Matemática Discreta

27^a AULA

Universidade de Aveiro 2014/2015

http://moodle.ua.pt

Matemática Discreta

Funções geradoras mais gerais

Exemplos de funções geradoras bidimensionais

Referências bibliográficas

Funções geradoras de duas variáveis

- As funções geradoras podem ser utilizadas nos casos multidimensionais.
- Porém, no contexto deste curso, vamos analisar apenas o caso bidimensional.

Definição (Função geradora ordinária com duas variáveis)

Dada a sucessão bidimensional de números $(a_{n,k})_{n,k\in\mathbb{N}_0}$, designa-se por função geradora (ordinária) bidimensional desta sucessão a série formal de potências

$$A(x,y) = \sum_{n,k \in \mathbb{N}_0} a_{n,k} x^n y^k. \tag{1}$$

Matemática Discreta

Exemplos de funções geradoras bidimensionais

Exemplos

Exemplo 1

Vamos determinar a função geradora para a sucessão de números binomiais $(b_{n,k})_{n,k\in\mathbb{N}_0}$, tal que $b_{n,k}=\binom{n}{k}$.

Solução. Uma vez que
$$k>n\Rightarrow\binom{n}{k}=0$$
, vem $\mathcal{B}(x,y)=\sum_{n,k\in\mathbb{N}_0}b_{n,k}x^ny^k=\sum_{n=0}^\infty\sum_{k=0}^n\binom{n}{k}x^ny^k$. Logo,

$$\mathcal{B}(x,y) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} y^{k} \right) x^{n} = \sum_{n=0}^{\infty} (1+y)^{n} x^{n}$$
$$= \sum_{n=0}^{\infty} ((1+y)x)^{n} = \sum_{n=0}^{\infty} (x+xy)^{n}$$

e, consequentemente, $\mathcal{B}(x, y) = \frac{1}{1-x-xy}$.

Exemplos (cont.)

Exemplo 2

Vamos determinar a função geradora para a sucessão $(b_{n,k})_{n,k\in\mathbb{N}_0}$, tal que $b_{n,k}=\frac{n^k}{k!}$, convencionando que $0^0=1$. Solução. Uma vez que

$$\mathcal{B}(x,y) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{n^k}{k!} x^n y^k = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \frac{n^k}{k!} y^k \right) x^n = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \frac{(ny)^k}{k!} \right) x^n,$$

vem
$$\mathcal{B}(x,y) = \sum_{n=0}^{\infty} e^{ny} x^n = \sum_{n=0}^{\infty} (xe^y)^n$$
.

Logo,
$$\mathcal{B}(x, y) = \frac{1}{1-xe^y}$$
.

Matemática Discreta

Referências bibliográficas

Referências bibliográficas I

- D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática Discreta: combinatória, teoria dos grafos e algoritmos*, Escolar Editora, 2008.
- J. S. Pinto, *Tópicos de Matemática Discreta*, Universidade de Aveiro 1999 (disponível na página da disciplina).