Class 05: Data Visualization with GGPLOT

Alice Lai PID:A16799081

2024-04-16

Table of contents

0.1	Cars data ggplot]
0.2	Anti-viral drug data analysis	7
0.3	Anti-viral drug data ggplot	8
0.4	Economic and demographic data	.]
0.5	OPTIONAL	(

0.1 Cars data ggplot

```
##install.packages("ggplot2")
library(ggplot2)
ggplot(cars)
```



```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point()
```



```
x <- ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point()
x + geom_line()</pre>
```


x + geom_smooth()

 $\ensuremath{\mbox{`geom_smooth()`}}\ \mbox{using method} = \ensuremath{\mbox{'loess'}}\ \mbox{and formula} = \ensuremath{\mbox{'y}}\ \sim \ensuremath{\mbox{x'}}\ \mbox{'}$

`geom_smooth()` using formula = 'y ~ x'

`geom_smooth()` using formula = 'y ~ x'

Stopping Distance vs. Speed

0.2 Anti-viral drug data analysis

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
1 A4GNT -3.6808610 -3.4401355 unchanging
2 AAAS 4.5479580 4.3864126 unchanging
3 AASDH 3.7190695 3.4787276 unchanging
4 AATF 5.0784720 5.0151916 unchanging
5 AATK 0.4711421 0.5598642 unchanging
6 AB015752.4 -3.6808610 -3.5921390 unchanging
```

```
nrow(genes)
```

[1] 5196

colnames(genes)

```
[1] "Gene"
                 "Condition1" "Condition2" "State"
  ncol(genes)
[1] 4
  table(genes$State)
     down unchanging
                             up
        72
                 4997
                             127
  round( table(genes$State)/nrow(genes) * 100, 2 )
     down unchanging
                              up
      1.39
               96.17
                            2.44
```

0.3 Anti-viral drug data ggplot

```
ggplot(genes) +
   aes(x=Condition1, y=Condition2) +
   geom_point()
```



```
p <- ggplot(genes) +
    aes(x=Condition1, y=Condition2, col=State) +
    geom_point()

p + scale_colour_manual( values=c("blue", "gray", "red") )</pre>
```


Gene Expression Changes Upon Drug Treatment

0.4 Economic and demographic data

##install.packages("gapminder")

```
library(gapminder)

##install.packages("dplyr")
library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
    filter, lag

The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
```

```
gapminder_2007 <- gapminder %>% filter(year==2007)

ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp) +
  geom_point()
```



```
ggplot(gapminder_2007) +
aes(x=gdpPercap, y=lifeExp) +
geom_point(alpha=0.5)
```



```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.5)
```



```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, color = pop) +
  geom_point(alpha=0.8)
```



```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, size = pop) +
  geom_point(alpha=0.5)
```


0.5 OPTIONAL

```
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5
```

```
# A tibble: 5 x 6
                continent year lifeExp
  country
                                                 pop gdpPercap
  <fct>
                <fct>
                           <int>
                                   <dbl>
                                                         <dbl>
                                              <int>
1 China
                            2007
                                                         4959.
                Asia
                                    73.0 1318683096
2 India
                Asia
                            2007
                                    64.7 1110396331
                                                         2452.
3 United States Americas
                            2007
                                    78.2 301139947
                                                        42952.
4 Indonesia
                Asia
                            2007
                                    70.6 223547000
                                                         3541.
5 Brazil
                            2007
                                    72.4 190010647
                                                         9066.
                Americas
```

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = pop))
```



```
ggplot(gapminder_top5) +
geom_col(aes(x = country, y = pop, fill = continent))
```



```
ggplot(gapminder_top5) +
geom_col(aes(x = country, y = pop, fill = lifeExp))
```



```
ggplot(gapminder_top5) +
  aes(x=country, y=pop, fill=gdpPercap) +
  geom_col()
```



```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=gdpPercap) +
  geom_col()
```



```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=country) +
  geom_col(col="gray30") +
  guides(fill="none")
```


head(USArrests)

	Murder	${\tt Assault}$	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

```
USArrests$State <- rownames(USArrests)
ggplot(USArrests) +
  aes(x=reorder(State,Murder), y=Murder) +
  geom_col() +
  coord_flip()</pre>
```


