

Winter Term 21/22

Graph Neural Networks Applications & Link to Graph Queries

Org & Introduction

Prof. Dr. Holger Giese (holger.giese@hpi.uni-potsdam.de)

Christian Medeiros Adriano (christian.adriano@hpi.de) - "Chris"

Matthias Barkowsky (<u>matthias.barkowsky@hpi.de</u>)

Key Facts

- Weekly Hours: 4
- Credit Points: 6
- Teaching Form: **Project Seminar**
- Enrolment Type: Compulsory Elective Module ("Wahlpflichtmodul")
- Course Language: English
- Study Programs and Modules:
 - IT-Systems Engineering MA
 - Mandatory module : "IT-Systems Engineering Analysis"
 - Mandatory module: "IT-Systems Engineering Design"
 - Specialization module(s): "Software Architecture & Modeling Technology"
 - Data Engineering MA
 - Digital Health MA

Dates

- Enrollment deadline: 22.10.2021
 - □ Cancellation deadline for enrollment: **30.01.2022**
- Introductory meeting: 27.10.2021 [NOW]
- Meetings:
 - Lectures scheduled
 - □ Update meetings on demand, usually weekly
- Final Presentations at end of the semester: To be decided
 - □ We will be present at the lecture room, but we will also be joining via Zoom.

Communicantion Plan

Motive	Content	Medium
Artifacts	Source code, Data Documentation, Wiki	Github - https://github.com/orgs/hpi-sam/
Papers	Copyrighted material	Bib-Admin
Messaging ad hoc	Questions, Suggestions, Sharing	Our Slack group: graph-neural-networks.slack.com
Official communications	Schedule, Orientations, Administrative issues	Email <u>christian.adriano@hpi.de</u>
Meetings	Lectures, Status, Work meetings	Zoom, Skype
Emergency	Call, SMS, messaging	Chris mobile number (check Chris' Slack profile)

Seminar Work, Deliverables and Grading

- Work alone or in groups on one selected topic/project.
- Each team has on-demand update meetings with teaching assistant.

Project Execution: [60% of final grade]

- Weekly update meeting
- Intermediary Presentations

Written deliverables: [30% of final grade]

- Final report on findings
 - □ Length: approx. 10 pages ACM Format per team participants
 - Some parts must be attributable to each individual author

Final Presentations: [10% of final grade]

- Presentation on findings
- Questions and feedback for other students' presentation

Road Map (1/2)

1. Intro and Course Organization

Week-1

Organization

Objectives

Team building, Setup, Topic

- 2. Graph Metrics and Random Models
- 3. Graph Structural Features Clustering
- 4. Message Passing & Belief Propagation
- 5. Graph Embeddings Message Passing
- 6. PageRank & Markov Chains & Graph Queries
- 7. Graph Convolutional Networks
- 8. Graph Attention Networks
- 9. Graph Evolution Networks
- 10. Temporal Graph Networks
- 11. Deep Graph Generative Models
- 12. Causal Graph Neural Networks
- 13. Propagation Graph Neural Networks
 - Network Effects, Cascading and Contagion
 - Outbreak Detection and Influence Maximization

Week-2

Description and Feature models

Week-3

Basic

Prediction models

Week-4

Advanced Prediction models

Understand a phenomenon

Extract features

Establish baselines

Preprocessing data

Predict an outcome

ML architecture and pipeline

Training models

Evaluation models

Week-5

Generative and Intervention models

Effects of interventions Risks of confounding

Causal structure

6

Roadmap (2/2)

Project Phase 1: Learn fundamentals - Lectures

Goal: learn fundamentals

Deadline: Mid-End of December

Project Phase 2: Present Proposal - Reading and Writing

Goal: learn about the state of art of one application area

Project Phase 3: Apply a method - Coding and Evaluation

- □ Goal: learn to apply and evaluate a method
- Present update in weekly meetings
- Final Presentations in one session in February 2022
- Submission of final report one week after the presentation

Project Proposal

Team size: up to four people.

Project proposal in two stages:

- 1- State-of-art (one page, double column) in 6 weeks (First week of December)
- Each person covers at least five well-selected papers (group covers at least 20 papers)
- 2- Plan first draft in 8 weeks (before New Years Break)
- Detail the problem (what is it? why should I care?, why is it challenging?)
- Describe the dataset (source, size, main features, cite any papers that used it)
- Determine the metrics and algorithms to be used (preliminary insights, it might change)
- Discuss how you will evaluate your results (benchmarks and baselines)

Datasets and Tools

Datasets

- http://networkrepository.com/
- https://snap.stanford.edu/data/
- https://networkdata.ics.uci.edu/

Tools (sorted by priority)

- 1. cuGraph: https://github.com/rapidsai/cugraph (Strongly recommend, fast)
- 2. NetworkX: https://networkx.org/documentation/stable/tutorial.html (great coverage of graph algorithms)
- 3. Snap for Python: http://snap.stanford.edu/snappy/index.html
- 4. Pytorch Geometric: https://pytorch-geometric.readthedocs.io/en/latest/
- 5. Github project: https://github.com/orgs/hpi-sam/projects/3

Motivation for Learning on Graphs and GNNs

Scenarios and Network Types

Network Types

- Event graphs
- Disease pathways
- Knowledge-graphs
- Scene graphs
- Heterogeneous graphs (different types of nodes and edges)

Scenarios

- Clustering in social network
- Protein interaction
- Cell similarity networks
- Failure propagation in infrastructure networks
- Fake news detection
- Side-effects of drugs
- Network attacks
- Traffic jams

Types of Predictions

Node classification

What type of node is this?

Link prediction

Are these two nodes connected?

With which strength?

Graph Classification

Patterns of connectivity (motifs)

Network similarity (isomorphism)

Basic Concepts

Types of graphs

Directed

Undirected

Disconnected

Fully connected

Directed Acyclic Graph

Multigraph

Bipartite

Cliques

Ego network of A

Node and Edge degrees

Node degree: number of edges of node k_i , where i is the node index

Indegree: number of incoming edges

Outdegree: number of outgoing edges

Average degree:
$$\bar{k}=\frac{1}{N}\sum_{i\in N}k_i=\frac{2E}{N}$$
 , where $E=$ number of edges, $N=$ number of nodes

Maximum number of edges:
$$E_{\text{max}} = {N \choose 2} = \frac{N(N-1)}{2}$$

However, most real-world networks are sparse, i.e., $E \ll E_{max}$

Adjacency matrix

	Α	С	D	В	E	F
Α	1	1	1	1	0	0
С	1	0	1	1	0	0
D	1	1	0	1	0	0
В	1	1	1	0	1	1
E	0	0	0	1	0	1
F	0	0	0	1	1	0

However, adjacency matrix of real-world networks are full of zeros

Most real-world networks are sparse

Network	N	E	N_b	E_b	$ar{d}$	Description		
Social network	s							
Delicious	147,567	301,921	0.40	0.65	4.09	del.icio.us collaborative tagging social network		
Epinions	75,877	405,739	0.48	0.90	10.69	Who-trusts-whom network from epinio		
						[Richardson 03]		
FLICKR	404,733	2,110,078	0.33	0.86	10.43	Flickr photo sharing social network [Kumar et a		
LinkedIn	6,946,668	30,507,070	0.47	0.88	8.78	Social network of professional contacts		
LiveJournal01	3,766,521	30,629,297	0.78	0.97	16.26	Friendship network of a blogging community		
						strom et al. 06]		
LiveJournal11	4,145,160	34,469,135	0.77	0.97	16.63	Friendship network of a blogging community		
						strom et al. 06]		
LiveJournal12	4,843,953	$42,\!845,\!684$	0.76	0.97	17.69	Friendship network of a blogging community		
						strom et al. 06]		
Messenger	$1,\!878,\!736$	4,079,161	0.53	0.78	4.34	Instant messenger social network		
Email-All	234,352	383,111	0.18	0.50	3.27	Research organization email network (all add		
						[Leskovec et al. 07b]		
Email-InOut	37,803	114,199	0.47	0.82	6.04	(all addresses but email has to be sent both		
						[Leskovec et al. 07b]		
Email-Inside	986	16,064	0.90	0.99	32.58	(only emails inside the research organi		
						[Leskovec et al. 07b]		
Email-Enron	33,696	180,811	0.61	0.90	10.73	Enron email data set [Klimt and Yang 04]		
Answers	488,484	1,240,189	0.45	0.78	5.08	Yahoo Answers social network		
Answers-1	26,971	91,812	0.56	0.87	6.81	Cluster 1 from Yahoo Answers		
Answers-2	25,431	65,551	0.48	0.80	5.16	Cluster 2 from Yahoo Answers		
Answers-3	45,122	165,648	0.53	0.87	7.34	Cluster 3 from Yahoo Answers		
Answers-4	93,971	266,199	0.49	0.82	5.67	Cluster 4 from Yahoo Answers		
Answers-5	5,313	11,528	0.41	0.73	4.34	Cluster 5 from Yahoo Answers		
Answers-6	290,351	613,237	0.40	0.71	4.22	Cluster 6 from Yahoo Answers		
Information (c	citation) netwo	orks						
CIT-PATENTS	3,764,105	16,511,682	0.82	0.96	8.77	Citation network of all US patents [Leskovec et		
Сіт-нер-рн	34,401	420,784	0.96	1.00	24.46	Citations between physics (ArXiv hep-th)		
	, -	, · · ·				[Gehrke et al. 03]		
Сіт-нер-тн	27,400	352,021	0.94	0.99	25.69	Citations between physics (ArXiv hep-ph)		
*****]				[Gehrke et al. 03]		
Blog-nat05-6m	29,150	182,212	0.74	0.96	12.50	Blog citation network (6 months of data) [Lesk		
LLOG TATIOO OM		102,212	"	1 0.00	12.00	al. 07cl		

N = number of nodes

E= number of edges

N_b = fraction nodes not in whiskers (size of largest biconnected component)

 E_b = fraction of edges in biconnected component

 $\bar{d} = \bar{k} = average \ degree$

<u>source</u>: Leskovec, J., et al. "Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters." *Internet Mathematics* 6.1 (2009): 29-123.

END