

Power Transmission

FOR DRIVES WITH OPTIBELT OMEGA HL / OMEGA HP AND OPTIBELT OMEGA TIMING BELTS

Technical manual for optibelt OMEGA, OMEGA HP and OMEGA HL timing belts

Optibelt OMEGA timing belts have been developed for use in high performance drives. Drive speed is transmitted synchronously, i.e. without speed loss, and with a constant transmission ratio.

The Optibelt OMEGA tooth profile makes possible significantly reduced running noise levels. The teeth are formed to ensure that they mesh perfectly and with minimal friction, into the pulley teeth.

Optibelt OMEGA timing belts will run in HTD® and RPP® pulleys. All important information for use of the belts and the methods for calculating drives with OMEGA HP, OMEGA HL and OMEGA timing belts are contained in this technical manual.

The belt characteristics described may change due to various influences. Thus, the drives must be designed based on their future use (or in a way that comes close to their future use). If you have any further questions, please make use of the free service offered by our Applications Engineering Department.

1

Power Transmission

Produktionsstätten und Vertriebsorganisation der Arntz Optibelt Gruppe Manufacturing and Distribution Organisation of the Arntz Optibelt Group

Produktionsstätten Factories

Arntz Optibelt GmbH
Postfach 10 01 32 · D·37669 Höxter/Germany
Corveyer Allee 15 · D·37671 Höxter/Germany
Tel. +49 (0) 52 71-6 21
Fax +49 (0) 52 71-97 62 00

A & M Belting Company Ltd.

Ballyraine Industrial Estate Letterkenny Co. Donegal

Ireland

Tel. +353 (0) 74 91-2 50 66 Fax +353 (0) 74 91-2 50 61 a+m@optibelt.com

Vertriebsorganisation Deutschland Distribution Organisation Germany

Optibelt GmbH

Corveyer Allee 15 37671 Höxter Tel. +49 (0) 52 71-6 21 Fax +49 (0) 52 71-97 62 00

info@optibelt.com

www.optibelt.com

Optibelt GmbH Verkaufsbüro Nord **North Sales District**

Corveyer Allee 15 D-37671 Höxter Tel. +49 (0) 52 71-6 23 03 Fax +49 (0) 52 71-97 62 00

South Sales District Pfauhauser Straße 43 D-73240 Wendlingen Tel. +49 (0) 70 24-71 00 Fax +49 (0) 70 24-5 27 92

Verkaufsbüro Süd

Vertriebsorganisation Europa Distribution Organisation Europe

Finnland Finland Optibelt Finland Oy

PL 58

Lampputie 4 FIN-00751 Helsinki

Puh. +358-9-3 46 14 00 Faksi +358-9-3 46 15 00

optibelt@co.inet.fi

Großbritannien United Kingdom Optibelt (UK) Ltd. 5 Bishops Court Winwick Quay

GB-Warrington WA2 8QY

Cheshire Tel. +44-19 25-41 33 11 Fax +44-19 25-57 37 51

optibelt@optibeltuk.co.uk

Frankreich France

Optibelt France S.A.S 54, Rue de la Gare B.P. N° 13

F-68520 Burnhaupt-le-Haut Tél. +33-3-89 62 75 10 Fax +33-3-89 62 75 19

optibelt-france@optibelt.fr

Polen Poland

biuro@optibelt.net.pl

Optibelt Polska Sp. z o.o. ul. Budowlanych 11 PL-41-303 Dąbrowa Górnicza Tel. +48-32-260 1175/76 Faks+48-32-260 4208

Schweden Sweden Optibelt Skandinaviska AB Stadiongatan 60 S-21762 Malmö Tel. +46-40-59 21 20

Direct +46-40-59 21 27

Fax +46-40-49 90 10 optibelt@optibelt.se

Niederlande Netherlands Optibelt Nederland B.V.

Postbus 39

NL-2140 AA Vijfhuizen Schipholweg 955 NL-2143 CE Boesingheliede

Tel. +31-23-5 55 16 51 Fax +31-23-5 55 19 26

t-online@optibelt.nl

Schweiz Switzerland

Optibelt AG

Bodenackerstrasse 70 CH-4657 Dulliken

Tel. +41-62-285 50 00 Fax +41-62-285 50 01

vertrieb@optibelt.ch

Ost-Europa

Eastern Europe GUS

Optibelt Russland Varshavskoje Shosse,

125D, Korpus 1 113587 Moskau

Tel./Fax +7 09 59 95 05 41 Mobile +7 90 37 74 35 34

optibeltrus@ccs.ru

D-07422 Bad Blankenburg Tel. +49 (0) 3 67 41-48 30 Fax +49 (0) 3 67 41-4 21 01

Optibelt Produktions GmbH & Co. KG Carl-Vollrath-Straße 4

Arntz Belting Company Ltd.

Pennyburn Pass Londonderry BT48 OAE Northern Ireland

Tel. +44-28 71-26 12 21 Fax +44-28 71-26 33 86

abc@optibelt.com

Optibelt GmbH

Transac S.A. 54, Rue de la Gare F-68520 Burnhaupt-le-Haut/France Tél. +33-3-89 62 75 20 Fax +33-3-89 62 75 29

Dänemark Denmark Optibelt Danmark A/S International House

Center Boulevard DK-2300 København S

Tlf. +45-32-47 32 34 Fax +46-40-49 90 10

optibelt@optibelt.dk

Belgien Belgium Optibelt GmbH

Filiaal België

Cornelis Schutstraat 28 B-2100 Deurne

Tél. +32-3-3 25 22 75

Fax +32-3-3 26 09 55

optibelt@skynet.be

Spanien Spain

Optibelt España, S.A. Apartado 1141 Rois de Corella, 12

E-08205 Sabadell Tel. +34-93-7 20 79 60 Fax +34-93-7 11 64 90

administracion@optibelt.net

Südost-Europa

South Eastern Europe

Optibelt GmbH Südost-Europa · Office Wien

Carlbergergasse 38 A-1230 Wien

office@optibelt.at

Tel. +43-1-8 65 31 00 19 Fax +43-1-8 65 31 00 27

Österreich Austria Optibelt Österreich GmbH Carlbergergasse 38 A-1230 Wien Tel. +43-1-8 65 43 97 Fax +43-1-8 65 43 96

Italien Italy Optibelt AG

office@optibelt.at

Via Dandolo, 1 I-20025 Legnano (Mi) Tel. +39-0331-48 10 20 Fax +39-0331-48 10 75

optibeltitalia@libero.it

Vertriebsorganisation Nord- u. Südamerika Distribution Organisation North & South America

USA USA Optibelt Corporation
1120 W. National Avenue
Addison, Illinois 60 101/USA
Tel. +1-630-628-84 00 Fax +1-630-628-61 75 optibelt@msn.com

Kanada Canada

Optibelt (Canada) Inc.
351 Steelcase Road West, Unit 8 & 9
L3R 4H9 Markham, Ontario/Canada
Tel. +1-905-477-8114
Fax +1-905-477-0857

info@optibelt.ca

Brasilien Brasil

Optibelt do Brasil Ltda. Rua Henrique Monteiro Nr. 90 10 Andar-Pinheiros

CEP 05423-020 São Paulo-SP/Brasil optibeltdobrasil@optibelt.com

Vertriebsorganisation Asien Distribution Organisation Asia

Singapur Singapore Optibelt Asia Pacific Pte. Ltd.

sales@optibelt.com.sg

No. 4 Loyang Way 1, # 01-02/03 Singapore 508708 Tel. +65-6545 4682 Fax +65-6545 4685

China China

Optibelt Power Transmission (Shanghai) Co., Ltd. # 55 Miaosan Road, Songjiang District Shanghai 201612/P.R. China
Tel. +86-21-5768 7465
Fax +86-21-5768 7462

sales@optibelt.com.cn

www.optibelt.com

Content

Introduction	1 2 4
Product description Optibelt OMEGA HL/HP and Optibelt OMEGA timing belts, standard properties Optibelt OMEGA HL timing belts Optibelt OMEGA HL, properties, advantages and application examples. Standard range Optibelt OMEGA HL, sections and dimensions Optibelt OMEGA HP timing belts Optibelt OMEGA HP, advantages and examples of application Standard range Optibelt OMEGA HP, sections and dimensions Optibelt OMEGA timing belts Standard range Optibelt OMEGA, sections and dimensions	5 6 7 8-9 10 11 12-15 16 17-21
Calculation Explanation of the symbols Guidelines for the selection Optibelt OMEGA HL Guidelines for the selection Optibelt OMEGA HP Guidelines for the selection Optibelt OMEGA Service factors Supplementary factors Formulae and calculation example Belt tension Calculation with Optibelt CAP drive calculation programme	22 23 24 25 26 27 28-29 30 31
Power ratings Optibelt OMEGA HL timing belts 8M HL Optibelt OMEGA HL timing belts 14M HL Optibelt OMEGA HP timing belts 3M HP Optibelt OMEGA HP timing belts 5M HP Optibelt OMEGA HP timing belts 8M HP Optibelt OMEGA HP timing belts 14M HP Optibelt OMEGA timing belts 2M Optibelt OMEGA timing belts 3M Optibelt OMEGA timing belts 5M Optibelt OMEGA timing belts 8M Optibelt OMEGA timing belts 8M Optibelt OMEGA timing belts 14M	32 33 34 35 36 37 38 39 40 41 42
Dimensions and tolerances Standard timing pulleys, pitch diameter and outside diameter Optibelt ZRS	43 44-47
HTD® timing pulleys for cylindrical bore HTD® timing pulleys for taper bushes Optibelt TB	48-55 56-61
Taper bushes	62
Recommended special constructions	63 64-65
Design hints Flanged pulleys/tension idlers Installation and maintenance Problems – Causes – Remedies	66 67 68
Data sheet for the calculation/checking of drives with Optibelt OMEGA HL/HP and OMEGA timing belts	69

Properties of optibelt OMEGA timing belts

Optibelt OMEGA section

The OMEGA section is a further development of the Optibelt $HTD^{@}$ section. Its advantages compared to the $HTD^{@}$ section are: quieter running with the use of standard $HTD^{@}$ pulleys.

optibelt OMEGA HL

On high and low speed drives, the Optibelt OMEGA HL timing belt exceeds the performance of the OMEGA HP by up to $25\,\%$. It was also specially designed for shock loaded drives.

The OMEGA HL achieves supreme operational reliability combined with optimum economic efficiency when newly designed for these types of application.

optibelt *DMEGA HP*

The Optibelt OMEGA HP timing belt reaches a performance level, up to 100% higher than that of Optibelt OMEGA and is especially suited to cost efficient new designs.

The Optibelt OMEGA HP is suitable for both low speed and high speed drives with high power and steady loads.

optibelt *OMEGA*

The Optibelt OMEGA timing belt has the performance level of the established Optibelt HTD® timing belt and is its replacement. The belt is best for medium performance drives in all speed ranges having no heavy shock loading.

optibelt ZR5

Optibelt OMEGA, OMEGA HP and OMEGA HL timing belts are used in Optibelt ZRS-HTD® timing pulleys or in RPP® timing pulleys. For applications in other pulleys, please contact the Optibelt Applications Engineering Department.

Product description optibelt OMEGA HL/HP and optibelt OMEGA timing belts Standard properties

All Optibelt OMEGA HP timing belts have inherent resistance to oil, heat, cold, ozone and tropical conditions. No special labelling is required

Oil resistance

The moderate oil resistance prevents the damaging effects of mineral oils and greases, as long as these materials are not in permanent contact with the timing belt and/or are not present in large quantities. With increased demands for resistance, e.g. to mineral or vegetable oils, the performance of the Optibelt OMEGA timing belts can be improved by the use of special constructions. Please contact the Optibelt Applications Engineering Department.

Temperature resistance

The timing belt can withstand ambient temperatures from \approx -30 °C to +100 °C. Temperatures outside this range lead to premature ageing and embrittlement of the timing belts and thus to their premature failure. The temperature resistance of Optibelt OMEGA timing belts can be extended by the use of special constructions, e.g. to +140 °C. Please contact the Optibelt Applications Engineering Department.

Electrical conductivity (anti static properties)

Electrical conductivity enables the safe discharge of electrostatic charges. This charging can have such a strong impact on timing belts with insufficient electrical conductivity that there is the danger of ignition due to sparking. The use of electrically conductive timing belts requires that the properties be checked according to ISO 9563. The electrical conductivity is confirmed by the issue of an inspection certificate.

Noise emission

The optimised tooth shape and the indent in the tooth tip on the Optibelt OMEGA HP promotes a significantly lower noise level. In combination with the newly developed materials, the noise level is further reduced, even at high speeds and with high belt tensions.

Operational life

Dynamic tests with Optibelt OMEGA HP show that the running times, compared to standard timing belts, are up to 18 times higher. This results in a considerably higher operational safety of the drive.

Efficiency

The specially developed tooth fabric and the flexible belt design make possible a virtually frictionless drive with an efficiency of up to 98 %.

Example of application: roller path

Product description optibelt OMEGA HL timing belts

Construction

Top surface

The top surface of the OMEGA HL as well as the material of the teeth consists of polychloroprene reinforced with aramid fibre. Thus, an even more abrasion resistant surface is in contact with a reverse bend idler. This surface protects the tension cord from environmental influences.

Tension cord

In contrast to the OMEGA HP with glass cord, the OMEGA HL uses a considerably stronger, reinforced glass cord. Thus, the power can be further increased by up to 25%; shock resistance also increases considerably.

Teeth

Below the tension cord and forming the teeth is a polychloroprene compound reinforced with aramid fibre. This ensures a secure power transfer from the pulley to the tension cord. The considerably increased tooth strength (compared to OMEGA) is made possible by the inclusion use of aramid fibres in the compound. This material enables a very good tooth shape maintenance as well as an increased shear strength for every single tooth of the OMEGA HL.

Fabric

The shear strength of the teeth is supported by a solid, extremely tough fabric. The shape of the OMEGA teeth and the minimal friction fabric enable a smooth meshing of the belt tooth into the pulley tooth. In addition, the special polyamide fabric is very wear resistant.

The new high performance timing belt for extremely high loads across the whole speed spectrum

Optibelt has developed this belt in the sections 8M HL and 14M HL especially for drives with high torques and severe shock loads. These types of drives can often be found in general engineering.

For this use, the construction and the material of the timing belt have been optimised in such a way that highest operational reliability paired with optimal economic efficiency is reached when newly designing a drive. Initially the belt will be available in the 8M HL section.

Optibelt OMEGA, OMEGA HP and OMEGA HL timing belts are used in Optibelt ZRS-HTD® pulleys or in RPP® timing pulleys. For applications in other pulleys, please contact the Optibelt Applications Engineering Department.

A reinforced glass tension cord is used. This innovative glass cord distinguishes itself by the combination of the following, important characteristics:

- good resistance to shock loading
- very high dynamic resistance
- very low residual and elastic stretch

Therefore, the belt performance can be increased by an additional 25 %, compared to OMEGA HP. In contrast to an aramid cord, which also has a very high resistance to shock loading, the reinforced glass cord has a considerably lower residual stretch during the running time. Aramid cord has a high residual stretch (see diagram) during running. The minimal tension loss of the reinforced glass cord leads to the maintenance of the section and thus to a load which is distributed more evenly on the teeth during running.

In addition, the reinforced glass cord can also be used at medium and high speeds while the use of the aramid cord is limited to low and medium speeds. In contrast to the aramid cord, the glass cord enables a considerable extension to the range of applications.

Belt tension loss

Product description optibelt OMEGA HL timing belts Properties, advantages and application examples

Comparing power ratings

Section	8M HL	8M HP	8M
Section [mm]	8	8	8
Width [mm]	20	20	20
Pulley diameter [mm]	96.77	96.77	96.77
Speed [min ⁻¹]	600	600	600
Nominal power [kW]	6.20	4.96	2.82

Overview of the advantages and properties of optibelt OMEGA HL:

- dimensionally stable construction with high flexibility
- very low residual and elastic stretch of the cord
- low friction, highly abrasion resistant with high shear strength, therefore,
- up to 2.5 times higher power transmission (an increase of up to 150%) compared to standard OMEGA timing belts.
- approx. 25% increase of the power transmission compared to the established high performance construction OMEGA HP
- suitable for low and high speed, high powered drives
- good resistance to medium and high shock loading
- further extended, very large range of applications

Applications

- Textile machines
- Machine tools
- Compressors
- Printing machines
- Wood working machines
- Paper machines

Advantages and properties of a drive with Optibelt OMEGA HL timing belts in these applications

- reduced drive volume compared to OMEGA HP and in particular to standard OMEGA timing belts, therefore,
- reduced costs for belts and pulleys
- greater options for drive design
- reduced shaft diameters and smaller bearings
- reduced running noise levels
- improved efficiency

Significant cost reduction for the system and high operational reliability for further improvements in the economic efficiency of the new drives.

For additional advantages and characteristics, see Optibelt OMEGA on page 16.

Section	8M HL
t [mm]	8.0
h _s [mm]	5.4
h _t [mm]	3.2

Optibel	ECA	OAA	ш
Oblibei	EGA	OIAI	пь

Optibelt OMEGA 8M HL					
Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth
352 8M HL 480 8M HL 560 8M HL 600 8M HL 640 8M HL	352 480 560 600 640	44 60 70 75 80	1424 8M HL 1440 8M HL 1552 8M HL 1600 8M HL 1760 8M HL	1400 1440 1552 1600 1760	178 180 194 200 220
656 8M HL 680 8M HL 720 8M HL 800 8M HL 880 8M HL	656 680 720 800 880	82 85 90 100 110	1800 8M HL 2000 8M HL 2240 8M HL 2400 8M HL 2600 8M HL	1800 2000 2240 2400 2600	225 250 280 300 325
920 8M HL 960 8M HL 1000 8M HL 1040 8M HL 1080 8M HL	920 960 1000 1040 1080	115 120 125 130 135	2800 8M HL	2800	350
1120 8M HL 1200 8M HL 1280 8M HL 1304 8M HL 1360 8M HL	1120 1200 1280 1304 1360	140 150 160 163 170			

Standard widths: 20 mm, 30 mm, 50 mm, 85 mm (additional lengths and special widths on request)

Order example:

Timing belts: Optibelt OMEGA HL 1200 8M HL 20

1200 = 1200 mm pitch length 8M HL = section and construction 20 = 20 mm belt width

Optibelt OMEGA 14M HL					
Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth
Belt designation		of teeth		[mm]	of teeth

Product description optibelt DMEGA HP timing belts

Construction

Top surface

A durable and flexible top surface protects the tension cord from external influences. In addition, the polychloroprene compound is reinforced with aramid fibres and moderately resistant to mineral oils and humidity and protects from wear due to friction.

Tension cord

The tension cords are reinforced glass fibre counter twisted and laid in pairs. These tension cords have very high tensile strength, very high flexibility and minimal stretch.

Teeth

The teeth consist of a new polychloroprene compound reinforced with aramid fibres, which guarantee high shear strength. They are shaped in such a way and exactly spaced so that they mesh perfectly with the pulley teeth with minimal friction. The indent in the tooth tip promotes quiet running.

Fabric

The specially designed polyamide fabric distinguishes itself by its extraordinarily low friction coefficient and its low noise characteristics. This fabric also protects the teeth from premature wear and cracking

The high performance timing belt for high load, high speed machine drives

Compact synchronous drives are used in the whole field of mechanical drive engineering. High power transmission capability, good running characteristics and high operational safety are only some of the demands made on timing belts. Modern manufacturing techniques and quality inspections during all processing stages ensure products of the highest reliability. Optibelt OMEGA HP high performance timing belts have been especially developed for high load, low and high speed drives that are evenly loaded without heavy shock. Improved materials and optimised production form the basis for this very high performance spectrum.

Optibelt OMEGA, OMEGA HP and OMEGA HL timing belts are used in Optibelt ZRS-HTD® pulleys or in RPP® pulleys. For the applications using other pulleys, please contact the Optibelt Applications Engineering Department.

Example of application: test bench

The new high performance timing belt Optibelt OMEGA 5M HP

In the field of high performance timing belts the Optibelt OMEGA 5M HP has been newly developed for small pulley diameters, short centre distances and high speeds.

The Optibelt OMEGA 5M HP transmits up to 3 times the power of an Optibelt OMEGA 5M (an increase in power of up to 200%). The performance level of the Optibelt OMEGA 5M HP corresponds – with the same pulley diameters – roughly to the level of the considerably larger section Optibelt OMEGA 8M.

Product description optibelt DMEGA HP, advantages and examples of application

Comparing power ratings

Section	8М НР	8M	н
Section [mm]	8	8	12.7
Width [mm]	20	20	19.05
Pulley diameter [mm]	96.77	96.77	97.02
Speed [min ⁻¹]	2850	2850	2850
Nominal power [kW]	21.9	10.8	6.0

Overview of the advantages and characteristics of the Optibelt OMEGA HP

- · dimensionally stable construction with high flexibility
- · low residual and elastic stretch of the cord
- friction and abrasion resistant fabric with high shear strength,
- approximately double the power transmission capability, (section 5M HP approximately treble the power transmission capacity) compared to OMEGA timing belts in their standard construction
- suitable for low and high speed, high load drives
- good resistance to medium and high shock loading
- large range of applications

Preferred areas of application

- Textile machines
- Machine tools
- Compressors
- Printing machines
- Wood working machines
- Paper machines

Advantages and characteristics of a drive with an Optibelt OMEGA HP timing belt in these areas of application

- considerably reduced drive volume when compared to OMEGA timing belts in standard construction, thus,
- reduced costs for belts and pulleys
- greater freedom when designing drives
- reduced shaft diameters and smaller bearings
- reduced running noise levels
- · improved efficiency

Significant cost reduction for the system and high operational reliability for optimum efficiency for new drives.

For additional advantages and characteristics, see Optibelt OMEGA on page 16.

Section	3М НР
t [mm]	3.0
h_s [mm]	2.3
h _t [mm]	1.1

Optibelt	OMEGA	3M HP
ODIIDEII	CIMILDA	3/W I I I

Standard widths: 6 mm, 9 mm, 15 mm (additional lengths and special widths on request) • Non stock items

Order example:

Timing belts: Optibelt OMEGA HP 225 3M HP 9

225 = 225 mm pitch length 3M HP = section and construction 9 = 9 mm belt width

Section	5M HP
t [mm]	5.0
h _s [mm]	3.4
h _t [mm]	1.9

0-4	عامط	O M	EC A	EAA	ЦD
Opti	beir	OM	EGA	2M	HP

Optibelt OMEGA 5M HP					
Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth
265 5M HP 305 5M HP 330 5M HP 350 5M HP 375 5M HP 400 5M HP 425 5M HP 450 5M HP 500 5M HP 500 5M HP 535 5M HP 535 5M HP 565 5M HP 630 5M HP 630 5M HP 630 5M HP 635 5M HP 635 5M HP 700 5M HP 700 5M HP 710 5M HP 740 5M HP 755 5M HP 750 5M HP 755 5M HP 755 5M HP			890 5M HP 900 5M HP 925 5M HP 950 5M HP 1000 5M HP 1050 5M HP 1125 5M HP 1135 5M HP 1200 5M HP 1270 5M HP 1420 5M HP 1420 5M HP 1425 5M HP 1595 5M HP 1595 5M HP 1890 5M HP 1895 5M HP 2000 5M HP 2000 5M HP 2350 5M HP 2350 5M HP 2350 5M HP		

Standard widths: 9 mm, 15 mm, 25 mm (additional lengths and special widths on request)

Order example:

Timing belts: Optibelt OMEGA HP 1000 5M HP 25

1000 = 1000 mm pitch length 5M HP = section and construction 25 = 25 mm belt width

Section		8М НР
t	[mm]	8.0
h _s	[mm]	5.4
h _t	[mm]	3.2

Optibelt	OMEGA	9M HP
----------	--------------	--------------

Spinson Silver					
Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth
352 8M HP 424 8M HP 480 8M HP 512 8M HP 520 8M HP 560 8M HP 600 8M HP 600 8M HP 632 8M HP 632 8M HP 640 8M HP 656 8M HP 712 8M HP 720 8M HP 760 8M HP 776 8M HP 784 8M HP 800 8M HP 800 8M HP 840 8M HP 840 8M HP 840 8M HP 840 8M HP 840 8M HP 840 8M HP 856 8M HP 856 8M HP 896 8M HP 912 8M HP 912 8M HP 920 8M HP 960 8M HP		95 97 98 100 103 105 106 107 110 112 114 115 120 122 125	1040 8M HP 1064 8M HP 1080 8M HP 1120 8M HP 1160 8M HP 1280 8M HP 1304 8M HP 1360 8M HP 1440 8M HP 1440 8M HP 1520 8M HP 1520 8M HP 1600 8M HP 1760 8M HP 2000 8M HP 2240 8M HP 2400 8M HP 2400 8M HP 2800 8M HP	[mm] 1040 1064 1080 1120 1160 1200 1280 1304 1360 1400 1424 1440 1520 1600 1760 1800 2000 2240 24400 2600 2800	130 133 135 140 145 150 160 163 170 175 178 180 190 200 220 225 250 280 300 325 350

Standard widths: 20 mm, 30 mm, 50 mm, 85 mm (additional lengths and special widths on request)

Order example:

Timing belts: Optibelt OMEGA HP 1200 8M HP 20

1200 = 1200 mm pitch length 8M HP = section and construction 20 = 20 mm belt width

Section	14M HP
t [mm]	14.0
h _s [mm]	9.5
h _t [mm]	5.6

I - I-		
Optibelt	OMEGA	14M HP

Optibelt OMEGA 14M HP					
Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth
966 14M HP 1092 14M HP 1190 14M HP 1400 14M HP 1610 14M HP 1778 14M HP 1890 14M HP	966 1092 1190 1400 1610 1778 1890	69 78 85 100 115 127 135	2100 14M HP 2310 14M HP 2450 14M HP 2590 14M HP 2800 14M HP	2100 2310 2450 2590 2800	150 165 175 185 200

Standard widths: 40 mm, 55 mm, 85 mm, 115 mm, 170 mm (additional lengths and special widths on request)

Order example:

Timing belts: Optibelt OMEGA HP 1400 14M HP 55

1400 = 1400 mm pitch length 14M HP = section and construction 55 = 55 mm belt width

Product description optibelt OMEGA timing belts

Construction

High performance Optibelt OMEGA timing belts are the result of a continuing development process. Operational experience with Optibelt ZR and Optibelt HTD® has been applied to this belt generation. Optibelt OMEGA timing belts set the standard for synchronous performance and for positioning drives.

The geometry of the Optibelt OMEGA tooth profile has been adjusted to the established, curvilinear timing pulleys. You can use, for example, Optibelt OMEGA timing belts in HTD® timing pulleys in the pulley sections 3M, 5M, 8M and 14M. Optibelt ZRS HTD® timing pulleys are standard items in our range with pilot bores or bored for Optibelt TB taper bushes. In addition, all OMEGA timing belts can also be used in RPP® timing pulleys. Special timing pulleys for Optibelt OMEGA timing belts are not required.

Top surface

The belt top surface consists of a flexible polychloroprene compound which protects the tension cord from external influences. In addition, it is moderately resistant to mineral oils, humidity and protects from frictional wear.

Tension cord

The tension member is composed of glass fibre tension cords counter twisted and laid in pairs. These tension cords have high tensile strength, very high flexibility and very low stretch.

Teeth

Just like the belt top surface, the teeth consist of a polychloroprene compound guaranteeing high shear strength. The indent in the tooth tip promotes quiet running.

Fabric

The polyamide fabric protects the tooth from premature wear and prevents cracking. At the same time, the low coefficient of friction lowers operating temperature and helps to reduce running noise levels.

Example of application: lawn mowers

Overview of the advantages and characteristics

- synchronous speed
- highest precision
- perceptibly low noise level due to the OMEGA tooth profile
- may be used in standard HTD® and RPP® timing pulleys
- maintenance free
- temperature resistant from -30 °C to +100 °C
- efficiency of up to 98%
- electrical conductivity can be checked to ISO 9563 on request

Section		2M
t	[mm]	2.0
hs	[mm]	1.5
h _t	[mm]	0.7

Optibelt	OMEGA 2M
-----------------	----------

Optibelt OMEGA 2M							
Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Numbe of teeth
90 100 104 112 118	45 50 52 56 59	216 2M 232 2M 250 2M 256 2M 266 2M	216 232 250 256 266	108 116 125 128 133	448 2M 558 2M 560 2M 710 2M 984 2M	448 558 560 710 984	224 279 280 355 492
120 124 130 140 148	60 62 65 70 74	274 2M 280 2M 308 2M 310 2M 328 2M	274 280 308 310 328	137 140 154 155 164	1066 2M 1224 2M	1066 1224	533 612
180 184 188 200	90 92 94 100	330 2M 340 2M 368 2M 370 2M	330 340 338 370	165 170 184 185			
208	104	426 2M	426	213			
	90 100 104 112 118 120 124 130 140 148 180 184	length reeth	Pitch length [mm] Number of teeth Belt designation 90 45 216 2M 100 50 232 2M 104 52 250 2M 112 56 256 2M 118 59 266 2M 120 60 274 2M 124 62 280 2M 130 65 308 2M 140 70 310 2M 148 74 328 2M 180 90 330 2M 184 92 340 2M 188 94 368 2M 200 100 370 2M	Pitch length [mm] Number of teeth Belt designation Pitch length [mm] 90 45 216 2M 216 100 50 232 2M 232 104 52 250 2M 250 112 56 256 2M 256 118 59 266 2M 266 120 60 274 2M 274 124 62 280 2M 280 130 65 308 2M 308 140 70 310 2M 310 148 74 328 2M 328 180 90 330 2M 330 184 92 340 2M 340 188 94 368 2M 338 200 100 370 2M 370	Pitch length [mm] Number of teeth Belt designation Pitch length [mm] Number of teeth 90 45 216 2M 216 108 100 50 232 2M 232 116 104 52 250 2M 250 125 112 56 256 2M 256 128 118 59 266 2M 266 133 120 60 274 2M 274 137 124 62 280 2M 280 140 130 65 308 2M 308 154 140 70 310 2M 310 155 148 74 328 2M 328 164 180 90 330 2M 330 165 184 92 340 2M 340 170 188 94 368 2M 338 184 200 100 370 2M 370 185	Pitch length [mm] Number of teeth Belt designation Pitch length [mm] Number of teeth Belt designation 90 45 216 2M 216 108 448 2M 100 50 232 2M 232 116 558 2M 104 52 250 2M 250 125 560 2M 112 56 256 2M 256 128 710 2M 118 59 266 2M 266 133 984 2M 120 60 274 2M 274 137 1066 2M 124 62 280 2M 280 140 1224 2M 130 65 308 2M 308 154 140 70 310 2M 310 155 148 74 328 2M 328 164 180 90 330 2M 340 170 188 94 368 2M 338 184 200 100 370 2M 370 185	Pitch length [mm] Number of teeth Belt designation Pitch length [mm] Number of teeth Belt designation Pitch length [mm] 90 45 216 2M 216 108 448 2M 448 100 50 232 2M 232 116 558 2M 558 104 558 2M 558 104 52 250 2M 250 125 560 2M 560 2M 560 128 710 2M 710 118 59 266 2M 256 128 710 2M 710 10 118 59 266 2M 266 133 984 2M 984 120 60 274 2M 274 137 1066 2M 1066 124 62 280 2M 280 140 1224 2M 1224 2M 1224 124 1224 2M 188 144 180 90 330 2M 330 165 184 92 340 2M 340 170 188 94 368 2M 338 184 184 200 100 370 2M 370 185 185 185

Standard widths: 3 mm, 6 mm, 9 mm

Order example:

Timing belts: Optibelt OMEGA 180 2M 6

180 = 180 mm pitch length 2M = section 6 = 6 mm belt width

Section	зм
t [mm]	3.0
h _s [mm]	2.3
h _t [mm]	1.1

Optibelt	OMEGA 3M
-----------------	-----------------

Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth
111 3M	111	37	285 3M	285	85	513 3M	513	171
129 3M	129	43	288 3M	288	96	519 3M	519	173
141 3M	141	47	291 3M	291	97	522 3M	522	174
144 3M	144	48	294 3M	294	98	525 3M	525	175
150 3M	150	50	300 3M	300	100	531 3M	531	177
165 3M	165	55	312 3M	312	104	537 3M	537	179
168 3M	168	56	315 3M	315	105	558 3M	558	186
171 3M	171	57	318 3M	318	106	564 3M	564	188
174 3M	174	58	330 3M	330	110	570 3M	570	190
177 3M	177	59	339 3M	339	113	597 3M	597	193
180 3M	180	60	345 3M	345	115	600 3M	600	200
183 3M	183	61	357 3M	357	119	606 3M	606	202
186 3M	186	62	363 3M	363	121	615 3M	615	205
192 3M	192	64	366 3M	366	122	633 3M	633	211
195 3M	195	65	384 3M	384	128	669 3M	669	223
201 3M	201	67	390 3M	390	130	675 3M	675	225
204 3M	204	68	420 3M	420	140	711 3M	711	237
207 3M	207	69	426 3M	426	142	738 3M	738	246
210 3M	210	70	447 3M	447	149	804 3M	804	268
213 3M	213	71	462 3M	462	154	816 3M	816	272
225 3M	225	75	474 3M	474	158	843 3M	843	281
240 3M	240	80	480 3M	480	160	882 3M	882	294
252 3M	252	84	486 3M	486	162	888 3M	888	296
255 3M	255	85	495 3M	495	165	1062 3M	1062	354
267 3M	267	89	501 3M	501	167	1569 3M	1569	523
			Charactered velocity					

Standard widths: 6 mm, 9 mm, 15 mm

Order example:

Timing belts: Optibelt OMEGA 150 3M 15

150 = 150 mm pitch length 3M = section 15 = 15 mm belt width

Se	ection	5M
t	[mm]	5.0
hs	[mm]	3.4
h _t	[mm]	1.9

Optibelt	OMEGA	5 M
Optibeit	OMEGA	ЭM

Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth
180 5M 225 5M 255 5M 265 5M 270 5M	180 225 255 265 270	36 45 51 53 54	575 5M 580 5M 600 5M 610 5M 615 5M	575 580 600 610 615	115 116 120 122 123	980 5M 1000 5M 1035 5M 1050 5M 1100 5M	980 1000 1035 1050 1100	196 200 207 210 220
280 5M 295 5M 305 5M 325 5M 330 5M	280 295 305 325 330	56 59 61 65 66	630 5M 635 5M 640 5M 645 5M 665 5M	630 635 640 645 665	126 127 128 129 133	1125 5M 1135 5M 1200 5M 1270 5M 1400 5M	1125 1135 1200 1270 1400	225 227 240 254 280
340 5M 350 5M 360 5M 365 5M 370 5M	340 350 360 365 370	68 70 72 73 74	670 5M 700 5M 710 5M 720 5M 740 5M	670 700 710 720 740	134 140 142 144 148	1420 5M 1425 5M 1500 5M 1595 5M 1690 5M	1420 1425 1500 1595 1690	284 285 300 319 338
375 5M 385 5M 400 5M 415 5M 425 5M	375 385 400 415 425	75 77 80 83 85	750 5M 755 5M 775 5M 790 5M 800 5M	750 755 775 790 800	150 151 155 158 160	1790 5M 1870 5M 1895 5M 2000 5M 2110 5M	1790 1870 1895 2000 2110	358 374 379 400 422
450 5M 475 5M 490 5M 500 5M 520 5M	450 475 490 500 520	90 95 98 100 104	825 5M 835 5M 850 5M 860 5M 890 5M	825 835 850 860 890	165 167 170 172 178	2350 5M 2525 5M	2350 2525	470 505
525 5M 535 5M 550 5M 560 5M 565 5M	525 535 550 560 565	105 107 110 112 113	900 5M 925 5M 935 5M 950 5M 965 5M	900 925 935 950 965	180 185 187 190 193			
Standard widths: 9 mm, 15 mm, 25 mm								

Standard widths: 9 mm, 15 mm, 25 mm

Order example:

Timing belts: Optibelt OMEGA 1200 5M 15

1200 = 1200 mm pitch length 5M = section 15 = 15 mm belt width

Se	ection	8M
t	[mm]	8.0
hs	[mm]	5.4
h _t	[mm]	3.2

Optibelt	OMEGA	M8
----------	--------------	----

Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth
352 8M	352	44	912 8M	912	114	1424 8M	1424	178
424 8M	424	53	920 8M	920	115	1440 8M	1440	180
480 8M	480	60	960 8M	960	120	1520 8M	1520	190
512 8M	512	64	976 8M	976	122	1552 8M	1552	194
520 8M	520	65	1000 8M	1000	125	1600 8M	1600	200
560 8M	560	70	1040 8M	1040	130	1680 8M	1680	216
576 8M	576	72	1056 8M	1056	132	1696 8M	1696	
600 8M	600	75	1064 8M	1064	133	1728 8M	1728	
608 8M	608	76	1080 8M	1080	135	1760 8M	1760	
632 8M	632	79	1096 8M	1096	137	1800 8M	1800	
640 8M	640	80	1120 8M	1120	140	1904 8M	1904	
656 8M	656	82	1128 8M	1128	141	1936 8M	1936	
680 8M	680	85	1160 8M	1160	145	2000 8M	2000	
712 8M	712	89	1184 8M	1184	148	2080 8M	2080	
720 8M	720	90	1200 8M	1200	150	2104 8M	2104	
760 8M	760	95	1216 8M	1216	152	2240 8M	2240	
776 8M	776	97	1224 8M	1224	153	2248 8M	2248	
784 8M	784	98	1248 8M	1248	156	2272 8M	2272	
800 8M	800	100	1256 8M	1256	157	2400 8M	2400	
824 8M	824	103	1280 8M	1280	160	2504 8M	2504	
840 8M 848 8M 856 8M 880 8M 896 8M	840 848 856 880 896	105 106 107 110 112	1304 8M 1328 8M 1344 8M 1360 8M 1400 8M	1304 1328 1344 1360 1400	163 166 168 170 175	2600 8M 2800 8M	2600 2800	325 350

Standard widths: 20 mm, 30 mm, 50 mm, 85 mm

Order example:

Timing belts: Optibelt OMEGA 1200 8M 50

1200 = 1200 mm pitch length 8M = section 50 = 50 mm belt width

Section	14M
t [mm]	14.0
h _s [mm]	9.5
h _t [mm]	5.6

Optibelt OMEGA 14M								
Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth	Belt designation	Pitch length [mm]	Number of teeth
966 14M 1092 14M 1190 14M 1400 14M	966 1092 1190 1400	69 78 85 100	1610 14M 1778 14M 1890 14M 2100 14M	1610 1778 1890 2100	115 127 135 150	2310 14M 2450 14M 2590 14M 2800 14M	2310 2450 2590 2800	165 175 185

Standard widths: 40 mm, 55 mm, 85 mm, 115 mm, 170 mm

Order example:

Timing belts: Optibelt OMEGA 1400 14M 55

1400 = 1400 mm pitch length 14M = section

55 = 55 mm belt width

Calculation optibelt OMEGA HL/HP and optibelt OMEGA Explanation of the symbols

а	= centre distance	[mm]	Р	= power to be transmitted by
a_{nom}				timing belt drive [kW]
	belt length	[mm]	P_B	= design power [kW]
c_0	= basic service factor		P_N	= rated power [kW]
c_1	= tooth in mesh factor		ΡÜ	= actual transmitted power for standard belt width [P _N · c ₁ · c ₇] [kW]
c_2	= total service factor		c	
c_3	= speed ratio correction factor		Sa	= minimum static shaft load when stationary [N]
c ₆	= fatigue correction factor			= maximum permissible circumferential load [N]
C7	= belt length correction factor		S_{n3}	= circumferential load to be effectively transmitted [N]
da	= outside diameter of the timing pulley	[mm]	S_n	= effective circumferential load to be transmitted incl. actual centrifugal force [N]
$d_{\rm w}$	= pitch diameter of the timing pulley	[mm]	t	= tooth pitch [mm]
d_{wg}	= pitch diameter of the large timing pulley	[mm]	V	= belt speed [m/s]
d_{wk}	= pitch diameter of the small timing pulley	[mm]	×	= minimum adjustment of the drive centre distance
d_{w1}	= pitch diameter of the driving		^	a_{nom} for tensioning the timing belt [mm]
	timing pulley	[mm]	У	= minimum adjustment of the drive centre distance
d_{w2}	= pitch diameter of the driven	r 1	,	a _{nom} for installation of the timing belt [mm]
_	timing pulley	[mm]	z_{e}	= number of teeth in mesh on the small timing pulley
Ε _α	= belt deflection for given span length	[mm]	z_g	= number of teeth on the large timing pulley
F	= load to create deflection	[N]	z_k	= number of teeth on the small timing pulley
f	= frequency for measurement using Optibelt TT	[Hz]	Z _r	= number of teeth on the timing belt
i	= speed ratio		Z ₁	= number of teeth on the driving pulley
L	= drive span length	[mm]	Z ₂	= number of teeth on the driven pulley
L_{wSt}	= standard pitch length of the timing belt	[mm]	~ 2	- number of leem on the driven pulley
L_{wth}	= calculated pitch length of the timing belt	[mm]		
n ₁	= speed frequency of the driving timing pulley	[min ⁻¹]		
n ₂	= speed frequency of the driven timing pulley	[min ⁻¹]		

Guidelines for the selection of the timing belt optibelt DMEGA HL

Speed of the small timing pulley $n_k \, [\, \text{min}^{\text{-1}}]$

see also Optibelt CAP drive calculation software at www.optibelt.com

Guidelines for the selection of the timing belt optibelt DMEGA HP

10

Design power $P_B = P \times c_2$ [kW]

100

1000

0.1

Guidelines for the selection of the timing belt optibelt DMEGA

Diagram 3

Speed of the small timing pulley [min⁻¹]

see also Optibelt CAP drive calculation software at www.optibelt.com

Speed of the small timing pulley [min⁻¹]

Calculation optibelt OMEGA HL/HP and optibelt OMEGA Service factors

Total service faktor c2

The total service factor c_2 consists of the basic service factor c_0 and two additional factors c_3 and c_6 .

 $c_2 = c_0 + c_3 + c_6$

 $c_2 \ge M_A/M_N$ Recommendation for drives with frequent starts and stops

Basic service factor co

Type of basic load and examples of driven machines

The basic service factor c_0 takes account of the daily operating time and the type of prime mover and driven machine. Since it is not possible to combine every type of prime mover, driven machine and operating conditions into a single table, the basic service factors should be considered as **guide values**. The assessment of the driven machine depends on the type of loading on that machine.

Table 1
Basic service factor co

	Steady operation	on	Intermittent operation			
	Electric motor High speed turbine Piston engine with cylinders	e a large number of	Hydraulic motor Low speed turbine Piston engine with a small number of cylinders			
	Basic	c service factor c ₀ dur	ing daily operating p	eriod		
Type of loading and examples of prime movers	until 16 h	more than 16 h	until 16 h	more than 16 h		
Light drives, shock free and steady running Measuring devices Film cameras Office machines Belt conveyors (light-weight materials)	1.3	1.4	1.4	1.5		
Medium duty drives, intermittent operation with low to medium shock loading Mixers Kitchen appliances Printing machines Textile machines Packaging machines Belt conveyors (medium to heavy materials)	1.6	1.7	1.8	1.9		
Heavy duty drives, intermittent operation with medium to high shock loading Machine tools Woodworking machines Eccentric drives Conveyor systems (heavy materials)	1.8	1.9	2.0	2.1		
Very heavy duty drives, continuous operation with severe shock loading Mills Calenders Extruders Piston pumps and piston compressors Lifting devices	2.0	2.1	2.2	2.3		

Calculation optibelt OMEGA HL / HP and optibelt OMEGA Supplementary factors

Speed correction factor c₃

For speed increasing drives, a factor corresponding to the speed ratio is added to the basic service factor c_0 .

Table 2

Speed ratio i	Speed ratio correction factor c ₃
1.00–0.80	0.0
0.79–0.57	0.1
0.56–0.40	0.2
0.39–0.28	0.3
0.27 and less	0.4

Table 3
Fatigue correction factor c₆

Operating conditions	Fatigue correction factor c ₆
Use of tension or guide idlers	0.2
Operating time 16 to 24 hours	0.2
Only rare/occasional operation	- 0.2

With frequent starts and stops or continual reversing operation, the total service factor c_2 chosen should be higher than the ratio between starting torque and nominal torque. If there is a brake on the prime mover the same procedure should apply for the braking torque, if the brake is used frequently. For further questions, please contact the Optibelt Application Engineering Department.

Minimum adjustment of centre distance 'x' for tensioning of timing belts

$$x = 0.004 \cdot \alpha_{nom}$$

Table 4
Minimum adjustment of centre distance 'y' for installation of timing belt on timing pulleys without flanges

•	• • •
Centre distances [mm]	Adjustment for fitting of the timing belt [mm]
until 1000 from 1000 to 1780 from 1780 to 2540 from 2540 to 3300 from 3300 to 4600	1.8 2.8 3.3 4.1 5.3

Table 5
Minimum adjustment of centre distance 'y' for installation of timing belt on timing pulleys with flanges

Pitch [mm]	Flange on one timing pulley [mm]	Flange on both timing pulleys [mm]
2	6	12
3	8	14
5	14	19
8	22	33
14	36	58

Table 6
Belt length factor c7

ben lengin lucioi	-/		
Section 2	M	Section 8M / 8	M HP/HL
Pitch length [mm]	c ₇	Pitch length [mm]	c ₇
≤ 190 > 190 ≤ 260 > 260 ≤ 400 > 400 ≤ 600 > 600	0.8 0.9 1.0 1.1 1.2	≤ 600 > 600 ≤ 880 > 880 ≤ 1200 > 1200 ≤ 1760 > 1760	0.8 0.9 1.0 1.1 1.2
Section 3M /	ЗМ НР		
Pitch length [mm]	c ₇		
≤ 190 > 190 ≤ 260 > 260 ≤ 400	0.8 0.9 1.0	Section 14M / 14	IM HP/HL
> 400 ≤ 600 > 600	1.1 1.2	Pitch length [mm]	C ₇
Section 5M /	5M HP	≤ 1190 >1190 ≤ 1610	0.80 0.90
Pitch length [mm]	c ₇	>1610 ≤ 1890	0.95
≤ 440 > 440 ≤ 555 > 555 ≤ 800 > 800 ≤ 1100 >1100	0.8 0.9 1.0 1.1 1.2	>1890 ≤ 2450 >2450 ≤ 3150 >3150	1.00 1.05 1.10

Table 7
Teeth in mesh factor c₁

•	
Number of teeth in mesh	Teeth in mesh factor c ₁
≥ 6	1.0
5	0.8
4	0.6
3	0.4
2	0.2

Calculation optibelt OMEGA HL/HP and optibelt OMEGA Formulae and calculation example

Prime mover

Electric motor 50 Hz Star/delta start $P = 18.5 \, kW$ $n_1 = 2850 \text{ min}^{-1}$

Operating conditions

Daily operating time: 12 hours Number of starts/stops: 2 per day Environmental influences: ambient room temperature,

no influence from oil, water or dust Centre distance: 400 mm to 450 mm Max. pulley diameter: 200 mm

Driven machine

Textile machine P = 15 kW $n_2 = 1830 \text{ min}^{-1} \pm 1\%$ Type of load: constant

see also Optibelt CAP drive calculation programme software at www.optibelt.com

Formulae

Total service factor

 $c_2 = c_0 + c_3 + c_6$ c₀ from Table 1 page 26 c₃ from Table 2 page 27 c₆ from Table 3 page 27

Calculation example

$$c_2 = 1.6 + 0 + 0 = 1.6$$

 $c_0 = 1.6$
 $c_3 = 0$

Design power

$$P_B = P \cdot c_2$$

$P_{\rm R} = 18.5 \cdot 1.6 = 29.6 \text{ kW}$

Timing belt section selection

from diagrams 1-3, pages 23-25

Optibelt OMEGA HP

Type 8M

 $z_2 = 56$

 $c_6 = 0$

Speed ratio

$$i = \frac{n_1}{n_2} = \frac{z_2}{z_1} = \frac{d_{w2}}{d_{w1}}$$

$$i = \frac{2850}{1830} = 1,557$$

Number of teeth on the timing pulleys

 z_1 , d_{w1} selected from standard range of timing pulleys page 51

 $z_2 = z_1 \cdot i$

Observe the minimum diameter requirement!

$$z_1 = 36$$
 $d_{w1} = 91.67 \text{ mm}$

$$z_2 = 36 \cdot 1.56 = 56.16$$

z₂ selected from standard range pulleys page 51

Requirement $z_1 \ge 22$ (minimum number of teeth for section 8M) and max. pulley diameter met

 $d_{w2} = 142.60 \text{ mm}$

Check the driven speed

$$i = \frac{z_2}{z_1}$$

$$n_1$$

$$n_2 = \frac{n_1}{i}$$

$$i = \frac{56}{36} = 1.556$$

$$n_2 = \frac{2850}{1.556} = 1832 \text{ min}^{-1}$$

Requirement: 1830 min⁻¹ ± 1% fulfilled

Recommended centre distance

Recommendation:

$$a > 0.5 (d_{w1} + d_{w2}) + 15 mm$$

$$a < 2.0 (d_{w1} + d_{w2})$$

$$\alpha > 0.5 (91.67 + 142.60) + 15 \text{ mm} = 132.14 \text{ mm}$$

 $\alpha < 2.0 (91.67 + 142.60) = 468.54 \text{ mm}$

a = 425 mm provisionally selected

Calculation optibelt OMEGA HL/HP and optibelt OMEGA Formulae and calculation example

Formulae

Pitch length of the timing belt

$$L_{wth} \approx 2\alpha \, + \, \frac{\pi}{2} \, \left(d_{wg} + \, d_{wk} \right) \, + \, \frac{(d_{wg} - d_{wk})^2}{4 \, \, \alpha} \label{eq:Lwth}$$

 L_{wSt} see standard lengths, see pages 8-9, 12-15 and 17-21

Calculation example

$$L_{\text{wth}} \approx 2 \cdot 425 + \frac{\pi}{2} (142.60 + 91.67) + \frac{(142.60 - 91.67)^2}{4 \cdot 425}$$

 $L_{wth} \approx 1219.33 \text{ mm}$

next standard belt length selected from page 12

 L_{wSt} = 1200 mm

Centre distance from Lwst

$$a_{nom} = K + \sqrt{K^2 - \frac{(d_{wg} - d_{wk})^2}{8}}$$

$$K = \frac{(L_{wSt})}{4} - \frac{\pi}{8} (d_{wg} + d_{wk})$$

$$a_{\text{nom}} = 208 + \sqrt{208^2 - \frac{(142.60 - 91.67)^2}{8}}$$

 $a_{nom} = 415.22 \text{ mm}$

$$K = \frac{1200}{4} - \frac{\pi}{8} (142.60 + 91.67) = 208 \text{ mm}$$

Minimum adjustment of centre distance for tensioning

$$x = 0.004 \cdot a_{nom}$$

x ≥ **1.66** mm

Minimum adjustment for fitting belts

y = from Table 5, page 27

y = 22 mm (with flanged pulley)

Number of teeth in mesh on the small pulley

$$z_e = \frac{z_k}{6} \left(3 - \frac{d_{wg} - d_{wk}}{a_{nom}} \right)$$

$$z_e = \frac{36}{6} \left(3 - \frac{142.60 - 91.67}{415} \right) = 17.26$$

$$z_{e} = 17$$

Belt length factor

c₇ from Table 6, page 27

 $c_7 = 1.0$

Teeth in mesh factor

c₁ from Table 7, page 27

 $c_1 = 1.0$

Belt width above nominal power rating

Requirement: $P_{ij} \ge P_{R}$

 $P\ddot{\text{u}}$ = transmissible nominal power of a standard belt width

 $P_{\ddot{U}} = P_{N} \cdot c_{1} \cdot c_{7}$

 P_N value and, if required, width correction factor (which is to be multiplied by the P_N value) see pages 32 to 42

31.09 kW > 29.60 kW Requirement met!

 $P_{\ddot{U}} = 31.09 \cdot 1.0 \cdot 1.0 =$ **31.09 kW** P_{N} for width of 30 mm = 19.68 · 1.58 = **31.09 kW**

Drive to be fitted with:

1 Optibelt OMEGA HP timing belt

1 Optibelt ZRS timing pulley
1 Optibelt ZRS timing pulley

1200 8M HP 30 36 8M 30

56 8M 30

Calculation optibelt OMEGA HL / HP and optibelt OMEGA Belt tension

[mm]

Belt tension for Optibelt OMEGA HP/Optibelt OMEGA HL and Optibelt OMEGA timing belts

For faultless power transmission and for the achievement of acceptable belt service life, the correct belt tension is of the utmost importance. Too low or too high a belt tension will lead to the premature failure of the timing belts. Over tensioning often leads to bearing failure on the prime mover or the driven machine.

Experience showed that unscientific belt tensioning methods, such as the "thumb pressure method", are not suitable for applying the optimum tension to the drive for maximum efficiency and drive/bearing life. It is therefore recommended that the correct static belt tension should be calculated for each drive.

By virtue of their extremely low stretch characteristics Optibelt timing belts do not require any further tensioning after correct installation if properly used.

Symbol

L = span length

Apply test force F in the centre of the span perpendicular to the belt top surface as shown in the illustration below; measure the deflection E_{α} , correct the tension if necessary and re-check.

1. Calculation of the test force F

$$F = \frac{S_{n3}}{20}$$

$$S_{n3} = \frac{P \cdot 1000}{v}$$

$$v = \frac{d_{wk} \cdot n_k}{19100}$$

$$F = \frac{1352}{20} = 67.60 \text{ N}$$

$$S_{n3} = \frac{18.5 \cdot 1000}{13.68} \qquad v = \frac{91.67 \cdot 2850}{19100}$$

v = 13.68 m/s

2. Calculation of the belt deflection E_{a} for the existing span length L

$$E_{a} = \frac{L}{50}$$

$$L = \sqrt{\alpha_{nom}^{2} - \left(\frac{d_{wg} - d_{wk}}{2}\right)^{2}}$$

$$E_{a} = \frac{414.44}{50} =$$
8.3 mm

$$L = \sqrt{415.22^{2} - \left(\frac{142.60 - 91.67}{2}\right)^{2}} = 414.44 \text{ mm}$$

3. Calculation of the minimum static shaft loading

$$S_{\alpha} = S_{n3} \cdot 1.1$$

$$S_{\alpha} = 1352 \text{ N} \cdot 1.1 = 1487.2 \text{ N}$$

 $S_{n3} = 1352 \text{ N}$

4. Calculation of the frequency for measuring the belt tension using the Optibelt frequency tension tester

$$f = \sqrt{\frac{T}{4 \cdot k \cdot L^2}}$$

$$T = 0.5 \cdot S_a$$
k belt weight in kg/m from Table 8, page 43
L span length in mm

$$f = \sqrt{\frac{743.6}{4 \cdot 0.174 \cdot 0.414^2}} = 78.9 \text{ Hz}$$

$$T = 0.5 \cdot 1487.2 \text{ N} = 743.6 \text{ N}$$

$$k = 0.174 \text{ kg/m}$$

$$L = 0.414 \text{ m}$$

Calculation with **optibelt** CAP drive calculation programme **optibelt** *DMEGA HL/HP* and **optibelt** *DMEGA*

The drive is to be equipped with:

- Optibelt OMEGA HP timing belt 1200 8M HP 30 $\,$

optibelt CAP drive calculation software at www.optibelt.com

- Optibelt ZRS timing pulley 36-8M-30 (cylindrical bore)
- Optibelt ZRS timing pulley 56-8M-30 (cylindrical bore)

Prime mover	Electric motor P = 18.5 kW								
Driven machine	Texti	le machine							
Timing belt data				Variations/1	Information				
Pitch	t:	8.000							
Width	b:	30.00							
Calculated pitch length	$\mathtt{L}_{\mathtt{wth}}$:	1200.00							
Standard pitch length	L_{w} :	1200.00	mm						
Number of teeth	z _r :	150							
Belt speed	v:	13.68	m/s						
Timing pulley data		Pulley 1 (d:	riving)	pulley 2 (driven)				
Number of teeth	z:	36		56					
Pitch diameter	d_w :	91.67	mm	142.60	mm				
Pulley face width	b ₁ :	38.00	mm	38.00	mm				
Speed	n:	2850.0	1/min	1832.1	1/min				
Number of teeth in mesh	z _e :	17		29					
Torque	M:	104	Nm	162	Nm				
Standard construction		6F		6WF					
Number of flanged pulleys		2		2					
Material		St		GG					
Nominal drive data				Variations/l	Information				
Design power	P _B :	29.60	kW						
Nominal power rating	P _{ii} :	31.09	kW						
Effective service factor	C ₂ :	1.68							
Actual drive ratio	i:	1.56		0.0	%				
Actual centre distance	a:	415.22	mm	-9.78	mm				
Minimum adjustment of centre									
distance for belt installation	у:	≥ 22.00	mm						
Minimum adjustment of centre	4								
distance for belt installation	x:	≥ 1.66	mm						
Actual circumferential load	S_{n3} :	1353	N						
Static shaft load	S _a :	1488	N						
Static span tension	T:	744							
Span length	L:	414.50							

Belt deflection per span length E_a : Optibelt TT 3 frequency tension tester f:

8.29 mm with a load F 67.60 N

78.88 1/s

Power ratings optibelt OMEGA HL timing belt section 8M

Nomir	nal power P _N [kW] for section and construction 8M HL and timing belt width of 20 mm
Speed of the	Number of teeth on the small timing pulley z_k 22 24 26 28 30 32 34 36 38 40 44 48 52 56 64 72 80
small timing pulley	Pitch diameter of the small timing pulley d _{wk} [mm]
n _k [min ⁻¹]	56.02 61.12 66.21 71.30 76.39 81.49 86.58 91.67 96.77 101.86 112.05 122.23 132.42 142.60 162.97 183.35 203.72
700 950 1450 2850	3.26 3.75 4.25 4.74 5.24 5.73 6.21 6.70 7.19 7.68 8.64 9.60 10.56 11.53 13.43 15.30 17.16 4.35 5.01 5.68 6.34 7.00 7.65 8.31 8.96 9.61 10.26 11.55 12.84 14.11 15.39 17.90 20.38 22.83 6.48 7.48 8.46 9.45 10.44 11.41 12.39 13.35 14.33 15.28 17.19 19.06 20.94 22.78 26.39 29.90 33.30 12.06 13.93 15.76 17.58 19.36 21.14 22.88 24.60 26.30 27.96 31.21 34.34 37.33 40.18 45.41 49.98 53.78
10 20 50 100 200	0.06 0.08 0.08 0.09 0.10 0.10 0.11 0.13 0.14 0.16 0.18 0.19 0.25 0.29 0.11 0.13 0.14 0.16 0.18 0.19 0.20 0.23 0.24 0.25 0.28 0.31 0.34 0.38 0.44 0.50 0.55 0.26 0.30 0.34 0.38 0.41 0.45 0.49 0.53 0.56 0.60 0.68 0.75 0.83 0.90 1.05 1.20 1.35 0.51 0.59 0.66 0.74 0.81 0.89 0.96 1.04 1.11 1.19 1.33 1.48 1.63 1.78 2.06 2.35 2.65 0.99 1.14 1.29 1.43 1.58 1.73 1.88 2.01 2.16 2.30 2.60 2.89 3.18 3.46 4.03 4.60 5.16
300 400 500 600 800	1.45 1.68 1.89 2.11 2.33 2.54 2.76 2.98 3.19 3.40 3.84 4.26 4.69 5.11 5.96 6.80 7.64 1.91 2.20 2.49 2.78 3.06 3.35 3.64 3.93 4.20 4.49 5.05 5.63 6.19 6.74 7.86 8.98 10.06 2.36 2.73 3.09 3.44 3.80 4.15 4.50 4.85 5.21 5.56 6.26 6.96 7.66 8.35 9.74 11.11 12.48 2.81 3.24 3.66 4.09 4.51 4.94 5.36 5.79 6.20 6.63 7.46 8.29 9.13 9.95 11.59 13.21 14.84 3.70 4.26 4.83 5.39 5.94 6.50 7.05 7.61 8.16 8.71 9.81 10.91 12.00 13.08 15.23 17.35 19.46
1000 1200 1600 1800 2000	4.56 5.26 5.96 6.65 7.35 8.04 8.73 9.41 10.09 10.78 12.13 13.48 14.81 16.15 18.78 21.38 23.93 5.43 6.25 7.09 7.91 8.73 9.55 10.36 11.18 11.99 12.80 14.40 16.00 17.58 19.14 22.23 25.25 28.21 7.10 8.19 9.28 10.36 11.44 12.51 13.58 14.64 15.69 16.74 18.81 20.86 22.90 24.89 28.79 32.56 36.18 7.93 9.14 10.36 11.56 12.76 13.96 15.14 16.33 17.49 18.65 20.95 23.21 25.44 27.63 31.88 35.94 39.81 8.74 10.09 11.43 12.75 14.06 15.38 16.68 17.98 19.25 20.53 23.04 25.50 27.91 30.26 34.83 39.13 43.16
2200 2500 3000 3500 4000	9.54 11.01 12.46 13.91 16.60 16.78 18.19 19.59 20.98 22.35 25.06 27.70 30.29 32.80 37.61 42.09 46.23 10.71 12.38 14.01 15.63 17.24 18.83 20.40 21.95 23.49 25.01 27.99 30.88 33.68 36.38 41.46 46.09 50.19 12.64 14.58 16.50 18.39 20.25 22.10 23.91 25.70 27.45 29.18 32.53 35.73 38.79 41.68 46.91 51.38 54.94 14.48 16.69 18.86 21.01 23.11 25.18 27.19 29.16 31.10 32.98 36.59 39.98 43.13 46.01 50.96 16.24 18.70 21.11 23.48 25.78 28.03 30.21 32.34 34.39 36.38 40.11 43.53 46.59 49.26
4500 5000 5500	17.91 20.60 23.23 25.78 28.24 30.64 32.94 35.15 37.28 39.29 43.01 46.28 49.04 19.49 22.39 25.19 27.89 30.48 32.98 35.35 37.59 39.71 41.70 45.24 48.15 20.96 24.04 26.98 29.79 32.48 35.01 37.39 39.61 41.66 43.54 46.70
	Power ratings for other belt widths can be calculated by multiplying by the width correction factors.

Width correction factor								
Section and construction 8M HL								
Standard belt width [mm]	20	30	50	85				
Factor	1.00	1.58	2.73	4.76				

Power ratings optibelt OMEGA HL timing belt section 14M

Nomin Speed of the	al power P_N [kW] for section and construction 14M HL and timing belt width of 40 mm Number of teeth on the small timing pulley z_k
small timing pulley n _k [min ⁻¹]	28 29 30 32 34 36 38 40 42 44 46 48 52 56 64 72 80 Pitch diameter of the small timing pulley d _{wk} [mm] 124.78 129.23 133.69 142.60 151.52 160.43 169.34 178.25 187.17 196.08 204.99 213.90 231.73 249.55 285.21 320.86 356.51
700 950 1450 2850 10 20 40 60 100 200 300 400 500 600 700 800 950 1000 1200 1450 1600 1800 2000 2200 2400 2600 2850 3000 3500	on request
	Power ratings for other belt widths can be calculated by multiplying by the width correction factors.

Width correction factor									
Section and construction 14M HL									
Standard belt width [mm]	40	55	85	115	170				
Factor	1.00	1.44	2.50	3.50	5.32				

Power ratings optibelt OMEGA HP timing belt section 3M

Nominal power P _N [W] for section and construction 3M HP and timing belt width of 9 mm															
Speed of the										ing pulle	ey z _k				
small timing	10	12	14	16	18	20	24	28	32	40	48	56	64	72	80
pulley n _k [min ⁻¹]	9.55	11.46	13.37	15.28	Pitch 17.19	diamete 19.10	er of the 22.92	small t 26.74	iming p 30.56	ulley d _w 38.20	/k (mm) 45.84	53.48	61.12	68.75	76.39
20 40 60 100 200	2.7 5.2 7.6 12.3 23.3	3.4 6.5 9.5 15.3 28.9	4.1 7.8 11.4 18.4 34.8	4.8 9.2 13.4 21.7 40.9	5.6 10.7 15.5 25.1 47.4	6.4 12.1 17.7 28.7 54.1	8.0 15.2 22.2 36.0 67.7	9.8 18.6 27.0 43.5 81.9	11.5 21.8 31.8 50.9 95.5	14.9 28.5 41.4 66.1 125.0	18.4 35.0 51.0 81.6 154.7	21.6 41.2 60.1 96.3 183.0	24.5 46.7 68.0 109.3 207.1	27.3 52.0 75.8 122.2 231.6	30.0 57.3 83.5 134.7 255.9
300 400 500 600 700	31.6 39.6 46.3 52.3 58.6	39.4 49.4 58.1 65.6 73.9	47.7 59.7 70.6 80.1 90.0	56.3 70.6 83.6 95.3 106.9	65.6 82.0 97.3 112.1 125.6	74.7 93.3 111.3 128.1 143.7	93.8 116.7 138.6 160.0 180.5	113.6 141.0 167.6 192.4 217.4	133.0 165.6 197.0 226.5 254.7	173.9 216.0 255.8 294.0 330.1	215.1 268.0 317.1 363.6 407.7	253.9 315.6 372.8 426.9 478.8	287.6 358.2 423.0 485.0 544.0	321.9 400.2 473.3 541.8 607.6	354.5 441.5 521.3 597.5 669.7
800 900 950 1000 1200	66.1 71.5 74.0 76.5 86.3	82.8 89.0 92.7 96.3 109.3	100.2 109.3 113.3 117.4 133.7	118.6 129.7 135.0 140.3 160.0	138.5 152.0 157.8 164.5 187.7	158.5 173.5 180.8 188.1 214.8	199.2 217.4 226.5 235.7 270.7	240.6 262.8 273.4 284.1 326.5	281.3 307.9 320.6 333.2 382.2	365.0 399.0 415.0 432.0 496.0	451.0 491.0 512.0 531.0 609.0	529.0 577.0 600.0 624.0 713.0	601.0 655.0 682.0 708.0 809.0	671.0 731.0 761.0 791.0 902.0	739.0 807.0 839.0 871.0 994.0
1400 1450 1600 1800 2000	96.0 98.5 106.4 117.0 125.0	122.0 124.8 135.2 148.0 158.0	149.7 153.7 164.9 180.0 193.0	179.1 183.6 197.4 215.0 231.0	211.0 216.8 232.5 253.0 272.0	241.7 247.8 266.6 290.0 312.0	303.4 311.9 335.1 365.0 395.0	366.0 375.0 404.3 440.0 475.0	428.2 439.1 473.1 515.0 557.0	554.0 569.0 611.0 667.0 718.0	680.0 698.0 749.0 816.0 879.0		927.0 995.0	1009.0 1034.0 1110.0 1207.0 1298.0	1139.0 1221.0 1326.0
2400 2850 3200 3600 4000	141.0 155.0 170.0 182.0 194.0	178.0 198.0 216.0 233.0 248.0	219.0 245.0 266.0 287.0 308.0	263.0 296.0 320.0 347.0 372.0	309.0 350.0 379.0 411.0 441.0	356.0 403.0 436.0 473.0 508.0	450.0 509.0 552.0 599.0 644.0	543.0 614.0 665.0 722.0 776.0	635.0 718.0 779.0 845.0 907.0	923.0 1001.0 1084.0	1125.0 1218.0 1317.0	1313.0 1419.0 1531.0	1322.0 1484.0 1601.0 1724.0 1837.0	1648.0 1775.0 1907.0	1792.0 1940.0 2079.0
5000 6000 7000 8000 10000	221.0 246.0 265.0 284.0 320.0	284.0 317.0 344.0 368.0 418.0	352.0 395.0 429.0 462.0 515.0	427.0 479.0 523.0 564.0 632.0	507.0 571.0 625.0 676.0 759.0	587.0 661.0 724.0 784.0 880.0	919.0 994.0	896.0 1011.0 1105.0 1194.0 1334.0	1178.0 1286.0 1385.0	1495.0 1621.0	1788.0 1919.0 2030.0	2045.0 2169.0 2264.0	2065.0 2257.0 2359.0 2420.0 2393.0	2440.0 2506.0	2587.0 2598.0
12000 14000	349.0 347.0	452.0 458.0	566.0 583.0	690.0 721.0	822.0 869.0		1204.0 1260.0			1920.0 1856.0			pow	er	
											\	ratir	pow ngs		
	Powe by th	er rating ie width	s for ot correct	her belt ion fact	widths fors.	can be	calculo	ited by	multiply	ring					

Width correction factor								
Section and construction 3M								
Belt width (mm)	3	Standard 6	Standard 9	12	Standard 15	20	25	
Factor	0.28	0.61	1.00	1.44	1.87	2.63	3.40	

Power ratings optibelt OMEGA HP timing belt section 5M

Nominal power P _N [kW] for section and construction 5M HP and timing belt width of 9 mm															
Speed of the small timing pulley n _k [min ⁻¹]	Number of teeth on the small timing pulley z_k														
	14	16	18	20	24	28	32	36	40	44	48	56	64	72	80
	22.28	25.46	28.65	31.83	Pitch 6 38.20	diamete 44.56	r of the 50.93	small til 57.30	ming pu 63.66	ılley d _{wk} 70.03	76.39	89.13	101.86	114.59	127.32
700 950 1450 2850	0.36 0.45 0.62 1.04	0.44 0.56 0.79 1.32	0.53 0.68 0.94 1.58	0.61 0.78 1.09 1.83	0.77 0.99 1.39 2.32	0.93 1.20 1.68 2.79	1.09 1.40 1.98 3.27	1.25 1.62 2.27 3.71	1.43 1.83 2.56 4.15	1.59 2.05 2.85 4.59	1.76 2.25 3.14 5.00	2.09 2.68 3.70 5.77	2.43 3.09 4.26 6.49	2.76 3.52 4.80 7.12	3.09 3.92 5.32 7.68
20 40 60 100 200	0.01 0.03 0.05 0.07 0.13	0.02 0.03 0.06 0.08 0.15	0.02 0.05 0.06 0.10 0.18	0.02 0.05 0.07 0.12 0.21	0.03 0.06 0.09 0.14 0.26	0.03 0.08 0.10 0.17 0.31	0.05 0.09 0.13 0.20 0.37	0.06 0.10 0.15 0.23 0.43	0.06 0.12 0.16 0.26 0.48	0.07 0.13 0.18 0.29 0.54	0.07 0.14 0.21 0.32 0.60	0.09 0.17 0.24 0.38 0.71	0.10 0.20 0.28 0.45 0.83	0.12 0.22 0.32 0.51 0.94	0.14 0.25 0.37 0.58 1.07
300 400 500 600 800	0.17 0.22 0.26 0.31 0.39	0.22 0.28 0.33 0.39 0.49	0.25 0.32 0.39 0.46 0.59	0.30 0.38 0.46 0.53 0.68	0.37 0.47 0.58 0.68 0.86	0.45 0.58 0.70 0.82 1.04	0.53 0.68 0.82 0.95 1.22	0.61 0.78 0.94 1.10 1.40	0.69 0.89 1.07 1.25 1.59	0.77 0.99 1.20 1.39 1.77	0.85 1.09 1.32 1.54 1.96	1.01 1.30 1.58 1.84 2.33	1.18 1.52 1.83 2.14 2.70	1.36 1.74 2.09 2.44 3.07	1.52 1.94 2.35 2.73 3.44
900 1000 1200 1400 1600	0.44 0.47 0.54 0.61 0.68	0.54 0.59 0.68 0.77 0.85	0.64 0.70 0.82 0.92 1.02	0.75 0.82 0.94 1.07 1.18	0.94 1.04 1.20 1.36 1.51	1.15 1.25 1.45 1.63 1.82	1.35 1.47 1.70 1.92 2.14	1.55 1.69 1.96 2.21 2.45	1.75 1.91 2.21 2.50 2.76	1.96 2.13 2.46 2.77 3.07	2.16 2.35 2.71 3.06 3.38	2.56 2.78 3.21 3.61 3.98	2.97 3.22 3.70 4.15 4.57	3.37 3.66 4.20 4.68 5.13	3.77 4.08 4.67 5.20 5.68
1800 2000 2400 3200 3600	0.74 0.79 0.91 1.12 1.21	0.93 1.01 1.16 1.44 1.55	1.12 1.22 1.39 1.71 1.86	1.30 1.40 1.61 1.99 2.16	1.64 1.78 2.05 2.52 2.73	1.99 2.16 2.47 3.02 3.28	2.33 2.53 2.89 3.53 3.81	2.68 2.90 3.30 4.00 4.31	3.01 3.25 3.70 4.47 4.80	3.35 3.61 4.11 4.92 5.26	3.68 3.97 4.49 5.35 5.69	4.32 4.65 5.22 6.14 6.47	4.95 5.30 5.92 6.84 7.15	5.54 5.92 6.57 7.44 7.69	6.12 6.51 7.15 7.95 8.12
4000 5000 6000 7000 8000	1.30 1.50 1.67 1.82 1.94	1.67 1.93 2.16 2.36 2.52	2.00 2.31 2.59 2.82 3.01	2.32 2.68 2.99 3.24 3.46	2.92 3.36 3.73 4.03 4.26	3.51 4.00 4.39 4.70 4.93	4.06 4.60 5.00 5.30 5.47	4.59 5.15 5.54 5.80 5.90	5.08 5.65 6.01 6.20 6.20	5.55 6.10 6.41 6.49 6.36	5.98 6.50 6.73 6.68 6.38	6.75 7.13 7.12 6.73 5.98	7.37 7.53 7.16 6.30	7.83 7.68 6.85 5.39	8.14 7.58 6.19
10000 12000 14000	2.15 2.30 2.39	2.79 2.98 3.09	3.32 3.52 3.62	3.78 3.97 4.04	4.57 4.66 4.58	5.14 5.08 4.75	5.54 5.22 4.55	5.73 5.07 3.96	5.72 4.62 2.97	5.50 3.88	5.05	New rati	powngs	rer	
	Power ratings for other belt widths can be calculated by multiplying by the width correction factors.														

Width correction factor											
Section and construction 5M											
Belt width [mm]	6	Standard 9	12	Standard 15	20	Standard 25	30				
Factor	0.61	1.00	1.44	1.87	2.63	3.40	4.15				

Power ratings optibelt OMEGA HP timing belt section 8M

Nomin	nal pov	wer P _i	kW [kW] for s	ectio	n and	const	ructio	n 8M	НР а	nd tin	ning k	elt w	idth c	of 20 i	mm	
Speed of the								eeth on			• .	,					
small timing pulley	22	24	26	28	30	32	34	36	38	40	44	48	52	56	64	72	80
n _k [min ⁻¹]	56.02	61.12	66.21	71.30						• .	,	d _{wk} [mr 122.23	-	142.60	162.97	183.35	203.72
700 950 1450 2850	2.61 3.48 5.18 9.65	3.00 4.01 5.98 11.14	3.40 4.54 6.77 12.61	3.79 5.07 7.56 14.06	4.19 5.60 8.35 15.49	4.58 6.12 9.13 16.91	4.97 6.65 9.91 18.30	5.36 7.17 10.68 19.68	5.75 7.69 11.46 21.04	6.14 8.21 12.22 22.37	6.91 9.24 13.75 24.97	7.68 10.27 15.25 27.47	8.45 11.29 16.75 29.86	12.31 18.22	21.11	16.30	18.26 26.64
10 20 50 100 200	0.05 0.09 0.21 0.41 0.79	0.05 0.10 0.24 0.47 0.91	0.06 0.11 0.27 0.53 1.03	0.06 0.13 0.30 0.59 1.14	0.07 0.14 0.33 0.65 1.26	0.08 0.15 0.36 0.71 1.38	0.08 0.16 0.39 0.77 1.50	0.09 0.18 0.42 0.83 1.61	0.10 0.19 0.45 0.89 1.73	0.10 0.20 0.48 0.95 1.84	0.11 0.22 0.54 1.06 2.08	0.13 0.25 0.60 1.18 2.31	0.14 0.27 0.66 1.30 2.54	0.15 0.30 0.72 1.42 2.77	0.18 0.35 0.84 1.65 3.22	0.20 0.40 0.96 1.88 3.68	0.23 0.44 1.08 2.12 4.13
300 400 500 600 700	1.16 1.53 1.89 2.25 2.61	1.34 1.76 2.18 2.59 3.00	1.51 1.99 2.47 2.93 3.40	1.69 2.22 2.75 3.27 3.79	1.86 2.45 3.04 3.61 4.19	2.03 2.68 3.32 3.95 4.58	2.21 2.91 3.60 4.29 4.97	2.38 3.14 3.88 4.63 5.36	2.55 3.36 4.17 4.96 5.75	2.72 3.59 4.45 5.30 6.14	3.07 4.04 5.01 5.97 6.91	3.41 4.50 5.57 6.63 7.68	3.75 4.95 6.13 7.30 8.45	4.09 5.39 6.68 7.96 9.22	4.77 6.29 7.79 9.27 10.74	5.44 7.18 8.89 10.57 12.24	6.11 8.06 9.98 11.87 13.73
800 950 1000 1200 1450	2.96 3.48 3.65 4.34 5.18	3.41 4.01 4.21 5.00 5.98	3.86 4.54 4.77 5.67 6.77	4.31 5.07 5.32 6.33 7.56	4.75 5.60 5.88 6.98 8.35	5.20 6.12 6.43 7.64 9.13	5.64 6.65 6.98 8.29 9.91	6.09 7.17 7.53 8.94 10.68	6.53 7.69 8.07 9.59 11.46	6.97 8.21 8.62 10.24 12.22	7.85 9.24 9.70 11.52 13.75	8.73 10.27 10.78 12.80 15.25	9.60 11.29 11.85 14.06 16.75	12.31 12.92	14.32 15.02 17.78	13.88 16.30 17.10 20.20 23.92	22.57
1600 1800 2000 2200 2500	5.68 6.34 6.99 7.63 8.57	6.55 7.31 8.07 8.81 9.90	7.42 8.29 9.14 9.97 11.21	8.29 9.25 10.20 11.13 12.50	9.15 10.21 11.25 12.28 13.79		12.11 13.34	15.67	16.78	13.39 14.92 16.42 17.88 20.01	20.05	20.40	24.23	22.10 24.21 26.24	25.50 27.86 30.09	26.05 28.75 31.30 33.67 36.87	34.53 36.98
2850 3000 3500 4000 4500		11.14 11.66 13.35 14.96 16.48	13.20 15.09	14.71 16.81 18.78	16.20 18.49 20.62		21.75 24.17	20.56 23.33 25.87	21.96 24.88 27.51	23.34 26.38 29.10	26.02 29.27 32.09		31.03 34.50 37.27	33.34 36.81	36.33 37.53 40.77	39.98 41.10	
5000 5500		17.91 19.23				26.38 28.01						38.52					
		er ratir he wid					n be c	alculat	ed by	multipl	ying						

Width correction factor										
Section and construction 8M HP										
Standard belt width [mm]	20	30	50	85						
Factor	1.00	1.58	2.73	4.76						

Power ratings optibelt DMEGA HP timing belt section 14M

Nomin	al power P _N [kW] for section and construction 14M HP and timing belt width of 40 mm
Speed of the	Number of teeth on the small timing pulley z _k 28 29 30 32 34 36 38 40 42 44 46 48 52 56 64 72 80
small timing pulley n _k [min ⁻¹]	Pitch diameter of the small timing pulley d _{wk} [mm] 124.78 129.23 133.69 142.60 151.52 160.43 169.34 178.25 187.17 196.08 204.99 213.90 231.73 249.55 285.21 320.86 356.51
700 950 1450 2850	17.80 18.62 19.43 21.04 22.65 24.24 25.82 27.39 28.96 30.51 32.05 33.59 36.63 39.64 45.58 51.39 57.10 23.12 24.19 25.25 27.36 29.46 31.54 33.60 35.65 37.69 39.71 41.72 43.71 47.66 51.56 59.21 66.68 73.97 33.03 34.56 36.10 39.14 42.15 45.13 48.08 51.00 53.90 56.77 59.62 62.43 67.99 73.44 84.03 94.20 103.94 56.99 59.64 62.27 67.45 72.53 77.51 82.38 87.15 91.81 96.36 100.81 105.14
10 20 40 60 100	0.40
200 300 400 500 600	5.97 6.23 6.50 7.02 7.54 8.06 8.58 9.09 9.61 10.12 10.62 11.13 12.13 13.13 15.10 17.04 18.96 8.52 8.91 9.29 10.05 10.80 11.55 12.29 13.03 13.77 14.50 15.23 15.96 17.40 18.83 21.66 24.45 27.20 10.96 11.46 11.95 12.93 13.91 14.88 15.84 16.80 17.75 18.70 19.64 20.58 22.44 24.29 27.94 31.53 35.08 13.31 13.91 14.52 15.71 16.91 18.09 19.26 20.43 21.59 22.75 23.90 25.04 27.31 29.56 34.00 38.36 42.66 15.59 16.30 17.01 18.41 19.82 21.20 22.59 23.96 25.32 26.68 28.03 29.37 32.03 34.67 39.87 44.98 50.00
700 800 950 1000 1200	17.80 18.62 19.43 21.04 22.65 24.24 25.82 27.39 28.96 30.51 32.05 33.59 36.63 39.64 45.58 51.39 57.10 19.96 20.88 21.79 23.61 25.42 27.21 28.98 30.75 32.51 34.25 35.98 37.70 41.12 44.49 51.14 57.64 64.00 23.12 24.19 25.25 27.36 29.46 31.54 33.60 35.65 37.69 39.71 41.72 43.71 47.66 51.56 59.21 66.68 73.97 24.15 25.27 26.38 28.59 30.78 32.95 35.11 37.25 39.38 41.49 43.59 45.67 49.79 53.86 61.84 69.61 77.19 28.18 29.49 30.79 33.38 35.94 38.48 41.00 43.50 45.99 48.45 50.89 53.31 58.09 62.81 72.02 80.94 89.58
1450 1600 1800 2000 2200	33.03 34.56 36.10 39.14 42.15 45.13 48.08 51.00 53.90 56.77 59.62 62.43 67.99 73.44 84.03 94.20 103.94 35.84 37.51 39.18 42.48 45.75 48.98 52.18 55.35 58.48 61.58 64.65 67.69 73.67 79.53 90.86 101.66 111.93 39.50 41.34 43.18 46.82 50.42 53.97 57.48 60.96 64.39 67.79 71.14 74.45 80.96 87.30 99.50 111.01 43.04 45.05 47.06 51.02 54.93 58.80 62.61 66.37 70.09 73.75 77.36 80.93 87.91 94.68 107.60 46.48 48.66 50.82 55.09 59.31 63.46 67.55 71.58 75.56 79.47 83.32 87.11 94.51 101.65
2400 2600 2850 3000 3500	49.83 52.15 54.47 59.03 63.54 67.96 72.32 76.60 80.81 84.95 89.01 93.00 100.76 108.20 53.07 55.55 58.00 62.85 67.62 72.31 76.90 81.41 85.84 90.18 94.43 98.59 56.99 59.64 62.27 67.45 72.53 77.51 82.38 87.15 91.81 96.36 100.81 105.14 59.27 62.02 64.74 70.11 75.37 80.50 85.52 90.43 95.22 99.88 66.47 69.52 72.54 78.45 84.21 89.81 95.23 100.49
4000 4500	73.05 76.35 79.61 85.96 92.10 78.99 82.49 85.93
	Power ratings for other belt widths can be calculated by multiplying by the width correction factors.

Width correction factor											
Section and construction 14M HP											
Standard belt width [mm]	40	55	85	115	170						
Factor	1.00	1.44	2.50	3.50	5.32						

Power ratings optibelt DMEGA timing belt section 2M

Nominal power P_N [W] for section and construction 2M and timing belt width of 9 mm																
Speed of the small timing	10	12	14	16	N 18	lumber 20	of teet	h on the	e small 32	timing 36	pulley	z _k 48	56	64	72	80
pulley n _k [min ⁻¹]	6.37	7.64	8.91	10.19	Pitc	h diam	eter of	the smo	all timin	ng pulle 22.92	y d _{wk} [mm]				
20 40 60 100 200	0.39 0.79 1.18 1.97 3.90	0.48 0.96 1.44 2.41 4.75	0.57 1.14 1.72 2.85 5.63	0.66 1.33 1.99 3.30 6.52	0.75 1.52 2.27 3.75 7.41	0.85 1.71 2.55 4.21 8.31	1.03 2.08 3.10 5.13 10.11	1.23 2.46 3.67 6.07 11.96	1.42 2.85 4.25 7.02 13.83	1.62 3.24 4.82 7.97 15.70	1.82 3.63 5.41 8.93 17.57	2.21 4.42 6.58 10.88 21.36	2.62 5.22 7.76 12.86 25.22	3.02 6.02 8.96 14.80 29.07	3.43 6.82 10.16 16.77 32.94	3.84 7.64 11.37 18.72 36.94
300 400 500 600 700	5.78 7.67 9.53 11.42 13.24	7.07 9.36 11.64 13.93 16.16	8.37 11.12 13.72 16.43 19.08	9.68 12.79 15.91 19.04 22.10	11.02 14.56 18.10 21.64 25.12	12.38 16.34 20.29 24.24 28.16	15.09 19.93 24.71 29.55 34.32	17.79 23.57 29.24 34.95 40.58	20.55 27.20 33.80 40.35 46.86	23.35 30.83 38.37 45.79 53.45	26.13 34.51 42.96 51.30 59.93	31.75 42.03 52.26 62.42 72.50	37.47 49.60 61.62 73.63 85.53	43.23 57.17 71.10 84.92 98.65	48.99 64.82 80.63 96.34 111.87	54.83 72.61 90.16 107.70 125.12
800 900 950 1000 1200	15.10 16.90 17.80 18.70 22.30	18.40 20.60 21.70 22.90 27.20	21.70 24.40 25.70 27.00 32.20	25.20 28.20 29.70 31.20 37.30	28.60 32.10 33.80 35.60 42.40	32.10 36.00 37.90 39.90 47.50	39.10 43.80 46.20 48.50 57.90	46.20 51.80 54.60 57.40 68.40	53.40 59.80 63.00 66.30 79.00	61.10 68.20 71.70 75.20 89.80	68.60 76.40 80.30 84.30 100.60	102.60	109.20 115.10	132.80 139.60	142.90	
1400 1450 1600 1800 2000	25.90 26.80 29.40 32.90 36.50	31.60 32.70 36.00 40.30 44.60	37.40 38.70 42.50 47.70 52.80	43.30 44.80 49.20 55.20 61.00	49.20 50.90 55.90 62.80 69.40	55.20 57.10 62.80 70.40 77.90	67.30 69.60 76.60 85.70 95.00	79.50 82.20 90.50 101.40 112.30	91.80 95.00 104.50 117.10 129.70	107.90 118.70 133.00	120.80 133.00 149.10	147.10 161.90 181.40	167.80 173.60 190.90 214.00 237.00	200.30 220.40 247.00	249.90 280.10	254.10 279.60 313.50
2400 2850 3200 3600 4000	43.50 51.30 57.40 64.20 71.00	53.20 62.70 70.10 78.50 86.80	62.90 74.20 82.90 92.90 102.80	107.50	82.80 98.00 112.10 122.20 135.20	124.00 137.20	149.40 167.30	158.00 176.60 197.80	182.50 204.10 228.60	207.40 231.90 259.60	232.40 259.80 291.00	282.90 316.30 354.30	282.70 333.80 373.30 418.10 462.70	385.20 430.80 482.60	436.90 488.70 547.40	489.00 546.90 612.60
5000 6000 7000 8000 10000	137.10	127.70 147.60	174.90 198.50	175.00 202.40 229.80	199.20 230.30 261.40	258.50 293.50	272.60 315.40 358.10	322.40 373.00 423.50	372.70 431.20 489.70	423.40 489.90 556.40	474.60 549.20 623.80	578.10 669.00 759.90	573.10 682.30 789.60 897.00 1107.00	787.70 911.70 1035.70	893.60 1034.40 1175.20	1000.40 1158.10 1315.70
12000 14000													1314.00 1516.00			
	Pow by tl	er ratin ne widt	gs for a	other be	elt widt ictors.	hs can	be calc	culated	by mul	tiplying	l					

Width correction factor											
Section and construction 2M											
Belt width [mm]	Standard 3	Standard 6	Standard 9	12							
Factor	0.28	0.61	1.00	1.44							

Power ratings optibelt DMEGA timing belt section 3M

No	minal p	ower	P _N [W	for se	ection	and co	nstruc	tion 3	M and	timing	g belt v	width	of 9 m	m	
Speed of the				.,						ing pulle	,			70	
small timing pulley	10	12	14	16	18 D:4-l-	20	24	28	32	40	48	56	64	72	80
n _k [min ⁻¹]	9.55	11.46	13.37	15.28	17.19	19.10	22.92	26.74	30.56	ulley d _w 38.20	45.84	53.48	61.12	68.75	76.39
20 40 60 100 200	1.6 3.2 3.2 6.4 12.8	1.6 3.2 4.8 8.0 16.0	1.6 3.2 4.8 9.6 17.6	1.6 4.8 6.4 11.2 20.9	3.2 4.8 8.0 12.8 24.1	3.2 4.8 8.0 14.4 27.3	3.2 6.4 11.2 17.6 35.8	4.8 8.0 12.8 20.9 43.9	4.8 9.6 16.0 25.7 51.9	6.4 14.4 20.9 34.2 70.1	9.6 17.6 27.3 45.5 89.8	11.2 20.9 32.6 53.5 107.5	12.8 24.1 37.4 62.0 122.5	12.8 27.3 40.6 68.4 136.9	14.4 31.0 45.5 76.5 153.5
300 400 500 600 700	17.6 20.9 25.7 29.4 32.6	20.9 25.7 31.0 35.8 40.6	25.7 31.0 37.4 43.9 48.7	29.4 37.4 43.9 50.3 57.2	34.2 42.2 50.3 57.2 65.2	39.0 48.7 57.2 65.2 73.3	48.7 60.4 71.7 81.3 91.4	58.8 73.3 86.6 97.9 110.7	70.1 86.6 101.1 116.0 130.5	94.7 116.0 135.3 155.1 173.3	120.9 147.1 173.3 196.3 218.7	142.2 174.9 204.3 232.1 259.9	163.1 199.5 233.7 266.3 295.7	182.9 225.7 263.1 298.9 333.2	204.3 249.7 292.5 331.6 371.1
800 900 950 1000 1200	37.4 40.6 42.2 43.9 50.3	45.5 48.7 51.9 53.5 62.0	53.5 58.8 62.0 63.6 73.3	63.6 68.4 71.7 74.9 85.0	71.7 78.1 81.3 85.0 97.9	81.3 89.8 93.0 96.3 110.7	101.1 110.7 116.0 119.3 136.9	122.5 133.7 138.5 143.9 164.7	143.9 156.7 163.1 170.1 194.1	190.9 207.5 215.5 223.5 255.1	241.7 261.5 272.7 282.9 321.9	284.5 309.1 321.9 333.2 379.1	325.1 352.9 367.9 380.7 433.2	366.3 397.3 413.4 428.3 487.2	407.0 441.2 459.4 475.4 539.6
1400 1450 1600 1800 2000	57.2 58.8 63.6 68.4 74.9	70.1 71.7 76.5 85.0 91.4	82.9 85.0 91.4 101.1 109.1	96.3 99.5 105.9 117.6 125.7	110.7 112.8 122.5 133.7 145.5	124.1 127.3 136.9 150.3 163.1	153.5 158.3 170.1 186.1 201.1	184.5 189.3 204.3 221.9 241.7	217.1 223.5 240.1 261.5 282.9	286.1 292.5 313.9 341.7 369.5	357.8 367.9 394.1 426.7 459.4	421.9 431.6 462.6 501.6 541.2	482.4 493.6 527.8 573.8 616.0	541.2 554.0 593.6 643.9 691.4	601.6 616.0 658.8 714.4 766.8
2400 2850 3200 3600 4000	86.0 98.0 108.0 119.0 129.0	106.0 119.0 132.0 144.0 157.0	126.0 141.0 157.0 172.0 185.0	145.0 163.0 182.0 198.0 214.0	167.0 186.0 206.0 226.0 245.0	188.0 211.0 232.0 254.0 275.0	231.0 259.0 286.0 313.0 337.0	277.0 309.0 342.0 372.0 401.0	323.0 362.0 398.0 434.0 467.0	421.0 470.0 516.0 560.0 603.0	523.0 582.0 637.0 690.0 739.0	614.0 682.0 746.0 806.0 862.0		785.0 869.0 947.0 1020.0 1087.0	
5000 6000 7000 8000 10000	154.0 177.0 198.0 219.0 260.0	186.0 214.0 241.0 267.0 314.0	219.0 252.0 283.0 313.0 370.0	254.0 291.0 327.0 362.0 424.0	290.0 331.0 372.0 409.0 480.0	324.0 372.0 416.0 457.0 534.0	398.0 454.0 506.0 555.0 644.0	472.0 536.0 596.0 652.0 749.0	547.0 619.0 687.0 747.0 851.0	700.0 788.0 865.0 933.0 1034.0	1034.0 1103.0	1093.0 1177.0 1236.0	1218.0 1295.0 1338.0	1228.0 1331.0 1393.0 1411.0 1298.0	1428.0 1469.0 1451.0
12000 14000	298.0 334.0	360.0 401.0	421.0 469.0	483.0 536.0	544.0 600.0	603.0 662.0	718.0 780.0	828.0 887.0		1092.0 1098.0			1133.0		
	Powe by th	er rating ie width	gs for ot correct	her belt ion fact	widths fors.	can be	calcula	ted by 1	multiply	ring					

	Width correction factor											
Section and design 3M												
Belt width [mm]	3	Standard 6	Standard 9	12	Standard 15	20	25					
Factor	0.28	0.61	1.00	1.44	1.87	2.63	3.40					

Power ratings optibelt DMEGA timing belt section 5M

Nominal power P _N [W] for section and construction 5M and timing belt width of 9 mm															
Speed of the										ing pulle	,				
small timing pulley	14	16	18	20	24 D:4-l-	28	32	36	40	44 ال	48	56	64	72	80
n _k [min ⁻¹]	22.28	25.46	28.65	31.83	38.20	44.56	50.93	57.30	63.66	ulley d _w 70.03	76.39	89.13	101.86	114.59	127.32
20 40 60 100 200	3.7 8.9 13.0 21.9 45.0	4.9 11.0 15.9 25.9 53.0	5.8 11.8 17.9 30.0 61.1	6.9 13.8 21.0 34.9 68.9	8.9 17.9 25.9 44.1 88.2	11.0 21.0 32.0 53.9 107.2	13.0 25.9 38.0 64.0 128.2	15.0 30.0 45.0 74.9 150.1	17.0 34.9 51.9 87.0 174.4	19.9 40.1 59.9 100.0 199.4	22.8 45.0 68.0 113.0 226.2	26.8 53.9 80.1 134.3 268.6	30.8 61.1 91.9 153.3 306.6	34.0 68.9 103.2 172.3 345.5	38.0 76.9 115.0 192.2 383.9
300 400 500 600 700	61.0 76.0 91.0 104.0 117.0	72.0 90.0 106.0 122.0 137.0	83.0 103.0 122.0 140.0 158.0	94.0 117.0 139.0 159.0 179.0	119.0 147.0 174.0 199.0 223.0	145.0 179.0 211.0 241.0 271.0	172.0 213.0 251.0 286.0 321.0	202.0 249.0 292.0 334.0 373.0	233.0 286.0 336.0 383.0 428.0	266.0 326.0 382.0 435.0 485.0	300.0 368.0 430.0 489.0 545.0	356.0 436.0 510.0 580.0 646.0	407.0 498.0 583.0 662.0 738.0	458.0 561.0 656.0 745.0 829.0	509.0 623.0 728.0 827.0 921.0
800 900 950 1000 1200	130.0 142.0 148.0 154.0 177.0	152.0 166.0 173.0 180.0 207.0	174.0 191.0 199.0 206.0 237.0	198.0 216.0 225.0 234.0 268.0	247.0 269.0 280.0 291.0 334.0	299.0 326.0 339.0 352.0 403.0	353.0 385.0 401.0 416.0 475.0	411.0 447.0 465.0 483.0 551.0	471.0 512.0 532.0 552.0 629.0	533.0 580.0 603.0 625.0 710.0	598.0 650.0 675.0 699.0 794.0	709.0 769.0 799.0 828.0 939.0		987.0 1025.0 1062.0	1178.0
1400 1450 1600 1800 2000	199.0 205.0 221.0 242.0 262.0	232.0 239.0 257.0 281.0 305.0	266.0 274.0 295.0 322.0 349.0	301.0 309.0 333.0 364.0 394.0	375.0 384.0 414.0 451.0 488.0	451.0 463.0 498.0 543.0 586.0	532.0 545.0 586.0 638.0 688.0	615.0 631.0 677.0 736.0 794.0	702.0 720.0 771.0 838.0 902.0	791.0 811.0 869.0 943.0 1014.0	905.0	1070.0 1144.0 1239.0	1191.0 1220.0 1303.0 1410.0 1511.0	1368.0 1461.0 1578.0	1515.0 1617.0 1745.0
2400 2850 3200 3600 4000	301.0 338.0 374.0 409.0 443.0	350.0 393.0 434.0 474.0 513.0	400.0 449.0 496.0 541.0 585.0	451.0 506.0 559.0 609.0 658.0	558.0 625.0 688.0 749.0 808.0		960.0 1040.0	1004.0 1100.0	1137.0 1242.0 1340.0	1148.0 1272.0 1386.0 1492.0 1589.0	1408.0 1531.0	1649.0 1786.0 1908.0	1863.0 2008.0 2134.0	2067.0 2217.0 2340.0	2262.0 2411.0 2526.0
5000 6000 7000 8000 10000	523.0 598.0 669.0 735.0 854.0	605.0 690.0 769.0 843.0 972.0	688.0 783.0 870.0 950.0 1088.0	971.0 1057.0	1064.0 1171.0 1264.0	1250.0 1365.0 1459.0	1433.0 1550.0 1637.0	1722.0 1794.0	1778.0 1880.0 1927.0	1792.0 1937.0 2019.0 2031.0 1819.0	2137.0 2101.0	2301.0 2268.0	2411.0		
12000 14000	1039.0	1158.0	1264.0	1354.0	1473.0	1495.0		1609.0	multiply	ina					
	by th	ne width	orrec	tion fac	tors.	Con De	Carcoll	ca by	ompiy	9					

Width correction factor											
Section and construction 5M											
Belt width [mm]	6	Standard 9	12	Standard 15	20	Standard 25	30				
Factor	0.61	1.00	1.44	1.87	2.63	3.40	4.15				

Power ratings optibelt DMEGA timing belt section 8M

Nom	ninal power P _N [kW] for section and construction 8M and timing belt width of 20 mm
Speed of the	Number of teeth on the small timing pulley z_k
small timing pulley	22 24 26 28 30 32 34 36 38 40 44 48 52 56 64 72 80
n _k [min ⁻¹]	Pitch diameter of the small timing pulley d _{wk} [mm] 56.02 61.12 66.21 71.30 76.39 81.49 86.58 91.67 96.77 101.86 112.05 122.23 132.42 142.60 162.97 183.35 203.72
10 20 50 100 200	0.015 0.018 0.022 0.026 0.029 0.036 0.042 0.046 0.053 0.057 0.061 0.068 0.072 0.078 0.097 0.106 0.033 0.037 0.044 0.051 0.062 0.072 0.082 0.093 0.106 0.114 0.125 0.135 0.144 0.154 0.173 0.194 0.213 0.081 0.092 0.110 0.132 0.154 0.179 0.207 0.234 0.262 0.283 0.310 0.336 0.361 0.386 0.435 0.483 0.532 0.165 0.183 0.223 0.264 0.311 0.359 0.412 0.466 0.526 0.566 0.621 0.671 0.722 0.770 0.870 0.967 1.064 0.326 0.370 0.447 0.531 0.623 0.720 0.823 0.933 1.051 1.131 1.239 1.340 1.442 1.541 1.739 1.933 2.125
300 400 500 600 700	0.491 0.535 0.645 0.766 0.897 1.040 1.190 1.340 1.510 1.640 1.780 1.930 2.070 2.220 2.500 2.770 3.050 0.652 0.711 0.839 0.993 1.165 1.340 1.540 1.740 1.960 2.120 2.310 2.500 2.680 2.870 3.230 3.590 3.940 0.810 0.890 1.020 1.220 1.420 1.640 1.880 2.130 2.390 2.590 2.820 3.050 3.270 3.500 3.940 4.370 4.800 0.980 1.070 1.210 1.430 1.670 1.930 2.210 2.510 2.820 3.050 3.320 3.590 3.850 4.110 4.630 5.130 5.630 1.140 1.240 1.380 1.640 1.920 2.220 2.540 2.880 3.230 3.500 3.810 4.110 4.410 4.710 5.300 5.870 6.440
800 950 1000 1200 1450	1.300 1.420 1.560 1.850 2.170 2.500 2.860 3.240 3.640 3.940 4.280 4.630 4.970 5.300 5.960 6.600 7.230 1.550 1.690 1.830 2.160 2.520 2.910 3.330 3.770 4.240 4.580 4.990 5.380 5.770 6.160 6.910 7.650 8.370 1.630 1.770 1.930 2.260 2.640 3.050 3.480 3.950 4.440 4.800 5.220 5.630 6.040 6.440 7.230 7.990 8.740 1.950 2.130 2.310 2.650 3.100 3.580 4.090 4.630 5.210 5.630 6.120 6.600 7.070 7.540 8.440 9.320 10.170 2.350 2.570 2.790 3.130 3.660 4.230 4.830 5.470 6.140 6.640 7.210 7.770 8.310 8.850 9.890 10.900 11.850
1600 1800 2000 2200 2500	2.590 2.830 3.070 3.420 3.990 4.610 5.260 5.960 6.690 7.230 7.840 8.440 9.030 9.610 10.730 11.790 12.800 2.920 3.180 3.450 3.780 4.420 5.100 5.820 6.590 7.400 7.990 8.670 9.320 9.960 10.590 11.790 12.920 13.990 3.230 3.520 3.820 4.180 4.840 5.580 6.370 7.210 8.090 8.740 9.470 10.170 10.860 11.530 12.800 13.990 15.090 3.550 3.870 4.190 4.590 5.250 6.050 6.910 7.820 8.770 9.470 10.240 11.000 11.730 12.430 13.760 14.980 16.090 4.020 4.380 4.750 5.190 5.840 6.740 7.690 8.690 9.750 10.520 11.360 12.180 12.950 13.700 15.090 16.320 17.400
2850 3000 3500 4000 4500	4.570 4.970 5.380 5.880 6.510 7.510 8.560 9.670 10.850 11.690 12.600 13.470 14.290 15.060 16.460 17.650 18.620 4.800 5.220 5.650 6.170 6.790 7.820 8.920 10.080 11.300 12.180 13.110 13.990 14.820 15.600 16.990 18.140 19.040 7.720 8.840 10.070 11.370 12.730 13.700 14.680 15.600 16.440 17.200 18.470 19.380 19.890 9.780 11.130 12.550 14.040 15.090 16.090 16.990 17.790 18.470 12.090 13.620 15.230 16.320 17.300 18.140 18.840
5000 5500 6000	14.580 16.270 17.400 18.310 19.040 19.570 17.170 18.310 19.100 17.910 19.040 19.650
	Power ratings for other belt widths can be calculated by multiplying by the width correction factors.

Width correction factor											
Section and construction 8M											
Standard belt width [mm]	20	30	50	85							
Factor	1.00	1.58	2.73	4.74							

Power ratings optibelt DMEGA timing belt section 14M

						Numb	er of te	eeth on	the sm	nall tim	ing pu	lley z₁					
peed of the small timing	28	29	30	32	34	36	38	40	42	44	46	48	52	56	64	72	8
pulley n _k [min ⁻¹]					P	itch dic	meter	of the	small ti	ming p	oulley c	l _{wk} [mn	n]				
ıık [ıııııı]	124.78	129.23	133.69	142.60	151.52	160.43	169.34	178.25	187.17	196.08	204.99	213.90	231.73	249.55	285.21	320.86	356.5
10 20	0.17 0.35	0.20 0.37	0.20 0.43	0.23 0.49	0.29 0.55	0.30 0.63	0.34 0.68	0.36 0.72	0.38 0.76	0.40 0.80	0.42 0.83	0.44	0.49 0.97	0.53 1.04	0.61 1.19	0.68 1.34	0.7
40	0.72	0.78	0.84	0.98	1.10	1.25	1.34	1.42	1.52	1.59	1.69	1.76	1.93	2.10	2.39	2.69	2.9
60 100	1.07 1.79	1.15 1.93	1.27 2.10	1.44 2.42	1.64 2.77	1.88 3.11	2.03 3.37	2.14 3.58	2.27 3.79	2.39 4.00	2.52 4.20	2.65 4.41	2.90 4.85	3.14 5.23	3.58 5.98	4.03 6.72	4.4 7.4
200 300	3.60 4.90	3.90 5.30	4.20 5.70	4.80 6.60	5.50 7.50	6.20 8.50	6.80 9.20	7.20 9.70	7.60 10.30	8.00 10.80	8.40 11.40	8.90 12.00	9.70	10.50 14.20	12.00 16.50	13.50 18.90	15.0 21.3
400	6.10	6.60	7.10	8.20	9.30	10.50	11.40	12.00	12.70	13.30	14.00	14.70	16.10	17.40	20.10	22.90	25.
500 600	7.20 8.20	7.80 8.90	8.40 9.50	9.60 11.00	11.00 12.50	12.30 14.00	13.30 15.10	14.10 15.90	14.80 16.80	15.60 17.70	16.40 18.50	17.20 19.40		20.20 22.70		26.40 29.50	29.6 32.9
700 800	9.10 10.00	9.90 10.80	10.60 11.60		13.90 15.10	15.60 17.00		17.70 19.30	18.60	19.50 21.30	20.50 22.20	21.40		25.00 27.00	28.60	32.20 34.50	35. 38.
950	11.30	12.10	13.10	14.90	16.90	19.00	20.40	21.40	22.50	23.60	24.60	25.70	27.70	29.70	33.60	37.40	41.
1000 1200	11.60 13.10	12.60 14.10	13.50 15.10		17.50 19.50			22.10 24.50							34.40 37.10	38.20 40.70	41. 44.
1450 1600	14.60 15.40	15.70 16.60						27.10 28.30			30.60 31.80			35.70 36.60		42.30 42.30	44. 44.
1800 2000		17.70	18.90 19.80	21.50	24.10	26.80	28.50	29.70	30.90	32.00	33.00	34.00	35.80	37.30 37.40	39.80	41.30	
2200			20.60												30.70		
2400 2600			21.30 22.70								34.20 33.70			35.40			
2850 3000	23.10					30.00	31.30	31.80 31.60	32.10	32.30		32.30					
3500	24.10	24.70						31.50		01.50	01.40	01.00					
4000				30.80	31.40												
			ngs for				ın be c	alculat	ed by i	multiply	ying						
	by t	he wic	th corr	ection	tactors												

		Width correction	factor		
	Sec	tion and constru	ction 14M		
Standard belt width [mm]	40	55	85	115	170
Factor	1.00	1.50	2.50	3.47	5.28

Dimensions and tolerances optibelt *OMEGA HL / HP* and optibelt *OMEGA*

Optibelt OMEGA HP, Optibelt OMEGA HL and Optibelt OMEGA timing belts are produced in a wide range of lengths and widths. Many special lengths, widths and constructions are available. Please consult with our Applications Engineering Department.

Optibelt OMEGA HP, Optibelt OMEGA HL and Optibelt OMEGA timing belts are produced to ground category G2 with a thickness tolerance of \pm 0,25 mm as standard. If required, the belts can be ground to category G1, with a thickness tolerance of \pm 0,13 mm.

Table 8
Nominal dimensions and weights

Section	2M	3M/3M HP	5M/5M HP	8M/8M HP/HL	14M/14M HP/HL
Tooth height h _t [mm]	0.70	1.10	1.90	3.20	5.60
Total belt thickness h _s [mm]	1.50	2.30	3.40	5.40	9.50
Tooth pitch t [mm]	2.00	3.00	5.00	8.00	14.00
Weight [kg/m] for 10 mm belt width	0.013	0.024	0.035	0.058	0.100

Length tolerances

Pitch length (mm)	≤ 250	> 250 ≤ 500											> 3000
Length tolerances given as centre distance deviation	± 0.20	± 0.23	± 0.27	± 0.30	± 0.33	± 0.36	± 0.39	± 0.42	± 0.46	± 0.49	± 0.52	± 0.55	± 0.55 ± 0.03*

Width tolerance

Standard belt width	Permissible tolerance [mm	a] of the timing belt width for Op	tibelt OMEGA/HP/HL
Nominal width [mm]	Pitch length	Pitch length	Pitch length
	up to 838.2 mm	838.3 up to 1676.4 mm	over 1676.4 mm
3.0 to 11.0	+ 0.4 - 0.8	+ 0.4 - 0.8	_
11.1 to 38.1	+ 0.8	+ 0.8	+ 0.8
	- 0.8	- 0.8	- 1.2
38.2 to 50.8	+ 0.8	+ 1.2	+ 1.2
	- 1.2	- 1.2	- 1.6
50.9 to 63.5	+ 1.2	+ 1.2	+ 1.6
	- 1.2	- 1.6	- 1.6
63.6 to 76.2	+ 1.2	+ 1.6	+ 1.6
	- 1.6	- 1.6	- 2.0
76.3 to 101.6	+ 1.6	+ 1.6	+ 2.0
	- 1.6	- 2.0	- 2.0
101.7 to 177.8	+ 2.4	+ 1.6	+ 2.0
	- 2.4	- 2.0	- 2.0
177.9 to max.	-	_	+ 4.8 - 6.4

^{*} For longer lengths an additional 0.03 mm should be added in length steps of 250 mm.

Standard timing pulleys optibelt DMEGA timing belt sections 3M and 3M HP

Number	Pitch	Outside	Number	Pitch	Outside	Number	Pitch	Outside	Number	Pitch	Outside
of teeth	dian [m	neter m]	of teeth	diam [m		of teeth	diam [mi		of teeth	diam [m	
10 11 12 13 14	9.55 10.50 11.46 12.41 13.37	8.79 9.74 10.70 11.65 12.61	50 51 52 53 54	47.75 48.70 49.66 50.61 51.57	46.99 47.94 48.90 49.85 50.81	90 91 92 93 94	85.94 86.90 87.85 88.81 89.76	85.18 86.14 87.09 88.05 89.00	130 131 132 133 134	124.14 125.10 126.05 127.01 127.96	123.38 124.33 125.29 126.24 127.20
15 16 17 18 19	14.32 15.28 16.23 17.19 18.14	13.56 14.52 15.47 16.43 17.38	55 56 57 58 59	52.52 53.48 54.43 55.39 56.34	51.76 52.72 53.67 54.63 55.58	95 96 97 98 99	90.72 91.67 92.63 93.58 94.54	89.96 90.91 91.87 92.82 93.78	135 136 137 138 139	128.92 129.87 130.83 131.78 132.74	128.15 129.11 130.06 131.02 131.97
20 21 22 23 24	19.10 20.05 21.01 21.96 22.92	18.34 19.29 20.25 21.20 22.16	60 61 62 63 64	57.30 58.25 59.21 60.16 61.12	56.54 57.49 58.45 59.40 60.36	100 101 102 103 104	95.49 96.45 97.40 98.36 99.31	94.73 95.69 96.64 97.60 98.55	140 141 142 143 144	133.69 134.65 135.60 136.55 137.51	132.93 133.88 134.84 135.79 136.75
25 26 27 28 29	23.87 24.83 25.78 26.74 27.69	23.11 24.07 25.02 25.98 26.93	65 66 67 68 69	62.07 63.03 63.98 64.94 65.89	61.31 62.27 63.22 64.18 65.13	105 106 107 108 109	100.27 101.22 102.18 103.13 104.09	99.51 100.46 101.42 102.37 103.33	145 146 147 148 149	138.46 139.42 140.37 141.33 142.28	137.70 138.66 139.61 140.57 141.52
30 31 32 33 34	28.65 29.60 30.56 31.51 32.47	27.89 28.84 29.80 30.75 31.71	70 71 72 73 74	66.85 67.80 68.75 69.71 70.66	66.09 67.04 67.99 68.95 69.90	110 111 112 113 114	105.04 106.00 106.95 107.91 108.86	104.28 105.24 106.19 107.15 108.10	150	143.24	142.48
35 36 37 38 39	33.42 34.38 35.33 36.29 37.24	32.66 33.62 34.57 35.53 36.48	75 76 77 78 79	71.62 72.57 73.53 74.48 75.44	70.86 71.81 72.77 73.72 74.68	115 116 117 118 119	109.82 110.77 111.73 112.68 113.64	109.06 110.01 110.97 111.92 112.88			
40 41 42 43 44	38.20 39.15 40.11 41.06 42.02	37.44 38.39 39.35 40.30 41.26	80 81 82 83 84	76.39 77.35 78.30 79.26 80.21	75.63 76.59 77.54 78.50 79.45	120 121 122 123 124	114.59 115.55 116.50 117.46 118.41	113.83 114.79 115.74 116.70 117.65			
45 46 47 48 49	42.97 43.93 44.88 45.84 46.79	42.21 43.17 44.12 45.08 46.03	85 86 87 88 89	81.17 82.12 83.08 84.03 84.99	80.41 81.36 82.32 83.27 84.23	125 126 127 128 129	119.37 120.32 121.28 122.23 123.19	118.61 119.56 120.52 121.47 122.43			

Standard timing pulleys optibelt *DMEGA* timing belt sections 5M and 5M HP

Number of teeth	Pitch diam [m	_	Number of teeth	Pitch diam [mi		Number of teeth	Pitch diam [mi		Number of teeth	Pitch diam [m	_
12 13 14 15 16	19.10 20.69 22.28 23.87 25.46	17.96 19.55 21.14 22.73 24.32	52 53 54 55 56	82.76 84.35 85.94 87.54 89.13	81.62 83.21 84.80 86.40 87.98	92 93 94 95 96	146.42 148.01 149.61 151.20 152.79	145.28 146.87 148.47 150.06 151.65	132 133 134 135 136	210.08 211.68 213.27 214.86 216.45	208.94 210.54 212.13 213.72 215.31
17 18 19 20 21	27.06 28.65 30.24 31.83 33.42	25.92 27.51 29.10 30.69 32.28	57 58 59 60 61	90.72 92.31 93.90 95.49 97.08	89.58 91.17 92.76 94.35 95.94	97 98 99 100 101	154.38 155.97 157.56 159.15 160.75	153.24 154.83 156.42 158.01 159.61	137 138 139 140 141	218.04 219.63 221.23 222.82 224.41	216.90 218.49 220.09 221.68 223.27
22 23 24 25 26	35.01 36.61 38.20 39.79 41.38	33.87 35.47 37.05 38.65 40.24	62 63 64 65 66	98.68 100.27 101.86 103.45 105.04	97.54 99.13 100.72 102.31 103.90	102 103 104 105 106	162.34 163.93 165.52 167.11 168.70	161.20 162.79 164.38 165.97 167.56	142 143 144 145 146	226.00 227.59 229.18 230.77 232.37	224.86 226.45 228.04 229.63 231.23
27 28 29 30 31	42.97 44.56 46.15 47.75 49.34	41.83 43.42 45.01 46.60 48.20	67 68 69 70 71	106.63 108.23 109.82 111.41 113.00	105.49 107.09 108.68 110.27 111.86	107 108 109 110 111	170.30 171.89 173.48 175.07 176.66	169.16 170.75 172.34 173.93 175.52	147 148 149 150	233.96 235.55 237.14 238.73	232.82 234.41 236.00 237.59
32 33 34 35 36	50.93 52.52 54.11 55.70 57.30	49.79 51.38 52.97 54.56 56.16	72 73 74 75 76	114.59 116.18 117.77 119.37 120.96	113.45 115.04 116.63 118.23 119.82	112 113 114 115 116	178.25 179.85 181.44 183.03 184.62	177.11 178.71 180.30 181.89 183.48			
37 38 39 40 41	58.89 60.48 62.07 63.66 65.25	57.75 59.34 60.93 62.52 64.11	77 78 79 80 81	122.55 124.14 125.73 127.32 128.92	121.41 123.00 124.59 126.18 127.78	117 118 119 120 121	186.21 187.80 189.39 190.99 192.58	185.07 186.66 188.25 189.85 191.44			
42 43 44 45 46	66.85 68.44 70.03 71.62 73.21	65.71 67.30 68.89 70.48 72.07	82 83 84 85 86	130.51 132.10 133.69 135.28 136.87	129.37 130.96 132.55 134.14 135.73	122 123 124 125 126	194.17 195.76 197.35 198.94 200.54	193.03 194.62 196.21 197.80 199.40			
47 48 49 50 51	74.80 76.39 77.99 79.58 81.17	73.66 75.25 76.85 78.43 80.03	87 88 89 90 91	138.46 140.06 141.65 143.24 144.83	137.32 138.92 140.51 142.10 143.69	127 128 129 130 131	202.13 203.72 205.31 206.90 208.49	200.99 202.58 204.17 205.76 207.35			

Standard timing pulleys optibelt DMEGA timing belts sections 8M, 8M HP and 8M HL

Number of teeth	Pitch diam [m	Outside neter m]	Number of teeth	Pitch diam [mi	_	Number of teeth	Pitch diam [m		Number of teeth	Pitch diam [m	
22	56.02	54.65	67	170.61	169.24	112	285.21	283.83	157	399.80	398.43
23	58.57	57.20	68	173.16	171.79	113	287.75	286.38	158	402.34	400.97
24	61.12	59.75	69	175.71	174.34	114	290.30	288.93	159	404.89	403.52
25	63.66	62.29	70	178.25	176.88	115	292.85	291.47	160	407.44	406.07
26	66.21	64.84	71	180.80	179.43	116	295.39	294.02	161	409.98	408.61
27	68.75	67.38	72	183.35	181.97	117	297.94	296.57	162	412.53	411.16
28	71.30	69.93	73	185.89	184.52	118	300.48	299.11	163	415.08	413.70
29	73.85	72.48	74	188.44	187.07	119	303.03	301.66	164	417.62	416.25
30	76.39	75.13	75	190.99	189.61	120	305.58	304.21	165	420.17	418.80
31	78.94	77.65	76	193.53	192.16	121	308.12	306.75	166	422.72	421.34
32	81.49	80.16	77	196.08	194.71	122	310.67	309.30	167	425.26	423.89
33	84.03	82.68	78	198.62	197.25	123	313.22	311.85	168	427.81	426.44
34	86.58	85.22	79	201.17	199.81	124	315.76	314.39	169	430.35	428.98
35	89.13	87.76	80	203.72	202.35	125	318.31	316.94	170	432.90	431.53
36	91.67	90.30	81	206.26	204.89	126	320.86	319.48	171	435.45	434.08
37	94.22	92.85	82	208.81	207.44	127	323.41	322.03	172	437.99	436.62
38	96.77	95.39	83	211.36	209.99	128	325.95	324.58	173	440.54	439.17
39	99.31	97.94	84	213.90	212.53	129	328.50	327.12	174	443.09	441.72
40	101.86	100.49	85	216.45	215.08	130	331.04	329.67	175	445.63	444.26
41	104.41	103.03	86	219.00	217.63	131	333.59	332.22	176	448.18	446.81
42	106.95	105.58	87	221.54	220.17	132	336.14	334.76	177	450.73	449.36
43	109.50	108.13	88	224.09	222.72	133	338.68	337.31	178	453.27	451.90
44	112.05	110.67	89	226.54	225.27	134	341.23	339.86	179	455.82	454.45
45	114.59	113.22	90	229.18	227.81	135	343.77	342.40	180	458.37	456.99
46	117.14	115.77	91	231.73	230.36	136	346.32	344.95	181	460.91	459.54
47	119.68	118.31	92	234.28	232.90	137	348.87	347.50	182	463.46	462.09
48	122.23	120.86	93	236.82	235.45	138	351.41	350.04	183	466.01	464.63
49	124.78	123.41	94	239.37	238.00	139	353.96	352.59	184	468.55	467.18
50	127.32	125.95	95	241.92	240.54	140	356.51	355.14	185	471.10	469.73
51	129.87	128.50	96	244.46	243.09	141	359.05	357.68	186	473.65	472.27
52	132.42	131.05	97	247.01	245.64	142	361.60	360.23	187	476.19	474.82
53	134.96	133.59	98	249.55	248.18	143	364.15	362.77	188	478.74	477.37
54	137.51	136.14	99	252.10	250.73	144	366.69	365.32	189	481.28	479.91
55	140.06	138.68	100	254.65	253.28	145	369.24	367.87	190	483.83	482.46
56	142.60	141.23	101	257.19	255.82	146	371.79	370.41	191	486.38	485.01
57 58 59 60 61	145.15 147.70 150.24 152.79 155.34	143.78 146.32 148.87 151.42 153.96	102 103 104 105 106	259.74 262.29 264.83 267.38 269.93	258.37 260.92 263.46 266.01 268.56	147 148 149 150 151	374.33 376.88 379.43 381.97 384.52	372.96 375.51 378.05 380.60 383.15	192	488.92	487.55
62 63 64 65 66	157.88 160.43 162.97 165.52 168.07	156.51 159.06 161.60 164.15 166.70	107 108 109 110 111	272.47 275.02 277.57 280.11 282.66	271.10 273.65 276.19 278.74 281.29	152 153 154 155 156	387.06 389.61 392.16 394.70 397.25	385.70 388.24 390.79 393.33 395.88			

Standard timing pulleys optibelt DMEGA timing belts sections 14M, 14M HP and 14M HL

Number of teeth	Pitch diam [m		Number of teeth	Pitch diam [m		Number of teeth	Pitch diam [m		Number of teeth	Pitch diam [m	
28	124.78	122.12	73	325.31	322.52	118	525.85	523.05	163	726.38	723.59
29	129.23	126.57	74	329.77	326.97	119	530.30	527.51	164	730.84	728.05
30	133.69	130.99	75	334.22	331.43	120	534.76	531.97	165	735.30	732.50
31	138.15	135.46	76	338.68	335.89	121	539.22	536.42	166	739.75	736.96
32	142.60	139.88	77	343.14	340.34	122	543.67	540.88	167	744.21	741.41
33	147.06	144.35	78	347.59	344.80	123	548.13	545.34	168	748.66	745.87
34	151.51	148.79	79	352.05	349.26	124	552.59	549.79	169	753.12	750.33
35	155.97	153.24	80	356.51	353.71	125	557.04	554.25	170	757.58	754.78
36	160.43	157.68	81	360.96	358.17	126	561.50	558.70	171	762.03	759.24
37	164.88	162.13	82	365.42	362.63	127	565.95	563.16	172	766.49	763.70
38	169.34	166.60	83	369.88	367.08	128	570.41	567.62	173	770.95	768.15
39	173.80	171.02	84	374.33	371.54	129	574.87	572.07	174	775.40	772.61
40	178.25	175.49	85	378.79	375.99	130	579.32	576.53	175	779.86	777.06
41	182.71	179.92	86	383.24	380.45	131	583.78	580.99	176	784.32	781.52
42	187.17	184.37	87	387.70	384.91	132	588.24	585.44	177	788.77	785.98
43	191.62	188.83	88	392.16	389.36	133	592.69	589.90	178	793.23	790.43
44	196.08	193.28	89	396.61	393.82	134	597.15	594.35	179	797.68	794.89
45	200.53	197.74	90	401.07	398.28	135	601.61	598.81	180	802.14	799.35
46	204.99	202.30	91	405.53	402.73	136	606.06	603.27	181	806.60	803.80
47	209.45	206.65	92	409.98	407.19	137	610.52	607.72	182	811.05	808.26
48	213.90	211.11	93	414.44	411.64	138	614.97	612.18	183	815.51	812.72
49	218.36	215.57	94	418.90	416.10	139	619.43	616.64	184	819.97	817.17
50	222.82	220.02	95	423.35	420.56	140	623.89	621.09	185	824.42	821.63
51	227.27	224.48	96	427.81	425.01	141	628.34	625.55	186	828.88	826.08
52	231.73	228.94	97	432.26	429.47	142	632.80	630.01	187	833.33	830.54
53	236.19	233.39	98	436.72	433.93	143	637.26	634.46	188	837.79	835.00
54	240.64	237.85	99	441.18	438.38	144	641.71	638.92	189	842.25	839.45
55	245.10	242.30	100	445.63	442.84	145	646.17	643.37	190	846.70	843.91
56	249.55	246.76	101	450.09	447.30	146	650.63	647.83	191	851.16	848.37
57	254.01	251.22	102	454.55	451.75	147	655.08	652.29	192	855.62	852.82
58 59 60 61 62	258.47 262.92 267.38 271.84 276.29	255.67 260.13 264.59 269.04 273.50	103 104 105 106 107	459.00 463.46 467.92 472.37 476.83	456.21 460.66 465.12 469.58 474.03	148 149 150 151 152	659.54 663.99 668.45 672.91 677.36	656.74 661.20 665.66 670.11 674.57	216	962.57	959.77
63 64 65 66 67	280.75 285.21 289.66 294.12 298.57	277.95 282.41 286.87 291.32 295.78	108 109 110 111 112	481.28 485.74 490.20 494.65 499.11	478.49 482.95 487.40 491.86 496.32	153 154 155 156 157	681.82 686.28 690.73 695.19 699.64	679.03 683.48 687.94 692.39 696.85			
68 69 70 71 72	303.03 307.49 311.94 316.40 320.86	300.24 304.69 309.15 313.61 318.06	113 114 115 116 117	503.57 508.02 512.48 516.93 521.39	500.77 505.23 509.68 514.14 518.60	158 159 160 161 162	704.10 708.56 713.01 717.47 721.93	701.31 705.76 710.22 714.68 719.13			

optibelt ZR5 HTD® timing pulleys for cylindrical bore optibelt DMEGA timing belts sections 3M and 3M HP

	Se	ections	3M and	d 3M H	P – pito	h 3 mn	n for be	elt widt	h of 6 r	nm (Non stock	c items)
Designation	Number of teeth	Туре	Material	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	D [mm]	Pilot bore d [mm]	Finish bore d _{max} [mm]	Weight ≈ [kg]
10-3M-6 12-3M-6 14-3M-6 15-3M-6 16-3M-6	10 12 14 15 16	1F 1F 1F 1F 6F	Al Al Al Al	9.55 11.46 13.37 14.32 15.28	8.79 10.70 12.61 13.56 14.52	13.0 15.0 16.0 17.5 18.0	7.2 7.2 7.2 7.2 9.8	14.5 14.5 14.5 14.5 17.5	13.0 15.0 16.0 17.5 10.0		3 5 6 6 7	
18-3M-6 20-3M-6 21-3M-6 22-3M-6 24-3M-6	18 20 21 22 24	6F 6F 6F 6F	Al Al Al Al	17.19 19.10 20.05 21.01 22.92	16.43 18.34 19.29 20.25 22.16	19.5 23.0 25.0 25.0 25.0	9.8 9.8 9.8 9.8 9.8	17.5 17.5 17.5 17.5 17.5	11.0 13.0 14.0 14.0 14.0	6 6 6 6	8 9 9 9	
26-3M-6 28-3M-6 30-3M-6 32-3M-6 36-3M-6	26 28 30 32 36	6F 6F 6F 6F	Al Al Al Al	24.83 26.74 28.65 30.56 34.38	24.07 25.98 27.89 29.80 33.62	28.0 32.0 32.0 36.0 38.0	9.8 9.8 9.8 9.8 10.3	17.5 17.5 17.5 17.5 18.0	16.0 18.0 20.0 22.0 26.0	6 6 6 6	11 12 14 15 16	
40-3M-6 44-3M-6 48-3M-6 60-3M-6 72-3M-6	40 44 48 60 72	6F 6F 6 6	Al Al Al Al	38.20 42.02 45.84 57.30 68.75	37.44 41.26 45.08 56.54 67.99	42.0 48.0 — —	10.3 10.3 10.3 10.3 10.3	18.0 18.0 18.6 18.6 18.6	28.0 33.0 33.0 33.0 33.0	6 6 8 8	18 20 20 20 20	
	Se	ections	3M and	d 3M H	P – pito	h 3 mn	n for be	elt widt	h of 9 r	nm		
10-3M-9 12-3M-9 14-3M-9 15-3M-9 16-3M-9	10 12 14 15 16	1F 1F 1F 1F 6F	Al Al Al Al	9.55 11.46 13.37 14.32 15.28	8.79 10.70 12.61 13.56 14.52	13.0 15.0 16.0 17.5 18.0	10.2 10.2 10.2 10.2 12.8	17.5 17.5 17.5 17.5 20.6	13.0 15.0 16.0 17.5 10.0	_ _ _ 4	3 5 6 6 7	0.004 0.006 0.007 0.008 0.007
18-3M-9 20-3M-9 21-3M-9 22-3M-9 24-3M-9	18 20 21 22 24	6F 6F 6F 6F	Al Al Al Al	17.19 19.10 20.05 21.01 22.92	16.43 18.34 19.29 20.25 22.16	19.5 23.0 25.0 25.0 25.0	12.8 12.8 12.8 12.8 12.8	20.6 20.6 20.6 20.6 20.6	11.0 13.0 14.0 14.0 14.0	6 6 6 6	8 9 9 9	0.008 0.010 0.013 0.014 0.016
26-3M-9 28-3M-9 30-3M-9 32-3M-9 36-3M-9	26 28 30 32 36	6F 6F 6F 6F	Al Al Al Al	24.83 26.74 28.65 30.56 34.38	24.07 25.98 27.89 29.80 33.62	28.0 32.0 32.0 36.0 38.0	12.8 12.8 12.8 12.8 13.4	20.6 20.6 20.6 20.6 22.2	16.0 18.0 20.0 22.0 26.0	6 6 6 6	11 12 14 15 16	0.018 0.024 0.028 0.032 0.045
40-3M-9 44-3M-9 48-3M-9 60-3M-9 72-3M-9	40 44 48 60 72	6F 6F 6 6	Al Al Al Al	38.20 42.02 45.84 57.30 68.75	37.44 41.26 45.08 56.54 67.99	42.0 48.0 — —	13.4 13.4 13.4 13.4 13.4	22.2 22.2 22.2 22.2 22.2	28.0 33.0 33.0 33.0 33.0	6 6 8 8	18 20 20 20 20	0.055 0.074 0.074 0.106 0.145

optibelt ZR5 HTD[®] timing pulleys for cylindrical bore optibelt DMEGA timing belts sections 3M and 3M HP, 5M and 5M HP

	Se	ctions	3M and	I 3M HI	P – pitch	n 3 mm	for be	lt width	of 15	mm		
Designation	Number of teeth	Туре	Material	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	D [mm]	Pilot bore d [mm]	Finish bore d _{max} [mm]	Weight ≈ [kg]
10-3M-15 12-3M-15 14-3M-15 15-3M-15 16-3M-15	10 12 14 15 16	1F 1F 1F 1F 6F	Al Al Al Al	9.55 11.46 13.37 14.32 15.28	8.79 10.70 12.61 13.56 14.52	13.0 15.0 16.0 17.5 18.0	17.0 17.0 17.0 17.0 19.5	26 26 26 26 26	13.0 15.0 16.0 17.5 10.0	_ _ _ 4	3 5 6 6 7	0.006 0.008 0.010 0.012 0.010
18-3M-15 20-3M-15 21-3M-15 22-3M-15 24-3M-15	18 20 21 22 24	6F 6F 6F 6F	Al Al Al Al	17.19 19.10 20.05 21.01 22.92	16.43 18.34 19.29 20.25 22.16	19.5 23.0 25.0 25.0 25.0	19.5 19.5 19.5 19.5 19.5	26 26 26 26 26	11.0 13.0 14.0 14.0 14.0	6 6 6 6	8 9 9 9	0.012 0.014 0.016 0.018 0.020
26-3M-15 28-3M-15 30-3M-15 32-3M-15 36-3M-15	26 28 30 32 36	6F 6F 6F 6F	Al Al Al Al	24.83 26.74 28.65 30.56 34.38	24.07 25.98 27.89 29.80 33.62	28.0 32.0 32.0 36.0 38.0	19.5 19.5 19.5 19.5 20.0	26 26 26 26 30	16.0 18.0 20.0 22.0 26.0	6 6 6 6	11 12 14 15 16	0.027 0.030 0.035 0.042 0.060
40-3M-15 44-3M-15 48-3M-15 60-3M-15 72-3M-15	40 44 48 60 72	6F 6F 6 6	Al Al Al Al	38.20 42.02 45.84 57.30 68.75	37.44 41.26 45.08 56.54 67.99	42.0 48.0 — —	20.0 20.0 20.0 20.0 20.0	30 30 30 30 30	28.0 33.0 33.0 33.0 33.0	6 6 8 8	18 20 20 20 20	0.075 0.100 0.103 0.150 0.212
	Se	ections	5M an	d 5M H	P – pitc	h 5 mn	n for be	elt widt	h of 9 r	nm		
12-5M-9 14-5M-9 15-5M-9 16-5M-9 18-5M-9	12 14 15 16 18	6F 6F 6F 6F	St St St St	19.10 22.28 23.87 25.46 28.65	17.96 21.14 22.73 24.32 27.51	23 25 28 28 32	14.5 14.5 14.5 14.5 14.5	20.0 20.0 20.0 20.0 20.0	13.0 14.0 16.0 16.5 20.0	4 6 6 6	7 8 10 10 12	0.028 0.034 0.042 0.050 0.070
20-5M-9 21-5M-9 22-5M-9 24-5M-9 26-5M-9	20 21 22 24 26	6F 6F 6F 6F	St St St St St	31.83 33.42 35.01 38.20 41.38	30.69 32.28 33.87 37.06 40.24	36 38 38 42 44	14.5 14.5 14.5 14.5 14.5	22.5 22.5 22.5 22.5 22.5 22.5	23.0 24.0 25.5 27.0 30.0	6 6 6 6	14 14 14 16 18	0.094 0.110 0.118 0.145 0.170
28-5M-9 30-5M-9 32-5M-9 36-5M-9 40-5M-9	28 30 32 36 40	6F 6F 6F 6F	St St St St St	44.56 47.75 50.93 57.30 63.66	43.42 46.61 49.79 56.16 62.52	48 51 54 60 71	14.5 14.5 14.5 14.5 14.5	22.5 22.5 22.5 22.5 22.5 22.5	30.5 35.0 38.0 38.0 38.0	6 6 8 8	18 20 22 22 22	0.200 0.236 0.270 0.324 0.400
44-5M-9 48-5M-9 60-5M-9 72-5M-9	44 48 60 72	6W 6W 6W	Al Al Al	70.03 76.39 95.49 114.59	68.89 75.25 94.35 113.45	_ _ _	14.5 14.5 14.5 14.5	25.5 25.5 25.5 25.5	38.0 45.0 45.0 45.0	8 8 8	22 25 25 25	0.170 0.182 0.230 0.270

optibelt ZR5 HTD® timing pulleys for cylindrical bore optibelt DMEGA timing belts sections 5M and 5M HP

	Se	ctions	5M and	5M HF	P – pitch	n 5 mm	for be	lt width	of 15	mm		
Designation	Number of teeth	Туре	Material	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	D [mm]	Pilot bore d [mm]	Finish bore d _{max} [mm]	Weight ≈ [kg]
12-5M-15 14-5M-15 15-5M-15 16-5M-15 18-5M-15 20-5M-15 21-5M-15 22-5M-15 24-5M-15 26-5M-15 30-5M-15 32-5M-15 36-5M-15	12 14 15 16 18 20 21 22 24 26 28 30 32 36 40	6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F	St S	19.10 22.28 23.87 25.46 28.65 31.83 33.42 35.01 38.20 41.38 44.56 47.75 50.93 57.30 63.66	17.96 21.14 22.73 24.32 27.51 30.69 32.28 33.87 37.06 40.24 43.42 46.61 49.79 56.16 62.52	25 25 28 28 32 36 38 38 42 44 48 51 54 60 71	20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	26 26 26 26 26 26 26 28 28 28 28 28 28 28	13.0 14.0 16.0 16.5 20.0 23.0 24.0 25.5 27.0 30.0 30.5 35.0 38.0 38.0	466666666688888	7 8 10 10 12 14 14 14 16 18 18 20 22 22 22	0.034 0.046 0.056 0.064 0.086 0.112 0.130 0.140 0.180 0.220 0.250 0.300 0.350 0.426 0.520
44-5M-15 48-5M-15 60-5M-15 72-5M-15	44 48 60 72	6W 6W 6W	Al Al Al	70.03 76.39 95.49 114.59	68.89 75.25 94.35 113.45		20.5 20.5 20.5 20.5	30 30 30 30	38.0 38.0 50.0 50.0	8 8 8 8	22 25 25 25 25	0.225 0.187 0.305 0.375
	Se	ctions	5M and	5M HF	– pitch	n 5 mm	for be	lt width	of 25	mm		
12-5M-25 14-5M-25 15-5M-25 16-5M-25 18-5M-25 20-5M-25	12 14 15 16 18 20	6F 6F 6F 6F 6F	St St St St St	19.10 22.28 23.87 25.46 28.65 31.83	17.96 21.14 22.73 24.32 27.51 30.69	25 25 28 28 32 36	30 30 30 30 30 30	36 36 36 36 36 36	13.0 14.0 16.0 16.5 20.0 23.0	4 6 6 6 6	7 8 10 10 12 14	0.050 0.070 0.080 0.100 0.120 0.160
21-5M-25 22-5M-25 24-5M-25 26-5M-25	21 22 24 26	6F 6F 6F 6F	St St St St	33.42 35.01 38.20 41.38	32.28 33.87 37.06 40.24	38 38 42 44	30 30 30 30	38 38 38 38	24.0 25.5 27.0 30.0	6 6 6	14 14 16 18	0.190 0.210 0.250 0.300
28-5M-25 30-5M-25 32-5M-25 36-5M-25 40-5M-25	28 30 32 36 40	6F 6F 6F 6F	St St St St St	44.56 47.75 50.93 57.30 63.66	43.42 46.61 49.79 56.16 62.52	48 51 54 60 71	30 30 30 30 30	38 38 38 38 38	30.5 35.0 38.0 38.0 38.0	6 6 8 8 8	18 20 22 22 22	0.350 0.420 0.480 0.590 0.740
44-5M-25 48-5M-25 60-5M-25 72-5M-25	44 48 60 72	6W 6W 6W	Al Al Al	70.03 76.39 95.49 114.59	68.89 75.25 94.35 113.45	_ _ _ _	30 30 30 30	40 40 40 40	38.0 38.0 50.0 50.0	8 8 8 8	22 25 25 25	0.320 0.275 0.435 0.525

optibelt ZR5 HTD® timing pulleys for cylindrical bore optibelt DMEGA timing belts sections 8M, 8M HP and 8M HL

	Section	ns 8M	, 8M F	IP and	8M HL	– pitcl	h 8 mn	n for b	elt wid	th of 2	0 mm		
Designation	Number of teeth	Туре	Material	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	D [mm]	D _i [mm]	Pilot bore d [mm]	Finish bore d _{max} [mm]	Weight ≈ [kg]
22-8M-20 24-8M-20 26-8M-20 28-8M-20 30-8M-20	22 24 26 28 30	6F 6F 6F 6F	St St St St St	56.02 61.12 66.21 71.30 76.39	54.65 59.75 64.84 70.08 75.13	60.0 66.0 71.0 75.0 83.0	28 28 28 28 28	38 38 38 38 38	43 45 50 50 55	_ _ _ _	12 12 12 15 15	30 30 35 35 35	0.54 0.65 0.80 0.87 1.02
32-8M-20 34-8M-20 36-8M-20 38-8M-20 40-8M-20	32 34 36 38 40	6F 6F 6F 6F	St St St St GG	81.49 86.58 91.67 96.77 101.86	80.16 85.22 90.30 95.39 100.49	87.0 91.0 98.5 103.0 106.0	28 28 28 28 28	38 38 38 38 38	60 70 70 75 75	_ _ _ _	15 15 15 15 15	40 45 45 45 45	1.20 1.40 1.55 1.65 1.80
44-8M-20 48-8M-20 56-8M-20 64-8M-20 72-8M-20	44 48 56 64 72	6F 6F 6WF 6WF	GG GG GG GG	122.23 142.60 162.97 183.35		127.0 148.0 168.0	28 28 28 28 28	38 38 38 38 38	75 75 80 80 80	— 117 137 158	15 15 15 15 15	45 45 45 45 45	2.10 2.44 2.60 2.90 3.10
80-8M-20 90-8M-20 112-8M-20 144-8M-20 168-8M-20	80 90 112 144 168	6A 6A 6A 6A	GG GG GG GG	203.72 229.18 285.21 366.69 427.81	227.81 283.83 365.32 426.44	=	28 28 28 28 28	38 38 38 38 38	90 90 90 90 100	180 204 260 341 402	15 15 18 20 20	50 50 50 50 55	3.80 4.20 5.20 7.50 10.00
192-8M-20	192 Section	6A ons 8M	GG . 8M F	488.92 IP and		– – pitcl	28 h 8 m n	38 n for b	100 elt wid	463 th of 3	20 0 mm	55	14.40
22-8M-30 24-8M-30 26-8M-30 28-8M-30 30-8M-30 32-8M-30 34-8M-30	22 24 26 28 30 32 34	6F 6F 6F 6F 6F 6F	St St St St St St St	56.02 61.12 66.21 71.30 76.39 81.49 86.58	54.65 59.75 64.84 70.08 75.13 80.16 85.22	60.0 66.0 71.0 75.0 83.0 87.0 91.0	38 38 38 38 38 38	48 48 48 48 48 48	43 45 50 50 55 60 70		12 12 12 15 15 15	30 30 35 35 35 40 45	0.69 0.84 1.00 1.12 1.32 1.50 1.80
36-8M-30 38-8M-30 40-8M-30	36 38 40	6F 6F 6F	St St GG	91.67 96.77 101.86	90.30 95.39 100.49	98.5 103.0 106.0	38 38 38	48 48 48	70 75 75	_ _ _	15 15 15	45 45 45	1.99 2.27 2.40
44-8M-30 48-8M-30 56-8M-30 64-8M-30 72-8M-30	44 48 56 64 72	6F 6F 6WF 6WF	GG GG GG GG	122.23 142.60 162.97		127.0 148.0 168.0	38 38 38 38 38	48 48 48 48 48	75 75 90 90 95	117 137 158	15 15 15 15 15	45 45 50 50 50	2.80 3.20 3.60 4.30 4.80
80-8M-30 90-8M-30 112-8M-30 144-8M-30 168-8M-30	80 90 112 144 168	6A 6A 6A 6A	GG GG GG GG	203.72 229.18 285.21 366.69 427.81	227.81 283.83 365.32		38 38 38 38 38	48 48 48 48	100 100 100 100 100	180 204 260 341 402	15 15 18 20 20	55 55 55 55 55	5.10 5.70 6.80 9.30 11.40

192

6A

192-8M-30

38

48

100

463

20

55

488.92 487.55

16.00

optibelt ZR5 HTD® timing pulleys for cylindrical bore optibelt DMEGA timing belts sections 8M, 8M HP and 8M HL

	Section	ns 8M	, 8M H	IP and	8M HL	– pitcl	h 8 mn	n for b	elt wid	th of 5	0 mm		
Designation	Number of teeth	Туре	Material	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	D [mm]	D _i [mm]	Pilot bore d [mm]	Finish bore d _{max} [mm]	Weight ≈ [kg]
22-8M-50 24-8M-50 26-8M-50 38-8M-50 30-8M-50 34-8M-50 36-8M-50 38-8M-50 40-8M-50	22 24 26 28 30 32 34 36 38 40	6F 6F 6F 6F 6F 6F 6F 6F	St St St St St St St St GG	56.02 61.12 66.21 71.30 76.39 81.49 86.58 91.67 96.77 101.86	54.65 59.75 64.84 70.08 75.13 80.16 85.22 90.30 95.39 100.49	60.0 66.0 71.0 75.0 83.0 87.0 91.0 98.5 103.0 106.0	60 60 60 60 60 60 60 60	70 70 70 70 70 70 70 70 70	43 45 50 50 55 60 70 70 75 75		12 12 12 15 15 15 15 15 15 15	30 30 35 35 35 40 45 45 45	1.00 1.20 1.50 1.67 1.97 2.27 2.69 2.97 3.23 3.50
44-8M-50 48-8M-50 56-8M-50 64-8M-50 72-8M-50	44 48 56 64 72	6F 6F 10WF 10WF	GG GG GG GG	112.05 122.23 142.60 162.97	110.67 120.86	127.0 148.0 168.0	60 60 60 60	70 70 60 60	75 80 90 100 100	— 117 137 158	18 18 18 18	45 45 50 55 55	3.90 4.30 5.00 5.60 6.80
80-8M-50 90-8M-50 112-8M-50 144-8M-50 168-8M-50	80 90 112 144 168	10A 10A 10A 10A 10A	GG GG GG GG	203.72 229.18 285.21 366.69 427.81	227.81 283.83 365.32 426.44	_ _ _ _	60 60 60 60	60 60 60 60	110 110 110 110 120	180 204 260 341 402	18 18 18 20 20	60 60 60 60 65	6.90 8.60 9.60 13.80 16.00
192-8M-50	192 Section	10A ons 8M	GG , 8M F	488.92 IP and		– – pitcl	60 h 8 m n	60 n for b	130 elt wid	463 th of 8	20 5 mm	70	22.40
22-8M-85 24-8M-85 26-8M-85 28-8M-85 30-8M-85	22 24 26 28 30	6F 6F 6F 6F 6F	St St St St St	56.02 61.12 66.21 71.30 76.39	54.65 59.75 64.84 70.08 75.13	60.0 66.0 71.0 75.0 83.0	95 95 95 95 95	105 105 105 105 105	43 45 50 50 55		12 12 12 12 15	30 30 35 35 35	1.55 1.90 2.25 2.55 3.00
32-8M-85 34-8M-85 36-8M-85 38-8M-85 40-8M-85	32 34 36 38 40	6F 6F 6F 6F	St St St St GG		80.16 85.22 90.30 95.39 100.49	87.0 91.0 98.5 103.0 106.0	95 95 95 95 95	105 105 105 105 105	60 70 70 75 75	_ _ _ _	15 15 15 15 18	40 45 45 45 45	3.57 4.00 4.50 4.90 5.20
44-8M-85 48-8M-85 56-8M-85 64-8M-85 72-8M-85 80-8M-85 90-8M-85 112-8M-85 144-8M-85*	44 48 56 64 72 80 90 112 144	6F 6F 10WF 10WF 10A 10A 10A	GG GG GG GG GG	122.23 142.60 162.97	141.23 161.60 181.97 202.35 227.81 283.83	127.0 148.0 168.0	95 95 95 95 95 95 95 95	105 105 105 95 95 95 95 95	75 80 80 100 110 110 110 110 120	 137 158 180 204 260 341	18 18 20 20 20 20 20 20 24 24	45 45 50 55 60 60 60 60 65	6.60 7.60 9.80 10.40 11.40 11.10 13.20 16.30 21.50

192-8M-85* 192

10A

GG 488.92 487.55

130

463

95

70

30.60

24

optibelt ZR5 HTD® timing pulleys for cylindrical bore optibelt DMEGA timing belts sections 14M, 14M HP and 14M HL

Se	ections	14M,	14M F	IP and	14M H	IL – pit	ch 14	mm fo	r belt v	vidth o	f 40 m	m	
Designation	Number of teeth	Туре	Material	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	D [mm]	D _i [mm]	Pilot bore d [mm]	Finish bore d _{max} [mm]	Weight ≈ [kg]
28-14M-40 29-14M-40 30-14M-40 32-14M-40 34-14M-40	28 29 30 32 34	6F 6F 6F 6F	GG GG GG GG	124.78 129.23 133.69 142.60 151.52	126.57 130.99 139.88	127 138 138 154 160	54 54 54 54 54	69 69 69 69	100 100 100 100 100	_ _ _ _	24 24 24 24 24	60 60 60 70 70	4.73 5.09 5.45 6.17 6.88
36-14M-40 38-14M-40 40-14M-40 44-14M-40 48-14M-40	36 38 40 44 48	6F 6F 6F 6WF	GG GG GG GG	160.43 169.34 178.25 196.08 213.90	166.60 175.49 193.28	168 183 188 211 226	54 54 54 54 54	69 69 69 69	100 120 120 120 135	_ _ _ _ 172	24 24 24 24 24	70 70 70 70 70	7.60 8.28 9.26 10.32 11.50
56-14M-40 64-14M-40 72-14M-40 80-14M-40 90-14M-40	56 64 72 80 90	6WF 6WF 6A 6A 6A	GG GG GG GG	249.55 285.21 320.86 356.51 401.07	282.41 318.06 353.71	256 296 — —	54 54 54 54 54	69 69 69 69	135 135 135 135 135	207 242 278 314 358	28 28 28 28 28	70 70 70 70 70	13.05 14.40 16.90 18.50 20.00
112-14M-40* 144-14M-40* 168-14M-40* 192-14M-40* 216-14M-40*	112 144 168 192 216	6A 6A 6A 6A	GG GG GG GG	499.11 641.71 748.66 855.62 962.57	638.92 745.87 852.82	_ _ _ _	54 54 54 54 54	69 69 69 69	135 135 135 135 150	456 600 706 813 920	28 28 28 28 28	70 70 70 70 80	26.70 35.00 44.20 52.20 60.00
Se	ections	14M,	14M F	IP and	14M H	IL – pit	ch 14	mm fo	r belt v	vidth o	f 55 m	m	
28-14M-55 29-14M-55 30-14M-55 32-14M-55 34-14M-55	28 29 30 32 34	6F 6F 6F 6F	GG GG GG GG	124.78 129.23 133.69 142.60 151.52	130.99 139.88	127 138 138 154 160	70 70 70 70 70	85 85 85 85 85	100 100 100 100 100	_ _ _ _	24 24 24 24 24	60 60 60 70 70	5.60 6.10 6.60 7.60 8.60
36-14M-55 38-14M-55 40-14M-55 44-14M-55 48-14M-55	36 38 40 44 48	6F 6F 6F 10WF	GG GG GG GG	160.43 169.34 178.25 196.08 213.90	166.60 175.49 193.28	168 183 188 211 226	70 70 70 70 70	85 85 85 85 70	100 120 120 120 135	_ _ _ _ 172	24 24 24 24 24	70 70 70 70 70	9.60 10.80 11.20 12.50 13.70
56-14M-55 64-14M-55 72-14M-55 80-14M-55 90-14M-55	56 64 72 80 90	10WF 10WF 10A 10A 10A	GG GG GG GG	249.55 285.21 320.86 356.51 401.07	282.41 318.06 353.71	256 296 — —	70 70 70 70 70	70 70 70 70 70	135 135 135 135 135	207 242 278 314 358	28 28 28 28 28	70 70 70 70 70	14.50 15.60 18.50 20.00 22.60
112-14M-55* 144-14M-55* 168-14M-55* 192-14M-55*	112 144 168 192	10A 10A 10A 10A	GG GG GG	499.11 641.71 748.66 855.62	638.92 745.87	_ _ _	70 70 70 70	70 70 70 70	135 135 135 135	456 600 706 813	28 28 28 28	70 70 70 70	29.50 39.00 48.50 57.80

216-14M-55* 216

GG

10A

962.57 959.77

70

920

28

67.00

optibelt ZR5 HTD® timing pulleys for cylindrical bore optibelt DMEGA timing belts sections 14M, 14M HP and 14M HL

Se	ections	14M,	14M F	IP and	14M H	L – pit	ch 14	mm foi	r belt v	vidth o	f 85 m	m	
Designation	Number of teeth	Туре	Material	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	D [mm]	D _i [mm]	Pilot bore d [mm]	Finish bore d _{max} [mm]	Weight ≈ [kg]
28-14M-85 29-14M-85 30-14M-85 32-14M-85 34-14M-85	28 29 30 32 34	6F 6F 6F 6F	GG GG GG GG	129.23		127 138 138 154 160	102 102 102 102 102	117 117 117 117 117	100 100 100 100 100	_ _ _ _	24 24 24 24 24	60 60 60 60 70	7.70 8.40 9.10 10.50 11.90
36-14M-85 38-14M-85 40-14M-85 44-14M-85 48-14M-85	36 38 40 44 48	6F 6F 6F 6F	GG GG GG GG	178.25	166.60 175.49 193.28	168 183 188 211 226	102 102 102 102 102	117 117 117 117 117	100 120 135 135 150	_ _ _ _	32 32 32 32 32 32	70 70 70 70 80	13.20 15.15 17.10 23.30 25.00
56-14M-85 64-14M-85 72-14M-85 80-14M-85 90-14M-85	56 64 72 80 90	10WF 10WF 10A 10A 10A	GG GG GG GG	249.55 285.21 320.86 356.51 401.07	318.06 353.71	256 296 — —	102 102 102 102 102	102 102 102 102 102	150 150 150 150 150	207 242 278 314 358	32 32 32 32 32 32	80 80 80 80	25.00 28.20 28.80 30.10 33.00
112-14M-85* 144-14M-85* 168-14M-85* 192-14M-85* 216-14M-85*	112 144 168 192 216	10A 10A 10A 10A 10A	GG GG GG GG		638.92 745.87 852.82	_ _ _ _	102 102 102 102 102	102 102 102 102 102	150 150 150 165 165	456 600 706 813 920	32 32 32 32 32 32	80 80 80 90	41.80 52.40 60.30 70.20 81.00
Se	ctions	14M,	14M H	P and	14M HI	. – pito	h 14 n	nm for	belt w	idth of	115 n	nm	
28-14M-115 29-14M-115 30-14M-115 32-14M-115 34-14M-115	28 29 30 32 34	6F 6F 6F 6F	GG GG GG GG	129.23 133.69 142.60	122.12 126.57 130.99 139.88 148.79	127 138 138 154 160	133 133 133 133 133	148 148 148 148 148	100 100 100 100 100	_ _ _ _	32 32 32 32 32	60 60 60 60 70	9.20 10.20 11.20 13.20 14.80
36-14M-115 38-14M-115 40-14M-115 44-14M-115 48-14M-115	36 38 40 44 48	6F 6F 6F 6F	GG GG GG GG	169.34		168 183 188 211 226	133 133 133 133 133	148 148 148 148 148	120 120 135 140 150	_ _ _ _	32 32 32 32 32 32	70 70 70 80 80	16.60 19.20 22.10 28.00 35.00
56-14M-115 64-14M-115 72-14M-115 80-14M-115 90-14M-115	56 64 72 80 90	6F 10WF 10A 10A 10A	GG GG GG GG	249.55 285.21 320.86 356.51 401.07	282.41 318.06 353.71	256 296 — —	133 133 133 133 133	148 133 133 133 133	150 150 150 150 150	242 278 314 358	32 32 32 32 32 32	80 80 80 80	44.20 36.80 36.10 38.60 41.00
112-14M-115* 144-14M-115* 168-14M-115* 192-14M-115* 216-14M-115*	112 144 168 192 216	10A 10A 10A 10A 10A	GG GG GG GG	748.66 855.62	638.92 745.87	_ _ _ _	133 133 133 133 133	133 133 133 133 133	150 165 165 165 165	456 600 706 813 920	32 32 32 32 32 32	80 90 90 90 90	54.40 67.80 75.80 88.30 98.00

optibelt ZR5 HTD® timing pulleys for cylindrical bore optibelt DMEGA timing belts sections 14M, 14M HP and 14M HL

Se	ctions	14M,	14M H	P and	14M H	L – pito	h 14 n	nm for	belt w	idth of	170 n	nm	
Designation	Number of teeth	Туре	Material	d _w [mm]		D _B [mm]	b ₁ [mm]	B [mm]	D [mm]	D _i [mm]	Pilot bore d [mm]	Finished bore d _{max} [mm]	Weight ≈ [kg]
28-14M-170* 29-14M-170* 30-14M-170* 32-14M-170* 34-14M-170* 36-14M-170* 40-14M-170* 44-14M-170* 48-14M-170* 56-14M-170* 64-14M-170* 72-14M-170*	28 29 30 32 34 36 38 40 44 48 56 64 72	6F 6F 6F 6F 6F 6F 6F 6F 6F 10W	GG GG GG GG GG GG GG GG	129.23 133.69 142.60 151.52 160.43 169.34 178.25 196.08 213.90 249.55 285.21	246.76	127 138 138 154 160 168 183 188 211 226 256 296	187 187 187 187 187 187 187 187 187 187	202 202 202 202 202 202 202 202 202 202	100 100 100 100 100 120 135 140 160 160 180		32 32 32 32 32 32 32 32 32 32 32 32 32	60 60 60 60 70 70 85 85 85 100	13.80 14.20 15.60 18.10 20.40 23.50 26.50 30.10 37.80 44.50 61.00 81.00 61.40
80-14M-170* 90-14M-170* 112-14M-170* 144-14M-170* 168-14M-170* 192-14M-170*	80 90 112 144 168 192 216	10W 10A 10A 10A 10A 10A	GG GG GG GG GG	748.66 855.62	398.28 496.32 638.92		187 187 187 187 187 187 187	187 187 187 187 187 187 187	180 180 200 220 220 220 220	314 358 456 600 706 813 920	32 38 38 38 38 38 38	100 100 110 120 120 120 120	65.00 68.00 87.50 114.80 125.00 136.40 147.00

optibelt ZR5 HTD® timing pulleys for taper bushes optibelt DMEGA timing belts sections 5M and 5M HP

	Sect	ions	5M d	and 5M	1 HP –	pitch	5 mr	n for	belt v	width	of 1	5 mm	1		
Designation	Number of teeth	Туре	Mate- rial	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	N [mm]	V [mm]	Z [mm]	D [mm]	D _i [mm]	Taper bush	Weight without bush ≈ [kg]
TB 34-5M-15 TB 36-5M-15 TB 38-5M-15 TB 40-5M-15 TB 44-5M-15 TB 48-5M-15	34 36 38 40 44 48	8F 8F 8F 8F 8F	St St St St St St	54.11 57.30 69.48 63.66 70.03 76.39	52.97 56.16 59.34 62.52 68.89 75.25	60.0 66.0 71.0 75.0	20.5	22 22 22 22 22 22	22 22 22 22 22 22	1.5 1.5 1.5 1.5 1.5		43 44 48 52 54	_ _ _ _	1008 1108 1108 1108 1108	0.190 0.200 0.250 0.310 0.400 0.450
TB 56-5M-15 TB 64-5M-15 TB 72-5M-15 TB 80-5M-15	56 64 72 80	8F 8F 8F 8F	GG GG GG	89.13 101.86 114.59	87.99 100.72 113.45 126.18	93.0 106.0 119.0	20.5 20.5 20.5	25 25 25 25 25	25 25 25 25 25	4.5 4.5 4.5 4.5	_ _ _	70 78 90 92	_ _ _	1210 1210 1610 1610	0.670 0.960 1.190 1.570
TB 90-5M-15 TB 112-5M-15 TB 136-5M-15 TB 150-5M-15	90 112 136 150	7A 7A 7A 7A	GG	143.24 178.25 216.45 238.73	215.31		20.5 20.5 20.5 20.5	25 25 32 32	25 25 32 32	2.3 2.3 5.8 5.8	_ _ _	92 92 106 106		1610 1610 2012 2012	1.147 1.940 3.060 3.900

Taper bush	1008	1108	1210	1610	2012
Bore d ₂ [mm] from to	10-25	10-28	11-32	14-42	14-50

GG = Grey cast iron St = SteelSubject to production changes. Bore diameter d_2 see page 62.

optibelt ZR5 HTD® timing pulleys for taper bushes optibelt DMEGA timing belts sections 8M, 8M HP and 8M HL

S	ections	s 8M,	8M	HP and	1 8M F	IL – p	itch 8	3 mm	for b	elt w	idth (of 20	mm		
Designation	Number of teeth	Туре	Mate- rial	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	N [mm]	V [mm]	Z [mm]	D [mm]	D _i [mm]	Taper bush	Weight without bush ≈ [kg]
TB 22-8M-20 TB 24-8M-20 TB 26-8M-20 TB 28-8M-20 TB 30-8M-20 TB 32-8M-20	22 24 26 28 30 32	5F 5F 5F 5F 5F	GG GG GG GG GG	56.02 61.12 66.21 71.30 76.39 81.49	54.65 59.75 64.84 70.08 75.13 80.16	60.0 66.0 71.0 75.0 83.0 87.0	28 28 28 28 28 28	28 28 28 28 28 28	22 22 22 22 22 22 25		6 6 6 6 3		41 42 46 50 58 62	1008 1108 1108 1108 1108	0.24 0.30 0.36 0.44 0.53 0.42
TB 34-8M-20 TB 36-8M-20 TB 38-8M-20 TB 40-8M-20	34 36 38 40	5F 5F 5F 5F	GG GG GG	86.58 91.67 96.77 101.86		103.0 106.0	28 28 28 28	28 28 28 28	25 25 25 25 25		3 3 3	_ _ _	65 68 72 76	1610 1610 1610 1610	0.55 0.68 0.80 1.00
TB 44-8M-20 TB 48-8M-20 TB 56-8M-20 TB 64-8M-20 TB 72-8M-20	44 48 56 64 72	8F 8F 8F 8WF 8WF	GG GG GG GG		161.60	127.0 148.0 168.0	28 28 28 28 28	32 32 32 32 32	32 32 32 32 32	4 4 4 4		93 96 110 110	 137 158	2012 2012 2012 2012 2012	1.20 1.60 2.40 2.70 3.30
TB 80-8M-20 TB 90-8M-20	80 90	8W 8A	GG GG	203.72 229.18		_	28 28	32 32	32 32	4 4	=	110 110	180 204	2012 2012	3.50 3.65
S	ections	8M,	8M	HP and	1 8M F	IL – p	itch 8	3 mm	for b	elt w	idth (of 30	mm		
TB 22-8M-30 TB 24-8M-30 TB 26-8M-30 TB 28-8M-30 TB 30-8M-30	22 24 26 28 30	5F 5F 5F 5F 3F	GG GG GG GG	56.02 61.12 66.21 71.30 76.39	54.65 59.75 64.84 70.08 75.13	60.0 66.0 71.0 75.0 83.0	38 38 38 38 38	38 38 38 38 38	22 22 22 25 38	_ _ _ _	16 16 16 13	_ _ _ _	41 42 46 50	1008 1108 1108 1210 1615	0.29 0.38 0.45 0.50 0.45
TB 32-8M-30 TB 34-8M-30 TB 36-8M-30 TB 38-8M-30 TB 40-8M-30	32 34 36 38 40	3F 3F 3F 3F 3F	GG GG GG GG	81.49 86.58 91.67 96.77 101.86	80.16 85.22 90.30 95.39 100.49		38 38 38 38 38	38 38 38 38 38	38 38 38 38 38		_			1615 1615 1615 1615 1615	0.59 0.77 0.96 1.15 1.34
TB 44-8M-30 TB 48-8M-30 TB 56-8M-30 TB 64-8M-30 TB 72-8M-30	44 48 56 64 72	4F 4F 4F 8F 8WF	GG GG GG GG	—	161.60	127.0 148.0 168.0	38 38 38 38 38	38 38 38 45 45	32 32 32 45 45	— — 7 7	3 3 —	 125 125	91 95 117 — 158	2012 2012 2012 2517 2517	1.33 1.78 3.76 4.20 4.30
TB 80-8M-30 TB 90-8M-30 TB 112-8M-30 TB 144-8M-30	80 90 112 144	8W 8A 8A 8A	GG GG GG	203.72 229.18 285.21 366.69	227.81 283.83		38 38 38 38	45 45 45 45	45 45 45 45	7 7 7 7	=======================================	125 125 125 125	180 204 260 341	2517 2517 2517 2517	4.60 5.00 6.20 9.00
Taper bush	1/	208	1108	1210) 161	0 1	615	2012) 25	517		rey cast			

Taper bush	1008	1108	1210	1610	1615	2012	2517
Bore d ₂ [mm] from to	10-25	10-28	11-32	14-42	14-42	14-50	16-60

GG = Grey cast iron Subject to production changes.

optibelt ZR5 HTD® timing pulleys for taper bushes optibelt DMEGA timing belts sections 8M, 8M HP and 8M HL

S	ections	8M,	8M	HP and	4 M8 b	IL – p	itch 8	8 mm	for b	elt w	ridth d	of 50	mm		
Designation	Number of teeth	Туре	Mate- rial	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	N [mm]	V [mm]	Z [mm]	D [mm]	D _i [mm]	Taper bush	Weight without bush ≈ [kg]
TB 28-8M-50 TB 30-8M-50 TB 32-8M-50 TB 34-8M-50 TB 36-8M-50	28 30 32 34 36	5F 5F 5F 5F 5F	GG GG GG GG	71.30 76.39 81.49 86.58 91.67	70.08 75.13 80.16 85.22 90.30	75.0 83.0 87.0 91.0 98.5	60 60 60 60	60 60 60 60	25 38 38 38 38	_ _ _ _	35.0 22.0 22.0 22.0 22.0	_ _ _ _	50 58 62 65 68	1210 1615 1615 1615 1615	0.60 0.65 0.82 1.06 1.30
TB 38-8M-50 TB 40-8M-50 TB 44-8M-50 TB 48-8M-50 TB 56-8M-50	38 40 44 48 56	5F 4F 4F 4F 4F	GG GG GG GG	96.77 101.86 112.05 122.23 142.60	95.39 100.49 110.67 120.86 141.23	106.0 119.0 127.0	60 60 60 60	60 60 60 60	38 32 32 32 45	_ _ _ _	22.0 14.0 14.0 14.0 7.5		72 82 91 95 116	1615 2012 2012 2012 2517	1.60 1.71 1.78 2.30 3.40
TB 64-8M-50 TB 72-8M-50 TB 80-8M-50 TB 90-8M-50 TB 112-8M-50	64 72 80 90 112	4F 9WF 4 9W 9W	GG GG GG GG	162.97 183.35 203.72 229.18 285.21	161.60 181.97 202.35 227.81 283.83		60 60 60 60	60 60 60 60	45 45 51 51 51		7.5 7.5 4.5 4.5 4.5	125 - 170 170	137 158 180 204 260	2517 2517 3020 3020 3020	5.00 6.70 8.80 10.00 12.00
TB 144-8M-50 TB 168-8M-50 TB 192-8M-50	144 168 192	9A 7A 7A	GG GG GG	366.69 427.81 488.92	426.44 487.55		60 60 60	60 65 65	51 65 65	_	4.5 2.5 2.5	170 170 170	341 402 460	3020 3525 3525	15.20 16.40 21.80
S	ections	8M,	8M	HP and	1 M8 b	IL – p	itch 8	8 mm	for k	elt w	ridth o	of 85	mm		
TB 34-8M-85 TB 36-8M-85 TB 38-8M-85 TB 40-8M-85 TB 44-8M-85	34 36 38 40 44	4F 4F 4F 4F 4F	GG GG GG GG	86.58 91.67 96.77 101.86 112.05	85.22 90.30 95.39 100.49 110.67	106.0	95 95 95 95 95	95 95 95 95 95	38 38 38 32 32	_ _ _ _	28.5 28.5 28.5 31.5 31.5		65 68 72 82 91	1615 1615 1615 2012 2012	1.43 1.87 2.20 1.78 2.30
TB 48-8M-85 TB 56-8M-85 TB 64-8M-85 TB 72-8M-85 TB 80-8M-85	48 56 64 72 80	4F 4F 4F 4F 4	GG GG GG GG	122.23 142.60 162.97 183.35 203.72	120.86 141.23 161.60 181.97 202.35	148.0 168.0	95 95 95 95 95	95 95 95 95 95	45 45 45 51	_ _ _ _	25.0 25.0 25.0 22.0 22.0		100 117 137 158 180	2517 2517 2517 3020 3020	2.66 4.45 6.20 8.00
TB 90-8M-85 TB 112-8M-85 TB 144-8M-85 TB 168-8M-85 TB 192-8M-85	90 112 144 168 192	9W 9W 9A 9A 9A	GG GG GG GG	285.21		_ _ _ _	95 95 95 95 95	95 95 95 95 95	51 51 76 76 76	_ _ _ _	22.0 22.0 15.0 15.0 15.0	170 170 170 170 170	204 260 341 402 460	3020 3020 3525 3525 3525	10.80 15.00 20.00 23.00 28.50
Taper bush	1	210	16	15 2	2012	2517	,	3020	35	25		rey cast to produ	iron ction cha	nges.	

Taper bush	1210	1615	2012	2517	3020	3525
Bore d ₂ [mm] from to	11-32	14-42	14-50	16-60	25-75	35-90

Subject to production changes.

Bore diameter d_2 see page 62.

optibelt ZR5 HTD® timing pulleys for taper bushes optibelt DMEGA timing belts sections 14M, 14M HP and 14M HL

Secti	ons 1	4M,	14M	HP and	d 14M	HL –	pitch	14 n	nm fo	r bel	t widt	h of	40 m	m	
Designation	Number of teeth	Туре	Mate- rial	d _w [mm]	d _a [mm]	D _B [mm]	ь ₁ [mm]	B [mm]	N [mm]	V [mm]	Z [mm]	D [mm]	D _i [mm]	Taper bush	Weight without bush ≈ [kg]
TB 28-14M-40 TB 29-14M-40 TB 30-14M-40 TB 32-14M-40 TB 34-14M-40 TB 36-14M-40 TB 38-14M-40 TB 40-14M-40 TB 44-14M-40 TB 48-14M-40 TB 56-14M-40 TB 56-14M-40 TB 72-14M-40 TB 112-14M-40 TB 112-14M-40 TB 148-14M-40 TB 148-14M-40 TB 148-14M-40 TB 168-14M-40 TB 192-14M-40 TB 192-14M-40 TB 192-14M-40	28 29 30 32 34 36 38 40 44 48 56 64 72 80 90 112 144 168 192 216	4F 4F 4F 4F 4F 4F 4F 4F 9W 9A 9A 9A 9A 9A 9A	G G G G G G G G G G G G G G G G G G G	133.69 142.60 151.52 160.43 169.34 178.25 196.08 213.90 249.55 285.21 320.86 356.51 401.07 499.11 641.71 748.66 855.62 962.57	126.57 130.99 139.88 148.79 157.68 166.60 175.49 193.28 211.11 246.76 282.41 318.06 353.71 398.28 496.32 638.92 745.87 852.82 959.77	127 138 138 154 160 168 183 188 211 226 256 296 — — —	54 54 54 54 54 54 54 54 54 54 54 54 54 5	54 54 54 54 54 54 54 54 54 54 54 54 54 5	32 32 32 32 45 45 45 51 51 51 51 51 51		11.0 11.0 11.0 11.0 4.5 4.5 4.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		98 100 100 1104 110 120 138 155 170 208 242 280 315 360 457 600 706 813 920	2012 2012 2012 2012 2517 2517 2517 3020 3020 3020 3020 3020 3020 3020 302	2.00 2.38 2.65 3.40 3.87 4.80 5.40 6.00 7.80 9.40 10.80 13.40 15.20 16.00 17.80 25.60 32.00 44.00 49.00 55.00
Secti	ons 1	4M,	14M	HP and	d 14M	HL –	pitch	14 n	nm fo	r bel	t widt	h of	55 m	m	
TB 28-14M-55 TB 29-14M-55	28 29	4F 4F	GG GG	124.78 129.23	126.57	127 138	70	70	32	_	19.0	_	98	2012	2.20
TB 30-14M-55 TB 32-14M-55 TB 34-14M-55 TB 34-14M-55 TB 36-14M-55 TB 38-14M-55 TB 40-14M-55 TB 44-14M-55 TB 48-14M-55 TB 64-14M-55 TB 72-14M-55 TB 80-14M-55 TB 90-14M-55 TB 112-14M-55 TB 168-14M-55 TB 168-14M-55 TB 192-14M-55 TB 192-14M-55	30 32 34 36 38 40 44 48 56 64 72 80 90 112 144 168 192 216	4F 4F 4F 4F 4F 4F 9WF 9W 9A 9A 9A 9A 9A 7A	GG GG GG GG	142.60 151.52 160.43 169.34 178.25 196.08 213.90 249.55	148.79 157.68 166.60 175.49 193.28 211.11 246.76 282.41 318.06 353.71 353.71 398.28 496.32 638.92 745.87 852.82	138 154 160 168 183 188 211 226 296 ———————————————————————————————	70 70 70 70 70 70 70 70 70 70 70 70 70	70 70 70 70 70 70 70 70 70 70 70 70 70 7	32 45 45 45 45 51 51 51 51 51 51 51 51 51		19.0 12.5 12.5 12.5 12.5 12.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5		100 100 108 110 120 130 138 155 170 208 242 280 315 360 457 600 706 813 920	2012 2517 2517 2517 2517 2517 2517 3020 3020 3020 3020 3020 3020 3020 302	2.74 2.70 3.66 4.55 5.20 6.20 7.00 8.60 10.40 12.00 14.50 16.20 17.50 20.10 28.40 36.20 49.00 53.00 65.80
TB 30-14M-55 TB 32-14M-55 TB 34-14M-55 TB 36-14M-55 TB 38-14M-55 TB 40-14M-55 TB 44-14M-55 TB 48-14M-55 TB 64-14M-55 TB 72-14M-55 TB 80-14M-55 TB 112-14M-55 TB 112-14M-55 TB 168-14M-55 TB 168-14M-55 TB 192-14M-55	30 32 34 36 38 40 44 48 56 64 72 80 90 112 144 168 192	4F 4F 4F 4F 4F 4F 9WF 9WF 9A 9A 9A 9A 9A	GG GGGGG GGGGGGGGGGGGGGGGGGGGGGGGGGGGG	142.60 151.52 160.43 169.34 178.25 196.08 213.90 249.55 285.21 320.86 356.51 401.07 499.11 641.71 748.66 855.62	139.88 148.79 157.68 166.60 175.49 193.28 211.11 246.76 282.41 318.06 353.71 398.28 496.32 638.92 745.87 852.82 959.77	138 154 160 168 183 188 211 226 256 296 — — —	70 70 70 70 70 70 70 70 70 70 70 70 70	70 70 70 70 70 70 70 70 70 70 70 70 70	45 45 45 45 45 51 51 51 51 51 51		12.5 12.5 12.5 12.5 12.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9		100 108 110 120 130 138 155 170 208 242 280 315 360 457 600 706 813 920	2517 2517 2517 2517 2517 2517 3020 3020 3020 3020 3020 3020 3020 302	2.70 3.66 4.55 5.20 6.20 7.00 8.60 10.40 12.00 14.50 17.50 20.10 28.40 36.20 49.00 53.00

optibelt ZR5 HTD® timing pulleys for taper bushes optibelt DMEGA timing belts sections 14M, 14M HP and 14M HL

Secti	ions 1	4M , 1	I4M	HP and	1 14M	HL –	pitch	14 m	nm fo	r bel	widt	h of	85 m	m	
Designation	Number of teeth	Туре	Mate- rial	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	N [mm]	V [mm]	Z [mm]	D [mm]	D _i [mm]	Taper bush	Weight without bush ≈ [kg]
TB 28-14M-85 TB 29-14M-85 TB 30-14M-85 TB 30-14M-85 TB 32-14M-85 TB 34-14M-85 TB 36-14M-85 TB 44-14M-85 TB 44-14M-85 TB 46-14M-85 TB 56-14M-85 TB 64-14M-85 TB 72-14M-85 TB 90-14M-85 TB 112-14M-85 TB 112-14M-85 TB 112-14M-85 TB 112-14M-85 TB 168-14M-85 TB 168-14M-85 TB 168-14M-85 TB 168-14M-85 TB 168-14M-85	28 29 30 32 34 36 38 40 44 48 56 64 72 80 90 112 144 168 192 216	4F 4F 4F 4F 4F 4F 4F 4F 9W 9A 9A 9A 9A 9A 3A 3A	GG GG GG	129.23 133.69 142.60 151.52 160.43 169.34 178.25 196.08 213.90 249.55 285.21	139.88 148.79 157.68 166.60 175.49 193.28 211.11 246.76 282.41 318.06 353.71 398.28 496.32 638.92 745.87 852.82	127 138 138 154 160 168 183 188 211 226 256 296 — — —	102 102 102 102 102 102 102 102 102 102	102 102 102 102 102 102 102 102 102 102	45 45 45 45 51 51 76 65 65 65 65 65 65 102		28.5 28.5 28.5 28.5 25.5 25.5 13.0 18.5 18.5 18.5 18.5 18.5		98 100 100 108 110 120 130 138 155 170 210 242 280 315 360 457 600 706 813 920	2517 2517 2517 2517 2517 3020 3020 3030 3030 3525 3525 3525 3525	2.70 3.40 3.75 4.80 6.00 5.80 6.80 11.80 15.10 19.00 23.00 27.80 36.50 48.00 60.00 86.00 91.50
Section	ons 14	4M, 1	4M I	HP and	14M I	HL – _I	pitch	14 m	m for	belt	width	of 1	15 m	ım	
TB 28-14M-115 TB 29-14M-115 TB 30-14M-115 TB 32-14M-115 TB 34-14M-115 TB 36-14M-115 TB 40-14M-115 TB 44-14M-115 TB 48-14M-115 TB 56-14M-115 TB 64-14M-115 TB 72-14M-115 TB 112-14M-115 TB 112-14M-115 TB 112-14M-115 TB 144-14M-115 TB 168-14M-115 TB 192-14M-115	28 29 30 32 34 36 38 40 44 48 56 64 72 80 90 112 144 168 192 216	4F 4F 4F 4F 4F 4F 4F 4F 9W 9A 9A 9A 9A 9A 9A	GG GG GG	129.23 133.69 142.60 151.52 160.43 169.34 178.25 196.08 213.90 249.55 285.21 320.86	148.79 157.68 166.60 175.49 193.28 211.11 246.76 282.41 318.06 353.71 353.71 398.28 496.32 638.92 745.87 852.82	127 138 138 154 160 168 183 188 211 226 256 296 ——————————————————————————————————	133 133 133 133 133 133 133 133 133 133	133 133 133 133 133 133 133 133 133 133	45 45 45 45 51 51 76 76 89 89 89 89 102 102 102		44.0 44.0 44.0 41.0 41.0 28.5 28.5 22.0 22.0 22.0 22.0 22.0 15.5 15.5 15.5		98 100 100 108 110 120 130 140 155 170 210 242 280 315 360 457 600 706 813 920	2517 2517 2517 2517 2517 3020 3020 3030 3030 3535 3535 3535 3535	3.77 4.00 5.00 6.80 7.00 8.40 9.20 14.00 17.10 24.80 27.00 32.00 36.50 46.00 68.00 82.60 96.00
		0517	20	20	2000	2.50			40	40	GG = G	rey cast	iron		
Taper bush	2	2517	30	20 3	3030	3525) :	3535	40	40	Subject	to produ	ction cha	nges.	

Bore diameter d_2 see page 62.

optibelt ZR5 HTD® timing pulleys for taper bushes optibelt DMEGA timing belts sections 14M, 14M HP and 14M HL

Section	ons 14	1M, 1	4M I	HP and	14M	HL –	pitch	14 m	m fo	belt	widt	h of 1	170 m	nm	
Designation	Number of teeth	Туре	Mate- rial	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	N [mm]	V [mm]	Z [mm]	D [mm]	D _i [mm]	Taper bush	Weight without bush ≈ [kg]
TB 38-14M-170* TB 40-14M-170* TB 44-14M-170* TB 56-14M-170* TB 56-14M-170* TB 80-14M-170* TB 90-14M-170* TB 112-14M-170* TB 112-14M-170* TB 144-14M-170* TB 216-14M-170*	38 40 44 48 56 64 72 80 90 112 144 168 192 216	4F 4F 4F 4F 9W 9A 9A 9A 9A 9A 9A	66 66 66 66 66 66 66	178.25 196.08 213.90 249.55 285.21 320.86 356.51 401.07 499.11 641.71 748.66	353.71 398.28 496.32 638.92 745.87 852.82	183 188 211 226 256 296 — — — — — —	187 187 187 187 187 187 187 187 187 187	187 187 187 187 187 187 187 187 187 187	76 76 89 89 102 102 102 127 127 127 127		55.5 55.5 49.0 49.0 42.5 42.5 42.5 30.0 30.0 30.0 30.0		130 140 155 175 210 240 280 315 360 457 600 706 813 920	3030 3030 3535 3535 3535 4040 4040 4040	11.70 13.00 15.00 19.00 28.50 41.00 46.90 48.00 52.50 74.50 91.00 116.00 134.00 146.50

Taper bush	3030	3535	4040	5050
Bore d ₂ [mm] from to	35-75	35-90	40-100	70-125

 $GG = Grey \ cast iron$ Subject to production changes. * Non stock items. Bore diameter d_2 see page 62.

Timing pulleys optibelt TB taper bushes

			Тар	er bus	hes wi	ith met	ric bo	e, key	way t	o DIN	6885	part 1				
	Таре	r bush									Mo	aterial:	EN-GJL	200 – [DIN EN	1561
	1008	1108	1210	1215	1310	1610	1615	2012	2517	3020	3030	3525	3535	4040	4545	5050
Bore diameter d ₂ (mm)	10 11 12 14 16 18 19 20 22 24 25	10 11 12 14 16 18 19 20 22 24 25 28	11 12 14 16 18 19 20 22 24 25 28 30 32	11 12 14 16 18 19 20 22 24 25 28 30 32	14 16 18 19 20 22 24 25 28 30 32 35	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42 45 48 50	16 18 19 20 22 24 25 28 30 32 35 38 40 42 45 48 50 55 60	25 28 30 32 35 38 40 42 45 48 50 55 60 65 70 75	35 38 40 42 45 48 50 55 60 65 70 75	35 38 40 42 45 48 50 55 60 65 70 75 80 85 90	35 38 40 42 45 48 50 55 60 65 70 75 80 85 90	40 42 45 48 50 55 60 65 70 75 80 85 90 95 100	55 60 65 70 75 80 85 90 95 100 105 110	70 75 80 85 90 95 100 105 110 115 120 125
Tightening torque (Nm)	5.7	5.7	20	20	20	20	20	31	49	92	92	115	115	172	195	275
Bush length (mm)	22.3	22.3	25.4	38.1	25.4	25.4	38.1	31.8	44.5	50.8	76.2	63.5	88.9	101.6	114.3	127.0
Weight at $d_{2 \min} \approx (kg)$	0.12	0.16	0.28	0.39	0.32	0.41	0.60	0.75	1.06	2.50	3.75	3.90	5.13	7.68	12.70	15.17

[▲] These bores have shallow keyways.

Shallow keyways for taper bushes

	•				
Bore diameter d ₂ (mm)	Keyway width b (mm)	Keyway depth t ₂ (mm)	Bore diameter d ₂ (mm)	Keyway width b (mm)	Keyway depth t ₂ (mm)
24 25	8	2,0 1.3	28 42	8 12	2,0

		Tap	er bu	shes w	rith inc	h bore	e, keyv	vay to	Britis	h Stand	dard B	S 46 p	art 1			
	Таре	er bush									Mo	aterial:	EN-GJL	200 – [DIN EN	1561
	1008	1108	1210	1215	1310	1610	1615	2012	2517	3020	3030	3525	3535	4040	4545	5050
Bore diameter d ₂ (inch)	3/8* 1/2 5/8 3/4 7/8*	3/8* 1/2 5/8 3/4 7/8 1 11/8*	1/2 5/8 3/4 7/8 1 1 ¹ /8 1 ¹ /4	5/8* 3/4 7/8 1 1 ¹ /8 1 ¹ /4	1/2* 5/8* 3/4* 7/8* 1* 11/8 11/4 13/8	1/2 5/8 3/4 7/8 1 11/8 11/4 13/8 11/2 15/8	1/2 5/8 3/4 7/8* 1 11/8 11/4 13/8 11/2 15/8*	5/8* 3/4 7/8 1 11/8 11/4 13/8 11/2 15/8 13/4 17/8	3/4 7/8 1 11/8 11/4 13/8 11/2 15/8 13/4 17/8 2 21/8 21/4 23/8 21/2	11/4 13/8 11/2 15/8 13/4* 17/8 21/8* 21/4 23/8 21/2 25/8 23/4 27/8 3	11/4 13/8 11/2 15/8 13/4* 17/8 221/8* 21/4 23/8 21/2 25/8* 23/4* 27/8 3	2 ¹ / ₈ * 2 ¹ / ₄ * 2 ³ / ₈ * 2 ¹ / ₂ * 2 ⁵ / ₈ * 2 ³ / ₄ * 2 ⁷ / ₈ *	11/2 15/8 13/4 17/8 2 21/8 21/4 23/8 21/2 25/8 23/4 27/8 31/8 31/4 33/8 31/2	13/4* 17/8* 2* 21/8* 21/4* 23/8* 21/2* 23/4* 31/8* 31/8* 33/4* 33/4* 4*	4¹/2^ ▲	3* 31/4* 31/2* 33/4* 4* 4* 41/4* 43/4* 5* •
Tightening torque (Nm)	5.7	5.7	20	20	20	20	20	31	49	92	92	115	115	172	195	275
Bush length (mm)	22.3	22.3	25.4	38.1	25.4	25.4	38.1	31.8	44.5	50.8	76.2	63.5	88.9	101.6	114.3	127.0
Weight at d _{2 min} ≈ (kg)	0.12	0.16	0.28	0.39	0.32	0.41	0.60	0.75	1.06	2.50	3.75	3.90	5.13	7.68	12.70	15.17

Timing pulleys Recommended special constructions

Materials

Steel, grey cast iron, aluminium; other materials available on request Do NOT use cast iron for speeds > 30 m/s anymore!

Bores

All timing pulleys are pilot bored. On request they can be finish bored to DIN H7 tolerance.

Explanation of the abbreviations

ОВ = without flanges

ΕB = one flange

ZB = two flanges
OBN = without flanges, with hub
EBN = one flange, with hub

ZBN = two flanges, with hub

Timing pulleys Dimensions and tolerances

Permissible variation in tooth pitch

The permissible variations in tooth pitch between two consecutive teeth and for the sum of the variations within a 90° arc of a pulley are shown in the following table. These tolerances indicate the distance between the corresponding points on the right or the left flank of consecutive teeth.

Outside diameter	Permissible in tooth p	
d _a [mm]	between two consecutive teeth	sum within a 90° arc
≤ 25	0.03	0.06
> 25 ≤ 50	0.03	0.09
> 50 ≤ 100	0.03	0.10
> 100 ≤ 175	0.03	0.13
> 175 ≤ 300	0.03	0.15
> 300 ≤ 500	0.03	0.18
> 500	0.03	0.20

Pulley width

Туре	Pulley	Nominal	Smallest po	ulley width
	width	pulley	with	without
	designation	width	flanges b _f *	flanges
	[mm]	[mm]	[mm]	[mm]
3 M	6	6	7	9
	9	9	10	12
	15	15	17	19
5 M	9	9	10	12
	15	15	17	19
	25	25	27	29
8 M	20	20	22	26
	30	30	34	38
	50	50	54	58
	85	85	90	94
14 M	40	40	47	54
	55	55	63	70
	85	85	95	102
	115	115	126	133
	170	170	180	187

 $[*]b_f$ = Pulley width between the flanges

Note

The minimum width b for pulleys without flanges can be reduced, if there is no side wobble or run out; however, it may not fall below the minimum width $b_{\rm f}$ for pulleys with flanges.

Permissible variation of the outside diameter

Outside diameter d _a [mm]	Permissible variation [mm]
≤ 25	+ 0.05 0
> 25 ≤ 50	+ 0.07 0
> 50 ≤ 100	+ 0.10 0
> 100 ≤ 175	+ 0.13 0
> 175 ≤ 300	+ 0.15 0
> 300 ≤ 500	+ 0.18 0
> 500	+ 0.20

Axial run out tolerance

Outside diameter range [mm]	Maximum overall fluctuation [mm]
≤ 100	0.10
> 100 ≤ 250	0.01 mm per 10 mm outside diameter
> 250	0.25 mm + 0.0005 mm per mm outside diameter over 250.00 mm

Tolerance of eccentricity

Outside diameter range [mm]	Maximum overall fluctuation [mm]
≤ 200	0.10
> 200	0.0005 mm per 10 mm outside diameter, but not exceeding the tolerance for the outside diameter

Timing pulleys Dimensions and tolerances

Balancing

Steel pulleys that have been machined on all sides do not need to be balanced if the circumferential speed is below 30 m/s. Grey cast iron pulleys for medium speeds should be statically balanced as follows:

Section	Number of teeth	Static balance [N]
3M	all	0.04
5M	all	0.08
M8	≤ 130 > 130	0.08 0.16
14M	≤ 72 > 72	0.08 0.16

Timing pulleys which are used for circumferential speeds in excess of 30 m/s, must be balanced dynamically to $1.8\cdot10^{-5}$ Nm.

Parallelism

The teeth are to be aligned in parallel to the axis of the bore, with a variation of no more than $0.001\,\mathrm{mm}$ per millimetre width.

Taper

The taper across the pulley face may not exceed 0.001 mm per millimetre of the face width and at the same time may not exceed the permissible outside diameter tolerance indicated on page 64.

Design hints Flanged pulleys/tension idlers

Flanged pulleys

For the guidance of Optibelt OMEGA HL, Optibelt OMEGA HP and Optibelt OMEGA timing belts, one or both of the timing pulleys should be equipped with flanges on one or both sides.

With centre distances of ≥ 8 d_{wk} the timing pulleys should have flanges on both sides.

We recommend the use of standard timing pulleys. If this is not possible due to the machine construction, timing pulleys specially designed for the machine may be used.

Maximum OMEGA timing belt width

The maximum timing belt width should not exceed the diameter of the smallest timing pulley in the drive.

Tension idlers

Idlers are timing or flat pulleys, that play no part in power transmission within a drive system. Because they generate additional bending stresses in the belt, they should be used in accordance with the following guidelines:

- Diameter of the tension idlers ≥ the smallest recommended pulley diameter for the belt section
- Width of the tension idlers ≥ width of the timing pulleys in the drive
- Always position the tension idlers in the slack side of the drive
- Internal tension pulleys:
 ≤ 40 teeth always use a timing pulley
 > 40 teeth, a flat faced idler is permissible
- In general, outside idlers should always be flat faced as they run
 on the top surface of the belt
- Crowned idlers should never be used
- Fit the tension idlers in such a way as to enable as many teeth as possible to mesh with the small pulley
- Keep the arc of contact on the tension idler as small as possible

Design hints Installation and maintenance

Safety information

Correctly designed drives (with regard to geometry and power) with Optibelt OMEGA HL, Optibelt OMEGA HP and Optibelt OMEGA timing belts ensure a high level of operational safety and optimum service life.

Experience shows that unsatisfactory service life is often attributable to errors in installation and maintenance. In order to avoid this, we suggest that you observe the following recommendations.

Timing pulleys

The teeth must be conform to the appropriate standards and should be clean.

Alignment

Shafts and pulleys should be aligned prior to the assembly.

Maximum deviations of the shaft parallelism:

Belt widths [mm]	Shaft misalignment
≤ 25	± 1°
> 25 ≤ 50	± 0.5°
> 50 ≤ 100	± 0.25°
> 100	± 0.15°

Timing belt sets

Timing belts which run on a drive in pairs or in sets of several belts must be ordered in sets in all cases. This is to ensure that all belts come from the same manufacturing sleeve and have an identical length.

Assembly

Prior to the assembly, the centre distance is to be reduced in such a way that the timing belt may be fitted without force. If this is not possible, the timing belt must be installed together with one or both timing pulleys. Installation with the use of force is NOT permissible at any time as this can damage the high quality, low stretch tension cord and other components. This damage is often not visible.

When using taper bushes, the socket screws should be checked again after 0.5-1 hour running time using a torque wrench. Starting torques see page 62.

Belt tension

The belt tension is to be applied in accordance with the guidelines on page 30. Further checks after installation are not necessary.

Tension idlers

Avoid tension idlers. If this is not possible, follow our recommendations on page 66 of this manual.

Maintenance

Optibelt OMEGA HL, Optibelt OMEGA HP and Optibelt OMEGA timing belts are maintenance free, when used under normal operationing conditions.

Design hints Problems – Causes – Remedies

Problems	Causes	Remedies	
Excessive wear on the loaded face of the belt tooth	Faulty belt tension Pitch error, belt to pulley tooth Overload	Correct the tension Check the belt section, replace, if necessary Use wider belts with higher power transmission capacity	
Excessive wear on the land between the belt teeth	Excessive belt tension Drive is under designed Defective timing pulleys	Reduce the tension Increase the width of the timing belt or increase the diameter of the timing pulleys Replace timing pulleys	
Exceptional wear on the belt sides	Faulty axial parallelism Defective flanged pulleys Centre distance fluctuation	Realign shafts Replace flanged pulleys Reinforce bearings and/or housing	
Belt teeth shear off	Number of teeth in mesh too small Overload	Increase diameter of the small pulley or choose a wider belt Use a wider belt or larger pulleys	
Excessive lateral runout	Faulty axial parallelism Timing pulleys not aligned Shock loading with excessive belt tension	Realign shafts Realign the pulleys Reduce the belt tension	
Pulley flanges becoming detached	Timing pulleys not aligned Very high lateral pressure from the timing belt Faulty installation of the flanged pulleys	Realign the pulleys Realign shafts Install flanged pulleys correctly	
Apparent belt stretch	Recovery of length after storage Bearings flexing	Correct the belt tension Reinforce and secure bearing mountings	
Excessive running noise	Faulty shaft alignment Excessive belt tension Pulley diameter too small Overload on the timing belt Excessive belt width coupled with high speed	Realign shafts Reduce the tension Enlarge pulley diameter Increase belt width and/or teeth in mesh Reduce belt width by redesigning using heavier belt section	
Abnormal wear and tear on the timing pulleys	Unsuitable pulley material Faulty meshing Insufficient surface hardness	Use a stronger material Replace timing pulleys Use harder material or harden the surface	
Embrittlement of the belt top surface	Ambient temperatures above +100 °C Excessive radiated heat	Choose an extra heat resistant belt quality Shield or use a suitable belt quality	
Cracks in the belt top surface	Ambient temperatures below -30 °C	Use an extra cold resistant belt quality	
Softening of the belt top surface	Contamination by incompatible media	Shield belt or use suitable belt quality	

Data sheet

for the calculation/checking of the drives with optibelt OMEGA HL, optibelt OMEGA HP and optibelt OMEGA timing belts

	Company:			
	Street address/P.O. Box number: Town or city/Post code:			
	Contact person:			
	Department: Date:			
	Phone: Fax:			
	E-mail:			
	L-IIIIII.			
For test New drive	Currently fitted with			
For pilot production Existing drive	Pitch length Section Width Manufacture	r		
For series production Requirement Pieces/Year				
Prime mover	Driven machine			
Type (e.g. electric motor, diesel engine 3 cylinders)	Type (e.g. lathe, compressor)			
Size of the starting torque (e.g. $M_A = 1.8 M_N$)	Start: under load no load			
Type of start (e.g. star delta)				
Daily operating timehours	Type of load: steady pulsating			
Number of starts per hour per day	shock			
Change in the direction of rotation per minute per hour	Described and the second	1347		
Power: P normal kW P maximum kW	Required power transmission: P normalP maximum			
or max. torque Nm at n ₁ min ⁻¹		_ KVV min ⁻¹		
Speed n ₁ min ⁻¹	Driven speed n ₂			
Shaft layout: Horizontal Vertical	n _{2 min}			
/ Inclined	n _{2 max}			
Maximum permissible shaft loading $S_{a \text{ max}}$ N	Maximum permissible shaft loading S _{a max}			
Pitch diameter or number of teeth on the pulley:	Pitch diameter or number of teeth on the pulley:			
$d_{d1} \underline{\qquad} mm z_1 \underline{\qquad} mm$	d_2 mm z_2	mm		
d_{d1min} mm z_{1min} mm	d_{2min} mm z_{2min}	_ mm		
$d_{d1 \text{ max}}$ mm $z_{1 \text{ max}}$ mm	d_{2max} mm z_{2max}			
Maximum pulley face width mm	Maximum pulley face width	_ mm		
Drive ratio i	i _{min} i _{max}			
Centre distance a mm	a _{min} mm a _{max} mm			
Tensioning/idler pulley: inside idler	in tight side			
outside idler	in slack side			
d _w mm timing pulley	moveable (e.g. spring loaded)			
d _a mm flat pulley Operating conditions: Ambient temperature	fixed °C minimum			
Operating Conditions. Ambient temperature	°C maximum			
Influence of oil	(e.g. oil mist, drops)			
water	(e.g. spray water)			
acid	(type, concentration, temperature)			
dust	(type)			

Special drives:

e.g. for drives with tensioning/idler pulleys, three or multi-pulley drives or for drives with contra rotating pulleys drawings are necessary to indicate shaft co-ordinates and the load conditions for each pulley and/or idler. Please use the other side of this page for this drawing.

Details of the drive:		

Notes	

The Optibelt offer is intended for specialised distributors only. Optibelt recommends that its products be used only in accordance with the information in the Optibelt technical manuals. Optibelt will not be held responsible if the products are used in applications for which they have not been developed or designed. The characteristics of these products as described in this manual may change due to various influences. Therefore, the drives should be checked against their future application (or in a way that comes close to their future application), if necessary. Optibelt would also mention its general terms and conditions.

All rights reserved. Any infringements of the copyright are liable to criminal prosecution. Errors and omissions excepted.

O O TO TO OPTIBELY OP

