CS245: Databases SQL

Vijaya saradhi

Department of Computer Science and Engineering Indian Institute of Technology Guwahati

Creation

Elements to be created

- Database
- Table
- Constraint
- Function
- Procedure
- Trigger
- Event
- And other elements

All these elements use **CREATE** statement

Database Creation

Database

- Database is a collection of tables (and programs that manipulate tables)
- Tables cannot exist independently. They must be under a specified database
- In order to create tables, we needs to create a database

Database Creation - SQL statement

```
Invoking MySQL client
```

mysql -uroot -p

CREATE DATABASE cs 245;

CREATE DATABASE IF **NOT EXISTS** cs245;

Database Creation - SQL statement

Using a specific database

- DBMS system may hold several databases. We need to specify which database we intend to use
- Only after this step, tables can be created

Specifying Database to Use

USE cs245;

Creating a table

Creating a table

```
CREATE TABLE student (
sid int,
name char(50),
login char(10),
age int, spi float);
```

student				
$_{ m sid}$	name	login	age	spi

CREATE statement

- sid is column name int is its data type
- name is column name char(50) is its data type
- login is column name char(10) is its data type
- age is column name int is its data type
- spi is column name float is its data type
- There are no constraints on this table

Creating a table

student					
sid	name	login	age	spi	
190101000	Atul Kumar	atul	18	8.0	
190101000	Atul Gupta	$_{ m atul}$	18	8.2	
190101000	Atul M	$_{ m atul}$	18	8.2	
190101000	Atul Gupta	atul	19	7.2	

- Same roll number is assigned to several students
- Same login is assigned to several students
- It is not possible to distinguish between two Atul Gupta's (row 2 & 4)
- In case you have to update the spi of Atul Gupta which row will you update? 2 or 4?

Creating another table

 $\textbf{CREATE TABLE register} (\ \text{sid} \ \ \textbf{int} \ , \ \ \text{grade} \ \ \textbf{char} \ (2) \ , \ \ \text{cid} \ \ \textbf{char} \ (6));$

register			
$_{ m grade}$	$_{ m cid}$		
AB	CS101		
$_{\mathrm{BB}}$	CS101		
AA	CS101		
$^{\mathrm{BB}}$	CS101		
	grade AB BB AA		

```
CREATE TABLE student (
sid int primary key,
name char(50),
login char(10),
age int,
spi float);
```

```
CREATE TABLE student (
sid int primary key,
name char (50),
login char (10),
age int,
spi float);
```

student					
$\underline{\operatorname{sid}}$	name	login	age	$_{ m spi}$	
190101000	Atul Kumar	atul	18	8.0	
190101001	Atul Gupta	$_{ m atul}$	18	8.2	

```
CREATE TABLE student (
sid int primary key,
name char (50),
login char (10),
age int,
spi float);
```

Inserting two identical values of primary key is not allowed

student					
$\underline{\operatorname{sid}}$	name	login	age	spi	
190101000	Atul Kumar	atul	18	8.0	
190101001	Atul Gupta	$_{ m atul}$	18	8.2	
190101000	Atul Kumar	atul	18	8.0	

Creating a table with two constraints

```
CREATE TABLE student(sid int primary key, name char(50), login char(10) unique, age int, spi float);
```

student					
$\underline{\operatorname{sid}}$	name	login	age	$_{ m spi}$	
190101000	Atul Kumar	atul	18	8.0	
190101000	Atul Gupta	atul01	18	7.2	
190101001	Atul Gupta	atul	18	6.2	
190101001	Atul Gupta	atul02	18	8.6	

Creating a table with unique key

One constraint alone

- Table with NO primary key constraint
- Having UNIQUE constraint on login column
- Note login can take NULL values.

```
CREATE TABLE student(sid int, name char(50), login char(10) unique, age int, spi float);
```

student					
sid	name	login	age	$_{ m spi}$	
190101001	Atul Kumar	atul	18	8.0	
190101002	Atul Gupta	atul	18	8.2	
190101003	Atul M	atul01	18	7.2	
190101004	Atul K	上	18	6.2	
190101005	Atul H	\perp	18	8.6	

One constraint alone

- Table with NO primary key constraint
- Having UNIQUE constraint on login column
- Having NOT NULL constraint on login column
- This is identical to specifying login column as primary key implicitly

```
CREATE TABLE student(sid int,

name char(50),

login char(10) unique not null,

age int,

spi float);
```

$\operatorname{student}$					
$_{ m sid}$	name	login	age	$_{ m spi}$	
190101001	Atul Kumar	atul	18	8.0	
190101002	Atul Gupta	atul	18	8.2	
190101003	Atul M	atul01	18	7.2	
190101004	Atul K	上	18	6.2	
190101005	Atul H	atul02	18	8.6	

Creating a table with not null columns

```
CREATE TABLE student (sid int, name char (50), login char (10), age int not null, spi float);
```

student						
sid	name	login	$_{ m age}$	$_{ m spi}$		
Τ	Atul Kumar	$_{ m atul}$	18	8.0		
190101000	Atul Gupta	$_{ m atul}$	Τ.	8.2		
190101000	Atul Gupta	atul01	18	\perp		
190101000	Atul Gupta	\perp	18	8.2		
190101000	\perp	atul02	18	8.2		

Foreign Key

Cases

- Needs two or more tables (Need not be distinct tables!)
- Each (refering) table must have primary key constraint
- Each (refering) table: primary key is expressed using only one column
- One (refering) table has primary key expressed on only one column. Other (refering) table(s) express primary key using two or more columns
- All (refering) tables express primary key using two or more columns

Draw figure for this explanation;


```
CREATE TABLE student (sid int primary key,
                      name char(50),
                      login char(20) unique.
                      age int,
                      spi float);
CREATE TABLE register (cid int.
                       grade char(2),
                       studid int.
                       primary key(cid, studid),
                       foreign key(studid) references student(sid));
```

Foreign Key - Example 2 (Error)

Foreign Key - Example 1 (Deleting paraent table row) - Action 01 (Delete)

Foreign Key - Example 1 (Deleting paraent table row) - Action 02 (SET Default value)

• SET DEFAULT: This action is recognized by the MySQL parser, but both InnoDB and NDB reject table definitions containing ON DELETE SET DEFAULT or ON UPDATE SET DEFAULT clauses.

Foreign Key - Example 1 (Deleting paraent table row) - Action 03 (set NULL)

• SET NULL: NOT NULL constraint should not be placed on studid

Foreign Key - Example 1 (Deleting paraent table row) - Action 04 (Disallow)

Foreign Key - Example 1 (Updating paraent table row) - Action 01 (Update)

```
register
                                                                        student
            grade
                    studid
                                      sid
                                                       login
                                              name
                                                                age
                                                                         spi
                  Foreign Key
                                  Primary Key
CREATE TABLE student(sid int primary key,
                       name char(50).
                       login char(20) unique.
                       age int.
                       spi float ):
CREATE TABLE register(cid int.
                        grade char(2).
                        studid int .
                        primary key(cid, studid),
                        foreign kev(studid) references student(sid) ON UPDATE CASCADE):
```

Foreign Key - Example 1 (Updating paraent table row) - Action 02 (SET Default value)

SET DEFAULT: This action is recognized by the MySQL parser, but both InnoDB and NDB reject table
definitions containing ON DELETE SET DEFAULT or ON UPDATE SET DEFAULT clauses.

Foreign Key - Example 1 (Updating paraent table row) - Action 03 (set NULL)

• SET NULL: NOT NULL constraint should not be placed on studid

Foreign Key - Example 1 (Updating paraent table row) - Action 04 (Disallow)

```
register
                                                                       student
            grade
                    studid
                                      sid
                                                       login
                                              name
                                                                age
                                                                         spi
                  Foreign Key
                                  Primary Key
CREATE TABLE student(sid int primary key,
                       name char(50).
                       login char(20) unique.
                       age int.
                       spi float ):
CREATE TABLE register(cid int.
                        grade char(2).
                        studid int .
                        primary key(cid, studid),
                        foreign kev(studid) references student(sid) ON UPDATE RESTRICT):
```

Foreign Key - Example 1 (Deleting/Updating) - Action 01 (Delete/Update)

DDL - Table manipulations

Possible manipulations

- Add column at beginning
- Add column at the middle
- Add column at the end
- Delete column
- Specify data type
- Modify data type
- Add constraints
- Delete constraints

DDL - Adding a column at the beginning

DDL - Adding a column at the beginning

Altering Table

• Adding a column c1 at the beginning

ALTER TABLE R ADD COLUMN c1 INT FIRST;

DDL - Adding a column at the beginning

Altering Table

• Adding a column c1 at the beginning

ALTER TABLE R ADD COLUMN c1 INT FIRST;

R					
c1	c2	c3	c4	c5	

DDL - Adding a column at the beginning

R: before adding c1						
c2	c3	c4	c5			
1	2	3	4			
1	2	3	5			
1	2	4	6			

DDL - Adding a column at the beginning

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R: before adding c1					
1 2 3 5	c2	c3	c4	c5		
±	1	2	3	4		
1 2 4 6	1	2	3	5		
	1	2	4	6		

R: after adding c1						
c1	c2	c3	c4	c5		
工	1	2	3	4		
\perp	1	2	3	5		
\perp	1	2	4	6		

DDL - Adding a column at the beginning

- Existing rows will be unaltered
- Values for the new column for each existing rows is not specified
- \bullet \perp by default is added to the existing rows

DDL - Adding a column

DDL - Adding a column

Altering Table

• Adding a column between c2 and c4

ALTER TABLE R ADD COLUMN c3 INT AFTER c2;

DDL - Adding a column

Altering Table

• Adding a column between c2 and c4

ALTER TABLE R ADD COLUMN c3 INT AFTER c2;

R					
c1	c2	c3	c4	c5	

DDL - Adding a column at the end

DDL - Adding a column at the end

Altering Table

• Adding a column c1 at the end

ALTER TABLE R ADD COLUMN c5 INT;

DDL - Adding a column at the end

Altering Table

• Adding a column c1 at the end

ALTER TABLE R ADD COLUMN c5 INT;

		R		
c1	c2	c3	c4	c5

DDL - Dropping a column (with no constraints)

DDL - Dropping a column (with no constraints)

Altering Table

• Dropping the column c1

ALTER TABLE R DROP COLUMN c1;

DDL - Dropping a column (with no constraints)

Altering Table

• Dropping the column c1

ALTER TABLE R DROP COLUMN c1;

R						
c2	c3	c4	c5			

Primary Key

CREATE TABLE R(c1 INT, c2 INT, c3 INT, c4 INT);

R						
c1	c2	c3	c4			

Primary Key

CREATE TABLE R(c1 INT, c2 INT, c3 INT, c4 INT);


```
Foreign Key
```

```
CREATE TABLE R(c1 INT, c2 INT, c3 INT, c4 INT, PRIMARY KEY(c1)); CREATE TABLE S(s1 INT, s2 INT, PRIMARY KEY(s1));
```

Foreign Key

```
CREATE TABLE R(c1 INT, c2 INT, c3 INT, c4 INT, PRIMARY KEY(c1)); CREATE TABLE S(s1 INT, s2 INT, PRIMARY KEY(s1));
```

• Adding a foreign key c2 to R

```
ALTER TABLE R ADD CONSTRAINT my_c2_fkey FOREIGN KEY(c2) REFERENCES S(s1);
```

DDL - Dropping constraints

- Primary key simple case
- Primary key complex case (includes dropping foreign key)
- NULL
- DEFAULT

ALTER TABLE R DROP PRIMARY KEY;

- Remove all foreign keys
- Delete the primary key

ALTER TABLE R DROP FOREIGN KEY my_cid_fkey;

ALTER TABLE R DROP FOREIGN KEY my_cid_fkey;
ALTER TABLE R DROP PRIMARY KEY;

- Drop foreign key from table4
- Drop foreign key from table3
- Drop foreign key from table2
- Delete the primary key from table1

DDL - Dropping default constraint

DDL - Dropping default constraint

DEFAULT value

ALTER TABLE R ADD COLUMN C1 INT DEFAULT 10 FIRST;

DDL - Dropping default constraint

DEFAULT value

ALTER TABLE R ADD COLUMN C1 INT DEFAULT 10 FIRST;

ALTER TABLE R DROP COLUMN C1;

DDL - Dropping NOT NULL constraint

NOT NULL column

DDL - Dropping NOT NULL constraint

NOT NULL column

ALTER TABLE R ADD COLUMN C1 INT NOT NULL 10 FIRST;

DDL - Dropping NOT NULL constraint

NOT NULL column

ALTER TABLE R ADD COLUMN C1 INT NOT NULL 10 FIRST;

ALTER TABLE R DROP COLUMN C1;

DDL - Changing Domains

Altering Attribute Domains

ALTER TABLE R CHANGE c3 c3 CHAR(20);

ALTER TABLE R CHANGE c3 new_c3 CHAR(30);

One has to be carful while changing the data types when columns are either primary key or foreign key constraints.

DDL - changing domains pit falls

Altering Attribute Domains

c1 (int)
129
130
131
132

ALTER TABLE R CHANGE c1 c1 tinyint;

will result in an error and the operation is not permitted due to Out of range value for column 'c1'

DDL - Changing Domains

Altering Attribute Domains

c1	(int)
1	
2	
3	
4	

ALTER TABLE R CHANGE c1 c1 tinyint;

No issues. c1 is made tinyint.

DDL - Default Constraint

Expressing Default Constraint

CREATE TABLE R(c1 INT, c2 INT DEFAULT 245, PRIMARY KEY(c1))

Data inserting/updating/deletion

- Inserting rows into table
 - One row
 - Insert all the columns of the row
 - Inserting fewer columns of the row
 - DEFAULT columns cases
 - Two rows
 - Loading a local file
- Updating rows in the table
 - One row
 - Multiple rows
- Deleting rows from the table
 - One row
 - Multiple rows

Insert one row

Inserting one row

- Insert all the columns of the row
- Inserting fewer columns of the row
- Specify table into which the row will be inserted
- Is the row added at the beginning? in the middle? or at the end?

R					
c1	c2	сЗ	c4	с5	
1	2	3	4	5	

INSERT INTO R(c1, c2, c3, c4, c5) **VALUES** (1, 2, 3, 4, 5);

Insert one row

Inserting one row

R						
с1	c2	сЗ	с4	c5		
1	2	3	4	5		
10	20	30	40	50		

INSERT INTO R(c1, c2, c3, c4, c5) **VALUES** (10, 20, 30, 40, 50);

Insert one row - specify few columns

All columns having no constraints

R					
c1	c2	сЗ	c4	c5	
1	2	3	4	5	
10	20	30	40	50	
100	上	300	400	上	

INSERT INTO R(c1, c3, c4) **VALUES** (100, 300, 400);

Insert one row - specify few columns

c2 cannot take NULL values

say c2 has NOT NULL constraint constraint violation: INSERT statement is rejected by DBMS

R				
c1	c2	сЗ	c4	c5
1	2	3	4	5
10	20	30	40	50
100	上	300	400	上

INSERT INTO R(c1, c3, c4) **VALUES** (15, 35, 45);

Insert one row - specify few columns

DEFAULT value constraint

say c2 has DEFAULT value constraint as 250

while inserting, only c1, c3 & c4 values are being inserted, due to default constraint on column c2, 250 also insert along with c1 = 150, c3 = 350, c4 = 450

		R		
c1	c2	сЗ	c4	с5
1	2	3	4	5
10	20	30	40	50
100		300	400	
150	250	350	450	上

INSERT INTO R(c1, c3, c4) **VALUES** (150, 350, 450);

Insert one row - specify few columns

FOREIGN KEY constraint

say c2 is a foreign key pointing to cid of table S Table S do not have cid=22 (c2) INSERT statement will be rejected by DBMS

R				
с1	c2	сЗ	c4	c5
1	2	3	4	5
10	20	30	40	50
100	200	300	400	
150	250	350	450	

	S	
cid	cname	cedits
2	SQL	3
20	C++	6
200	R	4
250	Python	8

INSERT INTO R(c1, c2, c3, c4, c5) **VALUES** (11, 22, 33, 44, 55);

Insert two rows

Inserting two rows

R				
c1	c2	сЗ	c4	c5
1	2	3	4	5
10	20	30	40	50
100		300	400	
150	250	350	450	\perp
170	270	370	470	570
180	280	380	480	580

 $\textbf{INSERT INTO} \ \ R(\ c1\ , \ \ c3\ , \ \ c4\ , \ \ c5\) \ \ \textbf{VALUES} \ \ (170\ , \ \ 270\ , \ \ 370\ , \ \ 470\ , \ \ 570)\ , \ \ (180\ , \ \ 280\ , \ \ 380\ , \ \ 480\ , \ \ 580);$

File must meet all table constraints

Invoke mysql as: mysql -uroot -p --local-infile to read data from local files

		R		
с1	c2	сЗ	c4	с5

LOAD DATA LOCAL INFILE '/home/saradhi/tableR-data.csv'
INTO TABLE R
FILEDS TERMINATED BY ','
LINES TERMINATED BY '\n';

File must meet all table constraints

First line of the file contains header; ignore header

LOAD DATA LOCAL INFILE '/home/saradhi/tableR-data.csv'
INTO TABLE R
FILEDS TERMINATED BY ','
LINES TERMINATED BY '\n'
IGNORE 1 LINES;

File must meet all table constraints

First 10 lines of the file contains header and comments; ignore them

LOAD DATA LOCAL INFILE '/home/saradhi/tableR-data.csv'
INTO TABLE R
FILEDS TERMINATED BY ','
LINES TERMINATED BY '\n'
IGNORE 10 LINES;

File must meet all table constraints

Columns are separated by space

LOAD DATA LOCAL INFILE '/home/saradhi/tableR-data.csv'
INTO TABLE R
FILEDS TERMINATED BY '_'
LINES TERMINATED BY '\n'
IGNORE 10 LINES;

File must meet all table constraints

Columns are separated by '#'

LOAD DATA LOCAL INFILE '/home/saradhi/tableR-data.csv'
INTO TABLE R
FILEDS TERMINATED BY '#'
LINES TERMINATED BY '\n'
IGNORE 10 LINES;

Specifying order of row insertion?

Can we instruct DBMS?

- Row storage is internal to the DBMS
- This burden of storage is decoupled from users
- A table with primary key constraint, records are stored in the sorted order of the primary key
- Detailed discussion of storage will be covered when discussing DBMS internals

Updating one row

Updating one row

This update statement will be allowed

UPDATE R SET
$$c1 = 5$$
 where $c1 = 1$;

Updating one row

Updating one row

$Assum\epsilon$	cl is a	primai	y key c	olumn
		R		
с1	c2	сЗ	c4	c5
1	2	3	4	5
10	20	30	40	50
100		300	400	
150	250	350	450	

This update statement will be allowed

UPDATE R SET
$$c1 = 5$$
 where $c1 = 1$;

This update statement will be rejected

UPDATE R SET
$$c1 = 10$$
 where $c1 = 1$;

Updating multiple rows

Updating multiple rows

R				
c1	c2	сЗ	c4	c5
1	2	3	4	5
10	20	30	40	50
100		300	400	1
150	250	350	450	

UPDATE R **SET** c1 = 101 **where** c1 >= 100;

Deleting one row

Deleting one row

Assume c1 is a primary key column

R				
c1	c2	сЗ	c4	c5
1	2	3	4	5
10	20	30	40	50
100	\perp	300	400	1
150	250	350	450	上

DELETE FROM R WHERE c1 = 1;

Deleting multiple rows

Deleting multiple rows

		R		
c1	c2	с3	c4	c5
1	2	3	4	5
10	20	30	40	50
100		300	400	1
150	250	350	450	

DELETE FROM R WHERE c1 >= 100;

Reading Data From Tables

- Selecting columns
- Selecting rows
- Select rows and columns
- Table operations
 - Union of two tables
 - Intersection between two tables
 - Difference of two tables
 - Cross product of two tables
 - Joining two tables
 - Natural join
 - Inner join (theta join)
 - Left outer join
 - Right outer join
 - Full outer join
 - Group by
 - Distinct rows/columns
 - Sort rows
 - Extended selection

Selecting columns of a table

SELECT statement

- Is the most frequently used statement
- Is at the heart of the querying database tables
- Important as SELECT statement combines more than 9 relational algebraic operators
- We build from basics to advanced query structures

SELECT statement structure

SELECT	list	the	column names
FROM	list	the	table names
WHERE	specify	the	condition
GROUP BY	list	the	column names
HAVING	specify	the	condition
ORDER BY	specify	the	column names;

SELECT statement structure

SELECT

- SELECT statement result in a table
- The result table will not be explictly stored in the database
- Compose several SELECT statements to perform a required query
- Needed privileges to perform the select statemet!

Operations on tables using SELECT

A quick list

- Select columns
- Select rows
- Select rows & columns
- Select remove duplicates
- O Select perform column sum, minimum, maximum, average, count
- Select sort
- Select group by specified column
- Select create new columns by using expressoins/functions

SELECT - columns

Select specified list of columns

Select rating from Sailors

	Sai.	lors		1
sid	sname	rating	age	- 1
22	Dustin	7	45.0	
29	Brutus	1	33.0	- 1
31	Lubber	8	55.5	- 1
32	Andy	8	25.5	- 1
58	Rusty	10	35.0	
64	Horatio	7	35.0	
71	Zorba	10	16.0	
74	Horatio	9	35.0	
85	Art	3	25.5	
95	Bob	3	63.5	

Select specified list of columns

SELECT rating FROM Sailors;

Vijaya saradhi

New Table

10

SELECT - columns

Select specified list of columns

Select sid and rating

	Sailors				
sid	sname	rating	age		
22	Dustin	7	45.0		
29	Brutus	1	33.0		
31	Lubber	8	55.5		
32	Andy	8	25.5		
58	Rusty	10	35.0		
64	Horatio	7	35.0		
71	Zorba	10	16.0		
74	Horatio	9	35.0		
85	Art	3	25.5		
95	Bob	3	63.5		

١	Nev	w Table
1	$_{ m sid}$	rating
1	22	7
1	29	1
1	31	8
l _	32	8
-	58	10
1	64	7
l	71	10
	74	9
	85	3
/	95	3

Select specified list of columns

SELECT sid, rating

FROM Sailors;

SELECT - columns: order of selection

order of list of columns

Order of columns need not be identical to the table stored in the database. Select rating, sid

Sailors				
$_{ m sid}$	sname	rating	age	
22	Dustin	7	45.0	
29	Brutus	1	33.0	
31	Lubber	8	55.5	
32	Andy	8	25.5	
58	Rusty	10	35.0	
64	Horatio	7	35.0	
71	Zorba	10	16.0	
74	Horatio	9	35.0	
85	Art	3	25.5	
95	Bob	3	63.5	

	New T	able
	rating	sid
	7	22
	1	29
	8	31
_	8	32
_	10	58
	7	64
	10	71
	9	74
	3	85
	3	95

Select specified list of columns

SELECT rating, sid FROM Sailors;

SELECT - columns: order of selection

list all columns

Order of columns need not be identical to the table stored in the database. Select rating, sid

		lors	
$_{ m sid}$	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	$_{\mathrm{Bob}}$	3	63.5

		New '	Table	
	sid	sname	rating	age
	22	Dustin	7	45.0
	29	Brutus	1	33.0
	31	Lubber	8	55.5
_	32	Andy	8	25.5
_	58	Rusty	10	35.0
	64	Horatio	7	35.0
	71	Zorba	10	16.0
	74	Horatio	9	35.0
	85	Art	3	25.5
	95	Bob	3	63.5

Select specified list of columns

SELECT sid, sname, rating, age

FROM Sailors;

SELECT - columns: Wild character

list all columns

Order of columns need not be identical to the table stored in the database. Select rating, sid

Sailors					
$_{ m sid}$	sname	rating	age		
22	Dustin	7	45.0		
29	Brutus	1	33.0		
31	Lubber	8	55.5		
32	Andy	8	25.5		
58	Rusty	10	35.0		
64	Horatio	7	35.0		
71	Zorba	10	16.0		
74	Horatio	9	35.0		
85	Art	3	25.5		
95	Bob	3	63.5		

	New Table					
	$_{ m sid}$	sname	rating	age		
	22	Dustin	7	45.0		
	29	$_{ m Brutus}$	1	33.0		
	31	Lubber	8	55.5		
_	32	Andy	8	25.5		
-	58	Rusty	10	35.0		
	64	Horatio	7	35.0		
	71	Zorba	10	16.0		
	74	Horatio	9	35.0		
	85	Art	3	25.5		
	95	Bob	3	63.5		

Select specified list of columns

SELECT - rows: one specific row

select all rows that meet specific condition

Select one specific row; Example: sid = 58

/	Sailors					
	sid	sname	rating	age		
	22	Dustin	7	45.0		
	29	Brutus	1	33.0		
	31	Lubber	8	55.5		
	32	Andy	8	25.5		
	58	Rusty	10	35.0		
	64	Horatio	7	35.0		
	71	Zorba	10	16.0		
	74	Horatio	9	35.0		
	85	Art	3	25.5		
	95	Bob	3	63.5		

		New	Table	
=	sid	sname	rating	age
	58	Rusty	10	35.0

Select specified list of columns

SELECT sid, sname, rating, age

FROM Sailors WHERE sid = 58;

SELECT - rows: one specific row

select all rows that meet specific condition

Select one specific row; Example: sid = 58

,	Sailors					
	sid	sname	rating	age		
	22	Dustin	7	45.0		
	29	Brutus	1	33.0		
	31	Lubber	8	55.5		
	32	$_{ m Andy}$	8	25.5		
	58	Rusty	10	35.0		
	64	Horatio	7	35.0		
	71	Zorba	10	16.0		
	74	Horatio	9	35.0		
	85	Art	3	25.5		
(95	Bob	3	63.5		

		New	Table	
=	sid	sname	rating	age
	58	Rusty	10	35.0

Select specified list of columns

SELECT * -- wild character; list all columns of row containing sid=58

FROM Sailors
WHERE sid = 58;

SELECT - rows: several rows

select all rows that meet specific condition

Select one specific row; Example: sname = Horatio

$_{ m sid}$	$_{ m sname}$	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	$_{ m Zorba}$	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	$_{\mathrm{Bob}}$	3	63.5

	New Table				
sid	sname	rating	age		
64	Horatio	7	35.0		
74	Horatio	9	35.0		

Select specified list of columns

SELECT sid, sname, rating, age FROM Sailors

WHERE sname = 'Horatio':

SELECT - rows: several rows

select all rows that meet specific condition

Selecting rows with complex Example: sailors whose rating more than 6 and name should not be Horatio

$_{ m sid}$	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

		New	Table	
	$_{ m sid}$	sname	rating	age
	22	Dustin	7	45.0
=	31	Lubber	8	55.5
	32	Andy	8	25.5
	58	Rusty	10	35.0
	71	Zorba	10	16.0

Select specified list of columns

```
 \begin{array}{ll} \textbf{SELECT} & \text{sid} \;, \;\; \text{sname} \;, \;\; \text{rating} \;, \;\; \text{age} \\ \end{array}
```

FROM Sailors

WHERE (rating > 6 AND sname <> 'Horatio');

3/138

SELECT - rows & columns

select specified rows and columns of a given condition

Selecting sname and rating columns of saiolrs whose age is greater than or equal to 30 and name should not be Horatio

Sailors			
$_{ m sid}$	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

	New	Table
	sname	rating
	Dustin	7
=	Brutus	1
	Lubber	8
	Rusty	10
	Bob	3

Select specified list of columns

SELECT sname, rating

FROM Sailors

WHERE (age >= 30 AND sname <> 'Horatio');

SELECT - remove duplicates

Definition

$$r_i[a_k] = r_j[a_k] \ \forall i \neq j; \ \forall k = 1, 2, \dots, \text{number of columns}$$

Removing duplicates

a1	a2	a3
1	2	3
1	2	3
1	2	3
1	2	4

Rows 1, 2 & 3 are duplicate; fourth row is not a duplicate

SELECT - remove duplicates

```
Remove Duplicates - SQL

SELECT DISTINCT a1, a2, a3

FROM table A;
```

SELECT - remove duplicates

Remove Duplicates - SQL

SELECT DISTINCT a1, a2, a3

FROM tableA;

Remove Duplicates - SQL

a1	a2	a3
1	2	3
1	2	4

SELECT - perform column SUM - 01

```
Aggregate operations - SQL

SELECT SUM(a1), SUM(a2), SUM(a3)

FROM tableA;
```

SELECT - perform column SUM - 01

Aggregate operations - SQL

SELECT SUM(a1), SUM(a2), SUM(a3) FROM table A;

Aggregation operation - SUM

SUM(a1)	SUM(a2)	SUM(a3)
4	8	13

SELECT - perform column SUM - 01

Aggregate operations - SQL

SELECT SUM(a1), SUM(a2), SUM(a3) FROM tableA;

Aggregation operation - SUM

SUM(a1)	SUM(a2)	SUM(a3)
4	8	13

new result table; columns SUM(a1), ... created! data type same as column a1

SELECT - perform column SUM - 02

a1	a2	a3
1	2	3
1	2	3
1	2	3
1	2	4
1	1	Ţ

SELECT - perform column SUM - 02

a1	a2	a3
1	2	3
1	2	3
1	2	3
1	2	4
上	上	上

```
 \begin{array}{ll} \textbf{SELECT SUM}(\,a1\,)\;,\;\; \textbf{SUM}(\,a2\,)\;,\;\; \textbf{SUM}(\,a3\,) \\ \textbf{FROM} & tableA\;; \end{array}
```

SELECT - perform column SUM - 02

a1	a2	a3
1	2	3
1	2	3
1	2	3
1	2	4
上	1	

SUM(a1)	SUM(a2)	SUM(a3)
4	8	13

SELECT - perform column MIN, MAX, AVG

a1	a2	a3
1	2	3
1	2	3
1	2	3
4	5	6
Н		上

SELECT - perform column MIN, MAX, AVG

a1	a2	a3
1	2	3
1	2	3
1	2	3
4	5	6
上	T	Т

```
SELECT MIN(a1), MAX(a2), AVG(a3) FROM table A;
```

SELECT - perform column MIN, MAX, AVG

a1	a2	a3
1	2	3
1	2	3
1	2	3
4	5	6
上	T	

$$\begin{array}{ll} \textbf{SELECT MIN}(\,\mathrm{a1}\,)\;,\;\; \textbf{MAX}(\,\mathrm{a2}\,)\;,\;\; \textbf{AVG}(\,\mathrm{a3}\,) \\ \textbf{FROM} & \mathrm{table}\,\mathrm{A}\;; \end{array}$$

MIN(a1)	MAX(a2)	AVG(a3)
1	5	3.75

a1	a2	a3
1	2	3
1	2	3
1	2	3
4	5	6

a1	a2	a3
1	2	3
1	2	3
1	2	3
4	5	6

```
SELECT count (a1)
FROM table A;
```

a1	a2	a3
1	2	3
1	2	3
1	2	3
4	5	6

SELECT count (a1) FROM table A;

a1	a2	a3
1	2	3
1	2	3
1	2	3
4	5	6
Н		上

a1	a2	a3
1	2	3
1	2	3
1	2	3
4	5	6
上	T	Т

SELECT count (a1) FROM table A;

a1	a2	a3
1	2	3
1	2	3
1	2	3
4	5	6
上	T	Т

SELECT count (a1) FROM table A;

SELECT - perform row COUNT

a1	a2	a3
1	2	3
1	2	3
1	2	3
4	5	6
1	\perp	上

SELECT - perform row COUNT

a1	a2	a3
1	2	3
1	2	3
1	2	3
4	5	6
上	\perp	上

SELECT * — wild character counts rows **FROM** table A;

SELECT - perform row COUNT

a1	a2	a3
1	2	3
1	2	3
1	2	3
4	5	6
上	Т	上

SELECT * — wild character counts rows **FROM** table A;

sort specified columns in ascending order (by default)

Example Relation

	Sailors			
sid	sname	rating	age	
22	Dustin	7	45.0	
29	Brutus	1	33.0	
31	Lubber	8	55.5	
32	Andy	8	25.5	
58	Rusty	10	35.0	
64	Horatio	7	35.0	
71	Zorba	10	16.0	
74	Horatio	9	35.0	
85	Art	3	25.5	
95	Bob	3	63.5	

sort specified columns in ascending order (by default)

Example Relation

	Sail	lors	
sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Sorting

SELE	CT * FROM Sa	ailors ORDE	R BY rating
sid	sname	rating	age
29	Brutus	1	33.0
85	Art	3	25.5
95	Bob	3	63.5
22	Dustin	7	45.0
64	Horatio	7	35.0
31	Lubber	8	55.5
32	Andy	8	25.5
74	Horatio	9	35.0
58	Rusty	10	35.0
71	Zorba	10	16.0

sort specified columns in descending order

Example Relation

	Sailors			
sid	sname	rating	age	
22	Dustin	7	45.0	
29	Brutus	1	33.0	
31	Lubber	8	55.5	
32	Andy	8	25.5	
58	Rusty	10	35.0	
64	Horatio	7	35.0	
71	Zorba	10	16.0	
74	Horatio	9	35.0	
85	Art	3	25.5	
95	Bob	3	63.5	

sort specified columns in descending order

Example Relation

	Sail	lors	
sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Sorting

SELE	CT * FROM Sa	ailors ORDE	R BY rating DESC
sid	sname	rating	age
58	Rusty	10	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
31	Lubber	8	55.5
32	Andy	8	25.5
22	Dustin	7	45.0
64	Horatio	7	35.0
85	Art	3	25.5
95	Bob	3	63.5
29	Brutus	1	33.0

sort multiple columns

Example Relation

	Sai	lors	
sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

sort multiple columns

Example Relation

	Sailors			
sid	sname	rating	age	
22	Dustin	7	45.0	
29	Brutus	1	33.0	
31	Lubber	8	55.5	
32	Andy	8	25.5	
58	Rusty	10	35.0	
64	Horatio	7	35.0	
71	Zorba	10	16.0	
74	Horatio	9	35.0	
85	Art	3	25.5	
95	Bob	3	63.5	

Sorting

SELECT * FROM Sailors ORDER BY rating, age

sid	sname	rating	age
29	Brutus	1	33.0
85	Art	3	25.5
95	Bob	3	63.5
64	Horatio	7	35.0
22	Dustin	7	45.0
32	Andy	8	25.5
31	Lubber	8	55.5
74	Horatio	9	35.0
71	Zorba	10	16.0
58	Rusty	10	35.0

Grouping on Department attribtue

Department	
EEE	
CSE	
EEE	
CSE	
•••	
CSE	

On grouping on Department attribtue

Department	
CSE	
CSE	
CSE	
EEE	
EEE	

On grouping on Department attribtue

Department	
CSE	
$\stackrel{\text{CSE}}{=}$	
$\stackrel{\text{CSE}}{=}$	
$_{ m EEE}$	
EEE	

- Partitions rows of table into groups on the given column (cid)
- Each group (cid) consists of all rows having one particular assignment of values
- If there are no grouping attributes, entire relation is one group
- For each group (cid) produce one row consisting of
 - The grouping attributes' values for that group and
 - The aggregations over all row of that group for the aggregated colum on column list (cid)

Example Relation

	Sail	Long	
	San	iors	
sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Example Relation

	Sailors			
sid	sname	rating	age	
22	Dustin	7	45.0	
29	Brutus	1	33.0	
31	Lubber	8	55.5	
32	Andy	8	25.5	
58	Rusty	10	35.0	
64	Horatio	7	35.0	
71	Zorba	10	16.0	
74	Horatio	9	35.0	
85	Art	3	25.5	
95	Bob	3	63.5	

SELECT * FROM Sailors GROUP BY rating			
sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Example Relation

	Sailors			
sid	sname	rating	age	
22	Dustin	7	45.0	
29	Brutus	1	33.0	
31	Lubber	8	55.5	
32	Andy	8	25.5	
58	Rusty	10	35.0	
64	Horatio	7	35.0	
71	Zorba	10	16.0	
74	Horatio	9	35.0	
85	Art	3	25.5	
95	Bob	3	63.5	

SELECT * FROM Sailors GROUP BY rating			
sid	sname	rating	age
22	Dustin	7	45.0
64	Horatio	7	35.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Example Relation

	Sailors			
sid	sname	rating	age	
22	Dustin	7	45.0	
29	Brutus	1	33.0	
31	Lubber	8	55.5	
32	Andy	8	25.5	
58	Rusty	10	35.0	
64	Horatio	7	35.0	
71	Zorba	10	16.0	
74	Horatio	9	35.0	
85	Art	3	25.5	
95	Bob	3	63.5	

 SELECT * FROM Sailors GROUP BY rating				
sid	sname	rating	age	
22	Dustin	7	45.0	
64	Horatio	7	35.0	
29	Brutus	1	33.0	
31	Lubber	8	55.5	
$\frac{32}{}$	Andy	8	25.5	
58	Rusty	10	35.0	
71	$\overline{\text{Zorba}}$	10	16.0	
74	Horatio	9	35.0	
85	Art	3	25.5	
95	Bob	3	63.5	

Example Relation

	Sailors						
sid	sname	rating	age				
22	Dustin	7	45.0				
29	Brutus	1	33.0				
31	Lubber	8	55.5				
32	Andy	8	25.5				
58	Rusty	10	35.0				
64	Horatio	7	35.0				
71	Zorba	10	16.0				
74	Horatio	9	35.0				
85	Art	3	25.5				
95	Bob	3	63.5				

sid	l sname rating age							
22	Dustin	7	$\frac{45.0}{45.0}$					
29	Brutus	1	33.0					
		1						
31	Lubber	8	55.5					
58	Rusty	10	35.0					
74	Horatio	9	35.0					
85	Art	3	25.5					

AS - re-nameing columns - 01

Create new column X using B, C

table1					
A	В	$\overline{\mathbf{C}}$			
0	1	2			
0	1	2			
3	4	5			

SQL statement

$$\begin{array}{ll} \textbf{SELECT} \ A, \ (B+C) \ \textbf{AS} \ X \\ \textbf{FROM} & table 1 \ ; \end{array}$$

AS - re-nameing columns - 02

Create new columns X, Y using B, A and C, B

table1					
В	$\overline{\mathbf{C}}$				
1	2				
1	2				
4	5				

SQL statement

SELECT
$$(B - A)$$
 AS X, $(C - B)$ AS Y FROM table 1;

AS - re-nameing table - 03

Create new table using SELECT

table1						
A	В	$\overline{\mathrm{C}}$				
0	1	2				
0	1	2				
3	4	5				

table2				
A	X			
0	3			
0	3			
3	9			

SQL statement

CREATE TABLE table 2 AS (SELECT A, (B + C) AS X FROM

table1);

Table Operators

Binary Operator - Union

a1	a2	a3	
1	2	3	
4	5	6	

	a1	a2	a3
_	1	2	3
	4	5	6
	7	8	9

Union Compatibility

- Two tables should have identical number of columns
- Every column must have identical data type

Union - SQL Statement

0.1	62	a3		b1	ho.	h9		a1	a2	a3
								1	2	3
1	2	3	\cup	1	2	3	=	4	<u> </u>	6
4	5	6		7	8	9		4	9	O
	<u> </u>			•		U		7	8	9

Union Computation - 01

$$A \cup B = \{ e \mid e \in A \ OR \ e \in B \}$$

Binary Operator - Union

Binary Operator - Union
$$A \cup B = \{ e \mid e \in A \text{ OR } e \in B \}$$

Binary Operator - Union
$$A \cup B = \{ e \mid e \in A \text{ OR } e \in B \}$$

Binary Operator - Union

$$A \cup B = \{ e \mid e \in A \text{ OR } e \in B \}$$

Binary Operator - Union

4 5 6

Include in the result table when explictly stated to retain duplicates!

4 5 6

$$A \cup B = \{ e \mid e \in A \text{ } OR \text{ } e \in B \}$$

Binary Operator - Union

b1	b2	b3
1	2	3
7	8	9

a1	a2	a3
1	2	3
4	5	6

	b1	b2	b3
-	1	2	3
-	4	5	6
	7	8	9

- Two tables should have identical number of columns
- Every column must have identical data type

Union - SQL Statement

b1	b2	b3		
1	2	3	\cup	
7	8	9		

a1	a2	a3
1	2	3
4	5	6

	b1	b2	b3
:	1	2	3
•	4	5	6
	7	8	9

(SELECT a1, a2, a3 FROM TableA) UNION ALL

(**SELECT** b1. b2. b3 **FROM** TableB):

Binary Operator - Union

a1	a2	a3
1	2	3
4	5	6

b1	b2	b3
AA	AB	AC
BB	BC	BD

= Error!

- Two tables should have identical number of columns
- Incompatible data types

Binary Operator - Union

a1	a2	a3
1	2	3
4	5	6

b1	b2	b3	b4
1	2	3	4
10	20	30	40

= Error!

- Two tables have different number of columns
- Every column must have identical data type

$$A \cap B = \{ e \mid e \in A \text{ AND } e \in B \}$$

Binary Operator - Intersection

a1	a2	a3
1	2	3
4	5	6

	b1	b2	b3
\cap	1	2	3
	7	8	9

- Two tables should have identical number of columns
- Every column must have identical data type

$$A \cap B = \{ e \mid e \in A \text{ AND } e \in B \}$$

Binary Operator - Intersection

b1	b2	b3
1	2	3
7	8	9

	a1	a2	a3
\cap	1	2	3
	4	5	6

_	b1	b2	b3
_	1	2	3

- Two tables should have identical number of columns
- Every column must have identical data type

$$A \cap B = \{ e \mid e \in A \text{ AND } e \in B \}$$

Binary Operator - Intersect

$$\cap$$

Binary Operator - Intersect

$$A \cap B = \{ e \mid e \in A \text{ AND } e \in B \}$$

Binary Operator - Intersect

Binary Operator - Intersect testing

- (a1 == b1) AND (a2 == b2) AND (a3 = b3)?
- That is: (1 == 1) AND (2 == 2) AND (3 == 3)? Yes;
- Include first row of tableA in result table

Binary Operator - Intersect

$$A \cap B = \{ e \mid e \in A \text{ AND } e \in B \}$$

Binary Operator - Intersect

$$\in$$

Binary Operator - Intersect testing

- (a1 == b1) AND (a2 == b2) AND (a3 = b3)?
- That is: (4 == 1) AND (5 == 2) AND (6 == 3)? No;

Binary Operator - Intersect

$$A \cap B = \{ e \mid e \in A \text{ AND } e \in B \}$$

Binary Operator - Intersect

$$\in$$

Binary Operator - Intersect testing

- (a1 == b1) AND (a2 == b2) AND (a3 = b3)?
- That is: (4 == 1) AND (5 == 2) AND (6 == 3)? No;
- Test next row of tableB
- That is: (4 == 7) AND (5 == 8) AND (6 == 9)? No;
- lacktriangledown There are no row in table B; Do not include (4, 5, 6) in result table

a1	a2	a3
1	2	3
4	5	6

	b1	b2	b3
)	1	2	3
	7	8	9

$$A \cap B = \{ e \mid e \in A \text{ AND } e \in B \}$$

a1	a2	a3
1	2	3
1	2	3
1	2	3
4	5	6

b1	b2	b3
1	2	3
4	5	6
7	8	9

$$A \cap B = \{ e \mid e \in A \text{ AND } e \in B \}$$

a1	a2	a3
1	$\cdots 2 \cdots$	····3····
1	2	3
1	2	3
4	5	6

b1	b2	b3
1	$\cdots 2 \cdots$	3
4	5	6
7	8	9

·	a1	a2	a3
۲.	1	2	3

$$A \cap B = \{ e \mid e \in A \text{ AND } e \in B \}$$

a1	a2	a3
1	$\cdots 2 \cdots$	····3····
····1····	····2····	····3····
1	2	3
4	5	6

b1	b2	b3
1	$\cdots 2 \cdots$	····3····
4	5	6
7	8	9

·	a1	a2	a3
۲.	1	2	3

$$A \cap B = \{ e \mid e \in A \text{ AND } e \in B \}$$

a1	a2	a3
1	$\cdots 2 \cdots$	3
1	$\cdots 2 \cdots$	3
1	$\cdots 2 \cdots$	3
4	5	6

b1	b2	b3
1	$\cdots 2 \cdots$	····3····
4	5	6
7	8	9

·	a1	a2	a3
لا. ـــــ	1	2	3

$$A \cap B = \{ e \mid e \in A \text{ AND } e \in B \}$$

a1	a2	a3
1	····2····	<u>3</u>
1	2	3
1	·····2····	<u>3</u>
	5	

b1	b2	b3	,			
1	2			a1	a2	a3
1	····Z····	9	· := y	1	9	3
4	5	6	1	1	2	J
	0	0	γ	4	5	6
7	8	9	l			

$$A \cap B = \{ e \mid e \in A \text{ AND } e \in B \}$$

Binary Operator - Intersection

a1	a2	a3
1	2	3
4	5	6

= Error!

- Two tables should have identical number of columns
- Incompatible data types

$$A \cap B = \{ e \mid e \in A \text{ AND } e \in B \}$$

Binary Operator - Intersection

a1	a2	a3
1	2	3
4	5	6

b1	b2	b3	b4
1	2	3	4
10	20	30	40

= Error!

- Two tables have different number of columns
- Every column must have identical data type

Binary Operator - Difference

$$A - B = \{ e \mid e \in A \text{ AND } e \not\in B \}$$

Binary Operator - Difference

a1	92	93	h1	b2	h3				
							- 1	99	a3
1	9	2	 1	9	2	=	a_1	$a_{\mathbf{Z}}$	ao
1	4	J	1		J		1	5	6
4	E	6	7	8	0		4	9	U
4	9	U	- 1	0	9				

```
SELECT a1, a2, a3
FROM TableA
WHERE (a1, a2, a3)
IN
(SELECT b1, b2, b3 FROM TableB);
```

Binary Operator - Difference

$$A - B = \{ e \mid e \in A \text{ AND } e \notin B \}$$

Binary Operator - Difference

- Two tables should have identical number of columns
- Every column must have identical data type

Binary Operator - Difference

$$A - B = \{ e \mid e \in A \text{ AND } e \notin B \}$$

Binary Operator - Difference

- Two tables should have identical number of columns
- Every column must have identical data type

Binary Operator - Difference

	h1	h2	b3		91	a2	93				
	01	02	50		aı				b1	b2	b3
	1	$\cdots 2 \cdots$	····3····	_	····1····	$\cdots 2 \cdots$	3	=	7	0	0
	7	8	9		4	5	6		1	0	9
ı		9	9		_						

- Two tables should have identical number of columns
- Every column must have identical data type

Binary Operator - Difference Duplicates?

a1	a2	a3
1	$\cdots 2 \cdots$	····3····
4	5	6

b1	b2	b3
1	$\cdots 2 \cdots$	····3····
7	8	9

a1	a2	a3
4	5	6

Binary Operator - Difference Duplicates?

a2	a3
$\cdots 2 \cdots$	····3····
2	3
2	3
5	6
	2 2 2

b1	b2	b3
1	$\cdots 2 \cdots$	3
1	2	3
4	5	6
7	8	9

	a1	a2	a3
:	1	2	3
	4	5	6

Binary Operator - Difference Duplicates?

a1	a2	a3
1	$\cdots 2 \cdots$	····3····
····1····	····2····	····3····
1	2	3
4	5	6

b1	b2	b3
1	$\cdots 2 \cdots$	····3····
1	····2····	····3····
4	5	6
7	8	9

a1	a2	a3
1	2	3
4	5	6

Binary Operator - Difference

a1	a2	a3		b1	b2	b3	
1	2	3	_	AA	AB	AC	= Error!
4	5	6		ВВ	BC	BD	

- Two tables should have identical number of columns
- Incompatible data types

Binary Operator - Difference

a1	a2	a3		b1	b2	b3	b4	
1	2	3	_	1	2	3	4	= Error!
4	5	6		10	20	30	40	

- Two tables have different number of columns
- Every column must have identical data type

Table operators summary of definitions

Union of involving duplicates

- Let a row $t \in R$ appears n times
- Let $t \in S$ appears m times
- $t \in (R \cup S)$ appears (n+m) times

Intersection involving duplicates

- Let a row $t \in R$ appears n times
- Let $t \in S$ appears m times
- $t \in (R \cap S)$ appears $\min(n, m)$ times

Difference involving duplicates

- Let a row $t \in R$ appears n times
- Let $t \in S$ appears m times
- $t \in (R S)$ appears $\max(0, (n m))$ times

SQL Statements Summary - Union

• Union (Distinct rows)

```
(SELECT a1, a2, a3 FROM TableA)
UNION
(SELECT b1, b2, b3 FROM TableB);
```

• Union (Retain Duplicates)

```
(SELECT a1, a2, a3 FROM TableA)
UNION ALL
(SELECT b1, b2, b3 FROM TableB);
```

SQL Statements Summary - Intersection

• Intersection (Distinct rows)

```
SELECT DISTINCT a1, a2, a3
FROM TableA
WHERE (a1, a2, a3)
IN
(SELECT b1, b2, b3 FROM TableB);
```

• Intersection (Retain Duplicates)

```
SELECT a1, a2, a3
FROM TableA
WHERE (a1, a2, a3)
IN
(SELECT b1, b2, b3 FROM TableB);
```

SQL Statements Summary - Difference

• Difference (Distinct)

• Difference (Retain Duplicates)

```
SELECT a1, a2, a3
FROM TableA
WHERE (a1, a2, a3)
NOT IN
(SELECT b1, b2, b3 FROM TableB);
```