Theorem 1 [Associativity of
$$=\emptyset$$
 = (assoc@)]

(L1@L2)@L3 = L1@(L2@L3)

Proof of Theorem 1 by structural induction on L1

First constant

Fit. E \Rightarrow e

List \Rightarrow L1, L2, L3

[Boxe case

What \otimes show is (wil@ L2)@L3 = mil@(L2@L3)

(mil@L2)@L3 \Rightarrow L2@L3 by(@1)

Linduction Case

What to show is ((e|L1)@)L2)@L3 = (e|L1)@(L2@L3)

Judication (typothesis

(L1@L2)@L3) @L3 = L1@(L2@L3) ... (IH)

[(e|L1)@L2)@L3

 \Rightarrow (e|CL1@L2)@L3

 \Rightarrow (e)CL1@L2)@L3

 \Rightarrow (e)CL1@L2)@L3

 \Rightarrow (e)CL2@L3)

$$\rightarrow e[((l1@l^2)@l^3)] \qquad by (@l^2)$$

$$\rightarrow e[(l1@(l^2@l^3))] \qquad by (JH)$$

$$\frac{(\ell(L) \otimes (\ell_2 \otimes L_3))}{\rightarrow \ell \mid L \otimes (\ell_2 \otimes \ell_3))}$$

$$\rightarrow$$
 wil by $(nI-I)$

reuz (nil)

-> St> (nil, nil) by (r2)

$$\rightarrow$$
 hill a way by (snd-1)

I. Induction case

o Induction It pothesis nev1(lf) = rev2(l2) ··· (Itt)

$$\frac{\text{revI}(e|ll)}{\Rightarrow \text{revI}(ll)} @ (e|nil) by (nf-2)$$

$$\rightarrow \frac{\text{rev} \, 2 \, (\mathcal{A})}{\text{sr} \, 2 \, (\mathcal{A}, \, \text{nil})} \, \left(\begin{array}{c} \text{el nil} \\ \text{o} \end{array} \right) \, \left(\begin{array}{c} \text{ft} \\ \text{o} \end{array} \right)$$

rev2(e/ 61)

Sr2(11, n??)@(eliil) & Sr1(11, elni?)の書理表がこれ大人 ででは276~でにか、(これの(補題)か以事、候補、補題と(7日以下が挙げられる)

Sr2(L1, El ni?) = Sr2(L1, ni?) @ (El nil)

こn 練測 (f learna & (1) (T 具体的 TET 3 にか f) - 般 化ル 以下 以下 かを lemma & LT 使用话.

Sr2(L1, F2 | L2) = Sr2(L1, nil) @ (E2 | L2)

Srd(ll el nil) -> sr2(11, nil) @ (e/nil) bx (P-SN2)

End of Proof of Theorem 2

I. Base case what to show is
$$Sr2(ni7, e2|l2) = Sr2(ni7, ni7)$$
 @ $(e2|l2)$.

$$\frac{\text{Sh2}(\text{hil}, \text{e2} | \text{l2})}{\Rightarrow \text{e2} | \text{l2}}$$
 by $(\text{sr2}-1)$
 $\text{Sr2}(\text{hi7}, \text{hi7}) \textcircled{0} (\text{e2} | \text{l2})$
 $\Rightarrow \text{hi7} \textcircled{0} (\text{e2} | \text{l2})$ by $(\text{sr2}-1)$

→ e2/122

I. Induction case

what to show is
$$sh_2(e|l|, e_2|l_2) = sh_2(e|l|, nil) @ (e_2|l_2)$$

by (@1)

Induction Hypothecis

$$Sr_2(l)$$
, $F_2(L_2) = Sr_2(l)$, $hill$) @ ($F_2(L_2)$... (III)

$$\frac{Sr_{2}(e|11,e_{2}|1_{2})}{\Rightarrow Sr_{2}(l1,e|e_{2}|l_{2})} \qquad by(Sr_{2}-2)$$

$$\Rightarrow Sr_{2}(l1,nil) @(e|e_{2}|l_{2}) \qquad by(JH)$$

Sn2(e 11, ni7) @ (e2 12)	
	by (5h1-1) by (IHt) by (ossoc@) by (@2)
→ sr2(l1, n77) @ (ele2(l2))	by (@f)
End of those of Lemmo]	

```
Theorem 3 [ Reverse of reverse (ter-rev)]
      herl(rev1(L)) =L
Proof of theorems by stancitural Induction
 Fresh constan.
     E(t, E ->
       List , , d
] : Bust case
         what to show is: rev1(rev1(nip) = nil.
  rev1(rev1(ni7))
     \rightarrow rev1(nil)
                          by ( nf-1)
                        · M (18-1)
     - nic? .
I luduction case
```

what to show is : rev1(rev1(e/2)) = e/2

rev [(ail) = nil ... (H-1)

rail (E|LI) = rev1(LI) @ (F| nil) : (h)

· ··· (Lenna)

bx (lema)

Induction Hypothesis: rev! (rev! (d)) = 2 ... (1A)

> rev1(rev1(R) @ (e/wil)) by (NJ-2)

ここ2"Lemana 下 華 1 万3.

Lenna:

reul (reul (ell))

rev] (L] @ L2) = rev] (L1) @ nev] (L1)

-> rev] (e | vil) @ revs (revs (e)) → hers (el nil) @ l by (IH)

) (rev1(ni?)) @ (e (ni?))	@ l	by (h1-2)
(<u>hi? @ (e ni?)</u>) @		by (r(-1)
(+1 mi7) @ 1		bx (@1)
> el (nil@ l)		by (@ 2)
) ell		by (@1)
nd of Proof of Theorem	<u>. 3</u>	

Leanana: [Reverse of Concortenation (rev-concort)] rev1(LI@ L2) = rev1(L2) @ rev1(LL) Proof of Leanura by Streetural Induction Frigh Constact · E(t, E → e "List - e Induction Hypothesis rev1(l@ L1) = rev1(L2) @ rev1(l) (JH) I. Base case. what to show is rev! (ni? () 1) = ten! (1) () rev! (ni?) rev] (ni7@12) -> rev](L) by (@1) reul (62) (neul (nil) -> rev! (L>) @ wil by (1) -> rev1 (L2) I. Induction Case what to show is rev! ((e/2) @ L2) = rev! (12) @ rev! (e/2) reul ((e(e) @ Ls) \rightarrow rev $1(e \mid (lQ \downarrow))$. by (@2) . - mul(101) @ (e/nil) \$ (H-2) \rightarrow (rev1(L)) @ rev1(L)) @ (e(ni7) by (JH) rev1(12)@ rev1(e11) by (r1-2) \rightarrow rev1 ((>) @ (tev1(L)) @ (e) nil)) -> (rev] (L2) @ rev1(b)) @ (e (ril) by (assoca)

End of proof of Lemma