Unikernels - RTOS combination (Motivation)

Background

- ➤ RTOS + Linux on a SoC (System on a Chip) with heterogeneous cores is becoming attractive!
 - Real time processing (RTOS)
 - A variety of APIs, software and devices (Linux)
 - Cost effective (SoC)
- > Requirements
 - RTOS users often want to give RTOS a master role
 → Linux is only a slave OS
 - RTOS should be able to manage life cycle of the slave OS

Ex.) NXP i.MX8 series
STMicroelectronics STM32MP1 series

Problems

- OSes SoC dependency if we use Linux as a slave OS
 - Slave OS shutdown (or reboot) causes overall system shutdown (or reboot)
 - → Of course, RTOS will be put into the shutdown state too!!
- > Difficult to remove or mitigate the dependency from the hardware point of view

Unikernels - RTOS combination (Solution)

- Employing Unikernel-based slave OSes
 - > Life cycle management can be quite easy
 - ➤ Unikernel shutdown (reboot) does not affect RTOS operation
 - > Small and isolated environments for RTOS and Unikernels
 - → Good for IoT edge devices

Prototype

- SoC
 - > STMicroelectronics STM32MP157A
 - ➤ Board: https://www.st.com/en/evaluation-tools/stm32mp157a-dk1.html (not so expensive ③)
- RTOS
 - > FreeRTOS
- Linux
 - ➤ 32-bit kernel without virtualization support
- Unikernels
 - running on Solo5-spt

