

The 48th International Biometrical Colloquium in Honour of 90th Birthday of Professor Tadeusz Caliński and

VI Polish – Portuguese Workshop on Biometry Szamotuły, Poland, 9 – 13 September 2018

Distribution of the product of two normal variables. A state of the Art

Amílcar Oliveira ^{2,3} Teresa Oliveira ^{2,3} Antonio Seijas-Macías ^{1,3}

¹Department of Economics. Universidade da Coruña (Spain)

²Department of Sciences and Technology. Universidade Aberta (Lisbon), Portugal.

³Center of Statistics and Applications, University of Lisbon (Portugal).

September, 2018

Outline

- INTRODUCTION
- FIRST APPROACHES
- ROHATGI'S THEOREM
- COMPUTATIONAL TECHNIQUES
- **5** RECENT ADVANCES

Introduction

- Normal distribution: the most common in Theory of Probability.
- Applications to the real world: biology, psychology, physics, economics,... .
- Density function (PDF): $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$, where μ is the mean and σ is the standard deviation (σ^2 is the variance).
- Distribution function (CDF): $F(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) \right]$, where the error function is: $\operatorname{erf}(t) = \frac{2}{\sqrt{\pi}} \int_0^t e^{-y^2} \mathrm{d}y$.

Normal Distribution N(0,1)

Abraham de Moivre (1667-1754)

Carl F. Gauss (1777-1855)

Introduction

- Several distributions are derived from normal distribution: Chi-square or t distribution are the most famous.
- Relation with other distributions (exponential, uniform, ...) is known.
- Let X and Y be two normally distributed variables with means μ_X and μ_Y and variances σ_X^2, σ_Y^2 ,
- Sum X+Y is normally distributed with mean $\mu_x + \mu_y$ and variance $\sigma_x^2 + \sigma_y^2$, when there is no correlation.
- When there exists correlation (ρ), variance of the sum is $\sigma_x^2 + \sigma_y^2 + 2\rho\sigma_x\sigma_y$.
- The product of two variables was not be able to characterize like the sum and remains like an open problem.

First Historical Approach

- Wishart and Bartlett (1932): The product of two independent normal variables is directly
 proportional to a second class Bessel function with a zero-order pure imaginary argument
 [WB32]
- Craig (1936): Let be two normal variables $X \sim N(\mu_X, \sigma_X)$ and $Y \sim N(\mu_Y, \sigma_Y)$, and correlation coefficient ρ_{xy} and the inverse of the variation coefficient: $r_X = \frac{\mu_X}{\sigma_X}$ and $r_Y = \frac{\mu_Y}{\sigma_Y}$. Then we could deduce the moment-generating function.[Cra36]

$$M_{xy}(t) = \frac{\exp\left[\frac{(r_x^2 + r_y^2 - 2\rho_{xy}r_xr_y)t^2 + 2r_xr_yt}{2(1 - (1 + \rho_{xy})t)(1 - (1 - \rho_{xy})t))}\right]}{((1 - (1 + \rho_{xy})t)(1 - (1 - \rho_{xy})t))^{1/2}}$$
(1)

- The product of two normal variables might be a non-normal distribution
- Skewness is $(-2\sqrt{2}, +2\sqrt{2})$, maximum kurtosis value is 12
- The function of density of the product is proportional to a Bessel function and its graph is asymptotical at zero.

Figure: Examples of the product of two Normal Variables with $\rho=0$ Craig (red -dashed) and MonteCarlo Simulation (blue)

Advances in 50's in 20th Century

- Aroian (1947): Type III Pearson function or Gram-Charlier Type A series ([Aro47]) .
- Limitations: $\rho = 0$, the Type III Pearson requires $\mu_X \neq 0$ or $\mu_Y \neq 0$, Gram-Charlier approach has a very limited range of applicability.
- Advantages: There is no discontinuity at zero.

Theorem ([ATC78], p. 167)

Let X and Y be two normally distributed variables with mean μ_x, μ_y , variances σ_x^2, σ_y^2 and correlation coefficient ρ . Let be $r_x = \frac{\mu_x}{\sigma_x}$ and $r_y = \frac{\mu_y}{\sigma_y}$. Distribution function of $Z = \frac{xy}{\sigma_x\sigma_y}$ is

$$F_Z(z) = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty \phi(z, r_x, r_y, \rho, t) dt,$$
 (2)

$$\begin{split} & \text{where } \phi(z, r_x, r_y, \rho, t) = \\ & \frac{1}{t} \frac{1}{G} \exp\left(-\frac{(H + 4\rho r_x r_y)t^2 + (1 - \rho^2)Ht}{2G^2}\right) * \left\{ \left[\left(\frac{G + I}{2}\right)^{1/2} \sin A \right] - \left[\left(\frac{G - I}{2}\right)^{1/2} \cos A \right] \right\}, \text{ with } \\ & A = \left(t \left(y - \frac{r_1 r_2 I - \rho Ht^2}{G^2}\right)\right), G^2 = (1 + (1 - \rho^2)t^2)^2 + 4\rho^2 t^2, \ H = r_1^2 + r_2^2 - 2\rho r_1 r_2 \text{ and } \\ & I = 1 + (1 - \rho^2)t^2. \end{split}$$

Figure: Examples of the Product of two normal variables no correlated: Gram-Charlier (green - pointed), Pearson Type III (red - dashed) y MonteCarlo simulation (blue)

Rohatgi's Theorem [Roh76]

Theorem ([GLD04], p.452-453)

Let X be a continuous random variable with PDF f(x) definite and positive in (a,b), with $0 < a < b < \infty$. Let Y be a random variable with PDF g(y), definite and positive in (c,d), with $0 < c < d < \infty$. Then, PDF of Z = XY is

■ When ad < bc:</p>

$$h(z) = \left\{ \begin{array}{l} \int_{a}^{z/c} g\left(\frac{z}{x}\right) f(x) \frac{1}{x} dx & ac < z < ad \\ \int_{z/d}^{z/c} g\left(\frac{z}{x}\right) f(x) \frac{1}{x} dx & ad < z < bc \\ \int_{z/d}^{b} g\left(\frac{z}{x}\right) f(x) \frac{1}{x} dx & bc < z < bd \end{array} \right.$$

● When ad = bc

$$h(z) = \begin{cases} \int_a^{z/c} g\left(\frac{z}{x}\right) f(x) \frac{1}{x} dx & ac < z < ad \\ \int_{z/d}^b g\left(\frac{z}{x}\right) f(x) \frac{1}{x} dx & ad < z < bd \end{cases}$$

When ad > bc

$$h(z) = \left\{ \begin{array}{ll} \int_a^{z/c} g\left(\frac{z}{x}\right) f(x) \frac{1}{x} dx & ac < z < ad \\ \int_a^b g\left(\frac{z}{x}\right) f(x) \frac{1}{x} dx & bc < z < ad \\ \int_{z/d}^b g\left(\frac{z}{x}\right) f(x) \frac{1}{x} dx & ad < z < bd \end{array} \right.$$

Application Rohatgi's Theorem

- Only for PDF of random variables in first quadrant, but generalization to other quadrants is straightforward.
- The PDF of the product is not defined at zero.
- Range for normal distribution must be bounded.
- Very good approach for the product of two independent N(0,1) distributions:

$$h(z) = \begin{cases} \frac{\kappa_0(-z)}{\pi} & -\infty < z < 0\\ \frac{\kappa_0(z)}{\pi} & 0 < z < \infty \end{cases}$$

where $K_0(\cdot)$ is the modified second class Bessel function.

Figure: Examples of Product of two independent normal distributions: Rohatgi's Theorem Approach (blue) and MonteCarlo Simulation (red)

Advances in early 21st Century

Ware and Lad (2003): A bivariate independent normal distribution [WL03]:

$$\left[\begin{array}{c} X \\ Y \end{array}\right] \sim N \left(\left[\begin{array}{c} \mu_{x} \\ \mu_{y} \end{array}\right], \left[\begin{array}{cc} \sigma_{x}^{2} & 0 \\ 0 & \sigma_{y}^{2} \end{array}\right] \right]$$

Marginal density f(z) would be:

$$f(z) = \int_{-\infty}^{\infty} f(z|y)f(y)dy = \int_{-\infty}^{\infty} f(z,y)dy$$
 (3)

- Approach using numerical integration: Newton-Cotes
- Simulation with MonteCarlo method
- Analytical approach using normal distribution: Moment-generating Function:

$$\mu_{z} = \mu_{x}\mu_{y} + \rho\sigma_{x}\sigma_{y} \tag{4}$$

$$\sigma_z^2 = \mu_x^2 \sigma_y^2 + \mu_y^2 \sigma_x^2 + \sigma_x^2 \sigma_y^2 + 2\rho \mu_x \mu_y \sigma_x \sigma_y + \rho^2 \sigma_x^2 \sigma_y^2$$
 (5)

For the case of two independent normally distributed variables, the limit distribution of the product is normal. These approach follows the evolution of ratio (mean/standard deviation), but some important questions remain open [WL03]:

- When the ratio mean/standard deviation is enough to guarantee the normal approach for the product.
- Approximation to normality is more sensitive for individual ratios or combined ratio.
- How is the evolution of the skewness of the product, when is null? Is there a level for skewness and normality of product

Approach to the Product of Two Normal Variables

Let X and Y be two variables normales with parameter: μ_x, σ_x^2 and $r_x = \frac{\mu_x}{\sigma_x}$ and μ_y, σ_y^2 and $r_y = \frac{\mu_y}{\sigma_y}$. Then [SMO12] :

- When two variables have unit variance ($\sigma^2 = 1$), with different mean, normal approach is a good option for means greater than 1. But, when the mean is lower, normal approach is not correct.
- When two variables have unit mean $(\mu = 1)$, with different variance, normal approach requires that, at least, one variable has a variance lower than 1.
- When, at least, one of the inverse of the variation coefficient δ_x or δ_y is high, then normal approach is correct.
- When two normal distributions have same variance $\sigma_x^2 = \sigma_y^2 = \sigma^2$, we define combined ratio as $\frac{\mu_x \mu_y}{\sigma}$, then a high value for combined ratio produce a good normal approach for product, but when combined ratio is lower than 1, the normal approach fails [OOSM13].

Figure: Examples of Product of two independent normal distributions: Numerical Integration (blue), MonteCarlo Simulation (red), Normal Approach (green)

Figure: Examples of Product of two independent normal distributions: Numerical Integration (blue), MonteCarlo Simulation (red), Normal Approach (green)

Recent Publications

Theorem ([NP16] p. 202)

Let (X, Y) be a bivariate normal distribution random vector with mean zero and variance one and correlation coefficient ρ . Then, PDF of Z = XY is

$$f_Z(z) = \frac{1}{\pi\sqrt{1-\rho^2}} \exp\left[\frac{\rho z}{1-\rho^2}\right] K_0\left(\frac{|z|}{1-\rho^2}\right)$$
 (6)

for $-\infty < z < \infty$, where $K_0(\cdot)$ is second class zero order modified Bessel function.

Recent Publications

Theorem ([Cui+16], pp.1662-1663)

Let X and Y two real Gaussian random variables $X \sim N(\mu_x, \sigma_x)$ and $Y \sim N(\mu_y, \sigma_y)$ with ρ the correlation coefficient. Then the exact PDF $f_Z(z)$ of the product Z = XY is given by:

$$\exp\left\{-\frac{1}{2(1-\rho^{2}}\left(\frac{\mu_{x}^{2}}{\sigma_{x}^{2}} + \frac{\mu_{y}^{2}}{\sigma_{y}^{2}} - \frac{2\rho(x + \mu_{x}\mu_{y})}{\sigma_{x}\sigma_{y}}\right)\right\} \times \sum_{n=0}^{\infty} \sum_{m=0}^{2n} \frac{x^{2n-m}|x|^{m-n}\sigma_{x}^{m-n-1}}{\pi(2n)!(1-\rho^{2})^{2n+1/2}\sigma_{y}^{m-n+1}}\left(\frac{\mu_{x}}{\sigma_{x}^{2}} - \frac{\rho\mu_{y}}{\sigma_{x}\sigma_{y}}\right)^{m} \\ \binom{2n}{m} \times \left(\frac{\mu_{y}}{\sigma_{y}^{2}} - \frac{\rho\mu_{x}}{\sigma_{x}\sigma_{y}}\right)^{2n-m} K_{m-n}\left(\frac{|x|}{(1-\rho^{2})\sigma_{x}\sigma_{y}}\right)$$

where $K_{\nu}(\cdot)$ denotes the modified Bessel function of the second kind and order ν .

Final Summary

- First Approaches: Bessel Function Product of two independent standard normal distributions.
- Moment-generating function of the product
- New Options: Pearson Function Type III Gram-Charlier Series Type
 A.
- Rohatgi's Theorem.
- Alternatives approaches:
 - Approach using functions: Bessel, Pearson, Gram-Charlier Series, ...
 - Approach to normal distribution: mean and variance of the product, skewness and kurtosis.
 - Approach using numerical integration methods.
- Future: Alternative distributions: Skew-Normal, Extended Skew-Normal, ...

References: I

- [Aro47] Leo A. Aroian. "The probability function of the product of two normally distributed variables". In: *The Annals of Mathematical Statistics* 18.2 (1947), pp. 265–271.
- [ATC78] Leo A. Aroian, Vidya S. Taneja, and Larry W. Cornwell. "Mathematical Forms of the Distribution of the Product of Two Normal Variables". In: Communications in Statistics - Theory and Methodology A7.2 (1978), pp. 165–172.
- [Cra36] Cecil C. Craig. "On the Frequency of the function xy". In: The Annals of Mathematical Statistics 7 (1936), pp. 1–15.
- [Cui+16] Guolong Cui et al. "Exact Distribution for the Product of Two Correlated Gaussian Random Variables". In: IEEE Signal Processing Letters 23.11 (2016), pp. 1662–1666.
- [GLD04] Andrew G. Glen, Lawrence M Lemmis, and John H. Drew. "Computing the distribution of the product of two continuous random varialbes". In: Computational Statistics & Data Analysis 44 (2004), pp. 451–464.
- [NP16] Saralees Nadarajah and Tibor K. Pogány. "On the distribution of the product of correlated normal random variables". In: Comptes Research de la Academie Sciences Paris, Serie I 354 (2016), pp. 201–204.

References: II

- [OOSM13] A. Oliveira, T. Oliveira, and A. Seijas-Macías. "The influence of ratios and combined ratios on the distribution of the product of two independent gaussian random variables". In: Proceedings of the 59th World Statistics Congress of the International Statistical Institute. Ed. by Proceedings of the 59th World Statistics Congress of the International Statistical Institute. International Statistical Institute. 2013.
- [Roh76] Vijay K. Rohatgi. An Introduction to Probability Theory Mathematical Studies. New York: Wiley, 1976.
- [SMO12] Antonio Seijas-Macías and Amílcar Oliveira. "An approach to distribution of the product of two normal variables". In: Discussiones Mathematicae. Probability and Statistics 32.1-2 (2012), pp. 87–99.
- [WB32] J. Wishart and M. S. Bartlett. "The distribution of second order moment statistics in a normal system". In: Mathematical Proceedings of the Cambridge Philosophical Society 28.4 (1932), pp. 455–459.
- [WL03] Robert Ware and Frank Lad. Approximating the Distribution for Sums of Products of Normal Variables. Tech. rep. The University of Queensland, 2003.

Acknowledgments

This research is based on the partial results of the funded by FCT - Fundação Nacional para a Ciência e Tecnologia, Portugal, through the project UID/MAT/00006/2013.

Thank you for your attention

Email: antonio.smacias@udc.gal