Package 'admmDensestSubmatrix'

October 12, 2022

Type Package
Title Alternating Direction Method of Multipliers to Solve Dense Dubmatrix Problem
Version 0.1.0
Author Brendan Ames bpames@ua.edu>, Polina Bombina <pbombina@crimson.ua.edu></pbombina@crimson.ua.edu>
Maintainer Polina Bombina <pbombina@crimson.ua.edu></pbombina@crimson.ua.edu>
Description Solves the problem of identifying the densest submatrix in a given or sampled binary matrix, Bombina et al. (2019) <arxiv:1904.03272>.</arxiv:1904.03272>
License CC0
Depends R ($>= 3.5.0$)
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
Imports Rdpack, utils, stats
RdMacros Rdpack
NeedsCompilation no
Repository CRAN
Date/Publication 2019-10-31 16:20:02 UTC
R topics documented:
densub
Index

2 densub

b <i>densub</i>

Description

Iteratively solves the convex optimization problem using ADMM.

Usage

```
densub(G, m, n, tau = 0.35, gamma = 6/(sqrt(m * n) * (q - p)), opt_tol = 1e-04, maxiter, quiet = TRUE)
```

Arguments

G	sampled binary matrix
m	number of rows in dense submatrix
n	number of columns in dense submatrix
tau	penalty parameter for equality constraint violation
gamma	l_1 regularization parameter
opt_tol	stopping tolerance in algorithm
maxiter	maximum number of iterations of the algorithm to run
quiet	toggles between displaying intermediate statistics

Details

```
\begin{split} \min|X|_* + gamma*|Y|_1 + 1_O mega_W(W) + 1_O mega_Q(Q) + 1_O mega_Z(Z) \\ \text{s.t } X - Y &= 0, X = W, X = Z, \\ \text{where } Omega_W(W), Omega_Q(Q), Omega_Z(Z) \text{ are the sets: } Omega_W = WinR^MxN|e^TWe = mn \\ Omega_Q &= QinR^MxN|Projection of QonnotN = 0 \\ Omega_Z &= ZinR^MxN|Z_ij <= 1forall(i,j)inMxN \\ Omega_Q &= QinR^MxN|Projection of QonnotN = 0 \\ Omega_Z &= ZinR^MxN|Z_ij <= 1forall(i,j)inMxN \\ 1_S \text{ is the indicator function of the set } S \text{ in } R^MxN \text{ such that } 1_S(X) = 0 \text{ if } X \text{ in } S \text{ and +infinity otherwise} \end{split}
```

Value

Rank one matrix with mn nonzero entries, matrix Y that is used to count the number of disagreements between G and X

mat_shrink 3

 ${\sf mat_shrink}$

Soft threshholding operator.

Description

Applies the shrinkage operator for singular value tresholding.

Usage

```
mat_shrink(K, tau)
```

Arguments

K matrix

tau regularization parameter

Value

Matrix

Examples

```
mat\_shrink(matrix(c(1,0,0,0,1,1,1,1,1), nrow=3, ncol=3, byrow=TRUE), 0.35)
```

plantedsubmatrix

Sample matrix

Description

Generates binary (M, N) - matrix sampled from dense (m, n) - submatrix.

Usage

```
plantedsubmatrix(M, N, m, n, p, q)
```

Arguments

М	number of rows in sampled matrix
N	number of rows in sampled matrix
m	number of rows in dense submatrix
n	natural number used to calculate number of rows in dense submatrix
p	density outside planted submatrix
q	density inside planted submatrix

4 plantedsubmatrix

Details

Let U* and V* be m and n index sets. For each i in U*, j in V* we let $a_ij=1$ with probability q and 0 otherwise. For each remaining ij we set $a_ij=1$ with probability p< q and take $a_ij=0$ otherwise.

Value

Matrix G sampled from the planted dense (mn)-submatrix model, dense sumbatrix X0, matrix Y0 used to count the number of disagreements between G and X0

Examples

plantedsubmatrix(10,10,1,2,0.25,0.75)

Index

```
densub, 2
mat_shrink, 3
plantedsubmatrix, 3
```