EECS 388 Discussion

Homework 4 & Buffer Overflows Part 2

Client Puzzles

- Number of Computations
 - o 2ⁿ for the client but only 1 for the server
- Negating the Attacker's Advantage
 - \circ When n=6: 2^6 = 64 computations for client
- Adjusting Client Puzzles
 - Scale n with the system load

Low Orbit Ion Cannon

- How does the attack work?
 - Repeatedly send HTTP GET requests
- How does "Hive Mind mode" work?
 - Executes commands typed in an IRC channel
- Defenses without client puzzles?
 - Look for irregular traffic patterns

Operation Payback

- Operation Payback
 - A DDoS attack on pro-copyright industry websites
- Christopher Wayne Cooper
 - Part of Operation Payback
 - Charged with conspiracy and intentional damage to a protected computer
- LOIC Hive Mind vs Political Protest
 - o Thoughts?

Buffer Overflow Part 2

- Important registers: eip, ebp and esp
 - O What was the purpose of each?
- Remember useful GDB commands
 - o disassemble
 - 0 X
 - info reg
 - o ni
 - O Si

x86 Calling Conventions

Function Call:

- push the eip
- push the ebp
- mov %esp, %ebp
- sub <CONSTANT>, %esp

Function Return:

- leave
 - mov %ebp, %esp
 - pop %ebp
- o ret
 - Pop address off the stack and jump to it

Overwriting a Return Addr

- Given what we know about how function calls work in x86, how can we change the return address of a function in order to call a new function?
 - To call a function, you need to load its start address into the eip.
 - How do we find the start address of the function we want to call?
 - How do we find the original return address?
 - How do we replace it with the new address?
 - Related: How can we see where the buffer is?

Shellcode

- Using what we know about buffer overflows, how can we make a vulnerable program execute forever?
- We toyed with changing the return address to another functions, but are there other possibilities?
- How can we hijack control of a program to perform a specific action?