概率论与数理统计

t分布、F分布

主讲人:郑旭玲

信息科学与技术学院

01

t 分布

> t分布

急 定义

设 $X \sim N(0,1)$, $Y \sim \chi^2(n)$, 且X = 5Y相互独立,

则称变量
$$t = \frac{X}{\sqrt{Y/n}}$$

所服从的分布为自由度为 n 的 t 分布。 记为 $t \sim t(n)$.

t分布又称为学生氏分布,由英国统计学家 William Gosset (1876~1937) 于1908年以笔名 student 首次发表。

> t分布

t(n)分布的概率密度函数为:

$$h(t) = \frac{\Gamma[(n+1)/2]}{\Gamma(n/2)\sqrt{n\pi}} (1 + \frac{t^2}{n})^{-\frac{n+1}{2}} - \infty < t < \infty$$

> t 分布的性质

1. t分布的密度函数关于t = 0对称。 当n充分大时,由 Γ 函数的性质有

$$\lim_{n\to\infty}h(t)=\frac{1}{\sqrt{2\pi}}e^{-t^2/2}.$$

即当n足够大时, $t \sim N(0,1)$.

当n=1时, $h(t)=\frac{1}{\pi(1+x^2)}$,即柯西分布。

2. 具有自由度为n的t分布 $t \sim t(n)$, 其数学期望与方差为:

$$E(t) = 0 \ (n > 1), \ D(t) = n/(n-2) \ (n > 2)$$

>

t 分布的性质

3. t分布的分位点

对于给定的 $\alpha(0 < \alpha < 1)$, 称满足条件

$$p\{t > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{\infty} h(t)dt = \alpha$$

的点 $t_{\alpha}(n)$ 为t(n)分布的上 α 分位点。

t分布的上 α 分位点的性质:

$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$

t 分布的性质

$t_{\alpha}(n)$ 可查t分布表,

例如 $t_{0.025}(15)$

=2.1315

又如 $t_{0.9}(10)$

$$=-t_{0.1}(10)$$

=-1.3722

附表 4 t 分布表

$$P\{t(n)>t_{\alpha}(n)\}=\alpha$$

	39						$\iota_{\alpha}(n)$	i .	
n	α	0. 2	0. 15	0. 1	0.05	0.025	0.01	0.005	
	1	1. 376	1.963	3.0777	6. 3138	12. 7062	31.8207	63.6574	
	2	1.061	1.386	1.8856	2.9200	4.3027	6.9646	9.9248	
	2 3	0.978	1.250	1.6377	2. 3534	3. 1824	4.5407	5.8409	
	4 5	0.941	1. 190	1.5332	2. 1318	2.7764	3.7469	4.6041	
	5	0.920	1.156	1.4759	2.0150	2. 5706	3. 3649	4.0322	
	6	0.906	1.134	1.4398	1.9432	2.4469	3. 1427	3.7074	
	6 7 8 9	0.896	1.119	1.4149	1.8946	2. 3646	2.9980	3.4995	
	8	0.889	1. 108	1.3968	1.8595	2.3060	2.8965	3.3554	
	9	0.883	1. 100	1, 3830	1.8331	2. 2622	2.8214	3. 2498	
	10	0.879	1.093	1. 3722	1.8125	2. 2281	2. 7638	3. 1693	
	11	0.876	1.088	1.3634	1.7959	2. 2010	2.7181	3.1058	
	12	0.873	1.083	1.3562	1.7823	2. 1788	2.6810	3.0545	
	13	0.870	1.079	1. 3502	1.7709	2. 1604	2.6503	3.0123	
	14	0.868	1.076	1.3450	1.7613	2. 1448	2.6245	2.9768	
	15	0.866	1.074	1.3406	1. 7531	2. 1315	2.6025	2.9467	
	16	0.865	1.071	1.3368	1.7459	2. 1199	2. 5835	2.9208	
	17	0.863	1.069	1.3334	1.7396	2. 1098	2.5669	2.8982	
	18	0.862	1.067	1.3304	1.7341	2. 1009	2. 5524	2.8784	
	19	0.861	1.066	1.3277	1.7291	2.0930	2. 5395	2.8609	
	20	0.860	1.064	1. 3253	1.7247	2. 0860	2. 5280	2.8453	
-			1	-	_				

t 分布的性质

附表 2 标准正态分布表

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

例如	t_{0}	.025	(1	5)
	_			

$$=2.1315$$

又如
$$t_{0.9}(10)$$

$$=-t_{0.1}(10)$$

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389

当n > 45时,可用标准正态分布来近似,即 $t_{\alpha}(n) \approx z_{\alpha}$

例如
$$t_{0.25}(50) \approx z_{0.25} \approx 0.675$$

即
$$\Phi$$
(?) = 0.75 \Rightarrow x \approx 0.675

02

F分布

> F分布

定义

设 $U \sim \chi^2(n_1), V \sim \chi^2(n_2), U$ 与V相互独立,

则称随机变量 $F = \frac{U/n_1}{V/n_2}$ 服从自由度为 n_1 及 n_2 的F分布 ,

 n_1 称为第一自由度, n_2 称为第二自由度,记作 $F \sim F(n_1, n_2)$ 。

F分布由英国统计学家 R. A. Fisher (1890~1962) 于1924年提出。

由定义可见,
$$\frac{1}{F} = \frac{V/n_2}{U/n_1} \sim F(n_2, n_1)$$

F分布

若 $F \sim F(n_1, n_2)$, F 的概率密度为

$$\psi(y) = \begin{cases} \frac{\Gamma(\frac{n_1 + n_2}{2})}{\Gamma(\frac{n_1}{2})\Gamma(\frac{n_2}{2})} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} \left(y\right)^{\frac{n_1}{2}} \left(1 + \frac{n_1}{n_2}y\right)^{-\frac{n_1 + n_2}{2}} & y > 0 \\ 0 & y \le 0 \end{cases}$$

\rightarrow F 分布的性质

$$1.\frac{1}{F} = \frac{V/n_2}{U/n_1} \sim F(n_2, n_1)$$

2. F 分布的数学期望为:

$$E(F) = \frac{n_2}{n_2 - 2}$$
 若 $n_2 > 2$

即它的数学期望并不依赖于第一自由度n₁。

F分布的性质

2. F 分布的分位点

对于给定的 α , $0 < \alpha < 1$,称满足条件

$$p\left\{F > F_{\alpha}(n_1, n_2)\right\} = \int_{F_{\alpha}(n_1, n_2)}^{\infty} \psi(y) dy = \alpha$$

的点 $F_{\alpha}(n_1,n_2)$ 为 $F(n_1,n_2)$ 分布的上 α 分位点。

F分布的上
$$\alpha$$
分位点的性质: $F_{1-\alpha}(n_1,n_2) = \frac{1}{F_{\alpha}(n_2,n_1)}$

F分布的上 α 分位点可查表求得。

例:
$$F_{0.95}(12,9) = \frac{1}{F_{0.05}(9,12)} = \frac{1}{2.80} = 0.357$$

例

设 X_1, X_2, X_3, X_4 是来自正态总体 $N(0, 2^2)$ 的简单随机样本,下列统计量服从什么分布?

(1)
$$\frac{\sqrt{3}X_1}{\sqrt{X_2^2+X_3^2+X_4^2}}$$
 ; (2) $(X_1^2+X_2^2)$ / $(X_3^2+X_4^2)$

解: (1) ::
$$\frac{X_i}{2} \sim N(0,1), i = 1,2,3,4,$$
 :: $(\frac{X_2}{2})^2 + (\frac{X_3}{2})^2 + (\frac{X_4}{2})^2 \sim \chi^2(3)$

故
$$\frac{\frac{X_1}{2}}{\sqrt{\{(\frac{X_2}{2})^2 + (\frac{X_3}{2})^2 + (\frac{X_4}{2})^2\}/3}} \sim t(3)$$

例

设 X_1, X_2, X_3, X_4 是来自正态总体 $N(0, 2^2)$ 的简单随机样本,下列统计量服从什么分布?

(1)
$$\frac{\sqrt{3}X_1}{\sqrt{X_2^2+X_3^2+X_4^2}}$$
 ; (2) $(X_1^2+X_2^2)$ / $(X_3^2+X_4^2)$

解: (2)
$$: (\frac{X_1}{2})^2 + (\frac{X_2}{2})^2 \sim \chi^2(2), \qquad (\frac{X_3}{2})^2 + (\frac{X_4}{2})^2 \sim \chi^2(2)$$

$$\frac{\{(\frac{X_1}{2})^2 + (\frac{X_2}{2})^2\}/2}{\frac{X_3}{2}^2 + (\frac{X_4}{2})^2\}/2} \sim F(2,2)$$

> 例题

例

设随机变量 $X \sim t(n)(n > 1), Y = \frac{1}{X^2}$, 问Y服从什么分布?

解: 由t分布的定义可知, $X = \frac{A}{\sqrt{B/n}} \sim t(n)$,

其中 $A \sim N(0,1)$, $B \sim \chi^2(n)$ 且A与B相互独立

 $\mathbf{Z}A^2 \sim \chi^2(1),$

故 $Y = \frac{1}{X^2} = \frac{B/n}{A^2} \sim F(n,1)$

> 小结

。 t 分布的定义、性质及上α分位点

谢谢大家