CS & IT

ENGINEERING

DISCRETE MATHS GRAPH THEORY

Lecture No. 4

By- SATISH YADAV SIR

$$e(wn) = n-1+n-1$$
.

 $e(wn) = a(n-1)$.

W5 W6 5 vertices . W100 99 vertices Wqq 98.0

if G is wn
$$\longrightarrow e = 2(n-1)(True)$$

if G is having $e = 2(n-1) \longrightarrow G$ is wheel Graph. (false)

$$N = 5 e = 2(n-1)$$

= 2(+) = 8

Bipartite Graph.

G=(v, F)

V can be divided into 2 parts VI, v2.

Seach edge must be from one set to another set but not in same set.

(S=(v.E) (V)

Bipartite Graph.

not bipartite
Graph.

Thm7: Bipartite Graph does not

contains odd length cycle.

no odd length

(ycle

no cycle at bodly

1

2

3

4

3

4

Graph contains odd length cycle (cs)

BPG X.

no odd length Cocle.

BPGV

n -> Total vertices in Bipartite Graph.

what will be maximum no of edges?

n = Totalvertice

thm8:

n = Total vertices.

manimum no g edges in bipartite graph e s n2

Case 2:

e=8

1 6 2 5

n = 7

In maximum no of edges in bipartite graph $e \leq \frac{n^2}{4}$.

C) if bipartite Graph contains more than $\frac{n^2}{4}$ edges it contains odd length cycle.

Bipartite Graph.

Complete bipartite. Graph.

Star Graph (Kin-1)

Quam star Graph of Evertices.

KI, n-1 Total vertices = n.

Total vertices = n-1. $\Delta(k_1,n-1) = n-1$. $\delta(k_1,n-1) = 1$.

Complement Graph. (G)

edges - absent

edges - present

X 0

$$G + G = kn$$
 $e(G) + e(G) = \frac{n(n-1)}{2}$

$$e(G) = \frac{n(n-1)}{2} - e(G)$$

Q what will be edges in the complement of the graph having degreesequent 5, 2, 2, 2, 2, 2, 1.

G - 5, 2, 2, 2, 2, 1.

\(\frac{1}{2}\) \(\frac{1}{2}\) = 2e.

5+2+2+2+1=20

14 = 2 €

F=3

$$e(\zeta) = 0 \qquad e(\zeta) = 7$$

$$e(\zeta) = \frac{1}{2}$$

$$7 + e(5) = .65 = 30 = 15$$

eq: what will be noig edges in the complement of the graph having QD 5. 2, 2, 2, 2, 2, 2. 1.

Total Vertices=6.

Zd(vi) = 2e. 0 + 3 + 3 + 3 + 4 = 2e 16 = 2e

