

By: Prasuna Mannava

Purpose

Problem:

Client is a vegetarian recipe creator and wants to predict his new recipes before publishing.

Solution:

Build a model that can predict ratings using data from allrecipes.com

Data

- Scrapped data from allrecipes.com using selenium and beautifulsoup
- 1000 recipes with 11 features-
 - Recipe Name
 - Ratings
 - Prep Time
 - Cook Time
 - Recipe Category

- Yield
- Protein
- Carbs
- Sodium
- Fat
- Cholesterol

Ratings

Number of stars	Interpretation
5	Loved it!
4	Liked it
3	It was okay
2	Didn't like it
1	Couldn't eat it

Modeling

- No linear relation between target variable and features
- Boxcox transformation
- Linear Regression with transformed target variable
- Polynomial Regression with Lasso regularization
- Cross validation using KFold

Predictions

Linear regression with transformed target variable

```
lm.score(X_tr, y_train)
0.03633804498805526
lm.score(X_te, y_test)
0.021012311521045213
```

Polynomial regression with Lasso

```
lasso.score(X_train_poly_scaled,y_train)

0.07252363706373843

lasso.score(X_test_poly_scaled, y_test)

-0.01473605020433122
```


Conclusions

- Ratings may not influenced just by the features considered in this model
- Different set of features and data required to make the model more complex
- Explore other modeling techniques where target and features are not required to be linearly related

