集合と順序集合の双対随伴

 $@kyo_math1729$

定義 1. 順序集合 M の部分集合 $V \subset M$ について任意の $a,b \in M$ で

$$a \le b, \ a \in V \Rightarrow b \in V$$

が成り立つとき, V は upper set であるという.

順序集合 M に対してその upper set 全体の集合を U(M) と書く.

$$U(M) = \{ V \subset M \mid V \text{ it upper set} \}$$

命題 2. $f\colon M\to N$ は順序集合の間の順序を保つ写像とする. このとき $V\subset N$ が upper set ならば $f^{-1}(V)\subset M$ も upper set である.

証明. $a,b \in M$ が $a \le b$, $a \in f^{-1}(V)$ とすると $f(a) \le f(b)$, $f(a) \in V$ で V は upper set なので $f(b) \in V$. よって $b \in f^{-1}(V)$.

この命題から U が反変関手を定めることがわかる. 即ち, Set を集合と写像の圏, Ord を順序集合と順序を保つ写像の圏としたとき

$$\begin{array}{ccc}
N & & U(N) \\
f & & \mapsto & \downarrow f^{-1} \\
M & & U(M)
\end{array}$$

で関手 $U: \operatorname{Ord}^{\operatorname{op}} \to \operatorname{Set}$ が定まる.

また写像の逆像は反変関手

$$\begin{array}{ccc}
P & & \mathcal{P}(P) \\
f & & \mapsto & \int_{Q} f^{-1} \\
Q & & \mathcal{P}(Q)
\end{array}$$

を定めるのだった. これを $I: Set \to Ord^{op}$ と書く.

定理 3. $U \ge I$ は随伴 $U \dashv I$ である.

$$Ord^{op} \xrightarrow{\perp} Set$$

証明. 集合 P と順序集合 M に対して順序を保つ写像 $M \to \mathcal{P}(P)$ と写像 $P \to U(M)$ が一対一に対応することを示そう.

自然な同型 $\mathcal{P}(P)\cong 2^P$ と Curry 化の随伴に注意すると以下の同型を得る. (Hom 集合はすべて Set のもの)

$$\begin{aligned} \operatorname{Hom}(M,\mathcal{P}(P)) &\cong \operatorname{Hom}(M,\ 2^P) \\ &\cong \operatorname{Hom}(M \times P,\ 2) \\ &\cong \operatorname{Hom}(P,\ 2^M) \\ &\cong \operatorname{Hom}(P,\ \mathcal{P}(M)) \end{aligned}$$

よって写像 $f\colon M\to \mathcal{P}(P)$ について f が順序を保つことと,f をこの同型で写した写像 $\bar{f}\colon P\to \mathcal{P}(M)$ の像が $U(M)\subset \mathcal{P}(M)$ に入ることの同値性を示せばよい.

上の同型は $a \in M$ と $p \in P$ に対して

$$p \in f(a) \Leftrightarrow \bar{f}(a,p) = 1$$

 $\Leftrightarrow a \in \bar{\bar{f}}(p)$

とすることで与えられている. よって f の順序保存条件の対応を考えると, $a,b \in M$ と $p \in P$ に対して

$$\begin{aligned} a \leq b \Rightarrow f(a) \subset f(b) &\iff a \leq b, \ p \in f(a) \Rightarrow p \in f(b) \\ &\iff a \leq b, \ a \in \bar{\bar{f}}(p) \Rightarrow b \in \bar{\bar{f}}(p) \end{aligned}$$

となる.最右辺の条件は任意の $p \in P$ について $\bar{\bar{f}}(p)$ が upper set であることを示している. \square