Probe-Prüfung 1

- 1. Zeigen oder widerlegen Sie:
- Zeigen oder widerlegen Sie: 7
 a) $(AFFE)_{16} = 10 \cdot 16^4 + 15 \cdot 16^3 + 15 \cdot 16^2 + 14 \cdot 16$.
 b) $ggT(2^2 \cdot 3^5 \cdot 5, 2^2 \cdot 3^3 \cdot 7) = 2^2 \cdot 3^5$.
 c) $10 \in \mathbb{Z}_{25}$ ist multipliaktiv invertierbar. $ggT(\mathfrak{LO}_{12}\mathbb{Z}) \neq 1 \Rightarrow \text{inverterbas}$ d) 3 ist das multiplikativ Inverse zu 3 in \mathbb{Z}_5 . $3 \cdot 3 = 1 \cdot 10^{-3}$

 - e) $(\mathbb{Z}_{11} \setminus \{0\}, \cdot)$ ist eine Gruppe. \checkmark

 - f) $4x \equiv 2 \pmod{25}$ ist eindeutig lösbar in \mathbb{Z}_{25} . g) \mathbb{Z}_{25} g) 10x + 7y = 6 besitzt eine Lösung $x, y \in \mathbb{Z}$. h) $f: \mathbb{Z}_{12} \to \mathbb{Z}_{12}, f(x) = 8x \pmod{12}$ ist bijektiv. Signature $\mathbb{Z}_{25} = \mathbb{Z}_{25} = \mathbb{$
- 2. Gegeben die Aussage $(P \oplus Q) \Leftrightarrow Q$.
 - a) Fertigen Sie eine Wahrheitstabelle an.
 - b) Bestimmen Sie die disjunktive Normalform (DNF).
 - c) Skizzieren Sie die dazugehörige Schaltung.
- 3. Zeigen Sie mittels vollständiger Induktion:

$$\sum_{k=0}^{n} 2^k = 2^{n+1} - 1.$$

- 4. Bestimmen Sie alle Lösungen $x \in \mathbb{Z}$ von $9x \equiv 3 \pmod{150}$.
- 5. Bestimmen Sie alle Lösungen $x \in \mathbb{Z}$ von

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 5 \pmod{11}$$

- 6. Bestimmen Sie alle Lösungen $x, y \in \mathbb{Z}$ mit $-10 \le x, y \le 10$ von 5x + 7y = 3.
- 7. Knacken Sie RSA: Gegeben der öffentliche Schlüssel (N,e)=(3233,17) und die verschlüsselte Nachricht G = 2790. Was ist die ursprüngliche unverschlüsselte Nachricht T?