EE 746 Neuromorphic Engineering Assignment 2

Devesh Kumar, 16D070044 Yojit Srivastava, 160020073

1. AEF NEURON DRIVEN BY A SYNAPSE RECEIVING POISSON STIMULUS

1.1 Part a

```
function [stimulus] = stimulus_gen(t,del_t,lambda)
  threshold = lambda*del_t;
  ans = rand(t/del_t,1);
  stimulus =logical(ans<threshold);
end</pre>
```

1.2 Part b

end

1.2.1 matlab code

```
clear;
close all;
t_max = 0.5;
dt = 0.1*10^{-3};
 lambda = 10;
 io = 1*10^-12;
we = 500;
 tou = 15*10^-3;
 tou_s = tou/4;
 m = t_max/dt;
 \%iapp = ones(m,1).*250* 10^{-12};
 [stimulus, iapp] = gen_iapp(t_max, dt, lambda, io, we, tou, tou_s, m);
    [u_in,v_in] = steadystate();
    [c,gl,el,vt,del_T,a,tw,b,vr] = getvalue(1);
    \%iapp = [250*10^{-12}], 350*10^{-12}], 450*10^{-12}];
    V = zeros(m,1);
    U = zeros(m,1);
    V(1,:) = v_{in}(1);
    U(1,:) = u_in(1);
    i = 1;
    for j = 2:m
        V(j,i) = V(j-1,i) + (gl*(del_T*exp((V(j-1,i)-vt)/del_T)) - gl*(V(j-1,i)-el) - U(j-1,i) + iapp(j))
        U(j,i) = U(j-1,i) + (a*(V(j-1,i)-el) - U(j-1,i))*(dt/tw);
        if(V(j-1,i)==0)
            V(j,i) = vr;
            U(j,i) = U(j-1,i) + b;
        end
        if(V(j,i)>=0)
            V(j,i) = 0;
        end
```

```
x = zeros(1,m);
   for i = 2:m
       x(i) = x(i-1) + dt;
   end
   figure(1)
   plot(x, V(:,1))
   title(["Neuron "+"Rs"])
   xlabel('Time(in s)')
   ylabel('Voltage (in V)')
   figure(2)
   plot(x,stimulus)
   title("Stimulus")
   xlabel('Time(in s)')
   figure(3)
   subplot(2,1,1)
   plot(x, V(:,1))
   title(["Voltage"])
   xlabel('Time(in s)')
   ylabel('Voltage (in V)')
   subplot(2,1,2)
 % figure(3)
   plot(x, iapp(:,1))
   title(["input current"])
   xlabel('Time(in s)')
   ylabel('iapp (in A)')
       function [stimulus,ans] = gen_iapp(t_max,dt,lambda,io,we,tou, tou_s,m)
threshold = lambda*dt;
dum = rand(t_max/dt, 1);
stimulus =logical(dum<threshold);</pre>
i_app = zeros(m,1);
tm = [];
for i = 1:m
   if length(tm) ~= 0
       for j = 1:length(tm)
           dum = (i*dt - tm(j));
           i_app(i) = i_app(i) + io*we*(exp(-1*dum/tou) - exp (-1*dum/tou_s));
       end
   end
   if stimulus(i) == 1
       tm = cat(2,tm,[i*dt]);
   end
end
ans = i_app;
```

end

Figure 1. Average Time Interval Between Spikes

Figure 2. Average Time Interval Between Spikes

Figure 3. Average Time Interval Between Spikes

2. AEF NEURON DRIVEN BY MULTIPLE SYNAPSES

2.1 Part A

No of spikes = 0 total current = 2.5707e-07 A

2.1.1 Plots

Figure 4. Response of the neuron

2.2 Part B

No of spikes =14 total current = 1.2773e-06 A

2.2.1 Plots

Figure 5. Response of the neuron

2.3 Matlab code

```
function [stimulus,ans] = gen_iapp(t_max,dt,lambda,io,tou, tou_s,m,wo,sig_w)
w(1:100,1)=(wo+sig_w*randn(100,1));
 i_app = zeros(m, 100);
 for k = 1:100
     tm = [];
     threshold = lambda*dt;
     dum = rand(t_max/dt,1);
     stimulus =logical(dum<threshold);</pre>
     for i = 1:m
        if length(tm) \sim = 0
            for j = 1:length(tm)
                dum = (i*dt - tm(j));
                i_app(i,k) = i_app(i,k) + io*w(k)*(exp(-1*dum/tou) - exp(-1*dum/tou_s));
            end
        end
        if stimulus(i) == 1
            tm = cat(2,tm,[i*dt]);
        end
     end
 end
 ans = sum(transpose(i_app));
```

3. ADJUSTING THE WEIGHTS TO ELICIT A SPIKE RESPONSE

3.1 PartA

Figure 6. Pre training

Figure 7. Post traning

Figure 8. Weights

3.2 PartB

Figure 9. weights

3.3 Matlab code

```
close all;
clear;
t_max = 0.5;
 dt = 0.1*10^-3;
 lambda = 1;
 io = 1*10^-12;
 tou = 15*10^-3;
 tou_s = tou/4;
 m = t_max/dt;
 wo = 50;
 sig_w = 5;
 w(1:100,1)=(wo+sig_w*randn(100,1));
 stimulus = zeros(m,100);
 for k = 1:100
     threshold = lambda*dt;
     dum = rand(t_max/dt,1);
     stimulus(:,k) =logical(dum<threshold);</pre>
 end
[pre_iapp] = gen_iapp(stimulus,t_max,dt,lambda,io,tou, tou_s,m,w);
[V,x] = aef(pre_iapp);
itr = 1
pre_V = V;
pre_w = w;
```

```
w_all = [];
del_tk_all = [];
%cat(2,w_all,w);
   figure(4)
    title(["wk vs tk"])
    %legend("Pre Training","Post training")
    xlabel('delta Weights')
    ylabel('delta tk')
    hold on
while(1)
    [post_w,del_tk] = training(w,dt,stimulus,V);
    [post_iapp] = gen_iapp(stimulus,t_max,dt,lambda,io,tou, tou_s,m,post_w);
    [post_V,x] = aef(post_iapp);
    del_w = post_w - pre_w;
    del_w = nonzeros(del_w);
  % w_all = cat(2,w_all,del_w(1:size()));
  % del_tk_all = cat(2,del_tk_all,del_tk);
    scatter(del_w,del_tk,'filled')
    if \max(post_V) == 0
        break
    end
    w = post_w;
   V = post_V;
    itr = itr +1
end
legend("1","2","3","4","5","6")
hold off
   figure(1)
    plot(x,pre_V(:,1))
    title(["Pre training Sigma"+sig_w+"; Mean" + wo])
    xlabel('Time(in s)')
    ylabel('Voltage (in V)')
    figure(2)
    plot(x,post_V(:,1))
    title(["Post training Sigma"+sig_w+"; Mean" + wo])
    xlabel('Time(in s)')
    ylabel('Voltage (in V)')
   y = [1:100];
    figure(3)
    plot(y,pre_w,y,post_w)
    title(["Weights"])
    legend("Pre Training","Post training")
    xlabel('Time(in s)')
    ylabel('Voltage (in V)')
    function [V,x] = aef(iapp)
t_max = 0.5;
 dt = 0.1*10^{-3};
 lambda = 1;
```

```
io = 1*10^-12;
 tou = 15*10^-3;
 tou_s = tou/4;
 m = t_max/dt;
 \%iapp = ones(m,1).*250* 10^(-12);
    %[stimulus, iapp] = gen_iapp(t_max, dt, lambda, io, tou, tou_s, m, wo, sig_w);
    [u_in,v_in] = steadystate();
    [c,gl,el,vt,del_T,a,tw,b,vr] = getvalue(1);
    ip = [250*10^{-12}, 350*10^{-12}, 450*10^{-12}];
    V = zeros(m,1);
    U = zeros(m,1);
    V(1,:) = v_{in}(1);
    U(1,:) = u_in(1);
    i = 1;
    for j = 2:m
        V(j,i) = V(j-1,i) + (gl*(del_T*exp((V(j-1,i)-vt)/del_T)) - gl*(V(j-1,i)-el) - U(j-1,i) + iapp(j))
        U(j,i) = U(j-1,i) + (a*(V(j-1,i)-el) - U(j-1,i))*(dt/tw);
        if(V(j-1,i)==0)
            V(j,i) = vr;
            U(j,i) = U(j-1,i) + b;
        end
        if(V(j,i)>=0)
            V(j,i) = 0;
        end
    end
    x = zeros(1,m);
    for i = 2:m
        x(i) = x(i-1) + dt;
    end
end
    function [new_w,del_tk] = training(w,dt,stimulus,V)
tou = 15*10^-3;
tou_s = tou/4;
del_tk = [];
[dum,t_max] = max(V);
new_w = w;
for i = 1:100
    for j = t_{max-1:-1:1}
        if stimulus(j,i) == 1
            dt_k = (t_max - j)*dt;
            del_tk = cat(1,del_tk,dt_k);
            new_w(i) = new_w(i) + w(i)*(exp(-1*dt_k/tou) - exp(-1*dt_k/tou_s));
            new_w(i) = min(new_w(i),500);
            break;
        end
    end
```

```
%if new_w(i) == w(i)
%     del_tk = cat(1,del_tk,0);
% end
end
```

4. ADJUSTING THE WEIGHTS TO REMOVE ALL SPIKE RESPONSES 4.1 PartA

Figure 10. Pre traning

Figure 11. Post traning

Figure 12. Post traning

4.2 PartB

Figure 13. Post traning

4.3 Matlab Code

```
function [new_w,del_tk] = training(w,dt,stimulus,V)
 tou = 15*10^-3;
 tou_s = tou/4;
del_tk = [];
peaks = find(V==0);
new_w = w;
    figure(4)
    title(["wk vs tk"])
    xlabel('delta Weights')
    ylabel('delta tk')
    hold on
for k = 1:length(peaks)
    t_max = peaks(k);
    del_w = [];
    del_tk = [];
    for i = 1:100
        for j = t_{max-1:-1:1}
            if stimulus(j,i) == 1
                dt_k = (t_max - j)*dt;
                del_tk = cat(1,del_tk,dt_k);
                new_w(i) = new_w(i) - w(i)*(exp(-1*dt_k/tou) - exp(-1*dt_k/tou_s));
                new_w(i) = max(new_w(i), 10);
```

5. DISCRIMINATING STIMULI WITH SIMILAR STATISTICAL CHARACTERISTICS

5.1 PartA

Figure 14. S2

Figure 15. S2

5.2 PartB

Figure 16. S1

Figure 17. S2

Figure 18. Resulting Weight

5.3 PartC

Figure 19. S1

5.4 PartD

Figure 20. S1

Figure 21. S2

Figure 22. Resulting Weight

5.5 Matlab Code

close all;

```
clear;
t_max = 0.5;
dt = 0.1*10^{-3};
lambda = 1;
io = 1*10^-12;
tou = 15*10^-3;
tou_s = tou/4;
m = t_max/dt;
wo = 200;
sig_w = 20;
w1(1:100,1)=(wo+sig_w*randn(100,1));
w2(1:100,1)=(wo+sig_w*randn(100,1));
w1 = w2;
w1_d = w1;
stimulus1 = zeros(m,100);
stimulus2 = zeros(m,100);
stimulus1_d = zeros(m,100);
stimulus2_d = zeros(m,100);
 for k = 1:100
     threshold = lambda*dt;
     dum1 = rand(t_max/dt,1);
     dum2 = rand(t_max/dt,1);
     stimulus1(:,k) =logical(dum1<threshold);</pre>
     stimulus2(:,k) =logical(dum2<threshold);</pre>
     stimulus1_d = stimulus1(:,k);
     stimulus2_d = stimulus2(:,k);
 end
[pre_iapp1] = gen_iapp(stimulus1,t_max,dt,lambda,io,tou, tou_s,m,w1);
[V1,x1] = aef(pre_iapp1);
[pre_iapp2] = gen_iapp(stimulus2,t_max,dt,lambda,io,tou, tou_s,m,w2);
[V2,x2] = aef(pre_iapp2);
V1_d = V1;
V2_d = V2;
    figure(1)
    plot(x1,V1(:,1))
    title(["Part a S1"])
    xlabel('Time(in s)')
    ylabel('Voltage (in V)')
        figure(2)
    plot(x2, V2(:,1))
    title(["Part a S2"])
    xlabel('Time(in s)')
    ylabel('Voltage (in V)')
%%%%%%end part a(weights same)
%%%%%start partb
itr = 1;
pre_V = V2;
pre_w = w2;
while(1)
```

```
while(1)
        [post_w ,del_tk] = training(w2,dt,stimulus2,V2);
        [post_iapp] = gen_iapp(stimulus2,t_max,dt,lambda,io,tou, tou_s,m,post_w);
        [post_V,x] = aef(post_iapp);
        w2 = post_w;
        V2 = post_V;
        if max(post_V) ~= 0
            break
        end
        itr = itr +1;
    end
    [pre_iapp_c] = gen_iapp(stimulus1,t_max,dt,lambda,io,tou, tou_s,m,post_w);
    [V1_c,x1] = aef(pre_iapp_c);
    if max(V1_c) >= 0
        break
    end
    V = V1_c;
    w = post_w;
    while(1)
        [post_w,del_tk] = training2(w,dt,stimulus1,V);
        [post_iapp] = gen_iapp(stimulus,t_max,dt,lambda,io,tou, tou_s,m,post_w);
        [post_V,x] = aef(post_iapp);
        del_w = post_w - pre_w;
        del_w = nonzeros(del_w);
        if max(post_V) == 0
            break
        end
        w = post_w;
        V = post_V;
        itr = itr +1
end
w2 = post_w;
w2_partb = post_w;
V2_partb = post_V;
figure(3)
plot(x1,V1(:,1))
title(["Part b S1"])
xlabel('Time(in s)')
ylabel('Voltage (in V)')
figure(4)
plot(x2,post_V(:,1))
title(["Part b S2"])
xlabel('Time(in s)')
ylabel('Voltage (in V)')
  %%%%%part c
figure(5)
plot(x1,V1_c(:,1))
```

```
title(["Part c S1"])
xlabel('Time(in s)')
ylabel('Voltage (in V)')
     y = [1:100];
    figure(6)
    plot(y,w2_partb )
    title(["Weights part b "])
    xlabel('Weights')
    ylabel('Value of weights')
    %%%%partd
itr = 1;
pre_V = V1_d;
pre_w = w1_d;
while(1)
    while(1)
        [post_w ,del_tk] = training(w1_d,dt,stimulus1,V1_d);
        [post_iapp] = gen_iapp(stimulus1,t_max,dt,lambda,io,tou, tou_s,m,post_w);
        [post_V,x] = aef(post_iapp);
        w2 = post_w;
        V2 = post_V;
        if max(post_V) ~= 0
            break
        end
        itr = itr +1;
    [pre_iapp_c] = gen_iapp(stimulus2,t_max,dt,lambda,io,tou, tou_s,m,post_w);
    [V2_c,x1] = aef(pre_iapp_c);
    if max(V2_c) >= 0
        break
    end
    V = V2_c;
    w = post_w;
    while(1)
        [post_w,del_tk] = training2(w,dt,stimulus2,V);
        [post_iapp] = gen_iapp(stimulus,t_max,dt,lambda,io,tou, tou_s,m,post_w);
        [post_V,x] = aef(post_iapp);
        del_w = post_w - pre_w;
        del_w = nonzeros(del_w);
        if max(post_V) == 0
            break
        \quad \text{end} \quad
        w = post_w;
        V = post_V;
        itr = itr +1
end
w2 = post_w;
```

```
end
w2_partd = post_w;
V2_partd= post_V;
figure(7)
plot(x1,post_V(:,1))
title(["Part d S1"])
xlabel('Time(in s)')
ylabel('Voltage (in V)')
figure(8)
plot(x2, V2_d(:,1))
title(["Part d S2"])
xlabel('Time(in s)')
ylabel('Voltage (in V)')
    figure(9)
    plot(y,w2_partd )
    title(["Weights part d "])
    xlabel('Weights')
    ylabel('Value of weights')
```