Содержание

1	(1) Первое задание	2
2	(2) Второе задание	2
3	(3) Третье задание	2

1 (1) Первое задание

Задайте функцию $f(x)=x^3$ на отрезке [0,1]. Очевидно, определенный интеграл от функции f(x) на этом отрезке равен $\frac{1}{4}$. Напишите программу, вычисляющую значение интеграла по формулам трапеций и Симпсона. Какую максимальную теоретическую ошибку мы при этом допускаем? Найдите реальные значение погрешности (абсолютное значение разности между теоретическим и аналитическим решением). Почему при вычислении интеграла по формуле Симпсона от данной функции ошибка равна нулю? Какие бы получились значения погрешностей для квадратичнойи линейной функций (предположите и проведите численный эксперимент для $f_2(x)=x^2$, $f_1(x)=\frac{x}{2}$ на отрезке [0,1]).

2 (2) Второе задание

Используя соотношение $\int_0^1 \frac{1}{1+x^2} dx = arctg(1)$ найдите значение числа π с точностью 10^{-6} . В данном задании в процессе вычислений нельзя ис-пользовать встроенную константу **рі** для определения величины шага. Изкаких соображений выбирался шаг для получения указанной точности?

3 (3) Третье задание

Реализовать предыдущее задание, определяя точность методом Рунге. При численном вычислении интегралов последовательно с шагами h и $\frac{h}{4}$ можно сократить число арифметических операций. Заметим, что приближенное значение интеграла $I_{\frac{h}{2}}$ есть сумма, часть слагаемых которойвозможно уже участвовало при вычислении I_h . Поэтому можно получить $I_{\frac{h}{2}}$ используя числовое значение I_h . то позволяет избежать повторногосуммирования части слагаемых.