Cosmology — Assignment 6 — Solution

Problem 1 — Whacky Units

Cosmologists set G = c = 1. In conventional SI units, $G = 6.67 \times 10^{-11} \frac{\text{N m}^2}{\text{k}\sigma^2}$ and

 $c = 299792458 \frac{\text{m}}{\text{s}} = 3 \times 10^8 \frac{\text{m}}{\text{s}}$. But the Newton, N, is a derived unit, $1 \text{ N} = \frac{\text{kg m}}{\text{s}^2}$, so $G = 6.67 \times 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$.

(a) If
$$G = c = 1$$
 then $1 = \frac{G}{c^2} = \frac{6.67 \times 10^{-11} \frac{m^3}{\text{kg s}^2}}{\left(3 \times 10^8 \frac{\text{m}}{\text{s}}\right)^2} = \frac{6.67}{9} \times 10^{-11-16} \frac{\text{m}}{\text{kg}} = 7.41 \times 10^{-28} \frac{\text{m}}{\text{kg}}$

So apparently 1 kg = 7.41×10^{-28} m.

- (b) $1 = c = 3 \times 10^8 \text{ m/s} = \frac{3 \times 10^8 \text{ m/s}^2}{1/\text{s}}$ so the frequence of 1Hz corresponds to an acceleration of $3 \times 10^8 \frac{\text{m}}{\text{s}}$.
- (c) The diameter of the Earth is 12.74×10^6 m. Divide this by $c = 3 \times 10^8$ m/s, and get 0.0425 s.
- (d) The diameter of the Sun is 1.393×10^9 m. Divide this by $c = 3 \times 10^8 \frac{\text{m}}{\text{s}}$, and get 4.64 s.
- (e) The mass of the Sun is 1.989×10^{30} kg. But 1 kg = 7.41×10^{-28} m by part (a). So The mass of the Sun is

$$1.989 \times 10^{30} \text{ kg} \frac{7.41 \times 10^{-28} \text{ m}}{1 \text{ kg}} = 1474 \text{ m}.$$

If the Sun were a black hole, its event horizon would be at 2 M = 2878 m.

Problem 2 — Astronaut Stretching

- (a) If we put $r = \infty$ and v = 0 into, $K = \frac{1}{2} m_{\text{astronaut}} v^2$, $U = -\frac{G m_{\text{astronaut}} M}{r}$, then K = U = 0.
- (b) E = 0.

(c)
$$0 = \frac{1}{2} m_{\text{astronaut}} v^2 - \frac{Gm_{\text{astronaut}} M}{r}$$

Well, we can cancel $m_{\rm astronaut}$ out and rearrange a little, giving

$$\frac{1}{2}v^2 = \frac{GM}{r} \quad \text{or} \quad v^2 = \frac{2\,GM}{r} \quad \text{or} \quad v = \sqrt{\frac{2\,GM}{r}} \text{. So at } r_{\text{ouch}}, v_{\text{ouch}} = \sqrt{\frac{2\,GM}{r_{\text{ouch}}}} \text{. We are working in the whacky units}$$
 where $G = 1$, so I guess I could just write $v_{\text{ouch}} = \sqrt{\frac{2\,M}{r_{\text{ouch}}}}$.

(d) TWB Chapter 3, Problem 5, p. 3-38, Part D. I called the speed we found in Part (c), v_{ouch} . As a fraction of the speed of light,

$$\frac{v_{\rm ouch}}{c} = \sqrt{\frac{2\,GM/c^2}{r_{\rm ouch}}} \; ,$$

but again, we are working in units where G = c = 1, so as a fraction of the speed of light, we could just as well have left the answer as:

$$V_{\text{ouch}} = \sqrt{\frac{2M}{r_{\text{ouch}}}}$$
.

(e) TWB Chapter 3, Problem 5, p. 3-38, Part E. Your period of trauma would be at most,

$$T_{\text{ouch}} = \frac{r_{\text{ouch}}}{v_{\text{ouch}}} = r_{\text{ouch}} / \sqrt{\frac{2M}{r_{\text{ouch}}}} = \sqrt{\frac{r_{\text{ouch}}^3}{2M}}$$

It's time we substitute in what we learned in Problem Set 5, Problem 5, specifically, $r_{\text{ouch}} = \left(\frac{2 M \Delta r}{|q_E|}\right)^{1/3}$.

So,

$$T_{\text{ouch}} = \sqrt{\frac{\frac{2M\Delta r}{|g_E|}}{2M}} = \sqrt{\frac{\Delta r}{|g_E|}}$$

How fabulously simple! T_{ouch} does not depend on the mass of the black hole! Nor does it depend on Gor c.

(f) TWB Chapter 3, Problem 5, p. 3-38, Part F.

Well, finally we will plug in some numbers, and find out what T_{ouch} is in seconds:

$$T_{\text{ouch}} = \sqrt{\frac{1 \text{ m}}{9.8 \text{ m/s}^2}} = 0.32 \text{ s}$$

Problem 3 — Embedding the $[r, \phi]$ -Slice Outside the Event Horizon

(a) We start with the metric in Eq. (6): $(\Delta \sigma)^2 = -(1 - 2M/r)(\Delta t)^2 + \frac{(\Delta r)^2}{1 - 2M/r} + r^2(\Delta \phi)^2$, and put $\Delta t = 0$, and

$$(\Delta \sigma)^2 = \frac{(\Delta r)^2}{1 - 2 M/r} + r^2 (\Delta \phi)^2.$$

- (b) Also put $\Delta \phi = 0$ and get $(\Delta \sigma)^2 = \frac{(\Delta r)^2}{1 2M/r}$.
- (c) Take the square root and get $\Delta \sigma = \frac{|\Delta r|}{\sqrt{1-2\,M/r}}$, or if you prefer, $\Delta \sigma = \frac{\pm\,\Delta r}{\sqrt{1-2\,M/r}}$.
- (d) If we want $\Delta \sigma$ positive when Δr is negative, we need:

$$\Delta\sigma = \frac{-\Delta r}{\sqrt{1-2\,M/r}}$$

(e) Substitute in $M\Delta s = \Delta \sigma$, Mx = r, and $M\Delta x = \Delta r$. Then

$$M \Delta s = \frac{-M\Delta x}{\sqrt{1-2M/(Mx)}} \text{ or } \Delta s = \frac{-\Delta x}{\sqrt{1-2/x}}$$

(f) We start at x = 7.0 and finish at x = 2.2. We do that in 12 steps of $\Delta x = -0.4$ each.

```
In[@]:= table = Table[{i, 7.0 - 0.4 i, -0.4, " -10",
      If[False, "", Round[0.4/Sqrt[1-2/(7-0.4i)], 0.01]], If[False, "", Round[25 \times 0.4/Sqrt[1-2/(7-0.4i)]]]\}, \{i, 0, 11, 1\}]; 
tableWithHeader = PrependTo[table, {"i", "x_i", "\Delta x", "25*\Delta x (for mm)", "\Delta s_i", "25*\Delta s_i (for mm)"];
TableForm[tableWithHeader]
```

mm)

Out[•]//TableForm=

i	X_i	$\triangle X$	$25*\Delta x$ (for mm)	∆s₁	25∗∆s _i (for
0	7.	-0.4	-10	0.47	12
1	6.6	-0.4	-10	0.48	12
2	6.2	-0.4	-10	0.49	12
3	5.8	-0.4	-10	0.49	12
4	5.4	-0.4	-10	0.5	13
5	5.	-0.4	-10	0.52	13
6	4.6	-0.4	-10	0.53	13
7	4.2	-0.4	-10	0.55	14
8	3.8	-0.4	-10	0.58	15
9	3.4	-0.4	-10	0.62	16
10	3.	-0.4	-10	0.69	17
11	2.6	-0.4	-10	0.83	21

(g) The beautiful radial profile. If you were going to restore ϕ and make this symmetric, you'd need more 3-d artistry skills than we are applying here. See Figure 12 on p. 3-30.

 $Plot[\{], (x, \theta, \theta), PlotRange \rightarrow (\{1, 7\}, \{\theta, 6\}\}, AspectRatio \rightarrow 1, GridLines \rightarrow \{Range[1, 7, \theta.4], Range[\theta, 6, \theta.4]\}, Frame \rightarrow True, PlotLabel \rightarrow "Radial Profile, Horizontal Axis is x, Vertical Axis is Fictional z"]$

Out[+]=

Problem 4 — Exploring Light-Like Worldlines of the $[r, \phi]$ -Slice Inside the Event Horizon

(a) We start with the metric in Eq. (5): $(\Delta \tau)^2 = (1 - 2M/r)(\Delta t)^2 - \frac{(\Delta r)^2}{1 - 2M/r} - r^2(\Delta \phi)^2$, but because 1 - 2M/Ris always negative in the region we are interested in for this problem (inside the event horizon), it is probably clearer to write:

$$(\Delta \tau)^2 = -(2M/r - 1)(\Delta t)^2 + \frac{(\Delta r)^2}{2M/R - 1} - r^2(\Delta \phi)^2$$

(b) Set $\Delta t = 0$ and simplify:

$$(\Delta \tau)^2 = \frac{(\Delta r)^2}{2 M/R - 1} - r^2 (\Delta \phi)^2$$

(c)
$$0 = \frac{(\Delta r)^2}{2 M/R - 1} - r^2 (\Delta \phi)^2$$
 or $r^2 (\Delta \phi)^2 = \frac{(\Delta r)^2}{2 M/R - 1}$ or $\Delta \phi = \frac{\pm \Delta r}{r \sqrt{2 M/R - 1}}$.

If we want decreasing Δr to result in increasing $\Delta \phi$, then we need: $\Delta \phi = \frac{-\Delta r}{r \sqrt{2M/R-1}}$

(e) Introduce x = r/M, $\Delta x = \Delta r/M$:

$$\Delta \phi = \frac{-M\Delta x}{Mx \ \sqrt{2 \ M/(Mx) - 1}} = \frac{-\Delta x}{x \ \sqrt{2/x - 1}}$$

(f) Fill in the final three columns of the table table below using $\Delta \phi_i = \frac{-\Delta x}{x_i \sqrt{2/x_i - 1}}$.

bleFor	m=					
i	Xi	$\triangle x$		$\Delta \phi_{\vec{1}}$	$\frac{360}{2\pi} \star \triangle \phi_i$ (degrees)	Cumulative change in ϕ
0	1.5	-0.1	0.115		6.6	6.6
1	1.4	-0.1	0.109		6.3	12.9
2	1.3	-0.1	0.105		6.	18-9
3	1.2	-0.1	0.102		5.8	24.7
4	1.1	-0.1	0.101		5.8	30.5
5	1.	-0.1	0.1		5.7	36.2
6	0.9	-0.1	0.101		5.8	42.0
7	0.8	-0.1	0.102		5.8	47.8
8	0.7	-0.1	0.105		6.	53.8
9	0.6	-0.1	0.109		6.3	60-1
10	0.5	-0.1	0.115		6.6	66.7
11	0.4	-0.1	0.125		7.2	73-9
12	0.3	-0.1	0.14		8.	81.9
13	0.2	-0.1	0.167		9.5	91-4
14	0.1	-0.1	0.229		13.1	104.3

(g) Finally, it is time to make a beautiful world line:

Worldline for a Light-Like Particle on an $[r,\phi]$ -Slice Inside the Event Horizon

