Matrices orthogonales

Exercice 3.1 Soient $(a, b, c, d, e) \in \mathbb{R}^5$. On considère la matrice

$$M = \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{3} & \sqrt{2} & c \\ a & \sqrt{2} & d \\ \sqrt{3} & b & e \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- 1. Déterminer les éléments $(a, b, c, d, e) \in \mathbb{R}^5$ tels que $M \in O_3(\mathbb{R})$.
- 2. Déterminer les éléments $(a, b, c, d, e) \in \mathbb{R}^5$ tels que $M \in SO_3(\mathbb{R})$.

Exercice 3.2 On se place dans $\mathcal{M}_3(\mathbb{R})$.

- 1. Montrer que si M est inversible et trianglaire supérieure, alors son inverse aussi et donner ses coefficients diagonaux.
- 2. Déterminer les matrices triangulaires supérieurs de $O_3(\mathbb{R})$.
- 3. * Déterminer les matrices de $O_3(\mathbb{R})$ dont les coefficients sont tous positifs (on pourra se rappeler qu'à la fois les colonnes et les lignes de la matrices sont deux à deux orthogonales).

Exercice 3.3 Soit P une matrice de $O_n(\mathbb{R})$.

- 1. On se place sur \mathbb{R}^n muni du produit scalaire usuel : $\langle X|Y\rangle = X^T.Y$. Montrer que pour tous vecteurs X,Y de \mathbb{R}^n , $\langle PX|PY\rangle = \langle X|Y\rangle$.
- 2. En déduire que si P admet une valeur propre réelle λ , alors $\lambda = 1$ ou $\lambda = -1$.
- 3. On suppose maintenant que P admet une valeur propre complexe λ pour laquelle on a donc un vecteur propre $Z = (z_1, \ldots, z_n)^T$ de \mathbb{C}^n .
 - a) Calculer $\bar{Z}^T Z$.
 - b) Montrer que $(P\bar{Z})^T(PZ) = \bar{Z}^TZ$.
 - c) En déduire que $|\lambda| = 1$.
- 4. * Facultatif Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique : $A^T = A$. En utilisant les mêmes idées montrer que toute valeur propre de A est réelle (On pourra calculer de plusieurs manières le produit matriciel $\bar{Z}^T A Z$ pour un vecteur propre Z.)

Isométries vectorielles

Exercice 3.4 On munit l'espace des polynômes $E = \mathbb{R}_2[X]$ du produit scalaire défini par

$$\forall (P,Q) \in E, \quad \langle P|Q \rangle = \int_{-1}^{1} P(t)Q(t)dt.$$

On définit l'application $\varphi : E \to E$ par $\varphi(P)(X) = P(-X)$.

- 1) Montrer que φ est linéaire.
- 2) Montrer que φ est une isométrie vectorielle.
- 3) Montrer que φ est un symétrie orthogonale dont on déterminera les caractéristiques.
- 4) Ecrire φ dans la base $\{1, X, X^2\}$ et en déduire son déterminant et ses valeurs propres.

Exercice 3.5 Soit E un espace euclidien et u une isométrie vectorielle de E. Montrer que $Ker(u - Id_E)$ et $Im(u - Id_E)$ sont des supplémentaires orthogonaux.

Exercice 3.6 Soit E un espace euclidien et $u \in O(E)$. Rappeler que $Sp(u) \subset \{-1,1\}$ et en déduire que si u est diagonalisable alors u est une symétrie orthogonale.

Exercice 3.7 On se place dans \mathbb{R}^3 muni du produit scalaire usuel.

- 1. Ecrire dans la base canonique la matrice P de la symétrie orthogonale par rapport à la droite $\text{Vect}\{(1,1,0)^T\}$.
- 2. Ecrire dans la base canonique la matrice Q de la symétrie orthogonale par rapport au plan d'équation x y + z = 0.
- 3. Vérifier que les matrices sont orthogonales et calculer leurs valeurs propres.

Exercice 3.8 Soit E un espace euclidien, F un sous-espace vectoriel et s la symétrie orthogonale par rapport à F. Que vaut $s \circ s$? En déduire que le matrice de s dans une base orthonormée est orthogonale et symétrique. LA réciproque est-elle vraie?