高级算法设计与分析

零知识证明

夏盟佶 Xia, Mingji

中科院软件所 计算机科学国家重点实验室

2016.6

NP里的语言

- - 个语言 $L: \Sigma^* \rightarrow \{0,1\}$ 在NP中,
- 存在多项式时间可以判定的二元关系R和常数k, 使得 $x \in L$,当且仅当存在y, $|y| = |x|^k$ 并且R(x,y) = 1。

多项式时间随机算法P、V是L的零知识证明

 $\langle P(x,u),V(x)\rangle$ 表示证明者P得到输入x,u, 验证者V得到输 λx 时, 他们之间的交互证明。

如果以下三条成立:

- Completeness: 对任意的 $x \in L$ 以及x的一个证据u (即R(x, u) = 1), V接 \mathcal{G} < P(x,u),V(x) >的概率大于2/3。
- Soundness: 如果 $x \notin L$, 对于任何的 P^* 和u, V接受 $< P^*(x, u), V(x) >$ 的概率小于1/3。
- Perfect Zero Knowledge: 对任何随机多项式时间的交互策略 算法 V^* ,存在一个多项式期望时间的随机算法 S^* ,使得对 任意的 $x \in L$ 以及x的一个证据u, $\langle P(x,u), V^*(x) \rangle \sim S^*(x)$ 的 概率分布相同。

 S^* 叫做 V^* 的模拟者。

图同构问题的零知识证明

- 图 $G_0(V_0, E_0)$ 和 $G_1(V_1, E_1)$ 是同构的,如果存在从 V_0 到 V_1 的一一对应 π ,使得 $(u, v) \in E$ 当且仅当 $(\pi(u), \pi(v)) \in E_1$ 。
- 不严格的直观: P知道怎么从甲地到乙地,它要V相信它知道,但又不告诉V甲到乙的路。
- P选取一个和甲乙都连通的丙地,让V随机问甲到丙或者乙 到丙的路,然后告诉V这条路。

图同构问题的零知识证明

- V: G_0 , G_1
 - P: G_0 , G_1 , π , 如果同构, $\pi(G_0) = G_1$
- P: 随机选取置换 π_1 , 把 $H = \pi_1(G_1)$ 送给V。(V没得到 π_1 。)
- V: 随机选取 $b \in_R \{0,1\}$, 送给V。
- P:如果b=1,送π₁给V;如果b=0,送π₁οπ给V。
- V: 刚收到的置换记为 π' ,接受,如果 $H = \pi'(G_b)$ 。

$$G_0 \longrightarrow^{\pi} G_1 \longrightarrow^{\pi_1} H$$

零知识

- 用一个没知识 π 的模拟者 S^* ,模拟任何 V^* 和P的交互。
- S^* 猜一个 $b' \in \{0,1\}$ 。随机选取置换 π_1 ,用 $\pi_1(G_{b'})$ 作为P给V的第一条信息。
- 随后模拟P和V的行为。猜对了,即b' = b,就模拟成功,最后一条P发送的信息是 π_1 :猜错了就从头再来。

参考文献

Sanjeev Arora, Boaz Barak: Computational complexity, a modern approach 第九章密码学