

					Pri	ntec	l Pa	ge: 1	of 3	į
				Sub	ject	Cod	le: ŀ	KEC	C602	,
Roll No:										

BTECH (SEM VI) THEORY EXAMINATION 2021-22 CONTROL SYSTEM

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1.	Attempt all questions in brief.	2*10 = 20
----	---------------------------------	-----------

Q. No	Questions	CO
No		
(a)	Compare any four differences between close loop and open loop system.	1
(b)	Draw the Elementary Block Diagram of open loop and close loop system.	1
(c)	Enlist the condition for a system to be controllable.	2
(d)	List any two advantages of space state model over transfer function model.	2
(e)	Define Settling time and Maximum peak overshoot.	3
(f)	Define Rise time and Peak Time.	3
(g)	Illustrate how the location of poles of a system related to stability.	4
(h)	Describe the Angle of Departure.	4
(i)	Define Gain Cross Over Frequency.	5
(j)	Enlist the significant of Polar plot.	5

SECTION B

2. Attempt any three of the following: 10*3 = 30

Q.	Questions	CO
No		
(a)	Obtain overall Transfer function for the given block diagram shown in Figure using Block reduction Method: $ \begin{array}{c} R(s) \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ +$	1
(b)	Construct the state space model for the system described by the differential equation below. The output matrix should be independent of input and be able to measure each state variable. $\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 6y = 4u(t)$	2
(c)	The system shown in fig(a) when subjected to a unit step input, the output response is shown in fig(b). Determine the value of K & T from the response curve.	3

Printed Page: 2 of 3
Subject Code: KEC602
Roll No:

BTECH (SEM VI) THEORY EXAMINATION 2021-22 CONTROL SYSTEM

SECTION C

3. Attempt any *one* part of the following: 10*1 = 10

Q.	Questions	CO
No		
(a)	For the system shown in Figure, obtain the transfer function by signal flow	1
	graph method.	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(1)	h	
(b)	Using Mason's gain formula, evaluate the overall transfer function:	1
	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	

4.	Attempt a	any <i>one</i> part of the following:	10 *1 = 10
	Q.	Questions	CO
	No		

110		
(a)	A single input single-output system has transfer function, enlist the state equations, and draw the state diagram.	2

Printed Page: 3 of 3
Subject Code: KEC602
Roll No:

BTECH (SEM VI) THEORY EXAMINATION 2021-22 CONTROL SYSTEM

	$\frac{Y(s)}{U(s)} = \frac{1}{S^3 + 7S^2 + 14S + 8}$	
(b)	Examine the Controllability and Observability of the following system:	2
	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} S = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} 10 & 5 & 1 \end{bmatrix}$	

Atten	npt any <i>one</i> part of the following:	0*1 = 10
Q.	Questions	CO
No		
(a)	The open loop transfer function of a unity feedback system is given by $G(S) = \frac{K}{S(1+ST)}$ Where 'K' & 'T' are positive constants. By what factor should the amplifier gain be reduced so that the peak overshoot of unit step response of the system is reduced from 75% to 25%.	3
(b)	Evaluate the unit step response with proper derivation for an under damped 2 nd order system.	3

tten	npt any <i>one</i> part of the following:	10*1 = 10
Q.	Questions	СО
No		
(a)	For a unity feedback system of O.L.T.F is given by	4
. ,	$G(S)H(S) = \frac{K}{S(S+1)(S+2)(S+3)}$	
	a) Sketch the root locus for $0 \le K \le \infty$.	
	b) At what value of K, the system become unstable.	
(b)	For a unity feedback system of O.L.T.F is given by	4
	$G(S)H(S) = \frac{K}{S(S+6)(S^2+4S+13)}$	
	a) Sketch the root locus for $0 \le K \le \infty$.	
	b) At what value of K, the system become stable.	

Q. No	Questions	СО
(a)	Sketch the Bode Plot for the given system and comment on stability of the used systems: $G(s)H(s) = \frac{4}{s(1+0.5s)(1+0.08s)}$	5
(b)	S Sketch the Bode Plot for the given system and comment on stability of the used systems: $G(s)H(s) = \frac{30}{s(1+0.5s)(1+0.08s)}$	5