多元统计分析

第9讲 因子分析(11)

Johnson & Wichern Ch9.4-9.6

统计学研究中心 邓婉璐 wanludeng@tsinghua.edu.cn

2018-2019春季学期

Outline

- > Introduction and Model
- > Methods for Estimation
 - PC method
 - MLE method
- Explanation Rotation
- > Factor Scores
 - Weighted LSE Method
 - Regression Method

Rotation for Interpretation

Factor Rotation

- > Factor loading is not unique
- > Initial loading + orthogonal transformation

$$\hat{\mathbf{L}}^* = \hat{\mathbf{L}}\mathbf{T}$$
, with $\mathbf{T}\mathbf{T}' = \mathbf{T}'\mathbf{T} = \mathbf{I}$

Question

- Why is it not unique in FA, but unique in PCA?
- Is the covariance/correlation matrix changed after rotation? What about residual matrix, estimated specific variances, communalities?
- Why rotation? (Interpretation)
- Criteria? What is a desirable result?
 PCA的几何投影: PCA是找全部主成分,使得投影到任意维数,主成分确定的平面都是最优的。而FA只找一个平面,所以当固定维数的时候,可以在该平面内旋转,不影响投影结果,但却有很好的解释度

What is "simpler" structure?

➤ Ideally, we should like to see a pattern of loadings such that each variable loads highly on a single factor and has small to moderate loadings on the remaining factors.

Variable	Estimated factor loadings						
Taste	1	0					
Good buy for money	0	1					
Flavor	1	0					
Suitable for snack	0	1					
Provides lots of energy	0	1					

爱好因子 食物因子 (附加) (实用)

Varimax Criterion

- ightharpoonup Importance depends on magnitude not sign: $(\hat{l}_{ij}^*)^2$
- \triangleright Scaling: $(\tilde{l}_{ii}^*)^2 = (\hat{l}_{ii}^*)^2 / \hat{h}_i^2$ 物以稀为贵
- > Varimax procedure selects the orthogonal transformation **T** that maximizes

$$V = \frac{1}{p} \sum_{j=1}^{m} \left\{ \sum_{i=1}^{p} \left(\widetilde{l}_{ij}^{*} \right)^{4} - \left[\sum_{i=1}^{p} \left(\widetilde{l}_{ij}^{*} \right)^{2} \right]^{2} / p \right\}$$

$$V \propto \sum_{j=1}^{m} \left(\text{variance of squares of (scaled) loadings for } j \text{th factor} \right)$$

Maximizing V corresponds to 'spreading out' the squares of the loadings on each factor as much as possible.

Example: Consumer Preference

> Is the explained variance changed after rotation?

Estimating Factor Scores

Why Do We Want Factor Score?

- ➤ Why we want factor score?

 - ♦ or inputs to a subsequent analysis

Figure 9.5 Factor scores for the first two factors of chicken-bone data.

How to Find Factor Score?

- ➤ Mission impossible: too many latent variables
- \triangleright Solution: Take L, Ψ as known. Get factor scores heuristically.
- ➤ Methods for getting factor scores
 - ♦ Weighted least squares method
 - \diamond Ordinary least squares method (with L, Ψ obtained from PC approach)
 - ♦ Regression method
- > Comparison
 - ♦ WLS *vs* Regression
 - ♦ Factor scores vs Principle scores

Weighted Least Squares Method

$$\mathbf{X} - \boldsymbol{\mu} = \mathbf{L} \mathbf{F} + \boldsymbol{\varepsilon}_{(p \times 1)}$$

$$\sum_{i=1}^{p} \frac{\varepsilon_i^2}{\psi_i} = \varepsilon' \Psi^{-1} \varepsilon = (\mathbf{x} - \mu - \mathbf{L} \mathbf{f})' \Psi^{-1} (\mathbf{x} - \mu - \mathbf{L} \mathbf{f})$$
 (1)

$$\hat{\mathbf{f}} = (\mathbf{L}' \Psi^{-1} \mathbf{L})^{-1} \mathbf{L}' \Psi^{-1} (\mathbf{x} - \mu)$$

Take $\hat{\mathbf{L}}, \hat{\mathbf{\Psi}}$, and $\hat{\mu} = \overline{\mathbf{x}}$ as the true value to obtain the factor score

Bartlett Score (1954)

Question:

- What is the factor scores if MLE method is used?
- What if the correlation matrix is factored?

Ordinary Least Squares Method

 \blacktriangleright If we use PC approach to estimate L, Ψ , then we usually choose OLS to obtain the factor score.

$$\mathbf{X} - \boldsymbol{\mu} = \mathbf{L} \mathbf{F} + \boldsymbol{\varepsilon}_{(p \times 1)}$$

$$\sum_{i=1}^{p} \varepsilon_i^2 = \varepsilon' \varepsilon = (\mathbf{x} - \mu - \mathbf{L}\mathbf{f})'(\mathbf{x} - \mu - \mathbf{L}\mathbf{f})$$
 (2)

$$\hat{\mathbf{f}} = (\mathbf{L}'\mathbf{L})^{-1}\mathbf{L}'(\mathbf{x} - \mu)$$

Take $\hat{\mathbf{L}}, \hat{\mathbf{\Psi}}$, and $\hat{\mu} = \overline{\mathbf{x}}$ as the true value to obtain the factor score

Connection to PC scores (y_j) : the j^{th} factor score $\hat{f}_j = \frac{1}{\sqrt{\lambda_j}} e'_j(x - \mu) = \frac{1}{\sqrt{\lambda_j}} y_j$

Regression Method

> Recall: multivariate normal distribution, conditional distribution

$$X - \mu = LF + \varepsilon$$

$$\mathbf{X} \sim N_p(\mathbf{\mu}, \mathbf{L}\mathbf{L'+\Psi})$$

- \triangleright Q: the joint distribution of $(X \mu, F)$?
- \triangleright Q: the conditional distribution $\mathbf{F} \mid \mathbf{X}$?

Regression Method

$$\begin{pmatrix} \mathbf{X} - \mu \\ \mathbf{F} \end{pmatrix} = \begin{pmatrix} \mathbf{L} \\ \mathbf{I}_m \end{pmatrix} \mathbf{F} + \begin{pmatrix} \varepsilon \\ \mathbf{0} \end{pmatrix}, \mathbf{F} \sim N_m(\mathbf{0}, \mathbf{I})$$

$$\longrightarrow \begin{pmatrix} \mathbf{X} - \mu \\ \mathbf{F} \end{pmatrix} \sim N_{p+m} \begin{pmatrix} \mathbf{0}, \begin{bmatrix} \mathbf{L}\mathbf{L}' + \mathbf{\Psi} & \mathbf{L} \\ \mathbf{L}' & \mathbf{I}_m \end{bmatrix} \end{pmatrix}$$

mean =
$$E(\mathbf{F} \mid \mathbf{x}) = \mathbf{L}' \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu}) = \mathbf{L}' (\mathbf{L} \mathbf{L}' + \mathbf{\Psi})^{-1} (\mathbf{x} - \mathbf{\mu})$$

Relationship to regression analysis

mean =
$$\mathbf{E}(\mathbf{F} \mid \mathbf{x}) = \mathbf{L}' \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu}) = \mathbf{L}' (\mathbf{L} \mathbf{L}' + \mathbf{\Psi})^{-1} (\mathbf{x} - \mathbf{\mu})$$

covariance = $\mathbf{Cov}(\mathbf{F} \mid \mathbf{x}) = \mathbf{I}_m - \mathbf{L}' \mathbf{\Sigma}^{-1} \mathbf{L} = \mathbf{I}_m - \mathbf{L}' (\mathbf{L} \mathbf{L}' + \mathbf{\Psi})^{-1} \mathbf{L}$

The factor score vector for the jth unit is given by

$$\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\hat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x}_{j} - \overline{\mathbf{x}}) = \hat{\mathbf{L}}'(\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\boldsymbol{\Psi}})^{-1}(\mathbf{x}_{j} - \overline{\mathbf{x}})$$

Question: What if the correlation matrix is factored?

$$\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}_{z}' \hat{\mathbf{R}}^{-1} \mathbf{z}_{j}$$

Regression Method – Another Perspective

- $F_{(m\times 1)} = B_{(m\times p)}(X-\mu) + \eta_{(m\times 1)}, E\eta = 0, cov(X-\mu,\eta) = 0.$ ➤ Model:
- Difficulty: F is not observed
- Solution: recall that we take L as known, and

lution: recall that we take
$$L$$
 as known, and
$$l_{ij} = \operatorname{cov}(X_i - \mu_i, F_j) = b_{j1}\sigma_{i1} + \dots + b_{jp}\sigma_{ip} = [\sigma_{i1}, \dots, \sigma_{ip}] \begin{bmatrix} b_{j1} \\ \vdots \\ b_{jp} \end{bmatrix}$$

$$L_{(p \times m)} = (l_{ij}) = \Sigma B'$$

$$\hat{B} = \hat{\Sigma}^{-1}\hat{L}, \hat{F}_{(m\times 1)} = \hat{L}'_{(m\times p)}\hat{\Sigma}^{-1}_{(p\times p)}(X - \mu)$$

Regression Method – Further Notes

> Approximation:

S is often used for $\hat{\Sigma}$ rather than $\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi}$.

Then the factor score vector for the j^{th} unit is $\hat{\mathbf{f}}_i = \hat{\mathbf{L}}'\mathbf{S}^{-1}(\mathbf{x}_i - \overline{\mathbf{x}})$

Connection to PC scores:

$$\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{S}^{-1}(\mathbf{x}_{j} - \overline{\mathbf{x}})$$

$$\mathbf{S} = \mathbf{P}\Lambda\mathbf{P}'$$

$$\mathbf{L}_{p \times m} = \mathbf{P}_{m} \Lambda_{m}^{1/2} = [e_{1}, \dots, e_{m}]$$

$$\ddots$$

$$\sqrt{\lambda_{m}}$$

$$\hat{\mathbf{f}}_{j} = \hat{\mathbf{L}}'\mathbf{S}^{-1}(\mathbf{x}_{j} - \overline{\mathbf{x}})$$

$$= (\mathbf{P}_{m}\Lambda_{m}^{1/2})'(\mathbf{P}\Lambda^{-1}\mathbf{P}')(\mathbf{x}_{j} - \overline{\mathbf{x}})$$

$$= \Lambda_{m}^{-1/2}\mathbf{P}'_{m}(\mathbf{x}_{j} - \overline{\mathbf{x}})$$

PC score

Comparison between two methods

> Estimation

$$\hat{\mathbf{f}}_{j}^{R} = \hat{\mathbf{L}}'\hat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x}_{j} - \overline{\mathbf{x}}) = \hat{\mathbf{L}}'(\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\boldsymbol{\Psi}})^{-1}(\mathbf{x}_{j} - \overline{\mathbf{x}})$$

$$\hat{\mathbf{f}}_{j}^{WLS} = (\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}\hat{\mathbf{L}}'\hat{\Psi}^{-1}(\mathbf{x}_{j} - \mathbf{\bar{x}})$$

$$\hat{\mathbf{L}}'(\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi})^{-1} = (I + \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}\hat{\mathbf{L}}'\hat{\Psi}^{-1}$$
 (HW, see excercise 9.6)

$$\hat{\mathbf{f}}_{j}^{WLS} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}\hat{\mathbf{L}})^{-1})\hat{\mathbf{f}}_{j}^{R}$$

Comparison between two methods

- Unbiasedness
 - Estimation under weighted least squares method is unbiased.

$$\hat{\mathbf{f}}^{WLS} = (\mathbf{L}'\Psi^{-1}\mathbf{L})^{-1}\mathbf{L}'\Psi^{-1}(\mathbf{x} - \mu)$$

$$E(\hat{\mathbf{f}}^{WLS} \mid F) = (\mathbf{L}'\Psi^{-1}\mathbf{L})^{-1}\mathbf{L}'\Psi^{-1}\mathbf{L}F = F$$

Estimation under regression method is biased.

$$\hat{\mathbf{f}}^{R} = \mathbf{L}' \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = \mathbf{L}' (\mathbf{L} \mathbf{L}' + \boldsymbol{\Psi})^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

$$E(\hat{\mathbf{f}}^{R} \mid F) = E(\mathbf{L}' (\mathbf{L} \mathbf{L}' + \boldsymbol{\Psi})^{-1} (\mathbf{x} - \boldsymbol{\mu}) \mid F) = \mathbf{L}' (\mathbf{L} \mathbf{L}' + \boldsymbol{\Psi})^{-1} \mathbf{L} F$$

$$= (I + (L' \boldsymbol{\Psi}^{-1} L)^{-1})^{-1} F$$

(by
$$\hat{\mathbf{L}}'(\hat{\mathbf{L}}\hat{\mathbf{L}}'+\hat{\Psi})^{-1} = (I+\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}})^{-1}\hat{\mathbf{L}}'\hat{\Psi}^{-1})$$

Can also be derived directly with results on last page.

Comparison between two methods

- > Average prediction error
 - For the estimation under weighted least squares method:

$$\hat{\mathbf{f}}^{WLS} = (\mathbf{L}'\Psi^{-1}\mathbf{L})^{-1}\mathbf{L}'\Psi^{-1}(\mathbf{x} - \mu)$$

$$= (\mathbf{L}'\Psi^{-1}\mathbf{L})^{-1}\mathbf{L}'\Psi^{-1}\mathbf{L}F + (\mathbf{L}'\Psi^{-1}\mathbf{L})^{-1}\mathbf{L}'\Psi^{-1}\varepsilon = F + (\mathbf{L}'\Psi^{-1}\mathbf{L})^{-1}\mathbf{L}'\Psi^{-1}\varepsilon$$

$$E((\hat{\mathbf{f}}^{WLS} - F)(\hat{\mathbf{f}}^{WLS} - F)') = (\mathbf{L}'\Psi^{-1}\mathbf{L})^{-1}\mathbf{L}'\Psi^{-1}\operatorname{var}(\varepsilon)\Psi^{-1}\mathbf{L}(\mathbf{L}'\Psi^{-1}\mathbf{L})^{-1} = (\mathbf{L}'\Psi^{-1}\mathbf{L})^{-1}$$
Larger

For the estimation under regression method:

$$\hat{\mathbf{f}}^{R} = \mathbf{L}'(\mathbf{L}\mathbf{L}' + \mathbf{\Psi})^{-1}(\mathbf{x} - \mu) = \mathbf{L}'\Sigma^{-1}(\mathbf{x} - \mu) = \mathbf{L}'\Sigma^{-1}\mathbf{L}F + \mathbf{L}'\Sigma^{-1}\varepsilon$$

$$E((\hat{\mathbf{f}}^{R} - F)(\hat{\mathbf{f}}^{R} - F)') = (I + \Delta)^{-1}(I + \Delta)^{-1} + (I + \Delta)^{-1}\Delta(I + \Delta)^{-1} \text{ (by } \mathbf{L}'(\mathbf{L}\mathbf{L}' + \mathbf{\Psi})^{-1}\mathbf{L} - I = -(I + \mathbf{L}'\mathbf{\Psi}^{-1}\mathbf{L})^{-1}, \text{ and denote } \Delta = \mathbf{L}'\mathbf{\Psi}^{-1}\mathbf{L})$$

$$= (I + L'\mathbf{\Psi}^{-1}L)^{-1}$$

Smaller

Influence of Factor Rotation on FS

• Theoretically, we expect:

$$\mathbf{L}^* = \mathbf{LT}, \mathbf{f}_j^* = \mathbf{T}'\mathbf{f}_j$$

• The estimations keep this property:

$$\hat{\mathbf{L}}^* = \hat{\mathbf{L}}\mathbf{T}, \hat{\mathbf{f}}_j^* = \mathbf{T}'\hat{\mathbf{f}}_j$$

$$\hat{\mathbf{f}}_{j}^{R} = \hat{\mathbf{L}}'\hat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x}_{j} - \overline{\mathbf{x}}) = \hat{\mathbf{L}}'(\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\boldsymbol{\Psi}})^{-1}(\mathbf{x}_{j} - \overline{\mathbf{x}}) \qquad \Longrightarrow \qquad \hat{\mathbf{f}}_{j}^{R*} = \mathbf{T}'\hat{\mathbf{f}}_{j}^{R}$$

$$\hat{\mathbf{f}}_{j}^{WLS} = (\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}\hat{\mathbf{L}})^{-1}\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}(\mathbf{x}_{j} - \mathbf{x})$$

$$\hat{\mathbf{f}}_{j}^{WLS^{*}} = \mathbf{T}' \hat{\mathbf{f}}_{j}^{WLS}$$

R code

```
> res <- factanal(iris[,1:4],1,scores = 'regression',rotate='varimax')</pre>
MLE method: > res
with data
                   Call:
                   factanal(x = iris[, 1:4], factors = 1, scores = "regression",
                   arimax")
                   Uniquenesses:
                   Sepal.Length Sepal.Width Petal.Length Petal.Width
                          0.240
                                       0.822
                                                    0.005
                                                                 0.069
                   Loadings:
                                Factor1
                   Sepal.Length 0.872
                   Sepal.Width -0.422
                   Petal.Length 0.998
                   Petal.Width
                                 0.965
                                  Factor1
                                    2.864
                   SS loadings
                   Proportion Var
                                    0.716
                   Test of the hypothesis that 1 factor is sufficient.
                   The chi square statistic is 85.51 on 2 degrees of freedom.
```

The p-value is 2.7e-19

MLE method: with covariance matrix

> R <- var(iris[,1:4]) > res <- factanal(R,1,covmat=R)</pre>

rotat

PC method: psych::principal

Strategy in Real Application

Strategy for Factor Analysis

➤ Guide:

- ♦Interpretation, understanding ('WOW' Rule)
- **♦**Consistency

> Steps:

- 1. For large data sets, split them in half and perform FA on each part
- 2. For given data and fixed *m*
 - (1) Perform a principal component factor analysis
 - (2) Perform a maximum likelihood factor analysis
 - (3) Compare the solutions obtained from the two factor analyses
- 3. Repeat the step 1 for the other number of common factors *m*
- 4. Check the consistency and interpretation.

Illustration through Examples

> Data

The full data set consists of n = 276 measurements on bone dimensions:

Head:
$$\begin{cases} X_1 = \text{skull length} \\ X_2 = \text{skull breadth} \end{cases}$$
Leg:
$$\begin{cases} X_3 = \text{femur length} \\ X_4 = \text{tibia length} \end{cases}$$
Wing:
$$\begin{cases} X_5 = \text{humerus length} \\ X_6 = \text{ulna length} \end{cases}$$

Illustration through Examples

> Step 2.(1)(2)

Principal Component							Maximum Likelihood								
	Estimated factor loadings			Rotated estimated loadings				Estimated factor loadings		Rotated estimated loadings					
Variable	F_1	F_2	F_3	$\boldsymbol{F_1^*}$	F_2^*	F_3^*	$\widetilde{m{\psi}}_i$	Variable	F_1	F_2	F_3	F_1^*	F_2^*	F_3^*	‡
 Skull length Skull breadth Femur length Tibia length Humerus length Ulna length 	.741 .604 .929 .943 .948	.350 .720 233 175 143 189	.573 340 075 067 045 047	.355 .235 .921 .904 .888 .908	.244 (.949) .164 .212 .228 .192	.902 .211 .218 .252 .283 .264	.00 .00 .08 .08 .08	 Skull length Skull breadth Femur length Tibia length Humerus length Ulna length 	.602 .467 .926 1.000 .874 .894	.214 .177 .145 .000 .463 .336	.286 .652 057 000 012 039	.467 .211 .890 .936 .831 .857	.506 .792 .289 .345 .362 .325	.128 .050 .084 073 .396 .272	.51 .33 .12 .00 .02 .09
Cumulative proportion of total (standardized) sample variance explained	.743	.873	.950	.576	.763	.950		Cumulative proportion of total (standardized) sample variance explained	.667	.738	.823	.559	.779	.823	-

Illustration through Examples

> Step 2.(3)

3rd
Factor
Score

Figure 9.6 Pairs of factor scores for the chicken-bone data. (Loadings are estimated by principal component and maximum likelihood methods.)

Summary

Summary

- > Factor Rotation
 - ♦ Motivation: Interpretation
 - ♦ Varimax criteria
- > Factor Scores
 - ♦ Motivation: diagnostic, further study
 - ♦ Weighted least squares method (Bartlett score), OLS (PC estimation for L)
 - ♦ Regression method (Thompson score)
 - ♦ Comparison for understanding:
 - WLS vs Regression method (trade-off)
 - Covariance matrix vs correlation matrix
 - Factor scores vs Principle scores
- ➤ Guide for application