# Lecture 5

## Inferences about a Mean Vector

Readings: Zelterman, 2015, Chapters 5, 6, 7

DSA 8070 Multivariate Analysis September 13 - September 17, 2021





Intervals/Region for Population Means

Hypothesis Testing for Mean Vector

Multivariate Paired Hotelling's T-Square

Whitney Huang Clemson University

Mean Vector

ultivariate Paired otelling's T-Square

**Hypothesis Testing for Mean Vector** 

**Confidence Intervals/Region for Population Means** 

#### Overview



CLEMS N UNIVERSIT

> Hypothesis Testing for Mean Vector

Multivariate Paired Hotelling's T-Square

In this week we consider estimation and inference on population mean vector

We will explore the following questions:

- What is the sampling distribution of  $\bar{X}_n$ ?
- How to construct confidence intervals/region for population means
- How to conduct hypothesis testing for population means

- Suppose  $X_1,X_2,\cdots,X_n$  is a random sample from a univariate population distibution with mean  $\mathbb{E}(X)=\mu$  and variance  $\mathbb{Vor}(X)=\sigma^2$ . The sample mean  $\bar{X}_n$  is a function of random sample and therefore has a distribution
  - $\bar{X}_n \stackrel{.}{\sim} \mathrm{N}(\mu, \frac{\sigma^2}{n})$  when the sample size n is "sufficiently" large  $\Rightarrow$  This is the central limit theorem (CLT)
  - The result above is exact if the population follows a normal distribution, i.e.,  $X \sim N(\mu, \sigma^2)$
  - The standard error  $\sqrt{\mathbb{Vor}(\bar{X}_n)} = \frac{\sigma}{\sqrt{n}}$  provides a measure estimation precision. In practice, we use  $\frac{s}{\sqrt{n}}$  instead where s is the sample standard deviation

### Sampling Distribution of Multivariate Sample Mean Vector $ar{m{X}}_n$



Suppose  $X_1, X_2, \dots, X_n$  is a random sample from a multivariate population distibution with mean vector  $\mathbb{E}(X) = \mu$  and covariance matrix =  $\Sigma$ .

- $\bar{X}_n \stackrel{.}{\sim} \mathrm{N}(\mu, \frac{1}{n}\Sigma)$  when the sample size n is "sufficiently" large  $\Rightarrow$  This is the multivariate version of CLT
- The result above is exact if the population follows a normal distribution, i.e.,  $X \sim \mathrm{N}(\mu, \Sigma)$
- ullet Again, the estimation precision improves with a larger sample size. Like the univariate case we would need to replace  $\Sigma$  by its estimate S, the sample covariacne matrix

Intervals/Region for Population Means

Multivariate Paired



Confidence Intervals/Region for Population Means

Mean Vector

Multivariate Paired Hotelling's T-Square

The general format of a confidence interval (CI) estimate of a population mean is

Sample mean  $\pm$  multiplier  $\times$  standard error of mean.

For variable X, a CI estimate of its population mean  $\mu$  is

$$\bar{X}_n \pm t_{n-1}(\frac{\alpha}{2})\frac{s}{\sqrt{n}},$$

Here the multiplier value is a function of the confidence level,  $\alpha,$  the sample size n

The multiplier value also depends the strategy used for dealing with the multiple inference issue

• One at a Time CIs: a CI for  $\mu_j$  is computed as

$$\bar{x}_j \pm t_{n-1}(\alpha/2) \frac{s_j}{\sqrt{n}}, \quad j = 1, \dots, p$$

• Bonferroni Method: a CI for  $\mu_j$  is computed as

$$\bar{x}_j \pm t_{n-1}(\alpha/2p)\frac{s_j}{\sqrt{n}}, \quad j = 1, \dots, p$$

ullet Simultaneous CIs: a CI for  $\mu_j$  is computed as

$$\bar{x}_j \pm \sqrt{\frac{(n-1)p}{n-p}} F_{p,n-p}(\alpha) \frac{s_j}{\sqrt{n}}, \quad j = 1, \dots, p$$

Inferences about a Mean Vector



ervals/Region for pulation Means

Hypothesis Testing for Mean Vector

Inferences about a Mean Vector

UNIVERSITY
Confidence

Hypothesis Testing fo

Multivariate Paired Hotelling's T-Square

| This example uses the dataset that includes mineral content   |
|---------------------------------------------------------------|
| measurements at two different arm bone locations for $n = 64$ |
| women. We'll determine confidence intervals for the two       |
| different population means. Sample means and standard         |
| deviations for the two variables are:                         |

| Variable           | Sample size | Mean                 | Std Dev        |
|--------------------|-------------|----------------------|----------------|
| domradius $(X_1)$  | n = 64      | $\bar{x}_1 = 0.8438$ | $s_1 = 0.1140$ |
| domhumerus $(X_2)$ | n = 64      | $\bar{x}_2 = 1.7927$ | $s_2 = 0.2835$ |

Let's apply the three methods we learned to construct 95% CIs



Confidence Intervals/Region for Population Means

Mean Vector

Multivariate Paired Hotelling's T-Square

• One at a Time CIs:  $\bar{x}_j \pm t_{n-1}(\alpha/2)\frac{s_j}{\sqrt{n}}, \quad j=1,\cdots,p.$  Therefore 95% CIs for  $\mu_1$  and  $\mu_2$  are:

$$\mu_1: 0.8438 \pm \underbrace{1.998}_{t_{63}(0.025)} \times \frac{0.1140}{\sqrt{64}} = [0.815, 0.872]$$
 $\mu_2: 1.7927 \pm 1.998 \times \frac{0.0.2835}{\sqrt{64}} = [1.722, 1.864]$ 

• Bonferroni Method:  $\bar{x}_j \pm t_{n-1} (\alpha/2p) \frac{s_j}{\sqrt{n}}, \quad j=1,\cdots,p.$ 

$$\mu_1: 0.8438 \pm \underbrace{2.296}_{t_{63}(0.025)} \times \frac{0.1140}{\sqrt{64}} = [0.811, 0.877]$$
 $\mu_2: 1.7927 \pm 2.296 \times \frac{0.0.2835}{\sqrt{64}} = [1.711, 1.874]$ 

• Simultaneous CIs:  $\bar{x}_j \pm \sqrt{\frac{(n-1)p}{n-p}} F_{p,n-p}(\alpha) \frac{s_j}{\sqrt{n}}, \quad j=1,\cdots,p$ 

$$\begin{array}{ll} \mu_1: & 0.8438 \pm 2.528 \times \frac{0.1140}{\sqrt{64}} = & \left[0.808, 0.880\right] \\ \mu_2: & 1.7927 \pm 2.528 \times \frac{0.0.2835}{\sqrt{64}} = & \left[1.703, 1.882\right] \end{array}$$

### **CLEMS**

Confidence Intervals/Region for

Hypothesis Testing for Mean Vector



$$n(\bar{\boldsymbol{X}}_n - \boldsymbol{\mu})^T \boldsymbol{S}^{-1}(\bar{\boldsymbol{X}} - \boldsymbol{\mu}) \leq \frac{(n-1)p}{n-p} F_{p,n-p}(\alpha)$$



Confidence Intervals/Region for

Mean Vector

$$t = \frac{\bar{X}_n - \mu_0}{s/\sqrt{n}} \Rightarrow t^2 = \frac{\left(\bar{X}_n - \mu_0\right)^2}{s^2/n} = n\left(\bar{X}_n - \mu_0\right)\left(s^2\right)^{-1}\left(\bar{X}_n - \mu_0\right)$$

Under  $H_0$ :  $\mu$  =  $\mu_0$ 

$$t \sim t_{n-1}, \quad t^2 \sim F_{1,n-1}$$

Extending to multivariate by analogy:

$$T^2 = n \left( \bar{\boldsymbol{X}}_n - \boldsymbol{\mu}_0 \right)^T \boldsymbol{S}^{-1} \left( \bar{\boldsymbol{X}}_n - \boldsymbol{\mu}_0 \right)$$

Under  $H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$ 

$$\frac{(n-p)}{(n-1)p}T^2 \sim F_{p,n-p}$$

**Note**:  $T^2$  here is the so-called Hotelling's T-Square

Confidence
Intervals/Region for
Population Means

Hypothesis Testing for
Mean Vector



State the null

$$H_0$$
:  $\boldsymbol{\mu}$  =  $\boldsymbol{\mu}_0$ 

and the alternative

$$H_a: \boldsymbol{\mu} \neq \boldsymbol{\mu}_0$$

Compute the test statistic

$$F = \frac{n-p}{(n-1)p} n \left( \bar{\boldsymbol{X}}_n - \boldsymbol{\mu}_0 \right)^T \boldsymbol{S}^{-1} \left( \bar{\boldsymbol{X}}_n - \boldsymbol{\mu}_0 \right)$$

- **Outpute Outpute Output Output**
- **Draw a conclusion**: We do (or do not) have enough statistical evidence to conclude  $\mu \neq \mu_0$  at  $\alpha$  significant level

Intervals/Region for Population Means

Mean Vector

| rne recommended intake  | and a sample mean for all women |
|-------------------------|---------------------------------|
| between 25 and 50 years | old are given below:            |
|                         |                                 |

| Variable  | Recommended Intake $(\mu_0)$ | Sample Mean $(ar{m{x}}_n)$ |
|-----------|------------------------------|----------------------------|
| Calcium   | 1000 mg                      | 624.0 mg                   |
| Iron      | 15 $mg$                      | 11.1 $mg$                  |
| Protein   | <b>60</b> <i>g</i>           | <b>65.8</b> <i>g</i>       |
| Vitamin A | 800 $\mu g$                  | 839.6 $\mu g$              |
| Vitamin C | 75 mg                        | 78.9 <i>mg</i>             |

Here we would like to test, at  $\alpha$  = 0.01 level, if the  $\mu$  =  $\mu_0$ 



State the null

$$H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$$

and the alternative

$$H_a: \boldsymbol{\mu} \neq \boldsymbol{\mu}_0$$

Compute the test statistic

$$F = \frac{n-p}{(n-1)p} n (\bar{x}_n - \mu_0)^T S^{-1} (\bar{x}_n - \mu_0) = 349.80$$

- **Outpute Outpute Output Output**  $= \mathbb{Pr}(F_{n,n-n} > 349.80) = 3 \times 10^{-191} < \alpha = 0.01$
- **Draw a conclusion**: We do have enough statistical evidence to conclude  $\mu \neq \mu_0$  at  $\alpha$  significant level

#### **Profile Plots**

- Standardize each of the observations by dividing their hypothesized means
- Plot either simultaneous or Bonferroni CIs for the population mean of these standardized variables





Intervals/Region for Population Means

Mean Vector

A sample (n = 30) of husband and wife pairs are asked to respond to each of the following questions:

- What is the level of passionate love you feel for your partner?
- What is the level of passionate love your partner feels for you?
- What is the level of companionate love you feel for your partner?
- What is the level of companionate love your partner feels for you?

Responses were recorded on a typical five-point scale: 1) None at all 2) Very little 3) Some 4) A great deal 5) Tremendous amount.

We will try to address the following question: Do the husbands respond to the questions in the same way as their wives?



Intervals/Region for Population Means

Hypothesis Testing for Mean Vector

Let  $X_F$  and  $X_M$  be the responses to these 4 questions for females and males, respectively. Here the quantities of interest are  $\mathbb{E}(D) = \mu_D$ , the average differences across all husband and wife pairs.

- State the null  $H_0: \mu_D = 0$  and the alternative hypotheses  $H_a: \mu_D \neq \mathbf{0}$
- Compute the test statistic

$$F = \frac{n-p}{(n-1)p} n \bar{\boldsymbol{D}}_n^T \boldsymbol{S}_{\boldsymbol{D}}^{-1} \bar{\boldsymbol{D}}_n$$

- **Outpute P-value**. Under  $H_0: F \sim F_{p,n-p}$
- **O Draw a conclusion**: We do (or do not) have enough statistical evidence to conclude  $\mu_D \neq \mathbf{0}$  at  $\alpha$  significant level

State the null

 $H_0: \boldsymbol{\mu}_D = \mathbf{0}$ 

and the alternative

 $H_a: \boldsymbol{\mu}_D \neq \mathbf{0}$ 

Compute the test statistic

$$F = \frac{n-p}{(n-1)p} n \bar{\boldsymbol{D}}_n^T \boldsymbol{S}_D^{-1} \bar{\boldsymbol{D}}_n = 2.942$$

- **Ompute the P-value**. Under  $H_0: F \sim F_{p,n-p} \Rightarrow$  p-value =  $\mathbb{Pr}(F_{p,n-p} >) = 0.0394 < \alpha = 0.05$
- Oraw a conclusion: We do have enough statistical evidence to conclude  $\mu_D \neq 0$  at 0.05 significant level