SED1181

CMOS LCD 64-SEGMENT DRIVER

■ DESCRIPTION

The SED1181 is a dot matrix LCD segment (column) driver for driving high-capacity LCD panel at duty cycles higher than 1/64. The LSI contains 64-bit shift register for display data. The display data is supplied through LCD controller, and serially transferred through 16×4 shift register. The display data is held in a 64-bit latch circuit. The LSI converts the level of the latched data to an LCD drive waveform.

The SED1181 is used in conjunction with the SED1191 (64-bit row driver) to drive a large-capacity dot-matrix LCD panel.

■ FEATURES

- Low-power CMOS technology
- 64-bit segment (column) driver
- Serial 2-bit input data
- Duty cycle 1/64 to 1/128
- Daisy chain enable support

- Wide range of LCD voltage-14V to -25V
- Supply voltage 5.0V ± 10%

■ SYSTEM BLOCK DIAGRAM

■ BLOCK DIAGRAM

■ PIN CONFIGURATION

Number	Name	Number	Name	Number	Name	Number	Name
1	SEG27	21	SEG 7	41	SEG36	61	SEG56
2	SEG26	22	SEG 6	42	SEG37	62	SEG57
3	SEG25	23	SEG 5	43	SEG38	63	SEG58
4	SEG24	24	SEG 4	44	SEG39	64	SEG59
5	SEG23	25	SEG 3	45	SEG40	65	SEG60
6	SEG22	26	SEG 2	46	SEG41	66	SEG61
7	SEG21	27	SEG 1	47	SEG42	67	SEG62
8	SEG20	28	SEG 0	48	SEG43	68	SEG63
9	SEG19	29	DO0	49	SEG44	69	Vssн
10	SEG18	30	NC	50	SEG45	70	V2
11	SEG17	31	NC	51	SEG46	71	V3
12	SEG16	32	D1	52	SEG47	72	Vss
13	SEG15	33	D0	53	SEG48	73	VDD
14	SEG14	34	XSCL	54	SEG49	74	DO1
15	SEG13	35	LP	55	SEG50	75	NC
16	SEG12	36	FR	56	SEG51	76	NC
17	SEG11	37	SEG32	57	SEG52	77	SEG31
18	SEG10	38	SEG33	58	SEG53	78	SEG30
19	SEG 9	39	SEG34	59	SEG54	79	SEG29
20	SEG 8	40	SEG35	60	SEG55	80	SEG28

■ PIN DESCRIPTION

Pin Name	Function
D0	Serial data input to upper shift register
D1	Serial data input to lower shift register
SEG0 to SEG 31	Segment driver outputs supplied by the upper shift register
SEG 32 to SEG 63	Segment driver outputs supplied by the lower shift register
XSCL	Data shift clock input
LP	Data latch pulse input
FR	LCD frame signal input
DO0	Serial data output from upper shift register
DO1	Serial data output from lower shift register
VDD, VSS	Logic circuitry power inputs
Vssh, V2, V3	LCD drive power inputs VDD > V2 > V3 > VSSH

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit	
Supply voltage (1)	Vss	-7.0 to +0.3	V	
Supply voltage (2)	Vssh	-28.0 to +0.3	V	
Supply voltage (2)	V2, V3	-28.0 to +0.3		
Input voltage	Vı	Vss -0.3 to +0.3	V	
Operating temperature	Topr	-20 to +75	°C	
Storage temperature	Tstg	-65 to +150	°C	
Soldering temperature, time	Tsol	260°C, 10 sec (at lead)	°C / Sec	

Notes:

- 1. All voltages are based on a VDD of 0V.
- 2. V2 and V3 must satisfy the condition VDD \geq V2, V3 \geq VssH.
- 3. Exceeding the absolute maximum ratings may cause permanent damage to the device. Functional operation under these conditions is not implied.
- 4. Moisture resistance of flat packages can be reduced during the soldering process, so care should be taken to avoid thermally stressing the package during board assembly.

DC Electrical Characteristics

(VDD = 0V, Vss = -5.0V \pm 10%, Ta = -20 to 75°C)

Danasatan	0	On a different		Unit		
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply voltage (1)	Vss		-5.5	-5.0	-4.5	V
	V2		Vssн	_	VDD	٧
Cupply voltogo (2)	V3		Vssн	_	VDD	V
Supply voltage (2)	Vssh		-25.0	_	-14.0	V
High level input voltage	ViH		0.2Vss	-	VDD+0.3	V
Low level input voltage	VIL		Vss-0.3	_	0.8Vss	٧
High level output voltage	Voн	Iон = −0.6 mA	-0.4	_	_	V
Low level output voltage	Vol	IoL = 0.6 mA	_	_	Vss+0.4	V
Input leakage current	ILI	0 V ≤ Vı ≤ Vss	_	0.05	2.0	μΑ
Output leakage current	llo	0 V ≤ Vo ≤ Vss	_	0.05	5.0	μΑ
Shift clock	XSCL		_	ı	6.0	MHz
Frame signal	FR		_	1/60	_	sec
Input capacitance	Cı	Ta = 25°C	_	5.0	8.0	pF
Segment output on resistance	Rseg	Vssh = -14.0 V Voh = Vdd -0.5 V Vol = Vssh +0.5 V SEG./ bit	_	3.0	6.0	kΩ
Quiescent current	IQ	VssH = -25.0V, Vss = -5.5 V, VI = VDD	_	0.05	30	μΑ
Logic circuit	Issop	$VSS = -5.0 \text{ V},$ $VIH = VDD,$ $VIL = VSS,$ $FR \text{ period} = 130 \mu\text{S},$ $(\text{duty } 50\%),$ $LP \text{ period} = 130 \mu\text{S},$ $XSCL \text{ frequency} = 1.5 \text{ MHz}$ $(\text{duty } 50\%)$	_	850	1200	μΑ
LCD circuit operating current	Isshop	Vss = -4.5 V, $V2 = -4.0 V,$ $V3 = -16.0 V,$ $VssH = -20.0 V,$ $Other parameters as for Issop$	_	70	100	μΑ

Notes:

- 1. All voltages are based on a V_{DD} of 0V.
- 2. The driver will operate with a value of VssH in this range, however the "on" source impedance of a segment drive can be higher than at the recommended value of VssH. It is recommended that the drivers are tested with the LCD panel they will be used with to determine a suitable value for VssH.

■ AC ELECTRICAL CHARACTERISTICS

Display Data Input/Output Timing

• AC Electrical Characteristics

Vss = $-5.0 \text{ V} \pm 10\%$, Ta = $-20 \text{ to } 75^{\circ}\text{C}$

Daramatas	Symbol	Conditions	Rating			Llait
Parameter			Min	Тур	Max	Unit
Shift clock cycle time	tclc		166		_	ns
Shift clock "H" width	twclh		63	_	_	ns
Shift clock "L" width	twcll		63	_	_	ns
Data setup time	tos		50	_	_	ns
Data hold time	tон		30	_	_	ns
Latch pulse "H" time	twlph		110	_	_	ns
Latch pulse "L" time	twlpl		220	_	_	ns
Latch hold time	t∟⊤		100	_	_	ns
XSCL to LP fall time	t LH		0	_	_	ns
Permissible frame signal delay	tDFR		-500	0	500	ns
Input signal rise time	tr		_	_	_	ns
Input signal fall time	t f		_	_	_	_
Data output delay time	t pD		20	_	150	_

• Segment Drive Output Timing

 $V\text{IH} = 0.2 \text{Vss}; \ V\text{IL} = 0.8 \text{Vss}; \ \text{Vn: Vdd}, \ \text{V2}, \ \text{V3}, \ \text{VssH}; \ (\text{Vss} = -5.0 \ \text{V} \ \pm 10\%, \ \text{Ta} = -20 \ \text{to} \ 75^{\circ}\text{C})$

Doromotor	Symbol	Condition	Rating			l lait
Parameter		Condition	Min	Тур	Max	Unit
LP-SEG output delay time	tlpsd	Vssн=-3.0 to -12.0 V,	_	_	4.5	μs
FR-SEG output delay time	trrsd	CL= 100 pF	_	_	4.5	μs

THIS PAGE INTENTIONALLY BLANK