Lattice data in the JAM framework

J. Bringewatt, N. Sato, W. Melnitchouk, Jian-Wei Qiu, F. Steffens, M. Constantinou

QCD Real-Time Dynamics and Inverse Problems Workshop Oct. 19-22, 2020

arXiv:2010.00548

JAM Approach

Overview

- 2. Lattice methodology
- 3. JAM framework
- 4. Numerical Analysis
- 5. Takeaways and Conclusions

2. Lattice Methodology

We consider the quasi-PDF approach to accessing PDFs from lattice observables:

$$\mathcal{M}_{[\Gamma]}^q = Z_{\Gamma}(z,\mu) \langle N(P_3) | \bar{\psi}_q(0,z) \Gamma W_3(z) \psi_q(0,0) | N(P_3) \rangle$$

$$\mathcal{M}^{q}_{[\Gamma]} = Z_{\Gamma}(z,\mu) \langle N(P_3) | \bar{\psi}_q(0,z) \Gamma W_3(z) \psi_q(0,0) | N(P_3) \rangle$$

Renormalization factor

$$\mathcal{M}^q_{[\Gamma]} = Z_\Gamma(z,\mu) \langle N(P_3) | \bar{\psi}_q(0,z) \Gamma W_3(z) \psi_q(0,0) | N(P_3) \rangle$$
 Renormalization factor Nucleon state

We consider a proton with:

$$q = u - a$$
$$\mu = 2 \,\text{GeV}$$

Matrix elements to quasi-PDFs:

$$\tilde{f}_q(x,\mu,P_3) = P_3 \int_{-\infty}^{\infty} \frac{dz}{2\pi} e^{ixP_3z} \mathcal{M}_q(z,\mu)$$

Matrix elements to quasi-PDFs:

$$\tilde{f}_q(x,\mu,P_3) = P_3 \int_{-\infty}^{\infty} \frac{dz}{2\pi} e^{ixP_3z} \mathcal{M}_q(z,\mu)$$

Quasi-PDFs and light cone PDFs related by perturbative matching procedure:

$$\widetilde{f}_q \left(x, \mu, P_3 \right) = \int_{-1}^1 \frac{d\xi}{|\xi|} \, C_q \left(\frac{x}{\xi}, \frac{\mu}{\xi P_3} \right) f_q(\xi, \mu) + \mathcal{O} \left(\frac{m^2}{P_3^2}, \frac{\Lambda_{\text{QCD}}^2}{x^2 P_3^2} \right)$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Standard approach: Truncated discrete FT of calculated lattice elements

In JAM framework:

$$\mathcal{M}_{q}(z,\mu) = \int_{-\infty}^{\infty} dx \, e^{-ixP_{3}z} \int_{-1}^{1} \frac{d\xi}{|\xi|} \, C_{q}\left(\frac{x}{\xi}, \frac{\mu}{\xi P_{3}}\right) f_{q}(\xi,\mu) + \cdots$$

Insert parameterized PDF functional form here

To put in JAM framework:

$$\mathcal{M}_{q}(z,\mu) = \int_{-\infty}^{\infty} dx \, e^{-ixP_{3}z} \int_{-1}^{1} \frac{d\xi}{|\xi|} \, C_{q}\left(\frac{x}{\xi}, \frac{\mu}{\xi P_{3}}\right) f_{q}(\xi,\mu) + \cdots$$

Insert parameterized PDF functional form here

Equivalent to how we connect experimental observables to PDFs:

e.g.
$$\sigma_{\mathrm{DIS}}(x_B,Q^2) = \sum_i \left[H^i_{\mathrm{DIS}}\otimes f_i\right](x_B,Q^2),$$
 Short-distance partonic cross section

Split:

- PDFs into quark and antiquark components
- Matrix elements into real and imaginary parts

Split:

- PDFs into quark and antiquark components
- Matrix elements into real and imaginary parts

Then to leading order:

$$\operatorname{Re} \mathcal{M}_{q}(z,\mu) = -\int_{0}^{1} dy \cos(yP_{3}z) \left[q(y) - \bar{q}(y) \right] + \mathcal{O}(\alpha_{s}^{2})$$

$$\operatorname{Im} \mathcal{M}_{q}(z,\mu) = \int_{0}^{1} dy \sin(yP_{3}z) \left[q(y) + \bar{q}(y) \right] + \mathcal{O}(\alpha_{s}^{2})$$

Split:

- PDFs into quark and antiquark components
- Matrix elements into real and imaginary parts

Then to leading order:

Real part sensitive to valence only (unpolarized)!

$$\operatorname{Re} \mathcal{M}_{q}(z,\mu) = -\int_{0}^{1} dy \cos(y P_{3} z) \left[q(y) - \bar{q}(y) \right] + \mathcal{O}(\alpha_{s}^{2})$$

$$\operatorname{Im} \mathcal{M}_q(z,\mu) = \int_0^1 dy \, \sin(y P_3 z) \left[q(y) + \bar{q}(y) \right] + \mathcal{O}(\alpha_s^2)$$

3. JAM Framework

Recall our basic model:

$$T(x, \mu_0^2; a) = \frac{a_0}{\mathcal{N}(a)} x^{a_1} (1 - x)^{a_2}$$

We parameterize:

$$u_v = u - \bar{u}$$
 $d_v = d - \bar{d}$
 \bar{d}
 \bar{u}
 $s = \bar{s}$

$$T(x, \mu_0^2; a) = \frac{a_0}{\mathcal{N}(a)} x^{a_1} (1 - x)^{a_2}$$

2) Use DGLAP equations to evaluate each observable at correct scale

We parameterize:

$$u_v = u - \bar{u}$$

$$d_v = d - \bar{d}$$

$$\bar{d}$$

$$\bar{u}$$

$$s = \bar{s}$$

$$T(x, \mu_0^2; a) = \frac{a_0}{\mathcal{N}(a)} x^{a_1} (1 - x)^{a_2}$$

2) Use DGLAP equations to evaluate each observable at correct scale

We parameterize: $u = u = \bar{u}$

$$u_v = u - \bar{u}$$

$$d_v = d - \bar{d}$$

$$\bar{d}$$

$$\bar{u}$$

$$s = \bar{s}$$

3) Determine Bayesian posterior distribution

$$\rho(a|\text{data}) \sim \mathcal{L}(a, \text{data}) \pi(a)$$
 $\mathcal{L}(a, \text{data}) = \exp\left[-\frac{1}{2}\chi^2(a, \text{data})\right]$

$$T(x, \mu_0^2; a) = \frac{a_0}{\mathcal{N}(a)} x^{a_1} (1 - x)^{a_2}$$

2) Use DGLAP equations to evaluate each observable at correct scale

We parameterize:

$$u_v = u - \bar{u}$$
 $d_v = d - \bar{d}$
 \bar{d}
 \bar{u}
 $s = \bar{s}$

3) Determine Bayesian posterior distribution

$$\rho(a|\text{data}) \sim \mathcal{L}(a, \text{data}) \pi(a)$$
 $\mathcal{L}(a, \text{data}) = \exp\left[-\frac{1}{2}\chi^2(a, \text{data})\right]$

4) Sample posterior distribution using data resampling and maximize likelihood function

4. Numerical Analysis

Data sets:

- Inclusive DIS:
 - Proton and deuteron targets: BCDMS, SLAC, NMC
 - e+/e- proton cross sections: HERA
- Drell-Yan (pp, pd): E866
- Polarized inclusive DIS:
 - EMC, SMC, COMPASS, SLAC, HERMES
- ETMC lattice data (unpolarized and polarized)

Fits:

- Unpolarized
 - Experimental data sets alone
 - Experimental data sets + lattice
- Polarized
 - Experimental data sets alone
 - Experimental data sets + lattice

Fits:

- Unpolarized
 - Experimental data sets alone
 - Experimental data sets + lattice
- Polarized
 - Experimental data sets alone
 - Experimental data sets + lattice

Why not lattice alone?

Inverse problem! In practice, not well constrained – results depend strongly on choice of prior function.

Unpolarized Results

	points		$\chi^2/{\rm datum}$	
	pomes	exp	exp+lat	
BCDMS F_2^p [23]	348	1.1	1.1	
BCDMS F_2^d [24]	254	1.1	1.2	
SLAC F_2^p [25]	218	1.4	1.4	
SLAC F_2^d [25]	228	1.0	1.1	
NMC F_2^p [26]	273	1.9	1.9	
NMC F_2^d/F_2^p [27]	174	1.1	1.2	
HERA $\sigma_{\text{NC}}^{e^+p}$ (1) [30]	402	1.6	1.6	
HERA $\sigma_{NC}^{e^+p}$ (2) [30]	75	1.2	1.2	
HERA $\sigma_{NC}^{e^+p}$ (3) [30]	259	1.0	1.0	
HERA $\sigma_{NC}^{e^+p}$ (4) [30]	209	1.1	1.1	
HERA $\sigma_{\text{NC}}^{e^-p}$ [30]	159	1.7	1.7	
HERA $\sigma_{\text{CC}}^{e^+p}$ [30]	39	1.4	1.2	
HERA $\sigma_{\text{CC}}^{e^-p}$ [30]	42	1.4	1.4	
E866 σ_{DY}^{pp} [28]	121	1.3	1.3	
E866 $\sigma_{\rm DY}^{pd}$ [28]	129	1.7	1.8	
ETMC19 Re \mathcal{M}_{u-d} [8]	31		4.7	
ETMC19 Im \mathcal{M}_{u-d} [8]	30		22.7	
Total (exp)	2,930	1.3		
$(\exp+lat)$	2,991		1.6	

Polarized Results

Observable	# data	$\chi^2/{ m datum}$	
	points	\exp	$\exp+lat$
EMC A_1^p [31]	10	0.3	0.3
SMC A_1^p [32]	11	0.6	0.7
SMC A_1^d [32]	11	2.4	2.3
SMC A_1^p [33]	7	1.3	1.3
SMC A_1^d [33]	7	0.7	0.7
COMPASS A_1^p [34]	11	1.0	0.9
COMPASS A_1^d [35]	11	0.5	0.5
COMPASS A_1^p [36]	35	1.0	1.0
SLAC E80/E130 $A_{ }^{p}$ [37]	10	0.8	0.8
SLAC E143 A_{\parallel}^{p} [39]	39	0.9	0.8
SLAC E143 A_{\parallel}^{d} [39]	39	1.0	1.0
SLAC E143 A_{\perp}^{p} [39]	33	1.0	1.0
SLAC E143 A_{\perp}^{d} [39]	33	1.2	1.2
SLAC E155 A^p_{\parallel} [41]	59	1.5	1.4
SLAC E155 A_{\parallel}^{p} [42]	59	1.1	1.1
SLAC E155 A_{\perp}^{p} [43]	46	0.8	0.8
SLAC E155 A_{\perp}^{d} [43]	46	1.5	1.5
SLAC E155x \tilde{A}^p_{\perp} [44]	69	1.3	1.3
SLAC E155x \tilde{A}^d_{\perp} [44]	69	0.9	0.9
HERMES A_1^n [45]	5	0.3	0.3
HERMES A_1^p [46]	16	0.6	0.6
HERMES A_1^p [46]	16	1.3	1.3
HERMES A_2^p [47]	9	1.1	1.1
ETMC19 Re $\mathcal{M}_{\Delta u - \Delta d}$ [8]	31		0.5
ETMC19 Im $\mathcal{M}_{\Delta u - \Delta d}$ [8]	30		0.3
Total (exp)	651	1.1	
(exp+lat)	712		1.0

Pseudo-data analysis

Suppose disagreement between lattice and experimental data is resolved.

What impact do the current precision lattice data have on the PDFs?

Pseudo-data analysis

Suppose disagreement between lattice and experimental data is resolved.

What impact do the current precision lattice data have on the PDFs?

Importance of large-|z| matrix elements?

Large uncertainties at large |z|
- power-law divergences,
sensitivity to power
corrections, systematic
uncertainties

Importance of large-|z| matrix elements?

Large uncertainties at large |z|
- power-law divergences,
sensitivity to power
corrections, systematic
uncertainties

5. Takeaways and Conclusions

- We performed first combined MC-based global QCD analysis of spin-averaged and spin-dependent PDFs using both experimental and lattice observables
 - Unpolarized: significant tension
 - Polarized: Lattice data provides significant constraints
- Smaller lattice spacing larger z, larger P₃, better constraints on x-dependence of PDFs
- Feasible to include lattice data in standard QCD global analysis!