PHYSICS-I

Department of Physics, IIT Guwahati.

Course No: PH 101

Mid-Semester Examination

Date:16 Sept., 2018

Time: 2-4 pm

Total Marks:40

General Instructions

- a) Make sure that there are six sheets (including this) in this Question-cum-Answer Booklet.
- b) Write your Name and Roll Numbers on every sheet in the space provided.
- c) You must write the answers ONLY IN THE SPACE PROVIDED for the given question. Answers written elsewhere WILL NOT be evaluated!
- d) NO extra answer-sheets will be provided!
- e) Supplementary sheets provided are ONLY for rough work.
- f) It is advised that you first solve the problems on the supplementary sheet, and then copy the key steps in the space provided for that problem in this Question-cum-Answer booklet.
- g) Be **legible!** Also, make sure that your answers are systematic, logically as well as mathematically connected.
- h) Question 1 is on the rear side of **this sheet**. The answers to **each** of the remaining questions (Q2-Q6) should be contained in a single sheet.
- i) Marks for each question is indicated below the question number.

Student's Name :	Rahul.D
Roll No:	180102054
Signature:	Rahy

Signature of the Invigilator:	Thop	16/9/18
-------------------------------	------	---------

a)	Consider a \it{thin} uniform rigid rod of mass \it{m} and length \it{l} , under the fo	ollowing	situations.			
[3×1]	The rod is sliding down such a way that one end of it always maintains contact with a vertical wall while the other end slips on a horizontal floor. The whole motion is on the xy —plane.	DOF=	1			
[51]	The rod is free to move any fashion but constrained <i>only to the</i> xy – <i>plane</i> .	DOF=	3	1		
	The rod is constrained to move <i>inside</i> a larger spherical shell of radius R ($2R > l$) such a way that both ends of the rod always maintain contact with the inner surface of the shell.	DOF=	3	1		
b)	Water molecule (H_2O) is composed of two hydrogen atoms bonded to with its average $O-H$ bonds measuring 1 Å, and with an equilibrium H			,		
	104.5° . Obtain the DOF of a water molecule that is free to move in th under the following models.	ree dime				
[4×1]		DOF=				
[4×1]	under the following models. Model#1: The O—H bonds, or bond lengths, are flexible. But the		ensions	1		
4×1]	under the following models. Model#1: The O-H bonds, or bond lengths, are flexible. But the H-O-H bond angle is fixed at 104.5° Model#2: The O-H bonds are rigid at 1 Å, and the H-O-H bond	DOF=	ensions			

Part of the series of the seri	$(R, \theta, z) \text{ who}$ $= R d\theta \theta^{1} + d\theta^{2}$ $ds = (R d\theta)^{2}$ where means the	en points $A(R,0)$, B are given in cy al exclusion nearmed le R & con $A = 2^{-1}$ $A = 2^{-1}$ le posth lering a $A = 2^{-1}$	a system, the path can be shown
dr dr thus geo d No dene	ing point on the (R, θ, z) when (R, θ, z) when (R, θ, z) when $(R, \theta)^2$ de $(R$	te R & contract of the Posth of Posth of Solvery a formal of the Carry and the Carry a	length should be milimu
thus geo d so dene	ds = (Rde)? Levic means the me are consider the porth length (+ (dz)2. re poeth - lereng a f	length should be miline with voulble which
	0		
	$S = \int_{A}^{B} \sqrt{R^2 + 1}$	(do)2 do	2/
0 60	ey Euler-lagra	geo deric	the fundion should.
î e	$\frac{d}{dt} \left(\frac{2}{3^{2}} \right) - \frac{1}{2}$ $\frac{d}{dt} \left(\frac{2}{18^{2} + 2^{2}} \right)$ $\frac{d}{dt} \left(\frac{2}{18^{2} + 2^{2}} \right)$	2 0, 3	

$$\frac{z^{2}}{R^{2}+z^{2}} = k^{2}$$

$$\frac{z^{2}}{R^{2}} = \frac{k^{2}}{1-k^{2}}$$

$$\frac{z^{2}}{R^{2}} = \frac{k^{2}}{1-k^{2}}$$

$$\frac{z^{2}}{R^{2}} = \frac{R^{2}k^{2}}{(1-k^{2})}$$

$$\frac{dz}{R} = \frac{Rk}{1-k^{2}}$$

$$\frac{dz}{R} = \frac{Rk$$

		48.	= 1		and the second of the second
Name:	Rahul. D	1/50	Roll No:	180102054	(6)
[6] radi	ius R . Obtain the Hami	Itonian and Ha	milton's equ	the surface of a rigid-fixed suations of motion of the mupon only by the forces of co	ass m in
the ce	is of bushas	ie sphe like of doison of	ital po : e îr lv	on high fixed by las indirate by (R, O, O)	stem,
V	= 2 2 + 20	6 + 27	क्ष्म के के		
	care $91 = R$ $\vec{V} = R \cdot \vec{\theta} \cdot \vec{\theta}$. 27	
				+ (R who \$) 2]	al 10 14 ° 1
the pot	the pastile is ential at all his constant a $V = C$	etile si postiti del ben	upon on the	only by forus surface of sph sune it as C	ar considerni
$L = \frac{m}{2}$	$R^2\dot{\Theta}^2 + mR^2$	uh? 0 4°2' -	C .		
	$= mR^2\theta$ $= mR^2 uh^2\theta$				
H = m1		0 ¢°2 -	2	- m 22 win20 \$ 2	t (
	$\frac{n e^2 \theta^2}{2} + m e^2 \frac{n^2}{m}$			+ < _ }	
	$\frac{P_0^2}{mR^2} + \frac{P_0^2}{2mR^2}$				

$$P_{\phi} = 0 \qquad \phi = \frac{2 P_{\phi}}{2 m R^2 u^2 \theta} = \frac{P_{\phi}}{m R^2 u^2 \theta}$$

Name: Roll No: 180102054 Rahul.D A thin uniform rod, AB, of mass m and length l is Y suspended to the ceiling (at O), by one end, through a light inextensible string of length d (see figure). Assume that the rod can only move on the xy-plane, and [6] without any slackening of the string. Obtain the Lagrangian of the system using $\theta 1$ and $\theta 2$ (marked in the figure) as the generalized coordinates. The system is under gravity. Euler-Lagrange equations are not required! coldinates to be used. It is given that the genealized O, and Oz. She the thous study in light, at the khetic and potential energy in neglected. Kinetic energy = 1 mcv3 + Kinetic energy in com frame. (alyd body) when com - centre of man Vc > velocity of com well be at 42 dist from end. Rodin uniform ho com well be at 42 dist from end. From = (d who, + 1 who2) i - (drosso, + 1 coso2) i Vcom = (dcoso, 0, + 1 coso202) î - (d(-smo)) o, + 12 (-sno2) o2)] Vcom = (duaro, 0, + 1 varozo2) 7 + (duno, 0, + 1 unozo2); Kindic engy (T) o t m (duno, o,) 2 1 $T = m[(dusio_1o_1 + 1_1usio_2o_2)^2 + (dusio_1o_1 + 1_2usio_2o_2)^2] + \frac{1}{2}mi^2o_2^2$ $T = \frac{m}{2} \left[(d\theta_1)^2 + (\frac{1}{2}\theta_2)^2 + dL \cos(\theta_1 - \theta_2) \right] + \frac{m^2\theta_2^2}{2}$ V= - mg[dcon0,+1,con02] [= m [(doi)2+(202)+de co(0,0)]+m1202+mg[dcol0,+(wo]

Name: Roll No: Rahul. D 180102054 A uniform disk of mass 2m and radius R has a point mass mfixed close to its edge. The disk can roll without sliding along 2mthe x-axis, under gravity. Obtain the Euler-Lagrange (E-L) equations for the system. Using the E-L equation find the [8] frequency of small angle oscillations in heta (as marked in the figure). Hint: For small angle oscillations, $\theta^2 \approx 0$ and $\dot{\theta}^2 \approx 0$. As the point man in signally fixed to disk, the it can be consedued as a sight body. DOF = 6-5=1 [==0, solcitionally allowed in one axin conditioned no slipping, more on Xaxies. 7 Consider 4that the disk was Ritfally at origin Now on mouse spraying it by 0 \$ 1 = RO 9 = R. \$ = -RO 9 = R. 72 = - RO+ Ruho 42 = R- RUNO. 12 = -R0+Russo 9, = Rathoo KE griged body = KE of com + KE (En com frame) KEnystem (T) = 1 2m (RO)2 + 12m R 0 + 1 m [(- RO + RUSOO) + (ROE OO)] $T = mR^2\theta^2 + mR^2\theta^2 + m[2R^2\theta^2 - 2R^2\theta^2\omega s\theta]$ = 3 mero2 + m r262 (1/coso) $T = \frac{5}{2} mR^2 \hat{\theta}^2 - mR^2 \hat{\theta}^2 \cos \theta.$ V= 2mgR + mg (R-Russe) レニアーソ L = 5 m 202 - m 202 ws 0 - 3 mg R + mg Russ 0 $\frac{\partial L}{\partial \theta} = \frac{\text{mgR}(-\text{und})}{\text{mRuho}\left[R^{2}\theta^{2}\text{und} \cdot \frac{\partial L}{\partial \theta} = \frac{5\text{mR}^{2}\theta}{16} - 2\text{me}^{2}\theta^{2}\text{und} \cdot \frac{\partial L}{\partial \theta} = \frac{5\text{mR}^{2}\theta}{16} -$

E-L equation
$$\frac{d^2L}{dt^2q^2}$$
 - $\frac{3L}{5q^2}$ = 0

 $\frac{d}{dt}\left(\frac{\partial L}{\partial \theta}\right) = mR^2 \left[\frac{\theta}{\theta}\left(5 - 2\cos\theta\right) + 2\cos\theta\sin\theta\right] + 2\cos\theta\sin\theta\cos\theta^2$

Thus Etemphia

 $mR^2\left[5\theta - 2\cos\theta + 2\sin\theta\cos^2\right] + mR\sin\theta \left[\frac{1}{4} - R\theta^2\right] = 0$
 $e^2 = 0$
 e^2