Noções Básicas de Ponto Flutuante

Prof. Afonso Paiva

Departamento de Matemática Aplicada e Estatística Instituto de Ciências Matemáticas e de Computação USP – São Carlos

Métodos Numéricos e Computacionais I – SME0305

Motivação

Como representar os números reais no computador?

Motivação

Como representar os números reais no computador?

Motivação

Como representar os números reais no computador?

Definição (ponto flutuante)

O conjunto $\mathbb{F} = \{$ representação de $x \in \mathbb{R}$ no computador $\}$. Cada número $\overline{x} \in \mathbb{F}$ é chamado de ponto flutuante.

Definição (base numérica)

Dado $N \in \mathbb{Z}$, ele pode ser escrito em uma base β como

$$N = (d_k d_{k-1} \dots d_1 d_0)_{\beta} = d_k \times \beta^k + d_{k-1} \times \beta^{k-1} + \dots + d_1 \times \beta^1 + d_0 \times \beta^0$$
, onde $0 \le d_i \le (\beta - 1)$, para $i = 0, \dots, k$.

Definição (base numérica)

Dado $N \in \mathbb{Z}$, ele pode ser escrito em uma base β como

$$N = (d_k d_{k-1} \dots d_1 d_0)_{\beta} = d_k \times \beta^k + d_{k-1} \times \beta^{k-1} + \dots + d_1 \times \beta^1 + d_0 \times \beta^0$$
, onde $0 \le d_i \le (\beta - 1)$, para $i = 0, \dots, k$.

Exemplo (conversão binário ⇒ decimal)

$$(10011)_2 =$$

Definição (base numérica)

Dado $N \in \mathbb{Z}$, ele pode ser escrito em uma base β como

$$N = (d_k d_{k-1} \dots d_1 d_0)_{\beta} = d_k \times \beta^k + d_{k-1} \times \beta^{k-1} + \dots + d_1 \times \beta^1 + d_0 \times \beta^0$$
, onde $0 \le d_i \le (\beta - 1)$, para $i = 0, \dots, k$.

Exemplo (conversão binário ⇒ decimal)

$$(10011)_2 = 1 \times 2^4 + 1 \times 2^1 + 1 \times 2^0 = 19 = 1 \times 10^1 + 9 \times 10^0 = (19)_{10}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆 ▶ 豆 めので

Seja $N \in \mathbb{Z}$, escrito na base $\beta = 10$. Desejamos representar N como:

$$N = (d_k d_{k-1} \dots d_1 d_0)_2 = d_k \times 2^k + d_{k-1} \times 2^{k-1} + \dots + d_1 \times 2^1 + d_0 \times 2^0$$

Seja $N \in \mathbb{Z}$, escrito na base $\beta = 10$. Desejamos representar N como:

$$N = (d_k d_{k-1} \dots d_1 d_0)_2 = d_k \times 2^k + d_{k-1} \times 2^{k-1} + \dots + d_1 \times 2^1 + d_0 \times 2^0$$

Logo

$$N = 2 \times \left(d_k \times 2^{k-1} + d_{k-1} \times 2^{k-2} + \dots + d_2 \times 2^1 + d_1 \right) + d_0$$

Seja $N \in \mathbb{Z}$, escrito na base $\beta = 10$. Desejamos representar N como:

$$N = (d_k d_{k-1} \dots d_1 d_0)_2 = d_k \times 2^k + d_{k-1} \times 2^{k-1} + \dots + d_1 \times 2^1 + d_0 \times 2^0$$

Logo

$$N = 2 \times \left(d_k \times 2^{k-1} + d_{k-1} \times 2^{k-2} + \dots + d_2 \times 2^1 + d_1 \right) + d_0$$
$$= 2 \times \left(2 \times \left(d_k \times 2^{k-2} + d_{k-1} \times 2^{k-3} + \dots + d_2 \right) + d_1 \right) + d_0$$

Seja $N \in \mathbb{Z}$, escrito na base $\beta = 10$. Desejamos representar N como:

$$N = (d_k d_{k-1} \dots d_1 d_0)_2 = d_k \times 2^k + d_{k-1} \times 2^{k-1} + \dots + d_1 \times 2^1 + d_0 \times 2^0$$

Logo

$$N = 2 \times \left(d_k \times 2^{k-1} + d_{k-1} \times 2^{k-2} + \dots + d_2 \times 2^1 + d_1 \right) + d_0$$
$$= 2 \times \left(2 \times \left(d_k \times 2^{k-2} + d_{k-1} \times 2^{k-3} + \dots + d_2 \right) + d_1 \right) + d_0$$

Assim por diante até o quociente for igual a zero.

Seja $N \in \mathbb{Z}$, escrito na base $\beta = 10$. Desejamos representar N como:

$$N = (d_k d_{k-1} \dots d_1 d_0)_2 = d_k \times 2^k + d_{k-1} \times 2^{k-1} + \dots + d_1 \times 2^1 + d_0 \times 2^0$$

Logo

$$N = 2 \times \left(d_k \times 2^{k-1} + d_{k-1} \times 2^{k-2} + \dots + d_2 \times 2^1 + d_1 \right) + d_0$$
$$= 2 \times \left(2 \times \left(d_k \times 2^{k-2} + d_{k-1} \times 2^{k-3} + \dots + d_2 \right) + d_1 \right) + d_0$$

Assim por diante até o quociente for igual a zero.

Exemplo: Escreva 29 na base $\beta = 2$ (no quadro).

Seja $N \in \mathbb{Z}$, escrito na base $\beta = 10$. Desejamos representar N como:

$$N = (d_k d_{k-1} \dots d_1 d_0)_2 = d_k \times 2^k + d_{k-1} \times 2^{k-1} + \dots + d_1 \times 2^1 + d_0 \times 2^0$$

Logo

$$N = 2 \times \left(d_k \times 2^{k-1} + d_{k-1} \times 2^{k-2} + \dots + d_2 \times 2^1 + d_1 \right) + d_0$$
$$= 2 \times \left(2 \times \left(d_k \times 2^{k-2} + d_{k-1} \times 2^{k-3} + \dots + d_2 \right) + d_1 \right) + d_0$$

Assim por diante até o quociente for igual a zero.

Exemplo: Escreva 29 na base $\beta = 2$ (no quadro).

Solução: $29 = (11101)_2$.

Algoritmo para conversão decimal para binária de números inteiros

Entrada: $N \in \mathbb{Z}$

Saída: $N = (d_k d_{k-1} \dots d_1 d_0)_2$

Algoritmo para conversão decimal para binária de números inteiros

```
Saída: N = (d_k d_{k-1} \dots d_1 d_0)_2

k = 0;

Calcule R e Q tal que N = 2Q + R;

d_k = R;
```

Entrada: $N \in \mathbb{Z}$

Algoritmo para conversão decimal para binária de números inteiros

```
Entrada: N \in \mathbb{Z}
Saída: N = (d_k d_{k-1} \dots d_1 d_0)_2
k=0:
Calcule R e Q tal que N = 2Q + R;
d_k = R;
Enquanto Q \neq 0 faça
     k = k + 1:
     N=Q;
     Calcule R e Q tal que N = 2Q + R;
     d_k = R;
Fim do Enquanto
```

Vamos supor que N é um número fracionário no intervalo (0,1). Assim,

$$N = (0.d_1 d_2 \dots d_k)_2 = d_1 \times 2^{-1} + d_2 \times 2^{-2} + \dots + d_k \times 2^{-k}$$

Vamos supor que N é um número fracionário no intervalo (0,1). Assim,

$$N = (0.d_1 d_2 \dots d_k)_2 = d_1 \times 2^{-1} + d_2 \times 2^{-2} + \dots + d_k \times 2^{-k}$$

Multiplicando por 2 a equação acima, temos:

$$2 \times N = d_1 + \underbrace{d_2 \times 2^{-1} + \dots + d_k \times 2^{-k+1}}_{N_1}$$

Vamos supor que N é um número fracionário no intervalo (0,1). Assim,

$$N = (0.d_1 d_2 \dots d_k)_2 = d_1 \times 2^{-1} + d_2 \times 2^{-2} + \dots + d_k \times 2^{-k}$$

Multiplicando por 2 a equação acima, temos:

$$2 \times N = d_1 + \underbrace{d_2 \times 2^{-1} + \dots + d_k \times 2^{-k+1}}_{N_1}$$

Portanto, d_1 é parte inteira de $(2 \times N)$ e a parte fracionária é N_1 .

Vamos supor que N é um número fracionário no intervalo (0,1). Assim,

$$N = (0.d_1 d_2 \dots d_k)_2 = d_1 \times 2^{-1} + d_2 \times 2^{-2} + \dots + d_k \times 2^{-k}$$

Multiplicando por 2 a equação acima, temos:

$$2 \times N = d_1 + \underbrace{d_2 \times 2^{-1} + \dots + d_k \times 2^{-k+1}}_{N_1}$$

Portanto, d_1 é parte inteira de $(2 \times N)$ e a parte fracionária é N_1 . Multiplicando N_1 por 2 em ambos os lados, temos:

$$2 \times N_1 = d_2 + d_3 \times 2^{-1} + \dots + d_k \times 2^{-k+2}$$

Portanto, d_2 é parte inteira de $(2 \times N_1)$. Assim por diante até a parte fracionária for zero.

Exemplo: Represente 0.125 na base $\beta = 2$ (no quadro).

Exemplo: Represente 0.125 na base $\beta = 2$ (no quadro).

Solução: $0.125 = (0.001)_2$.

Exemplo: Represente 0.125 na base $\beta = 2$ (no quadro).

Solução: $0.125 = (0.001)_2$.

Exemplo: Represente 3.8 na base $\beta = 2$ (no quadro).

Exemplo: Represente 0.125 na base $\beta = 2$ (no quadro).

Solução: $0.125 = (0.001)_2$.

Exemplo: Represente 3.8 na base $\beta = 2$ (no quadro).

Solução: $3.8 = (11.110011001100...)_2 = (11.\overline{1100})_2.$

Obs.: Note que a representação binária de um número decimal fracionário pode ser infinita.

Exemplo: Represente 0.125 na base $\beta = 2$ (no quadro).

Solução: $0.125 = (0.001)_2$.

Exemplo: Represente 3.8 na base $\beta = 2$ (no quadro).

Solução: $3.8 = (11.110011001100...)_2 = (11.\overline{1100})_2.$

Obs.: Note que a representação binária de um número decimal fracionário pode ser infinita.

Exercício

Faça um algoritmo para representar um número decimal fracionário em um número binário, e vice-versa.

Seja $x \in \mathbb{R}$, podemos representar x em \mathbb{F} numa base β da seguinte forma:

$$\overline{x} = \pm \underbrace{(0.d_1 d_2 \dots d_t)_{\beta}}_{\text{mantissa}} \times \beta^e$$

com 1 ≤ d_1 ≤ β − 1 e 0 ≤ d_i ≤ β − 1, para i = 2, . . . , t.

Seja $x \in \mathbb{R}$, podemos representar x em \mathbb{F} numa base β da seguinte forma:

$$\overline{x} = \pm \underbrace{(0.d_1 \, d_2 \dots d_t)_{eta}}_{\mathbf{mantissa}} imes eta^e$$

com 1 ≤
$$d_1$$
 ≤ $β$ − 1 e 0 ≤ d_i ≤ $β$ − 1, para i = 2, . . . , t .

■ O número inteiro *t* representa a quantidade de dígitos (significativos) na mantissa;

Seja $x \in \mathbb{R}$, podemos representar x em \mathbb{F} numa base β da seguinte forma:

$$\overline{x} = \pm \underbrace{(0.d_1 d_2 \dots d_t)_{\beta}}_{\text{mantissa}} \times \beta^e$$

com 1 ≤
$$d_1$$
 ≤ $β$ − 1 e 0 ≤ d_i ≤ $β$ − 1, para i = 2, . . . , t .

- O número inteiro *t* representa a quantidade de dígitos (significativos) na mantissa;
- O valor $e \in o$ expoente, número inteiro definido no intervalo [m, M].

Exemplo: Qual é a quantidade de números não nulos que podemos representar no sistema $\mathbb{F}(2,3,-2,1)$? (no quadro)

Exemplo: Qual é a quantidade de números não nulos que podemos representar no sistema $\mathbb{F}(2,3,-2,1)$? (no quadro)

Solução: $2 \times 1 \times 2 \times 2 \times 4 = 32$ números.

Exemplo: Qual é a quantidade de números não nulos que podemos representar no sistema $\mathbb{F}(2,3,-2,1)$? (no quadro)

Solução: $2 \times 1 \times 2 \times 2 \times 4 = 32$ números.

Exemplo: Seja $\mathbb{F}(10,3,-5,5)$. Quais são o menor e maior número em valor absoluto que podemos representar nesse sistema? (no quadro).

Exemplo: Qual é a quantidade de números não nulos que podemos representar no sistema $\mathbb{F}(2,3,-2,1)$? (no quadro)

Solução: $2 \times 1 \times 2 \times 2 \times 4 = 32$ números.

Exemplo: Seja $\mathbb{F}(10,3,-5,5)$. Quais são o menor e maior número em valor absoluto que podemos representar nesse sistema? (no quadro).

Solução: O menor número $l = 10^{-6}$ e o maior u = 99900.

Exemplo: Qual é a quantidade de números não nulos que podemos representar no sistema $\mathbb{F}(2,3,-2,1)$? (no quadro)

Solução: $2 \times 1 \times 2 \times 2 \times 4 = 32$ números.

Exemplo: Seja $\mathbb{F}(10,3,-5,5)$. Quais são o menor e maior número em valor absoluto que podemos representar nesse sistema? (no quadro).

Solução: O menor número $l = 10^{-6}$ e o maior u = 99900.

Dessa forma os números $\bar{x} \in \mathbb{F}$ estaria limitados a:

$$1 \le |\overline{x}| \le u$$

Exemplo: Qual é a quantidade de números não nulos que podemos representar no sistema $\mathbb{F}(2,3,-2,1)$? (no quadro)

Solução: $2 \times 1 \times 2 \times 2 \times 4 = 32$ números.

Exemplo: Seja $\mathbb{F}(10,3,-5,5)$. Quais são o menor e maior número em valor absoluto que podemos representar nesse sistema? (no quadro).

Solução: O menor número $l = 10^{-6}$ e o maior u = 99900.

Dessa forma os números $\bar{x} \in \mathbb{F}$ estaria limitados a:

$$1 \le |\overline{x}| \le u$$

■ se $|\overline{x}| < l$: erro de underflow

Exemplo: Qual é a quantidade de números não nulos que podemos representar no sistema $\mathbb{F}(2,3,-2,1)$? (no quadro)

Solução: $2 \times 1 \times 2 \times 2 \times 4 = 32$ números.

Exemplo: Seja $\mathbb{F}(10,3,-5,5)$. Quais são o menor e maior número em valor absoluto que podemos representar nesse sistema? (no quadro).

Solução: O menor número $l = 10^{-6}$ e o maior u = 99900.

Dessa forma os números $\bar{x} \in \mathbb{F}$ estaria limitados a:

$$1 \le |\overline{x}| \le u$$

- se $|\bar{x}| < l$: erro de **underflow**
- se $|\overline{x}| > u$: erro de **overflow**

	armazenamento				representação					
tipo	sinal	expoente	mantisa	bits	β	t	т	M	b	
half	1	5	10	16	2	11	-14	15	15	
single	1	8	23	32	2	24	-126	127	127	
double	1	11	52	64	2	53	-1022	1023	1023	

	armazenamento				representação				
tipo	sinal	expoente	mantisa	bits	β	t	т	M	b
half	1	5	10	16	2	11	-14	15	15
single	1	8	23	32	2	24	-126	127	127
double	1	11	52	64	2	53	-1022	1023	1023

A representação normalizada de um número em ponto flutuante nesse padrão é feita da seguinte forma:

$$\overline{x} = (-1)^s \times (1.d_1 \dots d_t)_2 \times 2^{e-b}$$

Vamos analisar o padrão half (16 bits)

Vamos analisar o padrão half (16 bits)

Vamos analisar o padrão half (16 bits)

Valores especiais:

Vamos analisar o padrão half (16 bits)

Valores especiais:

 $\mathbf{0} = 0 00000 0000000000$

Vamos analisar o padrão half (16 bits)

Valores especiais:

- $\mathbf{0} = 0 00000 0000000000$
- \blacksquare inf = 0 11111 0000000000

Vamos analisar o padrão half (16 bits)

Valores especiais:

- $\mathbf{0} = 0 00000 0000000000$
- \blacksquare inf = 0 11111 0000000000
- $-\inf = 1\ 111111\ 00000000000$

Vamos analisar o padrão half (16 bits)

Valores especiais:

- 0 = 0 00000 000000000
- inf = 0 11111 0000000000
- \blacksquare -inf = 1 11111 0000000000

Dessa forma, os valores disponíveis para o expoente e variam de $1=(00001)_2$ a $30=(11110)_2$.

Exemplo: Qual número é $\bar{x}_1 = 0 \ 10100 \ 1010010000?$ (no quadro)

Exemplo: Qual número é $\bar{x}_1 = 0 \ 10100 \ 1010010000?$ (no quadro)

Solução: $\bar{x}_1 = 52.5$.

Exemplo: Qual número é $\bar{x}_1 = 0 \ 10100 \ 1010010000$? (no quadro)

Solução: $\overline{x}_1 = 52.5$.

Qual seria o próximo número após \bar{x}_1 a ser representado nesse formato?

Exemplo: Qual número é $\bar{x}_1 = 0$ 10100 1010010000? (no quadro)

Solução: $\overline{x}_1 = 52.5$.

Qual seria o próximo número após \bar{x}_1 a ser representado nesse formato?

$$\bar{x}_2 = 0\ 10100\ 1010010001 = 52.53125$$

Exemplo: Qual número é $\bar{x}_1 = 0$ 10100 1010010000? (no quadro)

Solução: $\overline{x}_1 = 52.5$.

Qual seria o próximo número após \bar{x}_1 a ser representado nesse formato?

$$\bar{x}_2 = 0\ 10100\ 1010010001 = 52.53125$$

Como representar x = 52.51 nesse sistema?

Solução: Basta escolher $\overline{x} \in \mathbb{F}$ mais perto de x, isto é, $dist(x, \overline{x}) = |x - \overline{x}|$ seja mínima.

Sejam $\beta = 10$ e t = 3. Dado x = 37.29. Logo,

Sejam
$$\beta = 10$$
 e $t = 3$. Dado $x = 37.29$. Logo,
$$x = \underbrace{0.372}_{f_x} \times 10^2 + \underbrace{0.9}_{g_x} \times 10^{-1}$$

15 / 18

Sejam
$$\beta = 10$$
 e $t = 3$. Dado $x = 37.29$. Logo,
$$x = \underbrace{0.372}_{f_x} \times 10^2 + \underbrace{0.9}_{g_x} \times 10^{-1}$$

Critério de Arredondamento: ponto flutuante mais próximo

$$\overline{x} = \left\{ egin{array}{ll} f_x imes 10^e \,, & ext{se } |g_x| < rac{1}{2} \ f_x imes 10^e + 10^{e-t} \,, & ext{se } |g_x| \geq rac{1}{2} \ \end{array}
ight.$$

Sejam
$$\beta = 10$$
 e $t = 3$. Dado $x = 37.29$. Logo,
$$x = \underbrace{0.372}_{f_x} \times 10^2 + \underbrace{0.9}_{g_x} \times 10^{-1}$$

Critério de Arredondamento: ponto flutuante mais próximo

$$\overline{x} = \left\{ egin{array}{ll} f_x imes 10^e \,, & ext{se } |g_x| < rac{1}{2} \ f_x imes 10^e + 10^{e-t} \,, & ext{se } |g_x| \geq rac{1}{2} \ \end{array}
ight.$$

Usando o critério acima, onde e = 2, temos:

$$x = 0.372 \times 10^2 + 10^{2-3} = 0.372 \times 10^2 + 0.001 \times 10^2 = 0.373 \times 10^2$$

Sejam
$$\beta = 10$$
 e $t = 3$. Dado $x = 37.29$. Logo,
$$x = \underbrace{0.372}_{f_x} \times 10^2 + \underbrace{0.9}_{g_x} \times 10^{-1}$$

Critério de Arredondamento: ponto flutuante mais próximo

$$\overline{x} = \left\{ egin{array}{ll} f_x imes 10^e \,, & ext{se } |g_x| < rac{1}{2} \ f_x imes 10^e + 10^{e-t} \,, & ext{se } |g_x| \geq rac{1}{2} \ \end{array}
ight.$$

Usando o critério acima, onde e = 2, temos:

$$x = 0.372 \times 10^2 + 10^{2-3} = 0.372 \times 10^2 + 0.001 \times 10^2 = 0.373 \times 10^2$$

Observação: truncamento de x é quando sempre fazemos $g_x = 0$, isto é, $\bar{x} = f_x \times 10^e$. Nesse caso o arredondamento é feito na direção de 0.

- **Erro absoluto:** $EA_x = |x \overline{x}|$
- **Erro relativo:** $ER_x = |x \overline{x}|/|x|$

- **Erro absoluto:** $EA_x = |x \overline{x}|$
- **Erro relativo:** $ER_x = |x \overline{x}|/|x|$

Exemplo: Calcule o erro absoluto e relativo quando aproximamos x = 37.29 em $\bar{x} = 37.3$

- **Erro absoluto:** $EA_x = |x \overline{x}|$
- **Erro relativo:** $ER_x = |x \overline{x}|/|x|$

Exemplo: Calcule o erro absoluto e relativo quando aproximamos x = 37.29 em $\bar{x} = 37.3$

Solução:
$$EA_x = |x - \overline{x}| = |37.29 - 37.3| = 0.01 \text{ e}$$

 $ER_x = EA_x/|x| = 0.01/|37.29| \approx 0.27 \times 10-3$

- **Erro absoluto:** $EA_x = |x \overline{x}|$
- **Erro relativo:** $ER_x = |x \overline{x}|/|x|$

Exemplo: Calcule o erro absoluto e relativo quando aproximamos x=37.29 em $\overline{x}=37.3$

Solução:
$$EA_x = |x - \overline{x}| = |37.29 - 37.3| = 0.01 \text{ e}$$

 $ER_x = EA_x/|x| = 0.01/|37.29| \approx 0.27 \times 10-3$

Definição (precisão de máquina)

A precisão de máquina é a distância entre 1 e o próximo ponto flutuante maior do que 1 e é dada por $\epsilon_M = \beta^{1-t}$. O tal eps do MATLAB.

Sejam \bar{x} , $\bar{y} \in \mathbb{F}$. As operações com ponto flutuante são definidas da seguinte maneira:

- $\overline{x} \oplus \overline{y} = \overline{\overline{x} + \overline{y}}$
- $\overline{x} \ominus \overline{y} = \overline{\overline{x} \overline{y}}$
- $\overline{x} \otimes \overline{y} = \overline{\overline{x} \times \overline{y}}$
- $\overline{x} \div \overline{y} = \overline{\overline{x} \div \overline{y}}$

No final de cada operação faz arredondamento.

Sejam \bar{x} , $\bar{y} \in \mathbb{F}$. As operações com ponto flutuante são definidas da seguinte maneira:

$$\overline{x} \otimes \overline{y} = \overline{\overline{x} \times \overline{y}}$$

$$\overline{x} \pm \overline{y} = \overline{\overline{x} + \overline{y}}$$

No final de cada operação faz arredondamento.

Exemplo: Seja
$$\beta = 10$$
 e $t = 3$. Verifique se $(23.4 \oplus 5.18) \oplus 3.05 = 23.4 \oplus (5.18 \oplus 3.05)$ e $3.18 \otimes (5.05 \oplus 11.4) = 3.18 \otimes 5.05 \oplus 3.18 \otimes 11.4$

Sejam \bar{x} , $\bar{y} \in \mathbb{F}$. As operações com ponto flutuante são definidas da seguinte maneira:

$$\mathbf{2} \ \overline{x} \ominus \overline{y} = \overline{\overline{x} - \overline{y}}$$

$$\overline{x}\otimes \overline{y}=\overline{\overline{x} imes \overline{y}}$$

$$4 \ \overline{x} \pm \overline{y} = \overline{x} + \overline{y}$$

No final de cada operação faz arredondamento.

Exemplo: Seja
$$\beta = 10$$
 e $t = 3$. Verifique se $(23.4 \oplus 5.18) \oplus 3.05 = 23.4 \oplus (5.18 \oplus 3.05)$ e

$$3.18 \otimes (5.05 \oplus 11.4) = 3.18 \otimes 5.05 \oplus 3.18 \otimes 11.4$$

Solução: operações em $\mathbb F$ não são associativa e nem distributivas, pois:

$$(23.4 \oplus 5.18) \oplus 3.05 = 31.7 \neq 31.6 = 23.4 \oplus (5.18 \oplus 3.05)$$

$$3.18 \otimes (5.05 \oplus 11.4) = 52.5 \neq 52.4 = 3.18 \otimes 5.05 \oplus 3.18 \otimes 11.4$$

Exercício:

Considere a função abaixo:

$$f(x) = (x-1)^7 = x^7 - 7x^6 + 21x^5 - 35x^4 + 35x^3 - 21x^2 + 7x - 1$$

Plote usando o MATLAB e compare os gráficos de $f_1(x)=(x-1)^7$ e $f_2(x)=x^7-7x^6+21x^5-35x^4+35x^3-21x^2+7x-1$ usando 100 pontos igualmente espaçados no intervalo $[1-2\times 10^{-8},1+2\times 10^{-8}]$. Explique o que acontece com os dois gráficos.