AP Calculus AB Practice: Accumulation Functions

AP® CALCULUS AB 2001 SCORING GUIDELINES

Question 3

A car is traveling on a straight road with velocity 55 ft/sec at time t=0. For $0 \le t \le 18$ seconds, the car's acceleration a(t), in ft/sec², is the piecewise linear function defined by the graph above.

- (a) Is the velocity of the car increasing at t=2 seconds? Why or why not?
- (b) At what time in the interval $0 \le t \le 18$, other than t = 0, is the velocity of the car 55 ft/sec? Why?
- (c) On the time interval $0 \le t \le 18$, what is the car's absolute maximum velocity, in ft/sec, and at what time does it occur? Justify your answer.
- (d) At what times in the interval $0 \le t \le 18$, if any, is the car's velocity equal to zero? Justify your answer.

AP® CALCULUS AB 2002 SCORING GUIDELINES (Form B)

Question 4

The graph of a differentiable function f on the closed interval [-3,15] is shown in the figure above. The graph of f has a horizontal tangent line at x=6. Let

$$g(x) = 5 + \int_{6}^{x} f(t) dt$$
 for $-3 \le x \le 15$.

- (b) On what intervals is g decreasing? Justify your answer.
- (c) On what intervals is the graph of g concave down? Justify your answer.
- (d) Find a trapezoidal approximation of $\int_{-3}^{15} f(t) \, dt$ using six subintervals of length $\Delta t = 3$.

AP® CALCULUS AB 2002 SCORING GUIDELINES

Question 4

The graph of the function f shown above consists of two line segments. Let g be the function given by $g(x) = \int_0^x f(t) dt$.

- (a) Find g(-1), g'(-1), and g''(-1).
- (b) For what values of x in the open interval $\left(-2,2\right)$ is g increasing? Explain your reasoning.
- (c) For what values of x in the open interval $\left(-2,2\right)$ is the graph of g concave down? Explain your reasoning.
- (d) On the axes provided, sketch the graph of g on the closed interval [-2,2].

AP® CALCULUS AB 2003 SCORING GUIDELINES (Form B)

Question 5

Let f be a function defined on the closed interval [0,7]. The graph of f, consisting of four line segments, is shown above. Let g be the function given by $g(x) = \int_2^x f(t) \, dt$.

- (b) Find the average rate of change of g on the interval $0 \le x \le 3$.
- (c) For how many values c, where 0 < c < 3, is g'(c) equal to the average rate found in part (b)? Explain your reasoning.
- (d) Find the x-coordinate of each point of inflection of the graph of g on the interval 0 < x < 7. Justify your answer.

AP® CALCULUS AB 2003 SCORING GUIDELINES

Question 4

Let f be a function defined on the closed interval $-3 \le x \le 4$ with f(0) = 3. The graph of f', the derivative of f, consists of one line segment and a semicircle, as shown above.

- (a) On what intervals, if any, is f increasing? Justify your answer.
- (b) Find the x-coordinate of each point of inflection of the graph of f on the open interval -3 < x < 4. Justify your answer.
- (c) Find an equation for the line tangent to the graph of f at the point (0,3).
- (d) Find f(-3) and f(4). Show the work that leads to your answers.

AP® CALCULUS AB 2001 SCORING GUIDELINES

Question 3

A car is traveling on a straight road with velocity 55 ft/sec at time t = 0. For $0 \le t \le 18$ seconds, the car's acceleration a(t), in ft/sec², is the piecewise linear function defined by the graph above.

- (a) Is the velocity of the car increasing at t = 2 seconds? Why or why not?
- (b) At what time in the interval $0 \le t \le 18$, other than t = 0, is the velocity of the car 55 ft/sec? Why?
- (c) On the time interval $0 \le t \le 18$, what is the car's absolute maximum velocity, in ft/sec, and at what time does it occur? Justify your answer.
- (d) At what times in the interval $0 \le t \le 18$, if any, is the car's velocity equal to zero? Justify your answer.
- (a) Since v'(2) = a(2) and a(2) = 15 > 0, the velocity is increasing at t = 2.

1: answer and reason

(b) At time t = 12 because $v(12) - v(0) = \int_0^{12} a(t) dt = 0.$

 $2: \left\{ \begin{array}{l} 1: t = 12\\ 1: \text{reason} \end{array} \right.$

(c) The absolute maximum velocity is 115 ft/sec at t = 6.

The absolute maximum must occur at t = 6 or at an endpoint.

$$v(6) = 55 + \int_0^6 a(t) dt$$

$$= 55 + 2(15) + \frac{1}{2}(4)(15) = 115 > v(0)$$

$$\int_6^{18} a(t) dt < 0 \text{ so } v(18) < v(6)$$

 $4: \begin{cases} 1: t=6 \\ 1: \text{absolute maximum velocity} \\ 1: \text{identifies } t=6 \text{ and} \\ t=18 \text{ as candidates} \\ \text{or} \\ \text{indicates that } v \text{ increases}, \\ \text{decreases, then increases} \\ 1: \text{eliminates } t=18 \end{cases}$

(d) The car's velocity is never equal to 0. The absolute minimum occurs at t=16 where

$$v(16) = 115 + \int_{6}^{16} a(t) dt = 115 - 105 = 10 > 0.$$

 $2: \begin{cases} 1: \text{answer} \\ 1: \text{reason} \end{cases}$

AP® CALCULUS AB 2002 SCORING GUIDELINES (Form B)

Question 4

The graph of a differentiable function f on the closed interval [-3,15] is shown in the figure above. The graph of f has a horizontal tangent line at x=6. Let

$$g(x) = 5 + \int_{6}^{x} f(t) dt$$
 for $-3 \le x \le 15$.

- (a) Find g(6), g'(6), and g''(6).
- (b) On what intervals is g decreasing? Justify your answer.
- (c) On what intervals is the graph of g concave down? Justify your answer.
- (d) Find a trapezoidal approximation of $\int_{-3}^{15} f(t) dt$ using six subintervals of length $\Delta t = 3$.

(a)
$$g(6) = 5 + \int_{6}^{6} f(t) dt = 5$$

 $g'(6) = f(6) = 3$
 $g''(6) = f'(6) = 0$

$$3 \begin{cases} 1 : g(6) \\ 1 : g'(6) \\ 1 : g''(6) \end{cases}$$

(b)
$$g$$
 is decreasing on $[-3,0]$ and $[12,15]$ since $g'(x) = f(x) < 0$ for $x < 0$ and $x > 12$.

$$\begin{cases}
1: [-3,0] \\
1: [12,15] \\
1: justification
\end{cases}$$

(c) The graph of g is concave down on (6,15) since g' = f is decreasing on this interval.

$$2 \left\{ \begin{array}{l} 1: interval \\ 1: justification \end{array} \right.$$

(d)
$$\frac{3}{2}(-1+2(0+1+3+1+0)-1)$$

= 12

1 : trapezoidal method

AP® CALCULUS AB 2002 SCORING GUIDELINES

Question 4

The graph of the function f shown above consists of two line segments. Let g be the function given by $g(x) = \int_0^x f(t) dt$.

(b) For what values of x in the open interval $\left(-2,2\right)$ is g increasing? Explain your reasoning.

(d) On the axes provided, sketch the graph of g on the closed interval [-2,2].

(a)
$$g(-1) = \int_0^{-1} f(t) dt = -\int_{-1}^0 f(t) dt = -\frac{3}{2}$$

 $g'(-1) = f(-1) = 0$
 $g''(-1) = f'(-1) = 3$

 $3 \begin{cases} 1: & g(-1) \\ 1: & g'(-1) \\ 1: & g''(-1) \end{cases}$

(b)
$$g$$
 is increasing on $-1 < x < 1$ because $g'(x) = f(x) > 0$ on this interval.

 $2 \begin{cases} 1: \text{ interval} \\ 1: \text{ reason} \end{cases}$

(c) The graph of
$$g$$
 is concave down on $0 < x < 2$ because $g''(x) = f'(x) < 0$ on this interval.

or
because $g'(x) = f(x)$ is decreasing on this interval.

 $2 \begin{cases} 1: \text{ interval} \\ 1: \text{ reason} \end{cases}$

Y Company

(d)

 $2 \begin{cases} 1: & g(-2) = g(0) = g(2) = 0 \\ 1: & \text{appropriate increasing/decreasing} \\ & \text{and concavity behavior} \\ & < -1 > \text{vertical asymptote} \end{cases}$

AP® CALCULUS AB 2003 SCORING GUIDELINES (Form B)

Question 5

Let f be a function defined on the closed interval [0,7]. The graph of f, consisting of four line segments, is shown above. Let g be the function given by $g(x) = \int_{0}^{x} f(t) dt$.

- (a) Find g(3), g'(3), and g''(3).
- (b) Find the average rate of change of g on the interval $0 \le x \le 3$.
- (c) For how many values c, where 0 < c < 3, is g'(c) equal to the average rate found in part (b)? Explain your reasoning.
- (d) Find the x-coordinate of each point of inflection of the graph of g on the interval 0 < x < 7. Justify your answer.
- (a) $g(3) = \int_2^3 f(t) dt = \frac{1}{2} (4+2) = 3$ g'(3) = f(3) = 2 $g''(3) = f'(3) = \frac{0-4}{4-2} = -2$

- $3: \begin{cases} 1: g(3) \\ 1: g'(3) \\ 1: g''(3) \end{cases}$
- (b) $\frac{g(3) g(0)}{3} = \frac{1}{3} \int_0^3 f(t) dt$ $= \frac{1}{3} \left(\frac{1}{2} (2)(4) + \frac{1}{2} (4+2) \right) = \frac{7}{3}$
- 2: $\begin{cases} 1: g(3) g(0) = \int_0^3 f(t) dt \\ 1: \text{answer} \end{cases}$
- (c) There are two values of c.

 We need $\frac{7}{3} = g'(c) = f(c)$ The graph of f intersects the line $y = \frac{7}{3}$ at two places between 0 and 3.
- $2: \begin{cases} 1 : \text{answer of } 2 \\ 1 : \text{reason} \end{cases}$

Note: 1/2 if answer is 1 by MVT

- (d) x = 2 and x = 5because g' = f changes from increasing to decreasing at x = 2, and from decreasing to increasing at x = 5.
- $2: \left\{ \begin{array}{l} 1: x=2 \text{ and } x=5 \text{ only} \\ \\ 1: \text{justification} \\ \\ \text{(ignore discussion at } x=4) \end{array} \right.$

AP® CALCULUS AB 2003 SCORING GUIDELINES

Question 4

Let f be a function defined on the closed interval $-3 \le x \le 4$ with f(0) = 3. The graph of f', the derivative of f, consists of one line segment and a semicircle, as shown above.

- (a) On what intervals, if any, is f increasing? Justify your answer.
- (b) Find the x-coordinate of each point of inflection of the graph of f on the open interval -3 < x < 4. Justify your answer.
- (c) Find an equation for the line tangent to the graph of f at the point (0,3).
- (d) Find f(-3) and f(4). Show the work that leads to your answers.
- (a) The function f is increasing on [-3,-2] since f'>0 for $-3\leq x<-2$.
- $2: \begin{cases} 1 : interval \\ 1 : reason \end{cases}$
- (b) x = 0 and x = 2 f' changes from decreasing to increasing at x = 0 and from increasing to decreasing at x = 2
- $2: \left\{ \begin{array}{l} 1: x = 0 \text{ and } x = 2 \text{ only} \\ 1: \text{justification} \end{array} \right.$

(c) f'(0) = -2Tangent line is y = -2x + 3. 1 : equation

4:

(d)
$$f(0) - f(-3) = \int_{-3}^{0} f'(t) dt$$

= $\frac{1}{2}(1)(1) - \frac{1}{2}(2)(2) = -\frac{3}{2}$

$$\begin{cases}
1: \pm \left(\frac{1}{2} - 2\right) \\
\text{(difference of areas of triangles)}
\end{cases}$$

$$f(-3) = f(0) + \frac{3}{2} = \frac{9}{2}$$

1: answer for f(-3) using FTC

$$f(4) - f(0) = \int_0^4 f'(t) dt$$
$$= -\left(8 - \frac{1}{2}(2)^2 \pi\right) = -8 + 2\pi$$

1:
$$\pm \left(8 - \frac{1}{2}(2)^2 \pi\right)$$

(area of rectangle

– area of semicircle)

$$f(4) = f(0) - 8 + 2\pi = -5 + 2\pi$$

1 : answer for f(4) using FTC