PROBABILITÉS ET STATISTIQUES

Avertissement. Les parties A, B, D questions 1 à 6 peuvent être traitées de manière indépendante.

Notations - Définitions - Résultats

On adopte dans cet énoncé les notations et définitions suivantes.

- 1 \mathcal{B}_R est la tribu borélienne de R, λ la mesure de Lebesgue sur R.
- 2 Si (X, \mathcal{B}, η) est un espace probabilisé $\mathbb{L}^p(X, \mathcal{B}, \eta)$ $p \ge 1$ désigne l'espace vectoriel des fonctions à valeurs réelles et de puissance p-ième intégrable au sens de Lebesgue sur (X, \mathcal{B}, η) . L'espace $\mathbb{L}^p(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \lambda)$ $p \ge 1$ est défini de manière analogue. De plus si $f \in \mathbb{L}^1(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \lambda)$ on note $\lambda(f) = \int_{\mathbb{R}} f(x)\lambda(dx)$.
- 3 1_A désigne la fonction indicatrice d'un ensemble A.
- 4 Toutes les variables aléatoires sont définies sur un même espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$. La moyenne d'une variable aléatoire $X \in \mathbb{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ est notée E(X) et si \mathcal{B} est une sous tribu de \mathcal{F} l'espérance conditionnelle de X sachant \mathcal{B} est notée $E(X|\mathcal{B})$. La sous tribu de \mathcal{F} engendrée par une famille finie (Y_i) $1 \leq i \leq p$ de variables aléatoires est notée $\mathcal{F}(Y_1, Y_2, \ldots, Y_p)$.
- 5 * désigne deux sortes de convolution. Pour des probabilités α et β sur $(I\!\!R, \mathcal{B}_{I\!\!R})$ $\alpha*\beta$ est la probabilité définie par

$$\alpha * \beta(B) = \int_{\mathbb{R}} \alpha(dx) \int_{\mathbb{R}} 1_{B}(x+y)\beta(dy) \quad B \in \mathcal{B}_{\mathbb{R}}$$

Si f est une fonction borélienne telle que pour tout $t \in \mathbb{R}$ $u \to f(t-u)$ est un élément de $\mathbb{L}^1(\mathbb{R},\mathcal{B}_{\mathbb{R}},\alpha)$ $\alpha * f$ est définie par

$$\alpha * f(t) = \int_{\mathbb{R}} f(t-u) \ \alpha(du) \ \ t \in \mathbb{R}$$

- $\alpha^{(n)}$ $n \ge 1$ désigne la nième puissance de convolution de α et $\alpha^{(0)}$ est la masse de Dirac en 0, notée ϵ_0 .
- 6 Une probabilité α sur $(I\!\!R, \mathcal{B}_{I\!\!R})$ possède des moments exponentiels si pour tout réel t l'application $y \to e^{ty}$ appartient à $I\!\!L^1(I\!\!R, \mathcal{B}_{I\!\!R}, \alpha)$. Le support de α est le plus petit fermé de $I\!\!R$ de complémentaire de probabilité nulle par rapport à α . La probabilité α est dite non arithmétique si le sous groupe fermé de $(I\!\!R, +)$ engendré par le support de α est $I\!\!R$.
- 7 $I(\mathcal{R})$ désigne l'espace vectoriel des fonctions réglées de $I\!\!R$ dans $I\!\!R$ et telles que $\sum_{n\in \mathbb{Z}} \sup_{x\in [n,n+1]} |f(x)| < +\infty.$

On rappelle l'énoncé suivant (théorème de Fubini). Soit $(E_i, \mathcal{B}_i, \mu_i)$ i=1,2 deux espaces probabilisés et f une application mesurable de $(E_1 \times E_2, \mathcal{B}_1 \otimes \mathcal{B}_2)$ dans $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ les conditions suivantes sont équivalentes

$$x_1 \to \int_{E_2} |f|(x_1, x_2)\mu_2(dx_2)$$
 est un élément de $\mathbb{L}^1(X_1, \mathcal{B}_1, \mu_1)$ (1)

$$x_2 \rightarrow \int_{E_1} |f|(x_1, x_2)\mu_1(dx_1)$$
 est un élément de $\mathbb{L}^1(X_2, \mathcal{B}_2, \mu_2)$ (2)

et si elles sont vérifiées on a l'égalité

$$\int_{E_1} \mu_1(dx_1) \int_{E_2} f(x_1, x_2) \mu_2(dx_2) = \int_{E_2} \mu_2(dx_2) \int_{E_1} f(x_1, x_2) \mu_1(dx_1)$$

Par ailleurs cet énoncé reste valide en remplaçant l'un ou les deux espaces $(E_i, \mathcal{B}_i, \mu_i)$ $1 \leq i \leq 2$ par $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \lambda)$.

Dans ce problème on considère une suite $X=(X_n)_{n\geq 1}$ de variables aléatoires réelles indépendantes et de même loi μ . On définit alors pour tout $n\geq 1$ la variable aléatoire S_n par $S_n=X_1+X_2+\cdots+X_n$ et pour tout $B\in\mathcal{B}_R$ la variable aléatoire N(B) à valeurs dans $\overline{N}=N\cup\{+\infty\}$ par $N(B)=\sum_{n=1}^{+\infty}1_B(S_n)$.

- A -

Dans ce paragraphe on suppose que la probabilité μ possède des moments exponentiels et l'on définit l'application ψ de \mathbb{R} dans \mathbb{R} par la formule $\psi(t) = E\{e^{tX_1}\}$ $t \in \mathbb{R}$. On suppose de plus que $m = E(X_1) > 0$

- 1 a) Montrer que pour tout $t \in \mathbb{R}_+$ on a $E(e^{t|X_1|}) < +\infty$ et en déduire que ψ est analytique. Prouver que $\psi'(0) = m$ et qu'il existe un réel $t_0 < 0$ tel que $\psi(t_0) < 1$
- b) Calculer $E(e^{t_0S_n})$ $n \ge 1$ en fonction de $\psi(t_0)$
- c) En utilisant l'inégalité $1_{[-1,1]}(x) \leq e^{-t_0} e^{t_0 x}$ $x \in I\!\!R$ montrer que

$$E\{N([-1,1])\} \leq \frac{e^{-t_0}\psi(t_0)}{1-\psi(t_0)}.$$

- 2 Soit I un intervalle de IR de longueur égale à 1. On définit la variable aléatoire T_I à valeurs dans \overline{IN} par $T_I = \inf\{n \geq 1; S_n \in I\}$ où l'on convient que inf $\emptyset = +\infty$.
- a) Montrer que pour tout entier $k \geq 1$ on a $\{T_I = k\} \in \mathcal{F}(X_1, X_2, \dots, X_k)$
- b) Montrer que pour tout entier $k \ge 1$ on a

$$1_{\{T_I=k\}} \times N(I) = 1_{\{T_I=k\}} [1 + \sum_{n=1}^{+\infty} 1_I(S_{n+k})]$$

et que

$$1_{\{T_I=k\}} \times 1_I(S_{n+k}) \le 1_{\{T_I=k\}} \times 1_{[-1,1]}(S_{n+k}-S_k) \quad n \ge 1 \quad k \ge 1.$$

c) En déduire que

$$E\{N(I)\} \le \mathbb{P}\{[T_I < +\infty]\}(1 + \sum_{n=1}^{+\infty} \mathbb{P}\{[|S_n| \le 1]\}) \le 1 + E\{N([-1,1])\}$$

d) Montrer que pour tout compact J de $I\!\!R$ on a

$$\sup_{x \in I\!\!R} E\{N(x+J)\} < +\infty$$

- B -

Dans ce paragraphe on suppose que la probabilité μ est non arithmétique. On désigne par \mathcal{H}_{μ} l'espace vectoriel des fonctions h continues bornées de \mathbb{R} dans \mathbb{R} telles que pour tout $x \in \mathbb{R}$ on ait

$$h(x) = \int_{\mathbf{R}} h(x+y)\mu(dy)$$

1 - Soit $h \in \mathcal{H}_{\mu}$. Montrer que pour tout $n \geq 1$ et tout $p \geq 1$ on a

$$E\{h(S_{n+p})|\mathcal{F}(X_1,X_2,\ldots,X_n)\}=h(S_n)$$

 $I\!\!P$ presque sûrement et que pour tout $x \in I\!\!R$ et $n \ge 1$ on a $h(x) = E\{h(x + S_n)\}$.

- **2** Soit $h \in \mathcal{H}_{\mu}$
- a) Etablir que pour tout $n \ge 1$ et tout $p \ge 1$ on a

$$E\{[h(S_{n+p}) - h(S_n)]^2\} = E\{h^2(S_{n+p})\} - E\{h^2(S_n)\}$$

- b) En déduire que la suite $(E\{h^2(S_n)\})$ $n \ge 1$ est monotone et converge dans \mathbb{R} .
- c) Montrer que la suite de variables aléatoires $(h(S_n))_{n\geq 1}$ converge dans $\mathbb{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ vers une variable aléatoire Z et que $h(0) = E\{Z\}$.
- 3 Soit $h \in \mathcal{H}_{\mu}$
- a) On pose $u_n = \int_{\Omega} \int_{\mathbb{R}} \{h(S_n(\omega)) h(S_n(\omega) + y)\}^2 \mathbb{P}(d\omega) \mu(dy)$ $n \ge 1$

Agrégation Externe Options. 1992.

-20-

Montrer que $u_n = E\{[h(S_n) - h(S_{n+1})]^2\}$ et que la série $\sum_{n=1}^{+\infty} u_n$ est convergente. En déduire qu'il existe un sous ensemble M de $\Omega \times \mathbb{R}$ appartenant à la tribu produit $\mathcal{F} \otimes \mathcal{B}_{\mathbb{R}}$ tel que $\mathbb{P} \otimes \mu(M) = 1$ et que pour tout $(\omega, y) \in M$ on ait

$$\lim_{n \to +\infty} [h(S_n(\omega)) - h(S_n(\omega) + y)] = 0$$

- b) En utilisant le théorème de Fubini montrer qu'il existe $A \in \mathcal{B}_R$ tel que $\mu(A) = 1$, et que pour tout $y \in A$ on ait $P(M_y) = 1$ où $M_y = \{\omega; (\omega, y) \in M\}$. En déduire que pour tout élément y du support de μ on a h(y) = h(0).
- 4 Soit $h \in \mathcal{H}_{\mu}$. Montrer que pour tout $t \in \mathbb{R}$ l'application $x \to h(x+t)$ est un élément de \mathcal{H}_{μ} . En déduire que tout élément du support de μ est une période de h. Prouver de plus que l'ensemble des périodes de h est un sous groupe fermé de $(\mathbb{R}, +)$ et en déduire que pour tout $x \in \mathbb{R}$ on a h(x) = h(0).

- C -

On suppose dans cette partie que la probabilité μ est non arithmétique, possède des moments exponentiels et que $m = E(X_1) > 0$.

On désigne par P_{μ} l'espace vectoriel des fonctions f mesurables bornées de $(\mathbb{R}, \mathcal{B}_{R})$ dans $(\mathbb{R}, \mathcal{B}_{R})$ telles que la série de fonctions $\sum_{n=0}^{+\infty} \mu^{(n)} * f(x)$ converge simplement sur \mathbb{R} .

Pour $f \in P_{\mu}$ la somme de cette série est notée $\cup (x, f)$.

Soit J un compact de \mathbb{R} . Pour tout $n \geq 1$ on a

$$\mu^{(n)} * 1_J(x) = \mathbb{P}\{[S_n \in x - J]\} \text{ et } \sum_{n=0}^{+\infty} \mu^{(n)} * 1_J(x) = 1_{\{x-J\}}(0) + \mathbb{E}\{N(x-J)\}.$$

Il résulte de A que $1_J \in P_{\mu}$ et que $\sup_{x \in \mathbb{R}} \bigcup (x, 1_J) < +\infty$.

On note $C_K(I\!\!R)$ l'espace vectoriel des fonctions continues de $I\!\!R$ dans $I\!\!R$ à support compact. Pour $\phi \in C_K(I\!\!R)$, $x \in I\!\!R$ on définit $\phi_x \in C_K(I\!\!R)$ par $\phi_x(t) = \phi(t-x)$ $t \in I\!\!R$. On pourra dans la suite utiliser le résultat suivant : Si η est une forme linéaire positive sur $C_K(I\!\!R)$ telle que pour toute fonction $\phi \in C_K(I\!\!R)$ et tout $x \in I\!\!R$ on ait $\eta(\phi) = \eta(\phi_x)$, il existe une constante $c \geq 0$ telle que pour toute fonction $\phi \in C_K(I\!\!R)$ $\eta(\phi) = c\lambda(\phi)$.

1 - a) Montrer que $\mathcal{C}_K(I\!\!R)\subset P_\mu$ et que pour toute fonction $\phi\in\mathcal{C}_K(I\!\!R)$ de support J on a

$$\sup_{x \in R} |\cup (x, \phi)| \le [\sup_{x \in R} |\phi(x)|] \times \sup_{x \in R} |\cup (x, 1_J).$$

Agrégation . Externe. Options.

-21 -

b) Soit $\phi \in \mathcal{C}_K(I\!\! R)$ de support J. Etablir l'inégalité

$$|\cup(x,\phi)-\cup(y,\phi)| \le 2C(J) \times \sup\{|\phi(u)-\phi(v)|; u,v \in \mathbb{R} \ |u-v|=|x-y|\}$$

où $C(J) = \sup_{t \in \mathbb{R}} \bigcup (t, 1_J)$. En déduire que $x \to \bigcup (x, \phi)$ est uniformément continue sur \mathbb{R} .

- c) On désigne par $(x_n)_{n\geq 1}$ une suite de réels tels que $\lim_n x_n = +\infty$. Prouver à l'aide de b) que pour toute fonction $\phi \in \mathcal{C}_K(\mathbb{R})$ la suite de fonctions $(\mathcal{T}_n(\cdot,\phi))$ $n\geq 1$ définies par $\mathcal{T}_n(x,\phi) = \bigcup (x_n x,\phi)$ $x\in \mathbb{R}$ est uniformément équicontinue sur \mathbb{R} .
- d) On admettra que les résultats établis en a) et c) ainsi que la linéarité de l'application $\phi \to \mathcal{T}_n(\cdot,\phi)$ permettent d'établir l'existence d'une sous suite $(\ell(n))_{n\geq 1}$ de $I\!N$ telle que pour toute fonction $\phi \in \mathcal{C}_K(I\!R)$ la suite $(\mathcal{T}_{\ell(n)}(\cdot,\phi))_{n\geq 1}$ converge uniformément sur les compacts de $I\!R$ vers une fonction $\mathcal{T}(\cdot,\phi)$ continue bornée sur $I\!R$.

Soit $\phi \in \mathcal{C}_K(\mathbb{R})$ établir la relation

$${\mathcal T}_n(x,\phi) = \phi(x_n-x) + \int_{\mathbb R} {\mathcal T}_n(x+y,\phi) \mu(dy) \quad n \ge 1 \quad x \in \mathbb R.$$

En déduire que $\mathcal{T}(\cdot,\phi)$ est un élément de \mathcal{H}_{μ} et que pour tout $x\in\mathbb{R}$ $\mathcal{T}(x,\phi)=\mathcal{T}(0,\phi)$.

- 2 Montrer que pour toute fonction $\phi \in \mathcal{C}_K(I\!\!R)$ et tout $x \in I\!\!R$ on a $\mathcal{T}(x,\phi) = \mathcal{T}(0,\phi_x)$. En déduire que $\phi \to \mathcal{T}(0,\phi) = \alpha(\phi)$ est une forme linéaire positive sur $\mathcal{C}_K(I\!\!R)$ telle que pour toute fonction $\phi \in \mathcal{C}_K(I\!\!R)$ et tout $x \in I\!\!R$ $\alpha(\phi_x) = \alpha(\phi)$. En conclure qu'il existe une constante $c_1 \geq 0$ telle que pour toute $\phi \in \mathcal{C}_K(I\!\!R)$ on ait $\alpha(\phi) = \mathcal{T}(0,\phi) = c_1\lambda(\phi)$.
- 3 a) Montrer que $I(\mathcal{R}) \subset P_{\mu}$ et que de plus il existe une constante K > 0 telle que pour toute $f \in I(\mathcal{R})$ on ait

$$\sup_{x \in R} |\cup (x, f)| \le K \sum_{n \in \mathbb{Z}} \sup_{x \in [n, n+1]} |f(x)|$$

- b) On admettra que comme $\lim_{n\to+\infty} \bigcup (x_{\ell(n)}, \phi) = \lim_{n\to+\infty} \mathcal{T}_{\ell(n)}(0, \phi) = c_1 \lambda(\phi)$ pour toute fonction $\phi \in \mathcal{C}_K(\mathbb{R})$ on a également $\lim_{n\to+\infty} \bigcup (x_{\ell(n)}, f) = c_1 \lambda(f)$ pour toute fonction f en escalier à support compact. En déduire que pour toute fonction $f \in I(\mathbb{R})$ on a $\lim_{n\to+\infty} \bigcup (x_{\ell(n)}, f) = c_1 \lambda(f)$.
- **4** Soit θ la fonction de \mathbb{R} dans \mathbb{R} définie par $\theta = H \mu * H$ où $H(x) = 1_{[0,+\infty[}(x)$ $x \in \mathbb{R}$
- a) Calculer θ . Montrer que $\theta \in L^1(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \lambda)$ et que $\lambda(\theta) = m$. En utilisant les propriétés de monotonie de θ montrer de plus que $\theta \in I(\mathcal{R})$

- b) Montrer que pour tout $x \in \mathbb{R}$ la suite $\mu^{(n)} * H(x) = E\{H(x-S_n)\}$ $n \ge 1$ converge vers 0. En déduire que $\bigcup (x,\theta) = H(x)$ et que $\lim_{x \to +\infty} \bigcup (x,\theta) = 1$.
- c) En déduire à l'aide de 3 que $c_1 = \frac{1}{m}$ et que pour toute fonction $f \in I(\mathcal{R})$ $\lim_{n \to +\infty} \bigcup (x_{\ell(n)}, f) = \frac{1}{m} \lambda(f)$.
- 5 Déduire de l'étude précédente que pour toute fonction $f \in I(\mathcal{R})$ on a

$$\lim_{x \to +\infty} \{ \sum_{n=0}^{+\infty} \mu^{(n)} * f(x) \} = \lim_{x \to +\infty} \cup (x,f) = \frac{\lambda(f)}{m}$$

- D -

Dans cette partie $(A_k)_{k\geq 1}$ désigne une suite de variables aléatoires indépendantes et de même loi satisfaisant aux hypothèses suivantes :

$$IP\{[A_1 > 0]\} = 1, \quad IP\{[A_1 > 1]\} > 0$$

 $E\{(A_1)^t\} = \Phi(t)$ existe pour tout $t \in \mathbb{R}$ et $E\{\log(A_1)\} < 0$. On suppose de plus que la loi de probabilité ν de $\log(A_1)$ est non arithmétique.

- 1 Montrer à l'aide de la règle de Cauchy que la série $1 + \sum_{k=1}^{+\infty} (A_1 A_2 \cdots A_k)$ est \mathbb{P} presque sûrement convergente. On note R sa somme.
- 2 Montrer que $\lim_{t\to +\infty} \Phi(t) = +\infty$, et que l'application $t\to \Phi(t)$ est strictement convexe sur $[0,+\infty[$. Prouver qu'il existe un réel $\alpha_0>0$ tel que $\Phi(\alpha_0)=1, \Phi(t)<1$ si $0< t<\alpha_0$. Etablir de plus que $E\{(A_1)^{\alpha_0}\log(A_1)\}>0$.
- 3 Pour $n \ge 1$ on définit la variable aléatoire $\sum_n \operatorname{par} \sum_n = \sum_{k=1}^n (A_1 A_2 \cdots A_k)$

Montrer que si $\alpha_0 \leq 1$ et $0 < \beta < \alpha_0$ on a $E\{(\sum_n)^\beta\} \leq \sum_{k=1}^n [\Phi(\beta)]^k$ et que si $\alpha_0 > 1$ $1 \leq \beta < \alpha_0$ on a $(E\{(\sum_n)^\beta\})^{1/\beta} \leq \sum_{k=1}^n [\Phi(\beta)]^{k/\beta}$.

En déduire que pour tout $0 < \beta < \alpha_0$ on a $E\{(R)^{\beta}\} < +\infty$ et que

$$\lim_{T\to +\infty} T^{\beta} \mathbb{P}\{[R>T]\} = 0.$$

- 4 Soit R_1 la variable aléatoire définie par $R_1 = 1 + \sum_{j=2}^{+\infty} (A_2 A_3 \cdots A_j)$
- a) Montrer que les variables aléatoires A_1 et R_1 sont indépendantes et que R_1 a même loi γ que R.
- b) Vérifier que l'on définit une probabilité ν_0 sur $(I\!\!R, {\cal B}_{I\!\!R})$ en posant

$$\nu_0(B) = E\{(A_1)^{\alpha_0} 1_B[\log(A_1)]\} \ B \in \mathcal{B}_{\mathbb{R}}$$

et montrer que pour toute fonction f borélienne bornée on a

$$\int_{\mathbf{R}} f(x)\nu_0(dx) = E\{(A_1)^{\alpha_0} f[\log(A_1)]\}$$

c) On considère les applications continues de $I\!\!R$ dans $I\!\!R$ F_0 et ψ_0 définies par

$$F_0(t) = e^{-t} \int_0^{e^t} u^{\alpha_0} I\!\!P\{[R > u]\} du \quad \psi_0(t) = e^{-t} \int_0^{e^t} u^{\alpha_0} I\!\!P\{[u < R \le u + 1]\} du.$$

De la relation $R = 1 + A_1R_1$ déduire que

$$F_0(t) = E\{(A_1)^{\alpha_0}F_0[t - \log(A_1)]\} + \psi_0(t) = \nu_0 * F_0(t) + \psi_0(t) \quad t \in \mathbb{R}.$$

5 - a) Montrer à l'aide du théorème de Fubini que pour tout $t \geq 0$ on a

$$0 \le \psi_0(t) \le \frac{e^{-t}}{\alpha_0 + 1} \left[\int_0^1 y^{\alpha_0 + 1} \gamma(dy) + \int_1^{e^t + 1} y^{\alpha_0 + 1} \left\{ 1 - \left(1 - \frac{1}{y}\right)^{\alpha_0 + 1} \right\} \gamma(dy) \right]$$

et en déduire que pour $0 < \beta$ $\alpha_0 - 1 < \beta < \alpha_0$ on a pour tout $t \ge 0$

$$0 \le \psi_0(t) \le \frac{e^{-t}}{\alpha_0 + 1} + e^{-t}(e^t + 1)^{\alpha_0 - \beta} \times \left[\int_0^{+\infty} y^{\beta} \gamma(dy) \right]$$

- b) Montrer que pour $t \le 0$ $0 \le \psi_0(t) \le \frac{e^{\alpha_0 t}}{\alpha_0 + 1}$
- c) En déduire que $\psi_0 \in I(\mathcal{R})$

6 - Montrer que
$$\nu_0^{(n)} * F_0(t) = e^{-t} \int_0^{e^t} u^{\alpha_0} E\{\gamma(] \frac{u}{A_1 A_2 \cdots A_n}, +\infty[)\} du$$
 pour $n \geq 1$ et $t \in \mathbb{R}$.

En déduire que $\lim_{n \to +\infty} \nu_0^{(n)} * F_0(t) = 0$ et que $F_0(t) = \sum_{n=0}^{+\infty} \nu_0^{(n)} * \psi_0(t)$ $t \in \mathbb{R}$.

7 - Montrer que

$$m_0 = \int_{-\infty}^{+\infty} x \nu_0(dx) = E\{(A_1)^{\alpha_0} \log(A_1)\} > 0$$

et prouver à l'aide de C5 que

$$\lim_{t \to +\infty} F_0(t) = c_+ \text{ où } c_+ = \frac{1}{m_0} \int_0^{+\infty} u^{\alpha_0 - 1} \mathbb{P}\{[u < R \le u + 1]\} du \text{ et } 0 < c_+ < +\infty.$$

8 - a) Soit $0<\epsilon<1$ et T>0. Etablir l'inégalité

$$T^{\alpha_0} \mathbb{P}\{[R > T]\} \le T^{-1} \int_{(1-\epsilon)T}^T u^{\alpha_0} \mathbb{P}\{[R > u]\} du \times \frac{\alpha_0 + 1}{1 - (1-\epsilon)^{\alpha_0 + 1}}.$$

En déduire à l'aide de 7 que

$$\limsup_{T \to +\infty} T^{\alpha_0} \dot{\mathbb{P}}\{[R > T]\} \le c_+ \frac{(\alpha_0 + 1)\epsilon}{1 - (1 - \epsilon)^{\alpha_0 + 1}}$$

 $\mathrm{puis}\ \mathrm{que}\ \mathrm{lim}\, \mathrm{sup}_{T\, \rightarrow\, +\infty}\, T^{\alpha_0}\, I\!\!P\{[R>T]\} \leq c_+.$

b) Démontrer de manière analogue que $\liminf_{T\to +\infty} T^{\alpha_0} I\!\!P\{[R>T]\} \geq c_+$ et en conclure que $\lim_{T\to +\infty} T^{\alpha_0} I\!\!P\{[R>T]\} = c_+$.