B. Wróblewski

Równanie fali:
$$u_{tt} = c^2 \Delta u$$
.

Zadanie 1. Rozwiąż zagadnienie struny półnieskończonej, tzn. poniższe zagadnienie brzegowopoczątkowe dla równania falowego:

$$\begin{cases} u_{tt} - c^2 u_{xx} = 0 & \text{dla } x > 0, t > 0, \\ u(x, 0) = f(x) & \text{dla } x > 0, \\ u_t(x, 0) = g(x) & \text{dla } x > 0, \\ u(0, t) = 0 & \text{dla } t \ge 0. \end{cases}$$

W szczególności zapisz rozwiązanie dla $f(x)=x\exp(-x^2)$, g(x)=0. WSKAZÓWKA: Skorzystaj ze wzoru d'Alemberta.

Zadanie 2. Rozwiąż następujące zagadnienie dla równania falowego:

$$\begin{cases} u_{tt} - c^2 u_{xx} = 0 & \text{dla } x > 0, t > 0, \\ u(x, t) = f(x) & \text{dla } x \in R, t = kx, \\ \frac{\partial u}{\partial n}(x, t) = g(x) & \text{dla } x \in R, t = kx, \end{cases}$$

gdzie k>0 i n jest wektorem normalnym do tej prostej. Zbadaj przypadek k=c, czyli tak zwane zagadnienie Goursata.

Zadanie 3. Załóżmy, że funkcja $u \in C^2(\mathbb{R} \times [0,\infty))$ spełnia zagadnienie Cauchy'ego w prostej dla równania falowego z warunkami początkowymi u(x,0)=f(x), $u_t(x,0)=g(x)$, gdzie f,g są funkcjami gładkimi o zwartym nośniku. Niech

$$P(t) = \frac{1}{2} \int_{\mathbb{R}} u_x^2(x, t) \, dx, \qquad K(t) = \frac{1}{2} \int_{\mathbb{R}} u_t^2(x, t) \, dx$$

(P(t) nazywamy energią potencjalną, a K(t) energią kinetyczną) Pokaż, że K i P są poprawnie określonymi funkcjami oraz:

- a) K(t) + P(t) nie zależy od t (zasada zachowania energii),
- b) K(t) = P(t) dla dostatecznie dużych t (zasada ekwipartycji energii).

Zadanie 4. Niech $\Omega \subset \mathbb{R}^3$ będzie zbiorem ograniczonym i otwartym o gładkim brzegu $\partial\Omega$. Rozważamy zagadnienie brzegowo-początkowe:

$$\begin{cases} u_{tt} - c^2 u_{xx} = h & \text{dla } x \in \Omega, 0 < t < T, \\ u(x,0) = f(x) & \text{dla } x \in \Omega, \\ u_t(x,0) = g(x) & \text{dla } x \in \Omega, \\ u(x,t) = 0 & \text{dla } x \in \partial\Omega, 0 \le t \le T. \end{cases}$$

Udowodnij metodą energetyczną, że to zagadnienie ma co najwyżej jedno rozwiązanie.

Równanie ciepła: $u_t = \Delta u$

Zadanie 5. Udowodnij następującą zasadę porównawczą dla równania ciepła: Jeżeli u i v są dwoma rozwiązaniami takimi, że $u \le v$ dla t=0 oraz dla x=0 i dla $x=\ell$, to wówczas $u \le v$ dla wszystkich $0 \le t < \infty, 0 \le x \le \ell$.

Zadanie 6. Rozważamy równanie ciepła w odcinku (0,1) z warunkami brzegowymi u(0,t)=u(1,t)=0 i warunkiem początkowym u(x,0)=4x(1-x).

- a) Udowodnij, że $0 \le u(x,t) \le 1$ dla wszystkich t > 0 i 0 < x < 1.
- b) Udowodnij, że u(x,t) = u(1-x,t) dla wszystkich $t \ge 0$ i $0 \le x \le 1$.
- c) Udowodnij, że $\int_0^1 u^2(x,t) dx$ jest ściśle malejącą funkcją t.

Porównaj powyższe fakty z ogólnymi własnościami równania ciepła

Zadanie 7. Rozważamy równanie ciepła na odcinku $(0,\ell)$ z warunkami brzegowymi typu Robina, tzn.

$$\begin{cases} u_x(0,t) - a_0 u(0,t) = 0, \\ u_x(\ell,t) + a_\ell u(\ell,t) = 0. \end{cases}$$

Udowodnij używając metody energetycznej, że jeżli $a_0>0$ i $a_\ell>0$, to $\int_0^\ell u^2(x,t)\ dx$ maleje jako funkcja t.

Zadanie 8. Niech b > 0 będzie stałe. Rozwiąż równanie ciepła ze stałą dysypacją:

$$\begin{cases} u_t - ku_{xx} + bu = 0 & \text{dla } x \in \mathbb{R}, \\ u(x,0) = \phi(x). \end{cases}$$

Zastosuj zamianę zmiennych $u(x,t)=e^{-bt}v(x,t)$. Następnie rozwiąż równanie ciepła ze zmienną dysypacją:

$$\begin{cases} u_t - ku_{xx} + bt^2u = 0 & \text{dla } x \in \mathbb{R}, \\ u(x,0) = \phi(x). \end{cases}$$

Rozważając równanie zwyczajne $w_t + bt^2w = 0$ wywnioskuj odpowiednią zamianę zmiennych.

Zadanie 9. Załóżmy, że g jest funkcją ograniczoną na \mathbb{R}^d spełniającą warunek

$$\lim_{R \to \infty} \frac{1}{\omega_d R^d} \int_{|x| \le R} g(x) \, dx = a.$$

Udowodnij, że rozwiązanie zagadnienia Cauchy'ego dla równania ciepła w \mathbb{R}^d z warunkiem początkowym u(x,0)=g(x), stabilizuje się do a, tzn. $\lim_{t\to\infty}u(x,t)=a$ niemal jednostajnie ze względu na x.

2

Zadanie 10. Rozważamy zagadnienie Cauchy'ego dla tak zwanego *lepkościowego równania Burgersa*:

$$\begin{cases} u_t + uu_x = u_{xx} & \text{dla } x \in \mathbb{R}, t > 0 \\ u(x, 0) = f(x) & \text{dla } x \in \mathbb{R}. \end{cases}$$

Pokaż, że przy pomocy zamiany zmiennych $u=C\frac{v_x}{v}$ dla pewnego C sprowadza się ono do zagadnienia Cauchy'ego dla równania ciepła z warunkiem początkowym

$$v(x,0) = \exp\left\{-\frac{1}{2} \int_0^x f(s) \, \mathrm{d}s\right\}.$$

Równanie Laplace'a:
$$-\Delta u = 0$$

Zadanie 11. Wykaż, że równanie Laplace'a jest niezmiennicze na obroty tzn. jeżeli u jest harmoniczna w \mathbb{R}^d i A jest macierzą ortogonalną to w(x) = u(Ax) jest harmoniczna w \mathbb{R}^d .

Zadanie 12. Udowodnij poniższe własności funkcji harmonicznych:

- a) *Twierdzenie Harnacka*: Jeżeli ciąg funkcji harmonicznych $(u_n)_{n\in\mathbb{N}}$ w obszarze $\Omega\subset\mathbb{R}^d$ jest zbieżny niemal jednostajnie do funkcji u, to u jest funkcją harmoniczną w Ω .
- b) *Twierdzenie Liouville'a*: Ograniczona funkcja harmoniczna w \mathbb{R}^d jest funkcją stałą.

WSKAZÓWKA: Użyj własności wartości średniej charakteryzującej funkcje harmoniczne.

Zadanie 13. Znajdź wartości własne i funkcje własne operatora Laplace'a w prostokącie $(0,a) \times (0,b)$, tzn. wyznacz $\lambda = \lambda_k$ i $u = u_k$ spełniające równanie $-\Delta u = \lambda u$ w $(0,a) \times (0,b)$ i warunek Dirichleta u = 0 na brzegu prostokąta.

Zadanie 14. Załóżmy, że u jest funkcją hamoniczną w zbiorze otwartym Ω . Pokaż, że funkcje $|\nabla u|^2$ oraz $\varphi \circ u$, dla wypukłej i gładkiej φ , są podharmoniczne.

Zadanie 15. Skonstruuj funkcję Greena dla półprzestrzeni $\mathbb{R}^d_+ = \{x \in \mathbb{R}^d : x_d > 0\}.$