# **Intelligent Robots Practice**

Wheeled Mobile Robots

Chungbuk National University, Korea Intelligent Robots Lab. (IRL)

Prof. Gon-Woo Kim



### **Contents**

- **■** Locomotion
- Wheels
- Mobile Robot Kinematics





# Locomotion

(physical interaction between the vehicle and its environment)





# **Locomotion Concepts**

### Principles Found in Nature

| Type of motion    |     | Resistance to motion   | Basic kinematics of motion                             |
|-------------------|-----|------------------------|--------------------------------------------------------|
| Flow in a Channel |     | Hydrodynamic forces    | Eddies                                                 |
| Crawl             |     | Friction forces        | Longitudinal vibration                                 |
| Sliding           | THE | Friction forces        | Transverse vibration                                   |
| Running           | SE  | Loss of kinetic energy | Oscillatory movement of a multi-link pendulum          |
| Jumping           |     | Loss of kinetic energy | Oscillatory<br>movement<br>of a multi-link<br>pendulum |
| Walking           |     | Gravitational forces   | Rolling of a polygon (see figure 2.2)                  |

- Concepts found in nature: difficult to imitate technically
- Rolling is most efficient, but not found in nature
- However, the movement of a walking biped is close to rolling





# Characterization of locomotion concept

- Locomotion
  - Generated by the Mechanisms and Actuators
- The most important issues in locomotion
  - Stability
    - number of contact points
    - center of gravity
    - static/dynamic stabilization
    - inclination of terrain
  - Characteristics of contact
    - contact point or contact area
    - angle of contact
    - friction
  - Type of environment
    - structure
    - medium (water, air, soft or hard ground)





# Wheels





#### **Mobile Robots with Wheels**

- Wheels
  - The most appropriate solution for most applications
  - Three wheels are sufficient and to guarantee stability
  - With more than three wheels a flexible suspension is required
  - Selection of wheels depends on the application





# **Four Basic Wheels Types**

- Standard wheel
  - Two degrees of freedom
    - rotation around the (motorized) wheel axle and the contact point

- Castor wheel
  - Three degrees of freedom
    - rotation around the wheel axle, the contact point and the castor axle





## Four Basic Wheels Types

- Swedish wheel
  - Three degrees of freedom
    - rotation around the (motorized) wheel axle, around the rollers and around the contact point

- Ball or spherical wheel
  - Suspension technically not solved







#### **Characteristics of Wheeled Robots**

- Stability
  - guaranteed with 3 wheels
    - If center of gravity is within the triangle which is formed by the ground contact point of the wheels.
    - Stability is improved by 4 and more wheel
      - however, this arrangements are hyper static and require a flexible suspension system.
- Bigger wheels allow to overcome higher obstacles
  - but they require higher torque or reductions in the gear box.
- Most arrangements are nonholonomic
- Combining actuation and steering on one wheel makes the design complex and adds additional errors for odometry.



# **Different Arrangements of Wheels**

■ Two Wheels





■ Three Wheels





# **Different Arrangements of Wheels**

#### ■ Four Wheels or more











- Uranus, CMU: Omnidirectional Drive with 4 Wheels
  - Movement in the plane has 3 DOF
    - thus only three wheels can be independently controlled









- The NANOKHOD II: Caterpillar
  - developed by von Hoerner & Sulger GmbH and Max Planck Institute, Mainz







- SpaceCat: Stepping / Walking with Wheels
  - micro-rover for Mars, developed by Mecanex Sa and EPFL for the European Space Agency (ESA)







- SHRIMP (EPFL)
  - Mobile Robot with Excellent Climbing Abilities
  - Passive locomotion concept
  - 6 wheels
    - two boogies on each side
    - fixed wheel in the rear
    - front wheel with spring suspension
  - Characteristics
    - highly stable in rough terrain
    - overcomes obstacles up to 2 times its wheel diameter











- Kinematics
  - The subfield of Mechanics dealing with motions of bodies
  - Forward kinematics
    - Given is a set of actuator positions
    - Determine corresponding reference pose
  - Inverse kinematics
    - Given is a desired reference pose
    - Determine corresponding actuator positions





■ Representing Robot Position

■ Initial frame: 
$$\{X_I, Y_I\}$$

**Robot frame:** 
$$\{X_R, Y_R\}$$

■ Robot position: 
$$\xi_I = \begin{bmatrix} x & y & \theta \end{bmatrix}^T$$

Mapping between the two frames

$$\dot{\xi}_R = R(\theta)\dot{\xi}_I = R(\theta)\cdot \begin{bmatrix} \dot{x} & \dot{y} & \dot{\theta} \end{bmatrix}^T$$

$$R(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$



→ Rotation matrix representing the orientation of the moving frame relative to the reference frame



- Representing Robot Position
  - Mapping between the two frames
    - Example: Robot aligned with Y<sub>1</sub>

$$R(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\dot{\xi_R} = R(\frac{\pi}{2})\dot{\xi_I} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \dot{y} \\ -\dot{x} \\ \dot{\theta} \end{bmatrix}$$







#### ■ Kinematics

- Holonomic systems
  - Diff. eqn. of  $\dot{\xi}_i$  are integrable to the final position
  - the measure of the traveled distance of each wheel is sufficient to calculate the final position of the robot
- Non-holonomic systems
  - Diff. eqn. of  $\dot{\xi}_I$  are **not integrable** to the final position
  - The measure of the traveled distance s of each wheel is not sufficient to calculate the final robot position
  - Knowledge of the movement as a function of time becomes necessary

$$s_1 = s_2, s_{1R} = s_{2R}, s_{1L} = s_{2L}$$
  
 $x_1 \neq x_2, y_1 \neq y_2$ 



- Kinematics of wheel motion
  - Wheel motion model
    - Roll
    - Lateral slip: small at low velocities
    - Rotational slip → steering
    - An ideal wheel moves only along the roll direction. The actual motion of the wheel deviates off the roll direction to some extent.
    - A rolling wheel model is reasonable for low velocities.







- Instantaneous Center of Rotation (IC or ICR)
  - Case 1: For a wheeled mobile robot to exhibit rolling motion
    - Each wheel on the vehicle follows a circular course about the IC.
      - The IC is at the intersection of the roll axis of each wheel.
    - Each wheel's velocity must be consistent with rotation of the vehicle.

$$v_1 = R_1 \omega, v_2 = R_2 \omega, v_3 = R_3 \omega$$







- Instantaneous Center of Rotation (IC or ICR)
  - Case 2: No IC
    - The wheel exhibits rolling and slipping during motion



#### Case 3

$$v_1 = R_1 \omega$$
,  $v_2 = R_2 \omega$ 







- Wheel Kinematic Constraints
  - Assumptions
    - Movement on a horizontal plane
    - Point contact of the wheels
    - Wheels not deformable
    - Pure rolling
    - No slipping, skidding or sliding
    - No friction for rotation around contact point
    - Steering axes orthogonal to the surface
    - Wheels connected by rigid frame (chassis)







- Wheel Kinematic Constraints
  - Fixed Standard Wheel
    - A standard wheel provides a directional constraint of velocity







- Wheel Kinematic Constraints
  - Steered Standard Wheel
    - A steerable standard wheel can be aligned by steering actuation







- Wheel Kinematic Constraints
  - Castor Wheel
    - An offset caster wheel allows two orthogonal linear velocities at the connecting point







- Wheel Kinematic Constraints
  - Swedish Wheel
    - Standard+1 DOF







- Wheel Kinematic Constraints
  - Spherical Wheel
    - No direct constraints on motion
    - Omnidirectional







- Kinematics Model
  - Goal
    - establish the robot speed  $\dot{\xi} = \begin{bmatrix} \dot{x} & \dot{y} & \dot{\theta} \end{bmatrix}^T$  as a function of the wheel speeds  $\dot{\varphi}_i$ , steering angles  $\beta_i$ , steering speeds  $\dot{\beta}_i$  and the geometric parameters of the robot (configuration coordinates)
  - Forward kinematics

$$\dot{\xi} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = f(\dot{\varphi}_1, \dots \dot{\varphi}_n, \beta_1, \dots \beta_m, \dot{\beta}_1, \dots \dot{\beta}_m)$$



Inverse kinematics

$$\begin{bmatrix} \dot{\varphi}_1 & \cdots & \dot{\varphi}_n & \beta_1 & \cdots & \beta_m & \dot{\beta}_1 & \cdots & \dot{\beta}_m \end{bmatrix}^T = f(\dot{x}, \dot{y}, \dot{\theta})$$





- Mobile Robot Locomotion
  - Differential Drive
  - Steered wheels (tricycle, bicycles, wagon)
  - Synchronous Drive
  - Omni-directional
  - Car Drive (Ackerman Steering)
  - etc









Chungbuk National University



- Differential drive robots
  - Differential drive mobile robots
    - Two wheels are mounted on a common axis and controlled by separate motors.
    - Simplest, but the most popular drive mechanism.
    - For each wheel to exhibit rolling motion, the robot must rotate about the IC lying on the common axis.
    - The IC changes depending on the relative velocity of two wheels.











- Differential drive robots
  - Kinematics
    - Notations
      - $\omega_l(t)$ : angular velocity of left wheel
      - $\omega_r(t)$ : angular velocity of right wheel
      - $v_l(t)$ : linear velocity of left wheel ( $\leftarrow v_l(t) = r \omega_l(t)$ )
      - $v_r(t)$ : linear velocity of right wheel ( $\leftarrow v_r(t) = r \omega_r(t)$ )
    - IC: Instantaneous center of rotation
      - R: Instantaneous curvature radius of the robot trajectory

$$IC = (x - R \sin \vartheta, y + R \cos \vartheta)$$





- Differential drive robots
  - Kinematics
    - Control Input

$$\begin{cases} \omega(t) = \frac{v_r(t)}{R + b/2} \\ \omega(t) = \frac{v_l(t)}{R - b/2} \end{cases} \Rightarrow \begin{cases} \omega(t) = \frac{v_r(t) - v_l(t)}{b} \\ R = \frac{b}{2} \frac{v_r(t) + v_l(t)}{v_r(t) - v_l(t)} \end{cases}$$

$$\Rightarrow v(t) = R \omega(t) = \frac{1}{2} [v_r(t) + v_l(t)]$$



$$\begin{cases} v(t) = R \,\omega(t) = \frac{1}{2} [v_r(t) + v_l(t)] \\ \omega(t) = \frac{v_r(t) - v_l(t)}{b} \end{cases}$$





- Differential drive robots
  - Kinematics

$$\begin{cases} v(t) = R \,\omega(t) = \frac{1}{2} [v_r(t) + v_l(t)] \\ \omega(t) = \frac{v_r(t) - v_l(t)}{b} \end{cases}$$



- Special case 1:  $v_l = v_r$ 
  - $\mathbf{v}(t) = v_{l}(t) = v_{r}(t) \& \omega(t) = 0 \Rightarrow \text{Moving in a straight-line.}$
- Special case 2:  $v_l = -v_r$ 
  - $\mathbf{v}(t) = 0 \& \omega(t) = 2v_r(t)/b \rightarrow \text{Pure rotation about the robot center.}$
- General case: R = finite nonzero
  - Following a curved path
- Very sensitive to the relative velocity of two wheels.
  - Small errors in the velocity provided to each wheel result in different trajectories.





- Differential drive robots
  - Kinematics model in the robot frame

$$\begin{cases}
v_x(t) \\
v_y(t) \\
\omega(t)
\end{cases} = 
\begin{bmatrix}
r/2 & r/2 \\
0 & 0 \\
-r/b & r/b
\end{bmatrix} 
\begin{cases}
\omega_l(t) \\
\omega_r(t)
\end{cases}$$

- Useful for velocity control
- Kinematics model in the robot frame
  - Robot pose  $[x(t), y(t), \theta(t)]$

$$\begin{cases} \dot{x}(t) = v(t)\cos\theta(t) \\ \dot{y}(t) = v(t)\sin\theta(t) \Rightarrow 0 \end{cases}$$



$$\begin{cases} \dot{x}(t) = v(t)\cos\theta(t) \\ \dot{y}(t) = v(t)\sin\theta(t) \\ \dot{\theta}(t) = \omega(t) \end{cases} \Rightarrow \begin{cases} \dot{x}(t) \\ \dot{y}(t) \\ \dot{\theta}(t) \end{cases} = \begin{bmatrix} \cos\theta(t) & 0 \\ \sin\theta(t) & 0 \\ 0 & 1 \end{bmatrix} \begin{cases} v(t) \\ \omega(t) \end{cases} \Rightarrow \begin{cases} x(t) = \int_0^t v(\tau) \cdot \cos\theta(\tau) d\tau \\ y(t) = \int_0^t v(\tau) \cdot \sin\theta(\tau) d\tau \\ \theta(t) = \int_0^t \omega(\tau) d\tau \end{cases}$$





- Synchronous drive robots
  - Synchronous drive mobile robots
    - Each wheel is capable of being driven and steered.
    - Typical configuration: Three steered wheels are arranged at the vertices of an equilateral triangle
    - All of the wheels steer and drive in unison.
      - One motor rotates all of the wheels at the same speed.
      - Another motor steers all of the wheels so that they always point in the same direction.
    - The IC is always at infinity. The orientation of a robot cannot be changed.
    - Often used with turret.
    - Mechanical chain might result in misalignment of wheels





- Synchronous drive robots
  - Synchronous drive mobile robots



- Forward kinematics
  - lacksquare Control variables: translational speed v(t) and rotational velocity  $\omega(t)$

$$\begin{cases} x(t) = \int_0^t v(\tau) \cdot \cos \theta(\tau) d\tau \\ y(t) = \int_0^t v(\tau) \cdot \sin \theta(\tau) d\tau \\ \theta(t) = \int_0^t \omega(\tau) d\tau \end{cases}$$





- Omnidirectional mobile robots
  - Omnidirectional mobile robots
    - Capable of 3 DOF motion
    - Inverse kinematics is significant.
    - Design problem is closely related to solving nonholonomic constraints.
  - Roller wheels
    - Composed of a circular hub surrounded by passive rollers.
    - A hub is driven and the rollers are idle (i.e., passive)
  - Types of roller wheels
    - Universal wheels, Mecanum wheels (Swedish wheels), etc







Universal wheels

Mecanum wheels (or Swedish wheel)

- Omnidirectional mobile robots
  - Kinematics of roller wheels
    - Hub rotation: rotation (or roll) about the hub axis with the rollers remaining still.
    - Roller rotation: translation in the direction of the hub axis with the roller in contact with the ground spinning and the hub fixed.
    - Motion in other directions involves a combination of hub rotation and roller rotation.







- Omnidirectional mobile robots
  - Three-wheeled omnidirectional mobile robot with universal wheels



- A resultant force vector f from three wheel forces determines the motion of a robot.
- The motion is decomposed into a translation of the robot center and a rotation about the robot center.
  - Pure rotation: **f** = 0





- Omnidirectional mobile robots
  - Four-wheeled mobile robot with Swedish wheels



- Drawbacks
  - Vertical vibration due to discontinuous contact
  - Reliability problem
  - Complicated design



