

https://powcoder.com

Add WeChat powcoder
ME 564/SYS 564
Wed Sep 26, 2018
Steven Hoffenson

<u>Goal of Week 5</u>: To learn the optimality conditions for unconstrained problems, be able to solve problems with them, and know two derivative-based algorithms

Recap: How to optimize

Formulate the problem

- Define system boundaries
- Develop analytical models
- Explorestienmente Project Exam Helpect to
- Formalize optimization problem nttps://powcoder.com

 $f(\mathbf{x}, \mathbf{p})$ minimize

(Weeks 1-2, 4, 9-12)

 $\mathbf{g}(\mathbf{x},\mathbf{p}) \leq 0$

 $\mathbf{h}(\mathbf{x}, \mathbf{p}) = 0$

Solve the problem

TODAY

Choose the right approach algorithm

(Weeks 3, 5-8, 12)

- Solve (by hand, code, or software)
- Interpret the results

Iterate if needed

$$\mathbf{x}_{k+1} = \mathbf{x}_k - [\mathbf{H}(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_0)$$

Recap: Week 3

- Linear programs are special cases
 - All functions monotonic
 - Solutions must lie on boundary of design space
 - Simplex algientment efficient Exam Help
- Derivative-free place rithms der nomlinear problems are straightforward and robust, but may take longer and ofted the chet ক্যাণ্ডেরাই ক্যাণ্ডিরাই ক্যাণ্ডিরাই
 - Coordinate search
 - Nelder-Meade
 - Space-filling DIRECT
 - Simulated Annealing

Recap: DOEs and surrogate modeling

- Surrogate modeling is fitting a mathematical function to your data to speed up evaluations and optimization
- This involves four general steps:
 - Gather data https://singweller.com
 - Choose a function structure (e.g., linear, polynomial, kriging, ANNAdd WeChat powcoder
 - Fit a function to the data
 - Assess fitness

Watch out for outliers, underfitting, and overfitting

Unconstrained gradient-Assignment Project Exam Help based methods https://powcoder.com

"Unconstrained means we are talking about problems that have interior optima, not optima that lie on a constraint (like what monotonicity analysis can help with)

Basic nonlinear problem

$$\min_{x \in R} f(x) = x^2 - 5x - 10$$

 $\frac{\partial f}{\partial x} = \frac{\text{https://powcoder.com}}{\text{on}}$ take derivative:

set equal to 0: $2x^* - 5 = 0$

solve for x: $x^* = 5$ Add WeChat powcoder

plug into function: $f(x^*) = (5/2)^2 - 5(5/2) - 10$

 $f(x^*) = -16.25$

How do we know it's a minimizer?

 $\frac{\partial^2 f}{\partial x^2} = 2$ take 2nd derivative:

 $\frac{\partial^2 f}{\partial x^2}(5/2) = 2$ plug in x^* :

 x^* is a (local) minimum if positive:

if negative: x^* is a (local) maximum

15

10

10

1-variable optimality conditions

1. First-order necessary condition

2. Second-order sufficient condition

If
$$\frac{\partial f}{\partial x}(x^*) = 0$$
 and $\frac{\partial^2 f}{\partial x^2}(x^*) > 0$, then x^* is a local minimum.

Example

$$\min f(x) = x + e^{-x}$$

First-order necessary signifficant Project sexagarder lificient condition

$$\frac{df}{dx} = 1 - e^{-x}$$

 $\frac{df}{dx} = 1 - e^{-x}$ https://powcoder.com/

$$\frac{df}{dx}(x^*) = 1 - e^{-x^*} = Add WeChat powedoter \frac{dot}{dx^2}(x^*) = e^{-x^*}$$

$$1 = e^{-x^*}$$

$$ln(1) = -x^*$$

$$x^* = 0$$

This is a stationary point

$$\frac{d^2f}{dx^2}(0) = e^0 = 1$$
Since this is >0,

it is a minimum

Global vs. local optima

Stationary points $\left[\frac{\partial f}{\partial x}(x^*)=0\right]$ can be minima, maxima, or saddle points

Multiple variables

Gradient:
$$\nabla f(\mathbf{x}) \triangleq \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$$

Assignment Project Exam Help

https://powegder.com
$$\frac{\partial^2 f}{\partial x_1^2}$$
 Add We Chat powcoder \vdots \vdots $\frac{\partial^2 f}{\partial x_n x_1} \dots \frac{\partial^2 f}{\partial x_n^2}$

Multi-variable optimality conditions

1. First-order necessary condition

If $f(\mathbf{x})$ is differentiable and \mathbf{x}^* is a local minimum, then $\nabla f(\mathbf{x}^*) \equiv \mathbf{0}$. Assignment Project Exam Help

Recall: Points that satisfytips://powcoder.com
necessary condition are called
"stationary points," and they We Chat powcoder
are not all minima!

eChat powcoder

2. Second-order sufficient condition

If $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $\mathbf{H}(\mathbf{x}^*)$ is positive-definite, then \mathbf{x}^* is a local minimum

Hessian properties

Note: $\partial \mathbf{x} = \mathbf{x} - \mathbf{x}^*$

A Hessian is **positive-definite** if $\partial \mathbf{x}^T \mathbf{H}(\mathbf{x}^*) \partial \mathbf{x} > 0$ for all $\partial \mathbf{x} \neq \mathbf{0}$.

A matrix is positive-definite if and only if any of these hold:

All of its eigenvalues are positive.
 Assignment Project Exam Help
 All determinants of its leading principal minors are positive.

- 3. All the pivots https://tpewcodencomtrix is reduced to row-echelon form. Add WeChat powcoder

Other matrix classification definitions

Replace positive- definite with:	Replace > with:	Nature of x*	
negative-definite	<	local maximum	
positive-semidefinite	≥	probable valley	
negative-semidefinite	≤	probable ridge	
indefinite	have both + & -	saddle point	

Note: The 3 "tricks" above only apply for positive-definite, and cannot all be used to prove negative- or semi-definiteness

Sometimes we can solve problems using the optimality conditions

1. Apply First Order Necessary Condition (FONC)

Find stationary points \mathbf{x}^* where

$$\nabla f(\mathbf{x}^{\mathbf{A}}) = \underbrace{\nabla f(\mathbf{x}^{\mathbf{A}})}_{\partial x_1} \underbrace{\nabla f(\mathbf{x}^{\mathbf{A}})}_{\partial x_2} \underbrace{\nabla f(\mathbf{x}^{\mathbf{A}})}_{\partial x_2} \underbrace{\nabla f(\mathbf{x}^{\mathbf{A}})}_{\partial x_n} \underbrace{\nabla f(\mathbf{x$$

2. Apply Second Order Sufficient Condition (SOSC)
Test each stationary point **x*** for a positive-definite
Hessian

$$\partial \mathbf{x}^T \mathbf{H}(\mathbf{x}^*) \partial \mathbf{x} > 0$$
 for all $\partial \mathbf{x} \neq \mathbf{0}$

If a point \mathbf{x}^* meets both conditions, it is a local minimum!

Example (4.6 in book)

Find the minimum of the following function:

$$f(\mathbf{x}) = 2x_1 + x_1^{-2} + 2x_2 + x_2^{-2}$$

Assignment Project Exam Hestationary Point

$$\nabla f(\mathbf{x}) = \left[2 - 2x_{\text{https}}^{-3} \frac{2}{\sqrt{p}} \frac{2x_{\text{cod}}^{-3}}{\sqrt{p}} \frac{2x_{\text{codder.com}}^{-3}}{\sqrt{p}} \mathbf{x}_{*} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\mathbf{x}_* = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\mathbf{H}(\mathbf{x}) = \begin{bmatrix} 6x_1^{-4} & \mathbf{Add} \\ 0 & 6x_2^{-4} \end{bmatrix}$$
 WeChat powcoder
$$\mathbf{H}(\mathbf{x}_*) = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$

$$\partial \mathbf{x} = \begin{bmatrix} \partial x_1 \\ \partial x_2 \end{bmatrix} = \mathbf{x} - \mathbf{x}_* = \begin{bmatrix} x_1 - 1 \\ x_2 - 1 \end{bmatrix}$$

Therefore, [1;1] is a minimum!

SOSC

$$\partial \mathbf{x}^{\mathrm{T}} \mathbf{H}(\mathbf{x}_{*}) \partial \mathbf{x} = 6(\partial x_{1})^{2} + 6(\partial x_{2})^{2} > 0$$
 Positive Definite

Eigenvalues to test SOSC

Rather than checking the quadratic term $\partial \mathbf{x}^T \mathbf{H}(\mathbf{x}^*) \partial \mathbf{x} > 0$, we can check eigenvalues of $\mathbf{H}(\mathbf{x}^*)$

Eigenvalues of A(xx)gnr	nentHessjao Matrim He	p Nature of x*	
All Positive (>0)	Positive definite	Local min	
All Negative (<0)	Positive definite powcoder.com Negative definite	Local max	
All Nonnegative (≥ 0)	d Weltihataniwender	Probable valley	
All Nonpositive (≤ 0)	Negative semidefinite	Probable ridge	
Any sign	Indefinite	Saddle point	

Example

Recall our example

$$\mathbf{H}(\mathbf{x}) = \begin{bmatrix} 6x_1^{-4} & 0 \\ \mathbf{Assignment} \\ 0 & 6x_2^{-4} \end{bmatrix}$$

https://powcoder.com

Eigenvalues of the general Hessian: Eigenvalues at
$$\mathbf{x}_*$$
: $\lambda_1 = 6x_1^{-4}$ and $\lambda_2 = 6$ and $\lambda_2 = 6$

Positive definite everywhere

Positive definite at **x**_{*}

Local Minimum

Determinants to test SOSC

If your matrix is 2x2, you can simply check the determinant of $\mathbf{H}(\mathbf{x}_*)$

Determinant of H(x*)	Hessian Matrix	Nature of x _*	
Positive and h ₁₁ > Ohttp	s://positivedeficiten	Local min	
Positive and $h_{11} < 0$	Negative definite WeChat powcoder Positive semidefinite	Local max	
Zero and $h_{11} > 0$	Positive semidefinite	Probable valley	
Zero and h ₁₁ < 0	Negative semidefinite	Probable ridge	
Negative	Indefinite	Saddle point	

Note: h₁₁ is the first element (upper-left value) of **H**

Another note: h_{11} is the first leading principal minor of **H**, and the full matrix is the second leading principal minor. This follows option 2 from Slide 12. $_{17}$

Example

Recall our example

$$\mathbf{H}(\mathbf{x}) = \begin{bmatrix} 6x_1^{-4} & 0 \\ Assignment \\ 0 & 6x_2^{-4} \end{bmatrix}$$

https://powcoder.com

Add WeChat powered
$$(\mathbf{x}_*)$$
 = 36 > 0

$$h_{11} = 6 > 0$$

Positive definite at **X***

Local Minimum

Interior vs. boundary optima

Interior optimum

Boundary optimum

Note that the necessary and sufficient conditions usually do not apply to boundary optima

Assignment Project Exam Help. LOCalapproximation https://powcoder.com

A review of Taylor series expansion for approximating function behavior (in a local neighborhood)

Taylor series approximation for a single variable function

Assignment Project Exam Help
$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{1!} (x - x_0)^2 + \frac{f^{(3)}(x_0)}{3!} (x - x_0)^3 + \cdots$$
Add WeChat powcoder Higher-order terms

Approximation is valid only in the neighborhood of x_0

Linear Approximation

Quadratic Approximation

In higher dimensions

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \left[\mathbf{x} - \mathbf{x}_0 \right] + \nabla f(\mathbf{x}_0) \left[\mathbf{x} - \mathbf{x}_0 \right] + \cdots$$

Recall: Grantips://powcoder.com

Hessian matrix

$$\mathbf{H}(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}_{24}$$

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)[\mathbf{x} - \mathbf{x}_0] + \frac{1}{2}[\mathbf{x} - \mathbf{x}_0]^{\mathrm{T}}\mathbf{H}(\mathbf{x}_0)[\mathbf{x} - \mathbf{x}_0]$$

Assignment Project Exam Help
$$f(\mathbf{x}) - f(\mathbf{x}_0) \approx \nabla f(\mathbf{x}_0) [\mathbf{x} - \mathbf{x}_0]^{\mathrm{T}} \mathbf{H}(\mathbf{x}_0) [\mathbf{x} - \mathbf{x}_0]$$
And the project in the

Add WeChat powcoder

(Perturbation in f) (Perturbation in x)

$$\partial f \approx \nabla f(\mathbf{x}_0) \partial \mathbf{x} + \frac{1}{2} \partial \mathbf{x}^{\mathrm{T}} \mathbf{H}(\mathbf{x}_0) \partial \mathbf{x}$$

We will use this to develop our first two algorithms!

Basic gradient-based Assignment Project Exam Help algorithms https://powcoder.com

Add WeChat powcoder 1st-order: Gradient descent

2nd-order: Newton's method

1st-order algorithm: Gradient descent

Starting at a point \mathbf{x}_0 , we want to find a direction that will lower the objective value

1. Using 1st-order terms only from Taylor approx., Assignment Project Exam Help $\partial f \approx \nabla f(\mathbf{x}_0) \partial \mathbf{x}$

We want $\partial f < \text{https://www.com} f(\mathbf{x}_0)$, then we know $\partial f \approx -[\nabla f(\mathbf{x}_0)]^2 < 0$ Add WeChat powcoder

This is our direction of descent!

Gradient Method

Gradient descent algorithm

Local optimization algorithm for interior optima

- 1. Begin with a feasible point \mathbf{x}_0
- 2. Find the gradient at the perint of the p
- 3. Move in the direction of the negative gradient to https://powcoder.com find an improved \mathbf{x}_1

4. Continue to iterate until you stop improving

$$\mathbf{x}_k = \mathbf{x}_{k-1} - \nabla f(\mathbf{x}_{k-1})$$

Gradient descent

Slight modification: add a scale factor to avoid jumping past the minimum:

$$\mathbf{x}_{k} = \mathbf{x}_{k-1} - \alpha \nabla f(\mathbf{x}_{k-1})$$

Assignment Project Exam Help

Optimizing the step size α gives us:

$$\mathbf{x}_{k} = \mathbf{x}_{k-1} - \left[\frac{\mathbf{Add}_{\mathbf{V}} \mathbf{YreChat}_{(\mathbf{X}_{k-1})} \mathbf{V}f(\mathbf{x}_{k-1})}{\mathbf{\nabla}f^{T}(\mathbf{x}_{k-1})\mathbf{H}(\mathbf{x}_{k-1})\mathbf{\nabla}f(\mathbf{x}_{k-1})}\right] \mathbf{\nabla}f(\mathbf{x}_{k-1})$$

provided the Hessian is positive-definite

p. 155 of 2nd edition or p. 189 of 3rd edition explains step size optimization

Gradient descent example

Problem:
$$\min_{\mathbf{x}} f = x_1^2 + 2x_1x_2 + 3x_1x_3 + 4x_2^2 + 5x_2x_3 + 6x_3^2$$

Gradient & Hessian:

Assignment Project₃Exam Help
$$\begin{bmatrix} 2x_1 + 2x_2 + 3x_3 \\ 2x_1 + 2x_2 + 3x_3 \\ 3x_1 + 5x_2 + 12x_3 \\ 1 \end{bmatrix}$$
https://powcoder.com

Algorithm:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k) \quad \alpha = \begin{bmatrix} \nabla f^T(\mathbf{x}_k) \nabla f(\mathbf{x}_k) \\ \nabla \mathbf{x}^T(\mathbf{x}_k) \nabla f(\mathbf{x}_k) \end{bmatrix}$$

Initi	Initial point: $\mathbf{x}_0 = [1 \ 1 \ 1]^T \qquad f(\mathbf{x}_0) = 21$						
k	$ abla f^T(\mathbf{x}_k)$	α	\mathbf{x}_{k+1}^T	$f(\mathbf{x}_{k+1})$			
0	[7,15,20]	0.0615	[0.569, 0.077, -0.230]	0.2719			
1	[0.603, 0.607, -0.667]	0.2932	[0.393, -0.101, -0.035]	0.0994			
2	[0.480, -0.194, 0.258]	0.2338	[0.280, -0.055, -0.095]	0.0604			
3	[0.165, -0.357, -0.576]	0.0772	[0.268, -0.028, -0.051]	0.0416			
4	[0.328, 0.060, 0.057]	0.2254	[0.194, -0.041, -0.063]	0.0287			

Summary

- The optimality conditions can be used to prove an interior optimum
 - The First-Order Necessary Condition identifies stational spignment Project Exam Help
 - The **Second-Order Sufficiency Condition** identifies the nature (minima, maxima, saddle) of stationary points
- Taylor series apption of the optimization directions
 - The gradient descent algorithm uses 1st-order info
 - **Newton's method** (algorithm) uses 2nd-order info, which we didn't get to today...

Acknowledgements

- Much of this material came from Chapter 4 of the textbook, *Principles of Optimal Design*
- Some of the slides and examples came from Drs. Assignment Project Exam Help Emrah Bayrak, Alex Burnap, and Namwoo Kang at the University of Michiga coder.com

Add WeChat powcoder

Question

Who would be interesting in a HW1 review session with Amineh sometime on Friday (9/28) or Monday: (10/12) der.com

Add WeChat powcoder

ANSWER: There is interest! Amineh will host a session to review the HW1 solutions on Monday at 11am. Location is TBD, and an announcement will go out on Canvas soon.

Another problem set-up Assignment Project Exam Help and monotonicity example

Actioning an air tanker

Air tank problem set-up

minimize the volume of metal:

Assignment Project Exam Help
$$\min_{\substack{h,l,r,s\\h,l,r,s}} V(h,l,r,s) = \pi \left[(r+s)^2 - r^2 \right] l + 2\pi (r+s)^2 h$$
 https://powcoder.com $\min_{\substack{h,l,r,s\\h,l,r,s\\d}} V(h,l,r,s) = \pi \left[(2rs+s^2)l + 2(r+s)^2 h \right]$ Add WeChat powcoder

Solution

$$V^* = 0$$

$$h^* = 0, l^* = 0, r^* = 0, s^* = 0$$

Example: Air tank

add constraints:

Okay, what's next?

Example: Air tank

monotonicity analysis:

Assignment (Project, Exam [Helps²)
$$l + 2(r+s)^2h$$
] subject ps://proveoder@m 2.12(10⁷) ≤ 0
Add WeChat powcoder $g_3(s^-, r^+) = -h/r + 130(10^{-3}) \leq 0$
 $g_4(l^-) = -l + 10 \leq 0$
 $g_5(r^+, s^+) = r + s - 150 \leq 0$

MP1: Every increasing variable (in the objective) is bounded below by at least one non-increasing active constraint

Okay, what's next?

Example: Air tank

Remove critical constraints:

$$\begin{aligned} \min_{l \in P} & V(l^-) = \pi \left[130.1(10^3) + 4.647(10^9) l^{-3/2} \right] \\ \text{subject to} & g_4(l^-) = -l + 10 \leq 0 \\ & g_5(l^-) = -l + 306 \leq 0 \end{aligned}$$