

A MACHINE LEARNING(COSC540600224F) PROJECT

SENTIMENT ANALYSIS OF MOVIE REVIEWS

Guided By:

Prof. Ajmery Sultana

Submitted By:

Hardiksinh Solanki (249531990) Dikshaben Patel (249432540) "I love this movie. I've seen it many times and it's still awesome."

"This movie is bad. I don't like it it all. It's terrible."

OUTLINE

- INTRODUCTION TO SENTIMENT ANALYSSIS
- UNDERSTANDING THE PROBLEM STATEMENT
- DATASET DESCRIPTIONS
- PROCESS FLOW
- UNDERSTANDING PREPROCESSING
- MODELS AND EVALUATION
- RESULTS AND ANALYSIS
- A SHORT DEMO
- CONCLUSION

INTRODUCTION TO SENTIMENT ANALYSSIS

What is sentiment analysis?

> Sentiment analysis is a Natural Language Processing (NLP) technique used to determine the emotional tone or sentiment expressed in text.

Why is it important in analyzing movie reviews?

- Understanding Public Opinion
- Improved Decision-Making
- Recommendation Systems
- Quality Improvement of Movies
- Trend Analysis
- Box Office Prediction for market
- Business Decisions for investments in movie productions

UNDERSTANDING THE PROBLEM STATEMENT

- How can we determine whether a movie review is positive or negative based on its text?
- Challenges: Processing natural language.
 - Converting textual data into numerical representations using techniques like Bag of Words (BoW) or TF-IDF.
 - Text data is unstructured and noisy, with slang, abbreviations, and misspellings (e.g., "gr8 movie!" vs. "great movie!").
 - > Detecting sarcasm or irony is difficult (e.g., "This movie deserves an Oscar... for worst film!").
 - > Phrases like "not bad" need special handling as they imply positivity despite the presence of "not."
- Sentiment analysis for movie reviews is both a fascinating and demanding task, requiring robust preprocessing and careful model selection.

DATASET DESCRIPTION

- Dataset Used: IMDB Dataset of 50K Movie Reviews.
- Size: 50,000 reviews.
- Classes: Positive (1) and Negative (0).
- No Missing Values
- 422 Duplicate Values Removed


```
Initial Dataset Shape: (50000, 2)
The Shape of the data is as below:
(50000, 2)

Sample Data:

review sentiment

One of the other reviewers has mentioned that ... positive

A wonderful little production. <br /><br />The... positive

I thought this was a wonderful way to spend ti... positive

Basically there's a family where a little boy ... negative

Petter Mattei's "Love in the Time of Money" is... positive
```

PROCESS FLOW

Dataset Preparation

- Load The Dataset
- Map the sentiment to binary values (1 – positive, 0negative)

Text Preprocessing

- Cleaning Reviews by removing html tags, stop words and lower case conversion
- Stemming to reduce words

Feature Extraction

Used Bag-of-Words
 (BoW) to
 convert text
 into
 numerical
 features (a
 matrix of
 word
 frequencies)
 for machine
 learning.

Model Training

- Trained 4 models
- Logistic
 Regression,
 Naïve
 Bayes,
 Linear SVC
 and
 Random
 Forest

Evaluation

 Compared Models using metrics: precision, matrix, recall, and F1-score.

Model Deployment

 Saved best model for predictor application

UNDERSTANDING DATA PREPROCESSING

- Converted text to Lowercase
- Removing HTML tags, punctuation, and special characters.
- Removing stop words, non-alphabetic characters and extra spaces.
- Stemming the Data.
 - Before preprocessing: "This movie is AMAZING!! Loved it!"
 - After preprocessing: "movie amazing loved"
- Feature Extraction using Bag of Words
 - Reviews: "loved movie", "amazing acting", "amazing movie acting"
 - Word Index: loved movie amazing acting
 - Review 1: 1 1 0 0
 - Review 2: 0 0 1 1
 - Review 3: 0 1 1 1
- Word Cloud

WORD CLOUD BEFORE AND AFTER PRE-PROCESSING

IMPORTANCE OF DATA PREPROCESSING

- EDA Foundation: Word Cloud and Frequent Word Analysis are essential for understanding data before modelling.
- Model Improvement: Helps refine preprocessing steps (e.g., stop word removal, html tags removal, special characters removal, stemming).
- Interpretability: Makes insights more accessible and actionable

Most frequent words in positive reviews

MAIN LIBRARIES USED:

- Pandas (pd): For data loading, cleaning, and manipulation.
- NumPy (np): To handle numerical computations efficiently.
- NLTK (Natural Language Toolkit): To preprocess text: remove stop words, apply stemming, and tokenize.
- Scikit-Learn (sklearn):
- Feature Extraction:
 - Count Vectorizer: Converts text into numerical feature vectors using BoW.
- Model Training and Evaluation:
 - Includes classifiers like Logistic Regression, Multinomial NB, Linear SVC, and Random Forest Classifier.
 - Metrics: Accuracy, Precision, Recall, F1-score (accuracy_score, etc.).
- Matplotlib & Seaborn: To create visualizations like word clouds and bar plots.
- □ Word Cloud: Generates word cloud visualizations to highlight the most frequent words in positive and negative reviews.
- Joblib: Saves and loads trained models and vectorizers efficiently.

MODELS AND EVALUATION

- •The Models we have trained for evaluation are as follows:
- Logistic Regression.
- Naive Bayes.
- Linear Support Vector Machine.
- Random Forest.

Е	Evaluation Metrics (Tabular Format):								
	Model	Training Time (s)	Evaluation ⁻	Time (s)	Accuracy	Precision	Recall	F1 Score	
0	Logistic Regression	1.173206	(0.003026	0.869403	0.871800	0.873003	0.872401	
1	Naive Bayes	0.012467	(0.005039	0.845502	0.853971	0.841846	0.847865	
2	Linear SVC	2.373101	(0.003381	0.862041	0.864397	0.866101	0.865248	
3	Random Forest	134.462770	(0.422177	0.842477	0.851533	0.838099	0.844762	

RESULTS AND ANALYSIS

Best Model Based on Accuracy:
Model Logistic Regression
Training Time (s) 1.173206
Evaluation Time (s) 0.003026
Accuracy 0.869403
Precision 0.8718
Recall 0.873003
F1 Score 0.872401
Name: 0, dtype: object
Model and Vectorizer saved successfully!

CONCLUSION BASED ON THE EVALUATION METRICS:

Best Model for Accuracy and F1 Score:

Logistic Regression achieves the highest F1 Score (0.8724) and Accuracy (0.8694), making it the best-performing model in terms of balanced performance.

Fastest Training Model:

Naive Bayes has the fastest training time (0.012 seconds), making it ideal for scenarios where speed is a
priority.

Most Time-Consuming Model:

• Random Forest takes the longest time to train (134.46 seconds), which is significantly slower than other models.

Close Competition:

• **Linear SVC** has comparable accuracy (0.8620) and F1 score (0.8652) to Logistic Regression but takes longer to train (2.37 seconds)

Trade-offs:

• While **Random Forest** is robust, it is computationally expensive and doesn't outperform Logistic Regression or Linear SVC in terms of accuracy or F1 score.

A SHORT DEMO

