在名	鉄
李号	本
班	本
級	
小	
华院	% ₹

 \leftarrow

 \mathbb{K}

四川轻化工大学试卷(2018至2019学年第一学期)

课程名称: 高等数学 A1 (A 卷)

命题教师: 杨 勇

适用班级: 18级理工科本科

考	试	(考查	:): 🛪	考试		2	2019 년	手月	J	日	共 6	页	
是另		—	11	11	四	五	六	七	<	九	总分	评阅(分) 教	统师
名													

注意事项:

- 1、满分100分。要求卷面整洁、字迹工整、无错别字。
- 2、考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。
- 3、考生必须在签到单上签到, 若出现遗漏, 后果自负。
- 4、如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。

试 题

得分	评阅教师

一、单选题(请将正确的答案填在对应括号内, 每题 3 分, 共 18 分)

- (A) 可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 连续点
- 2. 当 $x \to 0$ 时, 函数 $y = (1 \cos x) \ln(1 + x)$ 关于 x 的阶数为 ().

(A) 1 (B) 3; (C)
$$\frac{1}{2}$$
; (D) 2

3. 已知
$$\lim_{x\to 1} \frac{x^2 + ax + b}{x-1} = 3$$
,则 a,b 的值为()

(A).
$$a = 1$$
, $b = -2$; (B). $a = -1$, $b = -2$

(C).
$$a = -1$$
, $b = 2$; (D). $a = 1$, $b = 2$

4. $\aleph a > 0$, $\iiint_{-a}^{a} (\frac{\sin x}{1+x^2} + \sqrt{a^2 - x^2}) dx = ($

$$(A)$$
 a^2

$$(B)$$
 $\frac{\pi}{2}a$

$$(C)$$
 πa

(A)
$$a^2$$
 (B) $\frac{\pi}{2}a^2$ (C) πa^2 (D) $\frac{1}{4}\pi a^2$

5. 微分方程 $y'' - 3y' + 2y = 2e^{2x}$ 的一个特解可设为(其中 a,b 为常数)(

$$(A) \quad y^* = axe^{2x}$$

(B)
$$y^* = ae^{2x}$$

(C)
$$y^* = (ax + b)e^{2x}$$

(D)
$$y^* = ax^2e^{2x}$$

6. 若在[0,1]上有f(0)=g(0)=0, f(1)=g(1)=a>0, 且f''(x)>0, g''(x)<0, 则

$$I_1 = \int_0^1 f(x)dx$$
, $I_2 = \int_0^1 g(x)dx$, $I_3 = \int_0^1 axdx$ 的大小关系是(

A.
$$I_1 \ge I_2 \ge I_3$$
;

B.
$$I_3 \ge I_2 \ge I_1$$

$$\textbf{C.} \quad I_2 \geq I_3 \geq I_1 \; ; \qquad \qquad \textbf{D.} \quad I_2 \geq I_1 \geq I_3$$

D.
$$I_2 \ge I_1 \ge I_3$$

得分	评阅教师

二、填空题(请将正确的结果填在横线上. 每题 3 分, 共 24 分)

1. 设
$$y = f(x)$$
 满足 $y = 1 + xe^y$, 则 $dy =$ _____

2.
$$y = \frac{(x+3)^2}{x-1}$$
 的铅直渐近线方程为 ______

3.
$$\lim_{x \to 0} (1+2x)^{\frac{1}{\sin x}} = \underline{\hspace{1cm}}$$

4. 函数 $y = \sqrt{x}$ 在 x = 1 处的带拉格朗日型余项的二阶泰勒公式为

5.
$$\int_0^{+\infty} e^{-ax} dx =$$
 _____ (其中 $a > 0$)

6. 一个横放的半径为 R 的圆柱形桶, 里面盛有半桶液体 (设液体的密度为 1), 桶 的一个圆板端面所受的压力为

7.
$$2 \not= x_n = \frac{1}{3} + \frac{1}{15} + \dots + \frac{1}{4n^2 - 1}$$
, $\lim_{n \to \infty} x_n = \underline{\qquad}$

8. 微分方程 y"+4y'+4y=0的通解为 _____

姓名	线	
		日配
李号		**
ঝ্য		Ħ
井	本	1
级		47
		† #
 		ŧ
学院	後3	

三、计算 $\lim_{x\to 0} \frac{x - \arctan x}{x - \sin x}$ (本题 8 分)

得分	评阅教师

四、设 $f(x) = x^3 + ax^2 + bx$ 在 x = 1 处有极值-2,试确定系数 a,b,并求出 f(x) 的所有极值点及拐点(本题 10 分)

得分	评阅教师

五、设 f(x) 为连续函数且 $f(x) = x + 2\int_0^1 f(x)dx$, 求函数 f(x). (本题 6 分)

得分	评阅教师

六、设函数 y = f(x) 由方程 $\begin{cases} x = \ln(1+t^2) \\ y = t - \arctan \end{cases}$ 确定, 求 $\frac{dy}{dx}$ 与 $\frac{d^2y}{dx^2}$ (本题 8 分)

得分 评阅教师

在名

111

ĕ2

 \pm

莊

七、设 $f(x) = \int_{1}^{x^2} \frac{\sin t}{t} dt$, 求 $\int_{0}^{1} x f(x) dx$ (本题 8 分)

得分	评阅教师

八、设函数 f(x) 在 [0,1] 上连续,在开区间 (0,1) 内可导,并满足 $xf'(x)=f(x)+3x^2$,当 $x\in(0,1)$ 时 f(x)>0,曲线 y=f(x) 与 x=1,y=0 所围 成图形 s 的面积为 2,求函数 y=f(x)(本题 10 分)

得分	评阅教师

九、设
$$a_1 - \frac{a_2}{3} + \dots + (-1)^{n-1} \frac{a_n}{2n-1} = 0$$
,证明在 $\left(0, \frac{\pi}{2}\right)$ 内方程
$$a_1 \cos x + a_2 \cos 3x + \dots + a_n \cos(2n-1)x = 0$$
至少有一个实根(本题 8 分)

18 级理工科本科高等数学 A1 (A 卷)

2018 至 2019 学年第一学期期末参考答案

单选题(请将正确的答案填在对应括号内, 每题 3 分, 共 18 分)

1. A

2. B

3. A

4. B

5. A

6. C

二、填空题(请将正确的结果填在横线上. 每题 3 分, 共 24 分)

1. $\frac{e^y}{1-re^y}dx$

2. x = 1 3. e^2

4. $\sqrt{x} = 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 + \frac{\xi^{-\frac{5}{2}}}{16}(x-1)^3$ (ξ \uparrow 7 + 1 $\exists x$ \geq 1 \exists 1)

5. $\frac{1}{a}$ 6. $\frac{2}{3}gR^3$ 7. $\frac{1}{2}$ 8. $y = (c_1x + c_2)e^{-2x}$

三、解: $\lim_{x\to 0} \frac{x - \arctan x}{x - \sin x} = \lim_{x\to 0} \frac{1 - \frac{1}{1 + x^2}}{1 - \cos x}$

 $= \lim_{x \to 0} \frac{\frac{x^2}{1 + x^2}}{\frac{x^2}{x^2}} = 2$

8分

四、解: $f'(x) = 3x^2 + 2ax + b$

所以 1+a+b=-2, 3+2a+b=0 得 a=0, b=-3 (3分)

 $f(x) = x^3 - 3x$, $f'(x) = 3x^2 - 3$, f''(x) = 6x,

 $f'(x) = 0, x = \pm 1 \text{ If } f''(\pm 1) \neq 0$

所以 f(x)的所有极值点为 $x=\pm 1$ (7分)

f''(x) = 0, x = 0, 在x = 0左右两侧 f''(x) 异号,

所以 拐点为(0,0)

(10分)

五、解: 设 $\int_0^1 f(x)dx = a$ 则 $a = \int_0^1 x dx + 2a \int_0^1 dx = \frac{1}{2} + 2a$ (4分) $a = -\frac{1}{2} \qquad \qquad \therefore f(x) = x - 1$

六、解:
$$\frac{dy}{dx} = \frac{t}{2}$$

$$\stackrel{\text{.}}{\Rightarrow}$$
、解: $\frac{dy}{dx} = \frac{t}{2}$ 4 分 $\frac{d^2y}{dx^2} = \frac{1+t^2}{4t}$

七、解:
$$f'(x) = \frac{2\sin x^2}{x}$$
, $f(1) = 0$

$$\int_0^1 x f(x) dx = \frac{1}{2} \int_0^1 f(x) dx^2 = \frac{1}{2} x^2 f(x) \Big|_0^1 - \frac{1}{2} \int_0^1 x^2 f'(x) dx$$

$$= -\frac{1}{2} \int_0^1 2x \sin x^2 dx = \frac{1}{2} (\cos x - 1)$$

八、解:
$$xf'(x) = f(x)$$
 所以 $f(x) = cx$

令
$$f(x) = u(x)x$$
 得 $u'(x) = 3$ $u(x) = 3x + c_1$ $f(x) = 3x^2 + c_1x$ (5 分)

$$f(x) = 3x^2 + c_1 x$$
 (5 %)

$$s = \int_0^1 (3x^2 + c_1 x) dx = 2 \qquad c_1 = 2 \qquad \therefore f(x) = 3x^2 + 2x \qquad (10 \%)$$

$$c_1 = 2$$

$$\therefore f(x) = 3x^2 + 2x$$

九、证明: $\diamondsuit f(x) = a_1 \sin x + \frac{1}{3} a_2 \sin 3x + \dots + \frac{1}{2n-1} \sin(2n-1)x, \quad x \in \left[0, \frac{\pi}{2}\right]$ 3分

因为
$$f(0) = 0$$
, $f(\frac{\pi}{2}) = a_1 - \frac{a_2}{3} + \dots + (-1)^{n-1} \frac{a_n}{2n-1} = 0$

由罗尔定理, 至少有 $\xi \in \left(0, \frac{\pi}{2}\right)$ 使 $f'(\xi) = 0$, 所以在 $\left(0, \frac{\pi}{2}\right)$ 内

$$a_1 \cos x + a_2 \cos 3x + \dots + a_n \cos(2n-1)x = 0$$
至少有一个实根

8分

注:评分标准,中间段得分由每页阅卷老师统一;解题思路正确,酌情 给分。。