-

0

Propensity to Buy

TABLE OF CONTENT

0

AI & MACHINE LEARNING

Definition, type, roadmap, function

WHY ML?

Why do we need machine learning

PROPENSITY TO BUY

Prediction of buying customers in next 5 months

NEXT STEP

Future plan

AI & MACHINE LEARNING

ARTIFICIAL INTELLIGENCE

A technique which enables machine to mimic human behavior.

MACHINE LEARNING

Subset of AI techniques which use statistical methods to enable machines to get better at task without explicit instructions and relying on patterns.

MACHINE LEARNING ROADMAP

WHY DO WE NEED ML?

- There are some tasks that are too big and too hard for people to quickly.
- Human can detect pattern, however with the growth of data, it's impossible to detect thousands of pattern from data, not even mentioning the iterations.
- Human are more reluctant to mistakes when doing repeated jobs, while computers are less reluctant to it.

PROPENSITY TO BUY

Here, the propensity to buy model is the predictive model that analyze the purchase behavior of customers by making distributional assumptions

Benefits:

- Predict probability of customer to become churn
- Predict CLV
- Predict purchase volume

Model used: Lifetimes Library (https://lifetimes.readthedocs.io/en/latest/Quickstart.html)

Model limitation: only can be used for user with >1 transaction

**Lifetimes use the combination of Beta-Geometric/Negative Binomial (BG/NBD) model combined with the Gamma-Gamma model for estimating the customer lifetime value

HOW THE MODEL WORKS

The model uses several probability models.

The main factors affecting: the frequency of purchases, the period between every purchase For example from the user purchase history below, the probability of alive at 1 May 2021 is 0.2

** P_Alive is (1 - probability customer becomes inactive), or the probability of the customer is still active in the merchant

MENU

##

PROPENSITY TO BUY MODEL ASSUMPTIONS

)

Assumption	Explanation
Customer's transaction rate follows Poisson process	The customer's transaction is a random process that is independent and has a mean rate
Heterogeneity in transaction rates among customers follows a Gamma distribution	Each customer has their own probability of buying that follows gamma distribution (a continuous distribution)
The probability of dropping out after transaction follows a geometric distribution	The geometric distribution is used to model the distribution of the number of transactions a customer makes before dropping out to generate a fixed parameter probability p
Heterogeneity in p follows a Beta distribution	Different customer may has different inactive probability (p). The distribution of p across the population of customers can be described by Beta distribution (a continuous probability distribution)
The transaction rate λ and the dropout probability p vary independently across customers.	The expected number of transactions per unit time (λ) and the inactive probability of a customer (p) are assumed to be independent of each other across different customers

0

DATA DESCRIPTION

Description	Lifetime Transactions from members who joined before 2021	
Features	User ID, Transaction recency (date difference between last 2 transactions), Transaction frequency	
Train Test Split	The Data was split into two parts, Train (trx date before Dec 2022), Test (trx date on Jan - May 2023)	

0

Negative

Positive

Real Label

-

MODEL EVALUATION

Below is the result for number of purchases in Jan – May 2023 (5 months purchase prediction):

Predicted Label

Negative Positive FP = 40,477TN = 412,517TP = 35,370FN = 60,309

True Positive Right Number of trx: 17,876 True Positive incorrect number of trx: 17,494

Accuracy (only true positive with right number of trx counted): 78.44%

Accuracy (All): **81.63%**

##

0

NEXT STEP

 \bigcirc

Increase model accuracy -> explore other data preprocessing

0

- Deploy model for production purposes
- **Explore more Machine Learning** models for business purposes

ш

RESOURCES

- https://www.getcensus.com/blog/primer-on-the-types-and-features-of-fraud-prediction-models
- https://lifetimes.readthedocs.io/en/latest/Quickstart.html
- https://github.com/CamDavidsonPilon/lifetimes/blob/master/lifetimes/fitters/beta_geo_fitter.py
- <u>https://towardsdatascience.com/predicting-customer-lifetime-value-with-buy-til-you-die-probabilistic-models-in-python-f5cac78758d9</u>
- https://cxl.com/blog/propensity-modeling/#h-1-selecting-the-features-for-your-propensity-model

Code:

https://github.com/cindysuyitno/Churn-Prediction

