CS 188: Artificial Intelligence

Game Trees: Adversarial Search

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).

[Updated slides from: Stuart Russell and Dawn Song]

Outline

- History / Overview
- Minimax for Zero-Sum Games
- α-β Pruning
- Finite lookahead and evaluation

Game Playing State of the Art

Checkers:

- 1950: First computer player
- 1959: Samuel's self-taught program
- 1995: First computer world champion beat 40 year champion Marion Tinsley *
- 2007: Checkers solved!

Chess:

- 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, McCarthy.
- 1960-1996: gradual improvements
- 1997: Deep Blue defeats human champion Garry Kasparov
- 2024: Stockfish rating 3631 (vs 2847 for Magnus Carlsen)

■ Go:

- 1968: Zobrist's program plays legal Go, barely (b>300!)
- 1968-2005: various ad hoc approaches tried, novice level
- 2005-2014: Monte Carlo tree search -> strong amateur
- 2016-2017: AlphaGo defeats human world champions
- 2022: Human exploits NN weakness to defeat top Go programs

Pacman

Behavior from Computation

Adversarial Games

Types of Games

- Game = task environment with > 1 agent
- Axes:
 - Deterministic or stochastic?
 - Perfect information (fully observable)?
 - Two, three, or more players?
 - Teams or individuals?
 - Turn-taking or simultaneous?
 - Zero sum?

 Want algorithms for calculating a strategy (policy) which recommends a move from every possible state

Deterministic Games

- Many possible formalizations, one is:
 - States: S (start at s₀)
 - Players: P={1...N} (usually take turns)
 - Actions: A (may depend on player/state)
 - Transition function: $S \times A \rightarrow S$
 - Terminal test: $S \rightarrow \{true, false\}$
 - Terminal utilities: $S \times P \rightarrow R$
- Solution for a player is a policy: S → A

Zero-Sum Games

- Zero-Sum Games
 - Agents have opposite utilities (values on outcomes)
 - Pure competition:
 - One *maximizes*, the other *minimizes*

General-Sum Games

- Agents have *independent* utilities (values on outcomes)
- Cooperation, indifference, competition, shifting alliances, and more are all possible

Team Games

Common payoff for all team members

Adversarial Search

Single-Agent Trees

Value of a State

Adversarial Game Trees

Minimax Values

States Under Agent's Control:

Terminal States:

$$V(s) = \text{known}$$

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

Deterministic, zero-sum games:

- Tic-tac-toe, chess, checkers
- One player maximizes result
- The other minimizes result

Minimax search:

- A state-space search tree
- Players alternate turns
- Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

Minimax Implementation

def max-value(state):

initialize $v = -\infty$

for each successor of state:

v = max(v, min-value(successor))

return v

$$V(s) = \max_{s' \in \text{successors}(s)} V(s')$$

def min-value(state):

initialize $v = +\infty$

for each successor of state:

v = min(v, max-value(successor))

return v

$$V(s') = \min_{s \in \text{successors}(s')} V(s)$$

Minimax Implementation (Dispatch)

```
def value(state):
                      if the state is a terminal state: return the state's utility
                      if the next agent is MAX: return max-value(state)
                      if the next agent is MIN: return min-value(state)
def max-value(state):
                                                             def min-value(state):
    initialize v = -\infty
                                                                 initialize v = +\infty
    for each successor of state:
                                                                 for each successor of state:
       v = max(v, value(successor))
                                                                     v = min(v, value(successor))
    return v
                                                                 return v
```

Minimax Example

Minimax Properties

Optimal against a perfect player. Otherwise?

Minimax Efficiency

How efficient is minimax?

Just like (exhaustive) DFS

■ Time: O(b^m)

Space: O(bm)

■ Example: For chess, $b \approx 35$, $m \approx 100$

- Exact solution is completely infeasible
- But, do we need to explore the whole tree?

Resource Limits

Game Tree Pruning

Minimax Pruning

The order of generation matters:

more pruning is possible if good moves come first

Alpha-Beta Pruning

- General case (pruning children of MIN node)
 - We're computing the MIN-VALUE at some node *n*
 - We're looping over *n*'s children
 - n's estimate of the childrens' min is dropping
 - Who cares about n's value? MAX
 - Let α be the best value that MAX can get so far at any choice point along the current path from the root
 - If n becomes worse than α , MAX will avoid it, so we can prune n's other children (it's already bad enough that it won't be played)
- Pruning children of MAX node is symmetric
 - Let β be the best value that MIN can get so far at any choice point along the current path from the root

Alpha-Beta Implementation

α: MAX's best option on path to root

β: MIN's best option on path to root

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta return v
        \alpha = \max(\alpha, v)
    return v
```

```
\begin{aligned} &\text{def min-value(state }, \alpha, \beta): \\ &\text{initialize } v = +\infty \\ &\text{for each successor of state:} \\ &v = \min(v, \text{value(successor, } \alpha, \beta)) \\ &\text{if } v \leq \alpha \text{ return } v \\ &\beta = \min(\beta, v) \\ &\text{return } v \end{aligned}
```

Alpha-Beta Pruning Properties

- This pruning has no effect on minimax value computed for the root!
- Values of intermediate nodes might be wrong
 - Important: children of the root may have the wrong value
 - So the most naïve version won't let you do action selection
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - Time complexity drops to O(bm/2)
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless...

This is a simple example of metareasoning (computing about what to compute)

Alpha-Beta Quiz

Alpha-Beta Quiz 2

Resource Limits

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α - β reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm

Why Pacman Starves

A danger of replanning agents!

- He knows his score will go up by eating the dot now (west, east)
- He knows his score will go up just as much by eating the dot later (east, west)
- There are no point-scoring opportunities after eating the dot (within the horizon, two here)
- Therefore, waiting seems just as good as eating: he may go east, then back west in the next round of replanning!

Evaluation Functions

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

- E.g. $f_1(s)$ = (num white queens num black queens), etc.
- Or a more complex nonlinear function (e.g., NN) trained by self-play RL

Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation

Synergies between Evaluation Function and Alpha-Beta?

- Alpha-Beta: amount of pruning depends on expansion ordering
 - Evaluation function can provide guidance to expand most promising nodes first (which later makes it more likely there is already a good alternative on the path to the root)
 - (somewhat similar to role of A* heuristic, CSPs filtering)
- Alpha-Beta: (similar for roles of min-max swapped)
 - Value at a min-node will only keep going down
 - Once value of min-node lower than better option for max along path to root, can prune
 - Hence: IF evaluation function provides upper-bound on value at min-node, and upper-bound already lower than better option for max along path to root
 THEN can prune

Summary

- Games are decision problems with multiple agents
 - Huge variety of issues and phenomena depending on details of interactions and payoffs
- For zero-sum games, optimal decisions defined by minimax
 - Implementable as a depth-first traversal of the game tree
 - Time complexity $O(b^m)$, space complexity $O(b^m)$
- Alpha-beta pruning
 - Preserves optimal choice at the root
 - Alpha/beta values keep track of best obtainable values from any max/min nodes on path from root to current node
 - Time complexity drops to $O(b^{m/2})$ with ideal node ordering
- Exact solution is impossible even for "small" games like chess