How to Maximize the Selling Price of your King County Home

Problem Statement

• High price range in King County

Wide range of property types

• Finding an advantage

Methodology

Data

Model Selection - Multi-linear Regression

Iterations to fix overfitting

Recursive Feature Elimination

Predictive accuracy of 83%

Business Value

- 1. What does the data show as trends in sales price?
- 2. What areas, by zip code, are selling the most? What areas are selling the least?
- 3. Should you buy on the waterfront?
- 4. Should you renovate?
- 5. How can maintenance and upkeep affect your final selling price?

1. What to expect from the sales data 2014/2015

2. Houses Sold by Zip Code

Zip Codes with Most Sales

Zip Codes with Least Sales

3. Should You Buy on the Waterfront?

Average price of houses sold on the waterfront = \$ 1.7 million

Average price of houses sold off the waterfront = \$530,000

Difference of roughly \$535,000

Average cost of flood insurance = \$870/year

https://www.betterflood.com/average-cost-of-flood-insurance-in-washington-state/#Kingcounty

4. Should You Renovate?

Average price of renovated houses sold = \$780,000

Average price of non-renovated houses sold = \$533,000

Difference of roughly \$250,000

Average age of homes = 43 years old

5. How Much Effort Should Go into Maintenance?

5. How Much Effort Should Go into Maintenance?

5. How Much Effort Should Go into Maintenance?

Key Takeaways

- 1. Depending on your homes features, expect to sell below \$500,000.
- 2. Look for zip codes that are selling well, find out why certain zip codes are not selling well.
- 3. Waterfront sales are significantly higher
- 4. Renovation can increase sales price.
- 5. Understand the grade and condition ratings and how you can improve your ratings.

Future Work

- Use coefficients and predictive modeling to create a user friendly price predictor.
- Apply same model to updated and larger data sets.
- Gradient boosting.

Index 1. - View Rankings

Index 2. - Number of Bedrooms in Homes

Index 3. - Multicollinearity Heat Map

Index 4. - Distribution

Index 5. - Linear Relationships

Index 6. - Bathrooms

Index 7. - RFE Top 5

lat

60 zipcode_98039 3

39 zipcode_98004 5

28 waterfront_1

Index 8. - Feature Selection

Index 9. - OLS

```
In [1242]: # test the accuracy of the model with the top 35 features using an OLS technique
predictors = sm.add_constant(X[selected_columns])
model = sm.OLS(Y, predictors).fit()
model.summary()
```

Out[1242]:

Dep. Variable:	price	R-squared:	0.834
Model:	OLS	Adj. R-squared:	0.834
Method:	Least Squares	F-statistic:	2412.
Date:	Sat, 06 Apr 2019	Prob (F-statistic):	0.00
Time:	12:21:18	Log-Likelihood:	35544.
No. Observations:	21597	AIC:	-7.100e+04
Df Residuals:	21551	BIC:	-7.063e+04
Df Model:	45		
Covariance Type:	nonrobust		