NCEA Level 3 Trigonometry (exercise set)

3. Taxonomy of Functions

Goal To investigate the relationships between the geometry and algebra of the trig functions.

- 1. Show that the following hold for all θ :
 - (a) $\sec^2 \theta + \csc^2 \theta = \sec^2 \theta \cos^2 \theta$
 - (b) $(\sin \theta + \sec \theta)^2 + (\cos \theta + \csc \theta)^2 = (1 + \sec \theta \csc \theta)^2$
- 2. (a) Draw a graph to check the plausibility of the conjecture that

$$\tan \theta = -\cot \left(\theta - \frac{\pi}{2}\right) \tag{*}$$

holds for all θ .

- (b) Show that (*) holds for all θ .
- (c) Prove that there is **no** ξ such that $\cos \theta = \sec(\theta + \xi)$ holds for all θ .
- 3. Let O_1 and O_2 be two distinct points, and suppose r_1 and r_2 are positive numbers with $r_1 > r_2$.
 - (a) Draw two circles centred at O_1 and O_2 with respective radii r_1 and r_2 .
 - (b) Suppose L is a tangent line shared by both circles which does not cross the segment O_1O_2 ; show that the angle θ made by L with the line O_1O_2 satisfies

$$\sin \theta = \frac{|O_1 O_2|}{r_1 - r_2}.$$

- (c) Find the distance between the points of tangency along L.
- 4. Complete exercise 3.7 in the notes.
- 5. (a) Illustrate graphically the change in sign and magitude of the functions $3 \sin x + 4 \cos x$, $e^x \sin x$, and $\sin \left(\frac{\pi}{\sqrt{2}} \sin x\right)$ for all values of x.
 - (b) Show that $2x = (2n+1)\pi \operatorname{versin} x$ (for n positive) has **exactly** 2n+3 possible solutions for x; indicate roughly their locations. [Hint: approach this problem in the same rough direction as (a) i.e. do not try to compute the values of x directly.]

Additional reading Hobson, chapter III.