MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012 ROUND 3 COORDINATE GEOMETRY OF LINES AND CIRCLES

ANSWERS

- A) *k* = _____
- B) *a* = _____
- C) (_____,____,____)
- A) The lines y = mx + 1 and $y = \frac{2x}{5} m$ intersect at the point (6, k). Determine the value of k.
- B) Let circle $C_1 = \{(x, y) | x^2 + y^2 = 36\}$ and line $\mathcal{L} = \{(x, y) | y = x\}$. Circle C_2 has its center on \mathcal{L} outside of C_1 and is tangent to the *x*-axis at X(a, 0), the *y*-axis at Y(0, b) and circle C_1 at point T. Compute the value of a.

C) When removed, the label on a cylindrical can is a rectangle. Suppose the height (*H*) of the can is 4 times the radius (*r*) of the base. The label is placed in quadrant 1 of the *xy*-plane as shown in the diagram at the right. The distance from point *O* to point *P* can be expressed in terms of *H* and *r* in simplest form as

$$\frac{\sqrt{A\pi^2 + B}}{C} \frac{H^2}{r}$$
, where A, B and C are positive integers.

Compute the ordered triple (A, B, C).

