Page 1/5

Name:	
4-digit code:	

- Write your name and the last 4 digits of your SSN in the space provided above.
- The test has five (5) pages, including this one and the table of Laplace transforms at the end.
- Show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given at the right of each problem number.
- No books, notes or calculators may be used on this test.

Page	Max	Points
2	35	
3	40	
4	25	
Total	100	

Problem 1 (20 pts). Use exclusively techniques based on the Laplace transform to solve the initial value problem x'' + 3x' + 2x = t that satisfies x(0) = 0, x'(0) = 2.

Problem 2 (15pts). Find the Laplace transform of $f(x) = \sin 3x \cos 3x$.

Problem 3 (10pts). Find the Laplace transform of the function $f(x) = xe^{2x}\cos(3x)$.

Problem 4 (10pts). Find the Laplace transform of $f(x) = \sin(x)/x$.

Problem 5 (20pts). Find the inverse Laplace transform of $F(s) = (s^2 + b^2)^{-2}$

Problem 6 (25pts). Given the system of differential equations below,

$$\begin{cases} x' = 4x - 3y \\ y' = 6x - 7y \end{cases}$$

and initial conditions x(0) = 0, y(0) = 1,

- (a) Use Euler's method to solve it numerically, with time step size h=1, for N=3 steps.
- (b) Solve the system using the method of elimination. Feel free to use Cramer's rule if you please.

- 11				
Table (of Lap	lace T	'ransform:	S

	$f(t) = \mathcal{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathcal{L}\{f(t)\}\$	piace	$f(t) = \mathcal{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathcal{L}\{f(t)\}$	
1.	1	$\frac{1}{s}$	2.	\mathbf{e}^{at}	$\frac{1}{s-a}$	
3.	t^n , $n=1,2,3,$	$\frac{n!}{s^{n+1}}$	4.	$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$	
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$	
7.	$\sin(at)$	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2 + a^2}$	
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$	
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$	
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$	
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$	
17.	sinh(at)	$\frac{a}{s^2 - a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2 - a^2}$	
19.	$\mathbf{e}^{at}\sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$\mathbf{e}^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$	
21.	$\mathbf{e}^{at}\sinh(bt)$	$\frac{b}{\left(s-a\right)^2-b^2}$	22.	$\mathbf{e}^{at}\cosh(bt)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$	
23.	$t^n \mathbf{e}^{at}, n = 1, 2, 3, \dots$	$\frac{n!}{\left(s-a\right)^{n+1}}$	24.	f(ct)	$\frac{1}{c}F\bigg(\frac{s}{c}\bigg)$	
25.	$u_c(t) = u(t-c)$ <u>Heaviside Function</u>	$\frac{\mathbf{e}^{-cs}}{s}$	26.	$\frac{\delta(t-c)}{\text{Dirac Delta Function}}$	\mathbf{e}^{-cs}	
27.	$u_c(t) f(t-c)$	$e^{-cs}F(s)$	28.	$u_c(t)g(t)$	$e^{-cs} \mathcal{L}\left\{g\left(t+c\right)\right\}$	
29.	$\mathbf{e}^{ct}f(t)$	F(s-c)	30.	$t^n f(t), n = 1, 2, 3, \dots$	$\left(-1\right)^{n}F^{(n)}(s)$	
31.	ı	$\int_{s}^{\infty} F(u) du$		• 0	$\frac{F(s)}{s}$	
33.	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	f(t+T) = f(t)	$\frac{\int_0^T \mathbf{e}^{-st} f(t) dt}{1 - \mathbf{e}^{-sT}}$ $s^2 F(s) - sf(0) - f'(0)$	
35.	f'(t)	sF(s)-f(0)	36.	f''(t)	$s^2F(s)-sf(0)-f'(0)$	
37.	$s^{n}F(s)-s^{n-1}f(0)-s^{n-2}f'(0)\cdots-sf^{(n-2)}(0)-f^{(n-1)}(0)$					