

#### Exercice 1:

- 1. Soit l'alphabet  $\Sigma = \{0,1\}$ , on considère les mots  $w_1 = 01$  et  $w_2 = 101$ : Calculer  $w_1 = w_2 = 101$ ;  $w_2 = w_1 = w_2 = 101$ ;  $w_1 = 101$ ;  $w_2 = 101$ ;  $w_2 = 101$ ;  $w_3 = 101$ ;  $w_4 = 101$ ;
- 2. Les mots suivants sont-ils générés par l'expression régulière (ab\*)b\* : ε, a, aa, ba, abbb, ababb, baba?

## Exercice 2:

Quels sont les langages décrits par les expressions régulières suivantes :

- 1. a(a|b)\*b
- 2. (a|b)\*ab(a|b)\*
- 3. (aa)\*a
- 4. (a|b)\*(c|d)\*
- 5.  $aab(a|b)*(bb|aa)^{\dagger}$
- 6. (a|ab)(c|bc)

#### Exercice 3:

Soient les alphabets suivants :

 $\Sigma_1$ ={a, b, c, ..., z};  $\Sigma_2$ ={no, tu, me, ta, ne, lo, am};  $\Sigma_3$ ={coop, op, opera, ion, creat},

et les mots:  $w_1$  =ali;  $w_2$  =bali;  $w_3$  =creation;  $w_4$  =taam;  $w_5$  =cooperation;  $w_6$  =operation.

- 1. Quels sont les alphabets sur les quels les wi sont définis.
- 2. Quel est don la taille de chaque w<sub>i</sub>.
- 3. Que faut-il ajouter à  $\Sigma_3$  pour que  $w_5$  et  $w_6$  soient définis.
- 4. Montrer que « ali » est un suffixe de  $w_2$  sur  $\Sigma_1$ .
- 5. Montrer que « ta » est un préfixe de  $w_4$  sur  $\Sigma_1$  et sur  $\Sigma_2$ .

## Exercice 4:

On considère l'alphabet {a,b}, donner une expression régulière décrivant :

- 1. les mots qui commencent par b.
- 2. les mots qui contiennent exactement trois a.
- 3. les mots qui contiennent au moins trois a.
- 4. les mots qui contiennent au plus trois a.
- 5. les mots qui ne contiennent pas la séquence ab.

#### Exercice 5:

On considère l'alphabet {0,1}, donner une expression régulière décrivant :

- 1. les mots qui ne contiennent pas deux 0 successifs.
- 2. les mots qui ne contiennent pas la séquence 100.
- 3. les mots de longueur paire.
- 4. les mots ayant un nombre pair de 0 et un nombre pair de 1.
- 5. les mots formés d'alternances de 0 et 1.
- 6. les nombres multiples de 2 et plus grands ou égaux à 8.

# Exercice 6:

On considère l'alphabet {a, b}. Donner les expressions régulières correspondantes aux propriétés suivantes :

- 1. les mots qui ne contiennent aucun b.
- 2. les mots qui contiennent au moins un a.
- 3. les mots de longueur paire.
- 4. le langage  $L = \{b^n a^p\}$  avec n et p entiers et au moins l'un des deux impair.



Olfa Mouelhi

Olfa.mouelhi@esprit.tn



- 5. les mots formes d'alternance de a et de b.
- 6. les mots qui ne contiennent pas aa.

#### Exercice 7:

Soient :  $\Sigma_1 = \{a\}$ ;  $\Sigma_2 = \{b, c\}$ 

 $L_1$ = {u  $\in \Sigma_1^*$  / u=waw', w et w'  $\in \Sigma_1^*$  };  $L_2$ = {u  $\in \Sigma_2^*$  / u=bcw, w  $\in \Sigma_2^*$  et  $1 \le |w| \le 2$  }

- 1. A-t-on  $\varepsilon \in L_1$ ?  $\varepsilon \in L_2$ ? Justifier.
- 2. Donner deux autres formulations de  $L_1$  et  $L_2$ .
- 3. Proposer 4 mots:  $m_{11}$ ,  $m_{12}$ ,  $m_{21}$  et  $m_{22}$  tel que:  $m_{11}$  et  $m_{12} \in L_1$ ,  $m_{21}$  et  $m_{22} \in L_2$
- 4. Soit M=m<sub>11</sub>.m<sub>22</sub>. Donner la chaine représentant M. Donner |M|

# Exercice 8:

Soit R et S deux expressions régulières définies comme suit :

$$R=a(a|b)^*ba$$
,  
 $S=(ab)^*|(ba)^*|(a^*|b^*)$ 

- 1. Trouver un mot inclus dans le langage dénoté par R, mais qui ne soit pas inclus dans le langage dénoté par S.
- 2. Trouver un mot inclus dans le langage dénoté par S, mais qui ne soit pas inclus dans le langage dénoté par R.
- 3. Trouver un mot inclus dans le langage dénoté par R et dans le langage dénoté par S.
- 4. Trouver un mot qui ne soit pas inclus ni dans le langage dénoté par S, ni dans le langage dénoté par R.

#### Exercice 9:

Soit l'alphabet :  $\Sigma = \{a, b\}$ 

Proposer pour chacun des langages suivants unes représentation formelle :

- 1. Le langage de l'ensemble de mots palindromes.
- 2. Le langage de l'ensemble de mots de longueur paire.
- 3. Le langage de l'ensemble de mots contenant un nombre impair de b.
- 4. Le langage de l'ensemble de mots de longueur inférieur à 8 et contenant un nombre pair de a.

# Exercice 10:

Soient trois langages  $L_1$ ,  $L_2$ ,  $L_3$  sur l'alphabet  $\Sigma = \{a, b\}$  définis par :

 $L_1=\{\varepsilon, a, b, ab, ba, aba, aaba, abba, abaa\}$ 

 $L_2 = \{ w \in \Sigma^* / 0 < |w|_b < |w|_a \}$ 

 $L_3=\{w \in \Sigma^*/\exists n, m \in IN, n < m, w = a^nba^m\}$ 

Calculer  $L_1 \cap L_2$ ,  $L_1$ - $L_3$ 

## Exercice 11:

Soit l'alphabet  $V=\{a,b\}$  et les langages  $L_1=\{a,ab,ba\}$  et  $L_2=\{\epsilon,b,ba\}$ 

- 1. Donner les résultats des opérations suivantes :  $L_1.L_2$ ;  $L_2.L_1$ ;  $L_1.\emptyset$ ;  $\emptyset.L_2$ ;  $L_1.\{\epsilon\}$ ;  $\{\epsilon\}.L_2$ ;  $L_2 \cap \{\epsilon\}$
- 2. Si  $L_3$  et  $L_4$  sont deux langages tels que  $L_3$ . $L_4$ ={ $\epsilon$ }, que peut-on dire de  $L_3$  et  $L_4$ ?
- 3. Si  $L_5$  et  $L_6$  sont deux langages tels que  $L_5$ . $L_6$ = $\emptyset$  , que peut-on dire de  $L_5$  et  $L_6$ ?

