Aula 07

Aula 07 Circuitos Combinacionais – 1ª Parte

- Projetos de Circuitos Combinacionais
 - Circuito com 2 variáveis
 - Circuito com 3 variáveis
 - Circuito com 4 variáveis

Circuito Combinacional

 É aquele em que a saída depende <u>única</u> e <u>exclusivamente</u> das combinações entre as <u>variáveis de entrada</u>

 Podemos utilizar um circuito lógico combinacional para solucionar problemas em que necessitamos de uma resposta quando acontecerem determinadas situações, representadas pelas variáveis de entrada.

 Sequência do processo, onde, a partir da situação, obtemos a tabela da verdade e a partir desta, através de técnicas já conhecidas, a expressão simplificada e o circuito final:

Projetos de Circuitos Combinacionais

 Esquema geral de um circuito combinacional composto pelas variáveis de entrada, o circuito propriamente dito e suas saídas

Circuito com 2 variáveis

 Cruzamento das ruas A e B. Nele queremos instalar um sistema automático de semáforo:

Circuito com 2 variáveis

- Características:
- 1ª. Quando houver carros transitando somente na **Rua B**, o semáforo **2** deverá permanecer verde para que estas viaturas possam trafegar livremente.
- 2ª. Quando houver carros transitando somente na **Rua** A, o semáforo **1** deverá permanecer verde pelos mesmos motivos
- 3º. Quando houver carros transitando nas Ruas A e B, deveremos abrir o semáforo para a Rua A, pois é preferencial.

Circuito com 2 variáveis

Analisando a situação, vamos estabelecer as seguintes convenções:

a) Existência de carro na Rua A: A=1

b) Não existência de carro na Rua A:

A=0 ou A=1

c) Existência de carro na Rua B: B=1

d) Não existência de carro na Rua B: B=0 ou $\overline{B}=1$

e) Verde do sinal 1 aceso: $V_1=1$

f) Verde do sinal 2 aceso: $V_2 = 1$

g) Quando $V_1=1$ — vermelho do semáforo 1 apagado: $V_{m1}=0$, verde do semáforo 2 apagado: $V_2=0$

e vermelho do semáforo 2 aceso: V_{m2}= 1

h) Quando $V_2 = 1$ $\longrightarrow V_1 = 0$, $V_{m2} = 0$ e $V_{m1} = 1$

Circuito com 2 variáveis

Tabela verdade:

Situação	A	B	V_1	V_{ml}	V ₂	V_{m2}
0	0	0				
1	0	1				
2	1	0				
3	1.	1	i			

Circuito com 2 variáveis

 A situação 0 (A = 0 e B = 0) representa a ausência de veículos em ambas as ruas. Se não temos carros, tanto faz qual sinal permanece aberto. Vamos adotar, por exemplo, que o verde do sinal 2 permaneça aceso.

Situação		R	V	Vmt	. V ₂	$V_{\mathrm{in}2}$
0	0	0	0	1	1	0

$$(V_2 = 1 \rightarrow V_1 = 0, V_{m1} = 1 \text{ e } V_{m2} = 0)$$

Circuito com 2 variáveis

 A situação 1 (A = 0 e B = 1) representa a presença de veículo na Rua B e ausência de veículo na Rua A, logo, devemos acender o sinal verde para a Rua B (V₂=1).

Situação	A	В	V,	Ym1	*	V.,,
1	0	1	0	1	1	0

$$(V_2 = 1 \rightarrow V_1 = 0, V_{m1} = 1 \text{ e } V_{m2} = 0)$$

Circuito com 2 variáveis

○ A situação 2 (A = 1 e B = 0) representa a presença de veículo na Rua A e ausência de veículo na Rua B, logo, devemos acender o sinal verde para a Rua A (V₁=1).

Situação	A	$-\mathbf{R}$	V,	V_{mi}	V ₂	V_{m2}
2	1	0	1	0	0	1

 $(V_1 = 1 \rightarrow V_2 = 0, V_{m2} = 1 e V_{m1} = 0)$

Circuito com 2 variáveis

A situação 3 (A = 1 e B = 1) representa a presença de veículos em ambas as ruas, logo, devemos acender o sinal verde para a Rua A, pois esta é preferencial.

Situação	A	В	$-\mathbf{V}_{\mathbf{i}}$	TOO DANGE OF COMMISSION OF THE	. Y.2	V.
3	1	1	1	0	0	1

$$(V_1 = 1 \rightarrow V_{m1} = 0, V_2 = 0 e V_{m2} = 1)$$

Circuito com 2 variáveis

Tabela totalmente preenchida:

À	В	Ţ.	V _{m1}		V _{m2}
0	0	0	1	1	0
0	1	0	1	1	0
1	0	1	0	0	1
1	1,	1	0	0	1

Circuito com 2 variáveis

Simplificando usando Karnaugh:

Pela tabela ou pelos diagramas, notamos que as expressões de V1 e Vm2 são idênticas, o mesmo ocorrendo com V2 e Vm1. Assim sendo, as expressões simplificadas são:

$$V_1 = V_{m2} = A$$
 e $V_2 = V_{m1} = \overline{A}$

Circuito com 2 variáveis

O circuito a partir da expressão:

Circuito com 3 variáveis

 Deseja-se utilizar um amplificador para ligar 3 aparelhos: 1 toca-fitas, 1 toca-discos e um rádio FM. O circuito lógico deverá obedecer às seguintes prioridades:

1ª. prioridade: toca-discos

2ª. prioridade: toca-fitas

3ª. prioridade: rádio FM

Circuito com 3 variáveis

- Convenções utilizadas:
- → Variáveis de entrada (A, B e C): aparelho desligado = 0 e ligado = 1.
- \implies Saídas (S_A, S_B e S_C): S = 0 -> chave aberta e S = 1 -> chave fechada.

Situação	A	В	C	$\mathbb{L}S_{\mathbf{A}}$	$S_{B'}$	$^{-1}$ Sc
0	0	0	0			
1	0	0	1			
2	0	1	0			
3	0	1	1			, and
4	1	0	0			
5	1	0	1			
6	1	1	0			
7	1	1.	1			

Circuito com 3 variáveis

Analisando as 8 situações possíveis:

			S_{λ}	\mathbf{S}_{B}	\mathbf{s}_{c}
Caso 0 -	Os 3 estão desligados, logo, condição irrelevante, pois não importa qual chave dever ser ligada.	Û.	X	X	X
Caso 1 -	Está ligado apenas o FM, logo somente $S_{\rm C}$ assume valor 1.	\Rightarrow	0	0	1
Caso 2 -	Está ligado apenas o toca-fitas, logo somente S_B assume valor 1.	₽	0	1	0
Caso 3 -	Estão ligados o FM e o toca-fitas. O toca-fitas tem prioridade sobre o FM, logo somente S _B assume valor 1.	₽	0	1	0
Caso 4 -	Está ligado apenas o toca-discos, logo somente o S _A assume o valor 1.	⇔	1	0	0
Caso 5 -	Estão ligados o toca-discos e o FM. O toca-discos é a 1ª prioridade, logo somente S _A assume valor 1.	Û	1	0	0
Caso 6 -	Análogo ao caso 5.	⇔	1	0	0
Caso 7 -	Análogo aos casos 5 e 6.	⇒	1	0	0

Circuito com 3 variáveis

Tabela verdade preenchida:

Situação	A	ß	C	3	S_B	$ \mathbf{S}_{\mathbf{c}}$
0	0	0	0	X	X	X
1	0	0	1	0.	0	1.
2	0	1	0	0	1	0
3	0	1	1	0	1	0
4	1	0	0	1	0	0
5	1	0	1	1	0	0
6	1	1	0	1	0	0
7	1	1	1	1	0	0

Circuito com 3 variáveis

Simplificando usando Karnaugh:

Circuito com 4 variáveis

 Uma empresa quer implantar um sistema de prioridade nos seus intercomunicadores da seguinte maneira:

Presidente: 1ª prioridade

Vice-presidente: 2ª prioridade

Engenharia: 3ª prioridade

Chefe de sessão: 4º prioridade

Circuito com 4 variáveis

- Variáveis de entrada:
- intercomunicador do presidente: A.
- intercomunicador do vice-presidente: B
- intercomunicador a engenharia: C
- intercomunicador do chefe de sessão: D
- Convenções utilizadas:
- presença de chamada: 1
- presença de chamada: 0

- \circ Saídas: S_A , S_B , S_C e S_D
- Convenções utilizadas:
- → efetivação de chamada: 1
- não efetivação de chamada: 0

Circuito com 4 variáveis

1000	A-	B	C∷	D	⊪S _A ⊕	S _B	S _C .	S _B	
	0	0	0	0	0	0	0	0	→ não efetua chamada.
	0	0	0	1	0	0	0	1	> efetua chamada do chefe de seção.
	0	0	1.	0	0	0	1	0	> efetua chamada da engenharia.
	0	0	1	1	0	0	1	0	 efetua chamada da engenharia, pois é prioritária.
	0	1	0	0	0	1	0	0	→ efetua chamada do vice-presidente.
	0	1	0	1	0	1	0	0)
	0	1	1	0	0	1	0	0	efetua chamada do vice-presidente, pois é prioritário.
	0	1	1	1	0	1	0	0	J
	1	0	0	0	1	0	0	0	> efetua chamada do presidente.
	1	0	0	1	1	0	0	0	ή
-	1	0	1	0	1	0	0	0	
	1	0	1	1	1	0	0	0	
	1	1	0	0	1	0	0	0	-> efetua chamada do presidente, pois
-	1	1	0	1	1	0.	0	0	é a 1ª prioridade.
	1	1	1	0	1	0	0	0	ii ii
	1	1	1	1	1	0	0	0	J

Circuito com 4 variáveis

Simplificando usando Karnaugh:

SA:		C		2	_
	0	0	0	0	B
Z	0	0	0	0	
P	1	1	1		В
	U	1	1	<u>J</u>	B
(a	$\overline{\overline{D}}$ a) $S_A = I$	I A)	$\overline{\mathbf{D}}$	•

Circuito com 4 variáveis

O Circuito:

Exercícios:

1. Elabore um circuito lógico para encher ou esvaziar um tanque industrial por meio de duas eletroválvulas, sendo uma para a entrada do líquido e outra para o escoamento da saída. O circuito lógico, através da informação de um sensor de nível máximo no tanque e de um botão interruptor de 2 posições, deve atuar nas eletroválvulas para encher o tanque totalmente (botão ativado) ou, ainda, esvaziá-lo totalmente (botão desativado).

Exercícios:

2. Obtenha um circuito combinacional que funcione como uma chave seletora digital com 2 entradas e 1 saída digital. O circuito, em função do nível lógico aplicado a uma entrada de seleção, deve comutar à saída os sinais aplicados às entradas digitais.

Exercícios:

3. Desenhe um circuito para, em um conjunto de 3 chaves, detectar um número par destas ligadas.

