EEL6935 Course Project Final Report

Caleb Bryant¹ Jixin Feng² EEL6935 T21

Department of

 1 Computer & Information Science & Engineering

²Electrical & Computer Engineering University of Florida, Gainesville, FL

Sentiment Analysis

Goal: assign sentiment labels to a sentence.

$$f:\mathcal{D}\to\mathcal{L}$$

- $\mathcal{D} = \{d_0, d_1, \dots, d_{n-1}\}$ is the set of sentence
- $\mathcal{L} = \{l_0, l_1, \dots, l_{k-1}\}$ is the set of labels.

Movie review is ideal for sentiment analysis

- Most dataset of movie review are already associated with scores
- The scores in dataset are reliable

¹Gantz, J., & Reinsel, D. (2012). The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east. IDC iView: IDC Analyze the future, 2007(2012), 1-16.

Text Encoding

• Define the collection of text documents to be

$$\mathcal{D} = \{d_1, d_2, \dots, d_D\}$$

Define vocabulary to be

$$\mathcal{V} = \{v_0, v_1, \dots, v_{m-1}\}$$

• The notation of frequency of a word $v \in \mathcal{V}$ occurred in document $d \in \mathcal{D}$ is $f_d(v)$, hence a document can be represented as a vector

$$\bar{d} = \{f_d(v_1), f_d(v_2), \ldots\}$$

ullet Define total number of documents $d\in\mathcal{D}$ containing the word w is represented as

$$f_{\mathcal{D}}(v)$$

Backend: Logistic Regression

- Multiply input vectors by W, add b
- Convert output into probabilities with Softmax
- pick $i = argmax(\hat{y}_i)$
- Train the model using Adam Optimizer
- Common baseline model and simple to implement

Backend: LSTM Model

Given a word sequence $S = \{v_0, v_1, \dots, v_{l-1}\}$ with length l, the states of LSTM are updated as:

$$\begin{bmatrix} i_t \\ f_t \\ o_t \\ c_t \end{bmatrix} = \begin{bmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{bmatrix} S[h_{t-1}, x_t]$$

- $c_t = f_t \circ c_{t-1} + i_t \circ \hat{c_t}$
- $h_t = o_t \circ \tanh c_t$

Backend: LSTM Model

To build our LSTM model:

Define a dictionary

$$D = [w_1, w_2...w_N]$$

to contain the set of all words representable by our LSTM network

• The *i*-th input to our LSTM is a vector

$$v_i = [\pi_{i1}, \pi_{i2}...\pi_{iL}]$$

corresponding to a movie review r_i of length L, where π_{ij} is the dictionary index of the j-th word of r

• D = [cat, dog, meow]

$$r = [\mathsf{dog}, \mathsf{dog}, \mathsf{cat}, \mathsf{meow}] \Rightarrow v = [1, 1, 0, 2]$$

Simulation Platform Specs

- Training based on Stanford Large Movie Review Dataset
 - 50,000 highly polar movie reviews
 - 25,000 for training, 25,000 for testing
- Code in Python with Tensorflow/Scikit-Learn
- simulations will be conducted on computers with
 - 3.1GHz Intel Core i7 CPU with 8MB cache
 - nVidia GTX 1050 GPU with 4GB Memory
 - 16GB RAM
 - Ubuntu 14.04 LTS

 Table 1: System Performance

Method	Epochs	Binomial Training	Binomial Testing	Multinomial Training	Multinomial Testing
scikit-learn LR	N/A	0.9981	0.8697	N/A	N/A
tensorflow LR	20	0.8670	0.8583	0.9982	0.3734
larger LSTM	8	N/A	N/A	0.6693	0.3657
smaller LSTM	2	N/A	0.8507	0.5622	0.4098

Front End: Flask Web App

- Web App via Flask
- Allow model selection
- Accept text input and sentiment analysis output
- Hosted on low spec VM
 - Ubuntu 16.04 LTS
 - Single Core CPU
 - 2GB RAM
 - No standalone GPU

More About Us

Thank You!

Questions?