Functional Programming Language Design

Christian J. Rudder

January 2025

Contents

Contents		1
1	Functional Programming 1.1 Introduction	6
Bibliography		11

Big thanks to **Professor Nathan Mull** for teaching CS320: Concepts of Programming Languages at Boston University [2].

Content in this document is based on content provided by Mull.

Disclaimer: These notes are my personal understanding and interpretation of the course material.

They are not officially endorsed by the instructor or the university. Please use them as a supplementary resource and refer to the official course materials for accurate information.

Prerequisite Definitions

This text assumes that the reader has a basic understanding of programming languages and grade-school mathematics along with a fundamentals grasp of discrete mathematics. The following definitions are provided to ensure that the reader is familiar with the terminology used in this document.

Definition 0.1: Token

A **token** is a basic, indivisible unit of a programming language or formal grammar, representing a meaningful sequence of characters. Tokens are the smallest building blocks of syntax and are typically generated during the lexical analysis phase of a compiler or interpreter.

Examples of tokens include:

- keywords, such as if, else, and while.
- identifiers, such as x, y, and myFunction.
- literals, such as 42 or "hello".
- operators, such as +, -, and =.
- punctuation, such as (,), {, and }.

Tokens are distinct from characters, as they group characters into meaningful units based on the language's syntax.

Definition 0.2: Non-terminal and Terminal Symbols

Non-terminal symbols are placeholders used to represent abstract categories or structures in a language. They are expanded or replaced by other symbols (either terminal or non-terminal) as part of generating valid sentences in the language.

• **E.g.**, "Today is $\langle \text{name} \rangle$'s birthday!!!", where $\langle \text{name} \rangle$ is a non-terminal symbol, expected to be replaced by a terminal symbol (e.g., "Alice").

Terminal symbols are the basic, indivisible symbols in a formal grammar. They represent the actual characters or tokens that appear in the language and cannot be expanded further. For example:

• +, 1, and x are terminal symbols in an arithmetic grammar.

CONTENTS 5

Definition 0.3: Symbol ":="

The symbol := is used in programming and mathematics to denote "assignment" or "is assigned the value of". It represents the operation of giving a value to a variable or symbol.

For example:

$$x := 5$$

This means the variable x is assigned the value 5.

In some contexts, := is also used to indicate that a symbol is being defined, such as:

$$f(x) := x^2 + 1$$

This means the function f(x) is defined as $x^2 + 1$.

Definition 0.4: Substitution: [v/x]e

Formally, [v/x]e denotes the substitution of v for x in the expression e. For example:

$$[3/x](x+x) = 3+3$$

This means that every occurrence of x in e is replaced with v.

Functional Programming

1.1 Introduction

Programming Languages (PL) from the perspective of a programmer can be thought of as:

- A tool for programming
- A text-based way of interacting with hardware/a computer
- A way of organizing and working with data

However This text concerns the design of PLs, not the sole use of them. It's the difference between knowing how to fly an aircraft vs. designing one. We instead think in terms of mathematics, describing and defining the specifications of our language. Our program some mathematical object, a function with strict inputs and outputs.

Definition 1.1: Well-formed Expression

An expression (sequence of symbols) that is constructed according to established rules (syntax), ensuring clear and unambiguous meaning.

Definition 1.2: Programming Language

A Programming Language (PL) consists of three main components:

- Syntax: Specifies the rules for constructing well-formed expressions or programs.
- Type System: Defines the properties and constraints of possible data and expressions.
- Semantics: Provides the meaning and behavior of programs or expressions during evaluation.

I.e., Syntax gives us meaning, Types tell us how it is used, and Semantics tell us what it does. Here is an example of defining the operator (+) for addition in a language:

Example 1.1: Syntax for Addition

If e_1 is a well-formed expression and e_2 is a well-formed expression, then $e_1 + e_2$ is also a well-formed expression.

1.1. INTRODUCTION 7

However, we can be a bit more concise using mathematic notation:

Definition 1.3: Production Rule (::=)

A **Production Rule** defines the syntax of a language by specifying how non-terminal symbols can be expanded into sequences of terminal and non-terminal symbols. It is denoted by the symbol::=:

$$\langle \text{non-terminal symbol} \rangle ::= \langle \text{definition} \rangle$$

Where the left-hand side non-terminal symbol can be expanded/represented by the right-hand side definition. We may also define multiple rules for a single non-terminal symbol, separated by the pipe symbol (1):

$$\langle e_1 \rangle ::= \langle e_2 \rangle |\langle e_3 \rangle| \dots |\langle e_n \rangle$$

Where $\langle e_1 \rangle$ can be expanded into $\langle e_2 \rangle$, $\langle e_3 \rangle$, ..., or $\langle e_n \rangle$.

Example 1.2: Production Rule

Here are some possible production rules:

- $\langle date \rangle ::= \langle month \rangle / \langle year \rangle$
- $\langle \text{year} \rangle ::= 2020 \mid 2021 \mid 2022 \mid 2023 \mid 2024 \mid 2025$
- $\langle month \rangle ::= 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 10 \mid 11 \mid 12$
- $\langle OS \rangle ::= \langle Linux \rangle \mid \langle Windows \rangle \mid \langle MacOS \rangle$

Incorrect Derivations: we cannot take a terminal symbol and expand it further:

- $8 \Rightarrow \langle \text{number} \rangle$
- $8 \Rightarrow 5 + \langle \text{number} \rangle$
- $8 \Rightarrow 5 + 3$

Here 8 means the token 8, it cannot be expanded any further.

Now we can clean up our previous syntax for defining addition:

Example 1.3: Production Rule for Addition

Let $\langle \exp r \rangle$ be a non-terminal symbol representing a well-formed expression. Then,

$$\langle \exp r \rangle ::= \langle \exp r \rangle + \langle \exp r \rangle$$

I.e., " $\langle \exp r \rangle + \langle \exp r \rangle$ " (right-hand side) is a valid " $\langle \exp r \rangle$ " (left-hand side).

Programmers may have some intuition about what a **variable** is, often thinking of it as a container for data. However, within this context, variables can represent entire expressions and are, in a sense, immutable.

Definition 1.4: Meta-variables

Meta-variables are placeholders that represent arbitrary expressions in a formal syntax. They are used to generalize the structure of expressions or programs within a language.

Example 1.4: Meta-variables:

An expression e could be represented as 3 (a literal) or 3+4 (a compound expression). In this context, variables serve as shorthand for expressions rather than as containers for mutable data

Before talking about types we must understand "context" when working with PLs.

Definition 1.5: Context and Typing Environment

In type theory, a context defines an environment which establishes data types for variables. In particular, an environment Γ is a set of ordered list of pairs $\langle x : \tau \rangle$, usually written as $x : \tau$, where x is a variable and τ is its type. We now write a **judgment**, a formal assertion about an expression or program within a given context. We denote:

$$\Gamma \vdash e : \tau$$

which reads "in the context Γ , the expression e has type τ ". We may also write judgments for functions, denoting the type of the function and its arguments.

$$f: \tau_1, \tau_2, \dots, \tau_n \to \tau$$

where f is a function taking n arguments $(\tau_1, \tau_2, \dots, \tau_n)$, outputting the type τ .

[1]

Tip: Symbol names and command in IATEX used above are as follows:

- Γ reads as "Gamma" (\Gamma).
- ⊢ reads as "turnstile" (\vdash).
- τ reads as "tau" (\tau).

1.1. INTRODUCTION 9

Definition 1.6: Rule of Inference

In formal logic and type theory, an **inference rule** provides a formal structure for deriving conclusions from premises. Rules of inference are usually presented in a **standard form**:

$$\frac{\text{Premise}_1, \quad \text{Premise}_2, \quad \dots, \quad \text{Premise}_n}{\text{Conclusion}} \text{ (Name)}$$

- Premises (Numerator): The conditions that must be met for the rule to apply.
- Conclusion (Denominator): The judgment derived when the premises are satisfied.

[3]

• Name (Parentheses): A label for referencing the rule.

Now we may begin to create a type system for our language, starting with some basic rules.

Example 1.5: Typing Rule for Integer Addition

Consider the typing rule for integer addition for which the inference rule is written as:

$$\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 + e_2 : \text{int}} \text{ (addInt)}$$

This reads as, "If e_1 is an **int** (in the context Γ) and e_2 is an **int** (in the context Γ), then $e_1 + e_2$ is an **int** (in the same context Γ)".

Therefore: let $\Gamma = \{x : \text{int}, y : \text{int}\}$. Then the expression x + y is well-typed as an **int**, since both x and y are integers in the context Γ .

Example 1.6: Typing Rule for Function Application

If f is a function of type $\tau_1 \to \tau_2$ and e is of type τ_1 , then f(e) is of type τ_2 .

$$\frac{\Gamma \vdash f : \tau_1 \to \tau_2 \quad \Gamma \vdash e : \tau_1}{\Gamma \vdash f(e) : \tau_2} \text{ (appFunc)}$$

This reads as, "If f is a function of type $\tau_1 \to \tau_2$ (in the context Γ) and e is of type τ_1 (in the context Γ), then f(e) is of type τ_2 (in the same context Γ)".

Therefore: let $\Gamma = \{f : \text{int} \to \text{bool}, x : \text{int}\}$. Then the expression, f(x), is well-typed as a **bool**, since f is a function that takes an integer and returns a boolean, and x is an integer in the context Γ .

Finally, we can define the semantics of our language, which describes the behavior of programs during evaluation:

Example 1.7: Evaluation Rule for Integer Addition (Semantics)

Consider the evaluation rule for integer addition. This rule specifies how the sum of two expressions is computed. If e_1 evaluates to the integer v_1 and e_2 evaluates to the integer v_2 , then the expression $e_1 + e_2$ evaluates to the integer $v_1 + v_2$. The rule is written as:

$$\frac{e_1 \Downarrow v_1 \quad e_2 \Downarrow v_2}{e_1 + e_2 \Downarrow v_1 + v_2} \text{ (evalInt)}$$

Read as, "If e_1 evaluates to the integer v_1 and e_2 evaluates to the integer v_2 , then $e_1 + e_2$ evaluates to $v_1 + v_2$."

Example Evaluation:

- 2 \ \ 2
- 3 ↓ 3
- 2+3 ↓ 5
- 4+5 ↓ 9
- $(2+4)+(4+5) \downarrow 15$

Here, the integers 2 and 3 evaluate to themselves, and their sum evaluates to 5 based on the evaluation rule. Additionally e_1 could be a compound expression, such as (2+4), which evaluates to 6.

Bibliography

- [1] Wikipedia contributors. Typing environment wikipedia, the free encyclopedia, 2023. Accessed: 2023-10-01.
- [2] Nathan Mull. Cs320: Concepts of programming languages. Lecture notes, Boston University, Spring Semester, 2025. Boston University, CS Department.
- [3] Wikipedia contributors. Rule of inference Wikipedia, The Free Encyclopedia, 2025. [Online; accessed 22-January-2025].