# Teorema de Cantor

Clase 17

IIC 1253

Prof. Pedro Bahamondes

# Outline

#### Introducción

Conjuntos no enumerables

Teorema de Cantor

Epílogo

Anteriormente, mostramos la existencia de varios conjuntos infinitos enumerables:

- $\blacksquare$  N
- P
- $\blacksquare$   $\mathbb{Z}$
- *L*(*P*)
- $\mathbb{N}^n$
- ...

Anteriormente, mostramos la existencia de varios conjuntos infinitos enumerables:

- $\blacksquare$  N
- P
- $\blacksquare$   $\mathbb{Z}$
- $\blacksquare$   $\mathbb{Q}$
- *L*(*P*)
- $\mathbb{N}^n$
- ...

¿Existen conjuntos infinitos no enumerables?

### Objetivos de la clase

- □ Demostrar la existencia de conjuntos no enumerables
- Comprender la técnica de diagonalización
- Comprender el teorema de Cantor y sus consecuencias sobre la jerarquía de cardinalidades
- □ Demostrar el teorema de Cantor



# Outline

Introducción

Conjuntos no enumerables

Teorema de Cantor

Epílogo

¿Existen conjuntos infinitos no enumerables?

Teorema

El intervalo real  $(0,1) \subseteq \mathbb{R}$  es infinito pero no enumerable.

¿Existen conjuntos infinitos no enumerables?

Teorema

El intervalo real  $(0,1) \subseteq \mathbb{R}$  es infinito pero no enumerable.

Ejercicio

Demuestre el teorema.

#### Teorema

El intervalo real  $(0,1) \subseteq \mathbb{R}$  es infinito pero no enumerable.

<u>Demostración</u>. Por contradicción, supongamos que (0,1) es enumerable.

Entonces existe una lista infinita de los reales en (0,1):

$$r_0, r_1, r_2, r_3, \ldots$$

donde cada real en (0,1) aparece exactamente una vez.

Notemos que cada  $r_i$  es un número decimal de la forma

$$r_i = 0, d_{i0}d_{i1}d_{i2}d_{i3}..., \text{ con } d_{ij} \in \{0,...,9\}$$

| Reales                | Representación decimal |          |          |          |          |          |     |
|-----------------------|------------------------|----------|----------|----------|----------|----------|-----|
| <i>r</i> <sub>0</sub> | 0,                     |          |          | $d_{02}$ |          | $d_{04}$ | ••• |
| $r_1$                 | 0,                     |          |          | $d_{12}$ |          | $d_{14}$ | ••• |
| <b>r</b> <sub>2</sub> | 0,                     | $d_{20}$ |          | $d_{22}$ |          | $d_{24}$ | ••• |
| <i>r</i> <sub>3</sub> | 0,                     | $d_{30}$ | $d_{31}$ | $d_{32}$ | $d_{33}$ | $d_{34}$ | ••• |
| <i>r</i> <sub>4</sub> | 0,                     | $d_{40}$ | $d_{41}$ | $d_{42}$ | $d_{43}$ | $d_{44}$ | ••• |
| :                     |                        | ÷        | ÷        | ÷        | ÷        | :        | ٠.  |

| Reales                | Representación decimal |                 |          |                 |                 |                 |     |  |
|-----------------------|------------------------|-----------------|----------|-----------------|-----------------|-----------------|-----|--|
| <i>r</i> <sub>0</sub> | 0,                     | d <sub>00</sub> | $d_{01}$ | d <sub>02</sub> | d <sub>03</sub> | d <sub>04</sub> |     |  |
| $r_1$                 | 0,                     | $d_{10}$        | $d_{11}$ | $d_{12}$        | $d_{13}$        | $d_{14}$        |     |  |
| <i>r</i> <sub>2</sub> | 0,                     | $d_{20}$        | $d_{21}$ | d <sub>22</sub> | $d_{23}$        | $d_{24}$        | ••• |  |
| <i>r</i> <sub>3</sub> | 0,                     | $d_{30}$        | $d_{31}$ | $d_{32}$        | d <sub>33</sub> | $d_{34}$        | ••• |  |
| <i>r</i> <sub>4</sub> | 0,                     | $d_{40}$        | $d_{41}$ | $d_{42}$        | $d_{43}$        | d <sub>44</sub> | ••• |  |
| :                     |                        | ÷               | ÷        | ÷               | ÷               | :               | ٠.  |  |

Para cada 
$$i \ge 0$$
, definimos  $d_i = \begin{cases} d_{ii} + 1 & d_{ii} < 9 \\ 0 & d_{ii} = 9 \end{cases}$ 

Sea ahora el número real r = 0,  $d_0 d_1 d_2 d_3 d_4 d_5 d_6 \dots$ 

Para cada 
$$i \ge 0$$
, definimos:  $d_i = \begin{cases} d_{ii} + 1 & d_{ii} \ne 9 \\ 0 & d_{ii} = 9 \end{cases}$ 

Sea ahora el número real r = 0,  $d_0d_1d_2d_3d_4d_5d_6...$ 

¿Aparece r en la lista?

- $\xi r = r_0$ ? No, porque difieren en el primer dígito decimal.
- $\xi r = r_1$ ? No, porque difieren en el segundo dígito decimal.
- **...**
- $i_r = r_i$ ? No, porque el i-ésimo digito de r es distinto al de  $r_i$ :

$$d_i \neq d_{ii}$$

Por lo tanto, r no aparece en la lista  $\rightarrow \leftarrow$ 

Como (0,1) no puede ponerse en una lista, no es enumerable.

El argumento anterior se llama diagonalización.

■ ¿Por qué?

El argumento anterior se llama diagonalización.

- ¿Por qué?
- Es clave para establecer muchos resultados en matemáticas y computación.

Usando estas ideas se puede demostrar que un computador no puede resolver todo problema

### Teorema

 $(0,1) \approx \mathbb{R} \approx \mathcal{P}(\mathbb{N}).$ 

# Outline

Introducción

Conjuntos no enumerables

Teorema de Cantor

Epílogo

#### Entonces, ¿dónde hay más elementos, en $\mathbb{N}$ o en $\mathbb{R}$ ?

#### Definición

Dados conjuntos A y B, diremos que  $A \le B$  (A no es más grande que B) si existe una función inyectiva  $f: A \to B$ .

¿Es ≤ una relación de orden?

### Entonces, ¿dónde hay más elementos, en $\mathbb N$ o en $\mathbb R$ ?

#### Definición

Dados conjuntos A y B, diremos que  $A \le B$  (A no es más grande que B) si existe una función inyectiva  $f: A \to B$ .

¿Es < una relación de orden?

Si  $A \le B$ , diremos que  $|A| \le |B|$ .

#### Definición

Dados conjuntos A y B, diremos que A < B (A es menos numeroso que B) si  $A \le B$  pero  $A \not \in B$ .

¿Cómo se define esta noción usando funciones?

- Existe función inyectiva  $f: A \rightarrow B...$
- . . . pero no existe función biyectiva  $g: A \rightarrow B$ .

Si A < B, diremos que |A| < |B|.

### Ejemplo

 $\mathbb N$  es menos numeroso que  $\mathbb R$ , y por lo tanto decimos que  $|\mathbb N|<|\mathbb R|$ .

¡Hay estrictamente menos números naturales que reales!

### Ejemplo

 $\mathbb N$  es menos numeroso que  $\mathbb R$ , y por lo tanto decimos que  $|\mathbb N|<|\mathbb R|$ .

¡Hay estrictamente menos números naturales que reales!

Corolario

 $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$ .

### Ejemplo

 $\mathbb N$  es menos numeroso que  $\mathbb R$ , y por lo tanto decimos que  $|\mathbb N|<|\mathbb R|$ .

¡Hay estrictamente menos números naturales que reales!

Corolario

 $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$ .

Demostramos algo parecido para el caso finito... veremos que aplica para **todo conjunto** 

Dado un conjunto A (no necesariamente finito):

Teorema (Cantor)

A es menos numeroso que su conjunto potencia  $(|A| < |\mathcal{P}(A)|)$ .

Dado un conjunto A (no necesariamente finito):

Teorema (Cantor)

A es menos numeroso que su conjunto potencia  $(|A| < |\mathcal{P}(A)|)$ .

¡Podemos repetir este proceso ad eternum!  $|A| < |\mathcal{P}(A)| < |\mathcal{P}(\mathcal{P}(A))| < |\mathcal{P}(\mathcal{P}(\mathcal{P}(A)))| < \cdots$ 

Teorema (Cantor)

A es menos numeroso que su conjunto potencia  $(|A| < |\mathcal{P}(A)|)$ .

### Ejercicio

Demuestre el teorema.

<u>Demostración.</u> Primero, es claro que  $|A| \le |\mathcal{P}(A)|$ . Basta tomar

$$f: A \to \mathcal{P}(A)$$
 dada por  $f(a) = \{a\}$ 

la cual es claramente inyectiva.

Teorema (Cantor)

A es menos numeroso que su conjunto potencia  $(|A| < |\mathcal{P}(A)|)$ .

### Ejercicio

Demuestre el teorema.

<u>Demostración.</u> Primero, es claro que  $|A| \le |\mathcal{P}(A)|$ . Basta tomar

$$f: A \to \mathcal{P}(A)$$
 dada por  $f(a) = \{a\}$ 

la cual es claramente inyectiva.

Ahora mostraremos que no existe una función biyectiva entre A y  $\mathcal{P}(A)$ .

Por contradicción, supongamos que sí existe una biyección f entre A y  $\mathcal{P}(A)$ .

Considere el siguiente conjunto:

Definición (complemento de la diagonal)

$$\bar{D} = \{ a \in A \mid a \notin f(a) \}$$

Considere el siguiente conjunto:

Definición (complemento de la diagonal)

$$\bar{D} = \{ a \in A \mid a \notin f(a) \}$$

Notemos que  $\bar{D} \subseteq A$ , y por lo tanto  $\bar{D} \in \mathcal{P}(A)$ . Luego, como f es biyectiva, debe existir  $x \in A$  tal que  $f(x) = \bar{D}$ .

Considere el siguiente conjunto:

Definición (complemento de la diagonal)

$$\bar{D} = \{ a \in A \mid a \notin f(a) \}$$

Notemos que  $\bar{D} \subseteq A$ , y por lo tanto  $\bar{D} \in \mathcal{P}(A)$ . Luego, como f es biyectiva, debe existir  $x \in A$  tal que  $f(x) = \bar{D}$ . Considere ahora los siguientes casos:

- Si  $x \in f(x)$ , entonces  $x \in \bar{D}$  (porque  $f(x) = \bar{D}$ ), pero por definición de  $\bar{D}, x \notin f(x)$ .
- Si  $x \notin f(x)$ , entonces  $x \notin \bar{D}$  (porque  $f(x) = \bar{D}$ ), pero por definición de  $\bar{D}, x \in f(x)$ .

Considere el siguiente conjunto:

Definición (complemento de la diagonal)

$$\bar{D} = \{ a \in A \mid a \notin f(a) \}$$

Notemos que  $\bar{D} \subseteq A$ , y por lo tanto  $\bar{D} \in \mathcal{P}(A)$ . Luego, como f es biyectiva, debe existir  $x \in A$  tal que  $f(x) = \bar{D}$ . Considere ahora los siguientes casos:

- Si  $x \in f(x)$ , entonces  $x \in \overline{D}$  (porque  $f(x) = \overline{D}$ ), pero por definición de  $\overline{D}, x \notin f(x)$ .
- Si  $x \notin f(x)$ , entonces  $x \notin \bar{D}$  (porque  $f(x) = \bar{D}$ ), pero por definición de  $\bar{D}, x \in f(x)$ .

Luego,  $x \in f(x)$  si y sólo si  $x \notin f(x)$ , lo cual es una contradicción. Por lo tanto, no existe una biyección entre A y  $\mathcal{P}(A)$ .

#### Dos preguntas

■ ¿Cuántos "infinitos" existen?

#### Dos preguntas

- ¿Cuántos "infinitos" existen?
- ¿Hay algún infinito entre  $|\mathbb{N}|$  y  $|\mathbb{R}|$ ?

Infinitos!

#### Dos preguntas

| ■ ¿Cuántos | "infinitos" | existen? |
|------------|-------------|----------|
|------------|-------------|----------|

 $\blacksquare$  ¿Hay algún infinito entre  $|\mathbb{N}|$  y  $|\mathbb{R}|?$ 

Infinitos!

???

#### Dos preguntas

- ¿Cuántos "infinitos" existen?
- ¿Hay algún infinito entre  $|\mathbb{N}|$  y  $|\mathbb{R}|$ ?

Infinitos!

???

### Hipótesis del continuo

No existe conjunto A tal que  $|\mathbb{N}| < |A| < |\mathbb{R}|$ 

¿Por qué se llama hipótesis?

- ¿Qué implica todo lo anterior para la computación?
  - ¿Qué cosas es capaz de hacer un computador?
  - ¿Qué cosas no es capaz de hacer?
  - ¿Existen problemas computacionales para los cuales no existan algoritmos que los resuelvan?
  - Respuesta: IIC2213:)

# Outline

Introducción

Conjuntos no enumerables

Teorema de Cantor

Epílogo

### Objetivos de la clase

- □ Demostrar la existencia de conjuntos no enumerables
- Comprender la técnica de diagonalización
- Comprender el teorema de Cantor y sus consecuencias sobre la jerarquía de cardinalidades
- □ Demostrar el teorema de Cantor