Class	Embedding-based			Reconstruction-based			
	Spade [6]	PaDiM [8]	CFlow [13]	DRAEM[40]	UniAD [36]	Ours	Ours*
bottle	(98.4, 95.5)	(98.5, 95.3)	(99.0, 96.8)	(99.1, 97.2)	(98.0, 93.8)	(97.7,95.0)	(97.7,95.0)
cable	(97.2, 90.9)	(98.1, 91.1)	(97.7, 93.5)	(94.7, <mark>76.0</mark>)	(97.2, 86.3)	(95.2,88.7)	(95.6, 89.5)
capsule	(99.0, 93.7)	(98.8, 92.3)	(99.0, 93.4)	(94.3, 91.7)	(98.7, 90.8)	(98.0,90.1)	(97.5, 91.4)
carpet	(97.5, 94.7)	(98.9, 94.5)	(99.3, 97.7)	(95.5, 92.9)	(98.4, 94.5)	(98.9,95.8)	(98.9, 95.8)
grid	(93.7, 86.7)	(96.1, 90.5)	(99.0, 96.1)	(99.7, 98.4)	(97.5, 92.6)	(99.1,98.1)	(99.1, 98.4)
hazelnut	(99.1, 95.4)	(98.4, 84.0)	(98.9, 96.7)	(99.7, 98.1)	(98.2, 93.0)	(97.7,89.5)	(97.3,91.1)
leather	(97.6, 97.2)	(99.2, 97.9)	(99.7, 99.4)	(98.6, 98.0)	(98.7, 97.2)	(99.5,99.1)	(99.5, 99.1)
metal nut	(98.1, 94.4)	(98.0, 92.9)	(98.6, 91.7)	(99.5, 94.1)	(94.9, 87.1)	(96.8, 93.0)	(96.8,93.0)
pill	(96.5, 94.6)	(97.0, 95.3)	(99.0, 95.4)	(97.6, <mark>88.9</mark>)	(96.2, 95.3)	(92.5, 94.5)	(92.5, 94.5)
screw	(98.9, 96.0)	(98.7, 94.6)	(98.9, 95.3)	(97.6, 98.2)	(98.9, 95.3)	(99.0,95.6)	(99.0,95.6)
tile	(87.4, 75.9)	(94.3, 93.7)	(98.0, 94.3)	(99.2, 98.9)	(92.0, <mark>79.6</mark>)	(92.1,95.1)	(92.1,95.1)
toothbrush	(97.9, 93.5)	(98.7, 94.3)	(98.9, 95.1)	(98.1, 90.3)	(98.3, 88.2)	(98.9, 94.7)	(98.6, 95.7)
transistor	(94.1, 87.4)	(97.9, 91.4)	(98.0, 81.4)	(90.9, 81.6)	(97.9, 93.9)	(92.6, 89.7)	(93.1,90.1)
wood	(88.5, 87.4)	(95.7, 89.3)	(96.7, 95.8)	(96.4, 94.6)	(93.0, <mark>86.0</mark>)	(94.7, 92.9)	(94.5,93.0)
zipper	(96.5, 92.6)	(98.5, 95.0)	(99.0, 96.6)	(98.8, 96.3)	(97.7, 93.2)	(97.6, 93.6)	(97.6,93.6)
average	(96.0, 91.7)	(97.8, 92.8)	(98.6, 94.6)	(97.3,93.0)	(97.0, 91.1)	(96.7,93.7)	(96.7, 94.1)

Table 1: Compare with the state-of-the-art anomaly detection approaches on MVTec-AD [3] dataset. We compare anomaly localization performance with pixel-wise AUROC and PRO metrics, denoted as (AUROC, PRO) in the table. We highlight the best PRO scores among all the reconstruction-based methods. We denote the result in Red if the result underperforms other reconstruction-based methods by a large margin. We show our results with the same hyperparameters for all categories, denoted as Ours, and different hyperparameters adjusted for each category, denoted as Ours*.

Figure 4: Comparisons of the reconstruction results on class cable and hazelnut of MVTec-AD. The anomaly types are color-swap, crack, and cut-lead for the three categories.

represent ground truth, our pixel-level anomaly predictions, our feature-level anomaly predictions, and the final results visualized on the original images. We show that our denoising model is capable of precise boundary estimation of anomalies.

Figure 5: The effects of different ensembling factor α .

4.4. Ablation study

Ensemble factor. We combine the pixel-level and feature-level 11 predictions to get the final anomaly score. We conduct experiments to verify the effects of the ensembling weights. As Fig. 5 shows, we choose the best ensemble factor $\alpha=0.5$. The PRO metric is improved by 0.7% compared with only using the feature-level anomaly score.

Pretrained feature extractor. We observe that the deep features extracted by ResNet [14] and WideResNet [39] are of high dimensional, which brings great difficulties for our denoising model to reconstruct the features. Instead, we