Summary

1.

Derivative of a Constant Function

The derivative of a constant is 0.

Example 1. Find $\frac{dy}{dx}$ for each.

(a)
$$f(x) = 7$$

(b)
$$g(x) = \sqrt[3]{2}$$

Power Rule

If $f(x) = x^n$, where n is any real number, then $f'(x) = nx^{n-1}$.

For radicals, remember that $\sqrt[r]{x^p} = x^{p/r}$.

Example 2. Find $\frac{dy}{dx}$ for each.

(a)
$$f(x) = x^4$$

(b)
$$g(x) = x^{1.32}$$

(c)
$$y = \sqrt{x}$$

$$(d) g(x) = \frac{1}{x^3}$$

Constant Multiple Rule

• For
$$f(x) = 2x^3$$
, $f'(x) = 6x^2$

• For
$$f(x) = 3x^5$$
, $f'(x) = 15x^4$

• For
$$f(x) = -2x^4$$
, $f'(x) = -8x^3$

For
$$f(x) = c \cdot x^n$$
, $f'(x) = n \cdot c \cdot x^{n-1}$

Example 3. Differentiate each.

(a)
$$g(x) = 1.2x^5$$

(b)
$$y = \frac{1}{7x^3}$$

(c)
$$f(x) = \frac{2}{3}\sqrt[5]{x}$$

Sum and Difference Rules

To differentiate a sum/difference of 2 (or more functions), differentiate each function separately and add/subtract the results.

Example 4. Differentiate each.

(a)
$$f(x) = 3x^2 + 2x - 1$$

(b)
$$g(x) = \frac{1}{2}x^3 - \frac{3}{2}x^{-1}$$

(b)
$$g(x) = \frac{1}{2}x^3 - \frac{3}{2}x^{-1}$$
 (c) $y = 3x^4 + 2\sqrt{x} - \frac{2}{x^2}$

Applications

Example 5. A coconut falls from a tree that is 75 feet tall. Its height above the ground after *t* seconds is given by

$$s(t) = 75 - 16t^2$$

where s(t) is measured in feet and is the **position function**.

- (a) The **velocity function**, v(t), is s'(t). Determine v(t).
- (b) Compute and interpret s(2) and v(2).
- (c) When does the coconut hit the ground?

Example 6. A refrigerator company determines the total cost function for producing fridges is

$$C(x) = 2x^2 + 15x + 1500$$

where x is the weekly production of fridges and C(x) is the total cost (in dollars). The revenue function is given as

$$R(x) = -0.3x^2 + 460x$$

where R(x) is in dollars.

- (a) Determine P(x) and P'(x).
- (b) Evaluate and interpret P(20) and P'(20).