Formula sheet

FORMULA SHEET (pdf

(https://canvas.education.lu.se/courses/24599/files/4000982?wrap=1)

Constants (assume these unless otherwise stated)

Water speed of sound: c = 1500 m/s

Water density: $\rho = 1000 \text{ kg/m}^3$

Water dynamic viscosity: $\eta = 10^{-3} \text{ Pa} \cdot \text{s} = 10^{-3} \text{ kg/(m} \cdot \text{s})$

Water surface tension: $\gamma = 72 \cdot 10^{-3} \text{ N/m} = 72 \cdot 10^{-3} \text{ kg/s}^2$

Water on glass contact angle: $\Phi = 25^{\circ}$

Boltzmann constant: $k_B \approx 1.38 \cdot 10^{-23} \text{ m}^2 \cdot \text{kg} \cdot \text{s}^{-2} \cdot \text{K}^{-1}$

Room temperature: T = 300 K

Standard acceleration due to gravity: $g = 9.81 \text{ m/s}^2$

Standard atmospheric pressure: 101 kPa

Equations

The volume of a sphere with radius r:

$$V = 4\pi r^3/3$$

The area of a circle with radius r:

$$A = \pi r^2$$

The force acting on an accelerating body (Newton's 2nd law):

$$F = m \cdot a$$

The pressure inside a droplet with radius r_d:

$$p_{\rm d} = 2 \cdot y/r_{\rm d}$$

The pressure at the liquid/air interface in a capillary of radius r_c :

$$p_{\text{liquid}} = p_{\text{air}} - 2 \cdot \gamma \cdot \cos(\Phi) / r_{\text{c}}$$

Washburn's equation for a capillary of radius r_c :

$$L = \sqrt{(r_c \cdot \gamma \cdot t \cdot \cos \theta)/(2 \cdot \eta)}$$

Hydrostatic pressure - the pressure at the bottom of a liquid column of height *h*:

$$p_h = \rho \cdot g \cdot h$$

Stokes' drag force on a particle with radius r:

$$F_{\rm d} = 6 \cdot \pi \cdot r \cdot \eta \cdot u$$

Acoustic radiation force on a sphere of radius r in a standing acoustic wave of energy density $E_{\rm ac}$:

$$F_r = 4 \cdot \pi \cdot r^3 \cdot \Phi \cdot k \cdot E_{ac} \cdot \sin(2ky)$$

Acoustic contrast for a particle (p) in a medium (m), compressibility (κ) and density (ρ):

$$\Phi = (1 - \kappa_p/\kappa_m) / 3 + (\rho_p/\rho_m - 1) / (2 \cdot \rho_p/\rho_m + 1)$$

Wave vector for a wave of wavelength λ:

$$k = 2 \cdot \pi / \lambda$$

1D planar characteristic diffusion, time (t), diffusion constant D and distance (l):

$$t = I^2 / (2D)$$

Diffusion constant of a sphere with hydrodynamic radius r_h at low Reynolds number:

$$D = k_{\rm B} \cdot T/(6 \cdot \pi \cdot r_{\rm h} \cdot \eta)$$

Reynolds number, density ρ , dimension d, velocity u, viscosity η :

Re =
$$\rho \cdot d \cdot u / \eta$$

Pressure drop in a channel with flow resistance R and flow rate Q:

$$\Delta p = R \cdot Q$$

Fluidic resistances in series:

$$R_{\text{tot}} = R_1 + R_2$$

Fluidic resistances in parallel:

$$R_{\text{tot}} = R_1 \cdot R_2 / (R_1 + R_2)$$

Speed of sound as a function of wavelength λ and frequency f:

$$c = \lambda \cdot f$$

Centrifugal acceleration *a* as a function of radial position *r* and rotation frequency *f*:

$$a = \omega^2 r = (2\pi f)^2 r$$

Table 1: A list over the hydraulic resistance for straight channels with different cross-sectional shapes. The numerical values are calculated using the following parameters: $\eta = 1$ mPa s (water), L = 1 mm, a = 100 μ m, b = 33 μ m, h = 100 μ m, and w = 300 μ m. From Bruus, Theoretical Microfluidics, Oxford University Press (p. 75).

•	Tomada shock. Elimina i madadalah te imadadalah ana lab ah a dinp dyadaha			
shape		$R_{ m hyd}$ expression	$R_{\rm hyd} \\ [10^{11} \frac{\rm Pa s}{\rm m^3}]$	reference
circle		$\frac{8}{\pi} \eta L \frac{1}{a^4}$	0.25	Eq. (3.39b)
ellipse		$\frac{4}{\pi} \eta L \frac{1 + (b/a)^2}{(b/a)^3} \frac{1}{a^4}$	3.93	Eq. (3.38)
triangle	$a \sqrt{a}$	$\frac{320}{\sqrt{3}} \eta L \frac{1}{a^4}$	18.5	Eq. (3.46)
two plates	h w	$12\eta L\frac{1}{h^3w}$	0.40	Eq. (3.30)
rectangle	h w	$\frac{12\eta L}{1 - 0.63(h/w)}\frac{1}{h^3w}$	0.51	Eq. (3.58)
square	$h \left[egin{array}{c} h \\ h \end{array} ight] h$	$28.4\eta L\frac{1}{h^4}$	2.84	Exercise 4.4
parabola	$\frac{h}{w}$	$\frac{105}{4} \eta L \frac{1}{h^3 w}$	0.88	Eq. (3.80)
arbitrary	PA	$pprox 2 \eta L rac{\mathcal{P}^2}{\mathcal{A}^3}$	_	Eq. (3.27a)