Permutation Automata

by

G. THIERRIN

Département d'Informatique Université de Montréal

1. Introduction

An automaton ([2], [4]) is a quintuple $A = (S, I, \delta, s_0, F)$, where

- (i) S is a finite nonempty set of states;
- (ii) I is a finite nonempty set of inputs;
- (iii) $\delta: S \times I \rightarrow S$ is called the transition function;
- (iv) s_0 is an element of S (the initial state of A);
- (v) F is a subset of S (the set of final states of A).

Let I^* be the set of all finite sequences of elements of I, including the null sequence Λ . Any element of I^* is called a tape. With the operation of concatenation, the set I^* becomes a semigroup, which is called the free semigroup (with identity Λ) generated by I. The transition function δ can be extended by recursion to $S \times I^*$.

The set $T(A) = \{x | x \in I^* \text{ and } \delta(s_0, x) \in F\}$ is called the set of tapes accepted by the automaton A. A subset of U of I^* is said to be a regular set if and only if there exists some automaton A such that U = T(A).

An automaton A is said to be a permutation automaton, or simply a p-automaton, if and only if each input permutes the set of states. A subset U of I^* is said to be a p-regular set if and only if there exists a p-automaton A such that U = T(A). It is the purpose of this paper to give some characterizations of p-regular sets and to determine some operations under which the family of p-regular sets is closed.

2. p-Automata and p-Regular Sets

Definition 2.1. An automaton $A = (S, I, \delta, s_0, F)$ is said to be a permutation automaton, or more simply a *p*-automaton, if and only if $\delta(s_i, a) = \delta(s_j, a)$, where $s_i, s_j \in S$, $a \in I$, implies that $s_i = s_j$.

It is obvious that the following three conditions are equivalent:

- (i) A is a p-automaton;
- (ii) $\delta(s_i, x) = \delta(s_j, x)$, where $x \in I^*$, implies that $s_i = s_j$;
- (iii) For every $x \in I^*$, we have $\delta(S, x) = S$.

84 G. Thierrin

Definition 2.2 An equivalence relation R on I^* is said to be right cancellative [left cancellative] if and only if ac = bc (R) [ca = cb (R)] implies that a = b (R). If R is right and left cancellative, then R is said to be a cancellative equivalence relation.

Definition 2.3. Let U be a subset of I^* . We define:

(i) For every $a \in I^*$

$$U : a = \{x \mid x \in I^* \text{ and } ax \in U\},\$$

 $U : a = \{x \mid x \in I^* \text{ and } xa \in U\};\$

(ii) $a \equiv b \ (R_U)$ if and only if U : a = U : b, $a \equiv b \ (_{U}R)$ if and only if U : a = U : b.

It is easy to see that R_U is a right congruence and that vR is a left congruence. These congruences have been used to characterize the regular sets ([2], [4]). They were first discussed in the general theory of semi-groups by Dubreil ([1]).

LEMMA 2.1. Let R be a right congruence of finite index on I^* and let C be a right congruence on I^* such that $R \subseteq C$. If R is right cancellative, then C is also right cancellative.

Proof. Let T be a right congruence on I^* . For every $c \in I^*$, let $T(c) = \{y | y \in I^* \text{ and there exists } x \in I^* \text{ such that } y \equiv xc(T)\}$. If T is right cancellative and if $a \neq b(T)$, then $ac \neq bc(T)$ for every $c \in I^*$. Therefore, a right congruence T of finite index is right cancellative if and only if $T(c) = I^*$ for every $c \in I^*$.

Since R is right cancellative, we have $R(c) = I^*$ for every $c \in I^*$. From $R \subseteq C$, it follows that $R(c) \subseteq C(c)$ and $C(c) = I^*$. Therefore C is right cancellative.

THEOREM 2.1. Let U be a subset of I*. Then the following three conditions are equivalent:

- (i) U is a p-regular set;
- (ii) U is the union of some classes of a right congruence on I* of finite index, which is right cancellative.
- (iii) The right congruence R_U on I^* is right cancellative and of finite index. Proof. (i) implies (ii). There exists a p-automaton $A = (S, I, \delta, s_0, F)$ such that U = T(A). Let R be the equivalence relation defined on I^* by: $a \equiv b(R)$ if and only if $\delta(s_0, a) = \delta(s_0, b)$. It is known ([2], [4]) that U is the union of some classes of R. Let us show that R is right cancellative. If $ac \equiv bc(R)$, then $\delta(s_0, ac) = \delta(s_0, bc)$ and $\delta(\delta(s_0, a), c) = \delta(\delta(s_0, b), c)$. Since A is a p-automaton, we have $\delta(s_0, a) = \delta(s_0, b)$ and $a \equiv b(R)$.
- (ii) implies (iii). Let $a \equiv b$ (R). If $x \in U : a$, then $ax \in U$. But $ax \equiv bx$ (R). Hence $bx \in U$ and $U : a \subseteq U : b$. Similarly, $U : b \subseteq U : a$. Therefore U : a = U : b, $a \equiv b$ (R_U) and $R \subseteq R_U$. Since R is right cancellative and of finite index, it follows (Lemma 2.1) that R_U is right cancellative and of finite index.
- (iii) implies (i). Let $S = \{[x] | x \in I^*\}$ be the set of classes of R_U . By hypothesis, S is finite. Let $s_0 = [\Lambda]$ and $F = \{[x] | x \in U\}$. Define $\delta([x], a) = [xa]$.

It is known ([2], [4]) that $A = (S, I, \delta, s_0, F)$ is an automaton such that U = T(A). Let us prove that A is a p-automaton. If $\delta([x], a) = \delta([y], a)$, then

$$[xa] = [ya]$$

$$xa = ya (R_U)$$

$$x = y (R_U).$$

Hence [x] = [y].

COROLLARY. A regular set U is p-regular if and only if U : ac = U : bc implies that U : a = U : b.

The next result is a generalisation of part (ii) of the preceding theorem.

THEOREM 2.2. A subset U of I^* is p-regular if and only if U is the union of some classes of an equivalence relation R of finite index on I^* , which is right cancellative.

Proof. From the previous theorem, we see that the condition is necessary. In order to show that it is sufficient, we have only to prove that R is a right congruence. Suppose that R is not a right congruence. Then there exist a, b, $c \in I^*$ such that $a \equiv b(R)$ and $ac \neq bc(R)$. Let $C = \{c_1, c_2, \dots, c_n\}$ be a subset of I^* such that

- (i) $b = c_1$;
- (ii) $c_i \neq c_j(R)$ for $i \neq j$;
- (iii) For every $x \in I^*$, there exists $c_i \in C$ such that $x \equiv c_i(R)$.

Since R is of finite index, the set C is finite, and the number n of elements of C is equal to the index of R. Since R is right cancellative, we have

$$c_i c \neq c_j c (R)$$
 for $i \neq j$,

and each class of R contains an element of the form $c_i c$. Therefore there exists $c_i \in C$ such that $c_i c \equiv ac(R)$. Hence $c_i \equiv a(R)$. Since $a \equiv b(R)$, we have $b \equiv c_i(R)$ and $c_i = c_1 = b$. Therefore $bc \equiv ac(R)$, and we have a contradiction.

Definition 2.4. Let R be an equivalence relation on I^* and let $t \in I^*$. We define

$$a \equiv b \ (R : t)$$
 if and only if $ta \equiv tb \ (R)$.

It is obvious that R : t is an equivalence relation.

THEOREM 2.3. Let R be a right congruence on I*. Then

- (i) R: t is a right congruence.
- (iii) If R is of finite index n, then R: t is also of finite index m and $m \le n$. Furthermore,

$$C = \bigcap_{t \in I^*} R : t$$

is a congruence on I^* of finite index and $C \subseteq R$.

- (iii) If R is right cancellative, then R: t is also right cancellative.
 - *Proof.* (i). Let $a \equiv b$ (R : t). Then $ta \equiv tb$ (R), and, since R is a right con-

gruence, tax = tbx (R) for all $x \in I^*$. Hence ax = bx (R : t).

(ii) Since R is of finite index n, there exists a finite set $A = \{a_1, a_2, \dots, a_n\}$ of I^* such that (1) $a_i \neq a_j$ (R) for $i \neq j$; (2) for every $c \in I^*$, there exists $a_i \in A$ such that $a_i \equiv c$ (R). Let $[tI^*] = \{x \mid x \in I^* \text{ and there exists } r \in I^* \text{ such that } tr \equiv x$ $(R)\}$. The subset $B = A \cap [tI^*]$ is nonempty. Let $B = \{b_1, b_2, \dots, b_k\}$. Since $B \subseteq A$, we have $k \leq n$. For each $b_i \in B$, we can choose an element $r_i \in I^*$ such that $tr_i \equiv b_i$ (R). Let $T = \{r_1, r_2, \dots, r_k\}$. For every $y \in I^*$, there exists $a_j \in A$ such that $ty \equiv a_j$ (R). Since $B = A \cap [tI^*]$, there exist $b_i \in B$ and $r_i \in T$ such that $a_j = b_i$ and $tr_i \equiv b_i$ (R). Therefore $ty \equiv tr_i$ (R) and $y \equiv r_i$ (R : t). This proves that $m \leq k \leq n$, where m is the index of R : t.

It is obvious that C is a right congruence. Let us prove that C is a congruence and that $C \subseteq R$. Let $a \equiv b$ (C). Then for every $t \in I^*$, we have $a \equiv b$ (R). If we take $t = \Lambda$ (the identity element of I^*), then $a \equiv b$ (R). Hence $C \subseteq R$.

Let $x \in I^*$. Then, for every $t \in I^*$,

$$txa \equiv txb (R),$$

 $xa \equiv xb (R : t).$

Hence $xa \equiv xb$ (C) and C is a congruence.

It remains to prove that C is of finite index. Let $D = \bigcap_{a_i \in A} R : a_i$. Since A is finite and since $R : a_i$ is of finite index, D is of finite index and $C \subseteq D$. Let $a \equiv b$ (D). If $t \in I^*$, then there exists $a_i \in A$ such that $t \equiv a_i$ (R). Since R is a right congruence, we have $ta \equiv a_i a$ (R) and $tb \equiv a_i b$ (R). But $a \equiv b$ ($R : a_i$) and $a_i a \equiv a_i b$ (R). Therefore $ta \equiv tb$ (R) and $a \equiv b$ (R : t). Since this is true for every t, we have $a \equiv b$ (C) and $D \subseteq C$. Hence C = D and C is of finite index.

(iii) Let $ac \equiv bc (R : t)$. Then

$$tac \equiv tbc (R),$$

 $ta \equiv tb (R),$
 $a \equiv b (R : t).$

Hence R: t is right cancellative.

THEOREM 2.4. Let U be a subset of I^* . Then the following three conditions are equivalent.

- (i) U is a p-regular set.
- (ii) U is the union of some classes of a cancellative congruence of finite index on I*.
- (iii) U is the union of some classes of a congruence C on I^* such that the quotient semigroup I^*/C is a finite group.
- *Proof.* (i) implies (ii). The subset U is the union of some classes of a right congruence R of finite index, which is right cancellative (Theorem 2.1). Let $C = \bigcap_{t \in I^*} R$: t. From Theorem 2.3 it follows that C is a congruence of

finite index such that $C \subseteq R$. Hence U is the union of some classes of C. Since R is right cancellative, Theorem 2.3 shows that R : t is right cancellative for every $t \in I^*$. Therefore C is right cancellative.

Let $T = I^*/C$ be the quotient semigroup modulo C. The semigroup T is a finite and right cancellative semigroup with an identity element. It is well known that such a semigroup is a group. Since a group is right and left cancellative, it follows that C is a cancellative congruence of finite index.

- (ii) implies (iii). This follows immediately from the previous results.
- (iii) implies (i). Obvious.

COROLLARY 1. If U is a p-regular set, then U : a and U : a are nonempty sets for every $a \in I^*$.

COROLLARY 2. A nonempty finite subset of I* cannot be a p-regular set.

Definition 2.5. An equivalence relation R on I^* is said to be right limitative ([5]) if and only if $ac \equiv bc \equiv a(R)$ implies that $a \equiv b(R)$.

Every right cancellative equivalence relation is obviously right limitative.

THEOREM 2.5. A subset U of I* is p-regular if and only if U is the union of some classes of a right congruence R of finite index on I*, which is right limitative.

Proof. The condition is necessary by Theorem 2.1. Let us show that it is also sufficient. Let $C = \bigcap_{t \in I^*} R \cdot t$. We know (Theorem 2.3) that C is a congruence of finite index and that $C \subseteq R$. Hence U is the union of some classes of C. If $ac \equiv bc \equiv a$ $(R \cdot t)$, then

$$tac \equiv tbc \equiv ta \ (R)$$

 $ta \equiv tb \ (R)$
 $a \equiv b \ (R : t).$

Hence R:t is right limitative for every $t \in I^*$. It is immediate that the intersection of right limitative equivalence relations is also right limitative. Therefore C is right limitative. The quotient semigroup $T = I^*/C$ is a finite semigroup with an identity element 1 such that ac = bc = a, where $a, b, c \in T$, implies that a = b. Let us show that T is a group. Let e be an idempotent element of T. We have

$$(1 \cdot e) \cdot e = 1 \cdot e = (1 \cdot e)$$

Hence $1 \cdot e = 1$ and e = 1. Since T is finite, then, for every $a \in T$, there exists a positive integer n such that $a^n = e$, where e is an idempotent element. But e = 1. Therefore, for every $a \in T$, there exists $x \in T$ such that ax = 1 and T is a group.

From Theorem 2.4, it follows that U is p-regular.

88 G. Thierrin

3. Equivalence of p-Automata

We recall the following result.

THEOREM 3.1. (Hartmanis-Stearns [3]). Every p-automaton A is equivalent to a strongly connected p-automaton B.

Proof. Let U = T(A). Then U is a p-regular set and U is the union of some classes of a congruence C such that I^*/C is a finite group (Theorem 2.4). Let $S = \{[a_1], \dots, [a_n]\}$ be the set of classes of C, where $[a_1]$ is the class containing Λ , and let F be the set of classes of C containing the elements of U. For every $a \in I$, define $\delta([a_i], a) = [a_ia]$. Then $B = (S, I, \delta, [a_1], F)$ becomes an automaton such that U = T(B). Hence A is equivalent to B. Since I^*/C is a group, B is a p-automaton and, for every pair $[a_i]$, $[a_j]$, there exists $[a_k]$ such that $[a_i]$ $[a_k] = [a_j]$. Therefore $\delta([a_i], a_k) = [a_j]$ and B is strongly connected.

THEOREM 3.2. Every automaton $A = (S, I, \delta, s_0, F)$ such that $\delta(s_i, a) = \delta(s_j, a) = s_i$, where $a \in I^*$, implies that $s_i = s_j$ is equivalent to a strongly connected p-automaton.

Proof. We have only to prove that U = T(A) is a p-regular set. Define

$$a \equiv b$$
 (R) if and only if $\delta(s_0, a) = \delta(s_0, b)$.

Then R is a right congruence of finite index and U is the union of some classes of R. Let $ac \equiv bc \equiv a(R)$. Then

$$\delta(s_0, ac) = \delta(s_0, bc) = \delta(s_0, a)$$

$$\delta(\delta(s_0, a), c) = \delta(\delta(s_0, b), c) = \delta(s_0, a).$$

Hence $\delta(s_0, a) = \delta(s_0, b)$ and $a \equiv b$ (R). Therefore R is right limitative and U is p-regular (Theorem 2.5).

4. Operations on p-Regular Sets

THEOREM 4.1. The family of p-regular sets of I^* is a Boolean algebra of sets.

Proof. If U is p-regular, then the right congruence R_U is right cancellative (Theorem 2.1). If \overline{U} is the complement of U, we have $R_U = R_{\overline{U}}$. Therefore, \overline{U} is also p-regular (Theorem 2.1).

Let U_1 and U_2 be two p-regular sets. Then U_1 and U_2 are respectively the union of some classes of right congruences R_1 and R_2 of finite index which are right cancellative (Theorem 2.1). The intersection $R = R_1 \cap R_2$ is a right congruence of finite index and R is also right cancellative. It is obvious that $U_1 \cap U_2$ is the union of some classes of R. Therefore $U_1 \cap U_2$ is a p-regular set.

THEOREM 4.2. If U is a p-regular set of I^* , then the transpose U^T of U is also a p-regular set.

Proof. Recall that if $a = a_1 a_2 \cdots a_k$ is an element of I^* , where a_1, a_2, \cdots , $a_k \in I$, then the transpose a^T of a is the element $a^T = a_k \cdots a_2 a_1$.

The set U is the union of some classes of a cancellative congruence C of finite index on I^* (Theorem 2.4). Define

$$a \equiv b \ (C^T)$$
 if and only if $a^T \equiv b^T \ (C)$.

We see easily that C^T is a cancellative congruence of finite index on I^* and that $U^T = \{x^T | x \in U\}$ is the union of some classes of C^T . Therefore U^T is p-regular.

THEOREM 4.3. If U is a p-regular set of I^* and if X is a subset of I^* , then the two sets

$$U_1 = U/X = \{v | v \in I^* \text{ and } vX \cap U \neq \emptyset\}$$

$$U_2 = U \setminus X = \{w | w \in I^* \text{ and } Xw \cap U \neq \emptyset\}$$

are p-regular.

Proof. First we shall prove that $R_U \subseteq R_{U_1}$. Let $a \equiv b$ (R_U) and let $y \in U_1$: a. Then $ay \in U_1$ and there exists $x \in X$ such that $ayx \in U$. Hence $yx \in U$: $a \equiv U$: b and $byx \in U$. Therefore $by \in U_1$, $y \in U_1$: b and U_1 : $a \subseteq U_1$: b. Similarly, U_1 : $b \subseteq U_1$: a. Therefore

$$U_1 : a = U_1 : b,$$

 $a \equiv b (R_{U_2}).$

Since U is p-regular, R_U is a right congruence of finite index and R_U is right cancellative (Theorem 2.1). From $R_U \subseteq R_{U_1}$ and Lemma 2.1, it follows that R_{U_1} is of finite index and right cancellative. Therefore U_1 is p-regular.

We see easily that $U_2^T = U^T/X^T$. Since U is p-regular, U^T is p-regular. Therefore U_2^T is p-regular, and since $U_2 = (U_2^T)^T$, U_2 is also p-regular.

We shall show now that the family of p-regular sets of I^* is not closed under the operations of product and star.

Let
$$I = \{a\}$$
; then $I^* = \{a^n | n \ge 0\}$.

Let $U = \{a^{2n+1} | n \ge 0\}$. It is easy to see that R_U is a cancellative congruence of index 2 on I^* . Hence U is a p-regular set of I^* . The congruence R_{U^2} is not cancellative since

$$a^0\cdot a^1\equiv a^2\cdot a^1\;(R_{U^2})$$

and

$$a^0 \equiv a^2 (R_{U^2}).$$

Therefore, the product $U \cdot U = U^2 = \{a^{2n} | n > 0\}$ is not a *p*-regular set. Let $U = \{a^{3n+2} | n \ge 0\}$. Then

$$U^* = \bigcup_{k=0}^{\infty} U^k = \{a^0\} \cup \{a^2\} \cup \{a^n | n \ge 4\}.$$

We see easily that R_U is a cancellative congruence of index 3 on I^* . Hence

90 G. Thierrin

U is p-regular. The congruence R_{U^*} is not cancellative, since

$$a^0 \cdot a^4 \equiv a^1 \cdot a^4 (R_{U^*})$$

and

$$a^0 \neq a^1 (R_{U^*}).$$

Therefore U^* is not a p-regular set.

REFERENCES

- [1] P. Dubreil, Contribution à la théorie des demi-groupes. Mém. Acad. Sci. Inst. France (2) 63 (1941), no. 3, 1-52.
- [2] S. GINSBURG, An Introduction to Mathematical Machine Theory. Addison-Wesley, Reading, Mass., 1962.
- [3] G. Hartmanis and R. E. Stearns, Algebraic Structure Theory of Sequential Machines. Prentice-Hall, Englewood Cliffs, N. J., 1966.
- [4] M. O. RABIN and D. SCOTT. Finite automata and their decision problems. IBM J. Res. Develop. 3 (1959), 114-125.
- [5] G. THIERRIN, Sur la caractérisation des groupes par leurs équivalences régulières. C.R. Acad. Sci. Paris 238 (1954), 1954–1956.

(Received 14 September 1967)