Some Inequality Problems

The Arithmetic-Geometric Mean (AGM) Inequality is an essential inequality to solve many problems. It asserts that if $a_1, a_2, \ldots, a_n > 0$, then

$$\sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \ldots + a_n}{n},$$

and equality holds if and only if $a_1 = a_2 = \ldots = a_n$. Here is a generalization that has a simpler proof as it fits induction easily. If $\mu_1, \mu_2, \ldots, \mu_n > 0$, $\mu_1 + \mu_2 + \cdots + \mu_n = 1$, and $a_1, a_2, \ldots, a_n > 0$, then $a_1^{\mu_1} a_2^{\mu_2} \cdots a_n^{\mu_n} \leq \mu_1 a_1 + \mu_2 a_2 + \cdots + \mu_n a_n$, and equality holds only if $a_1 = a_2 = \cdots = a_n$.

- $\frac{1}{2}$. Prove that $x + \frac{1}{x} \ge 2$ for every x > 0.
- 1. Prove that $(a+b)(b+c)(c+a) \ge 8abc$ for all a,b,c>0.
- 2. Prove that $\frac{x^2+2}{\sqrt{x^2+1}} \ge 2$ for all real x.
- 3. Show that $1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} \ge 2\sqrt{n+1} 2$ for every positive integer n.
- 4. Show that if $a_i > 0$ for i = 1, 2, ..., n and $a_1 a_2 \cdots a_n = 1$, then $(1 + a_1)(1 + a_2) \cdots (1 + a_n) \ge 2^n$.
- 5. Show that $\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \ge \frac{3}{2}$ for all a, b, c > 0.
- 6. Let $a \ge 1$, and let n be a positive integer. Prove that $a^n 1 \ge n \left(a^{\frac{n+1}{2}} a^{\frac{n-1}{2}} \right)$.

Hints:

- $\frac{1}{2}$ Use AGM or move every term to one side and complete the square.
- 1. Expand and use the fact that $x^2 + y^2 \ge 2xy$.
- 2. Use $\frac{1}{2}$.
- 3. Use induction on n.
- 4. Use $\frac{1}{2}$, expand and group terms that are "complementary" with respect to the a_i s.
- 5. Assume without loss of generality that a is the smallest of the three numbers. Divide numerator and denominator by a and reduce the inequality to an inequality in two variables $s, t \ge 1$. Show that the partial derivative of the expression with respect to t is positive when t > s > 1. Then let t = s and examine the derivative when s > 1.
- 6. Divide by $a^{\frac{n}{2}}$ and apply the mean value theorem.