Esercizi di Informatica Teorica

Linguaggi non contestuali: proprietà e forme normali

a cura di Luca Cabibbo e Walter Didimo

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

Sommario

- proprietà delle grammatiche non contestuali
- pumping lemma
- forme normali

notazioni sul livello degli esercizi: (*) facile, (**) non difficile (***) media complessità, (****) difficile, (****) quasi impossibile

Grammatiche non contestuali

grammatica non contestuale (CFG o tipo 2):

$$\alpha \to \beta$$
 con $\alpha \in V_N$, $\beta \in (V_T \cup V_N) +$

osservazione: è possibile estendere una CFG con ε-produzioni ed inoltre, per ogni CFG con ε-produzioni esiste una CFG equivalente in cui al più solo l'assioma ha una ε-produzione e l'assioma non compare mai a destra

<u>proprietà di chiusura</u>: i linguaggi non contestuali <u>sono chiusi</u> rispetto all'<u>unione, concatenazione</u> ed <u>iterazione</u>; <u>non sono chiusi</u> rispetto ad <u>intersezione</u> e <u>complementazione</u>

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

3

Proprietà di chiusura di linguaggi di tipo 2

siano G_1 e G_2 due grammatiche non constestuali e siano S_1 e S_2 i rispettivi assiomi; siano inoltre L_1 ed L_2 i linguaggi riconosciuti da G_1 e G_2 :

le grammatiche che riconoscono i linguaggi unione, concatenazione ed iterazione di L_1 ed L_2 sono ottenibili da G_1 e G_2 ridefinendo l'assioma S e le sue produzioni al modo:

• unione: $S \rightarrow S_1 \mid S_2$

• <u>concatenzaione</u>: $S \rightarrow S_1 S_2$

• <u>iterazione (di L_1)</u>: $S \rightarrow S_1S \mid \epsilon$

<u>esercizio</u>: fare un esempio di linguaggi L_1 ed L_2 di tipo 2 la cui intersezione non è un linguaggio di tipo 2

Pumping lemma per linguaggi di tipo 2

<u>pumping lemma</u>: se L è un linguaggio non contestuale allora $\exists n > 0$ tale che $\forall z \in L$ con $|z| \ge n \ \exists u,v,w,x,y$:

- 1) z = uvwxy
- 2) $|vwx| \le n$
- 3) $|vx| \ge 1$
- 4) $z_i = uv^i wx^i y \in L \quad \forall i \in \mathbb{N} \text{ (cioè } i = 0, 1, 2, ...)$

osservazioni:

- 1. *n* dipende da L (viene fissato una volta per tutte sulla base di L)
- 2. u, v, w, x, y dipendono da z e da n
- 3. <u>u, w, y</u> possono anche essere <u>stringhe vuote</u>
- 4. <u>una delle due stringhe v ed x può anche essere vuota</u>
- 5. poiché può anche essere i = 0, la stringa $\underline{z_0}$ = uwy deve appartenere ad \underline{L} affinché la proprietà 4 del lemma sia soddisfatta

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

5

Esercizi svolti sul pumping lemma

<u>Esercizio 1</u>(***) verificare che il pumping lemma vale per i seguenti linguaggi non contestuali:

- L = $\{a^h b^k a^k b^h : h, k \ge 0\}$
- $L = \{s \in \{a,b,c\}^* : \#c = \#a + \#b \}$

Soluzione

• L = $\{a^h b^k a^k b^h : h, k \ge 0\}$

il pumping lemma è valido per ogni stringa (non vuota) di L; infatti, se k, h > 0 basta suddividere la stringa in modo che v sia formata soltanto dall'ultima 'b' del primo gruppo di 'b', w sia vuota, ed x sia formata soltanto dalla prima 'a' del secondo gruppo di 'a'

$$z = \underbrace{aa...aabb...bb}_{u} \underbrace{aa...aabb...bb}_{vx}$$

Esercizi svolti sul pumping lemma

se k = 0 o h = 0, allora la stringa z è del tipo a..ab..b oppure b...ba...a, dove il numero di 'a' è uguale al numero di 'b'; in tal caso basta scegliere v ed x come l'ultimo ed il primo simbolo rispettivamente del primo e del secondo gruppo di simboli.

• L = {s∈ {a,b,c}*: #c = #a + #b } anche in questo caso si può applicare il pumping lemma ad ogni stringa (non vuota) z di L; infatti, in z <u>esiste almeno una 'c' che è adiacente o ad una 'a' o ad una 'b'</u>; supponiamo, per fissare le idee, che esista una 'c' adiacente ad una 'a' e che tale 'a' si trovi alla sua destra; allora è sufficiente scegliere v uguale alla sola 'c', w vuota, ed x uguale alla sola 'a' (gli altri casi sono analoghi)

$$z = \underbrace{abccaabcccca}_{u \ vx} \underbrace{v}_{y}$$

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

7

Esercizi svolti sul pumping lemma

<u>Esercizio 2(***)</u> dimostrare, utilizzando il pumping lemma, che i seguenti linguaggi non sono di tipo 2:

- L = $\{a^h b^k a^h b^k : h, k \ge 1\}$
- $L = \{s \in \{a,b,c\} + : \#a = \#b = \#c\}$

Soluzione

• L = { $a^h b^k a^h b^k : h, k \ge 1$ } supponiamo che valga il pumping lemma; allora è possibile fissare un n tale che per tutte le stringhe z di L di lunghezza maggiore o uguale ad n riesce z = uvwxy ($|vwx| \le n, |vx| \ge 1$) e $z_i = uv^i wx^i y \in L \ \forall i \in \mathbb{N}$; ma se scegliamo una stringa z = $a^h b^k a^h b^k$ tale che h, k > n si osserva che z ha lunghezza maggiore di n ma non ammette suddivisioni valide; infatti:

Esercizi svolti sul pumping lemma

v ed x devono essere formate o da sole 'a' o da sole 'b';

- inoltre, per mantenere il bilanciamento, v ed x devono contenere delle 'a' (o delle 'b') di gruppi diversi (es. v nel primo gruppo di 'a' ed x nel secondo gruppo di 'a')
- tuttavia, ciò non è possibile dovendo essere $|vwx| \le n$ ed essendo h, k > n (cioè la distanza minima tra due gruppi di simboli uguali è superiore ad n)
- L = {s∈ {a,b,c}+: #a = #b = #c} supponiamo che valga il pumping lemma e che n sia una costante tale che per tutte le stringhe z di L di lunghezza maggiore o uguale ad n riesce z = uvwxy ($|vwx| \le n$, $|vx| \ge 1$) e $z_i = uv^i wx^i y \in L \ \forall i \in \mathbb{N}$; consideriamo allora la seguente stringa z di lunghezza maggiore di n:

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

9

Esercizi svolti sul pumping lemma

 $z = a^k b^k c^k \; con \; k > n$; comunque proviamo a scegliere una suddivisione "valida" per z, poiché deve essere $|vwx| \le n$, ed essendo k > n, non è mai possibile fare in modo che v ed x prendano uno stesso numero di 'a', di 'b' e di 'c' (vedi l'esempio in figura)

d'altro canto, suddivisioni di altro tipo sbilancerebbero la stringa, cioè pompando non si avrebbe che #a = #b = #c.

<u>Esercizio 3</u>(****) dire se i seguenti linguaggi sono non contestuali, giustificando le risposte:

- $L = \{ss : s \in \{a,b\}^*\}$
- $L = \{ss^R : s \in \{a,b\}^*\}$

Esercizi svolti sul pumping lemma

Soluzione

• $L = \{ss : s \in \{a,b\}^*\}$

L <u>non è</u> un linguaggio non contestuale e si può dimostrare utilizzando il pumping lemma; supponiamo per assurdo che il pumping lemma valga, e sia dunque n una costante tale che per tutte le stringhe z di L di lunghezza maggiore o uguale ad n riesce z = uvwxy ($|vwx| \le n$, $|vx| \ge 1$) e $z_i = uv^i wx^i y \in L \ \forall i \in \mathbb{N}$; consideriamo z = $a^k b^k a^k b^k$ con k > n; mostriamo che z, pur avendo lunghezza maggiore di n, non può essere suddivisa opportunamente: – v ed x non possono prendere solo la prima metà della stringa (cioè il primo gruppo di 'a' e/o di 'b') perché allora $z_0 = uwy$ non sarebbe della forma ss (verificare formalmente!); analogamente v ed x non possono prendere solo la seconda metà della stringa;

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

11

Esercizi svolti sul pumping lemma

- allora v ed x devono essere prese a cavallo del centro della stringa, e poiché deve essere $|vwx| \le n$, allora risulta $vwx = b^i a^j$, con i, j > 0; ma allora, se ancora una volta consideriamo la stringa $z_0 = uwy$, essa avrà la forma: $z_0 = a^k b^t a^r b^k$, che non ha la forma ss; da ciò l'assurdo
- $L = \{ss^R : s \in \{a,b\}^*\} \ \underline{\grave{e}}$ un linguaggio non contestuale; infatti si tratta dell'insieme delle stringhe palindrome su $\{a,b\}$ di lunghezza pari; tale linguaggio \grave{e} per esempio generato dalla seguente grammatica non contestuale:

$$S \rightarrow \varepsilon$$
 $S \rightarrow X$
 $X \rightarrow aXa$ $X \rightarrow bXb$
 $X \rightarrow aa$ $X \rightarrow bb$

Esercizi da svolgere sul pumping lemma

Esercizio 4(****) dire, giustificando la risposta, se il seguente linguaggio è non contestuale: $L = \{a^ib^jc^k : i = 0 \text{ o } j=k\}$ dire inoltre se L è regolare oppure no.

Esercizio 5(****) mostrare un esempio di linguaggio non di tipo 2 per cui valga il pumping lemma per linguaggi di tipo 2 (suggerimento: sfruttare l'idea dell'Esercizio 4)

Esercizio 6(****) dimostrare, usando il pumping lemma per linguaggi non contestuali, che il seguente linguaggio non è di tipo 2: $L = \{a^k : k \text{ è un numero primo}\}$

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

13

Grammatiche in forma ridotta

una grammatica G non contestuale è in forma ridotta se:

- G <u>non contiene ε-produzioni</u>, se non sull'assioma, ed in tal caso l'assioma non compare a destra di nessuna produzione;
- G non contiene simboli inutili, cioè:
 - simboli <u>non fecondi</u> (cioè dai quali non sono generabili stringhe di soli terminali)
 - simboli non generabili dall'assioma
- G non contiene produzioni unitarie (cioè del tipo $A \rightarrow B$)

<u>teorema</u>: ogni grammatica non contestuale si può scrivere in forma ridotta

Grammatiche in forma ridotta

algoritmo:

- input: una CFG G
- output: una CFG G' equivalente a G ed in forma ridotta
- 1 portare eventuali <u>\varepsilon</u>-produzioni solo sull'assioma, e se l'assioma compare a destra, introdurre un nuovo assioma $(S' \rightarrow S, S' \rightarrow \varepsilon)$ ed una serie di produzioni che si ottengono da quelle esistenti sostituendo ε ad S (a destra)
- 2 rimuovere le produzioni che contengono simboli non fecondi
- 3 rimuovere le produzioni che contengono <u>simboli non generabili</u> dall'assioma
- 4 per ogni <u>produzione unitaria</u> $A \rightarrow B$ applicare una tra le due regole seguenti:
- (I) per ogni $B \rightarrow ...C... \Rightarrow \underline{introdurre} A \rightarrow ...C... ed \underline{eliminare} A \rightarrow B$
- (II) <u>per ogni</u> $C \rightarrow ...A... \Rightarrow \underline{introdurre} C \rightarrow ...B... ed <u>eliminare</u> <math>A \rightarrow B$; inoltre eliminare anche $C \rightarrow ...A...$ se A non ha altre produzioni

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

15

Esercizi svolti sulla forma ridotta

<u>Esercizio 7</u>(***) portare in forma ridotta la seguente grammatica non contestuale:

 $S \rightarrow AB \mid CAB \mid ACE$

 $A \rightarrow B \mid BA \mid SAAB$

 $B \rightarrow b \mid CAb \mid CED$

 $C \rightarrow aC \mid CaD \mid BaD$

 $D \rightarrow Ca \mid BEC$

 $E \rightarrow e \mid Be$

Soluzione

- non ci sono ϵ -produzioni
- i simboli non fecondi sono: C, D; rimuovendo dunque le produzioni che li contengono la grammatica diventa:

Esercizi svolti sulla forma ridotta

$$S \rightarrow AB$$

 $A \rightarrow B \mid BA \mid SAAB$
 $B \rightarrow b$
 $E \rightarrow e \mid Be$

• i simboli non generabili dall'assioma sono: E; rimuovendo le produzioni che contengono E si ha dunque:

$$S \rightarrow AB$$

 $A \rightarrow B \mid BA \mid SAAB$
 $B \rightarrow b$

• l'unica produzione unitaria è $A \to B$ e poiché $B \to b$, possiamo introdurre la produzione $A \to b$ e rimuovere $A \to B$

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

17

Esercizi svolti sulla forma ridotta

la grammatica in forma ridotta è dunque:

$$S \rightarrow AB$$

 $A \rightarrow b \mid BA \mid SAAB$
 $B \rightarrow b$

<u>nota</u>: per eliminare la produzione unitaria $A \rightarrow B$ dalla grammatica

$$S \rightarrow AB$$

$$A \rightarrow B \mid BA \mid SAAB$$

$$B \rightarrow b$$

potevamo applicare la regola (II) anziché la (I) al modo:

$$S \rightarrow AB \mid BB$$

$$A \rightarrow BA \mid SAAB \mid BB \mid SBBB$$

$$B \rightarrow b$$

Esercizi svolti sulla forma ridotta

<u>Esercizio 8</u>(***) portare in forma ridotta la seguente grammatica non contestuale:

$$S \rightarrow \epsilon$$

$$S \rightarrow SS$$

$$S \rightarrow (S)$$

Soluzione

• l'assioma ha una ε -produzione e compare anche a destra di altre produzioni; dobbiamo quindi introdurre un nuovo assioma S' ed aggiungere le produzioni che si ottengono sostituendo ε ad S in quelle preesistenti:

$$S'\!\!\to\!\epsilon\mid S$$

$$S \rightarrow SS|(S)|()$$
 (la produzione $S \rightarrow S$ è banale e non va messa)

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

19

Esercizi svolti sulla forma ridotta

• rimane da eliminare le produzioni unitarie, in quanto non vi sono simboli inutili; l'unica produzione unitaria è $S' \rightarrow S$, e la grammatica in forma ridotta è la seguente (applico la regola (I)):

$$S' \rightarrow \varepsilon \mid SS \mid (S) \mid ()$$

$$S \rightarrow SS \mid (S) \mid ()$$

Grammatiche in forma normale di Chomsky

una grammatica non contestuale è in <u>forma normale di Chomsky</u> (CNF) se tutte le sue produzioni sono della forma $A \to BC$ o $A \to a$

teorema: ogni grammatica non contestuale G tale che ε∉ L(G) può scriversi in forma normale di Chomsky

algoritmo

- portare in forma ridotta
- sostituire ogni terminale 'a' con un non terminale X_a in tutte le produzioni in cui compare 'a' ed introdurre la produzione $X_a \rightarrow a$ (la forma ottenuta a questo punto si chiama "quasi CFN")
- sostituire ricorsivamente ogni produzione del tipo: $A \to BC\alpha$ con le seguenti: $A \to BD$, $D \to C\alpha$, dove D è un nuovo non terminale

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

21

Esercizi svolti sulla CNF

<u>Esercizio 9</u>(**) portare in CNF la seguente grammatica non contestuale:

$$S \rightarrow SS \mid (S) \mid ()$$

Soluzione

- la grammatica è già in forma ridotta
- aggiungiamo due nuovi simboli non terminali A e Z, dove A è associato al simbolo '(' e Z è associato al simbolo ')'; risulta:

$$S \rightarrow SS \mid ASZ \mid AZ$$

$$A \rightarrow (Z \rightarrow)$$

• spezziamo le produzioni con più di tre simboli a destra:

$$S \rightarrow SS \mid AD \mid AZ$$

$$D \rightarrow SZ$$

$$A \rightarrow (Z \rightarrow)$$

Esercizi svolti sulla CNF

<u>Esercizio 10</u>(***) portare in CNF la seguente grammatica non contestuale:

$$S \rightarrow aAa \mid aa$$

$$A \rightarrow aAa \mid B$$

$$B \rightarrow bBb \mid bb$$

Soluzione

• portiamo la grammatica in forma ridotta

$$S \rightarrow aAa \mid aa$$

$$A \rightarrow aAa \mid bBb \mid bb$$

$$B \rightarrow bBb \mid bb$$

• aggiungiamo un non terminale per 'a' ed uno per 'b' al modo:

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

23

Esercizi svolti sulla CNF

$$\begin{split} \mathbf{S} &\to \mathbf{X}_{\mathbf{a}} \ \mathbf{A} \ \mathbf{X}_{\mathbf{a}} \ | \ \mathbf{X}_{\mathbf{a}} \ \mathbf{X}_{\mathbf{a}} \\ \mathbf{A} &\to \mathbf{X}_{\mathbf{a}} \ \mathbf{A} \ \mathbf{X}_{\mathbf{a}} \ | \ \mathbf{X}_{\mathbf{b}} \ \mathbf{B} \ \mathbf{X}_{\mathbf{b}} \ | \ \mathbf{X}_{\mathbf{b}} \ \mathbf{X}_{\mathbf{b}} \\ \mathbf{B} &\to \mathbf{X}_{\mathbf{b}} \ \mathbf{B} \ \mathbf{X}_{\mathbf{b}} \ | \ \mathbf{X}_{\mathbf{b}} \ \mathbf{X}_{\mathbf{b}} \\ \mathbf{X}_{\mathbf{a}} &\to \mathbf{a} \\ \mathbf{X}_{\mathbf{b}} &\to \mathbf{b} \end{split}$$

• spezziamo le produzioni con più di tre simboli a destra:

$$S \rightarrow X_a C \mid X_a X_a$$

$$C \rightarrow A X_a$$

$$A \rightarrow X_a C \mid X_b D \mid X_b X_b$$

$$D \rightarrow B X_b$$

$$B \to X_b \mathbin{\raisebox{0.1ex}{D}} \mid X_b X_b$$

$$X_a \rightarrow a$$

$$X_b \rightarrow b$$

Grammatiche in forma normale di Greibach

una grammatica non contestuale è in <u>forma normale di Greibach</u> (<u>GNF</u>) se tutte le sue produzioni sono della forma $A \rightarrow a\beta$, dove β è una sequenza (eventualmente vuota) di non terminali

<u>teorema</u>: ogni grammatica non contestuale G tale che ε∉ L(G) può scriversi in forma normale di Greibach

algoritmo

- portare in <u>CNF</u> o in <u>quasi CNF</u>
- fissare un <u>ordinamento dei non terminali</u>: A₁, A₂,, A_m
- portare tutte le <u>produzioni nella forma</u>: $A_i \rightarrow A_j \alpha$ con i < j, oppure $A_i \rightarrow a \gamma$ con 'a' simbolo terminale, usando la seguente procedura:

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

25

Grammatiche in forma normale di Greibach

per k = 1,...,m applicare le due regole seguenti nell'ordine:

- <u>sostituzione</u>: $A_k \rightarrow A_j \alpha$, $A_j \rightarrow \beta \Rightarrow A_k \rightarrow \beta \alpha$, $A_j \rightarrow \beta$ ($\forall j = 1,...,k-1$)
- <u>eliminazione ricorsione sinistra</u>: $A_k \rightarrow A_k \alpha_1 \mid ... \mid A_k \alpha_n \mid \beta_1 \mid ... \mid \beta_s \Rightarrow$

$$A_k \to \beta_1 B_k \mid ... \mid \beta_s B_k \mid \beta_1 \mid ... \mid \beta_s \ e \ B_k \to \alpha_1 B_k \mid ... \mid \alpha_n B_k \mid \alpha_1 \mid ... \mid \alpha_n B_k \mid \alpha_n \mid ... \mid \alpha_n B_k \mid ...$$

• applicare la sostituzione a "ritroso" (i = m-1,...,1) prima sui non terminali A_i e poi a ritroso sui non terminali B_j (questa fase ci garantisce che tutte le produzioni avranno la parte destra che inizia con un simbolo terminale)

<u>nota pratica</u>: è utile <u>scegliere bene l'ordinamento iniziale</u> dei non terminali per semplificare il calcolo

Esercizi svolti sulla GNF

<u>Esercizio 11</u>(***) portare in GNF la seguente grammatica non contestuale:

$$S \rightarrow SS \mid AZ \mid AX$$

 $X \rightarrow SZ$
 $A \rightarrow (Z \rightarrow)$

Soluzione

- la grammatica è in CNF, quindi è anche in quasi CNF
- scegliamo un ordinamento vantaggioso dei non terminali; si osserva che S "dipende" da A e che X "dipende" da S, quindi scegliamo il seguente ordinamento: X < S < A < Z
- mettiamo tutte le produzioni nella forma $C \to D\alpha$ con C < D oppure nella forma $C \to a\gamma$, dove 'a' è un simbolo terminale; <u>dobbiamo</u> considerare i non terminali nell'ordine crescente assegnato

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

27

Esercizi svolti sulla GNF

- per X non dobbiamo fare niente, perché X \leq S
- per S dobbiamo solo eliminare la ricorsione sinistra nella produzione S \rightarrow SS; le nuove produzioni per S sono:

$$S \rightarrow AZB \mid AXB \mid AZ \mid AX$$

 $B \rightarrow SB \mid S$

per A e Z non dobbiamo fare nientela grammatica ottenuta fin qui è dunque:

$$S \rightarrow AZB \mid AXB \mid AZ \mid AX$$

 $B \rightarrow SB \mid S$

 $X \rightarrow SZ$

$$A \rightarrow (Z \rightarrow)$$

• facciamo ora la <u>sostituzione dei non terminali originali nell'ordine</u> <u>inverso di crescita</u>

Esercizi svolti sulla GNF

- ora effettuiamo le sostituzioni per B: A $B \rightarrow (ZBB \mid (XBB \mid (ZB \mid (XB \mid (ZB \mid ($
- quindi, la grammatica in GNF è la seguente:

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

29

Esercizi svolti sulla GNF

<u>Esercizio 12</u>(***) portare in GNF la seguente grammatica non contestuale:

$$S \rightarrow AC \mid CA$$

 $A \rightarrow a \mid CAA$
 $C \rightarrow b \mid c \mid ACC$

Soluzione

- la grammatica è già in quasi CNF
- scegliamo il seguente ordinamento dei non terminali: S < A < C
- effettuiamo le sostituzioni e le eliminazioni della ricorsione sinistra nell'ordine crescente assegnato per i non terminali:
- per S non si deve fare niente

Esercizi svolti sulla GNF

```
    - per C si ha:

            - C → b | c | aCC | CAACC
            - C → bB | cB | aCCB | b | c | aCC
            (eliminazione risorsione sin.)
            B → AACCB | AACC

    • sostituiamo a ritroso:
    C → bB | cB | aCCB | b | c | aCC
    A → a | bBAA | cBAA | aCCBAA | bAA | cAA | aCCAA
            S → aC | bBAAC | cBAAC | aCCBAAC | bAAC | cAAC | aCCAAC | bBA | cBA | aCCBA | bA | cA | aCCA
            B → aACCB | bBAAACCB | cBAAACCB | aCCBAAACCB | bAAACCB | cAAACCB | cAAACCB | cBAAACC | cAAACC | cAAACC | cAAACC | cBAAACC | cBAAACC | cCBAAACC | cCBAAACCC | cCBAAACCC | aCCCAAACCC | cCBAAACCC | aCCCAAACCC | cCBAAACCC | aCCCAAACCC | aCCCAAACCC | cCBAAACCC | aCCCAAACCC | cCBAAACCC | aCCCAAACCC | aCCCAAACCC | cCBAAACCC | aCCCAAACCC | aCCCAAACCC | aCCCAAACCC | aCCCAAACCC | cCBAAACCC | aCCCAAACCC | aCCCAAACC
```

Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo

- per A non si deve fare niente;

31