Single molecule localization microscopy

Clayton W. Seitz

April 5, 2023

sCMOS noise model

The Poisson rate parameter for a single pixel is

$$\mu_k = \eta \Delta t (N_0 \lambda_k + B_0)$$

where Δt is the camera exposure time and N_0 and B_0 are the fluorophore and background emission rates respectively.

$$\lambda_k = \int_{\text{pixel}} G(x, y) dx dy$$

where the 2D function G(x, y) is a normalized Gaussian density over the pixel array

$$G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x-x_0)^2 + (y-y_0)^2}{2\sigma^2}}$$

How to compute λ_k at each pixel

We can replace this integral with error functions:

$$\lambda_{x}(x) = \frac{1}{2} \left(\operatorname{erf} \left(\frac{x + a/2 - x_{0}}{\sqrt{2}\sigma} \right) - \operatorname{erf} \left(\frac{x - a/2 - x_{0}}{\sqrt{2}\sigma} \right) \right)$$
$$\lambda_{y}(y) = \frac{1}{2} \left(\operatorname{erf} \left(\frac{y + a/2 - y_{0}}{\sqrt{2}\sigma} \right) - \operatorname{erf} \left(\frac{y - y/2 - y_{0}}{\sqrt{2}\sigma} \right) \right)$$

For multiple emitters

$$\lambda(x,y) = \sum_{n} \lambda_{n,x}(x) \lambda_{n,y}(y)$$

The true signal is then

$$\vec{S} = [Poisson(\lambda_1), Poisson(\lambda_2), ..., Poisson(\lambda_N)]$$

Poisson approximation of pixel values

However, due to readout noise, we measure

$$\vec{H} = \vec{S} + \vec{\xi}$$

The distribution of H_k is the convolution:

$$P(H_k|\theta) = P(S_k) \circledast P(\xi_k)$$

$$= A \sum_{q=0}^{\infty} \frac{1}{q!} e^{-\mu_k} \mu_k^q \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{(H_k - g_k q - \sigma_k)}{2\sigma_k^2}}$$

where $P(\xi_k) = \mathcal{N}(o_k, \sigma_k^2)$ and $P(S_k) = \operatorname{Poisson}(g_k \mu_k)$. In practice, this expression is difficult to work with, so we look for an approximation. Notice that

$$\xi_k - o_k + \sigma_k^2 \sim \mathcal{N}(\sigma_k^2, \sigma_k^2) \approx \text{Poisson}(\sigma_k^2)$$

The model log likelihood and Hessian matrix

Since $H_k = S_k + \xi_k$, we transform $H'_k = H_k - o_k + \sigma_k^2$, which is distributed according to

$$H'_k \sim \text{Poisson}(\mu'_k) \quad \mu'_k = g_k \mu_k + \sigma_k^2$$

Since each Poisson r.v. is independent, the negative log likelihood reads

$$\ell(\vec{H}) = -\log \prod_{k} \frac{e^{-(\mu'_{k})} (\mu'_{k})^{n_{k}}}{n_{k}!}$$
$$= \sum_{k} \log n_{k}! + \mu'_{k} - n_{k} \log (\mu'_{k})$$

The model log likelihood and Hessian matrix

Fortunately, we can compute the Hessian of the negative log likelihood using the chain-rule for Hessian matrices.

$$\hat{H}_{(\ell,\theta)} = \hat{J}_{(\lambda,\theta)}^T \hat{H}_{(\ell,\lambda)} \hat{J}_{(\lambda,\theta)} + (J_{(\ell,\lambda)} \otimes I_n) \hat{H}_{(\lambda,\theta)}$$

By calculating $\hat{H}_{(I,\theta)}$ at θ_{MLE} , we can get an estimate of the observed information matrix. To do that $J_{(\lambda,\theta)}$ and $H_{(\lambda,\theta)}$ are best left to symbolic calculators.

Generalizing to a variable number of particles

$$P(k,\theta|H) = \frac{P(X|k,\{\theta\}_{i=1}^k)P(\theta|k)P(k)}{P(H)}$$

where P(k) is a hyperprior. One option is to use the Dirichlet process

$$P(k, \{\theta\}_{i=1}^k | H) = \frac{P(H|k, \{\theta\}_{i=1}^k) DP(\alpha, P(\theta|k))}{P(H)}$$