Capstone Project Presentation

To Build a Recommendation Systems for an Online Retail Dataset

Sumit Patel

Objective of Social Network Ad

 The objective of a recommender system is to use specific features or parameters to help provide recommendations to customers based on other customer data, similar items, popular items, etc.

 The initial step is to identify the features of interest that will help to build the recommendation system. The features that will be necessary are user_id, item_id and target. We will be using graphlab to build our recommender system.

Quantity Ordered by Country

Purpose of the Model

- To provide a recommendation with very little error-rate by items to customers to possibly make an impact on purchasing behavior and increase sales through suggestive recommendations.
 - User id = CustomerID
 - Item_id = StockCode (we merged this with Description so that you can tell what the item is)
 - Target = Quantity

Data Description

- The dataset is comprised of 8 attributes consisting of InvoiceNo, StockCode, Description, Quantity, InvoiceDate, UnitPrice, CustomerID and Country. The dataset is composed of 541,909 rows
- After selecting the features of interest we then convert the dataframe into an SFrame to use in graphlab. We will be using the features of CustomerID, Items (which we derived by concatenating StockCode with Description) and Quantity. Grouping CustomerID and Items we reduce our dataset to 274,339 rows of unique CustomerID instances.

Preprocessing and Model Evaluation

The following was performed:

- Mean and standard deviation was calculated for each instance of Quantity
- Z-sore was calculated for scaling the data with since the feature of Quantity does not have a normal distribution
- Using z-score of quantity as target variable we retrieved our normalized RMSE values

RMSE of Models on Original Dataset

Recommender System	RMSE Overall
Recommender	100.73996446508337
Factorization	54.409882223027
Ranking Factorization	79.17736576537769
Popularity	100.02054212968166
Item Similarity	99.81967609307739

RMSE of Models on Normalized Data using z-score of Quantity

Recommender System	RMSE Overall
Recommender	3.025176044046389e+18
Factorization	3.0251761021515505e+18
Ranking Factorization	3.02517610215155e+18
Popularity	2.94856491969459e+18
Item Similarity	2.948979229494945e+18

Conclusion

- Recommender systems require normally distributed values to perform ideally as we have seen when comparing unscaled measure of quantity against the z-score of the quantity which vastly improved our RMSE values
- Without normalizing our data we would have been likely to choose the wrong recommender four our data, this would have resulted in many incorrectly matched recommendations which would not have improved or benefitted the business operations.