

## AUSTIN CRASH DATA

HUNG TRAN, STEVEN TRAN, LUCA COMBA



## **AGENDA**

Introduction

Data Cleansing + Exploratory Analysis

Feature Selection + ML Methodology

GridSearch + Results

Conclusion

#### **DATASET**



THE DATASET INCLUDES RECORDS OF TRAFFIC ACCIDENTS IN *AUSTIN*, TEXAS.

FROM 2010 UNTIL TODAY, THE CITY OF *AUSTIN* COLLECTED **216,088 INSTANCES** OF CAR ACCIDENTS.

THE DATA IS AVAILABLE AT <u>HTTPS://CATALOG.DATA.GOV/DATASET/VISION-</u>ZERO-CRASH-REPORT-DATA

VISION ZERO PROJECT HTTPS://VISIONZERO.AUSTIN.GOV/VIEWER/

#### **DATASET**

The dataset originally contains 45 features.

Some of the important features were:

- Latitude & Longitude
- Crash timestamp (US/Central)
- Crash Speed Limit (MPH)
- Crash Severity (A scale from 0 to 5)
- Total Injury Count
- Total Death Count
- Model of units involved in crash
- Estimated Total Comprehensive Cost

A full description is available at <a href="https://data.austintexas.gov/Transportation-and-Mobility/Austin-Crash-Report-Data-Crash-Level-Records/y2wy-tgr5/about\_data">https://data.austintexas.gov/Transportation-and-Mobility/Austin-Crash-Report-Data-Crash-Level-Records/y2wy-tgr5/about\_data</a>

#### COMPREHENSIVE CRASH COSTS

IS THE ECONOMIC AND QUALITY OF LIFE COSTS ASSOCIATED WITH ALL INJURIES SUSTAINED IN THE CRASH.

#### **ECONOMIC COSTS**

- MEDICAL BILLS,
- LOST WAGES

#### QUALITY OF LIFE COSTS

- RESULTING FROM TRAFFIC CRASHES (E.G., PHYSICAL PAIN, EMOTIONAL SUFFERING)
- WHICH ARE INHERENTLY IMMEASURABLE



LEARN MORE AT <u>HTTPS://WWW.AUSTINTEXAS.GOV/CRASHCOSTS</u>

#### DATA CLEANSING

- 1. Removed temporary records
- 2. Dropped irrelevant columns such as ID, Addresses, Private/Public Roads
- 3. Refactored dates
- 4. Renamed columns for consistency
- 5. Value Corrections (Speed, Crash Severity, Units Involved)
- 6. Dropped rows with missing values.



# EXPLORATORY ANALYSIS

Average Total Comprehensive Cost is 307,980 \$







#### MAP

```
from folium.plugins import HeatMap

lat_avg = df['latitude'].mean()
lon_avg = df['longitude'].mean()

accidents_heat_map =
df[['latitude','longitude','death_cnt']]
lat_avg = accidents_heat_map['latitude'].mean()
lon_avg = accidents_heat_map['longitude'].mean()

map = folium.Map([lat_avg, lon_avg], zoom_start=10)
HeatMap(accidents_heat_map).add_to(map)
map
```

A better map is available at <a href="https://visionzero.austin.gov/viewer/map">https://visionzero.austin.gov/viewer/map</a>



#### FEATURE SELECTION

#### ORIGINAL DATASET (AFTER CLEANSING)

- 47 features, some may be redundant,
- Risk of Overfitting and Lengthy execution time,

#### → USE BACKWARD ELIMINATION

• Remove features greater than 0.05 p-value.

#### → REMAINING 27 FEATURES

- For example, Time:
  - o Drop Day, Month, Year
  - o Keep Hour + Weekend.

## ML METHODOLOGY

- Linear Regression
- Ridge Regression
- Lasso Regression
- Decision Tree Regression
- Random Forest Regression
- SVR
- KNN



#### LINEAR REGRESSION

Capture linear relationship

Can explain which features impact the cost and by how much

#### RIDGE REGRESSION

Reduce overfitting, work well with many features

Minimize gap between training and testing model errors

## LASSO REGRESSION

Leverage automatic feature selection

#### DECISION TREE REGRESSION

Works well with Non-Linear Relationship

#### RANDOM FOREST REGRESSION

Combine multiple trees to improve accuracy

Reduce overfitting

Works well for non-linear and complex relationships

#### SVR

Works well with high-dimensional spaces, non-linear patterns

## KNN

Simple and non-parametric

Can capture local variations in cost.

#### CODE

```
models = {
    'linear_regression': Pipeline([
        ('preprocessor', preprocessor),
        ('regressor', LinearRegression())
    ]),
    "ridge_regression": Pipeline([
        ('preprocessor', preprocessor),
        ('regressor', Ridge(alpha=1.0))
    ]),
    "lasso_regression": Pipeline([
        ('preprocessor', preprocessor),
        ('regressor', Lasso(alpha=0.1))
    "decision_tree_regressor": Pipeline([
        ('preprocessor', preprocessor),
        ('regressor', DecisionTreeRegressor(random_state=RANDOM_SEED))
    ]),
    "random_forest_regressor": Pipeline([
        ('preprocessor', preprocessor),
        ('regressor', RandomForestRegressor(n_estimators=100, random_state=RANDOM_SEED, n_jobs=-1))
    1),
    # SVR needs a better hardware
    "svr": Pipeline([
        ('preprocessor', preprocessor),
        ('regressor', SVR(kernel='rbf', C=1.0, epsilon=0.1))
    ]),
    "k_neighbors_regressor": Pipeline([
        ('preprocessor', preprocessor),
        ('regressor', KNeighborsRegressor(n_neighbors=90, n_jobs=-1))
    ])
```

## GRIDSEARCH

We will be using the GridSearchCV method to find the best hyperparameters for our models.



#### CODE

```
param_grids = {
    'linear regression': {},
    'ridge_regression': {
        'regressor alpha': [0.1, 1.0, 10.0]
    'lasso regression': {
        'regressor_alpha': [0.1, 1.0, 10.0]
   },
    'decision_tree_regressor': {
        'regressor_max_depth': [3,5,10],
        'regressor min samples split':[2,5,10]
    'random_forest_regressor': {
        'regressor n estimators': [50, 100, 200],
        'regressor max depth':[3,5,10]
    'srv': {
        'regressor_C': [0.1, 1.0, 10.0], # penalty parameter
        'regressor_epsilon': [0.1, 0.2, 0.5], # no pentaly if error is within epsilon
        'regressor kernel': ['linear', 'rbf']
    'k neighbors regressor': {
        'regressor__n_neighbors': [3,5,10], # how many neighbors to look at
        'regressor_weights': ['uniform', 'distance'] # how to weight neighbors
```

#### BEST HYPERPARAMETERS

- Ridge Regression: alpha 0.1
- Lasso Regression: alpha 0.1
- Decision Tree:
  - o Max Depth: 10
  - o Min Samples Split: 2
- Random Forest:
  - o Max Depth: 10
  - o Number of estimators: 100
- KNN:
  - o Number of neighbors: 3
  - o Weights: Distance

#### RMSE COMPARISON



## R^2 COMPARISON



#### CONCLUSION

What model is best to predict comprehensive cost?

In the end, the linear model performed the best with the highest r^2 and lowest RMSE % on test set of all models. In the future, we should test more hyperparameters, models, and determine whether data leakage has occurred.

