



# Welcome to Day 7





## Day 7





- ★ Introduction to Networking
- ★ Network Concepts and Components
- ★ Protocols and Ports
- ★ Introduction to Linux Networking
- ★ Firewall Configurations
- ★ Network Troubleshooting
- ★ Network Security Best Practices











# Networking

The practice of connecting computers and other devices to share resources.

**Importance**: Facilitates communication, resource sharing, data exchange, etc















## **Network Concepts - Types**







LAN

Local Area Network



Wide Area Network







**PAN** 

Personal Area Network









## →Network Component - Hardware



**Switches** 





## **Network Components - Software**



#### **Network OS**

Microsoft Windows Server Linux-based NOS



#### **Network Protocols**

TCP/IP, HTTP, FTP, etc







## **Definition**

An IP (Internet Protocol) address is a unique identifier assigned to each device connected to a network, allowing them to communicate with each other









## **Types of IPs**









#### IPv4

Consists of four octets (32 bits), typically written as four decimal numbers separated by dots (e.g., 192.168.1.1).

#### IPv6

Consists of eight groups of four hexadecimal digits (128 bits), separated by colons (e.g., 2001:0db8:85a3:0000:0000:8a2e :0370:7334).







## IP Address Classes





#### Class E

Reserved For Experimental Uses

#### Class A

- 1. Range: 0.0.0.0 to 127.255.255.255
- 2. Default Subnet Mask: 255.0.0.0
- 3. Number of Networks: 128

#### Class C

- 1. Range: 192.0.0.0 to 223.255.255
- 2. Default Subnet Mask: 255.255.255.0
- 3. Number of Networks: 2,097,152 (2^21)

#### Class B



- 1. Range: 128.0.0.0 to 191.255.255.255
- Default Subnet Mask:
  255.255.0.0
  Number of Networks:
  16,384

#### Class D

- 1. Range: 224.0.0.0 to 239.255.255.255
- 2. Purpose: Reserved for multicast groups.





### **Private IP Addresses**

Private IP Addresses: Used within private networks and not routable on the internet.

Class A: 10.0.0.0 to 10.255.255.255 Class B: 172.16.0.0 to 172.31.255.255 Class C: 192.168.0.0 to 192.168.255.255

Loopback Address: 127.0.0.1, used for testing and diagnostics on the local machine.

APIPA (Automatic Private IP Addressing): 169.254.0.0 to 169.254.255.255, used when a device fails to obtain an IP address from a DHCP server.







## **IPv6 Definition**







#### **Structure**

Consists of 128 bits, written in eight groups of four hexadecimal digits

#### **Example**

2001:0db8:85a3:0000:0000:8a2e :0370:7334

$$4x4x8 = 16x8 = 128$$



### **Features of IPv6**

 $\Rightarrow$ 

Larger Address Space Simplified Headers



Autoconfiguration Enhanced Security





# Subnet & CIDR

**Definitions and Examples** 





## Subnet

The process of dividing a network into smaller subnetworks (subnets) to improve manageability and security.













## **CIDR**

(Classless Inter-Domain Routing) - A method for allocating IP addresses and routing that replaces the traditional class-based system.



**Notation:** Uses a suffix (e.g., /24) to indicate the number of bits in the subnet mask.

















#### **Determine Network Prefix Length:**

**CIDR Calculations** 

- Subtract the number of host bits from 32 (IPv4) or 128 (IPv6).
- Example:
  - For a network with 256 hosts, you need 8 bits for hosts (2^8 = 256).
  - Network prefix length is 32 8 = 24 (IPv4), hence /24.



#### **Subnet Mask Calculation:**

- Convert the prefix length to a subnet mask.
- **Example:** /24 corresponds to 255.255.25.0.





## **\***

## $\Rightarrow$



**Scenario**: Allocating IP addresses for a company with different departments.

• **Network**: 192.168.0.0/22

**Example** 

- /22 means: 22 bits are used for the network prefix, and 10 bits are used for host addresses.
- Subnet Mask: 255.255.252.0





## **♦**





#### **Subnets:**

**Example** 

- Marketing Department: 192.168.0.0/24
  - Range: 192.168.0.1 to 192.168.0.254
  - Subnet Mask: 255.255.255.0
- Sales Department: 192.168.1.0/24
  - Range: 192.168.1.1 to 192.168.1.254
  - Subnet Mask: 255.255.255.0
- **IT Department**: 192.168.2.0/24
  - Range: 192.168.2.1 to 192.168.2.254
  - Subnet Mask: 255.255.255.0
- Finance Department: 192.168.3.0/24
  - Range: 192.168.3.1 to 192.168.3.254
  - Subnet Mask: 255.255.255.0







| 7 | Application Layer  | Human-computer interaction layer, where applications can access the network services |
|---|--------------------|--------------------------------------------------------------------------------------|
| 6 | Presentation Layer | Ensures that data is in a usable format and is where data encryption occurs          |
| 5 | Session Layer      | Maintains connections and is responsible for controlling ports and sessions          |
| 4 | Transport Layer    | Transmits data using transmission protocols including TCP and UDP                    |
| 3 | Network Layer      | Decides which physical path the data will take                                       |
| 2 | Data Link Layer    | Defines the format of data on the network                                            |
| 1 | Physical Layer     | Transmits raw bit stream over the physical medium                                    |







































# 10 Minute Break







## **Why Use Linux for Networking**









## **Linux Commands**





#### **Ifconfig**

View and configure IP addresses, netmasks, and broadcast addresses





#### ip

Similar to ifconfig but with additional capabilities





#### ping

Sends ICMP Echo Request packets to the target host and waits for an ICMP Echo Reply.







Useful for monitoring and troubleshooting network issues.







## <del>\*</del>

## $\Rightarrow$



## Wireshark

sudo apt-get install wireshark

Capture Network Traffic:

Open Wireshark and select the network interface to capture traffic from.

Click "Start" to begin capturing packets.

Use filters to narrow down the captured traffic, e.g., ip.addr == 192.168.1.1.



Analyze Captured Data:

Inspect packet details and headers.

Use protocol-specific dissectors to analyze data.





sudo apt-get install iftop

sudo iftop

iftop

#### **Key Options:**

- -i [interface]: Specify the network interface to monitor, e.g., sudo iftop -i eth0.
- -n: Disable DNS hostname resolution for faster performance.
- -P: Show ports as well as IP addresses.









## nmap





sudo apt install nmap

nmap <hostname\_or\_IP>

Example:

nmap 192.168.1.1

nmap <ip>: Basic port scan.

nmap -sV <ip>: Service version detection.

sudo nmap -O <ip>: Operating system detection.

sudo nmap -A <ip>: Aggressive scan.

≻nmap -sn <ip>: Ping scan.





sudo ufw enable sudo ufw disable

sudo ufw allow ssh sudo ufw deny http

sudo ufw status

**Firewall** 



# Q/A Session

Thank you!









# End of Day 7!

By Maya Mnaizel



