2 차 프로젝트 기획안

2024년 04월 23일

● 과정명: ROS2 와 인공지능을 활용한 자율주행 로봇 개발자 양성과정

● 과정 기간: 2024.02.19 ~ 2024.08.09

팀명	IOT 프로젝트 2 조 산지직송 Team	
팀원	채희곤, 현혜지, 홍권호, 이유민	
프로젝트 주제	상품 등급에 따른 인식 및 수거 로봇 제어	
기술 키워드	 3 가지 메인 센서들 인식 I/O 상태에 따른 GUI 관리 아두이노 보드와 메인 PC 간 블루투스 양방향 통신 서보 모터값을 활용한 로봇팔 구동 제어 카메라 렌즈 반환값 및 모터 드라이버를 활용한 로봇차 구동 제어 	
프로젝트 목적	지난 IOT 수업 때 배운 아두이노 보드를 활용한 간단한 임베디드 시스템 제어 및 pyqt5를 활용한 GUI 관리를 구현하고자한다. 이를 위해 아두이노 보드와 메인 PC 간 블루투스 양방향 통신을 기반으로 메인 센서들에 입력된 I/O 상태를 활용한다. 또한, 로봇이 주행 중인 상태에서 RC 카와 로봇 팔 구동 부 동작을 구현하기 위해 아두이노 보드와 서보 모터들, 카메라 센서 및 컬러 센서 등 간의 시리얼 통신을 한다.	

	● 개발일정: 2024.04.17 ~ 2024.04.25		
	● 채희곤:		
	■ Login, Register, 및 Main window GUI 코드 작성		
	■ AWS RDS, ATLAS, JIRA 및 Git Hub 등 협업 툴 환경		
	설정 및 관리		
	■ PPT 문서 작업		
프로젝트 수행 방향			
	● 현혜지:		
(개발일정 및	■ Login, Register, 및 Main window GUI 코드 작성		
역할분담)	■ 메인 PC 와 Arduino Board 간 통신 제어		
	● 홍권호:		
	■ RC 카 및 로봇 팔 하드웨어 설계		
	■ RC 카 및 로봇 팔 Arduino IDE 코드 작성		
	● 이유민:		
	■ RC 카 및 로봇 팔 하드웨어 설계		
	■ RC 카 및 로봇 팔 Arduino IDE 코드 작성		
	● 개발환경: Ubuntu 22.04		
	● 소프트웨어 프로그램: VSCODE, PYQT5, Arduino IDE		
프로젝트 수행 도구	● 하드웨어: Arduino MEGA 2560 Board, Arduino 4WD 주행로봇		
(게바 하거)	프레임 세트 [SZH-EK098]		
(개발 환경)	● 협업 툴: VSCODE, AWS RDS, FIGJAM, Git, GitHub, ATLAS, JIRA,		
	SLACK		
	● 기타: 3D 프린터		
	● RFID 리더기에서 읽어온 TAG 데이터를 입력 값으로 활용하여		
	GUI 상 로그인 알고리즘 구현 및 실시간 DB 데이터 업데이트		
	구현		
	● 각 실행 파일에서 메인 센서들이 인식한 I/O 상태를 이벤트		
필수 기능	시그널로써 메인 실행 파일에 전달하여 참 조건의 시그널에 대해		
(주요 구현 기능)	목표 I/O 상태 업데이트		
(1-12:10)	● 컬러 센서가 인식한 상품에 대한 출력 값에 따라 양품 혹은		
	불량품 등급을 시리얼 통신을 통해 아두이노와 메인 PC 에 전달		
	및 방향과 속도를 나타내는 아날로그 값을 로봇 팔 서보 모터에		
	입력 값으로 활용하여 로봇 팔 정돈 동작 구현		
	● 허스키 렌즈가 인식한 작업자에 대한 bounding box 정보를		

	아두이노와 메인 PC에 전달 및 작업자 이동 상태에 따른 모터 드라이브 제어를 통해 RC 카 이동 동작 구현		
수행 계획 및 예상 결과물	수행계획	예상 결과물	
	시스템 구성도 및 기능리스트	제품 설계도, HW/SW 구성도 및	
	작성	기능리스트	
	협업 툴 환경 구축	구축 완료된 AWS RDS, ATLAS 및 GitHub 등	
	로그인 알고리즘 GUI 구현	다중 화면 전환 기반 Login 및 Register window, Home 및 Manager window 프로그램 파일	
	PC 및 보드 통신 테스트	블루투스 통신 프로토콜 기반 프로그램 파일	
	허스키렌즈 객체 추적 테스트	타겟 객체 bounding box 정보 활용 프로그램 파일	
	컬러 센서 상품 등급 테스트	상품 등급 나타낼 RGB 값 활용 프로그램 파일	
	하드웨어 설계 및 조정	RC 카와 로봇 팔 설계 및 동작 미세 조정	
	로봇 팔 동작 테스트	상품 등급 판별 목적의 로봇 팔 정돈 기능 구현	
	RC 카 동작 테스트	타겟 객체 인식 및 추적 목적의 RC 카 이동 기능 구현	
	RC 카 및 로봇 팔 동시 동작	블루투스 및 시리얼 통신 기반의	
	테스트	RC 카 및 로봇 팔 동작 기능 구현	