Agenda

- 1. Counts as outcomes
- 2. The Poisson distribution and its assumptions
- 3. Log link function
- 4. Priors through a log link
- 5. Intercept-only Poisson regression in R
- 6. Poisson regression with covariates in R

Counts as outcomes

Kinds of counts

Average and An event that is technically a count, but **deviation** I the scale of process means we can treat it as continuous E.g. immigration rate, unemployment rate, etc.

Normal distribution

success

Trials and | Outcome could have happened at most **probability of** N times, our data measures how many times it did happen

E.g. individual unemployment, "how many days per week...", etc.

Binomial / Bernoulli distribution

occurrence

Rate of An event that has no (practical) upper limit, but tends to happen at a relatively low rate

E.g. number of friends, grocery stores in a neighbourhood, etc.

Poisson distribution

Poisson distribution

The *Poisson distribution* gives the probability that an event will happen k times in a particular unit of time or space if it has an average rate of occurrence of λ in that unit of time or space.

$$Prob(k|\lambda) = \frac{\lambda^{\kappa}e^{-\lambda}}{k!}$$

Poisson distribution

Single parameter

 λ is both the *mean* and the *variance* (s.d. squared) of the Poisson distribution

Poisson distribution

Poisson-distributed outcome

$$H_i \sim \operatorname{Pois}(\lambda)$$
 $f(\lambda) = a + \beta M_i$

Log link function

Log link function

Log link priors

Log link priors

Log link priors

Compresses lefthand side

Log link function maps $a \le 0$ into the of prior interval $\lambda \in [0,1]$

Expands righthand side of prior

Log link function maps $a \ge 6$ into the interval $\lambda \in [400,\infty)$

Prior depends on what is reasonable in data

Events you expect to be rare should use a narrower prior