Asymptotics, Recurrences, and Divide and Conquer

Hengfeng Wei

hfwei@nju.edu.cn

March 29, 2017

Asymptotics, Recurrences, and Divide and Conquer

- Model
- 2 Asymptotics
- Recurrences
- 4 Divide and Conquer

- ▶ Given a problem P
- ▶ design an alg. A
- ▶ input space \mathcal{X}_n : inputs of size n

- ▶ Given a problem P
- ▶ design an alg. A
- ▶ input space \mathcal{X}_n : inputs of size n

$$W(n) = T_{\mathsf{worst\text{-}case}}(n) = \max_{X \in \mathcal{X}_n} T(X)$$

2 / 33

- ▶ Given a problem *P*
- ▶ design an alg. A
- ▶ input space \mathcal{X}_n : inputs of size n

$$W(n) = T_{\mathsf{worst\text{-}case}}(n) = \max_{X \in \mathcal{X}_n} T(X)$$

$$B(n) = T_{\mathsf{best-case}}(n) = \min_{X \in \mathcal{X}_n} T(X)$$

- ▶ Given a problem P
- design an alg. A
- ▶ input space \mathcal{X}_n : inputs of size n

$$W(n) = T_{\mathsf{worst\text{-}case}}(n) = \max_{X \in \mathcal{X}_n} T(X)$$

$$B(n) = T_{\mathsf{best\text{-}case}}(n) = \min_{X \in \mathcal{X}_n} T(X)$$

$$A(n) = T_{\mathsf{average-case}}(n) = \sum_{X \in \mathcal{X}_n} T(X) \cdot Pr(X)$$

- ▶ Given a problem P
- design an alg. A
- ▶ input space \mathcal{X}_n : inputs of size n

$$W(n) = T_{\mathsf{worst\text{-}case}}(n) = \max_{X \in \mathcal{X}_n} T(X)$$

$$B(n) = T_{\mathsf{best-case}}(n) = \min_{X \in \mathcal{X}_n} T(X)$$

$$A(n) = T_{\mathsf{average-case}}(n) = \sum_{X \in \mathcal{X}_n} T(X) \cdot Pr(X) = E_{X \in \mathcal{X}_n}[T(X)]$$

(Problem 1.1.8)

$$A = \sum_{X \in \mathcal{X}} T(X) \cdot Pr(X)$$

$$= T(1)Pr(1) + T(2)Pr(2) + \dots + T(n)Pr(n)$$

$$= \dots$$

$$= \frac{n}{8} + \frac{55}{2}$$

Average-case analysis of Quicksort

$$A(n) = n - 1 + \frac{1}{n} \sum_{i=0}^{i=n-1} (A(i) + A(n-i-1))$$

 $A(n) = E_{X \in \mathcal{X}_n}[T(X)] = \sum_{X \in \mathcal{X}_n} T(X) \cdot Pr(X)$

Average-case analysis of Quicksort

$$A(n) = n - 1 + \frac{1}{n} \sum_{i=0}^{i=n-1} (A(i) + A(n-i-1))$$
$$A(n) = E_{X \in \mathcal{X}_n}[T(X)] = \sum_{X \in \mathcal{X}_n} T(X) \cdot Pr(X)$$

$$\begin{split} A(n) &= E[T(X)] \\ &= E[E[T(X)|I]] \\ &= \sum_{i=0}^{i=n-1} Pr(I=i)E[T(X) \mid I=i] \\ &= \sum_{i=0}^{i=n-1} \frac{1}{n}[n-1+A(i)+A(n-i-1)] \end{split}$$

4 / 33

Asymptotics, Recurrences, and Divide and Conquer

- Model
- 2 Asymptotics
- Recurrences
- 4 Divide and Conquer

$$\Omega(\omega), \Theta, O(o)$$

$$O(g(n)) = \{f(n) \mid \exists c > 0, \exists n_0, \forall n \geq n_0 : 0 \leq f(n) \leq cg(n)\}$$

$$\Omega(\omega), \Theta, O(o)$$

$$O(g(n)) = \{f(n) \mid \exists c > 0, \exists n_0, \forall n \geq n_0 : 0 \leq f(n) \leq cg(n)\}$$

$$\Omega(g(n)) = \{ f(n) \mid \exists c > 0, \exists n_0, \forall n \ge n_0 : 0 \le cg(n) \le f(n) \}$$

$$\Omega(\omega), \Theta, O(o)$$

$$O(g(n)) = \{ f(n) \mid \exists c > 0, \exists n_0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \}$$

$$\Omega(g(n)) = \{ f(n) \mid \exists c > 0, \exists n_0, \forall n \ge n_0 : 0 \le cg(n) \le f(n) \}$$

$$\Theta(g(n)) = \{ f(n) \mid \exists c_1 > 0, \exists c_2 > 0, \exists n_0, \forall n \ge n_0 : \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$$

$\Omega(\omega), \Theta, O(o)$

$$O(g(n)) = \{ f(n) \mid \exists c > 0, \exists n_0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \}$$

$$\Omega(g(n)) = \{f(n) \mid \exists c > 0, \exists n_0, \forall n \ge n_0 : 0 \le cg(n) \le f(n)\}$$

$$\Theta(g(n)) = \{ f(n) \mid \exists c_1 > 0, \exists c_2 > 0, \exists n_0, \forall n \ge n_0 : \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$$

$$o(g(n)) = \{ f(n) \mid \forall c > 0, \exists n_0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \}$$

$\Omega(\omega), \Theta, O(o)$

$$O(g(n)) = \{ f(n) \mid \exists c > 0, \exists n_0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \}$$

$$\Omega(g(n)) = \{ f(n) \mid \exists c > 0, \exists n_0, \forall n \ge n_0 : 0 \le cg(n) \le f(n) \}$$

$$\Theta(g(n)) = \{ f(n) \mid \exists c_1 > 0, \exists c_2 > 0, \exists n_0, \forall n \ge n_0 : \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$$

$$o(g(n)) = \{f(n) \mid \forall c > \mathbf{0}, \exists n_0, \forall n \geq n_0 : 0 \leq f(n) \leq cg(n)\}$$

$$\omega(g(n)) = \{ f(n) \mid \forall c > 0, \exists n_0, \forall n \ge n_0 : 0 \le cg(n) \le f(n) \}$$

Problem 1.2.6 (4)

$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$

Problem 1.2.6 (4)

$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$

Problem 1.2.6 (5)

$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$

 $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$

Problem 1.2.6 (4)

$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$

Problem 1.2.6 (5)

$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$

 $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$

$$f(n) = O(g(n)) \vee g(n) = \Omega(f(n))?$$

Problem 1.2.6 (4)

$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$

Problem 1.2.6 (5)

$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$

 $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$

$$f(n) = O(g(n)) \lor g(n) = \Omega(f(n))$$
?

$$f(n) = n, \quad g(n) = n^{1+\sin n}$$

Problem 1.2.6 (4)

$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$

Problem 1.2.6 (5)

$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$

 $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$

$$f(n) = O(g(n)) \vee g(n) = \Omega(f(n))?$$

$$f(n) = n$$
, $g(n) = n^{1+\sin n}$

Problem 1.2.6 (6)

$$\Theta(g(n)) \cap o(g(n)) = \emptyset$$

$$\Omega(\omega), \Theta, O(o)$$

Reference

"Big Omicron and Big Omega and Big Theta" by Donald E. Knuth, 1976.

$$\log(n!) = \Theta(n \log n)$$

$$\log(n!) = \Theta(n \log n)$$

Prove by definition.

$$\log(n!) = \Theta(n \log n)$$

Prove by definition.

Exercise: Prove it by Mathematical Induction.

Horner's rule (Problem 1.1.6)

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$$

Horner's rule (Problem 1.1.6)

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$$

Loop invariant (after the k-th loop):

$$\sum_{i=n}^{i=n-k} a_i x^{k-(n-i)}$$

Asymptotics, Recurrences, and Divide and Conquer

- Model
- Asymptotics
- Recurrences
- 4 Divide and Conquer

Recurrences

$$T(n) = aT(n/b) + f(n)$$
 $(a > 0, b > 1)$

$$af(n)$$

$$af(\frac{n}{b})$$

$$a^{2}f(\frac{n}{b^{2}})$$

$$\vdots$$

$$a^{\log_{b}^{n}}f(1) = n^{\log_{b}^{a}}$$

Recurrences

$$T(n) = aT(n/b) + f(n) \quad (a > 0, b > 1)$$

$$\begin{cases}
f(n) \\
af(\frac{n}{b}) \\
a^2 f(\frac{n}{b^2}) \\
\vdots \\
a^{\log_b^n} f(1) = n^{\log_b^a}
\end{cases} \sum = \begin{cases}
n^{\log_b^a} & q > 1 \\
n^{\log_b^a} \log n & q = 1 \\
f(n) & q < 1
\end{cases}$$

Recurrences

$$T(n) = aT(n/b) + f(n) \quad (a > 0, b > 1)$$

$$\begin{cases} f(n) \\ af(\frac{n}{b}) \\ a^2f(\frac{n}{b^2}) \\ \vdots \\ a^{\log_b^n}f(1) = n^{\log_b^a} \end{cases} \sum = \begin{cases} n^{\log_b^a} & q > 1 \qquad f(n) = O(n^{E-\epsilon}) \\ n^{\log_b^a}\log n & q = 1 \qquad f(n) = \Theta(n^E) \\ f(n) & q < 1 \qquad f(n) = \Omega(n^{E+\epsilon}) \end{cases}$$

- 1. $\Theta(n^{\log_3^2})$
- 2. $\Theta(\log^2 n)$
- 3. $\Theta(n)$
- 4. $\Theta(n \log n)$
- 5. $\Theta(n \log^2 n)$
- **6**. $\Theta(n^2)$
- 7. $\Theta(n^{\frac{3}{2}}\log n)$
- 8. $\Theta(n)$
- 9. $\Theta(n^{c+1})$
- **10**. $\Theta(c^{n+1})$
- 11. $\Theta(n)$

$$T(n) = T(n/2) + \log n$$

$$T(n) = 2T(n/2) + n\log n$$

- 1. $\Theta(n^{\log_3^2})$
- 2. $\Theta(\log^2 n)$
- 3. $\Theta(n)$
- 4. $\Theta(n \log n)$
- 5. $\Theta(n \log^2 n)$
- **6**. $\Theta(n^2)$
- 7. $\Theta(n^{\frac{3}{2}}\log n)$
- 8. $\Theta(n)$
- **9**. $\Theta(n^{c+1})$
- **10**. $\Theta(c^{n+1})$
- 11. $\Theta(n)$

$$T(n) = T(n/2) + \log n$$

$$T(n) = 2T(n/2) + n\log n$$

Reference

$$f(n) = \Theta(n^{\log_b^a} \lg^k n) \Rightarrow \Theta(n^{\log_b^a} \lg^{k+1} n)$$

$$T(n) = T(n/2) + T(n/4) + T(n/8) + n$$

$$T(n) = T(n/2) + T(n/4) + T(n/8) + n$$

By recursion-tree.

$$T(n) = T(n/2) + T(n/4) + T(n/8) + n$$

By recursion-tree.

Exercise: Prove it by Mathematical Induction.

Solving recurrences (Problem 1.2.13, 1.2.16)

$$T(n) = T(n/2) + T(n/4) + T(n/8) + n$$

By recursion-tree.

Exercise: Prove it by Mathematical Induction.

Reference

"On the Solution of Linear Recurrence Equations" by Akra & Bazzi, 1996.

$$T(n) = \sum_{i=1}^{k} a_i T(n/b_i) + f(n)$$

$$T(n) = 2T(n/2) + \frac{n}{\log n}$$

$$T(n) = 2T(n/2) + \frac{n}{\log n} = \Theta(n \log \log n)$$

$$T(n) = 2T(n/2) + \frac{n}{\log n} = \Theta(n \log \log n)$$

The regularity condition in Case 3:

bf(n/c) < cf(n), for some c < 1 and sufficiently large n

$$T(n) = T(n/2) + n(2 - \cos n)$$

$$n^{E} = n^{0}$$
 $f(n) = n(2 - \cos n) = \Omega(n^{0+\epsilon})$

$$T(n) = 2T(n/2) + \frac{n}{\log n} = \Theta(n \log \log n)$$

The regularity condition in Case 3:

bf(n/c) < cf(n), for some c < 1 and sufficiently large n

$$T(n) = T(n/2) + n(2 - \cos n)$$

$$n^E = n^0$$
 $f(n) = n(2 - \cos n) = \Omega(n^{0+\epsilon})$

$$n=2\pi k(k \text{ odd}) \Rightarrow c \geq \frac{3}{2}$$

$$\begin{split} \mathsf{T}(n) &= \sqrt{n} \; \mathsf{T}(\sqrt{n}) + n \\ &= n^{\frac{1}{2}} \; \mathsf{T}\left(n^{\frac{1}{2}}\right) + n \\ &= n^{\frac{1}{2}} \left(n^{\frac{1}{2^2}} \; \mathsf{T}\left(n^{\frac{1}{2^2}}\right) + n^{\frac{1}{2}}\right) + n \\ &= n^{\frac{1}{2} + \frac{1}{2^2}} \; \mathsf{T}\left(n^{\frac{1}{2^2}}\right) + 2n \\ &= n^{\frac{1}{2} + \frac{1}{2^2}} \left(n^{\frac{1}{2^3}} \; \mathsf{T}\left(n^{\frac{1}{2^3}}\right) + n^{\frac{1}{2^2}}\right) + 2n \\ &= n^{\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3}} \; \mathsf{T}\left(n^{\frac{1}{2^3}}\right) + 3n \\ &= \cdots \\ &= n^{\sum_{i=1}^k \frac{1}{2^i}} \; \mathsf{T}\left(n^{\frac{1}{2^k}}\right) + kn \end{split}$$

$$n^{\frac{1}{2^k}} = 2 \Rightarrow k = \log \log n$$

$$n^{\frac{1}{2^k}} = 2 \Rightarrow k = \log\log n$$

$$\mathsf{T}(n) = n^{\sum_{i=1}^{k} \frac{1}{2^i}} \mathsf{T}\left(n^{\frac{1}{2^k}}\right) + kn$$
$$= n^{\sum_{i=1}^{\log \log n} \frac{1}{2^i}} \mathsf{T}(2) + n \log \log n$$

$$n^{\frac{1}{2^k}} = 2 \Rightarrow k = \log\log n$$

$$T(n) = n^{\sum_{i=1}^{k} \frac{1}{2^{i}}} T\left(n^{\frac{1}{2^{k}}}\right) + kn$$
$$= n^{\sum_{i=1}^{\log \log n} \frac{1}{2^{i}}} T(2) + n \log \log n$$

$$\sum_{i=1}^{\log_2 \log_2(n)} \frac{1}{2^i} < 1 \Rightarrow T(n) = \Theta(n \log \log n)$$

$$n^{\frac{1}{2^k}} = 2 \Rightarrow k = \log \log n$$

$$T(n) = n^{\sum_{i=1}^{k} \frac{1}{2^{i}}} T\left(n^{\frac{1}{2^{k}}}\right) + kn$$
$$= n^{\sum_{i=1}^{\log \log n} \frac{1}{2^{i}}} T(2) + n \log \log n$$

$$\sum_{i=1}^{\log_2 \log_2(n)} \frac{1}{2^i} < 1 \Rightarrow T(n) = \Theta(n \log \log n)$$

Exercise: Prove it by Mathematical Induction.

$$T(n) = \sqrt{n}T(\sqrt{n}) + n$$

$$n = 2^k \quad \sqrt{n} = 2^{k/2} \quad k = \log n$$

Asymptotics, Recurrences, and Divide and Conquer

- Model
- 2 Asymptotics
- Recurrences
- 4 Divide and Conquer

Integer Multiplication

Multiplying two n-bit integers in $o(n^2)$ time. (Assuming $n=2^k$.)

Column multiplication in $\Theta(n^2)$

Elementray operations:

- ightharpoonup n-bit + n-bit: O(n)
- ▶ 1-bit \times 1-bit: O(1)
- ▶ n-bit shifted by 1-bit: O(1)

Simple divide and conquer:

$$x = x_L : x_R = 2^{n/2}x_L + x_R$$

 $y = y_L : y_R = 2^{n/2}y_L + y_R$

$$xy = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R)$$
$$= 2^n x_L y_L + 2^{n/2}(x_L y_R + x_R y_L) + x_R y_R$$

$$T(n) = 4T(n/2) + \Theta(n) = \Theta(n^2)$$

A little history:

- ▶ Kolmogorov (1952) conjecture: $\Omega(n^2)$
- Kolmogorov (1960) seminar
- ▶ Karatsuba (within a week): $\Theta(n^{1.59})$
- "The Complexity of Computations" by Karatsuba, 1995

Karatsuba algorithm:

$$T(n) = 3T(n/2) + \Theta(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.59})$$

Karatsuba algorithm:

$$T(n) = 3T(n/2) + \Theta(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.59})$$

$$xy = 2^n x_L y_L + 2^{n/2} (x_L y_R + x_R y_L) + x_R y_R$$

$$\underbrace{(x_L + x_R)(y_L + y_R)}_{P_0} = \underbrace{x_L y_L}_{P_1} + (x_L y_R + x_R y_L) + \underbrace{x_R y_R}_{P_2}$$

$$xy = 2^n P_1 + 2^{n/2} (P_0 - P_1 - P_2) + P_2$$

Matrix multiplication

Multiplying two $n \times n$ matrices in $o(n^3)$ time. (Assuming $n = 2^k$.)

$$Z = X \times Y$$

Z_{ij}

Elementrary operations:

- ightharpoonup integer addition: O(1)
- \blacktriangleright integer multiplication: O(1)
- $T(n) = \Theta(n^2 \cdot n) = \Theta(n^3)$

$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}, \quad Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix} \qquad (A \dots H \in \mathbb{R}^{n/2} \times \mathbb{R}^{n/2})$$
$$XY = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$
$$T(n) = 8T(n/2) + \Theta(n^2) = \Theta(n^3)$$

Strassen algorithm:

$$T(n) = 7T(n/2) + \Theta(n^2) = \Theta(n^{\lg 7}) = \Theta(n^{2.808})$$

$$XY = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

$$P_1 = A(F - H)$$

$$P_2 = (A+B)H$$

$$P_3 = (C+D)E$$

$$P_4 = D(G - E)$$

$$P_5 = (A+D)(E+H)$$

$$P_6 = (B - D)(G + H)$$

$$P_7 = (A - C)(E + F)$$

Strassen algorithm:

$$T(n) = 7T(n/2) + \Theta(n^2) = \Theta(n^{\lg 7}) = \Theta(n^{2.808})$$

$$XY = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

$$P_{1} = A(F - H)$$

$$P_{2} = (A + B)H$$

$$P_{3} = (C + D)E$$

$$P_{4} = D(G - E)$$

$$P_{5} = (A + D)(E + H)$$

$$P_{6} = (B - D)(G + H)$$

 $P_7 = (A - C)(E + F)$

Strassen (1969): $\Theta(n^{2.808})$ "Gaussian Elimination is Not Optimal"

Strassen algorithm:

$$T(n) = 7T(n/2) + \Theta(n^2) = \Theta(n^{\lg 7}) = \Theta(n^{2.808})$$

$$XY = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

$$P_{1} = A(F - H)$$

$$P_{2} = (A + B)H$$

$$P_{3} = (C + D)E$$

$$P_{4} = D(G - E)$$

$$P_{5} = (A + D)(E + H)$$

$$P_{6} = (B - D)(G + H)$$

 $P_7 = (A - C)(E + F)$

"Gaussian Elimination is Not Optimal"
$$\triangleright$$
 (2014): $\Theta(n^{2.373})$

▶ Strassen (1969): $\Theta(n^{2.808})$

Strassen algorithm:

$$T(n) = 7T(n/2) + \Theta(n^2) = \Theta(n^{\lg 7}) = \Theta(n^{2.808})$$

$$XY = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

$$P_1 = A(F - H)$$
$$P_2 = (A + B)H$$

$$P_3 = (C+D)E$$

$$P_4 = D(G - E)$$

$$P_5 = (A+D)(E+H)$$

$$P_6 = (B - D)(G + H)$$

$$P_7 = (A - C)(E + F)$$

Strassen (1969):
$$\Theta(n^{2.808})$$
 "Gaussian Elimination is Not Optimal"

- (2014): $\Theta(n^{2.373})$
- Known lower bound: $\Omega(n^2)$

Maximal sum subarray (Problem 1.3.5)

- ightharpoonup array $A[1\cdots n], a_i>=<0$
- ▶ to find (the sum of) an MS in A

$$A[-2,1,-3,4,-1,2,1,-5,4] \Rightarrow [4,-1,2,1]$$

Maximal sum subarray (Problem 1.3.5)

- ightharpoonup array $A[1\cdots n], a_i>=<0$
- ▶ to find (the sum of) an MS in A

$$A[-2, 1, -3, 4, -1, 2, 1, -5, 4] \Rightarrow [4, -1, 2, 1]$$

Trial and error.

- lacktriangledown try subproblem MSS[i]: the sum of the MS (MS[i]) in $A[1\cdots i]$
- goal: mss = MSS[n]
- ▶ question: Is $a_i \in \mathsf{MS}[i]$?
- recurrence:

$$\mathsf{MSS}[i] = \max\{\mathsf{MSS}[i-1], ???\}$$

Solution.

- ▶ subproblem MSS[i]: the sum of the MS *ending with* a_i or 0
- goal: $\mathsf{mss} = \max_{1 \le i \le n} \mathsf{MSS}[i]$

Solution.

- ▶ subproblem MSS[i]: the sum of the MS *ending with* a_i or 0
- goal: $mss = \max_{1 \le i \le n} MSS[i]$
- ▶ question: where does the MS[i] start?
- recurrence:

$$MSS[i] = \max\{MSS[i-1] + a_i, 0\}$$
 (prove it!)

Solution.

- ▶ subproblem MSS[i]: the sum of the MS *ending with* a_i or 0
- goal: $mss = \max_{1 \le i \le n} MSS[i]$
- question: where does the MS[i] start?
- recurrence:

$$\mathsf{MSS}[i] = \max\{\mathsf{MSS}[i-1] + a_i, 0\} \text{ (prove it!)}$$

• initialization: MSS[0] = 0

Code.

```
MSS[0] = 0
For i = 1 to n
   MSS[i] = max{MSS[i-1] + A[i], 0}
return max_{i = 1 to n} MSS[i]
```

Code.

```
MSS[0] = 0
For i = 1 to n
   MSS[i] = max{MSS[i-1] + A[i], 0}
return max_{i = 1 to n} MSS[i]
```

Simpler code.

```
mss = 0
MSS = 0
For i = 1 to n
   MSS = max{MSS + A[i], 0}
   mss = max{mss, MSS}
return mss
```

How to bring the biggest pancake to the bottom?

How to bring the biggest pancake to the bottom?

$$T(n) = 2n - 3$$

How to bring the biggest pancake to the bottom?

$$T(n) = 2n - 3$$

Reference

▶ "Sorting by Perfix Reversals" by Bill Gates & Papadimitriou

How to bring the biggest pancake to the bottom?

$$T(n) = 2n - 3$$

Reference

- "Sorting by Perfix Reversals" by Bill Gates & Papadimitriou
- $T(n) \le \frac{5n+5}{3}$ (1979)
- ► $T(n) \leq \frac{18n}{11}$ (2009)

(Problem 1.3.8)

How many Big V's are there at most?

(Problem 1.3.8)

How many Big V's are there at most?

"Does A follow B?"

(Problem 1.3.8)

How many Big V's are there at most?

"Does A follow B?"

Don't forget to check it!

Repeated elements (Problem 2.12)

- $ightharpoonup R[1 \dots n]$
- ightharpoonup check(R[i], R[j])
- $\# > \frac{n}{13}$
- $ightharpoonup n \log n$

Repeated elements (Problem 2.12)

- $ightharpoonup R[1 \dots n]$
- $\blacktriangleright \ \operatorname{check}(R[i],R[j])$
- $\blacktriangleright \# > \frac{n}{13}$
- $ightharpoonup n \log n$

We will talk about an $O(n \log k)$ algorithm and the lower bound.

Reference

"Finding Repeated Elements" by Misra & Gries, 1982

$$A(n) = O(n \log n)$$

$$A(n) = O(n\log n)$$

Reference

 $\Theta(n \log n)$ in the worst case:

- ▶ "Matching Nuts and Bolts" by Alon *et al.*, $\Theta(n \log^4 n)$
- "Matching Nuts and Bolts Optimality" by Bradford, 1995

$$A(n) = O(n\log n)$$

Reference

 $\Theta(n \log n)$ in the worst case:

- "Matching Nuts and Bolts" by Alon et al., $\Theta(n \log^4 n)$
- "Matching Nuts and Bolts Optimality" by Bradford, 1995

 $\Omega(n \log n)$ by decision-tree argument.

$$A(n) = O(n\log n)$$

Reference

 $\Theta(n \log n)$ in the worst case:

- ▶ "Matching Nuts and Bolts" by Alon *et al.*, $\Theta(n \log^4 n)$
- "Matching Nuts and Bolts Optimality" by Bradford, 1995

 $\Omega(n \log n)$ by decision-tree argument.

$$3^H \ge L \ge n! \Rightarrow H \ge \log(n!) \Rightarrow H = \Omega(n \log n)$$

K-sorted (Problem 2.9)

Counting inversions (Problem 2.11)

Maxima-finding (Problem 2.14)

Wrong recursions!

Maxima-finding (Problem 2.14)

Wrong recursions!

3D?

Maxima-finding (Problem 2.14)

Wrong recursions!

3D?

Lower bound $\Omega(n \log n)!$

