

mPLUG

Effective and Efficient Vision-Language Learning by Cross-modal Skip connections

발표자: 김지환

Contents

- 1. Overview of Vision-Language models
 - ① CLIP
 - ② UNITER
- 2. mPLUG

Overview of Vision-Language models

Multi-Modal Model?

두개 이상의 Modality를 활용하여 풀고자 하는 문제를 해결하는 모델

Vision-language Tasks

Vision-language Tasks

Who is wearing glasses? woman man

Is the umbrella upside down?

Where is the child sitting? fridge arms

How many children are in the bed?

1. Overview of vision-language models

Multi-Modal Study

Vision-language Tasks

Multi-modal dataset

Vision-language Tasks

Chest X-ray

< Report >
no acute cardiopulmonary
findings. cardiomediastinal
silhouette and pulmonary
vasculature are within normal
limits. lungs are clear. no
pneumothorax or pleural effusion.

Draft Report

1. Overview of vision-language models

Multi-Modal Study

(a) Fusion-encoder model

Simultaneously encode visual and textual inputs via modal-specific embedders/encoders and employ a cross-modal Transformer encoder to fuse representations.

(b) Dual-encoder model

Encode images/text separately and adopt an extreme lightweight module (e.g., MLP) for cross-modal interactions.

1. Overview of vision-language models

Multi-Modal Study

VL-PTM	Text encoder	Vision encoder	Fusion scheme	Pre-training tasks	Multimodal datasets for pre-training
Fusion Encoder					
VisualBERT [2019]	BERT	Faster R-CNN	Single stream	MLM+ITM	COCO
Uniter [2020]	BERT	Faster R-CNN	Single stream	MLM+ITM+WRA+MRFR+MRC	CC+COCO+VG+SBU
OSCAR [2020c]	BERT	Faster R-CNN	Single stream	MLM+ITM	CC+COCO+SBU+Flickr30k+VQA
InterBert [2020]	BERT	Faster R-CNN	Single stream	MLM+MRC+ITM	CC+COCO+SBU
ViLBERT [2019]	BERT	Faster R-CNN	Dual stream	MLM+MRC+ITM	CC
LXMERT [2019]	BERT	Faster R-CNN	Dual stream	MLM+ITM+MRC+MRFR+VQA	COCO+VG+VQA
VL-BERT [2019]	BERT	Faster R-CNN+ ResNet	Single stream	MLM+MRC	CC
Pixel-BERT [2020]	BERT	ResNet	Single stream	MLM+ITM	COCO+VG
Unified VLP [2020]	UniLM	Faster R-CNN	Single stream	MLM+seq2seq LM	CC
UNIMO [2020b]	BERT, RoBERTa	Faster R-CNN	Single stream	MLM+seq2seq LM+MRC+MRFR+CMCL	COCO+CC+VG+SBU
SOHO [2021]	BERT	ResNet + Visual Dictionary	Single stream	MLM+MVM+ITM	COCO+VG
VL-T5 [2021]	T5, BART	Faster R-CNN	Single stream	MLM+VQA+ITM+VG+GC	COCO+VG
XGPT [2021]	transformer	Faster R-CNN	Single stream	IC+MLM+DAE+MRFR	CC
Visual Parsing [2021]	BERT	Faster R-CNN + Swin transformer	Dual stream	MLM+ITM+MFR	COCO+VG
ALBEF [2021a]	BERT	ViT	Dual stream	MLM+ITM+CMCL	CC+COCO+VG+SBU
SimVLM [2021b]	ViT	ViT	Single stream	PrefixLM	C4+ALIGN
WenLan [2021]	RoBERTa	Faster R-CNN + EffcientNet	Dual stream	CMCL	RUC-CAS-WenLan
ViLT [2021]	ViT	Linear Projection	Single stream	MLM+ITM	CC+COCO+VG+SBU
Dual Encoder					
CLIP [2021]	GPT2	ViT, ResNet		CMCL	self-collected
ALIGN [2021]	BERT	EffcientNet		CMCL	self-collected
DeCLIP [2021b]	GPT2, BERT	ViT, ResNet, RegNetY-64GF		CMCL+MLM+CL	CC+self-collected
Fusion Encoder+ Dual Encoder					
VLMo [2021a]	BERT	ViT	Single stream	MLM+ITM+CMCL	CC+COCO+VG+SBU
FLAVA [2021]	ViT	ViT	Single stream	MMM+ITM+CMCL	CC+COCO+VG+SBU+RedCaps

CLIP *Dual Encoder

Pretraining Task - Image captioning pair

(1) Contrastive pre-training

$$\mathcal{L}_{N} = -\mathbb{E}_{X} \left[\log \frac{\overline{\exp\left(f(x)^{T} f\left(x^{+}\right)\right)}}{\exp\left(f(x)^{T} f\left(x^{+}\right)\right) + \sum_{j=1}^{N-1} \exp\left(f(x)^{T} f\left(x_{j}\right)\right)} \right]$$

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
                 - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) #[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_{normalize(np.dot(T_f, W_t), axis=1)}
# scaled pairwise cosine similarities [n, n] logits = np.dot(I_e, T_e.T) * np.exp(t) \longrightarrow cos \theta =
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
```

UNITER *Fusion Encoder

Pretraining Tasks

- ① Masked Language Modeling (MLM)
- ② Image-Text Matching (ITM)
- ③ Word-Region Alignment (WRA)
- Masked Region Modeling (MRM)

1. Overview of vision-language models

Multi-Modal Study

UNITER *Fusion Encoder

Pre-training Data		Pre-training Tasks	Meta-Sum	VQA	IR	TR	NLVR ²	Ref-
					`——	(Flickr)		COCO+
				test-dev	val	val	dev	val^d
None	1	None	314.34	67.03	61.74	65.55	51.02	68.73
Wikipedia +	2	MLM (text only)	346.24	69.39	73.92	83.27	50.86	68.80
BookCorpus	2	MLM (text only)	340.24	09.39	13.92	00.21	50.60	00.00
	3	MRFR	344.66	69.02	72.10	82.91	52.16	68.47
	4	ITM	385.29	70.04	78.93	89.91	74.08	72.33
	5	MLM	386.10	71.29	77.88	89.25	74.79	72.89
	6	MLM + ITM	393.04	71.55	81.64	91.12	75.98	72.75
In-domain	7	MLM + ITM + MRC	393.97	71.46	81.39	91.45	76.18	73.49
(COCO+VG)	8	MLM + ITM + MRFR	396.24	71.73	81.76	92.31	76.21	74.23
	9	MLM + ITM + MRC-kl	397.09	71.63	82.10	92.57	76.28	74.51
	1	0 MLM + ITM + MRC-kl + MRFR	399.97	71.92	83.73	92.87	76.93	74.52
	1	1 MLM + ITM + MRC-kl + MRFR + WRA	400.93	72.47	83.72	93.03	76.91	74.80
	13	$2 \frac{\text{MLM} + \text{ITM} + \text{MRC-kl} + \text{MRFR}}{(\text{w/o cond. mask})}$	396.51	71.68	82.31	92.08	76.15	74.29
Out-of-domain	1.0	OMIM - ITM - MDC I-I - MDED - WDA	396.91	71.56	84.34	92.57	75.66	72.78
(SBU+CC)	1.	3 MLM + ITM + MRC-kl + MRFR + WRA	390.91	11.00	04.04	34.01	75.00	12.10
In-domain +	1.	4 MLM + ITM + MRC-kl + MRFR + WRA	405.24	72.70	85 77	04.28	77.18	75.31
Out-of-domain	14	WEW + IIW + WRO-RI + WRFR + WRA	400.24	12.10	00.11	34.20	11.10	10.01

mPLUG

Multi-Modal Study

Image Captioning SOTA

Image Captioning on COCO Captions

Multi-Modal Study

Abstract

기존의 대부분의 사전 훈련된 Vision-Language 모델은 Cross-modal 정렬에서 긴 시각적 시퀀스로 인해 <mark>낮은 계산 효율성</mark>과 <mark>정보 비대칭</mark>이라는 문제를 안고 있다.

이러한 문제를 해결하기 위해 mPLUG는 새로운 Cross-modal skip connection을 통해 효율적인 Vision-Language 아키텍처를 도입하여 vision side에서 시간소모가 심한 full self-attention에서 특정 레이어들을 건너뛰는 inter-layer shortcut을 활용한다.

<u>Image captioning</u>, <u>Image-text retrieval</u>, <u>Visual grounding</u> and <u>VQA</u> 같은 광범위한 Vision-Language 다운스트림 작업에서 SOTA 결과를 냈다. 또한 mPLUG는 여러 Video-Language Task로 전이학습 할 때 강력한 제로 샷 성능을 보인다.

Multi-Modal Study

Introduction: 기존 모델

Vision-Language 모델을 학습할 때 가장 큰 어려움은 두 가지 양식을 적절히 조화시켜 그 사이의 의미적 간극을 좁히는 것이다.

이전 연구에서는 Cross-modal alignment을 위해 사전 훈련된 object detector를 사용해 이미지 구역을 추출하고 그에 맞는 언어 쌍을 나열하는 방식을 택했는데 object detector의 성능에 제한을 받을 뿐 만 아니라 사용 가능한 annotation의 양에 제한을 받는다.

보다 최근 연구에서 더 좋은 성능을 위해 사전 훈련된 object detector를 제거하고 이미지와 텍스트의 표현을 직접 정렬해 end-to-end 방식으로 학습.

Introduction: 기존 모델의 문제점

- ① Efficiency
 - 긴 시각적 시퀀스에서의 Full Self-Attention은 텍스트 시퀀스보다 훨씬 더 많은 계산이 필요하다.
- ② Information asymmetry

널리 사용되는 Image-text 사전 학습 데이터의 캡션 텍스트는 일반적으로 짧고 매우 추상적인 반면, 이미지에서 더 상세하고 다양한 정보를 추출할 수 있다. 이러한 비대칭성으로 인해 효과적인 multi-modal fusion 에 어려움이 있다.

Single stream fusion

이미지와 텍스트의 정보량이 달라 비대칭성이 생기고 Full Self-attention 의 비용이 큼

(a) Connected-attention Network.

Dual stream fusion

정보 비대칭성이 줄지만 2개의 Transformer를 사용해 파라미터가 많음

(b) Co-attention Network.

Multi-Modal Study

Multi-Modal Study

Introduction: mPLUG 제안

mPLUG: Multi-modal Pre-training framework for both vision-Language Understanding and Generation.

Removing the co-attention on vision-side Concatenating the original visual representation and the co-attention output on the language side

Model Architecture

We use a visual transformer directly on the image patches as the visual encoder

The input text is fed to the text encoder and represented as a sequence of embeddings

Algorithm 1: Pseudocode of Cross-modal Skip-connected Network.

image, text.ids, text.mask: paired {image, text} pairs. # image encoder: vision transformer based encoder. MaskLM ITM # text_encoder: language transformer based encoder. # S: the number of skipped layers in the asymmetric co-attention Prefix LM 0000000 # T: total layers of cross-modal skip-connections def connected_layer(img_feature, txt_feature): fusion_feature = concat(img_feature, txt_feature) FFN fusion_feature = norm(self_attn(fusion_feature) + fusion_feature) fusion_feature = norm(ffn(fusion_feature) + fusion_feature) Self-Attn img_feature, txt_feature = split(fusion_feature) Connected Attention return img_feature, txt_feature $\{0000\}$ (0000)# asymmetric co-attention architecture Cross-Attn def cross_layer(img_feature, txt_feature): txt_feature = norm(self_attn(txt_feature) + txt_feature) Nx Mx **FFN** txt_feature = norm(cross_attn(txt_feature, img_feature)+ txt_feature) Cross-Attn txt_feature = norm(ffn(txt_feature) + txt_feature) Causal Self-Attn return img_feature, txt_feature Self-Attn def skip_connected_network(img_feature, txt_feature, S): Asymmetric Co-Attn for i in range(1, T+1): 0000 encoder = connected_layer if (i % (S+1) == 0) (0000) else cross_layer $\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$ ITC -0000 img_feature, txt_feature = encoder(img_feature, txt_feature) fusion_feature = concat(img_feature, txt_feature) return fusion_feature Visual Encoder Text Encoder Text img_feature = image_encoder(image) txt_feature = text_encoder(text.ids, text.mask) fusion_feature = skip_connected_network(img_feature, txt_feature, S)

Multi-Modal Study

Model Architecture

```
Algorithm 1: Pseudocode of Cross-modal Skip-connected Network.
 # image, text.ids, text.mask: paired {image, text} pairs.
 # image_encoder: vision transformer based encoder.
 # text_encoder: language transformer based encoder.
 # S: the number of skipped layers in the asymmetric co-attention
 # T: total layers of cross-modal skip-connections
def connected_layer(img_feature, txt_feature):
     fusion feature = concat(img feature, txt feature)
     fusion_feature = norm(self_attn(fusion_feature) + fusion_feature)
     fusion_feature = norm(ffn(fusion_feature) + fusion_feature)
    img_feature, txt_feature = split(fusion_feature)
     return img feature, txt feature
# asymmetric co-attention architecture
def cross_layer(img_feature, txt_feature):
    txt_feature = norm(self_attn(txt_feature) + txt_feature)
    txt_feature = norm(cross_attn(txt_feature, img_feature) +
         txt feature)
    txt_feature = norm(ffn(txt_feature) + txt_feature)
    return img feature, txt feature
def skip_connected_network(img_feature, txt_feature, S):
    for i in range(1, T+1):
        encoder = connected_layer if (i % (S+1) == 0)
             else cross_layer
         img feature, txt feature = encoder(img feature, txt feature)
     fusion_feature = concat(img_feature, txt_feature)
     return fusion_feature
img feature = image encoder(image)
txt_feature = text_encoder(text.ids, text.mask)
```

fusion_feature = skip_connected_network(img_feature, txt_feature, S)

$$l_{SA}^{n} = LN(SA(l^{n-1}) + l^{n-1})$$
 (1)

$$l_{CA}^{n} = LN(CA(l_{SA}^{n}, v^{n-1}) + l_{SA}^{n})$$
 (2)

$$l^n = LN(FFN(l_{CA}^n) + l_{CA}^n)$$
 (3)

Multi-Modal Study

Pretraining Tasks

- ① Image-Text Contrastive (ITC): CLIP과 유사한 훈련
- ② Image-Text Matching (ITM): 이미지와 문장이 서로 매치되는지 훈련
- ③ Masked Language Modeling (MLM): BERT와 유사한 훈련
- ④ Prefix Language Modeling (Prefix LM): 이미지 캡션 생성

Multi-Modal Study

Downstream Tasks - Image Captioning, VQA

				(COCO C	aption				NoC	aps
Models	Data	Cross-	-entrop	y Optin	nization	CIL	Er Op	timizat	ion		
		B@4	M	C	S	B@4	M	C	S	C	S
Encoder-Decoder	CC12M	-	-	110.9	.=.	-	-	-	-	90.2	12.1
E2E-VLP [19]	4M	36.2	-	117.3	-		-	7=	-	-	-
VinVL [9]	5.65M	38.5	30.4	130.8	23.4	41.0	31.1	140.9	25.2	97.3	13.8
OSCAR [4]	6.5M	- 72	-	-	-	41.7	30.6	140.0	24.5	83.4	11.4
SimVLM _{large} [7]	1.8B	40.3	33.4	142.6	24.7		-	1 .	-	-	-
LEMON _{large} [33]	200M	40.6	30.4	135.7	23.5	42.3	31.2	144.3	25.3	113.4	15.0
BLIP [34]	129M	40.4	-	136.7	-	-	-	-	-	113.2	14.8
OFA [35]	18 M	-	-	-	-	43.5	31.9	149.6	26.1	-	-1
mPLUG	14M	43.1	31.4	141.0	24.2	46.5	32.0	155.1	26.0	114.8	14.8

Table 1: Evaluation Results on COCO Caption "Karpathy" test split and NoCaps validation set. B@4: BLEU@4, M: METEOR, C: CIDEr, S: SPICE.

We first fine-tune mPLUG with cross-entropy loss and then with CIDEr optimization for extra 5 epochs.

Models	Data	Test-dev	Test-std
Pretrained on C	COCO,	VG, SBU a	and CC datasets
VLBERT [43]	4M	71.16	-
E2E-VLP [19]	4M	73.25	73.67
VL-T5 [44]	4M	-	71.30
UNITER[2]	4M	72.70	72.91
OSCAR[4]	4M	73.16	73.44
CLIP-ViL[26]	4M	76.48	76.94
METER[11]	4M	77.68	77.64
ALBEF[6]	4M	74.54	74.70
mPLUG _{ViT-B}	4M	77.94	77.96
Models Pretrain	ned on	More Data	
ALBEF [6]	14M	75.84	76.04
BLIP [34]	129M	78.25	78.32
SimVLM [7]	1.8B	80.03	80.34
Florence [45]	0.9B	80.16	80.36
OFA [35]	18M	79.87	80.02
VLMo [20]	-	79.94	79.98
mPLUGvit-B	14M	79.79	79.81
mPLUG _{ViT-L}	14M	81.27	81.26

SimVLM, Florence 대비 적은 수의 사전 훈련 데이터로 높은 성능을 당성

Multi-Modal Study

Downstream Tasks - ITR, VG

Models	MSCOCO (5K test set)				Flickr30K (1K test set)								
Models	data		TR			IR			TR			IR	
		R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
E2E-VLP [19]	4M	-	-	-	-	-	-	86.2	97.5	98.92	73.6	92.4	96.0
UNITER [2]	4M	65.7	88.6	93.8	52.9	79.9	88.0	87.3	98.0	99.2	75.6	94.1	96.8
OSCAR [4]	4M	70.0	91.1	95.5	54.0	80.8	88.5	-	-	-	-	-	-
UNIMO [46]	4M	-	-	-	-	-	-	89.4	98.9	99.8	78.0	94.2	97.1
VLMo [20]	4M	78.2	94.4	97.4	60.6	84.4	91.0	95.3	99.9	100.0	84.5	97.3	98.6
ALIGN [18]	1.8B	77.0	93.5	96.9	59.9	83.3	89.8	95.3	99.8	100.0	84.9	97.4	98.6
ALBEF [6]	14M	77.6	94.3	97.2	60.7	84.3	90.5	95.9	99.8	100.0	85.6	97.5	98.9
Florence [45]	0.9B	81.8	95.2	-	63.2	85.7	-	97.2	99.9	-	87.9	98.1	-
BLIP [34]	14M	80.6	95.2	97.6	63.1	85.3	91.1	96.6	99.8	100.0	87.2	97.5	98.8
BLIP [34]	129M	82.4	95.4	97.9	65.1	86.3	91.8	97.4	99.8	99.9	87.6	97.7	99.0
mPLUG	14M	82.8	96.1	98.3	65.8	87.3	92.6	97.6	100.0	100.0	88.4	97.9	99.1

Table 3: Image-text retrieval results on Flickr30K and COCO datasets.

Model	RefCOCO			R	efCOCC	RefCOCOg		
Wiodei	val	testA	testB	val	testA	testB	val-u	test-u
VLBERT [43]	-	-	-	72.59	78/57	62.30	-	-
UNITER [2]	81.41	87.04	74.17	75.90	81.45	66.70	74.86	75.77
VILLA [50]	82.39	87.48	74.84	76.17	81.54	66.84	76.18	76.71
MDETR [51]	86.75	89.58	81.41	79.52	84.09	70.62	81.64	80.89
UNICORN [52]	88.29	90.42	83.06	80.30	85.05	71.88	83.44	83.93
OFA [35]	90.05	92.93	85.26	84.49	90.10	77.77	84.54	85.20
mPLUG	92.40	94.51	88.42	86.02	90.17	78.17	85.88	86.42

Table 4: Visual grounding results (Acc@0.5) on ReferCOCO, ReferCOCO+, and ReferCOCOg.

Zero-shot Transferability

Model	Т	R	I	R
Model	R@1	R@5	R@1	R@5
Zero-Shot				
CLIP [17]	88.0	98.7	68.7	90.6
ALIGN [18]	88.6	98.7	75.7	93.8
FLIP [56]	89.8	99.2	75.0	93.4
Florence [45]	90.9	99.1	76.7	93.6
ALBEF† [6]	94.1	99.5	82.8	96.3
BLIP† [34]	94.8	99.7	84.9	96.7
mPLUG	93.0	99.5	82.2	95.8
mPLUG†	95.8	99.8	86.4	97.6

Table 8: Zero-shot image-text retrieval results on Flickr30K. † denotes the models finetuned on COCO.

Model	# Pretrain	MSR	VTT-F	Retrieval
Model	data	R@1	R@5	R@10
Zero-Shot				
MIL-NCE [57]	How100M	9.9	24.0	32.4
VideoCLIP [58]	How100M	10.4	22.2	30.0
VATT [59]	How100M, AudSet	-	-	29.7
ALPRO [60]	W2M, C3M	24.1	44.7	55.4
VIOLET [61]	Y180M, W2M, C3M	25.9	49.5	59.7
CLIP [17]	WIT400M	26.0	49.4	60.7
Florence [45]	FLD900M	37.6	63.8	72.6
BLIP † [34]	129M	43.3	65.6	74.7
mPLUG	14M	38.1	59.2	68.2
mPLUG †	14M	44.3	66.4	75.4
Fine-Tuning				
VideoCLIP [58]	How100M	30.9	55.4	66.8
ALPRO [60]	C3M, W2M	33.9	60.7	73.2
VIOLET [61]	Y180M, C3M, W2M	34.5	63.0	73.4

Table 9: Zero-shot video-language results on text-to-video retrieval on the 1k test split of the MSRVTT dataset. † denotes the models finetuned on COCO. Video datasets include HowTo100M [62], WebVid-2M(W2M) [63], YT-Temporal-180M(Y180M) [64]. Image datasets include CC3M(C3M) [38], FLD900M [45], WIT400M [17]. Audio datasets include AudioSet(AudSet) [65].

Multi-Modal Study

Model	MSRVTT-QA Acc	MSVD-QA Acc	VATEX-Cap CIDEr
Zero-Shot			
VQA-T [66]	2.9	7.5	-
BLIP [34]	19.2	35.2	37.4
mPLUG	21.1	37.2	42.0

Table 10: Zero-shot video-language results on Question-Answer and Caption tasks.

Q&A

Thank you