Early stopping points for gradient desccent An application to least square regression

Mohammed HSSEIN

¹Centrale Lille Institut Villeneuve d'Ascq, France

Promo: 2021

- Introduction
 - Context
 - Settings
 - Kernels
- Stopping rules
 - Naive stopping rules
 - Bias variance balance : To a sophisticated stopping rule
 - Analysis
- Conclusion
 - Bibliography

- Introduction
 - Context
 - Settings
 - Kernels
- Stopping rules
- 3 Conclusion

Context

Introduction

Figure: Overfitting phenomenon

Introduction

Figure: Overfitting phenomenon

Context

Common problems:

 Running infinite gradient descent iterations, lead to over-fitting!

over-fitting!

- Common problems :
 Running infinite gradient descent iterations, lead to
 - Solution : Regularization (Lasso, \mathcal{L}^1 , ...) !!

But:

Context

Common problems:

- Running infinite gradient descent iterations, lead to over-fitting!
- Solution : **Regularization** (Lasso, \mathcal{L}^1 , ...) !!

But:

- Cost increases (Time, complexity, ...)
- Alternative : **Early stopping** : find the number of iterations \hat{T} , to perform before interrupting the training procedure.
- Motivated by the Bias-Variance balance :

Bias-Variance trade-off

Bias-Variance trade-off

$$\mathbb{E}_{\mathcal{D}}(y - \hat{f})^2 = (y - \mathbb{E}_{\mathcal{D}}\hat{f})^2 + \mathbb{E}_{\mathcal{D}}(\hat{f} - \mathbb{E}_{\mathcal{D}}\hat{f})^2 + \sigma^2$$

Bias-Variance trade-off

$$\mathbb{E}_{\mathcal{D}}(y-\hat{f})^2 = (y - \mathbb{E}_{\mathcal{D}}\hat{f})^2 + \mathbb{E}_{\mathcal{D}}(\hat{f} - \mathbb{E}_{\mathcal{D}}\hat{f})^2 + \sigma^2$$

$$\mathbb{E}_{\mathcal{D}}(y-\hat{f})^2 = (y - \mathbb{E}_{\mathcal{D}}\hat{f})^2 + \mathbb{E}_{\mathcal{D}}(\hat{f} - \mathbb{E}_{\mathcal{D}}\hat{f})^2 + \sigma^2$$

- Bias term and variance term behave in opposite sens
- Controling their evolution may lead to consistant rules

- Regression model
- data points $\mathcal{D}_{train} = \{(x_i, y_i), i = 1, 2, ..., n\}$ and $\mathcal{D}_{test} = \{(x_i, y_i), i = 1, 2, ..., m\}$

- Regression model
- data points $\mathcal{D}_{train} = \{(x_i, y_i), i = 1, 2, ..., n\}$ and $\mathcal{D}_{test} = \{(x_i, y_i), i = 1, 2, ..., m\}$
- Non parametric scenario:

- Regression model
- data points $\mathcal{D}_{train} = \{(x_i, y_i), i = 1, 2, ..., n\}$ and $\mathcal{D}_{test} = \{(x_i, y_i), i = 1, 2, ..., m\}$
- Non parametric scenario :
 - $y_i = f^*(x_i) + w_i$, i = 1, 2, ..., n

- Regression model
- data points $\mathcal{D}_{train} = \{(x_i, y_i), i = 1, 2, ..., n\}$ and $\mathcal{D}_{test} = \{(x_i, y_i), i = 1, 2, ..., m\}$
- Non parametric scenario :
 - $y_i = f^*(x_i) + w_i$, i = 1, 2, ..., n
 - $w_i \sim \mathcal{N}(0,1)$ iid

- Regression model
- data points $\mathcal{D}_{train} = \{(x_i, y_i), i = 1, 2, ..., n\}$ and $\mathcal{D}_{test} = \{(x_i, y_i), i = 1, 2, ..., m\}$
- Non parametric scenario :
 - $y_i = f^*(x_i) + w_i$, i = 1, 2, ..., n
 - $w_i \sim \mathcal{N}(0,1)$ iid
 - \bullet $f^* \in \mathcal{H}$

- Regression model
- data points $\mathcal{D}_{train} = \{(x_i, y_i), i = 1, 2, ..., n\}$ and $\mathcal{D}_{test} = \{(x_i, y_i), i = 1, 2, ..., m\}$
- Non parametric scenario :
 - $y_i = f^*(x_i) + w_i$, i = 1, 2, ..., n
 - $w_i \sim \mathcal{N}(0,1)$ iid
 - $f^* \in \mathcal{H}$
- ullet Fix ${\cal H}$ a function space

- Regression model
- data points $\mathcal{D}_{train} = \{(x_i, y_i), i = 1, 2, ..., n\}$ and $\mathcal{D}_{test} = \{(x_i, y_i), i = 1, 2, ..., m\}$
- Non parametric scenario :
 - $y_i = f^*(x_i) + w_i, i = 1, 2, ..., n$
 - $w_i \sim \mathcal{N}(0,1)$ iid
 - $f^* \in \mathcal{H}$
- Fix \mathcal{H} a function space
- ullet Goal: fit function space ${\cal H}$ to the model via gradient descent Using RKHS setting gives broad class of functions and algebraic properties

properties
$$f_{t+1} = f_t + \alpha \nabla \mathcal{L}(f_t), \quad f^* \in \arg\min_{f \in \mathcal{H}} \mathcal{L}(f), \quad \mathcal{L}(f) = \mathbb{E}_y \frac{1}{n} \sum_{i=1}^n \phi(y_i, f(x_i))$$

Denote by : $R_{OR}(f_t) = ||f^* - f_t||_n^2$. We might attempt for the **Oracle** rule :

$$\hat{\mathcal{T}}_{\mathit{OR}} = \mathop{\mathsf{arg\,min}}\left\{t \in \mathbb{N}, \mid \mathit{R}_{\mathit{OR}}(\mathit{f}_{t+1}) > \mathit{R}_{\mathit{OR}}(\mathit{f}_{t})
ight\} - 1$$

Denote by : $R_{OR}(f_t) = ||f^* - f_t||_n^2$. We might attempt for the **Oracle** rule :

$$\hat{\mathcal{T}}_{\mathit{OR}} = \mathop{\mathsf{arg\,min}}\left\{t \in \mathbb{N}, \mid \mathit{R}_{\mathit{OR}}(\mathit{f}_{t+1}) > \mathit{R}_{\mathit{OR}}(\mathit{f}_{t})
ight\} - 1$$

But!

Denote by : $R_{OR}(f_t) = ||f^* - f_t||_n^2$. We might attempt for the **Oracle** rule :

$$\hat{\mathcal{T}}_{\mathit{OR}} = \mathop{\mathsf{arg\,min}}\left\{t \in \mathbb{N}, \mid \mathit{R}_{\mathit{OR}}(\mathit{f}_{t+1}) > \mathit{R}_{\mathit{OR}}(\mathit{f}_{t})
ight\} - 1$$

But!

• no mathematical argument showing that the function $t \xrightarrow{\Phi} R_{OR}(f_t) = ||f^* - f_t||_n^2$, is convex

Tacle

Denote by : $R_{OR}(f_t) = ||f^* - f_t||_n^2$. We might attempt for the **Oracle** rule :

$$\hat{\mathcal{T}}_{\mathit{OR}} = \mathop{\mathsf{arg\,min}}\left\{t \in \mathbb{N}, \mid \mathit{R}_{\mathit{OR}}(\mathit{f}_{t+1}) > \mathit{R}_{\mathit{OR}}(\mathit{f}_{t})
ight\} - 1$$

But!

- no mathematical argument showing that the function $t \stackrel{\Phi}{\longrightarrow} R_{OR}(f_t) = ||f^* f_t||_n^2$, is convex
- data independent rule : with $\mathcal{D}_{train} \neq \mathcal{D}'_{train}$ we have the same performance.

Denote by : $R_{OR}(f_t) = ||f^* - f_t||_n^2$. We might attempt for the **Oracle** rule :

$$\hat{\mathcal{T}}_{\mathit{OR}} = \mathop{\mathsf{arg\,min}}\left\{t \in \mathbb{N}, \mid \mathit{R}_{\mathit{OR}}(\mathit{f}_{t+1}) > \mathit{R}_{\mathit{OR}}(\mathit{f}_{t})
ight\} - 1$$

But!

- no mathematical argument showing that the function $t \xrightarrow{\Phi} R_{OR}(f_t) = ||f^* f_t||_n^2$, is convex
- data independent rule : with $\mathcal{D}_{train} \neq \mathcal{D}'_{train}$ we have the same performance.
- Not computable in practice !!!

Hold out

- Let's suppose that the size of the full data $\{x_i\}_{i=1}^n$ is even. S_{te} , and S_{tr} the train/test sets .
- at each iteration, the training data is used to estimate the risk $R_{HO}(f_t) = \frac{1}{n} \sum_{i \in S_{te}} (y_i f_{tr,t}(x_i))^2$.

Hold out

- Let's suppose that the size of the full data $\{x_i\}_{i=1}^n$ is even. S_{te} , and S_{tr} the train/test sets.
- at each iteration, the training data is used to estimate the risk $R_{HO}(f_t) = \frac{1}{n} \sum_{i \in S_{to}} (y_i - f_{tr,t}(x_i))^2$.
- Possible rule $\widehat{T}_{HO} = \mathop{\mathsf{arg}}
 olimits \min \left\{ t \in \mathbb{N}, R_{HO}(f_{tr,t+1}) > R_{HO}(f_{tr,t})
 ight\} - 1$

- Introduction
- 2 Stopping rules
 - Naive stopping rules
 - Bias variance balance : To a sophisticated stopping rule
 - Analysis
- 3 Conclusion

The bias variance balance principle gives a way to construct stopping rules

• The bias term involves $f^* \in \arg\min_{f \in \mathcal{H}} \mathcal{L}(f)$ and thus unknown!

- The bias term involves $f^* \in \arg\min_{f \in \mathcal{H}} \mathcal{L}(f)$ and thus unknown!
- The variance term involves randomness of the model

- The bias term involves $f^* \in \arg\min_{f \in \mathcal{H}} \mathcal{L}(f)$ and thus unknown!
- The variance term involves randomness of the model
- Idea :

- The bias term involves $f^* \in \arg\min_{f \in \mathcal{H}} \mathcal{L}(f)$ and thus unknown!
- The variance term involves randomness of the model
- Idea :
 - Upper bound bias term carefully

- The bias term involves $f^* \in \arg\min_{f \in \mathcal{H}} \mathcal{L}(f)$ and thus unknown!
- The variance term involves randomness of the model
- Idea :
 - Upper bound bias term carefully
 - Control the variance term carefully using the randomness of the model

- The bias term involves $f^* \in \arg\min_{f \in \mathcal{H}} \mathcal{L}(f)$ and thus unknown!
- The variance term involves randomness of the model
- Idea :
 - Upper bound bias term carefully
 - Control the variance term carefully using the randomness of the model
 - If the bounds are computable: stop when the terms are equivalent

Construct a stopping rule from the bias variance tradeoff

The bias variance balance principle gives a way to construct stopping rules

- The bias term involves $f^* \in \arg\min_{f \in \mathcal{H}} \mathcal{L}(f)$ and thus unknown!
- The variance term involves randomness of the model
- Idea :
 - Upper bound bias term carefully
 - Control the variance term carefully using the randomness of the model
 - If the bounds are computable: stop when the terms are equivalent
- RKHS mathematical setting

Representation theorem

Consider a \mathcal{H} to be a **RKHS** defined with a kernel \mathbb{K} over a domain \mathcal{X} . let $(x_1, x_2, ..., x_n) \in \mathcal{X}^n$. Let a functional $\Psi : \mathbb{R}^{n+1} \to \mathbb{R}$ increasing wrt (with respect to) its last variable. Then

$$\min_{f \in \mathcal{F}} \Psi(f(x_1), ..., f(x_n), ||f||_{\mathcal{F}}^2)$$

is reached at some $f = \sum_{i=1}^{n} \alpha_i \mathbb{K}(x_i, .)$

RKHS setting : consequences

Representation theorem

Consider a \mathcal{H} to be a **RKHS** defined with a kernel \mathbb{K} over a domain \mathcal{X} . let $(x_1, x_2, ..., x_n) \in \mathcal{X}^n$. Let a functional $\Psi : \mathbb{R}^{n+1} \to \mathbb{R}$ increasing wrt (with respect to) its last variable. Then

$$\min_{f \in \mathcal{F}} \Psi(f(x_1), ..., f(x_n), ||f||_{\mathcal{F}}^2)$$

is reached at some $f = \sum_{i=1}^{n} \alpha_i \mathbb{K}(x_i, .)$

• Functions expansion $\forall x \in \mathcal{X} : f(x) = \sum_{i=1}^{\infty} \sqrt{\mu_i} a_i \phi_i(x)$ with $a_k = \frac{1}{\sqrt{\mu k}} \langle f, \phi_k \rangle_{\mathcal{H}}$

Conclusion

RKHS setting : consequences

Representation theorem

Consider a \mathcal{H} to be a **RKHS** defined with a kernel \mathbb{K} over a domain \mathcal{X} . let $(x_1, x_2, ..., x_n) \in \mathcal{X}^n$. Let a functional $\Psi : \mathbb{R}^{n+1} \to \mathbb{R}$ increasing wrt (with respect to) its last variable. Then $\min_{f \in \mathcal{T}} \Psi(f(x_1), ..., f(x_n), \|f\|_{\mathcal{F}}^2)$

$$f \in \mathcal{F}$$

is reached at some $f = \sum_{i=1}^{n} \alpha_i \mathbb{K}(x_i, .)$

- Functions expansion $\forall x \in \mathcal{X}$: $f(x) = \sum_{j=1}^{\infty} \sqrt{\mu_j} a_j \phi_j(x)$ with $a_k = \frac{1}{\sqrt{\mu_k}} \langle f, \phi_k \rangle_{\mathcal{H}}$
- we have the inner products $\langle f,g\rangle_{L^2(\mathcal{X})}=\sum_{j=1}^\infty \mu_j a_j b_j$ and $\langle f,g\rangle_{\mathcal{H}}=\sum_{j=1}^\infty a_j b_j$

RKHS setting : consequences

Representation theorem

Consider a \mathcal{H} to be a **RKHS** defined with a kernel \mathbb{K} over a domain \mathcal{X} . let $(x_1, x_2, ..., x_n) \in \mathcal{X}^n$. Let a functional $\Psi : \mathbb{R}^{n+1} \to \mathbb{R}$ increasing wrt (with respect to) its last variable. Then

$$\min_{f \in \mathcal{F}} \Psi(f(x_1), ..., f(x_n), ||f||_{\mathcal{F}}^2)$$

is reached at some $f = \sum_{i=1}^{n} \alpha_i \mathbb{K}(x_i, .)$

- Functions expansion $\forall x \in \mathcal{X}$: $f(x) = \sum_{j=1}^{\infty} \sqrt{\mu_j} a_j \phi_j(x)$ with $a_k = \frac{1}{\sqrt{\mu_k}} \langle f, \phi_k \rangle_{\mathcal{H}}$
- we have the inner products $\langle f,g\rangle_{L^2(\mathcal{X})}=\sum_{j=1}^\infty \mu_j a_j b_j$ and $\langle f,g\rangle_{\mathcal{H}}=\sum_{j=1}^\infty a_j b_j$
- ullet recall the fact that $:\langle f,g
 angle_{L^2(\mathcal{X})} = \int_{\mathcal{X}} f(x)g(x)d\mathbb{P}(x)$

RKHS consequences

• Define the Local Rademacher upper bound :

$$\mathcal{R}_{\mathcal{K}}(\epsilon) = \left[\frac{1}{n} \sum_{i=1}^{n} \min(\hat{\lambda_i}, \epsilon^2)\right]^{\frac{1}{2}} \text{ where } \mathcal{K} = \mathit{UAU}^T \text{ the empirical kernel matrix, } r = \mathrm{rank}(\mathcal{K}) \text{ its rank, and finally : } \mathrm{Sp}_{\mathbb{R}}(\mathcal{K}) = \{\hat{\lambda_1} \geq \hat{\lambda_2} \geq \hat{\lambda_3}, ..., \geq \hat{\lambda_r}\}$$

• Define the Local Rademacher upper bound :

$$\mathcal{R}_{\mathcal{K}}(\epsilon) = \left[\frac{1}{n} \sum_{i=1}^{n} \min(\hat{\lambda}_{i}, \epsilon^{2})\right]^{\frac{1}{2}} \text{ where } \mathcal{K} = UAU^{T} \text{ the empirical kernel matrix, } r = \operatorname{rank}(\mathcal{K}) \text{ its rank, and finally :} \\ \operatorname{Sp}_{\mathbb{R}}(\mathcal{K}) = \{\hat{\lambda_{1}} \geq \hat{\lambda_{2}} \geq \hat{\lambda_{3}}, ..., \geq \hat{\lambda_{r}}\}$$

• Define the empirical radius : $\hat{\epsilon_n} = \inf\left\{\epsilon > 0 \mid \mathcal{R}_K(\epsilon) \leq \frac{\epsilon^2}{2e\sigma}\right\}$

RKHS consequences

• Define the Local Rademacher upper bound :

$$\mathcal{R}_{\mathcal{K}}(\epsilon) = \left[\frac{1}{n} \sum_{i=1}^{n} \min(\hat{\lambda}_{i}, \epsilon^{2})\right]^{\frac{1}{2}} \text{ where } \mathcal{K} = UAU^{T} \text{ the empirical kernel matrix, } r = \operatorname{rank}(\mathcal{K}) \text{ its rank, and finally :} \\ \operatorname{Sp}_{\mathbb{R}}(\mathcal{K}) = \{\hat{\lambda}_{1} \geq \hat{\lambda}_{2} \geq \hat{\lambda}_{3}, ..., \geq \hat{\lambda}_{r}\}$$

- Define the empirical radius : $\hat{\epsilon_n} = \inf\left\{\epsilon > 0 \mid \mathcal{R}_K(\epsilon) \leq \frac{\epsilon^2}{2e\sigma}\right\}$
- Define the stopping time :

$$\hat{\mathcal{T}} := \mathop{\mathsf{arg\,min}} \left\{ t \in \mathbb{N} \mid \mathcal{R}_k \left(\frac{1}{\sqrt{\eta_t}} \right) > \frac{1}{2e\sigma\eta_t}
ight\} - 1$$

where η_t is the the sum of step sizes (*learning rates*) untill time t-1

For regression problems, [2] have proved that :

Theorem: Raskutti, Wainwright [2]

Suppose wa have a **valid step-size**. Then define \hat{T} as previous. There are universal positive constants (c_1, c_2) , such that, the following events hold with probability at least $1 - c_1 \exp(-c_2 n \hat{\epsilon}_n^2)$: (a) : for all iterations $t = 1, 2, ..., \hat{T}$:

$$\|f_t - f^*\|_n^2 \le \frac{4}{e\eta_t}$$

(b) : At the iteration \hat{T} we have :

$$\|f_t - f^*\|_n^2 \le 12\hat{\epsilon}_n^2$$

(c) : Moreover, for all $t > \hat{T}$:

$$\mathbb{E}\left[\left\|f_{t}-f^{*}\right\|_{n}^{2}\right] \geq \frac{\sigma^{2}}{4}\eta_{t}\hat{R}_{k}^{2}\left(\frac{1}{\eta_{\nu}}\right)$$

delille

• Radius $\hat{\epsilon}_n$ depends certainly on the data, yet it depends only on the entries, not on the outputs $\{y_i\}_{i=1}^n$

- Radius $\hat{\epsilon}_n$ depends certainly on the data, yet it depends only on the entries, not on the outputs $\{y_i\}_{i=1}^n$
- The results apply for a specific loss function, which is the mean squared loss, and regression analysis!

- Radius $\hat{\epsilon}_n$ depends certainly on the data, yet it depends only on the entries, not on the outputs $\{y_i\}_{i=1}^n$
- The results apply for a specific loss function, which is the mean squared loss, and regression analysis!
- Generalisation error is not bounded!

- Radius $\hat{\epsilon}_n$ depends certainly on the data, yet it depends only on the entries, not on the outputs $\{y_i\}_{i=1}^n$
- The results apply for a specific loss function, which is the mean squared loss, and regression analysis!
- Generalisation error is not bounded !
- Claiming results in high probability is true only if the decay of the empirical radius is of a minimum $n^{\frac{\alpha-1}{2}}$ for $\alpha>0$

- Radius $\hat{\epsilon}_n$ depends certainly on the data, yet it depends only on the entries, not on the outputs $\{y_i\}_{i=1}^n$
- The results apply for a specific loss function, which is the mean squared loss, and regression analysis!
- Generalisation error is not bounded!
- Claiming results in high probability is true only if the decay of the empirical radius is of a minimum $n^{\frac{\alpha-1}{2}}$ for $\alpha>0$
- Norms control : the paper uses the property : $||f||_{\mathcal{H}} \leq B$ for some B > 0 for all $f \in \mathbb{B}_{\mathcal{H}}(f^*, 1)$ and as consequence $||f||_{\infty} \leq B$ for all $f \in \mathbb{B}_{\mathcal{H}}(f^*, 1)$.

$$f^*(x) = |x - \frac{1}{2}| - \frac{1}{2}$$
 and $(x, y) \in [0, 1] \times [0, 1]$ and $x_i = \frac{i}{n} i = 0, ..., n - 1$

$$f^*(x) = |x - \frac{1}{2}| - \frac{1}{2}$$
 and $(x, y) \in [0, 1] \times [0, 1]$ and $x_i = \frac{i}{n} i = 0, ..., n - 1$

Figure: Gaussian kernel

$$f^*(x) = |x - \frac{1}{2}| - \frac{1}{2}$$
 and $(x, y) \in [0, 1] \times [0, 1]$ and $x_i = \frac{i}{n} i = 0, ..., n - 1$

Figure: Gaussian kernel

• Gaussian kernel T=9 iterations (infinitely differentiable functions)

$$f^*(x) = |x - \frac{1}{2}| - \frac{1}{2}$$
 and $(x, y) \in [0, 1] \times [0, 1]$ and $x_i = \frac{i}{n} i = 0, ..., n - 1$

Figure: First order Sobolev kernels

Figure: Gaussian kernel

• Gaussian kernel T=9 iterations (infinitely differentiable functions)

$$f^*(x) = |x - \frac{1}{2}| - \frac{1}{2}$$
 and $(x, y) \in [0, 1] \times [0, 1]$ and $x_i = \frac{i}{n} i = 0, ..., n - 1$

Figure: First order Sobolev kernels

Figure: Gaussian kernel

- Gaussian kernel T=9 iterations (infinitely differentiable functions)
- Sobolev kernel T = 70 iterations (Lipchitz functions)

Figure: Different rules

- Introduction
- 2 Stopping rules
- Conclusion
 - Bibliography

Conclusion

Bibliography

- Garvesh Raskutti, Martin J. Wainwright, Bin Yu, "Early Stopping and Non-parametric Regression: An Optimal Data-dependent Stopping Rule", https://jmlr.org/papers/volume15/raskutti14a/raskutti14a.pdf
- Martin J. Wainwright, **High dimensional statistics**, Cambridge series in statistical and probabilistic mathematics, Cambridge University press, February 2019.
- Yuting Wei, Fanny Yang, Martin J. Wainwright Early stopping for kernel boosting algorithms: A general analysis with localized complexities. https://arxiv.org/abs/1707.01543.

Bibliography

- Michel Ledoux, **The concentraion of measure phenomenon**, *American Mathematical Society*.
- Shahar Mendelson, Geometric Parameters of Kernel

 Machines, Proceedings of the Conference on Learning Theory
 (COLT). https://maths-people.anu.edu.au/~mendelso/
 papers/published/conference/MenKer02.pdf.
- Roman Vershynin, **High dimensional probability**, *Cambridge University Press*.
- Mehryar Mohri, Afshin Rostamizadeh and Ameet Talwalkar Foundations of machine learning, the MIT press.

