西安电子科技大学

2023年硕士研究生招生考试初试

考试科目代码及名称 834 数据结构、计算机组成原理(感谢研梦学长)

考试时间 2022年12月25号下午(3小时)

答题要求: 所有答案(填空题按照标号写)必须写在答题纸上,写在试卷上一律作废,准考证号写在指定位置!

	祩	拯	斯
~.	I/L	THE	75

1. 具有线性结构的是 ()。

	- 3
A. 广义表	
B. 数组	
C. 双端队列	
D. 二叉树 // // // // // // // // // // // // //	
2. 双向链表中,删除 p 指向的结点时,需 ()。 公众号/B 站/知乎: 【研梦考研】	
A. p->prior = p->prior->prior, p->prior->prior->next = p	
B. p->prior->prior->next = p, p->prior = p->prior //	
C. p->next->next->prior = p, p->next = p->next >next	
D. p->prior->next = p->next, p->next->prior = p->prior	
3. 单向循环链表的主要优点是()。	
A. 不需要标识链表的头和尾指针	
B. 查找表中任一结点的直接前驱和后继的时间复杂度为 O(1)	
C. 在删除操作后能保证链表不断开	
D. 从任一结点出发都能遍历整个链表	
4. 如果将矩阵 Anxn 的每列看成一个子表,整个矩阵看成广义表 L. 即 L=((a11, a21, ······an2), (a12,	
a22,, an2),, (aIn, a2n,, ann)), 则求得 a21 得运算是 ()。	
A. head(tail(head(L))) B. head(head(L)))	
C. tail(head(tail(L))) D. head(head(tail(L)))	
5. 用栈检查算术表达式"((a+b/(a+b)=c/a)/b"时,(),因此该表达式得括号不匹配。	
A 栈为空却要进行出栈操作	
B. 栈已满却要进行入栈操作	
C. 处理已结束,栈中留有"("	
D. 结束留有")"	
6. 设森林 F 中有三棵树, 第一、第二、第三棵结点个数分别为 M1, M2, M3, 则与 F 对应的二叉树根节点的	ı
右子树上的结点个数是()。 公众号/B站/知乎:【研梦考研】	
A. MI B. MI+M2 C. M3 D. M2+M3	
7. 己知某二叉树先序遍历序列为 ABDCE,则它可能的中序遍历序列为()。	
A. BCADE C. BEACD D. BDAEC	
8. 如果含有 n 个顶点的图只形成一个环,则它共有 () 棵生成树	
A. 1 B. 2 C. n-1 D. n	
9. 关键路径是指 AOE(Activity On Edge)网中 ()。	
A. 最长的回路 B. 最短的回路	
D. 从源点到汇点的最短路径 C. 从源点到汇点的最长路径。	

10. 排序过程中的比较次数与初始排序状态次序无关的是 () 排序法
A. 简单选择 B. 直接插入 C. 快速 D. 堆
11. 在冯诺依曼结构计算机中,指令和数据都是以二进制编码形式放在存储器。在运行时,CPU 区分指令和
数据的依据是 ()
A. 指令操作码的译码结果
B. 指令和数据的寻址方式
C. 指令周期的不同阶段
D. 指令和数据分开存储
12. 若[X]补=1. X1X2X3X4X5X6,则当()时,-1/8>X>-1/4
A. X1X2X3 必须为 110, X4X5X6 任意
B. X1X2X3 必须为110, X4X5X6 至少有一个为1
C. X1X2X3 必须为111, X4X5X6 任意
D. X1X2X3 必须为111, X4X5X6 至少有一个为 1
13. 在市场上常见到的多核处理器一般是属于 () 结构 公众号/B 站/知乎: 【研梦考研】
A. SMP
B. Cluster
C. NUMA
D. MPP
14. 某计算机字长 16 位, 主存按字节编址, 转移指令采用相对寻址, 由两个字组成, 第一个字为操作码字
段,第二个字为补码表示的相对位移量字段。假定取指令时,每取一个字 PC 自动加 2. 某转移指令所在主
存地址为 1022H, 相对位移量字段的内容为 008H, 则该转移指令成功转移后的目标地址是()
А. 1020Н
В. 1028Н
C. 102AH
D. 102CH
15.程序状态字 PSW 中一般有 CF 进位/借位标志, ZF 零标志, SF 符号标志和 OF 溢出标志, 条件转移
指令 JA(无符号整数比较大于时转移) 的条件是()
A. CF+0F=1
B. SF+ZF=1
C. $\overline{CF+ZF}=1$
D. <u>CF+SF</u> =1
16. 在线性分组码中, 最小码距 do 是衡量码组检错和纠错能力的依据, 为纠正 t 个错码, 要求的条件是(
) 公众号/B站/知乎:【研梦考研】
A. d0>=t+1
B. d0>=2t+1
C. d0>=t-1
D. d0>=2t-1/
17. Cache 系统中,产生 Cache 失效的原因一般分为三类:强制性失效,容量失效,冲突失效,下面有关
Cache 失效的叙述中错误的是()
A. 强制性失效随着 Cache 容量的增加而增加

B. 容量失效随着 Cache 容量的增加而降低

- C. 强制性失效和容量失效不受相联度的影响
 D. 相联度越高,冲突失效就越少
 18. 二进制定点小数 8 位补码扩展为 16 位补码的规则可以是()
 A. 最高位前复制 8 个符号位
 B. 最低位后添加 8 个 1
 C. 最高位前复制 8 个 0
 D. 最低位后添加 8 个 0
 19. 堆栈操作时,设 A 为累加器,SP 为栈项指针,MSP 为 SP 指示的项单元
 - 19. 堆栈操作时,设A为累加器,SP为栈顶指针,MSP为 SP 指示的顶单元,若进栈 PUSH的描述为(A)->MSP, (SP)-1->SP, 那么出栈 POP 描述为()
 - A. $(MSP) \rightarrow A$, $(SP) + 1 \rightarrow SP$
 - B. (SP)-1->SP, (MSP)->A
 - C. (SP)+1->SP, (MSP)->A
 - D. $(MSP) \rightarrow A$, $(SP) -1 \rightarrow SP$

 - A. 11100
 - B. 01110
 - C. 10100
 - D. 00111
 - 21. 最新的多核处理器采用那种结构?()。
 - A. MPP B. Cluster C. AMP D. SMP

二、简要分析题

- 1、某计算机主存为 64MB, 按字节编址。主存与 Cache 地址变换采用 4 路组相联, Cache 容量为 32KB, 每块 256 个字, 每个字为 16 位。请问用于地址变换的相联存储器 (地址变换表)有多少个存储单元? 每个存储单元有多少位?每次地址变换时,参与比较的地址单元存储单元有多少个?
- 2、某硬盘转速为 7200 转/分,盘面有效记录区域内每磁道分 128 个扇区,每扇区 512 字节其平均寻道时间是 9ms,请问该磁盘读写一个扇区的平均时间是多少 ms(计算时不考虑硬盘其他开销)
- 3、某机器字长 n 位, 定点小数, 请给出求[X]补(快速) 转换规则, 给出推导证明

4、针对流水线的控制相关(冒险),可以采用延迟分支方法进行处理,简述该方法三种调度策略的适用情况及其主要问题 公众号/B站/知乎:【研梦考研】

三、分析设计题

- 1、某计算机系统的主存按字节编址,系统总线上有地址信号 $A0^{\sim}A19$,数据信号 $D0^{\sim}D7$,主存读信号 \overline{Mread}
- , 主存写信号 Mwrite, 请问:
- (1) 某 SRAM 芯片如下图所示, 若采用该 SRAM 芯片构成地址 68000H~6FFFFH 的主存区域共需要多少片? 应采用哪种扩展方式?
- (2)请给出题(1)的连接电路框图(连接电路框图应包涵地址,数据,主存读写信号的连接,以及主存译码电路的设计) 公众号/B站/知乎:【研梦考研】
- (3) 如果换用 16K×16b 的 DRAM 构成题(1) 中的主存区域,若该 DRAM 内部为单存储体结构,存取周期为 50ns,刷新周期为 1ms,采用分布式刷新方式,请计算共需要该 DRAM 芯片多少片? 该部分 DRAM 进行 2 次刷新操作之间的时间间隔?在 1 个刷新周期中 DRAM 刷新总共需要占用多少时间?

2、某计算机的简化结构模型如下图。其中 RO, R1 为通用寄存器, SP 为堆指针寄存器, AR, DR, PC, IR, PSW 为 CPU 内部相应功能寄存器。 公众号/B 站/知乎: 【研梦考研】 相关控制信号有:

XXin 是寄存器 XX 的写信号

XXout 是寄存器 XX 的读信号

DRI in 与 DRI out 是 DR 寄存器 CPU 片内总线边的写信号,读信号

DRSin 与 DRSout 是 DR 寄存器 CPU 系统总线边的写信号,读信号

PC+1 为控制 PC 加 1 的信号

SP+1, SP-1 分别为控制 SP 自增, 自减的信号

ADD, SUB, AND, OR 可控制计算机做加,减,与,或运算

Mread, Mwrite, IOread, IOwrite 分别为主存读, 主存写, 接口读, 接口写信号

该模型机中,加法指令 ADD (R1),R0 采用了寄存器间接寻址和寄存器寻址,其功能是(R1)+R0->(R1)下表给出了上述指令取指阶段的微操作及其对应的有效控制信号。请参照表中所示格式,给出指令执行阶段中各个节拍的微操作以及有效控制信号

取指阶段

节拍	<i></i>	微操作	有效控制信号
T1			PCout, ARin
T2		DR<-MM[AR], PC<-PC+1	ARout, Mread, DRSin, PC+1
T3		IR<-DR	DRlout, IRin

执行阶段

节拍	 微操作	有效控制信号
T1		
T2		
Т3		
T4		
Т5		
Т6		

四、综合应用题

1、花	i一棵一叉	1排序树	按先序遍	历得到的序列为	(50.3)	8, 30, 4	5. 40. 4	8, 70, 60	. 75, 80)
-----	-------	------	------	---------	--------	----------	----------	-----------	-----------

(1) 试画出该平衡二叉树

(2) 并求出等概率下的查找成功和查找失败的平均查找长度。

- 2、已知关键字序列(20,32,9,36,3,12,21,23,22)按顺序插入一个初始为空的哈希表中、哈希表长为 12,哈希函数为 H(key) = key%11,(mod 为取余运算)。
- (1) 若采用线性探测再散列处理冲突,请画出哈希表,并计算查找成功和不成功时的平均查找长度 ASL。
- (2) 若采用链地址法处理冲突,请画出哈希表,并计算查找成功和不成功时的平均查找长度 ASL。
- (3) 将改该键字序列按顺序插入一棵初始为空的二叉排序树,请画出该二叉排序树,并计算查找成功和查找不成功的平均查找长度 ASL。 公众号/B 站/知乎: 【研梦考研】
- 3、设有向图邻接表定义如下:

typedef struct

公众号/B站/知乎: 【研梦考研】

VertexNode adjlist[MAXVertexNum];

int n,e;

//图的当前顶点数和弧数

} AlGraph;

//邻接表类型

其中顶点表结点 VertexNode:

vertex firstedge

边表结点 EdgeNode 结构为

adivex next

阅读下列算法 f,并回答问题:

(1) 已知有向图 G 的邻接表如图所示,写出算法 f 的输出结果。

(2) 简述算法 f 的功能。

4、若以域变量 rear 和 length 分别指示循环队列中队尾元素的位置和队列元素的个数,请完善下面的入队列和出队列的算法。注:每空一个表达式。 公众号/B站/知乎:【研梦考研】

5、在单链表的删除结点算法中,如果已知 p 指针指向的被删结点的直接后继,则我们可以通过把 p 的直接后继结点中的值(data)复制到 p 中,再删除 p 的直接后继来完成,这样只需要 0(1) 时间。试编写实现这一算法 DeleteNode(p),返回值 0/-1 分别表示删除成功/失败。

单链表结点类型定义为
typedef struct Node
{
 ElemType data;
 struct Node *next;
}Node,*Linklist;
int DeleteNode(LinkList p);