3.3

Factorisation et signe du trinôme

SPÉ MATHS 1ÈRE - JB DUTHOIT

3.3.1 **Factorisation**

Propriété

Soit $\Delta = b^2 - 4ac$ le discriminant du trinôme $ax^2 + bx + c$.

- si $\Delta > 0$, alors $ax^2 + bx + c = a(x x_1)(x x_2)$ avec x_1 et x_2 les deux racines distinctes.
- Si $\Delta = 0$, alors $ax^2 + bx + c = a(x x_0)^2$ avec x_0 la racine double.
- Si $\Delta < 0$, $ax^2 + bx + c$ n'est pas factorisable.

Savoir-Faire 3.17

SAVOIR FACTORISER UNE EXPRESSION DU SECOND DEGRÉ Factoriser les expressions suivantes :

1.
$$f(x) = 2x^2 - 7x$$

$$2. \ f(x) = -x^2 + 2x - 15$$

2.
$$f(x) = -x^2 + 2x - 15$$

3. $f(x) = -3x^2 + 18x - 27$

4.
$$f(x) = 2x^2 + 11x - 21$$

Signe du trinôme 3.3.2

Propriété (admise)

On considère le trinôme $ax^2 + bx + c$. $ax^2 + bx + c$ est du signe de a, sauf entre ses racines éventuelles.

Remarque

Autrement dit,

• Si $\Delta < 0$, alors on a :

x	$-\infty$ $+\infty$	0
$ax^2 + bx + c$	signe de a	

• Si $\Delta = 0$, alors on a :

x	$-\infty$	$\frac{-b}{2a}$	$+\infty$
$ax^2 + bx + c$	signe de a	0	signe de a

• Si $\Delta > 0$, alors on a , avec $x_1 < x_2$, :

x	$-\infty$	x_1	x_2	$+\infty$
$ax^2 + bx + c$	signe de a	a=0 signe de $(-a$	a) 0 signe de a	

Savoir-Faire 3.18

SAVOIR DÉTERMINER LE SIGNE D'UN TRINÔME DU SECOND DEGRÉ Déterminer le signe des polynômes suivants :

1.
$$x^2 + 2x + 1$$

2.
$$(x-5)(x+3)$$

3.
$$x^2 + x + 6$$

4.
$$x^2 + 2x - 24$$

5.
$$-4x^2 + 11x - 6$$

$$6. -9x^2 - 6x - 1$$

Savoir-Faire 3.19

Savoir résoudre une inéquation du second degré. Résoudre dans $\mathbb R$ les inéquations suivantes :

$$1. \ x^2 - 12x + 32 \ge 0$$

2.
$$5x^2 + 2x < 0$$

Savoir-Faire 3.20

Savoir résoudre des inéquations qui se ramènent au second degré. Résoudre dans $\mathbb R$ les inéquations suivantes :

1.
$$(5x^2 - 7x)(x^2 - 5x - 14) \le 0$$

$$2. \ \frac{x^2 + 19x + 18}{x^2 + 5x - 6} \ge 0$$