

Merge AVL tree ก็2 ต้นมีความสมอทากันมากาว 1 กำไม??

-> Mergen u RST vos R1 mining Merge n'ula

AVLTree Merge WithRoot (R1, R2, T)

if $|R_1$. height $-R_2$. height $|\leq 1$:

Merge WithRoot (R1, R2, T)

T. height <-- max (R1. height, R2. height)+1

else if R1. height > R2. height

R' AVLTree Merge With Root (R1. right, R2, T)

R₁ · right ← R'

R. parent R.

Rebalance (R1)

return root

Celse if R. height < R. height

Merge on word vacare ar von hi (HW)

my J-> O(|R1. height - R2. height |+1) ชาวกันมากที่สุด O(Jy n)

else if x < R.key?

 $(R_1, R_2) \leftarrow \text{split}(R.1eft, x)$ R3 - Merge WithRoot (R2, R. right, R)

return (R_1, R_3)

else if x > R. Key:

(R1, R2) - split (R. right, x)

R4 - Merge With Root (R.1eft, R1, R) return (R4, R2)

* ถ้าอยากินีเป็น AVL true

-> When MergeWith Root

พึช AV LMerge WithRoot

- Rebalance d'ove

 \rightarrow $O(\log n)$

Splay tree นิยาม: BST , ไม่ต้อง rebalance ตลอดเวลา

-> นำ node ที่กำลังค้นนามาไว้ที่ root -> ล้า node นั้นโอน ลบไปแล้ว ใน้ำงางเม่ามนาที่ root

Insert at root

แบบ๗ฦกะปี

- Insert เลยแล้ว splay node สัมชันมาที่ root

X Mann -> The zigzig or zigzeg

zigzig: zig(R.parent) -> zig(R)

* 9298 while loop ware milt recursive alloma Stack overflow

 $: zig(R) \longrightarrow zig(R)$

Delete

→ พา node ที่จะลบมาไว้ที่ root

- AUIAU (1990 Sub tree 2014)

-> splay max sos LST anti root

→อักกาง: Splay min ของ RSTมาก็ root (ไม่จำเป็น)

-> 18'02 node San