10 класс одиннадцатилетней школы.

Задание 10(11)-1. «Разминка»

1.1 Будем считать, что при движении песчинки не мешают друг другу. Рассмотрим одну песчинку, находящуюся внутри вращающейся сферы. Поскольку трение в системе слабое, то примем, что движение песчинки происходит только под действием

силы тяжести $m\vec{g}$ и силы реакции опоры \vec{N} (см. рис).

В этом случае основной закон динамики примет вид

$$m\vec{a} = m\vec{g} + \vec{N} \tag{1}$$

Пусть в установившемся положении песчинки вектор силы реакции \vec{N} составляет угол α с вертикалью. Песчинка, вращаясь вместе со сферой, описывает окружность, радиус которой r найдем из рисунка

$$r = R \sin \alpha$$
.

При движении по окружности ее центростремительное ускорение может быть найдено, как

$$a = a_{nc} = \omega^2 r = \omega^2 R \sin \alpha . \tag{2}$$

Проецируя (1) на оси Ox и Oy получаем систему уравнений

$$\begin{cases} ma = N \sin \alpha \\ mg = N \cos \alpha \end{cases}$$

Из первого уравнения полученной системы с учетом (2) найдем

$$m\omega^2 R \sin \alpha = N \sin \alpha$$
,

откуда, сокращая на $\sin \alpha$ ($\sin \alpha \neq 0$), получим

$$N = m\omega^2 R. (3)$$

Подставляя (3) во второе уравнение системы, найдем

$$\cos \alpha = \frac{g}{\omega^2 R} \,. \tag{4}$$

Как следует из (4) установившееся положение песчинки однозначно определяется угловой скоростью ω вращения сферы, следовательно, песчинки при вращении сферы распределятся примерно равномерно и образуют кольцо, видимое из ее центра сферы под углом α (см. рис).

Это положение песчинок является устойчивым при больших угловых скоростях вращения, поскольку при любых малых смещениях песчинка стремится восстановить начальное значение угла α .

Так при $\omega \to \infty$ $\cos \alpha \to 0$, т.е. $\alpha \to \frac{\pi}{2}$, и все песчинки соберутся «на экваторе» веры. При этом радиус песчаного кольца станет равным радиусу

сферы. При этом радиус песчаного кольца станет равным радиусу сферы $\it R$.

При уменьшении угловой скорости вращения сферы до значения $\omega * = \sqrt{\frac{g}{R}}$ косинус угла принимает свое максимальное значение, равное 1.

Соответственно, при $\omega < \omega *$ все песчинки соберутся на дне сферы ($\alpha = 0$), образуя небольшую кучку (см.рис).

Это также будет устойчивое положение равновесия песчинок на дне сферы при малых угловых скоростях ее вращения.

1.2 Доски и цилиндр находятся в равновесии под действием сил тяжести $(M\vec{g}, m\vec{g})$, трения $(\vec{F}_{mp}, -\vec{F}_{mp})$ и реакций $(\vec{N}, -\vec{N})$, изображенных на рисунках. Силы реакции в оси O, на рисунке не показаны, поскольку их моменты относительно точки O равны нулю.

Запишем второе условие равновесия (правило моментов) для одной из досок относительно точки ${\cal O}$

$$mg\frac{L}{2}\sin\alpha = N\frac{L}{2}. (1)$$

Момент силы трения \vec{F}_{mp} также не входит в (1), поскольку линия ее действия проходит через ось вращения.

Поскольку цилиндр также находится в равновесии, то сумма сил, действующих на него должна быть равна нулю (рис. 01). Соответственно, первое условие равновесия, записанное для цилиндра в проекции на вертикальную ось, имеет вид

$$Mg + 2N\sin\alpha = 2F_{mn}\cos\alpha. \tag{2}$$

При записи (2) мы учли, что силы трения и реакции, действующие на цилиндр со стороны досок, согласно III закону Ньютона равны по модулю и противоположны по направлению соответствующим силам, действующим на доски со стороны цилиндра. Из уравнений (1) - (2) получаем

$$N = mg\sin\alpha\,,$$

$$F_{mp} = \frac{Mg + 2mg\sin^2\alpha}{2\cos\alpha}.$$

Поскольку предельное значение силы трения покоя определяется значением силы трения скольжения (явлением застоя пренебрежем), то

$$F_{mp} \le \mu N . \tag{3}$$

Как следует из (3), система сможет находиться в равновесии только при выполнении условия

$$\mu \ge \frac{F_{mp}}{N} \,. \tag{4}$$

Из рисунка несложно выразить, что

$$\sin \alpha = \frac{2R}{\sqrt{4R^2 + L^2}}, \cos \alpha = \frac{L}{\sqrt{4R^2 + L^2}}.$$

Из (4) с учетом выражений для силы трения и реакции, а также значений синуса и косинуса, получаем окончательный ответ

$$\mu \ge \frac{(L^2 + 4R^2)M}{4mRL} + \frac{2R}{L}.$$

Расчет дает

$$\mu \geq 1.0$$
.

Полученное численное значение коэффициента трения достаточно большое, однако следует заметить, что современные синтетические материалы могут обладать даже большими коэффициентами трения.

1.3 Для вычисления модуля вектора индукции магнитного поля на оси кольца с током используем закон Био-Савара-Лапласа, согласно которому малый элемент тока $(I\Delta \vec{l})_k$ создает на оси кольца индукцию

$$\Delta B_k = \frac{\mu_0}{4\pi} \frac{(I\Delta l)_k}{r_k^2}.$$

Вектор $\Delta \vec{B}_k$ нормален вектору \vec{r}_k , проведенному от элемента тока в точку рассмотрения A (см.рис).

Поскольку все элементы тока $I\Delta \vec{l}_k$ находятся на одинаковом расстоянии $r_k = \sqrt{R^2 + z^2}$ от центра кольца и составляют с вертикалью одинаковый угол φ , то суммирование выполниться несложно

$$\Delta \overline{B}_{k}$$
 φ
 A
 \overline{R}_{k}
 Z
 φ
 R
 O

$$B = \sum_{k} \Delta B_{zk} = \sum_{k} \frac{\mu_0}{4\pi} \frac{\left(I\Delta l\right)_k}{r^2} \cos \varphi = \frac{\mu_0}{4\pi} \frac{I\cos \varphi}{r^2} \sum_{k} \Delta l_k = \frac{\mu_0}{4\pi} \frac{I\cos \varphi}{r^2} 2\pi R = \frac{\mu_0 IR}{2r^2} \cos \varphi.$$

Из рисунка следует, что $\cos \varphi = \frac{R}{r}$, с учетом выражения для расстояния r, получим окончательное выражение для модуля вектора индукции магнитного поля на расстоянии z от центра кольца.

$$B(z) = \frac{\mu_0 IR}{2r^2} \cos \varphi = \frac{\mu_0 IR^2}{2r^3} = \frac{\mu_0 I}{2} \cdot \frac{R^2}{\left(R^2 + z^2\right)^{\frac{3}{2}}}.$$
 (1)

На больших расстояниях z (z >> R) от кольца слагаемым R^2 в знаменателе (1) можно пренебречь по сравнению со слагаемым z^2 . В результате получим

$$B(z) = \frac{\mu_0 I}{2} \cdot \frac{R^2}{\left(R^2 + z^2\right)^{\frac{3}{2}}} = \left\{z \to \infty\right\} \approx \frac{\mu_0 I}{2} \cdot \frac{R^2}{\left(z^2\right)^{\frac{3}{2}}} = \frac{\mu_0 I}{2} \cdot \frac{R^2}{z^3} = \frac{a}{z^3}.$$
 (2)

Соответственно, выражение для искомого коэффициента а принимает вид

$$a = \frac{\mu_0 I R^2}{2} \,. \tag{3}$$

Как следует из (2) при падении колечка и приближении его к кольцу модуль магнитной индукции поля возрастает, т.е. магнитный поток через колечко увеличивается.

Приращение магнитного потока через колечко при смещении его на величину Δz

$$\Delta \Phi = -\pi r^2 B'(z) \Delta z.$$

Дифференцируя (2) по z, получим

$$B'(z) = -\frac{3a}{z^4}.$$

Согласно закону электромагнитной индукции Фарадея в колечке возникнет ЭДС индукции

$$\varepsilon_i = -\frac{\Delta \Phi}{\Delta t} = -\frac{3\pi r^2 a}{z^4} \cdot \frac{\Delta z}{\Delta t} = \frac{3\pi r^2 a}{z^4} \cdot v(z). \tag{4}$$

Соответственно, сила индукционного (наведенного) тока в колечке оказывается пропорциональной его скорости движения

$$I_i = \frac{\mathcal{E}_i}{R_0} = \frac{3\pi r^2 a}{R_0 z^4} \cdot v(z). \tag{5}$$

Поскольку в колечке появился индукционный ток, то на него со стороны магнитного поля кольца будут действовать силы Ампера.

Здесь следует заметить, что вертикальная (осевая) составляющая магнитного

поля $\vec{B}(z)$ создает элементарные силы Ампера \vec{F}_{Ai} , которые лишь деформируют (сжимают или растягивают) колечко, но не могут замедлить или ускорить его движения, поскольку не имеют вертикальной проекции.

А вот радиальные составляющие \vec{B}_{ri} индукции магнитного поля, возникающие вследствие рассеяния линий магнитной индукции от оси Oz, в силу правила Ленца притормаживают колечко, поскольку имеют вертикальные проекции (см. рис).

Для нахождения модуля B_r вблизи оси Oz применим теорему Гаусса для магнитного поля, которая утверждает, что поток вектора магнитной индукции по произвольной замкнутой поверхности равен нулю.

Рассмотрим цилиндр высотой Δz , радиус которого совпадает с радиусом колечка (см. рис). Будем считать, что в силу малости радиуса r колечка осевая составляющая B(z) магнитного поля в его пределах меняется незначительно. Тогда разность магнитных потоков через нижнее и верхнее основания цилиндра

$$\Delta \Phi = \pi \, r^2 B'(z) \Delta z \tag{6}$$

в силу теоремы Гаусса должна быть равна потоку вектора индукции магнитного поля через боковую поверхность цилиндра

$$\Phi_{\text{for}} = B_r 2\pi r \Delta z . \tag{7}$$

Равенства (6)-(7) имеют наглядный геометрический смысл: неразрывные линии магнитной индукции, вошедшие в цилиндр через нижнее основание, могут выйти из него или через верхнее основание, или через его боковую поверхность.

Приравнивая (5) и (6) получим

$$B_r = -\frac{B'(z)}{2}r = \frac{3}{2} \cdot \frac{ar}{z^4} \,. \tag{8}$$

Соответственно, для суммарной компоненты силы Ампера, тормозящей падение кольца, получим выражение

$$F_A = I_i B_r 2\pi r = \{(5), (8)\} = \frac{9\pi r^3 a^2}{2R_0 z^8} v(z).$$
 (9)

Поскольку, согласно условию, ускорение кольца мало (гораздо меньше ускорения свободного падения), то можно считать, что кольцо в любой момент времени движется равномерно. Подобные процессы называются квазистационарными.

Для подобных процессов характерное время установления равновесного состояния системы (время релаксации) должно быть достаточно мало.

В рамках данной модели можем записать

$$mg = F_A = \frac{9\pi r^3 a^2}{2R_0 z^8} v(z).$$

V3 полученного уравнения найдем искомую зависимость скорости установившегося падения кольца на высоте z

$$v(z) = \frac{2mgR_0 z^8}{9\pi r^3 a^2} = \frac{8mgR_0}{9\pi r^3 u^2 I^2 R^4} \cdot z^8.$$
 (10)