[Directory Structure for the Experiment]

experiment: directory for storing experiment result

models: directory for pre-trained clean and transform models in npy format

samples: directory for benign samples, AEs and labels in npy format

config.py

transformation.py

util.py

run.py

[How to run]

To conduct the evaluation, simply run, "python run.py" inside the above directory. The default value of k-fold (for cross-validation) is 5. Modify the variable "kFold" in run.py to meet your requirement.

[Result Directory]

A directory (resultDir) named by a **timestamp** is created under 'experiment' directory. Inside resultDir, there are **prediction_result** and directories with names, **1**, **2**, ..., and **k** (k=kFold).

prediction_result: directory for prediction result of each sample type by each model. For each sample type, a directory is created. Inside the sample-type named directory, probability prediction is stored in **predProb.npy** while logit prediction is stored in **predLogit.npy**.

prediction result:

BS : benign samples

fgsm_eps10 : AE generated by FGSM with eps = 0.010

.....

labels.npy : expected labels form all sample types

predTCs.npy : time cost for each sample by each model in each fold

it is a (numOfSampleTypes, kFold, numOfModels, 3) array

The last dimension has 3 elements representing 3 time costs.

Index 0 – transformation

Index 1 – probability prediction

Index 2 – logit prediction

kFoldImgIndices.npy: to avoid running prediction for each fold, we stack up the prediction result of testing samples of each fold. The corresponding training samples are the complement set of testing samples in the prediction result. Thus, the prediction cost for evaluation is reduced to the cost of only predicting the dataset one time. To ensure each classes of images will evenly spread in each fold, the initial dataset is randomized first and then split into k folds. The mapping of original image ID and the image ID in randomized dataset is stored in **kFoldImgIndices.npy**.

n (1, 2, ..., k): experiment result for fold n.

For each AE type, a directory is created with the name of the AE to hold the its result. For example, fgsm_eps5.

	Training : Clustering-and-Voting based defenses	
1	msv.npy	Model-vs-sample matrix:
2	msv.txt	(numOfTrans, numOfAEs)
3	KMeans_result	Directory for storing clustering results. For
		example, C3.txt stores the clustering
		result of 3 clusters.
4	upper_bound_accuracy.npy	(maxNumOfClusters)
5	ensemble models clustering based defenses.npy	(numOfCVDefenses, 2)
	5	2: idx 0 - # of clusters, idx 1 - accuracy
	Testing	
6	AE_testResults_ClusteringAndVote.npy	(numOfCVDefenses, 2)
		2: idx 0- accuracy, idx 1 – time cost (s)
7	AE_testVotes_ClusteringAndVote.npy	(numOfCVDefenses, numOfSamples, 2)
		2: idx 0 – label, idx 1 - confidence
8	BS_testResults_ClusteringAndVote.npy	Similar as item 6 and item 7.
9	BS_testVotes_ClusteringAndVote.npy	BS: benign sample
	Training: weighted-confidence based defenses	
1	accuracy_each_single_model_train.npy	Accuracy of each model under attack
2	accuracy_each_single_model_train.txt	using AEs. (numOfModels)
3	classCount_train.npy	Counts of samples in each class.
		(numOfClasses)
4	expertiseMat.npy	A matrix where the value at the index (m,
5	expertiseMat.txt	n) indicates ability of model m recovering
		samples in class n.
		(numOfTrans, numOfClasses)
6	train_all_accuracies_1s_SM.npy	Accuracy of each ensemble model that is
7	train_all_accuracies_EM_MMV.npy	built upon a list of top k transform
8	train_all_accuracies_EM_SM.npy	models. k is in [1, numOfTrans]
9	train_best_accuracy_1s_SM.npy	0 – best accuracy
10	train_best_accuracy_EM_MMV.npy	1 – the value of k
11	train_best_accuracy_EM_SM.npy	
12	train_topK_expertise_mattrix_1s_SM.npy	
13	train_topK_expertise_mattrix_EM_MMV.npy	

14	train_topK_expertise_mattrix_EM_SM.npy	Expertise matrix that corresponds to the
		top k models that make the best
		ensemble model
15	train_topK_model_IDs_1s_SM.npy	IDs of top k models that make the best
16	train_topK_model_IDs_EM_MMV.npy	ensemble model
17	train_topK_model_IDs_EM_SM.npy	
18	LG_train_all_accuracies_1s_SM.npy	Training results when using logit instead
19	LG_train_all_accuracies_EM_MMV.npy	of probability.
20	LG_train_all_accuracies_EM_SM.npy	
21	LG_train_best_accuracy_1s_SM.npy	Similar to item 6 to item 17.
22	LG_train_best_accuracy_EM_MMV.npy	
23	LG_train_best_accuracy_EM_SM.npy	LG: logit
24	LG_train_topK_expertise_mattrix_1s_SM.npy	
25	LG_train_topK_expertise_mattrix_EM_MMV.npy	
26	LG_train_topK_expertise_mattrix_EM_SM.npy	
27	LG_train_topK_model_IDs_1s_SM.npy	
28	LG_train_topK_model_IDs_EM_MMV.npy	
29	LG_train_topK_model_IDs_EM_SM.npy	
	Testing	
30	AE_testResults_WeightedConfDefenses.npy	(2, numOfWCDefenses, 2)
		1 st 2: idx 0 – probability, idx 1 - logit
		2 nd 2: idx 0- accuracy , idx 1 – time cost (s)
31	AE_testVotes_WeightedConfDefenses.npy	(2, numOfWCDefenses, numOfSamples)
		label
32	BS_testResults_WeightedConfDefenses.npy	Similar as item 30 and item 31.
33	BS_testVotes_WeightedConfDefenses.npy	BS: benign sample

result_of_post_analysis_result: directory for storing the result of post analysis.

For each **<AEType>**, a subdirectory is created, where, **upper_bound_accuracy_vs_topk_models.pdf** is generated. And the following files are created under **result_of_post_analysis**.

accuracy_clean_model_and_upper_bound.npy
ave_test_AEs_accs_table.txt
ave_test_BSs_accs_table.txt
ave_train_accs_table.txt
std_test_AEs_accs_table.txt
std_test_BSs_accs_table.txt
std_train_accs_table.txt
TestAccsAE_fold_AEType.npy
TestAccsBS_fold_AEType.npy

In each fold directory, the time cost in millium seconds of all defense approaches are reported in one txt file. And the average and std of the time cost across each fold are reported in meanDefenseTimeCostInMS.txt and stdDefenseTimeCostInMS.txt, which are saved under 'resultDir'.