

WHAT IS CLAIMED IS:

1. 1. An apparatus for the non-contact electrical test of electronic substrates comprising:
 2. at least one electronic substrate (20) having top surface conductive features (22) on a top side of said electronic substrate (20) in electrical contact with bottom surface conductive features (23) on a bottom side of said electronic substrate (20);
 5. an ionization source (10) positioned above said top surface of said electronic substrate (20) and connected to a first voltage source;
 7. a fixture holding said electronic substrate;
 8. an array of probes which contact said bottom surface conductive features;
 9. a second voltage source electrically connected to said array of probes to maintain said array of probes at virtual ground; and
 10. current measuring electronics in contact with said array of probes.
1. 2. The apparatus of claim 1 wherein said ionization source (10) is a conductive wire.
1. 3. The apparatus of claim 1 wherein said ionization source (10) is a mesh of conductive wires.
1. 4. The apparatus of claim 1 wherein said ionization source (10) is a conductive ribbon.

5. The apparatus of claim 1 wherein said ionization source (10) is coated with molybdenum disulfide.

6. The apparatus of claim 1 further comprising a shield (40) between said ionization source (10) and said top surface conductive features (22).

7. The apparatus of claim 6 wherein said shield (40) has a cylindrical shape with an opening towards said top surface conductive features (22)

8. The apparatus of claim 6 wherein said shield (40) is connected to a third voltage source.

9. The apparatus of claim 6 wherein said shield (40) is segmented with each segment electrically insulated from each other and separately charged.

10. The apparatus of claim 8 wherein said first voltage is approximately 5,000 volts, said second voltage is approximately ground and said third voltage is approximately 2,500 volts.

11. The apparatus of claim 1 wherein said ionization source (10) is a positive ionization source.

1 12. The apparatus of claim 1 wherein said ionization source (10) is a negative ionization
2 source.

1 13. The apparatus of claim 1 wherein said fixture (50) is comprised of a conductive
2 material.

1 14. The apparatus of claim 1 wherein said fixture (50) has a tapered geometry.

1 15. The apparatus of claim 1 wherein said fixture (50) is connected to a fourth voltage
2 source.

1 16. The apparatus of claim 15 wherein said fourth voltage has a value between said first
2 voltage and said second voltage.

1 17. The apparatus of claim 15 wherein said fourth voltage is approximately ground.

1 18. The apparatus of claim 1 wherein said current measuring electronics are logarithmic
2 amplifiers.

1 19. The apparatus of claim 18 wherein each of said logarithmic amplifiers are connected
2 to said array of probes.

1 20. The apparatus of claim 18 further comprising circuitry connected to said array of
2 probes to allow said current measuring electronics to be monitored individually with signals
3 issued through a digital interface from a computer.

1 21. The apparatus of claim 20 further comprising an analog-to-digital converter to acquire
2 and store measurements of the analog voltage level from said logarithmic amplifiers.

1 22. The apparatus of claim 18 wherein said logarithmic amplifiers are unipolar.

1 23. The apparatus of claim 18 wherein said logarithmic amplifiers are bipolar.

1 24. A method for the non-contact electrical opens test of electronic substrates comprising
2 the steps of:

3 providing at least one electronic substrate (20) having top surface conductive features
4 (22) on a top side of said electronic substrate (20) in electrical contact with bottom surface
5 conductive features (23) on a bottom side of said electronic substrate (20);

5 securing said electronic substrate (20) in a fixture;

7 creating a region of ionized particles at an ionization source (10) positioned above

8 said top surface of said electronic substrate (20) by applying a first voltage to said ionization
9 source;

0 exposing said top surface conductive features (22) to a cascade of said ionized
1 particles by applying a second voltage to said bottom surface conductive features (23) and
2 thereby creating an electric charge buildup on said top surface conductive features (22);

3 draining said charge buildup through said bottom surface conductive features (23) and
4 creating a drain current into an array of probes in contact with said bottom surface conductive
5 features (23); and

6 measuring said drain current with current measuring electronics in contact with said
7 array of probes whereby any opens between a top surface conductive feature (22) and a
8 bottom surface conductive feature (23) is detected by the absence of said drain current.

1 25. The method of claim 24 wherein said ionization source (10) is a conductive wire.

1 26. The method of claim 24 wherein said ionization source (10) is a mesh of conductive
2 wires.

1 27. The method of claim 24 wherein said ionization source (10) is a conductive ribbon.

1 28. The method of claim 24 wherein said ionization source (10) is coated with
2 molybdenum disulfide.

- 1 29. The method of claim 24 further comprising the step of focusing said cascade of
- 2 ionized particles by positioning a shield (40) between said ionization source (10) and said top
- 3 surface conductive features (22).

- 1 30. The method of claim 29 wherein said shield (40) has a cylindrical shape with an
- 2 opening towards said top surface conductive features (22).

- 1 31. The method of claim 29 further comprising the step of applying a third voltage to said
- 2 shield (40).

- 1 32. The method of claim 29 wherein said shield (40) is segmented, with each segment
- 2 electrically insulated from each other and separately charged.

- 1 33. The method of claim 31 wherein said first voltage is approximately 5,000 volts, said
- 2 second voltage is approximately ground and said third voltage is approximately 2,500 volts.

- 1 34. The method of claim 24 wherein said ionization source (10) is a positive ionization
- 2 source.

- 1 35. The method of claim 24 wherein said ionization source (10) is a negative ionization

1 36. The method of claim 24 further comprising the step of applying a fourth voltage to
2 said fixture.

1 37. The method of claim 36 wherein said fourth voltage has a value between said first
2 voltage and said second voltage.

1 38. The method of claim 36 wherein said fourth voltage is approximately ground.

1 39. The method of claim 24 wherein said current measuring electronics are logarithmic
2 amplifiers.

1 40. The method of claim 39 further comprising the step of monitoring said array of probes
2 individually with circuitry connected to said current measuring electronics which measure
3 signals issued through a digital interface from a computer.

1 41. The method of claim 40 further comprising the step of storing measurements of the
2 analog voltage level from said logarithmic amplifiers from an analog-to-digital converter.

1 42. The method of claim 39 wherein said logarithmic amplifiers are unipolar.

- 1 43. The method of claim 39 wherein said logarithmic amplifiers are bipolar.
- 1 44. A method for the non-contact electrical shorts test of electronic substrates comprising
2 the steps of:
3 providing at least one electronic substrate (20) having top surface conductive features
4 (22) on a top side of said electronic substrate (20) in electrical contact with bottom surface
5 conductive features (23) on a bottom side of said electronic substrate (20);
6 securing said electronic substrate (20) in a fixture (50);
7 creating a region of ionized particles at an ionization source (10) positioned above
8 said top surface of said electronic substrate (20) by applying a first voltage to said ionization
9 source (10);
0 exposing said top surface conductive features (22) to a cascade of said ionized
1 particles by applying a second voltage to said bottom surface conductive features (23) and
2 thereby creating an electric charge buildup on said top surface conductive features (22);
3 draining said charge buildup through said bottom surface conductive features (23) and
4 creating a drain current into an array of probes in contact with said bottom surface conductive
5 features (23);
6 measuring said drain current with current measuring electronics in contact with said
7 array of probes whereby any opens between a top surface conductive feature (22) and a
8 bottom surface conductive feature (23) is detected by the absence of said drain current;

9 turning off said cascade of ionized particles;
0 applying a different voltage bias on each individual probe in said array of probes; and
1 re-measuring said array of probes with said current measuring electronics whereby any
2 shorts are detected by a drain current.

1 45. The method of claim 44 further comprising the step of first measuring the voltage bias
2 of each of said array of probes with no ionization source (10) and and no electronic substrate
3 (20) in place to establish reference values for subsequent drain current measurements.

1 46. The method of claim 24 further comprising the step of first measuring the voltage bias
2 of each of said array of probes with no ionization source (10) and and no electronic substrate
3 (20) in place to establish reference values for subsequent drain current measurements.