Analytic Number Theory

Swayam Chube

Latest Update: June 9, 2022

Contents

	Fundamentals		
	1.1	Arithmetic Functions	2
	1.2	Averages of Arithmetic Functions	12

Chapter 1

Fundamentals

1.1 Arithmetic Functions

The main takeaway from this section will be the Möbius Inversion Formula.

Definition 1.1. A function $f : \mathbb{N} \to \mathbb{C}$ is said to be an *arithmetic function* or a *number-theoretic function*.

Definition 1.2. A real, arithmetic function f is said to be *multiplicative* if for all $m, n \in \mathbb{N}$ with gcd(m, n) = 1,

$$f(m)f(n) = f(mn)$$

On the other hand, if for all $m, n \in \mathbb{N}$,

$$f(m)f(n) = f(mn)$$

then f is said to be *completely multiplicative*.

Obviously, every completely multiplicative function is multiplicative.

Definition 1.3 (Dirichlet Product). Let f and g be arithmetic functions. Then, the *Dirichlet product*, or the *Dirichlet convolution* of f and g, denoted by $f * g : \mathbb{N} \to \mathbb{C}$ is defined as

$$(f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

or may be equivalently written as:

$$\sum_{d_1d_2=n} f(d_1)g(d_2)$$

Theorem 1.4. The *Dirichlet product* is associative and commutative. That is,

$$(f * g) * h = f * (g * h)$$
 and $f * g = g * f$

Proof. Trivial.

Theorem 1.5. If f is an arithmetic function with $f(1) \neq 0$, then there is a unique arithmetic function f^{-1} , called the Dirichlet inverse of f such that

$$f * f^{-1} = f^{-1} * f = \nu$$

Moreover, f^{-1} is given by the formulas

$$f^{-1}(1) = \frac{1}{f(1)} \qquad f^{-1}(n) = \frac{-1}{f(1)} \sum_{\substack{d \mid n \\ d < n}} f\left(\frac{n}{d}\right) f^{-1}(d)$$

Proof. Trivial

Theorem 1.6. If *f* is multiplicative and if *g* is given by

$$g(n) = \sum_{d|n} f(d)$$

then g is also multiplicative.

Proof. For $m, n \in \mathbb{N}$, such that gcd(m, n) = 1, we have

$$g(m)g(n) = \sum_{d|m} f(d) \sum_{d'|n} f(d')$$
$$= \sum_{d|m} \sum_{d'|n} f(d)f(d')$$
$$= \sum_{d|mn} f(d)$$
$$= g(mn)$$

Where the second last equality follows from the fact that any divisor of mn can be broken into two parts, one being a divisor of m and the other of n, since gcd(m,n) = 1.

Theorem 1.7. If *f* and *g* are multiplicative, then so is their *Dirichlet product*,

$$F(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

Proof. Similar to the previous proof and hence omitted.

Theorem 1.8. If f * g and g are multiplicative, then so is f.

Proof.

As a corollary, we have that if g is multiplicative then so is g^{-1} .

Definition 1.9. Let $n \in \mathbb{N}$. Then the arithmetic functions $\tau(n)$ and $\sigma(n)$ are defined as follows:

$$\tau(n) = \sum_{d|n} 1 \qquad \sigma(n) = \sum_{d|n} d$$

In other words, $\tau(n)$ is the number of positive divisors of n and $\sigma(n)$ is the sum of all the positive divisors of n.

Theorem 1.10. Let *n* be a positive integer. Then,

- 1. $\tau(n)$ is multiplicative.
- 2. If *n* is a prime, say *p*, then $\tau(p) = 2$. If *n* is a prime power p^{α} , then $\tau(p^{\alpha}) = p^{\alpha} + 1$.
- 3. If *n* is a composite number of the form $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, then

$$\tau(n) = \prod_{i=1}^{k} (\alpha_i + 1)$$

4. The product of all divisors of a number n is

$$\prod_{d|n} d = n^{\tau(n)/2}$$

Proof.

- 1. Since the function f(n) = 1 is multiplicative, it follows that $\tau(n)$ is also multiplicative
- 2. Trivial
- 3. Trivial
- 4. Simply note that

$$n^{\tau(n)} = \prod_{d|n} n$$

$$= \prod_{d|n} d \left(\frac{n}{d}\right)$$

$$= \prod_{d|n} d \prod_{d'|n} d'$$

$$= \left(\prod_{d|n} d\right)^2$$

which gives us the desired conclusion.

Theorem 1.11. Let n be a positive integer. Then

- 1. $\sigma(n)$ is multiplicative.
- 2. If n is a prime, say p_n , then $\sigma(p) = p + 1$. More generally, if n is a prime power p^{α} , then

$$\sigma(p^{\alpha}) = \frac{p^{\alpha+1} - 1}{p - 1}$$

3. If *n* is a composite number of the form $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, then

$$\sigma(n) = \prod_{i=1}^k \frac{p_i^{\alpha_i+1} - 1}{p_i - 1}$$

Proof.

- 1. Since the function f(n)=n is multiplicative, it follows that $\sigma(n)$ is also multiplicative
- 2. Trivial
- 3. Trivial

Definition 1.12. Let n be a positive integer. Eulers's totient ϕ -function is defined to be the number of positive integers k less than n which are relatively prime to n:

$$\phi(n) = \sum_{\substack{0 \le k < n \\ \gcd(k,n) = 1}} 1$$

Lemma 1.13. For any positive integer n,

$$\sum_{d|n} \phi(d) = n$$

Swayam Chube

Proof. Let n_d denote the number of elements in [n] having a greatest common divisor of d with n. Then

$$n = \sum_{d|n} n_d = \sum_{d|n} \phi\left(\frac{n}{d}\right) = \sum_{d|n} \phi(d)$$

Theorem 1.14. Let n be a positive integer. Then,

- 1. $\phi(n)$ is multiplicative
- 2. If n is a prime, say p, then $\phi(p)=p-1$. Conversely, if p is a positive integer with $\phi(p)=p-1$, then p is prime. Further, if n is a prime power p^{α} with $\alpha>1$, then $\phi(p^{\alpha})=p^{\alpha}-p^{\alpha-1}$
- 3. If *n* is a composite number of the form $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, then

$$\phi(n) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i} \right)$$

Proof.

- 1. Find an elegant proof to this part
- 2. Trivial
- 3. Trivial

Definition 1.15. Let n be a positive integer. Then the *Möbius* μ *function* $\mu(n)$ is defined as

$$\mu(n) = \begin{cases} 1 & n = 1 \\ 0 & n \text{ is not square free} \\ (-1)^k & n = p_1 \cdots p_k \text{ where } p_i\text{'s are primes} \end{cases}$$

Swayam Chube

Theorem 1.16. Let n be a positive integer. Then

- 1. $\mu(n)$ is multiplicative
- 2. Let

$$\nu(n) = \sum_{d|n} \mu(d)$$

then,

$$\nu(n) = \begin{cases} 1 & n = 1 \\ 0 & n > 1 \end{cases}$$

Proof.

- 1. Trivial
- 2. Note that for a prime p, and $\alpha \ge 1$, we have

$$\nu(p^{\alpha}) = \sum_{d|p^{\alpha}} \mu(d)$$
$$= \mu(1) + \mu(p)$$
$$= 0$$

And we are done due to multiplicativity.

Theorem 1.17 (Möbius Inversion Formula). If f is any arithmetic function and if

$$g(n) = \sum_{d|n} f(d)$$

Then,

$$f(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) g(d) = \sum_{d|n} \mu(d) g\left(\frac{n}{d}\right)$$

Proof. We have

$$\sum_{d|n} \mu(d)g\left(\frac{n}{d}\right) = \sum_{d|n} \mu(d) \sum_{a|n/d} f(a)$$

$$= \sum_{d|n} \sum_{a|n/d} \mu(d)f(a)$$

$$= \sum_{a|n} \sum_{d|n/a} \mu(d)f(a)$$

$$= \sum_{a|n} f(a)\nu\left(\frac{n}{a}\right)$$

$$= f(n)$$

Conversely, the following is also true:

Theorem 1.18 (Converse of Möbius Inversion). Let *g* be an arithmetic function and

$$f(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) g(d) = \sum_{d|n} \mu(d) g\left(\frac{n}{d}\right)$$

then

$$g(n) = \sum_{d|n} f(d)$$

Proof. We have

$$\sum_{d|n} f(d) = \sum_{d|n} \sum_{a|d} \mu\left(\frac{d}{a}\right) g(a)$$

$$= \sum_{a|n} \sum_{\lambda|n/a} \mu(\lambda) g(a)$$

$$= \sum_{a|n} g(a) \nu\left(\frac{n}{a}\right)$$

$$= g(n)$$

Theorem 1.19. Let f be multiplicative. Then f is *completely multiplicative* if and only if

$$f^{-1}(n) = \mu(n)f(n)$$

Proof. Suppose f is multiplicative. Obviously, f(1) = 1, and thus $f^{-1}(1) = 1 = \mu(1)f(1)$. We shall now induct on n with that as our base case. We have,

$$f^{-1}(n) = -\sum_{\substack{d|n\\d < n}} f\left(\frac{n}{d}\right) \mu(d) f(d)$$
$$= -f(n) \sum_{\substack{d|n\\d < n}} \mu(d)$$
$$= (\mu(n) - \nu(n)) f(n)$$

Since we are given f is multiplicative, it suffices to show that $f(p^{\alpha}) = f(p)^{\alpha}$ for each prime p. Since we know that

$$\nu(n) = f * f^{-1} = \sum_{d|n} \mu(d) f(d) f\left(\frac{n}{d}\right)$$

taking $n = p^{\alpha}$ in the above equation, we obtain

$$f(p^{\alpha}) = f(p)f(p^{\alpha-1})$$

and the conclusion is obvious.

Theorem 1.20. For any positive integer n,

$$\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d}$$

Proof. Let f(n) = n for all positive integers n. Then

$$f(n) = \sum_{d|n} \phi(n)$$

and due to the Möbius inversion formula, we have

$$\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d} = n \sum_{d|n} \frac{\mu(d)}{d}$$

Definition 1.21 (Von Mangoldt Function). Let *n* be a positive integer. Then, we define the *Von Mangoldt function* as

$$\Lambda(n) = \begin{cases} \log p & n = p^m \\ 0 & \text{otherwise} \end{cases}$$

It is not hard to show that

$$(\Lambda * 1)(n) = \sum_{d|n} \Lambda(d) = \log n$$

Theorem 1.22. For any positive integer n, we have

$$\Lambda(n) = -\sum_{d|n} \mu(d) \log d$$

Proof. Trivially follows from the Möbius inversion formula.

Definition 1.23 (Liouville Function). Let *n* be a positive integer. Then, we define the *Liouville function* as

$$\lambda(n) = \begin{cases} 1 & n = 1\\ (-1)^{\alpha_1 + \dots + \alpha_k} & n = p_1^{\alpha_1} \dots p_k^{\alpha_k} \end{cases}$$

It is evident from definition that the Liouville function is *completely multiplica*tive.

Theorem 1.24. For any positive integer n, we have

$$\sum_{d|n} \lambda(d) = \begin{cases} 1 & n \text{ is a perfect square} \\ 0 & \text{otherwise} \end{cases}$$

Further, $\lambda^{-1}(n) = |\mu(n)|$.

Proof. We may trivially conclude that $\sum_{d|n} \lambda(d)$ is also multiplicative. Thus, it suffices to evaluate it at prime powers.

$$\sum_{d|p^{lpha}} \lambda(d) = egin{cases} 0 & lpha ext{ is odd} \ 1 & ext{otherwise} \end{cases}$$

Conversely, we have that

$$\lambda^{-1}(n) = \mu(n)\lambda(n) =$$

1.2 Averages of Arithmetic Functions