EC504 ALGORITHMS AND DATA STRUCTURES FALL 2020 MONDAY & WEDNESDAY 2:30 PM - 4:15 PM

Prof: David Castañón, dac@bu.edu

GTF: Mert Toslali, toslali@bu.edu

Haoyang Wang: haoyangw@bu.edu

Christopher Liao: cliao25@bu.edu

Hw7: Friday Hw8(+Qriz8): Set. 4/17

Questions?

Final, V2: 5/7, 9-11 AM? Find V1: 5/6 3-5...

3-1R-Tree...

Seeds R3, R4 for split

B R4

R1

R2

R3

SQL-> Rtoee..

R-Trees.

$$M=3 \rightarrow May \dots$$
 $m=2 \rightarrow mm \dots$

A Theory of Computation

- While we have introduced many problems with polynomial-time algorithms...
 - We haven't formally defined what this means
 - And not all problems enjoy fast computation
- Given a set I of problem instances, and a set S of problem solutions, an abstract problem is a binary relationship in I x S. That is, a set of pairs (i,s)
 - The problem shortest path associates each instance of a graph and an origin-destination with a sequence of vertices which connect the origin and destination
- Decision problems have a yes or no solution. Abstract decision problem is a function which maps problem instances I into {yes, no}.
 - e.g. Is the shortest path in this graph between nodes 0 and nodes 30 have length > 10?

Decision Problem Instance

- If a machine is to solve an instance of a problem, the input must be specified in terms of a string of bits
 - We must encode problem instance I into a sequence of binary inputs
 - This helps understand the "size" of the problem instance
 - A concrete problem is an encoding of the set of problem instances to the set of binary strings
 - And not all problems enjoy fast computation
- An algorithm is a procedure that processes an concrete problem instance of size n and generates the correct answer
 - In what computer model?
 - Turing machine (1936) Alan Turing (developed decoders for German coders (WW II))

Turing machine 1

The Turing machine has four components:

- An arbitrary-length tape
- A head that can
 - Read a symbol off the tape,
 - Write a symbol to the tape, and/or
 - Move to the next entry to the left or the right

Turing machine 2

The Turing machine has four components:

- An arbitrary-length tape
- A head

A state

- The state is one of a finite set of symbols Q
- In this example, $Q = \{b, c, e, f\}$
- The initial state of the machine is denoted $q_0\!\in\! \mathbf{Q}$
- Certain states may halt the computation

Turing machine 3

The Turing machine has four components:

- An arbitrary-length tape
- A head
- A state

 A transition table (this is your program!) 	Cui	rrent		New	
• $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, N\}$	State	Symbol read	State	Symbol to write	Direction
 L moves one entry to the left 	b	В	c	0	R
 R moves one entry to the right 	c	B	e	\boldsymbol{B}	R
 N indicates no shift 	e	В	f	1	R
	f	В	$\overset{\circ}{b}$	В	R

There is at most one entry in this table for each pair of current settings

Example (Turing, '36)

A program to write 0 1 0 1 0 1 0 ...

Currently, the state is e and the symbol under the head is B

Cui	rrent		Next	
State	Symbol read	State	Symbol to write	Direction
b	В	c	0	R
c	В	e	\boldsymbol{B}	R
e	\boldsymbol{B}	f	1	R
f	\boldsymbol{B}	b	$\boldsymbol{\mathit{B}}$	R

The transition table dictates that the machine must:

- ullet The state is set to f
- Print symbol 1 onto the tape
- Move one entry to the right

Cui	rent		Next	
State	Symbol read	State	Symbol to write	Direction
b	В	c	0	R
c	В	e	\boldsymbol{B}	R
e	\boldsymbol{B}	f	1	R
f	\boldsymbol{B}	b	\boldsymbol{B}	R

The state and symbol under the head have been updated

Cui	rrent		Next	
State	Symbol read	State	Symbol to write	Direction
b	В	c	0	R
c	В	e	\boldsymbol{B}	R
e	В	f	1	R
f	\boldsymbol{B}	b	\boldsymbol{B}	R

The state is f and the symbol under the head is the blank \boldsymbol{B} :

- The state is set to b
- A blank is printed to the tape
- Move one entry to the right

Cui	rrent		Next	
State	Symbol read	State	Symbol to write	Direction
b	В	c	0	R
c	В	e	\boldsymbol{B}	R
e	В	f	1	R
f	\boldsymbol{B}	b	\boldsymbol{B}	R

Again, the state is b, the symbol a blank, and therefore:

- Set the state to c
- ullet Print the symbol 0 to the tape
- Move one entry to the right

Cui	rent		Next	
State	Symbol read	State	Symbol to write	Direction
b	В	c	0	R
c	В	e	$\boldsymbol{\mathit{B}}$	R
e	В	f	1	R
f	\boldsymbol{B}	b	\boldsymbol{B}	R

The result is the state c and a blank symbol is under the head:

- Set the state to e
- Write a blank to the tape
- Move one entry to the right

Cui	rrent		Next	
State	Symbol read	State	Symbol to write	Direction
b	В	c	0	R
c	В	e	\boldsymbol{B}	R
e	В	f	1	R
f	В	b	\boldsymbol{B}	R

The result is the state e and a blank symbol ${\bf B}$ under the head

- This is the state we were in four steps ago
- This machine never halts...

Cui	rent		Next	
State	Symbol read	State	Symbol to write	Direction
b	В	c	0	R
c	В	e	\boldsymbol{B}	R
e	\boldsymbol{B}	f	1	R
f	\boldsymbol{B}	b	\boldsymbol{B}	R

Another Example

This Turing machine does what?

• Tape symbols:	$\Gamma = \{ \boldsymbol{B}, 1 \}$
• States:	$Q = \{a, b, c, d, e, H\}$

- Initial state: $q_0 = a$
- Halting state: H

Note there is exactly one entry for each pair in $Q \setminus \{H\} \times \Gamma$

- It may not be necessary to have one for each, but you cannot have more than one transition for a given state and symbol
- **Deterministic** program

Cur	rent		Next	
State	Symbol read	State	Symbol to write	Direction
a	$\boldsymbol{\mathit{B}}$	а	В	R
a	1	b	1	R
b	$\boldsymbol{\mathit{B}}$	c	1	R
b	1	b	1	R
c	$\boldsymbol{\mathit{B}}$	d	В	L
c	1	b	1	R
d	$\boldsymbol{\mathit{B}}$	d	$\boldsymbol{\mathit{B}}$	\mathbf{L}
d	1	e	$\boldsymbol{\mathit{B}}$	\mathbf{L}
e	$\boldsymbol{\mathit{B}}$	H	В	R
e	1	e	1	L

Example 2

After 22 steps, a group of five ones and a group of six ones are merged into a single group of eleven ones

- This represents 5 + 6 = 11
- It is the simplest addition machine (no boolean representation of numbers)

Non-deterministic algorithms

A Turing machine is non-deterministic if the transition table can contain more than one entry per state-letter pair

 When more than one transition is possible, a non-deterministic Turing machine branches and creating a new sequence of computation for each possible transition

A non-deterministic algorithm can be implemented on a deterministic machine in one of three manners:

- Assuming execution along any branch ultimately stops, perform a depth-first traversal by choosing
 one of the two or more options and if one does not find a solution, continue with the next option
- Create a copy of the currently executing process and have each copy work on one of the next possible steps
 - These can be performed either on separate processors or as multiple processes or threads on a single processor
- Randomly choose one of the multiple options

Turing-Church Conjecture

Alan Turing and Alonzo Church (Turing's PhD mentor at Princeton):

- For any algorithm which can be calculated given arbitrary amounts of time and storage, there is an equivalent Turing machine for that algorithm
- Formally: a function on the natural numbers can be calculated by an effective method if and only if it is computable by a Turing machine
 - 'Effective method': each step of which is precisely predetermined and which is certain to produce the answer in a finite number of steps

A computational system is said to be *Turing complete* if it can compute every function computable on a Turing machine

• e.g., a programming language compiled into machine code and run on a processo

Decision Problem Instance

- An algorithm solves a concrete problem in time O(T(n)) if, when provided with a problem instance of size n bits, it produces the correct answer to the question in O(T(n)) time
- Polynomially solvable problems: $T(n) = n^k$ for some k > 0
- Size of the input:
 - · Integers represented in binary
 - Sets represented in bits related to the number of elements in the set times the number of bits per element

- A decision problem belongs to the class **P** if there is a algorithm solving the problem with a running time on a deterministic machine that is polynomial in the input size.
- A decision problem belongs to the class NP (non-deterministic polynomial) if:
 - Any solution y leading to 'yes' can be encoded in polynomial space with respect to the size of the input x.
 - Checking whether a given solution leads to 'yes' can be done in polynomial time with respect to the size of x and v
 - problem is solvable in polynomial time in a non-deterministic machine
 - Can explore all possible solutions in parallel
 - Oracle selects best possible solution to check

Slightly more formal:

- Problem Q belongs to the class NP, if there exists a polynomial-time 2-argument algorithm A, such that:
 - For each instance i, i is a yes-instance to Q, if and only if, there is a polynomial-size certificate c for which A(i,c) = true.

Examples

- Tower of Hanoi
 - Number of moves to solve is exponential in number of disks
 - Can't describe solution in polyromial number of moves
 - Not in NP

- Is the length of a shortest path from a to b less than a threshold?
- Can answer in polynomial time in the size of the description of the network —> It is in P
- Traveling salesperson problem
 - Is the length of a complete traveling salesperson tour less than a threshold?
 - A tour can be described in polynomial space, and we can verify the length of the tour in polynomial time —> it is in NP

Non-deterministic polynomial-time algorithms

- The <u>traveling salesman problem</u> can solved non-<u>deterministically</u>:
 - At each step, spawn a thread for each possible path

• As you finish, compare them and determine if any of them have length less than k

- The run time is now $\Theta(|V|)$
- This is a brute-force search

Non-deterministic polynomial-time algorithms

Consider the following decision problem:

"Is there a path between vertices a and b with weight no greater than K?"

Dijkstra's algorithm can answer this in polynomial time

• Dijkstra's algorithm also solves the optimization problem

Examples of NP problems

- Factoring: factor a given number *n*.
- Decision version: Given (n,k), decide whether n has a factor less than k
- Factoring is in **NP**: For any candidate factor $m \le k$, it's easy to check whether $m \mid n$.
- Graph Isomorphism: Given two graphs G_1 and G_2 , decide whether we can permute vertices of G_1 to get G_2 .

• Easy to check: For any given permutation, easy to permute G_1 according to it and then compare to G_2 .

Reduction and completeness

- Decision problem for language A is reducible to that for language B in time f if $\exists f: Domain(A) \rightarrow Domain(B)$ s.t. \forall input instance x for A,
 - 1. $x \in A \Leftrightarrow f(x) \in B$, and
 - 2. one can compute f(x) in time t(|x|)
- Thus to solve *A*, it is enough to solve *B*.
 - First compute f(x)
 - Run algorithm for \underline{B} on $\underline{f(x)}$.
 - If the algorithm outputs $f(x) \in B$, then output $x \in A$.

Problem A

reduction $O(n^{k_1})$

Problem B

Solution to A

🔑 Solution to B

Reduction

Reduction converts the solution of a problem to the solution of another problem

- Graphically, we may think of the following image:
- To solve Problem A, we:
 - Reduce the problem to Problem B in polynomial time
 - Solve Problem B
 - Revert the solution back into a solution for Problem A

We want the reduction and reversion algorithms to be of polynomial complexity: **polynomial** reduction

A 3 B. -> 2 A A

Example: Polynomial reduction

- Multiply two n digit decimal numbers:
 - Reduction: convert the two numbers into binary numbers
 - Multiply the two binary numbers
 - Reversion: convert the solution back into a decimal number
- Both the reduction and the reversion run in $\Theta(n)$ time
- Observe: if a decision problem is reduced to a decision problem, the corresponding reversion algorithm is trivial and is in $\Theta(1)$ time •

Polynomial reduction

- Reduction: Sort the list
- Simpler problem: Does a sorted list have a duplicate element?
- Reversion: Return true or false, as is

- If a decision problem is reduced to a decision problem, the reversion is therefore $\Theta(1)$
 - Either the solution or its negation

Examples: Polynomial reduction

- Example: Does an n by n assignment problem have minimum cost less than K?
 - Polynomial Reduction: Reduce to the solution of n sequential shortest path problems in non-negative weight graphs with O(2n) vertices
 - Reversion: Convert the decision of the successive shortest path algorithm
- Example: Given two sequences $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$, is there a permutation j(i) such that $\sum_{i=1}^n a_i b_{j(i)} \ge K$?

 Polynomial Reduction: sort both sequences increasing order, multiply the sorted sequences and verify product is greater than or equal to K

 Another polynomial reduction: convert to assignment problem!

Polynomially Reducible

- Definition: Problem A is polynomially reducible to problem B if there exists an algorithm for solving problem A in polynomial time if we could solve arbitrary instances of problem B at unit cost
 - Written as $A \leq_P B$
 - If $A \leq_P B$, and $B \leq_P A$, then we write $A =_P B$

• e.g. Shortest path problem is in **P**. Assignment problem is polynomially reducible to shortest path problem. Then Assignment problem is in **P**.

Polynomial Reduction

- Problem A: Traveling salesperson problem
 - Given a weighted directed graph, find a simple cycle that visits each vertex once and has total cost less than or equal to K
- Problem B: Hamiltonian cycle problem
 - Given a directed graph, does there exist a simple cycle that includes every vertex once?

Polynomial Reduction

• Claim: $B \leq_P A$

Proof: Let graph for B be G(V,E). We are going to construct a weighted graph G(V,E') with a weight function for Problem A, in polynomial time

Let E' be the dense set of edge in $V \times V$. Assign weights as follows: w(e') = 0 if $e' \in E$, w(e') = 1 if $e' \notin E$

Reduction: $O(|V|^2)$ is polynomial

TSP problem: Does there exist a simple cycle that visits every vertex in V once, and has total cost less than or equal to 0

If yes, it is a cycle with all edges in E, and so it is a Hamiltonian cycle If no, no cycle exists with all edges in E, so no Hamiltonian cycle can be found

This shows Hamiltonian cycle \leq_P Traveling Salesperson Problem

NP Complete

- We know class P is a subset of class NP
 - TSP is not known to be in class P but is in NP
 - It is a conjecture that P ≠ NP, but it has not been proven
 - We do know $P \subset NP$
- Definition: a problem A is NP-complete, if $A \in \mathbf{NP}$ and every problem $B \in \mathbf{NP}$ can be polynomially reduced to A. That is, $B \leq_P A$

• Do such problems exist? If so, **and** one of them was in class **P**, then every problem in class **NP** could be solved in polynomial time

Existence of NP-complete Problems

- Steven Cook and Leonid Levin (BU) proved in parallel that there exists an NP complete problem
 - · Levin joined BU in 1980s
- Specifically: Boolean satisfiability (SAT)
 - Given a Boolean formula, is there an assignment of True and False to its variables so that the formula evaluates to True?
- Cook-Levin Theorem
 - If a polynomial-time deterministic algorithm can solve this problem, then polynomialtime deterministic algorithms can solve all NP problems

Equivalent Problem: Circuit SAT

• Find inputs to the circuit so the output is true

SAT and k-SAT

- SAT formula: AND of *m* clauses (Conjunctive Normal Form)
- *n* variables (taking values 0 and 1)
- a literal: a variable x_i or its negation \bar{x}_i
- *m* clauses, each being OR of some literals.

•
$$(x_1 \lor x_2 \lor \bar{x}_3) \land (x_1 \lor \bar{x}_2 \lor x_4) \land (\bar{x}_4) \land (\bar{x}_2 \lor x_3) \land (\bar{x}_3)$$

- SAT Problem: Is there an assignment of variables s.t. the formula evaluates to 1?
- k-SAT: same as SAT but each clause has at most k literals.
- SAT and k-SAT are in **NP**
 - Given any assignment, it's easy to check whether it satisfies all clauses.

 SAT SAT SAT PRISAT

The 1st **NP**-complete problem: SAT

- Consider an arbitrary problem class Y in NP
- Given a problem instance y, with description length n bits, there is an algorithm which is polynomial in n, p(n), which can verify whether the answer to this instance y is true
 - The input description to this verification algorithm is a set of bits: Boolean variables
 - Verification algorithm manipulates Boolean variables into a yes or no decision: a Boolean output
- The algorithm can be specified as a Boolean formula in conjunctive normal form, involving p(n) terms
- Finding a set of inputs to this formula that makes it true is equivalent to determining whether there original problem instance has answer true

How Do We Find Other NP-Complete Problems

- Reduction! We want to find if problem Y in NP is NP-complete
- If SAT $\leq_P Y$, then Problem Y is NP-Complete! SAT is no easier than Y
- Note: to prove a problem A is in class ₱, we need to find a problem B in class
 P so that A ≤_P B
- To prove a problem A is NP-complete class **P**, find an NP-complete problem so that $B \leq_P A$
- Note the following: it is easy to show that SAT = p 3-SAT using standard logic transformations

 1971 Cool 21 Cook NP1972 Kacp 21 Cook NP1972 Kacp 21 Cook

Graph NP-Complete Problems

- Karp ('72) followed Cook's proof to show 3-D SAT can be reduced to 21 different graph problems
 - TSP, others
- Many others have continued to extend this to thousands of other problems
- Note: to prove a problem A is in class **P**, we need to find a problem B in class **P** so that $A \leq_P B$
- To prove a problem A is NP-complete class **P**, find an NP-complete problem so that $\underline{B} \leq_P A$
- Note the following: it is easy to show that SAT $=_P$ 3-SAT using standard logic transformations

NP-complete problem 1: Clique

- Clique: Given a graph G and a number k, decide whether G has a clique of size $\geq k$.
 - Clique: a complete subgraph.
- Fact: Clique is in NP.
- Theorem: If one can solve Clique in polynomial time, then one can also solve 3-SAT in polynomial time.
 - So Clique is at least as hard as 3-SAT.
- Corollary: Clique is **NP**-complete.

Approach: Reduction

- Given a 3-SAT formula $\varphi = C_1 \wedge \ldots \wedge Q_k$ with conjunctions C_k , we construct a graph G s.t.
 - if ϕ is satisfiable, then G has a clique of size k.
 - if ϕ is unsatisfiable, then G has no clique of size $\geq k$.
 - Note: k is the number of clauses of ϕ .
- If you can solve the Clique problem, then you can also solve the 3-SAT problem.

Construction

- Put each literal appearing in the formula as a vertex.
 - Literal: x_i and \bar{x}_i

e.g. $\phi = (\bar{x}_1 \lor x_2 \lor x_3) \land (\bar{x}_2 \lor x_5) \land (\bar{x}_1 \lor x_3 \lor x_5) \land (\bar{x}_3 \lor \bar{x}_4 \lor \bar{x}_5)$

 Literals from the same clause are not connected

 Two literals from different clauses are connected if they are not the negation of each other

ϕ is satisfied \Rightarrow G has a k-clique

- If ϕ is satisfied,
- then there is a satisfying assignment $x_1...x_n$ s.t. each clause has at least one literal being 1.
 - E.g. x = 00111, then pick $\bar{x_1}, x_4, x_3, x_5$
- And those literals (one from each clause)
 are consistent because they all evaluate to 1
- So the subgraph with these vertices is complete. --- A clique of size k.

G has a k-clique $\Rightarrow \phi$ is satisfied

- If the graph has a clique of size *k*:
- It must be one vertex from each clause.
 - Vertices from the same clause don't connect.
- And these literals are consistent.
 - Otherwise they don't all connect.
- So we can pick the assignment by these vertices. It satisfies all clauses by satisfying at least one vertex in each clause
- Hence, it makes ϕ true

NP-complete problem 2: Vertex Cover

• Vertex Cover: Given a graph G and a number k, decide whether G has a vertex cover of size $\leq k$

 $oldsymbol{\cdot}$ V' is a vertex cover if all edges in G are "touched" by vertices from V'

- Vertex Cover is in NP
 - Given a candidate subset $S \subseteq V$, it is easy to check whether " $\left|S\right| \leq k$ and S touches all edges in E"

NP-complete

- To prove Vertex Cover is NP-complete, reduce Clique to Vertex Cover
- For any graph G, the complement of \underline{G} is \bar{G}
 - If G=(V,E), then $\bar{G}=(V,\bar{E})$
 - $\bar{E} = \{\{i, j\} : i \in V, j \in V, \{i, j\} \notin E\}$
 - Constructing $ar{G}$ from G is a polynomial operation
- Theorem: G has a k-clique $\iff \bar{G}$ has a vertex cover of size n-k
 - Will show In next slide
- Given this theorem, Clique can be reduced to Vertex Cover
- So Vertex Cover is NP-complete

Proof of the theorem

- G has a k-clique $\iff \exists V' \subset V, |V'| = k, V'$ is a clique in G
- Independent set in \bar{G} : For any u, v in V', $\{u, v\} \notin \bar{E}$
- V' is a clique in G \iff V' is an independent set in $ar{G}$
- V' is an independent set in $\bar{G} \iff V/V'$ is a vertex cover of \bar{G} , because every edge in \bar{E} must touch a vertex in V/V'
- Let $V'' = V/\underline{V}'$. Then, $|V''| = n \underline{k}$, and |V''| is a vertex cover of \bar{G}

Another NP-Complete Problem: Independent Set

- Independent Set: Decide whether a given graph has an independent set of size at least \boldsymbol{k}
- The above argument shows that the Independent Set problem is also NP-Complete because Clique \leq_P Independent set

