

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA

EM608 – Elementos de Máquinas ES690 – Sistemas Mecânicos

ENGRENAGENS CILINDRICAS DE DENTES RETOS

"Limites de Resistência à Fadiga e Coeficientes de Segurança"

Prof. Gregory Bregion Daniel <u>gbdaniel@fem.unicamp.br</u>
Prof.^a Katia Lucchesi Cavalca <u>katia@fem.unicamp.br</u>

Campinas, 2º semestre 2020

RESISTÊNCIA À FADIGA DE FLEXÃO - AGMA

Os dados de resistência à fadiga de flexão AGMA são obtidos em 10⁷ ciclos de tensão repetidos (às vezes 10⁶ ou 10⁸ ciclos usados para outros materiais), e para um nível de confiança de 99%.

Essas resistências são comparadas aos níveis de tensão ов calculados usando a carga tangencial Wt.

Os dados de resistência são obtidos de um teste que proporciona um estado de tensão flutuante idêntico àquele da real condição de carregamento da engrenagem.

A equação de correlação para a resistência de fadiga a flexão de engrenagens é:

$$S_{fb} = \frac{K_L}{K_T K_R} S_{fb}$$

Sendo:

 $S_{fb}^{'}
ightarrow$ é a resistência a fadiga de flexão AGMA $S_{fb}
ightarrow$ é a resistência corrigida K ightarrow fatores de correção

FATOR DE VIDA KL

Fator de vida KL: Uma vez que os dados de teste são para uma vida de 10⁷ ciclos, um ciclo mais longo ou mais curto necessita de correções na resistência à fadiga de flexão baseado na relação S-N para o material.

FATOR DE TEMPERATURA KT

Fator de temperatura KT: Para aços e temperaturas de lubrificante de até 250° F, KT pode ser ajustado em 1. Para temperaturas mais altas, KT pode ser estimado.

$$K_{T} = \frac{460 + T_{F}}{620}$$

Sendo T**F** a temperatura do óleo em ° F. Não use esta equação para materiais que não sejam aço.

Figura 12 - Fator de Vida KL em função do material e do número de ciclos.

FATOR DE CONFIABILIDADE KR

Fator de confiabilidade K**R** : Os dados de resistência AGMA são baseados numa confiabilidade de 99%, onde K**R**=1.

Tabela 7

Fator K_R da AGMA

Confiabilidade % K_R

A tabela 7 mostra a correção da resistência à fadiga de flexão AGMA para diferentes níveis de confiabilidade.

90	0.85
99	1.00
99.9	1.25
99.99	1.50

Tabela 8 - Limite de Resistência a Fadiga em Flexão Sfb.

Resistência à fadiga de flexão Sfb' da AGMA para seleção de materiais para engrenamento Resistência à fadiga de flexão Classe Dureza superficial Designação Material Tratamento térmico AGMA do material mínima psi x 103 MPa MPa. A1-A5 $\leq 180 \text{ HB}$ 25-33 170-230 Aço Endurecimento completo 210-280 240 HB 31-41 Endurecimento completo 250-325 300 HB 36 - 47Endurecimento completo Endurecimento completo 280-360 40 - 52360 HB Endurecimento completo 400 HB 290-390 42-56 Endurecimento por chama ou indução Tipo A padronizado 50-54 HRC 45-55 310-380 Endurecimento por chama ou indução Tipo B padronizado 22 150 Cementação por carbono e 55-64 HRC 55-75 380-520 endurecimento superficial 84.6 HR15N[†] AISI 4140 Nitretado 34 - 45230-310 AISI 4340 Nitretado. 83.5 HR15N 36-47250 - 32538-48 260-330 Mitroliga 135M 90.0 HR 15N Nitretado **Nitroliga** Nitretado 90.0 HR 15N 40-50 280-345 380-450 2.5% Cromo Nitretado. 87.5-90.0 15N 55-65 Ferro 20 Class 20 5 35 Como fundido recozido 30 Class 30 Como fundido 175 HB 8 69 Como fundido 200 HB 13 90 40 Class 40 150-230 A-7-a 60-40-18 Recozido 140 HB 22 - 33Ferro nodular A-7-c 80-55-06 Revenido e temperado 180 HB 22 - 33150-230 (dűctil) A-7-d 100-70-03 Revenido e temperado 230 HB 27 - 40180-280 Revenido e temperado A-7-e 120-90-02 230 HR 27 - 40180-280 A-8-c 45007 165 HB 10 70 Ferro maleável 50005 A-8-e 180 HB 13 90 (perlitico) A-8-f 53007 195 HB 16 110 80002 A-8-I 240 HB 21 145 Bronze 2 AGMA 2C 40 ksi resistência da tração mínima 5.7 40 Molde de areia Bronze 90 ksi resistência da tração mínima Al/Br 3 ASTM B-148 Tratado termicamente 23.6 160 78 liga 954

[†] Escala Rockwell 15N para materiais endurecidos superficialmente.

Figura 13 - Variação da resistência à fadiga em função da dureza Brinell.

RESISTÂNCIA À FADIGA DE SUPERFÍCIE - AGMA

Os dados de resistência a fadiga de superfície AGMA necessitam de quatro fatores de correção para obter a resistência a fadiga de superfície corrigida:

$$S_{fc} = \frac{C_{L}C_{H}}{C_{T}C_{R}}S_{fc}$$

Os fatores CT e CR são idênticos, respectivamente, a KT e KR.

O fator de vida CL tem a mesma finalidade que KL, contudo, referencia um diagrama S-N diferente.

CH fator de relação de dureza para resistência ao pitting.

FATOR DE VIDA SUPERFICIAL CL

Fator de Vida Superficial CL: Uma vez que os dados de teste são para uma vida de 10⁷ ciclos, um ciclo mais longo ou mais curto deve ser corrigido para resistência a fadiga superficial.

AGMA sugere que o limite superior da zona sombreada seja usado para aplicações comerciais.

O limite inferior da zona sombreada é usado para aplicações em serviços críticos, onde admite-se muito pouco pitting e desgaste dos dentes e onde uma operação suave e com baixo nível de vibração é requerido. Infelizmente, esse tipo de dado é disponível apenas para aços.

Figura 14 - Fator de Vida Superficial CL

FATOR DE DUREZA CH

Fator de dureza CH: Esse fator é função da relação da dureza relativa do pinhão e da engrenagem.

O fator CH é sempre maior do que 1, portanto sempre aumenta a resistência aparente da engrenagem. Esse fator leva em conta situações nas quais os dentes do pinhão são mais duros do que os dentes da engrenagem, sendo aplicado para a resistência de dente de engrenagem, não para pinhão.

$$C_{_H} = 1 + A(m_{_G} - 1)$$

Sendo ma a relação de engrenamento e A dado como:

Se
$$\frac{HB_p}{HB_g} < 1.2 \rightarrow A = 0$$

Se
$$1.2 \le \frac{HB_p}{HB_g} \le 1.7 \rightarrow A = 0.00898 \frac{HB_p}{HB_g} - 0.00829$$

Se
$$\frac{HB_p}{HB_g} > 1.7 \rightarrow A = 0.00698$$

Sendo HBp e HBg a dureza Brinell do pinhão e engrenagem, respectivamente.

Para pinhões com superfícies endurecidas (>48 HRC) temos CH:

$$C_H = 1 + B(450 - HB_g)$$

$$B = 0.00075 e^{-0.0112 R_q}$$

U.S.

$$B = 0.00075 e^{-0.052 R_q}$$

S.I.

Rq é rugosidade RMS da superfície dos dentes do pinhão em μin.

A tabela 9 mostra a resistência à fadiga superficial AGMA para os materiais mais usados em engrenagens.

Tabela 9 - Limite de resistência à fadiga de superfície Sfc'

Resistência à fadiga de flexão Sfc' da AGMA para seleção de materiais para engrenagem'

Material Classe		Designação	Tratamento térmico	Dureza superficial	Resistên	Resistência à fadiga de flexão		
	AGMA	do material		mínima	psi x 10 ³	MPa	MPa	
Aço	A1-A5		Endurecimento completo	≤ 180 HB	85-95	590-660		
			Endurecimento completo	240 HB	105–115	720-790		
			Endurecimento completo	300 HB	120-135	830-930		
			Endurecimento completo	360 HB	145-160	1000-1100		
			Endurecimento completo	400 HB	155–170	1100-1200		
			Endurecimento por chama ou indução	50 HRC	170-190	1200-1300		
			Endurecimento por chama ou indução	54 HRC	175–195	1200-1300		
			Cementação por carbono e endurecimento superficial	55-64 HRC	180-225	1250–1300		
		AISI 4140	Nitretado	84.6 HR15N [†]	155–180	1100-1250		
		AISI 4340	Nitretado	83.5 HR15N	150-175	1050-1200		
		Nitroliga 135M	Nitretado	90.0 HR15N	170-195	1170-1350		
		Nitroliga	Nitretado	90.0 HR15N	195-205	1340-1410		
		2.5% Cromo	Nitretado	87.5 HR15N	155-172	1100-1200		
		2.5% Cromo	Nitretado	90.0 HR15N	192-216	1300-1500		
Ferro	20	Class 20	Como fundido		50-60	340-410		
recozido	30	Class 30	Como fundido	175 HB	65-70	450-520		
	40	Class 40	Como fundido	200 HB	75–85	520-590		
Ferro	A-7-a	60-40-18	Recozido	140 HB	77-92	530-630		
nodular	A-7-c	80-55-06	Revenido e temperado	180 HB	77-92	530-630		
(dúctil)	A-7-d	100-70-03	Revenido e temperado	230 HB	92–112	630-770		
	А-7-е	120-90-02	Revenido e temperado	230 HB	103–126	710–870		
Ferro	A-8-c	45007		165 HB	72	500		
maleável		50005		180 HB	78	540		
(perlítico)	A-8-f	53007		195 HB	83	570		
	A-8-i	80002		240 HB	94	650		
Bronze	Bronze 2	AGMA 2C	Molde de areia	40 ksi resistência da tração mínim a	30	450		
	Al/Br 3	ASTM B-148 78 liga 954	Tratado termicamente	90 ksi resistência da tração mínima	65	450		

[†] Escala Rockwell 15N para materiais endurecidos superficialmente.

Figura 15 - Variação da resistência à fadiga superficial em função da dureza Brinell.