05 - WLAN Encryption and Data Integrity Protocols WIRELESS LAN SECURITY

Introduction

- 802.11i adds new encryption and data integrity methods.
- includes encryption algorithms to protect the data, cryptographic integrity checks to prevent message modification and replay, and dynamic key management algorithms
- describes the new security association concept associated with 802.11i.

IEEE 802.11i

 enhances 802.11 with several new security mechanisms to ensure message confidentiality and integrity.

 also incorporates the 802.1x port authentication algorithm to provide a framework for strong mutual authentication and key management.

Features

- Two new network types, called Transition Security Network (TSN) and Robust Security Network (RSN)
- New data encryption and data integrity methods: Temporal Key Integrity Protocol (TKIP) and Counter mode/CBC-MAC Protocol (CCMP)
- New authentication mechanisms using the Extensible Authentication Protocol (EAP)
- Key management via security handshake protocols conducted over 802.1x

TKIP

- a cipher suite
- includes a key mixing algorithm and a packet counter to protect cryptographic keys
- includes Michael, a Message Integrity Check (MIC) algorithm that, along with the packet counter, prevents packet replay and modification

CCMP

- based on AES that accomplishes encryption and data integrity
- provides stronger encryption and message integrity than TKIP
- not compatible with the older WEPoriented hardware

RSN

- RSN allows only machines using TKIP/Michael and CCMP.
- A TSN is one that supports both RSN and pre-RSN (WEP) machines to operate.
- RSN is definitely preferred, and getting all networks to use CCMP exclusively would be ideal.

Encryption Protocols

- Three encryption protocols: WEP, TKIP, and CCMP.
- They primarily are used for confidentiality but also include message integrity.
- TKIP and CCMP also include replay protection.
- WEP does not provide robust message integrity or replay protection.

Wired Equivalent Privacy

Three main design goals:

- To prevent disclosure of packets in transit
- To prevent modification of packets in transit
- To provide access control for use of the network

Preventing Disclosure of Packets

- uses the RC4 algorithm
- RC4 is a stream cipher and is not supposed to be reused with the same key
- Therefore, the designers added the initialization vector (IV), which allows a fresh RC4 key to be used for every packet.
- Failure to prevent repeats of IV means that an attacker can replay packets, or attack on the RC4 keystream.

Preventing Modification of Packets

- uses the integrity check vector (ICV)
- The ICV is a four-octet linear checksum calculated over the packet's plaintext payload and included in the encrypted payload.
- It uses the 32-bit cyclic redundancy check (CRC-32) algorithm.

Achieving Access Control

- chooses a challenge-response mechanism based on knowledge of the WEP key, called shared-key authentication
- The idea was that a station needed to prove its knowledge of the WEP key to gain access to the network.
- This method not only is flawed, but it also compromises bits of the keystream.

RC4

- RC4 is the basic encryption algorithm that WEP employs.
- RC4 is a symmetric stream cipher, so it produces a keystream of the same length as the data.
- In WEP, this keystream is combined with the data using the exclusive OR (XOR) operation to produce the ciphertext.

WEP Encapsulation

- involves encryption, integrity check calculation, possible fragmentation, and attachment of headers.
- Decapsulation is the opposite, involving processes such as removing headers, decryption, reassembling packets, and verifying integrity checks.

WEP Packet Format

The Process of Encapsulation of the WEP Packet

WEP Decapsulation

