Московский Физико-Технический Институт

Кафедра Общей физики

Лабораторная работа №4.2.1

Кольца Ньютона

Автор:

Глеб Уваркин 615 группа Преподаватель:

Клёнов Сергей Львович

Цель работы:

Познакомиться с явлением интерференции в тонких плёнках (полосы равной толщины) на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности

В работе используются:

Измерительный микроскоп с опак-иллюминатором; плосковыпуклая линза; пластинка из чёрного стекла; ртутная лампа ДРШ; щель; линзы; призма прямого зрения; объектная шкала.

1 Теоретические сведения.

В опыте колец Ньютона наблюдается интерференция волн, отражённых от границ тонкой воздушной прослойки, образованной сферической поверхностью линзы и плоской стеклянной пластиной. Схема опыта показана на рис 1.

Рис. 1: Схема наблюдения колец Ньютона.

Для точки на сферической поверхности, находящейся на расстоянии r от оси системы, имеем $r^2=R^2-(R-d)^2=2Rd-d^2$, где R - радиус кривизны сферической поверхности. При $R\gg d$ получим $d=r^2/2R$. С учётом изменения фазы на π при отражении волны от оптически более плотной среды (на границе воздух – стекло) получим оптическую разность хода интерферирующих лучей:

$$\Delta = 2d + \frac{\lambda}{2}.$$

Условие интерференционного минимума $\Delta=(2m+1)\frac{\lambda}{2}$ (m=0,1,2,...), откуда получаем для радиусов тёмных колец

$$r'_{m} = \sqrt{m\lambda R}. (1)$$

Аналогично для радиусов r_m светлых колец

$$r_m' = \sqrt{(2m-1)\lambda R/2}. (2)$$

Наблюдение биений. При освещении системы светом, содержащим две спектральные компоненты (с длинами λ_1 и λ_2 , $\lambda_2 < \lambda_1$), наблюдается характерная картина биений: чёткость интерференционных колец периодически изменяется. Это объясняется наложением двух систем интерференционных колец. Размытые кольца получаются при наложении светлых колец одной картины на тёмные кольца другой.

Рассчитаем период возникающих биений. Пусть в промежутке между двумя центрами соседних чётких участков укладывается Δm колец для спектральной линии с длиной волны λ_1 . Тогда в этом промежутке должно располагаться $(\Delta m+1)$ колец для спектральной линии с длиной волны λ_2 . Найдём условие наложения максимумов:

$$\Delta m \lambda_1 = (\Delta m + 1)\lambda_2 \Longrightarrow \Delta \lambda = \frac{\lambda_2}{\Delta m}$$
 (3)

<u>MIPT</u>

2 Экспериментальная установка.

Рис. 2: Схема установки для наблюдения колец Ньютона.

Схема экспериментальной установки приведена на рис. 2. Источником света служит ртутная лампа, находящаяся в защитном кожухе. Для получения монохроматического света применяется призменный монохроматор, состоящий из конденсора K, коллиматора (щель S и объектив O) и призмы прямого зрения Π . Свет от монохроматора попадает на опак-иллюминатор (ОИ), расположенный между окуляром и объективом микроскопа – специальное устройство для освещения объекта при работе в отражённом свете. Внутри опак-иллюминатора находится полупрозрачная пластинка P, наклоненная под углом 45° к оптической оси микроскопа.

Оптическая схема монохроматора позволяет получить в плоскости входного окна опакиллюминатора достаточно хорошо разделённые линии спектра ртутной лампы. Изображение щели S фокусируется на поверхность линзы объективом микроскопа, и в том же месте находится плоскость наблюдения микроскопа, т.е. точка источника и точка наблюдения интерференции совпадают. Картина интерференции как и в случае расположения пластинки сверху, так и в данном случае не зависит от коэффициента преломления линзы и определяется величиной зазора между нижней поверхностью линзы и стеклянной пластинкой.

3 Ход работы.

3.1 Измерение диаметров колец.

Снимем показания окулярной шкалы и микрометрического винта для тёмных и светлых колец (т – номер кольца). Используем яркую зеленую линию ртути ($\lambda=546$ нм). Результаты занесём в таблицу 1.

Таблица 1: К определению диаметров колец.

m	-6	-5	-4	-3	-2	-1	-0	+0	1	2	3	4	5	6
$x_{\text{тёмн}}$, дел	1.46	1.62	1.83	2.05	2.31	2.64	3.14	3.89	4.36	4.73	5.01	5.23	5.40	5.59
$x_{\text{светл}}$, дел	1.54	1.73	1.95	2.19	2.49	2.92		-	4.13	4.51	4.90	5.11	5.32	5.50

3.2 Наблюдение «биений».

Получим картину «биений» и просчитаем количество тёмных полос Δm от центра одной чёткой системы полос до центра соседней чёткой системы. Получаем, что

$$\Delta m = 17$$

3.3 Калибровка окулярной шкалы.

Определим цену деления окулярной шкалы с помощью калиброванной объектной шкалы. Объектная шкала размером 1 мм разбита на 100 делений.

Получаем, что

7 дел.ок.шк = 69 дел.об.шк
$$\cdot \frac{1 \text{ мм}}{100 \text{ дел}}$$

4 Обработка результатов.

1. Рассчитаем цену деления окулярной шкалы:

$$1$$
 дел.ок.шк $\simeq 0.1$ мм

Погрешность этого измерения составляет 0.01 мм.

2. По результатам наблюдения «биений рассчитаем» разность длин волн для жёлтой и зелёной линии Hg с помощью формулы (3). Результаты занесём в таблицу 2.

Таблица 2: K определению λ желтой линии.

$$\Delta \lambda$$
, нм | $\lambda_{\text{жёлт}}^{\text{пр}}$, нм | $\lambda_{\text{жёлт}}^{\text{теор}}$, нм 32 | 578 | 577 – 579

3. Рассчитаем радиусы тёмных и светлых колец, используя таблицу 1 и результат калибровки окулярной шкалы. Построим графики зависимостей r_m^2 и $(r_m^\prime)^2$ от номера m кольца. Все необходимые данные занесём в таблицу 3.

Подсчёт погрешностей:

$$r^2 = \left(\frac{x(m) - x(-m)}{2}\right)^2, \quad m = 1, 2, \dots, 6$$

$$\sigma_{r^2} = \sqrt{\left(\frac{\partial(r^2)}{\partial x_m} \cdot \sigma_{x_m}\right)^2 + \left(\frac{\partial(r^2)}{\partial x_{-m}} \cdot \sigma_{x_{-m}}\right)^2} = \sqrt{2\left(\frac{x_m - x_{-m}}{2}\right) \cdot \sigma_{x_m}^2} = \frac{d \cdot \sigma_x}{\sqrt{2}}$$

Таблица 3: Определение r^2 .

m	$d_{\mathrm{темн}},$ мм	$d_{ ext{cbetj}},$ мм	r'^2 , MKM	r^2 , MKM
1	0.17	0.12	7.4 ± 0.1	3.7 ± 0.1
2	0.24	0.20	14.6 ± 0.2	10.2 ± 0.1
3	0.29	0.27	21.9 ± 0.2	18.4 ± 0.2
4	0.34	0.32	28.9 ± 0.2	24.9 ± 0.2
5	0.38	0.36	35.7 ± 0.3	32.2 ± 0.3
6	0.41	0.39	42.6 ± 0.3	39.2 ± 0.3

Рис. 3: Зависимость r^2 и $(r')^2$ от m.

График для тёмных колец проходит через начало координат. Также оценим размер тёмного пятна:

$$d_{\text{пятно}} \simeq 37.5$$
 мкм.

4. С помощью метода наименьших квадратов определим коэффициент наклона прямых. Получаем, что для тёмных колец

$$k' = \frac{< r'^2 \cdot m >}{< m^2 >} \simeq (7.17 \pm 0.03) \cdot 10^{-3} \text{ mm}^2$$

Отсюда, из формулы (1) имеем: $R = \frac{r'^2}{m} \cdot \frac{1}{\lambda} = \frac{k'}{\lambda}$

$$R = (13.1 \pm 0.1) \text{ mm}$$

5 Вывод.

- В результате данной лабораторной работы были получены кольца Ньютона, как результат интерференции света.
- С их помощью мы определили радиус кривизны линзы, относительная погрешность примерно равна 1%.
- Также было изучено явление «биений». С его помощью мы измерили разность длин волн жёлтой и зелёной линий спектра ртутной лампы. Величина совпала с табличной.