Bemutatkozás, bevezetés

A számítógépes nyelvészet alapjai – ELTE, 2022/23 tavasz 1. óra

Simon Eszter 2023. február 27.

Tartalom i

- 1. Bemutatkozás
- 2. A félév bemutatása
- 3. Bevezetés a számítógépes nyelvészetbe
- 4. Kis történeti áttekintés

Az MI-kutatás kezdetei

5. Módszerek

Szabályalapú és statisztikai metodológia Neurális fordulat

6. Alkalmazási területek

Információkinyerés, webbányászat Természetes ember-gép kommunikáció Nyelvalapú diagnosztika

Tartalom ii

Többnyelvűség, a nyelvi korlátok leküzdése

A nyelvi kulturális tartalmak digitalizálása

7. Házi feladat

Bemutatkozás

BEMUTATKOZÁS

- ·én
- ti

A félév bemutatása

ALKALMAK

Alkalmak:

- febr. 27.
- · márc. 6.
- márc. 13.
- márc. 20.
- márc. 27.
- ápr. 3.
- · ápr. 10. húsvét
- ápr. 17.
- ápr. 24.
- · máj. 1. munka ünnepe
- máj. 8.
- máj. 15.
- · máj. 22.

Összesen: 11 alkalom

TELJESÍTÉS FELTÉTELE

- · összesen 5-8 házi feladat kerül kiadásra
- ebből legalább 3-at kell beadni a teljesítéshez (többet is be lehet, ilyenkor a 3 legjobb számít)
- a feladatokból legalább 3 megoldható programozási tudás nélkül is
- · a beadott házikra megajánlott jegyet lehet kapni
- · akinek ez nem jó, jöhet vizsgázni

TEMATIKA

- 1. Bemutatkozás, bevezetés
 - bemutatkozás
 - · a félév bemutatása
 - · adminisztratív és technikai részletek: git repó, google colab
 - hevezetés
 - · történeti áttekintés
 - alkalmazási területek
- 2. Kis technikai bevezető próbálkozás
 - · Google Colab
 - · python
 - · shell
 - regexek
- 3. Automaták, nyelvtanok
 - · Chomsky-féle nyelvhierarchia
 - automaták
 - · morfológiai elemzés transzducerekkel

TEMATIKA - FOLYT.

- 4. Bevezetés a korpuszok csodálatos világába
 - · mi a korpusz?
 - korpusztipológia
 - · mire jó a korpusz?
 - · főbb kérdések a korpuszépítésnél
 - · a korpusz mérete
 - · korpuszannotáció
 - · gyakorlat: crawling, scraping, boilerplate removal
- 5. Korpuszannotáció, annotációs szintek
 - · annotációs eszközök
 - · annotációk összevetése
 - · annotációs szintek:
 - · tokenizálás, mondatra bontás
 - · morfológiai elemzés
 - · morfológiai egyértelműsítés
 - szintaktikai elemzés
 - · szekvenciális címkézési feladatok

TEMATIKA - FOLYT.

- 6. Szintaktikai elemzés
 - · konstituenselemzés
 - dependenciaelemzés
 - sekély szintaktikai elemzés
 - · magyar nyelvű elemzők és erőforrások
- 7. Gépi tanulás áttekintés
 - · racionalista és empirikus megközelítés
 - · felügyelet nélküli és félig felügyelt tanulás
 - · a felügyelt gépi tanulás menete
 - · gyakorlat: íriszosztályozás, huntag futtatás
- 8. Vektorszemantika és szóbeágyazások
- 9. n-gram nyelvi modellek

TEMATIKA – FOLYT.

- 10. Neurális hálók és neurális nyelvmodellek
 - bevezetés
 - · történeti áttekintés
 - · units
 - · the XOR problem
 - · feedforward neural networks
 - · training neural nets
 - · neural language models
- 11. lauf vagy meghívott előadó

AJÁNLOTT IRODALOM

- Dan Jurafsky, James H. Martin: Speech and Language Processing.
 3rd ed. draft: https://web.stanford.edu/~jurafsky/slp3/
- Lüdeling, A. and Kytö, M., editors (2008). Corpus Linguistics. An International Handbook. Walter de Gruyter, Berlin
- Mitkov, R., editor, The Oxford Handbook of Computational Linguistics. Oxford University Press, New York.

TECHNIKAI RÉSZLETEK

Hozzatok gépet!

https://colab.research.google.com

Minden elérhető lesz a kurzus GitHub repójában: https://github.com/esztersimon/nlp_at_elte

Levlista: kérem az emailcímeket!

Bevezetés a számítógépes

nyelvészetbe

SZINONIMÁK?

- · számítógépes nyelvészet
- · természetesnyelv-feldolgozás (natural language processing, NLP)
- · nyelvtechnológia (human language technology, HLT)
- korpusznyelvészet

BESOROLÁS

DEFINÍCIÓ

- · átfedésben van a mesterségesintelligencia-kutatással
- · a természetes nyelvek számítógépes feldolgozásával foglalkozik
- · a kutatások a nyelv szerkezetének gépi modellezésére irányulnak

Wikipédia:

A számítógépes nyelvészet olyan műszaki tudomány, amely a természetes nyelvű szövegek számítógépes feldolgozásával foglalkozik, de minden olyan elméleti és gyakorlati tevékenység ide tartozik, amely kapcsolatban van a természetes nyelvekkel. Egy interdiszciplína, vagyis olyan szakterület, amely több terület eredményeire és tudására épül, mint pl. az informatika, a matematika és a nyelvészet.

A SZENT GRÁL

A NYELVTECHNOLÓGIA CÉLJA

olyan rendszer építése, amely fel tudja dolgozni és elő tudja állítani az emberi nyelvet – úgy, ahogy az ember teszi

elméleti motiváció: az emberi nyelvhasználatot leíró formalizált és konzisztens nyelvi modellek létrehozása

gyakorlati motiváció: a modellek gyakorlati, számítógépes megvalósítása → praktikus gépi alkalmazások

Praktikus gépi alkalmazások

- · személyi asszisztensek: Siri, Alexa, Cortana, Google Assistant
- · auto-complete
- · spell checking: böngészők, editorok, programok (Microsoft Word)
- · gépi fordítás: Google Translate, DeepL
- · chatbotok, ChatGPT
- · szentimentelemzés (pozitív, negatív és semleges értékelések)
- google calendar bejegyzés emailekből

RÉSZTERÜLETEK

a nyelvtechnológia egyes részfeladatai tükrözik az emberi nyelvértés pszicholingvisztikai részfeladatait

- · beszédfelismerés -és szintézis
- · morfológiai és szintaktikai elemzés
- · szemantikai elemzés
- generálás
- következtetés

A PROBLÉMÁK

- · a nyelvfeldolgozás rendkívül bonyolult
- · a szükséges tudás hatalmas
- · szabályalapú: a szabályok száma, a lexikon mérete
- statisztikai: az adatok ritkasága ("rare words are very common")
 → a 15 leggyakoribb szó adja a szöveg 25%-át, a 100
 leggyakoribb a 60%-át, 1000 a 85%-át, 4000 pedig a 97,5%-át
- többértelműség
- magasabb szintű feldolgozási problémák (előfeltevések, mondatok közötti anaforafeloldás stb.)
- robusztusság

Hogy állunk az egyes részterületeken?

nagyon jól:

- · spamszűrés
- · POS-taggelés
- névelemfelismerés (NER)

egész jól:

- · szentimentelemzés
- koreferenciafeloldás
- jelentésegyértelműsítés (WSD)
- · mondatelemzés, parsing
- · gépi fordítás (MT)
- információkinyerés (IE)

még mindig nem valami jól:

- kérdésmegválaszolás (QA)
- kivonatolás
- · dialógus

Kis történeti áttekintés

Történelemkönyv

- · 1950-60: az első ötletek
- · 1960-70: kísérletezés
- · 1970-80: használható gépek
- · 1980-90: növekvő kapacitás, termékek
- · 1990-: új technológiák, kommunikáció
- · 2000-: növekvő szövegmennyiség, ipar
- · 2010- : neurális fordulat

TURING-TESZT

- három résztvevő: két tesztalany egy ember és egy gép és egy kérdező
- a kérdező billentyűzet és monitor közvetítésével kérdéseket tesz fel a két tesztalanynak
- mindkét tesztalany megpróbálja meggyőzni a kérdezőt arról, hogy ő gondolkodó ember
- ha a kérdező öt perces faggatás után sem tudja megállapítani, hogy melyik a gép, akkor a gép átment a teszten

A TURING-TESZT KRITIKÁJA

- a párbeszéd szimulálása csak kevéssé tekinthető az intelligencia jelének → a hagyományos értelemben vett intelligenciának csak egy szegletét tudja mérni;
- attól még lehet intelligens egy gép, hogy nem képes emberi módon kommunikálni;
- az emberek közül se teljesítené mindenki sikerrel a Turing-tesztet (kisgyerekek, fogyatékosok), holott ők is lehetnek más tekintetben intelligensek;
- a teszten olyan ember is megbukhat, aki nem hajlandó a feltételek szerint együttműködni → az együttműködés megtagadása nem egyenlő az értelem hiányával (lásd HAL);
- a kísérleti szituáció jellegénél fogva a lehetséges beszélgetésfolyamat-variációk száma korlátozott → egy kellően kiterjedt adatbázissal ellátott számítógép előre eltárolt kérdésés válaszminták felhasználásával tényleges intelligencia hiányában is sikerrel teljesítheti a tesztet (lásd Jeopardy)

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3):379–423.

a természetesnyelv-feldolgozási problémák megfeleltethetők dekódolási problémáknak a zajos kommunikációs csatornában

Shannon, C. E. (1951). Prediction and Entropy of Printed English. Bell Systems Technical Journal, 30:50–64. kikölcsönözte az entrópia fogalmát a termodinamikából, és a

kikölcsönözte az entrópia fogalmát a termodinamikából, és a csatorna információs kapacitásának a mérésére alkalmazta → az információelmélet alapjai

a termodinamikai entrópia egy rendszer rendezetlenségi fokát jellemzi

AZ INFORMÁCIÓELMÉLETI ENTRÓPIA

- az entrópia akkor a legkisebb (0), ha a hírforrás biztosan mindig ugyanazt a hírt sugározza → a bizonytalanságunk nulla, vagyis teljesen biztosak lehetünk benne, hogy az adott hír fog érkezni
- az entrópia akkor a legnagyobb, ha az összes hír valószínűsége egyenlő → ekkor a bizonytalanságunk a legnagyobb, hiszen bármelyik hír ugyanakkora valószínűséggel érkezhet

High Knowledge Low Entropy

Medium Knowledge

Medium Entropy

Low Knowledge
High Entropy

Kornai videó

A Georgetown-IBM kísérlet (1954)

- teljesen automatikus gépi fordítás
- · több mint 60 orosz mondatot képes angolra fordítani
- szabályalapú, szótáralapú (a szavakhoz spec. szabályok kapcsolódnak)
 - Operation 0 An exact equivalent for a translated item exists. Any further steps needed.
 - Operation 1 Rearrangement of the position of the words. AB > BA
 - Operation 2 The several choices problem. The result is based on the consecutive words (maximum of three).
 - Operation 3 Also several problems. But the result depends on the previous words (maximum of three).
 - Operation 4 Omissions of the lexical (morphological) item. The source item would be redundant.
 - Operation 5 Insertion of the lexical (morphological) item. The item is not present in the output language.

A gépi fordítás

- az 50-es évek nagy slágertémája
- · The spirit is willing but the flesh is weak.

$$\rightarrow$$
 orosz \rightarrow angol \rightarrow

The vodka is excellent but the meat is rotten.

- ALPAC (Automatic Language Processing Advisory Committee) report (1966): szkeptikus az eddigi eredményekkel kapcsolatban, az USA kormánya drámaian csökkenti a finanszírozást
- statisztikai módszerek
 - · kapacitásnövekedés \rightarrow egyre több szöveg válik elérhetővé, kereshetővé
 - sparse data problem: mindig lesznek olyan jelenségek, melyek megfelelő működésének kimutatásához nem elegendő az aktuális méretű adathalmaz
- neurális hálók, vektoros reprezentációk, mélytanulás
 - 2010-es évek: grafikus processzorok (GPU): hatékonyabb számítási teljesítmény + rengeteg adat

CHOMSKY

Chomsky, N. (1957). Syntactic Structures. Mouton, The Hague. Chomsky, N. (1959). A review of B. F. Skinner's Verbal Behavior. Language, 35(1):26–58.

Újradefiniálta a nyelvészet feladatát: a nyelvésznek nem a nyelvi jelenségek leírása a feladata, hanem annak a vizsgálata, hogy hogyan tanulja meg a gyerek a nyelvet, és mik azok a jegyek, amelyek minden nyelvben közösek. Márpedig ezek a jelenségek a nyelv felszíni megjelenésétől igen távol esnek, így a "sekély" korpuszalapú módszerekkel nem elérhetőek.

STUDENT (1964)

- · Daniel G. Bobrow
- · középiskolai szöveges matekfeladatokat olvas és old meg
- · bemenet: angol szöveg, kimenet: szám
- pl. ilyeneket: If the number of customers Tom gets is twice the square of 20% of the number of advertisements he runs, and the number of advertisements is 45, then what is the number of customers Tom gets?
- · a mesterséges intelligencia egy korai példája
- · szabályalapú, logikai következtetés

ELIZA (1966)

- · Joseph Weizenbaum, MIT Artificial Intelligence Laboratory
- · az első chatbot
- mintaillesztés, behelyettesítés

```
Welcome to
                                                  AAAAA
                                                   ΔΔΔΔΔΔΔ
                                        ZZ AA AA
777777 AA AA
  Eliza is a mock Rogerian psychotherapist.
  The original program was described by Joseph Weizenbaum in 1966.
  This implementation by Norbert Landsteiner 2005.
ELIZA: Is something troubling you ?
YOU: Men are all alike.
ELIZA: What is the connection, do you suppose ?
YOU: They're always bugging us about something or other.
ELIZA: Can you think of a specific example ?
       Well, my boyfriend made me come here.
ELIZA: Is it important to you that your boyfriend made you come here ?
YOU: He says I'm depressed much of the time.
ELIZA: I am sorry to hear that you are depressed.
YOU: It's true. I am unhappy.
ELIZA: Can you explain what made you unhappy ?
```

ELIZA

- A férfiak mind egyformák.
- · Ezen mit értesz?
- Mindig cseszegetnek minket valamiért.
- · Mondanál egy konkrét példát?
- · Hát, a fiúm küldött ide.
- A fiúd küldött ide.
- Azt mondja, mindig depressziós vagyok.
- · Sajnálom, hogy depressziós vagy.
- · Talán ki kellene békülnöm az anyámmal.
- · Mesélj még a családodról.

...ÉS AMI MÖGÖTTE VAN

rogersiánus pszichológia

Carl Rogers (1902-1987):

- · amerikai pszichológus
- · a pszichoterápiás kutatás egyik alapító atyjának tartják
- · kliensközpontú terápia:
 - · a terapeuta párbeszédbe lép a klienssel
 - · bólint, összegzi a hallottakat, ha a másik elakad
 - · a feltárás után továbblép
 - · nem kérdez, figyel

Példák

- · egyszerű kulcsszavak által aktivált utasítások: *my boyfriend*
 - ightarrow your boyfriend
- reguláris kifejezések: s/.* (depressziós|szomorú)
 vagyok .*/Sajnálom, hogy \1 vagy/

AZ ELSŐ KORPUSZOK & A SZTOCHASZTIKUS PARADIGMA

- Brown Corpus (Kucera and Francis, 1967): was created in the US, which then inspired a whole family of corpora:
 - Lancester-Oslo-Bergen Corpus (Leech et al., 1983) (Brown's British English counterpart)
 - · London-Lund Corpus (Svartvik, 1990)

A sztochasztikus módszerek

a beszédfelismerés területén érték el az első sikereket, aztán onnan terjedtek tovább más NLP területekre, pl. POS taggelés (Bahl and Mercer, 1976).

SHRDLU (1970)

- Terry Winograd, MIT
- nyelvfeldolgozó, interakció a userrel angol kifejezéseken keresztül
- · memória, statika, névadás
- · az első interakciós fikció

Chatbotok, asszisztensek és az 1 millió dolláros főnyeremény

- · 2006: Watson (IBM): 2011-ben megnyeri a Jeopardy!-t
- 2011: Siri (Apple)
- · 2014: Cortana (Microsoft), Alexa (Amazon)
- 2016: Google Assistant
- · 2022: ChatGPT

Módszerek

SZABÁLYALAPÚ METODOLÓGIA

Szabályalapú

- © a fejlesztőnek nagy kontrollja van a rendszer fölött
- könnyen értelmezhető visszacsatolás
- magas pontosság
- nyelvi adatok, amik könnyen megragadhatók szabályokkal (reguláris kifejezésekkel), pl. dátumok szerkezete
- © sok kézimunka, nagy szakértelem kell hozzá
- nem hibatűrő
- bonyoult a fejlesztése, törékeny
- nehezen átvihető más doménre, nyelvre
- lehetetlen olyan szabályrendszert írni, ami mindent lefed, amit kell, de semmit, amit nem
- a fedés a listák és a szabályok számának növelésével javítható, de a szabályok száma, a lexikon mérete korlátozott
 - · pl. morfológiai elemzés, tokenizálás

SZABÁLYALAPÚ METODOLÓGIA

- racionalista filozófiai tradíció (Leibniz, Descartes)
- · univerzális nyelvtan
- velünk született nyelvi képesség → introspekció
- · grammatikalitási ítélet: 0 vagy 1
- kézzel kódolt szabályok
 - reguláris kifejezések

Példák

e-mail cím: $[a-z]+@[a-z]+\.[a-z]+$

pl.: bubo@doktor.hu

STATISZTIKAI METODOLÓGIA

Statisztikai (sztochasztikus), klasszikus gépi tanulás

- · adatorientált, gyakorisági adatokból indul ki
- · a nyelv általánosabb megértése, modellálása
- kézzel kinyert feature-ökre támaszkodik (pl. mondathossz, POS-tagek, spec. szavak előfordulása)
- · gépi tanuló algoritmusok (pl. Naive Bayes, SWM, döntési fa stb.)
- · nehézség: az adatok ritkasága ("rare words are very common")
- · pl. szekvenciális címkézési feladatok, szintaktikai elemzés

STATISZTIKAI METODOLÓGIA

- · empirista filozófiai tradíció (Locke)
- · az érzékszervi tapasztalat prioritása o tudásunk elsődleges forrása a tapasztalat
- · gyakorisági adatokból indul ki, adatorientált
- a szövegből gépi tanuló algoritmus tanulja ki a szabályszerűségeket
- · a grammatikalitási ítélet nem kétértékű, hanem fokozatai vannak

ÖSSZEHASONLÍTÁS

ÖSSZEHASONLÍTÁS:)

Noam Chomsky 1969

"Meg kell értsük, hogy egy mondat valószínűségéről beszélni teljesen értelmetlen."

Fred Jelinek 1988

"Ahányszor távozik egy nyelvész a csoportból, felszökik a beszédfelismerési rátánk."

Neurális

- · 2010-es évek óta ez a legforróbb terület
- nincsenek kézzel kinyert jegyek (self-supervised learning)
- · end-to-end modellek
- · GPU-k, párhuzamosítás, nagyobb számítási kapacitás
- deep learning: azért "mély", mert a neurális hálónak ált. több rétege van

Alkalmazási területek

Információkinyerés

az információözönből megtalálni a releváns információt, és csak azt az eredmény strukturált tárolása és megjelenítése

Részfeladatok

- tokenizálás
- · mondatra bontás
- morfológiai elemzés
- morfológiai egyértelműsítés
- · sekély szintaktikai elemzés
- · tulajdonnév-felismerés
- · koreferenciafeloldás
- · mondaton belüli és mondatok közötti összefüggések felismerése
- szemantikai relációk detektálása

Felhasználási lehetőségek

- álláspiaci információkinyerés, trendelemzés
 - álláshirdetések és önéletrajzok automatikus begyűjtése, adatbázisba rendezése \to gyorsabb és hatékonyabb egymásratalálás
- · klinikai információkinyerés
 - kórházi vizsgálati dokumentumok, zárójelentések feldolgozása

 hasznos információk, statisztika az egészségügy, a gyógyszeripar
 számára
- hangzó anyagokból történő információkinyerés
 - beszédfelismerés → szöveges átirat → szöveges információkinyerő technikák
- véleménykinyerés közösségi tartalmakból
 - blogok, fórumok, bejegyzések feldolgozása → termékekkel, pártokkal, közszereplőkkel kapcsolatos vélemények detektálása

Természetes ember-gép kommunikáció

automatikus beszédfelismerés, gépi beszédszintézis

Nehézségek

- a beszédfelismerésben úgy érhető el kellő mértékű pontosság, ha
 - 1. a beszélő által használt szavakat korlátozzuk, vagy
 - 2. a beszélők számát korlátozzuk
- zajrezisztencia: a háttérzaj növekedésével a szófelismerési pontosság rohamosan csökken
- a magyar beszédtechnológia követő helyzetben van: az elsősorban angolra kidolgozott módszereket követi, de a magyar speciális volta miatt ez nem mindig célravezető

Felhasználási lehetőségek

- · SMS és e-mail felolvasó szoftverek (látássérülteknek)
- · autós és mobiltelefonos GPS rendszer
- orvosi leletező
- · telefonos hívások kezelése, telefonközpont-irányítás
- · hangalapú személyi asszisztens (pl. Siri)
- kötött tematikájú szöveg felolvasása (pl. meteorológiai jelentés, buszmenetrend, betegtájékoztató)

Nyelvalapú diagnosztika

Felhasználási lehetőségek

a kóros eseteket tükröző ún. nyelvi markerek keresése beszédben vagy szövegben

- az Alzheimer-kór korai diagnosztizálása beszédtechnológiai fejlesztésekkel
 - a spontán beszéd egyes paraméterei (szünetek, agrammatikus kifejezések) a rövidtávú munkamemória teljesítményéről árulkodnak
- · beszédképző szervek zavarainak diagnosztizálása
 - gégészeti elváltozások, rák korai stádiumban való felismerése a beszédjelek statisztikai akusztikai feldolgozásával

Felhasználási lehetőségek

- pszichodiagnosztikai vizsgálatok nyelvtechnológiai támogatással
 - a pszichológiai folyamatok a verbális viselkedésben is kódolódnak
 → tartalomelemzés → konfliktuselőrejelzés
- korpuszalapú gyereknyelvi kutatások
 - a tipikus fejlődésű gyerekek nyelvének vizsgálata segít az atipikus nyelvi fejlődésű csoportok nyelvi diagnózisában és a fejlesztés kidolgozásában is

Többnyelvűség, a nyelvi korlátok leküzdése

Gépi fordítás

1. szabályalapú fordítók

- a forrásnyelvi mondat elemzése (→ köztes nyelvi reprezentáció) → célnyelvi szerkezet
- a ritkán előforduló nyelvi szerkezeteket is képes helyesen lefordítani

statisztikai fordítók

 párhuzamos korpuszok alapján keresnek célnyelvi megfelelőket valószínűségi alapon

3. neurális fordítók

szószekvenciák prediktálása nyelvmodell alapján

Számítógépes lexikográfia

szótárak CD-n o "intelligens szótárak" o a szótárkészítés bizonyos lépéseinek automatizálása nyelvtechnológiai eszközökkel

- korpuszalapú módszertan: referenciakorpusz → lexikográfusi munka
- korpuszvezérelt módszertan: a lexikográfiailag releváns információ szövegekből való kinyerése nyelvtechnológiai eszközökkel
 - párhuzamos korpuszok o szó- vagy frázisszintű illesztés o a fordítási jelöltek rangsorolása valószínűség alapján
 - · összevethető (comparable) korpuszok

A nyelvi kulturális tartalmak digitalizálása

értékőrzés, értékmentés

Felhasználási lehetőségek

- · magyar nyelvváltozatok adatbázisa
 - · Magyarországon: a dialektusok eltűnése, határon túl: nyelvvesztés
 - · beszélt nyelvi anyag szöveges átirattal o fonetikai, szociolingvisztikai kutatások
- hang/film/multimédia archívumok szövegtartalom szerinti kereshetővé tétele
- parlamenti beszédek tartalmi kereshetősége, folyó beszédek élő feliratozása
- rokon nyelvek nyelvi erőforrásainak fejlesztése

Nyelvemlékek digitalizálása

Nyelvemlékek digitalizálása

egyszerű digitalizálás: a primér adat képként való beszkennelése \leftrightarrow szöveges adatbázisok: nyelvészeti annotációval ellátva

hasznos a kutatóknak:

- széleskörű és kifinomult keresési lehetőségek
- · hatékonyabb adatelérés ightarrow időmegtakarítás
- · következetesség, egységesség
- · nem helyhez kötött
- · többen is dolgozhatnak rajta párhuzamosan

Nyelvemlékek digitalizálása

hasznos a nyelvtechnológusoknak:

- az elektronikus formátumok előtti korból származó szövegek
 nehezebb feldolgozás, mint a mai, eleve elektronikusan születő dokumentumok esetében
- \cdot nem sztenderd nyelvváltozatok o az eddiginél robusztusabb vagy új módszerekre van szükség
- · új módszerek \rightarrow új kutatási kérdések \rightarrow együttműködés más tudományterületekkel
- · nyelvtörténészek és nyelvtechnológusok ightarrow történeti korpuszok

Történeti korpuszok

- Penn Parsed Corpora of Historical English
- Newsbooks at Lancester
- Tycho Brahe Parsed Corpus of Historical Portuguese
- Icelandic Parsed Historical Corpus
- Ómagyar Korpusz
- Történeti Magánéleti Korpusz

Házi feladat

Házi feladat

- egy nyelvtechnológiát használó alkalmazás bemutatása kb. 10 percben
- · nem kell diasor vagy handout, csak gépen bemutató
- · néhány háttérinfó (ki fejlesztette, mikor, mire jó stb.)
- · legyen interaktív
- jövő óra elején
- péntekig várom emailben a témát, ha valaki vállalkozik erre: simon.eszterke@gmail.com

"That's all Folks!"