

Mining Frequent Subgraphs

COMP 790-90 Seminar

Spring 2011

FFSM: Fast Frequent Subgraph Mining -- An Overview:

- How to solve graph isomorphism problem?
 - A Novel Graph Canonical Form: CAM
- How to tackle subgraph isomorphism problem (NP-complete)?
 - Incrementally maintained embeddings
- How to enumerate subgraphs:
 - An Efficient Data Structure: CAM Tree
 - Two Operations: CAM-join, CAM-extension.

Adjacency Matrix

- Every diagonal entry of adjacency matrix *M* corresponds to a distinct vertex in *G* and is filled with the label of this vertex.
- Every off-diagonal entry in the lower triangle part of M corresponds to a pair of vertices in G and is filled with the label of the edge between the two vertices and zero if there is no edge.

a				
у	b			
у	X	b		
0	у	0	c	
0	0	у	0	d
\mathbf{M}_1				

a				
у	b			
у	X	b		
0	0	у	d	
0	у	0	0	c
M_2				

b				
X	b			
у	0	d		
0	у	0	c	
у	у	0	0	a
M_3				

¹for an undirected graph, the upper triangle is always a mirror of the lower triangle Throughout this paper, we assume the following total order $a \ge b \ge x \ge y \ge 0$

Code

A \underline{Code} of n × n adjacency matrix M is defined as sequence of lower triangular entries (including the diagonal entries) in the order:

$$M_{1, 1}$$
 $M_{2, 1}$ $M_{2, 2}$... $M_{n, 1}$ $M_{n, 2}$... $M_{n, n-1}$ $M_{n, n}$

1				
a				
у	b			
у	X	b		
0	у	0	c	
0	0	у	0	d
M_1				

a				
у	b			
у	X	b		
0	0	у	d	
0	у	0	0	c
M_2				

b				
X	b			
у	0	d		
0	у	0	c	
у	у	0	0	a
M_3				

Code(M₁): aybyxb0y0c00y0d Code(M₂): aybyxb00yd0y00c Code(M₃): bxby0d0y0cyy00a

The <u>Canonical Adjacency Matrix</u> is the one produces the maximal code, using lexicographic order.

MP Submatrix

For an $m \times m$ matrix A, an $n \times n$ matrix B is A' s <u>maximal</u> <u>proper submatrix</u> (MP Submatrix), iff B is obtained by removing the last none-zero entry from A.

a

- We define a CAM is <u>connected</u> iff the corresponding graph is connected.
- Theorem I: A CAM's MP submatrix is CAM
- Theorem II: A connected CAM's MP submatrix is connected

CAM Tree: Subgraphs

CAM Tree: Frequent Subgraphs

How to Enumerate Nodes in a CAM Tree?

- Two operations to explore CAM tree:
 - CAM-Join
 - CAM-Extension
- Augmenting CAM tree with Suboptimal CAMs
- Objectives:
 - no false dismissal
 - no redundancy
- Plus: We want to this efficiently!

Examples of the join operation

Examples of the extension operation

Extension

Suboptimal Tree

Performance Enhancement using an Embedding List

Definition 3.3 Given an arbitrary $n \times n$ adjacency matrix A and a labeled graph $G = (V, E, \Sigma_V, \Sigma_E, l)$, a vertex list $L = u_1, u_2, \ldots, u_n \subset V$ is an **embedding** of A in G iff:

(i)
$$\forall i, (a_{i,i} = l(u_i));$$

(ii)
$$\forall i, j(a_{i,j} \neq 0 \Rightarrow a_{i,j} = l(u_i, u_j));$$

where $0 < j < i \le n$.

Performance Enhancement using an Embedding List

From the above analysis, we conclude that for the embedding set O_A of a suboptimal CAM A, which is joined by two suboptimal CAMs P and Q through join case 1, we have $O_A = O_P \cap O_Q$, where O_P and O_Q are the embedding sets of suboptimal CAM P and Q, respectively.

Summary

Theorem:

For a graph G, let C_{K-1} (C_k) be set of the suboptimal CAMs of all size-(K-1) (K) subgraphs of G ($K \ge 2$). Every member of set C_K can be enumerated unambiguously either by *joining* two members of set C_{K-1} or by *extending* a member in C_{K-1} .

Experimental Study

- Predictive Toxicology Evaluation Competition (PTE)
 - Contains: 337 compounds
 - Each graph contains 27 nodes and 27 edges on average
- NIH DTP Anti-Viral Screen Test (DTP CA/CM)
 - Chemicals are classified to be Confirmed Active (CA), Confirmed Moderate Active (CM) and Confirmed Inactive (CI).
 - We formed a dataset contains CA (423) and CM (1083).
 - Each graph contains 25 nodes and 27 edges on average

Performance (PTE)

Support Threshold (%)

Support Threshold (%)

Performance (DTP CACM)

