Examen de Computabilidad y Complejidad (CMC) 6 de julio de 2005

(I) CUESTIONES: (Justifique formalmente las respuestas)

1. ¿Es el lenguaje $\{xx^ry \in \{a,b\}^* / |x|_a = |y|_a\}$ incontextual?

(1.0 punto)

Supóngase que el lenguaje es incontextual. Sea n la constante del Lema de Iteración. Considérese la palabra $z = b^n a^n a^n b^n a^n$. Claramente z es una palabra del lenguaje ya que puede verse como ss^rt con $s = b^n a^n$ y $t = a^n$. Demostraremos que el lenguaje no es incontextual estableciendo que no existe ninguna factorización admisible de z = uvwxy en las condiciones del Lema de Iteración. Nòtese que $|s|_a = |s^r|_a = |t|_a$.

Las posible factorizaciones potencialmente admisibles son las siguientes:

- 1) $v,x \in b^*$, y son segmentos de la primera secuencia de b's. Tomando una iteración mayor que 1 obtenemos una palabra de la forma $b^m a^n a^n b^n a^n$ con m > n, en consecuencia no admite ninguna descomposición de la forma ss^rt porque no lo permite el número m de b's (puesto que s tendría necesariamente que ser $b^m a^n$). Así, éstas no son factorizaciones admisibles.
- 2) $v,x \in a^*$, y son segmentos de la primera secuencia de a's (a^na^n) . Para cualquier iteración distinta de 1 podemos conseguir un número par de a's que permita una descomposición de la forma ss^r quedando, por tanto, $b^na^ma^mb^na^n$ con $m \ne n$, pero por esto no pertenecerá al lenguaje. Así, éstas no son factorizaciones admisibles.
- 3) $v,x \in b^*$, y son segmentos de la segunda secuencia de b's. Tomando una iteración igual a cero obtenemos una palabra de la forma $b^na^na^nb^ma^n$ con m < n, en consecuencia no admite ninguna descomposición de la forma ss^rt porque no lo permite el número m de b's. Así, éstas no son factorizaciones admisibles.
- 4) $v,x \in a^*$, y son segmentos de la segunda secuencia de a's. Para cualquier iteración distinta de 1 obtenemos una palabra de la forma $b^n a^n a^n b^n a^m$ con $m \ne n$, pero por esto no pertenecerá al lenguaje. Así, éstas no son factorizaciones admisibles.
- 5) En el resto de factorizaciones vwx \in b⁺a⁺, o vwx \in a⁺b⁺, en cualquier caso, al considerar la iteración cero, la palabra resultante: o bien no podrá descomponerse de la forma ss^rt o si se puede se tendrá entonces que $|s|_a \neq |t|_a$. Así, éstas no son factorizaciones admisibles.
- 2. ¿Es el lenguaje $\{a^nb^m/n \le m \le 2n\}$ incontextual?

(1.0 punto)

El lenguaje es incontextual porque se genera mediante la siguiente gramática incontextual $G: S \to aSb \mid aSbb \mid \lambda$.

Seguidamente demostramos que $L(G) = \{a^n b^m / n \le m \le 2n\}.$

 $I)L(G) \subseteq \{a^nb^m / n \le m \le 2n\}$. Lo demostraremos por inducción sobre el número de pasos en la derivación.

- a) Caso base: $S \Rightarrow x \in \{a,b\}^*$, así $x = \lambda \in \{a^nb^m / n \le m \le 2n\}$.
- b) Caso general: supóngase que $S \Rightarrow^n x$ con n > 1. Por hipótesis de inducción si $S \Rightarrow^m y \in \{a,b\}^*$ con m < n, entonces $y \in \{a^nb^m / n \le m \le 2n\}$. La derivación de x es de la forma

$$S \Rightarrow aSb \Rightarrow^{n\text{--}1} x \quad o \quad S \Rightarrow aSbb \Rightarrow^{n\text{--}1} x,$$

en el primer caso x=azb y en el segundo x=azbb con $S \Rightarrow^{n-1} z \in \{a,b\}^*$, así $z \in \{a^nb^m \ / \ n \le m \le 2n\}$. En consecuencia también $x \in \{a^nb^m \ / \ n \le m \le 2n\}$ en cualquiera de los dos casos, puesto que si $z=a^nb^m$ con $n \le m \le 2n$, en el primer caso $azb=a^{n+1}b^{m+1}$ que cumple que $n+1 \le m+1 \le 2n+2$ y en el segundo $azbb=a^{n+1}b^{m+2}$ que también cumple que $n+1 \le m+2 \le 2n+2$.

II) $\{a^nb^m / n \le m \le 2n\} \subseteq L(G)$. Sea $x \in \{a^nb^m / n \le m \le 2n\}$, así $x = a^nb^m$ con $n \le m \le 2n$. Sea i = m-n y j = 2n-m, se tiene que m = 2i+j y n = i+j. Puede generarse x a partir de S en n+1 pasos, aplicando i veces la producción $S \to aSbb$, j veces la producción $S \to aSbb$ y finalmente una vez la producción $S \to \lambda$.

3. Sean L y L' dos lenguajes, se define la operación F de modo que $F(L,L') = \{x \in L / x^r \notin L'\}$. Si L y L' son lenguajes recursivos ¿lo es también F(L,L')?

(1.5 puntos)

Si L y L' son recursivos, entonces también lo es F(L,L'). Para demostrarlo definimos una MT F que lo reconoce y que se detiene para cada entrada. Sea M una MT que reconoce a L y que se detiene para cada entrada y M' una MT que reconoce a L' que también se detiene para cada entrada. F opera como sigue: dada una entrada x la aplica a M, si M rechaza F se detiene rechazando; en otro caso obtiene el reverso de x y lo aplica a M', si M' rechaza F se detiene aceptando, en otro caso se detiene rechazando.

4. ¿Son los lenguajes recursivamente enumerables cerrados para el homomorfismo inverso?

(1.5 puntos)

(II) PROBLEMAS

5. Desarrolle un módulo *Mathematica* de modo que al suministrarle una gramática incontextual retorne True en el caso de que exista alguna producción tal que su consecuente sea un palíndromo y False en otro caso.

(2.0 puntos)

```
pal[G_List] := Module[{encontrado,i,j,c},
    encontrado = False;
    i = 1;
    While[!encontrado && i \leq Length[G[[3]]],
        j = 1;
    While[!encontrado && j \leq Length[G[[3,i,2]]],
        c = G[[3,i,2,j]];
        If[Reverse[c] == c, encontrado = True];
        j++
        ];
        i++
     ];
    Return[encontrado]
]
```

6. Sean las gramáticas

```
\begin{aligned} G1:S &\rightarrow 0S0S \mid 1S1S \mid \lambda \\ G2:S &\rightarrow SSA \mid 0A1A \mid 0 \mid 1 \\ G3:S &\rightarrow aSSb \mid bSSb \mid a \end{aligned} \qquad A \rightarrow SA \mid \lambda
```

Sea f la sustitución con $f(0) = L(G3)^*$ y $f(1) = \{\lambda\}$. Sea h el homomorfismo con h(0) = 01 y h(1) = 00. Obtenga una gramática incontextual para el lenguaje $f(L(G1)) \cup h(L(G2))$.

(1.0 punto)

```
\begin{array}{lll} f(L(G1)): & S' \to XS'XS' \mid YS'YS' \mid \lambda \\ f(0): & X \to ZX \mid \lambda & Z \to aZZb \mid bZZb \mid a \\ f(1): & Y \to \lambda \\ h(L(G2)): & S'' \to S''S''A \mid 01A00A \mid 01 \mid 00 & A \to S''A \mid \lambda \\ \end{array} f(L(G1)) \cup h(LG2)): S \to S' \mid S''
```

7. Dada la gramática G obtenga una gramática G' simplificada y en Forma Normal de Chomsky con $L(G') = L(G) - \{\lambda\}$.

```
G: S \rightarrow ABC \mid ABD \mid AF \mid SS \qquad A \rightarrow AA \mid AB \mid BB \mid CC
B \rightarrow BB \mid BCS \mid BD \mid BFB \mid \lambda \qquad C \rightarrow CCab \mid CDC \mid CF \mid a
D \rightarrow DFS \mid AFE \mid DBD \qquad E \rightarrow a \mid b \mid c \mid EE \mid AE
F \rightarrow FEF \mid DD \mid EDF
```

(2.0 puntos)

Eliminación de símbolos inútiles.

Símbolos generativos: S, A, B, C, E.

 $S \rightarrow ABC \mid SS$

 $A \rightarrow AA \mid AB \mid BB \mid CC$

 $B \rightarrow BB \mid BCS \mid \lambda$

 $C \rightarrow CCab \mid a$

 $E \rightarrow a \mid b \mid c \mid EE \mid AE$

Símbolos alcanzables: S, A, B, C, a, b.

 $S \rightarrow ABC \mid SS$

 $A \to AA \mid AB \mid BB \mid CC$

 $B \rightarrow BB \mid BCS \mid \lambda$

 $C \rightarrow CCab \mid a$

Símbolos anulables: A, B.

Eliminación de producciones λ .

 $S \rightarrow ABC \mid BC \mid AC \mid C \mid SS$

 $A \rightarrow AA \mid A \mid AB \mid B \mid BB \mid CC$

 $B \to BB \mid B \mid BCS \mid CS$

 $C \rightarrow CCab \mid a$

Eliminación de producciones unitarias.

 $S \rightarrow ABC \mid BC \mid AC \mid CCab \mid a \mid SS$

 $A \rightarrow AA \mid AB \mid BB \mid CC \mid BCS \mid CS$

 $B \rightarrow BB \mid BCS \mid CS$

 $C \rightarrow CCab \mid a$

Forma Normal de Chomsky

 $S \rightarrow AX_1 \mid BC \mid AC \mid CX_2 \mid a \mid SS$

 $A \rightarrow AA \mid AB \mid BB \mid CC \mid BX_4 \mid CS$

 $B \rightarrow BB \mid BX_4 \mid CS$

 $C \rightarrow CX_2 \mid a$

 $X_1 \rightarrow BC$

 $X_2 \rightarrow CX_3$

 $X_3 \rightarrow X_a X_b$ $X_4 \rightarrow CS$ $X_a \rightarrow a$ $X_b \rightarrow b$