SIIT-Chiba joint student workshop Presentation

Non-contact automatic measurement of hand joint range of motion

Project Design: Prof. Ph.D Toshiya Nakaguchi

Group Members

Hironori Suzuki Haseeb Ali Yoshito Mikado Isura Dissanayake Pitchayagan Temniranrat

Presentation Overview

- Measuring ROM
- Division of roles
- System overview
- Demo
- Evaluation
- Problems
- Future works

Measuring ROM (Range of Motion)

Typical Measuring ROM of body joints require therapist to

- Adjust the pose of the target patient
- Use goniometer to measure the joint angles manually

Measuring ROM's Problem

- Need physical contact
- Manual measurement is time consuming
- Large margin of error

Simple and accurate measurement of ROM using image analysis is highly required

→ Non-contact automatic measurement of hand joint ROM

Division of Roles

- Program Flow Design
- GUI for image acquisition
- Hand Landmark Detection
- Angle calculation
- Image Annotations (Lines and Angle)
- Information organization and documentation

System Overview: Input image acquisition (GUI)

CSV table for descriptions

1	0	0	0 Put your hand on the table, your thumb on the upper side. Stretch your fingers and get relaxed.		
2	1	0	1 Get your wrist fixed and bend your hand to the direction of your palm as much as possible.		
3	2	1	2 Put your hand on the table, your thumb on the upper side. Stretch your fingers and get relaxed.		
4	3	1	3 Get your wrist fixed and bend your hand to the direction of your back of hand as much as possible.		
5	4	2	4 Put your hand on the table, your palm down. Stretch your fingers and get relaxed.		
6	5	2	5 Get your wrist fixed. Bend your hand to the direction of your thumb as much as possible.		
7	6	3	6 Put your hand on the table, your palm down. Stretch your fingers and get relaxed.		
8	7	3	7 Get your wrist fixed. Bend your hand to the direction of your little finger as much as possible.		
9		4	8 Put your hand on the table, your palm down. Stretch your fingers and get relaxed.		
0	8	4	9 Get your fingers fixed except for your thumb. Bend your thumb away from your index finger as much as you can.		
L		5	10 Put your hand on the table, your palm down. Let your thumb and index finger be aparted. Stretch your fingers and get relaxed.		
2	9	5	11 Get your fingers fixed except for your thumb. Bend your thumb to match your index finger as much as you can.		
3		6	12 Put your hand on the table, your thumb on the upper side. Stretch your fingers and get relaxed.		
1	10	6	13 Get your fingers fixed except for your thumb. Bend your thumb away from your palm as much as you can.		
5		7	14 Put your hand on the table, your thumb on the upper side. Let your thumb and your palm be aparted. Stretch your fingers and get relaxed		
5	11	7	15 Get your fingers fixed except for your thumb. Bend your thumb to match your palm as much as you can.		
7		8	16 Put your hand on the table, your palm on the upper side. Stretch your fingers and get relaxed.		
3	12	8	17 Get your fingers fixed except for your thumb. Bend your thumb to the middle of your hand as much as you can.		
9		9	18 Put your hand on the table, your palm on the upper side. Stretch your fingers and get relaxed.		
)	13	9	19 Get your fingers fixed except for your thumb. Stretch your thumb to apart it from your index finger as much as you can.		
1		10	20 Put your hand on the table, your palm on the upper side. Stretch your fingers and get relaxed.		
2	14	10	21 Get your fingers fixed except for your thumb. Bend the tip of your thumb to the middle of your hand as much as you can.		
3		11	22 Put your hand on the table, your palm on the upper side. Stretch your fingers and get relaxed.		
4	15	11	23 Get your fingers fixed except for your thumb. Stretch the tip of your thumb to apart it from your index finger as much as you can.		

Joint coordinates detection

- MediaPipe (Our choice)
 - Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka, George Sung, Chuo-Ling Chang, & Matthias Grundmann. (2020). MediaPipe Hands: On-device Real-time Hand Tracking.
 - Detect hand joints' position from single RGB camera
- Leap Motion
 - "The Ultraleap's LeapMotion Controller 2", Ultraleap. Available:
 https://www.ultraleap.com/product/leap-2/. Accessed on: December 21, 2023.
 - Used a specific device to detect hand joints' position
 - Includes of 2 cameras and an infrared sensor

Hand LandMark Detection

lmage Input	Mediapipe Hand Application	Output of Landmarks
Image Captured from GUI Stored into specified folder(to_process)	Fed Images to MediaPipe Library and obtained Hand Landmarks	All landmarks accumulated and saved as CSV, for further processing. (21 * 3 rows and 36 * 2 columns)

Outputs After Landmark Detection

Output CSV

Joint_0_x Joint_0_y Joint_0_z Joint_1_x Joint_1_y Joint_1_z 0 987.63393 352.86973 -0.00026 844.0468 366.84746 125.38770 1 1063.0320 331.87856 0.000623 1056.5705 387.81024 -147.061 2 1024.5969 816.79920 0.001062 934.58393 897.4641 -132.694 3 998.6937 754.44846 0.001456 969.66556 708.62743 -102.201 4 999.15206 494.07703 0.000776 908.89400 632.18846 4.9083875 5 1012.2698 508.61496 0.000299 976.96151 656.65002 8.3919677 6 1019.9899 476.59618 0.000711 928.2422 613.50368 8.9165228 7 1041.2881 471.32792 0.000776 904.13326 547.04459 26.482602 8 1033.4719 469.16406 0.000713 955.12144 612.19646 7.0469520 9 1031.5731 453.35639 0.001247 971.23329 593.37044 -1.94412 10 1032.2495 477.24573 0.000714 950.79906 618.32219 11.359963 11 1033.8219 469.31382 0.000732 947.85575 614.49696 0.3320946 12 1030.3405 394.6049 0.00053 906.74016 420.92581 -17.5075 13 1009.0090 383.1775 0.001807 947.45458 435.61542 -155.352

Image Annotations

- Used OpenCV cv2 Library for annotating images
- Outputs from Angle Calculation Program were read in
- Calculation of intersection and projection of points required for some lines.

Angle.csv

Output Examples

1) CSV Table List

Pose	Joint name	Angle
29_0	R -Finger_0 - Flexion PIP	49.6985
29_1	R -Finger_1 - Flexion PIP	53.0159
29_2	R -Finger_2 - Flexion PIP	53.6065
29_3	R -Finger_3 - Flexion PIP	46.3057
31_0	R -Finger_0 - Extension PIP	10.1214
31_1	R -Finger_1 - Extension PIP	10.7499
31_2	R -Finger_2 - Extension PIP	10.2342
31_3	R -Finger_3 - Extension PIP	6.93028
33_0	R -Finger_0 - Flexion DIP	45.9127
33_1	R -Finger_1 - Flexion DIP	46.2441
33_2	R -Finger_2 - Flexion DIP	54.2222
33_3	R -Finger_3 - Flexion DIP	62.3758
35_0	R -Finger_0 - Extension DIP	9.18794
35_1	R -Finger_1 - Extension DIP	7.61211
35_2	R -Finger_2 - Extension DIP	11.0205
35_3	R -Finger_3 - Extension DIP	8.78998
37	L -Wrist - Flexion	61.3588
39	L -Wrist - Extension	71.4339
41	L -Wrist - Radial Deviation	20.6558
43	L -Wrist - Ulnar Deviation	29.3692
45	L -Thumb - Radial Abduction	71.4531
47	L -Thumb - Ulnar Abduction	9.88693
49	L -Thumb - Palmer Abduction	57.1438
51	L -Thumb - Palmer Abduction	13.2684
53	L -Thumb - Flexion MCP	50.4373
55	L -Thumb - Extension MCP	2.90352
57	I Thumb Flexion IP	65 6583

2) Measured Angles

Demo

Evaluation

Our angles measured manually may be not accurate because we do not know how to measure rightly

Mean squared error value is 14.32 degrees (middle-ring-little fingers not included)

Problems and Future Works

- Joint landmarks detection
 - Media Pipe : Inaccurate joint landmark detection in case of occlusion
 - Leap Motion: More accurate results, but difficult coding on python (other parts of the system are on python)
- Axis Corresponding Landmarks Decision
 - Many cases to consider without common factor → have to be manually prepared
- Future works :
 - Using multi-camera to improve the performance of joint detection
 - Adding a retake function if the user are not satisfied with the captured image