Método de Gauss-Jacobi

Este método resolve o sistema linear $A_{n\times n}x_{n\times 1}=b_{n\times 1}$ (os sub-escritos indicam as dimensões das matrizes) através do método de Gaus-Jacobi, com a relação recorrência:

$$x_{n\times 1}^{(k+1)} = C_{n\times n} x_{n\times 1}^{(k)} + g_{n\times 1}$$

Esperamos que esta relação gere uma sequência $\{x_k\}$ que convirja para a solução real.

Glossário:

 A_{ij} = Elemento da matriz A localizado na linha i e coluna j

 $A_{i,:}$ = Linha i da matriz A

 $A_{:,j} = \text{Coluna } j \text{ da matriz } A$

Algoritmo:

- A) Dados iniciais:
 - 1) Matriz $A_{n\times n}$
 - 2) Matriz $b_{n\times 1}$
 - 3) Aproximação inicial $x_{n\times 1}^{(0)}$
 - 4) Erro máximo tolerado ε
- B) Construção da matriz C

$$\begin{cases} \text{Para } i = 1, 2, ..., n \\ C_{i,:} = -A_{i,:}/A_{ii} \\ C_{ii} = 0 \end{cases}$$

C) Construção da matriz q

Para
$$i = 1, 2, ..., n$$

$$g_{i,:} = b_{i,:}/A_{ii}$$

- D) Geração da sequência de aproximações
 - 1) k = 1
 - 2) $x = x^{(0)}$
 - 3) $x_{ant} = x$
 - 4) $x = Cx_{ant} + g$
 - 5) $d = |x x_{ant}|$ (A dimensão de $d \in n \times 1$)
 - 6) $d_{\text{max}} = \max d$ (Seleciona o maior elemento de d)
 - 7) Se $d_{\text{max}} < \varepsilon$, FIM. A solução aproximada é x.
 - 8) Caso contrário, faça k = k + 1 e volte para o passo 3.