ΜΕΜ-205 Περιγραφική Στατιστική

Τμήμα Μαθηματικών και Εφ. Μαθηματικών, Πανεπιστήμιο Κρήτης

Κώστας Σμαραγδάκης (kesmarag@gmail.com)

3η εβδομάδα (διάλεξη θεωρίας)

Ενδοτεταρτημοριακό Εύρος (Interquartile Range-IQR)

Η απόσταση μεταξύ του πρώτου και τρίτου τεταρτημορίου

$$\overline{\mathsf{IQR}} = Q_3 - Q_1$$

Περιλαμβάνει το 50 % (κεντρικότερες) παρατηρήσεις του δείγματος

500 k

- Ως ακραία παρατήρηση χαρακτηρίζεται εκείνη που διαφέρει σημαντικά από τις περισσότερες παρατηρήσεις.
- Μια ακραία παρατήρηση μπορεί να οφείλεται σε μεταβολές των συνθηκών μέτρησης ή μπορεί να υποδηλώνει κάποιο πειραματικό σφάλμα.

Κριτήριο 1.5*IQR για αναγνώριση Ακραίων τιμών

Το κριτήριο αναγνωρίζει ως ακραίες τις παρατηρήσεις οι οποίες είναι μικρότερες από $Q_1-1.5*{
m IQR}$ ή μεγαλύτερες από $Q_3+1.5*{
m IQR}$.

Παράδειγμα

Newcomp.

Παράδειγμα - Μετρώντας τη ταχύτητα του φωτός

Χρόνος ταξιδιού:

$$y = 24.8 + 0.001 * x$$
 nanoseconds.

Απόσταση: $\approx 7444~m$ Μετρήσεις του x:

									\sim	
28	26	33	24	34	(-44)	27	16	40	(-2)	29
22	24	21	25	30	23	29	31	19	24	20
36	32	36	28	25	21	28	29	37	25	28
26	30	32	36	26	30	22	36	23	27	27
28	27	31	27	26	33	26	32	32	24	39
28	24	25	32	25	29	27	28	29	16	23

Παράδειγμα

Παράδειγμα - Μετρώντας τη ταχύτητα του φωτός

Χρόνος ταξιδιού:

24.8 + 0.001 * x nanoseconds.

Απόσταση: $\approx 7444 \, m$

Διατεταγμένες μετρήσεις του x:

66

-44 -2 16 16 19 20 21 21 22 22	23
23 23 24 24 24 24 25 25 25	25
25 26 26 26 26 27 27 27 27	27
27 28 28 28 28 28 28 29 29	29
29 29 30 30 30 31 31 32 32 32	32
32 33 33 34 36 36 36 36 37 39	40

		حماء								
-44	-2	16)	16	19	20	21	21	22	22	23
23	23	24	24	24	24	24	25	25	25	25
25	26	26	26	26	26	27	27	27	27	27
27	28	28	28	28	28	28	28	29	29	29
29	29	30	30	30 =	 31	31	32	32	32	32
32	33	33	34	36	36	36	36	37	39	40

- ightharpoonup Μέση τιμή $\bar{x} = 26.21$
- ▶ Διάμεσος M = 27.0
- ightharpoonup Πρώτο τεταρτημόριο $Q_1=24.0$, Τρίτο τεταρτημόριο $Q_3=30.75$
- ightharpoonup Ενδοτεταρτημορικό εύρος $IQR = Q_3 Q_1 = 30.75 24.0 = 6.75$
- \triangleright $(Q_1 1.5 * IQR, Q_3 + 1.5 * IQR) = (13.875, 40.875) <math>\leftarrow$
- ► Ακραίες τιμές κατά 1.5*IQR : -44 και -2

Παράδειγμα

- ► Προσέγγιστική τιμή της ταχύτητας του φωτός σήμερα: 299792 km/s
- ▶ Προσέγγιση με τη μέση τιμή των παρατηρήσεων: 299844 km/s
- ► Προσέγγιση με τη διάμεσο των παρατηρήσεων: 299835 km/s
- ▶ Προσέγγιση με τη μέση τιμή εκτός των ακραίων παρατηρήσεων: $299809 \, \bar{k} m/s$

Γράφημα Box-and-Whisker

► Για το παράδειγμα υπολογισμού της ταχυτητας του φωτός.

Γράφημα Box-and-Whisker

Άσκηση

Κατασκευάστε το γράφημα box-and-whisker για τις διατεταγμένες παρατηρήσεις:

M=2

$$Q_1 = \frac{1}{4} \cdot (8-1) = \frac{1}{4} \neq \frac{1}{4} = 1.75$$
 $Q_3 = \frac{1}{4} \cdot (8-1) = \frac{1}{4} \neq \frac{1}{4} = 1.75$
 $Q_1 \in [Q_2, Q_3]$
 $Q_1 \in [Q_2, Q_3]$
 $Q_2 = \frac{1}{4} \cdot (8-1) = \frac{1}{4} = 5.25$
 $Q_3 = \frac{1}{4} \cdot (8-1) = \frac{1}{4} = 5.25$

Γράφημα Box-and-Whisker

Άσκηση

Κατασκευάστε το γράφημα box-and-whisker για τις διατεταγμένες παρατηρήσεις:

$$TQR = 5.25 - (-1) = 6.25$$

$$5.25 + 1.5 \cdot 6.25 = 14.625$$

$$-10.335 14.625$$

$$-1 - 1.5 \cdot 6.25 = -10.335$$

Γεωμετρικός Μέσος

Έστω παρατηρήσεις μιας μεταβλητής Χ. Ο γεωμετρικός μέσος G ορίζεται ως:

$$G = (x_1 \cdot x_2 \dots x_N)^{1/N}$$

Χρησιμοποιείται κυρίως σε οικονομικά και επιχειρηματικά προβλήματα για την μελέτη των ρυθμών μεταβολής οικονομικών μεγεθών με το χρόνο. Τις περισσότερες φορές είναι ευκολότερο να υπολογίσουμε τον λογάριθμο του G.

$$\log G = \frac{1}{N} \sum_{n=1}^{N} \log x_n$$

Παράδειγμα

Να βρεθεί ο γεωμετρικός μέσος των παρατηρήσεων:

14, 5, 10, 20, 1

$$\log G = \frac{1}{5} \left(\log(14) + \log(5) + \log(10) + \log(20) + \log(1) \right) = \frac{4.146128}{5} = 0.829226$$

$$G = 10^{0.829226} = 6.748785$$

Γεωμετρικός Μέσος και Ανατοκισμός

$$X_{i+1} = X_{i+1} X_{i+1} = X_{i+1} X_{i} = (1 + Y_{i+1}) X_{i} = (1 + Y_{i+1}) (1 + Y_{i}) X_{i+1}$$

Θέλουμε να βρούμε "μέσο επιτόκιο" r τέτοιο ώστε:

επίσης ότι κάθε έτος έχουμε διαφορετικό επιτόκιο r_i εκφρασμένο ως δεκαδικό αριθμό.

 $x_N = x_0(1+r)^N$

 $1 + r = \left((1 + r_1)(1 + r_2) \cdots (1 + r_N) \right)^{1/N}$

r = G - 1

$$X_{i+1} =$$

ightharpoonup Μετά το Ν-οστό έτος θα έχουμε κεφάλαιο: $\hat{x_N} = x_0 \prod_{n=1}^N (1+r_n)$

- Έστω x_0 ένα αρχικό κεφάλαιο και x_i , $j=1,\ldots,N$ το κεφάλαιο μετά από j έτη. Έστω

Άρα

Έχουμε:

όπου G ο γεωμετρικός μέσος των $\{(1+r_n)\}_{n=1}^N$

Γεωμετρικός Μέσος και Ανατοκισμός

$$X_{m} = (1+r_{m})X_{m-1}$$
 $G = (1+r_{1})(1+r_{2}):..(1+r_{N})$

Γνωρίζουμε ότι

$$1 + r_n = x_n/x_{n-1}, n = 1, ..., N$$

Ο γεωμετρικός μέσος G των $1+r_n$ ταυτίζεται με αυτό των x_n/x_{n-1} ως αποτέλεσμα

$$G = \left(\frac{\cancel{x_1}}{x_0}\frac{\cancel{x_2}}{\cancel{x_1}}\cdots\frac{\cancel{x_{N}}\cancel{x_1}}{\cancel{x_{N}}\cancel{x_2}}\frac{\cancel{x_N}}{\cancel{x_{N}}\cancel{x_1}}\right)^{1/N} = \left(\frac{\cancel{x_N}}{\cancel{x_0}}\right)^{1/N}$$

και

$$r = \left(\frac{x_N}{x_0}\right)^{1/N} - 1$$

Το r θα το ονομάζουμε **μέσο ρυθμό μεταβολής** και εξαρτάται μόνο από την αρχική και την τελική τιμή μιας χρονολογικής σειράς.

Γεωμετρικός Μέσος και Ανατοκισμός

Παράδειγμα

Το κεφάλαιο μιας επιχείρησης πενταπλασιάστηκε σε μια δεκαετία. Ποιος είναι ο μέσος ετήσιος ποσοστιαίος ρυθμός αύξήσης του κεφαλαίου;

$$r = \left(\frac{\mathsf{x}_{10}}{\mathsf{x}_0}\right)^{1/10} - 1 = \left(\frac{5 * \mathsf{x}_0}{\mathsf{x}_0}\right)^{1/10} - 1 = \underline{0.1746}$$

Παράδειγμα

Το κεφάλαιο μιας επιχείρησης υποπενταπλασιάστηκε σε μια δεκαετία. Ποιος είναι ο μέσος ετήσιος ποσοστιαίος ρυθμός μείωσης του κεφαλαίου;

$$r = \left(\frac{x_{10}}{x_0}\right)^{1/10} - 1 = \left(\frac{x_0/5}{x_0}\right)^{1/10} - 1 = -0.1487$$

- ► Είναι η τιμή της μεταβλητής με τη μεγαλύτερη συχνότητα εμφάνισης.
- ▶ Ορίζεται και για ποιοτικές μεταβλητές.
- Αν δυο ή περισσότερες τιμές έχουν την ίδια μέγιστη συχνότητα δεν ορίζεται επικρατέστερη τιμή.

Παράδειγμα

Έστω παρατηρήσεις: 2 3, 4, 1 2 6, -2, 2 Το 2 με συχνότητα 3 είναι η επικρατέστερη τιμή του δείγματος.

Επικρατέστερη τιμή ομαδοποιημένων παρατηρήσεων

Έστω οι κλάσεις που ορίζονται από τα διαστήματα με ίσο πλάτος d:

$$[a_1, a_2), [a_2, a_3), \dots, [a_j, a_{j+1}), \dots, [a_K, a_{K+1}).$$

Εάν υπάρχει μοναδικός δείκτης j τέτοιος ώστε

$$f_j > f_k, \ \forall k \neq j.$$

Τότε M_0 ∈ $[a_j, a_{j+1})$.

$$M_0 = a_j + d \frac{f_j - f_{j-1}}{(f_j - f_{j-1}) + (f_j - f_{j+1})}$$

Επικρατέστερη τιμή ομαδοποιημένων παρατηρήσεων

Παράδειγμα - Επικρατέστερη τιμή ομαδοποιημένων παρατηρήσεων

	f	
[0,1)	3	(5-4)
[1,2)	4	$M_o = 2 + 1 \cdot \frac{(3-4)}{(5-4) + (s-2)}$
[2,3)	(5)	(3-4) +(3-2)
[3,4)	2	9. 1 990
[4,5)	4	$= 2 + \frac{1}{4} = 2.25$
[5,6)	2	-1
Total	20	