6x-1; f) x-2; g) $3x^2$ +4x-6; h) $-x^2$ -x-4

- 6.- Calcula:
- a) $3 \cdot (2x + 5)$
- f) $(2x-3)\cdot(x+4)$
- b) $7 \cdot (x^3 3x)$
- $g) (4-x) \cdot (2x-1)$
- c) $x^2 \cdot (5x 3)$
- h) $5x \cdot (x^2 + x 3)$
- d) $3x^2 \cdot (x^2 2x)$
- i) $(3x-2)\cdot(2x^2+4x-3)$

e)
$$(x^2 + 2x - 3) \cdot (3x^3 + 5x^2 - 4)$$
 j) $(x^3 - 2x^2) \cdot (3x^6 - 2x^4)$

Sol: a) 6x+15; b) $7x^3-21x$; c) $5x^3-3x^2$; d) $3x^4-6x^3$; e) $3x^5+11x^4+x^3-19x^2-8x+12$; f) $2x^2+5x-12$; g) $-2x^2+9x-4$; h) $5x^3+5x^2-15x$; i) $6x^3+8x^2-17x+6$; j) $3x^9-6x^8-2x^7+4x^6$

7.- En los siguientes Polinomios, indica el grado y el valor numérico:

P(x)	Grado	P(0)	P(-2)	P(1)
$8x^3 + 5x^4 - 3x + 1$				
$2+3x-9x^2+5x^3$				
$3x-3x^2-2+9x^3$				
$Y + 7y^2 - 4y$				

8.- Llamando X a un número cualquiera, escribe en lenguaje algebraico los siguientes resultados:

Enunciado	Expresión Algebráica
El 18% de un número.	
La mitad de un número menos su anterior.	
La suma de dos números consecutivos.	
El doble de un número menos cuatro unidades.	
La suma de la mitad de un número más sus dos terceras partes.	
El cuadrado de la diferencia del doble de un número menos su mitad.	
La mitad del resultado de restarle cuatro unidades a X.	
El cuadrado del cociente de la diferencia de 7 menos el doble de un número, dividido entre el triple de ese número.	

9.- Utiliza las identidades notables para desarrollar estas expresiones:

- a) $(3x-6)^2$ b) $(3x+3)^2$ c) $(y^2-1)(y^2+1)$

$$g)\left(2m-\frac{n}{2}\right)^2$$

- d) $(2x-y)^2$ e) $(3a+2b)^2$ f) $(1+3x^2)(1-3x^2)$ g) $(2m-\frac{n}{2})^2$ h) $(3x-\sqrt{3})(3x+\sqrt{3})$ i) $(3x+\frac{5}{2})^2$

Sol: a) $9x^2-36x+36$; b) $9x^2+18x+9$; c) y^4-1 ; d) $4x^2-4xy+y^2$; e) $9a^2+12ab+4b^2$; f) 1-9x⁴; g) 4m²-2mn+n²/4; h) 9x²-3; i) 9x²+15x+25/4

- **10.-** Transforma en producto las siguientes expresiones:
 - a) $4x^2 + 8x + 4$ b) $x^2 6x + 9$ c) $9x^2 36$
- d) $a^2 2a + 1$ $e)x^2 + 2xy + y^2$
- $f) a^2 16$

Sol: a) $(2x+2)^2$; b) $(x-3)^2$; c) $(3x+6)\cdot(3x-6)$; d) $(a-1)^2$; e) $(x+y)^2$; f) $(a+4)\cdot(a-4)$

 $P(x) = 3x^4 - 6x^3 + 4x - 2$ $Q(x) = x^3 - 2x^2 - 3x + 1$

$$P(x) = 5x - 6x + 4x - 2$$
 $Q(x) = x - 2x$
 $R(x) = 2x^2 + 4x - 5$ $S(x) = x^2 + 1$

Calcula:

- a) P(x) + Q(x) b) $2 \cdot P(x) 3Q(x) + 4 \cdot R(x)$ c) $2 \cdot P(x) \cdot R(x)$
- c) $2 \cdot P(x) \cdot R(x)$ d) $3 \cdot [P(x) \cdot Q(x)] 2 \cdot S(X)$ e) $P(x) \cdot S(x) R(x)$
- a) $3x^4-5x^3-2x^2+x-1$; b) $6x^4-15x^3+6x^2+33x-27$; c) $12x^6-78x^4+76x^3+24x^2-6x+20$ d) $9x^7-36x^6+9x^5+74x^4-48x^3-26x^2+30x-8$; e) $3x^6-6x^5+3x^4-2x^3-4x^2+3$
- **12.-** Si el grado de un polinomio P(x)=2 y el grado de otro Q(x)=4, ¿Qué grado tendrá el producto $P(x)\cdot Q(x)$?.

13.- En una división exacta de polinomios, el cociente es C(x)=3x-2 y el divisor es $D(x)=2x^2+1$, averigua el dividendo P(x).

Sol: $P(x)=6x^3-4x^2+3x-2$

Departamento de Matemáticas

14.- En una división de polinomios, el cociente es C(x)=3x-5, el divisor es $D(x)=3x^2+2x$ y el dividendo es $P(x) = 9x^3 - 9x^2 - 10x - 4$. Halla el resto R(x).

15.- Expresa el perímetro y el área de un rectángulo, sabiendo que su base mide 3 m más que su altura.

Sol: P(x)=4x+6; $A(x)=x^2+3x$

16.- Dada una caja sin tapa y su desarrollo, calcula en función de x, su área y su volumen

Sol: A(x)=60- $4x^2$; V(x)= $4x^3$ - $32x^2$ +60x

- 17- Realiza las siguientes operaciones:
- a) $(x+1)\cdot(2x+3)-2\cdot(x^2+1)$
- b) $(2x-5)\cdot(x+2)+3x\cdot(x+2)$
- c) $(x^2-3)\cdot(x+1)-(x^2+5)\cdot(x-2)$
- d) $(4x+3)\cdot(2x-5)-(6x^2-10x-12)$
- e) $3\cdot(2x-1)^2-3\cdot(x^3+3x-6)$

Sol: a) 5x+1; b) $5x^2+5x-10$; c) $3x^2-8x+7$; d) $2x^2-4x-3$; e) $-3x^3+12x^2-21x+21$

- **18.-** Extrae factor común:
 - a) $18x^4 + 32x^2$
- d) $6x^2 + 12x 24$
- b) $6x^3 10x 8$
- e) $4x^3 2x^2 10x + 6$
- c) $9a + 6a^2 + 3a^3$
- f) 2x 6xy 4zx

Sol: a) $2x^2 \cdot (9x^2+4)$; b) $2 \cdot (3x^3-5x-4)$; c) $3a \cdot (3+2 \cdot a+a^2)$; d) $6 \cdot (x^2+2x-4)$; e) $2(x^3-x^2-5x+3)$; f) 2x(1-3y-2z)

- 19.- Descompón en factores y después simplifica:

- a) $\frac{x^2 9}{x^2 6x + 9}$ b) $\frac{5x + 15}{x^2 + 6x + 9}$ c) $\frac{3x^2 + 6x + 3}{5x^2 + 5x}$ d) $\frac{x^2 + 2x + 1}{5x^2 + 5x}$ e) $\frac{2x^2 6x}{2x^3 12x^2 + 18x}$ f) $\frac{3x + 3}{3x^2 3}$

Sol: $a \left(\frac{x+3}{x-3} b \right) \frac{5}{x+3} c \left(\frac{3x+3}{5x} d \right) \frac{x+1}{5x} e \left(\frac{1}{x-3} f \right) \frac{1}{x-1}$

- **20.-** Realiza las siguientes divisiones de polinomios:
 - $(x^3 + x^2 x + 2) : (x 1)$
 - $b)(x^3-x^2+3x-9):(x-2)$
 - $c)(x^3-2x^2-x+2):(x^2+1)$
 - $d)(5x^4-14+5x+x^3):(4x^2-5)$
 - $(20x^3 + 12x^4 + 29 39x^2 28x): (4x^2 5)$
 - $f(9x^4+15x^3-6x^2-5x+5):(3x^2-1)$
 - $g)(x^4-x^3+6x^2-5x+5):(x^2-x+1)$

Sol: a) x^2+6x+1 ; b) x^2+x+5 ; c) $5x^3+11x^2+22x+115$; d) $5/4x^2+1/4x+25/16$; e) $3x^2+5x-27/2$; f) $3x^2+5x-1$; g) x^2+5

21.- Doblando un alambre de 40 cm formamos un rectángulo. Halla la expresión algebraica que define el área del rectángulo y calcula su valor para x=4.

Sol: a) A=x(20-x) b) A=64 cm²

22.- ¿Para qué valor de "m" el polinomio $x^4+4x^3-25x^2-$ 16x+m, se anula si x=2?

23.- Calcula el valor de "m" para que al dividir $P(x) = 2x^5 - 4x^4 + 3x^2 - (m+5)x + 18$ por (x-3) de resto 60.

24.- ¿Para qué valor de "m" el polinomio x⁴-2x²+5x-m, toma el valor 3 si x = 2?

25.- El cateto de un triángulo rectángulo isósceles es $\frac{24-x}{2}$. Expresa algebraicamente la hipotenusa.

Sol: $\frac{\sqrt{2}}{2}(24-x)$

- 26.- Expresa algebraicamente el área de una corona circular de radios x y x+2.
- 27.- Efectúa las siguientes operaciones:
 - a) $(6x^3 4x^2 + 5x 4)^2 (3x^3 + 5x^2 4x + 2)^2$
 - b) $(3x^3 4x^2 + 6)^2 (2x^3 + 4x 3)^2$
 - c) $[(2x^2 4x + 5) \cdot (3x^2 4x + 7)] (5x^2 4x + 3)^2$
 - d) $[(6x^2 5x + 3) \cdot (2x^2 4x + 5)] (3x^2 + 4x 2)^2$

Sol: a) $27x^6-78x^5+75x^4-60x^3+21x^2-24x+12$; b) $5x^6-24x^5+48x^3-64x^2+24x+27$; c) $-19x^4+20x^3-x^2-24x+26$; d) $3x^4-58x^3+52x^2-21x+11$

28.- Expresa con x el perímetro de estas figuras:

Sol: a) $x \cdot (10 + 3\sqrt{2})$; b) $\frac{x}{2} \cdot (33 + \sqrt{5})$

29.- Expresa algebraicamente el área de esta figura:

Sol: $A(x) = 3x^2 \left(\frac{\sqrt{5}}{2} + \frac{\sqrt{19}}{2} + 3 \right)$

30.- Expresa algebraicamente el perímetro y el área de las siguientes figuras.

Sol: a) P=8x+2y; $A=4x^2+xy$; b) P=3x+2z; $A=x^2+xy/2$

31.- Expresa algebraicamente el área de estas figuras:

Área de Ciencias

http://selectividad.intergranada.com