Femtosecond-laser induced dynamics of CO on Ru(0001): New insights from A HOT-ELECTRON, ELECTRONIC FRICTION MODEL INCLUDING SURFACE MOTION

Robert Scholz^{1,2}, Gereon Floß¹, Peter Saalfrank¹, Gernot Füchsel³, Ivor Lončarić⁴, and J. I. Juaristi^{4,5,6}

¹Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany ²Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany ³Universiteit Leiden, Gorlaeus Laboratories, Einsteinweg 55, 2333 Leiden, The Netherlands ⁴Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain ⁵Departamento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain ⁶Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián, Spain

Introduction

Motivation

- research on small molecules adsorbed to metals is important for:
- -catalytic applications
- -fundamental understanding of bonding
- femtosecond(fs)-lasers are a valuable tool for such research as they
- -allow for investigations on small timescales
- open up new processes compared to heating (femtophotochemistry)
- may enable specific control over catalytic reactions (photocatalysis)

- visible light is absorbed only by the electrons
- electrons transfer part of energy to ion lattice, via **O** electron-phonon coupling
- (phonons = lattice vibrations)
- -electrons couple to phonons as their fast movement causes "shockwaves"
- -equilibration process completes after $\sim 1 \text{ ps}$
- Thus, with fs-lasers, two temperatures emerge:
- $-T_{\rm el}$ electron temperature
- $-T_{\rm ph}$ phonon temperature
- time evolution can be simulated with a Two-Temperature Model [1]

Models and Methods

References

[2] M. Dell'Angela, T. Anniyev, M. Beye et al., *Science* **339**, 1302 (2013).

[1] S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel'man, Sov. Phys.-JETP 39, 375 (1974).

t/ps