Университет ИТМО

Естественно-научный факультет Кафедра высшей математики

Герасимов Дмитрий Александрович

Исследование полноты резонансных состояний оператора Шредингера для модели квантовых графов

Научный руководитель: доктор физ.-мат. наук, профессор кафедры ВМ И. Ю. Попов

 ${
m Cahkt-}\Pi$ етербург 2016

Содержание

Введен	ие
Глава	1. Обзор предметной области
1.1	Аксиоматизация квантовой механики
1.2	Уравнение Шредингера
1.3	Ток вероятности
1.4	Коэффициент прохождения
1.5	Фиксирование нотации
	1.5.1 Различные обозначения
	1.5.2 Атомная система единиц
	1.5.3 Скалярное произведение
1.6	Терминология теории рассеяния
2.1 2.2	Модель резонатора типа «пучок»
	2.2.1 Исследование случая $a=0$
	2.2.2 Исследование случая $a \neq 0$
2.3	Собственные состояния, энергии и функции Грина областей
	задачи
	2.3.1 Одномерная яма с бесконечными стенками
	2.3.2 Одномерная свободная частица
	2.3.3 Двумерная яма с бесконечными стенками
	2.3.4 Бесконечная квазиодномерная полоса с бесконечны-
	ми стенками
2.4	Асимптотика производной функции Грина в окрестности
	отверстия
2.5	Построение модели с отверстием нулевой ширины
	2.5.1 Расчет понтрягинского пространства для резонатора
	2.5.1.1 Расчет дефектного элемента
	2.5.1.2. Построение предпонтрягинского пространства

Глава 3	В. Результаты	10
3.1	Зависимость коэффициента прохождения от энергии входя-	
	щей волны при фиксированной геометрии резонатора	10
3.2	Плотности вероятности	10
3.3	Зависимость коэффициента прохождения от геометрии ре-	
	зонатора	10
Заключ	иение	11

Введение

TODO: REWRITE

• Задача полноты важна как в теории, так и на практике.

• Рассматриваем резонатор и оператор Шредингера с граничным

условием Дирихле (чисто дискретный спектр).

• Применяем возмущение, соединяя резонатор с волноводом (дискрет-

ный спектр смещается в резонансы)

Интересным вопросом является нахождение домена, на котором ре-

зонансные состояния полны. Гипотеза: на выпуклой оболочке

рассеивателя.

ТООО: Куда существующие результаты?

TODO: Картинки с резонатором из презентации

Глава 1. Обзор предметной области

TODO: REWRITE!!!

1.1. АКСИОМАТИЗАЦИЯ КВАНТОВОЙ МЕХАНИКИ

1.2. Уравнение Шредингера

1.3. Ток вероятности

1.4. Коэффициент прохождения

1.5. Фиксирование нотации

1.5.1. Различные обозначения

- Жирным обозначаются вектора: к примеру, $\mathbf{r} \in \mathbb{R}^n$, без выделения жирным их длины: $r = |\mathbf{r}|$;
- Сопряжение комплексных чисел обозначается как \overline{c} ;
- ullet Сопряжение операторов обозначается как A^* .

1.5.2. Атомная система единиц

В данной работе все расчеты ведутся в атомной системе единиц Хартри (англ. Hartree atomic units, далее ACE). В ней нормализуются следующие константы:

Величина	Значение в АСЕ	Значение в СИ
Действие	1 приведенная постоянная Планка	$\approx 1.05 \times 10^{-34}$ Дж·с
Macca	1 масса электрона	$pprox 9.1 imes 10^{-31}$ кг
Заряд	1 заряд электрона	$\approx 1.6 \times 10^{-19} \text{ K}$ л

Производными единицами, необходимыми нам, будут:

Величина	Значение в АСЕ	Значение в СИ
Длина	1 боровский радиус	$\approx 5.29 \times 10^{-11} \text{ M}$
Энергия	1 хартри	$\approx 4.3 \times 10^{-18}$ Дж

Далее, если не будет оговорено иное, все квантомеханические уравнения и вычисления будут приведены в АСЕ.

1.5.3. Скалярное произведение

В данной работе используется **физическая** нотация. В частности, это означает, что скалярное произведение в $L^2(E)$ определено как $\langle f|g \rangle = \int\limits_E \overline{f(\mathbf{x})} g(\mathbf{x}) \mathrm{d}\mathbf{x}.$

1.6. ТЕРМИНОЛОГИЯ ТЕОРИИ РАССЕЯНИЯ

Состояния рассеяния (англ. scattering states) — решения уравнения Шредингера, соответствующие непрерывному спектру, и не лежащие в L^2 . Также частно называется каналом рассеяния (англ. scattering channel).

Мода (англ. mode) — связанная часть состояния рассеяния. О них обычно говорят в контексте волноводов, имеющих двумерную или трехмерную геометрию, и допускающих только связанные состояния в поперечном направлении. К примеру, в волноводе с конфигурацией $\Omega = [-\infty, \infty] \times [0, H]$ допустимыми поперечными модами являются $\psi_n(y) = \sqrt{\frac{2}{H}} \sin\left(\frac{\pi n}{H}y\right), n \in \mathbb{N}^+$. Если поперечной частью волны является мода n, говорят, что «волна распространяется на n-й моде».

Открытый канал (англ. open channel) — канал рассеяния, на котором волна потенциально может распространяться при данной энергии E. Закрытый канал (англ. closed channel) — канал рассеяния, на котором волна не может распространяться при данной энергии E. Для вышеупомянутого примера двумерного волновода при любой энергии E всегда будут открыты каналы $\{n \mid n \in \mathbb{N}^+, \left(\frac{\pi n}{H}\right)^2 < E\}$, которых, очевидно, конечное число.

Глава 2. Описание реализованного подхода

2.1. Модель резонатора типа «пучок»

ТООО: описание

TODO: figure

TODO: Определитель S-матрицы в замкнутой форме

2.2. Модель резонатора типа «кольцо»

TODO: описание

TODO: figure

Определитель S-матрицы в замкнутой форме:

$$\det S = \frac{\cos\left(k\right) + \left(\frac{a}{2k} + i\right)\sin\left(k\right) - 1}{\cos\left(k\right) + \left(\frac{a}{2k} - i\right)\sin\left(k\right) - 1}$$

${f 2.2.1.}$ Исследование случая a=0

TODO: !!!

2.2.2. Исследование случая $a \neq 0$

TODO: !!!

ТООО: Объяснить результат

ТООО: другие виды резонаторов?

2.3. Собственные состояния, энергии и функции Грина областей задачи

Для дальнейших расчетов понадобятся решения следующих задач:

- 2.3.1. Одномерная яма с бесконечными стенками 2.3.2. Одномерная свободная частица
- 2.3.3. Двумерная яма с бесконечными стенками
- 2.3.4. Бесконечная квазиодномерная полоса с бесконечными стенками
- 2.4. Асимптотика производной функции Грина в окрестности отверстия
- 2.5. Построение модели с отверстием нулевой ширины

в котором будет корректно определено скалярное произведение на них.

- 2.5.1. Расчет понтрягинского пространства для резонатора 2.5.1.1. Расчет дефектного элемента
 - 2.5.1.2. Построение предпонтрягинского пространства

Глава 3. Результаты

TODO: REWRITE

Зафиксируем следующую геометрию волновода:

- $L_x = 200$ боровских радиусов (порядка 10 нм);
- $L_y = 100$ боровских радиусов (порядка 5 нм);
- H = 100 боровских радиусов (порядка 5 нм);
- S = 10 боровских радиусов (порядка 0.5 нм).

Пусть слева поступает входящая волна на первой моде:

$$\psi_{inc}(x,y) = \sqrt{\frac{2}{H}} \sin\left(\frac{\pi}{H}y\right) e^{i\sqrt{E-\pi^2/H^2}}$$

Далее приведены результаты, полученные в рамках подхода, описанного в главе 2.

- 3.1. Зависимость коэффициента прохождения от энергии входящей волны при фиксированной геометрии резонатора
 - 3.2. Плотности вероятности
- 3.3. Зависимость коэффициента прохождения от геометрии резонатора

Заключение

TODO: REWRITE