Queens' College Cambridge

Computation Theory

Alistair O'Brien

Department of Computer Science

April 17, 2021

Contents

1	Register Machines		
	1.1	Comp	utable Functions
	1.2	Partia	l Recursive Functions
		1.2.1	Primitive Recursion
		1.2.2	Minimization
	1.3	Univer	rsal Register Machines
		1.3.1	Program Encodings
		1.3.2	Universal Register Machine U
	1.4	Decida	ability
		1.4.1	Register Machine Decidability
		1.4.2	The Halting Problem
2 Turing Machines		achines 18	
	2.1	0	g Machines
	2.2	_	utable Functions
		-	Church-Turing Thesis
3	The	Lamb	oda-Calculus 21
•	3.1		K
	0.1	3.1.1	α -Equivalence
	3.2		atics
	J.∠	3.2.1	β -Reduction and Equivalence
		3.2.1 $3.2.2$	β -Normal Forms
	3.3	-	ρ -Normal Points
	5.5	3.3.1	λ -Computable Functions
		3.3.1	1
			,
		222	r
		3.3.2	Partial Recursion
			3.3.2.1 Fixed Point Combinator Y
			3.3.2.2 Primitive Recursion and Minimization 30

1 Register Machines

Definition 1.0.1. (Register Machine) A register machine M is the pair (\mathcal{R}, P) where $\mathcal{R} \subseteq \mathcal{R}$ and \mathcal{R} is finite, and P is a program, a total function $P : \mathcal{L}_{\leq n} \to \mathcal{I}(\mathcal{R})$, where $I \in \mathcal{I}(\mathcal{R})$ is the set of \mathcal{R} -register instructions, defined by the grammar:

$$\begin{array}{ccc} I & ::= R^+ \to L \\ & \mid R^- \to L_1, L_2 \\ & \mid \text{ HALT} \end{array}$$

where $R \in \mathcal{R}, L \in \mathcal{L}$, the set of labels.

• Programs *P* are often defined graphically.

Definition 1.0.2. (Configuration) A register machine *configuration* for the machine $M = (\mathcal{R}, P)$ is the pair (L, s) where $s : \mathcal{R} \to \mathbb{N}$ is a \mathcal{R} -store. The set of \mathcal{R} -configurations is denoted $\mathscr{C}(\mathcal{R})$.

- **Notation**: We write $R_i = x$ (in the configuration c) to denote c = (L, s) with $s(R_i) = x$.
- The initial configuration is defined by $c_0 = (L_0, s)$ where s is the *initial* store.

Definition 1.0.3. (Transition Relation) The transition relation on the register machine $M = (\mathcal{R}, P)$, denoted $\longrightarrow_M : \mathscr{C}(\mathcal{R}) \longleftrightarrow \mathscr{C}(\mathcal{R})$, is inductively defined by

$$(\mathrm{Add}) \frac{P(L) = R^+ \to L'}{(L,s) \longrightarrow_M (L',s' \cup \{(R,s(R)+1)\})}$$

$$(Sub1) \frac{P(L) = R^- \to L', L'' \qquad s(R) \neq 0}{(L,s) \longrightarrow_M (L',s' \cup \{(R,s(R)-1)\})} (Sub2) \frac{P(L) = R^- \to L', L'' \qquad s(R) = 0}{(L,s) \longrightarrow_M (L'',s)}$$

where $s' = s \setminus \{R, s(R)\}.$

• Notation: \longrightarrow_M^* denotes a sequence of transitions, the reflexive transitive closure of \longrightarrow_M .

Definition 1.0.4. (Computation) A computation of a register machine M is a sequence of transitions (infinite or finite)

$$c_0 \longrightarrow_M c_1 \longrightarrow_M \cdots$$

where $c_0 \in \mathcal{C}(\mathcal{R})$ is the *initial* configuration.

Definition 1.0.5. (Halting) A configuration $c = (L, s) \in \mathcal{C}(\mathcal{R})$ is said to be halting if P(L) = HALT, a proper halt, or $L \notin \mathcal{L}_{\leq n}$, an erroneous halt.

- For a finite computation $c_0 \longrightarrow_M^* c_m \not\longrightarrow_M$, c_m is a halting configuration by definition of \longrightarrow_M .
- A register machine M can be modified (without effecting the computation) to remove erroneous halts by adding additional HALT instructions.

Definition 1.0.6. (Halting Computation) A halting computation of a register machine M, denoted $(x_0, \ldots, x_n) \downarrow_M (y_0, \ldots, y_n)$, where $\downarrow_M : \mathbb{N}^n \longrightarrow \mathbb{N}^n$ is defined as

$$(x_0,\ldots,x_n) \downarrow_M (y_0,\ldots,y_n) \iff (L_0,s_0) \longrightarrow^* (L,s) \not\longrightarrow,$$

where $s_0(R_i) = x_i$ and $s(R_i) = y_i$ are \mathcal{R} -stores and $|\mathcal{R}| = n$.

• Arbitrary I/O convention: all other registers are initially set to 0

1.1 Computable Functions

Definition 1.1.1. (Register Machine Computable) $f \in \mathcal{P}[\mathbb{N}^n \to \mathbb{N}]$ is said to be register machine computable if there exists a register machine $M = (\mathcal{R}, P)$ such that $\{R_0, R_1, \dots, R_n\} \subseteq \mathcal{R}$ and,

$$\forall (x_1,\ldots,x_n) \in \mathbb{N}^n, y \in \mathbb{N}.(0,x_1,\ldots,x_n,0,\ldots) \downarrow_M (y,0,\ldots) \iff f(x_1,\ldots,x_n) = y.$$

- Examples:
 - TODO
- Derived instruction: $R \leftarrow R'$, copies R' into R:

• Computable functions $f \in \mathcal{P}[\mathbb{N}^n \to \mathbb{N}]$ with register machine $F = (\mathcal{R}_f, P_f)$ results in derived instruction, denoted $Y \leftarrow f(X_1, \dots, X_n)$, given by

$$\mathtt{START} \longrightarrow R_0, R_1, \dots, R_n \leftarrow 0, X_1, \dots, X_n \longrightarrow F \longrightarrow Y, R_0 \leftarrow R_0, 0 \longrightarrow \mathtt{HALT}$$

Calling Convention: All contents of registers Y, \mathcal{R}_f (if used) are copied by the caller before the derived instruction is executed. Registers $\mathcal{R}_f \setminus \{R_0, \ldots, R_n\}$ are zeroed by the caller.

Definition 1.1.2. (Composition) The composition of $f \in \mathcal{P}[\mathbb{N}^n \to \mathbb{N}]$ with $g_1, \ldots, g_n \in \mathcal{P}[\mathbb{N}^m \to \mathbb{N}]$, denoted $f \circ \{g_1, \ldots, g_n\} : \mathbb{N}^m \to \mathbb{N}$, defined by

$$f \circ \{g_1, \ldots, g_n\} (\mathbf{x}) = f(g_1(\mathbf{x}), \ldots, g_n(\mathbf{x})),$$

where $\mathbf{x} \in \mathbb{N}^m$.

Theorem 1.1.1. If $f \in \mathcal{P}[\mathbb{N}^n \to \mathbb{N}]$ and $g_1, \dots, g_n \in \mathcal{P}[\mathbb{N}^m \to \mathbb{N}]$ are computable, then $f \circ \{g_1, \dots, g_n\} \in \mathcal{P}[\mathbb{N}^m \to \mathbb{N}]$ is computable.

Proof. Let $f \in \mathcal{P}[\mathbb{N}^n \to \mathbb{N}]$ and $g_1, \dots, g_n \in \mathcal{P}[\mathbb{N}^m \to \mathbb{N}]$ be arbitrary partial functions on \mathbb{N} .

Let us assume that f and g_1, \ldots, g_n are computable, that is to say there exists register machines $F = (\mathcal{R}_f, P_f)$ and $G_i = (\mathcal{R}_q^i, P_q^i)$, s.t

$$\forall (x_1, \dots, x_n) \in \mathbb{N}^n, y \in \mathbb{N}.(0, x_1, \dots, x_n, 0, \dots) \downarrow_F (y, 0, \dots) \iff f(x_1, \dots, x_n) = y$$

$$\forall (x_1, \dots, x_n) \in \mathbb{N}^m, y \in \mathbb{N}.(0, x_1, \dots, x_m, 0, \dots) \downarrow_{G_i} (y, 0, \dots) \iff g_i(x_1, \dots, x_m) = y$$

Let $\mathbf{R} = \{\mathcal{R}_f, \mathcal{R}_q^1, \dots, \mathcal{R}_q^n\}$. Without loss of generality, we assume that

$$\forall \mathcal{R}^i, \mathcal{R}^j \in \{\mathcal{R} \setminus \{R_0, \dots, R_N\} \in \mathcal{P}(\mathscr{R}) : \mathcal{R} \in \mathbf{R}\}_{i \in \mathcal{I}}.$$
$$i \neq j \implies \mathcal{R}^i \cap \mathcal{R}^j = \emptyset$$

where $N = \max\{m, n\} \in \mathbb{N}$.

We wish to show that $f \circ \{g_1, \ldots, g_n\}$ is computable. We introduce the register machine $M = (\mathcal{R}, P)$, where

$$\mathcal{R} = \bigcup_{\mathcal{R} \in \mathbf{R}} \mathcal{R} \cup \{R_t, X_1, \dots, X_m, Y_1, \dots, Y_n\},\,$$

where $\{R_t, X_1, \dots, X_m, Y_1, \dots, Y_n\} \cap \mathcal{R} = \emptyset$ for all $\mathcal{R} \in \mathbf{R}$, with program P (in graphical form):

1.2 Partial Recursive Functions

1.2.1 Primitive Recursion

Definition 1.2.1. (Primitive Recursion) Let $f \in \mathcal{P}[\mathbb{N}^n \to \mathbb{N}], g \in \mathcal{P}[\mathbb{N}^{n+2} \to \mathbb{N}]$. The primitive recursive function from f and g is a function $h \in \mathcal{P}[\mathbb{N}^{n+1} \to \mathbb{N}]$ satisfying

$$h(\mathbf{x}, 0) = f(\mathbf{x})$$

$$h(\mathbf{x}, y) = q(\mathbf{x}, y, h(\mathbf{x}, y))$$

where $\mathbf{x} \in \mathbb{N}^n, y \in \mathbb{N}$.

• Notation: $\rho^n(f,g)$ denotes the primitive recursive function from f and g.

Definition 1.2.2. (Primitive Recursive Functions) The class of *primitive recursive functions* is the set $\mathscr{P}_0 \in \mathcal{P}\left[\bigcup_k \mathbb{N}^k \to \mathbb{N}\right]$ inductively defined by

$$\pi_{i}^{n}: \mathbb{N}^{n} \to \mathbb{N} \qquad \pi_{i}^{n}(x_{1}, \dots, x_{n}) = x_{i} \qquad (\operatorname{Proj}) \frac{1}{\pi_{i}^{n}}$$

$$\operatorname{zero}^{n}: \mathbb{N}^{n} \to \mathbb{N} \qquad \operatorname{zero}^{n}(\mathbf{x}) = 0 \qquad (\operatorname{Zero}) \frac{1}{\operatorname{zero}^{n}}$$

$$\operatorname{succ}: \mathbb{N} \to \mathbb{N} \qquad \operatorname{succ}(n) = n + 1 \qquad (\operatorname{Succ}) \frac{1}{\operatorname{succ}}$$

$$f \circ [g_{1}, \dots, g_{m}]: \mathbb{N}^{n} \to \mathbb{N} \qquad f(\mathbf{x}) = h(g_{1}(\mathbf{x}), \dots, g_{m}(\mathbf{x})) \qquad (\operatorname{Comp}) \frac{\forall 1 \leq i \leq m.g_{i} \quad h}{f \circ [g_{1}, \dots, g_{m}]}$$

$$g_{i}: \mathbb{N}^{n} \to \mathbb{N} \quad h: \mathbb{N}^{m} \to \mathbb{N}$$

$$f: \mathbb{N}^{n} \to \mathbb{N}, g: \mathbb{N}^{n-1} \to \mathbb{N} \qquad f(\mathbf{x}, 0) = g(\mathbf{x}) \qquad (\operatorname{Rec}) \frac{g \quad h}{f}$$

$$h: \mathbb{N}^{n+1} \to \mathbb{N} \qquad f(\mathbf{x}, y + 1) = h(\mathbf{x}, y, f(\mathbf{x}, y))$$

Theorem 1.2.1. All primitive recursive functions $f \in \mathcal{P}_0$ are RM computable.

Proof. We proceed by induction on the definition of \mathscr{P}_0 , with the statement

$$P(f) = f$$
 is RM computable.

Base Case: For the axiom: $\overline{\pi_i^n}$, we have the following register machine $M = (\{R_0, R_1, \dots, R_n\}, P)$ with program P:

such that M computes π_i^n . So we have $P(\pi_i^n)$. Similar arguments are given for zeroⁿ, succ

Inductive Step: For the rule $\frac{\forall 1 \leq i \leq m.g_i \quad f}{f \circ [g_1, \ldots, g_m]}$, we wish to show that $(\forall 1 \leq i \leq m.P(g_i)) \land P(f) \implies P(f \circ \{g_1, \ldots, g_m\})$. Let us assume that $P(g_1), \ldots, P(g_m), P(f)$ hold. Then by theorem ??, we have $P(f \circ \{g_1, \ldots, g_m\})$.

For the rule $\frac{g}{\rho^n(g,h)}$, we wish to show $P(g) \wedge P(h) \Longrightarrow P(\rho^n(g,h))$. Let us assume that P(g) and P(h) holds, that is to say there exists register machines $G = (\mathcal{R}_g, P_g)$ and $H = (\mathcal{R}_h, P_h)$ s.t

$$\forall (x_1, \dots, x_n) \in \mathbb{N}^n, y \in \mathbb{N}.(0, x_1, \dots, x_n, 0, \dots) \Downarrow_F (y, 0, \dots) \iff g(\underbrace{x_1, \dots, x_n}_{\mathbf{x}}) = y$$

$$\forall (x_1, \dots, x_n) \in \mathbb{N}^n, c, y_h, y \in \mathbb{N}.(0, x_1, \dots, x_n, c, y_h, 0, \dots) \Downarrow_H (y, 0, \dots) \iff h(\underbrace{x_1, \dots, x_n}_{\mathbf{x}}, c, y_h) = y$$

Let $\mathbf{R} = \{\mathcal{R}_f, \mathcal{R}_q\}$. Without loss of generality, we assume that

$$\forall \mathcal{R}^i, \mathcal{R}^j \in \{\mathcal{R} \setminus \{R_0, \dots, R_{n+2}\} \in \mathcal{P}(\mathscr{R}) : \mathcal{R} \in \mathbf{R}\}_{i \in \mathcal{I}}.$$

$$i \neq j \implies \mathcal{R}^i \cap \mathcal{R}^j = \emptyset$$

We wish to show that $\rho^n(g,h)$ is computable. We introduce the register machine $M = (\mathcal{R}, P)$, where

$$\mathcal{R} = \bigcup_{\mathcal{R} \in \mathbf{R}} \mathcal{R} \cup \{R_t, X_1, \dots, X_{n+1}, C, Y_h\},\,$$

where $\{R_t, X_1, \dots, X_{n+1}, C, Y_h\} \cap \mathcal{R}$ for all $\mathcal{R} \in \mathbf{R}$. and P (in graphical form) is given by:

$$\begin{array}{c} \operatorname{START} & \longrightarrow X_1, \dots, X_{n+1}, C, Y \leftarrow R_1, \dots, R_{n+1}, 0, 0 \\ & \downarrow \\ & R_0, \dots, R_{n+2} \leftarrow 0 \longrightarrow Y \leftarrow f(X_1, \dots, X_n) \\ & \downarrow \\ & \text{if } C = X_{n+1} \longrightarrow R_0 \leftarrow Y \longrightarrow \operatorname{HALT} \\ & \downarrow \\ & C^+ \longleftarrow Y \leftarrow g(X_1, \dots, X_n, C, Y) \end{array}$$

such that M computes $\rho^n(g,h)$. So we have $P(\rho^n(g,h))$.

By the Principle of Rule Induction, we conclude that the statement P(f) holds for all $f \in \mathcal{P}_0$.

1.2.2 Minimization

- **Problem**: Primitive recursion provides a bounded recursion $\implies \mathscr{P}_0$ is not equivalent to the set of RM computable functions.
- Solution: Minimization

Definition 1.2.3. (Minimization) Let $f: \mathbb{N}^{n+1} \to \mathbb{N}$ be a partial function. The minimization (or unbounded search) $\mu^n f: \mathbb{N}^n \to \mathbb{N}$ s.t $\mu^n f(\mathbf{x}) = y$ where $\forall x < y. f(\mathbf{x}, y) \downarrow \land f(\mathbf{x}, y) > 0$, hence y is the least y.

Definition 1.2.4. (Partial Recursive Functions) The class of partial recursive functions is the set $\mathscr{P}_1 \in \mathcal{P}\left[\bigcup_k \mathbb{N}^k \to \mathbb{N}\right]$ inductively defined by

$$\pi_{i}^{n}: \mathbb{N}^{n} \to \mathbb{N} \qquad \pi_{i}^{n}(x_{1}, \dots, x_{n}) = x_{i} \qquad (\operatorname{Proj}) \frac{1}{\pi_{i}^{n}}$$

$$\operatorname{zero}^{n}: \mathbb{N}^{n} \to \mathbb{N} \qquad \operatorname{zero}^{n}(\mathbf{x}) = 0 \qquad (\operatorname{Zero}) \frac{1}{\operatorname{zero}^{n}}$$

$$\operatorname{succ}: \mathbb{N} \to \mathbb{N} \qquad \operatorname{succ}(n) = n + 1 \qquad (\operatorname{Succ}) \frac{1}{\operatorname{succ}}$$

$$f \circ [g_{1}, \dots, g_{m}]: \mathbb{N}^{n} \to \mathbb{N} \qquad f(\mathbf{x}) = h(g_{1}(\mathbf{x}), \dots, g_{m}(\mathbf{x})) \qquad (\operatorname{Comp}) \frac{\forall 1 \leq i \leq m.g_{i} \quad h}{f \circ [g_{1}, \dots, g_{m}]}$$

$$g_{i}: \mathbb{N}^{n} \to \mathbb{N} \quad h: \mathbb{N}^{m} \to \mathbb{N}$$

$$f: \mathbb{N}^{n} \to \mathbb{N}, g: \mathbb{N}^{n-1} \to \mathbb{N} \qquad f(\mathbf{x}, 0) = g(\mathbf{x}) \qquad (\operatorname{Rec}) \frac{g \quad h}{f}$$

$$h: \mathbb{N}^{n+1} \to \mathbb{N} \qquad f(\mathbf{x}, y + 1) = h(\mathbf{x}, y, f(\mathbf{x}, y))$$

$$f: \mathbb{N}^{n} \to \mathbb{N}, g: \mathbb{N}^{n+1} \to \mathbb{N} \qquad f = \mu^{n}g \qquad (\mu) \frac{g}{f}$$

• $\mathscr{P}_0 \subset \mathscr{P}_1$.

Theorem 1.2.2. All partial recursive functions $f \in \mathscr{P}_1$ are RM computable. *Proof.* We proceed by induction on the definition of \mathscr{P}_1 , with the statement

$$P(f) = f$$
 is RM computable.

Base Case: See theorem ??.

Inductive Step: For the rules $\frac{\forall 1 \leq i \leq m.g_i \quad h}{f \circ [g_1, \dots, g_m]}$ and $\frac{g \quad h}{\rho^n(g, h)}$ see theorem ??.

For the rule $\frac{g}{\mu^n g}$, we wish to show $P(g) \Longrightarrow P(\mu^n g)$. Let us assume that P(g) holds, that is to say there exists a register machine $G = (\mathcal{R}_g, P_g)$ s.t

$$\forall (x_1, \dots, x_n, x_{n+1}) \in \mathbb{N}^{n+1}, y \in \mathbb{N}.(0, x_1, \dots, x_{n+1}, 0, \dots) \downarrow_G (y, \dots) \iff g(x_1, \dots, x_{n+1}) = y.$$

We introduce the register machine $M = (\mathcal{R}, P)$, where $\mathcal{R} = \mathcal{R}_g \cup \{R_t, X_1, \dots, X_n, C\}$ s.t $\{R_t, X_1, \dots, X_n, C, Y\} \cap \mathcal{R}_g = \emptyset$ and P (in graphical form) is given by:

Theorem 1.2.3. All register machine computable functions $f \in \mathcal{P}[\mathbb{N}^n \to \mathbb{N}]$ are partial recursive, that is $f \in \mathcal{P}_1$.

Proof. Let $f \in \mathcal{P}[\mathbb{N}^n \to \mathbb{N}]$ be an arbitrary partial function.

Let us assume that f is RM computable, that is to say there exists a register machine $F = (\mathcal{R}_f, P_f)$ s.t

$$\forall (x_1,\ldots,x_n) \in \mathbb{N}^n, y \in \mathbb{N}.(0,x_1,\ldots,x_n,\ldots) \downarrow_F (y,0,\ldots) \iff f(x_1,\ldots,x_n) = y.$$

Without loss of generality, assume $\mathcal{R} = \{R_0, \dots, R_N\}$, where $N \geq n$. We define the following encoding for \mathcal{R} -stores:

with it's decoding function

$$\mathcal{D} \llbracket e \rrbracket^{\mathbb{N}} = s,$$

 $\mathcal{E} \llbracket s \rrbracket_{s}^{\mathbb{N}} = \mathcal{E} \llbracket [s(R_{0}), \dots, s(R_{n})] \rrbracket_{\ell}^{\mathbb{N}},$

where $\mathcal{D} \llbracket e \rrbracket_{\ell}^{\mathbb{N}} = [x_0, \dots, x_n]$ and $s(R_i) = x_i$.

We define the following partial-recursive functions

value_i(
$$\mathcal{E}[s]_s^{\mathbb{N}}$$
) = $s(R_i)$

TODO

1.3 Universal Register Machines

• Idea: Register machine U that computes register machines.

1.3.1 Program Encodings

 \bullet Problem: Register machine programs P encoded by natural numbers $\mathbb N$

Definition 1.3.1. Let $\langle \langle \cdot, \cdot \rangle \rangle : \mathbb{N}^2 \to \mathbb{N}_{>0}$ and $\langle \cdot, \cdot \rangle : \mathbb{N}^2 \to \mathbb{N}$, defined by

$$\langle\langle x, y \rangle\rangle = 2^x (2y+1)$$
$$\langle x, y \rangle = 2^x (2y+1) - 1$$

Lemma 1.3.1. $\langle\!\langle\cdot,\cdot\rangle\!\rangle$ and $\langle\cdot,\cdot\rangle$ are bijections.

• Binary representations are given by

$$bin(\langle\langle x,y\rangle\rangle) = bin(y)1\underbrace{0\cdots 0}_{x-\text{times}} \qquad bin(\langle x,y\rangle) = bin(y)0\underbrace{1\cdots 1}_{x-\text{times}}$$

Lemma 1.3.2. $\langle\!\langle\cdot,\cdot\rangle\!\rangle$ and $\langle\!\langle\cdot\rangle\!\rangle^{-1}$ are register machine computable.

Proof. For $\langle \langle \cdot, \cdot \rangle \rangle$, we have the register machine $M = (\mathcal{R}, P)$ with $\mathcal{R} = \{R_0, R_x, R_y\}$ with program \mathcal{P} (in graphical form):

For $\langle\!\langle \cdot \rangle\!\rangle^{-1}$, we have the register machine $M = (\mathcal{R}, P)$ with $\mathcal{R} = \{R_x, R_y, R_1\}$ with program P (in graphical form):

Corollary 1.3.0.1. $\langle \cdot, \cdot \rangle$ and $\langle \cdot \rangle^{-1}$ are register machine computable.

ullet Idea: Encode instructions as naturals $\mathbb N$

Definition 1.3.2. For \mathcal{R} -register instructions $\mathscr{I}(\mathcal{R})$, the encoding function $\mathscr{E}\left[\!\left[\cdot\right]\!\right]_{I}^{\mathbb{N}}:\mathscr{I}(\mathcal{R})\to\mathbb{N}$, is defined on the structure of \mathscr{I} as

$$\begin{split} \mathcal{E} \left[\left[R_i^+ \to L_j \right] \right]_I^{\mathbb{N}} &= \langle \! \langle 2i, j \rangle \! \rangle \\ \mathcal{E} \left[\left[R_i^- \to L_j, L_k \right] \right]_I^{\mathbb{N}} &= \langle \! \langle 2i+1, \langle j, k \rangle \rangle \! \rangle \\ \mathcal{E} \left[\left[\mathsf{HALT} \right] \right]_I^{\mathbb{N}} &= 0 \end{split}$$

where $R_i \in \mathcal{R}$.

Corollary 1.3.0.2. $\mathcal{E} \llbracket \cdot \rrbracket_I^{\mathbb{N}} : \mathscr{I}(\mathscr{R}) \to \mathbb{N}$ is bijective. It's inverse, the decoding function is denoted $\mathcal{D} \llbracket \cdot \rrbracket_{\ell}^{\mathbb{N}} : \mathbb{N} \to \mathscr{I}(\mathscr{R})$.

Definition 1.3.3. (Lists) The set of lists, denoted Lists(\mathbb{A}), on \mathbb{A} is defined

$$\ell ::= [] \mid a :: \ell$$

where $a \in \mathbb{A}$.

• Notation: $[a_1, ..., a_n] = a_1 :: (a_2 :: (... a_n :: []) ...)$

• Idea: Encode programs as lists on \mathbb{N} .

Definition 1.3.4. For a list $\ell \in \mathbf{Lists}(\mathbb{N})$, the encoding function $\mathcal{E} \llbracket \cdot \rrbracket_{\ell}^{\mathbb{N}} : \mathbf{Lists}(\mathbb{N}) \to \mathbb{N}$, is inductively defined:

$$\mathcal{E} \llbracket \llbracket \rrbracket \rrbracket_{\ell}^{\mathbb{N}} = 0$$

$$\mathcal{E} \llbracket n :: \ell \rrbracket_{\ell}^{\mathbb{N}} = \langle \langle n, \mathcal{E} \llbracket \ell \rrbracket_{\ell}^{\mathbb{N}} \rangle \rangle$$

Lemma 1.3.3. $\mathcal{E} \llbracket \cdot \rrbracket_{\ell}^{\mathbb{N}} : \mathbf{Lists}(\mathbb{N}) \to \mathbb{N}$ is bijective. It's inverse, the decoding function is denoted $\mathcal{D} \llbracket \cdot \rrbracket_{\ell}^{\mathbb{N}} : \mathbb{N} \to \mathbf{Lists}(\mathbb{N})$.

• Binary representation is given by

$$\sin\left(\mathcal{E}\left[\!\left[\left[x_{1},\ldots,x_{n}\right]\right]\!\right]_{\ell}^{\mathbb{N}}\right) = 1\underbrace{0\ldots0}_{x_{n}} 1\underbrace{0\ldots0}_{x_{n-1}} \cdots 1\underbrace{0\ldots0}_{x_{1}}.$$

Definition 1.3.5. For a program $P: \mathscr{L}_{\leq n} \to \mathscr{I}(\mathcal{R})$, where $P(L_i) = I_i$. We define the encoding function $\mathscr{E} \llbracket \cdot \rrbracket_P^{\mathbb{N}} : \mathscr{P}_n(\mathcal{R}) \to \mathbb{N}$ is defined as

$$\mathcal{E} \llbracket P \rrbracket_P^{\mathbb{N}} = \mathcal{E} \left[\left[\left[\mathcal{E} \llbracket I_0 \right]_I^{\mathbb{N}}, \mathcal{E} \llbracket I_1 \right]_I^{\mathbb{N}}, \dots, \mathcal{E} \llbracket I_n \right]_I^{\mathbb{N}} \right] \right]_{\ell}^{\mathbb{N}}.$$

It's decoding function $\mathcal{D} \llbracket \cdot \rrbracket_P^{\mathbb{N}} : \mathbb{N} \to \mathscr{P}_n(\mathcal{R})$ is defined as

$$\mathcal{D} \llbracket e \rrbracket_P^{\mathbb{N}} = P,$$

where $\mathcal{D} \llbracket e \rrbracket_{\ell}^{\mathbb{N}} = [x_0, \dots, x_n]$, and $P(L_i) = \mathcal{D} \llbracket x_i \rrbracket_I^{\mathbb{N}}$.

1.3.2 Universal Register Machine U

- Universal register machine is the partial function $U: \mathbb{N}^2 \to \mathbb{N}$ where $\varphi_e = f$, s.t $\varphi_e(x) = U(e, x)$ and $f: \mathbb{N} \to \mathbb{N}$ is the partial computable function w/ program P_f s.t $e = \mathcal{E} \llbracket P_f \rrbracket_P$.
- Universal register machine pseudocode:
 - 1. $I \leftarrow \mathcal{D}[\![e]\!]_{\ell}[\![PC]\!]$. Stores the current instruction (encoded) in the register I.
 - 2. Check whether the current instruction is a HALT. If so, store R_0 (in the context of s) in R_0 .

```
\begin{array}{c} \text{if } (I=0) \ \{ \\ R_0 \leftarrow \mathcal{D} \, [\![ s ]\!]_\ell \, [\![ 0 ]\!] \, ; \\ \text{HALT;} \\ \} \end{array}
```

- 3. Decode instruction I into type T and component $U: T, U \leftarrow \langle\langle I \rangle\rangle^{-1}$. If T = 2i (even) then current instruction is $R_i^+ \to L_u$, or T = 2i+1 (odd) then current instruction is $R_i^- \to L_j$, L_k where $U = \langle j, k \rangle$.
- 4. Compute $i \leftarrow \lfloor \frac{T}{2} \rfloor$. Fetch current value of R_i (in the context of s), store in $R: R \leftarrow \mathcal{D} \llbracket s \rrbracket_{\ell} \llbracket i \rrbracket$
- 5. Execute I (using T, U) on R:

```
execute(T, U, R) { j,k = \langle U \rangle^{-1}; return T is even ? R+1, U : (R=0) ? R, k : R-1, j );
```

Update the store w/ the new value of R_i : update(s, i, R). Then GOTO 1.

Theorem 1.3.1. (Computability of U) IMAGE

• The map $e \mapsto \varphi_e$ allows us to *index* or *enumerate* the set of computable functions $f : \mathbb{N} \to \mathbb{N}$. Thus there are \aleph_0 computable functions.

1.4 Decidability

1.4.1 Register Machine Decidability

Definition 1.4.1. (Register Machine Decidable) A set $S \subseteq \mathbb{N}$ is register machine decidable if the characteristic function $\chi_S : \mathbb{N} \to \{0,1\}$ is register machine computable.

• There are 2^{\aleph_0} subsets of \mathbb{N} and \aleph_0 computable functions \implies most sets are *undecidable*.

Definition 1.4.2. (Reduction) A reduction $f: S_1 \to S_2$ of S_1 to S_2 , where $S_1, S_2 \subseteq \mathbb{N}$ is a computable function $f: \mathbb{N} \to \mathbb{N}$ s.t

$$\forall x \in \mathbb{N}. x \in S_1 \iff f(x) \in S_2.$$

• A reduction from S_1 to S_2 reduces S_1 to S_2 , hence if S_2 is decidable, then S_1 must be.

Lemma 1.4.1. For all reductions $f: S_1 \to S_2$ from S_1 to S_2 ,

 S_2 is decidable $\implies S_1$ is decidable.

Proof. Let $S_1, S_2 \subseteq \mathbb{N}$ be arbitrary. Let $f: S_1 \to S_2$ be an arbitrary S_1 to S_2 reduction.

Let us assume that S_2 is decidable. Hence $\chi_{S_2} : \mathbb{N} \to \{0,1\}$ is computable. By definition ??,

$$\forall x \in \mathbb{N}. \chi_{S_1}(x) = 1 \iff \chi_{S_2}(f(x)) = 1.$$

Hence $\chi_{S_1} = \chi_{S_2} \circ f$. By theorem ??, χ_{S_1} is computable. Hence S_1 is decidable.

Corollary 1.4.0.1. For all reductions $f: S_1 \to S_2$ from S_1 to S_2 ,

 S_1 is undecidable $\implies S_2$ is undecidable.

Proof. Contrapositive of lemma ??

- Corollary?? provides a method for proving whether a S is undecidable:
 - Determine a reduction $f: H \to S$ where H is the halting problem (see section ??)

1.4.2 The Halting Problem

Definition 1.4.3. (Halting Problem) The halting problem H is the set

$$H = \{(e, x) \in \mathbb{N}^2 : \varphi_e(x) \downarrow \}.$$

• Define $K = \{e \in \mathbb{N} : \varphi_e(e) \downarrow \}$

Lemma 1.4.2. The partial function $f: \mathbb{N} \to \mathbb{N}^2$, f(e) = (e, e) is a reduction from K to H

Theorem 1.4.1. *H* is undecidable.

Proof. By lemma ?? and corollary ??, we wish to show that K is undecidable. We proceed by contradiction. Let us assume that K is decidable, hence there exists a RM $M = (\mathcal{R}_K, P_K)$ that computes $\chi_K : \mathbb{N} \to \{0, 1\}$.

Let $M' = (\mathcal{R}_K, P_{K'})$ be the RM by replacing HALT (and erroneous halts) in M with: IMAGE

This yields the computable function:

$$\varphi_e(x) = \begin{cases} 0 & x \notin K \\ \uparrow & x \in K \end{cases},$$

where $e = \mathcal{E} [\![P_{K'}]\!]_P$. Note that

$$e \in K \iff \varphi_e(e) \downarrow \iff e \notin K$$

A contradiction!

2 Turing Machines

2.1 Turing Machines

Definition 2.1.1. (Turing Machines) A Turing machine is the 4-tuple (Q, Σ, q_0, δ) :

- (i) Q is a finite set of *states*, disjoint from {acc, rej}.
- (ii) Σ is a finite alphabet, disjoint from Q and $\{\triangleright, _\}$
- (iii) $q_0 \in Q$ is the initial state.
- (iv) $\delta: (Q \times \Sigma) \to (Q \cup \{\text{acc}, \text{rej}\}) \times \Sigma \times \{\text{L}, \text{N}, \text{R}\}\)$ is the transition function, satisfying $\forall q \in S. \exists q' \in Q \cup \{\text{acc}, \text{rej}\}\)$.
 - (iv) condition: never overwrites or moves left of the start of tape

Definition 2.1.2. (Configuration) A turing machine configuration for $M = (Q, \Sigma, q_0, \delta)$ is the tuple (q, w, u) where:

- $-q \in Q \cup \{acc, rej\}$
- $-w = va \in \Sigma^+$ a non-empty string of symbols, where v is left of the head and a is the current symbol.
- $-u \in \Sigma^*$ is the string of symbols right of the tape head (up to _ symbols).
- The initial configuration $c_0 = (q_0, \triangleright, u)$.

Definition 2.1.3. (Transition Relation) The transition relation for $M = (Q, \Sigma, q_0, \delta)$, denoted $\longrightarrow_M : \mathscr{C} \longrightarrow \mathscr{C}$ is inductively defined by

$$\frac{\delta(q, a) = (q', a', L)}{(q, va, u) \longrightarrow_M (q', v, a'u)}$$

$$\frac{\delta(q, a) = (q', a', N)}{(q, va, u) \longrightarrow_M (q', va', u)}$$

$$\frac{\delta(q, a) = (q', a', R)}{(q, va, bu) \longrightarrow_M (q', va'b, u)} [u \in \Sigma^+]$$

$$\frac{\delta(q, a) = (q', a', R)}{(q, va, \varepsilon) \longrightarrow_M (q', va', \varepsilon)}$$

- See definition ?? for a computation: $c_0 \longrightarrow_M c_1 \longrightarrow_M \cdots$.
- A configuration c = (q, w, u) is halting if $q \in \{acc, rej\}$.

Definition 2.1.4. (Halting Computation) A halting computation of a Turing machine $M = (Q, \Sigma, q_0, \delta)$, denoted $uw \downarrow_M u'w'$, where $\downarrow_M : \Sigma^* \rightharpoonup \Sigma^*$, defined by

$$uw \downarrow_M u'w' \iff (q_0, u, w) \longrightarrow_M^* (q, u', w') \not\longrightarrow.$$

2.2 Computable Functions

Definition 2.2.1. (Unary Encoding) A string $u \in \Sigma^* = \{\triangleright, _, 0, 1\}$ encodes a lists of naturals $\ell = [n_1, ..., n_k]$ iff u is of the form:

$$u = \triangleright_{-\cdots} 0 \underbrace{1 \dots 1}_{n_1} \underbrace{1 \dots 1}_{n_2} \dots \underbrace{1 \dots 1}_{n_k} 0 \dots$$

Definition 2.2.2. (Computable) A function $f \in \mathcal{P}[\mathbb{N}^n \to \mathbb{N}]$ is Turing computable iff there exists a Turing machine M iff

$$(\triangleright \dots 0)(\underbrace{1 \dots 1}_{x_1} \dots \underbrace{1 \dots 1}_{x_n} 0 \dots) \Downarrow_M \triangleright 0 \underbrace{1 \dots 1}_{y} \dots 0 \dots$$

$$\iff f(x_1, \dots, x_n) = y$$

Theorem 2.2.1. A partial function f is Turing computable $\iff f$ is register machine computable.

${\bf 2.2.1}\quad {\bf Church\text{-}Turing\ Thesis}$

Theorem 2.2.2. (Church Turing Thesis) Every (intuitive) model of computation is equivalent to a Turing machine.

3 The Lambda-Calculus

3.1 Syntax

Definition 3.1.1. (Lambda Calculus) $V = \{x_1, \ldots\}$ is the countably infinite set of variables. The *alphabet* of the lambda calculus is given by $\Sigma = \Sigma_P \cup \{\lambda, ...\} \cup \{(,)\}$.

The formal language, or syntax, of the lambda calculus, denoted Λ , is:

$$M, N ::= x \in V$$

$$\mid (M_1 \ M_2)$$

$$\mid (\lambda x. M)$$

- Precedence of operators: λ < application.
- Syntactic equivalence between terms $M, N \in \Lambda$ is defined by $\equiv: \Lambda \longrightarrow \Lambda$.
- Notation: We often write $\lambda x_1 \dots x_n M \stackrel{\Delta}{=} \lambda x_1 . \lambda x_2 . \dots \lambda x_n . M$
- $\lambda x.M$ binds x in M. A variable x is free in M if it not bound.

Definition 3.1.2. (Free and bound variables) For any term $M \in \Lambda$, fv(M) and var(M) are the sets of *free* variables and variables in M, respectively. Inductively defined by

$$fv(x) = \{x\}$$

$$var(x) = \{x\}$$

$$fv(M_1 M_2) = fv(M_1) \cup fv(M_2)$$

$$var(M_1 M_2) = var(M_1) \cup var(M_2)$$

$$fv(\lambda x.M) = fv(M) \setminus \{x\}$$

$$var(\lambda x.M) = var(M) \cup \{x\}$$

- The set of bound variables of t, denoted bv(t), is $bv(t) = var(t) \setminus fv(t)$.
- A term $M \in \Lambda$ is closed or a combinator if $fv(M) = \emptyset$.

3.1.1 α -Equivalence

Definition 3.1.3. (Substitution) A substitution θ is a partial function $\theta: V \rightharpoonup \Lambda$.

• Notation: $\{t_1/x_1, \ldots, t_n/x_n\}$ denotes a substitution θ , where $\theta(x_i) = t_i$ and $t/x \in \theta \iff \theta(x) = t$.

Definition 3.1.4. (α -equivalence) The $\equiv_{\alpha} : \Lambda \longrightarrow \Lambda$ is inductively defined by

Theorem 3.1.1. $\equiv_{\alpha}: \Lambda \longrightarrow \Lambda$ is an equivalence relation.

• \equiv_{α} introduces a *unique* (canonical) form of the term. e.g. de Brunjin indexes, etc.

Definition 3.1.5. (Application) The application of a substitution θ to $M \in \Lambda$, denoted θM , is inductively defined by

$$\theta x = \begin{cases} \theta(x) & \text{if } x \in \text{dom } \theta \\ x & \text{otherwise} \end{cases}$$

$$\theta \lambda x. M = \begin{cases} \lambda x. \left[(\theta \setminus \{t/x\})M \right] & t/x \in \theta \\ \lambda x. \theta M & x \notin \text{dom } \theta \land x \notin fv(\text{rng } \theta) \end{cases}$$

$$\theta M_1 M_2 = (\theta M_1) (\theta M_2)$$

- The condition $x \notin \text{dom } \theta \land x \notin fv(\text{rng } \theta)$ avoids name capture. This definition of application is said to be capture avoiding.
- \equiv_{α} is used to "rename" variables e.g. $\{y/x\} (\lambda y.x) \equiv_{\alpha} \{y/x\} (\lambda z.x) = \lambda z.y$.

3.2 Semantics

• Idea: Semantics are defined using substitutions $\implies \beta$ -reduction.

3.2.1 β -Reduction and Equivalence

- λ -abstractions can be applied to λ -terms: e.g. $(\lambda x.M)$ N reduces to $\{N/x\}$ M.
- $(\lambda x.M)$ N is a β -redex (reduceable expression) and $\{N/x\}$ M is the corresponding β -reduct.

Definition 3.2.1. (β -Reduction) The β -reduction relation \longrightarrow_{β} : $\Lambda \mapsto \Lambda$ (or *transition relation*) is inductively defined by:

$$\frac{M \longrightarrow_{\beta} M'}{\lambda x.M) N \longrightarrow_{\beta} \{N/x\} M} \qquad \frac{M \longrightarrow_{\beta} M'}{\lambda x.M \to \lambda x.M'}$$

$$\frac{M \longrightarrow_{\beta} M'}{M N \longrightarrow_{\beta} M' N} \qquad \frac{N \longrightarrow_{\beta} N'}{M N \longrightarrow_{\beta} M N'}$$

$$\frac{N \equiv_{\alpha} M \qquad M \longrightarrow_{\beta} M' \qquad M' \equiv_{\alpha} N'}{N \longrightarrow_{\beta} N'}$$

• $\longrightarrow_{\beta}^*$ is the reflexive transitive closure of \longrightarrow_{β} w/ \equiv_{α} used as the equivalence relation.

Theorem 3.2.1. (Church-Rosser Theorem) The Church-Rosser theorem states that for all $M, M_1, M_2 \in \Lambda$:

$$M \longrightarrow_{\beta}^{*} M_{1} \wedge M \longrightarrow_{\beta}^{*} M_{2} \implies \exists M' \in \Lambda.M_{1} \longrightarrow_{\beta}^{*} M' \wedge M_{2} \longrightarrow_{\beta}^{*} M'.$$

Corollary 3.2.1.1. For all $M_1, M_2 \in \Lambda$,

$$M_1 =_{\beta} M_2 \iff \exists M \in \Lambda. M_1 \longrightarrow_{\beta}^* M \longleftarrow_{\beta}^* M_2.$$

Proof. Let $M_1, M_2 \in \Lambda$ be arbitrary.

 (\Longrightarrow) . We proceed by rule induction on $M_1 =_{\beta} M_2$ with the statement

$$P(M_1, M_2) = \exists M \in \Lambda. M_1 \longrightarrow_{\beta}^* M \longleftarrow_{\beta}^* M_2.$$

Base Case: For the axiom: $\frac{M_1 \longrightarrow_{\beta}^* M_2}{M_1 =_{\beta} M_2}$ we have $M_1 \longrightarrow_{\beta}^* M_2$. We introduce $M = M_2$, since we have $M_1 \longrightarrow_{\beta}^* M_2$ and $M_2 \longrightarrow_{\beta}^* M_2$. So we have $P(M_1, M_2)$.

Inductive Step: For the rule: $\frac{M_2 =_{\beta} M_1}{M_1 =_{\beta} M_2}$, we wish to show that $P(M_2, M_1) \implies$

 $P(M_1, M_2)$. This follows by the commutativity of \wedge . So we have $P(M_1, M_2)$.

By the Principle of Rule Induction, we conclude that $P(M_1, M_2)$ holds for all $M_1 =_{\beta} M_2$.

(\Leftarrow). Let us assume there exists $M \in \Lambda$ s.t $M_1 \longrightarrow_{\beta}^* M$ and $M_2 \longrightarrow_{\beta}^* M$. Then we have $M_1 =_{\beta} M$ and $M_2 =_{\beta} M$. By transitivity of $=_{\beta}$, we have $M_1 =_{\beta} M_2$.

• Idea: $\longrightarrow_{\beta}^{*}$ and it's inverse defines an equivalence: β -equivalence

Definition 3.2.2. (β -Equivalence) The β -equivalence relation $=_{\beta}$: $\Lambda \mapsto \Lambda$ is inductively defined by:

$$\frac{M \longrightarrow_{\beta}^{*} M'}{M =_{\beta} M'} \qquad \frac{M =_{\beta} M'}{M' =_{\beta} M}$$

3.2.2 β -Normal Forms

• Idea: Church-Rosser \implies a unique normal form for all $M \in \Lambda$.

Definition 3.2.3. (β -Normal Form) A term $M \in \Lambda$ is in β -normal form (β -nf) if it contains no β -redexes, that is

$$\not\exists x \in V, N, N' \in \Lambda.(\lambda x.N) \ N' \in st(M).$$

• A term $M \in \Lambda$ has a β -nf $N \in \Lambda$ iff $M =_{\beta} N$ and N is in β -nf.

Theorem 3.2.2. For all terms $M \in \Lambda$, If M has a β -nf $N \in \Lambda$, then N is unique.

Proof. Let $M \in \Lambda$ be an arbitrary λ -term. We wish to show that

$$\forall N, N' \in \Lambda.M =_{\beta} N \text{ is in } \beta\text{-nf} \wedge M =_{\beta} N' \text{ is in } \beta\text{-nf} \implies N \equiv_{\alpha} N'.$$

Let $N, N' \in \Lambda$ be arbitrary. Let us assume that $M =_{\beta} N$, $M =_{\beta} N'$ and N, N' are in β -nf. By theorem ??, there exists $M' \in \Lambda$ s.t $N \longrightarrow_{\beta}^{*} M' \longleftarrow_{\beta}^{*} N'$. Since N, N' are β -nf, then $N \equiv_{\alpha} N'$.

- Non-terminating terms, e.g. $\Omega \triangleq (\lambda x.xx)(\lambda x.xx)$ has no β -nf.
- A λ -term may have a β -nf and be non-terminating (since \longrightarrow_{β}) is **non-deterministic**. e.g. $(\lambda x.y)\Omega$.
- **Problem**: non-determinism of \longrightarrow_{β}
- Solution: normal-order reduction

Definition 3.2.4. (Normal-Order Reduction) The β normal-order -reduction relation $\longrightarrow_{\eta\beta}: \Lambda \longleftrightarrow \Lambda$ (or *transition relation*) is inductively defined by:

$$\frac{M \longrightarrow_{\eta\beta} M'}{M N \longrightarrow_{\eta\beta} M' N}$$

$$\frac{N \equiv_{\alpha} M \qquad M \longrightarrow_{\eta\beta} M'}{N \longrightarrow_{\eta\beta} N'}$$

$$\frac{M' \equiv_{\alpha} N'}{N \longrightarrow_{\eta\beta} N'}$$

Theorem 3.2.3.

$$\forall M \in \Lambda. \exists N \in \Lambda. M \longrightarrow_{\eta\beta}^* N \not\longrightarrow_{\eta\beta} \Longrightarrow N \text{ is } \beta\text{-nf of } M$$

3.3 Computable Functions

3.3.1 λ -Computable Functions

3.3.1.1 Church Numerals, Booleans and Pairs

Definition 3.3.1. (Church Numerals) The Church numeral of $n \in \mathbb{N}$, denoted n is defined as

$$\underline{n} \triangleq \lambda f x. f^n \ x$$

where

$$M^0 \ N \triangleq N$$
$$M^{n+1} \ N \triangleq M \ (M^n \ N)$$

• A Church numeral represents a fold of f (applied n times): \underline{n} M $N =_{\beta} M^{n}$ N. S

Theorem 3.3.1. For all $n \in \mathbb{N}$,

Succ
$$\underline{n} =_{\beta} n + 1$$

where $Succ \triangleq \lambda n f x. f (n f x)$.

Proof. Let $n \in \mathbb{N}$ be arbitrary. We have

Succ
$$\underline{n} =_{\beta} \lambda f x. f \ (\underline{n} \ f \ x)$$

$$=_{\beta} \lambda f x. f \ (f^n \ x)$$

$$\triangleq \lambda f x. f^{n+1} x$$

$$\triangleq \underline{n+1}$$

• Predecessor function pred(n): fold the function f(x,y) = (x+1,x) n times with initial pair (0,0) and project the second element (n,n-1).

Theorem 3.3.2. For all $n \in \mathbb{N}$,

$$\operatorname{Pred} \ \underline{0} =_{\beta} \underline{0}$$

$$\operatorname{Pred} \ \underline{n+1} =_{\beta} \underline{n}$$

where

$$\mathsf{Pred} \triangleq \lambda n f x. \mathsf{Snd} \ (n \ (G \ f) \ (\mathsf{Pair} \ x \ x))$$
$$G \triangleq \lambda f p. \mathsf{Pair} \ (f \ (\mathsf{Fst} \ p)) \ (\mathsf{Fst} \ p)$$

Proof. We have

$$\begin{split} \operatorname{\mathsf{Pred}} & \ \underline{0} =_{\beta} \lambda f x. \operatorname{\mathsf{Snd}} \left(\underline{0} \ (G \ f) \ (\operatorname{\mathsf{Pair}} \ x \ x) \right) \\ & =_{\beta} \lambda f x. \operatorname{\mathsf{Snd}} \left((\lambda f x. x) \ (G \ f) \ (\operatorname{\mathsf{Pair}} \ x \ x) \right) \\ & =_{\beta} \lambda f x. \operatorname{\mathsf{Snd}} \left(\operatorname{\mathsf{Pair}} \ x \ x \right) \\ & =_{\beta} \lambda f x. x \\ & \ \triangleq 0 \end{split}$$

Remainder is inductive proof on the fold of f

Definition 3.3.2. (Church Boolean) The boolean values true and false are defined as

True
$$\triangleq \lambda xy.x$$

False $\triangleq \lambda xy.y$

• True M $N =_{\beta} M$ and False M $N =_{\beta} N$. So we define

If
$$\triangleq \lambda bxy.b \ x \ y.$$

• Note $\underline{0} \equiv_{\alpha} \mathsf{False}$

Theorem 3.3.3. We have

- (i) Eq₀ $\underline{0} =_{\beta}$ True
- (ii) For all $n \in \mathbb{N}$, $\mathsf{Eq}_0 \ \underline{n+1} =_{\beta} \mathsf{False}$

where

$$\mathsf{Eq}_0 \triangleq \lambda x.x \; (\lambda y.\mathsf{False}) \; \mathsf{True}.$$

Proof. For (i), we have

$$\begin{aligned} \mathsf{Eq}_0 \ \underline{0} =_{\beta} \underline{0} \ (\lambda y. \mathsf{False}) \ \mathsf{True} \\ =_{\beta} \mathsf{True} \end{aligned}$$

For (ii), let $n \in \mathbb{N}$ be arbitrary.

$$\begin{aligned} \mathsf{Eq}_0 \ \underline{n+1} =_{\beta} \underline{n+1} \ (\lambda y.\mathsf{False}) \ \mathsf{True} \\ =_{\beta} (\lambda y.\mathsf{False})^{n+1} \ \mathsf{True} \\ =_{\beta} \mathsf{False} \end{aligned}$$

Definition 3.3.3. (Church Pairs) The Church pair of (M, N), denoted Pair M N, is defined as

$$\mathsf{Pair} \triangleq \lambda x y f. f \ x \ y.$$

Theorem 3.3.4. We have

Fst (Pair
$$M$$
 N) $=_{\beta} M$
Snd (Pair M N) $=_{\beta} N$

where

$$\mathsf{Fst} \triangleq \lambda p. p \ (\lambda xy. x)$$
$$\mathsf{Snd} \triangleq \lambda p. p \ (\lambda xy. y)$$

Proof. We have

$$\begin{aligned} \operatorname{Fst} \; (\operatorname{Pair} \; M \; N) &=_{\beta} \; (\operatorname{Pair} \; M \; N) \; (\lambda x y. x) \\ &=_{\beta} \; (\lambda f. f \; M \; N) \; (\lambda x y. x) \\ &=_{\beta} \; (\lambda x y. x) \; M \; N \\ &=_{\beta} \; M \\ \operatorname{Snd} \; (\operatorname{Pair} \; M \; N) &=_{\beta} \; (\operatorname{Pair} \; M \; N) \; (\lambda x y. y) \\ &=_{\beta} \; (\lambda f. f \; M \; N) \; (\lambda x y. y) \\ &=_{\beta} \; (\lambda x y. y) \; M \; N \\ &=_{\beta} \; N \end{aligned}$$

3.3.1.2 λ -Computable

Definition 3.3.4. (λ -Computable) $f \in \mathcal{P}[\mathbb{N}^n \to \mathbb{N}]$ is λ -computable if there exists a closed λ -term $F \in \Lambda$ s.t for all $(x_1, \ldots, x_n) \in \mathbb{N}^n, y \in \mathbb{N}$:

(i)
$$f(x_1, ..., x_n) = y \implies F \underline{x_1} \cdots \underline{x_n} =_{\beta} \underline{y}$$
, or

- (ii) $f(x_1, \ldots, x_n) \uparrow \Longrightarrow F \underline{x_1} \cdots \underline{x_n}$ has no β -nf.
 - Examples:

- TODO

Theorem 3.3.5. If $f \in \mathcal{P}[\mathbb{N}^n \to \mathbb{N}], g_1, \dots, g_n \in \mathcal{P}[\mathbb{N}^m \to \mathbb{N}]$ are λ -computable, then $f \circ \{g_1, \dots, g_n\} \in \mathcal{P}[\mathbb{N}^m \to \mathbb{N}]$ is λ -computable, with the combinator

$$\mathsf{F} \circ \{\mathsf{G}_1, \dots, \mathsf{G}_n\} \triangleq \lambda x_1 \dots x_m.$$

$$(\mathsf{G}_1 \ x_1 \ \dots \ x_m \ \mathsf{I}) \dots (\mathsf{G}_n \ x_1 \ \dots \ x_m \ \mathsf{I})$$

$$\mathsf{F} \ (\mathsf{G}_1 \ x_1 \ \dots \ x_m) \dots (\mathsf{G}_n \ x_1 \ \dots \ x_m)$$

Proof. See supervision work (for n = 1).

3.3.2 Partial Recursion

Theorem 3.3.6. For all $f \in \bigcup \mathcal{P}[\mathbb{N}^n \to \mathbb{N}]$, $f \in \mathscr{P}_1$ is partial recursive \iff it is λ -computable.

- The basic functions π_i^n , zeroⁿ and succ have the combinators:
 - **Projection**: $\pi_i^n : \mathbb{N}^n \to \mathbb{N}$ is defined as

$$\mathsf{Proj}_i^n \triangleq \lambda x_1 \dots x_n . x_i.$$

– **Zero**: zeroⁿ : $\mathbb{N}^n \to \mathbb{N}$ is defined as

$$\mathsf{Zero}^n \triangleq \lambda x_1 \dots x_n.0.$$

- Successor: succ : $\mathbb{N} \to \mathbb{N}$ is defined as

$$\mathsf{Succ} \triangleq \lambda n f x. f \ (n \ f \ x).$$

• Composition $F \circ \{G_1, \dots, G_n\}$ is given by theorem ??

3.3.2.1 Fixed Point Combinator Y

- **Problem**: Representing a recursive function let $f = \underbrace{\dots f \dots f \dots}_{M}$
- Solution: Y fixed point combinator, with fixed point property: Y $M =_{\beta} M$ (Y M).
- Derivation:
 - The multiple occurrences of f may be factored: let $f = (\underbrace{\lambda r.(\dots r\dots r\dots)}_{M})$ in f f. r must be replaced by $(r\ r)$ since f has an additional argument (itself): let $f = (\underbrace{\lambda r.(\dots (r\ r)\dots (r\ r)\dots)}_{M})$ in f flet fact = λ fact n.

 if n=0 then 1

else $n \times \text{fact fact } (n-1)$

in fact fact 3

- The multiple occurrences of $(r\ r)$ may be factored: let $f = (\lambda x.\underbrace{\lambda r.(\dots r\dots r\dots)}_{M}\ (x\ x))$ in $f\ f.$
- Define let x = M in $N \triangleq (\lambda x. N)$ M. So we have $f \triangleq (\lambda x. \underbrace{\lambda r. (\dots r \dots r \dots)}_{M} (x x)) (\lambda x. \underbrace{\lambda r. (\dots r \dots r \dots)}_{M} (x x))$
- The multiple occurrences of M may be factored:

$$Y \triangleq \lambda m.(\lambda x.m (x x)) (\lambda x.m (x x)),$$

with $f \triangleq Y M$.

Theorem 3.3.7. The Y combinator satisfies the fix point property: for all $M \in \Lambda$, Y $M =_{\beta} M$ (Y M).

Proof. Let $M \in \Lambda$ be arbitrary. We have

$$Y M =_{\beta} (\lambda x.M (x x)) (\lambda x.M (x x))$$

$$=_{\beta} M((\lambda x.M (x x)) (\lambda x.M (x x)))$$

$$\triangleq M (Y M)$$

3.3.2.2 Primitive Recursion and Minimization

• Primitive recursion may be expressed as the fixed point: $\rho^n(f,g)(\mathbf{x},x) = h(\mathbf{x},x)$ with $h = \Phi^n_{f,g}(h)$ where

$$\Phi_{f,g}^{n}(h)(\mathbf{x},x) = \begin{cases} f(\mathbf{x}) & \text{if } x = 0\\ g(\mathbf{x}, x - 1, h(\mathbf{x}, x - 1)) & \text{otherwise} \end{cases}$$

Theorem 3.3.8. If $f \in \mathcal{P}[\mathbb{N}^n \to \mathbb{N}], g \in \mathcal{P}[\mathbb{N}^{n+2} \to \mathbb{N}]$ are λ -computable, then $\rho^n(f,g)$ is λ -computable, with the combinator

$$\mathsf{R}^n(\mathsf{F},\mathsf{G}) \triangleq \mathsf{Y}\big(\lambda h.\lambda \mathbf{x} x.$$

$$\mathsf{If} \; (\mathsf{Eq}_0 \; x) \; (\mathsf{F} \; \mathbf{x})$$

$$(\mathsf{G} \; \mathbf{x} \; (\mathsf{Pred} \; x) \; (h \; \mathbf{x} \; (\mathsf{Pred} \; x))) \, \big)$$

where F, G are the combinators of f, g.

• Minimization may also be represented by a fixed point equation: $\mu^n f = g(\mathbf{x}, 0)$ with $g = \Psi_f(g)$ where

$$\Psi_f(g)(\mathbf{x}, x) = \begin{cases} x & \text{if } f(\mathbf{x}, x) = 0\\ g(\mathbf{x}, x + 1) & \text{otherwise} \end{cases}$$

Theorem 3.3.9. If $f \in \mathcal{P}[\mathbb{N}^{n+1} \to \mathbb{N}]$ is λ -computable then $\mu^n f$ is λ -computable, with the combinator

$$\begin{split} \mathsf{M}^n(\mathsf{F}) &\triangleq \lambda \mathbf{x}. \mathsf{Y} \big(\lambda g. \lambda \mathbf{x} x. \\ & \mathsf{If} \ \big(\mathsf{Eq}_0 \ \big(\mathsf{F} \ \mathbf{x} \ x \big) \big) \ x \\ & \big(h \ \mathbf{x} \ \big(\mathsf{Succ} \ x \big) \big) \big) \ \mathbf{x} \ \underline{0} \end{split}$$