Mini-Assignment: Bayesian Network & HMM

Due Mar 4 at 11:59pm Points 5 Questions 5

Available until Mar 5 at 2:59am Time Limit None

Allowed Attempts 2

Instructions

Unit 5: Bayesian Network & HMM

This quiz was locked Mar 5 at 2:59am.

Attempt History

Correct!

	Attempt	Time	Score
LATEST	Attempt 1	2 minutes	5 out of 5

Score for this attempt: **5** out of 5 Submitted Mar 2 at 2:06pm This attempt took 2 minutes.

Question 1	1 / 1 pts			
In HMM, to find out what is the most probable path of the states, given an observation sequence O, which algorithm should be used?				
○ Baum-Welch				
СЕМ				
○ Forward-Backward				
Viterbi Decoding				

Correct!

Correct!

Question 4 1 / 1 pts

Given the following HMM model, where symbols X, Y and Z represent the possible observations in the states. In a circle representing a state, the symbols are equally possible observations in that state. If the system can only start equally likely from state 1 or state 2, what is the π ?

- Correct!
- π 1=1/2, π 2=1/2, π 3=0
- Π 1=1, π 2=0, π 3=0
- π 1=0, π 2=1, π 3=0

Question 5 1 / 1 pts

Given the following HMM model, where symbols X, Y and Z represent the possible observations in the states. In a circle representing a state, the symbols are equally possible observations in that state. What is the value of a_{33} in the state transition probability matrix?

Quiz Score: 5 out of 5