Определённый интеграл

Определение

Разбиение отрезка и интегральная сумма

🖺 Разбиение отрезка

Говорят, что точки x_0,x_1,\dots,x_n образуют <mark>разбиение</mark> отрезка [a,b], если $a=x_0< x_1<\dots< x_n=b$. au - разбиение. $\Delta x_k=x_k-x_{k-1},\;k=1,\dots,n$ - длины отрезков разбиения, $\xi_k\in[x_{k-1},x_k],\;k=1,\dots,n$ - произв. точки.

🖺 Интегральная сумма

Пусть f определена на [a,b]. Тогда $S(f, au,\xi)=S_ au=\sum\limits_{k=1}^n f(\xi_k)\Delta x_k$ - интегральная сумма

Смысл интегральной суммы

Смысл интегральной суммы - сумма площадей прямоугольников, построенных под графиком на отрезках разбиения

🖺 Мелкость разбиения

 $\lambda au = \max \Delta x_k$ называется мелкостью разбиения.

Интегрируемость по Риману

🖹 Интеграл по Риману

Пусть f определена на [a,b]. f интегрируема по Риману на [a,b], если

$$\exists I \in \mathbb{R}: orall \epsilon > 0 \exists \delta(\epsilon) > 0: orall au orall \xi \ (\lambda au < \delta) \implies I = \int\limits_a^b f(x) \, dx. \ I - \delta(x) \, dx = \int\limits_a^b f(x) \, dx \, dx$$

интеграл по Риману, или определённый интеграл

Пример

Возьмём функцию Дирихле. D(x) не интегрируема на $\left[a,b
ight]$

1.
$$\{\xi_k\}\subset I=\mathbb{R}\diagdown\mathbb{Q}, f(\xi_k)=0 \implies orall au: S_ au=0$$

2.
$$\{\xi_k\}\subset \mathbb{Q}, f(\xi_k)=1, orall au\ S_ au=\sum 1\cdot \Delta x_k=b-a$$

Теорема о сумме интегралов

Теорема

Пусть f и g интегрируемы на [a,b], и $lpha,eta\in\mathbb{R}.$ Тогда

$$\int\limits_a^b (lpha f + eta g)\,dx = lpha \int\limits_a^b f\,dx + eta \int\limits_a^b g\,dx$$

Доказательство

$$egin{aligned} S(lpha f+eta g, au,\xi) &= \sum_{k=1}^n (lpha f(\xi_k)+eta g(\xi_k))\Delta \xi_k = \ &= lpha \sum_{k=1}^n f(\xi_k)\Delta x_k + eta \sum_{k=1}^n g(\xi_k)\Delta x_k \ &|S(lpha f+eta g, au,\xi) - (lpha \int\limits_a^b f+eta \int\limits_a^b g)| = \ &= |lpha S(f, au,\xi) + eta S(g, au,\xi) - (lpha \int\limits_a^b f+eta \int\limits_a^b g)| \leq \ &\leq |lpha| \left| S(f, au,\xi) - \int\limits_a^b f
ight| + |eta| \left| S(g, au,\xi) - \int\limits_a^b g
ight| < rac{\epsilon}{|lpha| + |eta|} \end{aligned}$$

- так как f - интегрируемо, поэтому

$$orall \epsilon > 0 \exists \delta: orall au orall \xi(\lambda au \implies |S(f, au,\xi) - \int\limits_a^b f| < \epsilon.$$

Теорема придумайте название

Теорема

Если f и g интегрируемы на [a,b] и $f\geq g$ на [a,b], то $\int\limits_a^b f\geq \int\limits_a^b g$

Доказательство

$$orall au, orall \xi: S(f-g, au,\xi) = \sum_{k=1}^n (f(\xi_k)-g(\xi_k)) \Delta x_k \geq 0$$

По прошлой теореме f-g - интегрируемо, то есть

$$\exists \int\limits_a^b (f-g)$$

-- то есть

$$orall au, orall xi: S(f-g, au,\xi) \geq - \implies \int\limits_a^b (f-g) \geq 0$$

Ребятки докажите за меня дома, на коллоке будет

По прошлой теореме
$$\int\limits_a^b (f-g) \geq 0$$
, то есть $\int\limits_a^b (f-g) = \int\limits_a^b f - \int\limits_a^b g \geq 0$

Теорема об ограниченности интегрируемой на отрезке функции

Теорема

Если f интегрируема по Риману на $\left[a,b\right]$, то она ограничена на $\left[a,b\right]$

От противного. Пусть f - не ограничена. Тогда есть разбиение au, на одном из отрезков котого ($[x_{j-1},x_j]$) функция не ограничена. Тогда

$$S(f, au,\xi) = f(\xi_j) \Delta x_j + \sum_{k=1}^n f(\xi_k) \Delta x_k$$

$$|S(f, au,\xi)|>|f(\xi_j)|\Delta x_j-|\sum_{k=j}f(\xi_k)\Delta x_k|$$

Зафиксируем $\xi_k,\ k \neq j$. Можно подобрать ξ_j так, что $|f(\xi_j)|>N, N\in \mathbb{N}$ Пусть $C=|\sum_{k=j}f(\xi_k)\Delta x_k|$. Тогда:

$$|S(f, au,\xi)|>|f(\xi_j)|\Delta x_j-|\sum_{k=j}f(\xi_k)\Delta x_k|>N\cdot x_k-C$$

Тогда S au - ограничено. Противоречие.

Критерий интегрируемости. Сумма Дарбу

Сумма Дарбу

$$M_k = \sup_{x \in [x_{k-1},x_k]} f(x)$$
 , $m_k = \inf_{x \in [x_{k-1},x_k]} f(x)$

🖺 Верхняя сумма Дарбу

$$\overline{S_{ au}} = \sum_{k=1}^n M_k \Delta x_k$$
 называется верхней суммой Дарбу

🖹 Нижняя сумма Дарбу

$$\underline{S_{ au}} = \sum_{k=1}^n m_k \Delta x_k$$
 называется нижней суммой Дарбу

Интегралы Дарбу

🖺 Интегралы Дарбу

Обозначение $I_* = \sup_{ au} \underline{S_{ au}}$ - нижний интеграл Дарбу, I^* - верхний интеграл Дарбу.

•
$$\underline{S_{ au}} \leq I_* \leq I^* \leq \overline{S_{ au}}$$
Доказательство

$$orall au_1 au_2: \underline{S_{ au_1}} \leq \overline{S_{ au_2}} \implies \sup_{ au+1} S_{ au_1} \leq \overline{S_{ au_2}} \implies I_* \leq \inf_{ au_2} = I^**$$

Теорема о неравенствах, связанных с суммами Дарбу

Теорема

Если
$$f$$
 опр. на $[a,b]$, то $orall au_1, au_2$ $\underline{S_{ au_1}} \leq \overline{S_{ au_2}}$

Доказательство

$$au = au_1 \cup au_2$$

au - измельчение au_1 , au_2 , то есть $au_1 \subseteq au$ и $au_2 \subseteq au$ и его мелкость меньше.

Тогда
$$\overline{S_{ au}} \leq \overline{S_{ au_2}}, \ \underline{S_{ au_1}} \leq \underline{S_{ au}}$$

$$\underline{S_{ au_1}} \leq \underline{S_{ au}} \leq \overline{S_{ au}} \leq \overline{S_{ au_2}}$$

Следствие

$$\forall \tau: S_\tau \leq I_* \leq I^* \leq \overline{S_\tau}$$

Теорема: критерий интегрируемости

Теорема

Пусть
$$f$$
 - ограничена на $[a,b]$. f интегрируема на $[a,b]\iff orall \epsilon>0 \ orall \delta>0 \ orall \tau(\lambda_{ au}<\delta\implies \overline{S_{ au}}-\underline{S_{ au}}\leq\epsilon)$

Доказательство

Пусть f интегрируема на [a,b]. Тогда по определению интегрируемости,

$$egin{aligned} \exists \delta: \ orall au, \xi(\lambda_{ au} < \delta \implies |S(f_1 au) - I| < rac{\epsilon}{3}) \ & S(f, au,xi) < I + rac{\epsilon}{3} \ & \sup_{\xi} S(f, au,\xi) \leq I + rac{\epsilon}{3} \ & \sup_{\xi} S(f, au,\xi) = \overline{S_{ au}} \end{aligned}$$

Чтобы доказать это, воспользуемся свойствами \sup и \inf . Тогда

$$egin{aligned} \sum_{k=1}^n \sup A_k &= \sum_{k=1}^n \sup f(\xi_k) \Delta x_k = \overline{S_ au} = M_k X_k. \ \sup (A_1 + \dots + A_n) &= \sup \left\{ \sum_{k=1}^n f(\xi_k) \Delta x_k
ight\} \ &I - rac{\epsilon}{3} \leq \underline{S_ au} \leq \overline{S_ au} \leq I + rac{\epsilon}{3} \end{aligned}$$

Хотим получить: $I - rac{\epsilon}{3} < \underline{S_ au} \leq \overline{S_ au} < I + rac{\epsilon}{3}$

1. Рассморим левую часть неравенства из определения $I-rac{\epsilon}{3} < S(f_1 au_1)$, и возьмём \inf по $\xi \implies I-rac{\epsilon}{2} \leq \inf_{\xi} S(f_1 au_1\xi) = \inf_{\xi} S(f_1 au_1\xi).$

$$egin{aligned} S_{ au} &= \sum_{j=1}^n \inf_{x \in [x_1,x_j]} f(x) \Delta x_j \ &\sum \inf_{x \in [x_1,x_j]} f(x) \Delta x_j = \inf_{(\xi_0,\dots,\xi_n)} \sum_{j=1}^n f(\xi_j) \Delta x_j \ &S(f_1 au_1\xi) < I + rac{\epsilon}{3} \ &\overline{S_{ au}} \le I + rac{\epsilon}{3} \implies I - rac{\epsilon}{3} \le \underline{S_{ au}} \le \overline{S_{ au}} \le \overline{S_{ au}} \le I + rac{\epsilon}{3} \end{aligned}$$

2. ←

$$S_ au \le I_* \le I^* \le \overline{S_ au}$$
 Знаем, что $orall \epsilon > 0 \exists \delta: orall au(\lambda_ au < \delta \implies \overline{S_ au} - \underline{S_ au} < \epsilon)$ $S_ au \le S_t au \le \overline{S_ au}$ $|S_ au - I_*| < \epsilon$

- показано геометрически.

 $\implies I_*$ - интеграл Римана (по определению интеграла).

Следствие

Если
$$f$$
 - интеграл по Риману на $[a,b]$, то $I_*=I^*=\int\limits_a^b f(x)\,dx$

Теорема (без доказательства)

Теорема

f интегрируема на

$$[a,b] \iff I_* = I^* *\$,$$
иприэтомвсегда $\$\int\limits_a^b f(x)\,dx = I_* = I^*$

Теорема: аддитивность интегралов

Теорема

$$\int\limits_a^b f(x)\,dx = \int\limits_a^c f + \int\limits_c^b f$$
, где $a \leq c \leq b$

Доказательство

Покажем сначала равносильность существования этих интегралов. Рассмотрим точку c и возьмём произвольное разбиение отреза [a,b] τ . $c \in [x_{j-1},x_j]$. Рассмотрим вспомогательное разбиение отрезков: $\tau': a < x_1 < \dots < x_j < c$, $\tau'': c < x_j < \dots < b$.

1. Пусть
$$f$$
 интегрируема на $[a,b]$. Покажем, что $\exists\int\limits_a^c$ и $\exists\int\limits_c^b$ f интегрируема на $[a,b]\implies \overline{S_{ au}}-\underline{S_{ au}}<\epsilon$ для $au:\lambda_{ au}<\delta(\epsilon)$ $\overline{S_{ au}}\geq \overline{S_{ au'}+\overline{S_{ au''}}}$

- очевидно, т.к. в одной из сумм справа $\sup f(x)$ может стать меньше

$$S_ au \leq S_{ au'} + S_{ au''}$$

- очевидно

$$\epsilon > \overline{S_{ au}} - \underline{S_{ au}} \geq \overline{S_{ au'}} + \overline{S_{ au''}} = (\underline{S_{ au'}} + \underline{S_{ au''}}) = (\overline{S_{ au'}} - \underline{S_{ au'}}) + (\overline{S_{ au''}} - \underline{S_{ au''}})$$

2. Пусть f интегрируема на [a,c] и [c,b]. Покажем, что $\exists\int\limits_a^b f$

$$\overline{S_{ au}} = \sum_{k
eq j} + M_j \delta x_j, \ \underline{S_{ au}} = \sum_{k
eq j} m_j \Delta x_j$$

(на j-м отрезке находится точка c)

Пусть f ограничена на [a,b] числами B и -B. Хотим: $\overline{S_{ au}} \geq \overline{S au'} + \overline{S_{ au''}}$

$$(?)$$
 $\overline{S_ au} \leq \overline{S_{ au'}} + \overline{S_{ au''}} +$ что-то $\overline{S_ au} - (\overline{S_{ au'}} + \overline{S_{ au''}}) = \left\{\sum_{k
eq j}$ - сокращается $ight\} =$ $= M_j \Delta x_j - (\sup f(x)(c-x_{j-1}) + \sup_{[c,x]} f(x)(x_j-c)) \leq$ $\leq B \Delta x_j + B(c-x_{j-1}+x_j-c) = 2B \Delta x_j \leq 2B \lambda_ au$

Аналогично $\overline{S_{ au}} \geq S_{ au'} + S_{ au''} - 2B\lambda_{ au}$

Таким образом,
$$\overline{S_{ au}} \leq \overline{S_{ au'}} + \overline{S_{ au''}} + 2B\lambda_{ au}$$
 и $\underline{S_{ au}} \geq \underline{S_{ au'}} + \underline{S_{ au''}} - 2B\lambda_{ au}$ $\overline{S_{ au}} - \underline{S_{ au}} \leq \overline{S_{ au'}} + \overline{S_{ au''}} + 2b\lambda_{ au} - \underline{S_{ au'}} - \underline{S_{ au''}} + 2B\lambda_{ au} =$ $= (\overline{S_{ au'}} - S_{ au'}) + (\overline{S_{ au''}}S_{ au''}) + 4B\lambda_{ au} < \epsilon$

$$orall \epsilon>0 \exists \delta(\epsilon): orall au(\lambda_ au<\delta \quad \overline{S_ au}-\underline{S_ au}<\epsilon)$$
 Возьмём $\delta=\min\left\{\delta_1(rac{\epsilon}{3}),\delta_2(rac{\epsilon}{3}),rac{\epsilon}{3\cdot 4B}
ight\}$

3. Теперь покажем, что $\int\limits_a^b f = \int\limits_a^c f + \int\limits_c^b f.$

$$(?) \quad |\int\limits_a^b - (\int\limits_a^c + \int\limits_c^b)| < \epsilon \ |\int\limits_a^b - \left(\int\limits_a^c + \int\limits_c^b
ight) + (S_{ au'} + S_{ au''}) - (S_{ au'} + S_{ au''})| \le \ |\int\limits_a^b - (S_{ au'} + S_{ au''})| + |\int\limits_a^c - S_{ au'}| + |\int\limits_c^b - S_{ au''}| < \epsilon$$

Утверждение о переопределении интегрируемой функции

Утверждение

Если изменить интегрируемую функцию f в конечном числе точек, значение интеграла не изменится

Доказательство

Докажем для одной точки. Пусть значение переопределяется в точке $x_{0}.$

Заменим
$$f(x_0)$$
 на c . Рассмотрим $g(x)=egin{cases} f(x),x
eq x_0\ f(x_0)-c,x=x_0 \end{cases}$ $f(x)+g(x)$ - новая функция. Покажем, что $\int\limits_a^b g(x)=0.$ $orall au$ $|S_ au|\leq |c-f(x_0)|\cdot \lambda_ au.$ Но $\lambda_ au o 0\implies \int\limits_a^b g(x)=0$

Классы интегрируемых функций

Теорема об интегрируемости непрерывной функции

Теорема

Пусть f непрерына на отрезке [a,b]. Тогда f интегрируема на нём.

По теореме Кантора, непрерывная функция на отрезке равномерно непрерывна на нём. Тогда

$$orall \epsilon > 0 \exists \delta(\epsilon) > 0: orall x', x'' \in [a,b]: (|x'-x''| < \delta) \implies |f(x') - f(x'')| < \epsilon$$

$$(?) \quad orall \epsilon' > 0 \exists \delta'(\epsilon) : orall au(\lambda_ au < \delta' \implies \overline{S_ au} - \underline{S_ au} < \epsilon)$$

Рассмотрим $au: \lambda_{ au} < \delta$ - из определения равномерной непрерывности.

$$\overline{S_{ au}} - \underline{S_{ au}} = \sum_{k=1}^n (M_k - m_k) \Delta x k$$

 $orall \xi', \xi'' \in [x_j, x_{j+H}] \quad |\xi' - \xi''| < \delta$, т.к. $\lambda_{ au} < \delta$. Тогда $|f(\xi') - f(\xi'')| < \epsilon$, что равносильно (доказательство позже) $M_j - m_j < \epsilon$. Но тогда

$$\sum_{k=1}^n (M_k - m_k) \Delta x_k \leq \epsilon \cdot \sum \Delta x_k = \epsilon (b-a)$$

Доказательство равносильности.

1.
$$\Longleftarrow$$
 $M_j-m_j<\epsilon$ - знаем. $f(\xi')-f(\xi'')\leq M_j-m_j\leq\epsilon$ 2. \Longrightarrow $\forall \xi',\xi'' \quad |f(\xi')=f(\xi'')|<\epsilon. \sup_{\xi}(f(\xi')-f(\xi''))=M_j-f(\xi'')\leq\epsilon$

XYZ(

Теорема об интегрируемости монотонной функкции

Теорема

Пусть f - монотонна на [a,b]. Тогда f - интегрируема на [a,b].

Пусть б.о.о. f - возрастает.

$$(?) \quad orall \epsilon > 0 \exists \delta : orall au(\lambda_ au < \delta \implies \overline{S_ au} - S_ au < \epsilon)$$

$$\overline{S_{ au}} - \underline{S_{ au}} = \sum +k = 1^n (M_k - m_k \Delta x_k = \sum_{k=1}^n (f(x_k) - f(x_{k-1})) \Delta x_k$$

Пусть $\exists \delta: \lambda_{ au} < \delta$. Тогда

$$\overline{S_{ au}} - \underline{S_{ au}} = \sum_{k=1}^n (f(x_k) - f(x_{k-1})) \Delta x_k \leq \delta \cdot \sum_1^n (f(x_k) - f(x_{k-1})) \leq \epsilon$$

Возьмём
$$\delta < rac{\epsilon}{f(b) - f(a)}$$

Следствия

- 1. Функции с конечным числом точек разрыва интегрируемы
- 2. Кусочно-монотонные функции интегрируемы
- 3. Можно рассмотреть интеграл, если функция не определена в конечном числе точек

Теорема об интегрируемости композиции функций

Теорема

Пусть f - интегрируема на [a,b], и принимает значение на отрезке [c,d]. Пусть φ непрерывна на отрезке [c,d]. Тогда $\varphi(f(x))$ инт. на [a,b].

Пример

Для композиции интегрируемых теорема не работает.

$$egin{align} arphi &= egin{cases} 1, x
eq 0 \ 0, x = 0 \end{cases}, f(x) = egin{cases} rac{1}{q}, x = rac{p}{q} \ 0, x
otin \mathbb{Q} \end{cases} \ D(x) &= arphi(f(x)) = egin{cases} 0, x
otin \mathbb{Q} \ 1, x \in \mathbb{Q} \end{cases} \end{aligned}$$

Доказательство

arphi равномерно непрерывна на [c,d] (Кантор):

$$orall \epsilon > 0 \exists \delta : orall x', x'' \in [c,d] \quad |arphi(x') - arphi(x'')| < \delta \implies |arphi(x') - arphi(x')|$$

$$(?) \quad \overline{S_{ au}(arphi(f))} - S_{ au}(arphi(f)) < \epsilon$$
. Знаем, что f интегрируема. Тогда

$$(\lambda_ au < \delta \implies \overline{S_ au}(f) - S_ au(f) < \delta^2)$$
 - взли δ^2 как ϵ .

$$\overline{S_{ au}}(arphi(f)) - \underline{S_{ au}}(arphi(f)) = \sum_{k=1}^n (M_k(arphi(f)) - m_k()arphi(f)) \Delta x_k$$

Поделим на два семейства индексов:

$$I = \{k: M_k(f) - m_k(f) - \delta\}$$
 $II = k: M_k(f) - m_k(f) > \delta$

- 1. $k\in I$. Тогда воспользуемся леммой $(\sup-\inf)$, $f(\xi')-f(\xi'')<\delta;$ ξ' , по равномерно непрерывной $\varphi:\xi''\in [x_{k-1},x_k]$ $\Longrightarrow |\varphi(f(\xi'))-\varphi(f(\xi''))|<\epsilon\Longrightarrow$ по этой же лемме $M_k(\varphi(f))-m_k(\varphi(f))<\epsilon,$ $\sum\limits_{k\in I}(M_k(\varphi(f))-m_k(\varphi(f)))\Delta x_k<\epsilon(b-a)$
- 2. $k\in II$. Рассмотрим $\overline{S_{ au}}(f)-\underline{S_{ au}}(f)<\delta^2$. $\sum_{k\in II}(M_k(f)-m_k(f))\Delta x_k\leq \overline{S_{ au}}(f)-\underline{S_{ au}}(f)<\delta^2.\sum_{k\in II}\Delta x_k<\delta^2.$ $\sum_{k\in II}(M_k(\varphi(f))-m_k(\varphi(f)))\Delta x_k\leq 2l\cdot\sum_{k\in II}\Delta x_k\leq 2l\cdot\epsilon$, где l-ограничение по т. Вейерштрасса.

Следствие

f инт. на $[a,b] \implies |f|,f^k,k>0$ - инт. на $f^k,k\leq 0$ - интегриуруема, если f=0 в конечном числа точек.

Теорема об интегрируемости произведения функций

Теорема

Пуссть f,g - инт. на [a,b]. Тогда $f\cdot g$ инт. на [a,b].

Доказательство

$$(f-g)^2=f^2-2fg+g^2$$

- 1. Разность интегрируема
- 2. f^2, g^2 по следствию предыдущей теоремы интегируемы.

$$f\cdot g=rac{f^2-g^2-(f-g)^2}{2}$$
 - сумма интегрируемых функций.

Интеграл с переменным верхним пределом

🖺 Интеграл с переменным верхним пределом

Пусть
$$f$$
 инт. на $[a,b]$. ($\Longrightarrow \ \forall x \in (a,b)$ $\int\limits_a^x f(t)\,dt$ - существует.) Тогда $\Phi(x)=\int\limits_a^x f(t)\,dt$ - интеграл с переменным верхним пределом.

Теорема об ограниченности Φ

Теорема

Пусть f ограничена на [a,b]. Тогда Φ непрерывна и выполняется оценка $\exists C: |\Phi(x)-\Phi(y)| \leq C\cdot |x-y|, \ \forall x,y \in [a,b].$ - липшицевость.

Доказательство

Заметим, что из липшицевости следует непрерывность Φ (по определению непрерывности). Докажем только липшицевость.

Рассмотрим
$$|\Phi(x)-\Phi(y)|=|\int\limits_a^x f(t)\,dt-\int\limits_a^y f(t)\,dt|=|\int\limits_y^x f(t)\,dt|.$$

Рассмотрим $|\sum f(\xi_k)\Delta x)k| \leq \sum^w |f(\xi_k)|\Delta x_k \implies |\int^g f| \leq \int |f|$. Тогда выражение сверху можно оценить:

$$|\int\limits_y^x f(t)\,dt| \leq \int\limits_x^y |f(t)|\,dt \leq \{|f| \leq B\} \leq B \cdot \left|\int\limits_x^y \,dt
ight| = B(x-y)$$

Теорема о дифференцируемости Φ

Теорема

Пусть f непрерывна на [a,b]. Тогда $orall x_0 \in (a,b)$ — $\Phi'(x_0) = f(x_0)$

$$egin{aligned} \Phi'(x_0) &= \lim_{h o 0} rac{\Phi(x_0+h) - \Phi(x_0)}{h} \ &rac{\Phi(x_0+h) - \Phi(x_0)}{h} = rac{x_0}{h} \pm rac{f(x_0)}{h} \cdot h = \ &= rac{\int\limits_{x_0}^{x_0+h} f(t) \, dt - f(x_0) \cdot h}{h} + f(x_0) = rac{\int\limits_{x_0}^{x_0+h} (f(t) - f(x_0)) \, dt}{h} + f(x_0) \ &\left| rac{|phi(x_0+h) - \Phi(x_0)}{h} - f(x_0)
ight| = \left| rac{\int\limits_{x_0}^{x_0+h} (f(t) - f(x_0)) \, dt}{h}
ight| \leq \ &\leq rac{1}{h} \cdot \int\limits_{x_0}^{x_0+h} |f(t) - f(x_0)| \, dt \leq \{|t - x_0| \leq h\} \end{aligned}$$

f непрерывна: $orall \epsilon>0$ $\exists \delta: (|t-x_0|<\delta \implies |f(t)-f(x_0)|<\epsilon)).$ Возьмём произв. epsilon и найдём по нему δ . Возьмём $h<\delta$:

$$rac{1}{h}\cdot\int\limits_{x_0}^{x_0+h}\left|f(t)-f(x_0)
ight|dt\leq\left\{\left|t-x_0
ight|\leq h
ight\}\leqrac{1}{h}\int\limits_{x_0}^{x_0+h}\epsilon\,dt=\epsilon$$

Теорема: формула Ньютона-Лейбница

Теорема

Пусть f интегрируема (в смысле определённого интеграла) на [a,b] и имеет первообразную на этом отрезке на [a,b] ($F^{\prime}f$). Тогда

$$\int\limits_a^b f(x)\,dx = F(b) - F(a).$$

& Tip

Первообразная может быть и у неинтегрируемой по Риману функции:

$$F(x) = x^2 \sin(rac{1}{x^2}), x \in (0,1].$$

$$F'(x) = 2x \cdot \sin\left(rac{1}{x^2}
ight) + x^2 \cdot \cos(rac{1}{x^2}) \cdot \left(rac{2}{x^3}
ight) = 2x \sin\left(rac{1}{x^2}
ight) - rac{2}{x}$$

Рассмотрим равномерное разбиение [a,b] (на n равных частей), $\frac{b-a}{n}$ - длина отрезка разбиения. Рассмотрим разность

$$F(b)-F(a)=\sum_{1}^{n}(F(x_{k})-F(x_{k-1}))=$$
 $=\{F(x_{k})-F(x_{k-1})=F'(\xi_{k})(x_{k}-x_{k-1})$ - т. Лагранжа $\}=$ $=\sum_{1}^{n}f(\xi_{k})\Delta x_{k}=$ $=\sum_{1}^{n}f(\xi_{k})\cdot rac{(b-a)}{n}$ $\lim_{n o\infty}(F(b)-F(a))=\lim_{n o\infty}\sum_{1}^{n}f(\xi_{k})rac{(b-a)}{n}=\int_{a}^{b}f(x)\,dx$

Теорема - формула интегрирования по частям

Теорема

Пусть u и v - непрерывны и кусочно непрерывно дифференцируемы.

$$\int uv'\,dx = uvigg|_a^b - \int\limits_a^b vu'\,dx$$

Доказательство

По условиям теоремы, оба интеграла существуют как интегралы от кусочнонепрерывной функции.

(uv)'=u'v+uv' - за исключением конечного числа точек.

$$\int\limits_a^b (uv)' = \int\limits_a^b u'v + \int\limits_a^b uv'$$

Теорема: замена переменной

Теорема

Пусть функция f непрерына на отрезке $[x_1,x_2]$, а функция g - непрерывно дифференцируема на $[t_1,t_2]$, и $g(t_1)=x_1$, $g(t_2)=x_2$ и

$$g(t)\in [x_1,x_2], t\in [t_1,t_2]$$
. Тогда $\int\limits_{t1}^{t2}f(g(t))g'(t)\,dt=\int\limits_{x_1}^{x_2}f(x)\,dx.$

Доказательство

По условию f - непрерывна. Тогда существует F - первообразная f - по теореме о дифференцируемости интеграла с переменным верхним

пределом. (рассмотрим
$$|Phi(x) = \int\limits_{x_1}^x f(t)\,dt$$
 и $\Phi'(x) = f(x)$). Тогда по

формуле Ньютона-Лейбница
$$\int\limits_{x_1}^{x_2}f(x)\,dx=F(x_2)-F(x_1).$$
 Рассмотрим

функцию
$$F(g(t))$$
. Тогда $(F(g(t)))'=F'(g(t))\cdot g'(t)=f(g(t))\cdot g'(t)$. Тогда $F(g(t))$ - первообразная для $f(g(t))g'(t)$. Тогда по формуле Ньютона-

Лейбница
$$\int\limits_{t_1}^{t_2}f(g(t))g'(t)=F(g(t_2))-F(g(t_1))=F(x_2)-F(x_1).$$

Теоремы о среднем

🖹 Среднее значение функции на отрезке

Предположим, что f интегрируема на [a,b]. Предположим, что нужно

посчитать её среднее значение на отрезке. $\lim_{n \to \infty} \frac{\sum\limits_{k=1}^n f(\xi_k)}{n}$, где ξ_k - точки с отрезков разбиения. Домножим и поделим на (b-a). Тогда под пределом получается интегральная сумма для равномерного

разбиения, делённая на (b-a). Тогда получается $\dfrac{\int\limits_a^b f(x)\,dx}{b-a}$ - среднее значение функции на отрезке.

🖺 Среднее взвешенное функции на отрезке

Пусть arphi(x) - весовая функция, т.е. $arphi(x) \geq 0$ на [a,b] и интегрируема.

Тогда
$$\dfrac{\sum\limits_{k=1}^n \varphi(\xi_k)f(\xi_k)}{\sum\limits_{k=1}^n} \cdot \dfrac{(b-a)\cdot b}{(b-a)\cdot n} = \dfrac{\int\limits_a^b f(x)\varphi(x)\,dx}{\int\limits_a^b \varphi(x)\,dx}$$
 называется

средним взвешенным функции на отрезке

Замечание

Если f непрерывна, то f достигает $\min = m$ и $\max = M$, и по т. Коши о промежуточном значении $\exists \mu \in [m,M]: \exists x_0 \in [a,b]: \mu = f(x_0)$

Первая теорема о среднем

Теорема

Пусть f интегрируема на [a,b], arphi - весовая функция (≥ 0 и интегрируема), и $m \leq f \leq M$ на [a,b]. Тогда $\exists \mu \in [m,M]$, $\mu \cdot \int\limits_a^b arphi = \int\limits_a^b f \cdot arphi$. (отношение вот этого на вот это это среднее взвешенное)

Доказательство

1.
$$\int\limits_a^barphi=0$$
. Тогда $m\int\limits_a^b\leq\int\limits_a^bfarphi\leq M\int\limits_a^bf\cdotarphi$ (*). Тогда $0=0$.

1.
$$\int\limits_a^b \varphi=0$$
. Тогда $m\int\limits_a^b \leq \int\limits_a^b f \varphi \leq M\int\limits_a^b f \cdot \varphi$ (*). Тогда $0=0$.
2. $\int\limits_a^b \varphi \neq 0$. В (*) поделим на $\int\limits_a^b \varphi$. Тогда $m \leq \frac{\int\limits_a^b f \cdot \phi}{\int\limits_a^b \varphi} \leq M$

Пример

Важно, чтобы arphi сохраняла знак. Положим $f=x, arphi= ext{sign } x$ на отрезке [-1,1]. Тогда $\int\limits_{-1}^{ar{t}} x ext{sign } x \, dx = 1$. Применим теорему. $\int\limits_{-1}^1 x \mathrm{sign} x = \mu \int\limits_{-1}^1 \mathrm{sign} \; x = 0$, поэтому теорема не работает.

Вторая теорема о среднем

Теорема

Пусть на [a,b] функция f монотонно убывает (или возрастает), и φ интегрируема. Тогда $\exists \xi in[a,b]: \int\limits_a^b f\cdot \varphi=f(a)\int\limits_a^\xi \varphi(x)\,dx+f(b)\int\limits_\xi^b \varphi(x)\,dx$

Без доказательства.

Геометрические приложения интеграла

Площадь под графиком

$$egin{cases} x=x(t)\ y=y(t),\ t\in [t_1,t_2].$$
 Посчитаем $\int\limits_{x_1}^{x_2}y(x).\ \int\limits_{x_1}^{x_2}y(x)\,dx=\left\{egin{array}{c} x=x(t)\ dx=x'(t)\,dt
ight\}=\int\limits_{t_1}^{t_2}y(t)x'(t)\,dt. \end{cases}$

- 1. x непрерывно дифференцируема на $[t_1,t_2]$.
- $oldsymbol{2}.~y$ непрерывно дифференцируема на $[x_1,x_2]$
- 3. Для x(t) существует обратная функция t(x) на $[t_1,t_2]$. Тогда y(t)=y(t(x))=y(x)

Длина дуги кривой

Е Кривая

Кривой называется непрерывное отображение отрезка $[\alpha,\beta]$ на плоскость.

🖺 Спрямляемая кривая

Кривая L называется <mark>спрямляемой</mark>, если множество длин вписанных в неё ломаных l ограничено сверху.

При добавлении к разбиению отрезка $[\alpha, \beta]$ новых точек ломаная становится длиннее, и её длина приближается к длине кривой. Тогда спрямляемость равносильна наличию длины у кривой.

Тогда длина ломаной равна сумме длин её отрезков. Тогда её можно

посчитать по формуле
$$|l|=\sum\limits_{k=1}^n\sqrt{(x(t_k)-x(t_{k+1}))^2+(y(t_k)-y(t_{k+1}))^2}.$$

Пусть x и y непрерывно дифференцируемы. Тогда x' и y' - скорости, (x',y') - вектор скорости. По теореме лагранжа:

$$|l| = \sum_{k=1}^n \sqrt{(x'(\xi_k)\Delta t_k)^2 + (y'(\xi_k)\Delta t_k)^2} = \sum_{k=1}^n \sqrt{(x'(\xi_k))^2 + (y'(\eta_k))^2} \Delta t_k. \ |l| = \int\limits_a^b \sqrt{(x'(t))^2 + (y'(t))^2} \, dt.$$

Теорема о длине кривой

Теорема

Пусть x(t) и y(t) непрерывно дифференцируемы на [lpha,eta]. Тогда кривая

$$L=(x(t),y(t))$$
 - спрямляемая, и $|L|=\int\limits_{lpha}^{eta}\sqrt{(x'(t))^2+(y'(t))^2}\,dt$

Доказательство

$$(*)\ |l|=\{$$
по т. Лагранжа $\}=\sum\limits_{k=1}^n\sqrt{(x'(\xi_k))^2+(y'(\eta_k))^2}\Delta t_k$. Пусть $\sigma=\sum\limits_{k=1}^n\sqrt{(x'(\xi_k))^2+(y'(\xi_k))^2}\Delta t_k$. Тогда σ - интегральная сумма. Оценим $||L|-\sigma|=|\sum\limits_{k=1}^n(\sqrt{-\sqrt{)}\Delta t_k}|\leq$ В каждом из выражений координата x одинаковая. Тогда расстояние между ними равно разности координат y . $\{$ по нер-ву труегольника $\}\leq\sum\limits_{k=1}^n(y'(\xi_k)-y'(\eta_k))\Delta t_k$ $\leq\sum\limits_{k=1}^n(M_k-m_k)\Delta t_k=\overline{S}(y',\tau)=\underline{S}(y',\tau)\leq \varepsilon$, тогда y' интегрируема, т.к. непрерывна.

Мы показали, что длина ломаной близка к интегральной сумме, то есть $||l|-\sigma|<arepsilon$ при мелких au. Тогда $(*)\leq B\cdot\sum_1^n \Delta t_k$. Поэтому кривая спрямляема. Тогда $|l|pprox \rightarrow \mathrm{limits_a^b} \cdot \mathrm{dots}$. (интеграл из формулировки теоремы). Тогда |l|pprox |L| (опр. sup).

Покажем теперь, что $||L|-\int_{lpha}^{eta}|\leq |L|-|l||_{(1)}+||l|-\int_{lpha}^{eta}|_{(2)}$ (первый интеграл из условия теоремы.). Оценим (1) и (2) по отдельности. $(1)\ orall \epsilon>0 \exists l_e \quad |L|-|l_\epsilon|<\epsilon$. Если ломаная l меньше, чем l_ϵ , то мы вычтем

больше $|L|-|l|<\epsilon$ ю $(2)\ ||l|-\sigma|+|\sigma-\int_{\alpha}^{\beta}|\leq 2\varepsilon$ (выше показано, что первое слагаемое при мелких au меньше ϵ и второе меньше ϵ по по определению S). Тогда выполняется, что $\forall \epsilon>0 \quad ||L|-\int_{\alpha}^{\beta}|\leq |L|-|l||_{(1)}+||l|-\int_{\alpha}^{\beta}|_{(2)}<3\epsilon$. Но ϵ можно взять любой, а разность фиксирована, поэтому она равна нулю.

Численное интегрирование

Пусть известно k точек, в которых известны $f(x_k)$. Можно применить интерполяционный многочлен Лагранжа, построив многочлен p(x). Тогда можно интегрировать p(x).

🖺 Разделённая разность

Разделённой разностью первого порядка в узлах x_1, x_2 называется выражение $f(x_1,x_2)=\dfrac{f(x_2)-f(x_1)}{x_2-x_1}$. Разделённой разностью k-го порядка в узлах x_1,\ldots,x_{k+1} называется $\dfrac{f(x_2,\ldots,x_{k+1})-f(x_1,\ldots,x_k)}{x_{k+1}-x_1}$.

Пример: разделённая разность 2-го порядка. Возьмём узлы x_1, x_2, x_3 . $\frac{f(x_2, x_3) - f(x_1, x_2)}{x_3 - x_1}.$

🖹 Интерполяционный многочлен в форме Ньютона

$$N(x) = f(x_0) + f(x_0, x_1)(x - x_0) + \dots + f(x_0, \dots, x_n)(x - x_0) \dots$$
 (

Методы прямоугольников (многочлен 1-й степени)

- 1. Метод левых прямоугольников взять функции в левом конце отрезка, и посчитать площадь получившегося прямоугольника.
- 2. Метод средних прямоугольников взять среднее значение левого и правого конца отрезков.
- 3. Метод правых прямоугольников.

Метод трапеций

Многочлен первой степени. Посчитать площадь трапеции, построенной на точках $x_1,x_n,p(x_1),p(x_n)$. Тогда формула многочлена -

$$N(x)=f(x_1)+f(x_1,x_2)(x-x_1)=f(x_1)+rac{f(x_2)-f(x_1)}{x_2-x_1}(x-x_1).$$
 Проинтегрируем от $a=x_1$ до $b=x_2$: $f(a)b+rac{f(b)-f(a)}{2}(b+a)-f(b)a$

.