Ciência da Computação

GRAFOS

Aula 03 Representações de Grafos

Max Pereira

A maior vantagem de um grafo é a sua **representação visual da informação**. Mas para a <u>manipulação</u> e <u>armazenamento</u> em um **computador**, essa informação tem que ser representada de outras maneiras.

Listas de arestas

Uma maneira simples de representar um grafo é utilizar uma <u>lista de arestas</u>. Para representar uma aresta precisamos de um vetor contendo dois vértices.

А	В		
Α	С		
Α	D		
В	С		
В	D		
С	D		

Importante!

Listas de arestas são simples, mas se precisamos encontrar uma determinada aresta, devemos percorrer toda a lista.

[[A,B], [A,C], [A,D], [B,C], [B,D], [C,D]]

Lista de arestas

Representação de um grafo <u>orientado</u>.

2	3		
2	4		
3	2		
3	4		
4	5		
5	1		
5	2		

[[2,3], [2,4], [3,2], [3,4], [4,5], [5,1], [5,2]]

Lista de arestas

Representação de um multigrafo.

А	Α		
Α	В		
Α	В		
В	O		
В	U		
В	D		
В	D		
D	D		

Podemos acrescentar um <u>terceiro</u> elemento no vetor ou mais informação ao objeto!

Α	Α	1	
Α	В	2	
В	С	2	
В	D	2	
D	D	1	

[[A,A], [A,B], [A,B], [B,C], [B,C], [B,D], [B,D], [D,D]]

Quantidade de arestas

da aresta

Grafo Valorado ou Ponderado

Um grafo é dito valorado quando um número real é associado aos seus

vértices e/ou arestas (peso da ligação).

[[A,B,7], [A,D,5], [B,C,8], [B,D,9], [B,E,7], [C,E,5]...]

Α	В	7	l
Α	D	5	
В	С	8	
В	D	9	Valor
В	Ε	7	
С	Ε	5	
D	Е	15	
D	F	6	
Е	F	8	
E	G	9	
F	G	11	

Matriz de Adjacência

Para um grafo com |V| vértices, uma matriz de adjacência é uma matriz $|V| \times |V|$ de 0s (zeros) e 1s (uns), onde a entrada na linha i e coluna j será 1 se e somente se a aresta (i, j) estiver no grafo.

Matriz de Adjacência

Com uma matriz de adjacência, podemos descobrir se uma aresta está presente no grafo, apenas procurando pela **entrada correspondente na matriz**. Por exemplo, se a matriz for denominada M1 podemos verificar se a aresta (i, j) está presente no grafo apenas procurando por M1[i] [j].

Desvantagens:

- Precisamos de $|V|^2$ de <u>espaço para armazenar</u> a matriz.
- Se precisarmos saber quais vértices são adjacentes a um determinado vértice i, será necessário percorrer todas as entradas da linha i, mesmo que um número pequeno de vértices seja adjacente ao vértice i.

Matriz de Adjacência

Representação para um grafo orientado.

Matriz de Adjacência

Representação para um multigrafo.

Matriz de Adjacência

Representação para um grafo valorado.

Matriz de Adjacência

Representação para um grafo valorado.

$$A = \left(\begin{array}{c} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right)$$

$$A = \begin{pmatrix} \infty & 2 & \infty & \infty & 1 \\ \infty & \infty & 5 & 1 & 6 \\ \infty & \infty & \infty & \infty & \infty \\ \infty & \infty & 3 & \infty & \infty \\ \infty & \infty & \infty & 1 & \infty \end{pmatrix}$$

 ∞ - representa um valor muito alto.

Matriz de Adjacência

Análise de grafos valorados.

Os grafos *G* e *H* possuem a mesma matriz de adjacência e, de certa forma, os grafos possuem o <u>mesmo comportamento</u>. Por exemplo, o fluxo de tráfego na internet (ou mesmo tráfego em rodovias).

Listas de Adjacência

Quando representamos um grafo com listas de adjacência, estamos combinando matrizes de adjacência com listas de arestas. Para cada vértice *i*, precisamos armazenar um **vetor de vértices** adjacentes a ele.

Tipicamente temos um vetor de tamanho |V| de **listas de adjacência**, uma lista

de adjacência por vértice.

В

Listas de Adjacência

Um vetor de tamanho |V| de **listas de adjacência**, uma lista de adjacência por

vértice.


```
[ [1, 2, 4],
[1, 3],
[2, 4, 4],
[1, 3, 3] ]
```


Listas de Adjacência

Um vetor de tamanho |V| de **listas de adjacência**, uma lista de adjacência por vértice.

Matriz de Incidência

Seja G um grafo simples com n vértices e m arestas. A matriz de incidência A de G é uma matriz $n \times m$: $A = [a_{ij}]$ onde as n linhas correspondem aos n vértices e as m colunas correspondem as m arestas, tal que:

$$a_{ij} = \begin{cases} 1, se \ a \ j_{\acute{e}sima} \ aresta \ e_j \ for \ incidente \ ao \ i_{\acute{e}simo} \ v\'{e}rtice \\ 0, \quad caso \ contr\'{a}rio \end{cases}$$

Matriz de Incidência

Representação para um multigrafo com laço.

Matriz de Incidência

	a	b	c	d	e	f
1	0	1	0	0	1	0
2	1	0	1	1	1	0
3	0	0	1	1	0	0
4	1	1	0	0	0	f 0 0 0 2

É possível utilizar esta estrutura para armazenar dígrafos?

Sim. Uma vez que ao dizer que uma **aresta incide em um vértice** é necessário especificar se ela <u>converge para</u> ou <u>diverge do</u> vértice.

Seja D um dígrafo com n vértices e m arestas. Sua matriz de incidência $A = [a_{ij}]$ é definida como:

$$a_{ij} = \begin{cases} 1, se \ a \ aresta \ e_j \ diverge \ do \ vertice \ v_i \\ -1, se \ a \ aresta \ e_j \ converge \ para \ o \ v\'ertice \ v_i \\ 0, caso \ contr\'ario \end{cases}$$

Matriz de incidência para grafos <u>orientados</u> (dígrafos).

$$a_{ij} = \begin{cases} 1, se \ a \ aresta \ e_j \ diverge \ do \ vertice \ v_i \\ -1, se \ a \ aresta \ e_j \ converge \ para \ o \ v\'ertice \ v_i \\ 0, caso \ contr\'ario \end{cases}$$

Trabalho 1

Implementar as seguintes representações de grafos:

- Listas de arestas
- Listas de adjacência
- Matriz de adjacência
- Matriz de incidência

Entrada:

- ✓ Tipo de grafo: não-orientado ou orientado
- ✓ Valorado (s/n) somente arestas
- ✓ Conjunto V
- ✓ Conjunto E

Saída:

✓ As três formas de representação