Data Science and Data Engineering

Quick Overview

Data Science & Machine Learning

- ~3 days
- 60% theory. 40% Hands-on Exercises
- Math/Theory is minimal but not trivial
- Primary tools: R and Azure ML Studio
- Mentored Kaggle participation
- Emphasis on best practices

Data Engineering

- Teach enough data engineering skills to be effective data scientist
- 20% theory. 80% hands-on
- Handle volume, variety and velocity of data
- Internet of Things (IoT) hack day.

Hack Day

- Gather temperature and humidity data in real-time
- Use message queues, stream processors to get real time analytics

Logistics

- Eight hours of pre-bootcamp work
- Bootcamp: May 25th May 29th (8:30 am 5:00 pm)
- Hackday: May 30th
- Slides, sample code and other resources are consolidated in a git repository:
 - Send your github id to yuhui@datasciencedojo.com
- Office hours. Kaggle. LinkedIn group

Introduction to Big Data, Predictive Analytics, and Data Science

Big Data and Data Science Everywhere

Online Shopping

Buy Predictive Analytics: The Pow Predict Who Will Click, Buy, Lie, or Die and get How to Measure Anything: Finding the Value of Intangibles in Business at an additional 5% off Ana. Zon.com's everyday low price.

Buy together today: \$45.43

Add both to Cart

Show availability and shipping details

Customers Who Bought This Item Also Bought

Predictive Analytics:
Microsoft Excel
Conrad Carlberg
Analytics:
Microsoft (10)
Paperback
\$24.36

Big Data: A Revolution That Will Transform ... Viktor Mayer-Schonberger Address (32) Hardcover \$15.84

Emerging Business ...
> Michael Minelli

AAAAA (6)

Hardcover
\$32.82

Finding the Value of ...
> Douglas W. Hubbard

**********(56)
Hardcover
\$31.96

Secrets of Analytical Leaders: Insights ... Wayne Eckerson (10) Perfect Paperback \$44.96 Big Data Analytics:
Disruptive ...
Dr. Anvind Sathi
Anvind Sathi
(5)
Paperback
\$10.45

Social Networks

Online Entertainment

Brainstorming

What are some other applications?

Connecting the Dots

The underlying magic behind what we saw is 'big data' and 'predictive analytics'

Data Mining Tasks

Descriptive Methods:

- Find human-interpretable patterns that describe the data
- Techniques: Clustering, Association Analysis, x-point summaries

Predictive Methods:

- Use available data to build models that can predict the outcome of future data
- Techniques: Classification, Regression, Anomaly, and Deviation Detection

Prescriptive Methods:

- Predict future outcomes and suggest actions that may prevent or mitigate the impact of the predicted outcomes
- Techniques: Various optimization techniques

Traffic Management

Descriptive [Informing Role]:

- Traffic jam has happened already.
- [Implicit: Do something about it.]

Traffic Management

Predictive [Informing and Warning Role]:

- Traffic jam is about to happen in the next 30 minutes.
- [Implicit: Do something before it happens.]

Traffic Management

Prescriptive [Informing, Warning, and Advisory Role]:

Take action so traffic jam does not happen

 \cap R

Traffic jam is about to happen in the next 30 minutes and you could possibly take the following courses of action:

- · Route traffic to service road near I-5
- Block more traffic from entering the WA-520 bridge

unleash the data scientist in you

Data Mining and Predictive Analytics

In the next few slides, we will take a look at some of the most common data mining tasks.

Classification: A Simple Example

Classification

- Given a collection of records (training set)
 - Each record contains a set of attributes; one of the attributes is the class label.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: previously unseen records should be assigned a class as accurately as possible.

unleash the data scientist in y

Classification: More Examples

- Direct Marketing
 - Goal: reduce cost of mailing by targeting a set of consumers likely to buy a new cell-phone product
- Fraud Detection
 - Goal: predict fraudulent cases in credit card transactions
- Customer Attrition/Churn
 - Goal: predict whether a customer is likely to be lost to a competitor

Clustering: An Illustration Clustering in 3-D space using Euclidean distance

Clustering: Examples
Subdivide the market into distinct subsets of customers where any subset may conceivably be selected as a segment to be reached with a particular offer

Clustering

- Given a set of data points, each having a set of attributes, and a similarity measure among them, find clusters such that:
 - Data points within a cluster have more similarities with one another
 - Data points in different clusters have less similarities with one another

Clustering: Similarity Measures Similarity Measures:

- - Euclidean Distance if attributes are continuous
 - Other problem-specific measures
 - Example: If a particular word occurs in two documents or not

Clustering: Examples

 To find groups of documents that are similar to each other based on the important terms appearing in

them

Association Analysis

Your behavior is being predicted, not by studying you, but by studying others.

Association Rule Discovery

- Given a set of records each of which contain some number of items from a given collection:
 - Produce dependency rules which will predict the occurrence of an item based on the occurrences of other items

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}

Association Analysis: Supermarket Shelf Management

- Goal: To identify items that are bought together by a sufficient amount of customers
- Place the items close to each other on supermarket shelves

Association analysis examples

- Marketing and sales promotion:
 - Users who buy item A usually also buy item B
 - If users bought item A, suggest item B or even offer discount on item B
- Inventory management:
 - Goal: A consumer appliance repair company wants to anticipate the nature of repairs on its consumer products and keep the service vehicles equipped with the right parts to reduce the number of visits to consumer households

datasciencedojo unleash the data scientist in you

Regression Example: Predict Housing Prices

datasciencedojo unleash the data scientist in you

Regression

 Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency

Regression: Ad Clicks

Predict the probability of whether or not an ad will be clicked

Deviation/Anomaly Detection

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud Detection
 - Network Intrusion Detection
 - Bot detection in web traffic

Challenges in Data Mining

5 V_s Of Big Data

Questions?

