Лекция 15

Ilya Yaroshevskiy

16 января 2021 г.

Содержание

1 Мера Лебега 1 1.1 Преобразования меры Лебега при сдвигах и линейных отображениях

1 Мера Лебега

Следствие 1.0.1. $\forall A \in \mathfrak{M}^m \quad \exists B, C$ — борелевские $B \subset A \subset C$ $\lambda(C \setminus A) = 0, \ \lambda(A \setminus B) = 0$

Доказательство.

$$C := \bigcap_{n=1}^{+\infty} G_{\frac{1}{n}}$$

$$B \subset \bigcup_{n=1}^{+\infty} F_{\frac{1}{n}}$$

$$(1)$$

$$B \subset \bigcup_{n=1}^{+\infty} F_{\frac{1}{n}} \tag{2}$$

Cледствие 1.0.2. $\forall A\subset \mathfrak{M}^m\ \exists B, \mathcal{N}-B$ - борелевское, $\mathcal{N}\in \mathfrak{M}^m,\ \lambda\mathcal{N}=0$ $A = B \cup \mathcal{N}$

Доказательство. B — из следствия $1, \mathcal{N} := A \setminus B$

 Π римечание. Обозначим |X| — мощность множества X

$$\forall X \quad |2^X| > |X|$$

$$X = \mathbb{R}^m \quad |2^{\mathbb{R}^m}| >$$
континуум

 $orall X = |2^X| > |X|$ $X = \mathbb{R}^m \quad |2^{\mathbb{R}^m}| >$ континуум $\mathfrak{B} \subset 2^{R^m} -$ борелевская σ -алгебра, $|\mathfrak{B}| =$ континуум

 $|M^m| >$ континуума

 \mathfrak{K} — канторово множество. $|\mathfrak{K}| =$ континуум, $\lambda \mathfrak{K} = 0$

$$\forall D \subset \mathfrak{K} \ D \in \mathfrak{M}^m, \ \lambda D = 0$$
(полнота λ)

$$2^{\mathfrak{K}}\subset M^m$$

Следствие 1.0.3. $\forall A \in \mathfrak{M}^m$

$$\lambda A = \inf_{\substack{G: A \subset G \\ G - \text{ otkp.}}} \lambda(G) = \sup_{\substack{F: F \subset A \\ F - \text{ замкн.}}} \lambda(F) = \sup_{\substack{K: K \subset A \\ K - \text{ компакт.}}} \lambda(K)$$
(3)

Доказательство. (*) следует из σ -конечности

$$\mathbb{R}^m = \bigcup_{n=1}^{+\infty} Q(0, n) \tag{4}$$

$$Q(a,R) = \sum_{i=1}^{n} [a_i - R, a_i + R]$$

$$\lambda(A\cap Q(0,n))\to \lambda A$$
 — по непрерывности снизу (5)

Определение. Свойства из следствия 3 называются регулярностью меры Лебега

1.1 Преобразования меры Лебега при сдвигах и линейных отображениях

Лемма 1. (X',\mathfrak{A}',μ') — пространство с мерой

 (X,\mathfrak{A},\cdot) — "заготовка" пространства

 $T: X \to X' -$ биекция; $\forall A \in \mathfrak{A} \ TA \in \mathfrak{A}' \ (T\emptyset \stackrel{def}{===} \emptyset)$

Положим $\mu A = \mu'(TA)$

Tогда μ — мера

Доказательство. Проверим счетную аддитивность:

$$A = \bigsqcup A_i \quad \mu A = \mu'(TA) = \mu'(\bigsqcup TA_i) = \sum \mu'(TA_i) \stackrel{\text{def}}{=} \sum \mu A_i$$
 (6)

 Π римечание. $T: X \to X'$ — произвольное отображение, $T\mathfrak{A}$ вообще говоря не алгебра $T^{-1}(\mathfrak{A}')$ — всегда σ -алгебра(если исходное σ -алгебра)

Лемма 2. $T: \mathbb{R}^m \to \mathbb{R}^n$ — непрерывное

Пусть $\forall E \in \mathfrak{M}^m: \ \lambda E = 0 \ выполняется \ \lambda(TE) = 0$

Тогда $\forall A \in \mathfrak{M}^m \quad TA \in \mathfrak{M}^n$

Доказательство.

$$A = \bigcup_{j=1}^{+\infty} K_j \cup \mathcal{N} \tag{7}$$

, где K_i — компактное множество, $\lambda(\mathcal{N})=0$

$$TA = \bigcup_{j=1}^{+\infty} \underbrace{TK_j}_{\text{KOMII.}} \cup \underbrace{T\mathcal{N}}_{\lambda(T\mathcal{N})=0}$$
(8)

 TK_{j} — компактно, как образ компакта при непрерывном отображении

$$(8) \Rightarrow TA$$
 — измеримо

Пример. Канторова лестница

$$f(x) = \begin{bmatrix} \frac{1}{2} & x \in \Delta \setminus \mathfrak{K}_1 \\ \frac{1}{4} & x \in \Delta_0 \setminus \mathfrak{K}_2 \\ \frac{3}{4} & x \in \Delta_1 \setminus \mathfrak{K}_3 \\ \vdots & & \\ \sup f(t) & t \le x, \ t \notin \mathfrak{K} \end{bmatrix}$$

, где
$$\Delta = [0,1], \ \Delta_0 = [0,\frac{1}{3}], \ \Delta_1 = [\frac{2}{3},1], \ \Delta_{00} = [0,\frac{1}{9}], \ \Delta_{01} = [\frac{2}{9},\frac{1}{3}], \ldots, \ \text{а} \ \mathfrak{K}_0 = \Delta, \ \mathfrak{K}_1 = \Delta_0 \cup \Delta_1, \ \mathfrak{K}_2 = \Delta_0 \cup \Delta_{10} \cup \Delta_{10} \cup \Delta_{11}, \quad \mathfrak{K}_i = \bigcup_{\varepsilon_1,\ldots,\varepsilon_n \in \{0,1\}} \Delta_{\varepsilon_0\ldots\varepsilon_n}$$

 $f([0,1]\setminus\mathfrak{K})$ — счетное = множество двоично рациональных чисел из [0,1]

 $\lambda f([0,1] \setminus \mathfrak{K}) = 0$

 $\lambda f(\mathfrak{K})=1$, т.к. $\forall y\in [0,1]\ \exists x:\ f(x)=y$, при этом f — непрерывна, т.к. образом функции является весь промежуток

Тогда пусть $E \subset [0,1] \not\in \mathfrak{M}^m$

 $\overline{f^{-1}(E)}$ = подиножество множества \mathfrak{K} ∪ промежутки прообраза двоично рациональных точек из E — измеримо, т.к. $\lambda \mathfrak{K} = 0$

Еще наблюдение $x \notin \mathfrak{K} \Rightarrow f$ — дифференцируема в x и f'=0

Теорема 1.1.
$$O \subset \mathbb{R}^m$$
 — открытое, $\Phi: O \to \mathbb{R}^m$, $\Phi \in C^1(O)$ Тогда $\forall A \subset O, \ A \in \mathfrak{M}^m$ — $\Phi(A) \in \mathfrak{M}^m$

Доказательство. Достаточно проверить свойство: $\lambda E = 0 \Rightarrow \lambda \Phi(E) = 0$ $\lambda E = 0 \Leftrightarrow \forall \varepsilon > 0 \; \exists \; \text{шары} \; B_i : \; E \subset \bigsqcup_{i=1}^{+\infty} B_i \; \sum \lambda B_i < \varepsilon$

- (⇒) из Т. о лебеговском продолжении меры
- (⇐) используем полноту меры Лебега

1.
$$E \subset \underset{\text{ячейка}}{P} \subset \overline{P} \subset O, \ \lambda E = 0$$

$$L := \max_{x \in \overline{P}} \|\Phi'(x)\| \tag{9}$$

Тогда $\forall x,y \in P \quad |\Phi(x) - \Phi(y)| \le L|x-y|$ — неравенство Лагранжа

$$\Phi(B(x_0, r)) \subset B(\Phi(x_0), Lr) \subset Q(\Phi(x_0), Lr) \tag{10}$$

$$Q(x_0, \frac{r}{\sqrt{m}}) \subset B(x_0, r) \Rightarrow \left(\frac{2r}{\sqrt{m}}\right)^m < \lambda B(x_0, r)$$
(11)

$$\Phi(E) \subset \bigcup \Phi(B_i) \subset \bigcup B(y_i, Lr) \subset \bigcup Q(y_i, Lr)$$
(12)

$$\sum \lambda \Phi(B_i) < \sum \lambda Q(y_i, Lr_i) = \sum (2Lr_i)^m = L^m \sum (2r_i)^m$$
(13)

$$E \subset \bigcup B_i \quad \sum \lambda B_i < \varepsilon \Rightarrow \sum \left(\frac{2r_i}{\sqrt{m}}\right)^m < \varepsilon \Rightarrow \sum (2r_i)^m < \varepsilon(\sqrt{m})^m$$
 (14)

$$\sum \lambda B(y_i, Lr) < L^m \sum (2r_i)^m < \varepsilon(\sqrt{m}L)^m \tag{15}$$

, где $B_i = B(x_i, r_i), \ y_i = \Phi(x_i)$

2. $E \subset O$ — произвольное, $\lambda E = 0$ $O = \bigsqcup Q_i$, где Q_i — кубические ячейки, $Q_i \subset \overline{Q_i} \subset O$ $E = ||(E \cap Q_i)||$ no $\pi.1 \lambda(\Phi(E \cap Q_i)) = 0$ $\Phi(E) = \bigcup \Phi(E \cap Q_i) \Rightarrow \lambda \Phi(E) = 0$

 $C_{ned}c_{meu}e 1.1.4. \lambda$ — инвариантна относительно сдвигов (и \mathfrak{M}^m тоже инвариантна) т.е. $\forall a \in \mathbb{R}^m : \forall A \in \mathfrak{M}^m \quad A + a \in \mathfrak{M}^m$ и $\lambda A = \lambda (A + a)$

Доказательство. $\Phi: x \mapsto x + a \quad \Phi \in C^1(\mathbb{R}^m)$ по теореме $\Rightarrow A + a \in \mathfrak{M}^m$, $\lambda A = \lambda (A+a)$ следует из теоремы о лебеговском продолжении: $A \subset \bigcup P_k \Leftrightarrow A + a \subset \bigcup (P_k + a)$ очевидно, что для ячейки при сдвиге $\lambda P_k = \lambda (P_k + a)$ $\Rightarrow \lambda A = \inf(\sum \lambda P_k) = \inf(\sum (P_k + a)) = \lambda (A + a)$

Теорема 1.2. μ — мера на \mathfrak{M}^m :

- 1. μ инвариантна относительно сдвига $\forall a \in \mathbb{R}^m \ \forall E \in \mathfrak{M}^m \quad \mu(E+a) = \mu E$
- 2. Для любого ограниченого множества $E\in\mathfrak{M}^m$ $\mu(E)<+\infty$

Тогда
$$\exists l \in [0, +\infty): \mu = k$$
.
т.е. $\forall E \quad \mu E = k \cdot \lambda E \quad (0 \cdot \infty = 0)$

Примечание. $\mu A := \lambda_1 A$, если $\exists y_0 \quad A \subset \{(x, y_0) | x \in \mathbb{R}\}$

Доказательство. Нет

Посмотрим как мера μ задается на рациональных ячейках

В \mathbb{R}^2 Q_1 — единичная квадратная ячейка $\mu Q_1 = V$

 Q_2 — ячейки со стороной 2 $\mu Q_2 = 4V$ $\mu Q_n = n^2 V$ $\mu Q_{\frac{1}{2}} = \frac{1}{n^2} V$

На $\mathcal{P}^m \mu$ пропорциональна $\lambda, k = V$

3

Теорема 1.3 (инвариантность меры Лебега относительно линейных ортогональных преобразований). $T: \mathbb{R}^m \to \mathbb{R}^m$ — ортогональное преобразование Тогда $\forall A \in \mathfrak{M}^m$

- 1. $TA \in \mathfrak{M}^m$
- 2. $\lambda(TA) = \lambda A$

Доказательство.

- 1. $T \in C^1$ поэтому измеримость сохраняется
- 2. $\mu A := \lambda(TA), \ \mu$ мера на \mathfrak{M}^m по Лемме 1, при этом μ инвариантна относительно сдвигов $\mu(A+a) = \lambda(T(A+a)) = \lambda(TA+Ta) = \lambda(TA) = \lambda A$ ограничена $\Rightarrow TA$ ограничена $\Rightarrow \mu A < +\infty$ по теореме $\lambda(TA) = k \cdot \lambda A$ Найдем k: возьмем шар B, TB = шар того же радиуса $= B + x_0$, таким образом $\mu B = \lambda(TB) = \lambda(B+x_0) = \lambda B \Rightarrow k = 1$

 $Cnedcmeue~1.3.5.~\lambda ($ прямоугольного параллелепипеда)= произведению сторон

Cледствие 1.3.6. Любое собственное линейное подпространство в \mathbb{R}^m имеет меру 0

Доказательство. Достаточно доказать, что
$$\lambda\{x\big|x_m=0\}=0$$
 $\{x\big|x_m=0\}\simeq\mathbb{R}^{m-1}=\bigsqcup Q_i$ — единичные кубы $L\subset\bigsqcup Q_i\times[-\frac{\varepsilon}{2^i},\frac{\varepsilon}{2^i}]$ $\lambda_{\mathfrak{M}}(Q_i\times[-\frac{\varepsilon}{2^i},\frac{\varepsilon}{2^i}])=\frac{2\varepsilon}{2^i}$