

Walmart Sales Forecasting

Presented by:

Alisha Gupta, Anurag Wadhwa, Avanindra Singh, Hamza Hamayun, Ishita Chaudhary

Project Overview

Situation

In a dynamic retail environment influenced by seasons, market fluctuations, and diverse products, Walmart requires accurate sales projections. These forecasts are vital for efficient operations, guiding the company through ever-changing market dynamics and ensuring informed, forward-looking choices.

Complication

Sales predictions encounter inherent challenges due to the diversity of product lines and differing consumer behaviors across various locations, which pose obstacles to accurate forecasting. Additionally, market shifts add further complexity to sales estimations, making them more challenging to predict with precision.

Key Question

How can Walmart develop a sales forecasting model that efficiently adapts to dynamic market changes, and ensures precise sales projections across its stores?

Data Overview

Time Series Analysis

Historical Yearly Sales

Historical Monthly Sales (YoY)

Time Series Analysis

Daily Sales with Event Days (YoY)

SNAP Purchase Trend Analysis

Daily Sales with SNAP Days (YoY)

SNAP Purchase Trend Analysis

Daily Sales with SNAP Days (2016)

California

Texas

Wisconsin

Sales Distribution Analysis

Category Level

State Level

Store Level

Deriving Meaningful Features Temporal Features Categorical Features **Boolean Features** Walmart **Feature Data Engineering** Price Related **Features** Time **Series Lag Features** Rolling

Statistics Features

Features Used For Model Creation

Temporal Features	Categorical Features	Boolean Features	Price Related Features	Time Series Lag Features	Rolling Statistics Features
Year	Item IDs	Weekend Or Not ?	Rolling Price Standard Deviation	Lag Values Of Sales	Rolling Mean Of Sales
Month	Category IDs	SNAP Purchase ?	Price Change	Lag Value Of Revenue	Rolling Standard Deviation Of Sales
Day	State IDs				Rolling Skewness of Sales
Day Of Week	Department IDs				Rolling Kurtosis of Sales

Model Creation Based on Derived Features

Model Selection Based On Accuracy(RMSSE)

Accuracy(RMSSE)

ARIMA	1.07
EXPONENTIAL SMOOTHING	0.6
XGBOOST	1.19
LSTM	0.76
√ LIGHT GBM	0.56

LIGHT GBM

Based on forecasting accuracy(RMSSE) the best model that we got is LightGBM

Unlocking Business Value

Thank you!

Do you have any questions?

Alisha Gupta: gupta966@umn.edu
Anurag Wadhwa: wadhw052@umn.edu
Avanindra Singh: sing1112@umn.edu
Hamza Hamayun: hamay001@umn.edu
Ishita Chaudhary: chaud304@umn.edu