EP 0 837 516 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 22.04.1998 Bulletin 1998/17

- (51) Int. Cl.6: H01P 1/15
- (21) Application number: 97117960.1
- (22) Date of filing: 16.10.1997
- (84) Designated Contracting States:
 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
 NL PT SE
- (30) Priority: 21.10.1996 JP 278075/96
- (71) Applicant: MURATA MANUFACTURING CO., LTD. Nagaokakyo-shi Kyoto-fu 226 (JP)
- (72) Inventors:Furutani, KojiNagaokakyo-shi, Kyoto-fu (JP)

- Nakajima, Norio
 Nagaokakyo-shi, Kyoto-fu (JP)
 Suzaki, Hidefumi
 Nagaokakyo-shi, Kyoto-fu (JP)
- (74) Representative:
 Schoppe, Fritz, Dipl.-Ing.
 Schoppe & Zimmermann
 Patentanwälte
 Postfach 71 08 67
 81458 München (DE)

(54) High-frequency composite part

(57) A high-frequency composite part (10) includes a high-frequency switch (SW) and an amplifier (AMP1) at a side of a transmission circuit (Tx) among high-frequency parts constituting a PHS portable telephone. In the telephone, the high-frequency switch (SW) is used for switching between the connection of the transmission circuit (Tx) and an antenna, and the connection of a receiving circuit (Rx) and the antenna. The amplifier at the Tx side amplifies a signal to be transmitted which is converted into a RF signal and passes through a filter at the Tx side, and sends it to the high-frequency switch (SW).

Description

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to high-frequency composite parts used in a high-frequency circuit section of a portable telephone of a personal handy-phone system (PHS) type or a personal digital cellular (PDC) type.

2. Description of the Related Art

Fig. 10 and Fig. 11 are block diagrams of PHS portable telephones. In a PHS portable telephone shown in Fig. 10, when transmitting, a signal to be transmitted is converted to an RF signal, passes through a filter F1 in a transmission circuit (Tx), is amplified by an amplifier AMP1 in the Tx side, passes through a high-frequency switch SW and a top filter F2, and is transmitted from an antenna ANT. On the other hand, when receiving, a signal is received from the antenna ANT, passes through the top filter F2, is taken out from the switch SW, and is amplified by an amplifier AMP2 in a receiving circuit (Rx). Then, a signal in frequency bands other than that of the signal to be received is removed by a filter F3 in the Rx side.

In a PHS portable telephone shown in Fig. 11, when transmitting, a signal to be transmitted is converted to an RF signal, passes through a filter F1 in the Tx side, is amplified by an amplifier AMP1 in the Tx side, passes through a second filter F4 in the Tx side and a high-frequency switch SW, and is transmitted from an antenna ANT. On the other hand, when receiving, a signal received from the antenna ANT is taken out from the switch SW, and is amplified by an amplifier AMP2 in a receiving circuit (Rx). Then, a signal in frequency bands other than that of the signal to be received is removed by a filter F3 in the Rx side.

These PHS portable telephones have been made compact and lightweight by mounting compact, surface-mounting, high-frequency parts, such as the high-frequency switch SW, the filter F1 in the Tx side, the top filter F2, the filter F3 in the Rx side, the second filter F4 in the Tx side, the amplifier AMP1 in the Tx side, and the amplifier AMP2 in the Rx side, on a printed circuit board highly densely.

It is expected that portable telephones will be made more compact and lightweight in the future while having more advanced functions. Therefore, high-frequency parts to be mounted on a board, such as the high-frequency switch SW, the filter F1 in the Tx side, the top filter F2, the filter F3 in the Rx side, the second filter F4 in the Tx side, the amplifier AMP1 in the Tx side, and the amplifier AMP2 in the Rx side, need to be made further compact and lightweight.

In a conventional portable telephone, however, since a discrete high-frequency switch and a discrete

amplifier are mounted on a printed circuit board, it is difficult to make the telephone more compact and light-weight. In addition, because characteristic-impedance matching is required for each of the high-frequency switch and the amplifier, a matching circuit is necessary, and it is a restriction in a design phase.

SUMMARY OF THE INVENTION

The present invention has been made to solve these problems. It is an object of the present invention to provide a high-frequency composite part which can be made more compact and lightweight by integrating a high-frequency switch and an amplifier.

The foregoing object is achieved in the present invention through the provision of a high-frequency composite part including: a multilayer board formed by laminating a plurality of dielectric layers; a high-frequency switch formed of a diode mounted on the multilayer board and a transmission line and a capacitor built in the multilayer board; and an amplifier formed of a transistor mounted on the multilayer board and a transmission line and a capacitor built in the multilayer board.

According to the high-frequency composite part, since the transmission line and the capacitor used for the high-frequency switch and the transmission line and the capacitor used for the amplifier are built in the multilayer board formed by laminating a plurality of dielectric layers, the diode used for the high-frequency switch and the transistor used for the amplifier are mounted on the board, and the high-frequency switch and the amplifier are integrated in the multilayer board, the area required for mounting the high-frequency switch and the amplifier on a printed circuit board is reduced, as compared with a case in which a conventional discrete high-frequency switch and amplifier are mounted on a printed circuit board and connected. The high-frequency composite part is made more compact and lightweight than conventional counterparts. Manufacturing cost is also reduced.

In addition, since the high-frequency switch and the amplifier can be designed at the same time, impedance matching between the high-frequency switch and the amplifier is implemented at the design stage, and thereby a matching circuit becomes unnecessary.

The amplifier may be an amplifier at the transmission side.

In the high-frequency composite part, since the transmission line and the capacitor used for the high-frequency switch and the transmission line and the capacitor used for the amplifier at the transmission side are built in the multilayer board formed by laminating a plurality of dielectric layers, the diode used for the high-frequency switch and the transistor used for the amplifier at the transmission side are mounted on the board, and the high-frequency switch and the amplifier at the transmission side are integrated in the multilayer board, the distance of a line connecting the high-frequency

switch to the amplifier at the transmission side is reduced, and a loss becomes small. Therefore, a loss at the high-frequency composite part is also reduced.

A filter formed of a transmission line and a capacitor may be built in the multilayer board.

In the high-frequency composite part, since the high-frequency switch, the amplifier, and the filter are integrated in the multilayer board formed by laminating a plurality of dielectric layers, the composite part is made further compact and lightweight than conventional counterparts. Cost is also further reduced.

A low-temperature baked ceramic board may be used as the multilayer board.

In the high-frequency composite part, because the multilayer board is made from low-temperature baked ceramic, a plurality of dielectric layers can be baked integrally with electrodes for forming a transmission line and a capacitor on the plurality of dielectric layers. Therefore, a manufacturing process can be simplified and cost can also be reduced.

According to a high-frequency composite part of the present invention, since a high-frequency switch and an amplifier are formed on a multilayer board made by laminating a plurality of dielectric layers and are integrated, the overall dimensions are made smaller than those of a conventional part in which a filter and an amplifier are mounted on a printed circuit board and connected. In addition, since the high-frequency switch and the amplifier can be designed at the same time, impedance matching between the high-frequency switch and the amplifier is implemented in the design stage.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of a high-frequency composite part according to a first embodiment of the present invention.

Fig. 2 is a circuit diagram of a high-frequency switch used in the high-frequency composite part shown in Fig. 1.

Fig. 3 is a circuit diagram of an amplifier used in the high-frequency composite part shown in Fig. 1.

Figs. 4A to 4H are top views of a first dielectric layer (a) to an eighth dielectric layer (h) used for the high-frequency composite part shown in Fig. 1.

Figs. 5A to 5F are top views of a ninth dielectric layer (a) to a thirteenth dielectric layer (e) and a bottom view of the thirteenth dielectric layer (f) used for the high-frequency composite part shown in Fig. 1.

Fig. 6 is a block diagram of a high-frequency composite part according to a second embodiment of the present invention.

Fig. 7 is a block diagram of another high-frequency composite part according to the second embodiment of the present invention.

Fig. 8 is a circuit diagram of a filter used in the high-frequency composite part shown in Fig. 4 and Fig. 5.

Fig. 9 is a cross section of a modification of the high-frequency composite parts shown in Figs. 1, 6, and 7.

Fig. 10 is a block diagram of a general PHS portable telephone.

Fig. 11 is a block diagram of another general PHS portable telephone.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the present invention will be described below by referring to the drawings.

Fig. 1 is a block diagram of a high-frequency composite part according to a first embodiment of the present invention. A high-frequency composite part 10 includes a high-frequency switch SW and an amplifier AMP1 in a Transmission (Tx) side among the high-frequency parts constituting a PHS portable telephone shown in Fig. 10.

The high-frequency switch SW is used for switching between the connection of the transmitting circuit Tx and an antenna ANT and the connection of a receiving circuit Rx and the antenna ANT in a PHS portable telephone. The amplifier AMP1 at the Tx side amplifies a signal to be transmitted which is converted into an RF signal and passes through a filter F1 at the Tx side and sends it to the high-frequency switch SW.

Fig. 2 is a circuit diagram of the high-frequency switch of the high-frequency composite part shown in Fig. 1. A first port P1 of the high-frequency switch SW connected to the amplifier AMP1 at the Tx side is connected to the anode of a diode D1. The anode of the diode D1 is grounded through a transmission line STL1 and a capacitor C1. The connection point between the transmission line STL1 and the capacitor C1 is connected to a control terminal V1. The cathode of the diode D1 is connected to a second port P2, to which the antenna ANT is connected.

The second port P2 is connected to one end of a transmission line STL2. The other end of the transmission line STL2 is connected to a third port P3, to which an amplifier AMP2 at the Rx side is connected. The other end of the transmission line STL2 is also connected to the anode of a diode D2. The cathode of the diode D2 is grounded through a capacitor C2. The connection point between the diode D2 and the capacitor C2 is connected to a control terminal V2.

Fig. 3 is a circuit diagram of the amplifier at the Tx side of the high-frequency composite part shown in Fig. 1. The output port Po of the amplifier AMP1 at the Tx side to be connected to the first port P1 of the high-frequency switch SW is connected to one end of a transmission line STL3 through a capacitor C3. The connection point between the end of the transmission line STL3 and the capacitor C3 is grounded through a capacitor C4. The other end of the transmission line STL3 is connected to the drain of a field effect transistor

(hereinafter called FET) Q1. The source of FET Q1 is grounded and the gate is connected to the collector of a bipolar transistor (hereinafter called B-Tr) Q2.

The connection point between the other end of the transmission line STL3 and the drain of FET Q1 is grounded through a series circuit formed of an inductor L1 made of a stripline and a capacitor C5. The connection point between the inductor L1 and the capacitor C5 is connected to a drain voltage terminal Vd. The connection point between the gate of FET Q1 and the collector of B-Tr Q2 is grounded through a capacitor C6 and is also connected to a gate voltage terminal Vg.

The emitter of B-Tr Q2 is grounded and the base is connected to one end of a transmission line STL4. The other end of the transmission line STL4 is connected to an input port Pin to which the filter F1 at the Tx side is connected.

The collector of B-Tr Q2 is grounded through a series circuit formed of an inductor L2 made of a strip-line and a capacitor C7. The connection point between the inductor L2 and the capacitor C7 is connected to a collector voltage terminal Vc. The connection point between the inductor L2 and the capacitor C7 is also connected to the connection point between the base of B-Tr Q2 and one end of the transmission line STL4. The other end of the transmission line STL4 is grounded through a capacitor C8.

Figs. 4A to 4H and Figs. 5A to 5F are top views and a bottom view of dielectric layers constituting the high-frequency composite part 10 shown in Fig. 1. The high-frequency composite part 10 includes a multilayer board (not shown) in which the transmission lines and the capacitors used for the high-frequency switch SW shown in Fig. 2 and the amplifier AMP1 at the Tx side shown in Fig. 3 are built in. The multilayer board is formed, for example, by sequentially laminating a first to a thirteenth dielectric layers "a" to "m" made from low-temperature baked ceramic which has barium oxide, aluminum oxide, and silica as main components and which can be baked at a temperature of 850°C to 1000°C.

At the upper surface of the first dielectric layer "a," lands R1 to R10 are formed for mounting the diodes D1 and D2 used for the high-frequency switch SW shown in Fig. 2 and FET Q1 and B-Tr Q2 used for the amplifier AMP1 at the Tx side shown in Fig. 3. On the upper surfaces of the second, the fifth to the twelfth dielectric layers "b" and "e" to "I," capacitor electrodes C81, C31, C32, C11, C21, C51, C61, C71, and C41 are formed. On the upper surfaces of the second, the fourth, and the twelfth dielectric layers "b," "d," and "I," stripline electrodes SL4, SL1, SLL1, SLL2, SL2, and SL3 are formed.

On the upper surfaces of the third, the ninth, the eleventh, and the thirteenth dielectric layers "c," "i," "k," and "m," ground electrodes G1 to G4 are formed. On the lower surface (symbol "mu" is assigned in Fig. 5F) of the thirteenth dielectric layer "m," external terminals

ANT, Tx, VV1, and VV2 connected to the second and the third ports P2 and P3 of the high-frequency switch SW and control terminals V1 and V2, respectively, external terminals PIN, VD, VG, and VC connected to the input port Pin of the amplifier AMP1 at the Tx side, the drain voltage terminal Vd, the gate voltage terminal Vg, and the collector voltage terminal Vc, respectively, and external electrodes G connected to the ground electrodes G1 to G4 are formed. The first port P1 of the high-frequency switch SW is connected to the output port Po of the amplifier AMP1 at the Tx side by a via hole inside the multilayer board.

The capacitors C1 and C2 of the high-frequency switch SW are formed of the capacitor electrode C11 and the ground electrode G3, and the capacitor electrode C21 and the ground electrode G3, respectively. The capacitors C3 to C8 of the amplifier AMP1 at the Tx side are formed of the capacitor electrode C31 and the capacitor electrode C31 and the capacitor electrode C41 and the ground electrode G4, the capacitor electrode C51 and the ground electrode G3, the capacitor electrode C61 and the ground electrode G3, the capacitor electrode C71 and the ground electrode G3, and the capacitor electrode C81 and the ground electrode G3, and the capacitor electrode C81 and the ground electrode G1, respectively.

The transmission line STL1 in the high-frequency switch SW is formed of the stripline electrode SL1, the transmission line STL2 in the high-frequency switch SW is formed of the stripline electrode SL2, the transmission line STL3 in the amplifier AMP1 at the Tx side is formed of the stripline electrode SL3, the transmission line STL4 in the amplifier AMP1 at the Tx side is formed of the stripline electrode SL4, the inductor L1 in the amplifier AMP1 at the Tx side is formed of the stripline electrode SLL1, and the inductor L2 in the amplifier AMP1 at the Tx side is formed of the stripline electrode SLL1.

With the configuration described above, the multi-layer board is formed in which the transmission lines SLT1 and SLT2, and the capacitors C1 and C2 all used for the high-frequency switch SW shown in Fig. 2, and the transmission lines SLT3 and SLT4, the capacitors C3 to C8, and the inductors L1 and L2 all used for the amplifier AMP1 at the Tx side shown in Fig. 3 are built in. The diodes D1 and D2 used for the high-frequency switch SW shown in Fig. 2 and FET Q1 and B-Tr Q2 used for the amplifier AMP1 at the Tx side shown in Fig. 3 are mounted on the lands R1 to R10 of the multilayer board to complete the high-frequency composite part 10.

As described above, according to the high-frequency composite part of the first embodiment, since the transmission lines and the capacitors used for the high-frequency switch and the transmission lines, the capacitors, and the inductors used for the amplifier at the Tx side are built in the multilayer board formed by laminating a plurality of dielectric layers, the diodes used for the high-frequency switch and FET and B-Tr

used for the amplifier at the Tx side are mounted on the board, and all are integrated, the area required for mounting the high-frequency switch and the amplifier at the Tx side on a printed circuit board is reduced, as compared with a case in which conventional discrete high-frequency switch and amplifier at the Tx side are mounted on a printed circuit board and connected. The high-frequency composite part is made more compact and lightweight than conventional counterparts. Manufacturing cost is also reduced.

In addition, since the high-frequency switch and the amplifier at the Tx side can be designed at the same time, impedance matching between the high-frequency switch and the amplifier at the Tx side is implemented at the design stage, and thereby a matching circuit becomes unnecessary.

Since the high-frequency switch and the amplifier at the Tx side are integrated and provided for the multi-layer board, the distance of a line connecting the high-frequency switch to the amplifier at the Tx side is reduced, and a loss and current consumption become small. Therefore, a loss at the high-frequency composite part is also reduced.

In addition, because the multilayer board is made from low-temperature baked ceramic, a plurality of dielectric layers can be baked integrally with the electrodes forming the transmission lines and the capacitors on the plurality of dielectric layers. Therefore, a manufacturing process can be reduced and cost can also be reduced.

Fig. 6 and Fig. 7 are block diagrams of high-frequency composite parts according to a second embodiment of the present invention. A high-frequency composite part 20 shown in Fig. 6 includes a high-frequency switch SW, an amplifier AMP1 in a Tx side, and a top filter F2 among the high-frequency parts constituting a PHS portable telephone shown in Fig. 11.

On the other hand, a high-frequency composite part 30 shown in Fig. 7 includes a high-frequency switch SW, an amplifier AMP1 in a Tx side, and a second filter F4 at the Tx side among the high-frequency parts constituting a PHS portable telephone shown in Fig. 11.

Fig. 8 is a circuit diagram of the top filter and the second filter at the Tx side constituting the high-frequency composite parts shown in Fig. 6 and Fig. 7. The top filter F2 and the second filter F4 at the Tx side are Butterworth, low-pass, LC filters.

In the top filter F2 or the second filter F4 at the Tx side, transmission lines STL5 and STL6 are connected in series between one port Pa and the other port Pb. The connection point between the transmission line STL5 and one port Pa, the connection point between the transmission line STL5 and the transmission line STL6, and the connection point between the transmission line STL6 and the other port Pb are grounded through capacitors C11, C12, and C13, respectively.

At the top filter F2, port Pa is connected to the second port P2 of the high-frequency switch SW shown in Fig. 2, and port Pb is connected to the antenna ANT.

At the second filter F4 at the Tx side, port Pa is connected to the output port P_o of the amplifier AMP1 at the Tx side shown in Fig. 3, and port Pb is connected to the first port P1 of the high-frequency switch SW shown in Fig. 2.

As described above, according to the high-frequency composite parts of the second embodiment, since the high-frequency switch, the amplifier at the Tx side, and the top filter, or the high-frequency switch, the amplifier at the Tx side, and the second filter at the Tx side are integrated in the multilayer board formed by laminating a plurality of dielectric layers, the composite part is made further compact and lightweight. Cost is further reduced.

In the above first and second embodiments, the amplifier at the Tx side is integrated into the high-frequency composite part. An amplifier at the Rx side, or both amplifier at the Tx side and amplifier at the Rx side may be integrated.

The circuit diagram of the high-frequency switch shown in Fig. 2 is just an example. The present invention can also be applied to a high-frequency switch formed of a diode mounted on a multilayer board, and a transmission line and a capacitor built in the multilayer board.

The circuit diagram of the amplifier shown in Fig. 3 is just an example. The present invention can also be applied to an amplifier formed of a transistor mounted on a multilayer board, and a transmission line and a capacitor built in the multilayer board. In Fig. 3, the gate of FET Q1 is directly connected to the collector of B-Tr Q2. They may be connected through a capacitor. The connection point between the gate of FET Q1 and the collector of B-Tr Q2 is directly connected to the capacitor C6. The point may be connected to the capacitor through a resistor. The connection point between the inductor L2 and the capacitor C7 is directly connected to the connected to the connection point between the base of B-Tr Q2 and one end of the transmission line STL4. The points may be connected through a resistor.

A diode used for the high-frequency switch and a transistor used for the amplifier may be discrete or may be implemented by a monolithic microwave integrated circuit (MMIC) formed on the same semiconductor substrate.

In the above embodiments, low-temperature baked ceramic includes barium oxide, aluminum oxide, and silica as main components. A material including barium oxide, silica, strontium oxide, and zirconium oxide as main components, or a material having calcium oxide, zirconium oxide, and glass as main components may be used.

A high-frequency composite part may be configured such that a cavity is provided for a multilayer board, and a diode used for the high-frequency switch and a transistor used for the amplifier, or an MMIC into which the diode and the transistor are integrated is mounted in the cavity. As shown in Fig. 9, when the opening of the

cavity 41 is covered by a cap 42, the upper surface of the multilayer board 43 forming the high-frequency composite part 40 is made flat and is easily handled. In addition, other parts can be mounted thereon. The highfrequency composite part can be made further compact and lightweight.

In the above embodiments, the transmission lines STL1 to STL6 and the inductors L1 and L2 are formed of striplines. They may be formed of microstriplines or coplanar guide lines.

In the second embodiment, the top filter or the second filter at the Tx side is integrated as a filter into a high-frequency composite part. Filters at the Rx side, filters at the Tx side, or both may be integrated.

The circuit diagram of the filter shown in Fig. 8 is just an example. The present invention can also be applied to a filter formed of a transmission line and a capacitor both built in a multilayer board.

Claims

1. A high-frequency composite part comprising:

a multilayer board formed by laminating a plurality of dielectric layers (a - m); a high-frequency switch (SW) formed of a

diode (D1, D2) mounted on said multilayer board and a transmission line (STL1, STL2) and a capacitor (C1, C2) built in said multilayer board; and

an amplifier (AMP1; AMP2) formed of a transistor (Q1, Q2) mounted on said multilayer board and a transmission line (STL3, STL4) and a capacitor (C3 - C8) built in said multilayer board.

- The high-frequency composite part according to Claim 1, wherein said high-frequency composite part is connectable between a transmission circuit (Tx), a receiving circuit (Rx) and an antenna circuit (ANT).
- The high-frequency composite part according to one of Claims 1 or 2, comprising an input-port, an output-port, and an output/input-port;

wherein said switch (SW) switches connections between said input-port and said output/input-port, and said output/port and said output/input-port.

- A high-frequency composite part according to Claim 3, wherein said input-port is connectable to said transmission circuit (Tx), said output-port is connectable to said receiving circuit (Rx), and said output/input-port is connectable to said antenna circuit (ANT).
- 5. A high-frequency composite part according to one

of Claims 1 to 4, wherein said amplifier (AMP1) is an amplifier at the side of said transmission circuit (Tx).

- A high-frequency composite part according to one of Claims 1 to 5, comprising a further amplifier (AMP2) formed of a transistor mounted on said multilayer board and a transmission line and a capacitor built in said multilayer board.
- A high-frequency composite part according to Claim 6, wherein said further amplifier (AMP2) is an amplifier at the side of said receiving circuit (Rx).
- 8. A high-frequency composite part according to one of Claims 1 to7, wherein a filter (F2, F4) formed of a transmission line (STL5, STL6) and a capacitor (C11, C13) is built in said multilayer board.
- A high-frequency composite part according to one of Claims 1 to 8, wherein a low-temperature baked ceramic board is used as said multilayer board.

6

Fig. 4

AMP1
Tx
F1
F2
SW
Rx
AMP2

AMP1

Tx

F4

F1

AMP1

F1

F1

AMP2

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 837 516 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 17.05.2000 Bulletin 2000/20

(51) Int. Cl.⁷: H01P 1/15

(11)

(43) Date of publication A2: 22.04.1998 Bulletin 1998/17

(21) Application number: 97117960.1

(22) Date of filing: 16.10.1997

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

(30) Priority: 21.10.1996 JP 27807596

(71) Applicant:

MURATA MANUFACTURING CO., LTD.

Nagaokakyo-shi Kyoto-fu 226 (JP)

(72) Inventors:
• Furutani, Koji

Nagaokakyo-shi, Kyoto-fu (JP)

 Nakajima, Norio Nagaokakyo-shi, Kyoto-fu (JP)

 Suzaki, Hidefumi Nagaokakyo-shi, Kyoto-fu (JP)

(74) Representative:

Schoppe, Fritz, Dipl.-Ing. Schoppe, Zimmermann & Stöckeler Patentanwälte Postfach 71 08 67 81458 München (DE)

(54) High-frequency composite part

(57) A high-frequency composite part (10) includes a high-frequency switch (SW) and an amplifier (AMP1) at a side of a transmission circuit (Tx) among high-frequency parts constituting a PHS portable telephone. In the telephone, the high-frequency switch (SW) is used for switching between the connection of the transmission circuit (Tx) and an antenna, and the connection of a receiving circuit (Rx) and the antenna. The amplifier at the Tx side amplifies a signal to be transmitted which is converted into a RF signal and passes through a filter at the Tx side, and sends it to the high-frequency switch (SW).

EP 0 837 516 A3

EUROPEAN SEARCH REPORT

Application Number EP 97 11 7960

Category	Citation of document w - of relevant	ith indication, where appropriate, passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Ci.6)
Y	26 October 1994 (25 - column 22, line 7;	1-9	H01P1/15
Y	LTD) 6 October 19	MATSUSHITA ELECTRIC IND CO 193 (1993-10-06) 54 - column 10, line 54;	1-9	
A	3 April 1996 (199 * column 3, line	URATA MANUFACTURING CO) 6-04-03) 3-21; figures 1-3 * 4 - column 8, line 12 *	1-9	
A	DATABASE WPI Section EI, Week Derwent Publicati Class WO2, AN 199 XPO02133275 -& JP 06 204912 A 22 July 1994 (199 * abstract *	ons Ltd., London, GB; 4-275028 (TDK CORP),	1	TECHNICAL FIELDS SEARCHED (Int.CI.6) H01P H04B
1	CERAMIC SURFACE-M COMPONENTS FOR TE EQUIPMENT" PROCEEDINGS OF TH AND TECHNOLOGY CO IEEE,	LECOMMUNICATIONS E ELECTRONIC COMPONENTS NFERENCE,US,NEW YORK, 95, pages 247-250,	1-9	·
	The present search report ha	as been drawn up for all claims		
	Place of search	Date of completion of the search	<u> </u>	Examiner
	MUNICH	22 March 2000	املأ	Casta Muñoa, S

EPO FORM 1503 03.82 (P04C01)

- A : technological background
 O : non-written disclosure
 P : intermediate document

& : member of the same patent family, corresponding document

EP 0 837 516 A3

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 97 11 7960

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

22-03-2000

	document earch repo		Publication date		Patent family member(s)	Publication date
EP 062	1653	Α .	26-10-1994	DE JP US	69422327 D 7288422 A 5510802 A	03-02-20 31-10-19 23-04-19
EP 056	3873	A	06-10-1993	JP JP DE DE US	6291520 A 6291521 A 69318879 D 69318879 T 5387888 A	18-10-19 18-10-19 09-07-19 08-10-19 07-02-19
EP 070	4925	A	03-04-1996	JP US US	8097743 A 5990732 A 5783976 A	12-04-19 23-11-19 21-07-19
JP 620	4912	Α	22-07-1994	NONE		

FORM PO459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82