HITROST KONVERGENCE TANGENTNE METODE

Izrek 1 (Konvergenčni izrek za navadno iteracijo). Naj bo g zvezno odvedljiva na intervalu I = [a,b] in naj velja $g(I) \subseteq I$. Naj bo še $\sup_{x \in I} |g'(x)| = m < 1$. Velja:

- g(x) = x ima enolično rešitev ξ na I.
- Za vsak $x_0 \in I$ zaporedje $x_n = g(x_{n-1})$ konvergira proti ξ , pri čemer je

$$|x_{n+1} - \xi| \le \min \left\{ m^{n+1} |x_0 - \xi|, \frac{m}{1-m} |x_{n+1} - x_n|, \frac{m^{n+1}}{1-m} |x_1 - x_0| \right\}.$$

Dokaz. Velja

$$|x_n - \xi| = |g(x_{n-1}) - g(\xi)| = |g'(\zeta)||x_{n-1} - \xi| \le m|x_{n-1} - \xi|,$$

kjer smo v drugi enakosti uporabili Lagrangeov izrek. Nadaljujemo in dobimo:

$$|x_n - \xi| < m^n |x_0 - \xi|.$$

Torej zaporedje $\{x_n\}_n$ res konvergira za poljuben začetni približek x_0 .

Velja

$$|x_{n+k+1} - x_{n+k}| = |g(x_{n+k}) - g(x_{n+k-1})| \le m|x_{n+k} - x_{n+k-1}| \le \dots \le m^k|x_{n+1} - x_n|.$$

Torej je

$$|x_{n+1} - \xi| \le |x_{n+2} - x_{n+1}| + |x_{n+3} - x_{n+2}| + \dots \le (m + m^2 + \dots)|x_{n+1} - x_n|$$

$$= \frac{m}{1 - m} |x_{n+1} - x_n| = \frac{m^{n+1}}{1 - m} |x_1 - x_0|.$$

Izrek 2 (Hitrost konvergence navadne iteracije). Naj bo g v okolici negibne točke ξ p-krat zvezno odvedljiva in velja

$$g'(\xi) = g''(\xi) = \dots = g^{(p-1)}(\xi) = 0$$
 in $g^{(p)}(\xi) \neq 0$.

Potem je red konvergence zaporedja $x_{n+1} = g(x_n)$ enak p.

Dokaz. Razvijemo g(x) v Taylorjevo vrsto okoli točke ξ :

$$x_{n+1} = g(x_n) = \xi + \frac{1}{p!}g^{(p)}(\zeta)(x_n - \xi)^p,$$

kjer je ζ blizu ξ . Odtod sledi

$$\frac{|x_{n+1} - \xi|}{|x_n - \xi|^p} = \frac{1}{p!} |g^{(p)}(\zeta)|,$$