# Geometria 1B

# Cenni di Algebra

Sia A un anello commutativo con unità (Ossia un gruppo rispetto all'operazione di Somma e commutativo e con elemento neutro rispetto all'operazione di Moltiplicazione).

## Definizione di Sottoanello Ideale

Un insieme  $I \subseteq A, I \neq \emptyset$  si dice Sottoanello ideale di A se valgono:

- 1) I è sottogruppo additivo dell'anello rispetto alla somma;
- 2)  $\forall a \in I, \forall b \in A, a \cdot b \in I$  (questa non è una proprietà di chiusura)

#### Esempio:

Sia A un anello commutativo e con unità e sia fissato  $a \in A$ .

- $(a) = \{ \text{Elementi di } A \text{ "divisibili" per } a \} = \{ ab \mid b \in A \}$
- (a) è un ideale di A, infatti:

 $orall ab_1,ab_2\in A,ab_1+ab_2=a(b_1,b_2)\in (a)$  e  $orall ab\in (a),c\in A,abc=a(bc)\in (a)$ 

## > Definizione di Anello Principale

Si dice che un ideale di un anello è principale se è generato da un elemento soltanto (Generato nel senso di generated (algebrico) e non spanned (vettoriale))

#### Esempio:

$$A=\mathbb{Z}, a=n\in\mathbb{Z}\Rightarrow (a)=\{ ext{multipli di }n\}\subseteq\mathbb{Z}$$

## → Teorema

In  $\mathbb{Z}$  e in  $\mathbb{K}[x]$  con  $\mathbb{K}$  campo, ogni ideale è principale.

**Dimostrazione**: (Per  $\mathbb{K}[x]$ , in quanto per  $\mathbb{Z}$  è la stessa identica cosa)

Sia I un ideale in  $\mathbb{K}[x]$ . Se I è nullo  $\Rightarrow I = \{0\} = (0) \Rightarrow I$  è principale

Sia  $I \neq \{0\}$ . Prendo  $p \in I$  di grado minimo e sia  $q \in I$  un altro elemento di I. Allora si ha che il grado di q è maggiore o uguale al grado di  $p(\Leftrightarrow deg(q) \ge deg(p))$ .

Divido q per p, esistono allora s e r polinomi tali che q = ps + r (qui è dove torna che  $\mathbb K$  è un campo), con deg(r) < deg(p). Poiché si ha che q = ps + r e  $q \in I \Rightarrow ps \in I$  (in quanto è ideale) e  $r \in I$ . Ma poiché  $deg(r) < deg(p) \Rightarrow r = 0 \Rightarrow q = ps$ . Cioè ogni elemento è della forma  $ps, s \in A$ , quindi è generato da p (ossia si scrive come prodotto tra p e un altro elemento).

Osservazione:  $A = \mathbb{Z}, (1) = \mathbb{Z}, (2) = 2\mathbb{Z}$ 

**Attenzione**: L'ipotesi che  $\mathbb K$  sia un campo è necessaria per l'enunciato per  $\mathbb K[x]$ . Infatti l'ipotesi viene utilizzata nell'algoritmo di divisione.

**Proposizione**: In  $\mathbb{Z}[x]$  esistono ideali non principali.

### Esempio:

Consideriamo l'ideale  $J \subseteq \mathbb{Z}[x]$ , generato da 2 e da x, ossia l'insieme  $\{2p + xq \mid p, q \in \mathbb{Z}[x]\}$ 

Se J fosse principale, dovrebbe esistere un elemento  $r \in \mathbb{Z}[x]$  che generi tutti gli elementi, tra cui 2, ossia che lo divide. I casi possibili (a meno del segno) sono due:  $r=1 \lor r=2$ 

Se r=1 allora  $j=\mathbb{Z}[x]$ , ma J=xq+2p da cui il termine noto deve essere necessariamente pari, per cui mancano metà dei polinomi, quindi  $J \neq \mathbb{Z}[x]$ 

Se r=2, allora 2 dovrebbe generare anche x, ossia x deve essere un multiplo di 2 in  $\mathbb{Z}[x] \Rightarrow 2(nx)$  ma  $n=\frac{1}{2} \notin \mathbb{Z}$ 

**Osservazione**:  $\mathbb{K}[x]$  e  $\mathbb{Z}$  si chiamano Domini a Ideali Principali

**Osservazione**: Sia  $I \neq \emptyset$  un ideale in  $\mathbb{K}[x]$ , I è principale ( $\Leftrightarrow I = (p)$  con p di grado minimo). Questo p è unico a meno di multipli in K



## > Definizione di Polinomio Monico

Un polinomio in  $\mathbb{K}[x]$  di grado k si dice Monico se il coefficiente di  $x^k$  è  $1\Rightarrow\exists!$  generatore monico di ogni ideale (principale) in  $\mathbb{K}[x]$ 

 $\textbf{Osservazione} \text{: Sia } I = (p) \text{ un ideale non nullo in } \mathbb{K}[x] \text{. Sia } q \in I \text{, il } deg(q) \geq deg(p) \Rightarrow q = \underbrace{ps}_{} + r \Rightarrow r = 0. \text{ Set}_{} + r \Rightarrow r = 0. \text{ Set}_{$ 

invece fosse stato  $q \in \mathbb{K}[x]$ , allora non necessariamente si aveva r = 0

## > Definizione di Anello Quoziente

Sia A un anello e sia I un ideale di A. Definisco il quoziente  $A_{II}$  come l'insieme delle classi di equivalenza  $A_{I} = \{[a] \mid a \in A\}$  rispetto alla relazione di equivalenza  $a_1 \sim a_2 \Leftrightarrow a_1 - a_2 \in I$ .

Definiamo su  $A_{II}$  una struttura di anello nel modo seguente:

- -[a] + [b] = [a+b]
- [a][b] = [ab]

## Esempio:

$$\mathbb{Z}/_{(n)} = \mathbb{Z}/_{n\mathbb{Z}} = \mathbb{Z}/_n$$

## Esempio:

$$\mathbb{R}[x]/_{(1+x^2)}=\mathbb{C}$$

Il prodotto è ben posto?

$$\mathsf{Se}\ [b_1] = [a_1]\ \mathsf{e}\ [b_2] = [a_2] \Rightarrow b_1 - a_1 \in I\ \mathsf{e}\ b_2 - a_2 \in I \overset{?}{\Rightarrow} b_1b_2 - a_1a_2 \in I$$
 
$$\mathsf{Poich\'e}\ b_1b_2 - a_1a_2 = b_1(b_2 - a_2) + b_1a_2 - a_1a_2\ \mathsf{Si}\ \mathsf{ha}\ \mathsf{che}\ b_1b_2 - a_1a_2 = \underbrace{b_1(b_2 - a_2)}_{\in I} + \underbrace{(b_1 - a_1)a_2}_{\in I} \Rightarrow [b_1b_2] = [a_1a_2]$$

#### Esempio:

Sia  $\mathbb{K}[x]$ . Sia  $p \in \mathbb{K}[x]$  un qualsiasi polinomio di grado k e sia  $q \in \mathbb{K}[x]$  tale che  $deg(q) \geq k \Rightarrow \exists s, r \in \mathbb{K}[x]$  tale che  $q = ps + r \ \mathsf{con} \ deg(r) < k \Rightarrow [q] \in \mathbb{K}[x]/_{(p)} \ \mathsf{e} \ [q] = [r].$ 

Quindi nel caso  $\mathbb{R}[x]/_{(1+x^2)}$ , dato un polinomio  $a_0+a_1x+a_2x^2+\ldots+a_nx^n$  (le cui classi sono  $[a_0] + [a_1x] + [a_2x^2] + \ldots + [a_nx^n]$ ) si ha che  $[a_2x^2] = [a_2][x^2]$  ma  $[x_2] = [-1] \Rightarrow [a_2x^2] = [-a_2]$  e in modo analogo  $[a_3x^3] = [-a_3x] \Rightarrow \mathbb{R}[x]/_{(x^2+1)} = \{[a+bx] \mid a,b \in \mathbb{R}\}$ 

#### Osservazione:

Ogni ideale I di  $\mathbb{K}[x]$  è anche un  $\mathbb{K}$  – sottospazio vettoriale di  $\mathbb{K}[x]$ , infatti:

- $\forall a_1, a_2 \in I, a_1 + a_2 \in I$  dalla definizione di Ideale;
- $\mathbb{K}\subseteq\mathbb{K}[x], orall\lambda\in\mathbb{K}, orall a\in I, \lambda a\in I$

Quindi  $\mathbb{K}[x]/_{(p)}$  è un  $\mathbb{K}$  – spazio vettoriale.

#### Dimostrazione:

Se 
$$deg(p) = k \Rightarrow \{[a_0 + a_1x + \dots a_{k-1}x^{k-1}] \mid a_0, a_1, \dots, a_{k-1} \in \mathbb{K}\} \Rightarrow a_0 + a_1[x] + \dots + a_{k-1}[x^{k-1}]$$

Ho una base con k elementi, ossia  $[1], [x], \ldots, [x^{k-1}]$ , infatti

$$\mathbb{K}[x]/_{(p)}=Span\{[1],[x],\ldots,[x^{k-1}]\}\Rightarrow dim(\mathbb{K}[x]/_{(p)})=k$$

$$\textit{Sono L.I.?} \sum_{i=0}^{k-1} \alpha_i[x]^i = 0, \alpha_i \in \mathbb{K} \; \mathsf{ma} \left[ \sum_{i=0}^{k-1} \alpha_i x^i \right] \Leftrightarrow \sum_{i=0}^{k-1} \alpha_i x^i \in I = (p)$$

Ogni polinomio in I ha grado minore di  $k\Rightarrow\sum_{i=0}^{k-1}\alpha_ix^i=0\Rightarrow\alpha_i=0, \forall i$  sono quindi linearmente indipendenti

**Osservazione**:  $\mathbb{R}[x]/_{x^2+1}=\{[a+bx]\mid a,b\in\mathbb{R}\}$  ha dimensione  $2\Rightarrow\mathbb{R}[x]/_{(x^2+1)}\simeq\mathbb{C}$  come spazio vettoriale Dimostrazione:

Vediamo che è un isomorfismo di campi:

Somma: 
$$[a + bx] + [c + dx] \stackrel{\text{def}}{=\!=\!=} [a + c + (b + d)x]$$

Prodotto: 
$$[a + bx][c + dx] = [ac + adx + bcx + bdx^{2}] = [ac - bd + (ad + bc)x]$$

Da ciò si riesce a vedere facilmente che  $\mathbb{R}[x]/_{(x^2+1)}\simeq \mathbb{C}$  è un isomorfismo di campi

Dimostriamo ora che esiste anche l'inverso

Se 
$$[a+bx] \neq 0 \Leftrightarrow (a,b) \neq (0,0)$$
,  $[a+bx][\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}x]=1 \Rightarrow \mathbb{R}[x]/_{(x^2+1)}$  è un campo e l'applicazione  $\mathbb{R}[x]/_{(x^2+1)} \to \mathbb{C}$  è un isomorfismo di campi.  $[a+bx] \mapsto a+bi$ 

### Esempio:

 $\mathbb{Q}[x]/(x^2-2)$  è  $\mathbb{Q}[\sqrt{2}]$ . (È un sottospazio vettoriale di  $\mathbb{Q}$  di dimensione 2 generato da [1] e da [x], in quanto  $[x^2]=2$ )  $\Rightarrow \mathbb{Q}[x]/(x^2-2) = \{[a+bx] \mid a,b \in \mathbb{Q}\}.$  Infatti:

$$-[a+bx]+[c+dx]=[a+c+(b+d)x]$$

- 
$$[a + bx][c + dx] = [ac + adx + bcx + bdx^2] = [ac + 2bd + (ad + bc)]$$

Analogamente a prima possiamo trovare un isomorfismo tra  $\mathbb{Q}[x]/(x^2-2)$  e  $\mathbb{Q}[\sqrt{2}] = \{a+b\sqrt{2} \mid a,b\in\mathbb{Q}\}.$ 

Quello che ho fatto è stato estendere il campo  $\mathbb{Q}$  con un campo  $\mathbb{Q}[\sqrt{2}]$  più grande che lo contiene.

Domanda: Se quoziento  $\mathbb{K}[x]$  rispetto ad un suo ideale ottengo sempre un campo? No, per esempio in  $\mathbb{Z}$ , se lo quoziento per (n), ottengo un campo  $\Leftrightarrow n$  è primo

 $\rightarrow$  Teorema: Identità di Bézout per i polinomi in  $\mathbb{K}[x]$ 

Siano  $p \in q$  polinomi in  $\mathbb{K}[x]$  primi tra loro (cioè se  $r \in \mathbb{K}[x], r|p$  e  $r|q \Rightarrow deg(r) = 0$ ), allora esistono  $s,t\in\mathbb{K}[x]$  tali che 1=ps+qt

## Dimostrazione:

Consideriamo l'ideale J di  $\mathbb{K}[x]$  generato da p e q, ossia  $J = \{pa + qb \mid a, b \in \mathbb{K}[x]\} \ni p, q$ . Poiché ogni ideale di  $\mathbb{K}[x]$  è principale, J=(r) con  $r\in\mathbb{K}[x]$ , in particolare r|p e  $r|q\Rightarrow r$  ha grado  $0\Rightarrow J=(1)\Rightarrow \exists s,t\in\mathbb{K}[x]$  tali che 1 = ps + qt

> Definizione di Polinomio Irriducibile

Un polinomio  $p\in\mathbb{K}[x]$  si dice irriducibile se non esistono  $p_1,p_2\in\mathbb{K}[x],\,0< deg(p_i)< deg(p)$  tali che  $p=p_1p_2$ 

## Esempio:

 $x^2+1$  è irriducibile su  $\mathbb R$  ma non su  $\mathbb C$ , quindi dipende dalla scelta del campo  $\mathbb K$ .

## → Teorema

 $\mathbb{K}[x]/_{(p)}$  è un campo se e solo se p è irriducibile su  $\mathbb{K}$ 

### Dimostrazione:

 $\Rightarrow$ ) Supponiamo per assurdo che  $p=p_1p_2$  con  $p_1,p_2\in\mathbb{K}[x]$  con  $0< deg(p_i)< deg(p)\Rightarrow [0]=[p]=\underbrace{[p_1][p_2]}_{\neq 0}$  il che

è assurdo in quanto un campo è un dominio di integrità.

 $\Leftarrow$ ) Supponiamo p sia irriducibile. Sia  $[q] \in \mathbb{K}[x]/_{(p)}$  un elemento non nullo, cioè  $q \notin (p) \Rightarrow p \nmid q \Rightarrow p$  e q sono primi tra loro, poiché si ha che p è irriducibile e  $q \nmid p \Rightarrow$  vale quindi il teorema dell'identità di Bézout tra i polinomi, ossia  $\exists s,t\in\mathbb{K}[x]$  tali che  $1=ps+qt\Rightarrow [1]=[ps]+[qt]$  ma  $[ps]=0\Rightarrow [1]=[q][t]\Rightarrow$  Esiste un inverso per ogni elemento  $\Rightarrow$  è un campo.

Quozientare  $\mathbb{K}[x]$  anello in questo modo mi garantisce che ho un anello, quindi dimostrando l'esistenza degli inversi ottengo un campo.

**Attenzione**: Sia  $p(x) \in \mathbb{K}[x]$ . Se p ha grado  $2 \Rightarrow p$  è irriducibile su  $\mathbb{K} \Leftrightarrow$  non ha radici in  $\mathbb{K}$ .

La stessa cosa vale anche per i polinomi di grado 3,  $p=p_1p_2\Rightarrow x^3+ax^2+bx+c=(x-\lambda)q(x)$ , dove q(x) è un polinomio di secondo grado

Invece, a partire dal quarto grado, p è riducibile se e solo se ha almeno una radice in  $\mathbb{K}$ .

La cosa però smette di essere valida con i polinomi di quarto grado, infatti  $(x^2+1)(x^2+2)$  è riducibile in  $\mathbb R$  ma non ha radici reali.

## Esempio:

Sia  $\mathbb{K}=\mathbb{Z}/_2$  e sia  $p(x)=x^2+x+1$ . p è irriducibile su  $\mathbb{Z}/_2$  infatti  $p(0)=1=p(1)\Rightarrow \mathbb{Z}/_2[z]/_{(p)}$  è un campo con 4elementi poiché esso è un  $\mathbb{Z}_2$  spazio vettoriale di dimensione 2.

### Esempio:

 $\mathbb{K}=\mathbb{Z}/_3$  e  $p=x^2+1$ . Si può vedere che p(x) è irriducibile in  $\mathbb{Z}/_3$ , infatti p(0)=1, p(1)=2, p(2)=5=2.  $\mathbb{Z}/_3[x]/_{(x)}$ è un campo con 9 elementi in quanto è anche uno spazio vettoriale di dimensione 2.

**Osservazione**: Si può dimostrare che  $\forall p$  primo e  $\forall n \in \mathbb{N}$ , esiste un campo finito con  $p^n$  elementi che si costruisce in questo modo

## > Definizione di Omomorfismo di Anelli

Siano  $A_1, A_2$  due anelli. Si dice che l'applicazione  $\varphi: A_1 \to A_2$  è un omomorfismo di anelli se:

- $\varphi(a+a')=\varphi(a)+\varphi(a')$
- $\varphi(aa') = \varphi(a)\varphi(a')$

Il Quoziente A/I ha la struttura di anello (naturale)

## > Definizione di Anello Euclideo

Un anello si dice euclideo quando gode dell'algoritmo euclideo di divisione con il resto. In particolare quando ogni suo ideale è principale

- In  $\mathbb R$  i polinomi irriducibili sono di grado 1 o di grado 2 a discriminante negativo  $(x^4+1$  è riducibile in  $\mathbb R$ )
- Una base di  $\mathbb{K}[x]/_{(f)}$  è  $\{[1],[x],\ldots,[x^{k-1}]\}$  con deg(f)=k e f non ha radici in  $\mathbb{K}$  ma in ha radici in  $\mathbb{K}[x]/_{(f)}$
- $f=a_0+a_1x+\ldots a_kx^k$  in  $\mathbb{K}[x]/_{(f)}=\mathbb{L}$

## Cosa succede se calcolo f in [x]?

 $f([x]) = a_0 + a_1[x] + \ldots + a_k[x^k] = [a_0 + a_1x + \ldots + a_kx^k] = [f] = 0 \Rightarrow [x]$  è la radice di f considerato come polinomio in  $\mathbb{L}[x]$ 

Si dice che  $\mathbb{L}$  è ottenuto da  $\mathbb{K}$  aggiungendo una radice di f (Non è altro che un estensione di campo)

**Attenzione**: Può darsi che tutte le radici di f siano in  $\mathbb{L}$  o meno, non lo si può sapere a priori.

### Esempio:

 $\mathbb{L}=\mathbb{Q}[x]/_{(1+x+x^2+x^3+x^4)}$ . In  $\mathbb{L}$  il polinomio si fattorizza completamente in termini di grado 1, quindi  $\mathbb{L}$  contiene tutte le radici. È un polinomio ciclotomico di grado 4 e le radici elevate alla quinta danno 1, per gli assiomi di campo, se ne esiste una, esistono tutte

#### Esempio:

$$\mathbb{L}=\mathbb{Q}[x]/_{(x^3-2)}. \text{ Il polinomio } x^3-2 \text{ in } \mathbb{L}[x] \text{ si fattorizza come } (x-[x])\underbrace{(x^2+ax+b)}_{\text{Irriducibile in } \mathbb{L}}, \text{ dove } [x] \text{ \`e una radice (ne hout the entropy of the en$$

ottenuta una sola su tre

Per semplicità denotiamo  $\rho\stackrel{\mathrm{def}}{=}[x]$ , quindi gli elementi di  $\mathbb L$  si scrivono, in modo unico, come  $a+b\rho+c\rho^2$  con  $a,b,c\in\mathbb{Q}$ 

Come si fanno i conti?

$$(a+b\rho+c\rho^2)(a'+b'\rho+c'\rho^2)=aa'+ab'\rho+ac'\rho^2+a'b\rho+bb'\rho^2+c'b\rho^3+ca'\rho^2+cb'\rho^3+cc'\rho^4=$$
 ma questo è anche uguale a  $aa'+ab'\rho+ac'\rho^2+a'b\rho+bb'\rho^2+2c'b+ca'\rho^2+2cb'+2cc'\rho$ , questo perché  $\rho^3=2$ ;  $\rho^4=\rho^3\rho=2\rho$ 

**Esercizio**: Dividere  $x^3 - 2$  per  $x - \rho$ :

 $x^3-2=(xho)(x^2+x
ho+
ho^2)$ , ma  $(x^2+x
ho+
ho^2)$  è riducibile se e solo se il discriminante  $\Delta=-3
ho^2$  è un quadrato in  $\mathbb{L}$ .

**Osservazione**: Sia  $\mathbb K$  un campo, un trinomio  $x^2+ax+b\in\mathbb K[x]$  ha radici in  $\mathbb K\Leftrightarrow a^2-4b$  è un quadrato in  $\mathbb K$ 

Riprendendo l'esempio precedente, -3 è un quadrato in  $\mathbb{L}$ ?

$$(a+b
ho+c
ho^2)^2=-3\Rightarrow a^2+b^2
ho^2+2c^2
ho+2ab
ho+2ac
ho^2+4bc=-3\Leftrightarrow egin{cases} a^2+4bc=-3\ ab+c^2=0\ ac+b^2=0 \end{cases}$$
 che è un sistema  $ac+b^2=0$ 

impossibile

Se voglio tronare un estensione di  $\mathbb Q$  nella quale  $x^3-2$  ha 3 radici, devo fare un estensione di  $\mathbb L$ , cioè  $\mathbb{L}[x]/_{(\tau^2+\tau\rho+\rho^2)}$ .

 $\mathbb{Q}\subseteq_{(3)}\mathbb{L}\subseteq_{(2)}\mathbb{L}[x]/_{(\tau^2+ au
ho+
ho^2)}$  che ha dimensione 6, è *un procedimento analogo a*  $\mathfrak{S}_6$ . Così facendo ottengo un campo di spezzamento.

## > Definizione di Campo di Spezzamento

Un Campo di Spezzamento è l'estensione più piccola che contiene tutte le radici del polinomio.

Consideriamo  $\mathbb{R}$  e  $\mathbb{C}$ .

In  $\mathbb R$  consideriamo il sottocampo  $\{a+b\sqrt[3]{2}+c\sqrt[3]{4}\mid a,b,c\in\mathbb Q\}=\mathbb Q[\sqrt[3]{4}]$ 

Definiamo quindi  $\varphi: \frac{\mathbb{Q}[x]/_{(x^3-2)}}{[x]} \stackrel{\rightarrow}{\mapsto} \frac{\mathbb{Q}[\sqrt[3]{2}]}{\sqrt[3]{2}}$ . Questo diventa un isomorfismo di campi

# Polinomi e Spazi Vettoriali

Sia  $p \in \mathbb{K}[x]$  con  $\mathbb{K}$  un campo e sia  $f \in End(V)$  con V un  $\mathbb{K}$  – spazio vettoriale di dimensione n. Quindi  $p(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$  (Se  $\alpha \in \mathbb{K}, p(\alpha) = a_0 + a_1\alpha + a_2\alpha^2 + \ldots + a_n\alpha^n$ )

## Esempio:

$$p(0) = a_0, p(1) = a_0 + a_1 + \ldots + a_n$$

È possibile trattare gli endomorfismi come variabili per un polinomio, infatti  $p(f) = a_0 I$  (dove I è l'endomorfismo identità)  $+a_1f+a_2f^2+\ldots+a_nf^n$  con  $f^i=f\circ f\circ\ldots\circ f$  e applicabile ad un vettore  $v\in V$  si ha  $p(f)(v) = a_0v + a_1f(v) + a_2f^2(v) + \dots + a_nf^n(v)$ 

Analogamente lo si può fare anche con le matrici  $A \in M_n(\mathbb{K})$ :

$$p(A) = a_0I_n + a_1A + \ldots + a_nA^n \in M_n(\mathbb{K})$$

## Proprietà:

1. Sia  ${\mathscr B}$  una base di V e indichiamo con  $M_{\mathscr B}(f)$  la matrice di f rispetto alla base  ${\mathscr B}$ .  $M_{\mathscr B}(a_0I+a_1f+\ldots+a_nf^n)$ 

$$M_{\mathscr{B}}(p(f))=p(M_{\mathscr{B}}(f)),$$
 perché  $M_{\mathscr{B}}(f_1+f_2)=M_{\mathscr{B}}(f_1)+M_{\mathscr{B}}(f_2);\ M_{\mathscr{B}}(lpha f)=lpha M_{\mathscr{B}}(f)$ 

$$M_{\mathscr{B}}: rac{End(V)}{g} \stackrel{ o}{
ightarrow} rac{M_n(\mathbb{K})}{M_{\mathscr{B}}(g)}$$
 è un isomorfismo (applicazione lineare)

Inoltre, siano  $f,g \in End(V), M_{\mathscr{B}}(fg) = M_{\mathscr{B}}(f)M_{\mathscr{B}}(g)$ 

2. Siano  $A, B \in M_n(\mathbb{K})$  simili, cioè  $\exists H \in GL_n(\mathbb{K}) \mid B = H^{-1}AH$ 

Sia 
$$p \in \mathbb{K}[x] \mid p(x) = a_0 + a_1 x + \ldots + a_n x^n$$

$$p(B) = a_0 I + a_1 B + \ldots + a_n B^n = a_0 I + a_1 H^{-1} A H + \ldots + a_n H^1 A^n H = H^{-1} (a_0 I + a_1 A + \ldots + a_n A) H = H^{-1} p(A) H$$

3. Siano  $p, q \in \mathbb{K}[x], \ p(x) = a_0 + a_1 x + \ldots + a_n x_n, \ q(x) = b_0 + b_1 x + \ldots + b_n x^n$ 

Sia  $f \in End(V)$ , allora p(f)q(f) = q(f)p(f). p(f) e q(f) commutano perché prendo un singolo  $f \in End(V)$  e ogni endomorfismo commuta con se stesso. Infatti

$$(a_0I + a_1f + \ldots + a_nf^n)(b_0I + b_1f + \ldots + b_nf^n) = a_0b_0I + a_1b_0f + a_0b_1f + a_1b_1f^2 \ldots$$

Alla posizione i-esima e j-esima troverò:  $a_if^i\cdot b_jf^j=a_ib_if^{i+j}=b_ia_if^{j+i}=b_if^j\cdot a_if^i$ 

Quindi, fissato un  $f \in End(V)$ ,  $V = \mathbb{K} - \mathrm{spazio}$  vettoriale con dimensione n:  $\Phi : \dfrac{\mathbb{K}[x]}{p} \overset{\rightarrow}{\mapsto} \dfrac{End(V)}{p(f)}$  che è lineare:

$$(p+q)(f)=p(f)+q(f), orall p, q\in \mathbb{K}[x]; \ (lpha p)(f)=lpha p(f), orall lpha\in \mathbb{K}, orall p\in \mathbb{K}[x]$$

Riguardo alla struttura di anello su  $\Phi$ , questo è un omomorfismo di anelli:  $\Phi(pq) = \Phi(p)\Phi(q)$ 

Inoltre, poiché  $\Phi$  è lineare,  $dim(\mathbb{K}[x])=\infty$  r  $dim(End(V))=n^2\Rightarrow \Phi$  non può essere iniettiva, in quanto  $Ker(\Phi)$ non è banale.

**Proposizione**:  $\varphi:A\to A'$  un omomorfismo di anelli, allora  $Ker(\varphi)$  è un ideale di A

1) Siano 
$$a,b \in Ker(arphi), \ arphi(a+b) = \underbrace{arphi(a)}_{=0} + \underbrace{arphi(b)}_{=0} = 0$$

1) Siano 
$$a,b\in Ker(\varphi),\, \varphi(a+b)=\underbrace{\varphi(a)}_{=0}+\underbrace{\varphi(b)}_{=0}=0$$
2) Sia  $a\in Ker(\varphi), b\in A,\, \varphi(ab)=\underbrace{\varphi(a)}_{=0}\varphi(b)=0$ 

 $Ker(\Phi)$  è un ideale non banale di  $\mathbb{K}[x]$  e poiché è un ideale di  $\mathbb{K}[x]$  è principale,  $Ker(\Phi)=(q_f)$  è principale. Esiste quindi un unico polinomio monico di grado minimo che genera questo ideale.  $q_f$  si chiama polinomio minimo dell'endomorfismo f.  $Ker(\Phi) = \{p \in \mathbb{K}[x] \mid p(f) = 0\}$ 

## > Definizione di Polinomio minimo

Il polinomio q si dice polinomio minimo se è il polinomio monico di grado minimo che si annulla in f.

Ogni altro polinomio che si annulla in f è multiplo del polinomio minimo di f. Analogamente definiamo il polinomio minimo di una matrice A considerando:  $\Phi': rac{\mathbb{K}[x]}{p} \stackrel{ o}{\mapsto} rac{M_n(\mathbb{K})}{p(A)}$ 

#### Esempio:

$$A=egin{pmatrix} 1 & 0 \ 0 & 2 \end{pmatrix}$$
,  $q_A(x)=(x-1)(x-2).$  Dico che  $q_A(x)$  è il polinomio minimo di  $A.$  Infatti

$$q_A(x)=(A-I_2)(A-2I_2)==egin{pmatrix}0&0\\0&1\end{pmatrix}egin{pmatrix}-1&0\\0&0\end{pmatrix}=egin{pmatrix}0&0\\0&0\end{pmatrix},\,q_A(x)\in Ker(\Phi) ext{ che \`e principale}$$

Se  $q_A$  non fosse il polinomio minimo di A, tale polinomio minimo lo dividerebbe, quindi sarebbe  $(x-1) \vee (x-2)$ , ma nessuno di questi si annulla in A.  $(A - I_2 \neq 0 \land A - 2I_2)$ 

In quest'esempio  $q_A(x) \equiv p_A(x)$  ossia il polinomio minimo coincide con quello caratteristico.

## Esempio:

$$I_2 = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$$
 ,  $q_{I_2}(x) = (x-1) 
eq p_{I_2}(x)$ 

## Esempio:

$$B = egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix}, p_B(x) = (x-1)^2 x = q_B(x)$$

## → Teorema di Decomposizione Primaria

Sia  $f\in End(V), dim(V)=n.$  Sia  $p\in \mathbb{K}[x]\mid p(f)=0$  e  $p=p_1p_2$  con  $p_1$  e  $p_2$  coprimi. Allora  $V=Ker(p_1(f))\oplus Ker(p_2(f))$ 

**Osservazione**: Supponiamo ad esempio che il polinomio minimo di  $f \in End(V)$  sia  $q_f = (x-1)(x-2) \Rightarrow f$  è diagonalizzabile perché  $V = Ker(f-I_n) \oplus Ker(f-2I_n)$ 

#### Dimostrazione:

Per il teorema di Bézout  $\exists a,b \in \mathbb{K}[x]$  tali che  $1=p_1a+p_2b$ .

Calcolandoli in f:  $I=p_1(f)a(f)+p_2(f)b(f)\in End(V)$ ,  $\forall v\in V$  cioè applico v ad entrambi:  $v=p_1(f)a(f)(v)+p_2(f)b(f)(v)$ .

 $\text{Mostro a questo punto che } p_1(f)a(f)(v) \in Ker(p_2(f)). \text{ Infatti calcolo } p_2(f)p_1(f)a(f)(v) = \underbrace{p_1(f)p_2(f)}_{p(f)=0}a(f)(v) = 0$ 

Analogamente  $p_2(f)b(f) \in Ker(p_1(f))$ 

Ora, se  $v \in Ker(p_1(f)) \cap Ker(p_2(f)) \Rightarrow v = 0$  perché

$$v=p_1(f)a(f)(v)+p_2(f)b(f)(v)=a(f)\underbrace{p_1(f)(v)}_{=0}+b(f)\underbrace{p_2(f)(v)}_{=0}=0 \Rightarrow v=0$$

**Osservazione**: Notiamo che  $Im(p_1(f)) \subseteq Ker(p_2(f))$  e  $Im(p_2(f)) \subseteq Ker(p_1(f))$  e per motivi dimensionali, queste relazioni sono delle uguaglianze, infatti da

$$V = Ker(p_1(f)) \oplus Ker(p_2(f)) \Rightarrow dim(Ker(p_2(f))) = dim(V) - dim(Ker(p_1(f))) = dim(Im(p_1(f)))$$

**Osservazione**:  $Ker(p_1(f))$  è f-invariante. Sia  $w \in Ker(p_1(f)) \stackrel{?}{\Rightarrow} f(w) \in Ker(p_2(f))$ 

Se scelgo una base di V data dall'unione di una base di  $Ker(p_1(f))$  e una base data da  $Ker(p_2(f))$ 

Ottengo allora che 
$$M_{\mathscr{B}}(f)=egin{pmatrix}A_1&0\\0&A_2\end{pmatrix}$$
 dove  $A_1=M_{\mathscr{B}}(f|_{Ker(p_1(f))})$ 

**Corollario**: Sia  $p \in \mathbb{K}[x], p = p_1 p_2 \dots p_k$  con  $p_1, p_2, \dots, p_k \in \mathbb{K}[x]$  a due a due coprimi e sia  $f \in End(V)$  e supponiamo che p(f) = 0. Allora  $V = Ker(p_1(f)) \oplus \dots \oplus Ker(p_k(f))$  e come prima  $Ker(p_1(f)), \dots, Ker(p_k(f))$  sono f-invarianti.

## Dimostrazione:

Si fa per induzione con k>2

Con k=2 è il caso del teorema precedente.

Supponiamo quindi k>2 e assumiamo l'ipotesi induttiva, ma  $q\in \mathbb{K}[x], q=q_1\dots q_{k-1}$  a due a due coprimi e  $g\in End(V)$  tale che q(g)=0, allora  $W=Ker(q_1(g))\oplus \dots \oplus Ker(q_{k-1}(g))$ 

$$\mathsf{Con}\; k>2 \;\mathsf{si}\; \mathsf{ha}\; p=p_1\underbrace{p_2\dots p_k}_{=q} \;\mathsf{e}\; \mathsf{per}\; \mathsf{ipotesi}\; p\; \mathsf{e}\; q\; \mathsf{sono}\; \mathsf{coprimi} \Rightarrow V=Ker(p_1(f)) \oplus \underbrace{Ker(q(f))}_{=W} \Rightarrow W=Ker(q(f))$$

da cui si ha che  $q(f)|_W = 0 = q(f|_W)$ 

Sia quindi  $q(x)=a_0+a_1x+\ldots+a_nx^n\Rightarrow q(f)=a_0I+a_1f+\ldots+a_nf^n$ . Allora  $q(f)|_W$  con  $w\in W$ ,

 $a_0w+a_1f(w)+\ldots+a_nf^n(w)=q(f|_W)(w)\Rightarrow$  posso applicare l'ipotesi induttiva

$$Ker(q(f)) = W = Ker(p_2(f|_W)) \oplus \ldots \oplus Ker(p_k(f|_W))$$

Basta ora osservare che  $Ker(p_i(f|_W)) = Ker(p_i(f)), \forall i \geq 2$ 

Del Resto abbiamo che  $Ker(p_i(f|_W)) = Ker(p_1(f))|_W$ , quindi

$$Ker(p_i(f)) \subseteq Ker(q(f)) = W \Rightarrow Ker(p_i(f))|_W = Ker(p_i(f)), orall i > 2$$

Quindi  $q(f) = p_2(f) \dots p_n(f)$  e se  $z \in Ker(p_2(f))$ , allora  $q(f)(z) = p_1(f)(z) \dots p_k(f)(z) = 0$ 

#### Esempio:

Sia  $f \in End(V)$ . Se il polinomio minimo di f è della forma  $q_f(x) = (x - \lambda_1) \dots (x - \lambda_k)$  con  $\lambda_1 \neq \lambda_2 \neq \dots \neq \lambda_k$  allora  $V = Ker(f - \lambda_1 I) \oplus \dots \oplus Ker(f - \lambda_k I)$  dove  $Ker(f - \lambda_i I)$  è l'autospazio relativo di  $\lambda_i$  e f è diagonalizzabile.

#### Esempio

 $f \in End(V)$  tale che  $f^2 = I$ , allora f è diagonalizzabile.

Per Ipotesi se  $p(x)=x^2-1=(x-1)(x+1),\, p(f)=0\Rightarrow$  il polinomio minimo divide  $x^2-1\Rightarrow$ 

$$egin{cases} q(x) = x-1 \Rightarrow f = I \ q(x) = x+1 \Rightarrow f = -I \ q(x) = (x+1)(x-1) \Rightarrow V = Ker(f+I) \oplus Ker(f-I) \end{cases}$$

## → Teorema di Cayley-Hamilton

Sia  $f \in End(V)$  con  $V = \mathbb{K}$  — spazio vettoriale di dimensione n e sia  $p_f(x) \in \mathbb{K}[x]$  il suo polinomio caratteristico, allora  $p_f(f) = 0$ . Equivalentemente, data  $A \in M_n(\mathbb{K})$  con polinomio caratteristico  $p_A \in \mathbb{K}[x], p_A(A) = 0$ 

#### Dimostrazione:

Supponiamo innanzitutto che f sia triangolabile in  $\mathbb{K}$ , cioè che esista una base  $\mathscr{B}_V = \{v_1, \dots, v_n\}$  rispetto alla

quale la matrice  $M_{\mathscr{B}_V}$  sia triangolare superiore  $T=egin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ & \ddots & \vdots \\ 0 & & a_{n,n} \end{pmatrix} \Rightarrow$  il polinomio caratteristico di f è

$$p_f(x) = (a_{1,1} - x) \dots (a_{n,n} - x) \Rightarrow p_f(f) = (a_{1,1} - f) \dots (a_{n,n} - f).$$

Voglio dimostrare che  $p_f(f)$  è l'endomorfismo nullo ossia che  $p_f(f)(v_i)=0, orall i=1,\dots n$ 

$$egin{aligned} p_f(f)(v_1) &= (a_{1,1}I - f) \ldots (a_{n,n}I - f)(v_1) = (a_{2,2}I - f) \ldots (a_{n,n}I - f)(a_{1,1}I - f)(v_1) = 0 \ p_f(f)(v_2) &= (a_{1,1}I - f)(a_{2,2}I - f) \ldots (a_{n,n}I - f)(v_2) = a_{1,2}(a_{1,1}I - f)(v_2) = 0, \ f(v_2) = a_{1,2}v_1 + a_{1,2}v_2 \ &\Rightarrow p_f(f)(v_i) = 0, orall i \in \{1,\ldots,n\} \Rightarrow p_f(f) = 0 \end{aligned}$$

Supponiamo ora f qualsiasi, sia  $\mathbb{K}'$  un'estensione di  $\mathbb{K}$  in cui f abbia tutte le radici  $\Rightarrow f$  è triangolarizzabile in  $\mathbb{K}'$ . In altre parole, sia  $\mathscr{B}$  una base di V e sia  $A=M_{\mathscr{B}}(f)\in M_n(\mathbb{K}):\exists H\in GL_n(\mathbb{K}')$  tale che  $H^{-1}AH=T\in M_n(\mathbb{K}')$ . Supponiamo che il polinomio caratteristico di A e quello di T coincidano.

Calcolo allora 
$$p_A(A)=p_A(HTH^{-1})=H\underbrace{p_A(T)}_{=0}H^{-1}=0$$

Corollario: Il polinomio minimo divide quello caratteristico.

## Esempio:

Supponiamo  $A \in M_3(\mathbb{K})$  tale che  $p_A(x) = (x-1)^2 x$  ne sia il polinomio caratteristico. Ho tutte le possibilità  $x; x-1; (x-1)^2 x; x(x-1)$ ? NO

**Proposizione**: Ogni autovalore di f è radice del suo polinomio minimo.

Sia  $f \in End(V)$  (e equivalentemente  $A \in M_n(\mathbb{K})$ ), esistono polinomi  $p \in \mathbb{K}[x], p \neq 0$  tali che p(f) = 0 Il polinomio minimo di f è uno di questi. Inoltre è caratterizzato dal fatto che:

- il polinomio minimo è un polinomio non nullo, monico, di grado minimo che annulla f, ossia  $q_f(f)=0$
- è il generatore dell'Ideale  $Keregin{pmatrix} \mathbb{K}[x] & \to & End(V) \\ p & \mapsto & p(f) \end{pmatrix}$

Perché ci interessa così tanto?

## → Teorema di Decomposizione Primaria

Una Scomposizione in potenza di irriducibili di un polinomio che annulla f, ad esempio  $q_f$ , da una scomposizione di V in sottospazi f-invarianti che sono in somma diretta

Se  $p_f$  è il polinomio caratteristico di f. Allora  $p_f(f)=0 \Rightarrow q_f \mid p_f$ 

## Seconda Dimostrazione:

Vogliamo dimostrare che  $p_f(f)(v) = 0, \forall v \neq 0.$ 

Sia  $v \in V$ 

Definisco  $\ell(v) \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} max\{k \mid v, f(v), \dots, f^{k-1}(v) \ \mathrm{Sono} \ \mathrm{L.I.}\} \Rightarrow \{v, \dots, f^{\ell-1}(v)\} \ \mathrm{sono} \ \mathrm{L.I.}$ 

Quindi  $f^\ell(v) \in Span\{v,\ldots,f^{\ell-1}(v)\} \Rightarrow f^\ell(v) = a_0v + a_1f(v) + \ldots + a_{\ell-1}f^{\ell-1}(v)$ 

Completiamo quindi  $\{v, \ldots, f^{\ell-1}(v)\}$  in una base  $\mathscr{B}$  di V.

$$M_{\mathscr{B}}(f) = egin{pmatrix} 0 & 0 & \dots & 0 & a_0 & & \ 1 & 0 & \dots & 0 & a_1 & & \ A = 0 & 1 & & 0 & a_2 & * & \ dots & dots & \ddots & dots & dots & \ 0 & 0 & \dots & 1 & a_{\ell-1} & & \ & & & & & & D \end{pmatrix}$$
 da cui si ottiene che  $p_f(x) = p_A(x)p_D(f)$  e

$$p_A(x)=x^\ell-a_{\ell-1}x^{\ell-1}{-}\ldots{-}a_0$$

Quindi 
$$p_f(f)(v) = p_D(f)p_A(f)(v) = p_D(f)(f^\ell - a_{\ell-1}f^{\ell-1} - \ldots - a_0I)(v) = p_D(f)(f^\ell(v) - a_{\ell-1}f^{\ell-1}(v) - \ldots - a_0v) = p_D(f)(0) = 0$$

Quindi  $orall v \in V, p_f(f)(v) = 0 \Rightarrow p_f(f) = 0$ 

**Osservazione**: Sappiamo già che f è invertibile  $\Leftrightarrow p_f(0) \neq 0$ 

II Teorema di Cayley-Hamilton ci fornisce un modo per calcolare  $f^{-1}: p_f(x) = (-1)^n(x^n + a_{n-1}x^{n-1} + \ldots + a_0)$  con  $a_0 \neq 0$ . Con C-H:  $f^n + a_{n-1}f^{n-1} + \ldots + a_1f + a_0I = 0 \Rightarrow I = -\frac{1}{a_0}(f^{n-1} + a_{n-1}f^{n-2} + \ldots + a_1I)f \Rightarrow -\frac{1}{a_0}(f^{n-1} + a_{n-1}f^{n-2} + \ldots + a_1I) = f^{-1}$ 

#### Esempio:

$$A = egin{pmatrix} 0 & 1 & 1 \ -1 & 0 & 2 \ 0 & 0 & 1 \end{pmatrix} \Rightarrow p_A(x) = -(x-1)(x^2+1)$$

Con Cayley-Hamilton:  $(A - I)(A^2 + I) = 0 \Rightarrow A^3 + A - A^2 - I = 0 \Rightarrow I = A^3 - A^2 + A \Rightarrow A^{-1} = A^2 - A - I$ 

Sappiamo già che  $q_f(x)$  divide  $p_f(x)$ . Si può dire qualcosa di più preciso?

## → Teorema

Sia  $f \in End(V)$ . Siano  $q_f(x)$  il suo polinomio minimo e  $p_f(x)$  il suo polinomio caratteristico. Se  $\lambda_0$  è una radice di  $p_f(x)$ . Allora  $\lambda_0$  è una radice di  $q_f(x)$ 

**Osservazione**: L'implicazione inversa è una conseguenza del fatto che  $q_f | p_f$ 

## Dimostrazione:

Poiché  $\lambda_0$  è un autovalore di f esiste  $v_0 \neq 0$  tale che  $f(v_0) = \lambda_0 v_0 \Rightarrow f^k(v_0) = \lambda_0^k v_0$ 

$$q_f(x) = b_0 + b_1 x + \ldots + b_{d-1} x^{d-1} + x^d \Rightarrow q_f(f) = b_0 I + b_1 f + \ldots + b_{d-1} f^{d-1} + f^d$$

Quindi  $q_f(f)(v_0) = 0$  per definizione di polinomio minimo e questo è uguale a

$$(b_0I+b_1f+\ldots+b_{d-1}f^{d-1}+f^d)(v_0)=$$

$$=b_0v_0+b_1f(v_0)+\ldots+b_{d-1}f^{d-1}(v_0)+f^d(v_0)=(b_0+b_1\lambda_0+b_2\lambda_0^2+\ldots+b_{d-1}\lambda_0^{d-1}+\lambda_0^{d-1})v_0=q(\lambda_0)v_0$$

Quello che abbiamo osservato è che: se  $v_a$  è autovettore di f con autovalore  $\lambda_0$  e r è un polinomio  $\Rightarrow v_0$  è autovettore di r(f) con autovalore  $r(\lambda_0)$ 

Quindi 
$$q_f(f)(v_0)=0$$
 e  $q_f(f)(v_0)=q(\lambda_0)v_0$  ma  $v_0 
eq 0 \Rightarrow q_f(\lambda_0)=0$ 

Un caso particolare: supponiamo che  $p_f$  abbia tutte le radici in  $\mathbb{K}$ .  $p_f(x)=(x-\lambda_1)^{\mu_1}\dots(x-\lambda_k)^{\mu_k}$  con  $\mu_i=\mu(\lambda_i)$  con  $\lambda_1,\dots,\lambda_k$  distinti  $\Rightarrow q_f(x)=(x-\lambda_1)^{a_1}\dots(x-\lambda_k)^{a_k}$  con  $1\leq a_i\leq \mu_i$ 

## → Teorema

Sia  $f \in End(V)$  tale che  $p_f$  ha tutte le radici in  $\mathbb{K}$ . f è diagonalizzabile  $\Leftrightarrow q_f$  è "libero di quadrati" (nella notazione precedente,  $a_i = 1, \forall i \in \{1, \dots, k\}$ )

#### Dimostrazione:

 $\Leftarrow) \text{ Se } q_f(x) = (x-\lambda_1)\dots(x-\lambda_k), \text{ i polinomi } (x-\lambda_1),\dots,(x-\lambda_k) \text{ sono primi a due a due.} \Rightarrow \text{per il Teorema di Decomposizione primaria } V = \bigoplus_{i=1}^k Ker(f-\lambda_i I) = \bigoplus_{i=1}^k V_{\lambda_i} \Rightarrow V \text{ è somma diretta di autospazi} \Rightarrow V \text{ è}$ 

diagonalizzabile.

$$\Rightarrow)\ V=\bigoplus V_{\lambda_i}\ \text{e mostriamo che}\ q_f(f)(v)=0, \forall v\ \text{con}\ q(f)=(x-\lambda_1)\dots(x-\lambda_k).\ \text{Poich\'e}\ v=v_1+\dots+v_k\ \text{con}\ v_i\in V_{\lambda_i}\ \text{cio\`e}\ (f-\lambda_iI)(v_i)=0 \Rightarrow q(f)(v_i)=\sum_{i=1}^k q(f)(v_i)=0\ \text{e}$$
 
$$q(f)(v_i)=(f-\lambda_1I)\dots(f-\lambda_iI)\dots(f-\lambda_kI)=(\dots)(f-\lambda_iI)(v_i)=0$$
 Quindi  $\forall i\in\{1,\dots,k\}, q(f)(v_i)=0\Rightarrow q(f)(v)=0, \forall v$ 

### Esercizio:

Mostrare che se  $r(x) \in \mathbb{K}[x]$  è un polinomio irriducibile che divide  $p_f(x)$ , allora divide anche  $q_f(x)$ .

Suggerimento: Usare quello che abbiamo dimostrato per r di grado 1 e quello usato nella chiusura algebrica di  $\mathbb K$ 

D'ora in poi supponiamo che  $p_f(x)$  abbia tutte le radici in  $\mathbb{K}$ .

$$p_f(x) = (x - \lambda_1)^{\mu_1} \cdot \ldots \cdot (x - \lambda_k)^{\mu_k} ext{ con } \mu_i = \mu_a(\lambda_i)$$

Per Cayley-Hamilton e Decomposizione Primaria si ha che  $V=\bigoplus Ker(f-\lambda_i I)^{\mu_i}$ , ossia è somma diretta di sottospazi vettoriali f- invarianti.

Osservazione:  $V_{\lambda_i} = Ker(f - \lambda_i I) \subseteq Ker(f - \lambda_i I)^{\mu_i} = V_{\lambda_i}^{gen}$ 

#### Esempio:

$$egin{aligned} A &= egin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix} \Rightarrow p_A(x) = x^2, \ & ext{Si ha che } V_0 = Span\left\{egin{pmatrix} 1 \ 0 \end{pmatrix}
ight\} ext{e } V_0^{gen} = \mathbb{K}^2 \ & ext{Quindi } V = igoplus Ker(f-\lambda_i I)^{\mu_i} = igoplus V_{\lambda_i}^{gen} \end{aligned}$$

**Osservazione**:  $V_{\lambda_i}^{gen}$  è un sottospazio vettoriale  $(f-\lambda_i I)$ -invariante e  $(f-\lambda_i I)|_{V_{\lambda_i}^{gen}}$  è nilpotente

#### Esercizio 1:

Mostrare che  $\mathbb{Q}[\sqrt{2}]$  e  $\mathbb{Q}[\sqrt{3}]$  non sono campi isomorfi

Dove 
$$\mathbb{Q}[\sqrt{2}]=\{a+\sqrt{2}b\mid a,b\in\mathbb{Q}\}$$
 e  $\mathbb{Q}[\sqrt{3}]=\{a+\sqrt{3}b\mid a,b\in\mathbb{Q}\}$ 

#### Soluzione:

Mi chiedo se 
$$\exists \varphi: \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{3}]$$
 tale che  $\varphi(a+b) = \varphi(a) + \varphi(b)$  e  $\varphi(ab) = \varphi(a)\varphi(b)$  Ossia che  $\varphi(1) = 1 \Rightarrow \varphi(\underbrace{1+\ldots+1}) = n$ , analogamente  $\forall m \in \mathbb{Z}, \varphi(m) = m$ 

Inoltre 
$$orall a\in \mathbb{Z}\setminus\{0\}, arphi(aa^{-1})=arphi(a)arphi(a^{-1})\Rightarrow arphi(a^{-1})=a^{-1}$$

$$\Rightarrow orall a,b \in \mathbb{Z}, b 
eq 0, arphi(ab^{-1}) = arphi(ab^{-1}) = ab^{-1} \Rightarrow orall lpha \in \mathbb{Q}, arphi(lpha) = lpha$$

Se  $\varphi$  esistesse, allora  $\varphi(2)=2\Rightarrow \varphi(\sqrt{2}^2)=\varphi(\sqrt{2})^2$ , cioè  $\exists z\in\mathbb{Q}[\sqrt{2}]$  tale che  $z^2=2$ 

$$\Rightarrow (A+\sqrt{3}B)^2=2 \Rightarrow A^2+3B^2+2A\sqrt{3}B=2$$

Se 
$$B=0,\, 2=A^2$$
 ma la cosa è assurda in quanto  $A\in\mathbb{Q}$ 

Se 
$$A=0,\, 2=3B^2 \Leftrightarrow rac{2}{3}=B^2$$
 ma la cosa è assurda in quanto  $B\in \mathbb{Q}$ 

Se 
$$A, B \neq 0$$
,  $\frac{2-A^2-3B^2}{2AB} (\notin \mathbb{Q}) = \sqrt{3} (\notin \mathbb{Q})$ 

Dentro  $\mathbb{Q}[\sqrt{2}]$  non c'è nessun elemento il cui quadrato sia 3, cioè  $x^2-3$  è irriducibile in  $\mathbb{Q}[\sqrt{2}][x] \Rightarrow \mathbb{Q}[\sqrt{2}][x]/_{(x^2-3)} = \mathbb{Q}[\sqrt{2},\sqrt{3}]$  campo

#### Esercizio 2:

Sia  $f \in End(V)$  e sia  $U \subseteq V$  un sottospazio f-invariante. Se f è diagonalizzabile, allora  $f|_U$  è diagonalizzabile

#### Soluzione:

f diagonalizzable  $\Rightarrow q_f(x) = (x - \lambda_1) \cdot \ldots \cdot (x - \lambda_k)$  con  $\lambda_1 \neq \lambda_2 \neq \ldots \neq \lambda_k$ . Voglio dimostrare che  $q_{f|_U} \mid q_f$  La cosa è verificata se  $q_f(f|_U) = q_f(f)|_U = 0$ 

#### Esercizio 3:

Sia  $f \in End(V)$  tale che  $f^2 = f^3$ . Mostrare che  $f^2$  è diagonalizzabile, ma f non è detto che lo sia.

## Soluzione:

 $[V=Ker(f^2)\oplus Ker(f-I)]\Rightarrow q_f\mid x^2(x-1).$  Vediamo i casi possibili:

- 
$$q_f(x) = x \Rightarrow f = 0 \Rightarrow f^2 = 0$$

- 
$$q_f(x) = x - 1 \Rightarrow f = I \Rightarrow f^2 = I$$

- 
$$q_f(x) = x^2 \Rightarrow f^2 = 0$$
 diagonalizzabile, ma  $f$  non è diagonalizzabile

- 
$$q_f(x)=x(x-1)\Rightarrow f$$
 diagonalizzabile con autovalori  $0,1\Rightarrow \mathscr{B}_V$  tale che  $M_{\mathscr{B}_V}=egin{pmatrix}0&0\0&I\end{pmatrix}\Rightarrow f^2$  è

diagonalizzabile e 
$$M_{\mathscr{B}_{V}}=egin{pmatrix} 0 & 0 \ 0 & I \end{pmatrix}$$

- 
$$q_f(x)=x^2(x-1)\Rightarrow f$$
 non è diagonalizzabile. Per il Teorema di Decomposizione Primaria

## Esercizio 4:

Determinare il polinomio caratteristico e il polinomio minimo della matrice  $A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & 1 & 0 \end{pmatrix}$ 

#### Soluzione:

Il polinomio caratteristico è

$$p_A(x) = det(A_x - I_3) = det egin{pmatrix} -x & -1 & 1 \ 1 & 2 - x & -1 \ 1 & 1 & -x \end{pmatrix} = -x(-2x + x^2 + 1) - x + 1 + 1 - 2 + x = -x(x - 1)^2$$

A questo punto, tra i divisori del polinomio caratteristico, cerco il polinomio minimo  $q_A(x)$ 

Gli autovalori sonso 0 e 1, quindi per il polinomio minimo ho 2 possibilità:

- x(x-1) che è libero da quadrati, quindi è diagonalizzabile;
- $x(x-1)^2$  che non è libero da quadrati, quindi non diagonalizzabile;

Per vedere quale delle due possibilità è, mi basta vedere la diagonalizzabilià.

Poiché  $m_a(0)=m_g(0)=1$ , devo vedere le molteplicità di  $1.\ m_a(1)=2$  e

$$m_g(1)=dim(V_1)=3-rg(A-I_3)=3-rgegin{pmatrix} -1&-1&1\1&1&-1\1&1&-1 \end{pmatrix}=2\Rightarrow m_a(1)=m_g(1)=2$$
 quindi è diagonalizzabile,

quindi  $q_A(x) = x(x-1)$ 

Oppure posso direttamente fare la valutazione del polinomio minimo:

$$q_A(x) \stackrel{?}{=} x(x-1) \Rightarrow q_A(A) = 0 \Rightarrow A(A-I_3) = 0 \Rightarrow egin{pmatrix} -x & -1 & 1 \ 1 & 2-x & -1 \ 1 & 1 & -x \end{pmatrix} egin{pmatrix} -1 & -1 & 1 \ 1 & 1 & -1 \ 1 & 1 & -1 \end{pmatrix} = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix} \Rightarrow g_A(A) = 0 \Rightarrow x(x-1) \; .$$

## Esercizio 5:

Mostrare che il polinomio minimo di una matrice diagonale a blocchi  $M=\begin{pmatrix}A&0\\0&B\end{pmatrix}$  (dove

 $M\in M_n(\mathbb{K}), A\in M_k\mathbb{K}, B\in M_{n-k}\mathbb{K}$ ) è il minimo comune multiplo di A e B

### Soluzione:

Premessa: Se  $p_1(x), p_2(x) \in \mathbb{K}[x], mcm(p_1, p_2) = r(x) \in \mathbb{K}[x]$  di grado minimo tale che  $r(x) = p_1(x)r_1(x)$  e  $r(x) = p_2(x)r_2(x)$ , ossia è divisibile sia per  $p_1(x)$  che per  $p_2(x)$ .

Osserviamo che se p è un polinomio  $p(x)=a_0+a_1x+\ldots+a_nx^n\Rightarrow p(M)=a_0I_n+a_1M+\ldots+a_nM^n$ , ma poiché

$$M^i = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}^i = \begin{pmatrix} A^i & 0 \\ 0 & B^i \end{pmatrix}, \forall i \in \mathbb{N}. \text{ Quindi } p(M) = a_0I_n + a_1\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} + a_2\begin{pmatrix} A^2 & 0 \\ 0 & B^2 \end{pmatrix} + \ldots + a_n\begin{pmatrix} A^n & 0 \\ 0 & B^n \end{pmatrix}$$

Quindi si ottiene che  $p(M)=egin{pmatrix} p(A) & 0 \ 0 & p(B) \end{pmatrix}$  e di conseguenza  $p(M)=0\Leftrightarrow p(A)=0\land p(B)=0$ 

Sia dunque q(M) il polinomio minimo di  $M\Rightarrow q_M(M)=0\Rightarrow q_M(A)=0$  e  $q_M(B)=0\Rightarrow q_A\mid q_M$  e  $q_B\mid q_M$ . Si ottiene quindi che  $mcm(q_A,q_B)\mid q_M$ .

(Questo lo si poteva anche vedere dal fatto che  $q_M(M) = \begin{pmatrix} q_M(A) & 0 \\ 0 & q_M(B) \end{pmatrix}$  con  $q_M(A) = 0$  e  $q_M(B) = 0$ )

Chiamiamo per semplicità  $m=mcm(q_A,q_B)$ 

$$\mathsf{Poich\'e}\ m=q_Ar_1=q_Br_2\Rightarrow m(M)=\begin{pmatrix} m(A) & 0 \\ 0 & m(B) \end{pmatrix}=\begin{pmatrix} (q_Ar_1)(A) & 0 \\ 0 & (q_Br_2)(B) \end{pmatrix}=\begin{pmatrix} q_A(A)r_1(A) & 0 \\ 0 & q_B(B)r_2(B) \end{pmatrix},$$

ma poiché  $q_A(A)=0$  e  $q_B(B)=0$  si ha che  $m(M)=0\Rightarrow q_M\mid m$ 

Da queste due affermazioni si ottiene che  $q_M=m$ 

#### Esercizio 6:

1) Sia 
$$f \in End(V)$$
 con  $V = \mathbb{Q}$  — spazio vettoriale e con matrice  $F = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$  rispetto ad una base  $\mathscr{B}_V$ .

Mostrare che esistono infiniti sottospazi f-invarianti di V

2) Sia 
$$g \in End(V)$$
 con matrice  $G = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$  rispetto ad una base  $\mathscr{B}_V$ . Mostrare che esistono un numero finito

di sottospazi g-invarianti.

## Soluzione:

- 1) La dimensione di  $V_1=2\Rightarrow V_1$  è un piano  $\Rightarrow V_1$  contiene infiniti sottospazi di dimensione 1 e sono f-invarianti in quanto  $f|_{V_1}=I$
- 2) Sia  $W \subseteq V$ . W g-invariante. Si ha che gli autospazi  $V_1$  e  $V_2$  hanno dimensione 1.

Allora la dimensione di W può essere:

- $3 \Rightarrow W = V \Rightarrow g$ -invariante;
- $0 \Rightarrow W$  è banale, quindi q-invariante;
- $1 \Rightarrow W = span\{w\}$  e g-invariante  $\Leftrightarrow g(w) \in W \Leftrightarrow g(w) = \lambda w$ .
- $2\Rightarrow$  il Polinomio Caratteristico di  $g|_W$  divide il polinomio caratteristico di  $g, p_g(x)=(1-x)^2(2-x)$ . Il grado di  $p_g|_W$  è  $2\Rightarrow p_g|_W=(1-x)(2-x)\vee(1-x)^2$ . Nel primo caso ho due avutovalori distinti, quindi  $W=V_1\oplus V_2$ . Nel secondo caso per il teorema di Decomposizione Primaria ho che

$$W=Ker(I-g|_W)^2=Ker(I-g)^2|_W=Ker(I-g)^2.$$

Infatti se ho 
$$G = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \Rightarrow I - G = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \Rightarrow (I - G)^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Da notare che le prime due colonne della matrice sono nulle, ossia  $\in W$ . Infatti se

$$\mathscr{B}_V = \{v_1, v_2, v_3\}, W = span\{v_1, v_2\}$$

Con sottospazi invarianti, l'utilizzo del polinomio caratteristico è fondamentale.

#### Esercizio 7:

Sia  $f \in End(V), V = \mathbb{K} - \text{spazio vettoriale}$ . Mostrare che ogni fattore irriducibile del polinomio caratteristico di f divide il polinomio minimo di f.

#### Soluzione:

Per poter risolvere quest'esercizio consideriamo questo esercizio preliminare:

"Sia  $p_1(x) \in \mathbb{K}[x]$  un polinomio irriducibile e sia  $\alpha \in \mathbb{K}' \supset \mathbb{K}$  una radice di  $p_1(x)$ . Sia  $q(x) \in \mathbb{K}[x]$  tale che abbia  $\alpha$  come radice in  $\mathbb{K}'$ . Allora  $p_1(x) \mid q(x)$ "

Sia  $m = \mathcal{MCD}(p_1(x), q(x))$  in  $\mathbb{K}[x]$ . Poiché  $p_1(x)$  è irriducibile per Ipotesi,  $m = 1 \vee p_1(x)$ .

Se  $m=1\Rightarrow p_1$  e q sono coprimi  $\Longrightarrow$   $\exists a,b\in\mathbb{K}[x]$  tali che  $p_1(x)a(x)+q(x)b(x)=1$ . Ma questa affermazione posso leggerla anche in chiave di  $\mathbb{K}'[x]$ . Allora posso dire che  $(x-\alpha)\mid p_1(x)a(x)+q(x)b(x)$ , ma  $(x-\alpha)\nmid 1$ . Di conseguenza si ha che  $m=\mathcal{MCD}(p_1(x),q(x))=p_1\Rightarrow p_1\mid q$ 

Applicando questa cosa al polinomio caratteristico e al polinomio minimo  $p_A(x)$  e  $q_A(x)$ . Se  $\alpha \in \mathbb{K}'$  è radice di  $p_A$ 

e  $p_A$  ha un fattore irriducibile  $\Rightarrow \alpha$  è radice di  $q_A \Rightarrow \alpha$  è un autovalore.

Ogni autovalore è radice del polinomio minimo  $q_A \Rightarrow p_1 \mid q_A$ 

**Proposizione**: Sia  $A \in M_n(\mathbb{K})$  e sia  $\mathbb{K}' \supset \mathbb{K}$  un'estensione. Allora il polinomio minimo  $q_A \in \mathbb{K}[x]$  coincide con il polinomio minimo  $q'_A$  di A in  $\mathbb{K}'[x]$ 

**Osservazione**: Naturalmente  $q_A(0), q_A \in \mathbb{K}[x] \subset \mathbb{K}'[x] \Rightarrow q_A' \mid q_A$ 

#### Dimostrazione:

Voglio dimostrare che  $deg(q_A) \leq deg(q'_A)$ 

Ho che  $q_A'(x) = \alpha_0 + \alpha_1 x + \ldots + \alpha_n x^n \in \mathbb{K}[x]$ . Inoltre  $q_A'(A) = 0 \Rightarrow \alpha_0 I_n + \alpha_1 A + \alpha_2 A^2 + \ldots + \alpha_n A^n = 0$ .

Questa rappresenta una relazione di lineare dipendenza  $\Rightarrow I, A, A^2, \dots, A^n \in M_n(\mathbb{K})$  sono linearmente dipendenti in  $\mathbb{K}'$ . Voglio dimostrare che sono L.D. anche in  $\mathbb{K}$ .

Il problema è quindi equivalente a "Siano  $v_0, \ldots, v_n$  vettori di un  $\mathbb{K}$  – spazio vettoriale linearmente dipendenti in  $\mathbb{K}'$ . Allora sono vettori linearmente dipendenti su ™"

#### Esempio:

Siano  $v_0, v_1, v_2$  vettori di  $\mathbb{R}^n$ , linearmente dipendenti su  $\mathbb{C}$ . Allora sono linearmente dipendenti su  $\mathbb{R}$ . Infatti supponiamo che non lo siano e consideriamo  $a_0v_0+a_1v_1+a_2v_2=0,\ a_0,a_1,a_2\in\mathbb{C}.$  Poiché  $a_i=\alpha_i+i\beta_i$  $\alpha_i, \beta_1 \in \mathbb{R}$ . Si può scrivere  $(\alpha_0 + i\beta_0)v_0 + (\alpha_1 + i\beta_1)v_1 + (\alpha_2 + i\beta_2)v_2 = 0, \ \alpha_i, \beta_i \in \mathbb{R}, \ v_i \in \mathbb{R}^n$ Questa affermazione è Vera se e solo se  $\alpha_0v_0 + \alpha_1v_1 + \alpha_2v_2 = 0$  e  $\beta_0v_0 + \beta_1v_1 + \beta_2v_2 = 0$  (Ossia separo 1 da i in quanto sono linearmente indipendenti su  $\mathbb{R}$ ), si ottiene che  $\alpha_i=0$  e  $\beta_i=0\Rightarrow a_i=0\Rightarrow v_0,v_1,v_2$  sono linearmente indipendenti su C contro l'ipotesi s

**Proposizione**: Sia  $\mathbb{K}$  un campo e  $\mathbb{K} \supset \mathbb{K}'$  un'estensione di campi. Siano  $v_1, \ldots, v_k$  vettori in  $\mathbb{K}^n$ . Se  $v_1, \ldots, v_k$  sono linearmente dipendenti come vettori in  $(\mathbb{K}')^n$  allora lo sono anche come vettori in  $\mathbb{K}^n$ .

#### Esempio:

Due vettori  $\in \mathbb{Q}^n$  sono linearmente dipendenti se sono uno multiplo dell'altro, ma il multiplo deve appartenere al campo stesso.  $(p, q \in \mathbb{Q}^n \text{ tale che } p = \lambda q, \lambda \in \mathbb{Q}).$ 

#### Dimostrazione 1:

Sia  $a_1v_1+\ldots+a_kv_k$  una combinazione lineare in  $\mathbb{K}'$ , ossia  $a_1,\ldots,a_k\in\mathbb{K}'$ . Prendiamo una base una base  $\mathscr{B} = \{\sigma_1, \dots, \sigma_r\}$  di  $span_{\mathbb{K}} = \{a_1, \dots, a_k\}$  (Questo è un sottospazio vettoriale di  $\mathbb{K}'$ , ma non necessariamente è un  $\mathsf{sottocampo}) \Rightarrow a_1 = \alpha_{1,1}\sigma_1 + \ldots + \alpha_{1,r}\sigma_r; \ + a_2 = \alpha_{2,1}\sigma_1 + \ldots + \alpha_{1,r}\sigma_r; \ \ldots \ a_k = \alpha_{k,1}\sigma_1 + \ldots + \alpha_{k,r}\sigma_r \in \mathbb{K}. \ \mathsf{Queste\ non}$ sono altro che r equazioni equazioni lineari  $\mathbb{K}$ .

$$\Rightarrow (\alpha_{1,1}\sigma_1+\ldots+\alpha_{1,r}\sigma_r)v_1+\ldots+(\alpha_{k,1}\sigma_1+\ldots+\alpha_{k,r}\sigma_r)v_r=0 \Rightarrow \sigma_1(\alpha_{1,1}v_1+\ldots+\alpha_{k,1}v_k)+\ldots+\sigma_r(\alpha_{1,r}v_1+\ldots+\alpha_{k,r}v_k)=0$$
 Si ottengono quindi così  $r$  equazioni lineari: 
$$\begin{cases} \alpha_{1,1}v_1+\ldots+\alpha_{k,1}v_k=0\\ \vdots & \text{che sono tutte linearmente dipendenti, ma gli}\\ \alpha_{1,r}v_1+\ldots+\alpha_{k,r}v_k=0 \end{cases}$$

 $\alpha_i$  non possono essere tutti nulli, in quanto altrimenti si avrebbe  $a_1 = \ldots = a_k = 0$ 

Quindi almeno una delle relazioni di dipendenza lineare è non banale.

#### Dimostrazione 2:

Dire che  $v_1, \ldots, v_k \in \mathbb{K}$  sono linearmente dipendenti come elementi in  $(\mathbb{K}')^n$  equivale a dire che riducendo a scala la matrice  $(v_1,\ldots,v_k)$  trovo una colonna nulla (facendo la riduzione in colonna). Ma se  $v_1,\ldots,v_k\in\mathbb{K}^n$ , la matrice può ridursi a scala usando le operazioni elementari già definite in K.

#### Esempio:

$$\begin{pmatrix} v_1^{(1)} & v_2^{(1)} & \dots & v_k^{(1)} \\ \vdots & \vdots & & \vdots \\ v_1^{(n)} & v_2^{(n)} & \dots & v_k^{(n)} \end{pmatrix}.$$
 Se volessi far apparire  $0$  in  $v_2^{(1)}$  mi basta fare l'operazione  $c_2 - \frac{v_1^{(1)}}{v_2^{(1)}} c_1$  (assumendo  $v_1^{(1)} \neq 0$ ). Questo mi esplica il fatto che un'estensione di campo non offre più possibilità.

# Numeri Complessi C

## Definizione di Numeri Complessi C

 $\mathbb C$  è l'estensione di grado 2 di  $\mathbb R$  generata da una radice quadrata di -1 che indichiamo con i. In altri termini  $\mathbb C = \mathbb R[x]/_{(x^2+1)}$  e i=[x]. L'altra radice di -1 è necessariamente -i. Quindi ogni elemento  $z\in\mathbb C$  si scrive come z=a+ib, dove  $a,b\in\mathbb R$  e vengono chiamati a come parte reale di z (ossia  $a=\mathfrak R(z)$ ) e b come la parte immaginaria di z (ossia  $b=\mathfrak I(z)$ ).

## Regole di calcolo:

$$\hbox{-} \; (a+ib) + (c+id) = (a+c) + i(b+d)$$

$$\hbox{-} (a+bi)\cdot (c+id) = (ac-bd) + i(ab+cd)$$

Inoltre 
$$a+bi=0 \Leftrightarrow a=0 \wedge b=0 \Rightarrow a^2+b^2=0$$

Siccome  $\mathbb C$  è un campo,  $\forall z \in \mathbb C$ ,  $\exists ! z^{-1} \in \mathbb C$  e corrisponde a  $(a+ib)^{-1} = \frac{1}{a+ib} = \frac{1}{a+ib} = \frac{a-ib}{a-ib} = \frac{a}{a^2+b^2} + i\frac{b}{a^2+b^2}$ 

L'applicazione del coniugio in  $\mathbb{C}: \frac{\mathbb{C}}{z=(a+ib)} \xrightarrow{\overline{z}=(a-ib)}$  è un automorfismo di campi e per definizione:  $\overline{0}=0,\ \overline{1}=1,\ \overline{(z+z')}=\overline{z}+\overline{z'},\ \overline{z\cdot z'}=\overline{z}\cdot \overline{z'},\ \overline{(\overline{z})}=z,\ z\overline{z}=(a+ib)(a-ib)=a^2+b^2.$  (Si indica con  $|z|=\sqrt{z\overline{z}} \Leftrightarrow |z|^2=z\overline{z}$ )

Osservazione:  $z^{-1} = \frac{\overline{z}}{|z|^2}$ 

Non è l'unico automorfismo di campi in  $\mathbb{C}$ , infatti ce ne sono tanti, ma talmente tanti che non si possono contare (indicativamente  $|\mathcal{P}(\mathcal{P}(\dots))|$ ), ma nessuno è mai riuscito a vederli. Tutto questo perché sono dati dall'assioma della scelta.

## Proprietà di |z|:

- $-|z|=0 \Leftrightarrow z=0$
- Vale la disuguaglianza triangolare  $|z+w| \le |z| + |w|$ . Infatti se li si rappresenta sul piano:



$$-|z\cdot w|=|z|\cdot |w|\Leftrightarrow |zw|=(zw)\overline{(zw)}=zw\overline{zw}=z\overline{z}w\overline{w}=|z||w| \text{ e } |zw|^2=|z|^2|w|^2.$$

Da questa si ottenne che il prodotto della somma di due quadrati è una somma di quadrati (Fermat)  $\Leftrightarrow (a^2+b^2)+(c^2+d^2)=(ac-bd)^2+(ad+bc)^2$ . Con tre quadrati la cosa non è più valida, ma con quattro si (quaternioni di Hamilton).

## Rappresentazione Grafica:



# ightharpoonup Definizione di Argomento di $z\in\mathbb{C}$

Si definisce Argomento di un numero complesso z e si indica con arg(z) l'angolo che che il numero fa con l'asse dei reali ed è definito a meno di multipli di  $2\pi$ 

**Osservazione**: arg(0) non è definito in quanto non ci sono né angoli né segmenti.

## ightharpoonup Definizione di Presentazione polare di $z\in\mathbb{C}$ :

Dati  $\rho \in \mathbb{R}$ ,  $\rho > 0$  e  $\theta \in \mathbb{R}$ ,  $\rho(\cos \theta + i \sin \theta)$  è un numero complesso con modulo  $\rho$  e argomento  $\theta$ . (se  $\rho = 1$ , è un punto sulla circonferenza unitaria).

#### Esempio:

ho=2 e  $heta=rac{\pi}{3}$  è un numero complesso avente modulo 3 e argomento  $rac{\pi}{3}$  .

Esiste un altro modo di rappresentare i numeri complessi che è attraverso la formulazione di Eulero:  $\rho e^{i\theta}$  (Questo perché deriva dallo sviluppo di Taylor  $e^{i\theta} = \sum \frac{(i\theta)^n}{n!}$ )

$$\textbf{Osservazione} : (\rho(\cos\theta + i\sin\theta))(\rho'(\cos\theta' + i\sin\theta)) = \rho\rho'[\underbrace{(\cos\theta\cos\theta' - \sin\theta\sin\theta')}_{=\cos(\theta + \theta')} + i\underbrace{(\cos\theta\sin\theta' + \sin\theta\cos\theta')}_{\sin(\theta + \theta')}].$$

Nella presentazione polare, moltiplicare due numeri complessi corrisponde a moltiplicare tra loro i moduli e sommare gli argomenti (un'ulteriore motivazione per cui  $\rho e^{i\theta}$  è corretta).

#### Radici n-esime di un numero complesso:

Intanto, dalla rappresentazione polare segue che  $z=
ho(\cos\theta+i\sin\theta)\Rightarrow z^n=
ho^n(\cos(n\theta)+i\sin(n\theta))$ 

## Caso particolare:

Calcoliamo le radici di 1 ossia troviamo le soluzioni di  $z^n=1, z\in\mathbb{C}$ . Intanto si può osservare che si può scomporre come  $z^n-1=(z-1)(z^{-1}+z^{n-2}+\ldots 1)$  ma non sempre il secondo termine è irriducibile (infatti lo è solo se n è primo).

Se 
$$\rho^2(\cos(n\theta) + i\sin(n\theta)) = 1 \Rightarrow \rho = 1 \land n\theta \equiv 0 \ (2\pi)$$
 (infatti  $1 = 1(\cos 0 + i\sin 0)$ )  
L'equazione  $z^n - 1 = 0$  ha  $n$  radici distinte e sono:

 $1,\cos(\tfrac{2\pi}{n})+i\sin(\tfrac{2\pi}{n}),\cos(\tfrac{4\pi}{n})+i\sin(\tfrac{4\pi}{n}),\ldots,\cos(\tfrac{(n-1)\pi}{n})+i\sin(\tfrac{(n-1)\pi}{n}), \text{ e se chiamiamo } \zeta=\cos(\tfrac{2\pi}{n})+i\sin(\tfrac{2\pi}{n}),$  allora le soluzioni diventano  $1,\zeta,\zeta^2,\ldots,\zeta^{n-1}$  e  $\zeta^n=1$ 

#### Esempio:



**Osservazione**: L'insieme di tutte le radici di 1 in  $\mathbb C$  è un gruppo ciclico di ordine n con generatore  $\zeta$  ( $\zeta^a$  è generatore  $\Leftrightarrow \mathcal{MCD}(a, n) = 1$ )

### Esempio:

$$z^4=1\Rightarrow z=1,i,-1,-i$$
 su  $\mathbb C$ 

Per casi più generali  $z^n=w$  e  $w\neq 0$  ho esattamente n radici distinte.

Se 
$$w=
ho(\cos( heta)+i\sin heta)\Rightarrow z=\sqrt[n]{
ho^k}(\cos(rac{ heta+2k\pi}{n})+i\sin(rac{ heta+2k\pi}{n}))$$
 con  $ho>0$ 

# Forme Di Jordan

## Definizione di Blocco di Jordan

Si chiama Blocco di Jordan una matrice niltpotente di ordine n la matrice

$$J_n = egin{pmatrix} 0 & 1 & \dots & 0 \ dots & \ddots & \ddots & dots \ dots & \ddots & \ddots & dots \ dots & & \ddots & 1 \ 0 & \dots & \dots & 0 \end{pmatrix} \in M_n(\mathbb{K}) \Rightarrow J_2 = egin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}, \ J_3 = egin{pmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{pmatrix}$$

**Osservazione**:  $J_n$  è una matrice nilpotente con ordine di nilpotenza n, cioè  $J_n^n=0$  e  $J_n^k 
eq 0$  con  $k \in \{1,\ldots,n-1\}$ 

## Esempio:

$$J_3 = egin{pmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{pmatrix} \Rightarrow J_3^2 = egin{pmatrix} 0 & 0 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix} \Rightarrow J_3^3 = 0$$

**Osservazione**: Il rango di  $J_n$  è  $n-1 \Rightarrow dim(Ker(J_n)) = 1$ 

Leggiamo  $J_n$  come la matrice di un endomorfismo g di  $\mathbb{K}^n$  rispetto ad una base  $\mathscr{B} = \{v_1, \dots, v_n\}$  tale che  $v_1 \mapsto 0; \ v_2 \mapsto v_1; \ \ldots; \ v_n \mapsto v_{n-1} \Leftrightarrow 0 \leftarrow |v_1 \leftarrow |v_2 \leftarrow | \ldots \leftarrow |v_n|$ 

## Esempio:

Chi è  $g^2$  potrei prendere la matrice precedente e elevarla al quadrato oppure con lo schema precedente:

$$egin{aligned} 0 \leftarrow & |v_1 \leftarrow |v_3 \leftarrow | \dots \ 0 \leftarrow & |v_2 \leftarrow |v_4 \leftarrow | \dots \end{aligned} 
ightarrow dim(Ker(g^2)) = 2$$

**Osservazione**:  $Ker(g) \subseteq Ker(g^2) \subseteq Ker(g^3) \subseteq ... \subseteq Ker(g^n)$ 

## > Definizione di Matrice in Forma Canonica Jordan

Si chiama Matrice nilpotente in forma canonica di Jordan una matrice diagonalre a blocchi della forma

## Esempio:

**Osservazione**:  $h_1, \ldots, h_k$  è una partizione di n. Esiste una corrispondenza biunivoca tra partizioni di n e matrici nilpotenti in forma canonica di Jordan.

## Esempio:

$$n = 4 \Rightarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} (3,1) & (2,2) & (2,1,1) & (1,1,1,1) \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \mathbf{0} & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & \mathbf{0} \\ 0 & 0 & \mathbf{0} \\ \mathbf{0} & 0 & 0 \\ \mathbf{0} & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 0 & \mathbf{0} \\ \mathbf{0} & 0 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

Osservazione: Equivalentemente ogni partizione  $h_1 \geq h_2 \geq \ldots \geq h_k$  di n può essere scritto come un diagramma di k righe in cui la i-esima riga contiene  $h_i$  scatole

## Esempio:

$$(4) = \square \square \square; \quad (3,1) = \square \square; \quad (2,2) = \square \square; \quad (2,1,1) = \square \square; \quad (1,1,1,1) = \square \square$$

Naturalmente la corrispondenza fra queste scatole e le partizioni di n (o equivalentemente le matrici nilpotenti in forma canonica di Jordan) è biunivoca.

#### Esempio:

$$\begin{array}{ccc} \square \ \square \ \square \\ \square \ \square \ \square \\ \square \ \square \ \square \\ \square \end{array} \Rightarrow (4,3,3,1,1)$$

Questi si chiamano Diagrammi di Young.

Se si prendono le matrici (3,1) e (2,2), queste non sono simili, in quando  $(2,2)^2=0$  e  $(3,1)^2\neq 0$  L'ordine di nilpotenza è dato dall'ordine di nilpotenza del primo blocco.

$$\text{Infatti con i diagrammi di Young: } (3,1) = \overset{\square}{\square} \overset{\square}{\square} \text{ e } (2,2) = \overset{\square}{\square} \overset{\square}{\square} \text{, hanno rispettivamente ordine di nilpotenza 3 e 2.}$$

**Osservazione** (*Scritta meglio*): Il numero di colonne di un diagramma di Young è l'ordine di nilpotenza della matrice nilpotente in forma canonica di Jordan ad essa associata (cioè il grado del polinomio minimo).

Consideriamo una matrice nilpotente in forma canonica di Jordan e il corrispondente diagramma di Young.

Il numero di scatole nella prima colonna = dim(Ker(J)) (questo perché ogni riga è un blocco di Jordan e ogni blocco ha dimensione  $dim(Ker(J_i)) = 1$ )

## Esempio:

$$\operatorname{Sia} J = \begin{pmatrix} J_3 & & \\ & J_3 & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

 $\text{Posso pensare che $J$ sia la matrice di $g \in End(\mathbb{K}^8)$ rispetto ad una base $\mathscr{B} = \{\underbrace{v_1, v_2, v_3}_{g-\text{invariante}}, \underbrace{w_1, w_2, w_3}_{g-\text{invariante}}, \underbrace{z_1, z_2}_{g-\text{invariante}}\}.$ 

 $J_3=M(g|_{span\{v_1,v_2,v_3\}})$  con  $v_3\mapsto v_2\mapsto v_1\mapsto 0$ , così anche per gli altri blocchi. Inoltre dim(Ker(J))=8-rg(J)=3 e  $\mathscr{B}_{Ker}=\{v_1,w_1,z_1\}$ . Il numero delle scatole nella seconda colonna= $dim(Ker(g^2))-dim(Ker(g))$ 

In generale il numero di scatole nella i-esima colonna =  $dim(Ker(g^i))-dim(Ker(g^{i-1}))$ 

### Esempio:

 $\square \ \square \$  è il diagramma di Young di una matrice nilpotente  $J \in M_7(\mathbb{K})$  di ordine 3 tale che  $J^3 = 0$  e

dim(Ker(q)) = 3

J descrive un endomorfismo  $f:\mathbb{K}^3 \to \mathbb{K}^3$  rispetto ad una base  $\{v_1,v_2,v_3,w_1,w_2,w_3,z_1\}$  con  $Ker(f)=Span\{v_1,w_1,z_1\}$ 

Inoltre  $v_1 \in Ker(f) \cap Im(f^2)$ ,  $w_1 \in Ker(f) \cap Ker(f^2)$ ,  $z_1$  no (in quanto a destra non ci sta nulla). Inoltre  $v_2 \in Ker(f^2) \cap Im(f^3)$ ,  $w_2 \in Ker(f^2) \cap Im(f^3)$  e sono linearmente indipendenti.

**Osservazione**: Osserviamo che se  $f \in End(V)$ , nilpotente:

$$-\mathit{Ker}(f)\subseteq \mathit{Ker}(f^2)\subseteq\ldots\subseteq \mathit{Ker}(f^k)=\mathit{V} \text{ (perch\'e se } f(v)=0\Rightarrow f^2(v)=0\Rightarrow\ldots\Rightarrow f^k(v)=0\Rightarrow\ldots)\\ -\mathit{Im}(f)\supseteq \mathit{Im}(f^2)\supseteq\ldots\supseteq \mathit{Im}(f^k)=\{0\} \text{ (perch\'e se } f^2(w)\in \mathit{Im}(f^2)\Rightarrow w=f^2(v)=f(f(v))\in \mathit{Im}(f) \text{ e se } w\in \mathit{Im}(f^{i+1}(v)\Rightarrow w=f^{i+1}(v)=f(f^i(v))\in \mathit{Im}(f^i))$$

**Proposizione**: Due matrici J e J' nilpotenti e in forma canonica di Jordan sono simili se e solo se sono uguali. **Dimostrazione**:

←) Ovvio, in quando "Essere uguali" implica "Essere simili"

 $\Rightarrow$ ) Siano J e J' come nelle ipotesi e supponiamo che sono simili. Allora  $J^h$  è simile a  $(J')^h, \forall h \in \mathbb{N} \Rightarrow rg(J^h) = rg((J')^h), \forall h \in \mathbb{N} \Rightarrow \text{i diagrammi di Young associati a } J \text{ e a } J' \text{ sono uguali} \Rightarrow J = J'$ 

## Esempio:

Jordan.

 $2\Rightarrow dim(Ker(A))=2$ . Se A è coniugata ad una matrice J in forma canonica di Jordan, J ha diagramma di

$$\text{Young:} \ \square \ \square \ = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 & \mathbf{0} \\ 0 & 0 & 0 \\ & \mathbf{0} & & 0 \end{pmatrix} \text{. Devo trovare una base di } \mathbb{K}^4 = \{v_1, v_2, v_3, v_4\} \ \text{tale che} \ \begin{cases} v_3 \mapsto v_2 \mapsto v_1 \mapsto 0 \\ v_4 \mapsto 0 \end{cases}$$

Poiché  $v_1 \in Ker(L_A) \cap Im(L_A^2) = Span\{e_1\}$ , infatti  $e_1 \in Ker(L_A) \Rightarrow A(e_1) = 0$ . Posso scegliere quindi  $v_1 = e_1$ Dove sta  $v_2$ ?  $v_2 \in Ker(L^2_A) \cap Im(L^2_A)$  tale che  $L^2_A(v_2) = e_1$ . Scelgo  $v_2 = e_4$ 

Dove trovo  $v_3$ ? Lo posso trovare come vettore tale che  $L_A(v_3)=v_2=e_4\Rightarrow$  Scelgo  $v_3=e_3$ 

Dove trovo  $v_4$ ?  $v_4 \in Ker(L_A)$  e deve essere linearmente indipendente con  $v_1 = e_1$ , allora posso scegliere  $v_4=e_2-2e_4$  (Per trovare tutto ciò posso utilizzare la solita moltiplicazione righe per colonne e fare sistema). Una base coe la cercavamo è  $\{e_1, e_4, e_3, e_2 - 2e_4\}$ .

La matrice associata a  $L_A$  rispetto a  $\mathscr{B}=M_{\mathscr{B}}(L_A)$  è J. Questa base si chiama base di Jordan.

# > Definizione di Base di Jordan

Sia  $f \in End(V)$ . Una base di Jordan per f è una base rispetto alla quale la matrice di f è in forma canonica di Jordan.

#### → Teorema

Ogni matrice nilpotente è  $A \in M_n(\mathbb{K})$  è simile ad una e una sola matrice in forma canonica di Jordan.

### Dimostrazione:

Si tratta di dimostrare che esiste una base di Jordan per l'endomorfismo  $L_A$ . Dimostriamolo per induzione su n. Se  $n=1 \Rightarrow A=(0)=J_1$ . Sia dunque n>1 e assumiamo l'ipotesi induttiva: "Esiste una base di Jordan per ogni endomorfismo nilpotente di uno spazio vettoriale di dimensione < n". Osserviamo che essendo A nilpotente, non è invertibile  $\Rightarrow dim(Im(L_A)) < n$ . Inoltre  $Im(L_A)$  è un sottospazio  $L_A$ -invariante ( $L_A(L_A(v)) = L_A(v)$ ).  $\text{Infine } L_A|_{Im(L_A)} \text{ resta nilpotente, quindi posso applicare l'ipotesi induttiva a } L_A|_{Im(L_A)}, \text{ cioè esiste quindi una base di Jordan per } L_A|_{Im(L_A)} = \{v_1^{(1)}, v_2^{(1)}, \dots, v_{h_1}^{(1)}, v_1^{(2)}, \dots, v_{h_2}^{(2)}, \dots, v_{h_2}^{(2)}, \dots, v_{h_k}^{(k)}\}. \text{ I vettori } v_1^{(1)}, v_1^{(2)}, \dots, v_1^{(k)} \text{ sono una per } L_A|_{Im(L_A)} = \{v_1^{(1)}, v_2^{(1)}, \dots, v_{h_1}^{(1)}, v_1^{(2)}, \dots, v_{h_2}^{(2)}, \dots, v_{h_2}^{(k)}, \dots, v_{h_k}^{(k)}\}. \text{ I vettori } v_1^{(1)}, v_1^{(2)}, \dots, v_1^{(k)} \text{ sono una per } L_A|_{Im(L_A)} = \{v_1^{(1)}, v_2^{(1)}, \dots, v_{h_1}^{(1)}, v_2^{(2)}, \dots, v_{h_2}^{(2)}, \dots, v_{h_2}^{(2)}, \dots, v_{h_k}^{(k)}\}. \text{ I vettori } v_1^{(1)}, v_1^{(2)}, \dots, v_1^{(k)} \text{ sono una per } L_A|_{Im(L_A)} = \{v_1^{(1)}, v_2^{(1)}, \dots, v_{h_1}^{(2)}, v_2^{(2)}, \dots, v_{h_2}^{(2)}, \dots, v_{h_k}^{(2)}, \dots, v_{h_k}^{(k)}\}. \text{ I vettori } v_1^{(1)}, v_1^{(2)}, \dots, v_1^{(k)} \text{ sono una per } L_A|_{Im(L_A)} = \{v_1^{(1)}, v_2^{(1)}, \dots, v_{h_1}^{(2)}, v_2^{(2)}, \dots, v_{h_2}^{(2)}, \dots, v_{h_k}^{(2)}, \dots, v_{h_k}^{(k)}\}. \text{ I vettori } v_1^{(1)}, v_1^{(2)}, \dots, v_1^{(k)}, \dots, v_$ base di  $Ker(L_A|_{Im(L_A)}) = Ker(L_A) \cap Im(L_A)$ . Posso completare questo insieme in una base del nucleo:  $\{v_1^{(1)}, v_1^{(1)}, \dots, v_1^{(k)}, v_1^{(k+1)}, \dots, v_1^{(k+r)}\}$ . Ora devo trovare dei vettori che vadano in  $v_{h_1}^{(1)}, v_{h_2}^{(2)}, \dots, v_{h_k}^{(k)}$ . Poiché i vettori  $v_{h_1}^{(1)}, \dots, v_{h_k}^{(k)} \in Im(L_A), \exists v_{h_1+1}^{(1)}, \dots, v_{h_k+1}^{(k)}$  t.c.  $L_A(v_{h_i+1}^{(i)}) = v_{h_i}^{(i)}$ .

Quindi avevo una base di Jordan di  $Im(L_A)$  e ho aggiunto r+k vettori, ma  $r+k=dim(Ker(L_A))$ . Quindi in totale ho  $dim(Im(L_A)) + dim(Ker(L_A)) = n$  per il teorema del Rango. Poiché sono n che corrisponde esattamente con la dimensione di V, bisogna verificare che sono effettivamente tutti linearmente indipendenti e così facendo possiamo individuare una base di  $\mathbb{K}^n$  che coincide esattamente con la base di Jordan.

Adesso applichiamo  $L_A$  a tutti i vettori (tutti i vettori aggiunti dell'ultima sommatoria vanno a 0):

$$\sum_{i=1}^{h_1+1} a_i^{(1)} v_{i-1}^{(1)} + \sum_{i=1}^{h_2+1} a_i^{(2)} v_{i-1}^{(2)} + \ldots + \sum_{i=1}^{h_k+1} a_i^{(k)} v_{i-1}^{(k)} = 0$$
 (Ossia  $L_A(v_i^{(j)}) = v_{i-1}^{(j)}$ )

Poiché è una combinazione lineare di vettori dell'Immagine di  $L_A\Rightarrow v_0^{(j)}=0, \forall i\geq 2, \forall j.$  Inoltre dalla prima serie di sommatorie si ottiene che  $a_1^{(1)}v_1^{(1)}+\ldots+a_1^{(k+r)}v_1^{(k+r)}=0$ , ma poiché i vettori sono una base di  $Ker(L_A)\Rightarrow a_1^{(t)}=0, \forall t.$ 

**Corollario**: Due matrici nilpotenti sono simili se e solo se hanno la stessa forma canonica di Jordan (ossia se e solo se sono coniugate alla stessa matrice in forma canonica di Jordan)

Osservazione: Osserviamo che il numero di di caselle nella k-esima colonna  $=dim(Ker(f^k))-dim(Ker(k^{f-1}))$  Poiché il numero di caselle nella k-esima colonna  $\le$  del numero di caselle nella (k-1)-esima colonna, abbiamo che  $dim(Ker(f^k))-dim(Ker(k^{k-1}))\le dim(Ker(f^{k-1}))-dim(Ker(f^{k-2}))\le \ldots$  In particolare, il diagramma di Young di f è determinato univocamente dalle dim di  $Ker(f), Ker(f^2), \ldots, Ker(f^k)$ . In particolare questo risolve il problema di decidere se due matrici nilpotenti sono simili  $\forall k$ . In modo analogo, se due matrici A e B sono nilpotenti,  $A \sim B \Leftrightarrow dim(Ker(A^k)) = dim(Ker(A^k)), \forall k$  È un fatto soddisfacente in quanto in un numero finito di passi si riesce a verificare se due matrici sono simili.

#### Esempio:

Se dovesse venir chiesto di trovare  $f \in End(V)$  nilpotente tale che  $dim(Ker(f)) = 2, dim(Ker(f^2)) = 4$  e  $dim(Ker(f^3)) = 7$ , il miglio ha autorizzato a rispondere "chiedilo a tua sorella", in quanto non esiste, e il diagramma di Young sarebbe:  $\Box \Box \Box$ , che non è ammissibile.

### Esempio:

Sia f nilpotente. Se conosco il diagramma di Young di f, posso conoscere anche il diagramma di Young anche di  $f^2$ . Infatti mi basta sapere quali sono dim(Ker(f)) e  $dim(Ker(f^2))$ .



la seconda di  $f^2$  e la quinta e la sesta di f sono la terza di  $f^2$ .

Caso generale: f non necessariamente nilpotente, ma tutte le radici di  $p_f \in \mathbb{K}$ . Sappiamo già che  $V = \bigoplus V_{\lambda_i}^{gen}$  dove  $V_{\lambda_i}^{gen} = Ker(f - \lambda_i I)^{m_a(\lambda_i)}$ . Avevamo osservato che  $(f - \lambda_i I)|_{V_{\lambda_i}^{gen}}$  è nilpotente. Per ogni autovalore  $\lambda_i$  prendiamo una base di Jordan  $\mathscr{B}_i$  di  $(f - \lambda_i I)|_{v_{\lambda_i}^{gen}}$ . Chiamiamo poi la matrice di Jordan  $J_{n_i} = M_{\mathscr{B}_i}(f - \lambda_i I)|_{V_{\lambda_i}^{gen}}$ ).

$$\mathsf{Ma}\;\mathsf{chi}\;\grave{\mathrm{e}}\;M_{\mathscr{B}_i}(f|_{V^{gen}_{\lambda_i}}) = \begin{pmatrix} \lambda_1 & 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \dots & \dots & 0 & \lambda_i \end{pmatrix} = \lambda_1 I + J_{n_i}.\;\mathsf{Inoltre},\;\mathsf{poich\acute{e}}\;\mathsf{gli}\;\mathsf{autospazi}\;\mathsf{generalizzati}\;\mathsf{si}\;\mathsf{ha}\;\mathsf{che}$$

sono in somma diretta, quindi  $\bigcup \mathscr{B}_i = \mathscr{B}$  di V e

## Esempio (importante):

Sia  $\mathbb{K}=\mathbb{Q}$  e V un  $\mathbb{Q}-\text{spazio}$  vettoriale di dimensione 9. Sia  $f\in End(V)$  con  $p_f(\lambda)=(\lambda-1)^4(\lambda+1)^3(\lambda_2)^2$ . Ci sono tre autospazi generalizzati:  $V_1^{gen}=Ker(f-I)^4,\ V_{-1}^{gen}=Ker(f+I)^3$  e  $V_2^{gen}=Ker(f-2I)^2$  Questo perché in generale  $dim(V_{\lambda_i}^{gen})=m_a(\lambda_i)$  ma lo dimostreremo dopo.

Prendiamo il primo autospazio generalizzato  $V_1^{\mathit{gen}}$ .

Sappiamo che  $(f-I)|_{V_1^{gen}}$  è nilpotente, quindi esiste una partizione  $n_1$  di 4 per cui  $f-I|_{V_1^{gen}}$  è a forma canonica di Jordan  $J_{n_1}$ , ma come posso calcolarla?.

Mi basta calcolare  $dim(Ker(f-I)), dim(Ker(f-I)^2), dim(Ker(f-I)^3)$ . Non mi serve calcolarlo con la funzione alla quarta perché so che la dimensione di un endomorfismo nilpotente con ordine di nilpotenza 4 alla quarta è 4. Supponiamo che  $dim(Ker(f-I)) = 2, dim(Ker(f-I)^2) = 3, dim(Ker(f-I)^3) = 4 \Rightarrow n_1 = (3,1)$ .

Con il diagramma di Young si ottiene  $\Box$ 

Piccola osservazione: Per ognuno dei nuclei prima dovrei scriere  $f-I|_{V_1^{gen}}$  ma sappiamo già che coincidono (i nuclei ristretto e non hanno la stessa dimensione e quello totale contiene quello ristretto, ossia coincidono).

Quindi esiste una base  $\mathscr{B}_1$  di  $V_1^{gen}$  fatta da 4 vettori tale che  $M_{\mathscr{B}_1}(f-I|_{V_1^{gen}})=egin{pmatrix}0&1&0\\0&0&1&0\\0&0&0\\&\mathbf{0}&0\end{pmatrix}$ , quindi si deduce

che 
$$M_{\mathscr{B}_1}(f|_{V^{gen}_1}) = egin{pmatrix} 1 & 1 & 0 & \ 0 & 1 & 1 & oldsymbol{0} \ 0 & 0 & 1 & \ oldsymbol{0} & oldsymbol{0} & 1 \end{pmatrix}$$

Ora facciamo lo stesso procedimento anche per gli altri autospazi generalizzati:

Consideriamo  $V_{-1}^{gen}$  e calcoliamo dim(Ker(f+I)) e  $dim(Ker(f+I)^2)$  (So già che  $dim(Ker(f+I)^3)=3$  Supponiamo sia dim(Ker(f+I))=1 allora necessariamente  $dim(Ker(f+I)^2)=2$ . Con il diagramma di Young si ottiene  $\square$   $\square$  per cui  $n_2=(3)$ .

Di conseguenza esiste una base  $\mathscr{B}_2$  composta di tre vettori di  $V^{gen}_{-1}$  tale che  $M_{\mathscr{B}_2}(f+I|_{V^{gen}_{-1}})=\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$  sia in

forma canonica di Jordan, per cui  $M_{\mathscr{B}_2}(f|_{V^g_{-1}en})=egin{pmatrix} -1&1&0\\0&-1&1\\0&0&-1 \end{pmatrix}$  .

Consideriamo adesso  $V_2^{gen}$  e calcoliamo dim(Ker(f-2I)). Supponiamo sia dim(Ker(f-2I))=2, quindi con il diagramma di Young  $\Box$  da cui la partizione  $n_3=(1,1)$ . Si può quindi trovare una base  $\mathscr{B}_3$  di due per  $V_2^{gen}$  tale che

 $\text{la matrice } M_{\mathscr{B}_3}(f-2I|_{V^{gen}_2}) = \begin{pmatrix} 0 & \mathbf{0} \\ \mathbf{0} & 0 \end{pmatrix} \text{, da cui } M_{\mathscr{B}_3}(f|_{V^{gen}_2}) = \begin{pmatrix} 2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix}.$ 

Quindi se consider $0 \mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3$  si ottiene che:

Quante classi di similitudine ci sono con lo stesso polinomio caratteristico?

Ci sono (# partizioni di 4)·(# partizioni di 3)·(# partizioni di 2)+1 =  $5 \cdot 3 \cdot 2 + 1 = 31$ 

Se avessi solamente polinomio caratteristico e polinomio minimo non sempre si riesce a trovare la forma canonica di Jordan, mentre se avessi anche la molteplicità geometrica si.

Quindi, se  $f \in End(V)$  tale che  $p_f$  ha tutte le radici nel campo, esiste una base di Jordan tale che  $M_{\mathscr{B}}(f)$  è in forma di Jordan, ossia è diagonale a blocchi, con ogni blocco nella forma

$$egin{pmatrix} \lambda_1 & 1 & 0 & \dots & 0 \ 0 & \ddots & \ddots & \ddots & dots \ dots & \ddots & \ddots & \ddots & 0 \ dots & & \ddots & \ddots & 1 \ 0 & \dots & \dots & 0 & \lambda_i \end{pmatrix}$$

La forma di Jordan è determinata è determinata se  $\lambda_1,\ldots,\lambda_k$  sono gli autovalori da  $Ker(f-\lambda_i I)^a, \forall \lambda_i, \forall a$ Inoltre  $A,B\in M_n(\mathbb{K})$  con  $p_A$  e  $p_B$  con tute le radici  $\lambda_1,\ldots,\lambda_k$  sono simili se e solo se  $dim(Ker(A-\lambda_i I)^a)=dim(Ker(B-\lambda_i I)^a), \forall \lambda_i, \forall a \leq m_a(\lambda_i)$ 

**Proposizione**: Sia  $f \in End(V)$  triangolabile,  $\lambda_1, \ldots, \lambda_k$  gli autovalori, allora  $dim(V_{\lambda_i}^{gen}) = m_a(\lambda_1)$  *Dimostrazione*:

Se  $\mathscr{B}$  è una base tale che  $M_{\mathscr{B}}(f)$  è triangolare, allora i termini sulla diagonale sono  $\lambda_1,\ldots,\lambda_k$ , ossia gli autovalori. Possiamo supporre che

ossia gli stessi autovalori sono in colonne vicine tra loro nella matrice.

Allora  $p_f(\lambda) = (\lambda_1 - \lambda)^{d_1} \cdot \dots \cdot (\lambda_k - \lambda)^{d_k}$ . Chi è  $Ker(f - \lambda_i I)^{d_i}$ ? Questa matrice sarà data da

Quindi questa matrice elevata a  $d_i$  avrà un blocco diagonale nel blocco di posizione i, mentre tutti gli altri blocchi no, di conseguenza saranno invertibili. Per questo motivo  $dim(Ker(f - \lambda_i I)^{d_i}) = m_a(\lambda_i)$ 

#### Esercizio 1:

Costruire due matrici con lo stesso polinomio caratteristico, stesso polinomio minimo, la stessa molteplicità geometrica per ogni autovalore e che non siano simili.

#### Soluzione:

Con le forme di Jordan è comodissimo per  $m_g=n-rg(A)$ . Cerco quindi due matrici in  $M_n(\mathbb{K})$  nilpotenti (Tutti autovalori uguali a  $0 \Rightarrow p_A(x) = p_B(x)$ ), con diagramma di Young aventi lo stesso numero di colonne (  $\Leftrightarrow q_A(x) = q_B(x)$ ) e di righe, ma che non siano simili.

Mi basta cercare nelle matrici in  $M_7(\mathbb{K})$ .

## Esercizio 2:

Determinare la forma canonica di Jordan della matrice  $B = \begin{pmatrix} -4 & -6 & 0 & -1 \\ 0 & 2 & 0 & 1 \\ 1 & 1 & -4 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$ 

#### Soluzione:

Come prima cosa cerco gli autovalori.

$$p_B(x)=det(B-xI)=egin{pmatrix} -4-x & -6 & 0 & -1\ 0 & 2-x & 0 & 1\ 1 & 1 & -4-x & 0\ 0 & 0 & 2-x \end{pmatrix}=(-4-x)^2(2-x)^2=(4+x)^2(2-x)^2.$$
 Allora  $p_B(x)=0$   $\nearrow x=-4\ x=2$ 

Calcolo la dimensione degli autospazi  $V_{-4}$  e  $V_2$ 

B è simile alla matrice  $J \begin{pmatrix} -4 & * & \mathbf{0} \\ 0 & -4 & \mathbf{0} \\ & \mathbf{0} & 2 & \circ \\ & \mathbf{0} & 0 & 2 \end{pmatrix}$ , quindi per il teorema di decomposizione primaria posso lavorare con

i singoli blocchi di Jordan ( $\mathbb{K}^4=Ker(B+4I)^2\oplus Ker(B-2I)^2$ )

Si ha che  $*=0 \lor 1$  a seconda dell'indice di nilpotenza di B+4I, in modo analogo  $\circ=0 \lor 1$  a seconda dell'indice di nilpotenza di B-2I.

$$dim(V_{-4}) = dim(Ker(B+4I)) = 4 - rg(egin{pmatrix} 0 & -6 & 0 & -1 \ 0 & 6 & 0 & 1 \ 1 & 1 & 0 & 0 \ 0 & 0 & 0 & 6 \end{pmatrix}) = 4 - 3 = 1 \Rightarrow m_g(-4) = 1 
eq m_a(-4) \Rightarrow egin{pmatrix} -4 & * \ 0 & -4 \end{pmatrix}$$

non è diagonalizzabile, di conseguenza \* = 1

$$-dim(V_2) = dim(Ker(B-2I)) = 4 - rg(egin{pmatrix} -6 & -6 & 0 & -1 \ 0 & 0 & 0 & 1 \ 1 & 1 & -6 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}) = 4 - 3 = 1 \Rightarrow m_g(2) = 1 
eq m_a(2) \Rightarrow egin{pmatrix} 2 & \circ \ 0 & 2 \end{pmatrix}$$

non è diagonalizzabile, di conseguenza  $\circ=1$ 

Quindi la forma canonica di Jordan è  $J \begin{pmatrix} -4 & 1 & \mathbf{0} \\ 0 & -4 & \mathbf{0} \\ & \mathbf{0} & 2 & 1 \\ & & 0 & 2 \end{pmatrix}$ 

#### Esercizio 3:

Determinare le possibili forme canoniche di Jordan di una matrice A con polinomio caratteristico  $p_A(t)=(t-2)^2(t-5)^3$  tale che  $dim(V_2)=1$  e  $dim(V_5)=2$ 

#### Soluzione:

Sia quindi  $A \in M_5(\mathbb{C})$ , abbiamo che gli autovalori sono 2 e 5 con  $m_a(2) = 2$  e  $m_a(5) = 3$ .

Ragioniamo separatamente sui due blocchi della matrice 
$$J=\begin{pmatrix}2&&&\mathbf{0}\\2&&&5\\&&&5\end{pmatrix}$$
. -  $dim(V_2)=1\Rightarrow dim(Ker(V-2I))=1\Rightarrow \Box \Box\Rightarrow J^{(2)}=\begin{pmatrix}2&1\\0&2\end{pmatrix}$  -  $dim(V_5)=2\Rightarrow dim(Ker(V-5I))=2\Rightarrow \Box \Box\Rightarrow J^{(5)}=\begin{pmatrix}5&1&0\\0&5&0\\0&0&5\end{pmatrix}$  C'è quindi una sola possibilità, che è  $J=\begin{pmatrix}2&0&\mathbf{0}\\0&2&\mathbf{0}\\0&0&5\end{pmatrix}$ .

### Esercizio 4 (Esame: 14/06/2022):

Sia V un  $\mathbb{K}$  – spazio vettoriale di dimensione 6. Quante sono le classi di similitudine di  $f \in End(V)$  tale che  $f^2$  abbia polinomio minimo  $p_{f^2}(\lambda) = \lambda^2$ .

#### Soluzione:

Osservo che l'unica radice del polinomio minimo di  $f^2$  è 0,  $\Rightarrow f^2$  è nilpotente  $\Rightarrow f$  è nilpotente quindi M6(f) è nilpotente e  $\in M_6(\mathbb{C})$ .

Poiché  $q_{f^2}(\mathbb{C}) = \lambda^2$ , il diagramma di Young associato a  $f^2$  deve avere necessariamente 2 colonne.

Elenchiamo quindi le possibilità per f che garantiscano al diagramma rispetto a  $f^2$  due colonne:

In blu i blocchi che appartengono a  $Ker(f^2)$ 

|                    |                    |                    |                    |                                      | $\dots$ Con 2 colonne |
|--------------------|--------------------|--------------------|--------------------|--------------------------------------|-----------------------|
| $\downarrow^{f^2}$ | $\downarrow^{f^2}$ | $\downarrow^{f^2}$ | $\downarrow^{f^2}$ | In questi casi è come nei casi prima | $f^2$ ne ha $1$       |
|                    |                    |                    |                    |                                      |                       |

Nei primi due casi, ossia (6) e (5,1), non vanno bene perché in  $f^2$  ha 3 colonne, quindi  $p_f(x)=x^3$ , contro ipotesi. I successivi 5 casi vanno bene perché in  $f^2$  hanno 2 colonne, mentre i successivi ne hanno una soltanto. Quindi ho solamente 5 casi disponibili.

## Esercizio 5:

- a) Dare un esempio di  $A \in M_n(\mathbb{R})$  tale che  $A^2$  sia diagonalizzabile e  $A^3$  no
- b) Sia  $A \in M_n(\mathbb{K})$  nilpotente. Mostrare che se  $A^2$  è diagonalizzabile allora lo è anche  $A^3$
- c) Sia  $A \in M_n(\mathbb{C})$  tale che  $A^2$  sia diagonalizzabile. Allora  $A^3$  è diagonalizzabile.

#### Soluzione:

1) 
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in M_2(\mathbb{R}) \Rightarrow A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \Rightarrow A^3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Leftrightarrow p_A(\lambda) = \lambda^2 + 1 = p_{A^3}(\lambda)$$
. Questa può essere interpretata come la matrice di una rotazione in  $\mathbb{R}^2$  di  $\pi/2$ 

2) A nilpotente  $\Rightarrow$   $A^2$  nilpotente. Essendo  $A^2$  diagonalizzabile  $\Rightarrow$   $A^2={f 0}$   $\Rightarrow$   $A^3={f 0}$ 

3) 
$$A^2$$
 è diagonalizzabile  $\Rightarrow V = \bigoplus_{i=1}^k Ker(A^2 - \lambda_i I) = Ker(A^2) \oplus (\bigoplus_{\lambda_i \neq 0} Ker(A^2 - \lambda_i I))$ . (Decomposizione di

Fitting). Applichiamo il teorema di Decomposizione Primaria su  $V_i$ , con polinomio  $x^2-\lambda_i=(x+\sqrt{\lambda_i})(x-\sqrt{\lambda_i})$ , in quanto ogni elemento in  $\mathbb C$  ha esattamente due radici. Quindi  $V_i=Ker(A-\sqrt{\lambda_i I})\oplus Ker(A+\sqrt{\lambda_i I})$  (possono essere anche =0), ma questi sono autospazi di A. Quindi

$$V=Ker(A^2)\oplus (\bigoplus_{\lambda_i\neq 0}(Ker(A-\sqrt{\lambda_iI})\oplus Ker(A+\sqrt{\lambda_iI}))). \text{ Ora mi basta prendere una base } \mathscr{B}^0 \text{ di } Ker(A^2), \text{ per } I=0$$

ogni i, una base  $\mathscr{B}_i^{(-)}$  di  $Ker(A-\sqrt{\lambda_i}I)$  e una base  $\mathscr{B}_i^{(+)}$  di  $Ker(A+\sqrt{\lambda_i}I)\Rightarrow \mathscr{B}^0\cup \mathscr{B}_i^{(+)}\cup \mathscr{B}_i^{(-)}$  per ogni i è una base di autovettori di V per  $A^3$ .

#### Esercizio 6:

Trovare la forma di Jordan e una base di Jordan di 
$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

### Soluzione:

È nilpotente (lo si può fare semplicemente con il polinomio caratteristico). Qui si vede perché ha tanti 0. Infatti si può vedere anche che  $e_1\mapsto e_2\mapsto 0$ ;  $e_2\mapsto 0$ ;  $e_3\mapsto e_2\mapsto 0$ ;  $e_4\mapsto e_1+e_3\mapsto 2e_2\mapsto 0$ .

 $\text{Inoltre } dim(Ker(A)) = 4 - rg(A) = 4 - 2 = 2. \text{ Quindi secondo gli schemi di Young: } \square \square \vee \square \square$ 

Mi basta calcolare 
$$A^2=egin{pmatrix} 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 2 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix} 
eq \mathbf{0}.$$

Quindi se 
$$Char(\mathbb{K}) 
eq 2 \Rightarrow \Box \Box \Box$$
, se invece  $Char(\mathbb{K}) = 2 \Rightarrow \Box \Box$ 

Cerchiamo una base di Jordan in caso  $Char(\mathbb{K}) \neq 2$ .

Il vettore più comodo da cercare è quello più a destra, perché poi mi basterà calcolare A(v) per trovare gli altri vettori della base. Prendiamo per esempio come vettore  $e_4$ .

In questo modo ottengo automaticamente come altri vettori della base  $e_1 + e_3$  e  $2e_2$ .

A questo punto mi manca un vettore solo della base.

Questo deve essere un altro vettore del nucleo che sia linearmente indipendente con gli altri vettori.  $e_1-e_3$  va bene per esempio. Quindi la base  $\mathcal{B}_J$  è  $\{2e_2,e_1+e_3,e_4,e_1-e_3\}$  per cui la matrice rispetto a quella base è

$$M_{\mathscr{B}_J} = egin{pmatrix} 0 & 1 & 0 & \ 0 & 0 & 1 & \mathbf{0} \ 0 & 0 & 0 & \ & \mathbf{0} & & 0 \end{pmatrix}$$

## Esercizio 7:

Sia 
$$A=egin{pmatrix} 4 & 2 & -2 & 1 \ -5 & -3 & 1 & 1 \ 1 & 1 & 1 & 0 \ 4 & 0 & -8 & -2 \end{pmatrix}$$
 . Trovare la forma di Jordan e la base di Jordan.

## Soluzione:

 $p_A(\lambda)=\lambda^4\Rightarrow A$  è nilpotente. Inoltre rg(A)=2. Anche qui ci sono due possibilità  $\begin{pmatrix} \square&\square&\square&\vee&\square&\square\\ \square&\square&\vee&\square&\square\\ \end{pmatrix}$  Per vedere quale è il caso basta calcolare  $A^2={f 0}$ , quindi siamo nella situazione  $\begin{pmatrix} \square&\square&\square&\square&\square\\ \square&\square&\square&\square&\square\\ \end{pmatrix}$ 

Come si trova una base di Jordan?

Poiché i quadratini in blu  $\square$  sono vettori  $\in Ker(A) \cap Im(A)$ , mi basta prendere due colonne linearmente

indipendenti di A e i vettori di cui sono le immagini. Ossia posso prendere  $A(e_1)=\begin{pmatrix}4\\-5\\1\\4\end{pmatrix}$  e  $A(e_2)=\begin{pmatrix}2\\-3\\1\\0\end{pmatrix}$ .

Quindi la base rispetto alla forma di Jordan è  $\mathscr{B}_J = \left\{ \begin{pmatrix} 4 \\ -5 \\ 1 \\ 4 \end{pmatrix}, e_1, \begin{pmatrix} 2 \\ -3 \\ 1 \\ 0 \end{pmatrix}, e_2 \right\}$ 

#### Esercizio 8:

Quante classe di similitudini ci sono in matrici  $A \in M_6(\mathbb{K})$  tali che  $A^4 = \mathbf{0}$  e  $A^2 \neq \mathbf{0}$  Il testo dell'esercizio può essere riscritto come: Questa Matrice A è nilpotente. La condizione  $A^4 \neq \mathbf{0}$  e  $A^2 = \mathbf{0}$  equivale a  $q_A(\lambda) = \lambda^3$  oppure  $q_A(\lambda) = \lambda^4$ . Mi basta elencare tutte i possibili diagrammi con 6 caselle, tali che la prima colonna abbia 3 o 4 caselle.

#### Soluzione:

Quindi sono 5 le classi.

Piccolo Ripasso: Sia  $f \in End(V)$ ,  $p_f(\lambda)$  ha tutte le radici in  $\mathbb{K} \Rightarrow p_f(\lambda) = (\lambda - \lambda_1)^{\mu_1} \cdot \ldots \cdot (\lambda - \lambda_k)^{\mu_k}$  con  $\lambda_1, \ldots, \lambda_k$  autovalori distinti  $\exists \mathscr{B} = \{v_1, \ldots, v_k\}$  tale che la matrice di f è triangolare.

Ricordiamo la triangolarizzabilità:

Scelgo un atuovalore  $\lambda_1$  e un suo autovettore. Considero  $[f]:V/_{Span\{v_1\}} \to V/_{Span\{v_1\}}$ . Ho che il polinomio caratteristico  $p_{[f]}(\lambda) = \frac{p_f(\lambda)}{(\lambda-\lambda_1)} = (\lambda-\lambda_1)^{\mu_1-1} \cdot (\lambda-\lambda_2)^{\mu_2} \cdot \ldots \cdot (\lambda-\lambda_k)^{\mu_k}$  e poi si prosegue per induzione. Se  $\mu_1=1$  allora si può passare direttamente al prossimo autovalore di f, in quanto  $\lambda_1$  non è più autovalore di [f]. Invecese  $\mu_1>1$  si ha che  $\lambda_1$  è ancora autovalore di [f], quindi posso scegliere un secondo autovettore  $v_2$  di  $\lambda_1$  tale che  $[f]([v_2])=\lambda_1[v_2]$ . Poi andando avanti così.

Dopo  $\mu_1$  passi, ottengo un endomorfismo di  $V/_{Span\{v_1,\ldots,v_{\mu_1}\}}$  che ha polinomio caratteristico  $(\lambda-\lambda_2)^{\mu_2}\cdots(\lambda-\lambda_k)^{\mu_k}$ , ossia che non ha più  $\lambda_1$  come autovalore.

#### Esercizio 9:

Sia f un endomorfismo con forma canonica di Jordan  $\begin{pmatrix} 0 & 1 & \mathbf{0} \\ 0 & 6 & \mathbf{0} \\ \mathbf{0} & 2 & 1 \\ \mathbf{0} & 0 & 2 \end{pmatrix}$ . Mostrare che f ha un numero finito di

sottospazi f-invarianti e determinarli.

Tenere a mente che se  $W \subsetneq V$  è f-invariante  $\Rightarrow f|_W$  endomorfismo di W indotto da f ha il polinomio caratteristico  $p_{f|_W}$  divide propriamente ( $deg(p_{f|_W}) < deg(p_f)$ )

## Soluzione:

Si ha che  $p_f(\lambda) = \lambda^2(\lambda - 2)^2$ 

In genere i sottospazi di dimensione 1 sono generati da un autovettore. In questo caso abbiamo  $Ker(f)=Span\{e_1\}$  e  $Ker(f-2I)=Span\{e_3\}$  (#2)

Se dim(W) = 2 e W è f-invariante  $\Rightarrow p_{f|_W} = \lambda^2 \vee (\lambda - 2)^2 \vee \lambda(\lambda - 2)$ :

- Se  $p_{f|_W}(\lambda)=\lambda^2\Rightarrow (f|_W)^2=0\Leftrightarrow W\subseteq Ker(f^2)$ , ma  $dim(Ker(f^2))=2\Rightarrow W=Ker(f^2)$
- $\text{- Se }p_{f|_W}(\lambda)=(\lambda-2)^2\Rightarrow (f|_W-2I)^2=0 \Leftrightarrow W\subseteq Ker(f-2I)^2 \text{, ma }dim(Ker(f-2I)^2)=2\Rightarrow W=Ker(f-2I)^2$
- Se  $p_{f|_W}(\lambda) = \lambda(\lambda 2) \Rightarrow f|_W(f|_W 2I) = 0$ . Per il teorema di Decomposizione Primaria applicata a

 $f|_W\Leftrightarrow W=Ker(f|_W)\oplus Ker(f|_W-2I)\Rightarrow W\subseteq Ker(f)\oplus Ker(f-2I)=V_0\oplus V_2$ . Ma  $V_0\oplus V_2$  ha dimensione 2, quindi  $W=V_0\oplus V_2\Rightarrow Ker(f)\oplus Ker(f-2I)$  (#3)

Si passa per il  $\subseteq$  perché passando dall'endomorfismo ristretto a f, cambiano le dimensioni di Dominio e Immagine, quindi, essendo W, di dimensione minore, allora deve essere contenuto

Se 
$$dim(W)=3\Rightarrow p_{f|_W}(\lambda)=\lambda^2(\lambda-2)\vee\lambda(\lambda-2)^2$$
:

- Se  $p_{f|_W} = \lambda^2(\lambda - 2)$  sono primi fra loro  $\Rightarrow$  Per decomposizione primaria si ha che

 $W=Ker(f|_W)^2\oplus Ker(f|_W-2I)$ , quindi  $W\subseteq Ker(f)^2\oplus Ker(f-2I)$ , ma poiché ha proprio dimensione 3, quindi  $W=Ker(f)^2\oplus Ker(f-2I)$ 

In modo analogo con  $p_{f|_W} = \lambda(\lambda-2)^2 \ (\#2)$ 

Poi ci sono i i banali  $W=\{0\}$  e W=V

Quindi in tutto i sottospazi f-invarianti sono 9

*Domanda*: Esistono vettori ciclici per quest'endomorfismo? (Ossia esiste  $v \in V$  tale che  $v, f(v), f^2(v), f^3(v)$  rappresenta una base di V, oppure "Non esistono sottospazi propri di V che contiene v")

La risposta è si in quanto basta prendere  $v=e_2+e_4 \stackrel{f}{\mapsto} e_1+e_3+2e_4 \stackrel{f^2}{\mapsto} 4e_3+4e_4 \stackrel{f^3}{\mapsto} 12e_3+8e_4$ . Infatti la matrice data dalle potenze di v è

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 3 & 2 \end{pmatrix}$$

il cui determinante è diverso da 0, quindi v è ciclico.

#### Esercizio 10:

Sia  $p_f$  con tutte le radici nel campo, f ha vettore ciclico  $\Leftrightarrow p_f = q_f$ 

## Suggerimento:

 $\Rightarrow$ ) Vettore ciclico implica che  $p_f=q_f$ . Infatti se così non fosse si ha che  $deg(q_f) < deg(p_f) \Rightarrow \exists k < dim(V)$  tale che  $f^k \in Span\{v, f(v), \ldots, f^{k-1}(v)\}$ . Significa quindi che questo Span non può avere dim = dim(V). Nella fattispecie si ha che  $\forall v, f^k(v) \in S = Span\{v, f(v), \ldots, f^{k-1}(v)\} \Rightarrow dim(S) < dim(V) \Rightarrow v$  non è ciclico che è contro la tesi.

 $\Leftarrow$ ) Se  $p_f = q_f \Rightarrow \forall$  autovalore, ho un blocco di Jordan più lungo possibile  $\Rightarrow$  prendendo il vettore più a destra di  $V_{\lambda_i}^{gen}$  posso ottenere ogni vettore a sinistra. Quindi mi basta prendere un vettore in V tale che sia la somma di questi vettori, che è ciclico (Ossia non sta in nessun sottospazio invariante, questo è ciò che assicura che in alcuni casi esistono un numero finito di sottospazi invarianti).

## Esercizio 11:

- 1)  $A,B\in M_n(\mathbb{R}).$  Viste  $H\in GL_n(\mathbb{C})$  tale che  $B=HAH^{-1}\Rightarrow \exists C\in GL_n(\mathbb{R})$  tale che  $B=CAC^{-1}$
- 2)  $A \in M_n(\mathbb{K})$  è sempre simile alla sua trasposta (Assunto che  $p_A$  abbia tutte le radici in  $\mathbb{K}$ )

### Soluzione:

2) Per la teoria della Forma di Jordan delle matrici, se ho due matrici con  $m_a(\lambda_i) \Rightarrow \forall$  autovalore,  $Ker(f - \lambda_i I)^k$  con  $k \in \{1, \dots, m_a(\lambda_i)\}$  le dimensioni devono essere uguali.

Infatti siano  $A_1,A_2\in M_n(\mathbb{K})$  con lo stesso polinomio caratteristico  $(\lambda-\lambda_1)^{d_1}\cdot\ldots\cdot(\lambda-\lambda_k)^{d_k}$ , si ha che  $A_1\sim A_2\Leftrightarrow \forall i\in\{1,\ldots,k\}$  e  $\forall a\in\{1,\ldots,d_i\},\ dim(Ker(A_1-\lambda_iI)^a)=dim(Ker(A_2-\lambda_iI)^a)$  da qui so come trovare i diagrammi di Young, che coincidono.

Quindi, prendiamo A e  $A^T\Rightarrow p_A(\lambda)=p_{A^T}(\lambda)$  In quanto si ha che  $det(A-\lambda I)=det(A^T-\lambda I)$ 

$$\overset{ }{\mathsf{E}} \text{ vero che } \underbrace{\dim(Ker(A-\lambda_iI)^a)}_{n-rg(A-\lambda_i)^a} = \underbrace{\dim(Ker(A^T-\lambda_iI)^a)}_{n-rg(A^T-\lambda_iI)^a=n-rg((A-\lambda_iI)^a)^T=n-rg(A-\lambda_iI)} ?$$

Non solo è vero, ma è una conseguenza ovvia del fatto che il rango colonna coincide con il rango righe 1) Ciò è valido anche con  $\mathbb{R}=\mathbb{K}$  un qualsiasi campo e  $\mathbb{C}=\mathbb{K}'$  una qualsiasi estensione di campo di  $\mathbb{K}$  Osservazione Preliminare:

Può benissimo capitare che data  $C\in\mathbb{C}$  sia invertibile ma,  $\mathfrak{R}(C)$  e  $\mathfrak{I}(C)$  non lo siano. Infatti basta prendere  $\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}\in M_2(\mathbb{C})$ , ma  $E_1$  e  $iE_4$  non lo sono.

Scriviamo quindi H come  $H_1 + H_2$  con  $H_1, H_2 \in M_n(\mathbb{R})$  per cui  $B = HAH^{-1} \Leftrightarrow BH = HA$  che è lineare in su H. Quindi, con la nuova scrittura di  $H\Rightarrow B(H_1+iH_2)=(H_1+iH_2)A\Rightarrow \underbrace{BH_1-H_1}_{\in M_n(\mathbb{R})}+i\underbrace{(BH_2-H_2A)}_{\in M_n(\mathbb{R})}=0$ , da cui si

ha che  $\begin{cases} BH_1=H_1A \\ BH_2=H_2A \end{cases}$ . Se entrambe le matrici  $H_1$  e  $H_2$  fossero invertite avremmo finito, ma la cosa non è vera per l'osservazione preliminare. Per ogni  $t\in\mathbb{R}:\ B(H_1+t_H2)=(H_1+tH_2)A.$  Basta mostrare che  $\exists t\in\mathbb{R}$  tale che  $H_1+tH_2$  è invertibile. Sia quindi  $h(t)=det(H_1+tH_2)$  un polinomio in  $\mathbb{R}[t]$  non nullo (in quanto il determinante della è non nullo), quindi tale t esiste in quanto  $\mathbb K$  è un campo infinito (sicuro ne trovo uno), di conseguenza ho

alpiù n radici.

#### Esercizio 12:

Sia  $char(\mathbb{K})=0$ . Siano  $A,B\in M_n(\mathbb{K})$  tale che A commuta con AB-BA (ossia con il commutatore di A e di B, che viene indicato anche con [A, B])  $\Rightarrow$  [A, B] è nilpotente.

## Soluzione:

Se C è nilpotente  $\Rightarrow tr(C) = 0$  ma è anche vero che C è nilpotente  $\Leftrightarrow tr(C^k) = 0, \forall k \in \mathbb{N}$ A questo punto basta fare vedere che  $tr((AB-BA)^a)=0$ . Mi basta anche 2 per il teorema con  $(\star)$  $tr((AB-BA)^2) \xrightarrow{ ext{Proprietà Distributiva e traccia lineare}} tr((AB-BA)AB) - tr((AB-BA)BA)$  e poiché commuta si ha che tr(A(AB - BA)B) - tr(AB(AB - BA)) = 0.

Poi si prosegue per induzione

**Teorema** ( $\star$ ): Siano  $\lambda_1, \ldots, \lambda_n$  elementi di un campo a caratteristica 0 tali che  $\forall a, \lambda_1^a + \ldots + \lambda_n^a = 0 \Rightarrow \lambda_1 = \ldots = \lambda_n$ Dimostrazione:

Si fa per induzione:

$$\mathsf{se}\; n = 2 \Rightarrow \lambda_1 + \lambda_2 = 0 \land \lambda_1^2 + \lambda_2^2 = 0 \Rightarrow \lambda_1 \lambda_2 = \frac{(\lambda_1 + \lambda_2)^2 - (\lambda_1^2 + \lambda_2^2)}{2} = 0 \Rightarrow \lambda_1 = \lambda_2 = 0$$

Poi si prosegue per induzione

# Forme Bilineari

Prima di parlare di Forme Bilineari, bisogna fare un importante assunto, ogni campo 账 preso è a caratteristica diversa da 2.

## > Definizione di Forma Bilineare

Sia V un  $\mathbb{K}$  – spazio vettoriale di dimensione finita. Una forma bilineare su V è una funzione  $\beta:V\times V\to\mathbb{K}$ che gode delle seguenti proprietà:  $\forall v_1, v_2, v_3 \in V, \forall \alpha_1, \alpha_2 \in \mathbb{K}$ 

- $eta(lpha_1v_1+lpha_2v_2,v_3)=lpha_1eta(v_1,v_3)+lpha_2eta(v_2,v_3)$
- $-eta(v_3,lpha_1v_1+lpha_2v_2)=lpha_1eta(v_3,v_1)+lpha_2eta(v_3,v_2)$

**Pericolo**:  $\beta$  non è una funzione lineare  $V \times V \to \mathbb{K}$ 

## Esempio:

$$V = \mathbb{K}^2$$
.

$$eta_1\left(inom{x_1}{x_2},inom{y_1}{y_2}
ight)=x_1y_1+x_2y_2$$
 è una forma bilineare.  $eta_1\left(inom{x_1}{x_2},inom{y_1}{y_2}
ight)=x_1y_2-x_2y_1$  è un'altra forma bilineare

$$eta_1\left(ig(x_1\\x_2ig),ig(y_1\\y_2ig)
ight)=x_1y_2-x_2y_1$$
 è un'altra forma bilineare

Verifichiamo che sono forme bilineari.

Prendo 
$$v_3=inom{y_1}{y_2}, v_1=inom{x_1'}{x_2'}, v_2=inom{x_1''}{x_2''}$$

Voglio calcolare

$$eta_1\left(lpha_1igg(x_1' top x_1' top x_2'' top x_1'' top x_2'' top x_1'' top x_2'' top x_1'' top x_2'' top x_1'' top x_2'' top x_$$

$$=\alpha_1(x_1'y_1+x_2'y_2)+\alpha_2(x_1''y_1+x_2''y_2)=\alpha_1\beta_1\left(\binom{x_1'}{x_2'},\binom{y_1}{y_2}\right)+\alpha_2\beta_1\left(\binom{x_1''}{x_2''},\binom{y_1}{y_2}\right), \text{ l'altra proprietà è uguale } \\ \text{Con } \beta_2 \text{ non è la stessa cosa } \beta_2\left(\binom{x_1}{x_2},\binom{y_1}{y_2}\right)=x_1y_2-x_2y_1=-\beta\left(\binom{y_1}{y_2},\binom{x_1}{x_2}\right)$$

**Osservazione**: Sia  $A \in M_n(\mathbb{K})$ . La funzione  $\beta_A : \mathbb{K}^n \times \mathbb{K}^n \times \dots \times \mathbb{K}^n \to \mathbb{K}$  definita come  $\beta_A(x,y) = x^T A y$  è bilineare.

## Dimostrazione:

$$\begin{aligned} &\mathsf{Calcoliamo} \ \beta_A(\alpha_1x_1+\alpha_2x_2,y) \ \mathsf{con} \ \alpha_1,\alpha_2 \in \mathbb{K}, x_1,x_2,y \in \mathbb{K}^n = (\alpha_1x_1+\alpha_2+x_2)^TAy = (\alpha_1x_1^T+\alpha_2+x_2^T)Ay = \\ &= (\alpha_1x_1^T)Ay + (\alpha_2x_2^T)Ay = \alpha_1\beta_A(x_1,y) + \alpha_2\beta_A(x_2,y) \end{aligned}$$

$$\mathsf{Analogamente:}\ \beta_A(x,\alpha_1y_1+\alpha_2y_2)=x^TA(\alpha_1y_1+\alpha_2y_2)=x^TA(\alpha_1y_1)+x^TA(\alpha_2x_2)=\alpha_1\beta_A(x,y_1)+\alpha_2\beta_A(x,y_2)$$

Osservazione: Chi sono le matrici corrispondenti dell'esempio precedenti?

$$eta_1:A=egin{pmatrix}1&0\0&1\end{pmatrix}\Rightarrow (x_1&x_2)egin{pmatrix}1&0\0&1\end{pmatrix}egin{pmatrix}y_1\y_2\end{pmatrix}=(x_1&x_2)egin{pmatrix}y_1\y_2\end{pmatrix}=x_1y_1+x_2y_2\ eta_2:A=egin{pmatrix}0&1\-1&0\end{pmatrix}\Rightarrow (x_1&x_2)egin{pmatrix}0&1\-1&0\end{pmatrix}egin{pmatrix}y_1\y_2\end{pmatrix}=(x_1&x_2)egin{pmatrix}y_2\y_2\-y_1\end{pmatrix}=x_1y_2-x_2y_1$$

**Osservazione**: Esiste un solo caso in cui  $eta_2\left(egin{pmatrix} x_1\\ x_2 \end{pmatrix}, egin{pmatrix} y_1\\ y_2 \end{pmatrix} \right) = \detegin{pmatrix} x_1 & y_1\\ x_2 & y_2 \end{pmatrix}$ 

## > Definizione di Prodotto Scalare Standard

In generale la forma bilineare  $\beta(x,y)=x^Ty$  si dice prodotto scalare standard. (Ha senso solo su  $\mathbb{K}^n$ . In altri casi il miglio è triste).

Analogamente

$$A=egin{pmatrix} 0&1&&&\ -1&0&&&\ &&\ddots&& \end{pmatrix}\in M_{2n}(\mathbb{K})$$

la forma bilineare  $\beta(x,y) = x^T A y$  si dice forma simplettica standard.

Nota: Non si comportano come le Matrici si comportano con gli Endomorfismi. Per poterli capire serve il duale.

## > Definizione di Matrice Associata ad una forma bilineare

Sia  $\beta$  una forma bilineare su  $V=\mathbb{K}$  – spazio vettoriale. Prendiamo  $\mathscr{B}=\{v_1,\ldots,v_n\}$  base di V. La matrice  $M_{\mathscr{B}}(\beta)$  si chiama matrice associata a  $\beta$  rispetto alla base  $\mathscr{B}$  ed è definita come  $(M_{\mathscr{B}}(\beta))_{i,j}=\beta(v_1,v_j)\in M_n(\mathbb{K})$ 

 $\begin{array}{l} \textbf{Osservazione} \colon \text{Conoscendo} \ M_{\mathscr{B}}(\beta) \ \text{posso calcolare} \ \beta \ \text{su qualsiasi coppia di vettori} \ \beta(u,w) \ \text{dove} \\ u = x_1v_1+\ldots+x_nv_n \ \text{e} \ w = y_1v_1+\ldots+y_nv_n. \ \text{Ma questo è uguale a} \ \beta(x_1v_1+\ldots+x_nv_n, \ y_1v_1+\ldots+y_nv_n). \ \text{Tramite lapper proprietà distributiva si ha che} \ \sum_{i=1}^n x_i\beta(v_i,y_1v_1+\ldots+y_nv_i) = \sum_{i=1}^n x_i \left(\sum_{j=1}^n y_i\beta(v_i,v_j)\right) = \sum_{i,j=1}^n x_iy_j\beta(v_i,v_j). \ \text{Ma posso scriverla come prodotto di matrici} \ \sum_{i=1}^n x_iy_iC_{i,j}, C \in M_n(\mathbb{K}). \ \text{Andando a vedere nel dettaglio}$ 

$$egin{pmatrix} egin{pmatrix} \vdots & & & & \vdots & & \\ c_{i,1} & c_{i,2} & \dots & c_{i,n} \end{pmatrix} egin{pmatrix} y_1 \ dots \ y_n \end{pmatrix} = c_{i,1}y_1 + \dots + c_{i,n}y_n. ext{ Quindi si ottiene che}$$

 $\sum_{i=1}^n y_j \beta(v_i,v_j) = M_{\mathscr{B}}(\beta) y_i \xrightarrow{\operatorname{Da} \operatorname{cui}} \sum_{i,j=1}^n x^T M_{\mathscr{B}}(\beta) y. \text{ Quindi questo calcolo mostra che } \beta(u,w) \text{ si calcola } x^T M_{\mathscr{B}}(\beta) y.$ 

dove x = vettore coordinate di u rispetto a  $\mathcal{B}$  e y = vettore coordinate di w rispetto a  $\mathcal{B}$ .

## $\triangleright$ Definizione di Bil(V)

 $Bil(V) = \{ \beta \text{ forme bilineari su } V \}$ . Si definisce su Bil(V) una struttura di  $\mathbb{K}$  spazio vettoriale ponendo  $(\beta_1 + \beta_2)(u, w) \stackrel{def}{=\!=\!=} \beta_1(u, w) + \beta_2(u, w)$  e  $(\lambda \beta)(u, w) = \lambda(\beta(u, w))$ 

 $\begin{array}{lll} \textbf{Proposizione} \colon \textbf{Scelta} \ \textbf{una} \ \textbf{base} \ \mathscr{B} \ \textbf{di} \ V, \ \textbf{l'applicazione} & \begin{array}{ll} Bil(V) & \to & M_n(\mathbb{K}) \\ \beta & \mapsto & M_n(\beta) \end{array} \ \grave{\textbf{e}} \ \textbf{un} \ \textbf{isomorfismo} \ \textbf{di} \ \textbf{spazi} \ \textbf{vettoriali} \ \textbf{e} \\ dim(Bil(V)) = (dim(V))^2 \end{array}$ 

## Definizione di forme bilineari simmetriche e antisimmetriche

Una forma bilineare si dice simmetrice se  $\beta(u,w)=\beta(w,u), \forall u,w\in V$ . Si dice invece antisimmetrica o alternata se  $\beta(u,w)=-\beta(w,u)$  (per questo motivo si richiede che la caratteristica del campo sia diverso da 2)

**Osservazione**:  $\beta$  è simmetrica  $\Leftrightarrow$  qualunque sia  $\mathscr{B}$ ,  $M_{\mathscr{B}}(\beta)$  è simmetrica. Analogamente  $\beta$  è antisimmetrica  $\Leftrightarrow \forall \mathscr{B}$  di  $V, M_{\mathscr{B}}(\beta)$  è antisimmetrica.

### Dimostrazione:

Vediamolo per  $\beta$  simmetrica (per l'antisimmetrica cambia giusto un segno).

- $(M_{\mathscr{B}}(\beta))_{i,j} = \beta(v_i,v_j) = \beta(v_j,v_i) = (M_{\mathscr{B}}(\beta))_{j,i} = (M\mathscr{B}(\beta)_{i,j}))^T$ . Quindi è simmetrica.
- $\Leftarrow$ ) Supponiamo  $M_{\mathscr{B}}(\beta)$  simmetrica. Mostriamo  $\beta(u,w)=\beta(w,u), \forall u,w\in V.$  Se  $u=x_1v_1+\ldots+x_nv_n$  con

$$x=egin{pmatrix} x_1\ dots\ x_n \end{pmatrix}$$
 e  $w=y_1v_1+\ldots+y_nv_n$  e  $y=egin{pmatrix} y_1\ dots\ y_n \end{pmatrix}$ . Quindi  $eta(u,w)=x^TM_{\mathscr{B}}(eta)y$  e  $eta(w,u)=y^TM_{\mathscr{B}}x$  ma

$$(x^T M \mathscr{B}(\beta) y)^T = y^T M \mathscr{B} x$$
, ma per ipotesi  $M \mathscr{B}(\beta)$  è simmetrica  $\underbrace{(x^T M \mathscr{B} y)}_{\beta(u,w)}^T = \underbrace{y^T A x}_{\beta(w,u)}$ 

**Osservazione**: Sia  $Sym^2(V) = \{ \text{Forme Bilineari Simmetriche di } V \} \text{ e } Alt^2(V) = \{ \text{Forme Bilineari Alternate di } V \}.$  Questi sono due sottospazi vettoriali di Bil(V) tali che  $Bil(V) = Sym^2(V) \oplus Alt^2(V) \Rightarrow$  Ogni forma bilineare  $\beta$  si scrive in modo unico come somma di una Forma Bilineare Simmetrica e una Forma Bilineare Alternata  $\beta(u,w) = \frac{1}{2}(\beta(u,w) + \beta(w,u)) + \frac{1}{2}(\beta(u,w) - \beta(w,u)) \Leftrightarrow \beta^S + \beta^A.$ 

#### Esempio

$$eta_A ext{ con } A = egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix} \Rightarrow eta_A \left(egin{pmatrix} x_1 \ x_2 \end{pmatrix}, egin{pmatrix} y_1 \ y_2 \end{pmatrix} 
ight) = (x_1 - x_2) egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix} egin{pmatrix} y_1 \ y_2 \end{pmatrix} = x_1 y_1 + x_1 y_2 + x_2 y_2.$$

Posso scrivere  $A=rac{1}{2}(A+A^T)+rac{1}{2}(A-A^T)$  dove  $A^T=egin{pmatrix} 1 & 0 \ 1 & 1 \end{pmatrix}$ 

Quindi 
$$eta^S=eta_{\left(egin{array}{ccc} 1&rac{1}{2}\\ rac{1}{2}&1 \end{array}
ight)}$$
 e  $eta^A=eta_{\left(egin{array}{ccc} 0&rac{1}{2}\\ -rac{1}{2}&0 \end{array}
ight)}\Rightarroweta^S\left(\left(egin{array}{ccc} x_1\\ x_2 \end{array}
ight), \left(egin{array}{ccc} y_1\\ y_2 \end{array}
ight) =x_1y_1+rac{1}{2}x_1y_2+rac{1}{2}x_2y_1+x_2y_2$  e  $eta_A\left(\left(egin{array}{ccc} x_1\\ x_2 \end{array}
ight), \left(egin{array}{ccc} y_1\\ y_2 \end{array}
ight) =rac{1}{2}x_1y_2-rac{1}{2}x_2y_1$ 

Nota: Noi studieremo solo le forme bilineari riflessive

## Definizione di Forma Bilineare Degenere

Sia  $\beta$  una forma bilineare riflessiva. Si dice che  $\beta$  è degenere se  $\exists v \in V, v \neq 0$  tale che  $\beta(v, w) = 0, \forall w \in V$ .

### Esempio:

La forma bilineare standard su  $\mathbb{K}^n$  è non degenere e la sua matrice associata è  $M=I_n$ 

### Esempio:

La forma bilineare nulla è degenere.

 $\beta_A \text{ con } A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ è degenere: } \beta_A \left( e_2, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right) = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 & 0 \\ 0 & 0 \end{pmatrix} = \mathbf{0}$ 

Se  $A = I_2$ ,  $\beta_A$  (ossia il prodotto scalare standard) non è degenere

## ightharpoonup Definizione di Radicale di eta

Sia  $\beta$  riflessiva. L'insieme dei  $v \in V$  tale che  $\beta(v, w) = 0, \forall w \in V$  è un sottospazio vettoriale di V che si chiama Radicale di  $\beta$  e si indica con  $rad(\beta)$ .

Infatti:

- $0 \in rad(eta) \Rightarrow eta(0,w) = 0, orall w \in V$
- $\text{- Se } v_1, v_2 \in rad(\beta) \text{ e } \lambda_1, \lambda_2 \in \mathbb{K} \Rightarrow \beta(\lambda_1 v_1 + \lambda_2 v_2, w) = \underbrace{\lambda_1 v_1 w}_{0 \leftarrow v_1 \in rad(\beta)} + \underbrace{\lambda_2 v_2 w}_{0 \leftarrow v_2 \in rad(\beta)} = 0 \Rightarrow \lambda_1 v_1 + \lambda_2 v_2 \in rad(\beta)$

**Proposizione**:  $\beta$  non degenere  $\Leftrightarrow rad(\beta) = \{0\}$ 

*Infatti*  $dim(rad(\beta))$  è strettamente correlato a vedere se  $\beta$  è degenere o meno.

#### Esempio:

Consideriamo  $\beta: M_n(\mathbb{Q}) \to M_n(\mathbb{R}), \beta(X,Y) = tr(XY)$ . È degenere? Questa domanda può essere tradotta con: Chi è  $rad(\beta)$ ?

 $rad(eta)=\{X\in M_n(\mathbb{R})\mid tr(XY)=0, orall Y\in M_n(\mathbb{R})\}$  ma tra queste matrici c'è anche  $X^T$ , quindi  $tr(XX^T)=0$ , ma  $tr(XX^T)=\sum_{i=1}^n(xx^T)_{i,j}=0 \Rightarrow \sum_{i=1}^nx_{j,i}x_{j,i}^T=0 \Leftrightarrow \sum_{i=1}^nx_{j,i}^2=0 \Leftrightarrow x_{j,i}=0 orall i, j\Rightarrow X=0 \Rightarrow rad(eta)=\{0\}$ 

### Esempio:

Se  $\beta$  è antisimmetrica su V spazio vettoriale di  $dim(V)=2k+1\Rightarrow \beta$  è degenere Infatti se  $M=M_{\mathscr{B}}(\beta)\Rightarrow M=-M^T\Rightarrow det(M)=det(-M^T)=(-1)^{2k+1}\underbrace{det(M^T)}_{det(M)}=-det(M)=0$ 

Perché si richiede che  $\beta$  sia riflessiva? In caso non lo fosse si creerebbero  $rad_{dx}(\beta)$  e  $rad_{sx}(\beta)$  che nella maggior parte dei casi non coincidono.

Che legame c'è tra Dualismo e Bilinearità?

Fissato un qualsiasi  $u \in V$ , l'applicazione  $w \mapsto \beta(u, w)$  è lineare da  $V \to \mathbb{K}$ , cioè è un elemento  $\varphi_u \in V^*$ .

$$\text{Inoltre } \beta(w,\lambda_1u_1+\lambda_2u_2) = \varphi_{\lambda_1u_1+\lambda_2u_2}(w) = (\lambda_1\varphi_{u_1}+\lambda_2\varphi_{u_2})(w) \Rightarrow \text{L'applicazione } \begin{matrix} V & \to & V^* \\ u & \mapsto & \varphi_u \end{matrix} \text{ è lineare }$$

Quindi si può dire che ad ogni forma bilineare  $\beta$  su V, possiamo definire  $B\in Hom(V,V^*)$  come  $B(u)(w)=\beta(w,u)$ 

Viceversa, se ho una applicazione  $B \in Hom(V,V^*)$  le posso associare  $\beta \in Bil(V)$  come  $\beta(w,u) \stackrel{\text{def}}{=\!=\!=} B(u)(w)$  In questo modo ho una corrispondenza naturale tra Bil(V) e  $Hom(V,V^*)$ 

**Proposizione**: Siano  $\mathscr{B}$  base di V,  $\mathscr{B}^*$  la sua base duale e  $\beta$  una forma bilineare. Allora  $M_{\mathscr{B}}(\beta)=M_{\mathscr{B}^*}^{\mathscr{B}}(B)$  **Dimostrazione**:

Sappiamo che  $B(u)(w) = \beta(w, u)$ 

Piccolo ripasso: se  $\mathscr{B}_V=\{v_1,\ldots,v_n\}$  e  $\mathscr{B}^*=\{v_1^*,\ldots,v_n^*\}$  la sua duale. Sia  $\varphi\in V^*$ . Le sue coordinate rispetto a

$$\mathscr{B}^*$$
 sono  $egin{pmatrix} arphi(v_1) \ dots \ arphi(v_n) \end{pmatrix}$ 

Ora costruiamo  $M^{\mathscr{B}}_{\mathscr{A}^*}(B)$ 

Sulla i-esima colonna devo mettere le coordinate di  $\underbrace{B(v_i)}_{\text{even}}$  rispetto a  $\mathscr{B}^*$  che sono

$$\begin{pmatrix} B(v_i)(v_1) \\ B(v_i)(v_2) \\ \vdots \\ B(v_i)(n) \end{pmatrix} = \begin{pmatrix} \beta(v_1, v_i) \\ \beta(v_2, v_i) \\ \vdots \\ \beta(v_n, v_i) \end{pmatrix} = i - \text{esima colonna di } M_{\mathscr{B}}(\beta)$$

**Osservazione**: Sia  $\beta$  riflessiva.  $rad(\beta) = Ker(B) = \{v \in V \mid \beta(w,v) = B(v)(w) = 0, \forall w \in V\} \Rightarrow B(v)$  è l'elemento 0 di  $V^*$ . Quindi in particolare  $\beta$  è non degenere  $\Leftrightarrow M_{\mathscr{B}}(\beta)$  è invertibile, quindi  $det(M_{\mathscr{B}}(\beta)) \neq 0$ , quindi ha senso parlare di Rango di  $\beta = dim(Im(B))$ 

Come dipende  $M_{\mathscr{B}}(\beta)$  dalla scelta di  $\mathscr{B}$ ?

Lo facciamo con calcolo diretto

Sia  $\mathscr{B}'=\{v_1',\ldots,v_n'\}$  un'altra base di V. Quindi  $(M_{\mathscr{B}'}(\beta))_{i,j}=\beta(v_i,v_j)$ . Poiché  $M_{\mathscr{B}}^{\mathscr{B}'}(id)=A=(a_{i,j})$  (per pura comodità di notazione),  $v_i=\sum_{k=1}^n a_{k,i}v_k$ , per cui

$$\beta(v_i',v_j') = \beta\left(\sum_{k=1}^n a_{i,k}v_k,\sum_{\ell=1}^n a_{\ell,j}v_\ell\right) = \sum_{\ell,j=1}^n a_{k,i}a_{\ell,j}\underbrace{\beta(v_k,v_\ell)}_{M_{\mathscr{B}(\beta)_{k,\ell}}} \Rightarrow \sum_{k,\ell=1}^n a_{k,i}a_{\ell,j}\cdot M_{\mathscr{B}}(\beta)_{k,\ell} = \\ = \underbrace{\sum_{k=1}^n a_{k,i}}_{(A^T)_{i,k}} \cdot \underbrace{\sum_{\ell=1}^n M_{\mathscr{B}}(\beta)a_{\ell,k}}_{\text{Elemento k,i } \text{di } M_{\mathscr{B}}(\beta)A} \Rightarrow \beta(v_i',v_j') = (A^TM_{\mathscr{B}}(\beta)A)_{i,j}. \text{ Quindi } M_{\mathscr{B}'}(\beta) = M_{\mathscr{B}}^{\mathscr{B}'}(id) \cdot M_{\mathscr{B}}(\beta) \cdot M_{\mathscr{B}}^{\mathscr{B}'}(id)$$

## > Definizioni di Matrici Congruenti

Due matrici  $A, B \in M_n(\mathbb{K})$  si dicono congruenti se  $\exists H \in GL_n(\mathbb{K})$  tale che  $B = H^TAH$ . Per quanto visto tutte le matrici che rappresentano la stessa forma bilineare sono tra loro congruenti.

## Esempio:

 $I_n$  è simile sono a se stessa, eppure  $orall H \in GL_n(\mathbb{K}), H^TH$  è congruente a  $I_n.$ 

Infatti su  $\mathbb{R}^2$  sono simili a  $I_2$  matrici come  $\begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix}$  o  $\begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}$ 

Ma non solo, in un campo  $\mathbb{K}$  algebricamente chiuso, tutte le matrici simmetriche sono congruenti a  $I_n$  Inoltre  $\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$  è simile a  $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ , ma d'altra parte una matrice non simmetrica non può essere congruente ad una simmetrica

#### Esempio:

Se prendo le matrici  $A=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$  e  $B=\begin{pmatrix}1&0\\0&-2\end{pmatrix}\in M_2(\mathbb{Q})$  non possono essere congruenti su  $\mathbb{Q}$  perché  $\not\exists H\in GL_2(\mathbb{Q})$  tale che  $B=H^TAH$  perché  $\begin{cases}\det(A)=1\\\det(B)=2\end{cases}$  e 2 non è un quadrato in  $\mathbb{Q}$   $(\frac{\det(B)}{\det(A)}=2\neq\alpha^2, \forall\alpha\in\mathbb{Q})$  Però A,B sono simili su  $\mathbb{R}$ , infatti  $\begin{pmatrix}1&0\\0&\frac{1}{\sqrt{2}}\end{pmatrix}\begin{pmatrix}1&0\\0&-2\end{pmatrix}\begin{pmatrix}1&0\\0&\frac{1}{\sqrt{2}}\end{pmatrix}=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$  e se  $\mathscr{B}_B=\{u,v\}\Rightarrow\mathscr{B}_A=\{u,\frac{v}{\sqrt{2}}\}$ 

Osservazione: Se A e B sono congruenti e se una delle due è simmetrica (o alternata), allora anche l'altra lo è

## Esempio:

Se prendo le matrici  $A=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$  e  $B=\begin{pmatrix}1&0\\0&-2\end{pmatrix}\in M_2(\mathbb{Q})$  non possono essere congruenti su  $\mathbb{Q}$  perché  $\not\exists H\in GL_2(\mathbb{Q})$  tale che  $B=H^TAH$  perché  $\begin{cases}\det(A)=1\\\det(B)=2\end{cases}$  e 2 non è un quadrato in  $\mathbb{Q}$   $(\frac{\det(B)}{\det(A)}=2\neq\alpha^2, \forall\alpha\in\mathbb{Q})$  Però A,B sono simili su  $\mathbb{R}$ , infatti  $\begin{pmatrix}1&0\\0&\frac{1}{\sqrt{2}}\end{pmatrix}\begin{pmatrix}1&0\\0&-2\end{pmatrix}\begin{pmatrix}1&0\\0&\frac{1}{\sqrt{2}}\end{pmatrix}=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$  e se  $\mathscr{B}_B=\{u,v\}\Rightarrow\mathscr{B}_A=\{u,\frac{v}{\sqrt{2}}\}$ 

**Osservazione**: Se  $\beta$  è antisimmetrica,  $\forall u \in V, \beta(u, u) = 0$ 

## > Formula di Polarizzazione

Sia  $\beta$  simmetrica, allora tutti gli elementi della forma  $\beta(u,v)$  sono determinati unicamente dalla formula (chiamata formula di polarizzazione):  $\beta(u,v)=\frac{\beta(u+v,u+v)-\beta(u,u)-\beta(v,v)}{2}$ 

Infatti la formula deriva direttamente dallo sviluppo di  $\beta(u+v,u+v)=\beta(u,u)+2\beta(u,v)+\beta(v,v)$ In particolare, se  $\beta$  è simmetrica non nulla,  $\exists z \in V, z \neq 0$  tale che  $\beta(z,z) = 0$ . Altrimenti per la formula di polarizzazione,  $\beta(u,v)=0, \forall u,v\in V$ 

## > Definizione di Vettore Isotropo

Sia  $\beta: V \times V \to \mathbb{K}$  forma bilineare su V. Un vettore  $v \in V$  si dice isotropo se  $\beta(v,v) = 0$ 

## Esempio:

Forma lineare standard su 
$$\mathbb{R}^n, eta\left(egin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, egin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1^2 + \ldots + x_n^2 = 0 \Leftrightarrow egin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0.$$
 È chiaramente l'unico

## Esempio:

Sia 
$$egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} \in M_2(\mathbb{R}).$$
 Cerco i vettori isotropi

$$egin{pmatrix} x \ y \end{pmatrix} \Rightarrow (x \quad y) egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} egin{pmatrix} x \ y \end{pmatrix} = 0 \Rightarrow x^2 - y^2 = 0 \Leftrightarrow (x+y)(x-y) = 0$$

L'insieme degli isotropi è l'insieme è l'unione delle rette x+y=0 e x-y=0



$$\text{Su } \mathbb{R}^3, M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \text{ cerco i vettori isotropi } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ tali che } \beta \begin{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} x \\ y \\ z \end{pmatrix} \right) \Leftrightarrow x^2 + y^2 - z^2 = 0$$



**Osservazione**: Se  $\beta$  è degenere, significa che  $rad(\beta) = \{z \in V \mid \beta(z, w) = 0, \forall w \in V\} \neq \{0\} \Rightarrow$  se prendo  $v \in rad(\beta) \Rightarrow \beta(v,v) = 0$  e ciò significa che esistono dei vettori isotropi non nulli.

#### Esempio:

 $\mathsf{Sia}\;\beta:\mathbb{K}^2\times\mathbb{K}^2\to\mathbb{K}\;\mathsf{definita}\;\mathsf{rispetto}\;\mathsf{ad}\;\mathsf{una}\;\mathsf{base}\;\mathscr{B}=\{v_1,v_2\}\;\mathsf{da}\;M=\begin{pmatrix}0&1\\1&0\end{pmatrix}\Rightarrow det(M)\neq 0\Rightarrow \beta\;\mathsf{non}\;\grave{\mathsf{e}}\;\mathsf{definita}$ degenere, ma  $\beta(v_1,v_1)=0$  e  $\beta(v_2,v_2)=0$ 

#### Esercizio 1:

Sia  $\beta$  una forma bilineare simmetrica non degenere su uno spazio vettoriale di dimensione 2 con un vettore isotropo non nullo. Mostrare che esiste una base di V rispetto alla quale la matrice di  $\beta$  sia  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 

#### Soluzione:

Cerco una base  $\{v,w\}$  di V tale che v e w devono essere isotropi e che  $\beta(v,w)=\beta(w,v)=1$  (dalla forma della matrice). Per ipotesi esiste un vettore isotropo non nullo v. Osservo che certamente esiste un vettore linearmente indipendente con v tale che  $\beta(v,z)\neq 0$ , altrimenti la matrice di  $\beta$  rispetto alla base  $\{v,z\}$  di V sarebbe  $\begin{pmatrix} 0 & 0 \\ 0 & * \end{pmatrix}$ , ma avrebbe quindi determinante uguale a 0 contro l'ipotesi.

- Se 
$$z$$
 è isotropo e  $\beta(v,z)=\alpha \neq 0$ , sceglierò  $w=\frac{1}{\alpha}z\Rightarrow \begin{cases} \beta(v,v)=0\\ \beta(z,z)\Rightarrow \beta(w,w)=\frac{1}{\alpha^2}\beta(z,z)=0\\ \beta(v,w)=\frac{1}{\alpha}\beta(v,z)=1 \end{cases}$ 

- Se z non è isotropo, cerco  $z+tv, t\in\mathbb{K}$  tale che  $\beta(z+tv,z+tv)=\beta(z,z)=2t\beta(z,v)+t^2\beta(v,v)=0\Rightarrow$   $\Rightarrow t=\frac{\beta(z,z)}{2\beta(z,v)}=\frac{\beta(z,z)}{2\alpha}.$  A questo punto z+tv è isotropo e linearmente indipendente da v e quindi posso procedere come prima.

#### Esercizio 2:

Su  $\mathbb{R}_{\leq 2}[x]$  considero le seguenti forme bilineari:

1) 
$$\beta(p,q) = p(0)q(0) + p(1)q(1) + p(2)q(2)$$

2) 
$$\gamma(p,q) = p(0)q(0) + p(1)q(1)$$

3) 
$$\delta(p,q) = p(0)q(0) + p(1)q(1) - p(2)q(2)$$

Stabilire in ogni caso se esistono vettori isotropi e se le forme bilineari sono degeneri.

## Soluzione:

1) p isotropo se  $0 = \beta(p,p) = p^2(0) + p^2(1) + p^2(0) \Leftrightarrow p(0) = p(1) = p(2) = 0 \Rightarrow p = 0$  da cui si può facilmente che  $\beta$  non è degenere (se lo fosse state avremmo trovato un vettore isotropo)

2) 
$$p$$
 isotropo se  $=0$   $\gamma(p,p)=p^2(0)+p^2(1)=0\Leftrightarrow p(0)=q(0)=0\Rightarrow p=x(x-1)$  a meno di multipli.  $x(x-1)\in {}^?rad(\gamma)\Rightarrow \gamma(x(x-1),q)=0 \ \forall q\Rightarrow \gamma$  è degenere

3) 
$$p$$
 è isotropo se  $0 = \delta(p,p) = p^2(0) + p^2(1) - p^2(2) \Rightarrow p = x - 1$   $\begin{cases} p(0) = -1 \\ p(1) = 0 \\ p(2) = 1 \end{cases}$  quindi tutto sommato torna  $0 = 0$ 

 $(x-1) \in {}^? rad(\delta) \Rightarrow \delta(x-1,q) \Rightarrow -q(0) - q(2) \xrightarrow{\text{Non necessariamente}} 0$ . Non posso dedurre nulla sulla evenutale degenerazione della forma: devo costruire una matrice associata e calcolarne il rango:

Fisso prima una base  $\mathscr{B} = \{1, x, x^2\}$  di  $\mathbb{R}_{<2}[x]$  e scriviamo  $M_{\mathscr{B}}(\delta)$ :  $(\delta$  è simmetrica)

Poiché il determinante di M è diverso da 0, o equivalentemente il rango della matrice M è 3, allora  $\delta$  è non degenere.

## Definizione di Forma Bilineare Quozientata

Sia  $\beta: V \times V \to \mathbb{K}$  una forma bilineare riflessiva degenere. Si definisce Forma Bilineare Quozientata  $\beta'$  da  $\beta$  la forma bilineare  $\beta': V/_{rad(\beta)} \times V/_{rad(\beta)} \to \mathbb{K}$ .

Verifichiamo che è ben definita:

$$\begin{aligned} & \text{siano } [v'] = [v] \text{ e } [w'] = [w] \Rightarrow \beta'([v'], [w']) = \beta(v', w') \text{ poich\'e} [v'] = [v] \Rightarrow [v'] - [v] = z \in rad(\beta) \text{ e} \\ [w'] = [w] \Rightarrow [w'] - [w] = t \in rad(\beta) \Rightarrow \beta(v', w') = \beta(v + z, w + t) = \beta(v, w) + \underbrace{\beta(z, w)}_{=0} + \underbrace{\beta(v, t)}_{=0} + \underbrace{\beta(z, t)}_{=0} = \\ & = \beta(v, w) = \beta'([v], [w]). \end{aligned}$$

Va verificato poi che  $\beta'$  è non degenere: abbiamo che  $rad(\beta') = \{[v] \in V/_{rad(\beta)} \mid \beta'([v], [w]) = 0, \forall [w] \in V/_{rad(\beta)}\}$  ma per quanto supposto prima  $\beta'([v], [w]) = \beta(v, w)$  si ottiene che

$$\{[v] \in V/_{rad(eta)} \mid eta(v,w) = 0, orall w \in V\} = \{[v] \mid v \in rad(eta)\} = \{0\}$$

Equivalentemente se  $V = W \oplus rad(\beta) \Rightarrow \beta|_{W \times W}$  è non degenere.

*Piccola notazione*: Spesso al posto di  $\beta|_{W\times W}$  si trova scritto  $\beta|_{W}$ .

## > Definizione di Sottospazio Ortogonale

Sia  $\beta: V \times V \to \mathbb{K}$  una forma bilineare riflessiva e sia  $W \subseteq V$ . Si chiama "Ortogonale di W" e si indica con  $W^{\perp}$  il sottoinsieme  $W^{\perp} = \{v \in V \mid \beta(v, w) = 0, \forall w \in W\}$  e i vettori di v e w si dicono vettori ortogonali.

#### Esempio:

Con 
$$V=\mathbb{R}^3$$
 con forma bilineare standard. Preso  $W=\left\{egin{pmatrix}x\\y\\z\end{pmatrix}\middle|x-y+2z=0\right\}$ , chi è  $W^\perp$ ?

$$\text{Mi basta prendere } W^{\perp} = Span \left\{ \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \right\} \Rightarrow (x \quad y \quad z) I_3 \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \Leftrightarrow \beta \left( \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \right) = 0$$

## Esempio:

 $V^{\perp} = rad(V)$  dalla definizione di radicale

$$\textit{Osservazione} \text{: Se } \{w_1, \dots, w_k\} \text{ è una base di } W \Rightarrow v \in W^\perp \Leftrightarrow \underbrace{\beta(v, w_1) = \dots = \beta(v, w_k)}_{k \text{ equazioni lineari}} = 0$$

## Esempio:

$$V=\mathbb{K}^n$$
 e  $A$  matrice simmetrica o antisimmetrica, sia  $eta_A$  la forma bilineare associata  $\Leftrightarrow eta_A(x,y)=x^TAy$  e sia

$$V=\mathbb{K}^n$$
 e  $A$  matrice simmetrica o antisimmetrica, sia  $eta_A$  la forma bilineare associata  $\Leftrightarrow eta_A(x,y)=x^TAy$  e sia  $W=\{y_1,\dots,y_k\}$ , allora  $W^\perp$  è l'insieme delle soluzioni del sistema lineare  $x^TAy_1=0$   $x^TAy_k=0$ 

omogenee

## Esempio:

$$V=\mathbb{K}^4$$
 e  $A=egin{pmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 2 \ 0 & 0 & 2 & 1 \end{pmatrix}$  e sia  $W=Span\left\{egin{pmatrix} 1 \ 0 \ 1 \ 1 \end{pmatrix}, egin{pmatrix} 1 \ 1 \ 1 \ 1 \end{pmatrix}
ight\}.$ 

Calcoliamo  $W^T$ 

$$x^T \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} = 0; x^T \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \Rightarrow x_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}; x_2 = \begin{pmatrix} 1 \\ 1 \\ 3 \\ 3 \end{pmatrix} \Rightarrow \begin{cases} x_2 + x_3 + 2x_4 = 0 \\ x_1 + x_2 + 3x_3 + 3x_4 = 0 \end{cases} \Rightarrow dim(W^{\perp}) = 2 \Rightarrow W^{\perp} = \begin{cases} \begin{pmatrix} -2 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ -1 \\ 0 \\ 1 \end{pmatrix} \end{cases}$$

In questo caso  $dim(W) + dim(W\perp) = dim(V)$ . Sarà sempre vero?

No, se A=0 allora ogni sottospazio di V è ortogonale ad un altro. In generale ha dimensione  $dim(V) - rg(Ay_1, \ldots, Ay_k) \geq dim(V) - dim(W)$ . In particolare  $dim(W^{\perp}) = dim(V) - dim(W) \Leftrightarrow (Ay_1, \ldots, Ay_k)$ 

ha rango k ossia se e solo se  $AY_1, \ldots, AY_k$  sono linearmente indipendenti. Se A è invertibile ( $\beta_A$  non degenere) questo avviene sicuramente (poiché  $y_1, \ldots, y_k$  sono L.I.), almeno in questo caso  $(V=\mathbb{K}^n$  e  $\beta=\beta_A)$  abbiamo che se  $\beta$  è non degenere  $\Rightarrow dim(W)+dim(W^\perp)=dim(V)$ 

**Attenzione**: Anche se l'uguaglianza è vera, non è detto che  $V=W\oplus W^{\perp}$ 

### Esempio:

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \text{ e } W = Span\{e_1,e_3\} \text{ e } W' = Span\{e_1,e_2\}$$

Calcoliamo  $W^{\perp}$ : devo calcolare  $Ae_1$  e  $Ae_3$  e poi scrivo il sistema lineare  $Ae_1=e_2$  e  $Ae_3=3_4$ . Si ottiene quindi  $\text{che }W^\perp=\text{Insieme delle soluzioni di }\begin{cases} x_2=0\\ x_4=0 \end{cases} \Rightarrow \{e_1,e_3\} \Leftrightarrow W^\perp=Span\{e_1,e_3\}. \text{ In questo, nonostante la formal delle soluzioni di } \begin{cases} x_2=0\\ x_4=0 \end{cases} \Rightarrow \{e_1,e_3\} \Leftrightarrow W^\perp=Span\{e_1,e_3\}. \end{cases}$ sia non degenere e  $dim(W)+dim(W^\perp)=dim(V)\Rightarrow V\neq W\oplus W^\perp$ , anzi  $W=W^\perp$  Calcoliamo  $W'^\perp$ :  $Ae_1=e_2$  e  $Ae_2=e_1\Rightarrow W^\perp=$  Soluzioni di  $\begin{cases} x_1=0\\x_2=0 \end{cases}\Rightarrow W'^\perp=\{e_3,3_4\}$ . Quindi  $V=W'\oplus W'\perp=\{e_3,a_4\}$ .

## > Definizione di Sottospazio Isotropo

Un sottospazio W tale che  $W=W^{\perp}$  è detto Sottospazio Isotropo

Osservazione: Nell'esempio precedente chi è  $\beta|_W$ ?  $\beta|_W = 0$  (lo si poteva vedere anche dal fatto che  $W = W^{\perp}$ )

Infatti calcolando la matrice di 
$$\beta$$
 rispetto alla base  $e_1,e_3\Rightarrow\begin{pmatrix}\beta(e_1,e_1)&\beta(e_1,e_3)\\\beta(e_1,e_3)&\beta(e_3,e_3)\end{pmatrix}\Leftrightarrow\begin{pmatrix}0&1&0&0\\1&0&0&0\\0&0&0&1\\0&0&1&0\end{pmatrix}.$ 

In modo analogo si può vedere che  $\beta|_{W'}=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}=\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ 

**Proposizione**: Siano  $\beta$  forma riflessiva e  $W \subseteq V \Rightarrow W \cap W^{\perp} = rad(\beta|_W)$ 

#### Dimostrazione:

$$rad(eta|_W) = \{u \in W \mid eta(u,w) = 0, orall w \in W\}, ext{ ma } eta(u,w) = 0, orall w \in W \Rightarrow u \in W^\perp ext{ ma poich\'e } u \in W \Leftrightarrow u \in W \cap W^\perp$$

Cerchiamo di capire in generale quanto è  $dim(W^{\perp})$ . Ricordiamo che  $\beta$  definisce  $B_{\beta}: V \to V^*$  mediante  $B_{\beta}(u)(w) = \beta(u, w)$ . Come si esprime  $W^{\perp}$  in termini di  $B_{\beta}$ ?

Fissiamo  $v \in V$ . Quando si ha che  $v \in W^{\perp}$ ? Lo si ha quando  $\beta(v,w) = 0, \forall w \in W \Rightarrow B_{\beta}(w)(v) = 0, \forall w \in W = 0$  $=B_{eta}(v)(w)=0, orall w\in W.$  Guardiamo quest'ultimo pezzo di quest'uguaglianza. Poiché  $B_{eta}(v)\in V^*$  e  $v \in W \Rightarrow B_{\beta}(v) \in Ann(W)$ . Quindi per rispondere si ha che  $v \in W^{\perp} \Leftrightarrow B_{\beta}(v) \in Ann(W) \Rightarrow W^{\perp} = B_{\beta}^{-1}(Ann(W))$ con \$B^{-1}\beta\$ interpretato come la Controimmagine della funzione, non l'inversa Ricordiamo inoltre che dim(Ann(W)) = dim(V) - dim(W). In particolare

**Proposizione**: Se  $\beta$  è non degenere  $\Rightarrow dim(W^{\perp}) = dim(V) - dim(W)$ 

### Dimostrazione:

eta è non degenere  $\Leftrightarrow B_{eta}$  è un isomorfismo e in questo caso  $dim(B_{eta}^{-1}(Ann(W))) =$ =dim(Ann(W))=dim(V)-dim(W)

**Proposizione**: Se  $\beta$  è non degenere e  $W \subseteq V$  è un sottospazio vettoriale tale che  $\beta|_W$  è non degenere  $\Rightarrow V = W \oplus W^{\perp}$  e  $\beta|_{W^{\perp}}$  è non degenere. (In questo caso  $(W^{\perp})^{\perp} = W$ , cosa che in generale non è sempre vera). Dimostrazione:

Per la proposizione precedente  $dim(W^{\perp}) = dim(V) - dim(W) \Rightarrow V = W \oplus W^{\perp} \Leftrightarrow W \cap W^{\perp} = \{0\}$ , ma, come abbiamo già visto  $W \cap W^{\perp} = rad(\beta)|_{W} = \{0\} \Leftrightarrow \beta|_{W}$  è non degenere. Resta da mostrare quest'ultima cosa. Supponiamo  $u \in W^{\perp}$  tale che  $u \in (\beta|_{W^{\perp}})$ , cioè  $\beta(u,u') = 0, \forall u' \in W^{\perp}$ . Se prendo  $v \in V = W \oplus W^{\perp}$  ottengo che  $v = \underbrace{w}_{\in W} + \underbrace{u'}_{\in W^{\perp}} \mathsf{e} \; eta(u,v) = eta(w+u',u) = \underbrace{eta(w,u)}_{=0 \in W \oplus W'} + \underbrace{eta(u',u)}_{=0 \; \mathrm{Per \; prima}} = 0$ 

## Esempio:

Sia V un  $\mathbb{K}$  – spazio vettoriale e  $\beta$  simmetrica non degenere e supponiamo  $\exists v \neq 0$  isotropo. Poiché  $\beta$  è non degenere  $\exists u'$  tale che  $\beta(v,u') \neq 0$ . Ponendo  $u = \frac{u'}{\beta(v,u')}$  abbiamo che  $\beta(v,u) = 1$ . Modifichiamo u per renderlo isotropo. Prendiamo  $v_2=u+vt$  e cerchiamo  $t\in\mathbb{K}$  che renda  $v_2$  un vettore isotropo e osserviamo che

 $eta(v_1,v_2)=1$ . Infatti  $eta(v_2,v_2)=eta(u,u)+2t\underbrace{eta(u,v_1)}_{=1}$ , mi basta quindi prendere  $t=rac{eta(u,u)}{2}$  .

Se considero  $W=Span\{v_1,v_2\}\Rightarrow$  la matrice di  $\beta_W$  rispetto a  $\{v_1,v_2\}$  è  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\Rightarrow \beta|_W$  è non degenere, quindi per la proposizione precedente si ha che  $V=W\oplus W^\perp$ .

Posso considerare ora  $eta|_{W^{\perp}}$ , che è non degenere per la proposizione, così induttivamente vedo he posso scomporre V in  $W_1 \buildrel W_2 \buildrel W_1 \buildrel W_k \build$ 

 $dim(W_i)=w, \forall i\in\{1,\ldots,k\}$  e  $eta|_{W_i}=egin{pmatrix} 0&1\\1&0 \end{pmatrix}$  rispetto ad un'opportuna base e  $eta|_{W_{an}}$  è non degenere e non ha vettori isotropi (an sta per anisotropo.)

Quindi scelta una base opportuna, la matrice di  $\beta$  sarà:

$$\begin{pmatrix} 0 & 1 & & & & & & \\ 1 & 0 & & & & & & \\ & & 0 & 1 & & & & \\ & & & 1 & 0 & & & \\ & & & & \ddots & & & \\ & & & & & 0 & 1 & \\ & & & & & 1 & 0 & \\ & & & & & & \boldsymbol{A} \end{pmatrix}$$

Tutto ciò con qualsiasi campo  $\mathbb K$  a caratteristica diversa da 2

## Esempio:

 $A = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} \text{ su } \mathbb{R} \text{ o su } \mathbb{C} \text{ ci sono dei vettori isotropi non nulli} \Rightarrow A \text{ è coniugata a } \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ ma in } \mathbb{Q} \text{ non ci sono}$  (dipende infatti dalla scelta del campo solamente il blocco di matrici iperboliche ("antidiagonali"))  $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ su } \mathbb{R} \text{ non ci sono vettori isotropi, ma su } \mathbb{C} \text{ si e tra questi c'è } \begin{pmatrix} 1 \\ i \end{pmatrix}$ 

#### → Teorema

Sia  $eta:V imes V o \mathbb{K}$  una forma bilineare riglessiva e sia  $W\subseteq V\Rightarrow dim(W^\perp)=dim(V)-dim(W)+dim(W\cap rad(eta))$ 

## Dimostrazione:

Considero l'applicazione  $B_{\beta}: V \to V^*, B_{\beta}(v)(w) = \beta(w,v)$  e la restringo a  $W \Rightarrow B_{\beta}|_{W}: W \to V^*$ .

Per il Teorema del Rango abbiamo  $dim(W) = dim(Ker(B_{\beta}|_W)) + dim(Im(B_{\beta}|_W))$ 

Chi è  $Ker(B_{\beta}|_W)$ ?  $B_{\beta}|_W=\{w\in W\mid B_{\beta}(w)=0\}$  ma  $B_{\beta}(w)=0\Leftrightarrow B_{\beta}(w)(v)=0, \forall v\in V\Rightarrow \beta(v,w)=0, \forall v\in V$  ma questo è esattamente  $rad(\beta)\cap W$ 

Chi è  $Im(B_{\beta}|_W)$ ? Poiché  $Im(B_{\beta}|_W)\subseteq V^*$  e  $dim(Im(B_{\beta}|_W))=dim(V^*)-dim(Z(Im(B_{\beta}|_W)))$ , quindi  $dim(Im(B_{\beta}|_W))=dim(V)-dim(Z(Im(B_{\beta}|_W)))$ , ma quest'ultimo è  $Z(Im(B_{\beta}|_W))=\{v\in V\mid B_{\beta}(w)(v)=0, \forall w\in W\}=\{v\in V\mid \beta(v,w)=0, \forall w\in W\}=W^{\perp}$ 

Richiamo: Se  $H \subseteq V^* \Rightarrow dim(H) = dim(V^*) - dim(Z(H))$  dove  $Z(H) = \{v \in V \mid \varphi(v) = 0, \forall \varphi \in H\}$ 

## Dimostrazione:

Fisso una base di  $H=\{\varphi_1,\ldots,\varphi_r\}\Rightarrow Z(H)=\{v\in V\mid \varphi_i(v)=0, \forall i\in\{1,\ldots,r\}\}\Rightarrow \Phi:V\to\mathbb{K}^n$  tale che

$$\Phi(v) = egin{pmatrix} arphi_1(v) \ dots \ arphi_r(v) \end{pmatrix}$$

ossia  $Z(H)=Ker(\Phi)$  e dal Teorema del Rango  $dim(Z(H))=dim(V)-dim(Im(\Phi))$ , ma poiché  $\varphi_1,\ldots,\varphi_r$  sono linearmente indipendenti perché vettori di una base  $\Rightarrow \Phi$  è suriettiva  $\Rightarrow dim(H)=dim(Im(\Phi))$ 

Sla  $\beta: V \times V \to \mathbb{K}$  una forma bilineare su V, si chiama base ortogonale di V una base  $\mathscr{B} = \{v_1, \dots, v_n\}$  di V tale che  $\beta(v_i, v_j) = 0, \forall i \neq j$ . Se  $\mathscr{B}$  è ortogonale allora la matrice sarà

$$M_{\mathscr{B}}(eta) = egin{pmatrix} eta(v_1,v_1) & & & \mathbf{0} \ & eta(v_2,v_2) & & & \ & & \ddots & \ \mathbf{0} & & & eta(v_n,v_n) \end{pmatrix}$$

ed è una matrice diagonale

## → Teorema

Sia  $\beta$  una forma bilineare simmetrica non degenere su uno spazio vettoriale V. Allora resiste una base ortogonale rispetto a  $\beta$ .

#### Dimostrazione:

Procediamo per induzione nella dimensione di V.

Se dim(V) = 1 allora non c'è nulla da dimostrare (banalmente diagonale).

Assumiamo l'ipotesi induttiva  $\Rightarrow$  esiste certamente  $v \in V, v \neq 0$  non isotropo, altrimenti per la formula di polarizzazione,  $\beta$  sarebbe nulla, ma per ipotesi è non degenere, quindi non nulla  $\Rightarrow \beta(v,v) = 0 \Leftrightarrow \beta|_{Span\{v\}}$  è non  $\mathsf{degenere} \Rightarrow V = Span\{v\} \oplus (Span\{v\})^{\perp}$ 

Posso applicare l'ipotesi induttiva a  $(Span\{v\})^{\perp}$  resta naturalmente simmetrica, inoltre è non degenere. Con le matrici  $M_{\mathscr{B}}(\beta) = \begin{pmatrix} \beta(v,v) & \mathbf{0} \\ \mathbf{0} & * \end{pmatrix}$ . Se esistesse  $z \in (Span\{v\})^{\perp}$  tale che  $\beta(z,w) = 0, \forall w \in V$ , ma poiché è

ortogonale a  $Span\{v\} \Rightarrow z \in rad(\beta)$ , ma  $\beta$  è non degenere, quindi non può esistere.

Quindi l'ipotesi induttiva garantisce l'esistenze di una base di  $(Span(\{v\})^{\perp}=\{v_2,\ldots,v_n\})$  ortogonale, quindi  $\{v_1,v_2,\ldots,v_n\}$  è base ortogonale di V

**Corollario**: Sia  $\beta$  una forma bilineare simmetrica. Allora esiste una base di V ortogonale rispetto a  $\beta$ Dimostrazione:

Cl si riduce al caso  $\beta$  non degenere spezzando spezzando  $V = rad(\beta) \oplus V'$  cosicché  $\beta|_{V'}$  diventa non degenere. Se  $\{v_1,\ldots,v_k\}$  è base di  $rad(\beta)$  e  $\{v_{k+1},\ldots,v_n\}$  è base ortogonale di V' quindi  $\mathscr{B}_V=\{v_1,\ldots,v_k,v_{k+1},\ldots,v_n\}$  è una base ortogonale di V e la matrice diagonale sarà della forma:

$$M_{\mathscr{B}_V}(eta) = egin{pmatrix} 0 & & \mathbf{0} & & & & & & & \ & \ddots & & & \mathbf{0} & & & & & \ \mathbf{0} & & 0 & & & & & & & \ & & & eta(v_{k+1}, v_{k+1}) & & \mathbf{0} & & & & \ & \mathbf{0} & & & \ddots & & & \ & & & \mathbf{0} & & eta(v_n, v_n) \end{pmatrix}$$

In termini di matrici abbiamo dimostrato che ogni matrice simmetrica è congruente ad una matrice diagonale.

$$-\begin{pmatrix}0&\\&0\\&2\end{pmatrix}\text{ e}\begin{pmatrix}0&\\&2\\&3\end{pmatrix}\text{ non possono essere congruenti per }dim(rad(\beta))$$
 
$$-A=\begin{pmatrix}0&\\&2\\&&3\end{pmatrix}\text{ e }B=\begin{pmatrix}0&\\&1\\&&-1\end{pmatrix}\text{ sono congruenti su }\mathbb{C}\text{ perch\'e se }\mathscr{B}_A=\{v_1,v_2,v_3\}\Rightarrow\mathscr{B}_B=\{v_1,\frac{v_2}{\sqrt{2}},\frac{v_3}{\sqrt{3}i}\}$$

Sia  $A\in M_n(\mathbb{K})$  una matrice simmetrica a coefficienti in un campo algebricamente chiuso. Allora A è congruente alla matrice  $\begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}$  con  $k=rg(\beta)$ . In particolare 2 matrici simmetriche a coefficienti in un campo algebricamente chiuso sono congruenti se e solo se hanno lo stesso rango.

#### Dimostrazione:

Abbiamo dimostrato che A è congruente ad una matrice diagonale

$$D=egin{pmatrix} d_1 & & & & & & \ & \ddots & & & & & \ & & d_k & & & \ & & 0 & & & \ & & \ddots & & \ & & & 0 \end{pmatrix}$$

Se interpretiamo A come la matrice di una forma bilineare simmetrica  $\beta$ , questo significa che  $dim(rad(\beta)) = n - k$  e che esiste una base ortogonale rispetto a  $\beta$  { $v_1, \ldots, v_k$ }. La matrice di  $\beta$  rispetto alla base

$$\{rac{v_1}{\sqrt{eta(v_1,v_1)}},rac{v_2}{\sqrt{eta(v_2,v_2)}},\ldots,rac{v_k}{\sqrt{eta(v_k,v_k)}},v_{k+1},\ldots,v_n\}$$
 e  $egin{pmatrix}I_k & 0 \ 0 & 0 \end{pmatrix}$ 

**Osservazione**: Su  $\mathbb K$  ci si può ridurre al massimo a  $\begin{pmatrix} I_k & & \\ & -I_k & \\ & 0 \end{pmatrix}$  in quanto non esistono in  $\mathbb R$  radici di numeri negativi, e di conseguenza ci si limita a porre  $-\sqrt{\lambda}$ 

### Esercizio 1:

Sia 
$$A=egin{pmatrix}1&0&0&0\\0&1&2&-1\\0&2&0&0\\0&-1&0&1\end{pmatrix}$$
 e sia  $\beta$  la forma bilineare su  $\mathbb{R}^4$  associata ad  $A$  rispetto alla base canonica.

Determinare una base ortogonale rispetto a  $\beta$ .

## Soluzione:

Primo passo: cerco un vettore non isotropo, ad esempio  $e_1$ , visto che  $a_{1,1}=\beta(e_1,e_1)=1\neq 0$ 

Secondo passo: determino  $(Span\{e_1\})^{\perp} = Span\{e_2,e_3,e_4\}$ 

Terzo passo: ripeto.

Cerco un vettore non isotropo in  $Span\{e_2,e_3,e_4\}$ . Posso prendere  $e_2$  dal momento che  $\beta(e_2,e_2)=1$ 

$$\begin{aligned} & \text{Dentro } Span\{e_2,e_3,e_4\} \text{ devo considerare } (Span\{e_2\})^{\perp} = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \ \middle| \ x = 0, \ \beta \left( \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}, e_2 \right) = 0 \right\} \Rightarrow \\ & \Rightarrow \beta \left( \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}, e_2 \right) = (x \quad y \quad z \quad t) Ae_2 = (x \quad y \quad z \quad t) \begin{pmatrix} 0 \\ 1 \\ 2 \\ -1 \end{pmatrix} = y + 2z - t = 0 \Rightarrow \\ & \Rightarrow (Span\{e_1,e_2\})^{\perp} = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \ \middle| \ \begin{cases} x = 0 \\ t = y + 2z \end{cases} \right\} = \left\{ \begin{pmatrix} 0 \\ y \\ z \\ y + 2z \end{pmatrix} \in \mathbb{R}^4 \right\} \end{aligned}$$

E ripeto ancora:

Cerco ancora un altro vettore non isotropo.

$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \ \text{\`e isotropo?} \ \beta \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix} \stackrel{?}{=} 0 \Rightarrow (0 \quad 1 \quad 0 \quad 1) A \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = (0 \quad 1 \quad 0 \quad 1) \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix} = 0 \ \text{quindi \`e isotropo}$$

$$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix} \ \text{\'e isotropo?} \ \beta \left( \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix} \right) = 4 \ \text{quindi non \'e isotropo}.$$

Ultimo passo:

Dentro 
$$\left\{ \begin{pmatrix} x \\ y \\ z \\ y + 2z \end{pmatrix} \in \mathbb{R}^4 \right\}$$
 cerco un vettore ortogonale a  $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix}$ , ossia  $\beta \begin{pmatrix} \begin{pmatrix} x \\ y \\ z \\ y + 2z \end{pmatrix}$ ,  $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix} = 0 \Rightarrow (x \quad y \quad z \quad y + 2z) \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \end{pmatrix} = 2(y + 2z) \Rightarrow y = -2z$  Scelgo ad esempio  $\begin{pmatrix} 0 \\ -2 \\ 1 \\ 0 \end{pmatrix} \Rightarrow \mathscr{B}_V = \{e_1, e_2, e_3 + 2e_4, -2e_2 + e_3\}$  è ortogonale

La matrice risulta quindi essere 
$$M_{\mathscr{B}}(eta)=egin{pmatrix}1&&&&&&\\&1&&&&\\&&4&&&\\&&η(e_3-2_2,e_3-2e_2)\end{pmatrix}=egin{pmatrix}1&&&&&\\&1&&&\\&&4&&\\&&&-4\end{pmatrix}$$

#### Esercizio 2:

Sia  $f \in End(\mathbb{K}^3)$  rispetto alla base canonica alla matrice A. Sia  $\beta$  la forma bilineare  $\beta(u,v) = \langle f(u), f(v) \rangle$  (dove  $\langle \ , \ \rangle$  è la forma bilineare standard):

- 1) Mostrare che  $\beta$  è bilineare e simmetrica
- 2) Fornire condizioni necessarie e sufficienti affinché  $\beta$  sia non degenere
- 3) Determinare una base ortogonale per  $\beta$  nel caso in cui  $A=\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

## Soluzione:

1) Segue dalla linearità di f e dalla bilinearità del prodotto scalare standard. Infatti

$$eta(\lambda u_1+u_2,v), orall \lambda \in \mathbb{K}, orall u_1,u_2,v \in \mathbb{K}^3 \Rightarrow \langle f(\lambda u_1+u_2),f(v)
angle = \langle \lambda f(u_1)+f(u_2),f(v)
angle = \\ = \lambda \langle f(u_1),f(v)
angle + \langle f(u_2),f(v)
angle = \lambda eta(u_1,v)+eta(u_2,v)$$

Questo mostra la linearità di  $\beta$  rispetto al primo fattore, ma poiché la forma bilineare è il prodotto scalare standard, (ossia la matrice associata alla forma bilineare è  $I_3$ ) si ha che  $\beta(u,v)=\langle f(u),f(v)\rangle \stackrel{\text{simm}}{=\!=\!=} \langle f(v),f(u)\rangle=\beta(v,u)$ 

2) Scriviamo i vettori in coordinate rispetto alla base canonica  $\beta$  per determinare la matrice associata a  $\mathcal{B}$ :

$$\begin{cases} u = \underline{x} \\ v = \underline{y} \end{cases} \Rightarrow \begin{cases} f(u) = A\underline{x} \\ f(v) = A\underline{y} \end{cases} \Rightarrow \beta(\underline{x},\underline{y}) = (A\underline{x})^T I_3 A\underline{y} = \underline{x}^T A^T A\underline{y} \Rightarrow \beta \text{ non degenere } \Leftrightarrow \det(A^T A) \neq 0 \text{ ma allora si ha } \text{che } \det(A^T A) \neq 0 \Rightarrow \det(A^T) \det(A) \neq 0 \Rightarrow \det(A)^2 \neq 0 \Rightarrow f \text{ invertibile. Quindi } \beta \text{ non degenere } \Leftrightarrow f \text{ invertibile.}$$

3) Osserviamo che  $\beta$  è degenere poiché det(A)=0. In particolare

$$egin{pmatrix} 1 \ 0 \ -1 \end{pmatrix} \in Ker(f) \Rightarrow eta \left(u, egin{pmatrix} 1 \ 0 \ -1 \end{pmatrix} 
ight) = 0, orall u \Rightarrow egin{pmatrix} 1 \ 0 \ -1 \end{pmatrix}$$
 è isotropo.

Cerco un vettore non isotropo. Per esempio  $e_2\Rightarrow\beta(e_2,e_2)=\langle f(e_2),f(e_2)\rangle$  ma poiché  $f(e_2)=e_2$  si ha che  $\langle e_2,e_2\rangle=1.$  Ora calcoliamo

$$(Span\{e_2\})^\perp = \left\{egin{pmatrix} x \ y \ z \end{pmatrix} \in \mathbb{K}^3 \;\middle|\; eta\left(egin{pmatrix} x \ y \ z \end{pmatrix}, e_2 
ight) = 0 
ight\} \Rightarrow \left\langle fegin{pmatrix} x \ y \ z \end{pmatrix}, f(e_2) 
ight
angle = 0 \Rightarrow (x+z \;\;\; y \;\;\; x+z)e_2 = 0 \Rightarrow y = 0$$

Quindi si ottiene che  $(Span\{e_2\}^\perp = \left\{ \begin{pmatrix} x \\ 0 \\ z \end{pmatrix} \in \mathbb{K}^3 \right\}$ . Ora cerco un vettore non isotropo e ho fatto.

Per esempio 
$$e_1$$
 infatti  $eta(e_1,e_1)=\langle f(e_1),f(e_1)
angle=\left\langle egin{pmatrix} 1\\0\\1 \end{pmatrix},egin{pmatrix} 1\\0\\1 \end{pmatrix} \right\rangle=2.$ 

Quindi una base ortogonale è  $\mathscr B$  per  $\beta$  è  $\{e_2,e_1,e_1-e_3\}$  e di conseguenza  $M_{\mathscr B}(\beta)=egin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 

Osservazione: È sempre conveniente cercare prima la dimensione del radicale di  $\beta$  in modo da sapere già quanti vettori non isotropi bisogna cercare. Infatti se la dimensione di  $rad(\beta) = k \Rightarrow$  bisogna cercare n - k vettori

Precisazione:  $\beta(u,v) = \langle f(u), f(v) \rangle$ . Se  $u \in Ker(f)$  cioè  $f(v) = 0 \Rightarrow \beta(u,v) = 0, \forall vinV \Rightarrow Ker(f) \subseteq rad(\beta)$ . Vogliamo mostrare che  $rad(\beta) \subseteq Ker(f)$ .

Poiché  $rad(\beta)=\{u\in\mathbb{K}^3 \mid \beta(u,v)=0, \forall v\in\mathbb{K}^3 \Leftrightarrow \langle f(u),f(v)\rangle=0 \forall v\in\mathbb{K}^3\}$ , se f è invertibile, allora  $\langle f(u),f(v)\rangle=0 \Rightarrow \langle f(u),z\rangle=0 \forall z\in\mathbb{K}^3$  Cerco quindi i vettori f(u) che stanno nel radicale di questa forma, ma poiché  $\langle \ , \ \rangle$  non è degenere,  $f(u)=0 \Rightarrow u\in Ker(f)$ 

## Esercizio:

Dimostrare che le seguenti matrici sono congruenti in  $M_{2n}(\mathbb{C})$ 

$$egin{pmatrix} egin{pmatrix} 0 & I_n \ I_n & 0 \end{pmatrix}, & egin{pmatrix} I_n & 0 \ 0 & -I_n \end{pmatrix}, & egin{pmatrix} 0 & 1 \ 0 & \ddots & \ 0 & & 0 & 1 \ 0 & \end{pmatrix} = A_{pi}$$

#### Soluzione

 $\begin{aligned} & \text{Prendiamo}\left(\begin{matrix} 0 & I_n \\ I_n & 0 \end{matrix}\right) \text{ come la matrice di una forma bilineare } \beta: V \times V \to \mathbb{C} \text{ con } dim(V) = 2n \text{ rispetto alla base} \\ & \mathcal{B} = \{v_1, \dots, v_n, v_{n+1}, \dots, v_{2n}\}. \text{ Visto che abbiamo } \beta(v_i, v_{i+n}) = \beta(v_j, v_{n-j}) = 1 \text{ con } \forall i \in \{1, \dots, n\} \text{ e} \\ & \forall j \in \{n+1, \dots, 2n\}, \text{ possiamo prendere una base } \mathcal{B}' = \{\frac{v_1 + v_{n+1}}{\sqrt{2}}, \dots, \frac{v_n + v_{2n}}{\sqrt{2}}, \frac{v_1 - v_{n+1}}{\sqrt{2}}, \dots, \frac{v_n - v_{2n}}{\sqrt{2}}\}. \end{aligned} \\ & \text{Verifichiamolo: } \beta(\frac{v_i + v_{n+i}}{\sqrt{2}}, \frac{v_i + v_{n+i}}{\sqrt{2}}) = 1; \ \beta(\frac{v_i - v_{n+i}}{\sqrt{2}}, \frac{v_i + v_{n-i}}{\sqrt{2}}) = -1. \text{ Quindi la diagonale è giusta.} \end{aligned}$ 

Controlliamo gli altri elementi: basta osservare che in generale  $i \neq k \Rightarrow \beta(v_i,v_j) = 0$ , quindi funziona.

Dimostriamo adesso che la terza matrice è congruente a  $\begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix}$ .

Procediamo come prima: Sia  $\mathscr{B}=\{v_1,\ldots,v_n,v_{n+1},\ldots,v_{2n}\}$  la base di  $A_{pi}$ , se prendiamo  $\mathscr{B}'=\{rac{v_1+v_2}{\sqrt{2}},rac{v_1-v_2}{\sqrt{2}},\ldots,rac{v_i+v_{i+1}}{\sqrt{2}}\}$  con i dispari abbiamo che  $\beta(v_{2k+1},v_{2k+2})=1, \forall k\in\{0,\ldots,n-1\}$ , ma visto che vogliamo separare gli 1 dai -1 abbiamo che  $\mathscr{B}'=\{rac{v_1+v_2}{\sqrt{2}},\ldots,rac{v_{2k+1}+v_{2k+2}}{\sqrt{2}},rac{v_1-v_2}{\sqrt{2}},\ldots,rac{v_{2k+1}-v_{2k+2}}{\sqrt{2}}\}$ 

**Osservazione**: Se  $\mathscr{B}=\{v_1,\ldots,v_n\}$  è una matrice ortogonale per  $\beta$  allora anche  $\mathscr{B}'=\{\alpha_1v_1,\ldots,\alpha_nv_n\},\alpha_1,\ldots,\alpha_n\in\mathbb{K}$  non nulli, è una base ortogonale. Infatti

$$M_{\mathscr{B}}(eta) = egin{pmatrix} eta(v_1,v_1) & & & & \ & \ddots & & \ & & eta(v_n,v_b) \end{pmatrix} \Leftrightarrow M_{\mathscr{B}'}(eta) = egin{pmatrix} lpha_1^2 eta(v_1,v_1) & & & \ & \ddots & & \ & & lpha_n^2 eta(v_n,v_b) \end{pmatrix}$$

Quindi se in  $\mathbb K$  ogni elemento è un quadrato, allora  $\exists \mathscr C$  base di V rispetto alla quale  $M_{\mathscr C}(\beta)=\begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}$  con  $k=rg(\beta)$  da cui si deduce che  $A,B\in M_n(\mathbb C)$  sono congruenti  $\Leftrightarrow rg(A)=rg(B)$ .

Su  $\mathbb{R}$  ogni numero non nullo è un quadrato oppure è l'opposto di un quadrato, quindi ogni matrice in  $M_n(\mathbb{R})$  simmetrica reale è congruente ad una matrice della forma

$$egin{pmatrix} I_k & 0 & 0 \ 0 & -I_h & 0 \ 0 & 0 & 0 \end{pmatrix}$$

con  $n - (h + k) = dim(rad(\beta))$  con  $\beta$  associata alla matrice.

Sia  $\beta: V \times V \to \mathbb{R}$  una forma bilineare simmetrica. Siano  $\mathscr{B} = \{v_1, \dots, v_k, v_{k+1}, \dots, v_{k+h}, v_{k+h+1}, \dots, v_n\}$  e  $\mathscr{B}' = \{w_1, \dots, w_{k'}, w_{k'+1}, \dots, w_{k'+h'}, w_{k'+h'+1}, \dots, w_n\}$  tale che

$$M_{\mathscr{B}}(eta) = egin{pmatrix} I_k & & & \ & -I_h & \ & & 0 \end{pmatrix}; \ M_{\mathscr{B}'}(eta) = egin{pmatrix} I_{k'} & & & \ & -I_{h'} & \ & & 0 \end{pmatrix}$$

Allora h = h' e k = k'



## > Definizione di Segnatura di una matrice

Diciamo che la terna (k, h, n - (k + h)) è la segnatura di  $\beta$  (o, equivalentemente, della matrice ad essa associata rispetto ad una qualsiasi base)

In queste notazioni, k si chiama Indice di Positività, h si chiama indice di negatività e n-k-h si chiama Indice di Nullità

Dopo questa definizione in teorema di Sylvester diventa: "Date  $A, B \in M_n\mathbb{R}$  simmetriche. A e B sono congruenti se e solo se hanno la stessa segnatura"

### Dimostrazione del Teorema di Sylvester:

Dal momento che le matrici descrivono la stessa forma  $\beta$  rispetto a basi diverse, esser devono avere lo stesso rango, quindi k + h = k' + h' o equivalentemente  $dim(rad(\beta)) = n - (h + k) = n - (k' + h')$ Quindi possiamo supporre  $\beta$  non degenere.

$$\mathsf{Indichiamo}\ \mathsf{con}\ W = Span\{v_1,\dots,v_k\}\ \mathsf{e}\ \mathsf{sia}\ z \in W \Leftrightarrow \alpha_1v_1+\dots+\alpha_kv_k \in \mathbb{R} \Rightarrow \beta(z,z) = \beta\left(\sum_{i=1}^k \alpha_iv_i,\sum_{j=1}^k \alpha_jv_j\right) = \sum_{i=1}^k \alpha_iv_i$$

$$=\sum_{i,j=1}^k lpha_i lpha_j \underbrace{eta(v_i,v_j)}_{\delta_{i,j}} = \sum_i^k lpha_i^2 \geq 0 \; \mathsf{e} \; eta(z,z) = 0 \Leftrightarrow z=0 \Leftrightarrow lpha_i = 0, orall i \in \{v_1,\ldots,v_k\}$$

In maniera del tutto analoga, se indichiamo con  $T=Span\{w_{k'+1},\ldots,w_{k'+h'}\}$  e prendiamo  $u\in T\Rightarrow \beta(u,u)\leq 0$ (visto che  $\forall i \in T, \beta(v_i, v_i) = -1$ ) e  $\beta(u, u) = 0 \Leftrightarrow u = 0$ 

Supponiamo per assurdo che  $k > h \Leftrightarrow h < h'$  per mantenere l'uguaglianza k + h = k' + h' per non avere  $\beta$  non degenere. Per la formula di Grassmann, dal momento che  $k+h'>n\Rightarrow W\cap T\neq \{0\}\Rightarrow \exists z\neq 0\in W\cap T$  ma  $\begin{cases} z \in W \Rightarrow \beta(z,z) > 0 \\ z \in T \Rightarrow \beta(z,z) < 0 \end{cases}$  e ciò non è possibile in quanto  $z \neq 0 \Rightarrow k = k'$  e h = h'



## > Forma β Definita Positiviamente e Negativamente

Una forma bilineare simmetrica  $\beta$  su  $V=\mathbb{R}$  spazio vettoriale si dice Definita Positivamente se  $\forall v \in V, v \neq 0, \beta(v, v) > 0$ . Una forma bilineare definita positivamente si chiama anche Prodotto Scalare. Una forma bilineare  $\beta'$  su  $V=\mathbb{R}$  spazio vettoriale si definisce Definita Negativamente se  $\forall v \in V, v \neq 0, \beta(v,v) < 0$ 

Una forma bilineare definita positivamente è non degenere, dalla segnatura uguale a (n,0,0) con n= rango della matrice e  $\exists \mathscr{B}$  tale che  $M_{\mathscr{B}}(\beta) = I_n$ . La sua restrizione ad un qualsiasi sottospazio resta definita positivamente e quindi non degenere, Inoltre tutte le matrici definite positivamente sono caratterizzate dal fatto di essere congruenti a  $I_n$  ossia  $\exists H \in Gl_n(\mathbb{R}): A = H^TI_nH = H^TH$ 

Un ragionamento analogo può essere fatto con le definite negativamente, congruenti a  $-I_n$  e con segnatura (0, n, 0)

## Esercizio:

Sia  $V=\mathbb{R}_{\leq 2}[x]$  e sia  $\beta:V imes V o \mathbb{R}: eta(p,q)=p(1)q(-1)+p(-1)q(1)$ 1) Data  $\mathscr{B} = \{1, x, x^2\}$  scrivere  $M_{\mathscr{B}}(\beta)$  e la segnatura di  $\beta$ 

- 2) Calcolare  $rad(\beta)$
- 3) Dato  $W = Span\{x + x^2\}$ , calcolare  $W^{\perp}$

#### Soluzione:

1) Calcoliamo prima  $M=M_{\mathscr{B}}(\beta)$ 

$$M = M_{\mathscr{B}}(eta) = egin{pmatrix} eta(1,1) & eta(1,x) & eta(1,x^2) \ eta(x,1) & eta(x,x) & eta(x,x^2) \ eta(x^2,1) & eta(x^2,x) & eta(x^2,x^2) \end{pmatrix} = egin{pmatrix} 2 & 0 & 2 \ 0 & -2 & 0 \ 2 & 0 & 2 \end{pmatrix}$$

Prima di cercare le segnature, calcoliamo prima la dimensione del radicale:  $dim(rad(\beta))=3-rg(M)=1$ . Le tre possibili segnature sono (2,0,1),(1,1,1),(0,2,1) ma si riesce a vedere facilmente che la segnatura giusta è (1,1,1) perché se si considera la restrizione della matrice a  $S=Span\{1,x\}$  si può vedere che la base  $\mathscr{B}_S=\{1,x\}$  è ortogonale rispetto ad S e  $\beta(1,1)=2>0$  e  $\beta(x,x)=-2<0$  quindi avrebbe segnatura (1,1). Quindi la sua segnatura è (1,1,1)

2) Chi è  $rad(\beta)$ ? Dal punto precedente sappiamo che  $dim(rad(\beta)) = 1$ , quindi ci è sufficiente trovare un solo vettore, ossia:

$$\begin{aligned} rad(\beta) &= \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}_{\leq 2}[x] \;\middle|\; \beta \left( \begin{pmatrix} x \\ y \\ z \end{pmatrix}, v \right) = 0, \forall v \in V \right\} = Span \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\} \\ 3) \; W^{\perp} &= \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in V \;\middle|\; (a - b - c)M \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 0 \right\} \Rightarrow \left\{ (a - b - c) \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix} \right\} \Rightarrow 2a - 2b + 2c = 0 \Rightarrow b = a + c \Rightarrow b \\ \Rightarrow W^{\perp} &= Span \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\} \end{aligned}$$

Fino adesso abbiamo lavorato su  $\mathbb C$  (o un qualsiasi campo  $\mathbb K$  algebricamente chiuso e a caratteristica diversa da 2 ) e su  $\mathbb R$ , ma su  $\mathbb Q$  cosa si può dire? Se si riprende l'esercizio sulle congruenze delle matrici

$$egin{pmatrix} egin{pmatrix} 0 & I_n \ I_n & 0 \end{pmatrix}, \ egin{pmatrix} I_n & 0 \ 0 & -I_n \end{pmatrix}, \ egin{pmatrix} rac{0}{1} & 0 & 0 \ & \ddots & \ 0 & & rac{0}{1} & 0 \end{pmatrix} = A_{pi}$$

avevamo ottenuto che su  $\mathbb R$  la nuova base diventa  $\mathscr B'=\{\frac{v_1+v_{n+1}}{\sqrt{2}},\ldots,\frac{v_n+v_{2n}}{\sqrt{2}},\frac{v_1-v_{n+1}}{\sqrt{2}},\ldots,\frac{v_n-v_{2n}}{\sqrt{2}}\}$  ma non la si può esportare direttamente a  $\mathbb Q$  in quanto  $\sqrt{2}\not\in\mathbb Q$ , però la si può modificare fino ad ottenere  $\mathscr B'=\{\ldots,v_i+\frac{v_{i+n}}{2},v_i-\frac{v_{i+n}}{2},\ldots\}, \forall i\in\{1,\ldots,n\}$ 

# Forme Bilineari Simmetriche

Supponiamo per il momento che  $\beta$  sia una forma bilineare simmetrica definita positivamente

Sia  $\mathscr{B}=\{v_1,\ldots,v_n\}$  una base qualsiasi di V. Il metodo di Gram-Schmidt produce una nuova base di  $V=\{w_1,\ldots,w_n\}$  ortogonale e che  $Span\{v_1,\ldots,v_k\}=Span\{w_1,\ldots,w_k\}, \forall k\in\{1,\ldots,n\}$ , ossia preserva tutti i sottospazi

#### Come funziona?

Si parte dal primo vettore della base  $w_1$  e lo si prende uguale a  $v_1$ 

Per il secondo vettore  $w_2$  si prende  $v_2$  e si toglie la "componente  $v_1$  da  $v_2$ ", in pratica si prende  $w_2=v_2-\alpha v_1$  affinché  $w_2\in Span\{w_1\}^\perp\Leftrightarrow \beta(w_2,w_1)=0$ 

Come posso trovare  $\alpha$ ?  $\beta(v_2 - \alpha_1, v_1) = 0 \Rightarrow \beta(v_2, v_1) - \alpha\beta(v_1, v_1) = 0 \Rightarrow \alpha = \frac{\beta(v_2, v_1)}{\beta(v_1, v_1)} \Rightarrow w_2 = v_2 - \frac{\beta(v_2, v_1)}{\beta(v_1, v_1)} v_1$  E così si procede induttivamente, ossia

$$w_{k+1} = v_{k+1} - \sum_{i=1}^k rac{eta(v_{k+1}, w_i)}{eta(w_i, w_i)} w_i$$

**Osservazione**: La notazione di definita positivamente ha senso perché  $V=\mathbb{R}$  spazio vettoriale, in altri campi  $\mathbb{K}$ non ha senso (però può avere senso anche su tutti i sottocampi di ℝ tra cui ℂ)

**Osservazione**: Se  $\beta$  è una forma bilineare definita positiva, allora è anche non degenere (infatti se lo fosse stato, ci sarebbe stato un vettore  $v \in V, v \neq 0$  tale che  $\beta(v, w) = 0, \forall w \in V$  ma  $\beta(v, v) \neq 0$  perché definita positiva). Se  $W \subseteq V$  è un sottospazio vettoriale  $\Rightarrow \beta|_W$  è ancora definita positiva e di conseguenza non degenere. Quindi se  $\beta$ è definita positiva  $\Rightarrow \forall W \subseteq V, V = W \oplus W^{\perp}$ 

**Osservazione**: Su  $\mathbb{R}$ , se  $\beta$  ha matrice  $M_{\mathscr{B}}(\beta)$  rispetto ad una certa base  $\mathscr{B} \Rightarrow \beta$  è definita positiva  $\Leftrightarrow$  è congruente a  $I_n$ , ossia  $\exists A \in GL_n(\mathbb{R})$  tale che  $M_{\mathscr{B}}(\beta) = A^TA$ 

## > Procedimento di Gram-Schmidt

Data una base  $\mathscr{B} = \{u_1, \dots, u_n\}$ , il procedimento di Gram-Schmidt produce  $\mathscr{B}' = \{v_1, \dots, v_n\}$  ortogonale rispetto a  $\beta$  tale che  $\forall i \in \{1,\ldots,n\}, Span\{u_1,\ldots,u_i\} = Span\{v_1,\ldots,v_i\}$ 

**Osservazione**: Questa condizione equivale a dire che  $M_{\mathscr{B}^{\prime}}^{\mathscr{B}}(id)$  è triangolare superiore.

*Come funziona*? (Già scritto sopra ma fatto in modo diverso, ma  $v_i \to u_i$  e  $w_i \to v_i$ ):

Si pone  $v_1=u_1$ . Se ho costruito  $v_1,\ldots,v_k$  come nell'enunciato  $\Rightarrow v_{k+1}=u_{k+1}-\sum_{\ell=1}^k \frac{\beta(v_\ell,u_{k+1})}{\beta(v_\ell,v_\ell)}v_\ell$ , dove la sommatoria non è altro che la proiezione di  $u_{k+1}$  in  $Span\{v_1,\ldots,v_k\}$ 

Significato grafico:



#### Esempio:

Sia  $\beta$  la forma bilineare definita positivamente di matrice (rispetto alla base canonica  $\mathcal{B}$ )

$$M_{\mathscr{B}}(eta) = egin{pmatrix} 1 & 1 & 2 \ 1 & 2 & 1 \ 2 & 1 & 8 \end{pmatrix}$$

Applichiamo Gram-Schmidt.

Poniamo 
$$v_1=e_1$$
 quindi  $v_2=e_2-rac{eta(e_2,v_1)}{eta(v_1,v_1)}v_1=e_2-rac{eta(e_2,e_1)}{eta(e_1,e_1)}e_1=egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}-egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}=egin{pmatrix} -1 \ 1 \ 0 \ 0 \end{pmatrix}$ 

Allora  $v_3=e_3-rac{eta(e_3,v_1)}{eta(v_1,v_1)}v_1-rac{eta(e_3,v_2)}{eta(v_2,v_2)}v_2$ , attraverso la bilinearità di eta (oppure facendo i calcoli direttametne) si

riesce ad arrivare a 
$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - 2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix} \Rightarrow \mathscr{B}' = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix} \right\}$$

#### Proviamo con il vecchio metodo:

Prendiamo 
$$v_1=e_1$$
. Calcoliamo  $(Span\{e_1\})^\perp=(x_1\quad x_2\quad x_3)egin{pmatrix}1&1&2\\1&2&1\\2&1&8\end{pmatrix}egin{pmatrix}1\\0\\0\end{pmatrix}\Rightarrow x_1+x_2+2_3=0$  quindi si

ottiene che 
$$(Span\{e_1\})^{\perp}=Span\left\{egin{pmatrix}1\\-1\\0\end{pmatrix},egin{pmatrix}2\\0\\-1\end{pmatrix}
ight\}$$
 In teoria bisognerebbe controllare che  $eta(e_1,e_1)
eq 0$ , ma

poiché sappiamo che  $\beta$  è definita positivamente, non c'è problema

Adesso devo scegliere un  $v_2 \neq 0$  tale che sia ortogonale a  $v_1$  sicuramente non sarà isotropo perché  $\beta$  è definita positivamente.

$$\begin{aligned} & \text{Prendo } v_2 = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} \Rightarrow \begin{pmatrix} Span \left\{ \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\} \end{pmatrix}^{\perp} \Rightarrow \begin{cases} x_1 + x_2 + 2x_3 = 0 \\ (x_1 \quad x_2 \quad x_3) \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 8 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} \Rightarrow \begin{cases} x_1 + x_2 + 2x_3 = 0 \\ x_2 - 4x_3 = 0 \end{cases} \end{aligned} \\ & \text{Da cui si ottiene che } v_3 = \begin{pmatrix} -6 \\ 4 \\ 1 \end{pmatrix} \text{ e per questo motivo } \mathscr{B}' = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} -6 \\ 4 \\ 1 \end{pmatrix} \right\} \end{aligned}$$

## > Definizione di Base Ortonormale

Sia  $\beta$  una forma bilineare simmetrica definita positiva. Se  $\{v_1,\ldots,v_n\}$  è una base ortogonale ottenuta tramite il metodo di Gram-Schmidt a partire da  $\{u_1,\ldots,u_n\}$  e dal momento che  $\beta(v_i,v_i)>0$ , la base  $\{v_1'=\frac{v_1}{\sqrt{\beta(v_1,v_1)}},\ldots,v_n'=\frac{v_n}{\sqrt{\beta(v_n,v_n)}}\}$  si chiama base ortonormale e  $\beta(v_i,v_j)=\begin{cases} 1 & i=j\\ 0 & i\neq j \end{cases}$ . Inoltre la matrice di  $\beta$  rispetto a questa base è l'identità

**Osservazione**: Se  $\{v_1, \dots, v_n\}$  è una base ortonormale per  $\beta$  definita positiva  $\Rightarrow \forall v \in V, v = \beta(v, v_1)v_1 + \dots + \beta(v, v_n)v_n$ , cioè le coordinate di un vettore rispetto ad una base ortonormale sono i prodotti  $\beta(v, v_i)$  del vettore v con i vettori della base.

## Esempio:

$$\mathscr{B} = \left\{ \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\} \text{ è una base ortonormale rispetto al prodotto scalare standard su } \mathbb{R}^2$$

#### Dimostrazione dell'Osservazione:

Sia 
$$v=a_1v_1+\ldots+a_nv_n\Rightarrow \beta(v,v_i)=\beta(a_1v_1+\ldots+a_nv_n,v_i)$$
  $\xrightarrow{\text{Bilinearità}} a_1\beta(v_1,v_i)+\ldots+a_n\beta(v_n,v_i)$   $\xrightarrow{\mathscr{B}\text{ ortogonale}} a_1\beta(v_1,v_1)+\ldots+a_n\beta(v_n,v_i)$   $\xrightarrow{\mathscr{B}\text{ ortogonale}} a_1\beta(v_1,v_1)+\ldots+a_n\beta(v_n,v_n)$ , ma  $\forall i\in\{1,\ldots,n\}, \beta(v_i,v_i)=1$  perché  $\mathscr{B}$  è ortonormale. Da tutto ciò segue la tesi

 $\begin{aligned} &\textit{Conseguenza} \text{: Se } W \subseteq V \text{ è un sottospazio vettoriale, prendo una base } \{u_1, \dots, u_k\} \text{ di } W \text{, la estendo ad una base } \\ &\{u_1, \dots, u_k, u_{k+1}, \dots, u_n\} \text{ di } V \text{. Allora se applico Gram-Schmidt ottengo una base ortogonale di } V \text{, ma} \\ &\textit{Span}\{v_1, \dots, v_k\} = W \text{, per cui } \{v_1, \dots, v_k\} \text{ è una base ortogonale di } W \\ &\{v_1' = \frac{v_1}{\sqrt{\beta(v_1, v_1)}}, \dots, v_k' = \frac{v_k}{\sqrt{\beta(v_k, v_k)}}, v_{k+1}' = \frac{v_{k+1}}{\sqrt{\beta(v_{k+1}, v_{k+1})}}, \dots, v_n' = \frac{v_n}{\sqrt{\beta(v_n, v_n)}} \} \text{ è una base ortonormale di } V \text{ e} \\ &\{v_1' = \frac{v_1}{\sqrt{\beta(v_1, v_1)}}, \dots, v_k' = \frac{v_k}{\sqrt{\beta(v_k, v_k)}} \} \text{ è una base ortonormale di } W \text{ inoltre } \{\underbrace{v_1', \dots, v_k'}_{\in W}, \underbrace{v_{k+1}', \dots, v_n'}_{\in W} \} \\ &\underbrace{v_k'}_{\in W} = \underbrace{v_k'}_{\in W} \text{ or one problem of the probl$ 

Quest'espressione ci dice che  $\beta(v,v_1')v_1'+\ldots+\beta(v,v_k')v_k'$  è la proiezione di v in W rispetto alla scomposizione  $V=W\oplus W^\perp$ , analogamente  $v-\beta(v,v_1')v_1'+\ldots+\beta(v,v_k')v_k'$  è la scomposizione di v in  $W^\perp$ 

Osservazione: Per calcolare queste due proiezioni non è necessaria tutta la base di V, basta la base di  $W\Rightarrow v-\beta(v,v_1')v_1'+\ldots+\beta(v,v_k')v_k'=v-\beta(v,\frac{v_1}{\sqrt{\beta(v_1,v_1)}})\frac{v_1}{\sqrt{\beta(v_1,v_1)}}-\ldots-\beta(v,\frac{v_k}{\sqrt{\beta(v_k,v_k)}})\frac{v_k}{\sqrt{\beta(v_k,v_k)}}$  che per bilinearità di  $\beta$  diventa:  $v-\frac{\beta(v,v_1)}{\beta(v_1,v_1)}v_1-\ldots-\frac{\beta(v,v_k)}{\beta(v_k,v_k)}v_k$  che è esattamente la formula per calcolare il k+1-esimo vettore della base ortonormale attraverso il metodo di Gram-Schmidt

Quindi è la proiezione di  $u_{k+1}$  sull'ortogonale del sottospazio generato da  $Span\{v_1, \ldots, v_n\} = Span\{u_1, \ldots, u_n\}$ Questo spiega il significato geometrico della proiezione di Gram-Schmidt

*Perché funziona?* Abbiamo dimostrato che il metodo Gram-Schmidt funziona se  $\beta$  è simmetrica definita positiva. *Ma abbiamo veramente utilizzato il fatto che* è *definita positivamente?* 

No: quello che si è usato davvero è che  $\forall k \in \{1, \dots n\}, Span\{u_1, \dots, u_k\} \oplus (Span\{u_1, \dots, u_k\})^{\perp} = V$ , cioè supponendo che  $\beta$  sia non degenere (analogamente che

$$Span\{u_1,\ldots,u_n\}\cap (Span\{u_1,\ldots,u_n\})^{\perp}=\{0\}, orall k\in\{1,\ldots,n\})$$

**Osservazione**: Se  $k = 1 \Rightarrow u_1$  non è isotropo

# > Vettore Psicotropo

Un vettore non isotropo si chiama Psicotropo

In generale il metodo di Gram-Schmidt può essere enunciato:

## → Teorema

Siano  $\beta$  una forma bilineare simmetrica su V (su un  $\mathbb K$  qualsiasi) non degenere e  $\mathscr B=\{u_1,\dots,u_n\}$  una base tale che  $\forall k\in\{1,\dots,n\}, \beta|_{Span\{u_1,\dots,u_k\}}$  è non degenere  $\Rightarrow$  II procedimento di Gram-Schmidt costruisce una base  $\{v_1,\dots,v_n\}$  ortogonale per  $\beta$  tale che  $Span\{v_1,\dots,v_k\}=Span\{u_1,\dots,u_k\}, \forall k\in\{1,\dots,n\}$ 

La dimostrazione è analoga a quella precedente, ossia del caso particolare

**Osservazione**: Supponiamo  $\beta$  una forma bilineare simmetrica su  $\mathbb{K}^n$  associata alla matrice

$$\begin{pmatrix} b_{1,1} & \dots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \dots & b_{n,n} \end{pmatrix}$$

e prendiamo  $\mathscr{B}=\{e_1,\ldots,e_n\}$ . Come faccio a vedere se vale la condizione dell'enunciato del teorema? Devo vedere se i determinanti delle matrici delle restrizioni di  $\beta$  a  $Span\{e_1,\ldots,e_k\}, \forall k \in \{1,\ldots,n\}$  hanno determinante diverso da 0, ovvero:

$$det(b_{1,1}) 
eq 0 \Leftrightarrow b_{1,1} 
eq 0; \quad det egin{pmatrix} b_{1,1} & b_{1,2} \ b_{2,1} & b_{2,2} \end{pmatrix} 
eq 0; \quad \dots; \quad det egin{pmatrix} b_{1,1} & \dots & b_{1,k} \ \vdots & \ddots & \vdots \ b_{k,1} & \dots & b_{k,k} \end{pmatrix} 
eq 0; \quad \dots; \quad det egin{pmatrix} b_{1,1} & \dots & b_{1,n} \ \vdots & \ddots & \vdots \ b_{n,1} & \dots & b_{n,n} \end{pmatrix} 
eq 0$$

# > Definizione di Minori Principali o Minori di Nord Ovest

Sia  $A \in M_n(\mathbb{K})$ . Si definiscono Minori Principali o Minori di Nord Ovest di A le restrizioni di A del tipo:

$$(a_{1,1}); \quad egin{pmatrix} a_{1,1} & a_{1,2} \ a_{2,1} & a_{2,2} \end{pmatrix}; \quad \ldots; \quad egin{pmatrix} a_{1,1} & \ldots & a_{1,k} \ dots & \ddots & dots \ a_{k,1} & \ldots & a_{k,k} \end{pmatrix}; \quad \ldots; \quad egin{pmatrix} a_{1,1} & \ldots & a_{1,n} \ dots & \ddots & dots \ a_{n,1} & \ldots & a_{n,n} \end{pmatrix}$$

Il problema principale diventerà: Come si trova la segnatura di una matrice?

Si sa che se  $\mathscr{B} = \{w_1, \dots, w_n\}$  è una base ortogonale rispetto a  $\beta$  si ha che  $M_{\mathscr{B}}(\beta)$  è diagonale e si contano i segni.

## Riprendendo quanto già detto:

Sia  $A \in M_n(\mathbb{R})$  simmetrica  $(A = A^T)$ . Se i determinanti dei minori principali di A  $(det(A_k))$  è diverso da  $0, \forall k \in \{1, \dots, n\}$  allora possiamo usare il metodo di Gram-Schmidt per trovare una base ortogonale  $\{w_1, \dots, w_2\}$ tale che  $Span\{w_1,\ldots,w_k\}=Span\{v_1,\ldots,v_k\}, \forall k\in\{1,\ldots,n\}$ 

Se io prendo  $A_k=M_{\{v_1,\dots,v_k\}}(eta|_{Span\{v_1,\dots,v_k\}})$  ottengo una matrice  $\in M_k(\mathbb{R})$  che non è altro che la restrizione di  $M_{\mathscr{B}}(\beta)$  ai primi k vettori. Ma poiché con Gram-Schmidt ottengo che  $Span\{v_1,\ldots,v_k\}=Span\{w_1,\ldots,w_k\}$  quindi  $A_k'=M_{\{w_1,\dots,w_k\}}(eta|_{Span\{w_1,\dots,w_k\}})$  è diagonale. Quindi  $orall k\in\{1,\dots,k\},A_k$  e  $A_k'$  sono congruenti  $\Rightarrow$  il segno dei determinanti dei minori principali di A determinano la sua segnatura, cioè la segnatura di  $\beta$ .

## Esempio:

A è definita positiva  $\Leftrightarrow det(A_k) > 0, \forall k \in \{1, \dots, k\}$ 

## Esempio:

A è definita negativamente  $\Leftrightarrow det(A_1) < 0$ , perché  $\beta(w_1, w_1) < 0$ , tuttavia si ottiene che  $\det(A_2) = \det\begin{pmatrix}\beta(w_1,w_1) & 0\\ 0 & \beta(w_2,w_2)\end{pmatrix} > 0 \text{ e and and o avanti così } \det(A_3) < 0, \ \det(A_4) > 0$  Cioè i minori di ordine dispari hanno determinante negativo, mentre quello di ordine pari hanno determinante

positivo.

## Esempio:

$$A=egin{pmatrix}2&1&1\\1&1&1\\1&1&3\end{pmatrix}$$
 si ottiene che  $det(A_1)=2,\, det(A_2)=1$  e  $det(A_3)=2$  per cui  $A$  è definita positiva

# > Definizione di Matrice Ortogonale

Una matrice  $H \in M_n(\mathbb{R})$  si dice Ortogonale se  $HH^T = H^TH = I_n$ , cioè se  $H \in GL_n(\mathbb{R})$  e  $H^{-1} = H^T$  e le colonne di H sono una base ortonormale rispetto al prodotto scalare standard

### Esempi:

1) Identità (Banale

2) 
$$H = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow H^T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Rightarrow HH^T = H^TH = I_2$$
3)  $K = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$  non va bene perché  $KK^T = K^TK = 4I_2$ 

3) 
$$K = \begin{pmatrix} 0 & 2 \ -2 & 0 \end{pmatrix}$$
 non va bene perché  $KK^T = K^TK = 4I_2$ 

4) 
$$A=egin{pmatrix} rac{1}{\sqrt{2}} & -rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} \end{pmatrix}$$
 va bene

In generale: Prendiamo H tale che  $H^TH$ . Possiamo pensare  $H=(H_1,\ldots,H_n)$  con  $H_i$  vettori colonna di  $\mathbb{R}^n$ Allora con la trasposizione i vettori colonna diventano vettori riga e si ottiene:

$$H^T H = egin{pmatrix} H_1^T \ dots \ H_n^T \end{pmatrix} (H_1 & \dots & H_n) = H_i^T H_j = \delta_{i,j}$$

Questo perché non è altro che il prodotto scalare standard su  $\mathbb{R}^n$ 

Inoltre, il prodotto scalare standard della i-esima colonna di H con la j-esima colonna deve essere uguale a 1 se i=j e 0 se  $i\neq j\Rightarrow$  le colonne di H rappresentano una base ortonormale di  $\mathbb{R}^n$  rispetto al prodotto scalare standard

Equivalentemente utilizzando la relazione  $HH^T = I_n$  si ottiene che H è ortogonale  $\Leftrightarrow$  le sue righe costituiscono una base ortonormale di  $\mathbb{R}^n$  rispetto al prodotto scalare standard  $\langle , \rangle$ 

## > Definizione di Matrici Ortogonalmente Simili

Due matrici  $A, B \in M_n(\mathbb{R})$  si dicono Ortogonalmente simili se sono simili attraverso una matrice ortogonale, cioè  $\exists H \in GL_n(\mathbb{R})$  tale che  $H^{-1} = H^T$  e  $H^{-1}AH = B$ 

## > Definizione di Matrice Ortogonalmente Diagonalizzabile

A si dice Ortogonalmente Diagonalizzabile se è ortogonalmente similie ad una matrice diagonale

**Osservazione**: Se A è una matrice ortogonalmente diagonalizzabile  $\Rightarrow H^TAH = H^{-1}AH = D \Rightarrow A$  è necessariamente simmetrica  $\Rightarrow A = HDH^{-1} = HDH^T \Rightarrow A^T = (HDH^T)^T = (H^T)^TD^TH^T = HDH^T = A$  Dire che A è ortogonalmente diagonalizzabile *significa* che *esiste* una base  $\mathscr{B}$  di  $\mathbb{R}^n$  costituita da autovettori e che sia ortonormale rispetto a  $\langle \ , \ \rangle$ 

Vale anche il viceversa?

Idea: Sia  $A \in M_n(\mathbb{R})$  diagonalizzabile, prendiamo  $\{v_1,\dots,v_n\}$  di autovettori e usiamo Gram-Schmidt per produrre una base ortonormale di autovettori per cui la matrice è ortogonalmente diagonale e quindi simmetrica. La parte in corsivo è sbagliata perché così facendo ottengo vettori che sono combinazioni lineari di autovettori, cioè  $w_1=v_1\Rightarrow w_2=v_2-\alpha v_1$  che non è autovettore

Finché sto dentro allo stesso autospazio posso farlo, perché tutti i vettori di quell'autospazio sono relativi all'autovalore  $\lambda$ , ma non posso farlo se appartengono a due autospazi diversi.

**Attenzione**: Se combino linearmente autovettori relativi ad autovalori diversi non ottengo autovettori. Infatti affinché esista una base ortonormale di autovettori è necessario che autospazi relativi ad autovalori diversi siano già ortogonali tra loro rispetto al prodotto scalare standard

Piccola nota: Essere ortogonali ⇒ Essere in somma diretta ma non vale il viceversa

**Proposizione**: Sia  $A \in M_n(\mathbb{R}), A = A^T$  e siano  $\lambda, \sigma$  autovalori distinti di A ( $\lambda \neq \sigma$ ) e siano  $v, w \in \mathbb{R}^n$  autovettori relativi a  $\lambda$  e  $\sigma$  rispettivamente  $\Rightarrow v$  e w sono ortogonali

## Dimostrazione:

Calcoliamo

$$\lambda \langle v,w\rangle \Rightarrow \langle Av,w\rangle \Rightarrow (Av)^Tw = v^TA^Tw = v^TAw \Rightarrow \langle v,AW\rangle \Rightarrow \sigma \langle v,w\rangle \Rightarrow \underbrace{(\lambda-\sigma)}_{\neq 0} \langle v,w\rangle = 0 \Rightarrow \langle v,w\rangle = 0$$

**Riflessione Importante**: Supponiamo A simmetrica ortogonalmente diagonalizzabile  $\Rightarrow H^{-1}AH = H^TAH = D$ 

- 1.  $\exists$  base ortonormale rispetto a  $\langle \ , \ \rangle$  di autovettori di A endomorfismo (da  $H^{-1}AH=D$ )
- 2. Sulle colonne di H c'è una base ortogonale rispetto alla forma bilineare simmetrica  $\beta_A$  associata ad A (  $H^TAH=D$ )

## > Definizione di Endomorfismo Aggiunto

Sia V un  $\mathbb{K}$  spazio vettoriale con una forma bilineare simmetrica non degenere  $\beta$  e sia  $f \in End(V)$ . Indichiamo con  $f^{AD}$  l'endomorfismo aggiunto di V (aggiunto di f rispetto a f) così definito

$$V
i v\mapsto f^{AD}(v)$$

dove v è l'unico vettore di V tale che  $\beta(f^{AD}(v), w) = \beta(v, f(w)), \forall w \in V$ 

**Osservazione**: Osserviamo che la definizione è ben posta, cioè  $f^{AD}(v)$  è univocamente determinato dal momento che se fosse  $f(\tilde{v},w)=\beta(v,f(w))=\beta(f^{AD}(v),w), \forall w\in V(\star)$ , avrei che

 $eta( ilde{v}-f^{AD}(v),w)=0, orall w\in V\Rightarrow w\in V\Rightarrow ilde{v}-f^{AD}(v)\in rad(eta)$  ma eta è non degenere, quindi  $ilde{v}=f^{AD}(v)$ 

Dimostrare che  $f^{AD}$  (tutto dipende dalla linearità di f e di  $\beta$ )

Come sono collegati  $f \in f^{AD}$ ?

Fissiamo  ${\mathscr B}$  base di V e scriviamo tutto in coordinate

$$v=egin{pmatrix} x_1\ dots\ x_n \end{pmatrix}=x;\quad w=egin{pmatrix} y_1\ dots\ y_n \end{pmatrix}=y;\quad M_{\mathscr{B}}(f)=F;\quad M_{\mathscr{B}}(f^{AD})=F^{AD};\quad B=M_{\mathscr{B}}(eta)\in GL_n(\mathbb{K})$$

In particolare è invertibile perché  $\beta$  è non degenere.

Da (\*) si ha che

$$(F^{AD}x)^TBy=x^TBFy, \forall x,y\Rightarrow x^T(F^{AD})^TBy=x^TBFy\Leftrightarrow (F^{AD})^T=BFB^{-1}\Rightarrow F^{AD}=(BFB^{-1})^T==(B^{-1})^TF^TB^T=F^{AD}=B^{-1}FB$$
 (If tutto sfruttando la simmetria di  $B$  e il fatto che  $(B^{-1})^T=(B^T)^{-1}$ ) Cioè la matrice di  $F^{AD}$  rispetto a  $\mathscr{B}$  è coniugata mediante  $B$  a  $F^T$ 

Osservazione 1: 
$$(F^{AD})^{AD} = B^{-1} \underbrace{(B^{-1}FB)^T}_{F^{AD}} B = B^{-1}B^T (F^T)^T (B^{-1})^T B = \underbrace{B^{-1}B}_{I_n} F \underbrace{B^{-1}B}_{I_n} = F$$

Osservazione 2: Sia  $\mathbb{K}=\mathbb{R}\Rightarrow V=\mathbb{R}$  spazio vettoriale e  $\beta$  forma bilineare simmetrica definita positiva. Posso scegliere  $\mathscr{B}$  base ortonormale rispetto a  $\beta\Rightarrow B=I_n\Rightarrow F^{AD}=I_n^{-1}F^TI_n=F^T\in M_n(\mathbb{R})$ , cioè la matrice associata a  $F^{AD}$  rispetto ad una base ortonormale è la trasposta della matrice di f rispetto a quella stessa base.

## ightharpoonup Definizione di Endomorfismo Autoaggiunto rispetto ad una forma bilineare simmetrica eta

Un endomorfismo f di un  $\mathbb K$  spazio vettoriale su cui è definita una forma bilineare simmetrica non degenere si dice Autoaggiunto (o Simmetrico) se  $f^{AD} = f$ 

Osservazione 2 bis: Se  $V = \mathbb{R}$  spazio vettoriale con un prodotto scalare  $\beta$ , f è un endomorfismo autoaggiunto rispetto a  $\beta$  se e solo se la matrice  $M_{\mathscr{B}}(f)$  ad essa associata, rispetto ad una base ortonormale di  $\beta$ , è simmetrica

Quindi, in particolare, studiare forme bilineari simmetriche reali, significa studiare gli endomorfismi aggiunti di un  $\mathbb{R}$  spazio vettoriale con un prodotto scalare

## > Definizione di Piano Euclideo

Si definisce un Piano Euclideo un  $\mathbb R$  spazio vettoriale con un prodotto scalare, ossia una forma bilineare simmetrica definita positiva

**Esercizio**: L'applicazione  $ad: {End(V) \over f} \to {End(V) \over f^{AD}}$  è lineare e un automorfismo

## $\rightarrow$ Proprietà 1 di $f^{AD}$

Sia V un  $\mathbb K$  spazio vettoriale,  $\beta$  una forma bilineare simmetrica non degenere,  $f\in End(V)$ .  $U\subseteq V$  è f invariante  $\Leftrightarrow U^{\perp}$  è  $f^{AD}$  invariante

## Dimostrazione:

 $\Rightarrow$ ) Supponiamo U f-invariante. Sia  $z \in U^{\perp} \stackrel{?}{\Rightarrow} f^{AD}(z) \in U^{\perp}$ 

Basta calcolarlo:  $\forall u \in U, \ \beta(f^{AD}(z), u) = \beta(z, f(u)) \ \text{ma} \ f(u) \in U \Rightarrow \beta(z, f(u)) \xrightarrow{z \in U^{\perp}} 0 \xrightarrow{\beta \text{ non degenere}} f^{AD}(z) \in U^{\perp}$   $\Leftarrow$ ) Mi è sufficiente scambiare U con  $U^{\perp}$  e procedo come prima: ho dimostrato che U è f invariante  $\Rightarrow U^{\perp}$  è  $f^{AD}(z)$ 

invariante e lo applico a  $U^{\perp}$  e  $f^{AD} \Rightarrow U$  è  $f^{AD}$  invariante  $\Rightarrow (U^{\perp})^{\perp}$  è  $(f^{AD})^{AD}$  invariante (Per l'osservazione prima e perché  $\beta$  è non degenere  $\Rightarrow (U^{\perp})^{\perp} = U$ )

**Osservazione**: Se f è autoaggiunto, questa proprietà diventa "U è f invariante  $\Leftrightarrow U^{\perp}$  è f invariante", questo perché se  $\beta$  è non degenere, allora  $V = U \oplus U^{\perp}$ 

$$\rightarrow$$
 Proprietà 2 di  $f^{AD}$ 

$$Ker(f^{AD}) = (Im(f))^{\perp}$$

## Dimostrazione:

$$v \in Ker(f^{AD}) \Leftrightarrow f^{AD}(v) = 0 \stackrel{eta \, ext{non degenere}}{\Longleftrightarrow} eta(f^{AD}, w) = 0, orall w \in V \Leftrightarrow eta(v, f(w)) = 0 \Leftrightarrow v \in (Im(f))^{\perp}$$

$$\rightarrow$$
 Proprietà 3 di  $f^{AD}$ 

$$Im(f^{AD}) = (Ker(f))^{\perp}$$

#### Dimostrazione:

$$\rightarrow$$
 Proprietà 4 di  $f^{AD}$ 

Il seguente diagramma è commutativo:

$$egin{array}{cccc} V & \stackrel{f^{AD}}{
ightarrow} & V \ \downarrow^{B_eta} & \circlearrowright & \downarrow^{B_eta} \ V^* & \stackrel{f^*}{
ightarrow} & V^* \end{array}$$

## Dimostrazione:

Dimostrare che è commutativo equivale a dimostrare che  $B_{\beta} \circ f^{AD} = f^* \circ B_{\beta}$   $\forall v \in V, B_{\beta}(AD(v)) = f^*(B_{\beta}(v) \in v^* \Leftrightarrow \forall w \in V, B_{\beta}(f^{AD}(v))(w) = (f^*(B_{\beta}(v)))(w) \Leftrightarrow \beta(f^{AD}(v), w) = B_{\beta}(v)(f(w)) = \beta(v, f)$  Direttamente dalla definizione di  $f^{AD}$ 

Se fosse stato scritto attraverso le coordinate, il tutto poteva essere dimostrato con le matrici e usando la notazione precedente sarebbe stato  $F^{AD}=B^{-1}F^TB$ 

## → Teorema Spettrale

Sia V uno spazio euclideo con prodotto scalare  $\beta$  e sia f un endomorfismo autoaggiunto di V, allora esiste una base  $\mathscr{B}$  di V ortonormale rispetto a  $\beta$  costituita da autovettori di f, cioè f è ortogonalmente diagonalizzabile

## Procedimento per la Dimostrazione una di quelle più elementari:

La dimostrazione si svolgerà in due passi:

Passo 1: Mostrare che f ha autovalori reali

Passo 2: Per induzione sulla dimensione di V (Per il passo uno abbiamo un autovalore  $\lambda \in \mathbb{R} \Rightarrow \exists v_1$  autovettore  $\in V$  relativo a  $\lambda$ , quindi possiamo spezzare  $V = Span\{v_1\} \oplus (Span\{v_1\})^{\perp}$  - in particolare se  $\beta(v_1,v_1) \neq 1$  possiamo prendere un autovettore  $w_1 = \frac{v_1}{\sqrt{\beta(v_1,v_1)}}$ )

Prima di fare per bene la dimostrazione diamo una definizione:

## ightharpoonup Definizione di Prodotto Hermitiano in $\mathbb{C}^n$

Dati  $v,w\in\mathbb{C}^n$  si definisce prodotto Hermitiano il prodotto:

$$\overline{eta}(v,w) = \overline{eta}\left(egin{pmatrix} v_1 \ dots \ v_n \end{pmatrix}, egin{pmatrix} w_1 \ dots \ w_n \end{pmatrix}
ight) = (v_1 & \dots & v_n)egin{pmatrix} \overline{w_1} \ dots \ \overline{w_n} \end{pmatrix} = v_1\overline{w_1} + \dots + v_n\overline{w_n}$$

#### Dimostrazione:

**Passo 1**: Mostrare che *f* ha almeno un autovalore reale.

Ragioniamo in termini matrici fissiamo una base  $\mathscr{B}$  di V ortonormale rispetto a  $\beta$  (perché è definita positivamente) e indichiamo con  $F \in M_{\mathscr{B}}(f)$ . Supponiamo f sia un endomorfismo autoaggiunto, ossia  $F^T = F \in M_n(\mathbb{R})$  Leggiamo  $F \in M_n(\mathbb{R}) \subseteq M_n(\mathbb{C})$ . Poiché  $\mathbb{C}$  è algebricamente chiuso, F ha almeno (a seconda se sono distinti o meno) un autovalore  $\lambda \in \mathbb{C} \Leftrightarrow \exists x \in \mathbb{C}^n, x \neq 0$  tale che  $Fx = \lambda(x)$ 

Osserviamo che:

1) 
$$x=egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix}$$
 con  $x_i\in\mathbb{C}\Rightarrow\overline{Fx}=\overline{\lambda x}=\overline{\lambda}\overline{x},$  dove  $\overline{x}=egin{pmatrix} \overline{x_1} \ dots \ \overline{x_n} \end{pmatrix}$ . Ma è vero anche che  $\overline{Fx}=\overline{Fx}$  con  $\overline{F}=(\overline{f})_{i,j}.$  Ma

$$F\in M_n(\mathbb{R})\Rightarrow F=\overline{F}\Rightarrow \overline{Fx}=\overline{Fx}=F\overline{x}$$

$$2) \ x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{e } \overline{x} = \begin{pmatrix} \overline{x_1} \\ \vdots \\ \overline{x_n} \end{pmatrix}. \text{ Se facciamo } x^T \overline{x} = (x_1 \quad \dots \quad x_n) \begin{pmatrix} \overline{x_1} \\ \vdots \\ \overline{x_n} \end{pmatrix} = \sum_{i=1}^n x_i \overline{x_i} = \frac{x_i \overline{x_i} = |x_i|^2}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 \geq 0. \text{ In } x_i = \frac{x_i \overline{x_i}}{\sum_{i=1}^n |x_i|^2} \sum_{i=1}^n |x_i|^2 = 0. \text{ In } x_i = 0. \text{ In }$$

particolare  $x^T\overline{x} = 0 \Leftrightarrow x_i = 0, \forall i \Leftrightarrow x = 0$ 

Ora calcoliamo  $(Fx)^T\overline{x}=x^TF^T\overline{x} \stackrel{F^T=F}{====} x^TF\overline{x} \stackrel{x \text{ autovettore}}{=====} x^T\overline{\lambda}\overline{x} \stackrel{\lambda \in \mathbb{C}}{=====} \overline{\lambda}(x\overline{x})$ , ma è anche vero che  $(Fx)^T\overline{x}=(\lambda x)^T\overline{x}=\lambda(x\overline{x})$  (per gli stessi motivi di sopra), da cui si ottiene eguagliando che  $(\lambda-\overline{\lambda})(x^T\overline{x})=0 \stackrel{x \neq 0}{===} \lambda-\overline{\lambda}=0 \Rightarrow \lambda=\overline{\lambda} \Rightarrow \lambda \in \mathbb{R}$ 

Passo 2: Procediamo per induzione su n:

- Se  $n=1\Rightarrow F\in M_1(\mathbb{R})$  e quindi non c'è nulla da dimostrare
- Passo induttivo: Sia  $\lambda$  autovalore reale di f e sia  $v \in V$  autovettore di f relataivo a  $\lambda$ :  $f(v) = \lambda v$  Poniamo  $v_1 = \frac{v}{\sqrt{\beta(v,v)}}$  cosicché  $\beta(v_1,v_1) = 1$

Poiché  $\beta$  è definita positiva,  $\beta|_{Span\{v_1\}}$  è definita positiva, cioè non degenere e quindi si può scomporre  $V = Span\{v_1\} \oplus (Span\{v_1\})^{\perp}$ .  $Span\{v_1\}$  è f invariante perché  $v_1$  e dal momento che f è autoaggiunto osserviamo che  $(Spanv_1)^{\perp}$  è f invariante.

Osserviamo che  $f|_{Span\{v_1\}}$  è autoaggiunta (cioè in termini di matrici  $F=\begin{pmatrix} \lambda & \mathbf{0} \\ \mathbf{0} & F' \end{pmatrix}$  è simmetrica se e solo se F' lo è). Quindi posso applicare l'ipotesi induttiva su  $f|_{(Span\{v_1\})^\perp}$  dal momento che la dimensione di  $(Span\{v_1\})^\perp=n-1$ , quindi esiste una base di  $(Span\{v_1\})^\perp$  ortonotmale rispetto a  $\beta$  costituita da autovettori di f. Sia essa  $\{v_2,\ldots,v_n\}$   $\Rightarrow \{v_1,v_2,\ldots,v_n\}$  è una base di V come nell'enunciato.

Quello che rende special il teorema spettrale non è tanto la complessità della dimostrazione ma il risultato del teorema.

Osservazione: Prendiamo  $A \in M_n(\mathbb{R})$  simmetrica  $\Rightarrow A$  è ortonormalmente diagonalizzabile  $\Leftrightarrow \exists H$  ortogonale tale che  $H^{-1}AH = H^TAH = D$  con D diagonale. Sulle colonne di H c'è una base di autovettori di A (quindi A è simile a D) che è ortonormale rispetto al prodotto scalare standard ( $\beta$  del teorema)

Infatti se prendo  $\gamma=\binom{2\ 1}{1}$ , questa è definita positiva, per cui è un prodotto scalare, ma non un prodotto scalare standard rispetto alla base canonica. Chiaramente esiste una base per cui  $\gamma$  è  $I_2$ 

Sulla diagonale di D ci sono gli autovalori di A (ma non è la matrice di A in forma di Sylvester perché ci sono altri valori oltre a 1, -1, 0).

A è anche congruente a D che è diagonale, quindi sulle colonne di H ci sono vettori di una base ortogonale rispetto a  $\beta_A$  (la forma bilineare simmetrica associata ad A rispetto alla base canonica)

Da tutto questo si deduce che la segnatura di A è determinata dal segno degli autovalori.

#### Esercizio:

Siano 
$$U=Span\left\{egin{pmatrix}1\\1\\1\end{pmatrix},egin{pmatrix}1\\1\\0\end{pmatrix}
ight\}$$
 e  $T=Span\left\{egin{pmatrix}1\\0\\0\end{pmatrix}
ight\}$ 

- 1) Esiste una matrice A avente U e T come autospazi relativi agli autovalori 0, 1?
- 2) Esiste una matrice simmetrica  $S \in M_3(\mathbb{R})$  aventi U e T come autospazi relativi a 0 e 1?

### Soluzione:

1) A esiste  $\Leftrightarrow U$  e T sono in somma diretta. In particolare A è sicuramente diagonalizzabile perché  $\mathbb{R}^3 = U \oplus T$  e sono autospazi relativi a 0 e 1. Quindi si ottiene che

$$HAH^{-1} = egin{pmatrix} 0 & & & \ & 0 & & \ & & 1 \end{pmatrix} \Rightarrow A = H egin{pmatrix} 0 & & & \ & 0 & & \ & & 1 \end{pmatrix} H^{-1} \stackrel{H ext{ ha gli autovalori di } A}{\Longrightarrow} H = egin{pmatrix} 1 & 1 & 1 \ 1 & 1 & 0 \ 1 & 0 & 0 \end{pmatrix}$$

2)  $T 
eq U^{\perp}$  rispetto al prodotto scalare standard  $ot \! \not \equiv \! \! S$  come richiesta.

Se la risposta fosse stata affermativa, potevo trovare una K ortogonale con il metodo di Gram-Schmidt tale che  $S=KDK^T$ 

#### Esercizio 1:

Su  $M_{n,m}(\mathbb{R})$  consideriamo la forma bilineare  $\beta(X,Y)=tr(X^TY)$ . Data  $A\in M_n(\mathbb{R})$  sia  $\varphi_A:M_{n,m}(\mathbb{R})\to M_{n,m}(\mathbb{R})$  definita come  $X\mapsto AX$ . Determinare l'insieme delle matrici tali che  $\varphi_A$  sia autoaggiunto rispetto a  $\beta$ 

#### Soluzione:

Osserviamo che  $\beta$  è simmetrica (stesso motivo di un esercizio precedente), non degenere ossia  $rad(\beta) = \{X \mid \beta(X,Y) = 0, \forall Y\}$ . (Sempre secondo lo stesso ragionamento dello stesso esercizio precedente) (Per un caso più generale si può controllare con tutte le matrici elementari).

 $\varphi_A$  è autoaggiunto se  $\beta(\varphi_A(X),Y)=\beta(X,\varphi_A(Y))$  quindi:

$$\forall X,Y \in M_{n,m}(\mathbb{R}) \Leftrightarrow \beta(AX,Y) = \beta(X,AY) \Leftrightarrow tr((AX)^TY) = tr(X^TA^TY) = \beta(X,A^TY) \Leftrightarrow A^TY - AY \in rad(\beta) \text{ mail radicale è banale} \Rightarrow (A^T - A)Y = 0, \forall Y \Rightarrow A^T = A$$

#### Esercizio 2:

Sia  $V=\mathbb{R}$  spazio vettoriale e sia  $\beta$  una forma bilineare definita positiva su V e sia  $f\in End(V)$  tale che  $f^{AD}\circ f=f\circ f^{AD}$ . Mostrare che  $V=Ker(f)\oplus Im(f)$ 

## Soluzione:

Poiché 
$$\beta$$
 è definita positiva  $\Rightarrow V = Im(f) \oplus (Im(f))^{\perp}$ . Sappiamo che  $(Im(f))^{\perp} = Ker(f^{AD}) \stackrel{?}{=} Ker(f)$   $v \in Ker(f^{AD}) \Leftrightarrow f^{AD}(v) = 0 \stackrel{f \text{ definita positiva}}{\Longrightarrow} \beta(f^{AD}(v), f^{AD}) = 0 \Rightarrow \beta(v, (f \circ f^{AD})(v)) = 0 \stackrel{f \circ f^{AD} = f^{AD} \circ f}{\Longrightarrow} \Leftrightarrow \beta(v, (f^{AD} \circ f)(v)) = 0 \Rightarrow \beta(f(v), f(v)) = 0 \Rightarrow \phi(f(v), f(v))$ 

# Definizione Sottospazio Totalmente Isotropo

Sia V un  $\mathbb R$  spazio vettoriale e sia  $\beta$  una forma bilineare simmetrica. Un sottospazio  $U\subseteq V$  si dice (Totalmente) Isotropo se  $U\subseteq U^\perp$  ( $\Leftrightarrow \beta(u,v)=0, \forall u,v\in U$ )

#### Esempio 1:

Se  $\beta$  è non degenere e U è totalmente isotropo, sappiamo che  $\underbrace{dim(U)}_{\geq 2dim(U)} + dim(U^bot) \stackrel{\text{Grassmann}}{=\!=\!=\!=} dim(V)$  Allora  $dim(U) \leq \frac{1}{2} dim(V)$ 

## Esempio 2:

Sia V un  $\mathbb R$  spazio vettoriale e sia  $\beta$  una forma bilineare di segnatura (p,q,0). Allora se U è un sottospazio isotropo massimale (cioè dalla dimensione maggiore), ha dimensione  $dim(U) \leq min\{p,q\}$ 

Esiste una base 
$$\mathscr B$$
 di  $V$  rispetto alla quale  $M_{\mathscr B}(\beta)=egin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix}$  con  $p+q=dim(V).$  Sia  $p\geq q$ 

Se  $dim(U)>q\Rightarrow \mathscr{B}=\{v_1,\ldots,v_p,v_{p+1},\ldots,v_{p+q}\}.$  Sia  $W=Span\{v_1,\ldots,v_p\}\Rightarrow V\cap W\neq\{0\}$  per la formula di Grassmann, ma se  $z\in U\cap W=\begin{cases} \beta(z,z)>0 & z\in W\\ \beta(z,z)=0 & z\in U \end{cases}$ 

#### Esempio 3:

Consideriamo la forma bilinerae simmetrica su  $V=\mathbb{R}$  spazio vettoriale di dimensione dim(V)=5 tale che

$$M_{\mathscr{B}}(eta)=egin{pmatrix}1&&&&&\ &1&&&&\ &&1&&&&\ &&&-1&&&\ &&&&-1\end{pmatrix}$$

Esibiamo un sottospazio totalmente isotropo di dimensione  $dim(U)=2\Rightarrow U=Span\{v_1+v_4,v_2+v_5\}$ . Infatti  $\beta(v_1+v_4,v_1+v_4)=\beta(v_1,v_1)+\beta(v_4,v_4)=1-1=0$ 

#### Esercizio 1:

Sia  $\beta$  una forma bilineare simmetrica di  $V=\mathbb{R}$  spazio vettoriale con dim(V)=3. Siano  $U,W\subseteq V$  distinti con dim(U)=dim(W)=2. Inoltre  $\beta|_U$  ha rango 1,  $\beta|_W$  ha rango 1 e  $\beta|_{U\cap W}$  è definita positiva. Calcolare la segnatura di  $\beta$ 

## Soluzione:

Fissiamo una base nel modo seguente

Sia  $z \in U \cap W \Rightarrow \beta(z,z) = a \neq 0$ .  $\beta|_U$  ha rango  $1 \Rightarrow dim(rad(\beta|_U)) = 1$  Fissiamo  $u \neq 0 \in rad(\beta|_U) \Rightarrow \beta(u,u) = 0$  quindi  $\{z,u\}$  è una base di U. Fissiamo in modo analogo  $w \neq 0 \in rad(\beta|_W)$  quindi  $\{z,w\}$  è una base di V. La matrice associata è quindi

$$M_{\mathscr{B}}(eta) = egin{pmatrix} a & 0 & 0 \ 0 & 0 & b \ 0 & b & 0 \end{pmatrix}$$

Tuttavia  $\beta$  è non degenere, quindi  $b \neq 0 \Rightarrow det(M_{\mathscr{B}}(\beta)) = -ab^2$  quindi la matrice sarà:

$$\begin{pmatrix} + & & \\ & + & \\ & & - \end{pmatrix} \Rightarrow (2,1,0)$$

## Esercizio 2:

Sia  $A=egin{pmatrix}1&1&0\\0&0&1\\1&-1&1\end{pmatrix}$  . Calcolare una matrice ortogoanle O e una matrice triangolare superiore T tale che A=OT

### Soluzione:

Si può osservare facilmente che A è invertibile. Indichiamo con  $\mathscr{B}=\{v_1,v_2,v_3\}$  i vettori colonna di A. Usiamo Gram-Schmidt per ottenere una base ortonormale di  $\mathbb{R}^3$   $\mathscr{O}=\{w_1,w_2,w_3\}$  che metterò sulle colonne di O, quindi  $M^{\mathscr{O}}_{\mathscr{A}}(id)=T^{-1}\Rightarrow AM^{\mathscr{O}}_{\mathscr{A}}=0\Rightarrow (v_1\quad v_2\quad v_3)M_i=w_i$ 

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \Rightarrow w_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} v_1; \ w_2' = v_2 - \langle v2, w_1 \rangle w_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \Rightarrow w_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \frac{1}{\sqrt{2}} v_2$$
 
$$w_3 = v_3 - \langle v_3, w_1 \rangle w_1 - \langle v_3, w_2 \rangle w_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = v_3 - \frac{1}{\sqrt{2}} v_2 + \frac{1}{\sqrt{2}} v_1 \text{ Quindi si ottiene}$$

che

$$O = egin{pmatrix} rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} & 0 \ 0 & 0 & 1 \ rac{1}{\sqrt{2}} & -rac{1}{\sqrt{2}} & 0 \end{pmatrix}; \ M = egin{pmatrix} rac{1}{\sqrt{2}} & 0 & rac{1}{2} \ 0 & rac{1}{\sqrt{2}} & rac{1}{2} \ 0 & 0 & 1 \end{pmatrix} \Rightarrow T = M^{-1}$$

# Isometrie

## > Definizione di Isometria

Sia V uno spazio euclideo con un prodotto scalare che indichiamo con  $\beta$ . Un'Isometria di V è un endomorfismo f di V tale che  $\beta(f(v),f(w))=\beta(v,w), \forall v,w\in V$ 

Fissiamo una base ortonormale  $\mathscr{B}$  di  $V \Rightarrow M_{\mathscr{B}}(\beta) = I_n$ .

Indichiamo con  $F=M_{\mathscr{B}}(\beta)$ . Allora la definizione precedente diventa  $x^Ty=(Fx)^TFy, \forall x,y\in\mathbb{R}^n$ supponendo che  $dim(V) = n \Rightarrow x^T F^T F y \Leftrightarrow F^T F = I_n$ . Quindi F è ortogonale.

In altre parole, le matrici ortogonali  $n \times n$  descrivono isometrie di uno spazio euclideo di dimensioni nrispetto a basi ortonormali

**Osservazione 1**: Supponiamo H una matrice ortogonale  $\Rightarrow det(H) = \pm 1$ 

Questa è una condizione necessaria ma non sufficiente per dire che una matrice ortogonale è un'isometria

**Osservazione 2**: Sia  $\lambda$  autovalore di H (presa come matrice ortogonale). Allora  $\lambda = \pm 1$ 

Infatti preso  $v \neq 0$  autovettore relativo a  $\lambda$ ,  $Hv = \lambda v$  ma H è un'isometria

$$\Rightarrow \beta(Hv,Hv) = \beta \xrightarrow{\beta \text{ definita positiva}} \beta(\lambda v,\lambda v) == \lambda^2 \beta(v,v) \Rightarrow \lambda^2 = 1 \Rightarrow \lambda = \pm 1$$

#### Esercizio:

Sia V uno spazio Euclideo e sia  $v \in V, v \neq 0$ . Consideriamo l'applicazione lineare  $\sigma_V$  su V definita come  $\sigma_V(w) = w - 2rac{eta(v,w)}{eta(v,v)} v.$  Mostrare che  $\sigma_V$  è una isometria

## Soluzione:

$$\sigma_V(v)=v-2rac{eta(v,v)}{eta(v,v)}v=v-2v=-v\Rightarrow v$$
 è un autovettore di  $\sigma_V$  relativo a  $-1$ 

$$orall woxed v, \sigma_V(w)=w-2rac{eta(w,v)}{eta(v,v)}v=w-2rac{0}{eta(v,v)}=w \Rightarrow ext{ogni } w ext{ ortogonale a } v ext{ è autovettore di } \sigma_V ext{ relativo a } 1$$

Essendo 
$$eta$$
 definito positivo, posso spezzare  $V = \underbrace{Span\{v\}}_{\exists v \mapsto v} \oplus \underbrace{(Span\{v\})^{\perp}}_{\exists v \mapsto v}$ 

Essendo eta definito positivo, posso spezzare  $V = \underbrace{Span\{v\}}_{\ni v \mapsto -v} \oplus \underbrace{(Span\{v\})^{\perp}}_{\ni w \mapsto w}$ Posso costruire una base ortonormale  $\mathscr{B}$  di V scegliendo  $v_1 = \frac{v}{\sqrt{\beta(v,v)}} \Rightarrow \beta(v_1,v_1) = 1$  e una base ortonormale di

$$(Span\{v_1\})^{\perp} \ \{v_2,\ldots,v_n\} \Rightarrow \mathscr{B} = \{v_1,v_2,\ldots,v_n\}$$

Quindi si ottiene che

$$M_{\mathscr{B}}(\sigma_V) = egin{pmatrix} -1 & & & & & \ & 1 & & & & \ & & \ddots & & & \ & & & -1 \end{pmatrix} \Rightarrow (M_{\mathscr{B}}(\sigma_V))^2 = I_n$$

Quindi è ortogonale e di conseguenza è una simmetria

In particolare questa rappresenta una riflessione rispetto a  $W=(Spanv_1)^{\perp}$ 



#### Esercizio:

Descrivere le isometrie di  $\mathbb{R}^2$  rispetto al prodotto scalare standard  $\langle ... \rangle$ 

#### Soluzione:

Questo equivale a descrivere tutte le matrici ortogonali  $2 \times 2$   $H = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$  ortogonali.

In particolare 
$$H=egin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow \left\langle egin{pmatrix} a \\ c \end{pmatrix}, egin{pmatrix} a \\ c \end{pmatrix} \right\rangle = a^2 + c^2 = 1$$
 Così anche per  $\begin{pmatrix} b \\ d \end{pmatrix}$ 

Questo è vero sempre per tutte le matrici della forma

$$H = egin{pmatrix} \cos(arphi) & -\sin(arphi) \ \sin(arphi) & \cos(arphi) \end{pmatrix} \Rightarrow det(H) = 1 \qquad K = egin{pmatrix} \cos(arphi) & \sin(arphi) \ \sin(arphi) & -\cos(arphi) \end{pmatrix} \Rightarrow det(K) = -1$$

Basta pensare alla circonferenza unitaria e prendere due vettori ortogonali sulla circonferenza unitaria Nel caso di H le matrici di A descrivono le rotazioni attorno all'origine in senso antiorario di un angolo  $\varphi$ . Nel caso di K, questa è ortogonale e simmetrica (reale) quindi è ortogonalmente diagonalizzabile per il teorema spettrale e ha autovalori reali  $\pm 1$  distinti. Esistono quindi  $v_1$  autovettore di K relativo a -1, quindi esistono due vettori  $v_1, v_2$  tali che  $v_1 \bot v_2$ 

Posso sceglierli entrambi di lunghezza 1, per cui esiste una base ortonormale di  $\mathbb{R}^2$  rispetto alla quale la matrice K è simile a  $K'=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$  e quindi rappresenta una riflessione rispetto ad una retta (Autospazio  $V_1$ )



Come possiamo scrivere tutte le isometrie di  $\mathbb{R}^3$ ?

## Esercizio:

Sia f un'isometria dello spazio euclideo V e sia  $U\subseteq V$  un sottospazio. Mostrare che  $f(U^\perp)=(f(U))^\perp$ 

## Soluzione:

Prendiamo 
$$v \in U^{\perp} \Rightarrow \forall u \in U, \beta(u,v) = 0 \Rightarrow \beta(f(u),f(v)) \Rightarrow f(U^{\perp}) \subseteq (f(U))^{\perp}$$
  
Poiché  $f$  è invertibile,  $\begin{cases} dim(f(U^{\perp})) = dim(U^{\perp}) \\ dim(f(U)) = dim(U) \end{cases} \Rightarrow dim(f(U))^{\perp} = dim(U^{\perp}) \Rightarrow f(U^{\perp}) = (f(U))^{\perp}$   
In particolare, poiché  $f$  è isometria se  $f(U) \subseteq U \Rightarrow f(U^{\perp}) \subseteq U^{\perp}$ 

## Soluzione del Problema:

Sia H una matrice ortogonale reale  $3 \times 3$ . Il polinomio caratteristico di H è un polinomio di grado 3 a coefficienti reali ( $p(t) \in \mathbb{R}[t], deg(p) = 3$ ), quindi ha necessariamente una radice reale.

Questo perché se  $\alpha$  è una radice del polinomio, allora anche  $\overline{\alpha}$  è radice dello stesso polinomio. In particolare, poiché deg(p)=3, p ha esattamente 3 radici  $\Rightarrow \exists \alpha'$  radice di p tale che  $\overline{\alpha'}=\alpha' \Leftrightarrow \alpha' \in \mathbb{R}$ 

Oppure lo si può vedere con i limiti: sapendo che  $\lim_{x\to -\infty} p(x) = -\infty$  e  $\lim_{x\to +\infty} p(x) = +\infty \Rightarrow \exists x$  tale che p(x) = 0 e lo si può dire per certezza perché il polinomio caratteristico è una funzione polinomiale, continua e derivabile  $\forall x \in \mathbb{R}$  Poiché H è ortogonale, questa radice (autovalore) è  $\pm 1 \Rightarrow \exists v \neq 0$  di lunghezza 1 tale che sia autovettore di H relativo a 1 oppure a -1. Chiamiamo allora f l'isometria descritta da  $H \Rightarrow H$  è simile ad una matrice della forma

$$egin{pmatrix} 1 & 0 & 0 \ 0 & M_{\mathscr{B}}(f|_W) \end{pmatrix} \quad ee \quad egin{pmatrix} -1 & 0 & 0 \ 0 & \ 0 & M_{\mathscr{B}}(f|_W) \end{pmatrix}$$

dove poniamo  $W = (Span\{v_1\})^{\perp}$ 

In particolare si può osservare che se  $\mathscr{B}_W$  è una base ortonormale di  $W\Rightarrow M_{\mathscr{B}_W}(f|_W)$  è una matrice  $\in M_2(\mathbb{R})$  ortogonale. Quindi possiamo individuare 4 categorie di isometrie in  $\mathbb{R}^3$ :

1) 
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \\ 0 & R_{\varphi} \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) \end{pmatrix}$$
 Rappresenta una rotazione attorno ad un asse

2) 
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 Rappresenta una riflessione rispetto ad un piano (a meno di cambio di base)

riflessione attorno ad un piano  $(V_{-1}^{\perp})$ 

4) 
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 Rappresenta una riflessione attorno ad una retta

# > Insieme delle Matrici Ortogonali

L'insieme delle matrici ortogonali di ordine n si indica con O(n) e rappresentano un sottogruppo di  $GL_n$ 

#### Esercizio 1:

Sia  $A \in O_3(\mathbb{R})$  tale che det(A) = 1 e tr(A) = -1 Mostrare che A è simmetrica.

### Soluzione:

A ha polinomio caratteristico  $p_A(t) \in \mathbb{R}[t]$  di grado 3 ha almeno una radice reale +1 o -1 perché A è ortogonale.

Se è 
$$+1 \Rightarrow p_A(t) = (t-1)(-t^2 + at + b)$$
; se è  $-1 \Rightarrow p_A(t) = (t+1)(-t^2 + at + b)$ 

$$\begin{array}{l} \textbf{-} + 1 \Rightarrow -b \xrightarrow{\underline{det(A)}} 1 \ \textbf{e} \ a + 1 \xrightarrow{\underline{tr(A)}} -1 \Rightarrow b = -1 \ \textbf{e} \ a = -2 \Rightarrow p_A(t) = (t-1)(-t^2-2t-1) \Rightarrow -(t-1)(t+1)^2 \\ \textbf{-} - 1 \Rightarrow b = 1 \ \textbf{e} \ a - 1 = -1 \Rightarrow b = 1 \ \textbf{e} \ a = 0 \Rightarrow p_A(t) = (t+1)(-t^2+1) \Rightarrow (t+1)^2(1-t) \end{array}$$

In entrambi i casi ho che tutte le radici sono reali  $\Rightarrow$  tutti gli autovalori sono reali  $\Rightarrow$  A è triangolarizzabile  $\Leftrightarrow \exists H$  tale che  $H^{-1}AH = T$  triangolare superiore  $\Leftrightarrow$  sulle colonne di H ho una base  $\{v_1, v_2, v_3\}$  tale che  $Span\{v_1, v_2\}$  e  $Span\{v_1, v_2, v_3\} = \mathbb{R}^3$  sono A invarianti

Posso quindi usare Gram-Schmidt per ottenere una base ortonormale  $\mathscr{B} = \{w_1, w_2, w_3\}$  dove

 $Span\{w_1\}=Span\{v_1\}$  e  $Span\{w_1,w_2\}=Span\{v_1,v_2\}$ , che continuano ad essere A invarianti.

Se chiamo K la matrice che ha sulle colonne  $w_1,w_2,w_3\Rightarrow K^{-1}AK=T'$  triangolare superiore, ma K è anche ortogonale, di conseguenza anche  $K^{-1}AK$  è ortogonale (perché prodotto di matrici ortogonali e  $O\leq GL$ ) Quindi T' è diagonale.

In particolare, se T' è ortogonale, allora  $(T')^T=(T')^{-1}$ . Se T' è triangolare superiore, ossia è della forma  $T'=(\triangledown)\Rightarrow (T')^T=(\trianglerighteq)$  e  $(T')^{-1}=(\triangledown)$  Dunque T' è necessariamente diagonale

#### Esercizio 2:

Sia  $A \in M_n(\mathbb{R})$ 

- 1) Dimostrare che  $A^TA$  e A hanno lo stesso nucleo e quindi lo stesso rango
- 2) Stabilire se A vale anche per matrici a coefficienti complessi
- 3) Quale delle seguenti matrici in  $M_3(\mathbb{R})$  possono essere scritte nella forma  $A^TA$

$$B = egin{pmatrix} 0 & 1 & 2 \ 1 & 0 & 1 \ 0 & 0 & 2 \end{pmatrix} \qquad C = egin{pmatrix} 0 & 1 & 2 \ 1 & 0 & 1 \ 2 & 1 & 2 \end{pmatrix} \qquad D = egin{pmatrix} 3 & 1 & 7 \ 1 & 5 & 0 \ 7 & 0 & 23 \end{pmatrix}$$

## Soluzione:

- 1)  $Ker(A) = Ker(A^TA)$
- $\subseteq$ )  $v \in Ker(A) \Rightarrow Av = 0 \Rightarrow A^TAv = 0 \Rightarrow v \in Ker(A^TA), \forall v \in V$

$$\supseteq)\ w \in Ker(A^TA) \Rightarrow A^TAw = 0 \Rightarrow \langle w, A^TAw \rangle = 0 \Rightarrow \langle Aw, Aw \rangle = 0 \Rightarrow w \in Ker(A)$$

2) Non è vero, infatti 
$$A=egin{pmatrix}1&1\\i&i\end{pmatrix}\Rightarrow A^T=egin{pmatrix}1&i\\1&i\end{pmatrix}\Rightarrow A^TA=0$$

3) Iniziamo a calcolare i determinanti delle matrici: det(B) = -2, det(C) = 2, det(D) = 77. Per il primo punto, se Aesiste come descritta, allora  $A^TA$  è congruente a  $I_3$ , ossia è definita positiva. Si può vedere subito che  $B \in C$  non lo sono in quanto i vettori  $v_{1_B}$  e  $v_{1_C}$  sono vettori isotropi rispettivamente di B e di C. Per vedere se D è definita positiva bisogna utilizzare il metodo dei minori principali, ossia (3, 14, 77), quindi D è definita positiva, quindi  $\exists A \in GL_3(\mathbb{R}) ext{ tale che } A^TA = D$ 

## **Esercizio Proposto:**

Un'applicazione lineare  $\varphi:V\Rightarrow V$  con V spazio euclideo è una isometria se e solo se l'immagine mediante  $\varphi$  di una base ortonormale di V è una base ortonormale di V

## > Definizione di Forma Quadratica

Una forma quadratica in n variabili  $x_1, \ldots, x_n$  è il polinomio omogeneo di secondo grado in  $x_1, \ldots, x_n$  tale che

$$q(x_1,\ldots,x_n) = \sum_{i < i}^n a_{ij} x_i x_j$$

Se 
$$n=2\Rightarrow q(x_1,x_2)=ax_1^2+bx_1x_2+cx_2^2$$
  
Se  $n=3\Rightarrow q(x_1,x_2,x_3)=a_{1,1}x_1^2+a_{2,2}x_2^2+a_{3,3}x_3^2+a_{1,2}x_1x_2+a_{1,3}x_1x_3+a_{2,3}x_2x_3$ 

Se definisco una matrice simmetrica  $A=(A_{i,j})$  come la matrice di una forma quadratica, ho che  $A_{i,i}=a_{i,i}$  e

$$A_{i,j}=rac{1}{2}a_{i,j}$$
 con  $i
eq j$ . Quindi ponendo ponendo  $x=egin{pmatrix} x_1\ dots\ x_n \end{pmatrix}$  , si ottiene che  $x^TAx=eta_A(x,x)$ 

In questo modo ho che con la formula di polarizzazione  $\beta(v,w)=\frac{\beta(v+w,v+w)-\beta(v,v)-\beta(w,w)}{2}=\frac{q(v+w)-q(v)-q(w)}{2}$ 

# Forme Bilineari Antisimmetriche

Ripasso: Una forma bilineare (in un campo a caratteristica diversa da 2) si dice antisimmetrica o alternata se  $\beta(v,w) = -\beta(w,v), \forall v,w \in V$ 

**Osservazione**: Questo implica che  $\beta(v,v)=0, \forall v\in V$ 

$$(\grave{\mathsf{E}}\;\mathsf{un} \Leftrightarrow \forall v, w, 0 = \beta(v+w,v+w) = \underbrace{\beta(v,v)}_{=0} + \underbrace{\beta(w,w)}_{=0} + \beta(v,w) + \beta(w,v) \Rightarrow \beta(v,w) = -\beta(w,v))$$

Inoltre  $\beta$  è antisimmetrica  $\Rightarrow \forall \mathscr{B}$  base di V,  $M_{\mathscr{B}}(\beta)$  è antisimmetrica  $M_{\mathscr{B}}(\beta)^T = -M\mathscr{B}(\beta)$ 

Abbiamo già osservato che se  $\beta$  è antisimmetrica non degenere, allora dim(V) è pari. (Infatti se A è di ordine dispari ed è antisimmetrica allora il determinante di A 
eq 0)

# > Definizione di Base Simplettica

Sia  $\beta$  antisimmetrica non degenere su V con dim(V)=2n. Una base  $\mathscr{B}=\{v_1,w_1,v_2,w_2,\ldots,v_n,w_n\}$  si dice base simplettica per V se  $\beta(v_i, w_i) = 1 \forall i \Rightarrow \beta(w_i, v_i) = -1$  e  $\beta(v_i, v_j) = \beta(w_i, w_j) = \beta(v_i, w_j) = 0, \forall i \neq j \text{ In } 0$ altri termini

$$M_{\mathscr{B}}(eta) = egin{pmatrix} 0 & 1 & & & \mathbf{0} \ -1 & 0 & & & & \ & & \ddots & & & \ & & & 0 & 1 \ \mathbf{0} & & & -1 & 0 \end{pmatrix}$$

## → Teorema

Se  $\beta$  è una forma bilineare antisimmetrica su V non degenere  $\Rightarrow$  esiste una base simplettica

**Corollario**: Se  $\beta$  è una forma bilineare alternante  $\Rightarrow \exists \mathscr{B}$  base tale che

$$M_{\mathscr{B}}(eta) = egin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix} rad(eta) & \mathbf{0} \\ & & 0 & 1 & \mathbf{0} \\ & & -1 & 0 & \mathbf{0} \\ & & \mathbf{0} & & \ddots & \\ & & & 0 & 1 \\ & & & & -1 & 0 \end{pmatrix} ext{Parte non degenere}$$

Corollario: Due matrici antisimmetriche sono congruenti ⇔ hanno lo stesso rango

#### Dimostrazione del Teorema:

Per la dimostrazione ricordiamo:

Sia  $\beta$  non degenere e sia  $W \subseteq V$  un suo sottospazio vettoriale  $\Rightarrow V = W \oplus W^{\perp} \Leftrightarrow \beta|_{W}$  è non degenere

Prendiamo  $v_1 \neq 0$ . Poiché  $\beta$  è non degenere, esiste un vettore  $u_1$  tale che  $\beta(v_1, v_1) \neq 0$ .

Poniamo 
$$w_1=rac{u_1}{eta(v_1,u_1)} \Rightarrow eta(v_1,w_1)=eta(v_1,rac{u_1}{eta(v_1,u_1)})=1$$

Osserviamo che  $v_1$  e  $w_1$  sono linearmente indipendenti, in caso contrario avrei avuto

$$w_1 = \lambda v_1 \Rightarrow \beta(v_1, w_1) = \lambda \beta(v_1, v_1) = 0.$$

Poniamo quindi  $W:=Span\{v_1,w_1\}\Rightarrow$  la matrice di  $eta|_W$  relativa alla base  $\{v_1,w_1\}$  è  $\begin{pmatrix}0&1\\-1&0\end{pmatrix}$  che ha

determinante 1 quindi  $V=W\oplus W^\perp\Leftrightarrow \beta|_{W^\perp}$  è non degenere antisimmetrica e quindi procediamo. Dopo n passi il processo si ferma.

#### Esercizio aggiuntivo:

Sia  $\mathbb{K}$  un campo finito con q elementi,  $V = \mathbb{K}^{2n}$  e  $\beta$  definita dalla matrice come nell'enunciaton del teorema. Quante basi simplettiche ci sono?

Suggerimento: Viene direttamente dal teorema precedente.

**Osservazione**: Questo è anche il numero di matrici  $A \in GL_{2n}(\mathbb{K})$  tali che

$$A^TJA = J \qquad \mathrm{con}\ J = egin{pmatrix} 0 & 1 & & & \mathbf{0} \ -1 & 0 & & & \mathbf{0} \ & & \ddots & & & \ & & & 0 & 1 \ \mathbf{0} & & & -1 & 0 \end{pmatrix}$$

## > Definizione di gruppo Simplettico - Gruppo di Lie

Quest'insieme prende il nome di gruppo simplettico

Su un campo infinito come  $\mathbb R$  o  $\mathbb C$  prende il nome di gruppo di Lie

## Esempio di costruzione di una base simplettica:

Sia  $V = \mathbb{K}^4$  e sia  $\beta$  tale che

$$M_{Can}(eta) = egin{pmatrix} 0 & 2 & 3 & 0 \ -2 & 0 & 0 & 1 \ -3 & 0 & 0 & 1 \ 0 & -1 & -1 & 0 \end{pmatrix}$$

Si parte da un vettore  $v_1$ . Prendiamo  $v_1=e_1$ . Adesso cerchiamo  $u_1$  tale che  $\beta(v_1,u_1)\neq 0$ . Posso prendere per esempio  $u_1=e_2\Rightarrow \beta(v_1,u_1)=2\Rightarrow w_1=\frac{1}{2}e_2$ . Determino  $(Span\{v_1,w_1\})^\perp\Leftrightarrow (Span\{e_1,e_2\})^\perp$ . Equivale a

$$\begin{cases} (1 & 0 & 0 & 0) \begin{pmatrix} 0 & 2 & 3 & 0 \\ -2 & 0 & 0 & 1 \\ -3 & 0 & 0 & 1 \\ 0 & -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = 0 \\ (0 & 1 & 0 & 0) \begin{pmatrix} 0 & 2 & 3 & 0 \\ -2 & 0 & 0 & 1 \\ -3 & 0 & 0 & 1 \\ 0 & -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = 0 \\ \Rightarrow \begin{cases} 2x_2 + 3x_3 = 0 \\ 2x_1 - x_4 = 0 \end{cases} \Rightarrow Span \begin{cases} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ -2 \\ 0 \end{pmatrix} \end{cases} \end{cases}$$

Pongo adesso  $v_2=e_1+2e_4$  e cerco  $u_2\in (Span\{e_1,e_2\})^\perp$  tale che  $\beta(v_2,u_2)\neq 0$ . Calcoliamo quindi:

$$\beta\left(\begin{pmatrix}1\\0\\0\\2\end{pmatrix},\begin{pmatrix}0\\3\\-2\\0\end{pmatrix}\right) = \begin{pmatrix}1&0&0&2\end{pmatrix}\begin{pmatrix}0&2&3&0\\-2&0&0&1\\-3&0&0&1\\0&-1&-1&0\end{pmatrix}\begin{pmatrix}0\\3\\-2\\0\end{pmatrix} = \begin{pmatrix}0&0&1&0\end{pmatrix}\begin{pmatrix}0\\3\\-2\\0\end{pmatrix} = -2$$

Posso prendere  $w_2=-\frac12(3e_2-e_3)=-\frac32e_2+e_3$  e otteniamo la base simplettica  $\mathscr{B}=\{e_1,\frac12e_2,e_1+2e_4,-\frac32e_2+e_3\}$ 

**Osservazione**: Dal teorema di esistenza di una base simplettica, segue che se  $\beta$  è una forma bilineare alternante non degenere, esistono sottospazi isotropi di dimensione  $\frac{1}{2}dim(V)$ . Infatti se ho  $\mathscr{B}=\{v_1,w_1,\ldots,v_n,w_n\}$  si ha che  $Span\{v_1,\ldots,v_n\}$  e  $Span\{w_1,\ldots,w_n\}$  sono sottospazi isotropi, ma non sono gli unici (basta cambiare base simplettica)

Si può dimostrare che dato  $W\subseteq V$  sottospazio isotropo di dimensione  $dim(w)=\frac{1}{2}dim(V)$  esiste una base simplettica  $\{v_1,w_1,\ldots,v_n,w_n\}$  tale che  $v_1,\ldots,v_n$  è una base di W.

Due matrici antisimmetriche sono congruenti se e solo se hanno lo stesso rango. Cosa si può dire della similitudine di matrici antisimmetriche (su  $\mathbb{R}$ ). Esiste qualcosa di analogo al teorema spettrale?

In generale vale la cosa seguente:

Se ho  $A \in M_n(\mathbb{R})$  e  $A + A^T = 0 \Rightarrow A$  è ortogonalmente simile ad una matrice della forma:

$$egin{pmatrix} 0 & a_1 & & & \mathbf{0} & & \ -a_1 & 0 & & & & \mathbf{0} & & \ & & \ddots & & & \mathbf{0} & & \ & & & 0 & a_k & & \ \mathbf{0} & & & -a_k & 0 & & \ & & \mathbf{0} & & & \mathbf{0} \end{pmatrix}$$