ANÁLISIS NUMÉRICO

Práctica N° 2: Fundamentos de Análisis de Variable Compleja (Parte II)

3. TRANSFORMACIONES DEL PLANO COMPLEJO

1) Aplicarle al paralelogramo de vértices $z_1=2,\ z_2=i,\ z_3=1+2i,\ z_4=3+i$, las transformaciones lineales siguientes:

1.1)
$$T: w = f(z) = z - 1 - 2i$$
 1.2) $T: w = f(z) = 2z$

1.3)
$$T: w = f(z) = iz$$

- 2) Hallar una transformación lineal (¿Es única?) que envíe:
 - **2.1)** El punto $z_1 = i$ en $w_1 = 1$, y el punto $z_2 = -1$ en $w_2 = 2 i$.
 - **2.2)** El punto $z_1 = i$ en $w_1 = 1$, y deja fijo el punto $z_2 = -1$.
- 3) Dada la región $A = \{z: |z-4i| \le 2\}$ y las transformaciones $T_1: w = \frac{z}{2}$ y $T_2: w = z 4i$:
 - 3.1) Hallar gráficamente la imagen de A por T_1 o T_2 .
 - 3.2) Hallar gráficamente la imagen de A por T_2 o T_1 .
- 4) Aplicar la transformación inversión $T: w = \frac{1}{z}$ a las siguientes regiones. Representar gráficamente la transformación obtenida.

4.1)
$$A = \left\{ z : |z| \ge \frac{1}{2} \right\}$$

4.2)
$$A = \{z : |z-2i| = 2\}$$

4.3)
$$A = \{x + iy : y = x\}$$

4.4)
$$A = \{x + iy : 2y = 2x - 1\}$$

5) Hallar gráficamente las imágenes de las siguientes regiones al aplicar la transformación potencia $T: w = z^2$:

5.1)
$$A = \{(x, y): 0 \le y < x\}$$

5.2)
$$A = \{(x, y): 0 \le y < x, x^2 + y^2 \ge 4\}$$

- 6) Resolver los siguientes ejercicios:
 - **6.1)** Hallar el dominio de conformidad de $T: w = z^3 + 3z$.
 - **6.2)** Hallar el dominio de conformidad de $T: w = \frac{i}{z^2 + 1}$.

4. INTEGRACIÓN DE FUNCIONES COMPLEJAS

7) Calcular las siguientes integrales de funciones complejas de variable real:

7.1)
$$\int e^{it}dt$$

$$7.2) \int_{-\pi}^{\pi} t e^{it} dt$$

8) Calcular las siguientes integrales a lo largo de curvas del plano complejo:

8.1)
$$\int_{C_1} \overline{z} dz$$
 siendo C_1 : el segmento dirigido desde $z_1 = 2$ hasta $z_2 = 2i$.

8.2)
$$\int_{C_2} \overline{z} dz$$
 siendo C_2 : $z = (2-t)+it$, $t \in [0,2]$.

8.3)
$$\int_C \overline{z} dz$$
 siendo *C*: la poligonal dirigida de vértices z₁=2, z₂=0 y z₃=2i.

8.4)
$$\oint_C \frac{1}{z} dz$$
 siendo C: $|z|=1$ con orientación antihoraria.

8.5)
$$\int_{C_1} \frac{1}{z} dz$$
 siendo C_1 : $|z| = 1$ desde $z_1 = 1$ hasta $z_2 = -1$ (antihoraria).

8.6)
$$\int_{C_2}^{\infty} \frac{1}{z} dz$$
 siendo C_2 : $|z| = 1$ desde $z_1 = 1$ hasta $z_2 = -1$ (horaria).

9) Sean z_1 = 1 y z_2 = i. Verificar si $\int_{C_k} z dz$ para k = 1,2,3 es independiente del camino, siendo:

9.1)
$$C_1$$
: el segmento dirigido desde z_1 hasta z_2 .

9.2)
$$C_2$$
: $|z| = 1$ recorrida en sentido antihorario desde desde z_1 hasta z_2 .

- **9.3)** C_3 : la poligonal de vértices z_1 , 0, z_2 en ese orden.
- 10) Calcular las siguientes integrales con orientación antihoraria:

10.1)
$$\oint_C \frac{1}{z} dz$$
 siendo *C*: $|z-1-i|=1$.

10.2)
$$\oint_C \frac{z^2 e^{i\pi z}}{z-1} dz$$
 siendo C: $|z| = 2$.

10.3)
$$\oint_C \frac{z+2}{z(z^2+4)} dz$$
 siendo *C*: la frontera del cuadrado de vértices ± 1 y $\pm i$.

10.4)
$$\oint_C \frac{sen(z)}{(z-\pi)^4} dz \text{ siendo } C: |z| = 4.$$

10.5)
$$\oint_C \frac{(z+2)^2}{z^3+16z} dz$$
 siendo *C1*: $|z-i|=2$.

10.6)
$$\oint_C \frac{(z+2)^2}{z^3+16z} dz$$
 siendo C2: $|z-2i|=1$.

10.7)
$$\oint_C \frac{(z+2)^2}{z^3+16z} dz$$
 siendo C3: $|z-3i|=2$.