COVID-19 Vaccine Sentiment Analysis

Levente Szabo & Ryan Cohen

Overview

- 1. Introduction: Problem Statement
- 2. Vaccine Analysis Pipeline
- 3. Data Modelling
- 4. Data Ingestion
- 5. Data Analysis
- 6. Data Visualization

Introduction

- The development of a vaccine that could end the global COVID-19 pandemic would require a large scale program to vaccinate a majority of the population.
- It is estimated that in order for COVID-19 herd immunity to be achieved, 82% of the population would have to be immune to the virus.
- With multiple vaccines in rapid development we anticipate a variety of barriers regarding widespread vaccination.
- In order to gauge public perception regarding vaccination, we construct a sentiment analysis system that analyzes Twitter data in real time.

Introduction

- We aim to study factors that shape individuals perceptions of vaccination.
 - Examples: Fear, Conspiracy, Trust
- Additionally, we aim to study mentions of key opinion leaders.
 - Examples: Moderna, Dr. Fauci, Pfizer
- The analysis of tweets can allow for study of geographic and temporal differences in vaccine sentiment.
 - Sentiment of related tweets can be tracked over time.
 - US and world maps will be created using user-provided location descriptions.

Vaccine Analysis Pipeline

Vaccine Analysis Pipeline

- Ingestion: Java application using Twitter4j deployed on an EC2 virtual machine. Tweets mentioning "vaccine" and other predetermined keywords are preprocessed and stored into a MySQL relational database.
- 2. Analysis: On regular time intervals a CloudWatch service initiates a serverless Lambda function to read unprocessed tweets from the MySQL database. Sentiment analysis and Keyword extraction are performed with Comprehend and location matching using the Python geotext package.
- 3. Visualization: Analytics regarding the breakdown of tweet sentiments, most common keywords and user locations is displayed as a dashboard using QuickSight. Data is constantly refreshed to provide a real-time user experience.

Database Modelling: Schema

search keyphrases

term_number (PK) category subcategory term

country coordinates

code latitude longitude country_name

Category Keywords & Keyphrases

Sample Category	Sample Keywords & Keyphrases
Conspiracy	"microchip vaccine", "5G", "Gates"
Companies	"Pfizer", "Johnson & Johnson", "Oxford"
Hesitancy	"vaccine accessibility", "vaccine profiteering"
Safety	"Vaccines kill", "vaccines are poison"
Trust	"Experimenting on us", "I am pro-vaccine"

Data Ingestion - Tweet Collection

- Twitter4j to interface with Twitter and JDBC to interface with MySQL
- To perform continuous tweet ingestion our application is run on an AWS Linux EC2 instance.
- To determine the set of keywords to filter on we initially query the search_keyphrases table in our database.
- Many tweets are in fact retweets of popular tweets. To avoid overloading our analysis system we handled these retweets by updating the retweet_count and favorite_count in our database.

Data Analysis - Sentiment & Keywords

- Lambda function is triggered every 15 minutes by an AWS CloudWatch event.
- Lambda function selects unprocessed raw tweet data from the database.
- 3. For each unprocessed raw tweet, the lambda function calls AWS Comprehend to
 - a. Measure sentiment (positive/negative/neutral/mixed ratings and overall label)
 - b. Extract keywords (key phrases and confidence scores)
- Store results in sentiment and keyword tables.

Data Analysis - Location Extraction

- 1. City, state, and country variables initialized to None.
- 2. Using results identified by the geotext library, set the city and country variables.
- 3. If the country is "US" or unidentified:
 - a. Split the location text on commas
 - b. For each resulting token, check if it is present in predefined sets of US state names and two-letter state abbreviations
 - If so, state is set to token, and country is set to "US"

Examples:

- "Evanston, IL" ⇒ city="Evanston" state="IL" country="US"
- "Toronto" ⇒ city="Toronto" state=None country="CA"
- "Way north" ⇒ city=None state=None country=None

Data Visualization - QuickSight Dashboard

- Figures in a QuickSight dashboard reflecting insights from the collected tweets update on a daily basis.
- All figures other than the time series reflect insights from the past seven days of collected tweets.
- Dashboard consists of three sets of figures:
 - 1. Insights for tweets matching pre-specified category terms
 - 2. Sentiment and collected tweet count time series
 - 3. Geographic and AWS Comprehend keyword data

Data Visualization - Categories

Number of matching tweets per category

Category	Count in
Companies	35,918
Key People	399
Trust	114
Key Names	51
Natural or Alternatives	48
Safety	38
Conspiracy	12
Hesitancy	7
Fear	5
Established Sources	3
Delay	1
Health Freedom	1

Data Visualization - Time Series

Data Visualization - Maps

