*	Finite Groups and Subgroups
*	solve following examples for practice.
1	prove that $2Z = \{2n n\in\mathbb{Z}\}$ is a subgroup of z co.r.t. addition.
2	Prove that $H = {0,4,8}$ is a subgroup of Z12 under addition modulo 12.
3	Defermine whether the given subsets are subgroups of a given group. Justify. if H = {0.11.23 of Z4
	ii) gt the set of the rational no., a subset of Rt under multiplication.
	Prove that every cyclic group is abelian.
5	Is following group & cyclic group? If 50 find its generators.
	i) (Z6,+6) ii) (Z10, X10)
5	prove that a subgroup of a cyclic group is cyclic.
<u></u>	Detern Denote the permutation in the array notation $\sigma = (2, 3, 5, 4) \in 5$
	ii7 0 = (1,2,3,4,5) € 55

(7) write the order of following groups. Also compute the order of each element in the following groups.

i) G = {1, -1, i, -i} under multiplication.

\$i] (Z12, +12)

iii] U(15) under multiplication modulo 15.

3 Determine whether the given subsets are subgroups of a given group. Justify.

i] H = set of odd integers of additive group Z

ii] $m_{2x2}(z)$ the set of non singular matrices with integer entries of $m_{2x2}(R)$, the additive group of 2x2 matrices with real entries.

(b) Give example of

] Finite group 2] Infinite group.

3] finite cyclic group

- 6. Let a, b be elements in a group G. Let |a| = m and |b| = n such that (m, n) = 1. Prove that |ab| = mn.
- 7. Find subgroups of \mathbb{Z}_{20} of order 5 and order 4.
- 8. Find all subgroups of $G = \{e, a, a^2, \cdots a^7\}$
- 9. Write all generators for a) \mathbb{Z}_{18} b)U(7) c) $G = \{e, a, a^2 \cdots a^{21}\}$
- 0. If $\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{bmatrix}$ and $\psi = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{bmatrix}$, Find $\sigma \psi$, $\psi \sigma$, σ^2 order of σ .
- Express the following permutation as product of disjoint cycles. Find its order. Also determine
 whether it is even or odd.
 - (a) $\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 9 & 3 & 2 & 4 & 5 & 6 & 7 & 1 \end{bmatrix}$
 - (b) (5,1,3,6)(6,7,5)(1,2,3)
 - (c) (1,2)(1,4,3)(2,3)
- 2. Express each of the following permutation as a product of disjoint cycles and Hence, find its order. $\psi = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 8 & 6 & 5 & 1 & 7 & 3 & 2 & 9 \end{bmatrix}$
- Find inverse of the following permutations in S₇. Also find order.
 - (a) $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 5 & 6 & 7 & 1 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 & 9 \end{bmatrix}$
 - (c) (6,2,5)(4,3,2,7)
- 4. If $\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 1 & 5 \end{bmatrix}$ and $\tau = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{bmatrix}$, then compute σ^2 , $\sigma\tau$, $\sigma^{-1}\tau$.
- 5. List the even permutations in S_4 .
- State True or false with justification.
 - (a) Every cyclic group is abelian
 - (b) If order of the group is 10, then there exists an element of order 6.
 - (c) Product of two odd permutations is again a odd permutation.
 - (d) The element $\overline{7}$ is a generator of \mathbb{Z}_{10} .
 - (e) Every permutation is cycle.
 - (f) The additive group \mathbb{Z}_{20} has a subgroup of order 12.
- 7. Consider a subgroup $H = \{\bar{0}, \bar{4}, \bar{8}\}$ of \mathbb{Z}_{12} . Find all left cosets of H in \mathbb{Z}_{12} .

- 18. Write all right cosets of $H = \{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}$ in $G = \mathbb{Z}_{12}$.
- 19. G be a cyclic group of order 15 generated by a. Consider a subgroup of G generated by a^5 . Find all left and right cosets of H in G.
- 20. Find all cosets of $3\mathbb{Z}$ in \mathbb{Z} .
- 21. Let H be a subgroup of G such that |H| = 5 and |G| = 20. How many elements are there in the left coset aH of H? Justify.
- 22. Let H be a subgroup of G and $a, b \in G$. Then prove that
 - (a) $a \in Ha$
 - (b) Ha = H if and only if $a \in H$.
 - (c) Ha = Hb if and only if $a \in Hb$
 - (d) Ha = Hb or $Ha \cap Hb = \emptyset$