Лекция 3. Критерий полноты

1 Замкнутость и полнота

Пусть имеется некоторое непустое множество F булевых функций и дана функция f. Спрашивается, можно ли представить функцию f через функции множества F.

Определение 1: Выразимость

Говорят, что булева функция f выразима через функции множества F, если существует формула над F, реализующая функцию f.

Часто операцию порождения одних булевых функций через другие называют операцией суперпозиции.

Определение 2: Замыкание мн<u>ожества</u> *F*

Множество всех функций, выразимых через функции множества F, называют замыканием множества F относительно операции суперпозиции и обозначают [F].

Из определения видна справедливость аксиом замыкания:

- 1. $F \subseteq [F]$.
- 2. Если $F_1 \subseteq F_2$, то $[F_1] \subseteq [F_2]$.
- 3. [[F]] = [F].

Определение 3: Замкнутый класс

Если для множества булевых функций F выполняется F = [F], то F называют замкнутым классом функций.

Некоторые важные замкнутые классы:

- Класс C_0 булевых функций, тождественно равных 0.
- Класс C_1 булевых функций, тождественно равных 1.
- Класс T_0 булевых функций, сохраняющих константу 0. Т. е.

$$f(0,\ldots,0)=0.$$

• Класс T_1 булевых функций, сохраняющих константу 1. Т. е.

$$f(1,\ldots,1) = 1.$$

С понятием замыкания тесно связано понятие полноты.

Определение 4: Полнота в классе

Пусть R — замкнутый класс, а Q — системы функций из R. Говорят что система функций Q полна в классе R, если [Q]=R.

Теорема 1

Пусть система булевых функций Q полна в замкнутом классе R. Пусть также P – некоторое множество функций из R и любая функция из Q реализуется формулой над P. Тогда множество P также полно в классе R.

Доказательство

- ullet Возьмём произвольную функцию f из класса R. По условию теоремы её можно реализовать некоторой формулой Φ над Q.
- В свою очередь каждая функция из Q, участвующая в построении формулы Φ реализуема формулой над P.
- Заменим в формуле Φ вхождение каждого символа функции из Q соответствующей формулой над P, получив тем самым формулу Φ' над P, реализующую ту же самую функцию f.

Следствие 2 из прошлой лекции показывает, что каждую не равную 0 булеву функцию можно представить в виде

$$f(x_1, \dots, x_n) = \bigvee_{f(\sigma_1, \dots, \sigma_m) = 1} x_1^{\sigma_1} \cdot \dots \cdot x_m^{\sigma_m},$$

то есть формулой над множеством $\{\bar{\ },\lor,\land\}$, а так как $0=x\wedge \overline{x}$, получаем, что указанная система полна в классе P_2 .

2 Двойственность

Определение 5: Двойственность

Функция $g(x_1,\ldots,x_n)$ является двойственной к функции $f(x_1,\ldots,x_n)$, если

$$g(x_1,\ldots,x_n)=\overline{f}(\overline{x}_1,\ldots,\overline{x}_n).$$

Функция, двойственная к $f(x_1,...,x_n)$, обозначается как $f^*(x_1,...,x_n)$.

Из определения двойственности и тождества $\overline{\overline{x}} = x$ следует, что

$$f^{**}(x_1,\ldots,x_n) = f(x_1,\ldots,x_n).$$

Пример 1

Пусть $f(x_1, x_2) = x_1 \vee x_2$, тогда

$$f^*(x_1, x_2) = \overline{f}(\overline{x}_1, \overline{x}_2) = \overline{\overline{x}_1 \vee \overline{x}_2} = x_1 \wedge x_2.$$

Таким образом, двойственные друг другу функции образуют пары, запишем некоторые из них.

f	f^*
0	1
\overline{x}	\overline{x}
$x \wedge y$	$x \vee y$
$x \oplus y$	$x \oplus y \oplus 1 = \overline{x \oplus y}$

Таблица 1: Двойственные функции

Теорема 2: О двойственных функциях

Если

$$f(x_1,\ldots,x_n) = g_0(g_1(x_1,\ldots,x_n),\ldots,g_m(x_1,\ldots,x_n)),$$

то

$$f^*(x_1,\ldots,x_n)=g_0^*(g_1^*(x_1,\ldots,x_n),\ldots,g_m^*(x_1,\ldots,x_n)).$$

Доказательство

Согласно определению двойственной функции имеем

$$f^*(x_1,\ldots,x_n)=\overline{g}_0(g_1(\overline{x}_1,\ldots,\overline{x}_n),\ldots,g_m(\overline{x}_1,\ldots,\overline{x}_n)).$$

В правой части заменим каждую формулу $g_i(\overline{x}_1,\ldots,\overline{x}_n)$ эквивалентной $\overline{\overline{g}}_1(\overline{x}_1,\ldots,\overline{x}_n)$, получим

$$f^*(x_1,\ldots,x_n) = \overline{g}_0(\overline{g}_1(\overline{x}_1,\ldots,\overline{x}_n),\ldots,\overline{g}_m(\overline{x}_1,\ldots,\overline{x}_n)).$$

Функция $\overline{g}_i(\overline{x}_1,\ldots,\overline{x}_n)$ по определению есть $g_1^*(x_1,\ldots,x_n)$, откуда

$$f^*(x_1,\ldots,x_n) = \overline{g}_0(\overline{g}_1^*(x_1,\ldots,x_n),\ldots,\overline{g}_m^*(x_1,\ldots,x_n)).$$

Вновь по определению $\overline{q}_0(\overline{q}_1^*, \dots, \overline{q}_m^*) = q_0^*(q_1^*, \dots, q_m^*)$, тогда окончательно

$$f^*(x_1,\ldots,x_n) = g_0^*(g_1^*(x_1,\ldots,x_n),\ldots,g_m^*(x_1,\ldots,x_n)).$$

Запишем важное следствие этой теоремы.

Следствие 1: Принцип двойственности

Если функция f реализуется формулой Φ , составленной из символов функций g_1, \ldots, g_m , то двойственная функция f^* реализуется формулой Φ^* , которая получается из формулы Φ заменой каждого символа функции g_i ($1 \le i \le m$) символом двойственной функции g_i^* .

Таким образом, если установлено некоторое утверждение для функций f, g, ... в котором фигурируют лишь понятия, базирующиеся лишь на формулах, то по принципу двойственности будет справедливо аналогичное утверждение о булевых функциях $f^*, g^*, ...$

Так, например, доказав дистрибутивность конъюнкции относительно дизъюнкции, мы можем сделать вывод относительно дистрибутивности дизъюнкции относительно конъюнкции. Аналогичное утверждение справедливо и для двух правил де Моргана.

Так же на основе принципа двойственности, можем записать аналог теоремы о разложении по первой переменной из прошлой лекции.

Теорема 3

Для любой булевой функции $f(x_1,...,x_n)$ справедливо разложение

$$f(x_1,\ldots,x_n)=(x_1\vee f(0,x_2,\ldots,x_n))\cdot (\overline{x}_1\vee f(1,x_2,\ldots,x_n)).$$

Следствие 1

Если булева функция не равна тождественно 1, то имеет место представление

$$f(x_1,\ldots,x_n) = \bigwedge_{f(\sigma_1,\ldots,\sigma_n)=0} (x_1^{\overline{\sigma}_1} \vee \cdots \vee x_n^{\overline{\sigma}_n}).$$

Выражение в правой части утверждения носит название совершенной конъюктивной нормальной формы (СКНФ).

Определение 6: Самодвойственность

Функцию $f(x_1,...,x_n)$ называют самодвойственной, если

$$f(x_1,\ldots,x_n)=f^*(x_1,\ldots,x_n).$$

Таким образом, функция самодвойственна тогда и только тогда, когда на взаимно противоположных наборах она принимает взаимно противоположные значения.

Множество всех самодвойственных функцию обозначим S.

3 Полиномы Жегалкина

На прошлой лекции мы показали, что если булева функция $f(x_1,\ldots,x_n)$ не равна тождественно нулю, то справедливо представление

$$f(x_1, \dots, x_n) = \bigvee_{f(\sigma_1, \dots, \sigma_m) = 1} x_1^{\sigma_1} \wedge \dots \wedge x_m^{\sigma_m}.$$

На основании этого представления и, учитывая, что

$$0 = x \wedge \overline{x}$$

можно сделать вывод о полноте системы $\{ \bar{\ }, \vee, \wedge \}$ в классе P_2 .

Рассмотрим систему функций $\{1, \oplus, \wedge\}$. По теореме 1, учитывая полноту стандартного базиса, и на основе выражений

$$\overline{x} = x \oplus 1, \quad x \vee y = x \wedge y \oplus x \oplus y,$$

сделаем вывод о полноте системы $\{1, \oplus, \wedge\}$ в классе P_2 .

Это означает, что любую булеву функцию $f(x_1,\ldots,x_n)$ можно представить в виде формулы над множеством $\{1,\oplus,\wedge\}$ в виде

$$f(x_1, \dots, x_n) = \bigoplus_{\{i_1, i_2, \dots, i_m\} \subseteq \{1, 2, \dots, n\}} a_{i_1 i_2 \dots i_m} x_{i_1} x_{i_2} \dots x_{i_m}.$$

Такое представление называется полиномом Жегалкина.

Одним из способов построения полинома Жегалкина основан на методе неопределённых коэффициентов.

В качестве примера рассмотрим построение полинома Жегалкина для функции f(x, y, z), заданной двоичным набором (10011100).

Запишем функцию в виде полинома Жегалкина с неопределёнными коэффициентами a_0, \dots, a_7 .

$$f(x,y,z) = a_0 \oplus a_1 x \oplus a_2 y \oplus a_3 z \oplus a_4 x y \oplus a_5 x z \oplus a_6 y z \oplus a_7 x y z.$$

Подставляя в функцию наборы $(0,0,0),(0,0,1),\dots(1,1,1)$, получаем систему уравнений

$$\begin{array}{c|c} (0,0,0) & a_0 = 1, \\ (0,0,1) & a_0 \oplus a_3 = 0, \\ (0,1,0) & a_0 \oplus a_2 = 0, \\ (0,1,1) & a_0 \oplus a_2 \oplus a_3 \oplus a_6 = 1, \\ (1,0,0) & a_0 \oplus a_1 = 1, \\ (1,0,1) & a_0 \oplus a_1 \oplus a_3 \oplus a_5 = 1, \\ (1,1,0) & a_0 \oplus a_1 \oplus a_2 \oplus a_4 = 0. \\ (1,1,1) & a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_4 \oplus a_5 \oplus a_6 \oplus a_7 = 0. \end{array}$$

Решая систему, последовательно исключаем неизвестные, получим

$$a_0 = 1,$$

 $a_1 = 0,$
 $a_2 = 1,$
 $a_3 = 1,$
 $a_4 = 0,$
 $a_5 = 1,$
 $a_6 = 0,$
 $a_7 = 0.$

Тогда полином Жегалкина для функции f(x,y,z) примет вид

$$f(x, y, z) = 1 \oplus y \oplus z \oplus xz.$$

Определение 7: Линейная функция

Булеву функцию $f(x_1, \ldots, x_n)$ назовём линейной, если её полином Жегалкина не содержит нелинейных слагаемых. Иными словами её можно представить в виде

$$f(x_1,\ldots,x_n)=a_0\oplus a_1x_1\oplus\ldots\oplus a_nx_n.$$

Множество всех линейных функцию обозначим через L.

4 Монотонность

В математическом анализе монотонной мы называли функцию, значения которой не убывают с увеличением аргумента. Это понятие можно перенести и на булевы функции, если определить частичный порядок на множестве E_2^n .

При этом считаем, что набор (a_1, \ldots, a_n) не превосходит набор (b_1, \ldots, b_n) , если для любого $i \ (1 \le i \le n)$ выполняется равенство $a_i \le b_i$. Этот факт записывается в виде

$$(a_1,\ldots,a_n)\leq (b_1,\ldots,b_n).$$

Определение 8: Монотонная функция

Булева функция $f(x_1, \ldots, x_n)$ называется монотонной, если для любых двух наборов (a_1, \ldots, a_n) и (b_1, \ldots, b_n) , таких что

$$(a_1,\ldots,a_n)\leq (b_1,\ldots,b_n),$$

выполняется неравенство

$$f(a_1,\ldots,a_n) \le f(b_1,\ldots,b_n).$$

Множество всех монотонных булевых функций обозначим как M.

5 Критерий полноты

В ходе лекции мы рассмотрели различные классы булевых функций, в том числе:

- 1. Класс T_0 булевых функций, сохраняющих константу 0.
- 2. Класс T_1 булевых функций, сохраняющих константу 1.
- 3. Класс S самодвойственных булевых функций.
- 4. Класс L линейных булевых функций.
- 5. Класс M монотонных булевых функций.

На основе анализа принадлежности системы булевых функций к этим классам функций можно сделать вывод о полноте рассматриваемой системы.

Теорема 4: Теорема Поста о полноте

Система булевых функций полна в P_2 тогда и только тогда, когда она целиком не содержится ни в одном их классов

$$T_0, T_1, S, L, M$$
.

Пример 2

Проверим систему функций $\{\lor, \to\}$ на полноту.

Составим таблицу истинности для функций указанной системы.

x_1	x_2	$f_1(x_1, x_2) = x_1 \vee x_2$	$f_2(x_1, x_2) = x_1 \to x_2$
0	0	0	1
0	1	1	1
1	0	1	0
1	1	1	1

Будем последовательно проверять принадлежность функций к классам T_0, T_1, S, L, M .

- 1. Для класса T_0 :
 - f_1 сохраняет 0, так как $f_1(0,0) = 0$;
 - f_2 не сохраняет 0, так как $f_2(0,0) = 1$.
- 2. Для класса T_1 :
 - f_1 сохраняет 1, так как $f_1(1,1) = 1$;
 - f_2 сохраняет 1, так как $f_2(1,1) = 1$.

Дальнейшая проверка не требуется, так как $\{\lor, \to\} \subseteq T_1$, а значит система функций не полна.