Série2 de S.C: Processus ARMA

$\mathbf{E} \mathbf{x} \mathbf{1}$

1-Trouver la FAC du processus: $X_t - \mu = 0.7 (X_{t-1} - \mu) + \varepsilon_t$. Grapher ρ_k pour k = -6, ..., 6. *Faire le correlogramme simple et partiel du processus AR(1) avec $\rho_k = 0.8, 0.3, -0.8$ pour

*Faire le correlogramme simple et partiel du processus AR(1) avec $\varphi = 0.8, 0.3, -0.8$ pour k = 1, ..., 6.

2-Montrer que la FAC du processus: $X_t = \frac{1}{3}X_{t-1} + \frac{2}{9}X_{t-2} + \varepsilon_t$ est donnée par: $\rho_k = \frac{16}{21}\left(\frac{2}{3}\right)^k + \frac{5}{21}\left(-\frac{1}{3}\right)^k$.

3-Montrer que le processus AR(3): $X_t = X_{t-1} + cX_{t-2} - cX_{t-3} + \varepsilon_t$ est non stationnaire $\forall c$.

Ex2: I-Calculer la fonction d'autocovariance des modèles suivants:

 $1-Y_t = (1 + 2.4L + 0.8L^2) \varepsilon_t \text{ où } \varepsilon_t \to BB(0, 1).$

 $2\text{-}(1-1.1L+0.18L^2)\,Y_t=\varepsilon_t\ \text{où }\varepsilon_t\to BB(0,1).$

II) Trouver la fonction d'AC du processus: $X_t = \varepsilon_t + 0.7\varepsilon_{t-1} - 0.2\varepsilon_{t-2}$

III-Donner la forme $MA(\infty)$ et $AR(\infty)$ du modèle $X_t = 0.5X_{t-1} + \varepsilon_t - 0.3\varepsilon_{t-1}$

IV) Identifier les modèles ARMA compatibles avec les relations récursives suivantes:

a) $\rho_h = 0.4 \rho_{h-1}, \forall h > 2$;b) $\rho_h = 0, \forall h > 3$;c) $\rho_h = 0.2 \rho_{h-2} \ \forall h > 1$.

Ex3: Soit le processus suivant: $X_t = 1 + 1.5X_{t-1} - 0.56X_{t-2} + \varepsilon_t$.

où ε_t est un bruit blanc N(0,1).

1-Ce processus est-il stationnaire? Calculer $E(X_t)$.

2-Calculer: a- $\gamma(k)$; k = 1, 4; b- $\rho(k)$ $\forall k$. c- ACP.

3-Donner la représentation $MA(\infty)$ de X_t ; à quoi correspond cette représentation.

Ex4: Soit le processus suivant: $X_t = 0.4X_{t-1} + \varepsilon_t - 0.7\varepsilon_{t-1}$, où ε_t est un bruit blanc N(0,1).

1) Etudier la stationnarité et l'inversibilité.

2) Calculer $\rho(k).$ Conclure. Calculer ACP pour k=1,2

3) Ecrire le modèle sous forme $AR(\infty)$.

Ex5: Soit le processus suivant: $X_t = 15 + \varepsilon_t + 0.6\varepsilon_{t-1} - 0.1\varepsilon_{t-2}$ où ε_t est un bruit blanc N(0,1).

1) Ce processus est-il stationnaire?inversible?

2) Donner la représentation $AR(\infty)$ de X_t .

3) Calculer $\rho(k)$. pour k=1,2,3 Conclure. Calculer ϕ_{kk} pour k=1,2.

Ex6: I-Soit le processus suivant $X_t = \varphi_4 X_{t-4} + \varepsilon_t$ tel que $0 < \varphi_4 < 1$ et $\varepsilon_t \to BB(0, \sigma^2)$. Trouver la fonction ACV et la fonction AC.

II-Calculer la FAC et la FACP du processus: $X_t = 0.8X_{t-3} + \varepsilon_t$, avec $\varepsilon_t \to BB(0, \sigma^2)$.

III- Déterminer la densité spectrale des processus suivants: $\varepsilon_t \to BB(0,1)$.

1- $X_t = 0.7X_{t-1} + \varepsilon_t$. 2- $X_t = -0.7X_{t-1} + \varepsilon_t$,

 $3-X_t = \varepsilon_t - 0.5\varepsilon_{t-1}$. $4-X_t = \varepsilon_t + 0.5\varepsilon_{t-1} - 0.3\varepsilon_{t-2}$.

 $5 - X_t = 0.4 X_{t-1} + \varepsilon_t + 0.9 \varepsilon_{t-1}.$

 $\underline{\mathbf{Ex7}}$: I)—Classer les modèles suivants parmi la famille des modèles ARIMA(p,d,q):

 $\overline{a-X_t} - 0.5X_{t-1} = \varepsilon_t$. $b-X_t = \varepsilon_t - 1.3\varepsilon_{t-1} + 0.4\varepsilon_{t-2}$

 $c-X_t - 0.5X_{t-1} = \varepsilon_t - 1.3\varepsilon_{t-1} + 0.4\varepsilon_{t-2}$

 $d-X_t - 1.2X_{t-1} + 0.2X_{t-2} = \varepsilon_t - 0.5\varepsilon_{t-1}$