Smart Shoes Project

Integrating Sensors, IoT, and GPS for Enhanced Footwear

Team Members: Meysam Jamali, Mohammadamin Rezaei Sepehr

Course: IoT

Introduction

Objective

Design and implement smart shoes with integrated sensors to monitor health metrics and activity.

Platform

Developed using ESP32, Ubidots for data visualization, and an Android Application for user interface.

Project Overview

1 Components

- Sensors: DHT22, MPU6050, GPS module, Pressure sensor,
 Potentiometer
- Connectivity: WiFi (ESP32), MQTT (Ubidots)
- Power: Battery simulation and monitoring

2 Functionalities

- Real-time data collection (temperature, humidity, pressure, gait)
- GPS tracking and speed monitoring
- Health metrics (heart rate)
- Data transmission to Ubidots and Android app

Hardware Components

ESP32 Microcontroller: Core controller for all sensors and communication.

Sensors:

- **DHT22:** Measures temperature and humidity.
- MPU6050: Detects motion and orientation, providing acceleration and gyroscope data.
- **GPS Module:** Tracks location and speed.
- Pressure Sensor & Potentiometer: Simulates pressure data.

Hardware Components

Software Components

1 Libraries Used

For sensor interfacing, WiFi, and MQTT communication

- **Platforms**
 - **Wokwi:** Simulation environment
 - **Ubidots:** Data storage and visualization
 - Android Application: User interface

Discord Community

Facebook Group

adding new stuff all the time, want us to tell You?

mail address

Stay Updated

Featured Simulation Projects

Made with Gamma
Quick Start Templates

Libraries Used

- **DHT.h:** For interfacing with the DHT22 temperature and humidity sensor.
- **WiFi.h:** For connecting the ESP32 to a WiFi network.
- PubSubClient.h: For MQTT communication with Ubidots.
- **TinyGPS++.h:** For parsing GPS data.
- Wire.h: For I2C communication with MPU6050.
- **MPU6050.h:** For interfacing with the MPU6050 sensor.

DHT22 Sensor

The Functionality

Measures environmental temperature and humidity.

3 Simulation

- Humidity is increased by 15% to simulate realistic measurements.
- Temperature is increased by 20°C for similar reasons.

2 Connection

Pin 15: Connected to the data pin of the DHT22 sensor.

4 Data Transmission

MPU6050 Sensor

1 Functionality

- Detects motion and orientation.
- Provides acceleration and gyroscope data.

3 Usage

 Initialized to provide real-time motion data, which is used to determine the user's gait (walking, running, or stopped).

2 Connection

SDA Pin (21), SCL Pin (22): Connected to the I2C bus of the ESP32.

4 Data Transmission

GPS Module

1 Functionality

Tracks geographic location and speed.

3 Simulation

 Manually generated GPS data to simulate movement.

2 Connection

TX Pin (16), RX Pin (17): Connected to the serial port of the ESP32.

4 Haversine Algorithm

- Calculates the distance traveled based on GPS coordinates.
- This method computes the shortest path between two points on the Earth's surface, providing accurate distance measurements for the user's movement.

5 Data Transmission

Pressure Sensor & Potentiometer

The Functionality

Simulates foot pressure data to monitor the user's gait.

3 Simulation

• Potentiometer values are mapped to realistic pressure ranges (950 to 1050).

2 Connection

Potentiometer (Pin 34): Connected to analog input pins of the ESP32.

4 Pressure and Gait Adjustments:

- Pressure changes based on gait status:
 - Walking: Pressure increased by 8 units.
 - Running: Pressure increased by 30 units.
 - Stopped: Pressure decreased by 4 units.

5 Data Transmission

Heart Rate Simulation

1 Functionality

• Simulates heart rate data as no physical sensor is available.

2 Simulation

- Heart rate values are generated based on the current gait:
 - Walking: Random values between 80-100
 BPM.
 - Running: Random values between 100-140
 BPM.
 - Stopped: Random values between 60-80
 BPM.

3 Data Transmission:

Real-time heart rate data is sent to Ubidots via MQTT.

Battery Simulation

1 Functionality

• Simulates battery level changes.

3 Data Transmission:

• Battery level data is sent to Ubidots via MQTT.

Simulation

- Battery level decreases by 0.5% each loop iteration.
- When battery level reaches 0, it resets to 100%.

Gait Detection and LED Indicators

The Functionality

 Determines whether the user is walking, running, or stopped.

2 Method

- Based on time intervals and pressure changes:
 - Walking: Slight increase in pressure.
 - Running: Larger increase in pressure.
 - Stopped: Decrease in pressure.
- LEDs indicate the current gait status (Walking, Running, Stopped).

3 Indicators

- Walking: LED on pin 2.
- Running: LED on pin 4.
- Stopped: LED on pin 5.

WiFi and MQTT Setup

- 1. **WiFi Connection:** Connecting ESP32 to a WiFi network.
- 2. **MQTT Connection:** Setting up MQTT client to communicate with Ubidots.
 - Attempts to reconnect if the MQTT client is disconnected.

Data Transmission to Ubidots

- Sensor data (temperature, humidity, pressure, gait, GPS) is formatted and sent to Ubidots.
- Data includes real-time readings and contextual information.

Results and Data Visualization

Ubidots and Android Application Dashboard:

- Graphs displaying temperature (Celsius unit), humidity (Percent unit), and pressure (Pascal unit) over time.
- GPS location tracking on a map (latitude and longitude).
- Gait status with corresponding time intervals.
- Heart rate monitoring graph (Beats per minute or BPM).
- Battery monitoring graph (percent).
- Speed monitoring graph (km/h).
- Distance monitoring (km).
- Gyroscope in 3 axis.
- Acceleration in 3 axis.
- Date and Time (no available widget).

Ubidots Dashboard

Android Application Overview

Features:

- Displays real-time sensor data (Temperature, Humidity, Pressure, Gait).
- GPS tracking shows current location and speed.
- Health monitoring including heart rate.

Android Application

Conclusion

- **Summary**
 - Successfully integrated multiple sensors to create smart shoes.
 - Real-time data collection and transmission to Ubidots and Android app.
- 2 **Q&A**

Open the floor for questions.

Project Links and Information

Wokwi: https://wokwi.com/projects/402494050827141121

Ubidots: https://stem.ubidots.com/app/dashboards/667b0c693563fe000e032f57?

devices=668011d8f3fa49000bd01b74

Ubidots Username: smartshoes

Ubidots Password: mars23435676

Github:

References

References

- GPS_Simulation[wokwi] Google Drive
- ESP32 Pinout Reference: Which GPIO pins should you use? | Random Nerd Tutorials
- <u>Pressure Transducer Wokwi ESP32, STM32, Arduino Simulator</u>
- MPU6050 sensor with Arduino uno in wokwi website.
- ESP32 with DHT11/DHT22 Temperature and Humidity Sensor using Arduino IDE | Random Nerd Tutorials
- ESP32 Temperature/Humidity sensor stops updates after several days
- ESP32 WiFi Networking | Wokwi Docs
- and etc.

Thank you for your attention

Thank you to dear professors Davide Ancona, Giorgio Delzanno, and dear assistant instructor Ali Varasteh Ranjbar