DATA MINING

Dimensionality Reduction(PCA)

Bingan Feng/Wei Zhang/Isabella Wang Fall 2019

CSE 601 REPORT

Dimensionality Reduction(PCA)

PCA

PCA is a data analysis approach to reduce dimensions of dataset with the minimal lose of informations. Here below are 5 steps to perform a principle component analysis:

- 1. Take the whole dataset consisting with d-dimensional samples and ignore the class labels, then store the dataset in form of a m * d matrix where columns are attributes and every row represent a sample ,we denote it as X.
- 2. Standardize and compute covariance matrix via the following equation:

$$C = \frac{1}{m-1}(X - meanvec)^{\mathsf{T}}(X - meanvec)$$

- 3. Get the eigenvectors e_1, e_2, \dots, e_d and eigenvalues a_1, a_2, \dots, a_d of covariance matrix C.
- 4. As the project description, select the biggest two Eigenvalues and their corresponding Eigenvectors each Eigenvectors is the column of the *m* * 2 matrix *P*.
- 5. In the last step we use following equation to transform our samples onto the 2-dimension subspace: pc = XP

The scatter plots of three datasets are following:

Plot of data_a

CSE 601 REPORT 2

Plot of data_b

Inference

- We observe that t_SNE plot change every execution of the program, it is because t_SNE uses probabilistic approach to reduce dimensions
- The plot of PCA and SVD will be mirror image if we use standardize the data.

CSE 601 REPORT 3