

UCB008 - APPLIED CHEMISTRY

Molecular Spectroscopy Series Lecture - V

UV-Visible Spectroscopy – Absorption and Intensity Shifts

by

Prof. Ranjana Prakash

School of Chemistry and Biochemistry
Thapar Institute of Engineering and Technology
Patiala -147004, India

Ranjana Prakash

Learning Outcomes

At the end of this session participants should be able to:

 Distinguish between various shifts and effects associated with UV-visible spectroscopy

Shifts and Effects

Ranjana Prakash

Bathochromic Shift (Red Shift)

- When absorption maximum (ε_{max}) is shifted towards longer wavelength, it is known as bathochromic shift or red shift.
- The effect is due to presence of an auxochrome or by the change of solvent.
- For example, an auxochrome group like –OH, -OCH₃ causes absorption of compound at longer wavelength.

Bathochromic Shift (Red Shift)

 p-nitrophenol, in alkaline medium, shows red shift, because negatively charged oxygen delocalizes more effectively than the unshared pair of electron.

Hypsochromic Shift (Blue Shift)

- When absorption maximum (ε_{max}) is shifted towards shorter wavelength, it is known as Hypsochromic shift or blue shift.
- The effect is due to removal of conjugation or by the change of solvent.
- Aniline shows blue shift in acidic medium because it loses conjugation.

Hyperchromic effect

 When intensity of absorption maximum (e_{max}) of a compound increases, it is known as hyperchromic effect.

Inclusion of an auxochrome also increases intensity of absorption.

Hypochromic effect

• When intensity of absorption maximum (ε_{max}) of a compound decreases, it is known as **hypochromic effect**.

• ε_{max} decreases due to the distortion caused by the methyl group.

Sharma YR, Elementary Organic Spectroscopy, S. Chand & Co.

In the next session.....

- Understand the effect of conjugation on λ_{max}
- Colour in organic compounds