РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

Дисциплина: операционные системы

Студент: Абу Сувейлим Мухаммед Мунифович

Группа: НКНбд-01-21

№ студ.: 1032215135

ΜΟСКВА 2022 г.

1. Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2. Задание

Установить ОС "Linux" версия "Fedora (64-bit)" на виртуальной машине VirtualBox.

3. Выполнение лабораторной работы

Во первых я установил виртуальную машину VirtualBox через (https://www.virtualbox.org/).

Рис 1: установка VirtualBox

Далее я скачал ISO файл ОС Fedora 35 через (https://getfedora.org/ru/workstation/download/).

Рис 2: файл ОС Fedora 35

После установки VirtualBox, я открыл программу (Рис. 3) и сразу открыл свойства и изменил путь виртуальной машины на (D:\OC\smabu\) (Рис. 4).

Рис 3: виртуальная машина VirtualBox

Рис 4: свойство VirtualBox и путь виртуальной машины

Согласно поправлю об именовании имя ОС: "smabu", тип и версия: Linux, Fedora (64-bit)(Рис. 5). ОП системы: 2048 Мб (Рис. 6), но потом изменил размер ОП на 4096 Мб, потому что ОС очень медленно работала. Далее, я создал виртуальный диск на 8 Гб (Рис. 7).

Рис. 5: имя, тип и версия ОС

Рис. 6: размер ОП

Рис. 7: виртуальный диск

Выбирая тип файл виртуального диска VDI (Рис. 8), я сделал диск динамическом (Рис. 9), чтобы диск увеличивался по размеру памяти если это будет нужно. Память виртуальной машины: 80 Гб (Рис. 10).

Рис. 8: тип файл виртуального диска VDI

Рис. 9: динамический диск

Рис. 10: память виртуальной машины

Через свойство -> память -> выбрать диск файл (Рис. 11), надо указать путь на ISO файл Fedora 35 или выбрать его (Рис. 12).

Рис. 11: совйство, память, ISO файл

Рис. 12: выбронны ISO файл Fedora 35

Далее, я запустил машину и на экране было несколько вариантов. Я выбрал установку Fedora-Workstation-Live 35 без проверки диска (Рис. 13). Потом выбирал установить ОС Fedora 35 на жестком диске (Рис. 14).

Рис. 13: установление Fedora-Workstation-Live 35

Рис. 14: установление ОС на жестком диске

Далее, я выбрал русский язык (Рис. 15) и начал установку (Рис. 16).

Рис. 15: установление Fedora-Workstation-Live 35

Рис. 16: установление ОС на жестком диске

Все установелно. Далее, я выключил машину и удалил ISO файл Fedora 35 (Рис. 17).

Рис. 17: удаление Fedora-Workstation-Live 35 из Оптического привода.

Затем, я начал настройку (Рис. 18). Все пропустил и дошёл до полного ими и ими пользователя и написал имя согласно поправлю об именовании (Рис. 19). Потом, установил пароль (Рис. 20).

Рис. 18: начать настройку

Рис. 19: полное имя и имя пользователя

Рис. 20: полное имя и имя пользователя

Вот так я установил Linux Fedora 35 на виртуальной машине VirtualBox (Рис. 21).

4. Ответы на домашнее задание

1. **Версию ядра Linux (Linux version)** можно используя команду "dmesg | grep -i "Linux"" (Рис. 22).

Рис. 22: Версия ядра Linux (Linux version)

2. Частоту процессора (Detected Mhz processor)

можно используя команду "dmesg | grep -i "Processor" (Puc. 23).

```
[smabu@fedora ~]$ dmesg | grep -i "Processor"
[    0.000013] tsc: Detected 1799.997 MHz processor
[    0.575261] smpboot: Total of 1 processors activated (3599.99 BogoMIPS)
[    0.586091] ACPI: Added _OSI(Processor Device)
[    0.586094] ACPI: Added _OSI(Processor Aggregator Device)
[smabu@fedora ~]$
```

Рис. 23: Частота процессора (Detected Mhz processor)

3. Модель процессора (СРИ0)

можно используя команду "dmesg | grep -i "CPU0" (Puc. 24).

```
[smabu@fedora ~]$ dmesg | grep -i "CPU0"
[ 0.573066] smpboot: CPU0: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz (family: 0x6, model: 0x8e, stepping: 0xa)
[smabu@fedora ~]$
```

Рис. 24: Модель процессора (CPU0)

4. Объем доступной оперативной памяти (Memory available)

можно используя команду "dmesg | grep -i "Memory" (Рис. 25).

```
0.009898] ACPI: Reserving FACP table
                                                                                at [mem 0xdfff00f0-0xdfff01e3]
      0.009902] ACPI: Reserving DSDT table
     0.009904] ACPI: Reserving FACS table 0.009906] ACPI: Reserving FACS table
                                                                                at [mem 0xdfff0200-0xdfff023f]
                                                                                at [mem 0xdfff0200-0xdfff023f
     0.009908] ACPI: Reserving APIC table
0.009910] ACPI: Reserving SSDT table
0.175084] Early memory node ranges
                                                                           ory at [mem 0xdfff0240-0xdfff0293]
ory at [mem 0xdfff02a0-0xdfff046b]
     0.175084] Early memory node ranges
0.186078] PM: hibernation: Registered nosave memor
0.186082] PM: hibernation: Registered nosave memor
                                                                                            v: [mem 0x00000000-0x00000fff]
                                                                                   memory: [mem 0x0009f000-0x0009ffff]
memory: [mem 0x000a0000-0x000effff]
     0.186084] PM: hibernation: Registered nosave 0.186086] PM: hibernation: Registered nosave
                                                                                            v: [mem 0x000f0000-0x000fffff]
      0.186088] PM: hibernation: Registered nosave
     0.186090] PM: hibernation: Registered nosave 0.186092] PM: hibernation: Registered nosave
                                                                                            v: [mem 0xe0000000-0xfebfffff]
                                                                                                [mem 0xfec00000-0xfec00fff]
     0.186094] PM: hibernation: Registered nosave 0.186096] PM: hibernation: Registered nosave
                                                                                            y: [mem 0xfec01000-0xfedfffff
                                                                                      mory: [mem 0xfee00000-0xfee00fff]
      0.186097] PM: hibernation: Registered nosave
     0.186099] PM: hibernation: Registered nosave memory: [mem 0xfffc0000-0xffffffff]
0.364093] Memory: 3968596K/4193848K available (16394K kernel code, 3567K rwdata, 10688K rodata, 2680K init, 4900K bss, 224992K reserved, 0K cma-reserved)
      0.470630] Freeing SMP alternatives :
                                                                            : 44K
     0.913392] Non-volatile memory driver 128MB
10.913392] Non-volatile memory driver
     0.913392] Non-volatile memory driver v1.3
2.064900] Freeing initrd memory: 30512K
2.479837] Freeing unused decrypted memory
     2.480670] Freeing unused kernel image (initmem) memory: 2680K
2.480670] Freeing unused kernel image (text/rodata gap) memory: 2036K
2.483201] Freeing unused kernel image (rodata/data gap) memory: 1600K
                                                                                                   y: 2003882 KiB
     5.506339] [TTM] Zone kernel: Available graphics memory: 2003882 KiB
5.506928] vmwgfx 0000:00:02.0: [drm] Legacy memory limits: VRAM = 16384 kB, FIFO = 2048 kB, surface = 507904 kB
5.506945] vmwgfx 0000:00:02.0: [drm] Maximum display memory size is 16384 kiB
smabu@fedora ~]$
```

Рис. 25: Объем доступной оперативной памяти (Memory available)

5. Тип обнаруженного гипервизора (Hypervisor detected)

можно используя команду "dmesg | grep -i "Hypervisor" (Рис. 26).

```
[smabu@fedora ~]$ dmesg | grep -i "Hypervisor"
[ 0.000000] Hypervisor detected: KVM
[ 0.448194] SRBDS: Unknown: Dependent on hypervisor status
[smabu@fedora ~]$
```

Рис. 26: Тип обнаруженного гипервизора (Hypervisor detected)

6. Тип файловой системы корневого раздела.

можно используя команду "dmesg | grep -i "File" (Рис. 27).

```
[smabu@fedora ~]$ dmesg | grep -i "File"

[2.997821] systeed(]]: Reached target Initrd /usr file System.

[2.997822] systeed(]]: Reached target Local file Systems.

[3.480766] audit: type=1300 audit(1650676472.809:4): pids1 uid=0 audi=4294067295 ses=4294067295 subj=kernel msg='unit=systemd-tmpfiles-setup comm="systemd" exe="/usr/lib/systemd/systemd/ hostname=? addr=? terminal=? res=success'

[3.318766] audit: type=1300 audit(1650676472.809:4): pids1 uid=0 audi=4294067295 ses=4294067295 subj=kernel msg='unit=systemd-tmpfiles-setup comm="systemd" exe="/usr/lib/systemd/systemd/ hostname=? addr=? terminal=? res=success'

[3.318767] systemd=131 systemd=system=systemd or reterior system or safe and robust.

[3.318713] systemd=systemd=systemd=systemd or safe and robust.

[3.318713] systemd=systemd=systemd=systemd or safe and robust.

[3.12880] systemd[systemd=systemd]: Stopped target Initrd floot system.

[3.12880] systemd[systemd]: Stopped target Initrd floot system.

[3.12880] systemd[systemd]: Mounting flogs Reasage Queue gits System...

[3.12891] systemd[systemd[systemd]: Mounting Report Mounting Report Reasage Queue gits System...

[3.12891] systemd[systemd[systemd]: Mounting Report Mounting Report Root and kernel file Systems...

[3.12891] systemd[systemd[systemd]: Mounted Kernel Root and kernel file Systems...

[3.12892] systemd[systemd[systemd]: Mounted Kernel Root and kernel file Systems...

[3.12893] systemd[systemd[system]: Mounted Kernel Root and kernel file Systems...

[3.12893] systemd[systemd[system]: Mounted Kernel Root and kernel file Systems...

[3.12893] systemd[systemd[system]: Mounted Kernel Root and kernel file Systems...

[3.12893] systemd[systemd[system]: Mounted Kernel Configuration File Systems...

[3.12893] systemd[systemd[system]: Mounted Kernel Configuration File Systems...
```

Рис. 27: Тип файловой системы корневого раздела

7. Последовательность монтирования файловых систем

можно используя команду "dmesg | grep -i "Mount" (Puc. 28).

Рис. 28: Последовательность монтирования файловых систем

5. Ответы на контрольные вопросы

1. Какую информацию содержит учётная запись пользователя?

Учётная запись, как правило, содержит сведения, необходимые для опознания пользователя при подключении к системе, сведения для авторизации и учёта. Это идентификатор пользователя (login) и его пароль. Пароль или его аналог, как правило, хранится в зашифрованном или зашифрованном виде для обеспечения его безопасности.

2. Укажите команды терминала и приведите примеры:

- для получения справки по команде:
- "wget -help"
 - для перемещения по файловой системе:
- "pwd" -Чтобы узнать текущую директорию
- "cd /home" -переход в каталог /home
- "cd .." -Перейти в директорию уровнем выше
- "cd ../.." -Перейти в директорию двумя уровнями выше
- "cd" -Перейти в домашнюю директорию вашего пользователя
- "cd ~user_name" -Перейти в домашнюю директорию пользователя user_name "cd -"
- -Перейти в директорию, в которой находились до перехода в текущую директорию
- для просмотра содержимого каталога: "ls"
 - для определения объема каталога:
- "df"

для создания / удаления каталогов / файлов:

- "tocuh file.name" -для создания файлов;
- "mkdir directory.name" -для создания каталогов;
- "rm" и "rmdir" -для удаления файлов и каталогов
 - для задания определенных прав на файл / каталог
 - для изменения владельца пользователя: "chown"
 - для изменения групп: "chgrp"
 - для изменения разрешения относительно текущих разрешений, пользователя "chmod"
 - для просмотра истории команд: "history"
 - 3. Что такое файловая система? Приведите примеры с краткой характеристикой

Файловая система — это инструмент, позволяющий операционной системе и программам обращаться к нужным файлам и работать с ними. При этом программы оперируют только названием файла, его размером и датой созданий. Все остальные функции по поиску необходимого файла в хранилище и работе с ним берет на себя файловая система накопителя. Примеры:

FAT – одна из старейших файловых систем, которая была разработана еще в 1977 году программистами компании Microsoft для гибких дисков. За период эксплуатации выпускалось несколько версий, которые отличались от предыдущих объемами томов и файлов, которыми способны оперировать. Современная версия FAT32 вышла в 1995 году. Она может работать с томами размером до 32 ГБ и файлами размером до 4 ГБ. При этом система не работает с накопителями объемом более 8 Тб. Поэтому сегодня FAT32 используется в основном только на флешках, картах памяти фотоаппаратов и

музыкальных плееров.

NTFS, или новая технология файловой системы была создана, чтоб устранить недостатки FAT32. Структура системы хранения данных имеет вид бинарного дерева. В отличие от иерархической, как у FAT32, доступ к информации осуществляется по запросу, а поиск ведется по названию файла. При этом система имеет каталог, отсортированный по названиям. Массив делится на 2 части и отсекается та, в которой данного файла не будет, оставшаяся часть также делиться на 2, и так далее до тех пор, пока не будет найден нужный файл.

4. Как посмотреть, какие файловые системы подмонтированы в ОС?

Команда "findmnt" позволяет нам посмотреть, какие файловые системы подмонтированы в ОС.

5. Как удалить зависший процесс?

Когда известен PID процесса, мы можем убить его командой "kill". Команда "killall" в Linux предназначена для «убийства» всех процессов, имеющих одно и то же имя. Это удобно, так как нам не нужно знать PID процесса.

6. Выводы

Выполняя данной лабораторной работе, я узнал как установить ОС на виртуальную машину и как настроить её, чтобы была возможно выполнять следующие лабораторные работы. Также я познакомился с консолью или терминалам и использовал его для ответов на д.з. и контрольные вопросы.