Proposition: S_n : n (infinitely long) straight lines lie on a plane in such a way that no two of the lines are parallel, and no three lines intersect a single point.

This arrangement divides the plane into $\frac{n^2+n+2}{2}$.

Proof. (Induction).

Basis step. Suppose n = 1.

Observe that 1 line divides the plane into 2 regions. $2 = \frac{1^2 + 1 + 2}{2}$, thus S_1 .

Inductive step. Suppose S_n for some $n \in \mathbb{N}$.

We now show S_n implies S_{n+1} .

Observe that any 1 line intersects n lines once in any such arrangement of n+1 lines, dividing n+1 of the $\frac{n^2+n+2}{2}$ regions in the valid arrangement of n lines. Then

$$\frac{n^2 + n + 2}{2} + (n+1) = \frac{n^2 + n + 2 + 2(n+1)}{2} \tag{1}$$

$$=\frac{(n^2+2n+1)+(n+1)+1}{2} \tag{2}$$

$$=\frac{(n+1)^2+(n+1)+1}{2}. (3)$$

Thus S_{n+1} .

It follows by mathematical induction that S_n for all $n \in \mathbb{N}$.