Homework 8

Jon Allen

November 7, 2014

- 5.1. G, H, M 5.2. G*, H*
- 5.1 G. Suppost the $f : \mathbb{R}^n \to \mathbb{R}$ is continuous. If there are $\boldsymbol{x} \in \mathbb{R}^n$ and $C \in \mathbb{R}$ such that $f(\boldsymbol{x}) < C$, then prove that there is r > 0 such that for all $\boldsymbol{y} \in \boldsymbol{B}_r(\boldsymbol{x}), f(\boldsymbol{y}) < C$
 - H. Suppose that functions f, g, h mapping $S \subset \mathbb{R}^n$ into \mathbb{R} satisfy $f(x) \leq g(x) \leq h(x)$ for $x \in S$. Suppose that c is a limit point of S and $\lim_{x\to c} h(x) = L$. Show that $\lim_{x\to c} g(x) = L$.
 - - (a) Compute the Lipschits constant obtained in corollary 5.1.7.
 - (b) Show that ||Ax|| = ||x|| for all $x \in \mathbb{R}^4$. Deduce that the optimal Lipschitz constant is 1. Hint: The columns of A form and orthonormal basis for \mathbb{R}^4
- 5.2 G. (A monotone convergence test for functions.) Suppose that f is an increasing function on (a, b) that is bounded above. Prove that the one-sided limit $\lim_{x \to a} f(x)$ exists.
 - H. Define f on \mathbb{R} by $f(x) = x\chi_{\mathbb{Q}}(x)$. Show that f is continuous at 0 and that this is the *only* point where f is continuous.