

The Logic of Hebbian Learning

Caleb Kisby, Saúl Blanco, Larry Moss Contact: cckisby@iu.edu

The Neuro-Symbolic Problem

Symbolic Systems

- Sophisticated rich reasoning
- Explainable decisions
- X Notoriously rigid and static
- X Manual knowledge-engineering

Neural Networks

- Can't readily learn rich inference
- "Black Box" decisions
- Learns from experience
- Uses unstructured data

penguin
$$\rightarrow$$
 bird bird \Rightarrow flies

Forward Propagation & Conditionals

$$| bird | \varphi \Rightarrow \psi \quad \text{iff} \quad \mathsf{Prop}(\llbracket \varphi \rrbracket) \supseteq \llbracket \psi \rrbracket | \text{ies} \rrbracket$$

Learning Conditionals

Simplifying Assumptions

$$\mathcal{N} = \langle N, E, W, A, O, \eta \rangle$$

- 1. Net is **Feedforward**
- 2. Activations are monotonically increasing
- 3. Neuron outputs are binary

Hebbian Learning

Neurons that fire together wire together

$$\Delta W_{ij} = \eta x_i x_j$$

Prop and Inc

 $\mathsf{Prop} : \mathsf{Set} \to \mathsf{Set}$

Prop(S) means forward-propagate S in the net.

Inc : Net \times Set \to Net Inc (\mathcal{N}, S) means increase the weights of edges within Prop(S) by $\Delta W_{ij} = \eta x_i x_j$

The Logic

$$p \mid \top \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \rightarrow \varphi \mid \varphi \Rightarrow \varphi \mid \mathbf{T}\varphi \mid [\varphi^{+}]\varphi$$

$$\llbracket \mathbf{T}\varphi \rrbracket = \mathsf{Prop}(\llbracket \varphi \rrbracket)$$

$$\llbracket [\varphi^+]\psi \rrbracket = \llbracket \psi \rrbracket_{\operatorname{Inc}(\mathcal{N}, \llbracket \varphi \rrbracket)}$$

Some Axioms & Rules

Basic Axioms
All proposotional tautologies
$\langle \mathbf{T} \rangle \varphi \leftrightarrow \neg \mathbf{T} \neg \varphi$
\mathbf{T}^{\top}
$\mathbf{T}arphi ightarrow arphi$
$\mathbf{T}arphi ightarrow \mathbf{T}\mathbf{T}arphi$
Inference Rules
$\frac{\varphi \varphi \rightarrow \psi}{\psi}$
$\begin{array}{ccc} \varphi \Rightarrow \psi \\ \overline{\mathbf{T}} \varphi \rightarrow \psi \\ \varphi \rightarrow \psi \end{array} \begin{array}{c} \underline{\mathbf{T}} \varphi \rightarrow \psi \\ \varphi \Rightarrow \psi \\ \psi \Rightarrow \varphi \end{array}$
$\varphi \rightarrow \psi^{\top} \psi \Rightarrow \varphi^{\top}$
$\varphi_0 \Rightarrow \varphi_1 \cdots \varphi_{k-1} \Rightarrow \varphi_k \varphi_k \Rightarrow \varphi_0$

$$\begin{array}{lll} \text{(NEC}_{+}) & \frac{\psi}{[\varphi^{+}]\psi} \\ \text{(C}_{+}) & \frac{\psi \rightarrow \rho \quad [\varphi^{+}]\rho \rightarrow \psi}{[\varphi^{+}]\psi \leftrightarrow [\varphi^{+}]\rho} \\ \text{(Loop}_{+}) & \frac{[\varphi^{+}]\psi_{0} \rightarrow \psi_{1} \cdots [\varphi^{+}]\psi_{k-1} \rightarrow \psi_{k} \quad [\varphi^{+}]\psi_{k} \rightarrow \psi_{0}}{[\varphi^{+}]\psi_{0} \rightarrow \psi_{k}} \\ & \textbf{Reduction Axioms} \\ \text{(R}_{p}) & [\varphi^{+}]p \leftrightarrow p \\ \text{(R}_{\neg}) & [\varphi^{+}] \neg \psi \leftrightarrow \neg [\varphi^{+}]\psi \\ \text{(R}_{\wedge}) & [\varphi^{+}](\psi \wedge \rho) \leftrightarrow ([\varphi^{+}]\psi \wedge [\varphi^{+}]\rho) \\ \text{(NEST}_{T}) & [\mathbf{T}\varphi^{+}]\psi \leftrightarrow [\varphi^{+}]\psi \\ & \textbf{Key Axioms} \\ \text{(NS)} & [\varphi^{+}]\mathbf{T}\psi \rightarrow \mathbf{T}[\varphi^{+}]\psi \\ \text{(TP)} & \mathbf{T}[\varphi^{+}]\psi \wedge \mathbf{T}\varphi \rightarrow [\varphi^{+}]\mathbf{T}\psi \\ \end{array}$$

The Key Axioms

(No Surprises)

$$[\varphi^+]\mathbf{T}\psi \to \mathbf{T}[\varphi^+]\psi$$

(Typicality Preservation)

$$\mathbf{T}[\varphi^+]\psi\wedge\mathbf{T}\varphi\to[\varphi^+]\mathbf{T}\psi$$

Working Code!


```
\mathcal{N} \models \mathbf{T}(\text{penguin}) \rightarrow \text{flies, yet}
\mathcal{N} \not\models [\text{orca}^+][\text{zebra}^+][\text{panda}^+](\mathbf{T}(\text{penguin}) \to \text{flies})
 print(model.is_model("(typ penguin) implies flies"))
 True
 print(model.is_model("orca+ zebra+ panda+ \
                   ((typ penguin) implies flies)"))
 False
```

github.com/ais-climber/neural-semantics

Future Work: The Dream

- Model Building (i.e. Completeness)
- 2. First-order logic
- 3. Nonbinary (fuzzy-valued) output
- 4. More varied activation functions (e.g. ReLU)
- 5. Learning via backpropagation

Questions?

Contact: cckisby@iu.edu

github.com/ais-climber/neural-semantics

Appendix / Helper Slides

The Logic: Rules of Inference

(PC)	All proposotional tautologies
(DUAL)	$\langle \mathbf{T} \rangle arphi \leftrightarrow \neg \mathbf{T} \neg arphi$
(N)	\mathbf{T}^{\top}
(T)	$\mathbf{T}\varphi ightarrow \varphi$
(4)	$\mathbf{T}arphi o \mathbf{T}\mathbf{T}arphi$

$$\begin{array}{ll} \text{(MP)} & \frac{\varphi \quad \varphi \rightarrow \psi}{\psi} \\ \text{(TYP)} & \frac{\varphi \Rightarrow \psi}{\mathbf{T}\varphi \rightarrow \psi} \quad \frac{\mathbf{T}\varphi \rightarrow \psi}{\varphi \Rightarrow \psi} \\ \text{(C_{\Rightarrow})} & \frac{\varphi \rightarrow \psi \quad \psi \Rightarrow \varphi}{\varphi \Leftrightarrow \psi} \\ \text{($Loop_{\Rightarrow}$)} & \frac{\varphi \circ \psi}{\varphi \circ \varphi_{1} \cdots \varphi_{k-1} \Rightarrow \varphi_{k} \quad \varphi_{k} \Rightarrow \varphi_{0}}{\varphi_{0} \Rightarrow \varphi_{k}} \end{array}$$

The Logic: Rules of Inference

$$\begin{array}{ll} \text{(NEC}_{+}) & \frac{\psi}{[\varphi^{+}]\psi} \\ \text{(C}_{+}) & \frac{\psi \to \rho \quad [\varphi^{+}]\rho \to \psi}{[\varphi^{+}]\psi \leftrightarrow [\varphi^{+}]\rho} \\ \text{(LOOP}_{+}) & \frac{[\varphi^{+}]\psi_{0} \to \psi_{1} \cdots [\varphi^{+}]\psi_{k-1} \to \psi_{k} \quad [\varphi^{+}]\psi_{k} \to \psi_{0}}{[\varphi^{+}]\psi_{0} \to \psi_{k}} \end{array}$$

$$\begin{array}{ll} (\mathbf{R}_p) & [\varphi^+]p \leftrightarrow p \\ (\mathbf{R}_\neg) & [\varphi^+]\neg\psi \leftrightarrow \neg[\varphi^+]\psi \\ (\mathbf{R}_\wedge) & [\varphi^+](\psi \land \rho) \leftrightarrow ([\varphi^+]\psi \land [\varphi^+]\rho) \\ (\mathrm{NEST}_{\mathbf{T}}) & [\mathbf{T}\varphi^+]\psi \leftrightarrow [\varphi^+]\psi \end{array}$$

(NS)
$$[\varphi^+]\mathbf{T}\psi \to \mathbf{T}[\varphi^+]\psi$$

(TP) $\mathbf{T}[\varphi^+]\psi \wedge \mathbf{T}\varphi \to [\varphi^+]\mathbf{T}\psi$

