

Excel: 파일 – 옵션 – 추가기능 – 관리(이동) – 분석도구,분석도구(VBA) check!

Google > Kess 검색.

(Korean Educational Statics Software)

→ 통계교육 및 실무에서 필요로 하는 자료분석 기능 제공. (Excel 버전에 맞게 download)

데이터분석은 '변수'다.

- 변수가 많아질수록 조합할 수 있는 경우의 수가 많아진다. (변수가 7개 있다면, **7!** 의 경우의 수가 나온다.)

Excel Function.

- 블록 + 더블클릭 시, 끝까지 데이터 들어감.
- choose(): Index 따라서 값 나옴.
- dataset : sheet에 담음.
- 왼쪽 모서리 박스 : 블록 잡아서 Table name 설정.
- vlookup()
 - ex) vlookup(E2, mdindex, 2, 0)
 - = mdindex 값 찾아서, mdindex table의 두번째 열에 있는 데이터 찾아옴.
- iferror(value, " "): value값이 error이면, " "(빈칸) 설정.

- CSV : 데이터가 ',(쉽표)'로 구분된 파일.
- Ctrl + shift + → + ↓ = 데이터가 있는 블록 모두 잡기.
- Vlookup(): 테이블 가져와서 데이터 가져오는 함수.
- ** 피벗 테이블 (데이터 요약표)
- 삽입 피벗테이블 새 워크시트
- 피벗 그룹 : 시작 <u>-15</u> ~ 끝 <u>30</u> // 단위 <u>5</u> → 5단위씩 그룹핑.
- 차트 데이터 클릭해서 '추세선 추가'
- R² = 0.0475 이면, 100개 중 4개만 맞춤.
 - → 예측력 떨어짐. (작으면, 상관관계 작다.)
 - → total 분석 시, '온도'는 제외시킬 수 있다.
- 변수 1개로는 평균이나 분산 등이 궁금. (1개로도 볼 수 있는 정보 다양) ⇒ **기술통계.**
- 2개로 비교 분석하는 것 ⇒ **상관분석 (서로 간의 연관관계).**
- 추가기능 통계분석 기술통계
- Ex) 1 2 3 3 3 3 4 4 100 → 뜬금없이 '100'이 왔는데 이것을 합해서 평균치를 낼 수 없다.
 - → 그래서 **중앙값, 최빈값**을 보는 것.
- [상자그림]에서 중앙값은 '1266'인데, 2247(=보통 이상점)이 있다.
- 왜도: +일수록 왼쪽으로 치우쳐 있고, -일수록 오른쪽으로 치우쳐 있다. ⇒ '히스토그램'으로 시각적으로 확인 가능. (뾰족할수록 왜도값 '3'에 가깝다.)
- Total에서 평균 1290 ± 표준편차 234 가 (평균의 표준편차 7.08) 70%의 data가 있다.
- 줄기잎그림 '세로 ' 로 돌리면, 히스토그램 된다.

- 표준편차 클수록 변동이 심하고, 작을수록 평준화 되어있다.
- 평균분석은 집단끼리 비교할 때, 많이 쓰임.
- 변동계수 클수록 변동이 심하다.
- 산점도 : 점 하나가 '객체 '

(산점도 그릴 땐, 숫자데이터를 X축 변수: temp / Y축 변수: smoothie 설정 후, 그래프 – '추세선추가'로 R² 값 확인.)

- 상관분석: X값이 늘어갈 때, Y도 변할까?
- 쌍대(?)비교 해준다. (숫자 있는 것 모두 변수로 넣어준다.)

- 회귀분석 : 방정식을 만들어주고, 결정계수는 그 확률!! ⇒ 머신러닝!! (R² 이 결국 결정계수): 산점도에서 추세선 그려보면, 알 수 있다.

(이러한 정보들을 알면, 학점을 예측할 수 있다.)

- 회귀분석을 하기 위해선, 상관관계를 먼저 알아야함.
- 상관관계(상관계수) 높은 것만 가지고, 회귀분석!!
- 독립변수 1개 일 때, y = ax + b
- 독립변수 2개 일 때, $y = a_1x_1 + a_2x_2 + b$
 - ⇒ 선형 방정식
- 결정계수가 0.9 이면, 확률 높다.

- 다변량 분석(변수 여러 개) → 의사결정나무 (의사결정트리)
- 반응변수: 질산의 양 (연속형 변수: 숫자 / 명목형 변수: A, B ..)
- 분류표, 분류결과 모두 표시.

- Ex) 교통사고 가장 많은 구간은 ~~~~한 곳이며, ~~~~이며, ~~~~이며, ~~~~인 곳입니다.
- ⇒ 이러한 결과 도출 가능.

- 군집분석 시 계층형 (가까운 데이터끼리 묶는 것.) K-means (직관적)

- 라벨변수: id
- 분석변수: ~
- 군집갯수: 4개 / 최종군집기록 check!
- Ex) 키가 크지만 허리둘레, 엉덩이둘레가 작은 그룹....등 이렇게 그룹별로 나누어 분석.
- 1번 군집에 얼만큼의 데이터가 있는지는 '군집크기'로 나옴.

KESS 다운받아서 엑셀에 설치.

상관분석

상관계수 (유의확률)

ハーコーミノ		
	키	몸무게
키	1	0,8192
(유의확률)		0,0037
몸무게	0,8192	1
(유의확률)	0,0037	

회귀분석결과

분산분석표

요인	제곱합	자유도	평균제곱	F값	유의확률
회귀	310,3908	1	310,3908	16,325	0,0037
잔차	152,1092	8	19,0136		
741	462 5000	9			

Root MSE 4,3605 <mark>결정계수 0,6711</mark> 수정결정계수 3,9600

모수 추정

몸무게 = -73.45361 + 0.81361*키

변수명	추정값	표준오차	t-통계량	유의확률
절편	-73,45361	33,67700	-2,181	0,0608
키	0,81361	0,20137	4.040	0,0037

상관분석결과

상관분석

상관계수 (유의확률)

	공기주입량	물의온도	질소농도	질산의양
공기주입량	1	0,7819	0,5001	0,9197
(유의확률)		0	0,0209	0
물의온도	0,7819	1	0,3909	0,8755
(유의확률)	0		0,0797	0
질소농도	0,5001	0,3909	1	0,3998
(유의확률)	0,0209	0,0797		0,0725
질산의양	0,9197	0,8755	0,3998	1
(유의확률)	0	0	0.0725	

회귀분석결과

분산분석표

요인	제곱합	자유도	평균제곱	F값	뮤의확률
회귀	1880,4428	2	940,2214	89,642	< 0,0001
잔차	188,7953	18	10,4886		
Эl	2069.2381	20			

Root MSE 3,2386 **결정계수 0,9088** 수정결정계수 2,8248

모수 추정

	변수명	추정값	표준오차	t-통계량	유의확률
	절편	-50,35884	5,13833	-9,801	< 0,0001
	물의몬도	1,29535	0,36749	3,525	0,0024
-	용기주입량	0,67115	0,12669	5,298	< 0,0001

의 양 = (1,29535+물의몬도) + (0,67115+공기주입량) + -50,3 ++++ 선혐회귀분석 ++++

R-실습

```
a <- "홍길동" # 스칼라 변수 생성
av <- c("홍길동","김철수","김영희","김순이") # 이름 벡터 생성
bv <- c(23, 34, 45, 32) # 나이 벡터 생성
cv <- c(3.4, 1.5, 4.2, 3.9) # 벡터 학점 생성
dv <- c("서울","인천","수원","성남") # 주소 벡터 생성
edf <- data.frame(av, bv, cv, dv) # 데이터프레임 생성
names(edf) # 데이터프레임의 벡터 이름 가져오기
names(edf) <- c("이름", "나이", "학점", "주소") # 데이터프레임 속 벡터이름 설정
edf$이름 # 이름만 보고싶을 때
edf$나이 # 나이만 보고싶을 때
edf$주소[2] # edf 데이터프레임의 주소벡터에서 두번째값 가져올때
edf[2] # edf 데이터프레임에서 두번째 값 = 두번째 벡터
edf[2,3] # edf 에서 2행 3열
edf[ ,3] # 모든 행을 보여주되, 3행만 보여줌.
edf[2, ] # 2행이 보여주고, 열은 모두 보여줌.
```

```
# 구글지도 APT
install.packages("ggmap")
library(ggmap)
install.packages("ggplot2")
library(ggplot2)
# cctv data 가져와서 저장.
cctv <- read.csv("R/koreacctv.csv", header = T)</pre>
head(cctv)
# 데이터프레임으로 만들어줌.
cctv <- as.data.frame(cctv)</pre>
str(cctv)
# cctv 데이터프레임에서 3,4,11,12열만 가져오기.
cctv2 \leftarrow cctv[ , c(3,4,11,12)]
head(cctv2)
# 경도와 위도를 cent에 닫는다.
cent <- c(lon=127, lat=37.6)</pre>
# ggmap 패키지에서 get googlemap()함수를 사용.
# 위에서 잡은 center를 지도의 중심으로 잡는다.
# 전체 세계지도 zoom=1, 숫자클수록 확대.
map2 <- ggmap(get_googlemap(center = cent, zoom=13, maptype='roadmap', color='bw'))</pre>
map2 # 지도 실행.
names(cctv)[11] <- "lat"
names(cctv)[12] <- "lon"
map2 + geom point(data=cctv, aes(x=lon, y=lat), colour = 'gray10', alpha=0.6)
```

