Теория и реализация языков программирования.

Задание 7: контекстно-свободные языки и магазинные автоматы

Сергей Володин, 272 гр.

задано 2013.10.16

Упражнение 1

Упражнение 2

Упражнение 3

- 1. Грамматика $\Gamma = (\{S\}, \Sigma_n \cup \overline{\Sigma}_n, P, S)$. $P = \{S \longrightarrow \sigma_i \overline{\sigma}_i | \sigma_i S \overline{\sigma}_i | SS\}$. $D_n = L(\Gamma)$.
- 2. Исходное утверждение: $\forall w \left(\underbrace{w \in D_n}_A \Rightarrow \underbrace{\forall i \leqslant n \, \forall k \leqslant |w| \hookrightarrow ||w[1,k]||_i \geqslant 0, \, ||w||_i = 0}_B\right)$
- 3. Отрицание обратного утверждения: $\exists w \colon (B \wedge \neg A)$. Пусть $w = \varepsilon$.
 - а. Тогда $k\leqslant |w|\Rightarrow k=0$, поэтому $\forall i\leqslant n\hookrightarrow ||w[1,k]||_i\equiv |\varepsilon|_{\sigma_i}-|\varepsilon|_{\overline{\sigma_i}}=0$ и $\forall i\leqslant n\hookrightarrow ||w||_i=0$. Получаем B.
 - b. Но $w = \varepsilon$ не порождается грамматикой Γ : первые два правила добавляют нетерминалов, поэтому не могут быть применены, и применение третьего правила не уменьшает количества нетерминалов. Получаем ¬А ■

Задача 1

- 1. Определим МП-автомат $\mathcal{A} = (\Sigma, \Gamma, Q, q_0, Z, \delta, F)$, допускающий по пустому стеку.
 - (a) $n \stackrel{\text{def}}{=} 2$
 - (b) $\Sigma_n \stackrel{\text{def}}{=} \{[1, ..., [n]] \equiv \{[1, [2]], \overline{\Sigma}_n \stackrel{\text{def}}{=} \{]1, ..., [n]\} \equiv \{]1,]2\}.$
 - (c) $\Sigma \stackrel{\text{def}}{=} \Sigma_n \cup \overline{\Sigma}_n \equiv \{[1,]_1, [2,]_2\}$
 - (d) $\Gamma \stackrel{\text{def}}{=} \{Z\} \Sigma_n \equiv \{Z, \lceil_1, \lceil_2\}.$
 - (e) $Q \stackrel{\text{def}}{=} \{q_0, q_1\}$
 - (f) δ изображена справа
 - (g) $F \stackrel{\text{def}}{=} \emptyset$ (N-автомат)

- 2. Определим морфизм $P \colon P \colon (\Sigma_n \cup \overline{\Sigma}_n)^* \longrightarrow (\Sigma_n \cup \overline{\Sigma}_n)^* \colon P([i) =]_i, P([i) = [i пары для скобок. Доопределим до морфизма: <math>P(w_1...w_l) = P(w_1)...P(w_l)$.
- 3. $L=D_2\cap \left([_1|_2)^*(_{]1}|_{]2}\right)^*$. $w\in L\Rightarrow w=w_1w_2,\,w_1=\left([_1|_2\right)^{n_1},\,w_2=(_{]1}|_{]2}\right)^{n_2}$. $w\in D_2\Rightarrow 0=||w||_i=||w_1||_i+||w_2||_i=||w_1||_i+||w_2||_i-||w_1||_i-||w_2||_i$. Сложим равенства, получим $0=||w_1||_1+||w_1||_2-||w_2||_1$. Сложим равенства, получим $0=||w_1||_1+||w_1||_2-||w_2||_1-||w_2||_2\Rightarrow ||w_1||=||w_2||\Rightarrow n_1=n_2$.
- 4. $w \in L$, $|w_1| = s$, $w_1 = [i_1...[i_s, w_2 =]_{j_1}...]_{j_s}$. Докажем, что $P(w_2) = w_1^R$: $Q(k) \stackrel{\text{def}}{=} [P(w_2)[1,k] = w_1^R[1,k]]$.
 - а. Очевидно, Q(0), так как $P(w_2)[1,0] \equiv \varepsilon \equiv w_1^R[1,0]$.
 - b. Пусть Q(k). Тогда $w_1=p[_{i_{s-k+1}}...[_{i_s},w_2=]_{i_s}...]_{i_{s-k+1}}q$. То есть, k скобок от центра парные друг к другу. Обозначим их за $t=[_{i_{s-k+1}}...[_{i_s}]_{i_s}...]_{i_{s-k+1}}\Rightarrow ||t||_i=0,\ t-\Pi \text{CB}$. Предположим $Q(k+1)\stackrel{Q(k)}{\Rightarrow} P(w_2)[k+1]\neq w_1^R[k+1]$. Без ограничения общности $p=p_0[_1,\ q=]_2q_0$. Тогда $w=p_0[_1t]_2q_0$. Но $t-\Pi \text{CB}$, поэтому пара для $[_1-\text{в}\ q_0,\ \text{пара}\ \text{для}\]_2-\text{в}\ p_0$: $w=...[_2...[_1t]_2...]_1...-$ не $\Pi \text{CB}\Rightarrow w\notin D_2-$ противоречие. Значит, Q(k+1).
- 5. Пусть $w \in L$. Докажем, что $(q_0, w, Z) \vdash^* (q_1, \varepsilon, Z)$ и $(q_1, w, Z) \vdash^* (q_1, \varepsilon, Z)$. $3 \Rightarrow w = w_1 w_2, 4 \Rightarrow P(w_1)^R = w_2$.
 - а. Докажем $Q(k) \stackrel{\text{def}}{=} [(q_0, w_1[1, k], Z) \vdash^* (q_0, \varepsilon, (w_1[1, k])^R Z)]$: а. $k = 0 \Rightarrow w_1[1, k] = \varepsilon \Rightarrow (w_1[1, k])^R = \varepsilon$. Получаем $(q_0, w_1[1, k], Z) \equiv (q_0, (w_1[1, k])^R, Z) \Rightarrow Q(0)$

- b. Пусть $Q(k) \Rightarrow (q_0, w_1[1,k], Z) \vdash^* (q_0, \varepsilon, (w_1[1,k])^R Z)$. Рассмотрим $w_1[k+1] = \begin{bmatrix} i_{k+1} \end{bmatrix}$. По определению δ имеем $\forall \gamma (q_0, [i_{k+1}, \gamma) \vdash (q_0, \varepsilon, [i_{k+1} \gamma))$. Тогда $(q_0, w[1, k+1], Z) \equiv (q_0, w_1[1, k][i_{k+1}, Z) \stackrel{Q(k)}{\vdash^*} (q_0, [i_{k+1}, (w_1[1, k])^R Z) \stackrel{\text{def } \delta}{\vdash} (q_0, \varepsilon, w_1[k+1](w_1[1, k])^R Z) \equiv (q_0, \varepsilon, (w_1[1, k+1])^R Z) \Rightarrow Q(k+1)$.
- b. Докажем $Q(k) \stackrel{\text{def}}{=} [\forall \gamma \in \Gamma^+ \hookrightarrow (q_1, w_2[1, k], P(w_2)[1, k]\gamma) \vdash^* (q_1, \varepsilon, \gamma)]$:
 - a. $k = 0 \Rightarrow w_2[1, k] \equiv \varepsilon \equiv P(w_2)[1, k] \Rightarrow Q(0)$
 - b. Пусть $Q(k)\Rightarrow \forall\gamma\hookrightarrow (q_1,w_2[1,k],P(w_2)[1,k]\gamma)\vdash^*(q_1,\varepsilon,\gamma)$. $\sphericalangle w_2[k+1]=]_{i_{k+1}}$. Из определения δ получаем $\forall\gamma_1\hookrightarrow (q_1,]_{i_{k+1}},[_{i_{k+1}}\gamma_1)\vdash (q_1,\varepsilon,\gamma_1)$.

Значит, $(q_1, w_2[1, k+1], P(w_2)[1, k+1]\gamma) \equiv (q_1, w_2[1, k]]_{i_{k+1}}, P(w_2)[1, k][_{i_{k+1}}\gamma) \stackrel{Q(k)}{\vdash^*} (q_1,]_{i_{k+1}}, [_{i_{k+1}}\gamma) \stackrel{\text{def } \delta}{\vdash} (q_1, \varepsilon, \gamma) \Rightarrow Q(k+1).$

- с. Рассмотрим $w_2 =]_i w_2^0$. Но $4 \Rightarrow w_2 = P(w_1)^R \Rightarrow w_1 = P(w_2^0)^R [_i$ Из определения δ получаем $\forall \gamma(q_0,]_i,[_i\gamma) \vdash (q_1,\varepsilon,\gamma)$. Тогда $\underline{(q_0,w,Z)} \stackrel{5a}{\vdash^*} (q_0,w_2,(w_1)^R Z) \equiv (q_0,]_i w_2^0,[_iP(w_2^0)Z) \stackrel{\text{def }\delta}{\vdash^*} (q_1,w_2^0,P(w_2^0)Z) \stackrel{5b}{\vdash^*} \underline{(q_1,\varepsilon,Z)}$.
- d. $w_1 = [{}_iw_1^0$. Из определения δ получаем $(q_1, [{}_i, Z) \vdash (q_1, \varepsilon, [{}_iZ)$. Тогда $(q_1, w, Z) \equiv (q_1, [{}_iw_1^0w_2, Z) \stackrel{\text{def }}{\vdash} (q_0, w_1^0w_2, [{}_iZ)$. Но эта конфигурация может быть получена иначе: $(q_0, [{}_i, Z) \vdash (q_0, [{}_i, [{}_iZ)$. Значит, дальнейшие конфигурации также могут совпадать. Имеем $5c \Rightarrow (q_1, w, Z) \vdash^* (q_1, \varepsilon, Z)$.
- 6. Пусть $w \in L^* \setminus \{\varepsilon\} \Rightarrow w = w_1...w_k$, $\forall i \in \overline{1,k} \hookrightarrow w_i \in L$. Определим $f \colon L^* \longrightarrow \mathbb{N} \cup \{0\}$: $f(w) \ni k$ (многозначная функция). Если $w = \varepsilon$, определим $f(w) \stackrel{\text{def}}{=} 0$.
- 7. $P(k) \stackrel{\text{def}}{=} \left[\forall w \in L^* \colon f(w) \ni k \hookrightarrow (q_0, w, Z) \vdash^* (q_1, \varepsilon, Z) \right]$
 - (a) Пусть k=0. Тогда $w=\varepsilon$. $(q_0,w,Z)\equiv (q_0,\varepsilon,Z)\vdash (q_1,\varepsilon,Z)\Rightarrow P(0)$.
 - (b) Пусть $k=1, w\in L^*\colon f(w)\ni 1\Rightarrow w\equiv w_1\in L.$ $5\Rightarrow (q_0,w,Z)\vdash^* (q_1,\varepsilon,Z)\Rightarrow P(1)\blacksquare$
 - (c) Пусть P(k). $w \in L^* : f(w) \ni k+1 \Rightarrow w = w_1...w_{k+1}, \forall i \in \overline{1,k+1} \hookrightarrow w_i \in L$. $\not \leq w_0 \stackrel{\text{def}}{=} w_1...w_k \in L^*$. $f(w_0) \ni k \stackrel{P(k)}{\Rightarrow} (q_0,w_0,Z) \vdash^* (q_1,\varepsilon,Z)$. Тогда $(q_0,w,Z) \equiv (q_0,w_0w_{k+1},Z) \vdash^* (q_1,\varepsilon w_{k+1},Z) \vdash^* (q_1,\varepsilon,Z) \Rightarrow P(k+1) \blacksquare$

Получаем $\forall w \in L^* \hookrightarrow (q_0, w, Z) \vdash^* (q_1, \varepsilon, Z) \stackrel{\text{def } \delta}{\vdash} (q_1, \varepsilon, \varepsilon) \Rightarrow \forall w \in L^* \hookrightarrow w \in L(\mathcal{A}) \Rightarrow \boxed{L^* \subseteq L(\mathcal{A})}.$

- 9. Пусть $w \in L(\mathcal{A}) \Rightarrow (q_0, w, Z) \vdash^* (q, \varepsilon, \varepsilon)$. Изначально Z в стеке, в конце его нет. Значит (8), был переход $q_1 \xrightarrow{\varepsilon, Z/\varepsilon} q_1$. Но Z был на дне стека, поэтому после стек пуст. Значит, это последняя конфигурация. Имеем $(q_0, w, Z) \vdash^* (q_1, \varepsilon, Z) \vdash (q_1, \varepsilon, \varepsilon)$. Рассмотрим $(q_0, w, Z) \vdash^* (q_1, \varepsilon, Z)$. Переход $q_1 \xrightarrow{\varepsilon, Z/\varepsilon} q_1$ не использовался, поэтому рассмотрим автомат \mathcal{A}' без него. Заметим, что \mathcal{A}' детерминированный.

Задача 2

Задача 3