12th Annual Harvard-MIT Mathematics Tournament

Saturday 21 February 2009

Individual Round: Algebra Test

- 1. [3] If a and b are positive integers such that $a^2 b^4 = 2009$, find a + b.
- 2. [3] Let S be the sum of all the real coefficients of the expansion of $(1+ix)^{2009}$. What is $\log_2(S)$?
- 3. [4] If $\tan x + \tan y = 4$ and $\cot x + \cot y = 5$, compute $\tan(x + y)$.
- 4. [4] Suppose a, b and c are integers such that the greatest common divisor of $x^2 + ax + b$ and $x^2 + bx + c$ is x + 1 (in the set of polynomials in x with integer coefficients), and the least common multiple of $x^2 + ax + b$ and $x^2 + bx + c$ is $x^3 4x^2 + x + 6$. Find a + b + c.
- 5. [4] Let a, b, and c be the 3 roots of $x^3 x + 1 = 0$. Find $\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1}$.
- 6. [5] Let x and y be positive real numbers and θ an angle such that $\theta \neq \frac{\pi}{2}n$ for any integer n. Suppose

$$\frac{\sin \theta}{x} = \frac{\cos \theta}{y}$$

and

$$\frac{\cos^4 \theta}{x^4} + \frac{\sin^4 \theta}{y^4} = \frac{97\sin 2\theta}{x^3y + y^3x}.$$

Compute $\frac{x}{y} + \frac{y}{x}$.

7. [5] Simplify the product

$$\prod_{m=1}^{100} \prod_{n=1}^{100} \frac{x^{n+m} + x^{n+m+2} + x^{2n+1} + x^{2m+1}}{x^{2n} + 2x^{n+m} + x^{2m}}.$$

Express your answer in terms of x.

- 8. [7] If a, b, x and y are real numbers such that ax + by = 3, $ax^2 + by^2 = 7$, $ax^3 + by^3 = 16$, and $ax^4 + by^4 = 42$, find $ax^5 + by^5$.
- 9. [7] Let $f(x) = x^4 + 14x^3 + 52x^2 + 56x + 16$. Let z_1, z_2, z_3, z_4 be the four roots of f. Find the smallest possible value of $|z_a z_b + z_c z_d|$ where $\{a, b, c, d\} = \{1, 2, 3, 4\}$.
- 10. [8] Let $f(x) = 2x^3 2x$. For what positive values of a do there exist distinct b, c, d such that (a, f(a)), (b, f(b)), (c, f(c)), (d, f(d)) is a rectangle?