VLMs can supervise offline RL, but their feedback must consider sub-trajectories, be non-Markovian, and be interpreted as a component in a simple algorithm—such as a weight in weighted regression—rather than as a reward.

# OttineRLAII



Jacob Beck

## Piloting VLM Feedback for RL via SFO

### Motivation

#### Vision Language Model (VLM) feedback

The absence of large-scale control data prevents training a general RL foundation model. Still, we can leverage existing VLMs for supervision.

#### Offline RL from Al Feedback (Offline RLAIF)

VLMs struggle to differentiate random trajectories at initialization. Offline RL can include trajectories that are easier for VLMs to differentiate.

#### Challenges with Offline RLAIF

- 1) Full-trajectory evaluation exacerbates stitching issues
- 2) VLMs are not trained to understand continuous control data
- 3) Feedback propagation is unstable even with ground truth rewards

## Conclusions

#### 1) Sub-Trajectories Matter

Full-trajectory preferences decrease VLM calls, but are uninformative and worsen stitching issues, so sub-sampling trajectories is critical



VLMs do not natively understand control data, so visual cues over time are needed to assess progress



A filtered and weighted behavior cloning approach (SFBC) surpasses complex RL-based methods







## Sub-Trajectory Filtered Behavioral Cloning (SFBC)

Existing work, such as RL-VLM-F (Wang et al., 2024) and Clip-based rewards (Baumli et al., 2023, Rocamonde et al., 2024), evaluates online RL, uses a Markovian reward, and investigates how to elicit reward from VLMs.

In contrast, this study evaluates offline, leverages non-Markovian feedback, and investigates how best to use the feedback (not just as reward).

- 1) We divide trajectories into disjoint and equal length sub-trajectories:  $au_i=(s_{i\cdot k},a_{i\cdot k},s_{i\cdot k+1},a_{i\cdot k+1},a_{i\cdot k+1},\ldots,s_{(i+1)\cdot k})$  with segment length k
- 2) We prompt an LLM to evaluate each sub-trajectory with a Markov and non-Markov prompt, and define the feedback as a combination:

$$P_{\text{Markov}}(\tau_i) = 1 - P(\text{``no''}|\text{Markov Prompt}) \\ P_{\text{Non-Markov}}(\tau_i) = 1 - P(\text{``no''}|\text{Non-Markov Prompt}) \end{cases} P_{VLM}(\tau_i) = \min(1, P_{\text{Markov}}(\tau_i) + P_{\text{Non-Markov}}(\tau_i))$$

3) We behaviorally clone weighted sub-trajectories, and introduce retrospective filtering, assuming a failed sub-trajectory may result from preceding failure:  $\mathcal{D}_{SFBC} = \{(s_t, a_t, \tau_i) \mid \tau_i \in \mathcal{D}, \ (s_t, a_t) \in \tau_i, \ PVLM(\tau_i) \geq \alpha, \ P_{VLM}(\tau_{i+1}) \geq \alpha\} \qquad \mathcal{L}_{SFBC} = -\mathbb{E}_{(s_t, a_t, \tau_i) \sim \mathcal{D}_{SFBC}} \left[ P_{VLM}(\tau_i) \log \pi_{\theta}(a_t | s_t) \right]$ 

## Results

We evaluate on Pendulum-v1 across 15 seeds using GPT-4o. The dataset consists of 500 trajectories of with 300 steps from an expert policy and 300 from a failure policy, stitched in a random order. Sub-trajectory length (k) = 100. We subsample frames by 20x. Threshold ( $\alpha$ ) = .1.

| Method                     | Success Rate (%) | Std. Error (%) | Mean Return | Std. Erro |
|----------------------------|------------------|----------------|-------------|-----------|
| BC Naive                   | 33               | 12             | -4716       | 790       |
| TD3+BC (GT)                | 27               | 11             | -5131       | 814       |
| VLM BC (Full-Trajectory)   | 13               | 9              | -5234       | 578       |
| AWAC (GT)                  | 0                | 0              | -7840       | 308       |
| SF-BC (Ours)               | 73               | 11             | -1585       | 518       |
| VLM+TD3+BC                 | 27               | 11             | -5013       | 649       |
| S-DPO                      | 0                | 0              | -6859       | 181       |
| No Filtering               | 40               | 13             | -4164       | 883       |
| Markov Prompt Only         | 40               | 13             | -4229       | 869       |
| No Weighting               | 33               | 12             | -3459       | 604       |
| No Retrospective Filtering | 13               | 9              | -5562       | 525       |

- Outperforms behavioral cloning, both naively (BC Naive) and filtering by whole trajectories (VLM BC)
- Outperforms offline RL with ground truth (GT) reward
- Outperforms offline RL with VLM as reward (VLM+TD3+BC)
- Outperforms method with VLM as preferences (S-DPO)
- Removing filtering or retrospective filtering decreases performance
- Removing non-Markov prompt decreases performance
- Removing weighting of trajectories decreases performance

Sub-Trajectory Filtered Optimization (SFO)

**Ablations** 

