Eléments propres

Exercice 1 ★★

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$. Montrer que si $\lambda \in \mathbb{K}$ est valeur propre de $g \circ f$, alors λ est également valeur propre de $f \circ g$.

Exercice 2 ***

Soient u, v deux endomorphismes d'un espace vectoriel complexe E de dimension finie supérieure à 1. On suppose qu'il existe a, b complexes tels que $u \circ v = au + bv$. Montrer que u et v ont un vecteur propre commun.

Exercice 3 ★★

Soient u et v deux endomorphismes d'un \mathbb{K} -espace vectoriel ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) de dimension finie E. Montrer que $u \circ v$ et $v \circ u$ ont les mêmes valeurs propres.

Exercice 4 ***

Théorème de Gerschgorin

Soit $A \in \mathcal{M}_n(\mathbb{C})$ dont les coefficients sont notés $a_{i,j}$. Pour $1 \le i \le n$, on pose $R_i = \sum_{j \ne i} |a_{i,j}|$ et on note D_i le disque de centre $a_{i,i}$ et de rayon R_i . Montrer que toute valeur propre de A appartient à l'un au moins des disques D_i .

Exercice 5 ★★

Soit φ l'endomorphisme de $\mathbb{K}[X]$ défini par $\varphi(P)=XP'$ pour tout $P\in\mathbb{K}[X]$. Déterminer les éléments propres de φ .

Exercice 6 ***

Soit $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. Pour $f \in E$, on définit l'application T(f) par

$$\forall x \in \mathbb{R}, \ \mathrm{T}(f)(x) = e^{-x} \int_0^x f(t)e^t \ \mathrm{d}t$$

- 1. Montrer que T est un endomorphisme de E.
- 2. Déterminer les valeurs propres de T et les sous-espaces propres associés.

Exercice 7 ***

Soit $E = \{ f \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R}), \ f(0) = 0 \}.$

- 1. Soit $f \in E$. Montrer que $\int_0^x \frac{f(t)}{t} dt$ est définie pour tout $x \in \mathbb{R}_+$.
- **2.** Montrer que l'application Φ qui à $f \in E$ associe la fonction $x \in \mathbb{R}_+ \mapsto \int_0^x \frac{f(t)}{t} dt$ est un endomorphisme de E.
- 3. Déterminer les valeurs propres de Φ et les sous-espaces propres associés.

Exercice 8 ★★★

Soit $E = \mathcal{C}^0(\mathbb{R}_+, \mathbb{R})$.

- **1.** Soit $f \in E$. Montrer que l'application $x \in \mathbb{R}_+^* \mapsto \frac{1}{x} \int_0^x f(t) dt$ est prolongeable en 0 en une application continue sur \mathbb{R}_+ . On notera ce prolongement T(f).
- 2. Montrer que T est un endomorphisme de E.
- 3. Déterminer les valeurs propres de T et les sous-espaces propres associés.

Exercice 9 ***

Matrices stochastiques

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A_{ij} \geq 0$ pour tout $(i,j) \in [1,n]^2$ et $\sum_{j=1}^n A_{i,j} = 1$ pour tout $i \in [1,n]$.

- **1.** Montrer que $1 \in Sp(A)$.
- **2.** Montrer que $\forall \lambda \in \operatorname{Sp}_{\mathbb{C}}(A), |\lambda| \leq 1.$

Exercice 10 ***

Soit E l'ensemble des fonctions continues de [0,1] dans \mathbb{R} . A toute application $f \in E$, on associe l'application

$$\Phi(f): x \in [0,1] \mapsto \int_0^1 \min(x,t) f(t) dt$$

- 1. Montrer que Φ est un endomorphisme de E.
- 2. Déterminer les éléments propres de Φ .

Exercice 11 ★★

Mines-Ponts MP 2016

Soit E un espace euclidien de dimension finie. On considère des vecteurs unitaires a et b de E formant une famille libre.

Réduire l'endomorphisme

$$\phi: \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ x & \longmapsto & \langle a \mid x \rangle a + \langle b \mid x \rangle b \end{array} \right.$$

Exercice 12 ★★★

Montrer que l'application φ : $P \in \mathbb{R}_n[X] \mapsto X(X+1)P' - nXP$ est un endomorphisme de $\mathbb{R}_n[X]$ et déterminer ses éléments propres.

Exercice 13 ★★

Mines-Télécom (hors Mines-Ponts) MP 2021

Soit l'endomorphisme

$$u: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ \mathbf{M} & \longmapsto & \mathbf{M} + \mathrm{tr}(\mathbf{M})\mathbf{I}_n \end{array} \right.$$

Déterminer les valeurs propres de u, ainsi que les espaces propres associés.

Polynôme caractéristique

Exercice 14 ***

Soient u et v deux endomorphismes d'un \mathbb{K} -espace vectoriel ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) de dimension finie E.

- **1.** On suppose u inversible. Montrer que $u \circ v$ et $v \circ u$ ont même polynôme caractéristique.
- **2.** Traiter le cas où u est non inversible.

Exercice 15

Algorithme de Faddeev

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note P le polynôme caractéristique de A. Pour $\lambda \in \mathbb{K}$, on pose $B(\lambda) = \text{com}(\lambda I_n - A)^T$.

1. Montrer qu'il existe des matrices $B_0, B_1, \dots B_{n-1}$ de $\mathcal{M}_n(\mathbb{K})$ telles que :

$$B(\lambda) = \sum_{k=0}^{n-1} \lambda^{n-1-k} B_k$$

- **2.** Montrer que $P'(\lambda) = tr(B(\lambda))$ pour tout $\lambda \in \mathbb{K}$.
- 3. On pose $P = X^n \sum_{k=1}^n p_k X^{n-k}$ et $B_n = 0$. Montrer que pour $k \in [1, n]$,

$$\begin{cases} p_k = \frac{1}{k} \operatorname{tr}(AB_{k-1}) \\ B_k = AB_{k-1} - p_k I_n \end{cases}$$

et préciser B_0 .

- **4.** Montrer que, si A est inversible, $A^{-1} = \frac{1}{p_n} B_{n-1}$.
- **5.** Ecrire un algorithme en Python calculant le polynôme caractéristique d'une matrice donnée et un autre calculant son inverse grâce aux questions précédentes.

Exercice 16 ***

Soit $p \in \mathbb{N}^*$. On note \mathbf{E}_p l'ensemble des «suites» de $\mathbb{C}^{\mathbb{Z}}$ p-périodiques. On note \mathbf{D}_p l'endomorphisme de \mathbf{E}_p qui à une suite (u_n) associe la suite $(2u_n-u_{n+1}-u_{n-1})$. Déterminer le coefficient de X dans le polynôme caractéristique de \mathbf{D}_p .

Exercice 17 ***

Mines-Ponts MP 2018

Soient E un espace vectoriel de dimension $n \in \mathbb{N}^*$, et $(f, g) \in \mathcal{L}(E)^2$.

On suppose qu'il existe $h \in \mathcal{L}(E)$ de rang $r \ge 1$ tel que $h \circ g = f \circ h$. Montrer que χ_f et χ_g ont un facteur commun de degré r.

La réciproque est-elle vraie?

Exercice 18 ***

Soient $\lambda \in \mathbb{K}$, $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,n}(\mathbb{K})$. On pose

$$\mathbf{M} = \left(\begin{array}{c|c} \lambda \mathbf{I}_n & -\mathbf{A} \\ \hline -\mathbf{B} & \mathbf{I}_p \end{array}\right)$$

En multipliant M à gauche et à droite par des matrices bien choisies, montrer que

$$\lambda^p \chi_{AB}(\lambda) = \lambda^n \chi_{BA}(\lambda)$$

En déduire que $\chi_{AB} = \chi_{BA}$ si n = p.

Exercice 19 ★★ CCP 2015

Soient E un espace vectoriel de dimension 2n+1 et de base (e_1,\ldots,e_{2n+1}) ainsi que u l'endomorphisme de E tel que $u(e_1)=e_1+e_{2n+1}$ et $u(e_i)=e_{i-1}+e_i$ pour tout $i\in [\![2,2n+1]\!]$.

- 1. Déterminer le polynôme caractéristique de u.
- **2.** Montrer que u est inversible et déterminer un polynôme P tel que $u^{-1} = P(u)$.
- 3. Déterminer les valeurs propres complexes de u.
- **4.** En déduire $\prod_{k=0}^{2n} \cos\left(\frac{k\pi}{2n+1}\right).$

Exercice 20 ★★

Matrice compagnon

$$\text{Soient } (a_0,\dots,a_{n-1}) \in \mathbb{K}^n \text{ et } \mathbf{A} = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & \ddots & & \vdots & -a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}. \text{ Déterminer le polynôme }$$

caractéristique de A.

Diagonalisation

Exercice 21

Calculer la trace de l'endomorphisme Φ : $\left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{K}) & \longrightarrow & \mathcal{M}_n(\mathbb{K}) \\ \mathbb{M} & \longmapsto & \mathbb{M}^\top \end{array} \right..$

Exercice 22 ***

Soient u et v deux endomorphismes d'un espace vectoriel E de dimension finie. On suppose u diagonalisable.

Montrer que u et v commutent si et seulement si tout sous-espace propre de u est stable par v.

Exercice 23 ★★★

Soit u un endomorphisme diagonalisable d'un espace vectoriel E de dimension finie. Montrer que le commutant de E est un sous-espace vectoriel de $\mathcal{L}(E)$ de dimension $\sum_{\lambda \in \operatorname{Sp}(u)} \dim E_{\lambda}(u)^2$.

Exercice 24 ★★

Calcul d'un commutant

On pose A =
$$\begin{pmatrix} 2 & -2 & 1 \\ 1 & -1 & 1 \\ 2 & -4 & 3 \end{pmatrix}$$
. Déterminer le commutant de A.

Exercice 25 ***

Soient u un endomorphisme diagonalisable d'un \mathbb{K} -espace vectoriel E de dimension finie.

- 1. Soit F un sous-espace vectoriel de E. On pose $G = \bigoplus_{\lambda \in Sp(u)} F \cap E_{\lambda}(u)$. Montrer que G est stable par u.
- 2. Soit F un sous-espace vectoriel de E stable par u. Montrer que $F = \bigoplus_{\lambda \in Sp(u)} F \cap E_{\lambda}(u)$.
- 3. Montrer que les sous-espaces vectoriels de E stables par u sont exactement les sous-espaces vectoriels de la forme $\bigoplus_{\lambda \in \operatorname{Sp}(u)} \operatorname{F}_{\lambda}$ où pour tout $\lambda \in \operatorname{Sp}(u)$, $\operatorname{F}_{\lambda}$ est un sous-espace vectoriel de $\operatorname{E}_{\lambda}(u)$.

Exercice 26 ★★★★

Mines-Ponts MP 2015

On note $GL_2(\mathbb{Z})$ l'ensemble des matrices $\mathcal{M}_2(\mathbb{Z})$ inversible et dont l'inverse appartient aussi à $\mathcal{M}_2(\mathbb{Z})$.

- **1.** Montrer que $(GL_2(\mathbb{Z}), \times)$ est un groupe.
- **2.** Soit G un sous-groupe fini de $GL_2(\mathbb{Z})$. Montrer que pour toute matrice $M \in G$, $M^{12} = I_2$.

Exercice 27 ★★

CCINP (ou CCP) MP 2019

Soit $n \ge 2$ entier. On considère $\mathcal{M}_n(\mathbb{R})$ telle que $A^2 = I_n$ et $A \ne \pm I_n$.

- **1.** Montrer que $tr(A) \equiv n[2]$.
- 2. Montrer que $|\operatorname{tr}(A)| \le n 2$.

Exercice 28 ★★

Mines-Télécom (hors Mines-Ponts) MP 2021

On pose
$$A = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$$
.

- 1. Étudier la diagonalisabilité de A, et la diagonaliser si possible.
- **2.** Résoudre l'équation $M^2 = A$ pour $M \in \mathcal{M}_2(\mathbb{R})$.

Exercice 29 ★★

Mines-Télécom (hors Mines-Ponts) MP 2021

On considère la matrice : $A = \begin{pmatrix} -5 & 3 \\ 6 & -2 \end{pmatrix}$.

- **1.** Montrer que A s'écrit PDP⁻¹ avec $P \in GL_2(\mathbb{R})$ et D matrice diagonale de $\mathcal{M}_2(\mathbb{R})$.
- On cherche à résoudre l'équation X² = A.
 Montrer que si X est solution de cette équation alors P⁻¹XP commute avec D puis qu'elle est diagonale.
 Résoudre l'équation.

Exercice 30

Mines-Télécom (hors Mines-Ponts) PSI 2021

Soit A =
$$\begin{pmatrix} a & c & b \\ b & a & c \\ c & b & a \end{pmatrix} \in \mathcal{M}_3(\mathbb{C}) \text{ et J} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

- **1.** Exprimer A en fonction de J et J^2 .
- 2. Calculer le polynôme caractéristique de J. La matrice J est-elle diagonalisable?
- **3.** Diagonaliser A.

Exercice 31 ★★

Soient $a \in \mathbb{K}$ et u l'endomorphisme de $\mathbb{K}_n[X]$ défini par u(P) = (X - a)P' pour tout $P \in \mathbb{K}_n[X]$. Déterminer les éléments propres de u. u est-il diagonalisable?

Exercice 32 ★★

Soit Φ : $P \in \mathbb{R}_n[X] \mapsto (X+1)P(X) - XP(X+1)$.

- **1.** Montrer que Φ est un endomorphisme de $\mathbb{R}_n[X]$.
- **2.** Déterminer les éléments propres de Φ . Φ est-il diagonalisable?

Exercice 33 ★ CCP 2018

Soit $A \in \mathcal{M}_n(\mathbb{C})$ avec $n \ge 2$, telle que $\operatorname{rg}(A) = 1$. Montrer que A est diagonalisable si et seulement si $\operatorname{tr}(A) \ne 0$.

Exercice 34 ★★

CCINP (ou CCP) MP 2021

On considère $f: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ \mathrm{M} & \longmapsto & \mathrm{M} + 2\mathrm{M}^\top \end{array} \right.$

- 1. Montrer que f est un endomorphisme.
- **2.** Donner les valeurs propres et les sous-espaces propres de f.
- **3.** L'endomorphisme f est-il diagonalisable?
- **4.** Calculer tr(f) et det(f).

Exercice 35 ★

Etudier la diagonalisabilité sur $\mathbb R$ des matrices réelles suivantes :

1.

$$\mathbf{A} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{array} \right);$$

$$C = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 3 & 0 & 2 & 0 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{pmatrix};$$

$$B = \begin{pmatrix} 3 & -4 & 0 & 2 \\ 4 & -5 & -2 & 4 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 2 & -1 \end{pmatrix}; \qquad \qquad D = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

$$D = \left(\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right).$$

Exercice 36 ***

Soient u et v deux endomorphismes diagonalisables d'un \mathbb{K} -espace vectoriel de dimension finie E tels que $u \circ v = v \circ u$. Montrer que u et v diagonalisent dans une base commune.

Exercice 37 ★★★

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel \mathbb{E} de dimension finie.

Montrer que u est diagonalisable si et seulement si tout sous-espace vectoriel de E admet un supplémentaire dans E stable par u.

Exercice 38 **

CCINP (ou CCP) MP 2019

Soit E un \mathbb{K} -espace vectoriel de dimension finie. On note f et g deux endomorphismes de E et on note A et B leurs matrices dans une même base de E.

- 1. On suppose f et g bijectifs dans cette question.
 - **a.** Montrer que $\chi_{AB} = \chi_{BA}$.
 - **b.** Montrer que si $f \circ g$ est diagonalisable, alors $g \circ f$ l'est aussi.
- **a.** Montrer que $f \circ g$ et $g \circ f$ ont le même spectre.
 - **b.** Donner un exemple de matrices telles que AB soit diagonalisable mais pas

Exercice 39 ***

Mines-Télécom (hors Mines-Ponts) PSI 2019

Soient f et g deux endomorphismes d'un \mathbb{R} -espace vectoriel de dimension finie \mathbb{E} vérifiant $f \circ g = f + g$.

- 1. Montrer que Ker f = Ker g et Im f = Im g.
- 2. On suppose g diagonalisable. Montrer que f et $f \circ g$ sont aussi diagonalisables et que $Sp(f \circ g) \subset \mathbb{R} \setminus]0, 4[$.

Trigonalisation

Exercice 40 X MP 2010

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que $A\overline{A} = I_n$ si et seulement si il existe $S \in GL_n(\mathbb{C})$ tel que $A = S\overline{S}^{-1}$

Exercice 41 X PC 2010

Déterminer les matrices de $GL_3(\mathbb{C})$ semblables à leur inverse.

Exercice 42 ★ CCP MP 2010

Soient A et B dans $\mathcal{M}_n(\mathbb{C})$ à spectres disjoints.

- 1. Montrer que $\chi_A(B)$ est inversible.
- **2.** Soit X dans $\mathcal{M}_n(\mathbb{C})$ telle que AX = XB. Montrer que pour tout $P \in \mathbb{C}[X]$, P(A)X = XP(B) et en déduire que X = 0.
- **3.** Montrer que pour tout $M \in \mathcal{M}_n(\mathbb{C})$, il existe $X \in \mathcal{M}_n(\mathbb{C})$ telle que AX XB = M.