# Teorema de incompletitud e intro a lógica de segundo orden

Semana  $(14)_2 = 1110$ 

Lógica para Ciencia de la Computación - IIC2213

Prof. Sebastián Bugedo

# Programa

#### Obertura

Acto único  ${}_{\dot{\xi}}\mathsf{Th}(\mathfrak{N}) \text{ decidible?}$  Teorema de incompletitud Lógica de segundo orden

Epílogo

# Programa

#### Obertura

Acto único ¿Th(M) decidible? Teorema de incompletitud Lógica de segundo orden

Epílogo



#### Teorías decidibles

#### Definición

Una teoría  $\Sigma$  sobre un vocabulario  $\mathcal{L}$  es **decidible** si existe un algoritmo tal que para cualquier  $\mathcal{L}$ -oración  $\varphi$ , verifica si  $\varphi \in \Sigma$ .

¿Cómo demostramos decidibilidad?

### Una técnica para decidibilidad

#### Definición

Una teoría  $\Sigma$  admite eliminación de cuantificadores si para toda  $\mathcal{L}$ -fórmula  $\varphi(x_1,\ldots,x_k)$ , existe una  $\mathcal{L}$ -fórmula  $\varphi^{\text{sc}}$  sin cuantificadores tal que

$$\Sigma \models \forall x_1 \dots \forall x_k [\varphi(x_1, \dots, x_k) \leftrightarrow \varphi^{sc}(x_1, \dots, x_k)]$$

Ojo: la posibilidad de eliminar cuantificadores es una característica de **la teoría**, no de fórmulas específicas!

### Hacia la decidibilidad

#### Teorema

Si una teoría  $\Sigma$  cumple

- 1. admite eliminación de cuantificadores
- 2. existe algoritmo que construye  $\varphi^{\rm sc}$  desde  $\varphi$ , para toda fórmula  $\varphi$  entonces  $\Sigma$  es decidible.

### Proposición

Sea  $\Sigma$  una teoría tal que para toda fórmula de la forma

$$\varphi(x_1,\ldots,x_k) = \exists y(\alpha_0 \wedge \cdots \wedge \alpha_m)$$

con  $\alpha_i$  sin cuantificadores, existe  $\varphi^{\mathrm{sc}}$  sin cuantificadores tal que

$$\Sigma \models \forall x_1 \dots \forall x_k [\varphi(x_1, \dots, x_k) \leftrightarrow \varphi^{sc}(x_1, \dots, x_k)]$$

Entonces  $\Sigma$  admite eliminación de cuantificadores.

### Una teoría decidible

Sea 
$$\mathcal{L} = \{<\}$$
 y Th $(\mathfrak{R}_<) = (\mathbb{R}, <^{\mathfrak{R}_<})$  que interpreta < de forma usual

#### Teorema

 $\mathsf{Th}(\mathfrak{R}_<)$  admite eliminación de cuantificadores y además, existe un algoritmo que construye  $\varphi^\mathsf{sc}$  a partir de  $\varphi$ 

#### Corolario

 $\mathsf{Th}(\mathfrak{R}_{<})$  es decidible

La clase pasada motivamos la demostración de este resultado

### Más teorías decidibles

Hay más teorías que admiten eliminación de cuantificadores

Teorema (Tarski)

 $\mathsf{Th}(\mathfrak{R})$  admite eliminación de cuantificadores. Además, existe un algoritmo que construye  $\varphi^{\mathsf{sc}}$  a partir de  $\varphi$ .

Corolario

 $\mathsf{Th}(\mathfrak{R})$  es decidible

¿Toda teoría que hemos estudiado es decidible? ¿Para todas sirve esta estrategia?

### Playlist Unidad IV y Orquesta



Playlist: LogiWawos #4

Además sigan en instagram: @orquesta\_tamen

### Objetivos de la clase

- ☐ Argumentar que hay varias teorías decidibles
- □ Conocer el teorema de incompletitud de Gödel
- $\square$  Comprender la necesidad de una lógica más expresiva para axiomatizar  $\mathsf{Th}(\mathfrak{N})$
- ☐ Conocer elementos de lógica de segundo orden

# Programa

#### Obertura

Acto único  ${}_{\mbox{$\not$$}} {\sf Th}(\mathfrak{N}) \mbox{ decidible?}$  Teorema de incompletitud Lógica de segundo orden

Epílogo

#### Resultados favorables

Sea  $\mathcal{L} = \{0, s\}$  con s símbolo de función unaria y  $\mathfrak{N}_s$  la  $\mathcal{L}$ -estructura con dominio  $\mathbb{N}$  que interpreta 0 y s como la estructura  $\mathfrak{N}$ 

#### Teorema

 $\mathsf{Th}(\mathfrak{N}_\mathsf{s})$  admite eliminación de cuantificadores y además, existe un algoritmo que construye  $\varphi^\mathsf{sc}$  a partir de  $\varphi$ 

#### Corolario

 $\mathsf{Th}(\mathfrak{N}_s)$  es decidible

¿Qué hay que hacer en la demo de este teorema?

#### Resultados favorables

Sea  $\mathcal{L} = \{0, s, +, <\}$  con símbolos usuales y  $\mathfrak{N}_+$  la  $\mathcal{L}$ -estructura con dominio  $\mathbb{N}$  que interpreta los símbolos de  $\mathcal{L}$  como la estructura  $\mathfrak{N}$ 

#### ¿Qué nos gustaría demostrar?

#### Empiezan los problemas

- ¿Podemos usar eliminación de cuantificadores en  $\mathsf{Th}(\mathfrak{N}_+)$ ?
- ¡No admite eliminación de cuantificadores!

### Ejemplo

En la teoría  $\mathsf{Th}(\mathfrak{N}_+)$ , no es posible eliminar cuantificadores de

$$\varphi(x) = \exists y(x = y + y)$$

#### Extendiendo el vocabulario

#### ¡No todo está perdido!

- Añadiremos una relación binaria
- La interpretaremos de forma adecuada

### Ejemplo

Consideremos el vocabulario  $\mathcal{L}' = \mathcal{L} \cup \{ \equiv_2 \}$ 

La estructura de naturales que interpreta el símbolo  $\equiv_2$  como congruencia módulo 2 permite reescribir sin cuantificadores la fórmula del ejemplo anterior

$$\varphi(x) = \exists y(x = y + y)$$
  $\varphi^{sc}(x) = (x \equiv_2 0)$ 

¿Podemos extender esta idea para otros módulos?

### Aritmética de Presburger

Sea 
$$\mathcal{L}_{\equiv} = \mathcal{L} \cup \{ \equiv_k | k \geq 2 \}$$

Sea además  $\mathfrak{N}_{\equiv}$  la  $\mathcal{L}$ -estructura tal que

- Tiene dominio N
- Los símbolos de  ${\mathcal L}$  se interpretan tal como en  ${\mathfrak N}$
- Para  $k \ge 2$ ,  $\equiv_k$  se interpreta como congruencia módulo k

### Teorema (Presburger)

 $\mathsf{Th}(\mathfrak{N}_{\scriptscriptstyle \equiv}) \text{ admite eliminación de cuantificadores y además, existe un algoritmo que construye } \varphi^{\mathsf{sc}} \text{ a partir de } \varphi$ 

### Aritmética de Presburger

Teorema (Presburger)

 $\mathsf{Th}(\mathfrak{N}_{\scriptscriptstyle \Xi}) \text{ admite eliminación de cuantificadores y además, existe un algoritmo que construye } \varphi^{\mathsf{sc}} \text{ a partir de } \varphi$ 

Corolario

 $\mathsf{Th}(\mathfrak{N}_{\scriptscriptstyle{\equiv}})$  es decidible

Corolario

 $\mathsf{Th}(\mathfrak{N}_{\scriptscriptstyle{+}})$  es decidible

¿De dónde sale esto?

#### Naturales con suma

#### Demostración del último corolario

Sean  $\mathcal{L}$  y  $\mathcal{L}_{\equiv}$  los vocabularios mencionados. Sea  $\varphi$  una  $\mathcal{L}$ -oración, es decir, sabemos que no incluye ninguno de los símbolos  $\equiv_k$ .

Como  $\operatorname{Th}(\mathfrak{N}_{\equiv})$  es decidible, existe un algoritmo  $\mathcal{A}$  que decide si una  $\mathcal{L}_{\equiv}$ -oración es parte de  $\operatorname{Th}(\mathfrak{N}_{\equiv})$ . Además, toda aparición de  $x \equiv_k y$  se puede escribir como

$$\exists z \big( x = \underbrace{z + \dots + z}_{k \text{-veces}} + y \big)$$

Dada  $\varphi$ , notemos que ella también es una  $\mathcal{L}_{\equiv}$ -oración y que

$$\mathfrak{N}_{\scriptscriptstyle{\equiv}} \vDash \varphi$$
 si y solo si  $\mathfrak{N}_{\scriptscriptstyle{+}} \vDash \varphi$ 

Luego, la respuesta del algoritmo  $\mathcal{A}$  sirve para decir  $\mathsf{Th}(\mathfrak{N}_+)$ . Concluimos que esta última teoría es también decidible.

#### Teorías decidibles

Con eliminación de cuantificadores, hemos dicho que las siguientes teorías son decidibles

- Th(ℜ<)
- Th(ℜ)
- Th( $\mathfrak{N}_s$ )
- $\mathsf{Th}(\mathfrak{N}_{\scriptscriptstyle{\equiv}})$
- $\blacksquare$  Th( $\mathfrak{N}_+$ )

¿Podemos usar una estrategia similar para  $Th(\mathfrak{N})$ ?

# Programa

#### Obertura

Acto único  ${}_{\mbox{$\xi$}} Th(\mathfrak{N}) \mbox{ decidible?}$  Teorema de incompletitud Lógica de segundo orden

Epílogo

### Una propiedad fundamental

#### Definición

Una teoría  $\Sigma$  es finitamente axiomatizable si existe un conjunto finito A de  $\mathcal{L}$ -oraciones tal que

- $\Sigma$  es consistente
- $\Sigma = \mathsf{Th}(A)$

#### Teorema

Si una teoría es finitamente axiomatizable y completa, entonces es decidible

¿Podremos axiomatizar  $Th(\mathfrak{N})$ ?

### Teorema de incompletitud de Gödel

Teorema (Gödel)

 $\mathsf{Th}(\mathfrak{N})$  es indecidible

Corolario

 $\mathsf{Th}(\mathfrak{N})$  no es finitamente axiomatizable

¿Qué significa que no sea axiomatizable?

### Visualizando el teorema de incompletitud

#### Corolario

 $\mathsf{Th}(\mathfrak{N})$  no es finitamente axiomatizable



Todo conjunto de axiomas finito AX que busquemos para  $\operatorname{Th}(\mathfrak{N})$  va a dejar fuera alguna oración consecuencia de  $\operatorname{Th}(\mathfrak{N})$ 

### Teorema de incompletitud de Gödel

Teorema (Gödel) [Reformulación]

Para todo conjunto de  $\mathcal L$ -oraciones  $\Sigma$  que es consistente y decidible, existe una  $\mathcal L$ -oración  $\varphi$  tal que

$$\varphi \in \mathsf{Th}(\mathfrak{N}) \quad \mathsf{y} \quad \Sigma \not\models \varphi$$

Esta forma del teorema es equivalente a que  $\varphi \in \mathsf{Th}(\mathfrak{N})$  sea indecidible

### Teorema de incompletitud de Gödel

Teorema (Gödel)

 $\mathsf{Th}(\mathfrak{N})$  es indecidible

Corolario

 $\mathsf{Th}(\langle \mathbb{N}, +, \cdot \rangle)$  es indecidible

¿Para qué nos sirve este último corolario?

Al fin...

#### Pati-Reflexión

Sea  $\mathcal{L} = \{+\}$ , donde + es símbolo de función binaria. Sea  $\mathfrak{A} = \langle \mathbb{N}, +^{\mathfrak{A}} \rangle$  con la interpretación usual de suma en los naturales

El siguiente conjunto no es definibile

$$\mathbb{S} = \left\{ (a,b,c) \in \mathbb{N}^3 \mid a \cdot b = c \right\}$$

Teorema de isomorfismo NO SIRVE AQUÍ



¿Qué pasaría si pudiéramos definir la multiplicación en  $(\mathbb{N}, +^{\mathfrak{A}})$ ?

### Una caracterización de la aritmética

Ya sabemos que **no se puede** axiomatizar la aritmética en LPO Pero **sí se puede** con lógicas más expresivas

¿Tendrá algún contra usar una lógica más expresiva?

# Programa

#### Obertura

Acto único  ${}_{\mbox{$\xi$}} Th(\mathfrak{N}) \mbox{ decidible?}$  Teorema de incompletitud Lógica de segundo orden

Epílogo

### Lógica de segundo orden

Llamaremos lógica de segundo orden (LSO) a nuestra nueva herramienta que usará

- conectivos lógicos
- paréntesis
- relación binaria de igualdad
- variables de primer y segundo orden
  - Primer orden: x representa un elemento del dominio
  - Segundo orden: R representa una relación
- cuantificadores

Veremos que la sintaxis y semántica es muy similar

### Lógica de segundo orden

#### Ejemplo

Sea  $\mathcal{L} = \emptyset$ . La siguiente es una  $\mathcal{L}$ -oración en LSO

$$\exists R \quad \left[ \forall x \exists y \ R(x,y) \land \\ \forall x \forall y \forall z (R(x,y) \land R(x,z) \rightarrow y = z) \land \\ \forall x \forall y \forall z (R(y,x) \land R(z,x) \rightarrow y = z) \land \\ \exists y \forall x \neg R(x,y) \right]$$

Notemos que no necesitamos símbolos de relaciones, pues ahora son variables que son instanciables con cuantificadores

#### Sintaxis de LSO: fórmulas

La definición de *L*-términos es igual que en LPO

#### Definición

El conjunto de  $\mathcal{L}$ -fórmulas en LSO se define usando las reglas de LPO junto con

- Si  $t_1, \ldots, t_k$  son  $\mathcal{L}$ -términos, y R es una variable de segundo orden de aridad k, enmtonces  $R(t_1, \ldots, t_k)$  es  $\mathcal{L}$ -fórmula
- Si  $\varphi$  es  $\mathcal{L}$ -fórmula que menciona la variable R, entonces  $(\exists R. \varphi)$  y  $(\forall R. \varphi)$  son  $\mathcal{L}$ -fórmulas

La semántica se extiende de forma similar. Notemos que la definición de  $\mathcal{L}$ -estructura no cambia

### Axiomatizando $\mathfrak N$ en LSO

Sea 
$$\mathcal{L} = \{0, 1, s, +, \cdot, <\}$$

Mostraremos oraciones de un conjunto AP tal que

- AP será finito y consistente
- Si  $\mathfrak{A} \models AP$ , entonces  $\mathfrak{A} \cong \mathfrak{N}$

El conjunto AP puede considerarse una axiomatización de la aritmética

### Axiomatizando $\mathfrak N$ en LSO

#### Ejemplo

Consideremos las dos primeras oraciones

$$\neg \exists x (s(x) = 0)$$
$$\forall x \forall y (s(x) = s(y) \rightarrow x = y)$$

¿Qué dicen estas oraciones?

### Axiomatizando $\mathfrak N$ en LSO

### Ejemplo

Axioma de inducción

$$\forall P \big[ \big( P(0) \land \forall x (P(x) \to P(s(x))) \big) \to \forall x \ P(x) \big]$$

Como esta oración debe ser satisfecha **para toda** relación P, consideremos

$$P = \{ a \in A \mid \text{existe } k \in \mathbb{N} \text{ tal que } a = \underbrace{s(s(\dots s(0)))}_{k\text{-veces}} \}$$

Este conjunto exige que  $A = \{0, s(0), s(s(0)), \ldots\}$  para cualquier estructura  $\mathfrak A$  tal que  $\mathfrak A \models AP$ 

### Axiomatizando M en LSO

### Ejemplo

Axiomas para definir la suma

$$\forall x(x+0=x)$$
$$\forall x\forall y(x+s(y)=s(x+y))$$

Axiomas para definir la multiplicación

$$\forall x(x \cdot 0 = x)$$
$$\forall x \forall y(x \cdot s(y) = x \cdot y + x)$$

Axiomas para fijar el 1 y <

$$1 = s(0)$$
 
$$\forall x \forall y (x < y \leftrightarrow \exists z (\neg z = 0 \land x + z = y))$$

A este listado se le conoce como **Axiomas de Peano** (ojo, hay algunos implícitos en la definición de estructura)

### Teorema de Dedekind

Teorema (Dedekind)

Si  $\mathfrak{A} \models AP$ , entonces  $\mathfrak{A} \cong \mathfrak{N}$ 

Nos falta llevarlo a la teoría de la aritmética

#### Teorema de Dedekind

#### Definición

La teoría de segundo orden de AP se define como

$$\mathsf{Th}_{\mathsf{SO}}(\mathsf{AP}) = \{ \varphi \mid \varphi \text{ oración en LSO y } \mathsf{AP} \vDash \varphi \}$$

#### Proposición

Para toda oración en LPO  $\varphi$ ,

$$\varphi \in \mathsf{Th}(\mathfrak{N})$$
 si y solo si  $\varphi \in \mathsf{Th}_{\mathsf{SO}}(AP)$ 

Hay una mala noticia para la LSO...

### ¿Sistema deductivo en LSO?

#### Corolario

No existe un sistema deductivo correcto y completo para la lógica de segundo orden

Tal sistema permitiría decidir  $\varphi \in \mathsf{Th}_{\mathsf{SO}}(AP)$ y por consiguiente, a  $\varphi \in \mathsf{Th}(\mathfrak{N})$ 

# Programa

#### Obertura

Acto único ¿Th(M) decidible? Teorema de incompletitud Lógica de segundo orden

#### Epílogo

### Actividad Espiritual Complementaria #2

# An epic drama of adventure and exploration



### Objetivos de la clase

- ☐ Argumentar que hay varias teorías decidibles
- ☐ Conocer el teorema de incompletitud de Gödel
- $\square$  Comprender la necesidad de una lógica más expresiva para axiomatizar  $\mathsf{Th}(\mathfrak{N})$
- ☐ Conocer elementos de lógica de segundo orden

### ¿Qué aprendí hoy? ¿Comentarios?

Ve a

### www.menti.com

Introduce el código

5676 4833

