LAPORAN TUGAS BESAR I IF2123 ALJABAR LINIER DAN GEOMETRI

NOOGLER

ANGGOTA NOOGLER:

- 1. **JEFFREY CHOW (13521046)**
- 2. WILSON TANSIL (13521054)
- 3. JIMLY FIRDAUS (13521102)

SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA INSTITUT TEKNOLOGI BANDUNG

BABI

DESKRIPSI MASALAH

Sistem persamaan linier (SPL) banyak ditemukan di dalam bidang sains dan rekayasa. Kami sudah mempelajari berbagai metode untuk menyelesaikan SPL, termasuk menghitung determinan matriks. Sembarang SPL dapat diselesaikan dengan beberapa metode, yaitu metode eliminasi Gauss, metode eliminasi Gauss-Jordan, metode matriks balikan ($x = A^{-1}b$), dan kaidah Cramer (khusus untuk SPL dengan n peubah dan n persamaan). Solusi sebuah SPL mungkin tidak ada, banyak (tidak berhingga), atau hanya satu (unik/tunggal).

Di dalam Tugas Besar 1 ini, kami diminta membuat satu atau lebih library aljabar linier dalam Bahasa Java. Library tersebut berisi fungsi-fungsi seperti eliminasi Gauss, eliminasi Gauss-Jordan, menentukan balikan matriks, menghitung determinan, kaidah Cramer (kaidah Cramer khusus untuk SPL dengan n peubah dan n persamaan). Selanjutnya, gunakan library tersebut di dalam program Java untuk menyelesaikan berbagai persoalan yang dimodelkan dalam bentuk SPL, menyelesaikan persoalan interpolasi, dan persoalan regresi.

BAB II

TEORI SINGKAT

1. Metode eliminasi Gauss

Merupakan salah satu metode yang dapat digunakan dalam menyelesaikan Sistem Persamaan Linear. Metode ini menggunakan eliminasi Gauss untuk menghasilkan matriks dengan bentuk eselon (*row echelon form*). Metode eliminasi Gauss merupakan pengembangan dari metode eliminasi biasa yang berusaha untuk menghilangkan / mengurangi jumlah variabel sehingga dapat diperoleh nilai dari suatu variabel bebas. Metode pengurangan / menghilangkan variabel tersebut dinamakan Operasi Baris Elementer (OBE).

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_n \end{bmatrix} \sim OBE \sim \begin{bmatrix} 1 & * & * & \dots & * & * \\ 0 & 1 & * & \dots & * & * \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \vdots & 1 & * \end{bmatrix}$$

2. Metode eliminasi Gauss-Jordan

Eliminasi Gauss-Jordan merupakan salah satu metode yang umum digunakan dalam penyelesaian sistem persamaan linear yang kompleks. Metode ini merupakan metode lanjutan dari metode eliminasi gauss yang mengubah bentuk matriks eselon (*row echelon form*) menjadi bentuk eselon tereduksi (*reduction echelon form*). Sebuah matriks dapat dikatakan memiliki bentuk eselon tereduksi apabila setiap koefisien utama bernilai 1.

3. Determinan

Determinan merupakan nilai dari perkalian diagonal utama dari sebuah matriks persegi. Terdapat 2 metode dalam mendapatkan nilai determinan dari suatu matriks persegi, yaitu :

1. Dengan reduksi baris membentuk matriks segitiga.

Metode ini dapat menghasilkan matriks segitiga atas atau matriks segitiga bawah.

Matriks segitiga atas

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix} \longrightarrow det(A) = a_{11}a_{22}a_{33}a_{44}$$

Matriks segitiga bawah

$$A = \begin{bmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \longrightarrow det(A) = a_{11}a_{22}a_{33}a_{44}$$

Matriks segitiga dapat diperoleh dengan menerapkan OBE kepada matriks persegi dengan aturan berikut:

$$[A] \stackrel{OBE}{\sim} [matriks segitiga bawah]$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \overset{\mathsf{OBE}}{\sim} \begin{bmatrix} a'_{11} & a'_{12} & \dots & a'_{1n} \\ 0 & a'_{22} & \dots & a'_{2n} \\ \vdots & \vdots & \dots & a'_{3n} \\ 0 & 0 & 0 & a'_{nn} \end{bmatrix}$$

maka
$$\det(A) = (-1)^p a'_{11} a'_{22} \dots a'_{nn}$$

p menyatakan banyaknya operasi pertukaran baris di dalam OBE

2. Dengan metode ekspansi kofaktor

Misalkan A adalah matriks berukuran n x n dengan

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

Didefinisikan:

 $M_{ij} = minor entri a_{ij}$

 $C_{ij} = \left(\text{-}1\right)^{i+j} M_{ij}$, adalah kofaktor entri a_{ij}

Dengan tanda positif dan negatif untuk C_{ij} memperhatikan pola berikut:

Maka determinan dapat dihitung dengan menggunakan <u>salah satu</u> dari persamaan berikut:

$$\det(A) = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$$

$$\det(A) = a_{11}C_{11} + a_{21}C_{21} + \dots + a_{n1}C_{n1}$$

$$\det(A) = a_{21}C_{21} + a_{22}C_{22} + \dots + a_{2n}C_{2n}$$

$$\det(A) = a_{12}C_{12} + a_{22}C_{22} + \dots + a_{n2}C_{n2}$$

$$\vdots$$

$$\vdots$$

$$\det(A) = a_{n1}C_{n1} + a_{n2}C_{n2} + \dots + a_{nn}C_{nn}$$

$$\det(A) = a_{1n}C_{1n} + a_{2n}C_{2n} + \dots + a_{nn}C_{nn}$$

Secara baris

Secara kolom

4. Matriks balikan

Matriks balikkan / invers matriks adalah matriks baru yang merupakan kebalikan dari matriks awal. Matriks balikkan dapat ditulis sebagai A^{-1} , dengan A adalah suatu matriks persegi. Matriks balikkan dapat digunakan untuk menyelesaikan suatu sistem persamaan linear. Penentuan matriks balikkan dari suatu matriks dapat dilakukan dengan menghitung determinan dari matriks terlebih dahulu atau menggunakan metode Eliminasi Gauss-Jordan. Penentuan dengan menggunakan determinan adalah jika determinan dari matriks tersebut tidak nol maka matriks tersebut mempunyai balikkan dan sebaliknya. Penentuan matriks balikkan dengan metode Eliminasi Gauss-Jordan adalah dengan menambah sebuah matriks identitas dengan ukuran yang sama lalu diterapkan OBE pada kedua matriks tersebut dengan cara $[A|I] \sim$ Gauss-Jordan $\sim [I|A^{-1}]$. Jika terdapat 1 baris atau lebih yang seluruh elemennya bernilai 0 maka dapat disimpulkan matriks tersebut tidak memiliki balikkan.

5. Matriks kofaktor

Matriks kofaktor merupakan matriks yang terdiri dari kofaktor-kofaktor matriks itu sendiri. Misalkan A adalah matriks n x n dan C_{ij} merupakan kofaktor entri dari a_{ij} , maka matriks kofaktor dari A adalah:

$$\begin{bmatrix} C_{11} & C_{12} & \dots & C_{1n} \\ C_{21} & C_{22} & \dots & C_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ C_{n1} & C_{n2} & \dots & C_{nn} \end{bmatrix}$$

6. Matriks adjoin

Matriks adjoin merupakan hasil transpose dari matriks kofaktor. Penulisan adjoin dapat disingkat menjadi adj(A), dengan A adalah matriks. Adjoin matriks dapat digunakan untuk menentukan balikkan dari suatu matriks, dengan:

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$

7. Kaidah Cramer

Kaidah cramer adalah metode yang dikembangkan untuk menyelesaikan suatu sistem persamaan linear dengan catatan banyak persamaan sama dengan banyak variabel. Kaidah cramer dalam penerapannya menggunakan determinan matriks koefisien dan determinan matriks lain yang diperoleh dengan mengganti salah satu kolom dalam matriks tersebut dengan kolom paling kanan augmented matrix secara bergantian.

8. Interpolasi polinom

Interpolasi polinom merupakan interpolasi dari kumpulan data yang diberikan derajat terendah yang paling dimungkinkan, melewati titik-titik kumpulan data tersebut sehingga dapat dibuat kurva. Titik-titik yang diinterpolasi dengan sebuah kurva/fungsi berbentuk polinom, maka polinom tersebut dapat disebut sebagai polinom interpolasi.

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

9. Interpolasi bicubic

Interpolasi bicubic adalah teknik interpolasi yang bisa digunakan pada data 2D yang biasa digunakan dalam pembesaran citra dan untuk mendapatkan nilai hubungan paling memungkinkan pad kurva 3 dimensi. Interpolasi bicubic merupakan pengembangan dari interpolasi linear dan kubik.

10. Regresi linear berganda

Regresi linear berganda adalah model regresi yang melibatkan lebih dari satu variabel independen. Analisis regresi linear berganda pada umumnya ditujukan untuk memprediksi arah dan seberapa besar pengaruh variabel independen terhadap variabel dependen. Data yang biasa digunakan biasanya berskala interval atau rasio.

$$h_w(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_m x_m \ h_w(x) = w_0 + \sum_{i=0}^m w_i x_i$$

BAB III

IMPLEMENTASI PUSTAKA DAN PROGRAM

1. Class Matrix

• Attribute

Nama	Tipe	Deskripsi
rows	public int	Menyimpan jumlah baris
cols	public int	Menyimpan jumlah kolom
Mtrx	public double[][]	Menyimpan data matriks
		Menyimpan data tanda pada
sign	public int	determinan
		Digunakan untuk memproses
has_inversed	public boolean	hasil inverse
		Menyimpan nilai taksiran x
polynom_x	public double	untuk interpolasi polinom

Nama	Tipe	Parameter	Deskripsi
Matrix	public Constructor	int rows	Meinisialisasi matriks
Within	public Constructor	int cols	Wichinstansasi matrixs
			Memformat setiap
check	nublic static Matrix	Matrix matrix	elemen matriks yang
CHECK	public static Matrix	Matrix matrix	bernilai negatif 0
			menjadi 0
	public static double[]	double[] x	Memformat setiap
check			elemen array yang
CHECK			bernilai negatif 0
			menjadi 0
			Mengirimkan matriks
copyMtrx	public static Matrix	Matrix matrix	baru yang sudah
			dicopy dari m

isSquare	public static boolean	Matrix matrix	Mengecek apakah matriks persegi atau tidak
switchCol	public static Matrix	Matrix m1 Matrix m2 int cols1 int cols2	Menukarkan kolom tertentu dari 2 matriks yang diberikan
timesDiagonal	public static double	Matrix matrix boolean isSquare	Mengalikan elemen diagonal utama pada matriks
transpose	public static Matrix	Matrix matrix	Mengembalikan salinan matriks yang sudah ditranspose

2. Class Param

• Attributes

Nama	Tipe	Deskripsi
val	public double	Value untuk persamaan parametrik
params	public char[]	Varibel parametrik yang digunakan
valPar	public double[]	Konstanta pada variabel parametrik

3. Class Gauss

Nama	Tipe	Parameter	Deskripsi
gauss	s public static Matrix Matrix matrix	Matrix matrix	Mengembalikan
Suuss	puone statie matrix	Watth matth	salinan matriks yang

			sudah menjadi eselon
			baris
count0	public static int	Matrix matrix int row int limit	Menghitung jumlah 0 pada suatu baris
check0RemainingRows	public static boolean	Matrix matrix int current_row	Menghitung jumlah baris 0 pada sisa baris yang diberikan
		Matrix matrix	Menukar kedua baris
switchRows	public static void	int row1	yang diberikan pada
		int row2	matriks
isNotFinalEchelon	public static boolean	Matrix matrix	Mengecek apakah hasil dari gauss sudah memenuhi syarat matriks baris eselon.
switchFor0TrailsFront	public static void	Matrix matrix	Menukar posisi jika jumlah 0 didepan 1 utama di <i>current row</i> lebih banyak dari jumlah 0 di depan <i>next row</i> .
switchRows	public static void	Matrix matrix int start_row	Menempatkan baris 0 menjadi baris paling bawah matriks

4. Class GaussJordan

• Methods

Nama	Tipe	Parameter	Deskripsi
			Mengembalikan
jordan	public static Matrix	Matrix matrix	salinan matriks yang
Jordan	public static Matrix	Maurx maurx	sudah menjadi eselon
			baris tereduksi

5. Class Cramer

• Methods

Nama	Tipe	Parameter	Deskripsi
			Mengembalikan array
cramer	muhlio statio daubla[]	Matrix matrix SPL meng	of double nilai hasil
	public static double[]		SPL menggunakan
			kaidah Cramer

6. Class determinant

Nama	Tipe	Parameter	Deskripsi
detCofactor	public static double	Matrix matrix int n boolean isSquare	Mengembalikan determinan dari matriks yang diberikan dengan metode kofaktor
getCofactor	public static void	Matrix matrix Matrix temp int permitted_row int permitted_col int n	Mendapatkan kofaktor dari suatu baris dan kolom dalam matriks

			Mengembalikan
			determinan dari
datCayaa	muhlia statia daubla	Matrix matrix	matriks yang
detGauss	public static double	boolean isSquare	diberikan dengan
			metode Gauss
			(segitiga atas)

7. Class inputSPL

Nama	Tipe	Parameter	Deskripsi
			Mengembalikan
chooseMethods	public static int		pilihan cara untuk
			menyelesaikan SPL
		int choice	Memanggil
processMethods	public static void	Matrix matrix	fungsi/prosedur
		Wattix matrix	sesuai pilihan
		Matrix matrix	Mengembalikan hasil
printGauss	public static void	Matrix real	penyelesaian SPL
		Wattix Teat	dengan metode Gauss
			Mengecek apakah
isNone	public static boolean	Matrix matrix	matrix augmented
			tidak memiliki solusi.
			Mengecek apakah
hasNaN	public static boolean	double[] unik	ada NaN pada suatu
			array double.
			Mengembalikan nilai
uniqueCase	public static double[]	Matrix matrix	x1,x2,x3,,xn jika
			solusi SPL unik
infiniteCase	nublic static Daramil	Matrix matrix	Mengembalikan nilai
miniteCase	nfiniteCase public static Param[] Ma	Matrix real	parametrik

			x1,x2,,xn jika SPL
			solusi SPL tak
			berhingga
		Matrix matrix	Menghitung jumlah
countNotZero	public static int	int cols	tidak 0 pada suatu
		int cois	kolom matriks
			Menentukan banyak
countTrue	public static int	boolean[] ans	variabel yang
			parametrik
		Matrix matrix	Mencari kolom
firstNotZero	public static int	Int rows	pertama dalam baris
			yang tidak nol
	public static int	int[] matrix int rows	Mencari index find
findVal			dalam array of
			integer indexParam
printCramer	public static int	double[] ans	Mengoutput hasil dari
printeramer	public static int		Cramer
		Matrix matrix Matrix inversed	Menghasikan solusi
processInv	public static double[]		SPL dengan metode
		Width inversed	matriks balikkan
		Matrix matrix int cols	Menghitung jumlah 0
count0	public static int		pada suatu kolom
			matriks

8. Class InverseCofactor

Nama	Tipe	Parameter	Deskripsi	
	public static Matrix		Mengembalikan	
inverse		Matrix matrix	salinan matriks yang	
			sudah diinvers	

adjoinInverse	public static void	Matrix matrix Matrix adjMtrx	Mencari adjoin dari Matrix olahan metode	
			kofaktor	

9. Class InverseGaussJordan

Nama	Tipe	Parameter	Deskripsi	
inverse	public static Matrix	Matrix matrix	Mengembalikan salinan matriks yang sudah diinvers	
count0	public static int	Matrix matrix int row	Mengembalikan jumlah elemen 0 pada baris tertentu	

BAB IV

EKSPERIMEN

1. Solusi SPL Ax = b

a.	Metode Cramer		
$A = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 2 & 5 & -7 & -5 \\ 2 & -1 & 1 & 3 \\ 5 & 2 & -4 & 2 \end{bmatrix}, b = \begin{bmatrix} 1 \\ -2 \\ 4 \\ 6 \end{bmatrix}$	Solusi dari SPL ini tidak ada atau tidak bisa menggunakan Metode Cramer. Silakan coba pakai metode lain, seperti Gauss/Gauss-Jordan		
b.	Metode Gauss-Jordan		
$A = \begin{bmatrix} 1 & -1 & 0 & 0 & 1 \\ 1 & 1 & 0 & -3 & 0 \\ 2 & -1 & 0 & 1 & -1 \\ -1 & 2 & 0 & -2 & -1 \end{bmatrix}, b = \begin{bmatrix} 3 \\ 6 \\ 5 \\ -1 \end{bmatrix}$	X1 = 3.00 + u X2 = 2.00u X3 = t X4 = -1.00 + u X5 = u		
c.	Metode Matriks Balikan		
$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$	Solusi dari SPL ini tidak ada atau tidak bisa menggunakan Metode Invers. Silakan coba pakai metode lain, seperti Gauss/Gauss-Jordan		
	d.		
$H = \begin{bmatrix} 2 & 3 \\ \frac{1}{3} & \frac{1}{4} \\ \vdots & \vdots \end{bmatrix}$	$\frac{\frac{1}{3}}{\frac{1}{4}} \dots \frac{\frac{1}{n}}{\frac{1}{n+1}}$ $\frac{\frac{1}{5}}{\frac{1}{n+2}} \dots \frac{\frac{1}{n+2}}{\frac{1}{n+2}}$ $\frac{1}{n+2} \dots \frac{\frac{1}{n+1}}{\frac{1}{2n+1}}$ $= b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$		

	Metode Gauss	
	X1 : 8.080835703347601	
	X2 : -23.558849267122838	
Untuk n = 6	X3 : -31.735397068465872	
	X4 : 108.01793918179214	
	X5 : -43.699409319623655	
	X6 : -17.9528549551518	
	Metode Gauss	
	X1 : 2.0367618783013066	
	X2 : 35.10463414289861	
	X3 : -133.7802481663315	
	X4 : 96.20421878744672	
Untuk n = 10	X5 : 6.354656793156975	
	X6 : -69.64125005285277	
	X7 : 111.46697189152786	
	X8 : 105.6322644423025	
	X9 : -91.12804344018338	
	X10 : -67.60750820945181	

2. SPL berbentuk matriks augmented

a.	Metode Gauss-Jordan	
$\begin{bmatrix} 1 & -1 & 2 & -1 & -1 \\ 2 & 1 & -2 & -2 & -2 \\ -1 & 2 & -4 & 1 & 1 \\ 3 & 0 & 0 & -3 & -3 \end{bmatrix}.$	X1 = -1.00 + u X2 = 2.00t X3 = t X4 = u	

b.	Metode Gauss	
$\begin{bmatrix} 2 & 0 & 8 & 0 & 8 \\ 0 & 1 & 0 & 4 & 6 \\ -4 & 0 & 6 & 0 & 6 \\ 0 & -2 & 0 & 3 & -1 \\ 2 & 0 & -4 & 0 & -4 \\ 0 & 1 & 0 & 2 & 0 \end{bmatrix}$	SPL memiliki solusi unik. X1 : 0.0 X2 : 2.0 X3 : 1.0	
[0 1 0 -2 0]	X4 : 1.0	

3. SPL berbentuk

a.	Metode Matriks Balikan	
$8x_1 + x_2 + 3x_3 + 2x_4 = 0$ $2x_1 + 9x_2 - x_3 - 2x_4 = 1$ $x_1 + 3x_2 + 2x_3 - x_4 = 2$ $x_1 + 6x_3 + 4x_4 = 3$	X1 : -0.22432432432432434 X2 : 0.18243243243243243 X3 : 0.7094594594594 X4 : -0.25810810810810814	
b.	Metode Gauss	
$x_7 + x_8 + x_9 = 13.00$ $x_4 + x_5 + x_6 = 15.00$ $x_1 + x_2 + x_3 = 8.00$ $0.04289(x_3 + x_5 + x_7) + 0.75(x_6 + x_8) + 0.61396x_9 = 14.79$ $0.91421(x_3 + x_5 + x_7) + 0.25(x_2 + x_4 + x_6 + x_8) = 14.31$ $0.04289(x_3 + x_5 + x_7) + 0.75(x_2 + x_4) + 0.61396x_1 = 3.81$ $x_3 + x_6 + x_9 = 18.00$ $x_2 + x_5 + x_8 = 12.00$ $x_1 + x_4 + x_7 = 6.00$ $0.04289(x_1 + x_5 + x_9) + 0.75(x_2 + x_6) + 0.61396x_3 = 10.51$ $0.91421(x_1 + x_5 + x_9) + 0.25(x_2 + x_4 + x_6 + x_8) = 16.13$ $0.04289(x_1 + x_5 + x_9) + 0.75(x_4 + x_8) + 0.61396x_7 = 7.04$	SPL tidak memiliki solusi.	

4. Determinan

a.	Metode Gauss	
$ \begin{bmatrix} 3 & 6 & 9 & 3 \\ -1 & 0 & 1 & 0 \\ 1 & 3 & 2 & -1 \\ -1 & -2 & -2 & 1 \end{bmatrix} $	Determinan : -21.00000	

b.	Metode Cofactor		
$\begin{bmatrix} 3 & 5 & -2 & 6 \\ 1 & 2 & -1 & 1 \\ 2 & 4 & 1 & 3 \\ 3 & 7 & 5 & 3 \end{bmatrix}$	Determinan : 0.00000		

5. Invers

a.	Metode Gauss-Jordan	
$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$	-40.00 16.00 9.00 13.00 -5.00 -3.00 5.00 -2.00 -1.00	
b.	Metode Cofactor	
$ \begin{bmatrix} 1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{bmatrix} $	Matrix has no inverse	

6. Interpolasi Titik

Gunakan tabel di bawah ini untuk mencari polinom interpolasi dari pasangan titik-titik yang terdapat dalam tabel. Program menerima masukan nilai x yang akan dicari nilai fungsi f(x).

x	0.4	0.7	0.11	0.14	0.17	0.2	0.23
f(x)	0.043	0.005	0. 058	0.072	0.1	0.13	0.147

X	0.2	0.55	0.85	1.28
f(x)	f(0.2) = 0.13000	f(0.55) = 2.13757	f(0.85) = -66.26964	f(1.28) = -3485.14490

7. Interpolasi Kasus Covid

Jumlah kasus positif baru Covid-19 di Indonesia semakin fluktuatif dari hari ke hari. Di bawah ini diperlihatkan jumlah kasus baru Covid-19 di Indonesia mulai dari tanggal 17 Juni 2022 hingga 31 Agustus 2022:

Tanggal	Tanggal (desimal)	Jumlah Kasus Baru
17/06/2022	6,567	12.624
30/06/2022	7	21.807
08/07/2022	7,258	38.391
14/07/2022	7,451	54.517
17/07/2022	7,548	51.952
26/07/2022	7,839	28.228
05/08/2022	8,161	35.764
15/08/2022	8,484	20.813
22/08/2022	8,709	12.408
31/08/2022	9	10.534

Gunakanlah data di atas dengan memanfaatkan **polinom interpolasi** untuk melakukan prediksi jumlah kasus baru Covid-19 pada tanggal-tanggal berikut:

- a. 16/07/2022
- b. 10/08/2022
- c. 05/09/2022
- d. beserta masukan user lainnya berupa tanggal (desimal) yang sudah diolah dengan asumsi prediksi selalu dilakukan untuk tahun 2022.

Tanggal	16/07/2022	10/08/2022	05/09/2022
Prediksi	f(7.516) = 53537.80078 53.537 kasus baru	f(8.333) = 35765.38672 35.765 kasus baru	f(9.161) = -616860.64844 0 kasus baru (asumsi jika <= 0 maka = 0)

8. Penyederhanaan Fungsi

Sederhanakan fungsi	Dengan n = 5 pada selang [0, 2] dan berjarak 0.4
$x^2 + \sqrt{x}$	f(x) = -0.00376X4+0.02421X3-0.15093X2+0.37831X1+0.29025
$f(x) = \frac{e^x + x}{e^x + x}$	$f(x) = -0.00376x^4 + 0.02421x^3 - 0.15093x^2 +$
	0.37831x + 0.29025

9. Interpolasi Bicubic

10. Regresi Linier Berganda

Nitrous Oxide, y	Humidity, x_1	Temp., x_2	Pressure, x_3	Nitrous Oxide, y	Humidity, x_1	Temp., x_2	Pressure.
0.90	72.4	76.3	29.18	1.07	23.2	76.8	29.38
0.91	41.6	70.3	29.35	0.94	47.4	86.6	29.35
0.96	34.3	77.1	29.24	1.10	31.5	76.9	29.63
0.89	35.1	68.0	29.27	1.10	10.6	86.3	29.56
1.00	10.7	79.0	29.78	1.10	11.2	86.0	29.48
1.10	12.9	67.4	29.39	0.91	73.3	76.3	29.40
1.15	8.3	66.8	29.69	0.87	75.4	77.9	29.28
1.03	20.1	76.9	29.48	0.78	96.6	78.7	29.29
0.77	72.2	77.7	29.09	0.82	107.4	86.8	29.03
1.07	24.0	67.7	29.60	0.95	54.9	70.9	29.37

Source: Charles T. Hare, "Light-Duty Diesel Emission Correction Factors for Ambient Conditions," EPA-600/2-77-116. U.S. Environmental Protection Agency.

 $20b_0 + 863.1b_1 + 1530.4b_2 + 587.84b_3 = 19.42$

 $863.1b_0 + 54876.89b_1 + 67000.09b_2 + 25283.395b_3 = 779.477$

 $1530.4b_0 + 67000.09b_1 + 117912.32b_2 + 44976.867b_3 = 1483.437$

 $587.84b_0 + 25283.395b_1 + 44976.867b_2 + 17278.5086b_3 = 571.1219$

f(x) = -3.50778 - 0.00262X1 + 0.00080X2 + 0.15416X3

Masukkan X1 : 50 Masukkan X2 : 76

Masukkan X3 : 29.30

Taksiran/Estimasi nilai : 0.9384

BAB V

KESIMPULAN, SARAN, DAN REFLEKSI

Berbagai metode dapat diterapkan untuk menyelesaikan suatu sistem persamaan linear, salah satunya adalah dengan menggunakan metode-metode yang diproses dalam bentuk matriks. Metode yang disediakan dengan tujuan menyelesaikan suatu sistem persamaan linear diantaranya adalah Eliminasi Gauss, Eliminasi Gauss-Jordan, Matriks Balikan dan Kaidah Cramer. Dalam penggunaan metode-metode tersebut, terdapat berbagai ketentuan dan aturan. Misalkan dalam penggunaan Kaidah Cramer, sistem persamaan linear yang diinput harus memiliki jumlah persamaan yang sama dengan jumlah variabel.

Adapun tools yang dapat digunakan untuk menjalankan metode-metode penyelesaian sistem persamaan tersebut. Tools yang disediakan berupa determinan, kofaktor, dan adjoin.

Solusi yang didapat dari penyelesaian sistem persamaan tersebut dapat diklasifikasikan menjadi 3 jenis yakni unique solution, multi solution, dan no solution. Unique solution merujuk ke solusi persamaan yang semua nilai variabel dalam suatu persamaan memiliki hanya 1 nilai atau unik. Multi solution didapatkan dalam keadaan yang mengakibatkan suatu variabel memiliki nilai bebas atau banyak nilai yang memenuhi, biasanya direpresentasikan dalam bentuk parametrik. No solution adalah kondisi yang menunjuk terhadap sebuah nilai variabel yang tidak dapat memenuhi sistem persamaan tersebut.

Interpolasi polinom adalah teknik interpolasi yang digunakan untuk memprediksi data sesuai kurva yang dibentuk menggunakan sekumpulan data atau sample. Interpolasi polinom merupakan salah satu contoh aplikasi dari sistem persamaan linear.

Interpolasi bikubik adalah teknik interpolasi yang dikembangkan dari interpolasi linear dan kubik untuk mendapatkan sebuah nilai prediksi dalam rentang tertentu. Dalam kasus yang diberikan, matriks 4x4 tersebut merupakan sebuah kumpulan set data atau sample data yang apabila digambarkan akan membentuk sebuah kurva alas xy dalam sebuah bidang kartesian 3 dimensi. Interpolasi bikubik dalam hal ini digunakan untuk memprediksi sebuah nilai hasil (yang berada pada bidang z) sesuai dengan kurva yang terbentuk.

Regresi linear berganda digunakan untuk mendapatkan sebuah kesimpulan dari data-data yang didapatkan. Dengan menggunakan regresi linear, estimasi sebuah nilai dari data tersebut dapat diperoleh dan diprediksi.

Permasalahan-permasalahan pada eksperimen dapat diselesaikan dengan menggunakan program java yang telah dibuat.

Saran pengembangan untuk tugas besar ini adalah dapat di-*upgrade interface* programnya menggunakan GUI atau tampilan di console yang lebih rapi. Selain itu, pemberian test-case yang disertai dengan solusi juga akan membantu proses *debugging*, terutama untuk matrix augmented yang memiliki dimensi besar.

Refleksi kami terhadap Tugas Besar ini adalah kami merasa dapat memperbaiki kerja sama dalam tim kami dari segi komunikasi, pembagian tugas, dan tahap pengerjaan. Dengan komunikasi yang lebih baik, akan mengurangi terjadinya miskomunikasi dan mempercepat tahap pengerjaan. Dengan pembagian tugas yang lebih baik, maka pengerjaan tugas akan lebih sistematis, dan masing-masing anggota dapat lebih fokus dengan pekerjaannya sendiri. Tahap pengerjaan seharusnya lebih cepat dan melakukan *debugging* lebih awal agar tidak *chaos* di akhir *deadline* tugas besar ini.

REFERENSI

https://www.programcreek.com/2011/07/build-a-java-library-for-yourself/

https://developer.ibm.com/tutorials/j-javalibrary/

https://stackoverflow.com/questions/3612567/how-to-create-my-own-java-libraryapi

https://accounting.binus.ac.id/2021/08/12/memahami-analisis-regresi-linear-

berganda/#:~:text=Regresi%20linear%20berganda%20merupakan%20model,dependen%20(Ghozali%2C%202018)

REPOSITORY

https://github.com/JeffreyChow19/Algeo01-21046.git