The information contained in this documentation is the property of MAZeT. Photocopying or otherwise reproducing any part of the catalog, whether electronically or mechanically is prohibited, except where the express permission of MAZeT GmbH has been obtained. In general, all company and brand names, as well as the names of individual products, are protected by brand, patent or product law.

	VERSION CHANGE				
NO.	ISSUE		APPROVED		
1	V 3.0		2010-06-18		

Data Sheet

MTCS-TIAM2

Integral True Color Sensor IC XYZ Tri-stimulus function with integrated amplifier

Table of Contents

1 INTRODUCTION	2
2 APPLICATION	2
3 FEATURES	2
4 BLOCK DIAGRAM	3
5 SPECTRAL CHARACTERISTIC	4
6 DESCRIPTION OF INTERFACE	5
7 SPECIFICATION	6
8 PACKAGE AND OUTLINE DIMENSIONS	10
9 PIN-CONFIGURATION	11
10 SOLDERING PROFILE	12
11 HANDLING	12
12 PACKING INFORMATION	12
13 APPLICATION NOTE	13
14 ORDERING INFORMATION	15
15 CONTACT	15

MAZeT GmbH Sales
Göschwitzer Straße 32
07745 JENA / GERMANY
Phone: +49 3641 2809-0
Fax: +49 3641 2809-12
E-Mail: sales@MAZeT.de
Url: http://www.MAZeT.de

	Approvals	Date	MAZeT GmbH		
,	Compiled:	2010-06-18	Status: valid		
)	Checked:	2009-06-18			
e e	Released:	2009-06-18	DOC. NO.: DB-06-202	Page 1 of 15	

VERSION			
NO.	ISSUE	APPROVED	
1	V 3.0	2010-06-18	

1 INTRODUCTION

MTCS-TIAM2 is a high integrated True Color Sensor IC with integrated transimpedance amplifier in a small plastic package on a PCB-carrier. It includes the standard XYZ (RGB) filters based on the known observer function CIE 1931. So the sensor is specialized for fast and absolute, high accuracy color measurement.

The True Color Sensors are made of 19 x 3 photo diodes (special PIN silicon technology with blue-enhanced) integrated on chip. The diodes are carried out as segments of a multiple-element hexagonal matrix structure with the diameter of 2,0 mm.

The design as Si-PIN photo diodes allows signal frequencies up to high-range. In order to achieve a small cross talk between the colored photodiodes the individual sectors were separated from each other by additional structures – separate diode. The photodiodes are sensitized on chip with high-quality and long-time stabile dielectric spectral filters (named True Color Filter¹). These filters correspond to the primary color standard CIE 1931(Commission Internationale de l'Eclairage or International Commission on Illumination) and/or the German standard DIN 5033.

2 APPLICATION

- General Color measurements, checks and regulations
- Portable color reader for consumer and industrial applications
- Closed loop for RGB lighting (SSL) regulation of temperature shifts
- · Sensor for display color adjustment and backlight/contrast control
- Color sensitive sensor for "True Color" reproduction and system calibration
- Detector for various light sources, mood lighting, regulated color temperature

3 FEATURES

- high-resolution conversion of colored light to voltages
- simultaneous measurement of XYZ three colors
- high sensitiveness, transmission, signal frequency
- no ageing of the filter, high temperature stability
- reduced cross talk and linear amplifying
- programmable adjustment of transimpedance
- power down feature
- small in size, lead free
- alike tri-stimulus interference filter for color measurement to DIN 5033 (CIE 1931)
- LCC package (SMD)
- EU RoHS-compliant²

Figure 1: MTCS-TIAM2

The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the documentation. Before starting developments, please contact our sales to get up-to-date information.

DOC. NO: DB-06-202E

Page 2 of 15

¹ The new generation of JENCOLOR sensors is committed to implementing (see relative sensitivity) the standard distribution functions as defined under DIN 5033 Part 2 – Color Measurement; CIE 1931 Standard Colorimetric Systems. This implementation method allows colors to be determined according to the three-range procedure that is defined in part 6 of DIN 5033.

² EU RoHS: Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

	VERSION	
NO.	ISSUE	APPROVED
1	V 3.0	2010-06-18

4 BLOCK DIAGRAM

Amplifier MTI04C I/U SW1 SW1 SW2 SW2 SW3 SW3 XYZ - detector SW4 Y X - Function MTCSiC I TR IN1 OUT1 I_RT U RT IN2 OUT2 bl 🖂 I_BL U_BL IN3 OUT3 I_GN U_GN IN4 OUT4 PD PD U1 VDD +3_3∇ VREF 2.4VREF М GND U2

Figure 2: On Chip detector MTCSi and amplifier MTI04C (without temperature compensation via external resistor)

The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the documentation. Before starting developments, please contact our sales to get up-to-date information.

DOC. NO: DB-06-202E

Page 3 of 15

DV.	ТΛ	SHF		ATC	20	TIA	140
IJΑ	IΑ	SHE	יום	viit	12 –	HA	ハハン

VERSION			
NO.	APPROVED		
1	V 3.0	2010-06-18	

The integral XYZ color filters on the photodiode array detect the color components of the light falling on the sensor. The photodiodes converts the XYZ light components into photocurrents. Each photocurrent represents X or Y or Z depend on the spectral response shown in the figure below. The integrated transimpedance amplifiers convert the photocurrents to analog voltage outputs. After an offset-correction and calibration these voltages are direct coordinates for the standard CIE1931 / DIN5033 color space. The voltage output of each XYZ channel increases linearly with increasing light intensity.

Please note also the different manner and stages for the transimpedance amplifiers. The amplifier could be switched in process into a higher/lower sensitiveness depend on the light intensity falling on the sensor (see adjustment of transimpedance).

5 SPECTRAL CHARACTERISTIC

Figure 4: Typical (relative) sensitivity (XYZ) of the color sensor^{3, 4} scanned by width broadband light (FWHM 30nm) and limited angle of incidence (<10°)⁵

³ Typical characteristic sensitivity; scanned by monochromatic light with FWHM 27nm, see also chapter 13.2.
⁴ Please note, there are some technical differences between the national or international standards for color measurement based on the tri-stimulus observer function and our realized sensor function.
Furthermore each sensor has small production based tolerances of nearly 1% variation referred to the wavelengths. So we recommend calibrating the sensor to achieve best results with a small error in the color space.
The calibration depends on different conditions - the sensor, light source, color target, algorithm for calibration and all interferences hit the sensor. In most of cases it's possible to achieve always better results than human eyes. Please ask our technical staff for support if you want to calibrate your sensor system.

⁵ See chapter 13

VERSION			
NO.	ISSUE	APPROVED	
1	V 3.0	2010-06-18	

6 DESCRIPTION OF INTERFACE

signal name	typ.	function	
VDD	input	power supply	
GND	input	power supply	
VREF	input	reference voltage	
SW1	input	input 1 for adjustment of transimpedance of MTI-amplifier (pull down)	
SW2	input	input 2 for adjustment of transimpedance of MTI-amplifier (pull down)	
SW3	input	input 3 for adjustment of transimpedance of MTI-amplifier (pull down)	
PD	input	power down modus (pull down)	
VOUT	output	analog voltage output of amplifier channel n for	
<x y="" z=""></x>		X Y Z function of detector (see chapter 0)	

Adjustment of Transimpedance

settings of digital inputs			
SW1	SW2	SW3	transimpedance R
VDD	VDD	VDD	$20 M\Omega -$ gain 1
GND	VDD	VDD	10М Ω – gain 2
GND	VDD	GND	5MΩ – gain 3
VDD	GND	VDD	2MΩ – gain 4
GND	GND	VDD	1MΩ – gain 5
VDD	GND	GND	500kΩ – gain 6
VDD	VDD	GND	100kΩ – gain 7
GND	GND	GND	25kΩ ^b – gain 8

a.) default by pull down

Power-down Mode

settings of digital input	
PD = 1	bias current of the IC
VDD	< 8μA
GND	typical

b.) default by pull down

The information contained in these documents reflects the current state of the art at the
time of publication and is of a provisional nature. MAZeT explicitly reserves the right to
make technical changes to the equipment and components described in the documenta-
tion. Refore starting developments, please contact our sales to get up-to-date information

VERSION					
NO.	ISSUE	APPROVED			
1	V 3.0	2010-06-18			

7 SPECIFICATION

ELECTRICAL AND OPTICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C; per single diode)$

Parameter	Symbol	Condition	min.	typ.	max.	Unit
diameter of the light sensitivity area	D			2,0		mm
light sensitivity area per single color array (19 diodes)	А			0,76		mm²
typical photo diode sensitivity of color ranges	S _{max}	$\lambda_Z = 445 \text{ nm}$ $\lambda_Y = 555 \text{ nm}$ $\lambda_{Xk} = 445 \text{ nm}$ $\lambda_{Xl} = 600 \text{ nm}$	0,21 0,30 0,11 0,31	0,23 0,33 0,12 0,35	0,25 0,36 0,13 0,38	A/W
spectral tolerance of filter curve (See also chapter 0)	Δλ(λ)				<1%*λ	nm
reverse voltage	V _R		0	2,5	5	V
dark current	I _R	$V_R = 2,5V$			10	рА
noise equivalent power	NEP	f _R = 100 Hz			<10 ⁻¹³	W/√H z
cross-talk					<1	%
angle of incidence	φ	$\Delta\lambda_{(Filter)} < 1\%*\lambda$			10	Grad

All voltages are referenced to GND = 0V.

Parameter	Symbol	Condition	min.	typ.	max.	Unit
power supply	VDD		2.7	3 to 5	5.5	٧
bias current MTI04	I(VDD)	27°C, VDD=5.5V		2.5	4.0	mA
bias current MTI04 (power down mode)	I(VDD)	PD=VDD			8	μΑ
reference voltage	VREF		0.4		VDD-0.4	٧

The information contained in these documents reflects the current state of the art	at the DOC. NO:	Page 6 of 15
time of publication and is of a provisional nature. MAZeT explicitly reserves the rimake technical changes to the equipment and components described in the docur		
tion. Before starting developments, please contact our sales to get up-to-date information.		

	VERSION	
NO.	ISSUE	APPROVED
1	V 3.0	2010-06-18

AC/DC-Characteristics

Unless otherwise specified the data in this table is valid for $T_{OP} = 27^{\circ}C$ and VDD = 5V. All voltages are referenced to GND = 0V.

voltages are reference	Symbol	Condition	min.	typ.	max.	Unit
		gain 20MΩ	14000	20000	26700	kΩ
gain selection	-	gain 10MΩ	7000	10000	13350	kΩ
		gain 5MΩ	3500	5000	6700	kΩ
		gain 2MΩ	1400	2000	2670	kΩ
(feedback resistor)	R	gain 1MΩ	700	1000	1335	0 kΩ 0 kΩ 1 kΩ
		gain 0,5MΩ	350	500	670	kΩ
		gain 0,1MΩ	70	100	133	kΩ
		gain 0,025M Ω	17	25	34	$k\Omega$ $k\Omega$ $k\Omega$ $mV/$ $(\mu W/cm^2)$
typical photo sensitivity of color ranges at stage $20M\Omega$	S _{max}	$\lambda_{Z} = 445 \text{ nm}$ $\lambda_{Y} = 555 \text{ nm}$ $\lambda_{Xk} = 445 \text{ nm}$ $\lambda_{Xl} = 600 \text{ nm}$		34,9 50,1 18,2 53,2		
typical photo sensitivity of color ranges at stage $10M\Omega$	S _{max}	$\lambda_{Z}=445 \text{ nm}$ $\lambda_{Y}=555 \text{ nm}$ $\lambda_{Xk}=445 \text{ nm}$ $\lambda_{Xl}=600 \text{ nm}$		17,5 25,1 9,1 26,6		
typical photo sensitivity of color ranges at stage $5M\Omega$	S _{max}	$\lambda_Z = 445 \text{ nm}$ $\lambda_Y = 555 \text{ nm}$ $\lambda_{Xk} = 445 \text{ nm}$ $\lambda_{Xl} = 600 \text{ nm}$		8,7 12,5 4,5 13,3		
typical photo sensitivity of color ranges at stage $2M\Omega$	S _{max}	$\lambda_Z = 445 \text{ nm}$ $\lambda_Y = 555 \text{ nm}$ $\lambda_{Xk} = 445 \text{ nm}$ $\lambda_{Xl} = 600 \text{ nm}$		3,5 5,0 1,8 5,3		

The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the documentation. Before starting developments, please contact our sales to get up-to-date information.

DOC. NO: Page 7 of 15
DB-06-202E

		VERSION	
NO.	ISSUE		APPROVED
1	V 3.0		2010-06-18

		[1 V 3.0				
Parameter	Symbol	Condition	min.	typ.	max.	Unit
typical photo sensitivity		$\lambda_Z = 445 \text{ nm}$		1,75		
of color ranges at stage $1M\Omega$	S _{max}	$\lambda_{Y} = 555 \text{ nm}$		2,51		
		$\lambda_{Xk} = 445 \text{ nm}$		0,91		mV/ (µW/cm²) mV/ (µW/cm²) mV/ (µW/cm²) kHz kHz kHz kHz kHz kHz
		$\lambda_{XI} = 600 \text{ nm}$		2,66		
typical photo sensitivity		$\lambda_Z = 445 \text{ nm}$		0,874		
typical photo sensitivity of color ranges at stage $0.5M\Omega$	S _{max}	$\lambda_{Y} = 555 \text{ nm}$		1,254		mV/
	O _{max}	$\lambda_{Xk} = 445 \text{ nm}$		0,456		(µW/cm²)
		$\lambda_{XI} = 600 \text{ nm}$		1,330		
typical photo sensitivity		$\lambda_Z = 445 \text{ nm}$		0,175		
		$\lambda_{Y} = 555 \text{ nm}$		0,251		mV/
of color ranges at stage $0.1 \text{M}\Omega$	S _{max}	$\lambda_{Xk} = 445 \text{ nm}$		0,091		(µW/cm²)
		$\lambda_{XI}=600\;\text{nm}$		0,266		
tunical photo concitivity		$\lambda_{\rm Z} = 445 \text{ nm}$		0,044		
typical photo sensitivity	S _{max}	$\lambda_{Y} = 555 \text{ nm}$		0,063		mV/
of color ranges at stage $0.025M\Omega$		$\lambda_{Xk} = 445 \text{ nm}$		0,023		(µW/cm²)
at stage 0,020Miz		$\lambda_{XI}=600~\text{nm}$		0,067		
		stage 20MΩ, T _{OP}	4	6	16	kHz
		stage 10MΩ, T _{OP}	7	11	28	kHz
		stage 5MΩ, T _{OP}	11	16	42	kHz
signal frequency	f _{3dB}	stage 2MΩ, T _{OP}	18	26	66	kHz
		stage 1MΩ, T _{OP}	25	35	95	kHz
		stage 0,5M Ω , T _{OP}	35	50	130	kHz
		stage 0,1M Ω , T _{OP}	80	120	280	kHz
		stage 0,025MΩ, T _{OP}	160	300	580	kHz
temperature coefficient of the feedback resistor	TC _R			-3300		ppm/K

The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the documentation. Before starting developments, please contact our sales to get up-to-date information.

DOC. NO: DB-06-202E

Page 8 of 15

	VERSION	
NO.	ISSUE	APPROVED
1	V 3.0	2010-06-18

Parameter	Symbol	Condition	min.	typ.	max.	Unit
offset voltage	V _{OFF} ⁶	T_OP	-10		10	mV
capacitive load at VOUT <x></x>	C _{LOAD}	I _{LOAD} < 0.5mA per output			50	pF
pull down current SW1, SW2, SW3, SW4, PD	I _{PDPAD}	digital inputs			200	μΑ
tolerance of the feed- back resistors between	TOL _R ⁷	DC input current;	1		10	%
the four channels		for all stages				

Maximum Conditions

Violations of absolute maximum conditions are not allowed under any circumstances. Otherwise the IC can be destroyed. All voltages are referenced to $\mathsf{GND} = \mathsf{OV}$.

Parameter	Symbol	min.	max.	Unit
power supply	VDD	0.3	7.0	V
input and output voltages	⇒ IC-pinning	0.3	VDD+0.3	V
input high level	V _{IH}	0.7*VDD	VDD+0.3	V
input low level	V _{IL}	-0,3	0,8	V
power dissipation	POP		0.025	W
standard Operating temperatures ⁸	TOP	-20	+ 100	°C
storage temperature	TSTG	-40	+ 100	°C

⁸ special on request

The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the documentation. Before starting developments, please contact our sales to get up-to-date information.

DOC. NO: DB-06-202E Page 9 of 15

⁶ V_{OFF} = VOUT<X> − VREF; results from input offset voltage and input leakage current

⁷ up to max. 1% available on request

	VERSION	
NO.	ISSUE	APPROVED
1	V 3.0	2010-06-18

8 PACKAGE AND OUTLINE DIMENSIONS

Figure 5: Sizes of LCC packaged MTCS-TIAM2

	Н	L	L1	L2	В	B1	B2
mm	2,40	6,50	2,00	0,95	5,00	1,50	2,00
Tol.	±0,10	±0,10	±0,10	±0,10	±0,10	±0,10	±0,10

Figure 6: Pad dimensionsº

Figure 7: Distance top level cap and detector inside the package

⁹ Please note that on the back side of the package in midsize a blank metallic label with the name of the sensor could be. Please check it and note such a label before you use the components.

The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the documentation. Before starting developments, please contact our sales to get up-to-date information.

DOC. NO: DB-06-202E

Page 10 of 15

	VERSION	
NO.	ISSUE	APPROVED
1	V 3.0	2010-06-18

PIN

Figure 8: PIN configuration MTCS-TIAM2 - Bottom view

Figure 9: PIN configuration MTCS-TIAM2 Top View

9 PIN-CONFIGURATION

Pin	Name	IN-/OUTPUT	A/D	Description
1	PD	INPUT	D	power down modus (pull down)
2	VOUT Y	OUTPUT	Α	analogue voltage output Y
3	VOUT Z	OUTPUT	Α	analogue voltage output Z
4	VOUT X	OUTPUT	Α	analogue voltage output X
5	SW3	INPUT	D	input 3 for adjustment of transim- pedance of MTI-amplifier (pull down)
6	VDD	INPUT	D/A	power supply
7	SW2	INPUT	D	input 2 for adjustment of transim- pedance of MTI-amplifier (pull down)
8	SW1	INPUT	D	input 1 for adjustment of transim- pedance of MTI-amplifier (pull down)
9	GND	INPUT	D/A	ground
10	VREF	INPUT	Α	reference voltage

The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the documentation. Before starting developments, please contact our sales to get up-to-date information.

DOC. NO: p

Page 11 of 15

	VERSION	
NO.	ISSUE	APPROVED
1	V 3.0	2010-06-18

10 SOLDERING PROFILE

Figure 10: Recommended reflow SOLDERING PROFILE¹⁰

11 HANDLING

Care should be taken to keep the sensor surface clean. Dust, scratches will adversely affect the sensor parameters. Sensors should be handled as an optical device.

It is important to use normal ESD handling and precautions for ESD sensitive devices.

Each series element is baked prior packing for shipment (24hours at 125°C). Devices are packed in a sealed aluminized envelope with humidity indicator card and desiccant. Keep the opening and handling time of moisture bag as short as possible (max. is 72 hours at ≤30°C/60% RH) to avoid baking. If necessary the recommended baking conditions are 24hours at 125°C.

Baking of tape & reel is not applicable (max is <60°C/12hours). For baking at 125°C we recommend to send the components to a Reel Service, they are the experts for de-reeling / baking / re-reeling.

For unsealed packing's the devices must be baked prior soldering. Recommended baking conditions are 24hours at 125°C.

12 PACKING INFORMATION

Standard bag is tape, tube or box. Please ask our sales team for variants and general conditions for manufacturing.

¹⁰ Please note the sensor includes sensitive materials and components. High temperatures and time for soldering more than specified here could damage or destroy the sensor (see also chapter 11).

The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the documentation. Before starting developments, please contact our sales to get up-to-date information.

DOC. NO: Page 12 of 15
DB-06-202E

	VERSION	
NO.	ISSUE	APPROVED
1	V 3.0	2010-06-18

13 APPLICATION NOTE

Circuit

In the following picture there is an example for connection of MTCS- TIAM 2 to a μ c-based measurement system. Please note the necessary connection of Vref (e.g. 3V, depend on the used ADC) and Vdd (e.g. 5V). Alternatives are possible within the settings (see chapter 7).

The MTCS-TIAM2 includes a multi-channel amplifier of MAZeT. The amplifier can be switched smoothly to the required amplification stage via μ C programming, e.g. if input variables fail to reach or exceed a set threshold. Transimpedance programming is carried out via three inputs and affects all channels simultaneously (see also chapter 0). In the following there is a preposition for an algorithm to switch automatically the required amplification via μ C.

	~		
DATA	SHEET	MTCS -	· HAM2

	VERSION	
NO.	ISSUE	APPROVED
1	V 3.0	2010-06-18

Figure 11: μ C-based Algorithm for calculation of an automatic switch of the 8-staged amplification ¹¹

¹¹ The algorithm includes the same amplifying stage for xyz-channels. If you expect a different amplifying for one or two sensor channels with referent to the others then expand the algorithm numerous and search for the individual max, min values of the single x- and y- and z-channel.

The information contained in these documents reflects the current state of the art at the time of publication and is of a provisional nature. MAZeT explicitly reserves the right to make technical changes to the equipment and components described in the documentation. Before starting developments, please contact our sales to get up-to-date information.

DOC. NO: DB-06-202E Page 14 of 15

	VERSION	
NO.	ISSUE	APPROVED
1	V 3.0	2010-06-18

Narrowband luminous sources

The spectral filters of the color sensor ICs are specialized for applications with broad-band source of lighting >10nm. Please ask our sales team before you use our sensor in combination with narrowband luminous sources.

Angle of incidence

In reliance on the packaging the sensor IC has an aperture angle (beam width) of nearly 90°. Traditional an interference filter works depends on angle of incidence. So a bumped light beam with different angles to vertical until 10° will not causes any filter shifts. Make sure by using lenses or optical holes that the angle of incidence for the sensor device will be smaller than 10°.

14 ORDERING INFORMATION

NAME	Status	PACKAGE	Article
MTCS-TIAM2	series	LCC	090400-321-26AEZ00

15 CONTACT

For further information, please feel free to contact:

MAZeT GmbH Sales Office:

Göschwitzer Straße 32 07745 JENA GERMANY

Phone: +49 3641 2809-0

Fax: +49 3641 2809-12 E-Mail: sales@MAZeT.de URL: http://www.MAZeT.de

WARNINGS

Personal Injury – Do not use these products as safety or emergency stop devices or in any other applications where failure of the product could result in personal injury. **Failure to comply with these instructions could result in death or serious injury.**

Misuse of Documentation – The information presented in this data sheet is for reference only. Because these products are under development do not use this document as product installation guide. Before you start any development ask your supplier for the latest version of this sheet. **Failure to comply with these instructions could result in death or serious injury.**

ESD Warning – Standard CMOS handling precautions should be observed to avoid static discharge.

The information contained in these documents reflects the current state of the art at the
time of publication and is of a provisional nature. MAZeT explicitly reserves the right to
make technical changes to the equipment and components described in the documenta-
tion. Before starting developments, please contact our sales to get up-to-date information.