

Mining Data Streams (Part 2)

Ahmad Al-Shishtawy and Vladimir Vlassov

Outline

- Part 1 (previous lecture)
 - The stream data model
 - Sampling data in a stream
 - Filtering streams
- Part 2 (this lecture: estimating and counting algorithms on streams)
 - Counting distinct elements
 - Estimating moments
 - Queries over a (long) sliding window: Counting ones
 - Decaying Windows: Counting itemsets

Counting Distinct Elements

Counting Distinct Elements

Problem:

- Data stream consists of elements chosen from a universal set of size N
- Maintain a count of the number of distinct elements seen so far

Obvious approach:

Maintain the set of elements seen so far

 That is, keep a hash table of all the distinct elements seen so far

Applications

How many different words are found among the Web pages being crawled at a site?

Unusually low or high numbers could indicate artificial pages (spam?)

How many different Web pages does each customer request in a week?

How many distinct products have we sold in the last week?

Using Small Storage

Real problem: What if we do not have space to maintain the set of elements seen so far?

Estimate the count in an unbiased way

Accept that the count may have a little error, but limit the probability that the error is large

Flajolet-Martin Approach

- Pick a hash function h that maps each of the N elements to at least log₂ N bits
- For each stream element a, let
 r(a) be the number of trailing 0s in h(a)
 - E.g., if h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
- Record R = the maximum r(a) seen
 - $R = max_a r(a)$, over all the items a seen so far

Estimated number of distinct elements = 2^R

Why Flajolet-Martin Works: Heuristic Intuition

Idea: The more distinct elements we see in the stream, the more distinct hash-values we shall see; it becomes more likely that one of these values ends in many 0's.

- h(a) is a sequence of log₂ N bits
- The probability that h(a) ending in at least r 0's is 2^{-r}

Why Flajolet-Martin Works (cont)

- The probability that h(a) ending in at least r 0's is 2^{-r}
 - About 50% of as hash to ***0
 - About 25% of **a**s hash to ****00**
 - So, if we saw the longest tail of r = 2 (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
- So, it takes to hash about 2^r items before we see one with zero-suffix of length r

Why Flajolet-Martin Works: More formally

- The probability that h(a) ends in at least r 0's is 2^{-r}
- The probability that none of m distinct elements has 0's tail length at least r is $(1-2^{-r})^m = (1-2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}$
- The probability that we find a tail of length at least r 0's is

$$(1-e^{-m2^{-r}})$$

- If m >> 2^r, the probability approaches 1
- If m << 2^r, the probability approaches 0

Thus **2**^R (where **R** is the largest 0's tail length for any stream element) will almost always be around **m**

Why It Doesn't Work

- E[2^R] is actually infinite
 - Probability halves when $R \rightarrow R+1$, but value doubles
- Workaround involves using many hash functions h_i and getting many samples of R_i
- How are samples R_i combined?
 - Average? What if one very large value?
 - Median? All estimates are a power of 2
 - Solution:
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians

Estimating Moments

Definition of Moments

Suppose a stream has elements chosen from a set A of N values

Let m_i be the number of times value i occurs in the stream

The kth moment is

$$\sum_{i\in A} (m_i)^k$$

Special Cases

$$\sum\nolimits_{i\in A}(m_i)^k$$

Othmoment = number of distinct elements

 The problem just considered (see Section "Counting Distinct Elements")

1st moment = count of the numbers of elements = length of the stream

Easy to compute

2nd moment, a.k.a. surprise number **S**, is a measure of how uneven the distribution is $\sum_{i \in A} (m_i)^2$

Example: Surprise Number (2nd Moment)

Stream of length 100 11 distinct values

Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9 Surprise S = 910

$$S = 10^2 + 10 \cdot 9^2 = 910$$

Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 Surprise S = 8,110

$$S = 90^2 + 10 \cdot 1^2 = 8110$$

AMS: Alon-Matias-Szegedy Method

- Name refers to the inventors: Alon, Matias, and Szegedy
- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We pick and keep track of many variables X:
 - For each variable X we store X.element and X.value
 - X.element corresponds to the item i
 - X.value corresponds to the count of item i
 (i.e. the number of occurrences of the item i)
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_{i} (m_i)^2$

where m_i is the number of occurrences(the count) of the item i

One Random Variable (X)

How to set *X.value* and *X.element*?

- Assume stream has length n (we relax this later)
- Pick some random time t (t<n) to start, so that any time is equally likely
- Let at time t the stream have item i. We set X.elelment = i
- Then we maintain count **c** (**X.value = c**) of the number of **i**s in the stream starting from the chosen time **t**
 - Then the estimate of the 2nd moment $S = \sum_{i} (m_i)^2$ is:

$$S = f(X) = n \cdot (2 \cdot c - 1)$$

- Note, we will keep track of multiple Xs, $(X_1, X_2, ..., X_k)$ and our final estimate will be the average of counts of Xs

$$S = 1/k \sum_{j=1}^{k} f(X_j)$$

Expectation Analysis

Count:

Stream:

 m_i ... total count of item i in

 m_a

the stream (we assume stream of length *n*)

2nd moment is $S = \sum_{i} m_i^2$

 c_t ... number of times item at time t appears from time t onwards:

- $c_1 = m_a$ from time t = 1, item a appears m_a times
- $c_2 = m_a 1$ from time t = 2, item a appears $m_a 1$ times
- $c_3 = m_b$ from time t = 3, item b appears m_b times

Note that $1 + 3 + 5 + \cdots + (2m_i - 1) = m_i^2$

$$E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1) = \frac{1}{n} \sum_{i} n(1 + 3 + 5 + \dots + 2m_i - 1) = \frac{1}{n} \sum_{i} n(m_i)^2 = \sum_{i} (m_i)^2 = S$$
Group times by the value seen the value seen last *i* is seen ($c_t = 1$)

Time *t* when the penultimate is seen ($c_t = m_i$)

Time *t* when the penultimate is seen ($c_t = m_i$)

Higher-Order Moments

For estimating kth moment we essentially use the same algorithm but change the estimate:

- For k=2 we used $n(2\cdot c-1)$
- For k=3 we use: $n(3\cdot c^2 3c + 1)$ (where c=X.value)

Generally: Estimate = $n(c^k - (c - 1)^k)$

Combining Samples

In practice:

- Compute f(X) = n(2c-1) for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages

Problem: Streams never end

- We assumed there was a number n, the number of positions in the stream
- But real streams go on forever, so n is a variable the number of inputs seen so far

Streams Never End: Fixups

- 1. The variables **X** have **n** as a factor keep **n** separately; just hold the count in **X**.
- 2. Suppose we can only store *k* counts. We cannot have one random variable *X* for each start-time, and must throw out some start-times (some *X*s) as we read the stream (as time goes on).
 - Objective: Each starting time *t* is selected with probability *k/n*.

Streams Never End: Fixups (cont)

- Objective: Each starting time t is selected with probability k/n.
- Solution:
 - Choose the first k times for k variables
 - When the nth element arrives (n > k), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability

Queries over a (long) Sliding Window: Counting Ones in a Window

Sliding Windows

A useful model of stream processing is that queries are about a **window** of length **N** – the **N** most recent elements received

Interesting case: *N* is so large that the data cannot be stored in memory, or even on disk

Or, there are so many streams that windows for all cannot be stored

Amazon example:

- For every product X we keep 0/1 stream of whether that product was sold in the n-th transaction
- We want to answer queries, such as how many times X has been sold in the last k sales

Sliding Window on a Single Stream

Window of N = 6 qwertyuiopasdfghjklzxcvbnm qwertyuiopasdfghjklzxcvbnm qwertyuiopas dfghjk lzxcvbnm q w e r t y u i o p a s d f g h j k l z x c v b n m —— Past Future ----

Example: Averages

- Stream of integers, window of size N.
- Standing query: What is the average of the integers in the window?
- For the first N inputs, sum and count to get the average.
- Afterward, when a new input *i* arrives, change the average by adding (*i j*)/*N*, where *j* is the oldest integer in the window before *i* arrived.
- Good: O(1) time per input.
- Bad: Requires the entire window in main memory.

Approximate Counting

- To compute an exact sum or count of the elements in a window requires space at least as the window itself.
- But if you are willing to accept an approximation, you can use much less space.
- We'll consider *the simple case of counting bits*, which includes counting elements of a certain type as a special case (1: appears; 0: not).
- Sums are a fairly straightforward extension.

Counting Bits (1)

Problem:

- Given a stream of 0s and 1s
- Be prepared to answer queries of the form
 How many 1s are in the last k bits? where k ≤ N

Obvious solution:

Store the most recent **N** bits

• When new bit comes in, discard the **N+1**st bit

Suppose N=6

← Past

Future ——

Counting Bits (2)

You can not get an exact answer without storing the entire window

Real Problem: What if we cannot afford to store N bits?

• E.g., we're processing 1 billion streams and N = 1 billion

But we are happy with an approximate answer

An attempt: Simple solution

Q: How many 1s are in the last N bits?

A simple solution that does not really solve our problem: **Uniformity assumption**

- S: number of 1s from the beginning of the stream
- **Z**: number of 0s from the beginning of the stream

How many 1s are in the last *N* bits?
$$N \cdot \frac{S}{S+Z}$$

But, what if stream is non-uniform?

What if distribution changes over time?

DGIM Method

Name refers to the inventors: Datar, Gionis, Indyk, Motwani

DGIM solution that does <u>not</u> assume uniformity

Store $O(\log_2 N)$ bits per stream

where **N** is the window size

Solution gives approximate answer, never off by more than 50%

 Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits

Idea: Exponential Windows

Solution that doesn't (quite) work:

- Summarize exponentially increasing regions of the stream, looking backward
- Drop small regions if they begin at the same point as a larger region

We can reconstruct the count of the last N bits, except we are not sure how many of the last N are included in the N, i.e., count = (? + 10 + 2 + 1)

Pros: What's Good?

Stores only $O(log^2N)$ bits

- O(log N) counts of $log_2 N$ bits each

Easy update as more bits enter

Error in count no greater than the number of **1s** in the "**unknown**" area

Cons: What's Not So Good?

As long as the **1s** are fairly evenly distributed, the error due to the unknown region is small – **no more than 50%**

But it could be that all the 1s are in the unknown area at the end

In that case, the error is unbounded!

Fixup: DGIM method

Idea: Instead of summarizing fixed-length blocks, summarize blocks with specific number of **1s**:

Let the block sizes (number of 1s) increase exponentially

When there are few 1s in the window, block sizes stay small, so errors are small

DGIM: Timestamps

Each bit in the stream has a *timestamp*, starting 1, 2, ...

Record timestamps modulo N (the window size), so we can represent any relevant timestamp in $O(log_2N)$ bits

DGIM: Buckets

A **bucket** in the DGIM method is a record consisting of:

- (A) The timestamp of its end [O(log N)] bits
- (B) The number of 1s between its beginning and end [O(log log N) bits]

Constraint on buckets:

Number of **1s** must be a power of **2**

That explains the O(log log N) in (B) above

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets
- Buckets disappear when their end-time is > N time units in the past

Example: Bucketized Stream

Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

Updating Buckets

When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to **N** time units before the current time

2 cases: Current bit is 0 or 1

If the current bit is 0: no other changes are needed

Updating Buckets (cont)

If the current bit is 1:

- (1) Create a new bucket of size 1, for just this bit End timestamp = current time
- (2) If there are now three buckets of size 1, combine the oldest two into a bucket of size 2
- (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
- (4) And so on ...

Example: Updating Buckets

Current state of the stream: Bit of value 1 arrives and pit in a new bucket of size 1 001010110001011 010101010101011 010101010111 0101010111 110101010 1011 100101 Two older buckets of size 1 (blue buckets) get merged into one bucket of size 2 (yellow bucket) Next bit 1 arrives, new blue bucket is created for it, then 0 comes, then 1: Buckets get merged... State of the buckets after merging

How to Query?

To estimate the number of 1s in the most recent N bits:

- 1. Sum the sizes of all buckets but the last (note "size" means the number of 1s in the bucket)
- Add half the size of the last bucket

Remember: We do not know how many **1s** of the last bucket are still within the wanted window

Example: Bucketized Stream

Error Bound: Proof

Why is error 50%? Let's prove it!

- Suppose the last bucket has size 2^r
- Then by assuming 2^{r-1} (i.e., half) of its 1s are still within the window, we make an error of at most 2^{r-1}
- Since there is at least one bucket of each of the sizes less than 2^r , the true sum is at least $1 + 2 + 4 + ... + 2^{r-1} = 2^r 1$

Thus, error at most 50%

Further Reducing the Error

Instead of maintaining 1 or 2 of each size bucket, we allow either r-1 or r buckets (r > 2)

 Except for the largest size buckets; we can have any number between 1 and r of those

Error is at most O(1/r)

By picking *r* appropriately, we can tradeoff between number of bits we store and the error

Decaying Windows: Counting itemsets

Counting Itemsets

New Problem: Given a stream, which items appear more than *s* times in the window?

Possible solution: Think of the stream of baskets as one binary stream per item

- 1 = item present; 0 = not present
- Use **DGIM** to estimate counts of **1**s for all items

Extensions

In principle, you could count frequent pairs or even larger sets the same way

One stream per itemset

Drawbacks:

- Only approximate
- Number of itemsets is way too big

Exponentially Decaying Windows

Exponentially decaying windows: A heuristic for selecting likely frequent item(sets)

- What are "currently" most popular movies?
 - Instead of computing the raw count in last N elements
- Compute a **smooth aggregation** over the whole stream If stream is $a_1, a_2,...$ and we are taking the sum of the stream, take the answer at time t to be: $=\sum_{i=1}^{t} a_i (1-c)^{t-i}$
 - c is a constant, presumably tiny, like 10-6 or 10-9

When new a_{t+1} arrives:

Multiply current sum by (1-c) and add a_{t+1}

Example: Counting Items

If each a_i is an "item" we can compute the *characteristic function* of each possible item x as an Exponentially Decaying Window

- That is: $\sum_{i=1}^{t} \delta_i \cdot (1-c)^{t-i}$ where $\delta_i=1$ if $a_i=x$, and 0 otherwise
- Imagine that for each item x we have a binary stream
 (1 if x appears, 0 if x does not appear)
- New item x arrives:
 - Multiply all counts by (1– c)
 - Add +1 to count for element x

Call this sum the "weight" of item x

Sliding Versus Decaying Windows

Important property: Sum over all weights

$$\sum_{t} (1-c)^{t} \text{ is } 1/[1-(1-c)] = 1/c$$

Example: Counting Items

What are "currently" most popular movies?

Suppose we want to find movies of weight > $\frac{1}{2}$

- Important property: Sum over all weights $\sum_{t} (1-c)^{t} \text{ is } 1/[1-(1-c)] = 1/c$

Thus:

- There cannot be more than 2/c movies with weight of ½
 or more
- So, 2/c is a limit on the number of movies being counted at any time

Extension to Itemsets

Count (some) itemsets in an Enterprise Data Warehouse

- What are currently "hot" itemsets?
 - Problem: Too many itemsets to keep counts of all of them in memory

When a basket B comes in:

- Multiply all counts by (1– c)
- For uncounted items in B, create new count
- Add 1 to count of any item in B and to any itemset contained in B that is already being counted
- Drop counts < ½
- Initiate new counts (next slide)

Initiation of New Counts

Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket B

 Intuitively: If all subsets of S are being counted this means they are "frequent/hot" and thus S has a potential to be "hot"

Example:

- Start counting S={i, j} iff both i and j were counted prior to seeing B
- Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k} were all counted prior to seeing B

How many counts do we need?

Counts for single items < (2/c)·(avg. number of items in a basket)

Counts for larger itemsets = ??

But we are conservative about starting counts of large sets

 If we counted every set we saw, one basket of 20 items would initiate 1M counts