Quantiles STAT-S520

Arturo Valdivia

02-14-23

Quantile

Let X be a random variable and $\alpha \in (0,1)$. Let $q = q(X; \alpha)$ a function such that:

$$P(X < q) \le \alpha$$
 and $P(X > q) \le 1 - \alpha$

then q is called the α -quantile of X.

Example 1:

Let $X \sim \textit{Uniform}(0,2)$, let's find the 0.6-quantile of X.

Example 2:

Let $Y \sim Normal(10, 25)$, let's find the 0.6-quantile of Y. In R we use qnorm().


```
qnorm(p = 0.6, mean = 10, sd = sqrt(25))
```

Example 3:

Let X be discrete with PMF

$$f(x) = \begin{cases} 0.4 & x = 1 \\ 0.4 & x = 2 \\ 0.2 & x = 3 \\ 0 & \text{otherwise} \end{cases}$$

What are the 0.6, 0.7, and 0.8-quantiles of X?

Note

- If the random variable is continuous, there is a single q for each α (one-to-one correspondence).
- ▶ If the random variable is discrete, the one-to-one breaks down for certain regions, for both q and α .

Commonly used terminology

- Quartiles: $q_1(X)$, $q_2(X)$, and $q_3(X)$
 - ▶ They divide the range of *X* in four equal parts.
 - ► E.g., the first quartile is the 0.25-quantile
 - ▶ The median is the second quartile, $q_2(X)$
- ▶ Percentiles: They divide the range of *X* in 100 equal parts
 - ► There are 99 percentiles: the 1st, 2nd, ..., 99th.
 - ► E.g., the 57th percentile is the 0.57-quantile
- ightharpoonup The interquartilerange (IQR) of X is

$$iqr(X) = q_3(X) - q_1(X)$$

Example 4:

Let $Y \sim \textit{Normal}(10, 25)$, let's find the 83th percentile and the IQR of Y

Symmetry

Let X be a continuous random variable with PDF f. If there exists a value $\theta \in \mathbb{R}$ such that

$$f(\theta + x) = f(\theta - x)$$

for every $x \in \mathbb{R}$, then X is a symmetric random variable and θ is its center of symmetry

► If Y is not symmetric, there is not a single way to measure centrality

Theorem 6.1

Let X be a random variable with population median q_2 and population mean $\mu = EX$. Then

- 1. The value of c that minimizes E|X-c| is $c=q_2$
- 2. The value of c that minimizes $E(X-c)^2$ is c=EX

ISI 6.4 Exercise 2

ISI 6.4 Exercise 7