Coding Assignment 3 – Particle Swarm Optimization

Instructor:

Particle Swarm Optimization was developed by Kennedy and Eberhart in 1995 [1]. The underlying equations are as follows:

$$v_i^{t+1} = w v_i^t + c_1 r_1 (x Best_i^t - x_i^t) + c_2 r_2 (g Best_i^t - x_i^t)$$
 (1)

$$x_i^{t+1} = x_i^t + v_i^{t+1} (2)$$

For the full pseudocode and algorithm outline, please refer to lecture notes (PSO.pdf) on Canvas.

1. Write the code for PSO in Matlab or a programming language of your choice. Solve the following problems studied in Assignment 2. The default parameters to be used are outlined in Table 1.

a.
$$\min f = x^2 + y^2 - xy - 4x - y$$

b.
$$\min f = (1-x)^2 + (-x^2 + y)^2$$

Parameter	Default
nparticles	The number of particles is set to 30
Initial x	Uniformly (-100,100) distributed random matrix of length nparticles x nvars
Initial v	Uniformly (-1000,1000) distributed random matrix of length nparticles x nvars
Maximum v	100
nvars	Number of variables
w	0.7
r_1 and r_2	Uniformly (0,1) distributed random vector of length nvars
c_1 and c_2	2.0
Function tolerance	1e-6
Max iterations	400

Table 1 - Default parameters

- 2. For both problems run PSO five times, are report/discuss your solutions.
- 3. Change the number of particles to 10, 100, 1000. Discuss your observations.
- 4. Change both c_1 and c_2 to 0.5 then change both to 5. Discuss your observations.
- 5. Solve the following constrained optimization problem using PSO and the external penalty scheme outlined in the lecture notes. Describe your reasoning for your *penalty factor* value or scheme of choosing such a value. Is your solution a constrained optimum?

c. min
$$f = (1-x)^2 + (-x^2 + y)^2$$

subject to $-10x - 3y + 25 \le 0$

6. Submit your solutions for each of the questions of Canvas. Attach your code in an appendix.

References

[1] Kennedy, J. and Eberhart, R. C., "Particle swarm optimization," Proc. IEEE int'l conf. on neural networks, Vol. IV, 1942-1948, IEEE service center, Piscataway, NJ, 1995.