Automatic Gear Shifter

Look Ma, No Hands!

Ever wondered how to optimise your effort-to-result ratio on a geared bicycle?

We have a solution for you

Do you also want to throw your hands in the air and ride in peace?

Not recommended, you are going to fall down

Introduction

Overview

Automation is the creation and application of technologies to produce and deliver goods and services with minimal human intervention.

Optimal performance is achieved by the use of machines and automation which when well-calibrated can assure accuracy and precision to a microsecond timescale.

Thus, the combination of convenience achieved by automation and assurance obtained from optimal performance is conducive towards **human satisfaction**.

What are we attempting to achieve?

An automatic gear shifting system.

And why?

- Climate change is a rising threat: we are promoting use of bicycles.
- Reliable operation of the gear shift mechanism: reducing wear and tear
- Geared cycles provide a better ride than non-geared cycles and our system makes it easier for beginners to ride and start learning to ride geared bicycles as well

Our Approach

Combine different external factors and make an optimal choice

A simplified two-factor model:

Speed Slope

The Framework

Arduino Uno

MPU6050

Theoretical Foundations

• What is an accelerometer?

A tool to measure *proper* acceleration \rightarrow acceleration relative to a free-falling observer momentarily at rest

For our purposes, used to measure the slope

• Interfacing two integrated circuits?

Physical Interface - Jumpers, PCB Trace, USB, D-Subminiature, ...

(Serial) Communication Protocols - SPI, I²C, PCIe, ...

IR Sensor and Receiver

DC Motor with a Wheel

Theoretical Foundations

Capturing wheel speed?

A simple IR interrupt-based RPM counter that's translated to distance covered

• Basis for changing gears?

weight = Speed/a - Slope/b

where a and b are calibration constants

Thresholds have been set which, when exceeded, toggles the gear

To deal with edge cases, buffer regions are in place \rightarrow the system is stable and convergent to the feedback it obtains

Servo Motor

Washington State daily Covid-19 cases and 7-day moving average of daily cases

Theoretical Foundations

Source: CDC; Bloomberg; RSM US

The Complete Setup

Flowchart

Circuit Diagram

Demonstration

Hardware is Hard

The Big Picture

Challenges and Takeaways

- The MPU 6050 came in without being soldered. We learnt the additional skill of soldering in the process.
- Although this was a table-top simulation, unexpected jerks necessitated an outlier removal filter
- The servo motor needs a large, stable current supply
- We speculate that we may have faced stack overflow issues on the Arduino

Features We Could Have Included

- A manual user override
- Consider adding more factors

Look Ma, I'm Racing!

Video Credits: https://www.youtube.com/watch?v=o7vxsNJ2Uk8

Appendix

Dependencies

Components:

- Arduino Uno R3
- DC Motor 6V
- Servo Motor SG90
- Infrared Sensor and Receiver
- 3-Axis Accelerometer (MPU6050)

Repository:

- https://github.com/aravindbharathi/Automatic-Gear-Shifter

Libraries:

- Wire.h (for I²C)
- Servo.h (for the Servo Motor)
- MPU6050.h (for MPU6050)

References

- 1. Shift4Me is an automatic bicycle shifter ARDUINO TEAM September 9th, 2020 https://blog.arduino.cc/2020/09/09/shift4me-is-an-automatic-bicycle-shifter/
- 2. Auto Gear Shifter for Bikes With Speed Feedback https://www.instructables.com/Auto-Gear-Shifter-for-Bikes-With-Speed-Feedback/
- 3. Auto-gear Changer for Bicycles https://create.arduino.cc/projecthub/shift4me/auto-gear-changer-for-bicycles-53e9d3

Image Credits (in order of appearance)

- https://analyticsindiamag.com/best-practices-to-implement-automation-in-your-organisation/
- https://bikerumor.com/2021/04/27/all-new-shimano-deore-xt-linkglide-is-3x-more-durable-not-backwards-compatible/
- https://www.pololu.com/product/2191
- https://www.elementzonline.com/mpu6050-gy-521-3-axis-analog-gyro-sensors-accelerometer-module
- https://www.banggood.in/Geekcreit-IR-Infrared-Obstacle-Avoidance-Sensor-Module-For-Smart-Car-Robot-3-wire-Reflective-Photoelectric-p-1571371.html?cur_warehouse=CN&ID=511073
- https://www.amazon.in/Robodo-Electronics-Tower-Micro-Servo/dp/B00MTFFAE0
- https://www.aliexpress.com/item/32814556057.html