«Обнаружение разладки с помощью метода SSA» Презентация ВКР

Кононыхин Иван Александрович, группа 20.М03-мм

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доцент Голяндина Н.Э. Рецензент: Лектор, Университет Кардиффа (Великобритания), Пепелышев А.Н.

Санкт-Петербург 2022г.

Однородный ряд — ряд с постоянной структурой. **Разладка** — нарушение однородности ряда.

Задача обнаружения разладки: Определить момент изменения структуры ряда. Структура — подпространство сигнала.

Метод: Превышение порога функцией обнаружения неоднородности, основанной на разнице структур скользящих отрезков ряда.

Временной ряд:

$$F_N = (f_1, \dots, f_N)$$
, где $f_n = egin{cases} C_1 \sin(2\pi\omega_1 n + \phi_1), & n < Q, \ C_2 \sin(2\pi\omega_2 n + \phi_2), & n \geq Q, \ Q$ — неизвестный момент возмущения.

Цель работы: Создание системы, которая:

- Определяет разладку, заданную изменением частоты.
- Автоматически выбирает порог срабатывания.
- Сообщает о моменте возмущения с заданным значением максимально допустимого запаздывания.

Параметры: L, B, T, r = 2.

Индекс неоднородности (Golyandina et all. Analysis of Time Series Structure, 2001):

$$g(F^{(1)};F^{(2)}) = \frac{\sum\limits_{l=1}^{K_2} \mathrm{dist}^2(X_l^{(2)},\mathfrak{L}_r^{(1)})}{\sum\limits_{l=1}^{K_2} \|X_l^{(2)}\|^2}.$$

Введение: инструменты поиска неоднородности

Рис.: Матрица неоднородности

Рис.: Функции обнаружения неоднородности. B=T.

Обозначения функций обнаружения неоднородности:

lacksquare Строковая: $d_{n-1}^{(r)}$

 $oldsymbol{0}$ Столбцовая: $d_{n-1}^{(c)}$

 $oldsymbol{3}$ Диагональная: $d_{n-1}^{(d)}$

4 Симметричная: $d_{n-1}^{(s)}$

Часть 1. Сравнение функций обнаружения

Задача: Сравнить функции обнаружения неоднородности для разных видов разладки.

Ряд:
$$F_N = (f_1, \dots, f_N)$$
, где $f_n = \begin{cases} C_1 \sin(2\pi\omega_1 n + \phi_1), & n < Q, \\ C_2 \sin(2\pi\omega_2 n + \phi_2), & n \ge Q, \end{cases}$

Параметры:

- 0 N = 700.
- Q = 301.
- **3** L = 60.
- \bullet B = T = 100.

Задание неоднородности ряда F_N :

- **1** Изменение частоты: $\omega_1 = \frac{1}{10}, \omega_2 = \frac{1}{5}$
- ② Изменение амплитуды: $C_1 = 1, C_2 = 2$.
- **3** Фазовый сдвиг: $\phi_1 = 0, \phi_2 = \frac{\pi}{2}$.
- Выброс: $f_n = \begin{cases} C_1 \sin(2\pi\omega_1 n + \phi_1), & n \neq Q, \\ 10 \cdot C_1, & n = Q. \end{cases}$

Часть 1. Сравнение функций обнаружения

N=700, Q=301, ω_1 =0.1, ω_2 =0.2, C_1 =1, C_2 =2, ϕ_1 =0, ϕ_2 = $\frac{n}{2}$, L=60, B=T=100

Вывод: Лучшие — строковая $d_{n-1}^{(r)}$ и диагональная $d_{n-1}^{(d)}$ функции обнаружения.

Часть 2. Аппроксимация значения индекса неоднородности после переходного интервала

Ряд:
$$F_N=(f_1,\ldots,f_N)$$
, где $f_n=egin{cases} C_1\sin(2\pi\omega_1n+\phi_1), & n< Q, \\ C_2\sin(2\pi\omega_2n+\phi_2), & n\geq Q. \end{cases}$

Параметры ряда: $\omega_1 \neq \omega_2$, $C_1 = C_2 = 1$.

Задача: Аппроксимировать индекс неоднородности $g(F^{(1)};F^{(2)}),\ F^{(1)}$ лежит до $Q,\ F^{(2)}$ после.

Результат:

$$g_a(\omega_1, \omega_2) = 1 - \frac{\left[\left(\frac{\sin(2\pi Lb)}{4\pi b} - \frac{\sin(2\pi La)}{4\pi a} \right)^2 + \left(\frac{\cos(2\pi Lb) - 1}{4\pi b} - \frac{\cos(2\pi La) - 1}{4\pi a} \right)^2 \right]}{\frac{L^2}{4}}$$

где
$$a = \omega_1 + \omega_2$$
, $b = \omega_1 - \omega_2$.

Часть 2. Точность аппроксимации

Часть 2. Аппроксимация переходного интервала

При достаточно маленьком значении L по отношению к T переходный интервал становится линейным.

 Puc .: Линейность переходного интервала при большом значении T-L.

Часть 3. Система обнаружения момента возмущения

Задача: Обнаружить разладку на интервале от Q до Q+k, где Q- неизвестный момент возмущения, а k- максимально допустимое запаздывание.

Подход: $d_{n-1}^{(r)} > \gamma^* -$ сигнал о моменте возмущения $\hat{Q}.$

Ограничение: $\omega_2 > \omega_1 + \Delta_{min} = \omega_{min}$

Как выбрать γ^* ? Построить аппроксимацию $d_{n-1}^{(r)}$ и взять ее значение в точке k.

Описание системы:

 $lacksymbol{0}$ Входные данные: F_N , k, Δ_{min} .

 $oldsymbol{Q}$ Результат: \hat{Q} .

Часть 3. Оценка качества системы

Характеристики системы:

- ullet $\operatorname{FP}(\gamma^*)$ при $\hat{Q} < Q$.
- ullet $\mathrm{TP}(\gamma^*)$ при $\hat{Q} \in [Q,Q+k].$
- $\mathrm{FN}(\gamma^*)$ при $\hat{Q} > Q + k$.

Промоделируем $n_{iter}=200$ раз реализацию шума ϵ и на каждой итерации посчитаем характеристики системы.

Вероятности обнаружения:

•
$$\operatorname{FPR}(\gamma^*) = \frac{\sum\limits_{i=1}^{n_{iter}} \operatorname{FP}_i(\gamma^*)}{n_{iter}}.$$

• TPR(
$$\gamma^*$$
) = $\frac{\sum\limits_{i=1}^{n_{iter}} \text{TP}_i(\gamma^*)}{n_{iter}}$.

•
$$\text{FNR}(\gamma^*) = \frac{\sum\limits_{i=1}^{n_{iter}} \text{FN}_i(\gamma^*)}{n_{iter}}$$
.

Часть 3. Оценка системы: T-L

Рис.: Функция обнаружения неоднородности. T-L=10.

Рис.: Функция обнаружения неоднородности. T-L=70.

Часть 3. Оценка системы: параметр T-L

Рис.: Работы системы. Оценка, T-L=10.

Рис.: Работы системы. Оценка, T-L=70.

Часть 3. Проблемы

Параметры тестирования:
$$N=800, Q=301, \omega_1=\frac{1}{10}, \Delta_{min}=\frac{1}{50}, \sigma=0.5, B=133, T=79, L=71, C_1=C_2=1$$

Таблица: Результаты тестирования.

Таблица	k = 30
---------	--------

 $ext{Таблица: } k = 15$

ω_2	FPR	TPR	FNR	- (σ_2	FPR	TPR	FNR
1/3	0.0	0.99	0.01	1	/3	0.040	0.745	0.215
1/4	0.0	0.98	0.02	1	/4	0.040	0.745	0.215
1/5	0.0	0.99	0.01	1	/5	0.040	0.720	0.240
1/6	0.0	0.995	0.005	1	/6	0.040	0.820	0.140
1/7	0.0	0.945	0.055	1	/7	0.040	0.340	0.660
1/8	0.0	0.855	0.145	1	/8	0.040	0.920	0.040
1/9	0.0	1.0	0.0	1	/9	0.050	0.950	0.000

Выводы: При большом k система работает хорошо, но аппроксимация нуждается в доработке.

