Detecting Exoplanets and recovering Parameters

A short recap of my work in week 5/6

The derivatives $\frac{\partial h_{\alpha}}{\partial \lambda_i}$ look good, compare the analytic derivatives of the exoplanet par's (above) with the numerical derivatives of the position par's (below) – same structure: envelope * oscillating function

Numerical difficulties in the integration come from the product $\frac{\partial h_{\alpha}}{\partial \lambda_{i}}(t) \frac{\partial h_{\alpha}}{\partial \lambda_{j}}(t)$:

For amplitudes of $\frac{\partial h_{\alpha}}{\partial \lambda_i} \sim O(10^{-20})$ we get time dependant amplitudes $(\frac{\partial h_{\alpha}}{\partial \lambda_i})^2 \sim O(10^{-40})$ and this will strongly hinder the integration! (Machine epsilon for doubles: 2e-16)

A new problem has approached

We compute a 9x9 symmetric matrix $\Gamma_{ij} \propto \left[\int_0^{T_0} dt \, \frac{\partial h_{\alpha}}{\partial \lambda_i}(t) \, \frac{\partial h_{\alpha}}{\partial \lambda_j}(t) \right]_{ij}$

We know, diagonal elements Γ_{ii} will be in phase, so the integrand will go like $A^2\sin^2\omega t$ and we find for diagonal elements a result which goes roughly like $\Gamma_{ii} \propto \frac{1}{2} \int_0^{T_0} A^2(t) dt + O\left(\frac{A_0}{4\omega}\right) \approx \frac{1}{2} A_0^2 T_0 > 0$ with A_0 some representative value of the amplitude

A new problem has approached

We compute a 9x9 symmetric matrix $\Gamma_{ij} \propto \left[\int_0^{T_0} dt \, \frac{\partial h_{\alpha}}{\partial \lambda_i}(t) \, \frac{\partial h_{\alpha}}{\partial \lambda_j}(t) \right]_{ij}$

On the other hand, off-diagonal elements will go as

 $A_i A_j \sin \omega_i t \sin \omega_j t = \frac{A_i A_j}{2} (\cos(\omega_i - \omega_j) t \cos(\omega_i + \omega_j) t)$ and if they are uncorrelated, we'll find over long observations $\Gamma_{i,i} \approx 0$

Question: What does close to zero mean for $\frac{1}{2}A_0^2T_0 \sim O(10^{-40+7})$? Where do we make the cut?

A short recap on numerical integration

scipy.integrate calls QUADPACK from Fortran and then using a Clenshaw-Curtis method which uses Chebyshev moments computes the integral

Two parameters we can play with: epsabs and epsrel

The numerical integral result is returned if for the actual integral i abs(i-result) <= max(epsabs, epsrel*abs(i))

Which can be estimated analytically

My trick for quicker computations: Set epsrel at 1.49e-2 and then set epsabs for off-diagonal integrals as multiple of geometric mean $\sqrt{\Gamma_{ii} \times \Gamma_{jj}} \times 1.49e-3 -> don't waste time on irrelevant integrals$

Findings

Looking at the correlation matrix for the 9 parameters of interest:

I again used the same position as Cutler, $f_0 = 10$ mHz and P = 2 yr

We can easily discard the f_0 fit, as the determination of the GW frequency isn't very problematic

Findings

Looking at the correlation matrix for the 8 parameters of interest:

I again used the same position as Cutler, $f_0 = 10$ mHz and P = 2 yr

After killing f_0 :

An argument can also be made to discard the φ_S fit

 $log_{10}(Correlation matrix \times SNR^2 \times (M_P/M_I)^2)$


```
(np.sqrt(3)*(-(np.cos(self.theta L)*np.cos(self.phi S Ec)*np.sin(self.theta S Ec)) + np.cos(self.theta S Ec)*np.cos(self.phi L)*np.sin(self.theta L))*np.sin(t*omega E))/2.,
np.cos(self.theta_L)/2. - (np.sqrt(3)*np.cos(self.phi_L - t*omega_E)*np.sin(self.theta_L))/2.
(np.cos(self.theta_S_Ec)/2. - (np.sqrt(3)*np.cos(self.phi_S_Ec - t*omega_E)*np.sin(self.theta_S_Ec))/2.)*(np.cos(self.theta_S_Ec)*np.cos(self.theta_L) + np.cos(self.phi_S_Ec - self.phi_L)*np.sin(self.theta_S_Ec)
np.sin(2*(t*omega_E + ArcTan(-2*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec),np.sqrt(3)*np.cos(self.theta_S_Ec) + np.cos(self.phi_S_Ec - t*omega_E)*np.sin(self.theta_S_Ec))))
(1 + (np.cos(self.theta_S_Ec)/2. - (np.sqrt(3)*np.cos(self.phi_S_Ec - t*omega_E)*np.sin(self.theta_S_Ec))/2.**2)*
((-2*np.sin(self.theta_S_Ec)/2. - (np.sqrt(3)*np.cos(self.phi_S_Ec - t*omega_E) - np.sqrt(3)*np.sin(self.theta_S_Ec))*np.sin(self.phi_S_Ec - t*omega_E)/((np.sqrt(3)*np.cos(self.theta_S_Ec))*np.sin(self.theta_S_Ec))*np.sin(self.phi_S_Ec - t*omega_E)**2)
((np.sqrt(3)*np.cos(self.theta_S_Ec) + np.cos(self.phi_S_Ec - t*omega_E)*np.sin(self.theta_S_Ec))**2 + 4*np.sin(self.theta_S_Ec)**2*np.sin(self.phi_S_Ec - t*omega_E)**2)
 (2*np.cos(self.theta_S_Ec)*(-(np.sqrt(3)*np.cos(self.theta_S_Ec)) - np.cos(self.phi_S_Ec - t*omega_E)*np.sin(self.theta_S_Ec))*np.sin(self.phi_S_Ec - t*omega_E))/
((np.sqrt(3)*np.cos(self.theta_S_Ec) + np.cos(self.phi_S_Ec - t*omega_E)*np.sin(self.theta_S_Ec))**2 + 4*np.sin(self.theta_S_Ec)**2*np.sin(self.phi_S_Ec - t*omega_E)**2))*
np.sin(2*ArcTan(-0.5*(np.sin(self.theta_S_Ec)*np.sin(self.theta_L)*np.sin(self.phi_S_Ec - self.phi_L))
(np.sqrt(3)*np.cos(t*omega_E)*(np.cos(self.theta_L)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec) - np.cos(self.theta_S_Ec)*np.sin(self.theta_L)*np.sin(self.theta_L)*np.sin(self.theta_S_Ec) - np.cos(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.s
(np.sqrt(3)*(-(np.cos(self.theta L)*np.cos(self.phi S Ec)*np.sin(self.theta S Ec)) + np.cos(self.theta S Ec)*np.cos(self.theta L)*np.sin(self.theta L))*np.sin(t*omega E))/2.,
np.cos(self.theta L)/2. - (np.sqrt(3)*np.cos(self.phi L - t*omega E)*np.sin(self.theta L))/2.
(np.cos(self.theta_S_Ec)/2. - (np.sqrt(3)*np.cos(self.phi_S_Ec - t*omega_E)*np.sin(self.theta_S_Ec))/2.)*(np.cos(self.theta_S_Ec)*np.cos(self.theta_L) + np.cos(self.phi_S_Ec - self.phi_L)*np.sin(self.theta_S_Ec)
np.sin(2*(t*omega_E + ArcTan(-2*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)))))),
(4.*np.sqrt(self.a0**2*(np.cos(self.theta S Ec)*np.cos(self.theta L) + np.cos(self.phi S Ec - self.phi L)*np.sin(self.theta S Ec)*np.sin(self.theta L))**2*
((np.cos(2*(t*omega E + ArcTan(-2*np.sin(self.theta S Ec)*np.sin(self.theta S Ec)*np.sin(self.theta S Ec)*np.sin(self.theta S Ec))))*
(1 + (np.cos(self.theta_S_Ec)/2. - (np.sqrt(3)*np.cos(self.phi_S_Ec - t*omega_E)*np.sin(self.theta_S_Ec))/2.)**2)*
np.sin(2*ArcTan(-0.5*(np.sin(self.theta_S_Ec)*np.sin(self.theta_L)*np.sin(self.phi_S_Ec - self.phi_L))
(np.sqrt(3)*np.cos(t*omega_E)*(np.cos(self.theta_L)*np.sin(self.theta_S_Ec)*np.sin(self.phi_S_Ec) - np.cos(self.theta_S_Ec)*np.sin(self.theta_L)*np.sin(self.phi_L)))/2. -
(np.sqrt(3)*(-(np.cos(self.theta_L)*np.cos(self.phi_S_Ec)*np.sin(self.theta_S_Ec)) + np.cos(self.theta_S_Ec)*np.cos(self.phi_L)*np.sin(self.theta_L))*np.sin(t*omega_E))/2.,
np.cos(self.theta_L)/2. - (np.sqrt(3)*np.cos(self.phi_L - t*omega_E)*np.sin(self.theta_L))/2.
(np.cos(self.theta_S_Ec)/2. - (np.sqrt(3)*np.cos(self.phi_S_Ec - t*omega_E)*np.sin(self.theta_S_Ec))/2.)*(np.cos(self.theta_S_Ec)*np.cos(self.theta_L) + np.cos(self.phi_S_Ec - self.phi_L)*np.sin(self.theta_S_Ec)
np.cos(2*ArcTan(-0.5*(np.sin(self.theta S Ec)*np.sin(self.theta L)*np.sin(self.phi S Ec - self.phi L))
(np.sqrt(3)*np.cos(t*omega_E)*(np.cos(self.theta_L)*np.sin(self.theta_S_Ec)*np.sin(self.phi_S_Ec) - np.cos(self.theta_S_Ec)*np.sin(self.theta_L)*np.sin(self.phi_L)))/2. -
(np.sqrt(3)*(-(np.cos(self.theta_L)*np.cos(self.phi_S_Ec)*np.sin(self.theta_S_Ec)) + np.cos(self.theta_S_Ec)*np.cos(self.phi_L)*np.sin(self.theta_L))*np.sin(t*omega_E))/2.,
np.cos(self.theta_L)/2. - (np.sqrt(3)*np.cos(self.phi_L - t*omega_E)*np.sin(self.theta_L))/2.
(np.cos(self.theta_S_Ec)/2. - (np.sqrt(3)*np.cos(self.phi_S_Ec - t*omega_E)*np.sin(self.theta_S_Ec))/2.)*(np.cos(self.theta_S_Ec)*np.cos(self.theta_L) + np.cos(self.phi_S_Ec - self.phi_L)*np.sin(self.theta_S_Ec)
(np.cos(self.theta_S_Ec)/2. - (np.sqrt(3)*np.cos(self.phi_S_Ec - t*omega_E)*np.sin(self.theta_S_Ec))/2.)*
(np.sin(2*(t*omega_E + ArcTan(-2*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)))))**2 + (self.a0**2*(1 + (np.cos(self.theta_S_Ec)*np.cos(self.theta_L) + np.cos(self.theta_L) + np.cos(self.theta_S_Ec)*np.sin(self.theta_L) * np.cos(self.theta_L) * np.c
((np.cos(2*ArcTan(-0.5*(np.sin(self.theta_S_Ec)*np.sin(self.theta_L)*np.sin(self.phi_S_Ec - self.phi_L))
(np.sqrt(3)*np.cos(t*omega_E)*(np.cos(self.theta_L)*np.sin(self.theta_S_Ec)*np.sin(self.phi_S_Ec) - np.cos(self.theta_S_Ec)*np.sin(self.theta_L)*np.sin(self.phi_L)))/2. -
(np.sqrt(3)*(-(np.cos(self.theta_L)*np.cos(self.phi_S_Ec)*np.sin(self.theta_S_Ec)) + np.cos(self.theta_S_Ec)*np.cos(self.theta_L)*np.sin(self.theta_L))*np.sin(t*omega_E))/2.,
np.cos(self.theta_L)/2. - (np.sqrt(3)*np.cos(self.phi_L - t*omega_E)*np.sin(self.theta_L))/2.
(np.cos(self.theta S Ec)/2. - (np.sqrt(3)*np.cos(self.phi S Ec - t*omega E)*np.sin(self.theta S Ec))/2.)*(np.cos(self.theta S Ec)*np.cos(self.theta L) + np.cos(self.phi S Ec - self.phi L)*np.sin(self.theta S Ec)
np.cos(2*(t*omega E + ArcTan(-2*np.sin(self.theta S Ec)*np.sin(self.theta S Ec)*np.sin(self.theta S Ec),np.sqrt(3)*np.cos(self.theta S Ec) + np.cos(self.phi S Ec - t*omega E)*np.sin(self.theta S Ec))))*
(1 + (np.cos(self.theta_S_Ec)/2. - (np.sqrt(3)*np.cos(self.phi_S_Ec - t*omega_E)*np.sin(self.theta_S_Ec))/2.)**2))/2.
(np.cos(self.theta_S_Ec)/2. - (np.sqrt(3)*np.cos(self.phi_S_Ec - t*omega_E)*np.sin(self.theta_S_Ec))/2.)
np.sin(2*ArcTan(-0.5*(np.sin(self.theta_S_Ec)*np.sin(self.theta_L)*np.sin(self.phi_S_Ec - self.phi_L))
(np.sqrt(3)*np.cos(t*omega E)*(np.cos(self.theta L)*np.sin(self.theta S Ec)*np.sin(self.theta S Ec)*np.sin(self.theta S Ec)*np.sin(self.theta S Ec)*np.sin(self.theta S Ec)*np.sin(self.theta L)*np.sin(self.theta L)*np.sin(self.theta S Ec)*np.sin(self.theta S Ec)*np.sin(s
(np.sqrt(3)*(-(np.cos(self.theta_L)*np.cos(self.phi_S_Ec)*np.sin(self.theta_S_Ec)) + np.cos(self.theta_S_Ec)*np.cos(self.phi_L)*np.sin(self.theta_L))*np.sin(t*omega_E))/2.,
np.cos(self.theta_L)/2. - (np.sqrt(3)*np.cos(self.phi_L - t*omega_E)*np.sin(self.theta_L))/2.
(np.cos(self.theta_S_Ec)/2. - (np.sqrt(3)*np.cos(self.phi_S_Ec - t*omega_E)*np.sin(self.theta_S_Ec))/2.)*(np.cos(self.theta_S_Ec)*np.cos(self.theta_L) + np.cos(self.phi_S_Ec - self.phi_L)*np.sin(self.theta_S_Ec)
np.sin(2*(t*omega_E + ArcTan(-2*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec))))**2)/4.))
(np.sqrt(3)*np.sqrt(self.a0**2*(np.cos(self.theta_S_Ec)*np.cos(self.theta_L) + np.cos(self.phi_S_Ec - self.phi_L)*np.sin(self.theta_S_Ec)*np.sin(self.theta_L)**2*
((np.cos(2*(t*omega_E + ArcTan(-2*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec)*np.sin(self.theta_S_Ec))))*
(1 + (np.cos(self.theta S Ec)/2. - (np.sqrt(3)*np.cos(self.phi S Ec - t*omega E)*np.sin(self.theta S Ec))/2.)**2)*
np.sin(2*ArcTan(-0.5*(np.sin(self.theta S Ec)*np.sin(self.theta L)*np.sin(self.phi S Ec - self.phi L))
(np.sqrt(3)*np.cos(t*omega E)*(np.cos(self.theta L)*np.sin(self.theta S Ec)*np.sin(self.theta S Ec) - np.cos(self.theta S Ec)*np.sin(self.theta L)*np.sin(self.theta L)*np.sin(self.theta L)*np.sin(self.theta S Ec)*np.sin(self.theta S Ec)*np.sin(se
(np.sqrt(3)*(-(np.cos(self.theta_L)*np.cos(self.phi_S_Ec)*np.sin(self.theta_S_Ec)) + np.cos(self.theta_S_Ec)*np.cos(self.theta_L)*np.sin(self.theta_L))*np.sin(t*omega_E))/2.,
np.cos(self.theta_L)/2. - (np.sqrt(3)*np.cos(self.phi_L - t*omega_E)*np.sin(self.theta_L))/2.
(np.cos(self.theta S Ec)/2. - (np.sqrt(3)*np.cos(self.phi S Ec - t*omega E)*np.sin(self.theta S Ec))/2.)*(np.cos(self.theta S Ec)*np.cos(self.theta L) + np.cos(self.phi S Ec - self.phi L)*np.sin(self.theta S Ec)
np.cos(2*ArcTan(-0.5*(np.sin(self.theta S_Ec)*np.sin(self.theta_L)*np.sin(self.phi S_Ec - self.phi L))
```

Note that the analytic derivative does exist, but it is a) too long for pretty code – you see a snippet of the 657 lines of terms for $\frac{\partial h_{\alpha}}{\partial \theta_{S}}(t)$ in python code, see delh_delthetaS.txt on Git and...

b) results in the same function anyways, plus...

And sadly life would be too easy if we could integrate it analytically:c

c) neither Simplify nor Integrate will return

Computing the uncertainties

Sadly it still doesn't work, even with higher precision in integration...

At this point I'm finally going to stop though

How will the position be a factor for the uncertainty?

Look for a change in uncertainties over relevant region in milky way

Constraining the number of exoplanets

c.f. [2]:

DETECTIONS (4	vears)	,
---------------	--------	---

	A) \mathcal{U}_a (0.1-200 au)		B) $\log \mathcal{U}_a$ (0.1-200 au)		C) logNormal _a (0.1-200 au)		D) $a^{-0.61}$ (0.1-200 au)	
	CBPs	BDs	CBPs	BDs	CBPs	BDs	CBPs	BDs
1) \mathcal{U}_M (1M $_{\oplus}$ - 0.08 M $_{\odot}$)	3 (0.011%)	79 (0.302%)	83 (0.317%)	2218 (8.482%)	18 (0.069%)	503 (1.924%)	28 (0.107%)	820 (3.136%)
2) M ^{-1.31}	6 (0.023%)	14 (0.054%)	30 (0.115%)	316 (1.209%)	5 (0.019%)	85 (0.325%)	13 (0.050%)	131 (0.501%)

How did they do it? Simulation:

- 1. Generate primary from Kroupa imf, range [.95, 10] $imes M_{\bigodot}$
- Generate partner from uniform mass ratio [0,1] and log-flat seperation, thermal eccentricity distribution
- 3. Place binaries in MW according to star formation rate times density
- 4. Add planet with $f_{\rm CBP}=0.5$ and mass/separation distribution as in table

How well will icegiant constrain exoplanets?

40 day measurement over ten time slots:

Question: What are the distances T_2 ?

I'm going to take the direction towards Neptune via JPL HORIZONS for simplicity and then multiply my results by $\sqrt{2}$

Then I can repeat the whole exercise with

$$h(t) = \frac{\mu - 1}{2} \Psi(t) - \mu \Psi\left(t - \frac{\mu + 1}{2}T_2\right) + \frac{\mu + 1}{2} \Psi(t - T_2)$$

Next milestones

- ✓ Understand the fluctuations a bit better and potentially fix them
- ✓ Do the calculations in Mathematica
- \checkmark Add $\ln(A)$, f_1 fit to see actually the same plot as Tamanini
- ✓ Look at the parameter space for positions/angular momentum for the 25'000 potential DWDs with SNR > 7 and calculate positional dependance of the planetary parameters -> we want a function:

- -> Unrealistic to compute a good grid in limited time
- Assuming a prior on the DWD parameters and planetary parameters (mass, inclination, separation), we can then take the integral as in [4], constraining $f_{\rm CBP}$ the fraction of circumbinary partners given $N_{\rm bin}$ detections via Bayesian inference

Next milestones

$$N_{\text{bin}} = \int_{0}^{z} \int_{0}^{\infty} \int_{\nu_{\text{ISCO}}}^{\nu} \frac{dV}{dz} \frac{d\mathcal{R}}{dM} \mathcal{D}(M, q, \nu, z) \frac{d\nu}{\dot{\nu}_{\text{GW}}} dMdz, \tag{11}$$
with
$$\mathcal{D}(M, q, \nu, z) \equiv \mathcal{H}\left[h_{c}(M, q, \nu, z) - \rho_{c} h_{n}(\nu)\right], \tag{12}$$

- -> already done by Danielsky et al. [2]
- Then repeat the exercise with the strain and signal to noise of the IceGiant mission:

$$y_2^{\text{GW}}(t) = \frac{\mu - 1}{2}\bar{\Psi}(t) - \mu\bar{\Psi}\left(t - \frac{\mu + 1}{2}T_2\right) + \frac{\mu + 1}{2}\bar{\Psi}(t - T_2),\tag{1}$$

to see if it could see most promising exoplanet candidates/Jupiter-like planets

 Combine measurements of IceGiant and LISA -> just add Fisher information prior to inversion ☺

References

- [1] Tamanini, N., Danielski, C. (2019). The gravitational-wave detection of exoplanets orbiting white dwarf binaries using LISA. *Nat Astron 3*, 858–866. https://doi.org/10.1038/s41550-019-0807-y
- [2] Danielski, C., Korol, V., Tamanini, N., & Rossi, E.M. (2019). Circumbinary exoplanets and brown dwarfs with the Laser Interferometer Space Antenna. *Astronomy and Astrophysics*, 632.
- [3] Cutler, C. (1998). Angular resolution of the LISA gravitational wave detector. *Physical Review D, 57*, 7089-7102.
- [4] Soyuer, D., Zwick, L., D'Orazio, D., Saha, P. (2021). Searching for gravitational waves via Doppler tracking by future missions to Uranus and Neptune. *MNRAS: Letters*, 503, 1, L73-79. https://doi.org/10.1093/mnrasl/slab025
- [5] Maggiore, M. (2008). *Gravitational Waves Volume 1: Theory and Experiments*. Oxford University Press