SRN					-		
						 _	

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE15EC201

DECEMBER 2016: END SEMESTER ASSESSMENT (ESA) B.TECH. III SEMESTER UE15EC201- Network Analysis and Synthesis

Time: 3 Hrs Answer All Questions Max Ma			
1.	a)	State four differences between nodal analysis and mesh analysis	4
	b)	 Answer the following. i. Suppose the transformer is ideal. Suppose it has one primary winding and one secondary winding. How is the mutual inductance M related to the self inductances L₁ and L₂? ii. Suppose L₁ is 2 H and M is 0.6 H, what is the value of L₂? 	4
	c)	Write the mesh equations for the circuit given below $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6
	d)	Find the values of the nodal voltages (at the dark circles) in the given circuit using the concept of super node. Find the power contribution of the dependent source. $ \begin{array}{c c} & & & & & & \\ & & & & & & \\ & & & & & $	6
2.	a)	Find the Norton's equivalent circuit across the load Z _L .	
۷.	a)	$\begin{array}{c c} 2j \Omega & -4j \Omega \\ \hline \\ 10V \angle 0^{\circ} & Z_L \end{array}$	4
	b)	For the circuit given below, find the maximum power that can be dissipated by the load resistance R_L which is variable (note the load reactance is zero). Find the optimal value of R_L . Write appropriate formula in the calculation.	6

	•	SRN SRN						
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,					
	b)	State the condition for symmetry in two port networks in two port networks in terms of z parameters, y parameters, hybrid parameters and transmission parameters. Also state the condition for reciprocity in terms of the transmission parameters.						
	c)	Draw and explain the cascaded interconnection model using 2 two port networks. Write the network equations in terms of the individual two port parameters.						
5.	a)	Check whether the following polynomial is Hurwitz. Show full calculation and justification. $H(s) = s^5 + 4s^4 + 6s^3 + 8s^2 + 10s + 12$	5					
	b)	Synthesize the impedance function given below into Foster I form. Draw the resulting circuit. $Z(s) = s(s+2)/(s^2+4s+3)$	5					
	c)	Synthesize the impedance function into Cauer II form. Express the impedance as a continued fraction expansion. Draw the circuit $Z(s) = (s^2+1)(s^2+4)/s(s^2+2)$	10					