

Published on Web 07/24/2009

Bond Activation, Substrate Addition and Catalysis by an Isolable Two-Coordinate Pd(0) Bis-Isocyanide Monomer

Liezel A. Labios, Matthew D. Millard, Arnold L. Rheingold, and Joshua S. Figueroa*

Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail Code 0358, La Jolla, California 92093-0358

Received June 30, 2009; E-mail: jsfig@ucsd.edu

In analogy to binary Pd(0) carbonyls, monomeric homoleptic isocyanide complexes of Pd(0) have remained elusive species. Indeed, when studied in conjunction with isocyanides such as CNXyl, CNt-Bu, and CNCy (Cy = cyclohexyl), $[Pd(CNR)_n]$ species are observed invariably to aggregate into higher nuclearity clusters.² With respect to purported bis-isocyanide "[Pd(CNR)₂]" species, early preparations³ did not conclusively establish their monomeric nature, and subsequent reports⁴ strongly favored the trimeric formulation [Pd₃(CNR)₆]. These latter studies culminated in Francis' structural determination of triangulo-[Pd(μ_2 -CNCy)(CNCy)]₃, which was the first binary Pd(0) isocyanide complex to be definitively characterized.⁵ Presumably, the proclivity of unencumbered isocyanides to bridge metal centers facilitates the aggregation of these reduced Pd species. Accordingly, herein we report that the encumbering m-terphenyl isocyanide, $CNAr^{Dipp2}$ (Dipp = 2,6-(i-Pr)₂C₆H₃), can successfully stabilize the highly reactive twocoordinate bis-isocyanide monomer Pd(CNAr^{Dipp2})₂. Because of the strong π -acidic nature of the isocyanide function, Pd(CNAr^{Dipp2})₂ serves as an intriguing counterpoint to two-coordinate Pd^0L_2 complexes featuring strongly σ-donating phosphine⁶ (PR₃) or NHC^{7,8} ligands.

Access to orange Pd(CNAr^{Dipp2})₂ was achieved by Mg⁰ reduction of the dichloride PdCl₂(CNAr^{Dipp2})₂ in a 4:1 Et₂O/THF mixture. Generation of Pd(CNAr^{Dipp2})₂ by straightforward reduction of a divalent precursor is notable in that similar protocols have been reported to yield exclusively trimeric [Pd(μ_2 -CNR)(CNR)]₃ species.^{4d} Both the ¹H NMR (C₆D₆) and FTIR (KBr) spectra of Pd(CNAr^{Dipp2})₂ are devoid of features characteristic of a hydride

functionality, lending credence to its zerovalent formulation. Crystallographic characterization of Pd(CNAr^{Dipp2})₂ revealed a twocoordinate monomer which diverges slightly from an ideal linear geometry (\angle (C1-Pd-C2) = 169.8(2)°, Figure 1a). Isocyanide bending is observed for one CNAr^{Dipp2} ligand (∠C1-N1-C3 = 163.6(4)°), while the other remains comparatively unperturbed $(\angle C2-N2-C4 = 174.1(4)^{\circ})$. Whereas this lack of bending may be a reflection of only moderate π -back-donation to the isocyanide ligands, it is important to note that Pd(CNArDipp2)2 gives rise to $\nu_{\rm CN}$ stretches (2073 and 2011 cm⁻¹, KBr), that are considerably lower in energy than found for divalent PdCl₂(CNAr^{Dipp2})₂ ($\nu_{CN} =$ 2202 cm⁻¹, KBr). Furthermore, Pd(CNAr^{Dipp2})₂ exhibits average Pd-Ciso bond distances which are shorter relative to those in PdCl₂(CNAr^{Dipp2})₂ (1.930(3) Å av vs 1.976(2) Å av, respectively). These structural data are consistent with appreciable π backdonation in Pd(CNAr^{Dipp2})₂, as zerovalent centers may be reasonably expected to exhibit longer M-L bond distances than their divalent counterparts when only σ -donor ligands are present. Significant π back-donation in Pd(CNArDipp2)2 is also indicated by DFT calculations, which clearly reveal two orthogonal π -back-bonding interactions (see the Supporting Information).

The encumbering Ar^{Dipp2} units provide Pd(CNAr^{Dipp2})₂ with a substantial degree of thermal and kinetic stability in solution. As indicated by ¹H NMR spectroscopy, Pd(CNAr^{Dipp2})₂ does not decompose in C₆D₆ when heated to 80 °C for up to 5 d. Furthermore, while the CNAr^{Dipp2} ligands effectively stabilize a monomeric Pd(0) complex, they also enforce a homoleptic bisisocyanide formulation. Thus, as assayed by both ¹H NMR and

Figure 1. (A) Reaction pinwheel for Pd(CNAr^{Dipp2})₂ and molecular structures of [TlPd(CNAr^{Dipp2})₂]OTf (left), Pd(CNAr^{Dipp2})₂ (center), and Pd(κ^1 -N-PhNO)₂(CNAr^{Dipp2})₂ (right). (B) HOMO, LUMO, and qualitative MO diagram for Pd(κ^1 -N-PhNO)₂(CNAr^{Dipp2})₂ based on restricted S = 0 DFT calculations.

FTIR spectroscopies, addition of another equivalent of $\text{CNAr}^{\text{Dipp2}}$ to $\text{Pd}(\text{CNAr}^{\text{Dipp2}})_2$ in C_6D_6 results in rapid isocyanide exchange rather than formation of a tris-isocyanide species. Variable temperature studies in toluene- d_8 indicate that isocyanide exchange remains fast on the ^1H NMR time scale down to $-80\,^{\circ}\text{C}$.

In accord with its reduced nature, $Pd(CNAr^{Dipp2})_2$ is competent for the oxidative addition of σ -bonds. For instance, $Pd(CNAr^{Dipp2})_2$ readily forms the benzyl chlorido complex $PdCl(Bz)(CNAr^{Dipp2})_2$ upon reaction with $PhCH_2Cl$. Similarly, $Pd(CNAr^{Dipp2})_2$ also adds across the carbon—bromine bond of mesityl bromide (MesBr) to generate $PdBr(Mes)(CNAr^{Dipp2})_2$ (Figure 1a). Remarkably, despite the additional presence of the encumbering Mes substituent, $PdBr(Mes)(CNAr^{Dipp2})_2$ retains its integrity in C_6D_6 solution at 80 °C for several days. Such behavior is notable since $L_nM(R)(CNR')$ species, especially those featuring sterically congested coordination environments, are well-known to form iminoacyl complexes (*i.e.*, $L_nM(C(=NR')R)$) via migratory insertion.

The resistance of PdBr(Mes)(CNAr^{Dipp2})₂ toward migratory insertion processes suggested that a CNAr^{Dipp2}-supported Pd system may effect Suzuki—Miyaura C–C bond formation. Indeed, Pd(0) complexes of the type Pd(PR₃)₂ and Pd(NHC)₂ are well-known to be chemically competent for catalytic C_{aryl} — C_{aryl} and C_{aryl} —N bond coupling. 6,8,11 However, π -acidic ligands have received limited attention as ancillary groups in Pd-based cross-coupling chemistry. This is surprising given that electron-rich, monoligated Pd⁰L species are proposed as the catalytically active protagonists in cross-coupling schemes and may be further stabilized by a π -acidic ligand. Accordingly, in preliminary unoptimized screens, 5 mol % Pd(CNAr^{Dipp2})₂ was found to readily cross-couple MesBr with phenyl boronic acid (PhB(OH)₂) in 94% isolated yield in THF solution at room-temperature. Furthermore, the less hindered substrate, 2-MeC₆H₄Br, is similarly coupled with PhB(OH)₂ in 95% isolated yield.

The low-coordinate, electron-rich nature of $Pd(CNAr^{Dipp2})_2$ renders it active toward Lewis acidic substrates. Thus, treatment of $Pd(CNAr^{Dipp2})_2$ with TlOTf forms the Lewis acid—base adduct [TlPd(CNAr^{Dipp2})_2]OTf, which contains a one-coordinate Tl(I) center directly bound to Pd (Figure 1a). ¹² Interestingly, Tl(I) acetate is known ¹³ to accelerate Pd-catalyzed C—C bond formation, and further investigations of [TlPd(CNAr^Dipp2})_2]OTf in conjunction with the coupling chemistry outlined above may potentially elucidate the elementary steps governing this process.

Bis-isocyanide Pd(CNArDipp2)2 also reacts smoothly with electronically unsaturated substrates. Addition of 1 equiv of dioxygen to Pd(CNAr^{Dipp2})₂ proceeds smoothly to the peroxo complex (η^2-O_2) Pd(CNAr^{Dipp2})₂, which serves as a structurally characterized complement to (O2)Pd(CNt-Bu)2 prepared by Otsuka (Figures 1a and S4.6).3c Most remarkably however, Pd(CNArDipp2)2 reacts with 2 equiv of nitrosobenzene (PhNO) to form the dark red, diamagnetic complex $Pd(\kappa^1-N-PhNO)_2(CNAr^{Dipp2})_2$. Structural characterization of the latter revealed a distinctly square planar coordination geometry about Pd, thus strongly indicating the presence of a divalent metal center (Figure 1a). Metrical parameters supporting this claim include a $d(Pd-C_{iso})$ of 2.004(2) Å, ¹⁴ which is markedly longer than those of Pd(CNAr^{Dipp2})₂, and near linear C_{iso}-N-C_{ipso} angles (174.6(2)°) reflective of decreased π -back-donation to the isocyanide ligands.15 Furthermore, the N-O bond length of 1.291(2) Å for $Pd(\kappa^1-N-PhNO)_2(CNAr^{Dipp2})_2$ is longer than typically found in monomeric nitrosoarene compounds but shorter than standard N-O single bonds. 16 However, it is in fact considerably longer than the N–O bond length in divalent $PdCl_2(\kappa^1-N-PhNO)_2$ $(d(NO) = 1.209(3) \text{ Å}).^{17}$

It is tempting to suggest that ligation to Pd(CNAr^{Dipp2})₂ results in a one-electron reduction of each κ^1 -N-PhNO unit to its O-centered nitroxyl radical. Coupled with the observed diamagnetism of Pd(κ¹-N-PhNO)₂(CNAr^{Dipp2})₂, such a valence bond picture suggests that a singlet diradical form¹⁸ may be a significant resonance contribution to its electronic structure. However, an alternative, MO description featuring a $(\sigma)^4(\pi)^4(\pi^*)^2$ singlet ground state with nondegenerate π^* components (a_g and a_u in C_i symmetry) may also accurately describe the electronic structure of the NO units in $Pd(\kappa^1-N-1)$ PhNO)₂(CNAr^{Dipp2})₂. Indeed, restricted DFT calculations on the S =0 state of the model Pd(κ¹-N-PhNO)₂(CNAr^{Ph2})₂ correspond well with this latter view (Figure 1b). Notably, both foregoing bonding descriptions correspond to a formal NO bond order of 1.5 for each κ^1 -N-PhNO ligand, which to our knowledge is unprecedented in the coordination chemistry of nitroso compounds. 16 Accordingly, detailed investigations into Pd(\(\kappa^1-N\)-PhNO)2(CNAr^Dipp2)2 and the chemistry accessible to zerovalent Pd(CNArDipp2)2 are in progress.

Acknowledgment. We are grateful to UCSD and the Camille and Henry Dreyfus Foundation for support. Profs. Karl Wieghardt and Peter T. Wolczanski are thanked for stimulating discussions.

Supporting Information Available: Synthetic procedures, results of DFT, NMR, FTIR and crystallographic studies (PDF and CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Tripathi, S. C.; Srivastava, S. C.; Mani, R. P.; Shrimal, A. K. Inorg. Chim. Acta 1976, 17, 257–290.
- (2) Yamamoto, Y. Coord. Chem. Rev. 1980, 32, 193-233.
- (3) (a) Malatesta, L. J. Chem. Soc. 1955, 3924–3926. (b) Fischer, E. O.; Werner, H. Chem. Ber. 1962, 95, 703–708. (c) Otsuka, S.; Nakamura, A.; Tatsuno, Y. J. Am. Chem. Soc. 1969, 91, 6994–6999.
- (4) (a) Day, V. M.; Day, R. O.; Kristoff, J. S.; Hirsekorn, F. J.; Muetterties, E. L. J. Am. Chem. Soc. 1975, 97, 2571–2573. (b) Thomas, M. G.; Pretzer, W. R.; Beier, B. F.; Hirsekorn, F. J.; Muetterties, E. L. J. Am. Chem. Soc. 1977, 99, 743–748. (c) Christofides, A. J. Organomet. Chem. 1983, 259, 355–365. (d) Yamamoto, Y.; Yamazaki, H. J. Chem. Soc., Dalton Trans. 1989, 2161–2166.
- (5) Francis, C. G.; Khan, S. I.; Morton, P. M. Inorg. Chem. 1984, 23, 3680-3681.
- (6) For examples of structurally characterized Pd(PR₃)₂ complexes, see: Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685–4696. and references therein.
- (7) NHC ligands are recognized as primarily strong σ-donors with weak and variable π-acidity properties; see: (a) Kelly, R. A. III.; Clavier, H.; Giudice, S.; Scott, N. M.; Stevens, E. D.; Bordner, J.; Samardjiev, B. I.; Hoff, C. D.; Cavallo, L.; Nolan, S. P. Organometallics 2008, 27, 202–210. (b) Nemsok, D.; Wichmann, K.; Frenking, G. Organometallics 2004, 23, 3640–3646.
- (8) For examples of structurally characterized Pd(NHC)₂ complexes, see: (a) Arnold, P. L.; Cloke, F. G. N.; Geldbach, T.; Hitchcock, P. B. Organometallics 1999, 18, 3228–3233. (b) Böhm, V. P. W.; Gstöttmayr, C. W. K.; Weskamp, T.; Herrmann, W. A. J. Organomet. Chem. 2000, 595, 186–190. (c) Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. Angew. Chem., Int. Ed. 2003, 42, 3690–3693.
- (9) Durfee, L. D.; Rothwell, I. P. Chem. Rev. 1988, 88, 1059-1079.
- (10) Miyaura, N.; Suzuki, A. Chem. Rev. **1995**, 95, 2457–2483.
- (11) (a) Herrmann, W. A.; Elison, M.; Fischer, J.; Köcher, C.; Artus, G. R. J. Angew. Chem., Int. Ed. 1995, 34, 2371–2374. (b) Herrmann, W. A.; Reisinger, C.-P.; Spiegler, M. J. Organomet. Chem. 1998, 557, 93–96.
- (12) For a Pd(0)—Tl(I) interaction featuring two-coordinate Tl, see: Catalano, V. J.; Bennett, B. L.; Yson, R. L.; Noll, B. C. J. Am. Chem. Soc. 2000, 122, 10056–10062.
- (13) (a) Grigg, R.; Kennewell, P.; Teasdale, A. J. Tetrahedron Lett. 1992, 33, 7789–7792. (b) Grigg, R.; Sridharan, V. Tetrahedron Lett. 1993, 34, 7471–7474.
- (14) $Pd(\kappa^1-N-PhNO)_2(CNAr^{Dipp2})_2$ exhibits crystallographic inversion symmetry.
- (15) The lowest energy $\nu_{\rm CN}$ stretch for $Pd(\kappa^1$ -N-PhNO)₂(CNAr^{Dipp2})₂ is 2113 cm⁻¹, which is considerably higher in energy relative to $Pd(CNAr^{Dipp2})_2$ and thereby indicates a less electron-rich Pd center.
- (16) Lee, J.; Chen, L.; West, A. H.; Richter-Addo, G. B. Chem. Rev 2002, 102, 1019–1066.
- (17) Little, R. G.; Doedens, R. J. Inorg. Chem. 1973, 12, 537-540.
- (18) For example, see: Bachler, V.; Olbrich, G.; Neese, F.; Wieghardt, K. *Inorg. Chem.* **2002**, *41*, 4179–4193.

JA905338X