Stat-205-CT-05 (Section-A)

1.
$$f(x) = \frac{1}{16\sqrt{2\pi}} e^{-\frac{(x-y)^2}{26\pi}} = \frac{1}{26\pi} e^{-\frac{(x-y)^2}{26\pi}} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{6\sqrt{2\pi}} e^{-\frac{(x-y)^2}{26\pi}} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{6\sqrt{2\pi}} e^{-\frac{(x-y)^2}{26\pi}} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{6\sqrt{2\pi}} e^{-\frac{(x-y)^2}{26\pi}} dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{26\pi}} dx$$

$$= \int_{-\infty}^{\infty} \int_{$$

2. Here,
$$\overline{y} = 150$$
 $m_1 = 17$
 $\overline{x_2} = 170$ $m_2 = 12$
 $\overline{x_6} = 140$ $m_3 = ?$
 $\overline{x} = 153.25$
 $\overline{x} = \frac{m_1 + m_2 + m_3}{m_1 + m_2 + m_3}$
 $\Rightarrow 153.25 = \frac{17 \times 150 + 12 \times 170 + m_3 \times 140}{17 + 12 + m_3}$
 $\Rightarrow 153.25 = \frac{4590 + 140 m_3}{m_3 + 29}$
 $\Rightarrow 153.25 m_3 + 4949.25 = 9590 + 140 m_3$
 $\Rightarrow 13.25 m_3 = 145.75$
 $\Rightarrow m_3 = 11$

3. Given $M_0 = 65.5$
 $L = 60.5$
 $c = 10$
 $\Delta_1 = 7$
 $\Delta_2 = f_{m_1} = f_{m_2} = f_{m_3} = f_{m_4} = f_{m_5} = f_{$

$$=> f_m - 7 = 14$$

=> $f_m = 21$

4. Griven,
$$6 = 3.6$$

 $csb = 6.55 \text{ y.}$
 $\bar{x} = ?$

$$esb = \frac{6}{x} \times 100 \text{ y.}$$

$$\Rightarrow 6.55 \text{ y.} = \frac{9.6 \times 100}{x} \text{ y.}$$

$$\Rightarrow \overline{x} = \frac{9.6 \times 100}{6.55}$$

$$\Rightarrow \overline{x} = 54.96$$