Grade 10 Science

Light and Geometric Optics
Class 12

Lenses

- Converging Lens lens that is thickest in the middle and causes incident parallel light rays to converge through a single point
 - Diverging Lens lens that is thinnest in the middle and that causes the incident parallel light rays to spread apart

Terms in Converging Lens

- Optical Centre the centre of the lens
- Principal Axis the line perpendicular to the lens
- **Principal Focus** the point where light rays converge after refraction

Terms in Diverging Lens

• **Principal Focus** – where the diverging lines converge backwards

 Secondary Principal Focus (F') – the other side of the lens; the same distance apart from the lens as

Emergent Ray

 Emergent Ray – the light ray that leaves a lens after refraction

Locating an Image - Converging

Figure 2 Imaging rules for a converging lens

- A ray parallel to the principal axis is refracted through the principal focus (F).
- (2) A ray through the secondary principal focus (F') is refracted parallel to the principal axis. This rule comes from the reversibility of light.
- 3 A ray through the optical centre (0) continues straight through without being refracted. This is true because the middle part of the lens acts like a very thin rectangular prism with no noticeable sideways displacement.

Note: Only true for thin lenses

Table 1 The Imaging Properties of a Converging Lens

OBJECT	IMAGE			
Location	Size	Attitude	Location	Туре
beyond 2F'	smaller	inverted	between 2F and F	real
at 2 <i>F'</i>	same size	inverted	at 2F	real
between 2F' and F'	larger	inverted	beyond 2F	real
at F'	no clear image			
inside F'	larger	upright	same side as object (behind lens)	virtual

Locating an Image - Diverging

Figure 6 Imaging rules for a diverging lens

- A ray parallel to the principal axis is refracted as if it had come through the principal focus (F).
- ② A ray that appears to pass through the secondary principal focus (F') is refracted parallel to the principal axis.
- 3 A ray through the optical centre (0) continues straight through on its path.

The Lens Equation

- Besides a diagram, you can also use algebra to determine the characteristics of an image
- Variables:
 - $-d_0$ = distance from the object to the optical centre
 - $-d_i$ = distance from the image to the optical centre
 - $-h_0$ = height of the object
 - $-h_i$ = height of the image
 - f = focal length of the lens; distance from the optical centre to the principal focus

The Thin Lens Equation

$$\frac{1}{d_0} + \frac{1}{d_i} = \frac{1}{f}$$

- Object distances (d₀) are always positive
- Image distances (d_i) are positive for real images (opposite side) and negative for virtual (same side)
- The focal length is positive for converging lenses and negative for diverging lenses

Checkpoint

- a) A converging lens has a focal length of 17cm. A candle is located 48cm from the lens. What type of image will be formed and where will it be located?
- b) A diverging lens has a focal length of 29cm. A virtual image of a marble is located 13cm in front of the lens. Where is the marble located?

The Magnification Equation

$$M = \frac{h_i}{h_0} = -\frac{d_i}{d_0}$$

- Object (h₀) and image (h_i) heights are positive when measure upward from the principal axis and negative when measured downward
- Magnification is positive for an upright image and negative for an inverted image

Checkpoint

- a) A toy of height 8.4cm is balanced in front of a converging lens. An inverted, real image of height 23cm is noticed on the other side of the lens. What is the magnification of the lens?
- b) A coin of height 2.4cm is placed in front of a diverging lens. An upright, virtual image of height 1.7cm is noticed on the same side of the lens as the coin. What is the magnification of the lens?

Table 1 Sign Conventions for Lenses

Variable	Positive	Negative			
(object distance) $d_{_{0}}$	always	never			
(image distance) d _i	real image (image is on opposite side of lens as object)	virtual image (image is on same side of lens as object)			
(height of object) $h_{_{\scriptscriptstyle 0}}$	when measured upward	when measured downward			
(height of image) h _i	when measured upward	when measured downward			
(focal length) f	converging lens	diverging lens			
(magnification) M	upright image	inverted image			