import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from sklearn.preprocessing import power_transform #Importing data and storing it in variable called 'data' data = pd.read excel('D:\Eshteyague\Miscll\Personal\Project\AIML\ML\ Project\Project-Anamoly_Detection\Data_Set\AnomaData.xlsx') data <>:2: SyntaxWarning: invalid escape sequence '\A' <>:2: SyntaxWarning: invalid escape sequence '\A' C:\Users\Eshteyaque.Ahmad\AppData\Local\Temp\ ipykernel 16240\3623776104.py:2: SyntaxWarning: invalid escape sequence '\A' data = pd.read_excel('D:\Eshteyaque.Ahmad\Eshteyaque\Miscll\Personal\ Project\AIML\ML\Project\Project-Anamoly Detection\Data Set\ AnomaData.xlsx') time y x1 x2 х3 x4 Ò 1999-05-01 00:00:00 0 0.376665 -4.596435 -4.095756 13.497687 1 1999-05-01 00:02:00 0 0.475720 -4.542502 -4.018359 16.230659 2 1999-05-01 00:04:00 0 0.363848 -4.681394 -4.353147 14.127997 3 1999-05-01 00:06:00 0 0.301590 -4.758934 -4.023612 13.161566 4 1999-05-01 00:08:00 0 0.265578 -4.749928 -4.333150 15.267340 18393 1999-05-28 23:58:00 0 -0.877441 0.406426 135.301215 0.786430 18394 1999-05-29 00:00:00 0 -0.843988 0.561918 133.228949 0.633086 18395 1999-05-29 00:02:00 0 -0.826547 0.334582 134.977973 0.450126 18396 1999-05-29 00:04:00 0 -0.822843 0.387263 135.658942 0.419383 18397 1999-05-29 00:06:00 0 -0.840981 0.593416 136.339880 0.582710 x5 x8 ... x51 х6 x7 x52 \ -0.118830 -20.669883 0.000732 -0.061114 29.984624

29.984624

10.091721

-0.128733 -18.758079 0.000732 -0.061114

```
10.095871
     -0.138636 -17.836632 0.010803 -0.061114
                                                   29.984624
                                                   29.984624
10.100265
     -0.148142 -18.517601 0.002075 -0.061114
                                                   29.984624
10.104660
                                                   29.984624
     -0.155314 -17.505913 0.000732 -0.061114
10.109054
                                                   29.984624
... ... 18393
                                                   29.984624
          0.112295 26.300392 -0.159185
                                     0.058823
                                                   29.984624
                                                   29.984624 -
                                     0.058823
0.773514
                                     0.048752
18394 0.141332 25.678597 -0.159185
                                     0.048752
                                    0.048752
0.773514
18395 0.170370 25.056801 -0.159185
0.773514
18396 0.199422 24.435005 -0.159185
0.773514
18397 0.228460 24.712960 -0.159185
0.773514
                                          x57
                     x55
                                 x56
                                                   x58
                                                             x59
           x54
x60 \
         -4.936434 -24.590146 18.515436
                                      3.473400 0.033444 0.953219
0
0.006076
                                      2.682933 0.033536 1.090502
     -4.937179 -32.413266 22.760065
                                      3.537487 0.033629 1.840540
0.006083
     -4.937924 -34.183774 27.004663
                                      3.986095 0.033721 2.554880
0.006090
                                      3.601573 0.033777 1.410494
     -4.938669 -35.954281 21.672449
0.006097
     -4.939414 -37.724789 21.907251
                    6.944644 - 37.795661 - 0.860218 0.010220
0.006105
                    0.507755 -39.357199 -0.915698 0.010620
18393 2.682413
                    0.011242
                    18394 2.683338
0.011235
                   1.416690 -39.357199 -0.732044 0.012453 0.621020 -
18395 2.684263
                                                        1.390902 -
0.011228
18396 2.685189
                                                        0.418993 -
0.011221
18397 2.686114
0.011214
       y.1
0
         0
1
         0
2
         0
```

```
3 4 ... 0
18393 0
18394 ...
18395 0
18396 0
18397 0
```

[18398 rows x 62 columns]

Converting the excel data into the dataframe # Why?

#1. DataFrames are designed for easy handling of structured data (rows and columns), Handling missing data, Sorting data etc.

#2. Pandas provides a wide range of built-in functions that are optimized for DataFrame objects

df = pd.DataFrame(data)
df

		time y	x1	x2	x3	x4
\		time y	XI	XZ	XS	Х4
0	1999-05-01	00:00:00	0.376665	-4.596435	-4.095756	13.497687
1	1999-05-01	00:02:00 0	0.475720	-4.542502	-4.018359	16.230659
2	1999-05-01	. 00:04:00 0	0.363848	-4.681394	-4.353147	14.127997
3	1999-05-01	. 00:06:00 0	0.301590	-4.758934	-4.023612	13.161566
4	1999-05-01	00:08:00	0.265578	-4.749928	-4.333150	15.267340
•••					•••	
18393 199	9-05-28 23:	58:00 0 -0.87	7441	0.786430	0.406426	135.301215
18394 199	9-05-29 00:0	00:00 0 -0.843	3988	0.633086	0.561918	133.228949
18395 199	9-05-29 00:0	02:00 0 -0.826	6547	0.450126	0.334582	134.977973
18396 199	9-05-29 00:0	04:00 0 -0.822	2843	0.419383	0.387263	135.658942
18397 199	9-05-29 00:0	06:00 0 -0.840	0981	0.582710	0.593416	136.339880
	x5	x6	x7	x8		x51
x52 \ 0	-0.118830	-20.669883 (0.000732 -0.	.061114	29.984	1624
10.091721 1 -0.1 10.095871	.28733 -18.7	758079 0.000	732 -0.06112	14	29.984	624

```
-0.138636 -17.836632 0.010803 -0.061114
                                                  29.984624
10.100265
                                                  29.984624
     -0.148142 -18.517601 0.002075 -0.061114
                                            ... ... 29.984624
10.104660
                                                  29.984624
     -0.155314 -17.505913 0.000732 -0.061114
10.109054
                                                  29.984624
... ... 18393 ...
                                                  29.984624
                                                  29.984624
          0.112295 26.300392 -0.159185
                                    0.058823
                                    0.058823
                                                  29.984624 -
0.773514
                                    0.048752
18394 0.141332 25.678597 -0.159185
                                    0.048752
                                    0.048752
0.773514
18395 0.170370 25.056801 -0.159185
0.773514
18396 0.199422 24.435005 -0.159185
0.773514
18397 0.228460 24.712960 -0.159185
0.773514
           x54 x55
                                x56
                                          x57
                                                  x58
                                                            x59
x60 \
        -4.936434 -24.590146 18.515436
                                     3.473400 0.033444 0.953219
0
0.006076
                                      2.682933 0.033536 1.090502
     -4.937179 -32.413266 22.760065
                                      3.537487 0.033629 1.840540
0.006083
     -4.937924 -34.183774 27.004663
                                      3.986095 0.033721 2.554880
0.006090
                                      3.601573 0.033777 1.410494
     -4.938669 -35.954281 21.672449
0.006097
     -4.939414 -37.724789 21.907251
                   6.944644 - 37.795661 - 0.860218 0.010220
0.006105
                   0.507755 -39.357199 -0.915698 0.010620
18393 2.682413
                   0.011242
                   2.164859 -39.357199 -0.860218 0.012888 0.175348 -
18394 2.683338
                   0.011235
18395 2.684263
                                                       1.390902 -
0.011228
18396 2.685189
                                                       0.418993 -
0.011221
18397 2.686114
0.011214
       y.1
0
         0
1
         0
2
         0
3
         0
```

```
4 0 ... ... 18393 0 18394 0 18395 0 18396 0 18397 0
```

[18398 rows x 62 columns]

Exploratory Data Analysis

#Analyzing Rows and Columns df.shape

(18398, 62)

#Information about non-null values df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18398 entries, 0 to 18397
Data columns (total 62 columns):
```

#	Column	Non-Null Count	Dtype	
0	time	18398 non-null	datetime	64[ns]
1	У	18398 non-null	int64	
2	x1	18398 non-null	float64	
3	x2	18398 non-null	float64	
4	x3	18398 non-null	float64	
5	x4	18398 non-null	float64	
6	x5	18398 non-null		
7	x6	18398 non-null		
8	x7	18398 non-null		
9	x8	18398 non-null		
10	x9	18398 non-null		
11	x10	18398 non-null		
12	x11	18398 non-null		
13	x12	18398 non-null		
14	x13	18398 non-null		
15	x14	18398 non-null		
16	x15	18398 non-null		
17	x16	18398 non-null		
18	x17	18398 non-null		
19	x18	18398 non-null		
20	x19	18398 non-null		
21	x20	18398 non-null		
22	x21	18398 non-null		
23	x22	18398 non-null		
24	x23	18398 non-null	float64	

```
25 x24
               18398
                         non-null float64
  26 x25
               18398
                         non-null float64
  27 x26
               18398
                         non-null float64
  28 x27
                         non-null float64
               18398
  29 x28
               18398
                         non-null int64
  30 x29
               18398
                         non-null float64
  31 x30
               18398
                         non-null float64
  32 x31
               18398
                         non-null float64
  33 x32
               18398
                         non-null float64
  34 x33
                         non-null float64
               18398
  35 x34
               18398
                         non-null float64
  36 x35
               18398
                         non-null float64
                         non-null float64
  37 x36
               18398
  38 x37
               18398
                         non-null float64
  39 x38
               18398
                         non-null float64
  40 x39
               18398
                         non-null float64
  41 x40
               18398
                         non-null float64
  42 x41
               18398
                         non-null float64
  43 x42
               18398
                         non-null float64
  44 x43
                         non-null float64
               18398
  45 x44
               18398
                         non-null float64
  46 x45
               18398
                         non-null float64
  47 x46
                         non-null float64
               18398
  48 x47
               18398
                         non-null float64
  49 x48
                         non-null float64
               18398
  50 x49
               18398
                         non-null float64
  51 x50
               18398
                         non-null float64
  52 x51
               18398
                         non-null float64
               18398
                         non-null float64
  53 x52
  54 x54
               18398
                         non-null float64
  55 x55
               18398
                         non-null float64
  56 x56
               18398
                         non-null float64
  57 x57
               18398
                         non-null float64
  58 x58
               18398
                         non-null float64
  59 x59
                         non-null float64
               18398
  60 x60
               18398
                         non-null float64
 61 y.1
               18398 non-null
                                 int64
dtypes: datetime64[ns](1), float64(58), int64(3)
memory usage: 8.7 MB
#Counting the no. of Null values for each column
df.isnull().sum()
0
time
0
X57
```

```
0
x58
x59
        0
        0
x60
y.1
        0
Length: 62, dtype: int64
#Finding Duplicate values
print(df.duplicated())
0
          False
1
          False
2
          False
3
          False
          False
18393
          False
18394
          False
18395
          False
18396
          False
18397
         False
Length: 18398, dtype: bool
#Dropping any duplicate values
df.drop_duplicates()
                          time y
                                       x1
                                                  x2
                                                                            x4
0
          1999-05-01 00:00:00 0
                                    0.376665 -4.596435 -4.095756
                                                                    13.497687
1
          1999-05-01 00:02:00 0
                                    0.475720 -4.542502 -4.018359
                                                                    16.230659
2
          1999-05-01 00:04:00 0
                                                                    14.127997
                                    0.363848 -4.681394 -4.353147
3
          1999-05-01 00:06:00 0
                                    0.301590 -4.758934 -4.023612
                                                                    13.161566
4
          1999-05-01 00:08:00 0
                                    0.265578 -4.749928 -4.333150
                                                                    15.267340
18393 1999-05-28 23:58:00 0 -0.877441
                                                        0.406426 135.301215
                                             0.786430
18394 1999-05-29 00:00:00 0 -0.843988
                                                        0.561918 133.228949
                                             0.633086
18395 1999-05-29 00:02:00 0 -0.826547
                                                        0.334582 134.977973
                                             0.450126
18396 1999-05-29 00:04:00 0 -0.822843
                                                        0.387263 135.658942
                                             0.419383
18397 1999-05-29 00:06:00 0 -0.840981
                                                        0.593416 136.339880
                                             0.582710
              x5
                          х6
                                     x7
                                                x8 ...
                                                                 x51
```

```
x52 \
     -0.118830 -20.669883 0.000732 -0.061114
                                                  29.984624
                                                  29.984624
10.091721
     -0.128733 -18.758079 0.000732 -0.061114
                                                  29.984624
10.095871
                                                  29.984624
     -0.138636 -17.836632 0.010803 -0.061114
                                                  29.984624
10.100265
                                                  29.984624
     -0.148142 -18.517601 0.002075 -0.061114
10.104660
                                                  29.984624
                                                  29.984624
     -0.155314 -17.505913 0.000732 -0.061114
10.109054
                                                  29.984624
                                                  29.984624
... ... 18393
         0.112295 26.300392 -0.159185
                                    0.058823
                                    0.058823
0.773514
                                     0.048752
18394 0.141332 25.678597 -0.159185
                                    0.048752
                                    0.048752
0.773514
18395 0.170370 25.056801 -0.159185
0.773514
18396 0.199422 24.435005 -0.159185
0.773514
18397 0.228460 24.712960 -0.159185
0.773514
          x54 x55
                                x56 x57
                                                   x58
                                                            x59
x60 \
         -4.936434 -24.590146 18.515436
                                      3.473400 0.033444 0.953219
0
0.006076
                                      2.682933 0.033536 1.090502
     -4.937179 -32.413266 22.760065
                                      3.537487 0.033629
                                                        1.840540
0.006083
     -4.937924 -34.183774 27.004663
                                      3.986095 0.033721 2.554880
0.006090
                                      3.601573 0.033777 1.410494
     -4.938669 -35.954281 21.672449
0.006097
     -4.939414 -37.724789 21.907251
                   6.944644 - 37.795661 - 0.860218 0.010220
0.006105
                   0.507755 -39.357199 -0.915698  0.010620
       2.682413
18393
                   0.011242
                   18394 2.683338
0.011235
                   1.416690 -39.357199 -0.732044 0.012453 0.621020 -
18395 2.684263
                                                       1.390902 -
0.011228
18396 2.685189
                                                       0.418993 -
0.011221
18397 2.686114
0.011214
```

```
y.1
0 1 2 3
            0
4
            0
  ...
18393
            0
18394
            0
18395
            0
18396
18397
            0
            0
            0
            0
           0
[18398 rows x 62 columns]
#Counting Unique value in each column
print(df.nunique())
time
         18398
У
x1
         14091
x2
         15768
         16615
x3
         1112
x57
         13025
x58
         12225
x59
x60
         10800
y.1
Length: 62, dtype: int64
### Seperating Input and Output columns
X = df.drop(['y','time'],axis = 1)
Y = df['y']
##Zeroes and ones count in column 'y'
df['y'].value_counts()
У
0
      18274
1
Name: count, dtype: int64
# Representing Zeroes and ones count in bar chart
sns.countplot(x = 'y', data = df)
<Axes: xlabel='y', ylabel='count'>
```


#Representing Zeroes and ones count in pie plot df['y'].value_counts().plot.pie(autopct = '% .2f')

<Axes: ylabel='count'>

% of ones' count in the dataset print(f"{124/18274*100 :.3f} %")

0.679 %

Data is extremely imbalanced

Percentage of data belonging to minority class	Degree of imbalance
20-40% of the dataset	Mild
1-20% of the dataset	Moderate
<1% of the dataset	Extreme

Now Install library which will help to balance the dataset !pip install -U imbalanced-learn

Requirement already satisfied: imbalanced-learn in c:\users\

Eshteyaque.Ahmad\appdata\local\anaconda3\envs\eshteyaque\lib\site-packages (0.12.4)

Requirement already satisfied: numpy>=1.17.3 in c:\users\

Eshteyaque.Ahmad\appdata\local\anaconda3\envs\eshteyaque\lib\site-packages (from imbalanced-learn) (1.26.4)

Requirement already satisfied: scipy>=1.5.0 in c:\users\Eshteyaque.Ahmad\appdata\local\anaconda3\envs\eshteyaque\lib\site-packages (from imbalanced-learn) (1.14.1)

Requirement already satisfied: scikit-learn>=1.0.2 in c:\users\ Eshteyaque.Ahmad\appdata\local\anaconda3\envs\eshteyaque\lib\site-packages (from imbalanced-learn) (1.5.2) Requirement already satisfied: joblib>=1.1.1 in c:\users\ Eshteyaque.Ahmad\appdata\local\anaconda3\envs\eshteyaque\lib\site-packages (from imbalanced-learn) (1.4.2) Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\ Eshteyaque.Ahmad\appdata\local\anaconda3\envs\eshteyaque\lib\site-packages (from imbalanced-learn) (3.5.0)

""" We will use Oversampling technique - SMOTE, to balance the dataset which will scale up the minority classes to match up with the majority class """

' We will use Oversampling technique - SMOTE, to balance the dataset which will scale up the minority classes to match up with the majority class '

from imblearn.over_sampling import SMOTE

```
sm = SMOTE(random_state=42)
X_res, Y_res = sm.fit_resample(X, Y)
ax = Y_res.value_counts().plot.pie(autopct='%.2f')
```


\ 0	x1 0.376665 -4	x2 1 596435	x3 -4 095756	x4 13 497687	x5 -0 118830	x6 -20.669883
1	0.475720 -4					-18.758079
2	0.363848 -4	1.681394	-4.353147	14.127997	-0.138636	-17.836632
3	0.301590 -4	1.758934	-4.023612	13.161566	-0.148142	-18.517601
4	0.265578 -4	1.749928	-4.333150	15.267340	-0.155314	-17.505913
			•••			
36543	0:123190 -	5.907143	-5.243223		0.050505	-20.217502
36544	1.713375 -0	0.701378	-9.644510	-70 ₃ 87 <u>6</u> 03760	-0.492367	-80.683381
36545 -0.61	L3582 -1.478	861 -1.96	3563			9.743904
36546 -0.32	25275 -9.779	309 -11.7	27837	145.395851 -	0.103702	36.268184
36547 -0.30	01383 0.5680	78 -9.652	2514	89.769446607	00639471	-64.649525

	x7	χ	3	x9	x10	x51	
x52 \ 0	0.000	732 -0.062	L114 -0.059	9966 -0.038	189	29.984624	
10.091						29.984624	
1 10.0958		-0.061114	-0.059966	-0.038189		29.984624	
2		-0.061114	-0.030057	-0.018352		29.984624	
10.1002 3		-0.061114	-0.019986	-0.008280		29.984624	
10.1046		0 061111	-0.020057	-0.008280	•••		
10.1090		-0.001114	-0.030037	-0.006260		31.469783	
•••						29.984624	•
36543	0.20	8618 0.089	9437 -0.058	3252 -0.009	017	29.984624	
0.88679 36544	96 - 0.095394	0.018844 (0.072664	0.0342	69	31.309173 _	
4.6651	45					29.554408 _	
36545 1.27221	0.005235 12	0.023728 -	0.110563	-0.078383			
36546 - 0.48163	-0.059389 -	0.037282	-0.001641	-0.031279			
	-0.001525 -	0.085744	-0.049731	-0.035550		-	
1.7803	79						
	x54	2	x55	x56	x57	x58	x59

```
18.515436 3.473400 0.033444 0.953219
0
         -4.936434 -24.590146
1
         -4.937179 -32.413266
                               -4.937924 -34.183774
                               27.004663 3.537487 0.033629 1.840540
2
3
         -4.938669 -35.954281
                               21.672449 3.986095 0.033721 2.554880
         -4.939414 -37.724789 21.907251 3.601573 0.033777 1.410494
4
36543
         1.348418 147.223957 -46.214293 1.460570 -0.100675 0.989833
36544 -5.850424 -87.113012 -117.867780 -2.174484
                                                     0.030733 0.512385
-40.410241 -0.712796
36545 1.887315 -34.705985
                                                      0.021017 3.595538
                                                      0.015123 3.079882
61.291453 -0.140618
36546 -4.983965 -39.008923
                                                      0.016106 2.684745
-71.361523 -1.177984
36547 -3.012029 -28.471037
               x60 y.1
0
       0.006076
1
       0.006083
                    0
       0.006090
2
                    0
3
       0.006097
                    0
4
       0.006105
                    0
36543 0.000255
                    0
36544 0.000855
                    0
36545
       0.006391
                    0
36546
       0.010029
                    0
36547 0.007003
                    0
[36548 rows x 60 columns]
Y_res
0
         0
1
         0
2
         0
3
         0
         0
36543
         1
36544
         1
36545
         1
36546
         1
```

Data Splitting

****52

15236 3.128250

Splitting the data into training and testing dataset

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X_res, Y_res,
test_size = 0.2, random_state=123)
X_train

1						
15236	x1	x2		x4	x x 53	x6
2467			0.340	3 90 .639038428983	1 170379599 2	-9.557884
3467	0.11200	1 055501	2 226002	-112.113960	0 016017	6.881905
8732	0.11290	5-1.955501	-3.320003	-112.113900	3-0.010917	0.861905
				193.899542	2 -0.272105	-16.111809
15750	0.299043 -	2.908362 -6	.682374			
24044 -0	.09 008876 164. 52 7	23.80 4 0-499 6 8-35	07784918	189.186743	3 -0.243647	22.860329
2.0	.0,000000		., .		0.097490	32.608301
			2	18.398094		
-0 50007	3 1.612657 -4	020205				
<u>.</u> 0.30907	J 1.01,2037 -4	.,0,20,75		244 56171	3 -0.687235	26.937905
9 :746231222	2 -1.813448 -6	.310049		244.00171	0.007200	20.737703
8-0-(-0-5-0-0	0.0000440	T 4500		187.50235	6-0.000941	-13.812401
₩ 538797523	3 2.977344 3.3	374720			0.070740	2/ /07//0
1:47841900	-3.953427 -9	.692695		56.548499	0.078710	36.687660
			`		8 -0.203797	-128.292789
2 870330519	2.901412 -6.	339217				
15725					0.404054	24.198830
13/23			19	93.932379	0.194051	
	x7	x8	x9	x10		x51

0.020874 -0.005866 -0.049021 -0.048260

3467 -0.069155 -0.031206 -0.070037 -0.068402

29.984624 -

29.984624

```
4.137131
8732 0.130741 -0.081257 -0.070037 -0.078168 ... ... 28.660161
0.294846
                                         ... ... 29.984624 -
10.099442
                                          ... ... 29.984624
24044 -0.016794 0.027563 -0.018847 -0.052779
                                              29.984624 -
                                              29.931645
                                            29.984624
          0.090558 0.202372 -0.095656 -0.075637
                                             29.984624
7763
4.262131
15377 -0.049319 -0.061114 -0.040129 -0.058331
3.753738
17730 -0.039246 0.008773 -0.040129 -0.002573
1.689041
28030 0.075331 0.001054 0.245567
                                0.003837
7.755202
                                 0.171779
15725 -0.019409 -0.011064 0.049901
9.184891
         x54 x55 x56 x57
                                                  x58
x59 \
  0.150034
3467 0.626401 30.327945 94.529779 2.972911 0.029428
                                                       0.338144
8732 -4.904975 -57.939633 32.866907 1.642284 0.011228 1.421931
     15750 -4.972492 -96.391781 -51.338217 -3.149097 -0.005344 0.021227
     24044 -4.841939 -87.818713 -39.707157 -3.459498 -0.006421 0.479616
                                              0.014912 1.160845
7763 -4.982663 -20.718075 68.139123 2.222118
                                              0.016013 1.632204
15377 -4.941107 -66.666318 -51.538504 -1.775807
                                              0.013303
                                                       0.180338
65.773054063-4138858057917057
                                              0.015198 0.878159
28030 -4.918541 -75.584446 -150.120545 -1.862119
      15725 -4.935096 -94.496762 -50.603201 -3.622180 -0.010034 -0.047285
             x60 y.1
15236
       0.003592
                 0
3467
       0.006674
                 0
8732
      -0.001253
                 0
 15750 -0.000550
                 0
```

```
24044 -0.000550
                       0
7763
        -0.001995
                       0
         0.008914
15377
                       0
17730 -0.006130
                       0
280030315
                       0
15725 -0.000550
                      0
[29238 rows x 60 columns]
Y_train
18609
          1
21881
          1
6061
          0
17156
          0
13041
          0
7763
          0
15377
          0
17730
          0
28030
          1
15725
Name: y, Length: 25583, dtype: int64
```

Feature Engineering

```
#Will convert raw data to useful features for ML model #success of a ML model largely
depends on the quality of the features used in the model.
# Extracting all numeric features in one variable
num_cols = X_res._get_numeric_data().columns
num_cols
Index(['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9', 'x10',
'x11',
         'x12', 'x13', 'x14', 'x15', 'x16', 'x17', 'x18', 'x19', 'x20', 'x22', 'x23', 'x24', 'x25',
'x21'.
         'x26', 'x27', 'x28', 'x29', 'x30', 'x32', 'x33', 'x34', 'x35', 'x36', 'x37', 'x38', 'x39',
'x31'.
         'x40', 'x42', 'x43', 'x44', 'x45', 'x46', 'x47', 'x48', 'x49', 'x50', 'x52', 'x54', 'x55',
'x41',
         'x56', 'x57', 'x58', 'x59', 'x60', 'y.1'],
'x51',
        dtype='object')
```

```
# Plot the histograms
X_res[num_cols].hist(bins=10)
array([[<Axes: title={'center': 'x1'}>, <Axes: title={'center':
'x2'}>,
          <Axes: title={'center': 'x3'}>, <Axes: title={'center': <Axes: title=</pre>
'x4'}>,
          {'center': 'x5'}>, <Axes: title={'center': <Axes: title={'center': 'x7'}>,
'x6'}>,
          <Axes: title={'center':
'x8'}>],
         [<Axes: title={'center': 'x9'}>, <Axes: title={'center':
'x10'}>,
          <Axes: title={'center': 'x11'}>, <Axes: title={'center': <Axes: title=</pre>
'x12'}>,
          {'center': 'x13'}>, <Axes: title={'center': <Axes: title={'center': 'x15'}>,
'x14'}>,
          <Axes: title={'center':
'x16'}>],
         [<Axes: title={'center': 'x17'}>, <Axes: title={'center':</pre>
'x18'}>,
          <Axes: title={'center': 'x19'}>, <Axes: title={'center': <Axes: title=</pre>
'x20'}>,
          {'center': 'x21'}>, <Axes: title={'center': <Axes: title={'center': 'x23'}>,
'x22'}>, <Axes: title={'center':
'x24'}>],
         [<Axes: title={'center': 'x25'}>, <Axes: title={'center':
'x26'}>,
          <Axes: title={'center': 'x27'}>, <Axes: title={'center': <Axes: title=</pre>
'x28'}>,
          {'center': 'x29'}>, <Axes: title={'center': <Axes: title={'center': 'x31'}>,
'x30'}>,
          <Axes: title={'center':
'x32'}>],
         [<Axes: title={'center': 'x33'}>, <Axes: title={'center':</pre>
'x34'}>,
          <Axes: title={'center': 'x35'}>, <Axes: title={'center': <Axes: title=</pre>
'x36'}>,
          {'center': 'x37'}>, <Axes: title={'center': <Axes: title={'center': 'x39'}>,
'x38'}>, <Axes: title={'center':
'x40'}>],
         [<Axes: title={'center': 'x41'}>, <Axes: title={'center':</pre>
'x42'}>,
          <Axes: title={'center': 'x43'}>, <Axes: title={'center': <Axes: title=</pre>
'x44'}>,
          {'center': 'x45'}>, <Axes: title={'center': <Axes: title={'center': 'x47'}>,
'x46'}>, <Axes: title={'center':
```


Dimensionality reduction - Principal Componenet analysis

Basically Reducing the number of features by transforming the data into a lower-dimensional space while retaining important information.

```
x1
                     x2
                                 х3
                                          x4
                                                     x5
                                                                 x6
x7 \ x11.000000 0.084069 -0.105779
                                       0.163079 -0.025989 -0.174184
0.206807
     0.084069 1.000000 0.521845 -0.060098
x2
                                               0.063259 - 0.111763
0.105085
                                               0.309316 -
                                                           1.000000
x3 -0.105779 0.521845 1.000000 -0.200288 -0.02896£068325 - 1.000000 -
0.053907
     0.163079 -0.060098 -0.200288
                                    1.000000 0.0.8781718.8
                                    0.309316 -0.068325
0.007755
x5 -0.025989 0.053239 -0.028036
0.041858
   -0.174184 0.003550 0.111763
0.185740
     0.206807 -0.105085 0.053907 -0.007755 -0.041858 -0.185740
1.000000
     0.164196 0.170058 0.088091
8x
                                    0.063350
                                               0.224671
                                                            0.064808
0.417490
                                                  0.088119 -0.112473
x9
     0.007810 -0.087101 -0.058924 -0.008695
                                                  0.104906 -0.082165
0.305754
                                                            0.071768
x10 0.000231 -0.013258 0.026922 -0.062910
                                                            0.090622
                                                           0.667859 -
0.129676
x11 0.320249 0.266533 0.207619
                                       0.004112 - 0.059185
0.210842
                                                0.059572
     0.428606 0.245025 0.189053 -0.026667177492 -0.080192
x12
0.309224
x13 0.014091 -0.063304 -0.011347
0.022321
x14 0.145603 0.049442 0.013414 -0.130440 -0.173737 -0.000178
0.012144
x15 -0.036054 -0.083182 -0.023861 -0.153299
                                               0.064212 -0.237913 -
0.093415
                                               0.020649 - 0.047121
x16 0.339653 0.250920 0.255780 -0.081105
0.251208
x17 0.050072 0.323387 0.107934
                                    0.116949
                                               0.300898 - 0.152054 -
0.192899
                                    0.148363
                                               0.334581
                                                            0.017039
x18 0.081340 0.327707 0.113617
                                               0.194335 -0.113567
0.239691
x19 -0.103546 0.073601 0.121728 -0.005982 -0.193920
0.034020
x20 0.014971 -0.073041 -0.034480 -0.065070 -0.151415
0.159769
x21 0.250143 0.057564 -0.181906
                                    0.214502
0.042947
                                    0.181531
x22 0.100446 0.222220 -0.014500
                                    0.098037
                                               0.566459 0.040472 -
0.138232
                                               0.306208
                                                         0.140359
x23 -0.075332 0.004249 0.010131
0.068384
x24 -0.117655 -0.048825 0.021131
                                    0.010696 -0.190925 -0.143766 -
0.099946
```

```
x25
    0.354985 0.169349 0.165143 -0.041633 -0.019531 -0.109918
0.315253
x26 -0.126878 0.014028 0.237707 -0.275519 -0.034688
                                                      0.092735
0.096636
                                                      0.191164
x27 -0.033811 0.072479 0.187933 -0.097783
                                                      0.023218 -
                                            0.002436
0.055576
                                            0.072629
                                                      0.371444 -
x28 -0.225437 -0.098550 0.268833 -0.033342
                                            0.045342
0.016594
x29 -0.355779 0.054562 0.356976 -0.603911
0.136738
x30 -0.145379 -0.188276 0.103788 -0.217991 -0.604530 -0.027546
0.140615
x31
    0.010293 0.105333 0.086008
                                  0.032405
x32 0.388889 0.204339 0.166043
                                  0.007985 -0.023205 -0.058750
0.293818
x33 -0.291524 -0.208444 0.135354 -0.321745 -0.432638 -0.087390
0.067388
0.223604
x35 -0.038592 -0.088866 0.149440 -0.323515 -0.263395 -0.164077
0.098228
x36
    0.029763 -0.010939 0.401174 -0.168193
                                            0.106319
                                                        0.092242
0.518706
                                            0.397789
                                                        0.169903
    0.184506 0.224059 0.241953 -0.010991
                                               0.055504 - 0.097919
x37
0.139277
                                               0.049226 -0.051425
    0.006614 -0.092014 -0.028417 -0.007408
x38
                                                        0.059833
0.291839
                                               0.029249 -0.063147
    0.031982 -0.055870 -0.026558 -0.021551
                                               0.089733 -0.248708
x39
                                              0.205902 -0.033896 -
0.116548
x40
    0.123050 0.204192 0.266117 -0.184548
                                            0.118877
0.162333
    0.049128 -0.013641 -0.039084
x41
                                  0.026326
                                  0.011934
0.021674
x42
    0.170231 0.072263 -0.140190
                                  0.041439
0.136795
x43 -0.048023 0.056959 0.067263
0.010286
x44 -0.213603 -0.143747 0.086158 -0.483883 -0.236929 -0.162198
0.153753
x45 -0.348889 -0.221391 -0.142414
                                  0.207878
x46 0.042921 -0.206694 -0.020279
                                     0.124609 -0.094658 -0.086779
0.244275
                                                       0.292972
x47
    0.160704 0.119619 0.017012
                                  0.138110 0.2024/800929 -0.016863
                                                       0.022677
0.072692
                                  0.059263 -0.437601
x48 0.244082 -0.123402 -0.057050
0.196465
x49 0.019593 -0.170183 -0.039402
0.192068
```

```
x50 0.134269 0.061094 0.019675 -0.275122 -0.358936 0.008763 -
0.043239
                                  0.002815 -0.000060 -0.061855
x51
    0.372485 0.189591 0.153676
0.286642
                                  0.067635
    0.063473 0.076846 0.064336 -0.103042520-1092085335
x52
                                  0.210419 -
0.018765
x54 -0.365939 0.127888 0.429812 -0.4670372087 - 0.159760
0.158177
                                  0.043529
                                            0.195624
x55 -0.182015 0.118343 0.071921 -0.283370
0.003098
x56 -0.034292 0.045621 0.050182 -0.047020 -0.337245
0.154005
x57
    0.186036 -0.018981 0.000267 -0.106942 -0.416979
0.067389
0.342651
x59
    0.351140 0.182400 0.166398 -0.009013 -0.011512 -0.083605
0.289545
x60 -0.175277 -0.145551 -0.060453 -0.324576
                                            0.023247 -0.398500
0.120603
                                            0.119758 -0.125980
y.1 -0.051528 -0.158613 -0.147230 -0.084354
0.160705
          x8
                    x9 x10 ...
                                             x51
                                                      x52
x54
                                        0.372485
    0.164196 0.007810 0.000231
x1
                                                   0.063473 - 0.365939
                                        0.189591 0.076846 0.127888
x2
    0.170058 -0.087101 -0.013258
                                        0.153676 0.064336
х3
    0.088091 -0.058924 0.026922
                                                            0.429812
    0.063350 -0.008695 -0.062910
x4
                                          0.002815 -0.103462 -0.467034
                                  ... -0.000060 -0.285335
    0.224671 0.088119 0.104906
x5
                                                            0.159760
     0.064808 -0.112473 -0.082165
                                  0.067635855
x6
                                                            0.250196
    0.417490 0.305754 0.129676
x7
                                                   0.018765 -0.158177
                                  0.286642
    1.000000 0.054682 0.084748
8x
                                                            0.183303
                                  Q.381006 -0.104123
                                          0.053660 -0.046796 -0.055306
x9
    0.054682 1.000000 0.623213
x10
    0.084748 0.623213 1.000000
                                                            0.071604
                                         0.067390 -0.039241
x11 0.290835 0.050497 0.054981
                                                            0.015080
                                        0.491499 0.050085
x12 0.525598 0.054003 0.103940
                                                            0.097660
                                        0.786865
                                                  0.064981
x13 -0.010814 -0.082140 -0.072492
                                                   0.234750 -0.004515
                                  ... -0.059703
```

x14 -0.011147 -0.026306 -0.025038 ... 0.013041 0.127976 -0.031930 x15 -0.134794 0.038151 0.006471 ... -0.001058 -0.048362 0.046950 x16 0.443987 0.012746 0.085831 ... 0.803574 0.007357 0.198592 x17 0.094280 -0.094052 0.024152 ... -0.016968 0.014475 0.142548 x18 0.075986 -0.115021 -0.016863 ... -0.039415 0.117424 0.144883 x19 -0.060798 -0.171601 -0.011407 ... 0.003066 0.110315 -0.012959 x20 -0.091784 0.252598 0.214279 ... 0.012938 0.078401 0.030746 x21 0.198948 -0.043518 -0.035521 ... 0.034520 -0.244845 -0.184157 x22 0.330107 -0.020311 0.062431 ... -0.007581 -0.291862 0.211410 x23 0.164155 -0.002448 0.093070 ... 0.000498 -0.267033 0.177342 x24 -0.123213 0.076803 -0.079980 ... -0.030638 -0.291327 -0.072906 x25 0.358927 0.055546 0.075390 ... $0.922441 \ 0.061714 \ -0.065007 \ x26 \ 0.126905 \ -0.040943 \ 0.068967 \ \dots \ 0.011307$ 0.051549 0.513467 x27 0.156947 -0.067218 0.070485 ... -0.004076 -0.046091 0.544594 x28 0.029582 -0.030765 0.023507 ... 0.004319 -0.169310 0.383947 x29 0.090017 -0.075062 0.019028 ... -0.055557 -0.015076 0.801815 x30 -0.335454 -0.030024 -0.085533 ... 0.019464 0.330261 -0.165822 x31 -0.031196 -0.022835 -0.053922 ... 0.006695 0.016740 0.019551 x32 0.383546 0.048066 0.066471 ... 0.930353 0.049949 -0.062486 x33 -0.303485 -0.048883 -0.065796 ... 0.024437 0.259457 -0.059335 x34 0.009224 -0.113706 -0.087405 ... -0.060816 0.105932 0.274402 x35 -0.064917 -0.113463 -0.017757 ... 0.077740 0.184269 0.121565 x36 0.358481 0.133217 0.130591 ... 0.269864 -0.087199 0.473111 x37 0.693164 -0.015669 0.081525 ... 0.455623 -0.142176 0.467503 x38 0.083042 0.765825 0.401966 ... 0.054277 -0.029996 -0.063736 x39 0.116466 0.356443 0.673197 ... 0.068700 -0.006022 0.022128

0.335660 0.014510 0.087\fmid 0.452826 -0.004302 0.365446 0.042574 -0.024395 0.046483 0.004772 -0.064031 -0.085608 0.161205 0.090080 0.068\fmid 0.034360 -0.220459 -0.123855 0.039901 -0.016504 -0.0071\fmid 0.008495 -0.004159 0.117603 x44 -0.223854 -0.004185 0.003153 0.079299 0.254257 0.001486 x45 -0.390553 -0.027371 -0.0590300.890010 -0.027871 -0.013835 x46 -0.029629 0.029632 -0.039068 0.022119 0.010894 -0.189148 x47 0.342790 0.042664 0.1132200.020322 -0.089631 0.334569 x48 -0.017780 0.076556 -0.025999 0.0046770.043\fmid 0.334569 x49 -0.192752 -0.046775 -0.136604 -0.115662002089787 0.283265 -0.313285 x50 -0.181244 -0.171232 -0.048931 0.039721 0.560490 -0.104824 x51 0.381006 0.053660 0.067390 1.000000 0.018709 -0.046100 x52 -0.104123 -0.046796 -0.039241 0.018709 1.000000 -0.115684 x54 0.183303 -0.055306 0.071604 1.000000 x55 0.291674 0.031043 0.1274470.029572 0.548485 x56 -0.175460 -0.085944 -0.0875210.025544 0.319665 -0.001489 x57 -0.173570 -0.168036 -0.083554 0.046344 0.537975 -0.243889 x58 -0.142560 -0.164641 -0.1690380.017314 0.074990 -0.291449 x59 0.379018 0.058884 0.066013 0.025544 0.0319665 -0.001489 x59 0.379018 0.058884 0.066013 0.0924150 0.027308 -0.062852 y.1 -0.182015 -0.034292 0.186036 0.062366 0.351140 -0.175277 -0.0161531 0.182400 -0.145551 -0.0151528 x 55 x56 x57 x58 x59 x60 y.1 -0.182015 -0.034292 0.186036 0.062366 0.351140 -0.175277 -0.0161531 0.182400 -0.145551 -0.147230			
0.161205 0.090080 0.068746 0.034360 -0.220459 -0.123855 0.039901 -0.016504 -0.007144B		0.335660 0.014510 0.087 1490	0.452826 -0.004302
0.039901 -0.016504 -0.007144B		0.042574 -0.024395 0.046 483	0.004772 -0.064031 -0.085608
x44 - 0.223854 - 0.004185 0.003153 0.079299 0.254257 0.001486 x45 - 0.390553 - 0.027371 - 0.059030 0.890010 - 0.027871 - 0.013835 x46 - 0.029629 0.029632 - 0.039068 0.022119 0.010894 - 0.189148 0.342790 0.042664 0.113220 0.020322 - 0.089631 0.334569 x48 - 0.017780 0.076556 - 0.025999 0.004677 0.0445683 - 0.287198 x49 - 0.192752 - 0.046775 - 0.136604 - 0.115620089787 0.283265 - 0.313285 x50 - 0.181244 - 0.171232 - 0.048931 0.039721 0.560490 - 0.104824 0.560490 - 0.104824 x51 0.381006 0.053660 0.067390 1.000000 0.018709 - 0.046100 x52 - 0.104123 - 0.046796 - 0.039241 0.018709 1.000000 - 0.115684 x54 0.183303 - 0.055306 0.071604 x55 0.291674 0.031043 0.1274470.029572 0.548485 0.548485 0.291674 0.031043 0.1274470.025544 0.319665 - 0.001489 x57 - 0.173570 - 0.168036 - 0.083554 0.046344 0.537975 - 0.243889 0.046344 0.537975 - 0.243889 x58 - 0.142560 - 0.164641 - 0.169038 0.017314 0.074990 - 0.291449 x59 0.379018 0.058884 0.066013 0.063602 0.061383 - 0.123407 0.069936 0.222279 0.085825 0.0063602 0.061383 - 0.123407 y.1 0.063602 0.118343 0.045621 - 0.018981 0.051528 0.0161531 0.182400 - 0.145551 - 0.166398 - 0.060453 - 0.071921 0.050182 0.000267 - 0.241157		0.161205 0.090080 0.068%74@	0.034360 -0.220459 -0.123855
x45 -0.390553 -0.027371 -0.059030 0.890010 -0.027871 -0.013835 x46 -0.029629 0.029632 -0.039068 0.022119 0.010894 -0.189148 x47 0.342790 0.042664 0.1132200.020322 -0.089631 0.334569 x48 -0.017780 0.076556 -0.025999 0.0046770.0445563 -0.0446770.0447683 -0.287198 x49 -0.192752 -0.046775 -0.136604 -0.115662002089787 0.283265 -0.313285 x50 -0.181244 -0.171232 -0.048931 0.039721 0.560490 -0.104824 x51 0.381006 0.053660 0.067390 1.000000 0.018709 -0.046100 x52 -0.104123 -0.046796 -0.039241 0.018709 1.000000 -0.115684 x54 0.183303 -0.055306 0.071604 1.000000 x55 0.291674 0.031043 0.127447 0.029572 0.548485 x56 -0.175460 -0.085944 -0.087521 0.025544 0.319665 -0.001489 x57 -0.173570 -0.168036 -0.083554 0.025544 0.537975 -0.243889 x58 -0.142560 -0.164641 -0.169038 0.017314 0.074990 -0.291449 x59 0.379018 0.058884 0.066013 0.063602 0.061383 -0.123407 y.1 55 x56 x57 x58 x59 x60 y.1 -0.182015 -0.034292 0.186036		0.039901 -0.016504 -0.0071	0.008495 -0.004159 0.117603
x46 - 0.029629 0.029632 - 0.039068 0.022119 0.010894 - 0.189148 x47 0.342790 0.042664 0.113220 0.020322 - 0.089631 0.334569 x48 - 0.017780 0.076556 - 0.025999 0.004677 0.0445083 - 0.287198 x49 - 0.192752 - 0.046775 - 0.136604 - 0.11568200209787 0.283265 - 0.313285 x50 - 0.181244 - 0.171232 - 0.048931 0.039721		x44 -0.223854 -0.004185 0.003153	0.079299 0.254257 0.001486
x47 0.342790 0.042664 0.1132200.020322 -0.089631 0.334569 x48 -0.017780 0.076556 -0.0259999 0.0046.770.0445083 -0.287198 x49 -0.192752 -0.046775 -0.136604 -0.11568200289787 0.283265 -0.313285 x50 -0.181244 -0.171232 -0.048931 0.039721 0.560490 -0.104824 x51 0.381006 0.053660 0.067390 1.000000 0.018709 -0.046100 x52 -0.104123 -0.046796 -0.039241 0.018709 1.000000 -0.115684 x54 0.183303 -0.055306 0.071604 1.000000 x55 0.291674 0.031043 0.127447 0.029572 0.548485 x56 -0.175460 -0.085944 -0.087521 0.025544 0.319665 -0.001489 x57 -0.173570 -0.168036 -0.083554 0.046344 0.537975 -0.243889 x58 -0.142560 -0.164641 -0.169038 0.017314 0.074990 -0.291449 x59 0.379018 0.058884 0.066013 9.24150 0.027308 -0.062852 x60 -0.131704 0.041663 0.044417 0.063602 0.061383 -0.123407 y.1 555 x56 x57 x58 x59 x60 y.1 -0.182015 -0.034292 0.186036 0.062366 0.351140 -0.175277 -0.1653613 0.166398 -0.060453 - 0.166398 -0.060453 - x3		x45 -0.390553 -0.027371 -0.059030	0.890010 -0.027871 -0.013835
$ \begin{array}{c} \times 48 - 0.017780 \ 0.076556 - 0.025999 \ \dots \ \dots \ 0.004677 \dots \ -0\%465083 - 0.287198 \\ \times 49 - 0.192752 - 0.046775 - 0.136604 - 0.11566200299787 \ 0.283265 - 0.313285 \\ \times 50 - 0.181244 - 0.171232 - 0.048931 \ 0.039721 \ 0.560490 - 0.104824 \\ \times 51 \ 0.381006 \ 0.053660 \ 0.067390 \ 1.000000 \ 0.018709 - 0.046100 \\ \times 52 - 0.104123 - 0.046796 - 0.039241 \ 0.018709 \ 1.000000 - 0.115684 \\ \times 54 \ 0.183303 - 0.055306 \ 0.071604 \ 1.000000 \\ \times 55 \ 0.291674 \ 0.031043 \ 0.127447 \ \dots -0.029572 \ 0.548485 \\ \times 56 - 0.175460 - 0.085944 - 0.087521 \ \dots -0.025544 \ 0.319665 - 0.001489 \\ \times 57 - 0.173570 - 0.168036 - 0.083554 \ \dots \ 0.046344 \ 0.537975 - 0.243889 \\ \times 58 - 0.142560 - 0.164641 - 0.169038 \ \dots -0.017314 \ 0.074990 - 0.291449 \\ \times 59 \ 0.379018 \ 0.058884 \ 0.066013 \ \dots \ 0.924150 \ 0.027308 - 0.062852 \\ \times 60 - 0.131704 \ 0.041663 \ 0.044417 \ \dots \ 0.063602 \ 0.061383 - 0.123407 \\ y.1 \ 0.069936 \ 0.222279 \ 0.085825 \ 0.009521 - 0.187576 - 0.014380 \\ \end{array}$		x46 -0.029629 0.029632 -0.039068	0.022119 0.010894 -0.189148
$ \begin{array}{c} \times 49 - 0.192752 - 0.046775 - 0.136604 - 0.11568200289787 \ 0.283265 - 0.313285 \\ \times 50 - 0.181244 - 0.171232 - 0.048931 \ 0.039721 \ 0.560490 - 0.104824 \\ \times 51 \ 0.381006 \ 0.053660 \ 0.067390 \ 1.000000 \ 0.018709 - 0.046100 \\ \times 52 - 0.104123 - 0.046796 - 0.039241 \ 0.018709 \ 1.000000 - 0.115684 \\ \times 54 \ 0.183303 - 0.055306 \ 0.071604 \ 1.000000 \\ \times 55 \ 0.291674 \ 0.031043 \ 0.127447 \ 0.029572 \ 0.548485 \\ \times 56 - 0.175460 - 0.085944 - 0.087521 \ 0.025544 \ 0.319665 - 0.001489 \\ \times 57 - 0.173570 - 0.168036 - 0.083554 \ \ 0.046344 \ 0.537975 - 0.243889 \\ \times 58 - 0.142560 - 0.164641 - 0.169038 \ 0.017314 \ 0.074990 - 0.291449 \\ \times 59 \ 0.379018 \ 0.058884 \ 0.066013 \ \ 0.924150 \ 0.027308 - 0.062852 \\ \times 60 - 0.131704 \ 0.041663 \ 0.044417 \ \ 0.063602 \ 0.061383 - 0.123407 \\ 0.069936 \ 0.222279 \ 0.085825 \ 0.009521 - 0.187576 - 0.014380 \\ \end{array}$	x47	0.342790 0.042664 0.113220	0.020322 -0.089631 0.334569
$\begin{array}{c} \times 50 - 0.181244 - 0.171232 - 0.048931 & 0.039721 & 0.560490 - 0.104824 \\ \times 51 & 0.381006 \ 0.053660 \ 0.067390 & 1.000000 & 0.018709 - 0.046100 \\ \times 52 - 0.104123 - 0.046796 - 0.039241 & 0.018709 & 1.000000 - 0.115684 \\ \times 54 & 0.183303 - 0.055306 \ 0.071604 & 1.000000 \\ \times 55 & 0.291674 \ 0.031043 \ 0.127447 & 0.029572 & 0.548485 \\ \times 56 - 0.175460 - 0.085944 - 0.087521 & 0.025544 & 0.319665 - 0.001489 \\ \times 57 - 0.173570 - 0.168036 - 0.083554 & & 0.046344 & 0.537975 - 0.243889 \\ \times 58 - 0.142560 - 0.164641 - 0.169038 & 0.017314 & 0.074990 - 0.291449 \\ \times 59 & 0.379018 \ 0.058884 \ 0.066013 & & 0.924150 & 0.027308 - 0.062852 \\ \times 60 - 0.131704 \ 0.041663 \ 0.044417 & & 0.063602 & 0.061383 - 0.123407 \\ y.1 & 0.069936 \ 0.222279 \ 0.085825 & 0.009521 - 0.187576 - 0.014380 \\ \end{array}$		x48 -0.017780 0.076556 -0.025999	000.46.7.70.904455783 -0.287198
x51		x49 -0.192752 -0.046775 -0.136604	-0.1156 82 002089787
x51		x50 -0.181244 -0.171232 -0.048931	0.039721 0.560490 -0.104824
x54	x51	0.381006 0.053660 0.067390	1.000000 0.018709 -0.046100
x55		x52 -0.104123 -0.046796 -0.039241	0.018709 1.000000 -0.115684
x55	x54	0.183303 -0.055306 0.071604	1.000000
x57 -0.173570 -0.168036 -0.083554 0.046344 0.537975 -0.243889 x58 -0.142560 -0.164641 -0.1690380.017314 0.074990 -0.291449 0.379018 0.058884 0.066013 0.924150 0.027308 -0.062852 x60 -0.131704 0.041663 0.044417 0.063602 0.061383 -0.123407 0.069936 0.222279 0.085825 0.009521 -0.187576 -0.014380 v.1 x55 x56 x57 x58 x59 x60 y.1 x1 -0.182015 -0.034292 0.186036 0.062366 0.351140 -0.175277 -0.051528 c 0.118343 0.045621 -0.018981 0.158613 0.166398 -0.060453 -0.166398 -0.060453 -0.158613 0.071921 0.050182 0.000267 -0.241157	x55	0.291674 0.031043 0.127447	0.029572 0.548485
x58 -0.142560 -0.164641 -0.1690380.017314 0.074990 -0.291449 x59		x56 -0.175460 -0.085944 -0.087521	0.025544 0.319665 -0.001489
x59		x57 -0.173570 -0.168036 -0.083554	0.046344 0.537975 -0.243889
x59		x58 -0.142560 -0.164641 -0.169038	0.017314 0.074990 -0.291449
y.1	x59	0.379018 0.058884 0.066013	0.924150 0.027308 -0.062852
y.1 x55 x56 x57 x58 x59 x60 y.1 x1 -0.182015 -0.034292 0.186036 0.062366 0.351140 -0.175277 - 0.051528 x2 0.118343 0.045621 -0.018981 0.158613 0.166398 -0.060453 - x3 0.071921 0.050182 0.000267 -0.241157		x60 -0.131704 0.041663 0.044417	0.063602 0.061383 -0.123407
x55 x56 x57 x58 x59 x60 y.1 x1 -0.182015 -0.034292 0.186036 0.062366 0.351140 -0.175277 - 0.051528 x2 0.118343 0.045621 -0.018981 0.161531 0.182400 -0.145551 - 0.158613 0.166398 -0.060453 - x3 0.071921 0.050182 0.000267 -0.241157	v.1	0.069936 0.222279 0.085825	0.009521 -0.187576 -0.014380
y.1 x1	•		
x1	v 1	x55 x56 x57	x58 x59 x60
x2	x1		0.062366 0.351140 -0.175277 -
x3 0.071921 0.050182 0.000267 -0.241157			0.161531 0.182400 -0.145551 -

```
x4 -0.283370 -0.047020 -0.106942 0.014033 -0.009013 -0.324576 -
0.084354
     0.195624 -0.337245 -0.416979 -0.042278 -0.011512 0.023247
x5
0.119758
    0.210419 0.572087 0.043529 -0.146758 -0.083605 -0.398500 -
0.125980
x7 -0.003098 -0.154005 0.067389 -0.342651
                                           0.289545
                                                      0.120603
0.160705
                                             0.379018 -0.131704
    0.291674 -0.175460 -0.173570 -0.142560
                                                      0.041663
0.069936
                                                      0.044417
x9
    0.031043 -0.085944 -0.168036 -0.164641
                                           0.058884
                                           0.066013
0.222279
x10
    0.127447 -0.087521 -0.083554 -0.169038
0.085825
                                           0.490636 -0.052056 -
x11
    0.082135 0.085998 0.156182 0.007240
0.001547
                                           0.786132 - 0.052224
x12
    0.269005 0.057399 0.110558 -0.103582
0.029879
x13 0.178890 0.605483 0.238720 -0.058988 -0.065637 -0.239735 -
0.064467
x14 0.090877 0.140848 0.183529
                                 0.003881 - 0.010752
0.021963
                                 0.017537
x15 0.045139 -0.090591 -0.090070 -0.05.30039536.002769
                                 0.129937 -0.044476 -0.117180 -
0.045821
x16 0.217869-0.0390120.030577-0.078$$79498-00084754598-0.146219-
0.019926
                                 0.091063 -
x17 0.171025 -0.101337 -0.279541
                                 0.000261
0.399310
x18 0.144260 -0.081619 -0.305192
0.436355
x19 -0.028375 0.165336 0.151449 -0.047569
                                           0.007148
0.256022
x20 -0.014645 0.058310 0.081878 -0.172903 -0.003189
0.120473
x21 -0.181867 -0.255696 -0.297027
                                 0.180442 0.028349 -0.141292 -
0.027083
                                    0.025962 -0.044263 -0.215280 -
x22 0.223985 -0.341842 -0.466326
0.134504
x23 0.129072 -0.160297 -0.334252 -0.2333377 -0.012237 -0.024053
0.083527
0.036701
x25 -0.020787 0.001700 0.119576 -0.016771
                                           0.988968 0.148081
0.018361
                                           0.000762
                                                     0.110648 -
x26 0.421020 0.097478 0.072004 -0.221604
0.053731
0.085124
x28 -0.013892 -0.226716 -0.335661 -0.289299
                                           0.008185 0.194042 -
0.102578
```

```
x29
    0.419014 0.092074 -0.132074 -0.243121 -0.064137 -0.002107 -
0.001569
x30 -0.230699 0.434090 0.545362 -0.031721
                                           0.045274
                                                      0.235431 -
0.001771
                                    0.023608 -0.005124 -0.132893 -
x31
    0.060473 0.046751 0.024088
0.053024
x32 -0.008163 0.005395 0.099245 -0.016853
                                           0.991002 0.054479
0.008068
                                           0.075821
                                                     0.447921 -
x33 -0.269966 0.265064 0.373454
                                 0.103329
0.007298
0.111284
0.103372
x36
    0.277621 -0.122127 -0.119594 -0.539611
                                             0.262133 -0.061030
0.060406
                                             0.455697 -0.176571
x37
    0.384038 -0.182399 -0.215887 -0.177817
                                                      0.057358
                                                      0.041439
0.024127
x38 0.019173 -0.071275 -0.113096 -0.154447
                                           0.06.479478 -0.051925
                                                      0.080686
0.203679
                                           0.066431
                                             0.026783 -0.012778
x39
    0.086571 -0.022208 0.016623 -0.111179
0.041757
                                             0.002485 -0.009164
                                                      0.489931
x40 0.264165 0.012409 -0.036151 -0.201568
0.028963
x41 -0.093318 -0.060674 0.028081 0.029110 0.004881
0.056631
    0.006569 -0.434727 -0.187898 -0.045558
x42
0.062176
x43 0.004460 -0.162864 -0.033873 -0.027297
0.051532
x44 -0.055312 0.330996 0.425781 0.028908 0.104252
0.041074
x45 -0.057850 0.030890 -0.000098 -0.028042 -0.947100 -0.070187
0.005229
x46 -0.148149 0.039551 0.242155 -0.144471
                                           0.026767 - 0.033001
0.021510
x47 0.647607 0.081878 -0.114531 -0.315054 -0.076627 -0.533136
0.009289
x48 -0.152061 -0.011870 0.172929 0.092620
                                           0.002689 -0.103130 -
0.090816
                                           0.137015 -
x49 -0.136331 0.381148 0.469330 -0.032198
                                           0.039927 -
0.024065
                                           0.045400
x50 0.189267 0.410046 0.828841
                                 0.087008
                                           0.984389 -
                                           0.027308
0.030883
x51 -0.029572 -0.025544 0.046344 -0.017314
0.009521
x52 0.089787 0.319665 0.537975 0.074990
0.187576
x54  0.548485 -0.001489 -0.243889 -0.291449 -0.062852 -0.123407 -
0.014380
```

```
1.000000 0.130555 0.081863 -0.218429 -0.043398 -0.134590
x55
0.068141
     0.130555 1.000000 0.447214
                                     0.140274 -0.037379 -0.161349 -
x56
                                      0.059524 - 0.096954 - 0.103409
0.114680
x57
     0.081863 0.447214 1.000000
                                     0.060699 0.030756080400
0.054019
                                      1.000000
                                                0.005363
x58 -0.218429 0.140274 0.061533
                                     0.005363
                                                1.000000
0.148272
                                      0.096954
                                                0.103409
x59 -0.043398 -0.037379 0.050000
                                                0.016150
0.016150
x60 -0.134590 -0.161349 0.059524
0.037684
     0.068141 -0.114680 -0.054019 -0.148272
y.1
1.000000
[60 rows x 60 columns]
#Observing Correlation via heat map
sns.heatmap(data= X_train[num_cols].corr())
<Axes: >
```


	x1	x2	x3	x4	
x5 \	29238.000000 29	238.000000	29238.000000	29238.000000	
count	2000		-3.479189	5.436828 129.591824	
29238.000 mean	0.074386	-2.388121	6.767939 -18.198509	-322.781610	
0.031725	0.731781	5.559442	-8.966241	-94.817109	-
std	-3.787279	-17.316550	-4.116914	-6.119270	
0.584093	-0.304898	-6.269648	0.672001	102.899725	
min	0.113318	-1.451957	15.900116	334.694098	_
1.623988	0.443885	0.784189	10.700110	001.071070	_
25%	3.053444	16.742105			_
0.404666					
50%					
0.141337					
75%					
0.211119					
max					
4.239385					
	x6	x7	x8	x9	
½ 10	λ0	X.			
count	29238.000000 29	238.000000	29238.000000	29238.000000	
29238.000			-0.004039	0.012431	
mean	-4.680699	0.011974			-
0.000600	40.940411	0.108611	0.082882	0.173839	
std			-0.451141	-0.120087	
0.102495 min -	270 400440	-0.429273	-0.051043	-0.059966	
min - 0.098310	279.408440	-0.049319			-
25%	-39.600153	0.000732	-0.011064	-0.029299	-
0.048260			0.038986	0.010131	_
50%	5.844685	0.060853			
0.018352	26.849670	1.705590	0.788826	3.206675	
75%	96.060768				
0.012368	90.000700				
max 2.921802					
2.921002					
	x51		x52	x54	x55 \
count		000 29238.000		00000	
mean	11.63821			200	
std	258.71978	0.012		(5.50	
min	3652.98900	00 -187.702		237 -209.886	
25%	29.98462	.4.573		808 -48.612	
50%	29.98462	±.¬∪-	1222 0.604	.562 -1.943	
75%	29.98462	3.010			
max	40.15234	14.180	0588 6.475	287.25	2017
	x56	x57		x58 x59	
x60 \	XOO	х5/		X39	
\JU \					

```
29238.000000 29238.000000
                                      29238.000000 29238.000000
count
29238.000000
                                          -0.000157
                                                         0.475719
                                                          7.737157
          -3.017051
                            0.037325
                                           0.044493
mean
0.001734
          75.588047
                            2.252481
                                          -0.149790
                                                      -100.810500
                                          -0.000449
                          -12.640370
                                                          0.391867
std
0.004767
                                           0.013693
                           -1.726978
                                                          0.804750
        -269.039500
                           -0.219349
                                           0.020921
                                                          1.275744
min
                                          0.067249
                                                         6.985460
0.012229
                            1.874218
25%
           -51.596782
                           6.922008
0.001514
           -16.215734
50%
           48.139368
0.000972 252.147455
75%
0.005536
max
0.020495
                  y.1
count
        29238.000000
mean
            0.018264
std
            0.133906
min
            0.000000
25%
            0.000000
50%
            0.000000
75%
            0.000000
max
            1.000000
[8 rows x 60 columns]
```

Scaling down the features

#Scaling the columns in order to have more uniform distribution - We apply Yeo-Johnson Transform from sklearn.preprocessing import PowerTransformer boxcox = PowerTransformer() X_scaled = boxcox.fit_transform(X_res) X_scaled

array([[3.81889646e-01, -3.98515966e-01, -1.46922678e-03, ...,

```
-1.64173622e-01, 9.37183457e-01, -1.35716344e-01], [5.26239506e-01, -3.88792501e-01, 1.11631202e-02, ..., -6.06407073e-02, 9.38506198e-01, -1.35716344e-01], [3.63340078e-01, -4.13832850e-01, -4.36263146e-02, ..., 5.89206738e-01, 9.39828687e-01, -1.35716344e-01], ..., [-9.54098977e-01, 1.63743754e-01, 3.37751551e-01, ..., 2.61684068e+00, 9.96536882e-01, -1.35716344e-01], [-5.84283564e-01, -1.33257519e+00, -1.32131555e+00, ..., 1.95163403e+00, 1.64554634e+00, -1.35716344e-01],
```

[-5.53047055e-01, 5.33311277e-01, -9.50691774e-01, ..., 1.48013870e+00, 1.11025352e+00, -1.35716344e-01]])

To display X_scaled as a DataFrame

X_scaled_df = pd.DataFrame(X_scaled, columns=X_res.columns)
print(X_scaled_df)

x1 x2 x3 x4 x5	x6
x7 \ 0.381890 -0.398516 -0.001469 00183479-0.568235 -	
0.038212	_
1 0.526240 -0.388793 0.011163 0.132413 -0.001209 -0.332933 0.038212 0.137084 -0.021018 -0.515783	
2 0.363340 -0.413833 -0.043626	
0.130022 -0.040104 -0.528466	-
3 0.273669 -0.427812 0.010306 0.145397 -0.054588 -0.509605 0.025045	-
4 0.222136 -0.426188 -0.040343	
0.038212	
	•••
36543 0.020918 -0.634793 -0.191039 -0.561167 0.332184 -0.55	9914
1.733541 0.291396 -0.814875 -1.57	6482
36544 2.449727 0.304055 -0.949277 0.830347	4323
36545 -0.954099 0.163744 0.337752 1.063217 0.048034 1.130	400 -
0.005827 36546 -0.584284 -1.332575 -1.321316 0.675342 0.3 5.2025 89 -1.319	566 -
0.654801	
36547 -0.553047 0.533311 -0.950692 -0.694546	
0.060399	

	x8	x9	x10	•••	x51	x52	x54
0	-0.689910 -0	0.622008 -	-0.338508	•••	0.080069	1.833449	-1.209384
1	-0.689910 -0	0.622008 -	-0.338508	•••	0.080069	1.834403	-1.209509
2	-0.689910 -	0.087960	0.067208	•••	0.080069	1.835412	-1.209634
3	-0.689910	0.068052	0.248779	•••	0.080069	1.836422	-1.209759
4	-0.689910 -	0.087960	0.248779	•••	0.080069	1.837432	-1.209885
•••		•••		•••		•••	
36543	1.141652	0.588320	0.236020	•••	1.521700	-0.005931	0.440542
36544	0.309154	1.080125	0.865474	•••	0.080069	-0.617209	-1.358684
36545	0.368190 -	1.814855 -	-1.393327	•••	0.080069 -0	.285506	0.709579

```
36546 -0.385691 0.324870 -0.189516...
                                              1.357514 -0.066459 -1.217363
36547 -1.010032 -0.426622 -0.280589
                                           ... -0.306348 -0.340106 -0.861056
                      x56
                                          x58
            x55
                                 x57
                                                     x59
                                                              x60
y.1
          -0.334412 0.392335 1.511999
                                        1.575970 -0.164174 0.937183 -
0
0.135716
                                        1.584385 -0.060641 0.938506 -
      -0.449437 0.441441 1.169347
                                                 0.589207 0.939829 -
0.135716
     -0.475430 0.490149 1.539732
                                       1.592911
                                                 1.332612 0.941151 -
0.135716
                                       1.601364
                                                 0.199535 0.942662 -
      -0.501410 0.428900 1.733683
0.135716
                                       1.606518
     -0.527378 0.431610 1.567458
0.135716
36543 2.359045 -0.534413 0.636896 -2.093521 -0.137045 -0.254866 -
0.135716
36544 -1.248274 -1.697927 -0.982147
                                        1.336030 -0.462287 -0.122919 -
0.135716
                                                           0.996537 -
36545 -0.483094 -0.442690 -0.323708
                                     0.592399 2.616841
0.135716
                                                           1.645546 -
                                               1.951634
                                     0.218555
36546 -0.546205 0.874209 -0.068251
                                                           1.110254 -
0.135716
                                     0.277252
                                               1.480139
36547 -0.391511 -0.937148 -0.532500
0.135716
[36548 rows x 60 columns]
## Now, further splitting the data into training and testing based on
scaled values
X_train_sc, X_test_sc, Y_train_sc, Y_test_sc =
train test split(X scaled df, Y res, test size = 0.2,
random state=123)
X_train_sc
x7
             x1
                                                     x5
                       x2
                                   х3
                                             x4
                                                                 x6
                                                 1.605863 -0.356665
          0.330189 0.603209 -0.552396 1.375394
15236
0.156556
3467
       0.006659\ 0.077748\ 0.123198\ -0.915552 0.212106\ 0.059107\ -
0.760029
       8732
1.126667
15750 1.103654 0.846468 -0.169641
                                     1.366123 -0.238843
                                                         0.621058 -
```

```
0.238843 24044 -0.273255 1.580371
-0.850291 0.212451 ... ... 7763
                                  1.567282 0.412282 0.988937 -
                                  1.746937 -1.323684
        -0.821480 0.722105 -0.148838
                                                   0.773220
0.788706
15377 0.446606 0.103376 -0.370712 1.354504 0.241137 -0.439705 -
                                0.441239
                                                   1.146716 -
                                    0.380602
17730 -0.053813 0.968870 1.046099
0.442265
28030 2.080371 -0.282583 -0.957799 -0.160547 -0.154380 -2.309889
0.655773
15725 0.864459 0.955137 -0.375666 1.398848 0.568669 0.670708 -
         x8 x9 x10 ... x51 x52 x54
       0.006987 -0.413570 -0.571424 ... 0.080069 -0.475127 -1.211898
15236
        -0.309002 -0.828158 -1.098683 \dots 0.080069 0.564684 0.117708
3467
8732 -0.951280 -0.828158 -1.386757 ... -1.066749 -0.093162 -1.204088
          0.186706\ 0.344309\ 0.415446 0.080069\ -1.063350\ -1.215439
15750
         24044
                                      0.080069 0.588845 -1.217145
7763 2.389024 -1.420573 -1.309931 ...
   15377 -0.689910 -0.255504 -0.824317 ...
                                        0.080069 -0.534201 -1.210169
         0.186706 -0.255504 0.344981 ... 0.031746 -0.330472 0.438372
17730
        0.092198 1.887042 0.447601 ...
                                       0.080069 -0.879002 -1.206373
28030
    15725 -0.057326 0.888957 1.872794 0.080069 -0.992603 -1.209159
          x55 x56 x57 x58 x59 x60
15236 -0.963344 0.357764 -0.924658 -0.093350 -0.665835 0.451535 -
0.135716
                                                   1.049281 -
3467 0.503471 1.236892 1.295178 1.225886 -0.565033
0.135716
                                           0.209313 -0.595793 -
8732 -0.823146 0.556877 0.716288 -0.001015
0.135716
15750 -1.383172 -0.615817 -1.424266 -0.734708 -0.728555 -0.435098 -
```

```
0.135716 24044 -1.258539 -0.431617 -1.565465 -0.772945 -0.482283
-0.435098 - 0.135716 ... ... 7763
          -0.277358 0.949527 0.969035
                                         0.206117 -0.005688 -0.768783 -
0.135716
                                                            1.453370 -
15377 -0.950495 -0.619007 -0.801917
                                      0.2701.678386.39.452324 -1.799586 -
0.135716
                                         0.222943 -0.218674 -0.241566 -
17730 1.223906 0.923128 -0.801917
0.135716
28030 -1.080471 -2.234050 -0.840901
0.135716
15725 -1.355632 -0.604117 -1.639535 -0.894073 -0.759767 -0.435098 -
0.135716
[29238 rows x 60 columns]
X_scaled_df.describe()
                                 x2
                                               х3
                                                             x4
                 x1
x5 \
         3.654800e+04 3.654800e+04 3.654800e+04 3.654800e+04
count
3.654800e+04
       6.221234e-18 -6.843358e-17 -1.244247e-17 -3.421679e-17 -
4.665926e-17
       1.000014e+00 1.000014e+00 1.000014e+00 1.000014e+00
1.000014e+00
      -4.543615e+00 -2.690137e+00 -2.515620e+00 -2.759972e+00 -
4.437926e+00
25% -5.534697e-01 -7.032891e-01 -8.326755e-01 -7.616707e-01 -
6.044112e-01
50%
       9.229517e-03 1.669920e-01 -5.721958e-03 -2.032956e-02 -
2.830933e-02
       4.816622e-01 5.692326e-01
                                    7.143310e-01 7.655529e-01
75%
5.908173e-01
                                    2.388219e+00 2.362790e+00
     4.716381e+00 3.460680e+00
max
3.794102e+00
                 x6
                                 x7
                                               x8
                                                             x9
\10
         3.654800e+04 3.654800e+04 3.654800e+04 3.654800e+04
count
3.654800e+04
mean -6.221234e-18 3.110617e-17 2.099667e-17 -1.088716e-17 -
2.391287e-17
       1.000014e+00 1.000014e+00 1.000014e+00 1.000014e+00
1.000014e+00
     -4.475132e+00 -5.692855e+00 -6.424467e+00 -2.087710e+00 -
2.056124e+00
25% -9.049585e-01 -5.477824e-01 -5.606866e-01 -6.220080e-01 -
```

```
5.714242e-01
       2.542399e-02 -3.821154e-02 -5.732608e-02 -7.713820e-02
6.720843e-02
75%
       7.707192e-01 5.267675e-01
                                      5.489173e-01
                                                      4.815339e-01
5.775432e-01
                                      7.684405e+00
                                                      2.405039e+00
       3.604507e+00 7.719614e+00
max
2.513861e+00
                       x51
                                       x52
                                                       x54
                                                                     x55\
count
                                                             3.654800e+04
             ... 3.654800e+04 3.654800e+04 3.654800e+04
mean
                                                             3.110617e-17
              ... 1.050611e-15 2.799555e-17 2.799555e-17
                                                             1.000014e+00
std
             ... 1.000014e+00 1.000014e+00 1.000014e+00 1.000014e+00 ... -7.961188e+00 -9.783648e+00 -1.711381e+00 -3.323567e+00
min
25%
                ... 8.006864e-02 -6.086076e-01 -1.212105e+00 -6.910733e-01
50%
                                                             5.019114e-03
       ... 8.006864e-02 -3.061275e-01
                                            1.092092e-01
75%
                                                             6.769392e-01
       ... 8.006864e-02 4.960211e-01
                                            9.933361e-01
                                                             4.602692e+00
max
       ... 1.388752e+01 2.809207e+00
                                            3.812686e+00
                                                                x59
                 x56
                                  x57
                                                 x58
x60
          3.654800e+04 3.654800e+04
                                       3.654800e+04
                                                       3.654800e+04
count
3.654800e+04
                                        3.897992e-17
                                                       6.843358e-17
mean -2.488494e-17 6.221234e-18
                                       1.000014e+00
                                                      1.000014e+00
2.021901e-17
std
       1.000014e+00 1.000014e+00
1.000014e+00
      -4.250150e+00 -5.791120e+00 -2.212102e+00 -5.295292e+00 -
3.547702e+00
      -6.194874e-01 -7.784508e-01 -5.463565e-01 -5.354201e-01 -
6.589753e-01
50%
      -6.979482e-02 -1.032931e-01
                                      1.369049e-01 -2.708045e-01 -
1.034212e-01
       7.237340e-01 8.152391e-01
                                      5.870559e-01 8.523002e-02
75%
8.324430e-01
                                      6.279333e+00 8.282744e+00
       2.898191e+00 2.996698e+00
max
3.195467e+00
                   y.1
count
        3.654800e+04
mean
        -4.043802e-17
std
        1.000014e+00
min
        -1.357163e-01
25%
        -1.357163e-01
50%
        -1.357163e-01
75%
        -1.357163e-01
max
        7.368309e+00
[8 rows x 60 columns]
```

```
#Importing PCA library
#Telling PCA to retain 90% of useful features and then create new
dimensions
from sklearn.decomposition import PCA
pca = PCA(0.90)
X_pca = pca.fit_transform(X_scaled_df)
X pca.shape
(36548, 26)
## Each value will tell how much % of usefulness it contributes to the
entire dataset
pca.explained_variance_ratio_
array([0.16405375, 0.1145583, 0.08261669, 0.07065509, 0.05393095,
0.04271356, 0.03966432, 0.03552791, 0.0340095, 0.02983506,
0.02528292, 0.02266675, 0.02099167, 0.01786314, 0.01699457,
0.0161314, 0.01576427, 0.01515727, 0.01428581, 0.01337401,
0.01195731, 0.01145649, 0.00998132, 0.00936646, 0.00900109,
0.007741081)
#To display how many dimensions we will feed now in our model
pca.n_components_
26
# Will now again do train test split but now with the X_pca
X_train_sc_pca, X_test_sc_pca, Y_train_sc_pca, Y_test_sc_pca =
train_test_split(X_pca, Y_res, test_size = 0.2, random_state=123)
X_train_sc_pca
array([[-1.85904913, -3.43825123,
                                        1.57555331, ..., -0.09662878,
-0.22846121, 0.61013392].
                                        1.76736295, ...,
                                                             -0.11005107,
[3.3451392, 1.9950538,
0.23110504, -0.12187116,
                                        1.13665655, ..., -0.25767517,
[ 2.52467669, -1.31695532.
0.50666258, -0.27040914
        [-2.90046972, 0.88216013,
                                             3.47542271, ..., -1.00079
0.51266168, ..., -0.45545
        -1.51671085, -0.5722476],
        [-0.16058809, -5.23636177, -1.71785398, ...,
              1.30601642, 2.4340082],
            [-3.42476415, -4.85333061,
          0.97360167, -0.06335646]])
```

Model Selection

#Since it is a classification problem, We will use the following models for it and will compare their accuracy on test data against each other.

```
sklearn.linear model
     Logistic
               Regression from
                                                        import
LogisticRegression
                       model1
                                            LogisticRegression()
model1.fit(X_train_sc_pca,Y_train_sc_pca)
model1.score(X_test_sc_pca,Y_test_sc_pca)
0.8383036935704514
#2. Decision Tree
from sklearn import tree
model2 = tree.DecisionTreeClassifier()
model2.fit(X_train_sc_pca,Y_train_sc_pca)
model2.score(X test sc pca,Y test sc pca)
0.9800273597811218
#3. KNN
from sklearn.neighbors import KNeighborsClassifier
model3 = KNeighborsClassifier(n neighbors=3)
model3.fit(X_train_sc_pca,Y_train_sc_pca)
model3.score(X_test_sc_pca,Y_test_sc_pca)
0.9941176470588236
#4. Random Forest
from sklearn.ensemble import RandomForestClassifier
model4 = RandomForestClassifier(n estimators=30)
model4.fit(X_train_sc_pca,Y_train_sc_pca)
model4.score(X test sc pca,Y test sc pca)
0.9991792065663475
Model Validation
To check where model performs good and where it performs bad
1. For Logistic Regression
Y predicted md1
                                 model1.predict(X_test_sc_pca)
Y_predicted_md1
array([1, 0, 0, ..., 1, 0, 1], dtype=int64)
from sklearn.metrics import confusion matrix
cm1 = confusion_matrix(Y_test_sc_pca,Y_predicted_md1)
cm1
array([[3118, 479],
```

[703, 3010]], dtype=int64)

```
plt.figure(figsize = (7,5))
sns.heatmap(cm1,annot = True)
plt.xlabel('Predicted')
plt.ylabel('Truth')

Text(58.222222222222214, 0.5, 'Truth')
```


from sklearn.metrics import classification_report print(classification_report(Y_test_sc_pca,Y_predicted_md1))							
	precision	recall	f1-score	support			
0 1	0.82 0.86	0.87 0.81	0.84 0.84	3597 3713			
accuracy			0.84	7310			
macro avg weighted avg	0.84 0.84	0.84 0.84	0.84 0.84	7310 7310			

2. For Decision Tree

from sklearn.metrics import classification_report print(classification_report(Y_test_sc_pca,Y_predicted_md2))						
	precision	recall	f1-score	support		
0 1	0.99 0.97	0.97 0.99	0.98 0.98	3597 3713		

accuracy 0.98 7310 macro avg 0.98 0.98 0.98 7310 weighted avg 0.98 0.98 0.98 7310

3. For KNN

from sklearn.metrics import classification_report
print(classification_report(Y_test_sc_pca,Y_predicted_md3))

	precision	recall	f1-score	support
0	1.00	0.99	0.99	3597
1	0.99	1.00	0.99	3713
accuracy			0.99	7310
macro avg	0.99	0.99	0.99	7310
weighted avg	0.99	0.99	0.99	7310

4. For Random Forest

from sklearn.metrics import classification_report print(classification_report(Y_test_sc_pca,Y_predicted_md4))							
	precision	recall	f1-score	support			
0 1	1.00 1.00	1.00 1.00	1.00 1.00	3597 3713			
accuracy			1.00	7310			
macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00	7310 7310			

Conclusion

Considering the Classification report from the above four models, we found Random Forest Algorithm - accuracy, precision, f1-score is acheieving 99.99 % accuracy on test data set. With a dataset comprising over 18,000 rows and utilizing binary labels for anomaly identification, the model has demonstrated exceptional performance, achieving an outstanding accuracy of 99.99%. This high level of accuracy underscores the model's reliability in detecting anomalies and predicting machine breakdowns, which can significantly reduce downtime, minimize risks, and optimize maintenance schedules across industries.