

Word Embeddings Tutorial

HILA GONEN
PHD STUDENT AT YOAV GOLDBERG'S LAB
BAR ILAN UNIVERSITY
5/3/18

Outline

- NLP Intro
- Word representations and word embeddings
- Word2vec models
- Visualizing word embeddings
- Word2vec in Hebrew
- Similarity
- Analogies
- Evaluation
- A simple classification example

NLP - Natural Language Processing

NLP is the field that includes

understanding

processing

analyzing

generating

natural languages

We aim to create applicative models that perform as similar as possible to humans

NLP

Applications in NLP:

- Translation
- Information Extraction
- Summarization
- Parsing
- Question Answering
- Sentiment Analysis
- Text Classification

And many more...

NLP challenges

This field encounters numerous challenges:

- Polysemy
- Syntactic ambiguity
- Variability
- Co-reference resolution
- Lack of data / huge amounts of data

NLP challenges - Polysemy

Book

Verb: **Book** a flight

Noun: He says it's a very good **book**

Bank

The edge of a river: He was strolling near the river **bank**

A financial institution: He works at the bank

Solution

An answer to a problem: Work out the solution in your head

From Chemistry: Heat the **solution** to 75° Celsius

NLP challenges – Polysemy

Kids make nutritious snacks

Kids, when cooked well, can make nutritious snacks

Kids make nutritious snacks

Kids know how to prepare nutritious snacks

NLP challenges – Syntactic Ambiguity

12 on their way to cruise among dead in plane crash

12 on their way to cruise, among dead in plane crash

same words – different meanings

NLP challenges – Syntactic Ambiguity

The cotton clothing, is usually made of grows, in Mississippi

The cotton clothing is usually made of grows in Mississippi

same words – different meanings

NLP challenges – Syntactic Ambiguity

Fat people eat accumulates

Fat, people eat, accumulates

same words – different meanings

NLP challenges – Variability

They allowed him to...

They let him ...

He was allowed to...

He was permitted to...

Different words – same meaning

NLP challenges – Co-Reference Resolution

Rachel had to wait for Dan because he said he wanted her advice.

This is a simple case...

There are more complex ones.

Dan called Bob to tell him about his surprising experience last week: "you won't believe it, I myself could not believe it".

NLP challenges – Data-related issues

A lot of data

In some cases, we deal with huge amounts of data

Need to come up with models that can process a lot of data efficiently

Lack of data

Many problems in NLP suffer from lack of data:

- Non-standard platforms (code-switching)
- Expensive annotation (word-sense disambiguation, named-entity recognition)

Need to use methods to overcome this challenge (semi-supervised learning, multi-task learning...)

Representation

We can represent objects in different hierarchy levels:

- Documents
- Sentences
- Phrases
- Words

We want the representation to be interpretable and easy-to-use

Vector representation meets those requirements

We will focus on word representation

The Distributional Hypothesis

The Distributional Hypothesis:

- words that occur in the same contexts tend to have similar meanings (Harris, 1954)
- "You shall know a word by the company it keeps" (Firth, 1957)

Examples:

- Cucumber, sauce, pizza, ketchup
- Soundtrack, lyrics, sang, duet

Vector Representation

We can define a word by a vector of counts over contexts, For Example:

	song	cucumber	meal	black
tomato	0	6	5	0
book	2	0	2	3
pizza	0	2	4	1

- Each word is associated with a vector of dimension |V| (the size of the vocabulary)
- We expect similar words to have similar vectors
- Given the vectors of two words, we can determine their similarity (more about that later)

We can use different granularities of contexts: documents, sentences, phrases, n-grams

Vector Representation

Raw counts are problematic:

• frequent words will characterize most words -> not informative

Except from raw counts, we can use other functions:

TF-IDF (for term (t) – document (d)):

$$TF - IDF(t,d) = \frac{count(t,d)}{|d|} \cdot \log \frac{|D|}{|\{d \in D : t \in d\}|} \quad \textit{D} - \text{set of all documents}$$

Pointwise Mutual Information:

$$PMI = \log \frac{p(x,y)}{p(x)p(y)}$$

From Sparse to Dense

These vectors are:

- huge each of dimension |V| (the size of the vocabulary ~ 100K +)
- sparse most entries will be 0

We want our vectors to be small and dense, two options:

- 1. Use a reduction algorithm such as SVD over a matrix of sparse vectors
- 2. Learn low-dimensional word vectors directly usually referred as "word embeddings"

We will focus on the second option

Word Embeddings

Each word in the vocabulary is represented by a low dimensional vector ($\sim 300d$)

All words are embedded into the same space

Similar words have similar vectors

(= their vectors are close to each other in the vector space)

Word embeddings are successfully used for various NLP applications

Uses of word embeddings

Word embeddings are successfully used for various NLP applications (usually simply for initialization)

- Semantic similarity
- Word sense Disambiguation
- Semantic Role Labeling
- Named entity Recognition
- Summarization
- Question Answering
- Textual Entailment
- Coreference Resolution
- Sentiment analysis
- etc.

Word2Vec

Models for efficiently creating word embeddings

Remember: our assumption is that similar words appear with similar context

Intuition: two words that share similar contexts are associated with vectors that are close to each other in the vector space

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, 2013. *Efficient estimation of word representations in vector space*. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean, 2013. *Distributed representations of words and phrases and their compositionality*. In Advances in neural information processing systems.

Word2Vec

Models for efficiently creating word embeddings

Remember: our assumption is that similar words appear with similar context

Intuition: two words that share similar contexts are associated with vectors that are close to each other in the vector space

Let x and y be similar words

Word2Vec

The input: one-hot vectors

• bananas: (1,0,0,0)

• monkey: (0,1,0,0)

• likes: (0,0,1,0)

• every: (0,0,0,1)

vocabulary size

|V| = 4

We are going to look at pairs of neighboring words:

CBOW – high level

The resulting projection matrix *P* is the embedding matrix

Goal: Predict the middle word given the words of the context

Skip-gram – high level

The resulting projection matrix *P* is the embedding matrix

Goal: Predict the context words given the middle word

Skip-gram – details

Vector representations will be useful for predicting the surrounding words.

Formally:

Given a sequence of training words $w_1, w_2, ... w_T$, the objective of the Skip-gram model is to maximize the average log probability:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

The basic Skip-gram formulation defines $p(w_{t+j}|w_t)$ using the softmax function:

$$p(w_{t+j}|w_t) = \frac{\exp(v'_{w_{t+j}}v_{w_t})}{\sum\limits_{i=1}^{T}\exp(v'_{w_i}v_{w_t})} \qquad v \text{ - input vector representations}$$

$$v' \text{ - output vector representations}$$

Negative Sampling

Recall that for Skip-gram we want to maximize the average log probability:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

Which is equivalent to minimizing the cross-entropy loss:

$$L = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log \frac{\exp(v'_{w_{t+j}}v_{w_t})}{\sum_{i=1}^{T} \exp(v'_{w_i}v_{w_t})}$$

This is extremely computational-expensive, as we need to update all the parameters of the model for each training example...

Negative Sampling

When looking at the loss obtained from a single training example, we get:

$$-\log p(w_{t+j}|w_t) = -\log \frac{\exp(v'_{w_{t+j}}v_{w_t})}{\sum\limits_{i=1}^{T} \exp(v'_{w_i}v_{w_t})} = \underbrace{-(v'_{w_{t+j}}v_{w_t})} + \log \sum\limits_{i=1}^{T} \exp(v'_{w_i}v_{w_t})$$

$$\text{"positive" pair} \qquad \text{"negative" pair}$$

When using negative sampling, instead of going through all the words in the vocabulary for negative pairs, we sample a modest amount of k words (around 5-20). The exact objective used:

$$\log \sigma(v'_{w_{t+j}}v_{w_t}) + \sum_{1=1}^k \log \sigma(-v'_{w_i}v_{w_t}) \longrightarrow \text{Replaces the term: } \log p(w_{t+j}|w_t)$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

28

Context Sampling

We want to give more weight to words closer to our target word

For a given window size C, we sample R in [1, C] and try to predict only R words before and after our target word

For each word in the training we need to perform 2*R word classifications (R is not fixed)

Subsampling of Frequent Words

In order to eliminate the negative effect of very frequent words such as "in", "the" etc. (that are usually not informative), a simple subsampling approach is used:

Each word w_i in the training set is discarded with probability: $P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}$

This way frequent words are discarded more often

This method improves the training speed and makes the word representations significantly more accurate

Phrases

These models are unable to represent phrases that are not compositions of the individual words

```
"New York" != "New" + "York"
```

"Boston Globe" != "Boston" + "Globe"

The extension is simple:

- Find words that appear frequently together, and infrequently in other contexts
 - phrases are formed based on the unigram and bigram counts

$$score(w_i, w_j) = \frac{count(w_i w_j) - \delta}{count(w_i) \times count(w_j)}$$

- The bigrams with score above the chosen threshold are then used as phrases
- "New York Times" will be replaced with a unique token, "this is" will remain unchanged
- Train word2vec as usual

Use word2vec package

Using this package is extremely simple:

- Download the code from Mikolov's git repository:
- https://github.com/tmikolov/word2vec
- Compile the package
- Download the default corpus (wget http://mattmahoney.net/dc/text8.zip) or another corpus of your choice
- Train the model using the desired parameters

Jupyter: code for downloading, compiling, and training

Importance of Parameters – window size

Word: walk Window size = 3 Window size = 30

Word	Cosine distance	Word	Cosine distance
go	0.488083	walking	0.486317
snipe	0.464912	walked	0.430764
shoot	0.456677	walks	0.406772
fly	0.449722	stairs	0.401518
sit	0.449678	go	0.399274
pass	0.442459	sidewalk	0.385786
climbs	0.440931	stand	0.380480
walked	0.436502	cortege	0.371033
ride	0.434034	wheelchair	0.362877
stumble	0.426750	strapped	0.360179
bounce	0.425577	hollywood	0.356544
travelling	0.419419	carousel	0.356187
walking	0.412107	grabs	0.356007
walks	0.410949	swim	0.355027
trot	0.410418	breathe	0.354314
leaping	0.406744	tripped	0.352899
sneak	0.401918	cheer	0.352477
climb	0.399793	moving	0.350943
move	0.396715	inductees	0.347791
wait	0.394463	walkway	0.347164
going	0.391639	shout	0.346229
shouted	0.388382	pounding	0.340554
roam	0.388073	blvď	0.339121
thrown	0.384087	crowd	0.338731
get	0.383894	levada	0.334899

Importance of Parameters – iterations

Word: walk No. of iterations = 1 No. of iterations = 100

Word	Cosine distance	Word	Cosine distance
walking	0.851438	walked	0.483473
walks	0.846485	ride	0.470925
bat	0.843796	walks	0.470889
ride	0.830734	stand	0.449993
crowd	0.821692	walking	0.449071
quiet	0.812538	go	0.430172
spot	0.802777	shoot	0.421110
steal	0.787917	get	0.404258
door	0.787571	move	0.403757
doors	0.786485	live	0.403347
bed	0.773686	fly	0.400929
dinner	0.772160	climbs	0.396346
shadow	0.769573	throw	0.391768
luck	0.768221	climb	0.384038
baby	0.767862	wiggle	0.380892
shoot	0.765968	thrown	0.380426
walked	0.765739	pull	0.375478
sitting	0.765394	goes	0.375406
shirt	0.759116	moving	0.374447
rides	0.759047	pass	0.372463
watching	0.755140	conversing	0.364413
watch	0.750808	sit	0.362765
gehrig	0.741494	crowd	0.361651
shoots	0.740971	kiss	0.359883
looking	0.740904	stay	0.357015

Importance of Parameters – dimensions

Word: walk No. of dimensions = 5

No. of dimensions = 1000

Word	Cosine distance	Word	Cosine distance
catcher	0.998074	walks	0.304954
shirt	0.996589	walked	0.303322
lechuck	0.995313	snipe	0.287221
bullseye	0.994644	walking	0.272690
bowler	0.994381	ride	0.266770
punter	0.993154	canter	0.251025
lovell	0.992815	bandleaders	0.246454
heels	0.992255	climbs	0.233725
whip	0.992085	catapulted	0.230075
outfit	0.992047	climb	0.229263
tore	0.991924	trot	0.228362
steals	0.991524	shouted	0.227306
guybrush	0.991166	stand	0.223288
gigs	0.990291	seagulls	0.221745
hanging	0.990201	fly	0.216602
burns	0.990043	fences	0.216366
backing	0.989966	lifts	0.215402
orser	0.989960	pray	0.214977
torch	0.989747	paws	0.214865
beat	0.989435	bounces	0.214449
showdown	0.989381	shoot	0.213457
feat	0.989242	grabs	0.212018
cheers	0.988951	walkway	0.211136
clad	0.988646	swim	0.209120
lunch	0.988326	tumble	0.207765

How does the file usually look like

Word embedding files in readable format usually have a row for each word in the vocabulary

In each row, the specific word is followed by the values of the respected vector

Possibly some additional information in the first rows

Visualizing word embeddings

Using tSNE

Visualizing Data using t-SNE, Maaten and Hinton, 2008

Jupyter: Loading and Visualizing word vectors

Visualizing word embeddings- Word2Vec

Visualizing word embeddings - Glove

Wevi: word embedding visual inspector

A tool that visualizes the basic working mechanism of word2vec

https://ronxin.github.io/wevi/

A too https:

ctor

l2vec

WIDS - NLP TL

Word2Vec - Hebrew

Link: http://u.cs.biu.ac.il/~yogo/tw2v/similar/ (By Ron Shemesh and Yoav Goldberg)

Based on tweets in Hebrew

Word2Vec - Hebrew

Ok... Nice.

But:

What about מטרה vs. מטרה which are synonyms?

Noun genders dramatically affect results -

We do not want that, or at least not for arbitrary gender

מטרה חפש יעד

Word2Vec

Ok... Nice.

But:

What about יעד vs.

Noun genders drar

We do not want th

שכיחות	מילה	דימיון		שכיחות	מילה	דימיון
8136	יעד	100.0		19358	מטרה	100.0
535	כיעד	70.6		2658	שאיפה	74.5
1476	ק <mark>רי</mark> טריון	65.2		9828	משימה	71.9
6366	נכס	63.6		61495	הזדמנות	69.1
10784	מודל	61.6		105895	סיבה	66.2
158	ויעד	61.6		8805	אלטרנטיבה	70.5
3626	תרחיש	60.5		1613	נוסחה	70.7
11644	היעד	60.0		11916	שיטה	70.0
17600	הישג	59.2		237	נוסחא	70.5
46	כסיכון	59.4	onyı	4714	אסטרטגיה	70.0
2528	סטנדרט	58.7		7000	אג'נדה	67.9
38259	פתרון	57.1		681	יישות	67.4
1470	תמריץ	56.8		496	תפישה	67.4
278883	מקום	51.3	, —	3684	פלטפורמה	67.0
37	ק <mark>רטר</mark> יון	56.2	arbi	39317	נקודה	65.1
95	ובינלאומי	56.0	arbi	19288	גישה	65.6
13	ואקסקלוסיבי	56.0		196	דוקטרינה	66.4
237	ייתרון	55.8		44	אסטרטגייה	66.0
23446	שטח	55.3		21334	בחירה	64.9
5116	רף	55.1		4492	תפיסה	65.6
12953	יתרון	54.6		3168	חלופה	65.6
24049	מהלך	54.1		9034	הגדרה	65.3
11696	פוטנציאל	54.2		39166	אפשרות	62.9
31019	כיוון	53.9		1900	ישות	64.6

Word2Vec - Hebrew

Another example:

בצרה

בצל

Prefixes and suffixes are not always handled correctly

Also, not always clear what the wanted behavior is

בצל חפש חפש בצרה דימיון מילה דימיון מילה שכיחות 100.0 בצל 23556 1624 100.0 בצרה Word2V 1574 79.8 רבצל 4622 60.6 במצוקה 63.3 וסלרי 103 8617 50.2 בבעיה 27207 56.8 מרק 13472 44.5 בסביבה 314 ובזיליקום 61.7 3026 47.2 בצרות Another examp 61.5 ופטרוזיליה 286 3730 46.2 בהכרה 17טערד 61.4 9296 42.7 בסכנה בצרה 5301 59.8 ברוטב 85 1.46 ומרעננה 45 60.7 וזוקיני 181 46.0 בקרבתם 45.8 באחווה 127 60.2 בחרדל 184 בצל 335 וכוסברה 59.9 97 45.5 בקירבה 60.0 וזעתר 45.5 ונטועה 185 16 סלק 59.1 45.5 משמאלם 3523 58.2 רוטב 7020 1742 44.8 בחובות Prefixes and sur ולימון 59.1 /s handlec 1723 96 45.1 בטובתם 298 58.9 קונפי 1852 44.1 במיצוט 1610 44.2 בגלות 58.9 וברוקולי Also, not alway. anted beh 4082 43.0 מאחוריך 43.1 בבועה 2503 58.6 ואורגנו 27 בבוטניקה 43.7 88 ואספרגוס 58.6 150 43.5 בפרנויה 58.3 ופרמזן 147 775 43.2 מאופקים 270 58.1 כתוש 58.1 וסלק 235 43.3 ובריאותו 135 פורטבלו 58.0

Word2Vec – Hebrew

Word embeddings include inherent biases, as a result of biases in the corpus (not only in Hebrew...)

For example, רופאה vs. רופאה

Word2Ve

Word embedding: (not only in Hebre For example, רופא

חפש			רופאה		חפש			רופא	
	שכיחות	מילה	דימיון			שכיחות	מילה	דימיון	
	4307	רופאה	100.0			31223	רופא	100.0	
	3064	הרופאה	74.4	\		368	אורתופד	85.1	
	2407	מטופלת	73.2	VV		511	כירורג	82.0	
	64	פציינטית	72.3			3270	פסיכיאטר	79.4	
	457	וטרינרית	72.1	h:0000		207	נוירולוג	78.0	. i.a. +la.a. a.a.waa
	1242	קוסמטיקאית	71.9	oiases, a		17732	הרופא	74.6	s in the corpus
	80	עו"סית	71.6			1772	וטרינר	76.3	
	453	כאחות	71.3			218	אורולוג	76.4	
	2470	פקידה	70.9			5093	פסיכולוג	73.1	
	3860	תלמידה	69.5			298	קרדיולוג	72.6	
	440	מיילדת	69.5			454	אורטופד	69.8	
	1748	מדריכה	69.1			12820	לרופא	66.1	
	304	רוקחת	69.1			6271	מטופל	66.7	
	530	מדענית	68.6			175	כירופרקט	66.7	
	43	קרדיולוגית	68.3			50	סקסולוג	66.6	
	2529	יולדת	67.9			47	פנימאי	66.3	
	1237	שיננית	67.5			106	סטאז'ר	66.0	
	5575	סטודנטית	67.4			1140	גניקולוג	65.3	
	4402	גננת	67.2			309	פתולוג		
	749	פיליפינית	67.0			52	3.8.8	64.4	
	329	הוטרינרית	66.7			980	הוטרינר		
	25801	אחות	66.0			4307			
	168	פרופסורית	66.5			450	ורופא		
	182017	אישה	61.3			1630	פסיכיאטרי		

Other pre-trained word embeddings

Glove (Pennington et al.):

- Based on ratios of co-occurrence probabilities
- https://nlp.stanford.edu/projects/glove/

Fast-text (Bojanowski et al.):

- Each word is represented as a bag of character n-grams. A vector representation is associated to each character n-gram, and words are represented as the sum of these representations
- https://fasttext.cc/

Similarity

In order to evaluate word embeddings on similarity tasks, we first need to define "similarity"

There are many different ways to define "similarity" and "correlation" between words...

- walk walking, walk run, walk stroll
- Germany Berlin, Germany England
- ∘ dog cat, dog Labrador, dog leash

This is still an open issue...

Similarity measure

The distance between two vectors is not a good measure

We do not want to take the length of the vector into account

Most popular similarity measure is Cosine similarity:

 \circ The similarity between two vectors v and w is:

$$\frac{v \cdot w}{||v|| ||w||}$$

Similarity

Jupiter: find topK

Similarity

You can't always get what you want...

walk - Top5 similar words:

walked, walks, walking, climbs, ride

book – top5 similar words:

books, chapter, novel, abridged, autobiography

Analogies

These models are capable of learning linguistic regularities

For example,

```
vector("king") - vector("man") + vector("woman") ≅ vector("queen")
```

vector("mice") - vector("mouse") + vector("door") ≅ vector("doors")

Jupyter: Analogies

Analogies

How does it work?

Given the analogy $a:a^*,b:b^*$, where word b^* is to be found, we try to maximize the following objective:

$$\arg\max_{b^* \in V} (sim(b^*, b - a + a^*)) \longrightarrow \arg\max_{b^* \in V} (cos(b^*, b - a + a^*))$$

When vectors are normalized, this is equivalent to:

$$\arg \max_{b^* \in V} (\cos(b^*, b) - \cos(b^*, a) + \cos(b^*, a^*))$$

We actually search for a word that is similar to b, and a^* , but different from a

Linguistic Regularities in Sparse and Explicit Word Representations, Levy and Goldberg, 2014

Analogies

This does not always work that well...

Naturally, depends on the corpus and the hyper-parameters

Additionally, in some cases, specific aspect of relations might dominate others:

London : England , Baghdad : ? — Mosul (instead of Iraq)

Here, even though Iraq is more similar to England than Mosul, the similarity of Mosul to Baghdad dominates, making Mosul the best candidate

A possible solution – use multiplication instead of summation (equivalent to using *log* values):

$$\arg\max_{b^* \in V} \frac{\cos(b^*, b)\cos(b^*, a)}{\cos(b^*, a^*) + \epsilon}$$

Linguistic Regularities in Sparse and Explicit Word Representations, Levy and Goldberg, 2014

Evaluation

Intrinsic Evaluation:

1. Syntactic and semantic analogies:

Athens: Greece; Oslo:?think: thinking; read:?mouse: mice; door:?

2. Word correlation benchmarks with human scores (wordsim353, simLex999):

word1	word2	Human score
train	car	6.31
drink	ear	1.31
gem	jewel	8.96

Extrinsic evaluation:

Show Improvement on downstream tasks when using word embeddings

Classification with word embedding

An optional use of word embedding is a simple classification:

Say we have a short list of professions, and we want to elaborate it

We can run a simple classification model with sklearn

- Use the short list as positive examples
- Add random negative example
- Learn a classification model
- Predict True/False for new words from the vocabulary

Jupyter: Classification example

Biases in word embeddings

A very nice tutorial about word embedding biases:

How to make a racist AI without really trying

https://gist.github.com/rspeer/ef750e7e407e04894cb3b78a82d66aed

Conclusion

Word embedding:

- A powerful word representation
- Easy to incorporate into different models

Can capture word similarities and linguistic regularities

Existing models have their limitations

Need to custom training parameters according to the desired properties and similarities

Questions?

Word	Cosine	distance
question		0.744367
answers		0.577580
doubts		0.535749
answer		0.521965
concerns		0.492096
issues		0.487333
unanswered		0.457177
discussions		0.454697
answering		0.448383
matters		0.446861
debates		0.439423
statements		0.433208
objections		0.429943
issue		0.424728
debate		0.421695
conclusions		0.421594
inquiries		0.419190
problem		0.419025
answered		0.414844
responses		0.412600
arguments		0.410255
problems		0.406869

Thank you!