Inversão gravimétrica do relevo da Moho em coordenadas esféricas

Leonardo Uieda

Valéria C. F. Barbosa

Observatório Nacional - 2015

O problema geofisico

Estimar um relevo Moho, embasamento

solar efeito gravitacional

Terra Real

F

Água Crosta Manto

Terra Normal

• F

Terra Normal

• F

Distúrbio da gravidade

P

manto^T - crosta^E

P

F

P

Bouguer -> Moho

P

 $manto^{\mathsf{T}} - crosta^{\mathsf{E}}$ $crosta^{\mathsf{T}} - manto^{\mathsf{E}}$

Parametrização

Grid de observações

1 tesseroide para cada

1 tesseroide para cada

1 tesseroide para cada

parâmetros = h

p + h

Estimar p

a partir de d

nversão não-linear

Residuos

$$\overline{r} = \overline{d}^o - \overline{d}(\overline{p})$$

Minimizar

$$\Phi(\overline{p}) = ||\overline{r}||_2^2$$

Gauss-Newton

$$\underline{\Delta} p = (\bar{\bar{A}}^T \bar{\bar{A}})^{-1} \bar{\bar{A}}^T [\bar{d}^o - \bar{d}(\bar{p}^k)]$$

Gauss-Newton

$$\mathbf{\Delta} \mathbf{p} = (\bar{\bar{A}}^T \bar{\bar{A}})^{-1} \bar{\bar{A}}^T [\bar{\mathbf{d}}^o - \bar{\mathbf{d}} (\bar{\mathbf{p}}^k)]$$

$$A_{ij} = \frac{\partial d_i}{\partial p_j} \quad \underline{\text{Jacobiana}}$$

$$A_{ij} = \frac{\partial d_i}{\partial p_j} \quad \underline{\text{Jacobiana}}$$

Regularização

Suavidade

$$\Theta(\bar{p}) = ||\bar{R}\bar{p}||_2^2$$

Função objetivo

$$\Gamma(\overline{p}) = \phi + \mu \theta$$

Função objetivo

ajuste
$$\Gamma(\overline{p}) = \phi + \mu \theta$$

Função objetivo

$$\Gamma(p) = \phi + \mu \theta$$
regularização

Função objetivo

ajuste balanço
$$\Gamma(\bar{p}) = \varphi + \mu \theta$$
 regularização

$$\Delta \bar{p} = (\bar{\bar{A}}^T \bar{\bar{A}} + \mu \bar{R}^T \bar{\bar{R}})^{-1} [$$

$$\bar{\bar{A}}^T \bar{r}^k - \mu \bar{R}^T \bar{\bar{R}} p^k]$$

Gauss-Newton Lackston La

(computacionalmente)

1. Construir \overline{A}

1. Construir \overline{A}

2. Sistema linear

1. Construir \overline{A}

2. Sistema linear

3. Calcular r

(1960)

$$\frac{\Delta p}{2\pi G \Delta \rho}$$

∂ platô de Bouguer

 ∂h

1. Construir \bar{A}

2. Sistema linear

3. Calcular r

1. Construir Ā

2. Sisteria linear

3. Calcular r

Lápido bonca wewoig converge

instave regularização empirico,,

Bott (1960)

Silva et al.

(2014)

Bott

Bott caso particular

$$\frac{\Delta p}{2\pi G \Delta \rho} = \frac{r}{2\pi G \Delta \rho}$$

$$\frac{1}{2\pi G \Delta \rho}$$
caso
particular

$$\Delta p = (\bar{\bar{A}}^T \bar{\bar{A}})^{-1} \bar{\bar{A}}^T \bar{r}$$

$$\Delta p = \frac{r}{2\pi G \Delta \rho}$$

$$\Box caso particular$$

$$\Delta p = (\bar{\bar{A}}^T \bar{\bar{A}})^{-1} \bar{\bar{A}}^T r$$

$$\Delta p = \frac{r}{2\pi G \Delta \rho}$$

$$A_{ii} = 2\pi G \Delta \rho$$

$$A_{ij} = 0 \text{ para } i \neq j$$

$$\Delta p = (\bar{A}^T \bar{A})^{-1} \bar{A}^T r$$

 $2\pi G \Delta \rho \qquad 0 \qquad \cdots \qquad 0$ $0 \qquad 2\pi G \Delta \rho \qquad 0$ $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$ $0 \qquad 0 \qquad \cdots \qquad 2\pi G \Delta \rho$

Silva et al. (2014)

Generalizar

$$\Delta p = \frac{r}{b^k}$$

Generalizar

$$\Delta p = \frac{r}{b^k}$$

Regular passo (~ Marquardt)

sem matrizes Legular passo média móvel

trabalho

$$\underline{\boldsymbol{\Delta}} \boldsymbol{p} = (\bar{\bar{\boldsymbol{A}}}^T \bar{\bar{\boldsymbol{A}}})^{-1} \bar{\bar{\boldsymbol{A}}}^T [\bar{\boldsymbol{d}}^o - \bar{\boldsymbol{d}} (\bar{\boldsymbol{p}}^k)]$$

$$\Delta \bar{p} = (\bar{A}^T \bar{A})^{-1} \bar{A}^T [\bar{d}^o - \bar{d}(\bar{p}^k)]$$
tesseroides

$$\Delta p = (\bar{A}^T \bar{A})^{-1} \bar{A}^T [\bar{d}^o - \bar{d}(\bar{p}^k)]$$

$$A_{ii} = 2\pi G \Delta \rho_i \qquad \text{tesseroides}$$

$$\Delta \bar{p} = (\bar{A}^T \bar{A})^{-1} \bar{A}^T [\bar{d}^o - \bar{d}(\bar{p}^k)]$$

$$A_{ii} = 2\pi G \Delta \rho_i \qquad \text{tesseroides}$$
por tesseroide

Por que?

$$A_{ii} = 2\pi G \Delta \rho_i$$

tesseroide --> co

tesseroide --> co

 $q \longrightarrow 2\pi G \Delta \rho h$

tesseroide --> co

$$g \longrightarrow 2\pi G \Delta \rho h$$

$$A_{ii} = \frac{\partial g}{\partial h} \longrightarrow 2\pi G \Delta \rho$$

tesseroide de 0.5°

tesseroide de 0.5°

≈ 55 km

Regularização Suavidade

$$\Delta p = (\bar{\bar{A}}^T \bar{\bar{A}} + \mu \bar{\bar{R}}^T \bar{\bar{R}})^{-1} [$$

$$\bar{\bar{A}}^T \bar{r}^k - \mu \bar{\bar{R}}^T \bar{\bar{R}} \bar{p}^k$$

$$\bar{\bar{A}}^T \bar{r}^k - \mu \bar{\bar{R}}^T \bar{\bar{R}} \bar{p}^k$$

$$\bar{A}^T \bar{r}^k - \mu \bar{R}^T \bar{R} p^k$$

~99.9% tempo de computação

1. Construir \overline{A}

2. Sistema linear

3. Calcular r

1. Construir A Bott

2. Sistema linear

3. Calcular r

1. Construir A Bott

2. Sisteria linear

matrizes esparsas

3. Calcular r

Labido pouca memória converge

instave regularização empirico,,

instável fegularização empifico

Implementação

matrizes esparsas

estimar hyperparâmetros

href

regularização

Δρ

1 ref

regularização contraste densidade Δ

1 ref

regularização contraste densidade Δ Moho Terra Normal ref

validação cruzada

validação

cruzada

validação

cruzada

validação

cruzada

para μ_i em $[\mu_1, \ldots, \mu_m]$:

para
$$\mu_i$$
 em $[\mu_1, \dots, \mu_m]$: inversão: $\bar{d}^o_{inv} \rightarrow \hat{p}_i$

para
$$\mu_i$$
 em $[\mu_1, ..., \mu_m]$:

inversão: $\bar{d}^o_{inv} \rightarrow \hat{p}_i$
 $\hat{p}_i \rightarrow \text{prever } \bar{d}_{test}$

para μ_i em $[\mu_1, \dots, \mu_m]$:

inversão:
$$\overline{d}_{inv}^o \rightarrow \hat{\overline{p}}_i$$

$$\hat{\overline{p}}_i \rightarrow \text{prever } \overline{d}_{test}$$

$$MSE = \frac{||\bar{d}_{test}^o - \bar{d}_{test}||^2}{N_{test}}$$

dado completo

dado inversão

0 0 0 0

0 0 0 0

dado teste

dado teste

dado inversão

validação

cruzada

vínculos da SISMICA

estimativas pontuais

 \overline{h}_{s}^{o}

para $\Delta \rho_i$ e $h_{ref,i}$

para $\Delta \rho_i$ e $h_{ref,i}$ inversão: $\overline{d}_{inv}^o \rightarrow \hat{\overline{p}}_i$

para $\Delta \rho_i$ e $h_{ref,i}$

inversão:
$$\bar{d}_{inv}^o \rightarrow \hat{\bar{p}}_i$$

$$\hat{p}_i$$
 — interpolar \bar{h}_s

para $\Delta \rho_i$ e $h_{ref,i}$

inversão:
$$\overline{d}_{inv}^o \rightarrow \widehat{\overline{p}}_i$$

$$\hat{p}_i$$
 — interpolar \bar{h}_s

$$MSE = \frac{||\bar{h}_s^o - \bar{h}_s||^2}{N_{test}}$$

Resultados sintético

Moho CRUST1.0

16 24 32 40 48 56 64 Moho depth (km)

16 24 32 40 48 56 64 72 Moho depth (km)

Reference level (km)

verdadeiros

$$\Delta \rho = 350$$

$$h_{ref} = 30$$

Contorno: Predito Cor: Observado

−320 −240 −160 −80 0 80 160 240 32 mGal

Resultados

Am. do Su

Anomalia Bouguer sem sedimentos

vínculos sismica Assumpção et al. (2012)

estimados

$$\Delta \rho = 400$$

$$h_{ref} = 35$$

Contorno: Predito Cor: observado

estimativa da Moho

Solução anterior van der Meijde et al. (2013)

Conclusões

Baseado em Bott (1960) e Silva et al. (2014)

Baseado em Bott (1960) e Silva et al. (2014)

Tesseroides

Baseado em Bott (1960) e Silva et al. (2014)

Tesseroides

Gauss-Newton + Regularização

Baseado em Bott (1960) e Silva et al. (2014)

Tesseroides

Gauss-Newton + Regularização

Matrizes esparsas

Baseado em Bott (1960) e Silva et al. (2014)

Tesseroides

Gauss-Newton + Regularização

Matrizes esparsas

Validação cruzada $\longrightarrow \mu \Delta \rho h_{ref}$

Compatível com van der Meijde et al. (2013)

Compatível com van der Meijde et al. (2013)

Correções (topo e sedimentos) mais apropriadas

Compatível com van der Meijde et al. (2013)

Correções (topo e sedimentos) mais apropriadas

~6 km stddev com sísmica

Compatível com van der Meijde et al. (2013)

Correções (topo e sedimentos) mais apropriadas

~6 km stddev com sísmica

Diferença grande concentrada nos Andes

Compatível com van der Meijde et al. (2013)

Correções (topo e sedimentos) mais apropriadas

~6 km stddev com sísmica

Diferença grande concentrada nos Andes

Resolução maior pode ser falsa

Compatível com van der Meijde et al. (2013)

Correções (topo e sedimentos) mais apropriadas

~6 km stddev com sísmica

Diferença grande concentrada nos Andes

Resolução maior pode ser falsa

Depende de correções corretas

Atividades

2014-2015

artigos

Geophysics (submetido)

"Tesseroids: forward modeling of gravitational fields in spherical coordinates"

Journal of Applied Geophysics (submetido)

"How two gravity-gradient inversion methods can be used to reveal different geologic features of ore deposit - a case study from the Quadrilátero Ferrífero (Brazil)"

Nonlinear Processes in Geophysics | doi:10.5194/npg-22-215-2015

"Estimation of the total magnetization direction of approximately spherical bodies"

artigos 1º da tese

Geophysics | (submetido)

"Tesseroids: forward modeling of gravitational fields in spherical coordinates"

Journal of Applied Geophysics (submetido)

"How two gravity-gradient inversion methods can be used to reveal different geologic features of ore deposit - a case study from the Quadrilátero Ferrífero (Brazil)"

Nonlinear Processes in Geophysics | doi:10.5194/npg-22-215-2015

"Estimation of the total magnetization direction of approximately spherical bodies"

Testes sintético

Aplicação América do Sul

Escrita 2º artigo

Submissão 2º artigo

Entrega tese

Defesa

Testes sintético

Aplicação América do Sul

Escrita 2º artigo

Submissão 2º artigo

Entrega tese

Defesa

Testes sintético

Aplicação América do Sul

Escrita 2º artigo

Submissão 2º artigo

Entrega tese

Defesa

Testes sintético

Aplicação América do Sul

Escrita 2º artigo

Submissão 2º artigo

Entrega tese

Defesa

feito

(~ final Out)

Testes sintético

Aplicação América do Sul

Escrita 2º artigo

Submissão 2º artigo

Entrega tese

Defesa

feito

(~ final Out)

(~ Nov-Dez)

github.com/leouieda/seminario-on-2015

pinga-lab.org

