A host of prediction problems

Machine learning versus Algorithms

A central goal of both fields:

develop procedures that exhibit a desired input-output behavior.

- Algorithms: input-output mapping can be precisely defined.
 Input: Graph G, two nodes u, v in the graph.
 Output: Shortest path from u to v in G
- Machine learning: mapping cannot easily be made precise.
 Input: Picture of an animal.
 Output: Name of the animal.

Instead, provide examples of (input,output) pairs. Ask the machine to *learn* a suitable mapping itself.

Prediction problems: inputs and outputs

Basic terminology:

- The input space, \mathcal{X} . E.g. 32×32 RGB images of animals.
- The output space, \mathcal{Y} . E.g. Names of 100 animals.

y: "bear"

After seeing a bunch of examples (x, y), pick a mapping

$$f: \mathcal{X} \to \mathcal{Y}$$

that accurately recovers the input-output pattern of the examples.

Categorize prediction problems by the type of **output space**: (1) discrete, (2) continuous, or (3) probability values

Discrete output space: classification

Binary classification

E.g., Spam detection $\mathcal{X} = \{\text{email messages}\}\$ $\mathcal{Y} = \{\text{spam, not spam}\}\$

Multiclass

E.g., News article classification $\mathcal{X} = \{ \text{news articles} \}$ $\mathcal{Y} = \{ \text{politics}, \text{business}, \text{sports}, \ldots \}$

Structured outputs

E.g., Parsing $\mathcal{X} = \{\text{sentences}\}\$ $\mathcal{Y} = \{\text{parse trees}\}\$

x = "John hit the ball"

Continuous output space: regression

Pollution level prediction

Predict tomorrow's air quality index in my neighborhood $\mathcal{Y} = [0, \infty)$ (< 100: okay, > 200: dangerous)

Insurance company calculations

What is the expected life expectancy of this person? $\mathcal{Y} = \left[0, 120\right]$

What are suitable predictor variables (\mathcal{X}) in each case?

Probability estimation

 $\mathcal{Y} = [0, 1]$ represents **probabilities**

Example: Credit card transactions

- x =details of a transaction
- y = probability this transaction is fraudulent

Why not just treat this as a binary classification problem?

Roadmap for the course

- Solving prediction problems
 Classification, regression, probability estimation
- **2** Representation learning Clustering, projection, dictionary learning, autoencoders
- Oeep learning