September 3, 2023

MATH 544 Homework 2

Let \mathbb{F} be a field. Then an ordering of \mathbb{F} is a subset \mathbb{F}_+ , called the set of positive elements, such that the following hold.

- 1. (Closure) If $a, b \in \mathbb{F}_+$, then $a + b \in \mathbb{F}_+$ and $ab \in \mathbb{F}_+$.
- 2. (Trichotomy) For any $a \in \mathbb{F}$ exactly one of the following holds:

$$a \in \mathbb{F}_+$$

$$a = 0$$

$$-a \in \mathbb{F}_+$$
.

For all problems that follow, we will assume all elements are in an ordered field \mathbb{F} with positive elements \mathbb{F}_+ .

Problem 2.10 Prove that if $a, b \in \mathbb{F}$, then exactly one of the following holds:

$$a < b$$
, $a = b$, $a > b$.

Consider b-a, which is in \mathbb{F} by closure. By trichotomy, there are three options:

Case 1: $b - a \in \mathbb{F}_+$. Then a < b by definition.

Case 2: b - a = 0. Then a = b.

Case 3: $-(b-a) \in \mathbb{F}_+$. Then $a-b \in \mathbb{F}_+$, so b < a. Thus a > b.

So each possibility is covered exactly once.

Problem 2.11 Prove that if a < b and b < c then a < c.

By definition, $(b-a), (c-b) \in \mathbb{F}_+$. By closure, $(c-b) + (b-a) \in \mathbb{F}_+$, so $c-a \in \mathbb{F}_+$. Thus, a < c.

We also note that if a < b and $b \le c$, then we still have a < c. If b < c this follows from above, and if b = c, then a < c because a < b.

Problem 2.12 Prove that if a < b and c < d then a + c < b + d.

By definition, $(b-a), (d-c) \in \mathbb{F}_+$. By closure, $(b-a)+(d-c) \in \mathbb{F}_+$, so by associativity and commutativity $(b+d)-(a+c) \in \mathbb{F}_+$. Thus, a+c < b+d.

Problem 2.13 Prove that if a < b and c > 0, then ac < bc.

By definition, $b-a, c \in \mathbb{F}_+$. By closure, $c \cdot (b-a) \in \mathbb{F}_+$, so by distributivity $bc-ac \in \mathbb{F}_+$. Thus ac < bc. \square

Problem 2.14 Prove that if a < b and c < 0, then ac > bc.

Nathan Bickel

By definition, $b-a, -c \in \mathbb{F}_+$. By closure, $-c \cdot (b-a) \in \mathbb{F}_+$, so by distributivity $ac-bc \in \mathbb{F}_+$. Thus bc < ac and so ac > bc.

Problem 2.15 Prove that if a < b and $c \le d$ then a + c < b + d.

We will first prove a lemma: if $e \le f$, then $e + g \le f + g$. If e = f, then e + g = f + g, so $e + g \le f + g$. If e < f, then $f - e \in \mathbb{F}_+$, and rewriting this $(f + g) - (e + g) \in \mathbb{F}_+$. So e + g < f + g and thus $e + g \le f + g$.

We will now prove the claim. First, since $b-a \in \mathbb{F}_+$, we can write $(b+c)-(a+c) \in \mathbb{F}_+$ to see that a+c < b+c. Next, since $c \leq d$, from the lemma $b+c \leq b+d$. By transitivity, we conclude from $a+c < b+c \leq b+d$ that a+c < b+d.

Problem 2.16 Prove that if 0 < a < b and $0 < c \le d$, then ac < bd.

We will first prove a lemma: if $e \le f$ and g > 0, then $eg \le fg$. If e = f, then eg = fg, so $eg \le fg$. If e < f, then eg < fg by problem 2.13 and thus $eg \le fg$.

We will now prove the claim. By 2.13, we have ac < bc since c > 0. By transitivity, b > 0 from 0 < a < b, so by the lemma $bc \le bd$. By transitivity, we conclude from $ac < bc \le bd$ that ac < bd.

Problem 2.17 Prove that if $a_1, a_2, \ldots, a_n > 0$ then $a_1 a_2 \ldots a_n > 0$ and $a_1 + a_2 + \cdots + a_n > 0$. Thus if a > 0 then $a^n, na > 0$.

We will induct on n.

Base Case: n = 1 is clear.

Induction Step: Let $n \in \mathbb{N}$, n > 1, and assume that $a_1 a_2 \dots a_{n-1} > 0$ and $a_1 + a + 2 + \dots + a_{n-1} > 0$. So we have $a_1 a_2 \dots a_{n-1}, a_n \in \mathbb{F}_+$, and by closure of multiplication, we have $(a_1 a_2 \dots a_{n-1}) a_n \in \mathbb{F}_+$, so $a_1 a_2 \dots a_n > 0$. Similarly, we have $a_1 + a_2 + \dots + a_{n-1}, a_n \in \mathbb{F}_+$, and by closure of addition, we have $(a_1 + a_2 + \dots + a_{n-1}) + a_n \in \mathbb{F}_+$, so $a_1 + a_2 + \dots + a_n > 0$.

So the claim holds for all n. It follows from repeated multiplication and addition that $a^n, na > 0$.

Problem 2.18 If $a \neq 0$, then $a^2 > 0$. In particular $1 = 1^2$ is positive.

Case 1: a > 0. Then $a^2 > 0$ follows from problem 2.17.

Case 2: a < 0. Then $-a \in \mathbb{F}_+$. By closure, $(-a)(-a) \in \mathbb{F}_+$, so $a^2 \in \mathbb{F}_+$ and thus $a^2 > 0$.

Problem 2.19 Let $a_1, a_2, \ldots, a_n \in \mathbb{F}$. Then

$$a_1^2 + a_2^2 + \dots + a_n^2 > 0$$

with equality if and only if $a_1 = a_2 = \cdots = a_n = 0$.

Case 1: $a_1 = a_2 = \cdots = a_n = 0$. Since $0^2 = 0$, clearly $a_1^2 + a_2^2 + \cdots + a_n^2 = 0$.

Case 2: For some $1 \le k \le n$, there are indices i_j such that $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ are non-zero for all j. Since all other values are $0^2 = 0$, we have

$$a_1^2 + a_2^2 + \dots + a_n^2 = a_{i_1}^2 + a_{i_2}^2 + \dots + a_{i_k}^2$$
.

From problem 2.18, we have $a_{i_1}{}^2, a_{i_2}{}^2, \dots, a_{i_k}{}^2 > 0$, and then by problem 2.17, $a_{i_1}{}^2 + a_{i_2}{}^2 + \dots + a_{i_k}{}^2 > 0$. So we have $a_1{}^2 + a_2{}^2 + \dots + a_n{}^2 > 0$, and thus equality never holds in this case.

Problem 2.20 Prove that:

- (a) If a > 0, then 1/a > 0.
- (b) If a < 0, then 1/a < 0.
- (a) Suppose (toward contradiction) that a > 0 and $\frac{1}{a} \le 0$.

Case 1: $\frac{1}{a} = 0$. But then $a \cdot \frac{1}{a} = a \cdot 0 = 0$, a contradiction since $a \cdot \frac{1}{a} = 1$ by definition.

Case 2: $\frac{1}{a} < 0$. Then by definition we have $a, -\frac{1}{a} \in \mathbb{F}_+$, and so by closure $a \cdot -\frac{1}{a} \in \mathbb{F}_+$. Thus, $-1 \in \mathbb{F}_+$, a contradiction.

(b) We will use a similar approach. Suppose that a < 0 and $\frac{1}{a} \ge 0$.

Case 1: $\frac{1}{a} = 0$. Then $a \cdot \frac{1}{a} = a \cdot 0 = 0$, a contradiction.

Case 2: $\frac{1}{a} > 0$. Then we have $-a, \frac{1}{a} \in \mathbb{F}_+$, and so by closure $-a \cdot \frac{1}{a} = -1 \in \mathbb{F}_+$, a contradiction.

Problem 2.21 If 0 < a < b, then 1/b < 1/a.

By definition, we have $a, b - a \in \mathbb{F}_+$, and by transitivity we have $b \in \mathbb{F}_+$. By closure, $ab \in \mathbb{F}_+$, and so by problem 2.20 we have $\frac{1}{ab} \in \mathbb{F}_+$. By closure, then, we have $(b-a)\left(\frac{1}{ab}\right) \in \mathbb{F}_+$, which we can rewrite as $\frac{1}{a} - \frac{1}{b} \in \mathbb{F}_+$. Thus, $\frac{1}{b} < \frac{1}{a}$.

Problem 2.22 For $a \in \mathbb{F}$,

 $|a| \ge 0$

with equality if and only if a = 0.

By trichotomy, there are three cases:

Case 1: a > 0. Then |a| = a, so |a| > 0.

Case 2: a = 0. Then |a| = 0 by definition.

Case 3: a < 0. Then $-a \in \mathbb{F}_+$, and since |a| = -a, we have $|a| \in \mathbb{F}_+$ and thus |a| > 0.

So $|a| \ge 0$ for all $a \in \mathbb{F}$ (because in all cases we have |a| > 0 or |a| = 0), with equality only where a = 0. \square

Problem 2.23 Prove that for $a \in \mathbb{F}$ we have $a \leq |a|$.

Case 1: a > 0. Then |a| = a.

Case 2: a = 0. Then |a| = 0, so |a| = a.

Case 3: a < 0. Then $-a \in \mathbb{F}_+$ by definition, and since |a| = -a, we have $|a| \in \mathbb{F}_+$. By closure, $|a| + (-a) \in \mathbb{F}_+$, so $|a| - a \in \mathbb{F}_+$. Thus, a < |a|.

So $a \leq |a|$ in every case.

Problem 2.24 Prove that for $a \in \mathbb{F}$ we have $a^2 = |a|^2$.

Case 1: a > 0. Then |a| = a, so clearly $a^2 = |a|^2$.

Case 2: a = 0. Then |a| = 0, so clearly $a^2 = 0^2 = |a|^2$.

Case 3: a < 0. Then |a| = -a, and we have $a^2 = (-a) \cdot (-a) = |a| \cdot |a| = |a|^2$.

Problem 2.25 If $a, b \in \mathbb{F}$, then the following are equivalent:

- (a) |a| = |b|,
- (b) $a = \pm b$,
- (c) $a^2 = b^2$.
- $(a) \implies (b)$: Assume |a| = |b|.

Case 1: $a \ge 0$ and $b \ge 0$. Then a = |a| = |b| = b, so a = b.

Case 2: a < 0 and b < 0. Then -a = |a| = |b| = -b, so taking the additive inverse of each side yields a = b.

Case 3: $a \ge 0$ and b < 0. Then a = |a| = |b| = -b, so a = -b.

Case 4: a < 0 and $b \ge 0$. Then -a = |a| = |b| = b, which shows a = -b.

(b) \implies (c): Assume $a = \pm b$.

Case 1: a = b. Then $a^2 = b^2$.

Case 2: a = -b. Then $a^2 = a \cdot a = (-b) \cdot (-b) = b^2$, so $a^2 = b^2$.

(c) \implies (a): Assume $a^2 = b^2$. From problem 2.24, we can then write $|a|^2 = a^2 = b^2 = |b|^2$. Since, from problem 2.22, we have $|a| \ge 0$ and $|b| \ge 0$, this implies that |a| = |b|.