Matemática Discreta II

Mauro Polenta Mora

Ejercicio 3

Consigna

Sean $a, b, c \in \mathbb{N}$ tales que mcd(a, b) = 1 (a y b son primos entre sí). Probar o dar un contraejemplo de las siguientes afirmaciones:

- 1. Si $a \mid (bc)$ entonces $a \mid c$
- 2. Si $a \mid c \ y \ b \mid c$ entonces $ab \mid c$.
- 3. ¿Valen las partes anteriores si $mcd(a, b) \neq 1$?

Resolución

Parte 1

• Si $a \mid (bc)$ entonces $a \mid c$

Como mcd(a, b) = 1, por Bézout tenemos que:

- $\exists x, y \in \mathbb{Z}$ tales que ax + by = 1, múltiplicando la expresión por c tenemos que:
- cax + cby = c

Veamos el siguiente razonamiento, basándonos en que $a \mid bc$:

$$cax + cby = c$$

 $\iff (bc=\dot{a}, \text{ es decir } bc=az \text{ con } z \in \mathbb{Z})$
 $cax + azy = c$
 \iff
 $a(cx + zy) = c$

Como $cx + zy \in \mathbb{Z}$ tenemos que $c = \dot{a}$ que es lo que queríamos probar.

Parte 2

• Si $a \mid c \neq b \mid c$ entonces $ab \mid c$

Por hipótesis tenemos que:

• $c = aq_1 \text{ con } q_1 \in \mathbb{Z}$

• $c = bq_2 \text{ con } q_2 \in \mathbb{Z}$

Veamos el siguiente razonamiento entonces:

$$\begin{array}{l} c^2 = aq_1bq_2 \\ \Longleftrightarrow \\ c^2 = ab(q_1q_2) \\ \Longleftrightarrow (\operatorname{como}\ q_1q_2 \in \mathbb{Z}) \\ c^2 = ab(q_1q_2) \\ \Longleftrightarrow \\ ab \mid c^2 \\ \Longleftrightarrow (\operatorname{por}\ \operatorname{el}\ \operatorname{lema}\ \operatorname{de}\ \operatorname{Euclides}) \\ ab \mid c \end{array}$$

Por lo que esto prueba la propiedad.

Parte 3

• Valen las partes anteriores si $mcd(a, b) \neq 1$?

Parte 1

• Si $a \mid (bc)$ entonces $a \mid c$

Veamos un contraejemplo considerando:

- a = 4
- *b* = 6
- c = 2

Entonces la propiedad sería: "Si 4 | 12 entonces 4 | 2". Esto es claramente falso, pues $4 \nmid 2$.

Parte 2

• Si $a \mid c \neq b \mid c$ entonces $ab \mid c$

Veamos un contraejemplo considerando:

- a = 2
- b = 4
- c = 4

Entonces la propiedad sería: "Si 2 | 4 y 4 | 4 entonces 8 | 4" Esto es claramente falso, pues 8 \nmid 4