LAPORAN PKM-C ARTIFICIAL INTELLIGENCE

JUDUL

Mengaktualisasikan *SDG's* melalui *Visionic*: Aplikasi Berbasis *Computer Vision* untuk Meningkatkan Kualitas Hidup Lansia Dalam

Mengenali Keluarga

OLEH

2602132072	Angeline Rachel
2602167605	Christopher Alden Anugrah Silitonga
2602131901	Dellon Valentino Ardi
2602093600	Verren Angelina Saputra

LQ01 Semester Ganjil 2023/2024

DAFTAR ISI

DAFTAR ISI	
BAB 1. PENDAHULUAN	1
BAB 2. TINJAUAN PUSTAKA	4
BAB 3. TAHAP PELAKSANAAN	10
BAB 4. BIAYA DAN JADWAL KEGIATAN	14
4.1 Anggaran Biaya	14
4.2 Jadwal Kegiatan	14
DAFTAR PUSTAKA	15
LAMPIRAN	
Lampiran 1. Biodata Ketua dan Anggota, serta Dosen Pendamping	17
Lampiran 2. Justifikasi Anggaran Kegiatan	30
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas	31
Lampiran 4. Surat Pernyataan Ketua Pelaksana	32
Lampiran 5 Gambaran Teknologi yang akan Dikembangkan	33

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Dalam dekade terakhir, prevalensi gangguan penglihatan seperti kebutaan dan katarak, khususnya di kalangan lansia, telah menjadi perhatian global. Data dari *World Health Organization (WHO)* pada tahun 2019 menyoroti tingginya angka gangguan mata di kelompok usia ini. Masalah ini diperparah oleh keterbatasan akses lansia terhadap alat bantu pengenal anggota keluarga yang efektif dan ramah pengguna, serta minimnya solusi teknologi yang terintegrasi dalam kehidupan sehari-hari mereka. Mengakui kebutuhan mendesak ini, kami mengembangkan "*Visionic*", sebuah solusi inovatif berbasis aplikasi kecerdasan buatan (AI) yang dirancang untuk meningkatkan kualitas hidup individu dengan gangguan penglihatan, dengan fokus utama pada lansia.

Inspirasi untuk pengembangan *Visionic* berakar pada riset mendalam mengenai kebutaan dan katarak di Indonesia, khususnya di kalangan lansia, dengan penekanan khusus pada Pulau Jawa. Riset kami mengungkapkan bahwa lebih dari 60% penderita katarak di Indonesia adalah lansia, sebuah statistik yang menunjukkan kebutuhan mendesak untuk intervensi yang efektif. Dengan menerapkan AI dan teknologi *computer vision*, *Visionic* dirancang untuk membantu lansia dan orang yang mengalami gangguan penglihatan dan ingatan dalam mengenali anggota keluarga mereka, dengan tujuan memperbaiki interaksi sosial serta mendeteksi sebuah tulisan sehingga dapat dibaca dengan bantuan audio.

Sebagai medianya, *Visionic* menggunakan smartphone, memungkinkan aplikasi ini untuk diakses dengan lebih luas. Aplikasi ini dirancang untuk menghasilkan output suara yang jernih, memudahkan pengguna, khususnya lansia, dalam memahami lingkungan sekitar mereka. Tujuan utama dari penelitian ini adalah mengembangkan prototipe *Visionic* sebagai solusi yang tidak hanya inovatif tetapi juga mudah digunakan oleh lansia. Fase akhir dari proyek ini adalah peluncuran aplikasi *Visionic* yang fungsional, yang diharapkan dapat memberikan peningkatan signifikan dalam kemandirian dan kesejahteraan emosional lansia.

Sumber inspirasi utama kami adalah Seeing AI dari Microsoft. Namun, berbeda dengan Seeing AI yang menyasar penggunaan luas, Visionic difokuskan khusus untuk lansia, dengan penerapan teknologi AI seperti Text to voice dan image recognition to voice sehingga Visionic mampu untuk menyuarakan tulisan yang dibaca dan mengenali anggota keluarga pengguna dalam sebuah antarmuka yang user-friendly dan dapat diakses oleh semua kalangan, khususnya lansia. Kami yakin bahwa dengan pendekatan khusus ini, Visionic akan menjadi kawan bagi lansia dalam menjalani kehidupan sehari-hari mereka dengan lebih terhubung dengan keluarganya.

1.2 Rumusan Masalah

Berdasarkan latar belakang di atas dapat disimpulkan rumusan masalah berikut:

- Bagaimana *Visionic* dapat mengimplementasikan *Computer Vision* untuk membantu kelompok lansia yang mengalami gangguan penglihatan?
- Bagaimana teknologi Visionic yang menggunakan Artificial Intelligence dan computer vision dapat efektif dalam membantu lansia yang mengalami katarak untuk meningkatkan interaksi sosial mereka dalam mengenali keluarganya?

1.3 Tujuan

Tujuan dari kegiatan ini adalah menciptakan aplikasi *Visionic* yang memanfaatkan *Computer Vision* sehingga dapat membantu interaksi antara lansia dalam mengenali anggota keluarganya. *Visionic* dapat memberikan peningkatan signifikan kesejahteraan emosional lansia.

1.4 Manfaat

Melalui aplikasi *Visionic* ini, individu lanjut usia yang mengalami gangguan penglihatan akan lebih mudah mengenali anggota keluarganya, sehingga meningkatkan daya ingat dan kesejahteraan secara keseluruhan. Hidup para lansia akan menjadi lebih aman dan terjamin karena mereka dapat mengenali keberadaan orang di sekitarnya. Dengan *Visionic*, para lansia dapat memahami dan membedakan antara orang asing dan anggota keluarganya sendiri.

BAB 2. TINJAUAN PUSTAKA

Dalam aplikasi *Visionic*, spesifikasi teknologi yang diterapkan adalah *Computer Vision* dan *Deep Learning. Computer Vision* atau Pencitraan Komputer adalah cabang ilmu dari *Artificial Intelligence (AI)* atau Kecerdasaan Buatan yang melatih komputer untuk menginterpretasikan dunia visual. Dengan menggunakan *Computer Vision*, komputer dapat mengidentifikasikan objek dari sebuah citra/gambar.

Computer Vision akan membagi gambar menjadi bagian-bagian yang lebih kecil. Di sini, proses pengolahan gambarnya akan dibantu oleh Deep Learning di mana algoritma yang digunakan mirip seperti struktur saraf manusia. Jaringan syaraf (neural networks) dari algoritma akan tersebut akan mengidentifikasikan bagian-bagian gambar, barulah digabungkan kembali menjadi gambaran yang utuh. Kemudian, komputer secara otomatis akan memberi label/mengklasifikasi gambar tersebut. Oleh karena itu, kemampuan komputer untuk mengidentifikasi gambar secara akurat akan bertambah seiring dengan banyaknya gambar yang tersedia untuk training model Computer Vision tersebut. Jika tidak memanfaatkan Deep Learning, maka prosesnya akan lebih terbatas dan sulit karena membutuhkan kodingan yang rumit.

MACHINE LEARNING

Machine learning adalah suatu ide yang mengusulkan bahwa ada generic algorithm yang dapat membedakan satu hal dengan lain tanpa mendefinisikan secara memberitahukannya secara eksplisit, melainkan memberikan sebuah dataset dan algoritma itu yang akan menentukan logikanya berdasarkan data yang diberikan. Ada dua tipe machine learning yaitu supervised learning dan unsupervised learning.

Supervised learning melibatkan melatih model berdasarkan dataset yang mempunyai label. Hal ini berarti setiap train data dipasangkan dengan sebuah output label dan modelnya akan mempelajari berdasarkan input features yang didapat. Hal ini mengatasi masalah seperti classification. Algoritma akan belajar

agar dapat mengidentifikasi input dan mengevaluasinya terhadap output yang diinginkan. Dengan itu, diperlukan dataset dimana sudah ada penamaan label yang benar.

Unsupervised learning adalah suatu cara melatih model tanpa label. Maka model akan akan mencoba untuk belajar dan menemukan pola dan hubungan dari data yang diberi. Hal ini mengatasi masalah seperti *clustering*. Algoritma akan belajar dan menemukan struktur dan pola tanpa label, lebih seperti explorasi.

Dalam "belajar", algoritma akan mencoba mengestimasi dari sebuah equation yang dibuat untuk menyelesaikan sebuah masalah berdasarkan sebuah data. Maka untuk membuat equation atau persamaan ini, algoritma akan menggunakan sebuah weight untuk menentukan bobot untuk setiap bagian yang ditentukan.

NEURAL NETWORK

Neural network (Artificial Neural Networks) adalah sebuah subset dari machine learning dan komponen inti dalam deep learning. Apa itu neural network? Kita dapat menggambarkan neural network sebagai otak, dimana mereka mempunyai neuron yang bertanggungjawab untuk memproses dan mentransmisi informasi. Dalam konteks ANN, neuron (atau diibaratkan nanti sebagai node) adalah fungsi matematika yang memproses satu atau lebih input dan menghasilkan sebuah output.

Artificial Neural Networks (ANN) terdiri dari lapisan node yang mencakup input layer, hidden layers, dan output layer. Input layer adalah lapisan pertama yang menerima input data. Hidden layers adalah lapisan di antara input dan output yang melakukan komputasi dan biasanya terdiri dari beberapa lapisan. Output layer menghasilkan output akhir dari komputasi.

Setiap node dalam jaringan ini saling terhubung dan masing-masing memiliki weights dan biases. Weight menentukan kekuatan koneksi antara dua neuron, sedangkan bias adalah sebuah nilai (konstan atau parameter) yang ditambahkan ke weighted sum dari input neuron sebelum diteruskan ke activation function.

Fungsi dari *bias* adalah untuk memberikan fleksibilitas tambahan kepada model. *Bias* dapat mengatur *shift* dalam kurva *activation function* pada sumbu x (sumbu yang merepresentasikan input kepada *activation function*). Hal ini memungkinkan lapisan untuk menyesuaikan outputnya bahkan ketika semua input adalah nol, dan memungkinkan neuron untuk diaktifkan (atau tidak) tergantung pada kondisi tertentu. Ini penting karena memberikan model kemampuan untuk lebih baik merepresentasikan berbagai pola dalam data.

Output yang dihasilkan akan melewati sebuah activation function dalam node tersebut. Disini activation mempunyai threshold, apabila output melebihi threshold yang ditentukan maka dia akan "menyalakan" node tersebut. Hal ini menyebabkan suatu output menjadi sebuah input untuk node lain dalam layer berikutnya atau disebut forward pass.

Proses training adalah proses yang iteratif, dimana network secara bertahap akan diajarkan untuk mengurangi perbedaan antara actual ouput dan desired output dengan cara menyesuaikan *weights* maupun biases. *Adjustment* ini dilakukan melalui proses yang disebut *backpropagation*.

Backpropagation adalah metode yang digunakan untuk menghitung gradien dari loss function terhadap semua weights dan biases dalam jaringan. Ini dilakukan dengan menghitung seberapa besar kesalahan actual ouput dari desired output dan menyebarluaskan kesalahan ini kembali melalui jaringan untuk menyesuaikan weights dan biases.

Proses ini biasanya dilakukan menggunakan algoritma seperti *Gradient Descent* untuk secara bertahap menemukan kombinasi *weights* dan *biases* yang meminimalkan fungsi kerugian. Ini memungkinkan model untuk belajar dari data dan menjadi lebih baik dalam memprediksi atau mengklasifikasikan input baru.

Setiap iterasi lengkap melalui dataset disebut sebagai *epoch*, dimana setiap *epoch* akan diulang proses *forward pass, loss calculation, backpropagation* dan *weight adjustment* sehingga menuju *convergence* dimana *error* sudah diminimalisir.

Weighted sum function (general):

$$z = \left(\sum_{i=1}^{n} x_i \times w_i\right) + b$$

OPTICAL CHARACTER

OCR, atau Optical Character Recognition adalah suatu algoritma AI yang berfokuskan dalam mendeteksi suatu text pada sebuah gambar. OCR dibagi menjadi beberapa tahapan. Yang pertama Menggunakan OCR, komputer akan mempelajari simbol-simbol dan karakter pada suatu dataset atau gambar. Pada tahap ini OCR hanya mengenai karakter dan simbol apa yang terdeteksi. Kemudian di tahapan ke 2, OCR akan mengidentifikasi karakter dan simbol dengan mensegmentasi data dan gambar yang terdeteksi menjadi sebuah kata atau karakter. Selanjutnya komputer akan membandingkan teks atau karakter yang sudah ditentukan dengan dataset yang dimiliki. Dan hasil akhir dari OCR dapat berupa suatu teks yang terdeteksi atau dalam projek kami, berupa text-to-speech. Beberapa aplikasi seperti OneNote miliki microsoft, Google Docs, dan Google Translate memanfaatkan OCR dalam mendeteksi teks atau kalimat menjadi teks digital.

FACE RECOGNITION

Face recognition merupakan teknologi berbasis Artificial Intelligence yang memungkinkan sistem untuk mengidentifikasi dan memverifikasi identitas seseorang berdasarkan fitur wajah unik mereka. Proses ini melibatkan penggunaan algoritma komputer yang dapat menganalisis dan mengenali pola, struktur, dan fitur wajah seseorang dari gambar atau video. Komputer akan melihat gambar dan menemukan semua wajah di dalamnya, memahami setiap perubahan posisi atau pencahayaan dari wajah seseorang yang sama, melakukan pengecekkan wajah dan menentukan nama orang tersebut berdasarkan data yang sudah disimpan sebelumnya.

Terdapat suatu alur kerja di mana kita menyelesaikan setiap langkah *face* recognition secara terpisah dan meneruskan hasil langkah saat ini ke langkah

berikutnya. Dengan kata lain, kita akan mengaitkan beberapa algoritma *machine learning*:

1. Implementasi Histogram of Oriented Gradients (HOG)

Dalam deteksi wajah menggunakan metode *Histogram of Oriented Gradients (HOG)*, langkah-langkahnya melibatkan pengumpulan dataset wajah, konversi gambar ke skala keabuan, proses pelatihan mesin untuk mengevaluasi tingkat kegelapan atau kecerahan setiap piksel, pembuatan gradien untuk mengidentifikasi arah perubahan kecerahan, dan pemecahan gambar menjadi kotak-kotak kecil berukuran 16x16 piksel dengan penggantian kotak menggunakan arah panah terbesar. Dengan demikian, gambar wajah diubah menjadi representasi sederhana untuk memudahkan pemrosesan dan pengenalan pola dasar wajah oleh mesin.

2. Implementasi Face Landmark Estimation

Supaya program tetap dapat mendeteksi atau mengenali wajah seseorang meskipun wajah tersebut berbelok arah, maka kita dapat menggunakan *face landmark estimation* dengan pendekatan melibatkan identifikasi 68 titik spesifik pada setiap wajah, seperti bagian atas dagu, tepi luar mata, dan tepi dalam alis. Kita kemudian akan melatih algoritma pembelajaran mesin untuk menemukan landmark ini pada setiap wajah. Sekarang program bisa mengetahui mata, mulut, dan lainnya meskipun terjadi transformasi posisi.

3. Implementasi Generasi Embedding

Program dapat mengekstrak pengukuran dasar dari setiap wajah, seperti ukuran telinga, jarak antara mata, dan panjang hidung dengan metode *Convolutional Neural Network (CNN)* untuk menentukan pengukuran yang akurat. Dilakukan dengan melatih jaringan untuk menghasilkan 128 pengukuran (*embedding*) untuk setiap wajah. Ini melibatkan melihat tiga gambar wajah sekaligus (dua dari orang yang sama dan satu dari orang yang berbeda), menyesuaikan jaringan saraf untuk memastikan pengukuran lebih dekat untuk wajah yang mirip dan lebih terpisah untuk wajah yang berbeda. Setelah dilatih, jaringan dapat menghasilkan pengukuran untuk setiap wajah. *OpenFace* menyediakan jaringan yang sudah dilatih, memudahkan

proses ini. Angka-angka 128 yang dihasilkan oleh jaringan mewakili embedding, dan fitur yang tepat yang diukur tidak krusial untuk tujuan kita.

4. Implementasi SVM linier

Kita menggunakan algoritma klasifikasi pembelajaran mesin dasar, seperti classifier SVM linier untuk menemukan orang dalam database yang sudah dikenal dengan pengukuran terdekat dengan gambar uji. Classifier ini berjalan dalam milidetik, memberikan nama orang - hasil akhir kita.

BAB 3. TAHAP PELAKSANAAN

Tahapan pengembangan *Visionic* mencakup pengumpulan dan analisis data sekunder yang relevan, yang menjadi dasar untuk rancangan awal aplikasi. Desain teknis akan dibuat dengan menggunakan *tools* seperti *Figma*, sementara *Python*, *TensorFlow*, dan *OpenCV* menjadi pilihan teknologi untuk pengembangan. Aplikasi akan diisi dengan fitur-fitur seperti *text-to-speech* dan *facial recognition*. Uji keandalan akan dilakukan melalui pengujian langsung dan simulasi dengan *software* untuk memprediksi hasil uji dan mengevaluasi keakurasian dan efektifitasnya. Proses ini diharapkan mencakup pelatihan algoritma menggunakan dataset yang telah dipilih dan *live testing* dengan kamera.

1. Pengumpulan Data Sekunder

Mengkonsolidasikan data terkait kebutaan dan katarak, terutama dalam demografi lansia di Indonesia, untuk memahami kebutuhan pengguna dan kondisi yang akan ditangani oleh aplikasi.

2. Desain Awal dan Rancangan

Memfokuskan pengembangan desain awal aplikasi pada *user interface (UI)* dan *user experience (UX)* yang ramah digunakan untuk lansia. Proses pendesignan dilakukan menggunakan alat desain seperti *Figma*.

3. Penyusunan Desain Teknis

Merancang arsitektur teknis aplikasi, termasuk pemilihan teknologi dan framework yang akan digunakan, seperti *Python* untuk backend, TensorFlow untuk machine learning, dan lainnya.

4. Pembuatan Prototipe Aplikasi

Membangun prototipe aplikasi dengan fitur inti, seperti *text to voice* dan *image recognition to voice* untuk membantu dalam navigasi dan pengenalan orang atau objek.

5. Training Algoritma AI

Melakukan pelatihan algoritma kecerdasan buatan dengan dataset yang telah dikumpulkan, untuk meningkatkan akurasi pengenalan teks dan gambar.

[Kumpulan Dataset Dalam Aplikasi Visionic]

6. Pengujian Produk

Melakukan proses pengujian keandalan dengan melakukan serangkaian tes, baik internal maupun eksternal, untuk memastikan keakuratan dan efektivitas aplikasi. Berikut adalah detail pengujian *visionic* yang kami ujikan secara langsung:

[Pengujian Face Detection Dalam Aplikasi Visionic]

[Pengujian Text Detection Dalam Aplikasi Visionic]

7. Evaluasi dan Prediksi Penerimaan Masyarakat

Menyusun strategi untuk mendapatkan umpan balik dari lansia dan *stakeholder* terkait, untuk mengevaluasi penerimaan aplikasi dan membuat prediksi yang informasinya dapat digunakan untuk iterasi selanjutnya.

8. Pengujian Langsung dan Simulasi

Menggunakan *software* atau program simulasi untuk menguji fitur aplikasi, memungkinkan tim untuk melakukan input data dan menghasilkan prediksi hasil uji.

9. Evaluasi dan Iterasi

Berdasarkan hasil pengujian dan umpan balik, melakukan iterasi pada desain dan fungsionalitas aplikasi untuk memperbaiki dan memperkuat kelayakan dan kinerja produk.

Pembentukan Aplikasi

Dalam fase pembentukan aplikasi *Visionic*, kami akan mengambil pendekatan yang terstruktur dan fokus pada kegunaan serta aksesibilitas. Proses desain aplikasi dimulai dengan penggunaan *Figma*, sebuah alat desain antarmuka pengguna yang memungkinkan prototipe interaktif dan kolaborasi tim dalam waktu nyata. Kami akan memastikan bahwa tampilan aplikasi disusun secara sederhana dan intuitif, dengan tujuan agar lansia dapat memahami dan menggunakan semua fitur yang tersedia dalam aplikasi hanya dalam sekilas pandang.

Seluruh desain dan tata letak aplikasi akan dibangun dari dasar dengan memanfaatkan ide-ide yang telah kami olah bersama. Proses ini akan mengarah pada pembentukan prototipe yang mencerminkan keputusan desain akhir dan fungsi yang diinginkan. Tujuan utama kami adalah untuk menciptakan pengalaman pengguna yang mulus, memungkinkan lansia dengan gangguan penglihatan untuk berinteraksi dengan aplikasi tanpa hambatan.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya

No	Jenis Pengeluaran	Sumber Dana	Besaran Dana (Rp.)
1.	Jasa Internet	Belmawa	Rp3.000.000,00
2.	Hosting Aplikasi	Belmawa	Rp2.000.000,00
3.	Biaya Pemasaran	Belmawa	Rp1.000.000,00
4.	Pengembangan Aplikasi	Belmawa	Rp1.000.000,00
	Jumlah	Rp7.000.000,00	
	Rekap Sumber Dana	Belmawa	Rp7.000.000,00

4.2 Jadwal Kegiatan

Tabel 4.2 Jadwal Kegiatan

No	Jenis Kegiatan		Bulan			Penanggungjawab
		1	2	3	4	
1.	Pengembangan Ide	√				Semua
2.	Pembuatan Presentasi Awal	√				Angeline Rachel
	Dengan Expert (1)					
3.	Pengembangan Prototype AI	√	✓	✓	✓	Christopher Alden
						Anugrah Silitonga
4.	Pengembangan UI/UX				✓	Verren Angelina
	Aplikasi Visionic					Saputra
4.	Pembuatan Presentasi Awal			✓		Dellon Valentino
	Dengan Expert (2)					Ardi
5.	Penyusunan Laporan Akhir				✓	Semua

DAFTAR PUSTAKA

Deep Learning

AWS.2023.*Apa Itu Deep learning?*. URL: https://aws.amazon.com/id/what-is/deep-learning/. Diakses tanggal 19 Desember 2023.

Pintu.2023. *Apa itu Deep Learning dan Contohnya? Keren Banget Ternyata!* URL: https://pintu.co.id/blog/algortima-deep-learning-adalah#apa-itu-deep-learning. Diakses tanggal 19 Desember 2023.

CNN Deep Learning

Trivusi. 2022. *Pengertian dan Cara Kerja Algoritma Convolutional Neural Network (CNN)*. URL: https://www.trivusi.web.id/2022/04/algoritma-cnn.html. Diakses tanggal 19 Desember 2023.

Pratama, H., 2020. Penggunaan Metode Convolutional Neural Network (CNN) Untuk Mendelineasi Patahan pada Data Seismik 3D. URL: https://library.universitaspertamina.ac.id/xmlui/handle/123456789/1280#:~:text="metode%20Convolutional%20Neural%20Network%20(CNN)%20merupakan%20salah%20satu%20metode%20AI,di%20dalam%20data%20seismik%203D.
Diakses tanggal 19 Desember 2023.

Computer Vision

Antara.2022. Mengenal Teknologi AI Computer Vision Widya Robotics. URL: https://www.antaranews.com/berita/3236833/mengenal-teknologi-ai-computer-vision-widya-

robotics#:~:text=Salah%20satu%20teknologi%20AI%20yang,dikumpulkan%20untuk%20diproses%20oleh%20komputer. Diakses tanggal 19 Desember 2023.

Pintu. 2023. *Apa itu Computer Vision dalam AI dan 3 Fungsinya?* URL: https://pintu.co.id/blog/computer-vision-adalah. Diakses tanggal 19 Desember 2023

OCR

SIPAS. 2023. *OCR (Optical Character Recognition): Definisi, Fungsi, & Cara Kerja*. URL: https://www.sipas.id/blog/ocr-adalah. Diakses tanggal 19 Desember 2023.

Verihubs. 2022. *Memahami Apa itu OCR dan Bagaimana Cara Kerjanya*. URL: https://verihubs.com/blog/memahami-apa-itu-ocr/. Diakses tanggal 19 Desember 2023

Lampiran 1. Biodata Ketua dan Anggota, serta Dosen Pendamping

Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Verren Angelina Saputra
2	Jenis Kelamin	Perempuan
3	Program Studi	Computer Science
4	NIM	2602093600
5	Tempat dan Tanggal Lahir	Jakarta, 7 Oktober 2023
6	Alamat E-mail	Verren.saputra@binus.ac.id
7	Nomor Telepon/HP	081316621119

B. Kegiatan Kemahasiswaan Yang Sedang / Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
	Part-time		September 2023,
1	Laboratory	Teaching Assistant	LCAS BINUS
	Assistant		University
2	BINUS Ambassador	Ambassador	Juli 2021 –
			September 2022,
			Marketing BINUS
			University
3	HISHOT 2023	Coordinator of Web	Maret 2023,
	(HIMTI Seminar,	Development	HIMTI BINUS
	Workshop, and		University
	Study Tour)		
4	BNEC TOEFL Test	Vice Project Officer	May 2023, BNEC
	2023	TOEFL Test	BINUS University
5	BNEC NMR 2023	Staff of Design	Juni 2023, BNEC
			BINUS University

6	BNEC NEO 2023	Staff of IT and	September 2023,
		Registration	BNEC BINUS
			University
7	GoPay Student	Ambassador	September 2023,
	Ambassador		GoPay Indonesia
8	Persekutuan	Staff of Publication	Maret 2023, PO
	Oikumene (PO)	and Documentation	BINUS University
	BINUS		
9	Volunteer	Math and English	Maret 2023, Teach
	Bimbingan Belajar	Tutor	For Indonesia
			(TFI)
10	HIMTI TECHNO -	Tutor	Agustus 2023,
	PBP (Pembelajaran		HIMTI BINUS
	Bahasa		University
	Pemrograman)		
11	HIMTI Internship	Web Development	Desember 2023,
	2023	Trainer	HIMTI BINUS
			University

C. Penghargaan Yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Gold Medal Animation Scratch 2020	Indonesia Youth	2020
		Robot Competition	
2	Finalist INFINITICS 4: "Inseparably	Universitas Pelita	2020
	Finding True Knowledge and	Harapan	
	Mathematics" 4 Mathematics		
	Olympiad		
3	Silver Medal Innovative Robotic	Griffith University,	2020
	Challenge WIT	Australia	

4	Silver Medal Robot Open KRON	Indonesia Youth	2021
	2021	Robot Competition	
5	Gold Medal Bricks Robot KRON	Indonesia Youth	2021
	2021	Robot Competition	
6	Gold Medal Robot Creative Open	Indonesia Youth	2021
	AYRO Singapore	Robot Competition	
7	Gold Medal Robot Animation	Indonesia Youth	2021
	Coding AYRO Singapore	Robot Competition	
8	Gold Medal Drawbricks AYRO	Indonesia Youth	2021
	Singapore	Robot Competition	
9	The Widia Scholarship Awardee for	BINUS University	2021
	Outstanding Achievers		
10	Bronze Medal Innovation Robot	Indonesia Youth	2022
	Open IYRC	Robot Competition	
11	2nd Winner as The Best Scientific	SMAK Kanaan	2022
	Paper for Interdisciplinary Problem	Tangerang	
	Based Learning		
12	2nd Winner of Virtual Speech	Pradita University	2022
	Competition at Prathentic Festival		
	2022		
13	3rd Winner of Essay Competition	HIMSTAT BINUS	2022
	(Statistical Project For Smart Student	University	
	/ SPSS 2022)		
14	1st Runner Up Poster Competition at	Universitas	2023
	Defotion 2023	Dinamika	
		Indonesia	
15	1st Winner of Poster Competition at	KMK BINUS	2023
	KCUP 2023	University	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata

dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratandalam pengajuan PKM-KC.

Tangerang, 27 September 2023

Ketua Tim

Verren Angelina Saputra

Biodata Anggota 1

A. Identitas Diri

1	Nama Lengkap	Angeline Rachel
2	Jenis Kelamin	Perempuan
3	Program Studi	Computer Science
4	NIM	2602132072
5	Tempat dan Tanggal Lahir	Jakarta, 3 September 2004
6	Alamat E-mail	Angeline.rachel@binus.ac.id
7	Nomor Telepon/HP	087884153758

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	PKM HIMTI	Staff Acara	4-8 September 2023, SMK Yadika 4
2	HISHOT	Staff PTK	17 Juni 2023, Binus Alam Sutera
3	HIMTI Awarding Night	Staff Acara	10 Desember 2023
4	HIVENT	Staff Acara	29 Desember 2023, Binus Alam Sutera

C. Penghargaan Yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Best High School	Tanda Salib	2021
	Student 2021		
2	OSIS SMA Permai	SMA Permai	2021
	2020/2021		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata

dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratandalam pengajuan PKM-KC.

Tangerang, 27 September 2023

Anggota Tim

Angeline Rachel

Biodata Anggota 2

A. Identitas Diri

1	Nama Lengkap	Christopher Alden
		Anugrah Silitonga
2	Jenis Kelamin	Laki-laki
3	Program Studi	Computer Science
4	NIM	2602167605
5	Tempat dan Tanggal Lahir	Tangerang, 26 Agustus
		2004
6	Alamat E-mail	Christopher.silitonga@bin
		us.ac.id
7	Nomor Telepon/HP	08118826804

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Assisstant	Junior Laboratory	Bina Nusantara
	Laboratory	Assisstant	University, 2022-
			Present
2	Scholarship	Mentor	Bina Nusantara
	Mentoring		University, 2023-
			Present

C. Penghargaan Yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratandalam pengajuan PKM-KC.

Tangerang, 27 September 2023 Anggota Tim

Christopher Alden Anugrah Silitonga

Biodata Anggota 3

A. Identitas Diri

1	Nama Lengkap	Dellon Valentino Ardi
2	Jenis Kelamin	Laki-laki
3	Program Studi	Computer Science
4	NIM	2602131901
5	Tempat dan Tanggal Lahir	Semarang, 25 November
		2004
6	Alamat E-mail	Dellon.ardi@binus.ac.id
7	Nomor Telepon/HP	081232561277

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	-	-	-

C. Penghargaan Yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Best Student	PJI (Prestasi Junior	2020
	Company of the	Indonesia)	
	Year		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratandalam pengajuan PKM-KC.

Tangerang, 27 September 2023 Anggota Tim

Dellon Valentino Ardi

Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap (dengan gelar)	Dr. Nur Afny Catur Andryani,
		S.Si., M.Sc.
2	Jenis Kelamin	Perempuan
3	Program Studi	Electrical Engineering
4	NIP/NIDN	0303018302
5	Tempat dan Tanggal Lahir	Jember, 3 Januari 1983
6	Alamat E-mail	nur.andryani@binus.edu
		nur.afny@binus.ac.id
7	Nomor Telepon/HP	087877543134

B. Riwayat Pendidikan

No	Jenjang	Bidang Ilmu	Institusi	Tahun Lulus
1	Sarjana (S1)	Applied	Universitas	
		Mathematics	Gadjah Mada	2007
			(UGM)	
2	Magister (S2)	System and	Universiti	
		Automation	Teknologi	2010
		Engineering	PETRONAS	
3	Doktor (S3)	Signal and Image	University of	
		Processing,	Indonesia	2017
		Electrical		2017
		Engineering		

C. Rekam Jejak Tri Dharma PT

Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	sks
1	Matematika Diskrit	Wajib	4

2	Metodologi Penelitian	Wajib	4
3	Artificial Intelligence	Wajib	4
4	Kalkulus	Wajib	4
5	Machine Learning	Wajib	4

Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	ANDA	Kedaireka	2023
	MANTAU-Penguatan		
	UMKM dengan Ekonomi		
	Digital -Mitra BSI		
	Maslahat		
2	Rancang Bangun Tele	RIIM	2023
	Dermatologi Berbasis		
	Artificial Intelligence Data		
	Science Dengan Studi		
	Kasus Pasien Kulit Anak		
	Indonesia		
3	Less Invasive MRI	PIB	2023
	Imaging Algorithm Design		
	using Compressive		
	Sensing Framework		

Pengabdian Kepada Masyarakat

No	Judul Pengabdian kepada Masyarakat	Penyandang Dana	Tahun
1	Improving women's employability	GEP British	2023
	through Data Driven Modelling-AI	Council	
	Data Science Skill's Enrichment: A	(diajukan)	
	UK-Indonesia Collaborative		
	Approach		

2	IEEE WIE Indonesia Gathering:	WIE IEEE	2023
	Networking, Collaboration, Funding	Region 10 (Asia	
	Opportunities and Book Launching	Pacific)	
	"Woman Engagement in Artificial		
	Intelligence"		
3	Identifikasi dan Pemetaan Potensi	BSI Maslahat	2022
	UMKM pada Binaan BSI		
	MASLAHAT		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratandalam pengajuan PKM-KC.

Tangerang, 27 September 2023

Dosen Pendamping

Dr. Nur Afny CaturAndryani, S.Si., M.Sc.

Lampiran 2. Justifikasi Anggaran Kegiatan

No,	Jenis Pengeluaran	Volume	Harga Satuan (Rp)	Nilai (Rp)
1	Belanja Bahan (maks. 60%)			
	Internet	1	3,000,000	3,000,000
	License app store	1	1,200,000	1,200,000
	SUBTOTAL		4,200,000	4,200,000
2	2 Belanja Sewa (maks. 15%)			
	License play store	1	800,000	800,000
	SUBTOTAL		800,000	800,000
3	3 Perjalanan lokal (maks. 30 %)		<u> </u>	
	Kegiatan promosi	1	1,000,000	1,000,000
	SUBTOTAL		1,000,000	1,000,000
4	Lain-lain (maks. 15 %)			
	Jasa pengembangan aplikasi	1	1,000,000	1,000,000
	SUBTOTAL		1,000,000	1,000,000
GRAND TOTAL 7,0				
GRA	ND TOTAL (Terbilang tujuh juta r	upiah)		<u> </u>

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

		-		Alokasi		
N	Nama/NIM	Program	Bidang	Waktu	T	
0		Studi	Ilmu	(jam/	Uraian Tugas	
				minggu)		
	Verren	Intelligent	Computer	4	Penyusunan	
	Angelina	Systems	Science		proposal	
1	Saputra -				PKM-KC dan	
1	2602093600				pengembangan	
					UI aplikasi	
					Visionic	
	Angeline	Intelligent	Computer	3	Riset	
2	Rachel -	Systems	Science		pengembangan	
2	2602132072				aplikasi	
					Visionic	
	Christopher	Software	Computer	5	Desain dan	
	Alden	Engineering	Science		pengembangan	
3	Anugrah				aplikasi	
	Silitonga -				Visionic	
	2602167605					
	Dellon	Software	Computer	3	Riset	
	Valentino	Engineering	Science		pengembangan	
4	Ardi -				aplikasi	
	2602131901				Visionic	

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

•

Yang bertanda tangan di bawah ini:

Nama Ketua Tim	:	Verren Angelina Saputra
Nomor Induk Mahasiswa	:	2602093600
Program Studi	:	Computer Science
Nama Dosen Pendamping	:	Dr. Nur Afny Catur Andryani, S.Si., M.Sc.
Perguruan Tinggi		Universitas Bina Nusantara

Dengan ini menyatakan bahwa proposal PKM-KC saya dengan judul:

Mengaktualisasikan SDG's melalui *Visionic*: Aplikasi Berbasis Computer Vision untuk Meningkatkan Kualitas Hidup Lansia Dalam Mengenali Keluarga yang diusulkan untuk tahun anggaran 2023 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas Negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan sebenar – benarnya.

Tangerang, 27 September 2023 Yang menyatakan,

Meterai senilai Rp. 10.000

Verren Angelina Saputra 2602093600

Lampiran 5. Gambaran Teknologi yang akan Dikembangkan

Menu Login

Saat pertama kali user mengakses aplikasi, maka *user* akan diarahkan untuk mengisi *email* dan *password* (berupa *referral code*) yang telah terdaftar dalam aplikasi *Visionic*. *Visionic* bisa mencapai target user (lansia) dari puskesmas dan layanan kesehatan, pihak-pihak tersebut yang akan menjadi mediator antara pihak *visionic* untuk memberikan *referral code* kepada *user*.

Menu Utama (Home Page)

Menu utama berisi beberapa button, yaitu 3 button yang berisi fitur dari *visionic*, menu *edit profile* (pojok kanan), dan menu pengaturan bahasa (pojok kiri). Pewarnaan *visionic* dalam ketiga *button* fitur dibuat bervariasi supaya lansia yang kesulitan dalam penglihatan dapat membedakan warna yang ada.

Menu Edit Profile dan Pengaturan Bahasa

Menu *edit profile* digunakan untuk melihat serta mengedit detail tampilan profil *user*. Menu pengaturan bahasa digunakan untuk memilih bahasa yang dipahami oleh *user*. Pengaturan *default* bahasa yang digunakan adalah Indonesia karena jangkauan target pengguna *visionic* adalah lansia Indonesia.

Menu Face Detection

Menu *Face Detection* merupakan sebuah menu yang dapat digunakan lansia untuk mendeteksi wajah anggota keluarga lansia sehingga dapat dengan mudah dikenali.

Menu Text Detection

Menu *Text Detection* merupakan sebuah menu yang dapat digunakan lansia untuk mendeteksi sebuah bacaan sehingga dapat dengan mudah dibaca.

