Spannungsteiler

Modul Digitaltechnik
Zeit 120 Minuten

Hardware

- Megacard
- Display
- Breadboard
- Drahtbrücken
- Widerstände

Arbeitspunkte

Arbeitspunkt	Beschreibung	\mathbf{Zeit}
Aufbau	Verdrahtung der benötigten Komponenten	15 %
Rechnen	Ermittlung der Formel für den unbekannten Widerstand	15~%
Programmieren	Der A/D-Wandler sowie das Display sind zu initialisieren. Anschließend ist	50 %
	die vorgegebene Aufgabe in ein lauffähiges Programm zu übersetzen	
Verifikation	Unterschiedliche Widerstände sind zu verifizieren und zu dokumentieren	10 %
Fragen	Beantwortung der ergänzenden Fragen	10~%

Aufgabe

Der Analog/Digitalwandler soll die Spannung eines Spannungsteilers, welcher auf dem Breadboard aufzubauen ist, in einen digitalen Zahlenwert $(0-1024_{10})$ überführen und in einen Widerstandwert und den zugehörigen Spannungswert umrechnen. Der errechnete Widerstandswert sowie die Spannung sind auf dem angeschlossenen Display der Megacard auszugeben. Für die Umsetzung des Programms, sind die bereits vorhandenen Bibliotheken zu verwenden. Das Projekt ist mittels AtmelStudio in der Solution Aufgabe, mit der Bezeichnung Voltage, anzulegen.

Datenflussdiagramm

Abb. 1: Datenflussdiagramm

Betriebsparameter

Analog/Digital Wandler

- Referenzspannung AVCC
- 10 Bit Modus
- Datenausrichtung rechtsbündig
- Vorteiler /64
- Betriebsart Einzelwandlung/Polling

Display

Die Textausgabe auf dem LCD Display sollte wie folgt gestaltet werden:

V=1337mV R= 365Ω

Aufbau

Aufgabe:

Die elektrischen Verbindungen zwischen den benötigten Komponenten, sowie deren Bezeichnungen, sind auf das Arbeitsblatt zu übertragen und mittels Breadboard aufzubauen.

Abb. 2: Verdrahtung

Berechnung

Aufgabe:

Über die angeführte Formel (Spannungsteiler) ist der unbekannte Widerstand R_x zu ermitteln.

$$U_x = U * \frac{R_x}{R_1 + R_x}$$

 \dots Spannungsteiler

$$U_x * (R_1 + R_x) = U * R_x$$

$$U_x * R_1 + U_x * R_x = U * R_x$$

$$U * R_x - U_x * R_x = U_x * R_1$$

$$R_x * (U - U_x) = U_x * R_1$$

$$R_x = \frac{U_x}{U - U_x} * R_1$$

1 Programmieren

Die im Abschnitt Aufgabe beschriebenen Anforderungen sind in ein lauffähiges C-Programm zu übersetzen. Dabei sollte sowohl auf Syntax als auch auf eine ausreichende Kommentierung im Sourcecode geachtet werden. Dafür sind die zur Verfügung gestellten Bibliotheken, im Ordner library, zu verwenden.

2 Verifikation

Die beigelegten Widerstände sind auf ihre Werte zu prüfen. Zur Überprüfung der Implementierung ist ein Widerstandswert vorgegeben. Alle Werte sind durch Messen zu ermitteln und in die Tabelle einzutragen.

Farbe	Spannung U_x (LCD)	Widerstand R_x (LCD)
	(464 - 444) mV	$(103 - 97)\Omega$

... Widerstandsbereich $10\Omega < R_x < 500\Omega$.

3 Fragen

Welche grundlegende Formel beschreibt das Ohmsche Gesetz? $R = \frac{U}{I}$ oder $I = \frac{U}{R}$ oder U = I * R!

$$R = \frac{U}{I} \text{ oder } I = \frac{U}{R} \text{ oder } U = I * R!$$

Es ist das Quantisierungsintervall des Wandlers bei einer Spannung von 5V und einer Auflösung von 10 Bit zu berechnen?

$$\Delta U = \frac{U}{2^{nBit}} = \frac{5V}{2^{10Bit}} = 4.88 mV \approx 5 mV$$

Welche Folgen hat der Betrieb des A/D Wandlers unter oder über seiner Arbeitsfrequenz?

Durch zu langsames/schnelles Laden der Sample/Hold Schaltung eines A/D Wandlers kann es zu flackern der niederwertigen Bits (LSBs) kommen.

 ${\mathfrak Q}$

Wie werden Fehler in der Genauigkeit bei einem A/D Wandler angegeben? Über den Nullpunkt-/Verstärkungs- und Nichtlinearitätsfehler (auch als Gain/Offset und Integral/Differential Non-linearity failure bekannt). Wird in +/- LSB angegeben.

Bewertung

Arbeitspunkt	Beschreib	ung			Punkte
Aufbau	Megacard GND mit R_x verbunden			2	
	Megacard VCC mit R_1 verbunden			2	
	Megacard PIN PAO (ADCO) zwischen R_1/R_x (mitte) verbunden			2	
	Jede weitere	Verbindung führt zu	Punktabzug		-1
					6
Rechnen	Umrechnung	$g \text{ auf } (R_x = \frac{U_x}{U - U_x} * R)$	1)		5
		u			5
Programmieren	Richtige Benennung der AtmelStudio Solution/Aufgabe			2	
	LCD initialisieren				1
	Laden des Ω -Zeichens in den RAM des Displays			2	
	Einstellung der adc.h auf geforderte Parameter			4	
	A/D Wandler initialisieren und Kanal 0 auswählen			3	
	Umwandlung der Wandlerdaten in Spannung			2	
	Umwandlung der Wandlerdaten in Widerstand			4	
	Ausgabe der Daten/Spannung auf das Display			4	
		,			23
Verifikation	Grün:	$(59 \pm 10 mV),$	$(12 \pm 3\Omega)$		2
	Blau:	$(173 \pm 10 mV),$	$(36 \pm 3\Omega)$		2
	Gelb:	$(224 \pm 10 mV),$	$(47 \pm 3\Omega)$		2
	Orange:	$(265 \pm 10 mV),$	$(56 \pm 3\Omega)$		2
	Schwarz:	$(318 \pm 10 mV),$	$(68 \pm 3\Omega)$		2
					10
Fragen	Ohmsches G	esetz			1
	Berechnung des Quantisierungsintervalls			1	
	Über/Unterschreiten der Arbeitsfrequenz des A/D Wandlers			1	
	Genauigkeitsfehler des A/D Wandlers			3	
					6
				Gesamt	50