

HAZARDOUS WASTE INVENTORY FOR SD OPERATIONS AT VANDENBERG AFB

VOLUME II. HAZARDOUS WASTE DISPOSAL ASSESSMENT FINAL REPORT

SCS ENGINEERS 4014 LONG BEACH BOULEVARD LONG BEACH, CALIFORNIA 90807

APRIL 1982

Approved for public release; distribution unlimited.

PREPARED FOR
DEPARTMENT OF THE AIR FORCE
HQ SPACE DIVISION (DEV)
P.O. BOX 92960, WORLDWAY POSTAL CENTER
LOS ANGELES, CALIFORNIA 90009

20011011 161

Reproduced From Best Available Copy

mo2-01-0149

REceived 14 May 82 -30 copies (1) YUV (1) 56x (1) But MASON

PREFACE

This report was prepared by SCS Consulting Engineers, Inc., Long Beach, California 90807. This Hazardous Waste Inventory for SD operations at Vandenberg Air Force Base (VAFB) was initiated by the U.S. Air Force to meet the requirements of the Resource Conservation and Recovery Act (RCRA) of 1976, as amended in 40 CFR 261 and 264, May 19, 1980, and the California Administrative Code, Title 22, Division 4. The report will be used as a reference document to the 1978 Space Shuttle Supplement 1. It will also be used for hazardous waste reporting to EPA/California, for hazardous waste management planning, and for engineering design concepts for SD operations at VAFB.

The report is in two volumes. Volume I is an inventory of hazardous wastes likely to be generated by the Titan and Atlas programs and by the Component Cleaning Facility. Volume II is an assessment of the potential effects of these wastes on the treatment/recovery/disposal options considered for those wastes generated by the STS ground operations at VAFB.

This work was accomplished between August 1981 and February 1982. John R. Edwards, Headquarters Space Division, was the Project Officer.

This report has been reviewed by the Office of Public Affairs (PA), and is releasable to the National Technical Information Service (NTIS). At the NTIS, it will be available to the general public, including foreign nations.

This report has been reviewed and is approved for publication.

JOHN R. EDWARDS

Environmental Protection Scientist

WOOTEN, JR., Lt Col, USAF, BSC

STS Environmental Program Manager

RAPHAEL O. ROIG

Chief. Environmental Planning Division Director of Civil Engineering

JOHN D. PEARMAN, Colonel, USAF

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

T. REPORT NUMBER SD-TR-02-36 H. AZAROOUS WASTE INVENTORY FOR SD OPERATIONS AT VANDENBERG AFB, Volume II. Hazardous Waste Disposal Assessment 7. AUTHOR(s) P. PERFORMING DRIGHITATION NAME AND ADDRESS SCS Engineers 4014 Long Beach Boulevard Long Beach, California 90807 10. EDSTROLLING OFFICE NAME AND ADDRESS SD/DEV LOS Angeles AFS, P.O. Box 92960, WWPC LOS Angeles, California 90009 14. MONITORING AGENCY NAME & ADDRESS/// different from Controlling Office) 15. CONTROLLING OFFICE NAME AND ADDRESS/// different from Controlling Office) 16. GISTRIBUTION STATEMENT (of the Abstract entered in Block 20, If different from Report) 17. DISTRIBUTION STATEMENT (of the Abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. XEV MORDS/Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Afr Force Base VAndenberg Afr Force Base VAndenberg Afr Force Base VAndenberg Afr Force Base VAndenberg Afrom the structure of the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory constraints. Necessary additional equipment and facilities were identified, and the impacts on the associated cost estimates were assessed.	REPORT DOCUMENTATION PA	GE	READ INSTRUCTIONS BEFORE COMPLETING FORM
SD-TR-82-36 4. TITLE (and Substitie) HAZARDOUS WASTE INVENTORY FOR SD OPERATIONS AT VANDENBERG AFB, Volume II. Hazardous Waste Disposal Assessment 7. AUTHOR(s) 5. PERFORMING ORGANIZATION NAME AND ADDRESS SCS Engineers 4014 Long Beach Boulevard Long Beach, California 90807 11. CONTROLING OFFICE NAME AND ADDRESS SD/DEV Los Angeles AFS, P.O. Box 92960, WMPC Los Angeles, California 90009 14. MONITORING AGENCY NAME A ADDRESS (International Controlling Diffice) 15. SECURITY CLASS. Follows report) 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 17. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. CEL WORRS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 10. ASTRACT Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan—and Atlas—related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and	i a constant and a co	OVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
HAZARDOUS WASTE INVENTORY FOR SD OPERATIONS AT HAZARDOUS WASTE INVENTORY FOR SD OPERATIONS AT SANDERERG AFB, Volume II. Hazardous Waste Disposal Assessment 7. Author(s) 8. Performing organization name and Address SCS Engineers 4014 Long Beach Boulevard Long Beach, California 90807 11. Contracting Office Name and Address SD/DEV Los Angeles, California 90809 14. Monitoring Agency Name & Address/II dillerent from Controlling Office) 15. Supplementary notes Available in DTIC 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) 17. Oistribution of Force Base 18. Supplementary notes Available in DTIC 18. Supplementary notes Available for the STS program. Wastes with similar characteristics are grouped into treatment category are provided, along with applicable regulatory constraints. Necessary and into all equipment and facilities were identified, and			
HAZARDOUS MASTE INVENTORY FOR SD OPERATIONS AT VANDENBERG AFB, Volume II. Hazardous Waste Disposal Assessment 7. AUTHOR(s) 7. AUTHOR(s) 8. PERFORMING ORGANIZATION NAME AND ADDRESS SCS Engineers 4014 Long Beach Boulevard Long Beach, California 90807 11. CONTROLLING OFFICE NAME AND ADDRESS SD/DEV Los Angeles AFS, P.O. Box 92960, WMPC Los Angeles, California 90009 14. MONITORING AGENCY NAME & ADDRESS/III dillerent from Controlling Office) 15. DISTRIBUTION STATEMENT (of this Report) 16. DISTRIBUTION STATEMENT (of this Abstract enlared in Block 20. II different from Report) 17. DISTRIBUTION STATEMENT (of this Abstract enlared in Block 20. II different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. KEY WORGS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 10. ABSTRACT Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan—and Atlas—related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory constraints. Necessary additional equipment and facilities were identified, and			5. TYPE OF REPORT & PERIOD COVERED
VANDENBERG AFB, Volume II. Hazardous Waste Disposal Assessment 7. Author(s) 8. Performing organization name and address SCS Engineers 4014 Long Beach Boulevard Long Beach, California 90807 10. Controlling Office Name and address SD/DEV Los Angeles AFS, P.O. Box 92960, WIPC Los Angeles, California 90009 14. Monitoring address and address in different from Controlling Offices) 15. SECURITY CLASS, (of this report) 16. DISTRIBUTION STATEMENT (of this Report) 17. DISTRIBUTION STATEMENT (of this Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. XEY MORGS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan—and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- estarints. Necessary additional equipment and facilities were identified, and	HAZARDOUS WASTE INVENTORY FOR SD OPE	ERATIONS AT	Final Report for Period
Disposal Assessment 7. AUTHOR(s) 8. PERFORMING ORGANIZATION NAME AND ADDRESS SCS Engineers 4014 Long Beach Boulevard Long Beach, California 90807 10. CONTROLLING OFFICE NAME AND ADDRESS SD/DEV LOS Angeles AFS, P.O. Box 92960, WWPC LOS Angeles, California 90009 14. MONITORING AGENCY NAME & ADDRESS if different from Controlling Office) 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 17. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. XEV WORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan—and Atlas-related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory constraints. Necessary additional equipment and facilities were identified, and	VANDENBERG AFB, Volume II. Hazardou	ıs Waste	
3. CONTRACT DATAS NUMBER'S F04701-81-C-0078 3. PERFORMING ORGANIZATION NAME AND ADDRESS SCS Engineers 4014 Long Beach Boulevard Long Beach, California 90807 11. CONTROLLING OFFICE NAME AND ADDRESS SD/DEV LOS Angeles AFS, P.O. Box 92960, WWPC LOS Angeles, California 90009 14. MONITORING AGENCY NAME & ADDRESS/If different from Controlling Office) 15. SECURITY CLASS. fol this report) Unclassified 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. KEY WORDS Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and			
FO4701-81-C-0078 FO4701-81-C-0078 FO4701-81-C-0078			
3. Performing organization name and address SCS Engineers 4014 Long Beach, California 90807 11. Controlling office name and address SD/DEV Los Angeles AFS, P.O. Box 92960, WWPC Los Angeles, California 90009 14. Monitoring address y name a address of interest from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 16. DISTRIBUTION STATEMENT (of this Report) 17. DISTRIBUTION STATEMENT (of this abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas-related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory constraints. Necessary additional equipment and facilities were identified, and	7. AUTHOR(s)		F04701-81-C-0078
SCS Engineers 4014 Long Beach Boulevard Long Beach, California 90807 11. CONTROLLING OFFICE NAME AND ADDRESS SD/DEV Los Angeles AFS, P.O. Box 92960, WWPC Los Angeles, California 90009 13. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. DECLASSIFICATION COMMORADING 16. DISTRIBUTION STATEMENT (of the abarract entered in Block 20, If different from Report) 17. OISTRIBUTION STATEMENT (of the abarract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. XEY MORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and		•	104701 01 0 0070
SCS Engineers 4014 Long Beach Boulevard Long Beach, California 90807 11. CONTROLLING OFFICE NAME AND ADDRESS SD/DEV Los Angeles AFS, P.O. Box 92960, WWPC Los Angeles, California 90009 13. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. DECLASSIFICATION COMMORADING 16. DISTRIBUTION STATEMENT (of the abarract entered in Block 20, If different from Report) 17. OISTRIBUTION STATEMENT (of the abarract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. XEY MORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and			
SCS Engineers 4014 Long Beach Boulevard Long Beach, California 90807 11. CONTROLLING OFFICE NAME AND ADDRESS SD/DEV Los Angeles AFS, P.O. Box 92960, WWPC Los Angeles, California 90009 13. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. DECLASSIFICATION COMMORADING 16. DISTRIBUTION STATEMENT (of the abarract entered in Block 20, If different from Report) 17. OISTRIBUTION STATEMENT (of the abarract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. XEY MORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and	9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
4014 Long Beach, California 90807 11. CONTROLLING OFFICE NAME AND ADDRESS SD/DEV Los Angeles AFS, P.O. Box 92960, WWPC Los Angeles, California 90009 14. MONITORING AGENCY NAME A ADDRESS(It diliterent from Controlling Office) 15. SECURITY CLASS. (of this report) 16. DISTRIBUTION STATEMENT (of the abarract entered in Block 20, If diliterent from Report) 17. DISTRIBUTION STATEMENT (of the abarract entered in Block 20, If diliterent from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse ide if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and	SCS Engineers		
SO/DEV Los Angeles AFS, P.O. Box 92960, WWPC Los Angeles, California 90009 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If dillerent from Report) 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If dillerent from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. KEY MORGS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and	4014 Long Beach Boulevard		
SD/DEV Los Angeles AFS, P.O. Box 92960, WWPC Los Angeles, California 90009 14. MONITORING AGENCY NAME & ADDRESS(II ditterent from Controlling Office) 15. SECURITY CLASS. (of this report) 16. DISTRIBUTION STATEMENT (of this Report) 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. KEY MORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan— and Atlas—related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory constraints. Necessary and editional equipment and facilities were identified, and			and the same of th
Los Angeles AFS, P.O. Box 92960, WWPC Los Angeles, California 90009 14. MONITORING AGENCY NAME & ADDRESS(II ditterent from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 16. DISTRIBUTION STATEMENT (of this Report) 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. XEY WORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and			
LOS Angeles, California 90009 18. MONITORING AGENCY NAME & ADDRESS/II ditterent from Controlling Office) 18. SECURITY CLASS. (of this report) 19. DECLASSIFICATION DOWNGRADING 10. DISTRIBUTION STATEMENT (of this Report) 10. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 11. Supplementary notes Available in DTIC 11. Key Mords (Continue on reverse side it necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side it necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlasrelated ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory constraints. Necessary additional equipment and facilities were identified, and	SD/DEV	20	
Unclassified 154. DECLASSIFICATION DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan— and Atlas— related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and	Los Angeles AFS, P.U. BOX 92900, WWF	-6	
Unclassified 154. DECLASSIFICATION DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan— and Atlas— related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and	14. MONITORING AGENCY NAME & ADDRESS(if different fro	m Controlling Office)	15. SECURITY CLASS. (of this report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and			Unclassified
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and			THE TOTAL CATION COWNER ADING
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and			SCHEDULE
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 18. SUPPLEMENTARY NOTES Available in DTIC 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and	Is DISTRIBUTION STATEMENT (of this Report)		
19. KEY WORDS (Continue on reverse side it necessary and identity by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side it necessary and identity by block number) This study evaluates the impact of wastes generated by the Titan— and Atlas—related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory constraints. Necessary additional equipment and facilities were identified, and	16. DISTRIBUTION STATEMENT TO THE STATEMENT		
19. KEY WORDS (Continue on reverse side it necessary and identity by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side it necessary and identity by block number) This study evaluates the impact of wastes generated by the Titan— and Atlas—related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory constraints. Necessary additional equipment and facilities were identified, and			
19. KEY WORDS (Continue on reverse side it necessary and identity by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side it necessary and identity by block number) This study evaluates the impact of wastes generated by the Titan— and Atlas—related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory constraints. Necessary additional equipment and facilities were identified, and			·
19. KEY WORDS (Continue on reverse side it necessary and identity by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side it necessary and identity by block number) This study evaluates the impact of wastes generated by the Titan— and Atlas—related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory constraints. Necessary additional equipment and facilities were identified, and			
19. KEY WORDS (Continue on reverse side it necessary and identity by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side it necessary and identity by block number) This study evaluates the impact of wastes generated by the Titan— and Atlas—related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory constraints. Necessary additional equipment and facilities were identified, and	The state of the second entered in 5	Block 20. if different from	m Report)
Available in DTIC 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and	17. DISTRIBUTION STATEMENT (of the abstract entered in 2	1000 20, 11 0111111111111111111111111111	
Available in DTIC 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and			
Available in DTIC 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and			
Available in DTIC 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and			
19. KEY WORDS (Continue on reverse side it necessary and identify by block number) Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and	18. SUPPLEMENTARY NOTES		
Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side it necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and	Available in DTIC		
Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side it necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and			
Civil Engineering Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side it necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and			
Space Division Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side it necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and	19. KEY WORDS (Continue on reverse side if necessary and is	ientify by block number)	
Environmental Planning Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side it necessary and identity by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and			
Hazardous Waste Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and			
Vandenberg Air Force Base 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and			
This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and			
This study evaluates the impact of wastes generated by the Titan- and Atlas- related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and	20. ABSTRACT (Continue on reverse side if necessary and id	entify by block number)	
related ground operations on the treatment, recovery, and disposal options identified for the STS program. Wastes with similar characteristics are grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory constraints. Necessary additional equipment and facilities were identified, and	This study evaluates the impact of the impac	wastes generat	ed by the Titan- and Atlas-
grouped into treatment categories. Descriptions and impact assessments for each treatment category are provided, along with applicable regulatory constraints. Necessary additional equipment and facilities were identified, and	related ground operations on the tre	eatment, recov	ery, and disposal options
each treatment category are provided, along with applicable regulatory con- straints. Necessary additional equipment and facilities were identified, and	identified for the STS program. Was	stes with simi	lar characteristics are
I straints. Necessary additional equipment and facilities were identified, and	grouped into treatment categories.	Descriptions	and impact assessments for
the impacts on the accompand cost estimates were accessed	each treatment category are provided	u, along With	ilities were identified, and
I the impacts on the associated cost estimates were assessed.	the impacts on the associated cost	estimates were	assessed.

The Titan and Atlas programs overlap with the space shuttle program only in the early years of the STS. Consequently, treatment and disposal facilities designed to handle the maximum shuttle loading can accommodate most other SD wastes. Furthermore, existing transport, storage, treatment, and disposal arrangements for Titan and Atlas wastes can be easily integrated into the STS waste management plan with no additional cost.

The only SD wastes not readily integrable into the STS waste management plans are the Titan deluge water, hydrazine-contaminated alcohol from SLC 4, and metal finishing wastes containing chromium and cyanide. Treatment and disposal options and their associated costs are discussed.

A combined inventory of all SD wastes (STS, Titan, Atlas, and CCF) by treatment category is also presented.

CONTENTS

Section	<u> P a g</u>	e
1	1. Introduction	2
2	Introduction)
3	Titan, Atlas, and CCF Hazardous Waste Characterization	2
4	Recent Regulatory Constraints20)
5	Impacts of Titan, Atlas, and CCF Wastes on STS Hazardous Waste Management	5
	and Alcohol	7
	8. Category 9: SRB Rinse Waters	7
	Solid Wastes and Miscellaneous Waste-waters30)
	es	_
Appendic		
Α	Combined SD Hazardous Waste Inventory Arranged By Treatment Category	3

TABLES

Number	Pa	g e
1	Baseline Waste Generation for Titan and Atlas Programs by Treatment Category: Atlas Launchpads (SLC 3)	3
2	Baseline Waste Generation for Titan and Atlas Programs by Treatment Category: Titan Launchpads (SLC 4)	3
3	Baseline Waste Generated for Titan and Atlas Programs by Treatment Category: Component Cleaning Facility	4
4	Baseline Waste Generated for Titan and Atlas Programs by Treatment Category: Titan and Atlas Programs Combined	4
5	Comparative Baseline Waste Generation for SD Programs by Treatment Category (kg)	6
6	Solvent Reclaiming Operations in California	7
7	Baseline Waste Generation for Titan and Atlas Programs by Treatment Category1	4
8	Baseline Waste Generation for Atlas Programs by Treatment Category1	. 6
9	Baseline Waste Generation for Titan Programs by Treatment Category	L 7
10	Baseline Waste Generation for CCF Programs by Treatment Category	.8
11	Baseline Waste Generation for Combined Titan, Atlas, and CCF Programs by Treatment Category1	9
12	Comparative Baseline Waste Generation for SD Programs by Treatment Category (kg)	22
13	Solvent Reclaiming Operations in California	24
1 4	Value of Recoverable Wastes	25

SECTION 1

EXECUTIVE SUMMARY

1. INTRODUCTION

The facilities covered in this report are the Atlas and Titan Launch Facilities (SLC 3 and SLC 4, respectively) and the Bionetics Component Cleaning Facility (CCF). The purpose of this report is to assess the potential effects of the additional wastes from these facilities on the treatment/disposal options considered for those wastes generated by the Space Transportation System (STS) ground operations at Vandenberg Air Force Base (VAFB), including the associated cost estimates.

2. GROUPING OF WASTES

An essential step in any discussion of treatment, reuse, and/or disposal of hazardous wastes from Space Division (SD) operations is the grouping of similar wastes into treatment categories. Many of these wastes are compatible in terms of their chemical and physical properties, and as such can be readily mixed and treated or disposed of together. These wastes then constitute a treatment category.

The procedure used to develop treatment categories for the Titan and Atlas hazardous wastes at VAFB was analogous to that used for the STS wastes. Namely, those categories already defined for Kennedy Space Center (KSC) were used to the extent possible to facilitate comparisons between the two sites. The 15 treatment categories are as follows:

- Category 1: Recoverable Freon Wastes.
- Category 2: Hypergolic Fuels and Hypergolic Fuel-Contaminated Water and Alcohol.
- Category 3: Group I Hydrocarbon Wastes.
- Category 4: Bilge Water and Water Contaminated with Oil.
- Category 5: Group II Hydrocarbon Wastes.
- Category 6: Recoverable Silver Wastes.
- Category 7: Recoverable Mercury Wastes.

- Category 8: Acids, Bases, and Aqueous Solutions Contaminated with Metal Ions.
- Category 9: Solid Rocket Booster (SRB) Rinse Waters.
- Category 10: Acid and Basic Wastes Which Contain No Significant Metal Ions (Plus Oxidizer Wastes).
- Category 11: Fuel Vapor Scrubber Wastes.
- Category 12: Oxidizer Vapor Scrubber Wastes.
- Category 13: Combustible Solids.
- Category 14: Noncombustible Solids.
- Category 15: Miscellaneous Wastewaters.

Categories 6, 7, and 12 have no counterpart SD-VAFB waste, and thus are not used in this report.

Tables 1, 2, and 3 present summary annual waste generation rates by treatment category for SLC 3, SLC 4, and CCF, respectively. Table 4 gives the combined totals for all three facilities.

3. RECENT REGULATORY CONSTRAINTS

On October 13, 1981, the Governor of California signed an Executive Order designed to eliminate the land disposal of pesticides, PCB's, cyanides, toxic metal wastes, halogenated organics, and non-halogenated volatile organics.

Given the general descriptions of the waste streams covered by this Order, all of Categories 5 and 8 and parts of Categories 2, 3, and 11 from the Atlas/Titan/CCF will be affected. Within a few years (by the time the STS becomes operational at VAFB), land disposal of these wastes will be prohibited. In the interim, the State of California is considering imposing higher fees on the land disposal of these wastes until such time as the land disposal ban is implemented.

0

Suggested landfill alternatives include waste reduction; waste recycling; physical, chemical, and biological treatment; high-temperature incineration; and solidification/stabilization. Details on the implementation of the Executive Order are still forthcoming, and major changes, some of which could affect the SD wastes, are possible. However, the analysis presented in this report is based on the assumption that land disposal in California will no longer be permitted for those wastes specified in the Executive Order. Out-of-state land disposal is still a possibility.

TARLE 1. BASELINE WASTE GENERATION FOR TITAN AND ATLAS PROGRAMS BY TREATMENT CATEGORY ATLAS LAUNCHPADS (SLC3)

(PER YR)	GALLONS OR CF	222.0	0.703	51.0	4.5
1987 & 98 (PER YR)	POUNDS	1866.8	6818.4	425.3	117.8
96	GALLOMS OR CF	444.0	1214.0	102.0	4 0.
19861	POUNDS	3733.6	13636.8	920.6	235.6
1985	GALLOHS OR CF	444.0	1214.0	102.0	8.4
61	Pourins	3733.6	13636.8	920.6	235.6
84	GALLONS OR CF	444.0	1214.0	102.0	4.8
1984	POUMDS	3733.6	13636.8	920.6	235.6
1983	GALLOMS OR CF	444.0	1214.0	102.0	€.
19	POUMPS	444.0 3733.6	13636.8	850.6	235.6
92	GALLONS OR CF	444.0	1214.0	102.0	8.
1985	Pourios	3733.6	13636.8	850.6	235.6
	TREATMENT CATEGORY	m	ĸ	=	13

BASELINE WASTE GENERATION FOR TITAH AND ATLAS PROGRAMS BY TREATMENT CATEGORY TITAN LAUNCHPADS (SLC4) TABLE 2.

1985	GALLOHS OR CF	3790,4	160009.2	200.0	29.6	
1.9	POUNDS	26229.8	80004,6 1336114,5	1660.0	1440.0	
1984	GALLOHS OR CF	1890.2	80004.6	100.0	14.8	
	POUNDS	4725.5 13114.4	668057.3	830.0	720.0	
1983	GALLONS OR CF	4725.5	80004,6 1670143,3 200011,5 668057,3	250.0	37.0	
11	POUNDS	32786.0	1670143.3	2075.0	1800.0	
1982	GALLONS OR CF	1890.2	80004.6	100.0	14.9	
51	POUNDS	13114.4	668057.3	830.0	720.0	
	TREATMENT CATEGORY	C4	10	Ξ	13	

BASELINE WASTE GENERATION FOR TITAN AND ATLAS PROGRAMS BY TREATMENT CATEGORY COMPONENT CLEANING FACILITY TABLE 3.

j

1987 & 88 (PER YR)	GALLONS OR CF	495.0	109500,0	547500.0
1987 8 8	POUNDS	5643.0	913723.0	4568614.0
1386	GALLONS OR CF	495.0	109500.0	547500.0
	POUNDS	5643,0	73000.0 609148.6 73000.0 913723.0 109500.0 913723.0 109500.0 913723.0 109500.0	365000.0 3045742.5 365000.0 4568614.0 547500.0 4568614.0 547500.0 4568614.0 547500.0
1985	GALLONS OR CF	495.0	109500,0	547500.0 4
	POUNDS	5643.0	913723.0	1568614.0
1984	GALLONS OR CF	330.0	73000.0	365000,0
	POUNDS	330.0 3762.0	609148.6	3045742.5
283	GALLONS OR CF	330.0	73000.0	365000.0
	POUNDS	330.0 3762.0	609148.6	3045742.5
1982	GALLONS OR CF		609148.6 73000.0 609148.6	365000.0
	T POUNDS	3762.0	609148.6	3045742.5 365000.0 3045742.5
	TREATHENT CATEGORY	ເດ	60	9

BASELINE WASTE GENERATION FOR LITAH AND ATLAS PROGRAMS BY TREATMENT CATEGORY TABLE 4.

TITAH & ATLAS PROGRAMS CONBINED

(PER YR)	GALLONS OR CF	е.	222,0	1102.0	0.002601	547500.0	51.0	2.4
1987 & 88 (PER YR)	POUNDS	0	1866.8	12461.4	913723.0		425.3	117.8
986	GALLONS OR CF	0.	444.0	1709.0	109500.0	547500.0 4568614.0	102.0	4.0
1	POUNDS	0.	3733.6	19279.8	913723.0	1568614.0	920.6	235.6
995	GALLONS OR CF	3780.4	444.0	1709.0	109500.0	707509.3 4568614.0	302.0	34.4
\$1	POUNDS	26228.8	3733.6	19279.8	913723.0	5904729.0	2510.6	1675.6
1984	GALLONS OR CF	1890,2	444.0	1544.0	73000.0	445004,6 5904729.0	202.0	19.6
	POUMPS	13114.4	3733,6	17398.8	609148.6	565011,5 3713800.0	1630,6	955,6
1983	GALLONS OR CF	4725.5	444.0	1544,0	73000.0	565011.5	352.0	41.8
	POUNDS	32786.0	3733.6	17398.8	73000.0 609148.6	4715886.0	2925,6	2035.6
1982	GALLONS OR CF	1890.2	444.0	1544.0	0.00085	445004,6	2.02,0	19.6
	T POUNDS	13114.4	3733.6	17398.9	609148.6	3713900.0 445004.6 4715886.	1630.6	928.6
	TREATMENT CATEGORY	. 63	• P)	S	တ	0	=	13

C

(

Ü

4. IMPACTS OF TITAN, ATLAS, AND CCF WASTES ON STS HAZARDOUS WASTE MANAGEMENT

The contribution of wastes generated by the Atlas, Titan, and CCF facilities to the total SD waste load is shown in Table 5. It should be noted that the treatment systems discussed in the Space Shuttle report were based on a maximum of 15 launches per year, whereas the more recent projection is 10 launches per year.

In view of the Executive Order, it should be emphasized that under California law (Title 22, Division 4, Chapter 30, Article 12), some hazardous wastes are considered recyclable. If these wastes are not recycled, the State Department of Health may request that the Air Force provide written justification for not having recycled the wastes.

Table 6 lists the recoverable hazardous wastes generated by Titan and Atlas operations at VAFB, and their acceptance by some of the major chemical reclamation companies in California. The economics of recycling contaminated solvents vary widely depending on the demand for the reclaimed product. For example, the Air Force would pay for any solvent reclaimed for its use. If, however, the reclaimer intends to sell the purified product, the Air Force might be paid for the waste, with the fee variable depending on the demand for the reclaimed solvent.

All cost figures presented in the original Space Shuttle report were based on wastes generated from 15 STS launches per year. Because of the revised shuttle launch schedule, the combined SD waste totals nowhere exceed those earlier estimates. Thus, it is not anticipated that the addition of Atlas, Titan, and CCF wastes to the STS waste load will create any new expenses or overburden planned facilities. Furthermore, treatment/storage/disposal facilities designed to handle the maximum STS waste load (even at 10 launches per year) should be able to accommodate the added SD wastes. The various programs overlap only in the early years of the STS program when the number of flights is fewer than 10 per year. The combined yearly totals seldom exceed the maximum STS waste load.

In addition, there are already transport, storage, treatment, and disposal arrangements for most of the existing Atlas, Titan, and CCF wastes. Many of these could be easily integrated into the STS waste management plan with no additional costs.

Areas of concern regarding SLC 3, SLC 4, and CCF wastes are as follows:

- Deluge water (SLC 4).
- Waste alcohol contaminated with hydrazine (SLC 4).

TABLE 5

COMPARATIVE BASELINE WASTE GENERATION FOR SD PROGRAMS
BY TREATMENT CATEGORY (kg)

C

0

Int Cat.	Program	1982	1983	1984	1985	1986	1987	1983	1989-1994 (per year)
1	Freon								
	STS (15 Taunches/yr	0	0	0	9,510	14,256	23,776	35,664	35,564
	STS (10) TAC	0	ດ ດ	0	- ,			23,776 0	23,776 0
2	Чурегдоїіс Fu	e!s/Fuel-	Contaminated	Water and	Alcohol				
	STS (15) STS (10) TAC	0 0 5,948	0 0 14,372	0 0 5,948	20,243	30,364 30,364 0		75,910 50,607 0	75,910 50,607 0
3	Group I Hydro	carbons							
	STS (15) STS (10) TAC	0 0 1,694	0 0 1,694	0 0 1,694	2,063 2,063 1,694	3,094 3,094 1,694	5,157 5,157 847	7,735 5,157 847	7,735 5,157 847
5	Group [] Hydr	ocarbons							
	STS (15) STS (10) TAC	0 0 7,892	0 0 7,892	ი ე 7,892	23,584 23,584 8,745	44,122 44,122 8,745	58,962 58,962 5,652	38,443 58,962 5,552	38,443 58,962 2,550
8	Aqueous Solut	ions Cont	aminated wit	h Metals					
	STS (15) STS (10) TAC	0 0 276,310	0 0 276,310	0 0 276,310	641 641 414,465	961 961 414,465	1,602 1,602 414,465	2,403 1,602 414,465	2,403 1,602 414,465
9	SRB Rinse Wat	ers							
	STS (15) STS (10) TAC	0 0 0	0 0	0 0 0	991,969 991,969 0	1,487,953 1,487,953 0		3,719,383 2,479,922 0	
10	Oxidizer/Acid	s, Bases							
	STS (15) STS (10) TAC 1,0	n 0 68 4, 583	0 0 2,139,130	0	15,423,615 15,423,616 2,678,389	23,135,422	38.559.041		57,838,561 38,559,041 2,072,324
11	Fuel Vapor Sci	rubber Lid	luors						
	STS (15) STS (10) TAC	0 0 752	0 0 1,327	0 9 762	15,517 15,517 1,139	23,275 23,275 386	38,792 38,792 193	58,188 38,792 193	58,188 38,792 0
13	Combustible So	olids							
	STS (15) STS (10) TAC	0 0 437	0 0 924	0 0 437	14,124 14,124 760	21,187 21,187 107	35,310 35,310 54	52,965 35,310 0	52,965 35,310 0
14	Noncombustible	e Solids							
	STS (15) STS (10) TAC	0 0 0	0 0	0 0 0	2,527 2,527 0	3,791 3,791 0	6,319 6,319 0	9,478 6,319 0	9,478 6,319 0

TABLE 6 SOLVENT RECLAIMING OPERATIONS IN CALIFORNIA

eslee, mical Company, and integrate thylene ethylene ethy		Category 1	Categor	egory 2a	Category 3			Cat	Category 5		
	lvent Reclaimer	Freon	Hydrazine	MMI	Heptane	Perchloro- ethylene	Methylene Chloride	Cellusolve Acetate	Cellusolve Methy Ethyl ICE/Freon Acetate Ketone Mixture	FCE/Freon Mixture	Misc. Solvent Mixtures
	rron-Blakeslee, Gardena	•				•	•			0	
	lyday Chemical Company, Santa Clara	•			0	0	•	0	0	0	0
ess ess	ivis Chemical Company, Los Angeles	0			0	•	•	0	•	•	0
ess	vironmental Recovery, Long Beach	0		•						0	0
	old Shield Solvents, Los Angeles					•				•	
C	il and Solvents Process Company, Azusa	•			0		•	0	•	0	0
	ero Waste Systems, Oakland	•	0	0	0	•	•	0	0	0	0

• Reclaimer pays for waste.

OReclaimer takes waste for free or purifies it for reuse for a fee.

Reclaimer does not accept waste.

 Metal finishing wastes containing chromium and cyanide (CCF).

At the present time, the CCF's metal finishing wastes are being treated and discharged to the sewer system, adding no new treatment burden to SD operations. However, it may be necessary to acquire RCRA treatment facility permits for the CCF; this could conceivably entail some upgrading of the CCF facilities.

The Titan deluge water is another area of concern. If the deluge water is deemed hazardous under RCRA, or if it exceeds NPDES standards and site hydrogeology indicates hydraulic continuity with the Lompoc aquifer, the simple discharge to grade will no longer be allowed. Under such circumstances, an engineered treatment/disposal system (i.e., evaporation basin, reverse osmosis, or ocean outfall) will be necessary over the remaining life of the Titan program.

Detailed deluge water analyses and hydrogeological studies are needed to establish whether a problem exists and how best to approach it. Deluge water could be piped to the evaporation basin at SLC 6; the appropriate piping installation would cost about \$125,000 (1981 dollars). This does not alleviate the immediate problem, however, as the SLC 6 facility will not be operational until 1985, and the Titan launch program will end shortly thereafter. By comparison, the installation of simple gravity flow pipelines to ocean outfalls would cost about \$12,000 at SLC 4.

An evaporation basin could be constructed at SLC 4. A simple 100,000-gallon basin with 60-cm freeboard, elastomeric membrane liner, and leachate collection system could be constructed for about \$25,000 (1981 dollars). As a new facility, this basin would not be covered under existing permits.

It might also be possible to treat the water to a sufficient degree to discharge it to grade. A package treatment system, such as reverse osmosis, could be installed at the SLC for the duration of the planned launch activities. Reverse osmosis could provide a water of sufficient quality to be discharged to grade or to the ocean. A single reverse osmosis system, including pretreatment to remove particulates and scale-forming contaminants and to adjust pH, could be installed for \$15,000 to \$20,000. This system is known to remove any heavy metals and some organics; however, most of the organics are not removed.

(

Unlike evaporation basins, reverse osmosis has a significant annual operating and maintenance cost component, with estimates ranging from \$3,200 to \$7,200 per year. This includes power (20 kWh per 1,000 gallons) and labor (10 hours per month). In addition, special training is required to operate the system. At best, the system recovers 90 percent (by volume of the total wastewater quantity) of the good quality water; the remaining 10 percent or more consists of concentrated brine and sludge (from

pretreatment operations). Neither can be disposed of to grade or in the ocean. Thus, the brine and sludge would probably have to be drummed and transported to a suitable disposal facility elsewhere.

The waste alcohol contaminated with hydrazine from \$LC 4 also adds a new disposal burden. Again, there is no comparable STS waste stream, and no waste management schemes were developed with this waste in mind. With land disposal in California soon to be prohibited, the remaining options include solvent recovery, incineration, or transport to an out-of-state disposal facility.

SECTION 2

INTRODUCTION

1. BACKGROUND

In July 1981, a report was prepared for the Department of the Air Force, HQ Space Division (DEV), which presented a projected hazardous waste inventory for the Space Transportation System (STS) at Vandenberg Air Force Base (VAFB) (1), and an assessment of the treatment and disposal options available for these wastes (2). A number of feasible treatment/disposal alternatives and their estimated costs were developed for the report.

The purpose of Volume I of this report is to present an inventory of hazardous wastes generated by the other Space Division (SD) facilities in a format compatible with the STS inventory. This volume presents an assessment of the potential effects of these additional wastes on the treatment/disposal options considered for the STS wastes, including the associated cost estimates.

The facilities covered in this report are the Atlas and Titan Launch Facilities (SLC 3 and SLC 4, respectively) and the Bionetics Component Cleaning Facility (CCF). Although the CCF is not an SD facility, it is included since a major portion of its work load involves SD systems (the percentage will increase substantially when the STS becomes fully operational at VAFB).

2. REPORT ORGANIZATION

In devising the STS hazardous waste inventory and evaluating management alternatives, it was necessary to group the wastes into a series of treatment categories. A treatment category essentially consists of all wastes of similar physical and chemical properties which can be treated or disposed of with the same technologies. From this classification, the different facilities and handling systems required by each group can be determined. All wastes within a group are compatible with each other, and each group's compatibility with wastes in other groups must be assessable in order to organize handling procedures. A discussion of hazardous waste grouping into treatment categories is provided in Section 3.

In the interim between the compilation of this inventory and the completion of the STS inventory and waste management assessment, there have been several changes in the laws and regulations affecting hazardous waste management. One in particular, a State of California Executive Order $(3,\,4)$, will have an immediate impact on the planning for treatment/disposal facilities. The implications of this order for SD hazardous waste planning will be discussed more completely in Section 4.

Section 5 presents a detailed discussion of the technical and economic impacts of the additional SD wastes on those treatment and disposal alternatives considered for the STS program. For this discussion, it is assumed that these alternatives will be developed primarily for the STS; thus, any impacts caused by other SD activities will be evident only from 1985 on. That is, whereas the Atlas and Titan Launch Facilities and the CCF are currently operating and generating wastes, no STS hazardous wastes will be generated at VAFB until 1985. The current waste load is already covered under existing hazardous waste management plans which must be expanded to handle STS wastes.

€.

1

C

(

The treatment/disposal/management schemes presented in Volume II of the STS inventory (2) were developed exclusively for STS wastes. The purpose of the discussion in Section 5 of this report is to determine whether the same schemes could be used to handle the combined SD waste streams within the economic framework developed in the STS report.

The cost estimates in the STS report were based on waste emissions from 15 STS launches per year. Subsequently, however, the maximum number of planned STS launches from VAFB has been reduced from 15 to 10 per year. Reducing the number of launches by one-third will have a sizable impact on many of the original STS waste cost estimates. However, it is not within the scope of this report to readjust those cost figures. Where new costs induced by added Titan and Atlas wastes are offset by reductions in STS wastes, this fact will be noted. Otherwise, the decrease in STS launches will not affect this discussion.

SECTION 3

TITAN, ATLAS, AND CCF HAZARDOUS WASTE CHARACTERIZATION

1. INTRODUCTION

An essential step in any discussion of treatment, reuse, and/or disposal of hazardous wastes from SD operations is the grouping of similar wastes into treatment categories. Many of these wastes are compatible in terms of their chemical and physical properties, and as such can be readily mixed and treated or disposed of together. These wastes then constitute a treatment category.

The procedure used to develop treatment categories for the Titan and Atlas hazardous wastes at VAFB was analogous to that used for the STS wastes. Namely, those categories already defined for Kennedy Space Center (KSC) (5) were used to the extent possible to facilitate comparisons between the two sites. The 15 treatment categories are as follows:

- Category 1: Recoverable Freon Wastes.
- Category 2: Hypergolic Fuels and Hypergolic Fuel-Contaminated Water and Alcohol.
- Category 3: Group I Hydrocarbon Wastes.
- Category 4: Bilge Water and Water Contaminated with Oil.
- Category 5: Group II Hydrocarbon Wastes.
- Category 6: Recoverable Silver Wastes.
- Category 7: Recoverable Mercury Wastes.
- Category 8: Acids, Bases, and Aqueous Solutions Contaminated with Metal Ions.
- Category 9: Solid Rocket Booster (SRB) Rinse Waters.
- Category 10: Acidic and Basic Wastes Which Contain No Significant Metal Ions (Plus Oxidizer Wastes).
- Category 11: Fuel Vapor Scrubber Wastes.
- Category 12: Oxidizer Vapor Scrubber Wastes.

- Category 13: Combustible Solids.
- Category 14: Noncombustible Solids.
- Category 15: Miscellaneous Wastewaters.

Categories 6, 7, and 12 have no counterpart SD-VAFB waste, and thus are not used in this report.

2. WASTE GENERATION BY TREATMENT CATEGORIES

The treatment categories are described in more detail in Section 5. Table 7 presents a list of the Atlas, Titan, and CCF hazardous wastes by treatment category, showing the baseline quantities. Tables 8, 9, and 10 present summary annual waste generation rates by treatment category for SLC 3, SLC 4, and CCF, respectively. Table 11 gives the combined totals for all three facilities. It should be noted that Tables 8 through 11 only cover the period through 1988. Based on the launch schedule data provided to SCS, there will be no Titan and Atlas launches after 1988. The CCF waste quantities shown for 1987 and 1988 presumably will not change greatly through 1994.

C

BASELINE WASTE GENERATION FOR TITAN AND ATLAS PROGRAMS BY TREATMENT CATEGORY* TABLE 7.

CAT			20C/ L10	BASELINE MASS KILOGRAMS	MASS	LITERS	BASELINE VOLUNE LITERS GAL OR CF
61	SLC 4	HYDRAZINE	٦	3.6	8.0	3.8	1.0
N	SLC 4	HYDRAZINE		0.	0.	•• ·	0.
N ·	₹ DTS	HYDRAZINE/WATER WASTES	ı	756.6	1668.0	757.0	200,0
α	SLC 4	HYDRAZINE/WATER WASTES	٦	0.	0.	0.	0.
N	SLC 4	ISOPROPANOL	ب	568.3	1253.0	726.7	192.0
CI	SLC 4	ISOPROPANOL	-	623.2	1374.0	794.8	210.0
8	SLC 4	METHANOL	ı	1004.2	2214.0	1271.8	336.0
ત્ય	SLC 4	прин	ب	15.9	35.0	20.1	5.3
CV	SLC 4	помн	ı	2.4	5.2	3.0	œ.
2	SLC 4	помн	ر	0.	0.	0.	0.
TOTALS ATL: TIT	FOR AS LA AN LA PONEY	TREATMENT CATEGORY 2 NUNCHPADS - SLC3 (SVAFB) NUNCHPADS - SLC4 (SVAFB) IT CLEANING FACILITY (NVAFB)		. 0 2974.3	. 0 6557.2	3577.2	0. 945.1
m	SLC 3	OILS, USED	ı	7.6	16.8	9'2	2.0
m	8FC 3	RP-1 SLUDGES	٦	839.1	1850.0	832.7	220.0
TOTAL AT TI CO	TOTALS FOR TREATMENT OF ATLAS LAUNCHPADS — TITAN LAUNCHPADS — COMPONENT CLEANING	ATMENT CATEGORY 3 HPADS - SLC3 (SVAFB) HPADS - SLC4 (SVAFB) LEANING FACILITY (NVAFR)		846.8 .0	1866.8 0.	840,3 .0	222.0
ស	SLC 3	METHYLETHYL KETONE (MEK)	٦	6.1	13.4	9,5	2.0
ກ	src 3	TRICHLOROETHYLENE	٠	3086.7	6805,0	2289.9	605.0
S	CCF	TRICHLOROETHANE (1,1,1,-)	_	1706.4	3762.0	1249.1	330,0
TOTAL AT TI CO	TOTALS FOR TREATMENT (ATLAS LAUNCHPADS TITAN LAUNCHPADS COMPONENT CLEANING	ATMENT CATEGORY 3 HPADS - SLC3 (SVAFB) HPADS - SLC4 (SVAFB) LEANING FACILITY (NVAFB)		3092.8 .0 1706.4	6818.4 .0 3762.0	2297.5 ,0 1249.1	607.0 .0 330.0
æ	CCF	CHROMIUM WASTEWATERS	ب	138151,8	304574.3	138152.5	36500,0

* FOR SLC 3 AND SLC 4, QUANTITIES ARE GIVEN ON A PER LAUNCH BASIS; FOR CCF, ANOUNTS SHOWN ARE PER YEAR.

TABLE 7 (continued)

TRI FACILITY CAT	TY WASTE MATERIAL	\$00°/	BASELI KILOGRAMS	BASELINE MASS GRAMS POUNDS	BASELI	BASELINE VOLUME TERS GAL OR CF
3 CCF	. CYANIDE WASTEWATERS	ب	138151.8	304574.3	138152.5	36500.0
TALS FOR TREATNENT ATLAS LAUNCHPADS TITAN LAUNCHPADS CONPONENT CLEANIN	TOTALS FOR TREATMENT CATEGORY 8 ATLAS LAUNCHPADS - SLC3 (SVAFB) TITAN LAUNCHPADS - SLC4 (SVAFB) COMPONENT CLEANING FACILITY (NVAFB)		0. 0. 276303.7	609148.6	.0 .0 276305.0	0'000E2
10 SLC 4	DELUGE WATER		151499.1	334000.0	151400.0	40000.0
10 SLC 4	NITROGEN TETROXIDE	_	6.8	15.0	4.5	5.
10 SLC 4	HITROGEN TETROXIDE	٦	1.8	4.0		E,
10 SLC 4	NITROGEN TETROXIDE	_	4.4	9.6	3.0	œ.
10 SLC 4	NITROGEN TETROXIDE	٦	0.	0.	0.	0.
10 SLC 4	OXIDIZER/WATER WASTES	٦	0.	0.	0.	0.
10 CCF	SODIUM HYDROXIDE WASTEWATER	-1	1381518.3	3045742.5	1381525.0	365000.0
ALS FOR TREATMENT ATLAS LAUNCHPADS TITAN LAUNCHPADS COMPONENT CLEANIN	TOTALS FOR TREATMENT CATEGORY 10 ATLAS LAUNCHPADS - SLC3 (SVAFB) TITAH LAUNCHPADS - SLC4 (SVAFB) COMPONENT CLEANING FACILITY (NVAFB)		151512,0 1381518.3	334028,6 3045742,5	.0 151408,7 1381525.0	,0 40002,3 365000,0
SI.C 3	HYDRAZINE SCRUBBER LIQUOR	J	192.9	425,3	193.0	51.0
SLC 4	HYDRAZINE SCRUBBER LIQUOR	_	188.2	415.0	189,3	50.0
ALS FOR TREATMENT C ATLAS LAUNCHPADS - TITAH LAUNCHPADS - COMPONENT CLEANING	TOTALS FOR TREATMENT CATEGORY 11 ATLAS LAUNCHPADS - SLC3 (SVAFB) TITAH LAUNCHPADS - SLC4 (SVAFB) COMPONENT CLEANING FACILITY (NVAFB)		192,9 188,2 0	425.3 415.0	193.0 189.3	51.0 50.0
SLC 3	RAGS, SOLVENTZOILY	on.	53,4	117.8	68.0	2.4
SLC 4	RAGS, SOLVENT/OILY	ဟ	163,3	360.0	209.5	7,4
ALS FOR TREATNENT ATLAS LAUNCHPADS TITAN LAUNCHPADS COMPONENT CLEANTI	TOTALS FOR TREATNENT CATEGORY 13 ATLAS LAUNCHPADS - SLC3 (SVAFB) TITAN LAUNCHPADS - SLC4 (SVAFB) COMPONENT CLEANING FACILITY (NVAFR)		53,4 163,3	117.8 360.0	63.0 209.5	4.4.0

C

Ó

BASELINE WASTE GENERATION FOR ATLAS PROGRAMS BY TREATMENT CATEGORY TABLE 8.

	1	1982	6,1	1983	61	1984	61	1985	13	986	1987 & 88	1987 & 88 (PER YR)
TREATMENT CATEGORY	Pounds	GALLONS OR CF	POUNDS	GALLONS OR CF	POUHDS	GALLONS OR CF	Pounds	GALLONS OR CF	POUNDS	GALLONS OR CF	FOUNDS	GALLONS OR CF
-	0.	0.	0.	0.	۰.	0.		e.	0.	0.	e.	0.
. 8	ō	9.	0.	0.	0.	0.	0.	9.	٥.	0.	Đ.	ō.
iw.	3733.6	444.0	3733.6	444.0	3733.6	444.0	3733.6	444.0	3733,6	444.0	1866.8	222.0
4	0	9.	6.	0.	ē.	0.	0	0.	6.	•	0.	0.
ĸ	13636.8	1214.0	13636.8	1214.0	13636.8	1214.0	13636.8	1214.0	13636.8	1214.0	6318.4	0.508
130	0.	0.	٥.	0.	0.	Ö.	ō.	0.	e.	0.	9 '	0.
ው	0.	0.	0.	0.	9.	0.	0.	0.	0.	o .	0.	Ð.
0.	0.	ō.	0.	0.	0.	6.	0.	0.	0.	0.	0.	0.
Ξ	820.6	102.0	920.6	102.0	850.6	102.0	850.6	102.0	850.6	102.0	425.3	51.0
13	23516	4.8	235.6	£.	235.6	4.8	235.6	£.	235.6	4.8	117.8	e4
<u> 7</u>	0.	0.	0.	0.	0.	0.	0.	0.	0	e.	0.	0
5	0.	0.	0	0.	ē.	9.	0.	Û.	9.	0.	9.	o.

REATMENT CATEGORY DEFINITIONS:

1 * RECOVERABLE FREON WASTES
2 = HYPERGOLIC FUELS AND HYPERGOLIC FUEL-CONTAMINATED WATER AND ALCONOL
3 = GROUP I HYDROCARBON WASTES
4 = BILGE WATER AND WATER CONTAMINATED WITH OIL
5 = GROUP II HYDROCARBON WASTES
8 = ACIDS, BASES, AND AQUEOUS SOLUTIONS CONTAMINATED WITH METAL 10HS
9 = SOLID ROCKET BOOSTER RINSE WATER WASTES
10 = ACIDIC AND BASIC WASTES
11 = FUEL VAPOR SCRUBRER WASTES
13 = COMBUSTIBLE SOLIDS
14 = HONCOMBUSTIBLE SOLIDS
15 = MISCELLANEOUS WASTEWNIERS

BASELINE WASTE GENERATION FOR TITAN PROGRAMS BY TREATMENT CATEGORY TABLE 9.

	1	1982		1983		1984		1985	51	1986	1997 # 90	1987 # 00 vora
TREATMENT CATEGORY	T POUNDS	GALLONS OR CF	POUNDS	GALLONS OR CF	POUNDS	GALLONS OR CF	POUNDS	GALLONS OR CF	POUNDS	GALLONS OR CF	Pounds	GALLONS OR CF
-	•	0.	9.	0.	0.	0.	.0		0	•	c	
N.	13114.4	1890.2	32786.0	4725.5	13114.4	1890.2	26228.8	3780.4			.	0.
m	•	•	0.	ō.	0.	0.	0.	0.			∍ ∘	9 . 1
•	•	0.	0.	9.	9.	0.	0.		· •			≘. ∢
IO.	•	0.	0.	0.	0.	9.	0.	0.		· ·s		. «
89	•	0.	0.	0.	0.	•	0.	0.		2 =		
ው	•	•	0.	0.	0.	0.	9.	0.		? =	-	j (
0.	668057.3	80004.6	80004.6 1670143.3	200011.5	668057,3	80004.6	80004.6 1336114.5	160009.2		? <	?	=
=	830.0	100.0	2075.0	250.0	830.0	100.0	1660.0	200.0) (B	-		a. «
m T	720.0	14.8	1800,0	37.0	720.0	4.8	1440.0	29.6		2		
4	•	0.	9.	0.	ŋ.	0.	0.	9.	2 9		· •	0.
<u>n</u>	0.	.0.	• · ·	9.	0.	0.	0.	0.	0.	? 0.		. o

TREATMENT CATEGORY DEFINITIONS:

1 = RECOVERABLE FREON WASTES
2 = HYPERGOLIC FUELS AND HYPERGOLIC FUEL—CONTAMINATED WATER AND ALCOHOL
3 = GROUP I HYDROCARBON WASTES
4 = BILGE WATER RND WATER CONTAMINATED WITH OIL
5 = GROUP II HYDROCARBON WASTES
6 = ACIDS, BASES, AND AGUEGUS SOLUTIONS CONTAMINATED WITH METAL IONS
9 = SOLID ROCKET BOOSTER RINSE WATER WASTES
10 = ACIDIC AND BASIC WASTES
11 = FUEL YAPOR SCRUBBER WASTES
11 = FUEL YAPOR SCRUBBER WASTES
13 = COMBUSTIBLE SOLIDS
14 = NONCOMBUSTIBLE SOLIDS
15 = MISCELLANEOUS WASTEWATERS

ŧ

C

{

C

C

(

C

BASELINE WASTE GENERATION FOR CCF PROGRAMS BY TREATMENT CATEGORY TABLE 10.

330.0 3762.0 (0.3148.6 (0.3148.6 (0.3148.6 (0.3148.6 (0.3148.6 (0.3148.742.5 (0.3148.6	73000.0 609148.6 73000.0 6091 365000.0 3045742.5 365000.0 30457 .0 .0 .0
e e e	• • •
	365000.0 3045742.1

TREATMENT CATEGORY DEFINITIONS:

1 = RECOVERABLE FREON WASTES
2 = HYPERGOLIC FUELS AND HYPERGOLIC FUEL—CONTAMINATED WATER AND ALCOHOL
3 = GROUP I HYDROCARBON WASTES
4 = BILGE WATER AND WATER CONTAMINATED WITH OIL
5 = GROUP II HYDROCARBON WASTES
8 = ACIDS, BASES, AND AQUEOUS SOLUTIONS CONTAMINATED WITH METAL IOHS
9 = SOLID ROCKET BOOSTER RINSE WATER WASTES
10 = ACIDIC AND BASIC WASTES WHICH CONTAIN NO SIGNIFICANT METAL IONS
(PLUS OXIDIZER WASTES)
11 = FUEL VAPOR SCRUBBER WASTES
13 = COMBUSTIBLE SOLIDS
14 = NONCONBUSTIBLE SOLIDS
15 = MISCELLANEOUS WASTEWATERS

BASELINE WASTE GENERATION FOR COMBINED TITAN, ATLAS, AND CCF PROGRAMS BY TREATMENT CATEGORY

1987 & 88 (PER VR)	GALLONS OR CF	0.	9.	222.0	0.	1102.0	109500.0	9.	547500.0	51.0	4.4	0.	ō.
89 (P	S GA	_	•		Ö						_	_	_
1987 &	POUNDS	٠	•	1366.8	Ď.	12461.4	913723.0	0.	4568614.	425.3	117.8	0.	· ·
1986	GALLONS OR CF	0.	0	444.0	0.	1709.0	109500,0	G.	547500.0 4568614.0	162.0	4.8	0.	ъ.
•	POUNDS	0.	0.	3733.6	0.	19279.8	913723.0	0.	1568614.0	850.6	235.6	0.	0.
1985	GALLONS OR CF	0.	3780.4	444.0	0.	1709.0	109500.0	0.	707509.3 4568614.0	302.0	34.4	0.	0.
-	POUNDS	9.	26228,8	3733.6	0.	19279.8	913723.0	o.	3904729.0	2510.6	1675.6	0.	9.
984	GALLONS OR CF	0.	1890.2	444.0	0.	1544,0	73000.0	0.	445004,6 5904729,0	202.0	19.6	0.	•
-	Pounds	e.	13114.4	3733.6	0.	17398.8	609148.6	0.	3713900.0	1680.6	955.6	0.	·.
1983	GALLONS OR CF		4725.5	444.0	0.	1544.0	73000.0	0.	565011.5 3713900.0	352.0	41.8	0.	9.
	POUNDS	0.	32786.0	3733.6	9.	17398.8	609148.6	5	4715886.0	2925.6	2035.6	0.	9.
1992	GALLONS OR CF	e.	1890,2	444.0	0.	1544.0	73000.0	0.	445004.6 4715886.0	202.0	19.6	0.	ē.
	r POUND3	О.	13114.4	3733.6	0.	8.86241	609148.6	o .	3713800,0	1630.6	922.6	0.	•
	TREATMENT CATEGORY	-	O.	m	4	ហ	600	ō	10	=	13	<u> </u>	5

TREATMENT CATEGORY DEFINITIONS:

1 = RECOVERABLE FRECH WASTES
2 = HYPERGOLIC FUELS AND HYPERGOLIC FUEL—CONTAMINATED WATER AND ALCONO.
3 = GROUP I HYDROCARBON WASTES
4 = BILGE WATER RUD WATER CONTAMINATED WITH OIL
5 = GROUP II HYDROCARBON WASTES
8 = ACIDS, BASES, AND AQUEOUS SOLUTIONS CONTAMINATED WITH METAL IONS
9 = SOLID ROCKET BOOSTER RINSE WATER WASTES
10 = ACIDIC AND BASIC WASTES WHICH CONTAIN NO SIGNIFICANT METAL IONS
CPLUS OXIDIZER WASTES)
11 = FUEL VAPOR SCRUBBER WASTES
13 = CONBUSTIBLE SOLIDS
14 = HOHCONBUSTIBLE SOLIDS
15 = MISCELLANEOUS WASTEWATERS

C

C

G

SECTION 4

RECENT REGULATORY CONSTRAINTS

On October 13, 1981, the Governor of California signed an Executive Order designed to eliminate the land disposal of pesticides, PCB's, cyanides, toxic metal wastes, halogenated organics, and non-halogenated volatile organics (3). This Order was prompted by a report from the Office of Appropriate Technology (OAT) entitled, "Alternatives to the Land Disposal of Hazardous Wastes: An Assessment for California" (4).

Given the general descriptions of the waste streams covered by this Order, all of Categories 5 and 8 and parts of Categories 2, 3, and 11 from the Atlas/Titan/CCF will be affected. Within a few years (by the time the STS becomes operational at VAFB), land disposal of these wastes will be prohibited. In the interim, the State of California is considering imposing higher fees on the land disposal of these wastes until such time as the land disposal ban is implemented.

Suggested OAT landfill alternatives include waste reduction; waste recycling; physical, chemical, and biological treatment; high-temperature incineration; and solidification/stabilization. At the same time, OAT admits that these technologies have not been widely used in California, and more facilities will thus be needed to handle these wastes. Details on the implementation of the Executive Order are still forthcoming, and major changes, some of which could affect the SD wastes, are possible. However, the analysis presented in Section 5 is based on the assumption that land disposal in California will no longer be permitted for those wastes specified in the Executive Order. Out-of-state land disposal is still a possibility.

SECTION 5

IMPACTS OF TITAN, ATLAS, AND CCF WASTES ON STS HAZARDOUS WASTE MANAGEMENT

1. INTRODUCTION

In this section, each hazardous waste category will be discussed in terms of the contribution of wastes generated by the Atlas, Titan, and CCF facilities to the total SD waste load, and the concomitant impacts on treatment, recovery, and disposal options. Those management systems designed for the STS program will be evaluated to determine if they adequately meet any additional demands placed on them by other SD wastes. Again, it should be noted that the treatment systems discussed in the Space Shuttle report were based on a maximum of 15 launches per year, whereas the more recent projection is 10 launches per year.

Tables A-1 and A-2 (Appendix A) give a combined inventory of all SD wastes arranged by treatment category with a summary for each year of the program and the percent of the total waste load contributed by the Atlas, Titan, and CCF facilities. The summary table (A-2) is based on the new schedule of 10 launches per year. Table 12 presents a comparison of SD-generated wastes under both launch schedules.

In view of the Executive Order, it should be emphasized that under California law (Title 22, Division 4, Chapter 30, Article 12), some hazardous wastes are considered recyclable. If these wastes are not recycled, the State Department of Health may request that the Air Force provide written justification for not having recycled the wastes.

Table 13 lists some of the major chemical reclamation companies in California. The economics of recycling contaminated solvents vary widely depending on the demand for the reclaimed product. For example, the Air Force would pay for any solvent reclaimed for its use. If, however, the reclaimer intends to sell the purified product, the Air Force might be paid for the waste, with the fee variable depending on the demand for the reclaimed solvent. Values of such recoverable wastes are given in Table 14.

TABLE 12

COMPARATIVE BASELINE WASTE GENERATION FOR SD PROGRAMS BY TREATMENT CATEGORY (kg)

Program	1982	1983	1984	1985	1986	1987	1988	1989-1994 (per year)
	0 (1,1,1)	0	0	9,510	14,266	23,776	35,664	35,664
	STS (10) 0 TAC 0	0 0	0	9,510	14,266 0	23,776 0	23,776 0	23,776
	Hypergolic Fuels/Fuel-Contami	-Contaminated	d Water and	Alcohol				
	0 0 5,948	0 0 14,872	0 0 5,948	20,243 20,243 11,897	30,364 30,364 0	50,607 50,607 0	75,910 50,607 0	75,910 50,607 0
ਲ	Group I Hydrocarbons							
	0 0 1,694	0 0 1,694	0 · 0 1,694	2,063 2,063 1,694	3,094 3,094 1,694	5,157 5,157 847	7,735 5,157 847	7,735 5,157 847
≩	Group II Hydrocarbons							
	0 0 7,892	0 0 7,892	0 0 7,892	23,584 23,584 8,745	44,122 44,122 8,745	58,962 58,962 5,652	88,443 58,962 5,652	88,443 58,962 2,560
0]	utions Cont	Aqueous Solutions Contaminated with	th Metals					
	0 0 276,310	0 0 276,310	$0 \\ 0 \\ 276,310$	641 641 414,465	961 961 414,465	1,602 1,602 414,465	2,403 1,602 414,465	2,403 1,602 414,465

€

•

C

Ę

٤

Ę

TABLE 12 (continued)

1989-1994 (per year)		3,719,883 2,479,922 0		57,838,561 38,559,041 2,072,324		58,188 38,792 0		52,965 35,310 0		9,478 6,319
1988		3,719,883 2,479,922 0		57,838,561 38,559,041 2,072,336		58,188 38,792 193		52,965 35,310 0		9,478 6,319 0
1987		2,479,922 2,479,922 0		38,559,041 38,559,041 2,072,336		38,792 38,792 193		35,310 35,310 54		6,319 6,319 0
1986		1,487,953 1,487,953 0		23,135,422 23,135,422 2,072,327		23,275 23,275 386		21,187 21,187 107		3,791 3,791 0
1985		991,969 991,969 0		15,423,616 15,423,616 2,678,389		15,517 15,517 1,139		14,124 14,124 760		2,527 2,527 0
1984		000		0 0 1,684,583		0 0 762		0 0 437		000
1983		000		0 0 2,139,130	iquors	$0\\0\\1,327$		0 0 924		000
1982	Waters	000	cids, Bases	0 0 1,684,583	Fuel Vapor Scrubber Liquors	0 0 762	e Solids	0 0 437	Noncombustible Solids	000
Program	SRB Rinse Waters	STS (15) STS (10) TAC	Oxidizer/Acids,	STS (15) STS (10) TAC	Fuel Vapor	STS (15) STS (10) TAC	Combustible Solids	STS (15) STS (10) TAC	Noncombust	STS (15) STS (10) TAC
Trt Cat.	6		10		11		13		14	

TABLE 13

SOLVENT RECLAIMING OPERATIONS IN CALIFORNIA

	Category 1	Category 2a	ry 2a	Category 3			Cat	Category 5		reinen eine der der der der der der der der der de
Solvent Reclaimer	Freon	Hydrazine	HWH	Heptane	Perchloro- ethylene	Methylene Chloride	Cellusolve Acetate	Cellusolve Methy Ethyl TCE/Freon Acetate Ketone Mixture	TCE/Freon Mixture	Misc. Solvent Mixtures
Baron-Blakeslee, Gardena	•			•	•	•			0	
Bayday Chemical Company, Santa Clara	•			0	0	•	0	0	0	0
Davis Chemical Company, Los Angeles	0			0	•	•	0	•	•	0
Environmental Recovery, Long Beach	0		•		•	•	The state of the s		0	0
Gold Shield Solvents, Los Angeles					•				•	
Oil and Solvents Process Company, Azusa	•			0	•	•	0	•	0	0
Zero Waste Systems, Oakland	•	0	0	0	•	•	0	0	0	0

• Reclaimer pays for waste.

OReclaimer takes waste for free or purifies it for reuse for a fee.

Reclaimer does not accept waste.

C

C

TABLE 14

į

VALUE OF RECOVERABLE WASTES

Waste Category	Waste Description	Reimbursement to Air Force for Sale of Waste Solvents (\$ per gal received)	Cost of Reclaiming Solvent for Air Force Reuse (\$ per gal recovered)
	Freon	0.50 to 1.25	5.00 to 6.00
>	Perchloroethylene	0.25 to 0.75	1.50 to 2.40
•	Methylene Chloride	0.45 to 0.75	1.50 to 2.20
	Methyl Ethyl Ketone	0.10 to 0.25	1.50 to 2.20
	TCE/Freon Mixture	0.10 to 0.25	1.50 to 3.00

Some commercial reclaimers reimburse in terms of recovered quantities rather than quantities rather than quantities received.

2. CATEGORY 1: FREON WASTES

1

The only identified source of waste freon from the Titan and Atlas facilities is SCAPE suit cleaning. Some freon is used for vapor degreasing, but this process generates no waste products. The amounts of freon wastes are negligible by comparison to the quantities generated by STS operations.

3. CATEGORY 2: HYPERGOLIC FUEL WASTES AND HYPERGOLIC FUEL-CONTAMINATED WATER AND ALCOHOL

For the purposes of treatment and disposal evaluations, this category can be divided into two subcategories: (a) fuel wastes, and (b) wastewaters/alcohols contaminated with hypergolic fuels.

The only year in which all SD facilities can be expected to generate wastes is 1985. In this year, 41 percent (by volume) of the wastes will be generated from SLC 4. However, because of increasing numbers of STS launches per year, the SD Category 2 waste load is expected to increase by over 50 percent after the Titan launches cease.

C

Over 99 percent of the Titan Category 2 waste is Category 2b; 75 percent of this is alcohol-based, whereas most of the STS 2b wastes are water-based. The types of physical/chemical treatments under consideration for fuel-contaminated water at VAFB will be inadequate to handle the alcohol wastes. Since land disposal in California has been ruled out, only incineration, solvent recovery, and out-of-state land disposal are available as options. The impact of these wastes on storage/transfer and incineration facilities will be discussed later.

4. CATEGORY 3: GROUP I HYDROCARBON WASTES

Category 3 includes petroleum-based lubricants, greases, motor oils, gasoline, and fuels from equipment maintenance and spills, and Group I hydrocarbon solvents (i.e., unsubstituted solvents such as heptane). In 1985, wastes from SLC 3 will constitute almost 50 percent of the SD Category 3 waste load. This will decrease to about one-third in 1986, one-seventh in 1987 and 1988, and none thereafter. Most of the STS Category 3 wastes are recyclable; 99 percent of the SLC 3 wastes are not. The major component of the SLC 3 Category 3 wastes is sludge from the Atlas RP-1 fuel tanks. Again, land disposal will probably not be permitted in California. Incineration is the most likely alternative.

5. CATEGORY 4: BILGE WASTES

No bilge wastes are produced at SLC 3, SLC 4, or CCF.

6. CATEGORY 5: GROUP II HYDROCARBON WASTES

Category 5 includes halogenated hydrocarbon solvents, cleaning solvents, paints and paint wastes, paint strippers, etc. SLC 3 will produce Category 5 wastes through 1988, and the CCF will generate these wastes through 1994. Approximately 95 percent (by volume) of these wastes are solvents, and are thus considered recyclable. The other viable option is incineration. Since the combined Category 5 waste totals of SLC 3, CCF, and STS (the latter at 10 launches per year) never exceed the totals presented in the first STS inventory (based on 15 launches per year), the additional wastes are not expected to have any noticeable impact on the management of Category 5 wastes.

7. CATEGORY 8: ACIDS, BASES, AND AQUEOUS SOLUTIONS CONTAMINATED WITH METAL IONS

The CCF produces over 99 percent of all SD Category 8 wastes. These consist of metal finishing wastewaters containing chromium and cyanide. The CCF is currently treating these wastes in-house, and discharging the treated wastewaters to the sewer system. Because of ambiguities in the hazardous waste regulations, there is some uncertainty as to whether these wastewaters should be considered hazardous wastes or industrial wastewater discharges covered under existing wastewater regulations. An EPA ruling will be required for clarification. It is possible that the CCF will need an RCRA permit to operate as a hazardous waste treatment facility, in which case it will be required to meet the appropriate regulations. In any case, as long as the CCF treats its own Category 8 wastewaters, these wastes will not affect the SD waste management plans.

8. CATEGORY 9: SRB RINSE WATERS

No SRB rinse waters are generated at SLC 3, SLC 4, or CCF.

9. CATEGORY 10: ACID AND BASE SOLUTIONS NOT CONTAMINATED WITH METAL IONS

Category 10 includes general acid and base wastewaters low in organics and metals. This includes waste oxidizer and wastewaters containing oxidizer. For treatment and disposal purposes, it is helpful to divide the category into three subcategories: (a) waste oxidizer; (b) wastewaters containing oxidizer; and (c) general acid/base wastewaters, including deluge waters. SLC 3, SLC 4, and CCF do not contribute a significant portion of the total Category 10 wastes. However, almost all of the Category 10 wastes consist of SLC 4 deluge water and caustic wastewaters from CCF. The deluge water at SLC 3 has been shown to be nonhazardous through detailed chemical analyses (see Volume 1). Consequently, it is excluded from all discussions in this volume. At the present time, the deluge water is being discharged to grade, and the caustic wastewaters are neutralized and discharged to the sewer system. Thus, at present, they do not directly impact the treatment/disposal alternatives under consideration for the STS.

However, the deluge water may pose new treatment/disposal problems. There is some question as to whether the discharge of the deluge water to grade is permissible. SLC 4 overlies a geologic area conterminous with the principal Lompoc ground water supply aquifer. Without further geologic and soils testing, however, it is impossible to determine whether the SLC is in hydraulic continuity with the aquifer, or to what degree the deluge water migrates through the soil rather than evaporates. Also, without detailed analyses of the deluge water, it is impossible to determine whether it even constitutes a threat to the aquifer. If the water contains no toxic or hazardous pollutants, then they pose no problem. In the absence of more complete knowledge of the hydrogeology or chemical composition of the deluge water, it might be necessary to install regularly lined and bermed evaporation basins below the SLC. Another possibility, if the water meets NPDES standards, is ocean discharge.

This problem can be resolved by conducting (1) a complete chemical characterization of the deluge water, and (2) extensive hydrogeological testing. There are several potential options available for the treatment/disposal of the wastewater; selection among them will largely be based on a number of regulatory constraints which may or may not be applicable, depending on the chemical makeup of the deluge water. The deluge water cannot be disposed of in such a way as to degrade the quality of a water supply aquifer by contaminating it with toxic materials, or adversely affect the natural ocean environment. Thus, a graded selection of disposal options exists, with selection controlled by the character of the wastewater. If no contaminants are found in the water, continued disposal to grade may be justifiable. Low levels of contamination could preclude uncontrolled surface discharge, but slow-release ocean discharge might still be acceptable. Higher levels of contamination would dictate either waste treatment or hydrogeologically isolated disposal facilities.

Disposal site hydrogeology plays another important role. If it can be established through extensive hydrogeological testing that the disposal site is not in hydraulic continuity with the aquifer and that past wastewater disposal has not affected water quality, then continued discharge to grade might be acceptable, even if moderately contaminated. This is a distinct possibility in view of the projected cessation of launch activities at SLC 4 in the near future. A short-term variance might be granted, although not without some stipulation for sophisticated monitoring.

If the wastewater quality or site hydrogeology preclude simple discharge, several treatment/disposal options exist. The deluge water could be piped to the evaporation basin at SLC 6. The appropriate piping installation would cost about \$125,000 (1981 dollars). This does not alleviate the immediate problem, however, as the SLC 6 facility will not be operational until 1985, and the Titan and Atlas launch programs will end shortly

thereafter. By comparison, the installation of simple gravity flow pipelines to ocean outfalls would cost about \$12,000 at SLC 4.

An evaporation basin could be constructed at the SLC. A simple 100,000-gallon basin with 60-cm freeboard, elastomeric membrane liner, and leachate collection system could be constructed for about \$25,000 (1981 dollars). As a new facility, this basin would not be covered under existing permits.

It might also be possible to treat the water to a sufficient degree to discharge it to grade. A package treatment system, such as reverse osmosis, could be installed at each SLC for the duration of the planned launch activities. Reverse osmosis could provide a water of sufficient quality to be discharged to grade or to the ocean. A single reverse osmosis system, including pretreatment to remove particulates and scale-forming contaminants and to adjust pH, could be installed for \$15,000 to \$20,000. This system is known to remove any heavy metals and some organics; however, most of the organics are not removed. Unlike evaporation basins, reverse osmosis has a significant annual operating and maintenance cost component, with estimates ranging from \$3,200 to \$7,200 per year. This includes power (20 kWh per 1,000 gallons) and labor (10 hours per month). In addition, special training is required to operate the system. At best, the system recovers 90 percent (by volume of the total wastewater quantity) of the good quality water; the remaining 10 percent or more consists of concentrated brine and sludge (from pretreatment opera-Neither can be disposed of to grade or in the ocean. Thus, the brine and sludge would probably have to be drummed and transported to a suitable disposal facility elsewhere.

10. CATEGORY 11: FUEL VAPOR SCRUBBER WASTES

Category 11 includes effluent from hypergolic fuel vapor scrubbers. Both SLC 3 and SLC 4 have scrubbers. The scrubber at SLC 4 contains 50 gallons of water and 1 gallon of 38 percent HCl (pH <1). The chemical treatment method suggested for STS Category 11 wastes should be equally effective with the SLC wastes. Furthermore, the additional quantity (less than 10 percent of the total) should place no burdens on the system described therein (see Table 24, Space Shuttle report) (2). The only additional cost would be that for transporting the waste (one 55-gallon drum per launch per SLC) to the treatment facility.

11. CATEGORY 13: COMBUSTIBLE SOLID WASTES

Operations at both SLC's generate small quantities of rags soaked in solvents or oils. They do not contribute greatly to the overall Category 13 waste load (only 5 percent in 1985, and less thereafter). Thus, their impact is expected to be negligible.

12. CATEGORIES 14 AND 15: NONCOMBUSTIBLE SOLID WASTES AND MISCELLANEOUS WASTEWATERS

Wastes from these categories are not generated at SLC 3 or SLC 4. Empty chemical containers from the CCF (e.g., those holding acutely hazardous material such as cyanides) would have to be considered hazardous if they were not triple-rinsed with an appropriate solvent.

13. CONCLUSIONS

All cost figures presented in the original Space Shuttle report were based on wastes generated from 15 STS launches per year. Because of the revised shuttle launch schedule, the combined SD waste totals nowhere exceed those earlier estimates. Thus, it is not anticipated that the addition of Atlas, Titan, and CCF wastes to the STS waste load will create any new expenses or overburden planned facilities. Furthermore, treatment/storage/disposal facilities designed to handle the maximum STS waste load (even at 10 launches per year) should be able to accommodate the added SD wastes. The various programs overlap only in the early years of the STS program when the number of flights is fewer than 10 per year. The combined yearly totals seldom exceed the maximum STS waste load.

In addition, there are already transport, storage, treatment, and disposal arrangements for most of the existing Atlas, Titan, and CCF wastes. Many of these could be easily integrated into the STS waste management plan with no additional costs.

There are only a few areas of concern in regard to Titan, Atlas, and CCF wastes. The CCF produces several wastewaters which have no counterpart in the STS program, i.e., metal finishing wastewaters containing chromium and cyanide (Category 8). At the present time, these are being treated and discharged to the sewer system, adding no new treatment burden to SD operations. However, it may be necessary to acquire RCRA treatment facility permits for the CCF; this could conceivably entail some upgrading of the CCF facilities.

The Titan deluge water is another area of concern. If the deluge water is deemed hazardous under RCRA, or if it exceeds NPDES standards and site hydrogeology indicates hydraulic continuity with the Lompoc aquifer, the simple discharge to grade will no longer be allowed. Under such circumstances, an engineered disposal system (e.g., evaporation basin, ocean outfall) or treatment system (e.g., reverse osmosis) will be necessary over the remaining life of the Titan program. Detailed deluge water analyses and hydrogeological studies are needed to establish whether a problem exists and how best to approach it.

The waste alcohol contaminated with hydrazine from SLC 4 also adds a new disposal burden. Again, there is no comparable STS waste stream, and no waste management schemes were developed

with this waste in mind. With land disposal in California soon to be prohibited, the remaining options include solvent recovery, incineration, or transport to an out-of-state disposal facility.

REFERENCES

- 1. SCS Engineers. Hazardous Waste Inventory and Disposal Assessment for the Space Shuttle Project: Volume I. Inventory. SD-TR-81-32, March 1981.
- 2. SCS Engineers. Hazardous Waste Inventory and Disposal Assessment for the Space Shuttle Project: Volume II. Treatment and Disposal Alternatives; Volume III. Appendices. SD-TR-81-32, July 1981.
- 3. Executive Order. Executive Department, State of California, October 13, 1981.
- 4. State of California, Toxic Waste Assessment Group, Governor's Office of Appropriate Technology. Alternatives to the Land Disposal of Hazardous Wastes: An Assessment for California. Sacramento, California, 1981.
- 5. Russell and Axon. Chemical Waste Disposal Facilities Preliminary Engineering Report. PCN 77851. National Aeronautics and Space Administration, Florida, October 1977.

APPENDIX A

COMBINED SD HAZARDOUS WASTE INVENTORY ARRANGED BY TREATMENT CATEGORY

TABLE A-1. BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATMENT CATEGORY * į

TRT	FACILITY	WASTE MATERIAL	SOL ⁄. LIQ	BASELINE MASS KILOGRAMS PO	MASS POUNDS	BASELINE VOLUME LITERS GAL OR	VOLUME SAL OR CF
-	0	CONTAMINATED FREDN	1	2376.8	5240.0	1514.0	400.0
-	31	FREON 113	_	â	1.3	4	- -
-	66	FREON TMC	_	~	ú	0.	0.
TOTALS	S FUR TREA	-			•	•	•
A I	TLAS LAUNCH	ATLAS LAUNCH FACILITIES (SLC 3) TITAN LAUMCH FACILITIES (SLC 4)		. .	• • ·	0.0	0.0.
2	MPONENT CL	COMPONENT CLEANING FACILITY		0.	0.000	9.7	0.004
S T S	SIS NOKIH VAFE (SS SIS SOUTH VAFE (SS SIS PORT HUENEME (E	NOKIH VAFE (SS 17,18,19,21) SOUTH VAFE (SS 23,31,33,99) PORT HUENEME (SS 32)		63.63	0.0450 1.6	4.0	0 - 0 · · · · · · · · · · · · · · · · ·
N	SLC 4	HYDRAZINE	-1	3.6	8.0	3.8	9.
8	SLC 4	HYDRAZINE	ب	0.	0.	0.	0.
čί	SLC 4	HYDRAZINE/WATER WASTES	J.	9:952	1668.0	757.0	200.0
cv.	sic 4	HYDRAZINE/WATER WASTES	٠ ٦	0.	0	ů.	0.
0	SLC 4	ISOPROPANOL	لد	568.3	1253.0	726.7	192.0
Ø	SLC 4	ISOPROPANOL		623.2	1374.0	794.8	210.0
Ø	SLC 4	NETHANOL	_	1004.2	2214.0	1271.8	336.0
8	SLC 4	прин	ر	15.9	35.0	20.1	5.3
8	SLC 4	нып	ų	2.4	5.2	3.0	ŵ
, CI	SLC 4	прин	ب	0.	0.	0.	9.
N	12	CONTAMINATED DILUTION WATER MAH	_	0	0.	Û.	0.
64	61	HYDRAZINE	ب	0.	0.	0.	ė.
8	61	HYDRAZINE	ب	63.0	150.0	68.1	18.0
α	<u>e</u>	WASTEWATER FROM PAYLOAD/ORB	ب	544.3	1200.0 120.0	567.8 56.8	150.0 15.0
8	6-	WASTE FUEL AND PRINGL 355 HYDRAZINE MNH	٦	36.3	80.0 4.0	37.8	10.0

* FOR SLC3, SLC4 & STS QUANTITIES ARE GIVEN ON A PER LAUNCH BASIS; FOR CCF, ANOUNTS SHOWH ARE PER YEAR.

TABLE A-1 (CONT.) BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATMENT CATEGORY

19 HOHOMETHYL HYDRAZIHE L 35.4 78.0 40.5 10.7 19 HOHOMETHYL HYDRAZIHE L 9.1 20.0 10.2 2.7 19 HOHOMETHYL HYDRAZIHE L 113.8 41.4 21.6 5.7 19 HOHOMETHYL HYDRAZIHE L 13.3 29.4 15.1 4.0 21 HOHOMETHYL HYDRAZIHE L 41.6 91.8 47.7 12.6 21 HOHOMETHYL HYDRAZIHE L 10.0 28.0 11.4 21.6 30.0 23 HYDRAZIHE L 20.0 .0 .0 .0 .0 .0 23 HYDRAZIHE L 20.2 .0 .0 .0 .0 .0 .0 23 HYDRAZIHE L 20.2 1.25.0 35.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	LL I	FACILITY	WASTE MATERIAL	81AL	\$01/ 	BASELINE MASS KILOGRAMS	MASS POUNDS	BASELINE VOLUME LITERS GAL OR	IE VOLUME GAL OR CF	
HONOMETHYL HYDRAZINE		61	MONOMETHYL	HYDRAZINE	ر ا	35.4	78.0	40.5	10.7	1
HONOMETHYL HYDRAZINE		61	HOHOMETHYL	HYDRAZINE	د	9.1	20.0	10.2	2.3	
HONOMETHYL HYDRAZINE		61	HOHOMETHYL	HYDRAZIHE	ر	18.8	4.14	21.6	5.7	
HONOMETHYL HYDRAZINE		61		HYDRAZINE	ر	8.8	4.14	21.6	5.2	
MONDMETHYL HYDRAZINE		6		HYDRAZIHE	_ ــ	13.3	29.4	15.1	4.0	
UASTEWATER WITH WHH		6		HYDRAZINE	٠	41.6	8.16	47.7	12.6	
HYDRAZINE		15		WITH MMH	ت	108.0	238.0 22.0	113.6	30.0	
HYDRAZINE		21		HYDRAZINE	_	0.	0.	9.	0.	
HYDRAZINE		23	HYDRAZINE		۔	208.2	459.0	189.3	50.0	
HYDRAZINE-CONTAM. WASTEWATER L 567.9 1552.0 567.8 150.1 HYDRAZINE-CONTAM. CLNUP WATER L 189.1 417.0 189.3 50.1 HYDRAZINE-CONTAM. CLNUP WATER L 2271.1 5007.0 2271.0 600.1 HYDRAZINE L 340.6 751.0 378.5 100.0 HYDRAZINE L 330.7 729.0 378.5 100.0 MONOMETHYL HYDRAZINE L .0 .0 .0 .0 LBM PROFELLANT PARAZINE L .0 .0 .0 .0 HYDRAZINE L .0 .0 .0 .0 .0 HYDRAZINE L .0 .0 .0 .0 .0 .0 HYDRAZINE L .0 .0 .0 .0 .0 .0 .0 HYDRAZINE L .0 .0 .0 .0 .0 .0 HYDRAZINE L .0 .0 .0 .0		23,	HYDRAZINE		١	0.	0.	0.	0.	
HYDRAZINE L 189.1 417.0 189.3 50.0 MASTEMATER FRON PPR HYDRAZINE L 2271.1 5007.0 2271.0 600.0 PRINOL 35S HYDRAZINE MMH L 340.6 751.0 378.5 100.0 MONOMETHYL HYDRAZINE MMH L 330.7 729.0 378.5 100.0 LBM PROFELLANT PARAZINE PARAHYDRAZINE UNSYM DINETHYLHYDRAZINE UNSYM DINETHYLHYDRAZINE UNSYM DINETHYLHYDRAZINE UNSYM DINETHYLHYDRAZINE UNSYM DINETHYLHYDRAZINE LYDRAZINE L 109.5 241.3 109.0 .0 HYDRAZINE HYDRAZINE LYDRAZINE L		23	HYDRAZINE-CO HYDRAZINE	OHTAM. WASTEWATER	_	567.9 28.1	1252.0 62.0		150.0	
WASTEWATER FROM PPR HYDRAZINE L 2271.1 5007.0 2271.0 600.1 PRIMOL 355 HYDRAZINE MYDRAZINE MYDRAZINE L 330.7 729.0 378.5 100.0 LBM PROPELLANT PARAZINE UNSYM DIMETHYLHYDRAZINE UNSYM DIMETHYLHYDRAZINE UNSYM DIMETHYLHYDRAZINE UNSYM DIMETHYLHYDRAZINE L 109.5 241.3 109.0 28.8 HYDRAZINE L 41.0 90.5 40.9 10.8 HYDRAZINE L 108.9 241.3 109.0 .0 HYDRAZINE L 108.9 241.3 109.0 .0 HYDRAZINE L 108.9 240.9 113.6 30.0		23	HYDRAZINE-CO HYDRAZINE		۲	189.1	- 17			
PRINOL 35S HYDRAZINE MONOMETHYL HYDRAZINE L 340.6 751.0 378.5 MONOMETHYL HYDRAZINE UNSYN DIMETHYLHYDRAZINE UNSYN DIMETHYLHYDRAZINE HYDRAZINE L .0 .0 .0 HYDRAZINE HYDRAZINE L .0 .0 .0 HYDRAZINE HYDRAZINE L .0 .0 .0 HYDRAZINE L .0 .0 .0				FRON PPR	_	2271.1	5007.0	2271.0	600,0	
MOHOMETHYL HYDRAZINE L 330.7 729.0 379.5 MOHOMETHYL HYDRAZINE L ,0 .0 .0 LBM PROFELLANT PARAHYDRAZINE UNSYM DIMETHYLHYDRAZINE L ,0 .0 HYDRAZINE L 109.5 241.3 109.0 PRIMOL 355 L .0 .0 .0 HYDRAZINE L 41.0 90.5 40.9 HYDRAZINE—CONTAMINATED WATER L 108.9 240.0 113.6		23	PRINOL 355 HYDRAZINE MMH		ı	340.6	751.0	378.5	100.0	
MONOMETHYL HYDRAZINE L ,0 ,0 ,0 LBM PROPELLANT PARATINE UNSYM DIMETHYLHYDRAZINE L ,0 ,0 HYDRAZINE HYDRAZINE HYDRAZINE L 109.5 241.3 109.0 PRIMOL 355 L L ,0 ,0 ,0 HYDRAZINE L 41.0 90.5 40.9 HYDRAZINE-CONTAMINATED WATER L 108.9 240.0 113.6		23	_	4YDRAZINE		330.7	729.0	378.5	0.001	
LBM PROPELLANT L .0 .0 .0 PARAHYDRAZINE UNSYM DINETHYLHYDRAZINE HYDRAZINE L 109.5 241.3 109.0 28 HYDRAZINE HYDRAZINE L .0 .0 .0 .0 HYDRAZINE L 41.0 90.5 40.9 10 HYDRAZINE L 103.9 240.0 113.6 30		23	_	HYDRAZINE	د.	0.	0.	0.	0.	
HYDRAZINE L 109.5 241.3 109.0 28 PRIMOL 355 L .0 .0 .0 HYDRAZINE L 41.0 90.5 40.9 10 HYDRAZINE-CONTAMINATED WATER L 103.9 240.0 113.6 30	**	53	LBM PROPELLA PARAHYDRAZI UNSYM DINET	ANT INE IHYLHYDRAZINE	L	9 .	0 .	0.	e.	
PRIMOL 355 L .0 .0 HYDRAZINE L 41.0 90.5 40.9 10 HYDRAZINE-CONTAMINATED WATER L 103.9 240.0 113.6 30			HYDRAZINE		ا۔	109.5	241,3	109.0	28.8	
HYDRAZINE-CONTAMINATED WATER L 103.9 240.0 113.6 30						0.	0.	9.	0.	
HYDRAZINE-CONTAMINATED WATER L 108.9 240.0 113.6			НУВВА21ИЕ		٦.	41.0	90.5	40.9	10.8	
	• •		HYDRAZINE-CO	WTAMINATED WATER	_	103.9	240.0	113.6	30.0	

C

€.

C

ŧ,

TABLE A-1 (CONT.) BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATMENT CATEGORY

TRI	FACILITY	WASTE MATERIAL	80F/	BASELINE MASS KILOGRAMS	MASS POUNDS	BASELINE VOLUME LITERS GAL OR	VOLUME GAL OR CF
2	32	WASTE FUEL & PRIMOL 355 HYDRAZINE	ı	0.	0.	0.	0.
TOTALS ATL TIT	ALS FOR TREATMENT CATE ATLAS LAUNCH FACILITIE: TITAN LAUNCH FACILITIE	ப்பா		2974.3	.0	3577.2	945.1
COMF 313 315 315	COMPONENT CLEANING FAC STS HORTH VAFB (SS 17, STS SOUTH VAFB (SS 23, STS FORT HUEHEME (SS 3	EANING FACILITY FB (SS 17,18,19,21) FB (SS 23,31,33,99) HEME (SS 32)		.0 893.6 4017.1 149.9	1970.0 8856.3 330.5	.944.0 4083.3 154.4	249.4 1078.8 40.8
m	erc 3	OILS, USED	ı	7.6	16.8	7.6	2.0
m	SLC 3	RP-1 SLUDGES	ب	839.1	1850.0	832.7	220.0
т	17	FUEL, DIESEL	٦	0.	0.	0.	0.
ניו	17	FUEL, DIESEL & OIL, DIESEL	ب	0.	0.	0.	0.
m	8	HYDRAULIC FLUIDS		£.4	87 64	9.3	2.5
m	61	VACUUM PUMP 01L TEXACO REGAL 01L 068	٦	4. N	10.0	4. NJ	1.2
מיו	23	HYDRAULIC FLUIDS TETRAORTHOCRESOL PHOSPHATE	٦	393.7 393.7	868.0 868.0	378.5	100.0 100.0
m	31	FUEL AND OIL SPILLS	_	ō.	0.	0	û.
m	31	FUEL & OIL WASTES	_	38.1	34.0	37,8	10.0
m	35	PRESERVATIVE CHEMICALS PROTECTIVE LUBRICANTS	_	0.	e.	0 .	0.
3	32	DIESEL FUEL & OIL SPILLS	_	0.	0.	0.	0
m	33	HYDRAULIC FLUIDS	ب	0.	0.	0.	9.
M	66	HEPTANE	ن	75.1	165.5	113.2	29.9
11AL A1 T1 CC S1 S1	TOTALS FOR TREATMENT CATE ATLAS LAUNCH FACILITIE TITAN LAUNCH FACILITIE COMPONENT CLEANING FAC STS HORTH VAFB (SS 17, STS SOUTH VAFB (SS 23, STS PORT HUENENE (SS 3	TMENT CATEGORY 3 FACILITIES (SLC 3) FACILITIES (SLC 4) EANING FACILITY- FB (SS 17,18,19,21) FB (SS 23,31,33,99)		846.8 6.3 6.0 6.0 8.0 6.0 7.0 6.0	1866.8 0 . 0 19.51	840.3 .0 .14.0 529.5	222.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

CATEGORY
TREATMENT
9
PROGRAMS
DIVISION
SPACE.
ÀLI
FOR ALL
TION
GENERATIO
BASELINE WASTE
INE
BASEL
- -
CCONT
A-1
TABLE

C

C

C

TABLE A-1 (CONT.) BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TPEATMENT CATEGORY

m

VOLUME GAL OR CF		55.0	50.0	0.	0	0.0	300.0	51.0	3.0	4.0
BASELINE VOLUME LITERS GAL OR		208.2	189.3	0.	e.	151.4	1135.5	193.0	-	15.1
1ASS POUNDS		642.6	584.0	0.	0	30.00 0.00 00 0.00 00 00 00 00 00	3319.0	564.0	27.0 3.5 6.1 3.8 3.8	37.0
BASELINE MASS KILOGRAMS		. 291.5	264.9	0.	e .	644- W	1505.5	255.8	20 20 20 20 20 20 20 20 20 20 20 20 20 2	16.8
SOL/ L19	>-	٦	ر	٠ .	٦	MER .		٠.	L ADD I	٦
WASTE MATERIAL	SILICA HIGH MOLECULAR WEIGHT EPOXY CELLOSOLVE ACETATE TOLUENE METHYL ETHYL KETONE	SOLVENT MIXTURE FREON TMC/MF/TF SYM, TETRACHLOROETHANE	CONTAMINATED SOLVENTS	MSA-1, PART A CUNMIXED). METHYLENE CHLORIDE EPICHLORHYDRIN/BGE	MSA-1, PART B (UNMIXED) METHYLENE CHLORIDE PERCHLOROETHYLENE METHYLENE DIANILINE M-PHEHYLENE DIANINE ETHYL ALCOHOL PHENOLIC MICROSPHERES GLASS ECOSPHERES GLASS FIBERS BENTONE 27	MTA-2 (UNMIXED) EPICHLORHYDRIN/BGE LP-3, POLYSULFIDE LIG POLYMER MDA & mPDA STANNOUS OCTORTE PHENOLIC MICROSPHERES METHYLENE CHLORIDE PERCHLOROETHYLENE	MSA-1 CONTAMINATED MECL	METHYLENE CHLORIDE	BOSTIK EPOXY PRINER EPOXY RESIN AMINE CURING AGENT TITANIUM DIOXIDE CHROMATE PIGMENTS INERT PIGMENTS SUSPENSION & FLOW CONTROL ADDI	BOSTIK EPOXY TOPCOAT
FACILITY		23	. 23	31	- m	÷.	31	31	ñ	31
TRI		ເດ	ນ	ល	ю	Ŋ	ស	rc	ហ	เว

TABLE A-1 (CONT.) BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATMENT CATEGORY

BASELINE VOLUME LITERS GAL OR CF		o .	•	Ð. E	0.		300.0	45.0	100.0	50.0	50.0	7.
BASELI		œ m	æ. r	- - 4	0.	4.	1135.5	170.3	378.5	189.3	189.3	Ą.
MASS POUNDS	9.0 7.5 5.0 15.0	9 0 2 0 2 0	0.4	39.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.	4.	4083.0	612.0	1168.0	584.0	584.0	
BASELINE MASS KILOGRAMS	4 K + 8	8. 9.E. 7. 7.51	8	5	0	9.	1852.0	277.6	529.8	264.9	264.9	ເບ
80L/ LI0	o I	_	٦	٠.	ب	ب	E L	_		نـ	1 ⊢	ب
WASTE MATERIAL	EPICHLORHYDRIN/BISPHENOL A AMINE CURING AGENT COLOR PIGNENT SUSPENSION & FLOW CONTROL ADDI SOLVENTS PHOTOCHEM REACTIVE SOLVENTS NONPHOTOCHEM REACTIVE	RUSTOLEUM PRIMER SILICATES YELLOW IRON OXIDE TITAMIUM DIOXIDE CALCIUM BOROSILICATE BENTONITE LINSEED PHENOLIC ALKYL RESIN ALIPHATIC HYDROCARBONS DRIERS AND ADDITIVES	RUSTOLEUM TOPCOAT SILICATES TITANIUN DIOXIDE BENTONITE CLAY TINTING COLORS ALKYL RESIN ALIPHATIC HYDROCARBONS DRIERS & ADDOTIVES	GACOFLEX TITANIUM DIOXIDE CLAY HYPALON HYDROCARBON RESIN PERCHLOROETHYLENE 1,1,1-TRICHLOROETHANE EPOXIDIZED SOYBEAN OIL	PAINT-SPILL ABSORBANT	PERCHLOROETHYLENE	MSA-1 CONTAM PERCHLOROETHYLENE	PERCHLOROETHY1. ENE	MTA-2 CONTAMINATED SOLVENTS	BOSTIK CONTAMINATED SOLVENTS	RUSTOLEUM CONTAMINATED SOLVENT	TRICHLOROETHAME
FACILITY		Ē	.		31	31	31	31	31	31	31	31
TRT												

C

O

O

C

TRT CAT	FACILITY	WASTE MATERIAL	SOL/ LIG	BASELINE MASS KILOGRAMS FO	MASS FOUNDS	BASELINE VOLUME LITERS GAL OR	4E VOLUME GAL OR CF
100	31	TRICHLORDETHANE		91.6	180.0	9.09	16.0
IO.	3.5	SOLVENTS FREON TMC/TM SOLVENTS, UNSFECIFIED	ر	9.01	23,4	7.6	2.0
n	66	CELLOSOLVE ACETATE	_	107.0	236.0	113.2	29.9
ທ	66	POUR FOAM PART A (UNMIXED) DIPHENYL NETHANE DIISOCYANATE FREON 11 POLYOLS, AMINES	<u>н</u>	6.4 3.2 2.0 1.1	0.7 0.7 0.7 0.7 0.8	18.9	5. 0
in.	. 66	POUR FOAM PART B (UNMIXED) - FREON 11 - AMINE CATALYST - POLYETHER FOLYOL BLEND	_	6. 4 6	14.0 2.8 10.9	6.8	ກ ວ
ı,	66	METHYL ETHYL KETÖNE	_	88,4	194.9	109.8	29.0
ເກ	66	EPOXY PRIMER METHYLENE ISOBUTYL KETONE XYLENE CYCLOHEXANONE CHROMATES INORGANIC PIGMENTS N-BUTANOL TOLUENE AMIND SILANE METHYL ETHYL KETONE	٦	•.	•	e. ·	•
រហ	66	D.C. 1200 VM AND P NAPTHA ORGANOMETALLIC SALTS	-	0	-	0.	0.
ស	66	SOLVENT REDUCER NETHYL ETHYL KETÖNE CYCLOHEXANONE	٦	ν	9	4.	-
ß	66	MEK & CELLOSOLVE		12.2	26.9	15.1	4.0
ហ	66	1,1,1-TRICHLOROETHANE		- .	'n.	0.	0.
E 4 ⊢ Ω 0 0 0	TOTALS FOR TREATMENT ATLAS LAUNCH FACI TITAN LAUNCH FACI COMPUNENT CLEANIN STS NORTH VAFB (S STS SOUTH VAFB (S	ALS FOR TREATMENT CATEGORY 5 ATLAS LAUNCH FACILITIES (SLC 3) TITAN LAUNCH FACILITIES (SLC 4) COMPUNENT CLEANING FACILITY STS NORTH VAFB (SS 17,19,19,21) STS SOUTH VAFB (SS 23,31,33,99)		3092.8 .0 1706.4 7.1 5878.3	6818,4 .0 .0 3762.0 15.6 12959.6	2297.5 .0 1249.1 7.2 4323.2	607.0 .0 330.0 1.9 1142.2

TABLE A-1 (CONT.) BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATNENT CATEGORY

Ċ

PAGE

TRI	FACILITY	WASTE MATERIAL	\$05/ LIG	BASELINE MASS KILOGRAMS	E MASS POUNDS	BASELI Liters	BASELINE VOLUME LITERS GAL OR CF	
Ø	CCF	CHROMIUM WASTEWATERS	 	138151.8	304574.3	138152.5	36500	
œ	CCF	CYANIDE WASTEWATERS	_	138151.8	304574.3	138152.5	36500.0	
co.	÷ .	ALODINE CONTAMINATED WASTEWATR CHROMIC ACID FERRICYANIDE SALT COMPLEX FLUORIDE SALT	78 L	2.15	334.0 5,9 3,3	151.4	40.0	
00	Ci En	POTASSIUM HYDROXIDE SOLUTION	٦	80	19.2	8.7	5,3	
TOTALS ATLA TITA COMP STS STS STS	TOTALS FOR TREATHENT ATLAS LAUNCH FACIL TATAN LAUNCH FACIL COMPONENT CLEANING STS NORTH VAFB (SS STS PORT HUENEME (ALS FOR TREATHENT CATEGORY 8 ATLAS LAUNCH FACILITIES (SLC 3) TITAN LAUNCH FACILITIES (SLC 4) COMPONENT CLEANING FACILITY STS HORTH VAFB (SS 17,18,19,21) STS SOUTH VAFB (SS 23,31,33,99) STS PORT HUENEME (SS 32)		276303.7 151.5	. 0 6 0 9 1 4 8 . 6 3 3 4 . 0	276305,0 151,4	.0 73000.0 ,0 40.0	
gr.	32	CONTAMINATED SEAWATER	٠	0.	0.	ō.		
φ	32	CONTAMINATED SEAWATER	ب	14514.9	32000.0	15140,0	4000.0	
6	32	SRB RINSE WATER	ب	21772.3	48000.0	22710.0	6.000.0	
σ.	35	POTABLE RIHSE WATER	ي	120473.5	265600.0	125662.0	33200.0	
o,	SE ES	DEIGNIZED RINSE WATER		56390.3	124320.0	58818.9	15540.0	
6	32	DETERGENT WASHWATER		34835,7	76800.0	36336.0	9600.0	
TOTALS HILA TITA COMP STS STS STS	FOR TREA AS LAUNCH AN LAUNCH PONENT CLI HORTH VAR SOUTH VAR	ALS FOR TREATNENT CATEGORY 9 ALLAS LAUNCH FACILITIES (SLC 3) TITAN LAUNCH FACILITIES (SLC 4) COMPUNENT CLEANING FACILITY STS HORTH VAFE (SS 17,18,19,21) STS SOUTH, VAFE (SS 23,31,33,99) STS FORT HUENEME (SS 32)		.0 .0 .0 .0 .0 .0 .0	. 0 . 0 . 0 . 0 . 0 . 0 . 0	.0 .0 .0 .0 .0 .0 .0 .0 .0	.0.00.00.00.00.00.00.00.00.00.00.00.00.	
0	SLC 4	DELUGE WATER		151499.1	334000.0	151400.0	40000.0	
10	SLC 4	MITROGEN TETROXIDE	٦	8,8	15.0	4 No	1.2	

C

C

TABLE A-1 (CONT.) BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATMENT CATEGORY

ů,

TRI	FACILITY	WASTE MATERIAL	2017 110	BASELINE MASS KILOGRAMS P	MASS POUNDS	BASELINE VOLUNE LITERS GAL OR	E VOLUME GAL OR CF	1
0-	SLC 4	HITROGEN TETROXIDE	٠.	1.8	4.0	1.1	ro.	
10	SLC 4	HITROGEN TETROXIDE	ب	4.	9.6	3.0	œ.	
10	SLC 4	NITROGEN TETROXIDE	_	0.	0.	0.	0.	
0	SLC 4	OXIDIZER/WATER WASTES	_	0.	0.	0.	0.	
0	CCF	SODIUM HYDROXIDE WASTEWATER	_	(381518,3	3645742,5	1381525.0	365000.0	
0 -	21	CONTAMINATED DILUTION WATER N204	٦	0.	0.	0.	θ.	
01	61	WASTEWATER WITH AMMONIA	ı	36,3	80.0	37.8	10.0	
10	61	NITROGEN TETROXIDE	ب	ئ 4.	12.0	3.8	1.0	
10	19	NITROGEN TETROXIDE	ب	9.8	21.6	6.3	8.1	
10	61	NITROGEN TETROXIDE	_	34,3	.9'52	24.2	6.4	
0+	61	HITROGEN TETROXIDE	-1	34.3	75.6	24.2	4.9	
0-	61	HITROGEN TETROXIDE	ب	23.9	52.6	16.7	4.4	
0	19	HITROGEN TETROXIDE	ب	79.5.	175.2	55.3	14.6	
10	61	NITROGEN TETROXIDE	١	0.	0.	ø.	9.	
<u>ē</u>	61	DECONTAMINATE FROM PAYLOAD/ORB N204	\B	290.3	640.0 6.0	302.8 1.9	80.0	
0	61	WASTE OXIDIZER AND PRINOL 355 N204	-J	37.2	82.0 6.0	37.8	10.0	
1.0	21	NITROGEN TETROXIDE	ب	0.	0.	Û.	0.	
10	21	HITROGEN TETROXIDE	ب	15.0	33.0	10.6	2.8	
10	21	HITROGEN TETROXIDE		51.3	113.0	35.6	9.4	
10	21	NITROGEN TETROXIDE	ب	0.	0.	0.	0.	
10	21	WASTEWATER WITH OXIDIZER N204	٦	72,8	160.4	75.7	20.0	
10	23	АММОИІA	_	0.	0.	0.	0.	
0	23	DELUGE WATER	-	3854112.5	8496908.0	3854130.5	1018264.4	

TABLE A-1 (CONT.) BASELINE WASTE GEHERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATMENT CATEGORY

TRT FACILITY CAT	UASTE NATERIA	2017 2017	BASELINE KILÜGRAMS	IE MASS POUNDS	BASELI LITERS	BASELINE VOLUME LITERS GAL OR CF
	AI UMINUM GKIDE ANNONIA HYDROCHLORIC ACID OPGANIC CARBON		362, 2 2, 2, 2 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4	7,4 .5 .599.0		
10 23	HITROGEN TETROXIDE.	ų	183.4	404.3	123.0	32.5
. 23	LBM OXIDIZER HITROGEN TETROXIDE	٦	9.	0.	0.	0.
10 23	HITROGEN TETROXIDE	ك	0.	ē.	0.	0.
0 23	N204 CONTAN, CLEANUP WATER NITROGEN TETROXIDE	ي	113.4	250.0	113.6	30.0
10 23	M204 CONTAM. WASTEWATER MITROGEN TETROXIDE	ı	378.3	834.0 62.0	378,5	100.0
10 23	PR1MOL 355 N204	٦.	340.6	751.0	378.5	100.0
31	SURFACTANT Nach Sodium tripolyphosphate	۔	0.	ē.	0 .	0.
TOTALS FOR TREA ATLAS LAUNCH TITAN LAUNCH COMPONENT CL STS SOUTH VASTS SOUTH VASTS PORT HUE	OTALS FOR TREATMENT CATEGORY 10 ATLAS LAUMCH FACILITIES (SLC 3) TITAH LAUMCH FACILITIES (SLC 4) COMPONENT CLEAMING FACILITY STS HORTH VAFB (SS 17,18,19,21) STS SOUTH VAFB (SS 23,31,33,99) STS PORT HUEMENE (SS 32)		. 151512.0 1381518.3 689.9 3855128.5	334028.6 3045742.5 1521.0 8499148.0	151408.7 1381525.0 631.3 3855124.0	.0 40002.3 365000.0 166.8 1018526.9
e ons	HYDRAZINE SCRUBBER LIQUOR	 i	192.9	425.3	193.0	51.0
SEC 4	HYDRAZINE SCRUBBER LIQUOR	ب	188,2	415.0	189.3	50.0
<u>5</u>	FUEL SCRUBBER HYDRAZINE MMH		2540.1 50.8	5600.0	2649,5 53,0	700.0 14.0
51	FUEL SCRUBBER MMH		362.9 6.6	300,0 14.6	378.5	100.0
23	HYDRAZINE & MMH 3CRUBBER HYDRAZINE MNH	_	757.0 16.8 13.2	1669.0 37.0 29.0	757.0 15.1 15.1	200.0
m	SCRURRER FEFTHERT		1			

{

C

€

Ç

TABLE A-1 (CONT.) BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATMENT CATEGORY

-α	FACILITY	WASTE MATERIAL	SOL/ LIO	BASELINE MASS KILOGRAMS P	MASS POUNDS	BASELIN LITERS	BASELINE VOLUNE TERS GAL OR CF
	35	HYDRAZINE SCRUBBER EFFLUENT HYDRAZINE	ب	181.4	400,0	189.3	50.0
	FOR TREATMENT (IS LAUNCH FACIL) IN LAUNCH FACIL ONENT CLEANING NORTH VAFB (SS SOUTH VAFB (SS	TOTALS FOR TREATMENT CATEGORY 11 ATLAS LAUNCH FACILITIES (SLC 3) TITAN LAUNCH FACILITIES (SLC 4) COMPONENT CLEANING FACILITY STS NORTH VAFB (SS 17,18,19,21) STS SOUTH VAFB (SS 23,31,33,99) STS PORT HUEHEME (SS 32)		192.9 188.2 2903.0 794.7	425.3 415.0 6400.0 1752.0	193.0 189.3 3028.0 794.8	51.0 50.0 600.0 210.0 50.0
	SLC 3	RAGS, SOLVENTZOILY	o,	53.4	117.8	68.0	2.4
	SLC 4	RAGS, SOLVENT/OILY	ဟ	163.3	360.0	209.5	7.4
	19	POLYURETHANE FOAM	ဟ	4. IU	10.0	416.2	14.7
	6	ALUMACAST A/B MIXTURE POLYOXPROPLENE PENTAERYTHRITOL AROMATIC WHITE OIL INERT ALUMINIZED PARTICLES DIPHENYLMETHANE DIISOCYANATE POLYNERS OF DPM DIISOCYANATE	ړ د	7.	m.	e .	·
	<u></u>	INSTANT SET POLYMER SCRAPS DIPHENYL METHANE DIISOCYANATE POLY(OXALKYLENE)POLYETHER AROMATIC HYDROCARBONS.	on .	8. -	4.	22.7	oo .
	5	SILANE/ACETIC ACID RESIDUE METHYL TRIMETHOXYSILANE ACETIC ACID	Ø	ស្	0 · 1	ზ. ∽.	જં.
	2	KOROPON PRMER CONT PNT BRUSHES BUTYL ACETATE TALC - Mg SILICATES EPOXY RESIN	Ø	18.1	40.0	141.6	5.0
	61	CONTAMINATED PAINT BRUSHES EA 911 EPOXY EA 934 EPOXY EA 9309 EPOXY	တ	8	4 0 .	14.2	ເບ
	61	RAGS WITH SOLVENTS, GREASES	ø	φ. Φ.	10.0	56.6	2.0
	61	SOLVENT-CONTAM CHEESECLOTH	w	0.	0.	0.	0.

TABLE A-1 (CONT.) BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATMENT CATEGORY

5 5 E E		4					
מ מי מי מ		ISOPROFYL ALCOHOL METHYL ETHYL KETONE 1,1,1-TRICHLOROETHANE					
m m m	6	MEK & IPA CONTAN CHEESECLOTH METHYL ETHYL KETONE ISOPROPYL ALCOHOL	υn	· .	О.	· e	0.
m m	61	IPA CONTANINATED CHEESECLOTH ISOPROPYL ALCOHOL	w	0.	0.	0.	0.
м	61	TCE CONTAMINATED CHEESECLOTH	ဟ	0.	0	0	0.
	6	MEK CONTAMINATED CHEESECLOTH METHYL ETHYL KETONE	Ø	0.	б.	ē.	0.
m	6	IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL	ເກ	0.	0.	0.	0.
m	19	SOLID FILM LUBRIC CONT CH3CLTH	Ś	0.	0.	0.	0.
13	61	IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL	တ	0.	0.	0	0.
м	9.	DICHLOROMETHANE CONT CHSECLTH	ഗ	0.	0.	0.	9.
M 	12	TILE REPAIR FOAM POLYURETHANE	ഗ	4,5 7.5	10.0	416.2	14.7
м	23	K5NA INSULATION BUTYL GLYCIDYL ETHER EPOXY RESINS, UNCURED	w	10.4	23.0	84,9	3.0
<u></u>	e S	SRB PROPELLANT SPILL AMMONIUM PERCHLORATE ALUMINUM POWDER PBAN BINDER HTPB BINDER IRON OXIDE	ω	•	.	e	ė
13	31	K5NA & MTA-2 PACKING MATERIALS	s	2267.9	5000.0	42474.0	1500.0
<u> </u>	Ē	MSA-1 (CURED) EPICHLORHYDRIN/BGE GLASS ECOSPHERES PHENOLIC MICROSPHERES GLASS FIBERS BENTONE 27 METHYLENE DIANILINE	ω	90.7 36.3 32.2 3.0 3.0 3.0	200.0 80.1 23.6 70.9 8.8 6.7	1248,7	4 1.

€

<

(

ſ

C

(

TABLE A-1 (CONT.) BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATMENT CATEGORY

ż

TABLE A-1 (CONT.) BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATMENT CATEGORY

	1											
: VOLUME GAL OR CF		98.0	11.0	15.0 0	0.00 0.00	10.0	0.	2.0	2.0	1.0	2.4 7.4 7.4 37.9 2106.1 410.0	ĸ.
BASELINE VOLUME LITERS GAL OR		2775.0	311.5	424.7	424.7	424.7	0.	56.6	56.6	28.3	68.0 209.5 1073.2 59636.3	ю
MASS FOUNDS	23.0 23.0	275.0	3.3	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	3.0	10.0	0.	10.0	10.0	5.0	117.8 360.0 .0 79.3 6095.3	<i>ان</i> ت
BASELINE MASS KILOGRAMS	29.5 19.1 10.4	124.7	1.5	4 n r w n + n w	ນ ຜູ້	4. R.	0.	R.	g. 4	2.3	53.4 163.3 0 36.0 2764.8 730.3	1.1
\$0F/ L10		ဟ	ဖာ	ග	ω	w	ဟ	S	S	ss.		ø
WASTE MATERIAL.	DIPHENYL METHANE DIISOCYANATE FREON 11 AMINES POLYOLS SUPER MEK PEROXIDE POLYESTER RESIN DIMETHYL PHTHALATE	POUR FOAM (MIXED) POLYURETHANE	POUR FOAM CONTAMINATED PAPER	SUPER LIGHT ABLATOR (I) RESIN L664, PT A SILICA FIBERS CORK PHENOLIC MICROSPHERES SILICA MICROSPHERES CURING AGENT	SUPER LIGHT ABLATOR (II) RESIN STM L664, PT A CARBON POWDER SILICA FIBERS CORK SILICA MICROSPHERES PHENOLIC MICROSPHERES CURING AGENT STM L664, PT B	POUR FOAM "TRIMMINGS" POLYURETHANE	FILTER	SOLVENT CONTAMINATED RAGS	ADHESIVE CONTAMINATED RAGS	EPOXY PRIMER-CONTAMINATED RAGS	TOTALS FOR TREATMENT CATEGORY 13 ATLAS LAUNCH FACILITIES (SLC 3) TITAN LAUNCH FACILITIES (SLC 4) COMPONENT CLEANING FACILITY STS NORTH VAFB (SS 17,18,19,21) STS SOUTH VAFB (SS 23,31,33,99) STS PORT HUENEME (SS 32)	TPS ADHESIVE, RTV 566/577
FACILITY		& &	66	66	₽	66	66	66	66	66	FOR TREATOR LAUNCH AN LAUNCH CONENT CLINGH NORTH VAR SOUTH VAR PORT HUEL	61
TRT CAT		13	<u>E</u>	<u>m</u>	<u>m</u>	13	5	13	<u>.</u>	13	TOTALS ATL/ TIT/ COMF STS STS STS	4

•

1

C

Ç

C

ζ.

(

TABLE A-1 (CONT.) BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATMENT CATEGORY

;

PAGE 15

VOLUME AL OR CF		0.	2.0	•	ທຸ	-	œ	1.5	1.5	e .	ນາ
BASELINE VOLUME LITERS GAL OR		·	36.6	28.2	14.2	œ.	22.7	42,5	42.5	0.	2.4
MASS POUNDS		0.	15.0	9		٠.	œ *	9.0	0.6	0.	4.0
BASELINE MASS KILOGRANS		0.		2.2	۲.	m.	2.2	4.4	4.1	e ·	- 20
30L/ L10		Ø	ဟ	ω	s s	\$ \$	Ø	w	Ø	ω	so.
WASTE MATERIAL	PHENYL NETHYL POLYSILOXANE TIN OXIDE IRON OXIDE SILICON HARDENER	SPRAYCANS OF TPS SEALER FLUORINATED SOLVENT FREON 113	KOROPON PRIMER CONTAM CANS BUTYL ACETATE METHYL ETHYL KETONE TOLUENE TALC - Mg SILICATES EPOXY RESIN	LACQUER SPRAY CANS PIGMENT SOLIDS VEHICLE SOLIDS TOLUENE XYLENE HYDROCARBON PROFELLANT PETROLEUM DISTILLATES	ISP CONTAM CUPS & WOOD STICKS INSTANT SET POLYMER	MARSHALL STENCIL INK SPRAYCANS XYLENE NAPTHA OTHER NATERIALS	LACQUER SPRAYCANS PIGMENT SOLIDS VEHICLE SOLIDS TOLUENE XYLENE HYDROCARBON PROPELLANT PETROLEUN DISTILLATES	ENAMEL SPRAYCANS	ZINC CHRONATE PRINER CANS	CONTAMINATED TARE CUPS EA 911 EPOXY EA 934 EPOXY EA 9309 EPOXY	CONTAMINATED BRUSHES
FACILITY			6	<u>Ф</u>	61	63	<u>~</u>	19	13	19	6
TRT CAT		4	4	<u> </u>	4	4	4	14	4	4	4

TABLE A-1 (CONT.) BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATMENT CATEGORY

31 31 31 31 31 31 31 31 31 31 31 31 31 3	CONTAM CLOTHES, CLOTH & DEBRIS KOROPON BASE PRIMER KOROPON ACTIVATOR BERYLLIUM DUST WASTE SEALS, FILTERS, ETC. EA 934 EPOXY ADHESIVE EPOXY RESIN ASBESTOS FILLERS POLYAMIDE DIETHYLENERRINE					
	CLOTHES, CLOTH & ON BASE PRIMER ON ACTIVATOR LIUN DUST SEALS, FILTERS, ET EFSIN RESIN FOS & S AIDE					
	SEALS, FILTERS, EPOXY ADHESIVE RESIN FOS RS AIDE	ω (4 N	0.01	141.6	n O
	EPOXY RESIN FOS SS 41DE	(4. N	10.0	283.2	10.0
		n	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8 4. 9	0. m
	BOSTIK PRIMER PAINT CANS	(n	æ. 9	15.0	56.6	2.0
	BOSTIK TOPCOAT PAINT CANS	Ś	20.4	45.0	6'691	0.9
	RUSTOLEUM PRINER PAINT CANS	v	6.	2.0	9 5	ĸ.
	RUSTOLEUM TOPCOAT PAINT CANS	ග	٥.	2,0	8 3.	ĸ.
	MSA-1 EMPTY CONTAINERS	Ø	453.6	1000.0	8494.8	300.0
	KSNA CONTAINERS	ø	3.4	7.5	56.6	2.0
32	LITHIUM STORAGE BATTERIES	Ø	24.5	54.0	42.5	ī. <u>-</u>
66	SILVER-ZINC STORAGE BATTERIES	S	40.8	90.06	51.0	1.8
	GX-6300 ABLATOR ADHESIVE RESIN STM L 663 RESIN STM L 664 SILICA POWDER CARBON POWDER CURING AGENT L 663 CURING AGENT L 664 HEPTANE	σ	ი. დ გითითი	4 N	٩.	e.
66	SOLVENT CONTAMINATED CONTAINER SOLVENTS	S	5.3	5.0	42.5	5.
66	PRIMER CONTAMINATED CONTAINERS	. 60	w	.2	5.7	si
66	ADHESIVE CONTAMINATED CONTAINR	Ø	μ	۲.	5.3	ά

€

•

C

ť.

•

TABLE A-1 (CONT.) BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATMENT CATEGORY

TRT	FACILITY	WASTE MATERIAL	80L/	BASELINE MASS KILOGRAMS P	MASS POUNDS	BASELINE VOLUME LITERS GAL ÜR	VOLUME GAL ÜR CF
4-	66	SOLVENT CONTAINERS	Ø	0.	0	0.	0.
4	66	POUR FOAM CONTAINERS	တ	22.7	50.0	379.4	13.4
4	66	ABLATOR CONTAMINATED CONTAINER	er s	i.	2.	5.2	N.
OTAL AT	TOTALS FOR TREATMENT CAT ATLAS LAUNCH FACILITI TITAN LAUNCH FACILITI	ALS FOR TREATNENT CATEGORY 14 ATLAS LAUNCH FACILITIES (SLC 3) TITAN LAUNCH FACILITIES (SLC 4)		9.0.	9.0	0.0	0.0
00 ST	COMPONENT CL STS NORTH VA	COMPONENT CLEANING FACILITY STS NORTH VAFB (SS 17,18,19,21)		32.8	72.4	656.9	23.2
STS	SOUTH PORT	\$\$ 23 { \$\$		533,7	1176.6	9318.8 93.4	329.1
5	7	WASTEWATER FROM EEURS	ب	2725.4	6008.4	2725.2	720.0
5	61	UASTEUATER FROM EEN&S	٦	3028.2	0.9299	3028.0	800.0
īū	6	WASHWATER WITH MEK METHYL ETHYL KETONE	ı	42.4	93.5 13.5	45.4	12.0
5	12	WASTEUATER FROM EEUKS		2725.4	6008.4	2725.2	720.0
n.	21	WASTEWATER WITH MEK METHYL ETHYL KETONE	_	42.4	93.4	45.4	12.0 2.0
5	23	WASTEWATER FROM EEW&S	ب	3028.2	6676.0	3028.0	800.0
5	23	SOLVENT WASTEWATER UNSPEC.	٦	416.4	918.0	416.3	110.0
5	23	CONTAMINATED WASTEWATER SOLVENTS CHLORINATED RUBBER ZINC PRIMER	ı	946.2	2086.0	946.3	250.0
5	31	WASTEWATER FROM EEU&S	۔ ۔	1211.3	2670.4	1211.2	320.0
15	32 .	WASTEWATER FRON EEURS	_	6.05.6	1335.2	605.6	160.0
5	32	INSULATION-CONTAMINATED WATER MSA-1 INSULATION MTA-2 INSULATION KSNA INSULATION PR-855 INSULATION	۳. د	185291,5	408500,0	185313.6	48960,0
10	33	WASTEWATER FROM EEU&S	Ļ	189.1	417.0	189.3	50.0

TABLE A-1 (CONT.) BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATMENT CATEGORY

		•		
BASELIME VOLUME TERS GAL OR CF	30.0	.0 .0 .0 .2264.0 1560.0	0.	
BASELI LITERS	113.6	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0.	
E MASS POUNDS	178.6	.0 .0 .0 18879.7 12946.0	0.	20000
BASELINE MASS KILOGRAMS	81.0	9563.6 5872.2 185897.1	0.	000000
80L/ LIQ	_			
/ WASTE MATERIAL	SOLVENT CONTAMINATED WATER	TOTALS FOR TREATMENT CATEGORY 15 ATLAS LAUNCH FACILITIES (SLC 3) TITAN LAUNCH FACILITIES (SLC 4) COMPONENT CLEANING FACILITY STS NORTH VAFB (SS 17,18,19,21) STS SOUTH VAFB (SS 23,31,33,99) STS FORT HUENEME (SS 32)	SRB FWD SKT CLEANING WASTES	TOTALS FOR TREATMENT CATEGORY 26 ATLAS LAUNCH FACILITIES (SLC 3) TITAN LAUNCH FACILITIES (SLC 4) COMPONENT CLEANING FACILITY STS HORTH VAFB (SS 17,18,19,21) STS SOUTH VAFB (SS 23,31,33,99) STS PORT HUENENE (SS 32)
FACILITY	66	S FOR TRE LAS LAUNC TAN LAUNC M PONENT C M PONENT V S SOUTH V S FORT HU	32	E FOR TREE TAN LAUNCE TAN LAUNCE TO THE TO T
CAT	5	TOTALS ATLA TITA COMP STS STS	56	TOTALS ATLA TITA COMP STS STS STS

(

(

•

TABLE A-2. BASELINE WASTE GENERATION FOR ALL SPACE DIVISION PROGRAMS BY TREATMENT CATEGORY

į

Prince 1

1987 & 19 (PER YEAR	GAL F POUNDS OR CF	0 0	0 52400 4000 1 16 16 1	52416	20	0 0 .	6 19700 2494 3 88563 10788	3305	4 111568 13690	02 02 02	4 1867 222 4 1867 222	22 195 37 39 11175 1399 62 11370 1436	6 13237 1658	34% 14% 13%	0 0 0	0 0	ů 0	20 20 20
1986	GAL POUNDS OR CF	0	31440 2400			0 0	11820 1496 53138 6473	1983 245 66941 8214	66941 8214	20	3734 444 3734 444	117 22 6705 839 6822 862	10556 1306	35% 3	0	0.	0	30
1985	GAL POUNDS OR CF	0	20960 1600 6 0 0 1600		25	WATER AND ALCOHOL) 26229 3780 26229 3780	4	1322 163 44627 5476	70856 9256	37% 41%	3734 444 3734 444	78 15 4470 560 4548 574	8282 1018	45% 44%	0	0 0	0 0	20 20
	CAL OR CF FOU	0	00 00		20	-CONTANINATED WATE 13114 1890 26		. 4	1890 70	1 0 0 %	444 444 3	000	444 8	100%	1	0	0	20
1984	CF POUNDS	0	000		20 20	0LIC FUEL-CONTA 4726 13114 4726 13114		0 0	4726 13114	100% 100%	444 3734 444 3734	000	444 3734	1002 1002	1 0 WITH 01L	0 0	0 0	20 20
1983	GAL POUNDS OR CF	ASTES 2 0			. %	0 HYPERGOLIC 32786 47 32786 47	90	00	32786 47	100%		000	3734	100%	ER CUNTAMING 0	•	0	20
1982	GAL POUNDS OR CF	IRI CAI * 1 (RECOVERABLE FREON WASTES) TOTAL - TAC 0	000		X0 X0	TRI CAI = 2 (HYPERGOLIC FUELS AND HYPERG TITAN (SLC4) 13114 1890 32786 TOTAL - TAC 13114 1890 32786	00		13114 1890	100% 100%	I HYDROCARBON WASTES) 3734 444 3734 3734 444 3734		3734 444	100% 100%	TRI CAL = 4 (BILGE WATER AND WATER CONTAMINATED 101AL - TAC 0 0 0 0	0	0 0	20

CATECORY
TREATMENT
₽¥
PROGRAMS
ACE DIVISION
SPC
ĤĹĹ
HERATION FOR ALL
E
UNSTE
BASEL INE
1-2 (CONT.)
TABLE A

- 1994 YEAR)	GAL. OR CF		0 0 0	4 4	2	11422	20	11461	11956	£	109500	900	23	423	109923	1 0 0 %	0	683400 683400	683490	20	847500 547500 547500	1668 10185268 10186936	10734436	10 20
1989 (PER	POUNDS		- 7	5643	95	129596	234	129986	135629	4 %	913723	3340	192	3532	917255	100%	0	5467201 5467201	5467201	20	0 4568615 4568615	15210 84991488 85006704	89575312	10 25
4. 1988 YEAR)	CAL OR CF		104	1102	6	11422	20	11461	12563	86	109500	400	23	423	109923	100%	0	683400 683400	683400	0%	0 547500 547500	1668 10185268 10186936	10734436	32
1987 CPER	POUNDS	0107	56.44	12461	156	129596	234	129986	142447	%6	913723	3340	192	3532	917255	100%		5467201	5467201	20	ES2 4568615 456615	15210 84991488 85006704	89578312	52
986	GAL. OR CF	3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1709	Ξ	6853		6877	8586	20%	109500	240	-	254	109754	1002	0	410040	410040	20	ZEB <u>.WASIES?</u> # 547500 45 547500 45	1001 6111162 6112163	6659643 s	60
	Poultos	14.26	5647	19280	96	27758	140	77992	97271	20%	913723	2004	115	2119	915842	100%	e	3280320 3280320	3280320	20	FLUS OXIDIZER. 0 4568615 547 4568615 547	9126 50994688 51004016	527 7439	ec C
263	GAL OR CF	7	100	1709	œ	4569	œ	4584	6293	27%	1. 10HS2 109500 109500	160	Q,	169	109669	100%	0	273360 273360	273360	0%	160009 547500 707509	667 4074108 4074775	4782285 5	50 80 80
	Pourios	22.76	5643	19280	62	51838		51994	71274	27%	WITH METAL 913723 913723	1336	22	1413	915136	1002	0	2186880 2186880	2186880	62	ANT_MEIGH 1336113 4568615 5904730	6084 33996592 34002680	39907408	153
	OR CF	4101	330	1544	0	0.	9	0	1544	100%	CONTAMINATED 609149 73000 609149 73000	0	0	0	73000	100%	0	00	0	%0	SIGNIFICANT 80H05 13 365000 45 445095 59	000	445005	100%
170.1	POUNDS	17677	3762	17399	0	0	0	•	17399	100%	609149 609149 609149		0	0	609149	1002	WASTES)	00	0	0%	AIN NO S KERUST 3045743 3713800	955	713300	1002
,	GAL. OR CF	5)	330	1544	0	0	0	0	1544	100%	SOLUTIONS 73000 6 9 73000 6	0	0	0	73000	100%	WATER W	00	٥	20	CH_CONT 200012 365000 565012	000	565012 3	100%
	Poultps	WASTE	3762	17399	0	•	0	0	17399	100%	609149 609149 609149	0	0	0	609149	100%	R RINSE	00	0	20	SIES WHI 1670143 3045743 4715887	000		100%
- 1	OR CE	11 HYDROCARBON		_	•	0	•	0	1544	1002	73000 73000		0 0	5	73000	100%	ROOSTE	••	o	92	365000 445005	000	445005	100%
100	POUNDS			-		0	0	•	17399	1002	DS, BASES, 609149 609149	0	0	5	609149	1002	= 9 (SOLID ROCKET ROOSIER 0 0	50	0	70	DIC AND PAGIC MASIES WH 668057 80005 1670143 3045743 365000 3045743 3713000 445005 4715887	000	3713800 445005 4715887	1002
	CHI PROGRAM	IRI CAI = 5 (GROUP ATLAS (SLC3)	CONF CLH FAC	TOTAL - 19C	ı	t	1	TOTAL - STS	TOTAL FOR SD	FROM TAC	TRT CAT = 8 CACIDS, COMP CLN FAC 6 TOTAL - 1AC	ŧ	STS - PH	t	TOTAL FOR SD	FROM TAC	IRI CHI = 9 (SOL TOTAL - TAC	. STS - PH TOTAL - STS	TOTAL FOR SD	FROM TAC	TRI CAI =10 COLDIC AND PASTE MASTES WHICH CONTAIN NO. TITME (SLC4) 668057 80005 1670143 200012 668057 COMP CLN FAC 3045743 365000 3045743 365000 3045743 TOTAL - 1AC 3713800 445005 4715807 565012 3713800	SIS - HVAFB SIS - SVAFB TOTAL - SIS	TOTAL FUR SD	FROM TAC

į

1986 1987 & 1988 1989 - 19 (PER YEAR) - KPER YEAR	GAL GAL GAL GAL GAL GAL ON CF POUNDS OR CF POUNDS		3200 38400 4800 64000 8000 64000 8000 2000 2100 17520 2100	4542 52163 6462 85945 10651 85520 10650 " 7% 2% 2% 0% 0% 0% 0%	5 236 5 118 2 0 0 30 0 0 0 0 0 0 34 236 5 118 2 0 0	152 476 227 793 379 793 379 1 8424 36572 12637 60953 21061 60953 21061 1 1640 9660 2460 16100 4100 16100 4100 3 10216 46708 15324 77846 25540 77846 25540	1 10250 46943 15329 77964 25542 77846 25540 5% 0% 1% 0% 0% 0% 0%		93 434 139 724 232 724 232 5 1316 7060 1975 11766 3291 11766 3291 5 13 864 20 1440 33 1440 33 2 1422 8358 2134 13930 3556 13930 3556	2 1422 8358 2134 13930 3556 13930 3556 12 02 02 02 02 02 02 02		9056 113278 13584 188797 22640 188797 22640 1 6240 77676 9360 129460 15600 129460 15600 1 196480 2459011 294720 4098352 491200 4098352 491200 1 211776 2649965 317664 4416610 529440 4416610 529440	
1985	POUNDS 0	851 1660 2511	25600 7008 1600 34208	36719	236 1440 1676	317 24381 6440 31138	32814 1 5%	0	290 4706 576 5572	5572 0%	0	75519 51784 1639341 19 1766644 21	1766644 211
1984	CAL. POUNDS OR CF	831 102 830 100 1681 202	0000	1681 202 100% 100%	236 5 720 15 956 20	0000	956 20 1002 1002	0	0000	0 0 0	0	0000	0
m	GAL OR CF PO	102 250 352	0000	352	37 24 22	0000	160%	0	0000	0 %	•	6000	٠
198	POUNDS	L WBSTES 2 851 2075 2926	0000	2926	236 1800 2036		2036	0 (50)	0000	0 %	WATERS?	0000	•
1982	GAL 10S OR CF	YAPOR SCRUBBER WASTES) 851 102 851 830 100 2075 1681 202 2926	0000	1681 202 100% 100%	8LE SOLIDS) 236 5 720 15 956 20	0000	956 20 100% 100%	STIBLE SOLIDS	0000	0 %0	YEOUS WASTI	0000	•
	CAT PROGRAM POUNDS	IRI CAT = 11 (FUEL YAPO ATLAS (SLC3) E TITAN (SLC4) E TOTAL - TAC	9TS - NVAFB 9TS - 8VAFB 9TS - PH TOTAL - STS	TOTAL FOR SD 16 % OF SD TOTAL FROM TAC 1	IRI CAI = 13 (COMBUSTIBLE ATLAS (SLC3) 236 TITAN (SLC4) 720 TOTAL - TAC 956	3TS - NVAFB STS - SVAFB STS - FH TOTAL - STS	TUTAL FOR SD % OF SD TOTAL FROM TAC	TRI CAI =14 (HONCOMBUSTIBLE TOTAL - TAC	STS - NVAFB STS - SVAFB STS - FH TOTAL - STS	TOTAL FOR SD % OF SD TOTAL FROM TAC	IRI CAT = 15 (MISCELLANEOUS WASTEWATERS 0 0 101AL - TAC	STS - NVAFB STS - SVAFB STS - PH TOTAL - STS	TOTAL EDB SD