Name:

1. Problem

An experiment has $n_1 = 6$ plants in the treatment group and $n_2 = 8$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7	value8
sample 1:	0.85	1.01	1.02	1.29	1.2	0.87		
sample 2:	1.22	1.26	1.01	1.55	1.65	1.02	1.24	1.37

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 98% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.02? (yes or no)

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 1.04$$

$$\overline{X_2} = 1.29$$

$$s_1 = 0.176$$

$$s_2 = 0.228$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(6, 8) - 1 = 5$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.98$

$$t^* = 3.36$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(0.176)^2}{6} + \frac{(0.228)^2}{8}} = 0.108$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-0.113, 0.613)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(1.29 - 1.04) - 0}{0.108} = 2.32$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 2.32$$

We use the table to determine bounds on *p*-value. Remember, df = 5 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.05 < p$$
-value < 0.1

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

- (a) 5
- (b) 3.36
- (c) 0.108
- (d) -0.113
- (e) 0.613
- (f) 2.315
- (g) 0.05
- (h) 0.1
- (i) no

Name:

1. Problem

An experiment has $n_1 = 7$ plants in the treatment group and $n_2 = 4$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7
sample 1:	128	130	157	122	100	160	112
sample 2:	100	91	111	95			

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 96% confidence interval.
- (c) Determine SE.

(i) no

- (d) Determine a lower bound of the 96% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 96% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.04? (yes or no)

1.	(a)				3	-	0	0	0	
	(b)				3	- [4	8	0	
	(c)				9		4	0	9	
	(d)		-	6	3		5	4	3	
	(e)				1		9	4	3	
	(f)				3	.	2	7	4	
	(g)				0	.	0	4	0	
	(h)				0	.	0	5	0	

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 130$$

$$\overline{X_2} = 99.2$$

$$s_1 = 22.1$$

$$s_2 = 8.66$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(7, 4) - 1 = 3$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.96$

$$t^* = 3.48$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(22.1)^2}{7} + \frac{(8.66)^2}{4}} = 9.409$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-63.543, 1.943)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{X_2} - \overline{X_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(99.2 - 130) - 0}{9.409} = -3.27$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 3.27$$

We use the table to determine bounds on *p*-value. Remember, df = 3 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.04 < p$$
-value < 0.05

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

- (a) 3
- (b) 3.48
- (c) 9.409
- (d) -63.543
- (e) 1.943
- (f) 3.274
- (g) 0.04
- (h) 0.05
- (i) no

Name:

1. Problem

An experiment has $n_1 = 4$ plants in the treatment group and $n_2 = 3$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4
sample 1:	1.28	1.18	1.01	0.67
sample 2:	1.82	1.73	1.76	

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 96% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 96% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 96% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.04? (yes or no)

1.	(a)				2	-	0	0	0		
	(b)				4		8	5	0		
	(c)				0		1	3	7		
	(d)				0		0	7	6		
	(e)				1		4	0	4		
	(f)				5		4	1	8		
	(g)				0	- [0	2	0		
	(h)				0		0	4	0		
	(i)	yes	S								

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 1.03$$

$$\overline{X_2} = 1.77$$

$$s_1 = 0.268$$

$$s_2 = 0.0458$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(4, 3) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.96$

$$t^* = 4.85$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(0.268)^2}{4} + \frac{(0.0458)^2}{3}} = 0.137$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (0.076, 1.404)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(1.77 - 1.03) - 0}{0.137} = 5.42$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 5.42$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.02 < p$$
-value < 0.04

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

- (a) 2
- (b) 4.85
- (c) 0.137
- (d) 0.076
- (e) 1.404
- (f) 5.418
- (g) 0.02
- (h) 0.04
- (i) yes

Name:

1. Problem

An experiment has $n_1 = 8$ plants in the treatment group and $n_2 = 4$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7	value8
sample 1:	109	108	114	115	103	114	109	110
sample 2:	98	108	124	89				

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 90% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 90% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 90% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.1? (yes or no)

1. (a	a)					3		0	0	0
(b	o) [2] .	3	5	0
(0	c)					7] .	6	3	2
(c	(b			-	2	2] .	9	3	5
(€	e) [1	2] .	9	3	5
(1	f)					0] .	6	5	5
(g	g) [0] .	2	0	0
(h	า) [1] .	0	0	0
(i)	no								

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 110$$

$$\overline{X_2} = 105$$

$$s_1 = 3.99$$

$$s_2 = 15$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(8, 4) - 1 = 3$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.9$

$$t^* = 2.35$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(3.99)^2}{8} + \frac{(15)^2}{4}} = 7.632$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-22.935, 12.935)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(105 - 110) - 0}{7.632} = -0.66$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 0.66$$

We use the table to determine bounds on *p*-value. Remember, df = 3 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.2 < p$$
-value < 1

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

- (a) 3
- (b) 2.35
- (c) 7.632
- (d) -22.935
- (e) 12.935
- (f) 0.655
- (g) 0.2
- (h) 1
- (i) no

Name:

1. Problem

An experiment has $n_1 = 7$ plants in the treatment group and $n_2 = 3$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7
sample 1:		202 113	216 126	204	225	211	214

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 99% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.01? (yes or no)

۱.	(a)					2	. 0	0	0
	(b)					9	. 9	2	0
	(c)					9	. 5	0	6
	(d)		-	1	9	8	. 3	0	0
	(e)				-	9	. 7	0	0
	(f)				1	0	9	4	0
	(g)					0	. 0	0	5
	(h)					0	. 0	1	0

(i) yes

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 218$$

$$\overline{x_2} = 114$$

$$s_1 = 18$$

$$s_2 = 11.5$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(7, 3) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.99$

$$t^* = 9.92$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(18)^2}{7} + \frac{(11.5)^2}{3}} = 9.506$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-198.3, -9.7)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(114 - 218) - 0}{9.506} = -10.94$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 10.94$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.005 < p$$
-value < 0.01

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

- (a) 2
- (b) 9.92
- (c) 9.506
- (d) -198.3
- (e) -9.7
- (f) 10.94
- (g) 0.005
- (h) 0.01
- (i) yes

Name:

1. Problem

An experiment has $n_1 = 6$ plants in the treatment group and $n_2 = 6$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6
sample 1:	14.1	11.2	12.8	15.1	13.8	14.1
sample 2:	9.8	8.1	9.8	11.2	11	10.8

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 99% confidence interval.
- (c) Determine SE.

(i) yes

- (d) Determine a lower bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail *p*-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.01? (yes or no)

1.	(a)				5		0	0	0	
	(b)				4	. [0	3	0	
	(c)				0	.[7	2	7	
	(d)			-	6	. [3	3	0	
	(e)			-	0	. [4	7	0	
	(f)				4	. [6	7	9	
	(g)				0	.[0	0	5	
	(h)				0		0	1	0	

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 13.5$$

$$\overline{X_2} = 10.1$$

$$s_1 = 1.35$$

$$s_2 = 1.16$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(6, 6) - 1 = 5$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.99$

$$t^* = 4.03$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(1.35)^2}{6} + \frac{(1.16)^2}{6}} = 0.727$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-6.33, -0.47)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(10.1 - 13.5) - 0}{0.727} = -4.68$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 4.68$$

We use the table to determine bounds on *p*-value. Remember, df = 5 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.005 < p$$
-value < 0.01

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

- (a) 5
- (b) 4.03
- (c) 0.727
- (d) -6.33
- (e) -0.47
- (f) 4.679
- (g) 0.005
- (h) 0.01
- (i) yes

Name:

1. Problem

An experiment has $n_1 = 5$ plants in the treatment group and $n_2 = 3$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

-	value1	value2	value3	value4	value5
sample 1:	9	6.6	5.2	10.8	11.6
sample 2:	21.2	18.9	18.4		

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 95% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.05? (yes or no)

1.	(a)				2	. 0	0	0
	(b)				4	. 3	0	0
	(c)				1	. 4	9	0
	(d)				4	. 4	5	3
	(e)			1	7	. 2	6	7
	(f)				7	. 2	8	9
	(g)				0	. 0	1	0
	(h)				0	. 0	2	0

(i) yes

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 8.64$$

$$\overline{X_2} = 19.5$$

$$s_1 = 2.72$$

$$s_2 = 1.49$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(5, 3) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.95$

$$t^* = 4.3$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(2.72)^2}{5} + \frac{(1.49)^2}{3}} = 1.49$$

We find the bounds of the confidence interval.

$$CI = (\overline{X_2} - \overline{X_1}) \pm t^* SE$$

$$CI = (4.453, 17.267)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{X_2} - \overline{X_1}) - (\mu_2 - \mu_1)_0}{SF} = \frac{(19.5 - 8.64) - 0}{1.49} = 7.29$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 7.29$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.01 < p$$
-value < 0.02

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

- (a) 2
- (b) 4.3
- (c) 1.49
- (d) 4.453
- (e) 17.267
- (f) 7.289
- (g) 0.01
- (h) 0.02
- (i) yes

Name:

1. Problem

An experiment has $n_1 = 6$ plants in the treatment group and $n_2 = 6$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6
sample 1:	139	127	120	142	119	142
sample 2:	111	98	94	81	67	125

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 95% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail *p*-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.05? (yes or no)

		_								
1. (a	1)				5] .	0	0	0	
(b)				2] .[5	7	0	
(c	:)				9] .[5	3	2	
(d)		-	6	0] .[4	9	7	
(e	•)		-	1	1] . [5	0	3	
(f	·)				3] .[7	7	7	
(g)				0] .[0	1	0	
(h)				0] . [0	2	0	

(i) yes

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 132$$

$$\overline{X_2} = 96$$

$$s_1 = 10.8$$

$$s_2 = 20.7$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(6, 6) - 1 = 5$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.95$

$$t^* = 2.57$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(10.8)^2}{6} + \frac{(20.7)^2}{6}} = 9.532$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-60.497, -11.503)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(96 - 132) - 0}{9.532} = -3.78$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 3.78$$

We use the table to determine bounds on *p*-value. Remember, df = 5 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.01 < p$$
-value < 0.02

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

- (a) 5
- (b) 2.57
- (c) 9.532
- (d) -60.497
- (e) -11.503
- (f) 3.777
- (g) 0.01
- (h) 0.02
- (i) yes

Name:

1. Problem

An experiment has $n_1 = 3$ plants in the treatment group and $n_2 = 7$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7
sample 1:	21.3	21.8	27.2				
sample 2:	8.8	10.9	9.9	10.3	11.4	10.4	9

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 99% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.01? (yes or no)

1.	(a)	2	. 0	0	0	
	(b)	9	9	2	0	
	(c)	1	. 9	2	2	
	(d) - 3	2	. 3	6	6	
	(e)	5	. 7	6	6	
	(f)	6	9	2	1	
	(g)	0	. 0	2	0	
	(h)	0	. 0	4	0	
						,

(i) no

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 23.4$$

$$\overline{X_2} = 10.1$$

$$s_1 = 3.27$$

$$s_2 = 0.949$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(3, 7) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.99$

$$t^* = 9.92$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(3.27)^2}{3} + \frac{(0.949)^2}{7}} = 1.922$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-32.366, 5.766)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(10.1 - 23.4) - 0}{1.922} = -6.92$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 6.92$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.02 < p$$
-value < 0.04

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

- (a) 2
- (b) 9.92
- (c) 1.922
- (d) -32.366
- (e) 5.766
- (f) 6.921
- (g) 0.02
- (h) 0.04
- (i) no

Name:

1. Problem

An experiment has $n_1 = 3$ plants in the treatment group and $n_2 = 6$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6
sample 1:	10.3	8.6	10.8			
sample 2:	17.1	19.7	19.8	16.6	22.2	19.2

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 99% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.01? (yes or no)

(a)				2	. 0	0	0
(b)				9	. 9	2	0
(c)				1	. 0	6	5
(d)			-	1	. 3	6	5
(e)			1	9	. 7	6	5
(f)				8	. 6	3	8
(g)				0	. 0	1	0
(h)				0	. 0	2	0

(i) no

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 9.9$$

$$\overline{X_2} = 19.1$$

$$s_1 = 1.15$$

$$s_2 = 2.04$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(3, 6) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.99$

$$t^* = 9.92$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(1.15)^2}{3} + \frac{(2.04)^2}{6}} = 1.065$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-1.365, 19.765)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{X_2} - \overline{X_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(19.1 - 9.9) - 0}{1.065} = 8.64$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 8.64$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.01 < p$$
-value < 0.02

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

- (a) 2
- (b) 9.92
- (c) 1.065
- (d) -1.365
- (e) 19.765
- (f) 8.638
- (g) 0.01
- (h) 0.02
- (i) no

Name:

1. Problem

An experiment has $n_1 = 8$ plants in the treatment group and $n_2 = 7$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7	value8
sample 1:	9.1	11.4	9.7	8.9	11.1	8.1	9.2	13.3
sample 2:	12.4	12.4	18.6	14.5	13.9	12.1	10.6	

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 95% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail p-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.05? (yes or no)

١.	(a)	6 .	0	0	0	
	(b)	2	4	5	0	
	(c)	1 .	1	4	5	
	(d)	0 .	5	9	5	
	(e)	6	2	0	5	
	(f)	2	9	6	8	
	(g)	0 .	0	2	0	
	(h)	0 .	0	4	0	

(i) yes

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 10.1$$

$$\overline{X_2} = 13.5$$

$$s_1 = 1.7$$

$$s_2 = 2.58$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(8, 7) - 1 = 6$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.95$

$$t^* = 2.45$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(1.7)^2}{8} + \frac{(2.58)^2}{7}} = 1.145$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (0.595, 6.205)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(13.5 - 10.1) - 0}{1.145} = 2.97$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 2.97$$

We use the table to determine bounds on *p*-value. Remember, df = 6 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.02 < p$$
-value < 0.04

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

- (a) 6
- (b) 2.45
- (c) 1.145
- (d) 0.595
- (e) 6.205
- (f) 2.968
- (g) 0.02
- (h) 0.04
- (i) yes

Name:

1. Problem

An experiment has $n_1 = 8$ plants in the treatment group and $n_2 = 8$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7	value8
sample 1:	9.4	9.7	10.6	10.9	12.3	9.9	9.6	12
sample 2:	13.1	11.4	11.1	9.6	12.8	10.6	10.3	14.4

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 95% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.05? (yes or no)

1.	(a)				7	-	0	0	0	
	(b)				2		3	6	0	
	(c)				0	.[6	9	4	
	(d)			-	0	.[5	3	8	
	(e)				2	.[7	3	8	
	(f)				1	.[5	8	4	
	(g)				0	.[1	0	0	
	(h)				0		2	0	0	
		_								

(i) **no**

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 10.6$$

$$\overline{X_2} = 11.7$$

$$s_1 = 1.11$$

$$s_2 = 1.62$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(8, 8) - 1 = 7$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.95$

$$t^* = 2.36$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(1.11)^2}{8} + \frac{(1.62)^2}{8}} = 0.694$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-0.538, 2.738)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(11.7 - 10.6) - 0}{0.694} = 1.58$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 1.58$$

We use the table to determine bounds on *p*-value. Remember, df = 7 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.1 < p$$
-value < 0.2

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

- (a) 7
- (b) 2.36
- (c) 0.694
- (d) -0.538
- (e) 2.738
- (f) 1.584
- (g) 0.1
- (h) 0.2
- (i) no

Name:

1. Problem

An experiment has $n_1 = 5$ plants in the treatment group and $n_2 = 3$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5
sample 1:	9	14.7	8.3	11.4	8.5
sample 2:	18.4	17.9	15.4		

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 96% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 96% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 96% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_{\rm 2}-\mu_{\rm 1}$ = 0.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.04? (yes or no)

. (a)				2	. 0	0	0
(b)				4	. 8	5	0
((c)				1	. 5	2	7
(d)			-	0	. 6	0	6
(e)			1	4	. 2	0	6
	(f)				4	. 4	5	2
(g)				0	. 0	4	0
(h)				0	. 0	5	0

(i) no

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 10.4$$

$$\overline{X_2} = 17.2$$

$$s_1 = 2.71$$

$$s_2 = 1.61$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(5, 3) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.96$

$$t^* = 4.85$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(2.71)^2}{5} + \frac{(1.61)^2}{3}} = 1.527$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-0.606, 14.206)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(17.2 - 10.4) - 0}{1.527} = 4.45$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 4.45$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.04 < p$$
-value < 0.05

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

- (a) 2
- (b) 4.85
- (c) 1.527
- (d) -0.606
- (e) 14.206
- (f) 4.452
- (g) 0.04
- (h) 0.05
- (i) no

Name:

1. Problem

An experiment has $n_1 = 4$ plants in the treatment group and $n_2 = 3$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4
sample 1:	10.6	12.7	10.6	10.8
sample 2:	12.4	13	11.9	

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 95% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.05? (yes or no)

I. (a)				2] .[0	0	0
(b)				4] . [3	0	0
(c)				0] . [6	0	1
(d)			-	1] . [3	8	4
(e)				3] . [7	8	4
(f)				1] . [9	9	6
(g)				0] . [1	0	0
(h)				0] . [2	0	0
(i)	no							

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 11.2$$

$$\overline{X_2} = 12.4$$

$$s_1 = 1.02$$

$$s_2 = 0.551$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(4, 3) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.95$

$$t^* = 4.3$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(1.02)^2}{4} + \frac{(0.551)^2}{3}} = 0.601$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-1.384, 3.784)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(12.4 - 11.2) - 0}{0.601} = 2$$

We find $|t_{obs}|$.

$$|t_{\text{obs}}| = 2$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.1 < p$$
-value < 0.2

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

- (a) 2
- (b) 4.3
- (c) 0.601
- (d) -1.384
- (e) 3.784
- (f) 1.996
- (g) 0.1
- (h) 0.2
- (i) no

Name:

1. Problem

An experiment has $n_1 = 6$ plants in the treatment group and $n_2 = 7$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7
sample 1:	91	118	144	104	118	141	
sample 2:	97	120	81	87	97	91	112

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 90% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 90% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 90% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail *p*-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.1? (yes or no)

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 119$$

$$\overline{X_2} = 97.9$$

$$s_1 = 20.6$$

$$s_2 = 13.8$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(6, 7) - 1 = 5$$

We use the *t* table to find t^* such that $P(|T| < t^*) = 0.9$

$$t^* = 2.02$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(20.6)^2}{6} + \frac{(13.8)^2}{7}} = 9.896$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-41.09, -1.11)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{X_2} - \overline{X_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(97.9 - 119) - 0}{9.896} = -2.13$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 2.13$$

We use the table to determine bounds on *p*-value. Remember, df = 5 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.05 < p$$
-value < 0.1

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

- (a) 5
- (b) 2.02
- (c) 9.896
- (d) -41.09
- (e) -1.11
- (f) 2.132
- (g) 0.05
- (h) 0.1
- (i) yes

Name:

1. Problem

An experiment has $n_1 = 8$ plants in the treatment group and $n_2 = 6$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7	value8
sample 1:	137	134	157	141	128	114	166	134
sample 2:	92	102	96	97	89	101		

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 98% confidence interval.
- (c) Determine SE.

(i) yes

- (d) Determine a lower bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.02? (yes or no)

1.	(a)				5		0	0	0	
	(b)				3		3	6	0	
	(c)				6		1	1	9	
	(d)		-	6	3	-	3	6	0	
	(e)		-	2	2		2	4	0	
	(f)				6	.	9	9	4	
	(g)				0	.	0	0	0	
	(h)				0] . [0	0	2	

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 139$$

$$\overline{X_2} = 96.2$$

$$s_1 = 16.3$$

$$s_2 = 5.04$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(8, 6) - 1 = 5$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.98$

$$t^* = 3.36$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(16.3)^2}{8} + \frac{(5.04)^2}{6}} = 6.119$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-63.36, -22.24)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{X_2} - \overline{X_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(96.2 - 139) - 0}{6.119} = -6.99$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 6.99$$

We use the table to determine bounds on *p*-value. Remember, df = 5 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0 < p$$
-value < 0.002

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

- (a) 5
- (b) 3.36
- (c) 6.119
- (d) -63.36
- (e) -22.24
- (f) 6.994
- (g) 0
- (h) 0.002
- (i) yes

Name:

1. Problem

An experiment has $n_1 = 3$ plants in the treatment group and $n_2 = 3$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3
sample 1:	13.9	9.8	7.9
sample 2:	23.3	22.7	21.3

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 99% confidence interval.
- (c) Determine SE.

(i) **no**

- (d) Determine a lower bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail *p*-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.01? (yes or no)

1.	(a)				2] . [0	0	0
	(b)				9		9	2	0
	(c)				1	.[8	7	0
	(d)			-	6		6	5	0
	(e)			3	0	.[4	5	0
	(f)				6] .[3	6	5
	(g)				0] .[0	2	0
	(h)				0	.[0	4	0

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 10.5$$

$$\overline{X_2} = 22.4$$

$$s_1 = 3.07$$

$$s_2 = 1.03$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(3, 3) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.99$

$$t^* = 9.92$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(3.07)^2}{3} + \frac{(1.03)^2}{3}} = 1.87$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-6.65, 30.45)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(22.4 - 10.5) - 0}{1.87} = 6.37$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 6.37$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.02 < p$$
-value < 0.04

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

- (a) 2
- (b) 9.92
- (c) 1.87
- (d) -6.65
- (e) 30.45
- (f) 6.365
- (g) 0.02
- (h) 0.04
- (i) no

Name:

1. Problem

An experiment has $n_1 = 3$ plants in the treatment group and $n_2 = 7$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7
sample 1:	110	106	106				
sample 2:	266	278	266	270	234	250	287

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 99% confidence interval.
- (c) Determine SE.

(i) yes

- (d) Determine a lower bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.01? (yes or no)

1.	(a)				2	.	0	0	0
	(b)				9		9	2	0
	(c)				6		7	8	5
	(d)			8	9	.	6	9	3
	(e)		2	2	4	.	3	0	7
	(f)			2	3	.	1	4	1
	(g)				0	.	0	0	0
	(h)				0	.	0	0	2

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 107$$

$$\overline{X_2} = 264$$

$$s_1 = 2.31$$

$$s_2 = 17.6$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(3, 7) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.99$

$$t^* = 9.92$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(2.31)^2}{3} + \frac{(17.6)^2}{7}} = 6.785$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (89.693, 224.307)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(264 - 107) - 0}{6.785} = 23.14$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 23.14$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0 < p$$
-value < 0.002

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

- (a) 2
- (b) 9.92
- (c) 6.785
- (d) 89.693
- (e) 224.307
- (f) 23.141
- (g) 0
- (h) 0.002
- (i) yes

Name:

1. Problem

An experiment has $n_1 = 6$ plants in the treatment group and $n_2 = 6$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6
sample 1:	1.22	1.37	1.33	1.14	1.22	1.29
sample 2:	1.21	1.63	1.1	1.01	1.07	0.81

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 95% confidence interval.
- (c) Determine SE.

- (d) Determine a lower bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_{\rm 2}-\mu_{\rm 1}$ = 0.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.05? (yes or no)

1.	(a)				5		0	0	0
	(b)				2		5	7	0
	(c)				0		1	1	7
	(d)			-	0	.[4	2	1
	(e)				0	.[1	8	1
	(f)				1	.[0	2	2
	(g)				0	.[2	0	0
	(h)				1	.[0	0	0

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 1.26$$

$$\overline{X_2} = 1.14$$

$$s_1 = 0.0842$$

$$s_2 = 0.275$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(6, 6) - 1 = 5$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.95$

$$t^* = 2.57$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(0.0842)^2}{6} + \frac{(0.275)^2}{6}} = 0.117$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-0.421, 0.181)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(1.14 - 1.26) - 0}{0.117} = -1.02$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 1.02$$

We use the table to determine bounds on *p*-value. Remember, df = 5 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.2 < p$$
-value < 1

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

- (a) 5
- (b) 2.57
- (c) 0.117
- (d) -0.421
- (e) 0.181
- (f) 1.022
- (g) 0.2
- (h) 1
- (i) no

Name:

1. Problem

An experiment has $n_1 = 8$ plants in the treatment group and $n_2 = 8$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7	value8
sample 1:	12.1	12.5	10	10.8	7.4	11.2	8.2	12.1
sample 2:	10.9	14.2	10.8	12.6	8.7	13.7	16.2	13.8

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 95% confidence interval.
- (c) Determine SE.

- (d) Determine a lower bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.05? (yes or no)

1.	(a)				7	. [0	0	0		
	(b)				2	.[3	6	0		
	(c)				1	.[0	7	2		
	(d)			-	0		4	3	0		
	(e)				4		6	3	0		
	(f)				1	.[9	5	8		
	(g)				0	.[0	5	0		
	(h)				0	.[1	0	0		

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 10.5$$

$$\overline{x_2} = 12.6$$

$$s_1 = 1.88$$

$$s_2 = 2.38$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(8, 8) - 1 = 7$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.95$

$$t^* = 2.36$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(1.88)^2}{8} + \frac{(2.38)^2}{8}} = 1.072$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-0.43, 4.63)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(12.6 - 10.5) - 0}{1.072} = 1.96$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 1.96$$

We use the table to determine bounds on *p*-value. Remember, df = 7 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.05 < p$$
-value < 0.1

We should consider both comparisons to make our decision.

$$|t_{\rm obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

- (a) 7
- (b) 2.36
- (c) 1.072
- (d) -0.43
- (e) 4.63
- (f) 1.958
- (g) 0.05
- (h) 0.1
- (i) no

Name:

1. Problem

An experiment has $n_1 = 8$ plants in the treatment group and $n_2 = 4$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7	value8
sample 1:	1.91	1.64	1.7	1.72	1.23	1.29	1.61	1.49
sample 2:	0.89	0.96	1.12	8.0				

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 98% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.02? (yes or no)

. (a)		3 .	0	0	0
(b)		4 .	5	4	0
(c)		0 .	1	0	5
(d)	-	1 .	1	0	5
(e)	-	0 .	1	5	1
(f)		5 .	9	8	8
(g)		0 .	0	0	5
(h)		0 .	0	1	0

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 1.57$$

$$\overline{x_2} = 0.942$$

$$s_1 = 0.227$$

$$s_2 = 0.135$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(8, 4) - 1 = 3$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.98$

$$t^* = 4.54$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(0.227)^2}{8} + \frac{(0.135)^2}{4}} = 0.105$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-1.105, -0.151)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(0.942 - 1.57) - 0}{0.105} = -5.99$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 5.99$$

We use the table to determine bounds on *p*-value. Remember, df = 3 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.005 < p$$
-value < 0.01

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

- (a) 3
- (b) 4.54
- (c) 0.105
- (d) -1.105
- (e) -0.151
- (f) 5.988
- (g) 0.005
- (h) 0.01
- (i) yes

Name:

1. Problem

An experiment has $n_1 = 6$ plants in the treatment group and $n_2 = 5$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6
sample 1:	10.6	9.4	9.9	9.4	11.6	9.8
sample 2:	19.4	14.2	14	15.9	15.7	

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 99% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.01? (yes or no)

I. (a)			4	. 0	0	0	
(b)			4	. 6	0	0	
(c)			1	. 0	3	1	
(d)			0	. 9	5	7	
(e)		1	0	. 4	4	3	
(f)			5	. 5	3	1	
(g)			0	. 0	0	5	
(h)			0	. 0	1	0	

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 10.1$$

$$\overline{X_2} = 15.8$$

$$s_1 = 0.85$$

$$s_2 = 2.17$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(6, 5) - 1 = 4$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.99$

$$t^* = 4.6$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(0.85)^2}{6} + \frac{(2.17)^2}{5}} = 1.031$$

We find the bounds of the confidence interval.

$$CI = (\overline{X_2} - \overline{X_1}) \pm t^* SE$$

$$CI = (0.957, 10.443)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(15.8 - 10.1) - 0}{1.031} = 5.53$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 5.53$$

We use the table to determine bounds on *p*-value. Remember, df = 4 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.005 < p$$
-value < 0.01

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

- (a) 4
- (b) 4.6
- (c) 1.031
- (d) 0.957
- (e) 10.443
- (f) 5.531
- (g) 0.005
- (h) 0.01
- (i) yes

Name:

1. Problem

An experiment has $n_1 = 3$ plants in the treatment group and $n_2 = 6$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6
sample 1:	1.07	0.98	1			
sample 2:	1.86	2.77	2.8	1.91	2.37	2.21

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 99% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.01? (yes or no)

1.	(a)				2		0	0	0		
	(b)				9	.[9	2	0		
	(c)				0		1	6	8		
	(d)			-	0		3	6	7		
	(e)				2		9	6	7		
	(f)				7		7	2	0		
	(g)				0		0	1	0		
	(h)				0	.[0	2	0		
	(i)	no									

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 1.02$$

$$\overline{X_2} = 2.32$$

$$s_1 = 0.0473$$

$$s_2 = 0.407$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(3, 6) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.99$

$$t^* = 9.92$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(0.0473)^2}{3} + \frac{(0.407)^2}{6}} = 0.168$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-0.367, 2.967)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(2.32 - 1.02) - 0}{0.168} = 7.72$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 7.72$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.01 < p$$
-value < 0.02

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

- (a) 2
- (b) 9.92
- (c) 0.168
- (d) -0.367
- (e) 2.967
- (f) 7.72
- (g) 0.01
- (h) 0.02
- (i) no

Name:

1. Problem

An experiment has $n_1 = 4$ plants in the treatment group and $n_2 = 8$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7	value8
sample 1:	143	134	145	151				
sample 2:	108	109	101	110	94	81	96	96

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 99% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 99% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.01? (yes or no)

1.	(a)					3		0	0	0		
	(b)					5		8	4	0		
	(c)					4		9	3	9		
	(d)			-	7	2	-	4	4	4		
	(e)			-	1	4	-	7	5	6		
	(f)					8	-	8	2	7		
	(g)					0		0	0	2		
	(h)					0	-	0	0	4		
	(i)	yes										

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 143$$

$$\overline{X_2} = 99.4$$

$$s_1 = 7.04$$

$$s_2 = 9.8$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(4, 8) - 1 = 3$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.99$

$$t^* = 5.84$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(7.04)^2}{4} + \frac{(9.8)^2}{8}} = 4.939$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-72.444, -14.756)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{X_2} - \overline{X_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(99.4 - 143) - 0}{4.939} = -8.83$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 8.83$$

We use the table to determine bounds on *p*-value. Remember, df = 3 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.002 < p$$
-value < 0.004

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

- (a) 3
- (b) 5.84
- (c) 4.939
- (d) -72.444
- (e) -14.756
- (f) 8.827
- (g) 0.002
- (h) 0.004
- (i) yes

Name:

1. Problem

An experiment has $n_1 = 7$ plants in the treatment group and $n_2 = 4$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7
sample 1:	1.07	1.03	1.39	0.76	0.82	0.83	0.74
sample 2:	1.05	0.84	1.62	1.19			

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 90% confidence interval.
- (c) Determine SE.

- (d) Determine a lower bound of the 90% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 90% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.1? (yes or no)

1.	(a)				3		0	0	0
	(b)				2		3	5	0
	(c)				0		1	8	7
	(d)			-	0	.[2	0	8
	(e)				0	.[6	7	0
	(f)				1	.[2	3	5
	(g)				0	•	2	0	0
	(h)				1	.[0	0	0

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 0.949$$

$$\overline{X_2} = 1.18$$

$$s_1 = 0.233$$

$$s_2 = 0.33$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(7, 4) - 1 = 3$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.9$

$$t^* = 2.35$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(0.233)^2}{7} + \frac{(0.33)^2}{4}} = 0.187$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-0.208, 0.67)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(1.18 - 0.949) - 0}{0.187} = 1.24$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 1.24$$

We use the table to determine bounds on *p*-value. Remember, df = 3 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.2 < p$$
-value < 1

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

- (a) 3
- (b) 2.35
- (c) 0.187
- (d) -0.208
- (e) 0.67
- (f) 1.235
- (g) 0.2
- (h) 1
- (i) no

Name:

1. Problem

An experiment has $n_1 = 6$ plants in the treatment group and $n_2 = 3$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6
sample 1:	215	232	210	204	217	215
sample 2:	76	104	92			

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 98% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.02? (yes or no)

۱.	(a)					2	. 0	0	0
	(b)					6	. 9	6	0
	(c)					8	. 9	3	9
	(d)		-	1	8	7	. 5	1	5
	(e)			-	6	3	. 0	8	5
	(f)				1	4	. 0	1	7
	(g)					0	. 0	0	5
	(h)					0	. 0	1	0

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{x_1} = 216$$

$$\overline{x_2} = 90.7$$

$$s_1 = 9.35$$

$$s_2 = 14$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(6, 3) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.98$

$$t^* = 6.96$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(9.35)^2}{6} + \frac{(14)^2}{3}} = 8.939$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-187.515, -63.085)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{X_2} - \overline{X_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(90.7 - 216) - 0}{8.939} = -14.02$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 14.02$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.005 < p$$
-value < 0.01

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

- (a) 2
- (b) 6.96
- (c) 8.939
- (d) -187.515
- (e) -63.085
- (f) 14.017
- (g) 0.005
- (h) 0.01
- (i) yes

Name:

1. Problem

An experiment has $n_1 = 7$ plants in the treatment group and $n_2 = 5$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7
sample 1:	1.1	1.05	1.08	1.05	0.86	1.29	0.6
sample 2:	1.62	1.4	1.51	1.17	1.46		

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 98% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.02? (yes or no)

1. (a	a)			4	. 0	0	0
(I	b)			3	. 7	5	0
(c)			0	. 1	1	1
(0	d)			0	. 0	1	4
(6	e)			0	. 8	4	6
((f)			3	. 8	6	7
(9	g)			0	. 0	1	0
(1	h)			0	. 0	2	0

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 1$$

$$\overline{X_2} = 1.43$$

$$S_1 = 0.218$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

 $s_2 = 0.167$

$$df = \min(n_1, n_2) - 1 = \min(7, 5) - 1 = 4$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.98$

$$t^* = 3.75$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(0.218)^2}{7} + \frac{(0.167)^2}{5}} = 0.111$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (0.014, 0.846)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(1.43 - 1) - 0}{0.111} = 3.87$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 3.87$$

We use the table to determine bounds on *p*-value. Remember, df = 4 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.01 < p$$
-value < 0.02

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

- (a) 4
- (b) 3.75
- (c) 0.111
- (d) 0.014
- (e) 0.846
- (f) 3.867
- (g) 0.01
- (h) 0.02
- (i) yes

Name:

1. Problem

An experiment has $n_1 = 3$ plants in the treatment group and $n_2 = 4$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4
sample 1:	112	114	100	
sample 2:	211	204	233	223

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 98% confidence interval.
- (c) Determine SE.

- (d) Determine a lower bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail *p*-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.02? (yes or no)

1.	(a)				2		0	0	0	
	(b)				6] .	9	6	0	
	(c)				7] .[7	5	0	
	(d)			5	5] .[0	6	0	
	(e)		1	6	2] .[9	4	0	
	(f)			1	4] .	0	6	5	
	(g)				0] .[0	0	5	
	(h)				0] .	0	1	0	

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 109$$

$$\overline{X_2} = 218$$

$$s_1 = 7.57$$

$$s_2 = 12.8$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(3, 4) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.98$

$$t^* = 6.96$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(7.57)^2}{3} + \frac{(12.8)^2}{4}} = 7.75$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (55.06, 162.94)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(218 - 109) - 0}{7.75} = 14.06$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 14.06$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.005 < p$$
-value < 0.01

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

- (a) 2
- (b) 6.96
- (c) 7.75
- (d) 55.06
- (e) 162.94
- (f) 14.065
- (g) 0.005
- (h) 0.01
- (i) yes

Name:

1. Problem

An experiment has $n_1 = 6$ plants in the treatment group and $n_2 = 6$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6
sample 1:	1.25	1.13	1.31	1.16	1.13	1.14
sample 2:	1.13	0.96	0.98	1.14	1.26	1.07

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 90% confidence interval.
- (c) Determine SE.

- (d) Determine a lower bound of the 90% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 90% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail *p*-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.1? (yes or no)

1.	(a)				5	- [0	0	0
	(b)				2		0	2	0
	(c)				0		0	5	5
	(d)			-	0		2	1	1
	(e)				0		0	1	1
	(f)				1		8	1	3
	(g)				0		1	0	0
	(h)				0	.	2	0	0

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 1.19$$

$$\overline{X_2} = 1.09$$

$$s_1 = 0.0755$$

$$s_2 = 0.112$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(6, 6) - 1 = 5$$

We use the *t* table to find t^* such that $P(|T| < t^*) = 0.9$

$$t^* = 2.02$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(0.0755)^2}{6} + \frac{(0.112)^2}{6}} = 0.055$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-0.211, 0.011)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(1.09 - 1.19) - 0}{0.055} = -1.81$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 1.81$$

We use the table to determine bounds on *p*-value. Remember, df = 5 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.1 < p$$
-value < 0.2

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

- (a) 5
- (b) 2.02
- (c) 0.055
- (d) -0.211
- (e) 0.011
- (f) 1.813
- (g) 0.1
- (h) 0.2
- (i) no

Name:

1. Problem

An experiment has $n_1 = 6$ plants in the treatment group and $n_2 = 6$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6
sample 1:	0.98	1.03	1.12	1.02	1.3	1.02
sample 2:	1.18	1.34	1.19	1.13	1.22	1.22

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 98% confidence interval.
- (c) Determine SE.

- (d) Determine a lower bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.02? (yes or no)

1.	(a)				5		0	0	0	
	(b)				3		3	6	0	
	(c)				0	.[0	5	6	
	(d)			-	0		0	5	8	
	(e)				0		3	1	8	
	(f)				2		3	1	8	
	(g)				0	. [0	5	0	
	(h)				0	. [1	0	0	

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 1.08$$

$$\overline{X_2} = 1.21$$

$$s_1 = 0.118$$

$$s_2 = 0.0703$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(6, 6) - 1 = 5$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.98$

$$t^* = 3.36$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(0.118)^2}{6} + \frac{(0.0703)^2}{6}} = 0.056$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-0.058, 0.318)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(1.21 - 1.08) - 0}{0.056} = 2.32$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 2.32$$

We use the table to determine bounds on *p*-value. Remember, df = 5 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.05 < p$$
-value < 0.1

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

- (a) 5
- (b) 3.36
- (c) 0.056
- (d) -0.058
- (e) 0.318
- (f) 2.318
- (g) 0.05
- (h) 0.1
- (i) no