Devoir surveillé n°05

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Solution 1

1. On a facilement $I_0 = \frac{\pi}{2}$, $J_0 = \frac{\pi^3}{24}$, $I_1 = 1$. Pour le calcul de J_1 , on intègre deux fois par parties :

$$J_{1} = \left[t^{2} \sin t\right]_{0}^{\frac{\pi}{2}} - 2 \int_{0}^{\frac{\pi}{2}} t \sin t \, dt$$

$$= \frac{\pi^{2}}{4} + 2 \left[t \cos t\right]_{0}^{\frac{\pi}{2}} - 2 \int_{0}^{\frac{\pi}{2}} \cos t \, dt$$

$$= \frac{\pi^{2}}{4} - 2$$

- 2. Soit $n \in \mathbb{N}$. La fonction \cos^n est continue, positive et non constamment nulle sur $\left[0, \frac{\pi}{2}\right]$ donc son intégrale sur ce segment est stritement positive i.e. $I_n > 0$.
- **3.** Soit $n \in \mathbb{N}$. On procède à nouveau à une intégration par parties :

$$I_{n+2} = \left[\sin t \cos^{n+1} t\right]_0^{\frac{\pi}{2}} + (n+1) \int_0^{\frac{\pi}{2}} \sin^2 t \cos^n t \, dt$$
$$= (n+1) \int_0^{\frac{\pi}{2}} (1 - \cos^2 t) \cos^n t \, dt$$
$$= (n+1)(I_n - I_{n+2})$$

On en déduit l'égalité demandée.

4. a. Il est évident que $t \ge 0$ pour $t \in \left[0, \frac{\pi}{2}\right]$.

Pour établir l'autre inégalité, il suffit d'utiliser la concavité de la fonction sin sur $\left[0, \frac{\pi}{2}\right]$. En effet, sur l'intervalle $\left[0, \frac{\pi}{2}\right]$, le graphe de cette fonction est au-dessus de la corde reliant les points d'abscisse 0 et $\frac{\pi}{2}$. Ainsi pour tout $t \in \left[0, \frac{\pi}{2}\right]$, sin $t \ge \frac{2t}{\pi}$ et on en déduit bien la seconde inégalité demandée.

Pour les nouvelles générations qui ignoreront tout de la convexité, on introduit la fonction $f: t \mapsto \frac{\pi}{2} \sin t - t$. f est deux fois dérivable sur $\left[0, \frac{\pi}{2}\right]$ et $f''(t) = -\frac{\pi}{2} \sin t$ pour tout $t \in \left[0, \frac{\pi}{2}\right]$. Ainsi f'' est négative sur $\left[0, \frac{\pi}{2}\right]$ et ne s'annule qu'en 0 ce qui prouve la stricte décroissance de f'. On a $f'(0) = \frac{\pi}{2} - 1 > 0$ et $f'\left(\frac{\pi}{2}\right) = -1 < 0$. f' étant également continue, le corollaire du théorème des valeurs intermédiaires montre que f' s'annule en un unique réel α sur $\left[0, \frac{\pi}{2}\right]$. La décroissance de f' montre que f' est positive sur $\left[0, \alpha\right]$ et négative sur $\left[\alpha, \frac{\pi}{2}\right]$. Ainsi f est croissante sur $\left[0, \alpha\right]$ et décroissante sur $\left[0, \frac{\pi}{2}\right]$. Puisque $f(0) = f\left(\frac{\pi}{2}\right) = 0$, f est positive sur $\left[0, \frac{\pi}{2}\right]$.

b. Soit $n \in \mathbb{N}$. On a donc par croissance de l'intégrale

$$0 \le J_n \le \int_0^{\frac{\pi}{2}} \frac{\pi^2}{4} \sin^2 t \cos^n t \, dt = \frac{\pi^2}{4} \int_0^{\frac{\pi}{2}} (1 - \cos^2 t) \cos^n t \, dt = \frac{\pi^2}{4} (I_n - I_{n+2})$$

c. Soit $n \in \mathbb{N}$. Puisque $I_n > 0$

$$0 \le \frac{\mathbf{J}_n}{\mathbf{I}_n} \le \frac{\pi^2}{4} \left(1 - \frac{\mathbf{I}_{n+2}}{\mathbf{I}_n} \right)$$

Or d'après la question 3, $\frac{I_{n+2}}{I_n} = \frac{n+1}{n+2} \xrightarrow[n \to +\infty]{} 1$. Par le théorème des gendarmes, $\left(\frac{J_n}{I_n}\right)$ converge vers 0.

5. a. On procède encore une fois à des intégrations par parties :

$$\begin{split} \mathbf{I}_{n+2} &= \left[t\cos^{n+2}t\right]_0^{\frac{\pi}{2}} + (n+2)\int_0^{\frac{\pi}{2}}t\sin t\cos^{n+1}t \; \mathrm{d}t \\ &= (n+2)\left[\frac{t^2}{2}\sin t\cos^{n+1}t\right]_0^{\frac{\pi}{2}} - (n+2)\int_0^{\frac{\pi}{2}}\frac{t^2}{2}\left(\cos^{n+2}t - (n+1)\sin^2t\cos^nt\right) \; \mathrm{d}t \\ &= -\frac{1}{2}(n+2)\int_0^{\frac{\pi}{2}}t^2\left(\cos^{n+2}t - (n+1)(1-\cos^2t)\cos^nt\right) \; \mathrm{d}t \\ &= -\frac{1}{2}(n+2)\int_0^{\frac{\pi}{2}}t^2\left((n+2)\cos^{n+2}t - (n+1)\cos^nt\right) \; \mathrm{d}t \\ &= \frac{1}{2}(n+2)\left((n+1)\mathbf{J}_n - (n+2)\mathbf{J}_{n+2}\right) \end{split}$$

b. En utilisant la question 3

$$\frac{\mathbf{J}_n}{\mathbf{I}_n} - \frac{\mathbf{J}_{n+2}}{\mathbf{I}_{n+2}} = \frac{(n+1)\mathbf{J}_n}{(n+2)\mathbf{I}_{n+2}} - \frac{\mathbf{J}_{n+2}}{\mathbf{I}_{n+2}} = \frac{(n+1)\mathbf{J}_n - (n+2)\mathbf{J}_{n+2}}{(n+2)\mathbf{I}_{n+2}}$$

Mais d'après la question précédente,

$$(n+1)J_n - (n+2)J_{n+2} = \frac{2I_{n+2}}{n+2}$$

donc

$$\frac{J_n}{I_n} - \frac{J_{n+2}}{I_{n+2}} = \frac{2}{(n+2)^2}$$

6. Soit un entier $n \ge 2$.

$$\begin{split} \mathbf{S}_n &= 1 + \sum_{k=2}^n \frac{1}{k^2} \\ &= 1 + \sum_{k=0}^{n-2} \frac{1}{(k+2)^2} \\ &= 1 + \frac{1}{2} \sum_{k=0}^{n-2} \frac{\mathbf{J}_k}{\mathbf{I}_k} - \frac{\mathbf{J}_{k+2}}{\mathbf{I}_{k+2}} \qquad \text{d'après la question précédente} \\ &= 1 + \frac{1}{2} \left(\frac{\mathbf{J}_0}{\mathbf{I}_0} + \frac{\mathbf{I}_1}{\mathbf{J}_1} - \frac{\mathbf{I}_{n-1}}{\mathbf{J}_{n-1}} - \frac{\mathbf{I}_n}{\mathbf{J}_n} \right) \qquad \text{par télescopage} \end{split}$$

En utilisant la question **4.c**, on en déduit que (S_n) converge vers $\frac{1}{2}\left(\frac{J_0}{I_0} + \frac{J_1}{I_1}\right) + 1$. En utilisant les résultats de la question **1**, on a :

$$\frac{1}{2} \left(\frac{J_0}{I_0} + \frac{J_1}{I_1} \right) + 1 = \frac{1}{2} \left(\frac{\frac{\pi^3}{24}}{\frac{\pi}{2}} + \frac{\frac{\pi^2}{4} - 2}{1} \right) + 1$$
$$= \frac{1}{2} \left(\frac{\pi^2}{12} + \frac{\pi^2}{4} - 2 \right) + 1 = \frac{\pi^2}{6}$$

Ainsi (S_n) converge vers $\frac{\pi^2}{6}$.

Solution 2

1. Puisque sur I, $1 - e^{-t} = e^{-t}(e^t - 1) \neq 0$, l'équation homogène $(\mathbf{E_H})$ est équivalente à

(E):
$$y' + \frac{e^t}{e^t - 1}y = 0$$
.

Comme $e^t - 1 > 0$ sur I, on a $\int \frac{e^t}{e^{t-1}} dt = \ln(|e^t - 1|) = \ln(e^t - 1)$, les solutions de $(\mathbf{E_H})$ sur I sont les fonctions de la forme,

$$t \in I \longrightarrow \frac{\lambda}{e^t - 1}$$
, où $\lambda \in \mathbb{R}$.

2. Appliquons la méthode de la variation de la constante. D'après ce qui précède, les solutions de (\mathbf{E}) sur I sont les fonctions de la forme $t \in I \longmapsto \frac{\lambda(t)}{e^t-1}$ avec λ définie et dérivable sur I et vérifiant

$$\forall t \in I, \quad \frac{\lambda'(t)}{e^t - 1} = \frac{e^{-t}}{1 - e^{-t}} = \frac{1}{e^t - 1},$$

ie $\forall t \in I$, $\lambda'(t) = 1$, ce qui équivaut à $\forall t \in I$, $\lambda(t) = t + C$, où $C \in \mathbb{R}$. Les solutions sont donc les fonctions de la forme,

$$t \in I \longrightarrow \frac{t+C}{e^t-1}$$
 où $C \in \mathbb{R}$.

- **3.** Recherche d'une solution admettant une limite finie en 0^+ .
 - **a.** Posons $\phi(x) = e^x 1 x$ pour $x \in \mathbb{R}$. Pour tout $x \in \mathbb{R}$, $\phi'(x) = e^x 1$. Ainsi ϕ' est positive sur \mathbb{R}_+ et ϕ est donc croissante sur \mathbb{R}_+ . Notamment, pour tout $x \in \mathbb{R}_+$, $\phi(x) \ge \phi(0) = 0$. Ainsi $e^x 1 \ge x$ pour tout $x \in \mathbb{I}$. Posons $\psi(x) = e^x 1 xe^x$ pour $x \in \mathbb{R}$. Pour tout $x \in \mathbb{R}$, $\psi'(x) = -xe^x$. Ainsi ψ' est négative sur \mathbb{R}_+ et ψ est donc décroissante sur \mathbb{R}_+ . Notamment, pour tout $x \in \mathbb{R}_+$, $\psi(x) \le \psi(0) = 0$. Ainsi $e^x 1 \ge xe^x$ pour tout $x \in \mathbb{I}$.
 - **b.** D'après l'inégalité obtenue ci-dessus,

$$\forall x > 0 \ , \ e^{-x} \le \frac{x}{e^x - 1} \le 1.$$

Puisque $\lim_{x\to 0^+} e^{-x} = 1$, on obtient en appliquant le théorème des gendarmes,

$$\lim_{x \to 0^+} \frac{x}{e^x - 1} = 1.$$

Comme les solutions de (E) sont de la forme

$$f_{\mathcal{C}}: \mathcal{I} \longmapsto f_{\mathcal{C}}(t) = \frac{x}{e^x - 1} + \frac{\mathcal{C}}{e^x - 1} \text{ où } \mathcal{C} \in \mathbb{R},$$

 $f_{\rm C}$ admet une limite finie en 0^+ si et seulement si $x\mapsto \frac{{\rm C}}{e^x-1}$ en admet également une. Puisque $\lim_{x\to 0^+}\frac{1}{e^x-1}=+\infty$, la seule solution admettant une limite finie en 0^+ est la fonction $f=f_0: t\in {\rm I} \longmapsto \frac{t}{e^t-1}$ et sa limite en 0^+ vaut $\ell=1$.

a. La fonction f est dérivable sur I en tant que quotient de fonctions dérivables sur I et sur cet intervalle,

$$f'(x) = \frac{e^x - 1 - xe^x}{(e^x - 1)^2}.$$

D'après la question 3.a, $f'(x) \le 0$ sur I. La fonction est donc décroissante sur cet intervalle. D'après les croissances comparées, f tend vers 0 en $+\infty$. Comme $f(0) = \ell = 1$, la fonction f décroît de 1 à 0 sur I.

b. Posons $\chi(x) = e^x - 1 - x - \frac{x^2}{2}$ pour $x \in \mathbb{R}$. Pour tout $x \in \mathbb{R}$, $\chi'(x) = e^x - 1 - x$. D'après la question **3.a**, χ' est positive sur \mathbb{R}_+ et χ est donc croissante sur \mathbb{R}_+ . Notamment, pour tout $x \in \mathbb{R}_+$, $\chi(x) \ge \chi(0) = 0$. Ainsi $e^x \ge 1 + x + \frac{x^2}{2}$ pour tout $x \in \mathbb{R}_+$.

Posons $\xi(x) = e^x - 1 - x - \frac{x^2}{2}e^x$ pour $x \in \mathbb{R}$. Pour tout $x \in \mathbb{R}$, $\xi'(x) = e^x - 1 - xe^x - \frac{x^2}{2}e^x$. D'après la question **3.a**, $e^x - 1 - xe^x \le 0$ pour tout $x \in \mathbb{R}_+$ et a fortiori, $\xi'(x) \le 0$ pour tout $x \in \mathbb{R}_+$. ξ' est positive sur \mathbb{R}_+ et ξ est donc décroissante sur \mathbb{R}_+ . Notamment, pour tout $x \in \mathbb{R}_+$, $\xi(x) \le \xi(0) = 0$. Ainsi $e^x \le 1 + x + \frac{x^2}{2}e^x$ pour tout $x \in \mathbb{R}_+$.

c. D'après la question **4.b**, pour tout x > 0,

$$\frac{x}{x + \frac{x^2}{2}e^x} \le f(x) \le \frac{x}{x + \frac{x^2}{2}}$$

d'où, comme f(0) = 1,

$$\frac{-x^2 e^x/2}{x + \frac{x^2}{2} e^x} \le f(x) - f(0) \le \frac{-x^2/2}{x + \frac{x^2}{2}}$$

puis comme x > 0,

$$\frac{-e^{x}/2}{1 + \frac{x}{2}e^{x}} \le \frac{f(x) - f(0)}{x - 0} \le \frac{-1/2}{1 + \frac{x}{2}}.$$

Puisque

$$\lim_{x \to 0^+} e^x = 1 \ , \ \lim_{x \to 0^+} (1 + x/2) = \lim_{x \to 0^+} (1 + xe^x/2) = 1,$$

les deux membres encadrant la valeur du taux d'accroissement de f en 0 au point x tendent vers $-\frac{1}{2}$. On déduit du théorème des gendarmes que ce taux d'accroissement tend également vers $-\frac{1}{2}$ lorsque x tend vers 0^+ et donc que f est dérivable en 0 avec $f'(0) = -\frac{1}{2}$.

d. Le tracé découle de l'étude précédente.

Solution 3

- 1. a. En choisissant x = y = 0 dans la relation de l'énoncé, on obtient f(0) = 0. En choisissant x = y = 1, on obtient f(1) = 0. Enfin, en choisissant x = y = -1, on obtient f(-1) = 0.
 - **b.** On se donne $x \in \mathbb{R}$. En choisissant y = -1, on obtient f(-x) = -f(x) puisque f(-1) = 0. f est donc bien impaire.
- **2. a.** On dérive la relation de l'énoncé par rapport à y :

$$\forall (x, y) \in (\mathbb{R}_+^*)^2, \ xf'(xy) = xf'(y) + f(x)$$

On fixe alors y = 1 de sorte que

$$\forall x \in \mathbb{R}_+^*, \ xf'(x) - f(x) = xf'(1)$$

Ainsi f est solution sur \mathbb{R}_+^* de l'équation différentielle xy' - y = kx avec k = f'(1).

b. Les solutions sur \mathbb{R}_+^* de l'équation homogène sont les fonctions $x \mapsto \lambda x$ avec $\lambda \in \mathbb{R}$. Par variation de la constante, on trouve que $x \mapsto kx \ln(x)$ est solution particulière. Les solutions sur \mathbb{R}_+^* de l'équation avec second membre sont donc les fonctions $x \mapsto \lambda x + kx \ln(x)$.

Il existe donc $\lambda \in \mathbb{R}$ tel que $f(x) = \lambda x + kx \ln(x)$ pour tout $x \in \mathbb{R}_+^*$. Or on sait que f(1) = 0, ce qui impose $\lambda = 0$. On en déduit que $f(x) = kx \ln(x)$ pour tout $x \in \mathbb{R}_+^*$. Comme f est impaire, $f(x) = -f(-x) = kx \ln(-x)$ pour tout $x \in \mathbb{R}_-^*$. Enfin, f est continue en 0 donc $f(0) = \lim_{x \to 0^+} kx \ln(x) = 0$ par croissances comparées.

3. a. La question précédente montre que $\varphi(x) = \begin{cases} x \ln(x) & \text{si } x > 0 \\ x \ln(-x) & \text{si } x < 0 \text{. En particulier, pour tout } x \in \mathbb{R}^*_+, \frac{f(x) - f(0)}{x - 0} = 0 \end{cases}$

 $\ln x$. Ainsi $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x} = -\infty$, ce qui prouve que f n'est pas dérivable en 0.

Remarque. On prouve de même que $\lim_{x\to 0^-}\frac{f(x)-f(0)}{x-0}=-\infty$. On peut en déduire que la courbe de f admet une tangente verticale en son point d'abscisse 0.

b. On se contente d'étudier f sur \mathbb{R}_+^* puisque f est impaire. On trouve que $f'(x) = \ln(x) + 1$ pour tout $x \in \mathbb{R}_+^*$. Ainsi f est strictement décroissante sur]0, 1/e] et strictement croissante sur $[1/e, +\infty[$. Par opérations sur les limites, $\lim_{+\infty} f = +\infty$.

Puisque f est impaire, f est strictement croissante sur [-1/e, 0[et strictement décroissante sur $]-\infty, 1/e]$ et $\lim_{\infty} f = -\infty$.

4. a. Rappelons que pour tout $x \in \mathbb{R}$, $F(x) = \int_0^x f(t) dt$. On fixe alors $x \in \mathbb{R}$. Pour tout $t \in \mathbb{R}$,

$$\forall t \in \mathbb{R}, \ f(xt) = xf(t) + tf(x)$$

On se donne maintenant $y \in \mathbb{R}$ et on intègre la relation précédente entre 0 et y. Ainsi

$$\int_0^y f(xt) dt = xF(y) + \frac{y^2}{2}f(x)$$

On multiplie cette relation par x:

$$\int_{0}^{y} x f(xt) dt = x^{2} F(y) + \frac{xy^{2}}{2} f(x)$$

En effectuant le changement de variable u = xt dans la première intégrale, on obtient

$$F(xy) = x^2 F(y) + \frac{xy^2}{2} f(x)$$

b. En choisissant y=1 dans le relation précédente, on a pour tout $x \in \mathbb{R}_+^*$

$$f(x) = \frac{2}{x} \left(F(x) - x^2 F(1) \right)$$

Or F est dérivable sur \mathbb{R}_+^* en tant que primitive. Par opérations, f est donc elle-même dérivable sur \mathbb{R}_+^* .

c. D'après la question 2, il existe $k \in \mathbb{R}$ tel que $f(x) = kx \ln |x|$ pour $x \neq 0$ et f(0) = 0. Réciproquement, on vérifie aisément qu'une telle fonction est continue sur \mathbb{R} (seule la continuité en 0 pose éventuellement problème mais $\lim_{x\to 0} x \ln |x| = 0$). On vérifie également que

$$\forall (x, y) \in \mathbb{R}^2, \ f(xy) = xf(y) + yf(x)$$

quitte à distinguer les cas où x = 0 ou y = 0.

On a donc démontré que $\mathcal{E} = \text{vect}(\varphi)$.

Solution 4

1.

$$\operatorname{sh}(a)\operatorname{ch}(b) - \operatorname{ch}(a)\operatorname{sh}(b) = \frac{e^a - e^{-a}}{2} \cdot \frac{e^b + e^{-b}}{2} - \frac{e^a + e^{-a}}{2} \cdot \frac{e^b - e^{-b}}{2}$$

$$= \frac{e^{a+b} - e^{b-a} + e^{a-b} - e^{-a-b}}{4} - \frac{e^{a+b} - e^{a-b} + e^{b-a} - e^{-a-b}}{4}$$

$$= \frac{e^{a-b} - e^{b-a}}{2} = \operatorname{sh}(a - b)$$

$$\operatorname{ch}(a)\operatorname{ch}(b) - \operatorname{sh}(a)\operatorname{sh}(b) = \frac{e^a + e^{-a}}{2} \cdot \frac{e^b + e^{-b}}{2} - \frac{e^a - e^{-a}}{2} \cdot \frac{e^b - e^{-b}}{2}$$

$$= \frac{e^{a+b} + e^{b-a} + e^{a-b} + e^{-a-b}}{4} - \frac{e^{a+b} - e^{a-b} - e^{b-a} + e^{-a-b}}{4}$$

$$= \frac{e^{a-b} + e^{b-a}}{2} = \operatorname{ch}(a - b)$$

2. A l'aide de la question précédente et de la linéarité de l'intégrale, on a pour tout $x \in \mathbb{R}$:

$$f(x) = \operatorname{sh}(x) \int_0^x \operatorname{ch}(t) g(t) \, dt - \operatorname{ch}(x) \int_0^x \operatorname{sh}(t) g(t) \, dt$$

Les applications $x \mapsto \int_0^x \operatorname{ch}(t)g(t) \, dt$ et $x \mapsto \int_0^x \operatorname{sh}(t)g(t) \, dt$ sont de classe \mathcal{C}^1 comme primitives de fonctions continues. Comme sh et ch sont également de classe \mathcal{C}^1 , on en déduit que f est de classe \mathcal{C}^1 et que pour tout $x \in \mathbb{R}$:

$$f'(x) = \operatorname{ch}(x) \int_0^x \operatorname{ch}(t)g(t) \, dt + \operatorname{sh}(x)\operatorname{ch}(x)g(x) - \operatorname{sh}(x) \int_0^x \operatorname{sh}(t)g(t) \, dt - \operatorname{ch}(x)\operatorname{sh}(x)g(x)$$

$$= \int_0^x \left(\operatorname{ch}(x)\operatorname{ch}(t) - \operatorname{sh}(x)\operatorname{sh}(t)\right)g(t) \, dt = \int_0^x \operatorname{ch}(x - t)g(t) \, dt$$

3. On a montré à la question précédente que pour tout $x \in \mathbb{R}$:

$$f(x) = \operatorname{ch}(x) \int_0^x \operatorname{ch}(t)g(t) \, dt - \operatorname{sh}(x) \int_0^x \operatorname{sh}(t)g(t) \, dt$$

On démontre comme à la première question que f' est de classe \mathcal{C}^1 i.e. que f est de classe \mathcal{C}^2 . De plus, pour tout $x \in \mathbb{R}$:

$$f''(x) = \operatorname{sh}(x) \int_0^x \operatorname{ch}(t)g(t) \, dt + \operatorname{ch}^2(x)g(x) - \operatorname{ch}(x) \int_0^x \operatorname{sh}(t)g(t) \, dt - \operatorname{sh}^2(x)g(x)$$

$$= \int_0^x (\operatorname{sh}(x)\operatorname{ch}(t) - \operatorname{ch}(x)\operatorname{sh}(t)) g(t) \, dt + (\operatorname{ch}^2(x) - \operatorname{sh}^2(x))g(x)$$

$$= f(x) + g(x)$$

Ceci prouve que f est bien solution de l'équation différentielle y'' - y = g.

4. Les solutions de l'équation homogène y'' + y = 0 sont les fonctions $x \mapsto \lambda \operatorname{ch}(x) + \mu \operatorname{sh}(x)$ avec $(\lambda, \mu) \in \mathbb{R}^2$. Comme f est une solution particulière de y'' - y = g, on en déduit que les solutions de y'' - y = g sont $x \mapsto f(x) + \lambda \operatorname{ch}(x) + \mu \operatorname{sh}(x)$ avec $(\lambda, \mu) \in \mathbb{R}^2$.