X			X(Cla	35
X1	X2	Υ	 X1	
2.95	6.63	1	2.95	
			2.53	
2.53	7.79	1	3.57	
3.57	5.65	1	3.16	
3.16	5.47	1		
2.58	4.46	2		
2.16	6.22	2	X(Class 2)	
3.27	3.52	2	X1	
			2.58	
			2.16	

Class	count	probablity	statistic	X1	X2
Class 1 n1=4			Mean(C1)	3.05	6.39
	p(C1)=0.57	COV(C1)	0.56 -1.46 -1.46 3.43		
			Mean(C2)	2.67	4.73
Class 2	n2=3	p(C2)=0.43	COV(C2)	0.63 -1.46 -1.46 3.76	

0.55

0.21

0.21

0.39

0.85

Beta

3.27

3.52

$$C = \frac{1}{n_1 + n_2} (n_1 C_1 + n_2 C_2) = \begin{bmatrix} 10495 & -718 \\ -718 & 322 \end{bmatrix}$$

$$\beta = C^{-1}(\mu_1 - \mu_2) = [-0.0095 -0.1408]$$

Z = -0.0095 BUSAGE - 0.1408 DAYSDELQ

$$\beta^{\mathrm{T}} \left(\mathbf{X} - \left(\frac{\mu_1 + \mu_2}{2} \right) \right) > \log \frac{p(c_1)}{p(c_2)}$$
Coefficients
vector

Data
vector

Mean
vector

Class
probability

Secure protocols in Horizontal case:

					X(B)(Class 1)	
		X (Bob)			X1	X2
	X1	X2	Υ	│	3.57	5.65
	3.57	5.65	1		3.16	5.47
	3.16	5.47	1			
	2.58	4.46	2			
	2.16 6.22 2		2		X(B)(Class 2)	
	2.16	0.22	_		X1	X2
						4.46
C-	1 (11)	C . n C)-	10495	-718	2.16	6.22
C=	$\overline{n_1 + n_2}^{(n_1)}$	$C_1 + n_2 C_2) =$	-718	322		

Variance=
$$\sum_{i=1}^{n} (Xi - \mu)^2$$

 $\beta = C^{-1}(\mu_1 - \mu_2) = [-0.0095 -0.1408]$

They should collaboratively compute bellow formulas for each Class :

1- Covariance 2- Variance 3- Mean

Alice							
#C1	#C2	Sum(C1)		Sum(C2)			
2	1	5.48	14.42	3.27	3.52		

Bob							
#C1	#C2	Sum(C1)		Sum(C2)			
2	2	6.73	11.12	4.74 10.68			

Train:

For calculating Mean we can **use Secure Weighted Average** protocol

Then Variance and Covariance are computed locally and sum together to obtain "C" and "Beta"

Classify:

Compute bellow formula

$$\beta^{T}\left(\mathbf{x} - \left(\frac{\mu_{1} + \mu_{2}}{2}\right)\right) > \log \frac{p(c_{1})}{p(c_{2})}$$