Lecture 05: CNNs II – Model Training and Optimization

Lan Xu SIST, ShanghaiTech Fall, 2021

Summary of CNNs

- CNN properties [Bronstein et al., 2018]
 - Convolutional (Translation invariance)
 - Scale Separation (Compositionality)
 - Filters localized in space (Deformation Stability)
 - □ O(1) parameters per filter (independent of input image size n)
 - □ O(n) complexity per layer (filtering done in the spatial domain)
 - □ O(log n) layers in classification tasks

Math Properties of CNNs

- Recent results on convolution layers
 - Convolutions are equivariant to translation
 - Convolutions are not equivariant to other isometries of the sampling lattice, e.g., rotation

- □ What if a CNN learns rotated copies of the same filter?
 - The stack of feature maps is equivariant to rotation.

- Recent results on convolution layers
 - □ Ordinary CNNs can be generalized to Group Equivariant
 Networks (Cohen and Welling ICML'16, Kondor and Trivedi ICML'18)
 - Redefining the convolution and pooling operations
 - Equivariant to more general transformation from some group G
 - Replacing pooling by other network designs
 - Capsule network (Sabour et al, 2017) https://arxiv.org/abs/1710.09829

Outline

- Overview of CNN training
- CNN training as optimization
 - Data preprocessing
 - ☐ Weight initialization
 - Parameter update
 - □ Batch normalization (maybe next time)

Training overview

- Supervised learning paradigm
- Mini-batch SGD

Loop:

- Sample a (mini-)batch of data
- Forward propagation it through the network, compute loss
- Backpropagation to calculate the gradients
- □ Update the parameters using the gradient

Training overview

- Two aspects of training networks
 - Optimization
 - How do we minimize the loss function effectively?
 - Generalization
 - How do we avoid overfitting?
- CNN training pipeline
 - Data processing
 - Weight initialization
 - □ Parameter updates
 - Batch normalization
- Avoid overfitting
 - □ Next time

Outline

- Overview of CNN training
- CNN training as optimization
 - Data preprocessing
 - □ Weight initialization
 - □ Parameter update
 - Batch normalization

Motivation

Consider what happens when the input to a neuron is always positive...

$$f\left(\sum_i w_i x_i + b
ight)$$

What can we say about the gradients on w?

We know that local gradient of sigmoid is always positive We are assuming x is always positive

So!! Sign of gradient for all w_i is the same as the sign of upstream scalar gradient!

$$\left[rac{\partial L}{\partial w} = \sigma(\sum_i w_i x_i + b)(1 - \sigma(\sum_i w_i x_i + b))x imes upstream_gradient
ight]$$

Motivation

Remember: Consider what happens when the input to a neuron is always positive...

$$f\left(\sum_i w_i x_i + b
ight)$$

What can we say about the gradients on w? Always all positive or all negative :(
(this is also why you want zero-mean data!)

- Motivation
 - □ Error surfaces with long, narrow ravines

Motivation

□ Example of linear regression

				W		
x_1	x_2	t		2	Application of the control of the co	
114.8	0.00323	5.1	•	The state of the s	A CONTRACTOR OF THE CONTRACTOR	
338.1	0.00183	3.2			1 1 1 1	
98.8	0.00279	4.1	$\overline{w_i} = \overline{y} x_i$			
÷	÷	÷				
					A STATE OF THE STA	W,

- □ Which direction of weights has a larger gradient updates?
- □ Which one do you want to receive a larger update?

Data normalization

 To avoid these problems, center your inputs to zero mean and unit variance

(Assume X [NxD] is data matrix, each example in a row)

More advanced methods

In practice, you may also see PCA and Whitening of the data

Before normalization: classification loss very sensitive to changes in weight matrix;

After normalization: less sensitive to small changes in weights; easier to optimize

- For visual recognition tasks
 - ☐ In practice for images: centering only
 - □ Not common to do PCA or whitening
- For example, CIFAR-10
 - □ Subtract the mean image (e.g. AlexNet) (mean image = [32,32,3] array)
 - □ Subtract per-channel mean (e.g. VGGNet)
 (mean along each channel = 3 numbers)
 - Subtract per-channel mean and Divide by per-channel std (e.g. ResNet)

(mean along each channel = 3 numbers)

Outline

- Overview of CNN training
- CNN training as optimization
 - □ Data preprocessing
 - ☐ Weight initialization
 - □ Parameter update
 - Batch normalization

- Non-convex objective functions
 - Neural nets have a weight symmetry: permute all the hidden units in a given layer and obtain an equivalent solution.
 - □ Q: What happens when W=0 initialization is used?

- First idea: Small random numbers
 - Gaussian with zero mean and 1e-2 std

$$W = 0.01* \text{ np.random.randn}(D,H)$$

- □ Simpler models to start
- Outputs are close to uniform for classification

Works ~okay for small networks, but problems with deeper networks.

- Motivating example
 - Look at some activation statistics
 - □ E.g., 10-layer net with 500 neurons on each layer using tanh non-linearities.

```
# assume some unit gaussian 10-D input data
D = np.random.randn(1000, 500)
hidden layer sizes = [500]*10
nonlinearities = ['tanh']*len(hidden layer sizes)
act = {'relu':lambda x:np.maximum(0,x), 'tanh':lambda x:np.tanh(x)}
Hs = \{\}
for i in xrange(len(hidden layer sizes)):
    X = D if i == 0 else Hs[i-1] # input at this layer
    fan in = X.shape[1]
    fan out = hidden layer sizes[i]
    W = np.random.randn(fan in, fan out) * 0.01 # layer initialization
    H = np.dot(X, W) # matrix multiply
    H = act[nonlinearities[1]](H) # nonlinearity
    Hs[i] = H # cache result on this layer
```

Motivating example

- Motivating example
 - All activations tend to zero for deeper network layers
 - □ Q: What do the gradients dL/dW look like?

Motivating example

```
W = np.random.randn(fan_in, fan_out) * 1.0 # layer initialization
input layer had mean 0.001800 and std 1.001311
hidden layer 1 had mean -0.000430 and std 0.981879
hidden layer 2 had mean -0.000430 and std 0.981649
hidden layer 3 had mean 0.000566 and std 0.981650
hidden layer 4 had mean -0.000682 and std 0.981755
hidden layer 5 had mean -0.000682 and std 0.981614
hidden layer 6 had mean -0.000401 and std 0.981560
hidden layer 7 had mean -0.000401 and std 0.981520
hidden layer 8 had mean -0.000448 and std 0.981913
hidden layer 9 had mean -0.000899 and std 0.981728
hidden layer 10 had mean 0.000584 and std 0.981736
```


- Motivating example
 - All activations saturate
 - Q: What do the gradients look like?
 - □ A: Local gradients all zero

Xavier initialization [Glorot and Bengio, AISTAT 2010]

```
W = np.random.randn(fan_in, fan_out) / np.sqrt(fan_in) # layer initialization
```

□ std = 1/sqrt(fan_in): activations are nicely scaled for all layers.

Xavier initialization [Glorot and Bengio, AISTAT 2010]

```
W = np.random.randn(fan_in, fan_out) / np.sqrt(fan_in) # layer initialization
```

□ For conv layers, fan_in is filter_size² * input_channels

Theoretic analysis

Suppose we have an input X with n components and a fully connected layer (also denoted linear or dense) with random weights W that outputs a number Y such that

$$Y = W_1 X_1 + W_2 X_2 + \ldots + W_n X_n$$

To make sure that the weights remain in a reasonable range, we expect that $Var(Y) = Var(X_i)_{i \in [1,n]}$

We also know how to compute the variance of the product of two random variables. Therefore

$$Var(W_iX_i) = E[X_i]^2 Var(W_i) + E[W_i]^2 Var(X_i) + Var(W_i) Var(X_i)$$

Both our inputs and weights have a mean 0. It simplifies to

$$Var(W_iX_i) = Var(W_i)Var(X_i)$$

Now we make a further assumption that the X_i and W_i are all independent and identically distributed (iid).

$$Var(Y) = Var(W_1X_1 + W_2X_2 + \ldots + W_nX_n) = nVar(W_i)Var(X_i)$$

It turns that, if we want to have $Var(Y) = Var(X_i)$, we must enforce the condition $nVar(W_i) = 1$.

$$Var(W_i) = rac{1}{n} = rac{1}{n_{in}}$$

- Problems with ReLU activation
 - Xavier initialization assumes zero centered activation function, and hence breaks under ReLU

■ Initialization for CNNs with ReLU [He et al., 2015]

W = np.random.randn(fan_in, fan_out) / np.sqrt(fan_in/2) # layer initialization

- Weight initialization is an active are of research...
 - Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010
 - □ Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013
 - □ Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014
 - Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015
 - □ Data-dependent Initializations of Convolutional Neural Networks *by Krähenbühl et al.*, 2015
 - □ All you need is a good init, *Mishkin and Matas*, 2015
 - □ Fixup Initialization: Residual Learning Without Normalization, *Zhang et al*, 2019
 - The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

Outline

- Overview of CNN training
- CNN training as optimization
 - □ Data preprocessing
 - □ Weight initialization
 - □ Parameter update
 - Batch normalization

Stochastic Gradient Descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Problems with SGD

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction

Loss function has high **condition number**: ratio of largest to smallest singular value of the Hessian matrix is large

Problems with SGD

What if the loss function has a local minima or saddle point?

Zero gradient, gradient descent gets stuck

- Problems with SGD
 - Saddle points are more common in high-dim space

At a saddle point $\frac{\partial \mathcal{E}}{\partial \theta} = 0$, even though we are not at a minimum. Some directions curve upwards, and others curve downwards.

Problems with SGD

Our gradients come from minibatches so they can be noisy!

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W)$$

SGD + Momentum

SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

```
while True:
    dx = compute_gradient(x)
    x += learning_rate * dx
```

SGD+Momentum

```
v_{t+1} = \rho v_t + \nabla f(x_t)x_{t+1} = x_t - \alpha v_{t+1}
```

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx + dx
    x += learning_rate * vx
```

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

- SGD + Momentum
 - Momentum sometimes helps a lot, and almost never hurts

Gradient Noise

SGD + Momentum

 ☐ You may see SGD+Momentum formulated different ways, but they are equivalent - give same sequence of x

SGD+Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx - learning_rate * dx
    x += vx
```

SGD+Momentum

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx + dx
    x -= learning_rate * vx
```


Nesterov Momentum

- "Look ahead" to the point where updating using velocity would take us;
- Compute gradient there and mix it with velocity to get actual update direction

Momentum update:

Nesterov, "A method of solving a convex programming problem with convergence rate O(1/k^2)", 1983 Nesterov, "Introductory lectures on convex optimization: a basic course", 2004 Sutskever et al, "On the importance of initialization and momentum in deel learning", ICML 2013

Nesterov Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Nesterov Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Annoying, usually we want update in terms of $x_t, \nabla f(x_t)$

Nesteroy Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Annoying, usually we want update in terms of $x_t, \nabla f(x_t)$

Change of variables $\, \tilde{x}_t = x_t + \rho v_t \,$ and rearrange:

$$v_{t+1} = \rho v_t - \alpha \nabla f(\tilde{x}_t)$$

$$\tilde{x}_{t+1} = \tilde{x}_t - \rho v_t + (1+\rho)v_{t+1}$$

$$= \tilde{x}_t + v_{t+1} + \rho(v_{t+1} - v_t)$$

```
dx = compute_gradient(x)
old_v = v
v = rho * v - learning_rate * dx
x += -rho * old_v + (1 + rho) * v
```

Nesterov Momentum

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension

"Per-parameter learning rates" or "adaptive learning rates"

Duchi et al, "Adaptive subgradient methods for online learning and stochastic optimization", JMLR 2011

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / [np.sqrt(grad_squared) + 1e-7]
```

Q: What happens with AdaGrad?

Progress along "steep" directions is damped; progress along "flat" directions is accelerated

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Q2: What happens to the step size over long time?

Decays to zero

RMSProp: smoothed version

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```


RMSProp

```
grad_squared = 0
while True:
    dx = compute_gradient(x)

grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Tieleman and Hinton, 2012

RMSProp

Adam (almost)

```
first_moment = 0
second_moment = 0
while True:
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))
```

Adam (almost)

```
first_moment = 0
second_moment = 0
while True:
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx

second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))
Momentum

AdaGrad / RMSProp
```

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Adam (full form)

```
first_moment = 0
second_moment = 0
for t in range(num_iterations):
    dx = compute gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx

    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)

x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))

AdaGrad / RMSProp
```

Bias correction for the fact that first and second moment estimates start at zero

Adam (full form)

```
first moment = 0
second moment = 0
for t in range(1, num_iterations):
                                                                          Momentum
  dx = compute gradient(x)
  first_moment = beta1 * first_moment + (1 - beta1) * dx
  second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
  first_unbias = first_moment / (1 - beta1 ** t)
                                                                          Bias correction
  second_unbias = second_moment / (1 - beta2 ** t)
  x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
```

AdaGrad / RMSProp

Bias correction for the fact that first and second moment estimates start at zero

Adam with beta 1 = 0.9. beta2 = 0.999, and learning_rate = 1e-3 or 5e-4 is a great starting point for many models!

Adam (full form)

Learning rate

 SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter

Learning rate

 SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter

=> Learning rate decay over time!

step decay:

e.g. decay learning rate by half every few epochs.

exponential decay:

$$lpha=lpha_0e^{-kt}$$

1/t decay:

$$\alpha = \alpha_0/(1+kt)$$

Learning rate decay

- Step: reduce learning rate at a few fixed points.
 - □ E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Learning rate decay

Cosine

$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

 $lpha_0$: Initial learning rate

 α_t : Learning rate at epoch t T : Total number of epochs

Linear

$$\alpha_t = \alpha_0 (1 - t/T)$$

Inverse sqrt

$$\alpha_t = \alpha_0 / \sqrt{t}$$

Loshchilov and Hutter, "SGDR: Stochastic Gradient Descent with Warm Restarts", ICLR 2017 Radford et al, "Improving Language Understanding by Generative Pre-Training", 2018 Feichtenhofer et al, "SlowFast Networks for Video Recognition", arXiv 2018 Child at al, "Generating Long Sequences with Sparse Transformers", arXiv 2019 Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", 2018 Vaswani et al, "Attention is all you need", NIPS 2017

Learning rate decay

Linear warmup

High initial learning rates can make loss explode; linearly increasing learning rate from 0 over the first ~5000 iterations can prevent this

Empirical rule of thumb: If you increase the batch size by N, also scale the initial learning rate by N

Goyal et al, "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour", arXiv 2017

What can we find

Popular hypothesis

- In large networks, saddle points are far more common than local minima
- ☐ Gradient descent algorithms often get "stuck" in saddle points
- Most local minima are equivalent and close to global minimum

Outline

- Overview of CNN training
- CNN training as optimization
 - □ Data preprocessing
 - □ Weight initialization
 - □ Parameter update
 - Batch normalization

Problem in deep network learning

$$\ell = F_2(F_1(\mathbf{u}, \Theta_1), \Theta_2)$$

Change of distribution in activation across layers

Normalize the inputs to a layer:

"you want unit gaussian activations? just make them so."

consider a batch of activations at some layer. To make each dimension unit gaussian, apply:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

this is a vanilla differentiable function...

Layer details

Input: $x: N \times D$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \quad \text{Per-channel mean,} \\ \sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 \quad \text{Per-channel var,} \\ \hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \quad \text{Normalized x,} \\ \text{Shape is N x D}$$

Layer details

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{Var[x^{(k)}]}}$$

Extra capacity:

Input:
$$x: N \times D$$

Learnable scale and shift parameters:

$$\gamma, \beta: D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function!

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \quad \begin{array}{ll} \text{Per-channel mean,} \\ \text{shape is D} \end{array}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 \quad \text{Per-channel var,} \\ \text{shape is D}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \qquad \text{Normalized x,} \\ \text{Shape is N x D}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output, Shape is N x D

м

Batch Normalization

Algorithm

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization in a funny way, and slightly reduces the need for dropout, maybe

Test time

Input:
$$x: N \times D$$

Learnable scale and shift parameters:

$$\gamma, \beta: D$$

During testing batchnorm becomes a linear operator! Can be fused with the previous fully-connected or conv layer

$$\mu_j={}^{ ext{(Running)}}$$
 average of values seen during training

$$\sigma_j^2 = {}^{ ext{(Running)}}$$
 average of values seen during training

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Benefits

- Makes deep networks much easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this
 is a very common source of bugs!

Summary

- CNN training as optimization task
 - Non-convex and local minimal
 - Overcoming ravines in loss surfaces
 - Data pre-processing + weight initialization + first-order update
 - □ Batch normalization
- Next time ...
 - Regularization to avoid overfitting
 - □ Quiz 3