What is claimed is:

1		1. A focal plane array (FPA) camera comprising:
2	(I)	a voltage source adapted to supply a positive bias voltage and a negative bias voltage,
3		the voltage source comprising:
4		(IA) a positive terminal; and
5		(IB) a negative terminal;
6	(II)	a top contact coupled to the positive terminal of the voltage source;
7	(III)	a bottom contact coupled to the negative terminal of the voltage source;
8	(IV)	a substantially-transparent substrate coupled to the bottom contact, the substantially-
9		transparent substrate being adapted to admit light; and
10	(V)	a matrix of detectors, each detector comprising:
11		(VA) a top surface coupled to the top contact;
12		(VB) a bottom surface coupled to the substantially-transparent substrate, the bottom
13		surface being substantially parallel to the top surface;
14		(VC) side surfaces extending from the top surface to the bottom surface, each side
15		surface being substantially non-parallel to an opposing side surface; and
16		(VD) first-wavelength quantum-well infrared photodetector (QWIP) elements, each
17		first-wavelength QWIP element being adapted to detect energy at a first range
18		of wavelengths when the voltage source supplies the positive bias; and
19		(VE) second-wavelength QWIP elements, each second-wavelength QWIP element
20		being adapted to detect energy at a second range of wavelengths when the

21	voltage source supplies the negative bias, the second range of wavelengths		
22	being different from the first range of wavelengths.		
1	2. The camera of claim 1:		
2	wherein each first-wavelength QWIP element is a first quantum well adapted to		
3	detect energy at a first wavelength;		
4	wherein each second-wavelength QWIP element is a second quantum well adapted to		
5	detect energy at a second wavelength; and		
6	wherein the first quantum well and the second quantum well are separated by a		
7	blocking barrier.		
1	3. The camera of claim 1:		
2	wherein each first-wavelength QWIP element is a first superlattice of quantum wells;		
3	and		
4	wherein each second-wavelength QWIP element is a second superlattice of quantum		
5	wells.		

1		4.	A multi-wavelength detector system comprising:
2	(I)	a foca	l plane array (FPA) camera comprising:
3		(IA)	a voltage source adapted to supply a first bias voltage, the voltage source
4			further being adapted to supply a second bias voltage;
5		(IB)	first-wavelength detectors coupled to the voltage source, the first-wavelength
6			detectors having non-parallel sides, the first-wavelength detectors being
7			adapted to detect energy at a first range of wavelengths when the voltage
8			source supplies the first bias voltage, the first-wavelength detectors further
9			being adapted to generate photocurrents proportional to the detected energy at
10			the first range of wavelengths; and
11		(IC)	second-wavelength detectors being coupled to the voltage source, the second-
12			wavelength detectors having non-parallel sides, the second-wavelength
13			detectors being adapted to detect a second range of wavelengths when the
14			voltage source supplies the second bias voltage, the second-wavelength
15			detectors further being adapted to generate photocurrents proportional to the
16			detected energy at the second range of wavelengths; and
17	(II)	a proc	essor coupled to the FPA camera, the processor being configured to generate a
18		first-w	vavelength two-dimensional image, the first-wavelength two-dimensional image
19		being	generated from the photocurrents proportional to the detected energy at the first
20		range	of wavelengths, the processor further being configured to generate a second-
21		wavel	ength two-dimensional image, the second-wavelength two-dimensional image
22 ,	* 40 p	being	generated from the photocurrents proportional to the detected energy at the
23		secono	d range of wavelengths.

- 1 5. The system of claim 4, further comprising:
- a display adapted to display the first-wavelength two-dimensional image, the display
- 3 further being adapted to display the second-wavelength two-dimensional image.
- 1 6. The system of claim 5, wherein the display is further adapted to substantially
- 2 concurrently display the first-wavelength two-dimensional image and the second-wavelength
- 3 two-dimensional image.

1	7. A detector comprising:
2	a first contact;
3	a second contact;
4	a substantially-transparent substrate coupled to the second contact, the substantially-
5	transparent substrate being configured to admit light;
6	a voltage source electrically coupled to the first contact and the second contact, the
7	voltage source being adapted to supply a first bias voltage between the first contact and the
8	second contact, the voltage source further being adapted to supply a second bias voltage
9	between the first contact and the second contact;
10	a top coupled to the first contact;
11	a bottom coupled to the substantially-transparent substrate, the bottom adapted to
12	receive the light admitted through the substantially-transparent substrate;
13	sides extending from the top to the bottom, each side being substantially non-
14	perpendicular to the bottom, each side being adapted to redirect the admitted light;
15	a first-wavelength quantum-well infrared photodetector (QWIP) element adapted to
16	detect energy proportional to a first range of wavelengths when the voltage source supplies
17	the first bias voltage; and
18	a second-wavelength QWIP element adapted to detect energy proportional to a
19	second range of wavelengths when the voltage source supplies the second bias voltage.
1	8. The detector of claim 7:
2	wherein the first contact is a metal contact; and
3	wherein the second contact is a metal contact.

1	9. The detector of claim 1, wherein each side is substantially non-parallel to an				
2	opposing side.				
1	10. The detector of claim 7:				
2	wherein each first-wavelength QWIP element is a first quantum well adapted to				
3	detect energy at a first wavelength;				
4	wherein each second-wavelength QWIP element is a second quantum well adapted to				
5	detect energy at a second wavelength; and				
6	wherein the first quantum well and the second quantum well are separated by a				
7	blocking barrier.				
1	11. The detector of claim 7:				
2	wherein each first-wavelength QWIP element is a first superlattice of quantum wells,				
3	the first superlattice of quantum wells being adapted to detect energy at a first range of				
4	wavelengths; and				
5	wherein each second-wavelength QWIP element is a second superlattice of quantum				
6	wells, the second superlattice of quantum wells being adapted to detect energy at a second				
7	range of wavelengths.				
1	12. A voltage-tunable multi-color infrared (IR) detector element comprising:				
2	a substantially-planar surface adapted to admit light; and				
3	means for redirecting the admitted light.				

1	13. A voltage-tunable multi-color infrared (IR) detector element comprising:
2	a substantially-planar surface adapted to admit light; and
3	sides extending from the substantially-planar surface, each side being substantially
4	non-perpendicular to the substantially-planar surface, each side being adapted to redirect the
5	light admitted through the substantially-planar surface.
1	14. The detector element of claim 13, wherein each side is substantially non-
2	parallel to an opposing side.
1	15. The detector element of claim 13, wherein each voltage-tunable multi-color
2	IR detector comprises:
3	a first superlattice of quantum wells, the first superlattice being adapted to detect
4	energy at a first range of wavelengths; and
5	a second superlattice of quantum wells, the second superlattice being adapted to
6	detect energy at a second range of wavelengths.
1	16. The detector element of claim 13, wherein each voltage-tunable multi-color
2	IR detector comprises:
3	a first quantum well adapted to detect energy at a first wavelength; and
4	a second quantum well adapted to detect energy at a second wavelength.

1	17. A light-detection method comprising the steps of:				
2	receiving incident radiation;				
3	reflecting the incident radiation at an angled surface; and				
4	directing the reflected radiation through a voltage-tunable multi-color infrared (IR)				
5	detector element.				
1	18. The method of claim 17, further comprising the step of:				
2	supplying a first bias voltage to the voltage-tunable multi-color IR detector element to				
3	detect energy at a first range of wavelengths.				
1	19. The method of claim 18, further comprising the step of:				
2	generating a first-wavelength image, the first-wavelength image being generated from				
3	the detected energy at the first range of wavelengths.				
1	20. The method of claim 18, further comprising the step of:				
2	supplying a second bias voltage to the voltage-tunable multi-color IR detector				
3	element to detect energy at a second range of wavelengths.				
se f	entropy with the second of				
1	21. The method of claim 20, further comprising the step of:				
2	generating a first-wavelength image, the first-wavelength image being generated from				
3	the detected energy at the first range of wavelengths; and				
4	generating a second-wavelength image, the second-wavelength image being				
5	generated from the detected energy at the second range of wavelengths.				