Advanced Methods in Biostatistics II Lecture 12

December 5, 2017

• The general linear mixed model can be written as follows:

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{u}_i + \boldsymbol{\varepsilon}_i, \quad i = 1, \dots m.$$

- Here:
 - \mathbf{y}_i is an $n_i \times 1$ vector of observations.
 - \mathbf{X}_i is an $n_i \times p$ design matrix for the fixed effects.
 - β is a $p \times 1$ vector of fixed effects.
 - \mathbf{Z}_i is an $n_i \times k$ design matrix for the random effects.
 - \mathbf{u}_i is a $k \times 1$ vector of random effects.
 - ε_i is an $n_i \times 1$ vector of error terms.

• In addition, we assume that the error terms and random effects are uncorrelated across groups, i.e., when $i \neq i'$:

$$\operatorname{cov}(\boldsymbol{\varepsilon}_i,\boldsymbol{\varepsilon}_{i'}) = \boldsymbol{0}, \ \operatorname{cov}(\boldsymbol{u}_i,\boldsymbol{u}_{i'}) = \boldsymbol{0}, \ \operatorname{cov}(\boldsymbol{\varepsilon}_i,\boldsymbol{u}_{i'}) = \boldsymbol{0}.$$

• When i = i', we have that

$$cov(\boldsymbol{\varepsilon}_i, \boldsymbol{\varepsilon}_i) = \boldsymbol{\Sigma}_{\epsilon}, \quad cov(\mathbf{u}_i, \mathbf{u}_i) = \boldsymbol{\Sigma}_{u}, \quad cov(\boldsymbol{\varepsilon}_i, \mathbf{u}_i) = \mathbf{0}.$$

• We can reformulate the model as follows:

$$\mathbf{y} = \mathbf{X}\boldsymbol{eta} + \mathbf{Z}\mathbf{u} + \boldsymbol{arepsilon}$$

where

$$\mathbf{y} = \begin{pmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_m \end{pmatrix} \quad \mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_m \end{pmatrix} \quad \mathbf{Z} = \begin{pmatrix} \mathbf{Z}_1 & \dots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \mathbf{Z}_m \end{pmatrix}$$

$$\mathbf{u} = \begin{pmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_m \end{pmatrix} \quad \boldsymbol{\varepsilon} = \begin{pmatrix} \boldsymbol{\varepsilon}_1 \\ \vdots \\ \boldsymbol{\varepsilon}_m \end{pmatrix}.$$

The model implies that

$$\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \mathbf{V})$$

where

$$V = Z\Sigma_u Z' + \Sigma_{\epsilon}$$
.

- This is called the marginal formulation of the model.
- Estimation and inference for the fixed effects parameters are based on this formulation.

- **V** is an $N \times N$ block-diagonal matrix, with $N = \sum_{i=1}^{m} n_i$.
- It can be written as follows:

$$\mathbf{V} = \left(egin{array}{ccccc} \mathbf{Z}_1 \Sigma_u \mathbf{Z}_1' + \Sigma_\epsilon & \mathbf{0} & \vdots & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}_2 \Sigma_u \mathbf{Z}_2' + \Sigma_\epsilon & \ddots & \mathbf{0} \\ \vdots & \ddots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \vdots & \mathbf{Z}_m \Sigma_u \mathbf{Z}_m' + \Sigma_\epsilon \end{array}
ight)$$

Prediction

- A key feature of mixed models is that it is possible to predict the unobserved vector u.
- The Best Linear Unbiased Predictor (BLUP) for \mathbf{u} is given by $\hat{\mathbf{u}} = E(\mathbf{u}|\mathbf{y})$.
- When u and y are joint multivariate normal this can be expressed as follows:

$$E(\boldsymbol{u}|\boldsymbol{y}) = E(\boldsymbol{u}) + \operatorname{cov}(\boldsymbol{u},\boldsymbol{y})[\operatorname{var}(\boldsymbol{y})]^{-1}(\boldsymbol{y} - E(\boldsymbol{y})).$$

- Let us revisit the pig example.
- It consists of 9 repeated weight measures on 48 pigs.
- We use the following model:

$$y_{ij} = \beta_0 + u_i + \beta_1 x_{ij} + \epsilon_{ij}.$$

for $i=1,\ldots 48$ and $j=1,\ldots 9$ where $u_i\sim_{iid}N(0,\sigma_u^2)$ and $\epsilon_{ij}\sim_{iid}N(0,\sigma_\epsilon^2)$.

For the pig data set:

$$\mathbf{y} = (y_{1,1} \dots y_{1,9} \dots y_{48,1} \dots y_{48,9})'$$

$$\mathbf{X} = \begin{pmatrix} 1 & \dots & 1 & \dots & 1 & \dots & 1 \\ 1 & \dots & 9 & \dots & 1 & \dots & 9 \end{pmatrix}'$$

$$\boldsymbol{\beta} = (\beta_0 \quad \beta_1)'$$

$$\mathbf{Z} = \mathbf{I}_{48} \otimes \mathbf{J}_9 \qquad \mathbf{u} = (u_1 \quad \dots \quad u_{48})'$$

$$\boldsymbol{\Sigma}_u = \sigma_u^2 \mathbf{I}_9 \qquad \boldsymbol{\Sigma}_{\epsilon} = \sigma_{\epsilon}^2 \mathbf{I}_N$$

- We can predict u_i by considering the estimate $E[u_i | \mathbf{y}]$.
- To derive this, note the density for $u_i \mid \mathbf{y}$ is equal to the density of $u_i \mid \mathbf{y}_i$, since u_i is independent of every $y_{i'j}$ for $i \neq i'$.
- Hence, it is sufficient to consider $E(u_i|\mathbf{y}_i)$.

Here

$$var(\mathbf{y}_i) = \mathbf{V}_i$$

$$= \mathbf{J}_{n_i} \Sigma_{u} \mathbf{J}'_{n_i} + \Sigma_{\epsilon}$$

$$= \sigma_{u}^2 \mathbf{J}_{n_i} \mathbf{J}'_{n_i} + \sigma_{\epsilon}^2 \mathbf{I}.$$

and

$$cov(u_i, \mathbf{y}_i) = cov(u_i, \mathbf{J}_{n_i} u_i)$$

$$= \Sigma_u \mathbf{J}'_{n_i}$$

$$= \sigma_u^2 \mathbf{J}'_{n_i}$$

Matrix result

Lemma

$$(a\mathbf{I} + b\mathbf{J}_n\mathbf{J}'_n)^{-1} = \frac{1}{a}\left(\mathbf{I} - \frac{b}{a+nb}\mathbf{J}_n\mathbf{J}'_n\right)$$

for $a \neq 0$ and $a \neq -nb$.

Using the lemma, we can write:

$$\hat{u}_i = \frac{n_i \sigma_u^2}{\sigma^2 + n_i \sigma_u^2} (\bar{\mathbf{y}}_i - \beta_0 - \beta_1 \bar{\mathbf{x}}_i).$$

where $\bar{\mathbf{y}}_i$ is the average weight of the i^{th} pig and $\bar{\mathbf{x}}_i$ is the average week value.

 This is a type of shrinkage, where the mean residual for the ith pig is shrunk toward 0 with a shrinkage factor given by

$$\frac{n_i\sigma_u^2}{\sigma^2+n_i\sigma_u^2}.$$

- The larger the between-group variance σ_u^2 is relative to the within-group variance σ^2 , the less shrinkage we have.
- In addition, the more observations per group (i.e., pig), the less shrinkage we have.
- In this way prediction is calibrated to weigh the contribution of the individual pig versus the contribution of the others.

Consider expressing the model as follows:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}_{(1)}\mathbf{u}_1 + \dots + \mathbf{Z}_{(k)}\mathbf{u}_k + \boldsymbol{\varepsilon}$$

 Here we assume each Z_(h) is an n × r_h matrix that specifies membership in the various clusters or subgroups, and the u_h are different random effects.

• Let $E(\mathbf{u}) = E(\varepsilon) = \mathbf{0}$, and let us assume

$$\operatorname{var}(\boldsymbol{\varepsilon}) = \sigma_{\epsilon}^2 \mathbf{I}_N$$

and

$$\operatorname{var}(\mathbf{u}_h) = \sigma_h^2 \mathbf{I}_{r_h}.$$

- Here r_h represents the number of elements in \mathbf{u}_h .
- In addition, $cov(\mathbf{u}_i, \mathbf{u}_i) = \mathbf{0} \ \forall i \neq j$, and $cov(\mathbf{u}, \varepsilon) = \mathbf{0}$.

• We summarize the model as follows:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \sum_{h=1}^{k} \mathbf{Z}_{(h)} \mathbf{u}_h + \boldsymbol{\varepsilon}$$

where

$$\mathbf{V} \equiv \mathrm{var}(\mathbf{y}) = \sum_{h=1}^k \sigma_h^2 \mathbf{Z}_{(h)} \mathbf{Z}_{(h)}' + \sigma_\epsilon^2 \mathbf{I}_N.$$

• A useful extension is to make the following definition:

$$\mathbf{u}_0 \equiv \varepsilon$$
 $\mathbf{Z}_{(0)} \equiv \mathbf{I}_N$ $\sigma_0^2 \equiv \sigma_\epsilon^2$

We can now write the model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \sum_{h=0}^{k} \mathbf{Z}_{(h)} \mathbf{u}_{h}$$

with

$$\mathbf{V} = \sum_{h=0}^{k} \sigma_h^2 \mathbf{Z}_{(h)} \mathbf{Z}'_{(h)}.$$

Estimation

- Next, we focus on estimating the fixed effects and variance components.
- For a given V we can estimate β using:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{y}.$$

 The most common approaches towards estimating the parameters in the covariance matrices is to use maximum likelihood (ML) or restricted maximum likelihood (REML).

MLE

• The MLE of **V** is based on using the marginal model:

$$\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \mathbf{V}).$$

• The log-likelihood of y is given by:

$$\ell(\boldsymbol{\beta}, \mathbf{V}) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\log|\mathbf{V}| - \frac{1}{2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'\mathbf{V}^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}).$$

MLE

 Optimizing over β for fixed V we obtain the familiar estimate:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{y}.$$

• Plugging this value into $\ell(\beta, \mathbf{V})$ we obtain the profile log-likelihood for \mathbf{V} :

$$\ell_{P}(\mathbf{V}) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\log|\mathbf{V}| - \frac{1}{2}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})'\mathbf{V}^{-1}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

$$\propto -\frac{1}{2}\log|\mathbf{V}| - \frac{1}{2}(\mathbf{y}'\mathbf{V}^{-1}(\mathbf{I} - \mathbf{X}(\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1})\mathbf{y})$$

MLE

- The MLE for V can be found by maximizing this function.
- Note that the MLE estimator for the linear mixed effect model will be biased and the error on the random effects covariance may be large.
- In contrast, REML estimates tend to be less biased than the ML estimates.

- For example, if $y_i \sim_{iid} N(\mu, \sigma^2)$, REML yields the unbiased variance estimate (divided by n-1) rather than the biased variance estimate (divided by n) obtained via ML.
- REML estimates are often the default for linear mixed effect model programs.

- The key idea of REML is to perform maximum likelihood estimation for Ky rather than y, where K is chosen so that the distribution of Ky only involves the variance components, not β.
- For this to occur, we need ${\bf K}$ to be a full-rank matrix such that ${\bf K}{\bf X}={\bf 0}.$
- In this setting, $E(\mathbf{K}\mathbf{y}) = \mathbf{K}\mathbf{X}\boldsymbol{\beta} = \mathbf{0}$.

It turns out that K must be of the form

$$\label{eq:Karlowski} \begin{array}{lll} \textbf{K} & = & \textbf{C}(\textbf{I} - \textbf{H}) \\ & = & \textbf{C}[\textbf{I} - \textbf{X}(\textbf{X}'\textbf{X})^{-1}\textbf{X}'], \end{array}$$

where $\bf C$ specifies a full-rank transformation of the rows of the projection matrix $\bf I - \bf H$.

 There are an infinite number of such K's, and it does not matter which is used.

Consider the marginal model where

$$\boldsymbol{y} \sim \textit{N}(\boldsymbol{X}\boldsymbol{\beta},\boldsymbol{V})$$

with

$$\mathbf{V} = \sum_{h=0}^{k} \sigma_h^2 \mathbf{Z}_{(h)} \mathbf{Z}'_{(h)}.$$

- Let K be specified as above.
- Then,

$$\mathbf{K}\mathbf{y} \sim N \bigg(\mathbf{0}, \mathbf{K} \Big(\sum_{h=0}^{k} \sigma_h^2 \mathbf{Z}_{(h)} \mathbf{Z}_{(h)}' \Big) \mathbf{K}' \bigg).$$

- Thus the distribution of $\mathbf{K}\mathbf{y}$ only involves the k+1 variance components as unknown parameters.
- In order to estimate the variance components, the next step in REML is to maximize the likelihood of Ky with respect to these variance components.
- We now develop a set of estimating equations by taking partial derivatives of the log likelihood with respect to the variance components, and setting them equal to zero.

• The log-likelihood can be expressed as follows:

$$\begin{split} \ell(\sigma_0^2, & \dots, \sigma_k^2) \\ &= & -\frac{n-r}{2} \log(2\pi) - \frac{1}{2} \log|\mathbf{K} \mathbf{V} \mathbf{K}'| - \frac{1}{2} \mathbf{y}' \mathbf{K}' (\mathbf{K} \mathbf{V} \mathbf{K}')^{-1} \mathbf{K} \mathbf{y} \\ &= & -\frac{n-r}{2} \log(2\pi) - \frac{1}{2} \log|\mathbf{K} \Big(\sum_{h=0}^k \sigma_h^2 \mathbf{Z}_{(h)} \mathbf{Z}'_{(h)} \Big) \mathbf{K}'| \\ & & -\frac{1}{2} \mathbf{y}' \mathbf{K}' \Big[\mathbf{K} \Big(\sum_{h=0}^k \sigma_h^2 \mathbf{Z}_{(h)} \mathbf{Z}'_{(h)} \Big) \mathbf{K}' \Big]^{-1} \mathbf{K} \mathbf{y} \end{split}$$

Vector and Matrix Calculus

Theorem

Let **A** be a nonsingular with a derivative $\partial \mathbf{A}/\partial x$. Then,

$$\frac{\partial \mathbf{A}^{-1}}{\partial x} = -\mathbf{A}^{-1} \, \frac{\partial \mathbf{A}}{\partial x} \, \mathbf{A}^{-1}$$

Vector and Matrix Calculus

Theorem

Let A be a positive definite matrix. Then,

$$\frac{\partial \log |\mathbf{A}|}{\partial x} = \operatorname{tr} \left(\mathbf{A}^{-1} \, \frac{\partial \mathbf{A}}{\partial x} \right).$$

• Using these results, we take the partial derivative of $\ell(\sigma_0^2, \dots, \sigma_k^2)$ with respect to each of the σ_n^2 :

$$\begin{split} &\frac{\partial}{\partial \sigma_h^2} \ell \big(\sigma_0^2, \dots, \sigma_k^2 \big) \\ = & -\frac{1}{2} \mathrm{tr} \bigg((\mathbf{K} \mathbf{V} \mathbf{K}')^{-1} \Big[\frac{\partial}{\partial \sigma_h^2} (\mathbf{K} \mathbf{V} \mathbf{K}') \Big] \bigg) \\ & + \frac{1}{2} \mathbf{y}' \mathbf{K}' (\mathbf{K} \mathbf{V} \mathbf{K}')^{-1} \Big[\frac{\partial}{\partial \sigma_h^2} (\mathbf{K} \mathbf{V} \mathbf{K}') \Big] (\mathbf{K} \mathbf{V} \mathbf{K}')^{-1} \mathbf{K} \mathbf{y} \\ = & -\frac{1}{2} \mathrm{tr} \bigg((\mathbf{K} \mathbf{V} \mathbf{K}')^{-1} \mathbf{K} \mathbf{Z}_{(h)} \mathbf{Z}'_{(h)} \mathbf{K}') \bigg) \\ & + \frac{1}{2} \mathbf{y}' \mathbf{K}' (\mathbf{K} \mathbf{V} \mathbf{K}')^{-1} \mathbf{K} \mathbf{Z}_{(h)} \mathbf{Z}'_{(h)} \mathbf{K}' (\mathbf{K} \mathbf{V} \mathbf{K}')^{-1} \mathbf{K} \mathbf{y} \end{split}$$

• Setting this result equal to zero, we obtain a set of k+1 estimating equations for $\sigma_0^2, \dots \sigma_k^2$ given by

$$\operatorname{tr} \left((\mathbf{K} \mathbf{V} \mathbf{K}')^{-1} \mathbf{K} \mathbf{Z}_{(h)} \mathbf{Z}'_{(h)} \mathbf{K}' \right)$$

$$= \mathbf{y}' \mathbf{K}' (\mathbf{K} \mathbf{V} \mathbf{K}')^{-1} \mathbf{K} \mathbf{Z}_{(h)} \mathbf{Z}'_{(h)} \mathbf{K}' (\mathbf{K} \mathbf{V} \mathbf{K}')^{-1} \mathbf{K} \mathbf{y}$$

 Note, the expected value of the quadratic form on the right side is given by the left side of the equation.

- In certain special cases these equations can be simplified to yield closed-form solutions.
- However, in most cases, numerical methods are required to solve the system of equations.

Bayesian formulation

- An alternative way to derive the REML estimates is to use a Bayesian formulation.
- Consider a model where

$$\mathbf{y} \mid \boldsymbol{\beta} \sim N(\mathbf{X}\boldsymbol{\beta}, \mathbf{Z}\Sigma_{u}\mathbf{Z}' + \sigma^{2}\mathbf{I})$$

and $\beta \sim N(0, \theta I)$.

• Calculating the posterior mode for Σ_u and σ^2 after integrating out β as $\theta \to \infty$ results in the REML estimates.

Inference for β

Estimates of the variance components can be inserted into
 V to obtain:

$$\hat{\mathbf{V}} = \sum_{h=0}^{k} \hat{\sigma}_h^2 \mathbf{Z}_{(h)} \mathbf{Z}'_{(h)}.$$

• We can in turn use this to estimate:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\hat{\mathbf{V}}^{-1}\mathbf{X})^{-1}\mathbf{X}'\hat{\mathbf{V}}^{-1}\mathbf{y}.$$

 This is sometimes called the estimated generalized least-squares solution.

Inference for β

• An approximate estimate of the variance-covariance matrix for $\hat{\beta}$ is given by:

$$\operatorname{cov}(\hat{\boldsymbol{\beta}}) = (\mathbf{X}'\hat{\mathbf{V}}^{-1}\mathbf{X})^{-1}.$$

- Note this ignores the variability due to the estimation of V.
- For large samples this extra variability is negligible, but it can be substantial for smaller samples.
- If the sample size is small it may be preferable to use a parametric bootstrap to approximate the distribution of the test statistics.

Likelihood ratio tests

- Testing can be performed using likelihood ratio tests.
- We can compare two nested models m₀ and m₁ using the likelihood ratio test statistic:

$$-2\log(LR(\mathbf{y})) = -2(\ell(\hat{\boldsymbol{\beta}}_0, \hat{\mathbf{V}}_0|\mathbf{y}) - \ell(\hat{\boldsymbol{\beta}}_1, \hat{\mathbf{V}}_1|\mathbf{y})),$$

where $\hat{\beta}_0$, $\hat{\mathbf{V}}_0$ and $\hat{\beta}_1$, $\hat{\mathbf{V}}_1$ are the parameter estimates under the two models.

• This test statistic is asymptotically χ^2 with degrees of freedom equal to the difference in number of parameters between the two models.

Likelihood ratio tests

- If the models differ in their fixed effects, it is not possible to use REML estimates in the likelihood ratio statistic.
- REML estimates the random effects by considering linear combinations of the data that remove the fixed effects and therefore the two likelihood functions will not be comparable.

Likelihood ratio tests

- Note this asymptotic result is based on some technical assumptions that are not always satisfied in practice.
- In particular, the parameters under the null model cannot lie on the boundary of the parameter space.
- This is a problem for testing variance components when the null hypothesis is they are equal to zero, as they are constrained to be positive (or positive definite).

Testing variance components

Consider the model:

$$y_{ij} = \beta_0 + u_i + \beta_1 x_{ij} + \epsilon_{ij}.$$
 where $u_i \sim_{iid} N(0, \sigma_u^2)$ and $\epsilon_{ii} \sim_{iid} N(0, \sigma_\epsilon^2)$.

- Suppose we want to test whether the intercepts of the groups are significantly different from one another.
- This is equivalent to testing

$$H_0: \sigma_u^2 = 0$$
 versus $H_a: \sigma_u^2 > 0$.

Testing variance components

- Under certain independence assumptions, the asymptotic distribution when H_0 is true implies that there is a 50% chance that $\hat{\sigma}_{\mu}^2 = 0$.
- This leads to the following approximate result:

$$-2\log(LR(\mathbf{y}))\sim 0.5\chi_0^2+0.5\chi_1^2$$

where χ_0^2 is a point mass at 0.

Testing variance components

- This results assumes that y can be partitioned into subvectors that are independent.
- This assumption does not necessarily hold for all mixed models.
- The asymptotic distribution for general mixed models is more difficult.

Coding example

library (SemiPar)

```
library(lme4)
library(ggplot2)
data(pig.weights)

ggplot(pig.weights, aes(x = num.weeks, y = weight, group = id.num)) +
   geom_point() + geom_path(alpha = .2) +
   labs(x = "Week", y = "Weight")
```


Coding example

```
pig.mixed = lmer(weight ~ (1 | id.num) + num.weeks, data = pig.weights)
> summary(pig.mixed)
Linear mixed model fit by REML ['lmerMod']
Formula: weight ~ (1 | id.num) + num.weeks
  Data: pig.weights
REML criterion at convergence: 2033.8
Scaled residuals:
   Min 10 Median 30 Max
-3.7390 -0.5456 0.0184 0.5122 3.9313
Random effects:
Groups Name Variance Std.Dev.
id.num (Intercept) 15.142 3.891
Residual
            4.395 2.096
Number of obs: 432, groups: id.num, 48
Fixed effects:
          Estimate Std. Error t value
(Intercept) 19.35561 0.60314 32.09
num.weeks 6.20990 0.03906 158.97
Correlation of Fixed Effects:
        (Intr)
num.weeks -0.324
```

Coding example

```
pig.weights$pig.mixed.fit = fitted(pig.mixed)
ggplot(pig.weights, aes(x = num.weeks, y = weight, group = id.num)) +
  geom_point() + geom_path(alpha = .2) +
  labs(x = "Week", y = "Weight") +
  geom_{{(1)}ine(aes(y = pig.mixed.fit), color = "blue", alpha = .5)}
```

