5-2: Basic Accuracy Metrics

Introduction to Recommender Systems

A little intuition

- Error metrics are usually computed using a "leave one out" methodology
 - Cover up a rating, and try to predict it
- Warning: sometimes this is hard, and evaluators take short cuts (e.g., leave 10% out).

Goals for Today

- To understand how to compute
 - MAE -- Mean absolute error
 - MSE -- Mean squared error
 - RMSE -- Root mean squared error
- To understand variations on how these may be computed
- To understand where accuracy metrics are useful in general, and the relative merits of each of these three

Introduction to Recommender Systems

Mean Absolute Error (MAE)

- What is error?
 - Divergence of prediction from actual opinion (rating)
 - P-R
- Absolute error removes direction
 - | P R |
 - Why? Because two wrongs don't make a right!
- MAE = Average (| P R |)

$$-\frac{\sum_{ratings}|P-R|}{\# ratings}$$

Mean Squared Error (MSE)

- Why Squared Error?
 - Removes sign avoids need for absolute value
 - Penalizes large errors more than small
- $\frac{\sum_{ratings} (P-R)^2}{\# ratings}$
- One disadvantage squared error is not on an intuitive scale ...

Introduction to Recommender Systems

Hold on a moment ...

- · We glossed over the summation
 - Usual model average over all ratings
 - Alternative model average over user averages
- What's the difference
 - What if one user has 3000 ratings and another 10?
- Advice consider looking at both understand what you're comparing to

Root Mean Squared Error (RMSE)

 $\sqrt{\frac{\sum_{ratings}(P-R)^2}{\# ratings}}$

Introduction to Recommender Systems

Comparing Different Algorithms

- What to do when computing MAE in different cases:
 - Remember, must be same data set/scale
 - If coverage is different (different set of user/item pairs for which predictions are available, two choices):
 - · Check against common subset
 - · Supplement algorithm with default for full coverage

Reflections ...

- In general, all the error metrics move together (good replacements for each other)
- Squared may matter for large scales with some algorithms that have occasional huge errors, but other measures may catch that better
- Benefit lots of published MAE data for public datasets
- Drawback error can be dominated by irrelevant parts of the item space

- - - **-**

Introduction to Recommender Systems

Next, we look at decision-support metrics

Looking forward ...

reckt, we look at accidion support methos

Introduction to Recommender Systems

5-2: Basic Accuracy Metrics