Name	Type	Summary	Pros	Cons
kNN	С	The k nearest examples to the one that has to be predicted (nearest in Euclidean distance when plotted across its features) vote on which class the new example should fall in. The example gets 'democratically' assigned to the winning class.	 Simple Makes no assumptions about underlying data distribution Fast training phase 	 Does not produce a model, limiting the ability to understand how features are related to the class Requires selection of an appropriate k Slow classification phase Nominal features and missing data require additional processing
Naïve Bayes	C	Applied Bayes theorem to the data to predict the probability of an output. Knows as Naïve because of its naïve assumptions about the features being equally important and independent. Often used for text classification (spam filters).	 Simple and fast Does well with noisy and missing data Requires few examples for training, but still works well with large datasets Easy to obtain the estimated probability for a prediction 	 Relies on the assumption of 'equally important and independent features' Not ideal if there are many numeric features Estimated probabilities are less reliable than the predicted classes
Decision Tree	С	Basically, a big flowchart with binary answers at each node up to the leaf node (result).	 Does well on most types of problems. Does not require the user to specify the model in advance 	 Often biased toward splits on features having a large number of levels It is easy to overfit or underfit the model

			 Excludes unimportant features Can be used on both small and large datasets Model that can be interpreted without a mathematical background 	trou mod relat due on a split • Sma in th data in la to de • Larg hard	lelling some tionships to reliance xis-parallel s II changes training can result rge changes ecision logic trees are
RIPPER Rule Learner	С	Works very similar to a decision tree, but makes rules out of all the possible paths taken from the root node to the output	 Generates easy to understand, human- readable rules Efficient on large and noisy datasets Generally, produces a simpler model than a comparable decision tree 	 May rule: to do com or extended work Not work num Migliage performs 	result in sthat seem efy mon sense expert wledge ideal for king on heric data ht not form as well nore plex
Multiple Linear Regression	R	An equation in terms of the independent variable (features) that fits the training data as good as possible (trying not to overfit). The features of the future variable to predict are simply plugged into the equation (or plotted onto the regression line graph) to predict its dependent variable.	 Most common approach for modelling numeric data Can be adapted to model almost any modelling task Provides estimates of both the strength and size of the relationships among features and the outcome 	 Make assument ass	tes strong imptions ut data model's in must be diffied by the in advance is not dle missing works with

				statistics to understand the model
Regression Trees	R	Exactly like a decision tree, but to get a numerical prediction, they make predictions based on the average value of the examples that reach a leaf.	 Combines the strengths of decision trees with the ability to model numerical data Does not require the user to specify the model in advance Uses automatic feature selection, which allows the approach to be used with a very large number of features May fit some types of data much better than linear regression Does not require knowledge of statistics to interpret the model 	 Requires a large amount of training data Difficult to determine the overall net effect of individual features on the outcome Large trees can become more difficult to interpret than a regression model
Model Trees	R	Just like Regression Trees, but at each leaf they build a multiple linear regression model from the examples reaching that node.	 All the above More powerful and more accurate predictions than regression trees 	 All the above Much more complicated to interpret than regression trees

Neural	C/R	Inputs (from nodes)	 Capable of 	•	Extremely
Networks	5,	are weighted per	modelling		computationally
11011101110		their importance	more complex		intensive and
		(usually calculated	patterns than		slow to train,
		with	nearly any		particularly if
		backpropagation)	other		the network
		and summed into a	algorithm		topology is
		new node. The sum	Makes few		
		is then fed into an			complex
		activation function	assumptions	•	Very prone to
		(sigmoid usually)	about the		overfitting
		that passes on the	data's		training data
		•	underlying	•	Results
		signal if activated	relationships		impossible to
		(sum is > than a			interpret
		threshold). Multiple			
		nodes can be layered			
		to model more			
		complex			
	- /-	relationships.			
Support	C/R	Uses flat	Not too much	•	Various Kernel
Vector		hyperplanes to	affected by		functions must
Machines		separate the data	noisy data		be tested to
(With non-		plotted in multi-	 Not prone to 		find the best
linear kernel)		dimensional space.	overfitting		(trial and error)
		The partitions	Known to	•	Very lengthy
		created by the	obtain very		training for
		hyperplanes tend to	good results		large datasets
		be, more or less,		•	Results
		homogeneous.			impossible to
		Kernel functions are			interpret
		used to 'add'			
		calculated features			
		that were not			
		present in the raw			
		data. This helps			
		redistribute the data			
		in a larger			
		dimensional space to			
		find a better-fit flat			
		hyperplane to			
		partition it.			

predictions). The votes can be weighted based on previous model performance. predictions). The features. • Can be used on data with extremely large number		votes can be weighted based on previous model	 Can be used on data with extremely 	the model to the data.
--	--	---	--	------------------------