

Lecture 3: CMOS Transistor Theory

Outline

- Introduction
- MOS Capacitor
- nMOS I-V Characteristics
- pMOS I-V Characteristics
- ☐ Gate and Diffusion Capacitance

Diodes

- □ Diodes do not appear in CMOS digital design as separate devices.
- However, they are present as junctions and parasitic elements in all devices.
- □ We will use a simple 1D analysis.
- □ We will not concern ourselves too much with the DC behavior too much.

Depletion Region

CMOS VLSI Design 4th Ed.

DC Characteristics

$$\phi_0 = \phi_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$$

$$\phi_T = \frac{kT}{q} = 25.8 mV$$
 $k=1.38 \times 10^{-23} \text{J/K}$

For example, a Si p-n junction, $N_A = 10^{18} cm^{-3}$, $N_D = 10^{15} cm^{-3}$

$$\phi_0 = 0.0258 \ln \left(\frac{10^{18} \times 10^{15}}{(9.65 \times 10^9)^2} V \right) = 0.774 V$$

Majority Carriers: $n \approx N_D$

Minority Carriers:
$$p \approx \frac{n_i^2}{N_D}$$
.

Similarly, for a density of N_A ($\gg n_i$) acceptor atoms per cubic centimeter:

Majority Carriers: $p \approx N_A$

Minority Carriers:
$$n \approx \frac{n_i^2}{N_A}$$
.

Diode Current

$$I_D = I_S \left(e^{V_D / \phi_T} - 1 \right)$$

Models for Manual Analysis

(a) Ideal diode model

(b) First-order diode model

☐ in a more general form as

$$C_{j}(V) = A_{V} \frac{\varepsilon_{Si} q}{2} \left(\frac{N_{A} N_{D}}{N_{A} + N_{D}} \right) \left(\frac{1}{\sqrt{\phi_{0} - V}} \right)$$

- m is the gradient coefficient and is 0.5 for abrupt junctions and 1/3 for linearly graded junction profiles
- $C_{j0} = \sqrt{\frac{\varepsilon_{Si} q}{2} \left(\frac{N_A N_D}{N_A + N_D} \right) \left(\frac{1}{\phi_0} \right)}$
- ☐ The value of the junction capacitance ultimately depends on the external bias voltage applied across the pn-junction.

$$C_{j}(V) = \frac{AC_{j0}}{\left(1 - \frac{V}{\phi_{0}}\right)^{m}}$$

$$C_j = \frac{C_{j0}}{(1 - V_D I \phi_0)^m}$$
 m = 0.5: abrupt junction m = 0.33: linear junction

- \square *m* is known as the *grading coefficient*.
- \square Keep in mind that C_j is a small signal parameter. For large signal switching, an equivalent capacitance has to be calculated as

$$C_{eq} = \frac{\Delta Q_{j}}{\Delta V_{D}} = \frac{Q(V_{high}) - Q(V_{low})}{V_{high} - V_{low}} = K_{eq}C_{j0}$$

☐ C_{eq} has been defined such that the same amount of charge is transferred as the nonlinear model

$$K_{eq} = \frac{-\phi_0^m}{(V_{high} - V_{low})(1-m)} \left[(\phi_0 - V_{high})^{(1-m)} - (\phi_0 - V_{low})^{(1-m)} \right]$$

- As a numerical example, a diode is switched between 0 and -2.5 V. The diode has $C_{j0} = 2 \times 10^{-3}$ F/m^2 , $A_D = 0.5 \ (\mu m)^2$, $\Phi_0 = 0.64 \ V$, m = 0.5.
- \Box $K_{eq} = 0.622$, $C_{eq} = 1.24 \text{ fF/(}\mu\text{m})^2$.

Diffusion Capacitance

$$C_d = \frac{\mathbf{d}Q_D}{\mathbf{d}V_D} = \tau_T \frac{\mathbf{d}I_D}{\mathbf{d}V_D} \approx \frac{\tau_T I_D}{\phi_T}$$

Diffusion Capacitance

□ Effective in forward bias

$$Q_{p} = qA_{D} \int_{W_{2}}^{W_{2}} (p_{n}(x) - p_{n0}) dx$$

$$= qA_{D} \frac{(W_{n} - W_{2})p_{n0} \left(e^{V_{D}/\phi_{T}} - 1\right)}{2}$$

$$\approx \frac{W_{n}^{2}}{2D_{p}} I_{Dp} = \tau_{Tp} I_{Dp}$$

$$I_{D} = \frac{Q_{p}}{\tau_{Tp}} + \frac{Q_{n}}{\tau_{Tn}} \equiv \frac{Q_{D}}{\tau_{T}}$$

Diffusion Capacitance

From this lifetime analysis of excess charge,

$$C_d = \frac{dQ_D}{dV_D} = \tau_T \frac{dI_D}{dV_D} \approx \frac{\tau_T I_D}{\phi_T}$$

 \square Note that C_d is also a small signal capacitance

$$\begin{split} C_{eq} &= \frac{\Delta Q_{D}}{\Delta V_{D}} = \frac{\tau_{T} \left(I_{D} \left(V_{high} \right) - I_{D} \left(V_{low} \right) \right)}{V_{high} - V_{low}} \\ &= \frac{C_{d} \left(high \right) - C_{d} \left(low \right)}{V_{high} - V_{low}} \phi_{T} \end{split}$$

Other Diode Parameters

- □ Secondary Effects
 - Resistivity of regions outside junction
 - Breakdown voltage
 - Temperature dependence
 - $\square \Phi_T$ has a linear dependence
 - I_S doubles every 8°C
 - Overall, current doubles every 12°C.

Introduction

- ☐ So far, we have treated transistors as ideal switches
- ☐ An ON transistor passes a finite amount of current
 - Depends on terminal voltages
 - Derive current-voltage (I-V) relationships
- ☐ Transistor gate, source, drain all have capacitance
 - $-I = C (\Delta V/\Delta t) \rightarrow \Delta t = (C/I) \Delta V$
 - Capacitance and current determine speed

MOS Capacitor

☐ Gate and body form MOS

capacitor

Operating modes

- Accumulation
- Depletion
- Inversion

Terminal Voltages

■ Mode of operation depends on V_g, V_d, V_s

$$-V_{gs} = V_g - V_s$$

$$-V_{gd} = V_g - V_d$$

$$-V_{ds} = V_{d} - V_{s} = V_{gs} - V_{gd}$$

- Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage
 - Hence $V_{ds} \ge 0$
- □ nMOS body is grounded. First assume source voltage is 0 too.
- ☐ Three regions of operation
 - Cutoff
 - Linear (Resistive)
 - Saturation (Active)

nMOS Cutoff

- No channel
- \Box $I_{ds} \approx 0$

nMOS Linear

□ Channel forms

$$V_{ds} = V_d - V_s = V_{gs}$$
 - V_{gd}

- Current flows from d to s
 - e- from s to d
- \Box I_{ds} increases with V_{ds}
- □ Similar to linear resistor

nMOS Saturation

- ☐ Channel pinches off
- □ I_{ds} independent of V_{ds}
- ☐ We say current *saturates*
- ☐ Similar to current source

$$V_{ds} > V_{gs} - V_{t}$$

$$V_{ds} = V_d - V_s = V_{gs}$$
 - V_{gd}

Mosfet basic operation

I-V Characteristics

- ☐ In Linear region, I_{ds} depends on
 - How much charge is in the channel?
 - How fast is the charge moving?

Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversions $V_c = (V_s + V_d)/2 = V_s + V_{ds}/2$
 - Gate oxide channel $V_g V_c = V_{gs} V_{ds}/2$

$$V_g - V_c = V_{gs} - V_{ds} / 2$$

- Q_{channel} =

Carrier velocity

- ☐ Charge is carried by e-
- □ Electrons are propelled by the lateral electric field between source and drain
 - -E=
- ☐ Carrier velocity *v* proportional to lateral E-field
 - V =
- ☐ Time for carrier to cross channel:
 - -t=

nMOS Linear I-V

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time t each carrier takes to cross

$$I_{ds} =$$

_

nMOS Saturation I-V

- \Box If $V_{gd} < V_t$, channel pinches off near drain
 - When $V_{ds} > V_{dsat} =$
- Now drain voltage no longer increases current

$$I_{ds} =$$

_

nMOS I-V Summary

Shockley 1st order transistor models

Linear operation in deep triode region.

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2}\right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_t\right)^2 & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

$$V_{DS} \ll 2(V_{GS} - V_{TH})$$

$$V_{DS} \ll 2(V_{GS} - V_{TH})$$
 $I_D \approx \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) V_{DS}$ $R_{on} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})}$

overdrive voltage

Example

- Your book will be using a 0.6 μm process
 - From AMI Semiconductor

$$-t_{0x} = 100 \text{ Å}$$

$$- \mu = 350 \text{ cm}^2/\text{V*s}$$

$$- V_{t} = 0.7 V$$

☐ Plot I_{ds} vs. V_{ds}

$$-V_{qs} = 0, 1, 2, 3, 4, 5$$

$$-$$
 Use W/L = 4/2 λ

$$\beta = \mu C_{ox} \frac{W}{L} = (350) \left(\frac{3.9 \times 8.85 \cdot 10^{-14}}{100 \cdot 10^{-8}} \right) \left(\frac{W}{L} \right) = 120 \frac{W}{L} \, \mu \text{A/V}^2$$

I_D-V_G and I_D-V_D characteristics

pMOS I-V

- ☐ All dopings and voltages are inverted for pMOS
 - Source is the more positive terminal
- \Box Mobility μ_{D} is determined by holes
 - Typically 2-3x lower than that of electrons μ_n
 - 120 cm²/V•s in AMI 0.6 μm process
- □ Thus pMOS must be wider to provide same current
 - In this class, assume $\mu_n / \mu_p = 2$

Capacitance

- □ Any two conductors separated by an insulator have capacitance
- Gate to channel capacitor is very important
 - Creates channel charge necessary for operation
- Source and drain have capacitance to body
 - Across reverse-biased diodes
 - Called diffusion capacitance because it is associated with source/drain diffusion

More Corrections

- Mobility is reduced with increasing gate voltage.
 - We will study this effect in detail later.
- □ Current conduction occurs below the threshold voltage.
 - We will study this effect later.
- ☐ Channel length modulation has to be corrected.
- ☐ Threshold voltage depends on W and L.
- Parasitic resistances in the source and drain
- Latchup
- Speed limit of carriers

Ideal vs. Simulated nMOS I-V Plot

 \Box 65 nm IBM process, $V_{DD} = 1.0 \text{ V}$

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

A Unified Model for Manual Analysis

The simplest model in SPICE (Level 1 or default model) uses the above equations.

Parameter	SPICE Parameter	Units	Typical Values
$\mu_n C_{ox}$	KP	A/V^2	200μ
$ m V_{T0}$	VTO	V	0.5 - 1.0
λ	LAMBDA	V ⁻¹	0.05 - 0.005

$$\begin{split} I_D &= 0 \text{ for } V_{GT} \leq 0 \\ I_D &= k' \frac{W}{L} \Big(V_{GT} V_{min} - \frac{V_{min}^2}{2} \Big) (1 + \lambda V_{DS}) \text{ for } V_{GT} \geq 0 \\ \text{with } V_{min} &= \min(V_{GT}, V_{DS}, V_{DSAT}), \\ V_{GT} &= V_{GS} - V_{T}, \\ \text{and } V_T &= V_{T0} + \gamma (\sqrt{|-2\phi_F|} + V_{SB}| - \sqrt{|-2\phi_F|}) \end{split}$$

Transistor Model for Manual Analysis

Table 3.2 Parameters for manual model of generic 0.25 μ m CMOS process (minimum length device).

	V _{T0} (V)	γ (V ^{0.5})	V _{DSAT} (V)	k' (A/V ²)	λ (V ⁻¹)
NMOS	0.43	0.4	0.63	115×10^{-6}	0.06
PMOS	-0.4	-0.4	-1	$\text{-}30\times10^{\text{-}6}$	-0.1

The Transistor as a Switch

$$R_{eq} = \frac{1}{2} \left(\frac{V_{DD}}{I_{DSAT}(1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT}(1 + \lambda V_{DD}/2)} \right) \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{5}{6} \lambda V_{DD} \right)$$

CMOS VLSI Design 4th Ed.

 \square Applying the general formula for a transistor switching from V_{DD} to $V_{DD}/2$,

$$R_{eq} \approx \frac{3}{4} \frac{V_{DD}}{I_{D.sat}} \left(1 - \frac{7}{9} \lambda V_{DD} \right)$$

Alternatively, using the endpoints and averaging,

$$R_{eq} \approx \frac{3}{4} \frac{V_{DD}}{I_{D,sat}} \left(1 - \frac{5}{6} \lambda V_{DD} \right)$$

CMOS VLSI Design 4th Ed.

Table 3.3 Equivalent resistance R_{eq} (W/L= 1) of NMOS and PMOS transistors in 0.25 μ m CMOS process (with $L = L_{min}$). For larger devices, divide R_{eq} by W/L.

V_{DD} (V)	1	1.5	2	2.5	
NMOS (kΩ)	35	19	15	13	
PMOS (kΩ)	115	55	38	31	

$$R_{on} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})}$$

- □ Large signal drain-source resistance is a nonlinear quantity varying across operating regions.
- ☐ One can define an equivalent resistance

$$R_{eq} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \frac{V_{ds}(t)}{I_d(t)} dt$$

☐ For a weakly nonlinear function,

$$R_{eq} = \frac{1}{2} \left[\frac{V_{ds}(t_1)}{I_d(t_1)} + \frac{V_{ds}(t_2)}{I_d(t_2)} \right]$$

- Note the following
 - R is inversely proportional to W/L
 - For $V_{DD} >> V_T + V_{D,sat}/2$, R is independent of V_{DD} .
 - When V_{DD} is close to V_T , resistance increases.

$$R_{on} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})}$$

MOS Capacitances

G

Gate Capacitance

- □ Approximate channel as connected to source
- \Box $C_{gs} = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL = C_{permicron}W$
- C_{permicron} is typically about 2 fF/μm

Gate Capacitance

Operation Region	C _{gb}	C _{gs}	C _{gd}
Cut-off	$C_{ox}WL_{eff}$	C _{ov}	C _{ov}
Resistive	0	$C_{ox}WL_{eff}/2 + C_{ov}$	$C_{ox}WL_{eff}/2 + C_{ov}$
Active	0	(2/3) $C_{ox}WL_{eff} + C_{ov}$	C_{ov}

$$C_g = C_{gs} + C_{gd} + C_{gb} \approx C_0 + 2C_{gol}W$$

Parameter	Cutoff	Linear	Saturation	
C_{gb}	$\leq C_0$	0	0	
$C_{\!\scriptscriptstyle gs}$	0	$C_0/2$	2/3 C ₀	
C_{gd}	0	$C_0/2$	0	
$C_g = C_{gs} + C_{gd} + C_{gb}$	C_0	C_0	2/3 C ₀	

Diffusion Capacitance

- \Box C_{sb} , C_{db}
- Undesirable, called parasitic capacitance
- Capacitance depends on area and perimeter
 - Use small diffusion nodes
 - Comparable to C_g
 for contacted diff
 - $\frac{1}{2} C_q$ for uncontacted
 - Varies with process

$$C_{\mathit{sb}} = \mathit{AS} \times C_{\mathit{jbs}} + \mathit{PS} \times C_{\mathit{jbssw}}$$

$$C_{jbs} = C_J \left(1 + \frac{V_{sb}}{\psi_0} \right)^{-M_J}$$

$$\psi_0 = v_T \ln \frac{N_A N_D}{n_i^2}$$

$$C_{jbssw} = C_{JSW} \left(1 + \frac{V_{sb}}{\psi_{SW}} \right)^{-M_{JSW}} \begin{array}{c} -\text{Cbottom} = \text{Cj} \cdot \text{Ls} \cdot \text{W} \\ \square \text{ Sidewalls} \\ -\text{Perimeter cap} \\ -\text{Csw} = \text{Cjsw} \cdot (2\text{LS+W}) \\ \square \text{ Gate edge} \end{array}$$

$$C_{jbsswg} = C_{JSW} \left(1 + \frac{V_{sb}}{\psi_{SWG}} \right)^{-M_{JSWG}}$$

- ☐ Bottom
- –Area cap
- $-C_{bottom} = C_{i} \cdot L_{s} \cdot W$

- $-C_{ge} = C_{iswg} \cdot W$
- $-M_{_{ISWG}}$ Usually automatically included in the SPICE model

$$C_{diff} = C_{bottom} + C_{sw} = C_{j} \times AREA + C_{jsw} \times PERIMETER$$
$$= C_{j}L_{S}W + C_{jsw}(2L_{S} + W) + C_{jsw}S \cdot W$$

Capacitance Model Summary

- ☐ Gate-Channel Capacitance
 - C_{gc}≈0 (|VGS| < |VT|)(off)
 - C_{gc} =C_{gd} Cox⋅W⋅Leff (Linear)
 - 50% g to s, 50% g to d
 - $C_{gc} = (2/3) \cdot Cox \cdot W \cdot Leff$ (Saturation)
 - -100% g to s
- ☐ Gate Overlap Capacitance
 - $C_{gsol(overlap)} = C_{gsol}W$ $C_{gdol(overlap)} = C_{gdol}W$ (Always)
- ☐ Junction/Diffusion Capacitance
 - $C_{diff} = C_j \cdot L_s \cdot W + C_{jsw} \cdot (2LS + W) + C_{jgswg} W (Always)$

Capacitances in 0.25 μ m CMOS Process

	C_{ox} (fF/ μ m ²)	C _O (fF/μm)	$\frac{C_j}{(ext{fF}/ ext{ ext{m}}^2)}$	m_j	$\begin{matrix} \phi_b \\ (V) \end{matrix}$	C_{jsw} (fF/ μ m)	m_{jsw}	$egin{array}{c} oldsymbol{\phi}_{bsw} \ (V) \end{array}$
NMOS	6	0.31	2	0.5	0.9	0.28	0.44	0.9
PMOS	6	0.27	1.9	0.48	0.9	0.22	0.32	0.9