Rendszeroptimalizálás vizsgatételek (2015/2016. második félév)

Marussy Kristóf

2016. június 11.

Lineáris programozás

- 1. Az optimális hozzárendelés problémája, Egerváry algoritmusa.
- 1.1. példa: egy cég számos megrendelést kap különboző "egyszemélyes", egyforma idő alatt elvégezhető munkák elvégzésére
 - · kimutatást készítünk arról, hogy melyik dolgozó melyik munkát tudja elvégezni
 - cél a profit maximalizálása (lehető legtöbb munka elvégzése)
- 1.2. algoritmus: "magyar módszer"
 - INPUT: G = (F, L; E) páros gráf
 - Output: $M \subseteq G$ egy maximális méretű párosítás
 - ullet induljunk ki egy tetszőleges (pl. az üres) M párosításból
 - alternáló út = párosítatlan F-beli csúcsból indul, \forall második éle az M-hez tartozik \circ javító út = olyan alternáló út, ami párosítatlan L-beli pontban ér véget
 - amíg találunk J javítóutat (pl. szélességi kereséssel) $\Longrightarrow M \leftarrow M (J \cap M) \cup (J M)$
- 1.3. tétel: a "magyar módszer" valóban maximális párosítást talál G-ben
 - bizonyítás: M := a párosítás, amit az algoritmus megtalált

 $F_1 \coloneqq F - M, \mathsf{az}\ M$ által le nem fedett F-belipontok halmaza,

 $L_2 := az F_1$ -ből alternáló úton elérhető pontok halmaza,

 $F_2 := \text{az } L_2$ -beli pontok M szerinti párjai,

 $L_3 := az F_1$ -ből alternáló úton nem elérhető L-beli pontok halmaza,

 $F_3 := az L_3$ -beli pontok M szerinti párjai,

 $L_1 := L - M$, az M által le nem fedett L-beli pontok halmaza

• vegyük észre, hogy G-ben nem vezethet $F_1 \cup F_2$ és $L_1 \cup L_3$ között él

	F_1	F_2	
L_1 1 hosszú javító út lenne L_3 az L_3 -beli csúcs 1 hosszú alternáló		≥ 3 hosszú javító út lenne	
		az L_3 -beli csúcs ≥ 3 hosszú alternáló	
	úton elérhető lenne, azaz L_2 -beli	úton elérhető lenne, azaz L_2 -beli	

- $F_1 \cup F_2 \ \forall$ szomszédja L_2 -beli, $L_2 \cup F_3$ egy lefogó ponthalmaz
- mivel épp $|M| = |L_2 \cup F_3|$, M valóban maximális méretű
- 1.4. probléma: optimális hozzárendelés
 - INPUT: G = (F, L; E) páros gráf, $w: E \to \mathbb{R}$ súlyfüggvény
 - Output: $M \subseteq G$ párosítás úgy, hogy $\sum_{e \in M} w(e)$ maximális
 - az optimális hozzárendelés megoldható maximális súlyú teljes párosítás keresésével • ha $|F| \neq |L|$, adjunk G-hez annyi csúcsot, hogy egyenlőek legyenek

LINEÁRIS PROGRAMOZÁS

- $\circ \text{ legyen } G' = (F, L; E') \text{ teljes páros gráf } (E' = F \times L), \ w'(e) \coloneqq \begin{cases} w(e), & \text{ha } e \in E, \\ 0, & \text{ha } e \notin E \end{cases}$
- ° G' egy M' maximális súlyú teljes párosítasa a G maximális súlyú párosítása az E'-E élek elhagyása után
- ° G maximális súlyú M párosításához megfelelő E'-E éleket hozzávéve G' maximális súlyú teljes párosítását kapjuk
- 1.5. definíció: a $c: F \cup L \to \mathbb{R}$ függvény *címkézés* a G = (F, L; E) páros gráfra és a $w: E \to \mathbb{R}$ súlyfüggvényre nézve, ha $\forall e = \{x, y\} \in E: c(x) + c(y) \ge w(e)$
- 1.6. lemma: a w súlyfüggvénnyel súlyozott G=(F,L;E) páros gráf tetszőleges M teljes párosítására és tetszőleges c címkézésére igaz, hogy $\sum_{e\in M}w(e)\leq \sum_{v\in F\cup L}c(v)$
 - bizonyítás: $\sum_{e \in M} w(e) \leq \sum_{e = \{f, l\} \in M} c(f) + c(l) \leq \sum_{f \in F} c(f) + \sum_{l \in L} c(l) = \sum_{v \in F \cup L} c(v)$
 - 1.7. definíció: a G gráf $e = \{x, y\}$ éle piros, ha c(x) + c(y) = w(e)
 - * 1.8. következmény: ha az M teljes párosítás \forall éle piros valamely c címkézésre nézve, akkor M maximális súlyú teljes párosítás
- 1.9. algoritmus: Egerváry algoritmusa
 - Input: G = (F, L; E) páros gráf, $w: E \to \mathbb{R}$ súlyfüggvény
 - Output: $M \subseteq G$ teljes párosítás úgy, hogy $\sum_{e \in M} w(e)$ maximális
 - 0. lépés: legyen $M=\emptyset,\ c(v)=\begin{cases} \max_{y\in L,\{v,y\}\in E}w(v,y), & \text{ha }v\in F,\\ 0, & \text{ha }v\in L \end{cases}$
 - 1. lépés: a javító utas algoritmussal keressünk bővítsük M-et maximális élszámú párosítássá a piros részgráfban
 - ° ha M most már teljes \Longrightarrow STOP, M a keresett párosítás, c a keresett címkézés, w(M) = c(M)
 - 2. lépés: $\delta := \min\{c(x) + c(y) w(\{x, y\}) \mid \{x, y\} \in E, x \in F_1 \cup F_2, y \in L_1 \cup L_3\}$
 - ° állítsuk elő a $c(v) \leftarrow \begin{cases} c(v) \delta, & \text{ha } v \in F_1 \cup F_2, \\ c(v) + \delta, & \text{ha } v \in L_2, \\ c(v), & \text{ha } v \in F_3 \cup L_1 \cup L_3 \end{cases}$ új címkézést, majd GOTO 1.
- 1.10. tétel: Egerváry algortimusa $O(n^2e)$ lépésben maximális súlyú teljes párosítást állít elő
 - \bullet bizonyítás: a 0. lépésben megadott c valóban címkézés
 - a 2. lépésben δ kiszámításához valóban van él $F_1 \cup F_2$ és $L_1 \cup L_3$ között
 - \circ ha nem lenne, $N(F_1 \cup F_2) = L_2$
 - ° $|F_1 \cup F_2| > |F_2| = |L_2|$ miatt ekkor nem teljesül a Hall-feltétel $\Longrightarrow \nexists$ teljes párosítás!
 - \bullet a 2. lépés után is címkézés marad c
 - \circ csak az $F_1 \cup F_2$ és $L_1 \cup L_3$ között vezető élekre csökken c(x) + c(y)

	F_1	F_2	F_3
L_1	$-\delta$ (nem lehet piros)	$-\delta$ (nem lehet piros)	0
$\overline{L_2}$	$-\delta + \delta$	$-\delta + \delta$	$+\delta$ (piros eltűnhet)
L_3	$-\delta$ (nem lehet piros)	$-\delta$ (nem lehet piros)	0

- δ definíció ja garantálja, hogy továbbra is $c(x) + c(y) \geq w(\{x,y\})$
- \bullet M élei a 2. lépés után is pirosak
 - ° csak $x \in F_3$, $y \in L_2$ élek színeződhetnek vissza (itt nőtt c(x) + c(y))
 - \circ ezek nem lehetnek M élei, mert F_3 párja L_3 , L_2 párja F_2
 - $^{\circ}\,$ továbbra is van F_1 -ből piros alternáló út L_2 csúcsaiba
- \bullet egy iterációban vagy M, vagy L_2 elemszáma nő
 - $\circ O(n)$ lépés után M elemszáma mindenképp nő, mert ekkorra már L_2 lefedné L-t
 - $\circ O(n^2)$ iterációban M maximális párosítás lesz
 - ° ezért $O(n^2e)$ időben az algoritmus véget ér

2. A lineáris programozás alapfeladata, kétváltozós feladat grafikus megoldása. Lineáris egyenlőtlenségrendszer megoldása Fourier – Motzkin eliminációval.

- legyen $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n \Longrightarrow line \acute{a}ris \ program$
- 2.1. definíció: linerási programozás alapfeladata: $\min_x \{cx : Ax \leq b\}$
- kétdimenziós feladat megoldása
 - az $p_1x_1+p_2x_2 \ge k$ alakú feltétel $p_1x_1+p_2x_2=k$ egyenese két félsíkra bontja a síkot ° a \ge jelnek megfelelő félsíkok metszete adja megengedett megoldások tartományát
 - ha $c = (q_1, q_2) \Longrightarrow q_1 x_1 + q_2 x_2 = 0$ -val párhuzamos egyeneseket húzunk
 - o minden egyenesre kiszámítjuk a célfüggvény értékét
 - ° a maximumhely a legnagyobb egyenes és a félsíkok metszetének közös pontja
 - általánosítás: hipersíkok által határolt poliéder
- ekvivalens átalakítások
 - egyenlőtlenség megszorzása pozitív számmal
 - két egyenlőtlenség összegének hozzávétele az egyenlőtlenségrendszerhez
 - nem ekvivalens: szorzás negatív számmal
- 2.2. algoritmus: Fourier-Motzkin elimináció
 - n változós lineáris program visszavezetése egy n-1 változós A^* , b^* lineáris programra
 - · végül 1 változós lineáris program megoldása
 - (A|b) bővített együttható mátrix
 - $^{\circ}$ szorozzuk pozitív számokkal a sorokat, hogy az 1. oszlopban csak -1,0,1 legyen
 - \bullet legyen I, J, K rendre az 1-gyel, -1-gyel és 0-val kezdődő sorok indexeinek halmaza
 - $\mathbb{R}^{|K| \times n} \ni (A_0|b_0) = (A|b)$ 0-val kezdődő sorai az első oszlop elhagyásával
 - $Ax \leq b$ egy megoldása $x = (\lambda, \bar{x})$ alakú $\Longrightarrow A_0 \bar{x} \leq b_0 \Longrightarrow$ mikor van megfelelő λ ?
 - ha $J = \emptyset$ (nincs -1-gyel kezdődő sor)
 - $\forall i \in I : \lambda + \bar{a}_i \bar{x} \leq b_i \implies \lambda \leq \min_{i \in I} b_i \bar{a}_i \bar{x}$, ami mindig kielégíthető
 - $A^*, b^* = az \bar{A}$ -ból és b-ből az $i \in I$ indexű sorok elhagyásával kapott rendszer
 - ha $I = \emptyset$ (nincs 1-gyel kezdődő sor)
 - $\forall j \in J : -\lambda + \bar{a}_i \bar{x} \leq b_i \implies \lambda \geq \max_{i \in J} \bar{a}_i \bar{x} b_i$, ami mindig kielégíthető
 - $A^*, b^* = az \bar{A}$ -ból és b-ből az $j \in J$ indexű sorok elhagyásával kapott rendszer
 - ha $I \neq \emptyset$ és $J \neq \emptyset \Longrightarrow \forall i \in I : \lambda + \bar{a}_i \bar{x} \leq b_i$ és $\forall j \in J : -\lambda + \bar{a}_j \bar{x} \leq b_i$
 - $\forall i \in I, j \in J : \bar{a}_j \bar{x} b_j \leq \lambda \leq b_i \bar{a}_i \bar{x} \Longrightarrow \forall i \in I, j \in J : (\bar{a}_i + \bar{a}_j) \bar{x} \leq b_i + b_j$
 - ° $A^*, b^* =$ az \bar{A} és b-ből $i \in I$ és $j \in J$ indexű sorait az összes lehetséges módon összeadjuk, a $k \in K$ indexű sorokat hozzávesszük és a csupa 0 első oszlopot elhagyjuk
 - egyváltozós rendszer megoldása
 - ° ha $\exists k \in K : b_k < 0 \Longrightarrow$ a rendszer nem megoldható
 - ° ha $\max_{j \in J} -b_j > \min_{i \in I} b_i \Longrightarrow$ a rendszer nem megoldható
 - ° egyébként $\Longrightarrow x_1 \in [\max_{i \in J} -b_i, \min_{i \in I} b_i]$ megoldás
- 3. Farkas-lemma (két alakban). A lineáris program célfüggvénye felülről korlátosságának feltételei.
 - **3.1. lemma:** Farkas-lemma, 1. alak
 - tetszőleges A és b esetén az alábbi két rendszer közül pontosan egynek van megoldása:
 - (1) Ax < b (2) yA = 0, y > 0, yb < 0
 - bizonyítás: (1) megoldható \Longrightarrow (2) nem megoldható
 - $0 = 0x = (yA)x = y(Ax) \le yb < 0$, ellentmondás
- (1) nem megoldható \Longrightarrow (2) megoldható
 - alkalmazzuk a Fourier Motzkin eliminációt az (1) egyenletrendszerre
 - a feltevés szerint a kapott egyváltozós $(A^*|b^*)$ rendszer nem megoldható
 - \circ ha van $(0|\beta)$, $\beta < 0$ sor

```
* \exists (A|b) sorainak olyan nemnegatív y együtthatós lin. kombinációja, hogy
  y(A|b) = (0,0,\ldots,0|\beta) \Longrightarrow y kielégíti (2)-t
```

- ° ha van $(-1, \beta_j)$ és $(1, \beta_i)$ sor úgy, hogy $-\beta_j > \beta_i \Longrightarrow \beta = \beta_i + \beta_j < 0$
 - * $\exists y_i \ge 0 : y_i(A|b) = (0,0,\ldots,0,-1|\beta_i) \text{ és } \exists y_i \ge 0 : y_i(A|b) = (0,0,\ldots,0,1|\beta_i)$
 - * ekkor $y = y_i + y_j \ge 0$, $y(A|b) = (0, 0, \dots, 0|\beta) \Longrightarrow y$ kielégíti (2)-t
- **3.2. lemma:** Farkas-lemma, 2. alak
 - tetszőleges A és b esetén az alábbi két rendszer közül pontosan egynek van megoldása:
 - (1) $Ax = b, x \ge 0$ (2) $yA \ge 0$, yb < 0
 - bizonyítás: (1) megoldható \Longrightarrow (2) nem megoldható
 - $0 \le (yA)x = y(Ax) = yb < 0$, ellentmondás
 - (2) nem megoldható \Longrightarrow (1) megoldható
 - ° vizsgáljuk az ekvivalens $y(-A) \le 0, yb = -1 < 0$ rendszert
 - ° tömör alakban $(-A|b|-b)^{\mathrm{T}}y \leq (0,0,\ldots,0,-1,1)^{\mathrm{T}}$
 - \circ a lemma 1. alakja szerint $\exists x : x(-A|b|-b)^{\mathrm{T}} = 0, x \geq 0, x(0,0,\ldots,0,-1,1)^{\mathrm{T}} < 0$
 - ° legyen $x = (\bar{x}|\lambda, \mu) \Longrightarrow -A\bar{x} + (\lambda \mu)b = 0, \ \bar{x} \ge 0, \ \lambda, \mu \ge 0, \ -\lambda + \mu < 0$
 - ° ekkor $A\frac{\bar{x}}{\lambda-\mu}=b$ és $\lambda-\mu>0$ miatt $\frac{\bar{x}}{\lambda-\mu}\geq0\Longrightarrow\frac{\bar{x}}{\lambda-\mu}$ kielégíti (1)-et
- 3.3. tétel: ha $Ax \leq b$ megoldható, c tetszőleges \Longrightarrow az alábbi állítások ekvivalensek
 - (1) az $Ax \leq b$ megoldáshalmazán cx felülről korlátos
 - (2) nincs megoldása az $Az \le 0$, cz > 0 rendszernek
 - (3) van megoldása az $yA = c, y \ge 0$ rendszernek
 - bizonyítás: (1) \Longrightarrow (2), legyen x_0 (1) egy megoldása és indir. tfh. z (2) egy megoldása
 - ° ekkor $A(x_0 + \lambda z) \le b$, de $\lambda > 0$ esetén $c(x_0 + \lambda z) = cx_0 + \lambda cz$ tetszőlegesen nagy
 - ° cx nem felülről korlátos \Longrightarrow ellentmondás
 - (2) \Longrightarrow (3), tekintsük a (nem megoldható) $z(-A)^{\mathrm{T}} \geq 0$, z(-c) < 0 rendszert
 - ° a Farkas-lemma 2. alakja szerint $\exists y: (-A)^{\mathrm{T}}y = -c, y \geq 0$
 - ° $(-A)^{\mathrm{T}}y=-c\Longrightarrow A^{\mathrm{T}}y=yA=c\Longrightarrow$ ez az y épp kielégíti a (3)-as rendszert
 - (3) \Longrightarrow (1), legyen y a (3)-as rendszer egy megoldása
 - ° cx = (yA)x = y(Ax) $\stackrel{y \ge 0, Ax \le b}{\le} yb \Longrightarrow yb$ a cx egy felső korlátja
- 4. A lineáris programozás dualitástétele (két alakban). A lineáris programozás alapfeladatának bonyolultsága (biz. nélkül).
 - 4.1. tétel: a lineáris programozás dualitástétele
 - ha $\max\{cx: Ax \leq b\}$ (primál) program megoldható és felülről korlátos, akkor
 - ° (1) $\min\{yb: yA=c, y\geq 0\}$ (duális) program megoldható és alulról korlátos
 - ° (2) a primál programnak ∃ maximuma és a duális programnak ∃ minimuma
 - $(3) \max\{cx : Ax \le b\} = \min\{yb : yA = c, y \ge 0\}$
 - **4.2. lemma:** legyen $Ax \leq b$ megoldható, $t \in \mathbb{R}$, de $Ax \leq b$, $cx \geq t$ nem megoldható
 - ekkor a yA = c, $y \ge 0$, yb < t rendszer megoldható
 - bizonyítás: alkalmazzuk a Farkas-lemmát a $(A|-c)x \leq (b|-t)$ -re, $y := (\bar{y}|\lambda)$
 - $\bar{y}A \lambda c = 0, \ \bar{y} \ge 0, \ \lambda \ge 0, \ \bar{y}b \lambda t < 0$
 - ° ha $\lambda = 0 \Longrightarrow 0 = 0 \\ x = (\bar{y}A) \\ x = \bar{y}(Ax) \\ \stackrel{\bar{y} \ge 0, Ax \le b}{\le} \\ \bar{y}b < 0 \Longrightarrow \text{lehetetlen}$ ° ezek szerint $y = \frac{\bar{y}}{\lambda}$ létezik, $yA = c, \ y \ge 0, \ yb < t$
 - a 4.1. tétel bizonyítása:
 - (1): már beláttuk a "3 kalickás tétel" (3.3. tétel) (1) \iff (3) eseténél
 - $\circ cx \leq yb$ miatt cx felülről, yb alulról korlátos
 - (2), primál állítás: legyen $t = \sup\{cx : Ax \le b\}$
 - \circ indir. tfh. $\nexists x: Ax \leq b, (t \geq) cx \geq t \Longrightarrow$ alkalmazzuk a 4.2. lemmát
 - $\circ \exists y : yA = c, y \ge 0, yb < t \Longrightarrow y$ a duális egy megoldása

- ° $t = \sup\{cx : Ax \le b\} \le yb < t \Longrightarrow$ ellentmondás $\Longrightarrow \exists$ primál megoldás, hogy $cx \ge t$
- ° így a szuprémum egyben maximum kell legyen
- (2), duális állítás: $\min\{yb:yA=c,y\geq 0\}=-\max\{-by:A^{\mathrm{T}}y\leq c,-A^{\mathrm{T}}y\leq -c,-y\leq 0\}$
 - ° alkalmazzuk a primál állítást a duálisra, mint primál feladatra
- (3): indir. tfh. $\exists t : \max\{cx : Ax \le b\} < t < \min\{yb : yA = c, y \ge 0\}$
 - \circ a a 4.2. lemma szerint $\exists y : yA = c, y \geq 0, yb < t$
 - $t < \min\{yb : yA = c, y \ge 0\} < yb < t \Longrightarrow \text{ellentmondás}$
- 4.3. tétel: a lineáris programozás dualitástétele, ekvivalens alak
 - ha $\max\{cx: Ax \leq b, x \geq 0\}$ (primál) program megoldható és felülről korlátos, akkor
 - ° (1) $\min\{yb: yA \ge c, y \ge 0\}$ (duális) program megoldható és alulról korlátos
 - \circ (2) a primál programnak \exists maximuma és a duális programnak \exists minimuma
 - $(3) \max\{cx : Ax \le b, x \ge 0\} = \min\{yb : yA \ge c, y \ge 0\}$
 - bizonyítás: $\max\{cx: (A|-I)x \le (b|0)\}\ duálisa \min\{y(b|0): y(A|-I) = 0, y \ge 0\}$
 - $\circ \text{ legyen } y = (y_1|y_2) \Longrightarrow \min\{y_1b: y_1A y_2 = 0, y_1 \ge 0, y_2 \ge 0\}$
 - $^{\circ}\ y_1A=y_2\geq 0 \Longrightarrow$ a duális valóban $\min\{y_1b:y_1A\geq 0,y_1\geq 0\}$ alakú
- lineáris programozás bonyolultsága
 - · döntési probléma
 - ° INPUT: A mátrix, b és c vektorok, $t \in \mathbb{R}$
 - ° OUTPUT: van-e olyan x vektor, melyre $Ax \leq b$, $cx \geq t$
 - NP-beli \rightarrow tanú a feltételeket kielégítő x
 - co-NP-beli \rightarrow a dualitástétel szerint tanú egy $yA=c,\ y\geq 0,\ (cx\leq)\,yb< t$ vektor
 - 1947 (Dantzig): szimplex-módszer
 - ° nem polinomiális futásidejű, de a gyakorlatban gyors
 - 1979 (Hacsijan): ellipszoid-módszer
 - ° polinomiális futásidejű \Longrightarrow bizonyítja, hogy a feladat P-ben van
 - ° gyakorlatban a szimplex sokkal hatékonyabb
 - 1984 (Karmarkar): polinomiális és a gyakorlatban is használható módszer
- **5.** Egészértékű programozás: a feladat bonyolultsága, korlátozás és szétválasztás (Branch and Bound). Totálisan unimoduláris mátrix fogalma, példák. Egészértékű programozás totálisan unimoduláris együtthatómátrixszal (biz. nélkül).
 - **5.1.** definíció: egészértékű programozás alapfeladata: $\max_x \{cx : Ax \leq b, x \text{ egész}\}\ (IP)$
 - duálisa $\min_{y} \{ yb : yA = c, y \ge 0, y \text{ egész} \}$ (DIP)
 - $\max_{IP} \le \max_{LP} = \min_{DLP} \le \max_{DIP} \Longrightarrow$ állhat < is, nincs általános dualitástétel
 - egészértékű programozás bonyolultsága
 - · döntési probléma
 - ° INPUT: A mátrix, b és c vektorok, $t \in \mathbb{R}$
 - ° OUTPUT: van-e olyan x egészértékű vektor, melyre $Ax \leq b, cx \geq t$
 - NP-beli \rightarrow tanú a feltételeket kielégítő x
 - · dualitástétel hiányában a co-NP beliség nem látható be
 - 5.2. tétel: az egészértékű lineáris programozás NP-teljes
 - \circ bizonyítás: azt már láttuk, hogy IP \in NP
 - ° adunk egy MAXFTLN ≺ IP Karp-redukciót (MAXFTLN NP-teljes)
 - ° a G = (V, E) gráf $\forall v_i$ csúcsához vegyünk fel egy $x_i \in \mathbb{Z}, -x_i \leq 0, x_i \leq 1$ változót * ha $v_i \in F$ a független ponthalmaz eleme, $x_i = 1$, egyébként $x_i = 0$
 - ° $\forall e = \{v_i, v_i\} \in E$ élre vegyük még fel az $x_i + x_i \leq 1$ feltételt
 - ° a célfüggvény $\sum_{v_i \in V} x_i = |F| \Longrightarrow c = (1, 1, \dots, 1)$
 - ° xmaximumhely $\Longleftrightarrow F\subseteq E$ a Gmaximális független ponthalmaza

- * F független, mert $x_i + x_j \leq 1 \Longrightarrow \{v_i, v_j\} \in E$ legfeljebb egyik vége lehet F-beli
- * ha $F' \subseteq E$ független, $|F'| > |F| \Longrightarrow x'$ megoldás, cx' > cx
- * x nem lehet maximumhely \Longrightarrow ellentmondás
- $^{\circ}$ hasonló 3-SAT \prec IP redukciót is lehet adni (0-1 változók, termek \rightarrow feltételek)
- 5.3. algoritmus: Branch and Bound $\max\{cx: Ax \le b, f \le x \le g; f, g, x \text{ egész}\}$ problémára
 - (IP) feladat szétvágása (IP)' és (IP)" feladatokra
 - ° választunk egy x_i elágazási változót és $f_i \le t < g_i$ közbülső értéket
 - ° az új problémák (IP)': (IP) $\cup g_j' \coloneqq t$ és (IP)": (IP) $\cup f_j'' \coloneqq t$
 - részproblémák $\mathcal{L} = \{(\mathrm{IP}^{(i)}) = (f^{(i)}, g^{(i)}, w^{(i)}) : i = 1, 2, \ldots\}$ listáját tartjuk karban, ahol max $(\mathrm{IP}^{(i)}) \leq w^{(i)}$
 - x^* az eddig megtalált legjobb megoldás, $z^* = cx^*$ a hozzá tartozó függvényérték
 - 0. lépés: $\mathcal{L} \leftarrow \{(f, g, \infty)\}, z^* \leftarrow -\infty, x^*$ nem definiált
 - 1. lépés: ha $\mathcal{L}=\emptyset \Longrightarrow$ STOP, egyébként válasszunk egy (IP $^{(i)}$)-t és töröljük \mathcal{L} -ből
 - 2. lépés: ha $w^{(i)} \le z^* \Longrightarrow$ nem lehet jobb megoldás, mint az eddigi, GOTO 1.
 - * 3. lépés: oldjuk meg az $(IP^{(i)})$ -nek megfelelő $(LP^{(i)})$ relaxált LP feladatot
 - o ha \sharp megoldás \Longrightarrow GOTO 1., egyébként legyen $x^{(i)}$ a megoldás és $cx^{(i)} = z^{(i)}$
 - 4. lépés
 - ° (4a) ha $z^{(i)} \le z^* \Longrightarrow \text{GOTO 1.}, \ f^{(i)} \le x \le g^{(i)}$ -ben már nincs jobb megoldás
 - ° (4b) ha $z^{(i)} > z^*$ és $x^{(i)}$ egész vektor $\implies x^* \leftarrow x^{(i)}, z^* \leftarrow z^{(i)}, \text{ GOTO 1}.$
 - ° (4c) ha $z^{(i)} > z^*$, de $x^{(i)}$ nem egész vektor
 - * vágjuk két részre az $(\mathrm{IP}^{(i)})$ problémát valamely x_i elágazási változó mentén
 - * $\mathcal{L} \leftarrow \mathcal{L} \cup \{(f^{(i)'}, g^{(i)'}, z^{(i)}), (f^{(i)''}, g^{(i)''}, z^{(i)})\}, \text{ GOTO } 1.$
 - 5.4. tétel: a B&B véges sok lépésben leáll és megtalálja (IP) optimumát
 - ° bizonyítás: f és q egész \Longrightarrow véges sok részprobléma van \Longrightarrow véges sok lépés
 - ° indir. tfh. az eljárás leállt, de $z^* < z_0$, ahol $z_0 = \max(\text{IP})$
 - ° az algoritmus futása közben mindig volt olyan (IP $^{(i)}) \in \mathcal{L},$ hogy $z_0 = \max{(\mathrm{IP}^{(i)})}$
 - * kezdetben ez maga (IP)
 - * $z_0 \le w^{(i)} \le z^* < z_0$ ellentmondás $\Longrightarrow (\mathrm{IP}^{(i)})$ mindig eljut a 4. lépésig
 - * (4a) nem teljesülhet, mert $z_0 \le z^{(i)} \le z^* < z_0$ ellentmondás
 - * (4b) után $z^* = z^{(i)} = z_0$ lesz $\Longrightarrow z_0 = z^* < z_0$ ellentmondás
 - * (4c)-ben (IP⁽ⁱ⁾) vágása után $z_0 = \max(\text{IP}^{(i)})' \text{ vagy } z_0 = \max(\text{IP}^{(i)})''$
 - \circ \mathcal{L} sosem lesz üres \Longrightarrow az algoritmus nem áll le \Longrightarrow ellentmondás
 - branch and bound fa: (IP) a gyökér, (IP⁽ⁱ⁾) gyerekei (IP⁽ⁱ⁾)' és (IP⁽ⁱ⁾)"
 - heurisztika ($IP^{(i)}$) választására
 - \circ LIFO, ha az (IP⁽ⁱ⁾) a 3. lépésben utoljára vizsgált probléma fia
 - * inkrementális megoldás duál szimplex módszerrel
 - \circ egyébként válasszuk azt a problémát, amire $w^{(i)}$ maximális
 - heurisztika az x_i elágazási változó és t választására
 - ° x_j az változó, aminek az $\{x_j^{(i)}\}$ törtrésze legközelebb van $\frac{1}{2}\text{-hez},\,t\leftarrow \lfloor x_j^{(i)}\rfloor$
 - a gyakorlatban még a heurisztikákkal sem mindig alkalmas nagy problémákhoz
- 5.5. definíció: $B \in \mathbb{R}^{k \times k}$ az A mátrix négyzetes részmátrixa, ha A tetszőleges k sorának és k oszlopának kereszteződései határozzák meg
- 5.6. definíció: A totálisan unimoduláris, ha \forall négyzetes részmátrixára det = 0, 1 vagy −1
 - 5.7. következmény: ha A TU \Longrightarrow A minden eleme 0, 1 vagy -1 (1×1-es részmátrix)
- 5.8. lemma: egy mátrix totálisan unimoduláris marad, ha
 - (1) egy sorát vagy oszlopát (-1)-gyel szorozzuk
 - (2) egységvektort veszünk hozzá új sorként vagy oszlopként
 - (3) egyik sorát (ill. oszlopát) új sorként (ill. oszlopként) új példányban hozzávesszük
 - (4) transzponáljuk

· bizonyítás: csak azoknak a részmátrixoknak változik a det-a, amiket a módosítás érint

- $^{\circ}$ (1) sor vagy oszlop (–1)-gyel szorzása \Longrightarrow det (–1)-gyel szorzása \Longrightarrow 0, 1, –1
- ° (2) alkalmazzuk a kifejtési tételt az új sor/oszlop szerint
 - * csak egy nemnulla együtthatójú aldetermináns van
 - * az új részmátrix determinánsa megegyezik egy régébbiével $\Longrightarrow 0,\,1$ vagy -1
- \circ (3) két azonos sor/oszlop \Longrightarrow det = 0
- ° (4) $\det B^{\mathrm{T}} = \det B \Longrightarrow$ a determináns nem változik
- 5.9. példa: $\vec{G} = (V, \vec{E})$ irányított gráf $A \in \mathbb{R}^{|V| \times |E|}$ illeszkedési mátrixsza TU
 - bizonyítás: a $B \in \mathbb{R}^{k \times k}$ részmátrixra k szerinti teljes indukcióval
 - ° k = 1-re nyilván det B = 0, 1 vagy -1, mert csak ez lehet a mátrix eleme
 - ° ha B-ben van csupa 0 oszlop \Longrightarrow det B=0
 - $^{\circ}$ ha B-ben van egyetlen 1-est vagy -1-est tartalmazó oszlop
 - * fejtsük ki a determinánst eszerint az oszlop szerint
 - * az nem 0 együtthatós $B' \in \mathbb{R}^{(k-1)\times(k-1)}$ aldet.-ra det B' jó az indukció szerint
 - * a kifejtési tétel szerint $\det B = \pm \det B'$
 - ° ha $B \forall$ oszlopában van 1 és -1 is $\Longrightarrow (1, 1, ..., 1)B = 0 \Longrightarrow \det B = 0$
- **5.10. példa:** G = (F, L; E) páros irányítatlan gráf A illeszkedési mátrixsza TU
 - bizonyítás: irányítsuk G éleit $F \to L$ irányba $\Longrightarrow \vec{G}$
 - \circ a \vec{G} irányított gráf \vec{A} illeszkedési mátrixsza TU az 5.9. példa szerint
 - \circ szorozzuk meg az \vec{A} mátrix L-hez tartozó sorait (-1)-gyel
 - $^{\circ}$ az így kapott mátrix éppA, és az 5.8. lemma miatt szintén TU
- **5.11. tétel:** ha A TU mátrix, b egész vektor, c valós vektor
 - és $\max\{cx : Ax \leq b\}$ (LP) megoldható és a maximuma véges
 - $\implies \max\{cx : Ax \le b, x \text{ egész}\}\ (IP) \text{ megoldható és a maximuma véges}$
 - és $\max\{cx : Ax < b\} = A \max\{cx : Ax < b, x \text{ egész}\}$
 - nem bizonyítjuk
- **6.** A lineáris és egészértékű programozás alkalmazása páros gráfokra és intervallumrendszerekre: Egerváry tétele, intervallumrendszerek egyenletes színezése.
- **6.1. tétel:** (Egerváry Jenő tétele) legyen G = (F, L; E) páros gráf, $w: E \to \mathbb{R}$ súlyfüggvény ⇒ a maximális összsúlyú párosítás összsúlya min $\sum_{v \in F \cup L} c(v)$, ahol a minimum a nemnegatív $c: F \cup L \to \mathbb{R}_{>0}$ függvényeken értendő, melyekre $\forall e = \{x, y\} \in E: c(x) + c(y) \ge w(e)$
 - bizonyítás: legyen G illeszkedési mátrixsza $B \in \mathbb{R}^{|F \cup L| \times |E|}$
 - a $Bx \leq (1,1,\ldots,1)^{\mathrm{T}}, \ x \geq 0, \ x$ egész rendszer minden megoldása 0-1 értékű ° az 1 komponensek G egy független élhalmazát (párosítását) határozzák meg
 - $\max\{wx: Bx \leq (1,1,\ldots,1)^{\mathrm{T}}, x \geq 0, x \text{ egyész}\}$ megoldása maximális súlyú párosítás
 - B TU mátrix (5.10. példa) $\implies \max_{IP} = \max_{LP}$ (5.11. tétel)
 - $\max\{wx: Bx \le (1,1,\ldots,1)^T, x \ge 0\} = \min\{y(1,1,\ldots,1)^T: yB \ge w, y \ge 0\}$
 - az y duális megoldás \forall csúcshoz egy $c(v_i) = y_i$ címkét rendel
 - $\circ yB \ge w \Longrightarrow \forall \{x,y\} \in E : c(x) + c(y) = w(\{x,y\})$
- **6.2. definíció:** $G = (\mathcal{I}, E)$ intervallumgráf, ha $\mathcal{I} = \{I_1, I_2, \dots, I_m\}$ intervallumok rendszere és $\{I_i, I_j\} \in E \iff I_i \cap I_j \neq \emptyset$
 - ált. megsz. nélkült feltehető, hogy $\forall I \in \mathcal{I}$ az [1,n] egész végpontú, zárt részintervalluma
- $-A(\mathcal{I}) \in \mathbb{R}^{n \times m}, \text{ ahol } \mathcal{I} [1, n] \text{ egész végpontú intervallumrendszer}, \ a_{i,j} = \begin{cases} 1, & \text{ha } i \in I_j, \\ 0, & \text{ha } i \notin I_j \end{cases}$
 - 6.3. lemma: az így definiált $A(\mathcal{I})$ mátrix TU
 - bizonyítás: teljes indukcióval A egyeseinek száma szerint
 - \circ ha A-ban 0 db egyes van $\Longrightarrow \det A = 0$
 - $^{\circ}$ \forall oszlopban egy darabig 0-k, utána 1-esek, majd megint 0-k vannak

- $^{\circ}$ ha \exists két oszlop, ahol ugyanott van a legfelső egyes
 - * a több egyes tartalmazóból a másikat kivonva csökken az egyesek száma
 - * ez nem változtatja a det-t \Longrightarrow ind. feltevés szerint det = 0, 1 vagy -1
- \circ ha \exists csupa 0 oszlop \Longrightarrow det = 0
- $^{\circ}\,$ egyébként minden oszlopban máshol van a legfelső egyes
 - * sor- és oszlopcserékkel alsó háromszögmátrixszá alakítható $\Longrightarrow \det = \pm 1$
- 6.4. tétel: az [1, n] egész végpontú, zárt I_1, I_2, \ldots, I_m részintevallumai $\forall k \in \mathbb{Z}^+$ -re megszínezhetőek k színnel úgy, hogy ha az i-t d_i db intervallum tartalmazza, akkor ezek között minden színből vagy $\left\lfloor \frac{d_i}{k} \right\rfloor$ vagy $\left\lceil \frac{d_i}{k} \right\rceil$ van
 - bizonyítás: válasszunk ki néhány intervallumot úgy, hogy $\forall i$ -re $\left\lfloor \frac{d_i}{k} \right\rfloor$ vagy $\left\lceil \frac{d_i}{k} \right\rceil$ kiválasztott intervallum tartalmazza i-t
 - \circ ezt az eljárást ismételhetjük k-1-re, k-1-re, ..., 1-re
 - $^{\circ}$ így épp k színnel színezhetőek az intervallumok a megadott feltételnek megfelelően

 - legyen $A = A(\mathcal{I}), \lfloor \frac{d}{k} \rfloor$ i. komponense $\lfloor \frac{d_i}{k} \rfloor, \lceil \frac{d}{k} \rceil$ hasonló $\lfloor \frac{d}{k} \rfloor \leq Ax \leq \lceil \frac{d}{k} \rceil, \ 0 \leq x \leq (1,1,\ldots,1)^{\mathrm{T}}$ megoldható, pl. $x = \left(\frac{1}{k},\frac{1}{k},\ldots,\frac{1}{k}\right)$ megoldás az 5.11. tétel miatt \exists egészértékű (0-1) megoldás \Longrightarrow ez épp egy jó kiválasztás
- 6.5. definíció: a G gráf perfekt, ha $\chi(F) = \omega(F) \ \forall F \subseteq G$ feszített részgráfjára
 - χ a kromatikus szám, ω a klikkszám
- 6.6. következmény: minden intervallumgráf perfekt
 - bizonyítás: a G intervallumgráf minden feszített részgráfja intervallumgráf
 - ° elég belátni, hogy $\chi(G) = \omega(G)$
 - alkalmazzuk a 6.4. tételt $k = \omega(G)$ választással
 - $\circ \forall i: d_i \leq \omega(G) \Longrightarrow \forall$ klikkben \forall színt legfeljebb egyszer használtuk
 - ° a kapott színezés egy jó színezés $\Longrightarrow \chi(G) \leq k = \omega(G)$
 - mivel minden gráfban $\chi(G) > \omega(G) \Longrightarrow \chi(G) = \omega(G)$
- 7. A lineáris és egészértékű programozás alkalmazása hálózati folyamproblémákra: a maximális folyam, a minimális költségű folyam és a többtermékes folyam feladatai, ezek hatékony megoldhatósága a tört-, illetve egészértékű esetben.
 - legyen G = (V, E) irányított gráf, $s, t \in V$, $c: E \to \mathbb{R}_+$ kapacitásfüggvény
 - jelölje $x: E \to \mathbb{R}_{>0}$ $v \in V$ -be belépő éleken felvett összegét $\rho_x(v)$
 - jelölje x a v-ből kilépő éleken felvett összegét $\delta_x(v)$
 - 7.1. definíció: $x: E \to \mathbb{R}_{>0}$ folyam, ha $\forall v \in V \{s, t\} : \rho_x(v) = \delta_x(v)$
 - 7.2. definíció: x folyam megengedett, ha $\forall e \in E : x(e) \le c(e)$
 - 7.3. definíció: az x megengedett folyam értéke $\delta_x(s) \rho_x(s) = \rho_x(t) \delta_x(t)$
 - 7.4. definíció: a C=(S,T) vágás, ha $S\cup T=V,\ S\cap T=\emptyset,\ s\in S,\ t\in T$
 - 7.5. definíció: a C = (S,T) vágás értéke $m_C = \sum_{(x,y) \in E, x \in S, y \in T} c(x,y)$
 - \bullet tetszőleges C vágás értéke felső becslés minden folyam nagyságára
 - 7.6. lemma: ha $x: E \to \mathbb{R}_{\geq 0}$ -ra $\forall v \in V \{s, t\} : \rho_x(v) \geq \delta_x(v)$ és $\rho_x(t) \geq \delta_x(s) \Longrightarrow x$ folyam
 - bizonyítás: az $S = \sum_{v \in V \{s,t\}} \rho_x(v) \delta_x(v)$ összeg \forall tagja nemnegatív $\Longrightarrow 0 \le S$
 - vegyük észre, hogy $S = \delta_x(s) \rho_x(t)$
 - ° ha $e = (u, v), u \neq s, v \neq t \Longrightarrow x(e)$ pozitív és negatív előjellel is megjelenik S-ben
 - ° ha $u = s, v \neq t \Longrightarrow x(e)$ csak + előjellel jelenik meg $\rho_x(v)$ -nél
 - ° ha $u \neq s, v = et \Longrightarrow x(e)$ csak előjellel jelenik meg $\delta_x(u)$ -nál
 - ° az e = (s, t) él nem jelenik meg S-ben, és kiesik $\delta_x(s) \rho_x(t)$ -ben
 - $0 \le S = \delta_x(s) \rho_x(t) \le 0 \Longrightarrow S = 0$
 - ° ez csak úgy lehet, ha \forall (nemnegatív) tag = $0 \Longrightarrow \forall v \in V \{s, t\} : \rho_x(v) = \delta_x(v)$
 - 7.7. probléma: maximális értékű folyam
 - INPUT: G = (V, E) irányított gráf, $s, t \in V, c : E \to \mathbb{R}^+$ kapacitásfüggvény

- Output: az x maximális értékű folyam
- legyen G illeszkedési mátrixsza B, ennek $v \in V$ -hez tartozó sora b_v
- legyen $G^* := (V, E^*), E^* := E \cup \{(t, s)\},$ az illeszkedési mátrixsza $B^* = (B|b^*)$
- ha $x^* = (x|\mu)$ és $B^*x^* < 0$
 - $v \in V \{s, t\} : b_v x \le 0 \Longrightarrow \delta_x(v) \rho_x(v) \le 0 \Longrightarrow \delta_x(v) \le \rho_x(v)$
 - ° s-re és t-re nézve $\delta_x(s) \mu \le 0$ és $-\rho_x(t) + \mu \le 0 \Longrightarrow \delta_x(s) \le \mu \le \rho_x(t)$
 - $^{\circ}$ a 7.6. lemma szerint x valóban folyam, az értéke μ
- max. folyam lineáris programja: $\max\{(0,0,\ldots,0,1)x^*: B^*x^* \le 0, x^* \ge 0, x \le c\}$
 - ekvivalensen $\max\{\mu: (B^*|, I^*)(x, \mu|x) \le (0, 0|c), x \ge 0, \mu \ge 0\}$
 - \circ a második "egységmátrixból" hiányzik az $e^* = (t, s)$ -hez tartozó oszlop
- a duális feladatot a kényelmesen a dualitástétel ekvivalens alakjából kapjuk
 - $v \in V$ csúcshoz $\pi(v)$ és $\forall e \in E$ élhez w(e) változó
 - $\circ \min\{\sum_{e} w(e)c(e) : \forall v : \pi(v) \ge 0; \forall e = (u, v) : w(e) \ge 0, \pi(u) \pi(v) + w(e) \ge 0;$ $\pi(t) - \pi(s) \ge 1$
- 7.8. tétel: a fenti duális minimuma épp a maximális hálózati folyam értéke

• bizonyítás: (tetszőleges
$$C = (S,T)$$
 vágáshoz $\exists \pi, w : \sum_e w(e)c(e) = m_C$ egyen $\pi(v) = \begin{cases} 0, & \text{ha } v \in S, \\ 1, & \text{ha } v \in T \end{cases}$, $w(u,v) = \begin{cases} 0, & \text{ha } u \in S, v \in T \\ 1, & \text{egyébként} \end{cases}$

- $^{\circ}$ ez kielégíti a feltételeket, és $\sum_{e}w(e)c(e)$ tényleg a vágás értéke
- (\Longrightarrow) a duális feladdat mátrixsza TU (G illeszkedési mátrixsza + egységvektorok)
 - $^{\circ}\,$ a jobb oldal egészértékű $\Longrightarrow w$ és π is lehet egészértékű az optimális megoldásban
 - ° készítünk egy 0-1 megoldást: $\pi'(v) \coloneqq \begin{cases} 0, & \text{ha } \pi(v) \le \pi(s), \\ 1, & \text{ha } \pi(v) > \pi(s) \end{cases}, \ w'(e) \coloneqq \begin{cases} 0, & \text{ha } w(e) = 0, \\ 1, & \text{ha } w(e) \ge 1 \end{cases}$
 - * $\pi'(t) \pi'(s) \ge 0$, mert $\pi(t) \pi(s) \ge 0$ miatt $\pi(t) > \pi(s)$ teljesült
 - * ha $\pi'(u) \pi'(v) + w(u, v) < 0 \Longrightarrow \pi'(u) = 0, \pi'(v) = 1, w(u, v) = 0$
 - * de $\pi(u) \le \pi(s) < \pi(v)$, $w(e) = 0 \Longrightarrow \pi(u) \pi(v) + w(e) < 0$, ellentmondás
 - ° $\forall e: w'(e) \leq w(e) \Longrightarrow \sum_e w'(e)c(e) \leq \sum_e w(e)c(e) \Longrightarrow (\pi', w')$ tényleg optimális
 - ° $S = \{v : \pi'(v) = 0\}, T = \{v : \pi'(v) = 1\}$ egy vágás, $m_C = \sum_e w'(e)c(e)$
 - ° a minimális kapacitású vágás kapacitása tényleg a duál optimuma
 - * a dualitástétel miatt ez a primál optimuma
 - * ami épp a maximális folyam nagysága
- beláttuk, hogy a maximális folyam polinomiális időben meghatározható
 - ° pl. ellipszoid módszerrel
 - * de a gyakorlatban Edmonds-Karp algoritmusa nem használ LP-t
 - $(B^*|_{n}I^*)$ TU \Longrightarrow ha c egész, a maximális egészértékű folyam is meghatározható
- 7.9. tétel: (Ford-Fulkerson) a maximális hálózati folyam nagysága megegyezik a minimális kapacitású vágás kapacitásával
 - bizonyítás: a 7.8. tétel alapján triviális
- 7.10. probléma: minimális költségű folyam
 - INPUT: $G=(V,E),\ s,t\in V,\ c\colon E\to \mathbb{R}^+,\ k\colon E\to \mathbb{R}_{>0}$ költségfüggvény, M folyamérték
 - OUTPUT: x legalább M értékű, minimális $\sum_{e \in E} k(e)x(e)$ költségű folyam
 - $\max\{-kx: B^*x^* \le 0, x^* \ge 0, x \le c, \mu \ge M\}$ LP feladat \Longrightarrow polinomiális időben megoldható
 - ha c és M egész \Longrightarrow az IP verzió is polinomiális, mert a mátrix megint TU
- 7.11. probléma: többtermékes folyamprobléma
 - INPUT: $G = (V, E), (s_1, t_1), (s_2, t_2), \dots, (s_k, t_k), c : E \to \mathbb{R}^+$
 - Output: x_1, x_2, \dots, x_2 folyamok, melyekre $\forall e \in E : \sum_{i=1}^k x_i(e) \le c(e)$ és az összes folyamnagyság $\sum_{i=1}^k \delta_{x_i}(s) - \rho_{x_i}(t)$ maximális • legyen B_i^* a $G_i^* = (V, E \cup (t_i, s_i))$ illeszkedési mátrixsza, $x_i^* = (x_i, \mu_i)$ • $\max\{\sum_{i=1}^k \mu_i : \forall_{i=1}^k B_i^* x_i^* \leq 0, x_i^* \geq 0; (\sum_{i=1}^k x_i) \leq c\} \implies \text{polinomiális időben megoldható}$

- az egészértékű változat $k \geq 2$ esetén nem TU
 - \circ ha $k=1 \Longrightarrow$ maximális folyam probléma, egész c esetén polinomiális
 - \circ ha $k=2 \Longrightarrow$ a feladat NP-nehéz (nem bizonyítjuk)

- 8. Matroid definíciója, alapfogalmak (bázis, rang, kör). Példák: lineáris matroid (mátrixmatroid), grafikus matroid, uniform matroid. A rangfüggvény szubmodularitása.
 - 8.1. definíció: az $\mathcal{M} = (E, \mathcal{F})$ pár $(\mathcal{F} \subseteq 2^E)$ matroid, ha
 - (F1) $\emptyset \in \mathcal{F}$ (F2) ha $Y \subseteq X$ és $X \in \mathcal{F} \Longrightarrow Y \in \mathcal{F}$
 - (F2) ha $X, Y \in \mathcal{F}$ és $|X| > |Y| \implies \exists x \in X Y : Y \cup \{x\} \in \mathcal{F}$
 - 8.2. definíció: az $\mathcal{M} = (F, \mathcal{F})$ matroidban $X \subseteq E$ független, ha $X \in \mathcal{F}$
 - egyébként X összefüggő
- **8.3. definíció:** az $\mathcal{M} = (E, \mathcal{F})$ matroidban $X \in \mathcal{F}$ független halmaz *bázis*, ha tartalmazásra nézve maximális (tovább már nem bővíthető E-ben)
- 8.4. definíció: az $\mathcal{M} = (E, \mathcal{F})$ matroidban $E \supseteq X \notin \mathcal{F}$ összefüggő halmaz kör, ha tartalmazásra nézve minimális (∀ valódi részhalmaza független)
- 8.5. lemma: ha $\mathcal{M} = (E, \mathcal{F})$ matroid; $A \subseteq E$; $A \supseteq X_1, X_2 \in \mathcal{F}$ tovább már nem bővítehetőek ⇒ $|X_1| = |X_2|$
 - bizonyítás: indir. tfh. $|X_1| < |X_2| \stackrel{\text{(F3)}}{\Longrightarrow} \exists e \in X_2 X_1 : X_1 \subset X_1 \cup \{e\} \in \mathcal{F}$
 - ez ellentmondás, X_1 mégis tovább bővíthető
 - azt kaptuk, hogy tetszőleges X független halmaz kiegészíthető maximálissá
- 8.6. következmény: az \mathcal{M} matroid \forall bázisa azonos elemszámú
- 8.7. definíció: $\mathcal{M} = (E, \mathcal{F})$ matroidban az $X \subseteq E$ halmaz rangja r(X) = az X-beli maximális független halmaz mérete (a 8.5. lemma szerint ez mindig egyértelmű)
- 8.8. példa: a G = (V, E) gráf grafikus matroidja $\mathcal{M}(G) = (E, \mathcal{F})$, ahol $F \in \mathcal{F}$ pontosan akkor, ha az F élek erdőt alkotnak G-ben
- 8.9. példa: valamely T test felett az $M \in T^{n \times m}$ mátrix oszlopvektorai által indukált matroid mátrixmatroid, ahol a független halmazok a lineárisan független vektorhalmazok
- $-\mathcal{U}_{n,k}=(E,\mathcal{F})$ uniform matroid, and $|E|=n, \mathcal{F}=\{X\subseteq E:|X|\leq k\}$
 - $\mathcal{U}_{n,n}$ teljes (szabad) matroid, $\mathcal{U}_{n,0}$ triviális matroid
- 8.10. tétel: r(x) szubmoduláris, azaz $\forall X, Y \subseteq E : r(X) + r(Y) \ge r(X \cap Y) + r(X \cup Y)$
 - bizonyítás: legyen A maximális független halmaz $X \cap Y$ -ban $\Longrightarrow r(A) = r(X \cap Y)$
 - legyen $B \supseteq A$ maximális független halmaz $X \cup Y$ -ban $\Longrightarrow r(B) = r(X \cup Y)$
 - $B \cap (X \cap Y) = A \Longrightarrow |B \cap X| + |B \cap Y| = |B| + |A|$
 - $B \cap X, B \cap Y \subseteq B \in \mathcal{F}$ függetlenek $\Longrightarrow |B \cap X| \le r(X), |B \cap Y| \le r(Y)$
 - $r(X) + r(Y) \ge |B| + |A| = r(X \cup Y) + r(X \cap Y)$
- **9.** Mohó algoritmus matroidon. Matroid megadása rangfüggvényével, bázisaival (biz. nélkül). Matroid duálisa, a duális matroid rangfüggvénye.
 - 9.1. algoritmus: mohó algoritmus
 - INPUT: $\mathcal{F}\subseteq 2^E$ halmazrendszer, ami kielégíti az (F1–2) tulajdonságokat (nem üres, "leszálló"), $w\colon E\to \mathbb{R}^+$ súlyfüggvény
 - OUTPUT: olyan $X \in \mathcal{F}$, melyre $\sum_{e \in X} w(e)$ maximális
 - 0. lépés: legyen $X := \emptyset \in \mathcal{F}$
 - 1. lépés: létezi-e $e \in E X : X \cup \{e\} \in \mathcal{F}$
 - $\circ \exists \Longrightarrow e := \arg\max\{w(e') : e' \in E X, X \cup \{e\} \in \mathcal{F}\}; \nexists \Longrightarrow \text{STOP}$

- 2. lépés: $X \leftarrow X \cup \{e\}$, GOTO 1.
- 9.2. tétel: a mohó algoritmus pontosan akkor ad helyes eredmény $\forall w$ súlfüggvénnyel az (E, \mathcal{F}) halmazrendszeren, ha az (F1-2) mellett (F3)-at is kielégíti $((E, \mathcal{F})$ matroid)
 - bizonyítás: (←) matroidon működik a mohó algoritmus
 - ° indir. tfh. $X = \{a_1, a_2, \dots, a_n\}$ a mohó algoritmus kimenete
 - \circ de $\exists Y = \{b_1, b_2, \dots, b_m\} \in \mathcal{F}, \ w(Y) > w(X)$

$$w(a_1) \ge w(a_2) \ge \cdots \ge w(a_{k-1}) \ge w(a_k) \ge w(a_{k+1}) \ge \cdots \ge w(a_n)$$

° ált. megsz. nélkül tfh. \vee i \vee i \vee i \wedge \wedge i $w(b_1) \geq w(b_2) \geq \cdots \geq w(b_{k-1}) \geq w(b_k) \geq w(b_{k+1}) \geq \cdots \geq w(b_m)$

- $\circ A := \{a_1, a_2, \dots, a_{k-1}\} \in \mathcal{F}, B := \{b_1, b_2, \dots, b_k\} \in \mathcal{F}, |A| \le |B|$
 - * $\Longrightarrow \exists b^* \in B : A \cup \{b^*\} \in \mathcal{F}$, és a megadott sorrend miatt $w(b^*) \ge w(b_k) > a_k$
 - * a mohó algoritmus a k. lépésben nem választhatta a_k -t, mert b^* jobb nála, ellentmondás
- (\Longrightarrow) ha (F3) nem teljesül, \exists olyan w, hogy a mohó algoritmus rossz eredményt ad

$$\circ \ \exists X,Y \in \mathcal{F} : |X| > |Y|, \ \text{de} \ \nexists x \in X - Y : Y \cup \{x\} \in \mathcal{F}; \ \text{legyen} \ w(e) \coloneqq \begin{cases} 1, & \text{ha } e \in Y, \\ 1 - \epsilon & \text{ha } e \in X - Y, \\ 0 & \text{egy\'ebk\'ent} \end{cases}$$

- ° a mohó algoritmus beválasztja Y elemeit, majd nem tud több nem 0 súlyú elemet beválasztani $\Longrightarrow w(Y) = |Y|$ a maximum
- ° de $w(X) = |X \cap Y| + (1 \epsilon)|X Y| = |X| \epsilon|X Y| > w(Y) = |Y|$, ha $0 < \epsilon < \frac{|X| |Y|}{|X Y|}$
- $^{\circ}$ a mohó algoritmus nem adott optimális megoldást w-re!
- 9.3. tétel: ha r az $\mathcal{M} = (E, \mathcal{F})$ matroid rangfüggvénye, akkor
 - (R1) $r(\emptyset) = 0$ (R2) $\forall X \subseteq E : r(x) \le |X|$ (R3) ha $Y \subseteq X \Longrightarrow r(Y) \le r(X)$
 - (R4) $\forall X, Y \subseteq E : r(X) + r(Y) > r(X \cap Y) + r(X \cup Y)$, azaz r szubmoduláris
 - ha r kielégíti az (R1–4) feltételeket \Longrightarrow az $\mathcal{F}=\{X\subseteq E: r(X)=|X|\}$ rangfüggvénye
 - nem bizonyítjuk
- 9.4. tétel: ha \mathcal{B} az $\mathcal{M} = (E, \mathcal{F})$ matroid bázisainak halmaza, akkor
 - (B1) $\mathcal{B} \neq \emptyset$ (B2) $\forall X_1, X_2 \in \mathcal{B} : |X_1| = |X_2|$
 - (B3) $X_1, X_2 \in \mathcal{B}, e_1 \in X_1 \Longrightarrow \exists e_2 \in X_2 : X \{e_1\} \cup \{e_2\} \in \mathcal{B}$
 - ha \mathcal{B} kielégíti a (B1–3) feltételeket \Longrightarrow az $\mathcal{F} = \{X \subseteq E : X \subseteq B \in \mathcal{B}\}$ bázisainak halmaza
 - nem bizonyítjuk
- 9.5. definíció: az $\mathcal{M} = (E, \mathcal{B})$ matroid duálisa $\mathcal{M}^* = (E, \mathcal{B}^*)$
 - $\mathcal{B}^* = \{X \subseteq E : E X \in \mathcal{B}\} \iff \mathcal{F}^* = \{X \subseteq E : E X \text{ tartalmazza } \mathcal{M} \text{ egy bázisát}\}$
 - $(\mathcal{M}^*)^* = \mathcal{M}$ 9.6. példa: $\mathcal{U}_{n,k}$ duálisa $(\mathcal{U}_{n,k})^* = \mathcal{U}_{n,n-k}$
- 9.7. tétel: az $\mathcal{M} = (E, r)$ duálisának rangfüggvénye $r^*(X) = |X| r(E) + r(E X)$
 - bizonyítás: $r^*(X) = X$ -beli max. független halmaz mérete = $\max\{|X \cap B^*| : B^* \in \mathcal{B}^*\}$
 - $|X \cap B^*| = |X \cap (E B)| = |X B| = |X| |X \cap B|$, and $E B^* = B \in \mathcal{B}$
 - $r^*(X) = \max(|X| |X \cap B|) = |X| \min|X \cap B| = |X| |B| + \max|(E X) \cap B|$
 - $\max|(E-X) \cap B| = r(E-X) \Longrightarrow r^*(X) = |X| r(E) + r(E-X)$
- ${\bf 10.}$ Elhagyás és összehúzás. Matroidok direkt összege, összefüggősége. Ttest felett reprezentálható matroid duálisának T feletti reprezentálhatósága.
- 10.1. definíció: az $\mathcal{M} = (E, \mathcal{F})$ matroidból X elhagyásával az $\mathcal{M} \setminus X = (E X, \mathcal{F}')$ matroidot kapjuk, ahol $\mathcal{F}' := \{F \in \mathcal{F} : F \subseteq E X\}$
 - grafikus matroidoknál ez nem más, mint élek elhagyása a gráfból
 - $\mathcal{M} \setminus X$ rangfüggvénye $r|_{E-X}$
- 10.2. definíció: az $\mathcal{M} = (E, r)$ matroidból X összehúzásával az $\mathcal{M}/X = (E X, r')$ matroidot kapjuk, ahol $r'(Y) = r(X \cup Y) r(X)$
 - 10.3. lemma: az (E-X,r') pár valóban matroid

```
• bizonyítás: (R1): r'(\emptyset) = r(X \cup \emptyset) - r(X) = 0

• (R2): r'(Y) = r(X \cup Y) - r(X) \stackrel{r}{\leq} (r(X) + r(Y) - r(X \cap Y)) - r(X) \leq r(Y) \leq |Y|

• (R3): Z \subseteq Y \Longrightarrow r'(Z) = r(X \cup Z) - r(X) \stackrel{X \cup Z \subseteq Z \cup Y, \ r \ (R3)}{\leq} r(X \cup Y) - r(X) = r'(Y)

• (R4): r'(Y) + r'(Z) = r(X \cup Y) + r(X \cup Z) - 2r(Z) \stackrel{r}{\geq} \sum_{z \in T(X \cup Y) \cap (X \cup Z)} (x \cup Y) + r(X \cup Y) \cup (X \cup Z)) - 2r(X) = \sum_{z \in T(X \cup Y) \cap (X \cup Z)} (x \cup Y) - r(X) = \sum_{z \in T(X \cup Y) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(X \cup Y) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z) \cap (X \cup Y)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum_{z \in T(Y \cap Z)} (x \cup Y) - r(X) = \sum
```

- 10.4. tétel: ha $\mathcal{M} = (E, \mathcal{F})$ matroid, $X \subseteq E \Longrightarrow (\mathcal{M}/X)^* = \mathcal{M}^* \setminus X$, $(\mathcal{M} \setminus X)^* = \mathcal{M}^*/X$
 - bizonyítás: $\mathcal{M}^* \setminus X = ((\mathcal{M}^* \setminus X)^*)^* = ((\mathcal{M}^*)^*/X)^* = (\mathcal{M}/X)^*$
 - ° ezért elég az $(\mathcal{M} \setminus X)^* = \mathcal{M}^* / X$ egyenlőséget belátni
 - legyen $(\mathcal{M} \setminus X)^* = (E X, r_1), \, \mathcal{M}^* / X = (E X, r_2)$
 - $r_1(Y) = |Y| r(E X) + r((E X) Y)$

$$\circ \ r_2(Y) = r^*(X \cup Y) - r^*(X) = |X \cup Y| - r(E) + r(E - (X \cup Y)) - |X| + r(E) - r(E - X)$$

$$\ast \ Y \subseteq E - X \Longrightarrow X \cap Y = \emptyset \Longrightarrow |X \cup Y| - |X| = |Y|$$

- * $(E-X)-Y = E-(X \cup Y) \Longrightarrow r_2(Y) = |Y|-r(E-X)+r((E-X)-Y)$
- \circ $r_1 = r_2$, ezért a két matroid is megegyezik
- 10.5. definíció: az ${\mathcal M}$ matroidból összehúzások és törlések sorozatával ${\mathcal M}$ minora áll elő
- 10.6. lemma: $\mathcal{M} \setminus A_1/B_1 \setminus A_2/B_2 \setminus \cdots \setminus A_k/B_k = \mathcal{M} \setminus \bigcup_{i=0}^k A_i/\bigcup_{i=0}^k B_i$
 - nem bizonyítjuk
- 10.7. tétel: az \mathcal{M} matroid ∀ minora előáll $\mathcal{M} \setminus A/B$ alakban
 - bizonyítás: a 10.6. lemma alapján triviális
- 10.8. definíció: az $\mathcal{M}_1 = (E_1, \mathcal{F}_1)$, $\mathcal{M}_2 = (E_2, \mathcal{F}_2)$, $E_1 \cap E_2 = \emptyset$ matroidok direkt összege $\mathcal{N} = \mathcal{M}_1 \oplus \mathcal{M}_2 = (E, \mathcal{F})$, $E = E_1 \cup E_2$, $\mathcal{F} = \{X \subseteq E : X \cap E_1 \in \mathcal{F}_1, X \cap E_2 \in \mathcal{F}_2\}$
- 10.9. definíció: az \mathcal{M} matroid összefüggő, ha nem áll elő két matroid direkt összegeként
- 10.10. definíció: az \mathcal{M} matroid reprezentálható (kooridnátázható) az T test felett, ha izomorf egy T feletti mátrixmatroiddal
 - ha \mathcal{M} -et A koordinátázza, és $B \in \mathbb{R}^{r \times r}$ négyzetes nemszinguláris mátrix, akkor BA is \mathcal{M} -et koordinátázza
- 10.11. tétel: ha \mathcal{M} reprezentálható a T test felett, akkor \mathcal{M}^* is
 - bizonyítás: legyen $r\coloneqq r(\mathcal{M})=r(A),$ ahol $A\in\mathbb{R}^{r\times n}$ az \mathcal{M} -et reprezentáló mátrix
 - \circ Gauss-eliminációval hozzuk \mathcal{M} mátrixszát $(I_r|A_0)$ alakúra
 - vizsgáljuk az $A' = (-A_0|I_{n-r})$ által reprezentált $\mathcal{M}(A')$ matroidot
 - $^{\circ}~A$ és A'oszlopai természetes módon megfeleltehetőek egymásnak
 - ° legyen B egy bázis \mathcal{M} -ben
 - * ált. megsz. tfh. B az I_r utolsótoszlopából és A_0 első r-toszlopából áll
 - * ekkor E-B a $-A_0^{\rm T}$ első r-t és az E_{n-r} utolsó n-2r-t oszlopából áll
 - * a B elemeihez tartozó $r \times (t + (r t))$ -s részmátrix A-ban: $A_1 = \begin{pmatrix} 0 & C \\ \frac{1}{1 & \cdots & 1} \end{pmatrix}$
 - $r = r(B) \iff 0 \neq |\det A_1| = |\det C| = |\det -C^T| = |\det A_2| \iff n r = r(E B)$
 - $r(\mathcal{M}(A')) \leq n r = r(E B) \Longrightarrow r(\mathcal{M}(A')) = n r$, E B valóban bázis $\mathcal{M}(A')$ -ben
 - ° bázis komplementere bázis (és ezt fordítva is elmondhatjuk)
 - $\circ \mathcal{B}(A') = \{E B : B \in \mathcal{B}(A)\} \Longrightarrow \mathcal{M}(A') = \mathcal{M}^*$

11. Grafikus, kografikus, reguláris, bináris és lineáris matroid fogalma, ezek kapcsolata (ebből bizonyítás csak a grafikus és reguláris matroidok közötti kapcsolatra), példák. Fano-matroid, példa nemlineáris matroidra. Bináris, reguláris és grafikus matroidok jellemzése tiltott minorokkal: Tutte tételei (biz. nélkül).

- 11.1. definíció: az $\mathcal{M} = (E, \mathcal{F})$ matroid *grafikus*, ha előáll valamely G = (V, E) gráf $\mathcal{M}(G)$ körmatroidjaként, ahol \mathcal{F} elemei a G-beli erdők
- 11.2. definíció: az \mathcal{M} matroid kografikus, ha egy grafikus matroid $[\mathcal{M}(G)]^*$ duálisa
 - \mathcal{F} elemei nem tartalmaznak G-beli $v\acute{a}g\acute{a}st$ (vágásmatroid)
 - $X \in \mathcal{F} \iff (V(G), E(G) X)$ ugyanannyi összefüggő komponensből áll, mint G
- 11.3. tétel: egy $\mathcal{M}(G)$ grafikus matroid pontosan akkor kografikus, ha G síkbarajzolható
 - ekkor $[\mathcal{M}(G)]^* = \mathcal{M}(G^*)$, a matroid duális épp a gráfelméleti duális körmatroidja
 - nem bizonyítjuk
- 11.4. definíció: az \mathcal{M} matroid *lineáris*, ha reprezentálható valamely T test felett
- 11.5. definíció: az \mathcal{M} matroid bináris, ha reprezentálható a GF₂ kételemű test felett
 - \bullet minden bináris matroid lineáris a GF_2 test felett
- 11.6. definíció: az \mathcal{M} matroid reguláris, ha minden T test felett reprezentálható
 - minden reguláris matroid bináris (és lineáris) $T = GF_2$ választással
- matroidok halmazainak kapcsolatai
 - grafikus, kografikus ⊂ reguláris ⊂ bináris ⊂ lineáris ⊂ matroidok
 - grafikus \cap kografikus $\neq \emptyset$
- 11.7. tétel: minden $\mathcal{M}(G)$ grafikus matroid reguláris
 - bizonyítás: legyen T test, $V(G) = \{x_1, x_2, \dots, x_n\}$ és irányitsuk G éleit tetszőlegesen
 - rendeljük az x_i csúcshoz a v_i egységvektort és az $e = (x_i, x_j)$ élhez a $w_e = v_i v_j$ • ez épp G egy irányításának illeszkedési mátrixsza
 - $X \subseteq E$ tartalmaz kört $\Longrightarrow W = \{w_e : e \in X\}$ lineárisan összefüggő
 - ° legyen $C \subseteq X$ egy kör X-ben valamilyen irányítással
 - ° ha $e \in C$ párhuzamos C-vel, $\alpha_e \coloneqq 1$; ha ellentétes irányú, $\alpha_e \coloneqq -1$
 - ° ekkor $\sum_{e \in C} \alpha_e w_e = 0$ W elemeinek nemtriviális 0 lineáris kombinációja
 - $X \subseteq E$ tartalmaz kört $\longleftarrow W = \{w_e : e \in X\}$ lineárisan összefüggő
 - ° legyen $\sum_{w_e \in W} \beta_e w_e = 0$ egy nemtriviális 0 linearis kombináció
 - ° $Y := \{e \in X : \beta_e \neq 0\}$ és V' := az Y-beli élek végpontjainak halmaza
 - ° $\sum_{e \in Y} \beta_e w_e = 0 \Longrightarrow \forall v \in V'$ -re legalább 2 Y-beli él illeszkedik
 - \circ a (V',Y) részgráf \forall pontja legalább 2.-fokú \Longrightarrow $(V',Y)\subseteq G$ tartalmaz kört
- 11.8. tétel: minden $[\mathcal{M}(G)]^*$ kografikus matroid reguláris
 - bizonyítás: a 10.11 tétel szerint ha \mathcal{M} reprezentálható T felett, akkor \mathcal{M}^* is
 - $\mathcal{M}(G)$ minden T felett reprezentálható $\Longrightarrow [\mathcal{M}(G)]^*$ is

– 11.9. definíció: a T test karakterisztikája az a min. k, melyre $\forall x \in T: \overbrace{x+x+\ldots+x}^{k \text{ db}} = 0$

– 11.10. példa: $\mathcal{F}_7 =$ $\begin{array}{c} f & g \\ \hline \\ a & b \end{array}$ Fano-matroid, $\mathcal{F}_7^- =$ $\begin{array}{c} f & g \\ \hline \\ a & b \end{array}$ anti-Fano-matroid

• ∀ 4 elemű halmaz összefüggő, a 3 eleműek közül az egy egyenesre / körre esők

- \mathcal{F}_7 pontosan a k=2 karakterisztikájú testek felett koordinátázható
- \mathcal{F}_7^- pontosan a $k \neq 2$ karakterisztikájú testek felett koordinátázható
- bizonyítás: $r(\mathcal{F}_7) = r(\mathcal{F}_7^-) = 3 \Longrightarrow$ feltehető: $a \mapsto (1,0,0), c \mapsto (0,1,0), e \mapsto (0,0,1)$
 - ° ekkor $b \mapsto (x, y, 0), d \mapsto (0, z, u), f \mapsto (v, 0, w), g \mapsto (q, r, s)$

$$\circ \ \{a,d,g\} \notin \mathcal{F} \Longrightarrow \begin{vmatrix} 1 & 0 & q \\ 0 & z & r \\ 0 & u & s \end{vmatrix} = 0 \Longrightarrow sz = ru; \text{ hasonl\'oan } sv = qw, \ rx = qy$$

•
$$\{a, d, g\} \notin \mathcal{F} \Longrightarrow \begin{vmatrix} 1 & 0 & q \\ 0 & z & r \\ 0 & u & s \end{vmatrix} = 0 \Longrightarrow sz = ru;$$
 hasonlóan $sv = qw, rx = qy$
• $\{b, d, f\} \notin \mathcal{F}(\mathcal{F}_7), de \in \mathcal{F}(\mathcal{F}_7^-) \Longrightarrow \begin{vmatrix} x & 0 & v \\ y & z & 0 \\ 0 & u & w \end{vmatrix} = 0 \mathcal{F}_7$ -ban
* $wxz + uvy = 0$ \mathcal{F}_7 -ben, $de \notin \mathcal{F}_7^-$ -ban

- * wxz + uvy = 0 \mathcal{F}_7 -ben, de $\neq \mathcal{F}_7^-$ -ban
- * de $\frac{sz}{u}x = \frac{sv}{w}y \Longrightarrow swxz = suvy \Longrightarrow wxz = uvy$
- * wxz+wxz=0 \mathcal{F}_7 -ben pontosan akkor teljesül, ha T karakterisztikája = 2
- * $wxz+wxz\neq 0$ \mathcal{F}_7^- -ban pontosan akkor teljesül, ha T karakterisztikája $\neq 2$
- 11.11. következmény: az $\mathcal{F}_7 \oplus \mathcal{F}_7^-$ matroid nem lineáris
 - T karakteriszikája egyszerre kellene 2 és nem 2 legyen
- 11.12. példa: példák matroidokra

nem lineáris	$\mathcal{F}_7\!\oplus\!\mathcal{F}_7^-$	lineáris, de nem bináris	$\mathcal{U}_{4,2},\mathcal{F}_7^-$	
bináris, de nem reguláris	\mathcal{F}_7	reguláris, de nem grafikus	$\mathcal{M}(K_5) \oplus [\mathcal{M}(K_5)]^*$	
grafikus, de nem kografikus	$\mathcal{M}(K_5)$	kografikus, de nem grafikus	$[\mathcal{M}(K_5)]^*$	
grafikus és kografikus	$\mathcal{M}(G)$, G síkbaraizolható			

- grankus és kografikus $\mid \mathcal{M}(G), G$ síkbarajzolható K_5 helyett tetszőleges nem síkbarajzolható gráf (pl. $K_{3,3}$) állhat
- 11.13. tétel: Tutte tételei
 - \mathcal{M} bináris \iff nem minorja az $\mathcal{U}_{4,2}$
 - $^{\circ}~\mathcal{U}_{4,2}$ rangja 2, de 2 dimenziós bináris vektorokból nem létezik 4 db páronként lineárisan független; $\mathcal{U}_{4,2} = \mathcal{M} \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & \mathbf{2} \end{pmatrix}$
 - \mathcal{M} reguláris \iff nem minorja az $\mathcal{U}_{4,2}$, \mathcal{F}_7 és \mathcal{F}_7^*
 - \mathcal{M} grafikus \iff nem minorja az $\mathcal{U}_{4,2}, \mathcal{F}_7, \mathcal{F}_7^*, [\mathcal{M}(K_5)]^*$ és $[\mathcal{M}(K_{3,3})]^*$
 - \circ ha $\mathcal{M}(G)$ egy G' gráf $[\mathcal{M}(G')]^*$ vágásmatroidja, akkor $\mathcal{M}(G)$ kografikus és G' síkbarajzolható kell legyen
 - nem bizonyítjuk
- 11.14. tétel: $\mathcal{U}_{n,k}$ pontosan akkor grafikus, ha k=0,1,n-1 vagy n
 - bizonyítás: $\mathcal{U}_{n,0}$ egy csúccsal és n hurokkal reprezentálható, $\mathcal{U}_{n,1}$ n párhuzamos éllel
 - $\mathcal{U}_{n,n-1}$ n élű körrel reprezentálható, $\mathcal{U}_{n,n}$ n elű erdővel
 - $U_{n,k} \setminus \{a\} = U_{n-1,k}, U_{n,k}/\{a\} = U_{n-1,k-1}$
 - ° ha $2 \le k \le n-2 \Longrightarrow \mathcal{U}_{n,k}$ -nak van $\mathcal{U}_{4,2}$ minorja
 - $^{\circ}\,$ ehhezn-k-2törlés és k-2összehúzás kell
- 12. Matroidok összege. k-matroid-metszet probléma, ennek bonyolultsága $k \geq 3$ esetén.
 - 12.1. definíció: az $\mathcal{M}_1 = (E, \mathcal{F}_1), \mathcal{M}_2 = (E, \mathcal{F}_2), \dots, \mathcal{M}_k = (E, \mathcal{F}_k)$ matroidok összege az $\mathcal{N} =$ $=\bigvee_{i=1}^k \mathcal{M}_i = (E, \mathcal{F}')$ halmazrendszer, ahol $\mathcal{F}' = \{X_1 \cup X_2 \cup \ldots \cup X_k : X_i \in \mathcal{F}_i \ (i=1,2,\ldots,k)\}$
 - $\bigvee_{i=1}^k (\mathcal{M}_i \setminus X) = (\bigvee_{i=1}^k \mathcal{M}_i) \setminus X$, de az / és a \oplus műveletekre ez már nem igaz
- 12.2. tétel: matroidok $\bigvee_{i=1}^k \mathcal{M}_i$ összege matroidot alkot
 - bizonyítás: $\mathcal{M}_1 \vee (\mathcal{M}_2 \vee \mathcal{M}_3) = (\mathcal{M}_1 \vee \mathcal{M}_2) \vee \mathcal{M}_3 \Longrightarrow$ elegendő $\mathcal{M}_1 \vee \mathcal{M}_2$ -t vizsgálni
 - (F1): $\emptyset = \emptyset \cup \emptyset \in \mathcal{F}_1 \vee \mathcal{F}_2$
 - (F2): $X = X_1 \cup X_2, X_1 \in \mathcal{F}_1, X_2 \in \mathcal{F}_2, Y \subseteq X$
 - \circ ekkor $X_1 \supseteq Y \cap X_2 \in \mathcal{F}_1, X_2 \supseteq Y \cap X_2 \in \mathcal{F}_2, (Y \cap X_2) \cup (Y \cap X_2) = Y \in \mathcal{F}'$
 - (F3): legyen $X, Y \in \mathcal{F}'$; |X| > |Y|; $X = X_1 \cup X_2$; $Y = Y_1 \cup Y_2$; $X_1, X_2 \in \mathcal{F}_1$; $Y_1, Y_2 \in \mathcal{F}_2$
 - ° ált. megsz. nélkül tfh. $|X_1\cap Y_2|+|X_2\cap Y_1|$ minimális, $X_1\cap X_2=Y_1\cap Y_2=\emptyset$

```
° ált. megsz. nélkül tfh. |X_1| > |Y_1| \Longrightarrow \exists e \in X_1 - Y_1 : Y_1 \cup \{e\} \in \mathcal{F}_1 \subseteq \mathcal{F}_1
```

- \circ ha $e \notin Y_2 \Longrightarrow e \in X Y, Y \cup \{e\} = (Y_1 \cup \{e\}) \cup Y_2 \in \mathcal{F}'$
- ° ha $e \in Y_2 \Longrightarrow Y = Y_1' \cup Y_2' = (Y_1 \cup \{e\}) \cap (Y_2 \{e\})$ is egy jó felbontása Y-nak
 - * vegyük észre, hogy $X_1 \cap X_2 = \emptyset$, $e \in X_1 \Longrightarrow e \notin X_2$
 - * $|X_1 \cap (Y_2 \{e\})| + |X_2 \cap (Y_1 \cup \{e\})| = |X_1 \cap Y_2| 1 + |X_2 \cap Y_1|$
 - * a metszetek méretének összege nem lehetett minimális, ellentmondás
- 12.3. definíció: az $\mathcal{M}_1 = (E, \mathcal{F}_1), \mathcal{M}_2 = (E, \mathcal{F}_2), \dots, \mathcal{M}_k = (E, \mathcal{F}_k)$ matroidok metszete az (E, \mathcal{F}') halmazrendszer, ahol $\mathcal{F}' = \bigcap_{i=1}^k \mathcal{F}_i$
 - ez nem mindig matroid, pl. $\mathcal{M}\left(\bullet \xrightarrow{1} \bullet \xrightarrow{2} \bullet\right)$ és $\mathcal{M}\left(\bullet \xrightarrow{1} \xrightarrow{2} \bullet\right)$ metszete nem az, mert $\mathcal{F}' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{2,3\}\} \Longrightarrow (F3)$ nem teljesül
- 12.4. probléma: (súlyozott) k-matroid metszet (k-MMP)
 - INPUT: $\mathcal{M}_1 = (E, \mathcal{F}_1), \mathcal{M}_2 = (E, \mathcal{F}_2), \dots, \mathcal{M}_k = (E, \mathcal{F}_k), \ p \in \mathbb{N} \ (w : E \to \mathbb{R}_{\geq 0}, \ W \in \mathbb{R}_{\geq 0})$
 - Output: \exists -e olyan $X \in \bigcap_{i=1}^k \mathcal{F}_i$, hogy $|X| \geq p$ (illetve $w(X) \geq W$)
- 12.5. tétel: $k \ge 3$ esetén k-MMP NP-nehéz
 - bizonyítás: 3-MPP NP-nehéz $\Longrightarrow k > 3$, k-MMP NP-nehéz
 - ° adunk egy 3-MMP
 $\prec k\text{-MMP}$ Karp-redukciót (k>3)

$$\circ (\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3) \in 3\text{-MPP} \iff (\mathcal{M}_1, \mathcal{M}_2, \overbrace{\mathcal{M}_3, \mathcal{M}_3, \dots, \mathcal{M}_3}^{k}) \in k\text{-MPP}$$

- irányított s-t-HAMÚT \prec 3-MMP \Longrightarrow 3-MPP NP-teljes
 - $\circ \mathcal{M}_1 = \mathcal{M}(G)$
 - ° $\mathcal{F}(\mathcal{M}_2) =$ azon élhalmazok, melyekben \forall pont be-foka ≤ 1 , $d_{\text{be}}(s) = 0$
 - * egy partíció-matroidból kapjuk sbemenő éleinek összehúzásával
 - ° $\mathcal{F}(\mathcal{M}_3) = \text{azon \'elhalmazok}$, melyekben \forall pont ki-foka ≤ 1 , $d_{ki}(t) = 0$
 - ° $p = |V| 1 \Longrightarrow X \in \mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3; |X| \ge p$ épps-t Hamilton-út
- ${f 13.}$ A k-matroid partíciós probléma, ennek algoritmikus megoldása. A 2-matroid-metszet feladat visszavezetése matroid partíciós problémára.
 - **13.1. probléma:** *k*-matroid partíció (*k*-MPP)
 - Input: $\mathcal{M}_1 = (E, \mathcal{F}_1), \mathcal{M}_2 = (E, \mathcal{F}_2), \dots, \mathcal{M}_k = (E, \mathcal{F}_k)$
 - Output: E független-e $\bigvee_{i=1}^k \mathcal{M}_i$ -ben? $\iff \bigvee_{i=1}^k \mathcal{M}_i \stackrel{?}{=} (E, 2^E)$
 - $\circ \iff \stackrel{?}{\exists} E_1 \in \mathcal{F}_1, E_2 \in \mathcal{F}_2, \dots, E_k \in \mathcal{F}_k : E = E_1 \cup E_2 \cup \dots \cup E_k$
 - 13.2. algoritmus: k-matroid partíció algoritmus¹
 - 0. lépés: $E_1 \leftarrow \emptyset$, $E_2 \leftarrow \emptyset$, ..., $E_k \leftarrow \emptyset$
 - 1. lépés ha $\bigcup_{i=1}^k E_i = E \Longrightarrow STOP$, igaz
 - 2. lépés van-e $x \in E \bigcup_{i=1}^k E_i$, hogy $\bigcup_{i=1}^k E_i \cup \{x\}$ -t particionálható?
 - ° ha igen \Longrightarrow legyen $E_1, E_2, \dots E_k$ az új partícionálás, GOTO 1.
 - \circ ha nem \Longrightarrow STOP, hamis
 - irányított $\vec{G} = (V, \vec{E})$ segédgráf konstrukció a 2. lépés elvégzéséhez
 - $V = E \cup P = E \cup \{p_1, p_2, \dots, p_k\}$
 - $\circ (a, p_i) \in \vec{E} \iff a \notin E_i, \text{ de } E_i \cup \{a\} \in \mathcal{F}_i$
 - \circ $(a,b) \in \vec{E} \iff \text{valamely } i\text{-re } b \in E_i, \ a \notin E_i, \ E_i \cup \{a\} \notin \mathcal{F}_i, \ E_i \cup \{a\} \{b\} \in \mathcal{F}_i$
 - szélésségi kereséssel keressük meg a legrövidebb utat $E' = E \bigcup_{i=1}^k E_i$ -ből P-be
 - \circ van $\Longrightarrow (a,b)$ -kre $b \in E_i$ esetén $E_i \leftarrow E_i \cup \{a\} \{b\}$; (a,p_i) -re $E_i \leftarrow E_i \cup \{a\}$
 - * \vec{G} definíciója miatt még $\forall E_i \in \mathcal{F}_i$; E' mérete 1-gyel (út első csúcsa) nőtt

¹Edmonds, J. és D. R. Fulkerson (1965). Transversals and Matroid Partition. In: J. OF RESEARCH of the Nat. Bureau of Standards—B. Math. and Math. Phys. Vol. 69B, No. 3

- ° nincs \Longrightarrow legyen $X\subset E$ az E'-ből irányított úton elérhető csúcsok halmaza
- * $r(X) \le \sum_{i=1}^k r_i(X) < |X| \Longrightarrow E \supset X \notin \bigcup_{i=1}^k \mathcal{F}_i \xrightarrow{\text{(F2)}} E$ nem lehet független lépésszám: $O(|E| + c(n+k)^2 + c(n+k)^2)$
- 13.3. tétel: az $\mathcal{M}_1 = (E, \mathcal{F}_1)$ és $M_2 = (E, \mathcal{F}_2)$ azonos rangú $(r_1(E) = r_2(E))$ matroidoknak pontosan akkor van közös bázisa, ha $\mathcal{M}_1 \vee \mathcal{M}_2^* = (E, 2^E)$
 - (\Longrightarrow) ha B közös bázis, akkor E-X bázisa \mathcal{M}_2^* -nak
 - ° $E = X \cup (E X)$ független az összegben $\Longrightarrow \mathcal{M}_1 \vee \mathcal{M}_2^*$ teljes
 - (\Leftarrow) legyen $E = E_1 \cup E_2, E_1 \in \mathcal{F}_1, E_2 \in \mathcal{F}_2^*$
 - $|E| \le |E_1| + |E_2| = r_1(E_1) + r_2^*(E_2) = r_1(E_1) + (|E| r_2(E) + r_2(E E_2)) \le r_1(E_1) + r_2(E_2) = r_2(E_1) + r_2(E_1) + r_2(E_2) = r_2(E_1) + r_2(E_1) + r_2(E_1) + r_2(E_1) = r_2(E_1) + r_2(E_1)$ $\leq r_1(E) + (|E| - r_2(E)) = |E|$
 - ° mindenhol egyenlőség kell álljon, tehát $|E| \le |E_1| + |E_2 \Longrightarrow E_1 = E E_2$
 - ° $r_1(E_1) = r_1(E), r_2(E) = r_2(E E_2) = r_2(E_1) \Longrightarrow E_1$ közös bázis
- **13.4. következmény:** 2-MMP visszavezetése 2-MPP
 - legyen $\mathcal{M}_1' = (E, \mathcal{F}_1'), \ \mathcal{M}_2' = (E, \mathcal{F}_2'), \ \text{ahol} \ \mathcal{F}_i' = \{X \in \mathcal{F}_i : |X| \leq p\} \ \text{a matroidok } \ csonkoltjai$
 - $\forall p$ méretű független halmaz bázis a megfelelő csonkolt matroidban
 - $\mathcal{M}'_1 \vee (\mathcal{M}'_2)^* = (E, 2^E) \iff \mathcal{M}'_1$ -nek és \mathcal{M}'_2 -nek van közös bázisa
 - ez a bázis a 2-MMP-ben keresett p méretű közös független halmaz \mathcal{M}_1 -ben és \mathcal{M}_2 -ben
- 14. k-polimatroid rangfüggvény fogalma. A 2-polimatroid-matching probléma, ennek bonyolultsága, Lovász tétele (biz. nélkül).
 - 14.1. definíció: $r: 2^E \to \mathbb{N}$ k-polimatroid rangfüggvény, ha
 - (R1) $r(\emptyset) = 0$ $(\mathbf{R}2') \ \forall e \in E : r(\{e\}) \le k$ (R3) $Y \subseteq X \implies r(Y) \le r(X)$
 - (R4) $r(X) + r(Y) \ge r(X \cap Y) + r(X \cup Y)$
 - \bullet a matroid rangfüggvények k=1 választással adódnak

ination ranging very
$$k=1$$
 variables and distribution $X=\{e_1\}\cup\{e_2\}\cup\ldots\cup\{e_m\} \xrightarrow{(\mathrm{R4})} m \leq \sum_{i=1}^m r(\{e_i\}) \leq r(X)$

- másik irány: $\forall X \subseteq E : r(X) < k|X|$
- 14.2. definíció: $X \subseteq E$ egy k-matching, ha r(X) = k|X|
- 14.3. példa: G = (V, E) gráf, $r(X) = az X \subseteq E$ élek által lefedett csúcsok halmaza
 - r egy 2-polimatroid-rangfüggvény, a 2-matchingek G párosításai
- **14.4. probléma:** *k*-polimatroid matching (*k*-PMMP)
 - INPUT: $r: 2^E \to \mathbb{N}$ k-polimatroid rangfüggvény, $p \in \mathbb{N}$
 - Output: létezik-e $X \subseteq E$, hogy r(X) = k|X| és $|X| \ge p$
- 14.5. tétel: a k-PMMP $k \ge 3$ esetén NP-nehéz
 - bizonyítás: k-MMP $\prec k$ -PMMP és k-MMP NP-nehéz
 - ha $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_k$ matroidok $\Longrightarrow r(X) = \sum_{i=1}^k r_i(X)$ k-polimatroid rangfüggvény
 - ° a k-matchingek pontosan a független halmazok $\forall \mathcal{M}_i\text{-ben}$
 - $\circ (\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_k; p) \in k\text{-MMP} \iff (\sum_{i=1}^k r_i, p) \in k\text{-PMMP}$
- 14.6. tétel: ha r mindössze egy O(1) időben kiszámolható orákulummal adott \Longrightarrow 2-PMMP nem oldható meg polinomidőben
 - bizonyítás: legyen $|E| = 2n, E_0 \subset E, |E_0| = n$
 - bizonyitas: legyen |E| 2n, $E_0 \subset E$, $|E| = \begin{cases} 2|X|, & \text{ha } |X| < n, \\ 2n 1, & \text{ha } |X| = n, \ r_2(X) \coloneqq \begin{cases} 2|X|, & \text{ha } |X| < n, \\ 2n, & \text{ha } X = E_0, \\ 2n 1, & \text{ha } |X| > n, \end{cases} p \coloneqq n$ $\begin{cases} 2n, & \text{ha } X \neq E_0, |X| = n, \\ 2n, & \text{ha } |X| > n, \end{cases}$
 - $(r_1, p) \notin 2\text{-PMMP}$, de $(r_2, p) \in 2\text{-PMMP}$ $(E_0 \text{ egy } p = n \text{ elemű } k\text{-matching})$
 - $^{\circ}\,$ ennek eldöntéséhez az összes nelemű részhalmazt meg kell vizsgálni
 - ° ez $\binom{2n}{n} = O(4^n/\sqrt{\pi n})$ darab r hívást igényel

- nem használtuk ki, hogy 2-PMMP NP-nehéz, a bizonyítás P = NP esetén is működik
- 14.7. tétel: (Lovász László tétele)
 - ha az r 2-polimatroid rangfüggvény $r(X) = \dim \langle \bigcup_{i \in X} \{a_i, b_i\} \rangle$ alakban adott, ahol $E = \{1, 2, \ldots, n\}, \{a_i, b_i\}_{i \in I} \subset \mathbb{R}^k \Longrightarrow r$ -en 2-PMMP polinomidőben megoldható
 - ullet az ilyen r mindig 2-polimatroid rangfüggvény
 - nem bizonyítjuk

Közelítő és ütemezési algoritmusok

- 15. Polinomiális időben megoldható feladat fogalma, példák. Az NP, co-NP, NP-nehéz és NP-teljes problémaosztályok definíciója, viszonyaik, példák problémákra valamennyi osztályból. NP-nehéz feladatok polinomiális speciális esetei: algoritmus a maximális független ponthalmaz problémára és az élszínezési problémára páros gráfokon. Additív hibával közelítő algoritmusok speciális pont-, illetve élszínezési problémákra.
 - algoritmuselméleti alapfogalmak
 - 15.1. definíció: kiszámítási problémáról akkor beszélünk, ha egy <math>I bemenet f(I) függvényét szeretnénk kimenetként megadni
 - \circ eldöntési probléma: $f(I) \in \{\text{IGEN}, \text{Nem}\}$
 - 15.2. definíció: optimalizálási probléma olyan kiszámítási probléma, ahol
 - \circ az I bemenethez X_I a lehetséges kimenetek halmaza, $c\colon X_I \to \mathbb{R}$ valós függvény
 - $\circ f(I) = x^* \in X_I$, hogy $c(x^*) = \max\{c(x) : x \in X_I\}$ (illetve $c(x^*) = \min\{c(x) : x \in X_I\}$)
 - $^{\circ}$ a kimenet nemcsak az optimum értéke, hanem maga az x^* optimális megoldás
 - 15.3. definíció: egy $f: \mathbb{N} \to \mathbb{N}$ függvény polinomális, ha $\exists c_1, c_2 \in \mathbb{N}^* : \forall n \in \mathbb{N} : f(n) \leq c_1 n^{c_2}$
 - ° egy algoritmus akkor polinomiális ha \forall n méretű bemenetre f(n) időben kiszámítja a kimenetet, ahol f polinomiális
 - ° egy probléma polinom időben megoldható, ha ∃ rá polinomiális algoritmus
 - 15.4. definíció: az A probléma polinom időben visszavezethető B-re $(A \prec_{\text{Cook}} B)$, ha A polinom időben megoldható a B-t megoldó algoritmus szubrutinként hívásával
 - \circ B hivása O(1) lépésnek számit
 - 15.5. definíció: döntési problémák osztályai
 - $^{\circ}\ \mathbf{P}\coloneqq\mathbf{a}$ polinom időben megoldható eldöntési problémák osztálya
 - * pl. teljes párosítás páros gráfban, k-matroid-partíció
 - NP := azon eldöntési problémák osztálya, ahol az IGEN válaszra létezik polinomiális méretű, polinomiális időben ellenőrizhető tanú
 - * pl. Hamilton-kör, k-matroid-metszet $(k \ge 2)$
 - co-NP := azon eldöntési problémák osztálya, ahol az NEM válaszra létezik polinomiális méretű, polinomiális időben ellenőrizhető tanú
 - * pl. teljes párosítás páros gráfban (Kőnig tétele, Hall-tétel), síkbarajzolhatóság (Kuratowski-tétel), teljes párosítás tetszőleges gráfban (Tutte-tétel)
 - ° egy B probléma $NP\text{-}neh\acute{e}z,$ ha $\forall A\in\operatorname{NP}:A\prec_{\operatorname{Cook}}B$
 - * pl. az általános k-polimatroid matching NP-nehéz, de nem NP-beli
 - $^{\circ}$ egy B probléma NP-teljes, ha NP-beli és NP-nehéz
 - * pl. SAT (Cook-Levin tétel), 3SZÍN, HAM, LÁDAPAKOLÁS
 - P \subseteq NP \cap co-NP, NP-teljes = NP \cap NP-nehéz, P $\stackrel{?}{=}$ NP
 - 15.6. probléma: maximális független ponthalmaz páros gráfban
 - INPUT: G = (A, B; E) páros gráf OUTPUT: F maximális független ponthalmaz
 - · a probléma általános gráfra NP-nehéz, de páros gráfra polinomiális
 - futtasuk le a gráfra a javítóutas algoritmust (polinom idejű)

- 15.7. állítás: ekkor $F = A_1 \cup A_2 \cup B_1 \cup B_3$ maximális független ponthalmaz
 - $\circ A_1, B_1 = az A_1$, illetve B-beli párosítatlan pontok halmaza
 - ° $B_2 = \text{az } A_1$ -ből alternáló úton elérhető pontok (nincs javító út \implies mind van párjuk)
 - ° $A_1 = a B_2$ -beli pontok párjai
 - $A_3 = A A_1 A_2, B_3 = B B_1 B_2$
 - ° bizonyítás: az algoritmus által megtalált M párosítás maximális $\Longrightarrow |M| = \nu(G)$
 - * $\nu(G) = \text{maximális párosítás mérete}, \ \tau(G) = \text{min. lefogó ponthalmaz mérete}$
 - * nincs él $A_1 \cup A_2$ és $B_1 \cup B_2$ között (1.3. tétel) $\Longrightarrow F$ független
 - * $A \cup B F = A_3 \cup B_2$ lefogó ponthalmaz $\Longrightarrow \tau(G) \le |A_3 \cup B_2| = |F| = \nu(G)$
 - * egy lefogó ponthalmaz egy párosítás \forall élét le kell fogja $\Longrightarrow \nu(G) \le \tau(G)$
 - * így $\tau(G) \le |A_3 \cup B_2| = |F| = \nu(G) \le \tau(G) \Longrightarrow \nu(G) = \tau(G)$
 - \circ indir. tfh. $\exists F' \subseteq A \cup B$ független ponthalmaz, |F'| > |F|
 - * ekkor $A \cup B F'$ lefogó ponthalmaz, de $|A \cup B F'| < |A \cup B F| = \tau(G)$
 - * ez ellentmondás, F maximális kell legyen
- 15.8. probléma: élszínezés páros gráfokon
 - INPUT: G = (A, B; E) egyszerű páros gráf OUTPUT: G élszínezése $\Delta(G)$ színnel
 - · a probléma általános gráfra NP-nehéz, de páros gráfra polinomiális
 - 15.9. tétel: (Vizing tétele) ha G = (V, E) egyszerű gráf $\Longrightarrow \Delta(G) \le \chi_e(G) \le \Delta(G) + 1$ • nem bizonyítjuk
 - 15.10. tétel: (Kőnig tétele) ha G = (A, B; E) egyszerű páros gráf $\Longrightarrow \chi_e(G) = \Delta(G)$
 - ° bizonyítás: meg fogunk adni egy polinomiális algoritmust a színezésre
 - vegyük a gráf $E = \{e_1, e_2, \dots, e_m\}$ éleit sorban, és színezzük meg őket egy-egy szabad színnel
 - ° legyen $e_i = \{u, v\}, u \in A, v \in b$ a most megszínezendő él
 - $d(u), d(v) \leq \Delta(G)$, és illeszkedik rájuk színezetlen él (e_i)
 - * \Longrightarrow mindkét csúcsnak \exists szabad színe \Longrightarrow ha \exists közös szabad szín, e_i kapja meg azt
 - tfh. az u szabad színe a piros, de a v-é a $k\acute{e}k$
 - \circ legyen P_u az u-ból induló, felváltva kék-piros út (kör nem lehet)
 - ° ekkor $v \notin P_u$, mert akkor a végpontja lenne (v-ben a kék szabad)
 - * de $u \in A, v \in B \Longrightarrow P_u$ páratlan hosszú $\Longrightarrow P_u$ utolsó éle kék
 - $^{\circ}$ cseréljük fel P_{u} mentén a piros és a kék színeket
 - * ez a meglevő színezést nem ronthatja el
 - * u-ban most már a kék szabad, v-ben maradt szabad $\Longrightarrow e_i$ színezhető kékre
- 15.11. definíció: egy maximalizálási (minimalizálási) problémát egy algoritmus C additív hibától eltekintve helyesen old meg, ha $\forall I: c(x^*) \geq \max_{x \in X_i} c(x) C$ $(c(x^*) \leq \min_{x \in X_i} c(x) + C)$
- **15.12. definíció:** egy algoritmus C additív hibával közelítő algoritmus, ha adott optimalizálási problémát polinom időben, C additív hibától eltekintve helyesen old meg
- 15.13. probléma: egyszerű gráfok élszínezése
 - INPUT: G = (V; E) egyszerű gráf OUTPUT: G minimális élszínezése
 - Vizing tétele (15.9. tétel) szerint $\chi_e(G) \leq \Delta(G) + 1$
 - \circ a tétel bizonyítása konstruktív, ad egy $\Delta(G)+1$ polinom időben
 - ° így a tételben szereplő algoritmus 1 additív hibával közelítő
- 15.14. probléma: síkgráfok csúcsszínezése
 - INPUT: G = (V; E) síkgráf OUTPUT: G minimális csúcsszínezése
 - 15.15. tétel: (négyszíntétel) minden síkgráf színezhető 4 színnel, nem bizonyítjuk
 - ° létezik algoritmikus bizonyítás, ami polinomidőben előállít egy 4-színezést
 - ° ez egy 2 additív hibával közelítő algoritmus
 - · ha a 4-színező algoritmus előtt ellenőrizzük, hogy G páros-e \Longrightarrow 2-színezhető
 - ° ez szélességi kereséssel polinomidőben megtehető

16. A Hamilton-kör probléma visszavezetése a leghosszabb kör probléma additív közelítésére. k-approximációs algoritmus fogalma, példák: két-két algoritmus a minimális lefogó ponthalmaz keresésére és a maximális páros részgráf keresésére. Minimális levelű, illetve maximális belső csúcsú feszítőfa keresése. Approximációs algoritmus az utóbbi feladatra (biz. nélkül).

- **16.1. probléma:** leghosszabb kör (LHK)
 - INPUT: G = (V, E) gráf OUTPUT: G egy leghosszabb köre
 - * 16.2. tétel: ha P \neq NP \Longrightarrow LHK-re nincs C additív hibával közelítő algoritmus
 - \circ bizonyítás: megmutatjuk, hogy HAM \prec LHK C-additív közelítése
 - $^{\circ}$ indir. tfh. \exists C-additivhibájú közelítés LHK-ra
 - $\circ G' :=$ osszuk fel a G gráf \forall élét C új ponttal \Longrightarrow egy él helyett C+1 új él
 - $\circ G' k(C+1)$ hosszú köreiG k hosszú köreinek felelnek meg
 - ° G'-ben van n(C+1) hosszú kör \iff G-ben van n hosszú kör \iff G hamiltoni
 - o G hamiltoni \Longrightarrow a közelítő algoritmus $\geq n(C+1)-C$ hosszú x^* kört talál G'-ben
 - * de G' köreinek hossza osztható (C+1)-gyel $\Longrightarrow x^*$ csak a Hamilton-kör lehet
- 16.3. definíció: egy maximalizálás (minimalizálási) problémát egy algoritmus k multiplikatív hibától eltekintve helyesen old meg, ha $\forall I: c(x^*) \geq \frac{1}{k} \max_{x \in X_I} c(x)$ $(c(x^*) \leq k \min_{x \in X_I} c(x))$
- **16.4. definíció:** egy algoritmus k-approximációs algoritmus, ha polinomiális és k multiplikatív hibától eltekintve helyesen oldja meg az adott problémát
- **16.5. probléma:** minimális lefogó ponthalmaz (MLP)
 - INPUT: G = (V, E) OUTPUT: egy X minimális lefogó ponthalmaz G-ben
 - MLP NP-nehéz, mert a maximális független halmaz (MFP) is az, és MFP \prec MFP
 - $^{\circ}$ X minimális független ponthalmaz $\iff V-X$ maximális lefogó ponthalmaz
 - \circ az MFP nem k-approximálható ($nem\ bizonyitjuk$)
 - 16.6. algoritmus: 2-közelítő algoritmus maximális párosítással
 - \circ 1. lépés: keressük meg G egy M maximális párosítását
 - * páros gráfban: magyar modszer, általános gráfban: Edmonds algoritmusa
 - ° 2. lépés $X \coloneqq \text{az } M$ -beli élek végpontjai
 - ° **16.7. tétel:** az így meghatározott X-re $|X| \leq 2\tau(G)$
 - * bizonyítás: egy lefogó ponthalmaz $M \ \forall$ élét le kell fogja $\Longrightarrow |M| = \nu(G) \le \tau(G)$
 - * $|F| = 2|M| = 2\nu(G) \le 2\tau(G)$
 - 16.8. algoritmus: 2-közelítő algoritmus tovább nem bővíthető párosítással
 - ° 0. lépés: $M := \emptyset$
 - ° 1. lépés: ha van olyan $e \in E$, hogy $M \cup \{e\}$ párosítás $\Longrightarrow M \leftarrow M \cup \{e\}$, GOTO 1.
 - * egyébként Megy tovább nem bővíthető párosítás
 - \circ 2. lépés: $X \coloneqq az M$ -beli élek végpontjai
 - ° 16.9. tétel: az így meghatározott X-re $|X| \leq 2\tau(G)$
 - * bizonyítás: a 16.7. tételben nem használtuk ki, hogy M maximális
 - * így továbbra is $|F| = 2|M| \le 2\nu(G) \le 2\tau(G)$
 - éles példa: m darab diszjunkt 1 hosszú út
 - \circ optimális megoldás: mindegyik élnek csak az egyik végét vesszük bele $\Longrightarrow m$ csúcs
 - ° közelítő megoldás: mindegyik él mindkét vége $\Longrightarrow 2m$ csúcs
- 16.10. probléma: maximális páros részgráf (MPR) \Longrightarrow NP-nehéz (nem bizonyítjuk)
 - Input: G = (V, E) gráf
 - $A,B:A\cup B=G,A\cap B=\emptyset,$ az Aés Bközött menő élek száma maximális
 - 16.11. algoritmus: 2-approximációs algoritmus 1.
 - \circ 1. lépés: osszuk ketté a csúcshalmazat A-ra és B-re tetszőlegesen
 - $\circ d_s(v) \coloneqq v$ -ből a saját csoportjába menő élek száma
 - $^{\circ}\ d_m(v)\coloneqq v$ -ből a másik csoportba menő élek száma

- ° 2. lépés: keressünk egy olyan v csúcsot, amire $d_s(v) > d_m(v)$
 - * ha van ilyen v, helyezzük át a másik csoportba; GOTO 2.
- \circ 3. lépés: (A, B) egy 2-approximáció az MPR problémára
- \circ 16.12. tétel: az így meghatározott (A,B) valóban 2-approximáció
 - * bizonyítás: \forall lépésben az A és B között haladó élek száma nő $\Longrightarrow \leq |E|$ lépés
 - * $\forall v \in V: d_m(v) \geq d_s(v) \Longrightarrow \frac{1}{2} \sum_{v \in V} d_m(v) \geq \frac{1}{2} \sum_{v \in V} d_s(v)$ * $\frac{1}{2} \sum_{v \in V} d_m(v)$ az A és B között menő élek száma

 - $\frac{1}{2} \sum_{v \in V} d_m(v) = \frac{1}{4} \sum_{v \in V} d_m(v) + d_m(v) \ge \frac{1}{4} \sum_{v \in V} d_m(v) + d_s(v) = \frac{1}{2} |E| \ge \frac{1}{2} |E_{\text{max}}|,$ ahol $E_{\max}\subseteq E$ a maximális páros részgráf éleinek halmaza
- 16.13. algoritmus: 2-approximációs algoritmus 2.
 - ° 1. lépés $A := \emptyset$, $B := \emptyset$
 - \circ 2. lépés G pontjait valamilyen sorrendben véve helyezzük el azoka a halmazokba, ahol kevesebb szomszédjuk van
 - \circ 16.14. tétel: az így meghatározott (A,B) valóban 2-approximáció
 - * továbbra is igaz az, hogy $\forall v \in V : d_m(v) \ge d_s(v) \Longrightarrow$ lásd a 16.12. tételt
 - ° jobb közelítéshez (ha szerencsénk van) még futtathatjuk a 16.11. algoritmust
- **16.15. probléma:** minimális levelű feszítőfa (MLF)
 - Input: G = (V, E) összefüggő gráf
 - OUTPUT: F minimális számú 1 fokú csúcsot tartalmazó feszítőfa G-ben
 - 16.16. tétel: MLF NP-nehéz
 - ° bizonyítás: HAMÚT ≺ MLF
 - * a Hamilton-út 2 levelű feszítőfa, ennél kevesebb levelű pedig nem létezhet
 - MLF-re nem létezik k-approximációs algoritmus (nem bizonyítjuk)
- 16.17. probléma: maximális belső csúcsú feszítőfa (MBF)
 - Input: G = (V, E) összefüggő gráf
 - Output: F maximális számú $nem\ 1$ fokú csúcsot tartalmazó feszítőfa G-ben
 - MBF ekvivalens MLF-fel, ezért szintén NP-nehéz, de már k-approximálható
 - 16.18. algoritmus: 2-appriximációs algorimus MBF-re
 - ° ILST = Independent Leaves Spanning Tree
 - \circ 0. lépés: legyen F egy tetszőleges feszítőfa G-ben
 - \circ 1. lépés: ha F Hamilton-út, vagy a levelei független halmazt alkotnak \Longrightarrow STOP
 - \circ 2. lépés: legyen a és b F két levele, ahol $\{a,b\} \in E$ (szomszédosak G-ben)
 - * keressük meg a $P = a \leadsto b$ (egyértelmű) utat F-ben
 - * F nem Hamilton-út \Longrightarrow P-nek van F-ben ≥ 3 . fokú csúcsa \Longrightarrow az egyik legyen v
 - ° 3. lépés: legyen $w : \{v, w\} \in B, F \leftarrow F \{\{v, w\}\} \cup \{\{a, b\}\}, \text{ GOTO 1}.$
 - * az így kapott F továbbra is feszítőfa, a levelek száma csökkent
 - 16.19. tétel: a fenti algoritmus polinomiális, F egy 2-approximáció MBF-re
 - * nem bizonyítjuk
 - 16.20. algoritmus: 2-appriximációs algorimus MBF-re mélységi kereséssel
 - \circ 1. lépés: legyen F a G mélységi feszítőfája $r \in E$ -ből indítva
 - \circ 2. lépés: ha F Hamilton-út, vagy $d(r) > 1 \Longrightarrow STOP$
 - * ha d(r) = 1, de r nem szomszédos F másik levelével \implies STOP
 - \circ 3. lépés: legyen a olyan levele F-nek, mellyel r szomszédos
 - * keressük meg a $P = r \rightsquigarrow a$ utat F-ben (egyértelmű)
 - * v az a-hoz legközelebbi ≥ 3 . fokú csúcs P-ben
 - * w a v-vel szomszédos csúcs a $v \rightsquigarrow a$ úton P-ben (lehet, hogy w = a)
 - \circ 4. lépés: $F \leftarrow F \{\{v, w\}\} \cup \{\{r, a\}\}\}$
 - ° 16.21. tétel: a fenti algoritmus O(|E|) idejű, F egy 2-approximáció MBF-re
 - * nem bizonyítjuk

17. A minimális lefogó ponthalmaz probléma visszavezetése a halmazfedési feladatra, a halmazfedési feladat közelítése, éles példa. Közelítő algoritmus a Steiner-fa problémára, éles példa.

- 17.1. probléma: súlyozott halmazfedés (SHF)
 - INPUT: n elemű U alaphalmaz, $\mathcal{R} \subseteq 2^U : \bigcup_{S \in \mathcal{R}} S = U, c : \mathcal{R} \to \mathbb{Q}^+$ költségfüggvény
 - OUTPUT: $\mathcal{R}' \subseteq \mathcal{R}$, ahol $\bigcup_{S \in \mathcal{R}'} S = U$ és $\sum_{S \in \mathcal{R}'} c(S)$ minimális
 - 17.2. tétel: a súlyozott halmazfedés probléma NP-nehéz
 - ° bizonyítás: megmutatjuk, hogy MLP ≺ SHF
 - \circ keressük a G = (V, E) gráf minimális lefogó ponthalmazát
 - $\circ U := E, \mathcal{R} := \{E_v = \{e : u \in V, e = \{v, u\} \in E\} : v \in V\}, c(E_v) := 1$
 - $\circ \mathcal{R}'$ minimális fedés $\iff F \subseteq V$ min. lefogó ponthalmaz, ahol $\mathcal{R}' = \{E_v : v \in \mathcal{R}'\}$
 - 17.3. tétel: ha $P \neq NP \Longrightarrow \nexists$ konstants k-faktorú approximáció SHF-re (nem bizonyítjuk)
 - 17.4. algoritmus: Chvátal mohó algoritmusa
 - ° 0. lépés: $\mathcal{R}' \coloneqq \emptyset$, $C \coloneqq \emptyset$ a már lefedett elemek halmaza
 - ° 1. lépés: ha $C = U \Longrightarrow \text{STOP}$, egyébként $S = \arg\min_{S \in \mathcal{R}} \frac{c(S)}{|S-C|}$
 - ° 2. lépés: $\mathcal{R}' \leftarrow \mathcal{R}' \cup \{S\}, C \leftarrow C \cup S, \text{ GOTO 1.}$
 - 17.5. tétel: Chavátal mohó algoritmusa H_k -approximáció, ahol $k = \max_{S \in \mathbb{R}} |S|$
 - $\circ \ln n \le H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \le \ln n + 1$
 - ° bizonyítás: az algoritmus polinomiális
 - ° az x elem p(x) ára az őt elsőkét fedő $S \in \mathcal{R}'$ halmazra jutó $\frac{c(S)}{|S-C|}$ költség

*
$$c(S) = \sum_{x \in S-C} \frac{c(S)}{|S-C|} = \sum_{x \in S-C} p(x) \Longrightarrow c(\mathcal{R}') = \sum_{S \in \mathcal{R}'} c(S) = \sum_{x \in U} p(x)$$
• legyen \mathcal{R}^* egy min. összsúlyú fedés, $S = \{x_1, x_2, \dots, x_r\} \in \mathcal{R}^*$ $(r \le k)$

- - * ált. megsz. tfh. az algoritmus S elemeit $x_r, x_{r-1}, \ldots, x_1$ sorrendben fedte le * amikor x_i -t lefedtük, $x_r, x_{r-1}, \ldots, x_{i-1} \in C \Longrightarrow \frac{c(S)}{|S-C|} \ge \frac{c(S)}{i}$
 - * $\forall x_i \in S$ -t fedő S_i' -re $\frac{c(S_i')}{|S_i'-C|} \le \frac{c(S)}{i} \Longrightarrow \sum_{x_i \in S} p(x_i) \le \sum_{x_i \in S} \frac{c(S)}{i} = H_r c(S)$

*
$$c(\mathcal{R}') = \sum_{x \in U} p(x) \le \sum_{S^* \in \mathcal{R}^*} \sum_{x_i \in S^*} p(x_i) \le \sum_{S^* \in \mathcal{R}^*} H_{|S^*|} c(S^*) \le$$

 $\le \sum_{S^* \in \mathcal{R}^*} H_k c(S^*) = H_k \sum_{S^* \in \mathcal{R}^*} c(S^*) = H_k c(\mathcal{R}^*)$

- éles példa: $U := \{1, 2, ..., n\}, \ \mathcal{R} := \{\{1\}, \{2\}, ..., \{n\}, U\}, \ c(\{i\}) := \frac{1}{i}, \ c(U) := 1 + \epsilon \ (\epsilon > 0)$
 - $\mathcal{R}' = \{ \{n\}, \{n-1\}, \dots, \{1\} \} \text{ ebben a sorrendben}$
 - * a j. halmaz bevétele után $\{n-j\}$ költsége $=\frac{c(\{n-j\})}{1}=\frac{1}{n-1}< U$ költsége $=\frac{c(U)}{n-j}=\frac{1+\epsilon}{n-j}$
 - $\circ \mathcal{R}^* = \{U\}, \ c(\mathcal{R}^*) = 1 + \epsilon, \ \operatorname{de} \ c(\mathcal{R}') = \sum_{i=1}^n \frac{1}{i} = H_n \Longrightarrow \frac{c(\mathcal{R}')}{c(\mathcal{R}^*)} = \frac{H_k}{1+\epsilon} \xrightarrow{\epsilon \to 0} H_n = H_k$
- 17.6. probléma: Steiner-fa
 - INPUT: G = (V, E) egyszerű, összefüggő gráf; $S \subset V$ Steiner-pontok; T = V S terminálok; $c := E \to \mathbb{Q}^*$ költségfűggvény
 - OUTPUT: $F \subseteq G$ a T minden csúcsát tartalmazó Steiner-fa, ahol $\sum_{e \in F} c(e)$ minimális
 - 17.7. tétel: a Steiner-fa probléma NP-nehéz (nem bizonyítjuk)
 - 17.8. probléma: metrikus Steiner-fa
 - \circ Input: mint a Steiner-fa problémánál, de G teljes gráf és c teljesíti a háromszögegyenlőtlenséget
 - ° 17.9. algoritmus: 2-approximáció a metrikus Steiner-fa problémára
 - * legyen az $X \subseteq V$ által feszített részgráf G-ben G[X]
 - * (pl. Kruskal algoritmusával) keressük G[T] min. feszítőfáját \Longrightarrow ez a Steiner-fa
 - ° 17.10. lemma: ha c a G teljes gráf metrikus élsúlyozása és $R = x \leadsto y$ élsorozat \Longrightarrow $c(x,y) \le c(R)$
 - * bizonyítás: teljes indukcióval R éleinek r száma szerint
 - * ha r=1, az állítás triviális
 - * legyen $R = ((x, z), R') \Longrightarrow$ az ind. feltevés szerint $c(z, y) \le c(R')$

*
$$c(R) = c(x, z) + c(R') \ge c(x, z) + c(z, y)$$
 $\stackrel{\triangle\text{-egyenlőtlenség}}{\ge} c(x, y)$

- ° 17.11. tétel: F=G[T] min. feszítőfája 2-approximáció a metrikus Steiner-fa problémára
 - * bizonyítás: az eljárás polinomiális, F tényleg Steiner-fa
 - * legyen D az optimális Steiner-fa
 - * $D' \coloneqq \text{duplázzuk meg } D$ éleit $\Longrightarrow D'$ -ben minden fokszám páros
 - * D' euleri \Longrightarrow legyen D' Euler-körsétája $U=(u_0,f_1,u_1,f_2,u_2,\ldots,f_m,u_m=u_0)$
 - * legyenek $u_{i_1}, u_{i_2}, \dots, u_{i_{|R|}}$ G[T]csúcsai az Uszerinti sorrendben
 - * ekkor $H = ((u_{i_1}, u_{i_2}), (u_{i_2}, u_{i_3}), \dots, (u_{i_{|T|}}, u_{i_1}))$ a G[T] Hamilon-köre ("levágás")
 - * $H' = H \{\text{tetsz\"oleges H-beli \'el}\}$ Hamilton- $\mathring{\text{ut}} \Longrightarrow H'$ egy feszítőfa G[T]-ben * $2c(D) = c(D') \overset{17.10. \text{ lemma}}{\geq} c(H) \geq c(H') \overset{F \text{ minim\'alis}}{\geq} c(F)$
- 17.12. algoritmus: 2-approximáció a Steiner-fa problémára
 - \circ legyen G' := teljes gráf V(G)-n, c'(x,y) := a legrövidebb $x \leadsto y$ út súlya G-ben
 - * c' metrikus, mert $c'(x,z) = c_{\min}(x \rightsquigarrow z) \le c_{\min}(x \rightsquigarrow y \rightsquigarrow z) = c'(x,y) + c'(y,z)$
 - \circ legyen F' az (G', S, T, c') metrikus Steiner-fa approximációja
 - ° legyen $K = \bigcup_{e = \{x,y\} \in F'} \{ \text{a legrövidebb } x \leadsto y \text{ út élei} \}$
 - $\circ \ F'' =$ egy min. feszítőfa K-ban lesz a Steiner-fa
- 17.13. tétel: F'' 2-aproximáció a Steiner-fa problémára
 - ° bizonyítás: az eljárás polinomiális, és F'' tényleg Steiner-fa, mert K lefedi T-t
 - \circ legyen D az optimális (G', S, T, c') metrikus Steiner-fa, F^* az optimális Steiner-fa
 - \circ F^* Steiner-fa G'-ben $\Longrightarrow c'(D) \leq c'(F^*)$
 - $\circ e = \{x,y\}$ 1 hosszú $x \leadsto y$ út $\Longrightarrow \forall e \in E : c'(e) \le c(e) \Longrightarrow c'(F^*) \le c(F^*)$
 - $c(F'') \le c(K) \le c'(F') \le 2c'(D) \le 2c'(F^*) \le 2c(F^*)$
- éles példa: legyen G = (V, E) teljes gráf, $V \coloneqq \{1, 2, \dots, n\}, S = \{1\}, c(\{i, j\}) = \begin{cases} 1, & \text{ha } i = 1, \\ 2, & \text{ha } i, j \neq 1 \end{cases}$
 - ° ez metrikus \Longrightarrow nincs szükség metrizálásra, F'' = F' = G[T] feszítőfája

 - ° c(F'')=2(n-2), de az optimális Steiner-fa $F^*=1$ középpontú csillag, $c(F^*)=n-1$ ° $\frac{c(F'')}{c(F^*)}=\frac{2(n-2)}{n-1}\xrightarrow{n\to\infty}2\Longrightarrow \forall k<2$ approximációs faktorra \exists ellenpélda elég nagy n-nel
- 18. A Hamilton-kör probléma visszavezetése az általános utazóügynök probléma k-approximációs megoldására. Közelítő algoritmusok a metrikus utazóügynök problémára, Christofides algoritmusa.
- 19. Teljesen polinomiális approximációs séma fogalma. A részösszeg probléma, bonyolultsága. Teljesen polinomiális approximációs séma a részösszeg problémára.
- **20.** Ütemezési feladatok típusai. Az 1|prec| C_{max} és az 1|| ΣC_i feladat. Approximációs algoritmusok a $P \| C_{\text{max}}$ feladatra: listás ütemezés tetszőleges sorrendben, éles példa tetszőleges számú gép esetére; listás ütemezés LPT sorrendben (biz. nélkül), éles példa tetszőleges számú gép esetére. Approximációs algoritmus a $P|\text{prec}|C_{\text{max}}$ feladatra (biz. nélkül), példák: az LPT sorrend, illetve a leghosszabb út szerinti ütemezés sem jobb, mint $(2-\frac{m}{1})$ -approximáció. A $P|\text{prec}, p_i = 1|C_{\text{max}}$ feladat, Hu algoritmusa (biz. nélkül).

Megbízható hálózatok tervezése

21. Globális és lokális élösszefüggőség és élösszefüggőségi szám fogalma, Menger irányítatlan gráfokra és élősszefüggőségre vonatkozó két tétele (biz. nélkül). $\lambda(G)$ meghatározása folyamok segítségével négyzetes és lineáris számú folyamkereséssel.

- **22.** $\lambda(G)$ meghatározása összehúzások segítségével, Mader tétele, Nagamochi és Ibaraki algoritmusa.
- **23.** Minimális méretű 2-élösszefüggő részgráfok keresése. A probléma NP-nehézsége, Khuller–Vishkin algoritmus (biz. nélkül).

Hálózatelméleti alkalmazások

- 24. Kirchhoff tételei a klasszikus villamos hálózatok analízisére.
- 25. Kirchhoff eredményeinek általánosítása transzformátorokat vagy girátorokat is tartalmazó hálózatokra (biz. nélkül). Algoritmusok a feltételek ellenőrzésére.
- **26.** Kirchhoff eredményeinek általánosítása: szükséges feltétel tetszőleges lineáris sok-kapukat is tartalmazó hálózatok egyértelmű megoldhatóságára. Villamos hálózatok duálisa.

Statikai alkalmazások

- **27.** Rúdszerkezetek, merevségi mátrix, merevség, egyszerű rácsos tartók, Cremona Maxwell diagramok.
- **28.** Minimális merev rúdszerkezetek általános helyzetben, Laman tétele (biz. nélkül), Lovász és Yemini tétele.
- 29. Síkbeli négyzetrácsok és egyszintes épületek átlós merevítése.