

OBIETTIVO DELLO STUDIO

- Estrazione di informazioni strutturate da un insieme di file JSON contenenti tabelle presenti in articoli scientifici.
- Tali informazioni saranno estratte direttamente dalle tabelle HTML e arricchite con dati contestuali come didascalie, riferimenti e note a piè di pagina.
- Il processo di estrazione utilizza tecniche avanzate di elaborazione del linguaggio naturale per identificare dati significativi.
- Successivamente i dati strutturati vengono sottoposti a un'analisi statistica per calcolare distribuzioni, medie e altre statistiche descrittive per individuare trend o anomalie.
- Infine viene effettuato un allineamento terminologico per standardizzare e unificare termini utilizzati nelle tabelle.

PIPELINE

DATA COLLECTION

- Sono state collezionate 37 tabelle a partire da 13 papers scelti riguardo il topic di "Machine Traslation".
- E' stata fatta una classificazione di tabelle, per una gestione più efficiente, in base al tipo di informazioni contenute all'interno:
 - Tipo 1: tabelle relazionali, con l'utilizzo di LLM per distinguere metriche e specifiche contenute nelle colonne.
 - Tipo 2: tabelle che necessitano di una estrazione di informazioni aggiuntive contenute nella caption e nei paragrafi con riferimenti alla tabella.
 - Tipo 3: tabelle nidificate che si comportano come le tabelle di tipo 1.

DATA COLLECTION

Dataset	ε	Iteration Method	Test BLEU	Test BERTScore
WMT-16	∞	Random shuffling	36.19 (0.13)	0.95 (0.00)
WMT-16	1000	Random shuffling	20.86 (0.56)	0.92 (0.00)
WMT-16	1000	Poisson sampling	15.12 (0.08)	0.91 (0.00)
WMT-16	5	Random shuffling	19.24 (0.52)	0.92 (0.00)
WMT-16	5	Poisson sampling	7.23 (0.21)	0.89 (0.00)
WMT-16	1	Random shuffling	19.83 (0.64)	0.92 (0.00)
WMT-16	1	Poisson sampling	2.35 (0.07)	0.84 (0.00)
BSD	∞	Random shuffling	10.09 (2.75)	0.90 (0.01)
BSD	1000	Random shuffling	1.36 (0.67)	0.87 (0.01)
BSD	1000	Poisson sampling	1.01 (0.07)	0.87 (0.00)
BSD	5	Random shuffling	0.06 (0.05)	0.85 (0.01)
BSD	5	Poisson sampling	0.06 (0.06)	0.84 (0.02)
BSD	1	Random shuffling	0.00 (0.01)	0.45 (0.22)
BSD	1	Poisson sampling	0.00 (0.00)	0.65 (0.15)
ClinSPEn-CC	∞	Random shuffling	5.42 (2.41)	0.86 (0.02)
ClinSPEn-CC	1000	Random shuffling	0.03 (0.02)	0.75 (0.01)
ClinSPEn-CC	1000	Poisson sampling	0.70 (0.19)	0.78 (0.00)
ClinSPEn-CC	5	Random shuffling	0.80 (0.56)	0.79 (0.00)
ClinSPEn-CC	5	Poisson sampling	0.83 (0.27)	0.79 (0.00)
ClinSPEn-CC	1	Random shuffling	0.50 (0.20)	0.78 (0.00)
ClinSPEn-CC	1	Poisson sampling	0.54 (0.22)	0.78 (0.00)

Model	L=0.5	L=0.2	L=0.1	L=0.05	L=0.02
GPT2-small	0.131	0.135	0.131	0.135	0.132
GPT2-small- share-encoder	0.248	0.265	0.264	0.255	0.251

Tabella di tipo 2

	MOS		
TTS Model	Without Stress	With Stress	
Pitch	4.25	3.95	
Pitch and Energy	4.36	4.21	

Tabella di tipo 3

Lo script che abbiamo utilizzato per l'estrazione svolge i seguenti passaggi:

- Lettura della tabella HTML.
- Identificazione delle metriche o delle specifiche con API Gemini.
- Creazione di claims nel formato |{specifications}, {measure}, {outcome}|.
- Salvataggio in file JSON.

Dataset	Lang. Pair	# Trn.+Vld.	# Test
WMT-16	DE-EN	4,551,054	2,999
BSD	JA-EN	22,051	2,120
ClinSPEn-CC	ES-EN	1,065	2,870

CLAIMS EXTRACTION - TIPO 2

Lo script che abbiamo utilizzato per l'estrazione svolge i seguenti passaggi:

- Lettura della tabella HTML.
- Le intestazioni sono prese dalla prima riga della tabella. Le righe successive contengono specifiche e valori.
- Utilizzo di Gemini per identificare la metrica ed estrae le specifiche basandosi su caption e paragrafi.
- Creazione di claims nel formato |{specifications}, {measure}, {outcome}|.
- Salvataggio in file JSON.

Table 1: The delay improvement performance of using the shared encoder as the branch predictor on the $en \rightarrow vi$ direction wait-k [3] method.

Model	K=1	K=3	K=5	K=7	K=9
GPT2-small	0.157	0.179	0.131	0.176	0.166
GPT2-small- share-encoder	0.210	0.225	0.248	0.211	0.198

Lo script che abbiamo utilizzato per l'estrazione svolge i seguenti passaggi:

- Lettura della tabella HTML.
- Estrazione delle specifiche con attributo 'Colspan'.
- Header estratto identificando il campo 'Colspan' e valori processati dalla terza riga.
- Utilizzo di Gemini per identificare la metrica ed estrae le specifiche basandosi su caption e paragrafi.
- Salvataggio in file JSON.

		Translation Quality		User Effort		
Model	Language Pair	TER [↓]	BLEU [↑]	WSR [↓]	KSR [↓]	MAR [↓]
	De-En	69.3	15.1	52.17	64.84	19.78
	En-De	74.2	13.2	63.64	66.00	17.00
T.5	Es-En	65.3	18.1	44.06	51.49	14.40
mT5	En-Es	64.3	18.4	46.45	55.57	13.92
	Fr-En	66.3	18.6	44.74	52.62	15.02
	En-Fr	81.8	17.8	48.34	55.73	15.16
	De-En	52.4	29.7	52.17	68.13	19.78
mBART	En-De	57.0	27.1	50.00	56.00	14.00
	Es-En	52.1	30.5	33.08	38.95	12.19
	En-Es	48.2	33.3	34.41	41.09	11.68
	Fr–En	48.4	33.6	32.35	37.90	12.35
	En-Fr	56.0	39.1	29.92	34.38	11.07

```
[
{
    "Claim 0": "|{|Model, mT5|,|Language Pair, De-En|,|Translation Quality, TER$\daggeright\}, TER$\dagg
```


L'obiettivo principale è stato quello di verificare se l'estrazione svolta con il sistema andasse ad individuare la maggior parte se non tutti i claim contenuti nelle tabelle.

E' stata svolta un'analisi a mano, considerando tutte le tabelle e definendo delle metriche per valutare la similarità.

La similarità tra due claim è stabilita in funzione di una soglia scelta del 90%.

Si può notare che i valori sono gli stessi, perché c'è una corrispondenza completa tra il set degli elementi estratti e il set della groundtruth.

Precision	Recall	F1-Score
0.72	0.72	0.72

PROFILING

Questo task analizza le affermazioni estratte per generare dati di profilazione completi. Fornisce approfondimenti statistici calcolando distribuzioni e medie. Le distribuzioni estratte sono le seguenti:

- Distribuzione dei nomi delle specifiche.
- Distribuzione delle metriche.
- Distribuzione dei valori per ogni specifica.
- Valori medi associati ad ogni metrica.

PROFILING

Metriche 11

PROFILING

Valori specifiche

Valori medi delle metriche

ALIGNMENT

Questo task standardizza e unifica la terminologia nelle affermazioni estratte, garantendo coerenza tra metriche e specifiche.

E' stato inizialmente creato un dizionario dei sinonimi, utilizzando un modello pre-addestrato di tipo SentenceTransformer, nello specifico all-MiniLM-L6-v2.

Il processo di costruzione del dizionario è composto dalle seguenti fasi:

- Normalizzazione dei termini.
- Calcolo degli embeddings.
- Calcolo matrice similarità.
- Clusterizzazione dei sinonimi.
- Gestione dei duplicati con risultato finale.

```
"lang. pair": ["lang. pair", "language pair"],

"score": ["score", "diff. in scores", "value"],

"dataset": ["dataset", "data set"],

"model": ["model", "models", "models, gpt-40","models, gpt-4"],

"method": ["iteration method", "method", "methods"]
```

PROFILING – WITH ALIGNMENT

Specifiche Metriche 14

PROFILING – WITH ALIGNMENT

Valori specifiche

Valori medi delle metriche

ALIGNMENT

Il processo vero e proprio si occupa di caricare un file JSON contenente i campi e i valori allineati (a partire dai claims estratti) e di unificarli in un'unica rappresentazione, prendendo in considerazione anche il dizionario dei sinonimi.

Si compone delle seguenti fasi:

- Normalizzazione dei termini.
- Caricamento del dizionario dei sinonimi.
- Identificazione dei sinonimi per ogni campo.
- Unione dei campi simili, usando il dizionario dei sinonimi.
- Creazione di un nuovo dataset unificato.
- Salvataggio del file risultante.

```
"aligned_names": {
"dataset": [
     "2311.14465 3 claims 38 1",
     "2311.14465 3 claims 29 1",
     "2410.07830 1 claims 8 1",
     "2311.14465 3 claims 32 1",
     "2409.17939 2 claims 1 1" ],
"mos": [
     "2403.04178 1 claims 0 1",
     "2403.04178_1_claims_1_1",
     "2403.04178 1 claims 2 1",
     "2403.04178 1 claims 3 1" ],
"method": [
     "2409.17939_1_claims_12_1",
     "2410.06338 3 claims 6 1",
     "2409.17939 1 claims 9 1",
     "2410.06338 4 claims 1 1",
     "2409.17939 1 claims 4 1",
     "2311.14465 3 claims 31 3" ],
```

CONCLUSIONI E SFIDE INCONTRATE

Dati rumorosi

Complessità semantica

Limitazioni computazionali

SVILUPPI FUTURI

Estensione a nuovi tipi di dati

Miglioramento dell'accuratezza dell'estrazione

Automatizzazione completa

GRAZIE PER L'ATTENZIONE!