Clustering

Part III

Hierarchical Agglomerative Clustering (HAC)

Step 1: build a tree

Step 2: pick a threshold

Agglomerative Clustering: Part I

- 1. Start with *n* clusters (each record is its own cluster)
- 2. Merge two closest records into one cluster
- 3. At each successive step, the two clusters closest to each other are merged
- 4. Finish when the desired number of clusters is reached

Agglomerative Clustering: Part II

1. Say "Every point is its own cluster"

Agglomerative Clustering: Part III

- 1. Say "Every point is its own cluster"
 - Find "most similar" pair of clusters

Agglomerative Clustering: Part IV

- 1. Say "Every point is its own cluster"
- 2. Find "most similar" pair of clusters
- 3. Merge it into a parent cluster

Agglomerative Clustering: Part V

- 1. Say "Every point is its own cluster"
- 2. Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

Agglomerative Clustering: Part VI

- 1. Say "Every point is its own cluster"
- 2. Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

Agglomerative Clustering: Part VII

The algorithm will stop when it reaches the desired number of clusters

.. Say "Every point is its own cluster"

Find most similar pair of clusters

Merge it into a parent cluster

4. Repeat...until you've merged the whole dataset into one cluster

Based on linkage:

- Single linkage
- Complete linkage
- Average linkage
- Ward

And on distance:

- Euclidean
- Manhattan
- Hamming
 - ...

3.

Another Example

Linkage Criteria

Cluster sizes:

single: [96 1 1 1 1] average: [82 9 7 1 1] complete: [50 24 14 11 1] ward: [31 30 20 10 9]

- Single Linkage
 - Smallest minimum distance
- Average Linkage
 - o Smallest average distance between all pairs in the clusters
- Complete Linkage
 - Smallest maximum distance
- Ward (default in sklearn)
 - o Smallest increase in within-cluster variance
 - Leads to more equally sized clusters.

The Dendrogram: Part I

- x axis shows data points (carefully ordered)
- y-axis shows distance between pair of clusters

The Dendrogram: Part II

Path shows all clusters to which a point belongs and the order in which clusters merge

The Dendrogram: Part III

Every branch that crosses D* becomes a separate cluster

The Dendrogram: Part IV

