You said:

Estoy implementando LightFM para un modelo donde uso siglip, clip y blip. Por separado, pero con la misma estructura de código. Estoy teniendo problemas con la memoria ram, hay mecanismos para optimizar el uso de memoria cuando trabajo con embeddings y altos volumenes de datos?

ChatGPT said:

ChatGPT

Sí, hay varias estrategias para optimizar el uso de memoria RAM al trabajar con embeddings y grandes volúmenes de datos en modelos como LightFM junto con embeddings generados por SIGLIP, CLIP y BLIP. Aquí te comparto algunas técnicas que te pueden ayudar:

1. Optimización de Embeddings

a. Reducir la Dimensionalidad de los Embeddings

- Utiliza técnicas como **PCA (Análisis de Componentes Principales)** o **t-SNE** para reducir la dimensionalidad de los embeddings.
- Herramientas como TruncatedSVD de scikit-learn también son útiles si los embeddings son dispersos.

python

Copy code

from sklearn.decomposition import TruncatedSVD

svd = TruncatedSVD(n_components=128) # Reducir a 128 dimensiones, por ejemplo reduced_embeddings = svd.fit_transform(embeddings)

b. Cuantización de Embeddings

• Convierte los embeddings de precisión flotante de 32 bits (float32) a 16 bits (float16) o incluso a 8 bits (int8) para ahorrar memoria.

python

Copy code

embeddings = embeddings.astype('float16')

2. Gestión de Datos

a. Procesamiento por Lotes (Batching)

 Carga los datos y calcula las recomendaciones en lotes más pequeños para evitar desbordar la memoria.

python

Copy code

batch_size = 1024

for i in range(0, len(embeddings), batch_size):

batch = embeddings[i:i+batch_size]

Procesa el batch aquí

b. Almacenamiento en Disco con memmap

• Utiliza numpy.memmap para leer grandes conjuntos de datos directamente desde el disco sin cargarlos completamente en memoria.

python

Copy code

import numpy as np

3. Optimización del Modelo LightFM

a. Uso de Matrices Dispersas (Sparse Matrices)

• LightFM permite trabajar con **matrices dispersas** para reducir el consumo de memoria al manejar grandes cantidades de datos.

python

Copy code

from scipy.sparse import csr_matrix

interactions_sparse = csr_matrix(interactions_matrix)

b. Entrenamiento en Modo No Components

• Si no necesitas características de embeddings complejas, prueba reducir no_components en el modelo LightFM.

python

Copy code

model = LightFM(no_components=30) # Reducir la cantidad de componentes latentes

4. Liberar Memoria y Control de Recursos

a. Liberar Memoria con gc

Usa el recolector de basura para liberar memoria que ya no se necesita.

python

Copy code

import gc

gc.collect()

b. Eliminar Variables Innecesarias

• Utiliza del para eliminar variables grandes que ya no necesitas.

python

Copy code

del large_variable

5. Paralelización y Computación en GPU

a. Procesamiento en GPU

• Si tienes acceso a una GPU, asegúrate de enviar los embeddings a la GPU para liberar memoria de la CPU.

python

Copy code

import torch

embeddings_gpu = torch.tensor(embeddings).to('cuda')

b. Paralelización con joblib

• Utiliza joblib para paralelizar tareas y optimizar el procesamiento de datos.

python

Copy code

from joblib import Parallel, delayed

Parallel(n_jobs=4)(delayed(func)(x) for x in data)

Estas estrategias deberían ayudarte a reducir el consumo de memoria y a mejorar la eficiencia de tu modelo. Si tienes un caso más específico o deseas ejemplos de implementación para alguna técnica, házmelo saber.

You said:

De qué sirven los float 32 y 16?

ChatGPT said:

ChatGPT

Los formatos de punto flotante **float32** y **float16** son tipos de datos utilizados para representar números decimales en cálculos computacionales. La principal diferencia entre ellos radica en su **precisión** y el **consumo de memoria**. Aquí te explico para qué sirven y cuáles son sus ventajas y desventajas.

Float32 (32 bits)

★ Características:

- **Tamaño:** 32 bits (4 bytes).
- Rango de valores: Aproximadamente de ±3.4 × 10³⁸.
- **Precisión:** Alrededor de 7 dígitos decimales.

Ventajas:

- 1. **Mayor precisión:** Es suficiente para la mayoría de las tareas de aprendizaje automático y procesamiento numérico.
- 2. **Compatibilidad:** Es el estándar predeterminado en la mayoría de los frameworks como TensorFlow, PyTorch y NumPy.
- 3. Estabilidad numérica: Menos propenso a errores de redondeo en cálculos complejos.

X Desventajas:

- 1. **Consumo de memoria:** Utiliza más memoria que float16, lo que puede ser un problema con grandes volúmenes de datos.
- 2. **Rendimiento:** Puede ser más lento en ciertas operaciones si se compara con float16 en hardware que soporta cálculos de precisión reducida.

Float16 (16 bits)

Características:

- Tamaño: 16 bits (2 bytes).
- Rango de valores: Aproximadamente de ±6.5 × 10⁴.
- Precisión: Alrededor de 3-4 dígitos decimales.

Ventajas:

- 1. **Ahorro de memoria:** Reduce el uso de memoria a la mitad en comparación con float32, permitiendo manejar conjuntos de datos más grandes.
- 2. **Rendimiento optimizado:** Puede acelerar cálculos en GPUs modernas (como NVIDIA con soporte para **Tensor Cores**).
- 3. **Eficiencia energética:** Consume menos energía, lo que es importante en dispositivos con recursos limitados.

X Desventajas:

- 1. **Menor precisión:** Más propenso a errores de redondeo y desbordamiento para valores muy grandes o pequeños.
- 2. **Rango limitado:** Puede no ser adecuado para cálculos que requieran alta precisión numérica o tengan un rango amplio de valores.

🛠 ¿Cuándo usar cada uno?

1. Usa float32 cuando:

- o Necesitas alta precisión para cálculos numéricos complejos.
- o Estás trabajando en modelos de redes neuronales donde la precisión es crítica.
- o Tu hardware no tiene soporte eficiente para float16.

2. Usa float16 cuando:

- Trabajas con grandes volúmenes de datos o modelos que requieren mucha memoria.
- El entrenamiento en GPU se puede acelerar con precisión mixta (Mixed Precision Training).
- El hardware (como GPUs NVIDIA con Tensor Cores) admite operaciones optimizadas para float16.

Ejemplo de conversión en Python

Puedes convertir tus datos entre float32 y float16 en NumPy o PyTorch para optimizar el uso de memoria:

En NumPy:

python Copy code import numpy as np

Crear un array de float32 data = np.array([1.5, 2.5, 3.5], dtype=np.float32)

Convertir a float16 data_float16 = data.astype(np.float16) print(data_float16)

En PyTorch:

python Copy code import torch

Crear un tensor de float32 tensor = torch.tensor([1.5, 2.5, 3.5], dtype=torch.float32)

Convertir a float16 tensor_float16 = tensor.to(torch.float16) print(tensor_float16)

Elegir entre float32 y float16 dependerá de tu caso de uso específico, equilibrando la necesidad de precisión con la optimización de memoria y rendimiento.

You said:

Cuando normalizo los embeddings, lo que hago en una variable afecta en las demás, cómo puedo hacer que las modificaciones no alteren los datos originales?

ChatGPT said:

ChatGPT

Cuando trabajas con embeddings y necesitas normalizarlos sin afectar los datos originales, puedes hacer copias independientes para asegurarte de que las modificaciones no impacten los datos originales. Aquí te muestro algunas estrategias efectivas en NumPy y PyTorch.

1. Copiar Datos Antes de Modificar

```
En NumPy
Usa np.copy() para crear una copia independiente del array antes de normalizar.
python
Copy code
import numpy as np
# Embeddings originales
embeddings = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float32)
# Crear una copia de los embeddings
embeddings_copy = np.copy(embeddings)
# Normalizar la copia
embeddings_copy /= np.linalg.norm(embeddings_copy, axis=1, keepdims=True)
print("Original:")
print(embeddings)
print("Normalizado:")
print(embeddings_copy)
En PyTorch
Usa .clone() para crear una copia del tensor antes de normalizar.
python
Copy code
import torch
# Embeddings originales
embeddings = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=torch.float32)
# Crear una copia de los embeddings
embeddings_copy = embeddings.clone()
# Normalizar la copia
embeddings_copy = torch.nn.functional.normalize(embeddings_copy, p=2, dim=1)
print("Original:")
print(embeddings)
print("Normalizado:")
print(embeddings_copy)
```

- np.copy() en NumPy: Crea una copia profunda del array, garantizando que cualquier cambio en la copia no afecte al original.
- .clone() en PyTorch: Similar a np.copy(), produce una copia independiente del tensor, lo que te permite realizar operaciones sin modificar los datos originales.

¿Por qué es importante hacer copias?

- 1. **Evitar efectos secundarios:** Si trabajas con múltiples transformaciones y reutilizas los datos originales, las modificaciones pueden propagarse accidentalmente.
- 2. **Preservar los datos originales:** Mantener una versión sin modificar te permite comparar resultados o volver a realizar operaciones sin recalcular los embeddings desde cero.
- 3. **Depuración más sencilla:** Facilita rastrear errores y probar diferentes técnicas sin preocuparte por modificar datos base.

Con estas estrategias puedes normalizar y transformar tus embeddings de manera segura sin comprometer la integridad de los datos originales.

You said:

Para medir el consumo de cpu y ram en las métricas, qué librerías o códigos puedo hacer para calcularlo en mi modelo

ChatGPT said:

ChatGPT

Para medir el consumo de **CPU** y **RAM** mientras ejecutas tu modelo, existen varias bibliotecas en Python que te permiten monitorear estos recursos de manera efectiva. Aquí te muestro algunas de las más comunes y ejemplos de código para usarlas:

1. psutil para Monitoreo General

La biblioteca psutil permite obtener información detallada sobre el uso de CPU, memoria RAM y otros recursos del sistema.

bash Copy code pip install psutil

Ejemplo de Uso

python Copy code import psutil import time

def medir_consumo():

Obtener uso de CPU
uso_cpu = psutil.cpu_percent(interval=1) # Porcentaje de uso en 1 segundo
Obtener uso de RAM
memoria = psutil.virtual_memory()
uso_ram = memoria.used / (1024 ** 3) # Convertir a GB
total_ram = memoria.total / (1024 ** 3)

```
print(f"Uso de CPU: {uso_cpu}%")
print(f"Uso de RAM: {uso_ram:.2f} GB / {total_ram:.2f} GB")
```

Llamar a la función antes y después de ejecutar el modelo print("Antes de ejecutar el modelo:") medir_consumo()

Simular ejecución de un modelo pesado time.sleep(3) # Simula un proceso de larga duración

print("Después de ejecutar el modelo:") medir_consumo()

🧝 2. memory_profiler para Monitoreo de Memoria Detallado

memory_profiler es útil para perfilar el uso de memoria línea por línea en una función.

bash

Copy code

pip install memory-profiler

Ejemplo de Uso

python

Copy code

from memory_profiler import profile

@profile

def funcion_pesada():

a = [0] * (10 ** 7) # Crear una lista grande b = [1] * (10 ** 7) # Otra lista grande del b # Eliminar una variable

funcion_pesada()

• Ejecuta el script con el comando:

bash

Copy code

python script.py

Este perfilador imprimirá una línea detallada del uso de memoria antes y después de cada operación dentro de la función.

3. time y tracemalloc para Medir Tiempo y Memoria

tracemalloc permite rastrear la asignación de memoria, mientras que time ayuda a medir el tiempo de ejecución.

python Copy code import tracemalloc import time

```
def funcion_modelo():
  lista = [i ** 2 \text{ for } i \text{ in range}(10**6)]
  time.sleep(2) # Simula una pausa en el procesamiento
# Iniciar el rastreo
tracemalloc.start()
start_time = time.time()
# Ejecutar la función
funcion_modelo()
# Medir tiempo y memoria
end_time = time.time()
current, peak = tracemalloc.get_traced_memory()
print(f"Tiempo de ejecución: {end_time - start_time:.2f} segundos")
print(f"Memoria actual: {current / 1024**2:.2f} MB")
print(f"Memoria pico: {peak / 1024**2:.2f} MB")
# Detener el rastreo
tracemalloc.stop()
```

🚺 4. GPUtil para Monitoreo de GPU

Si utilizas una GPU para tu modelo, GPUtil te ayuda a monitorear el uso de memoria y carga de la GPU.

f Instalación

bash
Copy code
pip install gputil

Ejemplo de Uso
python
Copy code
import GPUtil
from tabulate import tabulate

```
def medir_gpu():
    gpus = GPUtil.getGPUs()
    lista = []

for gpu in gpus:
    lista.append((
        gpu.id,
        gpu.name,
        f"{gpu.load * 100:.1f}%",
        f"{gpu.memoryUsed:.2f} MB",
        f"{gpu.memoryTotal:.2f} MB"
    ))
```

print(tabulate(lista, headers=("ID", "Nombre", "Uso de GPU", "Memoria Usada", "Memoria Total")))

Medir uso de GPU medir_gpu()

Resumen de Herramientas

Librería Uso

psutil Monitoreo general de CPU y RAM.

memory_profiler Perfilado detallado de memoria línea a línea.

tracemalloc Rastreo de asignación de memoria.

GPUtil Monitoreo de GPU (memoria y carga).

time Medición del tiempo de ejecución.

Estas herramientas te permiten monitorear y optimizar el uso de recursos de manera efectiva durante el desarrollo y ejecución de tu modelo.

You said:

Tengo que agregarle las siguientes métricas a mi código, para esto me dieron métricas de ejemplo para svd y als, pero yo estoy usando ligtFM, quiero que me des ideas de cómo implementarlas en mi código, te adjunto los códigos para el map, ncdg y recall def precision_at_k(r, k): assert 1 <= k <= r.size return (np.asarray(r)[:k] != 0).mean() def average_precision_at_k(r, k): r = np.asarray(r) score = 0. for i in range(min(k, r.size)): score += precision_at_k(r, i + 1) return score / k def dcg_at_k(r, k): r = np.asfarray(r)[:k] if r.size: return np.sum(np.subtract(np.power(2, r), 1) / np.log2(np.arange(2, r.size + 2))) return 0. def idcg_at_k(k): return dcg_at_k(np.ones(k), k) def ndcg_at_k(r, k, max_relevant): idcg = idcg at k(min(k, max relevant)) if not idcg: return 0. return dcg at k(r, k) / idcg def recall_at_k(relevant_items, recommended_items, k): relevant_items = set(relevant_items) recommended items set(recommended_items[:k]) intersection relevant_items.intersection(recommended_items) recall len(intersection) len(relevant items) if len(relevant_items) > 0 else 0 return evaluate_ranking_SVD_model(model, user_items_test, k): mean_ap = 0. # o MAP mean_ndcg = 0. mean_recall = 0. for u in user_items_test.keys(): rec = model.recommend(str(u), k, includeRated=False) # Pyreclab's API rec = [int(x) for x in rec] rel_vector = np.isin(rec, user_items_test[u], assume_unique=True).astype(int) mean_ap average_precision_at_k(rel_vector, k) mean_ndcg ndcg_at_k(rel_vector, len(user_items_test[u])) mean_recall += recall_at_k(user_items_test[u], rec, k) mean_ap /= len(user items test) mean ndcg /= len(user items test) mean recall /= len(user items test) return mean ap, mean ndcg, mean recall def evaluate ranking ALS model(model, user items test, k): mean ap = 0. # o MAP mean ndcg = 0. mean recall = 0. for u in user_items_test.keys(): rec = model.recommend(u, user_item_matrix[u], k)[0] # implicit's API rel_vector = np.isin(rec, user_items_test[u], assume_unique=True).astype(int) mean_ap += average_precision_at_k(rel_vector, k) mean_ndcg += ndcg_at_k(rel_vector, len(user_items_test[u])) mean_recall += recall_at_k(user_items_test[u], rec, k) mean_ap /= len(user_items_test) mean_ndcg /= len(user_items_test) mean_recall /= len(user_items_test) return mean_ap, mean_ndcg, mean_recall # This will be used by SVD user_item_valid =

validfile.groupby('userID')['itemID'].apply(list).to_dict() # This will be used by ALS (remember it uses a compact range) compact_user_item_valid = {} for user, items in user_item_valid.items(): compact_user_item_valid[original_user_id_to_compact[user]] [original item id to compact[item] for item in items] assert len(user item valid) == len(compact_user_item_valid) **SVD** top_k 10 map, ndcg, recall evaluate ranking SVD model(svd, user item valid, top k) print('MAP@{}: {}\nNDCG@{}: {}\nRecall@{}: {}'.format(top_k, map, top_k, ndcg, top_k, recall)) MAP@10: 0.005379334042741862 NDCG@10: 0.007546552937359704 Recall@10: 0.009456050336673679 # ALS top_k = 10 map, ndcg, recall = evaluate_ranking_ALS_model(als, compact_user_item_valid, top_k) print('MAP@{}: {}\nNDCG@{}: {}\nRecall@{}: {}\format(top_k, map, top_k, ndcg, top_k, recall)) MAP@10: 0.054869712689545165 NDCG@10: 0.07826595537013126 Recall@10: 0.08479393375446878

ChatGPT said:

ChatGPT

python

Para implementar las métricas MAP (Mean Average Precision), NDCG (Normalized Discounted Cumulative Gain) y Recall en tu modelo LightFM, puedes adaptar las funciones que te dieron para SVD y ALS con algunos ajustes específicos a la API de LightFM. Aquí te muestro cómo hacerlo paso a paso.

🕺 Pasos para Adaptar el Código a LightFM

- 1. Obtener recomendaciones con LightFM:
 - LightFM permite obtener recomendaciones usando el método model.predict()
 o model.predict_rank().
- 2. Crear una función de evaluación:
 - Similar a las funciones evaluate_ranking_SVD_model y evaluate_ranking_ALS_model, crear una función para LightFM que calcule MAP, NDCG y Recall.
- 3. Adaptar las métricas:
 - O Utilizar las mismas funciones de métricas que ya tienes (average precision at k, ndcg at k, recall at k).

🌓 Código para Evaluar el Modelo LightFM

```
Copy code
import numpy as np
from lightfm import LightFM
from lightfm.evaluation import precision_at_k as lightfm_precision_at_k

# Métricas existentes
def precision_at_k(r, k):
    assert 1 <= k <= r.size
    return (np.asarray(r)[:k]!= 0).mean()

def average_precision_at_k(r, k):
    r = np.asarray(r)
    score = 0.
    for i in range(min(k, r.size)):
        score += precision_at_k(r, i + 1)
```

```
return score / k
def dcg_at_k(r, k):
 r = np.asfarray(r)[:k]
 if r.size:
   return np.sum(np.subtract(np.power(2, r), 1) / np.log2(np.arange(2, r.size + 2)))
def idcg_at_k(k):
  return dcg_at_k(np.ones(k), k)
def ndcg_at_k(r, k, max_relevant):
 idcg = idcg_at_k(min(k, max_relevant))
 if not idcg:
   return 0.
  return dcg_at_k(r, k) / idcg
def recall_at_k(relevant_items, recommended_items, k):
  relevant_items = set(relevant_items)
  recommended_items = set(recommended_items[:k])
 intersection = relevant_items.intersection(recommended_items)
  recall = len(intersection) / len(relevant_items) if len(relevant_items) > 0 else 0
  return recall
# Función para evaluar el modelo LightFM
      evaluate_ranking_LightFM_model(model,
                                                   user_items_test,
                                                                       user_ids,
                                                                                    item_ids,
interactions, k):
 mean_ap = 0. # MAP
  mean_ndcg = 0.
  mean_recall = 0.
 for user_id in user_ids:
   # Predecir puntuaciones para todos los ítems
   scores = model.predict(user_id, item_ids)
   # Ordenar ítems por las puntuaciones en orden descendente
   recommended_items = np.argsort(-scores)[:k]
   # Ítems relevantes para el usuario actual
   relevant_items = user_items_test.get(user_id, [])
   # Vector de relevancia: 1 si el ítem está en los ítems relevantes, 0 si no
   rel vector
                                     np.isin(recommended_items,
                                                                              relevant_items,
assume_unique=True).astype(int)
   # Calcular métricas
   mean_ap += average_precision_at_k(rel_vector, k)
   mean_ndcg += ndcg_at_k(rel_vector, k, len(relevant_items))
```

```
mean_recall += recall_at_k(relevant_items, recommended_items, k)
  mean_ap /= len(user_ids)
  mean_ndcg /= len(user_ids)
  mean_recall /= len(user_ids)
 return mean_ap, mean_ndcg, mean_recall
Ejemplo de Uso
👲 Datos de Ejemplo
Supongamos que ya tienes:
       model: Tu modelo LightFM entrenado.
      user_items_test: Un diccionario con los ítems relevantes para cada usuario, por
       ejemplo:
python
Copy code
user_items_test = {
 0: [1, 4, 7],
 1: [0, 3, 5],
 2: [2, 6, 8]
}
      interactions: Una matriz de interacciones coo_matrix que usaste para entrenar el
       modelo.
      user_ids: Una lista de IDs de usuarios.
      item ids: Una lista de IDs de ítems.
Código de Ejecución
python
Copy code
from scipy.sparse import coo_matrix
# Crear listas de usuarios e ítems
user_ids = list(user_items_test.keys())
item_ids = np.arange(interactions.shape[1]) # Todos los ítems posibles
```

Evaluar el modelo

 $top_k = 10$

map, ndcg, recall = evaluate_ranking_LightFM_model(model, user_items_test, user_ids, item_ids, interactions, top_k)

Mostrar resultados

print('MAP@{}: {:.4f}\nNDCG@{}: {:.4f}\nRecall@{}: {:.4f}\format(top_k, map, top_k, ndcg, top_k, recall))

Explicación del Código

- model.predict(user_id, item_ids):
 - Obtiene las puntuaciones de predicción del modelo para un usuario específico y todos los ítems.

2. np.argsort(-scores)[:k]:

 Ordena los ítems por sus puntuaciones de forma descendente y selecciona los k mejores.

3. Vector de relevancia (rel_vector):

 Compara los ítems recomendados con los relevantes para el usuario y crea un vector binario.

4. Cálculo de métricas:

 Se suman los valores de MAP, NDCG y Recall para cada usuario y se promedian al final.

Este código te permitirá evaluar tu modelo LightFM utilizando las métricas **MAP**, **NDCG** y **Recall** de manera similar a los ejemplos proporcionados para SVD y ALS.

You said:

Ahora para la diversidad y novedad Diversidad user_id = 5401 # para SVD compact_user_id = original user id to compact[user id] # para ALS top k = 10 svd_ranking = [int(r) for r in svd.recommend(str(user_id), top_k, includeRated=False)] als_ranking list(als.recommend(userid=compact_user_id, user_items=user_item_matrix[compact_user_id], N=top_k)[0]) als_ranking = [itemset[r] for r in als_ranking] print('SVD: Recommendation for user {}: {}'.format(user_id, svd_ranking)) print('ALS: Recommendation for user {}: {}'.format(user_id, als_ranking)) Recommendation for user 5401: [66849, 47658, 11895, 44081, 72821, 50524, 64487, 15660, 36039, 61745] ALS: Recommendation for user 5401: [35649, 43091, 961, 37403, 21556, 45260, 1589, 1121, 47659, 45878] def diversity(recommended_items, item_categories): unique_categories = set() for item in recommended_items: categories = item_categories[item] type(categories) list: unique_categories.update(categories) unique_categories.add(categories) return len(unique_categories) / len(recommended_items) item_categories items_styles.set_index('itemID')['styleID'].to_dict() categorias_recomendadas = [item_categories[item] for item in als_ranking] # Calcular la proporción de categorías únicas diversidad = diversity(als_ranking, item_categories) print('Diversidad: {\}'.format(diversidad)) Diversidad: 0.7 categorias_recomendadas [3268, 16386, 365, 1199, 568, 16386, 395, 395, 1199, 14] 2.5. Novedad Primero se obtiene la popularidad de cada item. Para esto utilizaremos el set de entrenamiento. item_counts = trainfile['itemID'].value_counts() total_interacciones = len(trainfile) items_popularity = item_counts / total_interacciones items_popularity = items_popularity.to_dict() def novelty(recommended items, items popularity): novelty score = 0 for item in recommended_items: novelty_score += np.log(1 / items_popularity[item]) return novelty_score novedad = novelty(als_ranking, items_popularity) print('Novedad: {}'.format(novedad)) Novedad: 66.55537288016617

ChatGPT said:

ChatGPT

Para implementar las métricas de **diversidad** y **novedad** con tu modelo **LightFM**, podemos adaptar las funciones proporcionadas para SVD y ALS. Aquí te muestro cómo hacerlo paso a paso.

1. Función para Calcular Diversidad

La función de diversidad mide la variedad de categorías presentes en las recomendaciones. Cuantas más categorías únicas haya en las recomendaciones, mayor será la diversidad.

橁 Código Adaptado para LightFM

```
python
Copy code
def diversity(recommended_items, item_categories):
```

Calcula la diversidad de una lista de ítems recomendados.

Parámetros:

- recommended items: Lista de IDs de ítems recomendados.
- item_categories: Diccionario que asigna cada ítem a una o varias categorías.

Retorna:

- Diversidad como la proporción de categorías únicas en las recomendaciones.

```
unique_categories = set()
 for item in recommended_items:
   categories = item_categories.get(item, [])
   if isinstance(categories, list):
     unique_categories.update(categories)
   else:
     unique_categories.add(categories)
 return len(unique_categories) / len(recommended_items)

    Ejemplo de Uso

python
```

Copy code

Suponiendo que tienes un diccionario de categorías por ítem item_categories = items_styles.set_index('itemID')['styleID'].to_dict()

```
# Obtener recomendaciones con LightFM
```

```
user_id = 5401
```

item_ids = np.arange(interactions.shape[1]) # Todos los ítems posibles scores = model.predict(user_id, item_ids)

```
# Top-K recomendaciones
```

 $top_k = 10$

lightfm_ranking = np.argsort(-scores)[:top_k]

Calcular diversidad

diversidad = diversity(lightfm_ranking, item_categories) print(f'Diversidad: {diversidad:.2f}')

🕺 2. Función para Calcular Novedad

La función de novedad evalúa cuán inesperadas o poco populares son las recomendaciones. Si se recomiendan ítems menos populares, la novedad será mayor.

Código Adaptado para LightFM

python

Copy code

def novelty(recommended_items, items_popularity):

Calcula la novedad de una lista de ítems recomendados.

Parámetros:

- recommended_items: Lista de IDs de ítems recomendados.
- items_popularity: Diccionario con la popularidad de cada ítem (frecuencia de interacción).

Retorna:

- Novedad como la suma de los logaritmos inversos de la popularidad de los ítems.

```
novelty_score = 0
for item in recommended_items:
   popularity = items_popularity.get(item, 1e-10) # Evitar divisiones por cero
   novelty_score += np.log(1 / popularity)
return novelty_score / len(recommended_items)
```

• Ejemplo de Uso

```
python
```

Copy code

Calcular la popularidad de cada ítem a partir del set de entrenamiento item_counts = trainfile['itemID'].value_counts() total_interacciones = len(trainfile) items_popularity = (item_counts / total_interacciones).to_dict()

Calcular novedad para las recomendaciones de LightFM novedad = novelty(lightfm_ranking, items_popularity) print(f'Novedad: {novedad:.2f}')

🚺 Resumen del Código Completo

```
python
Copy code
import numpy as np
# Funciones de métricas
def diversity(recommended_items, item_categories):
  unique categories = set()
 for item in recommended_items:
   categories = item_categories.get(item, [])
   if isinstance(categories, list):
     unique_categories.update(categories)
   else:
     unique_categories.add(categories)
  return len(unique_categories) / len(recommended_items)
def novelty(recommended_items, items_popularity):
  novelty_score = 0
 for item in recommended_items:
   popularity = items_popularity.get(item, 1e-10)
   novelty_score += np.log(1 / popularity)
```

return novelty_score / len(recommended_items)

```
# Obtener recomendaciones con LightFM
user_id = 5401
item_ids = np.arange(interactions.shape[1]) # Todos los ítems posibles
scores = model.predict(user_id, item_ids)
# Top-K recomendaciones
top_k = 10
lightfm_ranking = np.argsort(-scores)[:top_k]
# Diccionario de categorías y popularidad
item_categories = items_styles.set_index('itemID')['styleID'].to_dict()
item_counts = trainfile['itemID'].value_counts()
total_interacciones = len(trainfile)
items_popularity = (item_counts / total_interacciones).to_dict()
# Calcular diversidad y novedad
diversidad = diversity(lightfm_ranking, item_categories)
novedad = novelty(lightfm_ranking, items_popularity)
print(f'Diversidad: {diversidad:.2f}')
print(f'Novedad: {novedad:.2f}')
```

Explicación del Flujo

- 1. **Obtener recomendaciones** con LightFM para un usuario específico.
- 2. Calcular diversidad:
 - o Mide la proporción de categorías únicas en los ítems recomendados.
- 3. Calcular novedad:
 - Evalúa qué tan inesperadas son las recomendaciones en función de su popularidad en el set de entrenamiento.
- 4. **Imprimir resultados** de diversidad y novedad.

Estas métricas te ayudarán a evaluar cuán variadas y novedosas son las recomendaciones generadas por tu modelo LightFM.