ANNOTATED COMPUTER OUTPUT FOR SPLIT PLOT DESIGN: SAS BLN(U) CORNELL UNIV ITHACA MY MATHEMATICAL SCIENCES INST N T FEDERER ET AL. 84 NOV 87 NRO-23286.133-MA DAMB29-85-C-8818 F/G 12/3 MD-M130 800 1/1 UNCLASSIFIED

AD-A190 800

ANNOTATED COMPUTER OUTPUT

87 - 8

ANNOTATED COMPUTER OUTPUT FOR SPLIT PLOT DESIGN: SAS GLM

by

W.T. FEDERER, Z.D. FENG, M.P. MEREDITH, AND N.J. MILES-MCDERMOTT

November 1987

DISTRIBUTION STATEMENT A

Approved for public releases
Distribution Unlimited

88 1 27 092

201 Caldwell Hall I Ithaca, New York 14853-2602

(607) 255-8005

	REPORT DOCUM	MENTATION	PAGE				
1a. REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE	MARKING\$				
Unclassified 2a. SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION/AVAILABILITY OF REPORT					
26. DECLASSIFICATION / DOWNGRADING SCHEDL	LÉ	Approved for public release; distribution unlimited.					
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION RE	PORT	NUMBER(S)		
		ARU	23306.1	33-	·MA	j	
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL (If applicable)		ONITORING ORGA				
Mathematical Sciences Inst.	(5,	U. S. A	Army Research	n Off	fice		
6c. ADDRESS (City, State, and ZIP Code)	<u> </u>	7b. ADDRESS (Cit	ty, State, and ZIP C	ode)			
294 Caldwell Hall		P. O. E	3ox 12211			1	
Cornell University Ithaca New York 14853		1	ch Triangle I	Park,	, NC 27	709-2211	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT IDE	NTIFIC	ATION NUM	BER	
U. S. Army Research Office	(% opplication)	DAA6	29-85-C	-00	18		
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF	FUNDING NUMBER				
P. O. Box 12211		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.		WORK UNIT ACCESSION NO	
Research Triangle Park, NC 2	7709-2211				ĺ		
11. TITLE (Include Security Classification) ANNOTATED COMPUTER OUTPUT FO.	R SPLIT PLOT DES	IGN: SAS GL	.м				
12 PERSONAL AUTHOR(S) W.T. Federer, Z.D. Feng, M.P.	Maradith and	N I Milac-V	fcDermott			ł	
13a, TYPE OF REPORT 13b. TIME C		14. DATE OF REPORT (Year, Month, Day) 5 PAGE COUNT 1987, November, 4 44 pages					
16 SUPPLEMENTARY NOTATION					<i>ـــــ</i> ـــــــــــــــــــــــــــــــ		
The view, of the author(s) and should no	opinions and/or t be construed a	findings co s an officia ther documen	ontained in t al Department	this t of	report a	are those y position,	
17 COSATI CODES	18. SUBJECT TERMS (
FIELD GROUP SUB-GROUP	1						
	split plot des	igns, covari	iate, analys:	is, s	subplot,	whole plot	
'9 ABSTRACT (Continue on reverse if necessary	and identify by block r	number)					
The analysis of covaria using a statistical software analyses several data sets a data are analyzed first with are arranged in a RCBD and tA second example has whole p	package such as re examined and out and then wit he covariate is lots arranged in	SAS PROC GI annotated SA th the covar: measured on	LM. In order AS cutput is iate included the subplot	r to give d. : expe	demonst en. Hyp The whole erimenta	rate correct othetical e plots l units.	
A second example has whole plots arranged in a CRD and the covariate measured only on the whole plot experimental units. Complete ANOVA tables for both examples may be computed in a single procedural call to SAS PROC GLM. Both Type I and Type III sums of squares are necessary to construct the proper ANOVA table. A commonly employed approach requiring two separate procedural calls to GLM is also demonstrated. Formulee for the standard errors of the difference between adjusted whole plot and subplot means are reported.							
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT DUNCLASSIFIED/UNLIMITED D SAME AS	RPT DATE HESSE	L	ECURITY CLASSIFIC	ATION			
228 NAME OF RESPONSIBLE INDIVIDUAL	RPT. DTIC USERS	<u> </u>	(Include Area Code) 22c.	OFFICE SYN	MBOL	
		<u></u>		1		أسيسيس ومسووي	

ANNOTATED COMPUTER OUPUT FOR SPLIT PLOT DESIGN: SAS GLM by

W.T. Federer, Z.D. Feng, M.P. Meredith, and N.J. Miles-McDermott

Mathematical Sciences Institute, Cornell University, Ithaca, NY

ABSTRACT

The analysis of covariance for split plot designs is not always straightforward when using a statistical software package such as SAS PROC GLM. In order to demonstrate correct analyses several data sets are examined and annotated SAS output is given. Hypothetical data are analyzed first without and then with the covariate included. The whole plots are arranged in a RCBD and the covariate is measured on the subplot experimental units. A second example has whole plots arranged in a CRD and the covariate measured only on the whole plot experimental units.

Complete ANOVA tables for both examples may be computed in a single procedural call to SAS PROC GLM. Both Type I and Type III sums of squares are necessary to construct the proper ANOVA table. A commonly employed approach requiring two separate procedural calls to GLM is also demonstrated. Formulae for the standard errors of the difference between adjusted whole plot and subplot means are reported.

INTRODUCTION

This is part of a continuing project that produces annotated computer output for the analysis of balanced split plot experiments with covariates. The complete project will involve processing three

examples on SAS/GLM, BMDP/2V, SPSS-X/MANOVA, GENSTAT/ANOVA, and SYSTAT/MGLH. Only univariate results are considered. We show here the results from SAS GLM.

For Example 1, the data are artificial and were constructed for ease of computation; the experiment design for the whole plots is a randomized complete block and the split plot treatments are randomly allocated to the split plot experimental units within each whole plot. Example 2 is the same as Example 1 except that a covariate varies from split plot to split plot. The data for Example 3 come from an experiment wherein the whole plot treatments are laid out in a completely randomized design and the split plot treatments are randomly allotted to the split plot experimental units within each whole plot. The value of the covariate varies from whole plot to whole plot but is constant for all split plots within a whole plot treatment.

We present the elementary computational steps. Simple hypothetical data are used for the first two examples so that it is easy to provide all detailed computations to illustrate how each number is obtained. Some readers may wish to skip the detailed computations (see Federer, 1955, Chapter XVI). The third example comes from Winer (1971). The detailed computations are given in his book (p. 803).

Data SP-1

Split plot data with whole plots arranged in randomized complete block design (hypothetical data)

	l			Whole	plot tr	eatment	;			
	J	W1 W2								
	split	plot	trea	tment		split	plot	trea	tment	
Block	s	s ₂	s ₃	s ₄	Total	s	s ₂	s ₃	s ₄	Total
1	3	4	7	6	20	3	2	1	14	20
2	6	10	1	11	28	8	8	2	18	36
3	6	10	_ 4	4	24	10	8	9	13	40
Total	15	24	12	21	72	21	18	12	45	96

Total and Means

	Bloc (8 observ			W(whole plots) (12 observations)			S(split plot) (6 observations)			
	Total	Mean		Total	Mean _		Total	Mean		
1	40	5	W1	72	6	s_1	36	6		
2	64	8	W2	96	8	s_2^-	42	7		
3	64	8				รู้	24	4		
Gra	nd Total	168				S ₄	66	11		
Gra	nd Mean	_ 7								

Model:
$$Y_{ijk} = \mu + \rho_j + \tau_i + \delta_{ij} + \alpha_k + (\alpha \tau)_{ik} + \epsilon_{ijk}$$
 $\mu = \text{mean}$
 $\tau_i = \text{effect of whole plot i}$
 $\rho_j = \text{effect of block j}$
 $\alpha_k = \text{effect of split plot k}$
 $\delta_{ij} = \text{error (a)}$
 $\epsilon_{ijk} = \text{error (b)}$
 $\epsilon_{ijk} = \text{error (b)}$
 $\epsilon_{ijk} = \text{error (b)}$

where it is assumed that $\rho_j \sim N(o, \sigma_\rho^2)$, $\delta_{ij} \sim N(o, \sigma_\delta^2)$, $\epsilon_{ijk} \sim N(o, \sigma_\epsilon^2)$, and ρ_j , δ_{ij} , and ϵ_{ijk} are mutually independent. $i=1,2,\cdots,a$, $j=1,2,\cdots,r$, and $k=1,2,\cdots,s$.

Analysis of Variance

Source	(*)	df	SS
B (Blocks)	$= R(\rho \mu, \tau, \alpha, \alpha \tau)$	2	48
W (whole plot treatments)	$= R(\tau \mu, \rho, \alpha, \alpha \tau)$	1	24
BxW (error (a))	$= R(\delta \mu, \rho, \tau, \alpha, \alpha \tau)$	2	16
S (split plot treatments)	$= R(\alpha \mu, \rho, \tau, \alpha \tau)$	3	156
SxW (interaction of S and W)	$= R(\alpha \tau \mu, \alpha, \tau, \rho)$	3	84
(**) SxB:W (error (b))	$= R(\varepsilon \mu,\alpha,\tau,\alpha\tau,\rho)$	12	112
Total (Corrected for mean)	$= R(\rho, \tau, \delta, \alpha, \alpha\tau, \in \mu)$	23	440
Mean	$= R(\mu)$	1	1176
Told (Uncorrected for mean)	$= R(\mu, \rho, \tau, \delta, \alpha, \alpha\tau, \epsilon)$	24	1616

(*)Notation follows that of Searle(1971); since the design is balanced, $R(\rho | \mu, \tau, \alpha, \alpha \tau) = R(\rho | \mu)$, etc. The simpler notation is used later. (**) S×B:W means S×B within W.

Calculations of SS's:

$$N = 2 \cdot 3 \cdot 4 = 24 \quad , \quad \overline{Y} = 7$$

$$R(\mu,\rho,\tau,\delta,\alpha,\alpha\tau,\epsilon) = \sum_{i=1}^{2} \sum_{j=1}^{3} \sum_{k=1}^{4} Y_{ijk}^2 = (3^2 + 6^2 + 6^2 + \cdots + 18^2 + 13^2) = 1616$$

$$R(\mu) = N\overline{Y}^2 = 24 \cdot (7)^2 = 1176$$

$$R(\rho,\tau,\delta,\alpha,\alpha\tau,\epsilon|\mu) = 1616 - 1176 = 440$$

$$R(\rho | \mu) = R(\mu, \rho) - R(\mu) = \frac{(40^2 + 64^2 + 64^2)}{8} - 1176 = 1224 - 1176 = 48$$

$$R(\tau | \mu) = R(\mu, \tau) - R(\mu) = \frac{(72^2 + 96^2)}{12} - 1176 = 1200 - 1176 = 24$$

$$R(\delta | \mu, \rho, \tau) = R(\delta, \mu, \rho, \tau) - R(\mu, \rho) - R(\tau, \mu) + R(\mu)$$

$$= \frac{(20^2 + 28^2 + 24^2 + 20^2 + 36^2 + 40^2)}{4} - 1224 - 1200 + 1176$$

$$= 1264 - 1224 - 1200 + 1176 = 16$$

$$R(\alpha | \mu) = R(\alpha, \mu) - R(\mu) = \frac{(36^2 + 42^2 + 24^2 + 66^2)}{6} - 1176 = 1332 - 1176 = 156$$

$$R(\alpha\tau|\mu,\alpha,\tau) \; = \; R(\alpha\tau,\mu,\alpha,\tau) \; - \; R(\mu,\alpha) \; - \; R(\mu,\tau) \; + \; R(\mu)$$

$$= \frac{(15^2 + 24^2 + 12^2 + 21^2 + 21^2 + 18^2 + 12^2 + 45^2)}{3} - 1332 - 1200 + 1176$$

$$= 1440 - 1332 - 1200 + 1176 = 84$$

$$R(\epsilon | \mu, \rho, \delta, \alpha, \tau, \alpha \tau) = R(\epsilon, \mu, \alpha, \rho, \delta, \tau, \alpha \tau) - R(\mu, \rho, \tau, \delta) - R(\mu, \alpha, \tau, \alpha \tau) + R(\tau, \mu)$$

$$= 1616 - 1264 - 1440 + 1200 = 112$$

Data SP-2

Data SP-2: Data SP-1 with the following covariate Z which varies with split plot

Covariate (2)

Ī		whole plot									
		Wl					W2				
	s ₁	s ₂	s ₃	S ₄	Total	S ₁	s ₂	s ₃	S ₄	Total	
В	1	2	1	2	6	2	0	2	4	8	
B ₂	2	2	0	4	8	4	1	3	4	12	
В3	3	5	2	0	10	3	2	4	7	16	
Total	6	9	3	6	24	9	3	9	15	36	

Totals and Means

	blocks (8 observations)			<pre>W (whole plot) (12 observations)</pre>			S (split plot) (6 observations)			
	Total	Mean		Total	Mean		Total	Mean		
1	14	14/8	1	24	2.0	1	15	2.5		
2	20	20/8	2	36	3.0	2	12	2.0		
3	26	26/8				3	12	2.0		
Gran	nd	•				4	21	3.5		
Tota	1 60	2.5								

$$\text{Model: } Y_{\text{ijk}} = \mu + \rho_{\text{j}} + \tau_{\text{i}} + \delta_{\text{ij}} + \alpha_{\text{k}} + (\alpha \tau)_{\text{ik}} + \beta_{1} (\bar{Z}_{\text{ij}}, -\bar{Z}_{\dots}) + \beta_{2} (Z_{\text{ijk}} - \bar{Z}_{\text{ij}}) + \epsilon_{\text{ijk}}$$

 β_1 = whole plot regression slope β_2 = split plot regression slope

where μ , ρ_{j} , τ_{i} , δ_{ij} , α_{k} , $(\alpha\tau)_{ik}$, and ϵ_{ijk} are as in SP-1, and \bar{z}_{ij} . and \bar{z}_{ij} . are the arithmetic means for z_{ijk} .

Table of sum of squares and cross products

Source	df	YY	YZ	ZZ
В	2	48	18	9
W	1	24	12	6
B×W (error a)	2	16	4	1
S	3	156	33	9
S×W	3	84	33	21
SxB:W (error b)	12	112	17	20
Mean	1	1176	420	150
Total	24	1616	537	216

YY column is the same as in SP-1, ZZ column is computed in the same fashion. Thus, only computations for YZ column are illustrated.

$$\begin{aligned} & \text{Total}_{YZ} = \sum_{2}^{2} \sum_{3}^{3} \sum_{2}^{4} Y_{ijk} \cdot Z_{ijk} \\ & = 3(1) + 6(2) + \dots + 14(4) + 18(4) + 13(7) = 537 \end{aligned}$$

$$\begin{aligned} & \text{Mean}_{YZ} = N\overline{Y} \dots \overline{Z} \dots = \frac{168 \cdot 60}{24} = 420 \end{aligned}$$

$$\begin{aligned} & \text{B}_{YZ} = \frac{\sum_{j=1}^{3} \sum_{i=1}^{2} Y_{ijk} \cdot (\sum_{j=1}^{2} \sum_{k=1}^{2} Z_{ijk})}{2 \cdot 4} - 420 = \frac{40(14) + 64(20) + 64(26)}{24} - 420 \end{aligned}$$

$$& = 438 - 420 = 18 \end{aligned}$$

$$& \text{W}_{YZ} = \frac{\sum_{j=1}^{3} \sum_{i=1}^{4} Y_{ijk} \cdot (\sum_{j=1}^{2} \sum_{k=1}^{2} Z_{ijk})}{3(4)} - 420 = 432 - 420 = 12 \end{aligned}$$

$$& \text{BxW}_{YZ} = \frac{\sum_{j=1}^{2} \sum_{k=1}^{3} (\sum_{j=1}^{4} Y_{ijk}) \cdot (\sum_{j=1}^{2} \sum_{k=1}^{2} Z_{ijk})}{4} - 438 - 432 + 420 = 4 \end{aligned}$$

$$& \text{Syz} = \frac{\sum_{j=1}^{2} \sum_{i=1}^{3} Y_{ijk} \cdot (\sum_{j=1}^{2} \sum_{j=1}^{2} Z_{ijk})}{2(3)} - 420 = 453 - 420 = 33 \end{aligned}$$

$$& \text{SxW}_{YZ} = \frac{2}{\sum_{k=1}^{4} \sum_{j=1}^{2} Y_{ijk} \cdot (\sum_{j=1}^{2} \sum_{j=1}^{2} Z_{ijk})}{2(3)} - 453 - 432 + 420 = 33 \end{aligned}$$

$$& \text{SxW}_{YZ} = \frac{2}{\sum_{j=1}^{4} \sum_{k=1}^{2} Y_{ijk} \cdot (\sum_{j=1}^{2} \sum_{j=1}^{2} Z_{ijk})}{3} - 453 - 432 + 420 = 33 \end{aligned}$$

$$S \times B : W_{YZ} = \begin{cases} 2 & 3 & 4 \\ \Sigma & \Sigma & \Sigma & Y_{ijk} \\ i=1 & j=1 & k=1 \end{cases} Y_{ijk} Z_{ijk} - 454 - 498 + 432$$
$$= 537 - 454 - 498 + 432 = 17$$

Analysis of Variance and Covariance

Source		df	SS
B (block)	$= R(\rho \mu, \tau)$	2	48
W (whole plot treatment)	$= R(\tau \mu, \rho, \beta_1)$	1	3.4286
Regression (a)	$= R(\beta_1 \mu, \rho, \tau)$	1	16.0
B×W (error (a))	$= R(\delta \mu, \rho, \tau, \beta_1)$	1	0.0
S (split plot treatment)	= $R(\alpha \mu, \rho, \tau, \alpha\tau, \beta_2)$	3	84.243
S×W (interaction of S and W)	$= R(\alpha\tau \mu, \rho, \tau, \alpha, \beta_2)$	3	37.474
Regression (b)	$= R(\beta_2 \mu, \rho, \tau, \alpha, \alpha\tau)$	1	14.450
S×B: W (error (b))	= $R(\epsilon \mu, \rho, \alpha, \tau, \alpha \tau, \beta_2)$	11	97.550
Total (corrected for mean)		23	440

$$\hat{\beta}_1 = B \times W_{YZ} / B \times W_{ZZ} = 4/1 = 4$$

$$\hat{\beta}_2 = S \times B : W_{YZ} / S \times B : W_{ZZ} = 17/20 = 0.85$$

The SS's adjusted by regression on Z are illustrated below:

 $R(\rho | \mu) = 48$, remains same since it is not of interest to adjust blocks for Z.

$$R(\tau, \delta | \mu, \rho, \beta_{1}) = (W_{YY} + B \times W_{YY}) - \frac{(W_{YZ} + B \times W_{YZ})^{2}}{W_{ZZ} + B \times W_{ZZ}}$$

$$= (24 + 16) - \frac{(12 + 4)^{2}}{6 + 1} = 40 - \frac{256}{7} = 3.4286$$

$$R(\delta | \mu, \rho, \tau, \beta_{1}) = B \times W_{YY} - \frac{(B \times W_{YZ})^{2}}{B \times W_{ZZ}} = 16 - \frac{4^{2}}{1} = 0$$

$$R(\tau | \mu, \rho, \beta_{1}) = R(\tau, \delta | \mu, \rho, \beta_{1}) - R(\delta | \mu, \rho, \tau, \beta_{1})$$

$$= 40 - \frac{256}{7} - 0 = 3.4286$$

$$R(\beta_1 | \mu, \tau, \rho) = \frac{(B \times W_{YZ})^2}{B \times W_{ZZ}} = \frac{4^2}{1} = 16$$

$$R(\alpha, \epsilon | \mu, \rho, \tau, \alpha \tau, \beta_2) = (S_{YY} + S \times B : W_{YY}) - \frac{(S_{YZ} + S \times B : W_{YZ})^2}{S_{ZZ} + S \times B : W_{ZZ}}$$

$$= (156 + 112) - \frac{(33+17)^2}{9+20}$$

$$= 268 - 86.207 = 181.793$$

$$R(\alpha\tau, \epsilon | \mu, \rho, \alpha, \tau, \beta_{2}) = (S \times W_{YY} + S \times B : W_{YY}) - \frac{(S \times W_{YZ} + S \times B : W_{YZ})^{2}}{S \times W_{ZZ} + S \times B : W_{ZZ}}$$

$$= 84 + 112 - \frac{(33+17)^{2}}{21+20} = 196 - 60.976 = 135.024$$

Note: $R(\alpha, \epsilon | \mu, \beta_2)$ and $R(\alpha\tau, \epsilon | \mu, \alpha, \tau, \beta_2)$ are intermediate steps for later use.

$$R(\beta_2 | \mu, \rho, \alpha, \tau, \alpha \tau) = \frac{(S \times B : W_{YZ})^2}{S \times B : W_{ZZ}} = \frac{17^2}{20} = 14.450$$

$$R(\epsilon | \mu, \rho, \alpha, \tau, \alpha \tau, \beta_2) = S \times B : W_{YY} - \frac{(S \times B : W_{YZ})^2}{S \times B : W_{ZZ}} = 112 - \frac{17^2}{20} = 112 - 14.45 = 97.55$$

$$R(\alpha | \mu, \rho, \tau, \alpha \tau, \beta_2) = R(\alpha, \epsilon | \mu, \rho, \tau, \alpha \tau, \beta_2) - SS \text{ error } b = 181.793 - 97.55$$

= 84.243

$$R(\alpha \tau | \mu, \rho, \alpha, \tau, \beta_2) = R(\alpha \tau, \epsilon | \mu, \rho, \alpha, \tau, \beta_2) - R(\epsilon | \mu, \rho, \alpha, \tau, \alpha \tau, \beta_2)$$

$$= 135.024 - 97.55 = 37.474$$

Data SP-3

Split plot data with plots arranged in a completely randomized design and a covariate Z that is constant within the whole plot. (Winer, 1971, p. 803)

whole plot	Subject	Split B ₁	plots B ₂	z	Total		
_		Y	<u> </u>		Y		
A ₁							
-	1	10	8	3	18		
	2	15	12	5	27		
	3	20	14	8	34		
	44	12	6	2	18		
A ₂				ļ			
	5	15	10	1	25		
	6	25	20	8	45		
	7	20	15	10	35		
	8	15	10	2	25		
	Total	132	95	39	227		
	Mean	16.5	11.9	4.88			

Model:
$$y_{ijk} = \mu + \tau_i + \delta_{ij} + \alpha_k + (\tau \alpha)_{ik} + \beta_1(Z_{ij} - \overline{Z}_{..}) + \epsilon_{ijk}$$
 $\tau_i = A \text{ effect (whole plot)}$
 $\delta_{ij} = \text{error (a)}$
 $\epsilon_{ijk} = \text{error (b)}$
 $\alpha_k = B \text{ effect (split plot)}$
 $\beta_1 = \text{whole plot regression slope}$

where $\delta_{ijk} \sim N(o,\sigma_{\delta}^2)$, $\epsilon_{ijk} \sim N(o,\sigma_{\epsilon}^2)$, δ_{ij} and ϵ_{ijk} are mutually independent. $i=1,2,\cdots,a$, $j=1,2,\cdots,r$, and $k=1,2,\cdots,s$.

Analysis of variance and covariance

Source		df	SS
A (whole plot)	$= R(\tau \mu, \beta_1)$	1	44.492
Regression	$= R(\beta_1 \mu, \tau)$	1	166.577
Error (a)	$= R(\delta \mu, \tau, \beta_1)$	5	61.298
B (split plot)	$= R(\alpha \mu, \tau, \alpha \tau)$	1	85.563
A×B (interaction)	$= R(\tau \alpha \mu, \tau, \alpha)$	1	0.563
Error (b)	= R(ε μ,τ,α,τα)	6	6.375
Total (corrected)	$= R(\tau,\alpha,\beta_1,\tau\alpha,\delta \mu)$	15	388.438

Table of SS and products

Symbol	Y ²	ZY	z ²
W	68.06	12.38	2.75
E(a)	227.88	163.00	159.50
S	85.563	0	0
WS	0.563	0	0
E(b)	6.375	_0	0

$$\hat{\beta}_1 = \frac{163.00}{159.50} = 1.02$$

Since the computations are illustrated in Winer (1971, p. 803-5) we have omitted them here.

Many SAS users would likely adopt an analysis of covariance strategy for split plot designs that requires two procedural calls - one for the whole plot analysis and another for the split plot analysis. These analyses are presented under SP-2 and SP-3. However, it is possible to obtain the complete ANOVA tables for SP-2 and SP-3 in a single procedural call of SAS GLM. This latter approach is recommended and is given in SP-2A and SP-3A.

SP-1: Control Language

Control language is typed in upper case and comments are bolded.

```
DATA ONE;
INPUT BLOCK WHOLE SUBPLOT Y;
                                    Input variables
TITLE SP-1: SPLIT PLOTS WITH WHOLE PLOTS ARRANGED IN RCB DESIGN;
CARDS;
           ⇒ Tells SAS that data follow
1 1 1 3
1 1 2 4
1 1 3 7
               Data are entered with only one datum per line
3 2 4 13
PROC GLM;
                                Designates classification variables
CLASS BLOCK WHOLE SUBPLOT; =>
MODEL YIELD=BLOCK WHOLE BLOCK*WHOLE
                                Designates model being used.
WHOLE WHOLE*SUBPLOT/SS3 P; ⇒
                                SS3 option requests only type III sums
                                of squares and P requests residuals
                                (only one type SS's was requested
                                because the data are balanced making
                                all types SS's equal).
                                                        Type I SS's are
                                the cheapest to compute.
TEST H=BLOCK WHOLE E=BLOCK*WHOLE;
                                  ⇒ Requests SAS to test the whole
                                       plot effects using error(a)
```

Note: SAS always computes F tests based on the residual sum of squares. This is not always the appropriate test in split plot analyses so adding the TEST statement (above) is critical to obtaining an appropriate test.

SP-2: Control Language

Note: Because estimates of both a whole plot regression slope and split plot regression slope are needed, two procedural calls to SAS GLM are required. The first call gives the appropriate whole plot analysis and the second gives the appropriate split plot analysis.

Procedural Call for Whole Plot Analysis

MODEL Y=BLOCK WHOLE BLOCK*WHOLE SUBPLOT WHOLE*SUBPLOT Z/SOLUTION SS1 SS3 P;

LSMEANS SUBPLOT WHOLE*SUBPLOT; ESTIMATE 'SUBPLOT SLOPE' Z 1;

reactions proceeds applicable bases of designation

```
DATA ONE;
TITLE1 SP-2:
              SPLIT PLOT DESIGN WITH WHOLE PLOTS ARRANGED IN RCB:
TITLE2
              WITH A COVARIATE VARYING WITH SPLIT PLOT;
INPUT BLOCK WHOLE Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4;
Z=(SUM(OF\ Z1-Z4)/2); \implies Z and Y are scaled for this analysis
Y = (SUM(OF Y1-Y4)/2);
                          so that the sums of squares are correct
CARDS:
1 1 1 2 1 2 3 4 7 6
2 1 2 2 0 4 6 10 1 11
                         ⇒ For whole plot analysis data must be
3 1 3 5 2 0 6 10 4 4
                             organized in a similar arrangement
1 2 2 0 2 4 3 2 1 14
                             with all split plot values for a
2 2 4 1 3 4 8 8 2 18
                             particular BLOCK by WHOLE combination
3 2 3 2 4 7 10 8 9 13
                             on the same line (see INPUT statement
PROC GLM;
                             above for order)
TITLE3 CORRECT WHOLE PLOT ANALYSIS;
CLASS BLOCK WHOLE;
MODEL Y=BLOCK WHOLE Z/SOLUTION SS1 SS3 P; ⇒ The SOLUTION option yields
                                           the parameter estimates and
                                           so gives the estimated
                                           regression slope
LSMEANS BLOCK WHOLE/STDERR;
                                ⇒ Yields adjusted treatment means and
                                     standard errors.
ESTIMATE 'WHOLE PLOT SLOPE' Z1; ⇒
                                    The ESTIMATE statement gives the
                                     estimated regression slope and its
                                     standard error directly.
Procedural Call for Split Plot Analysis
DATA TWO;
INPUT BLOCK WHOLE SUBPLOT Z Y;
CARDS;
1 1 1 1 3
1 1 2 2 4
1 1 3 1 7
3 2 4 7 13
PROC GLM;
TITLE3 'CORRECT SPLIT PLOT ANALYSIS';
CLASS BLOCK WHOLE SUBPLOT;
```

SP-3: Control Language

Note: Even though we are estimating only one slope in this example, two procedural calls are required in order to estimate the regression slope. If both the whole plot and split plot are specified in one run, Z becomes confounded in SUB(A) and β_1 cannot be estimated correctly.

Procedural Call for Correct Whole Plot Analysis

```
DATA ONE;
INPUT A Z Y1 Y2;
SUBJECT = N ;
MY = (SUM(OF Y1-Y2))/(SQRT(2)); \implies Z \text{ and } Y \text{ rescaled so } SS's \text{ agree with}
                                      those of Winer
Z = 2*Z/(SQRT(2));
TITLE1 SP-4: SPLIT PLOT DESIGN WITH WHOLE PLOTS ARRANGED IN CRD;
TITLE2
               WITH A COVARIATE CONSTANT IN SPLIT PLOT;
CARDS:
1 3 10 8
1 5 15 12
1 8 20 14
2 2 15 10
PROC GLM;
CLASS A:
MODEL MY=Z A/SOLUTION SS1 SS3 P;
TITLE3 CORRECT WHOLE PLOT ANALYSIS;
LSMEANS A/STDERR;
ESTIMATE 'REGR SLOPE' Z 1;
```

Procedural Call for Correct Split Plot Analysis

```
DATA TWO;
INPUT SUB A B Y;
CARDS;
1 1 1 10
1 1 2 8
2 1 1 15
:
:
8 2 2 10
PROC GLM;
CLASS SUB A B;
MODEL Y=A SUBJECT(A) B B*A/SS1 SS3 P;
TITLE3 CORRECT SPLIT PLOT ANALYSIS;
LSMEANS B B*A/STDERR;
```

Variances and Standard Errors of Adjusted Means and Differences Amongst Adjusted Means for SP-2

$$Var(\bar{Y}_{i\cdot k} \text{ adj}) = (\sigma_{\rho}^{2} + \sigma_{\delta}^{2} + \sigma_{\epsilon}^{2})/r + (\sigma_{\epsilon}^{2} + s\sigma_{\delta}^{2})(\bar{Z}_{i\cdot \cdot} - \bar{Z}_{\cdot\cdot\cdot})^{2}/W \times B_{ZZ}$$

$$+ \sigma_{\epsilon}^{2} (\bar{Z}_{i\cdot k} - \bar{Z}_{i\cdot\cdot})^{2}/S \times B : W_{ZZ}$$

$$Var(\bar{Y}_{\cdot\cdot\cdot}) = [\sigma_{\cdot}^{2} + s(\sigma_{\cdot}^{2} + \sigma_{\cdot}^{2})]/rs + (\sigma_{\cdot}^{2} + s\sigma_{\cdot}^{2})(\bar{Z}_{\cdot\cdot\cdot} - \bar{Z}_{\cdot\cdot\cdot})^{2}/rs$$

$$\operatorname{Var}(\overline{Y}_{i\cdots adj}) = [\sigma_{\epsilon}^2 + s(\sigma_{\rho}^2 + \sigma_{\delta}^2)]/rs + (\sigma_{\epsilon}^2 + s\sigma_{\delta}^2)(\overline{Z}_{i\cdots} - \overline{Z}_{i\cdots})^2/W \times B_{ZZ}$$

$$Var(\bar{Y}_{\cdot \cdot k \text{ adj}}) = (\sigma_{\rho}^2 + \sigma_{\delta}^2 + \sigma_{\epsilon}^2)/ar + \sigma_{\epsilon}^2 (\bar{Z}_{\cdot \cdot k} - \bar{Z}_{\cdot \cdot \cdot k})^2/S \times B : W_{ZZ}$$

$$Var(\bar{Y}_{i}, adj - \bar{Y}_{i}, adj) = (\sigma_{\epsilon}^{2} + s\sigma_{\delta}^{2}) \left[\frac{2}{rs} + \frac{(\bar{Z}_{i}, -\bar{Z}_{i})^{2}}{W \times B_{ZZ}} \right]$$

$$Var(\bar{Y}_{\cdot\cdot\cdot k \text{ adj}} - \bar{Y}_{\cdot\cdot\cdot k' \text{ adj}}) = \sigma_{\epsilon}^{2} \left[\frac{2}{ar} + \frac{(\bar{Z}_{\cdot\cdot k'} - \bar{Z}_{\cdot\cdot k})^{2}}{S \times B : W_{ZZ}} \right]$$

$$Var(\bar{Y}_{i\cdot k \text{ adj}} - \bar{Y}_{i\cdot k' \text{ adj}}) = \sigma_{\epsilon}^{2} \left[\frac{2}{r} + \frac{(\bar{z}_{i\cdot k'} - \bar{z}_{i\cdot k'})^{2}}{S \times B : W_{ZZ}} \right]$$

and, for $i \neq i$

$$\begin{aligned} \operatorname{Var}(\bar{Y}_{i \cdot k \text{ adj}} - \bar{Y}_{i \cdot k \cdot \text{ adj}}) &= \frac{2}{r} (\sigma_{\epsilon}^{2} + \sigma_{\delta}^{2}) + \frac{(\bar{Z}_{i \cdot \cdot \cdot} - \bar{Z}_{i \cdot \cdot \cdot})^{2}}{W \times B_{ZZ}} (\sigma_{\epsilon}^{2} + s\sigma_{\delta}^{2}) \\ &+ \frac{(\bar{Z}_{i \cdot \cdot k} - \bar{Z}_{i \cdot \cdot \cdot} - \bar{Z}_{i \cdot k} + \bar{Z}_{i \cdot \cdot \cdot})^{2}}{S \times B : W_{ZZ}} \sigma_{\epsilon}^{2} \end{aligned}$$

Estimates of the variance components σ_{ϵ}^2 and σ_{δ}^2 are required to calculate standard errors of the above differences amongst adjusted treatment means. From the expected mean squares of the ANOVA table it is known that error(a) and error(b) estimate $\sigma_{\epsilon}^2 + s\sigma_{\delta}^2$ and σ_{ϵ}^2 , respectively. If error(a) and error(b) are denoted E_a and E_b , respectively, then σ_{δ}^2 is estimated by $(E_a-E_b)/s$. Hence, the desired standard errors are given by:

$$SE(\bar{Y}_{i\cdots adj} - \bar{Y}_{i\cdots adj}) = \boxed{E_{a}\left[\frac{2}{rs} + \frac{(\bar{Z}_{i\cdots} - \bar{Z}_{i\cdots})^{2}}{W \times B_{ZZ}}\right]}$$

$$SE(\overline{Y}_{\cdot \cdot k \text{ adj}} - \overline{Y}_{\cdot \cdot k \text{ adj}}) = \sqrt{E_b \left[\frac{2}{ar} + \frac{(\overline{Z}_{\cdot \cdot k} - \overline{Z}_{\cdot \cdot k})^2}{S \times B : W_{ZZ}} \right]}$$

$$SE(\bar{Y}_{i\cdot k \text{ adj}} - \bar{Y}_{i\cdot k' \text{ adj}}) = \sqrt{E_b \left[\frac{2}{r} + \frac{(\bar{Z}_{i\cdot k'} - \bar{Z}_{i\cdot k})^2}{S \times B : W_{ZZ}} \right]}$$

and, for $i \neq i$

$$SE(\overline{Y}_{i \cdot k \text{ adj}} - \overline{Y}_{i \cdot k \cdot adj}) = \left\{ \frac{2[E_a + (s-1)E_b]}{rs} + \frac{(\overline{Z}_{i \cdot k} - \overline{Z}_{i \cdot k})^2}{W \times B_{ZZ}} E_a + \frac{(\overline{Z}_{i \cdot k} - \overline{Z}_{i \cdot k} - \overline{Z}_{i \cdot k} + \overline{Z}_{i \cdot k})^2}{S \times B : W_{ZZ}} E_b \right\}^{1/2}$$

Variances and standard errors of adjusted means and differences amongst adjusted means for SP-3.

$$Var(\bar{Y}_{i\cdot k \text{ adj}}) = (\sigma_{\epsilon}^2 + \sigma_{\delta}^2)/r + (\sigma_{\epsilon}^2 + s\sigma_{\delta}^2) \frac{(\bar{Z}_{i\cdot} - \bar{Z}_{\cdot\cdot})^2}{E(a)_{ZZ}}$$

$$\operatorname{Var}(\overline{Y}_{i \cdot \cdot \cdot adj}) = (\sigma_{\epsilon}^{2} + s\sigma_{\delta}^{2}) \left[\frac{1}{\operatorname{sr}} + \frac{(\overline{Z}_{i \cdot } - \overline{Z}_{\cdot \cdot })^{2}}{\operatorname{E}(a)_{ZZ}} \right]$$

$$Var(\overline{Y}_{\cdot \cdot k \text{ adj}}) = (\sigma_{\epsilon}^2 + \sigma_{\delta}^2)/ar = Var(\overline{Y}_{\cdot \cdot k})$$

$$Var(\bar{Y}_{i}, adj - \bar{Y}_{i}, adj) = (\sigma_{\epsilon}^{2} + s\sigma_{\delta}^{2}) \left[\frac{2}{sr} + \frac{(\bar{Z}_{i}, -\bar{Z}_{i})^{2}}{E(a)_{ZZ}} \right]$$

$$Var(\overline{Y}_{\cdot \cdot k \text{ adj}} - \overline{Y}_{\cdot \cdot k \text{ adj}}) = 2 \sigma_{\epsilon}^2 / ar = Var(\overline{Y}_{\cdot \cdot k} - \overline{Y}_{\cdot \cdot k})$$

$$Var(\overline{Y}_{i \cdot k \text{ adj}} - \overline{Y}_{i \cdot k' \text{ adj}}) = 2 \sigma_{\epsilon}^2 / r = Var(\overline{Y}_{i \cdot k} - \overline{Y}_{i \cdot k'})$$

and for $i \neq i'$,

$$\operatorname{Var}(\overline{Y}_{i \cdot k \text{ adj}} - \overline{Y}_{i' \cdot k' \text{ adj}}) = 2(\sigma_{\epsilon}^2 + \sigma_{\delta}^2)/r + (\sigma_{\epsilon}^2 + s\sigma_{\delta}^2) \frac{(\overline{Z}_{i \cdot r} - \overline{Z}_{i \cdot r})^2}{E(a)_{ZZ}}$$

Estimates of the variance components σ_ϵ^2 and σ_δ^2 are given by E(b) and [E(a) - E(b)]/s, respectively. Hence, the desired standard errors are given by:

$$SE(\overline{Y}_{i\cdots adj} - \overline{Y}_{i\cdots adj}) = \sqrt{E(a) \left[\frac{2}{sr} + \frac{(\overline{Z}_{i\cdots} - \overline{Z}_{i\cdots})^2}{E(a)_{ZZ}} \right]}$$

$$SE(\overline{Y}_{\cdot \cdot k \text{ adj}} - \overline{Y}_{\cdot \cdot k \text{ adj}}) = \sqrt{2E(b)/ar} = SE(\overline{Y}_{\cdot \cdot k} - \overline{Y}_{\cdot \cdot k})$$

$$SE(\overline{Y}_{i \cdot k \text{ adj}} - \overline{Y}_{i \cdot k}, \text{ adj}) = \sqrt{2E(b)/r} = SE(\overline{Y}_{i \cdot k} - \overline{Y}_{i \cdot k})$$

and, for $i \neq i'$,

$$SE(\overline{Y}_{i\cdot k \text{ adj}} - \overline{Y}_{i\cdot k}) = \sqrt{\frac{2[E(a) + (s-1)E(b)]}{sr} + \frac{(\overline{Z}_{i\cdot k} - \overline{Z}_{i\cdot k})^2}{E(a)_{ZZ}}} E(a)$$

References

Federer, W.T. (1955) <u>Experimental Design</u> - <u>Theory and Application</u>. The MacMillan Co., New York, Chapter 16.

Federer, W.T., and Henderson, H.V. (1979), Covariance analysis of design experiments x statistical packages: An Update, Proc., Comp. Sci. an Stat. 12th Ann. Sym. on the Interface.

<u>SAS User's Guide</u>: <u>Statistics</u>, <u>Version 5 Edition</u> (1985a), SAS Institute Inc., Cary, NC: 956pp.

<u>SAS User's Guide</u>: <u>Basics</u>, <u>Version 5 Edition</u> (1985b), SAS Institute Inc., Cary, NC: 1290pp.

Searle, S.R., (1971), Linear Models, Wiley, New York, 532pp.

Searle, S.R., Hudson, G.F.S., and Federer, W.T. (1985), Annotated computer output for covariance-text, BU-780-M, Biometrics Unit Mimeo Ser., Cornell University, Ithaca, New York.

Winer, B.J., (1971), <u>Statistical Principles in Experimental Design</u> McGraw-Hill Book Company, New York, 907pp.

SP-1: SPLIT PLOTS WITH WHOLE PLOTS ARRANGLO IN RCB DESIGN 2 16:25 FRIDAY, APRIL 10, 1987 GENERAL LINEAR MODELS PROCEDURE

and a content of the content of the

DEPENDENT VARIABLE: Y

$ \rho_j = \text{block effect} $ $ \tau_i = \text{whole plot effect} $ $ \sigma_k = \text{subplot effect} $		NOTE. These does are beleaced Therefore	type I,II,III, and IV SS's are equal, so only type III SS's were required. Type I SS's	Nong Text Nong Text CAE committee all tests in this mart of the	table using SSE(b)=112.000. The appropriate test of whole plot effects uses SSE(a)=16.000 and must be requested using TEST command.		PR > F	0.2500	0.2254 Results of TEST command
MEAN SQUARE 29.81818182 9.3333333	PR > F = 0.0288	Y MEAN = overall mean	7.00000000	TYPE III SS F VALUE PR > F	48. 00000000 2.57 0.1176 24. 00000000 2.57 0.1348 156. 00000000 5.57 0.0125 16. 00000000 0.86 0.4488 84. 00000000 3.00 0.0728	1 OCK*WHOLE	TYPE 111 SS F VALUE	$48.000000000 \qquad 3.00 = \frac{48.00/2}{3.00} = 3.00$	24 OGURUUOO \$.00
DF StW 0F SQUARES 11 SSR 328.00000000 12 SSE(b) 112.00000000 23 SST 440.00000000	$3.19 = \frac{29.82}{9.33}$	C.V. ROOT MSE	43,6436 3.05505046	DF TYP	$\left\langle \begin{array}{l} a,a,a\tau \\ a,a,a\tau \end{array} \right\rangle$ $\left\langle \begin{array}{l} x,\tau,a\tau \\ p,\tau,a \end{array} \right\rangle$	TESTS OF HYPOTHESFS USING THE TYPE III MS FOR BLOCK*WHOLE AS AN ERROR TERM	DF TYP	$2 R(\rho \mu, \tau, \sigma, \sigma\tau) = 48.$	$1 R(\tau \mu, \rho, \sigma, \sigma\tau) = 24$
SOURCE MODEL ERROR CORRECTED TOTAL	MODEL F =	R. SQUARE	0.745455	SOURCE	BLOCK WHOLE (plot) SUBPLOT BLOCK*WHOLE WHOLE*SUBPLOT	TESTS OF HYPOTHES AS AN ERROR TERM	SOURCE	BLOCK	MH01E (plot)

eeeeese saareee saassast zeeeeeee saasaasa veeeeeee bosssssa saasaasa saasaasa saasaaa saaeeee saasa

SP 1: SPLIE PLOTS KITH WHOLE PLOTS ARRANGED IN RUB DESIGN 3-16:25 FKIDAY, VPKIL TO, 1987 GENERAL LINEAR WODELS PROCEDIRE

DEPENDENT VARIABLE: Y

Y.Y = RESIDUAL	
Y - xb = PREDICTED	VALUE
Y = OBSERVED	VALUE
OBSERVATION	

data	2.47321429		14150ND	
Wats	0.000000	EKKUK 55	DRIVER ALTHOUGHER ALTHOU	FIRST
First	112.0000000	SSE(b)	SQUARED RESIDUALS =	SCA OF
	0.0000000.0	,	RESIDUALS	SUM OF
	- 4, 00000000	17.00000000	13.00000000	1 2
	3,00000000	00000000 9	000000000 6	23
	0.00000000	8 . 00000000	8 0000000	2.5
	1.0000000	9 : 00000000	10.0000000	21
	2.00000000			20
	3.00000000	5.00000000	2.00000000	19
	1.00000000	000000000.7	8.0000000	<u>x.</u>
	0.00000000	8.00000000	8.00000000	17
	2.00000000	12.00000000	14.00000000	16
	0.00000000	1.00000000	1.00000000	7
	- 1.00000000	3.00000000	2.00000000	7
	. 1.00000000	4.00000000	3.00000000	Ξ
	. 3, 00000000	7 . 00000000	4.00000000	12
	0.00000000	4.00000000	4.00000000	11
	2.00000000	8,00000000	10.00000000	10
	1.00000000	5.00000000	6.00000000	6
	3.00000000	8.00000000	11.00000000	œ
	- 4 . 00000000	5.00000000	1.00000000	۲-
	1.00000000	9.00000000	10.00000000	9
	0000000000	6.00000000	6.00000000	10
	0.00000000	000000009	6.0000000	*7*
	4.00000000	3.00000000	7.00000000	က
•	3.00000000	7.00000000	4.00000000	2
. Y ₁₁₁	$-1.00000000 = Y_{111}$	$Y_{111} = 4.00000000$	$Y_{111} = 3.00000000$	-
•				

First order auto correlation and Durbin-Watson D are tests used to detect time-correlated errors. Not applicable for these data. See for example Neter and Wasserman (1974).

1 SP 2: SPLIT PHOF DESIGN NITH SHORE PHOTS ARRANGED IN RCB: 2 KITH A CONARIALE AVRAING WHIE SPLIT PHOF 16.25 HRIDAY, APRIL 10, 2987 GANERAL LINEAR WORLES PROPERTY FOR 2087	Carle Carle Carle Carle	Jak j
1 SP 2: SPLIT PIOT DESIGN NITH MIGHE PLOUS ARRANGED IN ROB: 2 ALTH A CONARIALE AARLING MITH SPITE PLOU 16.25 FRIDAY, APRIL 10., 2087 GENERAL LIMIAR MODELS PROCEEDING.		
1 SP 2: SPLIT PLOT DESIGN WITH RHOLE PLOTS ARRANGED IN RCB: 2 GLNERAL LINIAR WORDELS PROCEDURE: 2 GLNERAL LINIAR WORDELS PROCEDURE: 3087		
1 SP 2: SPLIT PHOT DESIGN MAIN MHOLE PHOUS ARRANGED IN ROBE 2 MITH A CONARIALE AARDING MITH SPITE PHOT 16.25 HEIDAN, APRIL 10, 2087 GANRAL LINEAR MODELS PROCEDURE.		
1 SP 2: SPLIT PHOT DESIGN MITH NHOLE PHOTS ARRANGED IN RUB: 2 MITH A CONARIALE VARNING WITH SPLIT PHOT BEST OFFICE OF SPLIT PHOT SPLIT PHO		ا 1
1 SP 2: SPLIT PLOT DESIGN MIR MIGHE PLOTS ARRANGED IN RCB: 2 WITH A CONARIALE VARVING WITH SIGHT PLOT 16.25 HEIDAY, APRIL 10. 2087 GLN-RAL LINEAR MODELS, PROCEDURE.	k	2 pag
1 SP 2: SPLIT PHOT DESIGN WITH KHOLE PHOTS ARRANGED IN RCB: ALTH A CONARLALE VARVING WITH SPLIT PHOT 16.25 Helday, APRIL 10. 2987 GANERAL LINEAR MODELS, PROCEDURE.		<u>&</u>
1 SP 2: SPLIT PLOF DESIGN WITH WHOLE PLOTS ARRANGED IN RCB: 2 KITH A CONARIANE VARYING WITH SPLIT PLOT 16.25 FRIDAY, APRIL 10, 1957 GAMERAL LINEAR WODELS PROCEDURE.		
1 SP 2: SPLIT PLOF DESIGN NJIH NHOLE PLOIS ARRANGID IN RCB: 2 NITH A CONARTALE VARYING NITH SPLIT PLOI 16.25 PRIDAY, APRIT 10, 1987 64.NFRAL LINEAR MODELS PROCEDUR.		
1 SP 2: SPLIT PLOT DESIGN NJJH NHOLE PLOIS ARRANGID IN RCB: NJH A CONARIAJE VARVING NJJH SPLOJE 16.25 HEIDAY, APRIT 10, 2987 GANRAL LINEAR MODELS PROCEDUR.		
1 SP 2: SPLIT PLOT DESIGN NITH NHOLE PLOUS ARRANGED IN RCB: 2 NITH A CONARTALE ANRING NITH SPLIT PLOT 16.25 FRIDAY, APRIL 10, 2957 GENERAL LINEAR MODELS, PROCEDURE.	Ş	
1 SP 2: SPLIF PLOF DESIGN NJJH NHOLE PLOIS ARRANGIP IN ROB: NJJH A CONARTALE VARNING NJJH SPLIF PLOI 16.25 FRIDAY, APRIL 10, 3957 GANERAL LINEAR MODELS PROCEDURE		
1 SP 2: SPLIT PHOT DESIGN NITH SHOLE PHOLS ARRANGED IN RCB: 1 SP 2: SPLIT PHOT DESIGN NITH SHOLE PHOLS 16.25 FRIDAY, APRIL 10, 5987 64NFRAL LINEAR WODELS, PROCEDURE.	8	
1 SP 2: SPLIT PLOT DESIGN MITH SHOLE PLOTS ARRANGED IN RCB: 2 NITH A CONARIALE VARNING WITH SPLIT PLOT 16.25 FRIDAY, APRIL 10, 2087 64N-RAL LINEAR MODELS PROCEDURE	,	
1 SP 2: SPLIT PLOT DESIGN MITH MHOLE PLOTS ARRANGED IN RCB: NITH A CONARIALE VARNING WITH PLOT 16,25 FRIDMY, APRIL 10, 2087 64N-RAL LINEAR MODELS PROCEDURE.		
1 SP 2: SPLIT PLOT DESIGN MITH SHOLE PLOTS ARRANGED IN RCB: NITH A CONARLALE VARVING WITH PLOT 16.25 FRIDAY, APRIL 10, 2087 64N-RAL LINEAR WORDELS PROCEDURE		
1 SP 2: SPLIT PLOT DESIGN WITH SHOLE PLOTS ARRANGED IN RCB: WITH A CONARTALE VARYING WITH PLOT 16.25 FRIDAY, APRIL 10, 2087 GENERAL LINEAR WODELS PROCEDURE.		
1 SP 2: SPLIT PLOT DESIGN WITH SHOLE PLOTS ARRANGED IN RCB: WITH A CONARIALE VARVING WITH SPLIT PLOT 16.25 FRIDAY, APRIL 10, 5987		
1 SP 2: SPLIT PLOT DESIGN WITH WHOLE PLOTS ARRANGED IN ROBE WITH A CONARLALE VARVING WITH SPLIT PLOT GENERAL LINEAR WODELS PROCEDURE.		7
1 SP 2: SPLIT PHOT DESIGN WITH SHOLE PHOTS ARRANGED IN RCB: WITH A COVARIALE VARYING WITH SPLIT PHOT 16,25 FRIDAY, APRET		<u>=</u>
1 SP 2: SPLIT PHOT DESIGN NIJH KHOLE PHOIS ARRANGED IN RO NITH A CONARTALE VARYING MITH SPLIT PHOT 16.25 FRIDAY.	2	JRS VERTI
1 SP 2; SPLIT PHOT DESIGN NIJH KHOLE PHOIS ARRANGED WITH A CONARIALE VARNING WITH SPITE PHOT DESIGN NIJH KHOLE PHOIS ARRANGED CENERAL LINEAR MODELS PROCEDURE.		₩ . ₩ .
1 SP 2; SPLIT PHOT DESIGN WIJH MHOLE PHOUS ARRAY WITH A COVARIALE VARYING WITH SPITT PHOT DESIGN WITH SPITT PHOT PHOT DESIGN WITH SPITT PHOT PHOT PHOT PHOT PHOT PHOT PHOT PH).	SCEP FRID
1 SP 2; SPLIT PHOT DESIGN WIJH WHOLE PHOLS WITH A COVARIALE VARYING WITH SPLIT WITH A COVARIALE VARYING WITH SPLIT PHOT DESIGN WIDHS SPLIT PHOT DESIGN WIDHS PROCEDULE.		### 6 ### 6 ## 15 ## 15
1 SP 2: SPLIT PHOT DESIGN MIJH MHOLE PLANTER A CONARIALE AARMING MITH SPECIAL PROPERTY OF SPECIAL PROPERTY		9118 11118 11119
1 SP 2: SPLIT PHOT DESIGN NIJH SHO NITH A CONARIALE NARNING N		11 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 SP 2: SPLIT PHOT DESIGN NIH WITH A CONARIALE VARY		1 5 5 10 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1
1 SP 2: SPLIT PLOT DESIGN MITH A CONARTALE.		1111 1181 V
SP 2: SPLIF PHOF DI NITH A CONARA		SSIGN 141E 111N
SP 2: SPLIF PI		OT DI ON AR
148 - 32 48 - 1		M
ें हैं -		SP
₹ - ***********************************		÷
		<u>v.</u>
		-
). Saladat ki	F ,	

DEPLYDFYT VARIABLE:

	-							
SOURCE	DF.		SUM OF SQUARES		MEAN SQUARE		F 1411E	
HODEL	47	4 SSR.	88,0000000	000	22,000000000		99999, 99	
ERROR	-	SSE(a)	1 SSE(a) 0.00000000	000	0.00000000	C	PR > F	NOTE: To get SS's for the whole plot from split
CORRECTED TOTAL	10	5 SST	88.0000000	000			0.0001	plot data, it is necessary to use totals of each variety by block combination divided by A =
R-SQUARE	C.V.		ROOT MSE	4SE	Y MEAN	z		vno. of split plot treatments. The following data are used for this run.
1.000000	0.000		0.00000000		14.00000000		14.00000000 = $V_{\text{col}}(\sqrt{4}) = 7.2 = 14$	
SOURCE	DF		_	TYPE I SS	F VALUE PR > F	PR > F		
BLOCK WHOLE 2	2	$\begin{array}{c} 2 & R(\rho \mid \mu) \\ 1 & R(\tau \mid \mu, \rho) \\ 1 & R(\beta_1 \mid \mu, \rho, \tau) \end{array}$		48.00000000 24.00000000 16.0000000			8 C SS	NOTE: These data are balanced. Therefore, Types II,III, and IV are all equal. Since SSE(a) = 0, F ratio is undefined.
SOURCE	DF			TYPE 111	TYPE III SS F VALUE		PR > F Pj	$\rho_{\rm j}$ = block effect
BI OCK	2	$R(\rho \mu, r)$	2 R(p \mu, \tau, \alpha, \alpha \tau)	15.60000000	. 00			$ au_1 = whole plot effect$ $a_L = subplot effect$
*HOLE		R(T 4.0	1 R(r \mu, \rho, \beta_1, \a, \ar)	3.42857143	43	•		$\beta_i = Z(whole plot covariate slope)$
2	-	R(B, \m.	1 R(B, \mu, T, p, a, aT)	16.00000000	. 00			•

						These individual estimates	of the covariate estimate,	experimenter. They can be	(44) = 6 compute predicted values ($(\sqrt{4}) \approx 4$ meaningful estimates (adju	on SP. 2 nage 4. Except fo
STD ERROR OF ESTIMATE	0 0	0	·c	•	0	finite			$\rho_0 = V_{-1}$, (44) $\rho_0 = \frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \frac$	$r_0 = V_{1}(\sqrt{4}) - \mu_0 - \frac{1}{3} \sum_{j=0} \rho_0 - \hat{\beta}_{1,j-1}(\sqrt{4}) = 6(\sqrt{4}) - (-12) - \frac{1}{3} (6+6+0) - 4(2)(\sqrt{4}) = 4$	
Z	0.0001	0.0001	0.0001		0.0001	use \pm 99999.99 to express that F is infinite	. (44)	(A) = -12	(2) - (-12)	5(4) - (-12)	
T FOR HO PARANLIFR O	65 (65656) 65 (66666)	bir bobbb	ho bbata		66,66666	use ± 99999.99 to express that I	$\begin{bmatrix} 3 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \end{bmatrix}$	$\frac{1}{2}(6+6+0) - \frac{1}{2}(4+0) - 4.0(2.5)(\sqrt{4}) = -12$	$\hat{\beta}_{1}^{2}$, $\hat{\beta}_{1}^{2}$, $\hat{\beta}_{1}^{2}$ = 5	$\hat{\beta}_1 Z_{1,}(\sqrt{4}) = 6$	
PSTIMATE	12,000000000 B 6,00000000 B	6,00000000 B	1 DOUGOOOD B	0 00000000 8	4,00000000		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2}(6.6.0) - \frac{1}{2}(4$. 40 · 1 E to	. 40 . 1 E po	f
	9 00	-	10	_	. I		 (≱ ≱)	= 7.(A) =	1.(4)	€	
. 11. R	1 PT 1	0.1	~	Ç1			μο = Υ _ (44)	· 1 ·	po = Y	70 = V	-
F4R4NF 1FR	INTERCT PT BLOCK		3 10H1		7						

These individual estimates, with the exception of the covariate estimate, are not useful to the experimenter. They can be used together to compute predicted values (see next page). More meaningful estimates (adjusted means) are printed on SP-2 page 4. Except for $\hat{\beta}_1$ these estimates are not of interest. It is preferable to use the ESTIMATE statement as shown below.

STD ERROR OF ESTINATE

PR > |T| 0.0001

T FOR 110: Parameter=0 99999.99

PARAMETER ESTINATE WHOLE PLOT SLOPE 4.00000000

PERMENT VARIABLE

IE: THE X'Y MATRIX HAS BEEN DEENED STUGILAR AND A GENERALIZED INVERSE HAS BEEN EMPLOYED TO SOLVE THE NORMAL EQUATIONS. THE ABOVE ESTIMATES REPRESENT ONLY ONE OF MAYY POSSIBLE SOLUTIONS TO THE OFFICE AND TO STIMATES FOLIONED BY THE LETTER B ARE BLASED AND DO NOT ESTIMATE THE PARAMETER BITA ARE BLUE FOR SOME LINEAR COMBINATION OF PARAMETERS (OR ARE ZERO). THE EXPECTED VALUE OF THE BLASED ESTIMATORS MAY BE OBTAINED FROM THE GENERAL FORM OF ESTIMABLE FUNCTIONS. FOR THE BLASED ESTIMATORS, THE STD ERR IS THAT OF THE BLASED ESTIMATORS AND THE TALLE TO FOLLOWED BY THE LETTER B ARE BLUE FOR THE PARAMETER. NOTE:

	Remember that Y., for this run is the sum of	block 1 trt 1 divided by 4. i.e. (3+4+7+6)/4 = 10	$\hat{Y}_{11} / \sqrt{4} = \mu_0 + \rho_0 + \tau_0 + \hat{\rho}_1 (Z_{11}) (\sqrt{4})$ $= -12 + 6 + 4 + 4(\frac{6}{4})(2) = 10$	where $Z_{11} = (1 + 2 + 1 + 2)/4$
·;	111. 1111.		$f_{11},/A=\mu 0$	where 2 ₁₁ . =
RESIDUAL	$0.00000000 = \frac{111}{4} - \frac{111}{4}$	000000000000000000000000000000000000000	0.00000000 0 0.000000000 0 0.000000000 0	0.00000000 0.00000000 0.00000000
PREDICTED VALLE	$\hat{\mathbf{Y}}_{11}, /4 = 10.00000000$	12.0000000 10.00000000 18.00000000	20 . 000000000 LS	LS - ERROR SS ation
OBSERVED VALUE	$Y_{11}/\sqrt{4} = 10.00000000$	12.00000000 10.00000000 18.0000000	20.00000000 SUM OF RESIDUALS SUM OF SQUARED RESIDUALS	SUM OF SQUARED RESIDUALS - ERROR : FIRST ORDER AUTOCORRELATION DURBIN MATSON D
OBSERVATION	1 Y ₁₁ .//	। ਦ ਵਾਹ) #1)S) #1)S	SUM (FIRST) DURBL

SP-2 page 4

SPLIT PLOT DESIGN WITH WHOLE PLOIS ARRANGED IN RCB: 16.25 FRIDAN, APRIL 10, 1987 GFN-RAL LINFAR MODELS PROCEDIRE ₹ d ≤

LEAST SQUARES WEAVS a Adjusted Means

BLOCK

LSWEAN

Y. = 16.0000000 adj 16.0000000 10.0000000

 $Y_{j,adj} = 2[Y_{j,-} \hat{\beta}_1(Z_{j,-} Z_{...})]$ $e.g. Y_{1,adj} = 2[\frac{20+20}{8} \cdot 4(1.75 \cdot 2.5)] = 2(8) = 16$

WHOLE (plot) Y LSWEAN

 $Y_{1} \cdot A_{dj} = 2 \left[Y_{1} \cdot \hat{\beta}_{1} (Z_{1} \cdot \hat{\beta}_{2} \cdot Z_{...}) \right]$ $e \cdot g \cdot Y_{1} \cdot A_{dj} = 2 \left[6 \cdot 4(2 - 2.5) \right] = 2(8) = 16$

NOTE: Since we used totals $/(\sqrt{4} = 2)$ as input data, these adjusted means need to be divided by 2.

 $\begin{array}{rcl}
1 & \mathbf{Y_1} & = 16.9000000 \\
2 & & & & & \\
2 & & & & & \\
\end{array}$

SAS 16-26 JRIDAY, APRIL 10, 1987 CORRECT SPLIT PUBE ANALYSIS GIALRAL LINEAR MUDITS PROCIDERE

DEPENDENT VARIABLE: V

MEAN SQUARE F VALUE	28.53750000 3.22 8.86818182 o² PR > F 0.0312	Y MEAN	= {NScrror 7.00000000	F VALUE PR > F	2.71 0.1282 Therefore Types II,III, and IV 0.00 0.4337 are equal.		F VALUE - PR > F	1.14 0.3551 These 3 SS's should be ignored 0.69 0.4244 because they are adjusted with 0.53 0.6014 β_2 instead of β_1 .	3.17 0.0678	(a, h_2) 1.41 0.2923	a_1a_7) 1.63 0.2281
DE SUM DE SQUARES MEAN	12 342.45000000 28.5. 11 97.55000000 8.80 23 440.0000000	$C_{\perp}V_{\perp} = \frac{\sigma}{V_{\perp}} \times 100\%$ ROUT MSE	$42.5421 = \frac{2.9779}{7.0000} \times 100\% - 2.97794926 = 4\% crror$	DF TYPE 1 SS		3 $R(a \mu,\rho,\tau)$ 155, 100000000 3 $R(a\tau \mu,\rho,\tau,\alpha)$ 84,00000000 1 $R(\beta_2 \mu,\rho,\tau,\alpha,\alpha\tau)$ 14,45000000	pr Type 111 SS	2 20,20862069 1 6,10384615 2 9,4500000	3 84.24310345 $R(a \mu, \rho, \tau, \sigma \tau, \beta_2)$	3 37.47.439024 $R(a\tau \mu,\rho,\tau,a,\beta_2)$	1 14.45000000 $R(\beta_2 \mu,\rho,\tau,a,a\tau)$
Sperce	MODEL FRROR CORRECTED TOTAL	R SQUARE	$0.778295 = \frac{SS(Node1)}{SS(Total)} = 4$	SOURCE = 343, 45	BLOCK NHOLE (plot) BLOCK*WHOLE	STARLETSTARFLOT STARLETSTARFLOT STARLETSTARFLOT	SOURCE	BLOCK SHOLE SHOLE	SUBFLOT	KHOLL*SUBPLOT	7

Contract Section States of the Section of Section Sections

CORRECT SPLIT PLOT ANALYSIS

GENERAL LINEAR MODELS PROCEDURE

۰		
5		
ک		
ζ		
2		
_		
-3	•	
2		

PAKAMELEK 1XTERCEPT BLOCK WHULE BLOCK*WHULE	ESTIMATE $\mu_0 = 11.90000000 \text{ B}$ $\frac{2}{1} \qquad \rho_0 = \cdot 3.30000000 \text{ B}$ $\frac{2}{3} \qquad \cdot 0.15000000 \text{ B}$ $\frac{1}{1} \qquad r_0 = \cdot 7.02500000 \text{ B}$ $\frac{1}{1} \qquad 0.00000000 \text{ B}$ $\frac{1}{2} \qquad 0.00000000 \text{ B}$ $\frac{1}{2} \qquad 0.00000000 \text{ B}$ $\frac{2}{3} \qquad 0.00000000 \text{ B}$ $\frac{2}{3} \qquad 0.00000000 \text{ B}$ $\frac{2}{3} \qquad 0.00000000 \text{ B}$	1 FUK HU: 2 . 63 - 1 .32 - 0 . 07 - 1 . 86 - 1 . 86 - 1 . 86 - 1 . 86 - 1 . 86	0.0232 0.2122 0.9471 0.0902 0.6096	5.10 F KRUN UP EST INATE 4.51628367 2.49153111 2.20850628 3.78152657 3.05148995 2.99650364	NUTE: Except for $\hat{\beta}_2$, none of these estimates are of interest. It is preferable to use the ESTIMATE statement to obtain $\hat{\beta}_2$.
KHOLE*SUBPLOT	$1(at)_{11}$ 2 3 4 4 7	-1.55 -3.35 -1.17 1.20 2.04	0.1488 0.0064 0.2682 0.2549 0.0659	3,60647566 2,77231989 ,368753017 4,78638378 3,50252074	$ \begin{array}{c} . & \frac{1}{2} \sum_{i=1}^{2} (\alpha \tau)^{\circ} - \hat{\beta}_{2} Z_{k} \\ & = 6 - 11.9 - \frac{1}{2} (-7.025 + 0) - \frac{1}{3} (-3.3 - 0.15 + 0) \\ & = \frac{1}{6} (3.15 + 1.575 + 0 + 0 + 0 + 0) - \frac{1}{2} (4.30 + 0) - 0.85(2.5) \\ & = -6.3 \end{array} $
	2 3 0.0000000 B 2 4 0.00000000 B $\hat{\boldsymbol{\beta}}_{\mathbf{z}} = 0.8500000$	$(\tau a)_{1.1}^{o} = Y_{1.1}$ $(\tau a)_{1.1}^{o} = (\tau_{1.1}^{o})^{o}$	$\frac{1}{6.2281}$ $\frac{1}{6}$ $\frac{5}{6}$ $\frac{5}{6}$ $\frac{1}{6}$	0.66588970 0.46588970 0.40588970 1.805 + 3 $\frac{3}{3}$ 1.7.025 + 6.3 - $\frac{3}{3}$	$ (\tau a)_{1.1k}^{0} = Y_{1.1k} - \mu_0 - \tau_0 - \alpha_0 - \frac{1}{3} \frac{3}{15} \frac{3}{15} - \frac{1}{3} \frac{3}{15} \frac{5}{15} - \hat{\mu}_2 Z_{1.1k} $ $ (\tau a)_{1.1}^{0} = (\frac{15}{3}) - 11.9 + 7.025 + 6.3 - \frac{1}{3}(-3.3 - 0.15) - \frac{1}{3}(3.15 + 1.575 + 0) - 0.85(\frac{6}{3}) $

₹.

SP-2 page 7

CONTRACTOR PROPERTY OF THE PRO

SAS 16:26 FRIDAY, APRIL 10, 1987 CORRECT SPLIT PLOT ANALYSTS GEMEAL LINEAR MODILS PROCEDURE

DEPLYDENT VARIABLE:

= 11.9 + (-3.3) + (-7.025) + 3.15 + (-6.3) + 4.3 + (.85)(1)= 3.575This is the result from the ESTIMATE $\hat{Y}_{111} = \mu_0 + \rho_0 + \tau_0 + \delta_0 + a_0 + (a\tau)_0 + \hat{\beta}_2 Z_{111}$ for split plot STD ERROR OF ESTIMATE $Y_{111} - \hat{Y}_{111} = -0.57500000$ RESTRUME -4.85000000 -2.57500000 - 0.00000000 97.55000000 - 0.00000000 - 0.40431830 2.56411456 PR > |T| PREDICTED VALIE $\hat{\mathbf{Y}}_{111} = 3.57500000$ 6.57500000 17.85000000 T FOR NO: PARAMETER=0 SYM OF RESIDUALS
SYM OF SQUARED RESIDUALS
SYM OF SQUARED RESIDUALS
FIRST ORDER ATTOCORRELATION
DURBIN-WATSON D OBSERVED VALUE $Y_{111} = 3.00000000$ 4.00000000 13.00000000ESTINATE SUBPLOT SLOPE OBSERVALION PARAMETER 7.

statement used to find β_2 .

0.66588970

0.2281

1.28

0.85000000

MANAGED BESTSESS DOUGHEST

SAS 16:26 FRIDAY, APRIL 10, 1987 CORRECT SPLIT PLOT ANALYSIS GENERAL LINEAR MODELS PROCEDURE

LEAST SQUARES MEANS

Y LSMEAN SUBPLOT

 $Y_{2adj} = Y_{2adj} = Y_{2adj}$ $\frac{4.4250000}{10.15000000}$ 6.0000000.3= 7.4250000

Y LSMEAN SUBPLOT WHOLE

5.4250000 7.5750000 5.2750000 7.4250000 6.5750000 7.2750000 3.5750000

 $12.8750000 = Y_{2.4} - \hat{\beta}_2(Z_{2.4} - Z_{...}) = 15 - 0.85(5 - 2.5) = 12.875$

These adjusted means for a split plot treatment are wrong because they are not adjusted for the whole plot regression as well as the split plot regression. The appropriate adjustment would be

 γ_{i+k} - $\beta_1(Z_{i+,-}$ Z,..) - $\beta_2(Z_{i+k}$ - $Z_{i+,-})$ = γ_{i+k} adj

These can easily be computed by combining the output from both procedural cells.

 $\bar{y}_{1.1adj} = 5 - 4(2 - 2.5) - 0.85(2 - 2)$

SP-3: SPLIT PLOTS WITH WHOLE PLOT ARRANGED IN CRO WITH A COVARIATE CONSTANT OVER SPLIT PLOTS WHOLE PLOT ANALYSIS
12:47 THURSDAY, OCTOBER 2, 1986

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: MY

To get the SS's for the whole plot from split plot data, it is necessary to	use totals of each subject	divided by √2. Those data follew and are used for this run.	SUBJECT A1 SUBJECT Z Y	1 4.2 12.7 5 1.4 17.7 2 7.1 19.1 6 11.3 31.8 3 11.3 24.0 7 1.4 24.7 4 2.8 12.7 8 2.8 17.7			r _i = A effect (whole plot)			Note: These data are balanced. Therefore Type II, III, are IV SS's are all equal.
MEAN SQUARE NOLE:	234.63930251 117.31965125	61.29819749 12.25963950	295.93750000	PR > F = 0.0195	ROOT MSE NY MEAN = $Y(\sqrt{2})$	3.50137680 20.06415492	TYPE I SS F VALUE PR > F) 190.14770093 15.51 0.0110 9 ₁) 44.49160158 3.63 0.1151	TYPE III SS F VALUE PR > F	3,7 166.57680251 13.59 0.0142 41.49160158 3.63 0.1151
DF	2 SSRm	5 SSE(a)	7 SSTm	9.57	C. v.	17.4509	DF	$\begin{array}{ccc} 1 & R(\boldsymbol{\beta}_1 \mid \boldsymbol{\mu}) \\ 1 & R(\boldsymbol{\tau} \mid \boldsymbol{\mu}, \boldsymbol{\beta}_1) \end{array}$	DF	$\begin{array}{ccc} & & & & & & & & & & & \\ & & & & & & & $
SOUNCE	MUDEL	ERROR	CORRECTED TOTAL	MODEL F =	R. SQUARE	0.792868	SOURCE	7 ~	SOURCE	7 Y

SP-3: SPLIT PLOTS WITH WHOLE PLOT ARRANGED IN CRD WITH A COVARIATE CONSTANT OVER SPLIT PLOTS WHOLE PLOT ANALYSIS 12:47 THURSDAY, OCTOBER 2, 1986

companiente la freschier announce de constant mediciniste de constant announce de la constant de

GENERAL LINEAR NODELS PROCEDURE

= $14.1875(\sqrt{2}) - \frac{1}{2}(-4.749696 + 0) - 1.02194(4.875)(\sqrt{2})$ $= Y \dots (\sqrt{2}) - \frac{1}{2} \frac{\Sigma_T^0}{\sum_{i=1}^{1} i} - \hat{\beta}_1 Z \dots (\sqrt{2})$

DEPENDENT VARIABLE: MY

PR > |T| PARAMETER=0 T FOR 110: ESTIMATE

PARAMETER

 $r_1^o = V_1 \dots (\sqrt{2}) - \mu o - \hat{\beta}_1 Z_1 \dots (\sqrt{2})$

= 15.3934

STD ERROR OF

2.70221754 0.27724167 2.49324900

0.0023 0.0142 0.1151

= $12.125(\sqrt{2})$ - 15.393426 - $1.02194(4.5)(\sqrt{2})$ where Y_{1..} =

> $\tau_1^0 = -4.74969610$ $\mu^0 = 15.39342646$ $\beta_1 = 1.02194357$ INTERCEPT

3.69

-1.91

= 3+5+8+2

DEPENDENT VARIABLE: MY

0.00000000

OBSERVED VALUE OBSERVATION

PREDICTED VALUE

RESIDUAL for whole plot

 y_{11} . ($\sqrt{2}$) = 14.97946975 19. 09188309 24. 04163056 12. 72792206 17. 67766953 31. 81980515 24. 74873734 17. 67766953 \mathbf{y}_{11} . $(\sqrt{2}) = 12.72792206$

 $(\hat{y}_{11}, -y_{11},)(\sqrt{2}) = -2.25154769$ 1.22192042

= 15.393 - 4.750 + 1.445(3)= 14.979

 y_{11} . $(\sqrt{2}) = \mu^0 + \tau_1^0 + \beta_1^{R_{11}}$. $(\sqrt{2})$

1.83592850 -0.80630123 0.83899660 4.86440699 -5.09715374

-0.60624986

17.86996267 22.20570206 13.53422329 16.83867293 26.95539816 29.84589108 18.28391939

0.00000000 61.29819749 - 0.00000000 - 0.33097074 2.57324383

LEAST SQUARES MEANS SUM OF RESIDUALS
SUM OF SQUARED RESIDUALS
SUM OF SQUARED RESIDUALS - ERROR SS
FIRST ORDER AUTOCORRELATION
DURBIN-WATSON D

Note: Divide by 12 to get correct adjusted mean. The correct adjusted means would have resulted if the average for each subject was used as data but the correct ANDVA would not.

NY (whole plot) LSNEAN

17.6893069 = $(\tilde{y}_1, -\beta_1(Z_1, -Z_{...}))\sqrt{2}$ = correct Y_1, β_1

22.4390030

 $= [12.125 - 1.022(4.5) - 4.875)] \sqrt{2} / \sqrt{2}$ correct Y_1 , adj = $(Y_1, ..., \beta_1(Z_1, ..., Z_{...}))\Delta L/\Delta$

 $= 17.6893/\sqrt{2}$ = 12.51

ž

11.00 SSS 11.1

SP-3												Recause these data are balanced and there is no split plot covariate, all 4 types of SS's are	equal. Type I SS's would be cheapest to compute.	These 55's are not used since they are not corrected by β_1 .	The state of the s	inese 55's are reported in the ANUYA table.
STD ERROR ESTIMATE 0.27724167												PR > F	0.0002	0.0002	0.0001	0.4943
PR > T 0.0142	PROB > T	TH A 3R 2, 1986			NEAN SQUARE	42.45138889	1.06250000		PR > P = 0.0001	Y MEAN	14.18750000	F VALUE	64.06	35.75	80.53	0.53
T FOR HO: PARAMETER=0 3.69	LEAST SQUARES MEANS NY STD ERR MEAN LSMEAN 3069 1.7568516 0030 1.7568516	SPI PLOTS SPI DAY, OCTOBER 2, 1986			SUM OF SQUARES	382.06250000	6.37500000	388.43750000	P.R. > 18	ROOT MSE	1.03077641	TYPE 111 SS	68.06250000	227.87500000	85.56250000	0.56250000
ESTIMATE 1.02194357	LEAST A NY LSNEAN 1 17.6893069 2 22.4390030	SP-3: SPLIT PLOTS WITH WHOLE PLOT ARRANGED IN CRD VITH A COVARIATE CONSTANT PUETS SPIRT 1 SPI	GENERAL LINEAR MODELS 1	Е: ү	DF	9 SSRm	6 SSE(b)	15 SSTm	39.95	C.V.	7.2654 1.0	DF	1 R(r \mu,a,ar)	6 SSFa(unadjusted)	1 R(a \mu, \tau, a\tau)	1 R(ar \mu, r, a)
PARANETER RLGR SLOPE		SP-3: SPLIT PL	9	DEPENDENT VARIABLE: Y	SOURCE	MODEL	ERROR	CORRECTED TOTAL	MODUL F =	R- SQUARE	0.983588	SOURCE	A (whole plot)	SUB (A)	ll (split plot)	A*B

SP-3: SPLIT PLOTS WITH WHOLE PLOT ARRANGED IN CRD WITH A COVARIATE CONSTANT OVER SPLIT PLOTS SPLIT PLOT ANALYSIS 12:47 THURSDAY, OCTOBER 2, 1986

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: Y

ESTDUAL SPLIT PLOT	$\hat{Y}_{111} = \mu^0 + \tau_1^0 + \delta_{111}^0 + \alpha_1^0 + \tau \alpha_{11}^0$ $= 10.000 - 3.125 + 0 + 5.000 -$		
RESIDUAL	\mathbf{Y}_{111} =11.12500000 \mathbf{Y}_{111} \mathbf{Y}_{111} =-1.12500000 6.87500000 1.12500000	0.00000000	- 0.00000000 6.37500000 0.000000000 - 0.64460784 3.09068627
PREDICTED VALUE	$\hat{Y}_{111}=11.12506000$ 6.87500000	10.00000000	ERROR SS In
OBSERVED VALUE	Y ₁₁₁ = 10.00000000 1	10.00000000	ALS D RESIDUALS D RESIDUALS - UTOCORRELATIO D
OBSERVATION	$\frac{1}{2}$ $\frac{Y_{111}}{2}$	16	SUM OF RESIDUALS SUM OF SQUARED RESIDUALS SUM OF SQUARED RESIDUALS - ERROR SS FIRST ORDER AUTOCORRELATION DURBIN-WATSON D

.75

LEAST SQUARES MEANS = unadjusted means

Y LSMEAN

1 16.5000000 =
$$Y_{..k}$$
2 11.8750000
A B Y SAS does not give the adjusted means for Y_{ij} . These can be computed by LSMEAN hand using the following formula:
$$Y_{i,k} = \beta_1(Z_{i,.} - Z_{..})$$
1 1 14.2500000
1 2 10.00000000 = $Y_{i,k}$

Procedural call for SP-2A

DATA ONE;

INPUT EU BLOCK WHOLE SUBPLOT Z ZTOTAL Y; CARDS;

{ data }

TITLE 'SPLIT PLOT HYPOTHETICAL DATA: COVARIATE ADDED'; PROC PRINT; VAR EU BLOCK WHOLE SUBPLOT Z ZTOTAL Y;

PROC GLM; CLASS WHOLE BLOCK SUBPLOT;

MODEL Y = BLOCK WHOLE ZTOTAL BLOCK*WHOLE

SUBPLOT SUBPLOT*WHOLE Z / SS1 SS3 P;

RANDOM BLOCK BLOCK*WHOLE;

TEST H=ZTOTAL E~BLOCK*WHOLE / HTYPE=1 ETYPE=1; TEST H=WHOLE E~BLOCK*WHOLE / HTYPE=3 ETYPE=3;

ESTIMATE 'SUBPLOT SLOPE' 2 1; LSMEANS SUBPLOT / STDERR PDIFF; The ESTIMATE statement provides the estimate of the subplot slope coefficient β_2 . Unfortunately, the whole plot slope coefficint β_1 may not be estimated as easily.

The ordering in the MODEL statement is

⇒ Important. RANDOM option prints expected mean squares for different Types of SS's.

TEST $H_0: \beta_1 = 0$ and whole plot main effects

⇒ using the appropriate Type SS's for hypothesis SS's and error SS's.

The LSMEANS statement gives correctly adjusted subplot means,

however the reported standard errors are incorrect.

31

NOTES WILLIAM RESERVE MISSISS DE

Begin output from PROC PRINT

ſſ

EU is an indicator for the whole plot experimental units.

ZTOTAL are the Zij's

	> -	m	4	1	9	હ	10	1	1.1	9	10	4	Þ	ĸ	2	,	14	œ	œ	2	18	10	œ	6	13
SPLIT PLOT HYPOTHETICAL DATA: COVARIATE ADDED	STOTAL	9	£	9	9	œ	80	8	œ	10	10	10	10	8	60	80	80	12	12	12	12	16	16	16	16
	2	-	>	-	2	~	~	0	4	3	S	2	0	~	0	~	4	4	1	3	4	Э	2	~	7
	SUBPLOT	-	2	e	4	_	>	9	4	-	2	3	đ	1	2	m	4	-	2	ю	4	-	2	m	4
	WHOLE	7	-	,	1		-	1	1	-	1	1	1	2	2	2	2	2	2	7	2	2	7	2	~
	BLOCK	-	1	,	1	2	2	2	2	٣	9	Э	ю		1		1	2	2	2	2	3	3	3	3
	EU	1	-	7	1	2	2	2	2	ъ	٣	М	٣	4	4	4	4	2	2	S	z,	9	9	9	9
J ,	OBS	-	2	E	4	S	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

GENERAL LINEAR MODELS PROCEDURE

Begin output from PROC GLM

ſſ

CLASS LEVEL INFORMATION

CLASS LEVELS VALUES

NUMBER OF OBSERVATIONS IN DATA SET = 24

SOURCE TYPE I EXPECTED MEAN SQUARE

BLOCK VAR(ERROR) + 4 VAR(WHOLE*BLOCK) + 8 VAR(BLOCK) + Q(ZTOTAL, Z)

WHOLE VAR(ERROR) + 4 VAR(WHOLE*BLOCK)

+ Q(WHOLE, ZTOTAL, WHOLE*SUBPLOT, 2)

ZIOTAL VAR(ERROR) + 4 VAR(WHOLE*BLOCK) + Q(ZIOTAL,Z)

Note that these expected mean squares Indicate

the appropriate SS's to be used in the reported ANOVA table as well as indicating correct error

terms for use in computing F-statistics.

WHOLE*BLOCK VAR(ERROR) + 4 VAR(WHOLE*BLOCK)

SUBPLOT VAR(ERROR) + Q(SUBPLOT, WHOLE*SUBPLOT, Z)

WHOLE*SUBPLOT VAR(ERROR) + Q(WHOLE*SUBPLOT, Z)

VAR (ERROR) + Q(Z)

SOURCE TYPE III EXPECTED MEAN SQUARE

BLOCK VAR(ERROR) + 4 VAR(WHOLE*BLOCK) + 4.4 VAR(BLOCK)

WHOLE VAR(ERROR) + 4 VAR(WHOLE*BLOCK) + Q(WHOLE,WHOLE*SUBPLOT)

ZTOTAL

WHOLE*BLOCK VAR(ERROR) + 4 VAR(WHOLE*BLOCK)

SUBPLOT VAR(ERROR) + Q(SUBPLOT, WHOLE*SUBPLOT)

WHOLE * SUBPLOT VAR (ERROR) + Q (WHOLE * SUBPLOT)

Z VAR(ERROR) + Q(Z)

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE

Note that 8.8682 = Error(b), the subplot error term ſſ 3.22 PR > F 0.0312 28.53750000 8.86818182 342.45000000 97.55000000 440.00000000 1 23 12 CORRECTED TOTAL MODEL ERROR

gerral espessor perferencies de l'especte de l'especte de l'especte de l'especte de l'especte de l'especte de

R-SQUARE	C.V.	ROOT MSE	#SE	Y MEAN		
0.778295	42.5421	2.91794926		7.00000000		
SOURCE		DF	TYPE I SS	F VALUE	PR > F	
BLOCK	- R(p µ,t)	7	48.0000000	2.71	0.1107	
WHOLE	- R(T µ,p)		24.00000000	2.71	0.1282	
ZTOTAL	- R(δ μ,β1,ρ,τ)	-	16.00000000	1.80	0.2063	NOTE: The boldface SS's are those
HROLE * BLOCK	- R(8 µ,p,t,B1)	-	0.00000000	00.00	1.0000	that appear in the correct ANOVA table,
SUBPLOT	= R(a µ,p,t)	m	156.00000000	5.86	0.0121	as verified by the expected mean squares.
WHOLE*SUBPLOT	= R(at µ,p,t,a)	3	84.00000000	3.16	0.0683	
N	 R(β₂ μ,ρ,τ,α,ατ) 	1) 1	14.4500000	1.63	0.228	
SOURCE		Ð	TYPE III SS	F VALUE	7 X Y	
BLOCK		7	15.60000000	0.88	0.4422	
MBOLE	- R(TIH,P,B1)	~	3.42857143	0.39	0.5468	
ZTOTAL		0	0.00000000			
WHOLE * BLOCK	- R(814,p,T,B1)	-	0.0000000.0	00.00	1.0000	
SUBPLOT	- R(a \mu, \r, \at, \beta_2)	£ (2	84.24310345	3.17	0.0678	
ROLE * SUBPLO	FROLE *SUBPLOT = $R(\alpha t \mu, \rho, \tau, \alpha, \beta_2)$	e (37.47439024	1.41	0.2923	
N3	= R(B21 \mu, \ta, \a, \a, \a)	T ()	14.45000000	1.63	0.2281	
TESTS OF BYPOSOURCE	BYPOTHESES USING TH	TRE TYPE TYPE	H	MS FOR WHOLE*BLOCK AS	K AS AN	ERROR TERM

TESTS	M O	TESTS OF HYPOTHESES USING THE TYPE III MS FOR WHOLE*BLOCK AS AN ERROR TERM	USING	工用配	TYPE	III	X	FOR	WEOLE * BLOCK	AS	Z	ERROR	TERM
SOURCE			DF		TYPE	111 8	ĸ	F VALU	TYPE III SS F VALUE PR > F				
WHOLE			1		3.42	3.42857143	3	•					

16.00000000

ZTOTAL

SCHOOLS REPRESENT MASSESSE DEVICES

	This is the result of the ESTIMATE	statement to estimate the subplot	redression coefficient
40 acada 000	BS VW LESS	07.6883.9970	
۲۰ م		1.28 0.2341	
1000年	PARAMETER	H 2.1	
	ESTIMATE	0.000008.0	
	TARAMETER	STREETOT STOPE	

PRSERVATION	ORSERVED	PPFFFFF	RESTINUAT
	VALUE	VALCE	
	3.0000000	Coddona	-0.5750000
٠.	4.000000.0	6,5 400000	0000047.57-
۲,	9.00000000	0000000009	1.00000000
\$ d	13.06000000	17,85000000	-4.8500000
X CS	SUM OF RESIDUALS		0.00000000
¥08	SUM OF SQUARED RESIDUALS		000000054.14
¥0S	SUM OF SQUARED RESIDUALS -	- ERROR SS	-0.0000000-

LEAST SQUARES MEANS

SUBPLOT	> -	STD ERR	PROB > IT!	LSMEAN
	LSMEAN	LSMEAN	HO:LSMEAN-0	NUMBER
1	6.0000000	1.215/427	0.0004	-
2	7.4250000	1,2605089	0.0001	2
3	4.4250000	1.2605089	0.0049	3
4	10.1500000	1.3861599	0.0001	4
	PROB > IT! H	PROB > (T) HO: LSMEAN(I) -LSMEAN(J)	- LSMEAN (J)	
	1/3	2	3 4	
		0.4331 0.	0.3877 0.0458	
	2 0.4331	.0	0.1088 0.1979	

errors of various means on pages 14 to 16). term (see discussion regarding standard These standard errors are not correct as they include only the subplot error

since these differences depend only upon pairwise comparison of subplot means These p-values are correct for the the subplot error term.

0.0150

3 0,3877 0,1088

0.1979 0.0150

4 0.0458

Additional procedural call for SP-2A

{ Same input as previous call}

PROC GLM;

CLASS WHOLE BLOCK SUBPLOT;

MODEL Y 2 = BLOCK WHOLE BLOCK*WHOLE SUBPLOT WHOLE*SUBPLOT / SS1;

MEANS WHOLE BLOCK WHOLE*BLOCK SUBPLOT WHOLE*SUBPLOT;

MANOVA H=WHOLE E=BLOCK*WHOLE / PRINTE;

MANOVA H=SUBPLOT / PRINTE;

The MEANS statement gives the unadjusted means of both the response Y and the covariate Z.

This call to GLM is unecessary if only the correct ANOVA table is desired. However, this call does give the information necessary to estimate any adjusted mean, the slope estimates, and any standard errors required for estimation.

The MANOVA statements give the BxWyz and SxB:Wyz terms which may be used to calculate the whole plot and subplot slope estimates.

GENERAL LINEAR MODELS PROCEDURE

CLASS LEVEL INFORMATION

NUMBER OF OBSERVATIONS IN DATA SET = 24

DEPENDENT VARIABLE: X

SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE
MODEL	11	328,00000000	29.81818182	3.19
ERROR	12	112.00000000	9.33333333	PR > F
CORRECTED TOTAL	23	440.00000000		0.0288
R-SQUARE	C.V.	ROOT MSE	Y MEAN	

7.00000000

3,05505046

43.6436

0.745455

The same SS as In Sp.1													The same as in the table of sum of squares	cross products.	-					These are the unadjusted means that are needed	to compute adjusted means.	
⊕ The							F VALUE	2.51	PR > F	0.0645			Ţ L	and						U Thes	to co	
F VALUE PR > F			0.86 0.4488	5.57 0.0125	3.00 0.0728		MEAN SQUARE	4.181818	1.66666667		2 MEAN	2.50000000	F VALUE PR > F	2.70 0.1076	3.60 0.0821	0.30 0.7462	1.80 0.2008			2	2.00000000	3.00000000
TYPE I SS	48.00000000	24.00000000	16.00000000	156.00000000	84.00000000		SUM OF SQUARES	46.00000000	20.00000000	66.0000000	ROOT MSE	1.29099445	TYPE I SS	0.0000000.6	6.00000000	1.00000000	9.00000000	21.00000000	MEANS	×	12 6.00000000	12 8.00000000
DF	2	1	2	6	E	VARIABLE: Z	DF	11	12	23	C.V.	51,6398	DF	2	H	2	m	e		WHOLE	1	2
SOURCE	вгоск	WHOLE	WHOLE * BLOCK	SUBPLOT	WHOLE*SUBPLOT	DEPENDENT VARI	SOURCE	MODEL	ERROR	CORRECTED TOTAL	R-SQUARE	0.696970	SOURCE	вгоск	WHOLE	WHOLE * BLOCK	SUBPLOT	WHOLE*SUBPLOT				

TO THE PROPERTY OF THE PROPERT

														WHOLE*BLOCK	2	4.00000000 - BxWYZ	1.00000000 BxWzz		хіх	2	17.00000000 - SxB:WYZ	20.00000000 - SxB:Wzz
2	2.50000000	2.00000000	2.00000000	3.50000000	2	2.00000000	3.00000000	1,00000000	2.00000000	3.00000000	1.00000000	3.00000000	5,00000000	MATRIX FOR:				 	- ERROR SSECP MATRIX		٨٨	
>-	6.0000000 2.	7.0000000 2.	4.0000000 2.	11.0000000 3.	>-	5.0000000	8.0000000	4.0000000	7.0000000	7.0000000	6.0000000	4.0000000	15.0000000	TYPE I SSECP !		16.00000000 - BXWYY	0000	 	E - ERRO		112.00000000 = SxB:Wyy	0000
z	9 9	9	6 4	6 11	z	n	r	e.	æ	3	3	9	m	E TY	⊁	16.000	4.00000000	! ! !		> +	112.0000	17.00000000
LOT					SUBPLOT	1	2	33	4	7	2	33	4					 				
SUBPLOT	1	2	m	47	WHOLE		-	-	7	2	2	7	7		DF-2	*	2			DF=12	> -	2

Procedural call for SP-3A

As I was 1 A 4 4 2 1 Approx

| data |

CHARLES BENEFICE AND COVARIATE MEALTHED ON MHOLE FIGURAL THE CONTRACT OF THE FIGURAL STATES OF THE STATES FOR T

TRACTIONS TABS STRUBET A R.

MODEL Y - A 2 STRUBET(A) B A*P / SST SST P;

RAN, M. SORTET (A);

TEST H A E SCHIEFT (A) / ETYPE I HIYPE I;
TEST H A E SCHIECT (A) / ETYPE ! HIYPE !;
LOMEANS H / STOERR POIFE;

PHON DIME CLASS SHRIPCT A BE MODEL Y Z - A SUBJECT(A) B A*B / SSLE MEANS A B A*BE MAN GA H A E-SUBJECT(A) / PRINTEE

⇒ This call to GLM produces the correct ANOVA table for SP-3. Expected mean squares are printed with the RANDOM option and the TEST statement computes F-tests of H_O:β₁=0 and adjusted whole plot effects.

This second call to GLM is unecessary if only the correct ANOVA table is desired. However, it does give the correct table of sums of squares and cross products among Y and Z for SP-3 by using the MANOVA statement These may be used to correctly estimate the whole plot slope coefficient. The MEANS option prints appropriate means for Y (unadjusted) and the covariate Z. Thus, sufficient information is given to calculate any adjusted means as well as appropriate standard errors.

ないないのであるからないがった

WHOLE-PLOTS IN CRD AND COVARIATE MEASURED ON WHOLE-PLOTS

P.803.
1971,
WINER,
FROM
DATA
SP-3

2	m	5	c c		••	10	2
> -	10	15	20	••		15	10
В	1	1	7	••	••	2	2
4			1		••	7	2
SUBJECT	1	2	3			٢	80
OBS	1	7	9	••		15	16

GENERAL LINEAR MODELS PROCEDURE

LEVELS

SUBJECT CLASS

⇒ Begin output from first call to GLM VALUES CLASS LEVEL INFORMATION

NUMBER OF OBSERVATIONS IN DATA SET = 16

TYPE I EXPECTED MEAN SQUARE

SOURCE

⇒ The expected mean squares indicate the appropriate

SS's to use for constructing F-tests.

VAR(ERROR) + 2 VAR(SUBJECT(A)) + Q(A, Z, A*B) VAR(ERROR) + 2 VAR(SUBJECT(A)) + Q(Z) VAR(ERROR) + 2 VAR(SUBJECT(A)) VAR (ERROR) + Q(B, A*B) SUBJECT (A)

TYPE III EXPECTED MEAN SQUARE SOURCE

VAR(ERROR) + Q(A*B)

A*B

VAR(ERROR) + 2 VAR(SUBJECT(A)) + Q(A, A*B) VAR(ERROR) + 2 VAR(SUBJECT(A)) VAR (ERROR) + Q(B, A*B) VAR(ERROR) + Q(A+B) SUBJECT (A)

	Note that 10625 - Fror(h)							⇒ The boldface SS's correspond to those found	in the correct ANOVA table.						Note that Error(a) = $R(\delta \mu, \beta_1, \tau)/5 = 12.2596$				TERM			OR TERM			
F VALUE	2 / 90	۲. ۲	0.0001				PR > 11	0.000.0	0.0001	0.0049	c.ocol	0,4943	78 × 79	0.0006		0.0049	0.0001	0.4943	AS AN ERROR			AS AN ERROR			
MEAN SQUARE 42.4513889	1 0605.0000	1.06/50000			Y MEAN	14.18750000	F VALUE P	64.06 0.	156.78 0.	11.54 0.	80.53 6.	0.53 0.	F VALUE P	41.87		11.54 0.	80.53	0.53 0	SUBJECT (A)	1E PR > F	59 0.0142	MS FOR SUBJECT (A)	JE PR > F	53 0.1151	
SUM OF SQUARES M		6.37500000	388.43750000		ROOT MSE	1.03077641	TYPE I SS	68.06250000	166.57680251	61.29819749	85.56250000	0.56250000	F TYPE III SS	44.49160158	0.00000000	61.29819749	85.56250000	0.56250000	THE TYPE I MS FOR	TYPE I SS F VALUE	166.57680251 13.59	THE TYPE III MS FOR	TYPE III SS F VALUE	44.49160158 3.63	
N NO	,	w	OTAL 15	(براهٔ, ₁ ،	C.V.	7.2654	L Q	- R(τ μ)	= R(B1 µ,τ)	= R(8 µ,β ₁ ,τ) 5	- R(α μ,τ,ατ)	= R(ατ μ,τ,α)	3 0	= $R(\tau \mid \mu, \beta_1)$ 1	= R(B1 µ,τ,δ) 0	= R(8 µ,β ,τ) 5	= R(\alp, \t, \at) 1	= R(\at \mu,\t,\a) 1	HYPOTHESES USING TO	DF	1	HYPOTHESES USING T	DF	1	
SOURCE		ERROR	CORRECTED TOTAL	= R(t,a,at,β1,δ μ)	R-SQUARE	0.983588	SOURCE	ď	2.	SUBJECT (A)	æ	A*B	SOURCE	٧	2	SUBJECT (A)	63	A*B	TESTS OF		2	TESTS OF	SOURCE	≪	

standard errors ar	LSMEAN1 LSMEAN2	HO:LSMEAN 0 0.0001	LSMEAN 0.3644345 0.3644345	LSMEAN 16.5000000 11.8750000	- ~
These are the corre	PROB > ITL HO.	LEAST SQUARES MEANS	LEAST SQU STD ERR	> -	æ
	0.00000000-0-	ROR SS	RESIDUALS - EI	SUM OF SQUARED RESIDUALS - ERROR SS	
	6.37500000		RESIDUALS	SUM OF SQUARED RESIDUALS	
	0.00000000		<i>ડ</i> ાં	SUM OF RESIDUALS	
	-0.00000000-	10,00000000	10.0000000	10.000	16
	0.00000000	15.00000000	15.00000000	15.000	<u></u>
	••				
		.,		••	
	0.87500000	19.12500000	20.00000000	20.000	~
	-0.62500000	15.62500000	15.00000000	15.000	~
	-1,12500000	11.12500000	10.00000000	10.000	e4
		VALUE	VALUE	^	
	KES COUAL,	FREDICTED	CHOICE ATTO		

rect subplot means and correct re incorrect (see discussion). SMEAN1 = LSMEAN2, but the

GENERAL LINEAR MODELS PROCEDURE

⇒ Begin output for the second call to GLM

CLASS LEVEL INFORMATION VALUES LEVFLS SUBJECT CLASS

NUMBER OF OBSERVATIONS IN DATA SET

DEPENDENT VARIABLE: Y

MEAN SOUARE F VALUE	42.45138889 39,95	1.06250000 PR > F	0.0001
SUM OF SQUARES ME	382.06250000 42	6.37500000	**** 4 * 75,0000
DF	6	ع	£ 4
40806		व सम्बद्ध	TORRESTER TOTAL

	⇒ This is the ANOVA when the covariate Z is omitted.	All Types of SS's will be the same since the data are	balanced-Type I SS's are used as they are cheapest.						The ERROR is zero because the covariate	is constant over subplots.					= E(a)ZZ, needed for calculating the estimate of $\beta_1.$	These SS's are zero since the covariate is	constant over subplots.
) }		All Ty	balan				F VALUE	66.66666	PR > F	0.0001		12 1			= E(a)	These	const
Y MEAN	77 V V V	0.0002	0.0002	0.0001	0.4943		MEAN SQUARE	17.97222222	0.00000000		Z MEAN	4.87500000	PR > F	٠	•	•	
	F VALUE	64.06	35,75	80.53	0.53		MEAN	17.9	0.0			4.	F VALUE			٠	
ROOT MSE	TYPE I SS	68.06250000	227,87500000	85,56250000	0.56250000		SUM OF SQUARES	161.7500000	0.0000000	161.7500000	ROOT MSE	0.00000000	TYPE I SS	2.2500000	159.5000000	0.000000000	0.00000000
C.V.	3 0	-	9	1	ч	VARIABLE: Z	D.F.	6	9	15	C.V.	0.000	<u>#</u> Q	1	9	1	1
R-SQUARE	SOURCE	ď	SUBJECT (A)	π.	A • B	DEPENDENT VAR	ತರಿಗಳಲ್ಲ	MODE	FRROR	CORRECTED TOTAL	R-SQUARE	1.000000	SOURCE	ď	SUBJECT (A)	œ:	A*B

\$22251-46666666 P2222222 \$222222 P2222220-55555555

			These are the unadjusted Y means and the means	of the covariate Z.									
	22	4.50000000	5.25000000		2	4.87500000	4.87500000	2	4.50000000	4.50000000	5.25000000	5.25000000	
MEANS	>-	12.1250000	16.2500000		> -	16.5000000	11.8750000	X	14.2500000	10.0000000	18.7500000	13.7500000	
	z				z		8 1	Z	4	4	4	4	
	K		2		В		2	АВ	1 1	1 2	2 1	2 2	

		- E(a) YZ	- I(a) 22	
(v) thank	2	163.00000000 - E(a) YZ	159.50000000 - I(a) ZZ	
TV FOR SO		= E(a) YY		
E - LIFE L SOUCH MAINIA FON. SUBUECI (A)	>-	227.87500000 - E(a) YY	163.00000000	
	DF=6	> -	2	

Note that β_1 = E(a) $_{XZ}$ / E(a) $_{ZZ}$ = 163.0/159.5 = 1.022

F/V/) I)ATE - ILMED 5-88 0710