Metody numeryczne

Projekt 3

Porównanie metody Gaussa-Seidela z metodą Jacobiego.

1. Dokładność obliczeń a liczba iteracji.

Tab. 1. Wpływ zadanej dokładności na liczbe iteracji

rabi ii w piyw Zadanej doktadności na tieżbę keracji.								
3	1,00E-01	1,00E-02	1,00E-03	1,00E-04	1,00E-05	1,00E-06	1,00E-07	1,00E-08
Gauss-Seidel	5	6	7	9	10	11	12	14
Jacobi	10	13	17	19	23	28	29	32

ε	1,00E-09	1,00E-10	1,00E-11	1,00E-12	1,00E-13	1,00E-14	1,00E-15	1,00E-016
Gauss-Seidel	15	16	18	19	20	21	22	22
Jacobi	35	39	41	45	48	50	52	52

Wyk. 1. Wpływ zadanej dokładności na liczbę iteracji.

W przypadku obu algorytmów liczba iteracji jest zależna od żądanej dokładności. Jest to spowodowane potrzebą przeprowadzenia większej liczby iteracji w celu uzyskania większej dokładności. Liczba potrzebnych iteracji rośnie szybciej dla metody Jacobiego.

2. Ilość równań a liczba iteracji.

Tab. 2. Wpływ liczby równań na liczbe iteracii

equations	5	10	20	50	100	200	300	400
Gauss-Seidel	2	3	3	5	6	2	2	2
Jacobi	2	3	4	8	17	2	2	2

Na wykresie możemy zaobserwować, że liczba równań nie wpływa na liczbę iteracji. Zaobserwowana anomalia przy układzie 100. równań wynika najprawdopodobniej z powodu wygenerowania "trudnego" układu powodując jednocześnie, że liczba iteracji wzrosła.

3. Liczba równań a czas obliczeń.

Tab. 3. Wpływ liczby równań na długość obliczeń.

equations	5	10	20	50	100	200	300	400
Gauss-Seidel	0,003274	0,006727	0,031904	0,097829	0,503095	3,373842	11,466636	26,475022
Jacobi	0,000701	0,003281	0,005786	0,057467	0,445189	3,146060	11,079280	26,065771

Wyk. 3. Wpływ liczby równań na czas wykonywania obliczeń. 30,00 **Gauss-Seidel** 25,00 Jacobi 20,00 15,00 10,00 5,00 0,00 100 5 Ó 20 SO 300

Liczba równań nabiera znaczenia przy dużych układach równań, gdzie zaczyna znacznie wpływać na czas wykonywania obliczeń. Jest to spowodowane faktem, że z każdym równaniem mnoży się ilość operacji co skutkuje wolniejszymi obliczeniami.

równania