C14 - Dérivabilité

I. Nombre dérivé, fonction dérivé

Introduction

Soit I in intervalle non trivial,

Soit $a \in I$,

Soit $f:I o \mathbb{R}$,

Excalidraw 1.

Pente de la sécante :

$$rac{\Delta y}{\Delta x} = rac{f(x) - f(a)}{x - a}
ightarrow l$$

Cas où $l=+\infty$: Tangente verticale.

1.

Définition

On appelle taux d'accroissement de f en a la fonction :

$$(T_af)(x) = egin{cases} Iackslash \{a\}
ightarrow \mathbb{R} \ x \mapsto (T_af)(x) = rac{f(x) - f(a)}{x - a} \end{cases}$$

Si on fait le changement de variable "x=a+h" On obtiens une autre fonction taux d'accroissement : $\forall h \in (I-a) \setminus \{0\}$,

$$(ilde{T}_a f)(h) = rac{f(a+h) - f(a)}{h}$$

Définition

La fonction f est dérivable an a ssi $(T_a f)(x)$ (resp $(\tilde{T}_a f)(h)$) admet une limite finie quand x tend vers a (resp. h tend vers 0)

Dans ce cas cette limite est appelée de nombre dérivé de f en a et est noté f'(a)

Remarque

Plus besoin de préciser $x \mathop{
ightarrow}_{
eq} a$ car $T_a f$ n'est pas définie en a

Remarque utile

Lorsque f est dérivable en a, $T_a f$ est prolongeable en une fonction continue en a en posant :

$$(T_a f)(a) = f'(a)$$

Remarque

Comme la dérivabilité est définie par une limite, c'est une notion locale ie si $\eta>0$, f est dérivable en a ssi $f|_{[a-\eta,a+\eta]\cap I}$ l'est

Définition

Soit $f:D_f \to \mathbb{R}$ et $a \in D_f$.

S'il existe $\eta>0$ tq $D_f\cap [a-\eta,a+\eta]$

Soit un intervalle non trivial, on dit que f est dérivable en a ssi $f|_{[a-\eta,a+\eta]\cap D_f}$ l'est.

Exemple

 \cos est dérivable en 0 et $\cos'(0) = 0$

Soit
$$x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \backslash \{0\}$$
,

On a:

$$|(T_0\cos)(x)| = \left|rac{\cos(x)-1}{x}
ight| \leq rac{|\cos x-1|}{|x|} imes (\cos x+1)$$

 $car cos(x) \ge 0$ Donc $cos x + 1 \ge 1$

$$|T(T_0\cos)(x)| \leq rac{|\sin^2(x)|}{|x|} = \left(rac{|\sin x|}{|x|}
ight)^2 |x|$$

Comme $x \underset{\stackrel{}{\rightarrow} 0}{\rightarrow} 0$,

$$(T_0\cos)(x) o 0 \ _{x o 0}$$

Ainsi \cos est dérivable en 0

et
$$\cos'(0) = 0$$

Exemple

 \sin est dérivable en 0 et $\sin'(0) = 1$ Commençons par mq :

$$orall x \in]-rac{\pi}{2},rac{\pi}{2}[,|x| \leq | an x|$$

On admet que la longueur d'une ligne brisée joignant 2 points d'un cercle est supérieure ou égale à la longueur de l'arc le plus court les joignant.

Excalidraw 2.

On a alors : $2|\tan x| \geq 2|x|$ Donc $|\tan x| \geq |x|$

Soit $x\in]0,rac{\pi}{2}[$,

Alors,

$$|(T_0\sin)(x)-1|=\left|rac{\sin x}{x}-1
ight|=1-rac{\sin x}{x}$$

Comme x > 0 et $\tan x > 0$, $\tan x \ge x$

Et $\cos x > 0$, donc $\sin x \ge x \cos x$

Donc,

$$|(T_0\sin)(x)-1|\leq 1-\cos x \overset{\longrightarrow}{\underset{x o 0}{\longrightarrow}} 0$$

Donc,

$$(T_0\sin)(x) \mathop{\longrightarrow}\limits_{x o 0^+} 1$$

et comme sin est impaire

$$(T_0\sin)(x) \overset{ o}{\underset{x o 0^-}{\longrightarrow}} 1$$

Et finalement,

$$\lim_{x o 0}(T_0\sin)(x)=1$$

ie

 \sin est dérivable en 0 et $\sin'(0)=1$

Exercice

Mq $x\mapsto -1$ est dérivable en π et $x\mapsto 2x$ est dérivable en $\sqrt{2}$

Exemple

Mq $\sqrt{\cdot}$ et $|\cdot|$ ne sont pas dérivables en 0.

Pour $\sqrt{\cdot}$

Soit x > 0

On a

$$rac{\sqrt{x}-\sqrt{0}}{x-0}=rac{1}{\sqrt{x}}
ightharpoonup +\infty$$

Donc $\sqrt{\cdot}$ n'est pas dérivable en 0 (Son graphe admet une tangente verticale en 0)

Soit a > 0,

Pour
$$x \in \mathbb{R}_+ \setminus \{a\}$$
, $\sqrt{x} + \sqrt{a} \neq 0$

$$rac{\sqrt{x}-\sqrt{a}}{x-a}=rac{1}{\sqrt{x}+\sqrt{a}}
ightarrow rac{1}{x
ightarrow a}$$

Ainsi $\sqrt{\cdot}$ est dérivable en a et

$$\sqrt{\cdot}'(a) = rac{1}{2\sqrt{a}}$$

Pour | · |

Soit x > 0,

$$(T_0|\cdot|)(x)=rac{|x|-0}{|x|}=1 \mathop{\longrightarrow}\limits_{x o 0^+} 1$$

par parité de | · |,

$$(T_0|\cdot|)(x) \mathop{\longrightarrow}\limits_{x o 0^-} -1$$

Comme $1 \neq -1$, $|\cdot|$ n'est pas dérivable

(On dira que $|\cdot|$ est dérivable a gauche et a droite en 0)

Soit a > 0,

Pour $x \in \mathbb{R}_+ \backslash \{a\}$,

$$(T_a|\cdot|)(x)=1 \underset{x o a}{\longrightarrow} 1$$

Donc $|\cdot|$ est dérivable en a et $|\cdot|'(a)=1$ Par parité, pour a<0

$$|\cdot|'(a) = -1$$

2. Interprétation géométrique

Comme on l'a déja vu en intro,

 $(T_af)(x)$ est la pente de la sécante qui passe par $(a,f(a))\in {\mathcal G}_f$ et $(x,f(x))\in {\mathcal G}_f$

La fonction est dérivable en a ssi ses pentes ont l=une limite quand $x \underset{\neq}{\longrightarrow} a$

Dans ce cas, comme toutes ces droites passant par (a,f(a)) on obtient une droite "limite" :

- passant par (a, f(a))
- de pente f'(a)

Définition

La tangente a \mathcal{G}_f au point de coordonnés (a,f(a)) est cette droite passant par (a,f(a)) de pente f'(a)

Reformulation géométrique

f est dérivable en a ssi son graphe admet une tangente (non verticale) en (a, f(a)) et dans ce cas le nombre dérivé f'(a) est la pente de cette tangente.

Exercice

Etudier la dérivabilité en 0 de :

$$x\mapsto x\sinrac{1}{x}$$

$$x \mapsto x^2 \sin \frac{1}{x}$$

prolongées par continuité en 0. après avoir tracé leurs graphes au voisinage de 0.

Propriété

Si f est dérivable en a, l'équation de la tangente de \mathcal{G}_f en (a,f(a)) est :

$$y = f(a) + f'(a)(x - a)$$

3. Développements limité d'ordre 1

Idée:

Supposons f dérivable en a alors f est approchée à l'ordre 1 par la fonction affine :

$$x \mapsto f(a) + f'(a)(x-a)$$

et réciproquement

Ce qu'on formalise ainsi :

Propriété : Dérivabilité par DL_1

f est dérivable en a ssi :

Il existe:

- $\alpha \in R$
- Un voisinage standard V de 0
- Une fonction ϵ définie sur $V = V \setminus \{0\}$

tels que:

$$orall x \in I \cap (a+V), f(x) = f(a) + lpha(x-a) + (x-a)\epsilon(x-a)$$

et

$$\lim_0 \epsilon = 0$$

et dans le cas ou f est dérivable en a, on a $\alpha = f'(x)$

Dans ce cas de dérivabilité, le $DL_1(a)$ peut se réécrire :

$$orall h \in I - a \cap \$V, f(a+h) = f(a) + f'(a)h + h\epsilon(h)$$

Ce qu'on peut noter avec le petit o :

$$f(a+h) \mathop{=}\limits_{h o 0} f(a) + f'(a)h + o(h)$$

On restreint avec les x:

$$f(x) \mathop{=}\limits_{x o a} f(a) + f'(a)(x-a) + o(x-a)$$

Démonstration:

← : triviale

 \Rightarrow : Supposons f est dérivable en a

Alors pour $x \in I \backslash \{a\}$,

$$f(x) = f(a) + f'(a)(x-a) + (x-a)\epsilon(x-a)$$

en posant :

$$\epsilon(h) = rac{f(a+h) - f(a)}{h} - f'(a) \mathop{\longrightarrow}\limits_{h o 0} 0$$

ATTENTION : On verra plus tard les $DL_n(a)$ et il est faux qu'une fonction admettant un $DL_n(a)$ soit dérivable n fois en a L'équivalence de la propriété n'est vraie qu'a l'ordre 1

Propriété : CN ponctuelle de continuité pour la dérivabilité

Si f est dérivable en a alors elle est continue en a (Réciproque fausse)

Démonstration

Supposons f dérivable en aElle admet un $DL_1(a)$

$$f(a+h) = \limits_{h
ightarrow 0} f(a) + f'(a)h + o(h)$$

Donc

$$f(a+h) \overset{}{\underset{h o 0}{\longrightarrow}} f(a)$$

Remarque

La continuité en a équivaut à l'existence d'un $DL_0(a)$

$$f(a+h) = _{h \rightarrow 0} f(a) + o(1)$$

car o(1) est une fonction qui tend vers 0 lorsque h o 0

Remarque

Il existe des fonctions explicites continues sur [0,1] et dérivables nulle part (Fonction de Weierstraß)

4. Dérivés à gauche et à droite

Définition

On dit que f est dérivable à gauche (resp. à droite) en a ssi :

- $I\cap]-\infty, a[
 eq 0 ext{ (resp. }]a, +\infty[
 eq 0)$
- $f|_{I\cap]a,+\infty [}$ (resp. $f|_{]-\infty ,a[}$) est dérivable en a

Cela équivaut à ce que $\lim_{x o a^-}(T_af)(x)$ existe dans $\mathbb R$ (resp. $x o a^+$)

Définition

Cette limite est appelée le nombre dérivé à gauche de f en a et noté f'(a) (resp. à droite)

Exemple

 $|\cdot -a|$ est dérivable à gauche et à droite en a, mais pas dérivable en a

Interprétation géométrique :

 \mathcal{G}_f admet une demi-tangente en (a, f(a)) excalibur 3.

Propriété

- Si a=min(I) (resp. max(I)) Alors le dérivabilité de f en a équivaut à sa dérivé à droite (resp. à gauche) en a
- Sinon La dérivabilité de f en a équivaut à ce qu'elle soit à la fois dérivable à gauche et à droite en a et que de plus $f_g'(a) = f_d'(a)$

Demo: ez

5. Dérivabilité sur un intervalle

Définition

f est dérivable sur I ssi elle est dérivable en tout point de I. Si c'est le cas on appelle fonction dérivé la fonction qui, pour tout $x \in I$ fait correspondre le nombre dérivé f'(x) en f en x

$$f': egin{cases} I
ightarrow \mathbb{R} \ x \mapsto f'(x) \end{cases}$$

Extension

 $f:D_f o \mathbb{R}$,

f est dérivable ssi elle l'est en tout point de D_f .

Remarque

Plus généralement si $A\subset D_f$ dire que f est dérivable sur A est ambigu cela pourrait vouloir dire :

- Soit que f est dérivable pour tout $x \in A$
- Soit que $f|_A$ est dérivable

et ces deux notions ne sont pas équivalentes ($|\cdot|$ n'est pas dérivable en tout $x \in \mathbb{R}_+$, mais $|\cdot||_{R_+}$ est dérivable)

Cependant elle sont équivalente lorsque A est un ouvert de $\mathbb R$ ie A est réunion d'intervalles ouverts, par exemple $A=\mathbb R^*$

Définition

Deux intervalles I_1,I_2 sont séparés ss'il existe $s\in\mathbb{R}$ tq

$$orall (x,y) \in I_1 imes I_2, x < s < y$$

ou

$$orall (x,y) \in I_1 imes I_2, x > s > y$$

Propriété

Si $f: D_f \to \mathbb{R}$ et D_f est réunion finie d'intervalle non triviaux séparés deux a deux, alors elle est dérivable ssi elle l'est sur chacun de ses intervalles.

Propriété

Il est immédiat que toute fonction constante est dérivable sur son domaine et de dérivée nulle

Propriété

Si f est dérivable sur I elle est continue sur I

6. Opérations

Théorème

Soient f et g définies sur I avec $a \in I$ et $\lambda, \mu \in \mathbb{R}$. Si f et g sont dérivables en a (resp sur I) Alors

1. La CL $\lambda f + \mu g$ l'est et

$$(\lambda f + \mu g)'(a) = \lambda f'(a) + \mu g'(a)$$

2. Le produit fg l'est :

$$(fg)'(x) = f'(a)g(a) + f(a)g'(a)$$

3. Si g
eq 0 (resp $\forall x \in I, g(x)
eq 0$) alors $rac{f}{g}$ l'est et

$$\left(rac{f}{g}
ight)'(a) = rac{f'(a)g(a) - f(a)g'(a)}{(g(a))^2}$$

Démonstration

1. Pour $x \in I \setminus \{a\}$,

$$T_a(\lambda f + \mu g) = \lambda T_a f + \mu T_a g$$

Par linéarité de la limite

2. Soit $x \in I \setminus \{a\}$,

$$(T_a(fg))(x) = rac{f(x)g(x) - f(a)g(a)}{x - a} = rac{(f(x) - f(a))g(x) + f(a)(g(x))}{x - a}$$
 $(T_a(fg))(x) = (T_af)(x)g(x) + f(a)(T_ag)(x)$

Comme g est dérivable en a, elle est continue en a, ie $g(x) \underset{x \longrightarrow a}{\longrightarrow} g(a)$

Comme f est dérivable en a,

$$(T_af)(x) \mathop{\longrightarrow}\limits_{x \stackrel{}{\longrightarrow} a} f'(a)$$

et par produit de limites,

$$(T_af)(x)g(x) \mathop{\longrightarrow}\limits_{x \stackrel{}{\longrightarrow} a} f'(a)g(a)$$

Comme g est dérivable en a,

$$(T_ag)(x) \mathop{\longrightarrow}\limits_{x \stackrel{}{\longrightarrow} a} g'(a)$$

et par CL

$$f(a)(T_ag)(x) \mathop{\longrightarrow}\limits_{x \stackrel{}{\longrightarrow} a} f(a)g'(a)$$

Enfin par somme de limites,

$$(T_a(fg))(x) \mathop{\longrightarrow}\limits_{x \stackrel{}{\longrightarrow} a} f'(a)g(a) + f(a)g'(a)$$

3.

Supposons que $g'(a) \neq 0$,

Comme g est dérivable en a, elle est continue en a, donc non nulle au voisinage de a

Soit x "assez proche" de a et différent de a.

On a:

$$\left(T_a\left(rac{1}{g}
ight)
ight)(x)=rac{rac{1}{g(x)}-rac{1}{g(a)}}{x-a}=-rac{rac{g(x)-g(a)}{g(x)g(a)}}{x-a}=-rac{(T_ag)(x)}{g(x)g(a)}$$

g étant continu en a, $g(x) \underset{x \longrightarrow a}{\longrightarrow} g(a)$

Pour CL et quotient de limites

Corrollaire

Toute fonction polynôme est dérivable sur $\mathbb R$ et pour $n\in\mathbb N^*$,

$$(x\mapsto x^n)'=(x\mapsto nx^{n-1})$$

$$(x \mapsto 1)' = (x \mapsto 0)$$

Toute fonction rationnelle est dérivable sur son intervalle de définition

Démonstration:

Soit $u: x \mapsto 1$

Pour $a \in \mathbb{R}$,

Soit $x \in \mathbb{R} \setminus \{a\}$,

$$(T_a u) = \frac{1-1}{x-a} = 0$$

Donc

$$(T_a u)(x) \overset{}{\underset{x
ightarrow a}{\longrightarrow}} 0$$

Ainsi u est dérivable sur $\mathbb R$ et $u'=0_{\mathbb R^\mathbb R}$

Soit $i: x \mapsto x$,

Soit $a \in \mathbb{R}$,

Pour $a \neq x$,

$$(T_ai)(x)=rac{x-a}{x-a}=1 extstyle rac{1}{x o a}$$

Donc i est dérivable en tout $a \in \mathbb{R}$

Par produit successif, pour $n \in \mathbb{N}^*$, $x \mapsto x^n$ est dérivable sur \mathbb{R}^n par CL toute fonction

 $x\mapsto x^n$ est dérivable sur $\mathbb R$, par CL toute fonction polynôme est dérivable sur $\mathbb R$.

Par quotient toute fonction rationnelle est dérivable sur son domaine de définition.

Soit $n \in \mathbb{N}^*$, On note $f: x \mapsto x^n$ Soit $a \in \mathbb{R}$. Pour $x \neq a$,

$$(T_af)(x)=rac{x^n-a^n}{x-a}=\sum_{k=0}^{n-1}x^ka^{n-k-1}\stackrel{}{\underset{x
ightarrow a}{\longrightarrow}}\sum_{k=0}^{n-1}a^ka^{n-k-1}\stackrel{}{\underset{x
ightarrow a}{\longrightarrow}}na^{n-1}$$

Donc f est dérivable sur $\mathbb R$ et

$$orall x \in \mathbb{R}, f'(x) = nx^{n-1}$$

Théorème

Soient I et J deux intervalles non triviaux et $f:I\to\mathbb{R},\,g:J\to\mathbb{R}$ telles que $f(I)\subset J$ et $a\in I.$

Si f est dérivable en a (resp. sur I) et g est dérivable en f(a) (resp. sur J) alors $(g \circ f)$ est dérivable en a (resp sur I) et

$$(g \circ f)'(a) = g'(f(a)) \times f'(a)$$

resp.

$$(g\circ f)'=(g'\circ f)f'$$

Demonstration

Le résultat "par intervalles" découle du résultat ponctuel.

Supposons que

f est dérivable en a

g est dérivable sur f(a)

Soit $x \in I \setminus \{a\}$, Alors

$$(T_a(g\circ f))(x)=rac{(g\circ f)(x)-(g\circ f)(a)}{x-a}=(T_{f(a)}g)(f(x))(T_af)(x)$$

En ayant prolongé par continuité $(T_{f(a)}g)$ en f(a) (f et g sont dérivables donc $lim_{f(a)}(T_{f(a)}g)\in\mathbb{R}$)

Par continuité en posant :

$$(T_{f(a)}g)(f(a))=g'(f(x))$$

En effet si $f(x) \neq f(a)$,

$$rac{g(f(x))-g(f(a))}{x-a}=rac{g(f(x))-g(f(a))}{f(x)-f(a)} imesrac{f(x)-f(a)}{x-a}$$

 $\mathsf{Si}\; f(x) = f(a),$

$$rac{g(f(x))-g(f(a))}{x-a} = 0 = (T_{f(a)}g)(f(x)) imes 0 = (T_{f(a)}g)(f(x))(T_af)(x)$$

Puis comme f est dérivable en a, elle est continue en a ie $f(x) \xrightarrow[r \to a]{} f(a)$

Par continuité de $T_{f(a)}g$ en f(a),

$$(T_{f(a)}g)(y) \stackrel{\displaystyle \longrightarrow}{\underset{y
ightarrow f(a)}{\longrightarrow}} g'(f(a))$$

Par composition de limites :

$$(T_{f(a)}g)(f(x)) \stackrel{}{\underset{x
ightarrow a}{\longrightarrow}} g'(f(a))$$

Par dérivabilité de f en a,

$$(T_af)(x) \overset{}{\underset{x o a}{\longrightarrow}} f'(a)$$

Enfin, par produit de limites,

$$(T_a(g\circ f))(x) \overset{}{\underset{r o a}{\longrightarrow}} g'(f(a))f'(a)$$

Proposition

 \cos et \sin sont dérivables sur $\mathbb R$

$$\cos' = -\sin$$

 $\sin' = \cos$

Démonstration

Soit $a \in \mathbb{R}$,

Pour $h \in \mathbb{R}$,

$$\cos(a+h) = \cos(a)\cos(h) - \sin(a)\sin(h)$$

Comme cos et sin sont dérivable en 0,

par CL $\cos(a+\cdot)$ est dérivable en 0,

et
$$(\cos(a+\cdot))'(0) = \cos(a)\cos'(0) - \sin(a)\sin'(0) = -\sin(a)$$

Or pour $h \neq 0$,

$$(ilde{T}_a\cos)(h)=rac{\cos(a+h)-\cos(a)}{h}=(T_a\cos(a+\cdot))(h) \ (ilde{T}_a\cos)(h) extstyle only (\cos(a+\cdot))'(0)=-\sin(a)$$

Donc \cos est dérivable en a

et
$$\cos'(a) = -\sin(a)$$

La meme pour \sin

Propriété

- Tout polynôme trigonométrique est dérivable sur $\mathbb R$
- Toute fonction rationnelle trigonométrique est dérivable sur son domaine de définition

Démonstration :

Par produit, pour tout $p,q\in\mathbb{N}$, $\cos p\sin q$ est dérivable sur \mathbb{R} ,

Par CL tout polynôme trigonométrique l'est.

Par quotient toute fonction rationnelle trigonométrique l'est.

Propriété

exp, ch, sh et th sont dérivables sur $\mathbb R$ et

$$egin{aligned} exp' &= exp \ ch' &= sh \ sh' &= ch \ th' &= rac{1}{ch^2} &= 1 - th^2 \end{aligned}$$

Démonstration

 \exp est dérivable et $\exp' = \exp$ par définition.

Pour $x\in\mathbb{R}$, $ch(x)=rac{e^x+e^{-x}}{2}$ et $x\mapsto e^{-x}$ est la compos"r de $x\mapsto -x$ et \exp donc dérivable Par CL, ch est dérivable

Corollaire

- Polynômes trigonométriques hyperboliques
- Fonctions rationnelles trigonométriques hyperboliques
 Dérivables

7. Théorème des fonctions réciproques

Théorème

Soient f continue et strictement monotone sur un intervalle non trivial I et $a \in I$

Par le TFR (continu),

f admet une fonction réciproque :

$$f^{-1}:f(I) o \mathbb{R}$$

Si f est dérivable en a (resp sur I) et $f'(x) \neq 0$ (resp.

$$\forall x \in I, f'(x) \neq 0$$
)

alors f^{-1} est dérivable en f(a) (resp sur f(I))

et
$$(f^{-1})'(f(a)) = rac{1}{f'(a)}$$
 (resp. $(f^{-1})' = rac{1}{f'\circ f^{-1}}$)

Démonstration :

Le théorème global (sur f(I)) se déduis de théorème ponctuel :

Supposons que f est dérivable en a et que $f'(a) \neq 0$

Soit
$$y \in f(I) \backslash \{f(a)\}$$
 et $x = f^{-1}(y)$.

On a:

$$(T_{f(a)}(f^{-1}))(y) = rac{f^{-1}(y) - f^{-1}(f(a))}{y - f(a)} = rac{f^{-1}(f(f^{-1}(y))) - f^{-1}(f(a))}{f(f^{-1}(y)) - f(a)} \ (T_{f(a)}(f-1))(y) = rac{f^{-1}(y) - a}{f(f^{-1}(y)) - f(a)} = rac{1}{(T_a f)(f^{-1}(y))}$$

Comme f est dérivable en a,

$$(T_af)(x) \mathop{\longrightarrow}\limits_{x \stackrel{}{\longrightarrow} a} f'(a)$$

et comme $f'(a) \neq 0$,

$$rac{1}{(T_af)(x)} \stackrel{}{\underset{\scriptscriptstyle{d}}{\longrightarrow}} rac{1}{f'(a)}$$

Par continuité de f^{-1} , $f^{-1}(y) \underset{y \to f(a)}{\longrightarrow} f^{-1}(f(a)) = a$ et par injectivité de f^{-1} :

$$orall y \in f(I)ackslash \{f(a)\}, f^{-1}(y)
eq a$$

Par composition de limites

$$(T_{f(a)}(f^{-1}))(y)=rac{1}{(T_af)(f^{-1}(y))} \stackrel{\longrightarrow}{\underset{\scriptscriptstyle d}{\longrightarrow}} f_{(a)} rac{1}{f'(a)}$$

Remarque

Si f est dérivable sur un intervalle non trivial I et $\forall x \in I, f'(x) > 0$ alors on a directement toute les autres hypothèses. (f strictement croissante et $\forall x \in I, f'(x) \neq 0$) Idem pour f'(x) < 0.

II. Rolle et accroissements finis

1. Théorème de Rolle

Lemme CN d'extremum global sur un intervalle

Soit f dérivable sur un intervalle I=]a,b[ou $a,b\in\overline{\mathbb{R}}$ Si f admet un maximum global en $c\in]a,b[$ alors f'(c)=0 Idem pour le minimum

Démonstrraiton:

Supposons que f admette un maximum en $c \in I$ Excalibur 4.

Soit $x\in]a,c[$,

On a $f(x) - f(c) \le 0$ et x - c < 0,

Donc

$$(T_c f)(x) \geq 0$$

Donc

$$f'(x) = \lim_{x \longrightarrow c} (T_c f)(x) \geq 0$$

Soit $x\in]c,b[$. On a $(T_cf)(x)=rac{f(x)-f(c)}{x-c}\leq 0$ Donc

$$f'(x) = \lim_{x \longrightarrow c} (T_c f)(x) \leq 0$$

Ainsi

$$f'(x) = 0$$

Dans le cas du minimum on applique ce résultat à -f.

Remarque

Ne fonctionne pas sur un "bord" excalibur 5

Remarque

Théorème de Rolle

Soit $f:[a,b] o \mathbb{R}$, (a < b), tq :

$$egin{cases} f(a) = f(b) \ f ext{ continue sur } [a,b] \ f ext{ d\'erivable sur }]a,b[\end{cases}$$

Alors

$$\exists c \in]a,b[,f'(c)=0$$

excalibur 6.

Démonstration :

Comme f est continue sur le segment elle admet un max en $x_0 \in [a,b]$ et un min en $x_1 = [a,b]$ (th des bornes atteintes).

Si $x_0 \in]a,b[$ ou $x_1 \in]a,b[$, le lemme conclut

Sinon le max et le min sont atteints au bord et ont donc la même valeur f(a)=f(b) donc la fonction est constante et admet aussi, max en $\frac{a+b}{2}$, et encore par le lemme,

$$f'\left(\frac{a+b}{2}\right) = 0$$

Remarque

On utilise souvent ce résultat pour obtient l'existence de 0 d'une fonction.

Exercice

Soit $f:I \to \mathbb{R}$ tq f(a)=f(b)=f(c) avec a < b < c et f deux fois dérivable sur I. Alors f''(x) s'annule en un point $d \in]a,c[$

Démonstration :

Deux application du théorème de Rolle à f fournissent $x_1\in]a,b[$ et $x_2\in]b,c[$ tq $f'(x_1)=f'(x_2)=0$ Une dernière application du Théorème de Rolle à f sur $[x_1,x_2]$

fournit $d\in]x_1,x_2[$ tq f'(d)=0

Remarque

Pour prouver l'existence d'un 0 de f if faut chercher une primitive F de f qui prend la même valeur en deux points.

Reformulation:

Soit f continue sur [a,b], tq $\int_a^b f=0$ Alors il existe $c\in]a,b[$ tq f(c)=0

2. Egalité des accroissements finis

Théorème

Soit $f:[a,b] o \mathbb{R}$, (a < b), tq:

$$\begin{cases} f \text{ continue sur } [a, b] \\ f \text{ dérivable sur }]a, b[\end{cases}$$

Alors,

$$\exists c \in]a,b[,f'(c)=rac{f(b)-f(a)}{b-a}$$

Excalibur 7.

Démonstration :

On applique le théorème de Roll a une fonction auxiliaire

$$\phi: egin{cases} [a,b]
ightarrow \mathbb{R} \ x \mapsto f(x) - rac{f(b) - f(a)}{b - a}(x - a) \end{cases}$$

Comme somme de f et d'une fonction affine (donc dérivable) ϕ est continue sur [a,b] et dérivable sur]a,b[. et de plus $\phi(a)=\phi(b)$ et $\phi(b)=f(b)-\Big(rac{f(b)-f(a)}{b-a}\Big)(b-a)=f(a)$

On peut appliquer le théorème de Rolle à ϕ ce qui fournit $c\in]a,b[$ tq $\phi'(c)=0.$

Or, pour $x \in]a,b[$,

$$\phi'(x)=f'(x)-rac{f(b)-f(a)}{b-a}$$

Donc

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Remarque

$$\frac{f(b) - f(a)}{b - a}$$

est le taux d'accroissement d'ou le nom du théorème

Remarque

On peut reformuler le théorème :

$$f(b) - f(a) = f'(c)(b - a)$$

$$f(b) = f(a) + f'(c)(b - a)$$

Remarque

Interprétation cinématique

Soit $a, b \in \mathbb{R}$,

Si $t\mapsto f(t)$ représente la position d'un point sur une droite en fonction du temps.

alors f'(t) est la vitesse instantanée au temps t et $\frac{f(b)-f(a)}{b-a}$ est la vitesse moyenne entre les temps a et b.

Il existe un instant tel que la vitesse instantanée soit égale à la vitesse moyenne du parcours

Application: Radar tronçon

Remarque : Egalité de la moyenne

Si f est continue sur [a,b], il existe $c\in]a,b[$ tq

$$f(c) = rac{1}{b-a} \int_a^b f$$

Démonstration : conséquence immédiate du théorème des accroissements finis.

3. Limite de la dérivée

Théorème de la limite de la dérivée

Soit I un intervalle non trivial, et $a \in I$. Soit f,

- continue sur I
- dérivable sur $I \setminus \{a\}$

telle que $\lim_a f' = l \in \overline{\mathbb{R}}$ Alors

$$\lim_{x o a}(T_af)(x)=l$$

et cela entraîne que

- Si $l \in \mathbb{R}$, f est dérivable en a et f'(a) = l
- Si $l \notin \mathbb{R}$, f n'est pas dérivable en a, mais son graphe admet une tangente verticale en (a, f(a))

Démonstration :

Soit $x \in I \setminus \{a\}$,

On a deux cas:

• Si x < a, alors f est continue sur [x,a] (car $[x,a] \subset I$ puisque I est convexe, puisque c'est un intervalle de \mathbb{R}) et elle est dérivable sur]x,a[(de même $]x,a] \subset I$ donc $]x,a[\subset I\backslash\{a\})$

En appliquant le TAF à f entre x et a (ie à $f|_{[x,a]}$)n on obtiens un $c_x\in]x,a[$ tel que $(T_af)(x)=f'(x)$

On a
$$x \leq c_x \leq a$$

Donc $c_x \underset{x
ightarrow a^-}{\longrightarrow} a^-$ (Théorème des gendarmes)

Donc
$$f'(c_x) \mathop{\longrightarrow}\limits_{x o a^-} l$$
 ie $\lim_{x o a^-} (T_a f)(x) = l$

De même en appliquant le TAF à $f|_{[a,x]}$

• Si x > a, alors

$$\lim_{x o a^+}(T_af)(x)=l$$

Finalement:

$$\lim_{x \stackrel{\longrightarrow}{=} a} (T_a f)(x) = l$$

4. Inégalité des A.F.

Théorème

Soit f dérivable sur un intervalle non trivial ISi |f'| est majoré par un $k \in \mathbb{R}_+$, alors f est k-lipschitzienne

Démonstration :

Supposons que $f' \leq k$ pour $k \in \mathbb{R}_+$

Pour $x, y \in I$

Quitte al es renommer on peut supposer que $x \leq y$ et

- Si x = y, $|f(x) f(y)| = 0 \le 0 = k|x y|$
- Si x < y, en appliquant le TAF à $f|_{[x,y]}$, on obtient $c \in]x,y[$ tel que f(x)-f(y)=f'(c)(x-y) et on a alors

$$|f(x)-f(y)|=|f'(c)||x-y|\leq |x-y|$$

5. Application aux suites récurrentes

Propriété: Convergence par contractance

Soit f contractante sur un intervalle I, ie k-lipschitzienne avec k < 1 et telle que $f(I) \subset I$.

On suppose que f admet un point fixe $\lambda \in I$. Alors

- Ce point fixe est unique
- Toute suite définie par

$$egin{cases} u_0 \in I \ orall n \in \mathbb{N}, u_n = f(u_n) \end{cases}$$

est bien définie et converge vers λ

$$ullet \ orall n \in \mathbb{N}, |u_n - \lambda| \leq k^n |u_0 - \lambda|$$

Démonstration :

Excailbur 9.

1. Par l'absurde

Soit λ' un point fixe de f différent de λ

Alors
$$|\lambda-\lambda'|=|f(\lambda)-f(\lambda')|\leq k|\lambda-\lambda'|<|\lambda-\lambda'|$$
 car $|\lambda-\lambda'|>0$ et $k<1$

Contradiction

2. Raisonnement direct Soit λ' un point fixe de f.

$$|\lambda-\lambda'|=|f(\lambda)-f(\lambda')|\leq k|\lambda-\lambda'|$$

Donc,

$$(1-k)|\lambda - \lambda'| \le 0$$

Comme (1 - k) > 0

$$|\lambda - \lambda'| \le 0$$

Donc
$$|\lambda - \lambda'| = 0$$
 ie $\lambda = \lambda'$

Ainsi, il y a un unique point fixe par f

Soit $u_0 \in I$ et (u_n) définie par $(orall n \in \mathbb{N}, u_{n+1} = f(u_n))$

On a alors pour $n \in \mathbb{N}^*$,

$$|u_n-\lambda|=|f(u_{n-1})-f(\lambda)|\leq k|u_{n-1}-\lambda|\leq \cdots \leq k^n|u_0-\lambda|$$

Par récurrence immédiate, sauf si l'énoncé demande explicitement une recurrence!

Comme
$$|k|=k<1, k^n \underset{n
ightarrow +\infty}{\longrightarrow} 0$$

Par majoration, $u_n \underset{n \to +\infty}{\longrightarrow} \lambda$

Remarque

En général on montre la contractance avec l'inégalité précédente

Compléments

On dit qu'un intervalle est fermé s'il contient toutes ses bornes finies

(ex
$$[0,+\infty[,[a,b],\ldots)$$

Théorème : Existence du point fixe par complétude (Hors programme)

Si f est contractante sur un intervalle fermé I et $f(I)\subset I$, alors f admet un point fixe

Soit f défini sur in intervalle non trivial I possédant un point fixe λ intérieur a I dérivable en λ et vérifiant :

$$|f'(\lambda)| < 1$$

Alors il existe $V \in \mathcal{V}(\lambda)$ tel que $V \subset I$ et un $k \in [0,1[$ tel que

$$orall x \in V, |f(x) - \lambda| \leq k|x - \lambda|$$

De plus si $u_0 \in V$ et ($\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$) alors (u_n) est bien définie et vérifie :

$$\forall n \in \mathbb{N}, |u_n - \lambda| \leq k^n |u_0 - \lambda|$$

Donc en particulier $u_n o \lambda$

(λ est un point fixe attractif) excal 1

Application

Valeur approché de $\sqrt{2}$

Sasha:

Soit $x \in \mathbb{R} ackslash \{2\}$, tel que

$$f(x) = \frac{1}{2+x}$$

avec $\sqrt{2}-1$ comme point fixe

$$f'(x) = rac{-1}{(2+x)^2}$$
 $f'(\sqrt{2}-1) = -rac{1}{(1+\sqrt{2})^2}$

 $(1+\sqrt{2})$

Excalibur 11.

Fred:

Soit $x \in \mathbb{R} ackslash \{0\}$,

$$f(x) = \frac{x}{2} + \frac{1}{x}$$

$$f'(x) = rac{1}{2} - rac{1}{x^2}$$

$$f'(\sqrt{2}) = 0$$

Super convergence

III. Variation et extrema

Ici $f:I o\mathbb{R}$ dérivable avec I un intervalle non trivial

Théorème

(I DOIT ETRE UN INTERVALLE)
Alors

- f est constante $\Leftrightarrow f' = 0$
- f est croissante $\Leftrightarrow f' \geq 0$
- f est décroissante $\Leftrightarrow f' \leq 0$

et

 $f'>0 \Rightarrow f$ est strictement croissante $f'<0 \Rightarrow f$ est strictement décroissante

Démonstration :

Les 3 premières implications se déduisent directement de la définition de la dérivée.

Par exemple si $f\downarrow$ tous les taux d'accroissement sont positifs ou nuls, donc par passage a la limite dans ces inégalités larges, f'<0

Pour leur Réciproque et les dernières implications on utilise le TAF Par exemple :

2.

Supposons f'>0Soient $x,y\in I$, tq $x\leq y$.

• Si x=y alors f(x)=f(y) donc $f(x)\leq f(y)$

• Si x < y alors on applique le TAF à $f|_{[x,y]}$ (elle est dérivable sur [x,y] donc a fortiori continue sue [x,y] et dérivable]x,y[)

qui fournit un $c\in]x,y[$, tq f(y)-f(x)=f'(x)(y-x)

Or $f'(c) \geq 0$ et $y - x \geq 0$, Donc $f(y) \geq f(x)$

Dans les 2 cas $f(x) \leq f(y)$

Ainsi f est croissante.

- 3. Prendre -f dans le cas précédent -f est donc croissante, et f est donc décroissante
- 4. Si f' = 0, alors $f' \le 0$ et $f' \ge 0$ donc f est décroissante et croissante, donc elle est constante.
- 5. Supposons $f' \geq 0$, En reprenant la preuve ci dessus $(f' \geq 0)$ En prenant x < y, on obtiens un $c \in]x,y[$ tq

$$f(y) - f(x) = f'(c)(y - x) > 0$$

Donc

Ainsi f est strictement croissante

6. Supposons f'<0, On applique cela à -f et donc f est strictement décroissante

Remarque

Pour la stricte monotonie les conditions ne sont pas nécessaires Contre-exemple $x\mapsto x^3$ est strictement croissante sur $\mathbb R$ mais f'(0)=0.

Propriété

Si $f' \geq 0$ et s'annule en un nombre fini de points alors f est strictement croissante

Démonstration :

A faire pour un point d'annulation

Définition maximum et minimum

• f admet un maximum (resp. min) (global) en a ssi

$$f(a) = max(f(I))$$

- f admet un maximum (resp. min) local en a ssi il existe $V \in \mathcal{V}(a)$ tq $f|_V$ admette un maximum (resp. min)
- f admet un extremum ssi f admet un maximum ou un minimum (globaux ou locaux)
- Un extremum est dit strict ssi la valeur f(a) n'est atteinte qu'en a

Exemple

 $x\mapsto x-x^2$ défini sur $\mathbb R$ admet un seul extremum (en $\frac{1}{2}$) qui est un maximum global strict

Rappel

L'existence d'un maximum global et d'un minimum global est assuré lorsque f est continue sur un segment.

Remarque

Pas de bonne CNS d'extremalité

Théorème : CN d'extremum local

Soit f définie sur I non trivial Si f admet un extremum local en un point a intérieur à I et f est

dérivable en a, alors f'(a)

Démonstration:

Supposons que f admette un extremum local en a un point intérieur à I, et qu'elle soit dérivable en a.

Il existe $V\in \mathcal{V}(a)$ tel que $V\subset I$ $f|_V$ admette un extremum global. Comme $V=[a-\eta,a+\eta]$ avec $\eta>0$, on est dans les conditions su premier lemme de la section II, qui assure que $(f|_V)'(a)=0$ ie f'(a)=0.

Remarque

ATTENTION : cette condition nécessaire n'est pas suffisante Contre-exemple : $f:x\mapsto x^3$

Remarque

Faux si a n'est pas intérieur Exclalibur 5

Remarque

Une recherche d'extremum se fait en 2 temps :

- Celui des extremas intérieurs
- Celui des extremas aux bords

Définition

Un tel point annulant la dérivé de f est appelé un point critique

Lemme

Si $g:I o\mathbb{R}$ est continue et g(a)>0, il existe $\eta>0$ tq $g|_{I\cap[a-\eta,a+\eta]}>0$

Démonstration:

Excal 12

Soit $g:I\to\mathbb{R}$ continue et $a\in I$ tq g(x)>0Comme $\frac{g(a)}{2}>0$, par définition de la continuité en a il existe $\alpha>0$ tel que

$$orall x \in I \cap [a-lpha,a+lpha], |g(x)-g(a)| \leq rac{g(a)}{2}$$

Donc,

$$orall x \in I \cap [a-lpha,a+lpha], g(x) \geq g(a) - g\left(rac{a}{2}
ight) > 0$$

Théorème: CS d'extremum local

Soit f de classe C^2 sur I, (ie 2 fois dérivables et de dérivée seconde continue) et soit $a \in I$.

Si a est un point critique de f et f''(a) < 0 (resp. f''(a) > 0) alors f admet un maximum (resp. minimum) local strict en a.

Démonstration :

Supposons f'(a)=0 et f''(a)<0, f'' est continue sur I et f''(a)<0 donc il existe $V\in \mathcal{V}(a)$ tq $f''|_{I\cap V}<0$

RATTRAPER

IV Fonctions convexes

1. Remarques préliminaires (Lemmes)

Lemme 1

$$orall x,y\in \mathbb{R},x\leq y\Rightarrow [x,y]=\{(1-\lambda)x+\lambda y;\lambda\in [0,1]\}$$

Démonstration

Soit $x,y\in\mathbb{R}$,

tel que $x \leq y$,

On raisonne par double inclusion :

ullet " \supset " Soit $\lambda \in [0,1]$, Alors

$$(1-\lambda)x+\lambda y=x+\lambda(y-x)\geq x$$

et

$$(1-\lambda)x + \lambda y = y - (1-\lambda)(y-x) \leq y$$

Donc,

$$(1-\lambda)x+\lambda y\in [x,y]$$

Ainsi,

$$\{(1-\lambda)x + \lambda y; \lambda \in [0,1]\} \subset [x,y]$$

"⊂"Soit,

$$f: egin{cases} [0,1]
ightarrow \mathbb{R} \ \lambda \mapsto (1-\lambda)x + \lambda y \end{cases}$$

C'est une fonction polynôme donc continue et par le TVI f([0,1]) est un intervalle donc est convexe

Or
$$f(0) = x$$
 et $f(1) = y$
Donc

$$[x,y] \subset f([0,1]) = \{(1-\lambda)x + \lambda y; \in [0,1]\}$$

Ainsi

$$[x,y]=\{(1-\lambda)x+\lambda y;\lambda\in[0,1]\}$$

Lemme 2

Soit g une fonction affine sur \mathbb{R} , Alors

$$orall x,y \in \mathbb{R}, orall \lambda \in [0,1], g((1-\lambda)x+\lambda y)=(1-\lambda)g(x)+\lambda g(y)$$

Démonstration : prendre $g: x \mapsto ax + b$

2. Définitions et généralités

Soit $f: I \to \mathbb{R}$, avec I un intervalle non trivial Excalibur 13.

Définition

$$orall x,y\in I, orall \lambda\in [0,1], f((1-\lambda)x+\lambda y)=(1-\lambda)f(x)+\lambda f(y)$$

Remarque

On voit que cela (caractérisation) équivaut à

$$orall x, y \in I, orall \lambda \in [0,1], (x < y \Rightarrow f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y))$$

Démonstration:

Supposons que

$$orall x, y \in I, orall \lambda \in [0,1], (x < y \Rightarrow f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y))$$

est vérifiée

Soit $x,y\in I$ et $\lambda\in[0,1]$

Si $x \leq y$, On a l'inégalité de la convexité

Si x = y, cette inégalité est triviale

Si $x \geq y$, on applique la caractérisation à x,y et $\mu = 1 - \lambda$

$$f((1-\mu)y+\mu x) \leq (1-\mu)f(y) + \mu f(x)$$

ie

$$f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y)$$

Conclusion : Pour montrer que f est convexe on suppose que x < y

Définition

f est concave ssi f est non convexe

Exercice

montrer avec cette caractérisation que $|\cdot|$ est convexe par disjonction de cas

Explication de la terminologie

Une partie de \mathbb{R}^2 est une partie C tq $orall A, B \in C, [AB] \subset C$:

Excalibur 14 IMPORTANT

f est convexe ssi son épigraphe :

$${\cal E}_f = \{(x,y \in \mathbb{R} | x \in I ext{ et } y \geq f(x))\}$$

est convexe

Excalibur 15

$$\sum_{i=1}^n \lambda_i f(x_i) = ext{"Barycentre des images"}$$

 $\lambda_1,\ldots,\lambda_n\in[0,1]$ (\mathbb{R}_+ suffit) tq

$$\sum_{i=1}^n \lambda_i = 1$$

$$x = \sum_{i=1}^n \lambda_i x_i$$

Barycentre des x_i

Théorème de Jensen

Supposons que f est convexe

$$orall n \in \mathbb{N}, orall (x_i)_{i=1}^n \in I^n, orall (\lambda_i)_{i=1}^n \in \mathbb{R}^n_+, \left(\sum_{i=1}^n \lambda_i = 1 \Rightarrow f\left(\sum_{i=1}^n \lambda_i x_i
ight) \leq \sum_{i=1}^n$$

Démonstration :

On procède par une démonstration par récurrence

$$A_n: "orall n \in \mathbb{N}, orall (x_i)_{i=1}^n \in I^n, orall (\lambda_i)_{i=1}^n \in \mathbb{R}^n_+, \left(\sum_{i=1}^n \lambda_i = 1 \Rightarrow f\left(\sum_{i=1}^n \lambda_i x_i
ight)$$

Initialisation:

Pour $x \in I$,

$$f(1x) = f(x) \le f(x) = 1f(x)$$

Donc A_1 est vraie

Hérédité

Soit $n\in\mathbb{N}^*$ tel que A_n , Soit $x_1,\dots,x_{n+1}\in I$ et $\lambda_1,\dots,\lambda_{n+1}\in\mathbb{R}_+$ tel que

$$\sum_{i=1}^{n+1} \lambda_i = 1$$

Si $\lambda_{n+1}=1$ alors $\lambda_1=\dots=\lambda_n=0$ et l'inégalité s'écrit $f(1x_n)\leq 1f(x_n)$ donc est vérifiée

Si $\lambda_{n+1} < 1$

Alors

$$S = \sum_{i=1}^n \lambda_i > 0$$

Alors

$$\sum_{i=1}^{n+1} \lambda_i x_i = S\left(\sum_{i=1}^n \left(rac{\lambda_i}{S}
ight) x_i
ight) + \lambda_{n+1} x_{n+1}$$

et

$$\sum_{i=1}^{n+1} \lambda_i f(x_i) = S\left(\sum_{i=1}^n \left(rac{\lambda_i}{S}
ight) f(x_i)
ight) + \lambda_{n+1} f(x_{n+1})$$

Comme

$$orall i \in \llbracket 1, n
rbracket, rac{\lambda_i}{S} \geq 0 ext{ et } \sum_{i=1}^n rac{\lambda_i}{S} = 1$$

Par hypothèse de recurrence A_n ,

$$f\left(\sum_{i=1}^n \left(rac{\lambda_i}{S}
ight)
ight) \leq \sum_{i=1}^n \left(rac{\lambda_i}{S}
ight) f(x_i)$$

Par définition de la convexité de f,

Comme $S, \lambda_{n+1} \geq 0$ et $S + \lambda_{n+1} = 1$,

Alors

$$f\left(\sum_{i=1}^{n+1}\lambda_ix_i
ight)=f\left(S\left(\sum_{i=1}^n\left(rac{\lambda_i}{S}
ight)x_i
ight)+\lambda_{n+1}x_{n+1}
ight)$$

$$0 \leq Sf\left(\sum_{i=1}^n \left(rac{\lambda_i}{S}
ight) x_i
ight) + \lambda_{n+1} f(x_{n+1})$$

$$0 \leq S \sum_{i=1}^n igg(rac{\lambda_i}{S}igg) f(x_i) + \lambda_{n+1} f(x_{n+1}) = \sum_{i=1}^{n+1} \lambda_i f(x_i).$$

Ainsi, on a prouvé A_{n+1}

Par récurrence le théorème est prouvé.

Remarque

Dans l'énoncé de Jensen, il y a implicitement que :

Lemme

Si $x_1,\ldots,x_n\in I$ et $\lambda_1,\ldots,\lambda_n\in\mathbb{R}_+$ avec

$$\sum_{i=1}^n \lambda_i = 1$$

Alors

$$\sum_{i=1}^n \lambda_i x_i \in I$$

Qui se démontre par associativité du barycentre en effectuant l'hérédité par la convexité de I. (1 ere égalité de l'hérédité)

Remarque

lci on utilise la définition de convexité sous la forme équivalente.

$$orall x_1, x_2 \in I, orall \lambda d_1, \lambda_2 \in \mathbb{R}_+, (\lambda_1 + \lambda_2 = 1 \Rightarrow f(\lambda_1 x_1 + \lambda_2 + x_2) \leq \ldots)$$

Application

Inégalité arithmético-géométrique

$$orall n \in \mathbb{N}^*, orall (a_i)_i^n \in (\mathbb{R}_+)^n, \left(\prod_{i=1}^n a_i
ight)^{rac{1}{n}} \leq rac{1}{n} \left(\sum_{i=1}^n a_i
ight)^n$$

Rappel

Cas
$$n=2$$
,
On a $(\sqrt{a_1}-\sqrt{a_2})^2\geq 0$
Donc $rac{a_1+a_2}{2}\geq \sqrt{a_1a_2}$

Démonstration générale :

On admet pour l'instant la concavité de ln

Soit
$$a_1,\ldots,a_n\in\mathbb{R}_+$$
,

SI l'un d'entre eux est nul le membre de gauche est nul et l'inégalité est triviale

Sinon, comme \ln est strictement croissante, l'inégalité voulue équivaut à :

$$rac{1}{n}\sum_{i=0}^n \ln \left(a_i \leq \ln \left(rac{1}{n}\sum_{i=0}^n a_i
ight)
ight)$$

qui est vraie par l'inégalité de Jensen appliqué à la fonction $-\ln$ aux points a_1, \ldots, a_n avec pour coefficients $\frac{1}{n}$.

On peut caractériser la convexité géométriquement

Théorème convexité par croissance des pentes

excalibur 16

Si f est convexe, alors pour tout $x, y, y \in I$ tels que x < y < z, on a

$$rac{f(y)-f(x)}{y-x} \stackrel{ ext{1.}}{\leq} rac{f(z)-f(x)}{z-x} \stackrel{ ext{2.}}{\leq} rac{f(z)-f(y)}{z-y}$$

Réciproquement

- Si pour tous $x,y,z\in I$, tq x < y < z l'inégalité 1. est vérifiée, alors f est convexe
- La même pour l'inégalité 2.

Démonstration :

Soit $x, y, z \in I$ to x < y < z

Par le lemme 1, il existe $\lambda \in]0,1[$ tel que

$$y = (1 - \lambda)x + \lambda z$$

Par convexité de f:

$$rac{f(y)-f(x)}{y-x} \leq rac{(1-\lambda)f(x)+\lambda f(z)-f(x)}{((1-\lambda)x+\lambda z)-x} = rac{f(z)-f(x)}{z-x}$$

Ainsi 1. est prouvé

Le premier point de la réciproque en remontant cette argumentation :

Supposons 1. pour tous x, y, z convenables

Soit $x, z \in I$, tels que x < z,

et $\lambda \in [0,1]$

On note $y = (1 - \lambda)x + \lambda z$

Si $\lambda \in \{0,1\}$ On a trivialement $f(y) \leq (1-\lambda)f(x) + \lambda f(z)$. Si $\lambda \in]0,1[$ par le 1.

$$rac{f(y)-f(x)}{y-x} \leq rac{f(z)-f(x)}{z-x} \ rac{f(z)-f(x)}{z-x} = rac{((1-\lambda)f(x)+\lambda f(z))-f(x)}{((1-\lambda)x+\lambda z)-x} = rac{((1-\lambda)f(x)+\lambda f(z))-}{y-x}$$

On multiplie par y-x>0 et on ajoute f(x), ce qui donne donne

$$f(y) \le (1 - \lambda)f(x) + \lambda f(z)$$

Ainsi f est convexe

Exercice

Montrer l'inégalité 2. et la réciproque de manière analogue

Reformulation du Théorème

f est convexe ssi

Pour tout $a \in I$ la fonction, $T_a f$ est croissante sur $I \setminus \{a\}$

Démonstration en exo

Propriété

Supposons f convexe

Pour une sécante en deux points à son graphe, le graphe est :

- En dessous de la sécante entre les deux points d'intersection
- Au dessus de la sécante a l'extérieur des deux points d'intersection

Démonstration en exo

Complément Hors programme

Définition de stricte convexité

Lorsque

$$orall x
eq y, orall \lambda \in]0,1[,f((1-\lambda)x+\lambda y)<(1-\lambda)f(x)+\lambda f(y)$$

Exercice

Montrer qu'une fonction strictement convexe admet au plus un minimum local, qui est depuis lorsqu'il existe, strict et global.

3. Convexité et régularité

Propriété

Si f (définie sur I) est dérivable alors elle est convexe ssi f' est croissante

Démonstration :

Supposons $f:I \to \mathbb{R}$ dérivable,

Supposons que f est convexe,

Soient a < b deux points de I.

Soit $x \in]a,b[$,

Par croissance des pentes,

$$(T_af)(x) \leq rac{f(b)-f(a)}{b-a}$$

En faisant tendre x vers a^+ on a

$$f'(a) \leq rac{f(b) - f(a)}{b - a}$$

et aussi pour $x \in]a,b[$,

$$\frac{f(b)-f(a)}{b-a} \leq (Taf)(x)$$

Quand $x \rightarrow b$,

$$\frac{f(b) - f(a)}{b - a} \le f'(b)$$

Ainsi

$$f'(a) \leq f'(b)$$

Comme $\forall a,b \in I, a < b \Rightarrow f'(a) \leq f'(b)$ Alors f' est croissante

Supposons que f' soit croissante Soient $x,y\in I$ tq $x\leq y$ On pose,

$$g: egin{cases} [0,1]
ightarrow \mathbb{R} \ t \mapsto (1-t)f(x) + tf(y) - f((1-t)x + ty) \end{cases}$$

Par composition d'une fonction affine avec f et CL de cette composée avec une fonction affine, g est dérivable.

On a, pour $t \in [0,1]$,

$$g'(t) = -f(x) + f(y) + (-x + y)f'((1 - t)x + ty)$$
 $g'(x) = (f(y) - f(x)) + (x - y)f'(x + t(y - x))$

Comme y-x>0, $t\mapsto x+t(y-x)$ est croissante et, par composition avec f' croissante (hypothèse) multiplication par x-y<0 et addition d'une constante, g' est décroissante

Comme g(0) = g(1) = 0

et g est dérivable sur [0,1] donc a fortiori

Continue sur [0,1]

Dérivable sur]0,1[

Appliquer le théorème de Rolle qui nous dit qu'il existe $c\in]0,1[$ tq g'(c)=0

Donc par croissance de q':

$$egin{cases} orall t \in [0,c], g'(t) \leq 0 \ orall t \in [c,1], g'(t) \geq 0 \end{cases}$$

On a donc le tableau de variation : excali 17.

Propriété

Soit f dérivable sur I,

Alors f est convexe ssi son graphe est au dessus de ses tangentes

Idée Démonstration :

Exo

Excali 18

 $\bullet \Rightarrow :$

Supposons f convexe,

Soit b < a,

Pour h < 0 "petit",

$$(T_a f)(x) \leq (T_a f)(a+h)$$

par passage a la limite a droite quand $h o 0^-$

$$(T_a f)(b) \leq f'(a)$$

Comme b-a<0,

$$f(b) - f(a) \ge f'(a)(b - a)$$

Donc

$$f(b) \ge f(a) + f'(a)(b-a)$$

De même pour b > a

Ainsi G_f est au dessus de ses tangentes

• \Leftarrow : Supposons \mathcal{G}_f au dessus de ses tangentes Soient $a,b \in I$ tq a < b

Excal 19

On a
$$f'(a) \leq rac{f(b) - f(a)}{b - a} \leq f'(b)$$

Propriété

Soit f deux fois dérivable sur I,

Alors f est convexe ssi $f'' \ge 0$

Démonstration

Comme *I* est un intervalle,

$$f'' \geq 0 \Leftrightarrow f' \uparrow$$

Propriété

Soit f dérivable sur I, Alors f est convexe ssi f' est strictement croissante

Propriété

Soit f deux fois dérivable sur I, Si f''>0 Alors f est strictement convexe

Culture

$$orall x\in \mathbb{R}_+, \Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}\,dt$$
 $\Gamma(1)=1, \Gamma(2)=2, \Gamma(3)=3!$

Donc

$$orall n \in \mathbb{N}, \Gamma(n+1) = n!$$

Alors \ln est le prolongement de \cdot ! sur \mathbb{R} $\ln \Gamma$ est convexe (cela implique que Γ l'est) On dit que Γ est logarithmiquement convexe.

V. Fonctions de classe \mathcal{C}^k

Soit
$$f:I o\mathbb{R},$$
 et $k\in\mathbb{N}\cup\{\infty\}$

Définition

Pour $k \in \mathbb{N}$,

On dit que f est de classe C^k sur I

ssi

elle est k fois dérivable sur I

et $f^{(k)}$ est continue sur I

On dit que f est de classe C^{∞} sur I

ssi

elle est indéfiniment dérivable ce qui n'équivaut pas a ce que f soit classe \mathcal{C}^k pour tout $k\in\mathbb{N}$

On note $\mathcal{C}^k(I) (= \mathcal{C}^k_{\mathbb{R}}(I))$

l'ensemble des fonctions de classe C^k sur I.

Remarque

On dit que f est de classe \mathcal{C}^k sur I ou $f \in \mathcal{C}^k(I)$

Extension

Si $f:D_f o\mathbb{R}$,

On dira qu'elle est de classe C^k sur D_f

ssi

elle est k fois dérivable et sa k^{ieme} dérivée est continue sur D_f

lorsque $k \in \mathbb{N}$

et

de classe \mathcal{C}^{∞}

ssi

elle est indéfiniment dérivable sur D_f

Exemple

 $egin{aligned} \exp, \cos, \sin, \ch, \sh \in \mathcal{C}^\infty(\mathbb{R}) \ \ln \in \mathcal{C}^\infty(\mathbb{R}_+^*) \end{aligned}$

Rappel

On a convenu que $f^{(0)}=f$ Donc $C^0(I)$ est l'ensemble des fonctions continues sur I

Remarque

Si
$$f \in \mathcal{C}^k(I)$$
 et $p \in \llbracket 0, k-1
rbracket$

Théorèmes: Opérations

 $\mathcal{C}^k(I)$ est stable par CL et produit. De plus si $f\in\mathcal{C}^k(I)$ ne s'annule pas sur I alors $\frac{1}{f}\in\mathcal{C}^k(I)$

Démonstrations :

La formule pour la combinaison linéaire est évidente par récurrence immédiate

Remarque

De plus si $f,g\in\mathcal{C}^k(I)$ et $\lambda,\mu\in\mathbb{R}$, Pour tout $p\in\llbracket 0,k
rbracket$,

$$(\lambda f + \mu g)^{(p)} = \lambda f^{(p)} + \mu g^{(p)}$$

Formule de Leibniz

Soit $f,g\in\mathcal{C}^k(I)$, Soit $p\in\llbracket 0,k
rbracket$,

$$(fg)^{(p)} = \sum_{i=0}^p inom{p}{i} f^{(i)} g^{(p-i)}$$

Exercice

Prouver la formule de Leibniz en copiant la preuve de la formule du binôme (la seule subtilité est la formulation de l'assertion de récurrence)

Exercice

On pose $f = \exp$ et $g: x \mapsto x^2 + x + 1$,

Elles sont toutes les deux de classe \mathcal{C}^{∞} sur \mathbb{R} ,

Donc par produit, $h \in \mathcal{C}^{\infty}(\mathbb{R})$,

Soit $n \in \mathbb{N}$,

On calcule $h^{(n)}$ par la formule de Leibniz

$$h^{(n)} = \sum_{k=0}^n inom{n}{k} f^{(n-k)} g^{(k)} = f \sum_{k=0}^2 inom{n}{k} g^{(k)}$$

(Avec la convention usuelle $\binom{n}{k} = 0$ pour k > n)

Ainsi pour $x \in \mathbb{R}$,

$$\ln^{(n)}(x) = e^x \left((x^2 + x + 1) + n(2x + 1) + rac{n(n-1)}{2} imes 2
ight) \ \ \ln^{(n)}(x) = e^x (x^2 + (2n+1)x + (n^2+1))$$

Corollaire

Les fonctions polynômes et rationnels sont de classe \mathcal{C}^{∞} .

Démonstration :

 $x\mapsto x$ et $x\mapsto 1$ sont clairement de classe \mathcal{C}^∞

Par produit les $x \mapsto x^n$ le sont,

Par CL les fonctions polynômes le sont.

Par quotient les fonction rationnelles le sont.

Corollaire du Corollaire

 $\ln \in \mathcal{C}^{\infty}(\mathbb{R}_{+}^{*})$ puisque sa dérivée est une fonction rationnelle.

Théorème

Si
$$f\in\mathcal{C}^k(I)$$
, $g\in\mathcal{C}^k(J)$ et $f(I)\subset J$
Alors $g\circ f\in\mathcal{C}^k(I)$

Théorème : Corollaire des précédents

Les fonctions :

- polynômes
- trigonométriques
- rationnelles trigonométriques
- polynômes trigonométriques
- polynômes trigonométriques hyperbolique
- rationnelles trigonométriques hyperbolique

sont de classe C^{∞}

Théorème

Supposons $k\geq 1$, si $f\in \mathcal{C}^k(I)$ et f' ne s'annule pas sur I Alors $f^{-1}\in \mathcal{C}^k(f(I))$

Exemple

 $rccos, rcsin \in \mathcal{C}^{\infty}(]-1,1[)$

Propriété

$$orall lpha \in \mathbb{R}, (x \mapsto x^lpha) \in \mathcal{C}^\infty(\mathbb{R}_+^*)$$

Remarque

Certaines se prolongent en fonction de classes \mathcal{C}^{∞} sur des intervalles plus grands, mais attention : F est continue sur \mathbb{R}_+ mais pas de classe \mathcal{C}^1 sur \mathbb{R}_+

Théorème : Prolongement de classe \mathcal{C}^k

Soit $f \in \mathcal{C}^k(I \backslash \{a\})$,

Si pour tout $0 \le p \le k$, $f^{(p)}$ admet une limite finie Alors f admet un unique prolongement de classe C^k

Exercice Classique

$$x\mapsto x^3\sinrac{1}{x}$$

se prolonge en fonction de classe \mathcal{C}^1 sur $\mathbb R$

Cette fonction est-elle de classe C^2

Exercice Classique

$$f: egin{cases} \mathbb{R} &
ightarrow \mathbb{R} \ x \mapsto egin{cases} 0 & ext{si } x \leq 0 \ e^{rac{1}{x^2}} & ext{si } x > 0 \end{cases}$$

Est-elle de classe C^{∞} sur \mathbb{R} ?

VI. Fonctions à valeurs complexes 1. Dérivabilité

Soit $f:I\to\mathbb{C}$, avec I un intervalle non trivial.

Définition de la dérivabilité en $a \in I$

f est dérivable en a ssi $(T_a f)$ admet une limite finie en a $(T_a f)$ est complexe

Proposition

f est dérivable en a ssi $\mathrm{Re}f$ est dérivable en a et $\mathrm{Im}f$ est dérivable en a et si c'est le cas,

$$f'(a) = (\mathrm{Re}f)'(a) + i(\mathrm{Im}f)'(a)$$

Théorème : Opération sur les fonctions dérivables et les compositions "possibles"

Revoir le chapitre sur les primitives

Remarque

Le TFR n'existe pas

Remarque

Attention Rolle et l'égalité des accroissements finis ne sont plus "vrais"

Exemple

$$f: egin{cases} [0,1]
ightarrow \mathbb{C} \ t \mapsto e^{i2\pi t} \end{cases}$$

f est bien :

- Continue sur [0,1]
- Dérivable sur]0,1[Car c'est la restriction d'une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} et f(0)=f(1) et

$$orall t \in]0,1[,f'(t)=i2\pi te^{i2\pi t}
eq 0$$

Car le module est 2π .

Cependant l'inégalité des accroissements finis subsiste :

Théorème : Inégalité des accroissements finis complexe

Si f est dérivable sur I,

Soit $x \in I$, et pour un certain $k \in \mathbb{R}_+$,

Si
$$|f'(x)| \leq k$$

Alors f est k-lipschitzienne

Remarque

En appliquant l'inégalité réelle à $\operatorname{Re} f$ et $\operatorname{Im} f$,

$$|\mathrm{Re}(f(x)) - \mathrm{Re}(f(y))| \le k|x - y|$$

$$|\mathrm{Im}(f(x)) - \mathrm{Im}(f(y))| \leq k|x-y|$$

$$|f(x)-f(y)|=\sqrt{|\ldots|^2+|\ldots|^2}\le$$

2. Fonction complexes de classe \mathcal{C}^k

Soit $k \in \mathbb{N} \cup \{\infty\}$

Définition

Identique a celle des fonctions réelles,

Notation : $\mathcal{C}^k_{\mathbb{C}}(I)$

Propriété

$$f\in\mathcal{C}^k_\mathbb{C}(I)\Leftrightarrow \mathrm{Re}f,\mathrm{Im}f\in\mathcal{C}^k_\mathbb{R}(I)$$

Conséquence

Les fonctions polynômes ou rationnelles à coefficient complexes (à variable réelle) sont de casse \mathcal{C}^{∞} .

Composition

Les résultats du début du chapitre sur les primitives s'étendent facilement aux fonctions de classe \mathcal{C}^k

Ils sont rappelés dans le poly de ce chapitre. (En particulier $(\exp \circ f)' = (\exp \circ f)f'$) (Et les fonctions puissances sont de classe \mathcal{C}^{∞})

Théorème de prolongement de classe \mathcal{C}^k

Il s'énonce de la même manière que pour ${\mathbb R}$