FCT/Unesp – Presidente Prudente Departamento de Matemática e Computação

Fundamentos sobre Dados Parte 3

Prof. Danilo Medeiros Eler danilo.eler@unesp.br

Sumário

- Tipos de Dados
- Estrutura dentro e entre instâncias
- Processamento dos dados

- Em algumas circunstâncias, é preferível visualizar os dados brutos (raw data)
 - Por exemplo, na maioria das aplicações médicas os dados não sofrem modificações para serem visualizados, pois informações importante seriam perdidas e artefatos seriam adicionados

- Dependendo do tipo de dado ou da técnica de visualização a ser aplicada, os dados necessitam de pré-processamento
 - Dados faltantes, outliers ou erros

- Alguns métodos para o pré-processamento dos dados são
 - Metadados
 - Estatística
 - Valores faltantes e limpeza dos dados
 - Normalização
 - Segmentação
 - Amostragem
 - Redução de Dimensionalidade
 - Agregação e Sumarização

Metadados

Metadados

- Podem guiar o processamento dos dados
- Fornecem informação para sua interpretação, tal como o formato dos campos de uma instância
- Pode conter o ponto de referência base de alguma medida, unidade, símbolo ou número para indicar algum valor faltante
- Essas informações são importantes para selecionar as operações apropriadas de processamento

- Métodos de análise estatística podem fornecer insights úteis
 - Detecção de outlier
 - Podem indicar instâncias com valores errados em determinados campos

- Métodos de análise estatística podem fornecer insights úteis
 - Detecção de outlier
 - Podem indicar instâncias com valores errados em determinados campos

- Métodos de análise estatística podem fornecer insights úteis
 - Análise de agrupamentos
 - Pode auxiliar na segmentação de um conjunto de dados em grupos muito similares

- Métodos de análise estatística podem fornecer insights úteis
 - Análise de agrupamentos

 Pode auxiliar na segmentação de um conjunto de dados em grupos muito similares

- Métodos de análise estatística podem fornecer insights úteis
 - Análise de correlação
 - Pode auxiliar a eliminar campos redundantes ou destacar associação entre dimensões

- Conjuntos de dados reais, geralmente, possuem dados faltantes ou errôneos
 - Por exemplo, o mal funcionamento de um sensor, uma entrada em branco em uma pesquisa ou omissão de algum dado
- Quando o valor de um atributo possui erro, frequentemente foi causado por uma falha humana e é difícil de detectar

- Algumas estratégias para lidar com esses problemas são
 - Descartar a instância com erros
 - Associar um valor sentinela
 - Associar um valor médio
 - Associar um valor baseado nos vizinhos mais próximos

Identificador	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	null	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

- Descartar a instância com erros
 - É uma medida drástica, mas é frequentemente praticada, desde que a qualidade das instâncias restantes seja significante para análise

Identificador S	Salário l	dade	Peso	Nível	Aprovado
P1 1	500,89	30	87,6	1	0
		18	null	2	0
	•			2	1
	,		90,5	3	1

- Descartar a instância com erros
 - Pode levar a uma grande perda de informação, especialmente em conjuntos de dados com muitos dados faltante ou com erros
 - Além disso, as instâncias com dados faltantes podem ser as mais interessantes

Identificador	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	null	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

- Associar um valor sentinela
 - Pode-se associar um valor fixo para designar o valor faltante ou com erro
 - Por exemplo, se os dados variam de 0 a 100, pode-se escolher um outro valor
 - Por exemplo: -5

Identificador	Salário	ldade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	-5	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

- Associar um valor sentinela
 - Assim, quando os dados forem visualizados, as instâncias com valores faltantes podem ser identificadas
 - Um cuidado deve ser tomado para não levar em conta esses valores sentinela em algum processamento, como alguma medição estatística

Identificador	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	-5	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

- Associar um valor médio
 - Uma estratégia simples é substituir o valor faltante ou errôneo por um valor médio calculado da variável em questão
 - A vantagem é que pode afetar muito pouco medidas estatísticas dessa variável

Identificador	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	82,86	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

Associar um valor médio

 Entretanto, essa abordagem pode mascarar a identificação de *outliers*, principalmente se esse é o foco da exploração

Identificador	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	82,86	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

- Associar um valor baseado nos vizinhos mais próximos
 - Uma das melhores abordagens para substituição de valores é encontrar uma instância muito similar àquela em questão, com base nas outras variáveis
 - Uma vez que a instância mais similar é encontrada, os valores faltantes ou errôneos são substituídos pelos da instância mais similar

Identificador	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	null	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

D(P2, P1) =
$$sqrt((789,52 - 1500,89)^2 + (48 - 30)^2 + (2 - 1)^2 + (0 - 0)^2)$$

D(P2, P1) = $sqrt(506047,27 + 324 + 1 + 0)$
D(P2, P1) = $711,59$

Identificador	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	null	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

D(P2, P3) =
$$sqrt((789,52 - 1000,00)^2 + (48 - 28)^2 + (2 - 3)^2 + (0 - 1)^2)$$

D(P2, P3) = $sqrt(44301,83 + 400 + 0 + 1)$
D(P2, P3) = $211,43$

Identificador	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	null	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

D(P2, P4) =
$$sqrt((789,52 - 589,36)^2 + (48 - 39)^2 + (2 - 3)^2 + (0 - 1)^2)$$

D(P2, P4) = $sqrt(40064,02 + 81 + 1 + 1)$
D(P2, P4) = $200,36$

Identificador	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	90,5	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

$$D(P2, P1) = 711,59$$

$$D(P2, P3) = 211,43$$

$$D(P2, P4) = 200,36$$

- Associar um valor baseado nos vizinhos mais próximos
 - Um problema é decidir se a utilização de todos os atributos para calcular a similaridade é uma boa estratégia ou se a melhor seria selecionar um subconjunto de atributos mais relevantes

Identificador	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	90,5	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

- Normalização é o processo de transformar um conjunto de dados para que seja satisfeita uma propriedade estatística particular
 - As variáveis de um conjunto de dados podem estar em uma escala muito diferente

Identificador	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	60,0	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

Normalização

 Um exemplo simples é a transformação da abrangência dos valores de dados para assumirem valores entre 0.0 e 1.0

Identificador	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	60,0	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

Normalização

- Um exemplo simples é a transformação da abrangência dos valores de dados para assumirem valores entre 0.0 e 1.0
 - No exemplo, normalização pelo máximo

Identificador	Salário	Idade	Peso	Nível	Aprovado
P1	1,00	0,62	0,96	0,33	0,00
P2	0,52	1,00	0,66	0,66	0,00
P3	0,66	0,58	0,77	0,66	1,00
P4	0,39	0,81	1,00	1,00	1,00

Não Normalizado

ID	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	null	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

$$D(P2, P1) = 711,59$$

 $D(P2, P3) = 211,43$
 $D(P2, P4) = 200,36$

Normalizado

ID	Salário	Idade	Peso	Nível	Aprovado
P1	1,00	0,62	0,96	0,33	0,00
P2	0,52	1,00	null	0,66	0,00
P3	0,66	0,58	0,77	0,66	1,00
P4	0,39	0,81	1,00	1,00	1,00

$$D(P2, P1) = 0.69$$

 $D(P2, P3) = 1.09$
 $D(P2, P4) = 1.07$

Não Normalizado

ID	Salário	Idade	Peso	Nível	Aprovado
P1	1500,89	30	87,6	1	0
P2	789,52	48	null	2	0
P3	1000,00	28	70,5	2	1
P4	589,36	39	90,5	3	1

$$D(P2, P1) = 711,59$$

 $D(P2, P3) = 211,43$
 $D(P2, P4) = 200,36$

Normalizado

ID	Salário	Idade	Peso	Nível	.\provado
P1	1,00	0,62	0,96	0,33	0,00
P2	0,52	1,00	null	0,66	0,00
P3	0,66	0,58	0,77	0,66	1,00
P4	0,39	0,81	1,00	1,00	,00

$$D(P2, P1) = 0.69$$

 $D(P2, P3) = 0.43$
 $D(P2, P4) = 0.40$

Normalizado pelo Máximo

ID	Salário	Idade	Peso	Nível	Aprovado
P1	1,00	0,62	0,96	1,00	0,00
P2	0,52	1,00	null	0,66	0,00
P3	0,66	0,58	0,77	0,33	1,00
P4	0,39	0,81	1,00	1,00	1,00

$$D(P2, P1) = 0.69$$

 $D(P2, P3) = 1.09$
 $D(P2, P4) = 1.07$

Normalizado pelo Mínimo e Máximo

ID	Salário	Idade	Peso	Nível	Aprovado
P1	1,00	0,10	0,87	0,00	0,00
P2	0,21	1,00	null	0,50	0,00
P3	0,45	0,00	0,13	0,50	1,00
P4	0,00	0,55	1,00	1,00	1,00

$$D(P2, P1) = 1,29$$

 $D(P2, P3) = 1,43$
 $D(P2, P4) = 1,22$

Segmentação

- Em algumas situações, os dados podem estar separados em regiões contínuas, em que cada região corresponde a um particular classificação dos dados
- Por exemplo, em imagens de ressonâncias magnética, um conjunto de dados pode ter 256 possíveis valores para cada ponto, e pode ser segmentado em categorias específicas, tais como pele, músculo, ossos e gordura
 - Como pode haver ambiguidade, deve ser levado em consideração a vizinhança das regiões

Segmentação

Amostragem

- Pode ser utilizada para reduzir o número de elementos que serão utilizados durante o processo de exploração
- Geralmente é aplicada algumas restrições e as instâncias que as satisfazem são selecionadas como amostras

Amostragem

- Em algumas situações é necessário transformar os dados de uma distribuição espacial para outra com uma resolução diferente
 - Para isso, é necessário fazer uma re-amostragem dos dados, com base nas instâncias de uma vizinhança
 - Geralmente, é aplicado algum processo de interpolação

Redução de Dimensionalidade

- É um processamento empregado em situações em que a dimensionalidade dos dados excede as capacidades das técnicas de análise de dados
- Assim, é necessário investigar meios de reduzir a dimensionalidade dos dados, tentando preservar o máximo possível a informação contida neles

- A Redução de Dimensionalidade pode ser realizada manualmente ou computacionalmente
- O analista pode selecionar atributos de interesse ou os mais relevantes
 - Técnicas automáticas também podem ser empregadas

Iris Data (red=setosa,green=versicolor,blue=virginica)

 Exemplo de seleção de atributos dois a dois

- Algumas técnicas podem reduzir a dimensionalidade preservando as relações e estruturas do espaço original
 - Ex.: Projeções Multidimensionais
- Para tanto, pode-se utilizar técnicas como
 - Principal Component Analysis (PCA)
 - Multidimensional Scaling (MDS)
 - Self Organizing Maps (SOM)
 - Fastmap

Exemplo de redução de dimensionalidade

Mapear variáveis nominais para números

- Em alguns domínios os valores das dimensões são nominais
- Algumas alternativas podem ser empregadas para mapear esses valores para números
- Se o valor nominal for ranqueado, o mapeamento é direto, pois há uma relação de ordem
 - Por Exemplo, tamanho de camisas
 - \square P = 0
 - □ M = 1
 - \Box G = 2
 - □ GG = 3

Mapear variáveis nominais para números

- Deve-se encontrar um mapeamento dos dados para elementos gráficos que não introduzam relacionamentos artificiais que não existam nos dados
 - Por exemplo, em um conjunto de dados de carros, o atributo marca é nominal
 - Se um valor inteiro for associado para cada marca, um falso relacionamento poderá prejudicar a análise
 - Honda = 0
 - VW = 1
 - Nissan = 2
 - Toyota = 3

Mapear variáveis nominais para números

 Se existir um único atributo nominal podemos utiliza-lo com o rótulo

Agregação e Sumarização

- A visualização pode ficar sobrecarregada quando muitos dados são apresentados, havendo muita sobreposição
 - Uma alternativa é agrupar instâncias
- Primeiramente deve-se definir o método que executará a agregação e depois como o grupo será representado na visualização
- Deve-se exibir informação suficiente para o usuário decidir se ele deverá continuar a explorar um determinado grupo

 Coordenadas paralelas original (esquerda) e coordenadas paralelas apresentando agregação dos dados (direita)

- Conjunto original (esquerda) e Conjunto Amostrado (direita)
 - Técnica SADIRE

Referências

- Ward, M., Grinstein, G. G., Keim, D. Interactive data visualization foundations, techniques, and applications. Natick, Mass., A K Peters, 2010.
 - Capítulo 2

Referências

- SADIRE: a context-preserving sampling technique for dimensionality reduction visualizations
 - Wilson Estécio Marcilio-Jr, Danilo Medeiros Eler
 - Journal of Visualization (2020)
- Aulas de visualização da wiki.icmc.usp.br
 - Prof. Dr. Fernando Paulovich (ICMC/USP)
 - Profa. Dra. Maria Cristina Ferreira de Oliveira (ICMC/USP)
 - Profa. Dra. Rosane Minghim (ICMC/USP)

