Узагальнене оптимальне керування

Гуляницький А. Л.*

17 вересня — 5 листопада 2019 р.

Зміст

1	Дро	Дробові диференціальні рівняння		
	1.1	Основи дробового числення		2
		1.1.1	Означення дробових інтегралів та похідних	3
		1.1.2	Існування дробових похідних	4
		1.1.3	Інтегральний зв'язок між дробовими та класичними похідними	5
	1.2 Властивості дробових похідних		ивості дробових похідних	6
		1.2.1	Похідні степеневих функцій	6
		1.2.2	Властивості похідних Рімана-Ліувілля	7
		1.2.3	Властивості похідних за Капуто	10
			гкові значення	11
		1.3.1	Початкові значення інтегралів	11
		1.3.2	Початкові значення похідних	12
	1.4	Перетворення Лапласа		14
		1.4.1	Допоміжні твердження про перетворення Лапласа	14
		1.4.2	Перетворення Лапласа дробового інтеграла і похідної	14
		1.4.3	Теорема Таубера і наслідок з неї	15
2	Моделі аномальної дифузії			17
		2.0.1	Основні поняття	17
		2.0.2	Формула Монтрола-Вайса	18
	2.1 Рівняння субдифузії		ння субдифузії	19
		2.1.1	Виведення рівняння	19
		2.1.2	Аналіз рівняння	21
	2.2			23
	2.3			
	2.4	Рівняння супердифузії		29

^{*}Гуляницький Андрій Леонідович, andriy.hul@gmail.com

1 Дробові диференціальні рівняння

Перш за все наведемо мінімальну мотивацію вивчення дробових диференціальних рівнянь.

Нагадування 1.0.1 — Класичне рівняння дифузії має вигляд

$$\frac{\partial u(x,t)}{\partial t} - k \sum_{i=1}^{n} \frac{\partial^2 u(x,t)}{\partial x_i^2} = f(x,t), \tag{1.0.1}$$

де функція f(x,t) відповідає джерелам речовини, що дифундує.

Втім, у реальному житті зустрічаються процеси, у яких дифузія відбувається повільніше/швидше, ніж передбачає це рівняння. Для постановки відповідних рівнянь необхідно вводити дробові похідні (похідні дробових порядків).

1.1 Основи дробового числення

Розглянемо $f(t): \mathbb{R}_{\geqslant 0} \to \mathbb{R}$. Позначимо

$$(I_0^1 f)(t) = \int_0^t f(s) \, \mathrm{d}s. \tag{1.1.1}$$

Також визначимо рекурсивно

$$(I_0^n f)(t) = (I_0^1 (I_0^{n-1} f))(t) = \int_0^t \int_0^{s_1} \cdots \int_0^{s_{n-1}} f(s_n) \, \mathrm{d}s_n \dots \, \mathrm{d}s_1.$$
 (1.1.2)

Подібне визначення не дуже зручне з обчислювальної точки зору, тому наступна теорема стане нам у пригоді.

Формула 1.1.1 (Коші-Діріхле)

Для $f \in L_1([0,T]), t \in [0,T]$ виконується

$$(I_0^n f)(t) = \frac{1}{(n-1)!} \int_0^t (t-s)^{n-1} f(s) \, \mathrm{d}s. \tag{1.1.3}$$

Доведення. Доведення проведемо за методом математичної індукції по n. **База** n=1 виконується безпосередньо за визначенням I_0^1 . **Перехід**: нехай

$$(I_0^n f)(t) = \frac{1}{(n-1)!} \int_0^t (t-s)^{n-1} f(s) \, \mathrm{d}s.$$
 (1.1.4)

Тоді

$$(I_0^{n+1}f)(t) = (I_0^1(I_0^n f))(t) = \int_0^t (I_0^n f)(s) \, \mathrm{d}s =$$

$$= \int_0^t \frac{1}{(n-1)!} \left(\int_0^s (s-\xi)^{n-1} f(\xi) \, \mathrm{d}\xi \right) \, \mathrm{d}s =$$

$$= \frac{1}{(n-1)!} \int_0^t \int_{\xi}^t f(\xi)(s-\xi)^{n-1} \, \mathrm{d}s \, \mathrm{d}\xi =$$

$$= \frac{1}{(n-1)!} \int_0^t f(\xi) \frac{(s-\xi)^n}{n} \Big|_{s=\xi}^{s=t} \, \mathrm{d}\xi =$$

$$= \frac{1}{n!} \int_0^t f(\xi)(t-\xi)^n \, \mathrm{d}\xi.$$
(1.1.5)

З точністю до назв змінних отримали що хотіли.

Зауваження 1.1.2 — Перехід від другого рядка до третього тут відбувається за теоремою Фубіні. Наступна картинка може допомогти у розумінні:

Рис. 1: При $s:0\to t$ маємо $\xi:0\to s$.

Надалі ми будемо часто явно чи неявно користатися теоремою Фубіні, тому радимо переконатися у тому, що ви розумієте цей перехід.

1.1.1 Означення дробових інтегралів та похідних

Формула Коші-Діріхле мотивує введення інтегральних операторів нецілого порядку.

Означення 1.1.3. *Інтегралом Рімана-Ліувілля* порядку $\alpha>0$ з нижньою межею 0 функції f називається оператор

$$(I_0^{\alpha} f)(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha - 1} f(s) \, \mathrm{d}s.$$
 (1.1.6)

Також окремо зауважимо, що $I_0^0 f \equiv f$.

Приклад 1.1.4

Для $\alpha \in \mathbb{N}$ маємо $\Gamma(\alpha) = (\alpha - 1)!$, тобто власне формулу Коші-Діріхле.

Нагадування 1.1.5 — Гамма-функція визначається наступною рівністю:

$$\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha - 1} \, \mathrm{d}t \tag{1.1.7}$$

Взагалі кажучи, подібний вираз нагадує функцію згортки зі степеневою функцією порядку α :

$$I_0^{\alpha} f \equiv f \star y_{\alpha},\tag{1.1.8}$$

де $y_{\alpha}(t)=\frac{1}{\Gamma(\alpha)}t^{\alpha-1}$, а операція $\star:(\mathbb{R}_{\geqslant 0}\to\mathbb{R})\times(\mathbb{R}_{\geqslant 0}\to\mathbb{R})\to\mathbb{R}$ визначається наступним чином:

$$(f \star g)(t) = \int_0^t f(s)g(t-s) \, ds.$$
 (1.1.9)

Давайте тепер поміркуємо, як можна визначити диференціальний оператор дробового порядку, маючи відповідні інтегральні оператори. Взагалі кажучи, єдиної відповіді на це питання немає, як показує наступна картинка:

Рис. 2: Різні способи визначення диференціального оператора нецілого порядку

Введемо наступне допоміжне поняття для спрощення подальших позначень і формулювань:

Означення 1.1.6. Нехай $\alpha \in \mathbb{R}$. Тоді *стеля* $\lceil \alpha \rceil$ — найменше ціле число, що не менше за α . Також інколи кажуть *верхня ціла частина* α .

Нехай $\alpha > 0$, $n = \lceil \alpha \rceil$.

Означення 1.1.7. *Похідною за Капуто* функції f порядку α з нижньою межею 0 називається оператор

 $({}^{\star}D_0^{\alpha}f)(t) = I_0^{n-\alpha} \left(\frac{\mathrm{d}^n f}{\mathrm{d}t^n}\right). \tag{1.1.10}$

Означення 1.1.8. *Похідною Рімана-Ліувімля* функції f порядку α з нижньою межею 0 називається оператор

 $(D_0^{\alpha} f)(t) = \frac{\mathrm{d}^n}{\mathrm{d}t^n} (I_0^{n-\alpha} f).$ (1.1.11)

Приклад 1.1.9

На рисунку вище $D_0^{0.5} = \frac{d}{dt}I_0^{0.5}$, а $D_0^{0.5} = I_0^{0.5}(\frac{d}{dt})$.

1.1.2 Існування дробових похідних

Взагалі кажучи виникає питання коли введені вище похідні існують. Для відповіді на це питання нам знадобиться наступне:

Означення 1.1.10. Функція f називається абсолютно неперервною (eng. AC, absolutely continuous) на проміжку I якщо $\forall \varepsilon > 0$: $\exists \delta > 0$: $\forall x_1 < y_1 \leqslant x_2 < y_2 \leqslant \ldots \leqslant x_n < y_n$:

$$\sum_{k=1}^{n} (y_k - x_k) < \delta \implies \sum_{k=1}^{n} |f(y_k) - f(x_k)| < \varepsilon.$$

$$(1.1.12)$$

Твердження 1.1.11

Для АС функцій їхні похідні інтегровні (з нецілим порядком), тобто похідні (з нецілим порядком) існують.

Доведення. Без доведення.

Зауваження 1.1.12 — Поняття абсолютної неперервності має нагадувати поняття рівномірної неперервності (*eng.* UC, uniformly continuous). Зрозуміло, що з абсолютної неперервності випливає (n=1) рівномірна неперервність, але зворотнє не виконується.

Вправа 1.1.13. Наведіть приклад рівномірно неперервної, але не абсолютно неперервної функції.

1.1.3 Інтегральний зв'язок між дробовими та класичними похідними

Виникає закономірне запитання: чи існує аналог формули Коші-Діріхле для диференціальних операторів? Виявляється, що так, хоча він і не зовсім такий, як можна було б очікувати.

Теорема 1.1.14

Нехай $f \in AC^n([0,T]), t \in [0,T], n = \lceil \alpha \rceil$. Тоді

$$(D_0^{\alpha} f)(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t \frac{f^{(n)}(s)}{(t-s)^{\alpha+1-n}} \, \mathrm{d}s + \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{\Gamma(1+k-\alpha)t^{\alpha-k}}.$$
 (1.1.13)

Приклад 1.1.15

Зокрема, при $0 < \alpha < 1$ маємо $f \in AC([0,T])$ і

$$(D_0^{\alpha} f)(t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{f'(s)}{(t-s)^{\alpha}} ds + \frac{f(0)}{\Gamma(1-\alpha)t^{\alpha}}.$$
 (1.1.14)

Зауваження 1.1.16 — Як показує формула, ${}^*\!D_0^{\alpha}$, D_0^{α} — нелокальні оператори.

Доведення. Доведемо частинний випадок $0 < \alpha < 1$:

$$(D_0^{\alpha} f)(t) = \frac{\mathrm{d}}{\mathrm{d}t} I_0^{1-\alpha} f = \frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-s)^{-\alpha} f(s) \, \mathrm{d}s =$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{\Gamma(1-\alpha)} \int_0^t f(s) \frac{\mathrm{d}}{\mathrm{d}s} \frac{-(t-s)^{1-\alpha}}{1-\alpha} =$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{\Gamma(1-\alpha)} \left(\frac{-f(s)(t-s)^{1-\alpha}}{1-\alpha} \Big|_{s=0}^{s=t} + \int_0^t f'(s) \frac{(t-s)^{1-\alpha}}{1-\alpha} \, \mathrm{d}s \right) =$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{\Gamma(1-\alpha)} \left(\frac{f(0)t^{1-\alpha}}{1-\alpha} + \frac{1}{1-\alpha} \int_0^t f'(s)(t-s)^{1-\alpha} \, \mathrm{d}s \right) =$$

$$= \frac{1}{\Gamma(1-\alpha)} \left(\frac{f(0)}{t^{\alpha}} + \int_0^t f'(s)(t-s)^{-\alpha} \, \mathrm{d}s \right).$$
(1.1.15)

Зауваження 1.1.17 — Тут при переході від другого рядка до третього ми скористалися інтегруванням за частинами, а в останньому переході — формулою Лейбніца:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{a(x)}^{b(x)} f(x,t) \, \mathrm{d}t \right) = f(x,b(x)) \cdot b'(x) - f(x,a(x)) \cdot a'(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t) \, \mathrm{d}t. \tag{1.1.16}$$

На завершення визначимо ще кілька корисних для загального розвитку об'єктів:

Означення 1.1.18. Інтегралом Рімана-Ліувілля порядку α з нижньою (лівою) межею а називається

$$(I_{a^{+}}^{\alpha}f)(t) = \frac{1}{\Gamma(\alpha)} \int_{a}^{t} f(s)(t-s)^{\alpha-1} ds.$$
 (1.1.17)

Означення 1.1.19. Інтегралом Рімана-Ліувілля порядку α з правою (верхньою) межею T для t < T називається

$$(I_{T^{-}}^{\alpha}f)(t) = -\frac{1}{\Gamma(\alpha)} \int_{t}^{T} f(s)(t-s)^{\alpha-1} ds.$$
 (1.1.18)

Надалі ми (майже) не будемо їх використовувати, але знати ці визначення варто.

1.2 Властивості дробових похідних

1.2.1 Похідні степеневих функцій

Знайдемо похідні степеневих функцій. Нехай $\beta > -1, 0 < \alpha < 1$. Тоді, безпосередньо за визначення дробової похідної Рімана-Ліувілля

$$D_0^{\alpha} t^{\beta} = \frac{\mathrm{d}}{\mathrm{d}t} I_0^{1-\alpha} t^{\beta}. \tag{1.2.1}$$

У свою чергу, безпосередньо за визначенням дробового інтеграла

$$I_0^{1-\alpha} t^{\beta} = \frac{1}{\Gamma(1-\alpha)} \int_0^t s^{\beta} (t-s)^{-\alpha} \, \mathrm{d}s.$$
 (1.2.2)

Нагадування 1.2.1 —

Означення 1.2.2 (бета-функції).

$$B(a,b) = \int_0^1 \xi^{a-1} (1-\xi)^{b-1} d\xi, \qquad (1.2.3)$$

Властивість 1.2.3 (бета-функції)

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$
 (1.2.4)

Проведемо заміну $\xi = s/t$, тоді $ds = t d\xi$, отримаємо

$$\frac{1}{\Gamma(1-\alpha)} \int_0^1 (t\xi)^{\beta} t^{-\alpha} (1-\xi)^{-\alpha} t \, d\xi =
= \frac{t^{\beta-\alpha+1}}{\Gamma(1-\alpha)} \cdot B(\beta+1, 1-\alpha) =
= \frac{\Gamma(\beta+1)}{\Gamma(2+\beta-\alpha)} \cdot t^{\beta-\alpha+1}.$$
(1.2.5)

Лишилося продиференціювати цей інтеграл:

$$D_0^{\alpha} \left(\frac{\Gamma(\beta+1)}{\Gamma(2+\beta-\alpha)} \cdot t^{\beta-\alpha+1} \right) =$$

$$= \frac{\Gamma(\beta+1)}{\Gamma(2+\beta-\alpha)} \cdot (\beta-\alpha+1) t^{\beta-\alpha} =$$

$$= \frac{\Gamma(\beta+1)}{\Gamma(1+\beta-\alpha)} \cdot t^{\beta-\alpha},$$
(1.2.6)

де в останньому переході ми скористалися властивістю $z\Gamma(z)=\Gamma(z+1).$

Зауваження 1.2.4 — Ця формула справедлива і для $\alpha \geqslant 1$, але умова $\beta > -1$ важлива для збіжності кількох інтегралів, зокрема

$$\int_0^t s^{\beta} (t-s)^{-\alpha} \, \mathrm{d}s. \tag{1.2.7}$$

Приклад 1.2.5

Зокрема, якщо $\mathbb{N} \ni \alpha \leqslant \beta \in \mathbb{N}$, то маємо формулу

$$\frac{\mathrm{d}^{\alpha}}{\mathrm{d}t^{\alpha}}t^{\beta} = \frac{\beta!}{(\beta - \alpha)!} \cdot t^{\beta - \alpha}.$$
(1.2.8)

Наприклад,

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}t^4 = \frac{4!}{2!} \cdot t^2. \tag{1.2.9}$$

Зауваження 1.2.6 — Зрозуміло також, що всі введені нами оператори лінійні.

1.2.2 Властивості похідних Рімана-Ліувілля

Твердження 1.2.7

На жаль, не виконується наступна властивість

$$\frac{\mathrm{d}^n}{\mathrm{d}t^n}e^{\lambda t} = \lambda^n e^{\lambda t}.\tag{1.2.10}$$

Доведення.

$$e^{\lambda t} = \sum_{k=0}^{\infty} \frac{(\lambda t)^k}{k!}.$$
(1.2.11)

Почленно диференціюємо:

$$D_0^{\alpha} e^{\lambda t} = D_0^{\alpha} \left(\sum_{k=0}^{\infty} \frac{(\lambda t)^k}{k!} \right) =$$

$$= \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} D_0^{\alpha}(t^k) =$$

$$= \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \frac{k!}{\Gamma(k+1-\alpha)} \cdot t^{k-\alpha} \neq$$

$$\neq \sum_{k=0}^{\infty} \lambda^{\alpha} \frac{(\lambda t)^k}{k!}.$$

$$(1.2.12)$$

Нагадаємо основні співвідношення між похідними та інтегралами із класичного аналізу:

Формула 1.2.8 ((не) Ньютона-Лейбніца)

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_0^t f(s) \, \mathrm{d}s = f(t), \tag{1.2.13}$$

а також

Формула 1.2.9 (Ньютона-Лейбніца)

$$\int_0^t f'(s) \, \mathrm{d}s = f(t) - f(0). \tag{1.2.14}$$

Важливою для подальшого аналізу є

Властивість 1.2.10 (дробових інтегралів, напівгрупова)

Нехай $\alpha>0,\,\beta>0,$ тоді $I_0^{\alpha+\beta}\equiv I_0^\alpha I_0^\beta.$

Вправа 1.2.11. Доведіть цю властивість. Підказка: за означеннями,

$$I_0^{\alpha+\beta} f \equiv f \star y_{\alpha+\beta} \stackrel{?}{\equiv} f \star (y_\alpha \star y_\beta) \stackrel{?}{\equiv} (f \star y_\alpha) \star y_\beta \equiv I_0^\beta I_0^\alpha f, \tag{1.2.15}$$

тому достатнью перевірити асоціативність згортки і рівність $y_{\alpha+\beta} \equiv y_{\alpha} \star y_{\beta}$.

Формула 1.2.12 (аналог формули (не) Ньютона-Лейбніца)

Для $\alpha > 0$

$$D_0^{\alpha} I_0^{\alpha} f \equiv f. \tag{1.2.16}$$

Доведення. Нехай $n = \lceil \alpha \rceil$, тоді

$$D_0^{\alpha} I_0^{\alpha} f \equiv \frac{\mathrm{d}^n}{\mathrm{d}t^n} I_0^{n-\alpha} I_0^{\alpha} f \equiv \frac{\mathrm{d}^n}{\mathrm{d}t^n} I_0^n f = f. \tag{1.2.17}$$

Формула 1.2.14 (аналог формули Ньютона-Лейбніца)

Нехай $f, D_0^{\alpha} f \in L_1([0,T]), \, n = \lceil \alpha \rceil, \, \alpha \not \in \mathbb{N},$ тоді для 0 < t < T маємо

$$(I_0^{\alpha} D_0^{\alpha} f)(t) = f(t) - \sum_{k=0}^{n-1} (D_0^{\alpha-k-1} f)(0) \cdot \frac{t^{\alpha-k-1}}{\Gamma(\alpha-k)}.$$
 (1.2.18)

 ${f 3}$ ауваження ${f 1.2.15}$ — Тут під $D_0^{-|eta|}$ маємо на увазі $I_0^{|eta|}.$

Приклад 1.2.16

Для $0 < \alpha < 1$ маємо

$$(I_0^{\alpha} D_0^{\alpha} f)(t) = f(t) - (I_0^{1-\alpha} f)(0) \cdot \frac{t^{\alpha - 1}}{\Gamma(\alpha)}.$$
 (1.2.19)

Зауваження 1.2.17 — Тут $(I_0^{1-\alpha}f)(0)=\lim_{\varepsilon\downarrow 0}(I_0^{1-\alpha}f)(\varepsilon).$

Доведення. Доведемо частинний випадок:

$$(I_0^{\alpha} D_0^{\alpha} f)(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} (D_0^{\alpha} f)(s) \, \mathrm{d}s =$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{\alpha \Gamma(\alpha)} \int_0^t (t-s)^{\alpha} (D_0^{\alpha} f)(s) \, \mathrm{d}s \right). \tag{1.2.20}$$

Виконаємо наступні маніпуляції з виразом що стоїть під похідною:

$$\frac{1}{\alpha\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha} (D_{0}^{\alpha}f)(t) dt =
= \frac{1}{\alpha\Gamma(\alpha)} \left((t-s)^{\alpha} (I_{0}^{1-\alpha}f)(s) \Big|_{s=0}^{s=t} + \alpha \int_{0}^{t} (t-s)^{\alpha-1} (I_{0}^{1-\alpha}f)(s) ds \right) =
= -\frac{t^{\alpha} (I_{0}^{1-\alpha}f)(0)}{\alpha\Gamma(\alpha)} + I_{0}^{\alpha} I_{0}^{1-\alpha}f =
= -\frac{t^{\alpha} (I_{0}^{1-\alpha}f)(0)}{\alpha\Gamma(\alpha)} + I_{0}^{1}f.$$
(1.2.21)

Лишилося всього лише продиференціювати:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(-\frac{t^{\alpha} (I_0^{1-\alpha} f)(0)}{\alpha \Gamma(\alpha)} + I_0^1 f \right) = f(t) - \frac{t^{\alpha-1} (I_0^{1-\alpha} f)(0)}{\Gamma(\alpha)}. \tag{1.2.22}$$

1.2.3 Властивості похідних за Капуто

Теорема 1.2.18

Нехай $f \in L_{\infty}([0,T])$, тобто $\exists M \in \mathbb{R}: |f(t)| \stackrel{\text{a.e.}}{\leqslant} M$, тоді, як і очікувалося,

$$(^*D_0^{\alpha}I_0^{\alpha}f)(t) = (I_0^{\alpha*}D_0^{\alpha}f)(t). \tag{1.2.23}$$

Теорема 1.2.19

Нехай $n = \lceil \alpha \rceil$, $f \in AC^n([0,T])$, тоді

$$(I_0^{\alpha \star} D_0^{\alpha} f)(t) = f(t) - \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} \cdot t^k.$$
 (1.2.24)

Зауваження 1.2.20 — Ця формула справедлива і для цілих α .

Твердження 1.2.21

Для похідних у загальному випадку не виконується напівгрупова властивість.

Теорема 1.2.22

Нехай $f, D_0^\beta \in L_1([0,T]), \, \alpha \not\in \mathbb{N}.$ Тоді

$$(D_0^{\alpha} D_0^{\beta} f)(t) = (D_0^{\alpha + \beta} f)(t) - \sum_{k=0}^{\lceil \beta \rceil - 1} (D_0^{\beta - k - 1} f)(0) \cdot \frac{t^{-\alpha - k - 1}}{\Gamma(-\alpha - k)}$$
(1.2.25)

Приклад 1.2.23

Зокрема, для $0<\alpha,\beta<1$:

$$(D_0^{\alpha} D_0^{\beta} f)(t) = (D_0^{\alpha + \beta} f)(t) - (I_0^{1 - \beta} f)(0) \cdot \frac{t^{-\alpha - 1}}{\Gamma(-\alpha)}.$$
 (1.2.26)

Доведення. Доведемо частинний випадок:

$$(D_0^{\alpha} D_0^{\beta} f)(t) = \left(\frac{\mathrm{d}}{\mathrm{d}t} I_0^{1-\alpha} D_0^{\beta} f\right)(t) =$$

$$= \left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} I_0^{2-\alpha} D_0^{\beta} f\right)(t) =$$

$$= \left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} I_0^{2-\alpha-\beta} I_0^{\beta} D_0^{\beta} f\right)(t) =$$

$$= \frac{\mathrm{d}^2}{\mathrm{d}t^2} I_0^{2-\alpha-\beta} \left(f(t) - (I_0^{1-\beta} f)(0) \cdot \frac{t^{\beta-1}}{\Gamma(\beta)}\right) =$$

$$= (D_0^{\alpha+\beta} f)(t) - \frac{(I_0^{1-\beta} f)(0)}{\Gamma(\beta)} \cdot D_0^{\alpha+\beta} t^{\beta-1} =$$

$$= (D_0^{\alpha+\beta} f)(t) - \frac{(I_0^{1-\beta} f)(0)}{\Gamma(\beta)} \frac{\Gamma(\beta)}{\Gamma(-\alpha)} \cdot t^{-1-\alpha} =$$

$$= (D_0^{\alpha+\beta} f)(t) - \frac{(I_0^{1-\beta} f)(0)}{\Gamma(-\alpha)} \cdot t^{-1-\alpha}.$$

1.3 Початкові значення

1.3.1 Початкові значення інтегралів

Дослідимо, за яких умов початкове значення інтегралу дорівнює нулю.

Теорема 1.3.1

Нехай $\alpha > 0, \, p > 1/\alpha, \, p \geqslant 1, \, f \in L_p((0,T))$. Тоді $(I_0^{\alpha}f)(t) = o(t^{\alpha-1/p})$ при $t \to 0$.

Доведення.

$$|(I_0^{\alpha}f)(t)| = \frac{1}{\Gamma(\alpha)} \left| \int_0^t f(s)(t-s)^{\alpha-1} \, \mathrm{d}s \right| \le$$

$$\le \frac{1}{\Gamma(\alpha)} \int_0^t |f(s)(t-s)^{\alpha-1} \, \mathrm{d}s| \le$$

$$\le \frac{1}{\Gamma(\alpha)} \left(\int_0^t |f(s)|^p \, \mathrm{d}s \right)^{1/p} \left(\int_0^t (t-s)^{(\alpha-1)q} \, \mathrm{d}s \right)^{1/q} =$$

$$= \frac{1}{\Gamma(\alpha)} \left(\int_0^t |f(s)|^p \, \mathrm{d}s \right)^{1/p} \left(\frac{t^{(\alpha-1)q+1}}{(\alpha-1)q+1} \right)^{1/q} =$$

$$= \left(\int_0^t |f(s)|^p \, \mathrm{d}s \right)^{1/p} \frac{t^{\alpha-1+1/q}}{c(\alpha,p)} =$$

$$= \left(\int_0^t |f(s)|^p \, \mathrm{d}s \right)^{1/p} \frac{t^{\alpha-1/p}}{c(\alpha,p)} =$$

$$= o(t^{\alpha-1/p}),$$

де останній перехід справджується адже $\int_0^t |f(s)|^p \, \mathrm{d} s = o(1)$ при $t \to 0$.

Нагадування 1.3.2 —

Твердження 1.3.3 (абсолютна неперервність інтеграла Лебега)

Якщо $f \in L_1$ то

$$(\forall \varepsilon > 0) \quad (\exists \delta(\varepsilon) > 0) \quad (\forall A : \mu(A) < \delta(\varepsilon)) \quad \int_{A} f \, d\mu \leqslant \varepsilon. \tag{1.3.2}$$

Нерівність 1.3.4 (Коші-Буняковського, інтегральна)

Якщо всі функції достатньо інтегровні (всі норми скінченні)

$$||f \cdot g||_{L_1} \le ||f||_{L_2} \cdot ||g||_{L_2}. \tag{1.3.3}$$

Нерівність 1.3.5 (Гельдера, інтегральна)

Якщо всі функції достатньо інтегровні (всі норми скінченні)

$$||f \cdot g||_{L_1} \le ||f||_{L_p} \cdot ||g||_{L_q}, \tag{1.3.4}$$

де 1/p + 1/q = 1.

Зауваження 1.3.6 — Умова $p > 1/\alpha$ необхідна для збіжності усіх інтегралів з доведення

Наслідок 1.3.7

При $\alpha > 1/p$ маємо $(I_0^{\alpha} f)(t) = o(1)$, тобто $(I_0^{\alpha} f)(0) = 0$.

Вправа 1.3.8. Наведіть приклад f для якої $(I_0^{\alpha}f)(0) \neq 0$ (але і не ∞).

1.3.2 Початкові значення похідних

Теорема 1.3.9

Нехай $\alpha > 0, \alpha \notin \mathbb{N}, n = \lceil \alpha \rceil, f \in C^{n-1}([0,T]), p > \frac{1}{n-\alpha}, f^{(n)} \in L_p([0,T]).$ Тоді $(D_0^{\alpha})(0) = 0 \iff f^{(k)}(0) = 0$ при $k = \overline{0, n-1}.$

Доведення. За умов теореми

$$(D_0^{\alpha} f)(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t \frac{f^{(n)}(s)}{(t-s)^{\alpha-n+1}} \, \mathrm{d}s + \sum_{k=0}^{n-1} \frac{f^{(k)}(0) \cdot t^{k-\alpha}}{\Gamma(k-\alpha+1)}. \tag{1.3.5}$$

(⇐=) У формулі вище інтеграл дорівнює нулю за першою сьогоднішньою теоремою, а уся сумма зануляється за умовою теореми.

 (\Longrightarrow) Домножатимемо (1.3.5) на $t^{\alpha-k}$ для $k=\overline{0,n-1}$. Наприклад, для k=0 матимемо

$$t^{\alpha}(D_0^{\alpha}f)(t) = t^{\alpha}({}^{\star}D_0^{\alpha}f)(t) + \frac{f(0)}{\Gamma(1-\alpha)} + \sum_{k=1}^{n-1} \frac{f^{(k)}(0) \cdot t^k}{\Gamma(k-\alpha+1)}.$$
 (1.3.6)

Бачимо, що $t^{\alpha}(^*D_0^{\alpha}f)(t)=o(1)$, всі доданки суми нескінченно малі, тому f(0)=0. Далі за індукцією по k отримуємо рівність нулеві усіх похідних до (n-1)-ої.

Зауваження 1.3.10 — При $0<\alpha<1$ маємо $(D_0^{\alpha}{\bf 1})(t)=\frac{1}{\Gamma(1-\alpha)t^{\alpha}}\neq 0.$

Зауваження 1.3.11 — Але (* D_0^{α} 1)(t) = 0.

Теорема 1.3.12

Нехай $\alpha > 0, n = \lceil \alpha \rceil, f \in C^n([0,T]),$ тоді

$$D_0^{\alpha} f \equiv 0 \iff f(t) = \sum_{k=0}^{n-1} c_k t^{\alpha - k - 1}$$
 (1.3.7)

— дробовий многочлен.

Доведення.

Вправа 1.3.13. (⇒)

(⇐=) Нехай

$$f(t) = \sum_{k=0}^{n-1} c_k t^{\alpha - k - 1}, \tag{1.3.8}$$

тоді

$$D_0^{\alpha} f = \frac{\mathrm{d}^n}{\mathrm{d}t^n} I_0^{n-\alpha} \left(\sum_{k=0}^{n-1} t^{\alpha-k-1} \right) = \frac{\mathrm{d}^n}{\mathrm{d}t^n} \sum_{k=0}^{n-1} \frac{\Gamma(\alpha-k)}{\Gamma(n-k)} \cdot t^{n-k-1} = 0.$$
 (1.3.9)

Теорема 1.3.14 (похідна добутку)

Нехай f, g — аналітичні в (-h, h). Тоді для $t \in (0, h/2)$

$$(D_0^{\alpha}(f \cdot g))(t) = \sum_{k=0}^{\infty} {k \choose \alpha} (D_0^k f)(t) (D_0^{\alpha - k} f)(t), \tag{1.3.10}$$

де

$$\binom{k}{\alpha} = \frac{\Gamma(\alpha+1)}{\Gamma(k+1) \cdot \Gamma(\alpha-k-1)}.$$
 (1.3.11)

Теорема 1.3.15 (Тарасова)

Нехай $0 < \alpha < 1$, тоді D_0^{α} — лінійний оператор, що задовольняє умову

$$D_0^{\alpha}(f \cdot g) = D_0^{\alpha} f \cdot g + f \cdot D_0^{\alpha} g. \tag{1.3.12}$$

Тоді $\exists p(t): (D_0^{\alpha} f)(t) = p(t) \cdot \frac{\mathrm{d}f}{\mathrm{d}t}.$

1.4 Перетворення Лапласа

1.4.1 Допоміжні твердження про перетворення Лапласа

Означення 1.4.1. Нехай $f: \mathbb{R}_+ \to \mathbb{R}$, тоді

$$\mathscr{L}[f](\eta) = \overline{f}(\eta) = \int_0^\infty e^{-\eta t} f(t) dt.$$
 (1.4.1)

Лема 1.4.2 (перетворення Лапласа похідної)

$$\mathscr{L}[f'](\eta) = \eta \cdot \mathscr{L}[f](\eta) - f(0). \tag{1.4.2}$$

Доведення. Інтегруємо частинами.

Лема 1.4.3 (перетворення Лапласа згортки)

$$\mathscr{L}\left[f\star g\right](\eta) = \mathscr{L}\left[f\right](\eta)\cdot\mathscr{L}\left[g\right](\eta). \tag{1.4.3}$$

Доведення. Змінюємо порядок інтегрування.

Лема 1.4.4 (перетворення Лапласа степеневої функції)

$$\mathscr{L}\left[t^{-\beta}\right](\eta) = \Gamma(1-\beta) \cdot \eta^{\beta-1}. \tag{1.4.4}$$

Доведення. За означенням

$$\mathscr{L}\left[t^{-\beta}\right](\eta) = \int_0^\infty e^{-\eta t} t^{-\beta}.\tag{1.4.5}$$

Зробимо заміну змінних: $\eta t = \xi$, $\mathrm{d}t = \mathrm{d}\xi/\eta$. Тоді

$$\int_0^\infty e^{-\eta t} t^{-\beta} = \int_0^\infty e^{-\xi} \left(\frac{\xi}{\eta}\right)^{-\beta} \frac{1}{\eta} d\xi =$$

$$= \eta^{\beta - 1} \int_0^\infty e^{-\xi} \xi^{-\beta} d\xi =$$

$$= \eta^{\beta - 1} \Gamma(1 - \beta).$$
(1.4.6)

1.4.2 Перетворення Лапласа дробового інтеграла і похідної

Лема 1.4.5 (перетворення Лапласа інтеграла дробового порядку)

$$\mathscr{L}\left[I_0^{\alpha}f\right](\eta) = \eta^{-\alpha}\mathscr{L}\left[f\right](\eta). \tag{1.4.7}$$

Доведення.

$$\mathcal{L}\left[I_{0}^{\alpha}f\right](\eta) = \mathcal{L}\left[f \star y_{\alpha}\right](\eta) =$$

$$= \mathcal{L}\left[f\right](\eta) \cdot \mathcal{L}\left[y_{\alpha}\right](\eta) =$$

$$= \mathcal{L}\left[f\right](\eta) \cdot \frac{1}{\Gamma(\alpha)} \cdot \Gamma(1 - (1 - \alpha)) \cdot \eta^{-\alpha} =$$

$$= \eta^{-\alpha} \mathcal{L}\left[f\right](\eta). \tag{1.4.8}$$

Лема 1.4.6 (перетворення Лапласа похідної Рімана-Ліувілля)

$$\mathscr{L}\left[D_0^{\alpha}f\right](\eta) = \eta^{\alpha}\mathscr{L}\left[f\right](\eta) - \sum_{k=0}^{n-1} (D_0^{\alpha-k-1}f)(0) \cdot \eta^k. \tag{1.4.9}$$

Приклад 1.4.7

Зокрема, при $0 < \alpha < 1$ маємо

$$\mathscr{L}\left[D_0^{\alpha}f\right](\eta) = \eta^{\alpha}\mathscr{L}\left[f\right](\eta) - \left(I_0^{\alpha-1}f\right)(0). \tag{1.4.10}$$

Доведення.

$$\mathcal{L}\left[D_0^{\alpha}f\right](\eta) = \mathcal{L}\left[\frac{\mathrm{d}}{\mathrm{d}t}I_0^{1-\alpha}f\right](\eta) =$$

$$= \eta \cdot \mathcal{L}\left[I_0^{1-\alpha}f\right](\eta) - (I_0^{1-\alpha}f)(0) =$$

$$= \eta \cdot \eta^{\alpha-1} \cdot \mathcal{L}\left[f\right](\eta) - (I_0^{1-\alpha}f)(0) =$$

$$= \eta^{\alpha} \cdot \mathcal{L}\left[f\right](\eta) - (I_0^{1-\alpha}f)(0).$$
(1.4.11)

Лема 1.4.8 (перетворення Лапласа похідної Катупо)

$$\mathscr{L}\left[^{\star}D_{0}^{\alpha}f\right](\eta) = \eta^{\alpha} \cdot \mathscr{L}\left[f\right](\eta) - \sum_{k=0}^{n-1} f^{(k)}(0) \cdot \eta^{\alpha-k-1}. \tag{1.4.12}$$

Приклад 1.4.9

Зокрема, при $0 < \alpha < 1$ маємо

$$\mathscr{L}\left[^{\star}D_{0}^{\alpha}f\right](\eta) = \eta^{\alpha}\mathscr{L}\left[f\right](\eta) - \eta^{\alpha-1}f(0). \tag{1.4.13}$$

Вправа 1.4.10. Довести.

1.4.3 Теорема Таубера і наслідок з неї

Лема 1.4.11 (перетворення Лапласа сталої)

 $\mathscr{L}\left[c\right]\left(\eta\right) = c/\eta.$

Лема 1.4.12 (перетворення Лапласа множника-експоненти)

$$\mathscr{L}\left[e^{pt}f(t)\right](\eta) = \mathscr{L}\left[f\right](\eta - p).$$

Нагадаємо, що раніше ми з'ясували, що $\mathscr{L}\left[t^{-\beta}\right](\eta) = \Gamma(1-\beta) \cdot \eta^{\beta-1}$.

Теорема 1.4.13 (Таубера)

Нехай $-\beta > -1$, f монотонна при великих t (тобто вона монотонна на деякому проміжку вигляду $[t_0, +\infty)$). Тоді $f(t) \sim t^{-\beta}$ при $t \to +\infty \iff \mathcal{L}[f](\eta) \sim \Gamma(1-\beta) \cdot \eta^{\beta-1}$ при $\eta \downarrow 0$.

Зауваження 1.4.14 — Тут $f(x) \sim g(x)$ при $x \to x_0$ означає, що $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$.

Наслідок 1.4.15

Нехай $0<\alpha<1$ і f монотонна при великих $t,\,f\geqslant 0$ на $[0,+\infty)$ і $\int_0^{+\infty}f(t)\,\mathrm{d}t=1$. Тоді $\forall A>0$: $f(t)\sim\alpha A\cdot t^{-\alpha-1}$ при $t\to+\infty\iff \mathscr{L}[f](\eta)=1-A\cdot\Gamma(1-\alpha)\cdot\eta^\alpha+o(n^\alpha)$ при $\eta\downarrow 0$.

Доведення. Розглянемо функцію

$$F(t) = \int_{t}^{+\infty} f(s) \,\mathrm{d}s. \tag{1.4.14}$$

Зауважимо, що F'(t) = -f(t).

Вправа 1.4.16. Доведіть, що за наших припущень

$$f(t) \sim A \cdot \alpha \cdot t^{-\alpha - 1} \iff F(t) \sim A \cdot t^{-\alpha}.$$
 (1.4.15)

Розглянемо

$$\mathscr{L}[F](\eta) = \int_0^{+\infty} e^{-\eta t} \int_t^{+\infty} f(s) \, \mathrm{d}s \, \mathrm{d}t, \qquad (1.4.16)$$

Змінюючи порядок інтегрування, отримуємо

$$\int_{0}^{+\infty} f(s) \int_{0}^{s} e^{-\eta t} dt ds = \int_{0}^{+\infty} f(s) \cdot \frac{1 - e^{-\eta s}}{\eta} ds =$$

$$= \frac{1}{\eta} \left(1 - \int_{0}^{+\infty} f(s) e^{-\eta s} ds \right) =$$

$$= \frac{1 - \mathcal{L}[f](\eta)}{\eta}.$$
(1.4.17)

Звідси

$$\mathscr{L}[f](\eta) = 1 - \eta \cdot \mathscr{L}[F](\eta). \tag{1.4.18}$$

Тепер можемо записати

$$f(t) \underset{t \to \infty}{\sim} A \cdot \alpha \cdot t^{-\alpha - 1} \iff F(t) \underset{t \to \infty}{\sim} A \cdot t^{-\alpha} \iff \\ \iff \mathscr{L}[F](\eta) \underset{\eta \to 0+}{\sim} A \cdot \Gamma(1 - \alpha) \cdot \eta^{\alpha - 1} \iff \\ \iff \mathscr{L}[F](\eta) = A \cdot \Gamma(1 - \alpha) \cdot \eta^{\alpha - 1} + o(\eta^{\alpha - 1}) \iff \\ \iff \mathscr{L}[f](\eta) = 1 - A \cdot \Gamma(1 - \alpha) \cdot \eta^{\alpha} + o(\eta^{\alpha}).$$

$$(1.4.19)$$

2 Моделі аномальної дифузії

2.0.1 Основні поняття

Нагадаємо, що класичні рівняння дифузії та теплопровідності зумовлені наступними чинниками:

- 1. закон збереження кількості речовини/тепла;
- 2. джерела і стоки;
- 3. "закон" Фіка/Фур'є емпірично встановлене для широкого класу процесів твердження про те, що інтенсивність потоку речовини/тепла пропорційна мінус градієнту концентрації речовини/кількості тепла на границі.

Розглянемо тепер інший підхід, який грунтується на випадкових блуканнях з неперервним часом (eng. CTRW, continuous time random walk). А саме, нехай x(t) — випадкова величина (координата частинки в момент часу t), а u(x,t) (при фіксованому t — щільність координати частинки).

Параметри моделі:

- 1. $u_0(x)$ щільність початкового (при t=0) розподілу;
- 2. $\psi(t)$ щільність часу очікування наступного стрибка;
- 3. $\lambda(x)$ щільність зміщення.

Означення 2.0.1. Нехай $f: \mathbb{R} \to \mathbb{R}$, тоді її *перетворенням Фур'є* називається

$$\mathscr{F}[f](\omega) = \tilde{f}(\omega) = \int_{\mathbb{R}} e^{i\omega t} f(x) \, \mathrm{d}x. \tag{2.0.1}$$

Твердження 2.0.2

Для перетворення Фур'є справедлива теорема згортки:

$$\mathscr{F}[f \star g](\omega) = \mathscr{F}[f](\omega) \cdot \mathscr{F}[f](\omega),$$
 (2.0.2)

де

$$(f \star g)(x) = \int_{\mathbb{R}} f(y)g(x-y) \,\mathrm{d}y. \tag{2.0.3}$$

Означення 2.0.3. Нехай $u(x,t): \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, тоді її *перетворенням Фур'є-Лапласа* називається

$$\mathscr{F}-\mathscr{L}\left[u\right](\omega,\eta) = \tilde{\bar{u}}(\omega,\eta) = \int_{0}^{+\infty} \int_{\mathbb{R}} e^{-\eta t + i\omega x} u(x,t) \, \mathrm{d}x \, \mathrm{d}t. \tag{2.0.4}$$

2.0.2 Формула Монтрола-Вайса

Формула 2.0.4 (Монтрола-Вайса)

$$\mathscr{F}-\mathscr{L}\left[u\right](\omega,\eta) = \frac{\mathscr{F}\left[u_{0}\right](\omega)}{\eta} \frac{1 - \mathscr{L}\left[\psi\right](\eta)}{1 - \mathscr{L}\left[\psi\right](\eta) \cdot \mathscr{F}\left[\lambda\right](\omega)},\tag{2.0.5}$$

як тільки

$$|\mathcal{L}\left[\psi\right]\left(\eta\right)\cdot\mathcal{F}\left[\lambda\right]\left(\omega\right)| < 1. \tag{2.0.6}$$

Доведення. Введемо додаткове позначення: n(t) — кількість стрибків до моменту t. $\psi_k(t)$ — щільність часу k-го стрибка. І нарешті, $\lambda_k(x)$ — щільність координати після k-го стрибка.

Запишемо формулу повної ймовірності:

$$u(x,t) = \sum_{k=0}^{\infty} P\{n(t) = k\} \lambda_k(x) =$$

$$= \sum_{k=0}^{\infty} (P\{n(t) \ge k\} - P\{n(t) \ge k+1\}) \lambda_k(x) =$$

$$= \sum_{k=0}^{\infty} \left(\int_0^t \psi_k(s) \, ds - \int_0^t \psi_{k+1}(s) \, ds \right) \lambda_k(x) =$$

$$= \sum_{k=0}^{\infty} \left(\int_0^t \psi^{\star k}(s) \, ds - \int_0^t \psi^{\star (k+1)}(s) \, ds \right) \cdot (u_0 \star \lambda^{\star k})(x).$$
(2.0.7)

Зауваження 2.0.5 — Тут ми скористалися тим, що

$$\psi_k \equiv \psi^{\star k} \equiv \underbrace{\psi \star \psi \star \dots \star \psi}_{k} \tag{2.0.8}$$

i

$$\lambda_k \equiv u_0 \star \lambda^{\star k} \equiv u_0 \star \underbrace{\lambda \star \lambda \star \dots \star \lambda}_{k}. \tag{2.0.9}$$

Доведення. Справді, аби здійснити k-ий стрибок у момент часу T необхідно зробити k-1 стрибок до моменту часу t, після чого зачекати час T-t. Вже видно, звідки береться згортка у першій формулі, лишається просто формально застосувати математичну індукцію по k.

Справді, потрапити у точку y після k стрибків можна з довільної точки x у якій ми опинилися після (k-1)-го стрибка, причому ймовірність цього $\lambda(y-x)$. Вже видно, звідки береться згортка у другій формулі, лишається просто формально застосувати математичну індукцію по k.

Враховуючи, що

•
$$\mathscr{L}\left[I_0^1 f\right](\eta) = \frac{1}{\eta} \mathscr{L}\left[f\right](\eta);$$

•
$$\mathscr{L}\left[\psi^{\star k}\right](\eta) = (\mathscr{L}\left[\psi\right](\eta))^{k};$$

•
$$\mathscr{F}\left[\lambda^{\star k}\right](\omega) = (\mathscr{F}\left[\lambda\right](\omega))^{k};$$

маємо

$$\mathcal{F}-\mathcal{L}\left[u\right](\omega,\eta) = \sum_{k=0}^{\infty} \frac{1}{\eta} ((\mathcal{L}\left[\psi\right](\eta))^{k} - (\mathcal{L}\left[\psi\right](\eta))^{k+1}) \cdot \mathcal{F}\left[u_{0}\right](\omega) \cdot (\mathcal{F}\left[\lambda\right](\omega))^{k} =$$

$$= \frac{\mathcal{F}\left[u_{0}\right](\omega) \cdot (1 - \mathcal{L}\left[\psi\right](\eta))}{\eta} \sum_{k=0}^{\infty} (\mathcal{L}\left[\psi\right](\eta))^{k} \cdot (\mathcal{F}\left[\lambda\right](\omega))^{k} =$$

$$= \frac{\mathcal{F}\left[u_{0}\right](\omega) \cdot (1 - \mathcal{L}\left[\psi\right](\eta))}{\eta(1 - \mathcal{L}\left[\psi\right](\eta) \cdot \mathcal{F}\left[\lambda\right](\omega)},$$
(2.0.10)

де останній перехід — формула для суми нескінченної геометричної прогресії.

Зауваження 2.0.6 — Рівності

$$\mathscr{L}\left[\psi^{\star k}\right](\eta) = (\mathscr{L}\left[\psi\right](\eta))^{k} \tag{2.0.11}$$

i

$$\mathscr{F}\left[\lambda^{\star k}\right](\omega) = (\mathscr{F}\left[\lambda\right](\omega))^{k}$$
 (2.0.12)

— безпосередній наслідок теореми згортки для перетворень Лапласа та Фур'є відповідно, а також застосування методу математичної індукції по k.

2.1 Рівняння субдифузії

2.1.1 Виведення рівняння

Розглянемо випадкове блукання із щільностями

$$\psi(t) \sim \frac{\alpha}{\Gamma(1-\alpha)} \frac{\tau^{\alpha}}{t^{1+\alpha}},$$
 (2.1.1)

при $t \to +\infty$, де $\alpha \in (0,1), \tau > 0$, та

$$\lambda(x) = \frac{1}{2\sqrt{\pi}\sigma} \exp\left\{-\frac{x^2}{4\sigma^2}\right\}. \tag{2.1.2}$$

Згадуємо наслідок з теореми Таубера для $A = \frac{\tau^{\alpha}}{\Gamma(1-\alpha)}$:

$$\mathscr{L}\left[\psi\right]\left(\eta\right) \sim 1 - \tau^{\alpha}\eta^{\alpha} + o(\eta^{\alpha}) \tag{2.1.3}$$

Крім того

$$\mathscr{F}[\lambda](\omega) \sim 1 - \sigma^2 \omega^2 + O(\omega^4).$$
 (2.1.4)

Застосовуємо формулу Монтрола-Вайса

$$\mathscr{F}-\mathscr{L}\left[u\right](\omega,\eta) = \frac{\mathscr{F}\left[u_0\right](\omega)}{\eta} \frac{\tau^{\alpha}\eta^{\alpha} + o(\eta^{\alpha})}{1 - (1 - \tau^{\alpha}\eta^{\alpha} + o(\eta^{\alpha}))(1 - \sigma^2\omega^2 + O(\omega^4))} \sim (2.1.5)$$

якщо $\eta \to 0$ і $\omega \to 0$ у певному розумінні "синхронно", то $\eta^{\alpha}\omega^2 = o(\eta^{\alpha} + \omega^2)$, а тому

$$\sim \frac{\mathscr{F}\left[u_{0}\right](\omega)}{\eta} \frac{\tau^{\alpha} \eta^{\alpha}}{\tau^{\alpha} \eta^{\alpha} + \sigma^{2} \omega^{2}} = \frac{\mathscr{F}\left[u_{0}\right](\omega)}{\eta} \frac{1}{1 + \frac{\sigma^{2}}{\tau^{\alpha}} \eta^{-\alpha} \omega^{2}} = \frac{\mathscr{F}\left[u_{0}\right](\omega)}{\eta} \frac{1}{1 + K_{\alpha} \eta^{-\alpha} \omega^{2}}.$$
 (2.1.6)

Отже, з точністю до малих доданків,

$$\mathscr{F}-\mathscr{L}\left[u\right](\omega,\eta)\cdot(1+K_{\alpha}\eta^{-\alpha}\omega^{2})=\frac{\mathscr{F}\left[u_{0}\right](\omega)}{\eta},\tag{2.1.7}$$

або ж,

$$\mathscr{F}-\mathscr{L}\left[u\right](\omega,\eta) - \frac{\mathscr{F}\left[u_0\right](\omega)}{\eta} = -K_{\alpha}\eta^{-\alpha}\omega^2\mathscr{F}-\mathscr{L}\left[u\right](\omega,\eta). \tag{2.1.8}$$

Оскільки

$$\mathscr{F}[g'](\omega) = (-i\omega)\mathscr{F}[g](\omega), \tag{2.1.9}$$

і, відповідно,

$$\mathscr{F}\left[g^{(k)}\right](\omega) = (-i\omega)^k \mathscr{F}\left[g\right](\omega),$$
 (2.1.10)

ТО

$$-\omega^{2} \mathscr{F} - \mathscr{L}\left[u\right](\omega, \eta) = \mathscr{F}\left[\frac{\partial^{2} \mathscr{L}\left[u\right](x, \eta)}{\partial x^{2}}\right]$$
(2.1.11)

Тому маємо

$$\mathscr{L}[u](x,\eta) - \frac{u_0(x)}{\eta} = K_\alpha \eta^{-\alpha} \frac{\partial^2 \mathscr{L}[u](x,\eta)}{\partial x^2}, \qquad (2.1.12)$$

звідки

Рівняння 2.1.1 (субдифузії, інтегральне)

$$u(x,t) - u_0(x) = K_{\alpha} I_0^{\alpha} \left(\frac{\partial^2 u(xt)}{\partial x^2} \right), \tag{2.1.13}$$

або

Рівняння 2.1.2 (субдифузії, диференціальне, перша форма)

$$\frac{\partial u}{\partial t} = K_{\alpha} D_0^{1-\alpha} \left(\frac{\partial^2 u}{\partial x^2} \right), \tag{2.1.14}$$

з початковою умовою $u(x,0) = u_0(x)$,

або ж

Рівняння 2.1.3 (субдифузії, диференціальне, друга форма)

$$^*\mathcal{D}_0^{\alpha} u = K_{\alpha} \cdot \frac{\partial^2 u}{\partial x^2},\tag{2.1.15}$$

з початковою умовою $u(x,0) = u_0(x)$.

Зауваження 2.1.4 — Випадкове блукання зз неперервним часом із

$$\psi(t) = \frac{1}{\tau} e^{-t/\tau} \tag{2.1.16}$$

(показниковий розподіл) і з

$$\lambda \sim N(0, 2\sigma^2) \tag{2.1.17}$$

2.1.2 Аналіз рівняння

Означення 2.1.5. $\mathsf{E}[(x(t)-x(0))^2] = \langle (x(t)-x(0))^2 \rangle - cepe$ дьо-квадратичне зміщення (якщо x(0)=0, то $\langle x^2(t) \rangle$).

Лема 2.1.6

Якщо

$$\psi(t) \sim \frac{\alpha}{\Gamma(1-\alpha)} \frac{\tau^{\alpha}}{t^{1+\alpha}},$$
 (2.1.18)

при $t \to +\infty$ то

$$\langle n(t) \rangle \sim \frac{t^{\alpha}}{\tau^{\alpha} \cdot \Gamma(1+\alpha)}.$$
 (2.1.19)

Доведення.

$$\langle n(t) \rangle = \sum_{k=0}^{\infty} k \mathsf{P} \{ n(t) = k \} = \sum_{k=0}^{\infty} k \left(\int_0^t (\psi^{\star k}(s) - \psi^{\star (k+1)}(s)) \, \mathrm{d}s \right).$$
 (2.1.20)

$$\mathcal{L}\left[\langle n \rangle\right](\eta) = \sum_{k=0}^{\infty} \frac{k}{\eta} ((\mathcal{L}\left[\psi\right](\eta))^{k} - (\mathcal{L}\left[\psi\right](\eta))^{k+1}) =$$

$$= \frac{1 - \mathcal{L}\left[\psi\right](\eta)}{\eta} \sum_{k=0}^{\infty} k(\mathcal{L}\left[\psi\right](\eta))^{k} =$$

$$= \frac{1 - \mathcal{L}\left[\psi\right](\eta)}{\eta} \sum_{k=0}^{\infty} \frac{\mathcal{L}\left[\psi\right](\eta)}{\mathcal{L}\left[\psi\right]'(\eta)} \frac{d}{d\eta} (\mathcal{L}\left[\psi\right](\eta))^{k} =$$

$$= \frac{1 - \mathcal{L}\left[\psi\right](\eta)}{\eta} \frac{\mathcal{L}\left[\psi\right](\eta)}{\mathcal{L}\left[\psi\right]'(\eta)} \frac{d}{d\eta} \sum_{k=0}^{\infty} (\mathcal{L}\left[\psi\right](\eta))^{k} =$$

$$= \frac{\mathcal{L}\left[\psi\right](\eta)}{\eta \cdot (1 - \mathcal{L}\left[\psi\right](\eta))}.$$
(2.1.21)

Оскільки

$$\mathscr{L}\left[\psi\right](\eta) = 1 - \tau^{\alpha}\eta^{\alpha} + o(\eta^{\alpha}),\tag{2.1.22}$$

ТО

$$\mathscr{L}\left[\langle n \rangle\right](\eta) = \frac{1 - \tau^{\alpha} \eta^{\alpha} + o(\eta^{\alpha})}{\eta \cdot (\tau^{\alpha} \eta^{\alpha} + o(\eta^{\alpha}))} \underset{n \to 0}{\sim} \frac{1}{\tau^{\alpha} \eta^{\alpha+1}}.$$
 (2.1.23)

Застосовуємо "зворотню" теорему Таубера для $\beta = -\alpha$ отримуємо

$$\langle n(t) \rangle \sim \frac{t^{\alpha}}{\tau^{\alpha} \cdot \Gamma(1+\alpha)}.$$
 (2.1.24)

Наслідок 2.1.7

Якщо x(0) = 0, то

$$\langle x(t)^2 \rangle = 2\sigma^2 \langle n(t) \rangle \sim \frac{2\sigma^2 t^{\alpha}}{\tau^{\alpha} \Gamma(1+\alpha)} = \frac{2K_{\alpha} t^{\alpha}}{\Gamma(1+\alpha)}.$$
 (2.1.25)

Означення 2.1.8. Якщо у випадкового (дифузійного) процесу середньоквадратичне зміщення зростає повільніше ніж лінійна функція $(\langle x(t)^2 \rangle = o(t))$, то процес називається *суб-* $\partial u \phi y = i v$.

Означення 2.1.9. Якщо у випадкового (дифузійного) процесу середньоквадратичне зміщення зростає швидше ніж лінійна функція $(t = o(\langle x(t)^2 \rangle))$, то процес називається *супер-дифузійним*.

Означення 2.1.10. Якщо ж у випадкового (дифузійного) процесу середньоквадратичне зміщення зростає так само як лінійна функція, то процес називається *нормально-дифузійним*.

Зауваження 2.1.11 — $\langle x^2(t) \rangle$ — середньоквадратичне зміщення, усереднене за сукупністю частинок (eng. *ensemble-averaged*).

Інший підхід — усереднення за часом:

$$\overline{\delta^2(t,T)} = \frac{1}{T-t} \int_0^{T-t} (x(s+t) - x(s))^2 \, \mathrm{d}s, \tag{2.1.26}$$

де t — часове вікно, T — загальна тривалість спостереження.

$$\overline{\delta^2(t,T)} = \frac{1}{T-t} \int_0^{T-t} (x(t+s) - x(s))^2 \, \mathrm{d}s$$
 (2.1.27)

— усереднене зміщення (за часом). Усереднимо за сукупністю частинок:

$$\overline{\langle \delta^2(t,T)\rangle} = \frac{1}{T-t} \int_0^{T-t} \langle (x(t+s) - x(s))^2 \rangle \, \mathrm{d}s =
= \frac{1}{T-t} \int_0^{T-t} 2\sigma^2 \langle (n(t+s) - n(s))^2 \rangle \, \mathrm{d}s.$$
(2.1.28)

За умов, що $t \to \infty$, $T \to \infty$ і $T \gg t$ маємо

$$\langle n(t) \rangle \sim \frac{1}{\tau^{\alpha} \cdot \Gamma(1+\alpha)} t^{\alpha},$$
 (2.1.29)

а тому попередній вираз асимптотично рівний

$$\frac{2\sigma^2}{T-t} \int_0^{T-t} \frac{1}{\tau^{\alpha} \cdot \Gamma(1+\alpha)} \cdot ((s+t)^{\alpha} - s^{\alpha}) \, \mathrm{d}s. \tag{2.1.30}$$

У свою чергу, можемо переписати $(s+t)^{\alpha}-s^{\alpha}$ за рядом Тейлора:

$$(s+t)^{\alpha} - s^{\alpha} = s^{\alpha} \left(1 + \frac{t}{s} \right)^{\alpha} - s^{\alpha} \sim s^{\alpha} \left(1 + \frac{\alpha t}{s} \right) - s^{\alpha} = \frac{\alpha t}{s^{1-\alpha}}, \tag{2.1.31}$$

а тому попередній вираз асимптотично рівний

$$\frac{2\sigma^{2}}{T-t} \cdot \frac{\alpha t}{\Gamma(1+\alpha) \cdot \tau^{\alpha}} \int_{0}^{T-t} s^{\alpha-1} ds = \frac{2\sigma^{2}\alpha t}{(T-t) \cdot \Gamma(1+\alpha) \cdot \tau^{\alpha}} \cdot \frac{1}{\alpha} \cdot (T-t)^{\alpha} =
= \frac{2\sigma^{2}t}{\Gamma(1+\alpha)\tau^{\alpha}} \cdot (T-t)^{\alpha-1} \sim \frac{2K_{\alpha}}{\Gamma(1+\alpha) \cdot T^{1-\alpha}} t,$$
(2.1.32)

тобто отримали лінійну функцію від t.

Означення 2.1.12. Ситуація, у якій $\langle x^2(t) \rangle$ і $\overline{\langle \delta^2(t,T) \rangle}$ мають різний вигляд як функції змінної t називається *слабкою неергодичністю* (eng. weak ergodicity breaking).

Зауваження 2.1.13 — В обмеженій області

$$\langle x^2(t)\rangle = c_1, \quad t \to \infty,$$
 (2.1.33)

$$\langle \delta^2(t,T) \rangle = c_2 t^{1-\alpha}, \quad t \to \infty,$$
 (2.1.34)

де c_1, c_2 — певні (можливо різні) константи.

2.2 Рівняння розподіленого порядку

Розглянемо випадок коли α — випадкова величина, розподілена на (0,1) зі щільністю $p(\alpha)$. Припустимо, що час очікування стрибка задається умовною щільністю

$$\psi(t|\alpha) \sim A \cdot \alpha \cdot \frac{\tau^{\alpha}}{t^{1+\alpha}},$$
 (2.2.1)

де $A = \frac{\alpha}{\Gamma(1-\sigma)}$.

Тоді

$$\psi(t) = \int_0^1 \psi(t|\alpha) \cdot p(\alpha) \, d\alpha. \tag{2.2.2}$$

Звідси

$$\mathscr{L}[\psi](\eta) = \int_0^\infty e^{-\eta t} \int_0^1 \psi(t|\alpha) \cdot p(\alpha) \,d\alpha \,dt.$$
 (2.2.3)

Змінюючи порядок інтегрування, отримуємо

$$\int_0^1 p(\alpha) \int_0^\infty e^{-\eta t} \psi(t|\alpha) \, \mathrm{d}t \, \mathrm{d}\alpha. \tag{2.2.4}$$

Далі,

$$\psi(t) \sim \frac{\alpha}{\Gamma(1-\alpha)} \frac{\tau^{\alpha}}{t^{1+\alpha}},$$
 (2.2.5)

а тому, за теоремою Таубера,

$$\mathcal{L}[\psi](\eta) \sim 1 - (\eta \tau)^{\alpha} + o(\eta^{\alpha}). \tag{2.2.6}$$

Замінюючи таким чином внутрішній інтеграл отримуємо

$$\int_0^1 (1 - (\eta \tau)^\alpha + o(\eta^\alpha)) \, d\alpha \underset{\eta \downarrow 0}{\sim} 1 - \int_0^1 p(\alpha) \cdot (\eta \tau)^\alpha \, d\alpha. \tag{2.2.7}$$

Позначимо

$$I(\eta, \tau) = \int_0^1 p(\alpha) \cdot (\eta \tau)^{\alpha} d\alpha.$$
 (2.2.8)

За формулою Монтрола-Вайса

$$\mathscr{F}-\mathscr{L}\left[u\right]\left(\omega,\eta\right) = \mathscr{F}\left[u_{0}\right]\left(\omega\right) \cdot \frac{1}{\eta} \cdot \frac{1-\mathscr{L}\left[\psi\right]\left(\eta\right)}{1-\mathscr{L}\left[\psi\right]\left(\eta\right) \cdot \mathscr{F}\left[\lambda\right]\left(\omega\right)} = \frac{\mathscr{F}\left[u_{0}\right]\left(\omega\right)}{\eta} \cdot \frac{I(\eta,\tau)}{1-(1-I(\eta,\tau))\mathscr{F}\left[\lambda\right]\left(\omega\right)}.$$
(2.2.9)

Також припустимо, що $\lambda \sim \mathcal{N}(0,2\sigma^2) \implies \mathscr{F}[\lambda] \sim 1 - \sigma^2 \omega^2$. Тоді

$$\mathscr{F}-\mathscr{L}\left[u\right](\omega,\eta) = \frac{\mathscr{F}\left[u_0\right](\omega)}{\eta} \cdot \frac{I(\eta,\tau)}{I(\eta,\tau) + \sigma^2 \omega^2}.$$
(2.2.10)

Отже, з точністю до малих доданків,

$$\mathscr{F}-\mathscr{L}\left[u\right](\omega,\eta)\cdot\left(I(\eta,\tau)+\sigma^{2}\omega^{2}\right)=\frac{\mathscr{F}\left[u_{0}\right](\omega)}{\eta}\cdot I(\eta,\tau),\tag{2.2.11}$$

або ж

$$I(\eta,\tau) \cdot \left(\mathscr{F} - \mathscr{L}\left[u\right](\omega,\eta) - \frac{\mathscr{F}\left[u_{0}\right](\omega)}{\eta} \right) = \sigma^{2}\omega^{2} \cdot \mathscr{F} - \mathscr{L}\left[u\right](\omega,\eta). \tag{2.2.12}$$

Діємо на це співвідношення оберненим перетворенням Фур'є, отримаємо

$$I(\eta, \tau) \cdot \left(\mathcal{L}\left[u\right](x, \eta) - \frac{u_0}{\eta} \right) = -\sigma^2 \cdot \frac{\partial^2 \mathcal{L}\left[u\right](x, \eta)}{\partial x^2}. \tag{2.2.13}$$

Розпишемо інтеграл у явному вигляді:

$$I(\eta,\tau) \cdot \left(\mathcal{L}\left[u\right](x,\eta) - \frac{u_0}{\eta} \right) = \int_0^1 p(\alpha) \cdot (\eta\tau)^{\alpha} \cdot \left(\mathcal{L}\left[u\right](x,\eta) - \frac{u_0}{\eta} \right) d\alpha =$$

$$= \int_0^1 p(\alpha) \cdot \tau^{\alpha} \cdot (\eta^{\alpha} \mathcal{L}\left[u\right](x,\eta) - \eta^{\alpha-1} u_0) d\alpha.$$
(2.2.14)

У виразі в дужках під інтегралом не складно впізнати $\mathscr{L}\left[^{\star}D_{0}^{\alpha}u\right](\eta)$. Підставляючи, отримуємо

$$\int_0^1 p(\alpha) \cdot \tau^{\alpha} \int_0^\infty e^{-\eta t} \cdot ({}^*\!D_0^{\alpha} u)(x, t) \, \mathrm{d}t \, \mathrm{d}\alpha. \tag{2.2.15}$$

Знову змінюємо порядок інтегрування:

$$\int_0^\infty e^{-\eta t} \int_0^1 p(\alpha) \cdot \tau^\alpha \cdot ({}^*\!D_0^\alpha u)(x, t) \,\mathrm{d}\alpha \,\mathrm{d}t. \tag{2.2.16}$$

А у цьому, у свою чергу, можна впізнати

$$\mathscr{L}\left[\int_0^1 p(\alpha) \cdot \tau^{\alpha} \cdot ({}^*\!D_0^{\alpha} u)(x,t) \,\mathrm{d}\alpha\right](\eta). \tag{2.2.17}$$

Тому, діючи оберненим перетворенням Лапласа на останнє рівняння, отримаємо

Рівняння 2.2.1 (розподіленого порядку)

$$\int_0^1 p(\alpha) \cdot \tau^{\alpha} \cdot ({}^*\!D_0^{\alpha} u)(x, t) \, \mathrm{d}\alpha = \sigma^2 \cdot \frac{\partial^2 u}{\partial x^2}. \tag{2.2.18}$$

Приклад 2.2.2

Якщо $\alpha = \alpha_0 = \text{const}$, то $p(\alpha) = \delta(\alpha - \alpha_0)$ — так звана *густина матеріальної точки*:

- $\delta(\alpha \alpha_0) = 0, \forall \alpha \neq \alpha_0;$
- $\delta(\alpha_0 \alpha_0) = \infty$;
- $\int_0^1 \delta(\alpha \alpha_0) d\alpha = 1 \ (\alpha_0 \in (0, 1).$

Тоді отримаємо рівняння

$$\tau^{\alpha_0} \cdot ({}^*\!D_0^{\alpha_0} u)(x,t) = \sigma^2 \cdot \frac{\partial^2 u}{\partial x^2}, \tag{2.2.19}$$

тобто

$$(^*D_0^{\alpha_0}u)(x,t) = K_{\alpha_0} \cdot \frac{\partial^2 u}{\partial x^2}.$$
 (2.2.20)

Приклад 2.2.3

Якщо ж $p(\alpha) \sim \nu \alpha^{\nu-1}$ при $\alpha \to 0$ і x(0) = 0 (блукання починається з початку координат), то $\langle x^2(t) \rangle \sim \text{const} \cdot \ln^{\nu} t$, так звана ультраповільна дифузія.

2.3 Рівняння реакції-субдифузії змінного порядку

Згадаємо класичне рівняння реакції-дифузії:

$$\frac{\partial u}{\partial t} \equiv k\Delta u - \theta u,\tag{2.3.1}$$

де θ — кооефіцієнт реакції (реакція це процес у якому частинки речовини зникають).

Наївне узагальнення:

$$^*D_0^{\alpha}u \equiv k_{\alpha}\Delta u - \theta u. \tag{2.3.2}$$

Зауваження 2.3.1 — Основна проблема із цим рівнянням у тому, що його розв'язок u(x,t), взагалі кажучи, не є невід'ємним, навіть якщо $u_0(x) \geqslant 0$.

Скористаємося напів-дискретним підходом: розглянемо сітку з рівновіддаленими вузлами (для наочності — у одновимірному випадку). Нехай $u_i(t)$ — кількість частинок речовини у i-ому вузлі у момент часу t. Будемо вважати, що стрибки відбуваються в один із сусідніх вузлів із ймовірностями 1/2 (тобто блукання не зміщене). Нехай також, як і раніше, $\psi_i(t)$ — щільність часу очікування стрибка у вузлі i.

Також вважаємо, що час зникнення частинки має показниковий розподіл з параметром θ_i . Показниковий розподіл особливий тим, що у нього відсутній ефект післядії: ймовірність розпаду у проміжку часу $[t_0, t_0 + \Delta t]$ не залежить від t_0 і дорівнює $1 - e^{-\theta_i t}$, а ймовірність продовження існування дорівнює $e^{-\theta_i t}$.

Це рівносильно тому, що за відсутності стриків (тобто без дифузії) рівняння мало б такий вигляд:

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} \equiv -\theta_i u_i,\tag{2.3.3}$$

адже розв'язок цього рівняння має вигляд

$$u_i(t) = u_i(0) \cdot e^{-\theta_i t}, \tag{2.3.4}$$

тобто отримали (з точністю до множника) ймовірність продовження існування для показникового розподілу.

Введемо ще дві величини:

Означення 2.3.2. Вхідний та вихідний інтегральні потоки $J_i^+(t), J_i^-(t)$ такі, що

$$\int_{t_1}^{t_2} J_i^+(t) \, \mathrm{d}t \tag{2.3.5}$$

— кількість частинок, що прибули в i-ий вузол впродовж часу $[t_1, t_2]$, а

$$\int_{t_1}^{t_2} J_i^-(t) \, \mathrm{d}t \tag{2.3.6}$$

— кількість частинок, що вибули з i-ого вузла за час $[t_1,t_2].$

Відносно них ми і запишемо рівняння: за наведених припущень, маємо такі рівняння:

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} \equiv J_i^+ - J_i^- - \theta_i u_i \tag{2.3.7}$$

а також

$$J_i^+ \equiv \frac{1}{2}J_{i-1}^- + \frac{1}{2}J_{i+1}^-. \tag{2.3.8}$$

Безпосередньо з цих двох рівнянь випливає, що

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} \equiv \frac{1}{2}J_{i-1}^- - J_i^- + \frac{1}{2}J_{i+1}^- - \theta_i u_i. \tag{2.3.9}$$

Крім того,

$$J_i^-(t) = u_i(0) \cdot e^{-\theta_i t} \psi_i(t) + \int_0^t J_i^+(s) \cdot e^{-\theta_i(t-s)} \cdot \psi_i(t-s) \, \mathrm{d}s.$$
 (2.3.10)

Перший доданок відповідає за частинки, які з самого початку були в i-ому вузлі, не розпалися за час t (ймовірність цього $e^{-\theta_i t}$) і вистринули з нього у час t (ймовірність цього $\psi_i(t)$), а підінтегральний вираз у другому — за ті частинки, які прибули у момент часу s, не розпалися за час t-s (ймовірність цього $e^{-\theta_i(t-s)}$), і вистрибнули з нього через час t-s після прибуття (ймовірність цього $\psi_i(t-s)$).

Перетворимо останнє рівняння перетворенням Лапласа:

$$\mathcal{L}\left[J_{i}^{-}\right](\eta) = u_{i}(0) \cdot \mathcal{L}\left[\psi_{i}\right](\eta + \theta_{i}) + \mathcal{L}\left[J_{i}^{+}\right](\eta) \cdot \mathcal{L}\left[\psi_{i}\right](\eta + \theta_{i}) =$$

$$= u_{i}(0) \cdot \mathcal{L}\left[\psi_{i}\right](\eta + \theta_{i}) + (\eta \cdot \mathcal{L}\left[u_{i}\right](\eta) - u_{i}(0) +$$

$$+ \mathcal{L}\left[J_{i}^{-}\right](\eta) + \theta_{i} \cdot \mathcal{L}\left[u_{i}\right](\eta) \cdot \mathcal{L}\left[\psi_{i}\right](\eta + \theta_{i}) =$$

$$= (\eta \cdot \mathcal{L}\left[u_{i}\right](\eta) + \mathcal{L}\left[J_{i}^{-}\right](\eta) + \theta_{i} \cdot \mathcal{L}\left[u_{i}\right](\eta) \cdot \mathcal{L}\left[\psi_{i}\right](\eta + \theta_{i}).$$

$$(2.3.11)$$

Звідси

$$\mathcal{L}\left[J_{i}^{-}\right](\eta) = \frac{\left(\eta + \theta_{i}\right) \cdot \mathcal{L}\left[u_{i}\right](\eta) \cdot \mathcal{L}\left[\psi_{i}\right](\eta + \theta_{i})}{1 - \mathcal{L}\left[\psi_{i}\right](\eta + \theta_{i})} =$$

$$= \eta \cdot \mathcal{L}\left[u_{i}\right](\eta) \cdot \mathcal{L}\left[e^{-\theta_{i}t} \cdot \mathcal{L}^{-1}\left[\frac{\mathcal{L}\left[\psi_{i}\right](\eta)}{1 - \mathcal{L}\left[\psi_{i}\right](\eta)}\right]\right] +$$

$$+ \theta_{i} \cdot \mathcal{L}\left[u_{i}\right](\eta) \cdot \mathcal{L}\left[e^{-\theta_{i}t} \cdot \mathcal{L}^{-1}\left[\frac{\mathcal{L}\left[\psi_{i}\right](\eta)}{1 - \mathcal{L}\left[\psi_{i}\right](\eta)}\right]\right].$$

$$(2.3.12)$$

Нехай тепер $\psi_i(t) \sim r_i \cdot t^{-1-\alpha_i}$, де $0 < \alpha_i < 1$. Тоді $\mathscr{L}[\psi_i](\eta) \sim 1 - r_i \cdot \frac{\Gamma(1-\alpha_i)}{\alpha_i} \cdot \eta^{\alpha_i} + o(\eta^{\alpha_i})$ (за наслідком з теореми Таубера). Отже,

$$\frac{\mathscr{L}\left[\psi_{i}\right]\left(\eta\right)}{1-\mathscr{L}\left[\psi_{i}\right]\left(\eta\right)} = \frac{1-r_{i}\cdot\frac{\Gamma(1-\alpha_{i})}{\alpha_{i}}\cdot\eta^{\alpha_{i}}+o(\eta^{\alpha_{i}})}{r_{i}\cdot\frac{\Gamma(1-\alpha_{i})}{\alpha_{i}}\cdot\eta^{\alpha_{i}}+o(\eta^{\alpha_{i}})} \sim \frac{\alpha_{i}\cdot\eta^{-\alpha_{i}}}{r_{i}\cdot\Gamma(1-\alpha_{i})} = M_{i}\cdot\eta^{-\alpha_{i}}.$$
(2.3.13)

За теоремою Таубера з $\beta = 1 - \alpha_i$,

$$\mathcal{L}^{-1}\left[\frac{\mathcal{L}\left[\psi_{i}\right]\left(\eta\right)}{1-\mathcal{L}\left[\psi_{i}\right]\left(\eta\right)}\right] \sim \frac{M_{i}}{\Gamma(\alpha_{i})} \cdot t^{\alpha_{i}-1}.$$
(2.3.14)

Тому можемо продовжити

$$J_i^-(t) \sim \frac{\mathrm{d}}{\mathrm{d}t} \left(u_i(t) \star e^{-\theta_i t} \cdot \frac{M_i}{\Gamma(\alpha_i)} \cdot t^{\alpha_i - 1} \right) + \theta_i \cdot \left(u_i(t) \star e^{-\theta_i t} \cdot \frac{M_i}{\Gamma(\alpha_i)} \cdot t^{\alpha_i - 1} \right). \tag{2.3.15}$$

Зауваження 2.3.3 — У цій формулі не фігурує початкове значення, адже воно рівне нулеві для достатньо гладкої u_i , наприклад для обмеженої в околі нуля і інтегровної. Справді, тоді $u_i \star e^{-\theta_i t} t^{\alpha_i - 1} \big|_{t=0}$:

$$u_i \star e^{-\theta_i t} \cdot t^{\alpha_i - 1} \Big|_{t=0} = \int_0^t u_i(s) e^{-\theta_i (t-s)} \cdot (t-s)^{\alpha_i - 1} \, \mathrm{d}s \leqslant \int_0^t \|u\| \cdot 1 \cdot (t-s)^{\alpha_i - 1} \, \mathrm{d}s \xrightarrow[t \to 0]{} 0. \quad (2.3.16)$$

Ми майже досягнули нашої мети:

$$\frac{1}{M_{i}} \cdot J_{i}^{-}(t) = \frac{d}{dt} \frac{1}{\Gamma(\alpha_{i})} \int_{0}^{t} u_{i}(s) \cdot e^{-\theta_{i}(t-s)} \cdot (t-s)^{\alpha_{i}-1} ds + \\
+ \theta_{i} \cdot \frac{1}{\Gamma(\alpha_{i})} \int_{0}^{t} u_{i}(s) \cdot e^{-\theta_{i}(t-s)} \cdot (t-s)^{\alpha_{i}-1} ds = \\
= \frac{d}{dt} e^{-\theta_{i}t} \cdot \frac{1}{\Gamma(\alpha_{i})} \int_{0}^{t} u_{i}(s) e^{\theta_{i}s} \cdot (t-s)^{\alpha_{i}-1} ds + \\
+ \theta_{i} \cdot \frac{1}{\Gamma(\alpha_{i})} \int_{0}^{t} u_{i}(s) \cdot e^{-\theta_{i}(t-s)} \cdot (t-s)^{\alpha_{i}-1} ds = \\
= \frac{d}{dt} e^{-\theta_{i}t} \cdot \frac{1}{\Gamma(\alpha_{i})} \int_{0}^{t} u_{i}(s) \cdot e^{\theta_{i}s} \cdot (t-s)^{\alpha_{i}-1} ds + \\
+ \theta_{i} \cdot \frac{1}{\Gamma(\alpha_{i})} \int_{0}^{t} u_{i}(s) \cdot e^{-\theta_{i}(t-s)} \cdot (t-s)^{\alpha_{i}-1} ds = \\
= e^{-\theta_{i}t} \cdot \frac{d}{dt} \frac{1}{\Gamma(\alpha_{i})} \int_{0}^{t} u_{i}(s) \cdot e^{\theta_{i}s} \cdot (t-s)^{\alpha_{i}-1} ds = \\
= e^{-\theta_{i}t} \cdot D_{0}^{1-\alpha_{i}}(e^{\theta_{i}t} \cdot u_{i}(t)).$$

Пісдтавляємо це назад:

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} = \frac{M_{i-1}}{2}.\tag{2.3.18}$$

$$\frac{1}{M_i} \cdot J_i^- = e^{-\theta_i t} \cdot D_0^{1-\alpha_i}(e^{\theta_t t} u_i(t)), \tag{2.3.19}$$

де

$$M_i = \frac{\alpha_i}{r_i - \Gamma(1 - \alpha_i)},\tag{2.3.20}$$

а α_i береться з

$$\psi_i(t) \sim r_i \cdot t^{1-\alpha_i}. \tag{2.3.21}$$

Звідси маємо

Рівняння 2.3.4 (реакції-субдифузії, напівдискретне)

$$\frac{\mathrm{d}u_{i}(t)}{\mathrm{d}t} = \frac{1}{2}M_{i-1} \cdot e^{-\theta_{i-1}t} \cdot D_{0}^{1-\alpha_{i-1}}(e^{\theta_{i-1}t}u_{i-1}) +
+ \frac{1}{2}M_{i+1} \cdot e^{-\theta_{i+1}t} \cdot D_{0}^{1-\alpha_{i+1}}(e^{\theta_{i+1}t}u_{i+1}) +
- M_{i} \cdot e^{-\theta_{i}t} \cdot D_{0}^{1-\alpha_{i}}(e^{\theta_{i}t}u_{i}) - \theta_{i}u_{i}.$$
(2.3.22)

Граничний перехід до неперервної за простором моделі:

- $i \in \mathbb{Z} \mapsto x \in \mathbb{R}$;
- $u(t) \mapsto u(x,t);$
- $\alpha_i \mapsto \alpha(x)$;
- $\theta_i \mapsto \theta(x)$;
- $r_i \mapsto r(x)$.

Якщо все це обережно проробити то отримаємо

Рівняння 2.3.5 (реакції субдифузії, змінного порядку)

$$\frac{\partial u}{\partial t} = \frac{\partial^2}{\partial x^2} \left(k(x) \cdot e^{-\theta(x)t} \cdot D_0^{1-\alpha(x)} \left(e^{\theta(x)t} \cdot u \right) \right) - \theta(x) \cdot u. \tag{2.3.23}$$

Тут

$$k(x) = \frac{\alpha(x) \cdot \sigma^2}{2 \cdot r(x) \cdot \Gamma(1 - \alpha(x))}$$
 (2.3.24)

- як-би коефіцієнт дифузії.

Зауваження 2.3.6 — Нагадаємо, що класичне рівняння реакції дифузії мало вигляд

$$\frac{\partial u}{\partial t} \equiv k\Delta u - \theta u. \tag{2.3.25}$$

Як бачимо, результат переходу до дробових похідних анітрохи не очевидний, тобто рівняння потрібно виводити, а не вгадувати.

Якщо $\theta = 0$ (реакції немає), то маємо рівняння субдифузії змінного порядку:

$$\frac{\partial u}{\partial u} = \frac{\partial^2}{\partial x^2} (k(x) D_0^{1-\alpha(x)}(u)). \tag{2.3.26}$$

Зауваження 2.3.7 — Причому $D_0^{1-\alpha(x)}$ не можна винести за $\frac{\partial^2}{\partial x^2}$, тобто останнє рівняння не еквівалентне такому:

$$^*D_0^{\alpha(x)}u = k(x) \cdot \frac{\partial^2 u}{\partial x^2}.$$
 (2.3.27)

А от у рівняння субдифузії для достатньо гладких функцій можна було.

Зауваження 2.3.8 — Якщо у моделі реакції-субдифузії $\theta = \theta(x, t, u(x, t))$, то отримаємо рівняння аналогічне (2.3.23), але з

$$\exp\left\{\pm \int_0^t \theta(x, s, u(x, s)) \,\mathrm{d}s\right\} \tag{2.3.28}$$

замість $e^{\pm\theta(x)t}$.

Зауваження 2.3.9 — Якщо α — стала, то отримуємо старе рівняння субдифузії: рівняння (2.3.26) з $\alpha(x)=\alpha=\mathrm{const}$ з $r(x)=\frac{\alpha}{\Gamma(1-\alpha)}\cdot \tau^{\alpha}$ зводиться до рівняння субдифузії

$$\frac{\partial u}{\partial t} = k_{\alpha} \cdot \frac{\partial^2}{\partial x^2} D_0^{1-\alpha} u \tag{2.3.29}$$

з $k_{\alpha} = \frac{\sigma^2}{2\tau^{\alpha}}$.

2.4 Рівняння супердифузії

Розглянемо випадкове блукання з неперервним часом із $\psi(t) = \frac{1}{\tau} \cdot e^{-t/\tau}$ (тобто час очікування стрибка ψ має показниковий розподіл з параметром τ), а також

$$\lambda(x) \sim \frac{\sigma^{\mu}}{|x|^{1+\mu}},\tag{2.4.1}$$

при $|x| \to \infty$, де μ — якась стала, $1 < \mu < 2$. Спробуємо знайти дисперсію очікуваної довжини стрибка. Як відомо з курсу теорії ймовірностей,

$$\mathsf{D}\lambda = \int_{-\infty}^{\infty} x^2 \lambda(x) \, \mathrm{d}x. \tag{2.4.2}$$

Але $x^2\lambda(x)\sim \sigma^\mu|x|^{1-\mu}$. При $1<\mu<2$ маємо $-1<1-\mu<0$, тобто інтеграл для дисперсії розбіжний (за порівняльною ознакою збіжності, порівнюємо з 1/x). Таким чином, сама дисперсія довжини стрибка — нескінченна.

Можна показати, що

$$\mathscr{L}[\psi](\eta) \sim 1 - \tau \eta + o(\eta), \quad \eta \to 0,$$
 (2.4.3)

а також

$$\mathscr{F}[\lambda](\omega) = 1 - \sigma^{\mu}|\omega|^{\mu} + o(|\omega|^{\mu}), \quad \omega \to 0. \tag{2.4.4}$$

Як можна було здогадатися, ці рівності нам знадобляться для застосування формули Монтрола-Вайса:

$$\mathcal{F}-\mathcal{L}\left[u\right]\left(\omega,\eta\right) = \frac{\mathcal{F}\left[u_{0}\right]}{\eta} \cdot \frac{1-\mathcal{L}\left[\psi\right]\left(\eta\right)}{1-\mathcal{L}\left[\psi\right]\left(\eta\right) \cdot \mathcal{F}\left[\lambda\right]\left(\omega\right)} \approx$$

$$\approx \frac{\mathcal{F}\left[u_{0}\right]}{\eta} \cdot \frac{\tau\eta}{1-(1-\tau\eta)\cdot(1-\sigma^{\mu}|\omega|^{\mu})} \sim$$

$$\sim \frac{\mathcal{F}\left[u_{0}\right]}{\eta} \cdot \frac{\tau\eta}{\tau\eta+\sigma^{\mu}|\omega|^{\mu}} =$$

$$= \frac{\mathcal{F}\left[u_{0}\right]}{\eta+k_{\mu}|\omega|^{\mu}}.$$

$$(2.4.5)$$

Означення 2.4.1.

$$k_{\mu} = \frac{\sigma^{\mu}}{\tau} \tag{2.4.6}$$

— коефіцієнт дифузії.

Звідси:

$$\eta \cdot \mathcal{F} - \mathcal{L}[u] - \mathcal{F}[u_0] = -k_{\mu} |\omega|^{\mu} \cdot \mathcal{F} - \mathcal{L}[u]. \tag{2.4.7}$$

Діємо на обидві сторони оберненим перетворенням Лапласа:

$$\frac{\partial \mathscr{F}\left[u\right]\left(\omega,t\right)}{\partial t} = -k_{\mu}|\omega|^{\mu} \cdot \mathscr{F}\left[u\right]\left(\omega,t\right),\tag{2.4.8}$$

і оберненим перетворенням Фур'є:

$$\frac{\partial u}{\partial t} = k_{\mu} \cdot \frac{\partial^{\mu} u}{\partial |x|^{\mu}},\tag{2.4.9}$$

де

Означення 2.4.2.

$$\frac{\partial^{\mu} u}{\partial |x|^{\mu}} \tag{2.4.10}$$

 $O|x|^r$ — $noxi\partial ua\ Pica-Бейля\ порядку\ \mu$ за змінною x, яка визначається рівністю

$$\frac{\partial^{\mu} u}{\partial |x|^{\mu}} = \mathscr{F}^{-1} \left[-|\omega|^{\mu} \cdot \mathscr{F} \left[u \right] \right]. \tag{2.4.11}$$

Зауваження 2.4.3 —

$$\frac{\partial^2 u}{\partial |x|^2} = \mathscr{F}^{-1} \left[-\omega^2 \cdot \mathscr{F} \left[u \right] \right] = \mathscr{F}^{-1} \left[(-i\omega)^2 \cdot \mathscr{F} \left[u \right] \right] = \frac{\partial^2 u}{\partial x^2}. \tag{2.4.12}$$

Зауваження 2.4.4 —

$$\frac{\partial^{\mu} f}{\partial |x|^{\mu}} = \begin{cases}
\frac{D_{-\infty}^{\mu} f + D_{+\infty}^{\mu} f}{2 \cos \frac{\pi \mu}{2}}, & \mu \neq 1, \\
\frac{\mathrm{d}}{\mathrm{d}\pi} \frac{1}{x} \int_{\mathbb{R}} \frac{f(\xi)}{\xi - x} \,\mathrm{d}\xi, & \mu = 1.
\end{cases}$$
(2.4.13)