

Course > Topic 4... > 4.3 Co... > Combi...

Combinations Video

4.3 Combinations

POLL

Which of the following is larger for k≤n?

RESULTS

The number of k-permutations of an n-set

84%

The number of k-subsets of an n-set

16%

Submit

Results gathered from 355 respondents.

FEEDBACK

The number of k-permutations is larger.

In selecting subsets, the order doesn't matter, hence the number of k-subsets is the number of k-permutations divided by k!

1

0 points possible (ungraded)

In how many ways can a basketball coach select 5 starting players form a team of 15?

- $\frac{15!}{5!10!}$
- $\frac{15!}{10!}$
- $\bigcirc \quad \frac{15!}{5!}$
- None of the above

Explanation

It can be deducted from partial permutation, but the order does not matter. It is

$$\binom{15}{5} = \frac{15^{\frac{5}{2}}}{5!} = \frac{15!}{5!10!}.$$

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

2

0 points possible (ungraded)

•	In how many ways can you select a group of 2 people out of 5?
---	---

10 ✓
25
125

Explantion

binom 52 = 10.

None of the above

- In how many ways can you select a group of 3 people out of 5?
- 10 ✓
 25
 125
 None of the above

Explantion

binom 53 = 10.

- In how many ways can you divide 5 people into two groups, where the first group has 2 people and the second has 3?
- 10 ✓● 25
- \circ 125

None of the above

Explantion

After we determine the group of 2, the group of 3 is determined as well, hence the answer is binom52=10.

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

3

0 points possible (ungraded)

Ten points are placed on a plane, with no three on the same line. Find the number of:

• lines connecting two of the points,

Explanation

Choosing any 2 points out of the 10 points can make a line: $\binom{10}{2}$

ullet these lines that do not pass through two specific points (say A or B),

Explanation

Choosing any 2 points out of the remaining 8 points (except A, B): $\binom{8}{2}$

• triangles formed by three of the points,

Explanation

As no three on the same line, choosing any 3 points out of the 10 points make a triangle: $\binom{10}{3}$

• these triangles that contain a given point (say point A),

9	X Answer: 36
9	

Explanation

With point A fixed, choosing any 2 points out of the remaining 9 points make a triangle: $\binom{9}{2}$

ullet these triangles contain the side AB.

Explanation

With point A and B fixed, choosing any 1 point out of the remaining 8 points make a triangle: $\binom{8}{1}$

Submit You have used 4 of 4 attempts

1 Answers are displayed within the problem

4

0 points possible (ungraded)

The set $\{1,2,3\}$ contains 6 nonempty intervals: $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{2,3\}$, and $\{1,2,3\}$.

How many nonempty intervals does $\{1,2,\ldots,10\}$ contain?

2037 **X** Answer: 55

Explanation

 $\{1,2,\ldots,n\}$ contains $\binom{n}{1}$ singleton intervals and $\binom{n}{2}$ intervals of 2 or more elements. Hence the total number of intervals is $\binom{n}{2}+\binom{n}{1}$. By Pascal's identity $\binom{n}{2}+\binom{n}{1}=\binom{n+1}{2}$. This can also be seen by considering the n+1 midpoints $\{0.5,1.5,\ldots n+0.5\}$. Any pair of these points defines an interval in $\{1,2,\cdots n\}$.

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

5

0 points possible (ungraded)

A rectangle in an $m \times n$ chessboard is a cartesian product $S \times T$, where S and T are nonempty intervals in $\{1,\ldots,m\}$ and $\{1,2,\ldots,n\}$ respectively. How many rectangles does the 3×6 chessboard have?

05

X Answer: 126

05

Explanation

Repeating the same analysis as the above question, but for two different intervals, we have $\binom{4}{2}\cdot\binom{7}{2}=126.$

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

6

4.0/8.0 points (graded)

A standard 52-card deck consists of 4 suits and 13 ranks. Find the number of 5-card hands where:

• any hand is allowed (namely the number of different hands),

2598960

✓ Answer: 2598960

2598960

Explanation

This is simply $\binom{52}{5}$.

• all five cards are of same suit,

Explanation

There are 4 suits in total and 13 cards in each suit, hence $4\cdot\binom{13}{5}$ hands.

• all four suits are present,

Explanation

One of the 4 suits will appear twice, hence $4 \cdot \binom{13}{2} \cdot 13^3$ hands.

• all cards are of distinct ranks.

Explanation

First pick 5 out of 13 ranks, then choose their suits. Therefore there are $\binom{13}{5} \cdot 4^5$ hands.

Submit You have used 4 of 4 attempts

1 Answers are displayed within the problem

7

2.0/2.0 points (graded)

A company employs 4 men and 3 women. How many teams of three employees have at most one woman?

0 21

- 0 23
- 0 24

Explanation

There are $\binom{4}{3}=4$ teams with 0 women and $\binom{3}{1}\times\binom{4}{2}=3\times 6=18$ teams with 1 woman, for a total of 22.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

8

5.0/5.0 points (graded)

A (tiny) library has 5 history texts, 3 sociology texts, 6 anthropology texts and 4 psychology texts. Find the number of ways a student can choose:

• one of the texts,

Explanation

• two of the texts,

Explanation

• one history text and one other type of text,

Explanation

The student can choose 5 different history texts, and 3+6+4=13 other texts, by the product rule there are $5\cdot 13=65$ ways of doing that.

• one of each type of text,

Explanation

The student selects one text of each type, by the product rule this can be done in $5\cdot 3\cdot 6\cdot 4=360$ ways.

• two different types of text.

Explanation

There are $5 \cdot 3 = 15$ ways to choose one history and one sociology text, $5 \cdot 6 = 30$ ways to choose one history and one anthropology text, etc. In total there are $5 \cdot 3 + 5 \cdot 6 + 5 \cdot 4 + 3 \cdot 6 + 3 \cdot 4 + 6 \cdot 4 = 11$ ways.

Submit You have used 1 of 4 attempts

1 Answers are displayed within the problem

9

0 points possible (ungraded)

In how many ways can 7 distinct red balls and 5 distinct blue balls be placed in a row such that

• all red balls are adjacent,

0	X Answer: 3628800
0	

Explanation

There are 6 ways to place 7 red balls adjacent. Hence the number of ways is $6 \times 7! \times 5! = 3628800$

• all blue balls are adjacent,

Explanation

There are 8 ways to place 5 red balls adjacent. Hence the number of ways is $8 \times 7! \times 5! = 4838400$

• no two blue balls are adjacent.

Explanation

First, decide on the locations of the red and blue balls. Arrange all 7 red balls in a line, we can then choose 5 out of the 8 gaps (including those at the beginning and end) to place the blue balls. Since the balls are distinct we can permute the blue balls, and the red balls, for a total of $\binom{8}{5}$ 7!5! arrangements.

Submit You have used 4 of 4 attempts

1 Answers are displayed within the problem

10

0 points possible (ungraded) For the set $\{1,2,3,4,5,6,7\}$ find the number of:

subsets,

X Answer: 2^7

Explanation

There are 7 elements in the set. The number of subsets is 2^7 .

• 3-subsets,

X Answer: 35

Explanation

Choose 3 elements out of 7. The number of ways is ${7 \choose 3}=35$.

• 3-subsets containing the number 1,

Explanation

1 is fixed.

Choose 2 elements out of 6. The number of ways is ${6 \choose 2} = 15$.

• 3-subsets not containing the number 1.

Explanation

Choose 3 elements out of 6 (excluding 1). The number of ways is ${6 \choose 3}=20$.

Submit You have used 4 of 4 attempts

1 Answers are displayed within the problem

11 Functions.

0 points possible (ungraded)

A function f:X o Y is injective or one-to-one if different elements in X map to different elements in Y, namely,

$$orall x
eq x' \in X, \quad f(x)
eq f(x').$$

A function $f:X\to Y$ is *surjective* or *onto* if all elements in Y are images of at least one element of X, namely,

$$orall y \in Y \quad \exists x \in X, \quad f(x) = y.$$

For sets $A=\{1,2,3\}$ and $B=\{a,b,c,d\}$, find the number of

• functions from A to B,

Explanation

As we saw in the lecture, there are $|B|^{|A|}=4^3=64\,\mathrm{functions}$ from A to B .

• functions from B to A,

Explanation

$$|A|^{|B|} = 3^4 = 81.$$

• one-to-one functions from A to B,

Explanation

There are 4 possible values for f(1). Once f(1) is determined, 3 options for f(2) will keep f one-to-one. And after f(1) and f(2) are determined, two options for f(3) will keep f one-to-one. Hence the total number of one-to-one functions is $4^{\underline{3}}=4\cdot 3\cdot 2=24$

• onto functions from *B* to *A*.

Explanation

If a mapping from B to A is onto, then two elements of B map to a single element in A, while the other two elements of B map to the remaining 2 elements of A. There are $\binom{4}{2}=6$ ways to choose the two elements with the same image, and then 3!=6 ways to to associate the pair and two other elements of B with the three elements of A. The total number of onto functions from B to A is therefore $6\cdot 6=36$.

Submit

You have used 4 of 4 attempts

• Answers are displayed within the problem

Discussion

Topic: Topic 4 / Combinations

Hide Discussion

Add a Post

© All Rights Reserved