WHAT IS CLAIMED IS:

1.	1. A shape memory alloy actuator array comprising:
2	a plurality of individually trained shape memory alloy actuators to
3	provide relative movement of different actuator array portions; and
4	a thin-film heating element positioned adjacent at least one shape
5	memory alloy actuator to thermally activate the actuator for movement away
6	from its initial shape.
1	2. The shape memory allow actuator array as recited in claim 1 wherein
2.	the actuators are positioned in between at least two connecting rings each
3	defined by an outer periphery.
1	3. The shape memory alloy actuator array as recited in claim 2 wherein
2	the actuators are positioned in between a plurality of connecting rings to form a
3	generally columnar array.
1	4. The shape memory alloy actuator array as recited in claim 2 wherein
2	at least one shape memory alloy actuator is positioned adjacent another shape
3	memory alloy actuator along a different portion of the connecting rings.

`3

1	5.	The shape memory alloy actuator array as recited in claim 4 wherein
2	at least o	ne actuator expands towards a predetermined shape when heated.
1	6.	The change many allows actuate a superior and in allow A = 1
1	0.	The shape memory alloy actuator array as recited in claim 4 wherein
2	at least o	ne actuator contracts towards a predetermined shape when heated.
1	7.	The shape memory alloy actuator array as recited in claim 4 wherein
2	at least o	ne actuator acts in opposition to at least one other actuator.
1	8.	The shape memory alloy actuator array as recited in claim 2 wherein
2	the shape	e memory alloy actuators are positioned in side by side pairs along the
3	periphery	y of the connecting rings.
		/ V(/
1	9.	The shape memory alloy actuator array as recited in claim 8 wherein
2	one actua	ator from each actuator pair expands from an initial shape towards a
3	predeterr	mined shape when heated.
1	10.	The shape memory alloy actuator array as recited in claim 8 wherein
_	- 0.	- 1110 onapo intendir anto, actually attay as recited in claim o wherein

3

1	11.	The shape memory alloy actuator array as recited in claim 2 wherein
2	each sha	pe memory alloy actuator is positioned in side by side pairs with a
3	biasing e	element for returning the actuator to its initial shape.
1	12.	The shape memory alloy actuator array as recited in claim 11 wherein
2	the biasi	ng element is another actuator.
1	13.	The shape memory alloy actuator array as recited in claim 11 wherein
2	the biasi	ng element is a shape memory alloy actuator trained with a
3	predeterr	mined shape.
1	14.	The shape memory allow actuator array as recited in claim 11 wherein
2	the biasin	ng element is formed of an elastomer.
1	15.	The shape memory alloy actuator array as recited in claim 11 wherein
2	the biasin	ng element is a spring.
1	16.	The shape memory alloy actuator array as recited in claim 1 wherein
2	at least o	ne actuator has an initial nonplanar shape and a substantially planar

predetermined shape.

2

3

1

2

3

1

2

3

1	17. The shape memory alloy actuator array as recited in claim 1 wherein
2	at least one actuator has an initial buckled shape and a substantially planar
3	predetermined shape.

- 18. The shape memory alloy actuator array as recited in claim 1 wherein at least one actuator is configured with a substantially planar initial shape and a substantially planar predetermined shape of a relatively different length.
- 19. The shape memory alloy actuator array as recited in claim 1 wherein the array includes at least one actuator that contracts from an initial shape when heated and at least one actuator that expands from an initial shape when heated.
 - 20. The shape memory alloy actuator array as recited in claim 19 wherein the number of actuators in the array that contract towards a predetermined shape when heated is equal to the number of actuators in the array that expand towards a predetermined shape when heated.
- The shape memory alloy actuator array as recited in claim 1 wherein at least one actuator may be heated to move away from its initial shape to an intermediate shape.

1	The shape memory alloy actuator array as recited in claim 1 wherein
2	selected combination of at least one actuator may be heated to provide for
3	variable stiffness of the shape memory alloy actuator array.
۰۰۰۱	
	23. A shape memory alloy catheter comprising:
2	a catheter body formed with a sidewall portion;
3	a shape memory alloy portion positioned adjacent the catheter sidewall
4	portion having a lattice network of individually configured shape memory alloy
5	micro-actuators; and
6	an addressable thin-film heater element in communication with the
7	shape memory alloy portion for activation of selected micro-actuators.
1 .	24. The shape memory alloy catheter as recited in claim 23 wherein the
2	micro-actuators are arranged in segmented joints.
1	25. The shape memory alloy/catheter as recited in claim 24 further
2	including connecting rings for separating the micro-actuators into segmented
3	joints.
7]	26. The shape memory alloy catheter as recited in claim 25 wherein the
$\frac{1}{2}$	shape memory alloy portion includes at least one micro-actuator that expands
l	
	49
	12

3	upon heating by an addressable heater element and at least one micro-actuator
4	that contracts upon heating by another addressable heater element.

- The shape memory alloy catheter as recited in claim 23 wherein the
 shape memory alloy portion includes at least one addressable heater element to
 heat a selected combination of at least one micro-actuator for varying the
 relative stiffness of the shape memory alloy portion.
- The shape memory alloy catheter as recited in claim 27 wherein the shape memory alloy portion may be thermally activated to have a different stiffness relative to the catheter sidewall portion.
 - 29. The shape memory alloy catheter as recited in claim 23 wherein the shape memory alloy portion surrounds at least a portion of the catheter body.
- 1 30. The shape memory alloy catheter as recited in claim 23 further including a micro-fabricated sensor.
- 1 31. The shape memory alloy catheter as recited in claim 23 further 2 including a micro-fabricated transducer.

2

3.

- 32. The shape memory alloy catheter as recited in claim 23 wherein the shape memory alloy is NiTi.
- 1 33. A shape memory alloy conduit comprising:
- a lattice structure formed of oppositely trained shape memory alloy
 micro-actuators substantially disposed between at least two connecting rings;
 and
- a network of heating elements formed about the lattice structure for activating selected shape memory actuators within the lattice structure.
 - 34. The shape memory alloy conduit as recited in claim 33 wherein the network of heating elements activates a selected combination of at least one actuator in the conduit to provide relative movement between conduit portions.
- The shape memory alloy conduit as recited in claim 33 wherein the network of heating elements activates a selected combination of at least one actuator in the conduit to vary the relative stiffness of lattice structure portions.
- 1 36. The shape memory alloy conduit as recited in claim 33 further
 2 including at least two connecting members separating the conduit portions
 3 wherein the actuators are positioned in between the connecting members.

1	37. The shape memory alloy conduit as recited in claim 33 wherein the
2	lattice structure includes at least one micro-actuator that expands when heate
3	and at least one micro-actuator that contracts when heated.

- The shape memory alloy conduit as recited in claim 33 wherein the network of heating elements are positioned along the connecting members and in communication with at least one micro-actuator.
- The shape memory alloy conduit as recited in claim 38 further
 comprising a microprocessor unit wherein the heating elements are thin-film
 addressable heating elements controlled by the microprocessor unit that
 selectively activates a combination of at least one micro-actuator for relative
 movement of the shape memory alloy conduit.
- 1 40. The shape memory allow conduit of claim 33 wherein the conduit 2 forms at least a portion of a catheter.
- 1 41. The shape memory alloy conduit of claim 33 wherein the conduit 2 forms at least a portion of an introducer.

1	The shape memory alloy conduit of claim 33 wherein the conduit
2	forms at least a portion of a cannula.
1	43. A shape memory alloy medical device comprising:
2	a scaffolding formed of individually activated and oppositely trained
3	shape memory alloy actuators set with a predetermined shape to provide a full
4	range of directional movement within a body; and
5	at least thin-film one heating element in communication with the
6	scaffolding surface to selectively activate a combination of at least one actuator
7	towards a predetermined state.
1	44. The shape memory alloy medical device as recited in claim 43
2	wherein the scaffolding further includes at least two connecting rings to support
3	relative movement of the shape memory alloy medical device.
1	45. The shape memory alloy medical device as recited in claim 44
2	wherein at least one actuator has a substantially rectangular configuration with a
3	buckled surface longitudinally aligned relative to the scaffolding.
1	46. The shape memory alloy medical device as recited in claim 45
2	wherein a plurality of heating elements provide for a system of separately

2

3

4

5

1

2

3

4

- addressable thin-film heaters that thermally activates a selected combination of at least one actuator to vary the ring to ring tilt angle of the scaffolding within a predetermined range.
- 1 47. The shape memory alloy medical device as recited in claim 44
 2 wherein at least one actuator has a substantially rectangular configuration with a
 3 buckled surface laterally aligned relative to the scaffolding.
 - 48. The shape memory alloy medical device as recited in claim 45 wherein a plurality of heating elements provide for a system of separately addressable thin-film heaters that thermally activates a selected combination of at least one actuator to vary the ring to ring rotational angle of the scaffolding within a predetermined range.
 - 49. The shape memory allow medical device as recited in claim 44 wherein the scaffolding includes at least one actuator with a substantially elongated configuration that is aligned relatively longitudinal to the scaffolding and at least one actuator with a substantially elongated configuration that is aligned relatively lateral to the scaffolding.

2

3

1

2

3

4

5

1

1	The shape memory alloy medical device as recited in claim 49
2	wherein a plurality of heating elements provide for a system of separately
3	addressable thin-film heaters that thermally activates a selected combination of
4	at least one actuator for relative movement of the device within the body.

- The shape memory alloy medical device as recited in claim 43 wherein the heating element selectively activates at least one actuator in the scaffolding to an intermediate state.
 - 52. A thermally activated directional actuator device comprising:

 a skeletal structure formed of individual oppositely trained shape
 memory alloy actuators each configured with a predetermined shape; and
 a heating system having individual localized heaters for moving each
 actuator towards its predetermined shape.
- 53. A thermally activated directional actuator device as recited in claim 52 wherein the skeletal structure further includes a shape memory alloy backbone.
- 1 54. A thermally activated directional actuator device as recited in claim 53 wherein the backbone includes a shape memory allox portion that contracts

3	when thermally activated and a shape memory alloy portion that expands when
4	thermally activated to provide for arcuate movement of the actuator device.

- 1 55. A thermally activated directional actuator device as recited in claim 54 wherein the skeletal structure is formed with a supporting ribbed cage section.
- 1 56. A thermally activated directional actuator device as recited in claim 55
 2 wherein at least a portion of the directional actuator is encapsulated within a
 3 polymer coating.
- 1 57. A thermally activated directional actuator device as recited in claim 52
 2 wherein the skeletal structure includes a plurality of intermediary spacers to
 3 form a directional actuator having a multiple stage configuration.
- 1 58. A thermally activated directional actuator device as recited in claim 57
 2 wherein the intermediary spacers further includes actuator extensions for
 3 connection to actuators.
- 1 59. A thermally activated directional actuator device as recited in claim 58
 2 wherein the intermediary spacers are connecting rings for supporting relative
 3 movement of the directional actuator portions.

1	60.	A thermally activated directional actuator device as recited in claim 59
2	wherein	the skeletal structure is formed with at least two oblong actuators
3	longitud	inally aligned relative to the actuator for relative movement of the
4	skeletal	structure portion.
1	61.	A thermally activated directional actuator device as recited in claim 59/
2	wherein	the skeletal structure is formed with at least two oblong actuators
3	laterally	aligned relative to the actuator for relative movement of the skeletal
4	structure	e portion.
1	62.	A thermally activated directional actuator device as recited in claim 61
2	wherein	the connecting rings are formed with actuator extensions for connecting
3	actuator	s laterally aligned relative to the actuator device.
1	63.	A thermally activated directional actuator device as recited in claim 62
2	wherein	the laterally aligned actuators include at least one actuator that expands
3	in length	when heated and at least one actuator that contracts in length when

heated.

1	04.	A method of forming a snape memory alloy actuator array comprising
2	the foll	owing steps of:
3		selecting a sheet of shape memory alloy material defined by at least two
4	side ed	ges;
5		forming a plurality of shape memory alloy actuators to provide relative
6	movem	ent of the actuator by removing selected window portions of the sheet
7	along a	series of spaced apart rows and columns;
8		training the individual shape memory alloy actuators to a predetermined
9	state;	
10		laying out a thin-film network of addressable heating elements onto the
11	sheet fo	or selectively activating the shape memory alloy actuators; and
12		sealing the side edges of the sheet to form a shape memory alloy
13	actuato	r array.
1	65.	The method as recited in claim 64 wherein the plurality of shape
2	memor	y alloy actuators are formed in side by side pairs.
1	66.	The method as recited in claim 64 wherein the spaced apart rows form
2	connec	ting rings to support relative movement of the shape memory alloy
3	actuato	r array.
		\

2

3

1	67. The rho	ethod as recited in claim 64 wherein the spaced apart colum	ıns
2	generally define	the lateral portions of the shape memory alloy actuators.	

- 1 68. The method as recited in claim 64 wherein the shape memory alloy actuators are trained to expand when heated.
- 1 69. The method as recited in claim 64 wherein the shape memory alloy actuators are trained to contract when heated.
 - 70. The method as recited in claim 64 further comprising the step of selecting another thin-film sheet of shape memory alloy material to provide for an overlapping first and a second thin-film sheet wherein the shape memory alloy actuators formed in the first thin-film sheet are trained to expand when heated and the shape memory alloy actuators formed in the second thin-film sheet are trained to contract when heated.
- 71. The method as recited in claim 70 wherein the first and second thinfilm sheet of shape memory alloy material are formed of NiTi.
- 72. The method as recited in claim 64 further comprising the step of connecting the network of addressable heating elements to a microprocessor

The method as recited in claim 64 wherein the thin-film sheet of shape memory alloy material is NiTi.

Adc 57