Tidyverse - Dplyr

Joshua Hummell

4/8/2021

Contents

Tidyverse Vignette

```
library(dplyr)
```

Hands down my favorite R package in Tidyverse is Dplyr Dplyr allows for easy data manipulation and, therefore, is highly useful for everyday work!

murders <- read.csv('https://raw.githubusercontent.com/fivethirtyeight/data/master/murder_2016/murder_2</pre>

Select data columns with ease

murders %>% select(state)

```
##
                state
## 1
             Maryland
## 2
             Illinois
## 3
                Texas
## 4
                 Ohio
## 5
                 D.C.
## 6
           Wisconsin
## 7
        Pennsylvania
## 8
            Missouri
## 9
           Tennessee
## 10
            Missouri
## 11
             Oklahoma
## 12
             Kentucky
## 13
             Colorado
## 14
          California
## 15
                Texas
             New York
## 16
## 17
              Florida
## 18
           Minnesota
## 19
             Nebraska
## 20
          California
## 21
               Alaska
```

```
## 22 North Carolina
## 23
           Louisiana
## 24
          New Mexico
## 25
            Colorado
## 26
              Indiana
## 27
          California
## 28 North Carolina
## 29
             Indiana
## 30
          New Jersey
## 31
            Oklahoma
## 32
              Oregon
## 33
          California
## 34
                 Ohio
## 35
             Florida
## 36
          California
## 37
            Colorado
## 38
              Nevada
## 39
          California
## 40
          California
## 41
           Minnesota
## 42
          California
## 43 North Carolina
## 44
          New Jersey
## 45
             Arizona
## 46
               Texas
## 47
            Virginia
## 48
          California
## 49
             Georgia
## 50
              Nevada
## 51
             Florida
## 52 North Carolina
## 53
              Kansas
## 54
             Arizona
## 55
               Texas
## 56
          California
## 57
                 Ohio
## 58
          California
## 59
             Arizona
## 60
          California
## 61
          California
## 62
            Michigan
## 63
          Washington
## 64
                Texas
## 65
             Arizona
## 66
                Texas
## 67
            Kentucky
## 68
           Tennessee
## 69
             Florida
## 70
                 Ohio
## 71
              Hawaii
## 72
               Texas
## 73
            Nebraska
## 74
             Florida
## 75
          California
```

```
## 76
             Alabama
## 77
          California
## 78
               Texas
## 79
               Texas
## 80
               Texas
## 81
        Pennsylvania
## 82 Massachusetts
            New York
## 83
easily filter data
murders %>%
  filter(city == 'Baltimore')
##
                  state X2014_murders X2015_murders change
          city
## 1 Baltimore Maryland
                                   211
Easily Aggregate Date
state <- murders %>%
  select(state, change) %>%
  group_by(state) %>%
  summarise(state_totals = sum(change)) %>%
  arrange(desc(state_totals))
state
## # A tibble: 34 x 2
##
     state
                 state_totals
##
      <chr>>
                        <int>
## 1 Maryland
                          133
## 2 Illinois
                            67
## 3 California
                            60
## 4 Missouri
                            60
## 5 D.C.
                            57
## 6 Ohio
                            57
## 7 Wisconsin
                            55
## 8 Colorado
                            40
## 9 Texas
                            40
## 10 Oklahoma
## # ... with 24 more rows
and even join data
states_pop <- read.csv('https://raw.githubusercontent.com/jhumms/DATA607/main/state_populations.csv')</pre>
colnames(states_pop) <- tolower(colnames(states_pop))</pre>
murders_state <- left_join(state, states_pop, by='state')</pre>
murders_state
```

A tibble: 34 x 5

```
##
                  state_totals rank population percent.of.total
      state
##
      <chr>
                         <int> <int>
                                           <dbl> <chr>
##
   1 Maryland
                           133
                                   19
                                         6045680 1.82%
                            67
    2 Illinois
                                   5
                                        12671821 3.86%
##
    3 California
                            60
                                    1
                                        39512223 11.91%
    4 Missouri
                            60
                                         6137428 1.85%
##
                                   18
   5 D.C.
##
                            57
                                  NA
                                              NA <NA>
    6 Ohio
                                   7
                                        11689100 3.52%
##
                            57
##
    7 Wisconsin
                            55
                                   20
                                         5822434 1.75%
                                   21
##
   8 Colorado
                            40
                                         5758736 1.74%
  9 Texas
                            40
                                   2
                                        28995881 8.74%
                                         3956971 1.19%
## 10 Oklahoma
                            37
                                   28
## # ... with 24 more rows
```

and, if that weren't enough, you can even make aggregations across columns very easily!

```
murders_state$population <- as.numeric(murders_state$population)
murders_state %>%
  mutate(murder_rate_by_pop = (state_totals / population) *100) %>%
  arrange(desc(murder_rate_by_pop))
```

```
## # A tibble: 34 x 6
##
      state
                 state_totals rank population percent.of.total murder_rate_by_pop
##
      <chr>
                         <int> <int>
                                           <dbl> <chr>
                                                                                 <dbl>
                           133
                                  19
                                         6045680 1.82%
                                                                             0.00220
##
   1 Maryland
                                                                             0.00191
##
    2 Alaska
                            14
                                  48
                                         731545 0.22%
                                  18
##
    3 Missouri
                            60
                                                                             0.000978
                                        6137428 1.85%
##
   4 Wisconsin
                            55
                                  20
                                         5822434 1.75%
                                                                             0.000945
##
    5 Oklahoma
                            37
                                  28
                                         3956971 1.19%
                                                                             0.000935
##
    6 Colorado
                            40
                                  21
                                        5758736 1.74%
                                                                             0.000695
##
   7 New Mexico
                            13
                                  36
                                        2096829 0.63%
                                                                             0.000620
  8 Illinois
                            67
                                   5
                                                                             0.000529
##
                                       12671821 3.86%
## 9 Nebraska
                            10
                                  37
                                        1934408 0.58%
                                                                             0.000517
                                   7
## 10 Ohio
                            57
                                       11689100 3.52%
                                                                             0.000488
## # ... with 24 more rows
```

Tidyverse Extend

Josh's vignette and his dataset caught my attention. It looks like the murders dataset contains 83 observations with 5 variables: City, State, 2014 murder count (X2014_murders), 2015 murder count (X2015_murders), and the difference between the two years (change).

Using dplyr's glimpse¹ function, we can take a look at the data as well as their types.

glimpse(murders)

 $^{^{1} \}rm https://www.rdocumentation.org/packages/dplyr/versions/0.3/topics/glimpse$

```
## $ X2014_murders <int> 211, 411, 242, 63, 105, 90, 248, 78, 41, 159, 45, 56, 31~
## $ X2015_murders <int> 344, 478, 303, 120, 162, 145, 280, 109, 72, 188, 73, 81,~
## $ change <int> 133, 67, 61, 57, 57, 55, 32, 31, 31, 29, 28, 25, 22, 22,~
```

From Josh's work, we can see there are 34 distinct states in murder dataset. We can also see the distinct cities listed using dplyr's distinct ² function

murders %>% distinct(city)

##		city
##	1	Baltimore
##	2	Chicago
##	3	Houston
##	4	Cleveland
##	5	Washington
##	6	Milwaukee
##	7	Philadelphia
##	8	Kansas City
##	9	Nashville
##	10	St. Louis
##	11	Oklahoma City
##	12	Louisville
##	13	Denver
##	14	Los Angeles
##	15	Dallas
##	16	New York
##	17	Orlando
##	18	Minneapolis
##	19	Omaha
##	20	Sacramento
##	21	Anchorage
##	22	Charlotte-Mecklenburg
##	23	New Orleans
##	24	Albuquerque
##	25	Aurora
##	26	Fort Wayne
##	27	Long Beach
##	28	Durham
##	29	Indianapolis
##	30	Newark
##	31	Tulsa
##	32	Portland
##	33	San Francisco
##	34	Cincinnati
##	35	Tampa
	36	Bakersfield
##	37	Colorado Springs
##	38	Las Vegas
##	39	Oakland
##	40	San Diego
##	41	St. Paul

 $^{^2} https://dplyr.tidyverse.org/reference/distinct_all.html?q{=}distinct$

```
## 42
                      Anaheim
## 43
                  Greensboro
##
  44
                 Jersey City
##
                         Mesa
   45
##
   46
                  Fort Worth
   47
              Virginia Beach
##
## 48
                       Irvine
## 49
                      Atlanta
##
   50
                   Henderson
##
   51
                Jacksonville
##
   52
                      Raleigh
   53
##
                      Wichita
##
   54
                     Chandler
## 55
                        Plano
## 56
                     Stockton
## 57
                       Toledo
## 58
                 Chula Vista
##
   59
                      Phoenix
##
  60
                   Riverside
##
   61
                     San Jose
##
  62
                      Detroit
##
  63
                      Seattle
                      El Paso
## 64
##
   65
                       Tucson
##
  66
                   Arlington
##
   67
                   Lexington
   68
##
                      Memphis
##
   69
              St. Petersburg
##
   70
                     Columbus
##
  71
                     Honolulu
##
  72
                       Laredo
##
  73
                      Lincoln
##
   74
                        Miami
   75
##
                   Santa Ana
##
   76
                       Mobile
##
  77
                       Fresno
##
  78
                       Austin
## 79
                 San Antonio
##
   80
              Corpus Christi
## 81
                  Pittsburgh
## 82
                       Boston
## 83
                      Buffalo
```

Next, suppose you wanted the top 10 cities with the most murders in the year 2015. In order to extract the top 10 cities, we would use the top_ $n()^3$ function as shown below. Note, if a variable is not specified in the function as we have below with X2015_murders, then the top_n() function will automatically extract the top n specified by the last column in the dataset.

```
murders %>%
top_n(10, X2015_murders)
```

city state X2014_murders X2015_murders change

 $^{^3 \}rm https://dplyr.tidyverse.org/reference/top_n.html$

##	1	Baltimore	Maryland	211	344	133
##	2	Chicago	Illinois	411	478	67
##	3	Houston	Texas	242	303	61
##	4	Washington	D.C.	105	162	57
##	5	Philadelphia	Pennsylvania	248	280	32
##	6	St. Louis	Missouri	159	188	29
##	7	Los Angeles	California	260	282	22
##	8	New York	New York	333	352	19
##	9	New Orleans	Louisiana	150	164	14
##	10	Detroit	Michigan	298	295	-3

Lets say now, instead of the top ten, you actually want the bottom 5 cities with the least murders from the year 2014. We can still use the top_n() function, the only difference will be is that we will add a minus (-) sign to the input.

```
murders %>%
top_n(-5, X2014_murders)
```

##		city	state	X2014_murders	X2015_murders	change
##	1	Irvine	${\tt California}$	0	2	2
##	2	Henderson	Nevada	3	4	1
##	3	Chandler	Arizona	1	1	0
##	4	Plano	Texas	4	4	0
##	5	Chula Vista	${\tt California}$	7	6	-1
##	6	Lincoln	Nebraska	7	1	-6

Which cities had the greatest percent change in murder counts? The dataset already comes with a change column that give us the murders 2015 - murders 2014 value, however we would like to see this in a percentage. We can perform such calculation and add it as a new column using the mutate()⁴ function.

Note, the round() 5 from baseR is used to round our percent_change value to the 2 decimal places by wrapping our percent change function and specifing the two decimal places.

```
murders %>%
murders %>%
mutate(percent_change = round(((X2015_murders-X2014_murders)/X2014_murders)*100,2))
```

шш				V0011	V0015	-1
##		city	state	X2014_murders	X2015_murders	cnange
##	1	Baltimore	Maryland	211	344	133
##	2	Chicago	Illinois	411	478	67
##	3	Houston	Texas	242	303	61
##	4	Cleveland	Ohio	63	120	57
##	5	Washington	D.C.	105	162	57
##	6	Milwaukee	Wisconsin	90	145	55
##	7	Philadelphia	Pennsylvania	248	280	32
##	8	Kansas City	Missouri	78	109	31
##	9	Nashville	Tennessee	41	72	31
##	10	St. Louis	Missouri	159	188	29
##	11	Oklahoma City	Oklahoma	45	73	28
##	12	Louisville	Kentucky	56	81	25
##	13	Denver	Colorado	31	53	22
##	14	Los Angeles	California	260	282	22

⁴https://www.rdocumentation.org/packages/plyr/versions/1.8.6/topics/mutate

 $^{^5 \}rm https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Round$

##	15	Dallas	Texas	116	136	20
##	16	New York	New York	333	352	19
##	17	Orlando	Florida	15	32	17
##	18	Minneapolis	Minnesota	31	47	16
##	19	Omaha	Nebraska	32	48	16
##	20	Sacramento	California	28	43	15
##	21	Anchorage	Alaska	12	26	14
##	22	${\tt Charlotte-Mecklenburg}$	North Carolina	47	61	14
##	23	New Orleans	Louisiana	150	164	14
##	24	Albuquerque	New Mexico	30	43	13
##	25	Aurora	Colorado	11	24	13
##	26	Fort Wayne	Indiana	12	25	13
##	27	Long Beach	California	23	36	13
##	28	Durham	North Carolina	21	34	13
##	29	Indianapolis	Indiana	136	148	12
##	30	Newark	New Jersey	93	104	11
##	31	Tulsa	Oklahoma	46	55	9
##	32	Portland	Oregon	26	34	8
	33	San Francisco	California	45	53	8
	34	Cincinnati	Ohio	60	66	6
	35	Tampa	Florida	28	34	6
	36	Bakersfield	California	17	22	5
##		Colorado Springs	Colorado	20	25	5
##		Las Vegas	Nevada	122	127	5
##		Oakland	California	80	85	5
##		San Diego	California	32	37	5
##		St. Paul	Minnesota	11	16	5
##		Anaheim	California	14	18	4
##			North Carolina	23	26	3
##		Jersey City	New Jersey	24	27	3 3
## ##	45	Mesa Fort Worth	Arizona	13 54	16 56	2
##		Fort Worth	Texas	17	19	2
##		Virginia Beach Irvine	Virginia California	0	2	2
##		Atlanta		93	94	1
	50	Henderson	Georgia Nevada	3	4	1
##		Jacksonville	Florida	96	97	1
	52		North Carolina	16	17	1
	53	Wichita	Kansas	26	27	1
	54	Chandler	Arizona	1	1	0
	55	Plano	Texas	4	4	0
	56	Stockton	California	49	49	0
	57	Toledo	Ohio	24	24	0
	58	Chula Vista	California	7	6	-1
	59	Phoenix	Arizona	114	112	-2
	60	Riverside	California	12	10	-2
##	61	San Jose	California	32	30	-2
	62	Detroit	Michigan	298	295	-3
	63	Seattle	Washington	26	23	-3
	64	El Paso	Texas	21	17	-4
##	65	Tucson	Arizona	35	31	-4
	66	Arlington	Texas	13	8	-5
##	67	Lexington	Kentucky	20	15	-5
##	68	Memphis	Tennessee	140	135	-5

##	60	St. Petersburg	Florida	19	14 -5
	70	Columbus	Ohio	83	77 -6
	71	Honolulu	Hawaii	21	15 -6
	72	Laredo	Texas	14	8 -6
	73			7	1 -6
		Lincoln	Nebraska		
	74	Miami	Florida	81	75 -6
	75	Santa Ana	California	18	12 -6
	76	Mobile	Alabama	31	24 -7
	77	Fresno	California	47	39 -8
	78	Austin	Texas	32	23 -9
	79	San Antonio	Texas	103	94 -9
	80	Corpus Christi	Texas	27	17 -10
	81	Pittsburgh	Pennsylvania	69	57 -12
	82	Boston	Massachusetts	53	38 -15
##	83	Buffalo	New York	60	41 -19
##		percent_change			
##	1	63.03			
##	2	16.30			
##	3	25.21			
##	4	90.48			
##	5	54.29			
##	6	61.11			
##	7	12.90			
##	8	39.74			
##	9	75.61			
	10	18.24			
	11	62.22			
	12	44.64			
	13	70.97			
	14	8.46			
	15	17.24			
	16	5.71			
	17	113.33			
	18	51.61			
	19				
		50.00			
	20	53.57			
	21 22	116.67			
		29.79			
##		9.33			
	24	43.33			
	25	118.18			
	26	108.33			
##		56.52			
##		61.90			
	29	8.82			
	30	11.83			
##		19.57			
##		30.77			
##		17.78			
##		10.00			
##		21.43			
##	36	29.41			
##	37	25.00			
##	38	4.10			

```
## 39
                 6.25
## 40
                15.62
## 41
                45.45
## 42
                28.57
## 43
                13.04
## 44
                12.50
## 45
                23.08
## 46
                 3.70
## 47
                11.76
## 48
                  Inf
## 49
                 1.08
## 50
                33.33
## 51
                 1.04
## 52
                 6.25
## 53
                 3.85
## 54
                 0.00
## 55
                 0.00
## 56
                 0.00
## 57
                 0.00
## 58
               -14.29
## 59
                -1.75
## 60
               -16.67
## 61
                -6.25
                -1.01
## 62
## 63
               -11.54
## 64
               -19.05
## 65
               -11.43
  66
               -38.46
##
## 67
               -25.00
## 68
                -3.57
## 69
               -26.32
## 70
                -7.23
##
  71
               -28.57
##
  72
               -42.86
##
   73
               -85.71
## 74
                -7.41
## 75
               -33.33
## 76
               -22.58
## 77
               -17.02
## 78
               -28.12
## 79
                -8.74
## 80
               -37.04
## 81
               -17.39
               -28.30
## 82
## 83
               -31.67
```

Using our top_n() function as well as leveraging the pipe operator multiple times, we can see which top 5 cities had the highest percent increases, and arrange them in descending order using the arrange() 6 function.

```
murders %>%
  mutate(percent_change = round(((X2015_murders-X2014_murders)/X2014_murders)*100,2)) %>%
  top_n(5,percent_change) %>%
  arrange(desc(percent_change))
```

 $^{^6 \}rm https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/arrange/packages/dplyr/versions/$

##		city	state	$\tt X2014_murders$	$\tt X2015_murders$	change	percent_change
##	1	Irvine	${\tt California}$	0	2	2	Inf
##	2	Aurora	Colorado	11	24	13	118.18
##	3	Anchorage	Alaska	12	26	14	116.67
##	4	Orlando	Florida	15	32	17	113.33
##	5	Fort Wayne	Indiana	12	25	13	108.33