Elements of Higher-Dimensional Automata Theory

Uli Fahrenberg

EPITA Research Laboratory (LRE), Rennes/Paris, France

Dagstuhl 25141, April 2025

- 1 Higher-Dimensional Automata
- 2 Languages of HDAs
- 3 Understanding Ipomsets
- 4 Operational Semantics of HDAs

Reading Material

- Languages of Higher-Dimensional Automata [MSCS 2021]
- Posets with Interfaces as a Model for Concurrency [I&C 2022]
- Kleene Theorem for Higher-Dimensional Automata [LMCS 2024]
- Myhill-Nerode Theorem for Higher-Dimensional Automata [FI 2024]
- Decision and Closure Properties for Higher-Dimensional Automata [TCS 2025]
- Languages of Higher-Dimensional Timed Automata [Petri Nets 2024]
- Presenting Interval Pomsets with Interfaces [RAMiCS 2024]
- Logic and Languages of Higher-Dimensional Automata [DLT 2024]
- Bisimulations and Logics for Higher-Dimensional Automata [ICTAC 2024]
- Petri Nets and Higher-Dimensional Automata [Petri Nets 2025]

Nice People

- Eric Goubault, Paris
- Christian Johansen, Oslo
- Georg Struth, Sheffield
- Krzysztof Ziemiański, Warsaw
- Amazigh Amrane, Hugo Bazille, Emily Clement, Jérémy Dubut, Marie Fortin, Loïc Hélouët, Jérémy Ledent, Philipp Schlehuber-Caissier, Safa Zouari, . . .
- See also https://ulifahrenberg.github.io/pomsetproject/

Higher-Dimensional Automata

A conclist is a finite, totally ordered, Σ -labeled set.

(a list of labeled events)

A precubical set *X* consists of:

A set of cells X

(cubes)

• Every cell $x \in X$ has a conclist ev(x)

- (list of events active in x)
- We write $X[U] = \{x \in X \mid ev(x) = U\}$ for a conclist U

(cells of type U)

- For every conclist U and $A \subseteq U$ there are:
 - upper face map $\delta_A^1: X[U] \to X[U \setminus A]$ lower face map $\delta_A^0: X[U] \to X[U \setminus A]$

(terminating events *A*) ("unstarting" events *A*)

• Precube identities: $\delta^{\mu}_{\mathbf{A}}\delta^{\nu}_{\mathbf{B}} = \delta^{\nu}_{\mathbf{B}}\delta^{\mu}_{\mathbf{A}}$ for $\mathbf{A} \cap \mathbf{B} = \emptyset$ and $\mu, \nu \in \{0, 1\}$

A higher dimensional automaton (HDA) is a precubical set X with initial cells $\bot \subseteq X$ and accepting cells $\top \subseteq X$ (not necessarily vertices)

00000

Higher-Dimensional Automata

Example

Higher-Dimensional Automata ○○●○○○

$$a \parallel (bc)^*$$

no concurrency

Understanding Ipomsets

two out of three

full concurrency

Higher-Dimensional Automata

A conclist is a finite, totally ordered, Σ -labeled set.

(a list of labeled events)

A precubical set *X* consists of:

A set of cells X

- (cubes)
- Every cell $x \in X$ has a conclist ev(x) (list of events active in x)
- We write $X[U] = \{x \in X \mid ev(x) = U\}$ for a conclist U (cells of type U)
- For every conclist U and $A \subseteq U$ there are:

```
upper face map \delta_A^1: X[U] \to X[U \setminus A]
lower face map \delta_A^0: X[U] \to X[U \setminus A]
```

(terminating events *A*) ("unstarting" events *A*)

• Precube identities: $\delta^{\mu}_{\mathbf{A}}\delta^{\nu}_{\mathbf{B}} = \delta^{\nu}_{\mathbf{B}}\delta^{\mu}_{\mathbf{A}}$ for $\mathbf{A} \cap \mathbf{B} = \emptyset$ and $\mu, \nu \in \{0, 1\}$

A higher dimensional automaton (HDA) is a precubical set X with initial cells $\bot \subseteq X$ and accepting cells $\top \subseteq X$ (not necessarily vertices)

Higher-Dimensional Automata & Concurrency Theory

HDAs as a model for concurrency:

- points: states
- edges: transitions
- squares, cubes etc.: independency relations / concurrently executing events
- two-dimensional automata \cong asynchronous transition systems
- Introduced in 1990
- Generalize all main models of concurrency proposed in the literature
- (event structures; Petri nets; communicating automata; etc.)

Languages of HDAs: Examples

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_3 = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \dots \right\}$$

Languages of HDAs: Examples

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_{2} = \left\{ \begin{bmatrix} a \\ b \to c \end{bmatrix}, \begin{bmatrix} a \\ c \to b \end{bmatrix}, \begin{bmatrix} b \\ a \to c \end{bmatrix}, \\ \begin{bmatrix} b \\ c \to a \end{bmatrix}, \begin{bmatrix} c \\ b \to a \end{bmatrix}, \begin{bmatrix} c \\ b \to a \end{bmatrix} \right\} \cup L_{1} \cup \dots$$

$$L_{3} = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} \right\} \cup L_{2}$$
sets of pomsets

Computations of HDAs

An HDA computes by starting and terminating events in sequence:

upstep $x \not\uparrow y$, starting $\begin{bmatrix} a \\ b \end{bmatrix}$:

downstep $x \setminus y$, terminating a:

Higher-Dimensional Automata

$$\big(x_1 \! \uparrow^{\mathsf{a}} x_2 \! \setminus_{\mathsf{a}} x_3 \! \uparrow^{\{b,c,d\}} x_4 \! \setminus_{\{c,d\}} x_5 \! \uparrow^{\mathsf{e}} x_6 \big)$$

Lifetimes of events

Lifetimes of events

Lifetimes of events

Lifetimes of events

Lifetimes of events

Lifetimes of events

Pomsets with Interfaces

Definition

A pomset with interfaces (ipomset): $(P, <, -----, S, T, \lambda)$:

- *P* finite set of events, $\lambda: P \to \Sigma$
- two partial orders < (precedence order), --- (event order)
 - s.t. < ∪ --→ is a total relation:
- $S, T \subseteq P$ source and target interfaces
 - s.t. S is <-minimal and T is <-maximal.

Interval Orders

Definition

An ipomset $(P, <_P, -\rightarrow, S, T, \lambda)$ is interval if $(P, <_P)$ has an interval representation: functions $b, e : P \to \mathbb{R}$ s.t.

- $\forall x \in P : b(x) \leq_{\mathbb{R}} e(x)$;
- $\forall x, y \in P : e(x) <_{\mathbb{R}} b(y) \iff x <_{P} y$

Gluing Composition

- Gluing P * Q: P before Q, except for interfaces (which are identified)
- (also have parallel composition $P \parallel Q$: disjoint union)

Subsumption

Understanding Ipomsets

P refines Q / Q subsumes $P / P \sqsubseteq Q$ iff

- P and Q have same interfaces
- P has more < than Q
- Q has more --→ than P

Languages of HDAs

Definition

The language of an HDA X is the set of event ipomsets of all accepting paths:

$$L(X) = \{ \operatorname{ev}(\pi) \mid \pi \in \operatorname{Paths}(X), \operatorname{src}(\pi) \in \bot_X, \operatorname{tgt}(\pi) \in \top_X \}$$

Understanding Ipomsets

- L(X) contains only interval ipomsets.
- is closed under subsumption,
- and has finite width

Definition

A language $L \subseteq iiPoms$ is regular if there is an HDA X with L = L(X).

Theorems

Definition (Rational Languages over Σ)

- Generated by \emptyset , $\{\epsilon\}$, and all $\{[a]\}$, $\{[\bullet a]\}$, $\{[a \bullet]\}$, $\{[\bullet a \bullet]\}$ for $a \in \Sigma$
- under operations ∪, *, || and (Kleene plus) +
- (these need to take subsumption closure into account)

Definition (Monadic Second-Order Logics over Ipomsets)

$$\psi ::= \mathbf{a}(\mathbf{x}) \mid \mathbf{s}(\mathbf{x}) \mid \mathbf{t}(\mathbf{x}) \mid \mathbf{x} < \mathbf{y} \mid \mathbf{x} \dashrightarrow \mathbf{y} \mid \mathbf{x} \in \mathbf{X} \mid$$
$$\exists \mathbf{x}. \ \psi \mid \forall \mathbf{x}. \ \psi \mid \exists \mathbf{X}. \ \psi \mid \forall \mathbf{X}. \ \psi \mid \psi_1 \land \psi_2 \mid \psi_1 \lor \psi_2 \mid \neg \psi$$

Theorem (à la Kleene): regular ← rational

Theorem (à la Myhill-Nerode): regular \iff finite prefix quotient

Theorem (à la Büchi-Elgot-Trakhtenbrot):

[DLT 2024]

regular \iff MSO-definable, of finite width, and subsumption-closed

- 1 Higher-Dimensional Automata
- 2 Languages of HDAs
- **3** Understanding Ipomsets
- 4 Operational Semantics of HDAs

Special ipomsets

Definition

An ipomset $(P, <, -\rightarrow, S, T, \lambda)$ is

- discrete if < is empty (hence --→ is total)
 - also written $_SP_T$
- a conclist ("concurrency list") if it is discrete and $S = T = \emptyset$
- a starter if it is discrete and T = P
- a terminator if it is discrete and S = P
- an identity if it is both a starter and a terminator

[• a • b• a•]

- a] • b •]
- a • b•
- a]

Lemma (Janicki-Koutny 93; reformulated)

An ipomset is interval iff it has a decomposition into discrete ipomsets.

Decompositions

Lemma (Janicki-Koutny 93)

A poset (P, <) is an interval order iff the order defined on its maximal antichains defined by $A \prec B \iff \forall a \in A, b \in B : b \not< a$ is total.

Corollary

An ipomset is interval iff it has a decomposition into discrete ipomsets.

Lemma

Any discrete ipomset is a gluing of a starter and a terminator. $\begin{bmatrix} \bullet a \\ \bullet b \bullet \\ \bullet \bullet \end{bmatrix} = \begin{bmatrix} \bullet a \bullet \\ \bullet b \bullet \\ \bullet b \bullet \end{bmatrix} * \begin{bmatrix} \bullet a \\ \bullet b \bullet \\ \bullet b \bullet \end{bmatrix}$

$$\begin{bmatrix} a \\ b \bullet \\ a \bullet \end{bmatrix} = \begin{bmatrix} \bullet a \bullet \\ \bullet b \bullet \\ a \bullet \end{bmatrix} * \begin{bmatrix} \bullet a \\ \bullet b \bullet \\ \bullet a \bullet \end{bmatrix}$$

Corollary

Any interval ipomset has a decomposition as a sequence of starters and terminators.

$$\begin{bmatrix} a & b \\ c & a \end{bmatrix} = \begin{bmatrix} a \cdot \\ c \end{bmatrix} * \begin{bmatrix} \cdot a \\ a \cdot \end{bmatrix} * \begin{bmatrix} b \\ \cdot a \end{bmatrix} = \begin{bmatrix} a \cdot \\ c \cdot \end{bmatrix} * \begin{bmatrix} \cdot a \cdot \\ \cdot c \end{bmatrix} * \begin{bmatrix} \cdot a \cdot \\ a \cdot \end{bmatrix} * \begin{bmatrix} \cdot a \cdot \\ \cdot a \cdot \end{bmatrix} * \begin{bmatrix} b \cdot \\ \cdot a \cdot \end{bmatrix} *$$

Unique decompositions

Notation: St: set of starters $_SU_U$

Te: set of terminators $_{U}U_{T}$

 $Id = St \cap Te$: set of identities $_UU_U$

 $\Omega = \mathsf{St} \cup \mathsf{Te}$

Definition

A word $w = (S_1, U_1, T_1) \dots (S_n, U_n, T_n) \in \Omega^+$ is coherent if $T_i = S_{i+1}$ for all i.

Definition

A coherent word is sparse if proper starters and proper terminators are alternating.

• additionally, all $w \in \operatorname{Id} \subseteq \Omega^+$ are sparse

Lemma

Any interval ipomset P has a unique decomposition $P = P_1 * \cdots * P_n$ such that $P_1 \dots P_n \in \Omega^+$ is sparse.

Step sequences

Let \sim be the congruence on Ω^+ generated by the relation

$$_SU_U \cdot _UT_T \sim _ST_T$$
 $_SS_U \cdot _UU_T \sim _SS_T$

Understanding Ipomsets

compose subsequent starters and subsequent terminators

Definition

A step sequence is a \sim -equivalence class of coherent words in Ω^+ .

Lemma

Any step sequence has a unique sparse representant.

Theorem

The category of interval ipomsets is isomorphic to the category of step sequences.

Categories?

Definition (Category iiPoms)

objects: conclists U (discrete ipomsets without interfaces)

morphisms in iiPoms(U, V): interval ipomsets P with sources Uand targets V

composition: gluing identities $id_{IJ} = {}_{IJ}U_{IJ}$

Definition (Category SSeq)

Understanding Ipomsets

00000

objects: conclists *U* (discrete ipomsets without interfaces)

morphisms in SSeq(U, V): step sequences $[(S_1, U_1, T_1) \dots (S_n, U_n, T_n)]$ with $S_1 = U$ and $T_n = V$

composition: concatenation identities $id_{IJ} = I_I U_{IJ}$

- SSeq is category generated from (directed multi)graph Ω under relations \sim
- isomorphisms Φ : iiPoms \leftrightarrow SSeg : Ψ provided by
 - $\Phi(P) = [w]_{\sim}$, where w is any step decomposition of P;
 - $\Psi([P_1 \dots P_n]_{\sim}) = P_1 * \dots * P_n$

- 1 Higher-Dimensional Automata
- 2 Languages of HDAs
- 3 Understanding Ipomsets
- 4 Operational Semantics of HDAs

Higher-Dimensional Automata

ST-automata

Understanding Ipomsets

• The operational semantics of an HDA (X, \bot, \top, Σ) is the "ST-automaton" with states X, alphabet Ω , state labeling ev : $X \to \square$, and transitions

$$E = \{\delta_A^0(\ell) \stackrel{A \uparrow \text{ev}(\ell)}{\longrightarrow} \ell \mid A \subseteq \text{ev}(\ell)\} \cup \{\ell \stackrel{\text{ev}(\ell) \downarrow_A}{\longrightarrow} \delta_A^1(\ell) \mid A \subseteq \text{ev}(\ell)\}.$$

An automaton on graph alphabet Ω

Understanding Ipomsets

Properties

- alphabet Σ
- St: set of starters $_SU_U$ on Σ ; Te: set of terminators $_UU_T$ on Σ ; $\Omega = \mathrm{St} \cup \mathrm{Te}$
- (equivalently: St and Te are marked inclusions $\Sigma^* \hookrightarrow \Sigma^*$)
- ST-automaton: automaton on (infinite) graph alphabet Ω
- language of ST-automaton: subset of (morphisms of) SSeq
- SSeq: category generated from Ω under relation \sim (not free)
- Kleene theorem? regular \iff generated from Ω using ., \cup and *
- BET-König theorem? "localization" of MSO on SSeq to Ω
- generalization?

Bibliography

Currently best intro to HDAs:

 UF, K.Ziemiański: Myhill-Nerode Theorem for Higher-Dimensional Automata [Fl 2024]

HDAs and Petri nets:

 A.Amrane, H.Bazille, UF, L.Hélouët, P.Schlehuber-Caissier: Petri Nets and Higher-Dimensional Automata [Petri Nets 2025]

MSO for HDAs:

 A.Amrane, H.Bazille, UF, M.Fortin: Logic and Languages of Higher-Dimensional Automata [DLT 2024]

This talk mostly based on:

 A.Amrane, H.Bazille, E.Clement, UF, K.Ziemiański: Presenting Interval Pomsets with Interfaces [RAMiCS 2024]