

基础绘图 - [关系情况] - 相关性散点图-分组

网址: https://www.xiantao.love

更新时间: 2023.09.21

目录

基本	概念	. 3
应用	场景	. 3
分析	过程	. 3
结果	解读	. 6
数据	格式	. 7
参数	说明	. 9
	统计	. 9
	样式	11
	点	
	拟 <mark>合线</mark>	14
	坐标轴	15
	标题文本	18
	图注(Legend)	19
	风格	20
	图片	21
结果	说明	22
	主要结果	22
	方法学	23
如何	引用	24
党口		25

基本概念

▶ 散点图:通过点的形式来展示数据的分布情况

▶ 相关性散点图:分析 1 个变量和另外 1 个变量之间的相关性

▶ 相关性散点图-分组:根据分组信息,将点分成不同组进行展示

应用场景

- ▶ 相关性散点图常用来进行数据的对比
- ▶ 直观地观察到两个变量之间的关系

分析过程

上传数据 — 数据处理(清洗) — 相关性分析 — 可视化

- 数据格式: (具体数据格式要求可以看后面过程的"数据格式"部分)
 - 数据第 1 列必须为字符类型,作为分组信息,<mark>最多支持 10 组</mark>
 - 数据第2列必须为数值类型,对应用于相关性分析的变量1
 - 数据第3列必须为数值类型,对应用于相关性分析的变量2
 - <mark>必须提供三列数据</mark>;至少需要 6 行,最多 50000 行;每组数据最少需要 3 行数据,最多支持 5000 行

1	group1	var1	var2	
44	A	-1.77678	-0.89296	
45	A	0.622867	-1.15757	
46	A	-0.52228	-0.5303	
47	A	1.322231	2.445683	
48	A	-0.36344	-0.8325	
49	А	1.319066	0.41352	
50	A	0.043779	-1.17868	
51	А	-1.87866	-1.17403	
52	В	-0.33292	1.034686	
53	В	1.363114	1.653503	
54	В	-0.46915	-0.01795	
55	В	0.842876	-0.0242	
56	В	-1.45799	0.250247	
57	В	-0.40031	-0.33712	
58	В	-0.77642	-0.11335	
59	В	-0.3693	-0.09888	
60	В	1.240101	0.264087	
61	В	-0.10743	0.138984	
62	В	0.172594	-0.24227	

- ▶ 数据处理: 对每一列数值类型的数据及其他列数据进行相应处理
 - 分类类型数据只能是纯字符类型的数据,不能包含数值,缺失值与无法识别的值
 - 数值类型数据只能是纯数值类型数据,不能包含 0,负数、非数值与不规则的值
 - 分组中的每一个变量不能都是一个值

▶ 分析:

- 统计描述
 - ◆ 对(每个分组的)变量进行常见统计描述指标统计分析

充计描述										
各个组对应	常见「统计	描述指标」								
组别1	组别2	数目	最小值	最大值	中位数(Median)	四分位距(IQR)	下四分位	上四分位	均值(Mean)	标准差(SD)
А	var1	50	-1.8787	2.3103	0.066833	1.0206	-0.42578	0.59486	0.081509	0.81901
Α	var2	50	-2.2719	2.582	-0.081203	1.7132	-1.0215	0.69168	-0.075684	1.1923
В	var1	50	-2.1365	1.6152	-0.26768	0.92723	-0.50448	0.42275	-0.099787	0.79354
В	var2	50	-2.0418	2.1686	-0.0056045	0.84924	-0.2626	0.58664	0.12207	0.79117

■ 异常值分析

◆ 检查数据中是否有离群值和异常值

异常值分析			
	QR(四分位间距) 或者 Q3(上四分位) + 1 QR(四分位间距) 或者 Q3(上四分位) + 3		
组别1	组别2	离群值	异常值
A	var1	2.31029682277906	
В	var1	-2.13649385561006	

■ 正态性检验

◆ 对(每个分组的)变量进行正态性检验(Shapiro-Wilk normality test)

组别1	组别2	自由度(df)	统计量	p值
Α	var1	49	0.9838	0.7192
Α	var2	49	0.98066	0.5799
В	var1	49	0.98263	0.6669
В	var2	49	0.96708	0.1755

■ 相关性分析

◆ 包含不同方法(Pearson、Spearman)计算的分组变量相关性系数值与 统计学 p 值等,补充了变量相关性表格

	700 (A)							
1定於PedISO	n和Spearman統i	+方法,可以根据	居需要选择标	注在图中的方法				
				表1: 分	分组变量相关性			
组别	方法	组别1	组别2	自由度(df)	统计量	相关系数	置信区间(95%CI)	p值
Α	Pearson	var1	var2	48	2.6569	0.35806773	0.088545 - 0.57873	0.0107
Α	Spearman	var1	var2		1.36e+04	0.34713085		0.0139
В	Pearson	var1	var2	48	0.56361	0.08108229	-0.20182 - 0.3515	0.5756
В	Spearman	var1	var2		2.021e+04	0.02962785		0.8378
				表2:	变量相关性			
方法	组别1	组别2	自	由度(df)	统计量	相关系数	置信区间(95%CI)	p值
Pearson	var1	var2		98	2.3572	0.2316401	0.036901 - 0.40943	0.0204
Spearman	var1	var2			1.328e+05	0.2033003		0.0426

▶ 可视化:数据清洗后,进行相关性分析,再用 ggplot2 包进行可视化

结果解读

- ▶ 横坐标表示第 1 列变量
- ▶ 纵坐标表示第 2 列变量
- ▶ 图中的线为拟合线,拟合线周围的阴影部分为置信区间
- ▶ 图中左上角为标注:
 - "[A]"中括号里是分组名
 - "R"表示变量间的相关性系数
 - "P"表示变量间的统计学 p 值

数据格式

相关性散点图-分组

1	group1	var1	var2
44	A	-1.77678	-0.89296
45	A	0.622867	-1.15757
46	Α	-0.52228	-0.5303
47	A	1.322231	2.445683
48	A	-0.36344	-0.8325
49	A	1.319066	0.41352
50	A	0.043779	-1.17868
51	А	-1.87866	-1.17403
52	В	-0.33292	1.034686
53	В	1.363114	1.653503
54	В	-0.46915	-0.01795
55	В	0.842876	-0.0242
56	В	-1.45799	0.250247
57	В	-0.40031	-0.33712
58	В	-0.77642	-0.11335
59	В	-0.3693	-0.09888
60	В	1.240101	0.264087
61	В	-0.10743	0.138984
62	В	0.172594	-0.24227

数据要求:

- ▶ 第一列是用于分组的信息,第二列是第1个变量的观测值,第三列是第2个变量的观测值,数据只需要3列,每个分组至少3行数据,例如:两个分组至少6行数据,第一列均需要是字符类型,第二、三列需要是数值类型。
- ▶ 上传数据只需要 3 列,最多支持 50000 行,每个分组最少,若验证数据时返回报错,需要在上传数据内进行相应的调整,然后再上传数据。
 - 分类类型数据只能是纯字符类型的数据,不能包含数值,缺失值与无法

识别的值

- 数值类型数据只能是纯数值类型数据,不能包含 0、负数、非数值与不 规则的值
- ▶ 数据每一列列名不能重复,不能有空值,不能有不识别的字符
- ▶ 第一列分类变量中的分组数量最多支持 10 组

参数说明

(说明:标注了颜色的为常用参数。)

统计

- ▶ 统计方法: 可以选择变量 1 与变量 2 间进行相关性分析的方法
 - Spearman: 非参数检验方法,默认使用该方法,数据可以不需要满足正态性
 - Pearson:参数检验方法,数据需要满足双正态
- ➤ 标注位置:可以修改图中相关性分析方法(Spearman)、相关性系数(R),统计 学 p 值的位置,默认在图形的左上角,还可以选择左下、右上、右下、无(不进 行标注),如下:左侧为右下,右侧为无

▶ 标注颜色: 当图形中有标注的时候, 可以修改标注的颜色

样式

▶ 样式:可以选择相关性散点图-分组图形展示的整体样式(结果),默认为 经典,可选加分布竖线。例如:

点

- 填充色:可以修改图中各点的填充颜色,最多支持修改10个颜色,超出会使用随机颜色。受配色方案全局性修改。
- ▶ 描边色: 可以修改图中各点的描边颜色,最多支持修改 10 个颜色,超出会使用随机颜色。受配色方案全局性修改。
- ▶ 样式:可以修改图中各点的样式(形状),默认为圆形,可选择圆形、正方形、菱形、三角形、倒三角,默认为圆形。多选,多选后不同的分组/分类中的点的类型也会有相应变化,循环取该参数值。如下:

▶ 大小: 可以修改图中各点的大小比例, 默认为1

▶ 不透明度: 可以修改拟合线线条的不透明度, 1 表示完全不透明

拟合线

- ▶ 展示: 可以选择是否进行展示拟合线的操作, 默认展示。
- 》 拟合方法:可以修改图中拟合部分的拟合方法(类型),默认为直线,还可以 选择曲线的形式,如下:

- ▶ 拟合线颜色:可以修改图中拟合线的颜色。
- ▶ 拟合线样式:可以修改图中拟合线的样式,默认为实线,可选择实线或虚线。
- > 线条粗细:可以选择修改图中拟合线的线条粗细。
- ▶ 置信区间展示:可以选择是否展示拟合线的置信区间(阴影部分),默认为展示,还可以选择不展示,如下:

➤ 不透明度: 波形的透明度。0 为完全透明,1 为完全不透明。

坐标轴

▶ 是否显示 x 轴:选择即展示 x 轴。

▶ 是否显示 y 轴:选择即展示 y 轴。

> x 轴标注旋转:可以选择设置 x 轴标注的倾斜角度。

× 轴范围+刻度:可以控制 × 轴的范围和刻度(不能调整超过数据范围的 20%,如果调整 过大可能会无作用),可只提供2个值来控制范围。例如: -2,2;

可以提供范围值和刻度值来控制范围可刻度。例如: -2,-1,0,1,2,2。注意, 此时最小和最大值会被当做范围,不会作为刻度,如果需要作为刻度,重复 写一次即可。

标题文本

▶ 大标题:大标题文本。

➤ x 轴标题: x 轴标题文本。

▶ y轴标题: y轴标题文本。

▶ 补充: 在要换行的中间插入\n。如果需要上标,可以用两个英文输入法下的大括号括住,比如{{2}};如果需要下标,可以用两个英文输入法下的中括号括住,比如[[2]]

图注 (Legend)

▶ 是否展示:是否展示图注

▶ 图注标题:可以添加图注标题,如:

▶ 文字大小:图注标题文字的大小,默认为 6pt。

▶ 图注位置:可选择默认、右、上、下。

风格

▶ 边框:可以选择是否进行添加图形边框的操作

▶ 网格:可以选择是否进行添加图形内网格的操作

》 文字大小: 控制整体文字大小, 默认为 6pt

图片

▶ 宽度: 图片横向长度,单位为 cm

▶ 高度:图片纵向长度,单位为 cm

▶ 字体:可以选择图片中文字的字体

结果说明

主要结果

主要结果格式为图片格式,提供 PDF、TIFF 、PPTX 格式下载

方法学

软件: R (4.2.1)版本

R包: ggplot2包(用于可视化)、ggtext包

处理过程:

(1) 分析多组数据的两个变量之间相关性后,用 gglot2 可视化结果,进而展示各组数据中该变量的变化趋势

如何引用

生信工具分析和可视化用的是 R 语言,<mark>可以直接写自己用 R 来进行分析和可视化即可</mark>,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。

常见问题

1. 方法里面的 Spearman 和 Pearson 方法,应该选择哪一个?

答: 两种方法均可以选择。Pearson 要求数据满足正态性,Spearman 因为是非 参数的方法,可以不需要满足。可以先选择非参数的 Spearman 相关进行尝试。

2. 相关系数多少为好?

答: 这个没有很统一的标准, 可以参考以下:

■ 相关系数强弱:

◆ 绝对值在 0.8 以上: 强相关

◆ 绝对值在 0.5-0.8: 中等程度相关

◆ 绝对值在 0.3-0.5: 相关程度一般

◆ 绝对值在 0.3 以下: 弱或者不相关

◆ 正数表示正相关,负数表示负相关

3. 每组的数据不一样多可以分析吗?

答: 只要数据满足最低要求,就可以上传数据进行分析

4. 数据中存在离群值和异常值的情况,怎么处理?

答: 若【补充结果—异常值分析】表格中给出有离群值或异常值的情况,可以根据自己的研究情况进行取舍,如果是由一些试验误差等其他因素导致的,可以及时删除以保证数据的准确性