

Model Development Phase Template

Date	2025 July 2025
Name	Rutuja Digamber patil
Project Title	Restaurant Recommendation System
Maximum Marks	5 Marks

Model selection Report:

Model	Description
Content-Based	Content-basedfilteringrecommendsrestaurantsbycomparinguserpreferences
Filtering	(e.g.,cuisinetype,pricerange,dietaryrestrictions)withrestaurantattributes.It focuses on
	similarities between items and the user's profile without relying on other users' data.
	This method is effective for users with unique tastes butmay
	strugglewithlimiteduserprofiles(coldstart).
Collaborative	Collaborative filtering leverages the preferences of similar users to make
Filtering	recommendations.Ituseshistoricalratingsandreviewstoidentifypatterns. This
	modeliseffectiveindiscoveringnewitemsbutcansufferfromsparsityandcold start
	problems if data is limited.
Hybrid	This combines content-based and collaborative filtering to overcome the
Recommendatio	limitationsofeachmethod.Byintegratingbothuserpreferencedataandbehavior
n Model	ofsimilarusers, hybridmodels improverecommendation accuracy, diversity, and
	scalability. It is particularly useful in scenarios with large, sparse datasets like
	restaurantrecommendations.

Matrix	Matrix factorization techniques decompose the user-item interaction matrix into	
Factorization	latentfeatures,capturingunderlyingpatternsin user preferences. SingularValue	
	Decomposition(SVD)isacommonapproach.Itiscomputationallyefficientand	
	workswellforlargedatasetsbutrequiresenoughratings.	
DeepLearning	Neural networks can be used to build recommendation systems by learning	
(Neural	complex,non-linearrelationshipsbetweenusersandrestaurantsfromrichfeature sets	
Networks)	including reviews, preferences, and metadata. While powerful, they require large	
	datasets and are computationally intensive.	

Conclusion:

Model Selected	
Hybrid	The hybrid model was selected because it addresses the limitations of both content-
Recommenda	basedandcollaborativefilteringapproaches.Iteffectivelyhandlesthecoldstartand
tion Model	sparsity issues by integrating multiple data sources such as user profiles, restaurant
	attributes, and behavioral data. This results in more personalized, diverse, and
	accurate recommendations, making it highly suitable for a restaurant
	recommendationsystemwithvaryinguserpreferencesanddataavailability.