Advanced Microeconomics II Quiz 3

WISE, Xiamen University

Spring 2011

- 1. In the following two-person bargaining game only decimal divisions are possible, i.e. the set of possible divisions are $\{(1,0),(.9,.1),\ldots,(.1,.9),(0,1)\}$. Consider the following stationary strategies: For each player i, player i always proposes $x=(x_1,x_2)$ and accepts a proposal y if and only if $y_i \geq x_i$. (Note that the offer x is the same for every player.)
 - (a) For what divisions of the pie are such stationary strategies sub-game perfect equilibria if $\delta_1 = \delta_2 = .9$?
 - (b) For what divisions of the pie are such stationary strategies sub-game perfect equilibria if $\delta_1 = \delta_2 = .85$?
 - (c) For what divisions of the pie are such stationary strategies sub-game perfect equilibria if $\delta_1 = \delta_2 = .8$?

Solution: For any stationary strategy of this nature to be an equilibrium it is sufficient to check that no player prefers to accept a smaller share of the pie in a period where he accepts or rejects than to wait for his equilibrium share when he makes the offer. That is, if we denote x'_i as the next smallest possible division of the pie that player i could receive then we require that

$$\delta x_i \geq x_i'$$
 for all i .

As δ increases, the possible divisions of the pie that are associated with stationary sub-game perfect equilibria increases. The threshold values of δ_1 and δ_2 indicated in tha table below.

Division	δ_1	δ_2	$\max\{\delta_1,\delta_2\}$
(1,0)	0.9	0	0.9
(0.9,0.1)	0.889	0	0.889
(0.8, 0.2)	0.875	0.5	0.875
(0.7,0.3)	0.857	0.667	0.857
(0.6,0.4)	0.833	0.75	0.833
(0.5, 0.5)	0.8	0.8	0.8
(0.4,0.6)	0.75	0.833	0.833
(0.3,0.7)	0.667	0.857	0.857
(0.2,0.8)	0.5	0.875	0.875
(0.1,0.9)	0	0.889	0.889
(0,1)	0	0.9	0.9

As can be seen from the table: when $\delta_1 = \delta_2 = 0.9$, all divisions of the pie are associated with a stationary sub-game perfect equilibrium; when $\delta_1 = \delta_2 = 0.85$, only (0.6, 0.4), (0.5, 0.5) and (0.4, 0.6) are associated with a stationary sub-game perfect equilibrium; when $\delta_1 = \delta_2 = 0.8$, only (0.5, 0.5) is associated with a stationary sub-game perfect equilibrium.