Bootcamp Data Science Zajęcia 3

Przemysław Spurek

Regresja

czyli znamy przykładowe wartości (x_i, y_i) , ktoś nam podaje nowy punkt x_0 i chcemy przewidzieć wartość y_0 .

Możemy zastosować metodę regresji liniowej, gdy chcemy przewidzieć wartość jednej zmiennej na podstawie innych zmiennych.

Na przykład, gdy szukamy linii najlepiej dopasowanej do danego zbioru danych:

$$(x_i, y_i)$$

to tak naprawdę szukamy parametrów (a,b) które minimalizują błąd kwadratowy (squared residuals) ϵ_i w modelu:

$$y_i = a \cdot x_i + b + \epsilon_i$$

gdzie a jest nachyleniem linii, b przesunięciem, ϵ_i (residua) są różnicami między obserwowanymi wartościami, a przewidywanymi wartościami.

Ponieważ równanie regresji liniowej jest stworzone w celu zminimalizowania sumy kwadratowej reszt (residua), regresja liniowa czasami nazywana jest Ordinary Least-Squares (OLS) Regression

Ponieważ równanie regresji liniowej jest stworzone w celu zminimalizowania sumy kwadratowej reszt (residua), regresja liniowa czasami nazywana jest Ordinary Least-Squares (OLS) Regression

Zauważmy, że w przeciwieństwie do korelacji związek między x i y nie jest symetryczny: zakłada się, że wartości x są dokładnie znane, a zmienna y jest tylko przybliżeniem.

Simple Linear Regression

Załóżmy, że mamy kilka punktów (x_i, y_i) , gdzie i = 1, 2, ..., 7. Wtedy najprostszy model regresji liniowej ma postać:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i.$$

Taki model można zapisać w postaci

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \\ 1 & x_5 \\ 1 & x_6 \\ 1 & x_7 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \\ \epsilon_7 \end{bmatrix},$$

gdzie pierwsza kolumna w macierzy reprezentuje przesunięcie, a druga kolumna to wartości x_i odpowiada nachyleniu.

Kwadratowe dopasowanie do danych jest dane modelem:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i.$$

W postaci macierzowej mamy:

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \\ 1 & x_5 & x_5^2 \\ 1 & x_6 & x_6^2 \\ 1 & x_7 & x_7^2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \\ \epsilon_7 \end{bmatrix},$$

Kwadratowe dopasowanie do danych jest dane modelem:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i.$$

W postaci macierzowej mamy:

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \\ 1 & x_5 & x_5^2 \\ 1 & x_6 & x_6^2 \\ 1 & x_7 & x_7^2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \\ \epsilon_7 \end{bmatrix},$$

Uwaga

Zauważ, że nieznane parametry β_i pojawiają się liniowo, a składniki macierzy pojawiają się z kwadratami.

- Zestaw danych ma wartości y_i , z których każda ma skojarzoną wartość modelową f_i (czasami również oznaczaną \hat{y}_i).
- Wartości y_i nazywane są wartościami zaobserwowanymi observed values,
- Wartości modelowe f_i lub \hat{y}_i wartościami przewidywanymi predicted values,
- Wartość \bar{y} jest średnią z zaobserwowanych danych:

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

gdzie n oznacza liczbę obserwacji.

"Zmienność" zbioru możemy mierzyć różnymi miarami:

Model Sum of Squares (Explained Sum of Squares)

$$SS_{mod} = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

Residuals Sum of Squares (sum of squares for the errors)

$$SS_{res} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• Total Sum of Squares (równoważna wariancji próbki pomnożonej przez (n-1)).

$$SS_{tot} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Dla modelu regresji liniowej mamy:

$$SS_{mod} + SS_{res} = SS_{tot}$$
.

Przy powyższych oznaczeniach współczynnik determinacji coefficient of determination oznaczmy R^2 :

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} = \frac{SS_{model}}{SS_{tot}}.$$

Uwaga

Współczynnik determinacji, to stosunek sumy kwadratów odległości zmiennej wyjaśnianej przez model do całkowitej sumy kwadratów.

Dla regresji liniowej, współczynnik determinacji jest kwadratem współczynnika korelacji R. Wartości R² zbliżone do 1 odpowiada ścisłej korelacji, wartości zbliżone do 0 odpowiada słabej:

- 0,0 0,5 dopasowanie niezadowalające,
- 0,5 0,6 dopasowanie słabe,
- 0,6 0,8 dopasowanie zadowalające,
- 0,8 0,9 dopasowanie dobre,
- 0,9 1,0 dopasowanie bardzo dobre.

Uwaga

Zauważmy, że dla modeli ogólnych często pisze się R^2 , podczas gdy dla prostej regresji liniowej r^2 .

Oznaczenia

Jeśli mamy zmienną y i chcemy ją opisać za pomocą x, to możemy po prostu napisać:

$$y \sim x$$

Bardziej złożona sytuacja jest wtedy gdy y zależy od zmiennych x, a, b oraz $a \cdot b$:

$$y \sim x + a + b + a$$
: b

Operator	Meaning
~	Separates the left-hand side from the right-hand side. If omitted, a formula is assumed right-hand side only
+	Combines terms on either side (set union)
_	Removes terms on the right from set of terms on the left (set difference)
*	a * b is shorthand for the expansion $a + b + a : b$
/	a/b is shorthand for the expansion $a + a$: b . It is used when b is nested within a (e.g., states and counties)
:	Computes the interaction between terms on the left and right
**	Takes a set of terms on the left and an integer n on the right and computes the * of that set of terms with itself n times

Zapis macierzowy

Bardzo ogólna definicja modelu regresji jest następująca:

$$y = f(x, \epsilon).$$

W przypadku modelu regresji liniowej model może zostać zapisany jako:

$$y = X\beta + \epsilon$$

Zapis macierzowy

Dla danych w postaci:

$$\{y_i, x_{i1}, \dots, x_{ip}\}_{i=1}^n$$

mówimy, że y_i jest zmienną objaśnianą, a x_{i1}, \ldots, x_{ip} są zmiennymi objaśniającymi, a model regresji ma postać:

$$y_i = \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i = \mathbf{x}_i^T \boldsymbol{\beta} + \varepsilon_i, \qquad i = 1, \dots, n,$$

gdzie T oznacza transpozycję, a $\mathbf{x}_i^T \boldsymbol{\beta}$ oznacza iloczyn skalarny. W notacji macierzowej:

$$y = X\beta + \epsilon.$$

Zapis macierzowy

W notacji macierzowej:

$$y = X\beta + \epsilon$$
.

gdzie:

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, x = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix} = \begin{bmatrix} x_{11} & \dots & x_{1p} \\ x_{21} & \dots & x_{2p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{np} \end{bmatrix}, \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix}, \epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_p \end{bmatrix}.$$

W przypadku jednowymiarowych rozkładów, przedział ufności:

- oparty na odchyleniu standardowym wskazuje przedział, który powinien zawierać 95% danych,
- a błąd standardowy wskazuje przedział, który zawiera prawdziwą średnią z prawdopodobieństwem 95%.

Mamy więc dwa typy przedziałów ufności (jeden dla danych, a drugi dla odpowiednich parametrów) dla dopasowanej linii.

Regresja, ze średnimi przedziałami ufności, jak również przewidywanymi danymi. Czerwona przerywana linia pokazuje ufności dla średniej, a zielona kropkowana linia przedział ufności dla przewidywanych danych.

https:

//github.com/przem85/statistics/blob/master/D10/D10_Z1.ipynb

Aby zobaczyć, jak różne modele mogą być użyte do oceny danego zbioru danych, spójrzmy na prosty przykład dopasowując:

- prostą,
- parabolę,
- $y = a_1 \cdot x + a_2 \cdot x^2 + a_3 \cdot x^3 + b$,
- $y = a_1 \cdot x + a_2 \cdot x^2 + a_3 \cdot x^3 + a_4 \cdot x^4 + b$
- $y = a_1 \cdot x + a_2 \cdot x^2 + a_3 \cdot x^3 + a_4 \cdot x^4 + a_5 \cdot x^5 + b$.

Jak widzimy zarówno krzywa stopnia trzeciego, czwartego i piątego znajdują dobre dopasowanie.

Jak widzimy zarówno krzywa stopnia trzeciego, czwartego i piątego znajdują dobre dopasowanie.

Które dopasowanie jest lepsze?

- W następnej części wyjaśnimy wszystkie parametry.
- Na razie zwróćmy uwagę na Kryterium Akaike Information Criterion (AIC), które można wykorzystać do oceny jakości modelu.
- Im niższa jest wartość AIC, tym lepszy model.

Results: Ordinary least squares									
Model:		OLS		Adj. R-squ	ared:	0.983			
Depende	ent Variable:	У		AIC:		909.6344			
Date:		2015-06-2	7 13:50	BIC:		914.8447			
No. Obs	servations:	100		Log-Likeli	hood:	-452.82			
Df Mode	el:	1		F-statisti	c:	5818.			
Df Resi	duals:	98		Prob (F-st	atistic):	4.46e-89			
R-squar	red:	0.983		Scale:		512.18			
	Coef.	Std.Err.	t	P> t	[0.025	0.975]			
const	100.4163	4.4925	22.351	9 0.0000	91.5010	109.3316			
x1	5.9802	0.0784	76.276	9 0.0000	5.8246	6.1358			
Omnibus		10.925		Durbin-Wats					
•	mibus):	0.004		Jarque-Bera	(JB):				
Skew:		0.476	1	Prob(JB):		0.035			
Kurtosi	s:	2.160	(Condition N	0.:	114			

https:

//github.com/przem85/statistics/blob/master/D10/D10_Z2.ipynb

Najpierw zajmiemy się małym zbiorem danych z biblioteki DASL dotyczące korelacji między zakupem wyrobów tytoniowych i alkoholu w różnych regionach Wielkiej Brytanii.

Użyjemy df [:-1] aby usunąć ostatni element, który możemy traktować jako element odstający.

```
result = sm.ols('Alcohol ~ Tobacco', df[:-1]).fit()
print(result.summary())
```


• Lewa kolumna przeważnie zawiera informacje dotyczące użytej metody.

OLS Regression Results										
Dep. Variable:			Alcoho:	L R-s	quared:			0.615		
Model:			OL:	5 Adj	. R-square	d:		0.567		
Method:		Leas	Least Squares		F-statistic:			12.78		
Date:		Fri, 28			Prob (F-statistic):			0.00723		
Time:				3 Log	Log-Likelihood:			-4.9998		
No. Observatio	ns:		10) AIC	:		14.00			
Df Residuals:			:	BIC	:			14.60		
Df Model:				L						
Covariance Typ	e:		nonrobus	t						
	coef	f std	l err	t	P> t	:	[95.0% 0	onf. Int.]		
Intercept	2.0412) 1	991	2.038	9.97	16	-0.268	4.350		
	1.0059							1.655		
Omnibus:			2.54	2 Dur	bin-Watson	11		1.975		
Prob(Omnibus):			0.28	l Jar	que-Bera (JB):		0.904		
Skew:			-0.01	1 Pro	b(JB):			0.636		
Kurtosis:			1.52	7 Con	d. No.			27.2		

- Df (model) oznacza stopnie swobody modelu czyli liczbę predyktorów (zmiennych objaśniających).
- Df (residuals) oznacza liczbę obserwacji pomniejszoną o stopnie swobody modelu minus jeden (dla przesunięcia).

		0	LS Regre	55	ion R	esults		
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model:	ns:	Fri, 28	Squares Apr 2017		Adj. F-st Prob	R-squared: atistic: (F-statistic): Likelihood:		0.615 0.567 12.78 0.00723 4.9998 14.00
covariance Type	e:	n	onrobust	4				
	coet	std	err	-	t	P> t	[95.0% Conf.	Int.]
Intercept Tobacco	2.0412 1.0059					0.076 0.007	-0.268 0.357	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	=====				Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.		1.975 0.904 0.636 27.2

Jeżeli oznaczymy przez n liczbę obserwacji, a k liczbę parametrów regresji/modelu (np. dla modelu liniowego z przykładu mamy k=2.), a \hat{y} przewidywaną wartość modelu oraz \bar{y} średnią z zaobserwowanych wartości, to:

- (Corrected) Model Degrees $DF_{mod} = k 1$
- Residuals Degrees of Freedom $DF_{res} = n k$
- Total Degrees of Freedom ($DF_{mod} + DF_{res} = DF_{tot}$) $DF_{tot} = n - 1$
- Model Mean of Squares

$$MS_{mod} = SS_{mod}/DF_{mod}$$

ullet Residuals Mean of Squares (jest estymatorem nieobciążonym σ^2)

$$MS_{res} = SS_{res}/DF_{res}$$

Total Mean of Squares

$$MS_{tot} = SS_{tot}/DF_{tot}$$

OLS Regression Results

Dep. Variable:			Alcoh	01	R-squ	ared:		0.615
Model:			0	LS	Adj.	R-squared:		0.567
Method:		Lea	st Square	es	F-Sta	tistic:		12.78
Date:		Fri, 2	8 Apr 20:	17	Prob	(F-statistic)	:	0.00723
Time:			15:22:	23	Log-L	ikelihood:		-4.9998
No. Observation	ns:			10	AIC:			14.00
Df Residuals:				8	BIC:			14.60
Df Model:				1				
Covariance Typ	e:		nonrobu	st				
	coef	f st	d err		t	P> t	[95.0% Co	nf. Int.]
Intercept	2.0412	2	1.001	2	.038	0.076	-0.268	4.350
Tobacco	1.0059	9	0.281	3	.576	0.007	0.357	1.655
Omnibus:			2.5	==== 42	Durbi	.n-Watson:		1.975
Prob(Omnibus):			0.2	81	Jarqu	ie-Bera (JB):		0.904
Skew:			-0.0	14	Prob(, ,		0.636
Kurtosis:			1.5	27	Cond.	No.		27.2

Przykład 3 – The R2 Value

The R^2 Value wyraża się wzorem:

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} = \frac{SS_{model}}{SS_{tot}}$$

The Adjusted \bar{R}^2 Value jest modyfikacją R^2 biorącą pod uwagę karę za dużą liczbę parametrów w modelu p:

$$1 - \bar{R}^2 = \frac{\textit{ResidualVariance}}{\textit{TotalVariance}},$$

gdzie (Sample) Residual Variance to:

Residual Variance =
$$SS_{res}/DF_{res} = SS_{res}/(n-k)$$

(Sample) Total Variance to:

$$Residual Variance = SS_{tot}/DF_{tot} = SS_{tot}/(n-1)$$

$$\bar{R}^2 - 1 = \frac{SS_{res}}{SS_{tot}} \frac{n-1}{n-k} = 1 - (1-R^2) \frac{n-1}{n-k}$$

OLS Regression Results

			_	•				
Dep. Variable:			Alcoh	ıol	R-squ	ıared:		0.615
Model:			0	LS	Adj.	R-squared:		0.567
Method:		Leas	t Squar	es	F-sta	tistic:		12.78
Date:		Fri, 28	3 Apr 20	17	Prob	(F-statistic)	:	0.00723
Time:			15:22:	23	Log-L	.ikelihood:		-4.9998
No. Observatio	ns:			10	AIC:			14.00
Df Residuals:				8	BIC:			14.60
Df Model:				1				
Covariance Typ	e:		nonrobu	ıst				
	coef	f sto	l err		t	P> t	[95.0% Co	nf. Int.]
Intercept	2.0412	2 1	.001		2.038	0.076	-0.268	4.350
	1.0059		281		3.576	0.007	0.357	1.655
Omnibus:			2.5	42	Durbi	n-Watson:		1.975
Prob(Omnibus):				81		ie-Bera (JB):		0.904
Skew:			-0.0			, ,		0.636
Kurtosis:			1.5		Cond.			27.2

Przykład 3 – The F-Test for regression.

W przypadku modelu regresji:

$$Y_i = \alpha + \beta_1 X_{1j} + \ldots + \beta_n X_{nj} + \epsilon_i = \alpha + \sum_{i=1}^n \beta_i X_{ij} + \epsilon_j.$$

Chcemy przetestować hipotezę:

$$H_0: \beta_1 = \beta_2 = \dots \beta_n = 0$$

 $H_1: eta_j
eq 0$ dla co najmniej jednego j

Przykład 3 – The F-Test for regression.

Pamiętamy, że jeżeli zmienne losowe t_1, t_2, \ldots, t_m są niezależne o rozkładzie normalnym $N(0, \sigma^2)$, to:

$$\sum_{i=1}^{m} \frac{t_i^2}{\sigma^2}$$

ma rozkład chi kwadrat z m stopniami swobody.

W konsekwencji, jeżeli hipoteza zerowa jest prawdziwa, to:

- SS_{res}/σ^2 ma rokład χ^2 z DF_{res} stopniami swobody,
- SS_{mod}/σ^2 ma rokład χ^2 z DF_{mod} stopniami swobody,
- ullet SS_{res} oraz SS_{mod} są niezależne.

Przykład 3 – The F-Test for regression.

Jeżeli zmienna losowa U ma rozkład χ^2 z n stopniami swobody oraz V jest zmienną losową o rozkładzie χ^2 z m stopniami swobody, to:

$$F = \frac{U/n}{V/m}$$

ma rozkład F z (n, m) stopniami swobody. Jeżeli hipoteza H_0 jest prawdziwa, to:

$$F = \frac{(SS_{mod}/\sigma^2)/DF_{mod}}{(SS_{res}/\sigma^2)/DF_{res}} = \frac{SS_{mod}/DF_{mod}}{SS_{res}/DF_{res}}$$

ma rozkład z (DF_{mod}, DF_{res}) stopniami swobody i jest niezależna od σ .

OLS Regression Results

Dep. Variable:		Alcohol				0.615
Model:		OLS	Adj. F	R-squared:		0.567
Method:		Least Squares				12.78
Date:	Fr	i, 28 Apr 2017	Prob (F-statistic)		0.00723
Time:		15:22:23	Log-Li	kelihood:		-4.9998
No. Observatio	ns:	10	AIC:			14.00
Df Residuals:		8	BIC:			14.60
Df Model:		1				
Covariance Typ	e:	nonrobust				
	coef	std err	t	P> t	[95.0% Conf	. Int.]
Intercept	2.0412	1.001	2.038	0.076	-0.268	4.350
Tobacco	1.0059	0.281	3.576	0.007	0.357	1.655
Omnibus:		2.542	D	 n-Watson:		
						1.975
Prob(Omnibus):		0.281		e-Bera (JB):		0.904
Skew:		-0.014		,		0.636
Kurtosis:		1.527	Cond.	No.		27.2

Przykład 3 – Log-Likelihood Function

Dla klasycznej regresji liniowej mamy:

$$\epsilon = y_i - \sum_{k=1}^n \beta_k x_{ik} = y_i - \hat{y}_i \sim N(0, \sigma)$$

Przykład 3 – Log-Likelihood Function

W konsekwencji wiemy, że:

$$p(\epsilon_i) = f(\frac{y_i - \hat{y}_i}{\sigma})$$

gdzie f jest gęstością standardowego rozkładu normalnego.

Zakładając niezależność między błędami mamy funkcję wiarygodności:

$$I_{total} = \prod_{i=1}^{n} p(\epsilon_i).$$

Logarytmiczną funkcją wiarygodności (Log Likelihood function) nazywamy:

$$L = \ln(I) = \ln\left(\prod_{i=1}^n f\left(\frac{y_i - \hat{y}_i}{\sigma}\right)\right).$$

Przykład 3 – Log-Likelihood Function

Czyli mamy:

$$L = \ln(I) = \ln\left(\prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y_i - \hat{y}_i)^2}{2\sigma^2}\right)\right) =$$

$$= \sum_{i=1}^{n} \left(\ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \left(\frac{(y_i - \hat{y}_i)^2}{2\sigma^2}\right)\right) =$$

Można pokazać, że estymatorem największej wiarygodności wariancji jest:

$$\sigma^2 = \frac{SS_{res}}{n}.$$

Przykład 3 – AIC and BIC

Aby ocenić jakość modelu, najpierw należy wizualnie sprawdzić błędy. Ponadto można również skorzystać z kilku liczbowych kryteriów oceny jakości modelu statystycznego. Te kryteria reprezentują różne podejścia do oceny modelu.

AIC and BIC działają podobnie do R i \bar{R} .

Przykład 3 – AIC and BIC

Innymi powszechnie spotykanymi kryteriami jest Akaike Information Criterion (AIC) oraz Bayesian Information Criterion (BIC), które opierają się na funkcji wiarygodności.

Uwaga

Obie miary wprowadzają kary za złożoność modelu, ale AIC kara mniej za złożoność niż BIC.

Przykład 3 – AIC and BIC

Kryterium Informacyjne Akaike (AIC):

$$AIC = 2 \cdot k - 2 \cdot \ln(L)$$

Kryterium Informacyjne Bayesian (BIC):

$$BIC = k \cdot \ln(N) - 2 \cdot \ln(L)$$

gdzie, N jest liczbą obserwacji, k jest liczbą parametrów, a L jest funkcją wiarygodności.

Uwaga

Powinniśmy wybrać model o niższej wartości AIC lub BIC.

		ors web. c.	JJ2011 110	54215		
Dep. Variable: Model:		Alcohol	Alcohol R-squared:			0.615
		OLS	Adj.	R-squared:	0.567	
Method:		Least Squares	F-sta	tistic:	12.7	
Date:	F	Fri, 28 Apr 2017		(F-statistic):	0.0072	
Time:		15:22:23	Log-L	ikelihood:		-4.9998
No. Observati	ons:	10	AIC:		14.00	
Df Residuals:		8	BIC:			14.60
Df Model:		1				
Covariance Ty	pe:	nonrobust				
	coef	std err	t	P> t	[95.0% Conf	. Int.]
Intercept	2.0412	1.001	2.038	0.076	-0.268	4.350
Tobacco	1.0059	0.281	3.576	0.007	0.357	1.655
Omnibus:		2.542	Durbi	.n-Watson:		1.975
Prob(Omnibus)	:	0.281	Jarqu	ie-Bera (JB):		0.904
Skew:		-0.014	Prob(JB):		0.636
Kurtosis:		1.527	Cond.	No.		27.2

Przykład 3 – błąd standardowy

Parametr eta możemy łatwo otrzymać wyznaczając macierz odwrotną do X

$$\beta = (X^T X)^{-1} X^T y.$$

W celu uzyskania odchylenia standardowego współczynników obliczymy macierz kowariancji dla β :

$$C = \sigma^2(X^TX)^{-1}$$
, gdzie σ^2 jest wariancją \hat{y}_i .

Błąd standardowy jest dany przez pierwiastki wartości na diagonali macierzy kowariancji.

Przykład 3 – t-Statistic

- Używamy testu t-Studenta, aby przetestować hipotezę zerową mówiącą, że: współczynnik wynosi zero, co sugeruje, że dany predyktor nie ma znaczącego wpływu na zmienną objaśnianą.
- Alternatywna hipoteza mówi, że współczynnik predykcyjny ma wpływ na zmienną objaśnianą.
- Podczas testowania ustalamy pewien próg $\alpha=0.05$ lub $\alpha=0.001$.
- Gdy $P(T \ge |y|) < \alpha$, wtedy odrzucamy hipotezę zerową.
- Test t-Studenta zazwyczaj pozwala nam ocenić znaczenie różnych predyktorów, zakładając, że błąd modelu opisywany jest rozkładem normalnym (wokół zera).
- Jeśli błąd nie zachowuje się w ten sposób, to najlepiej byłoby spróbować zmodyfikować model.

Przykład 3 – t-Statistic

Statystyka t jest dana wzorem:

$$t_i = \beta/SE_{i,i}$$
.

Gdy mamy statystykę t, możemy obliczyć p-value.

Przykład 3 – przedział ufności

- Przedział ufności jest zbudowany za pomocą standardowego błędu, p-value oraz testu t-Studenta z N-k stopniami swobody, gdzie N jest liczbą obserwacji, k jest liczbą parametrów modelu (to znaczy liczbą zmiennych objaśniających).
- Przedział ufności, to zakres wartości, w jakich spodziewamy się znaleźć parametr.
- Mniejszy przedział ufności wskazuje, że jesteśmy pewni co do wartości szacowanego współczynnika.
- Większy przedział ufności wskazuje na większą niepewność.

Przykład 3 – przedział ufności

Przedział ufności dany jest wzorem:

$$CI = \beta_i \pm z \cdot SE_{i,i}$$
.

Ponieważ, β jest jednym z estymowanych współczynników, to z jest krytyczną wartością dla której statystyka t-Studenta przyjmuje wartość mniejszą niż zadany poziom, a $SE_{i,i}$ jest standardowym błędem. Wartość krytyczna jest obliczana przy użyciu odwrotnej funkcji do dystrybuanty.

Dep. Variable:		Alcohol	R-squared:			0.615	
Model:		OLS Adj. R-squared:			0.567		
Method:		Least Squares	F-st	atistic:		12.78	
Date:	F	ri, 28 Apr 2017	Prob	(F-statistic)	:	0.00723	
Time:		15:22:23	Log-	.ikelihood:		-4.9998	
No. Observat	ions:	16	AIC:			14.00	
Df Residuals	:	8	BIC:			14.60	
Df Model:		1					
Covariance T	ype:	nonrobust					
	coef	std err	t	P> t	[95.0% Con	f. Int.]	
Intercept	2.0412	1.001	2.038	0.076	-0.268	4.350	
Tobacco	1.0059	0.281	3.576	0.007	0.357	1.655	
Omnibus:		2.542	Durh	in-Watson:		1.975	
Proh/Omnihus): 0.281			ue-Bera (JB):		0.904		
Skew: -0.014			, ,		0.636		
Kurtosis:				. ,		27.2	

Przykład 3 – Skewness and Kurtosis

Skośność i kurtoza odnoszą się do kształtu rozkładu. Skośność jest miarą asymetrii rozkładu, a kurtoza jest miarą jego krzywizny (grube ogony):

$$S = \frac{\hat{\mu}_3}{\hat{\sigma}^3} = \frac{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^3}{\left(\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2\right)^{3/2}}$$

$$K = \frac{\hat{\mu}_4}{\hat{\sigma}^4} = \frac{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^4}{\left(\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2\right)^2}$$

Kurtozę definiuje się jako K-3 gdy rozkłady normalne mają kurtozę równą 3.

Przykład 3 – Skewness and Kurtosis

Skewness: -0.014, Kurtosis: 1.527

```
d = Y - result.fittedvalues
S = np.mean( d**3.0 ) / np.mean( d**2.0 )**(3.0/2.0)
# equivalent to:
# S = stats.skew(result.resid, bias=True)
K = np.mean( d**4.0 ) / np.mean( d**2.0 )**(4.0/2.0)
# equivalent to:
# K = stats.kurtosis(result.resid, fisher=False,
# bias=True)
print('Skewness: {:.3f}, Kurtosis: {:.3f}'.format(S,K))
```

		ozs negre	JJ2011 111			
Dep. Variable:		Alcohol	Alcohol R-squared:			0.615
Model:	del: OLS		Adj.	R-squared:		0.567
Method:		Least Squares	F-st	atistic:	12.78	
Date:	F	ri, 28 Apr 2017	Prob	(F-statistic):		0.00723
Time:		15:22:23	Log-	Likelihood:		-4.9998
No. Observat:	ions:	10	AIC:			14.00
Df Residuals	:	8	BIC:			14.60
Df Model:		1				
Covariance Ty	ype:	nonrobust				
	coef	std err	t	P> t	[95.0% Con	f. Int.]
Intercept	2.0412	1.001	2.038	0.076	-0.268	4.350
Tobacco	1.0059	0.281	3.576		0.357	1.655
Omnibus:		2.542	Durb:	in-Watson:	.======	1.975
Prob(Omnibus): 0.28		Jarq	ue-Bera (JB):		0.904	
SKEW: -0.014		Prob	(JB):		0.636	
Kurtosis: 1.527		Cond	. No.		27.2	

Przykład 3 – Omnibus Test

Omnibus Test wykorzystuje skośność i kurtozę, aby przetestować hipotezę zerową mówiącą, że rozkład błędów (residuals) jest normalny.

Jeśli otrzymamy bardzo małą p-value dla Omnibus Test, wówczas błędy nie pochodzą z rozkładu normalnego.

```
| (K2, p) = stats.normaltest(result.resid)
| print('Omnibus: {0:.3f}, p = {1:.3f}'.format(K2, p))

Omnibus: 2.542, p = 0.281
```

Dep. Variable:		Alcoho:	1	R-squared:		0.61		
Model:			OL:	5	Adj.	R-squared:		0.567
Method:		L	east Square	S	F-sta	tistic:		12.78
Date:		Fri,	28 Apr 201	7	Prob	(F-statistic):		0.00723
Time:			15:22:2	3	Log-L	ikelihood:		-4.9998
No. Observati	ions:		10	Э	AIC:			14.00
Df Residuals:	:		:	8	BIC:			14.60
Df Model:				1				
Covariance Ty	/pe:		nonrobus	t				
	coe	f	std err		t	P> t	[95.0% Conf	. Int.]
Intercept	2.041	2	1.001	2	.038	0.076	-0.268	4.350
Tobacco	1.005	9	0.281	3	.576	0.007	0.357	1.655
 Omnibus:			2.54	2	Durbi	n-Watson:		1.975
Prob(Omnibus):		0.28	1	Jaruu	e-pera (Jb).		0.904
Skew:	•		-0.01	4	Prob(0.636
Kurtosis:			1.52		Cond.	,		27.2
=========								

Przykład 3 – Durbin-Watson

Durbin-Watson jest testem używanym do wykrywania obecności autokorelacji (relacji pomiędzy wartościami oddzielonymi od siebie określonym czasem opóźnienia) w błędach. U nas opóźnienie jest jedno:

$$DW = \frac{\sum_{i=1}^{N} ((y_i - \hat{y}_i) - (y_{i-1} - \hat{y}_{i-1}))^2}{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$

Durbin-Watson: 1.97535

Jeśli statystyka Durbin-Watson jest znacznie mniejsza od 2, to dane są skorelowane dodatnio. W zasadzie, jeśli statystyka Durbin-Watsona jest mniejsza niż 1.0, to należy zastanowić się nad zmianą modelu.

Dep. Variable:		Alcohol	R-squ	ared:	0.619	
Model:		OLS	Adj.	R-squared:	0.567	
Method:		Least Squares	F-sta	tistic:		12.78
Date:	F	ri, 28 Apr 2017	Prob	(F-statistic):		0.00723
Time:		15:22:23	Log-L	ikelihood:		-4.9998
No. Observation	15:	10	AIC:			14.00
Df Residuals:		8	BIC:			14.60
Df Model:		1				
Covariance Type	2:	nonrobust				
	coef	std err	t	P> t	[95.0% Con	f. Int.]
Intercept	2.0412	1.001	2.038	0.076	-0.268	4.350
Tobacco	1.0059	0.281	3.576	0.007	0.357	1.655
Omnibus:		2 542	Durhi	n-Watson:		1.975
Prob(Omnibus):		0.281		e-Bera (JB):		0.904
Skew: -0.014			, ,		0.636	
Kurtosis:		1.527	Cond.			27.2
Kui CO313.		1.327	conu.	140.		21.2

Przykład 3 – Jarque–Bera Test

Test Jarque-Bera to kolejny test, który uwzględnia skośność (S) i kurtozę (K). Hipoteza zerowa mówi, że rozkład jest normalny w sensie zerowej skośności i kurtozy.

Niestety, przy małych próbkach, test Jarque-Bera jest podatny na odrzucenie hipotezy zerowej (że rozkład jest normalny) gdy nie powinien.

$$JB = \frac{N}{6} \left(S^2 + \frac{1}{4} (K - 3)^2 \right)$$

Statystyka Jarque-Bera ma rozkład chi kwadrat z dwoma stopniami swobody.

	_				
Dep. Variable:		R-squ	ared:	0.615	
	OLS	Adj.	R-squared:	0.56	
	Least Squares	F-sta	tistic:	12.78	
	Fri, 28 Apr 2017	Prob	(F-statistic):		0.00723
	15:22:23	Log-L	ikelihood:		-4.9998
ons:	10	AIC:			14.00
	8	BIC:			14.60
	1				
pe:	nonrobust				
coef	std err	t	P> t	[95.0% Conf	f. Int.]
2.0412	1.001	2.038	0.076	-0.268	4.350
1.0059	0.281	3.576	0.007	0.357	1.655
	2.542	Durbi			1.975
Omnibus: Prob(Omnibus):					0.904
,					0.504
	1.527	·			27.2
	pe: coef 2.0412	OLS Least Squares Fri, 28 Apr 2017 15:22:23 ons: 10 8 1 pe: nonrobust coef std err 2.0412 1.001 1.0059 0.281 2.542 : 0.281 -0.014	OLS Adj. I Least Squares Fri, 28 Apr 2017 Prob 15:22:23 Log-L: Ons: 10 AIC: 8 BIC: 1 pe: nonrobust coef std err t 2.0412 1.001 2.038 1.0059 0.281 3.576 2.542 Durbi 1 Jarqui -0.014 Depb(OLS Adj. R-squared:	OLS Adj. R-squared: Least Squares F-statistic: Fri, 28 Apr 2017 Prob (F-statistic): 15:22:23 Log-Likelihood: Ons: 10 AIC: 8 BIC: 1 pe: nonrobust coef std err t P> t [95.0% Condoine) 2.0412 1.001 2.038 0.076 -0.268 1.0059 0.281 3.576 0.007 0.357 2.542 Durbin-Watson: : 0.281 Jarque-Bera (JB): -0.014 Prob(JB)

Przykład 3 – Condition Number

Condition Number określa czułość wyjścia funkcji na jego wejście. Gdy dwie zmienne objaśniające są wysoce skorelowane mała zmiana w danych lub modelu drastycznie zmienia wyniki. W idealnej sytuacji podobne modele powinny dawać podobne wyniki.

Condition Number obliczamy wyznaczając wartości własne X^TX (w tym wektora stałych), a następnie biorąc pierwiastek ze stosunku największej wartości własnej do najmniejszej.

Jeśli Condition Number przekracza 30, to model regresji powinien zostać zmieniony.

```
X = np.matrix(X)
EV = np.linalg.eig( X * X.T )
CN = np.sqrt( EV[0].max() / EV[0].min() )
print('Condition No.: {:.5f}'.format( CN ))
```

Condition No.: 27.22887

Przykład 4 – Wartości odstające

Proszę wykonać regresją na całym zbiorze danych:

Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Typ	ons:	Alcohol OLS Least Squares Sat, 29 Apr 2017 09:47:30 11 9 1	Adj. R-squared: F-statistic: Prob (F-statistic) Log-Likelihood: AIC: BIC:	0.050 -0.056 0.4735 : 0.509 -12.317 28.63 29.43
	coe	f std err	t P> t	[95.0% Conf. Int.]
Tobacco Ones	0.301 4.351		0.688 0.509 2.708 0.024	-0.691 1.295 0.717 7.986
Omnibus: Prob(Omnibus): Skew: Kurtosis:	:	3.123 0.210 -0.873 3.022	Jarque-Bera (JB): Prob(JB):	1.655 1.397 0.497 25.5

Założenia regresji liniowej

Założenia regresji liniowej:

- zależność jest liniowa,
- brak znaczących obserwacji odstających,
- homoscedastyczność wariancja reszt składnika losowego jest taka sama dla wszystkich obserwacji,
- reszty mają rozkład zbliżony do rozkładu normalnego.
 Regresja wielokrotna:
 - liczba obserwacji musi być większa, bądź równa liczbie parametrów,
 - brak współliniowości parametrów,
 - nie występuje autokorelacja reszt.

Zadania

https://github.com/przem85/statistics/blob/master/D11/D11_Z15.ipynb

Zadania

```
https://github.com/przem85/statistics/blob/master/D11/D11_Z15.ipynb
https://github.com/przem85/statistics/blob/master/D11/D11_Z16.ipynb
```

Zadania

```
https://github.com/przem85/statistics/blob/master/D11/D11_Z15.ipynb
https://github.com/przem85/statistics/blob/master/D11/D11_Z16.ipynb
https://github.com/przem85/statistics/blob/master/D11/D11_Z17.ipynb
```