# TUGAS PEMBELAJARAN MESIN

"Data Iris"



## Pengampu:

Dr.Juni Nurma Sari S.Kom, M.MT

#### Nama:

Wanda Trisnahayu (2055301143)

Kelas: 3 TI C

D4 - TEKNIK INFORMATIKA
TAHUN 2022

#### 1. Import Dataset/Library



#### 2. Data Preview

| [6] data.head() |    |               |              |               |              |             |  |  |  |  |  |
|-----------------|----|---------------|--------------|---------------|--------------|-------------|--|--|--|--|--|
|                 | Id | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species     |  |  |  |  |  |
| 0               | 1  | 5.1           | 3.5          | 1.4           | 0.2          | Iris-setosa |  |  |  |  |  |
| 1               | 2  | 4.9           | 3.0          | 1.4           | 0.2          | Iris-setosa |  |  |  |  |  |
| 2               | 3  | 4.7           | 3.2          | 1.3           | 0.2          | Iris-setosa |  |  |  |  |  |
| 3               | 4  | 4.6           | 3.1          | 1.5           | 0.2          | Iris-setosa |  |  |  |  |  |
| 4               | 5  | 5.0           | 3.6          | 1.4           | 0.2          | Iris-setosa |  |  |  |  |  |

#### 3. Info data



### 4. Deskripsi data

[8] data.describe()

|       | Id         | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm |
|-------|------------|---------------|--------------|---------------|--------------|
| count | 150.000000 | 150.000000    | 150.000000   | 150.000000    | 150.000000   |
| mean  | 75.500000  | 5.843333      | 3.054000     | 3.758667      | 1.198667     |
| std   | 43.445368  | 0.828066      | 0.433594     | 1.764420      | 0.763161     |
| min   | 1.000000   | 4.300000      | 2.000000     | 1.000000      | 0.100000     |
| 25%   | 38.250000  | 5.100000      | 2.800000     | 1.600000      | 0.300000     |
| 50%   | 75.500000  | 5.800000      | 3.000000     | 4.350000      | 1.300000     |
| 75%   | 112.750000 | 6.400000      | 3.300000     | 5.100000      | 1.800000     |
| max   | 150.000000 | 7.900000      | 4.400000     | 6.900000      | 2.500000     |

#### 5. Menghitung jumlah data berdasar spesies



# 6. Visualisasi data

```
[10] tmp = data.drop('Id', axis=1)
g = sns.pairplot(tmp, hue='Species', markers='+')
plt.show()
```



```
[11] g = sns.violinplot(y='Species', x='SepalLengthCm', data=data, inner='quartile')
   plt.show()
   g = sns.violinplot(y='Species', x='SepalWidthCm', data=data, inner='quartile')
   plt.show()
   g = sns.violinplot(y='Species', x='PetalLengthCm', data=data, inner='quartile')
   plt.show()
   g = sns.violinplot(y='Species', x='PetalWidthCm', data=data, inner='quartile')
   plt.show()
```





#### 7. Modeling dengan scikit-learn

```
X = data.drop(['Id', 'Species'], axis=1)
y = data['Species']
# print(X.head())
print(X.shape)
# print(y.head())
print(y.shape)

(150, 4)
(150,)
```

#### 8. Train and test dataset yang sama

```
# experimenting with different n values
k_range = list(range(1,26))
scores = []
for k in k_range:
    knn = KNeighborsClassifier(n_neighbors=k)
    knn.fit(X, y)
    y_pred = knn.predict(X)
    scores.append(metrics.accuracy_score(y, y_pred))

plt.plot(k_range, scores)
plt.xlabel('Value of k for KNN')
plt.ylabel('Accuracy Score')
plt.title('Accuracy Scores for Values of k of k-Nearest-Neighbors')
plt.show()
```



## 9. LogisticRegression

```
[14] logreg = LogisticRegression()
    logreg.fit(X, y)
    y_pred = logreg.predict(X)
    print(metrics.accuracy_score(y, y_pred))

0.97333333333333334
```

#### 10. Pisahkan dataset menjadi training set and a testing set

```
[15] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=5)
    print(X_train.shape)
    print(y_train.shape)
    print(X_test.shape)
    print(y_test.shape)

(90, 4)
    (90,)
    (60, 4)
    (60,)
```

```
# experimenting with different n values
k_range = list(range(1,26))
scores = []
for k in k_range:
    knn = KNeighborsClassifier(n_neighbors=k)
    knn.fit(X_train, y_train)
    y_pred = knn.predict(X_test)
    scores.append(metrics.accuracy_score(y_test, y_pred))

plt.plot(k_range, scores)
plt.xlabel('Value of k for KNN')
plt.ylabel('Accuracy Score')
plt.title('Accuracy Scores for Values of k of k-Nearest-Neighbors')
plt.show()
```



```
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
y_pred = logreg.predict(X_test)
print(metrics.accuracy_score(y_test, y_pred))

0.98333333333333333
```

# 11. Memilih KNN untuk Memodelkan Prediksi Spesies Iris dengan $\mathbf{k}=12$

