1. Import neccessery libraries

```
In [13]: import numpy as np
   import pandas as pd
   from sklearn import preprocessing
   from sklearn import metrics
   import seaborn as sns
   from sklearn.svm import SVC
   from sklearn.model_selection import train_test_split
   from matplotlib import pyplot as plt
   from sklearn.decomposition import PCA
   from mlxtend.plotting import plot_decision_regions
   import warnings
```

Problem

Classify the SizeCategorie using SVM

2. Import data

```
In [3]: fire_data = pd.read_csv('forestfires.csv')
Out[3]:
```

	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	 monthfeb	monthjan
0	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	 0	0
1	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	 0	0
2	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	 0	0
3	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	 0	0
4	mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	 0	0
512	aug	sun	81.6	56.7	665.6	1.9	27.8	32	2.7	0.0	 0	0
513	aug	sun	81.6	56.7	665.6	1.9	21.9	71	5.8	0.0	 0	0
514	aug	sun	81.6	56.7	665.6	1.9	21.2	70	6.7	0.0	 0	0
515	aug	sat	94.4	146.0	614.7	11.3	25.6	42	4.0	0.0	 0	0
516	nov	tue	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0	 0	0

517 rows × 31 columns

Data understanding

Out[5]: month object day object FFMC float64 DMC float64 DC float64 ISI float64 temp float64 RH int64 float64 wind rain float64 area float64 dayfri int64 daymon int64 daysat int64 daysun int64 daythu int64 int64 daytue int64 daywed monthapr int64 monthaug int64 int64 monthdec monthfeb int64 monthjan int64 monthjul int64 monthjun int64 int64 monthmar monthmay int64 int64 monthnov int64 monthoct monthsep int64 size_category object dtype: object Out[7]:

	count	mean	std	min	25%	50%	75%	max
FFMC	517.0	90.644681	5.520111	18.7	90.2	91.60	92.90	96.20
DMC	517.0	110.872340	64.046482	1.1	68.6	108.30	142.40	291.30
DC	517.0	547.940039	248.066192	7.9	437.7	664.20	713.90	860.60
ISI	517.0	9.021663	4.559477	0.0	6.5	8.40	10.80	56.10
temp	517.0	18.889168	5.806625	2.2	15.5	19.30	22.80	33.30
RH	517.0	44.288201	16.317469	15.0	33.0	42.00	53.00	100.00
wind	517.0	4.017602	1.791653	0.4	2.7	4.00	4.90	9.40
rain	517.0	0.021663	0.295959	0.0	0.0	0.00	0.00	6.40
area	517.0	12.847292	63.655818	0.0	0.0	0.52	6.57	1090.84

In [8]:

Out[8]:

```
month 0 day 0 FFMC 0 DMC 0 DC 0 ISI 0 temp 0 RH 0
```

Finding Correlation

```
In [9]:
In [10]: plt.figure(figsize=(10,10))
Out[10]: <AxesSubplot:>
                                                                                                         - 1.0
                            0.38
                                     0.33
                                                               -0.3
                                                                      -0.028
                                                                                        0.04
                                                                                                        - 0.8
                                                                       -0.11
                                     0.68
                                                              0.074
                                                                               0.075
                             1
                                                                                                        - 0.6
                                             0.23
                                                              -0.039
                                                                       -0.2
                                                                               0.036
                                                                                        0.049
                            0.68
                                      1
                            0.31
                                     0.23
                                                              -0.13
                                                                       0.11
                                                                               0.068
                                                                                       0.0083
              S
                                                                                                        - 0.4
                                             0.39
                                                              -0.53
                                                                       -0.23
                                                                               0.069
                                                                                        0.098
                                                                                                        - 0.2
                    -0.3
                            0.074
                                    -0.039
                                             -0.13
                                                      -0.53
                                                                       0.069
                                                                                        -0.076
                                                                                                        - 0.0
                                             0.11
                   -0.028
                            -0.11
                                     -0.2
                                                      -0.23
                                                              0.069
                                                                               0.061
                                                                                        0.012
                                                                                                        - -0.2
                   0.057
                            0.075
                                             0.068
                                                      0.069
                                                               0.1
                                                                       0.061
                                                                                       -0.0074
                                                                                 1
                                                                                                        - -0.4
                    0.04
                            0.073
                                    0.049
                                            0.0083
                                                      0.098
                                                              -0.076
                                                                       0.012
                                                                              -0.0074
                                                                                          1
```

ĸН

wind

rain

area

Outlier Check

FFMC

DMC

ĎС

ıśı

temp

There are 3 Outlier instances in our data

```
In [17]: plt.figure(figsize=(16,5))
           print("Skew: {}".format(fire data['area'].skew()))
           print("Kurtosis: {}".format(fire_data['area'].kurtosis()))
           ax = sns.kdeplot(fire data['area'], shade=True, color='g')
           plt.xticks([i for i in range(0,1200,50)])
           Skew: 12.846933533934868
           Kurtosis: 194.1407210942299
             0.0175
             0.0150
             0.0125
            0.0100
             0.0075
             0.0050
             0.0025
             0.0000
                            100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 area
```

The Data is highly skewed and has large kurtosis value

Majority of the forest fires do not cover a large area, most of the damaged area is under 100 hectares of land

```
In [18]: dfa = fire_data[fire_data.columns[0:10]]
    month_colum = dfa.select_dtypes(include='object').columns.tolist()

In [19]: plt.figure(figsize=(16,10))
    for i,col in enumerate(month_colum,1):
        plt.subplot(2,2,i)
```


Majority of the fire accors in the month Aug and Sep

For Days Sun and Fri have recoreded the most cases

```
In [20]: num_columns = dfa.select_dtypes(exclude='object').columns.tolist()
```

```
In [21]: plt.figure(figsize=(18,40))
             for i, col in enumerate(num columns, 1):
                   plt.subplot(8,4,i)
                   sns.kdeplot(fire data[col],color='r',shade=True)
                   plt.subplot(8,4,i+10)
                   fire_data[col].plot.box()
             plt.tight_layout()
             plt.show()
             num data = fire data[num columns]
             pd.DataFrame(data=[num_data.skew(),num_data.kurtosis()],index=['skewnes
               0.14
                                       0.006
                                                                                          0.10
               0.12
                                       0.005
                                                                0.0020
               0.10
                                                                                          0.08
                                      0.004
0.004
                                                              0.0015
                                                                                         Density
0.06
                                       0.003
                                                                0.0010
                                                                                          0.04
                                       0.002
               0.04
                                                                0.0009
                                                                                          0.02
               0.02
                                       0.001
                                                 100
DMC
                                                                            400
DC
                                                                0.200
               0.07
                                       0.025
                                                                0.175
               0.06
                                       0.020
                                                                0.150
                                      Q.015
                                                               0.100
               0.03
                                       0.010
                                                                0.075
               0.02
                                                                0.050
                                       0.005
               0.01
                                                                0.025
                                                                 100
                                                                           =
                                                                                          250
```

Out[21]:

EEMC DMC DC ISI toma DU wind

3. SVM

```
In [23]: X = fire_data.iloc[:,2:30]
In [24]:
In [25]:
In [26]: x_train,x_test,y_train,y_test = train_test_split(X,y,test_size = 0.20,
```

3.1 Linear

```
In [27]: model_linear = SVC(kernel = "linear")
model_linear.fit(x_train,y_train)
pred_test_linear = model_linear.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_linear))
```

Accuracy: 0.9807692307692307

3.2 Poly

```
In [28]: model_poly = SVC(kernel = "poly")
model_poly.fit(x_train,y_train)
pred_test_poly = model_poly.predict(x_test)
```

Accuracy: 0.7403846153846154

3.3 RBF

```
In [29]: model_rbf = SVC(kernel = "rbf")
model_rbf.fit(x_train, y_train)
pred_test_rbf = model_rbf.predict(x_test)
```

Accuracy: 0.7403846153846154

3.4 Sigmoid

```
In [30]: model_sigmoid = SVC(kernel = "sigmoid")
    model_sigmoid.fit(x_train,y_train)
    pred_test_sigmoid = model_sigmoid.predict(x_test)
    print("Accuracy:",metrics.accuracy_score(y_test, pred_test_sigmoid))
```

Accuracy: 0.6346153846153846

4 - Conclusion

Linear Model gives the best accuracy

Below is an exmaple on how we can plot the data. I used PCA to select only 2 variables

