SECTION IV

Radiation exercises

Exercise IV.1 (Infinite pipe segment $\star\star$):

Consider an infinite long pipe segment as in the figure.

Tasks:

- a) Specify the view factors $\Phi_{12},\,\Phi_{31}$ and Φ_{33} as a function of $\Phi_{13}.$
- b) Determine Φ_{13} .

Exercise IV.2 (Solar power tower \star):

Solar radiation is uniformly and radially redirected toward a central cylindrical receiver in a solar tower plant by a surrounding mirror field (radiation density $\dot{q}_{\rm S}''$). Consequently, the surface of the receiver is heated to a temperature of $T_{\rm R}$, and the thermal power output of the plant is $\dot{Q}_{\rm th}$.

Given parameters:

• Receiver height:	H
• Receiver outer diameter:	D
• Receiver surface temperature:	$T_{ m R}$

• Receiver emissivity of the surface: ϵ

• Heat transfer coefficient: $\alpha_{
m conv}$

• Ambient temperature: $T_{\rm A}$

Hints:

- Heat losses in the interior of the receiver as well as at its ends can be neglected.
- Radiation from the ambient can be neglected.
- The receiver can be considered as a grey body.

Tasks:

a) From a balance around the receiver, determine the mean radiation density $\dot{q}_{\rm S}''$ as a function of the thermal load $\dot{Q}_{\rm th}$.

Exercise IV.3 (Hemispherical dome $\star\star$):

A thin circular plate (P) is covered by a hemispherical, transparent, grey dome (D). A radiative heat flux from the ambient $\dot{q}''_{\rm amb}$ is uniformly falling on the dome.

Given parameters:

	Temperature of the dome:	$T_{ m D}$
•	remperature of the dome.	1)

• Surfaces of the plate and dome:
$$A_{\rm P},\ A_{\rm D}$$

• Radiative heat flux:
$$\dot{q}''_{
m amb}$$

• View factor:
$$\Phi_{\mathrm{DP}}$$

• Absorptivity of the plate:
$$\alpha_{\rm P}=1$$

• Reflectivity of the dome:
$$\rho_{\rm D}=0$$

• Transmissivity of the dome:
$$au_{
m D}$$

• Emissivity of the dome:
$$\epsilon_{\mathrm{D}}$$

Hints:

- Conduction and convection are to be neglected.
- All surfaces are radiating diffusely.

Tasks:

a) Derive an expression for the temperature of the plate $T_{\rm P}.$

Exercise IV.4 (Light bulb $\star\star$):

The filament of a light bulb emits diffuse radiation $\dot{Q}_{\rm F}$. The glass of the bulb is thin, spherical, and acts as a gray body. The surface of the filament is small in comparison to the glass body and the problem is steady in time.

Given parameters:

• Power consumption of the filament:

 \dot{Q}_{F}

• Glass properties:

 τ, α, ρ

• Surface of the glass sphere:

 A_{G}

Hints:

- The surface of the filament in comparison to the glass body is small.

Tasks:

a) Provide the energy balance in terms of given variables for determining the glass temperature $T_{\rm G}$, while neglecting radiation from the environment.

