

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS Instituto de Ciências Exatas e de Informática

Exercício prático Arquitetura de Computadores II

Vitor Costa Oliveira Rolla

Pontifícia Universidade Católica de Minas Gerais

Resumo

O projeto consiste no desenvolvimento de um sistema integrado para simulação e execução de operações de uma Unidade Lógica Aritmética (ULA) de 4 bits. Este sistema é dividido em duas partes principais: um hardware externo implementado em Arduino e um software para PC que atua como interface de usuário e compilador.

1 Hardware Externo (Arduino)

O componente de hardware externo é uma **ULA de 4 bits** projetada para operar com dois operandos de 4 bits, denominados A e B, e uma instrução de 4 bits. A ULA é implementada em um microcontrolador Arduino e possui as seguintes características:

- Entradas: Recebe dados (operandos A e B) e instruções através da porta serial do Arduino. Os valores são interpretados em formato hexadecimal.
- Saídas: O resultado das operações da ULA é exibido em quatro LEDs, conectados aos pinos digitais 13, 12, 11 e 10 do Arduino, representando o bit mais significativo (MSB) ao menos significativo (LSB), respectivamente.
- Conjunto de Instruções: A ULA suporta um conjunto específico de 16 instruções lógicas e aritméticas, conforme detalhado na Tabela 1.

OD 1 1	-1	α .	1 7	r , ~	1	TTT A
Tabela	١.	(Conjunto	do l	Instrucões	da	ΙΙΙ.Δ
1 (1) (1) (1)	1.	CAMILLANDO	(1(/	ロロっし いしんきょう	VIC.	() 1111

Função	Mnemônico	Código Hexa
Lógico um	umL	0
Lógico zero	zeroL	1
A+B	AonB	2
A'+ B'	nAonB	3
(A.B)	AeBn	4
В'	nB	5
A,	nA	6
nAxnB	nAxnB	7
$A \oplus B$	AxB	8
A copiaA	copiaA	9
B copiaB	copiaB	A
A.B	AeB	В
A.B'	AenB	С
A'.B	nAeB	D
A+B	AoB	E
(A'.B)'	nAeBn	F

- Memória Interna: O programa do Arduino gerencia um vetor de memória que atua como registradores e área de programa. As quatro primeiras posições são dedicadas a variáveis de controle e dados:
 - PC (Program Counter): Índice da instrução atual na memória.
 - W: Armazena o resultado da última operação da ULA.

- X: Armazena o operando A.
- Y: Armazena o operando B.
- Execução de Programa: O Arduino é capaz de carregar um programa (sequência de instruções) na memória, executar as instruções sequencialmente, atualizar os valores das variáveis na memória e exibir o estado da memória (DUMP) após cada execução de instrução nos LEDs e na saída serial.

2 Software para PC

O software para PC, a ser desenvolvido em linguagens como C, C++, C#, Java ou Python, serve como uma interface para o usuário interagir com a ULA do Arduino. Suas funcionalidades incluem:

- Leitura de Programa Fonte: Lê um arquivo de texto (.ula) contendo o programa em mnemônicos (ex: testeula.ula).
- Geração de Código Hexadecimal: Transforma o programa fonte em um arquivo de código hexadecimal (.hex), onde cada linha representa os valores (operandos e instrução) a serem enviados para o Arduino (ex: testeula.hex).
- Comunicação Serial: Envia os dados e instruções do arquivo hexadecimal para o Arduino via porta serial, permitindo a execução remota do programa na ULA.

3 Fluxo de Operação

O ciclo de operação do sistema envolve a criação de um programa fonte pelo usuário, sua conversão para código hexadecimal pelo software no PC, o envio desse código para o Arduino, onde é carregado na memória e executado pela ULA. Os resultados são visualizados nos LEDs do Arduino e monitorados através de dumps de memória na saída serial.

Este projeto visa demonstrar a compreensão da arquitetura de computadores, programação de microcontroladores e desenvolvimento de software de interface, com ênfase na clareza do código e na correta implementação das especificações da ULA.

4 Arduino

Figura 1: Circuito Tinkercad