

FACULTY OF HEALTH SCIENCES - SCHOOL OF MEDICINE

MSc Health Statistics and Data Analytics

Survival Analysis

Eirini Pagkalidou, PhDc pagalidou@auth.gr

Learning objectives

Understand what survival data is and how to handle censoring

Prepare survival curves using the life table and Kaplan-Meier methods

Estimate median survival times and survival rates at specified times

 Compare survival curves between two or more groups using the logrank test

Survival Analysis

Also called "time to event analysis"

Survival Time is defined as the **time** starting from an already defined point to the occurrence of the event of interest (survival time).

Examples:

- time to death
- time to cancer metastasis
- time to failure of a light bulb
- time to complete a PhD

- Survival time is almost never normally distributed.
- In many studies, some of the times to an event are not recorded (for various reasons) — These observations are called censored, and the corresponding phenomenon is called censoring.
- Thus, such data cannot be handled by already known parametric or non-parametric methods.

- **Censoring** is present when there is incomplete information about a subject's event time, but we don't know the exact event time.
- The most common case is having right censoring

- ✓ A person does not experience the event before the study ends
- ✓ A person is lost to follow-up during the study period or withdraws from the study

Survival Function *S(t)*=pr(T > t)

• Is the probability that a subject survives longer than time t.

Example: If t=100 years, S(t=100) = probability of surviving beyond 100 years.

• The graphical representation of S(t) is known as survival curve (Kaplan-Meier Curve).

Assumptions

- Observations should be independent
- Groups (if there are any) should be independent
- Accurate time calculation
- In the case of two or more groups, curves should not intersect with each other.

Example for the construction of a Kaplan-Meier Curve

Example:

Survival analysis for patients with different types of cancer

Group A: Astrocytoma (n=20)

6,13,21,30, 31+,37,38, 47+,49,50,63,79,80+,82+,82+,86,98,149+,202,219 weeks

Group B: Glioblastoma (n=20)

10,10,12,15,16,20,24,25,28,30,34+,35,37,40+,48,70+,91,112,181,220 weeks

+ censored data

Life table-Group A

Time (weeks) i	Live at start n _i	Died d _i	Cen sor ed	At risk	Probability of surviving (n _i -d _i)/n _i	Cumulative Probability $S(t_i)=((n_i-d_i)/n_i)^*S(t_{i-1})$
1	20	О	О	20	1=(20-0)/20	1
6	20	1	О	19	0.950=(20-1)/20	0.950
13	19	1	0	18	0.947=(19-1)/19	0.947*0.950=0.90
21	18	1	0	17	0.944=(18-1)/18	0.944*0.90=0.85
30	17	1	0	16	0.941=(17-1)/17	0.941*0.85=0.80
31	16	О	1	16	1=(16-0)/16	1*0.80=0.80
37	15	1	О	14	0.933=(15-1)/15	0.933*0.80=0.75
••••						

Comparison of two survival curves

Log-Rank Test

We use log-rank test to compare survival curves

This is a non parametric test

 H_0 : There is no difference between the curves

H₁: There is a difference between the curves

Log-rank test gives p=0.203>0.05 thus there is no significant difference between the two survival curves.

