مبانی و کاربردهای هوش مصنوعی

فرایند تصمیمگیری مارکوف - 1 (فصل 17.1 الی 17.3)

مدرس: مهدی جوانمردی

دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیرکبیر

جستجوى غير قطعى

مثال: جهان مشبک (Grid World)

- یک مسئله هزارتو مانند
- عامل در یک محیط مشبک زندگی می کند
- دیوارها مسیر حرکت عامل را سد می کنند
- حرکت نویزدار: حرکات همیشه طبق برنامهریزی پیش نمی روند
- 80% مواقع ، حرکت شمال عامل را به شمال می برد (اگر دیوار نباشد)
 - 10% مواقع، شمال عامل را به غرب می برد، 10% شرق
- اگر در جهتی که عامل انتخاب کرده بود دیوار باشد، عامل سرجایش می ماند
 - عامل هر گام زمانی جایزه می گیرد
 - جایزه کوچک "زنده بودن" در هر گام زمانی (می تواند منفی باشد)
 - جایزه بزرگ در آخر است (خوب یا بد)
 - هدف: بیشینه کردن مجموع جوایز

حرکتهای جهان مشبک

فرآیندهای تصمیم گیری مارکوف

- یک MDP به این صورت تعریف می شود:
 - s ∈ Sیک مجموعه از حالتهاs
 - $a \in A$ یک مجموعه از اعمال
 - T(s, a, s') یک تابع انتقال حالت ■
- احتمال اینکه a از s منجر به 's شود که یعنی P(s'| s, a)
 - به آن مدل یا دینامیک هم گفته می شود
 - R(s, a, s') یک تابع پاداش
 - بعضی اوقات فقط (R(s) یا (R(s
 - یک حالت شروع
 - شاید یک حالت پایانی

- MDPها مسائل جستجوی غیر قطعی هستند
 - یک راه برای حل آنها جستجوی Expectimax است.
- ما به زودی یک ابزار جدید خواهیم داشت.

[Demo – gridworld manual intro (L8D1)]

ویدیوی نمایشی Gridworld Manual Intro

در MDPها چه چیزی مارکوف است؟

- به صورت کلی "مارکوف" به این معناست که با داشتن حالت فعلی، گذشته و آینده نسبت به هم مستقل اند
 - در فرآیند تصمیم گیری مارکوف، "مارکوف" به این معناست که خروجی تنها به حالت فعلی وابسته است

Andrey Markov (1856-1922)

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$
=

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

این دقیقا مشابه مسائل جستجو است که تابع پسین (successor function) فقط می تواند به حالت فعلی وابسته باشد (نه تاریخچه)

سياستها

- در مسائل جستجوی تک عاملی قطعی، ما به دنبال یک برنامه بهینه، یا دنبالهای از اعمال، بودیم
 - $\pi *: S \to A$ برای MDPها، دنبال یک سیاست بهینه هستیم
 - یک سیاست π برای هر حالت یک عمل می دهد
 - یک سیاست بهینه، سیاستی است که در اگر دنبال شود
 سودمندی مورد انتظار را بیشینه کند
 - یک سیاست صریح، عامل ما را تبدیل به یک عامل واکنشی میکند
 - جستجوی expectimax سیاستها را به طور کامل محاسبه نمی کرد
 - تنها برای یک حالت عمل را محاسبه می کرد

سیاسیت بهینه وقتی که R(s, a, s') = -0.03 سیاسیت برای حالات غیر پایانی s

سیاستهای بهینه

R(s) = -0.01

R(s) = -0.4

R(s) = -0.03

R(s) = -2.0

مثال: مسابقه

- یک اتومبیل روباتی می خواهد یک مسیر طولانی را به سرعت بپیماید
 - سه حالت Cool, Warm, Overheated
 - دو عمل Slow, Fast
 - سریعتر رفتن پاداش دو برابر دارد

درخت جستجوی مسابقه

درخت جستجوی MDP

■ هر حالت در MDP یک درخت جستجو مشابه Expectimax را نمایش می دهد

درخت جستجوی مسابقه

سودمندىهاى دنبالهها

سودمندىهاى دنبالهها

■ عامل باید کدام دنباله از پاداشها را ترجیح دهد؟

كمتر يا بيشتر؟ [1, 2, 2] يا [2, 3, 4]

ا [1, 0, 0] يا [0, 0, 1]

تخفیف دادن

- منطقی است که مجموع پاداشها بیشینه شود
- همچنین منطقی است که پاداشهای الان به پاداشهای آینده ترجیح داده شوند
 - یک راه حل: ارزش پاداشها نمایی تخفیف یابد

تخفیف دادن

چگونه تخفیف بدهیم؟

هر بار که یک سطح پایین می رویم، ضریب تخفیف
 را یک بار ضرب می کنیم

چرا باید تخفیف دهیم؟

- پاداشهای فوری احتمالا سودمندی بالاتری نسبت به
 پاداشهای دارای تأخیر دارند
 - همچنین کمک می کند الگوریتمها همگرا شوند
 - مثال: تخفیف 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])

اولویت ایستا

قضیه: برای اولویتهای ایستا:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$\updownarrow$$

$$[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

■ آنگاه اگر سودمندیها بصورت زیر تعریف شود ویژگی ایستایی اولویت حفظ میشود

$$U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$$

$$U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$$

آزمونک: تخفیف دادن

■ با فرض:

- اعمال: شرق ، غرب و خروج (فقط از طریق حالتهای خروج a و e
 - انتقال: قطعی

آزمونک 1: برای ضریب 1 = γ سیاست بهینه چیست؟

آزمونک 2: برای ضریب 0.1 = γ سیاست بهینه چیست؟

• آزمونک 3: برای چه γ وقتی در d هستیم غرب و شرق به یک اندازه خوب هستند؟

سودمندیهای بینهایت؟!

- مشکل: اگر بازی تا ابد ادامه داشته باشد چه می شود؟ آیا پاداش بینهایت می گیریم؟
 - راه حلها:
 - افق متناهی: (مشابه جستجو با عمق محدود)
 - پایان بخشیدن به بازی بعد از T گام ثابت (مثل زندگی)
 - باعث سیاستهای غیر ایستا می شود (π بستگی به زمان باقیمانده دارد)
 - □ マ < 1 : استفاده از 1 > γ > 0

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\mathsf{max}}/(1-\gamma)$$

- ν کوچکتر یعنی افق کوچکتر تمرکز کوتاه مدتتر
- حالتهای جذب کننده: ضمانت می کند که برای هر سیاست، در نهایت یک حالت پایانی خواهد رسید (مثال "حالت جوش آمدن" برای ماشین مسابقه)

یادآوری: تعریف MDPها

- · فرآیندهای تصمیم گیری مارکوف:
 - مجموعهای از حالتها \$
 - \mathbf{s}_0 حالت شروع
 - مجموعه از اعمال
- (P(s'| s, a) یا (T(s, a, s') تابع انتقال (T(s, a, s')
- تابع یاداش (R(s, a, s') و ضریب تخفیف γ
 - کمیتهای مهم تا اینجا:
- سیاست: انتخاب عمل برای هر حالت
- سودمندی: مجموع (تخفیف یافته) پاداشها

حل MDPها

کمیتهای بهینه

[Demo – gridworld values (L8D4)]

- ارزش (سودمندی) یک حالت s : V*(s) = سودمندی مورد انتظار با شروع از s و بهینه عمل کردن
 - ارزش (سودمندی) یک حالت (s,a):

 Q*(s,a)

 و و (از آنجا به بعد) بهینه عمل کردن

 انتخاب a و (از آنجا به بعد) بهینه عمل کردن
 - سیاست بهینه:π *(s)

Snapshot of Demo – Gridworld V Values

Snapshot of Demo – Gridworld Q Values

ارزش حالتها

- $V^*(s)$ عملیات پایهای: محاسبه ارزش بهینه یک حالت
 - سودمندی مورد انتظار با حرکت بهینه
 - مجموع (تخفیف یافته) یاداشها
- این همان چیزیست که expectimax محاسبه میکند!
 - تعریف بازگشتی ارزش

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

درخت جستجوی مسابقه

درخت جستجوی مسابقه

درخت جستجوى مسابقه

- با استفاده از expectimax ما بیش از اندازه کار می کنیم!
 - مشكل: حالتها تكرار ميشوند
 - ایده : مقادیر مورد نیاز را فقط یکبار محاسبه کن
 - راه حل: برنامه نویسی یویا
 - مشكل: درخت تا بينهايت ادامه دارد
- ایده : از محاسبات با عمق محدود استفاده کن و آنقدر
 ادامه بده تا تغییرات کوچک شود
 - نکته : اگر 1 > γ قسمتهای عمیق درخت در نهایت اهمیتی ندارند

ارزش زمان محدود

- ایده کلیدی: ارزش زمان محدود (time-limited values)
- تعریف V_k(s) به عنوان ارزش بهینه s اگر بازی پس از k مرحلهی دیگر خاتمه یابد
 - معادل اجرای expectimax با عمق محدود k

محاسبه ارزشهای با زمان محدود

تکرار ارزش Value Iteration

تکرار ارزش Value Iteration

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- تا همگرایی تکرار کن
- پیچیدگی هر تکرار (S²A)
- قضیه: به مقادیر بهینه یکتا همگرا خواهد شد
- ایده پایه: تخمینها به سمت مقادیر بهینه اصلاح مییابند
 - سیاست ممکن است خیلی زودتر از مقادیر همگرا شود

مثال: تكرار ارزش Value Iteration

مثال: تكرار ارزش

- از کجا می دانیم که بردارهای V_k همگرا خواهند شد؟
- حالت 1: اگر درخت دارای بیشینه عمق M باشد، آنگاه V_m شامل مقادیر واقعی است بدون آن که درخت برش خورده باشد
 - حالت 2: اگر ضریب تخفیف کمتر از 1 باشد
- ا عمق expectimax با عمق وطرح کلی : به ازای هر حالت، مقادیر V_{k+1} و V_{k+1} را می توان به عنوان دو درخت k+1
- تفاوت این دور درخت در این است که در آخرین لایه ۷_{k+1} شامل پاداشهای واقعی است اما ۷_k شامل پاداشهای مساوی صفر است
 - پاداشها در این لایه همگی حداکثر R_{max} هستند
 - و حداقل برابر با R_{min} هستند.
 - اما همه چیز با ضریب γ^k تخفیف یافته است
 - است γ^k سax|R| و V_{k+1} حداکثر برابر با V_k
 - ا در نتیجه با افزایش k ارزشهای محاسبه شده همگرا خواهد شد

دفعه بعد: روشهای مبتنی بر سیاست