BRAC UNIVERSITY

Department of Computer Science and Engineering

Examination: Semester Final Semester :Spring 2024
Duration: 1 Hour 50 Minutes Full Marks: 40

CSE 422: Artificial Intelligence

Answer the following questions. Figures in the right margin indicate marks.

Name:	ID:	Section:
Tullio.	11).	Beetion.

1. CO4

SL no.	unique_ID	Age	Income	Student?	Credit Rating	Buys_Co mputer ?
1	#5	30	High	NO	Fair	NO
2	#19	30	High	NO	Excellent	NO
3	#24	32	High	NO	Fair	YES
4	#2	41	Medium	NO	Fair	YES
5	#10	42	Low	YES	Fair	YES
6	#32	44	Low	YES	Excellent	NO
7	#4	37	Low	YES	Excellent	YES
8	#8	28	Medium	NO	Fair	NO
9	#6	31	Low	YES	Fair	YES
10	#7	36	Medium	YES	Fair	YES
11	#9	22	Medium	YES	Excellent	YES
12	#14	35	Medium	NO	Excellent	YES
13	#13	37	High	YES	Fair YES	
14	#21	42	Medium	NO	Excellent	NO

- a. Among the features "Student" and "Credit Rating", which one do you think would be more suited for classifying if a person would buy a computer or not? Provide answer using ID3.
- b. Do you think "unique_ID" would be a good feature for classification here? Provide a brief 2 explanation to support your claim.
- c. Can we use "Age" as a building node for the decision tree? If not, then what must we do beforehand?
- d. For row number 4,10 and 11 if the value of "Buys_Computer" becomes "Soon", then compute 2 the Information Gain for feature "Income".
- **2. CO2** CARB University (CARBU) wants to start a new degree program which is B.A. in Social Media Influencing (SMI).

Suppose the degree program is associated with the following courses:

SMI101: Fundamentals of Social Media	SMI251: Increasing Engagements
Influencing	
SMI111: Principles of Shorts	SMI360: Finance, Advertisement and Boosting
SMI422: Representation and Problem-	SMI321: TikTok
Solving	
SMI421: Media Networking	SMI320: Instagram
SMI220: Reels	

In order to graduate from the degree program, one must complete the following four requirements:

Requirement 1: SMI422 OR SMI320.

Requirement 2: SMI251 OR SMI321 OR SMI360.

Requirement 3: SMI422 OR SMI421 OR SMI220.

Requirement 4: (SMI101 AND SMI111) OR (SMI101 AND SMI422) OR (SMI421 AND SMI251).

In addition, the department imposes the following restrictions:

Restriction 1: Students can't take both SMI101 and SMI360.

Restriction 2: Students can't take both SMI251 and SMI321.

Restriction 3: Students can take only one class from the set SMI422, SMI421, and SMI320.

In addition, courses cannot be used to count towards multiple graduation requirements - so if you use SMI422 to fulfill part of the Requirement 1 it can't count towards either the Requirement 3 or Requirement 4. Answer the following,

5

1

1.5

- X just started his junior year at CARBU, and needs to graduate as soon as possible. Suppose all he a. has left to take are SMI required classes. **Determine** the initial domains and at least 4 constraints of his trying to find a set of classes to satisfy all requirements as a CSP (Hint: the requirements should be variables).
- Suppose X has already taken SMI422 towards his Requirement 1 and SMI101 towards Requirement 5 4. **Determine** other classes he must take to graduate using forward checking and explain how the forward checking help.
- 3. CO3 A patient went to the hospital for a malaria test. The doctors informed him that their test can 6 successfully diagnose malarial positive given the patient is actually malaria positive 94% of the time. Also, the probability of having no malaria and getting a malaria negative test result is 4%. Meanwhile, 27% of people in general who come for tests are malaria positive. Now if the patient is already diagnosed malaria negative, then calculate the probability of the patient actually being malaria negative.
 - b. Is being malaria positive and having a positive test result independent of each other? Show 4 calculation and figure out using the information from question A. (Keep two digits after the decimal point of the final score).

4.CO4

Vehicle ID	Engine Size (liters)	Fuel Efficiency (mpg)		
1	1.6	30		
2	2.0	27		
3	2.5	24		
4	3.0	22		
5	3.5	20		

Let Engine Size be the input variable (also known as predictor), x and the Fuel Efficiency the output variable (also known as response), v. To predict the value of v, we establish a linear relationship $h_{w}(x)=w_{1}x+w_{0}$.

- **Interpret** the meaning of the weights, w₁ and w₀ in terms of linear regression a.
- Let us define the Loss-function, $Loss(h_w) = \sum_{j=1}^N y_j (w_1 x_j + w_0)^2$ and the [partial-derivative of this Loss-function with respect to each weight is given by $\frac{d(Loss(h_w))}{dw_0} = -2(y h_w(x))$ and $\frac{d(Loss(h_w))}{dw_0} = -2(y h_w(x))$ $\frac{d(Loss(h_w))}{dw_1} = -2x(y - h_w(x)).$

Tahia uses her special calculation and estimates the weights as $w_1 = 15$ and $w_0 = 0$. Using Gradient-descent algorithm upto 2 iteration, improve these estimates. You may consider the value of learning parameter $\alpha = 1$. Show all steps of calculation.

No. of iteration	h(w)	$Loss(h_w)$	$d(Loss(h_w))$	$d(Loss(h_w))$	W_{0}	w,
iteration		85W	dw_0	dw_1	0	1
10			To the second			10
			8			80

- Using the updated estimates of weights w₀ and w₁ from question 2, predict the fuel efficiency of a 1.5 car with engine size of 3 liters. Then, **compare** this prediction with the actual selling price from the dataset to evaluate the accuracy of the model.
- For a large data set **discuss** the effect of a decaying learning rate (Reducing learning rate over time), 1.5 d. a on the efficiency of the learning process.
- **Discuss** the impact on the gradient descent algorithm when the learning rate is too small. e.