DEL: Deep Embedding Learning for Efficient Image Segmentation

Yun Liu¹ Peng-Tao Jiang¹ Vahan Petrosyan² Shi-Jie Li¹
Jiawang Bian³ Le Zhang⁴ Ming-Ming Cheng¹ *

¹Nankai University

²KTH

³University of Adelaide

⁴ADSC

http://mmcheng.net/del/

IJCAI2018

目的:

利用 CNN 实现基于 Superpixel 的特征嵌入的图片分割。

方法:

用 SLIC 算法来生成 Superpixel,获得超像素之后,就用一个 cnn 来学习特征 嵌入空间,将每个像素嵌入到特征空间中变为一个 64 维向量,然后对同一个区域 中的像素做平均池化,得到该区域的特征表示。根据区域的相似度来决定两个区域是否合并。衡量两个区域之间的相似度:

$$d_{ij} = \frac{2}{1 + exp(\|\vec{v}_i - \vec{v}_j\|_1)}.$$

交叉熵损失函数, 1代表两个区域是都属于同个区域:

$$L = -\sum_{S_i \in \mathcal{S}} \sum_{S_j \in \mathcal{R}} [(1 - \alpha) \cdot l_{ij} \cdot log(d_{ij}) + \alpha \cdot (1 - l_{ij}) \cdot log(1 - d_{ij})],$$

整体架构:

Figure 1: The pipeline of our DEL image segmentation algorithm.

网路结构基于 VGG16,并将不同的 stage 的特征图 concat 融合,最后生成每个点的特征向量:

总结:

将图像分割看成是区域的特征降维表示过程,然后将相邻且相似的区域合并 完成分割。