Unit 11: Particle physics:

Subunit 11.1: Atoms, nuclei and radiation:

Topical Question No: 1

28 The electric field strength at a certain distance from an isolated alpha particle is $3.0 \times 10^7 \, \text{N C}^{-1}$.

What is the force on an electron when at that distance from the alpha particle?

- **A** $4.8 \times 10^{-12} \, \text{N}$
- **B** $9.6 \times 10^{-12} \, \text{N}$
- $\pmb{C} = 3.0 \times 10^7 \, N$
- **D** $6.0 \times 10^7 \,\text{N}$

Topical Question No: 2

38 A sample of an isotope emits β^- particles.

The emitted β^- particles have a range of energies.

What must also be emitted?

- **A** antineutrinos
- **B** neutrinos
- **C** antineutrons
- **D** neutrons

Topical Question No: 3

39 A nucleus of magnesium decays into a nucleus of sodium by emitting a β^+ particle. The decay is represented by the equation shown.

$$^{23}_{12}\text{Mg}$$
 \rightarrow $^{P}_{Q}\text{Na}$ + $^{0}_{+1}\beta$

What are the values of P and Q?

	Р	Q
Α	22	11
В	22	13
С	23	11
D	23	13

40 Thorium-234 $\binom{234}{90}$ Th) decays by β^- emission into a daughter product which in turn decays by a further β^- emission into a granddaughter product.

Which letter in the diagram represents the granddaughter product?

Topical Question No: 5

38 Which row describes the relative ionizing power and the relative penetration power per unit length in air of α -particles and γ -rays?

	lpha-particles	γ-rays
Α	least ionizing	least penetrating
В	least penetrating	most ionizing
С	most ionizing	most penetrating
D	most penetrating	least ionizing

Topical Question No: 6

39 A nucleus of sodium-21, ²¹₁₁Na, decays to form a new nucleus containing 10 protons and 11 neutrons.

Which leptons are emitted from the sodium-21 nucleus during the decay?

- A a positron and an antineutrino
- B a positron and a neutrino
- C an electron and an antineutrino
- **D** an electron and a neutrino

39 A nucleus of neptunium-236 contains 93 protons and 143 neutrons. This nucleus decays with the emission of an α -particle. The nucleus formed then emits a β^- particle.

Which diagram shows the changes in the number P of protons and the number N of neutrons in these nuclei?

Topical Question No: 8

39 A neutron 1_0 n is fired at a $^{235}_{92}$ U nucleus. The neutron is absorbed by the nucleus which then splits to form nuclei of $^{141}_{56}$ Ba and $^{92}_{36}$ Kr.

What is the number of neutrons emitted when the $^{235}_{92}U$ nucleus splits?

- **A** 0
- В
- **C** 2
- **D** 3

Topical Question No: 9

- **40** Which word equation represents β^+ decay?
 - **A** proton → neutron + electron + electron antineutrino
 - **B** proton → neutron + electron + electron neutrino
 - **C** proton → neutron + positron + electron antineutrino
 - **D** proton → neutron + positron + electron neutrino

38 Two alpha-particles with the same kinetic energy are moving towards, and are then deflected by, a gold nucleus.

Which diagram could show the paths of the two alpha-particles?

Topical Question No: 11

39 The equation represents the decay of a nucleus X to a nucleus Y.

$$_{z}^{A}X \rightarrow _{z-1}^{A}Y + p + q$$

What are particles p and q?

	р	q
Α	β ⁻ particle	neutron
В	β ⁻ particle	proton
С	β ⁺ particle	antineutrino
D	β⁺ particle	neutrino

39 The figure shows part of a chart of nuclides where neutron number is plotted against proton number.

An unstable nuclide X decays by emitting an α -particle.

Which nuclide is formed by the decay of nuclide X?

Topical Question No: 13

36 A radioactive source produces a beam of α -particles in a vacuum. The average current caused by the α -particles in the beam is 1.5×10^{-9} A.

The beam is incident on a metal target.

What is the average number of α -particles hitting the metal target in a time of 3.0 s?

- **A** 4.7×10^9
- **B** 9.4×10^9
- **C** 1.4×10^{10}
- **D** 2.8×10^{10}

Topical Question No: 14

39 An unstable nucleus of an element decays by emitting an α -particle or a β ⁻ particle to become a nucleus of a different element. This nucleus is also unstable and emits an α -particle or a β ⁻ particle. The process continues until an isotope of the original element is produced.

What is the minimum possible number of these particles emitted?

- **A** 2
- **B** 3
- **C** 4
- **D** 5

37 The grid shows a number of nuclides arranged according to the number of protons and the number of neutrons in each.

A nucleus of the nuclide ${}_{3}^{8}$ Li decays by emitting a β -particle.

What is the resulting nuclide?

Space for working

Topical Question No: 16

38 The following represents a sequence of radioactive decays involving two α -particles and one β -particle.

²¹⁷₈₅At
$$\xrightarrow{\alpha}$$
 $V \xrightarrow{\alpha}$ $W \xrightarrow{\beta}$ X

What is the nuclide X?

B
$$^{215}_{77}$$
I

Topical Question No: 17

39 What are the correct descriptions of a γ -ray and a β -particle?

	γ-ray	β-particle
Α	high-speed electron	electromagnetic radiation
В	electromagnetic radiation	helium-4 nucleus
С	electromagnetic radiation	high-speed electron
D	high-speed electron	helium-4 nucleus

- **40** What is **not** conserved in nuclear processes?
 - A charge
 - momentum В
 - the total number of neutrons
 - the total number of nucleons

Space for working

Topical Question No: 19

39 The following represents a sequence of radioactive decays involving two α -particles and one β-particle.

²¹⁷₈₅At
$$\xrightarrow{\alpha}$$
 $V \xrightarrow{\alpha}$ $W \xrightarrow{\beta}$ X

What is the nuclide X?

- **A** $^{213}_{85}$ At

- **B** $^{215}_{77}$ Ir **C** $^{209}_{82}$ Pb **D** $^{217}_{81}$ Tl

Topical Question No: 20

40 The grid shows a number of nuclides arranged according to the number of protons and the number of neutrons in each.

A nucleus of the nuclide ^8_3Li decays by emitting a β -particle.

What is the resulting nuclide?

Space for working

39 Uranium-238, $^{238}_{92}$ U, decays by α -emission into a daughter product which in turn decays by β -emission into a grand-daughter product.

What is the grand-daughter product?

A 234 Th

B 234 Pa

C 234 L

D $^{230}_{90}$ Th

Topical Question No: 22

40 Which equation represents β^+ decay?

A neutron → proton + positron + antineutrino

B neutron → proton + positron + neutrino

C proton → neutron + positron + antineutrino

D proton → neutron + positron + neutrino

Topical Question No: 23

39 A nucleus of a radioactive element emits an α -particle, then a β ⁻ particle and then another β ⁻ particle.

Which statement describes the final element that is produced?

A It is a different element of higher proton number than the original element.

B It is a different element of lower nucleon number than the original element.

C It is an isotope of the original element.

D It is the same element as the original element but with a different proton number.

38 A class of students used dice to simulate radioactive decay. After each throw, those dice showing a '6' were removed. The graph shows the results.

What could the scatter of points about the best-fit curve represent for actual radioactive decay?

- A background count not being taken into account
- B more than one type of radiation being present
- **C** the random nature of radioactive decay
- **D** the spontaneous nature of radioactive decay

Space for working

Topical Question No: 25

40 In a radioactive decay series, three successive decays each result in a particle being emitted.

The first decay results in the emission of a β -particle. The second decay results in the emission of an α -particle. The third decay results in the emission of another β -particle.

Nuclides P and S are compared.

Which statement is correct?

- A P and S are identical in all respects.
- **B** P and S are isotopes of the same element.
- **C** S is a different element of lower atomic number.
- **D** S is a different element of reduced mass.

Space for working

39 A nuclear reaction is shown.

$$^{238}_{92}$$
U + $^{4}_{2}$ He $\rightarrow ^{241}_{94}$ Pu + X

What is product X?

- A an alpha particle
- **B** an electron
- **C** a neutron
- **D** a proton

Space for working

Topical Question No: 27

40 An unstable nucleus decays and emits a β^- particle.

Which changes, if any, occur to the quark composition of the nucleus?

	quark changes	
	up quarks	down quarks
Α	+1	0
В	+1	–1
С	–1	+1
D	0	+1

Topical Question No: 28

39 A nucleus of $^{238}_{92}$ U decays in stages by emitting α -particles and β^- particles, eventually forming a nucleus of $^{206}_{82}$ Pb.

How many α -particles and how many β^- particles are emitted during the decay chain?

	α-particles	β ⁻ particles
Α	8	6
В	8	10
С	16	6
D	16	22

- 38 What is the rest mass of a beta-particle?
 - **A** 0
 - **B** $9.11 \times 10^{-31} \, \text{kg}$
 - **C** $1.66 \times 10^{-27} \, \text{kg}$
 - **D** $1.67 \times 10^{-27} \, \text{kg}$

Topical Question No: 30

40 A magnesium nucleus $^{23}_{12}$ Mg decays by emitting two particles.

The resulting nucleus is sodium $^{23}_{11}\mathrm{Na}.$

Which two particles are emitted?

- **A** α -particle, antineutrino
- **B** β^+ particle, antineutrino
- \mathbf{C} β^- particle, neutrino
- **D** β^+ particle, neutrino

Answer Key

- 1. N/A
- 2. N/A
- 3. N/A
- 4. N/A
- 5. N/A
- 6. N/A
- 7. N/A
- 8. N/A
- 9. N/A
- 10. D
- 11. D
- 12. B
- 13. C
- 14. B
- 15. N/A
- 16. N/A
- 17. N/A
- 18. N/A
- 19. N/A
- 20. N/A
- 21. N/A
- 22. N/A
- 23. C
- 24. N/A
- 25. N/A
- 26. N/A
- 27. N/A