Apellidos	Escalante Guardea
Nombre	Haría Jose'

Preguntas sobre grupos:

1. (4 puntos) Sea $\mathbb{F}_3 = \mathbb{Z}/(3)$ el cuerpo con 3 elementos y $\mathrm{GL}(2,\mathbb{F}_3)$ el grupo de matrices invertibles 2×2

- (a) (½ punto) En el conjunto de vectores no nulos $X = (\mathbb{F}_3 \times \mathbb{F}_3) \setminus \{(0,0)\}$ definimos una relación \sim de la siguiente manera: $\vec{v} \sim \vec{w}$ si v solo si $\vec{v} = \pm_{\vec{v}}$. Prochamos lista de todos los elementos del conjunto cociente, que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = X/\sim$, comprobando que hay exactamente cuatro.
 - (b) ($\frac{1}{2}$ punto) Dada $A \in GL(2, \mathbb{F}_3)$, demuestra que la aplicación

$$\varphi_A: \mathbb{P}^2(\mathbb{F}_3) \longrightarrow \mathbb{P}^2(\mathbb{F}_3)$$

$$[\vec{v}] \longmapsto [A\vec{v}]$$

está bien definida.

- (c) ($\frac{1}{2}$ punto) Enumera los elementos de $\mathbb{P}^2(\mathbb{F}_3)$ cuya lista has dado en el primer apartado, y que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = \{[\vec{v}_1], [\vec{v}_2], [\vec{v}_3], [\vec{v}_4]\}$. Prueba que, para todo $A \in \mathrm{GL}(2, \mathbb{F}_3)$, la aplicación φ_A es biyectiva y deduce que existe una única permutación $\sigma_A \in S_4$ tal que $\varphi_A([\vec{v}_i]) = [\vec{v}_{\sigma_A(i)}]$ para todo i.
- (d) (½ punto) Demuestra que la aplicación

$$f: \operatorname{GL}(2, \mathbb{F}_3) \longrightarrow S_4$$

$$A \longmapsto \sigma_A$$

es un homomorfismo de grupos.

- (e) (1 punto) Prueba que para cada trasposición $(i\,j)\in S_4$ existe $A\in \mathrm{GL}(2,\mathbb{F}_3)$ tal que $\sigma_A=(i\,j)$ y deduce de aquí que f es sobreyectiva.
- (f) (1 punto) Establece un isomorfismo entre S_4 y un cociente de $\mathrm{GL}(2,\mathbb{F}_3)$, describiendo explícitamente el subgrupo por el que se toma cociente, y úsalo para calcular el número de elementos de $GL(2,\mathbb{F}_3)$.

Maria Sosé Escalante Guardan

TOW SO T = ± W Rel equivalencia si comple:

2. Sinetwa:
$$\overline{u} \sim \overline{w} = \overline{u}$$
 $\overline{w} \sim \overline{u}$ $\overline{w} \sim \overline{u}$ $\overline{w} \sim \overline{u}$

3. Transition:
$$\vec{u} \sim \vec{w} \iff \vec{u} = \pm \vec{w}$$
 $\vec{v} = \pm \vec{v} \implies \vec{v} = \pm (\pm \vec{v})$ $\vec{v} \sim \vec{v} \iff \vec{w} = \pm \vec{v} \implies \vec{v} = \pm \vec{v}$

$$\mathbb{P}^{2}(\mathbb{F}_{3}) = \times / \infty = \{(\overline{\Delta}, \overline{\Delta}), (\overline{\Delta}, \overline{\Delta}), (\overline{\Delta}, \overline{\Delta})\}$$

 $[\overline{\alpha}] = \{\overline{w} \in \times \mid \overline{\alpha} = \pm \overline{w}\}$

$$\begin{bmatrix}
a & 6 & 1 & 0 \\
c & d & 0 & 1
\end{bmatrix}
\xrightarrow{ab}
\xrightarrow{ab}
\begin{bmatrix}
a & 6 & 1 & 0 \\
c & d & 0 & 1
\end{bmatrix}
\xrightarrow{ab}
\xrightarrow{ad-cb}
\begin{bmatrix}
a & 6 & 1 & 0 \\
c & d & cb
\end{bmatrix}
\xrightarrow{ad-cb}
\begin{bmatrix}
a & 6 & 1 & 0 \\
c & d & cb
\end{bmatrix}
\xrightarrow{ad-cb}
\begin{bmatrix}
a & 6 & 1 & 0 \\
c & d & cb
\end{bmatrix}
\xrightarrow{ad-cb}
\begin{bmatrix}
a & 6 & 1 & 0 \\
c & d & cb
\end{bmatrix}
\xrightarrow{ad-cb}
\begin{bmatrix}
a & 6 & 1 & 0 \\
c & d & cb
\end{bmatrix}
\xrightarrow{ad-cb}
\begin{bmatrix}
a & 6 & 1 & 0 \\
c & d & cb
\end{bmatrix}
\xrightarrow{ad-cb}
\begin{bmatrix}
a & 6 & 1 & 0 \\
c & d & cb
\end{bmatrix}
\xrightarrow{ad-cb}
\xrightarrow{ad-cb}
\begin{bmatrix}
a & 6 & 1 & 0 \\
c & d & cb
\end{bmatrix}
\xrightarrow{ad-cb}
\xrightarrow{ad-cb}
\begin{bmatrix}
a & 6 & 1 & 0 \\
c & d & cb
\end{bmatrix}
\xrightarrow{ad-cb}
\xrightarrow{ad-cb}
\xrightarrow{ad-cb}$$

ad-c6 #0.

a + 6 + c + d No purden ser iguales

(a) (a) (3 ons postles consumes)

Garage (
$$\sqrt{2}$$
) ($\sqrt{2}$) ($\sqrt{$

$$(a) \begin{pmatrix} a \\ a \end{pmatrix} = a + b + c.$$

$$(a) \qquad a \neq b \neq c.$$

$$(a) \qquad a^2 \neq bc \quad (-d 3)$$

$$(a) \qquad (a) \qquad$$

$$\begin{array}{c}
(a \vee 1) \in (\mathbb{R}^{3}) \\
(a \vee 1) \in (\mathbb{R}^{3})
\end{array}$$

$$\begin{array}{c}
(a \vee 1) \in (\mathbb{R}^{3}) \\
(b \vee 1) \in (\mathbb{R}^{3})
\end{array}$$

$$\begin{array}{c}
(a \vee 1) \in (\mathbb{R}^{3}) \\
(b \vee 2) = (\mathbb{R}^{3})
\end{array}$$

Las combonaciones de vs y v2 E FF3. -dan un nuínero de FF3 b como A son invertibles (i.e., ab \$cd), entonces no se anulara los dos nuíneros a la vez.

Maria Sosé Escalate Guardoa

e)
$$(ij) \in S_4$$
 $\exists A \in GL(2, \mathbb{F})$ $|G_A = (ij)$
 (12) (13) (14) (23) (24) (34)
 (A_0) (A_1) (A_2) $=$ (A_3) (A_4) (A_4) $=$ (A_3) (A_4) (A_4) $=$ (A_3) (A_4) (A_4) $=$ (A_4)

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

Como para cada trosposassó existe m A E G2 (2, F5) S es sobreyectiva tal como está definida.