Tamanho do Efeito (Effect Size)

Prof. Dr. Guanis de Barros Vilela Junior

O que é Tamanho de Efeito?

- Usualmente, várias pesquisas reportam a *significância* dos resultados obtidos nas mesmas. Entretanto, é importante avaliar o *significado (a importância prática)* dos resultados de eventuais diferenças encontradas entre duas ou mais médias ou variâncias.
- Existem várias maneiras de se fazer isto tais como: o Teste de Cohen, Teste de Glass, Teste de Hedges, Teste ψ (Psi), dentre outros.

Teste de Cohen (d)

$$d = \frac{\bar{x}_1 - \bar{x}_2}{s}$$

$$\mathbf{d} = \frac{\bar{x}_1 - \bar{x}_2}{s} \qquad s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Onde: \bar{x}_1 e \bar{x}_2 são as médias dos grupos.

n₁ e n₂ o número de sujeitos em cada grupo.

S é o desvio padrão agrupado.

Tamanho do Efeito	d
Pequeno	0.20 - 0.30
Médio	0.40 - 0.70
Grande	≥ 0.80

Teste de Glass (Δ)

$$\Delta = \frac{x_1 - x_2}{S_2}$$

Onde: x_1 e x_2 são as médias dos grupos S_2 é o desvio padrão agrupado (de ambos os grupos).

 Δ é o coeficiente delta

Teste de Hedges (g*)

$$g = \frac{\bar{x}_1 - \bar{x}_2}{s^*}$$

$$s^* = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}.$$

$$g^* = \left(1 - \left(\frac{3}{4(n1+n2)-9}\right)\right) \cdot g$$

Onde: $\bar{\mathbf{x}}_1$ e $\bar{\mathbf{x}}_2$ são as médias dos grupos \mathbf{n}_1 e \mathbf{n}_2 o número de sujeitos em cada grupo \mathbf{S}^* é o desvio padrão agrupado \mathbf{g}^* é o coeficiente \mathbf{g} corrigido

Teste ψ

Ψ	_	(_	1	_/	$\Sigma(\bar{x}_j - \bar{X})^2$
	-1	\sqrt{k}	_	$\overline{1}$	MS_{error}

Tamanho do Efeito	ψ
Pequeno	0.10
Médio	0.25
Grande	0.40

Teste de Pearson (r²)

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

Tamanho do Efeito	r
Pequeno	0.10
Médio	0.30
Grande	0.50

Onde:

x_i e y_i são os valores individuais das variáveis x e y.

 \overline{X} é a média da variável x e \overline{Y} é a média da variável y

n é o número de sujeitos de cada grupo

Eta quadrado (η^2)

$$\eta^2 = \frac{S^2_2}{S^2_{total}}$$

Onde:

S²₂ é a variância da intervenção, tratamento ou grupo experimental

S² total é a variância do grupo todo (n1 + n2)

Teste Omega quadrado (ω^2)

É calculado pela fórmula:

$$\omega^2 = \frac{\bar{x_1} - \bar{x_2}}{S^2_{total}}$$

Onde:

 x_1 e x_2 são as médias de cada grupo S^2_{total} é a variância total $(n_1 + n_2)$ n_1 e n_2 são o número de sujeitos de cada grupo

Teste de Cohen (f²)

$$f^2 = \frac{\omega^2}{1 - \omega^2}$$

$$\omega^2 = \frac{\bar{x_1} - \bar{x_2}}{S^2_{total}}$$

Tamanho do Efeito	f ²
Pequeno	0.02
Médio	0.15
Grande	0.35

Obs: É usado quando é usado o teste *F* no contexto da ANOVA e da Regressão Múltipla.

Finalizando

- O pesquisador precisa deixar bem claro os critérios adotados para calcular o tamanho do efeito.
- O que é um Efeito pequeno, médio ou grande? Isto ainda gera muita polêmica no mundo científico. Alguns autores recomendam a escala do Teste de Cohen (d).
- Por isso, é interessante referenciar a escala adotada para classificar o tamanho do efeito com artigos científicos publicados em revistas científicas conceituadas da ciência estatística.

Referências

- BISQUERRA, R et al. *Introdução à estatística*. Porto Alegre; Artmed. 2004.
- THOMAS J.R. & NELSON J.K. *Métodos de pesquisa em atividade física*. Porto Alegre: Artmed, 2002.
- VIEIRA, S. *Bioestatística: tópicos avançados*. Rio de Janeiro: Ed. Campus / Elsevier, 2004.