STM32F4: 高性能的数字信号控制器

STM32 Releasing your creativity

STM32 – 领先的Cortex-M 产品家族 🔻

STM32家族的新成员:F4系列

- 先进的Cortex-M4内核
 - 浮点运算能力
 - 增强的DSP处理指令
- 更多的存储空间
 - 高达1M字节的片上闪存
 - 高达196K字节的内嵌SRAM
 - FSMC: 灵活的外部存储器接口
- 极致的运行速度
 - 以168MHz高速运行时可达到210DMIPS的处理能力
- 更高级的外设
 - 新增功能:照相机接口、加密处理器,USB高速OTG接口...
 - 增强功能: 更快的通信接口, 更高采样率, 带FIFO的DMA控制器...

STM32F4:

数字信号控制器

Cortex-M4内核

	Cortex-M4	Cortex-M3	Cortex-M0		
核心版本	v7ME	v7M	v6M		
指令系统	Thumb® / Thumb-2		Thumb® / Thumb-2 subset		
指令增强	单周期的16、32位MAC 单周期的双16位MAC 8、16位SIMD计算 硬件除法(2~12周期)	硬件除法(2~12周期) 单周期 (32x32)乘法 支持饱和算术运算	可选的硬件单周期 (32x32)乘法		
流水线	三级 + 分支推测		三级		
执行效率	2.19 CoreMark/MHz, 1.25 DMIPS/MHz		1.62 CoreMark/MHz 0.9 DMIPS/MHz		
存储器保护	可选。8区域管理,可划分子区域和后台区		没有		
中断	非屏蔽中断(NMI) + 1~240个物理中断源		非屏蔽中断(NMI) + 1~32个物理 中断源		
中断优先级	8~256个优先级		4级优先		
唤醒中断控制器	多达240个唤醒中断		可选		
睡眠模式	集成WFI和WFE指令。退出时睡眠功能,睡眠和深度睡眠信号。 使用ARM的电源管理部件,可选择保持模式。				
位操作	集成位指令和位带域				
调试	可选的JTAG和SWD 调试接口 支持最多8个断点和4个察看点		可选的JTAG和SW调试接口 支持最多4个断点和2个察看点		
跟踪(可选)	指令跟踪(ETM)、数据跟踪(DV	NT)和仪器跟踪(ITM)模块			

增加单精度浮点运算单元

单精度浮点运算单元兼容IEEE 754标准

增强的指令集

指令示例: 单周期的乘加运算

运算	指令	CM3	CM4
16 x 16 = 32	SMULBB, SMULBT, SMULTB, SMULTT	n/a	1
16 x 16 + 32 = 32	SMLABB, SMLABT, SMLATB, SMLATT	n/a	1
16 x 16 + 64 = 64	SMLALBB, SMLALBT, SMLALTB, SMLALTT	n/a	1
16 x 32 = 32	SMULWB, SMULWT	n/a	1
(16 x 32) + 32 = 32	SMLAWB, SMLAWT	n/a	1
(16 x 16) ± (16 x 16) = 32	SMUAD, SMUADX, SMUSD, SMUSDX	n/a	1
(16 x 16) ± (16 x 16) + 32 = 32	SMLAD, SMLADX, SMLSD, SMLSDX	n/a	1
(16 x 16) ± (16 x 16) + 64 = 64	SMLALD, SMLALDX, SMLSLD, SMLSLDX	n/a	1
32 x 32 = 32	MUL	1	1
$32 \pm (32 \times 32) = 32$	MLA, MLS	2	1
32 x 32 = 64	SMULL, UMULL	5-7	1
(32 x 32) + 64 = 64	SMLAL, UMLAL	5-7	1
(32 x 32) + 32 + 32 = 64	UMAAL	n/a	1
32 ± (32 x 32) = 32 (高位)	SMMLA, SMMLAR, SMMLS, SMMLSR	n/a	1
(32 x 32) = 32 (高位)	SMMUL, SMMULR	n/a	1

指令周期数

DSP功能比较

- 16位DSP功能:
 - 相对CM3, CM4只需 30%~70%的指令周期

- 32位DSP功能:
 - 相对CM3, CM4只需 25%~60%的指令周期

Cortex-M4

Cortex-M3

DSP与MCU的关系

数字信号控制器(DSC)

MCU

STM32 F4

DSP

低成本 低门槛 C编程 高性能中断 超低功耗

单周期乘加 浮点运算 饱和运算 桶形移位

STM32F4:

高性能的计算能力

冯。诺依曼的计算机模型

影响运算性能的因素

- CPU指令运行的速度
 - *流水线结构
 - · 单周期 ys 多周期指令
- CPU指令集的选取
 - -'RISC vs CISC
 - SIMD vs SISD
 - 专用指令集
- 时钟频率

- 存储器的速度
- 存储器的构造
 - 多级缓冲
 - 代码预测

- 编译器的优化质量
- 代码的优化
- 指令的选取

显著增强的DSP指令

- 单周期的乘加指令(MAC)
 - 乘法器可以在单周期内完成相乘或乘加指令
 - 有符号和无符号的乘法
 - 有符号和无符号的乘加
 - 有符号和无符号的长数据乘加(64位)

- 同时有多个数据参与运算
 - 例如: 16x16 + 16x16 + 32
- 相对Cortex-M3指令显著提高了速度
 - 16位乘加指令提高4倍(双16位乘加器)
 - 32位乘加指令提高2倍
 - 32位乘加指令提高至7倍

DSP指令提高了控制应用的性能

- 这是一个无刷电机控制中用到的一个复数计算
- · 获益于LOAD操作和 SIMD指令
- 整体性能提高25%至 35%

浮点运算更贴近于现实的应用

STM32F4受益于指令系统的扩展

- 这是一个基于浮点的29级FIR计算例子
 - 以CMSIS库函数实现的性能

Flash的速度与CPU的速度

由于生产工艺的限制,当CPU主频显著提高时,Flash的存取速度却只能处于一个较低的水平。

ART自适应实时加速器™

■ 自适应实时加速器能够完全释放Cortex-M4内核的性能; 当CPU工作于所有允许的频率(≤168MHz)时,在闪存中运行的程序,可以达到相当于零等待周期的性能。

ART加速原理解析(指令)

Dhrystone的测试结果对比

所有结果都是基于每个MCU的最佳编译器配置获得

Coremark的测试结果对比

所有结果都是基于每个MCU的最佳编译器配置获得

32位多重AHB总线矩阵

FSMC的重映射功能

内部SRAM至CPU的直连通道

多重总线的并行处理能力

3 内核获取MP3 数据用于解码

解压后的音频数据 流传输至112KB的 SRAM区

数据通过DMA 传输 到音频输出端 (I2S) 用户界面:通过DMA 从闪存到显示更新

STM32F4: 卓越的功耗效率

低功耗的设计

230 µA/MHz:

主频为168MHz情况下,在闪存中执行CoreMark基准测试程序,功 耗为38.6mA,这得益于:

- ST的90纳米工艺可使 CPU内核工作电压低至1.2 V
- 自适应实时加速器减少了访问闪存的次数
- 电压可调节特性,便于优化性能功耗比
- 可关闭内部调压器,使用外部调压器为CPU供电
- 供电电源可低至1.7伏
- 在最低功耗模式下,可以支持 后备存储器和实时时钟工作

供电范围	最高主频
2.4~3.6V	168MHz
2.1~3.6V	144MHz
1.7~3.6V	128MHz

运行模式下的典型功耗数值

运行模式,程序和代码在Flash或RAM中,开启ARM加速

mA	关闭 所有 外设	开启 所有 外设
2MHz	2	2.4
4MHz	2.3	3.3
8MHz	3	5.1
16MHz	4.75	8.7
25MHz	6.4	12.4
30MHz	8.2	16.3
60MHz	14.3	29.7
90MHz	20.4	43.5
120MHz	26	56.2
144MHz	30.8	67
168MHz	39.8	86.8

在真实应用中的低功耗

- 低功耗在真实应用中并不仅仅是低功耗模式
- ▶ 还需要考虑运行模式和低功耗模式的时间比例

平均功耗

- 运行模式下,STM32 F4具有更高的功耗效率
- STM32F4 特别适合需要有一定运算量的应用场合

STM32F4: 更多的高级外设

STM32F40x/41x框图

系统

供电,1.2V调压器 POR/PDR/PVD

晶体振荡器 32kHz和4~26MHz

内部阻容振荡器 32kHz和16MHz

PLL

时钟控制

RTC/自动唤醒

系统定时器

2个看门狗 (独立和窗口型)

51/82/114/140个 通用I/O端口

循环冗余校验(CRC)

控制

2个16位电机控制 PWM同步定时器

10个16位定时器 2个32位定时器

ART™加速器

ARM Cortex-M4
CPU 168MHz

浮点运算单元(FPU)

嵌套的向量中断控制器 (NVIC)

存储器管理单元(MPU)

JTAG/SW调试/ETM

多AHB总线矩阵

16通道DMA

加密/哈希处理器(2)

3DES, AES 256 SHA-1, MD5, HMAC

模拟电路实现的真随机数发生器

512K或1M字节Flash存储器

192K字节 SRAM

外扩存储器RAM/NOR/NAND CF和LCD并行接口

80字节 + 4K字节后备SRAM

512字节OTP存储器

通信互联

照相机接口

3个SPI、2个I2S、3个I2C

以太网 MAC 10/100 IEEE 1588v2

2个CAN 2.0B

1个USB 2.0 OTG 全速/高速⁽¹⁾

1个USB 2.0 OTG 全速

SDIO接口

6个USART 具有LIN、智能卡、IrDA 和调制解调器控制

模拟功能

2通道的12位DAC模块

3个12位的ADC模块 24个通道,2.44M采样/秒

温度传感器

1. 高速功能需通过ULPI接口连接一个外部PHY

2. 只适用于STM32F417x和STM32F415x

USB OTG高速模块

- 主机模式下支持高速/全速/低速
- ▶ 从机模式下支持高速/全速
- 内嵌专用DMA,支持突发传输
- 专用4K字节FIFO
- 支持多种PHY接口
 - ► 片上内嵌全速PHY(与全速OTG模块相同)
 - 以ULPI接口连接外部高速PHY
 - 以I2C接口连接外部全速PHY

ULPI接口

USB OTG高速模块 – 主机模式

- 与全速主机模式相同的性能
 - 多达12个端点

- 支持高速协议特有的特性
 - PING协议 主机发起PING协议以周期性检查从机是否准备好
 - SPLIT协议

主机通过高速HUB连接全速/低速设备时,无须等待设备应答;可以先作其他通信,过段时间再来检查是否受到外设的应答

• 多传输协议

125uS的微帧时间内对同步传输使用DATA0、DATA1、DATA2和MDATA等多种数据PID

USB OTG高速模块 – 从机模式

- 与全速从机性能相同

- 新增以下扩展特性
 - 多达5个IN端点
 - 多达5个OUT端点
 - EP1_IN和EP1_OUT有各自的中断向量入口

NYET

高速模式下从机收到数据包,如果在接收FIFO中没有找到足够的空余空间,返回NYET握手信号

照相机接口

- 主要性能
 - 8/10/12/14位并行接口
 - 连续和快照模式,裁减功能
 - 支持的数据格式有:
 - 8/10/12/14逐行扫描视频信号
 - YCbCr4:2:2逐行扫描视频信号
 - RGB565逐行扫描视频信号
 - 压缩数据支持JPEG格式
- 在48MHz时钟和8位宽度数据接口配置下可接收
 - 15fps的SXGA分辨率每像素2字节的未压缩数据流
 - 30fps的VGA分辨率每像素2字节的未压缩数据流

加密处理器特性

- 支持加解密算法
 - DES、TDES和AES
- 加解密工作模式
 - 电子密码本(Electronic codebook)模式
 - 密码段链接(Cipher block chaining)模式
 - 计数器(Counter)模式
- 加解密处理器是AHB2上的外设
 - 最高工作频率168MHz
- 支持DMA传输
- 输出/输出端各有8个字的FIFO

加解密处理器框图

加解密算法特性比较

	AES	DES/TDES	共同特性
密钥宽度	128/192/256 位	64位(8位校验) 192/128/64位 (14/16/8位校验)	>> 输入/输出端内嵌各自 FIFO(8*32位) >> 支持数据流自动管理 - DMA >> 内嵌数据交换逻辑以 支持1/8/16/32位数据
数据块大小	128位	64位	
处理单块数 据的时间	14/16/18个HCLK 周期	16个HCLK周期 48个HCLK周期	
支持的算法	ECB/CBC/CTR	ECB/CBC/CTR	
加密类型	块加密	块加密	
算法结构	迭代-组合网络	Feistel网络	

加解密算法的应用

- AES加解密算法
 - 安全网络路由
 - 无线通信
 - 加密后的数据保存,包括安全智能卡
- DES/TDES加解密算法
 - 安全数据/文件传输
 - 电子资金转帐
 - 门控:防止用户的密码和个人信息被 非法访问

随机数产生器

- 主要特性
 - 基于连续模拟噪声的随机数产生器
 - 提供32位的随机数
 - 工作于PLL48CLK时钟下
 - 两个连续随机数之间隔为40个PLL48CLK周期
 - 为降低功耗可以关闭它

哈希处理器

- 主要特性
 - 适用于数据完整性和有效性检查
 - AHB2上的外设,最高工作频率168MHz
 - SHA-1和MD5算法的快速计算
 - SHA-1: 66个HCLK周期; MD5: 50个HCLK周期
 - 32位的输入数据,支持32位/16位/8位/1位的比特流输入,要求小端对齐方式输入
 - 数据自动交换以遵循SHA1计算的大端输入要求
 - 对输入比特流自动填充到512位以做哈希计算

哈希处理器框图

哈希的应用

- 校验文件或信息的完整性
 - 安全哈希算法一个重用应用就是校验信息的完整性,确 定其是否被恶意修改或破坏过。比如可以通过比较传输 之前和之后数据的哈希值来校验
 - 检查信息哈希值的有效真实性,从而确定信息本身的不是的不是的人工。通常密码都不是以明文形式存储,而是以明文形式。要确实用户输入的希值的形式。要用户输入的密码做哈希运算,再把所得哈希值和存储的密码哈希值和存储的密码哈希值比较即可。

增强的功能和外设

- ▶ 外设性能进一步增强
 - 更快的模数转换速度
 - 更低的ADC/DAC工作电压
 - 带日历功能的实时时钟
 - 4K字节的电池备份SRAM
 - 32位定时器
 - 更快的USART和SPI通信速度
- JTAG引脚熔断保护
- 更多的GPIO

谢谢您!

STM32 Releasing your creativity

www.st.com/stm32f4