Cancellation Rules

Theorem: Right Cancellation

Let G be a group:

$$\forall a, b, c \in G, a = b \iff ac = bc$$

Proof

Assume $a,b,c\in G$

Let $e \in G$ be the identity element.

$$\implies$$
 Assume $a=b$

The binary operation is well-defined,

$$\therefore ac = bc$$

$$\iff$$
 Assume $ac = bc$

$$c^{-1} \in G$$

$$(ac)c^{-1} = (bc)c^{-1}$$

$$a(cc^{-1}) = b(cc^{-1})$$

$$ae = be$$

$$\therefore a = b$$

Theorem: Left Cancellation

Let ${\cal G}$ be a group:

$$\forall\, a,b,c\in G, a=b\iff ca=cb$$

<u>Proof</u>

Assume $a,b,c\in G$

Let $e\in G$ be the identity element.

$$\implies$$
 Assume $a = b$

The binary operation is well-defined,

$$\therefore ca = cb$$

$$\iff \mathsf{Assume}\; ca = cb$$

$$c^{-1} \in G$$

$$c^{-1}(ca) = c^{-1}(cb)$$

$$(c^{-1}c)a = (c^{-1}c)b$$

$$ea = eb$$

$$\therefore a = b$$

Theorem

Let G be a group:

 $\forall a, b \in G, ax = b \text{ has a unique solution in } G$

Proof

First, show that there is at least one solution:

Let
$$x = a^{-1}b$$

 $ax = a(a^{-1}b) = (aa^{-1})b = eb = b$
 $\therefore x = a^{-1}b$ is a solution.

Now, show uniqueness:

Assume that there are two solutions: x_1 and x_2

$$ax_1 = ax_2$$

$$\therefore x_1 = x_2$$

Theorem

Let G be a group:

 $\forall a, b \in G, xa = b \text{ has a unique solution in } G$

Proof

First, show that there is at least one solution:

Let
$$x = ba^{-1}$$

 $xa = (ba^{-1})a = b(a^{-1}a) = be = b$
 $\therefore x = ba^{-1}$ is a solution.

Now, show uniqueness:

Assume that there are two solutions: x_1 and x_2

$$x_1 a = x_2 a$$

$$\therefore x_1 = x_2$$