Pareto-based Multi-Objective Al Planning

Mostepha Khouadjia, Marc Schoenauer, Vincent Vidal, Johann Dréo, Pierre Savéant

TA INRIA Saclay
ONERA, Toulouse
Thalès R&D, Palaiseau

EvoPS wkp@ICAPS 2013

Agenda

- Multi-Objective Optimization
- Multi-Objective Al Planning
- Divide-and-Evolve (DaE)
- Experiments
- Conclusions

Agenda

- Multi-Objective Optimization
- Multi-Objective Al Planning
- Divide-and-Evolve (DaE)
- Experiments
- Conclusions

Multi-Objective Optimization

- Real-world problems are multi-objective:
 - Quality/cost, makespan/cost, ...
 - No single solution, but a set of trade-offs

Design space: solution plans

Objective space: plan qualities

Multi-Objective Optimization

- Pareto-dominance:
 - A dominates B is A is better than B on all objectives

dominates ⊡
 is dominated by △
 is not comparable
 with ○

 The set of non-dominated points in objective space is called Pareto front(ier)

Non-Pareto approaches

Aggregation of objectives
 minimize λ makespan + (1-λ) cost, λ ∈ [0,1]

→ single objective optimization

Fails on concave parts of Pareto Front

Evolutionary Algorithms

- Stochastic Optimization Algorithms
 - Population-based distribution based
 - Very flexible
 - Any search space (with proper variation operators)
 - Any objective/constrts (very weak hypotheses)
 - Very costly
- Empirical successes
 - The second best method for any problem
 - The method of choice when everything else has failed

Evolutionary Algorithms

Stochastic operatorsRepresentation dependent

Darwinian Evolution Engine (can be stochastic or deterministic)

Main CPU cost

Checkpointing: stopping criterion, statistics, updates, ...

Evolutionary Multi-Objective Optimization

- Use Pareto-based selection
 - Pareto-ranking + diversity preserving e.g., NSGA2, SPEA2, ...

Hypervolume contribution,
 IBEAH [Zitzler & Künzli 2004],

+ archive all non-dominated points

Agenda

- Multi-Objective Optimization
- Multi-Objective Al Planning
- Divide-and-Evolve (DaE)
- Experiments
- Conclusions

Al Planning & Benchmarks

- Biennal IPC (International Planning Competition)
 - Since 1998 (7th in 20...11)
 - Drive for PDDL design/improvements
 - Endless source of benchmarks

- Lots of exact or satisficing singleobjective planners
- Either cost-based (purely sequential) or temporal (actions can be run in parallel)

Multi-objective Al Planning

- PDDL 3.0 (2006) allows for several objectives
- But existing strategies/heuristics are not Pareto-compliant
- → aggregation of objectives

- A multi-objective track in IPC 5 and IPC 6
 ... not in IPC 7
- + recent approach [Sroka & Long, STAIRS 2012]
 using LPG [Gerevini et al., AI 08]

MiniZeno Benchmark (best makespan 8)

Domain: unique predicate at

```
(:action fly :duration (= ?duration (time ?c1 ?c2))
    :precond ((at ?a ?c1) (at ?p ?c1))
    :effect ((at ?a ?c2) (not(at ?a ?c1)) (at ?p ?c2) (not(at ?p ?c1))))
(:action flyVide :duration (= ?duration (time ?c1 ?c2))
    :precond ((at ?a ?c1)) :effect ((at ?a ?c2) (not (at ?a ?c1))))
```

• Instance: 3 cities, 2 planes, 3 passengers

```
(:objects plane1 plane2, person1 person2 person3 city0 city1 city2)
(= (time city0 city1) 2) (= (time city1 city2) 2)
(= (time city1 city0) 2) (= (time city2 city1) 2)
(:init (at plane1 city0) (at plane2 city0) (at person1 city0)
    (at person2 city0) (at person3 city0))
(:goal (at person1 city2) (at person2 city2) (at person3 city2))
```


Multi-Objective MiniZeno Benchmark

- 2 planes to bring 3 persons
- from city0 to city 4
- Two problems
 - Cost: additive (tax at every landing)
 - Risk: max(only highest value matters)

Pareto fronts for 6 passengers and varying cost/durations values

Multi-objectivization of IPC7 benchmarks

- From sequential satisficing and temporal satisficing tracks at IPC7
 - Merge identical instances of same domains if makespan and cost are contradictory
 (Elevators)
 - Set cost = Cst makespan if not
 (CrewPlanning, FloorTile, ParcPrinter)
 - Add single cost action to temporal domain (OpenStacks)

•

Agenda

- Multi-Objective Optimization
- Multi-Objective Al Planning
- Divide-and-Evolve (DaE)
- Experiments
- Conclusions

DaE: the Paradigm

- Slicing the original problem into a series of (hopefully simpler) sub-problems
- Using a 'dumb' solver on each sub-problem

(Variable length) Genotype = $(0_1, 0_2, 0_3)$

DaE-YAHSP

Problem

$$< S, A, I, G > = PD(I,G)$$

Representation

Ordered list of (partial) states $S_0 = I, S_1, ..., S_n, S_{n+1} = G$

Evaluation

Solve consecutive sub-problems $P_{\mathbf{D}}(\mathbf{S_k,S_{k+1}})$ / ke[0,n]

with embedded single-objective planner YAHSP [Vidal, ICAPS 04]

Fitness

All problems solved: concatenate partial plans

Fails solving $P_{\mathbf{D}}(\mathbf{S_l}, \mathbf{S_{l+1}})$: Penalization

Crossover: One-point crossover

Mutations: AddGoal, delGoal, addAtom, delAtom

Single-objective DAE-YAHSP

- An original (intricate) memetization strategy
- A very noisy fitness

but

- YAHSP is both cost- and temporal planner
- DAE-YAHSP: state-of-the-art performance in both domains [Bibai et al., ICAPS 2010]
- Silver medal, Humies Awards 2010
- Ranked 1st, temporal satisficing, IPC 2011

Multi-objective DAE-YAHSP

- YAHSP is both cost- and temporal planner
 ... can compute one while optimizing the other
- « Only » need to change the EC engine! [Schoenauer, Saveant, Vidal, EvoCOP'06]
- Two possible strategies for YAHSP: Optimize makespan or cost/risk

YAHSP strategy

Optimize cost or makespan?

Noisy fitness: objectives of a single individual computed by YAHSP with both pure strategies

→ randomize, and use weights (individual level)

Contributions

- The MiniZeno benchmark suite [EMO'13]
 - And the multi-objecvivization of some IPC7 problems
- IBEA best MO engine for MO-DAE [EMO'13]
- Parameter tuning: which fitness measure for the λ-runs? [LION'13]
- Comparison with aggregated approaches :
 - AGG-DAE [EVOCOP'13]
 - LPG [IJCAI'13]

Agenda

- Multi-Objective Optimization
- Multi-Objective Al Planning
- Divide-and-Evolve (DaE)
- Experiments
- Conclusions

Aggregated Approaches

- Metric-sensitive planners directly optimize $\lambda \max + (1-\lambda) \cosh, \lambda \in [0,1]$
 - E.g. LPG [Gerevini et al., Al'08]
- YAHSP is not metric sensitive
 - but DAE is agnostic
- Repeated calls with different values of λ to approximate the whole Pareto front
 - → Comparison of MO-DAE with both AGG-DAE and LPG

Experimental Conditions

- EC engine IBEA-Hv [EMO'13]
- Aggregation $\lambda = \{0, 0.3, 0.5, 0.7, 1\}$
- Implementation ParadisEO, C++
- Instances
 - MiniZeno3, MiniZeno6, MiniZeno9
 - Multi-objectivization of IPC7 instances
- 11 independent runs (also for each λ)
- Stopping criterion
 - ParamILS 48h (zeno3 and 6), 72h (zeno9, IPC7)
 - Optimization 300, 600 and 900s

Off-line Parameter Tuning

Returns solution quality (here hypervolume)

UBC ParamILS [Hutter et al., JAIR 2009]

The Parameters

Parameters	Range	Description		
W-makespan	0,1,2,3,4,5	Weighting for optimizing makespan during the search		
W-cost	0,1,2,3,4,5	Weighting for optimizing cost during the search		
Pop-size	30,50,100,200,300	Population Size		
Proba-cross	0.0,0.1,0.2,0.5,0.8,1.0	Probability (at population level) to apply crossover		
Proba-mut	0.0,0.1,0.2,0.5,0.6,1.0	Probability (at population level) to apply one mutation		
w-addAtom		Relative weight of the addAtom mutation		
w-addGoal	0 1 2 5 7 10	Relative weight of the addGoal mutation		
w-delAtom	0,1,3,5,7,10	Relative weight of the delAtom mutation		
w-delGoal		Relative weight of the delGoal mutation		
Proba-change	0.00102050810	Probability to change an atom in addAtom mutation		
Proba-delatom	0.0,0.1,0.2,0.5,0.8,1.0	Average probability to delete an atom in delAtom mutation		
Radius	1,3,5,7,10	Number of neighbour goals to consider in addGoal mutation		

→ 1.5 * 10⁹ Possible configurations

Metric for Parameter Tuning

- Hypervolume for MO runs
- Which metric for each of the λ-runs?
 - Hypervolume better choice than (aggregated) fitness [LION'13]

Zeno6

Zeno9

Pareto Front Attainability

Hitting plots for Ibea-Hv on Zeno6 (Cost and Risk)

Influence of YAHSP strategy

Hitting plots for Ibea-Hv on Zeno6 for the 2 'pure' strategies

Pareto vs Aggregation - Cost

Hypervolume evolution for MO-DAE and AGG-DAE

Pareto vs Aggregation – Cost (2)

Hitting plots on Zeno6 for MO-DAE and AGG-DAE

Pareto Fronts for Zeno9-Cost

Pareto Fronts (from 11 runs) for Zeno9 (scales are different)

Hitting Plots for Zeno-Risk

MO-DAE (left) vs AGG-DAE (right) on Zeno6 (top) and Zeno9 (bottom)

Comparison with LPG

Pareto Fronts for MO-DAE and LPG on MiniZeno6 (LPG fails on MiniZeno9)

Comparison with LPG (2)

(a) ELEVATORS01:DAE (▼) vs LPG (△)

Identical Pareto Fronts for MO-DAE vs LPG on Elevators01

(d) ELEVATORS 10: DAE

Solution set for MO-DAE on Elevators10
(LPG fails on instances > 01)

Comparison with LPG (3)

Pareto Fronts for MO-DAE and LPG on FloorTiles problems

Comparison with LPG (4)

Paerto Fronts for MO-DAE vs LPG on OpenStacks problems

Comparison with LPG (5)

Solution sets for MO-DAE and LPG on OpenStacks15 (scales are different)

Agenda

- Multi-Objective Optimization
- Multi-Objective Al Planning
- Divide-and-Evolve (DaE)
- Experiments
- Conclusions

Summary

- MO-DAE-YAHSP: a multi-objective evolutionary planner based on a singleobjective classical planner
- MiniZeno, a tunable MO benchmark
- Randomized YAHSP strategy
- IBEA-Hv best choice (on Zeno benchmarks)
- Outperforms aggregation approaches
 - Single-objective DAE
 - Metric-sensitive LPG

Perspectives

- Extended experiments on large IPC instances
 - What happens on FloorTiles Problems?
- Self-adaptive choice of YAHSP strategy
 - Individual or sub-goal level?
- On-line setting of (other) parameters
 - Adaptive operator selection
- Better handling of risk
 - Smoothing the needle effect

Comparative Results

Evolution of hypervolume / reference set for all 4 MOEAs

Statistical tests

Instances	Algorithms	Algorithms			
		NSGAII	$IBEA_{\varepsilon+}$	$IBEA_{H^{-}}$	SPEA2
$Zeno3_{cost}$	NSGAII	_	=	=	=
	$IBEA_{\varepsilon^+}$	=	_	=	=
	$IBEA_{II}$	=	=	_	=
	$SPEA^{2}$	=	=	=	_
$Zeno3_{risk}$	NSGAII	_	=	=	=
	$IBEA_{\varepsilon+}$	=	_	=	>
	$IBEA_{H-}$	=	=	_	>
	SPEA2	=	\prec	\prec	_
$Zeno6_{cost}$	NSGAII	_	\prec	\prec	~
	$IBEA_{\varepsilon+}$	>	_	=	=
	$IBEA_{II}$	>	=	_	=
	$SPEA_2^{H}$	>	=	=	_
$Zeno6_{risk}$	NSGAII	_	\prec	\prec	=
	$IBEA_{\varepsilon+}$	>	_	≻	>
	$IBEA_{H-}$	>	\prec	_	>
	SPEA2	Ш	\prec	\prec	_
$Zeno9_{cost}$	NSGAII	_	\prec	~	\prec
	$IBEA_{\varepsilon+}$	>	_	\prec	=
	$IBEA_{H-}$	>	>	_	
	SPEA2	>	=	=	_
$Zeno9_{risk}$	NSGAII	_	7	~	~
	$IBEA_{\varepsilon+}$	>	_	\prec	=
	$IBEA_{H-}$	>	>	_	=
	SPEA2	>	=	=	_

Ibea-Hv performs significantly better