The Normal Distribution: Normal Distribution Lab II

The student will compare empirical data and a theoretical distribution to determine if

Class Time:

Student Learning Outcomes:

Names:

Collect the Data						
Measure the leng	th of your p	inkie finger	(in cm.)			
1. Randoml	y survey 30 a	adults. Reco	rd the lengt	hs. Round to	the nearest	t 0.5 cm.

everyday experiment fits a continuous distribution.

2. Construct a histogram. Make 5 – 6 intervals. Sketch the graph using a ruler and pencil. Scale the axes.

3. Calculate the following

b. s = _____

4. Draw a smooth curve through the top of the bars of the histogram. Use 1 - 2 complete sentences to describe the general shape of the curve. (Keep it simple. Does the graph go straight across, does it have a V shape, does it have a hump in the middle or at either end, etc.?)

Analyze the Data

Using your sample mean, sample standard deviation, and histogram to help, what was the approximate theoretical distribution of the data from Part I?

● X ~

• How does the histogram help you arrive at the approximate distribution?

Describe the Data

Using the data in Part I (Hint: order the data):
--

Remember: IQR = Q3 - Q1

- The IQR goes from ______ to _____.
- IQR = ____.
- The 15th percentile is _____.
- The 85th percentile is ______.
- The median is .
- The empirical probability that a randomly chosen pinkie length is more than 6.5 cm =
- Explain the meaning of the 85th percentile of this data.

Theoretical Distribution

Using the theoretical distribution in Part II:

- The IQR goes from ______ to _____.
- IOR =
- The 15th percentile is ______.
- The 85th percentile is ______.
- The median is .
- The theoretical probability that a randomly chosen pinkie length is more than 6.5 cm =
 - .
- Explain the meaning of the 85th percentile of this distribution.

Discussion Question

Do the data from "Collect the Data" give a close approximation to the theoretical distribution
in "Analyze the Data?" In complete sentences and comparing the result in "Describe the Data"
and "Theoretical Distribution", explain why or why not.