Записки по ДИС2 - Лекция 3

04.05.2023

Свойства на определените интеграли. Теорема на Лайбниц-Нютон. Теорема за средните стойности.

- 1) Линейност
- 2) Адитивност
- 3) Позитивност
- 4) Теорема за средните стойности

 $f,g:[a,\ b] o\mathbb{R}$ интегруеми

 $g(x) \ge 0 \forall x \in [a, b]$

.

 $m \le f(x) \le M \forall x \in [a, b]$

Тогава
$$m \int_a^b \le \int_a^b f(x)g(x)dx \le M \int_a^b g(x)dx$$

Lemma 1 $He\kappa a\ f,g:[a,\ b]\mapsto\mathbb{R}\ ca\ интегруеми.$ Тогава $f\circ g$ е интегруема в интервала $[a,\ b].$

Доказателство: Нека $\tau: a = x_0 < x_1 < x_2 < ... < x_n = b$ и $\epsilon > 0$. Също така $x, y \in [x_{i-1}, x_i]$. Разглеждаме разликата между сумите на Дарбу на композицията на f и g:

$$S_{fg}(\tau) - s_{fg}(\tau) = \sum_{i=1}^{n} \omega(fg; [x_{i-1}, x_i])(x_i - x_{i-1})$$

Следствие 1 от Теоремата за средните стойности: Нека $f:[a, b] \mapsto \mathbb{R}$ е непрекъсната и $g:[a, b] \mapsto \mathbb{R}$ е интегруема, като g е неотрицателна в интервала [a, b]. Тогава съществува $\xi \in [a, b]$, за което $\int_a^b f(x) \, \mathrm{d}x = f(\xi) \int_a^b g(x) \, \mathrm{d}x$.

Доказателство: (Ісл.) Нека (Ісл.) ■	

Фундаментална теорема на анализа

Твърдение 1 $F: \Delta \to \mathbb{R}$ е непрекъсната, $x \in \Delta$, $[x - \varepsilon, x + \varepsilon] \subset \Delta \Rightarrow f$ - интегруема в $[x - \varepsilon, x + \varepsilon] \Rightarrow f$ - ограничена в $[x - \varepsilon, x + \varepsilon]$

$$F(y) - F(x) = \int_{a}^{y} f(t)dt - \int_{a}^{x} f(t)dt = \int_{a}^{y} f(t)dt, \quad y \in [x - \varepsilon, x + \varepsilon]$$

$$|F(y) - F(x)| = \left| \int_{x}^{y} f(t)dt \right| \le \int_{\min\{x,y\}}^{\max\{x,y\}} |f(t)|dt \le M|x - y|$$

$$\Rightarrow \lim_{y \to x} F(y) = F(x)$$

Ако x е десен кран на Δ , то разглеждаме $[x-\varepsilon,x]\subset \Delta$... Ако x е десен кран на Δ , то разглеждаме $[x,x+\varepsilon]\subset \Delta$...

Забележа
$$\int_a^b 1.dt = b - a, \quad a \leq b$$

Th. 1 Нютон-Лайбниц

 $f:\Delta \to \mathbb{R},\ \Delta$ - интервал, $a\in \Delta, f$ е интегруема в [a,x] за всяко $x\in \Delta; F(x)$ ще нарираме примитивна на f(x), където $F(x):=\int_a^x f(t)dt;$ Нека допълнително f е непрекъсната в $x\in \Delta$. Тогава F е диференцируема в x и F'(x)=f(x).

Доказателство:

$$\left| \frac{F(x+h) - F(x)}{h} - f(x) \right| = \left| \frac{\int_a^{x+h} f(t)dt - \int_a^x f(t)dt}{h} - f(x) \right| = \left| \frac{1}{h} \int_x^{x+h} f(t)dt - \frac{1}{h} \int_x^{x+h} f(x)dt \right| = \left| \frac{1}{h} \int_x^{x+h} (f(t) - f(x))dt \right|$$

$$h > 0 \to \left| \frac{1}{h} \int_{x}^{h+x} (f(t) - f(x)) dt \right| \le \frac{1}{|h|} \int_{x}^{x+h} |f(t) - f(x)| dt \le \frac{1}{|h|} \int_{x}^{x+h} \varepsilon \ dt = \varepsilon$$

$$h < 0 \to \left| \frac{1}{h} \int_{x}^{x+h} (f(t) - f(x)) dt \right| \le \frac{1}{|h|} \int_{x+h}^{x} |f(t) - f(x)| dt \le \frac{1}{|h|} \int_{x+h}^{x} \varepsilon \ dt = \varepsilon \frac{|h|}{|h|} = \varepsilon$$