EECS E6690: SL for Bio & Info Lecture 7: Boosting and Intro to Support Vector Machines

Prof. Predrag R. Jelenković Time: Tuesday 4:10-6:40pm 303 Seeley W. Mudd Building

Dept. of Electrical Engineering
Columbia University , NY 10027, USA
Office: 812 Schapiro Research Bldg.
Phone: (212) 854-8174
Email: predrag@ee.columbia.edu
URL: http://www.ee.columbia.edu/~predrag

Last lecture: Tree-based methods

Decision trees

▶ Models for both: regression and classification

- ► Idea:
 - Segment the predictor space (the set of possible values for X_1, \ldots, X_p) into distinct and non-overlapping regions, R_1, \ldots, R_j
 - Regression (classification): Average (majority vote) over segments

Advantages and Disadvantages of Trees

Interpretation vs. Prediction accuracy

Advantages:

- Easy to explain to people.Even easier than linear regression!
- Some believe that decision trees mirror human decision-making.
- Can be graphically displayed and interpreted by non-experts.

Disadvantages:

- Lower predictive accuracy than other methods.
- Not robust/sensitive: small changes in data can result in large changes in the final decision tree.

Example: Hitters

- Predict Salary based on Years and Hits
- Remove missing values and apply log-transform
- ► Salary encoding from low to high: blue green yellow red

Classification tree for Salary

- ► Intuitive interpretation
- Prediction

Last lecture: Segmentation

- In general, the regions can have any shape
- ► Focus on high-dimensional rectangles (boxes)
- ▶ Goal: Find $R_1, ..., R_J$ that minimize the RSS:

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2,$$

where \hat{y}_{R_j} is the mean response for the observations in R_j

- Computationally infeasible to consider all partitions
- ► Top-down, greedy approach: Binary splitting
- Stopping criteria (e.g., max number of observations in a box)

Last lecture: Cannot grow trees sequentially

- Optimal tree size?
 - Training error decreases as the size increases
 - Testing error decreases, but then increases
- ► Grow the tree only if RSS decreases poor results
- Example: 2 vales: red and blue always same RSS regardless of the cut but the next cut - there is (!)

▶ Alternative: Grow the tree to a large size and then trim/prune it

Last lecture: Tree pruning

- ▶ Start with a large tree T_0
- Cost complexity pruning (weakest link pruning)
- ▶ Sequence of trees indexed by α
- ▶ For each α :

$$\min_{T \subseteq T_0} \left\{ \sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T| \right\},\,$$

where

- ightharpoonup |T| is the number of leafs in T
- $ightharpoonup R_m$ is the box corresponding to the mth leaf
- $lackbox{} \hat{y}_{R_m}$ is the mean of training observations in R_m
- ightharpoonup Parameter α
 - Controls the complexity/fit tradeoff
 - ▶ Select $\hat{\alpha}$ using cross-validation

Example: Hitters - build a large tree

Example: Hitters - prunning

> prune.hitters<-prune.tree(hitters.fit,best=cv.hitters\$size[which.min(cv.hitters\$dev)])

Last lecture: Classification trees

- Similar to regression trees
- Predict a qualitative response
- ▶ Prediction within a box: most commonly occurring class
- Need an alternative to RSS

Last lecture: Error measures for classification

- $\hat{p}_{m,k}$ proportion of training observations in the mth box that are from class k
- Minimize one of the following measures
 - Classification error rate

$$E = 1 - \max_{k} \hat{p}_{m,k}$$

Gini index

$$G = \sum_{k=1}^{K} \hat{p}_{m,k} (1 - \hat{p}_{m,k})$$

• Entropy (or, deviance= 2D)

$$D = -\sum_{k=1}^{K} \hat{p}_{m,k} \log \hat{p}_{m,k}$$

Example: SA heart disease data - build a large tree

```
> heart.tree<-tree(chd~.,data=SAheart)
> summary(heart.tree)
Classification tree:
tree(formula = chd ~ ., data = SAheart)
Variables actually used in tree construction:
               "tobacco" "alcohol"
[1] "age"
                                      "tvpea"
                                                  "famhist" "adiposity" "ldl"
Number of terminal nodes: 15
Residual mean deviance: 0.8733 = 390.3 / 447
Misclassification error rate: 0.2078 = 96 / 462
> set.seed(1)
> cv.heart<-cv.tree(heart.tree,FUN=prune.misclass)
> cv heart
$size
[1] 15 10 9 6 5 4 1
$dev
[1] 154 148 149 135 158 168 172
$k
[1] -Inf 0 1 3 8 10 12
$method
[1] "misclass"
attr(, "class")
[1] "prune"
                   "tree.sequence"
```

Example: SA heart disease data - after prunning

Example: South African heart disease set

- > heart.prune<-prune.misclass(heart.tree,best=cv.heart\$size[which.min(cv.heart\$dev)])
- > heart.predict<-predict(heart.prune,data=SAheart,type="class")
- > table(heart.predict,SAheart\$chd)

```
heart.predict 0 1
0 266 70
1 36 90
```


Bumping

Works for both: classifiers or regressions

Stochastic search

avoids getting stuck in a poor solution/local minimum

- lacktriangle Train a classifier or regression model \hat{f}_0 on $oldsymbol{Z}$
- ▶ For b = 1, ..., B:
 - 1. Draw a bootstrap sample Z^{*b} of size n from training data
 - 2. Train a classifier or regression model \hat{f}_b on $oldsymbol{Z}^{*b}$
- Select the best model, e.g.,

$$\hat{b} = \arg\min_{0 \le b \le B} \sum_{i=1}^{n} \left(y_i - \hat{f}_b(\boldsymbol{z}_i) \right)^2$$

Bagging

Works for both: classifiers or regressions

- Bootstrap aggregation/averaging reduces the variance/overfitting
- ▶ For b = 1, ..., B:
 - 1. Draw a bootstrap sample $oldsymbol{Z}^{*b}$ of size n from training data
 - 2. Train a classifier or regression model \hat{f}_b on $oldsymbol{Z}^{*b}$
- For a "new" point x_0 , compute:

$$\hat{f}_{\mathsf{avg}}(oldsymbol{x}_0) = rac{1}{B} \sum_{b=1}^B \hat{f}_b(oldsymbol{x}_0)$$

- lacktriangle Regression: $\hat{f}_{\mathsf{avg}}(oldsymbol{x}_0)$ is the prediction
- Classification: Pick majority
- Example: Bagging trees

Random Forests

Works for both: classifiers or regressions

- Improvement over bagged trees
- ► Idea: Decorrelated trees
 - Still learn a tree on each bootstrap set
 - To split a region, consider only a subset of predictors/covariates
- ▶ Input parameter: $m \le p$, often $m \approx \sqrt{p}$
- ▶ For b = 1, ..., B
 - lacktriangleright Draw a bootstrap sample $oldsymbol{Z}^{*b}$ of size n from the training data
 - lacktriangle Train a tree classifier on Z^{*b} , each split is computed as:
 - $lackbox{ Randomly select } m \ {\it predictors/covariates, newly chosen for each } b$
 - Make the best split restricted to that subsets of covariates
- Similarly as in bagging: for regression prediction

$$\hat{f}_{\text{avg}}(\boldsymbol{x}_0) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(\boldsymbol{x}_0);$$

for classification: choose the majority vote among ${\cal B}$ classifiers.

Example: South African heart disease set

```
> library(randomForest)
> set.seed(10)
> train<-sample(1:nrow(SAheart),nrow(SAheart)/2)
> bag.heart<-randomForest(chd~., data = SAheart, subset=train, mtrv=9, importance=TRUE)
> bag.heart
Call:
randomForest(formula = chd ~ ., data = SAheart, mtry = 9, importance = TRUE,
                                                                                  subset = train)
              Type of random forest: classification
                    Number of trees: 500
No. of variables tried at each split: 9
        DOB estimate of error rate: 36.8%
Confusion matrix:
    0 1 class.error
0 123 31 0.2012987
1 54 23 0.7012987
> table(SAheart$chd[-train],predict(bag.heart, newdata = SAheart[-train,]))
  0 118 30
 1 54 29
> bag.heart<-randomForest(chd~., data = SAheart, subset=train, mtry=3, importance=TRUE)
> bag.heart
Call:
randomForest(formula = chd ~ ., data = SAheart, mtry = 3, importance = TRUE,
                                                                               subset = train)
              Type of random forest: classification
                    Number of trees: 500
No. of variables tried at each split: 3
        OOB estimate of error rate: 33.33%
Confusion matrix:
    0 1 class error
0 134 20 0.1298701
1 57 20 0.7402597
> table(SAheart$chd[-train].predict(bag.heart, newdata = SAheart[-train.]))
 0 128 20
 1 58 25
```

Boosting

Slow learning

- General approach that can be applied to many ML methods
- Focus on trees
 - Works for both regression and classification
- Similar to Random Forests
 - Make a family of weak learners
 - ▶ Then, the solution is a combination of many of these weak learners, $\hat{f}^1, \dots, \hat{f}^B$
 - Note, boosting does not use the bootstrap samples
- ► Idea:
 - Build trees sequentially in small increments by adding weak learners
 - ▶ Use the previous tree and residuals to create a new one

Boosting Algorithm for Regression

- 1. Set $\hat{f}(x_i) = 0$ and $r_i = y_i$ for all i in the training set
- 2. For $b = 1, \ldots, B$, repeat:
 - 2.1 Fit a tree \hat{f}_b with d splits (d+1 terminal nodes) to training data $({\pmb X},{\pmb r}),$ ${\pmb r}=(r_1,\ldots,r_n)$
 - 2.2 Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(\boldsymbol{x}) \leftarrow \hat{f}(\boldsymbol{x}) + \lambda \hat{f}^b(\boldsymbol{x})$$

2.3 Update residuals:

$$r_i \leftarrow r_i - \lambda \hat{f}_b(\boldsymbol{x}_i)$$

3. Output the boosted model:

$$\hat{f}(\boldsymbol{x}) = \sum_{b=1}^{B} \lambda \hat{f}_b(\boldsymbol{x})$$

- Notes:
 - λ is a small positive number (e.g., 0.01 or 0.001)
 - ▶ Often d = 1 works

Example: Hitters

Classification: AdaBoost

- ▶ Due to Freund and Schapire (1997)
- ▶ Consider two classes: $Y \in \{-1, 1\}$
- ▶ For a classifier $G(x) \in \{-1, 1\}$, the training error is

$$\mathbf{e}_m = \frac{1}{n} \sum_{i=1}^n 1_{\{y_i \neq G(x_i)\}}$$

- ► Main idea: construct weak classifiers
 - Weak classifier: slightly better than random guessing (50% error)
 - ▶ Sequentially, construct weak classifiers, $G_m(x)$, on modified training data.
- Final classifier, combination of weak classifiers through a weighted majority vote

$$G(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$$

Classification: AdaBoost schematic

Classification: AdaBoost

- 1. Set $w_i = 1/n, i = 1, 2, ..., n$, where n is the number of training points.
- 2. For $m=1,\ldots,M$, repeat:
 - (a) Fit a (weak) classifier $G_m(x)$ to training data using wights w_i .
 - (b) Compute the weighted error

$$\mathbf{e}_m = \frac{\sum_{i=1}^n w_i \mathbf{1}_{\{y_i \neq G_m(x_i)\}}}{\sum_{i=1}^n w_i}$$

- (c) Compute $\alpha_m = \log((1 e_m)/e_m)$.
- (d) Update

$$w_i \leftarrow w_i \exp(\alpha_m 1_{\{y_i \neq G_m(x_i)\}}), \quad , i = 1, 2, \dots, n.$$

3. Final classifier

$$G(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$$

Support Vector Machines

Classification methods we learned:

- Logistic
- Gaussian discriminant analysis
- Tree-based

Support Vector Machines (SVM)

- ▶ Idea: separate points using surfaces
 - ► linear surfaces hyperplanes
 - general nonlinear surfaces

Three types:

- ► Maximal Marginal Classifier separator = hyperplane
- ► Support Vector Classifier separator = "soft" hyperplane
- ► Support Vector Machine separator = nonlinear surface

Hyperplane separator

Hyperplane in p-dimensions is defined by

$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p = 0$$

Examples:

▶ 2D hyperplane = line

$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 = 0$$

▶ 3D hyperplane = regular plane

$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 = 0$$

Classification decision: Assign x in one of the two classes depending on the sign of $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n > < 0$

How do we choose a hyperplane, i.e., β ?

The Maximal Margin Classifier

Optimal hyperplane

- Margin: Distance from an observation to the hyperplane
- ► Maximal margin hyperplane: One whose smallest margin is maximal
- Support vectors: points that support the maximal margin hyperplane

Understanding geometry: Distance from a hyperplane Consider a hyperplane in *p*-dimensions

$$\beta_0 + \langle \boldsymbol{\beta}, \boldsymbol{x} \rangle = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p = 0$$

where
$$\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)$$
 and $\boldsymbol{x} = (x_1, \dots, x_p)$

ightharpoonup Claim: β is a perpendicular vector to this hyperplane

Proof: Let x and x' be two points on this hyperplane. Then

$$\beta_0 + \langle \boldsymbol{\beta}, \boldsymbol{x} \rangle - (\beta_0 + \langle \boldsymbol{\beta}, \boldsymbol{x}' \rangle) = \langle \boldsymbol{\beta}, (\boldsymbol{x}' - \boldsymbol{x}) \rangle = 0$$

Perpendicular unit vector

$$rac{oldsymbol{eta}}{\|oldsymbol{eta}\|}$$

where $\|\beta\| \equiv \|\beta\|_2$ is the usual euclidian norm.

▶ Signed distance to the hyperplane: Let x_0 be a point outside the hyperplane and x inside (note $\langle \beta, x \rangle = -\beta_0$)

$$\frac{\langle \boldsymbol{\beta}, (\boldsymbol{x}_0 - \boldsymbol{x}) \rangle}{\|\boldsymbol{\beta}\|} = \frac{\langle \boldsymbol{\beta}, \boldsymbol{x}_0 \rangle + \beta_0}{\|\boldsymbol{\beta}\|}$$

Maximum Margin Classifier: Formal computation

Let the two classes be $y_i \in \{1,-1\}$ Then, the Maximal margin hyperplane is the solution to

$$\max_{\beta_j,M} M \tag{1}$$

subject to
$$\sum_{1}^{p} \beta_{j}^{2} = 1$$
 (2)

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M, \qquad \forall i = 1, \dots, n$$
 (3)

Notes:

- (3) requires that each observation is on the correct side of the hyperplane
- ▶ The solution M^* is the maximal margin

Problems

Non-separable case

▶ There is no hyperplane that separates the two classes

Highly sensitive to support vectors

► The hyperplane moves if one moves or introduces new support vector points

Need a "softer" separator

Support Vector Classifier

- Greater robustness to individual observations
- ► More general: Works for most points

The hyperplane is the solution to

$$\max_{\beta_j, \epsilon_j M} M \tag{4}$$

subject to
$$\sum_{1}^{p} \beta_{j}^{2} = 1 \tag{5}$$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i), \quad \forall i \quad (6)$$

$$\epsilon_i \ge 0, \sum_{i=1}^n \epsilon_i \le C \tag{7}$$

Notes:

- $ightharpoonup \epsilon_i$ slack variables
 - ullet $\epsilon_i=0$ i-th observation on the correct side of the margin
 - ▶ $0 < \epsilon_i < 1$ *i*-th observation on the wrong side of the margin
 - lacktriangledown $\epsilon_i > 1$ i-th observation on the wrong side of the hyperplane
- ► C budget for slackness

Example

Left:

- ▶ Purple observations: 3,4,5, and 6 = correct side of the margin; 2 is on the margin, and 1 is on the wrong side of the margin.
- ▶ Blue observations: 7 and 10 = correct side of the margin; 9 is on the margin, and 8 is on the wrong side of the margin.
- ▶ Right: Same as left panel with two additional points, 11 and 12. 11 and 12 = wrong side of both the hyperplane and the margin.
- ▶ Robustness: the hyperplane on the right did not move much (!)

Example: Decreasing C

Decresing C: From top left to bottom right

Support Vector Machines

Nonlinear decision boundary - example

- ▶ p features: X_1, X_2, \dots, X_p
- lacktriangle expand bases 2p features: $X_1, X_1^2, X_2, X_2^2, \dots, X_p, X_p^2$

Fir the hyperplane to the expanded bases

$$\max_{\beta_j, \epsilon_j M} M \tag{8}$$

subject to
$$\sum_{1}^{p} \sum_{k=1}^{2} \beta_{jk}^{2} = 1$$
 (9)

$$y_i(\beta_0 + \sum_{j=1}^p \beta_{j1} x_{ij} + \sum_{j=1}^p \beta_{j2} x_{ij}^2) \ge M(1 - \epsilon_i), \quad \forall i$$
 (10)

$$\epsilon_i \ge 0, \sum_{i=1}^n \epsilon_i \le C \tag{11}$$

- The solutions are in general nonlinear since these are quadratic expressions
- ► The SVM explores further this idea (using kernels)

Support Vector Machines

Let $\langle a, b \rangle$ be the inner product

$$\langle a, b \rangle := \sum_{i=1}^{p} a_i b_i$$

It turns out that the SV classifier can be represented as

$$f(x) = \beta_0 + \sum_{i=1}^{n} \alpha_i \langle x, x_i \rangle$$

with n training parameters, α_i , one per training observation.

- ▶ Estimating α_i and β_0 : requires $\binom{n}{2}$ inner products $\langle x_j, x_i \rangle$
- ightharpoonup α_i is nonzero only for the support vectors (!)
- ▶ Let S be the set of these support points: |S| = small number
- ightharpoonup f(x) simplifies to

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i \langle x, x_i \rangle$$

Support Vector Machines: Kernels

Recall, **Kernel** - $K(x_i,x_j)$ is an inner product over expanded basis $x \to \phi(x): \mathbb{R}^p - \mathbb{R}^d, d > p$, i.e., $K(x_i,x_j) = \langle \phi(x_j), \phi(x_i) \rangle$ Nice property: we can use Kernel solutions without ever knowing $\phi(x)$

Kernels:

► Linear
$$K(x_i, x_j) = \langle x_j, x_i \rangle$$

Polynomial - for positive integer d $K(x_i, x_i) = (1 + \langle x_i, x_i \rangle)^d$

Radial - for
$$\gamma > 0$$

$$K(x_i, x_j) = \exp\left(-\gamma \sum_{k=1}^p (x_{ik} - x_{jk}\rangle)^2\right)$$

The resulting classifier is known as **SVM**, with the decision function taking the following nonlinear form in general

$$f(x) = \beta_0 + \sum_{i \in S} \alpha_i K(x, x_i)$$

Example

- ▶ Left: An SVM with a polynomial kernel of degree 3
- ▶ Right: An SVM with a radial kernel
- ▶ Either kernel is capable of capturing the decision boundary

Reading on Bootstrap Improvements and Boosting: Bumping, Bagging, Random forests, Boosting

ISL: Section 8.2

ESL: Sections, 8.7, 8.9, 10.1; More advanced reading: Chapters 10

and 15

Reading on Support Vector Machines

ISL: Sections 9.1-9.3

ESL: Section 12.1-12.3 (more advanced)

Homework: HW3 is due: Wed, Oct 19, 11:59pm.

Since this is the last HW, **no late submission will be permitted**, in order to release the solutions on Thu, Oct 20, to give you time to prepare for **midterm**.

Midterms date: Oct 25, during class time.

Closed book, no electronic devices, but one page - both sides - with **handwritten** formulas/facts is permitted.