EECS 126 Discussion 5

- 9	sell glades todays
	- self glades today: - thanks for post-MTI survey feedback! + ask for a TA one on-one if you want
	· convergence of exponentials - conv. in peob. definition
	· Breaking a Stick - convergence - definitions / theoly
	nomen convergence
老	La Compagner of Gromentials
1,5	1. Convergence of Exponentials hint: CDF of Exp (7) is first - e-2x
	Def. of convergence in probability:
	$\chi \rightarrow \chi$ i.p. if $\lim_{n\to\infty} (\chi_n - \chi \ge e) = 0 \forall \in > a$
	1.755.
	$\chi_n \rightarrow 0$, $\chi_n \sim G(n)$
	Inn
	WTS:
	lam P((Xn ze)=0 Ve>0
	non (Inn)
	= lim P(Xn zehn)=0 VE>0
	n-xu
,	Recall $F_{x}(x) = P(X \le x) = 1 - e^{-2x}$
,	Recall $F_{x}(x) = P(x \le x) = 1 - e^{-\lambda x}$ $\Rightarrow P(x \ge x) = e^{-\lambda x}$
	a lab a la la
	$P(X_n \ge c \ln n) = e^{-\lambda \epsilon \ln n} = n^{-\lambda \epsilon}$ $\lim_{n \to \infty} P(X_n \ge c \ln n) = \lim_{n \to \infty} n^{-\lambda \epsilon} = 0 \implies \frac{\lambda_n}{\ln n} = 0$
	$\lim_{n \to \infty} P(x \ge 6 \ln n) - \lim_{n \to \infty} n^{-2\epsilon} = 0 \Rightarrow \lim_{n \to \infty} R = 0$
-	n-200 10 n

2. Breaking a Stick

a) $P_n \xrightarrow{M} \rightarrow ?$ $P_n = X_1 \cdot X_2 \cdot \dots \cdot X_{n-1} \cdot X_n \cdot X_n \sim U(0, 1] id$.

Continuous mapping theorem: $X_n \rightarrow X$ a.s., g continuous (w, p, l) $\Rightarrow g(X_n) \rightarrow g(X) \text{ a.s.}$

use natural log: tuens products to sums.

 $h P'' = h (T_{in}^n x_i^n) = \sum_{i=1}^n h x_i^n = \int_0^n h x_i$

SLLN: \frac{1}{n} \(\Sigma_i \) \tag{E[Y_i]} \quad \quad \tag{F[Y_i]} \quad \qq \quad \qu

 $E[l_n X_i] = \int_0^1 l_n x \cdot | dx = -1.$

In Po 1 => Po 1 a.s. e-1.

1 -0 (·) '/ -> (·) '/ -> 1

b) E[Pn] = E[T] x:] = T(E[x:]) indep. indep.

ident. $\left(E[X_i] \right)^n = E[X_i] = 1$

Eth
$$P_n$$
] \neq $E[P_n]$, in general

$$\begin{cases}
(E(X)) \leq E[f(X)] & \text{Jensen's inequality.} \\
3. & \text{Convergence in } R^{th} \text{ moment.}
\end{cases}$$

$$\begin{cases}
\lim_{n \to \infty} E[|X_n - X|^{2n}] = 0 & \text{In parts.} \\
\lim_{n \to \infty} P(|X_n - X|^{2n}) = 0 & \text{In dist.}
\end{cases}$$

$$\text{In } P(|X_n - X|^{2n}) \geq e^{2n} = 0$$

$$\begin{cases}
\lim_{n \to \infty} P(|X_n - X|^{2n}) \geq e^{2n} \\
\lim_{n \to \infty} P(|X_n - X|^{2n}) \geq e^{2n}
\end{cases}$$

$$\begin{cases}
\lim_{n \to \infty} P(|X_n - X|^{2n}) \geq e^{2n} \\
\lim_{n \to \infty} P(|X_n - X|^{2n}) \geq e^{2n}
\end{cases}$$

$$\begin{cases}
\lim_{n \to \infty} P(|X_n - X|^{2n}) \geq e^{2n} \\
\lim_{n \to \infty} P(|X_n - X|^{2n}) \geq e^{2n}
\end{cases}$$

$$\begin{cases}
\text{alt. intuition} \quad |X_n - X|^{2n} \geq e^{2n} \\
\text{on expectation} \geq 0 \text{ on } p. 1.
\end{cases}$$