

26V 耐压, 5V/9V 适配器自动识别, 双节锂电池高效充电管理芯片

特性

- 内置 OVP
- 高至 26V 输入耐压,极佳的抗浪涌能力
- 自动识别 5V 或者 9V 充电器接入
- 输入电流的自适应功能
- 极少的外围,支持 2.2µH 电感
- 电池充电电流最高可达 1.5A
- 充电恒流值可调
- 涓流、恒流、恒压三种充电模式
- 充电状态指示
- NTC 电池高低温保护
- 抖频设计超低 EMI
- 内置欠压保护,过温保护
- 无铅无卤封装, ESOP8

应用

- 蓝牙音响
- 对讲机
- 智能家居
- 电动工具

订购信息

产品型号	封装形式	器件标识	包装方式
TX5817	ESOP8	TX5817	编带

概述

TX5817是一款宽电压输入,专门为双节锂电池设计的充电管理芯片,兼容 5V,9V 适配器。在 5V 供电的情况下,实现升压充电,电池端最大充电电流 1.5A,在 9V 供电的情况下,实现降压充电,电池端最大充电电流 1A,充电电流可以通过外置电阻 Rset来设定。

高充电效率可以增加充电电流,减少充电时间, 非常小的满电截止电流,可以让电池充得更饱, 涓流充电可以提高电池使用寿命。

TX5817可以根据适配器的电流供应能力来自动调整充电电流,既能确保输入适配器不会出现过载现象,又能发挥适配器的最大电流能力,可适用于各种直流设备以及标准 USB 充电设备。

其他特性包括输入欠压保护,过压保护,电池温度检测,过热保护,自动再充电和充电状态指示。

TX5817 采用底部带有散热片的 ESOP8 封装, 较少的外部元件数目使其成为便携式应用方案的 最 佳选择。

典型应用原理图

引脚定义

ESOP8 (Top View)

引脚功能描述

序号	符号	I/O/P/A	描述
1	SW	Р	SWITCH 脚
2	VIN	Р	电源输入引脚
3	VLDO	0	内部供电输出引脚
4	4 LED		充电状态指示,通过对 VLDO 的发光二极管来指示充电状态,
4			充电过程中灯亮,充满后灯灭
5	NTC	I	电池温度检测端
6	ISET	0	充电电流设定脚
7	BATT	0	电池正端连接引脚
8	VSYS	0	升压输出脚
9	PGND	G	功率地

极限参数

会₩	范围		* <i>\\</i> -	说明		
参数	最小值	最大值	単位	נפינוש		
电源电压	-0.3	26	V			
储存温度	-40	125	°C			
环境工作温度	-40	85	°C			
耐 ESD 电压(人体模型)	2000		V	НВМ		
热阻	热阻					
$\theta_{JC}(SOP)$		10	°C/W			
$\theta_{JA}(SOP)$		50	°C/W			
焊接温度		260	°C	15 秒内		

注: 在极限值之外或任何其他条件下, 芯片的工作性能不予保证。

电气特性

限定条件: (VIN=5.0V, VBAT=7.4V, T_A=25℃)

参数	符号	条件	最小值	典型值	最大值	单位	
输入参数	输入参数						
输入电压	VIN		4.7	5	7	V	
输入过压保护阈值	V_{OVP}	VIN 电压上升到保护后下降		11		V	
振荡器频率	Fosc			1.1		MHz	
输入静态电流	IQ	无电池		3		mA	
Low side 导通电阻	R _{L(ON)}			100		mΩ	
电池充电参数							
充电终止电压	V_{BATT}			8.4			
重新充电阈值	V_{RECH}			8.2		V	
涓流充电阈值	V _{TRK_CH}			5.8			
涓流充电电流	I _{CHG_TRK}			0.15			
	I _{CHG}	R _{SET} =2kΩ		1.46			
 恒流充电电流		R _{SET} =3kΩ		0.98		Α	
四机儿电电机		R _{SET} =5.1kΩ		0.61			
		R _{SET} =10kΩ		0.31			
充电终止电流	I_{BF}			50		mA	
电池反向电流	I _{BATT}	VIN=0		2		μΑ	
I _{SET} 参考电压				1.19		V	
VLDO 供电							
VLDO 输出电压				4.9		V	
逻辑							
过温保护	T _{SD}			150		· °C	
过温迟滞				20			

限定条件: (VIN=9.0V, VBAT=7.4V, TA=25℃)

双节锂电池充电管理芯片

人 仁() 1 上上上					C 12 2 10 1	
参数	符号	条件	最小值	典型值	最大值	单位
输入参数						
输入电压	VIN		8.5	9	10.5	V
输入过压保护阈值	V _{OVP}	VIN 电压上升到保护后下降		11		V
输入静态电流	IQ	无电池		2		mA
电池充电参数						
充电终止电压	V_{BATT}			8.4		
重新充电阈值	V _{RECH}			8.2		V
涓流充电阈值	V _{TRK_CH}			5.8		
涓流充电电流	I _{CHG_TRK}			0.09		
	Існв	R _{SET} =1.2KΩ		1.20		A .
恒流充电电流		R _{SET} =2KΩ		0.75		
		R _{SET} =3KΩ		0.51		
充电终止电流	I _{BF}			50		mA
电池反向电流	I _{BATT}	VIN=0		2		μA
I _{SET} 参考电压				1.19		V
VLDO 供电						
VLDO 输出电压				4.90		V
逻辑						
过温保护	T _{SD}			150		°C
过温迟滞				20		

典型特性曲线

应用说明

TX5817是一款宽电压输入,专门为双节锂电池充电的充电管理芯片,兼容 5V,9V 适配器。TX5817内部充电频率可以达到1.1MHz,充电电流可以通过外置ISET脚位对地电阻来设定。同时具有过压关断,过温关断,以及输入功率保护的功能。

1. 适配器电压的自动识别描述

TX5817 既支持 5V 适配器充电,又支持 9V 适配器充电,芯片自动识别插入的适配器是 5V 还是 9V,当识别到是 5V 充电器时,采用开关式升压充电模式,最高支持电池端 1.5A 的充电电流;当识别到 是 9V 充电器时,采用线性降压充电模式,最高支持电池端 1A 的充电电流。

2. 适配器电流的自适应描述

TX5817可以自适应适配器的电流供应能力,来自动调整充电电流,既能确保输入适配器不会出现过载拉死 适配器的现象,又能发挥适配器的最大电流能力,所以适用于各种直流设备以及标准 USB 充电设备。

3. 充电过程描述

TX5817采用完整的 CC/CV 充电模式。当锂电池电压小于 5.8V 时,系统以涓流模式对电池充电。当 锂电 池电压大于 6V 而小于 8.2V 时,恒流充电进行,当锂电池电压高于 8.2V 而小于 8.4V 时,恒压充电模式进行。当充电电流小于 50mA 时充电停止。

4. 充电 LED 指示灯

在充电过程中, LED pin 到 VLDO 之间的 LED 会保持常亮状态,充电结束后,LED 会熄灭。

5. 电池温度监测

为了防止温度过高或者过低对电池造成的损害,TX5817内部集成有电池温度监测电路。电池温度监测是通 过监测 NTC 管脚的电压实现的,NTC 管脚的电压由电池内的 NTC 热敏电阻和一个电阻分压网络实现,如典型应用电路所示。如果不需要电池温度监测功能,则 NTC 脚悬空即可。

6. 自动重新充电

一个充电周期结束后,TX5817会关闭充电显示状态,在此期间,电池可能会因为自然放电出现电量下降,为了保证电池不会因为在连接适配器时,电量自动耗尽,当电池电压下降到自动充电阈值(典型值8.2V)

时,新的充电周期就会自动开始。

7. 充电电流设定

TX5817的充电电流可以用 ISET 对地的电阻 RSET 来进行设置。充电电流按照以下方程式来设定:

5V 适配器
$$I_{CHG} \approx 1.19 \times \frac{2800}{R_{SET}(k\Omega) + 0.24(k\Omega)} (mA)$$
9V 适配器
$$I_{CHG} \approx 1.19 \times \frac{1400}{R_{SET}(K\Omega) + 0.24(k\Omega)} (mA)$$

8. VIN 端输入电容选择

为防止充电头热插拔的瞬态高压对芯片造成损坏,需要靠近充电接口端加两个 22μF 电容,另外靠近 TX5817 的芯片管脚 VIN 端加 1μF 电容以滤除高频杂波。

9. VSYS 端电容的选择

选用一颗 22μF 陶瓷贴片电容并尽量靠近肖特基负端摆放,另外选一颗 0.1μF 的电容尽量靠近 VSYS 脚摆放。

10. 电感的选择

需要确定电感的纹波电流。一般建议的电感纹波电流为电感平均电流的40%,其计算公式为:

$$L = \left(\frac{V_{IN}}{V_{OUT}}\right)^2 * \frac{V_{OUT} - V_{IN}}{I_{CC} * F_{SW} * 40\%}$$

其中 Fsw 为开关频率, Icc 为设定的充电电流。

TX5817对于不同纹波幅值具有相当大的适应性,所以最终电感的取值即便稍微和计算值有所偏差也不会

影响系统整体的工作性能。

所选电感的饱和电流大小在全负载范围内一定要大于系统工作时电感的峰值电流:

$$I_{SAT.MIN} > \frac{V_{IN}}{V_{OUT}} * I_{CC} + (\frac{V_{IN}}{V_{OUT}})^2 * \frac{V_{OUT} - V_{IN}}{2 * F_{SW} * L}$$

电感在特定系统工作频率下的 DCR 和磁芯损耗必须尽量低以获得较好的系统效率。

11.推荐应用电路

下面推荐的应用电路外围参数一样,用 5V 的适配器时,电池恒流充电的电流是 1A, 用 9V 的适配器时,电池恒流充电的电流自动减半,约为 0.51A。

双灯指示的状态如下表:

充电状态	红灯(RED)	绿灯(GREEN)
正在充电状态	亮	灭
电池充满状态	灭	亮
过压, 过温保护	灭	亮

做单灯指示的设计去掉图中 MOS(2302)和绿灯(GREEN)就可以了。

5V/2A 适配器, 1A 充电电流参考电路(ESOP8 封装)

9V/1A 适配器, 0.51A 充电电流参考电路(ESOP8 封装)

封装尺寸图

ESOP8 封装尺寸图

SYOMBOL	MILLIMETER			
	MIN	NOM	MAX	
А			1.75	

双节锂电池充电管理芯片

A1	0.05	0.10	0.15
A2	1.30	1.40	1.50
A3	0.60	0.65	0.70
b	0.39		0.48
b1	0.38	0.41	0.43
С	0.21		0.26
c1	0.19	0.20	0.21
D	4.70	4.90	5.10
D1	3.3BSC		
Е	5.80	6.00	6.20
E1	3.70	3.90	4.10
E2	2.4BSC		
е	1.27BSC		
h	0.25		0.50
L	0.50		0.80
L1	1.05BSC		
θ	0		8°