Interior angles of polygons

In this lesson we'll look at how to find the measures of the interior angles of polygons.

Triangles

Triangles are 3-sided polygons. The measures of the three interior angles of any triangle (the three angles inside the triangle) add up to 180° . For instance, in this figure, $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$.

Polygons

The word "polygon" means "many-sided figure." A polygon has the same number of interior angles as it has sides, and a regular polygon has equal angles and equal sides.

Any polygon can be divided into triangles.

Picture	Name	Sides	Triangles	Degrees inside
	Quadrilateral	4	2:	$2(180^{\circ}) = 360^{\circ}$
	Pentagon	5	3:	$3(180^{\circ}) = 540^{\circ}$
	Hexagon	6	4:	$4(180^{\circ}) = 720^{\circ}$
	Heptagon	7	5:	$5(180^{\circ}) = 900^{\circ}$
	Octagon	8	6:	$6(180^{\circ}) = 1,080^{\circ}$
	•••	•••	•••	•••
	<i>n</i> -gon	n	n-2	$(n-2)180^{\circ}$

Let's start by working through an example.

Example

What is the measure of each interior angle in a regular icosagon (a 20-sided figure)?

The sum of the measures of the interior angles in a polygon is $(n-2)180^{\circ}$, where n is the number of sides in the polygon. For an icosagon, which is a 20-sided figure, that would be

$$(20-2)180^{\circ} = 3,240^{\circ}$$

There are 20 congruent interior angles because the shape is regular, so each interior angle measures

$$3,240^{\circ} \div 20 = 162^{\circ}$$

If the shape is not regular, then we can't assume that all of the angles are congruent. Let's look at an example of a non-regular quadrilateral in which the angles aren't equal.

Example

What is the measure of $\angle Z$?

The sum of the measures of the interior angles in a polygon with n sides is $(n-2)180^\circ$. For a quadrilateral, that would be $(4-2)180^\circ = 360^\circ$. Set the sum of the four angles equal to 360° and then solve for x.

$$125^{\circ} + 82^{\circ} + (3x + 39)^{\circ} + (6x + 6)^{\circ} = 360^{\circ}$$

$$(125 + 82 + 39 + 6)^{\circ} + (3x + 6x)^{\circ} = 360^{\circ}$$

$$252^{\circ} + 9x^{\circ} = 360^{\circ}$$

$$9x^{\circ} = 108^{\circ}$$

$$x = 12$$

Substitute 12 for x in $(3x + 39)^{\circ}$ to find $m \angle Z$.

$$m \angle Z = (3 \cdot 12 + 39)^{\circ}$$

$$m \angle Z = (36 + 39)^{\circ}$$

