Two Dimensional Random Variables

<u>Definition:</u> Let S be the sample space associated with a random experiment Let X = X(s) and Y = Y(s) be two functions each assigning a real number to each outcome $s \in S$. Then (X, Y) is called a Two Dimensional Random Variables.

If the possible values of (X, Y) are finite or countably infinite, (X, Y) is called a 2D discrete random variable.

i.e., when (X, Y) is a 2D discrete random variable, the possible values of (X, Y) may be represented as (x_i, y_i) , i = 1, 2, ..., n; j = 1, 2, ..., m

If (X,Y) can assume all values in a specified region R in the XY-plane, then (X,Y) is called a 2D continuous random variables.

Probability function of (X, Y) [Joint pmf]:

If (X,Y) is a 2D discrete random variables such that $P(X=x_i,Y=y_j)=p_{ij}$, then p_{ij} is called the probability mass function of (X,Y) provided the following conditions are satisfied:

(i).
$$p_{ij} \ge 0$$
, for all i and j

(ii).
$$\sum_i \sum_i p_{ij} = 1$$

The set of triples $\{x_i, y_j, p_{ij}\}$, i = 1, 2, ..., n; j = 1, 2, ..., m is called the joint probability distribution of (X, Y). This is expressed in the form of rectangular table.

X	y ₁	y_2	•••	\mathcal{Y}_m
x_1	p_{11}	p_{12}		p_{1m}
<i>x</i> ₂	p_{21}	p_{22}		p_{2m}
:	:	:	:	:
x_n	p_{n1}	p_{n2}		p_{nm}

Joint Probability density function [Joint pdf]:

If (X,Y) is a 2D continuous random variables and if there exist a function f(x,y) called the joint pdf of (X,Y), provided f(x,y) satisfies the following conditions:

(i). $f(x,y) \ge 0$, for all $(x,y) \in R$, R is the range space

(ii).
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$$

(iii).
$$P(a < X < b, c < Y < d) = \int_a^b \int_c^d f(x, y) dx dy$$

Cumulative distribution function (cdf):

If (X,Y) is a 2D random variables (discrete or continuous), then $F(x,y) = P(X \le x, Y \le y)$ is called the cdf of (X,Y).

If (X, Y) is a 2D discrete random variables; $F(x, y) = \sum_{y_j \le y} \sum_{x_i \le x} p_{ij}$

If (X,Y) is a 2D continuous random variables; $F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(x,y) dx dy$

Properties:

1.
$$F(-\infty, y) = 0 = F(x, -\infty)$$
 and $F(\infty, \infty) = 1$

2.
$$P(a < X < b, Y \le y) = F(b, y) - F(a, y)$$

3.
$$P(X \le x, c < Y < d) = F(x,d) - F(x,c)$$

4.
$$P(a < X < b, c < Y < d) = F(b,d) - F(a,d) - F(b,c) + F(a,c)$$

5. At point of continuity of F(x, y),

$$\frac{\partial^2 F}{\partial x \partial y} = f(x, y)$$

Marginal probability function:

Let (X,Y) is a 2D discrete random variables with joint pmf $P(x_i,y_j)$. Then

$$f(x_i) = \sum_{j=1}^m P(x_i, y_j)$$
 is called the Marginal probability function of X . And

$$g(y_i) = \sum_{i=1}^n P(x_i, y_i)$$
 is called the Marginal probability function of Y .

 $f(x_i) = \sum_{j=1}^m P(x_i, y_j)$ - Marginal distribution of X.

 $g(y_j) = \sum_{i=1}^n P(x_i, y_j)$ - Marginal distribution function of Y.

Y	y_1	y_2	•••	y_m	Row Sum
X	•				
x_1	p_{11}	p_{12}	•••	p_{1m}	$f(x_1)$
x_2	p_{21}	p_{22}	•••	p_{2m}	$f(x_2)$
:	:	:	:	:	:
$\boldsymbol{x_n}$	p_{n1}	p_{n2}		p_{nm}	$f(x_n)$
Column Sum	$g(y_1)$	$g(y_2)$		$g(y_m)$	1

Marginal Distribution or Marginal pdf:

Let (X,Y) is a 2D continuous random variables with joint pdf f(x,y). We define g and h, the marginal pdf of X and Y respectively as follows:

$$g(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 - called marginal pdf of X

and
$$h(y) = \int_{-\infty}^{\infty} f(x, y) dx$$
 - called marginal pdf of Y

Note:
$$P(a \le X \le b) = P(a \le X \le b, -\infty < Y < \infty)$$

$$= \int_{-\infty}^{\infty} \int_{a}^{b} f(x, y) dx dy = \int_{a}^{b} \left[\int_{-\infty}^{\infty} f(x, y) dy \right] dx = \int_{a}^{b} g(x) dx$$

Similarly,

$$P(c \le Y \le d) = P(-\infty < X < \infty, c \le Y \le d)$$

$$= \int_{-\infty}^{\infty} \int_{c}^{d} f(x, y) dx dy = \int_{c}^{d} \left[\int_{-\infty}^{\infty} f(x, y) dx \right] dy = \int_{c}^{d} h(y) dy$$

Conditional Probability Distribution:

Let (X, Y) is a 2D discrete random variables

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)}$$
 is called conditional probability function of X , given that $Y = y_j$.

Conditional PDF:

Let (X,Y) is a 2D continuous random variables with joint pdf f(x,y). Let g(x) and h(y) be the marginal pdf of x and Y respectively. Then conditional pdf of X for given y is

$$g(x|y) = \frac{f(x,y)}{h(y)}$$

And conditional pdf of Y for given X is

$$h(y|x) = \frac{f(x,y)}{g(x)}$$

Independent Random Variables:

Let (X,Y) is a 2D discrete random variables with joint pmf $P(x_i,y_j)$ and marginal pmf $f(x_i)$ and $g(y_j)$. We say that X and Y are independent random variables if

$$P(x_i, y_j) = f(x_i) g(y_j) \quad \forall i \text{ and } j$$

Let (X,Y) is a 2D continuous random variables with joint pdf f(x,y). Let g(x) and h(y) be the marginal pdf of X and Y respectively. We say that X and Y are independent random variables if

$$f(x,y) = g(x) h(y)$$
 for all (x,y)

Mean and Variance:

Let (X,Y) is a 2D discrete random variables with joint pmf $P(x_i,y_j)$ and marginal pmf $f(x_i)$ and $g(y_i)$.

$$E(X) = \sum_{i} x_i f(x_i)$$

$$E(Y) = \sum_{i} y_{j} g(y_{j})$$

$$E(XY) = \sum_{i,j} x_i y_j P(x_i, y_j)$$

Let (X,Y) is a 2D continuous random variables with joint pdf f(x,y). Let g(x) and h(y) be the marginal pdf of x and Y respectively.

$$E(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \ f(x, y) \ dx \ dy = \int_{-\infty}^{\infty} x \ g(x) dx$$

$$[\because \int_{-\infty}^{\infty} f(x, y) dy = g(x)]$$

$$E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y \ f(x, y) \ dx \ dy = \int_{-\infty}^{\infty} y \ h(y) dy$$

$$[\because \int_{-\infty}^{\infty} f(x, y) dx = h(y)]$$

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \ f(x,y) \ dx \ dy$$

$$V(X) = E(X^2) - [E(X)]^2$$

$$V(Y) = E(Y^2) - [E(Y)]^2$$

Properties:

$$E(X + Y) = E(X) + E(Y)$$

$$E(XY) = E(X)E(Y)$$
 if and only if X and Y are independent

$$V(X + Y) = V(X) + V(Y)$$
 if and only if X and Y are independent

Covariance of X and Y is defined as,

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

Let (X,Y) be a 2D random variable. We define ρ_{xy} , the coefficient of correlation between X and Y as follows:

$$\rho = \rho_{xy} = \frac{E(XY) - E(X)E(Y)}{\sqrt{V(X)V(Y)}} = \frac{Cov(X,Y)}{\sqrt{V(X)V(Y)}}$$

Note:

- If X and Y are independent, then $\rho = 0$ (Because E(XY) = E(X)E(Y))
- If $\rho=0$, we say that X and Y are uncorrelated. (but X and Y not necessarily independent)