A Characterization of the Esteban-Ray Polarization Measures: Supplementary Appendix

Yoko Kawada, Yuta Nakamura, Keita Sunada Keio University, Japan

May 1, 2018

Appendix A: Proof of Proposition 1. (Supplementary Appendix, Not for Publication)

Condition H. Take any $(\boldsymbol{\pi}, \boldsymbol{y}), (\boldsymbol{\pi}', \boldsymbol{y}') \in \mathcal{D}$ and any $\lambda > 0$. Suppose that

$$\hat{P}(\boldsymbol{\pi}, \boldsymbol{y}) \geq \hat{P}(\boldsymbol{\pi}', \boldsymbol{y}').$$

Then, by the definition of \hat{P} ,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \pi_i^{1+\alpha} \pi_j \hat{f}(|y_i - y_j|) \ge \sum_{i=1}^{n'} \sum_{j=1}^{n'} \pi_i'^{1+\alpha} \pi_j' \hat{f}(|y_i' - y_j'|).$$

Since $\lambda > 0$, this equation implies that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (\lambda \pi_i)^{1+\alpha} (\lambda \pi_j) \hat{f}(|y_i - y_j|) \ge \sum_{i=1}^{n'} \sum_{j=1}^{n'} (\lambda \pi_i')^{1+\alpha} (\lambda \pi_j') \hat{f}(|y_i' - y_j'|).$$

Therefore,

$$\hat{P}(\lambda \boldsymbol{\pi}, \boldsymbol{y}) \geq \hat{P}(\lambda \boldsymbol{\pi}', \boldsymbol{y}').$$

Axiom 1. Take any p > 0 and x > 0. Let us show that there exist $\varepsilon > 0$ and $\mu > 0$ such that for any y > x with $y - x < \varepsilon$ and any q > 0 with $q < \mu p$,

$$\hat{P}\left((p,q,q),(0,x,y)\right) < \hat{P}\left((p,2q),\left(0,\frac{x+y}{2}\right)\right).$$

Case 1 (x < c). Let $\varepsilon > 0$ and $\mu > 0$ be such that

$$\varepsilon = \min \left\{ \frac{1}{2}(c-x), (2^{\alpha} - 1)x \right\},$$
$$\mu = \frac{1}{2}.$$

Take any y > x with $y - x < \varepsilon$ and any q > 0 with $q < \mu p$. Note that $x, y, \frac{x+y}{2}, |y-x| < c$. Therefore,

$$\hat{P}\left((p,q,q),(0,x,y)\right) = K\left(\left(p^{1+\alpha}q + q^{1+\alpha}p\right)(x+y) + 2q^{2+\alpha}|y-x|\right),$$

and

$$\hat{P}\left(\left(p,2q\right),\left(0,\frac{x+y}{2}\right)\right)=K\left(2p^{1+\alpha}q+2^{1+\alpha}q^{1+\alpha}p\right)\left(\frac{x+y}{2}\right).$$

Moreover, since $|y - x| < \varepsilon$, 2q < p and $\varepsilon \le (2^{\alpha} - 1)x$, it follows that

$$2q|y-x| < \varepsilon p \le (2^{\alpha} - 1)xp < (2^{\alpha} - 1)(x+y)p.$$

Then, by the same argument as ER (line 14 on page 837).

$$\hat{P}((p,q,q),(0,x,y)) < \hat{P}((p,2q),(0,\frac{x+y}{2})).$$

Case 2 $(x \ge c)$. Let $\varepsilon > 0$ and $\mu > 0$ be such that

$$\varepsilon = \min \left\{ \frac{1}{2}c, (2^{\alpha} - 1)(K'x - (K' - K)c) \right\},$$

$$\mu = \frac{1}{2K}.$$

Take any y > x with $y - x < \varepsilon$ and any q > 0 with $q < \mu p$. Note that $x, y, \frac{x+y}{2} \ge c$ and |y - x| < c. Therefore,

$$\hat{P}\left((p,q,q),(0,x,y)\right) = \left(p^{1+\alpha}q + q^{1+\alpha}p\right) \left(K'x + K'y - 2(K'-K)c\right) + 2q^{2+\alpha}K|y-x|,$$

and

$$\begin{split} \hat{P}\left((p,2q), \left(0, \frac{x+y}{2}\right)\right) &= \left(2p^{1+\alpha}q + 2^{1+\alpha}q^{1+\alpha}p\right)\left(\frac{x+y}{2}K' - (K'-K)c\right) \\ &= \left(p^{1+\alpha}q + q^{1+\alpha}p\right)\left(K'x + K'y - 2(K'-K)c\right) + (2^{\alpha} - 1)q^{1+\alpha}p(K'x + K'y - 2(K'-K)c). \end{split}$$

Then, $\hat{P}\left((p,q,q),(0,x,y)\right)<\hat{P}\left((p,2q),\left(0,\frac{x+y}{2}\right)\right)$ if and only if

$$2qK|y-x| < (2^{\alpha} - 1)p(K'x + K'y - 2(K' - K)c).$$

Since $|y-x| < \varepsilon$, 2Kq < p and $\varepsilon \le (2^{\alpha} - 1)(K'x - (K' - K)c)$, we have

$$2qK|y-x| < \varepsilon p \le (2^{\alpha}-1)p(K'x - (K'-K)c) < (2^{\alpha}-1)p(K'x + K'y - 2(K'-K)c).$$

Therefore,

$$\hat{P}((p,q,q),(0,x,y)) < \hat{P}((p,2q),(0,\frac{x+y}{2})).$$

Hence \hat{P} satisfies Axiom 1.

Axiom 2. Fix any p, q, r > 0 with p > r, and any x < y with x > y - x. Let us show that for any $\Delta \in (0, y - x)$,

$$\hat{P}((p,q,r),(0,x,y)) < \hat{P}((p,q,r),(0,x+\Delta,y)).$$

Take any $\Delta \in (0, y - x)$. For simplicity, we write

$$\hat{P} \equiv \hat{P} ((p, q, r), (0, x, y)),$$

$$\hat{P}_{\Delta} \equiv \hat{P} ((p, q, r), (0, x + \Delta, y)).$$

Then,

$$\begin{split} \hat{P} &= \hat{f}(x) \left(p^{1+\alpha} q + q^{1+\alpha} p \right) + \hat{f}(y-x) \left(q^{1+\alpha} r + r^{1+\alpha} q \right) + \hat{f}(y) \left(p^{1+\alpha} r + r^{1+\alpha} p \right), \\ \hat{P}_{\Delta} &= \hat{f}(x+\Delta) \left(p^{1+\alpha} q + q^{1+\alpha} p \right) + \hat{f}(y-x-\Delta) \left(q^{1+\alpha} r + r^{1+\alpha} q \right) + \hat{f}(y) \left(p^{1+\alpha} r + r^{1+\alpha} p \right). \end{split}$$

We shall show $\hat{P}_{\Delta} - \hat{P} > 0$.

Since \hat{f} is convex and x > y - x, the slope of \hat{f} at x is larger than that at y - x; that is,

$$\hat{f}(x+\Delta) - \hat{f}(x) \ge \hat{f}(y-x) - \hat{f}(y-x-\Delta).$$

Therefore,

$$\begin{split} &\hat{P}_{\Delta} - \hat{P} \\ &\geq \left(\hat{f}(x+\Delta) - \hat{f}(x)\right) \left(p^{1+\alpha}q + q^{1+\alpha}p\right) - \left(\hat{f}(y-x) - \hat{f}(y-x-\Delta)\right) \left(q^{1+\alpha}r + r^{1+\alpha}q\right) \\ &\geq \left(\hat{f}(y-x) - \hat{f}(y-x-\Delta)\right) \left(\left(p^{1+\alpha}q + q^{1+\alpha}p\right) - \left(q^{1+\alpha}r + r^{1+\alpha}q\right)\right). \end{split}$$

Hence, $\hat{P}_{\Delta} - \hat{P}$ is positive whenever p > r since $\hat{f}(y - x) - \hat{f}(y - x - \Delta) > 0$.

Axiom 3. Fix any p, q > 0, and any x, y > 0 with x = y - x. Let us show that for any $\Delta \in (0, q/2)$,

$$\hat{P}\left(\left(p,q,p\right),\left(0,x,y\right)\right) < \hat{P}\left(\left(p+\Delta,q-2\Delta,p+\Delta\right),\left(0,x,y\right)\right).$$

Take any $\Delta \in (0, q/2)$. For simplicity, we write

$$\hat{P} \equiv \hat{P}((p,q,p),(0,x,y)),$$

$$\hat{P}_{\Delta} \equiv \hat{P}((p+\Delta,q-2\Delta,p+\Delta),(0,x,y)).$$

Then,

$$\hat{P} = 2\hat{f}(d) (p^{1+\alpha}q + q^{1+\alpha}p) + 2\hat{f}(2d) (p^{2+\alpha}),$$

$$\hat{P}_{\Delta} = 2\hat{f}(d) ((p+\Delta)^{1+\alpha}(q-2\Delta) + (q-2\Delta)^{1+\alpha}(p+\Delta)) + 2\hat{f}(2d) ((p+\Delta)^{2+\alpha}).$$

We shall show $\hat{P}_{\Delta} - \hat{P} > 0$.

Case 1 (2d < c). In this case,

$$\hat{P} = K\left(2d(p^{1+\alpha}q + q^{1+\alpha}p) + 4d(p^{2+\alpha})\right),$$

$$\hat{P}_{\Delta} = K\left(2d((p+\Delta)^{1+\alpha}(q-2\Delta) + (q-2\Delta)^{1+\alpha}(p+\Delta)) + 4d((p+\Delta)^{2+\alpha})\right).$$

Then, by the same argument as ER (paragraph of verifying axiom 3 on page 837), it follows that $\hat{P}_{\Delta} - \hat{P} > 0$.

Case 2 (d < c and c < 2d). By definition of \hat{f} , it follows that $\hat{f}(2d) \ge 2Kd$. Then, since $(p + \Delta)^{2+\alpha} \ge p^{2+\alpha}$,

$$2\hat{f}(2d)(p+\Delta)^{2+\alpha} - 2\hat{f}(2d)p^{2+\alpha} \ge 4Kd(p+\Delta)^{2+\alpha} - 4Kdp^{2+\alpha}.$$

Therefore,

$$P_{\Delta} - P \ge K \Big(2d \big((p + \Delta)^{1+\alpha} (q - 2\Delta) + (q - 2\Delta)^{1+\alpha} (p + \Delta) \big) + 4d \big((p + \Delta)^{2+\alpha} \big) \Big) - K \Big(2d \big(p^{1+\alpha} q + q^{1+\alpha} p \big) + 4d \big(p^{2+\alpha} \big) \Big).$$
 (A.1)

Then, by the same argument as Case 1, the right hand side of (A.1) is positive. Hence $\hat{P}_{\Delta} - \hat{P} > 0$.

Case 3 (c < d). Let

$$A \equiv 2(p^{1+\alpha}q + q^{1+\alpha}p) + 4(p^{2+\alpha}),$$

$$A_{\Delta} \equiv 2((p+\Delta)^{1+\alpha}(q-2\Delta) + (q-2\Delta)^{1+\alpha}(p+\Delta)) + 4((p+\Delta)^{2+\alpha}),$$

$$B \equiv 2(p^{1+\alpha}q + q^{1+\alpha}p) + 2(p^{2+\alpha}),$$

$$B_{\Delta} \equiv 2((p+\Delta)^{1+\alpha}(q-2\Delta) + (q-2\Delta)^{1+\alpha}(p+\Delta)) + 2((p+\Delta)^{2+\alpha}).$$

Then, we can compute that

$$\hat{P} = K'dA - (K' - K)cB,$$

$$\hat{P}_{\Delta} = K'dA_{\Delta} - (K' - K)cB_{\Delta}.$$

Moreover, by the same argument as Case 1, it follows that $A_{\Delta} \geq A$. Therefore,

$$K'd(A_{\Delta} - A) \ge K'c(A_{\Delta} - A)$$
,

and hence

$$\hat{P}_{\Delta} - \hat{P} \ge \left(K'cA_{\Delta} - (K' - K)cB_{\Delta} \right) - \left(K'cA - (K' - K)cB \right).$$

Therefore, it suffices to show that the derivative of the function

$$\hat{P}(\Delta) \equiv K'cA_{\Delta} - (K' - K)cB_{\Delta},$$

evaluated at $\Delta = 0$, is non-negative and positive for all but at most one ratio $z \equiv p/q$. By a simple computation, this derivative is given by

$$\hat{P}'(\Delta) = q^{1+\alpha} \Big(2c(K' - K)(2 + \alpha)z^{1+\alpha} - 4cK\varphi(z, \alpha) \Big), \tag{A.2}$$

where the function φ is defined by

$$\varphi(z,\alpha) = (1+\alpha)\left(z - \frac{z^{\alpha}}{2} - z^{1+\alpha}\right) - \frac{1}{2}.$$

Then, since $\alpha \in (1, \alpha^*]$, (A.2) is non-negative and is positive for all but at most one ratio z (see ER; equation (2) and subsequent arguments on page 833). Therefore, \hat{P} satisfies Axiom 3.

Appendix B: Discussions on Proposition 1. (Supplementary Appendix, Not for Publication)

(i) Ordinal difference between a counterexample and ER's measure

Our counterexample and an Esteban-Ray measure generate different orderings. For example, let $(\boldsymbol{\pi}, \boldsymbol{y}) = ((1, 1, 1), (0, 4, 8))$ and $(\boldsymbol{\pi}', \boldsymbol{y}') = ((1, 1, 1), (0, 1, 7))$. Specify each

parameter of \hat{P} as K = 1, K' = 10 and c = 4; that is, let

$$P^*(\boldsymbol{\pi}, \boldsymbol{y}) = \sum_{i=1}^n \sum_{j=1}^n \pi_i^{1+\alpha} \pi_j |y_i - y_j|,$$
$$\hat{P}(\boldsymbol{\pi}, \boldsymbol{y}) = \sum_{i=1}^n \sum_{j=1}^n \pi_i^{1+\alpha} \pi_j \hat{f}(|y_i - y_j|),$$

where

$$\hat{f}(|y_i - y_j|) = \begin{cases} |y_i - y_j| & \text{if } |y_i - y_j| < 4, \\ 10|y_i - y_j| - 36 & \text{if } |y_i - y_j| \ge 4. \end{cases}$$

Then, for any $\alpha \in (1, \alpha^*]$,

$$P^*(\boldsymbol{\pi}, \boldsymbol{y}) = 32 > 28 = P^*(\boldsymbol{\pi}', \boldsymbol{y}'),$$

but

$$\hat{P}(\boldsymbol{\pi}, \boldsymbol{y}) = 104 < 118 = \hat{P}(\boldsymbol{\pi}', \boldsymbol{y}').$$

Hence, P^* and \hat{P} yield different orderings.

(ii) Denseness of counterexamples

Many functions of the form of (1) satisfy Axioms 1–3 and Condition H, but do not take the form of (2). Indeed, let

 $F = \{f : \mathbb{R}_+ \to \mathbb{R}_+ \mid f \text{ is convex, strictly increasing, non-linear,}$ piecewise linear with discrete kink points, and $f(0) = 0.\}$.

Then, for any $f \in F$, a function of the form (1)

$$P(\boldsymbol{\pi}, \boldsymbol{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \pi_i^{1+\alpha} \pi_j f(|y_i - y_j|)$$

satisfies Axioms 1–3 and Condition H but does not take the form of (2).

Moreover, let

$$G = \{g : \mathbb{R}_+ \to \mathbb{R}_+ \mid g \text{ is convex, strictly increasing, and } g(0) = 0\},\$$

then F is dense in G with a standard metric ρ , defined as $\rho(f,g) = \sup_{x \in \mathbb{R}_+} |f(x) - g(x)|$. That is, for all $g \in G$ and any $\varepsilon > 0$, there exists $f \in F$, such that $\rho(f,g) < \varepsilon$. Denseness of F suggests that Axiom 1 does not work well to characterize the Esteban-Ray measures. **Proposition.** For any $f \in F$, a function of the form (1)

$$P(\boldsymbol{\pi}, \boldsymbol{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \pi_i^{1+\alpha} \pi_j f(|y_i - y_j|)$$

where $\alpha \in (0, \alpha^*]$ satisfies Axioms 1, 2 and 3, and Condition H but does not take the form of (2). Moreover, F is dense in G.

The first statement can be proven by the same way as Proposition 1. Here we show that F is dense in G. Consider any $g \in G$. Take any $\varepsilon > 0$.

Case 1 (g is non-linear). We will construct a piecewise linear function that uniformly approximates g. Consider the partition of $[0,\infty)$, $[0,\varepsilon)$, $[\varepsilon,2\varepsilon)$, $[2\varepsilon,3\varepsilon)$,.... Since g is strictly increasing and continuous¹, for each $k \in \{1,2,\ldots\}$, there exists a unique real number $d_k \in \mathbb{R}_+$ with $d_k = g^{-1}(k\varepsilon)$. For example, $g(d_1) = \varepsilon$ and $g(d_2) = 2\varepsilon$. Define $d_0 = 0$. Note that \mathbb{R}_+ is partitioned by a family $[d_0,d_1)$, $[d_1,d_2)$, $[d_2,d_3)$,.... Let f be a piecewise linear function such that

$$f(x) = \begin{cases} \frac{\varepsilon}{d_1} x & \text{if } x \in [0, d_1), \\ \frac{\varepsilon}{d_2 - d_1} (x - d_1) + \varepsilon & \text{if } x \in [d_1, d_2), \\ \frac{\varepsilon}{d_3 - d_2} (x - d_2) + 2\varepsilon & \text{if } x \in [d_2, d_3), \\ \vdots & \vdots & \vdots \\ \frac{\varepsilon}{d_k - d_{k-1}} (x - d_{k-1}) + (k - 1)\varepsilon & \text{if } x \in [d_{k-1}, d_k), \\ \vdots & \vdots & \vdots & \end{cases}$$

That is, f is the piecewise linear function such that $f(d_k) = k\varepsilon = g(d_k)$ for each $k \in \{0, 1, 2, \ldots\}$. Obviously, $f \in F$.²

We show that g can be uniformly approximated by f. Consider any $x \in \mathbb{R}_+$. Since the family $[d_0, d_1), [d_1, d_2), [d_2, d_3), \ldots$ is a partition of \mathbb{R}_+ , there exists $k \in \{1, 2, \ldots\}$ such that $x \in [d_{k-1}, d_k)$, and so

$$f(x) \in [(k-1)\varepsilon, k\varepsilon)$$
 and $g(x) \in [(k-1)\varepsilon, k\varepsilon)$.

Therefore, $|f(x) - g(x)| < \varepsilon$.

¹Since g convex, strict increasing, and g(0) = 0, it is continuous on $[0, \infty)$.

²Since g is convex, $d_k - d_{k-1} > d_{k+1} - d_k$ for each $k \in \{1, 2, ...\}$. Therefore, $\frac{\varepsilon}{d_k - d_{k-1}}$ is increasing in k, that is, f is a convex piecewise linear function.

Case 2 (g is linear). Since g is linear, there exists k > 0 such that g(x) = kx for any $x \in \mathbb{R}_+$. Fix any $c \in \mathbb{R}_{++}$. Let \tilde{f} be a convex piecewise linear function such that

$$\tilde{f}(x) = \begin{cases} \frac{1}{c} \left(kc - \frac{1}{2}\varepsilon \right) x & \text{if } x < c, \\ kx - \frac{1}{2}\varepsilon & \text{if } x \ge c. \end{cases}$$

Obviously, $\tilde{f} \in F$. Then, $\tilde{f}(x) \in (kx - \varepsilon, kx)$ for any $x \in \mathbb{R}_+$. Therefore, $|\tilde{f}(x) - g(x)| < \varepsilon$. Hence, F is dense in G.

Appendix C: Proof of Proposition 2. (Supplementary Appendix, Not for Publication)

(Sufficiency.) We can show that P^* satisfies Axiom 1' as the same way in ER, so we omit the proof of this part.

(Necessity.) We show that Axiom 1' implies concavity of θ . since the proof of Proposition 2 is the same as that of Theorem 1 except for this point. Consider the distribution depicted in Axiom 1'. Initially, polarization is given by

$$P^{1} \equiv pq[\theta(p, a) + \theta(p, b)] + pq[\theta(q, a) + \theta(q, b)] + 2q^{2}\theta(q, |b - a|),$$

and polarization after the distribution shifting is

$$P^2 \equiv 2pq \left[\theta\left(p, \frac{a+b}{2}\right)\right] + 2pq \left[\theta\left(2q, \frac{a+b}{2}\right)\right].$$

Axiom 1' implies that

$$2p\left[\theta\left(p,\frac{a+b}{2}\right) + \theta\left(2q,\frac{a+b}{2}\right)\right] > p[\theta(p,a) + \theta(p,b)]$$
$$+ p[\theta(q,a) + \theta(q,b)]$$
$$+ 2q\theta(q,|b-a|).$$

Take the limit as $q \to 0$. Then, for any x > 0, there exists $\varepsilon > 0$ such that for any $a, b \in B(x, \varepsilon)$,

$$\theta\left(p, \frac{a+b}{2}\right) \ge \frac{\theta(p,a) + \theta(p,b)}{2}.$$

This means local mid-point concavity, but we show that it is sufficient for global and any convex-combination concavity; for any a, b > 0 and any $t \in [0, 1]$,

$$\theta(p, ta + (1-t)b) \ge t\theta(p, a) + (1-t)\theta(p, b).$$

Suppose, by contradiction, that there exist a, b > 0 and $t \in [0, 1]$ such that

$$\theta(p, ta + (1-t)b) < t\theta(p, a) + (1-t)\theta(p, b).$$
 (C.1)

For each $s \in [0, 1]$, define

$$h(s) = \theta(p, sa + (1 - s)b) - s\theta(p, a) - (1 - s)\theta(p, b).$$

Then h is locally mid-point concave. Indeed, since $\theta(p,\cdot)$ is locally mid-point concave at any point, $\theta(p,\cdot)$ is mid-point concave on $B(sa+(1-s)b,\varepsilon)$ for any $s\in[0,1]$ and for some $\varepsilon>0$. Moreover, $-s\theta(p,a)-(1-s)\theta(p,b)=(\theta(p,b)-\theta(p,a))s-\theta(p,b)$ is a straight line, which is globally concave. Since the sum of two concave functions is also concave, h is locally mid-point concave. Note that h(1)=h(0)=0 and h(t)<0 by (C.1).

Since h is continuous, by the extreme value theorem, h has the minimum value on [0,1]. Let

$$m = \min\{h(s) : s \in [0, 1]\},\$$

$$u = \max\{s \in [0, 1] : h(s) = m\}.$$

Then h(s) > h(u) for every $s \in (u,1]$ and $h(s') \ge h(u)$ for every $s' \in [0,u]$. Thus h is not locally concave on any epsilon ball with center u. Indeed, take any $\varepsilon' > 0$. Let $a' \in B(u,\varepsilon')$ with a' > u. Let b' = u - |a' - u|. Note that $a',b' \in B(u,\varepsilon')$, $\frac{1}{2}(a' + b') = u$, h(a') > h(u), and $h(b') \ge h(u)$. This implies that

$$h\left(\frac{1}{2}(a'+b')\right) = h(u) < \frac{h(a') + h(b')}{2}.$$

This contradicts local mid-point concavity of h, as desired. Therefore, we have restored a claim: " $\theta(p,\cdot)$ must be concave" (line 11, page 835 of ER).