1 Linear Sympletic Geometry

1.1 Symplectic Vector Spaces

Definition 1 A Symplectic Vector Space is a pair (V, ω) of a finite-dimensional vector space V and a non-degenerate skew-symmetric bilinear form $\omega : V \times V \to \mathbb{R}$. A Linear Symplectomorphism is a linear map preserving the symplectic form. The set of linear symplectomorphisms is denoted by $\operatorname{Sp}(V, \omega)$.

Definition 2 The symplectic complement of a subspace W is the subspace $W^{\omega} = \{v \in V | \omega(v, w) = 0 \ \forall w \in W\}$. Subspaces are called

```
 \begin{array}{c|c} isotropic \\ coisotropic \\ symplectic \\ Lagrangian \end{array} \begin{array}{c} W \subset W^{\omega} \\ W^{\omega} \subset W \\ W \cap W^{\omega} = \{0\} \end{array}
```

Lemma 1 $\dim W + \dim W^{\omega} = \dim V$; $W^{\omega\omega} = W$

Corollary 1 ω is nondegenerate iff the associated volume element is nonzero: $\omega \wedge \ldots \wedge \omega = \omega^n$

Lemma 2 Any isotropic subspace is contained in a Lagrangian subspace. Additionally, any basis of a Lagrangian subspace can be extended to a sympletic basis of (V, ω) .

Lemma 3 Let (V, ω) be a symplectic vector space of $W \subset V$ a coisotropic subspace. Then:

- 1. $V' = W/W^{\omega}$ carries a natural symplectic structure ω' induced by ω .
- 2. If $\Lambda \subset V$ is a Lagrangian subspace then $\Lambda' = ((\Lambda \cap W) + W^{\omega})/W^{\omega}$ is a Lagrangian subspace of V'

1.2 The Symplectic Linear Group

```
Lemma 4 \operatorname{Sp}(2n) \cap O(2n) = \operatorname{Sp}(2n) \cap \operatorname{GL}(n,\mathbb{C}) = \operatorname{U}(n)
```

Lemma 5 $\lambda \in \sigma(\Psi) \iff \lambda^{-1} \in \sigma(\Psi)$, and their multiplicities are identical (Here Ψ is a linear symplectomorphism, and $\sigma(\Psi)$ its spectrum). Moreover, distinct eigenvectors z_1, z_2 have the property that $\omega(z_1, z_2) = 0$.

Lemma 6 Every real symmetric positive-definite symplectic matrix, taken to any positive real power, is again a symplectic matrix

Proposition 1 U(n) is a maximal compact subgroup of Sp(2n) and the quotient Sp(2n)/U(n) is contractible.

Proposition 2 The fundamental group of U(n) is isomorphic to the integers. The determinant map $\det: U(n) \to S^1$ induces an isomorphism of fundamental groups.

1.3 The Maslov Index

Theorem 1 There is a unique function $\mu: \Omega Sp(2n) \to \mathbb{Z}$ satisfying the following:

- 1. (homotopy) Two loops have the same Maslov index ← they are homotopic
- 2. (product) For any two loops $\Psi_t, \Phi_t : \mathbb{R}/\mathbb{Z} \to \operatorname{Sp}(2n), \ \mu(\Psi_t \Phi_t) = \mu(\Psi_t) + \mu(\Phi_t)$
- 3. (direct sum) Identifying $\operatorname{Sp}(2a) \bigoplus \operatorname{Sp}(2b) \subset \operatorname{Sp}(2a+2b)$, then $\mu(\Psi \bigoplus \Phi) = \mu(\Psi) + \mu(\Phi)$
- 4. (normalization) The loop $\theta_t = e^{2\pi i t} \in U(1)$ has Maslov index 1.

The Maslov index can also be considered the intersection number of a loop with a certain submanifold. Decompose a symplectic matrix into a 2x2 block matrix form, then take the upper right matrix and set its determinant equal to zero. This forms a codimension one submanifold. Then take the Maslov index to be the intersection number of the loop with this submanifold.

1.4 Lagrangian Subspaces

Let $\mathcal{L}(V,\omega)$ be the set of Lagrangian subspaces of (V,ω)

Lemma 7 Let X and Y be real $n \times n$ matrices and define $\Lambda \subset \mathbb{R}^{2n}$ by $\Lambda = \operatorname{range}(Z); Z = (XY)^T$. Then Λ is a Lagrangian subspace $\iff Z$ is of full rank and $X^TY = Y^TX$

The matrix that satisfies the above is a **Lagrangian Frame**. $\mathcal{L}(n)$ is a manifold of dimension n(n+1)/2.

Lemma 8 1. Any symplectic transformation of a Lagrangian subspace is again Lagrangian

- $2. \ \ There \ is \ a \ symplectic \ transform \ between \ any \ two \ Lagrangian \ subspaces.$
- 3. There is a natural isomorphism $\mathcal{L}(n) \approx \mathcal{U}(n)/\mathcal{O}(n)$.

Theorem 2 There is a unique function $\mu : \Omega \mathcal{L}(n) \to \mathbb{Z}$ satisfying the following:

- 1. (homotopy) Two loops have the same Maslov index ← they are homotopic
- 2. (product) For a loop $\Lambda_t \in \Omega \mathcal{L}(n)$ and a loop $\Psi_t \in \Omega \operatorname{Sp}(2n)$, then $\mu(\Psi_t \Lambda_t) = \mu(\Lambda_t) + 2\mu(\Psi_t)$
- 3. (direct sum) Identifying $\mathcal{L}(a) \bigoplus \mathcal{L}(b) \subset \mathcal{L}(a+b)$, then the Maslov index of a direct sum of two loops is the sum of their Maslov indices.

4. (normalization) The loop $\Lambda_t = e^{2\pi i t} \mathbb{R} \subset \mathbb{C}$ has Maslov index 1.

Similarly to the Maslov indices of symplectomorphism loops, we can view the Maslov index of Lagrangian subspaces as the intersection number of the loop with a submanifold of $\mathcal{L}(n)$. The desired submanifold is the set of planes $\bigcup_{c \in \mathbb{R}} \{ \operatorname{Re}(z) = c \}$ in complex symplectic basis.

1.5 The Affine Non-Squeezing Theorem

Definition 3 An **Affine Symplectomorphism** is a map that is a symplectomorphism followed by a translation. A symplectic cylinder $Z^{2n}(R)$ is $B^2(R) \times \mathbb{R}^{2n-2}$

Theorem 3 Let ψ be an affine symplectormophism, and that $\psi(B^{2n}(r)) \subset Z^{2n}(R)$. Then $r \leq R$.

Theorem 4 Let Ψ be a nonsingular matrix with the non-squeezing property. Then Ψ is symplectic or anti-symplectic ($\Psi^*\omega = -\omega$).

Definition 4 The Linear Symplectic Width of a subset $A \subset \mathbb{R}^{2n}$ is the area of the largest symplectic ball that fits inside the subset:

$$w_L(A) = \sup\{\pi r^2 | \psi(B^{2n}(r)) \subset A\}$$

For any affine symplectic transform ψ . It has the following properties:

- 1. (monotonicity) if $\psi(A) \subset B$ then $w_L(A) < w_L(B)$.
- 2. (conformality) $w_L(\lambda A) = \lambda^2 w_L(A)$
- 3. (nontriviality) $w_L(B^{2n}(r)) = w_L(Z^{2n}(r)) = \pi r^2$

Theorem 5 Let $\Psi : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ be a linear map. Then TFAE:

- 1. Ψ preserves the linear symplectic width of ellipsoids centered at 0.
- 2. Ψ is either symplectic or anti-symplectic, i.e. $\Psi^*\omega=\pm\omega$

Lemma 9 Let (V, ω) be a symplectic vector space with an inner product g. Then there is a basis of V which is g-orthogonal and ω -standard, and can be chosen so that $g(u_j, u_j) = g(v_j, v_j)$

Lemma 10 Given an ellipsoid

$$E = \{ W \in \mathbb{R}^{2n} | \sum_{i,j=1}^{2n} a_{ij} w_i w_j \le 1 \}$$

There is a symplectic linear tranformation $\Psi in \mathrm{Sp}(2n)$ such that Ψ turns the matrix a_{ij} diagonal.

Remark 1 For n = 1, the previous lemma tells us that every ellipse in \mathbb{R}^2 can be mapped into a circle by an area-preserving transformation.

Definition 5 The Symplectic Spectrum of an ellipsoid to be the increasing n-tuple (r_1, \ldots, r_n) such that the ellipsoid is 'diagonalized' by a linear transformation into a ellipsoid with diagonal matrix $\operatorname{diag}(r_1, \ldots, r_n)$. Symplectic spectra have the following properties:

- 1. Two ellipsoids are linearly symplectomorphic \iff they have the same spectrum
- 2. An ellipsoid with its spectrum of the form (r, \ldots, r) are symplectic balls
- 3. The volume of a symplectic ellipsoid is $Vol(E) = \pi^n \prod_i r_i^2$

Theorem 6 Let $E \subset \mathbb{R}^{2n}$ be an ellipsoid centered at 0. Then $w_L(E) = \sup_{B \subset E} w_L(B) = \inf_{E \subset Z} w_L(Z)$, where B are symplectic balls and Z are symplectic cylinders.

1.6 Complex Structures

Definition 6 A Complex Structure is an automorphism $J: V \to V$ such that $-J^2$ is the identity. We can 'complexify' the vector space by "complex' scalar multiplication: $\mathbb{C} \times V \to V: (s+it,v) \mapsto sv+tJv$, which means V has even dimension over the reals. The set of complex structures is denoted by $\mathcal{J}(V)$

Proposition 3 Every almost complex structure is a linear transform away from the standard complex structure:

$$J = \begin{bmatrix} 0 & -\mathrm{id} \\ \mathrm{id} & 0 \end{bmatrix}$$

Definition 7 If (V, ω) is symplectic vector space, a complex structure $J \in \mathcal{J}(V)$ is said to be compatible with ω if $\omega(Jv, Jw) = \omega(v, w)$ and $\omega(v, Jv) > 0$. This defines an inner product on V, defined by $g_J(v, w) = \omega(w, Jw)$. This inner product makes J skew-adjoint, i.e. $g_J(v, Jw) = -g_J(Jv, w)$. The space of compatible complex structures is denotes $\mathcal{J}(V, \omega)$

Proposition 4 1. $\mathcal{J}(V,\omega)$ is homeomorphic to the space \mathcal{P} of symmetric positive definite symplectic matrices.

- 2. There is a continuous map $r : met(V) \to \mathcal{J}(V, \omega)$ such that $r(g_J) = J \ \mathcal{E}$ $r(\Phi^*g) = \Phi^*r(g), \ \forall J \in \mathcal{J}(V, \omega), g \in met(V), \Phi \in Sp(V, \omega).$
- 3. $\mathcal{J}(V,\omega)$ is contractible.

Definition 8 A complex structure $J \in \mathcal{J}(V,\omega)$ is called ω -tame if $\omega(v,Jv) > 0$ for all nonzero v. The space of ω -tame complex structures is denotes by $\mathcal{J}_T(V,\omega)$. There is an associated inner product for each ω -tame complex structure given by $g_J(v,w) = \frac{1}{2}(w(v,Jw) + \omega(w,Jv))$.

Proposition 5 The space $\mathcal{J}_T(V,\omega)$ is contractible.

1.7 Symplectic Vector Bundles

Definition 9 A Symplectic Vector Bundle over a manifold is a real vector bundle $E \xrightarrow{\pi} M$ equipped with a smoothly symplectic form $\omega \in \Gamma(E \bigotimes E^*)$.

Definition 10 Symplectic vector bundles are isomorphic \iff their underlying complex vector bundles are isomorphic. Symplectic vector bundles with compatible almost complex structure and a metric are called a **Hermitian Structure**.

Proposition 6 Let $E \to M$ be a 2n-dimensional vector bundle.

- 1. Every symplectic form has a compatible almost complex structure. The space $\mathcal{J}(E,\omega)$ is contractible.
- 2. The space of symplectic forms compatible with a given almost complex structure is contractible.

Definition 11 A Unitary Trivialization is a smooth map of a symplectic vector bundle, an almost complex structure, and a metric into Euclidean space, transforming each structure into its standard structure. A Unitary Trivialization along a curve is a trivialization of the pull-back bundle along a curve.

Lemma 11 If a curve has unitary trivializations at its endpoints, then it can be extended to a unitary transformation along the entire curve

Proposition 7 A Hermitian vector bundle $E \to \Sigma$ over a compact Riemann surface Σ with non-empty boundary $\partial \Sigma$ admits a unitary trivialization.

1.8 First Chern Classes

Theorem 7 There is a unique function called the **First Chern Number**, that assigns an integer $c_1(E)$ to every symplectic vector bundle E over a compact oriented Riemann surface Σ without boundary and satisfies the following axioms:

- 1. (naturality) Two isomorphic vector bundles have the same Chern number
- 2. (functoriality) Any smooth map $\phi: \Sigma' \to \Sigma$ of oriented Riemann surfaces and any symplectic vector bundle $E \to \Sigma$, then $c_1(\phi^*E) = \deg(\phi)c_1(E)$
- 3. (additivity) For any two symplectic vector bundles $E_1 \to \Sigma$ and $E_2 \to \Sigma$, $c_1(E_1 \bigoplus E_2) = c_1(E_1) + c_1(E_2)$.
- 4. (normalization) The Chern number of the tangent bundle is $c_1(T\Sigma) = 2 2g = \chi(\Sigma)$
- Remark 2 1. The first Chern number vanishes \iff the bundle is trivial; so the first Chern number is an indicator of if the bundle can be symplectically trivialized.
 - 2. Usually the Chern number is defined for complex vector bundles, which is fine for our definition.