班级: 2022211301

姓名:卢安来

学号: 2022212720

1、参见下图的数据通路,画出取数指令 LAD (R_3), R_0 的指令 周期流程图,其含义是将 (R_3) 为地址数存单元的内容取至寄存器 R_0 中,标出各微操作控制信号序列。

图 5.1 CPU 模型

解答:

取数指令 LAD (R_3), R_0 的指令周期流程图绘制如下,其中 L_{IR} , L_{AR} , L_{DR} 分别表示 IR, AR, DR 等寄存器的载入信号, $R_{iI/O}$ 表示 R_i 的输入输出使能信号, $R/W\#_{X-cache}$ 表示 X-cache 的读入写出信号。

2、假设某机器有80条指令,平均每条指令由4条微指令组成, 其中有一条取指微指令是所有指令公用的。已知微指令长度为32位, 请估算控制存储器容量。

解答:

微指令共
$$3 \times 80 + 1 = 241$$
 条,从而控制存储器容量 $M = 241 \times \frac{32}{8}$ Byte = 964 Byte.

- 3、某计算机有如下部件: ALU,移位器,主存M,主存数据寄存器 MDR,主存地址寄存器 MAR,指令寄存器 IR,通用寄存器 $R_0\sim R_3$,暂存器C和D。
 - (1) 请将各逻辑部件组成一个数据通路,并标明数据流动方向。
 - (2) 画出 $ADD R_1$, R_2 指令的指令周期流程图 $(R_1) + (R_2) \rightarrow R_2$.

解答:

(1)构建数据通路如图,可行的数据流动方向见总线上箭头的方向。

第3页,共5页

(2) ADD R₁, R₂ 指令的指令周期流程图如下,其中 R/W#表示主存的读写信号, L_{MAR} , L_{MDR} , L_{IR} , LD_{C} , LD_{D} 分别表示寄存器 MAR, MDR, IR 和暂存器 C, D 的载入信号。 R_{10} , R_{20} 分别表示 R_{1} , R_{2} 的输出使能信号, R_{2I} 表示 R_{2} 的写入使能信号。

- 4、已知某机采用微程序控制方式,控存容量为 512×48 位。微程序可在整个控存中实现转移,控制微程序转移的条件共 4 个,微指令采用水平型格式,后继微指令地址采用断定方式。请问:
 - (1) 微指令的三个字段分别应为多少位?
 - (2) 画出对应这种微指令格式的微程序控制器逻辑框图。

解答:

(1) 判别测试字段 4 bit, 下地址字段长 9 bit, 从而可知控制字段长

$$(48 - 4 - 9) = 35$$
 bit.

(2) 微指令采用水平型格式,后继微指令地址采用断定方式, 绘制微程序控制器逻辑框图如下。

