Положение МТ (частицы) в выбранной СО определяется с помощью радиус-вектора.

Радиус-вектор \vec{r} частицы — это вектор, проведенный из начала системы координат в точку нахождения частицы.

Проекции радиус-вектора МТ на координатные оси являются ее одноименными координатами, поэтому

$$\vec{r} = x \cdot \vec{e}_x + y \cdot \vec{e}_y + z \cdot \vec{e}_z. \tag{1.1}$$

Модуль радиус-вектора МТ связан с ее координатами как:

$$r = \sqrt{x^2 + y^2 + z^2} \,. \tag{1.2}$$

B СИ [x] = [r] = M.

Зависимость от времени радиус-вектора МТ или ее координат называется кинематическим законом движения:

$$\vec{r} = \vec{r}(t)$$
 или $x = x(t)$ $y = y(t)$ $z = z(t)$

Основная задача кинематики – установить явный вид кинематического закона.

Ускорение \vec{a} — векторная физическая величина, характеризующая изменение вектора скорости со временем и равная первой производной скорости по времени или второй производной радиус-вектора по времени:

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} = \dot{\vec{v}}(t)$$
 (1.10)

или

$$\vec{a} = \frac{d^2 \vec{r}}{dt^2} = \ddot{\vec{r}}(t). \tag{1.11}$$

B СИ [a] = M/c^2 .

Вектор ускорения \vec{a} и его модуль a выражаются через проекции a_x , a_y , a_z как:

$$\vec{a} = a_x \cdot \vec{e}_x + a_y \cdot \vec{e}_y + a_z \cdot \vec{e}_z,$$

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2}.$$
(1.12)

Скорость \vec{v} – векторная физическая величина, характеризующая направление и быстроту движения МТ и равная производной ее радиус-вектора по времени:

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt} = \dot{\vec{r}}(t). \tag{1.3}$$

В СИ [v] = M/c.

Вектор скорости \vec{v} (мгновенной скорости) в каждой точке траектории направлен по касательной к ней в сторону движения частицы.

Вектор скорости \vec{v} и его модуль v выражаются через проекции v_x , v_y , v_z как:

$$\vec{\mathbf{v}} = \mathbf{v}_x \cdot \vec{e}_x + \mathbf{v}_y \cdot \vec{e}_y + \mathbf{v}_z \cdot \vec{e}_z, \tag{1.4}$$

$$\upsilon = \sqrt{\upsilon_x^2 + \upsilon_y^2 + \upsilon_z^2}.$$
 (1.5)