

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт искусственного интеллекта Кафедра общей информатики

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 11

Синтез четырехразрядного счетчика с параллельным переносом между разрядами двумя способами

по дисциплине «ИНФОРМАТИКА»

Выполнил студент группы ИМБО-01-22 Павлова Е.С. Принял Ассистент

Практическая работа выполнена «_» декабря 2022 г. Подпись студента

«Зачтено» « » декабря 2022 г. Подпись преподавателя

Ким К.С.

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	3
2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ	4
2.1 Таблица переходов счётчика	4
2.2 Проектирование оптимальных схем управления	4
2.3 Реализация счётчика с оптимальной схемой управления	8
2.4 Реализация счётчика на преобразователе кодов	8
3 ВЫВОДЫ	10
4 ИНФОРМАЦИОННЫЙ ИСТОЧНИК	11

1 ПОСТАНОВКА ЗАДАЧИ

Разработать счетчик с параллельным переносом на D-триггерах двумя способами: с оптимальной схемой управления, выполненной на логических элементах общего базиса; со схемой управления, реализованной на преобразователе кодов (быстрая реализация, но не оптимальная схема).

В качестве исходных данных использовать индикатор CNT лабораторного комплекса, на котором слева направо отображены:

- Направление счета (0 сложение, 1 вычитание);
- Максимальное значение счетчика (не путать с модулем счета);
- Шаг счета.

2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ

CNT: 092

- Направление счета сложение;
- Максимальное значение 9;
- Шаг счета 2.

2.1 Таблица переходов счётчика

По исходным данным восстановим таблицу переходов счетчика (табл. 1).

Таблица 1 – Таблица переходов счётчика

Q ₃ (t)	Q ₂ (t)	Q ₁ (t)	Q ₀ (t)	$Q_3(t+1)$	$Q_2(t+1)$	$Q_1(t+1)$	$Q_0(t+1)$
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	1	0	1	0	1	1
0	1	1	1	1	1	0	0
1	0	0	0	0	1	0	1
1	0	0	1	0	1	1	0
1	0	1	0	*	1	1	1
1	0	1	1	*	0	0	0
1	1	0	0	*	0	0	1
1	1	0	1	*	0	1	0
1	1	1	0	*	*	*	*
1	1	1	1	*	*	*	*

2.2 Проектирование оптимальных схем управления

Построим карту Карно для МДНФ функции Q₃(t+1) (табл. 2).

Таблица 2 – Карта Карно для построения МДНФ функции Q₃(t+1)

\bot	$Q_1(t)$				
Q ₃ (t) Q	2(t)	00	01	11	10
	00				
	01			1	1
	11	*	*	*	*
	10		- -	*	*

Построим карту Карно для МКНФ функции $Q_3(t+1)$ (табл. 3).

Таблица 3 – Карта Карно для построения МКН Φ функции $Q_3(t+1)$

\Box	$Q_1(t)$				
Q ₃ (t) Q	2(t)	00	01	11	10
	00	$\not \sim$	6	0	0
	01	0	0		
	11	*	*	*	*
	10	P	9	*	*

Из таблиц видно, что нам все равно, какую минимальную форму взять.

Запишем МКНФ для $Q_3(t+1)$ (формула 1).

$$Q_3(t+1)_{MKH\Phi} = Q_1(t) * Q_2(t)$$
 (1)

Построим карту Карно для МДНФ функции $Q_2(t+1)$ (табл. 4).

Таблица 4 – Карта Карно для построения МДНФ функции $Q_2(t+1)$

\Box	$Q_1(t)$				
Q ₃ (t) Q	$Q_0(t)$ ₂ (t)	00	01	11	10
	00			J	1
	01	1	1		
	11	*/	*	*	*
	10		8	1	1

Построим карту Карно для МКНФ функции $Q_2(t+1)$ (табл. 5).

Таблица 5 — Карта Карно для построения МКН Φ функции $Q_2(t+1)$

\Box	$Q_1(t)$				
Q ₃ (t) Q	2(t)	00	01	11	10
	00	9			
	01			0	0
	11	*	*	*	*
	10	0	6	*	*

Из таблиц видно, что нам все равно, какую минимальную форму взять.

Запишем МДНФ для $Q_2(t+1)$ (формула 2).

$$Q_2(t+1)_{MДH\Phi} = (Q_1(t) * \overline{Q_2(t)}) + (\overline{Q_1(t)} * Q_2(t))$$
 (2)

Построим карту Карно для МДНФ функции $Q_1(t+1)$ (табл. 6).

Таблица 6 – Карта Карно для построения МДНФ функции Q₁(t+1)

\bot	$Q_1(t)$				
Q ₃ (t) Q	$Q_0(t)$	00	01	11	10
	00	1			
	01	1	1		
	11	*	*	*	*
	10		2	*	*

Построим карту Карно для МКНФ функции $Q_1(t+1)$ (табл. 7).

Таблица 7 — Карта Карно для построения МКН Φ функции $Q_1(t+1)$

\bot	$Q_1(t)$ $Q_0(t)$				
Q ₃ (t) Q	2(t)	00	01	11	10
	00			8	d
	01			0	0
	11	*	*	*	<i> </i> **
	10	d	0	*	*//

Из таблиц видно, что нам все равно, какую минимальную форму взять.

Запишем МДНФ для $Q_1(t+1)$ (формула 3).

$$Q_{1}(t+1)_{MДH\Phi} = (\overline{Q_{1}(t)} * \overline{Q_{3}(t)})$$
(3)

В рассматриваемом примере $Q_0(t+1) = Q_0(t)$, что видно сразу из таблицы переходов.

2.3 Реализация счётчика с оптимальной схемой управления

При помощи полученных формул выполним реализацию схем управления для триггеров счетчика (рис. 1).

Рисунок 1 — Реализация счётчика с оптимальной схемой управления

2.4 Реализация счётчика на преобразователе кодов

Выполним реализацию счётчика при помощи преобразователя кодов в качестве схемы управления триггерами (рис. 2).

Рисунок 2 — Счётчик со схемой управления, выполненной на преобразователе кодов

3 ВЫВОДЫ

На практике был изучен счетчик с параллельным переносом на D-триггерах двумя способами: с оптимальной схемой управления, выполненной на логических элементах общего базиса; со схемой управления, реализованной на преобразователе кодов. По исходным данным восстановлена таблица переходов счетчика. Построены карты Карно для реализации оптимальных схем управления триггерами.

4 ИНФОРМАЦИОННЫЙ ИСТОЧНИК

Информатика: Методические указания по выполнению практических работ / С.С. Смирнов, Д.А. Карпов — М., МИРЭА — Российский технологический университет, 2020.-102 с.