Intelligent Agents

Chapter 2

Reminders

Assignment 0 (lisp refresher) due 1/28

Lisp/emacs/AIMA tutorial: 11-1 today and Monday, 271 Soda

Outline

- ♦ Agents and environments
- \Diamond Rationality
- ♦ PEAS (Performance measure, Environment, Actuators, Sensors)
- ♦ Environment types
- ♦ Agent types

Agents and environments

Agents include humans, robots, softbots, thermostats, etc.

The agent function maps from percept histories to actions:

Agent behavior describe with

$$f:\mathcal{P}^* \to \mathcal{A}$$

The agent program runs on the physical architecture to produce f

Vacuum-cleaner world

Percepts: location and contents, e.g., [A, Dirty]

Actions: Left, Right, Suck, NoOp

A vacuum-cleaner agent

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], $[A, Clean]$	Right
[A,Clean], $[A,Dirty]$	Suck
:	i i

```
function Reflex-Vacuum-Agent([location,status]) returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left
```

What is the **right** function?
Can it be implemented in a small agent program?

Rationality

Fixed performance measure evaluates the environment sequence

- one point per square cleaned up in time T?
- one point per clean square per time step, minus one per move?
- penalize for > k dirty squares?

A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date

Rational \neq omniscient

percepts may not supply all relevant information

Rational \neq clairvoyant

- action outcomes may not be as expected

Hence, rational \neq successful

Rational \Rightarrow exploration, learning, autonomy

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

Performance measure??

Environment??

Actuators??

Sensors??

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

Performance measure?? safety, destination, profits, legality, comfort, . . .

Environment?? US streets/freeways, traffic, pedestrians, weather, . . .

Actuators?? steering, accelerator, brake, horn, speaker/display, . . .

<u>Sensors</u>?? video, accelerometers, gauges, engine sensors, keyboard, GPS, . . .

Internet shopping agent

Performance measure??

Environment??

Actuators??

Sensors??

Internet shopping agent

Performance measure?? price, quality, appropriateness, efficiency

Environment?? current and future WWW sites, vendors, shippers

Actuators?? display to user, follow URL, fill in form

Sensors?? HTML pages (text, graphics, scripts)

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??				
<u>Deterministic??</u>				
Episodic??				
Static??				
Discrete??				
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
<u>Deterministic??</u>				
Episodic??				
Static??				
Discrete??				
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
<u>Deterministic??</u>	Yes	No	Partly	No
Episodic??				
Static??				
Discrete??				
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
<u>Deterministic</u> ??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??				
Discrete??				
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
<u>Deterministic</u> ??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??				
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
<u>Deterministic</u> ??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??	Yes	Yes	Yes	No
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
<u>Deterministic</u> ??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??	Yes	Yes	Yes	No
Single-agent??	Yes	No	Yes (except auctions)	No

The environment type largely determines the agent design

The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi-agent

Agent types

Four basic types in order of increasing generality:

- simple reflex agents
- reflex agents with state
- goal-based agents
- utility-based agents

All these can be turned into learning agents

Simple reflex agents

Example

Reflex agents with state

Example

```
function Reflex-Vacuum-Agent([location, status]) returns an action static: last\_A, last\_B, numbers, initially \infty
if status = Dirty then ...
```

Goal-based agents

Utility-based agents

Learning agents

Summary

Agents interact with environments through actuators and sensors

The agent function describes what the agent does in all circumstances

The performance measure evaluates the environment sequence

A perfectly rational agent maximizes expected performance

Agent programs implement (some) agent functions

PEAS descriptions define task environments

Environments are categorized along several dimensions: observable? deterministic? episodic? static? discrete? single-agent?

Several basic agent architectures exist: reflex, reflex with state, goal-based, utility-based