EDB18802 - Eletrônica Digital II: Contadores Digitais

João Cláudio Elsen Barcellos

Engenheiro Eletricista Universidade Federal de Santa Catarina joaoclaudiobarcellos@gmail.com

16 de Maio de 2025

Plano de Aula

- 1 Os Tipos de Contadores
- 2 Contadores Assíncronos
- 3 Contagem Programada
- 4 Contadores Up/Down
- 5 Contadores Síncronos
- 6 Contadores Síncronos Programáveis
- 7 Contadores TTL
- 8 Contadores e Divisores CMOS
- 9 Aplicações e Exercício

Contadores: Lógica Simples vs Lógica Sincronizada

- Circuitos com e sem clock externo.
- Aplicações simples podem dispensar sincronismo.
- Aplicações complexas exigem controle preciso do tempo.
- Uso de sinal de clock vindo de um oscilador externo.

Contadores: Lógica Simples vs Lógica Sincronizada

Tabela: Comparação entre Lógica Simples e Lógica Sincronizada

Característica	Lógica Simples (Assíncrona)	Lógica Sincronizada (Síncrona)
Uso de clock	Não	Sim
Complexidade	Baixa	Alta
Tempo de resposta	Imediato	Definido pelo clock
Controle de temporização	Difícil	Preciso

Classificações dos Contadores

- **■** Quanto ao sincronismo:
 - Assíncronos (Ripple Counter)
 - Síncronos (Clock comum)
- Quanto ao modo de contagem:
 - Progressivos (UP)
 - Regressivos (DOWN)

Contador Assíncrono com Flip-Flops J-K

- Clock no primeiro estágio.
- Saída Q alimenta o próximo estágio.
- Frequência é dividida por 2 a cada estágio.

Diagrama de Tempo: Contador Assíncrono 3 bits

Contador Decrescente (Assíncrono)

- Uso das saídas \Q.
- Contagem de 7 até 0.

Capacidade Máxima de Contagem

- Fórmula: $n = 2^x$
- $\mathbf{x} = \text{número de flip-flops}$
- Exemplo: 4 flip-flops \Rightarrow 2⁴ = 16 (0 a 15)

Redefinindo o Ciclo de Contagem

- Limitação: contagem natural até potências de 2.
- Solução: uso de entradas CLEAR ou PRESET.

Contador Programado com Clear

- RESET ao detectar combinação específica.
- Uso de porta lógica ligada às saídas.

Contador Programado com Preset

Contador UP/DOWN

- Entrada seletora define o modo de contagem.
- Uso de saídas Q ou \Q para alterar direção.

Contadores com Clock Único

- Todos os flip-flops recebem o mesmo clock.
- Velocidade independe do número de estágios.

Problemas e Soluções

- Crescimento de portas lógicas com mais estágios.
- Alternativa: topologia ripple carry síncrona.

Programando a Contagem Síncrona

- Reset ao detectar configuração desejada.
- Uso de portas AND ou NAND.

CI TTL 7490 - Contador de Década

Modo BCD - 7490

Modo Divisor por 10 – 7490

Outros Cls TTL: 7492, 7493, 74190

Outros Cls TTL: 7492, 7493, 74190

7493 4-Bit Binary Counters

Outros Cls TTL: 7492, 7493, 74190

CI CMOS 4017

CI CMOS 4018

Aplicações dos Contadores

- Armazenamento e controle de tempo.
- Sequenciamento de eventos.
- Conversão entre domínios (freq./tensão).

Exercício

- Elabore o circuito de um contador programado que conta de 0 a 5.
- Esboce o circuito com a porta lógica apropriada para RESET.

Prática

- Monte um contador de 3 bits.
- Utilizar CI 7476.

Prática

Referências

- Newton C. Braga. Curso de Eletrônica Eletrônica Digital.
- Datasheets dos CIs TTL e CMOS mencionados.