MATH 503: Mathematical Statistics Dr. Kimberly F. Sellers, Instructor

Homework 9 Problems

1. Let $X_{1j}, X_{2j}, \ldots, X_{a_j j}$ represent independent random samples of sizes a_j from a normal distribution with means μ_j and variances σ^2 , $j=1,2,\ldots,b$. Show that

$$\sum_{j=1}^{b} \sum_{i=1}^{a_j} (X_{ij} - \bar{X}_{..})^2 = \sum_{j=1}^{b} \sum_{i=1}^{a_j} (X_{ij} - \bar{X}_{.j})^2 + \sum_{j=1}^{b} a_j (\bar{X}_{.j} - \bar{X}_{..})^2,$$

or $Q' = Q'_3 + Q'_4$. Here,

$$\bar{X}_{\cdot \cdot} = \frac{\sum_{j=1}^{b} \sum_{i=1}^{a_j} X_{ij}}{\sum_{j=1}^{b} a_j} \text{ and } \bar{X}_{\cdot j} = \frac{\sum_{i=1}^{a} X_{ij}}{a_j}.$$

If $\mu_1 = \mu_2 = \dots = \mu_b$, show that Q'/σ^2 and Q'_3/σ^2 have chi-square distributions. Note that Q'_3 and Q'_4 are independent, and hence Q'_4/σ^2 also has a chi-square distribution.

2. Solve the following using R or SAS: The following are observations associated with independent random samples from three normal distributions having equal variances and respective means μ_1, μ_2, μ_3 .

I	II	III
0.5	2.1	3.0
1.3	3.3	5.1
-1.0	0.0	1.9
1.8	2.3	2.4
	2.5	4.2
		4.1

Compute the F-statistic that is used to test $H_0: \mu_1 = \mu_2 = \mu_3$.

3. Solve the following by hand, and by using either R or SAS: Let μ_1, μ_2, μ_3 be, respectively, the means of three normal distributions with a common but unknown variance σ^2 . In order to test, at the $\alpha = 0.05$ significance level, the hypothesis $H_0: \mu_1 = \mu_2 = \mu_3$ against all possible alternative hypotheses, we take an independent random sample of size 4 from each of these distributions. Determine whether we reject or fail to reject H_0 if the observed values from these three distributions are, respectively:

X1	5	9	6	8
X2	11	13	10	12
Х3	10	6	9	9

- 4. Let $X_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}$ denote independently normally distributed random variables, where $\epsilon_{ij} \sim N(0, \sigma^2)$; i = 1, 2, ..., a and j = 1, 2, ..., b. Show that the maximum likelihood estimator of α_i , β_j , and μ are $\hat{\alpha}_i = \bar{X}_i \bar{X}_i$, $\hat{\beta}_j = \bar{X}_j \bar{X}_j$, and $\hat{\mu} = \bar{X}_j$, respectively.
- 5. Solve the following using either R or SAS: Given the following observations in a two-way classification with $a=3,\ b=4,$ and c=2, compute the F-statistics used to test that all interactions are equal to zero $(\gamma_{ij}=0)$, all column means are equal $(\beta_j=0)$, and all row means are equal $(\alpha_i=0)$, respectively.

		Column			
		1	2	3	4
	1	3.1	4.2	2.7	4.9
		2.9	4.9	3.2	4.5
Row	2	2.7	2.9	1.8	3.0
		2.9	2.3	2.4	3.7
	3	4.0	4.6	3.0	3.9
		4.4	5.0	2.5	4.2