Physics

Assessment

Ontario

Instrument Pool

PACKAGE III

SENIOR DIVISION

Ministry of Education Ontario

Hon. Bette Stephenson, M.D., Minister Harry K. Fisher, Deputy Minister

OHEC 373.1909713 O59DE/C-Ph

PHYSICS: Package III

SENIOR DIVISION

THE ONTARIO ASSESSMENT INSTRUMENT POOL

© The Minister of Education, Ontario, 1983 Queen's Park Toronto, Ontario

ISBN 0-7743-8189-2 ISSN 0228-0957 ON 02869

This package contains a representative sample of created response instruments: short answer, completion, essay, and problem instruments. Some selected response matching exercises are also included. Some of the instruments can be used in evaluating the aims, goals, and objectives of Senior Division Physics, some at the Ontario Academic Credit Level, and some at both levels. The package also includes the scoring policy and an answer and scoring scheme for each instrument.

Cost: \$15.00

Copies of this package may be obtained from:

Ontario Government Bookstore 880 Bay Street Toronto, Ontario M7A 1N8 (mail orders)
Publications Centre
880 Bay Street, 5th Floor
Toronto, Ontario
M7A 1N8

(Cheques should be made payable to the Treasurer of Ontario.)

or

Publication Sales
The Ontario Institute for Studies in Education
252 Bloor Street West
Toronto, Ontario
M5S 1V6

(Cheques should be made payable to OISE.)

Digitized by the Internet Archive in 2025 with funding from University of Toronto

TABLE OF CONTENTS

Topic	Symbol	Page
Scoring Created Response Instruments		4
Scoring Policy Adopted		4
Guidelines for Implementing the Scoring Policy		6
Measurement	M	7
Functions	F	21
Kinematics	K	29
Motion in a Straight Line	K-MSL	30
Motion in a Plane and Vectors	K-MPV	70
Dynamics	D	95
Force and Newton's Laws	D-FNL	96
Centripetal Force and Gravitation	D-CFG	131
Impulse and Conservation of Momentum	D-ICM	141
Work and Kinetic Energy	D-WKE	159
Gravitational Potential Energy	D-GPE	176
Behaviour of Light and Models of Light	L	212
Geometric Optics (see also Ray or Geometric Optics)	L-GO	213
Particle Model of Light	L-PML	
Characteristics and Behaviours of Waves	L-CBW	217
Interference of Periodic Waves	L-IPW	
Wave Model of Light and Interference	L-WML	225
Electricity and Magnetism	EM	226
Electric Forces and Charges	EM-EFC	
Electric Field and Potential	EM-EFP	227
Current Electricity and Electromagnetism (see also Electromagnetism)	EM-CEE	230
Electromagnetic Spectrum	EM-ES	
Wave-Particle Duality of Electromagnetic Radiation and Matter	WPD	277
Photons	WPD-P	278
Matter Waves	WPD-MW	287
The Atom	A	290
The Rutherford Model	A-RM	
Energy Levels	A-EL	291
Nuclear Energy	NE	

Topic	Symbol	Page
Sound	S	293
The Nature of Sound	S-NS	
Music	S-M	294
Noise	S-N	
The Ear	S-E	
Electromagnetism (see also Electricity and Magnetism)	E	297
Magnets	E-M	
Electromagnets	E-E	
Applications	E-A	298
Basic Electronics	BE	
The p-n Junction	BE-p-n	
The Diode	BE-D	
The MOSFET Transistor	BE-MT	
The Zener Diode	BE-ZD	
Ray or Geometric Optics (see also Behaviour of Light and Models of Light)	GO	299
Sources and Travel	GO-ST	
Reflection	GO-R	300
Refraction	GO-Rfra	305
Optical Instruments	GO-OI	
Colour	С	325
The Spectrum	C-S	326
Colour and Colour-Mixing	C-CM	
Colour Vision	C-CV	327
Infrared and Ultraviolet Radiation	C-IUV	
Fluids	F1	328
Fluids at Rest	F1-R	329
Fluids in Motion	F1-M	
Thermal Effects	T	
Temperature	T-T	
Heat	T-H	
Thermal Expansion	т-Е	
Calorimetry	T-C	
Evaporation	т-Е	
First Law of Thermodynamics	T-L	

Topic	Symbol	Page
Statics	ST	rage
Torque and Equilibrium	ST-TE	
Machines	ST-M	
Radioactivity and Radiation Exposure	R	
Radioactivity	R-R	
Radiation Exposure	R-RE	
Energy Sources and Conservation	ES	343
Energy Sources	ES-S	
Energy Conservation	ES-C	344
Historical Perspective - Astronomy	HA	
The Universe	HA-U	
Greek Scientists	HA-GS	
Copernicus and Brahe	HA-C&B	
Kepler	HA-K	
Galileo	HA-G	
Newton and Beyond	HA-N	

Scoring Created Response Instruments

The scoring of created response instruments involves a number of subjective judgments on the part of the scorer. These subjective judgments are minimized and the scoring is more reliable if a detailed scoring scheme is followed. A scoring scheme has been provided for each created response instrument in the OAIP: Physics.

The scoring policy adopted for OAIP: Physics is that of 'a point for a point'. One scoring point is awarded for each clearly identifiable step or element which makes an essential contribution to a correct and complete answer. An element is scored either '/' or 0; that is, an element is either there or it isn't and is credited or not credited accordingly.

The details of the scoring policy adopted for created response instruments is summarized below. A ' indicates that a scoring point is awarded for the element indicated. The teacher should use discretion in the use of the scoring policy.

Scoring Policy Adopted for Created Response Instruments

Setting up the Problem

- √ extraction of relevant data (including units and assignment of data to the correct variable)
- √ statement of convention (e.g. take downward as positive) √ listing of implied or assumed values (e.g. $v_i = 0$, a = g)
- √ statement of relevant general principles or laws
- √ drawing of a sketch showing the situation and the objects
 (e.g. projectile thrown from building)

Equations

- \checkmark choice of relevant equation (e.g. F = ma)
- √ correct substitution of data into the equation

Mathematical Computation

- / re-arranging the variables in an equation to isolate the unknown (either before or after substitution)
- / performing key steps needed to obtain the final answer such
 as obtaining the value of a constant from tables or a
 calculator, simplification, factoring, or applying a
 mathematical identity

Final Answer

- √ magnitude (numeral and exponent)
- √ unit
- √ direction (when applicable)
- √ sign (when appropriate) (e.g. gain or loss of energy)
- √ number of significant figures (when appropriate)
- √ final statement (answer to the question)

Special Considerations

- (i) Free Body Diagrams
- √ each correctly labelled vector
- (ii) Vector Sketches

for each correct vector

- $\sqrt{\text{label (e.g. } v(a/g))}$
- √ magnitude where appropriate (e.g. 400 m/s)
- √ direction where appropriate (e.g. [N])
- √ orientation with reference to other vectors (e.g. head
 to tail, tail to tail, etc.)
- (iii) Vector Scale Diagrams
- √ indication of scale
- √ appropriateness of scale
- √ constructed length of each given vector
- √ constructed direction of each given vector
- √ length of each measured vector
- √ determination of the true length of each measured vector
- √ direction of each measured vector /(using scale)

(iv) Sketched Graphs

- √ correct shape
- √ correct placement with reference to origin
- √ correct slope at key locations (e.g. origin)
- (v) Plotted Graphs
- √√ appropriateness of title
- √√ assignment of variables to axes
- √√ labelling quantities on axes
- √√ labelling units on axes
- √√√√ appropriateness of axes scales
- √√√ accuracy of plotted points
- √√ appropriateness of indication of plotted points (error bars)
- √√√√ appropriateness of line of best fit
- √√√ neatness
 - NOTE: 1. See the Scoring Scheme for Graphs on page 39.
 - 2. Allocate the tick '√' marks indicated, sum, and divide by 5 to achieve a realistic weighting.

(vi) Ray Diagrams

- √ each appropriate ray
- √ each correct arrowhead
- √ each appropriate angle
- √ each characteristic of the image

Guidelines for Implementing the Scoring Policy

- 1. Students should be encouraged to substitute units with numerals into equations and to carry units throughout the solution of a problem. Physical quantities, such as mass, force, and momentum, are completely described only when units are included with numerals. The substitution of units has several merits: it provides a check on the accuracy of the equation; it points out the need for consistent units; and it identifies the unit of the answer. Students should not be penalized if units are dropped part way through the solution of a problem. Some units are cumbersome to carry. But if units are dropped, students should write 'units dropped' as a signal to the scorer of a conscious decision to do so.
- 2. Mathematical computations should not take precedence over the physics in a question. Accordingly, a minimum of points has been allotted for arithmetical manipulation. For this reason the use of calculators in created response instruments is optional.
- 3. A mechanical error should result only in the loss of marks for the step in which the error occurred. The examiner should trace the solution through to the final answer without deducting further marks unless additional errors are made.
- 4. Students should be encouraged to show their complete solution to a problem. However full marks are assigned to the correct answer even if intermediate steps are omitted provided the logic is sound.
- 5. The final answer to all created response instruments should be in the form of a statement. This statement is an answer to the question asked in the problem.

MEASUREMENT

NOTE: Do not permit the use of calculators for this 1 series of diagnostic problems. S17A For items 1-8, reduce the expression to its simplest I.1.d form and place your answer in the space provided. S17C Express your answer in scientific notation (standard I.1.d form). 1 Scoring Answer Fl Scheme A4 (10^{-3}) $10^4 \times 10^{-7} =$ A7 (1) (10^{-7}) $10^{-5} \div 10^{2}$ * (2) * (10^{-17}) $10^{-2} \times 10^{-15}$ (3) (3.0×10^8) or 3.6×10^7 (4) 12 x 10⁻² (0.3×10^9) 2.5×10^{-3} (5.0×10^{-6}) 11 (5) 5.0×10^{2} 28 m/s - 5.0 m/s (2.3 m/s^2) 11 (6) 10 s $\frac{29 \text{ m/s} - 9 \text{ m/s}}{5.0 \text{ s}}$ 11 (7) (4.0 m/s^2) 32 m/s - 40 m/s $= \qquad (-2 \text{ m/s}^2)$ $\sqrt{\sqrt{}}$ (8) 4.0 s

2 For items 1-6, express the measurement in scientific notation (standard form) to two significant figures.

S17A I.1.d Scor-S17C ing I.1.d Scheme Answer √√ (1) 1 37 005 m $(3.7 \times 10^4 \text{ m})$ m **A4** √ √ (2) 0.028 cm $(2.8 \times 10^{-2} \text{ cm})$ CM ж √ √ (3) 570 m $(5.7 \times 10^2 \text{ m})$ m * √ √ (4) 0.003 14 s $(3.1 \times 10^{-3} \text{ s})$ S √ √ (5) 22 m $(2.2 \times 10^{1} \text{ m})$ m $\sqrt{\sqrt{(6)}}$ 0.004 270 g = _____ $(4.3 \times 10^{-3} \text{ g})$ g

3 S17A I.1.a	laws of exponents. These are pure numbers					
S17C I.1.d		not measured quanti correct answer is a	ities. Any mathema acceptable.	atically		
S1 A7	your	tems 1-14, simplify tanswer using power of provided.	the expression and f ten notation in t	place the		
F1 A4 Scoring Scheme				Answer		
*	(1)	10 ⁴ x 10 ⁶		(10^{10})		
^^ √	(2)	$10^{7} \times 10^{-3}$	=	(10 ⁴)		
\checkmark	(3)	$10^{-5} \times 10^{5}$	=	(10° or 1)		
. ✓	(4)	10 ⁻⁵ x 10 ⁻⁵		(10^{-10})		
√	(5)	10 ⁶ ÷ 10 ⁴		(10^2)		
√	(6)	104 : 106	=	(10^{-2})		
√	(7)	108 : 104		(10 ⁴)		
√	(8)	108 : 10-5	=	(10^{13})		
√	(9)	107 : 107		$(10^{0} \text{ or } 1)$		
√	(10)	10 ⁷ ÷ 10 ⁻⁷		(10 ¹⁴)		
√	(11)	10 ⁻⁷ ÷ 10 ⁻⁷		(10 ⁰ or 1)		
√	(12)	10 ⁻⁷ ÷ 10 ⁷		(10 ⁻¹⁴)		
√	(13)	(10 ⁶) ²		(10 ¹²)		
√	(14)	√10 ¹⁰	=	(10 ⁵)		

S17A I.1.a S17C I.1.d	exponents. These are pure numbers, not measured quantities. Any mathematically					
S1 A7 F1 A4 Scoring		ems 1-9, simplify the expressionswer using power of ten notations.				
Scheme			Answer			
* * / / **	(1) 1	0 5 + 10 6 =	(1.1 x 10 ⁶)			
^^ / <i>√</i>	(2) 1	0 5 - 10 4 =	(9 x 10 ⁴)			
√ √	(3) 1	0 3 - 10 4 =	(-9×10^3)			
√ √	(4) 5	$.0 \times 10^{5} + 4.0 \times 10^{5} =$	(9.0×10^5)			
√ √	(5) 7	$1.0 \times 10^{4} - 3.2 \times 10^{4} =$	(3.8 x 10 ⁴)			
√ √	(6) 2	$.0 \times 10^6 + 3.0 \times 10^5 =$	(2.3×10^6)			
√ √	(7) 2	$.0 \times 10^5 + 3.0 \times 10^6 =$	(3.2×10^6)			
√ √	(8) 5	$.1 \times 10^6 - 1.0 \times 10^5 =$	(5.0×10^6)			
√ √	(9) 4	$.0 \times 10^{5} - 7.5 \times 10^{6} =$	(-7.1×10^6)			

NOTE: Do not permit the use of calculators fo series of diagnostic problems. The obj is to test understanding of the laws of exponents. These are pure numbers, not measured quantities. Any mathematicall correct answer is acceptable.						objective s of not			
S1 A7 F1 A4	Scoring	your a	ems 1-12, s inswer using provided.	imp	olify ower o	th of	ne expi ten no	ression and otation in	d place the
	Scheme								Answer
* * *	√ √	(1)	(3.0×10^4)	×	(2.0	x	104)	=	(6.0×10^8)
xx	√ √	(2)	(2.0×10^4)	x	(3.0	x	10 ³)	=	(6.0×10^7)
	√ √	(3)	(5.0×10^3)	x	(1.2	x	10-3)	=	(6.0)
	√ √	(4)	(3.0×10^4)	•	(2.0	×	104)	=	(1.5)
	√ √	(5)	(3.0×10^4)	•	(6.0	×	10³)	=	(5.0)
	√ √	(6)	(6.0×10^3)	•	(5.0	X	10-3)	=	(1.2×10^6)
	√ √	(7)	(3.0×10^4)	2				=	(9.0×10^8)
	√ √	(8)	(2.0×10^{-3})) 3				=	(8.0×10^{-9})
	√ √	(9)	$\sqrt{16 \times 10^{10}}$					=	(4.0×10^5)
	√ √ √	(10)	$\sqrt{640 \times 10^9}$					=	(8.0×10^5)
	√ √	(11)	$\sqrt{49 \times 10^{-8}}$					=	(7.0×10^{-4})
	V V V	(12)	$\sqrt{6.4 \times 10^7}$					Chemin Chemin	(8.0×10^3)

```
6
             Calculate the area of one surface of a thin ribbon
             of metal that is measured to be 2.0 cm wide and
             2 467 cm long.
S17A
I.1.d
             Express your answer to the correct number of
3
             significant digits.
A4
**
Scoring
Scheme
             Answer
             \omega = 2.0 \text{ cm}
             l = 2 467 \text{ cm}
             A = I \omega
               = 2.0 \text{ cm} \times 2 467 \text{ cm}
             = 4 934 \text{ cm}^2
               = 4.9 \times 10^3 \text{ cm}^2
             The area of one surface of the ribbon is 4.9 \times 10^3 \text{ cm}^2.
```

For items 1-10, perform the conversion indicated 7 and place your answer in the space provided. Ignore significant figures in your answer. S17A I.1.c S17C Scor-I.l.a ing Answer Scheme (7.766)kg 7 766 g = (1)A4 (9) mm (2) 0.009 m ** (4) μs * (3) 0.004 ms ** (246)Mg 246 000 kg = (4) $4.7 \times 10^{-6} \text{ g} =$ (4.7)(5) μg (6) $3.2 \times 10^4 \text{ m} =$ km (32)(1.1)(7) CS 11 000 µs dam (5.34)(8) 534 dm (9) 0.0035 hg (0.35)(10) 100 das = ks (1)

8	For	items	1-9,	place	your	answer	in	the	space
	prov	vided.							

S17A I.1.a S S17C I.2.b S	ing	-		Answer
SS 4	√	(1)	If A = BC, then B =	(A/C)
A7 F1	√	(2)	If $C = B/A$, then $B =$	(AC)
*	√	(3)	If $A = B/C$, then $C =$	(B/A)
*	√	(4)	If A = B + C, then B =	(A - C)
	√	(5)	If A = B + C, then C =	(A - B)
	√	(6)	If C = B - A, then B =	(A + C)
	√	(7)	If C = B - A, then A =	(B - C)
	√	(8)	If A = B + CD, then B =	(A - CD)
1	√ √	(9)	If A = B + CD, then C =	$\left(\frac{A - B}{D}\right)$

For items 1-7, place your answer in the space 9 provided. S17A Scor-I.1.a ing Answer S17C Scheme I.2.b $\sqrt{\sqrt{(1)}}$ If $A = \frac{B + C}{D}$, then $B = \underline{\hspace{1cm}}$ (AD - C)SS 4 $\sqrt{\sqrt{(2)}}$ If $A = \frac{B + C}{D}$, then $D = \frac{(\frac{B + C}{A})}{D}$ Α7 F1 $\sqrt{\sqrt{(3)}}$ If B = $\frac{A - D}{C}$, then A = ______(BC + D) $\sqrt{\sqrt{4}}$ If B = $\frac{A - D}{C}$, then D = ______(A - BC) $\sqrt{\ }\sqrt{\ }$ (5) If B = $\frac{A - D}{C}$, then C = $\frac{A - D}{B}$ $\sqrt{}$ (6) If A = C - BD, then C = (A + BD) $\sqrt{\sqrt{(7)}}$ If A = C - BD, then D = $\frac{(C - A)}{B}$

10 For items 1-5, place your answer in the space provided.

I.1.	Scor- a ing Scheme				,	Answer
	√	(1)	If $A = BC^2$,	then B =		(A/C^2)
SS 4	√ √	(2)	If $A = BC^2$,	then C =		$\left(\begin{array}{c} \frac{\pm}{A} \end{array}\right)$
F1 *	✓ ✓	(3)	If $A = \frac{BD^2}{C}$,	then B =		$(\frac{AC}{D^2})$
* *	√	(4)	If $A = \frac{BD^2}{C}$,	then C =		$(\frac{BD^2}{A})$
	√ √ √	(5)	If $A = \frac{BD^2}{C}$,	then D =		$\left(\begin{array}{c} \frac{AC}{B} \end{array}\right)$

11 Consider the equation R = -qT.

(a) If R = 3 and T = 9, the value of q is _____. S17A

I.1.a

(b) If R = 12 and q = 6, the value of T is _____. S17C

I.2.b

SS 4

F1

A7

* *

Scoring

Scheme Answer

(a) q = -1/3V V

(b) T = -2V. V

12 Consider the equation R = -qT.

S17A (a) If R = 9 and T = 3, the value of q is _____.

S17C (b) If R = 12 and q = 4, the value of T is _____. I.2.b

SS 4

F1 A7

*

*

Scoring

Scheme Answer

 $\sqrt{\ }$ (a) q = -3

 $\sqrt{\ }$ (b) T = -3

13 Consider the equation R = -qT.

(a) Solve this equation for q. S17A

I.1.a (b) Solve this equation for T.

S17C I.2.b

SS 4

F1

A7

*

Scoring

Scheme Answer

(a) $q = \frac{-R}{T}$ 11

(b) $T = \frac{-R}{q}$ √ √

FUNCTIONS

1

The following graph illustrates the force F, exerted by a spring, versus the compression X.

S17C III.6.a

11

D3 A11 F1

- (a) Write the proportionality statement relating F and X.
- (b) Determine the specific equation relating F and X .

Scoring Scheme Answer (a) $F \propto X$

$$(b) \quad F = kX$$

$$\sqrt{k} = \frac{\text{rise}}{\text{run}}$$

$$\sqrt{\ }$$
 = $\frac{(80 - 0) \text{ N}}{(0.30 - 0) \text{ m}}$
= 267 N/m

$$\sqrt{\ }$$
 = 2.7 x 10² N/m

$$\checkmark$$
 : $F = (2.7 \times 10^2 \text{ N/m})X$

2	Cons	ider the equation $a = \frac{kbc^2}{d^2}$, where k is a
S17C I.2.b	posi	tive constant. Write the proportionality
11	state	ement (in symbols or words) for:
12	(a)	the relationship between \boldsymbol{a} and \boldsymbol{b} , when \boldsymbol{c} and \boldsymbol{d} are constant
A11 *	(b)	the relationship between $\boldsymbol{\alpha}$ and \boldsymbol{c} , when \boldsymbol{b} and \boldsymbol{d} are constant
_	(c)	the relationship between \boldsymbol{a} and \boldsymbol{d} , when \boldsymbol{b} and \boldsymbol{c} are constant

Scoring Scheme	Answer
√	(a) $\alpha \propto b$, or α is (directly) proportional to b
√	(b) $a \propto c^2$, or a is (directly) proportional to c^2

 $\sqrt{}$ (c) $\alpha \propto \frac{1}{d^2}$, or α is inversely proportional to d^2

Scoring Scheme	Answer		
√	correct shape	α	/
\checkmark	passing through the origin		
√	slope zero at origin		

5 \$17C I.2.b	Using the axes provided, sketch (do not plot) the first quadrant portion of the graph of the relationship between α and b when $\alpha = kb$, where k is a positive constant.
S 11 A11 A7	α
** * **	D D

correct use of brackets

6	Consider the following statement:						
S17C I.2.b	" r is directly proportional to the sum of s and t , and is inversely proportional to the square of y ".						
12 A11	Write the general corresponding equation for r in terms of s , t , and y .						
* * -							
Scoring Scheme	$\frac{\text{Answer}}{x} = \frac{\mathbf{k} (s + t)}{y^2}$						
√	correct interpretation of direct proportion to sum						
√	correct interpretation of inverse proportionality						
1	constant and equality sign						

7 Consider the equation $P = \frac{1}{4}SY^2$.

S17A (a) Solve the equation for S.

I.1 S17C (b) Solve the equation for Y. I.2.b

SS 12

F1 A7

**

* **

Scoring

Scheme Answer

 $\sqrt{\ }\sqrt{\ }$ (a) $S = \frac{4P}{Y^2}$

 $\sqrt{\sqrt{\sqrt{}}}$ (b) $Y = \pm \sqrt{\frac{4P}{S}}$ or $\pm 2\sqrt{\frac{P}{S}}$

KINEMATICS

MOTION IN A STRAIGHT

2	The slope of	a posit	ion-time	graph	gives	a	quantity
S17A I.2.a S17C I.3.a	called		_•				
16							
A3 A7							
* * **							
Scoring Scheme	Answer						
√	velocity						

3 S17A I.2.a S17C I.3.a	The position-time graph for an object travelling in a straight line is shown.	*
16		0 t
A11 A7	Using the axes provided,	υ
*	sketch the shape of the velocity-time graph for the object's motion.	
		0 t
Scoring Scheme	Answer	
✓	position of line above origin	υ
√	straight line with zero slope	
		0 t

4	The	slope	of	a	velocity-time	graph	gives	a	quantity
S17A I.2.a S17C I.3.b	call	ed			•				
17									
A3 A7									
* * -									
Scoring Scheme	Answ	er							
√	acce	leratio	n						

graph plotted below.

15

A11 **

*

A7

17

A particle is moving as shown by the position-time

Using the axes and grids provided, plot the following graphs:

velocity versus time (a)

(b) acceleration versus time

6	The area under a velocity-time graph for a certain
S17A	time interval represents the during
I.2.a S17C I.3.b	the interval.
18	
A7 A2	
*	
_	
Scoring Scheme	Answer
√	displacement
	or
	change in position

7 S17A I.2.a S17C I.3.b	The velocity-time graph for an object travelling in a straight line is shown.	v	
18		0	t
A11 A7 * *	Using the axes provided, sketch the shape of the position-time graph for the object's motion.	x 0	t
Scoring Scheme	Answer		
√	graph a straight line	$\frac{1}{x}$	
√	positive slope		/
	NOTE: The graph need not start at the origin.		

\$17A 1.2.a \$17C 1.3.b	The velocity-time graph for an object travelling in a straight line is shown.	\vec{v}	
18		0	t
A11 A7	Using the axes provided, sketch the shape of the	$\frac{1}{x}$	
** * -	position-time graph for the object's motion.		
		0	t
Scoring Scheme	Answer		
√	correct shape $(d \propto t^2)$	$\dot{\overline{x}}$	
√	slope at origin zero		
		0	t


```
10
            In the equation d = v \cdot \Delta t, what is the meaning of the
            symbol \Delta t?
S17A
I.2.a
S17C
I.3.c
19
A2
*
*
Scoring
Scheme
            Answer
               t_2 - t_1
            or t_n - t_{n-1}
            or an increment in t
            or an interval of t
```

- 11 Consider the equation $\vec{v}_f = \vec{v}_i + \vec{a}t$.
- S17A (a) State the meaning of the arrows over the symbols I.2.a $\vec{v}_{\rm f}$, $\vec{v}_{\rm i}$, and \vec{a} .
- I.3.c (b) State why there is no arrow over the symbol "t".
- (c) State what each symbol represents.
- All (d) Rearrange the equation to solve for t.

* * **

Scheme Answer

- √ (a) The arrows indicate that the physical quantities represented by these symbols are vector quantities.
- \checkmark (b) "t" represents a scalar quantity (time).
- (c) $\dot{v}_{\rm f}$ represents the final velocity.
- $\sqrt{\dot{v}_{\rm i}}$ represents the initial velocity.
- $\sqrt{}$ represents the acceleration
- $\sqrt{}$ represents the time interval between the initial and final velocities.

$$\sqrt{\qquad \qquad (d) \quad t = \frac{\vec{v}_{f} - \vec{v}_{i}}{\vec{a}}}$$

```
12
             A skier accelerates at 5 \text{ m/s}^2. What is the increase
              in speed of the skier between the fourth and fifth
S17A
              seconds?
I.2.a
S17C
I.3.b
19
F1
A8
А3
**
*
***
Scoring
Scheme
              Answer
                                  t_1 = 4 \text{ s}
              \alpha = 5 \text{ m/s}^2
                                                                      t_2 = 5 s
              \Delta t = 5 s - 4 s
\sqrt{}
                = 1 s
              \Delta v = a \Delta t
                 = (5 \text{ m/s}^2) (1 \text{ s})
V V
                 = 5 \text{ m/s}
```

The increase in speed of the skier is 5 m/s.

```
If a skier accelerates down a hill at 5 \text{ m/s}^2, by
13
             how much does the speed change in 1 s?
S17A
I.2.a
S17C
I.3.b
19
Fl
А3
A8
**
*
**
Scoring
Scheme
             Answer
             a = 5 \text{ m/s}^2
                            \Delta t = 1 \text{ s}
             \Delta v = \alpha \Delta t
                = (5 \text{ m/s}^2) (1 \text{ s})
V V
               = 5 \text{ m/s}
             The speed changes by 5 m/s every second.
```

14 The equation $\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$ is used to describe motion.

S17A I.2.a S17C I.3.b

- (a) Express in words the meaning of each symbol in the equation.
- (b) Express in words the meaning of the equation.

S 19

A11 A8

×

--

Scoring Scheme

Answer

√ √ √

- (a) \vec{a} represents acceleration $\Delta \vec{v}$ represents change in velocity Δt represents an interval of time
- \checkmark \checkmark (b) Acceleration equals the rate of change of velocity with time.

The equation $v_{ay} = \frac{d}{t}$ is used to describe motion. 15 S17A Express in words the meaning of each symbol (a) I.2.a in the equation. S17C I.3.a Express in words the meaning of the equation. (b) S 20 A11 8A * Scoring Answer

Scheme

(a) $v_{\rm av}$ represents average speed $\sqrt{}$ d represents distance travelled t represents the time interval

111 (b) Average speed is equal to the total distance travelled divided by the total time taken.

```
6
                  A 2 kg ball falls freely from rest. How far will the ball fall in the first second? (g = 10 \text{ m/s}^2)
S17A
I.2.a
S17C
I.3.c
21
A8
*
*
**
Scoring
Scheme
                  Answer
                  m = 2 \text{ kg}
\sqrt{\phantom{a}}
                   v_i = 0
                  g = 10 \text{ m/s}^2
                  d = v_i t + \frac{1}{2} a t^2
```

The ball will fall 5 m in the first second.

 $= 0 + \frac{1}{2} \times 10 \text{ m/s}^2 \times (1 \text{ s})^2$

= 5 m

17 For a particular body moving with constant acceleration along a straight line

\$17A I.2.a \$17C	$\dot{\overline{v}}_{i}$ = +3.0 m/s
I.3.c	$\dot{\overline{a}} = -1.0 \text{ m/s}^2$
21	t = 3.0 s

*

- All (a) Without substituting numerical values for any of the variables, write the equation that is suitable for determining the displacement \vec{d} of the body.
 - (b) Calculate the displacement of the body using the data provided.

The displacement of the body is +4.5 m.

Scoring Scheme Answer (a) $\vec{d} = \vec{v}_1 t + \frac{1}{2} \vec{a} t^2$ (b) $\vec{d} = (3.0 \text{ m/s})(3.0 \text{ s}) + \frac{1}{2} (-1.0 \text{ m/s}^2)(3.0 \text{ s})^2$ = 9.0 m - 4.5 m $\checkmark \checkmark \checkmark = 4.5 \text{ m}$

For a particular body moving with constant acceleration along a straight line

S17A			
I.2.a S17C	$\vec{v}_i =$	+8.0	m/s
I.3.c	$\dot{\bar{\alpha}} =$	+2.0	m/s2
21	$\frac{1}{d} =$	+1.0	m

- All (a) Without substituting numerical values for any of the variables, write the equation that would be suitable for determining the final velocity $v_{\rm f}$ of the body.
 - (b) Calculate the final velocity of the body using the data provided.

Scoring Scheme

Answer

$$\sqrt{(a)} \quad \vec{v}_{f} = \pm \sqrt{v_{i}^{2} + 2ad} \quad \underline{\text{or}} \quad v_{f}^{2} = v_{i}^{2} + 2ad$$

$$\sqrt{(b)} \quad \vec{v}_{f} = \pm \sqrt{(8.0 \text{ m/s})^{2} + 2(2.0 \text{ m/s}^{2})(1.0 \text{ m})}$$

$$= \pm \sqrt{64 \text{ m}^{2}/\text{s}^{2} + 4.0 \text{ m}^{2}/\text{s}^{2}}$$

$$= \pm \sqrt{68 \text{ m}^{2}/\text{s}^{2}}$$

$$= \pm 8.2 \text{ m/s}$$

The final velocity is +8.2 m/s since all the other variables are positive.

7	9	along			_	constant	acceler-	
S1	7A							
I.	2.a		$\dot{\overline{v}}_{:}$ =	= 0				
S1	7C		Τ.					
I.	3. c		$\frac{1}{a}$ =	= +6.0	m/s^2			

$$t = 2.0 \text{ s}$$

All (a) Without substituting numerical values for any of the variables, write the equation that is suitable for determining the displacement
$$\bar{d}$$
 of the body.

(b) Calculate the displacement of the body using the data provided.

Scoring Scheme	Answe	e <u>r</u>
√	(a)	$\vec{d} = \vec{v}_i t + \frac{1}{2} \vec{\alpha} t^2$
√	(b)	$\frac{1}{d}$ = (0) (2.0 s) + $\frac{1}{2}$ (6.0 m/s ²) (2.0 s) ²
√ √		= 12 m
√		The displacement of the body is +12 m.

20

For a particular body moving with constant acceleration along a straight line

S17A

I.2.a S17C I.3.c $\dot{\bar{v}}_{i} = +5.0 \text{ m/s}$ $\dot{\bar{a}} = +3.0 \text{ m/s}^{2}$

21

t = 2.0 s

A11 F1

*

 \star

- (a) Without substituting numerical values for any of the variables, write the equation that would be suitable for determining the final velocity $\vec{v}_{\rm f}$ of the body.
- *
- (b) Calculate the final velocity of the body using the data provided.

Scoring Scheme

Answer

 $\sqrt{}$

(a)
$$\dot{v}_{f} = \dot{v}_{i} + \dot{a}t$$

= 11 m/s

(b)
$$\dot{v}_{\rm f} = (5.0 \text{ m/s}) + (3.0 \text{ m/s}^2) (2.0 \text{ s})$$

√ √

The final velocity of the body is +11 m/s.

2	For a	particular	body	moving	with	constant	acceler-
		along a st					

S17A I.2.a S17C	$\dot{\bar{v}}_{i}$	=	+8.0	m/s
I.3.c	ā	=	-2.0	m/s^2
21	à	=	+1.0	m

- All (a) Without substituting numerical values for any of the variables, write the equation that would be suitable for determining the final velocity $\bar{v}_{\rm f}$ of the body.
 - (b) Calculate the final velocity of the body using the data provided.

Scoring Scheme Answer

V V V

$$\sqrt{ } \qquad \text{(a)} \quad \vec{v}_{f} = \pm \sqrt{v_{i}^{2} + 2ad} \qquad \text{or} \qquad v_{f}^{2} = v_{i}^{2} + 2ad$$

$$\sqrt{ } \qquad \text{(b)} \quad \vec{v}_{f} = \pm \sqrt{(8.0 \text{ m/s})^{2} + 2(-2.0 \text{ m/s}^{2}) \text{ (1.0 m)}}$$

$$= \pm \sqrt{64 \text{ m}^2/\text{s}^2 - 4.0 \text{ m}^2/\text{s}^2}$$

$$= \pm \sqrt{60 \text{ m}^2/\text{s}^2}$$

$$= \pm 7.7 \text{ m/s}$$

$$\checkmark$$
 \checkmark The final velocity of the body is ± 7.7 m/s.

```
22
              Car A, travelling at 20 m/s, passes a stationary
               car B. At the instant that A passes B, B starts
              moving with a uniform acceleration of 2.0 m/s2.
S17C
              After 15 s, where is car A relative to car B?
I.3.c
21
F1
A3
A8
**
Scoring
Scheme
              Answer
              v_A = 20 \text{ m/s}, \text{ constant} \qquad (v_B)_1 = 0
                                                     a_{\rm R} = 2.0 \text{ m/s}^2
              t = 15 s
             d_{A} = v_{A} t
                 = 20 \text{ m/s} \times 15 \text{ s}
V V
                 = 300 \text{ m}
             d_{\mathbf{B}} = (v_{\mathbf{B}})_{1} t + \frac{1}{2} a_{\mathbf{B}} t^{2}
                 = 0 + \frac{1}{2} \times 2 \text{ m/s}^2 \times (15 \text{ s})^2
V V
                 = 225 \text{ m}
              Position of car A with reference to car B = d_A - d_B
                                                                    = 300 \text{ m} - 225 \text{ m}
V V
                                                                    = 75 \text{ m}
V V
             Car A is 75 m ahead of car B after 15 s.
```

```
An object is released from rest and accelerates uniformly for 1.0 s at 10 \text{m/s}^2. Calculate its
23
```

S17A

(a) final velocity I.2.a

S17C

I.3.c (b) average velocity

(c) displacement 21

F1

A8

*

ş.

**

Scoring

Scheme Answer

$$\dot{\overline{v}}_i = 0$$
 $t = 1.0 \text{ s}$ $\dot{\overline{a}} = 10 \text{ m/s}^2$

$$\sqrt{(a)} \quad \overline{v}_{f} = \overline{v}_{i} + \overline{a}t$$

$$= 0 + 10 \text{ m/s}^2 \times 1.0 \text{ s}$$

$$\sqrt{\sqrt{}}$$
 = 10 m/s

The final velocity is 10 m/s in the direction of motion.

$$\sqrt{\qquad \qquad \text{(b)} \quad \dot{\overline{v}}_{\text{av}} = \frac{\dot{\overline{v}}_{i} + \dot{\overline{v}}_{f}}{2}}$$

$$=\frac{0+10 \text{ m/s}}{2}$$

$$\sqrt{\ }$$
 = 5.0 m/s

The average velocity is 5.0 m/s in the direction of motion.

(c)
$$\vec{d} = (\frac{\vec{v}_i + \vec{v}_f}{2}) t$$

$$\sqrt{}$$
 = 5.0 m/s x 1.0 s

The displacement is 5.0 m in the direction of motion.

24

Steve Podborski starts from rest and accelerates uniformly at 3.0 m/s² down a ski slope.

(e) What is his average speed for the first 2.0 s?

S17A

- I.2.a (a) How fast is he moving after 1.0 s?
- S17C I.3.d
- (b) How fast is he moving after 2.0 s?
- 21
- (c) How far has he moved after 1.0 s?
- F1 A8
- (d) How far has he moved after 3.0 s?
- *
- *

Scoring Scheme

Answer

V

(a)
$$v_i = 0$$
 $a = 3.0 \text{ m/s}^2$ $t = 1.0 \text{ s}$

$$v_f = v_i + at$$

$$= 0 + (3.0 \text{ m/s}^2) (1.0 \text{ s})$$

√ √

= 3.0 m/s

 $\sqrt{}$

He is moving with a speed of 3.0 m/s after 1.0 s.

V

(b)
$$v_{\rm f} = (3.0 \text{ m/s}^2) (2.0 \text{ s})$$

= 6.0 m/s

√ √

He is moving with a speed of 6.0 m/s after 2.0 s.

./

(c)
$$d = \frac{(v_i + v_f)}{2} t$$
 or $d = v_i t + \frac{1}{2} a t^2$
 $= \frac{(0 + 3.0 \text{ m/s})}{2} (1.0 \text{ s})$ $= 0 + \frac{1}{2} (3.0 \text{ m/s}^2) (1.0 \text{ s})^2$
 $= 1.5 \text{ m}$

 $\sqrt{\sqrt{}}$

He has moved a distance of 1.5 m after 1.0 s.

Scoring Scheme	Answer
√	(d) $d = v_{i}t + \frac{1}{2}at^{2}$
√	$= 0 + \frac{1}{2}(3.0 \text{ m/s}^2) (3.0 \text{ s})^2$
	$= (1.5 \text{ m/s}^2) (9.0 \text{ s}^2)$
	= 13.5 m
√ √	= 14 m
√	He has moved a distance of 14 m in 3.0 s.
√	(e) $v_{av} = \frac{v_i + v_f}{2}$
√	$=\frac{0+6.0 \text{ m/s}}{2}$
√ √	= 3.0 m/s
√	His average speed for the first 2.0 s is 3.0 m/s.

25	A ball is allowed to drop from rest. What is its velocity after 4.2 s? $(g = 10 \text{ m/s}^2)$
S17A I.2.a S17C I.3.c	· · · · · · · · · · · · · · · · · · ·
21	
F1 A8	
*	
*	
Scoring Scheme	Answer
Deficine	$\dot{v}_i = 0$
√	$\dot{\vec{g}} = 10 \text{ m/s}^2$
	t = 4.2 s
√	$\vec{v}_{f} = \vec{v}_{i} + \dot{\vec{g}}t$
√	$= 0 + (10 \text{ m/s}^2) (4.2 \text{ s})$
√ √	= 42 m/s
√	The velocity after 4.2 s is 42 m/s down provided it does not hit the ground.

26	A car travels from Kapuskasing to Timmins using Highway 11 and Highway 655. It travels for 1.0 h					
S17A I.2.a S17C	on Highway 11 at 90 km/h and for 1.1 h on Highway 655 at 70 km/h.					
I.3.c	(a) Calculate the distance travelled on Highway 11.					
21	(b) Calculate the distance travelled on Highway 655					
F1 A8	(c) What is the total distance from Kapuskasing to Timmins using these two highways.					
* - **	(d) Before Highway 655 opened, drivers had to travel 226 km between the two cities. If a driver maintained a constant speed of 90 km/h, how long did the journey take?					

(e	What	time	is	saved	using	the	new	route?
- 1		MITTEL	C TILL	7 13	3aveu	USTIIN	LIIC	71C M	TOULCO.

Scoring Scheme	Answer
√	(a) $t = 1.0 h$
	v = 90 km/h
\checkmark	$d_1 = vt$
√	= 90 km/h x 1.0 h
√ √	= 90 km
√	The car travels 90 km on Highway 11.
√	(b) $t = 1.1 \text{ h}$
	v = 70 km/h
√	$d_2 = vt$
√	= $70 \text{ km/h} \times 1.1 \text{ h}$
√ √	= 77 km
√	The car travels 77 km on Highway 655.

Scoring Scheme

Answer

(c) The total distance travelled is the sum of the two distances.

 $d_{t} = d_{1} + d_{2}$

= 90 km + 77 km

= 167 km

 $\sqrt{\sqrt{}} = 1.7 \times 10^2 \text{ km}$

The total distance from Kapuskasing to Timmins using the two highways is 1.7×10^2 km.

(d) $d_{+} = 226 \text{ km}$

v = 90 km/h

 $t = \frac{d_t}{dt}$

 $= \frac{226 \text{ km}}{90 \text{ km/h}}$

 $/\sqrt{}$ = 2.5 h

The journey from Kapuskasing to Timmins took 2.5 h.

(e) The time saved is the difference between the two times.

Time by old route = 2.5 h

Time by new route = 1.0 h + 1.1 h = 2.1 h

Time saved = 2.5 h - 2.1 h

 $\sqrt{\sqrt{}}$ = 0.4 h

 $\sqrt{}$ Using the new route saves 0.4 h.

27	body starts from rest and accelerates uniformly t 3.0 m/s ² for 4.0 s.
S17A I.2.a S17C I.3.c	a) Without substituting numerical values for any of the variables, write the equation that would be suitable for determining
21	(i) the velocity at the end of 4.0 s
F1	(ii) the displacement during the 4.0 s
A8	b) Using the data provided, calculate
*	(i) the velocity at the end of 4.0 s
*	

(ii) the displacement during the 4.0 s

Scoring Scheme	Answ	er	
√	(a)	(i)	$\vec{v}_{\mathbf{f}} = \vec{v}_{\mathbf{i}} + \vec{a}t$
√		(ii)	$\dot{\vec{d}} = \dot{\vec{v}}_{i}t + \frac{1}{2}\dot{\vec{a}}t^{2}$
√	(b)	(i)	$\dot{\bar{v}}_{\rm f} = 0 + (3.0 \text{ m/s}^2) (4.0 \text{ s})$
✓ ✓			= 12 m/s
√			The velocity at the end of 4.0 s is 12 m/s forward.
√		(ii)	$\frac{1}{d}$ = (0) (4.0 s) + $\frac{1}{2}$ (3.0 m/s ²) (4.0 s) ²
√ √			= 24 m
√			The displacement is 24 m forward.

28	A bicycle rider, starting from rest, acquires a velocity of 20 km/h [N] in 10 s.
S17A I.2.a S17C I.3.c	Calculate the average acceleration of the rider in m/s ² .
21	
F1 A8	6
** * **	
Scoring Scheme	Answer
√	$\dot{\overline{v}}_i = 0$
	t = 10 s
	$\vec{v}_{f} = 20 \text{ km/h [N]}$
✓ ✓	= 20 km/h [N] x 1000 $\frac{m}{km}$ x $\frac{1}{3600}$ $\frac{h}{s}$
	$= \frac{20}{3.6} \text{ m/s [N]}$
√ √ √	= 5.6 m/s [N]
√	$\dot{\vec{a}} = \frac{\dot{\vec{v}}_{f} - \dot{\vec{v}}_{i}}{t}$
√	$= \frac{(5.6 \text{ m/s [N]}) - 0}{10 \text{ s}}$
√ √ √	$= 0.56 \text{ m/s}^2 \text{ [N]}$

The average acceleration of the rider is 0.56 $\ensuremath{\text{m/s}^2}$ [N].

**

29	A body has a velocity of 2.0 m/s [E] and then	
	accelerates at 2.0 m/s ² [W] for 3.0 s.	
S17A		

I.2.a	(a)	Without substituti	ng numerical	values for	any
S17C	•	of the variables,	write the eq	uation that	would
I.3.c		be suitable for de	termining		

the velocity at the end of the 3.0 s 21 (i) interval

F1 (ii) the displacement during the 3.0 s interval 8A

Using the data provided, calculate (b) * the velocity at the end of the 3.0 s (i) interval

(ii) the displacement during the 3.0 s interval

Scoring Scheme	Answer	
√	(a) (i)	$\vec{v}_{f} = \vec{v}_{i} + \vec{a}t$
√	(ii)	$\frac{1}{d} = v_{i}t + \frac{1}{2}\dot{\alpha}t^{2}$
	(b) (i)	$\dot{\vec{v}}_{i}$ = 2.0 m/s [E]
√ .		$\frac{1}{\alpha} = 2.0 \text{ m/s}^2 \text{ [W]}$
		t = 3.0 s
√		Let [E] be positive.
		Then
		$\dot{\overline{v}}_{i}$ = +2.0 m/s
√		$\dot{\overline{\alpha}} = -2.0 \text{ m/s}^2$
		$\vec{v}_{f} = \vec{v}_{i} + \vec{a}t$
√		$= 2.0 \text{ m/s} + (-2.0 \text{ m/s}^2) 3.0 \text{ s}$
		= 2.0 m/s - 6.0 m/s
√.√.√		= -4.0 m/s
√ √		The velocity at the end of 3.0 s is 4.0 m/s [W],

Scoring Scheme	Answer	
	(ii)	$\dot{\vec{d}} = \dot{\vec{v}}_{1} t + \frac{1}{2} \dot{\vec{a}} t^{2}$
√		= $(2.0 \text{ m/s}) (3.0 \text{ s}) + \frac{1}{2}(-2.0 \text{ m/s}^2) (3.0 \text{ s})^2$
		= 6.0 m - 9.0 m
√ √ √		= -3.0 m
√ √		The displacement during the 3.0 s interval is 3.0 m [W].

```
An object accelerates at 2 m/s^2 [W]. How long does
30
                  it take to change its velocity from 4 m/s [W] to
                  12 m/s [W]?
S17A
I.2.a
S17C
I.3.c
21
F1
8A
A2
**
***
Scoring
                  Answer
Scheme
                  \dot{\overline{a}} = 2 \text{ m/s}^2 \text{ [W]}
                 \dot{\bar{v}}_i = 4 \text{ m/s} \text{ [W]}
\sqrt{}
                 \dot{\bar{v}}_f = 12 \text{ m/s [W]}
                  Let [W] be positive.
                  Then
                  \dot{\bar{a}} = 2 \text{ m/s}^2
                                           \vec{v}_i = 4 \text{ m/s}
                                                                                          \vec{v}_f = 12 \text{ m/s}
                 t = \frac{v_f - v_i}{a}
                     = \frac{12 \text{ m/s} - 4 \text{ m/s}}{2 \text{ m/s}^2}
                    = \frac{8 \text{ m/s}}{2 \text{ m/s}^2}
V V
                   =4s
\sqrt{\phantom{a}}
                 The time required is 4 s.
```

31 An object has a constant acceleration of 4.0 m/s2 [E]. How long does it take for the velocity to change from 15 m/s [W] to 33 m/s [E]? S17A I.2.a S17C I.3.c 21 F1 8A A3 ** ** *** Scoring Scheme Answer $\dot{\overline{a}} = 4.0 \text{ m/s}^2 \text{ [E]}$ $\vec{v}_{i} = 15 \text{ m/s [W]}$ $\vec{v}_{\varphi} = 33 \text{ m/s [E]}$ Let [E] be positive Then $\dot{a} = +4.0 \text{ m/s}^2$ $\dot{v}_{i} = -15 \text{ m/s}$ $\dot{\vec{v}}_f = +33 \text{ m/s}$ $\dot{\vec{a}} = \frac{\dot{\vec{v}}_f - \dot{\vec{v}}_i}{t}$ $t = \frac{v_f - v_i}{a}$ $= \frac{33 \text{ m/s} - (-15 \text{ m/s})}{4.0 \text{ m/s}^2}$ $=\frac{48 \text{ m/s}}{4.0 \text{ m/s}^2}$ √ √ = 12 s

The time required is 12 s.

32	A car starts from	rest and acceleranthe the first 10 s.	tes uniformly. Calculate its
S17A I.2.a S17C I.3.c	speed at the end	of 10 s.	
21			
F1 A8 A3			
** * *			
Scoring Scheme	Answer		
✓	$v_i = 0$	d = 80 m	t = 10 s
√	$d = \left(\frac{v_i + v_f}{2}\right) t$		
	2.7		

 $\sqrt{d} = \left(\frac{v_{i} + v_{f}}{2}\right) t$ $\sqrt{v_{f}} = \left(\frac{2d}{t}\right) - v_{i}$ $= \left(\frac{2 \times 80 \text{ m}}{10 \text{ s}}\right) - 0$ $= \frac{160 \text{ m}}{10 \text{ s}}$ = 16 m/s

The speed at the end of 10 s is 16 m/s.

33 S17C I.4.a S 21	(a)	(i)	If a body travels d metres in t seconds, what is the equation for its average speed?
	()	ii)	If a body travels 6 m in 2 s, calculate its average speed.
A11 A8 *	(b)	(i)	If a body travels one circumference of a circle of radius R, write an expression which corresponds to the distance it has travelled.
*	i)	ii)	If the time required for a body to travel once around a circle is the period \mathcal{T} , write an expression for the average speed of the body in terms of \mathcal{R} and \mathcal{T} .
	(ii	ii)	Calculate the average speed of a body

body that travels once around a circle of radius 2.00 m in a time of 2.00 s.

Scoring					
Scheme	Answer				
√	(a) (i	$v_{av} = \frac{d}{t}$			
√	(ii	d = 6 m	t = 2 s		
√		$v_{av} = \frac{6 \text{ m}}{2 \text{ s}}$			
√ √		= 3 m/s			
\checkmark		The average speed is 3	m/s.		
\checkmark	(b) (i	$d = 2\pi R$			
√	(ii	$v_{av} = \frac{2\pi R}{T}$			
√	(iii	R = 2.00 m	T = 2.00 s		
√		$v_{\rm av} = \frac{2\pi \ 2.00 \ \rm m}{2.00 \ \rm s}$			
√ √		= 6.28 m/s			
,					

The average speed of the body is 6.28 m/s.

Scoring Scheme	Answer				
√	(a)	For a uniformly accelerated body,			
√		the final velocity			
√		is equal to			
√		the initial velocity			
√		plus			
√		the product of			
√		the acceleration			
√		and the time interval			
√		between the initial and final velocities			
√ √	(b)	$\overline{v}_{ extsf{f}}$ increases but doesn't double			
√ √		It will only double if $\vec{v}_i = 0$, and \vec{v}_i isn't zero since it is positive.			

- 35 S17A
- (a) Express in words the meaning of the equation $\frac{1}{d} = (\frac{1}{2}) t$.
- I.2.a S17C I.3.c
- (b) Assuming $\vec{v}_{\rm i}$ is equal in magnitude but opposite in direction to $\vec{v}_{\rm f}$, what is the displacement? Explain your answer.

S 21

F1 A11

**

* **

Scoring

Scheme Answer

 \checkmark (a) For a uniformly accelerated body

/ the displacement it undergoes

is equal to

the product of

half

/ the sum of

its initial

and final velocities

and

the time interval

between these velocities

(b) $\dot{d} = 0$

If $\vec{v}_i = -\vec{v}_f$

Then $\vec{v}_i + -\vec{v}_i = 0$

and $\vec{d} = 0$

MOTION IN A PLANE AND VECTORS

S17A I.2.a S17C III.1.d

S 23

A4 A11

2/4

Complete the following chart by indicating for each quantity whether it is a vector or a scalar quantity. Also indicate the preferred SI unit.

Quantity	Vector or Scalar	Preferred SI Unit
speed		
force		
energy		
work		
acceleration		
velocity		
distance		
mass		
displacement		
temperature		
heat energy		

Scoring	9
Scheme	

Answer

Quantity	Vector or Scalar	Preferred SI Unit
speed	scalar	m/s
force	vector	N or kg·m/s ²
energy	scalar	J or $kg \cdot m^2/s^2$
work	scalar	J or kg·m²/s²
acceleration	vector	m/s ²
velocity	vector	m/s
distance	scalar	m
mass	scalar	kg
displacement	vector	m
temperature	scalar	°C or K
heat energy	scalar	J or $kg \cdot m^2/s^2$
	speed force energy work acceleration velocity distance mass displacement temperature	speed scalar force vector energy scalar work scalar acceleration vector velocity vector distance scalar mass scalar displacement vector temperature scalar

A plane has an airspeed of 100 km/h. The wind is 2 moving directly south east at 25 km/h. S17C If the pilot points the plane directly east, what I.4.d is the speed of the plane relative to the ground? 24 F1 A7 A2 **A8** *** Scoring Scheme Answer Let $\overline{v}(p/g)$ represent the velocity of the plane relative to the ground $\vec{v}(p/a)$ represent the velocity of the plane relative to the air $\vec{v}(a/g)$ represent the velocity of the air relative to the ground $\vec{v}(p/g) = \vec{v}(p/a) + \vec{v}(a/g)$ $\sqrt{}$ $\vec{v}(p/g) = ?$ $\vec{v}(p/a) = 100 \text{ km/h} \left[\text{N } 90^{\circ} \text{ E} \right]$

Scale Diagram or Vector Sketch

 $\vec{v}(a/g) = 25 \text{ km/h} \left[\text{S } 45^{\circ} \text{ E}\right]$

Scoring Scheme	Answer		
	Vector v(a/g)		
√	$\dot{\overline{v}}(a/g)$ or	b labe	lled
✓	magnitude labelled	25 km/l	n
√	direction labelled	[S 45°	E]
	Vector v(p/a)		
√.	$\dot{v}(p/a)$ or	a labe	lled
√	magnitude labelled	100 km	/h
√	direction labelled	[E]	
	Vector v(p/g)		
√	$\dot{\bar{v}}(p/g)$ or	c labe	lled
	Orientation of Vectors		
√ √	correct orientation of $v(a/g)$ each other) and v(1	p/a) (or b and a) to
✓	correct orientation of $v(p/g)$) (or c)	to the other two vectors
	Solution I: Scale Diagram		
√	indication of scale	scale:	1 cm represents 10 km/h
√	appropriateness of scale		
✓	constructed length of $v(a/g)$		2.5 cm
√	constructed length of $v(p/a)$		10 cm
√ √	constructed direction of v (a and v (p		[S 45° E] [E]
√	measured length of $v(p/g)$		12 cm
√	determination of $v(p/g)$		$12 \times 10 \text{ km/h}$ = $1.2 \times 10^2 \text{ km/h}$
√	statement		The speed of the plane with respect to the ground is $1.2 \times 10^2 \text{ km/h}$.

Scoring Scheme Answer

Solution II: Cosine Law

$$\sqrt{} \quad c^2 = a^2 + b^2 - 2 \text{ ab cos C}$$
 $\sqrt{} \quad v(p/g)^2 = 100^2 + 25^2 - 2 \quad (100) \quad (25) \quad (\cos 135^\circ)$
 $\sqrt{} \quad = 100^2 + 25^2 - 2 \quad (100) \quad (25) \quad (-\frac{\sqrt{2}}{2})$
 $\sqrt{} \quad = 100^2 + 25^2 + (100) \quad (25) \quad (\sqrt{2})$
 $\sqrt{} \quad = 14 \quad 160 \quad \text{km}^2/\text{h}^2$
 $\sqrt{} \quad v(p/g) = \sqrt{14} \quad 160 \quad \text{km}^2/\text{h}^2$
 $\sqrt{} \quad v(p/g) = \sqrt{14} \quad 160 \quad \text{km}^2/\text{h}^2$
 $\sqrt{} \quad v(p/g) = \sqrt{14} \quad 160 \quad \text{km}^2/\text{h}^2$

The speed of the plane with respect to the ground is $1.2 \times 10^2 \quad \text{km/h}$.

A plane has an airspeed of 100 km/h. The wind is moving directly south east at 25 km/h.

S17C

I.4.d Suppose the pilot wishes to fly directly east. In what direction should the plane head relative to the ground?

Fl

A7 A2

A8

Scoring Scheme

Answer

Let $\vec{v}(p/g)$ represent the velocity of the plane relative to the ground.

 $\dot{v}(\mathrm{p/a})$ represent the velocity of the plane relative to the air.

 $ec{v}(a/g)$ represent the velocity of the air relative to the ground/

 $\vec{v}(p/g) = \vec{v}(p/a) + \vec{v}(a/g)$

 $\dot{\overline{v}}(p/g) = ? [N 90^{\circ} E]$

 $\dot{v}(p/a) = 100 \text{ km/h} [N (90 - B)^{\circ} E]$

 $\vec{v}(a/g) = 25 \text{ km/h [S 45° E]}$

Scale Diagram or Vector Sketch

Scoring Scheme	Answer	
	Vector $v(a/g)$	
√	$\dot{\overline{v}}(a/g)$ or	b labelled
√	magnitude labelled	25 km/h
√	direction labelled	A labelled [S 45° E]
	Vector $v(p/a)$	
√	$\dot{\overline{v}}(p/a)$ or	a labelled
√	magnitude labelled	100 km/h
	Vector v(p/g)	
√	$\dot{\vec{v}}(p/g)$ or	c labelled
·_/	direction labelled	[N 90° E] or [E]
	Orientation of Vectors	
√ √	orientation of $v(a/g)$ and $v(p)$	/g) (or b and c) to each other
√	orientation of $v(p/a)$ or a to	the other two vectors
	Columbian Ta Coolo Diogram	
	Solution I: Scale Diagram	
v'	indication of scale scale	: 1 cm represents 10 km/h
v'	appropriateness of scale	
\checkmark	constructed length of $v(a/g)$	2.5 cm
√	constructed direction of $v(a/a)$	g) [S 45° E]
√ 	constructed direction of $v(\mathbf{p}/\mathbf{p})$ unknown length	g) [E]
\checkmark	constructed length of $v(p/a)$	10 cm
\checkmark	constructed direction of $v({ m p}/$	a)
√	measured direction of $v(p/a)$	[E 10° N]
√	statement	The plane should head [E 10° N].

Scoring	
Scheme	Answer
	Solution II: Sine Law
✓	A = 45°
√	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
✓ .	$\frac{v(p/a)}{\sin 45} = \frac{v(a/g)}{\sin B}$
✓	$\sin B = \frac{v(a/g)}{v(p/a)} \sin 45^{\circ}$
✓	$\frac{25 \text{ km/h}}{100 \text{ km/h}} \frac{1}{\sqrt{2}}$
√	= 0.1767
√ √	B = 10.18°
√	direction of $v(p/a) = [E 10^{\circ} N]$
√	The plane should head [E 10° N].

4 s17c	A plane has an airspeed of points the plane directly from the west at 40 km/h.	f 100 km/h. The pilot north. A wind is blowing
1.4.d 24	Using a vector diagram, f plane relative to the gro	ind the velocity of the und.
F1 A7 A8		
*** **		
Scoring Scheme	Answer	
	Let $\overline{v}(p/g)$ represent the velocithe ground.	ity of the plane relative to
	$ec{v}(exttt{p/a})$ represent the veloc the air.	ity of the plane relative to
	$ec{v}(a/g)$ represent the veloc ground.	ity of the air relative to the
√	Then $\dot{\overline{v}}(p/g) = \dot{\overline{v}}(p/a) + \dot{\overline{v}}(a/g)$	40 km/h [E]
	$\dot{\overline{v}}(p/a) = 100 \text{ km/h [N]}$	$\vec{v}(a/g)$
√	$\dot{\overline{v}}(a/g) = 40 \text{ km/h } [E]$	
	$\dot{\overline{v}}(p/g) = ?$	$ \frac{\vec{v}(p/a)}{100 \text{ km/h}} $ [N]
		22°/
	Vector v(p/a)	
√	$\dot{\vec{v}}(\mathrm{p/a})$ labelled	
√	magnitude labelled	100 km/h
√	direction labelled	[N]

Scoring Scheme	Answer	
	Vector v(a/g)	•
√	v(a/g) labelled	
√	magnitude labelled 40 km/	'h
√	direction labelled [E]	
	Vector v(p/g)	
√	$\dot{\overline{v}}$ (p/g) labelled	
	Orientation of Vectors	
√ √	orientation of $v(a/g)$ and $v(p/a)$ to	each other
√	orientation of $v(p/g)$ to the other t	wo vectors
	Solution: Scale Diagram	
	Boldton. Scale Diagram	
√	indication of scale Scale:	1 cm represents 20 km/h
√	appropriateness of scale	
√	constructed length of $v(p/a)$	5 cm
√	constructed direction of $v(p/a)$	[N]
√	constructed length of $v(a/g)$	2 cm
√	constructed direction of $v(a/g)$	[E]
√	measured length of $v(p/g)$	5.4 cm
√	determination of $v(p/g)$	5.4 x 20 km/h
√		$= 1.1 \times 10^2 \text{ km/h}$
√	measured direction of $v(p/g)$	[N 22° E]
√ √	statement	The velocity of the plane with respect to the ground is $1.1 \times 10^2 \text{ km/h}$ [N 22° E].

```
A trip of 320 km at an average speed of 80 km/h
S17A takes a time of _____h.
I.2.a
S17C
I.3.a
27
F1
A8
%
Scoring
Scheme Answer
                                        v = 80 \text{ km/h}
         d = 320 \text{ km}
           t = d/v
            = \frac{320 \text{ km}}{80 \text{ km/h}}
√ √
           = 4.0 h
```

```
6
             A car travels at an average speed of 60 km/h for
             5.0 h. What distance does it cover in this time?
S17A
I.2.a
S17C
I.3.c
S 27
F1
8A
A3
**
Scoring
Scheme
             Answer
             v_{av} = 60 \text{ km/h}
             t = 5.0 h
             d = v_{av} t
               = 60 \text{ km/h} \times 5.0 \text{ h}
               = 300 \text{ km}
              = 3.0 \times 10^2 \text{ km}
```

The car travels a distance of $3.0 \times 10^2 \text{ km}$.

7 Determine the component due east of the velocity vector shown.

S17C I.4.d

28

A3 A7 10 m/s

Scoring Scheme Answer

 $\sqrt{v_{\rm E}} = v \cos \theta$

 $\sqrt{}$ = 10 m/s x cos 60°

 $\sqrt{}$ = 10 m/s x 0.500

 $\sqrt{\sqrt{}}$ = 5.0 m/s

√ The component due east is 5.0 m/s.

or

 \checkmark statement of scales of diagram

 \checkmark projection on to E axis

√ measurement of projection

√ √ final answer

√ statement

S17C I.4.d A projectile is fired with a speed v at an angle θ above the horizontal. Show that the maximum height reached will be $h=\frac{v^2\sin^2\theta}{2\ g}$, where g is the gravitational acceleration.

A3

28 29

F1

-**

Scoring Scheme

Answer

1

Suitable sketch

Consider the vertical components of the motion.

√ Let up be positive

 $\sqrt{\sqrt{}}$ $v_i = v \sin \theta$

 $\sqrt{v_f} = 0$, at maximum height

d = h, the maximum height

 $\sqrt{a} = -g$, opposite to the direction of v_i

 $v_{\rm f}^2 - v_{\rm i}^2 = 2 \ ad$

 $\sqrt{d} = \frac{v_{\mathbf{f}}^2 - v_{\mathbf{i}}^2}{2 a}$

 $h = \frac{0 - (v \sin \theta)^2}{2 (-a)}$

 $\sqrt{\frac{-v^2 \sin^2 \theta}{-2 g}}$

 $\checkmark \qquad = \frac{v^2 \sin^2 \theta}{2 \ q}$

9 s17c	A cannon fires a shell with a muzzle velocity $\vec{v}_{\rm O}$ of 1000 m/s at an angle 30° above the horizontal.
I.4.d	Calculate the horizontal component of its velocity.
28	
F1 A3	
_	
*	
-	

Scoring Scheme	Answer
√	suitable sketch $\vec{v}_0 = 1000 \text{ m/s}$
√	$\vec{v}_{\text{horizontal}} = \vec{v}_{\text{o}} \cos \theta$
√	= 1000 m/s x cos 30°
√	= 1000 m/s x 0.866
√ √	$= 8.7 \times 10^2 \text{ m/s}$
√	The horizontal component of the velocity is $8.7 \times 10^2 \text{ m/s}$.
	<u>or</u>
√	suitable sketch
√	statement of scale of diagram
√	projection on to horizontal axis
√	measurement of projection
√ √	final answer
√	statement

A ball is thrown horizontally from the roof of a tall building with a velocity of 20 m/s [E]. Ignore air resistance. Find:

- S17C I.4.e
- (a) the vertical distance the ball falls in the first second
- F1 A8 A3

29

(b) the position of the ball with respect to the release point at the end of the first second.

** -

Scoring Scheme

111

Answer

Suitable sketch

$$\dot{\vec{v}}_i$$
 = 20 m/s [E]

(a) Consider the vertical component of the motion:

$$\dot{\overline{v}}_{i} = 0$$

$$\frac{\lambda}{a} = 10 \text{ m/s}^2$$

$$t = 1.0 s$$

$$\dot{\vec{d}} = \dot{\vec{v}}_{i}t + \frac{1}{2}\dot{\vec{a}}t^{2}$$

$$= 0 + \frac{1}{2} (10 \text{ m/s}^2) (1.0 \text{ s})^2$$

= 5.0 m below its initial height

The object falls a distance of 5.0 m in the first second.

(b) Both horizontal and vertical components must be considered here.

$$\vec{d}_{\text{vertical}}$$
 = 5.0 m below the initial height

$$\frac{1}{d_{\text{horizontal}}} = \frac{1}{v_{\text{horizontal}}} \times t$$

$$= 20 \text{ m/s} [E] \times 1.0 \text{ s}$$

$$= 20 \text{ m} [E]$$

 \checkmark \checkmark The position is 5.0 m below and 20 m [E] of its initial position.

- A ball is thrown horizontally from the roof of a tall building with a velocity of 20 m/s [E]. ($g = 10 \text{ m/s}^2$) Ignore air resistance. Find:
- I. 4. e
- (a) the vertical component of the object's velocity after 4.0 s of fall
- f1 (b) the resultant velocity after 4.0 s of fall
- A8 A3

- **
- Scoring Scheme

√ √

Answer

 \checkmark (a) appropriate sketch

Consider the vertical motion

√ Let downward be positive.

$$\vec{v}_i = 0$$

$$\dot{\bar{a}} = 10 \text{ m/s}^2$$

$$t = 4.0 s$$

$$\vec{v}_{\rm f} = \vec{v}_{\rm i} + \vec{a}t$$

$$= 0 + (10 \text{ m/s}^2) (4.0 \text{ s})$$

$$\sqrt{\sqrt{}}$$
 = 40 m/s

The vertical component of the object's velocity after 4.0 s of fall is 40 m/s downward

(b)
$$\dot{\overline{v}}_{R} = \dot{\overline{v}}_{h} + \dot{\overline{v}}_{v}$$

$$\vec{v}_{\rm h} = 20 \text{ m/s [E]}$$

$$\vec{v}_{y} = 40 \text{ m/s downward}$$

Scoring Scheme	Answer
	Sketch or Vector Diagram
	Horizontal Velocity
✓	\vec{v}_{h} or c labelled $\vec{v}_{h} = 20 \text{ m/s [E]}$
√	magnitude labelled
√	direction labelled
	Vertical Velocity \vec{v}_{R} b a $\vec{v}_{v} = 40 \text{ m/s}$
✓	$ar{v}_{ m v}$ or a labelled
√	magnitude labelled
√	direction labelled
	Resultant Velocity C
√	$\overline{v}_{ m R}$ labelled
	Orientation of Vectors
√ √	orientation of $v_{\rm h}$ and $v_{\rm b}$ (or c and a) to each other
√	orientation of v_{R} to the other two vectors
	Solution 1: Scale Drawing
√	indication of scale Scale: Let 1 cm represent 5 m/s.
√	appropriateness of scale
√	constructed length of $v_{ m h}$ 4 cm
√	constructed direction of $v_{ m h}$ [E]
√	constructed length of $v_{_{ m V}}$ 8 cm
√	constructed direction of $v_{_{ m V}}$ downward
√	measured length of $v_{\rm R}$ 9 cm
√	determination of $v_{\rm R}$ 9 x 5 m/s
	= 45 m/s

Scoring Scheme	Answer
√	measured direction of $v_{\rm R}$ [E] 64° below horizontal
√ √	statement The resultant velocity after 4.0 s is 45 m/s [E] 64° below the horizontal.
	Solution II: Pythagorean Theorem
√	$v_{\rm R}^2 = v_{\rm h}^2 + v_{\rm v}^2$
√	$= (20 \text{ m/s})^2 + (40 \text{ m/s})^2$
	$= 400 \text{ m}^2/\text{s}^2 + 1600 \text{ m}^2/\text{s}^2$
	$= 2000 \text{ m}^2/\text{s}^2$
√	$v_{\rm R} = \sqrt{2000 \text{ m}^2/\text{s}^2}$
.^ √	= 45 m/s
√	Tan $A = \frac{a}{c}$
√	$=\frac{40}{20}$
√	= 2.0
√	A = 64°
√ √	the resultant velocity after 4.0 s is 45 m/s [E] 64° below horizontal.

S17C

I.4.e

An aircraft is flying horizontally with a speed of 900 km/h. It is 80 m above level ground when it releases a 150 kg bomb. $(g = 10 \text{ m/s}^2)$ Ignore air resistance.

- S 29 21
- (a) After the bomb is released, how many seconds does it take to reach the ground?
- F1 A8
- (b) How far in front of a target must the bomb be released in order to hit the target?

**

Scoring Scheme

Answer

V

Suitable sketch

The bomb has the same velocity as the aircraft when released. The horizontal and vertical components of the motion are independent.

(a) For the Vertical Motion

√ Let down be positive

$$\frac{1}{d} = 80 \text{ m}$$

$$\dot{v}_s = 0$$

$$\vec{q} = \vec{\alpha} = 10 \text{ m/s}^2$$

The vertical motion has constant acceleration if friction is ignored.

$$\vec{d} = \vec{v}_1 t + \frac{1}{2} \vec{a} t^2$$

$$t = \sqrt{\frac{d - v_i t}{\frac{1}{2} a}}$$

$$= \sqrt{\frac{80 \text{ m} - 0}{\frac{1}{2} (10 \text{ m/s}^2)}}$$

 \checkmark The bomb remains in the air for 4.0 s.

Scoring Scheme

Answer

(b) For the Horizontal Motion

The horizontal motion has constant velocity.

v = 900 km/h

t = 4.0 s

 $\sqrt{}$ = 4.0 s x $\frac{1 \text{ h}}{3600 \text{ s}}$

 $=\frac{1}{900}$ h

d = vt

 $\sqrt{} = 900 \text{ km/h x } \frac{1}{900} \text{ h}$

 $\cdot \sqrt{\sqrt{}}$ = 1.0 km

The bomb must be released 1.0 km in front of the target.

A cannon situated on level ground fires a shell with a muzzle velocity of 100 m/s at an angle of 30° above the horizontal. Ignore air resistance and the height of the muzzle of the cannon. $(g = 10 \text{ m/s}^2)$

- F1 (a) the time required for the shell to reach its Maximum height
 - (b) the maximum height attained.

**

Scoring	
Scheme	

Answer

/ Suitable sketch

Let \overline{v}_{o} represent the muzzle velocity.

Then \vec{v}_0 = 100 m/s at 30° above the horizontal.

Let up be positive.

(a) Consider the Vertical Component

The vertical component of the motion has constant acceleration. $\,$

$$\frac{1}{a} = 10 \text{ m/s}^2 \text{ down}$$

 $= -10 \text{ m/s}^2$

 $\dot{\overline{v}}_{i}$ = vertical component of $\dot{\overline{v}}_{o}$

 $= \dot{\overline{v}}_{0} \times \sin 30^{\circ}$

 $= 100 \text{ m/s} \times 0.500$

 $\sqrt{}$ = 50 m/s

$$\dot{\vec{v}}_{\rm f}$$
 = 0 (since the shell is stopped)

 $\dot{\vec{v}}_{f} = \dot{\vec{v}}_{i} + \dot{\vec{a}}t$

figures).

Scoring Scheme	Ansv	<u>ver</u>
√		$t = v_{f} - v_{i}/a$
√		$= \frac{0 - 50 \text{ m/s}}{-10 \text{ m/s}^2}$
√ √		= 5.0 s
. ✓		The time required to reach the maximum height is 5.0 s.
	(b)	Consider the Vertical Component
√		The vertical component of $\vec{v}_{\rm o}$ determines the maximum height.
√		$\dot{v}_{i} = 50 \text{ m/s}$
¥		$\dot{v}_{f} = 0$
		t = 5.0 s
√		$\vec{h} = (\frac{\vec{v}_i + \vec{v}_f}{2})t$
√		$= (\frac{50 \text{ m/s} + 0}{2}) 5.0 \text{ s}$
√ √		= 125 m
√		The maximum height attained is 1.3×10^2 m (2 significant

14 S17C I.4.e S 29	A cannon situated on level ground fires a shell with a muzzle velocity of 100 m/s at an angle of 30° above the horizontal. The shell hits the ground 10 s later. Ignore air resistance and the height of the muzzle of the cannon. $(g = 10 \text{ m/s}^2)$
F1 A8 A3	Calculate the distance the shell travels horizontally before striking the ground.
- **	
Scoring Scheme	Answer
√	Suitable sketch
	Let \vec{v}_{o} represent the muzzle velocity.
√	Then $\dot{v}_{o} = 100 \text{ m/s}$ at 30° above the horizontal.
√	The horizontal component of the motion has constant velocity.
√	The horizontal component of \vec{v}_{o} determines the range.
	v = horizontal component of \vec{v}_0
√	$= \dot{v}_{o} \cos 30^{\circ}$
	t = 10 s
✓	$\vec{d} = \vec{v}t$
✓ .	$= \overrightarrow{v}_{o} \cos 30^{\circ} \times 10 \text{ s}$
√	$= 100 \text{ m/s} \times 0.8660 \times 10 \text{ s}$
√ √	= 866 m

The range is 8.7×10^2 m (2 significant figures).

A car travelled around a circular path of radius 15 14 m at a constant speed. The centripetal acceleration was 7.0 m/s2. S17C I.4.f (a) At what speed did it travel? 30 (b) How long did it take for one complete lap around the track? F1 A3 A8 $\frac{1}{2}$ Scoring Scheme Answer v is constant $\alpha = 7.0 \text{ m/s}^2$ r = 14 m(a) $a = \frac{v^2}{n}$ $v^2 = ar$ $v = \pm \sqrt{ar}$

 $v^{2} = \alpha r$ $v = \pm \sqrt{\alpha r}$ $= \pm \sqrt{7.0 \text{ m/s}^{2} \times 14 \text{ m}}$ $= \pm \sqrt{98 \text{ m}^{2}/\text{s}^{2}}$ $= \pm 9.9 \text{ m/s}$

 \checkmark The car travelled at 9.9 m/s.

(b) $\alpha = \frac{4\pi^2 r}{\pi^2}$

 $T^{2} = \frac{4\pi^{2} r}{\alpha}$ $T = \sqrt{\frac{4\pi^{2} r}{\alpha}}$ $= \sqrt{\frac{4\pi^{2} 14 m}{7.0 m/s^{2}}}$ $= \sqrt{8\pi^{2} s^{2}}$ = 8.9 s

The car took 8.9 s for one complete lap.

DYNAMICS

FORCE AND

NEWTON'S LAWS

1 S17C III.1.d	A boy applies a force of 90 N along the handle of a lawn roller as represented in the diagram. The mass of the lawn roller is 40 kg. $(g = 10 \text{ N/kg})$
31 28	Determine:
F1 A3 ·A7	(a) the component of the 90 N force that pushes the lawn roller forward
- **	(b) the component of the 90 N force that pushes the lawn roller toward the ground
	(c) the magnitude of the gravitational force on the roller
	(d) the total downward force on the roller
	(e) the net vertical force on the roller
Scoring Scheme	Answer
√	$F = 90 \text{ N}$ along handle $\theta = \text{angle between horizontal}$ and handle
	$m = 40 \text{ kg}$ $= 37^{\circ}$
	g = 10 N/kg
\checkmark	(a) $F_{\text{forward}} = F \cos \theta$
\checkmark	= 90 N x cos 37°
√	= 90 N x 0.799
√ √	= 72 N
√	The component of the force forward is 72 N.

Scoring	,
Scheme	

Answer

 $\checkmark \checkmark$ = 54 N

 \checkmark The component of the force downward is 54 N.

 $\sqrt{ (c)} \quad F_{g} = mg$ $\sqrt{ } = 40 \text{ kg x } 10 \text{ N/kg}$ $\sqrt{ } \sqrt{ } = 400 \text{ N}$

The magnitude of the force of gravity on the roller is 400 N.

 \checkmark The total downward force on the roller is 454 N.

or

√ Since there is no vertical motion (vertical acceleration is zero)

the vertical forces must be balanced.

 \checkmark The net vertical force on the roller is 0.

2 s17c

A force of 60 N [N] acts on an object. Another force of 80 N [N 75° E] acts on the object at the same time.

III.1.d

(a) Find the resultant of the two forces.

31

(b) What force is needed to balance the two forces?

F1 A7 A2

** ** **

Scoring Scheme

Answer

(a)
$$\vec{F}_1 = 60 \text{ N [N]}$$

 $\vec{F}_2 = 80 \text{ N [N 75° E]}$
 $\vec{F}_R = \vec{F}_1 + \vec{F}_2$

Sketch or Scale Diagram

Vector F_1

 $\sqrt{F_1}$ or a labelled $\sqrt{magnitude labelled}$ direction labelled [N]

Scoring Scheme	Answer			
	Vector F ₂			
√	\vec{F}_2	or	b label	led
√	magnitude labelled		80 N	
√	direction labelled		[N 75°	E]
√	Resultant Vector	or	c label	led
	Orientation of Vectors			
√ √	orientation of F_1 and F_2	to e	ach othe	r
√	orientation of F_{R} to the	othe	r two ve	ctors
	Solution I: Scale Drawi	ing		
√	indication of scale		scale:	let 1 cm represent 20 N
√	appropriateness of scale	2		
√	constructed length of $F_{\rm l}$	L		3 cm
✓	constructed direction of	F_1		[N]
√	constructed length of F_2	2		4 cm
√ ,	constructed direction of	F_2		[N 75° E]
√	measured length of F_{R}			5.6 cm
√ √	determination of F_{R}			$5.6 \times 20 \text{ N}$ = $1.1 \times 10^2 \text{ N}$
√	measured direction of $F_{\rm H}$	R		[N 44° E]
√ √ ·	statement			The resultant force is $1.1 \times 10^2 \text{ N [N 44}^{\circ} \text{ E]}$.

Scoring Scheme	Answer
	Solution II: Trigonometric
	Cosine Law
√	C = 105°
√	$cos C = cos 105^\circ = -cos 75^\circ$
√	$c^2 = a^2 + b^2 - 2ab \cos C$
√	$F_{\rm R}^2 = 60^2 + 80^2 - 2(60)$ (80) (-cos 75°)
√	= 3600 + 6400 + 9600 (0.2588)
√	$= 12 484 N^2$
	$F_{\rm R} = \sqrt{12 \ 484 \ N^2}$
√ √	$= 1.1 \times 10^2 \text{ N}$
	Sine Law
√	$\frac{\sin B}{b} = \frac{\sin C}{c}$
	$\sin B = \frac{b}{c} \sin C$
√	$= \frac{80}{1.1 \times 10^2} \sin 105^{\circ}$
√	$= \frac{80}{1.1 \times 10^2} (0.9659)$
√	= 0.6899
√	B = 44°
√ .	The direction of the resultant force is [N 44° E].
√ √	The resultant force is 1.1×10^2 [N 44° E].
	NOTE: Multiply the trigonometric solution by 0.75 to equate the ticks to the scale drawing solution.
√ √ √	(b) The force needed to balance the two forces F_1 and F_2 is 1.1×10^2 N [S 44° W].

A force of 9 N [S] and a force of 12 N [W] are applied to an object.

S17C III.1.d

Find the resultant of the two forces.

S 31

F1

A7 A2

**

**

 $\sqrt{}$

Scoring Scheme

Answer

$$\dot{\bar{F}}_1 = 9 \text{ N [S]}$$

$$\dot{\overline{F}}_2 = 12 \text{ N [W]}$$

$$\vec{F}_{\text{Net}} = \vec{F}_1 + \vec{F}_2$$

Sketch or Scale Diagram

Vector F_1

 \vec{F}_1 labelled

/ magnitude labelled

direction labelled

Vector F_2

 $\vec{\bar{F}}_{2}$ labelled

/ magnitude labelled

direction labelled

 $\mathop{\rm Vector}\nolimits \, F_{\mathop{\rm R}\nolimits}$

 $\overline{F}_{\mathrm{R}}$ labelled

Vector Orientation

 \checkmark \checkmark orientation of F_1 and F_2 to each other

 \checkmark orientation of $F_{
m R}$ to the other two

Scoring Scheme	Answer	
	Solution I: Scale Drawing	
√	indication of scale Scale	: Let 1 cm represent 3 N
√	appropriateness of scale	
√	constructed length of F_1	3 cm
√	constructed direction of F_1	[S]
√	constructed length of F_2	4 cm
√	constructed direction of F_2	[W]
√	measured length of F_{R}	5 cm
. √	determination of F_{R}	5 x 3 N = 15 N
√	measured direction of F_{R}	53°
√	direction of $F_{\mathbb{R}}$	S 53° W
√ √	statement	The resultant of the two forces is 15 N [S 53° W].
	Solution II: Pythagorean Theorem	
√	$F_{\rm R}^2 = F_1^2 + F_2^2$	
√	$= 81 N^2 + 144 s^2$	
√	$= 225 \text{ N}^2$	
	$F_{\rm R} = \sqrt{225 \mathrm{N}^2}$	
√ √	= 15 N	
√	Let θ be the angle between the resu	Itant and \overline{F}_1 .
√	Tan $\theta = \frac{12 \text{ N}}{9 \text{ N}}$	
∀	= 1.33	
√	θ = 53°	
√	The direction of $\dot{F}_{\rm R}$ is S 53° W.	
√ √	The resultant of the two forces is	15 N [S 53° W].

4 A parachutist, whose mass is 80 kg, is falling at a constant vertical velocity of 8.0 m/s. S17A I.2.c What is the net (unbalanced) force on the S17C parachutist? Explain your answer. III.1.d 32 A3 **8**A * * Scoring Scheme Answer $\hat{\alpha} = 0$ $\vec{F}_{\text{Net}} = m\vec{a}$ = 0 The unbalanced force is zero. or Newton's First Law - the unbalanced force is zero because

the body is falling at constant velocity.

5 S17A I.2.b S17C	A girl of mass 40 kg plans to elope from home by sliding down a 6.0 m long rope improvised from panty hose. The rope will withstand a maximum load of 3.0 x 10^2 N. ($g = 10$ N/kg)
32 21	Calculate the minimum possible acceleration that the girl can allow herself without breaking the rope.
F1 A8	
*** ***	
Scoring	
Scheme	Answer
√ √	Acceptable free body diagram. $T = 3.0 \times 10^2 \text{ N}$
√	Let downward be positive.
√	$m = 40 \text{ kg}$ $T_{\text{max}} = -3.0 \text{ x } 10^2 \text{ N}$
\checkmark	d = 6.0 m $g = 10 N/kg$
√	$F_{g} = mg$ F_{g}
√	= (40 kg) (10 N/kg)
√	$= 4.0 \times 10^2 \text{ N}$
√	$\vec{F} = \vec{T}_{\text{max}} + \vec{F}_{\text{g}}$
√	$= -3.0 \times 10^2 \text{ N} + (4.0 \times 10^2 \text{ N})$
√	$= 1.0 \times 10^2 \text{ N}$
√	The minimum unbalanced force is 1.0×10^2 N downward.
√	$\alpha = \frac{F}{m}$
\checkmark	$= \frac{1.0 \times 10^2 \text{ N}}{40 \text{ kg}}$
√ √	$= 2.5 \text{ m/s}^2$
√	The minimum acceleration is 2.5 m/s ² downward.

A girl of mass 40 kg plans to elope from home by sliding down a 6.0 m long rope improvised from panty hose. The rope will withstand a maximum load of 3.0 x 10^2 N. (g = 10 N/kg) S17C III.1.d If she arrives at ground level at a speed greater

than 9.0 m/s she will sprain her ankle. Calculate the maximum possible acceleration the girl can allow herself without injuring her ankle.

F1 A8

32

21

*** -

Scoring

Scheme Answer

Suitable sketch.

Let downward be positive.

The maximum allowable acceleration is 6.8 m/s^2 downward.

7 s17A	A crate weighing 1000 N is dragged across a level floor. A force of 200 N is needed to drag the crate at constant speed.
I.2.c S17C III.2.a	Find the coefficient of kinetic friction between the crate and the floor.
S 32	
F1 A8 A2	
* * *	
Scoring Scheme	Answer
	Let N be the normal force exerted by the floor on the crate.
√	$N = F_{g} $
\checkmark	= 1000 N
√	The force to overcome friction = 200 N forward.
√	: the force of kinetic friction = 200 N backward.
√	$\mu_{\mathbf{k}} = \left \frac{F_{\mathbf{f}}}{N} \right $
√	$=\frac{200 \text{ N}}{1000 \text{ N}}$
√	= 0.200
√	The coefficient of kinetic friction between the crate and the floor is 0.200.

8 A crate weighing 4200 N is resting on the shop floor. The coefficient of static friction between the crate S17A and the floor is 0.200. A man can exert a maximum I.2.c horizontal force of 850 N. S17C III.1.d Can the man move the crate? Show all calculations. S 32 F1 A8 A2 ** Scoring Scheme Answer $\dot{\vec{F}}_{g} = 4200 \text{ N down}$ $\vec{F}_a = 850 \text{ N forward}$ $\mu_{s} = 0.200$ $N = |F_{o}|$ $|F_f| = \mu_s |N|$ $= 0.200 \times 4200 N$ V V = 840 N√ √ The man must exert a force slightly greater than 840 N to overcome static friction. Since $\vec{F}_a = 850 \text{ N}$ and 850 N > 840 N

: the man can move the crate

0.17.

	A wooden crate weighing 360 N is dragged across a level concrete floor. A force of 60 N is needed
S17A	to drag the crate at constant speed.
I.2.c	Calculate the coefficient of kinetic friction for
S17C III.2.a	wood on concrete.
111.2.4	wood on concrete.
S 32	
F1	
A8	
A2	
×	
*	
*	
<i>c</i> *	
Scoring Scheme	Answer
Scheme	Allswer
√	$N = F_{g} $
√ √	$N = F_{g} $ $= 360 \text{ N}$
√ √	= 360 N
√ √ √	
√ √	$= 360 \text{ N}$ $F_{\text{f}} = 60 \text{ N}$
√ √ √	$= 360 \text{ N}$ $F_{\text{f}} = 60 \text{ N}$
√ √ √	= 360 N
√ √ √	$= 360 \text{ N}$ $F_{f} = 60 \text{ N}$ $\mu_{k} = \left \frac{F_{f}}{N} \right $
√ √ √	$= 360 \text{ N}$ $F_{f} = 60 \text{ N}$ $\mu_{k} = \left \frac{F_{f}}{N} \right $
	$= 360 \text{ N}$ $F_{\text{f}} = 60 \text{ N}$
	$= 360 \text{ N}$ $F_{f} = 60 \text{ N}$ $\mu_{k} = \left \frac{F_{f}}{N} \right $
	$= 360 \text{ N}$ $F_{f} = 60 \text{ N}$ $\mu_{k} = \left \frac{F_{f}}{N} \right $ $= \frac{60 \text{ N}}{360 \text{ N}}$

A block of wood weighs 8.5 N. The coefficient of static friction between it and the vertical wall against which it is pressed is 0.30.

I.2.c

S17C

Determine if a force on the block of 3.0 N

Determine if a force on the block of 3.0 N perpendicular to the wall is enough to prevent the block from sliding downward. Show all

S 32 calculations.

A8 A2 **

III.2.a

F1

Scoring
Scheme Answer

 $\sqrt{\frac{\dot{F}}{g}}$ = 8.5 N down $\mu_{s} = 0.30$ $\sqrt{\frac{\dot{F}}{F_{f}}}$ = 8.5 up to prevent slipping

The horizontal force is equal to the normal force between

the wall and the block.

 $|N| = \frac{|F_{\mathbf{f}}|}{\mu_{\mathbf{S}}}$

 $\checkmark = \frac{8.5 \text{ N}}{0.30}$

 $\sqrt{\sqrt{}}$ = 28 N

 \checkmark A horizontal force of 28 N is needed to prevent the block from sliding downward.

Therefore a horizontal force of 3.0 N is not sufficient.

```
A leather covered box weighing 60 N rests on a
            horizontal pine table. The coefficient of static
            friction between leather and pine is 0.60.
S17A
I.2.c
            What is the minimum force required to start the
S17C
III.2.a
            box moving?
S 32
F1
A8
A2
**
**
***
Scoring
Scheme
            Answer
            \vec{F}_g = 60 \text{ N down}
            \mu_{s} = 0.60
             |N| = 60 \text{ N} \text{ (same as magnitude of } \overrightarrow{F}_{\sigma})
            |F_{s}| = \mu_{s}|N|
                 = (0.60) (60 N)
V V
                - = 36 \text{ N}
             The minimum force required is 36 N forward.
```

S17A I.2.c S17C III.2.a A book has a weight of 45 N. The coefficient of static friction between the book and plaster is 0.45. Calculate the force required to press the book against a plaster wall to prevent it from slipping.

S 32

F1 A8

A2

**

**

Scoring

Scheme

Answer

√

$$\mu_{s} = 0.45$$

 $\frac{1}{F}_{g} = 45 \text{ N down}$

√ √

$$\therefore \vec{F}_{f} = 45 \text{ N up}$$

√

$$\mu_s = \frac{|F_f|}{|N|}$$

1

where $\ensuremath{\textit{N}}$ is the force pushing the two surfaces together

√

$$|N| = \frac{|F_f|}{\mu_s}$$

√

$$=\frac{45 \text{ N}}{0.45}$$

√ √

= 100 N

 $\sqrt{}$

The book must be pressed against the wall with a force of $100\ \mathrm{N}.$

13	A metal block just begins to slide down an incline
	when the angle between it and the horizontal is 45°.

S17A I.2.c Calculate the coefficient of static friction.

S17C III.2.a

S 32

F1

A8

A2

**

Scoring Scheme	Answer
√	Suitable sketch.
√	Let θ be the angle of inclination when the block begins to slide.

$$\sqrt{}$$
 tan $\theta = \mu_{S}$

$$\sqrt{}$$
 tan $45^{\circ} = 1$

$$\checkmark$$
 $\mu_{s} = 1$

 \checkmark The coefficient of static friction is 1.

S17A I.2.c S17C III.1.d 35 17

A11 A7

**

Using the axes and grid provided below, draw a graph of unbalanced force versus time for the motion of the object.

Scoring Scheme

- \checkmark correct shape of segment from t = 0 to t = 1 s
- $\sqrt{}$ correct position of segment from t=0 to t=1 s
- \checkmark correct shape of segment from t = 1 s to t = 2 s
- \checkmark appropriate position of segment from t = 1 s to t = 2 s
- $\sqrt{}$ correct shape of segment from t = 2 s to t = 4.5 s
- // correct position of segment from t=2 s to t=4.5 s compared to position from t=1 s. to t=2 s

Answer

V V

= 0.63 kg

15 A brick is at rest on a smooth, level surface. A force of 20 N gives the brick an acceleration of 32 m/s^2 . S17A I.2.c S17C Determine the mass of the brick. III.1.d 35 F1 A8 А3 * * ** Scoring Scheme Answer $a = 32 \text{ m/s}^2$ F = 20 NF = ma $m = \frac{F}{a}$ $= \frac{20 \text{ N}}{32 \text{ m/s}^2}$

The mass of the brick is 0.63 kg.

16 \$17C III.2.a 35 F1 A8 A3 - **	A 3.0 kg mass is attached to a 5.0 kg mass by a light thread which passes over a friction-less peg. When the masses are released from rest, what is the magnitude of the tension in the thread? (g = 10 N/kg) 3.0 kg
Scoring Scheme	Answer
√	$g = 10 \text{ N/kg}$ $m_{\text{L}} = 3.0 \text{ kg}$ $m_{\text{R}} = 5.0 \text{ kg}$
	Let α be the acceleration of the system in m/s^2 .
	Let T be the magnitude of the tension in the thread in N .
√	The magnitude of the acceleration of the 3.0 kg mass is the same as the magnitude of the acceleration of the 5.0 kg mass.
	Consider the 3.0 kg mass
√ √	Free body diagram
√	$F_{g} = mg$
	= 3.0 kg x 10 N/kg down
√	= 30 N down
√	T is larger than F g
√	Net force $F = T - F_g$
√	F = (T - 30)N
√	m = 3.0 kg
	$\alpha = \alpha \text{ m/s}^2$
√	$F = m\alpha$
\checkmark	$T - 30 = 3.0 \ \alpha$ (1)

Scoring

Scheme Answer

Consider the 5.0 kg Mass

$$F_{g} = mg$$

= $5.0 \text{ kg} \times 10 \text{ N/kg down}$

 \checkmark = 50 N down

 \checkmark $F_{\rm g}$ is larger than T

 \checkmark ... Net force $F = F_g - T$

$$\sqrt{F} = (50 - T)N$$

$$m = 5.0 \text{ kg}$$

 $\alpha = a \text{ m/s}^2$

 $\sqrt{F} = ma$

$$\sqrt{50 - T = 5.0 \alpha}$$

Solving the two equations for ${\it T}$

$$\sqrt{}$$
 substitute $\alpha = \frac{50 - T}{5.0}$ for α in $\boxed{1}$.

$$\sqrt{T - 30 = 3.0 \frac{(50 - T)}{5.0}}$$

$$= \frac{150 - 3.0 T}{5.0}$$

$$\sqrt{5.0 T - 150} = 150 - 3.0 T$$

$$8.0 T = 300$$

$$T = \frac{300}{8.0}$$

The magnitude of the tension in the thread is 38 N.

17 S17C III.2.a 35 F1 A8	A 7.0 kg mass rests on a frictionless table and is attached to a 3.0 kg mass by a light thread which passes over a frictionless pulley. (g = 10 N/kg)
A3 - **	Calculate the magnitude of the tension in the thread after the masses are released.
Scoring Scheme	Answer
· /	$g = 10 \text{ N/kg}$ $m_1 = 7.0 \text{ kg}$ $m_2 = 3.0 \text{ kg}$
√	Let clockwise be positive.
	Let T be the magnitude of the tension in the thread in N .
	Let α be the acceleration of the system in m/s^2 .
√	The magnitude of the acceleration of the 3.0 kg mass is the same as the magnitude of the acceleration of the 7.0 kg mass.
√ √ √	Consider the 7.0 kg mass
V V V	Free body diagram
	$m = 7.0 \text{ kg}$ $\alpha = \alpha \text{ m/s}^2$
	F_{q}
/	F = T N
√	$F = m\alpha$
\checkmark	$T = 7.0 a \tag{1}$

Consider the 3.0 kg mass

Free body diagram

m = 3.0 kg

 $\alpha = \alpha \text{ m/s}^2$

√ √

Scoring Scheme	Answer
√	$F = (F_g - T)N$
√	$F_{g} = mg$
	= 3.0 kg x 10 N/kg
√	= 30 N
√	$F = m\alpha$
√	30 - T = 3.0 a 2
	Solve the equations for T
√	substitute $\alpha = \frac{T}{7.0}$ for α in equation (2)
√	$30 - T = 3.0 \left(\frac{T}{7.0}\right)$
	210 - 7.0 T = 3.0 T
	10 T = 210
/ /	T = 21 N

The tension in the thread is 21 N.

S17C and is connected to a III.2.a 10 kg block by a rope	
passing over a frictionless pulley. $(g = 10 \text{ N/kg})$ F1 (Remember that A8 acceleration is a vector quantity.)	0 kg

- (a) What is the acceleration of the 10 kg block?
- (b) What is the acceleration of the 40 kg block?

Scoring	
Scheme	

 $\sqrt{\ }\sqrt{\ }$

Answer

$$m_1 = 40 \text{ kg}$$

$$m_2 = 10 \text{ kg}$$

$$g = 10 \text{ N/kg}$$

Let ${\it T}$ be the magnitude of the tension in the rope in N.

Let α be the acceleration of the system in m/s^2 .

 \checkmark The magnitude of the acceleration of the 10 kg mass is the same as the magnitude of the acceleration of the 40 kg mass.

(a) Consider the 40 kg mass

 \checkmark \checkmark Free body diagram

$$m = 40 \text{ kg}$$

$$a = a \text{ m/s}^2$$

$$F = TN$$

$$F = m\alpha$$

$$T = 40 \alpha$$

Consider the 10 kg mass

$$m = 10 \text{ kg}$$

$$a = a \text{ m/s}^2$$

Scoring Scheme	Answer
√	$F = (F_g - T)N$
	$F = m\alpha$
√	$(F_{g} - T) = 10 \alpha$
√	$F_{g} = mg$
	= 10 kg x 10 N/kg
√ √	= 100 N
√	$(100 - T) = 10 \alpha$ 2
	Solve the equations for α
√	substitute $T = 40 \ a$ for T in \bigcirc .
√	$100 - 40 \alpha = 10 \alpha$
	$50 \ \alpha = 100$
√ √	$\alpha = 2.0 \text{ m/s}^2$
√ √	The acceleration of the 10 kg mass is 2.0 m/s^2 down.
√ √	(b) The acceleration of the 40 kg mass is 2.0 m/s^2 to the right.

- A 12 kg object initially at rest is acted upon by two forces at the same time. One force is 8.0 N [E].

 The other force is 12 N [W].
- I.2.c S17C (a) Find the net force acting on the object.
 - (b) Calculate the acceleration of the object.
- 35
 19 (c) Determine the velocity of the object after 26 s.

F1 A8 A3

III.1.d

**

Scoring Scheme

Answer

√ √ Free body diagram.

$$\vec{F}_1 = 8.0 \text{ N [E]}$$
 $\vec{F}_2 = 12 \text{ N [W]}$ $\vec{v}_1 = 0$ $t = 26 \text{ s}$ $m = 12 \text{ kg}$

 \checkmark Let [W] be positive.

Then

$$\sqrt{\dot{F}_1} = -8.0 \text{ N} \qquad \dot{\bar{F}}_2 = +12 \text{ N}$$

$$\sqrt{\qquad} \qquad \text{(a)} \quad \vec{F}_{\text{net}} = \vec{F}_1 + \vec{F}_2$$

$$= -8.0 \text{ N} + 12 \text{ N}$$

$$\sqrt{\sqrt{}}$$
 = 4.0 N

 \checkmark The net force acting on the object is 4.0 N [W].

$$\sqrt{}$$
 (b) $\vec{a} = \frac{\vec{F}}{m}$

$$\sqrt{\frac{4.0 \text{ N [W]}}{12 \text{ kg}}}$$

$$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}}}}}}}}}$$
 = 0.33 m/s² [W]

The acceleration of the object is 0.33 m/s^2 [W].

Scoring Scheme	Answer
√	(c) $\vec{v}_{f} = \vec{v}_{i} + \dot{a}t$
√	$= 0 + (0.33 \text{ m/s}^2 [W]) (26 \text{ s})$
√ √	= 8.7 m/s [W]
√ √	The velocity of the object after 26 s is 8.7 m/s [W].

20	A 2.0 kg brick is in mot surface. For how long m	ust a 6.0 N force act
S17A I.2.c S17C III.1.d	to increase the speed of to 20 m/s?	the brick from 10 m/s
35 19		
F1 A8 A3		
** ** ***		
Scoring Scheme	Answer	
√	$F_{\text{net}} = 6.0 \text{ N}$	v_{i} = 10 m/s
,	m = 2.0 kg	$v_{\rm f} = 20 \text{ m/s}$
√	$\alpha = \frac{F}{m}$	
√	$= \frac{6.0 \text{ N}}{2.0 \text{ kg}}$	
√ √	$= 3.0 \text{ m/s}^2$	
√	$a = \frac{v_f - v_i}{t}$	
√	$t = \frac{v_{f} - v_{i}}{\alpha}$	
√	$= \frac{20 \text{ m/s} - 10 \text{ m/s}}{3.0 \text{ m/s}^2}$	
	$= \frac{10 \text{ m/s}}{3.0 \text{ m/s}^2}$	
√ √	= 3.3 s	
√	The force must act for 3.3 s	•

A 90 kg jogger accelerates uniformly from rest to 10 m/s in 5.0 s.

S17A

I.2.c (a) Calculate the acceleration of the jogger.

S17C

III.1.d (b) Calculate the unbalanced force needed to produce this acceleration.

35

21

21

F1 A8

А3

*

*

**

Scoring

Scheme Answer

(a)
$$v_{i} = 0$$

$$v_{\rm f} = 10 \, \text{m/s}$$

$$t = 5.0 \text{ s}$$

$$a = \frac{v_{f} - v_{i}}{t}$$

$$=\frac{10 \text{ m/s} - 0}{5 \text{ s}}$$

$$'\sqrt{}$$
 = 2.0 m/s²

The acceleration of the jogger is 2.0 m/s^2 .

(b)
$$m = 90 \text{ kg}$$

$$\alpha = 2.0 \text{ m/s}^2$$

$$F = m\alpha$$

$$\sqrt{\qquad} = 90 \text{ kg x } 2.0 \text{ m/s}^2$$

$$= 180 \text{ kg} \cdot \text{m/s}^2$$

$$= 180 N$$

$$\sqrt{\ }$$
 = 1.8 x 10² N

The unbalanced force acting on the jogger is 1.8×10^2 N.

A 50 kg skier starts from rest and moves down a hill. The skier reaches a final speed of 12 m/s in 3.0 s.

S17A

(a) What is the skier's acceleration?

I.2.c S17C

III.1.d (b) What net (unbalanced) force acts on the skier?

35 21

F1 A8

A3

**

×

**

Scoring

Scheme Answer

(a) Let downhill be positive.

$$\dot{\overline{v}}_i = 0$$

$$\sqrt{}$$

$$\dot{\overline{v}}_{f} = 12 \text{ m/s}$$

$$t = 3.0 \text{ s}$$

$$\dot{\vec{a}} = \frac{\vec{v}_f - \vec{v}_i}{t}$$

$$=\frac{12 \text{ m/s} - 0}{3.0 \text{ s}}$$

$$= +4.0 \text{ m/s}^2$$

V

The skier's acceleration is $4.0~\text{m/s}^2~\text{downhill}$.

(b)
$$m = 50 \text{ kg}$$

$$a = +4.0 \text{ m/s}^2$$

V

$$F = m\alpha$$

 $\sqrt{}$

$$= 50 \text{ kg x } 4.0 \text{ m/s}^2$$

 $\sqrt{}$

$$= 200 \text{ kg} \cdot \text{m/s}^2$$

= 200 N

V V

$$= 2.0 \times 10^2 \text{ N}$$

 $\sqrt{}$

The net force on the skier is $2.0 \times 10^2 \text{ N downhill}$.

Two forces act at the same time on an object. One force is 18 N [W]. The other is 34 N [E].

S17A

I.2.c If the acceleration produced is 8.0 m/s^2 [E], S17C determine the mass of the object.

III.1.d

35 31

F1 A8

Α7

**

**

Scoring Scheme

Answer

 \checkmark \checkmark

Free body diagram.

V

$$\hat{F}_1 = 18 \text{ N [W]}$$

$$\vec{F}_2 = 34 \text{ N [E]}$$

$$\dot{\bar{a}} = 8 \text{ m/s}^2 \text{ [E]}$$

1

Let [E] be positive

Then

$$\frac{1}{a} = 8 \text{ m/s}^2$$

$$\vec{F}_1 = -18 \text{ N}$$

$$\overline{F}_2 = 34 \text{ N}$$

$$\sqrt{}$$

$$\vec{F}_{\text{net}} = \vec{F}_1 + \vec{F}_2$$

$$= -18 N + 34 N$$

$$= +16 N$$

$$m = \frac{F_{\text{net}}}{a}$$

$$=\frac{16 \text{ N}}{8.0 \text{ m/s}^2}$$

$$\sqrt{\sqrt{}}$$

$$= 2.0 \text{ kg}$$

The mass of the object is 2.0 kg.

24 S17C III.1.d	A block slides down an inclined frictionless plane, as shown in the diagram.
35 28 F1 A3	Derive the equation to show the magnitude of its acceleration in terms of the acceleration due to gravity g and θ .

**

*	,	1	•

 $\sqrt{}$

Scoring Scheme	Answer
·√ √	diagram labelling \vec{F}_{g} and \vec{F}_{N}
√ √	resolution of \vec{F}_{g} into components perpendicular and parallel to the ramp
√	identifying and labelling θ
√	$\vec{F}_{g} = m\vec{g}$
\checkmark	$F_1 = F_g \sin \theta$
\checkmark	$= mg \sin \theta$
\checkmark	$F = m\alpha$
√	$ma = mg \cdot \sin \theta$
\checkmark	$a = g \sin \theta$ is the magnitude of the acceleration along the ramp

The equation is $\alpha = g \sin \theta$.

The diagram shows an object of mass m at rest on an inclined plane. The angle the inclined plane makes with the horizontal is θ . A force of friction of magnitude 0.5 times the force of gravity acts on the object and just prevents the mass from sliding.

A3 A8

Determine the value of θ in degrees.

**

Scoring Scheme

 $\sqrt{\sqrt{\sqrt{}}}$

Answer

diagram labelling $\vec{F}_{
m g}$, $\vec{F}_{
m N}$ and $\vec{F}_{
m f}$

resolution of \hat{F}_g into components identifying and labelling θ

 $F_1 = F_g \sin \theta$ = $mg \sin \theta$

 $F_{f} = 0.5 mg$

If the mass does not slide, the forces parallel to the ramp must be balanced or

 \checkmark \checkmark $mg \sin \theta = 0.5 mg$

 \checkmark sin $\theta = 0.5$

√ θ = 30°

The angle the incline makes with the horizontal is 30°.

S17A I.2.c S17C

III.2.a

S 35

31

A force of gravity of 20 N downward acts on a book at rest on a rough level table. A horizontal force of 12 N is needed to start the book moving across the table.

- (a) Calculate the coefficient of static friction.
- (b) If an additional downward force of 60 N is applied to the book, calculate the total horizontal force needed to start the book moving.

F1 A8 A3

*** **

Scoring Scheme

Answer

Let ${\it N}$ be the normal force exerted by the table against the surface of the book.

$$N = |F_{g}|$$

The force to overcome friction = 12 N forward

 \checkmark The force of friction F_{f} = 12 N backward.

(a)
$$\mu_s = \frac{|F_f|}{|N|}$$

$$= \frac{12 \text{ N}}{20 \text{ N}}$$

The coefficient of static friction is 0.60.

$$\sqrt{}$$
 (b) $N = 60 \text{ N} + 20 \text{ N}$

$$\mu_{\rm S} = 0.60$$

$$F_{\rm f} = \mu_{\rm s} \, N$$

= (0.60) (80 N)

$$\sqrt{\sqrt{}}$$
 = 48 N

The total force needed is 48 N forward.

CENTRIPETAL FORCE

AND GRAVITATION

1 s17c

III.2.c

A ferris wheel of radius 8.0 m revolves once every 20 s. Determine the centripetal force on a 100 kg man seated in one of the cars.

38

F1

8A

A3

*

Scoring

Scheme

_ _

r = 8.0 m

T = 20 s

m = 100 kg

$$a = \frac{v^2}{r}$$

Answer

$$v = \frac{2\pi r}{T}$$

T

 $\therefore \alpha = \frac{4\pi^2 r}{T^2}$

F = ma

 $= \frac{m4\pi^2 r}{T^2}$

 $\sqrt{\frac{(100 \text{ kg}) 4\pi^2 (8.0 \text{ m})}{(20 \text{ s})^2}}$

 $= 8.0 \pi^2 N$

√ √ = 79 N

The centripetal force is 79 N toward the centre of the wheel.

2	The sweep second hand on a watch is 1.5 cm long. Calculate the magnitude of the average acceleration
S17C III.2.c	of the tip of the second hand from 9:15:15 until 9:15:45.
38	
F1 A8 A3	
- ** -	
Scoring Scheme	Answer
√	$r = 1.5 \text{ cm}$ $t_1 = 9:15:15$ $t_2 = 9:15:45$
	$T = t_2 - t_1$
√	= 60 s
\checkmark	$v = \frac{2\pi r}{T}$
√	$= \frac{2\pi \ (1.5 \ \text{cm})}{60 \ \text{s}}$
√	= 0.05 π cm/s
√	$a_{\mathbf{a}\mathbf{v}} = \left \frac{\mathbf{v}_2 - \mathbf{v}_1}{\Delta t} \right $
√ .	$= \frac{2v}{\Delta t}$
√	$= \frac{2 (0.05 \pi \text{ cm/s})}{30 \text{ s}}$
	$= (3.33 \times 10^{-3}) \pi \text{ cm/s}^2$
√ √	$= 1.1 \times 10^{-2} \text{ cm/s}^2$
/	

The average acceleration of the tip of the second hand is 1.1 x $10^{-2}~\mbox{cm/s}^2$.

Find the magnitude and direction of the centripetal acceleration of the stopper.

Scoring Scheme	Answer
√	$r = 0.50 \text{ m}$ $m_{\text{W}} = 0.32 \text{ kg, total mass of washers}$
	10 rotations in 5.0 s
	T = time for one rotation = period
√	$=\frac{5.0 \text{ s}}{10}$
√ √	= 0.50 s
	$v = \frac{2\pi r}{T}$
√	$a_c = \frac{v^2}{r} = \frac{4\pi^2 r}{T^2}$
√	$= \frac{4\pi^2 (0.50 \text{ m})}{(0.50 \text{ s})^2}$
√ √	$= 79 \text{ m/s}^2$
√ √	The centripetal acceleration is 79 m/s^2 towards the centre of the circle.

Find the mass of the rubber stopper.

Scoring	
Scheme	Answer
√	$r = 0.50 \text{ m}$ $m_{W} = 0.32 \text{ kg}$
,	$a_{\rm c} = 79 \text{ m/s}^2$ $g = 10 \text{ N/kg}$
√	The gravitational force on the washers provides the centripetal force on the stopper.
\checkmark	$F_{c} = F_{g}$
√	$m_{s}a = m_{w}g$
\checkmark	$m_{\rm S}$ 79 m/s ² = 0.32 kg·10 N/kg
√	$m_{\rm S} = \frac{3.2 \text{ N}}{79 \text{ m/s}^2}$
√ √	$= 4.1 \times 10^{-2} \text{ kg}$
\checkmark	The mass of the stopper is $4.1 \times 10^{-2} \text{ kg}$.

5 Kepler's Third Law states that

 $\frac{R^3}{T^2} = K$ S17C III.3.a

If R is expressed in metres and T in seconds, what is the derived unit for K? 39

4 458

F1

**

Scoring

A4

Scheme Answer

6	How many days would the moon take to complete one full revolution around the earth if its distance
S17C III.3.a	from the earth were increased to four times its present distance? (Assume that it takes 28 d to complete one revolution at its present distance.)
S 39	
F1 A8	
- **	
-	
Scoring Scheme	Answer
√	$R_2 = 4R_1$ $T_1 = 28 \text{ d}$
√	$\frac{R^3}{T^2} = K$
√	$\frac{R_1^3}{T_1^2} = \frac{R_2^3}{T_2^2}$
√	$= \frac{(4R_1)^3}{T_2^2}$
√	$= \frac{64 R_1^3}{T_2^2}$
\checkmark	$T_2^2 = 64 T_1^2$
\checkmark	$T_2 = 8 T_1$
v /	= 8 (28 d)
√ √	= 224 d
√	One complete revolution would take 224 d.

S17C III.3.a An asteroid is five times as far from the sun as the earth. How many earth years are required for the asteroid to make one complete circular orbit around the sun? (Express your answer correct to two significant digits.)

S 39

F1

A8 A3

**

Scoring Scheme

Answer

Let $R_{\mbox{\footnotesize ES}}$ be the distance between the earth and the sun

 $R_{\mbox{\scriptsize AS}}$ be the distance between the asteroid and the sun

 $T_{_{\rm E}}$ be the period of revolution for the earth

 \boldsymbol{T}_{Δ} be the period of revolution for the asteroid

 $R_{AS} = 5 R_{ES}$ $T_{E} = 1 a$

 $\sqrt{\frac{R^3}{T^2}} = K$

 $\frac{R_{ES}^{3}}{T_{E}^{2}} = \frac{R_{AS}^{3}}{T_{A}^{2}}$

 $= \frac{(5 R_{ES})^3}{T_A^2}$ $= \frac{5^3 R_{ES}^3}{T_A^2}$

 $V \qquad T_{A}^{2} = 5^{3} T_{E}^{2}$

 $T_{\rm A} = \sqrt{125} T_{\rm E}$

 $=\sqrt{125}$ (1 a)

 $= \sqrt{125}$ a

√ √ = 11 a

The time required for the asteroid to complete one revolution is ll a.

8	A car	reless 100 kg astronaut finds himself stranded away from his 7000 kg space ship with the end
S17C III.3.b	of hi	is safety line out of reach. He hopes that the itational force between the space ship and himwill pull him back in. ($G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$)
40		
	(a)	What is the magnitude of the gravitational force
F1		on the astronaut at this distance?
A8		
A3	(b)	Describe the change in the gravitational force as the astronaut moves closer to the space ship.
**		Give an example to clarify your answer.
*		
_		

Scoring Scheme	Answer
,	$m_1 = 100 \text{ kg}$ $r = 70 \text{ m}$
√	$m_2 = 7000 \text{ kg}$ $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
√	(a) $F = G \frac{m_1 m_2}{r^2}$
\checkmark	$= \frac{(6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2) (100 \text{ kg}) (7 \times 10^3 \text{ kg})}{(70 \text{ m})^2}$
√ √	$= 9.5 \times 10^{-9} \text{ N}$
√	The magnitude of the gravitational force is $9.5 \times 10^{-9} \text{ N}$.
√	(b) The gravitational force will vary
√	inversely as the square of the
√	distance between the astronaut and
√	the space ship. If the
√	separation halves, the force will
√	be four times as great.

9 S17C III.3.a The mass M of the planet Jupiter may be determined from observations of one of its moons called Io. Io has a mass m and is assumed to have a circular orbit of radius r.

- 40 39
- (a) Write an equation expressing Newton's Law of Universal Gravitation as it relates to the force F between Jupiter and Io.

F1

A8 (b) Using the equation for Newton's Law of Universal
A3 Gravitation and the formula for centripetal
force, derive Kepler's third law relating the
*** radius and period for circular orbits.

**

(c) For the moon Io, astronomical measurements give the radius of its orbit to be 4.2×10^8 m and the period of revolution to be 1.5×10^5 s. Calculate the mass of Jupiter. (The gravitational constant may be taken as $6.7 \times 10^{-11} \ \mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$.)

Scorin	ıg
Scheme	

Answer

√

(a)
$$F = G \frac{Mm}{r^2}$$

/

(b)
$$F = m \frac{v^2}{r} = m \frac{4\pi^2 r}{r^2}$$

$$\frac{m4\pi^2 r}{T^2} = G \frac{Mm}{r^2}$$

$$\frac{r^3}{T^2} = \frac{GM}{4\pi^2}$$

./

but $\frac{GM}{4\pi^2}$ is constant

$$\therefore \frac{r^3}{T^2} = K$$

(c)
$$\frac{GM}{4\pi^2} = \frac{r^3}{T^2}$$

/

$$M = \frac{4\pi^2 \ r^3}{GT^2}$$

√

$$= \frac{4 (3.14)^{2} (4.2 \times 10^{8} \text{ m})^{3}}{(6.7 \times 10^{-11} \text{ N} \cdot \text{m}^{2}/\text{kg}^{2}) (1.5 \times 10^{5} \text{ s})^{2}}$$

 $\sqrt{\sqrt{}}$

$$= 1.9 \times 10^{27} \text{ kg}$$

./

The mass of Jupiter is $1.9 \times 10^{27} \text{ kg}$.

IMPULSE AND CONSERVATION OF MOMENTUM

```
A 0.050 kg golf ball is at rest on a tee when it is
            struck by a golf club. What impulse would cause it
           to leave the tee with a velocity of 40 m/s at an
S17C
III.4.a angle of 30° above the horizontal?
42
A.3
F1
A8
Scoring
Scheme
            Answer
            m=0.050 \text{ kg} \dot{v}_{t}=0 \dot{v}_{f}=40 \text{ m/s}, 30^{\circ} \text{ above horizontal}
√
V
            Impulse = m \Delta v
V V
            = 0.05 \text{ kg } (40 \text{ m/s } 30^{\circ} \text{ above horiz.} - 0)
            = 2.0 kg·m/s [30° above horiz.] or 2.0 N·s [30° above horiz.]
The impulse is 2.0 N·s at an angle of 30° above the horizontal.
```

2 S17C III.4.a 42 F1 A8	A 0.50 kg soccer ball was mo player at a speed of 7.5 m/s kicked the ball so that it r of 11 m/s south. If his toe the ball for 0.015 s, determ applied to the ball by the k	when the player ebounded at a velocity was in contact with ine the average force
** *		
Scoring Scheme	Answer	
√	Let (+) represent north (-) represent south	
√	m = 0.50 kg	\overline{v}_{i} = 7.5 m/s
	$\Delta t = 0.015 \text{ s}$	$\vec{v}_{\rm f}$ = -11 m/s
√	$\vec{F} = \frac{m (\vec{v}_f - \vec{v}_i)}{\Delta t}$	
√	$= \frac{0.50 \text{ kg } (-11 \text{ m/s} - 7.5 \text{ m/s})}{0.015 \text{ s}}$	
√	$= \frac{0.50 \ (-18.5)}{0.015} \ \frac{\text{kg} \cdot \text{m}}{\text{s}^2}$	
√	= -617 N	
√ √ √	= 6.2×10^2 N south	

The average force applied was $6.2 \times 10^2 \text{ N}$ south.

3 A 5.0 kg mass A, moving at 2.0 m/s to the right, has a head-on collision with a 3.0 kg mass B, moving at 1.0 m/s to the left. The 3.0 kg mass bounces back with a velocity of 2.0 m/s to the right. S17C III.4.a Find the velocity of the 5.0 kg mass after impact. 42 F1 A8 水水 Scoring Scheme Answer Before Suitable sketch After Let (+) represent 'to the right' (') represent 'after the impact' $\overline{v}_{A} = +2.0 \text{ m/s}$ $m_{\Lambda} = 5.0 \text{ kg}$ $\dot{\overline{v}}_{R} = -1.0 \text{ m/s}$ $\dot{\overline{v}}_{R}' = +2.0 \text{ m/s}$ $m_{\rm p} = 3.0 \, \mathrm{kg}$ Momentum is conserved $\frac{1}{p_{\text{T}}} = \frac{1}{p_{\text{T}}}$ $m_{A} \dot{\overline{v}}_{A} + m_{B} \dot{\overline{v}}_{B} = m_{A} \dot{\overline{v}}_{A} + m_{B} \dot{\overline{v}}_{B}$ (5.0 kg) (2.0 m/s) + (3.0 kg) (-1.0 m/s)= $(5.0 \text{ kg}) \dot{\overline{v}}_{\Delta}$ + (3.0 kg) (2.0 m/s)10 kg·m/s - 3.0 kg·m/s = (5.0 kg) \dot{v}_{A} + 6.0 kg·m/s $(5.0 \text{ kg}) \dot{v}_{A}^{\prime} = 1.0 \text{ kg·m/s}$ \overline{v}_{Λ} = 0.20 m/s . / / . The velocity of the 5.0 kg mass after impact is 0.2 m/s to the right.

4 S17C III.4.a

A 5.0 kg mass A, moving at 2.0 m/s to the right, has a head-on collision with a 3.0 kg mass B, moving at 1.0 m/s to the left. After the collision the 5.0 kg mass has a velocity of 0.20 m/s to the right and the 3.0 kg mass bounces back with a velocity of 2.0 m/s to the right.

F1 A8

42

Find the average force that mass B exerts on mass A if the impact lasts for 0.050 s.

**

Scoring Scheme

Answer

Suitable sketch

Before

After

Let (+) represent 'to the right'

(') represent 'after the impact'

$$m_{\rm A} = 5.0 \text{ kg}$$

$$\dot{\overline{v}}_{\Lambda} = +2.0 \text{ m/s}$$

$$m_{A} = 5.0 \text{ kg}$$
 $\dot{v}_{A} = +2.0 \text{ m/s}$ $\dot{v}_{A} = +0.20 \text{ m/s}$

$$m_{\rm R} = 3.0 \text{ kg}$$

$$m_{\rm B} = 3.0 \text{ kg}$$
 $\overline{v}_{\rm B} = -1.0 \text{ m/s}$

$$\overline{v}_{\rm R}$$
 = +2.0 m/s

t = 0.050 s

 $F = m\alpha$

$$= m \frac{(v_f - v_i)}{t}$$

$$= \frac{5.0 \text{ kg } (0.20 - 2.0) \text{ m/s}}{0.050 \text{ s}}$$

$$=\frac{5.0 (-1.8)}{0.050}$$
 N

$$\sqrt{\sqrt{1}} = -1.8 \times 10^2 \text{ N}$$

 $\sqrt{\ }\sqrt{\ }$

The average force that mass B exerts on mass A is 1.8×10^2 N to the left.

A 3.0 kg laboratory cart moves along a frictionless 5 horizontal surface at 4.0 m/s. As the cart moves past, a student drops a 1.0 kg brick from rest onto S17C the cart. Assume that the brick is dropped from a III.5.b negligible height. The horizontal speed of the 'cart with brick' system after the collision is 42 53 3.0 m/s.Show numerically that kinetic energy is not Fl conserved in this collision. **A8** ** Scoring Scheme Answer Before min After Suitable sketch $v_{\rm c}$ = initial horizontal velocity of the cart m = mass of the cart= 3.0 kg= 4.0 m/s $\sqrt{}$ $m_{\rm h}$ = mass of the brick $v_{\rm b}$ = initial horizontal velocity of the brick = 1.0 kg v_f = final horizontal velocity of the cart and the brick = 3.0 m/s $E_{k_z} = \frac{1}{2} m_c v_c^2 + \frac{1}{2} m_b v_b^2$ $= \frac{1}{2} (3.0 \text{ kg}) (4.0 \text{ m/s})^2 + 0$ $\sqrt{\sqrt{}}$ = 24 J $E_{k_c} = \frac{1}{2} (m_c + m_b) v_f^2$ $=\frac{1}{2}(3.0 \text{ kg} + 1.0 \text{ kg})(3.0 \text{ m/s})^2$ √ √ = 18.JThe total kinetic energy before the interaction is 24 J. The total kinetic energy after the interaction is 18 J. Therefore, kinetic energy has not been conserved.

6 S17C III.5.b A 3.0 kg laboratory cart moves along a frictionless horizontal surface at 4.0 m/s. As the cart moves past, a student drops a 1.0 kg brick from rest onto the cart. Assume that the brick is dropped from a negligible height.

42 53

Calculate the speed of the 'cart with brick' system.

F1

A8

**

_

Scoring Scheme

Answer

 $\sqrt{}$

Suitable Sketch

 $m_{c} = \text{mass of the cart}$

= 3.0 kg

 \vec{v}_c = initial horizontal velocity of the cart = 4.0 m/s

 $m_{\rm b}$ = mass of the brick

= 1.0 kg

 $\dot{\vec{v}}_{\rm b}$ = initial horizontal velocity of the brick

 $\dot{v}_{\rm f}$ = final horizontal velocity of the cart and the brick

√ Momentum is conserved

$$m_{c} \dot{v}_{c} + m_{b} \dot{v}_{b} = (m_{c} + m_{b}) \dot{v}_{f}$$

 $\sqrt{(3.0 \text{ kg})(4.0 \text{ m/s}) + (1.0 \text{ kg})(0)} = (3.0 \text{ kg} + 1.0 \text{ kg}) \frac{1}{v_f}$

12 kg·m/s = 4.0 kg \overline{v}_{f}

 $\sqrt{\sqrt{\overline{v}_f}} = 3.0 \text{ m/s}$

√ The final horizontal speed of the 'cart with brick' system is 3.0 m/s.

In a cloud chamber experiment a particle originally 7 at rest disintegrates. The information below gives the cloud chamber tracks and related data for two S17C particles that were detected. III.4.a 42 Particle 1 $m_1 = 5 \times 10^{-26} \text{ kg}$ F2 A8 $\dot{\overline{v}}_1 = 8 \times 10^6 \text{ m/s [N]}$ Particle 2 $m_2 = 3 \times 10^{-26} \text{ kg}$ ** $\overrightarrow{v}_2 = 1 \times 10^7 \text{ m/s [E]}$

DIAGRAM NOT TO SCALE

- (a) Determine the momentum of particle 1.
- (b) Determine the momentum of particle 2.
- (c) Assume that a third particle was also emitted, but was not detected. Determine the momentum of the third particle.

Scoring	
Scheme	Answer
	$m_1 = 5 \times 10^{-26} \text{ kg}$ $m_2 = 3 \times 10^{-26} \text{ kg}$
\checkmark	(a) $\vec{p}_1 = m_1 \vec{v}_1$
√	= $(5 \times 10^{-26} \text{ kg}) (8 \times 10^6 \text{ m/s} [N])$
√ √ √	$= 4 \times 10^{-19} \text{ kg·m/s [N]}$
√	The momentum of particle 1 is 4 x 10^{-19} kg·m/s [N]
√	(b) $\vec{p}_2 = m_2 \vec{v}_2$
√	= $(3 \times 10^{-26} \text{ kg}) (1 \times 10^7 \text{ m/s} [E])$
√ √ √	$= 3 \times 10^{-19} \text{ kg·m/s [E]}$
√	The momentum of particle 2 is 3 x 10 ⁻¹⁹ kg·m/s [E].

Scoring Scheme

Answer

(c)
$$\vec{p}_{1,2} = \vec{p}_1 + \vec{p}_2$$
 $\vec{p}_1 \perp \vec{p}_2$ and $\vec{v}_1 \perp \vec{v}_2$

Sketch or Vector Diagram

Vector p_1

 \overline{p}_1 labelled

magnitude labelled

direction labelled

Vector p_2

 $\dot{\overline{p}}_2$ labelled

magnitude labelled

direction labelled

Scoring Scheme	Answer		
	Vector p _{1,2}		
√	$p_{1,2}$ labelled		
√	θ labelled		
	Vector Orientation		
√ √	orientation of p_1 and p_2 to each other		
√	orientation of $p_{1,2}$ to the other two		
	Solution I: Pythagorean Theorem		
. √	$p_{1,2}^2 = p_1^2 + p_2^2$		
√	= $(4.0 \times 10^{-19} \text{ kg·m/s})^2 + (3.0 \times 10^{-19} \text{ kg·m/s})^2$		
	$= (4.0^2 + 3.0^2) (10^{-19} \text{ kg·m/s})^2$		
	$p_{1,2} = \sqrt{25} (10^{-19} \text{ kg·m/s})$		
√ √	$= 5.0 \times 10^{-19} \text{ kg·m/s}$		
√	$\tan \theta = \frac{p_1}{p_2}$		
√	$= \frac{4.0 \times 10^{-19} \text{ kg·m/s}}{3.0 \times 10^{-19} \text{ kg·m/s}}$		
√	= 1.333		
√	θ = 53°		
√ √ √	$\bar{p}_{1,2} = 5.0 \times 10^{-19} \text{ kg·m/s [E 53° N]}$		
√	The momentum before the particle disintegrates is 0.		
√	Momentum is conserved.		
√	$\vec{p}_1 + \vec{p}_2 + \vec{p}_3 = 0$		
√	$\vec{p}_{1,2} + \vec{p}_3 = 0$		
√	$\vec{p}_3 = -\vec{p}_{1,2}$		
√ √ √	The momentum of particle 3 is $5.0 \times 10^{-19} \text{ kg·m/s}$ [W 53° S].		

Scoring Scheme	Answer
	Solution II: Vector Drawing
√	indication of scale Scale: Let 1 cm represent $1.0 \times 10^{-19} \text{ kg·m/s}$
√	appropriateness of scale
√	constructed length and 4 cm [N] direction of \vec{p}_1
√	constructed length and 3 cm [E] direction of \bar{p}_2
√	measured length of $\dot{p}_{1,2}$ 5 cm
√	determination of $\dot{p}_{1,2}$ 5 x 1.0 x 10^{-19} kg·m/s
	$= 5.0 \times 10^{-19} \text{ kg·m/s}$
√	measured direction of θ 53°
√	direction of $\overline{p}_{1,2}$ [E 53° N]
√ √ √	$\vec{p}_{1,2} = 5.0 \times 10^{-19} \text{ kg·m/s [E 53° N]}$
√	The momentum before the particle disintegrates is 0.
√	Momentum is conserved.
\checkmark	$\vec{p}_1 + \vec{p}_2 + \vec{p}_3 = 0$
√	$\vec{p}_{1,2} + \vec{p}_3 = 0$
√	$\vec{p}_3 = -\vec{p}_{1,2}$
√ √ √	The momentum of particle 3 is $5.0 \times 10^{-19} \text{ kg} \cdot \text{m/s}$ [W 53° S].

For items 1-4, determine the <u>area</u> of the shaded portion of each graph and place your answer in the space provided. Include the correct SI units, but ignore significant figures.

For items 1-4, determine the area of the shaded portion of each graph and place your answer in the space provided. Include the correct SI units, but ignore significant figures.

S 42 Scoring F1 Scheme Answer A11 A7 V V (1)Force (N) 15 ** 10 * 5 (60 N·s) 0 or (60 kg·m) 0 2 4 6 8 Time (s)

 $(15 \text{ N} \cdot \text{s})$ $(15 \text{ N} \cdot \text{s})$ $(15 \text{ kg} \cdot \text{m})$ $(15 \text{ kg} \cdot \text{m})$

10 S17C III.4.a For items 1-5, determine the area of the shaded portion of each graph and place your answer in the space provided. Include the correct SI units, but ignore significant figures.

S 42

*

Answer

(100 N·s) or (100 kg·m)

√ √ (2<u>)</u>

(25 N·s) or (25 kg·m)

√ √ (3)

(75 N·s) or

 $(75 \frac{\text{kg·m}}{\text{s}})$

A 6.0 kg ball travelling at 5.0 m/s collides with a 11 stationary 9.0 kg ball. After collision the 6.0 kg ball moves off at 4.0 m/s and the 9.0 kg ball moves S17C off in a direction perpendicular to that of the III.4.b 6.0 kg ball. 44 What is the speed of the 9.0 kg ball after the collision? Fl **A8** *** Scoring Scheme Answer $m_1 = 9.0 \text{ kg}$ $m_0 = 6.0 \text{ kg}$ $v_2 = 5.0 \text{ m/s}$ $v_{\tau} = 0$ v_1 is $\perp v_2$ $v_2 = 4.0 \text{ m/s}$ p_1 is p_2 Sketch p_1 labelled $\sqrt{}$ p, labelled p_1 \perp p_2 $p_{\scriptscriptstyle {\rm T}}$ and/or $p_{\scriptscriptstyle {\rm T}}$ labelled $\bar{p}_{\mathrm{T}} = \bar{p}_{\mathrm{T}}$ $= \vec{p}_1 + \vec{p}_2$ $|p_{\rm T}| = |m_1 v_1 + m_2 v_2|$ = 0 + (6.0 kg) (5.0 m/s) $= 30 \text{ kg} \cdot \text{m/s}$ $|p_2| = |m_2 v_2|$ = (6.0 kg) (4.0 m/s)V V = 24.0 kg·m/s $\vec{p}_{\text{T}} = \vec{p}_{1} + \vec{p}_{2}$ and $\vec{p}_{1} \perp \vec{p}_{2}$

Scoring Scheme	Answer		
	Solution I: Pythagorean Theorem		
√	$(p_T)^2 = (p_1)^2 + (p_2)^2$		
√	$(p_1)^2 = (p_1)^2 - (p_2)^2$		
√	= $(30 \text{ kg} \cdot \text{m/s})^2 - (24 \text{ kg} \cdot \text{m/s})^2$		
√	$= (900 - 576) (kg \cdot m/s)^2$		
√	= $324 (kg \cdot m/s)^2$		
\checkmark	$p_1 = \sqrt{324} \text{ kg·m/s}$		
√ √	= 18 kg·m/s		
√	$p_1 = m_1 v_1$		
√	$m_1 v_1 = 18 \text{ kg·m/s}$		
√	$v_{1} = \frac{18 \text{ kg·m/s}}{9.0 \text{ kg}}$		
√ √	= 2.0 m/s		
√	The speed of the 9.0 kg ball after co	ollision is 2.0 m/s.	
	Solution II: Scale Drawing		
√	scale designation Scale:	Let 1 cm represent	
√	appropriateness of scale	6 kg·m/s	
√	constructed length of p_2	4 cm	
√	constructed direction of p_1 (extended)	[90° to p ₂ ´]	
√	constructed length of p_{T}^{-}	5 cm	
√	measured length of p_1	3 cm	
√	determination of p_1	3 x 6 kg·m/s	
√		= 18 kg·m/s	

Scoring Scheme	Answer
\checkmark	$p_1 = m_1 v_1$
\checkmark	$m_1 v_1 = 18 \text{ kg·m/s}$
√	$v_1 = \frac{18 \text{ kg} \cdot \text{m/s}}{9.0 \text{ kg}}$
√ √	= 2.0 m/s
\checkmark	The speed of the 9.0 kg ball after collision is 2.0 m/s.

S17C III.4.b

A 6.0 kg ball travelling at 5.0 m/s collides with a stationary 9.0 kg ball. After collision the 6.0 kg ball moves off at 4.0 m/s and the 9.0 kg ball moves off in a direction perpendicular to that of the 6.0 kg ball with a speed of 2.0 m/s.

44

How much kinetic energy was lost in the collision?

F1

8A

Scoring

Scheme

Answer

Suitable sketch

Before After

$$m_1 = 9.0 \text{ kg}$$
 $v_1 = 0$

$$m_2 = 6.0 \text{ kg}$$
 $v_2 = 5.0 \text{ m/s}$

$$v_1 = 0$$

$$v_2 = 5.0 \text{ m/s}$$

$$v_1 = 2.0 \text{ m/s}$$

$$v_2$$
 = 4.0 m/s

$$\Delta E_{\mathbf{k}} = E_{\mathbf{k}_{\mathbf{f}}} - E_{\mathbf{k}_{\mathbf{i}}}$$

$$= \frac{1}{2} m_1 (v_1^{-1})^2 + \frac{1}{2} m_2 (v_2^{-1})^2 - \frac{1}{2} m_2 v_2^2$$

$$= \frac{1}{2} (9.0 \text{ kg}) (2.0 \text{ m/s})^2 + \frac{1}{2} (6.0 \text{ kg}) (4.0 \text{ m/s})^2$$

$$-\frac{1}{2}$$
 (6.0 kg)(5.0 m/s)²

$$= 18 J + 48 J - 75 J$$

$$= -9.0 J$$

The loss in kinetic energy is 9.0 J.

WORK AND

KINETIC ENERGY

1 S17C III.5.a	A stone of mass 10 kg has a velocity of 12 m/s south. A machine exerts a constant unbalanced force on the stone for 5.0 s, giving it a final velocity of 2.0 m/s north.
47 42	(a) Calculate the impulse imparted to the stone.
F1 A8	(b) What is the magnitude and direction of the force applied by the machine to the stone?
**	(c) Calculate the work done by the machine on the stone.

Scoring Scheme	Answer	
√	Let (+) represent north.	
√	m = 10 kg	\dot{v}_i = -12 m/s
√	$\Delta t = 5.0 \text{ s}$	$\dot{\overline{v}}_{\rm f}$ = +2.0 m/s
√	(a) Impulse = $\vec{F} \triangle t = m \triangle \vec{v}$	
	$= m(\dot{\vec{v}}_{f} - \dot{\vec{v}}_{i})$	
√ .	= 10 kg [+2.0 m/s - (-12)]	m/s)]
	= 10 (14) kg·m/s	
√. √ √	$= +1.4 \times 10^2 \text{ kg·m/s}$	
√ √	The impulse is $1.4 \times 10^2 \text{ kg}$	m/s north.

Scoring Scheme

Answer

V

(b)
$$\overline{F} = \frac{\text{Impulse}}{\Delta t}$$

$$= \frac{+140 \text{ kg·m/s}}{5.0 \text{ s}}$$

11

$$= +28 N$$

1/

The applied force is 28 N north.

- (c) The machine exerts a force on the stone opposite to the direction of motion of the stone while it slows down. The machine exerts a force in the same direction as the stone moves while the stone speeds up.
- The machine does work on the stone only while the stone speeds up.

Consider the interval during which the stone speeds up.

 $\sqrt{}$

 $\sqrt{\sqrt{}}$

$$v_{f} = 2.0 \text{ m/s}$$

 $\sqrt{}$

$$W = \Delta E_{\mathbf{k}}$$

√

$$= \frac{1}{2} m(v_f^2 - v_i^2)$$

V

$$=\frac{1}{2}$$
 (10 kg) [(2.0 m/s)² - 0]

 $= 5.0 [4.0] kg \cdot m^2/s^2$

$$= 20 \text{ kg} \cdot \text{m}^2/\text{s}^2$$

V V

$$= 20 J$$

V

The work done by the machine on the stone is 20 J.

2 \$17A 1.2.b \$17C III.1.d 51 35 19 F1 A8	constant unbalanced force distances of 150 cm alon 2.0 s respectively.	ving under the action of a e, covers two consecutive g its path in 3.0 s and of the acceleration of the
*** ***		
Scoring Scheme	Answer	
	m = 20 kg	F is constant
\checkmark	$d_1 = 150 \text{ cm}$	Δt_{\perp} = 3.0 s
	$d_2 = 150 \text{ cm}$	$\Delta t_2 = 2.0 \text{ s}$
√	$a = \frac{v_2 - v_1}{t_2 - t_1}$	
√ √		eleration is constant, and v_1
\checkmark	for v_2 .	e time interval Δt_1 . Similarily
√	$v_1 = \frac{\Delta d_1}{\Delta t_1}$	
\checkmark	$= \frac{150 \text{ cm}}{3.0 \text{ s}}$	
√ √	= 50 cm/s	
√ √	$v_2 = \frac{\Delta d_2}{\Delta t_2} = \frac{150 \text{ cm}}{2.0 \text{ s}} = 75 \text{ cm/s}$	
√	t_1 = midpoint of the interval	$1 \Delta t_1 = \frac{1}{2} (\Delta t_1)$
√ √	= 1.5 s	

Scoring Scheme	Answer
√	t_2 = midpoint of the interval Δt_2 = Δt_1 + $\frac{1}{2}(\Delta t_2)$
	= 3.0 s + $\frac{1}{2}$ (2.0 s)
√ √	= 4.0 s
√	$\alpha = \frac{75 \text{ cm/s} - 50 \text{ cm/s}}{4.0 \text{ s} - 1.5 \text{ s}}$
	$=\frac{25 \text{ cm/s}}{2.5 \text{ s}}$
√ √	$= 10 \text{ cm/s}^2$
	or
	$= 0.10 \text{ m/s}^2$
√ √	The magnitude of the acceleration is 10 cm/s^2 or 0.10 m/s^2 .

3	A body of mass 20 kg, moving under the action of a constant unbalanced force, covers two consecutive	
S17A I.2.b S17C III.1.d	dist 2.0	ances of 150 cm along its path in 3.0 s and s respectively. It has an acceleration of m/s ² .
51	(a)	Calculate the magnitude of the unbalanced force acting on the body.
19	(b)	Calculate the increase in kinetic energy of the body during the 3.0 s time interval.
F1 A8		

Scoring		

Scoring Scheme	Answer
	$m = 20 \text{ kg} \qquad \qquad \alpha = 0.10 \text{ m/s}^2$
√	F is constant
	$d_1 = 150 \text{ cm}$ $\Delta t_1 = 3.0 \text{ s}$
	$d_2 = 150 \text{ cm}$ $\Delta t_2 = 2.0 \text{ s}$
√	(a) $F = m\alpha$
√	$= 20 \text{ kg x } 0.10 \text{ m/s}^2$
√ √	= 2.0 N
√	An unbalanced force of 2.0 N acts on the body.
\checkmark	(b) $\Delta E_{\mathbf{k}} = F \cdot d$
√	= 2.0 N x 150 cm
√	= 2.0 N x 1.5 m
√ √	= 3.0 J

The increase in kinetic energy of the body during the 3.0 s interval is 3.0 J.

A force of 15 N acts on a mass of 4.0 kg initially at rest on a frictionless table. The mass travels 7.5 m during the time that the force acts.

S17C III.5.a

(a) How much work is done by the force on the mass?

 $v_i = 0$

53 47

(b) What is the final speed of the mass?

F1 A8

**

Scoring Scheme

V V

Answer

F = 15 N

m = 4.0 kg d = 7.5 m

(a) W = Fd

= (15 N) (7.5 m)

= 112.5 J

 $/\sqrt{}$ = 1.1 x 10² J

The work done is 1.1×10^2 J.

(b) $W = \Delta E_{\mathbf{k}}$

 $= \frac{1}{2} m v_{\rm f}^2 - \frac{1}{2} m v_{\rm i}^2$

1.1 x 10^2 J = $\frac{1}{2}$ (4.0 kg) $(v_f^2 - 0)$

 $v_f^2 = 55 \text{ J/kg}$

 $v_f = \pm 7.4 \text{ m/s}$

The final speed is 7.4 m/s.

1/

5	A force of 15 N acts on a mass of 4.0 kg initially at rest on a frictionless table. The mass reaches a final speed of 7.4 m/s.					
III.5.a 53 47	(a) What is the magnitude of the impulse imparted on the mass?					
F1 A8	(b) Determine the time interval during which the force acts.					
- **						
Scoring Scheme	Answer					
√	$F = 15 \text{ N} \qquad v_{i} = 0$					
*	$m = 4.0 \text{ kg}$ $v_{\text{f}} = 7.4 \text{ m/s}$					
√	(a) Impulse = $F\Delta t = m\Delta v$					
√	= (4 kg) (7.4 m/s - 0)					
√	= 30 kg·m/s					
√ √	= 30 N·s					
√	The magnitude of the impulse is 30 N·s.					
√	(b) Impulse = $F\Delta t$					
√ .	30 kg·m/s = 15 N Δt					
√ √	Δt = 2.0 s					

The force acts for a time interval of 2.0 s.

The diagram below represents two carts about to undergo an elastic interaction on a level surface.

S17C III.5.c

v

54

A8

-**

Complete each of the following statements with a correct phrase selected from these choices:

greater than equal to less than independent of

- (a) At minimum separation, the speed of the 3 kg mass is _____ the speed of the 2 kg mass.
- (b) At any instant during the interaction, the magnitude of the acceleration of the 3 kg mass is ______ that of the 2 kg mass.
- (c) From the beginning to the end of the interaction, the magnitude of the impulse applied to the 3 kg mass is _____ that applied to the 2 kg mass.
- (d) From the beginning of the interaction up to minimum separation, the loss in kinetic energy of the 3 kg mass is _____ the gain in kinetic energy of the 2 kg mass.

Scoring Scheme

Answer

ν

(a) equal to

V

(b) less than

1

(c) equal to

./

(d) greater than

7 S17C III.5.c 54 43 F1 A8	A cart having a mass of 4.0 kg is travelling at 9.0 m/s horizontally to the right. It collides with a 2.0 kg cart travelling at 3.0 m/s in the same direction. The collision is cushioned by a perfectly elastic bumper, and friction is negligible. (a) Determine the speed of the carts when they are at minimum separation. (b) Calculate the potential energy stored in the bumper at minimum separation.
Scoring Scheme	Answer
. 1/	Let (+) represent "to the right".
√	$m_1 = 4.0 \text{ kg}$ $m_2 = 2.0 \text{ kg}$ $\vec{v}_1 = +9.0 \text{ m/s}$ $\vec{v}_2 = +3.0 \text{ m/s}$
√	(a) At minimum separation both carts have the same velocity.
√	Let \overline{V} represent the velocity at minimum separation.
√	$\vec{p}_{\mathrm{T}} = \vec{p}_{\mathrm{T}}$ (at minimum separation)
√	$m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{V}$
√	(4.0 kg)(9.0 m/s) + (2.0 kg)(3.0 m/s)
	$= (4.0 \text{ kg} + 2.0 \text{ kg}) \vec{V}$
	36.0 kg·m/s + 6.0 kg·m/s = (6.0 kg) \vec{V}
√ √	$\vec{V} = +7.0 \text{ m/s}$
√ √	The speed of the carts at minimum separation is 7.0 m/s right.
√	(b) $E_{k_{T}} = \frac{1}{2} m_{1} v_{1}^{2} + \frac{1}{2} m_{2} v_{2}^{2}$

= 2 (81) J + 1 (9.0) J

= 171 J

 $\sqrt{}$

V V

V V

= $\frac{1}{2}$ (4.0 kg)(9.0 m/s)² + $\frac{1}{2}$ (2.0 kg)(3.0 m/s)²

Scoring Scheme	Answer
√	$E_{\mathbf{k}_{\mathbf{T}}}$ (at minimum separation) = $\frac{1}{2}$ $(m_1 + m_2)$ V^2
√	$= \frac{1}{2} (4.0 \text{ kg} + 2.0 \text{ kg}) (7.0 \text{ m/s})^2$
	$= 3.0 (49) \text{ kg} \cdot \text{m}^2/\text{s}^2$
√ √	= 147 J
√	$\Delta E_{\rm p} = -\Delta E_{\rm k}$
√	= -(147 J - 171 J)
√ √	= 24 J
√	The potential energy stored at minimum separation is 24 J.

8 S17C III.5.c	A cart having a mass of 4.0 kg is travelling at 9.0 m/s horizontally to the right. It collides with a 2.0 kg cart travelling at 3.0 m/s in the same direction. The collision is cushioned by a perfectly elastic bumper, and friction is negligible.					
43 F1 A8 - ***	Let X represent the velocity of the 4.0 kg cart after collision and Y represent the velocity of the 2.0 kg cart after collision. Using the given data, construct two equations in X and Y which can be used to find the final velocities. Do not solve these equations.					
Scoring Scheme	Answer					
	Let (+) represent "to the right".					
	$m_1 = 4.0 \text{ kg}$ $m_2 = 2.0 \text{ kg}$					
\checkmark	$\dot{\bar{v}}_1 = +9.0 \text{ m/s}$ $\dot{\bar{v}}_2 = +3.0 \text{ m/s}$					
	\vec{v}_1 = X \vec{v}_2 = Y					
\checkmark	Momentum is conserved					
\checkmark	$ \dot{\overline{p}}_{\mathrm{T}} = \dot{\overline{p}}_{\mathrm{T}} $					
\checkmark	$m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1 + m_2 \vec{v}_2$					
\checkmark	(4.0 kg)(9.0 m/s) + (2.0 kg)(3.0 m/s) = (4.0 kg)X + (2.0 kg)Y					
	36 + 6.0 = 4.0 X + 2.0 Y					
\checkmark	21 = 2.0 X + 1.0 Y, for X and Y in m/s (1st eqn.)					
\checkmark	Since the collision is elastic, kinetic energy is conserved.					
\checkmark	$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1(v_1^2)^2 + \frac{1}{2}m_2(v_2^2)^2$					
\checkmark	$\frac{1}{2}$ (4.0 kg) (9.0 m/s) ² + $\frac{1}{2}$ (2.0 kg) (3.0 m/s) ²					
	$= \frac{1}{2} (4.0 \text{ kg}) X^2 + \frac{1}{2} (2.0 \text{ kg}) Y^2$					
\checkmark	$171 = 2.0 \text{X}^2 + 1.0 \text{Y}^2 \text{ for X and Y in m/s}$ (2nd eqn.)					
	The two equations that can be used to find the final velocities					

The two equations that can be used to find the final velocities are:

2.0 X + 1.0 Y = 21

 $2.0 X^2 + 1.0 Y^2 = 171$

9 A cart having a mass of 4.0 kg is travelling at 9.0 m/s horizontally to the right. It collides with a 2.0 kg cart travelling at 3.0 m/s in the S17C III.5.c same direction. The collision is perfectly elastic and friction is negligible. 54 43 Determine the velocity of each cart after the collision. F1 A8 *** Scoring Scheme Answer Let (+) represent "to the right" $m_1 = 4.0 \text{ kg}$ $m_2 = 2.0 \text{ kg}$ $\dot{v}_1 = +9.0 \text{ m/s}$ $\vec{v}_2 = +3.0 \text{ m/s}$ \vec{v}_2 = Y \vec{v}_1 = X (a) Momentum is conserved $\dot{p}_{\mathbf{T}} = \dot{p}_{\mathbf{T}}$ $m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1 + m_2 \vec{v}_2$ (4.0 kg)(9.0 m/s) + (2.0 kg)(3.0 m/s)= (4.0 kg) X + (2.0 kg) Y36 + 6.0 = 4.0 X + 2.0 Y21 = 2.0 X + 1.0 Y, for X and Y in m/s (1st eqn.) Since the collision is elastic, kinetic energy is conserved. $\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1(v_1^2)^2 + \frac{1}{2}m_2(v_2^2)^2$ $\frac{1}{2}$ (4.0 kg) (9.0 m/s)² + $\frac{1}{2}$ (2.0 kg) (3.0 m/s)² $= \frac{1}{2}$ (4.0 kg) $X^2 + \frac{1}{2}$ (2.0 kg) Y^2 $171 = 2.0 \text{ X}^2 + 1.0 \text{ Y}^2$, for X and Y in m/s (2nd eqn.)

Scoring Scheme	Answer						
	The two equations that can be used to find the final velocities						
	are: $2.0 \text{ X} + 1.0 \text{ Y} = 21$						
	$2.0 X^2 + 1.0 Y^2 = 171$						
	From the first equation,						
√	Y = 21 - 2.0 X						
	Substitute this into the second equation,						
\checkmark	$2.0 \text{ X}^2 + (21 - 2.0 \text{ X})^2 = 171$						
	$2.0 X^2 + 441 - 84 X + 4.0 X^2 = 171$						
√	$6.0 \text{X}^2 - 84 \text{X} + 270 = 0$						
√	1.0 $X^2 - 14 X + 45 = 0$						
√ √	(X - 5.0) (X - 9.0) = 0						
√ √	X = 5.0 or X = 9.0						
\checkmark	Since X = 9.0 represents the initial condition,						
\checkmark	X = 5.0						
\checkmark	Substitute $X = 5.0$ into the first equation.						
	2.0 (5.0) + 1.0 Y = 21						
\checkmark	Y = 11						
√ √ √ √	After the collision, the velocity of the 4 kg cart is 5.0 m/s to the right, and the velocity of the 2 kg cart is 11 m/s to the right.						

S17C III.5.c A 5.0 kg body is at rest. A 10 kg body approaches it with a velocity of 0.20 m/s. The repulsive force which acts during the collision between the two bodies is shown on the graph.

S 54

F1 A8

-***

- (a) Calculate the kinetic energy of each mass before the interaction.
- (b) Calculate the velocity of each mass when the separation is at a minimum.

Scoring Scheme

Answer

Let (+) represent 'to the right'

 $m_a = 5.0 \text{ kg}$

 $v_a = 0$

 $m_{\rm b} = 10 \text{ kg}$

 $v_{\rm b} = 0.20 \, {\rm m/s}$

(a) $E_{k_a} = \frac{1}{2} m_a v_a^2$ = $\frac{1}{2}$ (5.0 kg) (0) = 0

Scoring Scheme	Answer
√	$E_{\rm k_b} = \frac{1}{2} (10 \text{ kg}) (0.20 \text{ m/s})^2$
√	= 5.0 (0.040) J
√ √	= 0.20 J
√	The 5.0 kg mass has a kinetic energy of zero and the $10\ kg$ mass has a kinetic energy of 0.20 J before the interaction.
\checkmark	(b) At minimum separation both masses have the same velocity.
\checkmark	Let v^{\prime} represent the common velocity at minimum separation.
√	$\vec{p}_{\mathrm{T}} = \vec{p}_{\mathrm{T}}$
\checkmark	$m_a \dot{\overline{v}}_a + m_b \dot{\overline{v}}_b = (m_a + m_b) \dot{\overline{v}}$
\checkmark	$0 + (10 \text{ kg}) (0.20 \text{ m/s}) = (5.0 \text{ kg} + 10 \text{ kg}) \dot{v}$
	2.0 kg·m/s = (15 kg) \overline{v}
√ √	v' = 0.13 m/s
\checkmark	The velocity of each mass at minimum separation is 0.13 m/s.

S17C III.5.c

S 54

F1 A8

A 5.0 kg body is at rest. A 10 kg body approaches it with a velocity of 0.20 m/s. The repulsive force which acts during the collision between the two bodies is shown on the graph. The velocity of each mass when the separation is at a minimum is 0.13 m/s.

- (a) Calculate how much kinetic energy 'disappears' from the system from the time when the collision starts until the time when the separation is at a minimum.
- (b) What is the minimum separation?

Scoring Scheme

Answer

Let (+) represent 'to the right'.

$$m_{a} = 5.0 \text{ kg}$$

$$v_2 = 0$$

$$m_{\rm b} = 10 \text{ kg}$$

$$v_{\rm b} = 0.20 \, \mathrm{m/s}$$

Let v^{\prime} represent the common velocity at minimum separation.

$$v' = 0.13 \text{ m/s}$$

Scoring

Scheme

Answer

(a) Let $E_{\mathbf{k}}$ be the kinetic energy at minimum separation.

$$\sqrt{E_{k}} = E_{k} - E_{k}$$

$$= \frac{1}{2} (m_{a} + m_{b}) v^{2} - \frac{1}{2} m_{a} v_{a}^{2} - \frac{1}{2} m_{b} v_{b}^{2}$$

$$\sqrt{ = \frac{1}{2} (5.0 \text{ kg} + 10 \text{ kg}) (0.13 \text{ m/s})^2 - 0 - \frac{1}{2} (10 \text{ kg}) (0.20 \text{ m/s})^2}$$

$$= 0.13 \text{ J} - 0.200 \text{ J}$$

$$\sqrt{v'} = -0.070 \text{ J}$$

$$\sqrt{v'}$$
 The amount of kinetic energy which "disappears" is 0.070 J.

(b) Let the change in separation to minimum separation be Δs .

$$F = 4.0 \text{ N, from the graph}$$

$$\sqrt{\Delta E_{k}} = 0.070 \text{ J}$$

$$F \triangle s = \triangle E_{k}$$

$$\Delta s = \frac{\Delta E_{\mathbf{k}}}{F}$$

$$\sqrt{\sqrt{}}$$
 = 0.018 m

 $\sqrt{}$ The separation at the start of the collision is 0.10 m.

The minimum separation is

$$\sqrt{}$$
 0.10 m - 0.018 m

$$\sqrt{}$$
 = 0.082 m

 $\sqrt{}$ Minimum separation is 0.08 m.

GRAVITATIONAL

POTENTIAL ENERGY

1 S17A	The equation for gravitational potential energy near the surface of the earth is $E_g = mgh$.						
I.3.b	State the SI unit for each of the symbols in the equation.						
55 4	E g $^{}$						
A2	g						
*	h						

Scoring Scheme	Ans	swei	<u>:</u>		
✓	$E_{\mathbf{g}}$	is	in	J or	N·m or kg·m²/s²
√	m	is	in	kg	
√	9	is	ín	m/s^2	or N/kg
√	h	is	in	m	

```
A squirrel gathers 600 nuts together on the ground
2
             before storing them in a tree. What is the minimum
             amount of work done by the squirrel in storing the
S17A
             nuts if the mass of each nut is 0.010 kg and the
I.3.b
             store house is 6.0 m above the ground?
S17C
             (q = 10 \text{ N/kg})
III.6.c
55
F1
A8
A2
sk:
**
Scoring
Scheme
             Answer
             m = 0.010 \text{ kg/nut}
                                              h = 6.0 \text{ m}
             N = 600 \text{ nuts}
                                                q = 10 \text{ N/kg}
             Mass of nuts moved = number of nuts x mass of each nut
             m_{+} = mN
                = 0.010 \text{ kg/nut x } 600 \text{ nuts}
                = 6.0 \text{ kg}
             Work done = gain in gravitational potential energy
             E_{a} = m_{t}gh
                 = 6.0 \text{ kg} \times 10 \text{ N/kg} \times 6.0 \text{ m}
                = 360 \text{ N} \cdot \text{m}
                = 360 J
V V
                 = 3.6 \times 10^2 \text{ J}
             The squirrel does 3.6 \times 10^2 J of work. (This neglects the
             work done in moving the squirrel.)
```

3

A 60 kg physics teacher climbs a staircase 6.0 m high in a time of 5.0 s. (g = 10 N/kg)

S17A I.3.d S17C III.6.c

- (a) Compute the increase in the gravitational potential energy of the teacher.
- (b) What minimum power was required for the climb?

q = 10 N/kg

t = 5.0 s

55 49

,

F1 A8

A3

** *

 $\sqrt{\ }$

V V

Scoring

Scheme Answer

m = 60 kg

h = 6.0 m

(a) $\Delta E_g = mg\Delta h$

 $= 60 \text{ kg} \times 10 \text{ N/kg} \times 6.0 \text{ m}$

 $= 3600 \text{ N} \cdot \text{m}$

= 3600 J

 $= 3.6 \times 10^3 \text{ J}$

The increase in gravitational potential energy is

 $3.6 \times 10^3 \text{ J}.$

(b) $P = \frac{\Delta E_g}{t}$

 $= \frac{3.6 \times 10^2 \text{ J}}{5.0 \text{ s}}$

 $= 0.72 \times 10^2 \text{ J/s}$

 $= 0.72 \times 10^2 \text{ W}$

 $= 7.2 \times 10^{1} W$

The minimum power was $7.2 \times 10^{1} W$.

What is the speed of the sandbag immediately after the interaction with the bullet?

Scoring Scheme	Answer		
	M = mass of sandbag	<u> </u>	horizontal velocity of sandbag
	= 5.0 kg	v =	horizontal velocity of bullet
,	m = mass of bullet		before interaction
√	= 30 g	=	300 m/s
	= 0.030 kg	<u>v</u> =	horizontal velocity of bullet after interaction
		=	100 m/s
\checkmark	$\dot{p}_{\rm T} = \dot{p}_{\rm T}$		
√	$M\vec{V} + m\vec{v} = M\vec{V}' + m\vec{v}'$		
Ż	(5.0 kg) (0) + (0.030 kg	g) (3	00 m/s) = (5.0 kg) \vec{V} + (0.030 kg) (100 m
√ √	9.0 kg·m/s = (5.0 kg) \vec{V} + 3.0 kg·m/s		
√ √	\overline{V} = 1.2 m/s		
√	The speed of the sandbabullet is 1.2 m/s.	g jus	t after the interaction with the

Through what height h, in cm, does the sandbag rise? (Disregard air resistance.)

Scheme	Answer	
	M = mass of sandbag	\overrightarrow{v} = horizontal velocity of bullet before interaction
	= 5.0 kg	= 300 m/s
,	<pre>m = mass of bullet</pre>	\vec{v} = horizontal velocity of bullet
√ 	= 30 g	after interaction
	= 0.030 kg	= 100 m/s
		V = horizontal velocity of sandbag after interaction
		= 1.2 m/s
	The kinetic energy of the	sandbag is transformed to potential

 $\Delta E_{\rm g} = -\Delta E_{\rm k}$

Scoring

energy as the sandbag rises.

Scoring Scheme	Answer
√ √	$Mgh - 0 = - (0 - \frac{1}{2} MV^2)$
√	$h = \frac{V^2}{2g}$
√	$= \frac{(1.2 \text{ m/s})^2}{2 (10 \text{ m/s}^2)}$
	$=\frac{1.44}{20}$ m
	= 0.072 m
√ √	= 7.2 cm
. 1	The sandbag rises 7.2 cm.

6	An albatross of mass 8.0 the earth at a speed of	0 kg is flying 60 m above 10 m/s. $(g = 10 \text{ N/kg})$
S17A I.3.b S17C	(a) Determine the kine	tic energy of the albatross
III.6.c 55 53	(b) Determine the grave of the albatross rethe earth.	itational potential energy elative to the surface of
F1 A8 A3		
** * **		
Scoring Scheme	Answer	
√	m = 8.0 kg	v = 10 m/s
V	h = 60 m	g = 10 N/kg
✓	(a) $E_{k} = \frac{1}{2} m v^{2}$	
√	$= \frac{1}{2} \times 8.0 \text{ kg x (10 m)}$	/s) ²
√ √	$= 400 \text{ kg} \cdot \text{m}^2/\text{s}^2$	
	= 400 J	
√ √	$= 4.0 \times 10^2 \text{ J}$	
√	The kinetic energy of t	he albatross is 4.0×10^2 J.
√	(b) $E_g = mgh$	
√	= (8.0 kg) (10 N/kg)	(60 m)
	= 4800 N°m	
	= 4800 J	
√ √	$= 4.8 \times 10^3 \text{ J}$	
√	The gravitational poten 4.8×10^3 J.	tial energy of the albatross is

7	A block having a mass of 8.0 kg slides down a frictionless tube from a height of 0.40 m. At
S17C III.6.c S 55 56	the bottom it travels horizontally and compresses an ideal spring 8.0 cm. Determine the spring constant k. $(g = 10 \text{ N/kg})$
F1 A8 A3	Block

0.40 m

Scoring Scheme	Answer		
	m = 8.0 kg	x =	compression of spring
√	h = 0.40 m	Ç.	8.0 cm
\checkmark		=	0.080 m

ideal spring

Since the total mechanical energy is conserved, the gravitational potential energy of the block before the slide is transferred to the elastic potential energy stored in the spring at maximum compression.

$$\sqrt{\frac{\Delta E}{s} \text{ (spring)}} = -\Delta E_{g} \text{ (gravity)}$$

$$\sqrt{\frac{1}{2} kx^{2} - 0} = -(0 - mgh)$$

$$\sqrt{k} = \frac{2 \, mgh}{x^2}$$

$$\sqrt{ = \frac{2 (8.0 \text{ kg}) (10 \text{ N/kg}) (0.40 \text{ m})}{(0.080 \text{ m}^2)}}$$

$$\sqrt{\sqrt{}}$$
 = 1.0 x 10⁴ N/m

 \checkmark The spring constant is 1.0 x 10⁴ N/m

8	3)	
S	5.	1	
]		Ι	

A spring suspended at rest is shown in diagram I.

S17C III.6.c

S 55

Diagram II shows a 1.0 kg mass hanging at rest from the same spring and causing an extension d.

F1 A8

56

The mass is then pulled down an additional distance of 10 cm as shown in diagram III.

The spring constant is 50 N/m and g = 10 N/kg.

Diagram not drawn to scale.

- (a) Determine the extension d.
- (b) Calculate the amount of work required to extend the spring from the position shown in diagram I, to that shown in diagram III.

Scoring Scheme

Answer

(a) m = 1.0 kg

g = 10 N/kg

1

F = kx

./

F = mg

1

mg = kx

1

(1.0 kg)(10 N/kg) = (50 N/m) d

1

 $d = \frac{10 \text{ N}}{50 \text{ N/m}}$

1

= 0.20 m

√

The extension is $0.20\ m$ under the influence of the force of gravity on the mass.

Scoring Scheme	Answer
√	$(b) x_{\underline{I}} = 0$
√	$x_{\text{III}} = 0.20 \text{ m} + 0.10 \text{ m}$
√	$W = \Delta E_{S}$
√	$= \frac{1}{2} k x_{\text{III}}^2 - \frac{1}{2} k x_{\text{I}}^2$
√	$=\frac{1}{2} (50 \text{ N/m}) (0.20 \text{ m} + 0.10 \text{ m})^2 - 0$
	$= 25 (0.30)^2 N^m$
√	= 25 (0.09) N°m
	= 2.25 J
√ √	= 2.3 J
√	The work required to extend the spring from position I to position III is 2.3 J.

9

The equation for the force \vec{F} exerted by a spring which is compressed through a displacement \vec{x} is $\vec{F} = -k\vec{x}$, where k is the spring constant.

S17C III.6.a

(a) Solve the equation for k.

SS 55

(b) Solve the equation for \vec{x} .

F1

A7

-*

Scoring Scheme

Answer

1

(a)
$$k = \frac{-F}{x}$$

V

(b)
$$\frac{1}{x} = \frac{-\vec{F}}{k}$$

10 s17c III.6.c	A light cord passes over a light frictionless pulley as shown. A 5.0 kg mass hangs from one end of the cord and a 3.0 kg mass hangs from the other end. The system is initially at rest.	3.0 kg	
20	is initially at lest.		
4.0	Delemine the smeet of each mage		5.0 kg
A8	Determine the speed of each mass		-
F1	when the 5.0 kg mass has fallen		
	0.80 m from its rest position by		
-	using the principle of conserv-		
***	ation of energy. $(g = 10 \text{ N/kg})$		
_			

NOTE: Other methods of determining the speed will not be accepted.

Scheme Scheme	Answer
	Let (+) represent "upward".
\checkmark	$m_1 = 5.0 \text{ kg}$ $\Delta h_1 = -0.80 \text{ m}$
√	$m_2 = 3.0 \text{ kg}$ $\Delta h_2 = +0.80 \text{ m}$, since the cord does not stretch
√	$\Delta E_{g_1} = m_1 g \Delta h_1$
√	$= (5.0 \text{ kg}) (10 \text{ m/s}^2) (-0.80 \text{ m})$
√ √ √	= -40 J
√	$\Delta E_{g_2} = m_2 g \Delta h_2$
√	$= (3.0 \text{ kg}) (10 \text{ m/s}^2) (+0.80 \text{ m})$
√ √	= 24 J
√	$\Delta E_{\mathrm{T}} = \Delta E_{\mathrm{g}_{1}} + \Delta E_{\mathrm{g}_{2}}$
√	= -40 J + 24 J
√	= -16 J
√	$\Delta E_{K_{\mathrm{T}}} = -\Delta E_{\mathrm{T}}$
√	= 16 J

Scoring Scheme	Answer
√	$(E_{K_{\mathrm{T}}})_{\mathrm{f}} = (E_{K_{\mathrm{T}}})_{\mathrm{i}} + \Delta E_{K_{\mathrm{T}}}$
✓	$\frac{1}{2} (m_1 + m_2) v_f^2 = 0 + \Delta E_{K_T}$
√	$v_{\rm f}^2 = \frac{2(\Delta E_{\rm K_T})}{m_1 + m_2}$
√	$= \frac{2 (16 \text{ J})}{5.0 \text{ kg} + 3.0 \text{ kg}}$
√	= 4 m2/s2
√ √	$v_{\rm f} = 2 \text{m/s}$
√ √	The speed of each mass is 2 m/s when the 5.0 kg mass has fallen 0.80 m.

-4	-4
- 1	-1

A spring suspended at rest is shown in diagram I.

S17C III.6.c

Diagram II shows a 1.0 kg mass hanging at rest from the same spring and causing an extension of 20 cm.

F1 A8

56

S 55

To extend the spring from position I to position III, as shown in the diagram, requires 2.25 J of work.

かかか

The spring constant is 50 N/m and g = 10 N/kg.

Diagram not drawn to scale

- (a) If the mass is released from the position shown in diagram III, what will be the extension of the spring when the mass reaches its maximum speed?
- (b) Calculate the maximum speed of the mass.

Scoring Scheme

Answer

$$m = 1.0 \text{ kg}$$

$$g = 10 \text{ N/kg}$$

1

w = work to extend from x = 0 to x = 0.30 m

= 2.25 J

 $\sqrt{}$

(a) The maximum speed occurs at the midpoint of the <u>oscillation</u> (since potential energy is minimum here).

v'

The mass oscillates between x = 0.30 m and x = 0.10 m.

V V

- .. when the speed is at maximum, the extension of the spring will be 0.20 m.
- (b) The total mechanical energy is conserved.

v/

$$E_{\rm T}$$
 = $E_{\rm s}$ (at 0.30 m extension)

V

$$= 2.25 J$$

V

$$E_{\rm T} = E_{\rm k} + E_{\rm s}$$
 (spring) + $E_{\rm g}$ (gravity)

V

$$= \frac{1}{2} mv^2 + \frac{1}{2} kx^2 + mg\Delta h$$

Scoring Scheme	Answer
\checkmark	The maximum speed will occur at an extension of 0.20 m.
\checkmark	$\frac{1}{2}$ (1.0 kg) $v^2 + \frac{1}{2}$ (50 N/m) (0.20 m) ²
\checkmark	+ (1.0 kg) (10 N/kg) (0.10 m)
√	= 2.25 J
	(0.5 kg) $v^2 + 1.0 J + 1.0 J = 2.25 J$
	$v^2 = 0.50 \text{ m}^2/\text{s}^2$
√ √	v = 0.71 m/s
√	The maximum speed is 0.71 m/s.

Suppose someone has built a

12

\$17C III.6.d 57 F1 A8	tower of negligible mass on a tiny round asteroid. There is a platform at the top of the tower and the platform is 200 m above the asteroid's surface. The asteroid has a diameter of 200 m and a mass of 1.4 x 10 ¹⁰ kg.
_	$(G = 6.7 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)$
**	How much work would a 60 kg person do in climbing from the surface of the asteroid to the platform? (Express the answer in joules correct to one significant figure.)
Scoring Scheme	Answer
	h = 200 m, height of platform above surface
1	r = 100 m, radius of asteroid
√ 	$M = 1.4 \times 10^{10} \text{ kg, mass of asteroid}$
	m = 60 kg, mass of person
	$G = 6.7 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
	The amount of work the person must do in the climbing is equal to the change in potential energy from the surface of the asteroid to the platform.
\checkmark	$W = E_{g \text{ on platform}} - E_{g \text{ on surface}}$
√	$E_{\rm g}$ on surface = $\frac{-GMm}{r}$
√	$= \frac{-(6.7 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)(1.4 \times 10^{10} \text{ kg})(60 \text{ kg})}{100 \text{ m}}$
√ √	= -0.563 J
√	$E_{\rm g}$ on platform = $\frac{-GMm}{r+h}$
√	$= \frac{-6.7 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2) (1.4 \times 10^{10} \text{ kg}) (60 \text{ kg})}{100 \text{ m} + 200 \text{ m}}$
√ √	= -0.188 J

Scoring Scheme	Answer
√ √	W = (-0.188 J) - (-0.563 J)
	= 0.375 J
√ √	= 0.40 J
√	The work done in the climb is 0.40 J.

13	Assume that a space capsule having a mass of 900 kg is projected vertically upward from the earth's sur-
S17C III.6.e	face with an initial kinetic energy of 7.00×10^9 J. The mass of the earth is 5.98×10^{24} kg, the radius of the earth is 6.38×10^6 m, and the gravitational
57 56	constant is $6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$.
53	Assuming air resistance is negligible, determine the maximum distance from the centre of the earth
F1 A8	attained by the capsule.
- ***	
-	
Scoring	An arrow
Scheme	Answer
	$M = \text{mass of earth} = 5.98 \times 10^{24} \text{ kg}$
	r_{i} = radius of earth = 6.38 x 10 ⁶ m
√	$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
	$m = \text{mass of capsule} = 9.00 \times 10^2 \text{ kg}$
	$E_{k_{i}} = 7.00 \times 10^{9} \text{ J}$
√	At maximum height, the kinetic energy of the capsule will be zero.
√	$E_{\rm f} = E_{\rm i}$, since air resistance is negligible.
	Method A
√	$-\Delta E_{\mathbf{k}} = \Delta E_{\mathbf{g}}$
\checkmark	$-(E_{k_f} - E_{k_i}) = E_{g_f} - E_{g_i}$
√	$-(0 - E_{k_{\underline{i}}}) = \frac{-GMm}{r_{\underline{f}}} - (-\frac{GMm}{r_{\underline{i}}})$
√ .	$E_{\mathbf{k}_{i}} = GMm \left(\frac{1}{r_{i}} - \frac{1}{r_{f}} \right)$

Scoring Scheme
$$\sqrt{}$$
 7.00 x 10⁹ J = (6.67 x 10⁻¹¹ N·m²/kg²) (5.98 x 10²⁴ kg) x (9.00 x 10² kg) $(\frac{1}{6.38 \times 10^6 \text{ m}} - \frac{1}{r_f})$ 7.00 x 10⁹ = (6.67) (5.98) (9) (10⁻¹¹) (10²⁴) (10²) x $(\frac{1}{6.38} \times \frac{10^{-6}}{6.38} - \frac{1}{r_f})$ for r_f in m $\sqrt{}$ 7.00 x 10⁹ = (3.598 x 10¹⁷) (1.567 x 10⁻⁷ - $\frac{1}{r_f}$) $\sqrt{}$ $\frac{1}{r_f}$ = 1.567 x 10⁻⁷ - $\frac{7.00 \times 10^8}{3.598 \times 10^{17}}$ = 1.567 x 10⁻⁷ - 1.95 x 10⁻⁸ $\sqrt{}$ = 1.372 x 10⁻⁷ $\sqrt{}$ = 0.7288 x 10² = 7.288 x 10² = 7.288 x 106 $\sqrt{}$ = 7.29 x 10⁶ m $\sqrt{}$ The maximum distance from the centre of the earth attained by the capsule is 7.3 x 10⁵ m. $\sqrt{}$ Method B At the Surface of the Earth E_k = 7.00 x 10⁹ J $\sqrt{}$ E_p = $\frac{-GMm}{r_1}$ $\sqrt{}$ $\sqrt{\phantom{a$

14		Column I below lists a number of physical quantities. Column II lists a number of SI units.				
\$17 <i>a</i> 1.3 <i>a</i> \$17 <i>a</i> 1111.	.d C .6.f	Column I, appropriat	write e SI Colu	rovided before each quanti e the letter corresponding unit from Column II. A p mn II may be used once, mo	g to f	the cular
Ť	Answer			I		II
A2	Scoring Scheme	_		Physical Quantity	S	I Unit
**	√ (B)		1.	acceleration	(A)	m/s
***	√ (I)	***************************************	2.	coefficient of friction	(B)	m/s^2
	√ (G)	-	3.	energy	(C)	m^2/s^2
	√ (E)		4.	force	(D)	kg·m/s
	√ (G)		5.	heat	(E)	kg·m/s ²
	√ (H)		6.	power	(F)	kg·m²/s
	√ (A)		7.	speed	(G)	kg·m²/s²
	√ (G)		8.	work	(H)	$kg \cdot m^2/s^3$
					(I)	no unit

- A rocket of mass m is at rest on a launch pad on the surface of a planet of mass M and radius r. P is a point at infinite separation from the planet. At P a III.6.e mass would have a gravitational potential energy of zero
- S 57 (a) Write the equation that expresses the gravitational potential energy of the rocket with F1 respect to P.
 - (b) Assume that the rocket leaves the launch pad with a speed v. Write the equation that expresses the total mechanical energy of the rocket in terms of some or all of m, M, r, G and v.
 - (c) Derive the equation which expresses the escape velocity v_e of the rocket in terms of some or all of m, M, r and G.
 - (d) If the mass of the rocket were doubled, what would be the effect on its escape velocity? Explain your answer.

Scoring Scheme

A8

**

Answer

(a)
$$E_g = \frac{-GMm}{r}$$

$$\checkmark \checkmark \checkmark$$
 (b) $E_{\text{T}} = \frac{1}{2} mv^2 - \frac{GMm}{r}$

(c) If the satellite "just escapes", its final velocity will be zero, and therefore its final kinetic energy will be zero; also the separation between the two masses will approach infinity and therefore the final potential energy will approach zero.

$$V$$
 $E_{\text{final}} = 0 \text{ in order to "just escape"}.$

$$V E_{\text{initial}} = \frac{1}{2} m v_{\text{e}}^2 - \frac{GMm}{r}$$

$$\sqrt{\frac{1}{2}m v_e^2 - \frac{GMm}{r}} = 0$$

$$v_e^2 = \frac{2GM}{r}$$

$$v_{\rm e} = \sqrt{\frac{2GM}{r}}$$

 $\sqrt{\ }$ (d) Since $v_{\rm e}$ is independent of m, doubling the mass of the satellite has no effect on its escape velocity.

4	6
	O

S17C III.6.e Assume that a space capsule having a mass of 900 kg is projected vertically upward from the earth's surface. The mass of the earth is $5.98 \times 10^{24} \text{ kg}$, the radius of the earth is $6.38 \times 10^6 \text{ m}$, and the gravitational constant is $6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$.

S 57

Neglecting air resistance, determine the initial speed that the capsule will need in order to "just escape".

F1

53

**

 $\sqrt{}$

Scoring Scheme

Answer

A. If students have not been taught $v_e = \sqrt{\frac{2GM}{r}}$

 $M = \text{mass of earth} = 5.98 \times 10^{24} \text{ kg}$

 $r = \text{radius of earth} = 6.38 \times 10^6 \text{ m}$

 $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

 $m = \text{mass of capsule} = 9.00 \times 10^2 \text{ kg}$

In order to "just escape", the final kinetic energy of the capsule must be zero.

The distance from the capsule to the earth must approach infinity, therefore the final potential energy approaches zero.

 $E_{\rm f} = E_{\rm i}$, since air resistance is negligible

Method I

$$\sqrt{\qquad}$$
 $-\Delta E_{\mathbf{k}} = \Delta E_{\mathbf{g}}$

$$-(E_{k_{f}} - E_{k_{i}}) = E_{g_{f}} - E_{g_{i}}$$

$$-(0 - E_{k_i}) = 0 - (-\frac{GMm}{r})$$

$$\sqrt{E_{k_{ij}}} = \frac{GMm}{r}$$

Scoring Scheme	Answer
√	$E_{k_{1}} = \frac{(6.67 \times 10^{-11} \text{ N} \cdot \text{m}^{2}/\text{kg}^{2})(5.98 \times 10^{24} \text{ kg})(9.00 \times 10^{2} \text{ kg})}{(6.38 \times 10^{6} \text{ m})}$
	$= \frac{(6.67) (5.98) (9) (10^{-11}) (10^{24}) (10^{2})}{6.38 \times 10^{6}} $ J
	$= \frac{3.589 \times 10^{17}}{6.38 \times 10^{6}} \text{ J}$
√ √	$= 5.625 \times 10^{10} \text{ J}$
√	$\frac{1}{2} m v_e^2 = E_{k_i}$
· 🗸	$v_{\rm e} = \sqrt{\frac{2E_{\rm k_i}}{m}}$
√	$= \sqrt{\frac{2 (5.625 \times 10^{10} \text{ J})}{9.00 \times 10^2 \text{ kg}}}$
	$= \frac{10^4}{3} \sqrt{2 (5.625)} \text{ m/s}$
	$=\frac{10^4}{3}$ (3.354) m/s
	$= 1.119 \times 10^{4} \text{ m/s}$
√ √	= 1.12 x 10 ⁴ m/s <u>or</u> 11.2 km/s
√	The initial speed required is 11.2 km/s.
	Method II
	At the Surface of the Earth
√	$E_{\mathbf{k}} = \frac{1}{2} m v^2$
√	$=\frac{1}{2}$ (900 kg) v^2
√	$E_{\mathbf{p}} = \frac{-GMm}{r}$
\checkmark	= $(-6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2) (5.98 \times 10^{24} \text{ kg})$
	$(9.00 \times 10^2 \text{ kg}) \left(\frac{1}{6.38 \times 10^6 \text{ m}}\right)$

Scoring Scheme
$$\checkmark \qquad E_{\rm T} = E_{\rm k} + E_{\rm p}$$

$$\checkmark \qquad E_{\rm T} = E_{\rm k} + E_{\rm p}$$

$$= \frac{1}{2} (900 \text{ kg}) v^2 + (-6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)$$

$$(5.98 \times 10^{24} \text{ kg}) (9.00 \times 10^2 \text{ kg}) (\frac{1}{6.38 \times 10^6 \text{ m}})$$

$$At Escape Distance$$

$$\checkmark \qquad E_{\rm T} = 0$$

$$E_{\rm T} = E_{\rm k} + E_{\rm p}$$

$$\checkmark \qquad 0 = \frac{1}{2} (900 \text{ kg}) v^2 + (-6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)$$

$$(5.98 \times 10^{24} \text{ kg}) (9.00 \times 10^2 \text{ kg}) (\frac{1}{6.38 \times 10^6 \text{ m}})$$

$$v^2 = 2 (6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2) (5.98 \times 10^{24} \text{ kg})$$

$$(9.00 \times 10^2 \text{ kg}) (\frac{1}{(6.38 \times 10^6 \text{ m}) (9.00 \times 10^2 \text{ kg})})$$

$$= 1.250 \times 10^8 \text{ m}^2/\text{s}^2$$

$$v = 1.119 \times 10^4 \text{ m/s}$$

$$\checkmark \qquad 1.12 \times 10^4 \text{ m/s} \text{ or } 11.2 \text{ km/s}$$

$$\checkmark \qquad E_{\rm T} = 0$$

$$E_{\rm T} = 0$$

$$E_{\rm T} = 0$$

$$(5.98 \times 10^{24} \text{ kg}) (9.00 \times 10^2 \text{ kg}) (\frac{1}{(6.38 \times 10^6 \text{ m}) (9.00 \times 10^2 \text{ kg})})$$

$$= 1.250 \times 10^8 \text{ m}^2/\text{s}^2$$

$$v = 1.119 \times 10^4 \text{ m/s} \text{ or } 11.2 \text{ km/s}$$

$$\checkmark \qquad E_{\rm T} = 0$$

$$E_{\rm T} = 0$$

$$= 0.667 \times 10^{-11} \text{ N} \cdot \text{m/s} \text{ or } 11.2 \text{ km/s}$$

$$\checkmark \qquad e = \sqrt{\frac{2GM}{T}}$$

$$\Rightarrow - \text{can be ignored}$$

$$\lor v_{\rm e} = \sqrt{\frac{2GM}{T}}$$

$$\Rightarrow \sqrt{2 \times (6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2) (5.98 \times 10^{24} \text{ kg}) }$$

$$= 1.12 \times 10^4 \text{ m/s}$$

$$\checkmark \qquad 1.12 \times 10^4 \text{ m/s}$$

$$\checkmark \qquad 1.12 \times 10^4 \text{ m/s}$$

$$\checkmark \qquad 0 \times (6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2) (5.98 \times 10^{24} \text{ kg})$$

$$= 1.12 \times 10^4 \text{ m/s}$$

$$\checkmark \qquad 0 \times (6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2) (5.98 \times 10^{24} \text{ kg})$$

$$= - \sqrt{\frac{2 \times (6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2) (5.98 \times 10^{24} \text{ kg}) }{6.38 \times 10^6 \text{ m}} }$$

$$\Rightarrow - \sqrt{2 \times (6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2) (5.98 \times 10^{24} \text{ kg}) }$$

$$\Rightarrow - \sqrt{2 \times (6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2) (5.98 \times 10^{24} \text{ kg}) }$$

$$\Rightarrow - \sqrt{2 \times (6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2) (5.98 \times 10^{24} \text{ kg}) }$$

$$\Rightarrow - \sqrt{2 \times (6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2) (5.98 \times 10^{24} \text{ kg}) }$$

$$\Rightarrow - \sqrt{2 \times (6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2) (5.98 \times 10^{24} \text{ kg}) }$$

$$\Rightarrow - \sqrt{2 \times (6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^$$

17 The equation for the energy E_s stored in a spring compressed through a displacement \hat{x} is

S170 III.6.a $E_{S} = \frac{1}{2}kx^{2}$

SS 57 where k is the force constant of the spring.

- A2 (a) State the SI derived unit with a compound name for k.
- (b) State the SI derived unit with a compound
 name expressed in terms of base units for k.
 - (c) State the SI derived unit with a special name for \mathcal{E}_{S} .
 - (d) State the SI derived unit with a compound name expressed in terms of base units for $E_{\mathbf{S}}$.

Scoring Scheme	Answ	ver
√	(a)	J/m^2 or N/m
√	(b)	kg/s ²
\checkmark	(c)	J
√	(d)	kg·m²/s²

18	State in words the meaning of the term "spring constant".
S17C III.6.a	
SS 57	
A2	
- * -	
Scoring Scheme	Answer
√	It is a property of the spring
√	that indicates how much force is required
√	to extend
√	or compress a spring
√	by a unit displacement

19	The equation for the potential energy stored in an extended spring is $E_S = \frac{1}{2}kx^2$.		
S17C			
III.6.a	State the SI unit of measurement for the quantity represented by each symbol in this equation.		
SS 57			
4	E _s		
A2	k		
_	x		
*			
•			
Cooring			
Scoring Sime_	Answer		
√	E _s is in J or N·m or kg·m ² /s ²		
√	k is in N/m or kg/s ²		
\checkmark	x in m		

State the SI unit for each of the quantities 20 represented by the symbols \overline{F} , k, \overline{x} , in the Hooke's S17C III.6.a Law equation $\vec{F} = -k\vec{x}$.

SS 57

A8 A2

**

Scoring Scheme	Answer
√	\overline{F} is in N or kg·m/s ²
√	k is in N/m or kg/s ²
√	$\frac{1}{x}$ is in m

- The equation for the force \vec{F} exerted by a spring that is compressed through a displacement \vec{x} is $\vec{F} = -k\vec{x}$, where k is the spring constant.
- (a) What is the direction of \vec{x} relative to \vec{F} ? SS 57 Justify your answer.
- A8 (b) What is the SI unit for the spring constant?
- ** * -

Scoring Scheme Answer

- $\sqrt{}$ (a) \vec{x} is opposite in direction to \vec{F} .
 - The negative sign in the equation is the convention for opposite direction. If the spring is compressed, the force acts to restore the spring to equilibrium.
- $\sqrt{}$ (b) $\frac{N}{m}$ or $\frac{kg}{s^2}$

```
22
            Write the equation for Hooke's Law for a spring and
            state the quantity represented by each symbol.
S17A
III.6.a
SS 57
A8
A11
*
Scoring
Scheme
            Answer
            \vec{F} = -k\vec{x}
\sqrt{}
            where \vec{F} is the restoring force
                  \vec{x} is the resulting displacement
            and k is the proportionality constant (or spring constant)
```

 $\sqrt{\ }\sqrt{\ }$

23	Consider the following data for the restoring force \vec{F} exerted by a spring extended through a displace-				
S17C III.6.a	ment \hat{x} .				
SS 57	For what range of extensions does the spring obey Hooke's Law?				
E3 F1		$\frac{1}{x}$ (m)	$\frac{\dot{F}}{F}$ (N)		
T I		0.10	60		
**		0.15	90		
é tim		0.20	120		
		0.25	150		
		0.28	180		
		0.30	210		
Scheme_	Answer				

The spring obeys Hooke's Law for extensions of 0 to $0.25\ m.$

V V

	24 s17c	Consider the following data for the restoring force \vec{F} exerted by a spring extended through a displacement \vec{x} .			
	III.6.a SS 57	For what range of forces does the spring obey Hooke's Law?			
	E3 F1		<u>x</u> (m)	<u>F</u> (N)	
	_		0.10	60	
	**		0.15	90	
	-		0.20	120	
			0.25	150	
			0.30	190	
			0.35	245	
	Scoring Scheme	Answer			

The spring obeys Hooke's Law for forces of 0 to 150 N.

```
25
              Calculate the energy stored in an ideal spring
              having a spring constant of 400 N/m when it is
S17C
              compressed 0.30 m.
III.6.a
SS 57
F1
A8
Scoring
Scheme
             Answer
                                                     x = 0.30 \text{ m}
              k = 400 \text{ N/m}
              E_S = \frac{1}{2} kx^2
                  = \frac{1}{2} \times 400 \text{ N/m} \times (0.30 \text{ m})^2
                  = 200 \text{ N/m} \times 0.09 \text{ m}^2
V V
                  = 18 \text{ N} \cdot \text{m}
                  = 18 J
               The energy stored is 18 J.
```

26

S17C III.6.a For an ideal spring whose spring constant is 400 N/m calculate the distance through which the spring must be extended to store an energy of 0.50 J.

SS 57

F1 A8

А3

**

Scoring Scheme

Answer

√

$$k = 400 \text{ N/m}$$

 $E_{\rm s} = 0.50 \, \rm J$

 $V \qquad E_{S} = \frac{1}{2} kx^{2}$

$$x = \sqrt{\frac{2 E_s}{k}}$$

$$\sqrt{\frac{2 \times 0.50 \text{ J}}{400 \text{ N/m}}}$$

$$= \sqrt{\frac{1.0 \text{ N} \cdot \text{m}}{400 \text{ N/m}}}$$

$$= \sqrt{0.0025 \text{ m}^2}$$

 $\sqrt{\sqrt{}}$ = 0.05 m

The spring must be extended 0.05 m

If a force of 450 N extends a spring through 0.09 m,

S17C then the force constant of that spring is _____.

SS 57

F1
A8

**

*

Scoring Scheme Answer

/ / / / 5 x 10³ N/m or 5 x 10³ kg/s²

BEHAVIOURS OF LIGHT

AND

MODELS OF LIGHT

GEOMETRIC OPTICS

1 Parallel rays of light are incident on a plane mirror, as shown.
S17A

II.3.a Carefully draw the corresponding reflected rays.

II.1.a

S17C

B1 A4

59

A11

% %

Scheme Answer

construction of normals 1 to surface

i = r

 \checkmark all rays parallel after reflection

√ arrowheads shown

S17A

A light source is placed at the focus F of a parabolic mirror. Two rays are shown incident on the mirror.

II.3.a

Draw the path of both rays after they reflect from the mirror.

B1 A5

59

A8

* **

Scoring Scheme

Answer

√ √ √ √ both rays parallel to principal axis after reflection arrowheads shown

(Some students may mistake the parabolic mirror for a spherical concave mirror and show spherical aberration.)

Two rays of light are shown travelling parallel to the principal axis of a convex spherical mirror.

S17A

II.3.a Draw the corresponding reflected rays. Show clearly where the rays seem to come from after they leave the mirror.

59

B1

Scheme	Answer
√	locating F
√ √	rays drawn from F
√ √	directions shown
V V	dotted lines shown

A8 A11

* * *

Scoring

Note: A similar diagram, but with one parallel ray further from the principal axis than the other can be used to evaluate spherical aberration.

 \checkmark location of F \checkmark \checkmark both rays reflecting through F \checkmark \checkmark arrowheads shown

CHARACTERISTICS AND BEHAVIOURS OF WAVES

A wave in which the particles of the medium vibrate

s17A parallel to the direction of wave travel is called a

II.1.b wave.

69

A2

*
**

Scoring
Scheme Answer

✓ longitudinal

A cross section of a wave is shown below.

S17A II.1.c S17C II.4.b

69 70

A2

* * **

(a) Name the parts of the wave indicated by the letters A, B, C and D on the diagram.

A ____

В ____

C _____

D ____

(b) On the diagram, mark a point F that is in phase with the point E.

(c) Calculate the frequency of the wave if it makes 10 vibrations in 2 s.

Scoring Scheme

Answer

√ √ (a) A. crest

√ √ B. wavelengthC. amplitude

D. trough

√

(b) The point on the wave which is one wavelength to the right of E.

 $\sqrt{}$

(c) Frequency is the number of complete vibrations per unit time.

11

 $\frac{10 \text{ vibrations}}{2 \text{ s}} = 5 \text{ Hz}$

1

The frequency of the wave is 5 Hz.

5	State the quantity represented by each symbol in the equation $v = f\lambda$.
S17A II.1.a S17C II.4.b	v
70	λ
A2	
* * *	
Scoring Scheme	Answer
\checkmark	v is the speed of the wave
\checkmark	f is the frequency of the wave
√	λ is the wavelength of the wave

The frequency of waves in a ripple tank is 6.0 Hz. What is the period of the waves?

S17A

II.1.a S17C

II. 4.b

70

F1 A3

*

* *

Scoring

Scheme Answer

f = 6.0 Hz

 $T = \frac{1}{2}$

 $\sqrt{} = \frac{1}{6.0 \text{ Hz}}$

 $\sqrt{\sqrt{}}$ = 0.17 s

 \checkmark The period of the waves is 0.17 s.

The period of vibration of a pendulum is 0.2 s. 7 What is its frequency? S17A II.1.a S17C II.4.b 70 F1 А3 火 Scoring Scheme Answer T = 0.2 sV V = 5 HzThe frequency of the pendulum is 5 Hz.

 $\sqrt{\sqrt{}}$ = 0.8 m/s

8 S17A II.1.c S17C II.4.b 70 F1 A8 A2 * *	During a storm large waves are created on a lake. The distance between successive wave crests is 2 m and the frequency of the waves is 0.4 Hz. Calculate the speed of the waves.
Scoring Scheme	Answer $\lambda = 2 \text{ m} \qquad f = 0.4 \text{ Hz}$
√ √	$v = f\lambda$ $= 0.4 \text{ Hz x 2 m}$

The speed of the waves is 0.8 m/s.

WAVE MODEL OF LIGHT

AND INTERFERENCE

	1 s17c	Enumerate the successes and failures of the particle and wave models in accounting for the behaviour of light as follows:		
(b) Name four phenomena that are not adequately accounted for by the particle model. (c) Name one phenomenon that is not adequately accounted for by the wave model. Scoring Scheme Answer (a) Both models account for: the two laws of reflection the inverse square law of intensities rectilinear propagation absorption and heating specular vs diffuse reflection light pressure Snell's Law (b) The particle model does not explain partial transmission and partial reflection interference diffraction polarization speed of light in various media (c) The wave model does not account for transmission of light in the absence of a medium (in vacuum)				
** accounted for by the wave model. Scoring Scheme Answer (a) Both models account for: the two laws of reflection the inverse square law of intensities rectilinear propagation absorption and heating specular vs diffuse reflection light pressure Snell's Law (b) The particle model does not explain partial transmission and partial reflection interference diffraction polarization speed of light in various media (c) The wave model does not account for transmission of light in the absence of a medium (in vacuum)	А9	The state of the s		
Scheme Answer (a) Both models account for: the two laws of reflection the inverse square law of intensities rectilinear propagation absorption and heating specular vs diffuse reflection light pressure Snell's Law (b) The particle model does not explain partial transmission and partial reflection interference diffraction polarization speed of light in various media (c) The wave model does not account for transmission of light in the absence of a medium (in vacuum)	- **	and the same of th		
the two laws of reflection the inverse square law of intensities rectilinear propagation absorption and heating specular vs diffuse reflection light pressure Snell's Law (b) The particle model does not explain partial transmission and partial reflection interference diffraction polarization speed of light in various media (c) The wave model does not account for transmission of light in the absence of a medium (in vacuum)		Answer		
<pre> partial transmission and partial reflection interference diffraction polarization speed of light in various media (c) The wave model does not account for transmission of light in the absence of a medium (in vacuum) </pre>	√ √ √	the two laws of reflection the inverse square law of intensities rectilinear propagation absorption and heating specular vs diffuse reflection light pressure		
transmission of light in the absence of a medium (in vacuum)	√ √	partial transmission and partial reflection interference diffraction polarization		
	√	transmission of light in the absence of a medium (in vacuum)		

ELECTRICITY

AND

MAGNETISM

ELECTRIC FIELD

AND POTENTIAL

1 S17C IV.3.c S 99 F1 A8	The two parallel plates shown in the diagram are located in a vacuum. Electrons are emitted with negligible kinetic energy from a hot filament at point F on plate I. They are accelerated towards plate II, the anode, by a potential difference of 1.8 x 10 4 V.	(-) F	(+)
-	Determine the kinetic energy	Plate I	Plate II
**	of an electron, in joules, when it is half way to the anode.	 	>
	$(1 \text{ eV} = 1.60 \text{ x } 10^{-19} \text{ J})$	Potential = 1.8 x	Difference 10 ⁴ V

Scheme Answer

In going one-half the distance between plates, the electron's change in potential energy is one-half of the total change in electrical potential energy between the plates.

$$\sqrt{V} = \frac{1}{2}(qV)
= \frac{1}{2}(-1 \text{ e}) (1.8 \text{ x} 10^{4} \text{ V})
= -0.9 \text{ x} 10^{4} \text{ eV}
= -0.9 \text{ x} 10^{4} \text{ eV} (1.60 \text{ x} 10^{-19} \text{ J/eV})
= -1.44 \text{ x} 10^{-15} \text{ J}
$$\sqrt{V} = -\Delta E_{e}
V = E_{k_{i}} + \Delta E_{k}
= 0 + (-\Delta E_{e})
= +1.4 \text{ x} 10^{-15} \text{ J}$$$$

The kinetic energy of the electron is 1.4×10^{-15} J.

\$17C IV.3.e Two parallel metal plates, X and Y, are separated by a distance of 3.2 cm. Plate Y has a positive electrical potential of 200 Y with respect to plate X.

S 99 95

A8 A11 F1

**

An electron, e, starts from rest at plate X at time $t_{\rm X}$, reaches plate Y at time $t_{\rm Y}$, and proceeds through a hollow metal tube connected to the plate. It reaches Z at time $t_{\rm Z}$.

(a) Using the axes provided, sketch a graph of the speed of the electron versus time for the journey from plate X to plate Y to Z.

- (b) Determine the kinetic energy, in eV, that the electron has when it arrives at plate Y.
- (c) Determine the total mechanical energy, in eV, that the electron has when it arrives at plate Y.
- (d) Find the magnitude of the electric field between X and Y in units of V/m.
- (e) What is the magnitude of the electric field in the tube?

Scoring Scheme

Answer

(a)

V

start at origin

V

shape from X to Y

V

shape from Y on: straight, horizontal

(b) The electron starts from rest and moves toward a position of lower electrical potential energy.

The kinetic energy of the electron when it arrives at plate Y is 200 eV.

(c) After arriving at plate Y, the electron does not undergo a further drop in electrical potential energy.

The total mechanical energy of the electron when it arrives at plate Y is 200 eV.

/

(d) $\left| \stackrel{\bullet}{E} \right| = \frac{V}{d}$

√

 $= \frac{200 \text{ V}}{3.2 \times 10^{-2} \text{ m}}$

 $\sqrt{\sqrt{}}$

 $= 6.3 \times 10^3 \text{ V/m}$

V

The magnitude of the electric field between X and Y is $6.3 \times 10^3 \text{ V/m}$.

 $\sqrt{}$

(e) The magnitude of the electric field in the tube is zero.

CURRENT ELECTRICITY AND ELECTROMAGNETISM

1 The scale of a milliammeter is shown below.

S17A III.2.c

101

B5 A11

G1

--

mA D.C.
0 1 2 3 4

To two significant figures, the reading on the scale is _____ mA D.C.

Scoring Scheme

Answer

2.7

The scale of a voltmeter is shown below.

S17A III.2.c

Volts D.C.

101

B5 A11

G1

* *

To two significant digits, the reading on the scale is ______ V.

Scoring Scheme

Answer

√ √

1.3

3 The scale of a milliammeter is shown below.

S17A III.2.c

101

G1 B3 A11 0

mA D.C.

*

*

The current represented by the smallest division on the ammeter scale is mA D.C.

Scoring Scheme

Answer

1

40

The scale of an ammeter calibrated in milliamperes is shown below.

S17A III.2.c

101

G1 B3 A11

* * *

mA D.C.

The current represented by the smallest division on the ammeter scale is mA D.C.

Scoring Scheme

Answer

2

/

6 The scale of an ammeter is shown below.

S17A III.2.c

101

G1 B3 A11 0.0 0.1 0.2

Amperes D.C.

** * ***

The current represented by the smallest division on the ammeter scale is _____ A D.C.

Scoring Scheme

Answer

V V

0.02

7 The scale of an ammeter is shown below.

S17A III.2.c

101

G1 B3

A11

Amperes D.C.

** *

**

The current represented by the smallest division on the ammeter scale is ______ A D.C.

Scoring Scheme

Answer

V V .

0.4

The scale of a voltmeter is shown below.

S17A III.2.c

101

G1 B3 A11 0

Volts D.C.

去去

The voltage represented by the smallest division on the voltmeter scale is ______ V D.C.

Scoring
Scheme Answer

√ 2

9 The scale of a voltmeter is shown below.

S17A III.2.c

101

G1 B3 A11 0

Volts D.C.

*

*

The voltage represented by the smallest division on the voltmeter scale is ______ V D.C.

Scoring Scheme

Answer

√

The scale of a voltmeter is shown below.

S17A III.2.c

101

G1 B3 A11

Volts D.C.

* * **

The voltage represented by the smallest division on the voltmeter scale is _____ V D.C.

Scoring
Scheme Answer

√ 0.1

11 The scale of a voltmeter is shown below.

S17A III.2.c

101

G1 B3 A11

Volts D.C.

*

* **

The voltage represented by the smallest division on the voltmeter scale is _____ V D.C.

Scoring Scheme

Answer

√ 0.2

Draw the accepted electrical circuit symbol for a dry cell. Indicate the polarity of the cell on your diagram.

Sooring
Scheme

Answer

H-

The following diagram represents the needle positions (A, B, C, D or E) and scales that may appear on a multi-range milliammeter.

S17A III.2.c

S 101 G1

** * **

Complete the chart below by indicating the current reading for each of the needle positions (A, B, C, D or E) and each of the meter range settings shown.

Scoring Scheme	Needle Position	Meter Range Set		Meter Read	ing	
\checkmark	A	5 m	nA		mA	(0.40)
√	В	10 m	nA		mA	(3.60)
√	С	50 m	nA		mA	(28.0)
√	D	250 π	nA		mA	(185)
√	E	1000 m	nA		mA	(920)

15	State the SI $V = IR$.	unit of	each	quantity	in the	equation
S17A III.2.e		·/-				
104		I				
A2		R				
* - *						
Scoring Scheme	Answer					
√	V: volt or V					
√	I: ampere or A	A				
\checkmark	R : ohm or Ω					

Draw wires on the diagram below to show <u>all</u> three bulbs connected in parallel.

S17A III.2.g

104

A7 F1

*

*

Scoring Scheme

Answer

V

4 wires connected to yield three current paths

Draw wires on the diagram below to show <u>all</u> three bulbs connected in series.

S17A III.2.g

104

A7 F1

*

-*

Scoring Scheme

Answer

 $\sqrt{}$

Two wires connected to yield one current path.

Draw wires on the diagram below to show all resistors connected in parallel.

S17A
III.2.g

104

A7
F1

*
*

Scoring Scheme

Answer

Four wires connected to yield three current paths.

Draw wires on the diagram below to show the three resistors connected in series.

S17A III.2.g

104

A7 F1

*

Scoring Scheme

Answer

two wires connected to yield one current path

Draw wires on the diagram below to show the two batteries connected in parallel with the bulb.

S17A III.2.g

104

A7 A11 F1

*

八六

Scoring Scheme

Answer

positive connected to one side of bulb

negative connected to other side of bulb

positive connected to positive

negative connected to negative

Complete the following diagram by drawing the wires to show the two dry cells connected in series with the bulb.

S17A III.2.g

104

A7 A11 F1

* * **

 $\sqrt{}$

Scoring Scheme

Answer

three wires connected to yield one current path

positive to negative

S17A III.2.g

104

A8 F1

** ** A circuit containing a power source and four resistors is shown below. The values of the resistances are listed below the diagram.

$$R_1 = 10 \Omega$$

$$R_2 = R_3 = R_4 = 30 \Omega$$

- (a) Determine the total effective resistance of the whole circuit.
- (b) Determine the reading on ammeter A1.
- (c) Determine the reading on voltmeter V₁.
- (d) Determine the reading on the two voltmeters V_2 and V_3 .
- (e) Determine the reading on ammeter A_2 .

Scoring Scheme

Answer

(a) Let I represent current, V represent voltage, R represent resistance, and R_p represent the effective resistance of R_2 , R_3 , R_4 in parallel.

$$\frac{1}{R_{\rm p}} = \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}$$

$$\sqrt{} = \frac{1}{30 \Omega} + \frac{1}{30 \Omega} + \frac{1}{30 \Omega}$$

$$= \frac{3}{30 \Omega}$$

$$\checkmark$$
 = $\frac{1}{10 \Omega}$

$$\sqrt{\sqrt{}}$$
 $R_{\rm p} = 10 \Omega$

Scoring

Scheme Answer

 R_{T} = total effective resistance of whole circuit

 \checkmark = $R_1 + R_p$

 \checkmark = 10 Ω + 10 Ω

 $\checkmark \checkmark$ = 20 Ω

The total effective resistance of the circuit is 20 Ω .

(b) Let I_1 represent the current through ammeter A_1 .

 $I_1 = I_T$

 \checkmark = $\frac{V_{\rm T}}{R_{\rm T}}$

 $\checkmark \qquad \qquad = \frac{45 \text{ V}}{20 \Omega}$

 \checkmark \checkmark = 2.25 A

The reading on ammeter A_1 is 2.3 A.

 $\checkmark \qquad \qquad \text{(c)} \quad V_1 = I_1 R_1$

 $= (2.3 \text{ A}) (10 \Omega)$

√ √ = 23 V

/ The reading on voltmeter V_1 is 23 V.

/ (d) $V_2 = V_3$

 $= V_{\mathrm{T}} - V_{\mathrm{1}}$

 $\sqrt{}$ = 45 V - 23 V

√ √ = 22 V

V The reading on voltmeters V_2 and V_3 is 22 V each

 $\sqrt{}$ (e) $I_2 = \frac{V_2}{R_4}$

 $= \frac{22 \text{ V}}{30 \Omega}$

 $\sqrt{\ }$ = 0.73 A

The reading on ammeter A_2 is 0.73 A.

23 S17A III.3.j 104 102 101 99		Column I lists a number of quantities to be measured. Column II lists a number of instruments available for making measurements.								
		write to Column A parti	In the space provided before each item in Column I, write the letter corresponding to the instrument from Column II which is most suitable for that measurement. A particular instrument may be used once, more than once, or not at all.							
F1 S *	Answer & Scoring Scheme		I Quantity to be measured		II Measuring Instruments available					
	√	(A)	1	. •	The potential difference across a resistor connected to a battery			voltmeter		
•	\checkmark	(B)	2		The current through a resistor connected to a battery			ammeter voltmeter		
	√	(E)	3		The direction of the magnetic field near a wire conducting a current	(D)	AC	ammeter		
	√	(G)	4		The resistance of a resistor	(E)	-	gnetic mpass		
	√	(F)	5		The direction of electron flow induced in a coil by a moving magnet	(F)	Gal	lvanometer		
	√	(C)	6		The potential difference provided by an electrical outlet in your home			nmeter		
	√	(D)	7	7.	The current drawn by a hair dryer when connected to an electrical outlet in your home	(H)	El€	ectroscope		
	\checkmark	(C)	8	3.	The potential difference across the secondary coil of a transformer when the primary coil is connected to an electrical outlet in your home					

The graph of potential difference versus current for a resistor is shown below.

S17A III.2.g

104

F1 A7

*

**

Current (mA)

Calculate the resistance of the resistor in ohms.

Scoring Scheme

Answer

Resistance =
$$\frac{\text{Rise}}{\text{Run}}$$

$$\sqrt{} = \frac{\Delta V}{\Delta I}$$

$$= \frac{20 \text{ V}}{2.0 \text{ mA}}$$

$$= \frac{20 \text{ V}}{2.0 \text{ x}} \frac{10^{-3} \text{ A}}{10^{-3} \text{ A}}$$

$$= 10 \text{ x} 10^{3} \Omega$$

$$= 1.0 \text{ x} 10^{4} \Omega$$

The resistor has a resistance of 1.0 x $10^4~\Omega$.

25	ive identical resistors are connected in parallel a 3.0 V battery. The current leaving the battery						
S17A III.2.g	is 7.5 mA. When a sixth identical resistor is connected into the circuit, the total current becomes 9.0 mA.						
104							
	a) How is the sixth resistor connected to the						
F1	others? Explain your reasoning.						
A8							
	o) Calculate the current through the sixth						
**	resistor. Explain your solution.						
e-tip							
***	c) What is the potential difference across the						

かか	(D)	resistor. Explain	your solution.
***	(c)	What is the potenti sixth resistor? Ho	al difference across the w do you know?
	(d)	Calculate the resis	stance of the sixth resistor.
Scoring Scheme	Answ	<u>er</u>	
√ √ √	(a)	total current leaving to effective resistance of	onnected in parallel. Since the he battery has increased, the the circuit has decreased. The decreased by connecting resistors
√	(b)		istors are connected in parallel t goes through each resistor.
		Solution I	Solution II
√		$I = \frac{\text{total current}}{6}$	$I = I_6$ resistors $-I_5$ resistors
√		$= \frac{9.0 \text{ mA}}{6}$	= 9.0 mA - 7.5 mA
√ √		= 1.5 mA	= 1.5 mA
√ ·		The current through each	h resistor is 1.5 mA.
√	(c)	The potential differenc 3.0 V.	e across the sixth resistor is

√ √ The potential difference across each resistor is the same and is equal to the voltage of the source.

> (d) V = 3.0 VI = 1.5 mA $= 1.5 \times 10^{-3} A$

 $\sqrt{}$

Scoring Scheme	Answer
√	$R = \frac{V}{I}$
√	$= \frac{3.0 \text{ V}}{1.5 \times 10^{-3} \text{ A}}$
√ √	= $2.0 \times 10^3 \Omega$
√	The resistance of the sixth resistor is 2.0 x $10^3~\Omega$.

26	The resistance from head to toe of a typical human body with wet skin is 1000 Ω .
S17A III.2.g	What current would flow through a body connected to a 12.0 V D.C. battery?
104	
F1 A8 A2	
* - **	
Scoring Scheme	Answer
· √	$R = 1000 \Omega$
V	V = 12.0 V D.C.
\checkmark	$I = \frac{V}{R}$
\checkmark	$= \frac{12.0 \text{ V}}{1000 \Omega}$
	= 0.0120 A
√ √	$= 1.20 \times 10^{-2} A$
√	A current of 1.20 x 10^{-2} A would flow through the body.

Consider the following circuit in which $R_1=4.0~\Omega$ and the reading on ammeter A is 4.0 A.

S17A III.2.g

104

F1 A8 A3

> * -**

- (a) What is the current through R_1 ?
- (b) What is the current through R_2 ?
- (c) What is the value of R_2 ?

Scoring Scheme

Answer

./

(a) $R_1 = 4.0 \Omega$

V = 12 V D.C.

V

 $I_1 = \frac{V}{R_1}$

V

= 3.0 A

,

The current through R_1 is 3.0 A.

1

(b) $I_{t} = 4.0 \text{ A}$

 $I_1 = 3.0 A$

,

 $I_t = I_1 + I_2$

./

 $I_2 = I_t - I_1$

 $\sqrt{}$

= 4.0 A - 3.0 A

V V

= 1.0 A

1

The current through R_2 is 1.0 A.

EM-CEE-30

Scoring Scheme	Answer	
√	(c) $I_2 = 1.0 \text{ A}$	$V = 12 \ V \ D.C.$
√	$R_2 = \frac{V}{I_2}$	
√	$= \frac{12 \text{ V}}{1.0 \text{ A}}$	
√ √	= 12 Ω	
/	The value of R_2 is 12 Ω .	

Answer

28

S17A III.2.g Consider the following circuit in which all light bulbs are identical and the ammeter A_1 reads 250 mA when the switch S is open.

104

F1 A8 A3

**

Scoring Scheme

(a) With the switch S open,

A₃ reads (zero)

> A4 reads (250 mA)

A₅ reads (500 mA)

(b) If the switch S is closed,

A₃ reads (250 mA)

A4 reads (500 mA)

11 (750 mA) A₅ reads

Two identical light bulbs A and B are connected as shown in the following diagram.

S17A III.2.g

104 105

F3 A3

** -***

- (a) (i) If the switch S is closed what change, if any, will occur in the intensity with which A glows?
 - (ii) Explain your answer.
- (b) (i) If the switch S is closed what change, if any, will occur in the intensity with which B glows?
 - (ii) Explain your answer.

Scoring Scheme

Answer

(a) (i) When S is closed, A stops glowing.

√ √

(ii) When S is closed, a path of almost zero resistance in parallel with A exists. As a result the electron flow through A approaches zero.

1

(b) (i) When S is closed, B glows more brightly.

 $\sqrt{\ }\sqrt{\ }$

(ii) Closing S reduces the effective resistance of the circuit. As a result the current through B increases.

31	In the space provided,	draw the	accepted	electrical
•	circuit symbol for each	of the	following	components
S17A	of a simple circuit.			

III.2.e

S 104

(a) a wire crossing, but not connected to another wire

A4 A11

六

- --*
- (b) a lamp
- (c) a fuse
- (d) an open switch
- (e) a resistor
- (f) an ammeter

Scoring Scheme

Answer

√

(a) a wire crossing, but not connected to another wire

1

(b) a lamp

1

(c) a fuse

1

(d) an open switch

/

(e) a resistor

1

(f) an ammeter

S17A III.2.g The graphs of potential difference versus current for four different resistors A, B, C and D, are shown below.

S 104

A11 A7

* -**

Which of the four resistors has the highest resistance?

Scoring Scheme

Answer

V

Α

S17A III.2.g

S 104

×

**

A11 A7

Which of the four resistors has the lowest resistance?

Scoring Scheme

В

The following circuit diagrams show various arrangements and orientations of dry cells. Assume that the potential difference across a single dry cell is 1.5 V.

S 104 What is the reading on the voltmeter V in each of the circuits shown?

Answer

(2)

$$V =$$
 y (1.5 V)

√ (3)

$$V =$$
 ∇ (0)

(4)
√

$$V = V (1.5 V)$$

(5)

$$V = \underline{\hspace{1cm}} V (0)$$

S17A

For each of the following circuit diagrams, determine the value of the unknown quantities. Enter your answers in the spaces provided.

III.2.e

S 104 (a)

F1 A8

*

**

90 V $V_1 = 60 \text{ V}$ $V_2 = V$

Scheme	Answ	er
√	(a)	$V_2 = 30 \text{ V}$
√	(b)	$V_1 = 12 \text{ V}$
\checkmark		$V_2 = 12 \text{ V}$
√	(c)	$I_2 = 6 A$
√		$I_3 = 6 \text{ A}$

Scoring

36	State the SI $P = VI$.	unit of	each	quantity	in	the	equation
S17A III.2.h		P					
105		V					
A2		Ι					
*							
*							
Scoring Scheme	Answer						
√	P: watt or W						
\checkmark	V: volt or V						
/	T. ampore or A						

EM-CEE-41

37	State the $E = Pt$.	SI	unit	of	each	quantity	in	the	equation
S17A									
III.2.h			E						
105			P						
A2 A8			t						
*									
_									
*									
Scoring									
Scheme	Answer								
√	E: joule o	r J							
√	P: watt or	W							
√	t: second	or s	;						

S17A III.2.h

S 105

A11 A8

אר אר

**

The graphs of potential difference versus current for four different resistors A, B, C and D are shown below.

- (a) If each of the four resistors were individually connected to identical batteries for the same length of time, which resistor would get the hottest?
- (b) Explain your answer to (a).

Scoring Scheme

Answer

 $\sqrt{}$

(a) B

√ √ √ √

(b) B has the lowest resistance. The smaller the resistance, the larger the current and the larger the rate of energy consumption (P) for a constant $V(P = V^2/R)$.

```
39
            A television set draws a current of 2.0 A when
             connected to 110 V.
S17A
III.2.h
             What is the cost of operating the set for 10 h
             if electricity costs 1.5¢ per MJ?
106
F1
A8
**
***
Scoring
Scheme
             Answer
             E_{o} = VIt
                 = (110 V) (2.0 A) (10 h)
                = (110 \frac{J}{C}) (2.0 \frac{C}{s}) (10 h) (3600 \frac{s}{h})
                 = (110) (2.0) (10) (3600) J
                 = \frac{(110) (2.0) (10) (3600) J}{1 000 000 MJ/J}
                 = 7.92 MJ
             Cost = energy consumed x rate
                   = 7.92 \text{ MJ} \times 1.5 \text{¢/MJ}
                   = 11.9c
√ √
                   = 12c
```

The cost of operating the set for 10 h is 12¢.

F3 A4 **B**3

**

**

S17A III.2.h At the beginning of a billing period, a six dial electricity energy meter (reading kW·h) appears as shown below.

106

At the end of a billing period the same electricity meter appears as shown below.

Electricity costs 9¢ per kW·h for the first 100 kW·h, 5¢ per kW·h for the next 400 kW·h, and 3¢ per kW·h for the remainder.

- What is the reading on the meter at the beginning and the end of the billing period?
- (b) What is the total energy consumption during the billing period?
- (c) What is the total cost for this energy in dollars? Show your calculations.

Scoring Scheme

Answer

VV

- The reading on the meter is 005963 kW·h at the beginning, (a) and 006513 kW·h at the end of the billing period.
- The total energy consumption during the billing period is (b) 550 kW·h.

 $100 \text{ kW} \cdot \text{h x } 9\text{c/kW} \cdot \text{h} = 900\text{c}$ (c) $400 \text{ kW} \cdot \text{h x } 5 \text{c/kW} \cdot \text{h} = 2000 \text{c}$ $50 \text{ kW} \cdot \text{h} \times 3\text{c/kW} \cdot \text{h} = 150\text{c}$ 3050¢

= \$30.50

1

The total cost for this energy is \$30.50.

S17A

At the beginning of a billing period, a six dial electricity energy meter (reading kW·h) appears as shown below.

III.2.h

106 F3

A4 B3

**

**

At the end of the billing period the meter appears as shown below.

Electricity costs 9¢ per kW·h for the first 100 kW·h. 5¢ per kW·h for the next 400 kW·h, and 3¢ per kW·h for the remainder.

- What is the reading on the meter at the beginning and the end of the billing period?
- (b) What is the total energy consumption during the billing period?
- What is the total cost for this energy in dollars? Show your calculations.

Scoring Scheme

Answer

 $\sqrt{\sqrt{}}$

- (a) The reading on the meter is 197523 kW h at the beginning, and 198173 kW·h at the end of the billing period.
- The total energy consumption during the billing period is (b) 650 kW·h.

 $100 \text{ kW} \cdot \text{h x } 9\text{c/kW} \cdot \text{h} = 900\text{c}$ (c) $400 \text{ kW} \cdot \text{h} \times 5 \text{c/kW} \cdot \text{h} = 2000 \text{c}$ 150 kW·h x 3¢/kW·h = 450¢

3350¢

= \$33.50

The total cost for this energy is \$33.50.

At the beginning of a billing period, a six dial electricity energy meter (reading kW·h) appears as shown below.

A4 B3 ***

106

F3

At the end of the billing period the meter appears as shown below.

Electricity costs 9¢ per kW·h for the first 100 kW·h, 5¢ per kW·h for the next 400 kW·h, and 3¢ per kW·h for the remainder.

- What is the reading on the meter at the (a) beginning and the end of the billing period?
- (b) What is the total energy consumption during the billing period?
- (c) What is the total cost for this energy in dollars? Show your calculations.

Scoring Scheme

Answer

 $\sqrt{\sqrt{}}$

The reading on the meter is 999823 kW h at the beginning, (a) and 000573 kW·h at the end of the billing period.

 $\sqrt{\ }\sqrt{\ }$

(b) The total energy consumption during the billing period is 750 kW·h.

(c) $100 \text{ kW} \cdot \text{h x } 9\text{c/kW} \cdot \text{h} = 900\text{c}$ $400 \text{ kW} \cdot \text{h} \times 5 \text{c/kW} \cdot \text{h} = 2000 \text{c}$ 250 kW·h x 3¢/kW·h = 750¢ 3650c

= \$36.50

The total cost for this energy is \$36.50.

43 S17A III.3.c		Column I lists a number of quantities to be measured. Column II lists a number of instruments available for making measurements.								
108 101 36 31		write Column A part	In the space provided before each item in Column I, write the letter corresponding to the instrument from Column II which is most suitable for that measurement A particular instrument may be used once, more than once, or not at all.							
В4 *	Scoring			Qı	I Lantity to be measured	II Measuring Instruments available				
* **	√	(L)		1.	DC current of 1.7 mA	(A)	equal arm balance			
	√	(F)		2.	The thickness of a	(B)	electroscope			
	./	(I)		3	The time required for	(C)	compass			
	ν				a small metal ball to fall 3 m through the air	(D)	AC ammeter			
						(E)	spring scale			
	√	(M)		4.	The amplitude of vibration of a mass	(F)	micrometer			
					suspended on the end of a spring	(G)	DC milliammeter with a 0-1 mA scale			
	√	(N)		5.	The angle between two straight lines on a page	(H)	stopwatch cali- brated to 0.2 s intervals			
	√	(A)		6.	The mass of a cart	(T)	stopwatch cali-			
	√	(J)		7.	The potential difference provided by a single dry cell	(1)	brated to 0.1 s intervals			
	√	(C)		8.	The direction of the	(J)	DC voltmeter with 0-4 V scale			
					magnetic field around a wire carrying a current	(K)	DC voltmeter with 0-30 V scale			
	√	(E)		9.	The force of gravity acting on a body	(L)	DC milliammeter with 0-3 mA scale			
						(M)	metre stick			
						(N)	protractor			

WAVE/PARTICLE DUALITY

0 F

ELECTROMAGNETIC

RADIATION AND MATTER

PHOTONS

1 S17C IV.6.c The graph shows the kinetic energy of the most energetic photoelectrons as a function of the frequency of the light falling on the cathode in a photoelectric cell.

118 116

A8 D3 D4

-**

- (a) According to the graph, what threshold potential difference would be required to stop all the emitted electrons if the incident light had a frequency of 7.5 x 10^{14} Hz?
- (b) What is the physical significance of the intercept of the graph with the frequency axis (x axis)?
- (c) What is the physical significance of the intercept obtained when the graph is extrapolated back to the kinetic energy axis (y axis)?
- (d) Use the graph to determine a value for Planck's constant.

Scoring Scheme	Answ	ger
√ √	(a)	A potential difference of 2.0 V is required to stop all the emitted electrons for light of this frequency.
√	(b)	The energy binding the electrons to the atom must first be overcome before any electrons are released.
√ √		The energy used to overcome the binding energy must be supplied by the photons from the light source. Only photons of frequency 2.5 x 10^{14} Hz or greater have enough energy to eject electrons.
√ √	(c)	The y-intercept gives the work function energy of the metal.
√ √		The work function of a metal is the minimum energy which must be supplied to free electrons in the metal to enable them to escape from the metal. The work function is different for different metals.
\checkmark	(d)	h = slope of the graph (since E = hf)
√ √		$= \frac{(3-1) \text{ eV}}{(10-5) \text{ x } 10^{14} \text{ Hz}}$
		$=\frac{2 \text{ eV}}{5 \times 10^{14} \text{ Hz}}$
√ √		$= 4 \times 10^{-15} \text{ eV} \cdot \text{s}$
√		The value for Planck's constant is 4×10^{-15} eV·s.

2	Radiation of frequency 4.0×10^{14} Hz strikes a metal whose threshold energy is 1.2 eV .
S17C IV.6.c	Determine the maximum kinetic energy of the ejected photoelectrons ($h = 4.1 \times 10^{-15} \text{ eV} \cdot \text{s}$).
118	photoelections $(n - 4.1 \times 10^{-6})$.
F1 A8	
- ** -	
Scoring Scheme	Answer
	$f = 4.0 \times 10^{14} \text{ Hz}$
√	B = 1.2 eV
	$h = 4.1 \times 10^{-15} \text{ eV} \cdot \text{s}$
√	$E_{\rm k}$ (photo-electrons) = $h_{\rm f} - B$
√	= $(4.0 \times 10^{14} \text{ Hz}) (4.1 \times 10^{-15} \text{ eV} \cdot \text{s}) - 1.2 \text{ eV}$
	$= 16.4 \times 10^{-1} \text{ eV} - 1.2 \text{ eV}$
√ √	= 0.4 eV
√	The maximum kinetic energy of the photoelectrons ejected is 0.4 eV.

A photon in a vacuum has a frequency of 9.0 x
$$10^{14}$$
 Hz. $(h = 6.62 \times 10^{-34} \text{ J} \cdot \text{s}; c = 3.0 \times 10^{8} \text{ m/s})$

S17C
IV.6.d For this photon

120
(a) what is the wavelength?

70
(b) what is the momentum?

F1
A8
(c) what is the energy?

**

Scoring Scheme

 $\sqrt{\sqrt{}}$

Answer

$$f = 9.0 \times 10^{14} \text{ Hz}$$
 $c = 3.0 \times 10^8 \text{ m/s}$
 $h = 6.62 \times 10^{-34} \text{ J} \cdot \text{s}$

$$\sqrt{}$$
 (a) $\lambda = \frac{c}{f}$

$$\sqrt{ = \frac{3.0 \times 10^8 \text{ m/s}}{9.0 \times 10^{14} \text{ Hz}}}$$

$$\sqrt{\ }$$
 = 3.3 x 10⁻⁷ m

The wavelength of the photon is 3.3×10^{-7} m.

The momentum of the photon is $2.0 \times 10^{-27} \text{ kg} \cdot \text{m/s}$.

$$\checkmark$$
 (c) $E = hf$

$$= 6.62 \times 10^{-34} \text{ J} \cdot \text{s} \times 9.0 \times 10^{14} \text{ Hz}$$

$$\checkmark \checkmark \qquad = 6.0 \times 10^{-19} \text{ J}$$

The energy of the photon is 6.0×10^{-19} J.

```
4
                  A particular photon of electromagnetic radiation has
                  a frequency of 3.0 x 10^{16} Hz. (h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}),
S17C
                  c = 3.0 \times 10^8 \text{ m/s}
IV.6.c
                  (a)
                           Determine the energy of this photon.
120
116
                  (b) Determine the momentum of this photon.
F1
A8
A3
**
Scoring
Scheme
                  Answer
                 f = 3.0 \times 10^{16} \text{ Hz}
1
                  c = 3.0 \times 10^8 \text{ m/s}
                  h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}
                  (a) E = hf
                            = (6.63 \times 10^{-34} \text{ J·s}) (3.0 \times 10^{16} \text{ Hz})
                            = 19.89 \times 10^{-18} \text{ J}
                            = 1.989 \times 10^{-17} \text{ J}
V V
                            = 2.0 \times 10^{-17} \text{ J}
                         The energy of the photon is 2.0 \times 10^{-17} J.
                  (b) p = \frac{h}{\lambda}
                           =\frac{hf}{c}
\sqrt{}
                            =\frac{E}{c}
                            = \frac{1.99 \times 10^{-17} \text{ J}}{3.0 \times 10^8 \text{ m/s}}
                            = 0.663 \times 10^{-25} \text{ kg} \cdot \text{m/s}
                            = 6.6 \times 10^{-26} \text{ kg·m/s}
V V
```

 $\sqrt{}$

The momentum of the photon is $6.6 \times 10^{-26} \text{ kg} \cdot \text{m/s}$.

```
5
                  A particular photon has 2.0 eV of energy. Determine
                   the momentum of this photon in kg·m/s. (1 eV = 1.60 x 10^{-19} J, c = 3.0 x 10^{8} m/s)
S17C
IV.6.d
120
Fl.
A8
A3
火火
Scoring
Scheme
                   Answer
                   1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}
                  E = 2.0 \text{ eV}
√
                   c = 3.0 \times 10^8 \text{ m/s}
                  p = \frac{E}{c}
                      = \frac{(2.0 \text{ eV}) (1.60 \times 10^{-19} \text{ J/eV})}{(3.0 \times 10^8 \text{ m/s})}
1
                      = 1.067 \times 10^{-27} \text{ kg} \cdot \text{m/s}
                      = 1.1 \times 10^{-27} \text{ kg·m/s}
V V
                   The momentum of the photon is 1.1 \times 10^{-27} \text{ kg·m/s}.
```

2 List the steps an electrician might use to measure the energy used by an electric clothes dryer during S17A a full drying cycle? I.3.c S17C III.6.f S 431 S 106 C4 · ** Scoring Scheme Sample Answers Remove the fuses (or switch off the circuit breakers) from all the circuits in the main electrical panel, except the one operating the electric dryer. (b) Note the reading on the electrical energy meter installed for the home. (c) Operate the electric clothes dryer for a full drying cycle. (d) Repeat (b) at the end of the cycle. (e) Subtract the initial energy reading from the final energy reading to obtain actual energy used. (f) Replace all fuses. 2. (a) Connect a wattmeter into the electric dryer circuit. Measure the time taken for the electric clothes dryer (b) to complete a full drying cycle. Note the wattmeter reading while the dryer is (c) operating. Calculate the electrical energy used. (E = Pt)(d) 3. Use the same method as solution #2 above, but use a voltmeter and ammeter to measure voltage and current separately, and use P = VI to obtain the power.

6 A particular photon has a wavelength of 700 nm. Determine the momentum of this photon in kg·m/s. $(h = 6.6 \times 10^{-34} \text{ J·s})$ S17C IV.6.d 120 F1 **A8** A3 Scoring Scheme Answer $\lambda = 700 \text{ nm}$ $h = 6.6 \times 10^{-34} \text{ J} \cdot \text{s}$ $= 700 \times 10^{-9} \text{ m}$ $p = \frac{h}{\lambda}$ $= \frac{6.6 \times 10^{-34} \text{ J} \cdot \text{s}}{700 \times 10^{-9} \text{ m}}$ 11 $= 9.4 \times 10^{-28} \text{ kg} \cdot \text{m/s}$ The momentum of the photon is $9.4 \times 10^{-28} \text{ kg·m/s}$.

```
Determine the momentum of a photon having a frequency of 1.5 x 10^{14} Hz. (h=6.6 x 10^{-34} J·s, c=3.0 x 10^8 m/s)
7
S17C
IV.6.d
120
F1
A8
A3
Scoring
Scheme
                      Answer
                      f = 1.5 \times 10^{14} \text{ Hz}
\sqrt{\phantom{a}}
                      h = 6.6 \times 10^{-34} \text{ J} \cdot \text{s}
                      c = 3.0 \times 10^8 \text{ m/s}
                      p = \frac{hf}{c}
                          = \frac{(6.6 \times 10^{-34} \text{ J·s}) (1.5 \times 10^{14} \text{ Hz})}{3.0 \times 10^8 \text{ m/s}}
V V
                     = 3.3 \times 10^{-28} \text{ kg} \cdot \text{m/s}
                      The momentum of the photon is 3.3 \times 10^{-28} \text{ kg} \cdot \text{m/s}.
```

```
8
                      Determine the momentum of a photon which has an
                      energy of 8.0 eV. (h = 4.1 \times 10^{-15} \text{ eV} \cdot \text{s}, 1 \text{ eV} = 1.60 \times 10^{-19} \text{ J, } c = 3.0 \times 10^{8} \text{ m/s})
S17C
IV.6.d
120
F1
8A
A3
**
Scoring
Scheme
                     Answer
                      E = 8.0 \text{ eV}
                                                                           1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}
                      c = 3.0 \times 10^8 \text{ m/s}
                     p = \frac{E}{c}
                         = \frac{(8.0 \text{ eV}) (1.60 \times 10^{-19} \text{ J/ev})}{(3.0 \times 10^8 \text{ m/s})}
                         = 4.267 \times 10^{-27} \text{ kg} \cdot \text{m/s}
                         = 4.3 \times 10^{-27} \text{ kg} \cdot \text{m/s}
√ √
                      The momentum of the photon is 4.3 \times 10^{-27} \text{ kg} \cdot \text{m/s}
```

MATTER WAVES

```
Determine the de Broglie wavelength of an electron
1
                  having 5.0 \times 10^{-19} J of kinetic energy. (Assume
                  that the mass of the electron is 9.1 \times 10^{-31} kg and
S17C
                  that the value of Planck's constant is 6.63 \times 10^{-34}
IV.7.b
                  J·s).
123
A8
F1
A3
**
Scoring
Scheme
                  Answer
                  E_{1} = 5.0 \times 10^{-19} \text{ J}
                                                                    h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}
                  m = 9.1 \times 10^{-31} \text{ kg}
                  E_{1_{c}} = \frac{1}{2} m v^{2}
                  5.0 \times 10^{-19} \text{ J} = \frac{1}{2} (1.1 \times 10^{-31} \text{ kg}) v^2
1
                  v^2 = \frac{2 \times 5.0 \times 10^{-19} \text{ J}}{9.1 \times 10^{-31} \text{ kg}}
                       = 1.10 \times 10^{12} \text{ m}^2/\text{s}^2
                  v = 1.05 \times 10^6 \text{ m/s}
V V
                  p = mv
                  \lambda = \frac{h}{p}
                       =\frac{h}{mn}
                       = \frac{6.63 \times 10^{-34} \text{ J} \cdot \text{s}}{(9.1 \times 10^{-31} \text{ kg}) (1.05 \times 10^6 \text{ m/s})}
V V
                       = 6.9 \times 10^{-10} \text{ m}
                  The de Broglie wavelength of the electron is 6.9 \times 10^{-10} m.
```

```
2
                      A particle has a de Broglie wavelength of
                       8.0 \times 10^{-10} m and a kinetic energy of
S17C
                       5.0 \times 10^{-35} \text{ J}.
IV. 7. b
                      Determine the approximate value of the mass of the
                      particle. (Assume that the value of Planck's constant is 6.6 \times 10^{-34} \text{ J} \cdot \text{s}).
123
120
A8
F1
A3
**
Scoring
Scheme
                      Answer
                      \lambda = 8.0 \times 10^{-10} \text{ m}
                                                                            E_{\rm k} = 5.0 \times 10^{-35} \, \rm J
                      h = 6.6 \times 10^{-34} \text{ J} \cdot \text{s}
                     \lambda = \frac{h}{p}
                                                                          E_{\mathbf{k}} = \frac{p^2}{2m}
                     \lambda = \frac{h}{\sqrt{2 \ mE_{\mathbf{k}}}}
                     m = \frac{h^2}{2 E_1 \lambda^2}
\sqrt{}
                         = \frac{(6.6 \times 10^{-34} \text{ J} \cdot \text{s})^2}{2 (5.0 \times 10^{-35} \text{ J}) (8.0 \times 10^{-10} \text{ m})^2}
1
                         = \frac{(6.6)^2}{2(5.0)(8.0)^2} \times \frac{10^{-6.8}}{10^{-3.5} \times 10^{-2.0}} \frac{J^2 \cdot s^2}{J \cdot m^2}
                         =\frac{1}{10} \left(\frac{6.6}{8}\right)^2 \times 10^{-13} \text{ kg}
                         = (0.825)^2 \times 10^{-14} \text{ kg}
                         = 0.6806 \times 10^{-14} \text{ kg}
√ √
                         = 6.8 \times 10^{-15} \text{ kg}
                     The approximate value for the mass of the particle is
                     6.8 \times 10^{-15} \text{ kg}.
```

3 Calculate the de Broglie wavelength of a 20 g bullet travelling at a speed of 1500 m/s. $(h = 6.62 \times 10^{-34} \text{ J} \cdot \text{s})$ S17C IV.7.b 123 F1 A8 Scoring Scheme Answer $m = 20 \text{ g} = 2.0 \text{ x} 10^{-2} \text{ kg}$ $h = 6.62 \text{ x} 10^{-34} \text{ J} \cdot \text{s}$ $v = 1.50 \times 10^3 \text{ m/s}$ $\lambda = \frac{h}{mv}$ $= \frac{6.62 \times 10^{-34} \text{ J} \cdot \text{s}}{(2.0 \times 10^{-2} \text{ kg})(1.50 \times 10^{3} \text{ m/s})}$ $= 2.2 \times 10^{-35} \text{ m}$ V V

The de Broglie wavelength of the bullet is 2.2×10^{-35} m.

THE ATOM

ENERGY LEVELS

```
1
                  An atom undergoes an energy transition from an energy
                  level of 9.1 eV to an energy level of 6.7 eV.
S17C
                Given h = 4.1 \times 10^{-15} eV·s, determine the wavelength
IV.6.c
                 of a photon emitted by this atom. (c = 3.0 \times 10^8 \text{ m/s})
129
116
A8
F1
A3
かかか
**
Scoring
Scheme
                  Answer
                                                             h = 4.1 \times 10^{-15} \text{ eV} \cdot \text{s}
                  E_2 = 9.1 \text{ eV}
                                                               c = 3.0 \times 10^8 \text{ m/s}
                  E_1 = 6.7 \text{ eV}
                  E = hf
                    =\frac{hc}{\lambda}
                 \lambda = \frac{hc}{E}
\sqrt{\phantom{a}}
                    =\frac{hc}{E_2-E_1}
                    = \frac{(4.1 \times 10^{-15} \text{ eV} \cdot \text{s}) (3.0 \times 10^8 \text{ m/s})}{9.1 \text{ eV} - 6.7 \text{ eV}}
                     = \frac{12.3 \times 10^{-7} \text{ eV} \cdot \text{m}}{2.4 \text{ eV}}
                    = 5.125 \times 10^{-7} \text{ m}
\sqrt{\sqrt{}}
            = 5.1 \times 10^{-7} \text{ m}
                  The wavelength of the photon emitted is 5.1 \times 10^{-7} m.
```


The energy level diagram for cesium is shown below. ($h = 4.1 \times 10^{-15}$ eV·s, $c = 3.0 \times 10^8$ m/s)

S17C IV.6.c

132

F1 A8

A3

**

Determine the longest wavelength of electromagnetic radiation that could be absorbed by a cesium atom in the ground state.

Scoring Scheme

Answer

$$h = 4.1 \times 10^{-15} \text{ eV} \cdot \text{s}$$
 $c = 3.0 \times 10^8 \text{ m/s}$

$$c = 3.0 \times 10^8 \text{ m/s}$$

$$\lambda = \frac{hc}{E}$$

$$=\frac{hc}{E_1-E_0}$$

$$= \frac{(4.1 \times 10^{-15} \text{ eV} \cdot \text{s}) (3.0 \times 10^8 \text{ m/s})}{1.38 \text{ eV} - 0}$$

$$=\frac{12.3}{1.38} \times 10^{-7} \frac{\text{eV} \cdot \text{m}}{\text{eV}}$$

$$= 8.9 \times 10^{-7} \text{ m}$$

 $\sqrt{}$

The longest wavelength that could be absorbed by this atom from ground state is 8.9×10^{-7} m.

SOUND

MUSIC

1

S17A II.2.a

A11

**

The oscilloscope tracing produced by a pure tone is drawn in space A. Assume that no adjustments are made to the oscilloscope.

In space B draw the tracing that could result if a louder sound of the same pitch shown in A were displayed on the oscillo-

scope.

In space C draw the tracing that could result if a sound of the same amplitude as that shown in A, but of higher frequency than shown in A, were displayed on the oscilloscope.

In space D draw the tracing that could result if the second harmonic of the pure tone shown in A, but having the same amplitude shown in A, were displayed on the oscilloscope.

ELECTROMAGNETISM

APPLICATIONS

1 S17A	Column I lists a number of quantities to be measured. Column II lists a number of instruments available for making measurements.			
217 216 215 104	In the spa measured in to the ins suitable in	ace provided before each quar in Column I, write the letter strument from Column II which for that measurement. A part the list may be used once, n	r coi n is ticul	rresponding most lar instru-
B4 F1 A2 Answer ** Scoring Scheme	&	Quantity to be measured] a	II Measuring Instruments and their ranges
√ (A)	1.	The potential difference across a flashlight battery	(A)	DC voltmeter (0-10 V)
√ (F)	2.	The current drawn by a 1 Ω resistor connected to a flashlight battery		DC voltmeter (0-200 V) AC voltmeter (0-10 V)
√ (c)	3.	The potential difference across the secondary coil of a transformer when the primary is connected to a standard home outlet and has 20 times as many turns as the secondary	(E)	AC voltmeter (0-200 V) DC ammeter (0-500 mA)
√ (H)	4.	The current drawn by a 60 W light bulb connected to a standard household outlet		DC ammeter (0-5 A) AC ammeter (0-100 mA)
√ (1)	5.	The current induced in a coil of 100 turns by a bar magnet thrust into the coil		AC ammeter (0-5 A) Galvanometer
√ (E)	6.	The current drawn by a 100 Ω resistor connected to a flashlight battery		(0-10 mA)

RAY

OR

GEOMETRIC OPTICS

REFLECTION

1

Consider the following diagram showing the reflection of an object in a concave mirror.

S17A II.1.a

270

A2

* * *

State the name corresponding to each number in the diagram.

- (1)
- (2)
- (3)
- (4)
- (5)

Scoring Scheme

Answer

- $\sqrt{}$
- (1) principal axis
- 1
- (2) centre of curvature
- /
- (3) principal focus
- 1
- (4) vertex
- **V**
- (5) focal length

For the position of the object shown, locate the image produced by the concave mirror by drawing two appropriate rays.

274

A7
A5
A8

*
C F

**
Object

Scoring
Scheme Answer

/ ray 1 before reflection

/ ray 1 after reflection

/ ray 2 before reflection

/ ray 2 after reflection

/ arrowheads shown

/ location of image

/ attitude of image

3 S17A II.3.a

For the position of the object shown, locate the image produced by the concave mirror by drawing any two appropriate rays.

274

A7 A8 A5

* *

Scoring Scheme

Answer

(Any two rays)

√ ray 1 before reflection

 \checkmark ray 1 after reflection

√ ray 2 before reflection

√ ray 2 after reflection

√ arrowheads shown

√ location of image

√ attitude of image

S17A II.3.a

4

For the position of the object shown, locate the image produced by the concave mirror by drawing any two appropriate rays.

Scoring Scheme

Answer

An object 2.0 cm high is located 12 cm fr	
converging (concave) mirror of focal leng	th 4.0 cm.

S17A II.3.a

(a) Make an accurate, labelled, full size diagram showing the mirror, the focal point F, and the location, attitude and size of the object.

275 F1

(b) Use rays to locate the image.

A2 A11

(c) From the diagram specify the position of the image from the vertex in cm, and the size of the image in cm.

-**

 $\sqrt{}$

(d) State the kind and the attitude of the image.

Scoring Scheme

Answer

Let 1 cm represent 1 cm

object height = 2 cm

object location is 12 cm from vertex

focal length = 4 cm

radius of curvature of mirror = 8 cm

(b) (See above)

 $\checkmark \checkmark \checkmark \checkmark$ Construction of 2 rays $\checkmark \checkmark$ Drawing of image

 \checkmark \checkmark (c) Position - about 6.0 cm from vertex \checkmark \checkmark Size - 1 cm

/ (d) Attitude - inverted / Kind - real

REFRACTION

1 S17A

II.3.a S17C II.1.b

S 278

A2

*

The diagram represents a ray of light travelling from one transparent material A to another transparent material B.

The name given to the line xy is the _____.

Scoring Scheme

Answer

/

normal

The diagram shows a ray of light travelling from one transparent material A to another transparent material B.

S17A II.3.a S17C II.1.b

S 278

A2 A11

* * *

Which number in the diagram represents the

- (a) angle of incidence?
- (b) angle of refraction?

Scoring Scheme

Answer

 $\sqrt{}$

- (a) 1
- √ (b) 4

- (a) Draw two rays, one to the top and one to the bottom of the eye, to show the approximate path the light travels from the impurity to the eye.
- (b) Use the two rays to show where the impurity appears to be from the student's point of view.

Scoring Scheme	Answer
√ √ √ √	(a) ray 1 in glass ray 1 in air $i_1 < R_1$ ray 2 in glass ray 2 in air $i_2 < R_2$
√	(b) ray 1 extended back
√	ray 2 extended Impurity X
√	extended rays meet at a
√	point above X and closer to the eye $n = 1.5$

4 A ray of light strikes the surface of a semicircular piece of glass as shown below. S17A On the diagram, draw the approximate path taken by II.3.a S17C the ray as it passes through the glass. II.1.b S 283 normal B1 centre A4 A11 * *

Air

Scoring Scheme	Answer
√	i > R
√	continues straight into air
\checkmark	shows direction with arrowhead

Glass

F1

5 A ray of light AB strikes a convex lens TU as shown in the diagram below. S17A II.3.b By making the appropriate measurements and S17C calculations, determine the path of the ray as it TT. 1. b passes through the lens, reflects from the mirror VW and finally passes through the triangular prism XYZ. NOTE: C is the centre of curvature of the 2.85 271 mirror. 261 Т В3

Z

Scoring Scheme	Answer
√	refracted ray drawn through F to hit mirror
√	line drawn from C to point of incidence on mirror
√	$i = p = 42^{\circ}$
√	reflected ray incident on surface XZ at 90°
\checkmark	no refraction at surface XZ
\checkmark	normal drawn at point of incidence of surface XY
√	i = 36°

Scoring Scheme	Answer
√	$n_{g} \sin \theta_{g} = n_{a} \sin \theta_{a}$
√	$\sin \theta_{a} = \frac{n_{g}}{n_{a}} \sin \theta_{g}$
✓	$=\frac{1.5}{1.0}\sin 36^{\circ}$
√	$= \frac{1.5}{1.0} \times 0.5878$
√	= 0.8816
√	$\sin \theta_a = 62^{\circ}$
√	R = 62°

With the aid of a labelled diagram, explain what is meant by the following statement: "The critical angle for glass in air is 42°."

S17A II.3.a

S17C II.1.b

286

A2 A11

AII

— 六六

Scoring Scheme

The critical angle is that angle of incidence in the medium with a higher refractive index which yields an angle of refraction in the medium with the lower refractive index of 90°.

√ Light must be travelling from glass toward air at $i = 42^{\circ}$ to produce $R = 90^{\circ}$.

Diagram

- √ normal labelled
- √ air labelled
- √ glass labelled .
- \sqrt{i} = 42° labelled in glass
- $\sqrt{R} = 90^{\circ}$ labelled in air
- √ incident ray labelled
- √ refracted ray labelled
- √ arrowheads shown

Answer

7 S17A	Diamond has an absolute refractive index of 2.4. Calculate the value of the critical angle for diamond.
II.3.a S17C II.1.a	
287 82	
F1 A8	
** *	
Scoring Scheme	Answer
√	$n_{\text{diamond}} = 2.4$
√	The angle of refraction is 90° when the angle of incidence equals the critical angle.
	$n_1 \sin \theta_1 = n_2 \sin \theta_2$
√	$n_{\text{diamond}} \sin \theta_{i} = n_{\text{air}} \sin \theta_{R}$
\checkmark	2.4 $\sin \theta_{crit} = 1.0 \sin 90^{\circ}$
\checkmark	$\sin \theta_{\text{crit}} = \frac{1.0}{2.4}$
√	= 0.42
√	$\theta_{\text{crit}} = 25^{\circ}$
√	The critical angle for diamond is 25°.

8 S17A II.3.a S17C II.1.b	Give one practical application of the total internal reflection of light.
290 286	
F1 A2	
* - *	
Scoring Scheme	Answer
\checkmark	Total internal reflection is used to change the direction of light in periscopes, prisms, binoculars and fibrescopes.

A ray of light travelling in an optical dish is incident on the interface between the dish and air as shown.

S17A II.3.a

S17C II.1.b

291285

B3 F1

*** *

By making appropriate measurements and calculations determine and accurately draw on the diagram the path taken by the ray of light after it leaves the interface. Label the size of all relevant angles.

Scoring Scheme

Answer

$$\sqrt{n_{\rm air}}$$

$$\sqrt{\text{value of sin }\theta_d}$$

$$n_{\text{air}} = 1.0$$
 $n_{\text{dish}} = 1.5$

$$\theta_d = 50^{\circ}$$

$$\sin \theta_d = 0.766$$

$$n_{\rm a} \sin \theta_{\rm a} = n_{\rm d} \sin \theta_{\rm d}$$

$$\sin \theta_a = \frac{(1.5) (0.766)}{1.0}$$

Refraction is not possible since $\sin \theta_a > 1$.

 \therefore the incident ray undergoes total internal reflection.

angle of reflection $r = 50^{\circ}$

A ray of light is incident on the interface between air and an optical dish as shown.

- S17A II.3.a S17C TT. 1.b
- 291 285
- **B**3 F1
- مارد مارد *

By making appropriate measurements and calculations determine and accurately draw on the diagram the path taken by the refracted ray of light after it leaves the interface. Label the size of all relevant angles.

Scoring Scheme

Answer

$$n_{\rm air} = 1.0$$
 $n_{\rm d} = 1.5$

- $\sqrt{\text{measurement of }\theta_{a}}$
- θ₂ = 40°
- √ relationship
- $n_a \sin \theta_a = n_d \sin \theta_d$
- √ substitution
- $1.0 \sin 40^\circ = 1.5 \sin \theta_d$
- √ rearrangement.
- $\sin \theta_{d} = \frac{1.0 \sin 40^{\circ}}{1.5}$
- $\sqrt{\text{value of sin }\theta_a}$
- $=\frac{(1.0) (0.6428)}{1.5}$

√ solution

= 0.4285

√ angle

- $\theta_d \simeq 25^{\circ}$
- $\sqrt{\text{relationship}}$ $R = \theta_d$
- √ drawing R
- $R = 25^{\circ}$
- √ passage of refracted ray in dish
- √ passage of refracted ray outside dish

A ray of light travelling in an optical dish is incident on the interface between the dish and air as shown.

II.3.a S17C II.1.b

S17A

291 285

B3 F1

**

By making appropriate measurements and calculations determine and accurately draw on the diagram the path taken by the refracted ray of light after it leaves the interface. Label the size of all relevant angles.

Scoring Scheme

Answer

 $\sqrt{n_{\text{air}}} = 1.0$ $n_{\text{d}} = 1.5$

 $\sqrt{\text{measurement of }\theta_{d}}$ = 30°

 $\sqrt{\text{relationship}}$ $n_{\text{d}} \sin \theta_{\text{d}} = n_{\text{a}} \sin \theta_{\text{a}}$

 $\sqrt{\text{substitution}}$ 1.5 sin 30° = 1.0 sin θ_a

 $\sin \theta_a = \frac{1.5 \sin 30^{\circ}}{1.0}$

 $\sqrt{\text{solution}} = \frac{(1.5)(0.5)}{1.0}$

= 0.75

 $\sqrt{\text{angle}}$ angle $\theta_a \simeq 49^{\circ}$

relationship $\theta_a = R$

 $\sqrt{\text{drawing refracted}}$ $R = 49^{\circ}$

 \checkmark labelling R

A ray of light is incident on the interface between air and an optical dish as shown.

S17A II.3.a S1/C II.1.b

291 285

B3 F1

** *

Scoring Scheme

By making appropriate measurements and calculations determine and accurately draw on the diagram the path taken by the ray of light in the optical dish and in air. Label the size of all relevant angles.

29°

n = 1.5

Scoring Scheme	Answer
\checkmark	n _{air} = 1.0
<pre> √ extending ray to curved interface</pre>	$n_{\rm d} = 1.5$
√ drawing the normal	
√ measurement .	$\theta_{\rm d} = 29^{\circ}$
√ value of sin	sin 29° = 0.4848
√ relationship	$n_{\rm d} \sin \theta_{\rm d} = n_{\rm a} \sin \theta_{\rm a}$
√ substitution	(1.5) (0.4848) = 1.0 $\sin \theta_a$
	$\sin \theta_a = \frac{(1.5) (0.4848)}{1.0}$
√ solution	= 0.7272
√ angle	θ _a ~ 47°
√ relationship	$R = \theta_a$
√ drawing of normal	= 47°
√ drawing of ray	
\checkmark labelling of R	27.6

Answer

A ray of light is incident on the interface between air and an optical dish as shown.

S17A II.3.a S17C

II.1.b

291 285

B3 F1

* *

By making appropriate measurements and/or calculations determine and accurately draw on the diagram the path taken by the ray of light in the optical dish and in the air. Label the size of all relevant angles.

Scoring Scheme

Air to Dish

i = 0° or angle between incident ray and interface = 90°

 $R = 0^{\circ} \text{ or}$ angle between ray in dish and interface = 90°

ray drawn straight; no change in direction

Dish to Air

 $i = 0^{\circ}$ or angle between incident ray and interface = 90°

 $R = 0^{\circ} \text{ or angle between emergent}$ ray and interface = 90°

ray drawn straight; no change in direction

Answer

A ray of light strikes the surface of a rectangular piece of glass as shown below.

S17A II.3.a

291

F1 A8 A2

ė.

-**

- (a) On the diagram, draw the approximate path taken by the ray as it passes through the glass.
- (b) Label the angle of incidence, the angle of refraction in the glass, and the emergent ray.
- (c) Label the lateral displacement.
- (d) As the angle of incidence increases, what happens to the lateral displacement?
- (e) As the thickness of the glass increases, what happens to the lateral displacement?

Scoring Scheme	Answer
√ i > R √ emergent ray parallel to	(a) <i>i</i>
incident ray ✓ normal ✓ i ✓ R ✓ emergent ray ✓ incident ray extended ✓ lateral displacement	(c) Emergent Ray Lateral Displacement
√ √ √ √	(d) As i increases, the lateral displacement increases.(e) As the thickness of the glass increases, the lateral displacement increases.

For the position of the object shown, locate and draw the image produced by the convex (converging) lens by drawing any two appropriate rays.

S17A II.3.b

296

A7 A8 A5

* * *

Scoring Scheme

Answer

(Any two rays)

/ ray 1 before lens
/ ray 1 after lens
/ ray 2 before lens
/ ray 2 after lens
/ arrowheads
/ image location
/ image attitude

16

For the position of the object shown, locate and draw the image produced by the convex (converging) lens by drawing any two appropriate rays.

S17A II.3.b

296

A7 A8 A5

*

*

Scoring Scheme

Answer

(Any two rays)

√ ray 1 before lens

√ ray 1 after lens

√ ray 2 before lens

√ ray 2 after lens

√ arrowheads

 \checkmark location of image

√ attitude of image

17 s17A

II.3.b

(a) For the position of the object shown, locate and draw the image produced by the concave (diverging) lens by drawing any two appropriate rays.

297 296

A7 A8 A5

** * *

(b) State three characteristics of the image.

Scoring Scheme

Answer

(a) (Any two rays)

√ √ √ √

ray 1 ray 2

1/

arrowheads

 $\sqrt{\ }\sqrt{\ }$

projecting two rays back

 $\sqrt{}$

erect image

1/

correct location of image

√

(b) erect

V

smaller

 $\sqrt{}$

virtual

18 S17A I1.3.b (a) For the position of the object shown, locate and draw the image produced by the convex (converging) lens by drawing two appropriate rays.

F

2F

297 296

×

**

(b) State three characteristics of the image.

Scoring Scheme

Answer

Image Object F 2F

√ (b) erect
√ larger
√ virtual

COLOUR

THE SPECTRUM

1

A ray of red light strikes the surface of a triangular piece of glass as shown below.

S17A II.3.a

S 291 F1 A8

* *

A2

- (a) On the diagram, draw the approximate path taken by the ray as it passes through the glass.
- (b) Label the angle of incidence, the angle of refraction in the glass, and the angle of deviation.
- (c) Briefly describe one application of a triangular prism.

Scoring
Scheme

Answer

(a and b)

✓ construction of normal

✓ angle of incidence

✓ refracted ray

✓ angle of refraction

✓ emergent ray

✓ incident ray extended

✓ angle of deviation

✓ (c) separating white

light into its

colours
(dispersion)

COLOUR VISION

The following diagram of the human eye has 7 parts marked with arrows and letters.

S17A II.3.c

328

A2

* *

Scor-Ans- ing wer Scheme The names of five parts of the eye are listed below. In the space before each name, write the letter corresponding to the correct part.

E	√	retina
С	√	 aqueous humour
В	√	 lens
G	√	cornea
Α	√	iris

FLUIDS

FLUIDS AT REST

1 A 60 kg person stands on a 5.0 kg horizontal sheet of plywood. The plywood is 1.0 m wide by 2.0 m long. (g = 10 N/kg)341 What is the total mass of the person and the (a) plywood? FI A8 What is the total force of gravity on the person (b) A 3 and the plywood? * What is the surface area of the plywood in (c) 方方 contact with the ground? With the person on the plywood, what pressure (d)

does the plywood exert on the ground?

Scoring Scheme	Answer
/	$m{\rm p} = 60 \text{ kg}$ $w = 1.0 \text{ m}$ $g = 10 \text{ N/kg}$
,	$m_{\rm pl} = 5.0 \text{kg}$ $Z = 2.0 \text{m}$
	(a) $m_{t} = m_{p} + m_{pl}$ = 60 kg + 5.0 kg
√ √	= 65 kg
\checkmark	The total mass is 65 kg.
√	(b) $F_g = mg$
√	= 65 kg x 10 N/kg
	= 650 N
√ √	$= 6.5 \times 10^2 \text{ N}$

The total force of gravity is 6.5×10^2 N.

$$\sqrt{ } \qquad (c) \quad A = \mathcal{I}\omega$$

$$\sqrt{ } \qquad = 2.0 \text{ m x } 1.0 \text{ m}$$

$$\sqrt{ } \sqrt{ } \qquad = 2.0 \text{ m}^2$$

 \checkmark The total surface area in contact with the ground is 2.0 m².

The plywood exerts a pressure of 3.3×10^2 Pa on the ground.

The pressure is 2.6 kPa.

2 A force of 650 N is applied to an area of 0.25 m^2 . Calculate the pressure in kPa. 340 341 F1 Α8 A3 * Scoring Scheme Answer F = 650 N $A = 0.25 \text{ m}^2$ $P = \frac{F}{A}$ $= \frac{650 \text{ N}}{0.25 \text{ m}^2}$ $= 2600 \text{ N/m}^2$ = 2600 Pa $= 2.6 \times 10^3 \text{ Pa}$ = 2.6 kPa

```
3
             A force acts on an area of 0.50 m2 producing a
             pressure of 240 Pa. How large is the force?
340
341
F1
A8
A3
六
Scoring
Scheme
            Answer
            A = 0.50 \text{ m}^2
                                               P = 240 \text{ Pa}
             P = \frac{F}{A}
             \therefore F = PA
                 = 240 \text{ Pa} \times 0.50 \text{ m}^2
                 = 120 N
                 = 1.2 \times 10^2 \text{ N}
V V
          The force is 1.2 \times 10^2 N.
```

```
4
                 A force of 5000 N produces a pressure of 50.0 kPa.
S 340
               Calculate the area on which the force acts.
S 341
F1
A8
A3
カカ
**
Scoring
Scheme
                 Answer
1
                F = 5000 \text{ N}
                                                             P = 50.0 \text{ kPa}
1
                P = F/A
                 A = F/P
                    =\frac{5000 \text{ N}}{50.0 \text{ kPa}}
                   = \frac{5000 \text{ N}}{50.0 \times 10^3 \text{ Pa}}
                    = \frac{5.000 \times 10^3 \text{ N}}{5.00 \times 10^4 \text{ Pa}}
                 = 1.00 \times 10^{-1} \text{ m}^2
V V
/
                 The force acts on an area of 1.00 \times 10^{-1} \text{ m}^2.
```

A rifle and a penny are the same height above level ground. A bullet is fired horizontally from the gun at the same time as the penny is dropped.

I.2.e

S17C

(a) Neglecting air resistance, compare the times

(a) Neglecting air resistance, compare the times when the bullet and penny hit the ground.

342 (b) Justify your answer in (a).

A2 A5

A1

III.2.a

**

Scoring Scheme

Scheme Answer

 $\sqrt{}$ (a) The bullet and penny hit the ground at the same time.

 $\sqrt{\ }$ (b) The horizontal motion of the bullet has no effect on its vertical motion.

```
6
              Calculate the force of gravity on an 11 kg turkey.
               (g = 10 \text{ N/kg})
S17A
I.2.e
S17C
III.2.a
342
F1
Α8
A2
*
*
Scoring
Scheme
              Answer
\sqrt{\phantom{a}}
              g = 10 \text{ N/kg}
                                                  m = 11 \text{ kg}
              F_q = mg
                 = 11 \text{ kg} \times 10 \text{ N/kg}
V V
                  = 110 N
              The force of gravity on the turkey is 1.1 \times 10^2 N.
```

 $\sqrt{}$

```
7
                   Find the mass in g of 75 mL of a liquid whose
                   density is 700 kg/m<sup>3</sup>.
S 345
F1
8A
A3
**
Scoring
Scheme
                   Answer
                   V = 75 \text{ mL}
\sqrt{}
                     = 75 \times 10^{-3} L
                      = 75 \times 10^{-6} \text{ m}^3
                   D = 700 \text{ kg/m}^3
                   m = DV
                       = \left(700 \, \frac{\text{kg}}{\text{m}^3}\right) \left(75 \, \text{x} \, 10^{-6} \, \text{m}^3\right)
                      = 52 500 \times 10^{-6} \text{ kg}
                      = 53 \times 10^{-3} \text{ kg}
                      = 53 g
```

The mass of the liquid is 53 g.

```
8
              A piece of metal, 11.2 cm long, 4.5 cm wide and
              1.0 mm thick, has a mass of 30.2 g. Find its
              density in kg/m<sup>3</sup>.
S 345
FI
A8
A3
age.
**
Scoring
Scheme
              Answer
              Z = 11.2 \text{ cm}
                                                   t = 1.0 \text{ mm}
              w = 4.5 cm
                                                     = 0.10 \text{ cm}
              m = 30.2 g
              V = lwt
               = 11.2 \text{ cm} \times 4.5 \text{ cm} \times 0.10 \text{ cm}
V V
               = 5.04 \text{ cm}^3
              D = m/V
V V
              = 5.99 \text{ g/cm}^3
= 6.0 \times 10^3 \text{ kg/m}^3
              The density of the metal is 6.0 \times 10^3 \text{ kg/m}^3.
```

9 Find the density in kg/m^3 of a substance whose mass is 148.5 g and whose volume is 30.5 cm³.

S 345

F1

A8 A3

×

**

Scoring

Scheme Answer $\sqrt{m} = 148.5 \text{ g}$ $V = 30.5 \text{ cm}^3$ $\sqrt{D} = m/V$ $\sqrt{g} = \frac{148.5 \text{ g}}{30.5 \text{ cm}^3}$

 $\sqrt{\sqrt{}}$ = 4.87 g/cm³

 $\sqrt{\sqrt{}}$ = 4.87 x 10³ kg/m³

 \checkmark The density of the substance is 4.87 x 10^3 kg/m³.

```
The density of a substance is 1850 kg/m<sup>3</sup>.
10
             What volume in cm3 is occupied by 100 g of the
              substance?
S 345
F1
Α8
A3
**
Scoring
Scheme
             Answer
             D = 1850 \text{ kg/m}^3
                                       m = 100 \text{ g}
              = 1.850 \text{ g/cm}^3
             V = m/D
                -\frac{100 \text{ g}}{1.850 \text{ g/cm}^3}
              = 54.0 \text{ cm}^3
             The substance has a volume of 54.0 cm<sup>3</sup>.
```

```
11
               An 8.0 g cork is floating in water. Find the volume
               of water, in mL, displaced by the cork. (D_{\rm W} = 1000 \, {\rm kg/m^3})
351
345
F1
A8
А3
**
***
Scoring
Scheme
               Answer
                                                  D_{\rm w} = 1000 \, \rm kg/m^3
               m_{c} = 8.0 \text{ g}
               Mass of water displaced = m_{c} (Principle of Flotation)
               m_{\rm ty} = 8.0 {\rm g}
                   =\frac{8.0 \text{ g}}{1.0 \text{ g/mL}}
√ √
                   = 8.0 \text{ mL}
               The cork displaces 8.0 mL of water.
```

```
12
             An object floating in alcohol displaces 25 mL of
             alcohol. The density of alcohol is 800 kg/m<sup>3</sup>.
351
             Determine the mass in q of the object.
345
F1
A8
A3
**
Scoring
Scheme
             Answer
             D_a = 800 \text{ kg/m}^3
                = 8.00 \times 10^{-1} \text{ g/mL}
             V_a = 25 \text{ mL}
V
             m_a = D_a V_a
                = 8.00 \times 10^{-1} \text{ g/mL} \times 25 \text{ mL}
11
                = 20 g
             The mass of a floating object = mass of liquid displaced.
             (Principle of Flotation)
             The object has a mass of 20 g.
```

An object floats in a liquid with 3/4 of its volume submerged. The density of the object is 460 kg/m^3 .

Find the density of the <u>liquid</u> in kg/m^3 .

F1

8A

АЗ

**

Scoring

Scheme Answer

$$D_{\rm o} = 460 \, \rm kg/m^3$$

 \checkmark Let the volume of the object be V m³.

 $\sqrt{}$ Then the volume of the liquid displaced is $\frac{3}{4}$ V m³.

 \checkmark According to the Principle of Flotation,

 \checkmark the mass of the floating object = the mass of the displaced liquid

 \checkmark M = DV

 \checkmark $\therefore D_{7}V_{7} = D_{9}V_{9}$

 $V \qquad D_{\mathcal{I}} = D_{o} \cdot \frac{V_{o}}{V_{1}}$

 $\sqrt{}$ = 460 kg/m³ x $\frac{V}{3/4 V}$

 $= 460 \times \frac{4}{3} \text{ kg/m}^3$

 $\sqrt{\ }$ = 613 kg/m³

The density of the liquid is 613 kg/m^3 .

ENERGY SOURCES

AND

CONSERVATION

ENERGY CONSERVATION

1 Design a procedure to measure the total energy used to wash a load of dishes through a full cycle in a S17A dishwasher. (Do not try out the procedure.) I.3.c S17C III.6.f S 431 S 106 C4 ** *** Scoring Sample Answers Scheme Remove the fuses (or switch off the circuit breakers) 1. (a) from all the circuits in the main electrical panel, except the one operating the dishwasher. V . (b) Note the reading on the electrical energy meter installed for the home. (c) Operate the dishwasher for a full washing cycle. VV (d) During the hot water cycle measure the temperature of the hot water in the dishwasher and the temperature of the cold water. Repeat (b) at the end of the cycle. (e) Replace all the fuses, or switch on the circuit breakers. (f) V V V (g) Calculate the heat energy used to heat the water. (See the manual or the instruction booklet for the amount of water used in a cycle.) Add the heat energy to the electrical energy to obtain the total energy.

Scoring Scheme	Sample	Answers
√ √	2. (a)	Connect a wattmeter into the electric dishwasher circuit
√	(b)	Measure the time taken for the electric dishwasher to complete a full cycle.
√	(c)	Note the wattmeter reading while the dishwasher is operating.
V V V	(d)	Calculate the electrical energy used. $(E = Pt)$
√ √ √	(e)	Calculate the heat energy used to heat the water (as in procedure 1 above). (See the manual or instruction booklet for the amount of water used in a cycle.)
√ .	(f)	Add the heat energy to the electrical energy.
√√√√ √√√√ √	met	the same method as solution $\#2$ above, but use a volter and ammeter to measure voltage and current arately, and use $P = VI$ to obtain the power.

