Recurrence Relations

CSE2315, Chapter 3-2

Properties of recurrence relations

- Recurrence relation is an equation that defines a sequence recursively
 - Each term is defined as a function of the preceding terms

A linear recurrence relation can be written as

$$S(n) = f_1(n)S(n-1) + f_2(n)S(n-2) + \dots + f_k(n)S(n-k) + g(n)$$

where f's and g are or can be expressions involving n.

Linearity, Homogeneity, and Orders

- A <u>linear</u> relation is when the earlier values in the definition of S(n) as shown below have power 1.
 - The term "linear" means that each term of the sequence is defined as a linear function of the preceding terms.
 - Example: F(n) = F(n-1) + F(n-2)
- A <u>nonlinear</u> relation is the one that has earlier values in the definition as powers other than 1.
 - Example: F(n+1) = 2nF(n-1)(1-F(n-1))
 - Solutions are quite complex.
- Homogenous relation is a relation that has g(n) = 0 for all n
 - Example: S(n) = 2S(n-1)
- <u>Inhomogenous</u> relation:
 - Example: a(n) a(n-1) = 2n

$$S(n) = f_1(n)S(n-1) + f_2(n)S(n-2) + \dots + f_k(n)S(n-k) + g(n)$$

Linearity, Homogeneity, and Orders

- A recurrence relation is said to have <u>constant coefficients</u> if the f's are all constants.
 - Fibonacci relation is homogenous and linear:
 - F(n) = F(n-1) + F(n-2)
 - Non-constant coefficients: $T(n) = 2nT(n-1) + 3n^2T(n-2)$
- Order of a relation is defined by the number of previous terms in a relation for the nth term.
 - First order: S(n) = 2S(n-1)
 - *n*th term depends only on term *n*-1
 - Second order: F(n) = F(n-1) + F(n-2)
 - n^{th} term depends only on term n-1 and n-2
 - Third Order: T(n) = 3nT(n-2) + 2T(n-1) + T(n-3)
 - n^{th} term depends only on term n-1 and n-2 and n-3

$$S(n) = f_1(n)S(n-1) + f_2(n)S(n-2) + \dots + f_k(n)S(n-k) + g(n)$$

Solving recurrence relations

- Solving a recurrence relation employs finding a closed-form solution for the recurrence relation.
- An equation such as $S(n) = 2^n$, where we can substitute a value for n and get the output value back directly, is called a closed-form solution.
- Two methods used to solve a recurrence relation:
 - Expand, Guess, Verify
 - Repeatedly uses the recurrence relation to expand the expression for the n^{th} term until the general pattern can be guessed.
 - Finally the guess is verified by mathematical induction.
 - Solution from a formula
 - Known solution formulas can be derived for some types of recurrence relations.

Expand, Guess, and Verify

• Show that $S(n) = 2^n$ for the following recurrence relation:

$$S(1) = 2$$

 $S(n) = 2S(n-1)$ for $n \ge 2$

Expansion: Using the recurrence relation over again every time

```
• S(n) = 2S(n-1)

\Rightarrow S(n) = 2(2S(n-2)) = 2^2S(n-2)

\Rightarrow S(n) = 2^2(2S(n-3)) = 2^3S(n-3)
```

 Looking at the developing pattern, we guess that after k such expansions, the equation has the form

•
$$S(n) = 2^k S(n-k)$$

- This should stop when n-k=1, hence k=n-1,
 - As the base case provided is S(1)

•
$$S(n) = 2^{n-1}S(1) \Rightarrow S(n) = 2 \cdot 2^{n-1} = 2^n$$

• Do the verification step by assuming the closed form solution for S(k) and proving S(k+1)

Verification step for Expand, Guess, and Verify

- Confirm derived closed-form solution by induction on the value of *n*.
 - Statement to prove: $S(n) = 2^n$ for $n \ge 2$.
- For the basis step, $S(1) = 2^1$. This is true since S(1) is provided in the problem.
- Assume that $S(k) = 2^k$.
- Then S(k+1) = 2S(k) (by using the recurrence relation definition)
 - $S(k+1) = 2(2^k)$ (by using the above inductive hypothesis)

$$\Rightarrow$$
 $S(k+1) = 2^{k+1}$

• This proves that our closed-form solution is correct.

Class Exercise

- Find the solution for the following recurrence relation:
 - T(1) = 1
 - T(n) = T(n-1) + 3 for $n \ge 2$

Solution from a formula

Solution formula for linear first order constant coefficient relation

$$S(n) = f_1(n)S(n-1) + f_2(n)S(n-2) + \dots + f_k(n)S(n-k) + g(n)$$

For the relation S(n) = 2S(n-1), we have $f_1(n) = 2$ and g(n) = 0

So,
$$S(n) = cS(n-1) + g(n)$$
 ---- (1)

General form of linear first order recurrence relation with constant coefficient

$$S(n) = c[cS(n-2)+g(n-1)] + g(n) = c[c[cS(n-3)+g(n-2)] + g(n-1)] + g(n).$$

$$S(n) = c^k S(n-k) + c^{k-1} g(n-(k-1)) + \dots + cg(n-1) + g(n)$$

The lowest value of n-k is 1 (n-k=1, so k=n-1)

Hence,
$$S(n) = c^{n-1}S(1) + c^{n-2}g(2) + c^{n-3}g(3) + ... + g(n)$$

$$S(n) = c^{n-1}S(1) + \sum_{i=2}^{n} c^{n-i}g(i)$$

• For S(n) = 2S(n-1), c = 2 and g(n) = 0Hence, $S(n) = 2^{n-1}S(1) = 2 \cdot 2^{n-1} = 2^n$ since S(1) = 2

Solution Formula

To solve recurrence relations of the form $S(n) = cS(n-1)+g(n)$ subject to basis $S(1)$	
Method	Steps
Expand, guess, and verify	1. Repeatedly use the recurrence relation until you can guess a pattern
	2. Decide what that pattern will be when n-k=1
	3. Verify the resulting formula by induction
Solution formula	1. Match your recurrence relation to the form $S(n)=cS(n-1)+g(n)$ to find c and $g(n)$
	Use c, g(n), and S(1) in the formula $S(n) = c^{n-1}S(1) + \sum_{i=0}^{n} c^{n-i}g(i)$
	Evaluate the resulting summation to get the final expression

Class Exercise

- Find a closed-form solution to the recurrence relation
 - S(n) = 2S(n-1) + 3 for $n \ge 2$ and given S(1) = 4
 - Here, c=2 and g(n) = 3
- given by $S(n) = 2^{n+1} + 3[2^{n-1} 1]$
- Find a closed-form solution to the recurrence relation
 - T(n) = T(n-1) + (n+1) for $n \ge 2$ and given T(1) = 2
 - Here, c = 1 and g(n) = n+1
- given by $T(n) = \frac{n(n+3)}{2}$
- Solutions for these exercises is in the text (pg. 184-186, Example 17 & 18)