

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik



## Thermodynamik 1 Kapitel 6

## Kapitel 6: Linksläufiger Kreisprozess

- 6.1 Linksläufiger Stirling-Prozess
  - 6.1.1 Stirling-Prozess als Kältemaschine
  - 6.1.2 Exergetischer Wirkungsgrad der Kältemaschine
  - 6.1.3 Leistungszahl der Kältemaschine
- 6.2 Kompressionskältemaschine
- 6.3 Kompressionswärmepumpe
  - 6.3.1 Leistungszahl und Wirkungsgrad
  - 6.2.3 Exergieverlust der Wärmepumpe
  - 6.3.3 Wärmepumpe: Anwendungsbeispiele
- 6.4 Joule-Thomson-Effekt



Fachgebiet Thermodynamik und Thermische Verfahrenstechnik
Fakultät III – Prozesstechnik

# 6.1 Linksläufiger Stirling-Prozess

Der **Stirlingmotor** (rechtsläufiger Prozess) wurde vom schottischen Theologen Robert Stirling erfunden

- ⇒ Patent 1816 (70 Jahre vor Otto und Diesel)
- ⇒ In Vergessenheit geraten bis 1938 (durch Firma Phillips wieder aufgenommen)

#### Vor- und Nachteile

- + Ruhiger Lauf
- + nahezu geräuschlos
- hohe Herstellungskosten
- hohes Gewicht im Vergleich zur Leistung





Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

# 6.1 Linksläufiger Stirling-Prozess

 Linksläufiger Stirling-Prozess im p,v-Diagramm (Kältemaschine)

 Linksläufiger Stirling-Prozess im T,s-Diagramm



• Der Stirling-Prozess ist einer der ganz wenigen Kreisprozesse, an denen sich die Umkehrbarkeit zeigen lässt

 $2 \rightarrow 3$ 

Isochore

 $4 \rightarrow 1$ 





# 6.1 Linksläufiger Stirling-Prozess

 $3 \rightarrow 4$ 









## 6.1.1 Stirling-Prozess als Kältemaschine

- Im Fall von Kältemaschinen erfolgt die Wärmezufuhr bei  $T < T_a$ , die Wärmeabfuhr bei  $T \approx T_a$ , wobei die  $T_a$  Umgebungstemperatur ist
- Für linksläufige Kreisprozesse gilt ganz allgemein

$$W_{\rm t} = \int v dp + \sum \varphi_{\rm ii} > 0$$
, Arbeit wird aufgenommen

$$\sum q_{ii} = -w_{t} < 0$$
, Wärme wird abgegeben

⇒ Wärme wird bei niedriger Temperatur aufgenommen und unter Aufnahme von technischer Arbeit bei hoher Temperatur wieder abgegeben

Kältemaschine ⇒ "Arbeit-Wärmeentzug-Prozess"



## 6.1.1 Stirling-Prozess als Kältemaschine

Für den linksläufigen Stirling-Prozess ergibt sich

1 → 2: Isotherme Wärmezufuhr, Expansion (Nutzen)

$$W_{12} = -RT_1 \cdot \ln\left(\frac{V_2}{V_1}\right), \quad q_{12} = RT_1 \cdot \ln\left(\frac{V_2}{V_1}\right) \quad \text{aus } -\int \rho \, dv$$

2 → 3: Isochore Erwärmung, Erhöhung des Drucks (innere Wärmeübertragung)

$$w_{23} = 0, q_{23} = 0$$

 $q_{23}$  hebt sich gegen  $q_{41}$  auf; das Gas selbst nimmt jedoch Wärme auf

3 → 4: Isotherme Wärmeabfuhr, Kompression (Abwärme)

$$w_{34} = -RT_3 \cdot \ln\left(\frac{v_4}{v_3}\right), q_{34} = RT_3 \cdot \ln\left(\frac{v_4}{v_3}\right)$$

**4** → **1**: Isochore Abkühlung, Absenkung des Drucks (innere Wärmeübertragung)

$$W_{41} = 0$$
,  $q_{41} = 0$ 

Fakultät III – Prozesstechnik



## 6.1.2 Exergetischer Wirkungsgrad der Kältemaschine

• Mit  $T_1 = T_2 = T_K$ ,  $v_1 = v_4 = v_{min}$ ,  $T_3 = T_4 = T_a$  und  $v_2 = v_3 = v_{max}$  folgt

$$w_{\rm t} = R(T_{\rm a} - T_{\rm K}) \cdot \ln \left( \frac{V_{\rm max}}{V_{\rm min}} \right)$$

$$q_{\text{Nutz}} = q_0 = RT_{\text{K}} \cdot \ln \left( \frac{v_{\text{max}}}{v_{\text{min}}} \right)$$

- Der Nutzen der Kältemaschine ist die bei niedriger Temperatur abgeführte Wärme, der dazu notwendige Aufwand ist die Antriebsleistung
  - ⇒ Für den **exergetischen Wirkungsgrad** der Kältemaschine gilt

$$\eta_{\text{ex}} = \frac{\dot{E}_{Q_0}}{P} = \frac{e_{q_0}}{w_{\text{t}}} = \frac{\left| \left( 1 - \frac{T_{\text{a}}}{T_{\text{K}}} \right) \cdot q_0 \right|}{w_{\text{t}}}$$

 Die Exergie von Wärme, die bei T < T<sub>a</sub> zugeführt wird, ist negativ – darum Betragsstriche



## 6.1.3 Leistungszahl der Kältemaschine

- Probleme bereitet die Definition eines thermischen Wirkungsgrads für Kältemaschinen, da ein Verstoß gegen die Konvention Wirkungsgrad ≤1 möglich ist
- Wie der reversible rechtsläufige hat auch der reversible linksläufige Stirling-Prozess keine Exergieverluste, wenn  $T_3 = T_4 = T_a$  und  $T_1 = T_2 = T_K$  erreicht würde ( $\eta_{ex} = 1$ )
- Damit folgt für den idealen Kälteprozess

$$q_{\mathsf{Nutz}} = q_{\mathsf{K}} = rac{T_{\mathsf{K}}}{T_{\mathsf{a}} - T_{\mathsf{K}}} \cdot w_{\mathsf{t}}$$

- Beim rechtsläufigen Prozess ist der thermische Wirkungsgrad durch den Carnot-Faktor begrenzt, weil die zugeführte Wärme anergiebehaftet ist
- Beim linksläufigen Prozess kann der energetische Nutzen  $q_{\text{Nutz}}$  größer werden als der Aufwand, weil der exergetische Anteil der zugeführten Wärme klein ist, wenn  $T_{\text{a}}-T_{\text{K}}$  klein ist

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

## 6.1.3 Leistungszahl der Kältemaschine

• Statt thermischem Wirkungsgrad (muss definitionsgemäß  $\leq$  1 sein) wird für die Kältemaschine der Begriff **Leistungszahl**  $\varepsilon_{\kappa}$  verwendet

$$\varepsilon_{\rm K} = \frac{\dot{Q}_0}{P_{\rm Antrieb}} = \frac{q_0}{\dot{w}_{\rm =const.}} \frac{q_0}{w_{\rm t}}$$

• Für eine reversible Kältemaschine mit  $\eta_{ex}$  = 1 ergibt sich

$$\varepsilon_{\rm K,rev.} = \frac{T_{\rm K}}{T_{\rm a} - T_{\rm K}} \in [0...\infty]$$

- Leistungszahlen sind zwar anschauliche Parameter, hängen aber sehr stark vom Temperaturniveau im Kühlraum ab
- Die Leistungszahl der Kältemaschine eines Gefrierschranks ist zum Beispiel immer kleiner als die der Kältemaschine eines vergleichbaren Kühlschranks
- ⇒ Kälteprozesse mit unterschiedlichen Temperaturniveaus können nur anhand ihrer exergetischen Wirkungsgrade sinnvoll miteinander verglichen werden
- Technisch wird der linksläufige Stirling-Prozess in der von Phillips vor allem für den Laborbedarf vertriebenen "Gaskältemaschine" eingesetzt
- Gaskältemaschinen erreichen Temperaturen, die niedrig genug sind, um Luft und Stickstoff zu verflüssigen (ca. 77 K) (1965 im einstufigen Prozess sogar bis 20 K)



## 6.2 Kompressionskältemaschine

- Der am weitesten verbreitete Kältemaschinentyp ist die Kompressionskältemaschine
  - ⇒ Haushaltskühlschränke
- $1 \rightarrow 2$ : Irreversible Kompression, Leistungszufuhr
- 2 → 3: Isobare Wärmeabfuhr, Kondensation, Unterkühlung
- 3 → 4: Drosselung auf unteres Druckniveau ohne Leistungsabgabe
- **4** → **1:** Isobare Wärmeaufnahme, Verdampfung, Überhitzung
- Die Entspannung 3 → 4 könnte prinzipiell z.B. auch über eine Kolbenmaschine mit Leistungsabgabe erfolgen





Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik



## 6.2 Kompressionskältemaschine

⇒ Die Berechnung des Kompressionsschritts 1 → 2 erfolgt analog zur Berechnung von Entspannungsturbinen (zunächst isentrope Zustandsänderung, dann Wirkungsgrad berücksichtigen)

$$\eta_{\text{sV}} = \frac{h_{2\text{s}} - h_{1}}{h_{2} - h_{1}}$$

Berechnung des Zustands am Austritt der Drossel

1. HS: 
$$q_{34} + w_{t,34} = h_4 - h_3 + \underbrace{\frac{1}{2}(c_4^2 - c_3^2) + g \cdot (z_4 - z_3)}_{= 0}$$

- es wird keine Wärme zu- oder abgeführt,  $q_{34} = 0$
- es wird keine Arbeit zu- oder abgeführt,  $W_{t,34} = 0$

$$\Rightarrow h_4 = h_3$$

- ⇒ Am Ein- und Austritt der Drossel sind die Enthalpien gleich
- ⇒ Die Entropie nimmt jedoch stark zu ⇒ Verluste durch Irreversibilität



## 6.2 Kompressionskältemaschine

- Der energetische Aufwand ist die Antriebsleistung des Verdichters
- Der energetische Nutzen ist die bei der Verdampfung des Kältemittels aufgenommene Wärme

$$\varepsilon_{K} = \frac{\dot{Q}_{0}}{P_{12}} = \frac{q_{41}}{w_{t,12}} \in [0...\infty]$$

$$\eta_{\text{ex}} = \frac{\dot{E}_{Q_{41}}}{P_{12}} = \frac{\left[1 - \frac{T_{\text{a}}}{T_{\text{m,41}}}\right] \cdot q_{0}}{W_{\text{t,12}}} \in [0...1]$$

- T<sub>m,41</sub> ist im Allgemeinen nicht konstant
- Die Temperatur im Kühlraum (bzw. der Wärmeaufnahme auf der Seite des Arbeitsmediums) bestimmt das untere Druckniveau (Dampfdruck des Arbeitsmediums)
- Die Temperatur der Umgebung (bzw. der Wärmeabgabe auf der Seite des Arbeitsmediums) bestimmt das obere Druckniveau (Dampfdruck des Arbeitsmediums)



## 6.3 Kältemaschine und Wärmepumpe

- Kreisprozesse lassen sich für verschiedene Zwecke nutzen
- Rechts- und linksläufige Zyklen resultieren in objektiv unterschiedlichen Prozessen (und Anlagen)
- Zum Teil genügen unterschiedliche Temperaturniveaus, um dem Prozess eine andere technische Bedeutung zu geben
- Die Prozesse von Kältemaschine und Wärmepumpe sind identisch, laufen jedoch auf unterschiedlichem Temperaturniveau ab





## 6.3 Kompressionswärmepumpe

- Prozess der Kompressionswärmepumpe
- $1 \rightarrow 2$ : Irreversible Kompression, Leistungszufuhr
- 2 → 3: Isobare Wärmeabfuhr, Kondensation, Unterkühlung
  (Nutzen der Wärmenumge)
  - (Nutzen der Wärmepumpe)
- 3 → 4: Drosselung auf unteres Druckniveau ohne Leistungsabgabe
- 4 → 1: Isobare Wärmeaufnahme, Verdampfung, Überhitzung(Nutzen der Kältemaschine)
- Der Prozess ist identisch mit dem der Kältemaschine, Temperaturniveaus und Definition des Nutzens sind aber anders







## 6.3.1 Leistungszahl der Wärmepumpe

- Der **Nutzen** der Wärmepumpe ist der Wärmestrom  $\dot{Q}_c = \dot{Q}_{23}$ , der bei er Vorlauftemperatur der Heizung an das Heizungswasser abgegeben wird
- Der **Aufwand** ist die Antriebsleistung  $P_{\rm e} = P_{12}$  des Verdichters
- Nicht berücksichtigt wird die aus der Umgebung aufgenommene Wärme  $\dot{Q}_0 = \dot{Q}_{41}$  (bei der Kältemaschine wird die an die Umgebung abgegebene Wärme  $\dot{Q}_c = \dot{Q}_{23}$  nicht berücksichtigt)
- Leistungszahl der Wärmepumpe  $\varepsilon_{WP} = \frac{|Q_c|}{P_e} = \frac{|q_{23}|}{W_{t,12}}$
- Wegen  $\sum \dot{Q}_{ij} + \sum P_{ij} = 0$  folgt  $\left| \dot{Q}_{c} \right| = \dot{Q}_{0} + P_{e}$   $\varepsilon_{WP} = \frac{\left| \dot{Q}_{c} \right|}{P_{e}} = \frac{\left| \dot{Q}_{0} \right|}{P_{e}} = \frac{\dot{Q}_{0} + P_{e}}{P_{e}} = \varepsilon_{K} + 1$
- ⇒ Bei identischen Prozessen ist die Leistungszahl der Wärmepumpe definitionsbedingt um 1 größer als die der Kältemaschine





Der exergetische Wirkungsgrad der Wärmepumpe ist definiert als

$$\eta_{\text{ex,WP}} = \frac{\left|\dot{\mathcal{E}}_{\dot{Q}_{c}}\right|}{P_{e}} = \frac{\left(1 - \frac{T_{a}}{T_{\text{m,23}}}\right) \cdot \left|q_{23}\right|}{W_{\text{t,12}}}$$

mit 
$$T_{m,23} = \frac{h_3 - h_2}{s_3 - s_2}$$

• Für einen reversiblen Prozess mit  $T_{m2,3} = T_H$  folgt mit  $\eta_{ex,WP} = 1$  für die Leistungszahl der Wärmepumpe

$$\varepsilon_{\text{WP,rev}} = \frac{|q_{23}|}{w_{\text{t,12}}} = \frac{1}{\left(1 - \frac{T_{\text{a}}}{T_{\text{H}}}\right)} = \frac{T_{\text{H}}}{T_{\text{H}} - T_{\text{a}}}$$

- ⇒ Mit wachsender Temperaturdifferenz zwischen Umgebung (Wärmequelle) und Heizungsvorlauf wird die Leistungszahl von Wärmepumpen schlechter
- ⇒ Möglichst hohe Temperatur der Wärmequelle (Grundwasser)
- ⇒ Möglichst niedrige Temperatur des Heizungsvorlaufs (Fußbodenheizung)



## 6.3.2 Exergieverluste der Wärmepumpe

- Liegt die Temperatur  $T_{\rm a^*}$  der Wärmequelle über der Umgebungstemperatur, wird dem Prozess Exergie zugeführt, die im exergetischen Wirkungsgrad nicht berücksichtigt ist
- $\Rightarrow$  Unsinnige Ergebnisse für  $\eta_{\text{ex,WP}}$
- ⇒ Exergetische Analyse der einzelnen Teilprozesse ist sinnvoller als die Reduktion auf einen Wirkungsgrad
- Exergieänderung des Stoffstroms

$$E_{2}=H_{2}-H_{a}-T_{a}(S_{2}-S_{a})$$

$$-E_{1}=H_{1}-H_{a}-T_{a}(S_{1}-S_{a})$$

$$E_{2}-E_{1}=H_{2}-H_{1}-T_{a}(S_{2}-S_{1})$$

hermo



# 6.3.2 Exergieverluste der Wärmepumpe

 Der Exergieverlust im (adiabaten) Verdichter hängt unmittelbar mit dem Wirkungsgrad des Verdichters zusammen



hermo



# 6.3.2 Exergieverluste der Wärmepumpe

 Der Exergieverlust in der Drossel hängt bei gegebenen Drücken vom Verlauf der Isenthalpen (Stoffeigenschaft) ab



$$\Delta \dot{E}_{V,Drossel} = \dot{m} \cdot T_a \cdot (s_4 - s_3)$$

「hermo



## 6.3.2 Exergieverluste der Wärmepumpe

Der Exergieverlust bei der Wärmeaufnahme hängt von der (treibenden)
 Temperaturdifferenz ab



「hermo



# 6.3.2 Exergieverluste der Wärmepumpe

 Die Exergieverluste auf der Seite der Heizung (Kondensator und Heizkörper) können zusammengefasst werden





## 6.3.2 Exergieverluste der Wärmepumpe

zu: zugeführt (Umgebung)

ab: abgeführt (Fluid)

$$\Delta E_{Q} = \int T_{a} dS = T_{a} \int dS$$

$$dS = dQ \left( \frac{1}{T_{ab}} - \frac{1}{T_{zu}} \right) \quad T_{a}$$

$$\Delta \dot{S} = \dot{Q} \; rac{T_{\mathsf{zu}} - T_{\mathsf{ab}}}{T_{\mathsf{zu}} \cdot T_{\mathsf{ab}}}$$

$$mit \dot{Q} = \dot{m}(h_1 - h_4)$$



$$\Delta \dot{E}_{V,Heizseite} = \dot{m} \cdot T_{a} \cdot \frac{T_{m,23} - T_{R}}{T_{m,23} \cdot T_{R}} \cdot (h_{2} - h_{3})$$

hermo



## 6.3.2 Exergieverlust: Einfluss der Stoffeigenschaften

## Hier für die Kältemaschine:

 Unterschiedliche K\u00e4ltemittel beeinflussen insbesondere die Verteilung der Verluste auf die einzelnen Teilprozesse



Gleiche Temperaturniveaus und gleiche min. Temperaturdifferenz

hermo



# 6.3.2 Exergieverlust: Einfluss der Stoffeigenschaften

## Hier für die Kältemaschine:



⇒ Optimierung in Abhängigkeit vom verwendeten Kältemittel





# 6.3.3 Wärmepumpen: Anwendungsbeispiele

Wärmepumpen kommen in einer Vielzahl von technischen Anwendungen vor

| Objekt                               | Wärmequelle                         | Nutzwärme für                | Leistung |
|--------------------------------------|-------------------------------------|------------------------------|----------|
| Schulzentrum                         | Umgebungsluft                       | Heizung                      | 1400 kW  |
| Freibad                              | Meerwasser                          | Schwimmbecken,<br>Warmwasser | 630 kW   |
| Großküche                            | Abwärme Kochstellen                 | Spülwasser                   | 70 kW    |
| Industriebet. mit Druckluftbedarf    | Ölkühler Schrauben-<br>kompressoren | Heizung                      | 250 kW   |
| Brauerei                             | Gärkeller, Spülwasser               | Prozeßwärme                  | 400 kW   |
| Lebensmittelind.                     | Abluft Trocknungspro.               | Zuluft Trocknungspro.        | 330 kW   |
| Kunststoffverarb.<br>Betrieb (Lego!) | Kühlwasser Spritz-<br>gießmaschinen | Heizung Roh-<br>material     | 1250 kW  |

öffentliche Hand

Gewerbe

Industrie

Der Massenmarkt wird von Wärmepumpen für die Beheizung von Privathäusern dominiert



#### 6.4 Joule-Thomson-Effekt

- Der Joule-Thomson-Effekt, auch als Drosseleffekt bezeichnet, beschreibt die Temperaturänderung eines Gases bei isenthalper Drosselung, wobei keine Arbeit oder Wärme mit der Umgebung ausgetauscht wird
- Ob die Temperatur bei isenthalper Druckabsenkung zu- oder abnimmt hängt vom Zustand und den molekularen Wechselwirkungen des Fluids ab





James Prescott Joule

William Thomson

- Bei Raumtemperatur kühlen alle Gase, außer Wasserstoff, Helium und Neon, bei adiabater Expansion ab → Anwendung: z.B. Luftverflüssigung
- Abkühleffekt:
  - Mit der Expansion nimmt der Abstand zwischen den Molekülen zu, es muss also Arbeit gegen die anziehenden Wechselwirkungskräfte verrichtet werden
  - Dadurch nimmt die kinetische Energie der Moleküle ab, was zu einer Absenkung der Temperatur führt



#### 6.4 Joule-Thomson-Effekt

Der Joule-Thomson-Koeffizient gibt die Temperaturänderung aufgrund der Druckänderung bei konstanter Enthalpie an

$$\mu = \left(\frac{\partial T}{\partial \rho}\right)_{H}$$

- ⇒ Steigt die Temperatur mit abnehmendem Druck, so ist der Koeffizient negativ ( $\mu$  < 0: Erwärmung)
- ⇒ Nimmt die Temperatur bei der Drosselung ab, so wird der Koeffizient positiv ( $\mu > 0$ : Abkühlung)

Druck abhängig ist







**Thermo** 



# 6.4 Joule-Thomson-Effekt





# 6.4 Joule-Thomson-Effekt

| Gas                                  | maximale             | Kritische          | T <sub>i</sub> / T <sub>c</sub> |
|--------------------------------------|----------------------|--------------------|---------------------------------|
|                                      | Inversionstemperatur | Temperatur         |                                 |
|                                      | T <sub>i</sub> [K]   | T <sub>c</sub> [K] |                                 |
|                                      |                      |                    |                                 |
|                                      |                      |                    |                                 |
| Kohlenstoffdioxid (CO <sub>2</sub> ) | 1353,8               | 304,1              | 4,45                            |
| Argon (Ar)                           | 763,3                | 150,7              | 5,07                            |
| Sauerstoff (O <sub>2</sub> )         | 757,4                | 154,6              | 4,90                            |
| Luft                                 | 645,5                | 132,5              | 4,87                            |
| Stickstoff (N <sub>2</sub> )         | 607,9                | 126,2              | 4,81                            |
|                                      |                      |                    |                                 |
| Neon (Ne)                            | 220,5                | 44,5               | 4.96                            |
| Wasserstoff (H <sub>2</sub> )        | 200,8                | 33,1               | 6,07                            |
| Helium (He)                          | 45,5                 | 5,2                | 8,75                            |





### 6.4 Joule-Thomson-Effekt

#### Linde-Verfahren

- Verfahren zur Verflüssigung von Luft unter Ausnutzung des Joule-Thomson-Effekts
- Gas bei hohem Druck wird im Gegenstrom vom expandierten und abgekühlten Gas vorgekühlt
- Verflüssigung von Luft, CO<sub>2</sub>, N<sub>2</sub>, ... ohne Vorkühlung bei Raumtemperatur möglich
- · Vorkühlung z.B. für Wasserstoff und Helium notwendig



 Claude-Verfahren: Drosselung wird teilweise durch adiabate Expansion ersetzt, was zu einer größeren Ausbeute an flüssiger Luft führt