- $CO+Cl_2 \rightarrow COCl_2+CH_3-N=C=O+...$
- Når man sier at noe er «Veldig giftig»

- Evaluation des somages:
- $P_{accident} = P_{evenement} \cdot P_{presence}$
- Sommerfugl-diagram(?)
- Arbe des consequenses
- Man har det viktige tilfellet som en «Flaskehals» i sommerfugldiagrammet
 - Etter det har man en utgreining av hva de forskjellige konsekvensene kan være om forskjellige ting skjer. (Høtre side)
 - Venstre side er tingene som kan utløse denne tingen (Evenements som kan utløse andre hendelser).
 - Sannsynlighetene regns ut kun fra sannsynlighetene for base-eventsene

Del 3

- Forskjellige skaøaer for hva som kalles en ulykke/stor ulykke eller katastrofe.
 - Forskjellige målestokker som man må bruke, avhengig av hva ulykken er
 - Forurense overflatevann, grunnvann, branner, ...
- Når det er mindre enn 10 døde er det ikke OPAM som beskytter personene lenger
- To muligheter dor intervensjon
 - Protection: Minske skadeomfanget
 - o Prevention: Reduseresannsynligheten.
- Man må ta i betraktning de flere mulige scenariene
 - Hva som kan gå galt
 - Når på dagen det er
 - => Hvo mange som sannsynligis kommer til å dø om noe skjer.
 - Sannsynligetene i tabellene er sannsynlighetene for at det er N døde eller flere
- Arbre des causes
 - Man bruker «ou» og «et» i treet, i stedet for porter (Kanskje)

0

DE VIKTIGESTE BEGREPENE

- Danger
 - Det som utgjør en fare for liv, eiendom ++
- Doma
- Slidsene kommer til å bli lagt ut på forhånd*, slik at man kan ta notater
- Les objectics
 - Initiation pour nos futures carrières
 - o prise en complete
- Nous allons visiter une site industriel
 - 1 matinée
- 100% exame finalement
 - o 23 mai 2018
 - o ecrit
- Cette course utilise Moodle
- Il n'y a pas une livre pour cette cours
- Generelle notasjoner => (Generelle pååfattninger?)
 - Dangers
 - ce qui constitute une menace pour la tranquilite ou l'existence meme d'une personne, d'un bien
 - Dommages
 - Degat materiel (prejudice) cause auc cjoses ou auc persones
 - f(intensite du nanger , vulnerabilite)
 - Risques
 - Domages vi frequence = f(probabilite)
 - Langage courant risques = danger
- I allmentale bruker man risques og dangers om hverandre
- Grandes families de dangers
 - les dangers naturels
 - avalanche,
 - Les dangers technologiques
 - Dangers instruielles
 - Les dangers de la vie quotidienne
 - Acidents domestisiques, accidenst de montagne ...
 - Les dangers profesionells
 - Les dangers lies aux conflits (yc terrorisme)
- Det er en ciss usikkerhet med når det er folk som står bak (angrep, etc.), så det gir ikke samme mulighet til å sette sannsynligheter på det
- perimetre du cours
 - o Origine
 - Activites hummaines ET endustrielles.
 - Importance

- Catastrophes ou accidents majeurs
- Dommages tres importants (societe =/= Individu)
 - Størrelsesorden er viktig
- o Duree de l'exposition
 - aigue /eventement brutal
- Dans le cours
 - Instalations indistriels
 - Accidenst lies au transport des parcendises dangereuses
- Peripherique du cours
 - Installations nucleaires (methodologie propre)
 - Sacurite au travail (accidents individuels)
- Hours du transport ...
- Les rusques industriels ces dernieres annees
 - o 3 exemples de differentes natrures

•

I dag

- Vi skriver opp opfinnelsen av sannsynlighetsregning på tidslinjen for hele verden i dette faget.
- Tre deler
 - Før statistikk => Fiabiliste
 - Etter => Matrise
 - Rundt 80-tallet => Aversion risque
- Flere historier faser
 - o Temps 1
 - o Temps 2
 - Risiko ble ignorert (den industrielle revolusjon)
 - Slutten av 1800-tallet: starten av «fait social»
 - Jobbsikkerhet
 - Temps 3
 - 1980- i dag
 - Utviklingen av markedsøkonomien.
 - Sosialt uakseptabelt med risikoer (zero risque)
- Reglementation
 - Loi federale sur la protection de l'environnement (LPE)
 - art 10_ Protection contre les catastrophes
 - Ordonnance sur la protection contre les accidents majeurs (OPAM)
- Reglementation

Del 3

- OPAM
 - Del 1: introkuksjon + Hvem handler det om(?)
 - 2 : Forhindring av ulykker
 - 3: Under og etter en ulykke
- For selskap som håndterer farlige substanser er det kun kvalitative grenser
 - typiske stoffer + farlig avfall
- For de som bruker genmodifiserte mikroorganismer eller patogener er det egne regler
 - Cl. activités 3 & 4 (OUC)
 - Virus, bakterier, «champignongs», parasites
- Jernbaneanlegg, ... og ...
 - Voies de grand transit avec transports de MD
- Pipelines
 - Naturgass og brennbar væske eller gass

• 3, Reglementaions

C

Forelesning 3 Notater

- Reglamentation
 - 1. Identification des Dangers
 - 2. Determination des domages
 - 3. Estimering av sannsynligheter
 - 4. Evalueringer av risikoer
- 2. Reglementation (OPAM)
- Holderens forpliktelser
 - Notification:
 - o
- Oppgaver fra autoritetene (Myndighetene?)
 - Vurdere aksepterbarheten av risikoer og farer
 - Kunne spørre om ekstra tiltak(?)
 - Organiser inspeksjonen
 - Koordinering av inngrep og advarsler
- Hors scope
- I Sveits er det stor forskjell mellom kantonene
 - I hva? Lover/antall inspeksjoner/ Noe annet?
- OPAM og oppsett av territorier
 - Sørg for at andre ikke er i faresonen(?)
 - => Reduser radien, eller ?
 - Eller handler det om å ikke utsette flere personer for risiko
 - Om man har bygninger som er delvis eksponert prøver man av og til å ha høyere tetthet i den delen som ikke er eksponert, og lavere i den som er eksponert
 - Det man vurderer er ikke fuly så binært som det man ser i slidsene
- Det er 2400 kjemiske «sites» som følger OPAM
 - De fleste er uten risikostudier
- Det er færre med Bioteknologi
- Det er mulig at slidsene har en pensumliste i seg.
- Reglement i Europa
 - Direktiver («Conseil»)
- Svaits bruker samme system for å identifisere farer som Europa (Muligens også resten av verden(?))
- ESPOO -konvensjonen
 - Informasjon og konsultasjon på tvers av landegrenser
 - o Brukt i Sveits siden ...
- ARHUUS konvensjonen
 - Samme, men med offentligheten.

DEL 2

- Identification des dangers
 - «Ce qui constitue une <u>menace</u> pour la ranquillité ou l'existence même d'une personne, ...»
 - o Det finnes flere klasser a farer
- Distansere årsak, Danger og fenomenet.

- Kjemisk, biologisk, mekanisk, elektrisk, termisk, stråling(Ioniserende/ikkeioniserende), ...
- Identifikasjon av farer
 - o 3 «entités porteuses» av farer
 - Rene substanser
 - Blandinger
 - Kjemiske reaksjoner (Som genererer substansene)
 - o Nøkkelen for å identifisere farene
 - 3 mulige fenomener:
 - Brann
 - Eksplosjon
 - Frigjøring
 - Hva er årsakene til ulykkene
 - Interne årsaker
 - Materiell/teknisk svikt
 - Menneskelig svikt
 - Eksterne årsaker
 - Naturlige fenomen
 - Nærliggende industriområder
 - Fly, transportmiddel
 - «Ondskap»
 - Hvordan kan man gjenkjenne farene som er der
 - CLP-reglementet deffinerer 28 fareklasser
 -
 - Merking
 - De nevner med en H, og råd og advarsler med en P
 - Det komersielle navnet på produktet
 - Piktogrammer for hovedfarene
- Metanol, amoniakk, ...,

•

Forelesning 4

Piktogrammer

- Den brenende kulen betyr også at det ikke kan slukkes
- point'd auto-inflamation
 - Graden for selvantennelse
- point-eclaire
 - o Tempreaturen der en substans kan antennes om man kommer nær den med en flamme
- Noen tabeller har kurver for å vise energi som blir gitt ut, som funksjon av % av gassen som er i luften
 - Man kan se på de forskjellige linjene for: Energien for detonasjon , eksplosjin eler antennelse for å si om det er farlig eller ikke
- Giftighet er også ciktig

Karrakterisering av farlige reaksjoner

- B1,B4...
- Minimum ac kjennskap
- Et = Ep + Ec
- Et = Ep_micro + Ec_micro + Ep_macro + Ec_macro
- Kjemisk, mekanisk retmisk of «lmineuse» energi
- Entalpi
- Aktiverings-energi: «chaleur», ..., katalysator
- Hastigheten til en reaksjon = f()
 - Temperatur, konsentrasjon, «division particules», «poids mol?culatires»
- Farlige reaksjoner
 - «Reactivité non (difficilement) maitrissée»
- Tre store muligheter (Generasjon av noc
 - Syntese
 - Kjemisk reaksjon vi ikke kan styre
 - Urenheter
 - Degeneration (Dårlige forhold fpr lagret), funkt, temperatur, «rayonnement»
 - «Substance presente» og «rupture de confinement»
 - ..
 - o Pyrolye:
 - Degenerasjon av materiell, bare på grunn av temperatur
 - f.eks, ting blir mykere, eller stoffene får en annen struktur
 - 500-700C: Organiske stoffer dekomponeres fullstendig
- Forbrenning
 - Kan enten skje direkte, eller pyrolyse
 - Pyrolyse kan også frigjøre farlige stoffer
- Reaction de combustion
 - klassisk og kjent reaksjon (Varme og motorer)
 - Det er skjeldent at man får en fullstendig forbrenning på grunn av stokometrien
 - Forbrenning vs eksplosjon
 - En brann er en veldig langsom eksplosjon
 - Eksplosive reaksjoner
 - Nécessite un amorçage:
 - Kjemisk: katalysatorer, eller ikke-kjemiske

- Formasjon av gasser
- Generering av gasser under trykk
- Ingen sjokk ved branner
- Vives
- Kjede-reaksjoner
 - En parametre av en reaksjon er produktet av reaksjonen selv
 - redoksreaksjoner
 - Polymerisasijon,
 - polycondensations, polyadditions
 - Kjernefysiske reaksjoner
- Eksplosiver
 - Tre typer
 - Decomposition lente (propulsion fusée)
 - Deflagration
 - Detonasjon
 - Detonasjon er mer skjeldent enn de andre(?)
 - Detonasjon (Hastigheten på reaksjonen er rask)
 - Flammene har flere km/s
 - Energien degerereres over 300ms

0

Forelesnings notater 5

- Karakterisering av effektene /skadene
 - 1. Termiske strømmer
 - 2. Sjokkbølger
 - 3. Giftighet
- Den termiske energien ved brann
 - 10% for aktivering av videre brann
 - 0
- Radativ flux
 - Forskjellige effekter på strukturer.
 - 3kW/m²: Irreversible effekter, og fare for menneskelig liv.
 - \circ 5 kW/m²: Grense for de første dødelige effektene .
- Viktig å vite grensene med tanke på avstand?
- Toxisite
 - o Det er ikke bare en toksisitet, men en hel familie.
 - o Bekymringer
 - Brann,
 - Eksplosjon,
 - Frigjøring
- Toxicollogi
 - o En kompleks vitenskap
 - Det er mengden som gir effektene.
 - Viktige ting
 - Substansen (Type og kvantitet)
 - Mål
 - Varighet
- SHA: Substances de hautes activitee
- Fixation eau, Fixation partielle, Reaction chemique

•

Forlesning 6 (Notater)

- Sist uke så vi på farlige substanser
 - Skader på strukturer og på individer 7
 - Toxicitee
 - Det er ingen sveitsiske grenser, så man jobber i stedet med andre grenser etter godkjenning av myndighetene.
 - Hvor lenge man er eksponert, er også en viktig del
 - AEGL
 - Bassert på hele offentligheten
 - En viktig beskyttelsesfaktor
 - ERPG har en litt flytene definisjon v «Hele offentligheten»
 - IDLH
 - Den eldste av dem
 - Et enkelt nivå
 - 400 composés
 - Det er vinklet ovenfor arbeiderene
 - 30 min med eksponering
 - Man skal være 12-72 timer etter eksponering uten symptoner
 - INERIS
 - o SELx2, SEI, SER, SP
 - 4 nivåer
 - SELS: Seulis de effets letauc significatifs
 - SPEL: Seuils des premiers effets Letaux
 - SEI: Seulis des effets Reversibles
 - SP: Seuils de Perception
 - 40 composés
 - Varighet ac eksponering: 1 min til 480 minutter
 - Skal gjelde for hele offentilighten
 - Andre grenser
 - o EEI:
 - TEEL: USA, hvis det ikke er ERPG
 - AETL: Ikke noe «statut officiel»
 - Det er ogsp grenser for kronisk eksponering (For arbeidere som utsettes for det hele tiden)
 - VME: Cmax for 8 timer/dag
 - VLE: Cmax < 15 minutter per dag
 - Ment for eksponeringen av profesjonelle
 - Man har ting som IDLH 30' => IDLH for 30 minutter eksponering

S-1

- Kilde -> «Milieu de propogation» -> Mål (f.eks personer som kan bli utsatt for noe)
- Modellering Semi-empiriske(Enkle modeller)
 - 1. Punkt-kilder:
 - 1. Et eller flere punkter
 - 2. Fir ingen forutsigelse om formen
 - 2. Overflate-kilder
 - Formen er ac samme type som overdlaten til et stivt legeme
 - (Enkel geometri)
 - Avhenger av eksperimentelle resultater
 - Lette å forstå, og regne på (Både den numeriske og den analytiske delen)
- Modeller
 - Felt-modeller:
 - Fluid-likninger (Navier Stokes)
 - Vanligvis fluidmekanikk uten forbrenning
 - Krever mye mer regning, og me mer tid
 - Integral-modeller
 - En mellomting
 - Veldig forenklede likninger fra Fields-modellene.

Teori for branner

- Mengden av det sin frigjøres (Numeriske modeller)
 - Veskestrøminger
 - Frigjøring av gasser
 - Strømninger i to faser
- Typer branner
 - o Bassengbranner, og
 - Jetstrømmer
 - o Ildkuler
 - o «Begrensede» branner

bleve: Boiling Liquid Expanding Explotion

- De store
- Fuite a le masse media
- nuage
- .
- boil-over
- boulle de feu
 - o Fordi det er isotropisk

- Brann av hyfrokarboner
 - Deter en generell likning
- Surface Emissive Power
- Theorie pour l'incendie (s-e pool fires)
 - 1- Trinn: Diameter
 - Den reelle overflaten er irregulær
 - Vi bruker en ekvivalent med en veldig enkel geometri(F.eks en sylynder)
 - o 2. trinn
 - Hastigneten til brannen
 - o 5. trinn
 - ∘ 6. Trinn
 - Inclinasion / Deformation
 - Endring av sylynderene om flammen heller mot en retnigng
 - o 7. Trinn
 - SEP
 - Surface Emissisive power
 - 8.trinn
 - Absorbpsjonshastigheten av H₂O
 - 12. Trinn Transmisiviteten
 - **2???**
 - 11. Trin
 - Form-faktoren: Bæde vinkelen av «sender» og «Mottaker» av strålingen
 - ϕ : Flux (?)

0

• Punkt-modeller

$$\circ$$
 $q = F_s \cdot ...(?)$

- Semi-empiriske modeller
 - Feu de flanque non consentrique
- Boilover
 - Det er som om all oljen koker over samtidig og tar fyr på en gang.
 - Brennbare tanker med f.eks olje kan antenne nærliggende tanker

Prøven

- Double soumission OPAM
 - To av produktene var de samme => Man gikk over grensen

Teori for brann (Fire ball)

- 1.
- 2.
- 3.
- 4.
- 5. Avstanden fra ballen og mottakeren
- 6.
- 7.

- 8. Chleur de combustion
- 9. SEP:

- 10. Absorpsjon (H₂O) 11. Absopsjon (CO₂) 12. Transmisivitet 13. Stråling fra et punkt
- 14.

Form-faktor Vinkel av en flamme

- For eksempel på grunn av vind
- Equivalent TNT
- T
- Modell av fordeling i atmosfæren
 - Turbulens
 - Avhengig av vindhastigheten (Vindklassen), for man forskjellig oppførsel (stabil -> ustabil)
- Gaussisk model
 - \circ Mulig å tilpasse modellen for

Det fines et program for å regne ut energi og konsekvensene av branner (f.eks pool fire)

Lagring av metanol Stockage et manipulation P-ene på varslingene står for Prévention

- Det beskriver litt mer hvordan unngå ulykker med tingen
- 1. Beholderen må holdes vantett
- 2. Sørg for at alt er gjordet (+ Unngå statisk utladnig)3. Ikke spis, drikke eller røyk mens man håndterer metanol
- 4.