

Projet Hadoop Big Data (Data Sciences)

Description du projet SEPTEMBRE 2024

Par Christophe GERMAIN

Description

Table des matières

I. 1	Technologies	4
	Objectifs :	
	Le projet :	
	A partir du fichier csv :	
	Format du fichier :	
IV.	Le projet : LOT 1	9
V. l	Lot2 : HBase et Moteur de Recherche :	10
A.	Importation HBase :	10
1	1. Contraintes :	10
В.	Choisir Power BI ou ELK :	10
VI.	Liens:	11

I. Technologies

- Hadoop + python (HappyBase ...)
- Python Pandas
- Suggestions :
 - import numpy as np
 - import pandas as pd
 - import matplotlib.pyplot as plt

II. Objectifs:

- Le groupe doit livrer :
- Un ensemble d'applications Big Data et Power BI / ELK
- Un dossier comprenant :
- L'analyse de la compréhension de la problématique
- Des données qualifiées
- Des procédures d'import des données
- Des procédures de structuration
- Des algorithmes d'analyse des données
- Vos recommandations par rapport au déroulement du projet

III. Le projet :

A. A partir du fichier csv :dataw_fro.csv fourni dans le dossier du projet

B. Format du fichier :

Options spécifiques au fo	ormat :
Colonnes séparées par	
Colonnes entourées par	
n	
Colonnes échappées ave	ec:
ii .	
Lignes terminées par :	
AUTO	
Remplacer NULL par :	
NULL	
Retirer les caractèr	res de fin de ligne à l'intérieur des colonnes
Afficher les noms d	le colonnes en première ligne

« Votre passeport pour l'emploi numérique »

#	Nom	Туре	Interclassement	Attributs	Null	Valeur par dé	faut
1	codcli	int(11)			Non	Aucun(e)	
2	genrecli	varchar(8)	utf8mb4_general_ci		Oui	NULL	
3	nomcli	varchar(40)	utf8mb4_general_ci		Oui	NULL	
4	prenomcli	varchar(30)	utf8mb4_general_ci		Oui	NULL	
5	cpcli	varchar(5)	utf8mb4_general_ci		Oui	NULL	
6	villecli	varchar(50)	utf8mb4_general_ci		Oui	NULL	
7	codcde	int(11)			Non	Aucun(e)	
8	datcde	datetime			Oui	NULL	
9	timbrecli	float			Oui	NULL	
10	timbrecde	float			Oui	NULL	
11	Nbcolis	tinyint(4)			Oui	NULL	
12	cheqcli	float			Oui	NULL	
13	barchive	bit(1)			Oui	NULL	
14	bstock	bit(1)			Oui	NULL	
15	codobj	int(11)			Oui	NULL	
	qte	smallint(6)			Oui	NULL	
•	FORMATIO						7

17 C	olis	int(11)		Oui	NULL
18 lik	oobj	varchar(50)	utf8mb4_general_ci	Oui	NULL
19 T a	ailleobj	varchar(50)	utf8mb4_general_ci	Oui	NULL
20 P	oidsobj	double		Oui	NULL
21 p c	oints	int(11)		Oui	NULL
22 in	dispobj	bit(1)		Oui	NULL
23 lik	ocondit	varchar(50)	utf8mb4_general_ci	Oui	NULL
24 pr	rixcond	double		Oui	NULL
25 p u	uobj	double		Oui	NULL

IV. Le projet : LOT 1

Contexte :

- 1. Une Fromagerie (le client) a un datawarehouse depuis 2004 qui est représenté par le fichier csv fournit dans ce document.
- 2. Créer des jobs (job.sh avec l'utilisation hadoop jar ...) pour limiter le flux d'information (Mapper-Reducer) pour obtenir uniquement les informations voulues pour répondre au besoin du client décrit ci-dessous :
- Le client désire les statistiques suivantes :
 - 1. Filtrer les données selon les critères suivants :

Entre 2008 et 2012,

Avec uniquement les départements 53, 61,75 et 28

- 2. A partir du point 1 : Ressortir dans un tableau les 10 Clients les plus fidèles (Sommes du produit (des points et des quantités) sur l'ensemble des commandes par client) : récupérer les colonnes suivantes : Nom, Prénom, Ville, département du client et, nom de l'objet & la quantité commandée
- 3. Exporter le résultat dans un fichier Excel et les 10 graphes (en pdf) par client avec le % de répartitions des objets commandés (produits commandés).

V. Lot2: HBase et Moteur de Recherche:

A. Importation HBase:

Importer toutes les données du fichier csv dans HBase

1. Contraintes:

- Ne pas mettre dans le JSON des données à NULL,
- Date invalide interdite (enregistrement complet refusé),
- Ne pas importer l'année 2004 (enregistrement complet refusé)

B. Choisir Power BI ou ELK:

Créer un Dashboard afin de manière dynamique de :

- Voir la fidélité des clients sur selon l'intervalle de dates,
- Voir le nombre d'objets commandés par année et les 5 meilleurs (Palmarès),
- Voir les départements les plus représentatifs du programme de fidélité de la fromagerie (Palmarès).

VI. Liens:

- Python Complet
- https://pandas.pydata.org/docs/getting_started/index.html

