

IoT?

loT merupakan singkatan dari "Internet of Things". IoT merujuk pada konsep di mana berbagai jenis perangkat fisik, seperti sensor, perangkat elektronik, kendaraan, peralatan rumah tangga, dan lain sebagainya, dapat saling terhubung melalui jaringan internet dan berkomunikasi satu sama lain. Tujuan utama dari IoT adalah menghubungkan dunia fisik dengan dunia digital, sehingga objek-objek tersebut dapat mengumpulkan, mengirimkan, dan menerima data serta berinteraksi secara otomatis.

The physical world meets the digital world

Komponen Dasar [IoT]

MQTT Protocol

IoT Protocols

MQTT?

Source: https://medium.com/@ghostlulzhacks/

Message Queuing Telemetry Transport. merupakan protokol messaging yang menggunakan model **Publish-Subscribe**.

CLIENT

- Publishers and Subscribers.
- · Connect to broker
- · Create specific topic

BROKER

- Filtering
- Receiving
- Determining
- Sending

CONNECTION

- Based on TCP/IP
- Send CONNECT
- Client never connect to each other directly

QoS (Quality of Services)

Tingkat kualitas layanan pengiriman atau *Quality of Service* (QoS) pada MQTT terdapat Tiga level:

- 1. QoS 0 (at most once delivery): pesan hanya dikirim sekali, setelah pesan dikirim tidak ada respon apakah pesan berhasil dikirim, pesan bisa saja tidak terkirim, atau tidak diterima subscriber.
- 2. QoS 1 (at least once delivery): pesan paling sedikit dikirim sekali, jika *subscriber* tidak menerima pesan maka broker akan mengirim respon terhadap *publisher* bahwa pesan gagal dikirim. Kemungkinan duplikasi pesan dapat terjadi.
- 3. QoS 2 (exactly once delivery) : pesan dikirim sekali dan hanya sekali. QoS 2 memastikan bahwa pesan diterima subscriber. Mencegah adanya duplikasi pesan.

Packet Format

MQTT Topic

MQTT Topic Wildcard

Multi-level

- myhome / groundfloor / livingroom / temperature
- myhome / groundfloor / kitchen / temperature
- myhome / groundfloor / kitchen / brightness
- 23 myhome / firstfloor / kitchen / temperature

Single-level

single-level
wildcard

↓

myhome / groundfloor / + / temperature

only one level

- myhome / groundfloor / livingroom / temperature
- myhome / groundfloor / kitchen / temperature
- 3 myhome / groundfloor / kitchen / brightness
- 🖸 myhome / firstfloor / kitchen / temperature
- 🕴 myhome / groundfloor / kitchen / fridge / temperature

NMEA

ESP32

MCU	Xtensa Dual-Core 32-bit LX6 with 600 DMIPS
802.11 b/g/n Wi-Fi	HT40
Bluetooth	Bluetooth 4.2 and BLE
Typical Frequency	160 MHz
SRAM	Yes
Flash	Yes
GPIO	36
Hardware /Software PWM	None / 16 channels
SPI/I2C/I2S/UART	4/2/2/2
ADC	12-bit
CAN	Yes
Ethernet MAC Interface	Yes
Touch Sensor	Yes
Temperature Sensor	Yes
Hall effect sensor	Yes
Working Temperature	-40°C to 125°C

Pin I/O

11

ESP Mode

TECHEC

#include <WiFi.h>

Librari ini adalah libarray untuk menggunakan Modul WiFi yang tersedia pada board ESP, library ini secara otomatis akan terinstal ketika anda menambahkan ESP32 ke Arduino IDE Anda

- 1. Station Mode (STA)
- 2. Access Point Mode (AP)
- 3. STA & AP Mode

	Fungsinya
WiFi.mode(WIFI_STA)	Station Mode : ESP32 dapat connect ke AP
WiFi.mode(WIFI_AP)	Access Point mode: stations dapat terhubung ke ESP32
WiFi.mode(WIFI_STA_AP)	ESP32 dapat diatur sebagai stasiun Wi-Fi dan titik akses secara bersamaan

Connecting to Wi-Fi Network

Function	Keterangan
WiFi.begin(ssid, password)	Untuk terhubung ke jaringan
WiFi.status()	Mendapatkan nama SSID Wifi Network
WL_CONNECTED	Constanta/nilai ketika ESP telah terhubung ke Wi-Fi
WiFi.localIP()	Untuk mengetahui IP yang di berikan oleh router ke ESP32
WiFi.scanNetworks()	Akan memberikan nilai balikan jumlah network yang ditemukan
WiFi.SSID(i)	Mendapatkan nama SSID Wifi Network
WiFi.RSSI(i)	Mendapatkan nilai RSSI Wifi Network

Showcase

Showcase

MQTT Broker

http://www.mqtt-dashboard.com/

Tipe Data

DHT

DHT22	
#include <dht.h></dht.h>	Salah satu alternatif library yang digunakan untuk mengakses DHT Module
DHT dhtku(DHTPIN,DHTTYPE);	digunakan untuk membuat objek dari kelas DHT
dhtku.begin();	menginisialisasi sensor DHT dan menyiapkan koneksi antara sensor DHT dan board Arduino
dhtku.readHumidity();	Digunakan untuk mangakses fungsi pembacaan nilai humidity (%)
dhtku.readTemperature();	Digunakan untuk mangakses fungsi pembacaan nilai temperature dalam celcius

MQTT Syntax

Function	Keterangan
#include "PubSubClient.h"	Librari untuk mengkoneksikan ESP32 ke MQTT broker
PubSubClient mqttClient()	Membuat object "mqttClient"
mqttClient.setServer(mqttServer, mqttPort)	Setting alamat target dan port broker
mqttClient.setCallback()	Untuk dapat menerima pesan balikan dari server
mqttClient.connected()	Mengembalikan nilai True jika berhasil terkoneksi dan False jika belum
mqttClient.connect(clientID)	Untuk dapat terhubung dengan broker (ClientID harus unique) dan memiliki keluaran Boolean
mqttClient.publish(topic, payload)	Untuk melakukan publish ke suatu topic (Payload berupa String)
mqttClient.subscribe(topik)	Untuk berlangganan suatu topik
client.loop()	untuk memproses semua penerimaan dan pengiriman pesan yang tersedia untuk klien (client)

Tipe Data

More info about IoT

• Blog: https://medium.com/@sonyalfathani

• YTube: https://youtu.be/R3v8kGaafHM

Sub: https://wokwi.com/projects/356666910782912513
Pub: https://wokwi.com/projects/373043061822247937

THANK YOU