

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE INGENIERÍA LABORATORIO DE HIDRÁULICA

PRÁCTICA 11. CALCULO DE PÉRDIDAS EN ACCESORIOS

	Integrantes	Matricula
Grupo:		
Equipo:		
Fecha:		
Maestro:		
Calificación:		

Dispositivos de aforo	1	2	3	4
Numero de accesorio				
Gasto volumétrico (Q): m³/	s			
Diámetro seccion 1 (D ₁): m				
Diámetro seccion 1 (D ₂): m				
Área sección 1 (\mathbf{A}_1): m^2				
Área sección 2 (\mathbf{A}_2): m^2				
Velocidad sección 1 (V ₁): m/s				
Velocidad sección 2 (V ₂) : m/s				
Elevación sección 1 (Z ₁): m				
Elevación sección 2 (Z 2): m				
Viscosidad cinemática (ν): m²/	's			
Número de Reynolds (Re):				
Diferencia de presión (Δp): kg/m	2			
Coeficiente de accesorio (K):				
Pérdida por accesorios (hL): m				
Pérdida por acc ecuación energía (HL): m				

Fig. 5.3 Measuring section, pipeline elements

$$Z_{1} + \frac{P_{1}}{\gamma} + \frac{V_{1}^{2}}{2g} + HA - HL - HE = Z_{2} + \frac{P_{2}}{\gamma} + \frac{V_{2}^{2}}{2g} \qquad hL = K\left(\frac{V^{2}}{2g}\right) \qquad K_{L} = \left(\frac{D^{2}}{d^{2}} - 1\right)^{2} \qquad Contracción$$

Conclusión:			

Válvula de globo, totalmente abierta: $K_L=10$ Válvula de ángulo, totalmente abierta: $K_L=5$ Válvula de bola, totalmente abierta: $K_L=0.05$ Válvula de charnela: $K_L=2$

Válvula de compuerta, totalmente abierta: $K_L = 0.2$

d cerrada: $K_L = 0.3$ cerrada: $K_L = 2.1$ cerrada: $K_L = 17$

Nota: el factor de corrección de energía cinética es $\alpha=2$ para flujo laminar totalmente desarrollado, y $\alpha=1$ para flujo turbulento totalmente desarrollado.