ООО «Поволжская электротехническая компания»

Почтовый адрес:

Российская Федерация, Чувашская Республика, 428000, г. Чебоксары, а/я 163

Тел./факс: (8352) 57-05-16, 57-05-19

E-mail: info@piek.ru *Caŭm:* www.piek.ru

УСИЛИТЕЛЬ ТИРИСТОРНЫЙ ТРЕХПОЗИЦИОННЫЙ ФЦ

Поиложение 5

Схема внешних соединений усилителя ΦЦ Трехфазная сеть К регулирующему устройству

F- автомат зашиты типа A508-3M с током отсечки 5A

ИМ – исполнительный механизм

М – электродвигатель типа АИР

1. ВВЕДЕНИЕ

Настоящее техническое описание и инструкция по эксплуатации предназначено для изучения усилителя тиристорного трехпозиционного ФЦ и содержит описание устройства и принципа действия, а также технические характеристики и другие сведения, необходимые правильного транспортирования, хранения и эксплуатации усилителя.

2. НАЗНАЧЕНИЕ

2.1. Усилителя тиристорного трехпозиционного ФЦ (в дальнейшем – усилитель) предназначен для бесконтактного управления электрическими исполнительными механизмами, в приводе которых использованы трехфазные электродвигатели.

Область применения: системы автоматического регулирования технологическими процессами в энергетической и других отраслях промышленности.

2.3. Условные обозначения усилителя и исполнения в зависимости от выполняемых функций и степени защиты приведены в таблице 1.

		1	гаолица 1
Условные	Исполнения	Выполняемые функции	Степень
обозначения			защиты
усилителя			
ФЦ – 0610	УХЛ4	Пуск, реверс электродвигателя, торможение и защита от перегрузки	1P20
ФЦ-0010	0,4	асинхронного двигателя, сигнализация	
	УХЛЗ.1	об отказах	1P54
ФЦ – 0611	T3		
	УХЛ4	Пуск, реверс электродвигателя	1P20
ФЦ – 0620	04		
	УХЛЗ.1		1P54
ФЦ- 0621	T3		1134

Усилитель ФЦ – 0610 (ФЦ – 0611) обеспечивает:

- защиту асинхронного электродвигателя с короткозамкнутым ротором от перегрузки;
 - торможение вала электродвигателя при снятии сигнала;
- сигнализацию об исчезновении напряжения питания или несоответствие входных и выходных сигналов;

Установки защиты и длительности торможения регулируемые.

2.4. Усилитель предназначен для эксплуатации в следующих условиях:

атмосферное давление от 84 до 106,7 кРа;

внешние магнитные постоянные и (или) переменные поля сетевой частоты с напряженностью в пределах от 0 до 400 А/т;

рабочее положение – любое;

вибрация с частотой до 25 Hz с амплитудой не более 0,1 mm;

температура окружающего воздуха и относительная влажность в зависимости от исполнения приведены в таблице 2.

Таблица 2.

Условия эксплуатации	Исполнение			
	УХЛ4.1	0,4	УХЛЗ.1	Т3
1. Температура, ⁰ С	от 5 до плюс 50		ОТ	OT
			минус	минус
			10 до	10 до
			плюс 50	плюс 55
2. Относительная влажность, %	от 30	от 30	от 30	от 30
при температуре,350С	до 80	до 98	до 95	до 98

3. ТЕХНИЧЕСКИЕ ДАННЫЕ

3.1. Электрическое питание усилителя – трехфазная сеть переменного тока с номинальным напряжением 220/380 V частотой (50 ± 1)Hz или (60 ± 1 ,2)Hz, или напряжение 230/400 V, 240/415 V частотой (50 ± 1)Hz.

Допустимое отклонение напряжения питания от номинального – от минус 15 до плюс 10%.

3.2. Номера входных контактов, входные сигналы приведены в таблице 3.

Таблица 3.

				- uoiiii _ u o .
Номера	Входные сигналы	Пределы изм	ленения среднего	Примечание
входных		значения	напряжения на	
контак-		входных контактах		
TOB		включение	выключение	
7-8 8-9	Среднее значение двухполупериодно- го выпрямленного синусоидального напряжения	(24 <u>+</u> 6)V	0-8V	Амплитуда напряжения на ключах до 50V, коммутируе
7-10 9-10	Состояние контактных или бесконтактных ключей	0-3V	(24 ± 4)V (амплитудное напряжение 50V	мый ток до 50 mA

- 3.3. Источник питания цепей управления допускает подключение внешней нагрузки с сопротивлением до 240 Ω между контактами 8 и 10 усилителя. Форма напряжения источника, при сопротивлении нагрузки 240 Ω двухполупериодное выпрямленное со средним значением (24±2)V при номинальном напряжении питания.
 - 3.4. Входное сопротивление усилителя (850 \pm 200) Ω .
 - 3.5. Максимальный коммутируемый ток 3А.
 - 3.6. Динамические характеристики пускателя:
 - 1) быстродействие (время запаздывания выходного тока при подаче и снятии управляющего сигнала) не более 50 mS;
 - разница между длительностями входного и выходного сигналов не более 20 mS;
 - 3) максимальная длительность тормозного воздействия, создаваемого усилителем Φ Ц-0610 (Φ Ц 0611), не более 200 mS;
 - 3.7. Цепи сигнализации усилителя Φ Ц $0610(\Phi$ Ц 0611) коммутируют нагрузку от 0.01А до 0.1А при напряжении от 6 V до 30V

Схема проверки усилителя

F- автомат защиты типа АП508-3M с током отсечки 5A

H1, H2 – индикатор, например, диод световой A/1102Б

Р*U*-вольтметр 3316. предел 0-600V

R – peaucmop M/IT-0,5-2,4 $\kappa\Omega\pm10\%$

S1 – переключатель типа П2Т-1

S2 – переключатель типа ТВ1-1

ИМ – исполнительный механизм

R31	С2-33H-0,25-1МΩ±10%-Д	1	
R32	C2-33H-0,25-2,2MΩ±10%-Ж	1	
R33	С2-33H-0,25-510кΩ±10%-Д	1	
R34	С2-33H-0,25-27кΩ±10%-Д	1	
R35	C2-33H-0,25-3,9MΩ±10%-Ж	1	
R36	C2-33H-0,25-20кΩ±10%-Д	1	
R37	C2-33H-0,25-100κΩ±10%-Д	1	
R38,R39	C2-33H-0,25-100κ2±10%-Д	2	
R40,R41	C2-33H-0,25-26κΩ±10%-Д	2	
R42,R43	C2-33H-0,25-30κ2±10%-Д C2-33H-0,25-20κΩ±10%-Д	2	
R44	C2-33H-0,25-20κ2±10%-Д C2-33H-0,25-510κΩ±10%-Д	1	
R45		1	
	C2-33H-0,25-51κΩ±10%-Д	2	
R46,R47	C2-33H-0,25-560Ω±10%-A-Д		
R48	C2-33H-0,25-3,3MΩ±10%-Ж	1	
R49,R50	C2-33H-0,25-560Ω±10%-A-Д	2	
R51,R52	C2-33H-0,25-10κΩ±10%-A-Д	2	
R53,R54	С2-33H-0,25-2,4кΩ±10%-А-Д	2	
R55,R56	С2-33H-0,25-560Ω±10%-А-Д	2	
R57,R58	С2-33H-0,25-180Ω±10%-A-Д	2	
R59,R60	CH2-1a-750V±10%	2	
R61-R64	С2-33H-180Ω±10%-А-Д	4	
R65	С2-33H-560Ω±10%-А-Д	1	
R66,R67	CH2-1a-750V±10%	2	
R68	C2-33H-0,25-5,1MΩ±10%-Ж	1	
R69	C2-33H-0,25-1MΩ±10%-Д	1	
R70,R71	С2-33H-0,25-10кΩ±10%-А-Д	2	
T1	Трансформатор 6.70.650-03	1	380V
T1	6.170.650-05	1	400 или 415V
T2,T3	6.170.647	2	
T4,T5	Трансформатор тока 6.170.561	2	
	Полупроводниковые приборы		
V1,V2,V14	Стабилитрон КС175Ж	3	
V3-V11	Диод КД102А	9	
V12	Выпрямительный мост КЦ407А	1	
V13	Стабилитрон КС522В	1	
V15-V23	Диод КД102А	9	
V24	Транзистор КТ630Б	1	
V25-V28	Диод КД102А	4	
V29,V30	Транзистор КТ315Г	2	
V31	Выпрямительный мост КЦ407А	1	
V32-V34	Транзистор КТ630Б	3	
V35-V39	Диод КД102А	5	
V40	Выпрямительный мост КЦ407А	1	
V41-V44	Триак ТС122-25-8-4-У2 с комплектом крепежа	4	
X1	Вилка РП10-22	1	
X1	Розетка РП10-22	1	
X4,X5	Перемычка	2	Провод сечением не более 0,15mm²

- 3.8. Усилитель допускает работу в повторно-кратковременном реверсивном режиме с частотой включений до 630 в час при ПВ 25%.
- 3.9 Мощность, потребляемая усилителем при отсутствие сигнала управления, не более 10 W.
- 3.10. Норма средней наработки на отказ с учетом технического обслуживания, регламентируемого настоящим техническим описанием 100000h.
 - 3.11. Средний срок службы пускателя 10 лет.
 - 3.12. Масса усилителя не более 7 kg.
 - 3.13. Габаритные и установочные размеры пускателя приведены в приложении 1.

4. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

4.1. Конструкция.

Усилитель ФЦ – 0610 9ФЦ – 0611) состоит из двух плат, корпуса и крышки.

На одной из плат установлены элементы схемы управления, на другой – элементы силовой схемы и элементы питания. Платы крепятся к корпусу и соединяются между собой кронштейнами. На крышке усилителя имеется пластина, закрывающая доступ к ручкам резисторов, регулирующих уставки защиты и длительности торможения.

Конструктивно усилитель ФЦ – 0620 (ФЦ – 0621) состоит из одной платы, корпуса и крышки. На корпусе имеются штепсельный разъем для подключения усилителя к внешним цепям, винт заземления. Корпус усилителя рассчитан на установку в шкафах управления, стеллажах и на вертикальную стенку.

4.2. Электрическая схема усилителя ФЦ – 0620 (ФЦ – 0621) приведеня в приложении 2.

В схеме управления сопротивления R1 и R2 определяют входное сопротивление усилителя при малом уровне входного сигнала. Резистор R3 ограничивает бросок входного тока при подаче сигнала управления.

Конденсаторы C1 и C2 и диоды V2 и V3 сглаживают пульсацию управляющего сигнала.

Транзистор V8, резисторы R4,R5 и выпрямительный мост исключают включение блокинг-генераторов при подаче сигнала на оба входа, а конденсатор C3 создает задержку при реверсе. Стабилитроны V6,V7 защищают транзистор V8 от пробоя при перегрузке усилителя по входному сигналу.

Блокинг-генераторы, формирующие импульсы управления триаками, состоят из трансформаторов Т2, Т3, транзисторов V15,V16, диодов V13, V14, V17,V18, конденсаторов С4,С5, резисторов R10...R15.

В силовой схеме триаки V19-V22 коммутируют напряжение, от которого осуществляется электрическое питание двигателя механизма. Конденсатор С6 и резисторы P17,P20 улучшают условия включения триаков при индуктивной нагрузке. Дроссели L1,L2 ограничивают величину ударного тока при аварийных перегрузках триаков. Для защиты от перенапряжений, возникающих в момент коммутации, применены варисторы R16, R18, R19, R21.

Источник питания цепи дистанционного управления состоит из трансформатора Т1 и выпрямительного моста. Отрицательный вывод источника подключен на клемму 10 (выход «Д»), а положительный – на клемму 8 (вход «Ср»). замыкание клеммы 10 на клемму 7 или 9 вызывает срабатывание усилителя в одном или другом направлении.

Входной сигнал управления усилителем – постоянное напряжение (24±6)V подается на клеммы 8-7 или 8-9 . На клемму 8 (Вход «Ср») подается положительный потенциал, на клеммы 7 (Вход «М») или 9 (Вход «Б») отрицательный потенциал управления.

Обозначение «М» (меньше) и «Б» (больше) приняты условно. В исходном положении (входные сигналы отсутствуют) напряжения питания на схеме нет, триаки закрыты.

При подаче управляющего сигнала на клемму 7 (9), отрицательной полярности относительно клеммы 8, заряжается конденсатор С1(С2) и С3. Напряжение с конденсатора С3 через выпрямительный мост V9 подается на вход эммиттерного повторителя, выполненного на транзисторе V8. Напряжение с выхода эммиттерного повторителя подается на блокинг-генератор, который формирует импульсы с частотой 3-5 кНz для управления триаками V19, V22, (V20,V21). Питающее напряжение с клемм 1,2 через открытые триаки V19, V22, (V20,V21) поступает на выход усилителя – клеммы 5,6.

4.3. Электрическая схема усилителей ФЦ – 0610, ФЦ- 0611 приведена в приложении 3.

Напрядение управляющего сигнала, поданное на клеммы 7-8 (8-9), заряжает конденсатор С7 через резистор R7, поступает на коллекторы транзисторов V29, V30. Одновременно входной сигнал через резисторы R14 (R15), R18(R19), R21(R22) поступает на вход 1(3) элемента Д4 и устанавливает триггер Д5.1 в состояние 0(1). Логический элемент Д4 через выводы 11 и 10(КТ1) управляет генератором, собранным на элементах Д7.1 и Д.62. Появление сигналов на выходах 10,11 элемента Д4 синхронизировано с сетью при помощи счетчика Д2. Импульсы генератора КТ4 через элементы Д7.3 и Д6.4 (Д6.3) поступает на базу транзистора V30 (V29). Напряжение управляющего сигнала с конденсатора С7 через транзистор V30(V29) поступает на базу транзистора V33 (V32), усиливается, поступает на импульсный трансформатор Т3(Т2) и передается на управляющие электроды триаков V42, V43, (V41, V44).

Происходит включение триаков в последовательности, обеспечивающей безударный пуск.

Варисторы R59, R60, R66, R67 защищают триаки от перенапряжения.

Дроссели L1 и L2 ограничивают величину ударного тока при аварийных перегрузках триаков. Резисторы R61, R62, R63, R64 и конденсаторы C21...C24 улучшают условия коммутации триаков. Трансформаторы тока T4 и Т5 измеряют потребляемый электродвигателем ток. Выходное напряжение с трансформаторов T4, T5 через выпрямительный мост V40 и диоды V38, V29 подается на конденсатор C20 и резистор R30. Резистор R30 устанавливается в такое положение, чтобы при номинальном токе электродвигателя не происходило срабатывание триггера Д5.2. При перегрузке триггер сработает и запретит прохождение импульсов с генератора через элемент Д7.3.

Подача управляющих импульсов на триаки прекращается и двигатель обесточивается.

При снятии входного сигнала счетчик Д2 устанавливается в нулевое состояние, а у счетчика Д3 снимается сигнал с выхода 4. При появлении сигнала на выходе 6 счетчика Д2 триггер Д5.1 перебрасывается в противоположное состояние, что позволяет для торможения включить другую реверсную группу триаков при работе генератора импульсов в последовательности, обеспечивающей безударное торможение и затормозить электродвигатель.

Приложение№3

			приложением
Поз.	Наименование	Кол-	Примечание
обозначение		во	
01	Конденсаторы		
C1	K73-17-250V-0,1 μF±20%	1	
C2	KM-56-M47-680pF±2%	1	
C3	K10-7B-H90-0,068μF ⁺⁸⁰ - ₋₂₀ %	1	
C4,C5	K73-17-250V-0,047μF±10%	2	
C6	K73-17-250V-0,22μF±20%	1	
C7	K73-17-160V-2,2μF±20%	1	
C8	K10-7B-H90-0,068μF ⁺⁸⁰ - ₂₀ %	1	
C9	K73-17-250V-0,22μF±20%	1	
C10-C12	K10-7B-M1500-360pF±5%	3	
C13	K73-17-250V-0,22μF±20%	1	
C14	K73-17-160V-2,2μF±20%	1	
C15	K50-35-100V-47μF	1	
C16	K10-7B-H90-0,068μF ⁺⁸⁰ -20 %	1	
C17-C19	K73-17-250V-0,22μF±20%	3	
C20	K73-17-250V-0,047μF±10%	1	
C21-C24	K75-10-500V-0,22μF±20%	4	
D1	Микросхема К561ЛП2	1	
D2-D3	К561ИЕ8	2	
D4	К561ЛС2	1	
D5	K561TM2	1	
D6	К561ЛЕ5	1	
D7	К561ЛП2	1	
K	Реле РЭС54 ХП4.5000.011-01	1	
L1,L2	Дроссель 6.271.607	2	
	Резисторы		
R1	С2-33H-0,25-10кΩ±10%-А-Д	1	
R2, R29	С2-33H-0,25-20кΩ±10%-Д	1	
R4	С2-33H-2-820Ω±10%-A-Д	1	
R5,R6	С2-33H-0,25-150кΩ±10%-Д	2	
R7	С2-33H-0,5-680Ω±10%-A-Д	1	
R10	С2-33H-0,25-100кΩ±10%-А-Д	1	
R11	C2-29B-0,25-1,26MΩ±0,5%-1,0-A	1	Для 50 Hz
R11	C2-29B-0,25-1,06MΩ±0,5%-1,0-A	1	Для 60 Hz
R12,R13	C2-33H-0,25-100κΩ±10%-Д	2	7
R14,R15	С2-33H-0,25-240кΩ±10%-Д	2	
R16,R17	CΠ3-44A-0,5-1,5MΩ±20%-A-B	2	
R18,R19	С2-33H-0,25-150кΩ±10%-Д	2	
R20-R22	C2-33H-0,25-39κΩ±10%-Д	3	
R23	C2-33H-0,25-30κΩ±10%-Д	1	
R24,R25	С2-33H-0,25-20К2±1070-Д С2-33H-0,25-1МΩ±10%-Д	2	
R26,R28	С2-33H-0,25-100кΩ±10%-Д	2	
R27	C2-33H-0,25-100K2±1070-Д	1	
R30	СП3-44A-0,5-1,0МΩ±20%-A-В	1	
1.00	C113-44A-0,3-1,010152±2U/0-A-D	1	

Приложение №2

Поз.	Наименование	Кол-во	Примечание
обозначени			
	Конденсаторы		1
C1,C2	K50-35-63V-10μF	2	
C3	K73-17-250V-0,47μF±10%	1	
C4,C5	K73-17250V-0,22μF±10%	2	
C6,C7	K75-10-500V-0,47μF±10%	2	
L1,L2	Дроссель 6.271.043	2	
	Резисторы		
R1,R2	С2-33B-2-1,5кΩ±10%-А-Д	2	
R3	С2-33H-0,5-91Ω±10%-А-Д	1	
R4,R5	С2-33H-0,5-30Ω±5%-Д	2	
R6	С2-33Н-0,5-560Ω±5%-Д	1	
R7	С2-33H-0,5-8,2кΩ±10%-А-Д	1	
R8	С2-33H-0,5-1,3кΩ±10%-А-Д	1	
R10,R11	С2-33H-0,5-2кΩ±5%-А-Д	2	
R12,R13	С2-33H-0,5-180Ω±10%-А-Д	2	
R14,R15	С2-33H-0,5-43кΩ±5%-Д	2	
R16	CH2-1a-750V±10%	1	
R17	С2-33H-2-100Ω±10%-А-Д	1	
R18,R19	CH2-1a-750V±10%	2	
R20	С2-33H-2-100Ω±10%-А-Д	1	
R21	CH2-1a-750V±10%	1	
T1	Трансформатор 6.70.650	1	380V
T1	6.170.650-02	1	480 или 415V
T2,T3	6.170.648	2	+
V1	Выпрямительный мост	1	
V2-V5	Диод КД102А	4	
V6,V7	Стабилитрон КС315В	2	
V8	Транзистор КТ315В	1	
V9	Выпрямительный мост КЦ407А	1	
V10,V11	Диод КД102А	2	
V13,V14	Диод КД102А	2	
V15,V16	Транзистор КТ608Б	2	
V17,V18	Диод КД512А	2	
V19-V20	Триак ТС122-25-8-4-У2 с	4	
	комплектом крепежа		
	Экспорт		
X1	Вилка РП10-22	1	
X1	Розетка РП10-22	1	
X4,X5	Перемычка	2	Провод сечением не более 0,15mm ²

Применение безударного пуска и торможения электродвигателя предотвращает удары в шпоночном соединении электродвигателя и механизма и уменьшает износ первых ступеней редуктора.

Длительность генерации импульсов определяется параметрами RC цепочки, состоящей из конденсатора C6 и резистора R17 или R16. Резисторы R16 и R17 (установленные на плате усилителя) позволяют регулировать длительность тормозного воздействия в зависимости от типа, мощности электродвигателя и характера нагрузки на выходном валу механизма.

В схеме управления сопротивление R4 определяет входное сопротивление усилителя при малом уровне входного сигнала.

Конденсаторы С4, С5 сглаживают пульсацию управляющего сиганала.

В усилителе предусмотрен источник питания для дистанционного управления, включающий в себя трансформатор Т1 и выпрямительный мост V12.

Сигнализация о сбоях в работе усилителя выполнена на реле K, транзисторе V34 и элементах Д1.4, Д7.2, Д7.4.

В исходном состоянии реле К находится под напряжением.

Если отсутствует напряжение питания усилителя или имееется несоответствие между входными и выходными сигналами, реле К обесточивается, замыкая клеммы 11-12 размыкая клеммы 12-13.

Несоответствие между входными и выходными сигналами усилителя, т.е. отсутствие выходного сигнала усилителя при наличии входного, и наоборот, возможно:

при срабатывании токовой защиты;

при пробое одного из триаков;

при неисправности элементов схемы управления;

при неисправности на выходе усилителя (обрыв в цепи нагрузки).

На время переходных процессов, когда имеется несоответствие между входными и выходными сигналами, Реле к не обесточивается за счет задержки, создаваемой резистором R48 и конденсатором C17.

5. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

5.1. Работы по монтажу и эксплуатации пускателя разрешается выполнять лицам, имеющим допуск к эксплуатации электроустановок напряжением до 1000V и изучившим данное техническое описание.

Пускатель должен быть заземлен проводом. Заземляющий провод крепится к специальному болту на корпусе пускателя.

- 5.2. Все работы по монтажу пускателя производить при полностью снятом напряжении питания. При этом на распределительном щите, питающем пускатель, необходимо вывесить табличку с надписью «НЕ ВКЛЮЧАТЬ РАБОТАЮТ ЛЮДИ!»
- 5.3. усилитель должен быть заземлен проводом. Заземляющий провод крепится к специальному болту на корпусе усилителя.

6. ПОДГОТОВКА К РАБОТЕ

6.1. При распаковке усилителя обратите внимание на состояние лакокрасочного покрытия и убедитесь в отсутствии механических повреждений корпуса, штепсельного разъема

При наличии механических повреждений корпуса (вмятин, трещин, коррозии) усилитель следует считать неисправным. Дальнейшей проверке и включению в сеть такой усилитель не подлежит.

- 6.2. При внесении усилителя с мороза в теплое помещение, оставить усилитель в заводской упаковке в помещении на 8-10 часов для того, чтобы усилитель постепенно принял температуру окружающего воздуха.
- 6.3. Перед установкой на объект усилитель необходимо проверить на работоспособность, а усилитель ФЦ 0610 (ФЦ 0611) кроме того произвести настройку для работы с конкретным типом электродвигателя механизма.
- 6.4. Проверку работоспособности усилителя производить по схеме приложения 4. положение переключателей, указанное на схеме, принять за исходные. В усилителе ФЦ –0610, ФЦ (0611) перед проверкой снять пластину, закрывающую доступ к регулировочным резисторам и вращением против часовой стрелки довести ручки резисторов до упора.

Включить автомат зашиты F. Перевести переключатель S1 в положение 1. Выходной орган механизма должен изменить направление движения.

6.5. настройку установки токовой защиты в усилителе ФЦ –0610 (ФЦ-0611) для защиты асинхронного электродвигателя от перегрузки производить по схеме приложения 4. Перевести переключатель S1 в положение 1 и при выходе выходного органа на упор плавно вращать ручку потенциометра 1 по часовой стрелке до отключения электродвигателя.

Перевести переключатель S1 в положение 3, выходной орган механизма должен изменить направление вращения. При выходе выходного органа на другой упор двигатель должен отключиться за время не более 2 сек.

Отключение двигателя следует контролировать по наличию напряжения, измеренному вольтметром PU, или по шуму механизма. При регулировке установки токовой защиты электродвигатель в заторможенном состоянии должен находиться не более 20 сек.

6.6. Проверку работы сигнализации о несоответствии входных и выходных сигналов в усилителе ФЦ – 0610 (ФЦ – 0611) производить после настройки установки токовой защиты в следующем порядке.

Установит переключатель S1 в положение 3. При перемещении выходного органа механизма сигнализатор H1 сигнализирует о наличии тока, а H2 об отсутствие тока. После того, как выходной орган механизма выйдет на упор и защита от перегрузки отключит электродвигатель, то сигнализатор H1 сигнализирует об отсутствие тока, а H2 об наличии тока. Установить переключатель S1 в положение 2. Индикатор H1 сигнализирует о наличии тока, а H2 об отсутствие тока.

6.7. Настройку длительности тормозного воздействия в усилителе ФЦ – 0610 (ФЦ-0611) производить в следующем порядке.

Переводя переключатель S1 в положение 1, а затем через (1-8) сек возвращая в положение 2, плавным вращением ручки потенциометра «2» по часовой стрелке добиться того, чтобы выбег электродвигателя при отключении был минимальным. Аналогично переводя переключатель S1 в положение 3, а затем через (1-8) сек. Возвращая в положение 2 вращением ручки потенциометра «3» по часовой стрелке добиться тог, чтобы выбег электродвигателя при отключении был минимальным. Установить пластину усилителя на место.

6.8. При монтаже цепи питания усилителя необходимо включить через автомат защиты АК506-3М с током установки срабатывания соответствующим току электродвигателя на место.

Приложение 1

Если по условиям эксплуатации возможны короткие замыкания цепей, подключенных к выходу усилителя, то необходимо в цепи питания усилителя дополнительно установить плавкие предохранители, например типа ПК45-5A.

Падение напряжения в линии между усилителем и исполнительным механизмом не должно превышать $2\ V.$

- 6.9. Цепи управления усилителем должны быть подключены отдельным кабелем. Кабель управления должен быть пространственно разнесен с кабелем силовых цепей. Схема внешних соединений усилителя приведена в приложении 5.
- 6.10. После установки усилителя на объект необходимо проверить правильность монтажа цепей, подключенных к усилителю, соответствие тока установки срабатывания автомата защиты мощности подключенного электродвигателя.
- 6.11. Убедиться в том, что усилитель работает при управлении от соответствующих регулятора и блока ручного управления.
 - 6.12. О включении усилителя в работу внести запись в паспорт усилителя.

7. ПОРЯДОК РАБОТЫ

7.1. Усилитель предназначен для работы в системах автоматического регулирования технологического процессов и в процессе работы взаимодействия с оператором не требует.

При необходимости, оператор может управлять усилителем в «ручном» режиме через блок ручного управления.

- 7.2. Так как цепь сигнализации усилителя ФЦ 0610 (ФЦ 0611) срабатывает при возникновении различных видов неисправностей в системе автоматического регулирования, рекомендуется следующая последовательность действия оператора для уточнения вида неисправности.
- 7.2.1. По дистанционному указателю положения выходного органа механизма определить перемещение органа в ту или иную сторону.
 - 7.2.2. В случае перемещения выходного органа перейти на ручной режим управления.

Если при этом движение выходного органа механизма не прекратится, это свидетельствует об отказа усилителя (пробое выходных ключей). Для предотвращения нежелательного выхода исполнительного механизма в одно из крайних положений необходимо подать от блока ручного управления команду на перемещение выходного органа в противоположенную сторону. При этом возникает короткое замыкание в выходных цепях усилителя, сработают предохранители или автомат защиты отключив питание усилителя и исполнительного механизма.

- 7.2.3. Если выходной орган механизма находится в рабочей зоне, и механизм н отрабатывает сигналы ручного управления это свидетельствует либо об отключении питания усилителя (срабатывание автомата защиты), либо о неисправности цепей «усилитель электрический двигатель механизма»
- 7.2.4. если выходной орган механизма находится в одном из крайних положений, то подать противоположный сигнал управления от БРУ и убедится, что сигнализация отключилась, и исполнительный механизм отрабатывает сигнал управления. Это свидетельствует об отключении исполнительного механизма при выходе на упор (срабатывание токовой защиты).

Если исполнительный механизм не отрабатывает сигнал управления и не отключается сигнализация, это свидетельствует о неисправностях в системе по п. 7.2.3.

8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 8.1. Специального технического обслуживания усилитель не требует. Для обеспечения нормальной работы рекомендуется выполнять в установленные сроки следующие мероприятия
- 8.2. Ежедневно. Проверять правильность действия в составе систем автоматического регулирования по показаниям контрольно-измерительных приборов, фиксирующих протекание технологического процесса.
- 8.3. Ежемесячно при включенном напряжении питания проверить надежность внешних электрических соединений и очистить поверхность усилителя от загрязнения.
- 8.4. в период капитального ремонта основного оборудования или раз в два года и после ремонта усилителя проводить проверку и настройку по пунктам 6.5, 6.6, 6.7 настоящего ТО.

9. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

9.1. Причинами выхода из строя пускателя могут быть: обрыв цепи напряжения питания, нарушения контактов в схеме из-за обрывов, особенно в местах пайки, выход из строя полупроводниковых приборов, триаков и другие внутренние повреждения. При поиске любой неисправности, прежде всего, надо тщательно осмотреть весь прибор, особенно места паек. Обрыв проводников, нарушение паянных соединений обнаруживается с помощью омметра при включенном напряжении питания. В схеме управления выход элементов из строя, нарушения работы разных цепей определяется путем проверки режимов работы, руководствуясь принципиальными схемами (приложения 2 и 3) и картой режимов для ФЦ – 0610, ФЦ – 0611 (табл. 4), при снятых перемычках Х4 и Х5 (при отсутствие напряжения на триаках).

Карта режимов усилителя ФЦ – 0610 (ФЦ – 0611)

Таблица 4

					тионици т.
No	Наименование	Тип	Величина	Обознач	Измерительный
	измеряемой			ение в	прибор
	величины			схеме	
1	Напряжение обмоток	Переменное			Вольтметр
	трансформатора				переменного
	Выводы 1-2		(380±7,6)V	T1	тока, класс 2,5;
	3-4		(40±1)V		внутреннее
	5-7		(31±1)V		сопротивление
			(-)		не менее 5 к Ω/V
2	Напряжение на	Постоянное	(0÷0,4)V	KT1-KT0	Вольтметр
	контрольных точках		$(9,5 \div 0,5)V$	KT2-KTO	постоянного
	при отсутствие		(50÷5)V	KT3-KTO	тока, класс 2,5;
	сигнала управления		$(9,5 \div 0,5)V$	KT4-KT0	внутренне
			, , ,		сопротивление
					не менее
					10κΩ/V
3	Амплитуда	Пере-	(9,5±0,5)V	KT4-KT0	Осциллограф
	прямоугольных	менное			
	импульсов на				
	контрольных точках				
	при наличии сигнала				
	управления.				

Отыскание неисправности усилителя необходимо производить в лабораторных условиях

9.2. Перечень возможных неисправностей приведен в табл. 5.

Таблица 5.

			uommu o.
Наименование неисправност внешнее проявление и	Вероятная причина	Способы устранения	Приме- чание
дополнительные признаки			
1. Не работает электродвигатель исполнительного механизма при	Нарушение контакта в силовых цепях.	Проверить цепи и устранить неисправность.	Места паек покрыть лаком.
замыкании контактов 7, 10, либо 9, 10 и включенном напряжении	Неисправность во входных цепях.	Проверить, подается ли сигнал управления на вход генератора. Заменить неисправные элементы.	
питания.	Неисправность генератора.	Проверить генерируются ли импульсы управления. Заменить неисправные элементы.	
	Обрыв в обмотках импульсивных трансформаторов.	Проверить целостность обмоток и наличие управляющих сигналов на триаках. При необходимости, заменить или перемотать трансформаторы.	
	Неисправность триаков.	Проверить исправность и заменить неисправные триаки.	
2. Электродвигатель исполнительного механизма работает при разомкнутых клеммах 7, 10 либо 9,10 и включенном напряжении питания.	Произошел пробой триаков.	Заменить неисправные элементы.	

10. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ.

- 10.1. Усилитель должен храниться в заводской упаковке в сухом отапливаемом помещении при температуре воздуха от плюс 5 до плюс $40\,^{\circ}$ С при относительной влажности до $80\,^{\circ}$. Воздух в помещении не должен содержать пыли или примесей агрессивных паров и газов.
- 10.2. Транспортирование усилителей в транспортной упаковке предприятия-изготовителя допускается любым видом транспорта с защитой от дождя и снега на любое расстояние без ограничения скорости.

Транспортирование самолетами должно производиться в отапливаемых герметизированных отсеках. Температура окружающей среды – от минус 50 до плюс 50 $^{\circ}$ С при относительной влажности до 98% без конденсации влаги.

приложения

- 1. Габаритные и установочные размеры усилителя.
- 2. Перечень радиодеталей усилителя ФЦ 0620.
- 3. Перечень радиодеталей усилителя ФЦ 0610.
- 4. Схема проверки усилителя.
- 5. Схема внешних соединений усилителя.