NOM:

Prénom:

Note:

1. L'application f: $\left\{ \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \mathrm{e}^z \end{array} \right. \text{ est-elle injective ? surjective ? Justifier.}$

2. Quelle est l'image de l'application f: $\left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ x & \longmapsto & e^{ix} \end{array} \right. ?$

- 3. Soit f: $\left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \chi^2 \end{array} \right.$ Donner sans justification f([-1,3]) et $f^{-1}([-3,9])$.
- 4. Montrer que f: $\left\{ \begin{array}{ccc} \mathbb{R}\setminus\{-1\} & \longrightarrow & \mathbb{R}\setminus\{1\} \\ x & \longmapsto & \frac{x-2}{x+1} \end{array} \right. \text{ est bijective et déterminer sa bijection réciproque.}$

5	Déterminer le cenc	de variation	$dof \cdot v \in \mathbb{I}$	$1 \perp \sqrt{1 \perp e^{-1}}$	-x ³ sans calculer sa dérivé	0

6. Soit E un ensemble. L'application f:
$$\left\{ \begin{array}{ccc} \mathcal{P}(\mathsf{E}) & \longrightarrow & \mathcal{P}(\mathsf{E}) \\ X & \longmapsto & \overline{X} \end{array} \right. \text{ est-elle injective ? surjective ? Justifier.}$$

7. Montrer que l'application $f: x \in \mathbb{R} \mapsto \ln(1 + e^x)$ est dérivable sur \mathbb{R} puis qu'elle induit une bijection de \mathbb{R} sur un intervalle à déterminer.