## Junção PN

# Laboratório de Complementos de Eletromagnetismo e Termodinâmica MEFT 2013/2014

Débora Barreiros, 75693 — Pedro Cal, 75699 — Tiago Costa, 75970 — Nuno Rosa, 76018 Instituto Superior Técnico — Turma de sexta-feira — Grupo I 25 de Maio de 2014

#### Resumo

O objetivo deste trabalho experimental foi a determinação da caraterística V(I) de uma junção PN e a sua variação com a temperatura. Verificou-se que à medida que a intensidade de corrente aumenta, a tensão também aumenta aproximadamente de acordo com os modelos descritos no relatório. Algumas caraterísticas da junção foram também calculadas tais como o parâmetro  $\eta=1.6\pm0.6$  e o valor de  $E_q=0.89\pm0.02$  eV para o primeiro modelo e ainda o parâmetro para a energia de gap de  $1.07\pm0.03eV$  para o segundo modelo.

### 1. INTRODUÇÃO TEÓRICA

Nesta experiência laboratorial pretende-se estudar a característica tensão-corrente de uma junção PN [2] e avaliar o modo como esta varia com a temperatura. De facto ao longo da experiência foi utilizado uma junção de sílicio ou seja utilizou-se um díodo comercial.

Uma junção PN trata-se apenas de associar dois semicondutores do mesmo material sendo um de tipo N e outro de tipo P. Estes dois tipos diferentes de semicondutor diferem apenas no dopante que é inserido nos espaços entre os átomos do semicondutor. Efectivamente em qualquer um dos casos partimos de um semicondutor intrinseco isto é, sem 'impurezas', e acabamos com um semicondutor extrínseco que possui átomos de outros elementos. De uma forma mais aprofundada e tendo em conta que o semicondutor a utilizar é o sílicio, podemos considerar que a parte da junção que constitui o semicondutor do tipo N foi dopada com átomos do grupo 15 da tabela periódico, como o fósforo, enquanto que a parte da junção com o semicondutor do tipo P foi dopada com átomos do grupo 13 como o Boro. Os nomes de N e P têm a ver com a característica 'negativa' e 'positiva' do semicondutor, ou seja, ao dopar o semicondutor com átomos de fósforo estamos a adicionar partículas com mais um electrão de valência do que as existentes, enquanto que no caso da adição ser de Boro, resulta em um maior número de espaços vazios.

Assim, o maior número de electrões no caso do tipo N faz com que sejam estes os responsáveis pelo movimento da carga enquanto que no tipo P são os 'buracos' os principais responsáveis. Assim sendo para além da movimentação de carga natural que ocorre num semicondutor intrínseco o que se verifica é que ao unir os dois semicondutores haverá um transporte de electrões por difusão do semicondutor do tipo N para o P. No entanto existe uma carga fixa em ambos os lados da junção o que provoca uma barreira de potencial. O processo de difusão prossegue e com o aumento da crga positiva no terminal N e de carga negativa no terminal P, gera-se um campo contrário ao movimento das cargas e que eventualmente vai impedir a evolução das mesmas.

Ao fornecer uma diferença de potencial à junção PN o que sucede é que os elementos com maior número de electrões de valência desclocar-se-ão até ao semicondutor com lacunas, isto é vão ocupar os espaços vazios existentes e deste modo procede-se a uma diminuição da barreira de potencial já referida o que leva a que haja movimento de cargas e deste modo se gera uma corrente.

Essencialmente existem dois modelos que explicam a relação tensão corrente da junção PN.

O modelo A, modelo mais simples a utilizar diz-nos que a corrente que percorre a junção é dada por:

$$I = I_s(e^{\frac{QVd}{KT\eta}} - 1) \tag{1.1}$$

A expressão da tensão em função da corrente toma então a forma:

$$V = RI + b \cdot ln(I) + c \Leftrightarrow \tag{1.2}$$

$$\Leftrightarrow V = RI + \frac{\eta KT}{g} ln(I) - \frac{\eta KT}{g} ln(I_s)$$
 (1.3)

em que:

$$b = \frac{\eta KT}{a} \tag{1.4}$$

$$c = -\frac{\eta KT}{q} ln(I_s) \tag{1.5}$$

O valor de  $I_s$  é:

$$I_s \propto T^3 e^{-\frac{E_g}{KT}} \tag{1.6}$$

Uma vez que existem algumas impurezas associadas aos estados de condução do sistema temos que considerar um novo modelo que leve isso em conta e daí surge o modelo B, no qual a expressão da corrente toma a forma:

$$I = I_s(e^{\frac{QVd}{KT\eta}} - 1) + I_r(e^{\frac{QVd}{2KT}} - 1)$$
 (1.7)

Em que as expressões de  $I_s$  e de  $I_r$  são respectivamente:

$$I_s \propto T^3 e^{-\frac{E_g}{KT}} \tag{1.8}$$

$$I_r \propto T^{\frac{5}{2}} e^{-\frac{E_g}{2KT}} \tag{1.9}$$

O valor da tensão para este modelo B tendo em conta as novas aproximações feitas pode ser escrito:

$$V = RI + \frac{2KT}{q}ln\left[\sqrt{\left(\frac{I_r}{2I_s}\right)^2 + \left(\frac{I + I_r}{I_s} + 1\right)} - \frac{I_r}{2I_s}\right] (1.10)$$

#### 2. MONTAGEM DA EXPERIÊNCIA

Esta experiência possui apenas uma montagem [1], sendo que serão analisados diversos conjuntos de dados para situações distintas. De facto o circuito efectuado pode ser analisado na figura 1.



Figura 1. Diagrama de blocos associado à montagem experimental

Desta forma o circuito possuia duas fontes de tensão uma que controlava a temperatura da junção PN devido à presença de resistências eléctricas  $(E_2)$  e uma outra que regulava a corrente que era transmitida á junção  $(E_1)$ . Assim a primeira fase do procedimento exigia que a fonte que regula a temperatura se mantivesse a 0 por forma a que não houvesse qualquer alteração na junção, isto é esta teria que se manter à temperatura ambiente. Assim, ajusta-se a resistência inicialmente para 100 K $\Omega$ , e varia-se a tensão de tal modo que a corrente varie de forma controlada entre 10  $\mu$ A e 100  $\mu$ A. Altera-se a resistência para 20 K $\Omega$  e procede-se do mesmo modo para correntes entre os 100  $\mu$ A e os 1000  $\mu$ A. Altera-se de novo a resistência, desta feita para 1000  $\Omega$  e ajusta-se a tensão para que a corrente varie de 1 mA até 19 mA. Por fim a resistência toma o valor de 200  $\Omega$  e a corrente varia entre os 20 mA e os 110 mA. Em todas as medidas foram retirados os valores de tensão correspondente ao ajuste da corrente pretendida. Desta forma recolheram-se os dados para a relação tensão corrente pretendida. De salientar que as alterações nos valores da resistência devem-se ao facto de se pretender evitar correntes e tensões elevadas que prejudiquem a correcção dos resultados

Repetiu-se o procedimento para 8,9 V, 12,6 V, 15,5 V, 17,5 V e 20 V. Procedeu-se posteriormente ao ajuste dos dados recolhidos através dos dois modelos já referenciados anteriormente. De notar que o sistema demora algum tempo a estabilizar numa nova temperatura após alteração da tensão na fonte  $E_2$ 

#### 3. RESULTADOS EXPERIMENTAIS

#### 3.1. Análise utilizando o Modelo 1

Em primeiro lugar, efectue-se a análise dos resultados utilizando o modelo mais simples para a Junção PN, segundo o qual a corrente que a atravessa é dada pela expressão (1.1).

Recolhidos os pares (I,V) foi efectuado um ajuste para cada temperatura utilizando a equação (1.2), como se pode ver na figura 2. Note-se que os valores de temperatura obtidos resultam da média dos valores lidos ao longo da recolha de dados.

Efectuou-se novamente o ajuste para cada temperatura, desta vez aos pares  $(\ln(I),V)$ , que se encontra presente na figura 3.

Os parâmetros resultantes dos ajustes encontam-se na tabela I.

Utilizando os valores resultantes dos ajustes, é possível representar a resistência da parte neutra dos semicondutores em função da temperatura, e procede-se ao ajuste dos valores de b(T), utilizando a expressão (1.4), e c(T), utilizando a conjugação das expressões (1.5) e (1.6). Estas representações gráficas e ajustes encontram-se, respetivamente, nas figuras 4.5, 6.



Figura 2. Ajuste aos valores de V em função de I para cada temperatura



Figura 3. Ajuste aos Valores de V em função de  $\ln(I)$  para cada temperatura

| T(K)            | $\mathbf{R}(\Omega)$ | b(mV)          | c(mV)       |
|-----------------|----------------------|----------------|-------------|
|                 | $0.31 \pm 0.08$      |                |             |
| $316.6 \pm 0.4$ | $0.38 \pm 0.08$      | $47.3 \pm 0.9$ | $659 \pm 7$ |
|                 | $0.46 \pm 0.08$      |                |             |
|                 | $0.53 \pm 0.07$      |                |             |
|                 | $0.56 \pm 0.07$      |                |             |
| $373 \pm 2$     | $0.65 \pm 0.08$      | $44.7 \pm 0.8$ | $503 \pm 7$ |

Tabela I. Parâmetros resultantes dos ajustes



Figura 4. Resistência em função da temperatura

Para o ajuste aos valores de b<br/> obteve-se  $\eta=1.6\pm0.6.$  Feito o ajuste aos valores de c<br/>, foi possível obter o valor $E_g=(1.42\pm0.03)\times10^{-19} \mathrm{J}.$  Dividindo este valor pela carga do eletrão, tem-se que em eV,<br/>  $E_g=0.89\pm0.02$  eV.



Figura 5. Valores de b em função da temperatura



Figura 6. Valores de c em função da temperatura

#### 3.2. Análise utilizando o Modelo 2

Efectue-se agora a análise utilizando o modelo para a Junção PN segundo o qual a corrente que a atravessa é dada pela expressão (1.7).

Efetuou-se de novo o ajuste para os pares  $(V,\ln(I))$ , utilizando agora a expressão (1.10), deixando R,  $I_s$  e  $I_r$  como parâmetros livres. Obteve-se então o ajuste presente na figura 7.



Figura 7. Ajuste aos valores de V em função de  $\ln(I)$  para cada temperatura

Os parâmetros resultantes deste ajuste encontram-se presentes na tabela III.

Obtidos estes valores é agora possível representar graficamente R(T) e fazer os ajustes teóricos a  $I_r(T)$  e  $I_s(T)$  utilizando as expressões (1.9) e (1.8) respetivamente. A representação gráfica e ajustes de R,  $I_r$  e  $I_s$  encontram-se presentes nas figuras 8, 9 e 10.

Destes ajustes obtiveram-se os valores de  $\boldsymbol{E}_g$  que se encontram na tabela

Apesar de dos ajustes de  $I_r$  e  $I_s$  resultarem dois valores para a energia de gap, estes valores são referentes aos mesmos pontos experimentais e ao mesmo modelo, pelo que só pode

| T(K)            | $\mathbf{R}(\Omega)$ | $I_r(\mathbf{A})$                | $I_s(\mathbf{A})$               |
|-----------------|----------------------|----------------------------------|---------------------------------|
| $295.7 \pm 0.5$ | $0.3 \pm 0.1$        | $(4.4 \pm 0.2) \times 10^{-7}$   | $(2.5 \pm 0.3) \times 10^{-12}$ |
| $316.6 \pm 0.4$ | $0.6 \pm 0.1$        | $(1.9 \pm 0.1) \times 10^{-6}$   | $(3\pm1)\times10^{-10}$         |
| $333 \pm 1$     | $0.7 \pm 0.1$        | $(5.0 \pm 0.3) \times 10^{-6}$   | $(3\pm1)\times10^{-9}$          |
| $350 \pm 2$     | $0.78 \pm 0.09$      | $(1.19 \pm 0.07) \times 10^{-5}$ | $(3.4 \pm 0.8) \times 10^{-8}$  |
| $358 \pm 2$     | $0.78 \pm 0.08$      | $(1.9 \pm 0.1) \times 10^{-5}$   | $(9\pm2)\times10^{-8}$          |
| $373 \pm 2$     | $0.76 \pm 0.07$      | $(3.9 \pm 0.2) \times 10^{-5}$   | $(5.0 \pm 0.7) \times 10^{-7}$  |

Tabela II. Parâmetros resultantes dos ajustes utilizando o modelo  $2\,$ 



Figura 8. Resistência em função da temperatura



Figura 9. Valores de  $I_r$  em função da temperatura



Figura 10. Valores de  $I_s$  em função da temperatura

|       | $E_g(\mathbf{J})$                                                      | $E_g(\mathbf{eV})$ |
|-------|------------------------------------------------------------------------|--------------------|
| $I_r$ | $(1.58 \pm 0.03) \times 10^{-19}$                                      | $0.99 \pm 0.02$    |
| $I_s$ | $(1.58 \pm 0.03) \times 10^{-19}$<br>$(1.80 \pm 0.05) \times 10^{-19}$ | $1.13 \pm 0.03$    |

Tabela III. Parâmetros resultantes dos ajustes utilizando o modelo 2

existir um valor de  $E_g$ . Para tal, foi necessário realizar várias iterações em que se variava incrementalmente  $E_g$  - igual para os dois ajustes - de modo a se encontrar o valor para o qual a soma dos  $\chi^2$  fosse mínima. O valor de  $E_g$  que satisfez estas condições foi então  $E_g=(1.71\pm0.04)\times10^{-19}J$ , o que corresponde a  $1.07\pm0.03eV$ .

Os ajustes com o valor de  $E_g$  que minimiza  $\chi^2$  podem ser encontrados nas figuras 11 e 12.



Figura 11. Valores de  $I_r$  em função da temperatura em que o ajuste é feito com  $E_g=1.71\times 10^{-19}J$ 



Figura 12. Valores de  $I_s$ em função da temperatura em que o ajuste é feito com  $E_g=1.71\times 10^{-19}J$ 

## 4. ANÁLISE, CRÍTICAS E CONCLUSÃO

Quanto ao primeiro modelo, após a análise dos resultados, observa-se que a expressão da tensão em função da intensidade de corrente por este prevista se ajusta razoavelmente aos pontos obtidos experimentalmente, apesar de em alguns pontos a curva não estar compreendida dentro do valor do erro. Esta discrepância entre a curva teórica e os valores obtidos pode ter origem na impossibilidade de se manter a temperatura constante - existiram flutuações na temperatura da Junção PN enquanto se efectuavam as medições - uma vez que o modelo admite que a temperatura é constante para os vários valores de tensão e intensidade.

Analisando o gráfico da figura 4 verifica-se que a resistência da parte neutra dos condutores cresce com a temperatura, como se poderia prever. Para este modelo obteve-se o valor  $\eta=1.6\pm0.6$ , valor esse que se encontra entre 1 e 2, como seria de esperar para o valor de  $\eta$  utilizado por este modelo. Contudo, verifica-se que o ajuste de b através deste modelo é extremamente insatisfatório, pelo que é posta em causa a validade quer do valor de  $\eta$  quer da parte do modelo responsável pela previsão dos valores de b em função da temperatura. Por outro

lado, a expressão obtida para os valores de c<br/> ajusta-se bastante bem aos valores obtidos experimentalmente. Desse ajuste resultou o valor<br/>  $E_g=(1.42\pm0.03)\times10^{-19}\mathrm{J}$ com um desvio à precisão de 2.45%, o que corresponde a<br/>  $E_g=0.89\pm0.02\mathrm{eV}.$  Sabendo que a Energia da Banda Proibida de um semi<br/>condutor se encontra compreendida entre os 0eV e os 3eV, então conclui-se que o valor obtido para<br/>  $E_g$  é plausível uma vez que estamos na presença de dois semi<br/>condutores.

Relativamente ao segundo modelo, verifica-se mais uma vez que a expressão para a tensão em função da intensidade prevista por este se ajusta adequadamente aos pontos experimentais. Tal como no caso anterior, alguns pontos pelos quais a curva não está compreendida dentro do seu erro, o que se pode atribuir a flutuações térmicas durante as medições. O facto de o ajuste não se adequar completamente aos pontos pode também dever-se a caraterísticas intrínsecas ao modelo, uma vez que aplicados aos mesmos dados este modelo e o anterior produzem resultados de qualidade diferente. Isto é, pode dar-se o caso que, tanto o modelo 1 como o modelo 2 não se adequarem perfeitamente por não serem rigorosos o suficiente, em conjugação com fatores de perturbação externa já apresentados. Por este andar poder-se-ia pensar que o modelo 1, mais simples, descreve melhor o comportamento da Junção PN do que o modelo 2, visto que o ajuste aparenta ser melhor. Contudo verificar-se-á posteriormente que não é isso que acontece.

Quanto à representação gráfica da resistência da parte neutra em função da temperatura, observa-se novamente que a primeira tem tendência a aumentar com a segunda. Analisando agora o ajuste de  $I_r$  em função da temperatura já considetando o valor de  $E_g$  que minimiza o  $\chi^2$  verifica-se que o ajuste é bom. Verifica-se uma qualidade de ajuste semelhante para os valores de  $I_s$  novamente já tendo em conta o valor de  $E_g$  que minimiza a soma dos erros. Esse valor foi de  $E_g = (1.71 \pm 0.04) \times 10^{-19} J$ , o que corresponde a  $1.07 \pm 0.03 eV$  valor esse que cai novamente no intervalo 0eV-3eV.

Se se tomar o valor da Energia de Banda Proibida do silício  $(E_g=1.11\mathrm{eV})$  como o verdadeiro, então para o valor calculado pelo modelo 1 obtém se um desvio à exactidão de 24.7%, e para o valor calculado a partir do modelo 2 tem-se um desvio à exactidão de 3.6% . O facto de o desvio à exactidão para o modelo 2 dar bastante inferior ao do modelo 1, juntamente com a significativa melhor qualidade dos ajustes por parte do modelo 2, leva-nos a concluir que o modelo 2 apresenta, de facto, uma melhor descrição da Junção PN que o modelo 1.

Finalmente, sugere-se que para uma melhor determinação do valor de  $E_g$  se melhore o isolamento térmico da Junção PN, de forma a que a assunção dos modelos de que a temperatura se mantém constante ao longo das medições se verifique.

<sup>[1]</sup> Guia experimental Protocolo de execução do trabalho sobre a determinação das características eléctricas de uma junção PN e sua variação com a temperatura, Professor João Figueirinhas

<sup>[2]</sup> Apontamentos das aulas teóricas, Professor João Figueirinhas