				+2 r5)	$\frac{r_5)+4t_3)}{+2r_5)t_3}$		1+8 <i>t</i> 3 2 <i>r</i> 5) <i>t</i> 3
$ au_1^{\#2}$	0	0	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$
${\mathfrak l}_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\tau_1^{\#1}{}_{\!$	0	0	0	0	0	0	0
$\sigma_{1^+\alpha\beta}^{\#2}~\tau_{1^+\alpha\beta}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 \left(2 r_3 + r_5\right)}$	0	0	0	0	0	0
	$r_1^{\#1} + \alpha \beta$	$r_1^{#2} + \alpha \beta$	$a_1^{*+} + \alpha \beta$	$_{1}^{#1}+^{\alpha}$	$\sigma_{1}^{\#2} + \alpha$	$_{1}^{#1}$ $+^{\alpha}$	$\tau_{1}^{\#2} + ^{\alpha}$

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\sharp 1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}\dagger$	$i \sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$ au_{0^{+}}^{#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2}$

Lagrangian density $\frac{2}{3}t_3 \omega_{,\alpha}^{\alpha\prime} \omega_{\kappa\alpha}^{\ \ \ \ \ \ \ } -\frac{1}{2}r_3 \partial_{i}\omega^{\kappa\lambda}_{\ \ \ \ \ \ \ \ } \partial_{i}\omega_{,\alpha}^{\lambda} \partial_{i}\omega_{,\alpha}^{\lambda} + \\ \frac{2}{3}r_2 \partial^{\beta}\omega^{\beta\alpha}_{\ \ \ \ \ \ \ \ \ \ \ \ } -\frac{1}{3}r_2 \partial_{\theta}\omega_{\alpha\beta}^{\ \ \ \ \ \ \ \ \ } -\frac{1}{3}r_2 \partial_{\theta}\omega_{\alpha\beta}^{\ \ \ \ \ \ \ \ \ \ } -\frac{1}{3}r_2 \partial_{\theta}\omega_{\alpha\beta}^{\ \ \ \ \ \ \ \ \ \ } -\frac{1}{3}r_3 \partial_{\theta}\omega_{,\alpha}^{\ \ \ \ \ \ \ \ \ \ \ } -\frac{1}{3}r_3 \partial_{\theta}\omega_{,\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ } \partial_{\kappa}\omega^{\kappa\lambda\beta} + \\ r_3 \partial_{\theta}\omega_{,\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } -\frac{1}{2}r_3 \partial_{\theta}\omega_{,\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \partial_{\kappa}\omega^{\kappa\lambda\beta} + \\ r_3 \partial_{\theta}\omega_{,\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\frac{2}{3}t_3 \omega_{,\alpha}^{\ \alpha} \partial^k f'_{\kappa} + \frac{2}{3}t_3 \omega_{,\lambda}^{\ \lambda} \partial^k f'_{\kappa} + \frac{2}{3}t_3 \partial^{\alpha} f'_{\lambda} \partial^{\beta} f_{\lambda\kappa} +$ $\frac{1}{3}r_2 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3}r_2 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3}r_2 \partial^{\beta} \omega_{,\alpha}^{\ \alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\ \prime} +$ $\frac{2}{3}r_2 \partial^{\beta} \omega_{,\lambda}^{\ \lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\ \prime} - 4r_3 \partial^{\beta} \omega_{,\lambda}^{\ \lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\ \prime} - \frac{1}{2}r_3 \partial_{\alpha} \omega_{,\lambda}^{\ \alpha} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} +$ $r_5 \partial_{\alpha} \omega_{,\lambda}^{\ \alpha} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} + \frac{1}{2}r_3 \partial_{\theta} \omega_{,\lambda}^{\ \alpha} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - r_5 \partial_{\theta} \omega_{,\lambda}^{\ \alpha} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} +$ $r_5 \partial_{\alpha} \omega_{,\lambda}^{\ \alpha} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} + \frac{1}{2}r_3 \partial_{\theta} \omega_{,\lambda}^{\ \alpha} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - r_5 \partial_{\theta} \omega_{,\lambda}^{\ \alpha} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} +$ $r_5 \partial_{\alpha} \omega_{,\lambda}^{\ \alpha} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} + \frac{1}{2}r_3 \partial_{\theta} \omega_{,\lambda}^{\ \alpha} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} - r_5 \partial_{\theta} \omega_{,\lambda}^{\ \alpha} \partial^{\lambda} \omega_{\beta\kappa}^{\ \prime} +$
Added source term: $ f^{ap} \tau_{\alpha\beta} + \omega^{ap\chi} \sigma_{\alpha\beta\gamma}$

	#	1	1	3	3	3	3	2	2	24
Source constraints	SO(3) irreps	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$t_{1}^{\#2}{}^{\alpha} + 2 i k \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_1^{\#1}{}^{\alpha\beta} == 0$	$\sigma_1^{\#_2^2 \alpha \beta} == 0$	$\sigma_{2}^{\#1}\alpha\beta\chi==0$	$\tau_{2}^{\#1}\alpha\beta=0$	Total #:

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1}^{\#1}{}_{lpha}$	$\omega_{1}^{\#2}{}_{lpha}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{\#2}\alpha$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 (2 r_3 + r_5)$	0	0	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	0	0	0	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	0	0	0	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2} t_3}{3}$	0	$-\frac{2}{3}ikt_3$
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	<u>t3</u> 3	0	$\frac{1}{3}i\sqrt{2}kt_3$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	<u>2 i kt3</u> 3	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$

? $\langle \mu \rangle$	Quadratic pole	<u>.</u>
\sim ?	Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$
?	Polarisations:	2
!		

Unitarity conditions $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$

(No massive particles)