

ARMY RESEARCH LABORATORY

An Analytical Vacuum-Assisted Resin Transfer Molding (VARTM) Flow Model

by Bruce K. Fink, Kuang-Ting Hsiao, Roopesh Mathur,
John W. Gillespie, Jr., and Suresh G. Advani

ARL-TR-2354

October 2000

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTED 1

20010221 030

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Aberdeen Proving Ground, MD 21005-5069

ARL-TR-2354

October 2000

An Analytical Vacuum-Assisted Resin Transfer Molding (VARTM) Flow Model

Bruce K. Fink

Weapons and Materials Research Directorate, ARL

Kuang-Ting Hsiao, Roopesh Mathur,

John W. Gillespie, Jr., and Suresh G. Advani

University of Delaware

Approved for public release; distribution is unlimited.

Abstract

A closed form solution for the flow of resin in the vacuum-assisted resin transfer molding (VARTM) process is used extensively for affordable manufacturing of large composite structures. During VARTM processing, a highly permeable distribution medium is incorporated into the preform as a surface layer. During infusion, the resin flows preferentially across the surface, simultaneously through the preform, to a complex flow front. The analytical solution presented here provides insight into the scaling laws governing fill times and resin inlet placement as a function of the properties of the preform, distribution media, and resin. The formulation assumes that the flow is fully developed and is divided into two areas: (1) a saturated region with no crossflow, and (2) a flow front region, which moves with a uniform velocity, where the resin is infiltrating into the preform from the distribution medium. The law of conservation of mass and Darcy's Law for flow through porous media are applied in each region. The resulting equations are nondimensionalized and are solved to yield the flow front shape and the development of the saturated region. It is found that the flow front is parabolic in shape, and the length of the saturated region is proportional to the square root of the time elapsed. The obtained results are compared to data from full-scale simulation and show good agreement. The solution allows greater insight into the physics process, enables parametric and optimization studies, and can reduce the computational cost of full-scale, three-dimensional (3-D) simulations.

Table of Contents

	<u>Page</u>
List of Figures.....	v
List of Tables	vii
1. Introduction.....	1
2. Problem Statement.....	5
3. Analytical Solution.....	11
4. Verification: Full-Scale Simulations	19
5. Effect of Process Variables: A Parametric Study	21
5.1 Effect of Thickness Ratios	21
5.2 Effect of Permeability	23
5.3 Effect of Porosity	24
6. Conclusions.....	25
7. References.....	31
Distribution List.....	33
Report Documentation Page	53

INTENTIONALLY LEFT BLANK.

List of Figures

<u>Figure</u>		<u>Page</u>
1.	Examples of the Broad Application Potential for VARTM Processes Including Shipping, Infrastructure, Land Combat Vehicle Armor, and Repair	1
2.	Layup of Materials in the VARTM Process	3
3.	Two-Layer Model of Resin Flow in the VARTM Process	6
4.	Schematic of Resin Flow in the Flow Front Region for the Two-Layer VARTM Model.....	7
5.	Illustration for Resin Mass Balance in the Flow Front Region in the Two-Layer Model	12
6.	Two Mathematical Roots of $h_F^*(x^*) = 0$	17
7.	Example of a Full-Scale Numerical Simulation: (a) Flow Front History and (b) Pressure Distribution at the Final Time Step	22
8.	Flow Front Velocity and Fill Time as a Function of Length of the Saturated Region: Effect of Thickness Ratios	23
9.	Flow Front Velocity and Fill Time as a Function of Length of the Saturated Region: Effect of Permeability of Distribution Medium	25
10.	Flow Front Velocity and Fill Time as a Function of Length of the Saturated Region: Effect of In-Plane Permeability of Fiber Preform	26
11.	Flow Front Velocity and Fill Time as a Function of Length of the Saturated Region: Effect of Transverse Permeability of Fiber Preform	27
12.	Flow Front Velocity and Fill Time as a Function of Length of the Saturated Region: Effect of Porosity of Distribution Medium	28
13.	Flow Front Velocity and Fill Time as a Function of Length of the Saturated Region: Effect of Porosity of Fiber Preform.....	29

INTENTIONALLY LEFT BLANK.

List of Tables

<u>Table</u>		<u>Page</u>
1. Comparison of Closed Form Solution With Results From Full-Scale Numerical Solution of the VARTM Process		20

INTENTIONALLY LEFT BLANK.

1. Introduction

The vacuum-assisted resin transfer molding (VARTM) process offers numerous cost advantages over traditional RTM via lower tooling costs, room temperature processing, and scalability to large structures. Recent advanced technology demonstrators such as the Advanced Enclosed Mast Sensor (AEM/S) System and the composite advanced vehicle (CAV) have shown the potential of VARTM technology for the low-cost fabrication of large-scale structures requiring thick-section construction and hybrid multifunctional integral armor. The VARTM process is also used extensively in commercial applications such as bridge decks, rail cars, and yachts (Figure 1).

Figure 1. Examples of the Broad Application Potential for VARTM Processes Including Shipping, Infrastructure, Land Combat Vehicle Armor, and Repair.

VARTM is a composites manufacturing process that involves the layup and vacuum bagging of dry reinforcing fibers in fabric, tape, or bulk form as a preform in a one-sided open mold and impregnating the preform with liquid resin using negative pressure (i.e., a vacuum) followed by cure and demolding. The advantages of the VARTM process over the RTM process are scalability and affordability for the fabrication of large composite structures. Large parts can be infused rapidly using vinyl esters, phenolics, and epoxies at room temperature under vacuum pressure only. Consequently, tooling costs and investments are substantially reduced. VARTM is a completely closed system that traps volatile organic compounds (VOCs), reduces the need for solvents, and results in less scrap than other processes.

The present study focuses on Seemann's Resin Infusion Molding Process (SCRIMP) (Seemann 1990). In this VARTM process, a highly permeable distribution medium is incorporated into preform as a surface layer. During infusion, the resin flows preferentially across the surface and simultaneously through the preform thickness enabling large parts to be fabricated solely under vacuum pressure. The layup of the materials in the process is shown in Figure 2.

In very large composite structures, multiple inlet gates are required to ensure complete wet-out of the part prior to gelation of the resin. Selection of distribution media, performs, and gate and vent locations are based on past experience for similar applications. New applications in which part thickness, resin, or preform characteristics change require costly trial and error process development. Hence, a fundamental understanding of the process physics and associated models represent a significant contribution to the science base for VARTM.

Modeling and predicting the flow during the impregnation process provides insight into the process physics and highlights potential problems before production. In addition, flow prediction enables optimization of the design variables affecting the process, such as the distance between resin inlets (in the case of multiple lines and thickness of the diffusion layer), and provides rules of thumb for scaling of the prototypes. Thus, a fundamental understanding of the underlying science will help develop models to reduce costs, aid in selection of design parameters, and improve quality.

Figure 2. Layup of Materials in the VARTM Process.

The flow of resin through porous media such as fiber preforms and resin distribution media is governed by Darcy's Law:

$$u = \frac{-K}{\mu} \cdot \nabla P, \quad (1)$$

where u is the Darcy's velocity (defined as the total flow rate per total flow front area), K is the permeability tensor (which characterizes the ease of flow through the fiber perform), and μ is the viscosity of the resin. This, when coupled with the continuity equation for incompressible flow, gives the Laplace equation for the fluid pressure field inside a region permeated by the fluid:

$$\nabla \cdot \left(\frac{K}{\mu} \cdot \nabla P \right) = 0. \quad (2)$$

This equation can be discretized using finite element methods which then form the basis for simulation of mold-filling during the resin infusion process (Bruschke and Advani 1990, 1991a; Liu et al. 1996; Mohan et al. 1999).

The flow simulations can be either two-dimensional (2-D) or three-dimensional (3-D). In 2-D flow modeling (Bruschke and Advani 1991b; Trochu et al. 1994; Lee et al. 1994), the flow of resin through the thickness is considered uniform, and the finite element discretization is applied along the other two directions as with liquid injection molding simulation (LIMS), which is based on the finite element/control volume approach. In 2-D simulations, only the in-plane permeabilities are supplied (Simacek et al. 1998). In 3-D simulations, the pressure and flow in all three directions is solved, and a 3-D permeability tensor is supplied as input, as in the resin infusion process simulation (RIPS), which is based on finite element methods without the use of the control volume approach (Gallez and Advani 1996). Usually, the geometry, the material parameters, and the position of resin inlets and outlets are specified before the filling simulation is carried out. Simulation codes are used to track flow fronts and estimate the fill times.

Parametric studies then can be conducted with simulations to design the mold and the process parameters.

Closed form analytical solutions have also been derived for the resin flow under simplifying assumptions and for simple geometries. These solutions explain the role of various process variables and their interactions during processing. Indeed, a closed form solution of the resin flow during the VARTM process not only enables parametric studies, optimization, and reduction of computational expenses of full-scale simulations, but also offers insight on the scaleup of the process and material parameters for large structures.

In earlier work, Tari et al. (1998) derived a closed form model for vacuum-bag RTM under several simplifying assumptions. They assumed that the velocity of resin in the fiber preform is negligible and that the region behind the flow front is uniformly saturated. In the present work, these assumptions were not made, so the velocity of the resin, as well as the shape of the flow front through the thickness of the fiber perform, are accurately captured. This is important for scaling purposes.

A closed form solution for the flow of resin in the VARTM process is presented here. The layup is modeled as the distribution layer (high permeability material) and the structural layer (preform material). It is assumed that the flow is well developed and can be divided into a saturated region with no crossflow and a flow front region in which the resin infiltrates the preform from the distribution medium. The flow front region is assumed to be fully developed with a uniform velocity. The law of conservation of mass and Darcy's Law for flow through porous media are applied in each region. The resulting equations are nondimensionalized and are solved to yield the flow front shape and the development of the saturated region.

2. Problem Statement

As illustrated in Figure 3, the layup of materials is modeled as two layers of permeable materials. The distribution layer is much thinner than the structural layer, $h_1 \ll h_2$, where h_1 and

P_0 : Injection Pressure

Note: d - region with transverse flow = flow front length.

D - region without transverse flow = length behind the flow front region.

U_f - flow front velocity.

μ - viscosity of resin.

Figure 3. Two-Layer Model of Resin Flow in the VARTM Process.

h_1 and h_2 are the respective thicknesses of the two layers. The flow front in the distribution layer is considered uniform. The permeability of the distribution layer is K_{1xx} along the flow direction, and the permeabilities of the structural layer are K_{2xx} and K_{2yy} in the x and y directions, respectively. The constant inlet injection pressure (atmospheric pressure) is P_0 , and the resin viscosity is μ .

In the saturated region, the flow is one-dimensional (1-D) with Darcy's velocities U_1 and U_2 in layers 1 and 2, respectively. The length of this saturated region is D , and the pressure at its boundary with the second flow region is assumed to be P_D .

The second region, illustrated in Figure 4, is the flow front region where there is transverse flow from the distribution layer to the structural layer. The flow front region of length d is assumed to maintain its shape, given by h_f , and advances with a uniform horizontal velocity of

Figure 4. Schematic of Resin Flow in the Flow Front Region for the Two-Layer VARTM Model.

U_F . This is the observed velocity of the resin and not the Darcy's velocity. The transverse velocity of resin infiltration from the distribution layer into the structural layer is u_{12y} . The horizontal velocity in the flow front region in the distribution layer u_{1x} is with boundary condition $u_{1x}(x = D + d) = \Phi_1 U_F$.

Since the resin is an incompressible fluid, using the continuity equation and Darcy's Law in the structural layer, the governing equation for the pressure distribution is

$$K_{2xx} \frac{\partial^2 P}{\partial x^2} + K_{2yy} \frac{\partial^2 P}{\partial y^2} = 0. \quad (3)$$

Consider the following nondimensional variables:

$$P^* = \frac{P}{P_c}, x^* = \frac{x}{x_c}, y^* = \frac{y}{y_c}, \quad (4)$$

where x_c and y_c are the characteristic length scales in the longitudinal and thickness directions, respectively, and P_c is a scaling parameter for the pressure. Introducing the dimensionless variables, the governing equation can be recast in dimensionless form as follows (Pillai and Advani 1998a, 1998b):

$$\frac{K_{2xx} y_c^2}{K_{2yy} x_c^2} \frac{\partial^2 P^*}{\partial x^{*2}} + \frac{\partial^2 P^*}{\partial y^{*2}} = 0. \quad (5)$$

Since the resin distribution media was used in the process to enable the rapid and uniform distribution of the resin across the mold surface, it can be assumed that within the flow front region in the structural layer, the major portion of the resin flow is from the distribution layer into the structural layer. Hence, the flow rate in the y direction must be more significant than that in the x direction (i.e., $Q_y \gg Q_x$). The x_c in the flow front region is d , while y_c is h_2 . If \bar{u} and \bar{v} are the average Darcy's velocities in the two directions, then

$$Q_y = \bar{v}d,$$

and (6)

$$Q_x = \bar{u}h_2.$$

Considering Darcy's equation for the velocities, the following scaling argument can be made:

$$u = -\frac{K_{2xx}}{\mu} \frac{\partial P}{\partial x} \Rightarrow u \sim \frac{K_{2xx}}{\mu} \frac{P_c}{d}, \quad (7)$$

and

$$v = -\frac{K_{2yy}}{\mu} \frac{\partial P}{\partial y} \Rightarrow v \sim \frac{K_{2yy}}{\mu} \frac{P_c}{h_2}. \quad (8)$$

Since $Q_y \gg Q_x$, from equations 6 to 8, it can be determined that:

$$\frac{K_{2xx} h_2^2}{K_{2yy} d^2} \ll 1. \quad (9)$$

This allows for the neglect of the x-term in pressure equation 5 in the flow front region, which leads to the following result:

$$\frac{\partial^2 P}{\partial y^2} = 0 \Rightarrow \frac{\partial P}{\partial y} = f_F(x),$$

and

(10)

$$v = -\frac{K_{2yy}}{\mu} \frac{\partial P}{\partial y} = -\frac{K_{2yy}}{\mu} f_F(x).$$

At the top of the structural layer, where the flow is always from the distribution layer, the boundary condition is defined as $v|_{y=0} = u_{12y}(x)$. Hence, in the flow front region,

$$v(x) = u_{12y}(x),$$

where $u_{12y}(x)$ is the velocity of the resin flow from the distribution to the structural layer in the flow front region. In the saturated region, the length scale of the flow is D in the x direction and h_2 in the y direction, where $D \gg h_2$. Since $D \gg d$, from equation 9,

$$\frac{K_{2xx}h_2^2}{K_{2yy}d^2} \ll 1 \Rightarrow \frac{K_{2xx}h_2^2}{K_{2yy}D^2} \ll 1. \quad (11)$$

So, the first term in equation 5 can be neglected, and

$$\frac{\partial^2 P}{\partial y^2} = 0 \Rightarrow \frac{\partial P}{\partial y} = f_s(x). \quad (12)$$

Thus, the velocity in the y direction in the saturated region is

$$v = -\frac{K_{2yy}}{\mu} \frac{\partial P}{\partial y} = -\frac{K_{2yy}}{\mu} f_s(x). \quad (13)$$

At the bottom of the structural layer in the saturated region, the resin is in contact with the surface of the mold, which is impermeable. Hence, the no-penetration boundary condition was applied (i.e., $v = 0 @ y = h_2$) in the saturated region. Therefore,

$$\frac{\partial P}{\partial y} = f_s(x) = 0 \text{ in the saturated region.} \quad (14)$$

As a result, $v = 0$ in the saturated region everywhere in the structural layer. Since $v = 0$, the second term in pressure equation 3 becomes zero, and

$$\frac{\partial^2 P}{\partial x^2} = 0 \Rightarrow \frac{\partial P}{\partial x} = g(y),$$

as

$$\frac{\partial P}{\partial y} = 0.$$

So, it can be inferred that $g(y)$ is constant, and

$$u = -\frac{K_{2xx}}{\mu} \frac{\partial P}{\partial x} \quad (15)$$

is constant in the saturated region. Hence, from boundary conditions of $P = P_0 @ x = 0$ and $P = P_D @ x = D$,

$$\frac{\partial P}{\partial x} = \frac{P_D - P_0}{D} \text{ in the saturated region.} \quad (16)$$

3. Analytical Solution

Considering the element fluid volumes shown in Figure 5 and invoking the mass balance,

$$u_{12y} dx + U_2 (-dh_F) = U_F \Phi_2 (-dh_F) \Rightarrow u_{12y} = -\frac{dh_F}{dx} (\Phi_2 U_F - U_2). \quad (17)$$

A lumped mass balance in the distribution layer in the flow front region gives

$$-du_{1x} h_1 = u_{12y} dx \Rightarrow u_{12y} = -h_1 \frac{du_{1x}}{dx}. \quad (18)$$

Figure 5. Illustration for Resin Mass Balance in the Flow Front Region in the Two-Layer Model.

From equations 17 and 18, the result is

$$u_{12y} = -h_1 \frac{du_{1x}}{dx} = \frac{-dh_F}{dx} (\Phi_2 U_F - U_2). \quad (19)$$

Applying Darcy's Law in the y direction in the flow front region and using equations 17 and 18,

$$u_{12y} = \frac{K_{2yy}}{\mu} \frac{P_1 - 0}{h_F},$$

and

$$u_{12y} = -h_1 \frac{du_{1x}}{dx} = \frac{-dh_F}{dx} (\Phi_2 U_F - U_2) = \frac{K_{2yy}}{\mu} \frac{P_1}{h_F}. \quad (20)$$

This leads to the following equation for $P_1(x^*)$, the pressure field in the distribution medium in the flow front region:

$$P_1(x^*) = -h_F \frac{dh_F}{dx} (\Phi_2 U_F - U_2) \frac{\mu}{K_{2yy}}. \quad (21)$$

A similar mass balance in the flow front region, including both the structural and the distribution layers, yields

$$U_1 h_1 + U_2 h_2 = U_F (\Phi_1 h_1 + \Phi_2 h_2). \quad (22)$$

Applying Darcy's Law in the saturated region with 1-D flow,

$$U_1 = \frac{K_{1xx}}{\mu} \frac{P_0 - P_D}{D},$$

and

$$U_2 = \frac{K_{2xx}}{\mu} \frac{P_0 - P_D}{D} \Rightarrow U_1 = U_2 \frac{K_{1xx}}{K_{2xx}}.$$

In combination with equation 22,

$$\frac{U_2}{U_F} = \frac{(\Phi_1 h_1 + \Phi_2 h_2)}{\left(\frac{K_{1xx}}{K_{2xx}} h_1 + h_2 \right)}. \quad (24)$$

The previous set of equations can be nondimensionalized using the following nondimensional variables:

$$U^* = \frac{U}{U_F}, K^* = \frac{K}{K_{1xx}},$$

$$h_F^* = \frac{h_F}{h_2}, x^* = \frac{x-D}{h_2}, \quad (25)$$

and

$$h_1^* = \frac{h_1}{h_2}, d^* = \frac{d}{h_2}, P^* = \frac{P}{P_0}.$$

This gives the following system of equations:

$$u_{1x}^* = \frac{-1}{\mu^*} \frac{dP_1^*}{dx^*}, \quad (26)$$

$$U_2^* = \frac{(\phi_1 h_1^* + \phi_2)}{\left(\frac{h}{K_{1xx}} + 1 \right)}, \quad (27)$$

$$\frac{du_{1x}^*}{dx^*} = \frac{(\phi_2 - U_2^*)}{h_1^*} \frac{dh_F^*}{dx^*}, \quad (28)$$

and

$$P_1^* = -h_F^* \frac{dh_F^*}{dx^*} (\phi_2 - U_2^*) \frac{\mu^*}{K_{2yy}^*}. \quad (29)$$

Here, $\mu^* = \frac{\mu h_2 U_F}{K_{1xx} P_0}$ is obtained from the nondimensional Darcy's Law. The boundary conditions

on u_{1x}^* are $u_{1x}^*(0) = U_1^*, u_{1x}^*(d^*) = \phi_1$. The boundary conditions on $h_F^*(0) = 1, h_F^*(d^*) = 0$. The pressure boundary conditions are $P_1^*(0) = P_D^*, P_1^*(d^*) = 0$.

Integrating equation 29 and applying the boundary condition $u_{1x}^*(0) = U_1^*, u_{1x}^*(d^*) = \Phi_1$,

$$u_{1x}^* = \frac{(\phi_2 - U_2^*)}{h_1^*} h_F^*(x^*) + \Phi_1. \quad (30)$$

In combination with equation 26,

$$\frac{dP_1^*}{dx^*} = -\mu^* u_{1x}^* = \mu^* \left[\frac{(\phi_2 - U_2^*)}{h_1^*} h_F^*(x^*) + \Phi_1 \right]. \quad (31)$$

Combining equations 29 and 31, the following nonlinear ODE with boundary conditions $h_F^*(0) = 1, h_F^*(d^*) = 0$ result in:

$$\frac{d}{dx^*} \left(h_F^* \frac{dh_F^*}{dx^*} \right) = \frac{K_{2yy}^*}{h_1^*} h_F^*(x^*) + \frac{\Phi_1 K_{2yy}^*}{\Phi_2 - U_2^*}. \quad (32)$$

This ODE is of the form given by $(y^2)'' = ay + b$. It can be solved using the substitution $p = \frac{dy}{dx}, y'' = p \frac{dp}{dy}$ (Murphy 1960). This usually yields a solution in a quadratic form. The quadratic form $h_F^*(x^*) = ax^{*2} + \beta x^* + \gamma$ can be substituted into the above equation to find the solution using the first boundary condition $h_F^*(0) = 1$ and matching the coefficients of the powers of x^* on either side. Then the second boundary condition, $h_F^*(d^*) = 0$, can be used to determine d^* . This gives a quadratic equation for d^* having two roots. Both roots are positive, but if the larger one were chosen, then the flow front profile would be physically impossible (Figure 6). Hence, the smaller root gives the following unique solution:

$$\alpha = \frac{K_{2yy}^*}{6h_1^*},$$

$$\beta = -\sqrt{\frac{2K_{2yy}^*}{3h_1^*} + \frac{\Phi_1 K_{2yy}^*}{\Phi_2 - U_2^*}}, \quad (33)$$

and

$$\gamma = 1.$$

Thus,

$$h_F^*(x^*) = \frac{K_{2yy}^*}{6h_1^*} x^{*2} - \sqrt{\frac{2K_{2yy}^*}{3h_1^*} + \frac{\Phi_1 K_{2yy}^*}{\Phi_2 - U_2^*}} x^* + 1, \quad (34)$$

and since $h_F^*(d^*) = 0$, d^* can be determined as

$$d^* = \frac{3h_1^*}{\sqrt{K_{2yy}^*}} \left(\sqrt{\frac{\Phi_1}{\Phi_2 - U_2^*} + \frac{2}{3h_1^*}} - \sqrt{\frac{\Phi_1}{\Phi_2 - U_2^*}} \right). \quad (35)$$

Substituting the form $h_F^*(x^*) = \alpha x^{*2} + \beta x^* + \gamma$ in equation 29, the pressure can be determined as follows:

$$P_1^* = -\frac{(\Phi_2 - U_2^*)\mu^*}{K_{2yy}^*} [2\alpha x^{*3} + 3\alpha\beta x^{*2} + (\beta^2 + 2\alpha)x^* + \beta]. \quad (36)$$

Applying the boundary condition $P_1^*(0) = P_D^*$ gives

Flow Front Shape: $h_F(x^*)$

Figure 6. Two Mathematical Roots of $h_F^*(x^*) = 0$. Note That Only the Smaller Root Is Physically Possible.

$$P_D^* = -\frac{(\Phi_2 - U_2^*)\mu^*}{K_{2yy}^*} \beta = \frac{(\Phi_2 - U_2^*)\mu^*}{K_{2yy}^*} \sqrt{\frac{2K_{2yy}^*}{3h_1^*} + \frac{\Phi_1 K_{2yy}^*}{\Phi_2 - U_2^*}} . \quad (37)$$

Using the nondimensional form of Darcy's Equation in the saturated region,

$$U_2^* = \frac{K_{2xx}^*}{\mu^*} \frac{1 - P_D^*}{D^*} \Rightarrow U_2^* D^* \frac{\mu^*}{K_{2xx}^*} = 1 - \mu^* \frac{\Phi_2 - U_2^*}{K_{2yy}^*} \sqrt{\frac{2K_{2yy}^*}{3h_1^*} + \frac{\Phi_1 K_{2yy}^*}{\Phi_2 - U_2^*}} .$$

To find U_F^* substituted with μ^* is

$$\mu^* = \frac{\mu h_2 U_F}{K_{1xx} P_0} = \frac{1}{ID^* + \Lambda} , \quad (38)$$

where

$$\Gamma = \frac{U_2^*}{K_{2xx}^*}$$

and

$$\Lambda = \frac{(\Phi_2 - U_2^*)}{K_{2yy}^*} \sqrt{\frac{2K_{2yy}^*}{3h_1^*} + \frac{\Phi_1 K_{2yy}^*}{\Phi_2 - U_2^*}} . \quad (39)$$

From equation 38, the flow front velocity is

$$U_F = \frac{K_{1xx} P_0}{\mu h_2} \frac{1}{\Gamma D^* + \Lambda} , \quad (40)$$

but $U_F = \frac{dD}{dt}$, and $D^* = \frac{D}{h_2}$; hence, the previous equation becomes

$$\frac{dD}{dt} = \frac{K_{1xx} P_0}{\mu h_2} \frac{1}{\Gamma D + \Lambda h_2} . \quad (41)$$

Solving the resulting differential equation for $D(t)$,

$$t - t_0 = C_1 (D^2 - D_0^2) + C_2 (D - D_0) , \quad (42)$$

where $C_1 = \frac{\Gamma \mu}{2K_{1xx} P_0}$ and $C_2 = \frac{\mu \Lambda h_2}{K_{1xx} P_0}$. The variable t_0 is the time it takes for the flow front region to become fully developed, while D_0 is the entry length for the development of the flow front region. Solving for $D(t)$,

$$D(t) = \frac{\sqrt{(\Lambda h_2)^2 + \frac{\Gamma \mu}{2K_{1xx}P_0}(t - t_0 + C_1 D_o^2 + C_2 D_o)} - \Lambda h_2}{\Gamma} . \quad (43)$$

Equations 42 and 43 are important for the design of the VARTM process. The results obtained are compared to full-scale, finite-element-based simulations using LIMS 4.0 and are presented in the next section. A parametric study is presented to shed light on how one can scale the parameters in the VARTM process.

4. Verification: Full-Scale Simulations

The results obtained can be compared to finite-element-based simulations of the filling process in VARTM. LIMS 4.0 was used for simulation of the filling process for five different cases, with different values for permeabilities and fiber volume fractions for the distribution and structural layers, respectively, and length of part, D. Each part was modeled using finite elements and the filling process simulated as a constant pressure injection at 1 atm at one corner of the part. The viscosity of the resin, the thicknesses of the structural and distribution layers, and the permeability of the distribution layer were held constant. The fill times and the values of d were determined and compared to those obtained from the closed form solution. The results are tabulated in Table 1. The fill time from the analytical solution was found to be within 2% of the value from the full-scale numerical simulation, while the value of d was within 12% of the value from simulation. For all cases, the condition $\frac{K_{2xx}h_2^2}{K_{2yy}d^2} \ll 1$ was maintained for a valid analytical solution.

The flow front history and the pressure contours at the final time are plotted for Case 1 in Figure 7. It can be observed that the flow front is constant in shape, while the lines of constant pressure in the saturated region are equally spaced and vertical to the x axis, thus verifying the assumptions of constant flow front shape and linear variation in pressure in the saturated region.

Table 1. Comparison of Closed Form Solution With Results From Full-Scale Numerical Solution of the VARTM Process

Case	Parameters	d (cm)		t-t ₀ (s)		% Error ^a	
		LIMS 4.0	Closed Form Solution	LIMS 4.0	Closed Form Solution	d (%)	t (%)
1	$K_{2xx} = 8.8E-7 \text{ cm}^2$ $K_{2yy} = 4.4E-7 \text{ cm}^2$ $\phi_1 = 0.99, \phi_2 = 0.50$ $D-D_0 = 40.0 \text{ cm}$	8.9	9.8	44.9	44.8	9.7	-0.3
2	$K_{2xx} = 8.8E-7 \text{ cm}^2$ $K_{2yy} = 4.4E-8 \text{ cm}^2$ $\phi_1 = 0.99, \phi_2 = 0.50$ $D-D_0 = 19.0 \text{ cm}$	29.2	30.9	19.1	19.4	5.7	1.5
3	$K_{2xx} = 8.8E-7 \text{ cm}^2$ $K_{2yy} = 4.4E-6 \text{ cm}^2$ $\phi_1 = 0.99, \phi_2 = 0.50$ $D-D_0 = 47.0 \text{ cm}$	3.0	3.1	54.2	54.5	2.9	0.5
4	$K_{2xx} = 8.8E-7 \text{ cm}^2$ $K_{2yy} = 4.4E-7 \text{ cm}^2$ $\phi_1 = 0.99, \phi_2 = 0.80$ $D-D_0 = 40.3 \text{ cm}$	9.2	10.1	71.7	72.1	10.2	0.6
5	$K_{2xx} = 8.8E-7 \text{ cm}^2$ $K_{2yy} = 4.4E-7 \text{ cm}^2$ $\phi_1 = 0.70, \phi_2 = 0.50$ $D-D_0 = 40.0 \text{ cm}$	9.0	10.0	44.2	44.5	11.6	0.7

Note: The following variables were used in all cases:

$$P_0 = 1E6 \text{ g/cm-s}^2,$$

$$\mu = 1 \text{ g/cm-s}$$

$$h_1 = 0.01 \text{ cm},$$

$$h_2 = 1 \text{ cm},$$

$$K_{1xx} = 1E-3 \text{ cm}^2, \text{ and}$$

$$D_0 \sim 0 \text{ cm for all the cases.}$$

^a Based on results from LIMS 4.0.

5. Effect of Process Variables: A Parametric Study

The process variables that affect the flow of resin are broadly classified into geometric parameters (such as thickness) and material properties (such as permeability and porosity of the two layers). These process variables influence the time to fill a mold of a given length. A parametric study of these effects allows for better design and analysis of the VARTM manufacturing process. In the present section, the effect of a number of process variables on the fill times and flow velocity was studied. The baseline values used for the study are:

$$P_0 = 1 \text{ atm}, \mu = 1 \text{ cp},$$

$$h_1 = 1.00 \text{ cm}, h_2 = 0.025 \text{ cm},$$

$$K_{1xx} = 8.8 \times 10^{-4} \text{ cm}^2, K_{2xx} = 8.8 \times 10^{-7} \text{ cm}^2, K_{2yy} = 1.47 \times 10^{-7} \text{ cm}^2, \text{ and}$$

$$\Phi_1 = 0.99, \Phi_2 = 0.50.$$

In the plots for each parameter, the flow front velocity (U_F) and the time taken (t) are plotted against D for different values of the parameter. Note that the time axis is reversed; therefore, the lines for t start from zero at the top of the graph.

5.1 Effect of Thickness Ratios. The effect of the ratio of the thickness of the distribution medium to that of the structural layer, $h_1^* = \frac{h_1}{h_2}$, is considered. Figure 8 plots the flow front velocity, U_F , vs. D for different thickness ratios. As h_1^* increases, the flow front velocity increases while the fill time decreases for a given length D . This is because as the thickness of the highly permeable distribution medium relative to that of the structural layer increases, the resin flow rate in the distribution medium increases. Since the diffusion material is used to distribute resin in the part and ensure mold filling, an increase in h_1^* will cause an increase in flow front velocity and a decrease in fill time.

For the case of $h_1^* = 0.1$, encountered with thin section composite parts, U_F shows a slower decrease with D than with the other cases. With thick-section composite parts where $h_1^* \rightarrow 0$,

(2D)7 20 Jul 1998 : c2Inze : tec

(a) Flow Front History

(2D)7 20 Jul 1998 : Interfac

(b) Pressure Distribution at the Final Time Step

Figure 7. Example of a Full-Scale Numerical Simulation: (a) Flow Front History and (b) Pressure Distribution at the Final Time Step.

Figure 8. Flow Front Velocity and Fill Time as a Function of Length of the Saturated Region: Effect of Thickness Ratios.

U_F falls rapidly. In order to fill such a part efficiently, the distance between the gates (D) has to be small; thus, the number of gates required increases. Therefore, the solution provides insight into the scaling laws required for manufacturing thick-section composites by VARTM.

5.2 Effect of Permeability. The permeability values of importance are: K_{1xx}^* , the permeability of the distribution layer in the longitudinal x direction, and K_{2xx}^* and K_{2yy}^* , the permeabilities of the structural layer in the longitudinal x and thickness y directions. As seen in

Figures 9–11, as the permeability values increase, the time to fill decreases, and the flow front velocity increases. As the permeability values increase, the resistance of the material to the resin flow decreases. Hence, the net flow rates are higher, and the time to fill decreases, while the flow front velocity increases. Since the flow rate in the distribution layer is higher, the effect of K_{1xx}^* is significantly more than that of K_{2xx}^* and K_{2yy}^* . These effects can also be observed from the plots shown. This has important ramifications on the selection and the thickness of distribution media.

5.3 Effect of Porosity. The porosity of a fiber preform is defined as the fraction of the total volume of the material not occupied by the fibers. In composite manufacturing, the complementary term, volume fraction, was more commonly used. The volume fraction is defined as the fraction of the fiber preform occupied by the fibers and is related to the porosity by the relation $V_f = 1 - \Phi$. The porosity also affects the permeability of the material. However, this coupling has not been accounted for in the present work.

The porosity values considered here are Φ_1 , the porosity of the distribution layer, and Φ_2 , the porosity of the structural layer. As observed from Figure 12, Φ_1 did not significantly affect the time to fill and the flow front velocity. In Figure 13, as Φ_2 increases, the flow-front velocity decreases, and the fill time significantly increases. This is because the fraction of the total part volume occupied by the thin layer of diffusion material is very low compared to that occupied by the fiber preform in the structural layer. Hence, increasing the porosity of the diffusion material does not have a significant effect. Whereas, if Φ_2 increases, the volume of the structural layer (which is unoccupied by the fiber perform) significantly increases. This additional volume must be filled by the resin, thus requiring more time to fill it and therefore slowing down the flow front.

Figure 9. Flow Front Velocity and Fill Time as a Function of Length of the Saturated Region: Effect of Permeability of Distribution Medium.

6. Conclusions

A closed form solution for flow of resin in the VARTM process has been developed. This process is explained by a two-layer model comprised of a distribution layer and a structural layer, containing fiber preform. The flow is divided into a saturated region where there is no

Figure 10. Flow Front Velocity and Fill Time as a Function of Length of the Saturated Region: Effect of In-Plane Permeability of Fiber Preform.

crossflow, and a flow front region with a steady shape and uniform velocity where the driving flow emanates from the distribution layer to the structural layer. It is assumed that the thickness of the distribution layer is much smaller than that of the structural layer, and that the length of the flow front region is much smaller than that of the saturated region. It is also assumed that the crossflow in the flow front region is much higher than the flow from the saturated region into the flow front region. Darcy's Law regarding flow in porous media and mass balances at different sections was used to formulate a system of differential equations, and a closed form solution was

Figure 11. Flow Front Velocity and Fill Time as a Function of Length of the Saturated Region: Effect of Transverse Permeability of Fiber Preform.

found. The model predicted the shape and development of the flow front given the material properties, the geometric parameters, the pressure at the inlet, and the viscosity. The obtained results were verified by comparing them with full-scale simulations. The parametric study indicated trends that reflect the physics of the flow process and identified the parameters that

Figure 12. Flow Front Velocity and Fill Time as a Function of Length of the Saturated Region: Effect of Porosity of Distribution Medium.

significantly affect the filling process. Subsequent solutions provided physical insight into the manufacturing process and can be used for scaling, design, and optimization of the VARTM process.

Figure 13. Flow Front Velocity and Fill Time as a Function of Length of the Saturated Region: Effect of Porosity of Fiber Preform.

INTENTIONALLY LEFT BLANK.

7. References

Bruschke, M. V., and S. G. Advani. "A Finite Element/Control Volume Approach to Mold Filling in Anisotropic Porous Media." *Polymer Composites*, vol. 11, pp. 398–405, 1990.

Bruschke, M. V., and S. G. Advani. "A Numerical Approach to Model Non-Isothermal, Viscous Flow With Free Surfaces Through Fibrous Media." *International Journal of Numerical Methods in Fluids*, vol. 19, pp. 575–603, 1991a.

Bruschke, M. V., and S. G. Advani. "RTM: Filling Simulation of Complex Three-Dimensional Shell-Like Structures." *SAMPE Quarterly*, vol. 3, no. 1, pp. 2–11, 1991b.

Gallez, X. E., and S. G. Advani. "Numerical Simulations for Impregnation of Fiber Preforms in Composites Manufacturing." Proceedings of the Fourth International Conference on Flow Processes in Composite Materials, University of Wales, 1996.

Lee L. J., W. B. Young, and R. J. Lin. "Mold Filling and Cure Modeling of RTM and SCRIMP Processes." *Composite Structures*, vol. 27, pp. 1–2, 1994.

Liu, D., S. Bickerton, and S. G. Advani. "Modeling and Simulation of RTM: Gate Control, Venting and Dry Spot Prediction." *Composites Part A*, vol. 27A, pp. 135–141, 1996.

Mohan, R. V., N. D. Ngo, and K. K. Tamma. "On a Pure Finite Element Based Methodology for Resin Transfer Mold Filling Simulations." *Polymer and Engineering Science*, vol. 39, no. 1, pp. 28–43, 1999.

Murphy, G. M. *Ordinary Differential Equations and Their Solutions*. Princeton, NJ: Van Nostrand, 1960.

Pillai, K. M., and S. G. Advani. "Numerical Simulation of Unsaturated Flow in Woven or Stitched Fiber Mats in Resin Transfer Molding." *Polymer Composites*, vol. 19, no. 1, pp. 71–80, 1998a.

Pillai, K. M., and S. G. Advani. "A Model for Unsaturated Flow in Woven or Stitched Fiber Mats in Resin Transfer Molding." *Journal of Composite Materials*, vol. 32, no. 19, pp. 1753–1783, 1998b.

Seemann, W. H., II. "Plastic Transfer Molding Techniques for the Production of Fiber Reinforced Plastic Structures." U.S. Patent 4,902,215, 1990.

Simacek, P., E. M. Sozer, and S. G. Advani. "User Manual for DRAPE 1.1 and LIMS 4.0." Technical Report 98-01, Center for Composite Materials, University of Delaware, 1998.

Tari, M. J., J. P. Imbert, M. Y. Lin, A. S. Lavine, and H. T. Hahn. "Analysis of Resin Transfer Molding With High Permeability Layers." *Journal of Manufacturing Science and Engineering*, vol. 120, pp. 609–616, 1998.

Trochu, F., R. Gauvin, D. M. Gao, and J. F. Boudreault. "RTMFLLOT—An Integrated Software Environment for the Computer Simulation of the Resin Transfer Molding Process." *Journal of Reinforced Plastics and Composites*, vol. 13, no. 3, pp. 262–270, 1994.

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
2	DEFENSE TECHNICAL INFORMATION CENTER DTIC DDA 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218	1	DIRECTOR US ARMY RESEARCH LAB AMSLR D D R SMITH 2800 POWDER MILL RD ADELPHI MD 20783-1197
1	HQDA DAMO FDT 400 ARMY PENTAGON WASHINGTON DC 20310-0460	1	DIRECTOR US ARMY RESEARCH LAB AMSLR DD 2800 POWDER MILL RD ADELPHI MD 20783-1197
1	OSD OUSD(A&T)/ODDDR&E(R) R J TREW THE PENTAGON WASHINGTON DC 20301-7100	1	DIRECTOR US ARMY RESEARCH LAB AMSLR CI AI R (RECORDS MGMT) 2800 POWDER MILL RD ADELPHI MD 20783-1145
1	DPTY CG FOR RDA US ARMY MATERIEL CMD AMCRDA 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001	3	DIRECTOR US ARMY RESEARCH LAB AMSLR CI LL 2800 POWDER MILL RD ADELPHI MD 20783-1145
1	INST FOR ADVNCED TCHNLGY THE UNIV OF TEXAS AT AUSTIN PO BOX 202797 AUSTIN TX 78720-2797	1	DIRECTOR US ARMY RESEARCH LAB AMSLR CI AP 2800 POWDER MILL RD ADELPHI MD 20783-1197
1	DARPA B KASPAR 3701 N FAIRFAX DR ARLINGTON VA 22203-1714		<u>ABERDEEN PROVING GROUND</u>
1	NAVAL SURFACE WARFARE CTR CODE B07 J PENNELLA 17320 DAHLGREN RD BLDG 1470 RM 1101 DAHLGREN VA 22448-5100	4	DIR USARL AMSLR CI LP (BLDG 305)
1	US MILITARY ACADEMY MATH SCI CTR OF EXCELLENCE MADN MATH MAJ HUBER THAYER HALL WEST POINT NY 10996-1786		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	DIRECTOR US ARMY RESEARCH LAB AMSRL CP CA D SNIDER 2800 POWDER MILL RD ADELPHI MD 20783-1145	2	COMMANDER US ARMY ARDEC AMSTA AR AE WW E BAKER J PEARSON PICATINNY ARSENAL NJ 07806-5000
1	DIRECTOR US ARMY RESEARCH LAB AMSRL OP SD TA 2800 POWDER MILL RD ADELPHI MD 20783-1145	1	COMMANDER US ARMY ARDEC AMSTA AR TD C SPINELLI PICATINNY ARSENAL NJ 07806-5000
3	DIRECTOR US ARMY RESEARCH LAB AMSRL OP SD TL 2800 POWDER MILL RD ADELPHI MD 20783-1145	1	COMMANDER US ARMY ARDEC AMSTA AR FSE PICATINNY ARSENAL NJ 07806-5000
1	DIRECTOR US ARMY RESEARCH LAB AMSRL OP SD TP 2800 POWDER MILL RD ADELPHI MD 20783-1145	6	COMMANDER US ARMY ARDEC AMSTA AR CCH A W ANDREWS S MUSALLI R CARR M LUCIANO E LOGSDEN T LOUZEIRO PICATINNY ARSENAL NJ 07806-5000
1	HQDA DAMI FIT NOLAN BLDG WASHINGTON DC 20310-1025		
1	DIRECTOR DA OASARDA SARD SO 103 ARMY PENTAGON WASHINGTON DC 20310-0103	4	COMMANDER US ARMY ARDEC AMSTA AR CC G PAYNE J GEHBAUER C BAULIEU H OPAT PICATINNY ARSENAL NJ 07806-5000
1	DPTY ASST SECY FOR R&T SARD TT THE PENTAGON RM 3EA79 WASHINGTON DC 20301-7100		
1	COMMANDER US ARMY MATERIEL CMD AMXMI INT 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001	1	COMMANDER US ARMY ARDEC AMSTA AR CCH P J LUTZ PICATINNY ARSENAL NJ 07806-5000

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	COMMANDER US ARMY ARDEC AMSTA AR FSF T C LIVECCIA PICATINNY ARSENAL NJ 07806-5000	9	COMMANDER US ARMY ARDEC AMSTA AR CCH B P DONADIA F DONLON P VALENTI C KNUTSON G EUSTICE S PATEL G WAGNECZ R SAYER F CHANG PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR QAC T C C PATEL PICATINNY ARSENAL NJ 07806-5000	2	COMMANDER US ARMY ARDEC AMSTA AR CCH C H CHANIN S CHICO PICATINNY ARSENAL NJ 07806-5000
2	COMMANDER US ARMY ARDEC AMSTA AR M D DEMELLA F DIORIO PICATINNY ARSENAL NJ 07806-5000	6	COMMANDER US ARMY ARDEC AMSTA AR CCL F PUZYCKI R MCHUGH D CONWAY E JAROSZEWSKI R SCHLENNER M CLUNE PICATINNY ARSENAL NJ 07806-5000
3	COMMANDER US ARMY ARDEC AMSTA AR FSA A WARNASH B MACHAK M CHIEFA PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA AR QAC T D RIGOGLIOSO PICATINNY ARSENAL NJ 07806-5000
2	COMMANDER US ARMY ARDEC AMSTA AR FSP G M SCHIKSNIS D CARLUCCI PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA AR SRE D YEE PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR FSP A P KISATSKY PICATINNY ARSENAL NJ 07806-5000		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	COMMANDER US ARMY ARDEC AMSTA AR WET T SACHAR BLDG 172 PICATINNY ARSENAL NJ 07806-5000	6	PM SADARM SFAE GCSS SD COL B ELLIS M DEVINE R KOWALSKI W DEMASSI J PRITCHARD S HROWNAK PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA ASF PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC PRODUCTION BASE MODERN ACTY AMSMC PBM K PICATINNY ARSENAL NJ 07806-5000
1	US ARMY ARDEC INTELLIGENCE SPECIALIST AMSTA AR WEL F M GUERRIERE PICATINNY ARSENAL NJ 07806-5000	3	COMMANDER US ARMY TACOM PM TACTICAL VEHICLES SFAE TVL SFAE TVM SFAE TVH 6501 ELEVEN MILE RD WARREN MI 48397-5000
11	PM TMAS SFAE GSSC TMA R MORRIS C KIMKER D GUZOWICZ E KOPACZ R ROESER R DARCY R MCDANOLDS L D ULISS C ROLLER J MCGREEN B PATTER PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY TACOM PM BFVS SFAE ASM BV 6501 ELEVEN MILE RD WARREN MI 48397-5000
2	PEO FIELD ARTILLERY SYS SFAE FAS PM H GOLDMAN T MCWILLIAMS PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY TACOM PM AFAS SFAE ASM AF 6501 ELEVEN MILE RD WARREN MI 48397-5000
1	COMMANDER US ARMY TACOM PM ABRAMS SFAE ASM AB 6501 ELEVEN MILE RD WARREN MI 48397-5000	1	COMMANDER US ARMY TACOM PM RDT&E SFAE GCSS W AB J GODELL 6501 ELEVEN MILE RD WARREN MI 48397-5000

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
2	COMMANDER US ARMY TACOM PM SURV SYS SFAE ASM SS T DEAN SFAE GCSS W GSI M D COCHRAN 6501 ELEVEN MILE RD WARREN MI 48397-5000	14	COMMANDER US ARMY TACOM AMSTA TR R J CHAPIN R MCCLELLAND D THOMAS J BENNETT D HANSEN AMSTA JSK S GOODMAN J FLORENCE K IYER J THOMSON AMSTA TR D D OSTBERG L HINOJOSA B RAJU AMSTA CS SF H HUTCHINSON F SCHWARZ WARREN MI 48397-5000
1	COMMANDER US ARMY TACOM PM SURVIVABLE SYSTEMS SFAE GCSS W GSI H M RYZI 6501 ELEVEN MILE RD WARREN MI 48397-5000		
1	COMMANDER US ARMY TACOM PM BFV SFAE GCSS W BV S DAVIS 6501 ELEVEN MILE RD WARREN MI 48397-5000	1	COMMANDER US ARMY TACOM AMSTA SF WARREN MI 48397-5000
1	COMMANDER US ARMY TACOM PM LIGHT TACTICAL VHCLS AMSTA TR S A J MILLS MS 209 6501 ELEVEN MILE RD WARREN MI 48397-5000	1	COMMANDER WATERVLIET ARSENAL SMCWV QAE Q B VANINA BLDG 44 WATERVLIET NY 12189-4050
1	COMMANDER US ARMY TACOM PM GROUND SYSTEMS INTEGRATION SFAE GCSS W GSI R LABATILLE 6501 ELEVEN MILE RD WARREN MI 48397-5000	1	COMMANDER WATERVLIET ARSENAL SMCWV SPM T MCCLOSKEY BLDG 253 WATERVLIET NY 12189-4050
1	COMMANDER US ARMY TACOM CHIEF ABRAMS TESTING SFAE GCSS W AB QT T KRASKIEWICZ 6501 ELEVEN MILE RD WARREN MI 48397-5000	2	TSM ABRAMS ATZK TS S JABURG W MEINSHAUSEN FT KNOX KY 40121

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
10	BENET LABORATORIES AMSTA AR CCB R FISCELLA G D ANDREA M SCAVULO G SPENCER P WHEELER K MINER J VASILAKIS G FRIAR R HASENBEIN AMSTA CCB R S SOPOK WATERVLIET NY 12189-4050	4	DIRECTOR US ARMY CECOM NIGHT VISION & ELECTRONIC SENSORS DIR AMSEL RD NV CM CCD R ADAMS R MCLEAN A YINGST AMSEL RD NV VISPA E JACOBS 10221 BURBECK RD FT BELVOIR VA 22060-5806
3	ARMOR SCHOOL ATZK TD R BAUEN J BERG A POMEY FT KNOX KY 40121	2	US ARMY CORPS OF ENGINEERS CERD C T LIU CEW ET T TAN 20 MASS AVE NW WASHINGTON DC 20314
2	HQ IOC TANK AMMUNITION TEAM AMSIIO SMT R CRAWFORD W HARRIS ROCK ISLAND IL 61299-6000	1	US ARMY COLD REGIONS RSCH & ENGRNG LAB P DUTTA 72 LYME RD HANOVER NH 03755
1	DIRECTOR US ARMY AMCOM SFAE AV RAM TV D CALDWELL BLDG 5300 REDSTONE ARSENAL AL 35898	1	SYSTEM MANAGER ABRAMS ATZK TS LTC J H NUNN BLDG 1002 RM 110 FT KNOX KY 40121
2	COMMANDER US ARMY AMCOM AVIATION APPLIED TECH DIR J SCHUCK FT EUSTIS VA 23604-5577	1	COMMANDANT US ARMY FIELD ARTILLERY CENTER AT FT SILL ATFS CD LTC BUMGARNER FT SILL OK 73503-5600
1	US ARMY CERL R LAMPO 2902 NEWMARK DR CHAMPAIGN IL 61822	1	CHIEF USAIC ATZB COM LTC T J CUMMINGS FT BENNING GA 31905-5800
		1	NAVAL AIR SYSTEMS CMD J THOMPSON 48142 SHAW RD UNIT 5 PATUXENT RIVER MD 20670

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
8	DIRECTOR US ARMY NATIONAL GROUND INTELLIGENCE CTR D LEITER M HOLTUS M WOLFE S MINGLEDORF J GASTON W GSTATTENBAUER R WARNER J CRIDER 220 SEVENTH ST NE CHARLOTTESVILLE VA 22091	1	NAVAL SURFACE WARFARE CTR TECH LIBRARY CODE 323 17320 DAHLGREN RD DAHLGREN VA 22448
6	US ARMY SBCCOM SOLDIER SYSTEMS CENTER BALLISTICS TEAM J WARD MARINE CORPS TEAM J MACKIEWICZ BUS AREA ADVOCACY TEAM W HASKELL SSCNC WST W NYKVIST T MERRILL S BEAUDOIN KANSAS ST NATICK MA 01760-5019	3	NAVAL RESEARCH LAB I WOLOCK CODE 6383 R BADALIANCE CODE 6304 L GAUSE WASHINGTON DC 20375
9	US ARMY RESEARCH OFC A CROWSON J CHANDRA H EVERETT J PRATER R SINGLETON G ANDERSON D STEPP D KISEROW J CHANG PO BOX 12211 RESEARCH TRIANGLE PARK NC 27709-2211	1	NAVAL SURFACE WARFARE CTR CRANE DIVISION M JOHNSON CODE 20H4 LOUISVILLE KY 40214-5245
1	NAVAL SURFACE WARFARE CTR CARDEROCK DIVISION R PETERSON CODE 2020 M CRITCHFIELD CODE 1730 BETHESDA MD 20084	2	COMMANDER NAVAL SURFACE WARFARE CTR U SORATHIA C WILLIAMS CD 6551 9500 MACARTHUR BLVD WEST BETHESDA MD 20817
1	DAVID TAYLOR RESEARCH CTR SHIP STRUCTURES & PROTECTION DEPT CODE 1702 BETHESDA MD 20084	2	DAVID TAYLOR RESEARCH CTR R ROCKWELL W PHYILLAIER BETHESDA MD 20054-5000
1	NAVAL SURFACE WARFARE CTR DAHLGREN DIV CODE G06 DAHLGREN VA 22448	1	OFC OF NAVAL RESEARCH D SIEGEL CODE 351 800 N QUINCY ST ARLINGTON VA 22217-5660

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
8	NAVAL SURFACE WARFARE CTR J FRANCIS CODE G30 D WILSON CODE G32 R D COOPER CODE G32 J FRAYSSE CODE G33 E ROWE CODE G33 T DURAN CODE G33 L DE SIMONE CODE G33 R HUBBARD CODE G33 DAHLGREN VA 22448	2	AFRL F ABRAMS J BROWN BLDG 653 2977 P ST STE 6 WRIGHT PATTERSON AFB OH 45433-7739
1	NAVAL SEA SYSTEMS CMD D LIESE 2531 JEFFERSON DAVIS HWY ARLINGTON VA 22242-5160	1	AFRL MLS OL L COULTER 7278 4TH ST BLDG 100 BAY D HILL AFB UT 84056-5205
1	NAVAL SURFACE WARFARE CTR M LACY CODE B02 17320 DAHLGREN RD DAHLGREN VA 22448	1	OSD JOINT CCD TEST FORCE OSD JCCD R WILLIAMS 3909 HALLS FERRY RD VICKSBURG MS 29180-6199
1	OFC OF NAVAL RES J KELLY 800 NORTH QUINCEY ST ARLINGTON VA 22217-5000	1	DEFENSE NUCLEAR AGENCY INNOVATIVE CONCEPTS DIV 6801 TELEGRAPH RD ALEXANDRIA VA 22310-3398
2	NAVAL SURFACE WARFARE CTR CARDE ROCK DIVISION R CRANE CODE 2802 C WILLIAMS CODE 6553 3A LEGGETT CIR BETHESDA MD 20054-5000	1	WATERWAYS EXPERIMENT D SCOTT 3909 HALLS FERRY RD SC C VICKSBURG MS 39180
1	EXPEDITIONARY WARFARE DIV N85 F SHOUP 2000 NAVY PENTAGON WASHINGTON DC 20350-2000	3	DARPA M VANFOSSEN S WAX L CHRISTODOULOU 3701 N FAIRFAX DR ARLINGTON VA 22203-1714
1	AFRL MLBC 2941 P ST RM 136 WRIGHT PATTERSON AFB OH 45433-7750	2	FAA TECH CENTER D OPLINGER AAR 431 P SHYPRYKEVICH AAR 431 ATLANTIC CITY NJ 08405
1	AFRL MLSS R THOMSON 2179 12TH ST RM 122 WRIGHT PATTERSON AFB OH 45433-7718	2	SERDP PROGRAM OFC PM P2 C PELLERIN B SMITH 901 N STUART ST STE 303 ARLINGTON VA 22203

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	FAA MIL HDBK 17 CHAIR L ILCEWICZ 1601 LIND AVE SW ANM 115N RESTON VA 98055	7	NIST R PARNAS J DUNKERS M VANLANDINGHAM MS 8621 J CHIN MS 8621 D HUNSTON MS 8543 J MARTIN MS 8621 D DUTHINH MS 8611 100 BUREAU DR GAITHERSBURG MD 20899
1	US DEPT OF ENERGY OFC OF ENVIRONMENTAL MANAGEMENT P RITZCOVAN 19901 GERMANTOWN RD GERMANTOWN MD 20874-1928	1	LOCKHEED MARTIN MISSILES & FIRE CONTROL R TAYLOR PO BOX 650003 M S WT 93 DALLAS TX 75265-0003
1	DIRECTOR LLNL F ADDESSIO MS B216 PO BOX 1633 LOS ALAMOS NM 87545	1	HYDROGEOLOGIC INC SERDP ESTCP SPT OFC S WALSH 1155 HERNDON PKWY STE 900 HERNDON VA 20170
5	DIRECTOR LLNL R CHRISTENSEN S DETERESA F MAGNESS M FINGER MS 313 M MURPHY L 282 PO BOX 808 LIVERMORE CA 94550	3	DIRECTOR SANDIA NATIONAL LABS APPLIED MECHANICS DEPT DIV 8241 J HANDROCK Y R KAN J LAUFFER PO BOX 969 LIVERMORE CA 94550-0096
1	OAK RIDGE NATIONAL LABORATORY R M DAVIS PO BOX 2008 OAK RIDGE TN 37831-6195	3	NASA Langley RSCH CTR AMSRL VS W ELBER MS 266 F BARTLETT JR MS 266 G FARLEY MS 266 HAMPTON VA 23681-0001
1	OAK RIDGE NATIONAL LABORATORY C EBERLE MS 8048 PO BOX 2009 OAK RIDGE TN 37831	1	NASA Langley RSCH CTR T GATES MS 188E HAMPTON VA 23661-3400
1	OAK RIDGE NATIONAL LABORATORY C D WARREN MS 8039 PO BOX 2009 OAK RIDGE TN 37922	1	USDOT FEDERAL RAILRD M FATEH RDV 31 WASHINGTON DC 20590

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	FHWA E MUNLEY 6300 GEORGETOWN PIKE MCLEAN VA 22101	1	COMPOSITE MATERIALS INC C RILEY 14530 S ANSON AVE SANTA FE SPRINGS CA 90670
1	CENTRAL INTLLGNC AGNCY OTI WDAG GT W L WALTMAN PO BOX 1925 WASHINGTON DC 20505	2	COMPOSIX D BLAKE L DIXON 120 O NEILL DR HEBRUN OHIO 43025
1	MARINE CORPS INTLLGNC ACTVTY D KOSITZKE 3300 RUSSELL RD STE 250 QUANTICO VA 22134-5011	4	CYTEC FIBERITE R DUNNE D KOHLI M GILLIO R MAYHEW 1300 REVOLUTION ST HAVRE DE GRACE MD 21078
1	DIRECTOR NATIONAL GRND INTLLGNC CTR IANG TMT 220 SEVENTH ST NE CHARLOTTESVILLE VA 22902-5396	2	SIMULA J COLTMAN R HUYETT 10016 S 51ST ST PHOENIX AZ 85044
1	DIRECTOR DEFENSE INTLLGNC AGNCY TA 5 K CRELLING WASHINGTON DC 20310	1	SIOUX MFG B KRIEL PO BOX 400 FT TOTTEN ND 58335
1	GRAPHITE MASTERS INC J WILLIS 3815 MEDFORD ST LOS ANGELES CA 90063-1900	2	PROTECTION MATERIALS INC M MILLER F CRILLEY 14000 NW 58 CT MIAMI LAKES FL 33014
1	ADVANCED GLASS FIBER YARNS T COLLINS 281 SPRING RUN LANE STE A DOWNINGTON PA 19335	3	FOSTER MILLER J J GASSNER M ROYLANCE W ZUKAS 195 BEAR HILL RD WALTHAM MA 02354-1196
1	COMPOSITE MATERIALS INC D SHORTT 19105 63 AVE NE PO BOX 25 ARLINGTON WA 98223	1	ROM DEVELOPMENT CORP R O MEARA 136 SWINEBURNE ROW BRICK MARKET PLACE NEWPORT RI 02840
1	COMPOSITE MATERIALS INC R HOLLAND 11 JEWEL CT ORINDA CA 94563		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
2	TEXTRON SYSTEMS T FOLTZ M TREASURE 201 LOWELL ST WILMINGTON MA 08870-2941	3	PACIFIC NORTHWEST LAB M SMITH G VAN ARSDALE R SHIPPELL PO BOX 999 RICHLAND WA 99352
1	JPS GLASS L CARTER PO BOX 260 SLATER RD SLATER SC 29683	2	AMOCO PERFORMANCE PRODUCTS M MICHNO JR J BANISAUkas 4500 MCGINNIS FERRY RD ALPHARETTA GA 30202-3944
1	O GARA HESS & EISENHARDT M GILLESPIE 9113 LESAINST DR FAIRFIELD OH 45014	1	SAIC M PALMER 2109 AIR PARK RD S E ALBUQUERQUE NM 87106
2	MILLIKEN RSCH CORP H KUHN M MACLEOD PO BOX 1926 SPARTANBURG SC 29303	1	SAIC G CHRYSSOMALLIS 3800 W 80TH ST STE 1090 BLOOMINGTON MN 55431
1	CONNEAUGHT INDUSTRIES INC J SANTOS PO BOX 1425 COVENTRY RI 02816	1	AAI CORPORATION T G STASTNY PO BOX 126 HUNT VALLEY MD 21030-0126
2	BATTELLE NATICK OPNS J CONNORS B HALPIN 209 W CENTRAL ST STE 302 NATICK MA 01760	1	APPLIED COMPOSITES W GRISCH 333 NORTH SIXTH ST ST CHARLES IL 60174
1	BATTELLE NW DOE PNNL T HALL MS K231 BATTELLE BLVD RICHLAND WA 99352	3	ALLIANT TECHSYSTEMS INC J CONDON E LYNAM J GERHARD WV01 16 STATE RT 956 PO BOX 210 ROCKET CENTER WV 26726-0210
1	ARMTEC DEFENSE PRODUCTS S DYER 85 901 AVE 53 PO BOX 848 COACHELLA CA 92236	1	CUSTOM ANALYTICAL ENG SYS INC A ALEXANDER 13000 TENSOR LANE NE FLINTSTONE MD 21530
2	GLCC INC J RAY M BRADLEY 103 TRADE ZONE DR STE 26C WEST COLUMBIA SC 29170		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
8	ALLIANT TECHSYSTEMS INC C CANDLAND MN11 2830 C AAKHUS MN11 2830 B SEE MN11 2439 N VLAHAKUS MN11 2145 R DOHRN MN11 2830 S HAGLUND MN11 2439 M HISSONG MN11 2830 D KAMDAR MN11 2830 600 SECOND ST NE HOPKINS MN 55343-8367	1	ZERNOW TECHNICAL SERVICES L ZERNOW 425 W BONITA AVE STE 208 SAN DIMAS CA 91773
1	PROJECTILE TECHNOLOGY INC 515 GILES ST HAVRE DE GRACE MD 21078	2	OLIN CORPORATION FLINCHBAUGH DIV E STEINER B STEWART PO BOX 127 RED LION PA 17356
2	LORAL VOUGHT SYSTEMS G JACKSON K COOK 1701 W MARSHALL DR GRAND PRAIRIE TX 75051	1	OLIN CORPORATION L WHITMORE 10101 NINTH ST NORTH ST PETERSBURG FL 33702
5	AEROJET GEN CORP D PILLASCH T COULTER C FLYNN D RUBAREZUL M GREINER 1100 WEST HOLLYVALE ST AZUSA CA 91702-0296	5	GKN AEROSPACE D OLDS 15 STERLING DR WALLINGFORD CT 06492
3	HEXCEL INC R BOE F POLICELLI J POESCH PO BOX 98 MAGNA UT 84044	1	SIKORSKY AIRCRAFT G JACARUSO T CARSTENSAN B KAY S GARBO MS S330A J ADELMANN 6900 MAIN ST PO BOX 9729 STRATFORD CT 06497-9729
1	HERCULES INC HERCULES PLAZA WILMINGTON DE 19894	1	PRATT & WHITNEY D HAMBRICK 400 MAIN ST MS 114 37 EAST HARTFORD CT 06108
1	BRIGS COMPANY J BACKOFEN 2668 PETERBOROUGH ST HERNDON VA 22071-2443	2	AEROSPACE CORP G HAWKINS M4 945 2350 E EL SEGUNDO BLVD EL SEGUNDO CA 90245
			CYTEC FIBERITE M LIN W WEB 1440 N KRAEMER BLVD ANAHEIM CA 92806

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	HEXCEL T BITZER 11711 DUBLIN BLVD DUBLIN CA 94568	1	NORTHROP GRUMMAN CORP ELECTRONIC SENSORS & SYSTEMS DIV E SCHOCH MS V 16 1745A W NURSERY RD LINTHICUM MD 21090
1	BOEING R BOHLMANN PO BOX 516 MC 5021322 ST LOUIS MO 63166-0516	2	NORTHROP GRUMMAN ENVIRONMENTAL PROGRAMS R OSTERMAN A YEN 8900 E WASHINGTON BLVD PICO RIVERA CA 90660
2	BOEING DFNSE & SPACE GP W HAMMOND S 4X55 J RUSSELL S 4X55 PO BOX 3707 SEATTLE WA 98124-2207	1	UDLP D MARTIN PO BOX 359 SANTA CLARA CA 95052
2	BOEING ROTORCRAFT P MINGURT P HANDEL 800 B PUTNAM BLVD WALLINGFORD PA 19086	1	UDLP G THOMAS PO BOX 58123 SANTA CLARA CA 95052
1	BOEING DOUGLAS PRODUCTS DIV L J HART SMITH 3855 LAKEWOOD BLVD D800 0019 LONG BEACH CA 90846-0001	2	UDLP R BARRETT MAIL DROP M53 V HORVATICH MAIL DROP M53 328 W BROKAW RD SANTA CLARA CA 95052-0359
1	LOCKHEED MARTIN S REEVE 8650 COBB DR D 73 62 MZ 0648 MARIETTA GA 30063-0648	3	UDLP GROUND SYSTEMS DIVISION M PEDRAZZI MAIL DROP N09 A LEE MAIL DROP N11 M MACLEAN MAIL DROP N06 1205 COLEMAN AVE SANTA CLARA CA 95052
1	LOCKHEED MARTIN SKUNK WORKS D FORTNEY 1011 LOCKHEED WAY PALMDALE CA 93599-2502	4	UDLP R BRYNSVOLD P JANKE MS 170 T GIOVANETTI MS 236 B VAN WYK MS 389 4800 EAST RIVER RD MINNEAPOLIS MN 55421-1498
1	LOCKHEED MARTIN R FIELDS 1195 IRWIN CT WINTER SPRINGS FL 32708	1	GDLS DIVISION D BARTLE PO BOX 1901 WARREN MI 48090
1	MATERIALS SCIENCES CORP B W ROSEN 500 OFC CENTER DR STE 250 FT WASHINGTON PA 19034		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
2	GDLS D REES M PASIK PO BOX 2074 WARREN MI 48090-2074	2	UNIV OF DAYTON RESEARCH INST R Y KIM A K ROY 300 COLLEGE PARK AVE DAYTON OH 45469-0168
1	GDLS MUSKEGON OPERATIONS W SOMMERS JR 76 GETTY ST MUSKEGON MI 49442	1	MIT P LAGACE 77 MASS AVE CAMBRIDGE MA 01887
1	GENERAL DYNAMICS AMPHIBIOUS SYS SURVIVABILITY LEAD G WALKER 991 ANNAPOLIS WAY WOODBRIDGE VA 22191	1	IIT RESEARCH CENTER D ROSE 201 MILL ST ROME NY 13440-6916
5	INST FOR ADVANCED TECH T KIEHNE H FAIR P SULLIVAN W REINECKE I MCNAB 4030 2 W BRAKER LN AUSTIN TX 78759	1	GA TECH RSCH INST GA INST OF TCHNLGY P FRIEDERICH ATLANTA GA 30392
2	CIVIL ENGR RSCH FOUNDATION PRESIDENT H BERNSTEIN R BELLE 1015 15TH ST NW STE 600 WASHINGTON DC 20005	1	MICHIGAN ST UNIV MSM DEPT R AVERILL 3515 EB EAST LANSING MI 48824-1226
1	ARROW TECH ASSO 1233 SHELBOURNE RD STE D 8 SOUTH BURLINGTON VT 05403-7700	1	UNIV OF KENTUCKY L PENN 763 ANDERSON HALL LEXINGTON KY 40506-0046
1	R EICHELBERGER CONSULTANT 409 W CATHERINE ST BEL AIR MD 21014-3613	1	UNIV OF WYOMING D ADAMS PO BOX 3295 LARAMIE WY 82071
1	UCLA MANE DEPT ENGR IV H T HAHN LOS ANGELES CA 90024-1597	2	UNIV OF UTAH DEPT OF MECH & INDUSTRIAL ENGR S SWANSON SALT LAKE CITY UT 84112
		2	PENN STATE UNIV R MCNITT C BAKIS 212 EARTH ENGR SCIENCES BLDG UNIVERSITY PARK PA 16802

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	PENN STATE UNIV R S ENGEL 245 HAMMOND BLDG UNIVERSITY PARK PA 16801	3	THE UNIV OF TEXAS AT AUSTIN CTR FOR ELECTROMECHANICS J PRICE A WALLS J KITZMILLER 10100 BURNET RD AUSTIN TX 78758-4497
1	PURDUE UNIV SCHOOL OF AERO & ASTRO C T SUN W LAFAYETTE IN 47907-1282	3	VA POLYTECHNICAL INST & STATE UNIV DEPT OF ESM M W HYER K REIFSNIDER R JONES BLACKSBURG VA 24061-0219
1	STANFORD UNIV DEPT OF AERONAUTICS & AEROBALLISTICS S TSAI DURANT BLDG STANFORD CA 94305	1	UNIV OF MARYLAND DEPT OF AEROSPACE ENGNRNG A J VIZZINI COLLEGE PARK MD 20742
1	UNIV OF DAYTON J M WHITNEY COLLEGE PARK AVE DAYTON OH 45469-0240	1	DREXEL UNIV A S D WANG 32ND & CHESTNUT ST PHILADELPHIA PA 19104
7	UNIV OF DELAWARE CTR FOR COMPOSITE MTRLS J GILLESPIE M SANTARE G PALMESE S YARLAGADDA S ADVANI D HEIDER D KUKICH 201 SPENCER LABORATORY NEWARK DE 19716	1	SOUTHWEST RSCH INST ENGR & MATL SCIENCES DIV J RIEGEL 6220 CULEBRA RD PO DRAWER 28510 SAN ANTONIO TX 78228-0510
1	UNIV OF ILLINOIS AT URBANA CHAMPAIGN NATIONAL CENTER FOR COMPOSITE MATERIALS RESEARCH J ECONOMY 216 TALBOT LABORATORY 104 S WRIGHT ST URBANA IL 61801		<u>ABERDEEN PROVING GROUND</u>
1	NORTH CAROLINA STATE UNIV CIVIL ENGINEERING DEPT W RASDORF PO BOX 7908 RALEIGH NC 27696-7908	1	US ARMY MATERIEL SYSTEMS ANALYSIS P DIETZ 392 HOPKINS RD AMXSY TD APG MD 21005-5071
1		1	DIRECTOR US ARMY RESEARCH LAB AMSRL OP AP L APG MD 21005-5066

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
<u>ABERDEEN PROVING GROUND (CONT)</u>			<u>ABERDEEN PROVING GROUND (CONT)</u>
106	DIR USARL AMSRl CI AMSRl CI H W STUREK AMSRl CI S A MARK AMSRl CS IO FI M ADAMSON AMSRl SL B J SMITH AMSRl SL BA AMSRl SL BL D BELY R HENRY AMSRl SL BG AMSRl SL I AMSRl WM B A HORST E SCHMIDT AMSRl WM BA F BRANDON AMSRl WM BC P PLOSTINS D LYON J NEWILL S WILKERSON A ZIELINSKI AMSRl WM BD B FORCH R FIFER R PESCE RODRIGUEZ B RICE AMSRl WM BE C LEVERITT D KOOKER AMSRl WM BR C SHOEMAKER J BORNSTEIN AMSRl WM M D VIECHNICKI G HAGNAUER J MCCUALEY B TANNER AMSRl WM MA R SHUFORD P TOUCHET N BECK TAN	AMSRL WM MA D FLANAGAN L GHIORSE D HARRIS S MCKNIGHT P MOY P PATTERSON G RODRIGUEZ A TEETS R YIN AMSRl WM MB B FINK J BENDER T BLANAS T BOGETTI R BOSSOLI L BURTON K BOYD S CORNELISON P DEHMER R DOOLEY W DRYSDALE G GAZONAS S GHIORSE D GRANVILLE D HOPKINS C HOPPEL D HENRY R KASTE M KLUSEWITZ M LEADORE R LIEB E RIGAS J SANDS D SPAGNUOLO W SPURGEON J TZENG E WETZEL AMSRl WM MB ALC A FRYDMAN AMRSRL WM MC J BEATTY E CHIN J MONTGOMERY A WEREczCAK J LASALVIA J WELLS	

NO. OF
COPIES ORGANIZATION

ABERDEEN PROVING GROUND (CONT)

AMSLR WM MD
W ROY
S WALSH
AMSLR WM T
B BURNS
AMSLR WM TA
W GILLICH
T HAVEL
J RUNYEON
M BURKINS
E HORWATH
B GOOCH
W BRUCHEY
AMSLR WM TC
R COATES
AMSLR WM TD
A DAS GUPTA
T HADUCH
T MOYNIHAN
F GREGORY
A RAJENDRAN
M RAFTENBERG
M BOTELER
T WEERASOORIYA
D DANDEKAR
A DIETRICH
AMSLR WM TE
A NIILER
J POWELL
AMSLR SS SD
H WALLACE
AMSLR SS SE R
R CHASE
AMSLR SS SE DS
R REYZER
R ATKINSON
AMSLR SE L
R WEINRAUB
J DESMOND
D WOODBURY

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	LTD R MARTIN MERL TAMWORTH RD HERTFORD SG13 7DG UK	2	ROYAL MILITARY COLLEGE OF SCIENCE SHRIVENHAM D BULMAN B LAWTON SWINDON WILTS SN6 8LA UK
1	SMC SCOTLAND P W LAY DERA ROSYTH ROSYTH ROYAL DOCKYARD DUNFERMLINE FIFE KY 11 2XR UK	1	SWISS FEDERAL ARMAMENTS WKS W LANZ ALLMENDSTRASSE 86 3602 THUN SWITZERLAND
1	CIVIL AVIATION ADMINISTRATION T GOTTESMAN PO BOX 8 BEN GURION INTERNL AIRPORT LOD 70150 ISRAEL	1	ISRAEL INST OF TECHNOLOGY S BODNER FACULTY OF MECHANICAL ENGR HAIFA 3200 ISRAEL
1	AEROSPATIALE S ANDRE A BTE CC RTE MD132 316 ROUTE DE BAYONNE TOULOUSE 31060 FRANCE	1	DSTO MATERIALS RESEARCH LAB NAVAL PLATFORM VULNERABILITY SHIP STRUCTURES & MTRLS DIV N BURMAN PO BOX 50 ASCOT VALE VICTORIA AUSTRALIA 3032
1	DAIMLER BENZ AEROSPACE J BAUER D 81663 MUNCHEN MUNICH GERMANY	1	ECOLE ROYAL MILITAIRE E CELENS AVE DE LA RENAISSANCE 30 1040 BRUXELLE BELGIQUE
3	DRA FORT HALSTEAD P N JONES D SCOTT M HINTON SEVEN OAKS KENT TN 147BP UK	1	DEF RES ESTABLISHMENT VALCARTIER A DUPUIS 2459 BOULEVARD PIE XI NORTH VALCARTIER QUEBEC CANADA PO BOX 8800 COURCELETTE GOA IRO QUEBEC CANADA
1	DEFENSE RESEARCH ESTAB VALCARTIER F LESAGE COURSELETTE QUEBEC COA IRO CANADA	1	INSTITUT FRANCO ALLEMAND DE RECHERCHES DE SAINT LOUIS DE M GIRAUD 5 RUE DU GENERAL CASSAGNOU BOITE POSTALE 34 F 68301 SAINT LOUIS CEDEX FRANCE

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	ECOLE POLYTECH J MANSON DMX LTC CH 1015 LAUSANNE SWITZERLAND	1	TNO DEFENSE RESEARCH I H PASMAN POSTBUS 6006 2600 JA DELFT THE NETHERLANDS
1	TNO PRINS MAURITS LABORATORY R IJSSELSTEIN LANGE KLEIWEG 137 PO BOX 45 2280 AA RIJSWIJK THE NETHERLANDS	1	B HIRSCH TACHKEMONY ST 6 NETAMUA 42611 ISRAEL
2	FOA NATL DEFENSE RESEARCH ESTAB DIR DEPT OF WEAPONS & PROTECTION B JANZON R HOLMLIN S 172 90 STOCKHOLM SWEDEN	1	DEUTSCHE AEROSPACE AG DYNAMICS SYSTEMS M HELD PO BOX 1340 D 86523 SCHROBENHAUSEN GERMANY
2	DEFENSE TECH & PROC AGENCY GROUND I CREWTHER GENERAL HERZOG HAUS 3602 THUN SWITZERLAND		
1	MINISTRY OF DEFENCE RAFAEL ARMAMENT DEVELOPMENT AUTH M MAYSELESS PO BOX 2250 HAIFA 31021 ISRAEL		
1	DYNAMIC RESEARCH AB A PERSSON BOX 201 S 151 36 SODERTALJE SWEDEN		
1	ERNST MACH INSTITUT EMI A STILP ECKERSTRASSE 4 7800 FREIBURG GERMANY		

INTENTIONALLY LEFT BLANK.

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project(0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)			2. REPORT DATE October 2000	3. REPORT TYPE AND DATES COVERED Final, January 1997-July 1999
4. TITLE AND SUBTITLE An Analytical Vacuum-Assisted Resin Transfer Molding (VARTM) Flow Model			5. FUNDING NUMBERS 62105AH84	
6. AUTHOR(S) Bruce K. Fink, Kuang-Ting Hsiao,* Roopesh Mathur,* John W. Gillespie, Jr.,* and Suresh G. Advani				
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory ATTN: AMSRL-WM-MB Aberdeen Proving Ground, MD 21005-5069			8. PERFORMING ORGANIZATION REPORT NUMBER ARL-TR-2354	
9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES * University of Delaware, Newark, DE 19716				
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.			12b. DISTRIBUTION CODE	
13. ABSTRACT (Maximum 200 words) <p>A closed form solution for the flow of resin in the vacuum-assisted resin transfer molding (VARTM) process is used extensively for affordable manufacturing of large composite structures. During VARTM processing, a highly permeable distribution medium is incorporated into the preform as a surface layer. During infusion, the resin flows preferentially across the surface, simultaneously through the preform, to a complex flow front. The analytical solution presented here provides insight into the scaling laws governing fill times and resin inlet placement as a function of the properties of the preform, distribution media, and resin. The formulation assumes that the flow is fully developed and is divided into two areas: (1) a saturated region with no crossflow, and (2) a flow front region, which moves with a uniform velocity, where the resin is infiltrating into the preform from the distribution medium. The law of conservation of mass and Darcy's Law for flow through porous media are applied in each region. The resulting equations are nondimensionalized and are solved to yield the flow front shape and the development of the saturated region. It is found that the flow front is parabolic in shape, and the length of the saturated region is proportional to the square root of the time elapsed. The obtained results are compared to data from full-scale simulation and show good agreement. The solution allows greater insight into the physics process, enables parametric and optimization studies, and can reduce the computational cost of full-scale, three-dimensional (3-D) simulations.</p>				
14. SUBJECT TERMS composite material, vacuum-assisted resin transfer molding, flow modeling			15. NUMBER OF PAGES	
			16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. LIMITATION OF ABSTRACT UL	

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-2354 (Fink) Date of Report October 2000

2. Date Report Received _____

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.) _____

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.) _____

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate. _____

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.) _____

Organization

**CURRENT
ADDRESS**

Name _____ E-mail Name _____

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or Incorrect address below.

Organization

OLD
ADDRESS

Name _____

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)