Міністерство освіти і науки України Національний технічний університет України «КПІ» імені Ігоря Сікорського Кафедра обчислювальної техніки ФІОТ

3BIT з лабораторної роботи №3 з навчальної дисципліни «Технології Data Science»

Тема:

МАКЕТ ІНТЕЛЕКТУАЛЬНОЇ ERP СИСТЕМИ ПІДТРИМКИ ПРИЙНЯТТЯ РІШЕНЬ

Виконав:

Студент 4 курсу кафедри ФІОТ, Навчальної групи ІП-11 Олександр Головня

Перевірив:

Професор кафедри ОТ ФІОТ Олексій Писарчук

І. Мета:

Виявити дослідити та узагальнити принципи формалізації задач, синтезу математичних моделей для автоматизації процесів підтримки прийняття рішень в інтелектуальних ERP системах: програмування обмежень — CP-SAT; багатокритеріальні задачі — Multicriteria decision analysis.

II. Завдання:

1. Для визначення можливості автоматизації бізнес процесів, що реалізовані в компанії замовника Вам пропонується розробити макет програмної реалізації мовою Python обчислювального алгоритму ERP системи підтримки прийняття рішень за умов:

II рівень складності 8 балів, викладених у табл.2.

2. Провести аналіз отриманих результатів та верифікацію розробленого скрипта.

n	_	\sim
`₹	TOOT	,.
J	таол.	

1 1 a 0 31 . 2 .	ефективность, синтел оптитократерамивног оптивнации от водой эдисинти совостино.
10	Розробити програмний скрипт, що реалізує багатокритеріальне оцінювання ефективності
	позашляховиків різних виробників. Формування показників та критеріїв ефективності,
	синтез багатокритеріальної оптимізаційної моделі здійснити самостійно.

III. Результати виконання лабораторної роботи.

3.4. Блок схема алгоритму.

Рис. 1 — Блок-схема алгоритму програми

3.1. Опис структури проекту програми.

Для реалізації розробленого алгоритму мовою програмування Python з використанням можливостей інтегрованого середовища сформовано проект.

Проект базується на лінійній бізнес-логіці функціонального програмування та має таку структуру.

Рис.2 – Структура проєкту

ds3.ipynb – файл програмного коду лабораторної роботи; ds3.docx – файл звіту лабораторної роботи

3.2. Результати роботи програми відповідно до завдання.

Для початку я сформував показники для позашляховиків різних виробників.

В якості показників я обрав:

Brand

Вартість (Ргісе)

Безпека (SafetyRating)

Місткість багажника (CargoSpace)

Потужність (Horsepower)

Ефективність палива (FuelEconomy)

Тривалість гарантії (WarrantyYears)

Кліренс (GroundClearance)

	Brand	Price	SafetyRating	CargoSpace	Horsepower	FuelEconomy	WarrantyYears	GroundClearance
0	Lexus	35000	5	520	210	8.0	5	210
1	BMW	45000	3	400	280	11.2	2	205
2	Audi	28000	4	470	170	7.3	4	215
3	Mercedes-Benz	37000	4	530	240	12.0	3	198
4	Volvo	40000	5	550	300	10.1	6	202
5	Kia	25000	4	440	190	7.9	7	220
6	Porsche	42000	5	510	250	9.8	5	235
7	Land Rover	32000	5	460	220	8.5	4	195
8	Tesla	50000	4	600	320	12.5	6	245
9	Jaguar	46000	5	480	270	9.0	4	200

Рис.3 – Початкові дані датафрейму

Наступним кроком я сформував критерії ефективності:

- Вартість (Cost): менше краще.
- Безпека (SafetyScore): більше краще.
- Місткість багажника (TrunkVolume): більше краще.
- Потужність (PowerOutput): більше краще.
- Ефективність палива (FuelEfficiency): менше краще.
- Тривалість гарантії (WarrantyDuration): більше краще.
- Кліренс (ClearanceHeight): більше краще.

	Lexus	BMW	Audi	Mercedes-Benz	Volvo	Kia	Porsche	Land Rover	Tesla	Jaguar	Criterion
Price	35000.0	45000.0	28000.0	37000.0	40000.0	25000.0	42000.0	32000.0	50000.0	46000.0	min
SafetyRating	5.0	3.0	4.0	4.0	5.0	4.0	5.0	5.0	4.0	5.0	max
CargoSpace	520.0	400.0	470.0	530.0	550.0	440.0	510.0	460.0	600.0	480.0	max
Horsepower	210.0	280.0	170.0	240.0	300.0	190.0	250.0	220.0	320.0	270.0	max
FuelEconomy	8.0	11.2	7.3	12.0	10.1	7.9	9.8	8.5	12.5	9.0	min
WarrantyYears	5.0	2.0	4.0	3.0	6.0	7.0	5.0	4.0	6.0	4.0	max
GroundClearance	210.0	205.0	215.0	198.0	202.0	220.0	235.0	195.0	245.0	200.0	max

Рис.4 – Дані датафрейму з критерієм ефективності

Потім я створив csv-файл, щоб потім зчитати ці дані, як з джерела

Наступним кроком Нормалізація даних: Дані мають бути приведені до єдиної шкали (0 до 1) для порівняння різних критеріїв. Логіка роботи:

Мінімізаційні критерії: Якщо критерій вимагає мінімізації (наприклад, ціна, паливна витрата), функція нормалізує його за допомогою формули:

Нормалізоване значення
$$\frac{3$$
наченння \sum всіх значень

Це дозволяє отримати пропорційне значення, яке враховує внесок цього значення в загальну суму.

Максимізаційні критерії: Якщо критерій вимагає максимізації (наприклад, безпека, потужність), функція використовує формулу:

Нормалізоване значення
$$\cfrac{\dfrac{1}{$$
 значення}}{\sum \left(\dfrac{1}{} значення $\right)$

Цей підхід враховує, що чим більшим ϵ значення, тим менше його нормалізоване значення, отже, більші значення мають менший вагомий внесок у загальний рейтинг.

	Price	SafetyRating	CargoSpace	Horsepower	FuelEconomy	WarrantyYears	GroundClearance
Lexus	0.092105	0.085714	0.094208	0.112434	0.083074	0.081317	0.100669
BMW	0.118421	0.142857	0.122470	0.084325	0.116303	0.203291	0.103124
Audi	0.073684	0.107143	0.104230	0.138889	0.075805	0.101646	0.098328
Mercedes-Benz	0.097368	0.107143	0.092430	0.098379	0.124611	0.135528	0.106770
Volvo	0.105263	0.085714	0.089069	0.078704	0.104881	0.067764	0.104656
Kia	0.065789	0.107143	0.111337	0.124269	0.082035	0.058083	0.096093
Porsche	0.110526	0.085714	0.096055	0.094444	0.101765	0.081317	0.089959
Land Rover	0.084211	0.085714	0.106496	0.107323	0.088266	0.101646	0.108412
Tesla	0.131579	0.107143	0.081647	0.073785	0.129803	0.067764	0.086287
Jaguar	0.121053	0.085714	0.102058	0.087448	0.093458	0.101646	0.105702

Рис.5 – Нормування критеріїв

Потім я задав вагові коефіцієнти для усіх показників вручну: weights = np.array([0.1, 0.3, 0.1, 0.15, 0.1, 0.05, 0.1, 0.1]), нормував їх та на їх основі обрахував інтегровану оцінку для кожного виробника позашляховика.

Відсортував датафрейм за зростанням, його перший рядок буде містити оптимального виробника

	EfficiencyScore
Volvo	1.068813
Lexus	1.078276
Porsche	1.082772
Land Rover	1.090577
Kia	1.095043
Jaguar	1.100355
Tesla	1.111527
Audi	1.122498
Mercedes-Benz	1.146982
BMW	1.260210

F44: -: -----

Рис.6 – Після нормування ваговиї коефіцієнтів, обрахунок інгрованої оцінки

Best SUV Brand: Volvo

Integrated Efficiency Score: 1.0688132493906732

Рис.7 – Оптимальний виробник та його інтегрована оцінка у даному датасеті

3.3. Програмний код.

Програмний код послідовно реалізує алгоритм рис.1 та спрямовано на отримання результатів, поданих вище.

При цьому використано можливості Python бібліотек: pip; pandas; numpy; sklearn; matplotlib.

Контексні коментарі пояснюють сутність окремих скриптів наведеного коду програми.

3.4. Аналіз результатів відлагодження та верифікації результатів роботи програми.

Результати відлагодження та тестування довели працездатність розробленого коду. Це підтверджується результатами розрахунків, які не суперечать теоретичним положенням.

Верифікація функціоналу програмного коду, порівняння отриманих результатів з технічними умовами завдання на лабораторну роботу доводять, що усі завдання виконані у повному обсязі.

IV. Висновки.

Отже, я сформував показники та відповідні критерії ефективності для позашляховиків різних виробників. Формування критеріїв ефективності є логічно обгрунтованим з точки зору людини чи компанії, яка обирає оптимальний позашляховик. Я обрав нелінійну схему компромісів для розрахунку інтегрованої оцінки на основі нормалізованих критеріїв та нормалізованих вагових коефіцієнтів.

Таким чином, оптимальним виявився виробник з мінімальним значенням даної оцінки. У моєму випадку, це бренд Volvo, що свідчить про його переваги в рамках встановлених критеріїв. Отримані результати дозволяють споживачам приймати обґрунтовані рішення при виборі позашляховика, зважаючи на важливі фактори, такі як ціна, безпека, обсяг вантажного відсіку, потужність, витрата пального, тривалість гарантії та кліренс. Це також підкреслює важливість комплексного підходу до оцінки автомобілів на основі багатокритеріальних моделей, що дозволяє досягати більш точних та зважених рішень.