Introduction to quantum computing

Lecture 2: Quantum algorithms

Benoît Vermersch

March 28, 2024

LPMMC Grenoble

Outline

Our first quantum algorithm: Deutsch's algorithm

Quadratic speedup: Grover's algorithm

Implementation details

Other important quantum algorithms

What is an error in quantum computing?

Outline

Our first quantum algorithm: Deutsch's algorithm

Quadratic speedup: Grover's algorithm

Implementation details

Other important quantum algorithms

What is an error in quantum computing?

Reminder: Structure of a quantum circuit

Quantum circuit: single qubit/two-qubit gates and measurements:

Algorithm: a quantum circuit to retrieve the solution of a problem in the measurement data with high probability.

- Problem: Given a single bit Boolean function f(x), is f constant i.e f(0) = f(1), or balanced, i.e $f(0) \neq f(1)$?
- We need to introduce an object called an Oracle, aka quantum black box.
- An oracle evaluates the classical function f on quantum states

- Complexity will refer here to the number of oracles evaluation.
- Note: a quantum algorithm will be of practical use if the oracle can be implemented easily

One measurement gives me the solution, I would need two function evaluations in the classical case: quantum speedup

After the first Hadamards

$$|\psi
angle = rac{1}{2}(|0
angle + |1
angle)(|0
angle - |1
angle)$$

After the oracle

$$\ket{\psi}' = rac{1}{2} \left(\ket{0,0 \oplus f(0)} - \ket{0,1 \oplus f(0)} + \ket{1,0 \oplus f(1)} - \ket{1,1 \oplus f(1)}
ight)$$

If f(0)=f(1), let $0\oplus f(0)=0\oplus f(1)=a$, $1\oplus f(0)=1\oplus f(1)=b=1-a$

$$|\psi
angle = rac{1}{2}(|0
angle + |1
angle)(|a
angle - |b
angle)$$

After the last Hadamard,

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle(|a\rangle - |b\rangle)$$

I measure $|0\rangle$ with probability 1

If
$$f(0) \neq f(1)$$
, let $0 \oplus f(0) = 1 \oplus f(1) = a$, $1 \oplus f(0) = 0 \oplus f(1) = b$
$$|\psi\rangle = \frac{1}{2}(|0\rangle - |1\rangle)(|a\rangle - |b\rangle)$$

After the last Hadamard,

$$|\psi\rangle = \frac{1}{\sqrt{2}}|1\rangle(|a\rangle - |b\rangle)$$

I measure $|1\rangle$ with probability 1

Further reading

Some related algorithm using oracles:

- Deutsch Joza algorithm: generalization of Deutsch's algorithm to multiple qubits: oracle separation between P and EQP (exact quantum polynomial)
- Bernstein Vazirani and Simon's algorithm: Prove an oracle separation between BPP (bounded error classical polynomial) and BQP (bounded-error quantum polynomial).

Outline

Our first quantum algorithm: Deutsch's algorithm

Quadratic speedup: Grover's algorithm

Implementation details

Other important quantum algorithms

What is an error in quantum computing?

- Unstructured search problem: Given a n-bit Boolean function f(x), such that there exists a unique w such that f(w) = 1, find w.
- Application: Subroutine in various classical algorithms (example minimization problem, or machine learning)
- Input: A *n*-bit phase oracle

For any input x, we can mark to the solution

$$U_f|x\rangle=(-1)^{f(x)}|x\rangle$$

The ancilla qubit has been 'uncomputed'.

- Classical algorithm: $O(2^n)$ evaluations (Just test in a loop...)
- Grover's quantum algorithm $O(\sqrt{2^n})$ oracle evaluations: quadratic speedup
- Possible applications: solving NP-complete problems that allow for oracle implementations (eg the 3-SAT problem), brute-force attacks on cryptographic keys . . .

So simple...

• with the diffuser $U_d=2|\psi\rangle\langle\psi|-1$, with $|\psi\rangle=\frac{1}{\sqrt{N}}\sum_x|x\rangle$ the superposition on all $N=2^n$ bitstrings $x=x_1,\ldots,x_n$.

After the first Hadamards $(N = 2^n)$, the state is

$$H^{\otimes n}|0\rangle^{\otimes n} = \frac{1}{\sqrt{N}}(|0\rangle + |1\rangle)^{\otimes n} = \frac{1}{\sqrt{N}}\sum_{x}|x\rangle = |\psi\rangle$$

Introducing, $|\alpha\rangle = \frac{1}{\sqrt{N-1}} \sum_{x \neq w} |x\rangle$, we can write

$$|\psi\rangle = \sin(\theta/2)|w\rangle + \cos(\theta/2)|\alpha\rangle$$
,

with $\sin(\theta/2) = 1/\sqrt{N}$.

Combined application of oracle and diffuser will lead to a rotation of the state $|\psi\rangle$ towards the solution.

$$U_f |\psi\rangle = -\sin(\theta/2)|w\rangle + \cos(\theta/2)|\alpha\rangle$$
,

$$U_d |\alpha\rangle = \cos(\theta) |\alpha\rangle + \sin(\theta) |w\rangle$$

$$U_d |w\rangle = -\cos(\theta) |w\rangle + \sin(\theta) |\alpha\rangle$$

After one iteration,

$$|\psi_1\rangle = U_d U_f |\psi\rangle = \sin(3\theta/2) |w\rangle + \cos(3\theta/2) |\alpha\rangle$$

After *t* iterations,

$$|\psi_t\rangle = \sin((2t+1)\theta/2)|w\rangle + \cos((2t+1)\theta/2)|\alpha\rangle$$

Grover's algorithm: time complexity

Success probability

$$p_t = |\langle w|\psi_t\rangle|^2 = \sin((2t+1)\theta/2)^2,$$

which becomes of order one for $\theta t = \mathcal{O}(1)$.

• Remember that $\sin(\theta/2) = 1/\sqrt{N} = 1/\sqrt{2^n}$, thus $\theta \approx 2/\sqrt{2^n}$, we obtain t should be of the order of $\sqrt{2^n}$.

Implementation details

• Implentation of the oracle U_f depending on the function f: Careful Boolean logic to 'mark' solution without knowing the solution, eg test Boolean assertions using CNOTs and ancillas.

Implementation details

• Implementation of the diffuser $U_d=2\left|\psi\right>\left<\psi\right|-1$: This can be done with a few gates, including a N-qubit Toffoli gate

• In practice, the Toffoli gate must be decomposed in elementary CNOT gates, in an optimal way that is platform dependent

Illustration with an IBM quantum computer (c.f., Quantum Practical 2)

• The measurement gives you the solution (if errors are not too large)

• Take-Home Message: The required number of oracle evaluations $\sim \sqrt{N}$ is smaller than the number of entries N of the database!

Grover's algorithm: final remarks

- The quadratic speedup $\sqrt{N} = 2^{\overline{n}}$ of Grover's algorithm is optimal for any quantum algorithm for unstructured search (see eg Preskill).
- This is sad news!!!: With an exponential speedup, some *NP*-complete problems could have been solved in polynomial time in the size *n*, thus *any NP* problem could have been solved in polynomial time. . . .
- Consider a NP-complete problem of size n represented by a Boolean function f (eg 3-sat)
- 2. Implement the corresponding Grover oracle with *n* qubits
- 3. Run Grover's algorithm

Outline

Our first quantum algorithm: Deutsch's algorithm

Quadratic speedup: Grover's algorithm

Implementation details

Other important quantum algorithms

What is an error in quantum computing

Shor's algorithm

- Perhaps the most famous quantum algorithm
- Exponential speedup over the best known factorization algorithm
- Relies on order finding: find the period r of the function $f(x) = a^x \mod(N)$.

- Performance limited by the first step of modular exponentiation, $\sim \mathcal{O}(N^3)$ in some schemes.
- Similar circuit for Quantum Phase Estimation algorithm

Quantum Optimization

- Encodes a classical optimization problem in a Hamiltonian operator H(x)
- Minimizes H using quantum annealing, or variational algorithms.

- ullet Very attractive for quantum problems H: condensed matter, quantum chemistry
- Absolute limitations: Active field of research.

State of the art

Quantum algorithms: A survey of applications and end-to-end complexities

Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bienias, Chi-Fang Chen, András Gilyén, Connor T. Hann, Michael J. Kastoryano, Emil T. Khabiboulline, Aleksander Kubica, Grant Salton, Samson Wang, Fernando G. S. L. Brandão arxiv.org/abs/2310.03011

Outline

Our first quantum algorithm: Deutsch's algorithm

Quadratic speedup: Grover's algorithm

Implementation details

Other important quantum algorithms

What is an error in quantum computing?

An error in a quantum computer?

ullet Example: Spontaneous emission with an atomic qubit $|\psi
angle=|1
angle$

$$|1\rangle \rightarrow \sqrt{1-p} |1\rangle |0\rangle_{\mathrm{photon}} + \sqrt{p} |0\rangle |1\rangle_{\mathrm{photon}}$$
 (1)

- Spontaneous emission process corresponds to a 'bitflip error' $|\psi
angle o X\,|\psi
angle$

$$|\psi\rangle \to |\psi\rangle |E\rangle_I + X |\psi\rangle |E\rangle_X$$
 (2)

An error in a quantum computer?

• For a general qubit state $|\psi\rangle=(\alpha\,|0\rangle+\beta\,|1\rangle)$, a decoherence process can always be interpretated as a sum of 'Pauli Errors':

$$|\psi\rangle \rightarrow |\psi\rangle |E\rangle_I + X |\psi\rangle |E\rangle_X + Y |\psi\rangle |E\rangle_Y + Z |\psi\rangle |E\rangle_Z$$
 (3)

 Quantum error correction: How to detect an error without destroying the quantum superposition?

The bit flip code

• Our first code: The bit flip code

$$|\psi\rangle = \alpha \,|0\rangle_L + \beta \,|1\rangle_L \tag{4}$$

with a logical qubit that is made of three physical qubits

$$|0\rangle_L = |000\rangle \quad |1\rangle_L = |111\rangle \tag{5}$$

 The code aims at tracking and correcting X errors occurring on one of the three physical qubits

$$|\psi\rangle \to |\psi\rangle |E\rangle_I + \sum_{i=1,2,3} X_i |\psi\rangle |E\rangle_{X_i} \to_{\text{QEC}} |\psi\rangle$$
 (6)

The bit flip code

• There are two mesurements to be made $\langle Z_1 Z_2 \rangle$, $\langle Z_2 Z_3 \rangle$, giving rise to unique error syndromes, independently of the qubit superposition state.

Error	State	$\langle Z_1 Z_2 angle$, $\langle Z_2 Z_3 angle$		
none	$\alpha \ket{000} + \beta \ket{111}$	1,1		
X_1	$\alpha \left 100 \right\rangle + \beta \left 011 \right\rangle$	-1,1		
X_2	$lpha \ket{010} + eta \ket{101}$	-1,-1		
X_3	$lpha \ket{001} + eta \ket{110}$	1,-1		

- Code distance: Number of errors that map one logical state to the other. Here it's d = 3. For a general d, we can correct t errors if $d \ge 2t + 1$.
- How to measure and correct errors?

The bit flip code: Collective measurements

• We require a collective measurement of $\langle Z_1 Z_2 \rangle$ with two measurement outcomes (eigenvalues) $\epsilon = \pm 1$:

$$Z_1Z_2 = \underbrace{\ket{00}\bra{00} + \ket{11}\bra{11}}_{P_1} - \underbrace{\left(\ket{01}\bra{01} + \ket{10}\bra{10}\right)}_{P_{-1}}$$

ullet A measurement on $|\psi'
angle$ gives a mesurement outcome ϵ and a projection

$$|\psi'\rangle \to P_{\epsilon} |\psi'\rangle$$
 with probability $\langle \psi|P_{\epsilon}|\psi\rangle$

- If $|\psi'\rangle$ is proportional to $|\psi\rangle$, $X_1 |\psi\rangle$, $X_2 |\psi\rangle$, we obtain a deterministic measurement $\epsilon=1$, or $\epsilon=-1$, and the state is unchanged.
- For a quantum superposition of errors, the outcome is probabilitic, but the post-measured state is compatible with such outcome.

The bit flip code: Implementation aspects

• Step 1: Encoding from a physical qubit state $|\psi_1\rangle = \alpha |0\rangle + \beta |1\rangle$:

• Side remark: This is very different from quantum cloning $|\psi\rangle \to |\psi\rangle^{\otimes 3}$, which can be proven to be strictly impossible.

The bit flip code: Implementation aspects

 Step 2: Error syndromes and recoveries: One requires ancilla qubits (see also Exercices 4)

• The logical gates $X_L = |0\rangle_L \langle 1| + h.c = X_1 X_2 X_3$, $Z_L = |0\rangle_L \langle 0| - |1\rangle_L \langle 1| = Z_1$,

32

The bit flip code: Limitations

The bit flip code fails for two and three qubit bit flip errors with probability

$$p_L = 3p^2(1-p) + p^3 (7)$$

with p the single qubit error

- Notion of threshold: Quantum error correction is only useful when the logical qubit lifetime is larger than the physical qubit lifetime, i.e when $p_L \le p$, this means when $p \le 1/2$.
- What about combined presence of X, Y, Z errors?

Steane code

- One logical qubit made of seven physical qubits.
- The error syndromes are defined as the set $S = \{Z_4Z_5Z_6Z_7, Z_2Z_3Z_6Z_7, Z_1Z_3Z_5Z_7, X_4X_5X_6X_7, X_2X_3X_6X_7, X_1X_3X_5X_7\}.$
- These operators commute, i.e errors can be measured successively
- The 'code world' (distance d = 3)

$$|0\rangle_{L} = 1/\sqrt{8} (|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle + |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle)$$

$$|1\rangle_{L} = X_{1}X_{2}X_{3} |0\rangle_{L}$$
(8)

- The code is 'stabilized' by S: For any $|\psi\rangle = \alpha \, |0\rangle_L + \beta \, |1\rangle_L$, for any $g \in S$, $g \, |\psi\rangle = |\psi\rangle$.
- The logical gates are $X_L = \prod_i X_i$, $Z_L = \prod_i Z_i$

Steane code

- The Steane code is an example of stabilizer codes, whose error syndromes are elements of a commuting Pauli subgroup.
- For the purpose of this lecture, we will simply check that the syndromes do the job.
- General rules:
 - If Z_i is present in an error syndrome g, it will detect X_i errors (because $X_iZ_iX_i=-Z_i$, and operators acting on different sites i,j commute.)
 - ullet Similarly, Z_i errors are detected by X_i operators .
 - Y = iXZ, therefore a Y error is a Z error followed by an X error.

Steane code

Error	$Z_4Z_5Z_6Z_7$	$Z_2Z_3Z_6Z_7$	$Z_1Z_3Z_5Z_7$	$X_4X_5X_6X_7$	$X_2X_3X_6X_7$	$X_1X_3X_5X_7$
none	1	1	1	1	1	1
X_1	1	1	-1	1	1	1
X_2	1	-1	1	1	1	1
X_3	1	-1	-1	1	1	1
X_4	-1	1	-1	1	1	1
X_5	-1	1	-1	1	1	1
X_6	-1	-1	1	1	1	1
X_7	-1	-1	-1	1	1	1
Z_1	1	1	1	1	1	-1
:		'	'	'	'	
Y_1	1	1	-1	1	1	-1
:		I		l	l	I I

Steane code: Conclusion

- The Steane corrects any single qubit errors.
- As the bitflip code, it does not corrected double errors (ex: X_1X_2).
- A first option to achieve Fault tolerance (reaching arbitrary precision in presence of a finite error probability): Concatenated Steane Codes.
- Another approach: Surface codes.

Surface code

- Kitaev, Bravyi (1997), following works on 'Toric codes'.
- The physical qubits sit on a 2D lattice.
- The stabilizer operators, i.e the measurements to be made for error detection, are

$$Z_{i_1}Z_{i_2}Z_{i_3}Z_{i_4}$$
 on plaquettes $X_{j_1}X_{j_2}X_{j_3}X_{j_4}$ on vertices

• Code world is 'stabilized' by all such operators $g \, |\psi \rangle = |\psi \rangle$

Quantum error correction in 2024

Rydberg atom qubits (Harvard, M. Lukin group)

