Lecture 3 — Boolean Arithmetic

18/10/2024

Dr. Libin HONG

Overview

- Review previous weeks slides
- Review lab session
- Boolean arithmetic
 - Decimal to Binary
 - Binary Addition
 - Adders
 - Negative numbers
 - Binary subtraction

X	у	z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

х	y	Z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Reminder

Complement law: x Or (Not(x))=1

Distributive law: x and (y or z) = (x and y) or (x and z)

(Not(x) And Not(y) And Not(z)) Or (Not(x) And y And Not(z)) Or(x And Not(y) And Not(z)) =

(Not(x) And Not(z)) Or (x And Not(y) And Not(z)) =

X	у	z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Reminder

Complement law: x Or (Not(x))=1

Distributive law: x and (y or z) = (x and y) or (x and z)

(Not(x) And Not(y) And Not(z)) Or (Not(x) And y And Not(z)) Or (x And Not(y) And Not(z)) = (Not(x) And Not(z)) Or (x And Not(y) And Not(z)) = (Not(x) And Not(z)) Or (Not(y) And Not(z)) =

X	у	Z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Reminder

Complement law: x Or (Not(x))=1

Distributive law: x and (y or z) = (x and y) or (x and z)

(Not(x) And Not(y) And Not(z)) Or

(Not(x) And y And Not(z)) Or

(x And Not(y) And Not(z)) =

(Not(x) And Not(z)) Or (x And Not(y) And Not(z)) =

2 * Complement

Law

(Not(x) And Not(z)) Or (Not(y) And Not(z)) =

Distributive law

(Not(x) Or Not(y)) And Not(z)

Lab sessions

Use the API!

```
Add16 (a= ,b= ,out= );
ALU (x = , y = , zx = , nx = , zy = , ny = , f = , no = , out = , zr = , ng = );
                                                                         Mux (a= ,b= ,sel= ,out= );
And16 (a= ,b= ,out= );
                                                                         Nand (a= ,b= ,out= );
And (a= ,b= ,out= );
                                                                         Not16 (in= ,out= );
Aregister (in= ,load= ,out= );
                                                                         Not (in= ,out= );
Bit (in= ,load= ,out= );
                                                                         Or16 (a= ,b= ,out= );
CPU (inM= ,instruction= ,reset= ,outM= ,writeM= ,addressM= ,pc= );
                                                                         Or8Way (in= ,out= );
DFF (in= ,out= );
                                                                         Or (a= ,b= ,out= );
DMux4Way (in= ,sel= ,a= ,b= ,c= ,d= );
DMux8Way (in= ,sel= ,a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= );
Dmux (in= ,sel= ,a= ,b= );
Dregister (in= ,load= ,out= );
FullAdder (a= ,b= ,c= ,sum= ,carry= );
HalfAdder (a= ,b= ,sum= , carry= );
Inc16 (in= ,out= );
Keyboard (out= );
                                                                         Register (in= ,load= ,out= );
Memory (in= ,load= ,address= ,out= );
                                                                         ROM32K (address= ,out= );
Mux16 (a= ,b= ,sel= ,out= );
Mux4Way16 (a= ,b= ,c= ,d= ,sel= ,out= );
                                                                         Xor (a= ,b= ,out= );
Mux8Way16 (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,out= );
```

```
Mux8Way (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,out= );
PC (in= ,load= ,inc= ,reset= ,out= );
PCLoadLogic (cinstr= ,j1= ,j2= ,j3= ,load= ,inc= );
RAM16K (in= ,load= ,address= ,out= );
RAM4K (in= ,load= ,address= ,out= );
RAM512 (in= ,load= ,address= ,out= );
RAM64 (in= ,load= ,address= ,out= );
RAM8 (in= ,load= ,address= ,out= );
Screen (in= ,load= ,address= ,out= );
```

Nand, Not, And, Or

X	у	Nand
0	0	1
0	1	1
1	0	1
1	1	0

```
IN a, b;
OUT out;
OUT out;

PARTS:
PARTS:
And (a=a, b=b, out=x);
Not (in=x, out=out);
}

CHIP And {
    IN a, b;
    OUT out;

PARTS:
Nand (a=a, b=b, out=x);
Nand (a=a, b=b, out=x);
```

CHIP Nanda {

CHIP Not {

IN in;

(x Nand y) = Not(x And y)

- Not(x) = (x Nand x)
- (x And y) = Not(x Nand y)
- (x Or y) = Not(Not(x) And Not(y))

```
CHIP Ora {
    IN a, b;
    OUT out;

PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    And (a=nota, b=notb, out=anda);
    Not (in=anda, out=out);
}

CHIP Or {
    IN a, b;
    OUT out;

PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    Not (in=b, out=notb);
    Nand (a=nota, b=notb, out=out);
}
```

Not (in=x, out=out);

Lab sessions

- There are inbuilt versions of all chips (these work)
- If a chip with the same name exists in the working directory (eg. And) you HDL code will use that instead of the inbuilt one
 - It will try and use this chip even if it is wrong or empty
- Leads to some interesting situations
 - Eg. Never try and build your own Nand chip
 - Nand uses And, And uses Nand infinite cycle (Loading Chip.....)
- HDL does allow looping BUT don't use it (inefficient in real chips)

Designing Logic Gates - Reminder

- Helpful to start by building up the truth table
- Then work out the equations for each output for each line based on the input
- OR each of these together for each output (or multiple outputs)
- Then simplify the equations
 - Use the algebraic rules,
 - Look for common sub-equations
 - Use as few gates as possible
 - Saves money/Reduces delay*

x	у	Z	f			
0	0	0	1			
0	0	1	0	(Not(x) And Not(y) And Not(z))		
0	1	0	1			
0	1	1	0	(Not(x) And y And Not(z))		
1	0	0	1			
1	0	1	0	(x And Not(y) And Not(z))		
1	1	0	0	(N-4(-) A 4 N-4(-) A 4 N-4(-)) O		
1	1	1	0	(Not(x) And Not(y) And Not(z)) Or (Not(x) And y And Not(z)) Or		
				(x And Not(y) And Not(z)) =		

^{*} Propagation delay is the time taken for a change in the inputs to be reflected in the output

Simplifying Truth tables (eg Mux)

a b sel	out	a b sel out
0 0 0	0	0 X 0 0
1 0 0	1	1 X 0 1
0 1 0	0	X 0 1 0
1 1 0	1	X 1 1 1
0 0 1	0	/ / / /
1 0 1	0	CHIP Mux { IN a, b, sel; OUT out;
0 1 1	1	PARTS:
1 1 1	1	Not (in=sel, out=notSel); And (a=notSel, b=a, out=and1); And (a=sel, b=b, out=and2); Or (a=and1, b=and2, out=out); }

Boolean Arithmetic (based on nand2tetris chapter 2)

INTRODUCTION

- Given a set of NAND gates, we can design any logic circuit we want
- Can get programmable logic chips that are just arrays of Nand gates
- Easier to design using And, Or and Not gates
- Only Two output states True or False, 0 or 1
- Can describe logic circuits using a *Hardware Description Language*
- Express how the various AND, OR and NOT gates connect
- But how do we represent a number with just two states?

Numbers

- Various symbols have been used over the ages to represent numbers
 - Roman numerals XX
 - Arabic numbers (as we use today) 20
- All encode a quantity
- We use the decimal system for counting
 - Based around 10 because we have ten fingers
 - But we also have counting systems using other bases
 - Time, eggs.....
- Computers just use a different encoding using just two symbols
 - (computers only have 2 fingers)

Decimal vs Binary Counting

Binary	Decimal
0	0
1	1
10	2
11	3
100	4
101	5
•••	

For Binary, Maximum value represented by k bits:

$$1 + 2 + 4 + ... + 2^{k-1} = 2^k - 1$$

Representing numbers

Representing numbers

Binary → Decimal

Binary → Decimal

Fixed word size

We will use a fixed number of bits. Say 8 bits.

```
0000 0000
0000 0001
0000 0010
0000 0011
                        2^8 = 256 \text{ values}
0111 1111
1000 0000
1000 0001
1111 1110
1111 1111
```

Representing signed numbers

We will use a fixed number of bits. Say 8 bits.

```
0000 0000
0000 0001
                 positive values
0000 0010
0000 0011
0111 1111
1000 0000
1000 0001
                  negative values
1111 1110
1111 1111
```

Representing signed numbers

We will use a fixed number of bits. Say 8 bits.

```
0000 0000
0000 0001
                   positive values
0000 0010
0000 0011
                             • That's one possible representation
0111 1111
                             • We'll use a better one, later
1000 0000
1000 0001
                    negative values
1111 1110
1111 1111
```

 87_{ten}

```
87_{ten} = 64 (64 = 2^6, the biggest 2^n that 87 is divisible by) remainder 23
```

```
87_{ten} = 64 + 16 (16 = 2^4, the biggest 2^n that 23 is divisible by) remainder 7
```

$$87_{ten} = 64 + 16 + 4$$
 (4 = 2^2 , the biggest 2^n that 7 is divisible by) remainder 3

$$87_{ten} = 64 + 16 + 4 + 2$$
 (2 = 2^1 , the biggest 2^n that 7 is divisible by) remainder 1

```
87_{ten} = 64 + 16 + 4 + 2 + 1 (1 = 2^0, the biggest 2^n that 1 is divisible by) remainder 0 (stop when remainder = 0)
```

$$87_{ten} = 64 + 16 + 4 + 2 + 1$$

$$87_{ten} = 64 + 16 + 4 + 2 + 1$$

$$= 2^{6} + 2^{4} + 2^{2} + 2^{1} + 2^{0}$$

$$= 0 1 0 1 0 1 1 1_{two}$$

= 01010111

Binary Numbers

- Often written out with leading zeros
 - Up to a certain number of bits usually a multiple of eight
 - So 42 is usually written as 00101010
 - Might also see it written as 0b00101010 to signify it is binary
- Octal and Hexadecimal often used to compress binary
 - Octal is a base-8 system, Hexadecimal is base-16
 - Both of these are powers of two
- Each octal digit equates to three consecutive bits of a binary number
 - Useful for 3 bit adders
- Each hex digit equates to four consecutive bits
- Binary 00111011 | Decimal 59 | Hex 3B | Octal 73

BINARY	HEXADECIMAL	OCTAL	DECIMAL
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	8	10	8
1001	9	11	9
1010	A	12	10
1011	В	13	11
1100	С	1 4	12
1101	D	15	13
1110	E	16	1 4
1111	F	17	15

Binary Addition

- Challenge Build a circuit to add two binary numbers together
- First let's recap how addition works
 - Add each column together from right
 - If bigger than 9, we carry over into the next column
 - Binary addition is the same, except we carry if the value is greater than one

Addition

Addition

Addition

Addition

Addition

$$0+64+32+16+0+0+1 = 113$$

Overflow

Overflow

Overflow

```
1 0 0 0 1 1 1 0 0

+ 1 0 0 1 0 1 0 1 128+16+4+1 =149

1 1 0 1 1 1 0 0 1 128+64+16+8+4 =220

1 0 1 1 1 0 0 0 1 =369
```

Building an Adder

- Half adder: adds two bits
- Full adder: adds three bits
- Adder: adds two integers

Half adder

carry bit

а	b	sum	carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Half Adder never has a situation where sum and carry are both 1

Half-Adder

- Each column takes in two input bits
- And produces a sum bit and a carry bit

• A	В	Sum	Carry
• 0	0	0	0
• 0	1	1	0
• 1	0	1	0
• 1	1	0	1
		(Xor)	(And)

Full adder

sum bit

carry

Full adder

a	b	C	sum	carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full-Adder — Truth Table

C_{in}	A	В	S	$C_{ ext{out}}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Ripple Carry 4 bit Adder

Subtraction

- Can design a logic circuit to perform the subtraction
- Half-subtractor and full-subtractors
- But another way subtraction by addition
- 4096-2048 is the same as 4096 + (-2048)
- How to represent a negative number in binary?

Representing negative numbers in binary

Four approaches

- Sign and Magnitude
 - Use top bit to represent sign (just as we do in decimal)
 - Has 2 zeroes
 - Addition is 'tricky'
- One's complement
 - Negative values are inverted (Not-ed)
 - Has two zeroes, but addition now works as with unsigned numbers (more or less)
- Excess-n
 - Add a fixed offset to all values
- Two's complement
 - Very similar to one's complement but we invert negative numbers and add one
 - Only one zero, but we have one more negative number than positive
 - Addition same as with unsigned numbers

4-BIT SIGNED ENCODINGS

Sign and Magnitude

1111	-7	0000	-3	1000	-7	1000	-8
1110	-6	0001	-2	1001	-6	1001	-7
1101	-5	0010	-1	1010	-5	1010	-6
1100	-4	0011	0	1011	-4	1011	-5
1011	-3	0100	+1	1100	-3	1100	-4
1010	-2	0101	+2	1101	-2	1101	-3
1001	-1	0110	+3	1110	-1	1110	-2
1000	-0	0111	+4	1111	-0	1111	-1
0000	+0	1000	+5	0000	+0	0000	0
0001	+1	1001	+6	0001	+1	0001	+1
0010	+2	1010	+7	0010	+2	0010	+2
0011	+3	1011	+8	0011	+3	0011	+3
0100	+4	1100	+9	0100	+4	0100	+4
0101	+5	1101	+10	0101	+5	0101	+5
0110	+6	1110	+11	0110	+6	0110	+6
0111	+7	1111	+12	0111	+7	0111	+7

Excess-3

One's

Complement

Two's

Complement

Representing negative numbers

Possible solution: sign and magnitude

Two's Complement

```
0000
0001
0010
0011
0100
0101
                                        Represent the negative number -x
0110
                                        using the positive number 2^n - x
0111
1000
1001
1010
1011
1100
1101
1110
1111
```

Two's Complement

```
0000
      0
0001
0010
0011
0100
0101
      5
0110
0111
1000
      -8 (16 - 8)
      -7 (16 - 9)
1001
     -6 (16 - 10)
1010
     -5 (16 - 11)
1011
1100
     -4 (16 - 12)
     -3 (16 - 13)
1101
     -2 (16 - 14)
1110
     -1 (16 - 15)
1111
```

Represent the negative number -x using the positive number $2^n - x$

Note - we use 2^n when the biggest value available is 2^n -1

Two's Complement

```
0000
       0
0001
0010
                            positive numbers range:
0011
                            0 \dots 2^{n-1} - 1
0100
0101
       5
0110
0111
1000
          (16 - 8)
      -7 (16 - 9)
1001
      -6 (16 - 10)
1010
      -5 (16 - 11)
1011
                            negative numbers range:
1100
      -4 (16 - 12)
                            -1 \dots -2^{n-1}
      -3 (16 - 13)
1101
      -2 (16 - 14)
1110
      -1 (16 - 15)
1111
```

Input: x

Output: -x (in two's complement)

Insight: if we solve this we'll know how to subtract:

$$y - x = y + (-x)$$

By product is that:

We get out subtracter for free

We get our comparator for free

Two's complement

- To get the negative version of a number
 - Invert the bits
 - Add 1
- So, if we want -29
 - 29 = 0001 1101
 - Invert = 1110 0010
 - Add 1 = 1110 0011
- So, if we want -30
 - 30 = 0001 1110
 - Invert = 1110 0001
 - Add 1 = 11100010

Example

- 30-29
- 30+ (-29)

- 30 = 0001 1110
- -29 = 1110 0011
- -----
 - = 0000 0001 = 1

Example

- 29-30
- 29+ (-30)

- 29 = 0001 1101
- -30 = 1110 0010

= 1111 1111 = -1

Example (4 bits)

```
• -3 -4
```

```
• -3 = 1101
```

Input: x

Output: -*x* (in two's complement)

Idea:
$$2^n - x = 1 + (2^n - 1) - x$$

11111111 _{two}

11111111 10101100 (some x example)

Input: x

Output: -*x* (in two's complement)

Idea:
$$2^n - x = 1 + (2^n - 1) - x$$

11111111 _{two}

 $\frac{11111111}{10101100} \text{ (some x example)}$ $\frac{10101100}{01010011}$

Input: x

Output: -x (in two's complement)

Idea:
$$2^n - x = 1 + (2^n - 1) - x$$

11111111 _{two}

 $\frac{10101100}{01010011} \text{ (some x example)}$ $\frac{10101100}{01010011} \text{ (flip all the bits)}$

Now add 1 to the result

Input: 4

Output: should be 12 (representing -4 in two's compelemt)

Input: 0100

Flip the bits: 1011

Input: 4

Output: should be 12 (representing -4 in two's compelemt)

Input: 0100

Flip the bits: 1011

Add one:

Input: 4

Output: should be 12 (representing -4 in two's compelemt)

Input: 0100

Flip the bits: 1011

Add one: +

Output: 1100

Input: 4

Output: should be 12 (representing -4 in two's compelemt)

Input: 0100

Flip the bits: 1011

Add one: + 1

Output: 1100

 $= 12_{\text{ten}}$

To add 1:

Flip all the bits from right to left, stop when the first 0 flips to 1

Von Neumann Architecture

Computer System

The Arithmetic Logical Unit

Computer System

The Arithmetic Logical Unit

The ALU computes a function on the two inputs, and outputs the result

f: one out of a family of pre-defined arithmetic and logical functions

- □ Arithmetic functions: integer addition, multiplication, division, ...
- □ logical functions: And, Or, Xor, ...

Which functions should the ALU perform?
A hardware / software tradeoff. (RISC – why graphics cards work)

The Hack ALU

- Operates on two 16-bit, two's complement values
- Outputs a 16-bit, two's complement value
- Which function to compute is set by six 1-bit inputs
- Computes one out of a family of 18 functions
- Also outputs two 1-bit values (to be discussed later).

out
0
0 1
-1
X
у
!x
x y !x !y -x -y x+1
-X
-y
x+1
y+1
x-1
y-1
x+y
x-y
y+1 x-1 y-1 x+y x-y y-x x&y x y
x&y
x y

The Hack ALU

out
0
1
-1
X
-1 x y !x !y -x -y x+1
!x
!y
-X
-y
x+1
y+1 x-1
x-1
y-1
x+y
x-y
x-y y-x x&y x y
x&y
x y

The Hack ALU

To cause the ALU to compute a function, set the control bits to one of the binary combinations listed in the table.

control bits

zx	nx	zy	ny	f	no	out
1	0	1	0	1	0	0
1	1	1	1	1	1	1
1	1	1	0	1	0	-1
0	0	1	1	0	0	Х
1	1	0	0	0	0	у
0	0	1	1	0	1	!x
1	1	0	0	0	1	!y
0	0	1	1	1	1	-X
1	1	0	0	1	1	-y
0	1	1	1	1	1	x+1
1	1	0	1	1	1	y+1
0	0	1	1	1	0	x-1
1	1	0	0	1	0	y-1
0	0	0	0	1	0	x+y
0	1	0	0	1	1	x-y
0	0	0	1	1	1	y-x
0	0	0	0	0	0	y-x x&y
0	1	0	1	0	1	x y