

Calculus & Analytical Geometry MATH- 101

Instructor: Dr. Naila Amir (SEECS, NUST)

Combining Functions

- There exist different ways to combine functions to make new functions:
 - Arithmetic Combinations of Functions that includes Sums, Differences, Products and Quotients.
 - Composition of Functions.

Arithmetic Combinations of Functions

 Two functions f and g can be combined to form new functions

$$f + g$$
, $f - g$, fg , f/g

in a manner similar to the way we add, subtract, multiply, and divide real numbers.

Algebra of Functions

- Let f and g be functions with domains A and B.
- Then, the functions f + g, f g, fg, and f/g are defined as follows.

1.
$$(f + g)(x) = f(x) + g(x)$$

2.
$$(f - g)(x) = f(x) - g(x)$$

Domain
$$A \cap B$$

Domain $A \cap B$

$$3. (fg)(x) = f(x)g(x)$$

$$4. \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Note: Determine domain on the basis of the final form of the function.

Composite Function

Composition of Functions

- Now, let's consider a very important way of combining two functions to get a new function.
 - Suppose $f(x) = \sqrt{x}$ and $g(x) = x^2 + 1$.
 - We may define a function h as:

$$h(x) = (f \circ g)(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}.$$

- The function h is made up of the functions f and g in an interesting way: Given a number x, we first apply to it the function g, then apply f to the result.

Composition of Functions

- In general, given any two functions f and g, we start with a number x in the domain of g and find its image g(x). If this number g(x) is in the domain of f, we can then calculate the value of f(g(x)).
- The result is a new function h(x) = f(g(x)) obtained by substituting g into f. It is called the composition (or composite) of f and g and is denoted by $f \circ g$ ("f composed with g").
- The domain of $f \circ g$ is the set of all x in the domain of g such that g(x) is in the domain of f. In other words, $(f \circ g)(x)$ is defined whenever both g(x) and f(g(x)) are defined.

Example: Composition of Functions

Let
$$f(x) = x^2$$
 and $g(x) = x - 3$.

- (a) Find the functions $f \circ g$ and $g \circ f$ and their domains.
- (b) Find $(f \circ g)(5)$ and $(g \circ f)(7)$.

Solution:

(a) We have:

$$(f \circ g)(x) = f(g(x)) = f(x-3) = (x-3)^2$$

and

$$(g \circ f)(x) = g(f(x)) = g(x^2) = x^2 - 3.$$

The domains of both $f \circ g$ and $g \circ f$ are \mathbb{R} .

(b) We have:

$$(f \circ g)(5) = f(g(5)) = f(2) = 22 = 4$$

 $(g \circ f)(7) = g(f(7)) = g(49) = 49 - 3 = 46$

Example: Composition of Functions

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$, find the following functions and their domains.

- (a) $f \circ g$
- (b) $g \circ f$
- (c) $f \circ f$
- (d) $g \circ g$

Solution:

(a)
$$(f \circ g)(x) = f(g(x)) = f(\sqrt{2-x}) = \sqrt{\sqrt{2-x}} = \sqrt[4]{2-x}$$

The domain of $f \circ g$ is:

$${x \mid 2-x \geq 0} = {x \mid x \leq 2} = (-\infty, 2].$$

(b)
$$(g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = \sqrt{2 - \sqrt{x}}$$

For \sqrt{x} to be defined, we must have $x \ge 0$. For $\sqrt{2-\sqrt{x}}$ to be defined, we must have $2-\sqrt{x} \ge 0$, that is $\sqrt{x} \le 2$, or $x \le 4$. Thus, we have: $0 \le x \le 4$. So, the domain of $g \circ f$ is the closed interval [0,4].

Properties of Composite functions

- The composition of two even functions is even, and the composition of two odd functions is odd.
- The composition of an even function and an odd function is even.
- The function composition of one-to-one function is always one to one.
- The function composition of two onto function is always onto.
- The inverse of the composition of two functions f and g is equal to the composition of the inverse of both the functions, such as:

$$(f \circ g)^{-1} = (g^{-1} \circ f^{-1}).$$

Limits

When does a limit exist?

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

Chapter: 2

• Sections: 2.1

- An Introduction To Limits
- Laws for Calculating Limits
- One-Sided Limits
- Limits Involving Infinity

Approaching ...

Sometimes we can't work something out directly ... but we can see what it should be as we get closer and closer!

The function:
$$f(x) = \frac{x^2 - 4}{x - 2}$$

$$4$$

$$-2$$

$$f(x) = \frac{x^2 - 4}{x^2 - 4}$$

is not defined at x = 2, so its graph has a "hole" at x = 2.

Values of

$$f(x) = \frac{x^2 - 4}{x - 2}$$

may be computed near x = 2.

Х	1.9	1.99	1.999→	←2.001	2.01	2.1
f(x)	3.9	3.99	3.999→	← 4.001	4.01	4.1

f(x) approaches 4

The values of f(x) get closer and closer to 4 as x gets closer and closer to 2.

We say that

"the limit of
$$\frac{x^2-4}{x-2}$$
 as x approaches 2 equals 4"

and write

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$$

Test Both Sides!

It is like running up a hill and then finding the path is magically "not there"...

... but if we only check one side, who knows what happens?

So we need to test it **from both directions** to be sure where it "should be"!

Limits:

- **Limit of a function** is a fundamental concept in calculus concerning the behavior of that **function** near a particular input.
- ❖It is fundamental to finding the tangent to a curve or the velocity of an object.
- We use limits to describe the way a function f(x) varies. Some functions vary continuously; small changes in x produce only small changes in f(x). Other functions can have values that jump or vary erratically.
- ❖ The notion of limit gives a precise way to distinguish between these behaviors.
- The geometric application of using limits to define the tangent to a curve leads at once to the important concept of the derivative of a function which quantifies the way a function's values change.

Limit of a Function:

Let f be a function and let a and b be real numbers. b is the limit of f(x) as x approaches a, written

$$\lim_{x\to a} f(x) = L,$$

if the following conditions are met.

- 1. As x assumes values closer and closer (but not equal) to a on both sides of a, the corresponding values of f(x) get closer and closer (and are perhaps equal) to L.
- 2. The value of f(x) can be made as close to L as desired by taking values of x arbitrarily close to a.

Finding the Limit of a Polynomial Function

Example: Find $\lim_{x \to 1} (x^2 - 3x + 4)$.

Solution: The behavior of

$$f(x) = x^2 - 3x + 4$$

near x = 1 can be determined from a table of values,

As x approaches 1

х	.9	.99	.999→	←1.001	1.01	1.1
f(x)	2.11	2.0101	2.001→	← 1.999	1.9901	1.91

f(x) approaches 2

Alternatively: from a graph of f(x).

We see that

$$\lim_{x\to 1} (x^2 - 3x + 4) = 2.$$

Example: Find $\lim_{x\to 3} f(x)$ where

$$f(x) = \begin{cases} 2x+1 & \text{if } x \le 3\\ 4x-5 & \text{if } x > 3 \end{cases}.$$

Solution:

As x approaches 3

Х	2.9	2.99	2.999→	←3.001	3.01	3.1
f(x)	6.8	6.98	6.998→	←7.004	7.04	7.4

f(x) approaches 7

Therefore,

$$\lim_{x\to 3} f(x) = 7.$$

Limits that do not exist

If there is no single value that is approached by f(x) as x approaches a, we say that f(x) does not have a limit as x approaches a,

or
$$\lim_{x\to a} f(x)$$
 does not exist.

Determining whether a limit exists

Example: Find $\lim_{x\to 2} f(x)$ where

$$f(x) = \begin{cases} 4x - 5 & \text{if } x \le 2 \\ 3x - 5 & \text{if } x > 2 \end{cases}.$$

Solution: Construct a table

X	1.9	1.99	1.999→	←2.001	2.01	2.1
f(x)	2.6	2.96	2.996 →	← 1.003	1.03	1.3

Solution:

f(x) approaches 3 as x gets closer to 2 from the left,

but

f(x) approaches 1 as x gets closer to 2 from the right.

Therefore, $\lim_{x\to 2} f(x)$ does not exist.

Example: Find $\lim_{x\to 0} f(x)$ where

$$f(x) = \frac{1}{x^2}.$$

Solution: Construct a table and graph

X	1	01	001→
f(x)	100	10,000	1,000,000→
X	←.001	.01	.1
f(x)	←1,000,000	10,000	100

Solution:

As x approaches 0, the corresponding values of f(x) grow arbitrarily large. Therefore,

$$\lim_{x\to 0} \frac{1}{x^2}$$
 does not exist.

Conditions under which $\lim_{x\to a} f(x)$ fails to exist:

- 1. f(x) approaches a number L as x approaches a from the left and f(x) approaches a different number M as x approaches a from the right.
- 2. f(x) becomes infinitely large in absolute value as x approaches a from either side.
- 3. f(x) oscillates infinitely many times between two fixed values as x approaches a.

Example: A Function May Fail to Have a Limit at a Point in Its Domain

Discuss the behavior of the following functions as $x \to 0$.

(a)
$$U(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

(b)
$$g(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

(c)
$$f(x) = \begin{cases} 0, & x \le 0 \\ \sin \frac{1}{x}, & x > 0 \end{cases}$$

Solution: A Function May Fail to Have a Limit at a Point in Its Domain

(a) It *jumps:* The **unit step function** U(x) = y has no limit as because its values jump at x = 0. For negative values of x arbitrarily close to zero, U(x) = 0. For positive values of x arbitrarily close to zero, U(x) = 1. There is no *single* value L approached by U(x) as $x \to 0$.

Solution: A Function May Fail to Have a Limit at a Point in Its Domain

(b) It grows too large to have a limit: g(x) = y has no limit $x \to 0$ as because the values of g grow arbitrarily large in absolute value as $x \to 0$ and do not stay close to any real number.

Solution: A Function May Fail to Have a Limit at a Point in Its Domain

(c) It oscillates too much to have a limit: f(x) = y has no limit as $x \to 0$ because the function's values oscillate between +1 and -1 in every open interval containing 0. The values do not stay close to any one number as $x \to 0$.

