Estimates of population status of humpback chub (Gila cypha) in the Grand Canyon based on a length-based mark-recapture assessment model.

Steven J. D. Martell UBC Fisheries Centre, 2202 Main Mall, Vancouver, BC V6T 1Z4, CANADA 2011-09-27

Abstract

A length-structured population model that incorporates mark-recapture data was developed to estimate abundance of humpback chub (Gila cypha) in the Grand Canyon between 1989 and 2011. The model was fit to observations on catch-at-length and capture-recapture data from sampling programs that employed a variety of gear types including electrofishing, tramel netting, and hoop nets. Previous assessment models were age-based and have been shown to produce biased estimates of recent recruitment estimates. The age-structured model was also limited to data on fish that were greater than 150mm total length; the minimum size required for tagging. The length-structured model developed here makes no assumptions about age of individual fish and is also fit to catch-at-length data for fish that are too small to tag. Model outputs are based the number of fish greater than a specified size, or in a fixed size interval, there are no age-based results.

Contents

1	Introduction	2
2	Methods	3
	2.1 Input data	į
	2.1.1 Processing length frequency data	3
	2.2 Estimated parameters & parametric functions	_

	2.3	Growth transition	4
	2.4	Size distribution of new recruits	4
	2.5	Initial states	5
	2.6	Dynamics of numbers-at-length	5
	2.7	Capture probability	5
	2.8	Predicted captures and recaptures	5
	2.9	Residuals & negative log likelihoods	6
3	Res	ults	6
	3.1	Sampling effort	6
	3.2	Length composition	6
	3.3	Annual growth rates from capture-recapture information	9
A	Woı	rk plan	18
В	Indi	vidual based model for simulating the dynamics and sampling of hump-	
	bacl	k chub in the Grand Canyon	23
	B.1	Introduction	23
	B.2	R-code	23
\mathbf{C}	Pro	cessing mark-recapture by length information	30
	C.1	R-Code for Database manipulation	30
D	Size	Transition Matrix from Mark-Recapture data	46

1 Introduction

In this report, I develop a length-structured mark-recapture model (hereafter, LSMR) where the accounting system for population numbers is based purely on length. The model is a statistical catch-at-length model, where the initial length distribution and recruitment each year are treated as latent variables to be estimated by fitting the model to a series of catch-at-length observations take over a period of time. A separable function is developed to estimate the year and size effect in observed catch-at-length data. The statistical nature of the model is very similar to that of Fournier and Archibald (1982), but is based on catch-at-length rather than catch-age data. The model is also fit to length-based capture-recapture data, where the growth and survival of tagged animals is updated at each time step and the predicted ratio of marked and unmarked fish-at-length is used to estimate the length-based recapture rates.

2 Methods

There are two major methodological components in this length-based model: (1) the development of an individual based model (IBM) for simulating a capture recapture program, and (2) a statistical catch-at-length mark-recapture model to estimate the number of individual fish in each length-class in each sampling year. A detailed description of the IBM simulation model is provided in the appendix; in short, this simulation model generates a matrix of the number of fish captured-at-length, a matrix of the number of newly marked fish released-at-length, and a matrix of marked fish recaptured-at-length. The remained of this section is a detailed analytical description of the statistical catch-at-length model used to estimate the abundance-at-length of humpback chub in the Grand Canyon.

The following is a description of the analytical model for the length-structured mark-recapture model (hereafter, LSMR) used in this assessment. I present the analytical model in the form of a table (Table 1) where the order in which model equations are presented also represent the order in which the calculations proceed in the computer code. Equations presented in each table are referenced, for example, as (T1.1), where the T1 refers to Table 1, and the .1 refers to the first equation in that table. The LSMR model was implemented in AD Model Builder (Fournier et al., 2011), and the template code is available in the appendix of this document as well as a Git code repository (https://code.google.com/p/lsmr-project/). The description of the Length-Structured Mark-Recapture (LSMR) model is broken down into: input data, estimated parameters, dynamics of numbers-at-length, capture probability, and negative log-likelihoods and prior densities.

The following notation is used to define the dimensions of various variables. Vector quantities are designated with an an arrow (\vec{x}) or with a single subscript, and matrix is denoted by boldface uppercase letters (\mathbf{X}) and where two subscripts are shown denotes the element specific calculation. Higher dimensional arrays are indicated by normal upper case letters with 3 or more subscripts.

2.1 Input data

The model dimensions consists of time intervals (year indexed by i) and length intervals (index by j, T1.1). Capture-recapture data for the humpback chub have been collected on an annual basis since May 1, 1989, and the latest capture record in this analysis is February 27, 2012. The principle input data for LSMR consists of model dimensions (e.g., years, length intervals Λ), a matrix of catch-at-length data \mathbf{C} for each year, the number of new marks released-at-length \mathbf{M} , and the number of recaptured marks-at-length \mathbf{R} .

2.1.1 Processing length frequency data

At the time of writing this report, there were a total of 81,812 records in the database for humpback chub, of which 35,696 are unique individuals (some of which may occur in the database only once). Details on the construction of Tables 4–10 can be found in Appendix

C. In short, the length composition and mark-recapture information, along with summary statistics about the number of trips, days fished and other units of effort were obtained.

The length composition of the newly marked and recaptured individuals each year were compiled in tables (Appendix C) and bar charts to characterize recruitment and growth of newly marked and previously marked HBC, respectively.

2.2 Estimated parameters & parametric functions

An array of estimated parameters (T1.5) is denoted by Θ and consists of 9 + (2I - 1) + J unknowns, where I is the total number of time steps (years) and J is the total number of length intervals.

Natural mortality is a function of length (T1.6), where the natural mortality at the asymptotic length M_{∞} is estimated from the data. Note that in (T1.6) the estimated natural mortality rate is confounded with asymptotic length l_{∞} which is also an estimated parameter along with the von Bertalanffy growth coefficient k. Selectivity is also assumed to be a parametric function of length (T1.7) where l_x and g_x represent length-at-50% vulnerability and the standard deviation of the logistic function, respectively.

2.3 Growth transition

The growth parameters are used to calculate a vector of growth increments $\vec{\Delta}$ assuming von Bertalanffy growth (T1.8). An additional parameter β is used to characterize the variability in annual growth increments for individual fish. The asymptotic length l_{∞} is defined as the average asymptotic length for a population of fish. It is assumed in (T1.8) that individuals greater than l_{∞} continue to grow at a much reduced rate k; this is accomplished by exponentiating the growth increment equation $((l_{\infty} - x_j)(1 - \exp(-k\tau)))$, adding 1.0, and taking the natural logarithm ensuring that (T1.8) remains positive for all positive values of l_{∞} , k, and Λ .

The model assumes that the distribution of size transitions from length bin x_j to subsequent length bins x'_j follows a gamma distribution (T1.9). The mean of this function is denoted by the growth increment (Δ_j) and a variance equal to $\Delta_j\beta$. Each row of the size transition matrix **P** is normalized to sum to 1.0, and $\mathbf{P}_{j,j'} = 1.0$ when j = j' = J, where J is the number of length intervals (i.e., individuals in the last length interval represent a plus group).

There is also an alternative to jointly estimating a size transition matrix based on mark recapture data. A series of size transition matrices based on annual growth increments for humpback chub captured and recaptured in the subsequent year was also constructed. Details are outlined in Appendix D.

2.4 Size distribution of new recruits

Newly recruiting individuals at each time step are assumed to have a distribution of lengths that follows a gamma distribution (T1.10), where \vec{p} represents the probability of a new

recruit being in size interval x_j . Two parameters (μ and σ) corresponding to the mean and the coefficient of variation of the gamma distribution, respectively, are jointly estimated in the model. Note that the vector \vec{p} is also normalized to sum to 1.0.

2.5 Initial states

A matrix of the total numbers-at-length in a given time step is denoted by \mathbf{N} , and the total number of marked individuals at large is denoted by \mathbf{T} , (T1.11). To initialize the vector of numbers-at-length in the initial year (i=1), a J by J matrix of recruits prior to the initial year \mathbf{R} is constructed using (T1.12), where \ddot{R} and $\vec{\eta}$ is an estimated scaler and vector respectively. Note that the additional constraint of $\sum_j \eta_j = 0$ is also required to properly estimate the scaler \ddot{R} .

The initial numbers-at-length in the initial year is based on the recursive equation defined by (T1.13). This recursion occurs J times where the initial recruits in the first iteration survive at a rate $\exp(-\vec{m})$ and then grow based on the size transition matrix \mathbf{P} . In the second recursion, the next vector of new recruits is added and the survival and growth repeats. Note that if $\vec{\eta} = 0$, then a stable size distribution is set up based on the natural mortality, size transition and initial recruitment. The addition of $\vec{\eta}$ allows for a no stable size distribution to be set up in the initial year.

2.6 Dynamics of numbers-at-length

The size transition matrix \mathbf{P} is the key component when modelling a population using length and not age. First, a matrix of annual recruits distributed over size intervals based on \vec{p} is constructed in (T1.14), where \bar{R} is the average recruitment over all years except the initial year, $\vec{\nu}$ is a vector of annual recruitment deviates. The vector of numbers-at-length in the next time step τ is given by (T1.15), where \vec{R}_i is the corresponding row of recruitment from (T1.14).

2.7 Capture probability

Capture probability of fully selected fish at each time step is an unknown parameter to be estimated from the data. A total of I+1 capture probability parameters are estimated (T1.16), where \bar{f} is a scaler and $\vec{\zeta}$ is a vector of annual deviates with the constraint $\sum_i \zeta_i = 0$.

2.8 Predicted captures and recaptures

Predicted captures of unmarked and marked fish are based on the average number of fish available over each time step. The total number of marked and unmarked fish captured at each time step τ is denoted by \hat{C} , and in (T1.17) no additional mortality associated with handling and tagging unmarked fish was assumed. Handling mortality could easily be incorporated into the catch equations, however, it is completely confounded with the capture probability and in this case not estimable without additional information. The

predicted number of recaptured individual fish (\mathbf{R}) is based on the same catch equation T1.18 and an estimate of the total number of tags at large (\mathbf{T}). For the initial time step, the total number of tags at large is $\mathbf{T} = 0$, as no fish have been tagged. For time steps greater than 1, the total number of tags at large is based on the recursive survival, growth and recruitment of newly marked animals (\mathbf{M}). This recursive equation is defined by (T1.20), where it is assumed that tagged and untagged individuals have the same natural mortality rate and size transition matrix. The number of newly marked fish at each time step is based on the difference between the total catch and number of recaptured fish in the total catch (T1.19).

2.9 Residuals & negative log likelihoods

Information for global scaling is a function of the total number of fish captured, the capture probability and the mark rate.

$$0.5 \sum_{i=1}^{I} \ln \left[2\pi (\epsilon + 0.1/I) \right] + I \ln(\tau) - \sum_{i=1}^{I} \ln \left[\exp \left\{ \frac{-(o_i - p_i)^2}{2\pi (\epsilon_i + 0.1/I)\tau^2} \right\} + 0.01 \right]$$
 (1)

3 Results

3.1 Sampling effort

The database provided for this project contains only records in which humpback chub (HBC) were captured, therefore summary statistics regarding effort for hoop nets and tramel nets are regarded as incomplete because sets that did not capture HBC were not included in these data.

Sampling intensity was greatest in the early 1990s and more recently in the mid to late 2000s, with a peak of 24 trips in 1993 with roughly 174 days fishing on the river (Table 3). The vast majority of humpback chub sampled are captured in hoop nets, and although these data do not include sets with zero catch, trends in the ratio of hoop net catch to hoop net sets has been increasing since about 2005 (Table 3).

3.2 Length composition

The length composition of all 81,812 records is summarized in Figure 1 where the area of each bubble is proportional to the number of fish measured in that length interval. Note that individual fish may appear more than once in each year as these data summarize the total number of humpback chub captured and measured in a calendar year. Prior to 1999, individuals less than 150 mm were rarely entered into the database and there are no records of recapturing fish tagged prior to 1999 that were less than 140 mm total length. Starting sometime in 1999, individuals >100 mm TL and less than 150 mm were being marked as there have been recoveries associated with these individuals (see panels 1999 and later in

Table 1: Data, parameters, and analytical procedures for the length-based mark-recapture model.

model.		
INDEXES, DATA & CONSTANTS		
index for time, index for length interval	i,j	(T1.1)
time step	au	(T1.2)
set of midpoints of length intervals	$\Lambda = \{x_1, \dots, x_J\}$	(T1.3)
catch, new marks, recaptures	${f C},{f M},{f R}$	(T1.4)
PARAMETERS & DERIVED VARIABLES		
estimated parameters	$\Theta = \{\ddot{R}, \bar{R}, \bar{f}, M_{\infty}, l_{\infty}, k, \beta, \mu, \sigma, l_{x}, g_{x}, \vec{\eta}, \vec{\nu}, \vec{\zeta}\}$	(T1.5)
mortality-at-length	$ec{m}=rac{M_{\infty}l_{\infty}}{\Lambda}$	(T1.6)
selectivity-at-length	$\vec{s} = \frac{1}{1 + \exp(-(\Lambda - l_x)/g_x)}$	(T1.7)
growth increment	$\vec{\Delta} = \ln(\exp[(l_{\infty} - \Lambda)(1 - \exp(-k\tau))] + 1)$	(T1.8)
length transition probability	$\mathbf{P}_{j,j'} = \int_{x_{j'}-x^*}^{x_{j'}+x^*} \frac{x_{j'}^{(\Delta_j/\beta-1)} e^{x_{j'}/\beta}}{\beta^{\Delta_j/\beta} \Gamma(\Delta_j/\beta)} dx_{j'},$	
	$\sum_{j'=1}^{J} P_{j,j'} = 1$	(T1.9)
length distribution of recruits	$\vec{p} = \frac{1}{\Gamma(a)b^a} \Lambda^{a-1} \exp(-\Lambda/b), a = \frac{1}{\sigma^2}, b = \mu/a$	(T1.10)
total numbers, marked numbers	\mathbf{N},\mathbf{T}	(T1.11)
INITIAL STATES $(i=1)$		
recruits-at-length prior to 1989	$\mathbf{R} = \ddot{R} \exp(ec{\eta}) (ec{p})^T$	(T1.12)
initial numbers-at-length	$\vec{N}_i^{j+1} = \vec{N}_i^j \exp(-\vec{m}) \mathbf{P} + \vec{R}_i$	(T1.13)
DYNAMIC STATES $(i > 1)$,
new recruits	$\mathbf{R} = ar{R} \exp(ec{ u}) (ec{p})^T$	(T1.14)
Numbers-at-length	$\vec{N}_{i+ au} = \vec{N}_i \exp(-\vec{m} au)\mathbf{P} + \vec{R}_i$	(T1.15)
Capture probability	$f_i = \bar{f} \exp(\zeta_i)$	(T1.16)
Catch-at-length	$\hat{C}_{i,j} = \frac{N_{i,j} f_i s_j (1 - \exp(-m_j \tau))}{m_j \tau}$	(T1.17)
Recapture-at-length	$\hat{R}_{i,j} = \frac{T_{i,j} f_i s_j (1 - \exp(-m_j \tau))}{m_j \tau}$	(T1.18)
New marks-at-length	$\hat{M}_{i,j} = \hat{C}_{i,j} - \hat{R}_{i,j}$	(T1.19)
Tagged numbers-at-length	$\vec{T}_{i+\tau} = \vec{T}_i \exp(-\vec{m}\tau) \mathbf{P} + \hat{M}_i$	(T1.20)

Table 2: caption

RESIDUALS

Total catch numbers
$$\delta_i = \ln\left(\sum_j C_{i,j}\right) - \ln\left(\sum_j \hat{C}_{i,j}\right) \quad (T2.1)$$

NEGATIVE LOG LIKELIHOODS

total catch
$$\ell_1(\Theta) = 0.5I \left[\ln(2\pi) + \ln(\sigma) \right] + \sum_{i=1}^{I} \frac{\delta_i^2}{2\sigma^2} \qquad (T2.2)$$

Table 3: Number of trips, days fished, unique sets, hoop and tramel net sets, other gears, catch of humpback chub in hoop nets and tramel nets, and the corresponding arithmatic CPUE for each gear. Note that these CPUE trends should not be used as a relative abundance index because zero catch of HBC have been excluded from the effort data.

Year	Trips	Days	Sets	Hoop	Tramel	Other	Hoop Ct	Tramel Ct	Hoop CPUE	Tramel CPUE
1989	2	29	256	182	82	-8	560	321	3.08	3.91
1990	4	38	150	82	64	4	473	140	5.77	2.19
1991	14	177	1370	976	352	42	3978	711	4.08	2.02
1992	19	172	2104	1731	322	51	4740	636	2.74	1.98
1993	24	174	1941	1473	374	94	6313	876	4.29	2.34
1994	8	133	1032	962	70	0	2997	239	3.12	3.41
1995	7	84	543	511	32	0	2190	118	4.29	3.69
1996	2	34	105	65	34	6	113	72	1.74	2.12
1997	3	38	91	48	41	2	58	153	1.21	3.73
1998	8	51	188	165	17	6	377	58	2.28	3.41
1999	9	47	201	169	19	13	392	54	2.32	2.84
2000	12	56	618	546	58	14	1150	81	2.11	1.40
2001	7	58	1381	1215	167	-1	4003	233	3.29	1.40
2002	9	61	1057	1048	6	3	3346	10	3.19	1.67
2003	15	94	1053	950	14	89	2058	27	2.17	1.93
2004	19	115	1083	734	29	320	1621	49	2.21	1.69
2005	17	119	1323	914	103	306	1919	174	2.10	1.69
2006	19	120	1221	995	31	195	3442	58	3.46	1.87
2007	13	74	1413	1079	144	190	4352	225	4.03	1.56
2008	14	208	2655	1145	0	1510	4838	0	4.23	
2009	10	235	5059	1466	0	3593	7706	0	5.26	
2010	11	99	2568	1266	31	1271	5294	71	4.18	2.29
2011	5	218	3009	1099	0	1910	5376	0	4.89	
2012	1	35	89	0	0	89	0	0		

Figure 7). In 2001, a large number of fish between the 100-150mm length interval were captured and tagged (Figure 1). Similarly, starting in 2009 a large number of fish in the 100-150mm length interval have been tagged. Unfortunately, there are no clear modes of numbers-at-length that appear to progress through the size distribution over time; however, these data were obtained from a variety of sampling gears in a variety of locations and do not represent a standardized sampling program that would allow for monitoring of strong/weak cohorts progressing through the size composition data.

The majority of humpback chub are sampled through the months of April-June and in the fall in September-October (Table 4). Also, the majority of humpback chub are sampled using primarily hoop nets and less so with tramel nets (Table 5). In an attempt to reduce the level of confounding associated with the many different gear types that sample humpback chub, the length composition data was partitioned into two general gear types: (1) hoop nets, ranging in diameter from 2' to 4' with and without bait, and (2) tramel nets of various lengths. Catch-at-length data by year for hoop nets is shown in Figure 2. In the initial years (1989-1990), there are very few recaptures as the marked proportion in the population was relatively low; in subsequent years the marked proportion recaptured increases. Sampling effort was very low in 1996-1998, resulting in very few fish captured. As time progresses the number of newly marked large fish (greater than 300mm) decreases as most of these individuals were marked in previous years.

Far fewer humpback chub have been captured in tramel net gear in comparison to hoopnets, and this is largely due the less frequent use of tramel nets. Similar patterns in the mark rates were also obtained with the tramel net catch (Figure 3). Since 1994, tramel net effort for catching humpback chub has been greatly reduced (Table 3). In 2001, the number of tramel net sets with non-zero catches of humpback chub increased to 167 sets, with a very large recapture proportion for fish greater than 300mm. This observation is also consistent with the large recapture proportion of >300mm fish in the hoop net sets in 2001. Similarly, in 2007, 225 humpback chub were caught in 144 non-zero tramel net sets and the majority of these fish were less than 250mm and never previously marked (Figure 3). Again, this is also consistent with the large number of unmarked fish less than 250mm captured in hoop nets in 2007.

3.3 Annual growth rates from capture-recapture information

Parameters for the von Bertalanffy growth model were estimated from the annual growth increment data, where the data were restricted to measured individuals recaptured in the subsequent year (Figure 8). The fitted growth model assumed a measurement error with a standard deviation equal to 9.14 mm. This measurement error was based on the standard deviation in total length of individuals captured multiple times within a 20-day period (roughly the duration of a sampling trip). Quantile regressions on the raw annual growth increment data (Figure 8) indicate a steeper, more negative, slope in recent years. Or in other words, annual growth rates have been increasing in recent years.

Estimated growth parameters based on the annual growth increment data are shown in Figure 4. Sample sizes between 1995 and 1999 were extremely small and are reflected in the

Figure 1: Length frequency by year for all gear types. Area of circle is proportional to abundance of measured fish, shaded region represents the 100-150 mm size interval.

Figure 2: Annual initial-capture and mark (dark bars) and recapture (light bars) history of HBC using hoop nets (all sizes & bait) in the LCR and COR reaches from 1989 to 2011.

Figure 3: Annual capture and recapture history of HBC using tramel nets of all sizes in the LCR and COR reaches from 1989 to 2011.

Table 4: Number of fish measured by year and month, sampled by all gears in all reaches of both the LRC and COR.

						M	ONTE	<u> </u>					
YEAR	1	2	3	4	5	6	7	8	9	10	11	12	(all)
1989	0	0	0	0	887	0	0	0	0	0	0	0	887
1990	0	0	0	408	125	0	0	0	0	43	42	0	618
1991	79	3	135	9	285	394	1624	1054	536	291	200	176	4786
1992	168	340	781	1293	493	1181	369	145	144	290	267	0	5471
1993	117	153	1132	759	1359	822	953	1093	270	228	250	239	7375
1994	154	201	296	658	707	410	198	154	152	129	128	55	3242
1995	226	231	383	915	476	83	0	0	2	0	0	0	2316
1996	0	2	20	96	47	6	0	0	27	0	0	0	198
1997	0	0	7	42	114	18	0	0	32	0	0	0	213
1998	0	0	1	234	47	36	39	65	5	18	0	0	445
1999	20	0	0	210	52	18	0	0	62	56	53	0	471
2000	20	0	0	418	21	271	2	44	20	333	151	13	1293
2001	0	0	1	37	491	1347	9	163	85	1180	929	0	4242
2002	0	4	0	980	1066	0	20	0	789	502	0	0	3361
2003	16	16	48	599	434	0	55	13	293	694	21	0	2189
2004	18	25	51	760	353	23	27	15	166	542	32	0	2012
2005	23	12	44	515	207	285	93	19	799	476	0	0	2473
2006	24	35	160	1098	921	679	179	56	270	317	0	0	3739
2007	0	0	2	937	1545	900	10	0	805	569	0	0	4768
2008	0	5	3	1265	1735	528	1020	195	718	928	0	0	6397
2009	0	0	6	1225	4180	2267	551	168	895	1323	443	245	11303
2010	0	0	2	0	1466	2882	523	14	1043	708	0	0	6638
2011	0	0	0	0	2796	2537	127	128	544	1042	63	49	7286
2012	28	61	0	0	0	0	0	0	0	0	0	0	89
(all)	893	1088	3072	12458	19807	14687	5799	3326	7657	9669	2579	777	81812

Table 5: Number of fish captured by gear type listed in the GCMRC database for each year.

					YEA	AR				
YEAR	ANGL	DIP	ELEC	GILL	HOOP	PA	SEINE	TRAP	(all)	NA
1989	6	0	0	321	560	0	0	0	887	0
1990	2	0	3	140	473	0	0	0	618	0
1991	4	0	44	711	3978	0	11	1	4786	37
1992	3	0	68	636	4740	0	24	0	5471	0
1993	2	0	80	876	6313	0	102	1	7375	1
1994	1	0	1	239	2997	0	2	1	3242	1
1995	1	0	7	118	2190	0	0	0	2316	0
1996	0	0	4	72	113	0	9	0	198	0
1997	0	0	2	153	58	0	0	0	213	0
1998	0	0	5	58	377	0	4	1	445	0
1999	0	0	17	54	392	0	1	7	471	0
2000	0	0	6	81	1150	0	55	1	1293	0
2001	5	0	1	233	4003	0	0	0	4242	0
2002	0	0	5	10	3346	0	0	0	3361	0
2003	0	1	102	27	2058	0	1	0	2189	0
2004	2	0	108	49	1621	226	0	0	2012	6
2005	0	0	228	174	1919	152	0	0	2473	0
2006	0	0	138	58	3442	100	1	0	3739	0
2007	0	0	9	225	4352	181	1	0	4768	0
2008	3	0	8	0	4838	1527	21	0	6397	0
2009	0	0	6	0	7706	3589	0	2	11303	0
2010	3	0	0	71	5294	1269	0	0	6638	1
2011	0	0	0	0	5376	1910	0	0	7286	0
2012	0	0	0	0	0	89	0	0	89	0
(all)	32	1	842	4306	67296	9043	232	14	81812	46

uncertainty in estimates of asymptotic length and k. The median estimate of l_{∞} over the entire time series is 373.4 mm with a standard deviation of 28.88 mm. The overall median estimate of k is 0.246 with a standard deviation of 0.106. In 2005, the median estimate of k (0.536) was more than twice as large as the overall median estimate owing to the a number of individual fish that were less than 100 mm in 2004 having a growth increment of more than 100 mm in a single year (Figure 8, year 2005 panel).

Estimated growth transition matrices based on the estimated growth parameters from the annual growth increment data are shown in Figure 5. In addition to the transition matrix based, this Figure also has a 1:1 reference line and the corresponding maximum likelihood estimate of l_{∞} as a reference to judge differences in the annual length transition matrices. Starting 2001, growth rates of fish less than 150 mm increased markedly relative to the growth increments observed in the 1990s. The implications of this increased growth rate in a length-based model would have significant impacts on annual recruitment estimates if growth was assumed to be constant. The length transition matrices shown in Figure 5 provide an alternative input into the length structured mark recapture model (LSMR), where length-transition matrices are estimated externally.

References

- Fournier, D. and Archibald, C. (1982). A general theory for analyzing catch at age data. Canadian Journal of Fisheries and Aquatic Sciences, 39(8):1195–1207.
- Fournier, D., Skaug, H., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M., Nielsen, A., and Sibert, J. (2011). Ad model builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models.
- Hillary, R. (2011). A new method for estimating growth transition matrices. *Biometrics*, 67:76–85.
- R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Figure 4: Violin plots of the marginal posterior distributions for annual estimates of asymptotic length $(l_{\infty}$, top panel) and the von Bertalanffy metabolic rate parameter (k).

Figure 5: Annual length transition matrixes based on the annual growth increment data. The area of each bubble is proportional to the transition probability from year t to year t+1, the diagonal black line is the 1:1 slope, and the red circle corresponds to the maximum likelihood estimate of l_{∞} . Each matrix is based on parametric uncertainty in the estimated von Bertalanffy growth parameters as well as measurement errors.

A Work plan

The following outlines a work plan for the assessment of abundance for humpback chub. The objective is to develop a much more flexible length-based model that can be used to explore alternative hypotheses about natural mortality rates, cumulative effects of release mortality for intensive sampling periods, and to potentially integrate other sources of environmental variations such as the effects of turbidity on capture probability and recruitment variation.

Analytical approach

I will develop a statistical catch-at-length model in the AD Model Builder software and additions R-scripts for manipulating data and summarizing model results. Input data for the model will consist of a matrix of the total catch-at-length in 5 to 10 mm size intervals for all years, a matrix of the number of marks released by size and year, a matrix of the number of marks recaptured by size and year, and a three dimensional array of the number of marks recaptures by size for each tag-cohort released (optional).

Estimated parameter will include: natural mortality rate, growth parameters, a vector of the initial numbers in each length interval, and a vector of age-0 recruits each year. Propagation of the numbers-at-length to the next time step will be based on a size-transition matrix, which is a function of the growth parameters and variation in growth. Observation models will include a probability of capturing an animal of a given length each year, the probabilities of capturing a marked and unmarked animal of a given length, and optionally the probability of recapturing a specific tag-cohort of a given length. These predicted observations will be compared with the empirical data using a negative binomial likelihood function. The negative binomial model is more suitable here because it can account for over-dispersed data and accommodate zero observations in cases where there is sparse information.

Detailed work plan

Major components of the project

The following is list of milestones for this project. Each of these items will be expanded upon in the section on project details.

- 1. Data acquisition and processing.
- 2. Development of an operating model for simulating data with known parameter values.
- 3. Development of a length-based assessment model to be fitted to data on capture and recapture information by length interval.
- 4. Simulation testing; exploring the precision and bias of the assessment model in jointly estimating recruitment, size-specific capture probability, and growth and natural mortality using simulated data sets.

- 5. Application of the length-based model to the HBC data.
- 6. Quantifying uncertainty in model parameters and estimates of recruits using Markov Chain Monte Carlo methods to integrate the joint posterior distribution.
- 7. Report & presentation to the Technical Working Group.

Project details

Data acuisition & processing The necessary data required to conduct the analysis will require information from the following fields in the GCMRC database: FISHNO, TRIP_ID, DATES, RM, RIV, TL, TAGNO. The following SQL statement was used in a previous study to extract the necessary information. Note that the following code has been modified to obtain all fish lengths, not just those greater than 150 mm.

```
--***
--All
--***
CREATE OR REPLACE VIEW FISH.V_ASMR_2009_ALL
(
    FISHNO,
    TRIP_ID,
    DATES,
    RM,
    RIV,
    TL,
    TAGNO
)
AS
SELECT "CAPTURE_ID" fishno, "TRIP_ID" trip_id, "START_DATE" dates, "START_RM" rm, "RI
      FROM FISH.CAPTURE_HISTORY_20091211_0832
     WHERE SPECIES_CODE = 'HBC'
       (RIVER_CODE = 'COR' AND START_RM >= 57 AND START_RM <= 68.5)
       OR RIVER_CODE = 'LCR'
     AND START_DATE >= TO_DATE('04/01/1989', 'MM/DD/YYYY')
```

An R-script will be developed for post processing of the data to assign the length capture and recapture information into discrete length intervals for assembling input data into the assessment model.

AND TOTAL_LENGTH >= 00

Operating model An individual based model will be developed to generate simulated data sets with known natural mortality rates, recruitment vectors, growth rates and capture probabilities. The pseudo code for the operating model is as follows:

- 1. Specify a vector of absolute recruitment from 1950-2011.
- 2. For each individual recruit in each year apply the following procedure:
 - (a) boolean trail for survival, if the animal survives then go to (b) else, individual died and restart at step 2.
 - (b) boolean trail for capture:
 - i. Captured: obtain length of fish, if greater than 150mm then tag and release fish, go.
 - ii. Recaptured: obtain length of fish, goto step (a).
 - iii. Not captured: goto step (a).
- 3. Store information about individual capture history and length into simulated database.

The above algorithm is intended to generate the exact data that is currently collected in the HBC monitoring program. Specific details about factors that affect capture probability and survival would be incorporated into the boolean probabilities defined in 2a and 2b.

Length-based assessment model A statistical length-based assessment model is similar in nature to a statistical catch-age model in that numbers-at-age, or in this case, numbers-at-length are propagated forward in time. The previous Age-Structured Mark-Recapture Model (ASMR) was dependent on catch-age information; age data for HBC were inferred from an analytical age-length key (i.e., based on inferences about growth, not empirical age-length data). Estimates of uncertainty were overly precise due to the pre-processing of the data to be used with ASMR. The length-based model makes no such inferences about the age of individual fish and is based strictly on the length observation data.

In a length based model, individuals in a given length interval are propagated in time by redistributing these individuals into new length bins based on a length transition probability (Fig 6). The length transition probability is a function of growth and the time interval between sampling events. The graphical example in Fig 6 does not account for mortality over time, its only meant to show the transition of individuals from one length bin to subsequent length bins.

Simulation testing The purpose of simulation testing is to (i) demonstrate that the model is able to estimate the model parameters given perfect information and satisfying all of the model assumptions, (ii) examine precision and bias in parameter estimates when faced with observation, process, and structural errors, and lastly (iii) to examine the

Figure 6: A graphical example of a length-based transition. Starting with 10 age-0 individuals, these 10 would then be distributed to the age-0.5 distribution distribution. The age-0.5 distribution then transitions to the age-1.0 distribution and so on.

estimability, bias, and precision of model parameters when underlying structural assumptions are not met. Simulation testing will be conducted to examine the ability to jointly estimate recruitment, capture probability, growth and natural mortality in a reliable and unbiased manner.

Application to the HBC data The length-based assessment model will then be applied to the length-based capture and recapture data for the humpback chub monitoring program. Model outputs will include estimates of recruits (and associated uncertainty), estimated model parameters (and uncertainty). It is anticipated that more reliable estimates of recruits will be available with the length based model because the model is not limited to length information that is greater than 150mm, as is the case in the ASMR model.

Quantifying uncertainty Estimates of uncertainty will jointly consider uncertainty in the mark-recapture data, growth and mortality. To do so the joint posterior distribution of the data will be constructed numerically using a Markov Chain Monte Carlo procedure (using the Metropolis Hastings algorithm implemented in AD Model Builder). Uncertainty in model parameters as well as outputs will be cast in the form of marginal posterior densities.

Report and presentation This is original research and the methods outlined for a length-based model that incorporates growth increment data from a mark recapture program has not been previously published to my knowledge. Ideally these results will be disseminated in the primary literature, but will also be presented to the Technical Working Group and be available as a technical report (e.g., USGS Open File Report). Also source code, scripts, and documentation will be hosted on an open source repository with version control. The intention here is to create a repository for continued development of the software and to document the historical changes over time.

B Individual based model for simulating the dynamics and sampling of humpback chub in the Grand Canyon

B.1 Introduction

The following is a detailed description of the simulation model that was used for simulating the population dynamics and data collection programs for humpback chub in the Grand canyon. We first describe in detail the life-history trajectory of an individual fish: the survival probability, growth, and capture history and provide the documented code to implement this process. I then describe the data structures that resemble a databased of individual capture histories for both tagged and untagged fish. The individual based model (IBM) is then used to estimate the fate and capture histories of a known number of recruits starting life at a 40mm length interval.

The simulation model was constructed using R (R Development Core Team, 2009). The algorithm populates three matrixes that contain the total number of fish captured in year t at length interval x, the total number of newly marked fish, and a matrix of the total number of recaptured individuals. At each time step the fish is alive, information on length and age is stored along with information on capture history, the tag number if the fish was large enough to tag.

B.2 R-code

```
_____
## Simulation model for humpback chub
## Author: Steven Martell
                                                      ##
## DATE: September 26, 2011
                                                      ##
## Contact: martell.steve@qmail.com
                                                      ##
##
                                                      ##
## FUNCTIONS:
                                                      ##
    - .ibm \Rightarrow given \ N \ recruits \ returns \ list \ with \ the \ capture
                                                      ##
             history of each recruit. It also fills the
##
                                                      ##
##
             global variables CM and R for the assessment
                                                      ##
##
                                                      ##
    - .runIBM Loops over syr:nyr and applies the .ibm function##
##
            to each of Rt recruits.
##
                                                      ##
##
##
                                                      ##
       _____
## __ Required libraries _____ ##
require( PBSmodelling )
require ( Hmisc )
require (ggplot2)
```

```
## __ Simulation controls _____ ##
# Model Dimensions
        <- 1950
                    #initial year
syr
        <- 2011
                    \#final\ year
nyr
dt
        <- 1.0
                    #time step
tmax
        < 50/dt
                    \#max\ longevity\ index\ (50\ yrs)
        <- seq(syr, nyr, by=dt)
dyr
xbin
        <- seq(3, 55, by=1)
# Growth (units in cm)
lmin
            <- 4
lmin.sig
            <- 0.4
m. linf
            <- 0.08
linf
            <-40 #Asymptotic length (cm)
            < 0.18 \#Growth coefficient
k
   Selectivity
lh
            <- 10
                    \#length @ 50\% selectivity
            <-1.5 #std in selectivity
gamma
sample.yrs <- seq(1989, 2011, by=dt)
fishing
            <- dyr %in% sample.yrs
min.size
            <-15.0 #minimum size for tagging (15 cm)
# Parameter vector for the IBM model
THETA <- list ( lmin=lmin,
               lmin.sig=lmin.sig ,
               m. linf⇒m. linf,
               lh=lh,
               gamma=gamma )
set . seed (999)
iclr <- rev(topo.colors(length(syr:nyr),0.5))
Rt < -floor(rlnorm(length(syr:nyr), log(300), 0.9))
h1 < -0.04
h2 < -0.20
t <- min(sample.yrs)
T <- max(sample.yrs)
pr <- 1
Et \leftarrow h1+(h2-h1)*cos(0.5+(sample.yrs-t)/(T-t)*pr*pi)^2
\#Et \leftarrow runif(length(sample.yrs), 0.05, 0.2) \#Effort
\# Global objects for storing data
fish.id
            <- 0
                  \#Unique\ id\ for\ individual\ fish
            <- 0
                    \#Unique\ tag\ no.\ for\ individual
tag.id
  Total catch, marked, recap, unmarked by year at length interval
\mathbf{C}
   <- matrix (0, nrow=length (sample.yrs), ncol=length (xbin))
  <- matrix(0,nrow=length(sample.yrs), ncol=length(xbin))</pre>
```

```
<- matrix (0, nrow=length (sample.yrs), ncol=length (xbin))
## ----- ##
## ----- ##
## PROCEDURES
## ----- ##
.ibm <- function (Nt, jyr, THETA)
   #ARGUMENTS:
             = Number of recruits from cohort
       \#jyr = brood\ year\ (year\ the\ cohort\ was\ age-0)
       \#THETA = a \ list \ of \ simulation \ parameters \ for \ the \ ibm .
   #RETURNS:
              = a list w records of capture date, len, tag.no
       \#df
   with (THETA, {
       \#jyr \leftarrow syr + (ii - 1)
       \#\# indexs i = individual; j=time
       ## Calculate length & mortality for time j.
       lj \leftarrow linf*(1.-exp(-k*dt*1:tmax))
       mj \leftarrow m. linf*linf/lj
       ## Draw initial recruit size (gamma).
       scale \langle -(lmin.sig)^2/lmin
       shape <- lmin/scale
       li <- rgamma(Nt, shape, 1/scale)
       ## Growth trajectory
       growth <- function ( li )
           linf.i \leftarrow rnorm(1, linf, 0.1*linf)
           li + (linf.i-li)*(1-exp(-k*1:tmax*dt))
       L <- sapply(li, growth)
       ## Survival trajectory
       \#\!\!/\!\!/ S is a list of lengths of individuals at
       ## the time they were alive.
       survival <- function ( lj )
           si \leftarrow exp(-m. linf*linf/li*dt)
```

```
pj \leftarrow rbinom(tmax, 1, sj)
    nj \leftarrow which.min(pj)
    return(lj[1:nj])
\hat{S} \leftarrow apply(L, 2, survival)
## Capture history
pcap <- function ( lj )
    #Arg: lj is the length at times j
    \#Algorithm:
    \#-1. determine index for sampling time periods (fyr)
    \#-2. determine capture probability at sampling times
    \#-3. if captured fish > 150 mm then assign a tag no.
    if(!is.null(lj))
         # 1. Index for sampling time periods (fyr)
         n <- length(lj)
         d1 \leftarrow \mathbf{which} (dyr = jyr) \quad \#min \ index \ of \ dyr \ for \ jyr
         d2 \leftarrow \min(d1+n-1, length(dyr))
         jj <- d1:d2
         iyr \leftarrow dyr[jj]
                                     #years alive
         fyr <- fishing [jj]
                                    \#years fished fyr==1
         ## Did not survive into sampling years
         if (length (iyr [fyr])==0) return (NULL)
         \# -2. Selectivity at time of sampling
         len <- (lj[1:length(jj)])[fyr]
         iyr \leftarrow iyr [fyr]
         # Add annual effort to sj capture probability
         eyr <- findInterval(iyr, sample.yrs)</pre>
         \#print(cbind(sample.yrs[eyr], Et[eyr]))
         sj <- Et[eyr]*plogis(len, lh, gamma)
         cj \leftarrow \mathbf{rbinom}(\mathbf{length}(sj), 1, sj)
         rid \leftarrow which(cj==1) \#row index for capture
         if (length (rid)==0) return (NULL) #never captured
         tmp \leftarrow c(iyr[rid], len[rid],
              tag.no=rep(NA, length=length(rid)))
         tmp <- matrix(tmp, ncol=3)
         \# -3. Assign tag.id if greater than 150 mm
         if(max(tmp[,2]) > = min. size)
         {
              tag.id <<- tag.id + 1
         }
```

```
tmp[len[rid] > = min. size, 3] \leftarrow tag.id
                     \# -4. Populate global variables with catch history
                     tt <- findInterval(tmp[,1], sample.yrs)
                     xx \leftarrow findInterval(tmp[,2],xbin)
                     for (i in 1:length(tt))
                         \mathbf{C}[\operatorname{tt}[i], \operatorname{xx}[i]] \ll \mathbf{C}[\operatorname{tt}[i], \operatorname{xx}[i]] + 1
                    \#print(cbind(tmp, sample.yrs[tt], xbin[xx], tmp[,3]))
                     \#- Newly marked fish into matrix M
                         \leftarrow ! is . na(tmp[,3])
                     if (\mathbf{sum}(im) > 0) #fish was large enough to tag
                          it <- min(which(im))
                          iy <- findInterval (tmp[it,1], sample.yrs)
                          ix <- findInterval(tmp[it,2],xbin)
                         \#print(cbind(tmp, sample.yrs[iy], xbin[ix]))
                         M[iy, ix] \iff M[iy, ix] + 1
                          ir \leftarrow \mathbf{which}(im)[-1]
                          ry <- findInterval (tmp[ir,1], sample.yrs)
                          rx <- findInterval(tmp[ir,2],xbin)
                          for(i in 1:length(ry))
                               \mathbf{R}[\mathrm{ry}[\mathrm{i}], \mathrm{rx}[\mathrm{i}]] \ll \mathbf{R}[\mathrm{ry}[\mathrm{i}], \mathrm{rx}[\mathrm{i}]] + 1
                     }
                     return (tmp)
          P <- sapply (S, pcap)
          return(P)
     })
}
.runIBM <- function()
     j <- 1
     A <- NULL
     for (i in syr:nyr)
          A \leftarrow c(A, ibm(Rt[j], i, THETA))
          j < -j+1
     return (A)
}
. writeLSMRdata <- function()
          # This function writes the data file for LSMR model
```

```
fn <- "simLSMR.dat"
         C <- cbind (floor (sample.yrs), sample.yrs%/1*4+1,C)
         M <- cbind (floor (sample.yrs), sample.yrs%/1*4+1,M)
         R <- cbind (floor (sample.yrs), sample.yrs%/1*4+1,R)
         write ("#Simulated_data_from_HBCsim.R", fn)
         write("#Model_Dimensions", fn, append=T)
write("#Years,_timestep", fn, append=T)
         write(c(range(sample.yrs), dt), fn, append=T)
         write ("#Array_dimensions (C, \( \text{M}, \( \text{LR} \) \)", fn, append=T)
         write(dim(C), fn, append=T)
         write ("#Number_of_length_intervals", fn, append=T)
         nbin = length(xbin) + 1
         write (nbin, fn, append=T)
         write ("#Length_intervals_(cm)", fn, append=T)
         \mathbf{write}(\mathbf{c}(\mathbf{x}\mathbf{bin}, \mathbf{x}\mathbf{bin}[\mathbf{n}\mathbf{bin}-1]+\mathbf{diff}(\mathbf{x}\mathbf{bin}[(\mathbf{n}\mathbf{bin}-2):(\mathbf{n}\mathbf{bin}-1)])), \text{ fn, append}=T)
         write ("#Catch_at_length_by_period", fn, append=T)
         write ("#Year, _Period, _Count_...", fn, append=T)
         write.table(C, fn, append=T, col.names=F, row.names=F)
         write ("#Number_Marked_at_length_by_period", fn, append=T)
         \mathbf{write}\,(\,\text{``#Year}\,,\, \_Period\,,\, \_Count\,\_\dots\,\,\text{''}\,\,,\,\,fn\,\,,\,\,\mathbf{append}\!\!=\!\!T)
         write.table(M, fn, append=T, col.names=F, row.names=F)
         write ("#Number_Recaptured_at_length_by_period", fn, append=T)
         write("#Year, _Period, _Count_...", fn, append=T)
         write.table(R, fn, append=T, col.names=F, row.names=F)
         write ("#End_of_file", fn, append=T)
         write (999, fn, append=T)
         file.copy(fn, "../ADMB/srcLSMR/simLSMR.dat", overwrite=TRUE)
}
## ----- ##
## MAIN
## ----- ##
\#A < -.ibm(1000, 1980, THETA)
A \leftarrow .runIBM()
. writeLSMRdata()
## -----#
par(mfcol = c(6, 4), las = 1, mar = c(2, 2, 1, 1), oma = c(3, 3, 1, 1))
for (i in seq (1, length (sample. yrs)-1/dt, by=1/dt))
         ut < colSums (C[i:(i+3),]-M[i:(i+3),]-R[i:(i+3),])
         mt \leftarrow colSums(M[i:(i+3),])
         \mathbf{rt} \leftarrow \operatorname{colSums}(\mathbf{R}[i:(i+3),])
         tmp <- rbind(ut, mt, rt)
```

C Processing mark-recapture by length information

The following description details how the raw data from the GCMRC database was used to construct the tables of data used in this assessment. The raw data obtained from Glenn Bennet (gbennet@usgs.gov) contained the following fields:

CAPTURE_ID	SPECIES_CODE	TRIP_ID	START_DATETIN	E START_RM	RIVER_CODE	TOTAL_LENGTH	TH_ENCOUNTER_RANKING	GEAR_CODE
1496	HBC	LC20000417	4/17/2000 17:15:0	O NA	LCR	380	20397	HS
48	HBC	LC20000417	4/18/2000 16:10:0	O NA	LCR	285	49293	HS
49	HBC	LC20000417	4/18/2000 16:10:0	O NA	LCR	219	49220	HS
100	HBC	LC20000417	4/18/2000 8:06:0	O NA	LCR	170	49255	HS
156	HBC	LC20000417	4/17/2000 18:20:0	O NA	LCR	325	49238	HS
241	HBC	LC20000417	4/18/2000 17:15:0	O NA	LCR	214	49309	HS

The TH_ENCOUNTER_RANKING field is a unique number for each individual marked fish and occurs in the database one or more times depending on the number of recapture events for that individual, this is also referred to as the TAGNO. At the time of writing this report, there were a total of 81,812 records in the database for humpback chub, of which 35,696 are unique individuals (some of which may occur in the database only once). These data were first imported into R (R Development Core Team, 2009), the year and month was then extracted from the START_DATETIME field and appended to the data frame. Next the total length of measured humpback chub were assigned to corresponding 10mm size intervals ranging from 50mm to 600mm. Note that the R-code for manipulating the database can be found in subsection C.1.

There are 110 unique GEAR_CODEs in the database; these gear codes were classified into 12 gear groups, of which tramel nets (GILL) and hoop nets (HOOP) were used to reconstruct the marks and recaptures at length.

The last step in constructing the data frame (see the function get.DF) was to assign initial marks and recapture event to each of the records. To do so, the data frame was ordered by date and tag number in ascending order and all duplicate occurrences of TAGNO were assigned a boolean TRUE value. The additional columns added to the data frame was necessary to extract the total number of fish caught by month in each year (Table 4), and the total number fish captured each year by specific gear types (Table 5).

Key input data to the LSMR assessment model is the number of marked fish released (by size class) and the number of recaptured fish (by size class) in subsequent sampling events by specific gear types. To construct these data, an R-function (tableMarks) was developed to construct Tables 7–10. I only consider marks and recaptures from the hoop nets and gillnet (tramel nets) sampling gears in this analysis, as these two gear types were responsible for sampling the majority of humpback chub in the system.

C.1 R-Code for Database manipulation

```
# R-script for creating summary data for LSMR
# based on the data-based extraction from GCMRC
# Author: Steven Martell
# Date: May, 2012
# LOCATION: MAUI
#
 DESCRIPTION OF ROUTINES:
#
    get.DF: reads csv file with raw data, appends YEAR MONTH TAGNO TL columns
#
#
#
    getGrowthIncrement: extracts initial tag length and most recent recapture
#
                        length information from DF, at-least 1-year at large
#
#
    getCapturesByLength: extacts capture history by length interval at each time
                         step.
```

Table 6: Number of fish captured by length by all gear types listed in the GCMRC database for each year.

1989 <u>19</u>	1990 1	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	
	0	0	-								-								0			2011
			4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	11	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	1	15	45	П	0	7	2	9	0
	0	0	0	0	0	0	0	0	0	0	2	14	0	ro	_	32	0	0	10	21	13	9
	0	0	1	0	0	0	0	0	0	17	18	327	118	65	ю	23	2	0	37	514	117	393
	0	0	1	0	0	0	0	0	0	24	24	304	26	40	9	15	10	0	92	465	180	538
	1	0	0	1	0	0	0	0	0	17	47	286	26	22	6	17	7.1	0	140	424	201	539
	2	0	0	18	0	0	0	0	0	28	22	297	20	22	11	6	153	2	10	334	165	403
	7	20	2	54	œ	0	0	0	10	30	71	289	92	34	20	13	213	1	3	371	132	304
	œ	268	221	684	147	92	9	9	43	45	83	280	447	166	229	248	345	245	333	436	132	239
	2	353	215	585	163	63	6	IJ	56	37	91	281	382	216	162	218	310	333	257	424	213	162
47	18	318	194	618	209	62	7	1	44	22	88	283	259	208	116	204	267	371	201	359	235	159
34	7	270	211	450	235	62	œ	2	39	23	88	240	233	264	141	215	210	394	238	399	278	148
_	19	296	188	400	229	88	10	3	35	20	88	259	222	208	106	190	168	401	259	385	283	159
	43	262	213	295	224	65	က	rO	30	19	64	190	167	159	102	165	176	415	349	322	325	211
2	35	215	193	216	189	82	z	4	11	16	29	164	151	125	122	124	198	374	352	345	362	247
œ	37	176	188	235	182	92	7	7	13	20	65	118	135	97	94	81	192	328	354	347	390	239
21	35	168	201	205	139	99	4	3	17	9	20	129	26	51	74	79	171	291	385	346	409	246
2	34	152	161	156	105	61	4	2	4	33	52	81	80	32	54	89	162	258	338	329	361	231
4	25	180	156	153	82	49	4	2	17	ы	44	65	62	22	40	20	131	206	299	368	358	221
~	23	153	156	154	74	71	2	2	12	ъ	39	29	41	23	59	61	122	147	229	324	313	232
10	15	144	152	177	81	28	9	D.	10	9	38	53	36	16	24	31	28	150	257	271	244	183
•	15	171	167	177	20	29	r.	1	12	4	30	41	41	15	27	23	20	92	155	245	178	154
	14	140	160	170	72	74	4	0	15	4	16	30	35	17	14	14	51	98	101	183	121	102
•	12	126	174	155	64	86	က	1	-	4	6	22	56	6	10	15	55	65	101	129	71	82
_	13	131	191	175	72	80	10	4	œ	œ	11	11	16	ro	œ	10	32	69	72	88	46	51
	18	137	223	215	89	06	12	œ	n	2	6	14	13	œ	10	9	15	56	42	65	32	38
_	27	157	244	202	88	113	14	14	7	9	œ	10	19	9	10	14	10	58	34	39	20	19
	25	147	255	259	109	113	10	15	7	7	10	19	20	20	18	17	16	20	20	20	10	17
	20	149	287	292	116	151	œ	14	10	10	œ	34	27	27	23	18	28	18	18	22	11	n
_	30	151	292	329	116	133	6	23	9	10	20	39	49	33	30	15	18	16	19	19	20	9
0	17	133	313	242	105	137	13	23	15	6	14	53	44	35	34	37	45	20	20	15	24	20
9	31	108	231	236	06	135	15	56	18	17	18	22	86	22	49	40	54	38	33	23	21	-1
0	35	108	181	187	73	103	12	18	œ	11	15	64	84	09	28	22	92	43	22	56	31	œ
1	6	72	123	145	46	22	7	œ	9	15	20	46	22	38	43	51	81	44	22	18	24	Π
σo	17	38	22	90	37	43	7	7	10	7	-1	43	51	35	32	38	36	32	19	18	22	4
10	15	21	49	49	22	28	က	1	4	œ	œ	24	36	25	20	25	36	23	22	-1	11	2
4	4	12	16	20	10	11	0	1	1	4	9	œ	15	15	7	15	17	12	9	-1	4	7
_	0	œ	18	11	ιO	2	0	1	0	-	IJ	4	œ	4	œ	12	12	2	က	2	1	0
~	7	7	-	ro	-	n	1	1	0	0		2	က	1	ю	ro	ю	7	-	0	0	0
7	1	က	က	9	2	0	0	0	1	0	0	1	2	2	1	2	0	П	0	0	0	0
_	0	4	1	1	1	_	0	0	0	0	1	0	0	0	0	1	2	က	_	-	1	0
_	0	2	3	1	П	0	0	0	0	0	0	0	0	0	П	0	0	0	0	0	0	0
	_	<u> </u>	-	-	C	C	C	· C	· C	C	<u> </u>	-	_	· C	C	C	C	· C	· C	_	_	_

Table 7: Number of new marks released by year and size interval (HOOP).

	_]		_	0		~	۲.	~	_		٠.	(~	œ	~1	~	~	~1	-	_	~	~1	(_	₩.	_		3	<u> </u>			. ~		_	_	_	0	0	_	_	0	0
0	2011	J	J	J	4.7	345	437	425	311	215	165	106	76	55	58	72	78	7.	85	67	80	99	52	45	24	21	14	11	J	J	٠ ر		, -			1	7	J	J	J	J	J)	J
0	2010	0	0	9	13	92	146	142	118	72	73	121	120	154	148	156	158	181	197	160	148	136	102	71	33	23	12	10	3	4		21 0	N C	0 0	-	0	0	0	П	0	0	0	0	0
0	2009	0	0	2	16	462	412	370	246	244	304	275	222	193	162	110	120	116	106	101	92	22	99	20	23	22	17	4	œ	က	01	က	0 0	0 0	0	0	0	1	0	0	0	0	0	0
0	2008	0	0	7	10	37	95	140	10	_	588	194	130	137	151	173	154	147	147	116	66	64	89	42	16	22	16	ы	ю	7	01	က	40	1 4	0	2	2	1	0	0	0	0	0	0
1	2002	0	0	0	0	0	0	0	7	П	203	257	280	267	218	195	154	137	104	81	99	41	28	22	17	11	6	7	4	က	4	п (۰-	4 4	· ന	က	2	П	0	0	0	-	0	0
0	2006	0	0	П	0	7	6	54	111	130	239	202	168	114	84	92	87	77	65	46	28	45	19	22	17	11	ю	က	-	4	က		4 <	t rc	-1	က	2	_		0	0	0	0	0
100	2002	_	Π	41	30	21	13	15	6	11	193	150	133	139	115	91	51	30	56	17	20	13	6	7	9	က	2		က	က		က	40	1 4	-1	0	1	П	7	0	0	0	0	0
	2004	0	10	15	7	4	9	23	9	13	181	123	42	77	45	41	48	36	20	12	13	œ	7	9	1	2	2	က	က	က	7	п о	o -	4 cc	က	1	1	2	0	0	0	0	0	0
		0	0	1	22	64	36	21	23	31	136	160	154	156	123	72	26	30	21	œ	œ	4	1	4	4	2	1	0	0	9		21 0	o u	. c	. 21	2	1	2	0	0	0	0	0	0
		0	0	0	0	26	53	14	6	œ	264	185	115	92	40	38	28	12	18	10	7	22	9	7	11	œ	4	4	က	_	ស	n 1	~ п	o 00	വ	2	4	0	-	0	1	0	0	0
	21						235																															-	0	0	0	0	0	0
EAR	2					•	21																														1	0	0	0	0	0	0	0
Ϋ́E	2C																																											
9	1999	0	0	0	0	14	18	10	21	24	44	33	17	16	18	14	10	14	IJ	1	2	1	2	2	2	0	1	П	0	7	0	П (0 0	- 0	0	2	0	0	0	0	0	0	0	0
9	1998	0	0	0	0	0	0	0	0	œ	29	18	30	18	22	18	9	9	10	3	9	7	1	4	2	0	1	0	0	П	0				0	П	П	0	0	0	0	0	0	0
1	1997	0	0	0	0	0	0	0	0	0	4	4	0	7	2	4	က	7	П	2	0	0	П	0	0	0	0	0	0	1	0	0 +	٦ ٥	- 0	0	0	0	0	0	0	0	0	0	0
0	1996	0	0	0	0	0	0	0	0	0	4	Ŋ	4	4	n	7	က	7	က	0	0	П	0	0	0	0	_	П	П	0	01	- с	0 0	0 0	. 2	0	0	0	0	0	0	0	0	0
1	1995	0	0	0	0	0	0	0	0	0	29	47	39	28	39	23	12	16	16	9	6	12	-1	n	9	œ	IJ	10	13	20	25	o ,	10	2 12	-1	4	7	0	0	0	0	0	0	0
	1994	0	0	0	0	0	0	0	0	7	111	26	86	26	84	64	39	37	32	14	14	က	œ	œ	10	ro	9	œ	10	16	20	17	7 1 17	4.	4	7	4	0	-	1	0	0	0	0
0	1993	0	0	0	0	0	0	0	15	40	553	395	389	232	200	124	69	26	39	58	56	34	38	50	56	28	38	39	34	49	99	4 Z	9 r	8 4	22	21	15	2	7	0	-	0	П	0
0	1992	0	0	0	0		0	0	0	1	169	141	92	102	64	89	20	73	65	25	51	65	22	61	49	29	72	83	87	114	113	115	151	8	42	56	17	-1	-	7	7	0	33	1
,	1991	0	0	0	0	0	0	0	0	1	204	211	187	152	161	160	117	26	06	88	105	28	69	104	82	64	63	99	20	28	69	69	7 7	73.7	19	12	9	2	П	က	7	-	0	0
0	1990	0	0	0	0	0	0	1	7	9	7	7	17	9	17	33	29	27	32	31	21	17	12	10	œ	10	œ	12	10	12	11	13	0 2	1 -	2	9	ъ	1	0	0	0	0	0	1
0	1989	0	0	0	0	0	0	7	7	က	16	18	34	59	28	33	35	22	11	15	6	11	12	œ	10	11	20	19	17	14	19	52	13	7.7	9	က	2	1	က	1	0	0	0	0
]]		09	70	80	06	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360	380	390	400	410	420	430	440	450	460	470	480	490
	- 1																																											

Table 8: Number of recaptured marks by year and size interval (HOOP).

ļ	_	0	0	0	-	20	1	91	32	39	74	53	33	90)1	39	30	32	34	34	11	34	31	5	20	34	37	27	53	Ξ	ıo.	ro -	4 6	000	0:	8	1	2	0	0	0	0	0	0
· o	701					EC	10	11	CO	œ	1-	тŋ	æ	دن	10	15	16	16	16	16	14	16	15	10	1-	e	erg	CA	1	1			4 6		1									
0,00	2010	0	0	0	0	25	34	59	47	22	59	92	115	124	134	165	201	201	203	197	203	174	141	106	84	48	34	21	16	9	6	16	- X	25	20	20	œ	4	0	0	0	1	0	0
0000	5003	0	0	0	rO	51	53	54	88	126	131	149	135	206	223	212	225	230	240	228	273	247	202	195	160	107	72	61	31	17	20	16	14 23	24	17	18	7	9	2	0	0	_	0	0
0000	2002	0	0	0	0	0	0	0	0	7	40	26	69	100	103	173	194	202	238	222	200	163	188	112	82	79	26	37	59	18	16	16	20	21	25	17	20	IJ	3	1	0	-	0	0
1	2002	0	0	0	0	0	0	0	0	0	41	74	88	114	147	188	192	172	175	161	129	86	114	64	89	53	29	23	24	16	12	14	0 m	3 2	36	24	16	6	7	1	П	7	0	0
000	9000	0	0	0	0	0	1	17	42	83	93	92	83	79	71	88	105	108	92	109	89	74	228	43	32	43	22	11	œ	10	24	12.	35 41	57	57	59	56	12	11	4	0	2	0	0
100	cono	0	0	4	ы	7	7	7	0	7	28	36	45	62	47	26	47	39	40	40	23	40	19	12	9	6	9	3	9	10	6	9 ;	25	26	21	17	12	9	4	0	0	0	0	0
	2004 2	0	0	0	0	1	0	7	IJ	7	43	32	30	59	22	22	20	51	53	41	27	17	13	19	12	7	4	9	9	6	18	19	31	40	31	20	12	1	3	1	-	0	-	0
6	3 2(0	0	0	0	1	4	1	2	3	3	6	0	33	ъ	1	∞	9	6	က	7	6	4	1	2	7	2	∞	4	3	4.	4.0	3.1	. 9	2	2	6	6	1	0	1	0	0	0
000	200										2	4	Ŋ	10	œ	œ	9	9	2	21	1	1	П	1	1					1	0	C) C	N M	m	2	2	1							
0000	2002	0	0	0	0	21	44	42	41	89	183	197	144	157	181	129	123	123	79	20	55	36	30	34	23	18	12	6	14	17	20	45	30	80	71	48	32	15	7	3	1	0	0	0
000	700Z	0	0	0	2	20	69	80	115	130	138	158	153	139	171	130	100	72	86	43	42	37	34	25	12	œ	œ	7	9	11	17	21	23	26	24	22	13	က	7	-	0	0	0	0
YEAR	2000	0	0	0	0	П	7	ю	14	14	14	15	16	20	21	15	19	22	14	17	17	14	14	IJ	n	4	4	3	4	7	က	o ;	10	-1	9	2	4	2	П	0	0	0	0	0
900	1999	0	0	0	0	0	0	-	က	9	0	2	4	က	2	2	n	4	1	_	2	2	4	1	-	2	9	-	2	4	6	9	° -	7	6	2	2	က	1	0	0	0	0	0
000	1998	0	0	0	0	0	0	0	0	7	11	œ	12	17	12	10	4	9	7	_	11	ιΩ	œ	7	11	П	9	_	9	3	_	- 0	٥٥		2	က	2	0	0	0	1	0	0	0
1	1887	0	0	0	0	0	0	0	0	0	7	_	0	0	П	0	_	4	П	0	2	П	2	_	0	0	0	П	7	П	0	01 0	ကက		0	1	0	0	0	0	0	0	0	0
000	1996	0	0	0	0	0	0	0	0	0	0	_	3	0	4	0	2	0	1	7	4	0	3	က	3	1	œ	9	6	4	7	- 0	Ŋα	4	п	0	0	0	0	0	0	0	0	0
i c	1995	0	0	0	0	0	0	0	0	0	16	15	23	33	49	41	69	09	20	55	39	22	20	09	29	88	73	74	96	98	112	108	104	22	41	56	15	œ	2	4	0	1	0	0
, 00	1994	0	0	0	0	0	0	0	0	1	35	65	121	138	144	158	149	144	104	06	89	71	69	09	29	26	63	51	89	92	99	69	2 7	40	27	19	11	9	0	0	0	1	0	0
000	1993	0	0	0	0	0	0	0	က	6	102	168	209	182	181	150	128	156	145	111	112	102	125	128	123	106	109	130	122	147	144	168	120	2 00	53	35	14	œ	4	-	-	0	0	0
	1992	0	0	0	0	0	-	0	0	0	32	26	87	92	114	131	117	105	124	26	66	87	06	91	101	91	87	105	108	26	127	110	73	22.0	44	22	13	ro	9	2	П	0	0	0
	1991	0	0	0	0	0	0	0	0	4	55	129	119	112	115	93	82	72	65	46	09	64	62	20	41	28	34	23	40	15	21	2 5	17	13	20	9	3	2	П	0	П	_	0	0
ľ	1990	0	0	0	0	0	0	0	0		-	0	1	_	7	6	ю	-1	က	1	4	4	2	က	7	-	0	4	4	1	0	01 0	n -		0	က	1	0	0	0	0	0	0	0
	1989	0	0	0	0	0	0	0	0	0	က	9	12	ю	П	6	ro	_	က	1	2	П	0	0	0	_	1	7	4	7	4	01 0	0 6	ı	-	1	1	0	0	0	0	0	0	0
 		09	20	30	0(00:	10	.20	.30	.40	.50	09	.70	.80	06	000	310	20	330	340	350	098	023	086	066	300	310	320	330	340	350	360	380	068	001	110	120	130	140	120	091	120	081	061
_		ت	-	σo	တ	_	_	П	П	_	П	П	П	П	П	CA.	c./I	c.A	¢Α	CA	¢Λ	cA.	¢Α	¢Λ	CA.	n	m	n	a)	(T)	crj (ura C	-o er	, m	4	4	4	4	4	4	4	4	4	4

Table 9: Number of new marks released by year and size interval (GILL).

3	9	0	9	0	000	100	00	000	1		21111	0000	1000	0000	0000		1	0000		0.00
	1989	1990	1881	1992	1993	1994	1995	1996	1881	1998	1999	2000	2001	2002	2003	2004	2002	2006	2002	7010
120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
140	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
150	0	0	4	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
160	0	0	7	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
170	0	0	0	2	3	0	0	0	0	0	0	0	0	0	0	0	П	П	П	0
180	0	0	2	3	10	0	0	0	0	2	3	П	2	0	0	0	3	2	6	0
190	П	0	œ	IJ	6	0	0	0	0	1	0	0	9	0	0	1	6	4	31	0
200	2	1	3	9	10	0	0	0	1	0	2	1	Ю	0	1	1	7	4	56	4
210	2	1	-1	n	9	1	0	0	0	П	П	П	9	0	0	П	6	П	19	3
220	2	3	က	4	6	1	0	0	0	0	2	2	7	0	0	0	7	2	15	7
230	7	0	9	9	œ	1	0	0	0	0	0	3	3	0	0	0	9	3	œ	9
240	П	2	7	œ	v	1	0	0	0	0	1	0	8	0	1	1	ro	_	13	2
250	3	0	6	1	4	0	0	0	0	0	П	0	П	0	0	0	0	2	9	20
260	Т	1	6	2	4	0	0	П	-	0	0	П	П	0	0	0	0	0	ъ	3
270	3	1	6	က	2	1	0	0	0	0	0	0	П	0	0	0	0	_	3	0
280	3	2	11	10	ro	1	1	0	0	0	П	0	0	0	0	0	3	Т	2	П
290	3	4	9	4	4	0	0	0	0	2	0	П	3	1	0	0	0	0	1	2
300	6	0	25	6	ro	0	0	0	0	0	1	0	П	0	0	0	П	0	0	0
310	15	4	20	18	2	0	0	0	0	0	0	П	0	0	0	П	0	0	0	0
320	14	2	34	17	12	7	1	-	0	က	0	0	2	0	0	0	П	П	0	0
330	37	10	22	23	10	1	0	0	က	0	0	0	0	-	0	0	7	П	0	0
340	36	11	40	19	18	1	7	-	-	0	0	-	_	0	_	0	0	0	-	0
350	56	œ	45	24	13	9	2	1	က	0	0	0	က	0	0	0	П	0	-	0
360	53	14	38	32	16	9	ro	П	က	0	2	П	2	0	0	0	П	0	0	0
370	20	ro	52	36	19	က	1	2	9	1	0	0	1	0	0	1	က	0	2	0
380	20	10	37	30	16	6	3	7	4	0	_	0	က	-	0	0	0	0	0	0
390	30	20	42	22	14	4	1	0	3	1	П	1	ಣ	0	0	0	3	0	0	0
400	14	7	37	13	11	v	1	0	1	0	0	0	1	0	0	0	2	0	-	0
410	4	7	15	11	6	ro	0	0	2	П	П	0	က	0	0	0	2	0	-	0
420	2	œ	11	œ	9	7	1	1	0	0	က	1	0	0	0	0	0	0	0	2
430	2	3	9	2	3	0	0	0	1	0	0	_	_	0	0	0	0	0	0	0
440	П	0	4	7	1	1	0	0	1	0	0	7	0	0	0	0	0	0	0	0
450	1	2	4	2	7	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0
460	2	1	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	0	0	0
470	1	0	-	П	1	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0
480	0	0	7	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
490	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	С	С	0

Table 10: Number of recaptured marks by year and size interval (GILL).

ΓI										YE.	YEAR									
	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2010
120	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
140	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
150	0	0	2	1	က	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
160	0	0	10	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
170	1	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
180	0	0	2	П	_	0	0	0	0	0	0	0	0	0	0	0	0	П	1	0
190	1	0	3	2	4	1	0	0	0	0	0	0	0	0	0	0	2	П	4	1
200	2	0	2	v	4	2	0	0	0	2	1	0	П	0	0	0	2	1	D	0
210	0	0	3	П	6	0	0	0	0	0	0	0	3	0	0	0	ъ	0	6	0
220	0	0	П	4	10	0	0	0	П	0	0	0	П	0	0	4	П	0	3	П
230	0	0	ro	3	œ	2	0	0	1	0	0	0	П	0	1	0	2	0	4	3
240	0	0	4	4	11	0	0	2	0	0	0	0	2	0	0	0	4	2	က	7
250	0	0	1	က	10	0	1	0	0	0	0	0	П	0	0	0	0	3	D	2
260	0	0	0	П	11	0	1	0	0	0	Т	0	0	0	0	2	П	П	3	0
270	0	0	က	1	12	33	1	3	2	1	0	0	0	0	0	0	0	0	ro	1
280	1	0	3	ы	Π	Т	1	2	0	1	0	0	0	0	0	П	П	0	4	0
290	1	0	ro	9	15	3	П	П	0	0	П	0	П	0	0	0	0	0	0	7
300	1	0	က	9	15	33	2	П	1	0	П	2	-	0	0	_	П	0	1	0
310	4	1	œ	14	23	3	2	_	4	1	Т	2	0	0	0	0	П	-	1	0
320	2	0	11	18	32	7	ŭ	33	7	1	0	1	2	0	0	0	0	0	1	1
330	1	7	16	23	36	10	4	4	6	1	4	7	7	0	7	0	0	0	0	1
340	2	1	11	23	43	16	IJ	rO	12	က	_	2	rO	2	0	-	2	0	0	0
350	4	1	10	21	29	24	12	3	11	က	П	4	12	1	1	_	4	П	1	1
360	5	-	14	32	62	23	11	9	17	4	П	9	13	П	-	П	က	0	1	
370	4	0	15	31	47	18	12	6	13	9	6	က	18	_	1	9	7	3	4	4
380	-	7	10	27	62	21	12	ro	19	7	n	10	22	0	73	-	7	က	4	က
390	2	7	16	18	43	15	6	œ	13	Ŋ	7	v	34	1	7	Ŋ	19	7	4	ro
400	0	0	10	20	49	10	3	4	7	4	9	12	20	1	0	4	16	D	4	2
410	0	1	ro	15	24	9	6	2	4	rO	2	n	16	0	ъ	4	13	0	4	ro
420	0	1	-	6	13	ro	ro.	2	1	1	3	2	œ	0	2	2	4	3	ro	1
430	0	0	_	2	9	4	3	0	0	1	П	3	3	0	0	_	က	2	2	0
440	0	0	2	3	4	3	0	0	0	0	0	2	2	0	1	-	ro	0	0	0
450	0	0	0	0	П	4	1	1	1	0	0	1	0	0	0	2	3	0	1	0
460	0	0	0	0	4	2	0	0	0	0	0	0	П	0	0	0	0	0	0	0
470	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0
480	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
490	0	0	0	0	0	0	0	0	0	0	0	0	П	0	0	0	0	0	0	0

```
table Captures: extracts the monthly captures each year
#
#
    table Gear: extacts the number of HBC capture each year by gear type.
#
#
#
    tableLf: extracts the catch at length (10 mm bins) each year.
#
#
    tableMarks: marks released and recaptured by GILL and HOOP nets
#
                                                                                     #
require (ggplot2)
\# require(hacks) \#deprecated
source ("../read.admb.R")
require (reshape)
require(Hmisc)
require (PBS modelling)
        <- "raw2012data.csv"
dfile
         < seq (50, 600, by=10)
xbin
         <- seq(1,12,by=3)
seas
# Read data file and create data.frame object for use. Returns (DF)
         <- function (dfile)
get .DF
    DF
             <- read.csv(dfile, header=T)
             <- as.POSIXct(strptime(as.character(DF$START_DATETIME), "%m/%d/%Y"))
    t1
   DF$DATE <- t1
    DF$YEAR <- as.numeric(format(DF$DATE, "%Y"))
   DF$MONTH <- as.numeric(format(DF$DATE, "%m"))
   DF$TAGNO <- DF$TH_ENCOUNTER_RANKING
             <- DF$TOTAL_LENGTH
   DF$TL
   DF$XI
             <- xbin [findInterval (DF$TL, xbin)]
             <- findInterval (DF$MONTH, seas)
   DF$QTR
    # Read in Gear codes and convert to Gear Group
    gearType <- read.table("gearCode.txt", header=T, sep="\t")</pre>
              <- pmatch(DF$GEAR_CODE, gearType[,1], duplicates.ok=TRUE)</pre>
    DF$GROUP <- gearType[gid, 2]
    # Sort data frame by date the tagno, add recapture field
              <- DF[order(DF$DATE, DF$TAGNO), ]
   DF$RECAP <- duplicated (DF$TAGNO)
    return (DF)
}
# Construct growth increment data.frame for estimating growth using Laslett model.
getGrowthIncrement <- function (DF)
```

```
fnGI
              <- function (idNum)
    {
        sDF <- subset(DF,DF$TAGNO=idNum, select=c(DATE,TL,YEAR,RIVER_CODE))
         if(dim(sDF)[1]==1) return(NULL)
        sDF \leftarrow sDF[order(sDF[,1]),]
         ni
              \leftarrow dim(sDF)[1]
         dt
              \leftarrow as.integer (sDF[ni, 1] - sDF[1, 1]) # days at large
         if(dt \le 365 \mid dt > 730) return(NULL)
                                                     # at least 1-year at liberty
              \leftarrow sDF[1, 2]
                                                        # length at tagging
         11
              <- sDF[ni, 2]
         12
                                                        # length at recapture
         yr
              \leftarrow sDF[1, 3]
                                                        # release year
         t l
              \leftarrow sDF[1, 4]
                                                        # release location
         dl
              < (12-l1)/(dt/365.25)
                                                        # annual growth increment
         return (\mathbf{c}(yr, tl, ll, ll, \mathbf{dt}, round(dl, 2)))
    idNum
              <- unique (DF$TAGNO)
    \operatorname{TRdata}
              <- data.frame()
    for(i in idNum) TRdata <- rbind(TRdata, fnGI(i))</pre>
    colnames (TRdata) <- c ("YEAR", "RIVER", "L1", "L2", "DT", "DL")
    TRdata <- na.omit(TRdata)
                                      #Remove missing recapture measurements
    ii <- which (TRdataDL <= -10) #Remove records with growth increments < -5 \text{ mm}
    \#TRdata\$RIVER[TRdata\$RIVER==1] \leftarrow "COR"
    \#TRdata\$RIVER[TRdata\$RIVER==2] < - "LCR"
    return (as.data.frame (TRdata[-ii,]))
}
# Annual growth increment data based on captures and recaps in subsequent year.
annualGrowthIncrement <- function (DF)
    \# Goal: for each year compute the length-at-capture & growth increment into
    #
             the following year.
    # PSEUDOCODE:
    \#- get vector of unique years.
    \#- find unique individuals recaptured year i and year i+1
    \#- get TL from each capture event
    ATR
           <- data.frame()
           <- unique (DF$YEAR)
    for (i in iyr)
        iDF <- rbind(subset(DF,DF$YEAR=i), subset(DF, DF$YEAR=i+1))
        iDF <- iDF [order (iDF$TAGNO, iDF$DATE), ]
         irc <- unique(iDF$TAGNO[duplicated(iDF$TAGNO)])
         for (j in irc)
             ijDF <- subset(iDF, iDF$TAGNO=j)
```

```
<- dim(ijDF)[1]
                  <- as.integer(ijDF$DATE[nj] - ijDF$DATE[1])
             dt
                  <- ijDF$TL[1]
             11
                  <- ijDF$TL[nj]
             12
             loc <- ijDF$RIVER_CODE[1]
             ATR <- rbind(ATR, c(YEAR=i, RIVER=loc, TAGNO=j, l1=l1, l2=l2, dt=dt))
    colnames (ATR)=c ("YEAR", "RIVER", "TAGNO", "11", "12", "dt")
    return (ATR)
}
# Get captures & recaptures by length interval
getCaptureByLength <- function(DF)
    xbin
             <- seq (50, 600, by=5)
    nbin
             <- length(xbin)
             <- length (unique (DF$YEAR))
    nyr
             \leftarrow matrix (0, \text{nrow}=\text{nyr}, \text{ncol}=\text{nbin}-1)
    ctx
    fnCH
             <- function (idNum)
    {
        sDF <- subset(DF, DF$TAGNO=idNum, select=c(YEAR,MONIH,RIVER_CODE,TL))
        sDF <- cbind(sDF, RECAP=FALSE)
        sDF <- sDF [order (sDF$YEAR, sDF$MONTH), ]
        sDF \leftarrow sDF[!duplicated(sDF,MARGN=c(1,2)),]
        sDFRECAP[-1] \leftarrow TRUE
        sDF$TL <- factor(sDF$TL, levels=xbin)
         \mathbf{t} _TL
                 <- table (sDF$TL)
         ctx
                 \leftarrow ctx + t_TL
         return(sDF)
}
# Table of monthly captures by year
tableCaptures <- function(DF)
    # Table of total HBC captures by MONTH YEAR
    names(DF) <- toupper(names(DF))
               \leftarrow \text{melt}(DF, id=c("YEAR","MONIH"), na.rm=F)
    DFm
               <- cast (DFm, YEAR~MONTH, length , subset=variable=="TL"</pre>
    tx
                         , margins=c("grand_row", "grand_col"))
               <- "../../TABLES/LSMR/tableCaptureNumbers.tex"</pre>
    fn
               "Number_of_fish_measured_by_year_and_month,_sampled_by_all_gears
    cap
```

```
\verb| Lucus | Lucus | \verb| Lucus | Lucus | \verb| Lucus | Lu
                                     <- \mathbf{c} ("", "MONTH")
           cgrp
                                     \leftarrow c(1, 13)
           ncgrp
                                     <- latex(tx, file=fn, rowname=NULL, caption=cap</pre>
           d1
                                               , size="footnotesize",cgroup=cgrp, n.cgroup=ncgrp
                                               , label="table: Captures")
}
# Table of annual captures by gear type
tableGear <- function(DF)
          names(DF) <- toupper(names(DF))
                                     <- melt (DF, id=c("YEAR","GROUP"), na.rm=FALSE)</pre>
          DFm
                                     <- cast (DFm, YEAR~GROUP, length, subset=variable="TL"
           tx
                                                             , margins=c("grand_row", "grand_col"))
           fn
                                     <- "../../TABLES/LSMR/tableCaptureGear.tex"</p>
                                      "Number_of_fish_captured_by_gear_type_listed_in_the"
           cap
                                     <- paste(cap, "_GCMRC_database_for_each_year.")</pre>
           cap
                                     < \mathbf{c} ("", "YEAR")
           cgrp
                                     \leftarrow c(1, 10)
           ncgrp
           d1
                                      <- latex(tx, file=fn, rowname=NULL, caption=cap</pre>
                                               , \  \, \mathtt{size} \texttt{="footnotesize"} \,, \mathtt{cgroup} \texttt{=} \mathtt{cgrp} \,\,, \  \, \mathtt{n.cgroup} \texttt{=} \mathtt{ncgrp}
                                               , label="table:Gear")
}
# Table of number of TRIP_IDs and CPUE per year
tableEffort <- function(DF)
          names(DF) <- toupper(names(DF))
                                     <- melt (DF, id=c ("YEAR", "GROUP"), na.rm=FALSE)
                                     <- cast (DFm, YEAR<sup>*</sup>., function(x) length(unique(x))
           tx
                                                             , subset=variable=="TRIP_ID" , margins=TRUE
           td
                                     <- cast (DFm, YEAR<sup>*</sup>., function(x) length(unique(x))
                                                             , subset=variable=="DATE", margins=TRUE)
                                     <- cast (DFm, YEAR~GROUP, function(x) length(unique(x))
           tn
                                                             , subset=variable=="START_DATETIME"
                                                             margins=TRUE )
           t1
                                     <- cast (DFm, YEAR~GROUP, length, subset=variable="TL"
                                                             , margins=TRUE)
          # Effort table
                                     \leftarrow cbind(tx, td[,-1],tn[,c(10, 6, 5)]
           Effort
                                                               \operatorname{tn}[1,10] - \operatorname{rowSums}(\operatorname{tn}[1,\mathbf{c}(6,5)]), \operatorname{tl}[1,\mathbf{c}(6,5)]
                                                               ,round(tl[,c(6,5)]/tn[,c(6,5)], 2))
          colnames (Effort) <- c ("Year", "Trips", "Days", "Sets", "Hoop"
```

```
"Tramel", "Other", "Hoop_Ct", "Tramel_Ct"
                        ,"Hoop_CPUE","Tramel_CPUE")
              <- "../../TABLES/LSMR/tableEffort.tex"</pre>
    fn

<- "Number_of_trips,__days_fished,__unique_sets,</pre>
____chub_in_hoop_nets_and_tramel_nets,_and_the_corresponding
____arithmatic_CPUE_for_each_gear._Note_that_these_CPUE_trends_should
______not_be_used_as_a_relative_abundance_index_because_zero_catch_of_HBC
\verb| Lucuru | have been excluded from the effort data."
             <-latex (Effort [-25,], file=fn, caption=cap
                , label="table: Effort", size="scriptsize", rowname=NULL)
}
# Table of annual captures by gear type
tableLf <- function(DF)
    names(DF) <- toupper(names(DF))
              DFm
                  <- cast (DFm, YEAR~XI, length, subset=variable="TL")
        tx
    rtx
              <- cast (DFm,YEAR~XI|GROUP, length , subset=variable="TL")</pre>
              \leftarrow c("GILL", "HOOP") # Add gear group here to plot results
    gear
    plot Bubbles(t(tx[,c(-1,-48)]),xval=1989:2011,yval=sort(unique(DF$XI,na.rm=T))
                , size = 0.15, hide 0=TRUE, frange = 0.01
                , xlab="Year", ylab="Length_(mm)")
    rect (1988, 100, 2013, 150, col=colr (4, 0.2), border=NA)
              <- "../../FIGS/LSMR/fig:CaptureLFbubbles.pdf"</pre>
    dev.copy2pdf(file=fig)
    fn
              <- "../../TABLES/LSMR/tableCaptureLF.tex"
              <- "Number_of_fish_captured_by_length_by_all_gear_types</pre>
           ....listed_in_the_GCMRC_database_for_each_year."
             <\!\!- \mathbf{c}("","YEAR")
    cgrp
              \leftarrow c(1, 22)
    ncgrp
    LI
              <- t(tx)
    d1
              <- latex(LI, file=fn, caption=cap
                 , \ \operatorname{size} = "\operatorname{tiny"}, \operatorname{cgroup} = \operatorname{cgrp}, \ \operatorname{n.cgroup} = \operatorname{ncgrp}
                  , lable="table:Lf")
    # use sed to make sideways table
    sed.exp <- paste("sed_-i~_'s/table/sidewaystable/g'_", fn)
    system(sed.exp)
        return (rtx)
}
# Table of marks released and recaptured each year (RECAP=FALSE)
```

```
tableMarks <- function(DF)
     names(DF) <- toupper(names(DF))
                   <- melt (DF, id=c ("YEAR", "MONIH", "XI", "RECAP", "GROUP"), na.rm=TRUE)
                   <- cast(DFm,YEAR~XI~RECAP|GROUP, length, subset=c(variable=="TL"), fill=0)</pre>
     tx
                   \leftarrow c("GILL", "HOOP") # Add gear group here to plot results
     gear
     # Barplots of marks released and recaptured.
     fn.plot <- function(x)
           par(mfcol=c(6, 4), mar=c(0.5, 1, 0.5, 1), oma=c(4, 4, 1, 1))
                <- \dim(x)[1]
           for(i in 1:n)
                 if(!i%%6 || i==n)par(xaxt="s") else par(xaxt="n")
                 \label{eq:condition} \mathbf{i}\,\mathbf{f}\,(\,\mathbf{i}\!\!=\!\!\!-\!\!n)\,\mathrm{lg}\,\mathrm{d}\,\mathbf{t}\,\mathbf{x}\,\mathbf{t}\!\!=\!\!\!\mathbf{c}\,(\,^{\mathtt{m}}\!\!\mathrm{Mark}^{\mathtt{m}}\,,\,\,^{\mathtt{m}}\!\!\mathrm{Recap}^{\mathtt{m}}\,) \quad \mathbf{else} \quad \mathrm{lg}\,\mathrm{d}\,\mathbf{t}\,\mathbf{x}\,\mathbf{t}\!\!=\!\!\!\mathrm{NULL}
                 \mathbf{barplot}(\mathbf{t}(\mathbf{x}[\mathbf{i}, ,]), \mathbf{xlim} = \mathbf{c}(0, \mathbf{length}(\mathbf{xbin}))
                            , legend.text = lgdtxt
                            , args.legend=list(bty="n", cex=0.75))
                 title ( main=rownames(x)[i], font.main=2, cex.main=0.75, line=-1)
           mtext(c("Length_(mm)", "Frequency"), side=c(1, 2), outer=T, line=2)
           fig=paste("../../FIGS/LSMR/fig:MarksAtLength", gear[jj], ".pdf", sep="")
           print(fig)
           jj \ll -jj+1
           dev.copy2pdf(file=fig)
     }
                 <- c("Mark", "Recapture")
     event
                 <- c ("Number_of_new_marks_released_by_year_and_size_interval_"</p>
     cap
                        "Number_of_recaptured_marks_by_year_and_size_interval_")
                 <- "../../TABLES/LSMR/"
     fdir
                   < \mathbf{c} ("YEAR")
     cgrp
     fn.write <- function(x)
           for (i in 1:2)
                 \operatorname{ncgrp} \leftarrow \mathbf{c}(\dim(\mathbf{x})[1])
                        <- paste(cap[i], "(", gear[jj], ").", sep="")</pre>
                        <- paste(fdir, "table:", event[i], ":", gear[jj], ".tex", sep="")</pre>
                 fi
                LI
                        \leftarrow \mathbf{t}(\mathbf{x}[, , i])
                        <- latex(LI, file=fi, caption=pcap, size="tiny"</pre>
                d1
                              , cgroup=cgrp, n.cgroup=ncgrp
                                label=paste("table:", event[i], "_", gear[jj], sep="")
                # use sed to replace table with sidewaystable
```

```
sed.exp <- paste('sed_-i~_"s/table/sidewaystable/g", fi)
                                        system(sed.exp)
                           jj <<- jj+1
                          print(jj)
             }
             ii = names(tx) \%in\% gear
                                          <<-1
             lapply (tx [ii], fn.plot)
             jj ≪- 1
             lapply (tx [ii], fn.write)
                          return(tx)
    Create LSMR datafile VPA type
write.LSMRdatafileVPA <- function(DF, ...)
                          \# In this case write annual data of marks-at-large, recaptures
                          # in the following calendar year. It will be necessary to remove
                          # duplicates of individuals captured multiple times in each year.
                          # Remove duplicates by combining YEAR and TAGNO and use duplicated
                          # to get boolean index.
                          XX <- as.numeric(paste(DF$YEAR,DF$TAGNO, sep=""))
                          ii <- duplicated (XX)
                          iDF <- DF[!ii ,]
                          \# Sort data frame by date the tagno, add recapture field
                                                 <- iDF [order (iDF$DATE, iDF$TAGNO), ]
             iDF$RECAP <- duplicated(iDF$TAGNO)
                          # Melt dataframe
                          DFm <- melt(iDF, id=c("YEAR", "MONIH", "QTR", "TRIP_ID", "RECAP", "XI", "GROUP"), na.rm=
                          \# Cast DFm to extract catch-at-length, marks-at-length, recaps-at-length
                                     <- cast (DFm, YEAR ~ XI | GROUP, length, subset=variable=="TL", add.missing=TRUE)</pre>
                                      <- cast (DFm, YEAR ~ XI ~ RECAP|GROUP, length, subset=variable="TL", add.missin
                          Τ
                          fn <- function(x)length(unique(x))
                                       <- cast (DFm[DFm$YEAR!=2012,],YEAR*GROUP, fn , subset=variable=="START_DATETIME" ,</pre>
                          # Ensure R matrix and M matrix have the same dimensions at C
                          #ii <- colnames (C$HOOP) %in% colnames (R$HOOP)
                          \#tmp \leftarrow C\$HOOP; tmp[, ii] \leftarrow R\$HOOP; tmp[, !ii] \leftarrow 0; R\$HOOP \leftarrow tmp[, !ii
                          #ii <- colnames (C$GILL) %in% colnames (R$GILL)
                          \#tmp \leftarrow C\$GILL; tmp[, ii] \leftarrow R\$GILL; tmp[, !ii] \leftarrow 0; R\$GILL \leftarrow tmp[, !ii]
```

```
# Plot the data to be used
graphics.off()
quartz (width=9, height=6.5)
plotSidebars(t(C$HOOP), scale=2, cpro=TRUE);
dev.copy2pdf(file="../../FIGS/LSMR/DATA/fig:Hoop_C_Bar.pdf", width=9, height=6.5)
plotSidebars(t(T$HOOP[,,1]), scale=2, cpro=TRUE);
dev.copy2pdf(file="../../FIGS/LSMR/DATA/fig:Hoop_M_Bar.pdf", width=9, height=6.5)
plotSidebars(t(T$HOOP[,,2]), scale=2, cpro=TRUE);
dev.copy2pdf(file="../../FIGS/LSMR/DATA/fig:Hoop_R_Bar.pdf", width=9, height=6.5)
plotSidebars(t(C$GILL), scale=2, cpro=TRUE);
dev.copy2pdf(file="../../FIGS/LSMR/DATA/fig:Gill_C_Bar.pdf", width=9, height=6.5)
plotSidebars(t(T$GILL[,,1]), scale=2, cpro=TRUE);
dev.copy2pdf(file="../../FIGS/LSMR/DATA/fig:Gill_M_Bar.pdf", width=9, height=6.5)
plotSidebars(t(T$GILL[,,2]), scale=2, cpro=TRUE);
dev.copy2pdf(file="../../FIGS/LSMR/DATA/fig:Gill_R_Bar.pdf", width=9, height=6.5)
# Write the data file.
dfn <- "../../ADMB/srcLSMR/HBC2011_ANNUAL.dat"
gr <- c("HOOP", "GILL")
# Get index for gears
ic <- names(C) \%in\% gr
ie <- names(E) %in% gr
write("#Data_for_HBC_1989:2011", file=dfn)
write("#syr, _nyr, _dt", file=dfn, append=TRUE)
write(c(1989, 2011, 1), file=dfn, append=TRUE)
write("#Number_of_gears", file=dfn, append=TRUE)
write(length(gr), file=dfn, append=TRUE)
xbin = as.numeric(colnames(C$HOOP)[-1])/10 #units cm
write("#nbin", file=dfn, append=TRUE)
write(length(xbin), file=dfn, append=TRUE)
write("#xbin", file=dfn, append=TRUE)
write (xbin, file=dfn, append=TRUE)
write("#Array_dimensions_(rows,__cols)_for_each_gear_in_(C_M_R)", file=dfn, appendent
write.table(matrix(unlist(lapply(C[ic],dim)),nrow=2,byrow=TRUE),file=dfn,row.names
# effort data (# of sets)
write("#Number_of_sets_by_gear_for_each_time_step", file=dfn, append=TRUE)
lapply (E[ie], write, file=dfn, append=TRUE)
#order is GILL then HOOP
write("#Captures_by_year_(row)_and_length_(col)", file=dfn, append=TRUE)
lapply(C[ic], write.table, file=dfn, row.names=FALSE, col.names=FALSE, quote=FALSE, appears appears appears and appears appe
write("#New_Marks_by_year_(row)_and_length_(col)", file=dfn, append=TRUE)
write.table(T$GILL[, , 1], file=dfn, append=TRUE, quote=FALSE, row.names=TRUE, col
write.table(T$HOOP[, , 1], file=dfn, append=TRUE, quote=FALSE, row.names=TRUE, col
\#lapply(T/ic), write.table, file=dfn, row.names=FALSE, col.names=FALSE, quote=FALSE, apple
```

```
write("#Recaps_by_year_(row)_and_length_(col)", file=dfn, append=TRUE)
               \#lapply(T[ic][, , 2], write.table, file=dfn, row.names=FALSE, col.names=FALSE, quote=FALSE, distributed for the second 
               write("#End_of_file", file=dfn, append=TRUE)
               write(999, file=dfn, append=TRUE)
}
# Create LSMR datafile
write.LSMRdatafile <- function(DF, ...)
               dfn <- "../../ADMB/srcLSMR/HBC2011qtr.dat"
               gr <- c("HOOP", "GILL")
               # Melt dataframe
              DFm <- melt (DF, id=c ("YEAR", "MONIH", "QTR", "TRIP_ID", "RECAP", "XI", "GROUP"), na.rm=TI
              \# Cast DFm to extract Catch-at-length, Marks-at-length
                     \mathbf{C}
                     <- cast(DFm, YEAR+QTR~GROUP, function(x) length(unique(x)), subset=variable=""ST</pre>
                     \leftarrow E[1:92,]
               # Plot the data to be used
               plot . b <- function(X)</pre>
                              yr \leftarrow seq(1989, 2011.75, by=0.25)
                              plot Bubbles(t(X[,-1:-2]), xval=yr, yval=colnames(X[,-1:-2]), prettyaxis=TRUE
                                                   , hide0=T, size=0.15, frange=0.01, cpro=FALSE, powr=1
                                                   , xlab="Year", ylab="Size_class_(Total_Length_mm)")
               graphics.off()
               quartz (width=9, height=6.5)
               plot.b(C$HOOP); dev.copy2pdf(file=".../.../FIGS/LSMR/DATA/fig:Hoop_C.pdf", width=9,
               plot.b(M$HOOP); dev.copy2pdf(file="../../FIGS/LSMR/DATA/fig:Hoop_M.pdf", width=9,
               \textbf{plot}.\,b\,(\textbf{R\$HOOP})\,;\,\,\,\textbf{dev}.\,copy2pdf(\,\,\textbf{file}=".../.../FIGS/LSMR/DATA/\,fig:Hoop\_R.\,pdf"\,,\,\,width=9,
               plot.b(C$GILL); dev.copy2pdf(file="../../FIGS/LSMR/DATA/fig:Gill_C.pdf", width=9,
               \textbf{plot}.\,b\,(\texttt{M\$GILL}\,)\,;\,\,\,\textbf{dev}.\,copy2pdf\,(\,\,\textbf{file}="\ldots/\ldots/FIGS/LSMR/DATA/\,fig:Gill\,\_M.\,pdf"\,,\,\,width=9,
               plot.b(R$GILL); dev.copy2pdf(file="../../FIGS/LSMR/DATA/fig:Gill_R.pdf", width=9,
               barplot (rbind (E$HOOP, E$GILL), beside=T, names. arg=paste (yr)
                            , xlab="Year", ylab="Effort_(number_of_sets)",
                             , legend.text=c("Hoop", "Tramel_net"), args.legend=list(x="top", bty="n"))
              dev.copy2pdf(file=".../.../FIGS/LSMR/DATA/fig:Effort.pdf", width=9, height=6.5)
```

```
ic <- names(C) \%in\% gr
        im <- names(M) %in% gr
            <- names(R) %in% gr
           <- names(E) \%in\% gr
        \# Ensure R matrix and M matrix have the same dimensions at C
         ii <- colnames (C$HOOP) %in% colnames (R$HOOP)
         tmp \leftarrow C$HOOP; tmp[, ii] \leftarrow R$HOOP; tmp[, !ii] \leftarrow 0; R$HOOP \leftarrow tmp
         ii <- colnames (C$GILL) %in% colnames (R$GILL)
         tmp \leftarrow C\$GILL; tmp[, ii] \leftarrow R\$GILL; tmp[, !ii] \leftarrow 0; R\$GILL \leftarrow tmp
         write("#Data_for_HBC_1989:2011", file=dfn)
         write ("#syr, _nyr, _dt", file=dfn, append=TRUE)
         write(c(1989, 2011, 1/4), file=dfn, append=TRUE)
         write("#Number_of_gears", file=dfn, append=TRUE)
         write(length(gr), file=dfn, append=TRUE)
         xbin = as.numeric(colnames(C$HOOP)[-1:-2])/10 #units cm
         \mathbf{write} ("\# \mathrm{nbin"} \;,\;\; \mathbf{file} = \mathrm{dfn} \;,\;\; \mathbf{append} = \mathsf{TRUE})
         write(length(xbin), file=dfn, append=TRUE)
         write ("#xbin", file=dfn, append=TRUE)
         write(xbin, file=dfn, append=TRUE)
         write("#Array_dimensions_(rows,__cols)_for_each_gear_in_(C_M_R)", file=dfn, appendent
         write.table(matrix(unlist(lapply(C[ic],dim)),nrow=2,byrow=TRUE),file=dfn,row.names
        # effort data (# of sets)
         write("#Number_of_sets_by_gear_for_each_time_step", file=dfn, append=TRUE)
         lapply (E[ie], write, file=dfn, append=TRUE)
        #order is GILL then HOOP
         write("#Captures_by_year_(row)_and_length_(col)", file=dfn, append=TRUE)
         lapply(C[ic], write.table, file=dfn, row.names=F, col.names=F, quote=F, append=T)
         write("#Marks_by_year_(row)_and_length_(col)", file=dfn, append=TRUE)
         lapply(M[im], write.table, file=dfn, row.names=F, col.names=F, quote=F, append=T)
         write("#Recaps_by_year_(row)_and_length_(col)", file=dfn, append=TRUE)
         lapply(R[ir], write.table, file=dfn, row.names=F, col.names=F, quote=F, append=T)
         write("#End_of_file", file=dfn, append=TRUE)
         write (999, file=dfn, append=TRUE)
}
# Read in data frames and obtain tag-recapture data
```

Get index for gears

```
if(!exists("DF")) DF <- get.DF(dfile)</pre>
if(!exists("TR"))
   TR <- getGrowthIncrement (DF)
    print (head (TR))
    TR <- TR[order(TR$YEAR,TR$RIVER),]
    write(dim(TR)[1], file="HBC_Tag_RecaptureII.dat")
    write(c("#YEAR","RIVER","L1","L2","DT","DL"), ncol=6,
             file="HBC_Tag_RecaptureII.dat", append=TRUE)
    write.table(TR, file="HBC_Tag_RecaptureII.dat",row.names=F,
            col.names=F, append=TRUE)
    fig=".../.../FIGS/LSMR/fig:GrowthIncrements.pdf"
    plot . gi (TR, file=fig)
if(!exists("ATR"))
   ATR <- annualGrowthIncrement(DF)
         < na.omit (ATR[ATR$dt>365, -3])
    O$dl \leftarrow round((O$12-O$11)/(O$dt/365.25), 2)
    print (head (O))
    fn <- "HBC_Annual_GI.dat"
    write(dim(O)[1], file=fn)
    write(c("#YEAR","RIVER","11","12","dt","dl"), ncol=6, file=fn, append=TRUE)
    write.table(O, file=fn, row.names=FALSE, col.names=FALSE, append=TRUE)
    fig <-"../../FIGS/LSMR/fig: AnnualGrowthIncrements.pdf"
    plot . atr(O, file=fig)
}
# Plotting routines
plot.gi <- function(TR, file=NULL, ...)</pre>
    p \leftarrow ggplot(TR, aes(L1,DL))
    p<-p + geom_point(aes(colour=factor(RIVER), levels=2),alpha=0.5)
    p<-p + stat_quantile(alpha=0.7, col="black")+facet_wrap("YEAR)
    p<−p + labs(x="Release_Length_(mm)", y="Annual_growth_increment_(mm)")
    p<-p + labs(colour="River")+theme_grey(base_size = 12, base_family = "")
    if(!is.null(file))
        dev.copy2pdf(file=file)
    return(p)
}
plot.atr <- function(ATR, file=NULL, ...)</pre>
         < ATR[ATR$dt>365, ]
```

```
O$gi <- (O$12-O$11)/(O$dt/365.25)
         <- ggplot(O, aes(l1, gi))
         <- p + geom_point(aes(color=factor(RIVER), levels=2), alpha=0.5)</pre>
         <- p + stat_quantile(alpha=0.7, col="black") + facet_wrap(~YEAR)</pre>
         <- p + labs(colour="River")+theme_grey(base_size = 12, base_family = "")</pre>
    р
    if(!is.null(file))
        dev.copy2pdf(file=file)
    return(p)
}
plotSidebars <- function(z, scale=1, cpro=FALSE, frange=0.05, ...)
        plot.new()
        # set up graphical parameters
        par(mar=c(1, 1, 1, 1), oma=c(1, 1, 1, 1)*4, xaxs='r')
        dz \leftarrow dim(z)
        dn <- dimnames(z)
        if(is.character(names(dn)))
        {
                 lbl <- rev(names(dn))
        }
        else
        {
                 lbl <- c("YEAR", "LENGTH")
        ny = nr = dz[1]
        nx = nc = dz[2]
        y = as.numeric(unlist(dn[1]))
        x = as.numeric(unlist(dn[2]))
        yl = extendrange(y, f=frange)
        xl = extendrange(x, f=frange)
        par(usr=c(xl, yl))
        if (cpro)
        {
                 zs = apply(z, 2, sum, na.rm=TRUE)
                 zz = sweep(z, 2, zs, "/")
        else
        {
                 zz = z
        }
        box()
        mtext(lbl, side = 1:2, outer = TRUE, line = 2)
```

```
axis(1); axis(2)
         scale = scale/diff(range(zz,na.rm=TRUE))
         for ( i in 1:nx )
                   dy = 0.5 * diff(y[1:2])
                   xx = as.vector(rbind(y-dy, y+dy))
                   xx = c(min(xx), xx, max(xx))
                   yy = as.vector(rbind(zz[,i], zz[,i]))*scale
                   yy = \mathbf{c}(0, yy, 0)
                   \mathbf{polygon}(\mathbf{x}[\mathbf{i}] - \mathbf{yy}, \mathbf{xx}, \mathbf{col} = \mathbf{colr}(\mathbf{"grey"}, 0.5))
         }
}
PBSplotSideBars \leftarrow \textbf{function} \ (z \,, \ xval = FALSE, \ yval = FALSE, \ dnam = FALSE, \ rpro = FALSE,
    cpro = FALSE, rres = FALSE, cres = FALSE, powr = 0.5, size = 0.2,
    lwd = 1, clrs = c("black", "red", "blue"), <math>hide0 = FALSE,
    frange = 0.1, prettyaxis = FALSE, ...)
{
    if (is.data.frame(z)) {
         use = !sapply(z, is.factor) & sapply(z, is.numeric)
         z = z[, use, drop = FALSE]
         if (ncol(z) == 0) {
              showAlert ("data_frame_not_useable")
              return()
         z = as.matrix(z)
    dz \leftarrow dim(z)
    ny = ny1 = dz[1]
    nx = nx1 = dz[2]
    if (length(dz) > 2) {
         showAlert ("Input_matrix_must_have_only_2_dimensions")
         return()
    }
    xval1 <- 1:nx
    yval1 <- 1:ny
    if (mode(xval) == "logical") {
         if (xval[1]) {
              xval1 \leftarrow z[1,]
              ny1 \leftarrow ny - 1
    if (mode(yval) == "logical") {
         if (yval[1]) {
              yval1 \leftarrow z[, 1]
              nx1 \leftarrow nx - 1
    xind \leftarrow (nx - nx1 + 1):nx
    x2 = xlabel = xval1[xind]
```

```
yind \leftarrow (ny - ny1 + 1):ny
y2 = ylabel = yval1[yind]
if ((mode(xval) != "logical") & (length(xval) == nx1)) {
    if (mode(xval) == "numeric")
         x2 = xval
    xlabel = xval
if ((mode(yval) != "logical") & (length(yval) == ny1)) {
    if (mode(yval) == "numeric")
         y2 = yval
    ylabel = yval
zz \leftarrow array(z[yind, xind], dim = c(length(yind), length(xind)),
    dimnames = dimnames(z[yind, xind, drop = FALSE]))
dots = list(...)
xlab = dots xlab
if (is.null(xlab))
    xlab = ""
ylab = dots$ylab
if (is.null(ylab))
    ylab = ""
if (dnam & !is.null(dimnames(zz))) {
    warn = options() $warn
    options (warn = -1)
    if (!is.null(dimnames(zz)[[2]])) {
         xpos = try(as.numeric(dimnames(zz))[[2]]), silent = TRUE)
         if (all(is.na(xpos)))
             xlabel = dimnames(zz)[[2]]
         else if (!any(is.na(xpos)) \& all(diff(xpos) > 0)
              \mathbf{all}(\mathbf{diff}(\mathbf{xpos}) < 0))) {
             xlabel = as.character(xpos)
             x2 = xpos
         }
    if (!is.null(dimnames(zz)[[1]])) {
         ypos = try(as.numeric(dimnames(zz)[[1]]), silent = TRUE)
         if (all(is.na(ypos)))
             ylabel = dimnames(zz)[[2]]
         else if (!any(is.na(ypos)) \& all(diff(ypos) > 0)
             \mathbf{all}(\mathbf{diff}(\mathbf{ypos}) < 0))) {
             ylabel = as.character(ypos)
             y2 = ypos
    options(warn = warn)
xx \leftarrow \mathbf{rep}(x2, each = \mathbf{length}(y2))
yy \leftarrow \mathbf{rep}(y2, \mathbf{length}(x2))
\min z \leftarrow \min(zz, na.rm = TRUE)
\max < -\max(zz, na.rm = TRUE)
if (rpro | cpro) {
```

```
if (minz < 0) {
         zz \leftarrow zz - minz
         \min z < 0
         \max < -\max(zz, na.rm = TRUE)
     }
if (rpro) {
     zs \leftarrow apply(zz, 1, sum, na.rm = TRUE)
     zz \leftarrow sweep(zz, 1, zs, "/")
if (cpro) {
     zs \leftarrow apply(zz, 2, sum, na.rm = TRUE)
     zz \leftarrow sweep(zz, 2, zs, "/")
if (rres) {
    zm \leftarrow apply(zz, 1, mean, na.rm = TRUE)
    zz \leftarrow sweep(zz, 1, zm, "-")
if (cres) {
    zm \leftarrow apply(zz, 2, mean, na.rm = TRUE)
    zz \leftarrow sweep(zz, 2, zm, "-")
zNA \leftarrow is.na(zz) \mid is.nan(zz) \mid is.infinite(zz)
zz[zNA] \leftarrow 0
z0 \leftarrow sign(zz) * abs(zz)^abs(powr)
z1 \leftarrow z3 \leftarrow z0
z1[z0 <= 0] <- NA
z3[z0 < 0 | z0 > 0] <- NA
z2 < -z0
z2[z0 >= 0] <- NA
za \leftarrow max(z0, na.rm = TRUE)
zb \leftarrow min(z0, na.rm = TRUE)
zM \leftarrow max(abs(z0))
sz1 \leftarrow max(za * size/zM, 0.001)
sz2 \leftarrow max(-zb * size/zM, 0.001)
evalCall\,(\,{\bf plot}\,\,,\  \, argu\,=\,\,{\bf list}\,(\,x\,=\,0\,,\ y\,=\,0\,,\  \, xlim\,=\,extendrange\,(\,x2\,,
     f = frange), ylim = extendrange(y2, f = frange), type = "n"
     axes = FALSE, xlab = xlab, ylab = ylab), ..., checkdef = TRUE,
     checkpar = TRUE
if (prettyaxis) {
     if (length(min(x2):max(x2)) \le 5)
         xshow = is.element(x2, x2)
     else xshow = is.element(x2, pretty(x2, n = 10))
    yshow = is.element(y2, pretty(y2, n = 10))
else {
     xshow = rep(TRUE, length(x2))
    yshow = rep(TRUE, length(y2))
if (!all(xshow))
     axis(1, at = x2[!xshow], labels = FALSE, tcl = ifelse(is.null(dots$tcl),
```

```
par()$tcl, dots$tcl)/3)
    if (!all(yshow))
        axis(2, at = y2[!yshow], labels = FALSE, tcl = ifelse(is.null(dots$tcl),
            par()$tcl, dots$tcl)/3)
    evalCall(axis, argu = list(side = 1, at = x2[xshow], labels = xlabel[xshow]),
        \dots, checkpar = TRUE)
    evalCall(axis, argu = list(side = 2, at = y2[yshow], labels = ylabel[yshow]),
        \dots, checkpar = TRUE)
    if (!hide0 && !all(is.na(z3))) {
        evalCall(symbols, argu = list(x = xx, y = yy, circles = as.vector(z3),
            inches = 0.001, fg = clrs [3], lwd = lwd, add = TRUE),
            \dots, checkpar = TRUE)
    if (!all(is.na(z2))) {
        evalCall(symbols, argu = list(x = xx, y = yy, circles = as.vector(z2),
            inches = sz2, fg = clrs[2], lwd = lwd, add = TRUE),
            \dots, checkpar = TRUE)
    if (!all(is.na(z1))) {
        evalCall(symbols, argu = list(x = xx, y = yy, squares = as.vector(z1),
            inches = sz1, fg = clrs[1], lwd = lwd, add = TRUE),
            \dots, checkpar = TRUE)
    box()
    invisible(z0)
}
```

D Size Transition Matrix from Mark-Recapture data

There is an alternative method for independently constructing annual length transition matrix based on individual capture-recapture information that incorporates both parametric uncertainty and measurement error. The alternative method of constructing length-based transition matrices can be used as an alternative to internally estimating growth parameters, rather than jointly estimating them and introducing addition parameter confounding. This method was recently described by Hillary (2011). In short, the method first estimates von Bertalanffy growth parameters based on the length-at-release and growth increment information, growth parameters are then sampled from the joint posterior distribution, and for each posterior sample measurement error is then added to the predicted growth increment from x_j to $x_{j'}$ and the overlap between $(x_{j'} - x^*) \cap (x_{j'} + x^*)$ is calculated. To numerically approximate the length transition matrix, 1,000 samples from the joint posterior distribution are used to construct 1,000 length-transition matrixes $(P_{j,j'})$ and the mean values from the 1000 matrixes are used as the length transition matrix.

Growth parameters were estimated based on growth increment data from individual fish that were captured and recaptured in the subsequent year only. Initially, growth increment data based on length-at-tagging and the most recent capture event was used (i.e., the longest time at liberty) were going to be used; but, upon further inspection of the raw data there is evidence of changes in growth rates over time (see increasing negative slopes in Figure 7). To minimize the impact of changing growth rates, the growth increment data were based only on individuals that were captured and recaptured in the subsequent calendar year (Figure 8), hereafter referred to as annual growth increment data.

Figure 7: Growth increments by tag year for individually tagged humpback chub that have been at large for at least 1 year. Recapture events could have occurred in either river. Fitted lines correspond to the 5, 50 and 95 percentiles of the data.

Figure 8: Annual growth increments of humpback chub of all fish captured and recaptured in the following year. River 2 corresponds to fish tagged in the Little Colorado River, River 1 the Colorado River. Fitted lines correspond to the 5, 50 and 95 percentiles of the data.