

THE CAMERON

MOTORPUMP

AN INGERSOLL-RAND PRODUCT

415
902
Dig 576

103
111B

53529

Ingersoll-Rand

Form 7764

1878

The Cameron

MOTORPUMP

—An Ingersoll-Rand Product

The Motorpump Turbine-Driven Pumps
Cradle-Mounted Pumps
Motorpump Condensate Return Units

Ingersoll-Rand
CAMERON PUMP DIVISION

11 Broadway

New York, N. Y.

Adequate Facilities Assure Superior Quality

Part of the Motorpump assembly line.

Photo-micrograph equipment in I-R metallurgical laboratory.

I-R pump
testing
laboratory.

Manufacturing Plant

The Cameron plant of Ingersoll-Rand is devoted exclusively to the manufacture of pumps. It is thoroughly modern in both buildings and equipment.

Motorpumps are manufactured in a separate section of this plant. In this section are many special purpose machine tools designed for a specific operation on Motorpump parts.

The modern equipment and the experienced personnel of this plant make possible the accurate workmanship and dependable service for which Motorpumps are known.

Metallurgical Laboratory

Ingersoll-Rand has an outstanding Metallurgical laboratory. It includes a completely equipped chemical laboratory, physical test laboratory, pilot heat treating plant, and photo-micrograph and magnaflux equipment.

All materials used in Motorpumps are selected and tested in this laboratory. Ingersoll-Rand engineers have had wide experience in selecting materials for pumps in normal service and for pumps handling corrosive or erosive liquids.

Hydraulic Laboratory

The facilities of the Ingersoll-Rand pump testing laboratory are unexcelled by those of any other pump manufacturer.

Equipment is available for producing and accurately measuring from $\frac{1}{4}$ to 2700 hp. at speeds from 100 to 6500 rpm.

Money Saving MOTORPUMP Characteristics

Compact design

The $\frac{1}{2}$ -hp. Motorpump takes up less room than this booklet lying open on your desk. Other sizes are proportionately small. This compactness is possible because the Cameron pump and the General Electric motor are built together as one unit on a single shaft.

Operation in any position

Motorpumps operate equally well in any position. No special foundation is required and the units may be bolted to the floor, wall, tank, column, or ceiling, as is most convenient.

Low cost

The compact unit assembly simplifies the construction, lowers the weight, and reduces the purchase price.

High efficiency

Motorpumps are designed to operate at standard motor speeds. The suction entrance is on the end and water enters directly into the eye of the impeller. This gives minimum obstruction and insures high efficiency.

Rugged construction

The compact design of the Motorpump makes it unusually rigid and strong. This strength assures ability to stand up under severe service.

Prompt shipment

Large factory and branch warehouse stocks insure prompt shipment. Stock shipment can be made of units for all usual conditions.

The Cameron

MOTORPUMP

An Ingersoll-Rand Product

Heavy-Duty Type Classes RV and MRV

Six, single-stage Motorpumps at a bulk oil terminal.

Single-stage Units - Class RV

Class RV Heavy-Duty type Motorpumps are single-stage units with built-in electric motor. They are available in 1½, 2, 3, 4 and 5-inch discharge sizes with motors from 1 to 40 hp. They will handle from 10 to 1400 gals. per min. against heads to 240 ft.

Class RV, single-stage, heavy-duty Motorpump.

They are quality pumps in every respect. The shaft is of much larger diameter than is used in a standard motor. This insures a smooth running pump and minimum stuffing box care.

The bearing on the pump end of the unit is of the duplex, angular-contact type. It has several times the radial and thrust capacity of the bearing furnished on a standard motor.

The impeller is balanced both mechanically and hydraulically. A convenient impeller puller makes disassembly easy.

The shaft is fully protected within the pump and through the stuffing box by the impeller and shaft sleeves. The shaft sleeve is packed to prevent leakage underneath the sleeve.

An adjustable needle valve provides proper stuffing box seal and lubrication.

Suction and discharge connections are standard flange type.

Two-Stage Units - Class MRV

Class MRV, two-stage, heavy-duty Motorpump.

Class MRV Motorpumps are two-stage units available in 1½ and 2-inch discharge sizes with motors from 10 to 50 hp. They will handle from 20 to 275 gals. per min. against heads to 500 ft.

They are of the same heavy duty construction and have the same refinements as the single-stage units described above. The two impellers are of the single-suction type mounted back to back.

Suction and discharge connections are of standard flange type.

103/111B-45-203 -9

Features of Heavy-duty Motorpumps

SUCTION NOZZLE

Nozzle leads directly into eye of the impeller thereby reducing suction losses. Removal of the nozzle gives complete access to the impeller and to the interior of the casing.

PUMP CASING

Flanged openings facilitate pipe connections. Renewable casing rings assure full capacity, pressure, and efficiency during the life of the pump.

CONNECTING PIECE

Extra heavy, barrel-type construction insures rigidity. Counter-bored joints insure permanent alignment. Supporting legs carry the weight of the pump.

MOTOR END SHIELD

A diaphragm completely separates the pump from the motor. A liquid flinger further protects bearings and motor windings from contamination.

MOTOR STATOR

All windings are immersed in "Glyptol" which is acid, moisture and oil resisting and which binds wires into a solid mass. The stator is standard and any electrical shop can service it.

MOTOR PUMP

An Ingersoll-Rand Product

Standard Type Classes RVN and MRVN

Single-stage Class RVN Motorpump which circulates cooling water for a Diesel engine.

Class RVN standard Motorpump with fractional hp. motor.

Class RVN standard Motorpump with integral hp. motor.

Single-Stage Units Class RVN

Class RVN Motorpumps are single-stage units with built-in electric motor. They are available in 1, 1½ and 2-inch discharge sizes with motors from $\frac{1}{4}$ to 5 hp. They will handle from 5 to 250 gals. per min. against heads to 140 ft.

The shaft is larger than that in a standard motor. The pump end bearing is of the deep-groove, angular-contact type and is 2 sizes larger than that in a standard motor.

Suction and discharge connections are threaded to receive standard pipe.

Two-Stage Units Class MRVN

Class MRVN Motorpumps are two-stage units available in 1-inch discharge size with motors from 1½ to 5 hp. They will handle from 20 to 55 gals. per min. against heads to 200 ft.

Impeller

The one-piece impeller is of latest hydraulic design and is mechanically balanced.

Casing

The casing contains the suction and discharge nozzles. Discharge nozzle may be turned to four positions.

Stuffing Box

The stuffing box is extra deep, holding 5 rings of packing and a sealing gland.

Glands

The stuffing box glands are of the split type which are easily removed from the shaft.

Connecting Piece

The connecting piece has counterbored joints which assure a rigid assembly.

Bearings

The bearings are of the angular contact type with ample radial and thrust capacity.

Shaft

The shaft is much heavier than that in a standard motor insuring freedom from vibration.

Rotor

The motor rotor is of standard construction and is perfectly balanced.

Stator

The stator is of standard construction and can be serviced in any electrical shop.

Open Impeller Motorpumps

Open impeller motorpumps may be equipped with the handhole type suction nozzle shown. Without this nozzle they look like the pumps on page 4.

Two-vane open impeller.

Four-vane open impeller.

For pumping paper stock, lime, sludge, sugar liquor, sewage, etc., which contain a certain amount of foreign material it is often necessary to use an open impeller pump. Motorpumps (also TRV and CRV units described on following pages) are available in many sizes with open impellers.

In external appearance they are exactly the same as the pumps described and illustrated on the preceding page. They may also be equipped with handhole type suction nozzle as illustrated at the left.

Open-impeller Motorpumps have a specially designed casing, impeller, and suction piece. The impellers have exceptionally large eyes, and the entrances have been carefully designed to prevent clogging. All passages are made amply large.

Motorpump Modifications

Brewery fittings including companion flanges, valve and gauge.

Sling yoke mounting for Motorpumps in mine shaft drainage service.

Merco-Nordstrom grease seal for pumps handling gasoline and other similar liquids.

Smothering type glands for handling volatile liquids, etc.

Drip-lip base plate which can be furnished for Motorpumps.

Self priming Motorpump for mine drainage. Bulletin 2070-A.

Portable Motorpump for use in breweries, wineries, distilleries, dairies and other industries where a portable pump is convenient.

Operates In Any Position

The MOTОРРUMP operates perfectly in any position. Hundreds of units are operating vertically, at various angles, on the side and upside down.

This performance is made possible by the sturdy ball bearings and the rigid construction of the unit. They need no special foundation and may be bolted to floor, wall or ceiling as is most convenient.

Two Motorpumps slung from chains
for emergency pumping service.

Motorpump mounted on its
side on an air conditioning
unit.

Two Motorpumps mounted vertically
on the wall in a refinery.

45468

Poly-phase A. C. motor.

Single-phase A. C. motor.

Explosion-proof motor.

All Types of Motors

Each MOTОРРUMP has a General Electric motor built into it as an integral part of the unit. They are available in all types for all usual current conditions, including 50 and 60 cycle, single and poly-phase alternating current and direct current. Open, splash-proof, totally enclosed fan cooled, explosion proof and marine type motors are furnished. More than 3000 types and enclosures are available.

The motors are of the ball bearing type and the bearings are of very liberal capacity. They are grease lubricated and the grease needs to be replenished only at long intervals.

Splash-proof motor.

Direct-current motor.

Approximate Dimensions

All dimensions given in inches.
Based on use of open type A. C. motors. Dimensions and shipping weights will vary slightly when other motors are used. Do not use these dimensions for building foundations.
Obtain certificate foundation print.

RVN and RVNS Pumps Fractional hp. Motors

Size	Suct.	A	B	C	D	E	F	G	H	J	K	L	Shipping Wt
1RVNS $\frac{1}{4}$	1 $\frac{1}{2}$	16 $\frac{1}{2}$	7 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	11 $\frac{1}{2}$	12 $\frac{1}{2}$	3 $\frac{1}{2}$	3	100	
1RVNS $\frac{1}{2}$	1 $\frac{1}{2}$	16 $\frac{1}{2}$	7 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	11 $\frac{1}{2}$	12 $\frac{1}{2}$	3 $\frac{1}{2}$	3	100	
1RVNS $\frac{3}{4}$	1 $\frac{1}{2}$	16 $\frac{1}{2}$	7 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	11 $\frac{1}{2}$	12 $\frac{1}{2}$	3 $\frac{1}{2}$	3	100	
1RVNS $\frac{5}{8}$	1 $\frac{1}{2}$	19 $\frac{1}{2}$	7 $\frac{1}{2}$	4 $\frac{1}{2}$	5 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	11 $\frac{1}{2}$	12 $\frac{1}{2}$	3 $\frac{1}{2}$	3	100	
1RVNS $\frac{1}{2}$	1 $\frac{1}{2}$	19 $\frac{1}{2}$	8 $\frac{1}{2}$	4 $\frac{1}{2}$	5 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	11 $\frac{1}{2}$	12 $\frac{1}{2}$	3 $\frac{1}{2}$	3	125	
1RVN $\frac{1}{4}$	1 $\frac{1}{2}$	16 $\frac{1}{2}$	8 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	11 $\frac{1}{2}$	2	4 $\frac{1}{2}$	3 $\frac{1}{2}$	100	
1RVN $\frac{1}{2}$	1 $\frac{1}{2}$	16 $\frac{1}{2}$	8 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	11 $\frac{1}{2}$	2	4 $\frac{1}{2}$	3 $\frac{1}{2}$	100	
1RVN $\frac{1}{2}$	1 $\frac{1}{2}$	17 $\frac{1}{2}$	8 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	11 $\frac{1}{2}$	2	4 $\frac{1}{2}$	3 $\frac{1}{2}$	100	
1RVN $\frac{1}{2}$	1 $\frac{1}{2}$	17 $\frac{1}{2}$	8 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	11 $\frac{1}{2}$	2	4 $\frac{1}{2}$	3 $\frac{1}{2}$	100	
1RVN $\frac{1}{4}$	1 $\frac{1}{2}$	18 $\frac{1}{2}$	9	4 $\frac{1}{2}$	5 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	11 $\frac{1}{2}$	2	4 $\frac{1}{2}$	3 $\frac{1}{2}$	125	
1RVN $\frac{1}{2}$	1 $\frac{1}{2}$	19 $\frac{1}{2}$	9	4 $\frac{1}{2}$	5 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	11 $\frac{1}{2}$	2	4 $\frac{1}{2}$	3 $\frac{1}{2}$	150	
1 $\frac{1}{2}$ RVN $\frac{1}{4}$	2	17 $\frac{1}{2}$	9 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	2 $\frac{1}{2}$	2 $\frac{1}{2}$	5	3 $\frac{1}{2}$	100	
1 $\frac{1}{2}$ RVN $\frac{1}{2}$	2	17 $\frac{1}{2}$	9 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	2 $\frac{1}{2}$	2 $\frac{1}{2}$	5	3 $\frac{1}{2}$	100	
1 $\frac{1}{2}$ RVN $\frac{1}{2}$	2	18 $\frac{1}{2}$	9 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	2 $\frac{1}{2}$	2 $\frac{1}{2}$	5	3 $\frac{1}{2}$	100	
1 $\frac{1}{2}$ RVN $\frac{1}{2}$	2	19 $\frac{1}{2}$	9 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	2 $\frac{1}{2}$	2 $\frac{1}{2}$	5	3 $\frac{1}{2}$	125	
1 $\frac{1}{2}$ RVN $\frac{1}{2}$	2	19 $\frac{1}{2}$	9 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	2 $\frac{1}{2}$	2 $\frac{1}{2}$	5	3 $\frac{1}{2}$	150	
1 $\frac{1}{2}$ RVN $\frac{1}{4}$	2	20 $\frac{1}{2}$	9 $\frac{1}{2}$	4 $\frac{1}{2}$	5 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	2 $\frac{1}{2}$	2 $\frac{1}{2}$	5	3 $\frac{1}{2}$	175	
2RVN $\frac{1}{2}$	3	19 $\frac{1}{2}$	10 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	3 $\frac{1}{2}$	2 $\frac{1}{2}$	6	3 $\frac{1}{2}$	100	
2RVN $\frac{1}{2}$	3	20	10 $\frac{1}{2}$	4 $\frac{1}{2}$	5 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	3 $\frac{1}{2}$	2 $\frac{1}{2}$	6	3 $\frac{1}{2}$	125	
2RVN $\frac{1}{2}$	3	21	10 $\frac{1}{2}$	4 $\frac{1}{2}$	5 $\frac{1}{2}$	3 $\frac{1}{2}$	7 $\frac{1}{2}$	3 $\frac{1}{2}$	2 $\frac{1}{2}$	6	3 $\frac{1}{2}$	175	

RVN, RVNL and MRVN Pumps Integral hp. Motors

Integral hp. Motors

Size	Suct.	A	B	C	D	E	F	H & D	H	J	K	Shipping Wgt.	
1RVN $\frac{1}{2}$	1 $\frac{1}{2}$	21 $\frac{1}{2}$	9 $\frac{1}{2}$	5	7 $\frac{1}{2}$	4	6 $\frac{1}{2}$	—	11 $\frac{1}{2}$	2	8 $\frac{1}{2}$	175	
1RVN $\frac{2}{3}$	1 $\frac{1}{2}$	22 $\frac{1}{2}$	9 $\frac{1}{2}$	5 $\frac{1}{2}$	7 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	—	11 $\frac{1}{2}$	2	3 $\frac{1}{2}$	200	
1RVN $\frac{3}{4}$	1 $\frac{1}{2}$	22 $\frac{1}{2}$	9 $\frac{1}{2}$	5 $\frac{1}{2}$	7 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	—	11 $\frac{1}{2}$	2	3 $\frac{1}{2}$	200	
1RVNL $\frac{1}{2}$	1 $\frac{1}{2}$	21 $\frac{1}{2}$	11 $\frac{1}{2}$	5	—	4	6 $\frac{1}{2}$	10 $\frac{1}{2}$	—	17 $\frac{1}{2}$	3 $\frac{1}{2}$	175	
1RVNL $\frac{2}{3}$	1 $\frac{1}{2}$	22 $\frac{1}{2}$	11 $\frac{1}{2}$	5 $\frac{1}{2}$	—	4 $\frac{1}{2}$	6 $\frac{1}{2}$	10 $\frac{1}{2}$	—	17 $\frac{1}{2}$	3 $\frac{1}{2}$	200	
1RVNL $\frac{3}{4}$	1 $\frac{1}{2}$	22 $\frac{1}{2}$	11 $\frac{1}{2}$	5 $\frac{1}{2}$	—	4 $\frac{1}{2}$	6 $\frac{1}{2}$	10 $\frac{1}{2}$	—	17 $\frac{1}{2}$	3 $\frac{1}{2}$	200	
1RVNL $\frac{5}{8}$	1 $\frac{1}{2}$	23 $\frac{1}{2}$	11 $\frac{1}{2}$	5 $\frac{1}{2}$	—	4 $\frac{1}{2}$	7 $\frac{1}{2}$	10 $\frac{1}{2}$	—	17 $\frac{1}{2}$	3 $\frac{1}{2}$	225	
1 $\frac{1}{2}$ RVN $\frac{1}{2}$	3	22 $\frac{1}{2}$	10	5	7 $\frac{1}{2}$	4	6 $\frac{1}{2}$	—	2 $\frac{1}{2}$	2 $\frac{1}{2}$	5	3 $\frac{1}{2}$	175
1 $\frac{1}{2}$ RVN $\frac{2}{3}$	3	23 $\frac{1}{2}$	10 $\frac{1}{2}$	5 $\frac{1}{2}$	7 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	—	2 $\frac{1}{2}$	2 $\frac{1}{2}$	5	3 $\frac{1}{2}$	200
1 $\frac{1}{2}$ RVN $\frac{3}{4}$	3	23 $\frac{1}{2}$	10 $\frac{1}{2}$	5 $\frac{1}{2}$	7 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	—	2 $\frac{1}{2}$	2 $\frac{1}{2}$	5	3 $\frac{1}{2}$	200
1 $\frac{1}{2}$ RVN $\frac{5}{8}$	3	23 $\frac{1}{2}$	10 $\frac{1}{2}$	5 $\frac{1}{2}$	7 $\frac{1}{2}$	4 $\frac{1}{2}$	7 $\frac{1}{2}$	—	2 $\frac{1}{2}$	2 $\frac{1}{2}$	5	3 $\frac{1}{2}$	225
2RVN $\frac{1}{2}$	3	23	11	5	7 $\frac{1}{2}$	4	6 $\frac{1}{2}$	—	3 $\frac{1}{2}$	2 $\frac{1}{2}$	6	3 $\frac{1}{2}$	175
2RVN $\frac{2}{3}$	3	24	11 $\frac{1}{2}$	5 $\frac{1}{2}$	7 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	—	3 $\frac{1}{2}$	2 $\frac{1}{2}$	6	3 $\frac{1}{2}$	200
2RVN $\frac{3}{4}$	3	24	11 $\frac{1}{2}$	5 $\frac{1}{2}$	7 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	—	3 $\frac{1}{2}$	2 $\frac{1}{2}$	6	3 $\frac{1}{2}$	225
2RVN $\frac{5}{8}$	3	24 $\frac{1}{2}$	11 $\frac{1}{2}$	5 $\frac{1}{2}$	7 $\frac{1}{2}$	4 $\frac{1}{2}$	7 $\frac{1}{2}$	—	3 $\frac{1}{2}$	2 $\frac{1}{2}$	6	3 $\frac{1}{2}$	250
1MRVN $\frac{1}{2}$	1 $\frac{1}{2}$	23 $\frac{1}{2}$	12	5 $\frac{1}{2}$	8	4 $\frac{1}{2}$	6 $\frac{1}{2}$	—	27 $\frac{1}{2}$	21 $\frac{1}{2}$	4 $\frac{1}{2}$	200	
1MRVN $\frac{2}{3}$	1 $\frac{1}{2}$	24 $\frac{1}{2}$	12	5 $\frac{1}{2}$	8 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	—	27 $\frac{1}{2}$	21 $\frac{1}{2}$	4 $\frac{1}{2}$	225	
1MRVN $\frac{3}{4}$	1 $\frac{1}{2}$	24 $\frac{1}{2}$	12	5 $\frac{1}{2}$	8 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	—	27 $\frac{1}{2}$	21 $\frac{1}{2}$	4 $\frac{1}{2}$	250	
1MRVN $\frac{5}{8}$	1 $\frac{1}{2}$	24 $\frac{1}{2}$	12	5 $\frac{1}{2}$	8 $\frac{1}{2}$	4 $\frac{1}{2}$	7 $\frac{1}{2}$	—	27 $\frac{1}{2}$	21 $\frac{1}{2}$	4 $\frac{1}{2}$	275	

*Discharge is horizontal. Distance is that below centerline.

MRV Pumps

Size	Suct.	A	B	C	D	E	F	G	H	I	K	Wt lbs
1 $\frac{1}{2}$ MRV10	2 $\frac{1}{2}$	7	16 $\frac{1}{2}$	37 $\frac{1}{2}$	2 $\frac{1}{2}$	4 $\frac{1}{2}$	11 $\frac{1}{2}$	9 $\frac{1}{2}$	7 $\frac{1}{2}$	6 $\frac{1}{2}$	5 $\frac{1}{2}$	525
1 $\frac{1}{2}$ MRV15	2 $\frac{1}{2}$	8	17 $\frac{1}{2}$	38 $\frac{1}{2}$	3 $\frac{1}{2}$	5 $\frac{1}{2}$	11 $\frac{1}{2}$	10 $\frac{1}{2}$	7 $\frac{1}{2}$	6 $\frac{1}{2}$	5 $\frac{1}{2}$	600
1 $\frac{1}{2}$ MRV20	2 $\frac{1}{2}$	8	17 $\frac{1}{2}$	40 $\frac{1}{2}$	3 $\frac{1}{2}$	5 $\frac{1}{2}$	11 $\frac{1}{2}$	12	7 $\frac{1}{2}$	6 $\frac{1}{2}$	5 $\frac{1}{2}$	675
1 $\frac{1}{2}$ MRV25	2 $\frac{1}{2}$	9	18 $\frac{1}{2}$	42 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	13 $\frac{1}{2}$	11 $\frac{1}{2}$	7 $\frac{1}{2}$	6 $\frac{1}{2}$	5 $\frac{1}{2}$	825
1 $\frac{1}{2}$ MRV30	2 $\frac{1}{2}$	9	18 $\frac{1}{2}$	43 $\frac{1}{2}$	4 $\frac{1}{2}$	6 $\frac{1}{2}$	13 $\frac{1}{2}$	12 $\frac{1}{2}$	7 $\frac{1}{2}$	6 $\frac{1}{2}$	5 $\frac{1}{2}$	875
2 MRV10	3	7	17 $\frac{1}{2}$	40 $\frac{1}{2}$	5 $\frac{1}{2}$	11 $\frac{1}{2}$	9 $\frac{1}{2}$	8	9 $\frac{1}{2}$	5 $\frac{1}{2}$	5 $\frac{1}{2}$	500
2 MRV15	3	8	18 $\frac{1}{2}$	41 $\frac{1}{2}$	5 $\frac{1}{2}$	11 $\frac{1}{2}$	10 $\frac{1}{2}$	8	9 $\frac{1}{2}$	5 $\frac{1}{2}$	5 $\frac{1}{2}$	650
2 MRV20	3	8	18 $\frac{1}{2}$	43 $\frac{1}{2}$	5 $\frac{1}{2}$	11 $\frac{1}{2}$	12	8	9 $\frac{1}{2}$	5 $\frac{1}{2}$	5 $\frac{1}{2}$	700
2 MRV25	3	9	19 $\frac{1}{2}$	44 $\frac{1}{2}$	5 $\frac{1}{2}$	12	13 $\frac{1}{2}$	11 $\frac{1}{2}$	8	9 $\frac{1}{2}$	5 $\frac{1}{2}$	875
2 MRV30	3	9	19 $\frac{1}{2}$	45 $\frac{1}{2}$	5 $\frac{1}{2}$	12	13 $\frac{1}{2}$	12 $\frac{1}{2}$	8	9 $\frac{1}{2}$	5 $\frac{1}{2}$	900
2 MRV40	3	10	20 $\frac{1}{2}$	47 $\frac{1}{2}$	4 $\frac{1}{2}$	13 $\frac{1}{2}$	12 $\frac{1}{2}$	8	9 $\frac{1}{2}$	5 $\frac{1}{2}$	5 $\frac{1}{2}$	1025
2 MRV50	3	10	20 $\frac{1}{2}$	48 $\frac{1}{2}$	4 $\frac{1}{2}$	13 $\frac{1}{2}$	13 $\frac{1}{2}$	8	9 $\frac{1}{2}</math$			

60 Cycle Performance--Closed Impeller

TOTAL HEAD IN FEET													U.S. Gals. per Min.
15	20	25	30	40	50	60	70	80	90	100	125	150	
5 <i>IRVN5</i> 10 <i>IRVN5</i> 15 <i>IRVN5</i>	<i>IRVN5</i> <i>IRVN5</i> <i>IRVN5</i> <i>IRVN5</i>	5 10 15											
20 <i>IRVN5</i> 30 <i>IRVN5</i> 40 <i>IRVN5</i>	<i>IRVN5</i> <i>IRVN5</i> <i>IRVN5</i> <i>IRVN5</i>	20 30 40											
50 <i>IRVN5</i>	<i>IRVN5</i> <i>IRVN5</i>	<i>IRVN5</i> <i>IRVN5</i>	50										
60 <i>IRVN5</i>	<i>IRVN5</i> <i>IRVN5</i>	<i>IRVN5</i> <i>IRVN5</i>	60										
75 <i>IRVN5</i>	<i>IRVN5</i> <i>IRVN5</i>	<i>IRVN5</i> <i>IRVN5</i>	75										
100 <i>IRVN5</i>	<i>IRVN5</i> <i>IRVN5</i>	<i>IRVN5</i> <i>IRVN5</i>	100										
125 <i>IRVN5</i>	<i>IRVN5</i> <i>IRVN5</i>	<i>IRVN5</i> <i>IRVN5</i>	125										
150 <i>IRVS1</i>	<i>IRVS1</i> <i>IRVS1</i>	<i>IRVS1</i> <i>IRVS1</i>	150										
175 <i>IRVS1</i>	<i>IRVS1</i> <i>IRVS1</i>	<i>IRVS1</i> <i>IRVS1</i>	175										
200 <i>IRVS1</i>	<i>IRVS1</i> <i>IRVS1</i>	<i>IRVS1</i> <i>IRVS1</i>	200										
225 <i>IRVS1</i>	<i>IRVS1</i> <i>IRVS1</i>	<i>IRVS1</i> <i>IRVS1</i>	225										
250 <i>IRVS1</i>	<i>IRVS1</i> <i>IRVS1</i>	<i>IRVS1</i> <i>IRVS1</i>	250										
300 <i>IRVS2</i>	<i>IRVS2</i> <i>IRVS2</i>	<i>IRVS2</i> <i>IRVS2</i>	300										
350 <i>IRVL2</i>	<i>IRVL2</i> <i>IRVL2</i>	<i>IRVL2</i> <i>IRVL2</i>	350										
400 <i>IRVL3</i>	<i>IRVL3</i> <i>IRVL3</i>	<i>IRVL3</i> <i>IRVL3</i>	400										
450 <i>IRVL5</i>	<i>IRVL5</i> <i>IRVL5</i>	<i>IRVL5</i> <i>IRVL5</i>	450										
500 <i>IRVL5</i>	<i>IRVL5</i> <i>IRVL5</i>	<i>IRVL5</i> <i>IRVL5</i>	500										
550 <i>IRVL5</i>	<i>IRVL5</i> <i>IRVL5</i>	<i>IRVL5</i> <i>IRVL5</i>	550										
600 <i>IRVL6</i>	<i>IRVL6</i> <i>IRVL6</i>	<i>IRVL6</i> <i>IRVL6</i>	600										
600 <i>IRVL7</i>	<i>IRVL7</i> <i>IRVL7</i>	<i>IRVL7</i> <i>IRVL7</i>	600										
600 <i>IRVL8</i>	<i>IRVL8</i> <i>IRVL8</i>	<i>IRVL8</i> <i>IRVL8</i>	600										
700 <i>IRVL10</i>	<i>IRVL10</i> <i>IRVL10</i>	<i>IRVL10</i> <i>IRVL10</i>	700										
800 <i>IRVL10</i>	<i>IRVL10</i> <i>IRVL10</i>	<i>IRVL10</i> <i>IRVL10</i>	800										
900 <i>IRVL15</i>	<i>IRVL15</i> <i>IRVL15</i>	<i>IRVL15</i> <i>IRVL15</i>	900										
1000 <i>IRVL15</i>	<i>IRVL15</i> <i>IRVL15</i>	<i>IRVL15</i> <i>IRVL15</i>	1000										
1100 <i>IRVL15</i>	<i>IRVL15</i> <i>IRVL15</i>	<i>IRVL15</i> <i>IRVL15</i>	1100										
1250 <i>IRVL15</i>	<i>IRVL15</i> <i>IRVL15</i>	<i>IRVL15</i> <i>IRVL15</i>	1250										
1400 <i>IRVL15</i>	<i>IRVL15</i> <i>IRVL15</i>	<i>IRVL15</i> <i>IRVL15</i>	1400										

Based on clear, cold water with 15 ft. suction lift except those marked "a" which are based on 10 ft. lift.

Selections in italics (such as *IRVN5*) are standard line Motorpumps.

Selections in regular type (such as *IRVN5*) are heavy-duty line Motorpumps.

Selections with letter "M" in the symbol (such as *IMRVN2* and *IRVN5*) are 2-stage Motorpumps.

50 Cycle Performance--Closed Impeller

U. S. Gals. per Min.	TOTAL HEAD IN FEET											U. S. Gals. per Min.	
	15	20	25	30	40	50	60	70	80	90	100	110	
5	<i>IRVN1½</i>	<i>IRVN2</i>	<i>IRVN3½</i>	<i>IRVN4</i>	<i>IRVN5½</i>	<i>IRVN6</i>	<i>IRVN7½</i>	<i>IRVN8</i>	<i>IRVN9½</i>	<i>IRVN10</i>	<i>IRVN11½</i>	<i>IRVN12</i>	5
10	<i>IRVN1½</i>	<i>IRVN2</i>	<i>IRVN3½</i>	<i>IRVN4</i>	<i>IRVN5½</i>	<i>IRVN6</i>	<i>IRVN7½</i>	<i>IRVN8</i>	<i>IRVN9½</i>	<i>IRVN10</i>	<i>IRVN11½</i>	<i>IRVN12</i>	10
15	<i>IRVN1½</i>	<i>IRVN2</i>	<i>IRVN3½</i>	<i>IRVN4</i>	<i>IRVN5½</i>	<i>IRVN6</i>	<i>IRVN7½</i>	<i>IRVN8</i>	<i>IRVN9½</i>	<i>IRVN10</i>	<i>IRVN11½</i>	<i>IRVN12</i>	15
20	<i>IRVN1½</i>	<i>IRVN2</i>	<i>IRVN3½</i>	<i>IRVN4</i>	<i>IRVN5½</i>	<i>IRVN6</i>	<i>IRVN7½</i>	<i>IRVN8</i>	<i>IRVN9½</i>	<i>IRVN10</i>	<i>IRVN11½</i>	<i>IRVN12</i>	20
30	<i>IRVN1½</i>	<i>IRVN2</i>	<i>IRVN3½</i>	<i>IRVN4</i>	<i>IRVN5½</i>	<i>IRVN6</i>	<i>IRVN7½</i>	<i>IRVN8</i>	<i>IRVN9½</i>	<i>IRVN10</i>	<i>IRVN11½</i>	<i>IRVN12</i>	30
40	<i>IRVN1½</i>	<i>IRVN2</i>	<i>IRVN3½</i>	<i>IRVN4</i>	<i>IRVN5½</i>	<i>IRVN6</i>	<i>IRVN7½</i>	<i>IRVN8</i>	<i>IRVN9½</i>	<i>IRVN10</i>	<i>IRVN11½</i>	<i>IRVN12</i>	40
50	<i>IRVN1½</i>	<i>IRVN2</i>	<i>IRVN3½</i>	<i>IRVN4</i>	<i>IRVN5½</i>	<i>IRVN6</i>	<i>IRVN7½</i>	<i>IRVN8</i>	<i>IRVN9½</i>	<i>IRVN10</i>	<i>IRVN11½</i>	<i>IRVN12</i>	50
60	<i>IRVN1½</i>	<i>IRVN2</i>	<i>IRVN3½</i>	<i>IRVN4</i>	<i>IRVN5½</i>	<i>IRVN6</i>	<i>IRVN7½</i>	<i>IRVN8</i>	<i>IRVN9½</i>	<i>IRVN10</i>	<i>IRVN11½</i>	<i>IRVN12</i>	60
75	<i>IRVN1½</i>	<i>IRVN2</i>	<i>IRVN3½</i>	<i>IRVN4</i>	<i>IRVN5½</i>	<i>IRVN6</i>	<i>IRVN7½</i>	<i>IRVN8</i>	<i>IRVN9½</i>	<i>IRVN10</i>	<i>IRVN11½</i>	<i>IRVN12</i>	75
100	<i>2RVN½</i>	<i>1½RVN1</i>	<i>1½RVN1½</i>	<i>1½RVN2</i>	<i>1½RVN2½</i>	<i>1½RVN3</i>	<i>1½RVN3½</i>	<i>1½RVN4</i>	<i>1½RVN4½</i>	<i>1½RVN5</i>	<i>1½RVN5½</i>	<i>1½RVN6</i>	100
125	<i>1½RVN1</i>	<i>1½RVN1½</i>	<i>1½RVN2</i>	<i>1½RVN2½</i>	<i>1½RVN3</i>	<i>1½RVN3½</i>	<i>1½RVN4</i>	<i>1½RVN4½</i>	<i>1½RVN5</i>	<i>1½RVN5½</i>	<i>1½RVN6</i>	<i>1½RVN6½</i>	125
150	<i>1½RVN1½</i>	<i>1½RVN1½</i>	<i>1½RVN2</i>	<i>1½RVN2½</i>	<i>1½RVN3</i>	<i>1½RVN3½</i>	<i>1½RVN4</i>	<i>1½RVN4½</i>	<i>1½RVN5</i>	<i>1½RVN5½</i>	<i>1½RVN6</i>	<i>1½RVN6½</i>	150
175	<i>2RV1½</i>	<i>1½RVN2</i>	<i>2RVN2</i>	<i>2RVN2½</i>	<i>2RVN3</i>	<i>2RVN3½</i>	<i>2RVN4</i>	<i>2RVN4½</i>	<i>2RVN5</i>	<i>2RVN5½</i>	<i>2RVH5</i>	<i>2RVH7½</i>	175
200	<i>3RVH1¼</i>	<i>3RVH1½</i>	<i>2RVN2</i>	<i>2RVN2½</i>	<i>2RVN3</i>	<i>2RVN3½</i>	<i>2RVN4</i>	<i>2RVN4½</i>	<i>2RVN5</i>	<i>2RVN5½</i>	<i>2RVH7½</i>	<i>2RVH7½</i>	200
225	<i>3RVH1½</i>	<i>3RVH2</i>	<i>3RVS3</i>	<i>2RVN3</i>	<i>2RVN5</i>	<i>3RVS3</i>	<i>2RVN5</i>	<i>2RVN5½</i>	<i>2RVN5</i>	<i>2RVH7½</i>	<i>2RVH7½</i>	<i>2RVH10</i>	225
250	<i>3RVH1¾</i>	<i>3RVH2</i>	<i>3RVS3</i>	<i>2RVN5</i>	<i>3RVS3</i>	<i>2RVN5</i>	<i>3RVS5</i>	<i>2RVN5</i>	<i>3RVL5</i>	<i>2RVH7½</i>	<i>2RVH10</i>	<i>2RVH10</i>	250
300	<i>3RVL2</i>	<i>3RVS3</i>	<i>3RVS3</i>	<i>3RVS5</i>	<i>3RVS5</i>	<i>3RVS5</i>	<i>3RVS5</i>	<i>3RVS7½</i>	<i>3RVL10</i>	<i>2RVH10</i>	<i>2RVH15</i>	<i>2RVH15</i>	300
350	<i>3RVL3</i>	<i>3RVL3</i>	<i>3RVL5</i>	<i>3RVS5</i>	<i>3RVL5</i>	<i>3RVS5</i>	<i>3RVL7½</i>	<i>3RVL7½</i>	<i>3RVL10</i>	<i>3RVHS10</i>	<i>3RVHS15</i>	<i>3RVHS15</i>	350
400	<i>3RVL3</i>	<i>3RVL3</i>	<i>4RVL5</i>	<i>4RVL5</i>	<i>4RVL5</i>	<i>4RVL7½</i>	<i>4RVL7½</i>	<i>4RVL10</i>	<i>4RVL10</i>	<i>4RVL15</i>	<i>3RVH15</i>	<i>3RVH15</i>	400
450	<i>3RVL3</i>	<i>4RVL3</i>	<i>3RVL5</i>	<i>4RVL5</i>	<i>3RVL5</i>	<i>4RVL5</i>	<i>3RVL7½</i>	<i>4RVL7½</i>	<i>3RVL10</i>	<i>3RVL15</i>	<i>3RVL15</i>	<i>3RVH20</i>	450
500													500
550													550
600													600
700													700
800													800
900													900
1000													1000
1100													1100
1250													1250

U. S. Gals. per Min.	TOTAL HEAD IN FEET											U. S. Gals. per Min.	
	125	150	175	180	200	220	240	260	280	300	325	350	
5	<i>IMRVN1½</i>	<i>IMRVN1½</i>	<i>IMRVN2</i>	<i>IMRVN2</i>	<i>IMRVN2</i>	<i>IMRVN2</i>	<i>IMRVN3</i>						5
10	<i>IMRVN1½</i>	<i>IMRVN2</i>	<i>IMRVN2</i>	<i>IMRVN3</i>	<i>IMRVN3</i>								10
15	<i>IMRVN1½</i>	<i>IMRVN2</i>	<i>IMRVN2</i>	<i>IMRVN3</i>	<i>IMRVN3</i>								15
20	<i>IMRVN2</i>	<i>IMRVN2</i>	<i>IMRVN3</i>	<i>IMRVN3</i>	<i>IMRVN3</i>	<i>IMRVN10</i>	<i>1½MRV10</i>	<i>1½MRV10</i>	<i>1½MRV10</i>	<i>1½MRV10</i>	<i>1½MRV10</i>	<i>1½MRV10</i>	20
30	<i>IMRVN3</i>	<i>IMRVN3</i>	<i>IMRVN3</i>	<i>IMRVH5</i>	<i>IMRVH5</i>	<i>1½MRV10</i>	30						
40	<i>IMRVN3</i>	<i>IMRVN5</i>	<i>1½RVH6</i>	<i>1½RVH6</i>	<i>1½MRV10</i>	40							
50	<i>IMRVN5</i>	<i>IMRVN5</i>	<i>1½RVH6</i>	<i>1½RVH6</i>	<i>1½MRV10</i>	50							
75	<i>1½RVH5</i>	<i>1½RVH5</i>	<i>1½RVH7½</i>	<i>1½RVH7½</i>	<i>2RVH10</i>	<i>1½MRV10</i>	75						
100						<i>1½MRV10</i>	100						
125						<i>1½RVH7½</i>	<i>1½RVH7½</i>	<i>2RVH10</i>	<i>2MRV10</i>	<i>2MRV10</i>	<i>2MRV15</i>	<i>2MRV15</i>	125
150	<i>1½RVH7½</i>	<i>1½RVH10</i>	<i>2RVH10</i>	<i>2RVH10</i>	<i>2RVH10</i>	<i>2MRV15</i>	<i>2MRV15</i>	<i>2MRV15</i>	<i>2MRV15</i>	<i>2MRV15</i>	<i>2MRV20</i>	<i>2MRV20</i>	150
175						<i>2RVH10</i>	<i>2RVH15</i>	<i>3RVH15</i>	<i>3RVH15</i>	<i>3RVH15</i>	<i>3RVH20</i>	<i>3RVH20</i>	175
200						<i>2RVH15</i>	<i>2RVH15</i>	<i>3RVH15</i>	<i>3RVH15</i>	<i>3RVH15</i>	<i>3RVH20</i>	<i>3RVH20</i>	200
225	<i>2RVH10</i>	<i>2RVH15</i>	<i>2MRV20</i>	<i>2MRV25</i>	<i>2MRV25</i>	225							
250	<i>2RVH15</i>	<i>2RVH15</i>	<i>2MRV20</i>	<i>2MRV20</i>	<i>2MRV20</i>	<i>2MRV25</i>	250						
300	<i>3RVH15</i>	<i>3RVH20</i>	<i>3RVH20</i>	<i>3RVH25</i>	<i>3RVH25</i>								300
350	<i>3RVH15</i>	<i>3RVH20</i>	<i>3RVH20</i>	<i>3RVH25</i>	<i>3RVH25</i>								350
400													400
450													450
500													500

Based on clear cold water with 15 ft. suction lift except those marked "a" which are based on 10 ft. lift.
 Selections in italics (such as *IRVN1½*) are standard line Motorpumps.
 Selections in regular type (such as *1½RVH1*) are heavy-duty line Motorpumps.
 Selections with letter "M" in the symbol (such as *IMRVN2* and *1½MRV10*) are 2-stage Motorpumps.

Motorpump Install

Motorpump handling mine water. This unit has a sling yoke mounting so that it may also be used for shaft dewatering.

Motorpumps handling cooling water for two Ingersoll-Rand Diesel engines in a textile mill.

Two Motorpumps handling gasoline at a bulk distributing station.

Motorpump serving humidifying unit for conditioning a proof box in a bakery.

Applications Everywhere

Motorpumps handling cooling water for compressors in a gas distribution station.

Two Motorpumps handling reflux liquid in a refinery.

Four Motorpumps handling gasoline and oil in a bulk distributing station.

48840

Three open impeller motor pumps handling 4% stock in a paper mill.

Close-Coupled Turbine-Driven Pumps

Classes TRV and TMRV

Single-stage, Class TRV, pump.

Two-stage, Class TMRV, pump.

Single-stage, Class TRV unit installed in a refinery.

These units are complete, self-contained, turbine-driven pumping units having the pump impeller and turbine wheel mounted on a common shaft.

The same pump casings and fittings are used as for the Motorpumps described on the preceding pages. They are available in practically all of the heavy-duty sizes described on page 4.

For single-stage units (Classes TRV and TRVNL) capacities range from 5 to 1400 gals. per min. against heads to 240 ft. For two-stage units (Classes TMRV and TMRVN) capacities range from 20 to 275 gals. per min. against heads to 550 ft.

The steam turbine is of a type particularly suited for pump drive. Separate valves control the steam inlet nozzles, thus allowing exact control of the power output of the turbine. The governor is of the constant speed, centrifugal flyweight type designed for exacting service and close regulation.

Governor

The governor is of slow-speed flyball type for exacting service. It is lubricated by sight feed oilers supplemented by an effective splash system.

Turbine

The turbine is particularly suited for pump service and turbine wheel is of two-row velocity-stage type.

Shaft

The shaft is extra-heavy and is completely covered within the pump by the impeller and shaft sleeve.

Bearings

The bearings are of deep-groove, oil-lubricated type and are mounted in dust-tight housings.

Glands

Stuffing box glands are of the split type, and are easily removed from the shaft.

Stuffing Box

The stuffing box is extra deep and contains 5 or more rings of packing and a sealing gland.

Impeller

The impeller is of the latest hydraulic design and is carefully balanced.

Casing

The casing is vertically split and has short, carefully designed water passages.

Approximate TRV Dimensions

TRVN and TMRVN Units

Size	Pump		Turbine		B	C	D	G	H	L	M	O	P	R
	Suct	Disch	Inlet	Exh.										
1-TRVN19	1½	1	¾	2	7½	3¾	15½	30½	17½	12½	18	27½	21	3½
1-TMRVN9	1½	1	¾	2	7½	3¾	17½	30½	17½	12½	18	27½	21	4½
1-TMRVN12	1½	1	1	3	10	3¾	20½	32	2½	14½	22½	27½	21	4½

TMRV Units

Size	Tur-		Pump		A	C	D	E	F	G	H	J	L	M	N	O	P
	Suct	Disch	Inlet	Exh.													
1½-TMRV-16	2½	1½	1½	4	10½	7½	25½	13½	15½	49½	6½	53½	20½	26½	22	34 23	
1½-TMRV-20	2½	1½	2	5	11½	7½	26½	14½	17½	53½	6½	53½	20½	29½	23½	34 29	
2TMRV-16	3	2	1½	4	10½	8	26½	13½	15½	51½	9½	55½	20½	26½	22	34 23	
2TMRV-20	3	2	2	5	11½	8	28½	14½	17½	56	9½	55½	20½	29½	23½	34 29	

Two-stage, class TMRV, unit on boiler feed service.

TRV Units

Size	Pump		Turbine		A	B	C	D	E	F	G	H	I	J	K	L	M	O	P	R
	Suct	Disch	Inlet	Exh.																
1½TRV9	2	1½	¾	2	7½	3¾	17½	31½	4	12½	18	27½	21	2½						
1½TRV12	2	1½	1	3	10	3¾	20	33½	4	14½	22½	27½	21	2½						
1½TRVH9	2½	1½	¾	2	7½	3¾	20½	33½	4	12½	18	27½	21	4½						
1½TRVH12	2½	1½	1½	3	10	3¾	22½	35½	4	14½	22½	27½	21	4½						
1½TRVH16	2½	1½	1½	5	13½	4½	22½	39½	4	20½	26½	35	25	4½						
1½TRVH20	2½	1½	2	5	13½	4½	23½	39½	4	20½	29½	40	29	4½						
2TRV9	3	2	¾	2	7½	3¾	17½	36	4½	12½	18	27½	21	3½						
2TRV12	3	2	1	3	10	3¾	20	37½	4½	14½	22½	27½	21	3½						
2TRVH12	3	2	1	3	10	4½	22	36½	4½	14½	22½	30	21	4½						
2TRVH16	3	2	1½	4	11½	4½	23½	40½	4½	20½	26½	35	25	4½						
2TRVH20	3	2	2	5	13½	4½	25½	40½	4½	20½	29½	40	29	4½						
3TRVS9	4	3	¾	2	7½	3¾	17½	33½	4½	12½	18	27½	21	4½						
3TRVS12	4	3	1	3	10	3¾	20	34½	4½	14½	22½	27½	21	4½						
3TRVS16	4	3	1½	4	11½	4½	22½	38½	4½	20½	26½	35	25	4½						
3TRVH16	4	3	1½	4	11½	4½	23½	45½	5½	20½	26½	35	25	5½						
3TRVH20	4	3	2	5	13½	4½	29½	45½	5½	20½	29½	40	29	5½						
3TRVL12	4	3	1	3	10	3¾	23½	36½	5½	14½	22½	27½	21	5½						
3TRVL16	4	3	1½	4	11½	4½	25½	40½	5½	20½	26½	35	25	5½						
3TRVL20	4	3	2	5	13½	4½	26½	40½	5½	20½	29½	40	29	5½						
4TRVL12	5	4	1	3	10	3¾	23½	36½	6	14½	22½	27½	21	6½						
4TRVL16	5	4	1½	4	11½	4½	26	40½	6	20½	26½	35	25	6½						
4TRVL20	5	4	2	5	13½	4½	27½	40½	6	20½	29½	40	29	6½						
5TRVL20	6	5	2	5	13½	4½	24½	41½	6½	20½	29½	40	29	8½						

Discharge nozzle may be turned to positions described at bottom of page 9.

Single-stage, class TRV, unit installed in an ice plant.

Cradle-Mounted Pumping Units

Heavy-Duty Type Classes CRV and CMRV

Single-stage unit handling wash water in a refinery.

Single-Stage, class CRV, with motor drive.

Class CRV cradle-mounted pumps are single-stage units which may be coupled to any type of driver. They are available in 1½, 2, 3, 4 and 5-inch discharge sizes. They will handle from 10 to 1400 gals. per min. against heads to 240 ft.

They are quality pumps in every respect. The same sturdy, high-efficiency pump casting is used as on the heavy-duty, class RV Motorpump.

The shaft is extra heavy insuring a smooth running pump and minimum stuffing box care.

The bearing on the pump end is of the two-row self aligning type and carries radial loads only. The bearing on the coupling end

is extra large. It is of the single-row, deep-groove type and carries both radial and thrust loads. The bearing housing is part of the cradle and is dust and moisture-tight.

The impeller is balanced both mechanically and hydraulically. A convenient impeller puller makes disassembly easy.

The shaft is fully protected within the pump and through the stuffing box by the impeller and shaft sleeve. The shaft sleeve is packed to prevent leakage under the sleeve. An adjustable needle valve provides proper stuffing box seal and lubrication.

The cradle is of heavy construction and rigidly supports the shaft and casing.

The suction is on the end of the pump and the discharge is part of the casing. The discharge is normally furnished vertical but may be turned at a 90° angle from the vertical. Suction and discharge connections are of standard flange construction.

The units are usually mounted on a base-plate with the driver. When standard N.E.M.A. frame motors are used the base-plate will be cast iron. For other drivers it is usually welded steel.

Two-Stage Units -- Class CMRV

Two-stage, Class CMRV, unit with turbine drive.

Class CMRV pumps are two-stage units available in 1½ and 2-inch discharge sizes. They will handle from 20 to 275 gals. per min. against heads to 500 ft.

They have the same quality features as the single-stage units described above. The two impellers are of the single-suction type mounted back to back.

Suction and discharge connections are of standard flange type.

Features of Cradle-Mounted Units

Wearing Rings

Stationary, renewable wearing rings seal impeller hubs against leakage.

Suction Pipe

The suction pipe is easily removed and gives access to the impeller.

Casing

The heavy casing contains the discharge nozzle, which may be turned to four positions.

Impeller

The impeller is of the latest hydraulic design. It is mechanically and hydraulically balanced.

Stuffing Box

The stuffing box is extra deep accommodating five or more rings of packing and a sealing gland.

Impeller Puller

A slotted ring bearing on the shaft sleeve provides an easy means of removing the impeller.

Thrust Bearing

The thrust bearing is extra large and of the single-row, deep-groove type. It carries both radial and thrust loads.

Flexible Coupling

A flexible coupling of ample capacity absorbs end play in the driver shaft and compensates for temperature changes.

Glands

The glands are of the split type and may be easily removed from the shaft.

Inboard Bearing

The inboard bearing is of the double-row self-aligning type. It carries radial loads only.

Cradle

The cradle is extra heavy and rigidly supports the casing and shaft.

Shaft

The shaft is over-size thus insuring smooth operation and minimum deflection.

Two-Stage Units

Two-stage units are of same general construction as single-stage units above. The two impellers are placed back to back. The thrust bearing is on the pump end and is of the duplex angular contact type. The pump suction is on the right looking toward the pump and the discharge on the left.

Cross-section of two-stage CMRV.

Cradle-Mounted Pumping Units

Standard Type Classes CRVN and CMRVN

CRVN unit installed in a manufacturing plant.

Single-stage, class CRVN, unit with motor drive.

Two-stage, class CMRVN, unit with motor drive.

Single-Stage Units--Class CRVN

Class CRVN pumps are single-stage units available in 1, 1½ and 2-inch discharge sizes. They will handle 5 to 250 gals. per min. against heads to 140 ft.

The units use the same high-quality casing and fittings as the standard type Motorpumps described on page 6.

Suction and discharge connections are threaded to receive standard pipe.

Two-Stage Units--Class CMRVN

Class CMRVN pumps are two-stage units available in 1-inch discharge size. They will handle from 20 to 55 gals. per min. against heads to 200 ft. They have suction and discharge connections threaded to receive standard pipe.

Cradle-Mounted Pump Modifications and Types of Drive

Electric motor drive through increasing gear from 25-cycle motor.

Flat belt drive, less base. This style is widely used for irrigation work and other services where a base is unnecessary. Its flexibility of application and the fact that it can be shipped from stock on a day's notice are greatly increasing its uses.

Gasoline engine drive through gears.

These pumps are available for practically any type of drive. Motor and turbine drives are illustrated on pages 16 and 18 and some additional drives on this page. Most of the mechanical modifications shown on page 7 are also available on these pumps.

Water-wheel drive.

V-belt drive from motor.

Approximate Dimensions of Cradle-Mounted Units

DO NOT USE THESE DIMENSIONS FOR BUILDING FOUNDATIONS. OBTAIN CERTIFIED FOUNDATION PRINT.

Single-stage units less driver

Size	Suction	A	C	D	F	G	I	J	K	L	Shaft dia. at Coupling	Keyway
1CRVN†	1½	3½	4½	4¾	2	13½	2½	3½	3½	2	¾	¾ x 1½ x 1½
1½CRVN†	2	3½	4½	5	2½	13½	2½	3½	3½	2	¾	¾ x 1½ x 1½
1½CRV	3	2½	6	6½	4	21½	5½	8½	5	2½	1½	¾ x 2½ x 2½
1½CRVH	2½	4½	6	6½	4	21½	5½	8½	5	2½	1½	¾ x 2½ x 2½
1½CRVL	2	5½	6	6½	4½	21½	5½	8½	5	2½	1½	¾ x 2½ x 2½
2CRV	3	3½	6	6½	4½	21½	5½	8½	4½	2½	1½	¾ x 2½ x 2½
2CRVH	3	4½	6	7½	4½	21½	5½	8½	4½	2½	1½	¾ x 2½ x 2½
2CRVL	3	6½	8	8	5	24½	6½	10½	6½	2½	1½	¾ x 2½ x 2½
3CRVS	4	4½	6	6½	4½	21½	5½	8½	5½	2½	1½	¾ x 2½ x 2½
3CRVL	4	5½	8	9½	5½	24½	6½	10½	6½	2½	1½	¾ x 2½ x 2½
3CRVHS	4	5½	8	8	5½	24½	6½	10½	6½	2½	1½	¾ x 2½ x 2½
3CRVH	4	5½	8	8	5½	24½	6½	10½	6½	2½	1½	¾ x 2½ x 2½
4CRVL	5	6½	8	10½	6	24½	6½	10½	6½	2½	1½	¾ x 2½ x 2½
5CRVL	6	8½	8	8½	6½	24½	6½	10½	6½	2½	1½	¾ x 2½ x 2½

All dimensions in inches.
†Threaded suction and discharge connections.

Two-stage units

Size	Suction	A*	B	C*	D*	E*	F	G	H	I*	K*	L	M*
1½CMRV	2½	7½	7½	9½	21½	12½	6½	5½	2-6½	2-8	2-1	23	4-8
2CMRV	3	7½	8	9½	22	12½	9½	5½	2-6½	3-0	2-3	23	4-8

*Will vary with size and type of motor, turbine or engine.
All dimensions in inches or feet and inches.

Single-stage units with drivers

Size	Suction	A	C*	D	E	F	G	I	L	M	N	O*	P*
1CRVN†	1½	3½	6½	4½	4½	2	13½	16½	12½	25	18	24	22
1½CRVN†	2	3½	6½	5	4½	2	13½	16½	12½	25	18	24	22
1½CRV	3	2½	10½	6½	10½	6	21½	17½	15½	3-5	21	24	22
1½CRVH	2½	4½	11½	6½	10½	6	21½	25½	21½	3-5	21	24½	22
1½CRVL	2	5½	10½	6½	10½	6	21½	27½	20	3-5	21	24	22
2CRV	3	3½	12½	6½	6	4½	21½	22½	20½	3-6	21	19	17½
2CRVH	3	4½	12½	7½	6	4½	21½	27½	22	3-11	21	30%	24½
2CRVL	3	6½	13½	8	8	5	24½	22½	19½	3-6	21	30	24
3CRVS	4	4½	14½	6½	6	4½	21½	22½	22½	3-5	21	27	24
3CRVL	4	5½	14	9½	8	5½	24½	27½	21½	3-5	21	28½	27½
3CRVHS	4	5½	15	8	8	5½	24½	27½	24½	3-5	21	28½	24
3CRVH	4	5½	16	8	8	5½	24½	29	27½	3-5	21	28½	23½
4CRVL	5	6½	14½	10½	8	6	24½	29	26½	3-5	21	30	25
5CRVL	6	8½	14½	8½	8	6½	24½	29	25½	3-5	21	30	25

*Will vary with size, type and make of motor or turbine.

All dimensions in inches or feet and inches.

†Threaded suction and discharge connections.

Discharge nozzles may be turned to positions described at bottom of page 9.

Two, single-stage, cradle-mounted units handling molasses in a sugar refinery.

Five, single-stage, cradle-mounted units handling cooling water in an oil field compressor plant.

Open-impeller, cradle-mounted unit handling stock in a paper mill

MOTORPUMP

Condensate Return Units

Single and Two-pump Types

A single-pump condensate unit mounted on a 15 gallon tank. This unit is used in connection with a steam heating system in a hotel.

Motorpump condensate return units consist of one or two standard, class RVN, Motopumps mounted on a tank and controlled by a float switch.

They are ideal for returning condensate to a boiler-feed pump, for feeding the boilers directly on low-pressure steam heating systems, for replacing steam traps or for returning condensate produced in process work.

A few standard sizes are listed below. Large capacity units, larger tanks or special mountings can be supplied to meet unusual conditions.

Direct radiation sq. ft.	Max. disch. press. lbs.	Pumps used	Size of reser- voir gals.	Pump ca- pac- ity gals. per min.	Pipe Sizes		One Pump Unit		Two Pump Unit	
					Con- den- sate Inlet	Pump dis- charge	Floor Space inches	Ship- ping wt. lbs.	Floor Space inches	Ship- ping wt. lbs.
1500	10	IRVN $\frac{1}{4}$	15	2 $\frac{1}{4}$	2	1	24x28	265	30 $\frac{1}{2}$ x33 $\frac{1}{2}$	330
3000	10	IRVN $\frac{1}{4}$	15	4 $\frac{1}{2}$	2	1	24x28	265	30 $\frac{1}{2}$ x33 $\frac{1}{2}$	330
5000	10	IRVN $\frac{1}{4}$	15	7 $\frac{1}{2}$	2	1	24x28	265	30 $\frac{1}{2}$ x33 $\frac{1}{2}$	330
15000	10	IRVN $\frac{1}{4}$	30	21	3	1	26x30	660	33x36	760
20000	10	IRVN $\frac{1}{4}$	60	30	3	1	30x40 $\frac{1}{2}$	460	31x52	580
30000	10	IRVN $\frac{1}{4}$	60	45	3	1	30x40 $\frac{1}{2}$	460	31x52	580
1500	15	IRVN $\frac{1}{4}$	15	2 $\frac{1}{4}$	2	1	24x28	285	30 $\frac{1}{2}$ x33 $\frac{1}{2}$	350
3000	15	IRVN $\frac{1}{4}$	15	4 $\frac{1}{2}$	2	1	24x28	285	30 $\frac{1}{2}$ x33 $\frac{1}{2}$	350
5000	15	IRVN $\frac{1}{4}$	15	7 $\frac{1}{2}$	2	1	24x28	285	30 $\frac{1}{2}$ x33 $\frac{1}{2}$	350
10000	15	IRVN $\frac{1}{4}$	30	15	3	1	26x30	660	33x36	760
25000	15	IRVN $\frac{1}{4}$	60	36	3	1	30x40 $\frac{1}{2}$	460	31x52	580
30000	15	IRVN $\frac{1}{4}$	60	45	3	1	30x40 $\frac{1}{2}$	460	31x52	580
1500	20	IRVN $\frac{1}{4}$	15	2 $\frac{1}{4}$	2	1	24x28	310	30 $\frac{1}{2}$ x33 $\frac{1}{2}$	390
3000	20	IRVN $\frac{1}{4}$	15	4 $\frac{1}{2}$	2	1	24x28	310	30 $\frac{1}{2}$ x33 $\frac{1}{2}$	390
5000	20	IRVN $\frac{1}{4}$	15	7 $\frac{1}{2}$	2	1	24x28	310	30 $\frac{1}{2}$ x33 $\frac{1}{2}$	390
15000	20	IRVN $\frac{1}{4}$	30	21	3	1	26x30	690	33x36	755
25000	20	IRVN $\frac{1}{4}$	60	36	3	1	30x40 $\frac{1}{2}$	470	31x52	590
30000	20	IRVN $\frac{1}{4}$	60	45	3	1	30x40 $\frac{1}{2}$	470	31x52	590
1500	25	IRVN $\frac{1}{4}$	15	2 $\frac{1}{4}$	2	1	24x28	310	30 $\frac{1}{2}$ x33 $\frac{1}{2}$	390
3000	25	IRVN $\frac{1}{4}$	15	4 $\frac{1}{2}$	2	1	24x28	310	30 $\frac{1}{2}$ x33 $\frac{1}{2}$	390
5000	25	IRVN $\frac{1}{4}$	15	7 $\frac{1}{2}$	2	1	24x28	310	30 $\frac{1}{2}$ x33 $\frac{1}{2}$	390
10000	25	IRVN $\frac{1}{4}$	30	15	3	1	26x30 $\frac{1}{2}$	720	33x42	830
20000	25	IRVN $\frac{1}{4}$	60	30	3	1	30x40 $\frac{1}{2}$	470	31x52	590
25000	25	IRVN $\frac{1}{4}$	60	36	3	1	30x40 $\frac{1}{2}$	470	31x52	590
30000	25	IRVN $\frac{1}{4}$	60	45	3	1	30x40 $\frac{1}{2}$	485	31x54 $\frac{1}{2}$	660
15000	50	IRVN2	30	21	3	1	28x32	770	33 $\frac{1}{2}$ x44 $\frac{1}{2}$	980
25000	50	IRVNL2	60	36	3	1	30x41 $\frac{1}{2}$	510	31x54 $\frac{1}{2}$	700
40000	50	IRVNL3	60	45	3	1	30x41 $\frac{1}{2}$	510	31x54 $\frac{1}{2}$	700

Single-pump unit on 15 gal. tank.

Single-pump unit on 30-gal. tank.

Two-pump unit on 60 gal. tank.

A Typical Pump Problem

An industrial plant wishes to install a pump to lift 200 gallons of water per min. at 72°F. from a sump to a tank on the roof. The water is to be delivered into the tank at 10 lbs. pressure. The tank is 58 feet above the pump and the pump is 4 ft. above the water level in the sump. The discharge pipe from the pump to the tank is 400 ft. long and contains 4 standard elbows, 1 check valve, and 1 gate valve. A 2½ inch discharge line is already installed which the manager would like to use if possible. The suction pipe is 4 inches in diameter, 25 ft. long and contains 2 elbows and a foot valve. The pump is to be driven by an electric motor. The current available is 220 volt, 3 phase 60 cycle. A sketch of the layout is shown below.

The friction loss and velocity head can be obtained from the tables on the next page. For comparison

DISCHARGE HEAD	Solution A 2½" discharge pipe 4" suction pipe	Solution B 4" discharge pipe 4" suction pipe
Length of discharge pipe.....	400'	400'
4 ellis—equivalent length of pipe.....	= 20'	
1 check valve equivalent length of pipe.....	= 22'	
1 valve—equivalent length of pipe.....	1x1.86 = 1.9'	
Total Length for figuring friction.	443.9'	481.3'
Friction loss per 100'.....	43.1	4.4
Total Discharge Friction Loss.	43.1x443.9 100 = 191.3	4.4x481.3 100 = 21 2'
Static discharge head } pump to tank.....	58'	58'
tank pressure.....	10x2.31 = 23 1'	23 1'
Total Discharge Head.	272 4'	102.3'
SUCTION LIFT		
Length of suction pipe.....	25'	25'
2 ellis—equivalent length of pipe.....	18 4'	18 4'
Foot valve—equivalent length in feet.....	0	0
Total Length for figuring friction.	43.4'	43.4'
Friction loss per 100'.....	4.4	4.4
Total Suction Friction Loss.	4.4x43.4 100 = 1.9'	4.4x43.4 100 = 1.9'
Velocity head.....	4'	4'
Static suction lift.....	4'	4'
Total Suction Lift	6.3'	6.3'
TOTAL HEAD		
Total discharge head.....	272.4'	102.3
Total suction lift.....	6.3'	6.3'
Total Head	278.7'	108.6'

two solutions are given: Solution A using 2½" discharge pipe and Solution B using 4 inch discharge pipe.

Solution A: shows 278.7' total head. From page 10 of this bulletin it is seen that a 2MRV25 pump would be required to handle 200 gals. per min. against this head.

Solution B: shows 108.6 ft. total head. From page 10 of this bulletin it is seen that a 2RV7½ pump will be required.

These two problems forcibly point out the savings that a discharge pipe of proper size make possible.

In solution A in which 2½" discharge pipe was used a 25 hp. pump is required. In solution B in which 4" discharge pipe is used only 7½ hp. is required to do the same job.

Engineering Data

Horsepower variation with specific gravity

To obtain power required for pumping a liquid of specific gravity differing from that of water, multiply power required when pumping water by specific gravity of liquid being pumped.

Effect of viscosity

Viscous liquids tend to increase pump hp., reduce efficiency, head and capacity. Refer to nearest Ingersoll-Rand branch office for pump performance when liquid to be pumped has a viscosity over 60 S.S.U.

Characteristics of liquids

Liquid	Specific gravity at 60°F/60°F.	Viscosity S. S. U.
Beer.....	1.01	32 at 68°F.
Brine—calcium chloride.....	up to 1.3	32 to 42 at 68°F.
Brine—sodium chloride.....	up to 1.2	32 to 36 at 60°F.
Fuel Oil—Nos. 1 and 2.....	.825 to .95	35 to 45 at 100°F.
Gasoline.....	.721 to .731	30 at 68°F.
Kerosene.....	.81	35 at 68°F.
Milk.....	1.03 to 1.04	32 at 68°F.
Water, fresh.....	1.0	31.5 at 60°F.

Friction Losses through Screw Pipe Fittings in terms of equivalent lengths of standard pipe.

Nominal Pipe Size, Inches	Actual Inside Diameter, Inches	Gate Valve	Long-Sweep Elbow or on Run of Standard Tee	Medium-Sweep Elbow or on Run of Tee Reduced in Size $\frac{1}{4}$	Standard Elbow or on Run of Tee Reduced in Size $\frac{1}{2}$	Angle Valve	Close Return Bend	Tee Through Side Outlet	Globe Valve	Check Valve (Approx.) varies with type & make
Factor of Resistance		0.25	0.33	0.42	0.67	0.90	1.00	1.33	2.00	
1/8	0.662	0.335	0.442	0.56	0.89	1.20	1.34	1.79	2.68	4.0
3/8	0.824	0.475	0.627	0.79	1.27	1.71	1.90	2.52	3.80	5.7
1	1.049	0.640	0.844	1.07	1.72	2.30	2.56	3.40	5.12	7.7
1 1/8	1.38	0.902	1.19	1.51	2.42	3.24	3.61	4.80	7.22	11.0
1 1/2	1.61	1.09	1.43	1.83	2.92	3.92	4.36	5.79	8.72	13.0
2	2.06	1.49	1.96	2.50	3.99	5.36	5.96	7.92	11.92	18.0
2 1/2	2.46	1.86	2.46	3.13	5.00	6.72	7.47	9.93	14.94	22.0
3	3.06	2.46	3.25	4.11	6.66	8.87	9.86	13.11	19.72	30.0
4	4.026	3.44	4.53	5.77	9.22	12.37	13.70	18.28	27.50	41.0
5	5.047	4.57	6.00	7.68	12.20	16.47	18.30	24.33	36.60	55.0
6	6.065	5.72	7.55	9.61	15.80	20.61	22.90	30.45	45.00	65.0

Foot valve loss is zero, provided foot valve has area of 150.. of suction pipe.

Pipe Friction and Velocity Head

Corresponding to "17 year pipe". For new and smooth iron pipe the head loss will be .7 of that shown.

U.S. Gals. Per Min.	Head Loss in Feet Per 100 Ft.	U.S. Gals. Per Min.	Head Loss in Feet Per 100 Ft.	U.S. Gals. Per Min.	Head Loss in Feet Per 100 Ft.	U.S. Gals. Per Min.	Head Loss in Feet Per 100 Ft.	U.S. Gals. Per Min.	Head Loss in Feet Per 100 Ft.	U.S. Gals. Per Min.	Head Loss in Feet Per 100 Ft.	U.S. Gals. Per Min.	Head Loss in Feet Per 100 Ft.	U.S. Gals. Per Min.	Head Loss in Feet Per 100 Ft.	U.S. Gals. Per Min.	Head Loss in Feet Per 100 Ft.	U.S. Gals. Per Min.	Head Loss in Feet Per 100 Ft.				
1" Pipe		1 1/2" Pipe		2" Pipe		2 1/2" Pipe		3" Pipe		4" Pipe		5" Pipe		6" Pipe									
3	0.02	1.26	4	0.01	.26	6	0.01	.20	8	0.00	.11	10	0.00	.07	20	0.00	.06	30	0.00	.04			
4	0.03	2.14	5	0.01	.40	8	0.01	.33	10	0.01	.17	15	0.01	.15	25	0.01	.09	40	0.01	.08			
5	0.05	3.25	6	0.01	.56	10	0.02	.50	12	0.01	.24	20	0.01	.25	30	0.01	.13	50	0.01	.11			
6	0.08	4.55	7	0.02	.74	12	0.02	.79	14	0.01	.23	25	0.02	.38	35	0.01	.17	60	0.02	.16			
8	0.14	7.8	8	0.02	.95	14	0.03	.94	16	0.02	.41	30	0.03	.64	40	0.02	.22	70	0.02	.21			
10	0.22	11.7	9	0.03	1.18	16	0.04	1.26	18	0.02	.50	35	0.04	.71	50	0.03	.34	80	0.03	.27			
12	0.31	16.4	10	0.04	1.43	18	0.05	1.49	20	0.03	.61	40	0.05	.91	60	0.04	.47	90	0.03	.34			
14	0.42	22.0	12	0.06	2.01	20	0.06	1.82	25	0.04	.92	50	0.08	1.38	70	0.05	.63	100	0.04	.41			
16	0.50	28.0	14	0.08	2.68	25	0.10	2.73	30	0.06	1.29	60	0.12	1.92	80	0.06	.81	120	0.06	.58			
18	0.70	35.0	16	0.10	3.41	30	0.15	3.84	35	0.08	1.72	70	0.16	2.57	90	0.08	1.00	140	0.08	.76			
20	0.86	42.0	18	0.13	4.24	35	0.20	5.1	40	0.11	2.20	80	0.20	3.28	100	0.10	1.22	160	0.11	.98			
25	1.39	64.0	20	0.16	5.2	40	0.26	6.6	50	0.17	3.32	90	0.26	4.08	120	0.15	1.71	180	0.13	1.22			
30	1.92	89.0	22	0.19	6.2	45	0.33	8.2	60	0.24	4.65	100	0.32	4.96	140	0.20	2.28	200	0.17	1.48			
35	2.95	119.0	24	0.22	7.3	50	0.40	9.9	70	0.33	6.2	120	0.46	7.0	160	0.26	2.91	220	0.20	1.77			
40	3.42	152.0	26	0.26	8.4	55	0.49	11.8	80	0.43	7.9	140	0.63	9.2	180	0.33	3.61	240	0.24	2.08			
1 1/4" Pipe		28	0.30	9.7	60	0.58	13.9	90	0.54	9.8	160	0.82	11.8	200	0.41	4.4	260	0.38	2.41	240	.11	.87	
4	0.01	.57	30	0.35	11.0	65	0.68	16.1	100	0.66	12.0	180	1.04	14.8	220	0.49	5.2	280	0.33	2.77	260	.13	1.00
5	0.02	.84	35	0.47	14.7	70	0.79	18.4	120	0.95	16.0	200	1.28	17.8	240	0.58	6.2	300	0.37	3.14	280	.16	1.14
6	0.03	1.20	45	0.78	23.2	80	1.04	23.7	160	1.70	29.0	240	1.84	25.1	260	0.69	7.2	320	0.42	3.64	300	.18	1.30
7	0.08	1.59	8	0.06	2.03	50	0.96	28.4	90	1.31	29.4	180	2.15	35.7	260	2.16	29.1	300	0.91	9.3	350	.24	1.70
8	0.06	2.03	55	1.17	34.0	100	1.62	35.8	200	2.66	43.1	280	2.51	33.4	320	1.04	10.5	450	0.84	6.7	380	.28	2.00
10	0.07	3.05	60	1.39	39.6	110	1.96	42.9	220	3.22	52.0	300	2.88	38.0	340	1.17	11.7	500	1.04	8.1	400	.32	2.20
12	0.10	4.3	65	1.62	45.9	120	2.33	50.0	240	3.82	61.0	320	3.28	42.8	360	1.31	13.1	550	1.26	9.6	450	.40	2.74
14	0.14	5.7	70	1.88	53.0	130	2.73	58.0	260	4.48	70.0	340	3.71	47.9	400	1.62	16.0	600	1.49	11.3	500	.50	2.90
16	0.18	7.3	75	2.17	60.0	140	3.17	67.0	280	5.20	81.0	360	4.15	63.0	450	2.05	19.8	650	1.75	13.2	550	.60	3.96
18	0.23	9.1	80	2.46	68.0	150	3.64	76.0	300	5.98	92.0	380	4.62	59.0	500	2.53	24.0	700	2.03	15.1	600	.72	4.65
20	0.28	11.1	85	2.78	75.0	160	4.14	86.0	320	6.80	103.0	400	5.11	65.0	550	3.06	28.7	750	2.34	17.2	700	.98	6.21
25	0.45	16.6	90	3.09	84.0	170	4.67	96.0	340	7.68	116.0	420	5.64	71.0	600	3.65	33.7	800	2.66	19.4	800	1.28	9.56
30	0.65	23.0	95	3.47	93.0	180	5.23	107.0	360	8.60	128.0	440	6.20	77.0	650	4.28	39.0	850	2.99	21.7	900	1.62	9.92

Other I-R Products

Aftercoolers, Air and Gas

Air- and Gas-Lift Pumps

Blowers, Air and Gas

Exhausters
Motorblowers
 Turbo-Blowers
 Turbo-Compressors

Core Drills

Calyx
Coroc
Explorer
 Diamond
 Manhole
 Pavement-Testing
 Prospecting
 Shaft-Work

Compressors

Air and Gas
 Air- and Water-Cooled
 Ammonia
 Combined Engine-Compressor Units for Steam, Gas and Oil Drive
 Direct-Connected Electric and Belted
 High- and Low-Pressure
 Mine-Car
Motorcompressors
 Portable
 Service-Station
 Single- and Multi-Stage
 Vacuum Pumps

Condensers

Counter-Current
 Barometric, *Disc-Flow*
 Ejector-Jet Barometric
 Surface, *Heart-Shape*

Drill Steel and Jackrods

Engines

Stationary Diesel
 Stationary Gas
 Marine Diesel

Hoists

Air- and Electric-Driven
 Air-Motor (Direct-Lift)
 Gasoline- and Oil-Engine
 Driven
Scraper
 Single-, Double- and
 Three-Drum
Slusher
Tugger
Utility

Jackbits

Jackbit Grinders
Jackbits (Detachable Bits)
Jackmills
Jackrods (Drill rods
 threaded for Jackbits)
 Jackrod Threading Equip't

Paving Breakers

Demolition Tools

Pile Drivers

Pneumatic Tools

Accessories and Hose
 Backfill Tamers
Chippers
 Calking Hammers
 Concrete Vibrators
 Core Breakers
 Diggers
 Drills, *Multi-Vane* and Piston
 Fender Straightener
 Grinders, *Multi-Vane* and
 Piston
Impact Wrenches
 Riveters and Holders-On
 Sanders
 Sand Tamers
 Saws, *Safety First*
 Scaling Hammers
 Screw Drivers and
 Nut Setters
 Stationary Motors
 Surfacers
 Wire Brushes
 Wood Borers
 Wrenches, Torque
 and Impact

Pneumatic Sump Pumps

Pumps (Cameron)

Boiler-Feed
 Brewery
Cam-Pump (Rotary)
 Centrifugal
 Chemical
 Circulating
 Condensate-Return
 General-Service
 High-Pressure
 Hot-Oil
 Mine
Motorpumps
 Paper-Stock
 Pipe-Line
 Reciprocating
 Refinery
 Sinker

Receivers, Air and Gas

Refrigerating Units

Ammonia Compressors
 Steam-Jet Water-Vapor

Rock Drills

Accessories and Hose
Auto-Feed
 Drifters
Jackbits
Jackhamers
 Mountings
Pickhamers
Power-Feed
Stopehamers
 Submarine
 Wagon-Mounted

Sharpeners and Furnaces

Tie-Tamper Units

Compressors, Railway
 Mounting
Crawl-Air Compressors
 Pneumatic Tie Tamers
 Rail and Bond Drills
 Spike Drivers and Pullers
Spottamper Compressors
 Track Wrenches

Vacuum Pumps

Steam-Jet Ejectors
 Reciprocating Dry

I-R BRANCHES THE WORLD OVER

United States and Territories

ATLANTA, GA.
Twenty-Two Marietta Street Bldg.
BRIMINGHAM, ALA.
1700 Third Ave., South
BOSTON, MASS.
285 Columbus Ave.
BUFFALO, N. Y.
117 W. Chippewa Street
BUTTE, MONT.
845 S. Montana St.
CHICAGO, ILL.
400 W. Madison Street
CINCINNATI, OHIO
American Bldg., Walnut at Central Parkway
CLEVELAND, OHIO
Williamson Building
DALLAS, TEXAS
Santa Fe Building
DENVER, COLO.
1637 Blake Street
DETROIT, MICH.
2332 E. Grand Blvd.
DULUTH, MINN.
331 W. Michigan Street
EL PASO, TEXAS
1015 Texas Street
HARTFORD, CONN.
P. O. Box 1117
HONOLULU, HAWAII, T. H.
Honolulu Iron Works
HOUSTON, TEXAS
1305 Capitol Avenue

Canada

MONTREAL, QUE. (administrative offices)
New Barks Bldg., Phillips Square
MONTREAL, QUE. (Sales Branch)
New Barks Bldg., Phillips Square
SYDNEY, NOVA SCOTIA
P. O. Box 584
SHERBROOKE, QUEBEC
P. O. Box 728
TORONTO, ONTARIO
27 Wellington Street, East
KIRKLAND LAKE, ONTARIO
P. O. Drawer 905
TIMMINS, ONTARIO
Schumacher Road
WINNIPEG, MANITOBA
178 McDermot Ave., East
NELSON, BRITISH COLUMBIA
P. O. Box 320
VANCOUVER, BRITISH COLUMBIA
960 Richards Street

Europe

BELGIUM, BRUSSELS
Compagnie Belge Ingersoll-Rand, 62 Chaussee de Mons
ENGLAND, LONDON, E.C. 4.
Ingersoll-Rand Co., Ltd., 165, Queen Victoria Street.
DENMARK AND ICELAND, COPENHAGEN F.
Hoff & Co., Mariendalsvej 28
FINLAND, HELSINGFORS
Maskin A/B E. Gronblom
FRANCE, PARIS 8e
Compagnie Ingersoll-Rand—46 Rue de Courcelles
ITALY, MILANO (134)
S. A. La Motomeccanica, Via Oglio No. 18
HOLLAND, DEN HAAG
Technisch Bureau Marlynen, Waldorpstraat 52
NORWAY, OSLO
K. Lund & Co., Revierstredet 3
PORTUGAL, LISBOA
Cia Ingersoll-Rand, S. A. Praça Duque da Terceira 24
ROUMANIA, BUCURESTI
Ingersoll-Rand S. A. R., Bucuresti 1, B-dul Domnите 3, ET. IV
SCOTLAND, GLASGOW
Ingersoll-Rand Co., Ltd., 20, Renfrew Street
SPAIN, MADRID
Compañia Ingersoll-Rand, Calle Montalban 5
SWEDEN, STOCKHOLM 3
Amerikanska Gummi A. B.
SWITZERLAND, ZURICH
Robert AeBI & Cie. A. S., Werdmuhleplatz 3

Asia and The East

CHINA, SHANGHAI
Jardine Engineering Corp., Ltd., 50 Yuen Ming Yuen Road
CHINA, HONGKONG
Jardine Engineering Corp., Ltd., 14 Pedder Street
CHINA, TIENSIN
Jardine Engineering Corp., Ltd., Victoria & Ewo Roads
INDIA, CALCUTTA
Ingersoll-Rand (India) Ltd., 15 Clive Street
INDIA, BOMBAY
Ingersoll-Rand (India) Ltd., Shahibag House, Wittet Road.
Ballard Estate
IRAN, TEHERAN
Abolhassan Diba & Bayat, Khiabane Postkhaneh
JAPAN, TOKYO
American Trading Co., of Japan, Ltd., Central P. O., Box No. 384.
JAPAN, KOBE
American Trading Co. of Japan, Ltd., P. O. Box 17
PALESTINE, TEL-AVIV
Engineering Corp. of Palestine, Ltd., Beth Hasochnim,
12-14 Harakevet Street
STRAITS SETTLEMENT, SINGAPORE
The Borneo Co., Ltd., Mercantile Bank Building
FEDERATED MALAY STATES, IPOH
The Borneo Co., Ltd., P. O. Box 137
SIAM, BANGKOK
International Engineering Co., Inc., Chartered Bank Lane

Branches and Agents in many other cities the World over.

KANSAS CITY, MO.
1006 Grand Ave.
KNOXVILLE, TENN.
412 W. Jackson Ave.
LOS ANGELES, CALIF.
1460 E. Fourth Street
MANILA, P.I.
Earsnshaw Docks & Honolulu Iron Works
NEWARK, N. J.
899 Frelinghuysen Ave.
NEW ORLEANS, LA.
410 Camp Street
NEW YORK, N. Y.
11 Broadway
PHILADELPHIA, PA.
Wilford Bldg., 33rd & Arch Streets
PICHER, OKLA.
226 West A Street
PITTSBURGH, PA.
706 Chamber of Commerce Building
POTTSVILLE, PA.
343 S. Center Street
SALT LAKE CITY, UTAH
144 S. W. Temple Street
SAN FRANCISCO, CALIF.
350 Brannan Street
SCRANTON, PA.
614 Wyoming Ave.
SEATTLE, WASH.
55 First Ave., South
ST. LOUIS, MO.
2327 Locust Blvd.
TULSA, OKLA.
319 East 5th Street
WASHINGTON, D. C.
Heurich Building, 1627 K. Street, N. W.

Australasia

Ingersoll-Rand Australia Proprietary, Ltd.
AUSTRALIA, SOUTH MELBOURNE
Registered Office, 40 Moray Street
NEW SOUTH WALES, SYDNEY
Corner Clarence and Barrack Sts.
WEST AUSTRALIA, KALGOORLIE
P. O. Box 152

Africa

JOHANNESBURG, TRANSVAAL
Ingersoll-Rand Co., South Africa, Ltd., Aegis Building
GOLD COAST, TAKORADI
United Africa Co. Ltd., Box 57
NORTHERN RHODESIA, NDOLA
P. O. Box 74
SOUTHERN RHODESIA, BULAWAYO
P. O. Box 999
EAST AFRICA, KISUMU
(Kenya, Uganda, Tanganyika)—Mitchell Cotts & Co.
Egypt, ALEXANDRIA
The Tractor & Engineering Co.
Egypt, CAIRO
The Tractor & Engineering Co.
WEST AFRICA, TAKORADI, GOLD COAST COLONY, NORTHERN TERRITORIES OF GOLD COAST, BRITISH SPHERE OF TOGO-LAND.—United Africa Co.

South America

ARGENTINE, BUENOS AIRES
General Electric, S. A., Calle Tucuman 117
BOLIVIA, ORURO
International Machinery Co., Casilla 254
BRAZIL, RIO DE JANEIRO
Ingersoll-Rand Co. do Brasil, S. A. Rua Theophilo Ottoni 48
BRAZIL, SAO PAULO
Ingersoll-Rand Co. do Brasil, S. A., Rua Dr. Falcao Filho 86-12^a
Andar (Predio Matarazzo 330)
CHILE, ANTOFAGASTA
International Machinery Co., Calle San Martin 306
CHILE, SANTIAGO
International Machinery Co., Calle Huerfanos 1201
CHILE, VALPARAISO
International Machinery Co., Plaza Sotomayor, 5
CHILE, IQUIQUE
Grace y CIA, Ltd.
COLOMBIA, BARRANQUILLA
International General Electric, S. A., 29 Calle Real
COLOMBIA, BOGOTA
International General Electric, S. A., Carrera 7a No. 16-49
COLOMBIA, CALI
International General Electric, S. A., Apartado 323
COLOMBIA, MEDELLIN
International General Electric, S. A., Apartado 11
PERU, LIMA
Ingersoll-Rand Co. of Peru, Edificio Central, Avenida Uruguay, 114
URUGUAY, MONTEVIDEO
General Electric, S. A.—Uruguay 764
VENEZUELA, CARACAS
International General Electric, S. A., Pajaritos a Palma 39
VENEZUELA, MARACAIBO
International General Electric, S. A., Apartado 292

Other Countries

BRITISH WEST INDIES, TRINIDAD
Port of Spain, Neal & Massey Engineering Co. Ltd., 63 Edward Street
CUBA, HAVANA
Ingersoll-Rand de Cuba, S. A., Calle Aguacate No. 158
MEXICO, D. F.
Ingersoll-Rand de Mexico, S. A., Ramon Alcazar, 20
PUERTO RICO, SAN JUAN
Uptiano Casal, Portela Building

