Oracles, measures and Deutsch-Josza

Computational power: simulating boolean circuits

Ojective : given a boolean function $f: \mathcal{B}ool^n \to \mathcal{B}ool$, realize a unitary circuit

The wires $x_1,...,x_n$ correspond to the input variables of the function j, and the z is the output register.

Note: It is indeed a unitary.

- U_f sends a basis vector to a basis vector.
- The corresponding function is reversible:

$$\overline{f}: (\overrightarrow{x}, z) \mapsto (\overrightarrow{x}, z \oplus f(\overrightarrow{x}))$$

Indeed.

$$\overline{f}(\overline{f}(x,z)) = \overline{f}(x, z \oplus f(x))$$

= $(x, z \oplus f(x) \oplus f(x)) = (x,z)$
(she is its own inverse)

In general, such a box is called an **oracle:** it captures the (classical) structure of the problem instance. For instance, it can correspond to an arithmetic operation, or the neighboring relation for a graph, etc.

How to build such a U_f ?

→ THE WHOLE POINT is to get a circuit with a reasonnable size....

It depends how f is provided... If given as a truth table, the description of f is exponential compared to the input size. For instance, if f takes 2 values and is defined as

input	00	01	10	11
f	1	1	0	1

one can build U_f as follows

This is not optimal in general.

If f is given as a boolean formula, one can then build a polynomial-size circuit compared to the size of the formula.

The function f is typically built from

- conjunctions \rightarrow implementable with Toffolis
- negations → implementable with NOTs and CNOTs
- composition \rightarrow circuit composition

The procedure is in two steps.

First, let us (compositionally) build \boldsymbol{V}_f as follows:

Then we can build \mathcal{U}_f as

V_f is built as follows.

Exercice: with the map $f:(x,y)\mapsto \neg(\neg x\wedge \neg y)$

 $f: \mathfrak{B}ool^n \to \mathfrak{B}ool$ a boolean function

$$\overline{f}: (\overrightarrow{x}, z) \mapsto (\overrightarrow{x}, z \oplus f(\overrightarrow{x}))$$
 a reversible function

We saw how to realize a unitary map U_f computing \overline{f} on quantum registers

This operation U_f is built from V_f acting on 3 registers:

- input register $|\vec{x}\rangle$ (with *n* qubits)
- "garbage" registers with auxiliary wires initialized at 0
- register to store the output $|z\rangle$

So V_f is an operator acting on $\mathcal{H}^{\otimes n} \otimes \mathcal{H}^{\otimes garbage} \otimes \mathcal{H}$ (last one is output register)

This is not exactly $\ U_f$ which should act on $\ \mathcal{H}^{\otimes n} \otimes \ \mathcal{H}$

 U_f is built as

Why am I allowed to delete this "garbage" register?

Idea : The inner action of U_f can be regarded as an opertaion on $\mathcal{H}^{\otimes n} \otimes \mathcal{H}^{\otimes garbage} \otimes \mathcal{H}$ preserving the subspace $\mathcal{H}^{\otimes n} \otimes \ket{0}^{\otimes garbage} \otimes \mathcal{H}$

So globally, we have a permutation of all the chains of bits under the form $x_1...x_n000000000z$

So also a permutation of the chains of bits of the form

$$x_1...x_nz$$

...

And so it is unitary.

Another way to see it is to write the matrix of \boldsymbol{V}_f when seen as an operator on

 $\mathcal{H}^{\otimes garbage} \otimes (\mathcal{H}^{\otimes n} \otimes \mathcal{H})$. The inner operation of U_f can be written blockwise as an action on

$$- |0\rangle^{\otimes garbage} \otimes (\mathcal{H}^{\otimes n} \otimes \mathcal{H}) \rightarrow \text{some operation } A$$

- the rest \rightarrow Some operation B

It has the shape

$$\left(\begin{array}{cc} A & 0 \\ 0 & B \end{array}\right)$$

(because the $|0\rangle^{\otimes garbage}$ register is sent back to $|0\rangle^{\otimes garbage}$)

As overall it is a unitary, each block is a unitary. "Dropping" the garbage register yields A.

The operation V_f does not in general maintain the $\ket{0}^{\otimes garbage}$ register in its original form. So V_f is in general of the form

$$\left(\begin{array}{cc} A & B \\ C & D \end{array}\right)$$

and there is no reason for A to be a unitary...

In general, droping a register makes us leave the realm of unitary maps!

What happens when we "delete" the garbage register then?

→ a **measure** is performed

Measure

This is the ONLY way to get back classical data out of quantum data.

Measuring $\alpha \cdot |0\rangle + \beta \cdot |1\rangle$ we obtain

- with prob. $|\alpha|^2$ the value "0" and the qubit is now in state $|0\rangle$
- with prob. $|eta|^2$ the value "1" and the qubit is now in state $|1\rangle$

The qubit state has been probabilistically projected on one basis vector

 \rightarrow Measuring $|0\rangle$ returns "0" with probability 1....

As vectors are normalized, the sum of probabilities is indeed equal to 1.

What about when we have several qubits?

With 2 qubits: $\alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$

In this case, if we measure the 1st qubit, we project

- either on the subspace $|0\rangle \otimes \mathcal{H}$ where the first qubit is $|0\rangle$, spanned by $|00\rangle$, $|01\rangle$

- or on the subspace $|1\rangle \otimes \mathcal{H}$ where the first qubit is $|1\rangle$, spanned by $|10\rangle$, $|11\rangle$

We get

- value "0" and a state of the form $\alpha|00\rangle+\beta|01\rangle$ (modulo renormalisation) with probability $|\alpha|^2+|\beta|^2$
- value "1" and a state of the form $\gamma|10\rangle+\delta|11\rangle$ (modulo renormalisation) with probability $|\gamma|^2+|\delta|^2$

Measuring the second qubit, we end up with the 4 possibilities:

- value "00" with the state now at $|00\rangle$ with probability $|\alpha|^2$
- value "01" with the state now at $|01\rangle$ with probability $|\beta|^2$
- value "10" with the state now at $|10\rangle$ with probability $|\gamma|^2$
- value "11" with the state now at $|11\rangle$ with probability $|\delta|^2$

Note: one can measure qubits in an arbitrary order, this does not change the final result.

Unitarity, auxiliary wires and measures

When we "forget" a wire, there is an implicit measure For instance :

At (c): state is
$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Right after forgetting the wire, there is only one qubit left, the second one \rightarrow first wire got measured without keeping track of the result of the measurement (we speak of a **partial trace**).

In our setting, the result of a partial trace is an equal probabilistic distribution of $|0\rangle$ et $|1\rangle$, each with probability 1/2.

We projected the state $|\psi\rangle$ on : either $|0\rangle\otimes\mathcal{H}$, either $|1\rangle\otimes\mathcal{H}$ We splitted $|\psi\rangle$ in $\alpha|\psi_0\rangle+\beta|\psi_1\rangle$ with $|\psi_0\rangle\in|0\rangle\otimes\mathcal{H}$ and $|\psi_1\rangle\in|1\rangle\otimes\mathcal{H}$

Here,
$$\alpha$$
 and β are both equal to $\frac{1}{\sqrt{2}}$ So beware, this is not the state $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$!!

Corollary: be careful with auxiliary wires! in general, before deleting them, we need them to be non-entangled (separated) with the rest of the system.

Other thing to be aware of: in general, forgetting a wire (or measuring) "breaks" unitarity.

Indeed, we go from linear operators on vector spaces to more general operations on probability distributions.

Beware

The two probability distributions

$$A = \frac{1}{2} \left\{ |0\rangle \right\} + \frac{1}{2} \left\{ |1\rangle \right\}$$
and
$$B = 1 \left\{ \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \right\}$$

are not the same!

Indeed: apply Hadamard followed with a measurement.

On A: In half of the cases, $|0\rangle \xrightarrow{Hadamard} \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$ followed with a

measurement: got true and false with prob. 1/2

In the other cases, $|1\rangle \xrightarrow{Hadamard} \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$ followed with a measurement: got

true and false with prob. 1/2

→ global behavior is an unbiased coin

On B : In the only case, $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \xrightarrow{Hadamard} |0\rangle$ then measure : with prob 1 we get false.

One can distinguish between A and B: they are not the same state.

However, with measure one can build unitary maps.... if we play well. The first example is the gate U_f we saw (since forgetting a register \equiv measuring it), but this is a bit cheating

since the result of the measurement is not used.

Some simple quantum circuits

Deutsch-Josza algorithm

Suppose that $f: bool^n \to bool$ is either constant, either balanced (its "quality").

(balanced means : $f^{-1}(1)$ and $f^{-1}(0)$ have the same size) (said otherwise: $size(\{i \mid f(i) = 0\}) = size(\{i \mid f(i) = 1\}))$

Question : how to decide on the quality of f?

 \rightarrow we only consider the quantity fo call to the **oracle**, i.e. the number of calls to f seen as a blackbox (we do not care how it was implemented)

In the classical case we would need at least $2^{n-1} + 1$ calls to f.

In the quantum case, we assume that f is provided using its encoding \mathcal{U}_f and we do

f is constant if $|0...0\rangle$ is measured, and balanced otherwise.

Note : The box U_f is the **oracle** of the algorithm