

PANDAS

Dr. Ram Prasad K VisionCog R&D

ram.krish@visioncog.com
https://www.visioncog.com

Pandas

Easy to use data analysis Python library

Contains three types of data structures:

- Series
- DataFrames
- Panels (Deprecated in latest versions)

Series:

1-dimensional labeled array capable of holding any data type

DataFrame:

2-dimensional labeled data structure with columns of potentially different types.

Panel:

3-dimensional labeled data structure.

Less commonly used, so it is replaced by multi-index extension of DataFrame.


```
import numpy as np
import pandas as pd
# Create Series
s = pd.Series([2, -1, 3, 5])
print(s)
  dtype: int64
```

```
np.exp(s)
print(s1)
         7.389056
         0.367879
        20.085537
       148.413159
 dtype: float64
```



```
s idx = pd.Series([12, 15, 3, 60],
                  index=["a", 2, "c", "d"])
print(s idx)
# a
       12
       15
# C
       60
# dtype: int64
print(s idx.loc[
# 3
# There is also a default int index
print(s idx.iloc[3])
# 60
```

```
print(s_idx["c"])

# 3

print(s_idx[3])

# 60
```

- Not safe to access the series like this.
- Always use 'loc' or 'iloc'


```
s2 slice = s2[2:]
print(s2 slice)
       1002
       1003
       1004
  dtype: int64
```

```
print(s2 slice[0])
 KeyErroi
  Traceback (most recent call last)
 <ipython-input-14-e4a7d3f28305> in <module>
  ----> 1 s2 slice[0]
print(s2 slice.iloc[0])
 1002
```



```
%matplotlib inline
import matplotlib.pyplot as plt
temperatures = [4.4,5.1,6.1,6.2,6.1,6.1,
                5.7,5.2,4.7,4.1,3.9,3.5]
temp = pd.Series(temperatures,
                 name="Temperature")
temp.plot()
plt.show()
```



```
print(temp)
# Series name is also displayed
                                               6.0
        4.4
        5.1
        6.1
        6.2
                                               4.5
        6.1
        6.1
                                               4.0
        5.7
                                               3.5
                                                                                 10
#
         3.9
         3.5
        Temperature, dtype: float64
```


DataFrames

```
people dict = {
    "weight": pd.Series([68, 83, 112],
                        index=["alice", "bob", "charles"])
    "birthyear": pd.Series([1984, 1985, 1992],
                           index=["bob", "alice",
                           name="year"),
    "children": pd.Series([0, 3]
                          index=["charles", "bob"]),
    "hobby": pd.Series(["Biking", "Dancing"],
                       index=["alice", "bob"]),
```

```
# Converting dict to DataFrame
people = pd.DataFrame(people_dict)
print(people)
```

	weight	birthyear	children	hobby
alice	68	1985	NaN	Biking
bob	83	1984	3.0	Dancing
charles	112	1992	0.0	NaN

A few things to note:

- 1. The Series were automatically aligned based on their index
- 2. Missing values are represented as NaN
- 3. Series names are ignored (the name "year" was dropped),

DataFrames

	weight	birthyear	children	hobby
alice	68	1985	NaN	Biking
bob	83	1984	3.0	Dancing
charles	112	1992	0.0	NaN

print(people["birthyear"])

alice 1985 bob 1984 charles 1992

Name: birthyear, dtype: int64

print(people[["birthyear", "hobby"]])

	birthyear	hobby
alice	1985	Biking
bob	1984	Dancing
charles	1992	NaN

DataFrames

	weight	birthyear	children	hobby
alice	68	1985	NaN	Biking
bob	83	1984	3.0	Dancing
charles	112	1992	0.0	NaN

print(people.loc["charles"])

weight 112 birthyear 1992 children 0 hobby NaÑ

Name: charles dtype: object

print(people.iloc[2])

weight 112 birthyear 1992 children 0 hobby NaN

Name: charles, dtype: object

DataFrames

	weight	birthyear	children	hobby
alice	68	1985	NaN	Biking
bob	83	1984	1984 3.0	Dancing
charles	112	1992	0.0	NaN

print(people.iloc[1:3])

72	weight	birthyear	children	hobby
bob	83	1984	3.0	Dancing
charles	112	1992	0.0	NaN

print(people.iloc[1:3, 2:])

	children	hobby
bob	3.0	Dancing
charles	0.0	NaN

DataFrames

	weight	birthyear	children	hobby
alice	68	1985	NaN	Biking
bob	83	1984	3.0	Dancing
charles	112	1992	0.0	NaN

people["age"] = 2019 - people["birthyear"]

print(people)

	weight	birthyear	children	hobby	age
alice	68	1985	NaN	Biking	34
bob	83	1984	3.0	Dancing	35
charles	112	1992	0.0	NaN	27

HANDLING CSV FILES


```
# Download csv file from ISL website
# http://www-bcf.usc.edu/~gareth/ISL/data.html
advData = pd.read_csv("data/Advertising.csv")
```

print(advData.head())

	Unnamed: 0	TV	radio	newspaper	sales
	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
1 S 10 1 1	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

ANDAS FUNDAMENTALS print(advData.tail())							
<u> </u>	Unnamed: 0	TV	radio	newspaper	sales		
195	196	38.2	3.7	13.8	7.6		
196	197	94.2	4.9	8.1	9.7		
197	198	177.0	9.3	6.4	12.8		
198	199	283.6	42.0	66.2	25.5		
199	260	232.1	8.6	8.7	13.4		

print(advData.info())


```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
Unnamed: 0 200 non-null int64
              200 non-null float64
TV
              200 non-null float64
radio
              200 non-mult float64
newspaper
              200 non-null float64
sales
dtypes: float64(4), int64(1)
memory usage: 7.9 KB
None
```


	AS FUNE		ΓALS			Dent Pat Lide	No.
	Unnamed: 0	TV	radio	newspaper	sales		
count	200.000000	200.000000	200.000000	200.000000	200.000000		
mean	100.500000	147.042500	23.264000	30.554000	14.022500		
std	57.879185	85.854236	14.846809	21.778621	5.217457		
min	1.000000	0.700000	2.000000	0.300000	1.600000		
25%	50.750000	74.375000	9.975000	12.750000	10.375000		
50%	100.500000	1.49.750000	22.900000	25.750000	12.900000		
75%	150.250000	218.825000	36.525000	45.100000	17.400000		
max	200.000000	296.400000	49.600000	114.000000	27.000000		

advData.hist(bins=10, figsize=(20,15))

del advData["Unnamed: 0"]

advData.hist(bins=10, figsize=(20,15))


```
No
```

```
X = advData.drop("sales", axis=1)
print(X.head())
```

		TV	radio	newspaper
	0	230.1	37.8	69.2
	1	44.5	39.3	45.1
	2	27.2	45.9	69.3
RE	3	151.5	41.3	58.5
	4	180.8	10.8	58.4


```
y = advData["sales"]
print(y.head())
                       22.1
                       10.4
                        9.3
                       18.5
                       12.9
                 Name Sales, dtype: float64
```


advData.plot(kind="scatter", x = 'TV', y = 'sales')

advData.plot(kind="scatter", x = "TV", y = "sales", alpha=0.5)

correlationMatrix = advData.corr()

print(correlationMatrix)

	TV	radio	newspaper	sales
TV	1.000000	0.054809	0.056648	0.782224
radio	0.054809	1.000000	0.354104	0.576223
newspaper	0.056648	0.354104	1.000000	0.228299
sales	0.782224	0.576223	0.228299	1.000000

Exercise

Open "data/wdbc.csv" and analyze various attributes.

(https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic))

Note:

```
df = pd.read_csv('data/wdbc.csv', header=None)
df.head()
```