CS143: E/R model

Book Chapters

- (4th) Chapters 2.1-2.9
- (5th) Chapters 6.1-6.10
- (6th) Chapters 7.1-7.10
- (7th) Chapters 6.1-6.9

E/R model

Why E/R model?

- The first step of database construction is to figure out what data needs to be stored
 - Relations are not given
 - Talk to domain experts to learn the information that needs to be handled by the database
- E/R model: graphical, intuitive and informal representation of data
 - E/R model is often used to "document" what we learned about the domain
 - Entities, relations, attributes, ...
- Start with E/R model, convert it into table
 - E/R model is not directly implemented by DBMS
 - Some E/R tools performs this conversion semi-automatically
- Unfortunately, many variations of E/R models exist
 - We learn the original model proposed by Peter Chen in 1976
 - Due to Oracle's adoption, crow's foot notation is also popular

Entity-Relationship (E/R) Model

- Entity: "thing" or "object" in real world
 - eg) I, this book, UCLA,
- Entity set: a set of entities (object). Like a class is OOPL.

	- Rectangle in ER
	eg) Students, Schools, Classes
	$\langle \text{ex: Students, Classes, Faculty} \rangle$
•	Attribute: Property of entities, "field"
	– Ellipsis in E/R \langle add attributes to example \rangle
	– Can informally think of entities as records (tuples) $\langle {\rm show\ records\ for\ example} \rangle$
	Key: a set of attributes that uniquely identifies an entity in an entity set, underline in $\mathrm{E/R}$
•	- Important: all entity sets need a key (add keys to example)
	 No good way to notate multiple keys
•	Relationship: connection between entities.
•	Relationship set: a set of relations of the same kind
	Diamond in ER⟨ex: add Take, Teach⟩

 Think of relationships as connections between entities (or as records) \(\text{examples of each} \rangle \)
* Not all entities need to participate in relationships. * Relationships can also have ATTRIBUTES (add grade to Take, quarter to Teach)
CARDINALITY of relationships
1. ONE-TO-ONE: Each entity in E1 is related to at most one entity in E2 and vice-versa
(abstract dot diagram for entity sets E1 and E2)
• Notation: arrow at the "one" end
• Q: Meaning of one-to-one in Teach?
2. MANY-TO-ONE: Each entity in E1 is related to at most one entity in E2 (converse is ONE-TO-MANY) (abstract picture)

	• Notation: arrow at the "one" end
	• Q: Meaning of many-to-one in Teach?
3.	MANY-TO-MANY: Each entity in E1 may be related to 0 or more entities in E2 and vice-versa $\langle {\rm abstract~picture} \rangle$
	• Notation: no arrow.
	• Q: Meaning in Teach? Take?
•	TOTAL PARTICIPATION: an entity participates in the relationship AT LEAST ONCE. – double lines in E/R \langle eg: double line between Class and Teach. meaning? \rangle
	$\langle \mathrm{eg} \colon \mathrm{double} \ \mathrm{line} \ \mathrm{between} \ \mathrm{Teach} \ \mathrm{and} \ \mathrm{Faculty.} \ \mathrm{meaning?} \rangle$

	$\langle \text{eg: double line and arrow between Teach and Faculty. meaning?} \rangle$
	$\langle \mathrm{eg} \colon$ double lines at both sides of Teach vs one-to-one of Teach. The same? \rangle
•	GENERAL CARDINALITY NOTATION: lh on an edge.
	 The object participate in a relationship l to h times "*" means unlimited \(\delta\)bstract diagram\(\rangle\)
	$\langle \text{eg: 11 on Class and Teach. 11 on Teach and Faculty. meaning?} \rangle$
	* Q: For this example, is it one-to-one, many-to-many? What is the equivalent notation using arrows?
	$\langle eg \colon 0*$ on Class and Teach. 01 on Teach and Faculty. meaning? \rangle * again, "*" means unlimited
	* Q: For this example, equivalent notation?

* Comments: don't get confused. It is one-to-many. "0..*" corresponds to one, and "0..1" to many

N-ARY RELATIONSHIPS

• Sometimes we need more than binary relationship

⟨ex: Students, TA, Class⟩

 $-\langle All\ TAs\ for\ all\ students\rangle$

- ⟨Each student assigned to a particular TA⟩

- * Arrow in a N-ary relationship: pick one entity from every other set without arrow. Together, these entities must be related to at most one entity with arrow
 - · (eg: Arrow to TA. Meaning?)

• Do not put multiple arrows for non-binary relationships. Very confusing. No standard interpretation. (Case tools do not allow anyway)

ROLES

- useful if an entity set participates more than once in a relationship
 - labels on the edge in E/R

(eg: Partner relation between students. Coder and Tester)

SUBCLASSES

Similar to class inheritance in OOPL. ISA relationship in E/R
 \(\left(\text{ge: Student}\right)\) ForeignStudent, DomesticStudent\(\right)\)

- Generalization: Subclass \rightarrow Superclass
- Specialization: Superclass \rightarrow Subclass
- Subclass inherits all attributes of its superclass
- Subclass participates in the relationships of its superclass
- Subclass may participate in its own relationship (eg: Student, HonorStudent, HonorClass)
- TOTAL SPECIALIZATION: Double lines in E/R. Entity is always one of subclasses (eg: A student is either a foreign student or a domestic student.)

WEAK ENTITY SET

- Entity sets without unique keys
 - Notation: Double rectangle and double diamond in E/R
 (eg: ProjectReport)
 - A part of its key comes from one or more entity set it is linked to.
- Discriminator: a set of attributes in W.E.S. that are part of the key.
 - Dashed underline in E/R
- OWNER ENTITY SET: entity set providing a part of the key
- IDENTIFYING RELATIONSHIP: relationship between a weak entity set and owner entity set
- Q: Can a weak entity not participate in the identifying relationship?
 - Always double edge between a weak entity and identifying relationship

Drawing ER Example

(eg. Draw ER diagram for the following example)

- Inventory management for chain stores (like Costco, Target, Wallmart, etc.)
- Products are either
 - a "store-brand product" (like Kirkland shoes at Costco) or
 - a "manufacturer-brand product" (like Kleenex Tissue, etc)
- Each product is manufactured by exactly one manufacturer
 - like Sprite by Coke company, etc.
- Each store-brand product is carried by exactly one chain store
 - eg, Kirkland shoes by Costco
- Some manufacturer-brand product product may not be carried by any store

Crow's Foot Notation

• Relationship set is represented just as a line, not a diamond.

- Relationship set cannot have its own attribute
- Notation for participation and cardinality constraints

- Use a pair of the above symbols to represent the cardinality constraints
- Q: What will be the equivalent ER diagram under the Chen's notation?

Design Principles

- Often it is not clear what choices to make.
- A general rule of thumb for good design: avoid redundancy
 - Saying the same thing more than once
 - Space waste and potential inconsistency

(eg: Faculty (id, name, address), and class (dept, cnum, title)

- $-\langle eg1: All \text{ as attributes of class ES} \rangle$
 - 1. repeats the faculty name and address for every class. potential inconsistency
 - 2. What if a faculty does not teach any class?
- ⟨eg2: Faculty ES, Class ES, Teach RS⟩
- Things to consider for Entity set vs. Attribute
 - Do we need more attributes than keys? eg, Faculty name, address
 - Is it "one-to-one" relationship?
 Separate entities for many-to-one or many-to-many relationship

E/R to Relation

•	translation from ER diagram to tables is mostly straightforward
•	Database design tools do this automatically from ER diagram
	$\langle \mathrm{ER} \ \mathrm{example} \ \mathrm{slide} \rangle$
•	(STRONG) ENTITY SET: one table with all attributes
	⟨eg: Faculty, Class, Student⟩
•	RELATIONSHIP SET: one table with keys from the linked ES and its own attributes
_	
	(eg: Teach)
	- Q: What is the key for the relations?
	$\langle eg: Take \rangle$
	- Rename attributes when names conflict, like TA.name and Student.name
	(eg: Partner)
	- Use role label as attribute names
•	WEAK ENTITY SET: one table with its own attributes and keys from owner ES
	$\langle \text{eg, ProjectReport} \rangle$

- Q: What is the key?
- Q: Need to convert Submit to a relation?
* Separate submit is redundant (already captured by ProjectReport) * No need to translate identifying relationship set
• SUBCLASS: two approaches
 one table for each subclass with all its attributes plus key from its superclass one big relation with all attributes with null values for missing attributes
$\langle \mathrm{eg,Student,ForeignStudent,HonorStudent}\rangle$
1. Student, ForeignStudent, HonorStudent
2. Student