Математический анализ

Харитонцев-Беглов Сергей

15 сентября 2021 г.

Содержание

1.	Мнс	ожества, отношения	1
	1.1	Орг. моменты	1
	1.2	Что такое множество	1
	1.3	Операции с множествами	2
	1.4	Вещественные числа	4
	1.5	Мат. индукции	5
	1.6	Наибольшие/наименьшие элементы	5
	1.7	Инфинум/Супремум	6
2 .	Пос	ледовательности	8
	2.1	Предел последовательности	8

1. Множества, отношения

1.1. Орг. моменты

- За основу начала была взята книжка "Виноградов, Громов «Курс по математическому анализу». Том 1". Но это было давно, как база, но смотреть туда можно.
- Зорич «Математический анализ».
- Фихтенгольц. Книжка устарела, написана старым языком, но там разобрано много примеров, поэтому можно смотреть просто темы.
- Курс на степике. (Часть вторая).

Для связи можно использовать почту aikhrabrov@mail.ru.

Система состоит из нескольких кусочков: 0.3-оценка за практику(A3, кр...)+0.35-Коллоквиум в неч-Экзамен в четном модуле. Хвост образуется только в конце семестра.

Первый модуль — общие слова, последовательности, пределы последовательности, функции, непрерывность. Второй модуль — конец непрерывности, производная, начало интегралов.

1.2. Что такое множество

Обойдемся без формалистики — мы тут занимаемся прикладной математикой. Поэтому

Определение **1.1.** Множество — какой-то набор элементов. Для любого элемента можно сказать принадлежит множеству или нет.

Операция	определение	название
	$\forall x: \ x \in A \Rightarrow x \in B$	— подмножество <i>В</i>
	$A \subset B \land B \subset A$	A равно B
	$A \subset B \land A! = b$	A — собственное подмножество B

Способы задания множеств:

- Полное задание: $\{a, b, c\}$.
- Неполное: a_1, a_2, \ldots, a_k . Но должно быть понятно как образована последовательно. Например $\{1, 5, \ldots, 22\}$ непонятно
- Можно так же и бесконечные: $\{a_1, a_2, \dots$
- Словесным описанием. Например, множество простых чисел.
- Формулой. Например, пусть задана функция $\Phi(x)$ функция для всех чисел, которая возращает истину или ложь. Тогда можно взять множество $\{x:\Phi(x)=$ истина. Но не всякая функция подходит, особенно если функция из реального мира. Например: «натуральное число может быть описано не более чем 20 словами русского языка». Не подходит оно по следующей причине: пусть наша функция подходит, то образуется множество $A = \{x_1, x_2, x_3, \ldots\}$. У каждого множества есть минимальный элемент, тогда минимальное невходящее число может быть описано как «первое число, которое нельзя описать не более чем 20 словами русского язык», что меньше 20 слов. Противоречие.

1.3. Операции с множествами.

Символ	Определение	Описание
\cap	$A \cap B = \{x \mid x \in A \land x \in B\}$	Пересечение множеств
$\bigcap_{k=1}^{n} A_k$	$A = A_1 \cap A_2 \cap \ldots \cap A_n$	Пересечение множества множеств
U	$A \cup B = \{x \mid x \in A \lor x \in B\}$	Объединение множеств
$\bigcup_{k=1}^{n} A_k$	$A = A_1 \cup A_2 \cup \ldots \cup A_n$	Объединение множества множеств
\	$A \setminus B = \{x \mid x \in A \land x \notin B\}$	Разность множеств
×	$A \times B = \{(x, y) \mid x \in A, y \in B\}$	Произведение множеств
\triangle	$A \triangle B = (A \setminus B) \cup (B \setminus A)$	Симметрическая разность
Ø	$\forall x: x \notin \varnothing$	пустое множество
N		Натуральные числа
\mathbb{Z}		целые числа
Q	$\frac{a}{b}$, где $a \in \mathbb{Z}, b \in \mathbb{N}$	рациональные числа
\mathbb{R}		действительные числа
2^X		множество всех подмножеств X

Важный момент: $1 \in \{1\}$, но $1 \notin \{\{1\}\}$ Правила де Моргана. Пусть есть $A_{\alpha} \subset X$

1.
$$X \setminus \bigcup_{\alpha \in I} = \bigcap_{\alpha \in I} X \setminus A_{\alpha}$$
.

2.
$$X \setminus \bigcap_{\alpha \in I} = \bigcup_{\alpha \in I} X \setminus A_{\alpha}$$
.

Доказательство: $X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \{x : x \in X \land x \notin A_{\alpha} \ \forall \alpha \in I\} = \{x : \forall \alpha \in IX \setminus A_{\alpha} = \bigcap_{\alpha \in I} X \setminus A_{\alpha}.$

Теорема 1.1.
$$A \cap \bigcup_{\alpha \in I} B_{\alpha} = \bigcup_{\alpha \in I} A \cap B_{\alpha}$$
 $A \cup \bigcap_{\alpha \in I} B_{\alpha} = \bigcap_{\alpha \in I} A \cup B_{\alpha}$

Доказательство. TODO.

Определение 1.2. Упорядоченная пара $\langle x,y\rangle$. Важное свойство $\langle x,y\rangle=\langle x',\rangle\iff x=x'\wedge y=y'$

Определение 1.3. Пусть даны множества X_1, \ldots, X_n , то упорядоченной n- (кортеж) $-\langle x_1, \ldots, x_n \rangle$, обладающее условием $\langle x_1, \ldots, x_n \rangle = \langle y_1, \ldots, y_n \rangle \iff x_1 = y_1 \wedge \ldots \wedge x_n = y_n$

Определение 1.4. Отношение $R \subset X \times Y$. x и y находятся в отношении R, если их $\langle x, y \rangle \in R$.

Определение 1.5. Область отношения $\delta_R = \mathrm{dom}_R = \{x \in X : \exists y \in Y : \langle x, y \rangle \in R.$

Определение 1.6. Область значений $\rho_R = \operatorname{ran}_R = \{y \in Y : \exists x \in X : \langle x, y \rangle \in R\}$

Определение 1.7. Обратное отношение $R^{-1} \subset Y \times X$ $R^{-1} = \{\langle y, x \rangle\} \in R$.

Определение 1.8. Композиция отношения. $R_1 \subset X \times Y, R_2 \subset Y \times Z$: $R_1 \circ R_2 \subset X \times Z$. $R_1 \circ R_2 = \{\langle x, z \rangle \in X \times Z \mid \exists y \in Y : \langle x, y \rangle \in R_1 \land \langle y, z \rangle \in R_2\}$

Примеры отношений.

- Отношение равенства. $R = \{ \langle x, x \rangle : x \in X \}$. Но это просто равенство.
- " \geqslant " $(X = \mathbb{R})$. $R = \{\langle x, y \rangle : x \geqslant y\}$
- ">" $(X = \mathbb{R})$. $R = \{\langle x, y \rangle : x > y\}$ $\delta_{>} = 2, 3, 4 \dots$ $\rho_{>} = \mathbb{N}$ $>^{-1} = \langle = \{\langle x, y \rangle : x < t\}$ $> \circ \rangle = \{\langle x, z \rangle | x - z \geqslant 2\}$
- X прямые на плоскости. " \bot ": $R=\{\langle x,y\rangle:\ x\perp y\}.$ $\delta_\bot=\rho_\bot=X$ $\bot^{-1}=\bot$ \bot \circ $\bot=\parallel$
- $\langle x,y \rangle \subset R$, когда x отец y. $\delta_R = \{ \text{Все, y кого есть сыновья} \}$. ρ_R — религиозный вопрос. См. Библию $R^{-1} = \text{сын}$ $R \circ R = \{ \text{дед по отцовской линии} \}$

Определение 1.9. Функция из X в Y — отношение ($\delta_f = X$), если:

$$\langle x, y \rangle \in f$$

 $\langle x, z \rangle \in f$ $\Rightarrow y = z.$

Используется запись y = f(y).

Onpedenetue 1.10. Последовательность — функция у которой $\delta_f = \mathbb{N}$

Определение 1.11. Отношение R называется рефлективным, если $\forall x : \langle x, x \rangle \in R$.

Определение 1.12. Отношение R называется симметричным, если $\forall x,y\in X: \langle x,y\rangle\in R\Rightarrow \langle y,x\rangle\in R$

Определение 1.13. Отношение R называется иррефлективным, если $\forall x \langle x, x \rangle \notin R$

Определение 1.14. Отношение R называется антирефлексивным, если $\begin{cases} \langle x,y \rangle \in R \\ \langle y,x \rangle \in R \end{cases} \Rightarrow x=y$

Определение 1.15. Отношение R называется транзитивным, если $\begin{cases} \langle x,y\rangle \in R \\ \langle x,z\rangle \in R \end{cases} \Rightarrow \langle x,z\rangle \in R$

Определение **1.16.** Отношение называется отношением эквивалентности, если отношение рефлективно, симметрично, транзитивно.

Пример. Равенство, сравнение по модулю \mathbb{Z} , $\|$, отношение подобия треугольников.

Определение **1.17.** Если выполняется рефлективность, антисимметричность и транзитивность, от данное отношение — отношение нестрогий частичного порядка.

Пример. \geqslant ; $A \subset B$ на 2^X .

Определение **1.18.** Если выполняется иррефлективность и транзитивность, то данное отношение — отношение строгого частичного порядка.

Пример. >; A собственное подмножество B на 2^X .

Упражнение. Иррефлексивность + транзитивность \Rightarrow антисимметрично.

Упражнение. R — нестрогий ч.п. $\Rightarrow R = \{\langle x, y \rangle \in R : x \neq y\}$ — строгий ч.п.

1.4. Вещественные числа

Есть две операции.

- \bullet +: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$.
 - Коммутативность. x + y = y + x.
 - Ассоциативность. (x + y) + z = x + (y + z)
 - Существует ноль. $\exists 0 \in \mathbb{R} \ x + 0 = x$
 - Существует противоположный элемент. $\exists (-x) \in \mathbb{R} \ x + (-x) = 0$
- \bullet $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.
 - Коммутативность. $x \cdot y = y \cdot x$.
 - Ассоциативность. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - Существует единица. $\exists 0 \in \mathbb{R} \ x \cdot 1 = x$
 - Существует обратный элемент. $\exists x^{-1} \in \mathbb{R} \ x \cdot x^{-1} = 1$

Свойство дистрибутивности: $(x+y) \cdot z = x \cdot z + y \cdot z$. Структура с данными операциями называется полем

Введем отношение \leq . Оно рефлексивно, антисимметрично и транизитивно, то есть нестрогий частичного порядка. Причем:

- $x < y \Rightarrow x + z < y + z$
- $0 \le x \land 0 \le y \Rightarrow 0 \le x \cdot y$

Аксиома полноты. Если A и $B \subset \mathbb{R}$ и $\forall a \in A, b \in B$: $a \leqslant b$ и $A \neq \emptyset \land B \neq \emptyset$, тогда $\exists c \in \mathbb{R} \ a \leqslant c \leqslant b$.

Замечание. Множество рациональных не удовлетворяет аксиоме полноты. Например: $A=\{x\in\mathbb{Q}\mid x^2<2\},\ B=\{x\in Q\mid x>0\land x^2>2\}.$ Единственная точка, между этими множествами — $\sqrt{2}$

Теорема 1.2 (Принцип Архимеда). Пусть $x \in \mathbb{R} \land y > 0$. Тогда $\exists n \in \mathbb{N} : x < ny$

Доказательство. $A = \{u \in \mathbb{R} : \exists n \in \mathbb{N} : u < ny\}$. Пусть $A \neq !\mathbb{R}, B = \mathbb{R} \setminus A \neq \emptyset, A \neq \emptyset,$ т.к. $0 \in A$.

Возьмем $a \in A, b \in B.$ $b < a \Rightarrow \exists n : a < ny \Rightarrow b < ny \Rightarrow$ противоречие.

По аксиоме полноты $\exists c \in \mathbb{R} : a \leqslant c \leqslant b \ \forall a \in A, \forall b \in B.$

Пусть $c \in A$. Тогда $c < ny \Rightarrow c < c + y < ny + y = (n+1)y \Rightarrow c < c + y \Rightarrow c + y \in A$. Противоречие.

Пусть $c \in B$. Рассмотрим $c - y < c \Rightarrow c - y \in A \Rightarrow \exists n : c - y < ny \Rightarrow c < ny + y = (n+1)y \Rightarrow c \in A$. Противоречие.

Следствие. Если $\epsilon > 0$, то $\exists n \in \mathbb{N} \ \frac{1}{n} < \epsilon$

Доказательство. $x=1, y=\epsilon \Rightarrow ny=n\epsilon > x=1 \iff \epsilon > \frac{1}{n}$

1.5. Мат. индукции

Пусть P_n - последовательность утверждений. Тогда, если P_1 — верное и из того, что P_n — верно следует, что P_{n+1} — верно. Тогда все P_n верны $\forall n \in \mathbb{N}$

Определение 1.19. Пусть $A \subset \mathbb{R}$. Тогда A — ограничено сверху, если $\exists \in \mathbb{R} : \forall a \in A \ a < c$. Такое c называется верхней границей.

Определение 1.20. Пусть $A \subset \mathbb{R}$. Тогда A — ограничено снизу, если $\exists b \in \mathbb{R} : \forall a \in A \ a > b$. Такое b называется нижней границей.

Определение 1.21. Пусть $A \subset \mathbb{R}$. Тогда A — ограничено, если оно ограничено сверху и снизу.

Пример. \mathbb{N} не ограничено сверху, но ограничено снизу.

Доказательство. Пусть $\exists c \in \mathbb{R}: c \geqslant n \ \forall n \in \mathbb{N}$. Тогда это противоречит принципу Архимеда при x = c, y = 1.

Для ограниченности снизу достаточно взять c = -1.

1.6. Наибольшие/наименьшие элементы

Теорема 1.3. В непустом конечном множестве A есть наибольший и наименьший элементы.

Доказательство. Докажем по индукции:

- База. |A| = 1. Очевидно.
- Переход. $n \to n+1$.
- Доказательство. Рассмотрим множество из n+1 элемента $\{x_1 \dots x_n, x_{n+1}\}$. Выкинем из него последний элемент. Тогда по индукционному предположению у нас есть максимальный элемент x_k . Тогда рассмотрим два случая:
 - 1. $x_k \geqslant x_{n+1}$. Тогда x_k наибольший элемент множества $\{x_1 \dots x_n, x_{n+1}\}$.
 - 2. $x_k < x_{n+1}$. Тогда по транзитивности x_{n+1} больше всех других элементов множества. Значит, x_{n+1} наибольший элемент множества $\{x_1 \dots x_n, x_{n+1}\}$.

Теорема 1.4. В непустом ограниченном сверху (снизу) множестве целых чисел есть наибольший (наименьший) элемент.

Автор: Харитонцев-Беглов Сергей

Доказательство. Пусть $A \subset \mathbb{Z}$. c — его верхняя граница.

Возьмем $b \in A$ и рассмотрим $B := x \in A \mid x \geqslant b$. Заметим, что B содержит конечное число элементов, значит в нем есть наибольший элемент. Пусть это $m \in B$: $\forall x \in B : x \leqslant m$. Докажем, что m — наибольший элемент и в A.

Для этого заметим, что любой $x \in A$ либо лежит в B, либо x < b, а по транзитивности $x < b \leqslant m$.

Определение 1.22. Пусть $x \in \mathbb{R}$, тогда $[x] = \lfloor x \rfloor$ — наименьшее целое число, не превосходящее x.

1. $[x] \le x < [x] + 1$

Левое неравенство очевидно. Правое неравенство можно доказать от противного: пусть $x \geqslant [x] + 1$, тогда справа целое число большое [x], но меньшее x. Противоречие.

2.
$$x - 1 < [x] \le x$$

Теорема 1.5. Если $x < y \ (x, y \in \mathbb{R})$, то

- 1. $\exists r \in \mathbb{O} : x < r < y$.
- 2. $\exists r \notin \mathbb{O} : x < r < y$

Пункт 1. $\epsilon := y - x > 0$.

Найдется $n \in \mathbb{N}$: $\frac{1}{n} < \varepsilon = y - x$. Тогда m := [xn] + 1: $r = \frac{m}{n}$ подходит.

$$\frac{m}{n}>x\iff [xn]+1=m>xn-$$
 свойство целой части. $\frac{m}{n}< y.$ $\frac{m-1}{n}=\frac{[nx]}{n}\leqslant \frac{nx}{n}=x\Rightarrow \frac{m}{n}\leqslant x+\frac{1}{n}< x+\epsilon=x+y-x=y$

$$\Pi$$
ункт 2. $\sqrt{2} \notin \mathbb{Q}$. Рассмотрим $x - \sqrt{2} < y - \sqrt{2} \Rightarrow \exists r \in Q: \ x - \sqrt{2} < r < y - \sqrt{2} \Rightarrow x < \underbrace{r + \sqrt{2}}_{r'} < y.$

Почему r' иррационально? Иначе $\sqrt{2} = r' - r \in \mathbb{Q}$.

1.7. Инфинум/Супремум

Определение 1.23. $A \subset \mathbb{R}$ — непустое и ограниченное сверху. Тогда супремум — наименьшая из всех верхних границ A. Обозначается $\sup A$.

Определение 1.24. $A \subset \mathbb{R}$ — непустое и ограниченное снизу. Тогда инфинум — наибольшая из всех нижних границ A. Обозначается inf A.

Пример. $A = \{\frac{1}{n} \mid n \in \mathbb{N}\}. \sup A = 1. \inf A = 0.$

Теорема 1.6. Пусть A — непустое и $A \subset \mathbb{R}$. Тогда $\sup A$ существует и единственен.

Доказательство. Существование: Пусть B — все верхние границы A. Во-первых B — не пусто, так как A ограничено сверху.

Тогда возьмем $b \in B$. b — верхняя граница для A, то есть $\forall a \in A : a \leqslant b$. Тогда по аксиоме полноты $\exists C \in \mathbb{R} \ \forall a \in A, b \in B : a \leqslant c \leqslant b$. Из левого неравенства получаем, что c — верхняя граница, то есть $c \in B$. Из второго неравенства получаем, что c — наименьший элемент B. Так и получается, что $c = \sup A$.

Единственность. Если $c = \sup A$ и $c' = \sup A$, то $c \leqslant c'$, так как c — наименьший элемент B, но и $c' \leqslant c$, так как c' — наименьший элемент B. Значит c = c'. Противоречие.

Следствие. $A \subset B \subset \mathbb{R}$, B ограничено сверху, A — не пустое. Тогда $\sup A \leqslant \sup B$.

Доказательство. Если c — верхняя граница B, то c — верхняя граница для A. Заметим, что все верхние границы $A \supset B$. Тогда все понятно.

Теорема 1.7. Пусть A — непустое и $A \subset \mathbb{R}$. Тогда inf A существует и единственен.

Упражнение. Доказательство.

Следствие. $A \subset B \subset \mathbb{R}$, B ограничено снизу, A — не пустое. Тогда $\inf A \geqslant \inf B$.

Замечание. Без аксиомы полноты теоремы существования не верны. $A = \{x \in \mathbb{Q} \mid x^2 < 2\}$. Любое рациональное число $> \sqrt{2}$ — верхние границы. А вот $\sup A$ нет.

Теорема 1.8. Пусть непустое $A \in \mathbb{R}$. Тогда

•
$$a = \inf A \iff \begin{cases} a \leqslant x \ \forall x \in A \\ \forall \epsilon > 0 \ \exists x \in A : \ x < a + \epsilon \end{cases}$$

•
$$b = \sup A \iff \begin{cases} a \geqslant x \ \forall x \in A \\ \forall \epsilon > 0 \ \exists x \in A : \ x > a - \epsilon \end{cases}$$

Доказательство. Рассмотрим два неравенства по отдельности:

- 1. b верхняя граница.
- 2. $b \epsilon$ не является верхней границей множества A. То есть $\forall b' < b : b'$ не является верхней границей.

Все это в точности значит, что $b = \sup A$.

Теорема 1.9 (Теорема о вложенных отрезках). Пусть $[a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset \dots$ Тогда $\exists c \in \mathbb{R} : \forall n : c \in [a_n, b_n].$

Доказательство. Пусть $A = \{a_1, a_2, \ldots\}, B = \{b_1, b_2, \ldots\}$. Заметим, что так как отрезки вложены, то $a_1 \leqslant a_2 \leqslant \ldots$, а $b_1 \geqslant b_2 \geqslant \ldots$ Проверим, что $a_i \leqslant b_j \forall i, j \in \mathbb{N}$. Пусть $i \leqslant j$, тогда $a_1 \leqslant a_2 \leqslant \ldots \leqslant a_i \leqslant \ldots \leqslant a_j \leqslant b_j$. Пусть i > j, тогда $b_1 \geqslant b_2 \geqslant \ldots b_j \geqslant \ldots b_i \geqslant a_i$. Тогда по аксиоме полноты $\exists c \in \mathbb{R} : a_i \leqslant c \leqslant b_j \ \forall i, j \in \mathbb{N} \Rightarrow \forall n \forall a_n \leqslant c \leqslant b_n \Rightarrow c \in [a_n, b_n]$

Замечание. $\sqrt{2}=1.41\dots$ Тогда отрезке: $[1,2],[1.4,1.5],[1.41,1.42],\dots$ Тогда единственная точка, лежащая во всех отрезках: $\sqrt{2}$.

Замечание. Для полуинтервалов, (интервалов) неверно:

$$\bigcap_{n=1}^{\infty} (0, \frac{1}{n}) = \varnothing.$$

Замечание. Для лучей неверно.

$$\bigcap_{n=1}^{\infty} [n, +\infty) = \varnothing.$$

2. Последовательности

2.1. Предел последовательности

Oпределение 2.1. $f: \mathbb{N} \to \mathbb{R}$

Способы задания последовательностей

- 1. Формулой. $f_n \coloneqq \frac{\sin n}{n^n}$
- 2. Рекуррентой: $f_1 = 1, f_2 = 2, f_{n+2} = f_n + f_{n+1}$.

Способы визуализации:

- 1. Можно ставить точки на прямой. Но если последовательность, например, $a_n := \sin(\frac{n\pi}{2})$, то получится кукож.
- 2. График. Считаем значения в натуральных точках.
- **Определение 2.2.** Последовательность a_n ограничена сверху, если $\exists C : \forall n \in \mathbb{N} : a_n \leqslant c$.
- **Определение 2.3.** Последовательность a_n ограничена снизу, если $\exists C : \forall n \in \mathbb{N} : a_n \geqslant c$.
- Onpedenehue 2.4. Последовательность a_n ограничена, если она ограничена и сверху, и снизу.
- **Определение 2.5.** Последовательность a_n монотонно возрастает, если $a_1 \leqslant a_2 \leqslant a_3 \leqslant \dots$
- **Определение 2.6.** Последовательность a_n строго монотонно возрастает, если $a_1 < a_2 < \dots$
- **Определение 2.7.** Последовательность a_n монотонно убывает, если $a_1 \geqslant a_2 \geqslant a_3 \geqslant \dots$
- **Определение 2.8.** Последовательность a_n строго монотонно убывает, если $a_1 > a_2 > a_3 > \dots$

Определение 2.9 (Нетрадиционное определение предела). $l = \lim a_n \iff$ вне любого интервала, содержащего l находится конечное число членов последовательности.

Замечание. Мы можем смотреть только на симметричные относительно точки l интервалы. Если он не симметричен, то можно большую границу уменьшить. Так можно сделать, так как мы знаем, что вне меньшего конечное число точек, то и снаружи большего точно конечное число точек. Тогда наш интервал выглядит как $(l-\epsilon;l+\epsilon)$

Замечание. Конечное число точек снаружи интервала \iff начиная с некоторого номера все попали в интервал, так как возьмем последнюю точку вне интервалов, и взяли её номер +1.

Определение 2.10 (Традиционное определение предела). $l = \lim a_n \iff \forall \epsilon > 0: \exists N: \forall n \geqslant N: |a_n - l| < \epsilon$

- 1. Предел единственный. Пусть l и l' единственный. (*Картинка*). Рассмотрим интервал содержащий l, но не l'. Снаружи конечное число точек, теперь наоборот, там тоже конечное число точек. Тогда последовательность конечна.
- 2. Если из последовательности выкинуть какое-то число членов, то предел не изменится. Доказательство через картинку.

- 3. Если как-то переставить члены последовательности, то предел не изменится. Ну очевидно, что количество членов не изменилось, точки не поменяли своё местоположение.
- 4. Если члены последовательности записать с какой-то кратностью (конечной), то предел не изменится.

Пример. $\lim \frac{1}{n}=0$. Мы знаем, что найдется такой номер, что $\frac{1}{n}<\beta$, тогда при $n\geqslant N$ $0<\frac{1}{n}\leqslant \frac{1}{N}<\beta$