Group isomorphism is nearly-linear time for most orders

IEEE Foundations On Computer Science FOCS 2021

Heiko Dietrich Monash University, Australia

James B. Wilson (presenting) Colorado State University, USA February 8, 2022

Motivation

Where in this...

Where in this...

Where in this...

Where in this...

Where in this...

...do we send people to get help making this...

```
boolean equals(Object that) {
    // <this> can transform into <that>?
}
```

Why groups(oids)?

■ Transitive → Partial Multiplication

$$trans_{xyz} : (x \equiv y) \land (y \equiv z) \Rightarrow (x \equiv z)$$
$$* : Eq \times Eq \longrightarrow Eq$$

■ Reflexive → Identity

$$refl_X: X \Rightarrow (X \equiv X)$$

 $trans_{xxy}: (X \equiv X) \land (X \equiv Y) \Rightarrow (X \equiv Y)$
 $Identity: refl * evidence = evidence$

lacksquare Symmetricightarrow Inverse

$$sym_{xy}: (x \equiv y) \Rightarrow (y \equiv x)$$

 $trans_{xyx}: (x \equiv y) \land (x \equiv y) \Rightarrow (x \equiv x)$
 $Inverses: evidence* (evidence)^{-1} = ref.$

Why groups(oids)?

■ Transitive → Partial Multiplication

$$trans_{xyz} : (x \equiv y) \land (y \equiv z) \Rightarrow (x \equiv z)$$

* :Eq × Eq --- Eq

■ Reflexive → Identity

$$refl_x : x \Rightarrow (x \equiv x)$$

 $trans_{xxy} : (x \equiv x) \land (x \equiv y) \Rightarrow (x \equiv y)$
 $Identity : refl * evidence = evidence$

■ Symmetric → Inverse

$$sym_{xy}: (x \equiv y) \Rightarrow (y \equiv x)$$

 $trans_{xyx}: (x \equiv y) \land (x \equiv y) \Rightarrow (x \equiv x)$
 $Inverses: evidence* (evidence)^{-1} = refl$

Anatomy of hard equality

Anatomy of hard equality

Relax category until automorphisms computable.

$$\frac{1}{\sqrt{1}} \pi_1(L) = \langle x, y \mid x^2 = y^3 \rangle \qquad \pi_1(R) = \langle x, y \mid x^2 = y^{-3} \rangle$$

Anatomy of hard equality

Relax category until automorphisms computable.

Recursively refine comparing automorphisms with incrementally stricter properties. E.g. respect crossing number

Inward facing Motive: equalivance surveys complexity

FPGroupIso		Undecideable
Adjan, Rabin '50's		Offdecideable
PlaneGroupIso		Σ_3^P
Dietrich et.al. STACS'21		<u>-3</u>
BlackBoxGroupIso	MatroidIso	Σ_2^P
Babai-Szemerédi FOCS'84		
PermGroupIso		$\Sigma_1^P = NP$
Luks DIMACS		$z_1 - m$
TableGroupIso	GraphIso	$DTIME(2^{\log^c n})$
Tarjan	Babai	DTIME(2)
TableGroupIsoAbel		$DTIME(n^2 \log^c n)$
Kavitha (nearly-linear in RAM model)		DITIVIL (II log II)
TableGroupIsoMostOrders, IsGroup		$DTIME(n\log^c n)$
This Talk		Dimit (mog m)

Schreier-Sims

Problem: Transport

Given: A set Ω , allowed permutations X, $\omega, \omega' \in \Omega$

Return: decide if a string g over X maps ω to ω' , written

 $\omega^g = \omega'$, and give all such $g.^1$

¹Give words W over X so that $\omega^h = \omega'$ implies h = wg for a string w over W.

String Isomorphism

"Eighth"
$$==$$
 "HeigHt"

String Isomorphism

- Given strings $s, t: I \to \Sigma$ allowed permutations $G = \langle g_k \rangle \leq \operatorname{Sym}_I$, $H = \langle h_k \rangle \leq \operatorname{Sym}_{\Sigma}$
- **Return** strings $g = g_{a_1} \cdots g_{a_u}$ and $h = h_{b_1} \cdots h_{b_v}$ where $h(s_i) = t_{g(i)}$; or prove impossible.

$$\begin{vmatrix}
I & \xrightarrow{5} & \sum \\
g & & \downarrow h \\
I & \xrightarrow{t} & \sum
\end{vmatrix}$$

Theorem. (Babai 2016+) If Σ fixed, STRINGISO is in Quasipolynomial $n^{O((\log n)^c)}$ -time.

 $(GRAPHISO \leq_P STRINGISO)$

String Isomorphism

String Isomorphism

- Given strings $s, t: I \to \Sigma$ allowed permutations $G = \langle g_k \rangle \leq \operatorname{Sym}_I$, $H = \langle h_k \rangle \leq \operatorname{Sym}_{\Sigma}$
- **Return** strings $g = g_{a_1} \cdots g_{a_u}$ and $h = h_{b_1} \cdots h_{b_v}$ where $h(s_i) = t_{g(i)}$; or prove impossible.

$$\begin{array}{ccc}
I & \xrightarrow{s} & \Sigma \\
\downarrow g & & \downarrow h \\
I & \xrightarrow{t} & \Sigma
\end{array}$$

Theorem. (Babai 2016+) If Σ fixed, STRINGISO is in Quasipolynomial $n^{O((\log n)^c)}$ -time.

 $(GRAPHISO \leq_P STRINGISO)$

String Isomorphism

String Isomorphism

■ Given strings $s, t: I \to \Sigma$ allowed permutations $G = \langle g_k \rangle \leq \operatorname{Sym}_I$, $H = \langle h_k \rangle \leq \operatorname{Sym}_{\Sigma}$

■ **Return** strings $g = g_{a_1} \cdots g_{a_u}$ and $h = h_{b_1} \cdots h_{b_v}$ where $h(s_i) = t_{g(i)}$; or prove impossible.

Theorem. (Babai 2016+) If Σ fixed, STRINGISO is in Quasipolynomial $n^{O((\log n)^c)}$ -time.

 $(GRAPHISO \leq_P STRINGISO)$

Isomorphism of Tables

Code Equivalence

$$\begin{bmatrix} L & i \\ v & e \end{bmatrix} == \begin{bmatrix} E & v \\ i & I \end{bmatrix}$$

Code Equivalence²

- Given $s, t: I \times J \to \Sigma$, (generators for) permutations $R \leq \operatorname{Sym}_I$, $C \leq \operatorname{Sym}_J$, & $V \leq \operatorname{Sym}_\Sigma$
- Return $\sigma \in R$, $\tau \in C$, $\mu \in V$,

$$\begin{array}{ccc} I \times J \stackrel{s}{\longrightarrow} \Sigma \\ \downarrow^{\sigma} & \downarrow^{\tau} & \downarrow^{\mu} \\ I \times J \stackrel{t}{\longrightarrow} \Sigma \end{array}$$

$$\mu(s_{ij}) = t_{\sigma(i)\tau(j)}$$

Babai-Codenotti-Grochow-Qiao $2^{O(n)}$ -time bound for constant alphabet Σ (SODA '11)

Builds on Luks $2^{O(n)}$ -hypergraph isomorphism, FOCS '99. ²Non-linear twisted, with variable alphabet.

Algebra Isomorphism

Algebra Isomorphism

- Given $s, t: I \times I \to I$, (generators for) permutations $G \leq \operatorname{Sym}_I$,
- Return $\sigma \in G$,

$$\sigma(s_{ij}) = t_{\sigma(i)\sigma(j)}$$

$$\begin{array}{ccc}
I \times I & \xrightarrow{s} & I \\
\downarrow \sigma & \downarrow \sigma & \downarrow \sigma \\
I \times I & \xrightarrow{t} & I
\end{array}$$

Group Isomorphism Strategy

Group Isomorphism Strategy

Group Isomorphism Strategy

Group Isomorphism of most orders

Divide and conquer

Isomorphism of $G = A \times B$, i.e.

$$(a,b)(\tilde{a},\tilde{b})=(a\tilde{a},b\tilde{b})$$

reduces to isomorphism of A and B in parallel.³

Isomorphism of $G = A \ltimes_{\theta} B$, i.e.

$$(a,b)(\tilde{a},\tilde{b})=(a\tilde{a},\theta(\tilde{a})(b)\tilde{b})$$

reduces to isomorphism of A and B sequentially, plus adjusting θ .⁴

Lemma 2.1

³Technical detail: decompose maximally and adjust non-unique decompositions by Krull-Schmidt; see W. 2008.

Divide and conquer

Isomorphism of $G = A \times B$, i.e.

$$(a,b)(\tilde{a},\tilde{b})=(a\tilde{a},b\tilde{b})$$

reduces to isomorphism of A and B in parallel.³

Isomorphism of $G = A \ltimes_{\theta} B$, i.e.

$$(a,b)(\tilde{a},\tilde{b})=(a\tilde{a},\theta(\tilde{a})(b)\tilde{b})$$

reduces to isomorphism of A and B sequentially, plus adjusting θ .⁴

³Technical detail: decompose maximally and adjust non-unique decompositions by Krull-Schmidt; see W. 2008.

⁴Lemma 2.1

Division Graph: Erdős-Pálfy

Factor n into a graph $\Gamma(n)$.

Edge $(p_i^{e_i}, p_j^{e_j})$ where $p_i|p_j^k - 1$ for some $k \leq e_j$, & symmetrically.

Erdős-Pálfy, 1999

A group G of order n factors as

$$N_1 \times \cdots \times N_\ell$$

 $|N_i| = n_i$, order of connected component i in $\Gamma(n)$.

Example n = 1785

$$|G| = n \Rightarrow N_{3.7} \times N_5 \times N_{17}$$

Division Graph: Erdős-Pálfy

Factor n into a graph $\Gamma(n)$.

Edge $(p_i^{e_i}, p_j^{e_j})$ where $p_i|p_j^k - 1$ for some $k \leq e_j$, & symmetrically.

Erdős-Pálfy, 1999

A group G of order n factors as

$$N_1 \times \cdots \times N_\ell$$

 $|N_i| = n_i$, order of connected component i in $\Gamma(n)$.

Example n = 1785

$$|G| = n \Rightarrow N_{3.7} \times N_5 \times N_{17}$$

$$\boxed{3} \boxed{5}$$

Extending implications

Factor n into a direct hypergraph $\mathcal{H}(n)$. (i) Oriented Erdős-Pálfy hyper-edges, (ii) exceptions for finite nonabelian simple groups.

Proposition

A group G of order n factors as

$$N_0 \ltimes (N_1 \ltimes \cdots \ltimes N_\ell),$$

 $|N_i| = n_i$, where n_i is order of interconnected components of $\mathcal{H}(n)$.

$$|G| = n \Rightarrow N_{60} \ltimes (N_{179} \times N_{547})$$

Extending implications

Factor n into a direct hypergraph $\mathcal{H}(n)$. (i) Oriented Erdős-Pálfy hyper-edges, (ii) exceptions for finite nonabelian simple groups.

Proposition

A group G of order n factors as

$$N_0 \ltimes (N_1 \ltimes \cdots \ltimes N_\ell),$$

 $|N_i| = n_i$, where n_i is order of interconnected components of $\mathcal{H}(n)$.

$$|G| = n \Rightarrow N_{60} \ltimes (N_{179} \times N_{547})$$

Most Orders

Most Orders

Most Orders

$$G = H \ltimes (\mathbb{Z}_{p_{m+1}} \times \cdots \times \mathbb{Z}_{p_{\ell}})$$

Is it a Group Table?

Promise-to-decision

A great many computational algebra are analyzed as **promise problems** not **decision problems**.

Identity testing is needed to remove the promise; unsolvable in general (word problem), but on tables at least brute-force.

Theorem Rajagopalan-Schulman, 2000 Given $*:[n] \times [n] \to [n]$, test associativity (and other identities) in nearly-linear time $\tilde{O}(n^2)$ in RAM model (constant time ops and memory access). Also can test if a group.

Promise-to-decision

A great many computational algebra are analyzed as **promise problems** not **decision problems**.

Identity testing is needed to remove the promise; unsolvable in general (word problem), but on tables at least brute-force.

Theorem Rajagopalan-Schulman, 2000

Given $*: [n] \times [n] \to [n]$, test associativity (and other identities) in nearly-linear time $\tilde{O}(n^2)$ in RAM model (constant time ops and memory access). Also can test if a group.

RAM-to-TM

At larger scales Turing Machine (TM) model better match to computations that are communication bounded (typical in practice).

 $\mathsf{RAM} \to \mathsf{TM}$ at most a quadratic blow-up.

Corollary

Nearly Quadratic-time $\tilde{O}(n^4)$ on multi-tape Turing Machine (TM).

Theorem Dietrich-W. Given $*:[n] \times [n] \to [n]$, test if a group in time nearly-linear time $\tilde{O}(n^2)$ on deterministic multi-tape TM.

RAM-to-TM

At larger scales Turing Machine (TM) model better match to computations that are communication bounded (typical in practice).

 $RAM \rightarrow TM$ at most a quadratic blow-up.

Corollary

Nearly Quadratic-time $\tilde{O}(n^4)$ on multi-tape Turing Machine (TM).

Theorem Dietrich-W.

Given $*:[n] \times [n] \to [n]$, test if a group in time nearly-linear time $\tilde{O}(n^2)$ on deterministic multi-tape TM.

•	1	2	3	4	5
1 2 3 4 5	1	2	3	4	5
2	2	1	4	5	3
3	3	5	4 1 5	2	4
4	4	3	5	1	2
5	5	2 1 5 3 4	2	3	1

•	1	2	3	4	5
1	1	2	3	4	5
2	2	1	4	5	3
1 2 3 4 5	3	2 1 5 3 4	1	2	4
4	4	3	5	1	2
5	5	4	2	3	1

$$\rho(2) = \begin{array}{|c|c|c|c|c|}\hline 1 & 2 & 3 & 4 & 5 \\ \hline 2 & 1 & 4 & 5 & 3 \\ \hline \end{array} = (1,2)(3,5,4)$$

•	1	2	3	4	5
1	1 2	2	3	4	5
1 2 3	2	1	4	5	3
3	3	5	1	2	4
4	4	3	5	1	2
5	5	4	2	3	1

$$\rho(2) = \begin{array}{|c|c|c|c|c|} \hline 1 & 2 & 3 & 4 & 5 \\ \hline 2 & 1 & 4 & 5 & 3 \\ \hline \end{array} = (1,2)(3,5,4)$$

$$G_1 = \langle (354) \rangle$$

•	1	2	3	4	5
1	1	2	3	4	5
2	2	1	4	5	3
3	3	5	1	2	4
1 2 3 4 5	4	3	5	1	2
5	5	2 1 5 3 4	2	3	1

$$\rho(2) = \begin{array}{|c|c|c|c|c|}\hline 1 & 2 & 3 & 4 & 5 \\ \hline 2 & 1 & 4 & 5 & 3 \\ \hline \end{array} = (1,2)(3,5,4)$$

•	1	2	3	4	5
1	1	2	3 4 1 5	4	5
2	2	1	4	5	3
3	3	5	1	2	4
4	4	3	5	1	2
5	5	4	2	3	1

$$\rho(2) = \begin{array}{|c|c|c|c|c|}\hline 1 & 2 & 3 & 4 & 5 \\ \hline 2 & 1 & 4 & 5 & 3 \\ \hline \end{array} = (1,2)(3,5,4)$$

$$G_1 = \langle (354) \rangle$$

$$G_{13} = \{1\}$$

$$|G| = [G : G_1][G_1 : G_{13}]$$

= 2 · 3 = 6.
Should be 5,
not a group.

*	1	2	3	4	5
1	1	2	3	4	5
1 2 3	2	4	1	5	3
3	3	5	4	2	1
4	4	1	5	3	2
5	5	2 4 5 1 3	2	1	4

*	1	2	3	4	5
1	1	2	3	4	5
2	2	4	1	5	3
3	3	5	4	2	1
1 2 3 4 5	4	1	5	3	2
5	1 2 3 4 5	3	2	1	4

$$\rho(2) = \begin{array}{|c|c|c|c|c|}\hline 1 & 2 & 3 & 4 & 5 \\ \hline 2 & 4 & 1 & 5 & 3 \\ \hline \end{array} = (1, 2, 4, 5, 3)$$

*	1	2	3	4	5
1	1	2	3	4	5
2	2	4	1	5	3
3	3	5	4	2	1
4	4	1	5	3	2
5	5	2 4 5 1 3	2	1	4

$$|G| = [G : G_1| = 5]$$

$$\rho(2) = \begin{array}{|c|c|c|c|c|}\hline 1 & 2 & 3 & 4 & 5 \\ \hline 2 & 4 & 1 & 5 & 3 \\ \hline \end{array} = (1, 2, 4, 5, 3)$$

*	1	2	3 1 4 5 2	4	
1	1	2	3	4	5
2	2	4	1	5	3
3	3	5	4	2	1
4	4	1	5	3	2
5	5	3	2	1	4

$$\rho(2) = \begin{array}{|c|c|c|c|c|}\hline 1 & 2 & 3 & 4 & 5 \\ \hline 2 & 4 & 1 & 5 & 3 \\ \hline \end{array} = (1, 2, 4, 5, 3)$$

*	1	2	3	4	5
$\rho(2)^{0}$	1	2	3	4	5
$\rho(2)^1$	2	4	1	5	3
$\rho(2)^2$	4	5	2	3	1
$\rho(2)^2 =$	45	5231	$L \neq$	T_4	=
41532					

Not a group.

Summary

Summary

IsGroup nearly linear time

From $\tilde{O}(n^4)$ to $\tilde{O}(n^2)$: Promise-to-decision by transferring group to permutation model.

Grouplso most orders nearly linear time

From $n^{O(\log n)}$ to $\tilde{O}(n^2)$: Split group into

hard group \ltimes hard numbers = tiny numbers \ltimes cyclic groups.

Then standard divide-and-conquer.

Thanks to: Newton Institute (Cambridge, UK) EPSRC Grant Number EP/R014604/1, Australian Research Council grant DP190100317, and Simons Foundation Grant 636189.