(AFFILIATEDTOSAURASHTRAUNIVERSITY)

<u>UNIT -1-PART-1-ALGORITHMANALYSIS</u>

- Theanalysisofalgorithm.
- Timeandspacecomplexities.
- Asymptotic notation.
- Classesofalgorithm.
- Big-OhNotation
- Big-OmegaNotation

1. Theanalysisofalgorithm

An **algorithm** is a step-by-step procedure for solving a problem in a finite amount of time.

How to evaluate algorithms?

- · Which one is better?
- · What are the criteria?
- An algorithm is a step by step sequence of instruction to solve the computational problem in a finite amount of time in an Englishlanguage.
- An algorithm can be written in English but we are interested inalgorithms which have been precisely specified using an appropriatemathematical formalism—such as programming language.
- Everyalgorithmshouldhavethefollowingfivecharacteristics:
 - i. Input---Thealgorithmshouldtakezeroormoreinput.
 - ii. Output---Thealgorithmshouldproduceoneormoreoutputs.

(AFFILIATEDTOSAURASHTRAUNIVERSITY)

- iii. Definiteness---Each and every step of algorithm should bedefinedunambiguously.
- **iv.** Effectiveness--- Ahumanshouldbeabletocalculatethevaluesinvolvedintheproc edureofthealgorithmusingpaperanpencil.
- v. Termination---An algorithm must terminated after a finitenumber of steps.
- **Complexityofanalgorithm**isthemeasureofanalysisofalgorithm.Itis alsoknownascomputationalcomplexity.
- Analyzing an algorithm means predicting the resources that the algorithm requires such as memory, communication, bandwidth, logic gates antime.
- Theanalysis of the program requires two main considerations:
 - i. SpaceComplexity
 - ii. TimeComplexity
 - 2. Timeandspace Complexities.

Time

- Executing instructions take time
- How fast does the algorithm run?
- What affects its runtime?

Space

- Data structures take space
- What kind of data structures can be used?
- How does the choice of data structure affect the runtime?
- Thetimecomplexity of aprogram/algorithm is the amount of computer time that it needs to run to completion.
- The space complexity of a program/algorithm is the amount ofmemorythatitneedsto runto completion.

i. SPACECOMPLEXITY

• Theamountofmemoryrequiredtorunandcompletionofa nalgorithmorprogramisknownasspacecomplexity.

(AFFILIATEDTOSAURASHTRAUNIVERSITY)

- Its analysis is known as analysis of space complexity of an algorithm or program.
- Therearespecificreasonsavailableforstudyingspaceco mplexity:
 - ✓ If the program is run on multi user system thenitmay berequired to specify theamount ofmemoryto be allocated to the program.
 - ✓ Toknowinadvancethatsufficientmemoryisavaila bleornot to runtheprogram.
 - ✓ Theremaybeseveralpossiblesolutionswithdiffere nt spacerequirements.
 - ✓ Itcanbeusedtoestimatethesizeofthelargestproble mthatprogramcansolve.
- The space needed by a program consists of following components.
 - ✓ Instructionspace
 - ✓ Dataspace
 - ✓ Environmentstackspace

ii. TIMECOMPLEXITY

- The time complexity of an algorithm or a program is the amount of time it needs to rum to completion.
- The exact time will depend on the implementation of the algorithm, programming language, optimizing capa bilities of the compiler used and so on...
- Someofthereasons forstudyingtime complexityare:
 - ✓ Wemaybeinterestedtoknowinadvancewhether the program will provide a satisfactoryrealtimeresponse.
 - ✓ There may be several possible solutions with different time requirement.
- When we analyze an algorithm depends on the inputdata, there are three different types of time complexities which can be analyzed for an algorithm.
 - ✓ Bestcasetimecomplexity
 - ✓ Averagecasetimecomplexity
 - ✓ Worstcasetimecomplexity

(AFFILIATEDTOSAURASHTRAUNIVERSITY)

3. Asymptotic notation

- We are usually interesting in the order of growth of the running time of an algorithm, not in the exact running time. This is also referred to as the asymptotic notation.
- We need to develop a way to talk about rate of growth of functionsso that we cancompare algorithms.
- Asymptotic notations are mathematical tools to represent time compexity of algorithms for Asymptotic notation.

The main idea of asymptotic analysis is to have a measure of efficiency of algorithms that doesn't depend on machine specific constants, and doesn't require algorithms to be implemented and time taken by program to be compared.

4. Classesofalgorithm

- Byimplementationway
 - i. Itisfurtherclassified into following subcategories.
 - RecursionorIteration
 - ✓ Arecursive algorithm means that it invokes itself repeatedly until a certain condition matches.
 - ✓ An iterative algorithms use repetitive constructs likeloops and sometimes additional data structures likestack stosol vethe given problems.
 - Logical
 - Thelogiccomponent expresses the axioms (maxim um) that may be used in the control component determines the way in which deduction is applied to the axioms.
 - SerialorParallelorDistributed
 - ✓ Acomputerwhichcanexecute oninstructionofanalgorithmatatimeisknownasse rialcomputers. An algorithm designed for such anenvironmentis calleda serialalgorithm.
 - DeterministicofNon-Deterministic
 - ✓ Deterministical gorithms solve the problem with exact decisionate very step of the algorithm.

(AFFILIATEDTOSAURASHTRAUNIVERSITY)

- ExactorApproximate
 - ✓ While many algorithms reach an exact solution, approximational gorithms trytofind an approximation that is close to the true solution.
- QuantumAlgorithm
 - ✓ Thisrunsonarealistic model of quantum computati on.
 - ✓ These algorithms use some essential feature of quantum computation such as quantum superposition or quantum embarrassing situation.

• Bydesignparadigm

- i. There is a number of paradigms which is different from eachother. Also, it will include many different types of algorithm.
 - Brute-forceorexhaustivesearch
 - ✓ Thisisthenaturalmethodoftryingeverypossible solutiontoseewhich isbest.
 - Divideandconquer
 - ✓ Adivideandconqueralgorithmrepeatedlyreduces into smaller problems until the problems are not enough to solve easily.
 - Dynamicprogramming
 - ✓ When problem shows optimal a substructure, meaning the optimal solution to a problem canbe constructed form optimal solutions subproblems, and overlapping subproblems, mean ingthesamesubproblemsareusedtosolvemanydif ferentprobleminstances, aquicker called dynamicprogrammingavoids recomputing solutions that have alreadybeencomputed
 - Thegreedymethod
 - ✓ Agreedyalgorithmissimilartoadynamicprogram ming algorithm, but the difference isthatsolutionstothesubproblemsdonothavetobe knownateachstage,insteada"greedy"

(AFFILIATEDTOSAURASHTRAUNIVERSITY)

choice can be made of what looks best for themoment.

- Linearprogramming
 - ✓ Whensolvingaproblemusinglinearprogramming ,specificinequalities involving the inputs are found and then an attemptism adeto maximizes omelinear function of the inputs.
- Reduction
 - ✓ Thistechniqueinvolvessolvingadifficultproblem by transforming it into a better knownproblemforwhichasymptoticallyoptimala lgorithms.
- Searchandenumeration
 - ✓ Many problems can be modeled as problems ongraphs.
 - ✓ A graph exploration algorithm specifies rules formoving around a graph and is useful for suchproblems.
 - ✓ This category also includes search algorithms, branch and boundenumeration and bac ktracking.

• Byfieldof study

- i. Inthefieldofcomputersciencehasitsownproblemandrequiresef ficientalgorithm
- ii. Relatedproblemsinone fieldareoftenstudiedtogether.
- **iii.** Some example classes are search algorithms, sortingalgorithms, mergealgorithmsetc.....

(AFFILIATEDTOSAURASHTRAUNIVERSITY)			
SR.N	QUESTION	ANSWER	
O.			
1	WHICHOFTHEFOLLOWINGCASEDOESNOTEX	NULLCASE	
	ISTINCOMPLEXITYTHEORY?		
2	ANALGORITHMIS	APROCEDURE	
		FOR SOLVING	
		APROBLEM	
3	AN ALGORITHM IN WHICH WE DIVIDE	DIVIDEAND	
	THEPROBLEM INTO SUBPROBLEM AND THEN	CONQUER	
	WECOMBINETHESUBSOLUTIONSTOFORMSO		
	LUTIONTOTHEORIGINALPROBLEMIS		
	KNOWNAS		
4	ANALGORITHMWHICHUSESTHEPASTRESUL	DYNAMICPROG	
	TSANDUSESTHEMTOFINDTHENEWRESULTS	RAMMINGALGO	
	IS	RITHMS	
5	ACOMPLEXITYOFALGORITHMDEPENDS	TIMEAND	
	UPON	SPACE	
6	ANALGORITHMWHICHTRIESALLTHEPOSSIB	BRUTEFORCE	
	ILITIESUNLESSRESULTSARESATISFACTORYI		
	SANDGENERALLYISTIME-		
	CONSUMINGIS		
7	FORARECURSIVEALGORITHM	ABASECASEISN	
		OT	
		NECESSARY	
8	FOR AN ALGORITHM WHICH IS THE	CORRECTNESS	
	MOSTIMPORTANTCHARACTERISTICTHATMA	ANDPRECISION	
	KESITACCEPTABLE		
9	IFFORANALGORITHMTIMECOMPLEXITY	CONSTANT	
	ISGIVENBYO(1)THENTHECOMPLEXITYOFITI		
	S		
10	IFFORANALGORITHMTIMECOMPLEXITY	LINEAR	

(AFFILIATEDTOSAURASHTRAUNIVERSITY)

	ISGIVENBYO(N)THENTHECOMPLEXITYOFITI	
	S	
11	WHICHALGORITHMISBETTERFORSORTINGB	QUICKSORT
	ETWEENBUBBLESORTANDQUICKSORT?	
12	PERFORMANCE BASED CRITERIA OF	TIMECOMPLEXIT
	ALGORITHM, WHICHHASTODOWITHITS COM	Y
	PUTINGTIMEIS	
13	PERFORMANCEBASEDCRITERIAOFALGORIT	SPACECOMPLEXI
	HM, WHICH HAS TO DO WITH	TY
	ITSSTORAGEIS	

5. Big-OhNotation

- "Big-O"notationwasintroducedinP.Bachmann's1892bookAnalytische Zahlentheorie.
- The Big O notation defines an upper bound of an algorithm, it bounds a function only from above. The Big O notation is useful when we only have upper bound on time complexity of an algorithm.
- Many times, we easily find an upper bound by simply looking at the algorithm.
 O(g(n)) = {f(n): there exist positive constants C and No such that 0 <= f(n) <= C*G(n) for all N >= No}

6. Big-Omega Ω Notation

Just as Big O notation provides an asymptotic upper bound on a function, Ω notation provides an asymptotic lower bound. Ω Notation can be useful when we have lower bound on time complexity of an algorithm.