

Story Ending Generation with Incremental Encoding and Commonsense Knowledge

Jian Guan*, Yansen Wang*, Minlie Huang

Introduction

Figure 1: Story Ending Generation Tasks: given a story context consisting of a sentence sequence, generate a one-sentence sequence to conclude the story and complete the plot.

Generating a good ending requires:

- Representing the **context clues** which contain key information for planning a reasonable ending
- Using **implicit knowledge** (e.g., commonsense knowledge) to facilitate understanding of the story and better predict what will happen next.

Incremental Encoding Multi-Source Attention Knowledge Graph Representation Wish Today is Halloween. "candy" "children" "holiday" "a_R, a_R, a

Figure 2: Model overview.

Task Overview:

Story Context \times Commonsense Knowledge \rightarrow Story Ending

Model: Sequence to Sequence (seq2seq) Framework

- Encoder-Decoder with Attention: Common framework to model the mapping from the context to the ending.
- **Incremental Encoding:** Effective to represent the context clues which may capture the key logic information.
- Multi-Source Attention: Capture the relationship between words (or states) in the current sentence and those in the preceding sentence, and contains implicit knowledge that is beyond the text.
- Knowledge graph representation: Extends (Encodes) the meaning of a word by representing the knowledge graph from its neighboring concepts and relations.
- Loss Function: Impose supervision on both the encoding network and decoding network.

Experiments

Dataset

ROCStories corpus:

• Each story consists of five sentences, our task is to generate the ending given the first 4 sentence

- 90,000 for training and 8,162 for evaluation
- Average length of $X_1/X_2/X_3/X_4$ is 8.9/9.9/10.1/10.0/10.5

ConceptNet:

- Only retrieve the relations whose head entity and tail entity are noun or verb, meanwhile both occurring in SCT.
- Retain at most 10 triples if there are too many for a word.
- Average number of relations for each query word is 3.4

Evaluation

Automatic Metrics: Perplexity(PPL), BLEU-1/BLEU-2 Manual Metrics:

- **Grammar**(Gram.):Whether an ending is natural and fluent. Score 2 is for endings without any grammar errors, 1 for endings with a few errors but still understandable and 0 for endings with severe errors and incomprehensible.
- Logicality(Logic.):Whether an ending is reasonable and coherent with the story context in logic. Score 2 is for reasonable endings that are coherent in logic, 1 for relevant endings but with some discrepancy between an ending and a given context, and 0 for totally incompatible endings.

	Model	PPL	BLEU-1	BLEU-2	Gram.	Logic.
	Seq2Seq	18.97	0.1864	0.0410	1.74	0.70
	HLSTM	17.26	0.2459	0.0771	1.57	0.84
	HLSTM + Copy	19.93	0.2469	0.0783	1.66	0.90
	HLSTM+MSA(GA)	15.75	0.2588	0.0809	1.70	1.06
	HLSTM + MSA(CA)	12.53	0.2514	0.0825	1.72	1.02
	IE (ours)	11.04	0.2514	0.0813	1.84	1.10
	$IE + MSA(GA) \; (ours)$	9.72	0.2566	0.0854	1.68	1.26
	IE+MSA(CA) (ours)	8.79	0.2682	0.0936	1.66	1.24

Table 1: Automatic and manual evaluation results.

Case Study

Context:	Martha is cooking a special meal for her family.				
	She wants everything to be just right for when they eat. Martha perfects everything and puts her dinner into the oven.				
	Martha goes to lay down for a quick nap.				
Golden Ending:	She <u>oversleeps</u> and runs into the <u>kitchen</u> to take out her <u>burnt dinner</u> .				
Seq2Seq:	She was so happy to have a <i>new cake</i> .				
HLSTM:	Her family and her family are very happy with her food.				
HLSTM+ Copy:	Martha is happy to be able to eat her family.				
HLSTM+ GA:	She is happy to be able to cook her dinner .				
HLSTM+ CA:	She is very happy that she has made a new cook .				
IE:	She is very happy with her family .				
IE+GA:	When she gets back to the kitchen, she sees a burning light on the stove				
IE+CA:	She realizes the food and is happy she was ready to cook .				

Table 2: Generated endings from different models. **Bold** words denote the **key** entity and event in the story. *Improper* words in ending is in *italic* and proper words are <u>underlined</u>.

Attention Visualization

Figure 3: An example illustrating how incremental encoding builds connections between context clues.