

Term End Examination - November 2012

Course : MAT101 - Multivariable Calculus and Differential Slot: F1+TF1

Equations

Class NBR : 4330 / 4969

Time : Three Hours Max.Marks:100

PART – A (10 X 3 = 30 Marks) Answer <u>ALL</u> the Questions

1. If
$$z = f(x, y)$$
 and $x = u + v$, $y = u - v$ then find $\frac{\partial z}{\partial u} + \frac{\partial z}{\partial v}$.

2. If
$$u = \frac{x+y}{1-xy}$$
 and $v = \tan^{-1} x + \tan^{-1} y$ then find $\frac{\partial(u,v)}{\partial(x,y)}$.

3. Calculate
$$\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \frac{xdydx}{x^2+y^2}$$
 by changing in to polar coordinates.

4. Evaluate
$$\int_{0}^{\infty} x^{2} e^{-x^{4}} dx$$

- 5. Find the directional derivative of $\phi = 2xy + z^2$ at (1,-1,3) in the direction of $\vec{i} + 2\vec{j} + 2\vec{k}$.
- Evaluate $\int_{c} \{(2xy x^2)dx + (x^2 + y^2)dy\}$ where C is the closed curve of the region bounded by $y = x^2$ and $y^2 = x$.

7. Solve
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{3x}$$

- 8. Reduce $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = x + \frac{1}{x}$ in to a linear differential equation with constant coefficients.
- 9. Find the Laplace transform of $te^{-t}\cos t$.

10. Determine
$$f(0)$$
 and $f(\infty)$ if $F(s) = \frac{2}{(s+1)^3} + \frac{4}{(s+1)^2} + \frac{4}{(s+1)}$.

PART - B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

a) Expand $e^x \log(1+y)$ at (0,0) as the Taylor's series up to third degree.

- b) A rectangular box open at the top is to have a volume of 32 cubic feet. Find the [7] dimensions of the box requiring least material for its construction.
- 12. a) Change the order of integration in $\int_0^1 \int_{x^2}^{2-x} xy dy dx$ and hence evaluate it. [7]
 - b) Evaluate $\iiint_D (x+y+z)dxdydz$ by transforming in to spherical coordinates where D [7]

is the volume bounded by the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.

- a) Verify Green's theorem in the XY- plane for $\int_{C} \left\{ (3x^2 8y^2)dx + (4y 6xy)dy \right\}$ [7] where C is the boundary of the region given by x = 0, y = 0, x + y = 1
 - b) Evaluate $\iint_{S} \vec{F} \cdot \hat{n} ds$ where $\vec{F} = 4x\vec{i} 2y^2\vec{j} + z^2\vec{k}$ and S is the surface bounding the region $x^2 + y^2 = 4, z = 0$ and z = 3.
- 14. a) Solve $\frac{d^2y}{dx^2} + 4y = 4\tan 2x$ by using the method of variation of parameters. [7]
 - b) Solve $(D^3 + D^2)y = 10e^x \cos x$ by the method of undetermined coefficients. [7]
- 15. a) Find the Laplace transform of the triangular wave function $f(t) = \begin{cases} t & \text{for } 0 \le t \le a \\ 2a t & \text{for } a \le t \le 2a \end{cases}$
 - b) Using Convolution theorem, find $L^{-1} \left\{ \frac{s}{(s^2 + a^2)^2} \right\}$ [7]
- a) Show that $\vec{F} = (y^2 + 2xz^2)\vec{i} + (2xy z)\vec{j} + (2x^2z y + 2z)\vec{k}$ is irrotational and also find its scalar potential. [7]
 - b) Using Laplace transform solve the integral equation $\frac{dy}{dt} + 2y + \int_{0}^{t} y(t)dt = 0$, given that y(0) = 1.
- 17. a) Using Laplace transform solve $y''(t) 3y'(t) + 2y(t) = 4t + e^{2t}$ where y(0) = 1, y'(0) = -1.
 - b) Solve the differential equation $x^{2} \frac{d^{2}y}{dx^{2}} + 4x \frac{dy}{dx} + 2y = x \log x$ [7]