Practica 6

1) Determinar cuáles de las siguientes afirmaciones son verdaderas y cuáles son falsas:

a)
$$\frac{1}{2} n^2 - 3n \in \Theta(n^2)$$

 $f(n) = \frac{1}{2} n^2 - 3n$
 $g(n) = n^2$
Regla del límite:
 $\lim_{n \to \infty} f(n) / g(n) = n$
 $\lim_{n \to \infty} \frac{1}{2} n^2 - 3n / n^2 = n$
 $\lim_{n \to \infty} \frac{1}{2} n^2 - 3n / n^2 = n$
 $\lim_{n \to \infty} \frac{1}{2} n^2 - 3n \in \Theta(n^2)$

La afirmación es verdadera.

b)
$$n^3 \in O(n^2)$$

 $f(n) = n^3$
 $g(n) = n^2$

Regla del límite:

$$\lim_{n \to \infty} f(n) / g(n) = 0$$

lim $f(n) / g(n) = inf. ==> f(n) \notin O(g(n))$ y $g(n) \in O(f(n))$ n → inf.

∴
$$n^3 \notin O(n^2)$$

La afirmación es falsa.

c)
$$n^2 \in \Omega(n^3)$$

$$f(n) = n^2$$
$$g(n) = n^3$$

Regla del límite:

$$\lim_{n \to inf} f(n) / g(n) =$$

=
$$\lim_{n \to \infty} n^2 / n^3 =$$

 $n \to \inf_{n \to \infty} n^3 =$

= 0

Iim $f(n) / g(n) \rightarrow 0 ==> f(n) \in O(g(n))$ y $f(n) \notin \Theta(g(n))$ n → inf.

∴ $n^2 \notin \Omega$ (n^3), ya que si pertenece a O(g(n)) pero no a Θ(g(n)), no pertenece a Ω (g(n)), puesto que Θ(g(n)) = O(g(n)) ∩ Ω (g(n)).

La afirmación es falsa.

d)
$$2^n \in \Theta(2^{n+1})$$

$$f(n) = 2^n$$

 $g(n) = 2^{n+1}$

Regla del límite:

$$\lim_{n \to inf.} f(n) / g(n) =$$

=
$$\lim_{n \to \infty} 2^n / 2^{n+1} =$$

n \to \inf.

$$= 1/2$$

■ $\lim f(n) / g(n) \in R+ ==> f(n) \in \Theta(g(n))$ $n \to \inf$.

$$\therefore 2^n \in \Theta(2^{n+1})$$

La afirmación es verdadera.

e)
$$n! \in O((n + 1)!)$$

$$f(n) = n!$$

 $g(n) = (n + 1)!$

Regla del límite:

$$\lim_{n \to inf} f(n) / g(n) =$$

=
$$\lim_{n \to \infty} \frac{n!}{(n + 1)!} =$$

n \to \inf.

= 0

lim f(n) / g(n) = 0 ==> f(n) ∈ O(g(n)) y g(n) ∉ O(f(n)) $n \rightarrow inf.$

$$\therefore n! \in O((n+1)!)$$

La afirmación es verdadera.

f)
$$f: N \to IR^{\geq 0}$$
, $f(n) \in O(n) \Rightarrow [f(n)]^2 \in O(n^2)$

- 1. $f(n) \in O(n)$. Existe constante positiva $c \in R+ y$ $n0 \in N$ tq $0 \le f(n) \le cn$; $n \ge n0$
 - Si elevemos la desigualdad al cuadrado queda
- 2. $0 \le [f(n)]^2 \le c^2 * n^2$

Podemos ver como al hacer el elevamiento al cuadrado se sigue cumpliendo que existe constante positiva $(c^2) \in R+$ y $n0 \in N$ tq $0 \le [f(n)]^2 \le c^2 * n^2$

Entonces se acepta que que $f[(n)]^2 \in O(n^2)$

La afirmación es verdadera.

También se puede probar por límite:

$$f(n) = an + b a, b \in IR^+$$

 $g(n) = n^2$

$$[f(n)]^2 = a^2n^2 + 2anb + b^2$$

$$\lim_{n \to \infty} f(n)^2 / g(n) = 0$$

$$\lim_{n \to \infty} a^2 n^2 + 2anb + b^2/n^2 = a^2$$

 $n \to \inf_{n \to \infty} a^2$

g)
$$f: N \to IR^{\geq 0}$$
, $f(n) \in O(n) \Rightarrow 2^{f(n)} \in O(2^n)$

Contraejemplo:

Suponiendo que $f(n) = 3n \in O(n)$

$$\lim_{n \to inf.} f(n) / g(n) =$$

=
$$\lim_{n \to inf} 2^{3n} / 2^n =$$

= inf.

$$2^{3n} \notin O(2^n)$$

h) $f: N \to IR^{\geq 0}$ y $k \in IR^{\geq 0}$, $kf(n) \in O(f(n))$

 $f(n) \in O(f(n))$ ya que existe constante positiva $c \in R+$ y $n0 \in N$ tq $0 \le f(n) \le c * f(n)$; $n \ge n0$ (se puede hacer eligiendo $c \ge 1$)

k es una constante positiva, si k es la misma constante positiva que c o menor, se seguirá cumpliendo $0 \le k * f(n) \le c * f(n)$.

$$\therefore$$
 kf (n) \in O(f (n))

También se puede probar por límite con:

$$f(n) = an + b a, b \in IR^+$$

$$\lim_{n \to inf.} f(n) / f(n) =$$

$$\lim_{n \to \infty} an + b = 1$$

$$n \to \inf_{n \to \infty} an + b = 1$$

Iim f(n) / g(n) ∈ R+ ==> f(n) ∈ O(g(n)) y g(n) ∈ O(f(n))

$$\therefore$$
 kf (n) \in O(f (n))

La afirmación es verdadera.

i) Para todo polinomio p(n) de grado $m, p(n) \in O(n^m)$

Se puede probar por límite:

$$f(n) = a_n n^m + ... + a_0 n^0 \quad a_n \in IR^+$$

$$g(n) = n^{m}$$

$$\lim_{n \to \infty} f(n) / g(n) = n$$

$$\lim_{n \to \infty} \inf_{n \to \infty} \frac{1}{n} + \dots + a_{0} n^{0} / n^{m} = a$$

$$\lim_{n \to \infty} \frac{1}{n} + \dots + a_{0} n^{0} / n^{m} = a$$

■ $\lim f(n) / g(n) \in R+ ==> f(n) \in O(g(n)) \text{ y } g(n) \in O(f(n))$

$$\therefore p(n) \in O(n^m)$$

La afirmación es verdadera.

j) $\alpha, \beta \in R, \alpha < \beta \Rightarrow n^{\alpha} \in O(n^{\beta})$ Se puede probar por límite:

$$f(n) = n^{\alpha}$$

$$g(n) = n^{\beta}$$

$$\alpha, \beta \in \mathbb{R}, \alpha < \beta$$

$$\lim_{n \to \infty} f(n) / g(n) = n \to \inf.$$

$$\lim_{n \to \infty} f(n) / n^{\beta} = 0$$

Iim f(n) / g(n) = 0 ==> f(n) ∈ O(g(n)) y g(n) ∉ O(f(n)

$$\therefore$$
 $n^{\alpha} \in O(n^{\beta})$

 $n \rightarrow inf$.

La afirmación es verdadera.

- 2) Probar que se cumplen las siguientes propiedades para f, g, h : $N \to IR^{\geq 0}$,
 - Reflexividad:

a)
$$f(n) \in O(f(n))$$

Demostración:

$$O(f(n)) = \{f: N \to R+ \ / \ \exists \ c \in R+, \ n0 \in N \ tq \ f(n) \le c \ f(n), \ n \ge n0\}$$

$$f(n) \le c \ ^* f(n)$$

$$1 \le c$$

Existe constante positiva tal que $f(n) \le c^*f(n)$, y esa constante positiva es ≥ 1

```
\therefore f (n) \in O(f (n))
```

b)
$$f(n) \in \Theta(f(n))$$

Demostración:

$$\Theta(f(n)) \{f: N \to R+ \ / \ \exists \ c1, \ c2 \in R+, \ n0 \in N \ tq \ c1 \ f(n) \le f(n) \le c2 \ f(n), \ n \ge n0 \}$$

c1
$$f(n) \le f(n)$$

c1 ≤ 1

$$f(n) \le c2 f(n)$$

1 ≤ c2

Existe constante positiva c1 y c2 tal que c1 $f(n) \le f(n) \le c2$ f(n) y esas constantes positivas son $0 \le c1 \le 1$ y $c2 \ge 1$

c) $f(n) \in \Omega (f(n))$

$$\Omega(f(n)) = \{f: N \to R + / \exists c \in R +, n0 \in N \text{ tq } f(n) \ge c \text{ } f(n), n \ge n0\}$$
$$f(n) \ge c * f(n)$$

1 ≥ c

Existe constante positiva tal que $f(n) \le c^*f(n)$, y esa constante positiva es $0 \le c \le 1$

- Transitividad:
- d) Si $f(n) \in O(g(n))$ y $g(n) \in O(h(n)) \Rightarrow f(n) \in O(h(n))$

d1.
$$f(n) \in O(g(n))$$
 si existe c0 tal que $f(n) \le c0 * g(n)$
d2. $g(n) \in O(h(n))$ si existe c1 tal que $g(n) \le c1 * h(n)$

- **d3.** Multiplicamos ambos lados de la desigualdad de d2. por c0 ==> c0 * $g(n) \le c0$ * c1 * h(n) para que se siga cumpliendo la desigualdad y se pueda llegar a que:
- $f(n) \le c0 * g(n) \le c0 * c1 * h(n)$

Por lo tanto se puede concluir que f (n) \in O(h(n)) ya que existe una constante positiva (c0 * c1) tal que f(n) \leq c0 * c1 h(n).

e) Si f (n) $\in \Theta(g(n))$ y g(n) $\in \Theta(h(n)) \Rightarrow f(n) \in \Theta(h(n))$

e1.0.
$$f(n) \in \Theta(g(n))$$
 si existe c01 tal que c01 $g(n) \le f(n)$

e1.1.
$$f(n) \in \Theta(g(n))$$
 si existe c02 tal que $f(n) \le c02$ $g(n)$

e2.0.
$$g(n) \in \Theta(h(n))$$
 si existe c11 tal que c11 $h(n) \le g(n)$

```
e2.1. g(n) ∈ \Theta(h(n)) c12 tal que g(n) ≤ c12 h(n)
```

e3. Multiplicamos e2.0 por c01 y e2.1 por c02

c11 * c01 h(n)
$$\leq$$
 c01 * g(n) c02 * g(n) \leq c02 * c12 h(n)

Así se sigue cumpliendo la desigualdad y se pueda llegar a que:

- $f(n) \le c02 g(n) \le c02 * c12 h(n)$
- $f(n) \ge c01 * g(n) \ge c11 * c01 h(n)$

Por lo tanto se puede concluir que $f(n) \in \Theta(h(n))$ ya que existen constantes positivas tal que:

- $f(n) \le c02 * c12 h(n)$
- $f(n) \ge c11 * c01 h(n)$
- f) Si f (n) $\in \Omega(g(n))$ y g(n) $\in \Omega(h(n)) \Rightarrow$ f (n) $\in \Omega(h(n))$
 - **f1.** $f(n) \in \Omega(g(n))$ si existe c0 tal que c0 $g(n) \le f(n)$ **f2.** $g(n) \in \Omega(h(n))$ si existe c1 tal que c1 $h(n) \le g(n)$
 - **f3.** Multiplicamos ambos lados de la desigualdad de f2. por c0 ==> c1 * c0 h(n) \leq c0 * g(n) para que se siga cumpliendo la desigualdad y se pueda llegar a que:
 - $f(n) \ge c0 * g(n) \ge c1 * c0 h(n)$

Por lo tanto se puede concluir que f (n) $\in \Omega(h(n))$ ya que existe una constante positiva (c1 * c0) tal que f(n) \geq c1 * c0 h(n)

Simetría:

g)
$$f(n) \in \Theta(g(n)) \iff g(n) \in \Theta(f(n))$$

g1.
$$f(n) \in \Theta(g(n)) ==> g(n) \in \Theta(f(n))$$

g1.1. $f(n) \in O(g(n)) ==> g(n) \in \Omega(f(n))$

$$f(n) \le c g(n)$$

Si multiplico ambos lados de la desigualdad por 1/c me queda

$$f(n) 1/c \le g(n)$$

Esto nos permite afirmar que $g(n) \in \Omega(f(n))$ puesto que existe una constante 1/c tal que:

$$g(n) \ge 1/c f(n)$$

g1.2.
$$f(n) \in \Omega(g(n)) ==> g(n) \in O(f(n))$$
 $f(n) \ge c g(n)$

Si multiplico ambos lados de la desigualdad por 1/c me queda

$$f(n)1/c \ge g(n)$$

Esto nos permite afirmar que $g(n) \in O$ (f(n)) puesto que existe una constante 1/c tal que:

$$g(n) \le 1/c f(n)$$

g2.
$$g(n) \in \Theta(f(n)) ==> f(n) \in \Theta(g(n))$$

g2.1. $g(n) \in O(f(n)) ==> f(n) \in \Omega(g(n))$

$$g(n) \le c f(n)$$

Si multiplico ambos lados de la desigualdad por 1/c me queda

$$g(n) 1/c \le f(n)$$

Esto nos permite afirmar que $f(n) \in \Omega(g(n))$ puesto que existe una constante 1/c tal que:

$$f(n) \ge 1/c g(n)$$

g2.2.
$$g(n) \in \Omega (f(n)) ==> f(n) \in O(g(n))$$

$$g(n) \ge c f(n)$$

Si multiplico ambos lados de la desigualdad por 1/c me queda

$$g(n) 1/c \ge f(n)$$

Esto nos permite afirmar que $f(n) \in O(g(n))$ puesto que existe una constante 1/c tal que:

$$f(n) \le 1/c g(n)$$

Con esto queda demostrado que $f(n) \in \Theta(g(n)) \Longleftrightarrow g(n) \in \Theta(f(n))$.

Simetría traspuesta:

h)
$$f(n) \in O(g(n)) \iff g(n) \in \Omega(f(n))$$

h1.
$$f(n) \in O(g(n)) ==> g(n) \in \Omega(f(n))$$

$$f(n) \le c * g(n)$$

Si multiplico ambos lados de la desigualdad por 1/c me queda

$$f(n) 1/c \le g(n)$$

Esto nos permite afirmar que $g(n) \in \Omega(f(n))$ puesto que existe una constante tal que:

$$g(n) \ge 1/c f(n)$$

h2.
$$g(n) \in \Omega(f(n)) ==> f(n) \in O(g(n))$$

$$g(n) \ge c * f(n)$$

Si multiplico ambos lados de la desigualdad por 1/c me queda

$$g(n) 1/c \ge f(n)$$

Esto nos permite afirmar que $f(n) \in O(g(n))$ puesto que existe una constante tal que:

$$f(n) \le 1/c g(n)$$

Con esto queda demostrado que $f(n) \in O(g(n)) \Longleftrightarrow g(n) \in \Omega(f(n))$.