Formula 1

Time Series Forecasting

Introductions

Agenda

- Objective
- Best Outcome
- How I Got There
 - Process Overview
 - Understanding F1
 - Data Understanding & Preparation
 - Time Series Analysis
 - Key Models & Walk-Forward Forecasts
- Future Improvements

Objective

Forecast lap times for a horizon of 5 laps

Best Model

How I Got Here

The Process

CRISP-DM

Understanding Formula 1

Formula One

- 10 teams x 2 drivers x 40-80 laps
- 3 Practices + 3 Qualifying Rounds or Sprints + 1 Grand Prix
- Qualifiers determine grid positions
- Pit stops 2.5 seconds x 1-3 per race
- Safety car periods & penaties
- Every 100 milliseconds count
- Best strategy updated real-time wins

Understanding & Preparing Data

Datasets Review

Table	Table Type	Data Type
Lap Times	Fact	Time Series
Pit Stops	Fact	Cross-Sectional
Races	Dimensions	Cross-Sectional
Results	Fact	Cross-Sectional
Sprint Results	Fact	Cross-Sectional
Qualifying	Fact	Cross-Sectional
Status	Dimensions	Cross-Sectional

Datasets Review

Table	Table Type	Data Type
Lap Times	Fact	Time Series
Pit Stops	Fact	Cross-Sectional
Races	Dimensions	Cross-Sectional
Results	Fact	Cross-Sectional
Sprint Results	Fact	Cross-Sectional
Qualifying	Fact	Cross-Sectional
Status	Dimensions	Cross-Sectional

Data Preparation

Action	Examples
Drop Columns	Time, Duration
Type Conversion	Date
Derivatives	Pitted, Year
Join Tables	Lap Times + Pit Stop on RaceID, DriverID, Lap
Null Values	Pit stops
Driver-Race Selection	Max Vestappen @ 2023 Belgian Grand Prix
Train-Test Split	Varying window widths
Error Measurement	Dataframe -> CSV

Final DataFrame

	milliseconds	stop_count	pit_stop_milliseconds	pitted
lap				
40	112166	0.0000	0.0000	0
41	111796	0.0000	0.0000	0
42	115220	3.0000	23156.0000	1
43	129564	0.0000	0.0000	0
44	107305	0.0000	0.0000	0

Time Series Analysis

Time Series Characteristics

- 1. Level
- 2. Trend
- 3. Seasonality
- 4. Exogenous Effects
- 5. Stationarity
- 6. Autocorrelation

Analysis Methods

- 1. Visual Analysis
- 2. Seasonal Decomposition
- 3. Statistical Testing
- 4. Auto Correlation Analysis
- 5. Box Cox Transformation & Differencing

Verstappen vs Driver 844

Seasonal Decomposition

Stationarity Tests

Test	Null Hypothesis	P-Value	Conclusion
AD Fuller	Non-Stationary	2.57 e-07	Stationary
KPSS	Stationary	0.1	Stationary

ACF

PACF

Box-Cox & Differencing Transformation

Analysis Conclusion

- ✓ Level
- × Trend
- × Seasonality
- ✓ Exogenous Effects
- ✓ Stationarity
- ✓ Autocorrelation

Key Models

Approach

- 1. Simple -> Complex
- 2. Baseline -> Grid Search
- 3. Two Family of Models:
 - Exponential Smoothing
 - Autoregressive
- 4. Evaluation Metrics:
 - Root Mean Squared Error (RMSE)
 - Mean Absolute Percentage Error (MAPE)
- 5. Walk Forward Forecasts

Model	Туре	Captures
Simple Exponential Smoothing	Decompositional	Level

Model	Туре	Captures
Simple Exponential Smoothing	Decompositional	Level
Holt's Exponential Smoothing	Decompositional	Level + Trend

Model	Туре	Captures
Simple Exponential Smoothing	Decompositional	Level
Holt's Exponential Smoothing	Decompositional	Level + Trend
Holt Winter's Exponential Smoothing	Decompositional	Level + Trend + Seasonality

Model	Туре	Captures
Simple Exponential Smoothing	Decompositional	Level
Holt's Exponential Smoothing	Decompositional	Level + Trend
Holt Winter's Exponential Smoothing	Decompositional	Level + Trend + Seasonality
Autoregressive Integrated Moving Average with Exogenous Variable (ARIMAX)	Regression	Correlations + Trend + Exogenous Variable

SES (α =0.8)

Holt's (α =0.2 | β =0.1)

Holt Winter's (α =0.2 | β =0.04 | γ =0.01)

ARIMAX (p=1 | d=1 | q=4)

Model Comparison

Walk Forward Forecasts

Methodology

Initial Forecast

- 1. Train model on first 35 laps
- 2. Forecast laps 36-40

Expanding Forecast

- 1. Re-train model on first 40 laps
- 2. Forecast laps 40-45

Models - Walk Forwards

- Simple Exponential Smoothing (SES)
- 2. Holt Winter's
- 3. ARIMAX

SES - Walk Forward Forecast

SES - Walk Forward Forecast

Holt Winter's - Walk Forward Forecast

ARIMAX - Walk Forward Forecast

Future Improvements

Improvements

- 1. Shift pit stops across laps
- 2. Remove pit stops prior to forecasting
- 3. Grid Search with Look Forward Forecast
- 4. Cross-Validation
- 5. Look under the hood
- 6. Explore other algorithms LSTM, VAR, Random Forest, ensembles
- 7. Base forecasts on real-time explanatory variables (longitudinal data)

Questions?

Appendix

SES (α =0.8) - Driver 844

ARIMAX (p=4 | d=1 | q=15) - Driver 844

