Math 645: Problem set #5

1. Consider the ODE in \mathbb{R}^2 given, in polar coordinates, by

$$r' = r(1-r),$$

$$\theta' = \sin^2(\theta/2).$$
 (1)

Prove that every initial condition except the unstable equilibrium (x,y) = (0,0) is attracted to (1,0) but that (1,0) is not a stable equilibrium.

- 2. Find all the homoclinic and heteroclinic orbits for the Hamiltonian system with Hamiltonian $H(x,y) = \frac{1}{2}(x^2 + y^2) x^4$. For each equilibrium determine what are the stable and unstable sets W^s and W^u .
- 3. Consider the FitzHugh-Nagumo equation

$$x'_1 = f_1(x_1, x_2) = g(x_1) - x_2,$$

$$x'_2 = f_2(x_1, x_2) = \sigma x_1 - \gamma x_2,$$
(2)

where σ and γ are positive constants and the function g is given by g(x) = -x(x - 1/2)(x - 1). Show that as the ratio σ/γ decreases the system undergoes a bifurcation from one equilibrium state to three equilibrium states. Compute the critical points and determine their stability properties. Some of the computations are lengthy and you might want to use a geometric argument to determine stability: just look at the directions of the vector field! It is also good idea to make a graph of the orbits before and after the bifurcation (use matlab or mathematica).

4. Consider the system

$$x' = x(1 - x - (1 + \delta)y - (1 - \delta)z),$$

$$y' = y(1 - y - (1 + \delta)z - (1 - \delta)x),$$

$$z' = z(1 - z - (1 + \delta)x - (1 - \delta)y),$$
(3)

where $\delta > 0$.

- (a) Determine the equilibria and their stability (there are 8 of them).
- (b) Show that R = x + y + z satisfies a self-contained differential equation and that $R(t) \to 1$ as $t \to \infty$ if $R(0) \neq 0$.
- (c) Show that on the set R=1 the system can be reduced to a Hamiltonian system with $H(x,y)=\delta xy(1-x-y)$.
- (d) Discuss completely the dynamics of the system in the positive octant.
- 5. Consider the equation x' = Ax + g(x).
 - (a) Let $\hat{x}(\tau) \equiv x(-\tau)$ and obtain and ODE for \hat{x} . Show that stable manifold theorem for this new equation implies an unstable manifold theorem for the original equation.
 - (b) Transform back to $t = -\tau$ to obtain an integral equation for the unstable manifold. (Watch for all the minus signs...).

6. Consider the system of equations

$$x'_{1} = -x_{1},$$

$$x'_{2} = -x_{2} + x_{1}^{2},$$

$$x'_{3} = x_{3} + x_{2}^{2}.$$
(4)

Compute the first four approximations $u^{(j)}(t,a)$ for the functions defining the stable manifold. Show that $u^{(3)}(t,a) = u^{(4)}(t,a)$ and thus $u(t,a) = u^{(3)}(t,a)$. Determine then the local stable and unstable manifolds W^s_{loc} and W^u_{loc} .

7. Use the center manifolds to determine the qualitative behavior near the origin for the equation

$$x' = xy,$$

$$y' = -y - x^{2}.$$
(5)

8. Construct a Lyapunov function to determine the stability of the equilibrium (0,0) for the following system

$$x' = -x + y - y^2 - x^3$$
, $y' = x - y + xy$ (6)

9. Consider the equation

$$x'' + x' + 4x^3 - 6x^2 + 2x = 0 (7)$$

Find the critical points, determine their stability properties and their basin of attraction. *Hint:* Use Lasalle stability theorem.

10. Let $x, y \in \mathbf{R}^n$ and consider the Hamiltonian $H(x,y) = \sum_{i=1}^n \frac{y_i^2}{2} + W(x)$ where W(x) is of class C^2 . Assume that a is a nondegenerate critical point of W, i.e.

$$\nabla W(a) = 0$$
 and $\det\left(\frac{\partial^2 W}{\partial q_i \partial q_j}(a)\right) \neq 0.$ (8)

and consider the Hamiltonian equation

$$x'' = -\nabla W(x). (9)$$

Using linearization show that (a,0) is an unstable critical point if a is local maximum or a saddle point of W. Hint: Study the eigenvalues!