MA 321 (Optimization) End-semester Examination

Tlme: 2 pm - 5 pm

26th November, 2022

Maxm marks: 40

Notations:

For $x^* \in Fea(P)$, D_{x^*} is the set of all feasible directions at x^* .

 $I_{\mathbf{x}^*} = \{i \in \{1, \dots, m\} : g_i(\mathbf{x}^*) = 0\}, G_0(\mathbf{x}^*) = \{d \in \mathbb{R}^n : \nabla g_i(\mathbf{x}^*)d < 0 \text{ for all } i \in I_{\mathbf{x}^*}\}.$

 $F_0(\mathbf{x}^*) = \{ \mathbf{d} \in \mathbb{R}^n : \nabla f(\mathbf{x}^*) \mathbf{d} < 0 \}$, where f is the objective function.

Convention: $G_0(\mathbf{x}^*) = \mathbb{R}^n$ for interior points of Fea(P),

 $\nabla f(\mathbf{x}^*), \nabla g_i(\mathbf{x}^*)$'s are row vectors, d is a column vector.

No credit will be given for answers given without any justification

1. Consider the following problem (P):

Minimize
$$-x_2^2 + x_1 - \frac{4}{3}x_2^3 + x_1x_2^2$$

subject to $x_2^2 - x_1 \le 0$. $- \left(n_1^2 - n_1 \right) + n_2^2 \left(-\frac{3}{3}x_1^2 n_1 \right)$ $n_1 < \frac{3}{3}$, $n_1 \ge n_2^2$ $n_2 \ge 0$. $n_3 \ge 0$ $n_1 < \frac{3}{3}$, $n_1 \ge n_2^2$ $n_2 \ge 0$.

(4) Give D_{x^*} , where $x^* = [1,1]^T$. d, 72d₂

(b) If possible find an $x^* \in Fea(P)$ (not an interior point) at which $G_0(x^*) = D_{x^*}$ and an $x^* \in Fea(P)$ at which $G_0(x^*) \neq D_{x^*}$. $\{1,0\}^7$

Check whether $\mathbf{x}^* = [1,0]^T$ satisfies the first order necessary conditions for a local minimum. If not, then give a feasible direction d at \mathbf{x}^* (if possible), such that $f(\mathbf{x}^* + t\mathbf{d}) < f(\mathbf{x}^*)$ for t > 0, sufficiently small. $[-1, 0]^T$

If possible give an $x^* \in Fea(P)$ such that $\nabla f(x^*)d > 0$ for all feasible directions d at x^* , but x^* is not a local minimum. $\begin{bmatrix} 6 & 0 \end{bmatrix}^{\mathsf{T}}$

(e) Does there exist an $x^* \in Fea(P)$ which satisfies the second order necessary conditions for a local minimum but is not a local minimum? $\begin{bmatrix} o \\ o \end{bmatrix}$

(f) If possible find an $x^* \in Fea(P)$ such that, $F_0(x^*) \cap G_0(x^*) = \phi$, but $F_0(x^*) \cap D_{x^*} \neq \phi$.

(g) If possible find an $x^* \in Fea(P)$ such that, $F_0(x^*) \cap G_0(x^*) = \phi$, but x^* is not a local minimum. $(c_1 \circ)^T$ At (1,1), $G_0 = 0$ $= \int_{x^*} dx R^*$: $d_1 \ge 2d_2$

(h) Is
$$x^* = [1, 1]^T$$
 a KKT point? Yes

 $(i,0) \ \ C^{0} = 0^{2} = \left[q_{1} \, g_{1} : q_{1}^{2} \, 2q_{2}\right]$ $(i,0) \ \ C^{0} = 0^{2} = \left[q_{1} \, g_{2} : q_{1}^{2} \, 2q_{2}\right]$

2. Consider the following problem (P):

Minimize $ax_2^2 + bx_1^2x_2 + cx_1^3$ (a, b, c real) subject to

 $g_i(\mathbf{x}) \le 0 \text{ for } i = 1, 2, ..., 5.$

where $g_i(\mathbf{x})$ are such that Fea(P) is a polyhedral set with five corner points given by, (1,1), (3,1), (3,2), (1,2), (2,4).

9' to

26,-462 20 81 2 262

- (d) If possible choose a,b,c (not all zeros) such that every KKT point is a local minimizer. If this is possible, then for that choice of a, b, c give all the local minimizers.
- (b) If $\mathbf{x}^{\bullet} \in Fea(P)$ is such that $F_0(\mathbf{x}^{\bullet}) \cap G_0(\mathbf{x}^{\bullet}) = \phi$ and $G_0(\mathbf{x}^{\bullet}) \neq \phi$, then is it true that x* is a KKT point?
- (c) If possible choose a, b, c such that Fea(P) has no FJ point. Not possible
- (d) If possible choose a, b, c such that Fea(P) has a local minimizer which is not a KKT
- (e) If possible choose a, b, c and an $x^* \in Fea(P)$ which is an FJ point but does not satisfy the second order necessary conditions for a local minimum.

[14]

3. Consider the following problem (P):

Minimize
$$x_1^2 + 2x_2^2 + x_1x_2$$
 subject to

$$x_2 + x_1 - 2 = 0.$$

- Check whether there exists an x' ∈ Fea(P) which is an FJ point (here FJ conditions are with respect to equality constraints). $\begin{bmatrix} \frac{3}{2}, \frac{1}{2} \end{bmatrix}^{\mathsf{T}}$ (b) Find all optimal solutions of (P)(if there exists one). $\mathbf{7}/\mathbf{2}$
- [5]
- 4. Consider the following transportation problem (P) with c_{ij} 's, a_i 's (40,20,30,20) and d_j 's (60,10,40) as given below:

	761	2	610	40
	5	4 6	3	20
	4	3	9	30
	1	5	9_	20
_	60	10	40	

- (a) Check whether the initial BFS x0 with basic cells
 - $B = \{(1,1),(2,1),(2,2),(3,2),(3,3),(4,3)\}$, is optimal for (P) (by taking $u_2 = 0$, where u_2 is the dual variable corresponding to the second supply constraint). If it is not optimal, then by choosing the entering and the leaving variable, get a better (with respect to the value of objective function) BFS of (P) in the next iteration (You do NOT have to find an optimal solution). $\phi = 6$
- (b) Is it true that given any collection of three cells in the above array there will be a BFS of the above problem containing those three cells as basic cells?

$$(2-\eta_{1})^{2}+2\eta_{1}^{2}+2\eta_{2}-\eta_{3}^{2}$$

$$4+2\chi_{2}^{2}-4\eta_{2}+2\eta_{1}^{2}-2\chi_{2}^{2}+2\eta_{3}$$

$$=2\eta_{2}^{2}-2\eta_{2}+4$$

$$=\chi_{2}^{2}$$

$$\frac{9_{2}-2}{9(-3)} = \frac{4-2}{2-1} = -2$$

$$\frac{9_{2}-2}{2-1} = 2\pi(-2)$$

$$\frac{9_{2}-2}{2} = 2\pi(-2)$$

$$\frac{4}{2} = 2\pi(-2)$$