Parsing Handwritten Math Expressions using Geometric Overlap between Symbols

Anushree Das Gautam Gadipudi Nishi Parameshwara Raj Bhensadadia

Approach Used

- Segmentation [1]
 - Line of Sight (LoS) graph generation on stroke data
 - Use a binary classifier to assign edge labels as '*' or '_'
 - Group strokes with edge labels as '*' using Algo 2 [1]
- Classification
 - Normalize and resample the symbol data [3]
 - Extract features [2]
 - Classify the symbols
- Parsing
 - Construct a complete graph using symbols as the nodes and minimum distance between them as the edges.
 - Extract a Minimum Spanning Tree (MST) from the complete graph
 - Assign relationship based on the direction of overlap among symbols.

[1] L. Hu and R. Zanibbi. "Line-of-Sight Stroke Graphs and Parzen Shape Context Features for Handwritten Math Formula Representation and Symbol Segmentation". In:2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR). 2016, pp. 180-186.doi:10.1109/ICFHR.2016.0044

[2] Lei Hu and Richard Zanibbi. "HMM-based recognition of online handwritten mathematical symbols using segmental k-means initialization and a modified pen-up/down feature". In:2011 International Conference on Document Analysis and Recognition. IEEE. 2011, pp. 457–462.

Features [1]

Total Length
 Summation of total length of all the traces.

2. Vicinity Slope α

Gives model an idea of the slope that is observed at the points present in the vicinity of a point of of interest.

Example: Vicinity slope of a point (x(t),y(t)) is the angle between the horizontal line i.e. x-axis and the line joining the points (x(t-2),y(t-2)) and (x(t+2),y(t+2)).

3. Curvature β

Gives model an idea of amount of curvature that exists around a given point.

Example: Curvature of a given point (x(t),y(t)) is the angle between the straight line joining (x(t-2),y(t-2)) and (x(t),y(t)) and straight line joining (x(t+2),y(t+2)) and (x(t),y(t)).

4. Normalized y-coordinates

Transformed the y co-ordinate's range to be [0, 1] while preserving the width-height aspect ratio.

Fig. 1: Slope and curvature

Parser

The parser searches the space of possible SLT outputs using the following steps:

- 1. Calculate distance matrix storing minimum distance between each pair of symbols
- 2. Build the minimum spanning tree
- 3. Get edges of the minimum spanning tree
- 4. Find out relationships between pair of symbols in each edge of the tree
 - a. Find out if the symbols overlap vertically and horizontally after applying error margin
 - b. If symbols overlap only horizontally, then label relationship as Right/Left based on direction of horizontal overlap
 - c. If symbols overlap only vertically, then label relationship as Above/ Below based on direction of vertical overlap
 - d. If symbols overlap both vertically and horizontally, then label relationship as Inside
 - e. If symbols doesn't overlap either vertically or horizontally, then label relationship as Sup/Sub based on direction of vertical overlap
- 5. Write relationship in .lg file

Parser

Symbol Relationship Identification using overlap and positioning of traces

We implemented three variations of algorithms for relationship identification

- 1. Identification based on all the traces of a symbol
- 2. Identification based on minimum and maximum values of x and y coordinates of the traces
- 3. Identification based on average of traces in a particular symbol traces

Parser

Fig 1. Right Relationship

Fig 3. Sup Relationship

Fig 2. Inside Relationship

Fig 4. Sub Relationship

Results

		Objects						Files	
		Relationship			Relationship + Classes			Structure	Structure + Classes
		Recall	Precision	F-measure	Recall	Precision	F-measure	Rate	Rate
Left-Right Oracle	Stroke Oracle	29.79%	40.75%	34.42	29.79%	40.75%	34.42	9.25%	9.27%
	Symbol Oracle	72.64%	100.00%	84.15	72.64%	100.00%	84.15	40.73%	40.84%
Spanning Tree Oracle	Stroke Oracle	34.85%	40.60%	37.51	34.85%	40.60%	37.51	9.82%	9.86%
	Symbol Oracle	83.46%	100.00%	90.9	83.46%	100.00%	90.9	45.98%	46.32%
Our Parsing Model		38.46%	42.23%	40.25	38.46%	42.23%	40.25	11.23%	11.23%

Error Analysis and Limitations

- The errors obtained in final model is the result of errors generated stochastically from segmentation, classification and parsing.
- Our segmentation model was not the most optimal one and since our parsing models are based on geometric values, it will lead to misclassification of relationships among symbols
- Parser based on all traces
 - The model is prone to errors when the symbols are not ideally located on left, right, above or below positions.
 - If the overlap is more than a threshold, it will trigger false overlaps in the relationship identification algorithm
 - o It is difficult to find a common overlap error margin threshold empirically
 - The parser was more prone to 'Inside' relationships
- Parser based on min max values
 - This parser is also prone to errors when the symbols are not ideally located on left, right, above or below positions.
 - If there is much overlap between the symbols, it will lead to false identification of overlap
 - Due to this, the parser classifies many relationships as 'Inside'
- Parser based on average values of traces
 - This model is more prone to irregular shapes of symbols
 - Irregular shapes have outlier traces which might move the average coordinate to some other place than where they should be.

Thank You