

California Dreamin'

An analysis on housing in California

Introduction

Research Question (?)

How can we predict the **expected value of an house** basing on the **features of the neighbourhood**?

Analysis of the structure and the variability of the sample

Selecting a **prediction model** assessing several **supervised classification methodologies**

Clustering

Principal Components Analysis

Supervised Classification

Data Description

Sample and Data Selection

Source and dimension of the dataset and attributes of the observations

Source

Kagle dataset based on 1990 census on housing in California

observations

 20.640^{1}

Missing values

(artificially added)

For each observation the following attributes:

- Longitude
- Latitude
- Housing median age
- Total rooms
- Total bedrooms

- Population
- Households median income
- Median house value
- Ocean proximity (artificially added)

Data Manipulation and Selection

Sample and Data Selection

Selection and manipulation process

Step 1

Cleaning the dataset from missing values

Final number of observations: 20.433

Step 2

Log-transformed the values of the most skewed attributes

Step 3

Scaled values for all the observations and cathegorized the target attribute

Agenda

Sample and Data Selection

Clustering

Principal Components Analysis

Supervised Classification

Hierarchical Clustering

2

Clustering

Dendogram representation

Silhouette evaluation

K-Means Clustering

2

Clustering

K-Means cluster representation

Number of clusters

Silhouette evaluation

Average Silhouette Width

0,23

Clustering

Principal Components Analysis

Supervised Classification

Optimal number of components

Screeplot

Cumulative PVE

3

PCA

Principal components representation

Biplot

Coreplot

3

PCA

Clustering

Principal Components Analysis

Supervised Classification

Main Classifiers Overview

Cross Validation Methodology and Evaluation Matrix

4 Supervised Classification

Cross validation

Evaluation matrix

Metric	Formula
True positive rate, recall	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$
False positive rate	$\frac{\text{FP}}{\text{FP+TN}}$
Precision	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$
Accuracy	$\frac{\text{TP+TN}}{\text{TP+TN+FP+FN}}$
F-measure	$\frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$

Supervised Classification

Performance scores and ranking of the main classifiers

- Gradient Boosting is recognized as the best-fitting classifier
- These the optimal hyperparameters
 - Learning rate: 0.01
 - Number of estimators: 300
 - Max depth: 5

Clustering

Principal Components Analysis

Supervised Classification

Further research

More recent data and/or extension of the analysis to other geographical areas (e.g. robustness in other States of the U.S.)

Different and more complex methodologies for the supervised classification

Employment of **more explanatory attributes** for the observations in the prediction model

References

- Boehmke, Bradley; Greenwell, Brandon (2019). Hands-On Machine Learning with R. Chapman & Hall.
- James, G., Witten, D., Hastie, T., Tibshirani, R. (2021). An Introduction to Statistical Learning. Springer Texts in Statistics. Springer, New York, NY
- Pace, R. Kelley, and Ronald Barry. "Sparse spatial autoregressions."
 Statistics & Probability Letters 33.3 (1997): 291-297.