# Semantics and Equality

#### L. Thomas van Binsbergen

November 21, 2022

**Type 4**: functionality is the same, code may be completely different.

**Type 4**: functionality is the same, code may be completely different.

In other words, two program fragments are equivalent..

**Type 4**: functionality is the same, code may be completely different.

In other words, two program fragments are equivalent..

Is the relation of type 4 clone pairs an equivalence relation?

**Type 4**: functionality is the same, code may be completely different.

In other words, two program fragments are equivalent..

Is the relation of type 4 clone pairs an equivalence relation?

How could we determine whether program fragments are equivalent?

# Syntax vs Semantics

What is the syntax of a language?

# Syntax vs Semantics

What is the syntax of a language?

What is the semantics of a language?

```
 \begin{aligned} & \text{int } n = 10; \\ & \text{int } \mathsf{acc} = 1; \\ & \text{int } i = 2; \\ & \text{while } (i <= n) \; \{ \\ & \mathsf{acc} = \mathsf{acc} * i; \\ & i++; \\ \} \\ & \text{System.out. println (acc)}; \end{aligned}
```

```
 \begin{array}{ll} \mbox{int } n = 10; \\ \mbox{int } acc = 1; \\ \mbox{for (int } i = 2; \ i <= n; \ i++) \ \{ \\ \mbox{acc } *= i; \\ \mbox{} \} \\ \mbox{System.out. println (acc);} \\ \end{array}
```

```
 \begin{aligned} & \text{int } n = 10; \\ & \text{int } \mathsf{acc} = 1; \\ & \text{int } i = 2; \\ & \text{while } (i <= n) \; \{ \\ & \mathsf{acc} = \mathsf{acc} * i; \\ & i++; \\ \} \\ & \text{System.out. println (acc)}; \end{aligned}
```

```
 \begin{aligned} & \text{int } n = 10; \\ & \text{int } \mathsf{acc} = 1; \\ & \text{for (int } i = 2; \ i <= n; \ i++) \ \{ \\ & \mathsf{acc} \ *= i; \\ \} \\ & \text{System.out. println (acc)}; \end{aligned}
```

```
int n = 10;
int acc = 1;
int i = 2;
while (i <= n) {
    acc = acc * i;
    i++;
}
System.out. println (acc);</pre>
```

```
 \label{eq:norm_norm_norm} \begin{array}{lll} \mbox{int } n = 10; \\ \mbox{int } acc = 1; \\ \mbox{for (int } i = 2; i <= n; i++) \left. \left\{ \right. \\ \mbox{acc } *= i; \\ \mbox{System.out. println (acc);} \end{array}
```

This depends on our notion of equality..

• Structural equality: programs are syntactically equal

```
 \begin{array}{ll} \text{int } n = 10; \\ \text{int } \mathsf{acc} = 1; \\ \text{int } \mathsf{i} = 2; \\ \text{while } (\mathsf{i} <= \mathsf{n}) \left\{ \\ \mathsf{acc} = \mathsf{acc} * \mathsf{i}; \\ \mathsf{i} + +; \\ \right\} \\ \text{System.out. println (acc)}; \\ \end{array}
```

```
\label{eq:continuous} \begin{array}{lll} \mbox{int } n = 10; \\ \mbox{int } acc = 1; \\ \mbox{for (int } i = 2; \ i <= n; \ i++) \ \{ \\ \mbox{acc } *= i; \\ \mbox{} \} \\ \mbox{System.out. println (acc)}; \end{array}
```

- Structural equality: programs are syntactically equal
- Semantic equivalence: programs have equal semantics (semantics need to be specified)

```
int n = 10;
int acc = 1;
int i = 2;
while (i <= n) {
    acc = acc * i;
    i++;
}
System.out. println (acc);</pre>
```

```
\label{eq:norm_state} \begin{split} & \text{int } n = 10; \\ & \text{int } \mathsf{acc} = 1; \\ & \text{for } (\mathsf{int} \ i = 2; \ i <= n; \ i++) \ \{ \\ & \mathsf{acc} \ *= i; \\ \} \\ & \mathsf{System.out.} \ \mathsf{println} \ (\mathsf{acc}); \end{split}
```

- Structural equality: programs are syntactically equal
- Semantic equivalence: programs have equal semantics (semantics need to be specified)
  - Mathematical equality: programs 'denote' the same mathematical object, e.g. 1+2 = 7-4

```
int n = 10;
int acc = 1;
int i = 2;
while (i <= n) {
    acc = acc * i;
    i++;
}
System.out. println (acc);</pre>
```

```
\label{eq:norm_state} \begin{split} & \text{int } n = 10; \\ & \text{int } \mathsf{acc} = 1; \\ & \text{for } (\mathsf{int} \ i = 2; \ i <= n; \ i++) \ \{ \\ & \mathsf{acc} \ *= i; \\ \} \\ & \mathsf{System.out.} \ \mathsf{println} \ (\mathsf{acc}); \end{split}
```

- Structural equality: programs are syntactically equal
- Semantic equivalence: programs have equal semantics (semantics need to be specified)
  - Mathematical equality: programs 'denote' the same mathematical object, e.g. 1+2 = 7-4
  - Operational equivalence: programs 'behave' the same

#### Overview

- 1. Structural equality Term rewriting
- 2. Mathematical equality Denotational semantics
- 3. Operational equivalence Small-step Operational Semantics

#### Section 1

## Structural equality





 syntax analyser: a language is defined as the set of all sentences (where sentences are defined by a concrete grammar, such as a BNF grammar)



- syntax analyser: a language is defined as the set of all sentences (where sentences are defined by a concrete grammar, such as a BNF grammar)
- semantics analyser: a language is the set of all ASTs
   (where programs are defined by an abstract grammar, such as an algebraic datatype)



- syntax analyser: a language is defined as the set of all sentences (where sentences are defined by a concrete grammar, such as a BNF grammar)
- semantics analyser: a *language* is the set of all ASTs (where programs are defined by an abstract grammar, such as an algebraic datatype)
- so where in the picture are "programs" according to these two definitions?

```
\begin{array}{ll} \text{int } x; \ /* \ \mathrm{some \ layout \ here} \ */ \\ \text{int } \ y; \end{array} \qquad \qquad \text{int } \ x; \ \ \text{int } \ y; \end{array}
```

lexically equal

lexically equal?

```
int x; /* some layout here */
                                                              int x; int y;
    int y;
                                                lexically equal
                                                          if (x < 10) {
if (x < 10) return x;
                                                            return x:
                                               lexically equal?
                                          structurally equal as ASTs
```

```
int x; /* some layout here */
                                                                int x; int y;
    int y;
                                                 lexically equal
                                                           if (x < 10) {
if (x < 10) return x;
                                                             return x:
                                                lexically equal?
                                           structurally equal as ASTs
                                                             analysis 1
                                                                                    analysis 2..n
                                        parser
                    lexer
                                                                            AST_1
                                                                                                   AST_n
        program
                                                 parse tree
                             tokens
```

System.out. println (getValue());

 $System.out.\ println\ (\ \textbf{this}\ .getValue\ ());$ 

depends on static information, i.e.  $static/instance\ method$ 

```
System.out. println (getValue ());

depends on static information, i.e. static/instance method

class MyClass {
    void mymethod() {
        protected void mymethod() {
        }
    }
```

```
System.out. println (getValue ());

depends on static information, i.e. static/instance method

class MyClass {
    void mymethod() {
    }
}
```

cannot be structurally equal, since semantically different

```
System.out. println (getValue());
                                                          System.out. println (this .getValue());
                          depends on static information, i.e. static/instance method
class MyClass {
                                                           class MyClass {
  void mymethod() {
                                                            protected void mymethod() {
                           cannot be structurally equal, since semantically different
                                                           class MyClass {
class MyClass {
                                                            void mymethod() {
  void mymethod() {
                                                              return:
```

```
System.out. println (getValue());
                                                          System.out. println (this .getValue());
                          depends on static information, i.e. static/instance method
class MyClass {
                                                           class MyClass {
  void mymethod() {
                                                            protected void mymethod() {
                           cannot be structurally equal, since semantically different
                                                           class MyClass {
class MyClass {
                                                            void mymethod() {
  void mymethod() {
                                                              return:
```

operationally equivalent, structural equality not so clear..

#### Subsection 1

Term rewriting

Term rewriting is a simple computational paradigm based on repeated application of rules.



Figure: ©Paul Klint: https://homepages.cwi.nl/~daybuild/daily-books/extraction-transformation/term-rewriting/term-rewriting.html



true && X  $\Rightarrow$  X X && true  $\Rightarrow$  X false || X  $\Rightarrow$  X X || false  $\Rightarrow$  X true ? X : Y  $\Rightarrow$  X false ? X : Y  $\Rightarrow$  Y



```
true && X \Rightarrow X X && true \Rightarrow X false || X \Rightarrow X X || false \Rightarrow X true ? X : Y \Rightarrow X false ? X : Y \Rightarrow Y
```

• How to determine which redex to choose?



```
true && X \Rightarrow X X && true \Rightarrow X false || X \Rightarrow X X || false \Rightarrow X true ? X : Y \Rightarrow X false ? X : Y \Rightarrow Y
```

- How to determine which redex to choose?
- How to determine order between rules?

## Term writing – simple example

Terms: Java expressions Rules:

```
true && X \Rightarrow X X && true \Rightarrow X false || X \Rightarrow X X || false \Rightarrow X true ? X : Y \Rightarrow X false ? X : Y \Rightarrow Y
```

### Term writing – simple example

Terms: Java expressions Rules:

```
true && X \Rightarrow X X && true \Rightarrow X false || X \Rightarrow X X || false \Rightarrow X true ? X : Y \Rightarrow X false ? X : Y \Rightarrow Y
```

What does the following expression rewrite to in this system?

```
((true && false) ? true : false) || false
```

## Rewriting

Term rewriting can be used to make programs structurally equal.

```
return (true ? null : new String("hello"));
return (false ? new String("world") : null);
```

### Rewriting

Term rewriting can be used to make programs structurally equal.

```
return (true ? null : new String(" hello" ));
return (false ? new String("world") : null );
```

Normalisation: apply rewrites to a program until it reaches some normal or canonical form.

 $\hookrightarrow$  Requires confluence and termination

### Rewriting

Term rewriting can be used to make programs structurally equal.

```
return (true ? null : new String("hello"));
return (false ? new String("world") : null);
```

Normalisation: apply rewrites to a program until it reaches some normal or canonical form.

Rewrite rules can be semantics preserving, but they do not have to be

### Confluence



#### Causes of non-termination

#### Untamed growth

Rewrites produce new subterm that envelopes the original redex:

 $X ? Y : Z \Rightarrow true ? (X ? Y : Z) : false$ 

### Causes of non-termination

#### Untamed growth

Rewrites produce new subterm that envelopes the original redex:

 $X ? Y : Z \Rightarrow true ? (X ? Y : Z) : false$ 

#### Cyclic rewrites

Rewrites produce the original redex:

 $X \&\& Y \Rightarrow Y \&\& X$ 

### Rewriting in rascal

```
Name Rascal/Expressions/Visit

Synopsis Visit the elements in a tree or value.

Syntax

Strategy visit ( Exp ) {
  case PatternWithAction1;
  case PatternWithAction2;
  ...
  default: ...
}
```

The visit expression is optionally preceded by one of the following strategy indications that determine the traversal order of the subject:

- top-down: visit the subject from root to leaves.
- top-down-break: visit the subject from root to leaves, but stop at the current path when a case matches.
- bottom-up: visit the subject from leaves to root (this is the default).
- bottom-up-break: visit the subject from leaves to root, but stop at the current path when a case matches.
- innermost: repeat a bottom-up traversal as long as the traversal changes the resulting value (compute a fixed-point).
- outermost: repeat a top-down traversal as long as the traversal changes the resulting value (compute a fixed-point).

## Rewriting in Rascal – example

```
module Rewriting
   import IO:
   import Set:
   import List:
   import String:
    import util::Maybe:
    import lang::java::m3::Core:
    import lang::java::m3::AST:
12⊕ void eval(loc file) {
     if (\compilationUnit( ,[\class( , , ,[\method( , , , ,\block(stmts))])])
14
           := createAstFromFile(file, true)) {
       for (\expressionStatement(\methodCall( , , ,[expr])) <- rewrite(stmts)) {</pre>
16
         println(expr):
18
19
20
21@&T rewrite(&T term) = innermost visit(term) {
           case \bracket(X0) => X0
           case \infix(\booleanLiteral(true), "&&", X1) => X1
24
           case \infix(X2:\booleanLiteral(false)."&&", ) => X2
           case \infix(X3, "&&".\booleanLiteral(true)) => X3
26
           case \infix( ."&&".X4:\booleanLiteral(false)) => X4
28
           case \infix(X5:\booleanLiteral(true)."||". ) => X5
29
           case \infix( ."||".X6:booleanLiteral(true)) => X6
30
           case \infix(\booleanLiteral(false)."||".X7) => X7
31
           case \infix(X8."||".\booleanLiteral(false)) => X8
32
           case \conditional(\booleanLiteral(true).X9. ) => X9
34
           case \conditional(\booleanLiteral(false), .X10) => X10
```

#### Section 2

### Mathematical equality

#### Subsection 1

#### Denotational semantics

# Denotational vs Operational Semantics

|                            | denotational           | operational                |
|----------------------------|------------------------|----------------------------|
| origins:                   | $\lambda$ -calculus    | (abstract) machines        |
| semantic assignment:       | mathematical object    | transition system (traces) |
| variables:                 | $\lambda$ -abstraction | configuration component    |
| effects:                   | monads                 | auxiliary entities         |
| modular effects:           | monad transformers     | product category           |
| advantages                 | more abstract          | more concrete, detailed    |
| $\hookrightarrow$          | formal reasoning       | evaluation order           |
| traditional targets langs: | (purely) functional    | imperative & concurrent    |
| $\hookrightarrow$          | expression languages   | command languages          |

## Denotational vs Operational Semantics

|                            | denotational           | operational                |
|----------------------------|------------------------|----------------------------|
| origins:                   | $\lambda$ -calculus    | (abstract) machines        |
| semantic assignment:       | mathematical object    | transition system (traces) |
| variables:                 | $\lambda$ -abstraction | configuration component    |
| effects:                   | monads                 | auxiliary entities         |
| modular effects:           | monad transformers     | product category           |
| advantages                 | more abstract          | more concrete, detailed    |
| $\hookrightarrow$          | formal reasoning       | evaluation order           |
| traditional targets langs: | (purely) functional    | imperative & concurrent    |
| $\hookrightarrow$          | expression languages   | command languages          |

Observation: distinction fades when implemented in a functional language using monads...

$$(11+9)*(2+4)$$

120

$$(11+9)*(2+4)$$
 120

depends on the meaning assigned to + and  $\ast$ 

$$(11+9)*(2+4)$$

120

depends on the meaning assigned to + and \*

$$(11 + x) * (2 + 4)$$

$$(11 + 9) * (2 + y)$$

$$(11+9)*(2+4)$$

120

depends on the meaning assigned to + and \*

$$(11 + x) * (2 + 4)$$
  $(11 + 9) * (2 + y)$ 

$$(11+9)*(2+y)$$

depends on the bindings to x and y, e.g. x=9 and y=4 or x=-1 and y=1

$$(11+9)*(2+4)$$

120

depends on the meaning assigned to + and \*

$$(11 + x) * (2 + 4)$$
  $(11 + 9) * (2 + y)$ 

$$(11+9)*(2+y)$$

depends on the bindings to x and y, e.g. x=9 and y=4 or x=-1 and y=1

$$0.1 + 0.1 + 0.1$$

0.3

$$(11+9)*(2+4)$$

120

depends on the meaning assigned to + and \*

$$(11 + x) * (2 + 4)$$

$$(11 + 9) * (2 + y)$$

depends on the bindings to x and y, e.g. x=9 and y=4 or x=-1 and y=1

$$0.1 + 0.1 + 0.1$$

0.3

mathematically yes..., but

$$(11+9)*(2+4)$$

120

depends on the meaning assigned to + and \*

$$(11 + x) * (2 + 4)$$
  $(11 + 9) * (2 + y)$ 

$$(11+9)*(2+y)$$

depends on the bindings to x and y, e.g. x=9 and y=4 or x=-1 and y=1

$$0.1 + 0.1 + 0.1$$

0.3

mathematically yes..., but

in our machine this depends on the chosen representation for reals, e.g. floating point precision

$$(11+9)*(2+4)$$

120

depends on the meaning assigned to + and \*

$$(11 + x) * (2 + 4)$$
  $(11 + 9) * (2 + y)$ 

$$(11+9)*(2+y)$$

depends on the bindings to x and y, e.g. x=9 and y=4 or x=-1 and y=1

$$0.1 + 0.1 + 0.1$$

0.3

mathematically yes..., but

in our machine this depends on the chosen representation for reals, e.g. floating point precision

$$(x >= 0)$$
 ? Math.sqrt $(x)$ : 0

Math.sgrt(x)

$$(11+9)*(2+4)$$

120

depends on the meaning assigned to + and \*

$$(11 + x) * (2 + 4)$$
  $(11 + 9) * (2 + y)$ 

$$(11+9)*(2+y)$$

depends on the bindings to x and y, e.g. x=9 and y=4 or x=-1 and y=1

$$0.1 + 0.1 + 0.1$$

0.3

mathematically yes..., but

in our machine this depends on the chosen representation for reals, e.g. floating point precision

$$(x >= 0)$$
 ? Math.sqrt $(x)$ : 0

Math.sgrt(x)

depends on the possible values of x

$$(11+9)*(2+4)$$

120

depends on the meaning assigned to + and \*

$$(11 + x) * (2 + 4)$$
  $(11 + 9) * (2 + y)$ 

$$(11+9)*(2+y)$$

depends on the bindings to x and y, e.g. x=9 and y=4 or x=-1 and y=1

$$0.1 + 0.1 + 0.1$$

0.3

mathematically yes..., but

in our machine this depends on the chosen representation for reals, e.g. floating point precision

$$(x >= 0)$$
 ? Math.sqrt $(x)$ : 0

Math.sqrt(x)

depends on the possible values of x

$$++x$$

$$\times +1$$

$$x = x+1$$

$$(11+9)*(2+4)$$

120

depends on the meaning assigned to + and \*

$$(11 + x) * (2 + 4)$$
  $(11 + 9) * (2 + y)$ 

$$(11 + 9) * (2 + y)$$

depends on the bindings to x and y, e.g. x=9 and y=4 or x=-1 and y=1

$$0.1 + 0.1 + 0.1$$

0.3

mathematically yes..., but

in our machine this depends on the chosen representation for reals, e.g. floating point precision

$$(x >= 0)$$
 ? Math.sqrt $(x)$ : 0

Math.sqrt(x)

depends on the possible values of x

$$++x$$

$$\times +1$$

$$x = x+1$$

denote the same value (in all contexts); do not have the same operational behaviour due to side-effects

A denotational semantics describes a translation from expressions into a *semantic domain*. In this example from expressions into integer numbers:

A denotational semantics describes a translation from expressions into a *semantic domain*. In this example from expressions into integer numbers:

simplification: ignores overloading, numerical representations, ...

A denotational semantics describes a translation from expressions into a *semantic domain*. In this example from expressions into integer numbers:

simplification: ignores overloading, numerical representations,  $\dots$ 

... and what is the meaning of  $\land, \lor, \ldots$ ?

Assume we understand the  $\lambda$ -calculus, and abstract over the environment. The semantic domain is now the set of all  $\lambda$ -expressions over integers.

$$\llbracket X \rrbracket = (\lambda \rho. \ \rho(X))$$
 if  $X \in \text{identifiers}, \ \rho(X) \neq \bot$ 

Assume we understand the  $\lambda$ -calculus, and abstract over the environment. The semantic domain is now the set of all  $\lambda$ -expressions over integers.

$$[\![X]\!] = (\lambda \rho. \ \rho(X))$$
 if  $X \in \text{identifiers}, \ \rho(X) \neq \bot$ 

$$\llbracket \mathsf{let} \ X = Y \ \mathsf{in} \ Z \rrbracket = (\lambda \rho. \llbracket Z \rrbracket (\rho')) \quad \mathsf{if} \ X \in \mathsf{identifiers}, \ \rho' = \rho [X \mapsto \llbracket Y \rrbracket (\rho)]$$

Assume we understand the  $\lambda$ -calculus, and abstract over the environment. The semantic domain is now the set of all  $\lambda$ -expressions over integers.

$$[\![X]\!] = (\lambda \rho. \ \rho(X))$$
 if  $X \in \text{identifiers}, \ \rho(X) \neq \bot$ 

$$\llbracket \mathsf{let} \ X = Y \ \mathsf{in} \ Z \rrbracket = (\lambda \rho. \llbracket Z \rrbracket (\rho')) \quad \mathsf{if} \ X \in \mathsf{identifiers}, \ \rho' = \rho [X \mapsto \llbracket Y \rrbracket (\rho)]$$

Alternative formulation:

$$\llbracket X \rrbracket(\rho) = \rho(X)$$
 if  $X \in \text{identifiers}, \ \rho(X) \neq \bot$ 

Assume we understand the  $\lambda$ -calculus, and abstract over the environment. The semantic domain is now the set of all  $\lambda$ -expressions over integers.

$$\llbracket X \rrbracket = (\lambda \rho. \ \rho(X))$$
 if  $X \in \text{identifiers}, \ \rho(X) \neq \bot$ 

$$\llbracket \mathsf{let} \ X = Y \ \mathsf{in} \ Z \rrbracket = (\lambda \rho. \llbracket Z \rrbracket (\rho')) \quad \mathsf{if} \ X \in \mathsf{identifiers}, \ \rho' = \rho [X \mapsto \llbracket Y \rrbracket (\rho)]$$

Alternative formulation:

$$\llbracket X \rrbracket(\rho) = \rho(X)$$
 if  $X \in \text{identifiers}, \ \rho(X) \neq \bot$ 

$$\llbracket \mathsf{let} \ X = Y \ \mathsf{in} \ Z \rrbracket(\rho) = \llbracket Z \rrbracket(\rho') \quad \mathsf{if} \ X \in \mathsf{identifiers}, \ \rho' = \rho[X \mapsto \llbracket Y \rrbracket(\rho)]$$

$$[X \&\& Y] = ???$$

$$[X \&\& Y] = ???$$

the following is valid under the assumption that expressions have no additional effects:

$$\llbracket X \And Y \rrbracket(\rho) = \llbracket X \rrbracket(\rho) \wedge \llbracket Y \rrbracket(\rho)$$

and note that we ignore properties such as running times and memory consumption

$$[X \&\& Y] = ???$$

the following is valid under the assumption that expressions have no additional effects:

$$\llbracket X \And Y \rrbracket(\rho) = \llbracket X \rrbracket(\rho) \wedge \llbracket Y \rrbracket(\rho)$$

and note that we ignore properties such as running times and memory consumption if expressions do have effects, perhaps:

$$[\![X \&\& Y]\!] = [\![X?Y: false]\!]$$

$$[X \&\& Y] = ???$$

the following is valid under the assumption that expressions have no additional effects:

$$\llbracket X \&\& Y \rrbracket(\rho) = \llbracket X \rrbracket(\rho) \wedge \llbracket Y \rrbracket(\rho)$$

and note that we ignore properties such as running times and memory consumption if expressions do have effects, perhaps:

$$[\![X \&\& Y]\!] = [\![X ? Y : false]\!]$$

or:

$$[\![X \&\& Y]\!](\rho) = \begin{cases} [\![Y]\!](\rho) & \text{if } [\![X]\!](\rho) = \mathbf{1} \\ \mathbf{0} & \text{if } [\![X]\!](\rho) = \mathbf{0} \end{cases}$$

but where did the effects of the first operand go?

# Denotational vs Operational Semantics

|                            | denotational           | operational                |
|----------------------------|------------------------|----------------------------|
| origins:                   | $\lambda$ -calculus    | (abstract) machines        |
| semantic assignment:       | mathematical object    | transition system (traces) |
| variables:                 | $\lambda$ -abstraction | configuration component    |
| effects:                   | monads                 | auxiliary entities         |
| modular effects:           | monad transformers     | product category           |
| advantages                 | more abstract          | more concrete, detailed    |
| $\hookrightarrow$          | formal reasoning       | evaluation order           |
| traditional targets langs: | (purely) functional    | imperative & concurrent    |
| $\hookrightarrow$          | expression languages   | command languages          |

## Mathematical equality?

Two expressions  $p_1$  and  $p_2$  are equal in the context of  $\rho$  if:

$$\llbracket p_1 \rrbracket(\rho) = \llbracket p_2 \rrbracket(\rho)$$

Here we can choose  $\rho$  to be empty for top-level expressions, or choose a context.

## Mathematical equality?

Two expressions  $p_1$  and  $p_2$  are equal in the context of  $\rho$  if:

$$\llbracket p_1 \rrbracket(\rho) = \llbracket p_2 \rrbracket(\rho)$$

Here we can choose  $\rho$  to be empty for top-level expressions, or choose a context.

For example, let 
$$p_1 = (11 + x) * (2 + 4)$$
,  $p_2 = (11 + 9) * (2 + y)$  and  $\rho = [x \mapsto -1, y \mapsto 1]$ 

## Mathematical equality?

Two expressions  $p_1$  and  $p_2$  are equal in the context of  $\rho$  if:

$$\llbracket p_1 \rrbracket(\rho) = \llbracket p_2 \rrbracket(\rho)$$

Here we can choose  $\rho$  to be empty for top-level expressions, or choose a context.

For example, let 
$$p_1 = (11 + x) * (2 + 4)$$
,  $p_2 = (11 + 9) * (2 + y)$  and  $\rho = [x \mapsto -1, y \mapsto 1]$ 

Alternatively,  $p_1=(x>=0)$  ? Math.sqrt(x) : 0,  $p_2=$  Math.sqrt(x), are equal for all ho with  $ho(x)\geq 0$ 

### Section 3

### Operational equivalence

#### Subsection 1

### Small-step Operational Semantics

## Small-step, Operational Semantics

An SOS¹ specification defines a transition system as:

- A set of <u>configurations</u>, laying out the **terms** under evaluation and **contextual** and mutable <u>semantic entities</u>
- A set of <u>labels</u>, laying out the **input**, **output**, and **control** entities
- A labelled-transition relation over configurations  $\gamma \xrightarrow{\alpha} \gamma'$ The transition relation is defined through a collection of *inference rules*:

zero or more premises and side conditions conclusion about transition relation

<sup>&</sup>lt;sup>1</sup>SOS: Structural Operational Semantics. *A Structural Approach to Operational Semantics*. Plotkin 1981/2004

## Small-step, Operational Semantics

An SOS¹ specification defines a transition system as:

- A set of <u>configurations</u>, laying out the **terms** under evaluation and **contextual** and mutable <u>semantic entities</u>
- A set of <u>labels</u>, laying out the **input**, **output**, and **control** entities
- A labelled-transition relation over configurations  $\gamma \xrightarrow{\alpha} \gamma'$ The transition relation is defined through a collection of *inference rules*:

zero or more premises and side conditions conclusion about transition relation

Shape of a premise or conclusion:

$$contextual^* \vdash \langle term, mutable^* \rangle \xrightarrow{label} \langle term', mutables'^* \rangle$$

<sup>&</sup>lt;sup>1</sup>SOS: Structural Operational Semantics. *A Structural Approach to Operational Semantics*. Plotkin 1981/2004

## Small-step, Operational Semantics

An SOS¹ specification defines a transition system as:

- A set of <u>configurations</u>, laying out the **terms** under evaluation and **contextual** and mutable <u>semantic entities</u>
- A set of <u>labels</u>, laying out the **input**, **output**, and **control** entities
- A labelled-transition relation over configurations  $\gamma \xrightarrow{\alpha} \gamma'$ The transition relation is defined through a collection of *inference rules*:

zero or more premises and side conditions conclusion about transition relation

Shape of a premise or conclusion:

$$contextual^* \vdash \langle term, mutable^* \rangle \xrightarrow{label} \langle term', mutables'^* \rangle$$

The semantics of a program are its *traces*, i.e. 'longest paths' in the transitive closure of  $\rightarrow$ 

 $<sup>^1 {\</sup>rm SOS}$ : Structural Operational Semantics. A Structural Approach to Operational Semantics. Plotkin 1981/2004

# Example trace

```
int x = 3 + 3;
System.out. println (x * 7);
```

## Example trace

```
int x = 3 + 3;

System.out. println (x * 7);

\langle X := 3 + 3; println(X * 7), [] \rangle \xrightarrow{\square} \quad \langle X := 6; println(X * 7), [] \rangle
\xrightarrow{\square} \quad \langle 6; println(X * 7), [X \mapsto 6] \rangle
\xrightarrow{\square} \quad \langle println(42), [X \mapsto 6] \rangle
\xrightarrow{[42]} \quad \langle void, [X \mapsto 6] \rangle
```

## Example trace

```
\begin{array}{l} \operatorname{int} \ \times = 3 + 3; \\ \operatorname{System.out.\ println} \ (\times \ \ast \ 7); \\ \\ \langle X := 3 + 3; \operatorname{println} (X \ast 7), [] \rangle \xrightarrow{\square} \quad \langle X := 6; \operatorname{println} (X \ast 7), [] \rangle \\ \xrightarrow{\square} \quad \langle 6; \operatorname{println} (X \ast 7), [X \mapsto 6] \rangle \\ \xrightarrow{\square} \quad \langle \operatorname{println} (42), [X \mapsto 6] \rangle \\ \xrightarrow{[42]} \quad \langle \operatorname{void}, [X \mapsto 6] \rangle \end{array}
```

In other words, X := 3 + 3; println(X \* 7)

- evaluates to void
- produces output 42 and
- assigns 6 to X (via 5 steps).

### SOS rules for variables

#### Example

- **mutable** entity store  $\sigma$ , representing variable assignments
- **label** entity output  $\alpha$ , representing printed values

$$\frac{\langle Y, \sigma \rangle \xrightarrow{\alpha} \langle Y', \sigma' \rangle}{\langle X := Y, \sigma \rangle \xrightarrow{\alpha} \langle X := Y', \sigma' \rangle}$$

$$\frac{V \in \mathbb{Z} \quad X \in \text{identifiers} \quad \sigma' = \sigma[X \mapsto V]}{\langle X := V, \sigma \rangle \xrightarrow{\square} \langle V, \sigma' \rangle}$$

$$\frac{X \in \text{identifiers} \quad V = \sigma(X)}{\langle X, \sigma \rangle \xrightarrow{\mathbb{I}} \langle V, \sigma \rangle}$$

# SOS rules for printing

#### Example

- **mutable** entity store  $\sigma$ , representing variable assignments
- label entity output  $\alpha$ , representing printed values

$$\frac{\langle X, \sigma \rangle \xrightarrow{\alpha} \langle X', \sigma' \rangle}{\langle println(X), \sigma \rangle \xrightarrow{\alpha} \langle println(X'), \sigma' \rangle}$$

$$\frac{V \in \mathbb{Z}}{\langle println(V), \sigma \rangle \xrightarrow{[V]} \langle \mathbf{void}, \sigma \rangle}$$

### SOS rules for '&&'

#### Example

- **mutable** entity store  $\sigma$ , representing variable assignments
- label entity output  $\alpha$ , representing printed values

$$\frac{\langle X, \sigma \rangle \xrightarrow{\alpha} \langle X', \sigma' \rangle}{\langle X \&\& Y, \sigma \rangle \xrightarrow{\alpha} \langle X' \&\& Y, \sigma' \rangle}$$

$$\frac{\langle \text{true } \&\& Y, \sigma \rangle \xrightarrow{\square} \langle Y, \sigma' \rangle}{\langle \text{true } \&\& Y, \sigma \rangle \xrightarrow{\square} \langle Y, \sigma' \rangle}$$

 $\langle \text{false && } Y, \sigma \rangle \xrightarrow{[]} \langle \text{false}, \sigma' \rangle$ 

# SOS rules for (other) infix operators

A left to right evaluation order on binary infix operators is specified by the following rules:

$$\frac{\langle X, \sigma \rangle \xrightarrow{\alpha} \langle X', \sigma' \rangle}{\langle X * Y, \sigma \rangle \xrightarrow{\alpha} \langle X' * Y, \sigma' \rangle}$$

$$\frac{V \in \mathbb{Z} \quad \langle Y, \sigma \rangle \xrightarrow{\alpha} \langle Y', \sigma' \rangle}{\langle V * Y, \sigma \rangle \xrightarrow{\alpha} \langle V * Y', \sigma' \rangle}$$

$$\frac{V_3 = V_1 \times V_2}{\langle V_1 * V_2, \sigma \rangle \xrightarrow{\parallel} \langle V_3, \sigma \rangle}$$

Other infix operators would have very similar rules.

Interesting comparison with denotational semantics of operators, e.g.  $[X * Y] = [X] \times [Y]$ 

How can we specify the semantics of the **while** construct?

How can we specify the semantics of the while construct?

$$\frac{\langle \textit{C}, \sigma \rangle \xrightarrow{\alpha} \langle \textit{C}', \sigma' \rangle}{\langle \textit{while}(\textit{C}) \; \textit{B}, \sigma \rangle \xrightarrow{\alpha} \langle \textit{while}(\textit{C}') \; \textit{B}, \sigma' \rangle}$$

$$\overline{\langle \mathbf{while(true)} \ B, \sigma \rangle \xrightarrow{[]} \langle ???, \sigma' \rangle}$$

How can we specify the semantics of the while construct?

$$\frac{\langle C, \sigma \rangle \xrightarrow{\alpha} \langle C', \sigma' \rangle}{\langle \mathsf{while}(C) \ B, \sigma \rangle \xrightarrow{\alpha} \langle \mathsf{while}(C') \ B, \sigma' \rangle}$$

$$\langle \mathbf{while(true)} \ B, \sigma \rangle \xrightarrow{[]} \langle ????, \sigma' \rangle$$

Problem: we 'lost' the original condition

How can we specify the semantics of the **while** construct?

$$\frac{\langle C, \sigma \rangle \xrightarrow{\alpha} \langle C', \sigma' \rangle}{\langle \mathbf{while}(C) | B, \sigma \rangle \xrightarrow{\alpha} \langle \mathbf{while}(C') | B, \sigma' \rangle}$$

$$\frac{\langle \mathbf{while}(\mathbf{true}) | B, \sigma \rangle \xrightarrow{\square} \langle ???, \sigma' \rangle}{\langle \mathbf{while}(\mathbf{true}) | B, \sigma \rangle \xrightarrow{\square} \langle ???, \sigma' \rangle}$$

Problem: we 'lost' the original condition

Simple alternative, relying on **if-then** construct and recursive nature of transitions:

$$\langle \mathsf{while}(C) \ B, \sigma \rangle \xrightarrow{\text{[]}} \langle \mathsf{if}(C) \ \{B; \mathsf{while}(C) \ B\}, \sigma \rangle$$

```
 \begin{array}{ll} \mbox{int } i = 0; \\ \mbox{while } (i <= 100) \; \{ \\ \mbox{if } (i \; \% \; 2 == 0) \; \{ \\ \mbox{System.out. println } (i \; ); \\ \mbox{i} \; = \; i \; + \; 1; \\ \} \\ \end{array}
```

```
\label{eq:continuous_problem} \begin{array}{ll} \mbox{int } i = 0; \\ \mbox{while } (i <= 100) \left\{ \right. \\ \mbox{System.out. println (i);} \\ \mbox{i} = i + 2; \\ \mbox{\}} \end{array}
```

```
\begin{array}{lll} \text{int } i = 0; \\ \text{while } (i <= 100) \, \{ & \text{int } i = 0; \\ \text{if } (i \ \% \ 2 == 0) \, \{ & \text{while } (i <= 100) \, \{ \\ \text{System.out. println } (i); & \text{System.out. println } (i); \\ \text{$i = i + 1;} & \text{$i = i + 2;} \\ \} \end{array}
```

- Approach: Define the yield of a trace and compare yields
- Definition 1: the yield is the concatenation of all output

```
\begin{array}{lll} \text{int } i = 0; \\ \text{while } (i <= 100) \, \{ & \text{int } i = 0; \\ \text{if } (i \ \% \ 2 == 0) \, \{ & \text{while } (i <= 100) \, \{ \\ \text{System.out. println } (i); & \text{System.out. println } (i); \\ \text{$i$} & \text{$i$} = i + 1; \\ \} \end{array}
```

- Approach: Define the yield of a trace and compare yields
- Definition 1: the yield is the concatenation of all output
- Definition 2: the yield is all output and the deltas between stores

```
\begin{array}{lll} \text{int} & i = 0; \\ \text{while} & (i <= 100) \, \{ & & \text{int} \ i = 0; \\ & \text{if} \ (i \ \% \ 2 == 0) \, \{ & & \text{while} \ (i <= 100) \, \{ \\ & \text{System.out. println} \ (i); & & \text{System.out. println} \ (i); \\ & \text{$i=i+1$;} & & \text{$i=i+2$;} \\ & \text{$\}$} \end{array}
```

- Approach: Define the yield of a trace and compare yields
- Definition 1: the yield is the concatenation of all output
- Definition 2: the yield is all output and the deltas between stores
- ...
- Definition i: the yield is the return value (a **control** entity) of a (pure) function
- ...
- Definition n: ...

# Denotational vs Operational Semantics

|                            | denotational           | operational                |
|----------------------------|------------------------|----------------------------|
| origins:                   | $\lambda$ -calculus    | (abstract) machines        |
| semantic assignment:       | mathematical object    | transition system (traces) |
| variables:                 | $\lambda$ -abstraction | configuration component    |
| effects:                   | monads                 | auxiliary entities         |
| modular effects:           | monad transformers     | product category           |
| advantages                 | more abstract          | more concrete, detailed    |
| $\hookrightarrow$          | formal reasoning       | evaluation order           |
| traditional targets langs: | (purely) functional    | imperative & concurrent    |
| $\hookrightarrow$          | expression languages   | command languages          |

### Small step evaluation in Rascal

Name Rascal/Statements/Solve

**Synopsis** Solve a set of equalities by fixed-point iteration.

**Syntax** solve( $Var_1$ ,  $Var_2$ , ...,  $Var_n$ ; Exp) Statement;

**Description** Rascal provides a solve statement for performing arbitrary fixed-point computations. This means, repeating a certain computation as long as it causes changes. This can, for instance, be used for the solution of sets of simultaneous linear equations but has much wider applicability.

# Small step evaluation in Rascal – example

```
module SmallStep
   import IO:
 4 import String:
 5 import util::Maybe:
   import lang::java::m3::Core;
   import lang::java::m3::AST;
10 alias source = tuple[node.store];
11 alias target = Maybe[tuple[value, store, output]]:
12 alias store = map[str.value]:
13 alias output = list[str];
14
15
16⊖ void eval(loc file) {
     if (\compilationUnit( ,[\class( , , ,[\method( , , , ,stmt)])]) := createAstFromFile(file, true)) {
18
        output out = [];
19
        store sto = ();
        solve(stmt) {
20
          if(just(<stmt , sto , out >) := step(<stmt, sto>)) {
              out = out + out :
              stmt = stmt :
24
              sto = sto :
25
26
27
        for (str s <- out) {print(s):}
28
29 }
```

### Type 4 clones

**Type 4**: functionality is the same, code may be completely different.

In other words, two program fragments are equivalent..

How could we determine whether two program fragments are equivalent?

# Semantics and Equality

### L. Thomas van Binsbergen

November 21, 2022