

启明星辰ADLab

智能语音设备安全研究

演讲人: 王启泽

目录 CONTENTS

PART 01 背景

语音正成为人与设备交互的方式

- 性别.年龄
- 环境.健康
- 想法.情绪
- 籍贯

我们研究的对象

我们关注的点

安全及隐私

PART 02 网络安全

音箱网络架构

云平台的特权命令

智能音箱攻击演示-特权命令

智能音箱攻击演示-设备间通信

多音箱场景

当房间里存在多个音箱时, 多个音箱之间需要协商, 决定由哪个音箱来响应用户的语音命令

多音箱场景

伪造语音广播

(能量: 99.00,

IP: 192.168.1.2)

攻击者(IP: 192.168.1.3)

目标音箱(IP: 192.168.1.2)

设备伪造

设备广播

智能音箱

伪电视

设备伪造

我要看成龙的电影

我要看成龙的电影

智能音箱

伪电视

漏洞列表

漏洞编号	危害
CNVD-2019-13611、CNVD-2019-06254	远程命令执行、远程代码执行
CNVD-2019-05625、CNVD-2019-05626	
CNVD-2019-07688、CNVD-2019-15526	播放恶意音频
CNVD-2019-12111、CNVD-2019-13278	敏感信息泄漏
CNVD-2019-12775	语音窃听

PART 03 语音及内容安全

语音安全

声音传播

语音唤醒/声纹识别

语音识别/语义理解

内容

超声波攻击

E

识别

超声波攻击-演示

1. 笔记本电脑喇叭性能的提升 使得攻击者无需额外硬件即 可发出超声波信号。

2. 新型的智能手机依然存在问 题

语音识别攻击-基于发音模型的攻击

1.基干韵母的攻击

每个汉字的发音都是由声母、韵母两部分构成的。

声母部分发音时间短,信号变化剧烈;

而韵母部分发音时间长,是声带共鸣产生,携带了音节的大部分能量。韵母是由元音或元音加辅音组成。

某唤醒词算法主要根据元音来判断

1.上海同学(shang hai tong xue)

2.小爱同学(xiao ai tong xue)

小爱同学
上海同学

声纹识别

- 拼接合成攻击
- 样本攻击
- 持续语速变化攻击
- 端到端攻击
- 录音攻击

声纹识别攻击-声纹比对算法

(D1+D2+D3+...D8)/8

(80+80+80+40+40+40+40)/8=55

声音识别算法攻击-声纹比对算法

- 声纹识别没有错误次数限制
- 持续变化语速导致评分标准浮动大
- 中性的声音得分较高

声纹识别算法-攻击演示

内容安全

内容安全-攻击演示

内容安全

PART 04 隐私审计

隐私权

权利	内容
用户有权力决定	哪些他本人的信息可以被收集,什么时候收 集、什么地点收集。
用户有权力了解和决定	这些数据是如何被收集的,这些数据将对谁共 享,为什么要对他人分享,如何对他人分享。

语音设备使用场景的隐私泄露

阶段	敏感信息
设备注册阶段	地理位置,周边WIfi信息,路由器
	MAC地址,WI-FI密码,已安装应用
	情况,短/彩信
设备使用阶段	音频信息,通信录,设备使用情况,
	业务的使用情况,日志, 音视频信
	息标号

几种常见的隐私风险

问题点	危害
误唤醒	泄漏通话内容
APP权限	泄漏通信录等敏感信息
日志收集	泄漏Wifi密码等信息
API接口	合作厂家可以获得非业务需要的敏感
	信息
明文通信	泄漏用户账户及密码等信息

总结

物物间通信场景更多: 需要关注设备间认证的安全

声纹识别算法: 大多商用算法还不成熟

公众对隐私的关注度越来越高: 需要关注设备及数据的隐私保护

感谢

ADLab小伙伴 KCon组委会

谢谢观看

演讲人: 王启泽

Email: wang_qize@venustech.com.cn