The Power Rule of Differentiation

The power rule is one of the most important differentiation rules in calculus. Since differentiation is linear, polynomials can be differentiated using this rule.

$$\frac{d}{dx}x^n = nx^{n-1}, \qquad n \neq 0.$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c, \qquad n \neq -1.$$

$$\int x^{-1} dx = \ln|x| + c$$

Trigonometric Functions

$$(\sin x)' = \cos x$$
$$(\cos x)' = -\sin x$$

Integration by parts

$$\int u\,dv=uv-\int v\,du.$$

In order to calculate

$$I = \int x \cos(x) \, dx$$

let:

$$u = x \Rightarrow du = dx$$

$$dv = \cos(x) dx \Rightarrow v = \int \cos(x) dx = \sin x$$

then:

$$\int x \cos(x) dx = \int u dv$$

$$= uv - \int v du$$

$$= x \sin(x) - \int \sin(x) dx$$

$$= x \sin(x) + \cos(x) + C,$$

where C is an arbitrary constant of integration.

Integration by Substitution: Example

$$\int x \cos(x^2 + 1) dx = \frac{1}{2} \int 2x \cos(x^2 + 1) dx$$
$$= \frac{1}{2} \int \cos u du$$
$$= \frac{1}{2} \sin u + C = \frac{1}{2} \sin(x^2 + 1) + C$$

Additivity of integration on intervals

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx - \int_{c}^{b} f(x) dx$$
$$= \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

Hyperbolic Function

$$\sinh x = \frac{e^x - e^{-x}}{2}$$
$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$(\sinh x)' = \cosh x = \frac{e^x + e^{-x}}{2}$$

Jacobian

$$J = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix}.$$

Logarithmic Transformation

$$(\ln f)' = \frac{f'}{f}$$

Quotient Rule

$$f(x) = \frac{u(x)}{v(x)}$$
$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}$$

Chain Rule

 $h(x)=\sin(2x)$ is the composition of the functions $f(g)=\sin g$ and g(x)=2x: As such we have $f'(g)=\cos g$ and g'(x)=2; and so the chain rule tells us that

$$h'(x) = (cosg)(2) = 2cos(2x)$$

Maclaurin Series

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \cdots$$
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Fundamental Theorem of Calculus

The fundamental theorem of calculus states that the integral of a function f over the interval [a, b] can be calculated by finding an antiderivative F of f:

$$\int_a^b f(x) dx = F(b) - F(a).$$

ODEs: Integrating factor

The integrating factor is a function that is chosen to facilitate the solving of a given equation involving differentials. It is commonly used to solve ordinary differential equations.

$$y' + P(x)y = Q(x)$$

the integration factor is

$$M(x) = e^{\int P(x')dx'}$$

ODEs: Example

Solve the differential equation

$$y' - \frac{2y}{x} = 0.$$

We can see that in this case

$$P(x) = \frac{-2}{x}$$

$$M(x) = e^{\int P(x) \, dx}$$

$$M(x) = e^{\int \frac{-2}{x} dx} = e^{-2 \ln x} = (e^{\ln x})^{-2} = x^{-2}$$

(Note we do not need to include the integrating constant - we need only a solution, not the general solution)

$$M(x)=\frac{1}{x^2}.$$

Multiplying both sides by

we obtain

$$\frac{y'}{x^2} - \frac{2y}{x^3} = 0$$

$$\frac{y'x^3 - 2x^2y}{x^5} = 0$$

$$\frac{x(y'x^2 - 2xy)}{x^5} = 0$$

$$\frac{y'x^2 - 2xy}{x^4} = 0.$$

Partial Derivatives: Volume of a Cone

The volume "V" of a cone depends on the cone's height "h" and its radius 'r' according to the formula

$$V(r,h)=\frac{\pi r^2 h}{3}.$$

The partial derivative of "V" with respect to 'r' is

$$\frac{\partial V}{\partial r} = \frac{2\pi rh}{3},$$

which represents the rate with which a cone's volume changes if its radius is varied and its height is kept constant. The partial derivative with respect to "h" is

$$\frac{\partial V}{\partial h} = \frac{\pi r^2}{3},$$

which represents the rate with which the volume changes if its height is varied and its radius is kept constant.

Fundamental Theorem of Calculus

The fundamental theorem of calculus states that the integral of a function f over the interval [a, b] can be calculated by finding an antiderivative F of f:

$$\int_a^b f(x) dx = F(b) - F(a).$$

Numerical Integration: Simpson's Rule

Numerical integration constitutes a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations.

$$\int_a^b f(x) dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right].$$

ODEs: Integrating factor

The integrating factor is a function that is chosen to facilitate the solving of a given equation involving differentials. It is commonly used to solve ordinary differential equations.

$$y' + P(x)y = Q(x)$$

the integration factor is

$$M(x) = e^{\int P(x')dx'}$$

ODEs: Example

Solve the differential equation

$$y'-\frac{2y}{x}=0.$$

We can see that in this case

$$P(x) = \frac{-2}{x}$$

$$M(x) = e^{\int P(x) dx}$$

$$M(x) = e^{\int \frac{-2}{x} dx} = e^{-2 \ln x} = (e^{\ln x})^{-2} = x^{-2}$$

(Note we do not need to include the integrating constant - we need only a solution, not the general solution)

$$M(x)=\frac{1}{x^2}.$$

Multiplying both sides by

we obtain

$$\frac{y'}{x^2} - \frac{2y}{x^3} = 0$$

$$\frac{y'x^3 - 2x^2y}{x^5} = 0$$

$$\frac{x(y'x^2 - 2xy)}{x^5} = 0$$

$$\frac{y'x^2 - 2xy}{x^4} = 0.$$

Fundamental Theorem of Calculus

The fundamental theorem of calculus states that the integral of a function f over the interval [a, b] can be calculated by finding an antiderivative F of f:

$$\int_a^b f(x) dx = F(b) - F(a).$$

Integration by Parts

$$\int xe^x dx$$

Let u = x therefore $\frac{du}{dx} = 1$ and hence du = dxLet $dv = e^x dx$.

$$v = intdv = inte^{x} dx = e^{x}$$

$$I = uv - intvdu$$

$$I = xe^x - inte^x dx = xe^x - e^x + c$$

First Order Ordinary Differential Equations

Solve the first order differential Equation

$$\frac{dy}{dx} + y = x$$

subject to the boundary condition y(0) = 1.

PFE: Examples

$$\int \frac{dx}{x^2 - 9} = \frac{1}{6} \ln \left| \frac{x - 3}{x + 3} \right| + c$$

$$\int \frac{dx}{x^2 + 7x + 6} = \frac{1}{5} \ln \left| \frac{x + 1}{x + 6} \right| + c$$

$$\int \frac{xdx}{(x - 2)^2} = \ln |x - 2| - \frac{2}{x - 2} + c$$

Absolute Value Function

The absolute Value Function: |x| Integrating Absolute Value Function:

Integration of Hyberolic Functions

$$\int \sinh(x)dx = \cosh(x) + c$$

$$\int \cosh(x)dx = \sinh(x) + c$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}}dx = \sinh^{-1}(x/a) + c \qquad x^2 < a^2$$

$$\int \sinh(x/2)dx = 2\cosh(x/2) + c$$

Chain Rule: Example

$$y = -\cos(2x)$$
$$\frac{dy}{dx} = 2 \times \sin(2x)$$

Partial Fraction Expansion

$$\frac{s+1}{s^2(s+2)} = \frac{As+B}{s^2} + \frac{C}{s+2}$$

Cross-multiply the RHS terms

$$\frac{(As+B)(s+2)}{s^2(s+2)} + \frac{(C)(s^2)}{s^2(s+2)}$$

$$= \frac{As^2 + Bs + 2As + 2B}{s^2(s+2)} + \frac{Cs^2}{s^2(s+2)}$$

$$= \frac{(A+C)s^2 + (2A+B)s + 2B}{s^2(s+2)}$$

- ► A+C=0
- ▶ 2B = 1 B=1/2
- ► A=1/4
- ► C=-1/4

$$\int \frac{dx}{x^2 - 4}$$

$$x^2 - 4 = (x - 2) \times (x + 2)$$

$$\frac{1}{x^2 - 4} = \frac{A}{x - 2} + \frac{B}{x + 2}$$

$$\frac{1}{x^2 - 4} = \frac{A(x + 2)}{(x - 2)(x + 2)} + \frac{B(x - 2)}{(x - 2)(x + 2)}$$

$$1 = A(X + 2) + B(X - 2)$$

$$1 = (A + B)x + (2A - 2B)$$

- ► A+B=0
- ► 2A-2B=1
- ▶ Solving A = 1/4 and B = -1/4

$$\frac{1}{x^2 - 4} = \frac{1/4}{x - 2} + \frac{-1/4}{x + 2}$$

$$\int \frac{dx}{x^2 - 4} = \frac{1}{4} \int \frac{dx}{x - 2} - \frac{1}{4} \int \frac{dx}{x + 2}$$

$$\int \frac{dx}{x^2 - 4} = \frac{1}{4} \ln|x - 2| - \frac{1}{4} \ln|x + 2|$$

Integrals: Worked Example

$$\int x(x+2)^{7/2} dx = \frac{2}{9}x(x+2)^{9/2} - \int \frac{2}{9}(x+2)^{9/2} dx$$
$$\frac{2}{9}x(x+2)^{9/2} - \frac{4}{99}(x+2)^{11/2} + c$$

Integrals: Worked Example 2

$$\int \frac{e^x}{e^{2x}-1} dx$$
 Letting $e^x=u$ we get $du=e^x dx$
$$\int \frac{du}{u^2-1} = \int du (u+1)(u-1)$$

Determine the partial derivatives $\frac{\partial f}{\partial \mathbf{x}}$ and $\frac{\partial f}{\partial \mathbf{y}}$

Verify that

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = f(x, y)$$

Let

$$A = \left(\begin{array}{rrrr} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 2 & -1 & 1 & 3 \end{array}\right)$$

- (i) Find the rank of A.
- (ii) Find a basis for the column space of A.

Substitution

$$I = \int \frac{\sin(2x^2)}{3x} dx$$

- ▶ Let $u = 2x^2$
- $\rightarrow du/dx = 4x$
- \rightarrow du = 4xdx

Integration by Parts

$$I = \int u dv = uv - \int v du$$

Example

$$I = \int x^2 e^{2x} dx$$

- Let $u = x^2$. We can say that $\frac{du}{dx} = 2x$. Furthermore du = 2xdx
- $dv = e^{2x} dx$

Partial Derivatives

$$f(x,y) = y^3 - x^3 - 2xy + 5$$

$$f_x = -3x^2 - 2y (1)$$

$$f_y = 3y^2 - 2x$$

Partial Derivatives

$$f(x,y) = y^3 - x^3 - 2xy + 5$$

$$f_x = -3x^2 - 2y$$

$$f_y = 3y^2 - 2x$$

$$f_{xx} = -6x$$

$$f_{yy} = 6y$$

$$f_{xy} = -2$$

$$(2)$$

Optimization

- Local Maxima
- Local Minima
- ► Saddle Point
- Concavity
- Convexity