WHAT IS CLAIMED IS:

1 [0132]

1

1. A compound according to the formula

2

3 and the pharmaceutically acceptable salts thereof,

- 4 wherein
- 5 each Z is independently N or C(R¹), with the proviso that no more than 2 Z's in any one
- 6 aromatic ring are N;
- 7 Y is O, N, or S;
- 8 Q is N or $C(R^1)$, with the proviso that Q is $C(R^1)$ when Y is N;
- 9 Ar is an unsubstituted or substituted aromatic or heteroaromatic 5- or 6-member ring;
- each R^1 is independently H, halogen, OH, or a C_1 to C_{12} alkyl heteroalkyl moiety;
- each R² is independently H or a C₁ to C₁₈ alkyl or heteroalkyl moiety or the two R²'s taken
- together with the nitrogen atom to which they are attached form a substituted or
- unsubstituted heteroalkyl 5 to 7 member ring;
- 14 and
- 15 R^3 is H or a C_1 to C_6 alkyl moiety;
- with the proviso that at least one group R^1 , R^2 , or R^3 contains an alkyl amine group or a
- 17 quaternary nitrogen group.
- 1 2. A compound according to claim 1, wherein at least one group R²
- 2 contains an alkyl amine group.
- 1

3. A compound according to claim 1 or 2, wherein

3

is selected from the group consisting of

$$R^1$$
 R^1
 R^1
 R^1

$$R^1$$
 R^1
 R^1
 R^1

4 5

$$R^1$$
 N
 R^1
 R^1

and

$$R^1$$
 R^1
 R^1
 R^1
 R^1
 R^1

7

6

wherein R^1 is H or CH_3 .

1

A compound according to claim 1 or 2, wherein 4.

2 3 4

is selected from the group consisting of

5 6

and

7 1

A compound according to claim 1 or 2, wherein 5.

2

3

4

is selected from the group consisting of

$$R^1$$
 R^1

and

5

wherein R¹ is H or CH₃.

1 6. A compound according to claim 1 or 2, wherein

3 is selected from the group consisting of

5

and

7. A compound according to claim 1 or 2, wherein

1

2

4

3 is selected from the group consisting of

 $\{ \begin{array}{c} X^3 \\ X^2 \\ X^1 \end{array} \}_{\mathcal{F}}^2$

and

5 wherein one of X^1 , X^2 , and X^3 is a ring vertex selected from the group consisting of -O-,

6 -S-, and -NR⁸-, and the other two of X¹, X², and X³ are ring vertices selected from the

7 group consisting of =N- and =CR⁷-; each R⁷ is independently H, F, Cl, Br, I, CN, OH,

8 NO₂, NH₂, a substituted or unsubstituted (C₁-C₁₂)alkyl group, a substituted or

9 unsubstituted (C₁-C₁₂)alkoxy group, or a substituted or unsubstituted (C₁-C₁₂)heteroalkyl

group; and R⁸ is H, a substituted or unsubstituted (C₁-C₁₂)alkyl group, or a substituted or

11 unsubstituted (C_1-C_{12}) heteroalkyl group.

8. A compound according to claim 1 or 2, wherein

1

3 is selected from the group consisting of

- 1 9. A compound according to claim 1 or 2, wherein R³ is H.
- 2 10. A compound according to a formula selected from the group
- 3 consisting of

4

WO 2004/012736 PCT/US2003/024294

- 4 and the pharmaceutically acceptable salts thereof,
- 5 wherein each R^2 is independently H or a C_1 to C_{18} alkyl or heteroalkyl moiety or the two
- 6 R²'s taken together with the nitrogen atom to which they are attached form a substituted
- 7 or unsubstituted heteroalkyl 5 to 7 member ring; at least one group R² containing an alkyl
- 8 amine group.
- 1 11. A compound according to claim 1, 2 or 10, wherein N(R²)₂ is
- 2 selected from the group consisting of

WO 2004/012736 PCT/US2003/024294

$$A^{\mathcal{L}}_{N} \cap A^{\mathcal{L}}_{N} \cap A^{\mathcal$$

- 1 12. A compound according to claim 1, having a minimum inhibitory
- 2 concentration of 4 μg/mL or less against at least one of Staphylococcus aureus (ATCC
- 3 27660), Streptococcus pneumoniae (ATCC 51422), and Enterococcus faecium (ATCC
- 4 51559).
- 1 13. A method of treating a bacterial infection in a mammal, comprising
- 2 administering to a patient in need of such treatment an effective amount of a compound
- 3 according to claim 1, 2, or 10.
- 1 14. A method according to claim 13, wherein the bacterial infection is
- 2 an infection by drug resistant bacteria.
- 1 15. A method according to claim 14, wherein the drug resistant
- 2 bacteria is MRSA, PRSP, or VRE.
- 1 16. The use of a compound according to claim 1, 2, or 8 for the
- 2 preparation of a medicament for the treatment of a bacterial infection in a mammal.