Analyse II

Arthur Herbette Prof. Lachowska Anna

Lundi 10 mars 2025

Chapitre 1

Introduction

Le but de se document est d'y faire un résumé qui se trouve entre les notes de Joachim Favre (Dont j'ai utilisé le template) et Les résumé des théorèmes disponible sur moodle. Je vais essayer de me tenir a environ une à 2 pages par cours

Chapitre 2

Equations différentielles ordinaires

Lundi 17 février 2025 — Lecture 1 : Equa Diff

2.1 definition

Définition 1 Une équation différentielle ordinaire est une expression

$$E(x, y, y', \dots, y^{(n)}) = 0$$

où E est une expression fonctionnelle, $n \in \mathbb{N}_0$, et y = y(x) est une fonction inconnue de x On cherche un intervalle ouvert $I \subset \mathbb{R}$ et une fonction $y : I \to \mathbb{R}$ de classe C^n telle que l'équation donnée est satisfaite $\forall x \in I$.

Equation à variable séparées

Une équation à variables séparées est une équation du type $f(y) \cdot y' = g(x)$ est une **EDVS** où :

- $f: I \to \mathbb{R}$ est une fonction continue sur $I \subset \mathbb{R}$
- $g: J \to \mathbb{R}$ est une fonction continue sur $J \subset \mathbb{R}$

Une fonction $y:J'\subset J\to\mathbb{R}$ de classe C' satisfaisant l'équation $f(y)\cdot y'=g(x)$ est une solution

Remarque personnelle

Ce type d'équation se résoudre très rapidement car on peut transformer le y' en $\frac{dy}{dx}$ et "mettre le dx de l'autre côté":

$$f(y) \cdot \frac{dy}{dx} = g(x) \implies \int f(y)dy = \int g(x)dx$$

Et il suffit donc t'intégrer les deux côtés et le tour est joué.

Terminologie

Soit $E(x, y, ..., y^{(n)}) = 0$ (*) une équation différentielle (ED) :

• **Def**: un nombre naturel $n \in \mathbb{N}_+$ est **l'ordre** de l'équation (*) si n est l'ordre maximal de dérivée de y(x) dans l'équation.

- **Def**: Si (*) est de la forme $\alpha_0(x)y + \alpha_1(x)y' + \alpha_2(x)y'' + \cdots + \alpha_n(x)y^{(n)} = b(x)$ alors l'équation est dire **linéaire** où $\alpha_i(x)$, b(x) dont des fonctions continues
- **Def** Si l'expression (*) ne contient pas de x l'équation (*) est dire autonome

Problème de Cauchy

Définition 2 Résoude Le problème de Vauchy (ED avec des conditions initiales) pour l'équation $E(x, y, y', ..., y^{(n)}) = 0$ c'est de trouver l'intervalle ouvert $I \subset \mathbb{R}$ et une fonction $y: I \to \mathbb{R}$ de classe $C^n(I)$, telle que $E(x, y, ..., y^{(n)}) = 0$ sur I et $y(x_0) = b_0$, $y(x) = B, ..., y'(x_2) = ...$

Le nombre des conditions initiales depend du type de l'ED

C'est ce qui se passe en physique lorsqu'on a une forme et que l'on chercher la position au court du temps :

$$ma = F$$

$$a = \frac{F}{m}$$

$$\frac{d^2x}{dt^2} = \frac{F}{m}$$

$$x = \frac{1}{2}\frac{F}{m}t^2 + c_1t + c_0$$

Et le but est de trouver ses constantes qui sont les conditions initiales.

Définition 3 Une solution d'un problème de Cauchy est **maximale** si elle est définie sur le plus grand intervalle possible.

2.2 Existence et unicit d'une solution de EDVS

Théorème

Théorème 1 Soit

- $f: I \to \mathbb{R}$ une fonction continue telle que $f(y) \neq 0 \ \forall y \in I$
- $g: J \to \mathbb{R}$ une fonction continue. Alors pour tout couple $(x_0 \in J, b_0 \in I)$, l'équation $f(y) \cdot y' = g(x)(**)$ admet une solution $y: J' \subset J \to I$ vérifiant la condition initiale $y(x_0) = b_0$

Si $y_1: J_1 \to I$ et $y_2: J_2 \to I$ sont deux solutions telles que $y_1(x_0) = y_2(x_0) = b_0$, alors $y_1(x) = y_2(x)$ pour tout $x \in J_1 \cap J_2$ (Demonstration la prochaine fois

Chapitre 3

Méthode de démonstration, Raisonnement mathématique

Introduction

Définition 4 Une proposition est un énoncé qui peut être vrai ou faux.

Définition 5 Une **démonstration** est une suite d'implication logique qui sert à dériver la proposition en question à partir des axiomes (propositions admises comme vraies) et des propositions préalablement obtenue

3.1 Méthode de démonstration

Méthode 1

Démonstration direct :

 $\underbrace{P}_{\text{condition donn\'ee}} \implies \text{implications logiques/axiomes/propositions connues} \implies \underbrace{Q}_{\text{proposition d\'esir\'ee}}$

 $Remarque \\ personnelle$

C'est pas vraiment très claire comme ça mais en gros ça veut juste dire que pour prouver quelque chose on y va en mode brute force (tout les nombres entiers sont des nombres réels (propositions connues) et par exemple est ce que 23 est un réel?)

Raisonnement par contraposée

Comme vu en AICC on sait que $P \implies Q \equiv \neg P \implies \neg Q$

3.1.1 Théorème Existence et unicité d'une solution de EDVS

Théorème

Théorème 2 Soit $f:I\to\mathbb{R}$ une fonction continue telle que $f(y)\neq 0$ $\forall y\in I$

 $g: J \to \mathbb{R}$ une fonction continue. Alors pour tout coupe $(x_0 \in J, b_0 \in I)$, l'équation

$$f(y) \cdot y'(x) = g(x)$$

admet une solution $y: J' \subset J \to I$ vérifiant la condition initiale $y(x_0) = b_0$.

 $Si\ y_1: J_1 \to I\ et\ y_2: J_2 \to I\ sont\ deux\ solutions\ telles\ que\ y_1(x_0) = y_2(x_0) = b_0,\ alors\ y_1(x) = y_2(x)\ pour\ tout\ x \in J_1 \cap J_2$

Démonstration

Idée :
$$\int f(y)dy = \int g(x)dx \implies F(y) = G(x) \implies y(x) = F^{-1}(G(x))$$

Le reste de la preuve se trouve sur les pdf de Joachim Favre.

Résumé

Résumé 1 EDVS : $f(y) \cdot y' = g(x)$ où $f: I \to \mathbb{R}$ continue (respectivement J pour g),

Pour résoudre $\int f(y)dy = \int g(x)dx$ où $\int f(y)dy$ est une primitive (sans constante) et $\int g(x)dx$ est une primitive générale (avec une constante)

Exemple

Exemple 1 $\frac{y'(x)}{y^2(x)} = 1 \text{ EDVS} : \frac{1}{x^2} \text{ est continue sur } \mathbb{R}_+^* \text{ et } \mathbb{R}_-^*$ On a aussi que g(x) est continue sur \mathbb{R} , on fait donc:

$$\int \frac{1}{y^2} dy = \int dx \implies -\frac{1}{y} = x + C$$
$$y = -\frac{1}{x + C} \ \forall C \in \mathbb{R}$$

la solution générale sur] $-\infty$, -C[et] -C, $\infty[$. Condition initiale $y(0)=b_0\in\mathbb{R}^* \implies y(0)=-\frac{1}{C}=b_0 \implies C=-\frac{1}{b_0}$

- Si $b_0 > 0 \implies \frac{1}{b_0} > 0 \implies y(x) = -\frac{1}{x \frac{1}{b_0}} \text{ sur }] \infty, \frac{1}{b_0}[$ la solution particulière
- Et vis versa pour $b_0 < 0$

3.1.2 Solution maximale

Solution maximale

Définition 6 Une solution solution maximale de l'EDVS avec la condition initiale $y(x_0) = b_0$, $x \in J$, $b_0 \in I$ est une fonction y(x) de classe C^1 satisfaisant l'équation, la condition initiale et qui est définie sur le plus grand intervalle possible.

Le théorème sur EDVS dit que si $f(y) \neq 0$ sur I, alors il existe une unique solution maximale. Toute solution avec la même condition initiale est une restriction de la solution maximale

Exemple 2

L'équation différentielle $2yy'=4x^3$ avec la condition initiale y(0)=0 possède :

- 1. Une seul solution sur \mathbb{R}
- 2. 2 solutions sur \mathbb{R}
- 3. 3 solutions sur \mathbb{R}
- 4. 4 solutions sur \mathbb{R}

En premier lieu il faudra résoudre :

$$\int 2y dy = \int 4x^3 dx$$
$$y^2 = x^4 + C \quad \forall C \in \mathbb{R}$$
$$y = \pm \sqrt{x^4 + C}$$
$$y(0) = \pm \sqrt{C'} = 0 \implies C' = 0$$
$$y(x) = \pm \sqrt{x^4} = \pm x^2$$

On voit ici qu'il y a 4 solutions à cause des \pm qui se rajoute entre eux :

- $y(x) = x^2, x \in \mathbb{R}$
- $y(x) = -x^2, x \in \mathbb{R}$
- $y(x) = \begin{cases} -x^2, x \le 0 \\ x^2, x > 0 \end{cases}$

3.2 Equation différentielle linéaire du premier ordre (EDL1)

Definition

Définition 7 Soit $I \subset \mathbb{R}$ un intervalle ouvert. Une équation de la forme :

$$y'(x) + p(x)y(x) = f(x)$$
, où $p, f: I \to \mathbb{R}$ sont continues

est une équation différentielle linéaire du premier ordre (EDL1)

Une solution est une fonction $y: I \to \mathbb{R}$ de classe C^1 satisfaisant l'équation. Considérant l'équation y'(x) + p(x)y(x) = 0

Comment résoudre une EDL1

Elle s'appelle l'équation homogène associée à l'EDL1 y' + py = f qui

nous amène:

$$\begin{cases} y(x) = 0 \ \forall x \in I \\ \frac{y'(x)}{y(x)} = -p(x) \ EDVS \implies \int \frac{dy}{y} = -\int p(x)dx \end{cases}$$

Ce qui implique que $\ln |y| = -P(x) + C_1$ où P(x) est une primitive de p(x), $C_1 \in \mathbb{R}$, ensuite, $|y| = e^{-P(x) + C_1} = e^{C_1} e^{-P(x)} \implies y(x) = \pm C_2 e^{-P(x)}, C_2 \in$

Mais on a aussi y(x) = 0 sur I ce qui implique que

$$y(x) = Ce^{-P(x)}$$

où $C \in \mathbb{R}$, $x \in I$ est la solution générale de l'équation homogène associée $y' + py = 0 \operatorname{sur} I$

3.2.1 Principe de superposition de solutions

Principe

Soit $I \subset \mathbb{R}$ ouvert, $p, f_1, f_2 : I \to \mathbb{R}$ fonctions continues Supposons que $v_1: I \to \mathbb{R}$ de classe C' est une solution

$$y' + p(x)y(x) = 0$$

Méthode de la variation de constante

On cherche une solution particulière de $y'(x)+p(x)y(x)=f(x):p,f:I\underset{\text{continue}}{\longrightarrow}\mathbb{R}$

sout la forme:

Ansatz:

$$v(x) = C(x)e^{-P(x)}$$

où P(x) est une primitive de p(x) sur I

Si v(x) est une solution $\implies v'(x) + p(x)v(x) = f(x)$ ce qui implique que

$$C'e^{-P(x)} + C(x)(-e^{-P(x)}) \cdot p(x) + p(x)Ce^{-P(x)} = f(x)$$

Ce qui revient a dire

$$C'(x) = f(x)e^{P(x)} \implies c(x) = \int f(x)e^{P(x)}dx$$

une solution particulière de l'équation y'(x) + p(x)y(x) = f(x) est v(x) = $\left(\int f(x)e^{P(x)}dx\right)\cdot e^{-P(x)}$ où P(x) est une primitive de p(x) sur I

3.2.2 Théorème à savoir pour l'examen

Proposition

Soit $p_1, f: I \to \mathbb{R}$ fonctions continues. Supposons que $v_0: I \to \mathbb{R}$ est une solution partiulière de l'équation y'(x) + p(x)y(x) = f(x)Alors la solution générale de cette équation est :

 $v(x) = v_0(x) + Ce^{-P(x)}$, pour tout $C \in \mathbb{R}$, où P(x) est une primitive de p(x) sur I

Démonstration

(1)

Soit $v_1(x)$ une solution de y'(x) + p(x)y(x) = f(x). On va démontrer qu'il existe $C \in \mathbb{R}$ tel que $v_1(x) = v_0(x) + Ce^{-P(x)}$, où $v_0(x)$ est une solution de y'(x) + p(x)y(x) = f(x).

Ce qui est équivalent à $\exists C \in \mathbb{R} : v_1(x) - v_0(x) = Ce^{-P(x)}$

(2)

Par le principe de **superposition des solutions**, la fonction $v_1(x) - v_0(x)$ est une solution de l'équation y'(x) + p(x)y(x) = f(x) est $v(x) = v_0(x) + Ce^{-P(x)}$ où $C \in \mathbb{R}, x \in I$

(3)

y'(x) + p(x)y(x) = 0 est EDVS \Longrightarrow la solution générale de cette équation est $v(x) = Ce^{-P(x)}$, $C \in \mathbb{R}$ et P(x) est une primitive de p(x) sur I.

(4)

Donc, par la définition v(x) est la solution générale.

Lundi 24 février 2025 — Lecture 3 : EDL1 Et Méthode de démonstration

3.2.3 Rappel : Equation différentielles linéaires du premier ordre (EDL1)

Rappel

$$y' + p(x)y = f(x)$$

Où $p,f:I\to\mathbb{R}$ fonctions continues. Alors la solution générale est donnée par la formule :

$$y(x) = y_{hom}(x) + y_{part}(x)$$

Où $y_{hom}(x)$ est la solution générale de l'équation générale de l'équation homogène associée : y' + p(x)y = 0 et $y_{part}(x)$ est une solution particulière de l'équation donnée : y' + p(x)y = f(x).

- $y_{hom}(x) = Ce^{-P(x)}$, où $P(x) = \int p(x)dx$ est une primitive (sans constante), $C \in \mathbb{R}$.
- $y_{part}(x) = \left(\int f(x)e^{P(x)}dx\right)e^{-P(x)}$

Théorème 3 La solution générale de l'EDL1 :

$$y(x) = Ce^{-P(x)} + \left(\int f(x)e^{P(x)}dx\right)e^{-P(x)}$$

Attention avec le signe moins qui se trouve dans la solution homogène mais pas dans la solution particulière.

$$y' - \underbrace{\frac{2}{x}}_{p(x)} y = \underbrace{x^3 + 1}_{f(x)} \text{ avec } p:] - \infty, o[\text{ et }]0, \infty[\to \mathbb{R} \text{ continue},$$

$$f: \mathbb{R} \to R$$
 est continue.
 $P(x) = \int -\frac{2}{x} = -2 \ln |x| \implies P(x) = -2 \ln |x|$ avec $x \neq 0$
On a donc comme solution homogène :

$$y_{hom}(x) = Ce^{-P(x)} = Ce^{--2\ln|x|} = Ce^{--\ln|x|^2} = Ce^{--\ln x^2} = Cx^2$$

Sur
$$]-\infty,0[\cap]0,\infty[$$

On cherche maintenant une solution particulière de l'équation complète:

$$y' + \frac{-2}{x}y = x^3 + 1$$

On utilise la méthode de la variation des constantes :

$$\int f(x)e^{P(x)}dx = \int (x^3 + 1)e^{-\ln x^2}dx$$

$$= \int \frac{x^3 + 1}{x^2}dx$$

$$= \int (x + \frac{1}{x^2})dx$$

$$= \frac{1}{2}x^2 - \frac{1}{x} \text{ pas de constante}$$

Ce qui implique donc que :

$$y_{part}(x) = (\frac{1}{2}x^2 - \frac{1}{x})e^{-(-\ln x^2)} = (\frac{1}{2}x^2 - \frac{1}{x})x^2 = \frac{1}{2}x^4 - x$$

Verification:

$$y'_{part}(x) - \frac{2}{x}y_{part} = 2x^3 - 1 - \frac{2}{x}(\frac{1}{2}x^4 - x)$$
$$= 2x^3 - 1 - x^3 + 2 = x^3 + 1$$

Solution générale de l'équation originale :

$$y(x) = Cx^2 + \frac{1}{2}x^4 - x$$

Sur
$$]-\infty,0[$$
 et sur $]0,\infty[$

Si on mulitplie par x l'équation de base :

$$xy' - 2y = x^4 + x$$

Alors, la solution va sur \mathbb{R}

$$\implies y(x) = Cx^2 + \frac{1}{2}x^4 - x \text{ sur } \mathbb{R}$$

Ex2

 $y' - (\tan x)y = \cos x \tan(x)$ n'est pas continue en $x = (2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$. Puisque $0 \in]-\frac{\pi}{2}, \frac{\pi}{2}[\implies$ on considère l'équation sur $]-\frac{\pi}{2}, \frac{\pi}{2}[, p, f:]-\frac{\pi}{2}, \frac{\pi}{2}[\rightarrow \mathbb{R}$ continues.

1. Solution générale de l'équation homogène associée.

$$y' + (-\tan x)y = 0$$

$$P(x) = \int (-\tan x)dx = -\int \frac{\sin x}{\cos x}$$

$$= \int \frac{d(\cos x)}{\cos x} = \ln|\cos x|$$

$$\implies P(x) = \ln(\cos x) \text{ sur }] - \frac{\pi}{2}, \frac{\pi}{2}[$$

On a donc:

$$y_{hom}(x) = Ce^{-P(x)} = Ce^{-\ln\cos x} = \frac{C}{\cos x}, x \in]-\frac{\pi}{2}, \frac{\pi}{2}[, C \in \mathbb{R}]$$

Vérification:

$$-\frac{C}{\cos^2 x} \cdot (-\sin x) - \tan x \cdot \frac{C}{\cos x} = C\frac{\sin x}{\cos^2 x} - C\frac{\sin x}{\cos^2 x} = 0$$

2. Solution particulière de l'équation complète :

$$y' - \tan xy = \cos x$$

Selon la même méthode:

$$\int f(x)e^{P(x)}dx = \int \cos x e^{\ln \cos x} dx = \int \cos^2 x \, dx$$
$$= \int \frac{1}{2}(1 + \cos 2x) dx$$
$$= \frac{1}{2}x + \frac{1}{4}\sin 2x$$

On a donc:

$$y_{part}(x) = (\frac{1}{2}x + \frac{1}{4}\sin 2x) \cdot e^{-P(x)}$$

$$= (\frac{1}{2}x + \frac{1}{4}\sin 2x) \frac{1}{\cos x}$$

$$= \frac{1}{2}\frac{x}{\cos x} + \frac{1}{4}\frac{2\sin x \cos x}{\cos x}$$

$$y_{part}(x) = \frac{1}{2}\frac{x}{\cos x} + \frac{1}{2}\sin x, \ x \in] - \frac{\pi}{2}, \frac{\pi}{2}[$$

3.2.4 Application de EDVS (EDL1): Croissance et decroissance exponentielle

Exemple

Soit y = y(t) tel que $y' = ky, k \in \mathbb{R}$; y = 0 est une solution EDVS: $\int \frac{dy}{y} = \int kdt \implies \ln|y| = kt + C_1 \implies |y| = e^{C_1}e'kt \implies y(t) = Ce^{kt}$

Condition initiales:

- $y(0) = C = y_0 > 0$
- $y(t) = y_0 e^{kt}$

La solution maximale satisfaisant la condition initiale $y(0) = y_0$ est :

$$y(t) = y_0 e^{kt}$$

3.3 Méthodes de démonstration

Méthode 3 : Raisonnement par disjonction des cas

Définition 8 Soient P,Q deux propositions. Pour montrer que $P \implies Q$ on sépare l'hypothèse de P de départ en différent cas possibles et on montre que l'implication est vraie dans chacun des cas. Il est très important de considérer tous les cas possibles

Ex1 Pour tout $x, y \in \mathbb{R}$ on a:

$$||x| - |y|| \le ||x - |$$

1.
$$|x| \ge |y| \implies$$

$$\begin{aligned} ||x| - |y|| &= |x| - |y| \\ &= |x - y + y| - |y| \\ &\stackrel{\Delta}{\leq} |x - y| + |y| - |y| &= |x - y| \end{aligned}$$

$$2. |x| < |y| \implies$$

$$||x| - |y|| = -|x| + |y|$$

$$= -|x| + |y - x + x|$$

$$\leq -|x| + |y - x| + |x| = |y - x|$$

$$= |x - y|$$

Ex2 Pour tout $n \in \mathbb{Z}$, $2n^2 + n + 1$ n'est pas divisible par 3. 3 Cas :

1.
$$n \equiv 0 \mod 3 \iff n = 3k, k \in \mathbb{Z}$$

$$2n^2 + n + 1 = 2(3k)^2 + (3k) + 1 \equiv 1 \mod 3$$

2.
$$n \equiv 1 \mod 3 \iff n = 3k + 1, k \in \mathbb{Z}$$

$$\implies 2n^2 + n + 1 = 2(3k+1)^2 + (3k+1) + 1 \equiv 2 + 1 + 1 \equiv 1 \mod 3$$

3.
$$n \equiv 2 \mod 3, n = 3k + 2, k \in \mathbb{Z}$$

$$2n^2 + n + 1 = 2(3k + 2)^2 + (3k + 2) + 1 \equiv 8 + 2 + 1 \equiv 2 \mod 3$$

Finalement, $2n^2 + n + 1$ n'est pas divisible par $3 \forall n \in \mathbb{Z}$.

Méthode 4: Comment démontrer les propositions de la forme $P \iff Q$

Deux méthode existent :

- 1. $P \implies Q \to P$
- 2. Suite d'équivalences : $P \iff R_1 \iff R_2 \iff \cdots \iff Q$

Pour la deuxième méthodes, il faut vérifier que chaque implication est une **équivalence**.

Soit $a, b \in \mathbb{N}$: Ex3

- $P: \{ab+1=c^2 \text{ pour un nombre naturel } c\}$
- $Q: \{a = b \pm 2\}$

Proposition $P \iff Q$

Démonstration

$$\underbrace{ab+1=c^2}_{P}\iff ab=c^2-1\iff ab$$

$$= (c+1)(c-1) \underset{\text{Faux}}{\Longleftrightarrow} \begin{cases} a = c-1 \\ b = c+1 \\ a = c+1 \\ b = c-1 \end{cases}$$

Néanmoins, Contre exemple : a = 3, b = 8 on a que 24 + 1 = $25=5^2=c^2,\,P$ est vrai, Qest faux

Proposition qui est vraie : $Q \implies P$ Soient $a, b \in \mathbb{N}$: $a = b \pm 2$, Alors $ab + 1 = c^2, c \in \mathbb{N}$

Démonstration

$$a = b \pm 2 \implies ab + 1 = b(b \pm 2) + 1$$

= $b^2 \pm 2b + 1$
= $(b \pm 1)^2 = c^2$

Soient
$$z = \rho \underbrace{e^{i\varphi}}_{\rho > 0} \in \mathbb{C}^*, P : \{z^2 \in \mathbb{R}^*\}, Q : \{\varphi = \frac{\pi k}{2}, k \in \mathbb{Z}\}$$

On cherche ici à savoir la relation entre P ?? Q

Démonstration $Q \implies P$:

Demonstration
$$Q \Longrightarrow P$$
:
Soit $z = \rho e^{i\varphi}, \varphi = \frac{\pi}{2}k \Longrightarrow z^2 = \rho^2 e^{2i\varphi} = \rho^2 (-1)^k \in \mathbb{R}^*$.
Démonstration $P \Longrightarrow Q$
Soit $z = \rho e^{i\varphi}, \rho > 0 \Longrightarrow z^2 = \rho^2 e^{2i\varphi}$

Soit
$$z = \rho e^{i\varphi}, \rho > 0 \implies z^2 = \rho^2 e^{2i\varphi}$$

3.4 Equation différentielle du second ordre

Définition

Définition 9 Soit I un intervalle ouvert. On appelle équation différentielle linéaire de second ordre une équation de la forme :

$$y''(x) + p(x)y'(x) + q(x)y(x) = f(x)$$

 $où p, q, f: I \to \mathbb{R}$ sont des fonctions continues

Définition 10 Une équation de la forme

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0$$

est dire EDL2 homogène.

On cherche une solution de cette équation de classe \mathbb{C}^2

Ex1
$$y'' = 5 \implies y' = 5x + C, x \in \mathbb{R}, \forall C, \in \mathbb{R}$$
 Ce qui implique

$$y(x) = \frac{5}{2}x^2 + C_1x + C_2 \ \forall x \in \mathbb{R}, \ \forall C_1, C_2, \in \mathbb{R}$$

EDL2 homogène à coefficients constants

$$y''(x) + py'(x) + qy(x) = 0, \quad p, q \in \mathbb{R}$$

cients constants y''(x) - (a+b)y'(x) + aby(x) = 0, où a, b sont des racines de l'équation $\lambda^2 + p\lambda + q = 0$

Par un changement de variables :

$$\underbrace{(y'(x) - ay(x))}_{z(x)}' - b\underbrace{(y'(x) - ay(x))}_{z(x)} = 0$$

$$z'(x) - bz(x) = 0 \implies \text{EDVS pour } z$$

$$\implies z(x) = C_1 e^{bx}$$

$$\implies z(x) = y'(x) - ay(x) = C_1 e^{bx}$$

Ce qui est une EDL1.

$$= y'(x) - ay(x) = C_1 e^{bx}, \quad p(x) = -a, \quad f(x) = C_1 e^{bx}$$

$$\implies P(x) = \int -a dx = -ax,$$

 $=y_{hom}(x)=C_2e^{ax}$ solution générale de l'équation homogène

On a alors pour C(x):

$$C(x) = \int C_1 e^{bx} e^{-ax} dx = C_1 \int e^{(b-a)x} dx = \begin{cases} \frac{1}{b-a} C_1 e^{(b-a)x}, & \text{si } b \neq a \\ C_2 e^{ax} + C_1 x e^{ax} & \text{si } a = b \end{cases}$$

Si $a \neq b$ sont des racines complexes, $a, b \notin \mathbb{R} \implies a = \hat{b}$ Ce qui implique que : $y(x) = Ce^{ax} + \hat{C}e^{\hat{a}x}$ pour avoir une solution réelle, $a = \alpha + i\beta, \alpha, \beta \in \mathbb{R}, \beta \neq 0$ Soit $C = \frac{1}{2}(C_2 - iC_4) \implies \hat{C} = \frac{1}{2}(C_3 + iC_4), C_3, C_4 \in \mathbb{R}$ Alors on a que :

$$y(x) = Ce^{ax} + \hat{C}e^{\hat{a}x} = \frac{1}{2}(C_3 - iC_4)e^{\alpha x}e^{i\beta x} + \frac{1}{2}(C_3 + iC_4)e^{\alpha x}e^{-i\beta x}$$
$$= C_3e^{\alpha x}\frac{e^{i\beta x} + e^{-i\beta x}}{2} + C_4e^{\alpha x}\frac{e^{i\beta x} - e^{-i\beta x}}{2i}$$

Résumé

$$y''(x) + py'(x) + qy(x) = 0$$

Soient $a, b \in \mathbb{C}$ les racines de l'équation $\lambda^2 + p\lambda + q = 0$ Alors la solution générale est :

$$y(x) = \begin{cases} C_1 e^{ax} + C_2 e^{bx} , & \text{si } a \neq b, a, b \in \mathbb{R} \ \forall C_1, C_2, \in \mathbb{R} \\ C_1 e^{ax} + C_2 x e^{bx} , & \text{si } a = b \\ C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x , & \text{si } a = \alpha + i\beta = \hat{b} \notin \mathbb{R} \ \forall x \in \mathbb{R} \end{cases}$$

oui

Exemple 2

$$y'' + 9y = 0$$

Equation caractéristique : $\lambda^2 + 9 = 0 \implies a = 3i, b = -3i$ Ce qui donne : $a = 3i = \alpha + \beta i$ Ce qui donne comme solution générale :

$$y(x) = C_1 \cos 3x + C_2 \sin 3x$$

Vérification: $y'(x) = -3C_1 \sin 3x + 3C_2 \cos 3x \implies y'' = -9C_1 \cos 3x - 0C_2 \sin 3x \implies y'' + 9y = 0$

Exemple 3

$$y'' - 6y' + 9y = 0$$

Même procédé avec l'équation caractéristique :

$$\lambda^2 - 6\lambda + 9 = 0 \implies \lambda = 3$$

Ce qui donne comme solution :

$$y(x) = C_1 e^{ax} + C_2 e^{ax}$$

3.4.1 Unicité d'un EDL2

Considérons l'équation y''(x) + p(x)y'(x) + q(x)y(x) = 0

Théorème

Théorème 4 Une EDL2 homogène admet une seule solution $y(x): I \to \mathbb{R}$ de classe C^2 satisfaisant $y(x_0) = t$ et $y'(x_0) = s$ pour un $x_0 \in I$ et les nombres arbitraires $s, t \in \mathbb{R}$.

La démonstration n'est pas vu dans ce cours car trop fastidieuse

Remarque

(1) Superposition des solutions Si $y_1(x)$ et $y_2(x)$ sont 2 solutions de EDL2 homogènes alors

$$y(x) = Ay_1(x) + By_2(x)$$

Est aussi une solution, où $A, B \in \mathbb{R}$

Dépendance linéaire de fonctions **Définition 11** Deux solutions $y_1(x), y_2(x) : I \to \mathbb{R}$ sont linéairement indépendants s'il n'existe pas de constante $c \in \mathbb{R}$ tel que $y_2(x) = cy_1(x)$

Remarque

Cela implique, en particulier, que $y_1(x)$ et $y_2(x)$ ne sont pas triviallement = 0 sur I

Comment résoudre Comment résoudre y''(x) + p(x)y'(x) + q(x)y(x) = 0?

Supposons que $v_1(x)$ est une solution de cette équation, telle que On sait trouver une autre solution linéairement dépendante.

Ansatz

$$v_2(x) = c(x)v_1(x)$$

Telle que $c(x) \neq const.$ Alors :

$$v_2'(x) = c'(x)v_1(x) + c(x)v_1'(x)$$

Si on cherche la seconde dérivée de v_2 :

$$v_2''(x) = c''(x)v_1(x) + c'(x)v_1'(x) + c'(x)v_1'(x) + c(x)v_1''(x)$$

Si on simplifie l'expression:

$$\implies c''(x)v_1(x) + 2c'(x)v_1'(x) + c(x)v_1''(x) + p(x)c'(x)v_1(x) + p(x)c(x)v_1'(x) + q(x)c(x)v_1(x) = 0$$

On peut trouver vu que $v_1(x)$ est solution que :

$$c(x)(v_1''(x) + p(x)v_1'(x) + q(x)v_1(x)) = 0$$

Ce qui revient pour notre équation :

$$c''(x)v_1(x) + 2c'(x)v_1'(x) + p(x)c'(x)v_1(x) = 0$$

On suppose que $v_1(x) \neq 0$ sur I et $c'(x) \neq 0$ sur I. (Une condition en plus, de toute façon, si c'(x) = 0 on peut juste

enlever le 0 de l'intervalle et ensuite peut être le rajouter après). On peut donc diviser ce qui donne :

$$\frac{c''(x)}{c'(x)} = -p(x) - 2\frac{v_1'(x)}{v_1(x)} \implies \text{EDVS pour } c'(x)$$

Ce qui revient :

$$\ln c'(x) = \underbrace{-P(x)}_{\ln e^{-P(x)}} -2\ln v_1(x) + \ln C, \quad C \in \mathbb{R}_+^*$$
$$= \ln \frac{Ce^{-P(x)}}{v_1^2(x)}$$

On cherche la dérivée de c(x):

$$c'(x) = \pm \frac{e^{-P(x)}}{v_1^2(x)}$$

$$= C_1 \frac{e^{-P(x)}}{v_1^2(x)} \quad C_1 \in \mathbb{R}^*, C_1 = \pm C$$

$$c(x) = \int C_1 \frac{e' - P(x)}{v_1^2(x)} dx + C_2$$

 $\implies v(x) = c(x)v_1(x)$ est une solution.

Si on prend $C_1 = 1$ et $C_2 = 0$ on obtient $v_2(x)$ linéairement dépendante de $v_1(x)$:

Théorème 5

$$v_2(x) = c(x)v_1(x) = v_1(x) \int \frac{e^{-P(x)}}{v_1^2(x)} dx$$

Lundi 3 mars 2025 — Lecture 5 : Equation différentielle

3.4.2 Rappel : Equation différentielle linéaires du second ordre (EDL2)

EDL2 homogène

$$y''(x) + p(x)y'(X) + q(x)y(x)$$

avec, $p, q: I \to \mathbb{R}$ des fonctions continues

EDL2 à coefficient constants

$$y''(x) + py'(x) + qy(x) = f(x)$$

avec $p, q \in \mathbb{R}, f: I \to \mathbb{R}$ des fonctions continues

EDL2 homogène a coefficient constant

$$y''(X) + py'(x) + qy(x) = 0$$

avec $p, q \in \mathbb{R}$

La solution générale de cette dernière : $\lambda^2 + p\lambda + q = 0 \implies a, b \implies 3$ cas qui sont solution générale Pour un EDL2 homogène, si $v_1(x)$ est une solution et $v_1(x) \neq 0$ sur $I \rightarrow v_2(x) = v_1(x) \int \frac{e^{-P(x)}}{v_1^2(x)} dx$ est une solution linéairement indépendante, où $P(x) = \int p(x) dx$ est une primitive.

3.4.3 Caractérisation des 2 solutions de EDL2 linéairement indépendante

Définition 12 Si $v_1, v_2 : I \to \mathbb{R}$ deux fonctions dérivables sur $I \subset \mathbb{R}$ alors la fonction $W[v_1, v_2], I \to \mathbb{R}$ définie par

$$W[v_1, v_2] = \det \begin{pmatrix} v_1(x) & v_2(x) \\ v'_1(x) & v'_2(x) \end{pmatrix} = v_1(x)v'_2(x) - v_2(x)v'_1(x)$$

est appelée le Wronskien de v_1 et v_2

Exemple

$$y'' - 6y' + 9y = 0 \implies \lambda^2 - 6\lambda + 9 = 0$$

qui donne comme solution $\lambda_{1,2} = 3$ qui nous donne :

$$v(x) = C_1 e^{3x} + C_2 x e^{2x}$$
, avec $x \in \mathbb{R}$

On calcule le wronskien :

$$W[e^{3x}, xe^{3x}] = \det \begin{pmatrix} e^{3x} & xe^{3x} \\ 3e^{3x} & e^{3x} + 3xe^{3x} \end{pmatrix} u = e^{6x} + 3xe^{6x} - 3x^{6x} = e^{6x}$$

On a donc:

$$e^{6x} = W[e^{3x}, xe^{3x}] \neq 0 \text{ sur } \mathbb{R}$$

3.4.4 Démonstration à savoir

Proposition

Théorème 6 Soient $v_1, v_2 : I \to \mathbb{R}$ deux solutions de l'équation y''(x) + p(x)y'(x) + q(x)y(x) = 0, Alors $v_1(x)$ et $v_2(x)$ sont linéairement indépendantes si et seulement si $W[v_1, v_2] \neq 0 \ \forall x \in I$

Nous allons le prouver par contraposée :

$$\neg P \implies \neg Q \land \neg Q \implies \neg P$$

 $cv_1(x) \ \forall x \in I \ \text{Alors on a} :$

$$W[v_1, v_2](x) = \det \begin{pmatrix} v_1(x) & cv_1(x) \\ v_1'(x) & cv_1'(x) \end{pmatrix} = cv_1(x)v_1'(x) - cv_1(x)v_1'(x) = 0 \ \forall x \in I$$

Et donc:

$$W[v_1, v_2](x) = 0 \ \forall x \in I$$

(2) $\neg Q \implies$ Supposons qu'il existe $x_0 \in I : W[v_1, v_2](x_0) = 0$. Alors cela implique que :

$$\det \begin{pmatrix} v_1(x_0) & v_2(x_0) \\ v_1'(x_0) & v_2'(x_0) \end{pmatrix} = 0$$

Cela implique qu'il existe un vecteur non nul $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$

$$\begin{pmatrix} v_1(x_0) & v_2(x_0) \\ v_1'(x_0) & v_2'(x_0) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Soit $v(x) = av_1(x) + bv_2(x)$ Alors v(x) est une solution de l'EDL2 homogène et de plus $v(x_0) = 0$ et $v'(x_0) = 0$. Par le théorème de l'existence et unicité d'une solution de l'EDL2 homogène satisfaisant les conditions initiales. $y(x_0) = 0$ et $y'(x_0) = 0$, puisque la solution triviale $y(x) = 0 \ \forall x \in I$ satisfait l'équation et les mêmes conditions initiales $\implies v(x) = av_1(x) + bv_2(x) = 0$ et cela pour tout x dans I. Puisque a et b ne sont pas tous les deux nuls :

$$\begin{cases} v_1(x) &= -\frac{b}{a}v_2(x) \ \forall x \in I \\ v_2(x) &= -\frac{a}{b}v_1(x) \ \forall x \in I \end{cases} \implies v_1(x) \text{ et } v_2(x) \text{ sont linéairement indépendant } v_2(x)$$

Exemple

EDL2 homogène a coefficient constants $y''(x)+py'(x)+qy(x)=0 \implies \lambda^2+p\lambda+q=0$ telle que les racines sont $a=\bar{b}=\alpha+\beta i\notin\mathbb{R}$ Montrer que $W[e^{\alpha y}\cos\beta x,e^{\alpha x}\sin\beta x]\neq 0 \ \forall x\in\mathbb{R}$

3.4.5 Théorème aussi à savoir

Théorème

Théorème 7 Soit $v_1, v_2 : I \to \mathbb{R}$ deux solution linéairement indépendantes de l'équation y''(x) + p(x)y'(x) + q(x)y(x) = 0 alors la solution générale de cette équation est de la forme :

$$v(x) = C_1 v_1(x) + C_2 v_2(x), C_1, C_2 \in \mathbb{R}, x \in I$$

Démonstration

Soit $\sim v(x)$ une solution de l'équation donnée (arbitraire), soit $x_0 \in I$ alors

$$v(x_0) = a_0 \in \mathbb{R}, \text{ et } \sim v'(x_0) = b_0 \in \mathbb{R}$$

On a deux solution linéairement indépendantes $v_1, v_2 : I \to \mathbb{R}$ Alors par la proposition précédente on sait que $W[v_1, v_2] \neq 0, \forall x \in I \Longrightarrow W[v_1, v_2](x_0) \neq 0$ implique que \exists unique constantes c_1, c_2 tel que le noyau de la matrice est

donne par le "point"
$$\begin{pmatrix} a_0 \\ b_0 \end{pmatrix}$$

Considérons la fonction $v(x) = c_1 v_1(x) + c_2 v_2(x)$

Superposition des solutions

Si v(x) est une solution de des EDL2, et u(x) une solution de l'équation homogène associée : y''(x) + p(x)y'(x) + q(x)y(x) = 0, alors v(x) + u(x) est une solution de l'équation (1) (exercice)

Méthode de la variation de constante On cherche une solution particulière de (1) supposant qu'on connait deux solutions linéairement indépendantes de l'équation homogène associée : v_1, v_2 : $I \to \mathbb{R}$ (ce qui implique $W[v_1, v_2](x) \neq 0 \ \forall x \in I$)

Ansatz posons:

$$v_0(x) = c_1(x)v_1(x) + c_2(x)v_2(x)$$

Où $c_1(x)$ et $c_2(x)$ sont des fonctions de classe C^2 sur I Condition sur $c_1(x)$ et $c_2(x)$? $v'_0(x) = \underbrace{c'_1(x)v_1(x) + c'_2(x) + v_2(x)}_{\text{Supposons} = 0} + c_1(x)v'_1(x) + c_2(x)v'_2(x)$

On cherche la dérivé seconde :

$$v_0''(x) = c_1'(x)v_1'(x) + c_2'(x)v_2'(x) + c_1v_1''(x) + c_2(x)v_2''(x)$$

$$v_0''(x) + p(x)v_0'(x) + q(x)v_0(x) = f(x)$$

$$c'_{1}(x)v'_{1}(x) + c'_{2}(x)v'_{2}(x) + c_{1}(x)v''_{1}(x) + c_{2}(x)v''_{2}(x) + p(x)c_{1}(x)v'_{1}(x) + p(x)c_{2}(x)v_{2}(x) + q(x)c_{1}(x)v_{1}(x) + q(x)c_{2}(x)v_{2}(x) = f(x)$$

$$\Rightarrow c'_{1}(x)v'_{1}(x) + c'_{2}(x)v'_{2}(x) = f(x)$$

$$\begin{cases} c'_{1}(x)v_{1}(x) + c'_{2}(x)v'_{2}(x) = f(x) \\ c'_{1}(x)v'_{1}(x) + c'_{2}(x)v'_{2}(x) = f(x) \end{cases} \quad \forall x \in I$$

Qui est un système pour $c_1'(x)$ et $c_2'(x)$, On sait que $W[v_1,v_2](x)\neq 0$ sur I, $\det\begin{pmatrix} v_1&v_2\\v_1'&v_2'\end{pmatrix}(x)\neq 0 \ \forall x\in I$ On écrit ce qu'on cherche :

$$\begin{pmatrix} v_1(x) & v_2(x) \\ v'_1(x) & v'_2(x) \end{pmatrix} \begin{pmatrix} c'_1(x) \\ c'_2(x) \end{pmatrix} = \begin{pmatrix} 0 \\ f(x) \end{pmatrix}$$

Implique qu'il existe une unique solution $\forall x \in I$ En faisant l'inverse de la matrice de gauche :

$$\begin{pmatrix} c_1(x) \\ c_2'(x) \end{pmatrix} = \frac{1}{W[v_1, v_2]} \begin{pmatrix} v_2' & -v_2 \\ -v_1' & v_1 \end{pmatrix} \begin{pmatrix} 0 \\ f \end{pmatrix} = \frac{1}{W[v_1, v_2]} \begin{pmatrix} -v_2 f \\ v_1 f \end{pmatrix}$$

$$\Longrightarrow \begin{pmatrix} c_1'(x) \\ c_2'(x) \end{pmatrix} = \begin{pmatrix} -v_2(x)f(x) \\ v_1(x)f(x) \end{pmatrix} \frac{1}{W[v_1, v_2]x}$$

Ce qui implique:

$$c_1(x) = -\int \frac{f(x)v_2(x)}{W[v_1, v_2]} dx$$

$$c_2(x) = \int \frac{f(x)v_1(x)}{W[v_1, v_2]} dx$$

On a donc que $v_0(x) = c_1(x)v_1(x) + c_2(x)v_2(x)$ est une solution de (1), la solution générale de (1) est :

$$v(x) = v_0(x) + c_1 v_1(x) + c_2 v_2(x)$$
 où $C_1, C_2 \in \mathbb{R}, x \in I$

Exemple

Trouver la solution générale de l'équation :

$$y''(x) - \frac{1}{x(\ln x - 1)}y'(x) + \frac{1}{x^2(\ln x - 1)}y(x) = \ln x - 1$$

 $\operatorname{sur} [e, \infty[$

(1) Essayons de trouver une solution non nulle de l'équation homogène associée :

$$y''(x) - \frac{1}{x \ln x - 1}y'(x) + \frac{1}{x^2(\ln x - 1)}y(x) = 0$$

Essayons avec y = x:

$$y = x \implies y' = 1, y'' = 0 = -\frac{1}{x(\ln x - 1)} + \frac{x}{x^2(\ln x - 1)} = 0 \ \forall x \in]e, \infty[$$

(2) Trouver une autre solution de l'équation, linéairement indépendante

$$v_2(x) = c(x)v_1(x)$$
 où $c(x) = \int \frac{e^{-P(x)}}{v_1^2(x)} dx, P(x) = \int p(x)dx$

On cherche P(x):

$$p(x) = -\frac{1}{x(\ln x - 1)} \implies P(x) = -\int \frac{dx}{x(\ln x - 1)}$$
$$= -\int \frac{d(\ln x - 1)}{\ln x - 1}$$
$$= -\ln(\ln x - 1)$$

On cherche donc maintenant c(x):

$$c(x) = \int \frac{e^{-P(x)}}{v_1^2(x)} dx = \int \frac{e^{+\ln(\ln x - 1)}}{x^2} dx = \int \frac{\ln x - 1}{x^2} dx$$
$$= -\int (\ln x - 1) d\frac{1}{x} = -\frac{\ln x - 1}{x} + \int \frac{1}{x} \frac{1}{x} dx = -\frac{\ln x - 1}{x} - \frac{1}{x} = -\frac{\ln x}{x}$$

On a donc que

$$v(x) = C_1 v_1(x) + C_2 v_2(x) = C_1 x + C_2 \ln x$$

avec $C_1, C_2 \in \mathbb{R}, x \in]e, \infty[$

Est la solution générale de l'équation homogène.

On cherche maintenant une solution particulière de l'équation complète :

$$y''(x) - \frac{1}{x(\ln x - 1)}y'(x) + \frac{1}{x^2(\ln x - 1)}y(x) = \ln x - 1$$

On prends:

$$v_0(x) = c_1(x)v_1(x) + c_2(x)v_2(x)$$

où:

$$c_1(x) = -\int \frac{f(x)v_2(x)}{W[v_1, v_2]} dx$$
$$c_2(x) = +\int \frac{f(x)v_1(x)}{W[v_1, v_2]} dx$$

On cherche le Wronskein:

$$W[v_1, v_2] = \det \begin{pmatrix} x & -\ln x \\ 1 & -\frac{1}{x} \end{pmatrix} = -1 + \ln x = \ln x - 1 \neq 0 \text{ sur }]e, \infty[$$

Ensuite:

$$c_1(x) = -\int \frac{(\ln x - 1)(-\ln x)}{\ln x - 1} dx = +\int \ln x dx$$
$$= x \ln x - \int x \frac{1}{x} dx = x \ln x - x$$

Pour $c_2(x)$:

$$c_2(x) = \int \frac{(\ln x - 1) \cdot x}{\ln x - 1} dx = \int x dx = \frac{1}{2}x^2$$

On trouve finalement :

$$v_0(x) = c_1(x)v_1(x) + c_2(x)v_2(x)$$

$$= x(\ln x - 1)x + \frac{1}{2}x^2(-\ln x)$$

$$= \frac{1}{2}x^2 \ln x - x^2$$

On cherche finalement la solution générale de l'équation complète

$$v(x) = C_1 x + C_2 \ln x + \frac{1}{2} x^2 \ln x - x^2$$

où $C_1, C_2 \in \mathbb{R}, x \in]e, \infty[$

 $_$ Jeudi 6 mars 2025 — Lecture 6 : EDL2

3.4.6 Méthode de résolution de EDL2

Rappel (Méthode de la variation des constantes)

En premier lieu on calcule le Wronskien de $v_1(x)$ et $v_2(x)$,

$$W[v_1, v_2] = \det \begin{pmatrix} v_1 & v_2 \\ v_1' & v_2' \end{pmatrix}$$

Ensuite, On calcule les fonctions $c_1(x)$ et $c_2(x)$:

$$c_1(x) = -\int \frac{f(x)v_2(x)}{W[v_1, v_2]} dx$$
$$c_2(x) = \int \frac{f(x)v_1(x)}{W[v_1, v_2]} dx$$

Méthode de calcul

Pour des fonctions f(x) spéciales, une méthode alternative existe :

Case 1 si f(x) est de la forme :

$$f(x) = e^{cr} R_n(x)$$

avec $R_n(x)$ un polynôme de degré $n \in \mathbb{N}_{\geq 0}$. Alors la solution est donné par :

$$\implies y_p(x) = x^r e^{cx} T_n(x)$$

Avec r = 0, 1 ou 2 la multiplicité de la racine c dans l'équation caractéristique, $T_n(x)$ un polynôme à déterminer de degré n.

Cas 2
$$f(x) = e^{\alpha x} (\cos(\beta x) P_k(x) + \sin(\beta x) Q_n(x)); \quad \alpha, \beta \in \mathbb{R}$$

$$\implies y_p(x) = x^r e^{\alpha x} (\cos(\beta x) T_n(x) + \sin(\beta x) S_n(x))$$

Avec r = 1 si $\alpha + i\beta$ est racine de l'équation caractéristique, et r = 0 sinon, $T_n(x)$ et $S_n(x)$ des polynômes à déterminer de degré $n = \max(k, m)$

Pour déterminer les coefficients des polynômes inconnus :

- Calculer les dérivées de la solution particulière
- Remplacer dans l'équation initiale, et résoudre l'équation.

Exemple

$$y'' + 2y' + 10y = 40e^x \sin(3x)$$

Solution homogène:

$$\lambda_{1,2} = \frac{\lambda^2 + 2\lambda + 10 = 0}{2}$$

$$\lambda_{1,2} = \frac{-2 \pm \sqrt{4 - 40}}{2} = \frac{-2 \pm i6}{2}$$

$$= -1 \pm i3$$

On cherche maintenant $y_h(x)$:

$$y_h(x) = C_1 e^{-2x} \cos(3x) + C_2 e^{-x^2} \sin(3x)$$

Coefficient indeterminé

 $f(x) = 40 \cdot e^x \sin(3x)$, on cherche donc une fonction qui rempli ce critère :

$$f(x)e^{\alpha x}(\cos(\beta x)\underbrace{P_k(x)}_{=A} + \sin(\beta x)\underbrace{Q_m(x)}_{=B})$$

On sait que $\beta = 3$ et que $\alpha = 1$:

Il n'y a pas de rapport direct entre ce $\alpha=1$ et la solution de l'équation caractéristique.

On observe la fonction f(x) qui ici à pour l'exponentielle $e^x=e^{1\cdot x}$, c'est de là que vient notre α

$$\alpha + i\beta = 1 + i3 \implies r = 0$$

Comme r=0 on sait donc que le polynôme n'est qu'une constante qu'on va noter $T_n(x)=A$ et $S_n(x)=B$

On peut noter donc notre fonction pour laquelle on cherche les coefficients :

$$y_p(x) = e^3(\cos(3x)A + \sin(3x)B)$$

On va dérivée tout ce beau monde :

$$y_p'(x) = e^x(\cos(3x)A + \sin(3x)B - r\sin(3x)A + 3\cos(3x)B)$$

$$y_p''(x) = e^x(\cos(3x)(A + 3B) + \sin(3x)(B - 3A) - 3(A + 3B)\sin(3x) + 3\cos(3x)(B - 3A))$$

$$= e^x(\cos(3x)(6B - 8A) + \sin(3x)(-8B - 6A))$$

On injecte tout ca dans l'EDL2 :

On peut tout diviser par e^x car il se trouve partout et n'est jamais égal à 0.

$$\cos(3x)(6B - 8A + 2(A + 3B) + 10A) + \sin(3x)(-8B - 6A) + 2(B - 3A) + 10B) = 40\sin(3x)$$

On voit ici que tout la partie du cos(x) est égal à 0, c'est comme ci on avait deux équation, la partie avec le cos(x) et la partie avec le sin(x):

$$\Rightarrow \begin{cases} 12B + 4A = 0 \\ 4B - 12A = 40 \end{cases} \Rightarrow \begin{cases} A = -3B \\ 4B + 36B = 40 \end{cases} \Rightarrow \begin{cases} A = -3 \\ B = 1 \end{cases}$$

On obtient donc que la solution particulière :

$$y_p(x) = e^x(-3\cos(3x) + \sin(3x))$$

Et pour la solution générale :

$$y = C_1 e^{-x} \cos(3x) + C_2 e^{-x^2} \sin(3x) + e^x (-3\cos(3x) + \sin(3x))$$

Exemple

$$y'' + 2y' - 3y = (x+1)e^{-3x}$$

Ici nous somme dans le cas numéro 1 :

$$f(x) = e^{cx} R_n(x) \implies c = -3, n = 1$$

$$y_p(x) = x^r e^{-3x} (Ax + B)$$
 où $r = 1$
 $y_p(x) = e^{-3x} (Ax^+ Bx)$

Ici on a pris un polynôme R_n de puissance 1 c'est pour cela qu'on peut l'écrire comme nous l'avons fait ci-dessus.

Donc ici on va dérivée y_p deux fois et tout remettre dans l'équation de base et ensuite résoudre :

$$y_p'(x) = e^{-3x}(-3(Ax^2 + Bx) + 2Ax + B) = e^{-3x}(-3Ax^2 + (2A - 3B)x + B)$$

$$y_p''(x) = e^{-3x}(9Ax^2 + (-6A + 9B)x - 3B + (-6A)x + (2A - 3B))$$

$$=^{-3x}(9A + (-12A + 9B)x + 2A - 6B)$$

On divide l'EDL2 par e^{-3x} ce qui nous donne :

$$9Ax^{2} + (-12A + 9B)x + 2A - 6B + 2(-3Ax^{2} + (2A - 3B)x + B) - 3Ax^{2} + Bx = x + 1$$

$$\Rightarrow \begin{cases} (9A - 6A - 3A)x^{2} = 0x^{2} \\ (-2A + 9B + 9A - 6B - 3B)x = x \end{cases}$$

$$(2A - 6B) + 2B = 1$$

$$\Rightarrow \begin{cases} -8A = 1 \\ 2A - 4B = 1 \end{cases} \Rightarrow \begin{cases} A = -\frac{1}{8} \\ B = -\frac{5}{16} \end{cases}$$

On obtient finalement pour la solution particulière :

$$y_p(x) = e^{-3x} \left(-\frac{x^2}{8} - \frac{5x}{16} \right)$$
$$y_p(x) = C_1 e^{-3x} + C_2 e^x \quad C_1, C_2 \in \mathbb{R}$$

3.4.7 Méthode de démonstration par l'absurde

Méthode On a une relation tel que :

$$T \implies Q \equiv \neg Q \implies F$$

Exemple

 $\neg \exists \in \mathbb{Z} \text{ tel que } 18x - 54y = 21 :$

Supposons $\neg Q$ tel qu'il existe x, y tel que :

$$18x - 54y = 21$$

Comme cela est impossible, alors la il ne peux exister de $x,y\in\mathbb{Z}$ tel que la relation tienne :

$$\neg Q \implies \neg P$$

Euclide

Théorème 8 soit $\mathbb P$ l'ensemble des nombres premiers alors :

$$\mid \mathbb{P}\mid =\infty$$

Démonstration

Supposons $\exists n \in \mathbb{N} \text{ tel que } \mid \mathbb{P} \mid = n < \infty$

$$\mathbb{P} = \{p_1, \dots, p_n\}$$

Soit $k = p_1 \cdot p_2 \cdot \dots \cdot p_n + 1$, alors, $k \notin \mathbb{P}$ car $k > p_i \forall i = i \dots n$ (Il ne peux pas être dans \mathbb{P} car il est plus grand que tout les éléments de \mathbb{P}) Et donc, il existe un éléments dans \mathbb{P} tel qu'il divise k:

$$\exists p_j \neq k \text{ tel que } p_j \mid k$$

Si on note

$$\underbrace{k - p_1 \cdot p_2 \cdot \dots \cdot p_n}_{\text{divisible par} p_j} = \underbrace{1}_{\text{pas div}}$$

Ce qui est une contradiction logique.

la partie $k-p_1p_2...p_n$ est divisible par p_j car de (1) on n'a dit que k l'était (juste au dessus) et le produit de tout les p_n est forcement divisible par p_j vu que $p_j \in \mathbb{P}$. L'addition de deux nombre divisible par un nombre est forcement divisible par ce dernier.

Lundi 10 mars 2025 — Lecture 7 : Espace \mathbb{R}^n

 $30 CHAPITRE~3.~M\'{e}THODE~DE~D\'{e}MONSTRATION, RAISONNEMENT~MATH\'{e}MATIQUE$

Chapitre 4

Espace \mathbb{R}^n

4.0.1 \mathbb{R}^n espace vectoriel normé

Définition

Définition 13 \mathbb{R}^n est un ensemble de tout les n- tuples ordonnés de nombre réels.

$$\overline{x} = (x_1, \dots, x_n) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Il y a donc toute les propriétés d'un espace vectoriel dont l'addition et l'action scalaire :

1.
$$+: \overline{x} = (x_1, \dots, x_n), \overline{y} = (y_1, \dots, y_n) \implies \overline{x} + \overline{y} = (x_1 + y_1, \dots, x_n, y_n)$$

2. Multiplication par un nombre réel $\lambda \in \mathbb{R}$:

$$\overline{x} = (x_1, \dots, x_n) \implies \lambda \cdot \overline{x} = (\lambda x_1, \dots, \lambda x_n)$$

Et par conséquent, les opérations présentées ci-dessus satisfont :

•
$$(\lambda_1 \lambda_2)\overline{x} = \lambda_1(\lambda_2 \overline{x}) \ \forall \overline{x} \in \mathbb{R}^n, \lambda \in \mathbb{R}$$

•
$$1 \cdot \overline{x} = \overline{x}$$

•
$$(\lambda_1 + \lambda_2)\overline{x} = \lambda_1\overline{x} + \lambda_2\overline{x}$$

•
$$\lambda(\overline{x} + \overline{y}) = \lambda \overline{x} + \lambda \overline{y} \ \forall \lambda_1, \lambda_2 \in \mathbb{R}$$

•
$$\lambda(\overline{x} + \overline{y}) = \lambda \overline{x} + \lambda \overline{y} \ \forall \overline{x}, \overline{y} \in \mathbb{R}^n$$

Base

On a une base canonique:

$$\{\overline{e}_i = (0, 0, \dots, \overbrace{1}^i, \dots, 0)\}_{i=1}^n \implies \overline{e}_i \underset{\forall i=1,\dots,n}{\underbrace{\in}} \mathbb{R}^n$$

Produit scalaire On introduit le **produit scalaire** dans \mathbb{R}^n :

Définition 14

$$\langle \overline{x}, \overline{y} \rangle = \sum_{i=1}^{n} x_i y_i = x_1 y_1 + \dots + x_n y_n$$

Et par la suite la norme euclidienne :

 $||\overline{x}|| = (\langle \overline{x}, \overline{x} \rangle)^{\frac{1}{2}} = (\sum_{i=1}^{n} x_i^2)^{\frac{1}{2}} \implies \mathbb{R}^n \text{ est un espace vectoriel norm\'e}$

Propriétés de la norme euclidienne

- 1. $|| \overline{x} || \ge 0$ et $|| \overline{x} || = 0 \implies \overline{x} = (0, 0, \dots, 0)$
- 2. $\overline{x} \in \mathbb{R}^n, \lambda \in \mathbb{R} \implies ||\lambda \cdot \overline{x}|| = |\lambda| \cdot ||\overline{x}||$
- 3. Cauchy-Schwartz : $|\langle \overline{x}, \overline{y} \rangle| \le ||\overline{x}|| \cdot ||\overline{y}||$
- 4. Inégalité triangulaire : $\forall \overline{x}, \overline{y} \in \mathbb{R}^n \implies ||\overline{x} + \overline{y}|| \le ||\overline{x}|| + ||\overline{y}||$
- 5. \implies 4, $|| \overline{x} + \overline{y} ||^2 = \langle \overline{x}, \overline{x} \rangle + 2 \langle \overline{x}, \overline{y} \rangle + \langle \overline{y}, \overline{y} \rangle$ Qui après plusieurs opération fini par :

$$||\overline{x}|| + ||\overline{y}|| \ge ||\overline{x} + \overline{y}||$$

6. Un autre inégalité triangulaire : || $\overline{x} - \overline{y}$ || \geq ||| \overline{x} || - || \overline{y} |||

Pour cette égalité, Nous pouvons faire une démonstration par disjonction des cas (vu au cours 3)

Distance

Définition 15 L'expression $|| \overline{xy} || = d(\overline{x}, \overline{y})$ est appelée **la distance** entre \overline{x} et \overline{y} dans \mathbb{R}^n .

Alors:

- $d(\overline{x}, \overline{y}) = d(\overline{x}, \overline{y})$
- $d(\overline{x}, \overline{y}) = 0 \iff \overline{x} = \overline{y}$
- $d(\overline{x}, \overline{y}) \leq d(\overline{x}, \overline{z}) + d(\overline{z}, \overline{y})$

$$||\overline{x} - \overline{y}|| = ||\overline{x} - \overline{z} + \overline{z} - \overline{y}|| \le ||\overline{x} - \overline{z}|| + ||\overline{z} - \overline{y}||$$

4.0.2 Sous-ensemble ouverts et fermés de \mathbb{R}^n

Définition 16 Pour tout $\overline{x} \in \mathbb{R}^n$ et tout nombre réel $\delta > 0$, soit $B(\overline{x}, \delta) = \{\overline{y} \in \mathbb{R}^n : | | \overline{x} - \overline{y} | | < \delta \}$. Alors $B(\overline{x}, \delta) \subset \mathbb{R}^n$ est appelé **la boule ouverte** de centre \overline{x} et de rayon δ .

Boule ouverte

Définition 17 $E \subset \mathbb{R}^n$ est **ouvert** si et seulement si :

1.
$$E = \emptyset$$

2. $E \neq \emptyset$ et pour tout $\overline{x} \in E$ il existe $\delta > 0$ tel que $B(\overline{x}, \delta) \subset E$

Exemple Une boule ouverte dans \mathbb{R} $B(x, \delta) = \{y \in \mathbb{R} : |x - y| < \delta\} = |x - \delta, x + \delta|$

Intérieur d'une boule

Définition 18 Soit $E \subset \mathbb{R}^n$ non vide. Alors $\overline{x} \in E$ est un **point intérieur** de E s'il existe $\delta > 0$ tel que $B(\overline{x}, \delta) \subset E$. L'ensemble des points intérieurs est appelé **intérieure** de E. Notation \mathring{E}

Remarque personnelle

On voit ici clairement que $\mathring{E} < E$. Cette relation est vrai grâce au δ qui rend "plus petit" notre point \overline{x}

Soit $E \subset \mathbb{R}^n$ non vide. Alors $Esubset\mathbb{R}^n$ est ouvert $\iff E = \mathring{E}$

Exemple 1 La boule ouverte $B(\overline{x}, \delta) = \{\overline{y} \in \mathbb{R}^n : || \overline{x} - \overline{y} || < \delta\}$ est un sous-ensemble ouvert.

Soit $\overline{y} \in B(\overline{x}, \delta)$ Alors $\delta = \frac{1}{2}(\delta - ||x - y||) > 0$ implique que :

$$\implies B(\overline{y}_1, \delta_1) \subset B(\overline{x}, \delta)$$
$$\implies B(\overline{x}, \delta) \subset \mathbb{R}^n$$

est un sous-ensemble ouvert de \mathbb{R}^n $\forall \overline{x} \in \mathbb{R}^n, \, \forall \delta > 0$

Exemple 2 Soit $n \geq 2$, $E = \{\overline{x} \in \mathbb{R}^n : x_1 = 0, x_i > 0, i = 2, \dots n\} \subset \mathbb{R}^n$ Ici, nous voulons monter qu'il n'est pas ouvert. Prenons le point $\overline{y} = (0, y_2, \dots, y_n)$ où $y_2, \dots, y_n > 0$. Alors

Prenons le point $\overline{y} = (0, y_2, \dots, y_n)$ où $y_2, \dots, y_n > 0$. Alors pour tout $\delta > 0$:

$$B(\overline{y}, \delta) \ni (\frac{\delta}{2}, y_2, \dots, y_n) \notin E$$

Exemple 3 \emptyset et $\mathbb{R}^n \subset \mathbb{R}^n$ sont des sous-ensembles ouverts. Ici on a deux cas de figure,

- $\bullet \ emptyset$: alors le sous-ensemble est ouvert par définition
- Sinon, soit $\overline{x} \in \mathbb{R}^n$ alors $B(\overline{x}, \delta) \subset \mathbb{R}^n$ et cela : $\forall \delta > 0$

Exemple 4 $E = \{ \overline{x} \in \mathbb{R}^n : x_i > 0 \forall i = 1, \dots, n \}$ Soit $\overline{y} \in E$. Alors, nous pouvons prendre $B(\overline{y}, \min(y_i)) \subset E$.

Propriétés

Ici on remarque deux grandes propriétés:

1. Toute réunion $\bigcup_{i \in I} E_i$ des sous-ensembles ouverts est un sous-ensemble ouvert.

$$\overline{x} \in \bigcup_{i \in I} E_i \implies \exists j : \overline{x} \in E_j, \ E_j \text{ est ouvert } \implies \exists \delta > 0 : B(\overline{x}, \delta) \subset E_j$$

$$\implies B(\overline{x}, \delta) \subset \bigcup_{i \in I} E_i$$

2. Toute intersection finie $\bigcap_{i=1}^{n} E_i$ des sous-ensembles ouverts est un sous-ensemble ouvert :

$$\overline{x} \in \bigcap_{i \in I} E_i \implies \forall j \overline{x} \in E_j \text{ ouvert } \implies \exists \delta_j > 0 : B(\overline{x}, \delta_j) \subset E_j$$

$$\implies B(\overline{x}, \min_j \delta_j) \subset E_j \forall j \implies B(\overline{x}, \min \delta_j) \subset \bigcap_{i=1}^n E_i = E$$

Une intersection infinie des sous-ensembles ouvert de \mathbb{R}^n

Sous-ensemble fermé

Définition 19 Soit $E \subset \mathbb{R}^n$ un sous-ensemble. Alors E est **Fermé** dans \mathbb{R}^n si son complément $CE = \{\overline{x} \in \mathbb{R}^n : \overline{x} \notin E\} = \mathbb{R}^n - E$ est ouvert

$$CB(\overline{x}, \delta) = E \subset \mathbb{R}^n \text{ est ferm\'e} : E = \{ \overline{y} \in \mathbb{R}^n : |\overline{x} - y| \ge \delta \}$$

Puisque $C(CB(\overline{x}, \delta)) = B(\overline{x}, \delta)$ est ouvert.

Exemples

$$E = \{\overline{x}\} \subset \mathbb{R}^n$$

Ceci est **fermé**, car si on prends le complément :

$$CE = \{ \overline{y} \in \mathbb{R}^n : || \overline{y} - \overline{x} || > 0 \}$$
$$\forall \overline{y} \in CE \text{ la boule} \overline{B}(\overline{y}, \frac{1}{2} || \overline{y} - \overline{x} || \subset CE$$

Question pendant le cours

Soient A et B deux sous-ensembles ouverts non-vides de \mathbb{R}^n Soit $A \setminus B = \{\overline{x} \in \mathbb{R}^n : \overline{x} \in A \text{ et } \overline{x} \notin B\}$ non-vide.

 $A \setminus B$ peut être ouvert, fermé ou ni ouvert ni fermé

- 1. $A \setminus \text{est soit ouvert, soit fermé}$
- 2. $A \setminus$ ne peut pas être ouvert
- 3. $A \setminus$ ne peut pas être fermé

Il n'y a qu'une seul possibilité et pour la trouver il faut des contre exemples.

Exemple

$$A = \{(x, y) \in \mathbb{R}^2 : \tan(x + y) \ge 1\}$$

Et on se pose la question A ouvert, fermé, ni ouvert, ni fermé? Déjà on va trouver tout les valeurs possiblie pour x et y c'est à dire la définition de tan :

$$\implies \tan u \text{ existe } \implies u \in]-\frac{\pi}{2}+\pi k, \frac{\pi}{2}+\pi k[\ k \in \mathbb{Z}]$$
$$\tan u \ge 1 \implies u \in [\frac{\pi}{4}+\pi k, \frac{\pi}{2}+\pi k[\ \forall k \in \mathbb{Z}]$$

On a donc comme dit auparavant :

$$x+y \in \left[\frac{\pi}{4} + \pi k, \frac{\pi}{2} + \pi k\right]$$

$$\frac{\pi}{4} + \pi k \le x + y < \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$$

$$\frac{\pi}{4} + \pi k - x \le y < \frac{\pi}{2} + \pi k - x$$

Ici A n'est ni ouvert ni fermé :

Explications:

1. A n'est pas ouvert : $(x,y) = (0,\frac{\pi}{4}) = p \in A$

$$\forall \delta > 0 \ B(\overline{p}, \delta) \text{ contient } (0, \frac{\pi}{4} - \frac{\delta}{2}) \notin A$$

2. A n'est pas fermé : $(x,y)=(0,\frac{\pi}{2})=q\in CA$

$$\forall \delta > 0 \\ B(\overline{q},\delta) \text{ contient } (0,\frac{\pi}{2}-\frac{\delta}{2}) \in A \implies (0,\frac{\pi}{2}-\frac{\delta}{2}) \notin CA$$

Et comme CA n'est pas ouvert, alors A n'est pas fermé.

4.0.3 Méthodes de démonstration : Démonstration par le principe des tiroirs

Principes des tiroirs Si (n+1) objets sont placés dans n tiroirs, alors au moins un tiroir contient 2 objets ou plus.

Plus généralement :

Théorème 9 Si n objets sont placés dans k tiroirs, alors au moins un tiroir contient $\frac{n}{k} = \min\{m \in \mathbb{N} : m \geq \frac{n}{k}\}$ objets, ou plus.

Ceci est exactement la même méthode que celle vu en AICC I qu'on appelait le pigeon hole principle, Les preuves sont exactement les mêmes est le but est exactement le même.