Due: Sep 17, 2021

See the canvas assignment page for detailed instructions on submitting your work.

1. Find the general solution to the differential equation, $\frac{du}{dx} - \frac{2}{x}u = 4x$, for x > 0.

Which part of your solution satisfies the equation, $\frac{du}{dx} - \frac{2}{x}u = 0$?

- 2. Consider the initial value problem, $L[y] = x^2y'' + xy' + 4y = 0$, x > 0, y(1) = 2, y'(1) = 3.
 - (a) Verify that $y_1(x) = \cos(2 \ln x)$ and $y_2(x) = \sin(2 \ln x)$ form a fundamental set of solutions on the interval $0 < x < \infty$.
 - It is enough to verify either $L[y_1] = 0$ or $L[y_2] = 0$. Not necessary to show both cases; the calculations are essentially the same.
 - Use the Wronskian to verify the linear independence of y_1 and y_2 on $(0, \infty)$.
 - (b) Determine the unique solution to the initial value problem.
- 3. Consider the first-order ODE, $x^2 \frac{dy}{dx} = y 2xy + \frac{1}{x^2}$, for x > 0.
 - (a) Find a one-parameter family of solutions (the *general solution*) to the ODE, expressed in explicit form, $y = \phi(x)$. Confirm that the existence interval is $(0, \infty)$ for any choice of the free parameter.
 - (b) Evaluate the limits, $\lim_{x\to 0^+} \phi(x)$ and $\lim_{x\to \infty} \phi(x)$.