

13강: Debugging ML Models and Error Analysis

Diagnostics for debugging learning algorithms

Variance vs. Bias

Optimization algorithm diagnostics

Debugging an RL algorithm

Error analysis

Error analysis

Ablative analysis

Diagnostics for debugging learning algorithms

제약조건이 있는 로지스틱 회귀를 이용한 스팸 분류 모형을 만든다고 가정해보자.

(cf. Bayesian Logistic Regression)

$$\max_{ heta} \sum_{i=1}^m \log p(y^{(i)}|x^{(i)}, heta) - \lambda \| heta\|^2$$

위의 수식을 만족하게끔 gradient ascent를 이용해 모형을 얻었는데, 20% 정도 되는 test error를 얻었으면 우린 어떡하면 좋을까? 노트북 단고 때려쳐야지

우리는 다음과 같은 방법들을 이용해 우리의 알고리즘을 개선시키고자 할 것이다.

- training examples 더 가져오기
- feature 개수 줄이기
- feature 개수 늘리기
- feature 바꿔보기 : 이메일 제목 vs. 이메일 본문
- 경사하강법의 반복횟수(# of iterations) 늘려보기
- Newton's Method 시도해보기
- λ 값을 바꿔보기
- SVM 써보기

Variance vs. Bias

Bias-variance is the single most powerful tool for analyzing the performance of a learning algorithm.

가장 기본적이면서 효과적인 진단 방법은 variance/bias를 살펴보는 것이다.

주로 모델의 성능이 좋지 않으면 오버피팅/ 언더피팅일 가능성이 높다.

- 오버피팅: variance가 높은 경우 (새로운 데이터를 잘 예측하지 못하는 경우)
 - 。 훈련에서는 잘 맞추는데 테스트에서는 못 맞추는 경우
- 언더피팅: bias가 높은 경우 (기존의 데이터도 잘 설명하지 못하는 경우)
 - 。 예) 너무 작은 수의 피처가 사용되면 bias가 클 확률이 높아짐
 - ∘ training error 와 test error 모두 높은 경우

알고리즘을 개선시키는 제일 기본적이고 확실한 방법은 데이터의 개수를 늘리는 방법일것이다.

(Data is everywhere but very far away from me ^^)

데이터의 개수 m에 따른 모델 error의 변화(learning curve)를 살펴보자

왼쪽의 learning curve는 모델의 variance가 높은 경우이다.

- train set을 이용하여 모델을 학습시킬 때에는 원하는 수준의 학습에 도달
- 테스트에서는 원하는 수준보다 에러 값이 높은 상태이다.
- 데이터의 개수가 늘어남에 따라 테스트 에러 값이 낮아지고 있음 → 데이터 개수를 늘리는 것이 도움이 됨

오른쪽의 learning curve는 모델의 bias가 높은 경우이다.

- train error / test error 둘 다 원하는 수준에 도달하지 않음
- → 많은 데이터 사례를 수집해서 훈련시키는 것은 도움이 되지 않음

새로운 모델을 만들었어요! 뭘해봐야할까요? 🤔

- → 지저분한 코드라도 빠르게 만들어서 돌려본다 (quick and dirty code)
- → Bias /Variance 진단을 해보자

이러한 Bias / Variance 문제가 가장 흔하고 중요한 진단 방법이고, 그 외의 문제에 대한 진단은 알고리즘을 만든 자의 창의성에 달려있다.

이를테면, 다음과 같은 문제 예시가 있다고 해보자.

" SVM 쓰기 싫어! 그래도... Logistic Regression!"

• 로지스틱 회귀 : 스팸 메일에 대해 2%의 에러율 / 정상메일에 대해 2%의 에러율

(안 돼 돌아가 채용 제안 메일을 스팸 분류하면 어쩔려고??)

• SVM: 스팸 메일에 대해 10%의 에러율 / 정상메일에 대해 0.01%의 에러율

너는 합격쓰 ☆

위의 두 모델 성능 평가는 정상메일 분류에 더 가중치를 둔다. (weighted accuracy) 이를 수식으로 표현하면 다음과 같다.

$$egin{aligned} a(heta) &= \max_{ heta} \sum_{i} w^{(i)} I\{h_{ heta}(x^{(i)}) = y^{(i)}\} \ &a(heta_{SVM}) > a(heta_{BLR}) \end{aligned}$$

• BLR=Bayesian Logistic Regression

• 하지만 계산의 효율성을 위해 로지스틱 회귀를 쓰고 싶은 경우에는 어떡하면 좋을까? 🤔

Optimization algorithm diagnostics

다른 일반적인 질문은 '알고리즘이 수렴하고 있는가?'이다.

일반적으로 훈련의 반복 횟수를 늘리다보면 , 대개의 objective function $J(\theta)$ 은 수렴하는데, 이를 위해 얼마나 반복해야하는걸까? 반복을 많이하는 것은 효과적인걸까?

알고리즘의 최적화 문제를 진단하기 위해서, 우리는 다음과 같은 질문을 할 수 있다.

- 알고리즘이 수렴하는가?
- 올바른 목적함수를 이용해 최적화를 하고 있는가?
- 하이퍼파라미터가 적절한가?

$$\circ~J(heta) = \max_{ heta} \sum_{i=1}^m \log p(y^{(i)}|x^{(i)}, heta) - \lambda \| heta\|^2$$
에서 λ

$$\circ~J(heta) = \min_{w,b} \|w\|^2 + C \sum_{i=1}^m \xi_i$$
 에서 C

즉, 최적화 알고리즘의 문제를 진단하기 위해서는

- 1. 최적화 알고리즘 그 자체가 잘못돼서 수렴하지 못하는 것인지
- 2. cost function

J(heta)를 잘못 만든 것인지

확인할 필요가 있다.

이러한 진단은 앞서 언급했던 정확도를 나타내는 함수 $a(\theta)$ 와 cost function $J(\theta)$ 를 가지고 할 수 있다.

CASE 1.

$$a(heta_{SVM}) > a(heta_{BLR}) \ J(heta_{SVM}) > J(heta_{BLR})$$

 $J(heta_{BLR}) = \max_{ heta} \sum_{i=1}^m \log p(y^{(i)}|x^{(i)}, heta) - \lambda \| heta\|^2$ 라는 것, 즉 **최대화**의 문제임을 고려할 때 , 이는

 $heta_{RLR}$ 이 목적함수 J를 최대화하지 못했음을 의미한다.

이 경우, 모델의 문제는 알고리즘의 수렴 그 자체에 있다.

즉, **최적화 알고리즘 자체에 문제가 있는 것**이다.

CASE 2.

$$a(\theta_{SVM}) > a(\theta_{BLR})$$

 $J(\theta_{SVM}) \leq J(\theta_{BLR})$

위의 부등식에서 , $heta_{BLR}$ 이 목적함수 J를 최대화했음을 알 수 있다.

하지만 여전히 SVM의 정확도 값이 더 높다.

이는 $J(\theta)$ 가 최대화해야하는 함수가 아닌 잘못된 함수임을 의미한다.

즉, **최적화 문제를 위한 목적함수에 문제가 있는 것**이다.

우리는 모델 진단을 variance/bias, 그리고 optimization의 관점으로 살펴보았다.

그러한 관점으로 모델의 개선 방안을 다시 정리해보자.

• training examples 더 가져오기

• feature 개수 줄이기

• feature 개수 늘리기

• 이메일 제목을 feature로 써보기

• 경사하강법의 반복회수(# of iterations) 늘려보기

• Newton's Method 시도해보기

λ값을 바꿔보기

SVM 써보기

Fixes high variance

Fixes high variance

Fixes high bias

Fixes high bias

Fixes optimization algorithm

Fixes optimization algorithm

Fixes optimization objective

Fixes optimization objective

Debugging an RL algorithm

RL = reinforcement learning

하늘을 나는 멋진 자율비행 비둘기헬리콥터를 생각해보자.

헬리콥터의 알고리즘은 다음과 같다.

- 1. 헬리콥터의 시뮬레이터를 구축한다.
- 2. cost function을 설정한다. $J(heta) = \|x x_{desired}\|^2$, x는 헬리콥터의 위치
- 3. 시뮬레이션에서 RL 알고리즘을 수행해 $heta_{RL} = rg \min_{ heta} J(heta)$ 를 찾는다.

이런! $heta_{RL}$ 값에 따라 작동하는 헬리콥터가 형편 없다! $oldsymbol{arphi}$

위의 3단계에서 시뮬레이터, J(heta), $heta_{RL}$ 에 문제가 없다면 헬리콥터는 잘 작동해야한다.

- 1. 시뮬레이션에서는 문제없이 잘 작동했는데 현실에서는 그렇지 않다 \to 시뮬레이터의 문제
- 2. $heta_{human}$ =인간이 움직이는 방식, $J(heta_{human}) < J(heta_{RL})$ ightarrow 알고리즘이 수렴에 실패했음을 의미한다.
- 3. $J(heta_{human}) \geq J(heta_{RL})$ ightarrow cost function의 설정이 잘못되었음

Error analysis

얼굴인식 시스템을 생각해보자.

많은 application에서는 다양한 learning algorithm을 결합해 pipeline을 만든다.

Error analysis

Component	Accuracy
Overall	85%
Preprocess (remove background)	85.1%
Face detection	91%
Eyes segementation	95%
Nose segementation	96%
Mouth segementation	97%
Logistic Regression	100%

- 파이프라인의 단계별로 각 단계가 완벽하게 수행됐을때의 정확도의 증분을 살펴본다.
 - 예. 배경제거의 경우 포토샵으로 완벽하게 제거
- 얼굴 인식 모델의 경우 얼굴 인식 → 눈 분할에서 제일 모델 개선의 여지가 큰 것을 분석 가능

Ablative analysis

파이프라인의 구성 요소가 최종 성능에 얼마나 기여했는지를 측정하는 방법

Component	Accuracy
Сотпропент	Accuracy
Overall system	99.9%
Spelling correction	99%
Sender host features	98.9%
Email header features	98.9%
Email text parser features	95%
Javascript parser	94.5%
Features from images	94.0%

- 단순 선형 회귀 모델을 통해서 94%의 성능이 나옴
 - → 99.9%로 모델 성능이 모델이 향상
- 각 구성 요소를 순서대로 제거
 - → 얼마나 정확도가 감소하는지 분석
- Email text parser features가 성능향상에 제일 많이 기여함을 알 수 있음