Farbmischung

Die Farbe einer Lichtquelle kann durch die drei Parameter

- > Farbton,
- ➤ Sättigung (Reinheit) und
- > Helligkeit

Beschrieben werden.

Farbton

Der Farbton (hue) einer Farbe ist eine der unmittelbar empfundenen Eigenschaften. Er kann durch eine farbtongleiche Wellenlänge oder den Bezug auf einen Farbenkreis angegeben werden.

Der Farbton ist nur für *bunte* Farben definiert. *Unbunte Farben* (schwarz, grau, weiß) haben keinen Farbton.

Die Spektralfarben als Farbenkreis angeordnet

Farbton und äquivalente Wellenlänge

Farbton	Wellenlänge [nm]
magenta	380-400
blau	450–480
grün	500-550
gelb	570-580
rot	> 630

Sättigung

Die Sättigung oder Reinheit (saturation, purity) einer Farbe ist die zweite der unmittelbar empfundenen Eigenschaften: Die Sättigung beschreibt, wie rein oder "ausgewaschen" eine Farbe erscheint. Eine Farbe erscheint umso reiner, je weniger unterschiedliche Längenwellen zu ihr beitragen.

Spektralfarben: maximale Sättigung, **Pastellfarben:** wenig gesättigt.

Eindeutige Spezifikation von Farben:

Farben lassen sich eindeutig angeben, wenn sie als Mischung (Linearkombination) ausgewählter, definierter Grundfarben beschrieben werden:

Additive (optische) Farbmischung:

Die additive Farbmischung ist eine gleichzeitige oder rasch periodisch wechselnde Beleuchtung derselben Netzhautstelle durch verschiede Farbreize.

Es wird das Licht verschiedener Lichtquellen vereinigt (addiert).

Subtraktive (substantielle) Farbmischung:

Eine Folge von spektralen Veränderungen am ursprünglichen Farbreiz; Es werden absorbierende Pigmente kombiniert.

Farbgestaltung:(Fellner, 1992)

- Reines Blau sollte für Text, dünne Linien und kleine Objekte vermieden werden.
- Aneinandergrenzende Farben sollten sich nicht nur im Blauanteil unterscheiden, also sollte man beispielsweise nicht Cyan und Grün nebeneinandersetzen.
- Alte Menschen benötigen ein höheres Helligkeitsniveau, um Farben unterscheiden zu können.
- Rot und Grün sollten in den Randbereichen von großen Grafiken vermieden werden.

- Zuviele Farben (und Fonts), die Unterschiedliches bedeuten, überfordern die Aufnahmefähigkeit.
- Zusammengehörige Objekte sollten auf einem gleichen farbigen Hintergrund dargestellt werden.
- Ähnliche Farben sollten eine ähnliche Bedeutung signalisieren.
- Farben sind ähnlich, wenn sie im uniformen CIE-Diagramm benachbart sind.

- Helligkeit und Sättigung eignen sich sehr gut, um die Aufmerksamkeit zu erregen.
- Kalte Farben (kurze Wellenlänge) eignen sich für Statusinformation.
- Warme Farben (lange Wellenlänge) eignen sich für dringende Nachrichten, Eingabeaufforderungen usw..

- Das RGB-System ist ein weitverbreitetes System zur additiven Mischung von Farben, insbesondere zur Farberzeugung auf Bildschirmen.
- Grundfarben: Rot, Grün und Blau.
- Auf einem Farbbildschirm werden farbige Bilder erzeugt, indem rote, grüne und blaue Phosphorpunkte entsprechend ihrem Anteil an einer darzustellenden Mischfarbe zum Leuchten angeregt werden (Fluoreszenz).
- Die von engbenachbarten fluoreszierenden Phosphor-Punkten abgestrahlten Farben addieren sich auf der Netzhaut zu Mischfarben.

