Student ID: 2015400162

CMPE462 - Spring '20 Linear Algebra Assessment Solutions

1. (10 Points) **Solution 1:**

Let say
$$V_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} V_2 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

Let say $V_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $V_2 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ Since 2 times v_1 is equal to the v_2 , column space of A is the span of the vector v_1 .

Let say
$$V_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} V_2 = \begin{pmatrix} 2 \\ 0 \end{pmatrix} V_3 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

Let say $V_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} V_2 = \begin{pmatrix} 2 \\ 0 \end{pmatrix} V_3 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ Since V_1 and V_2 linearly dependent but not V_3 , column space of B is the span of the vector V_1 and V_3 .

2. (10 points)

• Solution 2(a):

Take any vector that passes through (0,0,0), if you multiply any vector in that line by a scalar, then the result is also in that line. So it is a subspace of \mathbb{R}^3 .

• Solution 2(b):

Since when we multiply some vector in that area with a negative scalar, it won't be in the positive quarter-plane. So, It is not a subspace.

3. (10 points)

• Solution 3(a):

$$\begin{split} V_1^T*V_2 &= (-2.0) + (0.1) + (1.0) = 0 \\ V_2^T*V_3 &= (0.2) + (1.0) + (0.4) = 0 \\ V_1^T*V_3 &= (-2.2) + (0.0) + (1.4) = 0 \end{split}$$

Since standard Euclidean inner products is zero but V_1 and V_3 's length is not 1, they form an orthogonal set but not an orthonormal set.

• Solution 3(b):

Since they are already a orthogonal set, we can divide vectors with their length to get an orthonormal

$$V_a = V_1/[(-2.-2) + (0.0) + (1.1)]$$

$$V_b = V_2/[(0.0) + (1.1) + (0.0)]$$

$$V_b = V_2/[(0.0) + (1.1) + (0.0)]$$

 $V_c = V_3/[(2.2) + (0.0) + (4.4)]$

 V_a, V_b, V_c form an orthonormal set.

4. (10 points) **Solution 4:**

Since column space of y^T has dimension one and $x.y^T$ will be in the column space of y^T by default, all columns of $x.y^T$ will be linearly dependent and its rank will be 1.

5. (10 points) **Solution 5:**

$$Y^T = [y_1, y_2, ..., y_n]$$
 where $y_i \in \mathbb{R}^p$ for all i

 $Y^T = [y_1, y_2, ..., y_n]$ where y_n then XY becomes: y_n

$$(x_1, x_2, ..., x_n) \cdot \begin{pmatrix} y_1^T \\ y_2^T \\ ... \\ y_n^T \end{pmatrix}$$
 which equals $\sum x_i \cdot y_i^T$

6. (10 points) **Solution 6:**

 $(A^TA)^T = A^T(A^T)^T = A^TA$ So, it is symmetric. $X^T(A^TA)X = (X^TA^T)AX = (AX)^TAX \ge 0$ So, it is positive semi-definite.

We want $(AX)^T AX > 0$ to become positive definite. Then $(AX)^T AX$ should not be zero. It is zero when AX=0, So we need A to have independent columns for positive definite.

7. (15 points)

• (5 points) Solution 7(a)

When A^TA is low rank matrix, we can not take inverse of it and can not calculate the c.

• (10 points) **Solution 7(b)**

 $(A^T A)v = \lambda v$

Since A^TA is symmetric and positive semi-definite, $\lambda \ge 0$ If we add a positive term then $\lambda > 0$ and A^TA becomes positive definite and its columns will be linearly independent, so we can take its inverse and be able to calculate c.

8. (25 points) **Solution 8:**

Since the minimum natural number that minimize the equation is 1, the answer is 1.