

Overview

- GPUs deliver high SpMV performance
 - 10+ GFLOP/s on unstructured matrices
 - 140+ GByte/s memory bandwidth
- No one-size-fits-all approach
 - Match method to matrix structure
- Exploit structure when possible
 - Fast methods for regular portion
 - Robust methods for irregular portion

Characteristics of SpMV

- Memory bound
 - FLOP : Byte ratio is very low
- Generally irregular & unstructured
 - Unlike dense matrix operations (BLAS)

Solving Sparse Linear Systems

- Iterative methods
 - © CG, GMRES, BiCGstab, etc.
 - Require 100s or 1000s of SpMV operations

Finite-Element Methods

- Discretized on structured or unstructured meshes
 - Determines matrix sparsity structure

Objectives

- Expose sufficient parallelism
 - Develop 1000s of independent threads
- Minimize execution path divergence
 - SIMD utilization
- Minimize memory access divergence
 - Memory coalescing

Sparse Matrix Formats

© 2008 NVIDIA Corporation

Compressed Sparse Row (CSR)

- Rows laid out in sequence
- Inconvenient for fine-grained parallelism

CSR (scalar) kernel

- One thread per row
 - Poor memory coalescing
 - Unaligned memory access

CSR (vector) kernel

- One SIMD vector or warp per row
 - Partial memory coalescing
 - Unaligned memory access

ELLPACK (ELL)

- Storage for K nonzeros per row
 - Pad rows with fewer than K nonzeros
 - Inefficient when row length varies

Hybrid Format

- ELL handles typical entries
- COO handles exceptional entries
 - Implemented with segmented reduction

Exposing Parallelism

- DIA, ELL & CSR (scalar)
 - One thread per row
- CSR (vector)
 - One warp per row
- COO
 - One thread per nonzero

Exposing Parallelism

Execution Divergence

- Variable row lengths can be problematic
 - Idle threads in CSR (scalar)
 - Idle processors in CSR (vector)
- Robust strategies exist
 - COO is insensitive to row length

Execution Divergence

Memory Access Divergence

- Uncoalesced memory access is very costly
 - Sometimes mitigated by cache
- Misaligned access is suboptimal
 - Align matrix format to coalescing boundary
- Access to matrix representation
 - DIA, ELL and COO are fully coalesced
 - CSR (vector) is partially coalesced
 - CSR (scalar) is seldom coalesced

Memory Bandwidth (AXPY)

Performance Results

- GeForce GTX 285
 - Peak Memory Bandwidth: 159 GByte/s
 - All results in double precision
 - Source vector accessed through texture cache
- Structured Matrices
 - Common stencils on regular grids
- Unstructured Matrices
 - Wide variety of applications and sparsity patterns

Structured Matrices

Unstructured Matrices

Performance Comparison

System	Cores	Clock (GHz)	Notes
GTX 285	240	1.5	NVIDIA GeForce GTX 285
Cell	8 (SPEs)	3.2	IBM QS20 Blade (half)
Core i7	4	3.0	Intel Core i7 (Nehalem)

Sources:

Implementing Sparse Matrix-Vector Multiplication on Throughput-Oriented Processors N. Bell and M. Garland, Proc. Supercomputing '09, November 2009

Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms Samuel Williams et al., Supercomputing 2007.

Performance Comparison

ELL kernel


```
__global__ void ell_spmv(const int num_rows, const int num_cols,
                         const int num_cols_per_row, const int stride,
                                                      const double * Ax,
                         const double * Aj,
                         const double * x,
                                                            double * y)
   {
        const int thread_id = blockDim.x * blockIdx.x + threadIdx.x;
        const int grid_size = gridDim.x * blockDim.x;
        for (int row = thread_id; row < num_rows; row += grid_size) {</pre>
            double sum = y[row];
            int offset = row;
            for (int n = 0; n < num_cols_per_row; n++) {</pre>
                const int col = Aj[offset];
                if (col != -1)
                    sum += Ax[offset] * x[col];
                offset += stride;
            y[row] = sum;
    }
```



```
#include <cusp/hyb_matrix.h>
#include <cusp/io/matrix_market.h>
#include <cusp/krylov/cq.h>
int main(void)
   // create an empty sparse matrix structure (HYB format)
   cusp::hyb_matrix<int, double, cusp::device_memory> A;
   // load a matrix stored in MatrixMarket format
   cusp::io::read_matrix_market_file(A, "5pt_10x10.mtx");
   // allocate storage for solution (x) and right hand side (b)
   cusp::array1d<double, cusp::device_memory> x(A.num_rows, 0);
   cusp::array1d<double, cusp::device_memory> b(A.num_rows, 1);
   // solve linear system with the Conjugate Gradient method
   cusp::krylov::cg(A, x, b);
   return 0:
```

http://cusp-library.googlecode.com

Extensions & Optimizations

- Block formats (register blocking)
 - Block CSR
 - Block ELL
- Block vectors
 - Solve multiple RHS
 - Block Krylov methods
- Other optimizations
 - Better CSR (vector)

Further Reading

Implementing Sparse Matrix-Vector Multiplication on Throughput-Oriented Processors

N. Bell and M. Garland Proc. Supercomputing '09, November 2009

Efficient Sparse Matrix-Vector Multiplication on CUDA

N. Bell and M. Garland NVIDIA Tech Report NVR-2008-004, December 2008

Optimizing Sparse Matrix-Vector Multiplication on GPUs

M. M. Baskaran and R. Bordawekar. IBM Research Report RC24704, IBM, April 2009

Model-driven Autotuning of Sparse Matrix-Vector Multiply on GPUs

J. W. Choi, A. Singh, and R. Vuduc Proc. ACM SIGPLAN (PPoPP), January 2010

Questions?

nbell@nvidia.com