UNIK4520 - Oblig 2

Snorre Bjørnstad

October 14, 2013

1 PROBLEM 1

Først regner vi ut avstanden mellom bakkestasjonen/gateway og satelitten ved hjelp av følgende formel:

$$R = \sqrt{h_s^2 + 2R_e(h_s + R_e)\cos(L_r)\cos(l)}$$

$$R = 3.7756 \cdot 10^7$$
(1.1)

Hvor

 $R_e = 6.371 \cdot 10^6$ er Jordradiusen

 $h_s = 3.5786 \cdot 10^7$ er satelittens høyde over jordoverflaten

 $L_r = 3^{\circ}$ er den relative longituden til mellom bakkestasjonen/gateway

og satelitten

 $l=43^{\circ}$ er bakkestasjonen latitude

Videre finner vi frittromstapet i up- og downlink ved hjelp av følgende formel

$$FSL = 10\log\left(\frac{4\pi R}{\lambda}\right)^2 \tag{1.2}$$

Hvor

 λ er bølgelengden til bærebølgen

R er avstanden mellom bakkestasjon og satelitt som funnet i

forrige utregning

På uplinken har vi en $\lambda=0.015\,\mathrm{m}$. Dette gir oss ett frittromstap på henholdsvis $FSL_{uv}=213.52\,\mathrm{dBW}$ og

Den totale motatte signaleffekten regnes ut på følgende måte:

$$P_r = P_t + G_r + G_t - FSL \tag{1.3}$$

Hvor

 P_t er effekten sendt ut av transmitter G_t er gainen til senderantennen G_r er gainen til mottakerantennen

FSL er frittromstapet

Senderantennensforsterkning er oppgitt til $G_t=32\,\mathrm{dBi}$ og mottakerantennen på sateliten har en oppgitt forsterkning på $G_r=40\,\mathrm{dBi}$

Senderen er i metning ved $P_{sat} = 5 \text{W} = 6.99 \text{ dBW}$ og vi operer med en "back-off" på 2 dB, Hvilket gir oss en total sendeeffekt på $P_t = P_{sat} - back of f = 4.99 \text{ dBW}$ ved help av likning 1.3 får vi en $C_u p = P_r = -131.53 \text{ dBW}$

Noise spectral density regnes ut ved hjelp av følgende likning:

$$N_0 = kT \tag{1.4}$$

Hvor

 N_0 er støy spektral tetthet k er Boltzmann konstant

T er støytemperaturen inn til antenna

På satelittens mottaker antenne har vi en støytemperatur på $T=288\,\mathrm{K}$ Dette gir oss en støyspektraltetthet på $N_{0\,up}=204.01\,\mathrm{dBWHz^{-1}}$ Energi per bit regnes enkelt ut

$$E_b = C - b \tag{1.5}$$

Hvor

b er bittraten i dB

Med en Bitrate $b=800\,\mathrm{kbps}=59.03\,\mathrm{dB}(\mathrm{bps})$ får man en total $\left(\frac{E_b}{N_0}\right)_{up}=72.47\,\mathrm{dB}$ For nedlinken har man en bølgelengde $\lambda_{down}=0.01\,\mathrm{m}$ og får av ligning 1.2 ett frittromstap på $FSL_{down}=210.00\,\mathrm{dBW}.$ Videre har vi ett antennegain på satelittens senderantenne på $G_t=35.5\,\mathrm{dbi}$ og ett antennegain for bakkestasjonen på $G_r=49.5\,\mathrm{dBi}.$

Satelitten ahr ett forsterkningstrinn som forsterker opp det innkommende signalet med G_{sat} 117 dB som gjør att sendeeffekten blir $P_r + G_{sat} = -131.53 + 117 = -14.53$

Av ligning 1.3 finner vi da att den totale mottatte effekten på nedlinken blir $C_{down} = -142.06\,\mathrm{dBW}$