Finding Integral Zeros

Fundamental Theorem of Algebra: A polynomial function P(x) of degree n has exactly n complex zeros.

Multiple Zeros of a Polynomial: If a polynomial P(x) has x-r occurring as a factor exactly k times, then r is a **zero** of multiplicity k of the polynomial function y = P(x).

Finding Integral Zeros of Polynomial Functions: Let P(x) be a polynomial function in x with integral coefficients. Then the only possible zeros of P(x) are the divisors of the constant term.

Practice Exercises

A. Find the roots of each polynomial function. Indicate the multiplicity of each root.

- 1. $f(x) = (x+4)^2(x-3)^3$
- 2. $h(x) = x(x-3)^4(x+6)^2$
- 3. $P(x) = x^2(x-9)$
- 4. $F(x) = (x+1)^2(x-5)$
- 5. $P(x) = (x+1)^5(x-1)^2$

B. Find the zeros of each function.

- 1. $P(x) = x^3 10x^2 + 32x 32$
- 2. $P(x) = x^3 6x^2 + 11x 6$
- 3. $P(x) = x^3 2x^2 + 4x 8$
- 4. $P(x) = x^4 5x^2 + 4$
- 5. $P(x) = x^3 + x^2 12x 12$

Problem Set

- A. Find the roots of each polynomial function. Indicate the multiplicity of each root.
 - 1. $f(x) = (x+3)^3(x-1)^5$
 - 2. $h(x) = x^2(x-5)^3(x+6)^4$
 - 3. $P(x) = x^4(x-5)$
 - 4. $F(x) = (x+3)^4(x-7)$
 - 5. $P(x) = (x+3)^4(x-3)^4$
- B. Find the zeros of each function.
 - 1. $P(x) = x^3 3x 2$
 - 2. $P(x) = x^4 13x^2 + 36$
 - 3. $P(x) = x^4 3x^3 53x^2 9x$
 - 4. $P(x) = x^3 + 3x^2 4x 12$
 - 5. $P(x) = x^3 + 7x^2 + 2x 40$

Finding Integral Zeros

Fundamental Theorem of Algebra: A polynomial function P(x) of degree n has exactly n complex zeros.

Multiple Zeros of a Polynomial: If a polynomial P(x) has x-r occurring as a factor exactly k times, then r is a **zero of** multiplicity k of the polynomial function y = P(x).

Finding Integral Zeros of Polynomial Functions: Let P(x) be a polynomial function in x with integral coefficients. Then the only possible zeros of P(x) are the divisors of the constant term.

Practice Exercises

A. Find the roots of each polynomial function. Indicate the multiplicity of each root.

- 1. $f(x) = (x+4)^2(x-3)^3$
- 2. $h(x) = x(x-3)^4(x+6)^2$
- 3. $P(x) = x^2(x-9)$
- 4. $F(x) = (x+1)^2(x-5)$
- 5. $P(x) = (x+1)^5(x-1)^2$
- B. Find the zeros of each function.
- 1. $P(x) = x^3 10x^2 + 32x 32$
- 2. $P(x) = x^3 6x^2 + 11x 6$ 3. $P(x) = x^3 - 2x^2 + 4x - 8$
- 4. $P(x) = x^4 5x^2 + 4$
- 5. $P(x) = x^3 + x^2 12x 12$

Problem Set

- A. Find the roots of each polynomial function. Indicate the multiplicity of each root.
 - 1. $f(x) = (x+3)^3(x-1)^5$
 - 2. $h(x) = x^2(x-5)^3(x+6)^4$
 - 3. $P(x) = x^4(x-5)$
 - 4. $F(x) = (x+3)^4(x-7)$
 - 5. $P(x) = (x+3)^4(x-3)^4$
- B. Find the zeros of each function. 1. $P(x) = x^3 - 3x - 2$
 - 2. $P(x) = x^4 13x^2 + 36$
 - 3. $P(x) = x^4 3x^3 53x^2 9x$
 - 4. $P(x) = x^3 + 3x^2 4x 12$
 - 5. $P(x) = x^3 + 7x^2 + 2x 40$

Finding Integral Zeros

Fundamental Theorem of Algebra: A polynomial function P(x) of degree n has exactly n complex zeros.

Multiple Zeros of a Polynomial: If a polynomial P(x) has x-r occurring as a factor exactly k times, then r is a **zero of** multiplicity k of the polynomial function y = P(x).

Finding Integral Zeros of Polynomial Functions: Let P(x) be a polynomial function in x with integral coefficients. Then the only possible zeros of P(x) are the divisors of the constant term.

Practice Exercises

 $\ensuremath{\mathsf{A}}.$ Find the roots of each polynomial function. Indicate the multiplicity of each root.

- 1. $f(x) = (x+4)^2(x-3)^3$
- 2. $h(x) = x(x-3)^4(x+6)^2$
- 3. $P(x) = x^2(x-9)$
- 4. $F(x) = (x+1)^2(x-5)$
- 5. $P(x) = (x+1)^5(x-1)^2$
- B. Find the zeros of each function.
- 1. $P(x) = x^3 10x^2 + 32x 32$
- 2. $P(x) = x^3 6x^2 + 11x 6$
- 3. $P(x) = x^3 2x^2 + 4x 8$
- 4. $P(x) = x^4 5x^2 + 4$
- 5. $P(x) = x^3 + x^2 12x 12$

Problem Set

- A. Find the roots of each polynomial function. Indicate the multiplicity of each root.
 - 1. $f(x) = (x+3)^3(x-1)^5$
 - 2. $h(x) = x^2(x-5)^3(x+6)^4$
 - 3. $P(x) = x^4(x-5)$
 - 4. $F(x) = (x+3)^4(x-7)$
 - 5. $P(x) = (x+3)^4(x-3)^4$
- B. Find the zeros of each function.
 - 1. $P(x) = x^3 3x 2$
 - 2. $P(x) = x^4 13x^2 + 36$
 - 3. $P(x) = x^4 3x^3 53x^2 9x$
 - 4. $P(x) = x^3 + 3x^2 4x 12$
 - 5. $P(x) = x^3 + 7x^2 + 2x 40$

Finding Integral Zeros

Fundamental Theorem of Algebra: A polynomial function P(x) of degree n has exactly n complex zeros.

Multiple Zeros of a Polynomial: If a polynomial P(x) has x-r occurring as a factor exactly k times, then r is a **zero of** multiplicity k of the polynomial function y = P(x).

Finding Integral Zeros of Polynomial Functions: Let P(x) be a polynomial function in x with integral coefficients. Then the only possible zeros of P(x) are the divisors of the constant term.

Practice Exercises

A. Find the roots of each polynomial function. Indicate the multiplicity of each root.

- 1. $f(x) = (x+4)^2(x-3)^3$
- 2. $h(x) = x(x-3)^4(x+6)^2$
- 3. $P(x) = x^2(x-9)$
- 4. $F(x) = (x+1)^2(x-5)$
- 5. $P(x) = (x+1)^5(x-1)^2$
- B. Find the zeros of each function.
- 1. $P(x) = x^3 10x^2 + 32x 32$ 2. $P(x) = x^3 - 6x^2 + 11x - 6$
- 3. $P(x) = x^3 2x^2 + 4x 8$
- 4. $P(x) = x^4 5x^2 + 4$
- 5. $P(x) = x^3 + x^2 12x 12$

Problem Set

- A. Find the roots of each polynomial function. Indicate the multiplicity of each root.
 - 1. $f(x) = (x+3)^3(x-1)^5$
 - 2. $h(x) = x^2(x-5)^3(x+6)^4$
 - 3. $P(x) = x^4(x-5)$
 - 4. $F(x) = (x+3)^4(x-7)$
 - 5. $P(x) = (x+3)^4(x-3)^4$
- B. Find the zeros of each function. 1. $P(x) = x^3 - 3x - 2$
 - 2. $P(x) = x^4 13x^2 + 36$
 - 3. $P(x) = x^4 3x^3 53x^2 9x$ 4. $P(x) = x^3 + 3x^2 - 4x - 12$
 - 5. $P(x) = x^3 + 7x^2 + 2x 40$