# ECE M146 Introduction to Machine Learning

Prof. Lara Dolecek ECE Department, UCLA



# Today's Lecture

Overview of ML terminology

Math review



# Today's Lecture

Overview of ML terminology

Math review



# Why Take Intro to Machine Learning Course?

Goals of this course:

- 1. Learn about most popular ML algorithms and frameworks
- Develop mathematical understanding as well as intuition for these techniques
- 3. Test and implement these methods on various examples



## What is Machine Learning?

• Build a system (model/algorithm) based on training data to make inferences on testing data.

• "Machine" part is what specifies this system (model/algorithm).

Optimize parameters of the system with respect to the training data.



# Real Life Examples and Applications Abound!

- Medicine from symptoms to diagnosis
- Transportation automation of cars
- Privacy and authentication -- facial recognition
- Stock market
- Consumer behavior Amazon
- ...and many more!



#### Human vs. Machine Learning

 Human learning – uses complex hypotheses set, context, generative modeling

 Machine learning – pattern recognition equipped with a mathematical model for it. Can need a lot of training data for tasks that are "simple" for humans.



## Classification of ML Algorithms

Broad classification of ML algorithms, based on what is available at



Testing



 Supervised Learning: at training time, we have access both to inputs and their labeled outputs.



#### Classification of ML Algorithms

- Broad classification of ML algorithms, based on what is available at the training time:
- Training
- Build a Model
- Testing

• <u>Unsupervised Learning</u>: at training time, we have access only to input data, but not their labeled outputs.



# Supervised Learning

1. Classification

2. Regression



# Supervised Learning

#### 1. Classification

• Example: automated digit sorter for zip codes in hand written mail

0 1 2 3 4 5 6 7 8 5

#### 2. Regression



## Supervised Learning

#### 1. Classification

• Example: automated digit sorter for zip codes in hand written mail

#### 2. Regression

• Example: given the recent housing sales in zip code 90210, predict the sale value of a 4-bedroom house there.



#### Classification vs. Regression

- Key difference: at test time,
- <u>in classification</u>, determine the value among a finite set of choices that appeared in the training set.



## Classification vs. Regression

- Key difference: at test time,
- <u>in classification</u>, determine the value among a finite set of choices that appeared in the training set.

• <u>In regression</u>, predict/assign a (possibly new) real value to the test point, based on the input-output relationship in the training data.



## Algorithms for Supervised Learning

- Perceptron
- Logistic Regression
- Decision Trees
- Linear-least squares
- K-Nearest Neighbors
- Support Vector Machines
- Naïve Bayes Classifier
- Gaussian Discriminant Analysis



# Algorithms for Supervised Learning

- <u>Perceptron</u>
- Logistic Regression
- Decision Trees
- Linear-least squares
- K-Nearest Neighbors
- Support Vector Machines
- Naïve Bayes Classifier
- Gaussian Discriminant Analysis

 Linear vs. non-linear decision boundary

 Probabilistic vs. nonprobabilistic setting

• Discriminative vs. generative

On-line vs. batch updates



## Unsupervised Learning

- At training time, we do not have access to labels, only the data.
- Main settings:
- 1. Clustering



2. Projections/dimensionality reduction

3. Density Estimation

## Unsupervised Learning

- At training time, we do not have access to labels, only the data.
- Main settings:
- 1. Clustering
  - K-means clustering



- Principal Component Analysis (PCA)
- 3. Density Estimation
  - MLE estimation







## Reinforcement Learning

• Instead of the the  $x \rightarrow y$  relationship, we observe (x,z), where z is partial information about y.

• Instead of providing "good" training examples, as in supervised learning, algorithm needs to discover suitable actions by trial and error for maximum reward.



## Reinforcement Learning

• Instead of the the  $x \rightarrow y$  relationship, we observe (x,z), where z is partial information about y.

 Instead of providing "good" training examples, as in supervised learning, algorithm needs to discover suitable actions by trial and error for maximum reward.

• There is a tradeoff between exploration (attempt to discover new actions) and exploitation (maximize rewards based on available actions).



# Polynomial curve fitting

- Let's use it to solve a regression problem; will highlight important issues as well.
- Suppose we want to fit a polynomial to a  $sin(\prod x)$  function (allow for random noise).
- Polynomial function:



# Polynomial curve fitting

- How to design this function ?
- It depends on what is available.



# Polynomial curve fitting

- How to design this function ?
- It depends on what is available.

Idea #1: Given the training set, find the best fit.

• Ok, let's see how. Specify the degree of the polynomial, M.



# Polynomial curve fitting – idea #1

- Degree M = 0
  - Fit a horizonal line



- Degree M = 1
  - Fit a line

- Degree M = 2

• Fit a quadratic 
$$f = w_0 + w_1 \times + w_2 \times 2$$







# Polynomial curve fitting – idea #1

• Fitting a best curve means to find a polynomial of the given degree such that the error on the training set is minimized

$$\forall x \in \mathbb{Z} = \mathbb$$

Here, N denotes the number of training examples.



# Polynomial curve fitting – idea #1

• Fitting a best curve means to find a polynomial of the given degree such that the error on the training set is minimized

• Here, N denotes the number of training examples.

Can we get the error to be zero?

• Yes! Can always fit a polynomial of degree N-1 to N points.



#### Not so fast.

 Observe what we really want is a model that generalizes well to unseen (testing) data.

• Why is M = N-1 a bad idea?



#### Not so fast.

 Observe what we really want is a model that generalizes well to unseen (testing) data.

Why is M = N-1 a bad idea ?

- Totally unpredictable behavior outside the training set!
- This is known as overfitting.



# Solution: Regularization

• This is idea #2
• Error = 
$$\frac{10}{1-1}$$
  $\frac{10}{1-1}$   $\frac{10}{1-1}$ 

 Term with the parameter lambda Λ penalizes large magnitude values; value of lambda specifies by how much (non-negative parameter).



# Today's Lecture

Overview of ML terminology

Math review

- Probability
- Linear Algebra
- Optimization (later)



Random Variables



Random Variables

Conditional Probability and Bayes Rule



Random Variables

Conditional Probability and Bayes Rule

• Examples of Important Random Variables: Bernoulli, Uniform, Gaussian



Random Variables

Conditional Probability and Bayes Rule

 Examples of Important Random Variables: Bernoulli, Uniform, Gaussian

Maximum Likelihood Estimation (MLE)



## Example: Drawing balls from boxes

• Set up:

box #1

BU BLUE

box #2

r<sub>2</sub> RED 15, BLVE

- Pick a box at random. Draw a ball from this box.
- Suppose the drawn ball is red.

What is the probability that the drawn ball is drawn from box #2?



# Example: Drawing balls from boxes

- Let X be the random variable denting the index of the box.

   Values of X?  $X \in \{4,2\}$  P(x=1)+P(x=1)+P(x=1)=0

$$X \in \{4,2\}$$

• Conditional probability: P(X=2|ballisred)= P(x=2,ballisred) P(ballisted) Y=2

$$= \frac{P(x=2,5allisred)}{P(5allisred)}$$

$$= \frac{P(5allisred)}{P(5allisred)}$$

$$= \frac{r_2}{r_2 + 5z} \cdot \frac{1}{2}$$

$$= \frac{r_1}{r_1 + 5z} \cdot \frac{1}{2} + \frac{r_2}{r_1 + 5z} \cdot \frac{1}{2}$$



# Review: Bayes Rule

• 
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(B) = \sum_{k=1}^{\infty} P(B|A_k) \cdot P(A_k)$$

total probability law
$$A_1, A_1 - A_k - form a pantition$$

$$K = 1$$

$$K = 1$$

$$K = 1$$

$$K = 1$$

#### Review: Bernoulli Random Variable

- X is a Bernoulli RV if it takes on value "1" with probability p, and value "0" with probability (1-p).
- Boxes and balls example, revisited.
- Pick box #1 with probability q and pick box #2 with probability (1-q). Draw a ball from this box.
- Suppose the drawn ball is red.
- What is the probability that the drawn ball is drawn from box #2?



## Example, continued

Conditional probability:

ditional probability: 
$$\frac{r_2}{r_2 + 5r_2} \cdot (1-2)$$

$$\frac{r_2}{r_2 + 5r_2} \cdot (1-2)$$

$$\frac{r_4}{r_4 + 5r_1} \cdot 9 + \frac{r_2}{r_2 + 5r_2} \cdot (1-2)$$



### Review: Uniform Random Variable

• Discrete  $X \in \{3, 2, 2, \dots, 1, 2\}$ 

$$P(x=i) = \frac{1}{L}$$

$$1 \le i \le L$$

• Continuous



$$\int f(x) = 1$$

#### Review: Gaussian Random Variable

A random variable X is said to be Gaussian if its pdf has the following







### Review: mean and variance of a RV

• Discrete RV 
$$-E[x] = \sum_{k} x_k \cdot P(x = x_k)$$
 $E[g(x)] = \sum_{k} x_k \cdot P(x = x_k)$ 
 $E[g(x)] = \sum_{k} x_k \cdot P(x = x_k)$ 

• Continuous RV  $-E[x] = \sum_{k} x_k \cdot F_k(x) dx$ 
 $E[g(x)] = \sum_{k} x_k \cdot P(x = x_k)$ 
 $E[g(x)] = \sum_{k} x_k \cdot P(x = x_k)$ 

# Multivariate Gaussian RV

$$COU(xi, xj) =$$

$$E[(xi - \mu i) / xj - \mu j)$$

 A vector RV X is said to be multivariate jointly Gaussian if its pdf has the following format:

$$f_{\mathsf{X}}(\mathsf{X}) = \frac{1}{(2\pi)^{N} \mathcal{I}} \sqrt{\mathsf{au} \mathsf{A}(\mathsf{I})} \cdot \mathsf{exp} \left\{ -\frac{1}{2} \left( \mathsf{X} - \mathsf{M} \right) \cdot \mathsf{I} \cdot \mathsf{I} \right\}$$

- Here, D is the dimension of X.
- Interpretation for the mean and covariance matrix.

Interpretation for the mean and covariance matrix. 
$$\sum_{X \in \mathcal{E}(X)} M = \sum_{X \in \mathcal{E}(X$$



### More on variance and covariance

## Linear Algebra and Gaussian RV

Covariance matrix ∑.

• The inverse of  $\sum$  is  $\sum^{-1}$ 

• Determinant of  $\Sigma$  is det( $\Sigma$ ).

$$det \begin{bmatrix} a & 5 \\ c & d \end{bmatrix} = ad - 5c$$

• For jointly Gaussian, matrix  $\Sigma$  is positive definite. Inverse exists and determinant is positive.



# Special case: Covariance Matrix is Diagonal

$$f_{x}(x) = \frac{1}{(2\pi)^{D/2}(J^2)^{D/2}} \cdot \exp\left\{-\frac{1}{2} + \frac{1}{J^2} \frac{\sum_{i=1}^{2} (x_i - y_{i,i})^2}{\sum_{i=1}^{2} (x_i - y_{i,i})^2}\right\}$$

$$= \exp(\Sigma) + \prod \exp\left\{-\frac{1}{2} + \frac{1}{J^2} \frac{\sum_{i=1}^{2} (x_i - y_{i,i})^2}{\sum_{i=1}^{2} (x_i - y_{i,i})^2}\right\}$$

$$= \left[0 + \frac{1}{J^2} \frac{1}{J^2}$$

### Review: Linear algebra

Recall rules for taking the transposes



### Review: Linear algebra

- Vector projections.
- Consider vector x of dimension D.
- We write || x || for vector norm





## Review: linear algebra

Inner product of vectors x and y.

$$x^{T} \cdot y = \sum_{i=1}^{2} x_i y_i$$

• If  $x^T y = 0$ , x and y are perpendicular.



• When is the projection maximized? When y = a\*x.

$$\frac{1}{\sqrt{2}}$$



#### Parameter Estimation

• Suppose we sample from an iid Gaussian with known variance and unknown mean.  $\frac{1}{1+x}(x) = \frac{1}{1+x} = \frac{1}$ 

• Goal is to provide the best estimate of the mean based on the sampled data. N

sampled data. N

$$f(x) = \int_{i=1}^{\infty} \sqrt{u_i \cdot \delta} \cdot e^{-ix} \int_{i=1}^$$



Parameter estimation - ctd.

- lake the log so that product secones of  $N \omega_{\mathcal{S}}(\frac{1}{\sqrt{2\pi}}) - \frac{1}{2\sqrt{2}} \sum_{i=1}^{N} (x_i - M) = 0$  = 0 = 0 $\frac{\partial}{\partial M} = 0$   $\frac{\partial}{\partial M} \left( N \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial M} \left( -\frac{1}{2} \log \left( \frac{1}{\sqrt{m}^2} \right) \right) = 0$   $\frac{\partial}{\partial$ 

