Toutes les primitives de ces tableaux s'obtiennent à partir de la connaissance parfaite des formules de dérivation, et, les résultats se contrôlent en dérivant

On doit avoir F' = f

Tableau des primitives des fonctions usuelles		
Fonction f	Primitives <i>F</i> (<i>k</i> est une constante réelle)	Intervalles
f(x) = 0	$F\left(x\right) =k$	IR
f(x) = a	$F\left(x\right) =ax+k$	IR
f(x) = x	$F(x) = \frac{1}{2}x^2 + k$	IR
f(x) = ax + b	$F(x) = \frac{1}{2}ax^2 + bx + k$	IR
$f(x) = x^n$ n entier différent de -1	$F(x) = \frac{1}{n+1} x^{n+1} + k$	$ \mathbb{R} \operatorname{si} n > 0$ $]-\infty; 0[\text{ ou }]0; +\infty[\text{ si } n \leq -2$
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x} + k$]−∞; 0[ou]0; +∞[
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2 \sqrt{x} + k$]0; +∞[
$f(x) = x^{\alpha} \alpha \neq -1$	$F(x) = \frac{1}{\alpha + 1} x^{\alpha + 1} + k$	selon les valeurs de α
$f(x) = \frac{1}{x}$	$F\left(x\right) =\ln x+k$]0; +∞[
$f(x) = \cos x$	$F\left(x\right) =\sin x+k$	IR
$f(x) = \sin x$	$F(x) = -\cos x + k$	IR
$f(x) = \cos(ax + b)$	$F(x) = \frac{1}{a} \sin(ax + b) + k$	IR
$f(x) = \sin(ax + b)$	$F(x) = -\frac{1}{a}\cos(ax+b) + k$	IR
$f(x) = 1 + \tan^2 x = \frac{1}{\cos^2 x}$	$F(x) = \tan x + k$	$\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ $\left] \frac{\pi}{2} + k\pi; \frac{\pi}{2} + (k+1)\pi \right[$
$f(x) = e^{x}$	$F(x) = e^x + k$	IR
$f(x) = e^{ax+b}$	$F(x) = \frac{1}{a} e^{ax+b} + k$	IR

u et v sor	Primitives et opérations nt des fonctions de primitives respectiv	ves U et V
Fonction f	Une primitive <i>F</i> (déterminée à une constante près)	Remarques
f = u + v	F = U + V	
f = ku (k constante)	F = kU	
Dan	s la suite <i>u</i> est dérivable sur un interva	alle I
$f = u' u^{n} (n \neq -1)$	$F = \frac{1}{n+1} u^{n+1}$	selon les valeurs de n
$f = \frac{u'}{u^2}$	$F = -\frac{1}{u}$	u ne s'annule pas sur I
$f = u \times \cos u$	$F = \sin u$	
$f = u \times \sin u$	$F = -\cos u$	
$f = \frac{u'}{u}$	$F = \ln u \text{ si } u > 0$ $F = \ln (-u) \text{ si } u < 0$	étudier le signe de <i>u</i> (<i>x</i>)
$f = \frac{u'}{\sqrt{u}}$	$F = 2 \sqrt{u}$	<i>u</i> > 0
$f = u ' \times e^u$	$F = e^u$	
$f = u' \times (v' \circ u)$	$F = v \circ u$	conditions d'existence et de dérivabilité de $v \circ u$.
f	$F(x) = \int_{a}^{x} f(t) dt$	f continue sur I $a \in I$ F est la primitive définie sur I de f qui s'annule en a

Intégration par parties:

u, v dérivables et leurs dérivées u' et v' sont continues sur I. f = uv'

$$F(x) = \int_{a}^{x} u(t)v'(t) dt = \left[u(t)v(t) \right]_{a}^{x} - \int_{a}^{x} u'(t)v(t) dt$$