作业 11.1 已知在图A、B、C电路中晶体二极管的VCR可近似为 图D 的折线, 其中 $V_{on} = 0.7V_{o}$ 请画出图 A、图 B、图C 电路的转移特性曲线: $V_i \sim V_o$

11.2 在下面各图中,已知 FET 在 V_{DS} 足够大时的 $V_{GS} \sim I_D$ 特性为 $I_D = (V_{GS} - 3)^2$ mA 请计算各图中的静态工作点(要求计算: V_G , V_S , V_D , I_G , I_S , I_D) 并判断 FET 是否工作于敏感的压控电流状态,后者要求 $V_{GS} > V_{on}$; $V_{DS} > V_{GS} - V_{TH}$

- 11.3 **在下面各图中,已知 BJT 的** β = 100 (即:BJT 处于压控电流状态时, $I_C \approx 100 I_B$)。
 - ① 请计算各图中的静态工作点(即: V_B , V_E , V_C , I_B , I_E , I_C)
 - ② 若,为使 BJT 呈 "压控电流"特性,需满足条件 $V_{BE} \ge 0.7V$, $V_{C} \ge V_{B}$ 。 为此,在图a 和 b中,在其它元器件和电源既定的条件下,求 R_2 , R_4 的取值范围。

