Introduction to Bayesian analysis for medical studies

Part II: Bayesian computation

Boris Heiblum

https://introbayesmed.borishejblum.science

Graduate School of Health and Medical Sciences at the University of Copenhagen May 5th. 2021

Introduction

Estimating the posterior distribution is often costly

Intro

Bayesian computational statistics

Computational aspects of Bayesian inference can get sophisticated but are key to its successful application

Numerical integration – I

Real world applications: $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d)$

 \Rightarrow joint *posterior* distribution of all d parameters

♠ hard to compute:

- complexe likelihood
- integrating constant $f(y) = \int_{\Theta^d} f(y|\theta) \pi(\theta) d\theta$

Analytical form rarely available

- \Rightarrow numerical computations: integral of d multiplicity
 - difficult when d is big (numerical issues as soon as d > 4)

Numerical integration – II

Even dimension 1 can be tough!

Example:

Let $x_1, ..., x_n$ iid according to a Cauchy distribution $\mathscr{C}(\theta, 1)$ with prior $\pi(\theta) = \mathcal{N}(\mu, \sigma^2)$ (μ and σ known)

$$p(\theta|x_1,...,x_n) \propto f(x_1,...,x_n|\theta)\pi(\theta)$$
$$\propto e^{-\frac{(\theta-\mu)^2}{2\sigma^2}} \prod_{i=1}^n (1+(x_i-\theta)^2)^{-1}$$

normalizing constant has no analytical form \Rightarrow no analytical form for this *posterior* distibution

Marginal posterior distributions

Objective: draw conclusion based on the joint *posterior* distribution

⇒ probability of all possible values for each parameter (i.e. their marginal distribution – uni-dimensional)

 $\underline{\wedge}$ Recovering all of the *posterior* density **numerically** requires the calculation of multidimensional integrals for each possible value of the parameter

⇒ a sufficiently precise computation seems unrealistic

Marginal posterior distributions

Objective: draw conclusion based on the joint posterior distribution

⇒ probability of all possible values for each parameter (i.e. their marginal distribution – uni-dimensional)

⚠ Recovering all of the posterior density numerically requires the calculation of multidimensional integrals for each possible value of the parameter

⇒ a sufficiently precise computation seems unrealistic

Algorithms based on **sampling simulations** especially **Markov chain Monte Carlo** (MCMC)

Computational solutions

Bayes Theorem ⇒ posterior distribution

Computational solutions

Bayes Theorem ⇒ posterior distribution

♠ in pratice:

- analytical form rarely available (very particular cases)
- integral to the denominator often very hard to compute

Computational solutions

Bayes Theorem ⇒ posterior distribution

♠ in pratice:

- analytical form rarely available (very particular cases)
- integral to the denominator often very hard to compute

How can one estimate the *posteriori* distribution?

- ⇒ sample according to this posterior distribution
 - direct sampling
 - Markov chain Monte Carlo (MCMC)

Monte Carlo method

Monte Carlo: von Neumann & Ulam (Los Alamos Scientific Laboratory – 1955)

⇒ use random numbers to compute quantities whose analytical computation is hard (or impossible)

Monte Carlo method

Monte Carlo: von Neumann & Ulam

(Los Alamos Scientific Laboratory - 1955)

- ⇒ use random numbers to compute quantities whose analytical computation is hard (or impossible)
 - Law of Large Numbers (LLN)
 - so-called "Monte Carlo sample"
- ⇒ compute various functions from that sample distribution

Example : One wants to compute $\mathbb{E}[f(X)] = \int f(x)p_X(x)dx$

If
$$x_i \stackrel{iid}{\sim} p_X$$
, $\mathbb{E}[f(X)] = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$ (LLN)

 \Rightarrow if one knows how to sample from p_X , one can then estimate $\mathbb{E}[f(X)]$

6/42

. . .

Computational Bayesian statistics

Monte Carlo method: illustration

π estimation:

Monte Carlo method: illustration

π estimation:

A casino roulette (in Monte Carlo ?)

A 36×36 grid

- 1 The probability of being inside the disk while in the square: $p_C = \frac{\pi R^2}{(2R)^2} = \frac{\pi}{4}$
- 2 n points $\{(x_{11}, x_{21}), \dots, (x_{1n}, x_{2n})\} = \{P_1, \dots, P_n\}$ on the 36×36 grid (generated with the roulette)
- 3 Count the number of points inside the disk
- \Rightarrow Compute the ratio (estimated probability of being inside the disk while in the square): $\hat{p}_C = \frac{\sum P_i \in circle}{\dots}$

Monte Carlo method: illustration

π estimation:

A casino roulette (in Monte Carlo ?)

A 36×36 grid

If n = 1000 and 786 points are inside the disk: $\hat{\pi} = 4 \times \frac{786}{1000} = 3.144$

One can improve the estimate by increasing:

- the grid resolution, and also
- the number of points sampled n: $\lim_{n \to +\infty} \widehat{p}_C = p_C = \pi/4$

Monte Carlo method: illustration

π estimation:

A casino roulette (in Monte Carlo ?)

A 36×36 grid

If n = 1000 and 786 points are inside the disk: $\hat{\pi} = 4 \times \frac{786}{1000} = 3.144$

One can improve the estimate by increasing:

- the grid resolution, and also
- the number of points sampled n: $\lim_{n \to +\infty} \widehat{p}_C = p_C = \pi/4$ (LLN)

Monte Carlo sample ⇒ compute various functions e.g. $\pi = 4 \times$ the probability of being inside the disk

Your turn!

Practical: exercise 1

Direct sampling methods

Random & pseudo-random numbers

There exist several ways to generate so-called "random" numbers according to known distributions

NB: computer programs do not generate truly random numbers

Rather pseudo-random, which seem random but are actually generated by a deterministic process (depending on a "seed" parameter).

Uniform sample generation

Linear congruential algorithm: sample pseudo-random numbers according to the Uniform distribution on [0,1] (Lehmer, 1948)

- 1 Generate a sequence of integers y_n such as: $y_{n+1} = (ay_n + b) \mod m$
- $2 x_n = \frac{y_n}{m-1}$

choose a, b and m so that y_n has a long period & (x_1, \ldots, x_n) can be considered iid

with y_0 the seed

<u>Remark:</u> $0 \le y_n \le m-1 \Rightarrow$ in practice m very large (e.g. 2^{19937} , default in \mathbb{R} which uses the Mersenne-Twister variation)

In the following, sampling pseudo-random numbers uniformly on [0,1] will be considered reliable and used by the different sampling algorithms

Other usual distributions

Relying on relationships between the different usual distributions starting from $U_i \sim \mathcal{U}_{[0,1]}$

Other usual distributions

Relying on relationships between the different usual distributions starting from $U_i \sim \mathcal{U}_{[0,1]}$

Binomial Bin(n, p):

$$Y_i = \mathbb{1}_{U_i \le p} \sim \text{Bernoulli}(p)$$

 $X = \sum_{i=1}^{n} Y_i \sim Bin(n, p)$

Other usual distributions

Relying on relationships between the different usual distributions starting from $U_i \sim \mathcal{U}_{[0,1]}$

Binomial Bin(n, p):

$$Y_i = \mathbb{1}_{U_i \le p} \sim \mathsf{Bernoulli}(p)$$

 $X = \sum_{i=1}^{n} Y_i \sim Bin(n, p)$

Normal $\mathcal{N}(0,1)$ (Box-Müller algorithm):

 U_1 and U_2 are 2 independent uniform variables on [0;1]

$$Y_1 = \sqrt{-2\log U_1} \cos(2\pi U_2)$$
$$Y_2 = \sqrt{-2\log U_1} \sin(2\pi U_2)$$

 \Rightarrow Y₁ & Y₂ are independent random variables each following a $\mathcal{N}(0,1)$

10/42

Inverse transform sampling

<u>Definition</u>: For a function F defined on \mathbb{R} , its **generalized inverse** is defined as: $F^{-1}(u) = \inf\{x \text{ tq } F(x) > u\}$

Inverse transform sampling

<u>Definition</u>: For a function F defined on \mathbb{R} , its **generalized inverse** is defined as: $F^{-1}(u) = \inf\{x \text{ tq } F(x) > u\}$

Property: Let \bullet F be a cumulative probability distribution function

ullet U be a uniform random variable on [0,1]

Then $F^{-1}(U)$ defines a random variable whith cumulative probability distribution function F

- If $\ \ \,$ one knows F, the cumulative probability distribution function from which to sample
 - 2 one can invert F
- \Rightarrow then one can sample this distribution from a uniform sample on [0,1]

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter λ

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter λ

- density of the Exponential distribution: $f(x) = \lambda \exp(-\lambda x)$
- its cumulative probability distribution function (its integral): $F(x) = 1 \exp(-\lambda x)$

Let
$$F(x) = u$$

Then $x = \dots$

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter λ

- density of the Exponential distribution: $f(x) = \lambda \exp(-\lambda x)$
- its cumulative probability distribution function (its integral): $F(x) = 1 \exp(-\lambda x)$

Let
$$F(x) = u$$

Then
$$x = -\frac{1}{\lambda} \log(1 - u)$$

 \Rightarrow and if $U \sim U_{[0;1]}$, then $X = F^{-1}(U) = -\frac{1}{\lambda}\log(1-U) \sim E(\lambda)$.

Your turn!

Practical: exercise 2

Acceptance-rejection method

Use an **instrumental distribution** g (which we know how to sample from)

 \Rightarrow to sample from the target distribution f

The general principle is to **choose** g **close to** f and to propose samples from g, to accept some and reject others to get a sample following f.

Acceptance-rejection method

Use an $instrumental\ distribution\ g$ (which we know how to sample from)

 \Rightarrow to sample from the target distribution f

The general principle is to **choose** g **close to** f and to propose samples from g, to accept some and reject others to get a sample following f.

Let f be the targeted density function

Let g be a proposal density function (from which one knows how to sample) such that, for all x: $f(x) \le Mg(x)$

While $i \le n$:

- 1 Sample $x_i \sim g$ and $u_i \sim \mathcal{U}_{[0,1]}$
- 2 If $u_i \le \frac{f(x_i)}{Mg(x_i)}$, accept the draw: $y_i := x_i$ else **reject** it and return to 1.

$$\Rightarrow (v_1, \dots, v_n) \stackrel{iid}{\sim} f$$

Sampling according to a distribution defined analytically

Acceptance-rejection: importance of the proposal

Example of a proposal and a target ditribution for the accept-reject algorithm

Remarque: The smaller M, the greater acceptance rate

 \Rightarrow the more the algorithm is efficient at sampling from f (less iterations for a sample size n)

So one wishes g the as close as possible to f!

 $\underline{\wedge}$ g will necessarily have heavier tail than the target

⇒ when the number of parameters increases, acceptance rate decrease svery rapidly (curse of dimension)

14/42

MCMC Algorithms

MCMC Algorithms

Markov chain definition

Markov chain: discrete time stochastic process

Definition: a series of random variables X_0, X_1, X_2, \ldots (all valued over the same state space) with the "memoryless" Markov property:

MCMC Algorithms •oooooooooo

$$p(X_i = x | X_0 = x_0, X_1 = x_1, \dots, X_{i-1} = x_{i-1}) = p(X_i = x | X_{i-1} = x_{i-1})$$

The set E of all possible values of X_i is called the **state space**

2 parameters:

- 1 initial distribution $p(X_0)$
- tansition probabilities $T(x,A) = p(X_i \in A | X_{i-1} = x)$

NB: only homogeneous Markov chains considered here:

$$p(X_{i+1} = x | X_i = y) = p(X_i = x | X_{i-1} = y)$$

Markov chains properties

Property: a Markov chain is **irreducible** if all sets of non-zero probability can be reached from any starting point (i.e. any state is accessible from any other)

MCMC Algorithms 0000000000000

Markov chains properties

Property: a Markov chain is **irreducible** if all sets of non-zero probability can be reached from any starting point (i.e. any state is accessible from any other)

MCMC Algorithms 00000000000000

Property: a Markov chain is **recurrent** if the trajectories (X_i) pass an infinite number of times in any set of non-zero probability of the state space

Markov chains properties

Property: a Markov chain is **irreducible** if all sets of non-zero probability can be reached from any starting point (i.e. any state is accessible from any other)

MCMC Algorithms 00000000000000

Property: a Markov chain is **recurrent** if the trajectories (X_i) pass an infinite number of times in any set of non-zero probability of the state space

Property: a Markov chain is aperiodic if nothing induces periodic behavior of the trajectories

Stationary law & ergodic theorem

Definition: A probability distribution \tilde{p} is called **invariant law** (or **stationary law**) for a Markov chain if it verifies the following property: if $X_i \sim \tilde{p}$, then $X_{i+j} \sim \tilde{p} \ \forall j \geq 1$

Remark: a Markov chain can admit several stationary laws

Stationary law & ergodic theorem

Definition: A probability distribution \tilde{p} is called **invariant law** (or **stationary law**) for a Markov chain if it verifies the following property: if $X_i \sim \tilde{p}$, then $X_{i+j} \sim \tilde{p} \ \forall j \geq 1$

MCMC Algorithms 00000000000000

Remark: a Markov chain can admit several stationary laws

Ergodic theorem (infinite space): A positive irreducible and recurrent Markov chain admits a single invariant probability distribution \tilde{p} and converges towards it

Doudou (a hamster) follows a Markov chain every minute with 3 states:

MCMC Algorithms 00000000000000

- S sleep
- E eat
- W work out
- its activity in 1min only depends on its current activity

Matrix of transition probabilities:

$$P = \begin{pmatrix} X_i/X_{i+1} & S & E & W \\ S & 0.9 & 0.05 & 0.05 \\ E & 0.7 & 0 & 0.3 \\ W & 0.8 & 0 & 0.2 \end{pmatrix}$$

Doudou (a hamster) follows a Markov chain every minute with 3 states:

MCMC Algorithms 00000000000000

- S sleep
- E eat
- W work out
- ⇒ its activity in 1min only depends on its current activity

Matrix of transition probabilities:

$$P = \begin{pmatrix} X_i / X_{i+1} & S & E & W \\ S & 0.9 & 0.05 & 0.05 \\ E & 0.7 & 0 & 0.3 \\ W & 0.8 & 0 & 0.2 \end{pmatrix}$$

- 1) Is the Markov chain irreducible? recurrent? aperiodic?
- 2) Suppose Doudou is now asleep. What about in 2 min? in 10 min?
- 3) Suppose now that Doudou is working out. What about in 10 min?


```
1) Is the Markov chain irreducible? recurrent? aperiodic?
. . .
```

2) Suppose Doudou is now asleep. What about in 2 min? in 10 min? . . .

3) Suppose now that Doudou is working out. What about in 10 min?

1) Is the Markov chain irreducible? recurrent? aperiodic?

MCMC Algorithms 000000000000000

- 2) Suppose Doudou is now asleep. What about in 2 min? in 10 min? . . .
- 3) Suppose now that Doudou is working out. What about in 10 min?

1) Is the Markov chain irreducible? recurrent? aperiodic?

MCMC Algorithms 000000000000000

2) Suppose Doudou is now asleep. What about in 2 min? in 10 min?

$$x_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}^T$$
 $x_2 = x_0 P^2 = \begin{pmatrix} 0.885 \\ 0.045 \\ 0.070 \end{pmatrix}^T$ $x_{10} = x_2 P^8 = x_0 P^{10} = \begin{pmatrix} 0.884 \\ 0.044 \\ 0.072 \end{pmatrix}^T$

19/42

3) Suppose now that Doudou is working out. What about in 10 min? . . .

20/42

3) Suppose now that Doudou is working out. What about in 10 min?

MCMC Algorithms 000000000000000

$$x_0 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}^T$$
 $x_{10} = x_0 P^{10} = \begin{pmatrix} 0.884 \\ 0.044 \\ 0.072 \end{pmatrix}^T$

Here, the Markov chain being aperiodic, recurrent and irreducible, there is a stationary law: $\tilde{p} = \tilde{p}P$.

Approximate an integral (or another function) from a target distribution

Approximate an integral (or another function) from a target distribution

⇒ sample a Markov chain whose stationary law is the target (such as the posterior) distribution, then apply the Monte Carlo method.

Approximate an integral (or another function) from a target distribution

⇒ sample a Markov chain whose stationary law is the target (such as the posterior) distribution, then apply the Monte Carlo method.

Requires two-fold convergence:

1 the Markov chain must first converge to its stationary distribution:

$$\forall X_0, X_n \xrightarrow[n \to +\infty]{\mathscr{L}} \tilde{p}$$

Approximate an integral (or another function) from a target distribution

⇒ sample a Markov chain whose stationary law is the target (such as the posterior) distribution, then apply the Monte Carlo method.

MCMC Algorithms 00000000000000

Requires two-fold convergence:

1 the Markov chain must first converge to its stationary distribution:

$$\forall X_0, X_n \xrightarrow{\mathscr{L}} \tilde{p}$$

2 then Monte Carlo convergence must also happen:

$$\frac{1}{N} \sum_{i=1}^{N} f(X_{n+i}) \xrightarrow[N \to +\infty]{} \mathbb{E}[f(X)]$$

Approximate an integral (or another function) from a target distribution

⇒ sample a Markov chain whose stationary law is the target (such as the posterior) distribution, then apply the Monte Carlo method.

MCMC Algorithms 00000000000000

Requires two-fold convergence:

1 the Markov chain must first converge to its stationary distribution:

$$\forall X_0, X_n \xrightarrow{\mathscr{L}} \tilde{p}$$

2 then Monte Carlo convergence must also happen:

$$\frac{1}{N} \sum_{i=1}^{N} f(X_{n+i}) \xrightarrow[N \to +\infty]{} \mathbb{E}[f(X)]$$

$$\overbrace{X_0 \to X_1 \to X_2 \to \cdots \to X_n}^{\text{Markov chain convergence}} \xrightarrow{X_{n+1} \to X_{n+2} \to \cdots \to X_{n+N}} X_{n+1}$$

General framework of MCMC algorithms

MCMC algorithms uses an acceptance-rejection framework

- 1 Initialise $x^{(0)}$
- For t = 1 ... n + N:
 - a Propose a new candidate $y^{(t)} \sim q(y^{(t)}|x^{(t-1)})$
 - **b** Accept $v^{(t)}$ with probability $\alpha(x^{(t-1)}, v^{(t)})$: $x^{(t)} := v^{(t)}$

if t > n, "save" $x^{(t)}$ (as part of the final Monte Carlo sample)

where q is the instrumental distribution for proposing new samples and α is the acceptance probability.

Choosing the instrumental distribution

Not absolutely optimal choice for the instrumental distribution *q* proposing new samples

MCMC Algorithms 00000000000000

⇒ infinite possibilities: some better than others

Choosing the instrumental distribution

Not absolutely optimal choice for the instrumental distribution *q* proposing new samples

MCMC Algorithms 00000000000000

⇒ infinite possibilities: some better than others

To guaranty convergence towards the target \tilde{p} :

- the support of q has to cover the support of \tilde{p}
- q must not generate periodic values

Choosing the instrumental distribution

Not absolutely optimal choice for the instrumental distribution *q* proposing new samples

MCMC Algorithms 00000000000000

⇒ infinite possibilities: some better than others

To guaranty convergence towards the target \tilde{p} :

- the support of q has to cover the support of \tilde{p}
- q must not generate periodic values

NB: ideally q is easy and fast to compute

Metropolis-Hastings algorithm

- Initialise $x^{(0)}$
- For t = 1, ..., n + N:
 - a Sample $v^{(t)} \sim a(v^{(t)}|x^{(t-1)})$
 - Compute the acceptance probability

$$\alpha^{(t)} = \min \left\{ 1, \frac{\tilde{p}(y^{(t)})}{q(y^{(t)}|x^{(t-1)})} \middle/ \frac{\tilde{p}(x^{(t-1)})}{q(x^{(t-1)}|y^{(t)})} \right\}$$

c Acceptance-rejection step: sample $u^{(t)} \sim \mathcal{U}_{[0:1]}$ $x^{(t)} = \begin{cases} y^{(t)} & \text{if } u^{(t)} \le \alpha^{(t)} \\ x^{(t-1)} & \text{else} \end{cases}$

MCMC Algorithms 00000000000000

$$\alpha^{(t)} = \min \left\{ 1, \frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})} \frac{q(x^{(t-1)}|y^{(t)})}{q(y^{(t)}|x^{(t-1)})} \right\}$$

 \Rightarrow computable even if \tilde{p} is known only up to a constant! (like the posterior)

Metropolis-Hastings: particular cases

Sometimes $\alpha^{(t)}$ computation simplifies:

- independent Metropolis-Hastings: $q(v^{(t)}|x^{(t-1)}) = q(v^{(t)})$
- random walk Metropolis-Hastings: $q(v^{(t)}|x^{(t-1)}) = g(v^{(t)} x^{(t-1)})$ If g is symetric (g(-x) = g(x)), then:

$$\frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})}\frac{q(y^{(t)}|x^{(t-1)})}{q(x^{(t-1)}|y^{(t)})} = \frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})}\frac{g(y^{(t)}-x^{(t-1)})}{g(x^{(t-1)}-\tilde{y}^{(t)})} = \frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})}$$

MCMC Algorithms 000000000000000

Pro and cons of Metropolis-Hastings

- very simple & very general
- allow sampling from uni- or multi-dimensional distributions

MCMC Algorithms 000000000000000

- choice of the proposal is crucial, but hard
- ⇒ huge impact on algorithm performances
- quickly becomes inefficient dimension is too high

NB: a high rejection rate often implies important computation timings

Simulated annealing

Change $\alpha^{(t)}$ computation during the algorithm:

- 1 $\alpha^{(t)}$ must first be large to explore all of the state space
- 2 then $\alpha^{(t)}$ must become smaller when the algorithm converges

Simulated annealing

Change $\alpha^{(t)}$ computation during the algorithm:

- 1 $\alpha^{(t)}$ must first be large to explore all of the state space
- 2 then $\alpha^{(t)}$ must become smaller when the algorithm converges

MCMC Algorithms 000000000000000

- 1 Initialise $x^{(0)}$
- 2 For t = 1, ..., n + N:
 - a Sample $v^{(t)} \sim q(v^{(t)}|x^{(t-1)})$
 - Compute the acceptance probability

$$\alpha^{(t)} = \min \left\{ 1, \left(\frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})} \frac{q(x^{(t-1)}|y^{(t)})}{q(y^{(t)}|x^{(t-1)})} \right)^{\frac{1}{T(t)}} \right\}$$

c Acceptance-rejection step: sample $u^{(t)} \sim \mathcal{U}_{[0:1]}$

$$x^{(t)} := \begin{cases} y^{(t)} & \text{if } u^{(t)} \le \alpha^{(t)} \\ x^{(t-1)} & \text{else} \end{cases}$$

Simulated annealing

Change $\alpha^{(t)}$ computation during the algorithm:

- 1 $\alpha^{(t)}$ must first be large to explore all of the state space
- 2 then $\alpha^{(t)}$ must become smaller when the algorithm converges
 - 1 Initialise $x^{(0)}$
 - 2 For t = 1, ..., n + N:
 - a Sample $v^{(t)} \sim q(v^{(t)}|x^{(t-1)})$
 - Compute the acceptance probability

$$\alpha^{(t)} = \min \left\{ 1, \left(\frac{\tilde{p}(y^{(t)})}{\tilde{p}(x^{(t-1)})} \frac{q(x^{(t-1)}|y^{(t)})}{q(y^{(t)}|x^{(t-1)})} \right)^{\frac{1}{T(t)}} \right\}$$

c Acceptance-rejection step: sample $u^{(t)} \sim \mathcal{U}_{[0:1]}$

$$x^{(t)} := \begin{cases} y^{(t)} & \text{if } u^{(t)} \le \alpha^{(t)} \\ x^{(t-1)} & \text{else} \end{cases}$$

Ex: $T(t) = T_0 \left(\frac{T_f}{T_0}\right)^{\frac{1}{n}} \Rightarrow$ particularly useful for avoiding local optima

Gibbs sampler

When the dimension $\nearrow \Rightarrow$ very hard to propose probable values

Gibbs samplers: re-actualisation coordinate by coordinate, while conditioning on the most recent values (no acceptance-rejection)

1 Initialise
$$x^{(0)} = (x_1^{(0)}, \dots, x_d^{(0)})$$

2 For
$$t = 1, ..., n + N$$
:

a Sample
$$x_1^{(t)} \sim p(x_1|x_2^{(t-1)},...,x_d^{(t-1)})$$

b Sample
$$x_2^{(t)} \sim p(x_2|x_1^{(t)}, x_3^{(t-1)}, \dots, x_d^{(t-1)})$$

d Sample
$$x_i^{(t)} \sim p(x_i|x_1^{(t)},...,x_{i-1}^{(t)},x_{i+1}^{(t-1)},...,x_d^{(t-1)})$$

f Sample
$$x_d^{(t)} \sim p(x_d | x_2^{(t)}, \dots, x_{d-1}^{(t)})$$

NB: if the conditional distribution is unknown for some coordinates, an acceptance-rejection step can be included for this coordinate only (Metropolis within gibbs)

Your turn!

Practical: exercise 3

MCMC in practice

MCMC softwares

- **BUGS**: Bayesian inference Using Gibbs Sampling 1989 MRC BSU University of Cambridge (UK)
 - ⇒ flexible software for Bayesian analysis in complex statistical models through MCMC algorithms
 - WinBUGS: ∧ clic + Windows only + stopped development https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
 - OpenBUGS: ♠ clic + Windows only + Linux partially https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/
 - JAGS:

 command line +

 interface http://mcmc-jags.sourceforge.net/
- **STAN**: specialized for high-dimensional problems http://mc-stan.org/

rjags

JAGS software is modern and efficient:

- relies on the BUGS language to specify a Bayesian model
- R interface thanks to rjags package
- results analysis with 😱 packages
 - o coda
 - HDInterval

Markov chain convergence

In Bayesian analysis, MCMC algorithms are used to obtain a **Monte Carlo sample** from the *posterior* distribution

⇒ requires **Markov chain convergence** towards its stationary law (*posterior* distribution).

Markov chain convergence

In Bayesian analysis, MCMC algorithms are used to obtain a **Monte Carlo sample** from the *posterior* distribution

- ⇒ requires **Markov chain convergence** towards its stationary law (*posterior* distribution).
 - ∧ No guaranty that this convergence will occur within finite time
- ⇒ study the convergence empirically for each analysis

Markov chain convergence

In Bayesian analysis, MCMC algorithms are used to obtain a **Monte Carlo sample** from the *posterior* distribution

- ⇒ requires **Markov chain convergence** towards its stationary law (*posterior* distribution).
 - ∧ No guaranty that this convergence will occur within finite time
- ⇒ study the convergence empirically for each analysis

- Initialisation of several Markov chains from different initial values
- ⇒ If convergence is reached, then these chains must be overlapping

Graphical diagnostics

- Trace
- Posterior density
- Running Quantiles
- Gelman-Rubin diagram
- Auto-correlogram

Trace

coda::traceplot()

- e chain traces must overlap and mix
- // n.iter and/or // burn-in

Posterior density

coda::densplot()

- e density must be smooth and uni-modal
- ⋈ / n.iter and/or / burn-in

Running quantiles

coda::cumuplot()

- erunning quantiles must be stable across iterations
- / n.iter and/or / burn-in

Gelman-Rubin statistic

- variation between the different chains
- variation within a given chain

If the algorithm has properly converged, the between-chain variation must be close to zero

$$\theta_{[c]} = (\theta_{[c]}^{(1)}, \dots, \theta_{[c]}^{(N)})$$
 the N-sample from chain number $c = 1, \dots, C$

Gelman-Rubin statistic: $R = \frac{\frac{N-1}{N}W\frac{1}{N}B}{W}$

- between-chain variance: $B = \frac{N}{C-1} \sum_{c=1}^{C} (\bar{\theta}_{[C]} \bar{\theta}_{.})^2$
- chain average: $\bar{\theta}_{[c]} = \frac{1}{N} \sum_{t=1}^{N} \theta_{[c]}^{(t)}$
- global average: $\bar{\theta}_{\cdot} = \frac{1}{C} \sum_{c=1}^{C} \bar{\theta}_{[C]}$
- within-chain variance: $s_{[c]}^2 = \frac{1}{N-1} \sum_{t=1}^N (\theta_{[c]}^{(t)} \bar{\theta}_{[C]})^2$

$$N \to +\infty \& B \to 0 \implies R \to 1$$

Other statistics exist...

Gelman-Rubin diagram

coda::gelman.plot()

- Gelman-Rubin statistic median must remain under the 1,01 threshold (or 1,05)
- / n.iter and/or / burn-in

Effective Sample Size (ESS)

Markov property \Rightarrow **auto-correlation** between values sampled after one another (dependent sampling) :

- reduce the amount of information available within a sample size n
- slows down LLN convergence

Effective sample size quantifies this:

$$ESS = \frac{N}{1 + 2\sum_{k=1}^{+\infty} \rho(k)}$$

where $\rho(k)$ is the auto-correlation with lag k.

Space out saved samples (e.g. every 2, 5, or 10 iterations)

⇒ reduces dependency within the Monte Carlo sample generated

Auto-correlation

coda::acfplot()

- e auto-correlations must decrease rapidly to oscillate around zero
- / thin and/or / n.iter and/or / burn-in

Monte Carlo error

For a given parameter, quantifies the error introduced through the Monte Carlo method

(standard deviation of the Monte Carlo estimator across the chains)

- That error must be consistent from one chain to another
- ullet The larger N (number of iterations), the smaller the Monte Carlo error will be

⚠ This Monte Carlo error must be small with respect to the estimated variance of the *posterior* distribution

Estimation

Thanks to MCMC algorithms, one can obtain a Monte Carlo sample from the posterior distribution for a Bayesian model

Monte Carlo method can then be used to get posterior estimates :

- Point estimates (posterior mean, posterior median, ...)
- Credibility interval (shortest: Highest Density Interval HDI with R package HDInterval)
- Correlations between parameters

Deviance Information Criterion (DIC)

Deviance is: $D(\theta) = -2\log(p(\theta|y)) + C$ with C a constant

Deviance Information Criterion is then:

$$DIC = \overline{D(\theta)} + p_D$$

where $p_D = \left(D(\overline{\theta}) - \overline{D(\theta)}\right)$ represents a penalty for the effective number of parameters

⇒ DIC allows to compare different models estimated on the same data the smaller the DIC. the better the model !

[M Plummer, Penalized loss functions for Bayesian model comparison, Biostatistics, 2008]

Your turn!

Practical: exercise 4

Questions?

