

Convolution Concept

By Example

Digit Image

- Consider a 9 x 9 pixel image
- Black and White
- Containing only 1s and 0s

0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	0	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	1	0	0	0
0	0	0	0	1	1	0	0	0
0	0	0	1	1	0	0	0	0
0	0	1	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Filter

• We now consider a 3 x 3 filter

0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	0	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	1	0	0	0
0	0	0	0	1	1	0	0	0
0	0	0	1	1	0	0	0	0
0	0	1	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

1	1	1	
0	0	1	
0	1	0	

Convolved Image

Convolution in Practice

- There are several types of filters. For more information you may go to link: https://lodev.org/cgtutor/filtering.html
- The filter values in the example may not be specific hand-picked values, but can be any set of parameters namely w1,w2,... which need to be tuned for the image

W 1	W 2	W 3
W 4	W 5	W 6
w 7	W 8	W 9

Shrinking of Image

Each time when you apply the convolution filter, the image shrinks
e.g. 9 x 9 image getting reduced to 7 x 7 image

										Filt	er:	3 x	3								
0	0	0	0	0	0	0	0	0													
0	0	1	1	1	1	1	0	0		1	1	1		1	1	1	1	1	1	0	
0	0	0	0	0	0	1	0	0		0	0	1		1	2	3	3	5	2	1	
0	0	0	0	0	1	0	0	0		0	1	0		0	0	0	2	2	1	1	
0	0	0	0	1	1	0	0	0						0	0	2	3	1	1	0	
0	0	0	1	1	0	0	0	0						0	2	3	2	2	1	0	
0	0	1	1	0	0	0	0	0						1	3	2	2	1	0	0	
0	0	1	0	0	0	0	0	0						2	2	2	1	0	0	0	
0	0	0	0	0	0	0	0	0													
									Со	nvo	luti	on									

Shrinking of Image

• The image of n x n when convolved by f x f filter gets reduced to (n-f+1) x (n-f+1) image

Padding

- Problem with shrinking of the image is that, the cells which not on the edge have less participation in calculation of convolution
- Also for each convolution operation, the image gets shrunk
- If we pad the image before we convolve then both of the above issues get avoided.
- We can have a padding of any number of cells say p

Padding

• The image of n x n when convolved by f x f filter, with padding p gets reduced to (n+2p-f+1) x (n+2p-f+1) image, which generates the image of same size as original one provided f is odd numbered.

0	0	0	0	0	0	0	0	0	0	0
0										0
0										0
0										0
0										0
0										0
0										0
0										0
0										0
0										0
0	0	0	0	0	0	0	0	0	0	0

(n+2p-f+1) x (n+2p-f+1)

 Instead of going one cell, we can go 2 cells or more cells ahead while we convolve

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	0	0	0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	1	0	0	0	0
0	0	0	0	1	1	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

(n+2p-f+1)/s x (n+2p-f+1)/s

• With Padding p = 1, s = 2, we will have output image as 5 x 5, by flooring the term (n+2p-f+1)/s

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	0	0	0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	1	0	0	0	0
0	0	0	0	1	1	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

1	1	1					
0	0	1					
0	1	0					
fxf							

(n+2p-f+1)/s x (n+2p-f+1)/s

with **p** padding, **s** strides

nxn

• With Padding p = 1, s = 2, we will have output image as 5 x 5, by flooring the term (n+2p-f+1)/s

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	0	0	0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	1	0	0	0	0
0	0	0	0	1	1	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

nxn

 $(n+2p-f+1)/s \times (n+2p-f+1)/s$

with p padding, s strides

• Finally, we have the following output

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	0	0	0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	1	0	0	0	0
0	0	0	0	1	1	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

1	1	1						
0	0	1						
0	1	0						
£ £								

•		•
т	v	т
	^	

0	1	1	1	0
0	2	3	2	0
0	0	3	1	0
0	3	2	0	0
0	1	0	0	0

(n+2p-f+1)/s x (n+2p-f+1)/s

