

Проектная работа для итоговой аттестации по курсу Data Science, университет «Иннополис»

Слушатель: Константин Егоров

Наставник: Олег Дудкин

Название проекта: проект 4, извлечение именованных сущностей для русского языка.

Задача проекта: обучить и протестировать модель для извлечения именованных сущностей из текста. Провести анализ решения и альтернатив. Выбрать лучшую модель.

Источники данных:

http://bsnlp.cs.helsinki.fi/shared-task.html

https://multiconer.github.io

1. Исследование входных данных.

- Первый источник SemEval 2022, 11 открытое задание по распознаванию именованных сущностей для 11 языков.
- Исходный набор данных содержит 15 300 размеченных предложений и 242 383 токена. Токены размечены с использованием схемы BIO (Beginning, Inside, Outside) для шести типов именованных сущностей: PER: Person, LOC: Location, GRP: Group, CORP: Corporation, PROD: Product, CW: Creative Work.

```
['# id 11b11e4f-73c6-4e3d-babd-0de83e450861\tdomain=train',
'российская B-GRP',
'экологическая _ _ I-GRP',
'партия _ _ I-GRP',
'«зелёные» ____ I-GRP',
'- _ _ 0',
'до _ _ 0',
'февраля _ _ 0',
'2012 _ _ 0',
'года _ _ О',
', _ _ 0',
'в _ _ 0',
'состав _ _ 0',
'партии _ _ 0',
'cp _ _ 0',
```

1. Исследование входных данных.

- Второй источник это 3 открытое задание по распознаванию, нормализации, классификации и межъязыковому связыванию именованных сущностей в славянских языках.
- Исходный набор данных для русского языка содержит 3 191 токен в предложениях, находящихся в разных файлах.
- Разметка содержит пять типов именованных сущностей: человек, локация, организация, мероприятие, продукты (persons, locations, organizations, events, products).
- Brexit и суд над христианской девушкой Асией Биби в Пакистане, обвиняемой в богохульстве.

c.most_common()[:40]

```
[('Великобритании', 99),
('EC', 88),
 ('Brexit', 87),
('Дэвид Дэвис', 66),
('Бориса Джонсона', 63),
('Борис Джонсон', 60),
('Мэй', 58),
 ('Тереза Мэй', 58),
 ('Евросоюза', 57),
 ('Пакистане', 51),
('Терезы Мэй', 50),
 ('Пакистана', 46),
('Биби', 43),
 ('Джонсона', 42),
 ('Асии Биби', 40),
 ('Британии', 37),
 ('Джонсон', 36),
 ('Доминик Рааб', 32),
('Дэвис', 31),
('МИД Великобритании', 29),
('МИД', 27),
('Асия Биби', 26),
('Мухаммеда', 25),
 ('Дэвида Дэвиса', 25),
 ('Дэвиса', 25),
 ('Лондона', 24),
 ('Асию Биби', 22),
('Верховный суд Пакистана', 22),
 ('Евросоюзом', 22),
 ('Терезой Мэй', 21),
('Верховного суда', 19),
 ('Брюсселем', 18),
 ('Великобритания', 18),
 ('Бориса', 16),
('Paa6', 16),
('REGNUM', 15),
 ('CWA', 15),
 ('Доминика Рааба', 15),
('Даунинг-стрит', 15),
 ('Англии', 15)]
```

2. Исследование Python NLP библиотек.

```
1s = u'Российская экологическая партия «Зелёные» — до февраля 2012 года, входила в состав партии СР.'

1s = 'Иоанн Павел II внёс некоторые изменения в правила проведения конклавов.'

1s = 'В 1977 году окончил исторический факультет Запорожского государственного педагогического института.'

1s = 'Куно I фон Ротт — пфальцграф Баварии, граф Фобурга, граф Нижнего Изара.'

1s = '- Гаев — «Вишнёвый сад», по пьесе А. П. Чехова, реж.'

1s = 'whites off earth now!! вики'

1s = 'смерть о'брайан, рональд кларк'

1s = 'барда (река) офис шерифа округа'
```

 Первый опробованный токенизатор Spacy показал хорошие результаты и было принято решение остановиться на нем.

ldoc = ltokenize(ls)

барда NOUN nsubj (PUNCT punct река NOUN appos) PUNCT punct офис NOUN ROOT шерифа NOUN nmod округа NOUN nmod

ldoc = ltokenize(ls)

смерть NOUN ROOT o'брайан PROPN nmod , PUNCT punct рональд PROPN conj кларк PROPN flat:name

ldoc = ltokenize(ls)

whites X ROOT off X flat:foreign earth X flat:foreign now X flat:foreign ! PUNCT punct ! PUNCT punct вики NOUN ROOT

ldoc = ltokenize(ls)

- PUNCT punct Гаев PROPN nsubj - PUNCT punct « PUNCT punct Вишнёвый ADJ amod сад NOUN ROOT » PUNCT punct , PUNCT punct no ADP case пьесе NOUN conj A. PROPN nmod Π. PROPN flat:name Чехова PROPN flat:name , PUNCT punct реж NOUN conj . PUNCT punct

3. Формирование эмбеддингов и обучение базовой модели.

0 -	10648	53	73	25	48	51	26	28	33	20	7	5	3
B-LOC -	185	16	4	2	2	3	4	5	0	0	0	0	0
I-PER -	154	3	7	18	4	2	1	1	1	0	0	0	3
B-PER -	159	4	1	18	0	7	1	1	0	1	0	0	0
I-CW -	147	2	3	2	0	12	0	3	9	0	1	1	0
B-CW -	134	1	1	5	0	9	0	3	14	0	1	0	0
Fe label B-GRP -	122	4	3	2	3	4	3	1	6	2	1	0	0
B-PROD -	118	1	4	0	1	7	2	5	10	0	2	1	0
B-CORP -	104	0	2	1	1	10	7	3	27	0	3	1	0
I-GRP -	116	2	2	2	1	6	5	0	7	1	0	0	0
I-CORP -	87	2	1	0	3	7	5	2	13	0	1	0	0
I-PROD -	47	1	0	0	0	0	1	3	2	0	1	1	0
I-LOC -	29	1	0	1	0	1	0	0	0	0	0	0	0
·	ó	B-LOC	I-PER	B-PER	I-CW	B-CW Pro	B-GRP edicted lat	B-PROD bel	B-CORP	I-GRP	I-CORP	I-PROD	I-LOC

	precision	recall	f1-score	support
0	0.90	0.93	0.91	11020
B-LOC	0.13	0.12	0.13	221
I-PER	0.05	0.05	0.05	194
B-PER	0.17	0.15	0.16	192
I-CW	0.00	0.00	0.00	180
B-CW	0.07	0.10	0.08	168
B-GRP	0.02	0.01	0.02	151
B-PROD	0.06	0.05	0.06	151
B-CORP	0.20	0.18	0.19	159
I-GRP	0.02	0.01	0.01	142
I-CORP	0.08	0.02	0.03	121
I-PROD	0.04	0.02	0.02	56
I-LOC	0.00	0.00	0.00	32
accuracy			0.81	12787
macro avg	0.13	0.13	0.13	12787
weighted avg	0.78	0.81	0.80	12787

3. Формирование эмбеддингов и обучение базовой модели.

- 10000				
	precision	recall	f1-score	support
- 8000	0.90	0.94	0.92	11020
I-LOC	0.13	0.09	0.11	253
I-PER	0.25	0.19	0.21	386
I-CW	0.11	0.10	0.11	348
I-GRP	0.10	0.04	0.06	293
I-PROD	0.09	0.06	0.07	207
I-CORP	0.29	0.18	0.22	280
accuracy			0.82	12787
macro avg	0.27	0.23	0.24	12787
weighted avg	0.79	0.82	0.81	12787

4. Обучение seq2seq модели. Подготовка данных.

	words	markers	sentense_num	$word_idx$	marker_idx
0	российская	B-GRP	1	9681	4
1	экологическая	I-GRP	1	20293	4
2	партия	I-GRP	1	15291	4
3	«зелёные»	I-GRP	1	38551	4
4	_	0	1	43181	6

Sé	entense_num	words	markers	word_idx	marker_idx
0	1	[российская, экологическая, партия, «зелёные»,	[B-GRP, I-GRP, I-GRP, O, O, O, O, O, O,	[9681, 20293, 15291, 38551, 43181, 1596, 30737	[4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
1	2	[также, посещал, два, семинара, бартольда, кёй	[O, O, O, O, B-PER, I-PER, O, O, O, B-PER, O,	[24008, 47589, 42010, 40044, 31326, 34745, 239	[6, 6, 6, 6, 1, 1, 6, 6, 6, 1, 6, 1, 6]
2	3	[в, 1999, —, 2006, играла, за, национальную, с	[O, O, O, O, O, O, B-GRP, I-GRP, I-GRP, O]	[26415, 3416, 43181, 37240, 37335, 27712, 2989	[6, 6, 6, 6, 6, 6, 4, 4, 4, 6]
3	4	[«, джульетта, », —, кинофильм, 2016, года, ис	[O, B-CW, O, O]	[49441, 13541, 3797, 43181, 7570, 32408, 34363	[6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
4	5	[мякоть, спелого, плода, съедобна, в, свежем,	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	[43136, 34860, 13361, 5001, 26415, 29718, 1827	[6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6

4. Обучение seq2seq модели. Модель.

Model: "sequential_4"				precision	recall	f1-score	support
			I-CW	0.40	0.45	0.42	180
Layer (type)	Output Shape	Param #	B-LOC	0.52	0.29	0.37	221
			I-PER	0.55	0.38	0.45	194
	·		I-CORP	0.58	0.21	0.30	121
embedding_4 (Embedding)	(None, 59, 300)	15770400	_ 0	0.00	0.00	0.00	0
			I-PROD	0.31	0.27	0.29	56
Lilingstings1 o /pillingsti	(No. 50 600)	4440400	0	0.92	0.98	0.95	11020
bidirectional_2 (Bidirecti	.o (None, 59, 600)	1442400	B-PER	0.47	0.32	0.38	192
nal)			I-GRP	0.72	0.34	0.46	142
/			B-PROD	0.43	0.37	0.40	151
			B-CORP	0.67	0.19	0.29	159
time distributed 2 (TimeDi	eDis (None, 59, 9)	5409	B-CW	0.39	0.36	0.38	168
'	\		B-GRP	0.71	0.24	0.36	151
tributed)			I-LOC	0.14	0.03	0.05	32
			<unknown></unknown>	0.00	0.00	0.00	0
=======================================		==========	<pad></pad>	1.00	1.00	1.00	34413
Total params: 17,218,209			micro avg	0.97	0.97	0.97	47200
Trainable params: 17,218,20	00		macro avg	0.49	0.34	0.38	47200
Non-trainable params: 0	דנ		weighted avg	0.96	0.97	0.96	47200

4. Обучение seq2seq модели. Доработанная модель.

	precision	recall	f1-score	support
· · LOC	0.55	0.32	0.41	253
PER	0.74	0.47	0.58	386
CORP	0.70	0.55	0.62	280
PROD	0.39	0.50	0.44	207
GRP	0.63	0.59	0.61	293
CW	0.59	0.62	0.60	348
0	0.94	0.96	0.95	11020
<pad></pad>	1.00	1.00	1.00	34413
			0.07	47200
accuracy			0.97	47200
° macro avg	0.69	0.63	0.65	47200
weighted avg	0.97	0.97	0.97	47200

4. Обучение seq2seq модели. Динамика.

- Веденная новая метрика процент правильно предсказанных полных предложений показала по 1 предложению на тестовой и валидационной выборках.
- Модель стала полностью правильно классифицировать 144 предложения из 800 - 18%.
- Модель стала безошибочно распознавать 242 предложения из 800 - 30.25%.

предложение из 800

144 предложения из 800 (18%) 242 предложения из 800 (30%)

4. Обучение seq2seq модели. Кривые обучения.

5. Создание ВЕБ-приложения

Спасибо за внимание

18.12.2021

Москва