Exercises

- 1. Find a complete set of mutually in-congruent solutions of each of the following. If there is no solution, prove the solution does not exit.
 - (1) $5x \equiv 4 \pmod{51}$.
 - (2) $6x \equiv 8 \pmod{51}$.
 - (3) $6x \equiv 3 \pmod{39}$.
- 2. If exists, find a^{-1} , the inverse of a modulo m. Otherwise, prove it does not exist.
 - (1) a = 2 and m = 5;
 - (2) a = 4 and m = 9;
 - (2) a = 6 and m = 9;
- 3. Let f(x) be a polynomial with integer coefficients. Prove that if $a \equiv b \pmod{m}$, then $f(a) \equiv f(b) \pmod{m}$. (Hints: use properties of congruences.)
- 4. Prove that: if $a \equiv b \pmod{m}$, then gcd(a, m) = gcd(b, m).
- 5. Prove that: if p is a prime and $a^2 \equiv b^2 \pmod{p}$, then $p \mid (a+b)$ or $p \mid (a-b)$.
- 6. Find a complete set of mutually in-congruent solutions to the equation $x^2 \equiv 1 \pmod{20011}$ where 20011 is a prime.
- 7. Prove that: if $x^2 \equiv x \pmod{p^e}$ for some positive integer e, then $x \equiv 0, 1 \pmod{p^e}$.
- 8. Let m be a positive modulus. Prove if the following statement is true. Otherwise find a counter-example.

$$ab \equiv 0 \pmod{m} \implies a \equiv 0 \pmod{m}$$
 or $b \equiv 0 \pmod{m}$.

9. Prove that $n^2 - 1$ is divisible by 8 for all odd integers n.