$$Y_{max} = Y_{temp}$$

$$When: max \ (\boldsymbol{r_p} - Y_{temp} \cdot \boldsymbol{r_s}) = 0$$

$$\text{s.t.} \quad \boldsymbol{S} \cdot \boldsymbol{r} = 0$$

$$\boldsymbol{r^{lb}} \leq \boldsymbol{r} \leq \boldsymbol{r^{ub}}$$

$$\boldsymbol{r_p} \geq \boldsymbol{0}, \boldsymbol{r_s} > \boldsymbol{0}$$

 r_p^{FBA} , $r_s^{FBA} \leftarrow \mathbf{FBA}$ $Y_{temp0} = \frac{r_p^{FBA}}{r_s^{FBA}}$ $\Delta_0 > 0$ WHILE $\Delta > 0$ $\Delta = r_p - Y_{temp} \cdot r_s$ Δ , r'_p , $r'_s \leftarrow \max(\Delta)$ s.t. $Y_{temp} \ge 0$ $S \cdot r = 0$ $r^{lb} < r < r^{ub}$ $r_c > 0$ IF: $\Delta = 0$ $Y_{\text{max}} = Y_{temp}$ ELSE: $Y_{temp} = \frac{r_p}{r_s}$ **ENDIF ENDWHILE** OUTPUT Y_{max}

