Topic: four subspaces associated to a matrix.

- (1) Let A be an $n \times n$ invertible matrix. Then $col(A) = \mathbb{R}^n$ and $null(A) = \{0\}$.
- (2) Let A and B be matrices such that A is invertible and AB makes sense. Then

$$\operatorname{null}(AB) = \operatorname{null}(B)$$

 $\operatorname{col}(AB) = \{Ax \text{ for } x \in \operatorname{col}(B)\}$
 $\operatorname{rank}(AB) = \operatorname{rank}(B).$

(3) Let A and B be matrices such that A is invertible and BA makes sense. Then

$$col(BA) = col(B)$$

$$null(BA) = \{A^{-1}x \text{ for } x \in null(B)\}$$

$$rank(BA) = rank(B).$$

(4) Let A be an $n \times n$ invertible matrix. Let $r \leq n$, and let B be the $n \times r$ matrix built from the first r columns of A. Then

$$B = A\left(\frac{\mathrm{Id}_{r \times r}}{0_{(n-r) \times r}}\right).$$

Use (2) to deduce null(B) = 0 and rank(B) = r.

(5) Let A be an $n \times n$ invertible matrix. Let $r \leq n$, and let B be the $r \times n$ matrix built from the first r rows of A. Then

$$B = \left(\operatorname{Id}_{r \times r} \mid 0_{(n-r) \times r} \right) A.$$

Use (3) to deduce $col(B) = \mathbb{R}^n$ and null(B) is the span of the last (n-r) columns of A^{-1} .

(6) Let A be an $n \times m$ matrix, and fix an integer $r \leq n, m$. Assume that A = EFG where E is an $n \times r$ matrix arising from the construction in (4), F is an invertible $r \times r$ matrix, and G is an $r \times m$ matrix arising from the construction in (5). Then

$$col(A) = col(E)$$

 $rank(A) = r$
 $null(A) = null(G)$.

- (7) Suppose P is a square matrix such that $P^2 = P$. Then $b \in \operatorname{col}(P)$ if and only if Pb = b.
- (8) Let Q be an orthogonal matrix. Then $b \in \operatorname{col}(Q)$ if and only if $QQ^{\top}b = b$.
- (9) Let A = QR be a QR decomposition (where R is invertible). Then $b \in col(A)$ if and only if $QQ^{\top}b = b.$
- (10) ¹ Let $A = U\Sigma V^{\top}$ be a rank-r SVD. Then $b \in \operatorname{col}(A)$ if and only if $UU^{\top}b = b$.
- (11) Determine the column space, null space, and rank of the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 5 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 4 & 2 & 3 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

(12) Determine the column space, null space, and rank of the matrix

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3\\ 0 & 6 & 8\\ 0 & 0 & 7 \end{pmatrix}.$$

(13) Consider the following full SVD of a matrix:

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 6 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix}$$

Write down the rank-r SVD for this matrix, and determine its column space, null space, and rank.

(14) Any $n \times m$ matrix can be expressed as the sum of (at most) min(m, n) rank-1 matrices.

¹Thanks to Sungwoo for this problem idea.