Polynômes de Legendre

Notations

Dans tout le problème, n désigne un entier naturel.

On note $\mathbb{R}[X]$ l'espace vectoriel réel des polynômes réel en l'indéterminée X et $\mathbb{R}_n[X]$ le sous-espace vectoriel formé des polynômes de degré inférieur ou égal n.

On identifiera polynôme et fonctions polynomiales associées définies sur [-1,1].

Pour $k \in \mathbb{N}$, on note $\frac{d^k P}{dx^k}$ la dérivée $k^{\text{ème}}$ d'un polynôme P.

On considère, pour $n \in \mathbb{N}$, les fonctions polynomiales définies sur I par :

$$U_n(x) = (x^2 - 1)^n$$
 et $P_n(x) = \frac{1}{2^n n!} \frac{d^n U_n}{dx^n}(x)$

En particulier, avec les conventions usuelles : $U_0(x) = P_0(x) = 1$.

A toute fonction polynomiale P, on associe le polynôme L(P) définie sur I par :

$$L(P)(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left[(x^2 - 1) \frac{\mathrm{d}P}{\mathrm{d}x}(x) \right]$$

Partie I

Pour $P, Q \in \mathbb{R}[X]$, on pose $(P \mid Q) = \int_{-1}^{1} P(x)Q(x)dx$.

- 1. Montrer que (.|.) définit un produit scalaire sur $\mathbb{R}[X]$. Dans tout le problème, on suppose $\mathbb{R}[X]$ muni de ce produit scalaire et on note $\|.\|$ la norme euclidienne associée.
- 2. Montrer que L est un endomorphisme de $\mathbb{R}[X]$.
- 3. On note L_n la restriction de l'endomorphisme L au départ de $\mathbb{R}_n[X]$.
- 3.a Montrer que L_n est un endomorphisme de $\mathbb{R}_n[X]$.
- 3.b Calculer $L_n(1)$, $L_n(X)$ et $L_n(X^k)$ pour tout $2 \le k \le n$.
- 3.c Former la matrice de L_n relativement à la base canonique $(1, X, X^2, ..., X^n)$ de $\mathbb{R}_n[X]$.
- 4. Soit $P,Q \in \mathbb{R}[X]$. Observer que (L(P) | Q) = (P | L(Q)).

Partie II

- 1.a Calculer directement P_1 , P_2 et P_3 .
- 1.b Montrer que P_n est exactement de degré n et calculer le coefficient a_n de x^n dans P_n .
- 1.c Justifier que P_0, P_1, \dots, P_n forment une base de P_n .
- 2. En utilisant la formule de Leibniz pour calculer : $\frac{d^n}{dx^n} ((x-1)^n (x+1)^n)$, établir que :

$$P_n(x) = \frac{1}{2^n} \sum_{k=0}^n {n \choose k}^2 (x-1)^{n-k} (x+1)^k$$

et en déduire les valeurs de $P_n(1)$ et $P_n(-1)$.

- 3.a Vérifier les relations :
 - (1): $U'_{n+1}(x) 2(n+1)xU_n(x) = 0$,
 - (2): $(x^2-1)U'_n(x)-2nxU_n(x)=0$.
- 3.b En dérivant n+1 fois (1) et (2), montrer que la suite (P_n) vérifie :
 - (3): $P'_{n+1}(x) = xP'_n(x) + (n+1)P_n(x)$,
 - (4): $L(P_n) = n(n+1)P_n$.
- 3.c En exploitant la relation (4) et le résultat de la question I.4, établir que si $m \neq n$, $(P_n | P_m) = 0$.
- 4.a Montrer que pour tout $Q \in \mathbb{R}_n[X]$, $(P_{n+1}|Q) = 0$.
- 4.b En introduisant un polynôme Q de la forme $\prod_{i=1}^{p} (X a_i)$ montrer que le polynôme P_{n+1} possède exactement n+1 racines distinctes, toute dans l'intervalle]-1,1[.
- 5.a Montrer que $(P'_{n+1} | P_n) = (n+1) \frac{a_{n+1}}{a_n} ||P_n||^2$.
- 5.b A l'aide d'une intégration par parties, établir que : $||P_n||^2 = 2 2 \int_{-1}^1 x P_n(x) P_n'(x) dx$.
- 5.c En déduire que $\|P_n\|^2 = \frac{2}{2n+1}$.
- 6. Etant donné un polynôme $P \in \mathbb{R}\big[X\big]$ et F un sous-espace vectoriel de $\mathbb{R}\big[X\big]$, on note d(P,F) la distance de P au sous-espace vectoriel F. Calculer $d(X^{n+1},\mathbb{R}_n\big[X\big])$.