# **Lab 5: Regression & Neural Networks**

CS410: Artificial Intelligence

Shanghai Jiao Tong University, Fall 2021

Due Time: 2021.12.18 23:59

# **Exercise 1: Linear Regression**

Consider a linear regression model  $y=\theta^{\top}x$ , where  $y\in\mathbb{R}$ ,  $\theta\in\mathbb{R}^5$  and  $x\in\mathbb{R}^5$ . Recall the geometric interpretation of linear regression given in Lecture 8, Slide 18 that the predicted value  $\hat{Y}=X\hat{\theta}=X\left(X^{\top}X\right)^{-1}X^{\top}Y$  could be viewed as the projection of the true value Y onto the subspace spanned by the column vectors in X, where  $X\in\mathbb{R}^{100\times5}$  and  $Y\in\mathbb{R}^{100}$ . First load the data using <code>np.load('Data1\_X.npy')</code> and <code>np.load('Data1\_Y.npy')</code> to get X and Y respectively. Then compute  $\hat{Y}$  and verify the aforementioned geometric interpretation with reasonable discussions.

# **Exercise 2: Logistic Regression**

Consider a binary classification problem with 100 samples, each of which has a 2-dimensional feature  $x_i \in \mathbb{R}^2$  and a binary label  $y_i \in \{0,1\}$ . The task in this exercise is to solve this binary classification problem using the logistic regression model introduced in Lecture 8, Slide 67.

- 1. First load the data using <code>np.load('Data2\_X.npy')</code> and <code>np.load('Data2\_Y.npy')</code> to get X and Y respectively, where  $X \in \mathbb{R}^{100 \times 2}$  and  $Y \in \left\{0,1\right\}^{100}$ . Then finish the <code>CELoss\_binary()</code> function to compute the binary cross entropy loss and <code>gradient()</code> to compute the mini-batch gradient of the binary cross entropy loss function with respect to the parameter  $\theta$  for a given size of the mini-batch.
- 2. Train your logistic regression model. Plot the binary cross entropy loss and the precision (defined in Lecture 8, Slide 69) against the number of iterations using stochastic gradient descent, mini-batch gradient descent and (batch) gradient descent respectively under 3 different learning rates and 3 different values of the threshold. Discuss your findings about the effects of learning rates, types of gradients and the values of the threshold to the loss and precision.
- 3. Visualize the decision boundary of predictions of your model with different values of threshold and discuss the impact of thresholds on the decision boundary as in Lecture 8, Slide 72.

#### Important:

 Using third-party libraries that incorporate the logistic regression model (e.g., scikit-learn) or integrate the automatic differentiation (e.g., PyTorch, TensorFlow) is not allowed in this exercise.

### **Exercise 3: L1/L2 Regularization**

Consider a toy regression problem as shown below, where we have a simulated sine curve (between  $60^\circ$  and  $300^\circ$ ) with Gaussian noise (details in code). We are going to estimate the sine function using polynomial regression (n=16), i.e., a model of the form  $y=\beta_0+\beta_1x+\beta_2x^2+\beta_3x^3+\cdots+\beta_nx^n+\varepsilon$ . Essentially, we are applying a linear regression model for 16-d input data.



Implement ridge regression and lasso regression with different values of  $\lambda$ , and answer the following questions with plots, numbers, etc.

- 1. Which approach is less computationally expensive?
- 2. Which approach tends to create a sparser output?
- 3. What is the relationship between regularization and generalizability (especially when using a complex model)?

#### *Important:*

- Library Matplotlib is required in this exercise.
- You are allowed to use libraries such as <u>scikit-learn</u> in this exercise. However, make sure to import them explicitly within <u>ridge\_regression()</u> and <u>lasso\_regression()</u> to let us aware.
- We provide an example script for you to answer the questions. You can modify main() to do what you want.

# **Exercise 4: Two-layer Perceptron Network**

Consider a toy binary classification problem as shown below, which is provided by scikit-learn.



Implement backpropagation of two-layer perceptron network with ReLU as the activation function and mean squared error as the loss function using **NumPy** (details listed in code). Change the number of hidden neurons and discuss your findings.

#### Important:

- Library Matplotlib and scikit-learn is required in this exercise.
- Update weights after all the gradients are calculated (i.e., with **old weights** as described in p46, Lecture 9).
- We provide an example script for you to answer the questions. You can modify main() to do what you want.

#### **Submission**

Here are the files you need to submit (please do **NOT** rename any file):

- P1.py for exercise 1, P2.py for exercise 2, P3.py for exercise 3, and P4.py for exercise 4
- report.pdf for your **brief** report.

Compress the above three files into one \*.zip or \*.rar file and name it with your student ID, and submit it on Canvas.