Modèle Logique des Données

(MLD)

Introduction au MLD

- la structure des données représentée sous forme d'un MCD ne peut être portée sur un système informatique.
- Il convient donc de traduire le MCD en une structure transportable sur une machine → Modèle Logique de Données ou MLD.
- Ce MLD est en fait le dernier pas vers le Modèle Physique de donnée (MPD)
- Le passage du **MCD** au **MLD** est assuré à partir d'un certain nombre de règles.

• Les données sont représentées sous forme de TABLES appelées **Tables Relationnelles**.

Notation:

ETUDIANT (num étudiant, nom, âge)

- Une entité devient une Table Relationnelle
- Une propriété devient un Attribut
- L'identifiant devient Clé primaire

A PROPOS DES CLES

CLE PRIMAIRE

Il s'agit de la clé qui assure l'unicité de l'occurrence (la ligne) pour que la table soit relationnelle. *Cette clé primaire est obligatoire*

CLE ETRANGERE

Une propriété **clé étrangère** dans une table est une **Clé primaire** dans une autre table. Elle permet de faire la jointure entre les deux tables.

CLE CANDIDATE

Il s'agit d'un attribut qui n'est pas clé primaire de la table, mais dont on désire l'unicité de ses valeurs comme pour la clé primaire (Quand on a plusieurs clés on en choisira une comme identifiant).

Exemple:

PERSONNE (matricule, nom, prénom, numéro CIN, adresse...)

Matricule est clé primaire

Numéro CIN est une clé candidate.

CLE SECONDAIRE

Il s'agit de l'indexation d'une colonne sur laquelle il y a de nombreux accès (optimisation des temps de traitement).

☐ Cas des entités

Toute entité devient une table, l'identifiant de l'entité correspond à la clé de la table.

- \square Cas de relations binaires aux cardinalités (x,1) (x,n) (où x=0 ou 1)
- Les **entités** concernées deviennent des **tables**.
- La table qui correspond aux cardinalités **0,n ou 1,n** devient **la table mère** et celle qui correspond aux cardinalités **0,1 ou 1,1** devient **la table fille**.
- La clé de la table mère est ajoutée aux champs de la table fille.
- Si la **relation** est porteuse de **propriétés**, celles-ci migrent dans **la table fille**

 \square Cas de relations binaires aux cardinalités (x,1) - (x,n) (où x=0 ou 1)

Exemple:

MCD: Commande

Num_Cmd
date

1,1

R

O,n

Cd-Client
NomClient

- \square Cas de relations binaires aux cardinalités (x,n) (x,n) (ou x = 0 ou 1)
- La relation est transformée en une table supplémentaire.
- Cette table est fille des tables correspondantes aux entités pour lesquelles il y a cardinalités **0,n** ou **1,n**.
- Les clés de celles-ci migrent dans la table fille et leur concaténation constitue la clé de celle-ci.
- Si la relation n'est pas porteuse de propriétés, la table fille commune (lien) ne contiendra que les clés de ses tables mères

 \Box Cas de relations binaires aux cardinalités (x,n) - (x,n) (ou x = 0 ou 1) Exemple:

elazami © 2021-2022

☐ Relation n-aire (quelles que soient les cardinalités)

- Il y a création d'une table supplémentaire ayant comme Clé Primaire la concaténation des identifiants des entités participant à la relation.
- Si la relation est porteuse de donnée, celles ci deviennent des attributs pour la nouvelle table.
- **Exemple:** Un étudiant parle une ou plusieurs langues avec un niveau. Chaque langue est donc parlée par 0 ou n étudiants avec un niveau. Pour chaque niveau, il y a 0 ou plusieurs étudiants qui parlent une langue.

☐ Relation n-aire (quelles que soient les cardinalités)

Schémas relationnels:

ETUDIANT (id_Etudiant, Nom_Etudiant)

NIVEAU (id_Niveau, Nom_Niveau)

LANGUE (id_Langue, Nom_Langue)

PARLE (id_Etudiant, id_Niveau, id_Langue)

- \square Cas de relations binaires aux cardinalités (0,1) (1,1)
- La Clé Primaire de la table à la cardinalité (0,1) devient une Clé Etrangère dans la table à la cardinalité (1,1) :

Exemple:

Dans un centre de vacances, Chaque animateur encadre en solo 0 ou 1 groupe, chaque groupe étant encadré par un et un seul animateur.

MCD

MLDR:

ANIMATEUR (<u>id_Animateur, Nom_Animateur</u>)
GROUPE (<u>id_Groupe</u>, Nom_Groupe, #**id_animateur**)

☐ Cas particulier des associations réflexives

- Les associations réflexives suivent les même règles, mais posent un problème particulier :
 - une même propriété va se retrouver **deux fois** en attribut dans la même relation.
 - Il faut alors donner un **nom différent et significatif** aux deux attributs correspondants.
- Dans les réflexives, il est conseillé de nommer les branches par des rôles pour pouvoir lire dans le bon sens l'association.
- Les rôles aident à nommer les attributs correspondant à l'association.

- ☐ Cas particulier des associations réflexives
- Réflexive hiérarchique

Une branche à la cardinalité max à 1 et l'autre à n

Traduction en modèle relationnel:

Salarié (matricule, nom, prénom, fonction, #matricule_chef)

- ☐ Cas particulier des associations réflexives
- Réflexive non hiérarchique

les deux branches ont la cardinalité max à **n**

Traduction en modèle relationnel:

Pièce (<u>référence</u>, libellé)

Composition (#référence composé, #référence composant, nombre)

Exercices

Donner le MLD correspondant à l'MCD suivant:

MCD-Gestion du Parcours du Combattant

Exercices

Donner le MLD correspondant à l'MCD suivant:

