Databases

Lecture 5

Functional Dependencies, Normal Forms

• the notion of transitive dependency is required for the third normal form

Definition. An attribute Z is transitively dependent on an attribute X, if $\exists Y$ such that $X \to Y$, $Y \to Z$, $Y \to X$ does not hold and Z is not included in $X \cup Y$.

Definition. A relation is in the third normal form (3NF) if it is in the second normal form and no non-prime attribute is transitively dependent on any key in the relation.

- let R be a 2NF relation
- if K is the (sole) key and β an attribute that is transitively dependent on K, then there is an attribute α such that: $K \to \alpha$ (this dependency always holds) and $\alpha \to \beta$
- since the relation is in 2NF, β is fully functionally dependent on K, therefore $\alpha \not\subset K$
- \Rightarrow a relation that is in 2NF and not in 3NF has a dependency $\alpha \rightarrow \beta$, where α is a non-prime attribute
- decomposition (to eliminate this dependency) similar to the 2NF decomposition

Example 9. The BSc examination results are stored in the relation:

BSC_EXAM [StudentName, Grade, Supervisor, Department]

- the relation stores the supervisor and the department in which she works
- since the relation contains data about students (i.e., one row per student), StudentName can be chosen as the key
- the following functional dependency holds: {Supervisor} → {Department} ⇒
 the relation is not in 3NF
- to eliminate this dependency, the relation is decomposed into the following 2 relations:

RESULTS [StudentName, Grade, Supervisor]

SUPERVISORS [Supervisor, Department]

Example 10. The following relation stores addresses for a group of people: ADDRESSES [CNP, LastName, FirstName, ZipCode, City, Street, No]

- key: {CNP}
- identified dependency: $\{ZipCode\} \rightarrow \{City\}$ (can you identify another dependency in this relation?)
- since this dependency holds, relation ADDRESSES is not in 3NF, therefore it must be decomposed:

ADDRESSES'[<u>CNP</u>, LastName, FirstName, ZipCode, Street, No] ZIPCODES[ZipCode, City]

- Example 11. The following relation stores the exam session schedule:
- EX_SCHEDULE[Date, Hour, Faculty_member, Room, Group]
- the following restrictions are expressed via <u>key definitions</u> and <u>functional</u> <u>dependencies</u>:
 - 1. a group of students has at most one exam per day
 - => {Date, Group} is a key
 - 2. on a certain date and time, a faculty member has an exam with a group
 - => {Faculty_member, Date, Hour} is a key
 - 3. on a certain date and time, there is at most one exam in a room
 - => {Room, Date, Hour} is a key

Example 11. The following relation stores the exam session schedule:

EX_SCHEDULE[Date, Hour, Faculty_member, Room, Group]

- the following restrictions are expressed via <u>key definitions</u> and <u>functional</u> <u>dependencies</u>:
 - 4. a faculty member doesn't change the room in a day
 - => the following dependency holds: $\{Faculty_member, Date\} \rightarrow \{Room\}$

- all the attributes appear in at least one key, i.e., there are no non-prime attributes
- given the normal forms' definitions specified thus far, the relation is in 3NF
- objective: eliminate the {Faculty_member, Date} → {Room} functional dependency

Definition. A relation is in the Boyce-Codd (BCNF) normal form if every determinant (for a functional dependency) is a candidate key, i.e., there are no functional dependencies $\alpha \to \beta$, where α is not a candidate key.

• to eliminate the functional dependency, the original relation must be decomposed into:

EX_SCHEDULE [Date, Faculty_member, Hour, Group], ROOM ALLOCATION [Faculty member, Date, Room]

- these relations don't contain other functional dependencies, i.e., they are in BCNF
- however, the key associated with the 3rd constraint, {Room, Date, Hour}, does not exist anymore
- if this constraint is to be kept, it needs to be checked in a different manner (e.g., through the program)

Obs. The following simple properties for functional dependencies hold (they can be easily demonstrated; the first one has already been introduced):

- 1. If K is a key of $R[A_1, A_2, ..., A_n]$, then $K \to \beta$, $\forall \beta \subset \{A_1, A_2, ..., A_n\}$; such a dependency is always true, hence it will not be eliminated via decompositions.
- 2. If $\beta \subseteq \alpha$, then $\alpha \to \beta$ the *trivial functional dependency* or *reflexivity*.

$$\Pi_{\alpha}(r_1) = \Pi_{\alpha}(r_2) \Rightarrow \Pi_{\beta} (r_1) = \Pi_{\beta}(r_2)$$
$$\beta \subseteq \alpha$$

$$\Rightarrow \alpha \rightarrow \beta$$

Obs. The following simple properties for functional dependencies hold (they can be easily demonstrated; the first one has already been introduced):

3. If
$$\alpha \to \beta$$
, then $\gamma \to \beta$, $\forall \gamma$ with $\alpha \subset \gamma$.
$$\Pi_{\gamma}(r_1) = \Pi_{\gamma}(r_2) \Rightarrow \Pi_{\alpha}(r_1) = \Pi_{\alpha}(r_2) \Rightarrow \Pi_{\beta}(r_1) = \Pi_{\beta}(r_2)$$
$$\alpha \subset \gamma, \text{ propr.2} \qquad \alpha \to \beta$$
$$\Rightarrow \gamma \to \beta$$

4. If
$$\alpha \to \beta$$
 and $\beta \to \gamma$, then $\alpha \to \gamma$ - transitivity.
$$\Pi_{\alpha}(r_1) = \Pi_{\alpha}(r_2) \Rightarrow \Pi_{\beta}(r_1) = \Pi_{\beta}(r_2) \Rightarrow \Pi_{\gamma}(r_1) = \Pi_{\gamma}(r_2)$$
$$\alpha \to \beta \qquad \beta \to \gamma.$$
$$\Rightarrow \alpha \to \gamma$$

Obs. The following simple properties for functional dependencies hold (they can be easily demonstrated; the first one has already been introduced):

5. If $\alpha \to \beta$ and $\gamma \subset \{A_1, ..., A_n\}$, then $\alpha \gamma \to \beta \gamma$, where $\alpha \gamma = \alpha \cup \gamma$.

$$\Pi_{\alpha\gamma}(r_1) = \Pi_{\alpha\gamma}(r_2) \Rightarrow \Pi_{\alpha}(r_1) = \Pi_{\alpha}(r_2) \Rightarrow \Pi_{\beta}(r_1) = \Pi_{\beta}(r_2) \Rightarrow \Pi_{\beta\gamma}(r_1) = \Pi_{\beta\gamma}(r_2)$$

$$\Pi_{\gamma}(r_1) = \Pi_{\gamma}(r_2)$$

Example 12: consider the relation DFM [Department, FacultyMember, MeetingDate], where *FacultyMember* and *MeetingDate* are repeating attributes

• a record in this relation could look like the ones in the following table:

Computer Science	FCS1 FCS2 FCSm	DCS1 DCS2 DCSn
Mathematics	FM1 FM2 FMp	DM1 DM2 DMq

• to avoid repeating attributes (such that the relation is at least in 1NF), the data must be stored like in the following table:

Computer Science	FCS1	DCS1
Computer Science	FCS1	DCS2
•••	•••	•••
Computer Science	FCS1	DCSn
Computer Science	FCS2	DCS1
Computer Science	FCS2	DCS2
1010	•••	•••
Mathematics	FM1	DM1
•••	•••	•••
Mathematics	FMp	DMq

Computer Science	FCS1	DCS1
Computer Science	FCS1	DCS2
•••	•••	•••
Computer Science	FCS1	DCSn
Computer Science	FCS2	DCS1
Computer Science	FCS2	DCS2
•••	•••	
Mathematics	FM1	DM1
•••	•••	b b b
Mathematics	FMp	DMq

- in this table, every faculty member has the same meeting dates
- therefore, when adding / changing / removing rows, additional checks must be carried out

• a simple functional dependency $\alpha \to \beta$ means, by definition, that every value u of α is associated with a unique value v for β

Definition. multi-valued dependency $\alpha \rightrightarrows \beta$ (α multi-determines β)

• a value u of α is associated with a set of values v for β : $\beta(u) = \{v_1, v_2, ..., v_n\}$, and this association holds regardless of the values of $\gamma = A - \alpha - \beta$ (where A is the set of attributes in the relation, i.e., $A = \alpha \cup \beta \cup \gamma$).

• obs. $\sigma_{\alpha=u}(R)$ determines a relation that contains the tuples of R where $\alpha=u$ (this operator will be detailed in a subsequent lecture)

- let R[A] be a relation, $\alpha \Rightarrow \beta$ a multi-valued dependency, and $A = \alpha \cup \beta \cup \gamma$, with γ a non-empty set
- the association among the values in $\beta(u)$ for β and the value u of α holds regardless of the values of γ (the context)
- i.e., these associations (between u and an element in $\beta(u)$) exist for any value w in γ :
 - $\forall w \in \Pi_{\gamma}(\sigma_{\alpha=u}(R))$, $\exists r_1, r_2, \dots, r_n$ such that $\Pi_{\alpha}(r_i) = u$, $\Pi_{\beta}(r_i) = v_i$, $\Pi_{\gamma}(r_i) = w$

• if $\alpha \rightrightarrows \beta$ and the following rows exist:

then the following rows must exist as well:

α	β	γ
u ₁	V ₁	W ₁
u ₁	V ₂	W ₂

α	β	γ
u ₁	V ₁	W ₂
u ₁	V ₂	W ₁

Property. Let R[A] be a relation, $A = \alpha \cup \beta \cup \gamma$. If $\alpha \rightrightarrows \beta$, then $\alpha \rightrightarrows \gamma$. Justification.

- Let u be a value of α in R.
- Let $\beta(u) = \Pi_{\beta}(\sigma_{\alpha=u}(R))$, $\gamma(u) = \Pi_{\gamma}(\sigma_{\alpha=u}(R))$ (the β and γ values in the tuples where $\alpha = u$).

```
Since \alpha \rightrightarrows \beta \Rightarrow

\forall w \in \gamma(u), \forall v \in \beta(u), \exists r = (u, v, w), \text{ or } \forall v \in \beta(u), \forall w \in \gamma(u), \exists r = (u, v, w),

therefore \alpha \rightrightarrows \gamma.
```

• for relation DFM (in the previous example):

 $\{Department\} \rightrightarrows \{FacultyMember\}, \{Department\} \rightrightarrows \{MeetingDate\}$

Definition. A relation R is in 4NF if, for every multi-valued dependency $\alpha \rightrightarrows \beta$ that holds over R, one of the statements below is true:

- $\beta \subseteq \alpha$ or $\alpha \cup \beta = R$
- $\bullet \alpha$ is a superkey.

• if $R[\alpha, \beta, \gamma]$ and $\alpha \rightrightarrows \beta$, R is decomposed into the following relations:

$$R_1[\alpha, \beta] = \Pi_{\alpha \cup \beta}(R)$$

$$R_2[\alpha, \gamma] = \Pi_{\alpha \cup \gamma}(R)$$

relation DFM is decomposed into:

DF [Department, FacultyMember]

DM [Department, MeetingDate]

References

- [Ta13] ȚÂMBULEA, L., Curs Baze de date, Facultatea de Matematică și Informatică, UBB, 2013-2014
- [Ra00] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (2nd Edition), McGraw-Hill, 2000
- [Da03] DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003
- [Ga08] GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book, Prentice Hall Press, 2008
- [Ha96] HANSEN, G., HANSEN, J., Database Management And Design (2nd Edition), Prentice Hall, 1996
- [Ra07] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems, McGraw-Hill, 2007,
 - http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html
- [UI11] ULLMAN, J., WIDOM, J., A First Course in Database Systems, http://infolab.stanford.edu/~ullman/fcdb.html
- [Ta03] ȚÂMBULEA, L., Baze de date, Litografiat Cluj-Napoca 2003