Билеты по алгебре I семестр

Тамарин Вячеслав

8 января 2020 г.

Вопрос 1 Векторное пространство

Def 1. Пусть (V,+) — абелева группа, F — поле, и задана операция (умножение) $V \times F \to V$. Предположим, что $\forall u,v \in V$ и $\alpha,\beta \in F$ выполнены следующие свойства:

- 1. $v(\alpha\beta) (v\alpha)\beta$
- 2. $v(\alpha + \beta) = v\alpha + v\beta$
- 3. $(v+u)\alpha = v\alpha + v\beta$
- 4. $v \cdot 1 = v$

Тогда V называется векторным пространством над F.

Property.

- 1. $v \cdot 0 = 0 \cdot \alpha = 0$
- 2. $v \cdot (-1) = -v$
- 3. $v \cdot (-\alpha) = (-v)\alpha = -(v\alpha)$
- 4. $v \cdot \sum \alpha_i = \sum v \alpha_i$
- 5. $\sum v_i \cdot \alpha = \sum v_i \alpha$

Exs.

- 1. Множество векторов в \mathbb{R}^3
- 2.

$$F^{n} = \left\{ \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} \middle| a_{i} \in F \right\}.$$

$$\begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} \cdot \alpha = \begin{pmatrix} a_{1}\alpha \\ \vdots \\ a_{n}\alpha \end{pmatrix}, \quad \begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} + \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix} = \begin{pmatrix} a_{1} + b_{1} \\ \vdots \\ a_{n} + b_{n} \end{pmatrix}.$$

- 3. X множество, $F^X = \{f \mid f : X \to F\}$ $f, g : X \to F$ (f + g)(x) = f(x) + g(x) $(f\alpha)(x) = f(x)\alpha$
- 4. F[t] многочлены от одной переменной t

Вопрос 2 Подпространство, линейная оболочка

Def 2. Подмножество $U \subseteq V$ называется подпространством, если оно само является векторным пространством относительно тех же операций, которые заданы в V.

Statement 1 (критерий подпространства). Подмножество $U \subseteq V$ является подпространством тогда и только тогда, когда $\forall u, v \in U, \ \alpha \in F : u + v, u\alpha \in U.$

Def 3. Пусть $u_1, \ldots, u_n \in V, \alpha_1, \ldots, \alpha_n \in F$. Сумма

$$\sum_{k=1}^{n} u_k \alpha_k$$

называется линейной комбинацией векторов u_1, \ldots, u_n с коэффициентами $\alpha_1, \ldots, \alpha_n$.

Линейная комбинация называется тривиальной, если все ее коэффициенты равны нулю.

Note. Пусть $S \subseteq V$, и задан набор чисел $\alpha_s \in F$, $s \in S$. Операция бесконечной суммы будет определена только в случае, когда почти все α_s равны нулю.

Def 4. Линейной оболочкой набора S называется подпространство, порожденное S, то есть наименьшее подпространство, содержащее S.

Designation. Линейная оболочка набора S обозначается $\langle S \rangle$.

Statement 2.
$$\langle S \rangle = \left\{ \sum_{k=1}^{n} u_k \alpha_k \middle| u_k \in S, \ \alpha_k \in F \right\}$$

Def 5. Если $\langle S \rangle = V$, то S называется системой образующих пространства V.

Def 6. Кортеж векторов $(u_1, \dots u_n)$ называется линейно независимым, если любая нетривиальная линейная комбинация этих векторов не равна нулю.

Множество $S \subseteq V$ называется линейно независимым, если любой кортеж, составленный из конечного числа различных векторов из S, является линейно независимым.

Def 7. Базис — линейно независимая система образующих.

Вопрос 3 Матрицы

і Конечные матрицы

Def 8. Двумерный массив $m \times n$ элементов поля F называется матрицей размера $m \times n$ над F.

Designation. Множество таких матриц обозначается $M_{m \times n}(F)$. Если m = n, пишут $M_n(f)$. Элемент матрицы A в позиции (i,j) записывается a_{ij} .

Property.

- Для двух матриц одинакового размера определена операция поэлементной суммы: $(A+B)_{ij} = a_{ij} + b_{ij}$.
- Также определено умножение матрицы на число: $(A\alpha)_{ij} = a_{ij}\alpha$.
- Произведением матрицы $A \in M_{m \times n}(F)$ на матрицу $B \in M_{n \times k}$ называется матрица $C = AB \in M_{m \times k}(F)$ элементы которой вычисляются по формуле

$$c_{ij} = \sum_{l=1}^{n} a_{il} b_{lj}.$$

Theorem 1. Множеество $M_{m \times n}(F)$ с операциями сложения и умножения на число является векторным пространством над полем F.

Доказательство. Произведение матриц ассоциативно, дистрибутивно и перестановочно с умножением на число:

$$\begin{cases} (AB)C = A(BC) \\ A(B+C) = AB + BC \\ (B+C)A = BA + CA \\ (AB)\alpha = A(B\alpha) = (A\alpha)B \end{cases}$$

Все кроме первого свойства очевидны. Проверим ассоциативность:

$$\begin{split} ((AB)C)_{il} &= \sum_{k \in K} (AB)_{ik} c_{kl} = \sum_{k \in K} \left(\sum_{j \in J} a_{ij} b_{jk} \right) c_{kl} = \\ &= \sum_{k \in K} \left(\sum_{j \in J} a_{ij} b_{jk} c_{kl} \right) = \\ &= \sum_{j \in J} \left(\sum_{k \in K} a_{ij} b_{jk} c_{kl} \right) = \\ &= \sum_{j \in J} a_{ij} \left(\sum_{k \in K} b_{jk} c_{kl} \right) = \sum_{j \in J} a_{ij} (BC)_{jl} = (A(BC))_{il} \end{split}$$

 ${f Def}$ 9. Квадратная матрица E с 1 на главной диагонали и остальными нулями называется единичной.

Property. Умножение данной матрицы на единичную справа и слева не ее не изменяет.

Матрица E_n является нейтральным элементом в $M_n(F)$.

Обобщение конечных матриц

Пусть даны множества X_{ij}, Y_{jh} , коммутативные моноиды $(Z_{ih}, +)$, где $i=1,\ldots m,\ j=1,\ldots n,\ h=1,\ldots k,$ и функции «умножения» $X_{ij}\times Y_{jh}\to Z_{ih},\ (x,y)\mapsto xy.$ Обозначим через X,Y,Z наборы множеств $X_{ij},Y_{jh},Z_{ih},$ соответственно, через M(X) — множество матриц A с элементами $a_{ij}\in X_{ij},$ и аналогично M(Y),M(Z). Тогда можно определить произведение матриц $A\in M(X)$ и $B\in M(Y)$ как матрицу $C=AB\in M(Z),$ где $c_{ih}=\sum\limits_{i=1}^n a_{ij}b_{jh}.$

Если все X_{ij}, Y_{jh} будут коммутативными моноидами, а функция умножения дистрибутивной, умножение матриц тоже будет дистрибутивным и ассоциативным.

іі Произвольные матрицы

Пусть I, J — произвольные множества (возможно бесконечные), элементами которых мы будем индексировать строки и столбцы матриц. Пусть $\forall i \in I \land j \in J$ задано множество X_{ij} , и обозначим набор всех таких множеств через X. Тогда **матрицей размера** $I \times J$ **над** X называется функция $A: I \times J \to \bigcup X_{ij}$ $(i,j) \mapsto a_{ij}$, такая что $a_{ij} \in X_{ij}$.

Designation. Множество матриц размера $I \times J$ над X обозначается $M_{I \times J}(X)$. Если $I = \{1\}$, то матрица размера $I \times J$ будут назваться столбцами длины J, а если $J = \{1\}$, то столбцами высоты I. Множества строк обозначим данной длины ${}^J\!X$, множество столбцов — X^J .

Будем считать, что все X_{ij} — абелевы группы в аддитивной записи. Тогда сумма двух матриц одного размера определяется поэлементно: $(A+B)_{ij}=a_{ij}+b_{ij}$. Если все X_{ij} — векторные пространства над полем F, также можно определить умножение на число: $(A\alpha)_{ij}=a_{ij}\alpha$.

Умножение матриц

Пусть все операции умножения $X_{ij} \times Y_{jh} \to Z_{ih}$ дистрибутивны (для $a \cdot 0 = 0$), и в каждом столбце матрицы Y почти все элементы равны 0.

Designation. Обозначим $M^{c.f.}_{J \times H}(Y) \subset M_{J \times H}(Y)$, состоящее из всех матриц B, у которых для любого фиксированного $h \in H$ почти все элементы b_{jh} равны 0.

Def 10. Пусть $\forall i \in I, j \in J, h \in H$ заданы операции умножения $X_{ij} \times Y_{jh} \to Z_{ih}$, причем $\forall x, x' \in X_{ij}$ и $\forall y, y' \in Y_{jh}$ выполнены равенства

$$(x+x')y = xy + x'y \wedge x(y+y') = xy + xy'.$$

Произведение матриц $A \in M_{i \times J}(X)$ и $B \in <_{J \times H}^{c.f.}(Y)$ как матрицу $AB \in M_{I \times H}(Z)$ с элементами

$$(AB)_{ih} = \sum_{j \in J} a_{ij} b_{jh}.$$

При этом суммы определены, так как почти все слагаемые равны нулю.

Note. Аналогично определяется умножение матриц $A \in M^{r.f.}_{I \times J}(X)$ и $B \in M_{J \times H}(Y)$.

Lemma 1. Обычные свойства умножения матриц 1 выполнены, если определены все входящие в формулы операции.

Если $\forall i, j, h \in I$ заданы дистрибутивные операции умножения $X_{ij} \times X_{jh} \to X_{ih}$, то множество $M_{I \times I}^{c.f.}(X)$ является кольцом с единицей.

Designation. Если X_{ij} одно и то же поле F для всех i, j, будем писать $M_{i \times J}(F)$ вместо $M_{I \times J}(X)$. Если I = J, то будем писать $M_I(F)$ вместо $M_{I \times I}(F)$. Если $I = \{1, ... m\}, J = \{1, ... n\}$, то можем писать $M_{m \times n}(F)$.

Другие характеристики матриц

Def 11. Множество обратимых элементов кольца $M_n(F)$ называется полной линейной группой степени n над F и обозначается $GL_n(F)$.

Designation. Для множества $M^{c.f.}_{I\times\{1\}}(F)$ введем специальное обозначение F^I_{fin} и будем называть его множеством финитных столбцов высоты I над F. Другим словами, F^I_{fin} — множество финитных (у которых почти все значения равны 0) функций из I в F. Аналогично, ${}^J\!F_{fin} = M^{r.f.}_{\{1\}\times J}(F)$.

Def 12. Пусть $A \in M_{I \times J}(F)$. Матрица $A^T \in M_{J \times I}(F)$ с элементами $(A^T)_{ij} = a_{ji}$ называется транспонированной к A.

Statement 3. $(AB)^T = B^T A^T$

Note. Для обозначения столбца часто используется строка $(a_1, \dots a_n)^T$.

Вопрос 4 Эквивалентные определения базиса

Theorem 2 (Эквивалентные определения базиса). Следующие условия на подмножество v векторного пространства V эквивалентны:

- (1) v линейно независимая система образующих
- (2) v максимальная линейно независимая система
- $(3) \ v$ минимальная система образующих
- (4) любой элемент $x \in V$ представляется в виде линейной комбинации набора v, причем единственным образом

Доказательство.

- $1\Longrightarrow 2$ Пусть v не максимальная линейно независимая система. Мы знаем, что v система образующих. Тогда любой элемент $a\in V$ представляется в виде линейной комбинации v, а значит любой набор, содержащий v, принадлежит линейной оболочке $\langle v \rangle$, следовательно, набор линейно зависимый.
- $2 \Longrightarrow 1$ Так как v максимальная линейно независимая система, любой элемент $a \in V$ выражается через элементы v. Следовательно, v система образующих.
- $\boxed{1\Longrightarrow 3}$ Пусть из v можно убрать некоторые элементы так, что полученный набор u будет минимальной системой образующих. Тогда любой элемент набора $v\smallsetminus u$ представим в виде линейной комбинации u. Следовательно, v линейно зависим.
- $3\Longrightarrow 1$ Если v линейно зависим, то во всех линейных комбинациях набора v можно заменить один элемент на линейную комбинацию других. А тогда v не минимален.
- Так как v система образующих $\langle v \rangle = V$. Теперь докажем, что представление единственно. Пусть $x = va = \sum_{y \in v} ya_y$, $a \in F^v_{fin}$. Предположим, что $\exists b \in F^v_{fin} : x = vb$. Тогда $0 = va vb \Longrightarrow 0 = v(a-b)$. Так как v линейно независим, можем сократить: 0 = a-b, значит представление единственно.
- $4 \Longrightarrow 1$ Так как любой элемент представим в виде линейной комбинации набора $v, \langle v \rangle = V$. Так как представление единственно, v линейно независим.