

AI Engineer – Po3 OpenClassrooms

Préparez des données pour un organisme de santé publique

Introduction

CONTEXTE DU PROJET

Santé publique France souhaite améliorer sa base de données Open Food Facts. Cette base de données open source est mise à la disposition de particuliers et d'organisations afin de leur permettre de connaître la qualité nutritionnelle de produits.

Aujourd'hui, pour ajouter un produit à la base de données d'Open Food Facts, il est nécessaire de remplir de nombreux champs textuels et numériques, ce qui peut conduire à des erreurs de saisie et à des valeurs manquantes dans la base.

L'agence Santé publique France nous confie la création d'un système de suggestion ou d'auto-complétion pour aider les usagers à remplir plus efficacement la base de données.

Nous sommes missionnés sur le projet de nettoyage et exploration des données, afin de déterminer la faisabilité de cette idée d'application.

Aujourd'hui

Demain

Sommaire

1^{er} Notebook => Nettoyage

Analyse exploratoire des données

Réduction du dataset & sélection de la cible

Gestion des valeurs:

- Les Outliers (Avant traitement)
- Les Outliers (Après traitement)
- Imputation avec KNN

2ème Notebook => Analyse

Analyses univariées

Analyses bivariées

Analyses multivariées

<u>Test Statistiques</u>

ACP

Cercles de corrélation

Conclusion

1er Notebook

Le Nettoyage

nb_lignes, nb_colonnes = data.shape
print(f"Nombre de lignes : {nb_lignes}")
print(f"Nombre de colonnes : {nb_colonnes}")

Nombre de lignes : 320772 Nombre de colonnes : 162 data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 320772 entries, 0 to 320771

Columns: 162 entries, code to water-hardness_100g

dtypes: float64(106), object(56)

memory usage: 396.5+ MB

data.head()	data.head()															Python		
code	url	creator	created_t	created_datetime	last_modified_t	last_modified_datetime	product_name	generic_name	quantity	. ph_100g	fruits- vegetables- nuts_100g	collagen- meat- protein- ratio_100g	cocoa_100g	chlorophyl_100g	carbon- footprint_100g	nutrition- score- fr_100g	nutrition- score- uk_100g	glycemic- index_100g hardne
0 000000003087	http://world-fr.openfoodfacts.org/produit/0000	openfoodfacts- contributors	1474103866	2016-09- 17T09:17:46Z	1474103893	2016-09-17T09:18:13Z	Farine de blé noir	NaN	1kg	. NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1 000000004530	http://world- fr.openfoodfacts.org/produit/0000	usda-ndb- import	1489069957	2017-03- 09T14:32:37Z	1489069957	2017-03-09T14:32:37Z	Banana Chips Sweetened (Whole)	NaN	NaN	. NaN	NaN	NaN	NaN	NaN	NaN	14.0	14.0	NaN
2 000000004559	http://world-fr.openfoodfacts.org/produit/0000	usda-ndb- import	1489069957	2017-03- 09T14:32:37Z	1489069957	2017-03-09T14:32:37Z	Peanuts	NaN	NaN	. NaN	NaN	NaN	NaN	NaN	NaN	0.0	0.0	NaN
3 000000016087	http://world- fr.openfoodfacts.org/produit/0000	usda-ndb- import	1489055731	2017-03- 09T10:35:31Z	1489055731	2017-03-09T10:35:31Z	Organic Salted Nut Mix	NaN	NaN	. NaN	NaN	NaN	NaN	NaN	NaN	12.0	12.0	NaN
4 000000016094 5 rows × 162 columns	http://world-fr.openfoodfacts.org/produit/0000	usda-ndb- import	1489055653	2017-03- 09T10:34:13Z	1489055653	2017-03-09T10:34:13Z	Organic Polenta	NaN	NaN	. NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Analyse exploratoire des données Réduction du dataset et sélection de la cible

Gestion des valeurs : Les outliers (Avant) Gestion des valeurs : Les outliers (Après)

Les colonnes avec plus de 60% de valeurs manquantes ont été supprimé

Analyse exploratoire des données Réduction du dataset et sélection de la cible

Gestion des valeurs : Les outliers (Avant) Gestion des valeurs : Les outliers (Après)

Analyse exploratoire des données

Réduction du dataset et sélection de la cible Gestion des valeurs : Les outliers (Avant) Gestion des valeurs : Les outliers (Après)

Analyse exploratoire des données Réduction du dataset et sélection de la cible Gestion des valeurs : Les outliers (Avant) Gestion des valeurs : Les outliers (Après)

Analyse exploratoire des données Réduction du dataset et sélection de la cible

Gestion des valeurs : Les outliers (Avant) Gestion des valeurs : Les outliers (Après)

2ème Notebook

L'analyse

Analyse des Composantes Principales (ACP)

Cercles de corrélation

Distribution des nutriments par nutriscore

Analyse des composantes Principales

Répartition du calcium par groupe de nutrition

Analyses bivariées

Pour la variable catégorielle

Test Shapiro-Wilk

W-statistic = 0.00039062091216846007 p-value = 9.436948635914407e-211

Test Kruskal-Wallis

Statistique = 175.8750825499985 p-value = 5.731868141181024e-37

Analyse des Composantes Principales

Cercles de corrélation

Conclusio

Tests statistiques

Pour la variable catégorielle

Test Kolmorov-Smirnov

PC1 : Statistique = 0.2165941598036073,

p-value = 0.0

PC3: Statistique = 0.09339074217058335,

p-value = 0.0

PC4: Statistique = 0.039900171733098566,

p-value = 2.236071262374604e-181

PC5: Statistique = 0.06908826726005846,

p-value = 0.0

Test Spearman

PC1 et calcium 100g : 0.17159376490111275,

p-value :0.0

PC3 et calcium 100g : 0.29003305611411057,

p-value :0.0

PC4 et calcium 100g : 0.6703412004890147,

p-value :0.0

PC5 et calcium 100g : 0.5003067599770551,

p-value :0.0

-3 -2

 $^{-1}$

Test Statistiques

Analyse des Composantes Principales (ACP)

Cercle de corrélation

Pour la variable catégorielle

PC₁

Explique 33,8% de la variance

<u>PC2</u>

Explique 18,0% de la variance

Les variables qui doivent impérativement être rempli dans la future application sont :

- Energy kj
- Carbohydrates
- sugars
- saturated-fat
- fat
- proteins
- sodium

Ces informations permettront de définir le nutriscore (A, B, C, D et E), l'ajout de nouvelles variables comme les fibres, le calcium permettrait de compléter l'information nutritionnelles.

Analyse des Composantes Principales

Cercles de corrélation

Résumé du projet :

- * Améliorer la base de données d'Open Food Facts pour santé publique France
- * Mise en place d'un système de suggestion et d'auto-complétion pour réduire les erreurs de saisie

Réalisation:

Impact:

Réduction des champs à saisir, cela signifie moins de possibilité d'erreur de saisie donc une amélioration de la qualité des données Nous avons maintenant une meilleure compréhension des facteurs influençant la qualité nutritionnelle des produits

- * Dans l'application final limité la saisie à une valeurs maximal (si 100g impossibilité de saisir 101)
- * Sensibiliser les utilisateurs sur l'importance de la qualité des données
- * Ajouter d'autre informations nutritionnelles comme les différentes vitamines

