Corrigé du devoir maison du 4 décembre 2009

Exercice 1

On calcule la transformée de Fourier discrète de u=[0,1,0,1,0,1,0,1] par FFT décimation temporelle, en commençant bien sûr par "inverser les bits".

k	0	1	2	3	4	5	6	7
bits	000	001	010	011	100	101	110	111
revbits	000	100	010	110	001	101	011	111
rev(k)	0	4	2	6	1	5	3	7
f(k)	0	1	0	1	0	1	0	1
rev(f)(k)	0	0	0	0	1	1	1	1
$\omega_2 = -1$	0	0	0	0	2	0	2	0
$\omega_4 = i$	0	0	0	0	2 + 2 = 4	0	2 - 2 = 0	0
$\omega_8 = -1, \hat{u}(k)$	0 + 4 = 4	0	0	0	0 - 4 = -4	0	0	0

Donc $\hat{u} = [4, 0, 0, 0, -4, 0, 0, 0].$

1

2) On note v_*w la convolution cyclique de v=[v[0],...,v[7]] et w=[w[0],...w[7]]. Soit h=[h[0],...,h[7]].

On a $u_{\stackrel{*}{s}}v=h$ si et seulement si $\widehat{u_{\stackrel{*}{s}}v}=\hat{h}$. Comme $\widehat{u_{\stackrel{*}{s}}v}=\hat{u}.\hat{v}=[4\hat{v}[0],0,0,0,-4\hat{v}[4],0,0,0]$, on voit que l'équation $u_{\stackrel{*}{s}}v=h$ possède des solutions si et seulement si h[1]=h[2]=h[3]=h[5]=h[6]=h[7]=0.

Supposons maintenant que cette condition est vérifiée et que $\hat{h}[0] \neq 0$ et $\hat{h}[4] \neq 0$. On a alors $u_{\stackrel{*}{8}}v = h$ si et seulement si $\hat{v}[0] = \frac{\hat{h}[0]}{4}$ et $\hat{v}[4] = -\frac{\hat{h}[4]}{4}$. La condition $|Supp(\hat{v})| \leq 2$ est alors vérifiée si et seulement si $\hat{v}[1] = \hat{v}[2] = \hat{v}[3] = \hat{v}[5] = \hat{v}[6] = \hat{v}[7] = 0$, ce qui donne

$$v = \mathcal{F}_8^{-1} \left(\left\lceil \frac{\hat{h}[0]}{4}, 0, 0, 0, -\frac{\hat{h}[4]}{4}, 0, 0, 0 \right\rceil \right).$$

3) Supposons maintenant que $\hat{h}=[8,0,0,0,-8,0,0,0]$, ce qui correspond d'après la linéarité et l'injectivité de la transformée de Fourier discrète à h=2u=[0,2,0,2,0,2,0,2] On obtient $v=\mathcal{F}_8^{-1}\left([2,0,0,0,2,0,0,0]\right)$. On a alors

 $^{$^{-1}$}$ Pour toute question concernant ce corrigé s'adresser à charles.dossal@math.u-bordeaux1.fr ou esterle@math.u-bordeaux.fr

k	0	1	2	3	4	5	6	7
$\hat{v}[k]$	2	0	0	0	2	0	0	0
$\omega_8 = e^{\frac{i\pi}{4}}$	4	0	0	0	0	0	0	0
$\omega_4 = i$	4	0	4	0	0	0	0	0
$\omega_2 = -1$	4	4	4	4	0	0	0	0
revbits	4	0	4	0	4	0	4	0
v[k]	1/2	0	1/2	0	1/2	0	1/2	0

Donc l'équation $u_{\frac{*}{8}}v=[8,0,0,0,-8,0,0,0]$ admet pour unique solution vérifiant $|Supp(\hat{v})|\leq 2$ la suite v=[1/2,0,1/2,0,1/2,0,1/2,0].

Exercice 2

On va utiliser la FFT pour calculer le produit des deux polynômes $p=1+5x^2+x^3$ et $q=1+x^4$. On peut effectuer les calculs dans $\mathbb{Z}/8\mathbb{Z}$, puisque le degré du produit est égal à 7. Les calculs sont analogues à ceux effectués dans le cours.

k	0	1	2	3	4	5	6	7
p(k)	1	0	5	1	0	0	0	0
$\omega_8^{-1} = e^{-\frac{i\pi}{4}}$	1	0	5	1	1	0	-5i	$e^{-\frac{3i\pi}{4}}$
$\omega_4^{-1} = -i$	6	1	-4	i	1-5i	$e^{-\frac{3i\pi}{4}}$	1 + 5i	$e^{-\frac{i\pi}{4}}$
$\omega_2^{-1} = -1$	7	5	-4+i	-4-i	1-5i	1-5i	1 + 5i	1 + 5i
					$e^{-\frac{3i\pi}{4}}$	$-e^{-\frac{3i\pi}{4}}$	$+e^{-\frac{i\pi}{4}}$	$-e^{-\frac{i\pi}{4}}$
$F_8(p)(k)$	7	1-5i	-4 + i	1+5i	5	1-5i	-4-i	1 + 5i
(Revbits ligne préc.)		$-\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}$		$\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}$		$\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$		$-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}$
q(k)	1	0	0	0	1	0	0	0
$\begin{array}{c} q(k) \\ \overline{\omega_8^{-1}} = e^{-i\frac{\pi}{4}} \\ \overline{\omega_4^{-1}} = -i \\ \overline{\omega_2^{-1}} = -1 \end{array}$	2	0	0	0	0	0	0	0
$\omega_4^{-1} = -i$	2	0	2	0	0	0	0	0
$\omega_2^{-1} = -1$	2	2	2	2	0	0	0	0
$F_8(q)(k)$	2	0	2	0	2	0	2	0
(Revbits ligne préc.)								
$F_8(p*q)(k)$	14	0	-8 + 2i	0	10	0	-8 - 2i	0
Revbits	14	10	-8 + 2i	-8 - 2i	0	0	0	0
$\omega_2 = -1$	24	4	-16	4i	0	0	0	0
$\omega_4 = i$	8	0	40	8	0	0	0	0
$\omega_8 = e^{i\frac{\pi}{4}}$	8	0	40	8	8	0	40	8
(p*q)(k)	1	0	5	1	1	0	5	1
(diviser par 8)								

On trouve donc sans surprise que

$$pq = \sum_{k=0}^{7} (p * q)[k]x^{k} = 1 + 5x^{2} + x^{3} + x^{4} + 5x^{6} + x^{7}.$$

On a alors

$$1501 \times 10001 = p(10)q(10) = (pq)(10) = 15011501.$$

Exercice 3 sous Matlab

1) On écrit les coefficients des polynômes $p=1+5x^2+x^3$ et $q=1+x^4$ en partant du terme constant. On calcule ensuite la transformée de Fourier inverse du produit ponctuel des transformées de Fourier discrètes dans $\mathbb{Z}/8\mathbb{Z}$ des suites obtenues. Matlab rajoute automatiquement des zéros au départ des calculs.

```
>> p1=[1 0 5 1];
q1=[1 0 0 0 1];
pq1=ifft((fft(p1,8).*fft(q1,8)),8)

pq1 =
    1 0 5 1 1 0 5 1
```

On utilise la commande 'flipl
r' pour écrire en sens inverse les coefficients du produit
 pq obtenus c-dessus, ce qui donne l'écriture pour Matlab du polynôme produit pq, et
 on évalue en 10, ce qui donne le produit cherché.

2)

On procède comme précédemment, en écrivant les coefficients des polynômes notés ici p2 et q2.

```
p2=[1 1 1 1 1 1 1 1 1 1 1];
q2=[1 2 3 4 5 6 7 8 9];
pq2=ifft((fft(p2,32).*fft(q2,32)),32)
pq2 =
  Columns 1 through 8
    1.0000
              3.0000
                        6.0000
                                  10.0000
                                            15.0000
                                                      21.0000
                                                                 28.0000
                                                                           36.0000
  Columns 9 through 16
   45.0000
             45.0000
                       45.0000
                                  44.0000
                                            42.0000
                                                      39.0000
                                                                 35.0000
                                                                           30.0000
```

Columns 17 through 24

Columns 25 through 32

On peut alors donner le résultat.

$$(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10})(1+2x+3x^2+4x^3+5x^4+6x^5+7x^6+8x^7+9x^8)$$

$$= (1+3x+6x^2+10x^3+15x^4+21x^5+28x^6+36x^7+45x^8+45x^9+45x^{10}+44x^{11}+42x^{12}+39x^{13}+35x^{14}+30x^{15}+24x^{16}+17x^{17}+9x^{18}).$$

Pour le produit des deux entiers, on se heurte à des problèmes d'arrondi.

1.095581052799700e+19

On va donc terminer à la main (on pourrait aussi faire appel à un logiciel de calcul symbolique).

Si on pose
$$p_2=1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}, q_2=1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10})(1+2x+3x^2+4x^3+5x^4+6x^5+7x^6+8x^7+9x^8,$$
 on a 11111111111 = $p(10)$, 987654321 = $q(10)$, donc

$$11111111111 \times 987654321 = p_2(10)q_2(10) = p_2q_2(10)$$

$$= 1 + 30 + 600 + 10^4 + 5.10^4 + 10^5 + 10^5 + 2.10^6 + 8.10^6 + 2.10^7 + 6.10^7 + 3.10^8 + 5.10^8 + 4.10^9$$

$$+ 5.10^9 + 4.10^{10} + 5.10^{10} + 4.10^{11} + 4.10^{11} + 4.10^{12} + 2.10^{12} + 4.10^{13} + 9.10^{13} + 3.10^{14} + 5.10^{14} + 3.10^{15}$$

$$+ 3.10^{16} + 4.10^{16} + 2.10^{17} + 7.10^{17} + 10^{18} + 9.10^{18}$$

$$= 10973936899890260631.$$

Exercice 4

1) On a, pour $x \in \mathbb{R}$,

$$\hat{f}(x) = \int_{-\infty}^{+\infty} e^{-|t|} e^{-itx} dt = \int_{-\infty}^{0} e^{t} e^{-itx} dt + \int_{0}^{+\infty} e^{-t} e^{-itx} dt$$

$$\left[\frac{e^{t(1-ix)}}{1-ix} \right]_{-\infty}^{0} + \left[\frac{e^{t(-1-ix)}}{-1-ix} \right]_{0}^{+\infty} = \frac{1}{1-ix} + \frac{1}{1+ix}$$

$$= \frac{2}{1+x^{2}}.$$

2) On a

$$\sum_{n=1}^{+\infty} e^{-an} = \lim_{p \to +\infty} \sum_{n=1}^{p} [e^{-a}]^n = \lim_{p \to +\infty} \frac{e^{-a} - [e^{-a}]^{p+1}}{1 - e^{-a}} = \frac{e^{-a}}{1 - e^{-a}}$$
$$= \frac{1}{e^a - 1}.$$

3) On va utiliser ici la formule sommatoire de Poisson. En effet comme "l'exponentielle l'emporte sur la puissance" on a $\sup_{x\in\mathbb{R}}|f(x)|(1+|x|)^n<+\infty$ pour tout $n\geq 0$. D'autre part on a

$$\lim_{|n| \to +\infty} n^2 \left| \hat{f}\left(\frac{2\pi n}{c}\right) \right| = \lim_{|n| \to +\infty} \frac{2n^2}{1 + \left(\frac{2\pi n}{c}\right)^2} = \frac{c^2}{2\pi^2} < +\infty.$$

Comme la série de Riemmann $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ est convergente, les séries $\sum_{n=0}^{+\infty} f\left(\frac{2\pi n}{c}\right)$ et $\sum_{n<0} f\left(\frac{2\pi n}{c}\right)$ sont convergentes, et on déduit de la formule sommatoire de Poisson que l'on a, pour c>0,

$$\sum_{n \in \mathbb{Z}} f(cn) = \frac{1}{c} \sum_{n \in \mathbb{Z}} \hat{f}\left(\frac{2\pi n}{c}\right).$$

Comme f et \hat{f} sont paires, et comme f(0) = 1 et $\hat{f}(0) = 2$, on a

$$\frac{e^{c} + 1}{e^{c} - 1} = 1 + 2\sum_{n=1}^{\infty} e^{-c|n|} = \sum_{n \in \mathbb{Z}} f(cn) = \frac{2}{c} + \frac{2}{c} \sum_{n=1}^{+\infty} \hat{f}\left(\frac{2\pi n}{c}\right) = \frac{2}{c} + \frac{4}{c} \sum_{n=1}^{+\infty} \frac{1}{1 + \frac{4n^{2}\pi^{2}}{c^{2}}}$$
$$= \frac{2}{c} + \frac{c}{\pi^{2}} \sum_{n=1}^{+\infty} \frac{1}{\frac{c^{2}}{4\pi^{2}} + n^{2}}.$$

On obtient

$$\sum_{n=1}^{+\infty} \frac{1}{\frac{c^2}{4\pi^2} + n^2} = \frac{\pi^2}{c} \frac{e^c + 1}{e^c - 1} - \frac{2\pi^2}{c^2}.$$

Finalement, en posant $c = 2\pi b$, on obtient, pour b > 0.

$$\sum_{n=1}^{+\infty} \frac{1}{b^2 + n^2} = \frac{\pi}{2b} \frac{e^{2\pi b} + 1}{e^{2\pi b} - 1} - \frac{1}{2b^2}.$$

Si b<0, la formule ci-dessus reste valable en remplaçant b par |b|. D'autre part si on pose $\phi_n(b)=\frac{1}{b^2+n^2},$ $\phi(b)=\sum_{n=1}^{+\infty}\phi_n(b),$ on a $0\le\phi_n(b)\le\frac{1}{n^2}$ pour tout $n\ge 1$ et tout $b\in\mathbb{R}$. Comme la série de Riemann $\sum_{n=1}^{+\infty}\frac{1}{n^2}$ est convergente, on voit que la série $\sum_{n=1}^{+\infty}\phi_n(b)$ est normalement convergente sur \mathbb{R} , et par conséquent ϕ est continue sur \mathbb{R} . On obtient

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \lim_{n \to +\infty} \phi(b) = \lim_{n \to +\infty} \frac{\pi}{2b} \frac{e^{2\pi b} + 1}{e^{2\pi b} - 1} - \frac{1}{2b^2}$$
$$= \lim_{n \to +\infty} \frac{\pi b(e^{2\pi b} + 1) + 1 - e^{2\pi b}}{2b^2(e^{2\pi b} - 1)}.$$

On a

$$\pi b(e^{2\pi b}+1)+1-e^{2\pi b}=\pi b+2\pi^2 b^2+2\pi^3 b^3-\pi b-2\pi^2 b^2-\frac{8\pi^3 b^3}{6}+\epsilon_1(b)=\frac{2\pi^3}{3}+\epsilon_1(b),$$

$$2b^{2}(e^{2\pi b} - 1) = 4\pi b + \epsilon_{2}(b),$$

avec $\lim_{b\to 0} \epsilon_1(b) = \lim_{b\to 0} \epsilon_1(b) = 0$, et on obtient comme bien connu

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Exercice 5

1) On pose g(x)=0 si $|x|<\pi,$ g(x)=1 si $\pi\leq |x|\leq 2\pi,$ g(x)=0 si $|x|>2\pi.$ On a, pour $x\neq 0,$

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} g(x)e^{itx} dx = \frac{1}{2\pi} \int_{-2\pi}^{-\pi} e^{itx} dt + \frac{1}{2\pi} \int_{\pi}^{2\pi} e^{itx} dt = \frac{1}{\pi} \int_{\pi}^{2\pi} \cos(tx) dt$$
$$\frac{1}{\pi} \left[\frac{\sin(tx)}{t} \right]_{\pi}^{2\pi} = \frac{\sin(2\pi t) - \sin(\pi t)}{\pi t}.$$

D'autre part si x=0 on a $\frac{1}{2\pi}\int_{-\infty}^{+\infty}f(t)e^{itx}dt=\frac{1}{2\pi}\int_{-2\pi}^{-\pi}dt+\frac{1}{2\pi}\int_{\pi}^{2\pi}dt=1$. On représente la fonction g sous Matlab.

```
x1=[0:0.01:pi];x2=[pi:0.01:2*pi];x3=[2*pi:0.01:8*pi];
p=[0];q=[1];y1=polyval(p,x1);y2=polyval(q,x2);y3=polyval(p,x3);
plot(x1,y1,'red',x2,y2,'red',x3,y3,'red',-x1,y1,'red',-x2,y2,'red',-x3,y3,'red');
hold on;axis equal;
title('La fonction g');print -depsc g
```


2) On pose $f(t) = \frac{\sin(2\pi t) - \sin(\pi t)}{\pi t}$ pour $t \neq 0$, f(0) = 1. Il est clair que $f \in L^2(\mathbb{R})$, et d'après ce qui précède, $f = \mathcal{F}^{-1}(g)$. Donc $\hat{f} = g$. On représente maintenant la fonction f.

x=[-5*pi:0.01:5*pi];
y=(sin(2*pi*x)-sin(pi*x))./x;
plot(x,y,'green');axis equal;title('La fonction f');
>> print -depsc fonctionf

3) Le plus petit réel positif tel que $\hat{f}(x)$ soit nulle presque partout pour |x|>a est égal à 2π , et $f\in L^2(\mathbb{R})$ puisque $\hat{f}\in L^2(\mathbb{R})$. Avec les notations du cours, on a donc $freq_{max}(f)=1$, et d'après le théorème d'échantillonnage de Shannon (théorème 8.5.1 page 109 du support de cours) on peut reconstituer toutes les valeurs de f à partir de la suite $(f[\delta m])_{m\in\mathbb{Z}}$ si et seulement si $\frac{1}{\delta}\geq 2$, c'est à dire $\delta\leq \frac{1}{2}$. On a alors

$$f(t) = \sum_{m \in \mathbb{Z}} \delta f(m\delta) \frac{\sin\left(\frac{\pi}{\delta}(t - m\delta)\right)}{\pi(t - m\delta)}$$
$$= \sum_{m \in \mathbb{Z}} (2\cos(\pi m\delta - 1)) \frac{\sin(\pi m\delta)}{\pi m} \frac{\sin\left(\frac{\pi}{\delta}(t - m\delta)\right)}{\pi(t - m\delta)}.$$

On consider maintenant le cas particulier $\delta=\frac{1}{4}$. Si m=0 on obtient $(2cos(\pi m\delta-1))\frac{sin(\pi m\delta)}{\pi m}\frac{sin\left(\frac{\pi}{\delta}(t-m\delta)\right)}{\pi(t-m\delta)}=\frac{sin(4\pi t)}{4\pi t}$. Si $m=4p,\,p\in\mathbb{Z}\setminus\{0\}$, on obtient $(2cos(\pi m\delta-1))\frac{sin(\pi m\delta)}{\pi m}\frac{sin\left(\frac{\pi}{\delta}(t-m\delta)\right)}{\pi(t-m\delta)}=0$. Si m=4p+1, on obtient $cos(\frac{m\pi}{4})=cos(\frac{\pi}{4}+p\pi)=\frac{(-1)^p}{\sqrt{2}},$ $sin(\frac{m\pi}{4})=sin(\frac{\pi}{4}+p\pi)=\frac{(-1)^p}{\sqrt{2}},$ et $sin\left(\frac{\pi}{\delta}(t-m\delta)\right)=-sin(4\pi t)$. Si m=4p-1 on obtient $cos(\frac{m\pi}{4})=cos(\frac{\pi}{4}+p\pi)=\frac{(-1)^p}{\sqrt{2}},$ et $sin\left(\frac{\pi}{\delta}(t-m\delta)\right)=sin(-\frac{\pi}{4}-p\pi)=-\frac{(-1)^p}{\sqrt{2}},$ et $sin\left(\frac{\pi}{\delta}(t-m\delta)\right)=-sin(4\pi t)$. Si m=4p+2, on obtient $cos(\frac{m\pi}{4})=cos(\frac{\pi}{2}+p\pi)=0,$ $sin(\frac{m\pi}{4})=sin(\frac{\pi}{2}+p\pi)=(-1)^p,$ et $sin\left(\frac{\pi}{\delta}(t-m\delta)\right)=sin(4\pi t)$. Finalement on a

$$f(t) = \frac{\sin(4\pi t)}{4\pi t} + \sum_{p=-\infty}^{+\infty} \left(-1 + \frac{(-1)^p}{\sqrt{2}}\right) \frac{\sin(4\pi t)}{\pi^2 (4p+1)(t-p-\frac{1}{4})}$$
$$+ \sum_{p=-\infty}^{+\infty} \left(1 - \frac{(-1)^p}{\sqrt{2}}\right) \frac{\sin(4\pi t)}{\pi^2 (4p-1)(t-p+\frac{1}{4})}$$
$$+ \sum_{p=-\infty}^{+\infty} (-1)^{p+1} \frac{\sin(4\pi t)}{\pi^2 (2p+1)(t-\frac{p}{2}-\frac{1}{4})}.$$