东南大学数字逻辑电路

实验报告

学号: 04022212

姓名: __ 钟 源___

2023年11月19日

实验名称:实验4集成器件组合逻辑电路设计

实验类型:综合性

成绩:

一、实验内容提要

设计一个简易的 ALU:

- 1) 根据输入的运算命令(命令是两位二进制数码,自行定义),设计一个电路完成两个一位二进制数 A,B 的加、减、与、或四种运算,运算的结果用 F 输出,进位或者借位用 CO 输出;
 - 2) 给出电路实现方案;
 - 3) 调试电路, 实现控制命令完成 4 种不同运算。

二、实验仪器与元器件

1.ADALM2000 1 台

2.面包板 1 块

3.集成芯片:

1) SN74HC153N 2片

2) SN74HC86N 1片

4.杜邦线 9 条,导线若干。

三、设计过程及步骤

1.根据题目要求列出真值表:

S ₁	S ₀	Α	В	F	Co
0	0	0	0	0	Х
0	0	0	1	0	Х
0	0	1	0	0	Х
0	0	1	1	1	X
0	1	0	0	0	X
0	1	0	1	1	X
0	1	1	0	1	X
0	1	1	1	1	X
1	0	0	0	0	0
1	0	0	1	1	0
1	0	1	0	1	0
1	0	1	1	0	1
1	1	0	0	0	0
1	1	0	1	1	1
1	1	1	0	1	0
1	1	1	1	0	0

注: 定义 S₁S₀为 00 时, 做与运算; S₁S₀为 01 时, 做或运算;

S₁S₀ 为 10 时, 做加运算; S₁S₀ 为 11 时, 做减运算。

2.设计 MUX:

其中 G 不是输入变量, 可见 G=0 时可以满足要求。

3.设计 LU:

4.设计 AU:

5.优化设计:

设计如下:

一开始,我均用与非门实现 LU 单元与 AU 单元的 Co, 但这样需要用到 1 片 SN74HC20N 和 1 片 SN74HC00N,但随后我发现,只要运用四选一数据选择器实现,只需要用到 1 片 SN74HC153N 即可。

S。 A B YLV C。 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0

6.电路设计图:

7.实现方法:

1) 使用 SN74HC86N:

得到 $Y_{AU} = A \oplus B$,具体接法如下引脚图所示:

2) 使用第一片 SN74HC153N:

得到 C_O 和 Y_{LU} ,具体接法如下引脚图所示:

3) 使用第二片 SN74HC153N:

实现 MUX 功能,并得到最终的 F,具体接法如下引脚图所示:

8.电路照片:

原图:

注解:

注: 接线中红线接高电平, 蓝线接地。

四、结果分析

原图:

注解:

于是得到真值表:

S ₁	S ₀	А	В	F	Co
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0

0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	1	1	1
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	0	0
1	0	0	1	1	0
1	0	1	0	1	0
1	0	1	1	0	1
1	1	0	0	0	0
1	1	0	1	1	1
1	1	1	0	1	0
1	1	1	1	0	0

得到实验结论:

输出结果与实验要求真值表一致, ALU 根据输入的运算命令完成两个一位二进制数 A, B 的加、减、与、或四种运算, 运算的结果用 F 输出, 进位或者借位用 CO 输出。

当 S₁S₀为 00 时, 做与运算;

S₁S₀为 01 时, 做或运算;

S₁S₀为 10 时,做加法运算;

S₁S₀为 11 时,做减法运算。