Pending Claims

1. (Original) In a wireless network, a method for transmitting analog signals to

at least one wireless terminal, the method comprising:

receiving a digital signal that defines (i) bearer data for each of a plurality of channels;

and (ii) control information for each of the plurality of channels;

parsing from the control information, a power level and a modulation frequency, the

power level being one of a plurality of possible power levels and the modulation frequency being

one of a plurality of possible modulation frequencies;

based on the power level and the modulation frequency, responsively generating an

analog signal having a plurality of analog channels that defines the bearer data in the digital

signal; and

transmitting the analog signal to the at least one wireless terminal.

2. (Original) The method of claim 1, wherein responsively generating the analog

signal comprises:

applying a spreading sequence to each channel of bearer data in the digital signal to

produce a spread spectrum signal for each channel of bearer data;

amplifying the spread spectrum signal for each channel of bearer data to the power level

defined by the control information for the channel:

adding the spread spectrum signal for each channel of bearer data to produce a sum of

spread spectrum signals;

converting the sum of the spread spectrum signals into the analog signal; and

modulating the analog signal to the modulation frequency defined by the control

information.

3. (Original) The method of claim 2, wherein the spreading sequence is selected

from the group consisting of a Walsh code and a Gold code.

4. (Original) The method of claim 1, wherein the control information further

comprises a spreading sequence and a PN offset.

5-8. (Cancelled)

9. (Original) In a wireless network, a system for transmitting analog signals to at

least one wireless terminal, the system comprising:

a receiver arranged to receive a digital signal that defines (i) bearer data for each of a

plurality of channels; and (ii) control information for each of the plurality of channels:

a parser arranged to parse from the control information, a power level and a modulation

frequency, the power level being one of a plurality of possible power levels and the modulation

frequency being one of a plurality of possible modulation frequencies:

means for responsively generating, based on the power level and the modulation

frequency, an analog signal having a plurality of analog channels that defines the bearer data in

the digital signal; and

an RF power amplifier arranged to transmit the analog signal to the at least one wireless

terminal.

10. (Original) The system of claim 9, wherein the control information further comprises a spreading sequence and a PN offset.

11. (Original) In a wireless network, a system for transmitting analog signals to at

least one wireless terminal, the system comprising:

a receiver arranged to receive a digital signal that defines (i) bearer data for each of a

plurality of channels; and (ii) control information for each of the plurality of channels;

a parser arranged to extract from the control information, a power level and a modulation

frequency, the power level being one of a plurality of possible power levels and the modulation

frequency being one of a plurality of possible modulation frequencies;

a spreading unit arranged to define, for each of the plurality of channels, a spread

spectrum signal;

a power control unit arranged to amplify the spread spectrum signal for each of the

plurality of channels, the spread spectrum signal being amplified to the power level defined by

the control information for the channel:

an adder arranged to sum the spread spectrum signal for each channel to produce a sum

of spread spectrum signals;

a digital-to-analog converter arranged to convert the sum of the spread spectrum signals

into an analog signal;

a modulator arranged to modulate the analog signal to the modulation frequency defined

by the control information; and

an RF power amplifier arranged to transmit the analog signal to the at least one wireless

terminal.

- 12. (Original) The system of claim 11, wherein (i) the control information includes a spreading sequence for each channel of the digital signal; and (ii) the spreading unit is further arranged to apply to each channel of the digital signal the spreading sequence.
- 13. (Original) The system of claim 11, wherein the control information includes a PN offset for the analog signal, the system further comprising a PN offset unit arranged to apply to the sum of spread spectrum signals the PN offset.

14-17. (Cancelled)

18. (Original) A system comprising:

a digital base station;

a radio link converter unit;

wherein the digital base station is communicatively coupled to the radio link converter unit;

the digital base station arranged to:

receive bearer data for a plurality of channels;

establish (i) a modulation frequency for an analog signal that is to define the bearer data for the plurality of channels; and (ii) a power level for each channel of bearer data; and

output to the radio link converter unit, a digital signal defining (i) the bearer data; (ii) the modulation frequency; and (iii) the power level; and

the radio link converter unit arranged to:

receive a digital signal that defines (i) bearer data for each of a plurality of

channels; and (ii) control information for each of the plurality of channels;

parse from the control information, a power level and a modulation

frequency, the power level being one of a plurality of possible power levels and

the modulation frequency being one of a plurality of possible modulation

frequencies;

based on the power level and the modulation frequency, responsively

generate an analog signal having a plurality of analog channels that defines the

bearer data in the digital signal; and

transmit the analog signal to the at least one wireless terminal.