Linear Algebra Homework

Section 1

- 1. Let $u, v \in \mathbb{R}^n$. Show that $u^T v = v^T u$.
- 2. Let A be an $n \times n$ matrix. Let B be a matrix such that BA = I, and let C be a matrix such that AC = I. Show that B = C.
- 3. Let V_F be a vector space over the field F. Recall the axioms for the inner product as follows. For $u, v, w \in V_F$ and $\alpha, \beta \in F$:
 - a. $\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle$
 - b. $\langle u, v \rangle = \overline{\langle v, u \rangle}$
 - c. $\langle u, u \rangle \ge 0$ where $\langle u, u \rangle = 0$ if and only if u = 0.

Show that $\langle u, \alpha v + \beta w \rangle = \bar{\alpha} \langle u, v \rangle + \bar{\beta} \langle u, w \rangle$.

4. A matrix A is said to be symmetric if and only if $A = A^T$. Assuming A is both symmetric and invertible. Show that A^{-1} is also symmetric.

Section 2

For Section 2, consider the following matrices.

$$X_{n imes d}$$
 $A_{d imes q}$ $B_{q imes r}$ $C_{r imes s}$ $D_{s imes t}$ $M_{t imes u}$ $N_{u imes k}$ $P_{n imes k}$ $Y_{n imes k}$ $V_{n imes 1}$ $S_{n imes q}$ $T_{n imes r}$ $U_{n imes s}$ $W_{n imes t}$ $Z_{n imes u}$

Determine the dimensionality of the result of each following expression. If the given expression is undefined, state that the dimensions are undefined.

- 1. $N(P-Y)(P \odot Y)^T$
- 2. $XAS^TNZ \odot ZM^TM$
- 3. $VV^T(P+Y)N^T \odot ZZ^TZ$
- 4. $(SBC \odot U)^T \odot U^T$
- 5. $A X^T \left[\left(\left(\left((P Y)N^T \odot Z \right) M^T \odot W \right) D^T \odot U \right) C^T \odot T \right) B^T \odot S \right]$