Kompleksne mreže

4. predavanje

Usmjerene mreže

- Socijalne mreže prijateljstvo simetrično (teoretski 🙂)
- Promet (avionski, željeznički, cestovni) dvosmjeran
- Usmjerene mreže:
 - Twitter
 - Komunikacijske i informacijske mreže
 - Email
 - Wikipedia

Mreža citata

- Citat usmjerena veza jednog rada na drugi
- Dodatne neusmjerene veze
 - Citirani zajedno (co-citation)
 - Citiraju isti rad (co-reference)

HTTP (Hyper Text Transfer Protocol)

- Zahtjevi
 - Zaglavlje, prazna linija, tijelo poruke
 - GET
 - Zahtjev za stranicom
 - Samo zaglavlje i prazna linija
 - POST
 - Tijelo poruke sadrži dodatne parametre sadržaja
 - Npr. slanje unosa u formu
 - Obavezan hostname (jedan server više webova)
- Odgovor
 - Zaglavlje, prazna linija, tijelo poruke
 - Zaglavlje
 - Tip servera, vrijeme, broj vraćenih okteta...
 - Kod odgovora (200-uspjeh, 404 nije pronađen)
 - Tijelo HTML stranica

Web crawler

- Programi za automatsko skidanje web stranica
- Najčešća primjena pretraživači (npr. Google)
 - Indeksiranje sadržaja mapiranje sadržaja (ključnih riječi i fraza te stranica na kojima se nalaze)
 - Rangiranje
 - Najsofisticiraniji i najosjetljiviji dio pretraživača (Brin i Page)
- Druge primjene:
 - Poslovna inteligencija
 - Digitalne biblioteke
 - Webometric alati utjecaj institucija
 - Maliciozno korištenje (skupljanje email adresa za slanje spam poruka)
 - Znanstvene svrhe (npr. Struktura Weba)

Web crawler

- BFS pristup
- Heuristike za prioritiziranje veza
- Što idemo dublje manja šansa za pronalazak dobrih stranica
- Optimizacija i paralelizacija

Struktura Weba – Web graf

- Dobiven crawlerima
- Postoje različite slabo povezane komponente
- Najveća komponenta 90% svih stranica
- Unutar nje imamo snažno povezanu jezgru te in i out komponente
- "Leptir kravata" struktura

Komplementarna kumulativna distribucija ulaznog stupnja (2012)

- Prosječan ulazni stupanj 10-30
- Standardna devijacija red veličine veća -> velik faktor heterogenosti κ
- Oblik distribucije se ne mijenja od vremena kada je Web bio samo par godina star
- Distribucija izlaznog stupnja
 - Mnogo teža za analizu
 - Mnogo uža
 - Puno veza na druge čvorove (spam)

Tematska lokalnost

Mjerenje

- Izglednost da odredišna stranica u danoj udaljenosti od izvorišne ima istu temu
- Usporedimo očekivanjem da stranica slučajno bude iste teme (ovisi o temi)
- Stranice unutar 1 2 veze od odredišne imaju red veličine veću izglednost u usporedbi sa slučajnom

Tematska lokalnost

- Homofilija povezivanje sličnih čvorova
- Lokalnost po temi
 - Stranice s povezanim temama povezane ili imaju kratku udaljenost
 - Nove stranice -> povezivanjem s informacijama relevantnim za temu

Tematska lokalnost

- Mjerenje sličnosti teksta
- Više zajedničkih ključnih riječi -> jači dokaz o sličnosti
- Kosinusna sličnost
- Postupak:
 - BFS *crawl* od jedne ili više početnih
 - Mjerenje sličnosti obiđene i početne stranice, usrednjujući za sve početne i obiđene stranice
 - Prikaz promjene sličnosti s udaljenošću
- Tematski drift manja izglednost da naletimo na sličnu stranicu s većom udaljenošću

Kosinusna sličnost

- Mjerenje sličnosti između dva teksta (dokument, web stranica, ...)
- Reprezentacija dokumenta vektorom $\vec{d} = \{w_{d,1}, \dots, w_{d,n_t}\}$
 - $w_{d,t}$ težina izraza t u d
 - n_t ukupan broj izraza
 - Suvremeni NLP imaju slične vektore, no dimenzije su latentne reprezentacije umjesto riječi

Težine

- Obično proporcionalne frekvenciji pojavljivanja izraza
- Uklanjanje stop riječi (veznici, članovi, ...)
- Umanjenje težine izrazima koji se često pojavljuju u raznim dokumentima

Kosinusna sličnost

•
$$\cos(\vec{d}_1, \vec{d}_2) = \frac{\vec{d}_1}{\|\vec{d}_1\|} \cdot \frac{\vec{d}_2}{\|\vec{d}_2\|} = \frac{\sum_t w_{d_1, t} w_{d_2, t}}{\sqrt{\sum_t w_{d_1, t}^2 \sqrt{\sum_t w_{d_2, t}^2}}}$$

- Ako su izrazi u \vec{d}_1 prisutni i u \vec{d}_2 cosinus će biti blizu 1
- Ako dva dokumenta ne dijele niti jedan izraz cosinus će biti 0
- $\|\vec{d}\| = \sqrt{\sum_t w_{d,t}^2}$ normizacija normom vektora
- Normizacija dugačkim dokumentima će norma smanjiti sličnost

Primjer tematske lokalnosti weba

PageRank

- Algoritmi rangiranja
- Mrežna centralnost 1998 (PageRank - Google)
- Stranice s većim PageRankom su bolje rangirane

PageRank

- Slučajna šetnja svaki susjedni čvor ima jednaku vjerojatnost da bude posjećen
- Slučajni skokovi. Korisnik kreće u sasvim novu potragu (teleportacija)
- PageRank dio vremena koje provedemo stranici

PageRank računanje

- Iterativna metoda
- Suma svih vrijednosti je 1
- Inicijalna vrijednost za svaki čvor je 1/N
- Slučajni skokovi s događaju s parametrom α , obično $\alpha \approx 0.15$
- U svakom koraku vjerojatnost skoka je α , a nastavka pretrage je $1-\alpha$

•
$$R_t(i) = \frac{\alpha}{N} + (1 - \alpha) \sum_{j \in pred(i)} \frac{R_{t-1}(j)}{k_{out}(j)}$$

- Prvi izraz je teleportacija do i
- Drugi izraz je slučajan hod i uključuje vjerojatnosti dolaska u i iz svih njegovih prethodnika
- Kada je $\alpha > 0$ konvergira u manje od 100 koraka

Komplementarna kumulativna distribucija PageRanka

- Distribucija slična distribuciji
 čvorova zašto ne uzeti onda istu ?
- Nisu svi putevi isti na važnost stranice utječu stranice koje povezuju na nju
- Između dvije stranice s istim ulaznim stupnjem, ona povezena stranicama s većim PageRankom pobjeđuje

Optimizacija za pretraživač

- Poboljšanje ranga
 - Prilagođenje opisa stranice i mogućnosti navigacije
 - Neetičke prilagodbe
 - Kreiranje velikog broja fiktivnih stranica koje povezuju jedna drugu i ciljnu stranicu
 - Kada suvremeni algoritmi naiđu na takve zloupotrebe micanje iz indeksa pretraživanja

Težinske mreže

- Primjeri:
 - Dva korisnika mogu retweetati jedan drugoga proizvoljan broj puta
 - Mreža emailova
 - Mreže mozga sinapse različite razine signala
 - Internet brzina prijenosa paketa između usmjerivača
- Mreže za koje mislimo da su netežinske
 - Facebook nisu nam svi prijatelji isti
 - Mreža glumaca koji su glumili zajedno u filmovima
- Informacijske i transportne mreže
- Jačina veza, jačina ulaznih i izlaznih veza

Informacija i dezinformacija

- Mreže koje difuziraju informaciju
 - Čvorovi ljudi

• Veze – dijelovi informacije (ideje, koncepti, novosti, ponašanja) koji se

prenose s osobe na osobu

• Prijenosna jedinica informacije – *meme*

Korištenje # kod Twittera #FER

Twitter/X

- Difuzija u Twitter mreži:
 - Retweet, quoted retweet, spominjanje, odgovori
 - Retweet kaskada usmjereno stablo tijeka širenja meme od kreatora do svih izloženih korisnika
 - Jedan meme može generirati više kaskadnih stabala
 - Agregacija stabala šuma
 - Kaskadnu šumu možemo promatrati kao sloj u višeslojnoj mreži

Primjer difuzne mreže – 2016 izbori u US

Primjer difuzne mreže – 2016 izbori u US

- Podmreža retweetova članaka vezanih uz izbore 2016
- Čvorovi Twitter računi,
- Veze retweet linka na članak (crveni provjera informacije, ljubičasta niska vjerodostojnost)
- k = 5 jezgra pune mreže
- Korisnici koji šire dezinformacije dijele jako mala članaka iz izvora koji provjeravaju istinitost

Zaraznost memea

• Mjerenje zaraznosti:

- Broj izloženih korisnika
- Struktura mreže. *Meme* koji šire popularne osobe može biti više vezan uz to osobu nego *meme*
- Duboka mreža retweetova može govoriti o široj privlačnosti poruke

Retweet mreža dva članka Bijelih Kaciga u Siriji

- Kampanja dezinformacijama
 - Lažna povezanost s teroristima
 - Druge teorije zavjere
 - Sive veze dezinformacija
 - Žute veze provjerena tvrdnja
 - Plavi čvorovi ljudi
 - Crveni čvorovi botovi
- DeepFake

Mreža lažnih vijesti o izbornoj prevari izbora 2016 od strane ilegalnih stranaca

- Plavo Citirani tweetovi i retweetovi
- Crveno spominjanje i odgovori
- Širina linka težina
- Mali žuti čvor bot koji je sistematski širio dezinformacije u odgovorima na informacije koje su spominjale US predsjednika

Mreže zajedničkog pojavljivanja

- Veze između različitih vrsta entiteta
- Usmjerena mreža
 - Svi izvorišni čvorovi na jednu stranu
 - Svi odredišni na drugu
 - Isti čvor može biti na obje strane (duplikat)
 - Mreža citata (rad koji citira i citirani rad) nova mreža u svakoj od grupa
 - Radovi mogu biti ko-citirani i biti koreferencirani (nekoliko radova citira jedan ili više radova)
- Bipartitne mreže način reprezentacije ovakvih mreža

Bipartitna mreža -> Mreža zajedničkog pojavljivanja

- Veze između dva čvora različitog tipa
- Mreža ko-zvijezda u filmovima
 - Kreiramo težinsku mrežu iz bipartitne (projekcija) – mreža zajedničkog pojavljivanja
- Bipartitna mreža "likeanja" (a)
- Mreža zajedničkog pojavljivanja (b)
- Koriste se za preporuke i ciljano oglašavanje

Folksonomy

- Bipartitne mreže isto mogu imati težine.
- Sustavi ocjenjivanja koliko nam se npr. sviđa knjiga ili film
- Označavanje označavanje izvora (identificiranog URL-om) s jednom ili više oznaka (npr. YouTube)
- Osnovni element je trojka (u,r,t) gdje korisnik u, označava resurs r s oznakom (hashtag kod Twittera)
- Agregirano po puno korisnika dobijemo skup koji nazivamo folksonomy

Heterogenost težina

- Težina veze može nositi informaciju o procesu ili odnosima modeliranim mrežom
- Različite težine mogu predstavljati različito udruživanje
- Mreže prometa
 - Putnici ili letovi između aerodroma
 - Auti između križanja
 - Internet (paketi između usmjerivača)
 - Wikipedia (klikovi između članaka)

Mreža Web prometa

- Ulazna snaga čvora ukupan broj klikova na stranicu
- Težina veze ukupan broj klikova na hiperlink
- Obje distribucije heterogene (otežani rep)

Postoji li korelacija između PageRanka i ulazne snage ??

Usporedba PageRanka i ulazne snage

- Može li PageRank predvidjeti promet?
- NE, usprkos sličnoj distribuciji
- Korelacija je zapravo slaba
- Pretpostavka PageRank modela model slučajnog surfera
- Inicijalne pretpostavke PageRank modela su narušene

Koje pretpostavke PageRanka su najmanje realistične?

- Omjer ulazne i izlazne snage čvorova
 - Osim za početne i krajnje čvorove jednog pretraživanja omjer treba biti 1
- Teleportiranje ne favorizira niti jedan čvor
 - Jednaka vjerojatnost za svaki čvor da će biti izvor ili odredište skoka (i s ovime omjer je blizu 1)
- Očekujemo usku distribuciju oko 1
- U stvarnosti krećemo od manjeg skupa stranica
- Većina čvorova nije zanimljiva i na njima završavamo pretragu i skačemo dalje
- Slučajna teleportacija je nerealistična