Olimpiada Naţională de Matematică Etapa Judeţeană/a Sectoarelor Municipiului Bucureşti, 16 martie 2019

Soluții și barem orientativ de corectare la CLASA a XI-a

Problema 1. Fie $(a_n)_{n\geq 1}$ un şir de numere reale strict pozitive, cu proprietatea că şirul $(a_{n+1}-a_n)_{n\geq 1}$ este convergent, cu limita nenulă. Calculați limita

$$\lim_{n \to \infty} \left(\frac{a_{n+1}}{a_n} \right)^n.$$

Gazeta Matematică

Soluţie şi barem:

$$\left(\frac{a_{n+1}}{a_n}\right)^n = \left[\left(1 + \frac{a_{n+1} - a_n}{a_n}\right)^{\frac{a_n}{a_{n+1} - a_n}}\right]^{\frac{n}{a_n} \cdot (a_{n+1} - a_n)}.$$

Deoarece $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{a_n}=0$, obţinem

$$\lim_{n \to \infty} \left(\frac{a_{n+1}}{a_n} \right)^n = e^{\frac{1}{L} \cdot L} = e.$$

 $2_{
m I}$

Problema 2. Fie $n \in \mathbb{N}$, $n \geq 2$, şi $A, B \in \mathcal{M}_n(\mathbb{R})$. Arătaţi că există un număr complex z, cu |z| = 1, având proprietatea că

$$Re(\det(A+zB)) \ge \det(A) + \det(B),$$

unde Re(w), reprezintă partea reală a numărului complex w.

Soluţie şi barem: Notăm f(z) = det(A + zB), pentru $z \in \mathbb{C}$. Din proprietățile determinanților, există $a_1, a_2, \dots, a_{n-1} \in \mathbb{R}$ astfel încât

$$f(z) = \det(A) + a_1 \cdot z + a_2 \cdot z^2 + \dots + a_{n-1} \cdot z^{n-1} + \det(B) \cdot z^n , \text{ pentru orice } z \in \mathbb{C}.$$

Fie ε o rădăcină primitivă de ordinul n a unității. Atunci, pentru orice $1 \le k \le n-1$, are loc

$$1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k} = \frac{1 - \varepsilon^{nk}}{1 - \varepsilon^k} = 0.$$

......1p Obținem

$$f(1) + f(\varepsilon) + f(\varepsilon^2) + \dots + f(\varepsilon^{n-1}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(B)) + \sum_{k=1}^{n-1} a_k (1 + \varepsilon^k + \varepsilon^{2k} + \dots + \varepsilon^{(n-1)k}) = n(\det(A) + \det(A) + \det(A)$$

$$= n \cdot (\det(A) + \det(B)).$$

______2p

Atunci

$$\frac{Re(f(1)) + Re(f(\varepsilon)) + Re(f(\varepsilon^2)) + \dots + Re(f(\varepsilon^{n-1}))}{n} = \frac{1}{n} \cdot Re\left(\sum_{k=0}^{n-1} f(\varepsilon^k)\right) = \frac{1}{n} \cdot Re\left(\sum_{k=0}^{n-1} f(\varepsilon^$$

$$= \det(A) + \det(B).$$

Fie $k_0 \in \{0, 1, \dots, n-1\}$, astfel încât $Re(f(\varepsilon^{k_0})) = \max\{Re(f(\varepsilon^k)) | k = \overline{0, n-1}\}$. Atunci $|\varepsilon^{k_0}| = 1$ si

$$Re(\det(A + \varepsilon^{k_0} \cdot B)) \ge \frac{1}{n} \cdot \sum_{k=0}^{n-1} Re(f(\varepsilon^k)) = \det(A) + \det(B).$$

......1p

Problema 3. Fie n un număr natural impar și matricele $A, B \in \mathcal{M}_n(\mathbb{C})$, cu proprietatea că $(A - B)^2 = O_n$. Arătați că $\det(AB - BA) = 0$.

Soluție și barem: Fie C = A - B. Conform ipotezei, $C^2 = O_n$. Din teorema lui Sylvester obținem

$$2 \cdot rang(C) - n \le rang(O_n) = 0,$$

$$rang(X\pm Y) \leq rang(X) + rang(Y) \quad \text{ si } \quad rang(XY) \leq \min(rang(X), rang(Y)),$$

avem:

$$rang(AB - BA) = rang(CA - AC) \le rang(CA) + rang(AC) \le$$

 $\le 2 \cdot rang(C) \le n - 1 < n.$

Problema 4. Fie $f:[0,\infty) \longrightarrow [0,\infty)$ o funcție continuă, cu f(0) > 0 și cu proprietatea că pentru orice $0 \le x < y$ au loc inegalitățile $x - y < f(y) - f(x) \le 0$. Arătați că:

- a) Există un unic număr $\alpha \in (0, \infty)$ cu proprietatea că $(f \circ f)(\alpha) = \alpha$.
- b) Sirul $(x_n)_{n\geq 1}$, definit prin $x_1\geq 0$ și $x_{n+1}=f(x_n), \forall n\in\mathbb{N}^*$, este convergent.

Soluție și barem: a) Conform ipotezei, funcția f este descrescătoare.

Pentru $x \in [0, \alpha)$, folosind de două ori inegalitățile din ipoteză, obținem

$$x - \alpha < f(\alpha) - f(x) \le f(f(x)) - f(f(\alpha)) = f(f(x)) - \alpha \le 0,$$

de unde $x < f(f(x)) \le \alpha$. (2) Analog, pentru $x \in (\alpha, \infty)$ avem

$$\alpha - x < f(x) - f(\alpha) \le f(f(\alpha)) - f(f(x)) = \alpha - f(f(x)) \le 0,$$

astfel că $x > f(f(x)) \ge \alpha$. (3)

Din relațiile (1), (2) și (3) rezultă că funcția $f \circ f$ are ca unic punct fix numărul α 2p b) Dacă $x_1 = \alpha$, atunci $x_n = \alpha$ pentru orice $n \ge 1$, deci șirul este convergent la α .

Dacă $x_1 \neq \alpha$, considerăm subșirurile $(x_{2n-1})_{n\geq 1}$ și $(x_{2n})_{n\geq 1}$. Acestea verifică relațiile de recurență $x_{2n+1}=(f\circ f)(x_{2n-1})$, respectiv $x_{2n+2}=(f\circ f)(x_{2n})$, pentru orice $n\geq 1$.

Pentru $x_1 < \alpha$, din monotonia funcției f avem $x_2 \ge \alpha$. Prin inducție, folosind relațiile (2) și (3), rezultă că șirul $(x_{2n-1})_{n\ge 1}$ este monoton crescător și mărginit superior de α , iar șirul $(x_{2n})_{n\ge 1}$ este monoton descrescător și mărginit inferior de α . Ele sunt deci convergente cu limitele l_1 și respectiv l_2 , cu $l_1 \le \alpha \le l_2$. Folosind continuitatea funcției $f \circ f$, trecând la limită în relațiile de recurență, se obține $l_1 = (f \circ f)(l_1)$ și $l_2 = (f \circ f)(l_2)$. Rezultă că $l_1 = \alpha = l_2$. Prin urmare, șirul $(x_n)_{n\ge 1}$ este convergent, cu limita α .