Proof details Chanwoo Lee

1 Proofs of Main Theorems

Proof of Lemma ??. Recall that we denote \mathcal{E}_k as the m-way partition

$$\mathcal{E}_k = \{ \sum_{a=1}^m z^{-1}(j_a) \colon (j_1, \dots, j_m) \in [k]^m \},$$

where $z : [d] \to [k]$ is the canonical clustering function such that $z(i) = \lceil ki/d \rceil$, for all $i \in [d]$. For a given partition $\times_{a=1}^m z^{-1}(j_a) \in \mathcal{E}_k$, fix any index $(i_1^0, \dots, i_m^0) \in \times_{a=1}^m z^{-1}(j_a)$. Then, we have

$$\|(i_1, \dots, i_m) - (i_1^0, \dots, i_m^0)\|_{\infty} \le \frac{d}{k},$$
 (1)

for all $(i_1, \ldots, i_m) \in \times_{a=1}^m z^{-1}(j_a)$. We define the blockwise ℓ -degree polynomial tensor \mathcal{B} based on the partition \mathcal{E}_k as

$$\mathcal{B}(i_1, \dots, i_m) = \mathcal{P}_{\min(\lfloor \alpha \rfloor, \ell)}^{j_1, \dots, j_m} \left(\frac{i_1 - i_1^0}{d}, \dots, \frac{i_m - i_m^0}{d} \right), \text{ for all } (i_1, \dots, i_m) \in \sum_{a=1}^m z^{-1}(j_a),$$

where $\mathcal{P}_{\min(|\alpha|,\ell)}^{j_1,\ldots,j_m}$ is a ℓ -degree polynomial function satisfying

$$\left| f\left(\frac{i_1}{d}, \dots, \frac{i_m}{d}\right) - \mathcal{P}_{\min(\lfloor \alpha \rfloor, \ell)}^{j_1, \dots, j_m} \left(\frac{i_1 - i_1^0}{d}, \dots, \frac{i_m - i_m^0}{d}\right) \right| \leq C \left\| \left(\frac{i_1 - i_1^0}{d}, \dots, \frac{i_m - i_m^0}{d}\right) \right\|_{\infty}^{\min(\alpha, \ell + 1)}, \quad (2)$$

for all $(i_1, \ldots, i_m) \in X_{a=1}^m z^{-1}(j_a)$. Notice that we can always find such polynomial function by α -Hölder smoothness of the generating function f. Based on the construction of blockwise ℓ -degree polynomial tensor \mathcal{B} , we have

$$\begin{split} \frac{1}{d^m} \|\Theta - \mathcal{B}\|_F^2 &= \frac{1}{d^m} \sum_{(i_1, \dots, i_m) \in [d]^m} |\Theta(i_1, \dots, i_m) - \mathcal{B}(i_1, \dots, i_m)|^2 \\ &= \frac{1}{d^m} \sum_{(j_1, \dots, j_m) \in [k]^m} \sum_{(i_1, \dots, i_m) \in \times_{a=1}^m z^{-1}(j_a)} \left| f\left(\frac{i_1}{d}, \dots, \frac{i_m}{d}\right) - \mathcal{P}_{\min(\lfloor \alpha \rfloor, \ell)}^{j_1, \dots, j_m} \left(\frac{i_1 - i_1^0}{d}, \dots \frac{i_m - i_m^0}{d}\right) \right|^2 \\ &\lesssim \frac{1}{d^m} \sum_{(j_1, \dots, j_m) \in [k]^m} \sum_{(i_1, \dots, i_m) \in \times_{a=1}^m z^{-1}(j_a)} \left\| \left(\frac{i_1 - i_1^0}{d}, \dots, \frac{i_m - i_m^0}{d}\right) \right\|_{\infty}^{2 \min(\alpha, \ell + 1)} \\ &\leq \frac{1}{k^2 \min(\alpha, \ell + 1)}, \end{split}$$

where the first inequality uses (2) and the second inequality is from (1).

Proof of Theorem ??. The proof is similar to theorem 2.1 on note 030721. By Theorem ??, there exists a blockwise polynomial tensor $\mathcal{B} \in \mathcal{B}(k,\ell)$ such that

$$\|\mathcal{B} - \Theta\|_F^2 \lesssim \frac{d^m m^2}{k^2 \min(\alpha, \ell)}.$$
 (3)

By the triangle inequality,

$$\|\hat{\Theta}^{LSE} \circ \hat{\pi}^{LSE} - \Theta \circ \pi\|_F^2 \le 2\|\hat{\Theta}^{LSE} \circ \hat{\pi}^{LSE} - \mathcal{B} \circ \pi\|_F^2 + 2\underbrace{\|\mathcal{B} \circ \pi - \Theta \circ \pi\|_F^2}_{Lemma ??}.$$
(4)

Therefore, it suffices to bound $\|\hat{\Theta}^{LSE} \circ \hat{\pi}^{LSE} - \mathcal{B} \circ \pi\|_F^2$. By the global optimality of least-square estimator, we have

$$\begin{split} \|\hat{\Theta}^{\text{LSE}} \circ \hat{\pi}^{\text{LSE}} - \mathcal{B} \circ \pi\|_{F} &\leq \left\langle \frac{\hat{\Theta}^{\text{LSE}} \circ \hat{\pi}^{\text{LSE}} - \mathcal{B} \circ \pi}{\|\hat{\Theta}^{\text{LSE}} \circ \hat{\pi}^{\text{LSE}} - \mathcal{B} \circ \pi\|_{F}}, \ \mathcal{E} + (\Theta \circ \pi - \mathcal{B} \circ \pi) \right\rangle \\ &\leq \sup_{\pi, \pi' : \ [d] \to [d]} \sup_{\mathcal{B}, \mathcal{B}' \in \mathscr{B}(k, \ell)} \left\langle \frac{\mathcal{B}' \circ \pi' - \mathcal{B} \circ \pi}{\|\mathcal{B}' \circ \pi' - \mathcal{B} \circ \pi\|_{F}}, \mathcal{E} \right\rangle + \underbrace{\|\mathcal{B} \circ \pi - \Theta \circ \pi\|_{F}}_{\text{Lemma ??}}. \end{split}$$

Now, for fixed π, π' , the space embedding $\mathcal{B}(k,\ell) \subset \mathbb{R}^{(\ell+m)^\ell k^m}$ implies the space embedding $\{(\mathcal{B}' \circ \pi' - \mathcal{B} \circ \pi) \colon \mathcal{B}, \mathcal{B}' \in \mathcal{B}(k,\ell)\} \subset \mathbb{R}^{2(\ell+m)^\ell k^m}$. To be specific, let P and P' be permutation matrices corresponding to permutations π and π' respectively. We express vectorized blockwise degree- ℓ polynomial tensors, $\operatorname{vec}(\mathcal{B})$ and $\operatorname{vec}(\mathcal{B}')$ by $\mathbf{X}\boldsymbol{\beta}$ and $\mathbf{X}\boldsymbol{\beta}'$ respectively, where $\mathbf{X} \in \mathbb{R}^{d^m \times k^m (k+m)^\ell}$ is a design matrices consisting of covariates $(1/d, \ldots, d/d)^m$ and $\boldsymbol{\beta}$ and $\boldsymbol{\beta}' \in \mathbb{R}^{k^m (k+m)^\ell}$ are corresponding coefficient vectors. Notice that the number of coefficients for ℓ -polynomial m-multivariate function is $\binom{\ell+m}{\ell}$. We choose to use $(k+m)^\ell$ coefficients for each block for the notational simplicity. Therefore, we rewrite the inner product,

$$\left\langle \frac{\mathcal{B}' \circ \pi' - \mathcal{B} \circ \pi}{\|\mathcal{B}' \circ \pi' - \mathcal{B} \circ \pi\|_{F}}, \mathcal{E} \right\rangle = \left\langle \frac{(\mathbf{P}')^{\otimes m} \text{vec}(\mathcal{B}') - (\mathbf{P})^{\otimes m} \text{vec}(\mathcal{B})}{\|(\mathbf{P}')^{\otimes m} \text{vec}(\mathcal{B}') - (\mathbf{P})^{\otimes m} \text{vec}(\mathcal{B})\|_{F}}, \mathcal{E} \right\rangle
= \left\langle \frac{(\mathbf{P}')^{\otimes m} \mathbf{X} \mathcal{B}' - (\mathbf{P})^{\otimes m} \mathbf{X} \mathcal{B}}{\|(\mathbf{P}')^{\otimes m} \mathbf{X} \mathcal{B}' - (\mathbf{P})^{\otimes m} \mathbf{X} \mathcal{B}\|_{F}}, \mathcal{E} \right\rangle
= \left\langle \frac{\mathbf{A} \mathbf{c}}{\|\mathbf{A} \mathbf{c}\|_{F}}, \mathcal{E} \right\rangle,$$

where we define $\mathbf{A} := \begin{pmatrix} \mathbf{P}' & -\mathbf{P} \end{pmatrix} \begin{pmatrix} \mathbf{X} & 0 \\ 0 & \mathbf{X} \end{pmatrix} \in \mathbb{R}^{d^m \times 2k^m(k+m)^\ell}$ and $\mathbf{c} := \begin{pmatrix} \boldsymbol{\beta}' \\ \boldsymbol{\beta} \end{pmatrix} \in \mathbb{R}^{2k^m(k+m)^\ell}$. By Lemma 2.1, we have

$$\sup_{\mathcal{B}, \mathcal{B}' \in \mathscr{B}(k,\ell)} \left\langle \frac{\mathcal{B}' \circ \pi' - \mathcal{B} \circ \pi}{\|\mathcal{B}' \circ \pi' - \mathcal{B} \circ \pi\|_F}, \mathcal{E} \right\rangle \leq \sup_{\mathbf{c} \in \mathbb{R}^{2k^m(\ell+m)\ell}} \left\langle \frac{\mathbf{c}}{\|\mathbf{c}\|_2}, e \right\rangle, \tag{5}$$

where $e \in \mathbb{R}^{2k^m(k+m)^\ell}$ is a vector consisting of i.i.d. sub-Gaussian entries with variance proxy σ^2 . Therefore, the union bound of Gaussian maxima over countable set $\{\pi, \pi' \colon [d] \to [d]\}$, we obtain

$$\mathbb{P}\left(\sup_{\pi,\pi':\ [d]\to[d]}\sup_{\mathcal{B},\mathcal{B}'\in\mathscr{B}(k,\ell)}\left\langle\frac{\mathcal{B}'\circ\pi'-\mathcal{B}\circ\pi}{\|\mathcal{B}'\circ\pi'-\mathcal{B}\circ\pi\|_F},\mathcal{E}\right\rangle\geq t\right)\leq\sum_{\pi,\pi'\in[d]^d}\mathbb{P}\left(\sup_{\mathcal{B},\mathcal{B}'\in\mathscr{B}(k,\ell)}\left\langle\frac{\mathcal{B}'\circ\pi'-\mathcal{B}\circ\pi}{\|\mathcal{B}'\circ\pi'-\mathcal{B}\circ\pi\|_F},\mathcal{E}\right\rangle\geq t\right)$$

$$\leq d^{d} \mathbb{P} \left(\sup_{\boldsymbol{c} \in \mathbb{R}^{2k^{m}(\ell+m)\ell}} \left\langle \frac{\boldsymbol{c}}{\|\boldsymbol{c}\|_{2}}, e \right\rangle \geq t \right)$$

$$\leq \exp \left(-\frac{t^{2}}{8\sigma^{2}} + k^{m}(\ell+m)^{\ell} \log 6 + d \log d \right),$$

where the second inequality is from (5) and the last inequality is from Theorem 1.19 [1]. Setting $t = C\sigma\sqrt{k^m(\ell+m)^\ell+d\log d}$ for sufficiently large C>0 gives,

$$\sup_{\pi,\pi': [d] \to [d]} \sup_{\mathcal{B}, \mathcal{B}' \in \mathscr{B}(k,\ell)} \left\langle \frac{\mathcal{B}' \circ \pi' - \mathcal{B} \circ \pi}{\|\mathcal{B}' \circ \pi' - \mathcal{B} \circ \pi\|_F}, \mathcal{E} \right\rangle \lesssim \sigma \sqrt{k^m (\ell + m)^\ell + d \log d}, \tag{6}$$

with high probability.

Finally, combining the inequalities (3), (4) and (6) yields the desired conclusion

$$\|\hat{\Theta}^{\mathrm{LSE}} \circ \hat{\pi}^{\mathrm{LSE}} - \Theta \circ \pi\|_F^2 \lesssim \sigma^2 \left(k^m (\ell + m)^\ell + d \log d \right) + \frac{d^m m^2}{k^{2 \min(\alpha, \ell)}}.$$

2 Technical Lemmas

Lemma 2.1 (Gaussian maxima under full embedding). Let $\mathbf{A} \in \mathbb{R}^{d_1 \times d_2}$ be a deterministic matrix with rank $r \leq \min(d_1, d_2)$. Let $\mathbf{y} \in \mathbb{R}^{d_2}$ be a sub-Gaussian random vector with variance proxy σ^2 . Then, there exists a sub-Gaussian random vector $\mathbf{x} \in \mathbb{R}^r$ with variance proxy σ^2 such that

$$\max_{oldsymbol{c} \in \mathbb{R}^{d_2}} \left\langle rac{oldsymbol{A} oldsymbol{c}}{\|oldsymbol{A} oldsymbol{c}\|_2}, oldsymbol{y}
ight
angle = \max_{oldsymbol{c} \in \mathbb{R}^r} \left\langle rac{oldsymbol{c}}{\|oldsymbol{c}\|_2}, oldsymbol{x}
ight
angle.$$

Proof. Let $u_i \in \mathbb{R}^{d_1}, v_j \in \mathbb{R}^{d_2}$ singular vectors and $\lambda_i \in \mathbb{R}$ be singular values of A such that $A = \sum_{i=1}^r \lambda_i u_i v_i^T$. Then for any $c \in \mathbb{R}^r$, we have

$$oldsymbol{Ac} = \sum_{i=1}^r \lambda_i oldsymbol{u}_i oldsymbol{v}_i^T oldsymbol{c} = \sum_{i=1}^r \lambda_i (oldsymbol{v}_i^T oldsymbol{c}) oldsymbol{u}_i = \sum_{i=1}^r lpha_i oldsymbol{u}_i,$$

where $\boldsymbol{\alpha}(\boldsymbol{c}) = (\alpha_1, \dots, \alpha_r)^T := (\lambda_1(\boldsymbol{v}_1^T \boldsymbol{c}), \dots, \lambda_r(\boldsymbol{v}_r^T \boldsymbol{c}))^T \in \mathbb{R}^r$. Notice that $\boldsymbol{\alpha}(\boldsymbol{c})$ covers \mathbb{R}^r in the sense that $\{\boldsymbol{\alpha}(\boldsymbol{c}): \boldsymbol{c} \in \mathbb{R}^r\} = \mathbb{R}^r$. Therefore, we have

$$\begin{split} \max_{\boldsymbol{c} \in \mathbb{R}^r} \left\langle \frac{\boldsymbol{A} \boldsymbol{c}}{\|\boldsymbol{A} \boldsymbol{c}\|_2}, \boldsymbol{y} \right\rangle &= \max_{\boldsymbol{c} \in \mathbb{R}^r} \sum_{i=1}^r \frac{\alpha_i}{\|\boldsymbol{\alpha}(\boldsymbol{c})\|_2} \boldsymbol{u}_i^T \boldsymbol{y} \\ &= \max_{\boldsymbol{c} \in \mathbb{R}^r} \left\langle \frac{\boldsymbol{\alpha}(\boldsymbol{c})}{\|\boldsymbol{\alpha}(\boldsymbol{c})\|_2}, \boldsymbol{x} \right\rangle \\ &= \max_{\boldsymbol{c} \in \mathbb{R}^r} \left\langle \frac{\boldsymbol{c}}{\|\boldsymbol{c}\|_2}, \boldsymbol{x} \right\rangle, \end{split}$$

where we define $\boldsymbol{x} = (\boldsymbol{u}_1^T \boldsymbol{y}, \dots, \boldsymbol{u}_r^T \boldsymbol{y})^T \in \mathbb{R}^r$. Since $\boldsymbol{u}_i^T \boldsymbol{y}$ is sub-Gaussian with variance proxy σ^2 because of orthonormality of \boldsymbol{u}_i , the proof is completed.

Remark 1. Let $x, \in \mathbb{R}^r, y \in \mathbb{R}^d$ be Gaussian random vectors whose entries are i.i.d. drawn from $N(0, \sigma^2)$. Define two Gaussian maximums

$$F(\boldsymbol{x}) \stackrel{\text{def}}{=} \max_{\boldsymbol{c} \in \mathbb{R}^r} \left\langle \frac{\boldsymbol{c}}{\|\boldsymbol{c}\|_2}, \boldsymbol{x} \right\rangle, \qquad G(\boldsymbol{x}) \stackrel{\text{def}}{=} \max_{\boldsymbol{c} \in \mathbb{R}^r} \left\langle \frac{\boldsymbol{A}\boldsymbol{c}}{\|\boldsymbol{A}\boldsymbol{c}\|_2}, \boldsymbol{y} \right\rangle,$$

Then $F(\boldsymbol{x}) = G(\boldsymbol{y})$ in distribution. This holds because $(\boldsymbol{u}_1^T \boldsymbol{y}, \dots, \boldsymbol{u}_r^T \boldsymbol{y})$ is again Gaussian random vectors whose entries are i.i.d. drawn from $N(0, \sigma^2)$.

proof lemma1, 2 and theorem 3

References

[1] Jan-Christian Hitter Phillippe Rigollet. High dimensional statistics. Lecture notes for course 18S997, 2015.