Московский физико-технический институт (государственный университет) Факультет общей и прикладной физики

Лабораторная работа N 4.2

(Общая физика: квантовая физика)

Исследование энергетического спектра β -частиц и определение их максимальной энергии при помощи магнитного спектрометра

Работу выполнил: Иванов Кирилл, 625 группа

г. Долгопрудный 2018 год

Цель работы: С помощью магнитного спектрометра исследовать энергетический спектр β - частиц при распаде ядер ¹³⁷Cs и определить их максимальную энергию.

1. Теоретическое введение

Бета-распадом называется самопроизвольное превращение ядер, при котором их массовое число не изменяется, а заряд увеличивается или уменьшается на единицу. Бета-активные ядра встречаются во всей области значений массового числа A, начиная от единицы (свободный нейтрон) и кончая самыми тяжелыми ядрами. Период полураспада β - активных ядер изменяется от ничтожных долей секунды до 10^{18} лет. Выделяющаяся при единичном акте β - распада энергия варьируется от 18 кэB до 13,4 МэB.

В данной работе мы будем иметь дело с электронным распадом

$$_{Z}^{A}X \rightarrow_{Z+1}^{A}X + e^{-} + \widetilde{\nu}$$

при котором кроме электрона испускается антинейтрино. Освобождающаяся при β -распаде энергия делится между электроном, антинейтрино и дочерним ядром, однако доля энергии, передаваемой ядру, исчезающе мала по сравнению с энергией, уносимой электроном и антинейтрино. Практически можно считать, что эти две частицы делят между собой всю освобождающуюся энергию. Поэтому электроны могут иметь любое значение энергии от нулевой до некоторой максимальной, которая равна энергии, освобождающейся при β -распаде, являющейся важной физической величиной.

Вероятность dw того, что при распаде электрон вылетит с импульсом в интервале d^3p , а антинейтрино с импульсом в интервале d^3k , пропорциональна произведению этих дифференциалов. Но мы должны еще учесть закон сохранения энергии, согласно которому импульсы p и k электрона и антинейтрино связаны соотношением

$$E_e - E - ck = 0$$
,

где E_e - максимальная энергия электрона, кинетическая энергия электрона E связана с его импульсом обычным релятивистским соотношением

$$E = c\sqrt{p^2 + m^2c^2} - mc^2,$$

а через ck обозначена энергия антинейтрино с импульсом k. Условие можно учесть введением в выражение для dw δ - функции

$$\delta(E_e - E - ck)$$
.

Таким образом, вероятность dw может быть записана в виде

$$dw = D\delta(E_e - E - ck)d^3pd^3k = D\delta(E_e - E - ck)p^2dpk^2dkd\Omega_e d\Omega_{\tilde{\nu}}, \tag{1}$$

где D — некоторый коэффициент пропорциональности, $d\Omega_e$, $d\Omega_{\tilde{\nu}}$ — элементы телесных углов направлений вылета электрона и нейтрино. Вероятность dw непосредственно связана с β -спектром, поскольку для большого числа N_0 распадов число dN распадов с вылетом электрона

и антинейтрино с импульсом соответственно от p до p+dp и от k до k+dк определяется соотношением

$$dN = N_0 dw (2)$$

Коэффициент D в формуле (1) можно считать для рассматриваемых нами так называемых разрешенных фермиевских типов распадов с хорошей точностью константой (разрешенными называются такие переходы, при которых не изменяются ни момент, ни четность состояния ядра). В этом случае величину dw из (2) можно проинтегрировать по всем углам и по абсолютному значению импульса нейтрино.

После умножения на полное число распадов N проинтегрированное выражение приобретает смысл числа электронов dN, вылетающих из ядра с импульсом, абсолютная величина которого лежит между p иp+dp:

$$dN = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 dp.$$
 (3)

Чтобы получить распределение электронов по энергиям, надо в (3) перейти от dp к dE:

$$dE = \frac{c^2 p}{E + mc^2} dp,$$

после чего выражающая форму β — спектра величина N(E)=dN/dE приобретает вид

$$\frac{dN}{dE} = N_0 B c p (E + mc^2) (E_e - E)^2 = N_0 B \sqrt{E(E + 2mc^2)} (E_e - E)^2 (E + mc^2)$$
(4)

где $B=(16\pi^2/c^4)D$. В нерелятивистском приближении, которое и имеет место с нашем случае, выражение (4) упрощается, и мы имеем

$$\frac{dN}{dE} \approx \sqrt{E}(E_e - E)^2. \tag{5}$$

Выражение (5) приводит к спектру, имеющему вид широкого колокола (рис 1). Кривая плавно отходит от нуля и столь же плавно, по параболе, касается оси абсцисс в области максимальной энергии электронов E_e .

Дочерние ядра, возникающие в результате β -распада, нередко оказываются возбужденными. Возбужденные ядра отдают свою энергию либо излучая γ -квант (энергия которого равна разности энергий начального и конечного уровней), либо передавая избыток энергии одному из электронов с внутренних оболочек атома. Излучаемые в таком процессе электроны имеют строго определенную энергию и называются конверсионными.

Рис. 1: Форма спектра β -частиц при разрешенных переходах

Конверсия чаще всего происходит на оболочках K или L. На спектре, представленном на рис. 1, видна монохроматическая линия, вызванная электронами конверсии. Ширина этой линии в нашем случае является чисто аппаратурной, по ней можно оценить разрешающую силу спектрометра.

2. Экспериментальная установка

Для определения энергии β -частиц в работе используется магнитный спектрометр, схема которого показана на рисунке 2 слева. Электроны испускаются радиоактивным источником и попадают в магнитное поле катушки, ось которой параллельна OZ. Траектории электронов сходятся в одной точке — фокусе, где и установлен сцинтилляционный счетчик, сигналы которого усиливаются фотоумножителем и регистрируются пересчетным прибором. Фокусное расстояние f магнитной линзы связано с током в катушке I и импульсом p_e регистрируемых частиц следующим образом:

$$\frac{1}{f} \propto \frac{I^2}{p_e^2}$$

При неизменной геометрии установки, увеличивая и уменьшая силу тока, можно фокусировать электроны разных импульсов, причем

$$p_e = kI, (6)$$

где k — коэффициент пропорциональности, являющийся параметром установки.

Рис. 2: слева — схема β -спектрометра; справа — блок-схема установки для изучения спектра

В β -спектрометре установлены диафрагмы для ограничения углов вылета частиц из источника и свинцовый фильтр для защиты от прямого попадания γ -лучей.

Число частиц N, регистрируемых на установке, равно: $N \approx W \cdot \Delta p_e$, где Δp_e - разрешающая способность спектрометра. Дифференцируя выражение для форуса магнитной линзы, получим: $\Delta p_e = \frac{1}{2} \frac{\Delta f}{f} p_e$, то есть $\Delta p_e \propto p_e$. Таким образом, для количества частиц справедлива формула:

$$N = CW(p_e)p_e (7)$$

Здесь C - некоторая константа.

3. Выполнение работы

Откачаем воздух из полости спектрометра, включим вакуумметр. Включим ПЭВМ, формирователь импульсов, питание магнитной линзы и уменьшим ток через неё до нуля.

Проведём измерение β -спектра, изменяя ток в магнитной линзе, при каждом значении тока будем измерять число попаданий частиц в детектор за 100 секунд. Далее в таблице будут сразу приведены значения $N[{\rm c}^{-1}]=\frac{N'}{t_{100}}$ — число частиц в единицу времени. Результаты сведем в таблицу 1.

Примечание: в таблице погрешности величин указаны в тех же размерностях, что и сами величины.

Измерим фон:

Таблица 2: Подсчет фона

Nº	1	2	3	4
N_{Φ}	0,810	0,914	0,801	0,769
$\sigma_{N_{\Phi}}$	0,089	0,078	0,101	0,077

По результатам измерений возьмем среднее, т.е.

$$N_{\Phi} = 0.79 \pm 0.09 \text{ c}^{-1}$$

Проведем вычет фона из числа частиц. Погрешность будет вычисляться как

$$\sigma_{N-N_{\Phi}} = \sqrt{\sigma_N^2 + \sigma_{N_{\Phi}}^2} = \sqrt{\left(rac{\sqrt{N'}}{t_{100}}
ight)^2 + \sigma_{N_{\Phi}}^2}$$

Погрешность σ_N вычисляется статистически.

Отложим на графике экспериментальные точки в осях $I,\ N-N_{\Phi}$ и профитируем их функцией

$$y(x) = g + a \exp\left(\frac{(x-b)^2}{2c^2}\right) + d \cdot x^2 (f - \sqrt{x^2 + e})^2$$

Первый член вносит общую поправку значений по y (обусловленную вычетом фона), второй — функция Гаусса для конверсионного пика и третий — спектр β -распада. Результаты фита сведем в таблицу 3.

Важным результатом фита является параметр $b = (4.122 \pm 0.015)$ A — он показывает, где находится конверсионный пик по оси абсцисс. С его помощью можно найти из (6)

$$k = \frac{p_c}{I} \approx 245/c$$
 кэ $\mathrm{B/A}$

Таблица 1: Результаты измерений

№	<i>I</i> , A	σ_l , A	N, c^{-1}	$N - N_{\Phi}, c^{-1}$	$\sigma_{N-N_{\Phi}}$	p , кэ B/c ,	σ_p	Т, кэВ	σ_T	$f, c/M^{3/2}$	σ_f
1	0	0.02	0.66	-0.13	0.14	-	_	-	-	-	-
2	0.2	0.02	0.71	-0.08	0.14	51	5	3	0	-	-
3	0.4	0.02	0.91	0.12	0.15	103	5	10	1	3.322	0.118
4	0.6	0.02	0.89	0.1	0.14	154	5	23	1	1.651	0.118
5	0.8	0.02	0.96	0.17	0.15	206	5	40	1	1.398	0.118
6	1	0.02	1.37	0.58	0.16	257	5	61	1	1.848	0.118
7	1.2	0.02	1.78	0.99	0.17	309	6	86	2	1.835	0.118
8	1.4	0.02	2.4	1.61	0.19	360	6	114	2	1.858	0.118
9	1.7	0.02	3.52	2.73	0.22	437	6	161	2	1.808	0.081
10	2	0.02	3.96	3.17	0.23	514	6	214	3	1.527	0.062
11	2.3	0.02	3.97	3.18	0.23	591	7	271	3	1.24	0.049
12	2.6	0.02	4.05	3.26	0.23	668	7	330	3	1.045	0.04
13	2.9	0.02	3.56	2.77	0.22	746	7	393	4	0.817	0.034
14	3.2	0.02	2.57	1.78	0.19	823	8	457	4	0.565	0.032
15	3.3	0.02	2.27	1.48	0.19	848	8	479	5	0.492	0.032
16	3.4	0.02	1.42	0.63	0.16	874	8	502	5	0.307	0.04
17	3.6	0.02	1.3	0.51	0.16	926	8	546	5	0.254	0.04
18	3.7	0.02	1	0.21	0.15	951	9	569	5	0.156	0.055
19	3.8	0.02	1.14	0.35	0.15	977	9	592	5	0.194	0.043
20	3.85	0.02	1.71	0.92	0.17	990	9	603	5	0.308	0.029
21	3.9	0.02	2.89	2.1	0.2	1003	9	614	5	0.456	0.023
22	3.95	0.02	4.42	3.63	0.24	1015	9	626	6	0.589	0.021
23	4	0.02	5.23	4.44	0.25	1028	9	637	6	0.639	0.02
24	4.1	0.02	5.11	4.32	0.25	1054	9	660	6	0.607	0.019
25	4.2	0.02	4.58	3.79	0.24	1080	9	684	6	0.549	0.019
26	4.3	0.02	4.23	3.44	0.23	1105	10	707	6	0.505	0.018
27	4.33	0.02	3.38	2.59	0.21	1113	10	714	6	0.433	0.019
28	4.35	0.02	2.4	1.61	0.19	1118	10	719	6	0.339	0.02
29	4.4	0.02	2.12	1.33	0.18	1131	10	730	6	0.303	0.021
30	4.5	0.02	0.9	0.11	0.15	1157	10	754	6	0.084	0.056
31	4.6	0.02	0.56	-0.23	0.13	1183	10	777	7	-	-
32	4.8	0.02	0.54	-0.25	0.13	1234	10	825	7	_	-
33	5	0.02	0.32	-0.47	0.12	1285	11	872	7	-	-

Рис. 3: Измерение β -спектра

Таблица 3: Результаты фита β -спектра

Параметр	Значение	Ошибка	
a	5.43	0.36	
b	4.122	0.015	
c	0.19	0.02	
d	7.83	196.6	
e	17.82	217.76	
f	301.70	7766.48	
g	-0.63	0.27	
χ_{ν}	3,1		

Зная конверсионный пик и соответствующие ему импульс $p_c=1013~{\rm кэB/c}$ и энергию $T=634~{\rm кэB},$ мы можем откалибровать шкалу токов в шкалу импульсов и энергий. Это занесено в таблицу 1.

Теперь подставим в (5) формулу (7), сокращая обе части на δp_e , мы получаем

$$N(p) = \approx p^3 (E_e - E)^2 \Rightarrow \frac{\sqrt{N}}{p^{3/2}} \propto T_{max} - T$$

Отложив по оси y величину $\frac{\sqrt{N}}{p^{3/2}}=f$ в таблице 1, а по x — кинетическую энергию, мы

можем построить график, называемый графиком Ферми-Кюри, и определить по нему T_{max} — в этих осях спектр β -распада описывается прямой, который мы можем профитировать y=ax+b.

Рис. 4: График Ферми-Кюри

В результате фита мы получаем, что при y=0 мы можем найти $T_{max}=\frac{b}{-a}\approx (610\pm 46)$ кэВ.

Таблица 4: Результаты фита Ферми-Кюри

Параметр	Значение	Ошибка		
b	2.17	0.13		
a	-0.0035	0.0003		
$\chi_{ u}$	2,1			

4. Вывод

Таким образом, в работе мы изучили спектр β -распада ^{136}Cs , экспериментальным путем наши конверсионный пик, оценили параметры установки и подсчитали максимальную возможную кинетическую энергию электрона в этом распаде.