Evil Under the Sun: Understanding and Discovering Attacks on Ethereum Decentralized Applications

Liya Su^{1,2,3} *, Xinyue Shen^{1,4}*, Xiangyu Du^{1,2,3}*, Xiaojing Liao¹,
XiaoFeng Wang¹, Luyi Xing¹, Baoxu Liu^{2,3}

¹Indiana University Bloomington, ²Institute of Information Engineering, Chinese Academy of Sciences,

³University of Chinese Academy of Sciences, ⁴Alibaba Group

{liyasu, shen12, duxian}@iu.edu, {xliao, xw7, luyixing}@indiana.edu, liubaoxu@iie.ac.cn

Background

Decentralized applications(Dapp)

1,169 Dapps with 5,786 contract addresses and 18 categories (from DAPP list)

- Two types of accounts:
 - (1) Externally Owned Accounts (EOAs)
 - (2) Contract Accounts (smart contracts)

Difference: w3.eth.getCode()

Background

• Transaction: a signed data package storing a message

From(R,S,V): Sender's signature

To: the recipient(The 160-bit address)

Value: the amount of money transferred from the sender to the recipient

 ${\tt Data:}$ the input for a contract

gasprice

gas

TO	0x54*
FROM	0x73*
VALUE	0.01 Ether
	0xc52ab778
DATA	(methodID of
	function execute())
GAS	6.3x10 ⁻⁹ Ether
PRICE	(6.3 Gwei)

nonce	gasPrice	gas	to	value	input	R	S	V

Problem&Challenges

- What like and how the attacks launch on Dapps?
- Mainly for the back-end

How to automatically reconstruct Dapp attacks

How to find new attack and prevent it

Framework

Data Collection and Derivation

To Collect all transaction information related to the attack

- 1: Build seed attack set **Ds(3 sets of addresses +1 hash)** from Internet
- 2: Reconstruct the reported incident

Data Collection and Derivation

To expand the seed attack set Ds

Step1: Get more EOA from transactions.

Check transactions related to EOA or exploit contract

Step2: Get more similar exploit contract.

(1) Get all related contracts within a timewindow (1 day)

(2) compare similarities with opcode Jaccard similarity

(3)If Jaccard similarity \geq 0.9;Add it.

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Get new set De

TO	0x54*
FROM	0x73*
VALUE	0.01 Ether
	0xc52ab778
DATA	(methodID of
	function execute())
GAS	6.3x10 ⁻⁹ Ether
PRICE	(6.3 Gwei)

Ds to De

Exploit transaction clustering

- (1) Transaction execution modeling Model execution traces e_t (Ii, Oi, Bi, Ti) ={from,to,function,value}
- (2) A graph T G = (V, E, W,t)
- (3) D(g1, g2) = distance(similarity and time)

(4) Clustering with k-means algorithm(126 clusters)(42 Dapp attack incidents with 58,555 transactions)

A typical Dapp attack has 4 stages

Stage 1. Preparation: Related transactions before Exploitation

85% of attack incidents with the average number of transactions being 23

Stage 2. Exploitation:

when the attacker continuously makes profits from one Dapp

Purposes:

- (1) invoke vulnerable Dapp functions
- (2) deploy or trigger an exploit contract to automate an attack

transaction				
TO	0x54*			
FROM	0x73*			
VALUE	0.01 Ether			
	0xc52ab778			
DATA	(methodID of			
	function execute())			
GAS	6.3x10 ⁻⁹ Ether			
PRICE	(6.3 Gwei)			

Attack Operotor

More:Attacker tends to rapidly evolve his strategies via delegatecall(), or creating new contracts(1,394transactions from 6 attacker EOAs)

Stage 3. Propagation:

creating a new contract and reuse the exploit(4 more DAPPs)

Purposes:

(1) Get more profits

Attack Operotor

Stage 4. Mission completion:

Puposes:

Remove attack traces and get profits — Money Mule

selfdestruct() and transfer money

Finding New Attacks

Key insights: highlevel behavior patterns are relatively stable in each attack stage

Tool: DEFIER(2 parts)

(1)Preprocessing (Ds to De)

Input: transactions with a DAPP

Output: transactions groups

Finding New Attacks

Step1:get transaction

Step2:get EOAs+contract

Step3:get similar Tx

Finding New Attacks

(2) Sequence-based Classification

EOA-Dapp-execution attention model: highlight the useful information related to the EOA's intent on the Dapp.

Output types: normal, preparation, exploitation, propagation and completion.

Evaluation

Measurement

Table: Known Dapp attacks

Attack type	# of Dapps		# of exploit contracts		# of attacker EOAs		# of attack transactions	
	D_s	D_e	D_s	D_e	D_s	D_e	D_s	D_e
Bad randomness	4	14	9	19	9	27	14	40,766
DoS	4	6	3	3	5	88	4	17,088
Integer overflow/underflow	13	32	1	2	28	53	47	591
Reentrancy	2	2	2	3	2	4	2	30
Improper authentication	12	18	6	18	17	60	34	575
Unique total	25	56	20	45	48	227	77	58,555

Table: List of vulnerable functions

Functions	#Dapp	Attack type
transferFrom	16	Integer overflow/underflow
airDrop	8	Bad randomness
transfer	7	Integer overflow/underflow
transferProxy	6	Integer overflow/underflow
batchTransfer	5	Integer overflow/underflow

Role overlap of attacker EOAs

Evaluation

• Evaluation with groundtruth set

469, 22333 34763, 290

Dataset	# transactions	Results
Groundtruth set	badset 57,855	<i>pre_{micro}</i> 98.2%, <i>pre_{macro}</i> 92.4%
Oroundu din set	goodset 39,124	rec_{micro} 98.1%, rec_{macro} 98.4%
Unknown set	2,350,779	positive 476,334
Sampled testset	30,888	pre _{micro} 91.7%
	30,000	pre _{macro} 83.6%

transactions that labeled as one of attack stages

Performance comparison in different models

Method	Attention	precision	recall	F1
RNN	no attention	0.965	0.962	0.963
RNN	attention	0.974	0.969	0.971
LSTM	no attention	0.977	0.975	0.976
LSTM	attention	0.982	0.981	0.981

Conclusion Manual analysis **Transaction Transaction** Ds expand → De execution modeling cluster Ethereum **Transactions** Preparation Exploitation Cyber threat intelligence (CTI) Propagation Completion

Transactions

