

Mixing by Patch & Age with Recurrent Mobility for Covid-19

Jesse Knight

Huiting Ma, Amir Ghasemi, Mackenzie Hamilton, Kevin Brown, Sharmistha Mishra

Research Group in Mathematical Modelling and Program Science

2021 Sept 28

Motivation & Background

Research Question

Research Question

Impact of hotspot vs non-hotspot covid-19 vaccine prioritization in Ontario

Transmission Model

- ▶ 513 FSA (first 3 postal code digits) \rightarrow 10 deciles by cumulative cases
- ▶ **12 age** groups: [0-11, 12-15, 16-39, 40-44, ..., 75-79, 80+]
- ▶ **4* contact types**: household, school, work, other
- ► COVID-19 stuff ...

Ontario FSA, stratified by deciles of cumulative covid-19 incidence

COVID-19 incidence by deciles (FSA): consistent differences

Objective

Develop a **mixing matrix** (# contacts formed & with whom) stratified by:

► self decile, *g*

ightharpoonup other decile, g'

contact type, y

► self age, a

ightharpoonup other age, a'

calendar month, *t*

Dimensions: 10 imes 12 imes 10 imes 12 imes 4 imes t

Methods Overview

- 1. Mobility Patterns: gg't
- 2. Age Mixing: aa'y
- 3. Integrated Age & Mobility Mixing: gag'a'yt

Mobility Matrix

Mobility Data

~ 2 % Ontario devices, Jan-Dec 2020

Define:

- ► Household: ~ 150m² tile with most evening time per month
- ► Home FSA: FSA *n* containing Household
- **Visited FSA**: 2+ hours in another FSA n'
- ► Away Time: % time outside Household stratified by Home vs Visited FSA

Repeat for each month t

Mobility Metrics, by FSA n and Month t

 $B_{nn't}^c = \frac{V_{nn't}}{\sum_{n} V_{nn't}}$ **Inter-FSA Mobility**, conditional probability of destination n':

 $\rho_{nt} = \frac{TA_{nt}}{TA_{nt}}$ **Relative Time Away** (TA) from home, vs reference t_0 :

 $\phi_{nt} = \frac{TA_{nt}^{(h)}}{TA}$ **Proportion Time Away in Home FSA** of total Time Away:

Later: aggregate from FSA $n \rightarrow$ decile q

Mobility Metrics: Inter-FSA Mobility

Mobility Metrics: Time Away

Mobility Matrix: Equation

$$B_{gg't} = \underbrace{\rho_{gt}}_{\text{overall mobility intra-decile}} \underbrace{\left[\underbrace{(\phi_{gt}) \, \delta_{gg'}}_{\text{gg'}t} + \underbrace{(1 - \phi_{gt} \, B_{gg't}^c)}_{\text{inter-decile}} \right]}_{\text{inter-decile}}$$

Does inter-FSA mobility $B_{qq'}^c$ change by month?

Does inter-FSA mobility $B_{gg'}^c$ change by month?

Does overall time away per decile ρ_q change by month?

Does % time away within home FSA per decile ϕ_g change by month?

Mobility Matrix: Equation with 1 (or 2) inputs: ρ_t (ϕ_t)

Required: ρ_t , mean overall population mobility (TA vs t_0)

Optional: ϕ_t , proportion of TA within home FSA

$$B_{gg't} = \frac{
ho_t}{
ho_t} R_g^{
ho} \Big[\left(\phi_t R_g^{\phi} \right) \delta_{gg'} + \left(1 - \phi_t R_g^{\phi} B_{gg'}^{c} \right) \Big]$$

ightarrow for projecting beyond available data

Mobility Matrix: 1-input Approximation vs Observed

Mobility Matrix

Mobility Matrix (log scale)

Mobility Matrix: Comment

- ▶ Inter-FSA mobility mainly with similar deciles ($B_{gg'}^c$ clustered near diagonal)
- Most % time away from household within Home FSA ($\phi \approx$ 0.7)
- ► Lowest incidence deciles (g = 9, 10):
 - ► Least mobility reduction (largest R_g^{ρ})
 - ► Most time outside Home FSA (smallest R_g^{ϕ})

Age Mixing

Prem et al (2021): POLYMOD projected onto 177 countries, incl. Canada

Open source: github.com/kieshaprem/synthetic-contact-matrices

Age Mixing, Challenge 1: contacts don't "balance"

Solution

Un-weight by Prem 2021 age group sizes
$$P_a$$
: $C_{aa'y}^u = C_{aa'y} \frac{\bar{p}}{P_{a'}}$

Enforce Symmetry by averaging with transpose:
$$C_{aa'y}^{ub} = \frac{1}{2} \left[C_{aa'y}^{u} + C_{aa'y}^{u}^{T} \right]$$

23

Age Mixing, Challenge 1: balancing contacts

Age Mixing, Challenge 1: balancing contacts

Age Mixing, Challenge 2: age stratifications don't align

Solution

Linear Upsample from 5-year \rightarrow 1-year age groups

Diagonally Pad edges for 80+ age groups

Aggregate 1-year \rightarrow target age groups

Age Mixing, Challenge 2: re-stratify

Age Mixing, Challenge 2: re-stratify

Age Mixing, Challenge 2: re-stratify

Age Mixing: total contacts by age group

Mobility Matrix: Comment

- Adapting to different demographic structure: like Arregui et al. (2018)
- New contributions: re-sampling strategy & diagonal padding
- Horizontal streaks are expected: due to unequal age groups

Combined Mixing

Home Pools: contacts with Home FSA only $(h_y)\delta_{gg'}$

- Mobile at Home: within Home FSA $(1 h_y)B_{g=g'}$
- ► Mobile Away: outside Home FSA $(1 h_V)B_{a \neq a'}$

Home Pools: contacts with Home FSA only $(h_y)\delta_{gg'}$

- Mobile at Home: within Home FSA $(1 h_y)B_{g=g'}$
- Mobile Away: outside Home FSA $(1 h_y)B_{q \neq q'}$

Home Pools: contacts with Home FSA only $(h_y)\delta_{gg'}$

- Mobile at Home: within Home FSA $(1 h_y)B_{g=g'}$
- ► Mobile Away: outside Home FSA $(1 h_v)B_{a \neq a'}$

Home Pools: contacts with Home FSA only $(h_y)\delta_{gg'}$

- ► **Mobile at Home**: within Home FSA $(1 h_y)B_{g=g'}$
- Mobile Away: outside Home FSA $(1 h_v)B_{a \neq a'}$

Home Pools: contacts with Home FSA only $(h_y)\delta_{gg'}$

- ► **Mobile at Home**: within Home FSA $(1 h_y)B_{g=g'}$
- Mobile Away: outside Home FSA $(1 h_y)B_{a \neq a'}$

Mixing Pools as microcosms: Travel pool g^*

Who is here:
$$P_{gay}^{g^*} = (1 - h_y)B_{gg^*}P_{ga}$$

Proportionate mixing of groups:
$$X_{gag'a'y}^{g^*r} = \frac{P_{gay}^{g^*} \otimes P_{g'a'y}^{g^*}}{\sum_{g'a'} P_{g'a'y}^{g^*}}$$

Contacts by age applied on top:
$$X_{gag'a'y}^{g^*} = X_{gag'a'y}^{g^*r} C_{aa'y}^{ub} w_{a'}^{-1}$$

Home pool g^* : same, except $(1-h_y)B_{gg^*} o (h_y)\delta_{gg^*}$

Total contacts across mixing pools

Total # Contacts

$$X_{gag'a'y} = \underbrace{X_{gag'a'y}^h}_{\text{home pool}} + \underbrace{\sum_{g^*} X_{gag'a'y}^{g^*}}_{\text{travel pools}}$$

$$\Rightarrow \begin{array}{c} \text{g, g', a, a', y, t, c} \\ 1, 1, <4, <4, \text{ household, Jan, 0.592} \\ 1, 1, <4, <4, \text{ household, Feb, 0.541} \\ 1, 1, <4, <4, \text{ household, Mar, 0.604} \\ \end{array}$$

Contacts per Person

$$C_{gag'a'y} = \frac{X_{gag'a'y}}{P_{ga}}$$

Contacts per person: age vs age (a, a')

Contacts per person: decile vs decile (g, g')

10.0

7.5 5.0

2.5

Contacts per person: all types (y)

Combined Mixing: Comment

- ► Recurrent mobility approach: like Arenas et al. (2020)
- ▶ Recurrent mobility allows people from A & B to mix in C → connectivity is greater than mobility would suggest
- ▶ New contributions: home vs travel pools, combined age mixing, balancing

Next Steps

- ► Validation of # contacts with COVID-19 surveys (BC Mix, CONNECT)
- Scaling contacts by decile for model fitting

Thanks

Kristy Yiu, Gary Moloney, Linwei Wang

