Part III-B: Analysis Chemistry

Lecture by 王敏 Note by THF

2024年12月28日

显录

0.1	银量法指示终点的方法	
0.2	重量分析法 3	
Lectı	are 15	12.24
$R\epsilon$	eview:	
沉	淀反应: 定量分析	
溶	解平衡: 与溶解度 S ,活度积 $K_{\rm ap}$,溶度积 $K_{\rm sp}$,条件溶度积 $K_{\rm sp}'$ 有关;影响因素有同	
离子效	应、酸效应、配位效应、盐效应 ,其中只有同离子效应降低溶解度	

银量法: 滴定曲线相交并对称, c_x 和 $K_{\rm sp}$ 越大, 滴定突越范围 $\Delta_{\rm p}X$ 越大

0.1 银量法指示终点的方法

- 铬酸钾指示剂法(莫尔法)
- 铁铵钒指示剂法
- 吸附指示剂法

铬酸钾指示剂法

Notation. 铬酸钾指示剂法: 铬酸钾为黄色,使用时只能用银离子做滴定剂滴定 Cl- 和 Br-,主反应:

$$\begin{cases} 终点前: Ag^{+} + Cl^{-} = AgCl \downarrow & K_{sp} = 1.8 \times 10^{-10} \\ 终点时: 2Ag^{+} + CrO_{4}^{2-} = Ag_{2}CrO_{4} \downarrow & K_{sp} = 1.2 \times 10^{-12} \end{cases}.$$

易得氯离子浓度与铬酸根浓度相等时,通过

$$S = \sqrt[m+n]{\frac{K_{\rm sp}}{m^m \cdot n^n}}.$$

计算可得氯化银先沉淀

Notation. 铬酸钾指示剂需要适量: 过量时终点提前($S_{\text{Ag}_2\text{CrO}_4}$ 所需的银离子减少),同时铬酸根本身的黄色也会影响;计算得 100 mL 被滴定液一般使用 1-2 mL 指示剂,必要时做空白校正酸度规定: 中性或弱碱性(pH=6.5-10.5),酸性条件下形成铬酸,碱性条件下形成氧化银沉淀

不能加入如铵盐等可以与阴离子形成配合物的离子

滴定时需剧烈震摇

干扰离子有:

- 沉淀离子: PO₄³⁻, CO₃²⁻, S²⁻, Ba²⁺, Pb²⁺, ...
- 有色离子: Fe³⁺, Cu²⁺, ...
- 易水解的离子: Sn²⁺, Al³⁺, ...

应用范围:

- 滴定 Cl-, Br-, CN-
- 不能滴定 I-,SCN⁻ (AgI, AgSCN 对 I-,SCN⁻ 有强吸附性)
- 申 Cl⁻ 滴定 Ag⁺ : 返滴定 (用于 I−,SCN⁻ 等的滴定)

Example. 铬酸钾指示剂的应用: 复方氯化钠滴眼液中氯化钠的滴定

铁铵钒指示剂法

Notation. 使用 SCN⁻ 直接滴定 Ag⁺

使用 NH₄Fe(SO₄)₂·12 H₂O 指示

滴定条件:

- 在 $0.1 \sim 1 \text{mol/L HNO}_3$ 介质中进行
- 终点时 $c_{\text{Fe}^{3+}} \leq 0.015 \text{mol/L}$
- 充分震摇, 降低沉淀附着银离子
- 预先去除干扰物质: 强氧化剂、N 的氧化物、铜盐、汞盐等
- 滴定 I⁻ 时,加入过量 AgNO₃ 再加入指示剂
- 滴定 Cl⁻ 时,注意沉淀转化

Notation. Cl^- 的沉淀转化: 到终点时用力震摇, 会发现红色消失, 发生了沉淀转化; 解决方法:

- 过滤
- 加入硝基苯
- 加入过量 Fe³⁺

Example. 林旦的测定: 有机氯

吸附指示剂法

指示剂被吸附前后的颜色不一样

Notation. 指示剂: 荧光黄

$$HFIn \Longrightarrow H + +FIn - ($$
黄绿色).

Example. Ag+ 滴定 Cl- 时,不过量时溶液中含 Cl- ,与荧光黄离子产生静电排斥,不吸附,呈黄绿色;过量时 Ag+ 与荧光黄离子可以吸附,呈粉红色

滴定条件:

- 加入糊精保护胶体
- 溶液 pH 有利于吸附
- AgX 吸附能力要略大于对指示剂的吸附能力
- 避光

应用范围: 卤素离子, 硫氰根离子, 硫酸根离子, 银离子, 不包含氰根离子

Notation. 一般指示剂离子和滴定剂的电荷相反,与被测离子相同

Example. 单硝酸异山梨酯氯化钠注射液的含量测定, 氯化琥珀胆碱注射液的含量测定

0.2 重量分析法

Definition. 用适当方法将试样中的待测组分与其他组分分离,然后称重测定组分含量按分离方法分类:

- 沉淀重量法
- 挥发重量法
- 萃取法

Notation. 沉淀重量法的特点:准确度高,不需要特殊仪器和设备;繁琐费时操作过程: 试样 \rightarrow 溶解 \rightarrow 沉淀 \rightarrow 过滤洗涤 \rightarrow 烘干灼烧 \rightarrow 称重

沉淀重量法

Example. 测定 SO_4^2 — 的含量: 使用 $BaCl_2$ 沉淀得到沉淀形式的 $BaSO_4$,过滤时使用定量滤纸(无灰滤纸: 灼烧后产生的灰量 <0.2mg 灰分/张),得到纯净沉淀,灼烧后得到称量形式的 $BaSO_4$ 后称量

Notation. 沉淀形式和称量形式可以不一样

Example. 沉淀形式: Al(OH)3; 称量形式: Al_2O_3

对沉淀形式的要求: 沉淀要完全且溶解度必须要小, 沉淀需要纯净, 容易过滤和洗涤, 易于 转化为称量形式

对称量形式的要求:组成固定,称重形式稳定(不吸收水、 CO_2 等),摩尔质量尽可能大对沉淀剂的要求:选择性好,易挥发、易灼烧除去

Notation. 沉淀形态:

表 1: 沉淀形态

类别	颗粒直径	特性	示例
晶型沉淀	0.1 -1 $\mu\mathrm{m}$	颗粒大、排列规则、紧密,易于过滤	
无定形沉淀			
凝乳状沉淀			

Lecture 16

12.28

假设南瓜炮概率为 0.05,以视频 2:10 至 2:45 秒为条件,即假设 9 个南瓜炮在 5 秒内打出的南瓜炮个数的期望 $\mu=2.25$,确定假设 $H_0:\mu=2.25, H_1:\mu\neq2.25$

从视频中采样,得到 7 个样本观测值(3,1,0,1,2,3,1),样本均值 $\bar{x}\approx 1.571$,样本方差 $s^2\approx 1.286$,标准差 $s\approx 1.134$,这里选择 $\frac{\bar{X}-\mu}{S/\sqrt{n}}=t\sim t(6)$ 作为检验统计量,在显著性水平 $\alpha=0.05$ 下进行双测检验,查表得 $t_{0.975}(6)=2.447$,即拒绝域 $\mathcal{X}=\{\mu\mid |t|>2.447\}$,即 $\mathcal{X}=\{\mu\mid \mu>2.620$ or $0\leq \mu<0.523\}$,原假设没有落入拒绝域

此可以认为在显著性水平 $\alpha = 0.05$ 下, 南瓜投手投出南瓜炮的概率为 0.05