Aprendizado Profundo 1

Cross Entropy, Softmax e Grafo Computacional

Professor: Lucas Silveira Kupssinskü

- Função de ativação: Softmax
- Função de Custo: Entropia Cruzada

\boldsymbol{X}		\mathcal{Y}			
0	0		1	0	0
0	1		0	1	0
1	0		0	1	0
1	1		0	0	1

$ heta^{(1)}$		$\beta^{(}$	1)
-0.69	0.63		
0.36	0.59	-0.41	-0.01

Forward Pass camada 1

$$X(\theta^{(1)})^T + \beta^{(1)} =$$

Forward Pass camada 1

$$sigmoid(s^{(1)}) =$$

$$sigmoid \begin{bmatrix} -0.41 & -0.01 \\ 0.22 & 0.58 \\ -1.10 & 0.35 \\ -0.47 & 0.94 \end{bmatrix} = \begin{bmatrix} 0.3989 & 0.4975 \\ 0.5548 & 0.6411 \\ 0.2497 & 0.5866 \\ 0.3846 & 0.7191 \end{bmatrix}$$

o1 =
$$1/(1+np.exp(-s1))$$

• Forward Pass camada 2

$$o^{(1)}(\theta^{(2)})^T + \beta^{(2)} =$$

0.3989	0.4975
0.5548	0.6411
0.2497	0.5866
0.3846	0.7191

Forward Pass camada 2

$$o_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

-0.3337	0.0032	-0.6479
-0.3792	-0.0196	-0.7505
-0.2857	-0.1290	-0.6108
-0.3248	-0.1544	-0.7018

o2 = np.exp(s2)/np.sum(np.exp(s2), axis=1, keepdims=True)

• Loss

$$L(y, \hat{y}) = -\sum_{i=1}^{C} y_i ln \hat{y}$$

1	0	0
0	1	0
0	1	0
0	0	1

$$=-\sum_{i=1}^{C}$$

-1.1413	0.	0.
0.	-0.7791	0.0
0.	-0.905	0.
0.	0.	-1.43

y*np.log(a2)

• Loss

$$L(y, \hat{y}) = -\sum_{i=1}^{C} y_i ln \hat{y}$$

$$-\sum_{i=1}^{C} -\sum_{i=1}^{C} \begin{array}{c|cccc} -1.1413 & 0. & 0. \\ \hline 0. & -0.7791 & 0.0 \\ \hline 0. & -0.905 & 0. \\ \hline 0. & 0. & -1.43 \\ \hline \end{array} = 1.06441$$

-np.sum(y*np.log(a2))/a2.shape[0]

$$\delta^{(2)} = \frac{\partial \left(L(y, o^{(L)})\right)}{\partial o^{(L)}} \frac{\partial \left(o^{(L)}\right)}{\partial s^{(L)}}$$
São vetores!

$$\frac{\partial \left(L(y, o^{(L)})\right)}{\partial o_i^{(L)}} = \frac{\partial \left(-\sum_{j=1}^C y_j ln o_j^{(L)}\right)}{\partial o_i^{(L)}} = \frac{-y_i}{o_i^{(L)}}$$

$$\delta^{(2)} = \frac{\partial \left(L(y, o^{(L)})\right)}{\partial o^{(L)}} \frac{\partial \left(o^{(L)}\right)}{\partial s^{(L)}}$$
São vetores!

$$\frac{\partial \left(o_{i}^{(L)}\right)}{\partial s_{j}^{(L)}} = \begin{cases} Se \ i = j, o_{i}^{(L)} (1 - o_{i}^{(L)}) \\ Se \ i \neq j, \quad -o_{i}^{(L)} o_{j}^{(L)} \end{cases}$$

$$\delta^{(2)} = \frac{\partial \left(L(y, o^{(L)}) \right)}{\partial o^{(L)}} \frac{\partial \left(o^{(L)} \right)}{\partial s^{(L)}}$$

$$\frac{\partial \left(L(y, o^{(L)})\right)}{\partial o_i^{(L)}} = \frac{-y_i}{o_i^{(L)}}$$

-3.1310	0.	0.
0.	-2.1795	0.0
0.	-2.4727	0.
0.	0.	-4.1868

$$\delta^{(2)} = \frac{\partial \left(L(y, o^{(L)}) \right)}{\partial o^{(L)}} \frac{\partial \left(o^{(L)} \right)}{\partial s^{(L)}}$$

$$\frac{\partial \left(o_i^{(L)}\right)}{\partial s_j^{(L)}} = \begin{cases} Se \ i = j, o_i^{(L)} (1 - o_i^{(L)}) \\ Se \ i \neq j, \quad -o_i^{(L)} o_j^{(L)} \end{cases}$$

0.2174	-0.1429	-0.0745
-0.1429	0.2472	-0.1044
-0.0745	-0.1044	0.1789

```
0.2177-0.1469-0.0707-0.14690.2483-0.1014-0.0707-0.10140.1721
```

a = np.eye(a2.shape[-1])
<pre>temp1 = np.zeros((a2.shape[0], a2.shape[1],</pre>
a2.shape[1]),dtype=np.float32)
<pre>temp2 = np.zeros((a2.shape[0], a2.shape[1],</pre>
a2.shape[1]),dtype=np.float32)
<pre>temp1 = np.einsum('ij,jk->ijk',a2,a)</pre>
<pre>temp2 = np.einsum('ij,ik->ijk',a2,a2)</pre>
temp1-temp2

0.2262	-0.1398	-0.0864
-0.1398	0.2409	-0.1010
-0.0863	-0.1010	0.1874

0.2269	-0.1438	-0.0831
-0.1438	0.2424	-0.0986
-0.0832	-0.0986	0.1818

$$\delta^{(2)} = \frac{\partial \left(L(y, o^{(L)}) \right)}{\partial o^{(L)}} \frac{\partial \left(o^{(L)} \right)}{\partial s^{(L)}}$$

-3.1310	0.	0.
0.	-2.1795	0.0
0.	-2.4727	0.
0.	0.	-4.1868

0.2174	-0.1429	-0.0745
-0.1429	0.2472	-0.1044
-0.0745	-0.1044	0.1789
0.2177	-0.1469	-0.0707
-0.1469	0.2483	-0.1014
-0.0707	-0.1014	0.1721
0.2262	-0.1398	-0.0864
0.1200		
-0.1398	0.2409	-0.1010
-0.1398	0.2409	-0.1010 0.1874
-0.0863	-0.1010	0.1874

-0.6806	0.4473	0.2332
0.3203	-0.5412	0.2209
0.3458	-0.5956	0.2498
0.3482	0.4129	-0.7612

$$\frac{\partial \left(L(y, o^{(2)}) \right)}{\partial \theta^{(2)}} = o^{(1)} \delta^{(2)}$$

0.3989	0.4975	-0.6806	0.4473	0.2332
0.5548	0.6411	0.3203	-0.5412	0.2209
0.2497	0.5866	0.3458	-0.5956	0.2498
0.3846	0.7191	0.3482	0.4129	-0.7612

-0.6806 0.3989 0.4975

0.4473

0.2332

-0.2715-0.33860.17840.22250.09300.1161

$$\frac{\partial \left(L(y,o^{(2)})\right)}{\partial \theta^{(2)}} = o^{(1)} \delta^{(2)}$$

0.3989	0.4975	-0.6806	0.4473	0.2332
0.5548	0.6411	0.3203	-0.5412	0.2209
0.2497	0.5866	0.3458	-0.5956	0.2498
0.3846	0.7191	0.3482	0.4129	-0.7612

-0.6806 0.3989 0.4975

-0.2715 -0.3386

0.4473

0.1784 0.2225

0.2332

0.0930 0.1161

-	0	.3	32	0	3

0.5548 0.6411

0.1777 0.2053

-0.5412

.

-0.3002 -0.3469

0.2209

0.1226 0.1416

$$\frac{\partial \left(L(y,o^{(2)})\right)}{\partial \theta^{(2)}} = o^{(1)} \delta^{(2)}$$

0.3989	0.4975	-0.6806	0.4473	0.2332
0.5548	0.6411	0.3203	-0.5412	0.2209
0.2497	0.5866	0.3458	-0.5956	0.2498
0.3846	0.7191	0.3482	0.4129	-0.7612

0.6411

 -0.6806
 0.3989
 0.4975

 0.4473

0.5548

-0.2715-0.33860.17840.22250.09300.1161

0.3458 -0.5956 0.2498

 0.2497
 0.5866
 0.0863
 0.2028

 -0.1487
 -0.3493

 0.0624
 0.1465

-0.3203 -0.5412 0.2209

0.2332

0.1777 0.2053-0.3002 -0.34690.1226 0.1416

$$\frac{\partial \left(L(y, o^{(2)})\right)}{\partial \theta^{(2)}} = o^{(1)} \delta^{(2)}$$

0.3989	0.4975	-0.6806	0.4473	0.2332
0.5548	0.6411	0.3203	-0.5412	0.2209
0.2497	0.5866	0.3458	-0.5956	0.2498
0.3846	0.7191	0.3482	0.4129	-0.7612

0.6411

-0.68060.39890.49750.44730.2332

0.5548

-0.2715-0.33860.17840.22250.09300.1161

0.3458 -0.5956 0.2498

 0.2497
 0.5866
 0.0863
 0.2028

 -0.1487
 -0.3493

 0.0624
 0.1465

-0.3203 -0.5412 0.2209 0.17770.2053-0.3002-0.34690.12260.1416

0.3482 0.4129 -0.7612

 0.3846
 0.7191
 0.1339
 0.2504

 0.1588
 0.2969

 -0.2928
 -0.5473

$$\frac{\partial \left(L(y, o^{(2)})\right)}{\partial \theta^{(2)}} = o^{(1)} \delta^{(2)}$$

0.3989	0.4975	-0.6806	0.4473	0.2332
0.5548	0.6411	0.3203	-0.5412	0.2209
0.2497	0.5866	0.3458	-0.5956	0.2498
0.3846	0.7191	0.3482	0.4129	-0.7612

O gradiente é acumulado pela média (mas poderia ser soma...)

$$\frac{1}{4} \begin{bmatrix} -0.2715 & -0.3386 & 0.1777 & 0.2053 & 0.0863 & 0.2028 & 0.1339 & 0.2504 \\ 0.1784 & 0.2225 & +0.3002 & -0.3469 & +0.1487 & -0.3493 & +0.1588 & 0.2969 \\ 0.0930 & 0.1161 & 0.1226 & 0.1416 & 0.0624 & 0.1465 & -0.2928 & -0.5473 \end{bmatrix} = \begin{bmatrix} 0.0316 & 0.0800 \\ -0.0037 & -0.0358 \\ -0.0037 & -0.0358 \end{bmatrix}$$

- Essa forma de trabalhar é propensa a erros e gera algumas multiplicações de matrizes que podem ter um tamanho grande
 - Podemos fazer melhor
- Considere a Loss abaixo que recebe como entrada os logits

$$L(y,s) = -\sum_{i=1}^{C} y_i ln \frac{e^{s_i}}{\sum_{j} e^{s_j}}$$

$$L(y,s) = -\sum_{i=1}^{C} y_i ln \frac{e^{s_i}}{\sum_{j} e^{s_j}}$$

$$\frac{\partial L(y,s)}{\partial s_k} = \frac{\partial \left(-\sum_{i=1}^{C} y_i ln \frac{e^{s_i}}{\sum_{j} e^{s_j}}\right)}{\partial s_k}$$

$$= -\sum_{i=1}^{C} y_i \frac{\partial \left(ln \frac{e^{s_i}}{\sum_{j} e^{s_j}}\right)}{\partial s_k}$$

$$= -\sum_{i=1}^{C} y_i \frac{\partial \left(ln \frac{e^{s_i}}{\sum_{j} e^{s_j}} \right)}{\partial s_k}$$

$$= -\sum_{i=1}^{C} y_i \frac{\partial (lno_i)}{\partial o_i} \frac{\partial (o_i)}{\partial s_k}, o_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

$$= -\sum_{i=1}^{C} \frac{y_i}{o_i} \frac{\partial(o_i)}{\partial s_k}, o_i = \frac{e^{s_i}}{\sum_{j} e^{s_j}}$$

$$= -\sum_{i=1}^{C} \frac{y_i}{o_i} \frac{\partial(o_i)}{\partial s_k}, o_i = \frac{e^{s_i}}{\sum_{j} e^{s_j}}$$

$$= -\left[\sum_{i \neq k} \frac{y_i}{o_i} (-o_i o_k) + \frac{y_k}{o_k} (o_k (1 - o_k))\right], o_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

$$= -\left[\sum_{i \neq k} (-y_i o_k) + y_k (1 - o_k), \right], o_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

$$= -\left[\sum_{i \neq k} (-y_i o_k) + y_k (1 - o_k)\right], o_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

$$= -\left[-o_k \sum_{i \neq k} y_i + y_k (1 - o_k)\right], o_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

$$= -[-o_k(1 - y_k) + y_k(1 - o_k)], o_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

$$= -[-o_k(1 - y_k) + y_k(1 - o_k)], o_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

$$= -[-o_k + o_k y_k + y_k - o_k y_k], o_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

$$\frac{\partial L(y,s)}{\partial s_k} = o_k - y_k, \qquad o_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

Considere a seguinte função

$$f(a,b,c) = (a+b)*c$$

 Podemos representar essa expressão com o seguinte grafo computacional direcionado acíclico

Considere a seguinte função

$$f(a,b,c) = (a+b)*c$$

 Podemos representar essa expressão com o seguinte grafo computacional direcionado acíclico

• Essa função pode ser derivada em relação a cada uma das variáveis

$$\frac{\partial(a+b)}{\partial a} = 1$$

$$\frac{\partial(a+b)}{\partial b} = 1$$

$$\frac{\partial (d*c)}{\partial d} = c$$

$$\frac{\partial(d*c)}{\partial c} = d$$

$$f(a,b,c) = (a+b) * c$$

$$\frac{\partial f}{\partial a}$$
, $\frac{\partial f}{\partial b}$, $\frac{\partial f}{\partial c}$

$$f(a,b,c) = (a+b) * c$$

$$\frac{\partial(a+b)}{\partial a} = 1$$

$$\frac{\partial(a+b)}{\partial b} = 1$$

$$\frac{\partial (d*c)}{\partial d} = c$$

$$\frac{\partial (d*c)}{\partial c} = d$$

$$\frac{\partial f}{\partial a}$$
, $\frac{\partial f}{\partial b}$, $\frac{\partial f}{\partial c}$

$$f(a,b,c) = (a+b) * c$$

$$\frac{\partial(a+b)}{\partial a} = 1$$

$$\frac{\partial(a+b)}{\partial b} = 1$$

$$\frac{\partial (d*c)}{\partial d} = c$$

$$\frac{\partial(d*c)}{\partial c} = d$$

$$f(a,b,c) = (a+b) * c$$

$$\frac{\partial(a+b)}{\partial a} = 1$$

$$\frac{\partial(a+b)}{\partial b} = 1$$

$$\frac{\partial (d*c)}{\partial d} = c$$

$$\frac{\partial (d*c)}{\partial c} = d$$

$$f(a,b,c) = (a+b)*c$$

$$\frac{\partial(a+b)}{\partial a} = 1$$

$$\frac{\partial(a+b)}{\partial b} = 1$$

$$\frac{\partial (d*c)}{\partial d} = c$$

$$\frac{\partial (d*c)}{\partial c} = d$$

$$f(a,b,c) = (a+b)*c$$

$$\frac{\partial(a+b)}{\partial a} = 1$$

$$\frac{\partial(a+b)}{\partial b} = 1$$

$$\frac{\partial (d*c)}{\partial d} = c$$

$$\frac{\partial (d*c)}{\partial c} = d$$

Grafo Computacional - forward

Grafo Computacional - Backward

$$f(\theta, x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2)}}$$

$$f(\theta, x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2)}}$$

$$f(\theta, x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2)}}$$

$$f(\theta, x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2)}}$$

$$f(\theta, x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2)}}$$

