Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 7 Martie 2009

CLASA A VII-a, SOLUŢII ŞI BAREMURI

Problema 1. Fie m și n numere naturale nenule cu proprietatea că 5 divide $2^n + 3^m$. Să se arate că 5 divide $2^m + 3^n$.

Soluţie Ultima cifră a puterilor lui 2 şi 3 se repetă din 4 în 4, deci vom considera m=4k+a şi n=4p+b, cu $a,b=0,1,2,3,\ldots$ 1 punct Ultima cifră a lui 2^n este 2,4,8,6 pentru b=1,2,3,0 respectiv, iar ultima cifră a lui 3^m este 3,9,7,1 pentru a=1,2,3,0 respectiv. 2 puncte Numărul 2^n+3^m are ultima cifră 5 în următoarele cazuri: i) a=2,b=0; ii) a=b=1; iii) a=0,b=2; iv) a=b=3. 2 puncte În toate cele 4 situații de mai sus ultima cifră a lui 2^m+3^n este 5, ceea ce trebuia arătat. 2 puncte

Problema 2. Fie ABC un triunghi ascuţitunghic în care M şi N sunt mijloacele laturilor AB, respectiv AC, iar S este un punct mobil pe latura (BC). Să se arate că $(MB - MS)(NC - NS) \leq 0$.

Soluţie. Fie D piciorul înălţimii din A. Atunci triunghiurile BDM şi DCN sunt isoscele, deoarece MB = MD şi NC = ND. 2 puncte Dacă S = D, atunci MB - MS = 0, de unde rezultă cerinţa. . 1 punct Dacă S se află pe segmentul (BD), atunci MB > MS şi NS > NC, deci (MB - MS)(NC - NS) < 0. 2 puncte Analog dacă S aparține segmentului (DC). 2 puncte

Problema 3. Fie a şi b două numere naturale. Să se arate că numărul $a^2 + b^2$ este diferența a două pătrate perfecte dacă şi numai dacă ab este număr par.

Deoarece $a^2 + b^2 = m^2 - n^2 = (m - n)(m + n)$, observăm că dacă m, n
au aceeași paritate rezultă că $a^2 + b^2$ este multiplu de 4, iar dacă m, n au
parități diferite găsim $a^2 + b^2$ impar, contradicție
Pentru implicația contrară, să observăm că $a^2 + b^2 = 4s$, dacă și a și b
sunt pare, sau $a^2 + b^2 = 2r + 1$, dacă doar unul este par 2 puncte
În primul caz scriem $4s = (s+1)^2 - (s-1)^2$, iar în cel de-al doilea caz
avem $(r+1)^2-r^2$, ceea ce încheie demonstrația

Problema 4. Se consideră un triunghi echilateral ABC. Punctele M, N și P sunt situate pe laturile AC, AB și BC, respectiv, astfel încât $\angle CBM = \frac{1}{2} \angle AMN = \frac{1}{3} \angle BNP$ și $\angle CMP = 90^{\circ}$.

- a) Să se arate că triunghiul NMB este isoscel.
- b) Să se determine măsura unghiului $\angle CBM$.

Soluţie. a) Fie x măsura unghiului $\angle MBC$. Atunci $\angle ABM = 60^{\circ} - x$
şi $\angle NMB = 60^{\circ} - x$, deci $NM = NB$
b) Fie Q un punct pe semidreapta (CA astfel încât $CQ = 2 \cdot CA$. Atunci
$\Delta QPC \sim \Delta BMC$ și $QB \perp BC$. Înseamnă că $\angle PQC = x$ 1 punct
Fie O mijlocul segmentului PQ . Cum PQ este ipotenuză comună în
triunghiurile BPQ şi MPQ , rezultă că $OM = OB = \frac{1}{2} \cdot PQ$. Din $\angle BOM =$
60° rezultă că triunghiul OBM este echilateral, deci $\tilde{O}N \perp BM \dots 1$ punct
Fie S și T punctele de intersecție ale dreptei BM cu PN și PQ respectiv.
Avem $\angle BTN = \angle QSM = 120^{\circ} - 2x$, deci triunghiul PST este isoscel cu
PS = PT1 punct
Dacă $T \neq S$, perpendiculara din P pe segmentul TS taie dreapta ON ,
fiind bisectoarea unghiului $\angle NPO$, în contradicție cu $ON \perp BM$. Rezultă
T = S, deci punctele P, N, O, Q sunt coliniare 1 punct
De aici $PB = PM$ şi $x = \angle PBM = \angle PMB = 15^{\circ}$ 1 punct