Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2021-22

Συναρτήσεις

(Κλήσεις και επιστροφές από συναρτήσεις)

http://mixstef.github.io/courses/comparch/

Μ.Στεφανιδάκης

Χώροι διευθύνσεων

- Στις δομημένες γλώσσες προγραμματισμού
- Δεδομένα
 - Στατικές μεταβλητές (static)
 - Τοπικές μεταβλητές (local)
 - Heap (δέσμευση με malloc)
- Κώδικας προγράμματος
 - "'text'"

Οργάνωση χώρου δεδομένων

υψηλότερη διεύθυνση μνήμης

χαμηλότερη διεύθυνση μνήμης

(Runtime) stack

- Ο χώρος για την αποθήκευση
 - Των τοπικών μεταβλητών των συναρτήσεων
 - Της διεύθυνσης επιστροφής
 - Των παραμέτρων κλήσης της συνάρτησης
 - Των επιστρεφόμενων αποτελεσμάτων
- Στις σύγχρονες αρχιτεκτονικές πολλά από τα παραπάνω παραμένουν όσο το δυνατόν στους καταχωρητές
- Περιβάλλον εκτέλεσης μιας κλήσης συνάρτησης
 - Stack Frame ή Activation Record

εκτελείται η main()

stack frame main()

εκτελείται η main()

η main() καλεί την f() stack frame main()

stack frame f()

εκτελείται η main()

η main() καλεί την f()

η f() καλεί την g() stack frame main()

stack frame f()

stack frame g()

εκτελείται η main()

η main() καλεί την f() stack frame main()

stack frame f()

η g() επιστρέφει στην f()

εκτελείται η main()

η main() καλεί την f() stack frame main()

η f() επιστρέφει στην main()

η g() επιστρέφει στην f()

Διαδικασία κλήσης συνάρτησης (1)

• Η καλούσα συνάρτηση

- Αποθηκεύει καταχωρητές που πιθανόν να αλλάξει η καλούμενη συνάρτηση
- Περνάει τις παραμέτρους κλήσης στο stack frame (ή σε καταχωρητές)
- Χρησιμοποιεί εντολή μηχανής τύπου "call"
 - Διακλάδωση στην καλούμενη συνάρτηση
 - Με ταυτόχρονη αποθήκευση της διεύθυνσης επιστροφής (stack frame ή καταχωρητές)
- Μετά την επιστροφή: αποκατάσταση καταχωρητών,
 αποδέσμευση χώρου stack

Διαδικασία κλήσης συνάρτησης (2)

• Η καλούμενη συνάρτηση

- Δημιουργεί χώρο για τις τοπικές μεταβλητές στο stack
- Αποθηκεύει καταχωρητές που πιθανόν να αλλάξει
- Εκτελείται ο κώδικας της συνάρτησης
- Πριν το τέλος: αποδέσμευση χώρου τοπικών μεταβλητών, αποκατάσταση τιμών καταχωρητών
- Στο τέλος, χρησιμοποιεί εντολή μηχανής τύπου "return"
 - Διακλάδωση στην αποθηκευμένη διεύθυνση επιστροφής

Παράδειγμα stack frame

αποθηκευμένοι καταχωρητές

παράμετροι κλήσης συνάρτησης

διεύθυνση επιστροφής

αμέσως μετά την κλήση

stack pointer

Παράδειγμα stack frame

αποθηκευμένοι καταχωρητές

παράμετροι κλήσης συνάρτησης

διεύθυνση επιστροφής

χώρος τοπικών μεταβλητών

αποθηκευμένοι καταχωρητές

frame pointer

stack pointer

αμέσως μετά την κλήση

πριν αρχίσει η εκτέλεση του χρήσιμου κώδικα της συνάρτησης

"Calling convention"

- Ο ακριβής τρόπος κλήσης συνάρτησης
 - Ποιες εντολές και ποιοι καταχωρητές χρησιμοποιούνται
 - Η ακολουθία ενεργειών πριν και μετά την κλήση/επιστροφή
 - Πώς είναι η ακριβής μορφή του stack frame
- Εξαρτάται από την αρχιτεκτονική (ISA) και το λειτουργικό σύστημα

Συναρτήσεις και RISC-V ISA

- Δεν υπάρχουν ειδικοί καταχωρητές για τη στοίβα
- Συγκεκριμένοι καταχωρητές γενικού σκοπού χρησιμοποιούνται «κατά σύμβαση» κατά την κλήση των συναρτήσεων
 - x1 \rightarrow ra (return address)
 - $x2 \rightarrow sp$ (stack pointer)
 - $x8 \rightarrow fp (\eta s0) (frame pointer)$
 - x10-x17 → a0-a7 (argument registers, ορίσματα και επιστρεφόμενη τιμή

Συναρτήσεις και RISC-V ISA

- «Κατά σύμβαση» η καλούμενη συνάρτηση πρέπει να διατηρήσει την τιμή ορισμένων καταχωρητών
 - Να τους αποθηκεύσει και να τους αποκαταστήσει στην αρχική τιμή πριν επιστρέψει
 - sp, fp και ορισμένοι άλλοι καταχωρητές
 - «Πρόλογος» και «επίλογος» συνάρτησης

Εντολές κλήσης και επιστροφής

- Κλήση συνάρτησης με εντολή jal (jump and link)
 - jal ra, funcaddr (ψευδοεντολή call funcaddr)
 - ra ← pc + 4 (next instruction), pc ← pc ± offset to funcaddr
- Επιστροφή με εντολή jalr (jump and link register)
 - jalr x0, ra, 0 (ψευδοεντολή jr ra ή reτ)
 - $\overline{}$ $\mathbf{x0}$ \leftarrow $\mathbf{pc} + 4$ (next instruction), \mathbf{pc} \leftarrow $\mathbf{ra} \pm 0$

Διαχείριση στοίβας

- Η στοίβα «μεγαλώνει» προς χαμηλότερες διευθύνσεις
 - π .χ. addi sp, sp, -32 (δέσμευση χώρου για stack frame)
 - και addi sp, sp, 32 (αποδέσμευση χώρου stack frame πριν την επιστροφή)
- Η προσπέλαση των τοπικών μεταβλητών της συνάρτησης γίνεται με τη βοήθεια του fp (ή αλλιώς, s0)
 - $\pi.\chi$. sw a1, -20(s0)
 - a1 \rightarrow mem[s0 20]