PRECISION MOTION CONTROL LAB

myRIO Dynamic Signal Analyzer Documentation

I) Overview:

- A) The myRIO Dynamic Signal Analyzer (DSA) is designed to be used as a subVI (**Dropable_DSA.vi**) that can be simply dropped into new and/or existing control and/or simulation code to measure a desired frequency response and plot it as the corresponding Bode plots.
- B) DSA Inputs/Outputs:

Dropable_DSA.vi (4833)

1. Inputs:

- a) Excitation Specs [Cluster]
 - i) <u>Initial Frequency</u> [Double]
 - (1) The lowest frequency of the frequency range which the DSA will measure the bode plot for.
 - ii) Final Frequency [Double]
 - (1) The highest frequency of the frequency range which the DSA will measure the bode plot for.
 - iii) Frequency Units [Boolean]
 - (1) Whether the frequency range input is in Hz or rads/sec.
 - (2) $TRUE = Hz \mid FALSE = rads/sec$
 - iv) Number of Frequencies [Integer]
 - (1) The number of logarithmically spaced frequencies to measure the bode plot for.
 - v) Sampling Time [Double]
 - (1) The time step taking in between each measurement.
 - (2) Sampling Time = 1/Sampling Rate
 - vi) Amplitude [Double]
 - (1) Amplitude of desired swept sine excitation.
 - vii) Offset [Double]
 - (1) DC offset of swept sine excitation.

b) Cycle Specs [Cluster]

i) Cycles to Settle [Integer]

(1) The number of cycles of the swept sine wave at each frequency to ignore to let the transient response die out.

ii) Cycles to Calculate [Integer]

(1) The number of cycles of the sept since wave at each frequency to measure in order to measure the bode plot.

c) Controls:

i) START [Boolean]

- (1) Tells the DSA to initialize and then start.
- (2) TRUE = Start/Restart and initialize the DSA | FALSE = Nothing

ii) STOP [Boolean]

- (1) Tells the DSA to stop and set all analog outputs to zero.
- (2) TRUE = Stop the DSA | FALSE = Nothing

iii) EXIT PROGRAM [Boolean]

- (1) Tells LabVIEW to set all analog outputs to zero and exit the program.
- (2) TRUE = Stop the DSA & execute exit program code | FALSE = Nothing

2. Outputs:

a) Running [Boolean]

- i) Signal to show if the DSA is running.
- ii) TRUE = Tells the DSA to keep running (since start is an initialize button) | FALSE = Nothing

b) Stopped [Boolean]

- i) Signal to show if the DSA is stopped (Visual counterpart to Running)
- ii) TRUE = Indicates that the DSA has stopped | FALSE = Nothing

c) FINISHED LATE [Boolean]

- i) Signal to show if the DSA is running slower than the desired sampling rate.
- ii) TRUE = Indicates the myRIO cannot keep up with the desired sampling rate | FALSE = Nothing

d) Bode Magnitude [Cluster]

- i) The magnitude plot of the TF CH1/CH0.
 - (1) x = List of Frequencies [Array of Doubles]
 - (2) y = List of Magnitudes [Array of Doubles]

e) Bode Phase [Cluster]

- i) The phase plot of the TF CH1/CH0.
 - (1) x = List of Frequencies [Array of Doubles]
 - (2) y = List of Phases [Array of Doubles]

C) Example Code

1. Stand-Alone DSA: Example code on how to use the Dropable_DSA.vi inside a timed while loop.

2. Embedded DSA: Example code on how to use the Dropable_DSA.vi with a simulated controller.

A) For the internal code structure. see the documentation (help) for each subVI.