Charles Zheng

Introduction to "Cloud Computing"

Stats 290 March 11, 2015

Review of Parallel/Distributed Computing

- Physical speed limit for sequential computing
- * Only choice: parallelization
- * Types of parallelization:
 - * Multi-core on the same computer (multicore)
 - * Simple network of workstations (snow)
 - * Cluster computing (batch)

What is the cloud?

- * Computationally, same paradigm as cluster computing
 - * "I don't understand what we would do differently in the light of cloud computing other than change the wording of some of our ads" Larry Ellison, Oracle
- ♦ Pricing model: Own/Rent → Pay-as-you-go
- * Consequences:
 - * Individuals can choose to create a "personal cluster"
 - * Large-scale interactivity enabled due to "cost associativity"

- * Low-level: Utility computing
- * Mid-level: Hosting
- * High level: Applications

* Low-level: Utility computing

- * Users launch servers in the cloud
- * Users specify memory, networking, CPUs
- Users act as sysadmins
- * Just like using your own computer though SSH

* Examples:

- Amazon Elastic Compute Cloud (EC2)
- * Google ComputeEngine

* Mid-level: Hosting

- Platform for hosting specific types of applications written in specific programming language
- * Hosting service act as sysadmins to manage scaling
- * Examples:
 - * Traditional web hosting (http, PHP, Ruby on Rails, etc)
 - Microsoft Azure (.NET Framework)
 - * Amazon Elastic MapReduce (Apache Hadoop)

High level: Applications

- Users use an existing application on the cloud
- Examples:
 - * Search engines
 - * Dropbox
 - Google documents
 - * cloud versions: Adobe Photoshop, Microsoft office

Weaknesses of cloud computing

- Latency between virtual machines
 - * Supercomputers still dominate in scientific computing, e.g. weather simulations
- Transfer costs for large datasets
 - * Cheaper and faster to send 100 TB on a hard drive via FedEx
- * Obstacles for reproducible research
 - * Streaming data: what if I can't archive the stream?
 - * Dependence on cloud provider: what if they discontinue their service?

Utility Computing for Individuals

The story of the personal computer

- * Historically, all computing was done on mainframes
 - Many users share on mainframe
 - Users log in using a terminal
- * Division between admins and users
- * "Home computer revolution" predicted in 1970's but did not become mainstream until 1988
- * Now you can administer your own personal computer...

Utility computing

- * Attractive due to cost associativity
 - 100 hours using 1 computer = 1 hour using 100 computers
 - * Costs are now comparable
- * Increasing availability of tools to streamline configuration
 - * Scripts to auto. launch and configure are common
- * Conveniently use new frameworks like Hadoop or Spark

Personal Cloud Computing

- * Cheaper to buy computing hours/pay-by-hour software than invest in hardware and personal software licenses
 - Exemplified by Google Chromebook
- * Now you can administer your own cluster...
 - * A daunting task, but the process is becoming more streamlined
 - Necessary for cutting-edge paradigms (like Spark)
- * Take responsibility of your own security
 - * Pro: No more headaches connecting to organization network
 - * Con: Nobody watching out for you over your shoulder

Elements of Utility Computing

- * A billable, password-protected account
 - * Secret access codes for programmatic access
- * Resources
 - Data storage, Virtual instances, Machine images
 - * SSH key pairs
- Configuration
 - * Security groups, Geographic service zone
- * Interface
 - Online dashboard
 - Programmatic APIs

A simple workflow using Amazon EC2

* (Demo in class)

Managing your cloud

- * Run scripts on your own machine
- * Scripts can launch, configure, run, collect, and cleanup
- * (see boto demonstration in IPython notebook)

Interactive Computing in the Cloud

Interfaces

- * One option: Handle GUI on client side
 - * E.g. Get results of computation from Rserve, then display in R
- * Other option: Web sockets
 - * Launch a web application from the cloud, then access it locally
 - * RStudio server, IPython notebook, 0xdata (demos)

What can interactivity do for you?

- * Adjust your experiments on the fly
 - Video: Spark streaming for neuroscience
- Scale up exploratory data analysis
- Probe for weaknesses in your methods using simulations
- Your startup idea here]

Conclusion

- * Cloud computing: mostly the same hardware and software but now priced by usage
- * Key feature is cost associativity: pay the same for 100 hours on 1 machine or 1 hour on 100 machines in parallel
- * It is becoming easier and easier for individuals without specialized training to administer their own "personal cluster": try it!

Friday's lecture: Spark tutorial

- * You will be given access to a Linux instance on EC2
- Learn how to
 - use the Hadoop filesystem
 - launch IPython notebooks
 - * run Spark jobs from your browser