

Стохастические методы оптимизации

Генетический алгоритм, метод роя частиц, муравьиный алгоритм

Павел Ломовицкий

$$\min_{\boldsymbol{\xi} \in \Omega} f(\boldsymbol{\xi}) - ?$$

$$\boldsymbol{\xi}^{n+1} = \boldsymbol{\xi}^n - \alpha^n \nabla f(\boldsymbol{\xi}^n)$$

$$\boldsymbol{\xi}^{n+1} = \boldsymbol{\xi}^n - \alpha^n \nabla f(\boldsymbol{\xi}^n)$$

Проблема:

Не всегда есть информация о градиенте функции ∇f

Проблема:

Не всегда возможно посчитать ∇f за разумное время

$\xi^{n+1} = \xi^n - \alpha^n \nabla f(\xi^n)$

Если я легонько нажму на эту красную кнопочку, это будет считаться малым приращением?..

В модели могут быть переменные, от которых невозможно взять градиент

$$\boldsymbol{\xi}^{n+1} = \boldsymbol{\xi}^n - \alpha^n \nabla f(\boldsymbol{\xi}^n)$$

Проблема:

Вид оптимизируемой функции не позволяет эффективно применять градиенты

$$\xi^{n+1} = \xi^n - \alpha^n \nabla f(\xi^n)$$

$$\boldsymbol{\xi}^{n+1} = F(\boldsymbol{\xi}^n, \boldsymbol{p})$$

Идеи подсмотрены у роды!

Количество публикаций на Google Scholar: GA – 2,4 млн, PSO – 530 тыс., Ant Colony – 722 тыс.

На графике кол-во публикаций на ScienceDirect.com по годам

Eberhart R., Kennedy J. A new optimizer using particle swarm theory //Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on. – IEEE, 1995. – C. 39-43.

12223 цитирования

Kennedy J. Particle swarm optimization //Encyclopedia of machine learning. — Springer US, 2011. — C. 760-766.

<u>48396 цитирований</u>

Einstein A., Podolsky B., Rosen N. Can quantum-mechanical description of physical reality be considered complete? //Physical review. − 1935. − T. 47. − №. 10. − C. 777.

16546 цитирований

PROS	CONS
Симулятор – «черный ящик»	Нет критерия сходимости
	Сходимость не строго
	монотонна
Разная природа	Нужен опыт и
параметров	инструменты, чтобы
Намного быстрее	правильно настроить
перебора	параметры
Exploration – поиск	Результат зависит от
глобального оптимума	целевой функции
Exploitation – локальная	Результат на совести
сходимость	пользователя
Легко параллелить и	Вычислительная
масштабировать	сложность от размерности
Выявляются ошибки в «черном ящике»	задачи растет нелинейно

Генетический алгоритм – один из первых эволюционных алгоритмов.

От вектора оптимизируемых параметров \boldsymbol{x} переходим к понятию *хромосомы*. В хромосоме закодирована информация с помощью алфавита, например, двоичного или десятеричного кода.

Аналогия с ДНК, состоящей из 4-х оснований: аденина (A), гуанина (Г), цитозина (Ц) и тимина (Т).

(00011001011000010000001101000111)(25970371)

Набор хромосом, принадлежащий одной итерации оптимизационного алгоритма, называется поколением.

Сравнение хромосом

Вместо задачи $\min_{\pmb{\xi} \in \Omega} f(\pmb{\xi})$ будем решать задачу вида $\max_{\pmb{x} \in \widetilde{\Omega}} fit(\pmb{x})$

fit(x) — fitness function, целевая функция. Последующие действия над хромосомами будут зависеть от того, насколько они «приспособлены» относительно остальных.

При инициализации алгоритма создается первое поколение хромосом из допустимой области $\widetilde{\Omega}$ (как правило, случайным образом), инициализируются все необходимые параметры, вычисляется целевая функция для каждой хромосомы.

Характерные операции, совершаемые в ГА на каждой итерации, операторы (genetic operators):

Elitism – перенос лучших хромосом в новое поколение без изменений

Crossover – формирование дочерней хромосомы из пары родительских

Mutation – небольшое изменение части хромосомы для поиска глобального оптимума

Elitism — одна или несколько хромосом переходят в новое поколение без изменений. Значение целевой функции для них уже известно, нет необходимости в пересчете. Благодаря данному оператору решение на итерации n+1 будут как минимум не хуже решения, найденного к итерации n.

Для формирования оставшейся части поколения используем оператор скрещивания (crossover).

1. Исходя из некоторых соображений выбирается пара родительских хромосом. Например, выбор может быть полностью случайным или детерминированным – использовать информацию о целевой функции.

$$P_j = \alpha \frac{fit_j}{\sum_{k=1}^{M} fit_k} + (1 - \alpha) \frac{1}{M}$$

 P_{j} — вероятность j-ой хромосомы из родительского поколения попасть в пару, fit_{j} — значение целевой функции для нее, M — число хромосом в поколении, α — коэффициент детерминированности.

Для формирования оставшейся части поколения используем оператор скрещивания (crossover).

2. Получаем новую хромосому путем скрещивания. Возможные варианты:

Для формирования оставшейся части поколения используем оператор скрещивания (crossover).

3. Записываем полученные хромосомы в новое поколение

Хромосомы из дочернего поколения подвергаются мутациям, чтобы обеспечить вариативность поиска и иметь возможность алгоритму выйти из локального оптимума.

Важно: «элитные» частицы не подвергаются мутации, т.к. иначе мы можем потерять решение с высоким fitness value.

После того, как дочернее поколение окончательно сформировалось, для всех частиц в нем вычисляется значение целевой функции. Далее оно становится родительским и начинается следующая итерация генетического алгоритма.


```
initialization
while !termination condition
   for i = 1 : nFlite
       newGeneration[i] <- oldGeneration[i]</pre>
   end
   for i = nFlite+1 : M
       x1,x2 <- choosePair(oldGeneration)</pre>
       newGeneration[i] <- crossover(x1,x2)</pre>
       if mutation_criterion
           mutate(newGeneration[i])
       end
   end
   oldGeneration <- newGeneration
   newGeneration <- Ø
   evaluateFitnessValues(oldGeneration)
    sortByFitnessValues(oldGeneration)
   bestChromosome <- oldGeneration[i]</pre>
end
return fit(bestChromosome)
```

```
Каким его выбрать?
initialization
while !termination tondition
                                     Сколько взять?
   for i = 1: nFlite
       nragmepration[i] <- oldGeneration[i]
    покопениа?
                                             Как выбрать пару?
   for i = nElite+1 : M
                 changePair(oldGeneration)
Как проводить м
                       <- crossover(x1,x2)</pre>
                                                  А может, мутацию до
       if mutation criterion
           mutate(newGeneration[i])
       end
                                             Насколько сильно?
   end
   oldGeneration <- newGeneration
   newGeneration <- Ø
   evaluateFitnessValues(oldGeneration)
   sortByFitnessValues(oldGeneration)
   bestChromosome <- oldGeneration[i]</pre>
end
return fit(bestChromosome)
```

Метод роя частиц воспроизводит поведение стаи птиц, роя насекомых или косяка рыб, исследующих территорию в поисках пищи. Рой является децентрализованной и самоорганизующейся системой.

Будем называть кодированный вектор оптимизируемых параметров x частицей. Понятие целевой функции останется без изменений. Частицы на одной итерации будем называть *роем*. Все частицы в рое движутся по простому закону движения:

$$x^{n+1} = x^n + v^{n+1}$$
, v – скорость частицы.

В памяти компьютера на каждой итерации хранятся x, v и x_{best} - лучшее (с точки зрения значения целевой функции) положение частицы за все итерации.

Скорость \boldsymbol{v}_i^{n+1} складывается из *инерциальной*, когнитивной и социальной компонент:

$$v_i^{n+1} = wv_i^n + c_1r_1(x_i^* - x_i^n) + c_2r_2(x_j^* - x_i^n)$$

w, c_1 , c_2 — весовые коэффициенты, r_1 , r_2 — вектора случайных величин от 0 до 1.

 $oldsymbol{x}_i^*$ – лучшее решение, найденное частицей i за все итерации.

 $oldsymbol{x}_{j}^{*}$ — лучшее решение, найденное всеми частицами из *окрестности* i-ой частицы за все итерации.

Соседство частиц (топологии окрестностей) определяет, каким образом они будут обмениваться информацией. Самый популярный вариант – global, он же gbest, все частицы взаимодействуют со всеми.

$$x^{n+1} = x^n + v^{n+1}$$

$$v_i^{n+1} = wv_i^n + c_1r_1(x_i^* - x_i^n) + c_2r_2(x_i^* - x_i^n)$$

Параметры w, c_1 и c_2 , а так же выбранная топология, определяют движение роя. Нам хотелось бы избежать его «схлопывания» или «разлета», а также (по возможности) стремления к глобальному оптимуму.

Примеры работ, в которых изучается поведение системы и даются рекомендации по устойчивости:

Trelea I. C. The particle swarm optimization algorithm: convergence analysis and parameter selection //Information processing letters. $-2003. - T.85. - N_{\odot}.6. - C.317-325.$

Clerc M., Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space //IEEE transactions on Evolutionary Computation. -2002. - T. 6. - No. 1. - C. 58-73.

Основная идея: пусть при стремлении $n \to \infty$ вместо случайных величин можно взять матожидание, все лучшие положения \boldsymbol{x}_i^* будут соответствовать положению глобального оптимума \boldsymbol{g}^* . Тогда алгоритм станет детерминированным, в одномерном случае запишется как

$$\begin{pmatrix} x^{n+1} \\ v^{n+1} \end{pmatrix} = \begin{pmatrix} 1-b & w \\ -b & w \end{pmatrix} \begin{pmatrix} x^n \\ v^n \end{pmatrix} + \begin{pmatrix} b \\ b \end{pmatrix} g^*, b = w \frac{c_1 + c_2}{2}.$$

Исследуя собственные значения матрицы $A = \begin{pmatrix} 1-b & w \\ -b & w \end{pmatrix}$ можно получить соотношения на w, c_1 , c_2 при которых динамическая система будет вести себя определенным образом в окрестности глобального оптимума.

Исходя из данного анализа, можно вывести некоторые рекомендации, в литературе такой алгоритм будет называться PSO with *constriction coefficients*.

$$v_i^{n+1} = w v_i^n + c_1 r_1 (x_i^* - x_i^n) + c_2 r_2 (x_j^* - x_i^n)$$

$$v_i^{n+1} = w [v_i^n + \tilde{c}_1 r_1 (x_i^* - x_i^n) + \tilde{c}_2 r_2 (x_j^* - x_i^n)]$$

$$w = \frac{2\kappa}{\left|2 - \varphi - \sqrt{\varphi^2 - 4\varphi}\right|}, \varphi = \tilde{c}_1 + \tilde{c}_2 > 4, \kappa \in [0, 1]$$

Как правило, $\kappa=1$, $\tilde{c}_1=\tilde{c}_2=2{,}05$, $\varphi=4{,}1$ и

$$w \approx 0.7298$$
 $c_1 = c_2 \approx 1.4962$

Алгоритм с данными параметрами хорошо работает на большинстве задач при топологии gbest.

```
initialization
while !termination condition
    for i = 1 : nNeighborhoods
         updateNeighborhood(i)
    end
    for i = 1 : nParticles
         xbest <- bestSolution[i]</pre>
         v c <- c1*rand*(xbest - x[i]) // cognitive</pre>
         k <- findNeighborhood(i)</pre>
         nbest <- bestSolutionInNeighborhood(k)</pre>
         v_s \leftarrow c2*rand*(nbest - x[i]) // social
         v[i] \leftarrow w*v[i] + v c + v s
    end
    for i = 1 : nParticles
         x[i] = x[i] + v[i]
         if fit(x[i]) > bestFitness[i]
              bestFitness[i] <- fit(x[i])</pre>
              bestSolution[i] <- x[i]</pre>
         end
    end
end
n = argmax(bestFitness)
return bestSolution[n]
```

```
Каким его выбрать?
initialization
while !termination condition
    for i = 1 : nNeighborhoods
                                                    Как задать окрестности?
         updateNeighborhood(i)
    end
                                                  Сколько частиц взять?
    for i = 1 : nParticles
         xbest <- bestSolution[i]</pre>
         v c <- c1*rand*(xbest - x[i]) // cognitive</pre>
         k <- findNeighborhood(i)</pre>
         nbest <- bestSolutionInNeighborhood(k)</pre>
         v_s \leftarrow c2*rand*(nbest - x[i]) // social
         V[i] \leftarrow W^*V[i] + V_C + VS
                                                                как выорать
    end
                                                              VOOD HALLIAGUTE 12
    for i = 1 : nParticles
         x[i] = x[i] + v[i]
         if fit(x[i]) > bestFitness[i]
             bestFitness[i] <- fit(x[i])</pre>
             bestSolution[i] <- x[i]</pre>
         end
    end
end
n = argmax(bestFitness)
return bestSolution[n]
```

Алгоритм оптимизации подражанием муравьиной колонии, муравьиный алгоритм (Ant Colony Optimization) описывает поведение колонии муравьев, отправляющихся из своего жилища к источнику пищи и обратно.

Цель – минимизация пройленного пути

В процессе возвращения от источника пищи муравей несколько раз делает *выбор* – в какую сторону ему пойти.

На каждой итерации алгоритма M муравьев проходит свой путь, формирующийся случайным образом по обновляющемуся распределению вероятностей. В литературе один такой проход (т.е. выбор параметров и вычисление целевой функции) обычно называют циклом.

Вероятность того, что будет выбран вариант $l_{i(j)}$ в цикле k на итерации t:

$$p_{i(j)}(k,t) = \frac{\left[\tau_{i(j)}(t)\right]^{\alpha} \left[\eta_{i(j)}\right]^{\beta}}{\sum_{i(j)} \left[\tau_{i(j)}(t)\right]^{\alpha} \left[\eta_{i(j)}\right]^{\beta}}$$

 $au_{i(j)}(t)$ — концентрация *феромонов* $\eta_{i(j)}$ — видимость варианта (локальная эвристика) lpha, eta — некоторые коэффициенты

В самой простой постановке $\alpha = 1, \beta = 0, \eta_{i(j)} = 1/c_{i(j)}$

$$p_{i(j)}(k,t) = \frac{\left[\tau_{i(j)}(t)\right]^{\alpha} \left[\eta_{i(j)}\right]^{\beta}}{\sum_{i(j)} \left[\tau_{i(j)}(t)\right]^{\alpha} \left[\eta_{i(j)}\right]^{\beta}}$$

На самой первой итерации алгоритма все $au_{i(j)}$ равны между собой. Если eta=0, что соответствует случаю «отсутствия зрения» у муравьев, то и выбор происходит равновероятно в каждом цикле. После формирования списка $m{x}_k(t)$ вычисляется целевая функция $f(m{x}_k(t))$.

По окончании итерации (M циклов) происходит обновление феромонов:

$$\tau_{i(j)}(t+1) = \rho \tau_{i(j)}(t) + \Delta \tau_{i(j)}(t)$$

ho – коэффициент испарения, ho < 1

Существует много способов вычислять добавку $\Delta au_{i(j)}$. Основная идея в том, что решения с меньшим значением целевой функции должны вносить больший вклад, чтобы на следующей итерации вероятность пойти по более короткому пути увеличилась.

$$\Delta \tau_{i(j)} = \sum_{k=1}^{M} \Delta \tau_{i(j)}^{k}$$

 $\Delta au_{i(j)} = \Delta au_{i(j)}^{k^*}$, k^* — цикл с лучшим решением на итерации t

$$\Delta au_{i(j)}^k = egin{cases} rac{R}{f(extbf{\emph{x}}_k)}, & \text{если } l_{i(j)} \ \text{был выбран в цикле k,} \\ 0, & \text{иначе.} \end{cases}$$


```
initialization
p <- formP(tau,eta,alpha,beta)</pre>
while !termination_condition
    deltaTau <- ∅
    for i = 1 : M
        x <- choosePath(p)</pre>
        cost \leftarrow f(x)
        if cost < bestCost</pre>
            bestCost <- cost
        end
        updateDTau(deltaTau,cost)
    end
    tau <- rho*tau + deltaTau
    p <- formP(tau,eta,alpha,beta)</pre>
end
return bestCost
```

```
initialization
                                           Каким его выбрать?
p <- formP(tau,eta,alpha,beta)</pre>
while !termination condition
    deltaTau <-
                                       Сколько взять?
    for
            choosePath(p)
             <-f(x)
Как выбрать
             st < bestCost
параметры?
             estCost <- cost
                                             Какой способ выбрать?
       end
        updateDTau(deltaTau,cost)
    end
    tau <- rho*tau + deltaTau
    p <- formP(tau,eta,alpha,beta)</pre>
end
return bestCost
```


- 1. Whitley D. A genetic algorithm tutorial //Statistics and computing. $-1994. T. 4. N_{\odot}. 2. C. 65-85.$
- 2. Kennedy J. Particle swarm optimization //Encyclopedia of machine learning. Springer US, 2011. C. 760-766.
- 3. Dorigo M., Blum C. Ant colony optimization theory: A survey //Theoretical computer science. 2005. T. 344. №. 2-3. C. 243-278.

Bonus: youtube.com/watch?v=GOFws hhZs8

Очень много реализаций стохастических методов с примерами: http://yarpiz.com

Каждому из вас дается реализация алгоритма PSO в простом виде на языке MATLAB. Кому не нравится MATLAB — покажу, где скачать его на Python. Кому не нравится Python — ищите сами.

Алгоритм можно модифицировать **как угодно**, есть 2 ограничения:

- алгоритм **не знает ничего** о целевой функции
- число вызовов строго фиксировано 50000

Каждый должен будет придумать 3 максимально заковыристые тестовые функции (по аналогии с продемонстрированными сегодня), на которых ваша версия алгоритма будет находить оптимум, а версии соперников — нет. **Размерность** задачи равна **10**, пространство поиска $\Omega = [-5; 5] \times [-5; 5] \times \cdots \times [-5; 5]$.

Во вторник 27 февраля будет проведен баттл по олимпийской системе. Победитель получает респект и 10 за домашнее задание.

