

GENDER
CLASSIFICATION
MODEL WITH
DEEP LEARNING

DEEP LEARNING

NATURAL LANGUAGE PROCESSING

PROPSPAL

Using the <u>Cardiovascular Disease</u> dataset from Kaggle (provided in this link: https://www.kaggle.com/sulianova/cardiovascular-disease-dataset) we will be trying to solve a <u>classification problem.</u>

The problem:

Gender classification based on person's height, weight, age, whether he smokes or not. How well will we be able to predict if a person is a male or a female based only on his phsycial attributes?

Divding the Dataset:

We will be splitting the dataset to 70% training and 30% testing as suggested in most common experiments of predicting a classification problems.

Work Progress

In this assignment, my partner and I have tried to establish a connection between different physical attributes of a person, to predict his sex. We were using the <u>Cardiovascular</u> <u>Disease</u> dataset from Kaggle (provided in this link:

https://www.kaggle.com/sulianova/cardiovascular-disease-dataset).

Dataset:

- Our dataset contains 70,000 examples
- Each example holds five features: [age, gender, height, weight, smoke]

Training and Testing

- 50K examples are used as a training set
- 20K are being used for testing

,					
(age	gender	height	weight	smoke
id					
0	51.091667	1	168	62.0	0
1	56.188889	0	156	85.0	0
2	52.380556	0	165	64.0	0
3	48.952778	1	169	82.0	0
4	48.538889	0	156	56.0	0
99993	53.444444	1	168	76.0	1
99995	62.780556	0	158	126.0	0
99996	52.961111	1	183	105.0	0
99998	62.308333	0	163	72.0	0
	57.055556	0		72.0	0
[70000 rows x 5 columns], 0 45530 1 24470 Name: gender, dtype: int64)					
training_set = df2.iloc[-20000:] testing_set = df2.iloc[50000:]					

Logistic Regression Results

CNN Results

Comparison