

Ayudantía extra: Repaso I1

Héctor Núñez, Paula Grune, Manuel Irarrázaval

1. Lógica de predicados

Definimos el cuantificador de existencia y unicidad (!∃) de la siguiente manera:

 $\exists ! x. P(x)$ va a ser verdadero si es que existe solamente un elemento x tal que se cumpla P(x).

Defina formalmente $\exists !x.P(x)$ usando los quantificadores \forall y \exists y determine si las siguientes afirmaciones son correctas:

- 1. $\exists ! x \in \mathbb{N}.(x+3=5)$
- 2. $\exists ! x \in \mathbb{N}. (x^2 = 4)$
- 3. $\exists ! x \in \mathbb{Z} . \forall y \in \mathbb{Z} . (x + y = 0 \rightarrow y = -x)$
- 4. $\exists ! x \in \mathbb{N} . \forall y \in \mathbb{N} . (xy = x \implies y = 1)$

2. Lógica Proposicional:

Un conjunto de fórmulas proposicionales Σ es redundante si existe una fórmula $\alpha \in \Sigma$ tal que $\Sigma \setminus \{\alpha\} \models \alpha$, es decir, si existe α tal que al extraerla del conjunto Σ , es consecuencia lógica del conjunto resultante.

2.a

Demuestre que si existen $\alpha, \beta \in \Sigma$ con $\alpha \neq \beta$ y $\alpha \equiv \beta$, entonces Σ es redundante.

Decimos que Σ es redundante de a pares si existen $\alpha, \beta \in \Sigma$ con $\alpha \neq \beta$ tales que $\{\alpha\} \models \beta$. Demuestre o entregue un contraejemplo para las siguientes afirmaciones:

2.b.1

Si Σ es redundante de a pares, entonces es redundante

2.b.2

Si Σ es redundante, entonces es redundate de a pares

3. Inducción Fuerte

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 1 & \text{si } n = 1\\ T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + n & \text{si } n \ge 2 \end{cases}$$

Demuestre usando inducción que para $n \geq 3$ se cumple que

$$T(n) \le 3n \log_2(n-1)$$

Si lo necesita en su desarrollo, considere $log_2(3) = 1,585$

Hint: Para este ejercicio, las siguientes propiedades pueden ser útiles:

$$n = \left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil, \qquad \left\lfloor \frac{n}{2} \right\rfloor \le \frac{n}{2}, \qquad \left\lceil \frac{n}{2} \right\rceil \le \frac{n+1}{2}$$