Spanning Tree Problem With Constraint on the Number of Leaves

 $17050\{02,17,66,92,94\}$ Department of CSE, BUET

January 8, 2023

Outline

- 1 Definitions
- 2 Intractability of the Problems
 - Minimum Leaf Spanning Tree
 - Maximum Leaf Spanning Tree
- 3 Algorithms to Explore
- 4 Applications

Spanning Tree

Figure: The Graph W_7

Spanning Tree

Figure: A Spanning Tree of W_7 with 2 leaves

Spanning Tree

Figure: A Spanning Tree of W_7 with 6 leaves

Problems: Optimization Versions

Minimum Leaf Spanning Tree Problem

Given a connected graph G, find a spanning tree of G with the **minimum** number of leaves.

Maximum Leaf Spanning Tree Problem

Given a connected graph G, find a spanning tree of G with the **maximum** number of leaves.

Problems: Decision Versions

Minimum Leaf Spanning Tree Problem (MINLST)

Given a connected graph G and an integer k, does G have a spanning tree with **at most** k leaves?

Maximum Leaf Spanning Tree Problem (MAXLST)

Given a connected graph G and an integer k, does G have a spanning tree with **at least** k leaves?

Outline

- 1 Definitions
- 2 Intractability of the Problems
 - Minimum Leaf Spanning Tree
 - Maximum Leaf Spanning Tree
- 3 Algorithms to Explore
- 4 Applications

Section Overview

MINLST and MAXLST: Both problems are in \mathcal{NP}

For either problem, given a YES-certificate, we can verify in polynomial time.

Now we will reduce known \mathcal{NP} -hard problems to our problems to show them to be \mathcal{NP} -hard.

- HAMPATH \leq_P MINLST
- 2 VertexCover \leq_P MinConDomSet \leq_P MaxLST

Outline

- 1 Definitions
- 2 Intractability of the Problems
 - Minimum Leaf Spanning Tree
 - Maximum Leaf Spanning Tree
- 3 Algorithms to Explore
- 4 Applications

$HAMPATH \leq_P MINLST$

Figure: A Spanning Tree of W_7 with at most 2 leaves which is also a Hamiltonian Path

$HAMPATH \leq_P MINLST$

Figure: A Spanning Tree of W_7 with at most 2 leaves which is also a Hamiltonian Path

Lemma

A connected graph G has a Hamiltonian path if and only if it has a spanning tree of at most two leaves.

Outline

- 1 Definitions
- 2 Intractability of the Problems
 - Minimum Leaf Spanning Tree
 - Maximum Leaf Spanning Tree
- 3 Algorithms to Explore
- 4 Applications

Connected Dominating Set

Figure: The red vertices form a Connected Dominating Set

Connected Dominating Set

Figure: The red vertices form a Connected Dominating Set

Definition

Given a graph G=(V,E), a connected dominating set $S\subseteq V$ is such that

- I For every vertex $u \in V$, either $u \in S$ or u has a neighbor $v \in S$.
- f 2 The subgraph of G induced by S is connected.

MINCDS

Minimum Connected Dominating Set: Decision Version

Given a connected graph G and an integer k, does G have a connected dominating set of size **at most** k?

$MINCDS \leq_P MAXLST$

A connected graph G has a connected dominating set of size at most k if and only if it has a spanning tree of at least n-k leaves.

Minimum Connected Dominating Set

Figure: The maximum leaf spanning tree(MaxLST) is equivalent to the minimum connected dominating set(MinCDS)

Minimum Connected Dominating Set

Figure: The maximum leaf spanning tree (MaxLST) is equivalent to the minimum connected dominating $\operatorname{set}(\operatorname{MinCDS})$

Minimum Connected Dominating Set

Figure: The maximum leaf spanning tree (MaxLST) is equivalent to the minimum connected dominating $\operatorname{set}(\operatorname{MinCDS})$

MINCDS

Minimum Connected Dominating Set: Decision Version

Given a connected graph G and an integer k, does G have a connected dominating set of size **at most** k?

$MinCDS \leq_P MaxLST$

A connected graph G has a connected dominating set of size at most k if and only if it has a spanning tree of at least n-k leaves.

VERTEXCOVER \leq_P MINCDS

Figure: An instance of VertexCover

■ An instance (G(V, E), k) of VertexCover concepts

VERTEXCOVER \leq_P MINCDS

Figure: Constructed instance of MINCDS

■ Constructed instance (G'(V', E'), k) of MINCDS

VertexCover \leq_P MinCDS

Figure: Constructed instance of MinCDS

- $V' = V \cup \{x_{uv} : (u, v) \in E\}$
- $E' = E \cup \{(u, v) : u, v \in V, u \neq v, (u, v) \notin E\} \cup \{(x_{u, v}, u) : (u, v) \in E\}$

VERTEXCOVER \leq_P MINCDS

Lemma

concepts G has a vertex cover of size at most k if and only if G' has a connected dominating set of size at most k.

Figure: VertexCover of G

 \blacksquare S is a VertexCover of G

• for any $v \in V' \setminus S$

Figure: VertexCover of ${\cal G}$

- \blacksquare Case 1: $v \in V$

Figure: VertexCover of ${\cal G}$

- for any $v \in V' \setminus S$
- \blacksquare Case 1: $v \in V$
- Case 2: $v = v_{xy}$, an edge vertex of some edge $(x, y) \in E$

Figure: VertexCover of G

Figure: CDS of G'

 \blacksquare S is a CDS of G'

Figure: CDS of G'

■ For any edge vertex $v_{xy} \in S$, we replace it with x or y.

Figure: CDS of G'

 $lue{S}$ contains no edge vertex

Figure: CDS of G'

- \blacksquare S contains no edge vertex
- lacktriangle every edge vertex is dominated by S

Figure: CDS of G'

- \blacksquare S contains no edge vertex
- \blacksquare every edge vertex is dominated by S
- \blacksquare S is a vertex cover for G

Outline

- 1 Definitions
- 2 Intractability of the Problems
 - Minimum Leaf Spanning Tree
 - Maximum Leaf Spanning Tree
- 3 Algorithms to Explore
- 4 Applications

MAXLST

1 An $\mathcal{O}^*(1.8966^n)$ exact algorithm by Fernau et al. (2009)

$\overline{\text{Max}} \text{LST}$

- 1 An $\mathcal{O}^*(1.8966^n)$ exact algorithm by Fernau et al. (2009)
- 2 A 2-approximation algorithm by Solis-Oba et al. (2017)

- I An $\mathcal{O}^*(1.8966^n)$ exact algorithm by Fernau et al. (2009)
- 2 A 2-approximation algorithm by Solis-Oba et al. (2017)
- 3 MaxLST is APX-hard, and thus no PTAS exists unless $\mathcal{P} = \mathcal{NP}$. (Galbiati et al., 1994)

- 1 An $\mathcal{O}^*(1.8966^n)$ exact algorithm by Fernau et al. (2009)
- 2 A 2-approximation algorithm by Solis-Oba et al. (2017)
- MAXLST is APX-hard, and thus no PTAS exists unless $\mathcal{P} = \mathcal{NP}$. (Galbiati et al., 1994)
- 4 An $\mathcal{O}^*(3.4575^k n^{\mathcal{O}(1)})$ FPT algorithm by Raible and Fernau (2010)

- I An $\mathcal{O}^*(1.8966^n)$ exact algorithm by Fernau et al. (2009)
- 2 A 2-approximation algorithm by Solis-Oba et al. (2017)
- MAXLST is APX-hard, and thus no PTAS exists unless $\mathcal{P} = \mathcal{NP}$. (Galbiati et al., 1994)
- 4 An $\mathcal{O}^*(3.4575^k n^{\mathcal{O}(1)})$ FPT algorithm by Raible and Fernau (2010)
- 5 Genetic Algorithm Based Heuristic Approach by Farvaresh et al. (2022)

- I An $\mathcal{O}^*(1.8966^n)$ exact algorithm by Fernau et al. (2009)
- 2 A 2-approximation algorithm by Solis-Oba et al. (2017)
- MAXLST is APX-hard, and thus no PTAS exists unless $\mathcal{P} = \mathcal{NP}$. (Galbiati et al., 1994)
- 4 An $\mathcal{O}^*(3.4575^k n^{\mathcal{O}(1)})$ FPT algorithm by Raible and Fernau (2010)
- **5** Genetic Algorithm Based Heuristic Approach by Farvaresh et al. (2022)
- **6** A modified version of the problem, where instead of an integer k, a subset of vertices is specified, is polynomially solvable. (Rahman and Kaykobad, 2005)

MINLST

1 No result on approximability exists. (Watel 2020)

MINLST'

- 1 No result on approximability exists. (Watel 2020)
- 2 Heuristic-based solutions exist (e.g. Scatter search by Kardam et al. (2022))

MINLST

- 1 No result on approximability exists. (Watel 2020)
- 2 Heuristic-based solutions exist (e.g. Scatter search by Kardam et al. (2022))
- 3 An $\mathcal{O}^*(1.8916^n)$ exact algorithm by Fernau et al. (2009) for graph with $\Delta \leq 3$.

MinLST

- 1 No result on approximability exists. (Watel 2020)
- 2 Heuristic-based solutions exist (e.g. Scatter search by Kardam et al. (2022))
- An $\mathcal{O}^*(1.8916^n)$ exact algorithm by Fernau et al. (2009) for graph with $\Delta \leq 3$.
- 4 Algorithm that finds a spanning tree of G with $\geq k$ internal vertices (2 < k < n-2) if it exists in $\mathcal{O}^*(2^{3.5klogk})$.

Outline

- 1 Definitions
- 2 Intractability of the Problems
 - Minimum Leaf Spanning Tree
 - Maximum Leaf Spanning Tree
- 3 Algorithms to Explore
- 4 Applications

Forest Fire Detection using MAXLST (Farvaresh et al. (2022))

As a realistic application of MAXLST, a forest fire detection system was developed and successfully simulated for the Iranian Arasbaran forest using a wireless sensor network (WSN).

The WSN is built using MaxLST concepts-

- A connected network with a clustered hierarchical topology is developed
- 2 The number of cluster nodes is controlled
- 3 Which nodes should lie on the communication backbone

Figure: Arasbaran forest and the highlighted simulation area

Figure: 3D satellite image of the simulation area with high risk of fire ignition

Figure: Optimum output of the sensor network of the simulation area

Thank You