AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1. (original) A method for the conversion of organic waste, wherein the waste is introduced into a cell in which a pair of electrodes is present, which pair of electrodes comprises at least one anode and at least one cathode, the anode and cathode being separated by a porous, electronically non-conductive, non ion-selective partition wall, while an oxidizer is introduced into the portion of the cell around the cathode, and wherein a potential difference is formed across said pair of electrodes such that at the anode ${\rm CO}_2$ is produced and that electricity is produced.
- 2. (currently amended) [[A]] The method according to claim 1, wherein the waste is introduced into a bipolar biofuel cell in which two or more pairs of electrodes are located, each pair of electrodes comprising one anode and one cathode, the anode and cathode of each pair of electrodes being interconnected by an electronically conductive and non-ionic-conductive wall, while the porous, electronically non-conductive, non-ion-selective partition wall is of compartmented design such that at least two types of channels are formed, the open space of the

Docket No. 2004-1037 Appln. No. 10/519,548

first type of channel being in electrically conductive contact with the cathode and the open space of the second type of channel being in electrically conductive contact with the anode.

- 3. (currently amended) [[A]] The method according to claim 2, wherein also partitions are present from the same material as the porous, electronically nonconductive, non-ion-selective partition wall, which partitions, are placed at least substantially transverse to said electrodes.
- 4. (currently amended) [[A]] <u>The</u> method according to claim 1, wherein the organic waste comprises animal manure, waste water, waste water purification sludge, kitchen and garden waste (KGW), roadside grass, residual flows from industrial processes (such as molasses, whey, draff) and/or dredgings.
- (currently amended) [[A]] <u>The</u> method according to claim 1, wherein said oxidizer is oxygen.
- (currently amended) [[A]] <u>The</u> method according to claim 5, wherein the oxygen is introduced in the form of air and/or dissolved in water.
- (currently amended) [[A]] <u>The</u> method according to claim 1, wherein said separator is a porous, electronically non-

conductive, preferably non-ion-selective partition wall, preferably comprising non-woven plastic fibers or glass fibers.

- 8. (cancelled)
- (currently amended) [[A]] <u>The</u> method according to claim 1, wherein one or more electrodes are three-dimensional electrodes.
- 10. (currently amended) [[A]] <u>The</u> method according to claim 1, wherein one or more electrodes comprise carbon.
- 11. (currently amended) [[A]] <u>The</u> method according to claim 1, wherein one or more electrodes comprise active carbon.
- 12. (currently amended) [[A]] <u>The</u> method according to claim 1, wherein one or more electrodes are provided with a catalyst.
- 13. (currently amended) [[A]] <u>The</u> method according to claim 1, wherein one or more electrodes are provided with humic acid and/or anthraguinone-disulfonic acid.

Docket No. 2004-1037 Appln. No. 10/519,548

- 14. (currently amended) [[A]] $\underline{\text{The}}$ method according to claim 1, wherein the cell is used as biosensor for the determination and quantification of biological activity.
- 15. (currently amended) [[A]] $\underline{\text{The}}$ method according to claim 1, which is carried out at a temperature of 30-100° C.
- 16. (currently amended) [[A]] <u>The</u> method according to claim 1, wherein Fe-ions are introduced in the space around the cathode.
- 17. (currently amended) [[A]] The method according to claim 1, wherein the waste is supplied in the space around the anode where it is partially decomposed under anaerobic conditions, whereby an effluent comprising organic decomposition products is formed, which effluent is then led to the space around the cathode where it is further decomposed under aerobic conditions.
- 18. (previously presented) A device for processing organic waste, comprising a cell which is divided by a fiberglass mat into at least two compartments, while at least two of the compartments are each provided with at least one electrode, which electrodes are arranged such that they can form an electrical

circuit, further provided with means for discharging or storing electricity and provided with supply means for an oxidizer.

19. (previously presented) A device, comprising:
a cell in which a pair of electrodes is present,

the pair of electrodes comprising at least one anode and at least one cathode;

the anode and cathode being separated by a porous, electronically non-conductive, non ion-selective partition wall;

an oxidizer being introduced into the portion of the cell around the cathode, wherein,

a potential difference is formed across said pair of electrodes such that at the anode ${\rm CO_2}$ is produced and that electricity is produced,

Fe-ions are introduced in the space around the cathode, $% \frac{\partial f}{\partial x}=\frac{\partial f}{\partial x} +\frac{\partial f}{\partial x}$

at least one electrode is a three-dimensional electrode.

20. (previously presented) A device, comprising: comprising:

a cell in which a pair of electrodes is present,

the pair of electrodes comprising at least one anode and at least one cathode;

Docket No. 2004-1037 Appln. No. 10/519,548

the anode and cathode being separated by a porous, electronically non-conductive, non ion-selective partition wall; and

an oxidizer being introduced into the portion of the cell around the cathode, wherein,

a potential difference is formed across said pair of electrodes such that at the anode CO_2 is produced and that electricity is produced,

Fe-ions are introduced in the space around the cathode, and

at least one electrode comprises carbon.

- 21. (previously presented) A kit for processing organic waste, comprising a pair of electrodes comprising at least two three-dimensional electrodes and a fiberglass mat.
- 22. (previously presented) A kit for processing organic waste, comprising a pair of electrodes comprising at least two three-dimensional electrodes and a partition wall of polyurethane foam.