# 7D.3 酶促反应动力学

迄今为止,我们还没有系统地讨论有催化剂参与时反应的动力学特征.尽管在前面,我们已经讨论了一类自催化反应,但大多数时候催化剂都是额外加入的,在总反应中不会被消耗的物质.

我们在本节要讨论的催化剂,**酶**,就是一种高效专一的生物均相催化剂.关于酶的基本概念与特性,你可以查阅生物化学书.我们在这里主要关注酶催化的反应,即**酶促反应**的动力学特性.

# 简单酶促反应与米氏方程

最简单的酶催化反应的机理可由以下基元反应描述.

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

其中E即参与催化的酶,S为底物(即反应物),ES为酶-底物复合中间体,P为产物.我们现在来推导该反应的速率方程.

## Derivation.

对中间体ES做稳态近似可得

$$\frac{d[ES]}{dt} = k_1[E][S] - k_{-1}[ES] - k_2[ES] = 0$$

于是有

$$[ES] = \frac{k_1[E][S]}{k_{-1} + k_2}$$

根据催化剂的物料守恒可得

$$[E] + [ES] = [E]_0$$

于是

[E] = 
$$\frac{[E]_0}{1 + \frac{k_1[S]}{k_{-1} + k_2}}$$
 [ES] =  $\frac{k_1[E]_0[S]}{k_{-1} + k_2 + k_1[S]}$ 

于是反应的速率即为

$$\frac{d[P]}{dt} = k_2[ES] = \frac{k_1 k_2[E]_0[S]}{k_{-1} + k_2 + k_1[S]}$$

为了简化上式,我们不妨定义 $K_M = \frac{k_{-1} + k_2}{k_1}$ ,这样就有

$$[ES] = \frac{[E][S]}{K_M}$$

同理.最后可以得出

$$\frac{\mathrm{d[P]}}{\mathrm{d}t} = \frac{k_2[\mathrm{E}]_0}{1 + \frac{K_M}{[\mathrm{S}]}}$$

如果底物S大大过量,那么就有 $\frac{K_M}{|\mathbf{S}|} \sim 0$ ,于是

$$\frac{\mathrm{d[P]}}{\mathrm{d}t} = \frac{k_2[\mathrm{E}]_0}{1 + \frac{K_M}{[\mathrm{S}]}} \approx k_2[\mathrm{E}]_0$$

这就是酶的总浓度一定时反应的最大速率,记作vmax.如此,速率方程亦可以写作

$$v = \frac{v_{\text{max}}}{1 + \frac{K_M}{[\mathbf{S}]}}$$

这就是Leonor Michaelis和Maud Menten提出的米氏方程.

# Theorem 7D.3.1 米氏方程

对于符合

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

机理的酶促反应,其速率方程为

$$v = \frac{v_{\text{max}}}{1 + \frac{K_M}{[S]}}$$

其中**米氏常数** $K_M = \frac{k_{-1} + k_2}{k_1}.v_{\text{max}} = k_2[\mathbf{E}]_0$ ,是该反应在酶的总浓度 $[\mathbf{E}]_0$ 一定时能达到的最大速率.

以下是v对[S]作图的结果.可以看出,当[S]  $\ll K_M$ 时近似地有 $v=\frac{v_{\max}}{K_M}$ [S],反应对S为准一级.当[S]  $\gg K_M$ 时,反应速率趋近于 $v_{\max}$ ,反应对[S]为准零级.



反应速率常数 $k_1, k_{-1}, k_2$ 是较难直接获取的,但米氏方程为我们提供了线性回归测定它们的方式.将米氏方程变形可得

$$\frac{1}{v} = \frac{1}{v_{\text{max}}} + \left(\frac{K_M}{v_{\text{max}}}\right) \frac{1}{[S]}$$

可以看到 $,\frac{1}{v}$ 与 $\frac{1}{[\mathbf{S}]}$ 成一次函数关系.测定S在不同起始浓度 $[\mathbf{S}]_0$ 及其对应的速率 $v_0$ ,就可以通过线性回归的方式求出斜率 $\frac{K_M}{v_{\max}}$ 和截距 $^1\frac{1}{v_{\max}}$ .这种方式就是**Lineweaver-Burk作图法** $^2$ .

## Theorem 7D.3.2 Lineweaver-Burk作图法

在符合米氏方程的酶促反应中,反应速率的倒数 $\frac{1}{v}$ 和底物浓度 $\frac{1}{[S]}$ 成一次函数关系,根据实验数据作图就可以求得米氏常数 $K_M$ .因此,这一方法也被称作**双倒数法**.

下面是由Lineweaver-Burk作图法给出7D.3.1的图像.



通过x轴截距和y轴截距就能计算出 $v_{\text{max}}$ 和 $K_M$ .不过,这一方法仍不能给出 $k_1$ 和 $k_{-1}$ 的具体值.我们需要更复杂的手段进行测量,这里就不再赘述.

Lineweaver-Burk作图法仍然存在一些缺陷.只有当[S]相当小时,我们才能获取远离y轴的数据点.对于一般浓度的S,对应的数据大多靠近y轴,较为密集,在线性回归时容易引起误差.因此,可以对作图的直线表达式两端同乘[S],即有

$$\frac{[S]}{v} = \frac{[S]}{v_{\text{max}}} + \frac{K_M}{v_{\text{max}}}$$

通过 $\frac{[S]}{v}$ 对[S]作图,得到斜率为 $\frac{1}{v_{\max}}$ ,截距为 $\frac{K_M}{v_{\max}}$ 的直线.这就是**Hanes-Woolf作图法** $^2$ . 当然,你还可以对**7D.3.1**变形得到

$$\frac{v}{[S]} = \frac{v_{\text{max}}}{K_M} - \frac{v}{K_M}$$

通过 $\frac{v}{[\mathrm{S}]}$ 对v作图,得到斜率为 $-\frac{1}{K_M}$ ,截距为 $\frac{v_{\mathrm{max}}}{K_M}$ 的直线.这就是 $\mathbf{Eadie}$ -Hofstee作图法 $^2$ .

# 竞争性抑制剂和非竞争性抑制剂

酶对反应体系是敏感的.一些物质可以与酶发生反应,进而降低其活性或使其完全失效.这就是抑制剂.

 $<sup>^{1}</sup>$ 如无特别说明,截距一般指y轴截距.

<sup>2</sup>分别译作"莱恩威弗-伯克作图法","哈尼斯-伍尔夫作图法"和"伊迪-霍夫斯蒂作图法".

### Definition 7D.3.3 抑制剂

**酶抑制剂**是一类特异性作用于或影响酶的活性中心或必需基团,导致酶活性下降或丧失,进 而降低酶促反应速率的物质.

按照抑制剂作用的机理不同.酶抑制剂可以简单地被分为如下两类.

# Definition 7D.3.4 抑制剂的分类

**竞争性抑制剂**在结构上通常与底物相似.它和底物不能同时与酶结合,通常是由于它和底物 对酶的同一活性位点都具有亲和力,故底物和抑制剂竞争结合该位点,从而使得反应减缓.

**非竞争性抑制剂**通常与酶的非活性部位结合,改变酶的结构,从而降低酶的活性,但不影响酶与底物结合.

反竞争性抑制剂仅与酶-底物复合物结合,导致其不能正常发生分解而生成产物.

复合抑制剂可以与酶或酶-底物复合物结合,使得反应的速率减缓.

以上四种抑制剂的结合都是可逆的.不可逆抑制剂通过与酶形成共价键,彻底改变其性质,从而使得反应减缓,并且这一作用是不可逆的.

我们现在来推导竞争性抑制剂存在下反应的速率方程.这一反应的机理可以表述如下.

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

$$E + I \xrightarrow{k_3} EI$$

## Derivation.

对ES稳态近似,可知仍然满足米氏方程给出的关系

$$[ES] = \frac{[E][S]}{K_M}$$

另一方面,对EI稳态近似可得

$$\frac{\mathrm{d[EI]}}{\mathrm{d}t} = k_3[\mathrm{E}][\mathrm{I}] - k_{-3}[\mathrm{EI}] = 0$$

令 $K_{\rm I} = \frac{k_{-3}}{k_{2}}$ 为抑制反应的平衡常数的倒数,则有

$$[EI] = \frac{[E][I]}{K_I}$$

由E的物料守恒有

$$\left(1 + \frac{[\mathbf{S}]}{K_M} + \frac{[\mathbf{I}]}{K_{\mathbf{I}}}\right)[\mathbf{E}] = [\mathbf{E}]_0$$

于是反应的速率即为

$$v = \frac{d[P]}{dt} = k_2[ES] = \frac{k_2[E][S]}{K_M} = \frac{k_2[S]}{K_M} \cdot \frac{[E]_0}{1 + \frac{[S]}{K_M} + \frac{[I]}{K_I}} = \frac{k_2[E]_0[S]}{[S] + \left(1 + \frac{[I]}{K_I}\right)K_M}$$

我们按照Lineweaver-Burk作图法的形式对上式整理可得

$$\frac{1}{v} = \frac{1}{v_{\text{max}}} + \frac{K_M}{v_{\text{max}}} \left( 1 + \frac{[\mathbf{I}]}{K_{\mathbf{I}}} \right) \frac{1}{[\mathbf{S}]}$$

$$\frac{1}{v} = \frac{1}{v_{\text{max}}} + \frac{\alpha K_M}{v_{\text{max}}} \frac{1}{[S]}$$

可见竞争性抑制剂不改变直线的截距,只改变直线的斜率。如果令 $\alpha K_M = K_{M,\mathrm{obs}}$ 为表观米氏常数,就可以知道竞争性抑制剂只改变 $K_{M,\mathrm{obs}}$ ,不改变 $v_{\mathrm{max}}$ .

反竞争性抑制剂的机理与竞争性抑制剂有些相似,可以表述如下.

$$E + S \xrightarrow[k_{-1}]{k_1} ES \xrightarrow{k_2} E + P$$

$$ES + I \xrightarrow[k_3]{k_3} ESI$$

我们现在来推导该反应的速率方程.

### Derivation.

综合前面的推导,我们可以容易地得出

$$[E] = \frac{K_M}{[S]}[ES]$$
  $[ESI] = \frac{[I]}{K_I}[ES]$ 

其中同样地有 $K_{\rm I} = \frac{k_{-3}}{k_3}$ .于是反应的速率为

$$v = \frac{k_2[\mathbf{E}]_0}{1 + \frac{[\mathbf{I}]}{K_{\mathbf{I}}} + \frac{K_M}{[\mathbf{S}]}}$$

令 $\alpha = 1 + \frac{[\mathbf{I}]}{K_{\mathbf{I}}}$ .我们按照Lineweaver-Burk作图法的形式对上式整理可得

$$\frac{1}{v} = \frac{\alpha}{v_{\text{max}}} + \frac{K_M}{v_{\text{max}}} \frac{1}{[S]}$$

可见反竞争性抑制剂只改变直线的截距,不改变直线的斜率.它同步地影响 $K_{M,\mathrm{obs}}$ 与 $v_{\mathrm{max}}$ .

非竞争性抑制剂的作用原理则稍复杂一些,它的机理可以表述如下.

$$E + S \xrightarrow[k_{-3}]{k_{1}} ES \xrightarrow{k_{2}} E + P$$

$$E + I \xrightarrow[k_{-3}]{k_{2}} EI \qquad ES + I \xrightarrow[k_{-4}]{k_{4}} ESI$$

$$EI + S \xrightarrow{K} ESI$$

由于体系中的E,ES,EI和ESI处于快速平衡中,因此最后一个反应的平衡常数K可以由前面的速

率常数求出,不是一个独立的量.我们现在来推导该反应的速率方程.

### Derivation.

仍然有

$$[ES] = \frac{[E][S]}{K_M}$$

同样地,令 $K_1 = \frac{k_{-3}}{k_3}, K_2 = \frac{k_{-4}}{k_4}$ 分别为两个抑制反应的平衡常数的倒数,根据平衡态假设有

$$[EI] = \frac{[E][I]}{K_1} \qquad [ESI] = \frac{[ES][I]}{K_2}$$

根据催化剂的物料守恒可得

$$\left[\left(1 + \frac{[\mathbf{I}]}{K_1}\right) \frac{K_M}{[\mathbf{S}]} + 1 + \frac{[\mathbf{I}]}{K_2}\right] [\mathbf{ES}] = [\mathbf{E}]_0$$

于是反应的速率为

$$v = \frac{d[P]}{dt} = k_2[ES] = \frac{k_2[E]_0}{1 + \frac{[I]}{K_2} + \left(1 + \frac{[I]}{K_1}\right) \frac{K_M}{[S]}}$$

一般情况下,抑制剂I由于结合的位点与活性位点无关,因此I与E和ES的结合能力应当相同,即 $K_1=K_2$ .令 $K_{\rm I}=K_1=K_2$ ,再令 $\alpha=1+rac{[{
m I}]}{K_{
m I}}$ ,就有

$$v = \frac{k_2[\mathbf{E}]_0}{\alpha \left(1 + \frac{K_M}{|\mathbf{S}|}\right)}$$

我们按照Lineweaver-Burk作图法的形式对上式整理可得

$$\frac{1}{v} = \frac{\alpha}{v_{\text{max}}} + \frac{\alpha K_M}{v_{\text{max}}} \frac{1}{[S]}$$

如果令 $v'_{\max} = \frac{v_{\max}}{\alpha}$ ,就有

$$\frac{1}{v} = \frac{1}{v'_{\text{max}}} + \frac{K_M}{v'_{\text{max}}} \frac{1}{[S]}$$

可见非竞争性抑制剂不改变直线的x轴截距,即不改变 $K_M$ ,而只改变 $v_{\text{max}}$ .

我们将这些抑制剂的作用总结如下.

### Theorem 7D.3.5 抑制剂的作用

竞争性抑制剂使得 $K_{M \text{ obs}}$ 减小,但不改变 $v_{\text{max}}$ .

反竞争性抑制剂使得 $K_{M,\mathrm{obs}}$ 和 $v_{\mathrm{max}}$ 都減小,但不改变 $\frac{K_{M,\mathrm{obs}}}{v_{\mathrm{max}}}$ .

非竞争性抑制剂使得 $v_{\text{max}}$ 减小,但不改变 $K_{M,\text{obs}}$ .

我们在下面给出加入这几种抑制剂后的图像和对应的Lineweaver-Burk图以供你参考.



# 多底物酶促反应——单置换反应与双置换反应

实际情况中超过60%的酶促反应都涉及两个及以上的底物.对双底物酶促反应的研究表明有以下几种机理.

如果两种底物A和B需要按照顺序与E结合,然后生成产物,那么这样的机理被称为**单置换反 应**.我们可以将机理表述如下.

$$E + A \xrightarrow[k_{-1}]{k_{-1}} EA$$

$$EA + B \xrightarrow[k_{-2}]{k_{2}} EAB$$

$$EAB \xrightarrow[k_{-2}]{k_{-2}} E + P + Q$$

现在我们来推导单置换反应的速率方程.

### Derivation.

仿照米氏方程的推导方式,对EA和EAB稳态近似可得

$$\frac{d[EA]}{dt} = k_1[E][A] - k_{-1}[EA] - k_2[EA][B] + k_{-2}[EAB] = 0$$
 (1)

$$\frac{d[EAB]}{dt} = k_2[EA][B] - k_{-2}[EAB] - k_3[EAB] = 0$$
 (2)

不妨令 $K_{M,B} = \frac{k_{-2} + k_3}{k_2}$ 为该反应对B的米氏常数.由(2)可得

$$[EAB] = \frac{k_2[B]}{k_{-2} + k_3}[EA] = \frac{[B]}{K_{M,B}}[EA]$$
 (3)

由(1)和(3)可得

$$[E] = \frac{(k_{-1} + k_{2}[B]) [EA] - k_{-2}[EAB]}{k_{1}[A]}$$

$$= \frac{k_{-1} + k_{2}[B] - \frac{k_{-2}[B]}{K_{M,B}}}{k_{1}[A]} [EA]$$

$$= \frac{k_{-1} + \frac{k_{3}}{K_{M,B}}[B]}{k_{1}[A]} [EA]$$
(4)

这里由中间量[EA]统一变量可以降低计算的难度.

这样,由(3)和(4),以及E的物料守恒[E] + [EA] + [EAB] =  $[E_0]$ 可得

$$[EA] = \frac{[E]}{[E] + [EA] + [EAB]} [E]_0 = \frac{1}{\frac{k_{-1} + \frac{k_3}{K_{M,B}}[B]}{k_1[A]} + 1 + \frac{[B]}{K_{M,B}}} (5)$$

于是反应的速率即为

$$v = \frac{d[P]}{dt} = k_3[EAB] = \frac{k_2 k_3[B]}{k_{-2} + k_3}[EA]$$

$$= \frac{1}{\frac{K_{M,B}}{k_3[B]}} \cdot \frac{E[B]_0}{\frac{k_{-1} + \frac{k_3}{K_{M,B}}[B]}{k_1[A]} + 1 + \frac{E[B]}{K_{M,B}}}$$

$$= \frac{E[B]_0}{\left(\frac{1}{k_3} + \frac{1}{k_1[A]}\right) + \frac{K_{M,B}}{k_3}\left(1 + \frac{k_{-1}}{k_1[A]}\right) \frac{1}{[B]}}$$
(6)

我们按照Lineweaver-Burk作图法的形式对(6)整理可得

$$\frac{1}{v} = \frac{1}{[E]_0} \left[ \left( \frac{1}{k_3} + \frac{1}{k_1[A]} \right) + \frac{K_{M,B}}{k_3} \left( 1 + \frac{k_{-1}}{k_1[A]} \right) \frac{1}{[B]} \right]$$
 (7)

以  $\frac{1}{v}$  对  $\frac{1}{[\mathrm{B}]}$  作图,将得到斜率为  $\frac{K_{M,\mathrm{B}}}{k_3[\mathrm{E}]_0}$   $\left(1+\frac{k_{-1}}{k_1[\mathrm{A}]}\right)$ ,截距为  $\frac{1}{[\mathrm{E}]_0}$   $\left(\frac{1}{k_3}+\frac{1}{k_1[\mathrm{A}]}\right)$ 的直线.因此,改变[A],直线的斜率和截距将发生变化.这是单置换反应的特征.

如果底物A与酶 $E_1$ 反应后生成修饰形式的酶 $E_2$ ,然后与另一种底物B反应生成原先的酶,如此循环往复,那么这样的机理被称为**双置换反应**.我们可以将机理表述如下.

$$E_{1} + A \xrightarrow{k_{1}} E_{1}A \xrightarrow{k_{2}} E_{2} + P$$

$$E_{2} + B \xrightarrow{k_{3}} E_{2}B \xrightarrow{k_{4}} E_{1} + Q$$

现在我们来推导双置换反应的速率方程。

### Derivation.

这一反应由两个相关的米氏反应构成.我们先对E<sub>1</sub>A和E<sub>2</sub>B稳态近似可得

$$\frac{d[E_1 A]}{dt} = k_1[E_1][A] - (k_{-1} + k_2)[E_1 A] = 0 \qquad [E_1 A] = \frac{[E_1][A]}{K_{M,A}}$$
(1)

$$\frac{d[E_2B]}{dt} = k_3[E_2][B] - (k_{-3} + k_4)[E_2B] = 0 [E_2B] = \frac{[E_2][B]}{K_{MB}} (2)$$

其中 $K_{M.A}$ 和 $K_{M.B}$ 分别为两步的米氏常数.

体系处于稳态时, $E_1$ 和 $E_2$ 的浓度也应当变化不大(否则就不满足 $E_1$ A和 $E_2$ B的稳态近似).于是有

$$\frac{d[E_1]}{dt} = k_4[E_2B] + k_{-1}[E_1A] - k_1[E_1][A]$$
(3)

(1)+(3)可得

$$k_4[\mathbf{E}_2\mathbf{B}] = k_2[\mathbf{E}_1\mathbf{A}] \tag{4}$$

结合(1)(2)和(4)和物料守恒 $[E_1]+[E_1A]+[E_2]+[E_2B]=[E]_0$ 可得

$$[E_1 A] = \frac{[E]_0}{\frac{K_{M,A}}{[A]} + 1 + \frac{k_2}{k_4} \left(\frac{K_{M,B}}{[B]} + 1\right)}$$
(5)

于是反应的速率即为

$$v = k_2[E_1A] = \frac{[E]_0}{\frac{1}{k_2} + \frac{1}{k_4} + \frac{K_{M,A}}{k_2[A]} + \frac{K_{M,B}}{k_4[B]}}$$
(6)

我们按照Lineweaver-Burk作图法的形式对(6)整理可得

$$\frac{1}{v} = \frac{1}{[E]_0} \left[ \frac{K_{M,B}}{k_4} \frac{1}{[B]} + \left( \frac{1}{k_2} + \frac{1}{k_4} + \frac{K_{M,A}}{k_2[A]} \right) \right]$$
 (7)

以 $\frac{1}{v}$ 对 $\frac{1}{[\mathrm{B}]}$ 作图,将得到斜率为 $\frac{K_{M,\mathrm{B}}}{k_4[\mathrm{E}]_0}$ ,截距为 $\frac{1}{[\mathrm{E}]_0}$   $\left(\frac{1}{k_2} + \frac{1}{k_4} + \frac{K_{M,\mathrm{A}}}{k_2[\mathrm{A}]}\right)$ 的一条直线.因此,改变[A],直线的斜率不变而截距变化.这是双置换反应的特征.