DATA WAREHOUSING AND DATA MINING

CSE4005

LAB5&6 ASSIGNMENT

Name-Gouthami M

Registration No.-19BCD7148

Slot- L27+L28+L9+L10+L41+L42

Date-29/10/2021

Faculty- Mr. Koteswararao Chitipireddi

#EXP-5

#1

In [40]:

```
from sklearn.datasets import make_blobs
from matplotlib import pyplot
from pandas import DataFrame
#generate 2d c L assifi cation dataset
X, y = make_blobs(n_samples=100, centers=3, n_features=2)
# s catter p Lot dots co L or ed by c Lass va Lue
df = DataFrame(dict(x=X[:,0], y=X[:,1], label=y))
colors = {0:'yellow', 1:'blue', 2:'green'}
fig, ax = pyplot.subplots()
grouped =df.groupby('label')
for key, group in grouped:
    group.plot(ax=ax, kind='scatter', x='x', y='y', label=key, color=colors[key])
pyplot.show()
# generate 2d c Pass ifi cat i on dataset
X, y = make_blobs(n_samples=100, centers=3, n_features=2)
```


In [33]:

```
from sklearn.datasets import make_moons
from matplotlib import pyplot
from pandas import DataFrame
it genera te 2d c Lass i i cat:i on dat:ase t
X, y = make_moons(n_samples=100, noise=0.1)
# s caller pLof, dots coL ored by c Lass vaLue
df = DataFrame(dict(x=X[:,0], y=X[:,1], label=y))
colors = {0:'red', 1:'blue'}
fig, ax = pyplot.subplots()
grouped = df.groupby('label')
for key, group in grouped:
    group.plot(ax=ax, kind='scatter', x='x', y='y', label=key, color=colors[key])
pyplot.show()
```


In [43]:

```
plt.subplots(nrows=1, ncols=1, figsize=(16,5))
fig,ax
plt ind list = np.arange(3)+131
for noise,plt_ind in zip([0],plt_ind_list):
            dt.make_circles(noise=noise,random_state=rand_state)
   x, label
   plt.subplot(plt ind)
   my_scatter_plot = plt.scatter(x[:,0],
                                 x[:,1],
                                 c=label,
                                 vmin=min(label),
                                 vmax=max(label),
                                 cmap=color map discrete)
   plt.title('noise: '+str(noise))
fig.subplots_adjust(hspace=0.3,wspace=.3)
plt.suptitle('make_circles() With Different Noise Levels', fontsize=20)
plt.show()
```

make_circles() With Different Noise Levels

In [37]

```
from sklearn.datasets import make_regression
from matplotlib import pyplot
# generate regres s i on dataset
X, y = make_regression(n_samples=100, n_features=1, noise=0.1)
it p Lot regress i on datas et:
pyplot.scatter(X,y)
pyplot.show()
X, y = make_regression(n_samples=100, n_features=1, noise=0.1)
```


question 2

In [13]

pip install Faker

Collecting Faker

Downloading https://files.pythonhosted.org/packages/19/1c/0d3248616f697230 305bf910669e3cf11898962a6a91757df6c07c1488f4/Faker-9.7.1-py3-none-any.whl (https://files.pythonhosted.org/packages/19/1c/0d3248616f697230305bf910669e3cf 11898962a6a91757df6c07c1488f4/Faker-9.7.1-py3-none-any.whl) (1.2MB) Collecting text-unidecode==1.3 (from Faker)

Downloading https://files.pythonhosted.org/packages/a6/a5/c0b6468d3824fe3fde30dbb5e1f687b291608f9473681bbf7dabbf5a87d7/text_unidecode-1.3-py2.py3-none-any.whl (https://files.pythonhosted.org/packages/a6/a5/c0b6468d3824fe3fde30dbb5e1f687b291608f9473681bbf7dabbf5a87d7/text_unidecode-1.3-py2.py3-none-any.whl) (78kB)

Collecting typing-extensions>=3.10.0.2; python_version < "3.8" (from Faker)
Downloading https://files.pythonhosted.org/packages/74/60/18783336cc7fcdd9
5dae91d73477830aa53f5d3181ae4fe20491d7fc3199/typing_extensions-3.10.0.2-py3none-any.whl (https://files.pythonhosted.org/packages/74/60/18783336cc7fcdd9
5dae91d73477830aa53f5d3181ae4fe20491d7fc3199/typing_extensions-3.10.0.2-py3none-any.whl)

Requirement already satisfied: python-dateutil>=2.4 in c:\programdata\anacon da3\lib\site-packages (from Faker) (2.8.0)

Requirement already satisfied: six>=1.5 in c:\programdata\anaconda3\lib\site -packages (from python-dateutil>=2.4->Faker) (1.12.0)

Installing collected packages: text-unidecode, typing-extensions, Faker Successfully installed Faker-9.7.1 text-unidecode-1.3 typing-extensions-3.1 0.0.2

Note: you may need to restart the kernel to use updated packages.

In [19]:

```
import csv
from faker import Faker
import datetime
def datagenerate(records, headers):
   fake = Faker('en US')
   fakel = Faker('en_GB') # To generore phone numders
   with open ("People data.csv", 'wt') as csvFile:
       writer csv.DictWriter(csvFile, fieldnames=headers)
       writer.writeheader()
       for i in range (records):
           full name = fake.name()
           FLname = full name.split(" ")
           Fname = FLname[0]
           Lname = FLname[1]
           domain name = "@testDomain.com"
           userId = Fname +"."+ Lname + domain name
           writer.writerow({
                   "Customer id" : userId,
                   "Name": fake.name(),
                   "Birth Date" fake.date(pattern="%d-%m-%Y", end datetime=datetime.date
                   "Phone Number" : fakel.phone number(),
                   "Email Id": fake.email(),
                   "Address" : fake.address(),
                   "Zip Code" : fake.zipcode(),
                   "City" : fake.city(),
                   "State" : fake.state(),
                   "Country" : fake.country(),
                   "Year":fake.year(),
if name == ma1n
    records = 10000
   headers = ["Customer id", "Name", "Birth Date", "Phone Number", "Email Id",
              "Address", "Zip Code", "City", "State", "Country", "Year"]
   datagenerate(records, headers)
    print("CSV generation complete!")
```

CSV generation complete!

```
In [ ]:
```

In [1]:

#1

In [2]:

import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt

In [4]:

df_head()

Out[4]:

	age	job	marital	education	default	balance	housing	loan	contact o	lay mo	
0	58	management	married	tertiary	no	2143	yes	no	unknown	5	m
1	44	technician	single	secondary	no	29	yes	no	unknown	5	m
2	33	entrepreneur	married	secondary	no	2	yes	yes	unknown	5	m
3	47	blue-collar	married	unknown	no	1506	yes	no	unknown	5	m
4	33	unknown	single	unknown	no	1	no	no	unknown	5	m
4											•

In [5]:

df['marital'].value_counts()

Out[5]:

married 27214 single 12790 divorced 5207

Name: marital, dtype: int64

In [6]:

```
map1 = {'single':0,'married':1,'divorced':1}
```

In [7]:

```
df['marital'] = df['marital'].map(map1)
```

In [8]:

df_head(3)

Out[8]:

	age	job	marital	education	default	balance	housing	loan	contact d	ay mo	
0	58	management	1	tertiary	no	2143	yes	no	unknown	5	m
1	44	technician	0	secondary	no	29	yes	no	unknown	5	m
2	33	entrepreneur	1	secondary	no	2	yes	yes	unknown	5	m

→

In [9]:

```
map2 = {'no':0,'yes':1}
```

In [10]:

```
df['housing'] = df['housing'].map(map2)
```

In [11]:

df_head(3)

Out[11]:

	age	job	marital	education	default	balance	housing	loan	contact d	ay mo	
0	58	management	1	tertiary	no	2143	1	no	unknown	5	m
1	44	technician	0	secondary	no	29	1	no	unknown	5	m
2	33	entrepreneur	1	secondary	no	2	1	yes	unknown	5	m
4											•

In [12]:

```
map3 = {'no':0,'yes':1}
```

In [13]:

```
df['loan'] = df['loan'].map(map3)
```

In [14]:

df_head(3)

Out[14]:

	age	job	marital	education	default	balance	housing	loan	contact d	ay mo	
0	58	management	1	tertiary no 2143		1	0	unknown	5	m	
1	44	technician	0	secondary	no	29	1	0	unknown 5		m
2	33	entrepreneur	1	secondary	no	2	1	1	unknown	5	m
4											•

In [15]:

```
map4 = {'blue-collar':3,
   'management':0,
   'technician':1,
   'admin.':5,
   'services':6,
   'retired':4,
   'self-employed':7,
   'entrepreneur':2,
   'unemployed':8,
   'housemaid':9,
   'student':10,
   'unknown':np.nan}
```

In [16]:

```
df['job'] = df['job'].map(map4)
```

In [17]:

```
df_head(3)
```

Out[17]:

	age	job	marital	education	default	balance	housing	loan	contact	day	month	dura
0	58	0.0	1	tertiary	no	2143	1	0	unknown	5	may	
1	44	1.0	0	secondary	no	29	1	0	unknown	5	may	
2	33	2.0	1	secondary	no	2	1	1	unknown	5	may	
4												•

In [18]:

```
map5 = {'secondary':1,
  'tertiary':0,
  'primary':2,
  'unknown':np.nan}
```

In [19]:

```
df['education'] = df['education'].map(map5)
```

In [20]:

```
df_head(3)
```

Out[20]:

	age	job	marital	education	default	balance	housing	loan	contact	day	month	dura
0	58	0.0	1	0.0	no	2143	1	0	unknown	5	may	
1	44	1.0	0	1.0	no	29	1	0	unknown	5	may	
2	33	2.0	1	1.0	no	2	1	1	unknown	5	may	
4												•

```
In [21]:
```

```
map6 = {'no':0,'yes':1}
```

In [22]:

```
df['default'] = df['default'].map(map6)
```

In [23]:

```
df_head(3)
```

Out[23]:

	age	job	marital	education	default	balance	housing	loan	contact (day n	nonth dur	а
0	58	0.0	1	0.0	0	2143	1	0	unknown	5	may	
1	44	1.0	0	1.0	0	29	1	0	unknown	5	may	
2	33	2.0	1	1.0	0	2	1	1	unknown	5	may	
4												•

In [24]:

```
df['contact'] = df['contact'].map({'unknown':np.nan,'telephone':0,'cellular':1})
```

In [25]:

```
df['poutcome'] = df['poutcome'].map({'unknown':np.nan,'failure':0,'other':1,'success':2
})
```

In [26]:

df_head(3)

Out[26]:

	age	job	marital	education	default	balaı	nce	housing	loan	conta	act day	mont	h durat	
0	58	0.0	1	0.0)	0	2143		1	0	NaN	5	may	
1	44	1.0	0	1.0)	0	29		1	0	NaN	5	may	
2	33	2.0	1	1.0)	0	2		1	1	NaN	5	may	
4														•

In [27]:

```
df['month'] = df['month'].map({
    'may' : 5,
'jul'
            :7,
'aug':
            8,
'jun' : 6,
'nov' : 11,
'apr'
            :4,
           : 2,
'feb'
'jan'
            : 1,
'oct'
             :10,
'sep'
             :9,
'mar'
            : 3,
'dec'
            :12
})
```

In [28]:

df_head(3)

Out[28]:

	age	job	marital	education	default	balance	housing	loan	contact	day	month	durat
0	58	0.0	1	0.0	0	2143	1	0	NaN	5	5	
1	44	1.0	0	1.0	0	29	1	0	NaN	5	5	
2	33	2.0	1	1.0	0	2	1	1	NaN	5	5	
4												>

In [29]:

```
df['Target'] = df['Target'].map({'no':0,'yes':1})
```

In [30]:

df_head(3)

Out[30]:

	age	job	marital	education	default	balance	housing	loan	contact	day	month	durat
0	58	0.0	1	0.0	0	2143	1	0	NaN	5	5	
1	44	1.0	0	1.0	0	29	1	0	NaN	5	5	
2	33	2.0	1	1.0	0	2	1	1	NaN	5	5	
4												>

In [31]:

import csv

df.to_csv('preprocessed.csv',index=True)

In [32]:

#2

plt.figure(figsize=(12,6))

sns_heatmap(data=df_corr(),cmap='coolwarm')

Out[32]:

<matplotlib.axes._subplots.AxesSubplot at 0x1aa196b32b0>

