Level 3 Condensed Matter Physics

Example Workshop 4

1. Hund's rules and magnetic levels in paramagnetic Cu²⁺ ions

- (a) Calculate the principal quantum numbers S, L, and J of a Cu^{2+} ion $(1s^22s^22p^63s^23p^63d^9)$ using Hund's rules. Make a sketch of the (ground state energy) levels associated with the magnetic moment of a Cu^{2+} ion in a magnetic field of flux density of 1 Tesla. Label each of the levels with the quantum number representing the projection of the total angular momentum on the field direction. Calculate the energy separation between the levels.
- (b) How would your answer differ in Cu^{2+} was orbitally quenched (i.e. L=0 and hence J=S)? Again calculate Make a sketch of the (ground state energy) levels associated with the magnetic moment of a Cu^{2+} ion in a magnetic field of flux density of 1 Tesla. Label the levels and calculate the energy separation between the levels.

2. Paramagnetism, Hund's rules and spin-orbit coupling in Sm³⁺ ions.

- (a) Calculate S, L and J of the ground state of an Sm³⁺ ion (4f⁵) stating any assumptions that you make.
- (b) Calculate the magnitudes of the atomic spin, orbital and total angular momenta of the Sm³⁺ ion in its ground state (in units of \hbar). What are the magnitudes of the three corresponding magnetic moments (in units of μ _B).
- (c) State the number of energy levels that correspond to the magnetic moment of an Sm^{3+} ion in the presence of a magnetic field. Calculate the smallest energy separation between two of these levels if the applied magnetic field strength is $H = 1.6 \times 10^6 \text{ A m}^{-1}$. What frequency of electromagnetic radiation could be used to excite a transition between two of these levels?
- (d) Assuming the ions are magnetically isolated from one another in the solid, comment on the applicability of Curie's law to the paramagnetic susceptibility at 1 K and 300 K (**Hint**: Use the condition adopted to obtain Curie's law from the Brillouin function form of the magnetisation).
- (e) Calculate the maximum measureable magnetisation of a solid consisting of 1 mole of Sm^{3+} ions.
- (f) The spin-orbit interaction that couples \underline{S} and \underline{L} gives rise to the ground state (of part (a)) and to several excited states. The spin-orbit energy $E_{SO} = \lambda(\underline{L} \cdot \underline{S})$. If the spin-orbit coupling constant for Sm³⁺ is $\lambda = 28$ meV calculate the energy difference between the ground state and the first excited state. (**Hint**: Take the dot product of $\underline{J} = \underline{L} + \underline{S}$ with itself and re-arrange to obtain an expression for $\underline{L} \cdot \underline{S}$).
- (g) The effective number of Bohr magnetons of Sm^{3+} at room temperature is 1.5. Compare this value to your result from part (b) and explain any difference there may be.

(**Hint**: The effective number of Bohr magnetons, $\mu_{\rm eff}$, is defined via the equation $|\mu_J| = \{J(J+1)\}^{\frac{1}{2}}g_J\mu_{\rm B} = \mu_{\rm eff}\mu_{\rm B}$).

$$\begin{split} e &= 1.60 \times 10^{-19} \, \mathrm{C} \\ \mu_{\mathrm{B}} &= 9.27 \times 10^{-24} \, \mathrm{J} \, \mathrm{T}^{-1} \\ \mu_{0} &= 4\pi \times 10^{-7} \, \mathrm{H} \, \mathrm{m}^{-1} \\ k_{\mathrm{B}} &= 1.38 \times 10^{-23} \, \mathrm{J} \, \mathrm{K}^{-1} \\ h &= 6.63 \times 10^{-34} \, \mathrm{J} \, \mathrm{s}^{-1} \\ N_{\mathrm{A}} &= 6.022 \times 10^{23} \\ m_{e} &= 9.11 \, \times 10^{-31} \, \mathrm{kg} \end{split}$$