Trigonometry and identities

Common trigonometry formulas

variations on the Pythagorean theorem:	$\sin^2 A + \cos^2 A = 1$
	$\tan^2 A + 1 = \sec^2 A$
	$1 + \cot^2 A = \csc^2 A$

$$\sin^2\left(\frac{A}{2}\right) = \frac{1 - \cos A}{2}$$

half-angle formulas:
$$\cos^2\left(\frac{A}{2}\right) = \frac{1 + \cos A}{2}$$

double-angle formulas:
$$\frac{\sin(2A) = 2\sin A \cos A}{\cos(2A) = \cos^2 A - \sin^2 A}$$

law of sines:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$c^2 = a^2 + b^2 - 2ab \cos C$$
law of cosines:
$$b^2 = a^2 + c^2 - 2ac \cos B$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos^{2}(\theta) = \frac{\cos(2\theta) + 1}{2}$$
$$\sin^{2}(\theta) = \frac{1 - \cos(2\theta)}{2}$$

Common formulas:

$$aln x = \ln(x^{a})$$

$$\log_{a} b = \frac{\log_{c} b}{\log_{c} a}$$

$$e^{lnx} = x$$

$$x^{3} \pm a^{3} = (x \pm a)(x^{2} \mp x + a^{2})$$

List of common integrals and derivatives:

Integral ∫∷	Base formula	Derivative
$-\cos(x) + C$	sin(x)	$\cos(x) dx$
$\sin(x) + C$	cos(x)	$-\sin(x) dx$
$ \ln(\sec(x) =) + C, or -\ln(\cos(x)) + C $	tan(x)	$\sec^2(x)dx$
$\tan(x) - x + C$	$tan^2(x)$	
$-\ln(\csc(x) + \cot(x) + C$	$\csc(x)$	$-\csc(x)\cot(x)dx$
$\ln \sec x + \tan x + C$	sec(x)	sec(x) tan(x) dx
$\frac{\ln \sin(x) +C}{2}$	$\cot(x)$	$-\csc^2(x)dx$
$\frac{x^{n+1}}{n+1} + C$	x^n	$nx^{n-1}dx$
$e^x + C$	e^x	$e^x dx$
$\frac{a^x}{\ln(a)} + C$	a^x	$\ln(a) a^x dx$
xln(x) - x + C	ln(x)	$\frac{dx}{x}$
xln(ax) - x + C	ln(ax)	$\frac{a}{ax}dx = \frac{dx}{x}$

$x \log_a x - \frac{x}{\ln(x)} + C$	$\log_a x$	$\frac{dx}{xln(a)}$
	arcsin(x)	$\frac{dx}{\sqrt{1-x^2}}$
	arccos(x)	$-\frac{dx}{\sqrt{1-x^2}}$
	arcsec(x)	$\frac{1}{x^2\sqrt{1-\frac{1}{x^2}}}$
	$\frac{1}{a}\operatorname{arcsec}(ax)$	$\frac{dx}{x^2\sqrt{1-\frac{1}{a^2x^2}}}$
$xarctan(x) - \frac{1}{2}\ln x^2 + 1 + C$	arctan(x)	$\frac{dx}{1+x^2}$
	$\arctan(\frac{x}{a})$	$\frac{1}{a} * \frac{dx}{a^2 + x^2}$
$xarccot(x) + \frac{1}{2}\ln x^2 + 1 + C$	$\operatorname{arccot}(x)$	$-\frac{dx}{1+x^2}$

Limits:

$\lim x \to 0$	$\frac{\sin(x)}{x} = 1$
$\lim x \to 0$	$\frac{1-\cos(x)}{x^2} = \frac{1}{2}$
$\lim x \to \infty$	$\left(1 + \frac{a}{x}\right)^x = e^a$
$\lim x \to \infty$	$cr^{an} = \frac{a_{1st}}{1 - r^a}$ See <u>Geometric series</u>
$\lim x \to 0$	$(1+x)^{\frac{1}{x}} = e$
$\lim x \to \infty$	$\left(1 + \frac{a}{n}\right)^n = e^a$

$\lim x \to 0$	$\left \frac{\tan(x)}{x} = 1 \right $
$\lim x \to 0$	$\frac{\arcsin(x)}{x} = 1$
$\lim x \to 0$	$\frac{e^x - 1}{x} = 1$
$\lim x \to 0$	$\frac{a^x - 1}{x} = \ln(a)$
$\lim x \to 0$	$\frac{\sqrt[n]{1+x}-1}{x} = \frac{1}{n}$
$\lim x \to 0$	$\frac{\ln(1+x)}{x} = 1$
$\lim x \to \infty$	$x^{\frac{1}{x}} = 1$

$$\lim_{n \to \infty} n^{\frac{1}{n}} = 1$$

$$0! = 1$$

$$0^{0} = 1$$