Тренировочная работа №1 по МАТЕМАТИКЕ 11 класс

3 октября 2023 года Вариант МА2310109 (профильный уровень)

Выполнена: ФИО	класс	

Инструкция по выполнению работы

Работа по математике состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Справочные материалы

$$\sin^{2}\alpha + \cos^{2}\alpha = 1$$

$$\sin 2\alpha = 2\sin\alpha \cdot \cos\alpha$$

$$\cos 2\alpha = \cos^{2}\alpha - \sin^{2}\alpha$$

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

Математика. 11 класс. Вариант МА2310109

Часть 1

Ответом к каждому из заданий 1–12 является целое число или конечная десятичная дробь. Запишите ответы к заданиям в поле ответа в тексте работы.

1 В треугольнике *ABC* угол *C* равен 32°, *AD* — биссектриса, угол *BAD* равен 23°. Найдите угол *ADB*. Ответ дайте в градусах.

2

Ответ: ______.

2 Даны векторы $\vec{a}(1;2)$, $\vec{b}(3;-6)$ и $\vec{c}(4;-3)$. Найдите значение выражения $(\vec{a}+\vec{b})\cdot\vec{c}$.

Ответ: .

3 Найдите объём многогранника, вершинами которого являются точки D, A_1 , B_1 , D_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, у которого AB=2, AD=9, $AA_1=5$.

Ответ: _____

4 На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 7 прыгунов из России и 10 прыгунов из Парагвая. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что четырнадцатым будет выступать прыгун из России.

Ответ: ______.

3

Б. с вероятностью 0,5. Если А. играет чёрными, то он выигрывает у шахматиста Б. с вероятностью 0,5. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью 0,34. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Ответ: .

Решите уравнение $\frac{6}{x^2-19}$ =1. Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

Ответ: ______.

Найдите значение выражения $\left(25x^2 + 9y^2 - \left(5x + 3y\right)^2\right): \left(2xy\right)$ при $x = 17\frac{5}{101}, \ y = \sqrt{305}$.

Ответ: .

8 На рисунке изображён график функции y = f(x). На оси абсцисс отмечено шесть точек: $x_1, x_2, x_3, x_4, x_5, x_6$.

Сколько из отмеченных точек принадлежит промежуткам возрастания функции f(x)?

Ответ: .

© СтатГрад 2023–2024 уч. г.

9 Два тела, массой m=10 кг каждое, движутся с одинаковой скоростью v=6 м/с под углом 2α друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении, вычисляется по формуле $Q=mv^2\sin^2\alpha$, где m— масса в килограммах, v— скорость в м/с. Найдите, под каким наименьшим углом 2α (в градусах) должны двигаться тела, чтобы в результате соударения выделилось энергии не менее 90 джоулей.

Ответ: ______.

10 Две трубы наполняют бассейн за 8 часов 40 минут, а одна первая труба наполняет бассейн за 13 часов. За сколько часов наполняет бассейн одна вторая труба?

Ответ: _____

На рисунке изображён график функции f(x) = kx + b. Найдите значение x, при котором f(x) = 16.

Ответ: .

12 Найдите наибольшее значение функции $y = \sqrt{-15 - 16x - x^2}$.

Ответ: ______.

Часть 2

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- 13
- a) Решите уравнение $\sin 2x = \sin \left(x \frac{3\pi}{2}\right)$.
- б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{5\pi}{2}; 4\pi\right]$.
- 14

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ через середину M диагонали AC_1 проведена плоскость α перпендикулярно этой диагонали, AB=13, BC=5, $AA_1=12$.

- а) Докажите, что плоскость α содержит точку D_1 .
- б) Найдите отношение, в котором плоскость α делит ребро A_1B_1 .
- 15

Решите неравенство $x^3 + 6x^2 + \frac{8x^2 + 5x - 15}{x - 3} \le 5$.

16

В июле 2025 года планируется взять кредит в банке на 8 лет. Условия его возврата таковы:

- в январе 2026, 2027, 2028 и 2029 годов долг возрастает на 22 % по сравнению с концом предыдущего года;
- в январе 2030, 2031, 2032 и 2033 годов долг возрастает на 18 % по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить часть долга;
- в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года;
- к июлю 2033 года кредит должен быть полностью погашен.

Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1649 тысяч рублей?

- 17 На стороне BC параллелограмма ABCD выбрана такая точка M, что AM = MC.
 - а) Докажите, что центр вписанной в треугольник AMD окружности лежит на диагонали AC.
 - б) Найдите радиус вписанной в треугольник AMD окружности, если AB = 6, BC = 24, $\angle BAD = 60^{\circ}$.
- **18** Найдите все значения a, при каждом из которых уравнение

$$a|x+3|+(5-a)|x-3|-6=0$$

имеет ровно два различных корня.

- **19** Сумма цифр трёхзначного числа A равна S.
 - а) Может ли произведение $A \cdot S$ быть равно 1105?
 - б) Может ли произведение $A \cdot S$ быть равно 1106?
 - в) Найдите наименьшее значение произведения $A \cdot S$, если известно, что оно больше 3978.

math100.ru
Ответы на тренировочные варианты 2310109-2310112 (профильный уровень) от 03.10.2023

	1	2	3	4	5	6	7	8	9	10	11	12
2310109	55	28	15	0,28	0,17	- 5	- 15	3	60	26	- 10	7
2310110	42	2	40	0,14	0,15	- 4	- 4	5	60	40	14	9
2310111	58	5	49	0,12	4	6	12	2	0,18	14	23	6
2310112	41	10	30	0,32	5	5	18	3	0,05	18	9	8

Критерии оценивания заданий с развёрнутым ответом

13

- a) Решите уравнение $\sin 2x = \sin \left(x \frac{3\pi}{2}\right)$.
- б) Найдите все корни этого уравнения, принадлежащие отрезку $\left\lceil \frac{5\pi}{2}; 4\pi \right\rceil$.

Решение.

а) Преобразуем исходное уравнение:

$$2\sin x \cos x = \cos x; \quad \cos x \cdot (2\sin x - 1) = 0$$

Значит, либо $\cos x=0$, откуда следует, что $x=\frac{\pi}{2}+\pi k$, $k\in \mathbb{Z}$, либо $\sin x=\frac{1}{2}$, откуда следует, что $x=\frac{\pi}{6}+2\pi n$, $n\in \mathbb{Z}$, или $x=\frac{5\pi}{6}+2\pi m$, $m\in \mathbb{Z}$.

б) C помощью числовой окружности отберём корни, принадлежащие отрезку $\left\lceil \frac{5\pi}{2}; 4\pi \right\rceil$.

Получим числа $\frac{5\pi}{2}$; $\frac{17\pi}{6}$; $\frac{7\pi}{2}$.

Other: a) $\frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$; $\frac{\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; $\frac{5\pi}{6} + 2\pi m$, $m \in \mathbb{Z}$; 6) $\frac{5\pi}{2}$; $\frac{17\pi}{6}$; $\frac{7\pi}{2}$.

Содержание критерия		
Обоснованно получены верные ответы в обоих пунктах	2	
Обоснованно получен верный ответ в пункте а.	1	
ИЛИ		
Получены неверные ответы из-за вычислительной ошибки, но при		
этом имеется верная последовательность всех шагов решения обоих		
пунктов: пункта a и пункта δ		
Решение не соответствует ни одному из критериев, перечисленных		
выше		
Максимальный балл	2	

- 14 В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ через середину M диагонали AC_1 проведена плоскость α перпендикулярно этой диагонали, AB=13, BC=5, $AA_1=12$.
 - а) Докажите, что плоскость α содержит точку D_1 .
 - б) Найдите отношение, в котором плоскость α делит ребро A_1B_1 .

Решение.

а) В треугольнике ADD_1 имеем

$$AD_1 = \sqrt{AD^2 + DD_1^2} = \sqrt{BC^2 + AA_1^2} = 13$$
. В треугольнике AC_1D_1 стороны AD_1 и C_1D_1 равны. Значит, этот треугольник равнобедренный, а его медиана D_1M является его высотой. Следовательно, точка D_1 лежит в плоскости, проходящей через точку M перпендикулярно прямой AC_1 , а такая плоскость единственная, и это плоскость α .

б) Обозначим точку пересечения плоскости α и прямой A_1B_1 через L. Поскольку плоскость α перпендикулярна прямой AC_1 , в треугольнике ALC_1 медиана LM является высотой. Следовательно, $AL = LC_1$.

Пусть $A_1L=x$, тогда $LB_1=13-x$. В прямоугольных треугольниках AA_1L и C_1B_1L имеем

$$AA_1^2 + A_1L^2 = AL^2$$
, $C_1B_1^2 + B_1L^2 = C_1L^2$.

Следовательно

$$AA_1^2 + A_1L^2 = C_1B_1^2 + B_1L^2$$
; $144 + x^2 = 25 + (13 - x)^2$;
 $x^2 + 144 = x^2 - 26x + 194$; $x = \frac{25}{13}$.

Значит, $A_1L = \frac{25}{13}$, $LB_1 = \frac{144}{13}$. Таким образом, $A_1L: LB_1 = 25:144$. **Ответ:** 6) 25:144.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	3
обоснованно получен верный ответ в пункте δ	
Получен обоснованный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта а, и при	
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, приведённых	0
выше	
Максимальный балл	3

15

Решите неравенство $x^3 + 6x^2 + \frac{8x^2 + 5x - 15}{x - 3} \le 5$.

Решение.

Преобразуем неравенство:

$$x^{3} + 6x^{2} + \frac{8x^{2}}{x-3} \le 0$$
; $\frac{x^{4} + 3x^{3} - 10x^{2}}{x-3} \le 0$; $\frac{x^{2}(x-2)(x+5)}{x-3} \le 0$.

Получаем $x \le -5$; x = 0; $2 \le x < 3$.

Otbet: $(-\infty, -5]$; 0; [2, 3).

Содержание критерия			
Обоснованно получен верный ответ	2		
Обоснованно получен ответ, отличающийся от верного	1		
исключением точек – 5 и/или 2.			
ИЛИ			
Получен неверный ответ из-за вычислительной ошибки, но при этом			
имеется верная последовательность всех шагов решения			
Решение не соответствует ни одному из критериев, перечисленных	0		
выше			
Максимальный балл	2		

- В июле 2025 года планируется взять кредит в банке на 8 лет. Условия его возврата таковы:
 - в январе 2026, 2027, 2028 и 2029 годов долг возрастает на 22 % по сравнению с концом предыдущего года;
 - в январе 2030, 2031, 2032 и 2033 годов долг возрастает на 18 % по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить часть долга;
 - в июле каждого года долг должен быть на одну и ту же величину меньше долга на июль предыдущего года;
 - к июлю 2033 года кредит должен быть полностью погашен.

Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1649 тысяч рублей?

Решение.

3

Пусть сумма кредита равна S тысяч рублей. По условию долг перед банком (в тыс. рублей) по состоянию на июль 2025–2033 годов должен уменьшаться до нуля следующим образом:

$$S; \frac{7S}{8}; \frac{6S}{8}; \frac{5S}{8}; \frac{4S}{8}; \frac{3S}{8}; \frac{2S}{8}; \frac{S}{8}; 0.$$

В январе каждого года с 2026 по 2029 долг возрастает на 22 %, а в январе каждого года с 2030 по 2033 — на 18 %, значит, последовательность размеров долга (в тыс. рублей) в январе 2026–2033 годов такова:

$$1,22 \cdot S$$
; $1,22 \cdot \frac{7S}{8}$; $1,22 \cdot \frac{6S}{8}$; $1,22 \cdot \frac{5S}{8}$; $1,18 \cdot \frac{4S}{8}$; $1,18 \cdot \frac{3S}{8}$; $1,18 \cdot \frac{2S}{8}$; $1,18 \cdot \frac{S}{8}$.

Следовательно, выплаты (в тыс. рублей) должны быть следующими:

$$0,22 \cdot S + \frac{S}{8}; \ 0,22 \cdot \frac{7S}{8} + \frac{S}{8}; \ 0,22 \cdot \frac{6S}{8} + \frac{S}{8}; \ 0,22 \cdot \frac{5S}{8} + \frac{S}{8};$$
$$0,18 \cdot \frac{4S}{8} + \frac{S}{8}; \ 0,18 \cdot \frac{3S}{8} + \frac{S}{8}; \ 0,18 \cdot \frac{2S}{8} + \frac{S}{8}; \ 0,18 \cdot \frac{S}{8} + \frac{S}{8}.$$

Значит, общая сумма выплат (в тыс. рублей) составит

$$0,22 \cdot \left(S + \frac{7S}{8} + \frac{6S}{8} + \frac{5S}{8}\right) + 0,18 \cdot \left(\frac{4S}{8} + \frac{3S}{8} + \frac{2S}{8} + \frac{S}{8}\right) + 8 \cdot \frac{S}{8} =$$

$$= 0,22 \cdot \frac{13S}{4} + 0,18 \cdot \frac{5S}{4} + S = 1,94S,$$

следовательно, 1,94S = 1649; S = 850.

Значит, сумма, взятая в кредит, равна 850 тысяч рублей.

Ответ: 850 тысяч рублей.

Содержание критерия	
Обоснованно получен верный ответ	2
Верно построена математическая модель	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

5

17

На стороне BC параллелограмма ABCD выбрана такая точка M , что AM = MC .

- а) Докажите, что центр вписанной в треугольник AMD окружности лежит на лиагонали AC.
- б) Найдите радиус вписанной в треугольник *AMD* окружности, если AB=6, BC=24, $\angle BAD=60^{\circ}$.

Решение.

а) Треугольник AMC равнобедренный, следовательно, $\angle MAC = \angle MCA$.

Прямые AD и BC параллельны, следовательно, накрест лежащие углы BCA и CAD при секущей AC равны. Получаем, что

AC является биссектрисой угла MAD, на которой лежит центр вписанной в треугольник AMD окружности

в треугольник AMD окружности. 6) Обозначим AM = MC через x, тогда BM = 24 - x. По теореме косинусов в треугольнике ABM получаем

$$AM^2 = AB^2 + BM^2 - 2AB \cdot BM \cdot \cos 120^\circ; \ x^2 = 36 + (24 - x)^2 + 6(24 - x),$$

откуда следует, что x = 14.

По теореме косинусов в треугольнике *CMD*, в котором $\angle MCD = 60^{\circ}$,

$$MD = \sqrt{MC^2 + CD^2 - MC \cdot CD} = 2\sqrt{37}.$$

Треугольник AMD и параллелограмм ABCD имеют общую высоту, равную расстоянию между прямыми AD и BC, и общую сторону AD, перпендикулярную этой высоте. Значит, площадь треугольника AMD равна половине площади параллелограмма ABCD:

$$S_{AMD} = \frac{AB \cdot AD \cdot \sin \angle BAD}{2} = 36\sqrt{3} .$$

С другой стороны, площадь треугольника AMD равна половине произведения его периметра на радиус вписанной окружности. Отсюда найдём радиус r вписанной в треугольник AMD окружности:

© СтатГрад 2023-2024 уч. г.

Содержание критерия				
Имеется верное доказательство утверждения пункта а, и	3			
обоснованно получен верный ответ в пункте δ	ĺ			
Получен обоснованный ответ в пункте δ .	2			
ИЛИ				
Имеется верное доказательство утверждения пункта а, и при				
обоснованном решении пункта δ получен неверный ответ из-за				
арифметической ошибки				
Имеется верное доказательство утверждения пункта a .	1			
ИЛИ				
При обоснованном решении пункта δ получен неверный ответ из-за	ĺ			
арифметической ошибки.	ĺ			
ИЛИ				
Обоснованно получен верный ответ в пункте δ с использованием				
утверждения пункта a , при этом пункт a не выполнен				
Решение не соответствует ни одному из критериев, приведённых	0			
выше				
Максимальный балл	3			

18 Найдите все значения a, при каждом из которых уравнение

$$a|x+3|+(5-a)|x-3|-6=0$$

имеет ровно два различных корня.

Решение.

При x<-3 уравнение принимает вид -5x+9-6a=0, откуда находим $x=\frac{9-6a}{5}$. Корень $x=\frac{9-6a}{5}$ удовлетворяет неравенству x<-3 при $\frac{9-6a}{5}<-3$, откуда получаем a>4.

При $-3 \le x \le 3$ уравнение принимает вид (2a-5)x+9=0. При $a=\frac{5}{2}$ это уравнение не имеет корней, а при $a \ne \frac{5}{2}$ оно имеет единственный корень $x=\frac{9}{5-2a}$. Корень $x=\frac{9}{5-2a}$ принадлежит отрезку [-3;3] при $-3 \le \frac{9}{5-2a} \le 3$, откуда получаем

© СтатГрад 2023-2024 уч. г.

$$\begin{cases} \frac{9}{5-2a} \ge -3, & \begin{cases} \frac{24-6a}{5-2a} \ge 0, & \begin{cases} \frac{a-4}{2a-5} \ge 0, \\ \frac{9}{5-2a} \le 3; & \begin{cases} \frac{6a-6}{5-2a} \le 0; & \begin{cases} \frac{a-1}{2a-5} \ge 0. \end{cases} \end{cases} \end{cases}$$

Следовательно, уравнение (2a-5)x+9=0 имеет корень на отрезке [-3;3] при $a \le 1$ и $a \ge 4$.

При x > 3 уравнение принимает вид 5x + 6a - 21 = 0, откуда находим $x = \frac{21 - 6a}{5}$.

Корень $x = \frac{21-6a}{5}$ удовлетворяет неравенству x > 3 при $\frac{21-6a}{5} > 3$, откуда находим a < 1.

Таким образом, исходное уравнение имеет ровно два различных корня при a < 1 и a > 4.

Ответ: a < 1; a > 4

Other: $u < 1, u > 4$.	
Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений a , отличающееся от искомого только включением точек $a=1$ и/или $a=4$	3
Верно раскрыты модули в исходном уравнении. Задача сведена к исследованию принадлежности корней соответствующим промежуткам в зависимости от значений a , и хотя бы два случая исследованы верно, при этом исследовано количество корней исходного уравнения при $a=\frac{5}{2}$. ИЛИ Получен неверный ответ из-за вычислительной ошибки, но при этом верно выполнены все шаги решения	2
Верно раскрыты модули в исходном уравнении, задача сведена к исследованию принадлежности корней соответствующим промежуткам в зависимости от значений <i>a</i> , и хотя бы один из случаев исследован верно	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

© СтатГрад 2023-2024 уч. г.

- Сумма цифр трёхзначного числа A равна S.
- а) Может ли произведение $A \cdot S$ быть равно 1105?
- б) Может ли произведение $A \cdot S$ быть равно 1106?
- в) Найдите наименьшее значение произведения $A \cdot S$, если известно, что оно больше 3978.

Решение.

- а) Сумма цифр числа 221 равна 5. Таким образом, произведение этого числа и суммы его цифр равно 1105.
- б) Заметим, что сумма цифр числа имеет такой же остаток при делении на 3, как и само число. Следовательно, если число A делится на 3, то $A\cdot S$ делится на 3. Если число A не делится на 3, то $A\cdot S$ даёт остаток 1 при делении на 3. Число 1106 даёт остаток 2 при делении на 3, значит, оно не может быть равно произведению $A\cdot S$.
- в) Заметим, что сумма цифр числа имеет такой же остаток при делении на 9, как и само число. Следовательно, $A\cdot S$ даёт такой же остаток при делении на 9, как и S^2 . Пусть S=9k+r, где $0\le r\le 8$. Тогда

$$S^{2} = 81k^{2} + 18kr + r^{2} = 9(9k^{2} + 2kr) + r^{2},$$

то есть остаток от деления S^2 на 9 совпадает с остатком от деления r^2 на 9. Этот остаток может быть равен 0; 1; 4 или 7, поскольку r^2 принимает значения 0; 1; 4; 9; 16; 25; 36; 49; 64. Таким образом, остаток от деления произведения $A \cdot S$ на 9 может быть равен 0; 1; 4 или 7.

Будем последовательно рассматривать числа, большие 3978, для которых остаток от деления на 9 равен 0; 1; 4 или 7.

Число 3979 даёт остаток 1 при делении на 9. Это число раскладывается в произведение простых множителей следующим образом: $3979 = 23 \cdot 173$, а значит, его можно представить в виде произведения трёхзначного числа на какое-то другое число только следующим способом:

$$3979 = 23 \cdot 173$$
.

В этом случае первый множитель не равен сумме цифр второго множителя. Число 3982 даёт остаток 4 при делении на 9. Это число раскладывается в произведение простых множителей следующим образом: $3982 = 2 \cdot 11 \cdot 181$, а значит, его можно представить в виде произведения трёхзначного числа на какое-то другое число следующими способами:

$$3982 = 22 \cdot 181 = 11 \cdot 362$$
.

Сумма цифр трёхзначного числа A=362 равна 11. Следовательно, для этого числа $A\cdot S=3982$.

Таким образом, наименьшее значение произведения $A \cdot S$, большее 3978, равно 3982.

Ответ: а) да; б) нет; в) 3982.

© СтатГрад 2023-2024 уч. г.

Содержание критерия	Баллы
Обоснованно получены верные ответы в пунктах a , δ и ϵ	4
Обоснованно получен верный ответ в пункте в, и обоснованно	3
получен верный ответ в пункте a или δ	
Обоснованно получены верные ответы в пунктах a и δ .	2
ИЛИ	
Обоснованно получен верный ответ в пункте в	
Обоснованно получен верный ответ в пункте a или δ	1
Решение не соответствует ни одному из критериев, перечисленных	
выше	
Максимальный балл	4