Linear Algebra	Eckart-Young Theorem	Stochastic Gradient Descent	1-D PCA to a line	ie $\mathbf{B}^* = \arg\min_{\mathbf{B}} \{ \mathbf{B} _* \}$ s.t. $\Pi(\mathbf{A} - \mathbf{B}) = 0$
$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^{\top} \mathbf{v} = \sum_{i=1}^{d} u_i v_i, \mathbf{u}, \mathbf{v} \in \mathbb{R}^d$	$\arg\min_{\mathbf{\hat{X}}: \operatorname{rank}(\mathbf{\hat{X}}) = k} \ \mathbf{X} - \mathbf{\hat{X}}\ _F^2 = \mathbf{U}\mathbf{\Sigma}_{\mathbf{k}}\mathbf{V}^{\top}$	Assume $\mathcal{L}(\theta) = \sum_{n=1}^{N} \mathcal{L}_n(\theta)$	Line μ + $\mathbb{R}\mathbf{u} = \{\mathbf{v} \in \mathbb{R}^m : \exists z \text{ s.t. } \mathbf{v} = \mu + z\mathbf{u}\}$	Topic Model
$\langle a\mathbf{x}, \mathbf{y} \rangle = a\langle \mathbf{x}, \mathbf{y} \rangle, \overline{\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle} = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$	$\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_s), \sigma_1 \ge \dots \ge \sigma_s \ge 0$	$\theta^{\text{new}} \leftarrow \theta^{\text{old}} - \eta \nabla_{\theta} \mathcal{L}_n(\theta)$ $n \sim \text{uniform}$	$\hat{\mathbf{x}} = \mu + \langle \mathbf{x} - \mu, \mathbf{u} \rangle \mathbf{u} = \arg\min_{\hat{\mathbf{x}} \in \mu + \mathbb{R}\mathbf{u}} \mathbf{x} - \hat{\mathbf{x}} ^2$	find low-dim representation of docu-
$\langle \mathbf{x}, \mathbf{x} \rangle = \mathbf{x} _2^2$	$\min_{r(B)} = \mathbf{A} - \mathbf{B} _F^2 = \mathbf{A} - \mathbf{A}_k _F^2 = \sum_{r=k+1}^{r(\mathbf{A})} \sigma_r^2$	this requires the function to be	Center the data to find unique u	ment from a corpus Preprocessing
$AB=C \Rightarrow \sum_{k=1}^{m} a_{ik} b_{kj}$	$\min_{\mathbf{r}(\mathbf{B})} = \ \mathbf{A} - \mathbf{B}\ _2 = \ \mathbf{A} - \mathbf{A}_k\ _2 = \sigma_{k+1}$	L-smooth to avoid ocillations	$\mathbf{u} \leftarrow \arg\min\left[\frac{1}{n} \sum_{i=1}^{n} \ \langle \mathbf{u}, \mathbf{x_i} \rangle \mathbf{u} - \mathbf{x_i}\ ^2\right]$	vocabulary extraction/tokenisation, filtering (of too frequent or rare
Orthogonality	Those are not convex optimisation	Jensen's Inequality $a_i \left(\sum_{i=1}^{n} a_i x_i\right) > \sum_{i=1}^{n} a_i \sigma(x_i) \text{ if } x \text{ conceve} \text{ (loc)}$	yields $\mathbf{u} \leftarrow \arg\max\left[\frac{1}{n}\sum_{i=1}^{n}\langle\mathbf{u},\mathbf{x_i}\rangle^2\right] =$	words), normalisation (steming) e.g.
\mathbf{u}, \mathbf{v} are orthognal iff $\langle \mathbf{u}, \mathbf{v} \rangle = 0$	problems (combination of matrices	$\sigma(\frac{\sum a_i x_i}{\sum a_i}) \ge \frac{\sum a_i \sigma(x_i)}{\sum a_i} \text{ if } \sigma \text{ concave (log)}$	$arg \max[\mathbf{u}^{\top}(\frac{1}{n}\sum_{i=1}^{n}\mathbf{x_i}\mathbf{x_i}^{\top})\mathbf{u}^{\top}] =$	argue(d) reduce to arg bag of words
A orthog. $\Rightarrow AA^{\top} = A^{\top}A = I$, $A^{\top} = A^{-1}$	of rank k is usually not rank k) Probabilities	for distribution a : $\sum_i a_i = 1$	$\arg \max[\mathbf{u} \frac{1}{n} \mathbf{X} \mathbf{X}^{\top} \mathbf{u}^{\top}] = \arg \max[\mathbf{u} \mathbf{\Sigma} \mathbf{u}^{\top}]$	counts of cooc. ignores order. sparse!
A has orthonormal rows, i.e. $\ \mathbf{a}_i\ _2 = 1$	Expectation	Convexity	Lagrangian Optimization	pLSA
$\ \mathbf{A}\mathbf{x}\ _2 = \ \mathbf{x}\ _2$, dist. & energy preserved	$\mathbb{E}[X] = \int_{\Omega} x f(x) dx = \int_{\omega} x P[X=x] dx$	$f \text{ convex if } \forall x_1, x_2 \in \mathbf{X}, \forall t \in [0, 1]$ $f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$	$\mathcal{L}(\mathbf{u},\lambda) = \mathbf{u}^{\top} \Sigma \mathbf{u} + \lambda \langle \mathbf{u}, \mathbf{u}^{\top} \rangle$	$p(w) = \sum_{i=1}^{K} p(w z)p(z d)$, for word w
basis change $\mathbf{x} = \sum_{i=1}^{n} \langle \mathbf{x}, \mathbf{u}_i \rangle \mathbf{u}_i = \mathbf{U}^{T} \mathbf{x}$	$\mathbb{E}_{Y X}[Y] = \mathbb{E}_{Y}[Y X]$	if f is twice diff., it is convex iff	$\nabla_{\mathbf{u}} \mathcal{L}(\mathbf{u}, \lambda) \stackrel{!}{=} 0 \Leftrightarrow \Sigma \mathbf{u} = \lambda \mathbf{u}$, ie u princ. vec	in doc d and given topics $z \in \{1 \cdots K\}$
and $\ \langle \mathbf{x}, \mathbf{u_i} \rangle \mathbf{u_i} \ _2^2 = \langle \mathbf{x}, \mathbf{u_i} \rangle ^2$	$\mathbb{E}_{X}[f(Y)] = f(Y) \text{ if } P(Y X) = P(Y)$	it's double Hessian is positive semi-	Matrix Approximation & Reconst	assumption $p(w d,z)=p(w z)$
$\det(\mathbf{A}) \in \{-1, 1\}, \det(\mathbf{A}^{\top} \mathbf{A}) = 1$	Variance & Covariance	definite A convex function has a uni-	Exact Rec. min _B $ \mathbf{B} _*$ s.t. $ \mathbf{A} - \mathbf{B} _G = 0$	Log-Likel. $x_{ij} := \{ \# \text{ of } w_j \text{ in } d_i \}, \mathbf{X} = x_{ij} \}$
Symmetry	$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$	que minimum. sum of conv.is conv.	Approx. Rec. $\min_{\mathbf{B}} \ \mathbf{A} - \mathbf{B}\ _{\mathbf{G}}^2 \text{ s.t.} \ \mathbf{B}\ _*$,	$\ell(\mathbf{U}, \mathbf{V}) = \sum_{ij} x_{ij} \log p(w_j d_i) =$
$A^{\top} = A$. All eigenvalues of $A > 0$.	Var[X + Y] = Var[X] + Var[Y] XYiid	Linear Autoencoder	SVD (e.g recommendation system)	$\sum_{(i,j)\in\mathcal{X}} x_{ij} \log \sum_{z=1}^{K} p(w_j z) p(z d_i) =$
$A=U\Lambda U^{\top}$ iff A symmetric where U is orthogonal.	$Var[\alpha X] = \alpha^2 Var[X]$	Encoder $C \in \mathbb{R}^{k \times m}$, Decoder $D \in \mathbb{R}^{m \times k}$ lin. map: $F : \mathbb{R}^m \to \mathbb{R}^m$ w. limited rank.	U users to factors associations V	$\sum_{(i,j)\in\mathcal{X}} x_{ij} \log \sum_{z=1}^{K} v_{jz} u_{zi}, \text{with}$
Positive Semi-Definit	$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$	performs low rank approximation	items to factors associations Σ level	$u_{iz} \ge 0 \sum_{z} u_{iz} = 1$ and $v_{jz} \ge 0 \sum_{j} v_{jz} = 1$
$\mathbf{v}^{\top} \mathbf{A} \mathbf{v} \ge 0 \forall \mathbf{v}, \ \mathbf{A} = \mathbf{B}^{\top} \mathbf{B} \Rightarrow \mathbf{A} \text{ is p.s.t.}$	Conditional Probabilities	$\ell(\mathbf{x};\theta) = \frac{1}{2} \mathbf{x} - \hat{\mathbf{x}}(\theta) ^2$	of strength of each factor. Limita-	Lower Bound w. Jensen's inequ.
A pst iff all its eigenvalues ≥ 0	$P[X Y] = \frac{P[X,Y]}{P[Y]}, P[\overline{X} Y] = 1 - P[X Y]$	$\hat{\mathbf{x}}(\theta) = \mathbf{DCx}, \theta = (\mathbf{C}, \mathbf{D})$	tions matrix incomplete. can't run SVD. Lower rank might not be the	$q_{zij} = P(w_j \text{ in } d_i \text{ is from } z), \sum_z \hat{q}_{ijz} = 1$
Rank	Bayes: $P(X Y) = \frac{P(Y X)P(X)}{P(Y)}$	Reconstruction error	best solution. Ratings should not be	$\sum_{ij} x_{ij} \log \sum_{z=1}^{K} q_{ijz} \frac{u_{zi} v_{zj}}{q_{ijz}} \ge g(\mathbf{X} \mathbf{U}, \mathbf{V}) =$
dimension of vector space generated	Distributions	$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{x}_i, \theta) =$	outside the expected range	$\sum_{ij} x_{ij} \sum_{z=1}^{K} q_{ijz} [\log u_{zi} + \log v_{zj} - \log q_{zi}]$
by $\mathbf{A} \in \mathbb{R}^{m \times n}$.	$\mathcal{N}(x \mu,\sigma^2) = (\sqrt{2\pi\sigma^2})^{-1} \exp^{-(x-\mu)^2/(2\sigma^2)}$	$\frac{1}{2n}\sum_{i=1}^{n} \ \mathbf{x}_i - \hat{\mathbf{x}}_i(\theta)\ = \frac{1}{2n} \ \mathbf{X} - \hat{\mathbf{X}}(\theta)\ _F^2$	Beyond SVD	Lagrangian $\mathcal{L}_{\mathbf{U},\mathbf{V}}(\alpha,\beta) = -g(\mathbf{X} \mathbf{U},\mathbf{V}) +$
$rank(\mathbf{A}) = \#\sigma > 0$, $rank(\mathbf{A}) \le min(m, n)$ $rank(\mathbf{AB}) = min\{rank(\mathbf{A}), rank(\mathbf{B})\}$	$\mathcal{N}(\boldsymbol{x} \boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} \boldsymbol{\Sigma} ^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$	Optimal Solution $C^*=U_k^{\top}$, $D^*=U_k$, s.t. $X=U\Sigma V^{\top}$	optimize $\min_{\text{rk}(\mathbf{B})=k} [\sum_{(i,j)\in\mathcal{I}} (a_{ij}-b_{ij})^2]$ $\mathcal{I}=\{(i,j)\}$ observed values	$\sum_{j} \alpha_{j} \left(\sum_{z} u_{zi} - 1 \right) + \sum_{z} \alpha_{i} \left(\sum_{j} v_{jz} - 1 \right)$
Norms	$\operatorname{Exp}(x \lambda) = \lambda e^{-\lambda x}, \operatorname{Ber}(x \theta) = \theta^{x} (1-\theta)^{(1-x)}$	K .		Optimal solution (EM)
1	Kullback-Leibler Divergence	opt. by EY. not the only optimal solu-	$\ \mathbf{X}\ _{\mathbf{G}} = \sqrt{\sum_{i,j} g_{ij} x_{ij}^2}, g_{ij} \in \{0,1\}$	E: $q_{zij} = \frac{u_{zi}v_{zj}}{\sum_{k=1}^{K} u_{zi}v_{zj}} = \frac{p(w_j z)p(z d_i)}{\sum_{k=1}^{K} p(w_j k)p(k d_i)}$
$\ \mathbf{x}\ _0 = \{i x_i \neq 0\} , \ \mathbf{x}\ _p = (\sum_{i=1}^N x_i ^p)^{\frac{1}{p}}$	divergence of distr P & Q $D_{KL}(P Q)$ =	tion, i.e. limited interpretability	$\min_{\mathrm{rk}(\mathbf{B})} \ \mathbf{A} - \mathbf{B}\ _{\mathbf{G}}^2$ NP hard	$\sum_{k=1}^{k} \frac{x_{2i}}{z_{2j}} \sum_{k=1}^{k} \frac{p(w_j k)p(k u_i)}{\sum_{i} x_{ii}q_{zii}}$
nuclear $\ \mathbf{X}\ _{\star} = \sum_{i=1}^{\min(m,n)} \sigma_i$	$-\sum_{x \in \mathcal{X}} P(x) \log \frac{Q(x)}{P(x)} = \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}$	Weight Sharing	Alternating Least Square	M: $u_{zi} = \frac{\sum_{j} x_{ij} q_{zij}}{\sum_{j} x_{ij}}$, $v_{zj} = \frac{\sum_{j} x_{ij} q_{zij}}{\sum_{i,l} x_{il} q_{zil}}$
eucl. $\ \mathbf{x}\ _2 = \sqrt{\sum_{i=1}^N \mathbf{x}_i^2} = \sqrt{\mathbf{x}^\top \mathbf{x}} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sigma$	f_1 Matrix Derivations	D = C [⊤] reduces ambiguity but not modeling power. Mapping unique.	parametrize $\mathbf{B}_{rk(k)} = \mathbf{U}\mathbf{V}, \mathbf{U} \in \mathbb{Z}^{m \times k}, \mathbf{V} \in \mathbb{Z}^{k \times n}$	conv. guaranteed but not global opt. fixed docs and words. Add a topic?
	$\frac{\partial (\mathbf{b}^{\top} \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{x}^{\top} \mathbf{b})}{\partial \mathbf{x}} = \mathbf{b}, \ \frac{\partial (\mathbf{x}^{\top} \mathbf{x})}{\partial \mathbf{x}} = 2\mathbf{x},$	PCA - Principle Component Analysis	$f(\mathbf{U}, \mathbf{V}) = \frac{1}{ \mathcal{I} } \sum_{(i,j) \in \mathcal{I}} (a_{ij} - \langle \mathbf{u}_i, \mathbf{v}_j \rangle)^2 =$	Latent Dirichlet Allocation
frob. $ \mathbf{A} _F = \sqrt{\sum_{i=1}^M \sum_{j=1}^N \mathbf{A}_{i,j} ^2} =$	$\frac{\frac{\partial (\mathbf{x}^{\top} \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = \mathbf{A}^{\top} \mathbf{b}, \ \frac{\partial (\mathbf{x}^{\top} \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = (\mathbf{A}^{\top} + \mathbf{A}) \mathbf{x},$	project data $X=[x_1\cdots x_N]\in\mathbb{R}^{D\times N}$ to		$)\cdot p(\mathbf{u}_i \alpha) \propto \prod_{z=1}^K u_{zi}^{\alpha_z-1}$ generate topic
$\sqrt{\operatorname{trace}(\mathbf{A}^{\top}\mathbf{A})} = \sum_{i=1}^{\min\{m,n\}} \sigma_i^2, \mathbf{A} \in \mathbb{R}^{M \times N}$	$\frac{\frac{\partial (\mathbf{c}^{T} \mathbf{X} \mathbf{b})}{\partial \mathbf{X}} = \mathbf{c} \mathbf{b}^{T}, \frac{\partial (\mathbf{c}^{T} \mathbf{X}^{T} \mathbf{b})}{\partial \mathbf{X}} = \mathbf{b} \mathbf{c}^{T}, \frac{\partial \log \mathbf{A} }{\partial \mathbf{A}} = \mathbf{A}^{T}$	basis of orthogonal components.	f is convex for fixed U in V and vice-	weights. for doc. w. length $l = \sum_{i} x_{i}$
w. $trace(ABC) = trace(CAB)$ (cyclic)	$\frac{\partial \mathbf{X}}{\partial \mathbf{X}} = \mathbf{C}\mathbf{U}$, $\frac{\partial \mathbf{X}}{\partial \mathbf{X}} = \mathbf{U}\mathbf{C}$, $\frac{\partial \mathbf{X}}{\partial \mathbf{A}} = \mathbf{A}$	Centralise data by substracting the	versa but not jointly	
Determinant	$\frac{\partial (\ \mathbf{x} - \mathbf{b}\ _2)}{\partial \mathbf{x}} = \frac{\mathbf{x} - \mathbf{b}}{\ \mathbf{x} - \mathbf{b}\ _2}, \frac{\partial (\ \mathbf{x}\ _2^2)}{\partial \mathbf{x}} = \frac{\partial (\mathbf{x}^\top \mathbf{x})}{\partial \mathbf{x}} = 2\mathbf{x},$	mean $\overline{\mathbf{X}} = \mathbf{X} - [\overline{\mathbf{x}} \cdots \overline{\mathbf{x}}], \overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$.	Regularise $\Omega(\mathbf{U}, \mathbf{V}) = \mathbf{U} _F^2 + \mathbf{V} _F^2$	$p(\mathbf{x}, \mathbf{V}, \mathbf{u}) = \frac{l!}{\prod_j x_j!} \prod_j (\sum_z v_{zj} u_z)^{x_j}$
$\det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21} = \prod_i \sigma_i$	$\frac{\partial (\ \mathbf{X}\ _F^2)}{\partial \mathbf{X}} = 2\mathbf{X}, \frac{\partial (\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _2^2)}{\partial \mathbf{x}} = 2(\mathbf{A}^\top \mathbf{A}\mathbf{x} - \mathbf{A}^\top \mathbf{b})$	Variance-Covariance Matrix	Minimise $f(\mathbf{U}, \mathbf{V}) + \mu \Omega(\mathbf{U}, \mathbf{V})$ alter-	$p(\mathbf{x} \mathbf{V},\alpha) = \int p(\mathbf{x} \mathbf{V},\mathbf{u})p(\mathbf{u} \alpha)d\mathbf{u}$
$\det(\mathbf{A}^{\top}) = \det(\mathbf{A}), \det(\mathbf{A}^{-1}) = (\det(\mathbf{A}))^{-1}$		$L-N$ $L_{n=1}(\mathbf{A}_n \mathbf{A})(\mathbf{A}_n \mathbf{A}) - N$	nate between U and V, ie: $f(\mathbf{U}, \mathbf{v}) = \nabla (\mathbf{r}, \mathbf{v})^2$	Non-Negative Matrix Factorization
Eigenvectors & Eigenvalues	X^TX : invertible if eigvals $\neq 0$ but instable if big ratio last/first eigval.	symmetric $\Sigma = \mathbf{U}\Lambda\mathbf{U}^{T}$, \mathbf{U} orth.	$f(\mathbf{U}, \mathbf{v}_i) = \sum_{(i,j) \in \mathcal{I}} (a_{i,j} - \langle \mathbf{u}_j, \mathbf{v}_i \rangle)^2$	factorize count matrix $\in \mathbb{Z}_{>0}^{N \times M}$
$\sigma \in \mathbb{R}$ s.t. $\mathbf{A}\mathbf{u} = \sigma \mathbf{u}$ Find eigenvals: sol-	Derivatives	New orthogonal basis U_K , $K << D$	Convex Relaxation	$X = U^{T}V$. U, V non-neg. entries and
ve $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$	chain rule $\frac{d}{dx}f(g(x)=f'(g(x))g'(x)$	$\overline{\mathbf{Z}}_K = \mathbf{U}_K^{\top} \overline{\mathbf{X}}$ and $\overline{\mathbf{X}} = \mathbf{U}_k \overline{\mathbf{Z}}_K$ opt. rec.	$\operatorname{rank}(\mathbf{B}) \ge \ \mathbf{B}\ _{*} \text{ for } \ \mathbf{B}\ _{2} \le 1$ $\min_{\mathbf{B}} \ \mathbf{A} \cdot \mathbf{B}\ _{*} \mathcal{D}_{*} = (\mathbf{B} \cdot \ \mathbf{B}\ _{*} < k)$	L_1 column normalized.
Find eigenvecs \mathbf{u}_i : solve $(\mathbf{A} - \sigma_i \mathbf{I})\mathbf{u}_i = 0$ SVD - Singular Value Decomposition	$\frac{d}{dx}\cos(x) = -\sin(x) \frac{d}{dx}\sin(x) = \cos(x)$	Iterative View	$\min_{\mathbf{B} \in \mathcal{P}_k} \ \mathbf{A} - \mathbf{B}\ _{\mathbf{G}}^*, \mathcal{P}_k = \{\mathbf{B} : \ \mathbf{B}\ _* \le k\}$ $\mathcal{P}_k \mathcal{Q}_k = \{\mathbf{B} : \operatorname{rank} \mathbf{B} = k\}$	Useful to model non-negative data like images (ink) and leads to part-
$\mathbf{A} = \mathbf{U} \cdot \mathbf{D} \cdot \mathbf{V}^{\top} \ \forall \mathbf{A} \in \mathbb{R}^{m \times n}$	$\frac{dx}{dx} \exp(x) = \exp \frac{d}{dx} \log(x) = \frac{1}{x}$	Residual \mathbf{r}_i : $\mathbf{x}_i - \tilde{\mathbf{x}}_i = \mathbf{I} - \mathbf{u}\mathbf{u}^{\top}\mathbf{x}_i$	$\mathbf{B}^* = \operatorname{shrink}_{\tau}(\mathbf{A}) =$	based representation. pLSA is a kind
$\mathbf{U} \in \mathbb{R}^{m \times m}$ orth. matrix $(\mathbf{U}^{\top} \mathbf{U} = \mathbf{I}_m)$	Optimization	Covariance $\frac{1}{N} \sum_{i=1}^{N} \mathbf{r_i} \mathbf{r_i}^{\top} = \Sigma - \lambda \mathbf{u} \mathbf{u}^{\top}$	$\arg\min_{\mathbf{B}}\left\{\frac{1}{2}\ \mathbf{A}-\mathbf{B}\ _{F}^{2}+\tau\ \mathbf{B}\ _{*}\right\}$ thus	of NMF.
$\mathbf{D} \in \mathbb{R}^{m \times n}$ diagonal matrix	Gradient Descent	1^{st} eigvec of $\Sigma - \lambda \mathbf{u} \mathbf{u}^{\top} = 2^{nd}$ eigvec of Σ	$\mathbf{B}^* = \mathbf{U}\mathbf{D}_{\tau}\mathbf{V}^{\top}, \ \mathbf{D}_{\tau} = \operatorname{diag}(\max(0, \sigma_i - \tau))$	Word Embeddings
$\mathbf{V} \in \mathbb{R}^{n \times n}$ orth. matrix $(\mathbf{V}^{\top} \mathbf{V} = \mathbf{I}_n)$	$\theta^{\text{new}} \leftarrow \theta^{\text{old}} - \eta \nabla_{\theta} \mathcal{L}(\theta)$	get \overline{d} princ. eigvecs of Σ by iteration	Shrinkage Iterations for $\eta \geq 0$	latent vect model $w \rightarrow (\mathbf{x}_w, b_w) \in \mathbb{R}^{d+1}$
U has eigenvecs for AA^{\top} , V for $A^{\top}A$.	Convergence isn't guaranteed.	Power Method	$\mathbf{B}_{t+1} = \mathbf{B}_t + \eta_t \Pi(\mathbf{A} - \operatorname{shrink}_{\tau}(\mathbf{B}_t))$	Context Models
D has eigenvalues for AA^{\top} and $A^{\top}A$,	Less zigzag by adding momentum:	$\mathbf{v}_{t+1} = \frac{\mathbf{A}\mathbf{v}_t}{\ \mathbf{A}\mathbf{v}_t\ }, \lim_{t\to\infty} \mathbf{v}_t = \mathbf{u}_1$	$\Pi(\mathbf{X}) = x_{ij} \text{ if } (i,j) \in \mathcal{I}, 0 \text{ otw.}$	semantic from by co-occurences, e.g.
are sqrt of entries of Λ : $\mathbf{A}\mathbf{A}^{\top} = \mathbf{V}\Lambda\mathbf{V}^{\top}$	$\theta^{(l+1)} \leftarrow \theta^{(l)} - \eta \nabla_{\theta} \mathcal{L} + \mu(\theta^l - \theta^{(l-1)})$	assume $\langle \mathbf{u}_1, \mathbf{v}_0 \rangle \neq 0$ and $ \lambda_1 > \lambda_j $	generalisation guarantees $\Pi(\mathbf{A}) = \mathbf{A}^*$	skip-gram $p(w w')$ w in context of w'

Log-likelihood	M: $\nabla \mathbf{u}_{i} J(\mathbf{U}, \mathbf{Z}) \stackrel{!}{=} 0 \Rightarrow \mathbf{u}_{i}^{*} = \frac{\sum_{i=1}^{N} z_{ij} \mathbf{x}_{i}}{\sum_{i=1}^{N} z_{ij}}$	Singularities of GMM happen	Generative Models	$\hat{\mathbf{x}} = \sum_{d \in \sigma} \hat{z}_d(\mathbf{x}) \mathbf{u_d}, \hat{z}_d(\mathbf{x}) = \langle \mathbf{x}, \mathbf{u_d} \rangle$
$\mathcal{L}(\theta \mathbf{w}) = \sum_{t=1}^{T} \sum_{\delta \in \mathcal{I}} \log p_{\theta}(w^{(t+\delta)} w^{(t)})$	$\sum_{i=1}^{J} \sum_{i=1}^{L} ij$	when a cluster shrinks to fit exactly	VAE - Variatonal Autoencoder	Error $\ \mathbf{x} - \hat{\mathbf{x}}\ ^2 = \sum_{d \neq \sigma} \langle \mathbf{x}, \mathbf{u_d} \rangle^2$ e.g. four-
$\hat{\theta} = \arg \max_{\theta} \mathcal{L}(\theta \mathbf{w})$ large cardinality	guaranteed convergence but non- convex objective	one data point. log likelihood $\rightarrow \infty$. Bad convergence	find $\mathbf{x} \in \mathbb{R}^n$ by sampling $\mathbf{z} \in \mathbb{R}^m$ from	rier transform denoises well but not
Log-bilinear model	K-means solves $\arg \min_{Z} \ \mathbf{X} - \mathbf{UZ}\ _F^2$	Neural Networks	simple distribution and set $\mathbf{x} = F_{\theta}(\mathbf{z})$ where $F_{\theta} : \mathbb{R}^m \to \mathbb{R}^n$, deterministic	for localised signals $O(D \log D)$
$\log p(w w') = \langle \mathbf{x}_w, \mathbf{x}_{w'} \rangle + b_w + c$	K-Means++	$F^{\sigma}(\mathbf{x}; \mathbf{W}) = \sigma(\mathbf{W}\mathbf{x}) \Rightarrow F_{i}^{\sigma}(\mathbf{x}; \mathbf{W}) = \sigma(\mathbf{w}_{i}^{\top}\mathbf{x}),$	DNN, since $\mathbb{E}_{\mathbf{x}}[f(\mathbf{x})] = \mathbb{E}_{\mathbf{z}}[f(F_{\theta}(\mathbf{z}))]$	Haar Wavelets $\psi_{n,k}(t) = 2^{n/2} \psi(2^n t - k), 0 \le k \le 2^n$
$b_w \uparrow \Rightarrow p_\theta(w w') \uparrow$	Init. with incremental D^2 sampling	J. A. Carlotte and J. Carlotte	Requires F_{θ}^{-1} often impossible to get.	$\psi_{n,k}(t) = 2^{-k} \psi(2^{-k}, 0 \le k \le 2^{-k})$ good for localized signal but poor for
$\angle(\mathbf{x}_{w}\mathbf{x}_{w'})\downarrow\Rightarrow p_{\theta}(w w')\uparrow$	sample first centroid rand. $U_1 = \{x_I\}$	w. $\mathbf{W} = (\mathbf{w}_1 \cdots \mathbf{w}_m)^T$ mapping $\mathbb{R}^n \to \mathbb{R}^m$ between 2 layers	ELBO - evidence lower bound	denoising smooth signal $O(D \log D)$
Softmax $p_{\theta}(w w') = \frac{\exp[\langle \mathbf{x}_w, \mathbf{x}_{w'} \rangle + b_w]}{Z_{\theta}(w')}$	$D_i = \min_{\mathbf{u} \in U_k \mathbf{x}_i - \mathbf{u} } U_{k+1} = U_k \cup \{\mathbf{x}_I\}$	$\mathbf{x}^{(l)} = \sigma(\mathbf{W}^{(l)}\mathbf{x}^{(l-1)}), 1 \le l \le L$	learn parameters of distribution p_{θ}	Overcomplete Dictionaries
where $Z_{\theta}(w') = \sum_{v \in \mathcal{V}} \exp[\langle \mathbf{x}_v, \mathbf{x}_{w'} \rangle + b_v]$	for $I \sim \text{Cat}(p)$, $p_i = D_i^2 / \sum_{j=1}^N D_j^2$	Activation Functions	instead of deterministic F_{θ}	dictionaries generalisation
Context Vectors input & output	More expensive but better results.	Sig. $\sigma(x) = \frac{1}{1 + \exp^{-x}}, \nabla_x \sigma(x) = \sigma(x)(1 - \sigma(x))$	$\log p_{\theta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(z x)}[\log p_{\theta}(\mathbf{x})] =$	overcompleteness
context vectors to get rid of the bili-	K-Means Core Sets		$\mathbb{E}_{q_{\phi}(\mathbf{z} \mathbf{x})}[\log \frac{p_{\theta}(\mathbf{x} \mathbf{z})p_{\theta}(\mathbf{z})q_{\theta}(\mathbf{z} \mathbf{x})}{p_{\theta}(\mathbf{z} \mathbf{x})q_{\theta}(\mathbf{z} \mathbf{x})}] =$	$\mathbf{U} = [\mathbf{u}_{\underline{1}} \cdots \mathbf{u}_{\mathbf{L}}], \mathbf{U} \in \mathbb{R}^{D \times L}, L > D$
nearity. $\log p_{\theta}(w w') = \langle \mathbf{x}_w, \mathbf{y}_{w'} \rangle + b_w$	sample core set of m centroids	$\sigma^{-1}(x) = \log(1/(1-x)), 1-\sigma(x) = \sigma(-x)$ ReLU $R(x) = \max\{0, x\}$ has simple		$\mathbf{z} \in \mathbb{R}^L$ contains coeffs. of signal $\mathbf{x} \in$
Negative Sampling	$I \sim \text{Cat}(p), p_i = 1/2N + D_i^2 / 2 \sum_{j=1}^{N} D_j^2$	derivative on $\mathbb{R} - 0$ and reduces	$\mathbb{E}_{q_{\phi}(\mathbf{z} \mathbf{x})}[\log p_{\theta}(\mathbf{x} \mathbf{z})] - VI(\mathbf{z}_{\phi}(\mathbf{z} \mathbf{x})) + VI(\mathbf{z}_{\phi}(\mathbf{z} \mathbf{x})) + VI(\mathbf{z}_{\phi}(\mathbf{z} \mathbf{x}))$	\mathbb{R}^D in base U . z is not unique.
\triangle^+ observed pair, $\triangle^- \sim p_n$ where	where $D_i^2 = \mathbf{x}_i - \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i ^2$	vanishing gradient problem	$KL(q_{\phi}(\mathbf{Z} \mathbf{X}) p_{\theta}(\mathbf{Z})) + KL(q_{\phi}(\mathbf{Z} \mathbf{X}) p_{\theta}(\mathbf{Z} \mathbf{X})) \ge $ $E \qquad [1 \circ \mathbf{z} (\mathbf{z} \mathbf{z})] KL(\mathbf{z} (\mathbf{z} \mathbf{z}) \mathbf{z} (\mathbf{z}))$	Search $\mathbf{z}^* = \arg\min_{\mathbf{z} \in \mathbb{R}^l} \mathbf{z} _0$ s.t. $\mathbf{U}\mathbf{z} = \mathbf{x}$
$(w_i, w_j) \sim p_n(i, j)$ rand. context words	give each sample weight $1/mp_i$ and	Output Layer	$\mathbb{E}_{q_{\phi}(z x)}[\log p_{\theta}(\mathbf{x} \mathbf{z})] - KL(q_{\phi}(\mathbf{z} \mathbf{x}) p_{\theta}(\mathbf{z}))]$	Problem is NP-hard/Ill-posed. Coherence
$w_j \propto P(w_j)^{\alpha}$, $\alpha = \frac{3}{4}$ oversample by $k \le 20$	weighted K-Mean on this core-set.	Linear Regression $y=W^{(L)}x^{(L-1)}$	$= \mathbb{E}_{q_{\phi}(\mathbf{z} \mathbf{x})}[-\log q_{\phi}(\mathbf{z} \mathbf{x}) + \log p_{\theta}(\mathbf{x},\mathbf{z})] =$	$L/D \uparrow \Rightarrow \text{sparsity } \uparrow, \mathbf{u_i} \text{ dependency } \uparrow$
Maximize logistic Regression $C(A) = \sum_{n=0}^{\infty} \log_{10} C((x_n, y_n))$	Finite Mixture Model	Logistic binary classif. (one output)	$= ELBO(\phi, \theta) = \mathcal{L}(\mathbf{x}; \theta)$	$m(\mathbf{U}) = \max_{i,j:i\neq j} \mathbf{u}_i^T \mathbf{u}_j $ coherence
$\mathcal{L}(\theta) = \sum_{(i,j) \in \Delta^+} \log \sigma(\langle \mathbf{x}_i, \mathbf{y}_j \rangle) +$	Probabilistic assignment to clusters.	$y_1 = P(Y = 1 \mathbf{x}) = \frac{1}{1 + \exp[-\mathbf{x} \cdot T_{\mathbf{x}}]}$	maxim. wrt ϕ for inference model maxim. wrt θ for generative model	$m(\mathbf{B}) = 0$ for orhtog. B
$\sum_{(i,j)\in\triangle^{-}}\log\sigma(-\langle\mathbf{x}_{i},\mathbf{y}_{j}\rangle),\sigma(z)=\frac{1}{1+\exp(z)}$	$p(\mathbf{x}, \theta) = \sum_{i=1}^{K} \pi_i p(\mathbf{x}; \theta)$	Soft-Max K-Multiclass	stochastic approximation	$m(\mathbf{B}) \ge 1$ of or
Bayes optimal discriminant for \mathcal{L}	where $\theta = (\pi, \theta_1, \dots, \theta_K)$	$y_k = P(Y = k \mathbf{x}) = e[\mathbf{w}_k^T \mathbf{x}] / \sum_{j=1}^K e[\mathbf{w}_j^T \mathbf{x}]$	Update for generative model:	VD
$\langle \mathbf{x}_i, \mathbf{y}_j \rangle = \log \frac{p(w_i, w_j)}{p_n(w_i, w_j)} + \log \frac{\kappa}{1 - \kappa}, \kappa = \frac{1}{k+1}$	and $\pi \ge 0$, $\sum_{i=1}^{K} \pi_i = 1$	Loss-Functions	$\nabla_{\theta}^{\mathbf{I}} \mathbb{E}_{q_{\phi}}[\log p_{\theta}(\mathbf{x} \mathbf{z})] = \mathbb{E}_{q_{\phi}}[\nabla_{\theta} \log p(\mathbf{x} \mathbf{z})]$	Matching Pursuit greedy algorithm at each step chose dimension with
pointwise mutual information	e.g Gaussian Mixture Model	Squared $l(y^*; y) = \frac{1}{2}(y^* - y)^2$	$pprox \frac{1}{T} \sum_{r=1}^{L} \nabla_{\theta} \log p(\mathbf{x} \mathbf{z}^{(r)}), z^{(r)} \sim q_{\phi}(\cdot \mathbf{x})$	max projection onto residual.
for $k=1$ and $p_n(w_i, w_i) = p(w_i)p(w_i)$	$p(\mathbf{x}; \theta_i) = p(\mathbf{x}; \mu_i, \Sigma_i)$ (normal dist.)	Cross-Entropy for classification	(by Monte Carlo approximation)	Init $\mathbf{r}_0 = \mathbf{x}$, $\hat{\mathbf{x}}_0 = 0$. Then repeat:
$\langle \mathbf{x}_i, \mathbf{y}_i \rangle \approx \text{PMI}(w_i, w_i)$	Complete data distribution:	$l(y^*;y) = -y^* \log y - (1-y^*) \log(1-y)$	Update for inference model:	find $j^* = \arg\max_{j} \langle \mathbf{r}_i, \mathbf{u}_j \rangle $
GloVe	$p(\mathbf{x}, \mathbf{z}; \theta) = \prod_{j=1}^{K} (\pi_j p(\mathbf{x}; \theta_j))^{z_j}$ where	Empirical Risk	$\nabla_{\phi} \mathbb{E}_{q_{\phi}} [\mathcal{L}(\mathbf{x}, \mathbf{z})] = \int \mathcal{L}(\mathbf{x}, \mathbf{z}) \nabla_{\phi} q_{\phi}(\mathbf{z} \mathbf{x}) d\mathbf{z}$	$\hat{\mathbf{x}}_{i+1} \leftarrow \hat{\mathbf{x}}_i + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}$
	z_i latent and $P(z_i = 1) = \pi_i$	$\mathcal{L}(\theta; \mathcal{X}) = \frac{1}{T} \sum_{l=1}^{T} l(y_t; y(\mathbf{x}_t; \theta))$ for	$= \mathbb{E}_{q_{\phi}}[\mathcal{L}(\mathbf{x}, \mathbf{z}) \nabla_{\phi} \log q_{\phi}(\mathbf{z} \mathbf{x})] \text{ hard!}$	$\mathbf{r}_{i+1} \leftarrow \mathbf{r}_i - \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}$
co-occurence matrix $\mathbf{N} = \{n_{ij}\} \in \mathbb{R}^{ \mathcal{V} \mathcal{C} }$ $n_{ij} = \#$ occ. of $w_i \in \mathcal{V}$ in ctxt of $w_i \in \mathcal{C}$	Posterior Probabilities: $p(\mathbf{z}_k=1 \mathbf{x}) =$	weights $\theta = (\mathbf{W}^{(1)} \cdots \mathbf{W}^{(L)})$ and trai-	variance in gradient usually high	Convergence greedily reduces resi-
n_{ij} =# occ. of $w_i \in V$ in cast of $w_j \in C$ N is sparse & computed in one pass.		ning data $\mathcal{X} = \{(\mathbf{x}_t, y_t), 1 \le t \le T\}$	Reparametrization Trick	dual energy at each step.
Objective least square $\mathcal{H}(\theta, \mathbf{N}) =$	$\frac{p(\mathbf{z}_k=1)p(\mathbf{x} \mathbf{z}_k=1)}{\sum_{l=1}^K p(\mathbf{z}_l=1)p(\mathbf{x} \mathbf{z}_l=1)} = \frac{\pi_k \mathcal{N}(\mathbf{x} \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{l=1}^K \pi_l \mathcal{N}(\mathbf{x} \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)}$	Regularization	$\mathbf{z} = g_{\phi}(\zeta \mathbf{x}), \zeta \sim \text{simple distribution}$	$\ \mathbf{r}_i\ _2^2 = \ \mathbf{r}_{i+1}\ _2^2 + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle ^2$ (by energy
$\sum_{i,j} f(n_{ij}) (\log n_{ij} - \log \tilde{p_{\theta}}(w_i w_j))^2$	Maximum Likelihood for MM	favors smaller weights	$\nabla_{\phi} \mathbb{E}_{q_{\phi}} [\mathcal{L}(\mathbf{x}, \mathbf{z})] \approx \frac{1}{L} \sum_{r=1}^{L} \nabla_{\phi} \mathcal{L}(\mathbf{x}, g_{\phi}(\zeta^{(r)}))$	conservation and linearity)
unnormalised distribution (model):	$\arg\max_{\theta} \sum_{i=1}^{N} log[\sum_{j=1}^{K} \pi_{j} p(\mathbf{x_{i}}; \theta_{j})]$	$\mathbf{L}_2: \mathcal{L}_{\lambda}(\theta; \mathcal{X}) = \mathcal{L}(\theta; \mathcal{X}) + \frac{\lambda}{2} \ \theta\ _2^2$	easier to sample and differentiable by	Convex Optimization with l_1 -norm
$\tilde{p_{\theta}}(w_i w_j) = \exp[\langle \mathbf{x}_i, \mathbf{y}_j \rangle + b_i + c_j]),$	has no closed form solution	Dropout training with noise	ϕ since the z are now deterministic.	$\mathbf{z}^* = \arg\min_{\mathbf{z} \in \mathbb{R}^l} \mathbf{z} _1 \text{ s.t. } \mathbf{U}\mathbf{z} = \mathbf{x}$ can approximate l_0 even same results
n_{ij} is the target and f weight func	$log[\sum_{j=1}^{K} \pi_j p(\mathbf{x_i}; \theta_j)] =$	Backpropagation	backprop. can be used	Dictionary Learning
$f(n) = \min\{1, (\frac{n}{n_{\max}})^{\alpha}\}, \alpha \in [0, 1],$	$log[\sum_{j=1}^{K} q_j \frac{\pi_j p(\mathbf{x}_i; \theta_j)}{q_i}] \ge$	costs $\mathcal{O}(n)$ for NN with n nodes	GAN-Generative Adversarial Net.	learn one dictionary for $\mathbf{x}_1 \cdots \mathbf{x}_N$ obj.
limits the influence of large and	1)	$\frac{\partial x_i^{(l)}}{\partial x_i^{(l)}} = \sum_{i} \frac{\partial x_i^{(l)}}{\partial x_i^{(l)}} \frac{\partial x_j^{(l-1)}}{\partial x_j^{(l)}} = \sum_{i} \mathbf{I}_{i:i}^{(l)} \frac{\partial x_j^{(l-1)}}{\partial x_j^{(l)}}$	generator G and discriminator D	$(\mathbf{U}^*, \mathbf{Z}^*) \in \operatorname{argmin}_{\mathbf{UZ}} \ \mathbf{x} - \mathbf{UZ}\ _F^2 \text{ not}$
small noisy counts	$\sum_{j=1}^{K} q_j [\log p(\mathbf{x}; \theta_j) + \log \pi_j - \log q_j]$	$\partial x_{i}^{(l-n)} \stackrel{\sim}{=} \int \partial x_{i}^{(l-1)} \partial x_{i}^{(l-n)} \stackrel{\sim}{=} \int \int \int \partial x_{i}^{(l-n)} \partial x_{i}^{(l-n)}$	learn to fool each others.	jointly convex in (\mathbf{U}, \mathbf{Z})
Solves $\min_{\mathbf{XY}} \ \mathbf{N} - \mathbf{X}^{\top} \mathbf{Y}\ _F^2$ if $f = 1$ But	Lagrangian	$\frac{\partial \mathbf{x}^{(l)}}{\partial \mathbf{x}^{(l-n)}} = \sum_{j} \mathbf{J}^{(l)} \frac{\partial \mathbf{x}^{(l-1)}}{\partial \mathbf{x}^{(l-n)}} = \mathbf{J}^{(l)} \cdots \mathbf{J}^{(l-n+1)}$	$\min_{G} \max_{D} \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})} [\log D(\mathbf{x})]$	Greedy Convex Minimization
non-convex, hard to find optimum,	$\mathcal{L} = \max_{q} \{ \sum_{j=1}^{K} q_j [\log p(\mathbf{x}; \theta_j) + \log \pi_j - $	Backprop: $\nabla_{\mathbf{x}^{(l)}}^T l = \nabla_{\mathbf{y}}^T l \cdot \mathbf{J}^{(l)} \cdots \mathbf{J}^{(l+1)}$	$+\mathbb{E}_{\mathbf{z}\sim p_z(\mathbf{z})}[\log(1-D(G(\mathbf{z}))]$	1.Coding $\mathbf{Z}^{t+1} \in \operatorname{argmin}_{\mathbf{Z}} \ \mathbf{X} - \mathbf{U}^t \mathbf{Z}\ _F^2$
full gradient descent too expensice	$\log q_j + \lambda (\sum_{i=1}^K q_i - 1) $	backprop. $v_{\mathbf{x}^{(l)}} = v_{\mathbf{y}} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y}$	Hard to train, might not conver- ge/learn to generate a few samples	where Z sparse and U fixed
to compute.⇒ use SGD	E- Step compute assignments	$\frac{\partial l}{\partial w_{ij}^{(l)}} = \frac{\partial l}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial w_{ij}^{(l)}} \frac{\partial x_i^{(l)}}{\partial w_{ij}^{(l)}} = \sigma'(\mathbf{w}_i^{(l)T} \mathbf{x}^{(l-1)}) x_j^{(l-1)}$	generates sharper images since it can	column separable, $\forall n = 1 \cdots N$
Mixtures	$\nabla q_j \stackrel{!}{=} 0 \Rightarrow q_j^* = \frac{\pi_j p(\mathbf{x}; \theta_j)}{\sum_{l=1}^K \pi_l p(\mathbf{x}; \theta_l)} = p(z_j = 1 \mathbf{x})$			$\mathbf{z}_n^{t+1} \in \operatorname{armin}_{\mathbf{z}} \ \mathbf{z}\ _0 \operatorname{st} \ \mathbf{x}_n - \mathbf{U}^t \mathbf{z}\ ^2 \le \sigma \ \mathbf{x}_n\ _2$
	$\forall q_j - 0 \rightarrow q_j - \sum_{l=1}^K \pi_l p(\mathbf{x}; \theta_l) - p(z_j - 1) \mathbf{A}$	CNN	can only generate/sample	2. Update $\mathbf{U}^{t+1} \in \operatorname{argmin}_{\mathbf{U}} \ \mathbf{X} - \mathbf{U}\mathbf{Z}^{t+1}\ _F^2$
Objective $J(\mathbf{U}, \mathbf{Z}) = \sum_{i}^{N} \sum_{j}^{K} z_{ij} \mathbf{x}_{i} - \mathbf{u}_{j} ^{2}$	M-Step optimize clusters $\sum_{n=1}^{N}$	Convolutional Layers $F_{n,m}(\mathbf{x}; \mathbf{w})$	Sparse Coding	where $\ \mathbf{u}_l\ _2 = 1, \forall l \text{ and } \mathbf{Z} \text{ fixed.}$
$= \mathbf{X} - \mathbf{U}^T \mathbf{Z} ^2, \sum_{k=1}^{K} z_{ki} = 1$	$\mu_j^* = \frac{\sum_{i=1}^N q_{ij} \mathbf{x}_i}{\sum_{i=1}^N q_{ij}}$, $\pi_j := \frac{1}{N} \sum_{i=1}^N q_{ij}$, and	$=\sigma(b+\sum_{k=-i}^{i}\sum_{l=-i}^{i}w_{kl}x_{n+k,m+l})$	Basis Transformation	not separable \mathbf{R}_l^t residual of atom \mathbf{u}_ℓ
		Weight sharing and shift-invariant	signals often allow sparse represen-	$\ \mathbf{X} - [\mathbf{u}_1^t \cdots \mathbf{u}_\ell \cdots \mathbf{u}_L^t] \mathbf{Z}^{t+1} \ _F^2 =$
$\mathbf{U} = [\mathbf{u}_1 \cdots \mathbf{u}_K] \in \mathbb{R}^{D \times K} \text{ centroids}$	$\Sigma_j = \frac{\sum_{i=1}^{N} q_{ij} (\mathbf{x}_n - \mu_j) (\mathbf{x}_j - \mu_j)^T}{\sum_{i=1}^{N} q_{ij}} \text{ EM requires}$	filtering thus less parameters and	tation. Vanishing coeffs due to regularity. Find orthonormal dictionary	$\ \mathbf{X} - (\sum_{e \neq \ell} \mathbf{u}_e^t (\mathbf{z}_e^{t+1})^T + \mathbf{u}_\ell \mathbf{z}_\ell^{t+1})\ _F^2 =$
Recursive optimal assignments	more steps and computation to reach	computational power required Pooling Take avg or max over wind.	$\mathcal{U} = \{\mathbf{u}_1, \dots, \mathbf{u}_L\}$ and change of basis.	$\ \mathbf{R}_{\ell}^{t} - \mathbf{u}\ell(\mathbf{z}_{\ell}^{t+1T})\ $ approx. by SVD.
E: $z_{ij}^* = \{1 \text{ if } j = \arg\min_k \mathbf{x}_i - \mathbf{u}_k ^2$	convergence than K-Mean	Reduce size or extract features.	$\mathbf{x} = \mathbf{U}\mathbf{z} \to \mathbf{z} = \mathbf{U}^T\mathbf{x} \to \hat{\mathbf{x}} = \mathbf{U}\hat{\mathbf{z}}$	$\mathbf{R}_{\ell}^{t} = \tilde{\mathbf{U}} \Sigma \tilde{\mathbf{V}}^{T}$, $\mathbf{u}_{\ell}^{*} = \tilde{\mathbf{u}}_{1}$ first. sing vec.
	The state of the s			v = v = v = v = v = v = v = v = v =