Aerobus

v1.2

Generated by Doxygen 1.9.8

1 Concept Index	1
1.1 Concepts	. 1
2 Class Index	3
2.1 Class List	. 3
3 File Index	5
3.1 File List	. 5
4 Concept Documentation	7
4.1 aerobus::IsEuclideanDomain Concept Reference	. 7
4.1.1 Concept definition	. 7
4.1.2 Detailed Description	. 7
4.2 aerobus::IsField Concept Reference	. 7
4.2.1 Concept definition	. 7
4.2.2 Detailed Description	. 8
4.3 aerobus::IsRing Concept Reference	. 8
4.3.1 Concept definition	. 8
4.3.2 Detailed Description	. 8
5 Class Documentation	ç
5.1 aerobus::polynomial< Ring >::val< coeffN >::coeff_at< index, E > Struct Template Reference	. 9
5.2 aerobus::polynomial< Ring >::val< coeffN >::coeff_at< index, std::enable_if_t<(index< 0 index > 0)> > Struct Template Reference	
5.3 aerobus::polynomial< Ring >::val< coeffN >::coeff_at< index, std::enable_if_t<(index==0)> > Struct Template Reference	
5.4 aerobus::ContinuedFraction < values > Struct Template Reference	. 10
5.4.1 Detailed Description	. 10
5.5 aerobus::ContinuedFraction < a0 > Struct Template Reference	. 10
5.5.1 Detailed Description	. 10
5.6 aerobus::ContinuedFraction< a0, rest > Struct Template Reference	. 1
5.6.1 Detailed Description	. 1
5.7 aerobus::i32 Struct Reference	. 1
5.7.1 Detailed Description	. 12
5.7.2 Member Typedef Documentation	. 10
5.7.2.1 mod_t	. 10
5.8 aerobus::i64 Struct Reference	. 10
5.8.1 Detailed Description	. 14
5.8.2 Member Typedef Documentation	. 14
5.8.2.1 inject_ring_t	
5.8.3 Member Data Documentation	
5.8.3.1 gt_v	
5.9 aerobus::is_prime< n > Struct Template Reference	
5.9.1 Detailed Description	

5.10 aerobus::polynomial < Ring > Struct Template Reference	16
5.10.1 Detailed Description	17
5.10.2 Member Typedef Documentation	17
5.10.2.1 add_t	17
5.10.2.2 derive_t	17
5.10.2.3 div_t	18
5.10.2.4 eq_t	18
5.10.2.5 gcd_t	18
5.10.2.6 gt_t	19
5.10.2.7 lt_t	19
5.10.2.8 mod_t	19
5.10.2.9 monomial_t	19
5.10.2.10 mul_t	20
5.10.2.11 pos_t	20
5.10.2.12 simplify_t	20
5.10.2.13 sub_t	20
5.10.3 Member Data Documentation	21
5.10.3.1 pos_v	21
5.11 aerobus::type_list< Ts >::pop_front Struct Reference	21
5.11.1 Detailed Description	21
5.12 aerobus::Quotient $<$ Ring, X $>$ Struct Template Reference	22
5.12.1 Detailed Description	23
5.12.2 Member Typedef Documentation	23
5.12.2.1 add_t	23
5.12.2.2 div_t	23
5.12.2.3 eq_t	23
5.12.2.4 mod_t	24
5.12.2.5 mul_t	24
5.12.2.6 pos_t	24
5.12.3 Member Data Documentation	25
5.12.3.1 eq_v	25
5.12.3.2 pos_v	25
5.13 aerobus::type_list< Ts >::split< index > Struct Template Reference	25
5.13.1 Detailed Description	26
5.14 aerobus::type_list< Ts > Struct Template Reference	26
5.14.1 Detailed Description	27
5.14.2 Member Typedef Documentation	27
5.14.2.1 at	27
5.14.2.2 concat	27
5.14.2.3 insert	27
5.14.2.4 push_back	28
5.14.2.5 push_front	28

5.14.2.6 remove	28
5.15 aerobus::type_list<> Struct Reference	29
5.15.1 Detailed Description	29
5.16 aerobus::i32::val < x > Struct Template Reference	29
5.16.1 Detailed Description	30
5.16.2 Member Function Documentation	30
5.16.2.1 eval()	30
5.16.2.2 get()	30
5.17 aerobus::i64::val < x > Struct Template Reference	31
5.17.1 Detailed Description	31
5.17.2 Member Function Documentation	32
5.17.2.1 eval()	32
5.17.2.2 get()	32
5.18 aerobus::polynomial < Ring >::val < coeffN, coeffs > Struct Template Reference	32
5.18.1 Detailed Description	33
5.18.2 Member Typedef Documentation	33
5.18.2.1 coeff_at_t	33
5.18.3 Member Function Documentation	34
5.18.3.1 eval()	34
5.18.3.2 to_string()	34
5.19 aerobus::Quotient< Ring, X >::val< V > Struct Template Reference	35
5.19.1 Detailed Description	35
5.20 aerobus::zpz::val< x > Struct Template Reference	35
5.21 aerobus::polynomial < Ring >::val < coeffN > Struct Template Reference	36
5.21.1 Detailed Description	36
5.22 aerobus::zpz Struct Template Reference	37
5.22.1 Detailed Description	38
5.22.2 Member Typedef Documentation	38
5.22.2.1 add_t	38
5.22.2.2 div_t	38
5.22.2.3 eq_t	39
5.22.2.4 gcd_t	39
5.22.2.5 gt_t	39
5.22.2.6 lt_t	40
5.22.2.7 mod_t	40
5.22.2.8 mul_t	40
5.22.2.9 pos_t	40
5.22.2.10 sub_t	41
5.22.3 Member Data Documentation	41
5.22.3.1 eq_v	41
5.22.3.2 gt_v	41
5.22.3.3 lt v	42

5.22.3.4 pos_v	42
6 File Documentation	43
6.1 src/aerobus.h File Reference	43
6.2 aerobus.h	43
7 Examples	127
7.1 QuotientRing	127
7.2 type_list	127
7.3 i32::template	127
7.4 i32::add_t	128
7.5 i32::sub_t	128
7.6 i32::mul_t	128
7.7 i32::div_t	128
7.8 i32::gt_t	129
7.9 i32::eq_t	129
7.10 i32::eq_v	129
7.11 i32::gcd_t	129
7.12 i32::pos_t	130
7.13 i32::pos_v	130
7.14 i64::template	130
7.15 i64::add_t	130
7.16 i64::sub_t	131
7.17 i64::mul_t	131
7.18 i64::div_t	131
7.19 i64::mod_t	131
7.20 i64::gt_t	132
7.21 i64::lt_t	132
7.22 i64::lt_v	132
7.23 i64::eq_t	132
7.24 i64::eq_v	133
7.25 i64::gcd_t	133
7.26 i64::pos_t	133
7.27 i64::pos_v	133
7.28 polynomial	134
7.29 q32::add_t	134
7.30 FractionField	134
7.31 PI_fraction::val	134
7.32 E_fraction::val	134
Index	135

Chapter 1

Concept Index

1.1 Concepts

Here is a list of all documented concepts with brief descriptions:

aerobus::IsEuclideanDomain	
Concept to express R is an euclidean domain	7
aerobus::IsField	
Concept to express R is a field	7
aerobus::IsRing	
Concept to express R is a Ring (ordered)	8

2 Concept Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

aerobus::polynomial < Ring >::val < coeffN >::coeff_at < index, E >	9
$aerobus::polynomial < Ring > ::val < coeffN > ::coeff_at < index, std::enable_if_t < (index < 0 index > 0) > :coeff_at < index < or coeff_at < or coeff_at < index < or coeff_at < or c$	>
9	
aerobus::polynomial< Ring >::val< coeffN >::coeff_at< index, std::enable_if_t<(index==0)>>	9
aerobus::ContinuedFraction< values >	
Continued fraction a0 + 1/(a1 + 1/())	10
aerobus::ContinuedFraction< a0 >	
Specialization for only one coefficient, technically just 'a0'	10
aerobus::ContinuedFraction< a0, rest >	
Specialization for multiple coefficients (strictly more than one)	11
aerobus::i32	
32 bits signed integers, seen as a algebraic ring with related operations	11
aerobus::i64	
64 bits signed integers, seen as a algebraic ring with related operations	13
aerobus::is_prime< n >	
Checks if n is prime	15
aerobus::polynomial < Ring >	16
aerobus::type_list< Ts >::pop_front	
Removes types from head of the list	21
aerobus::Quotient < Ring, X >	
Quotient ring by the principal ideal generated by 'X' With i32 as Ring and i32::val $<$ 2 $>$ as X,	
Quotient is Z/2Z	22
aerobus::type_list< Ts >::split< index >	
Splits list at index	25
aerobus::type_list< Ts >	
Empty pure template struct to handle type list	26
aerobus::type_list<>	
Specialization for empty type list	29
aerobus::i32::val < x >	
Values in i32, again represented as types	29
aerobus::i64::val< x >	
Values in i64	31
aerobus::polynomial < Ring >::val < coeffN, coeffs >	
Values (seen as types) in polynomial ring	32
aerobus::Quotient< Ring, X >::val< V >	
Projection values in the quotient ring	35

4 Class Index

aerobus::zpz::val< x >	35
aerobus::polynomial < Ring >::val < coeffN >	
Specialization for constants	36
aerobus::zpz	37

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:		
src/aerobus.h	43	

6 File Index

Chapter 4

Concept Documentation

4.1 aerobus::IsEuclideanDomain Concept Reference

Concept to express R is an euclidean domain.

```
#include <aerobus.h>
```

4.1.1 Concept definition

```
template<typename R>
concept aerobus::IsEuclideanDomain = IsRing<R> && requires {
            typename R::template div_t<typename R::one, typename R::one>;
            typename R::template mod_t<typename R::one, typename R::one>;
            typename R::template gcd_t<typename R::one, typename R::one>;
            typename R::template eq_t<typename R::one, typename R::one>;
            typename R::template pos_t<typename R::one>;
            R::template pos_t<typename R::one> == true;
            R::is_euclidean_domain == true;
}
```

4.1.2 Detailed Description

Concept to express R is an euclidean domain.

4.2 aerobus::IsField Concept Reference

Concept to express R is a field.

```
#include <aerobus.h>
```

4.2.1 Concept definition

```
template<typename R>
concept aerobus::IsField = IsEuclideanDomain<R> && requires {
          R::is_field == true;
}
```

4.2.2 Detailed Description

Concept to express R is a field.

4.3 aerobus::IsRing Concept Reference

Concept to express R is a Ring (ordered)

```
#include <aerobus.h>
```

4.3.1 Concept definition

```
template < typename R>
concept aerobus::IsRing = requires {
    typename R::one;
    typename R:zero;
    typename R::template add_t < typename R::one, typename R::one>;
    typename R::template sub_t < typename R::one, typename R::one>;
    typename R::template mul_t < typename R::one, typename R::one>;
}
```

4.3.2 Detailed Description

Concept to express R is a Ring (ordered)

Chapter 5

Class Documentation

5.1 aerobus::polynomial< Ring >::val< coeffN >::coeff_at< index, E > Struct Template Reference

The documentation for this struct was generated from the following file:

- src/aerobus.h
- 5.2 aerobus::polynomial< Ring >::val< coeffN >::coeff_at< index, std::enable_if_t<(index< 0||index>0> > Struct Template Reference

Public Types

• using type = typename Ring::zero

The documentation for this struct was generated from the following file:

- src/aerobus.h
- 5.3 aerobus::polynomial< Ring >::val< coeffN >::coeff_at< index, std::enable if t<(index==0)> > Struct Template Reference

Public Types

• using type = aN

The documentation for this struct was generated from the following file:

src/aerobus.h

5.4 aerobus::ContinuedFraction< values > Struct Template Reference

```
represents a continued fraction a0 + 1/(a1 + 1/(...))
#include <aerobus.h>
```

5.4.1 Detailed Description

```
template < int64_t... values > struct aerobus::ContinuedFraction < values > represents a continued fraction a0 + 1/(a1 + 1/(...))
Template Parameters
```

are aerobus::i64

The documentation for this struct was generated from the following file:

• src/aerobus.h

...values

5.5 aerobus::ContinuedFraction < a0 > Struct Template Reference

Specialization for only one coefficient, technically just 'a0'.

```
#include <aerobus.h>
```

Public Types

using type = typename q64::template inject_constant_t< a0 >

Static Public Attributes

• static constexpr double val = type::template get<double>()

5.5.1 Detailed Description

```
template<int64_t a0> struct aerobus::ContinuedFraction< a0 >
```

Specialization for only one coefficient, technically just 'a0'.

Template Parameters

```
a0 an integer (aerobus::i64)
```

The documentation for this struct was generated from the following file:

· src/aerobus.h

5.6 aerobus::ContinuedFraction< a0, rest... > Struct Template Reference

specialization for multiple coefficients (strictly more than one)

```
#include <aerobus.h>
```

Public Types

• using **type** = q64::template add_t< typename q64::template inject_constant_t< a0 >, typename q64::template div_t< typename q64::one, typename ContinuedFraction< rest... >::type >>

Static Public Attributes

• static constexpr double **val** = type::template get<double>()

5.6.1 Detailed Description

```
template<int64_t a0, int64_t... rest> struct aerobus::ContinuedFraction< a0, rest... >
```

specialization for multiple coefficients (strictly more than one)

Template Parameters

a0	an integer (aerobus::i64)
rest	integers (aerobus::i64)

The documentation for this struct was generated from the following file:

src/aerobus.h

5.7 aerobus::i32 Struct Reference

32 bits signed integers, seen as a algebraic ring with related operations

```
#include <aerobus.h>
```

Classes

struct val

values in i32, again represented as types

Public Types

```
• using inner_type = int32_t
• using zero = val < 0 >
     constant zero
• using one = val< 1 >
     constant one

    template<auto x>

  using inject_constant_t = val< static_cast< int32_t >(x)>

    template<typename v >

 using inject_ring_t = v

    template<typename v1 , typename v2 >

  using add_t = typename add< v1, v2 >::type
• template<typename v1 , typename v2 >
  using sub_t = typename sub< v1, v2 >::type
• template<typename v1 , typename v2 >
  using mul_t = typename mul < v1, v2 >::type
• template<typename v1 , typename v2 >
  using div_t = typename div< v1, v2 >::type
• template<typename v1 , typename v2 >
  using mod_t = typename remainder < v1, v2 >::type
     modulus operator yields v1 % v2 for example : i32::mod_t<i32::val<7>, i32::val<2>>
• template<typename v1 , typename v2 >
  using gt_t = typename gt< v1, v2 >::type
• template<typename v1 , typename v2 >
 using lt_t = typename lt < v1, v2 >::type

    template<typename v1, typename v2 >

 using eq_t = typename eq< v1, v2 >::type
• template<typename v1 , typename v2 >
  using gcd_t = gcd_t < i32, v1, v2 >

    template<typename v >

  using pos_t = typename pos< v >::type
```

Static Public Attributes

```
• static constexpr bool is_field = false
```

integers are not a field

• static constexpr bool is_euclidean_domain = true

integers are an euclidean domain

```
    template<typename v1 , typename v2 >
        static constexpr bool eq_v = eq_t<v1, v2>::value
    template<typename v >
        static constexpr bool pos_v = pos_t<v>::value
```

5.7.1 Detailed Description

32 bits signed integers, seen as a algebraic ring with related operations

5.7.2 Member Typedef Documentation

5.7.2.1 mod t

Template Parameters

v1	a value in i32
v2	a value in i32

The documentation for this struct was generated from the following file:

· src/aerobus.h

5.8 aerobus::i64 Struct Reference

64 bits signed integers, seen as a algebraic ring with related operations

```
#include <aerobus.h>
```

Classes

• struct val

Public Types

```
• using inner_type = int64_t
     type for actual values

    template<auto x>

  using inject_constant_t = val< static_cast< int64_t >(x)>

    template<typename v >

 using inject_ring_t = v
     injects a value used for internal consistency and quotient rings implementations for example i64::inject_ring_t<i64↔
     ::val<1>> -> i64::val<1>

    using zero = val < 0 >

     constant zero
• using one = val< 1 >
     constant one
• template<typename v1 , typename v2 >
 using add_t = typename add< v1, v2 >::type
• template<typename v1 , typename v2 >
  using sub_t = typename sub< v1, v2 >::type
```

```
• template<typename v1 , typename v2 >
  using mul_t = typename mul < v1, v2 >::type
• template<typename v1 , typename v2 >
  using div_t = typename div < v1, v2 >::type

    template<typename v1 , typename v2 >

  using mod_t = typename remainder < v1, v2 >::type
• template<typename v1 , typename v2 >
  using gt_t = typename gt< v1, v2 >::type
• template<typename v1 , typename v2 >
 using It_t = typename It< v1, v2 >::type
• template<typename v1 , typename v2 >
 using eq_t = typename eq< v1, v2 >::type

    template<typename v1 , typename v2 >

 using gcd_t = gcd_t < i64, v1, v2 >

    template<typename v >

  using pos_t = typename pos< v >::type
```

Static Public Attributes

static constexpr bool is_field = false

integers are not a field

• static constexpr bool is euclidean domain = true

integers are an euclidean domain

template < typename v1, typename v2 >
 static constexpr bool gt_v = gt_t < v1, v2 > ::value
 strictly greater operator yields v1 > v2 as boolean value

template<typename v1 , typename v2 >
 static constexpr bool It_v = It_t<v1, v2>::value

template<typename v1 , typename v2 >
 static constexpr bool eq_v = eq_t<v1, v2>::value

template<typename v > static constexpr bool pos_v = pos_t<v>::value

5.8.1 Detailed Description

64 bits signed integers, seen as a algebraic ring with related operations

5.8.2 Member Typedef Documentation

5.8.2.1 inject_ring_t

```
template<typename v >
using aerobus::i64::inject_ring_t = v
```

injects a value used for internal consistency and quotient rings implementations for example i64::inject_ring_t<i64 \leftarrow ::val<1>> -> i64::val<1>

Template Parameters

v a value in i64

5.8.3 Member Data Documentation

5.8.3.1 gt_v

```
template<typename v1 , typename v2 > constexpr bool aerobus::i64::gt_v = gt_t<v1, v2>::value [static], [constexpr]
```

strictly greater operator yields v1 > v2 as boolean value

Template Parameters

v1	: an element of aerobus::i64::val
v2	: an element of aerobus::i64::val

The documentation for this struct was generated from the following file:

• src/aerobus.h

5.9 aerobus::is_prime< n > Struct Template Reference

checks if n is prime

```
#include <aerobus.h>
```

Static Public Attributes

static constexpr bool value = internal::_is_prime<n, 5>::value
 true iff n is prime

5.9.1 Detailed Description

$$\label{eq:continuous_size_t} \begin{split} \text{template} &< \text{size_t n} > \\ \text{struct aerobus::is_prime} &< \text{n} > \end{split}$$

checks if n is prime

Template Parameters

The documentation for this struct was generated from the following file:

• src/aerobus.h

5.10 aerobus::polynomial < Ring > Struct Template Reference

```
#include <aerobus.h>
```

Classes

```
    struct val
        values (seen as types) in polynomial ring
    struct val < coeffN >
        specialization for constants
```

Public Types

```
• using zero = val< typename Ring::zero >
     constant zero
• using one = val< typename Ring::one >
     constant one
• using X = val< typename Ring::one, typename Ring::zero >
     generator
• template<typename P >
  using simplify_t = typename simplify< P >::type
     simplifies a polynomial (recursively deletes highest degree if zero, do nothing otherwise)
• template<typename v1 , typename v2 >
  using add_t = typename add< v1, v2 >::type
     adds two polynomials
• template<typename v1 , typename v2 >
  using sub_t = typename sub< v1, v2 >::type
     substraction of two polynomials
• template<typename v1 , typename v2 >
  using mul t = typename mul < v1, v2 >::type
     multiplication of two polynomials
• template<typename v1 , typename v2 >
  using eq_t = typename eq_helper< v1, v2 >::type
     equality operator

    template<typename v1 , typename v2 >

  using lt_t = typename lt_helper< v1, v2 >::type
     strict less operator

    template<typename v1 , typename v2 >

  using gt_t = typename gt_helper< v1, v2 >::type
     strict greater operator
• template<typename v1 , typename v2 >
  using div_t = typename div < v1, v2 >::q_type
     division operator
• template<typename v1 , typename v2 >
  using mod_t = typename div_helper< v1, v2, zero, v1 >::mod_type
     modulo operator
• template<typename coeff , size_t deg>
  using monomial_t = typename monomial < coeff, deg >::type
     monomial : coeff X^{\wedge} deg
• template<typename v >
  using derive_t = typename derive_helper< v >::type
```

```
derivation operator
```

```
    template < typename v >
        using pos_t = typename Ring::template pos_t < typename v::aN >
            checks for positivity (an > 0)
    template < typename v1 , typename v2 >
        using gcd_t = std::conditional_t < Ring::is_euclidean_domain, typename make_unit < gcd_t < polynomial < Ring >, v1, v2 > >::type, void >
            greatest common divisor of two polynomials
    template < auto x >
        using inject_constant_t = val < typename Ring::template inject_constant_t < x > >
        using inject_ring_t = val < v >
        using inject_ring_t = val < v >
```

Static Public Attributes

- static constexpr bool is_field = false
- static constexpr bool is euclidean domain = Ring::is euclidean domain
- template < typename v >
 static constexpr bool pos_v = pos_t < v > ::value
 positivity operator

5.10.1 Detailed Description

```
template<typename Ring>
requires IsEuclideanDomain<Ring>
struct aerobus::polynomial< Ring >
```

polynomial with coefficients in Ring Ring must be an integral domain

5.10.2 Member Typedef Documentation

5.10.2.1 add_t

```
template<typename Ring >
template<typename v1 , typename v2 >
using aerobus::polynomial< Ring >::add_t = typename add<v1, v2>::type
```

adds two polynomials

Template Parameters

v1	
v2	

5.10.2.2 derive_t

 ${\tt template}{<}{\tt typename~Ring~>}$

```
template<typename v >
using aerobus::polynomial< Ring >::derive_t = typename derive_helper<v>::type
```

derivation operator

Template Parameters

```
V
```

5.10.2.3 div_t

```
template<typename Ring >
template<typename v1 , typename v2 >
using aerobus::polynomial< Ring >::div_t = typename div<v1, v2>::q_type
```

division operator

Template Parameters

v1	
v2	

5.10.2.4 eq t

```
template<typename Ring >
template<typename v1 , typename v2 >
using aerobus::polynomial< Ring >::eq_t = typename eq_helper<v1, v2>::type
```

equality operator

Template Parameters

v1	
v2	

5.10.2.5 gcd_t

```
template<typename Ring >
template<typename v1 , typename v2 >
using aerobus::polynomial< Ring >::gcd_t = std::conditional_t< Ring::is_euclidean_domain,
typename make_unit<gcd_t<polynomial<Ring>, v1, v2> >::type, void>
```

greatest common divisor of two polynomials

Template Parameters

v1	
v2	

5.10.2.6 gt_t

```
template<typename Ring >
template<typename v1 , typename v2 >
using aerobus::polynomial< Ring >::gt_t = typename gt_helper<v1, v2>::type
```

strict greater operator

Template Parameters

v1	
v2	

5.10.2.7 lt_t

```
template<typename Ring >
template<typename v1 , typename v2 >
using aerobus::polynomial< Ring >::lt_t = typename lt_helper<v1, v2>::type
```

strict less operator

Template Parameters

v1	
v2	

5.10.2.8 mod_t

```
template<typename Ring >
template<typename v1 , typename v2 >
using aerobus::polynomial< Ring >::mod_t = typename div_helper<v1, v2, zero, v1>::mod_type
```

modulo operator

Template Parameters

v1	
v2	

5.10.2.9 monomial_t

```
template<typename Ring >
template<typename coeff , size_t deg>
using aerobus::polynomial< Ring >::monomial_t = typename monomial<coeff, deg>::type
```

monomial : coeff X^deg

Template Parameters

coeff	
deg	

5.10.2.10 mul_t

```
template<typename Ring >
template<typename v1 , typename v2 >
using aerobus::polynomial< Ring >::mul_t = typename mul<v1, v2>::type
```

multiplication of two polynomials

Template Parameters

v1	
v2	

5.10.2.11 pos_t

```
template<typename Ring >
template<typename v >
using aerobus::polynomial< Ring >::pos_t = typename Ring::template pos_t<typename v::aN>
```

checks for positivity (an > 0)

Template Parameters

5.10.2.12 simplify_t

```
template<typename Ring >
template<typename P >
using aerobus::polynomial< Ring >::simplify_t = typename simplify<P>::type
```

simplifies a polynomial (recursively deletes highest degree if zero, do nothing otherwise)

Template Parameters

P	

5.10.2.13 sub_t

 ${\tt template}{<}{\tt typename~Ring~>}$

```
template<typename v1 , typename v2 >
using aerobus::polynomial< Ring >::sub_t = typename sub<v1, v2>::type
```

substraction of two polynomials

Template Parameters

v1	
v2	

5.10.3 Member Data Documentation

5.10.3.1 pos_v

```
template<typename Ring >
template<typename v >
constexpr bool aerobus::polynomial< Ring >::pos_v = pos_t<v>::value [static], [constexpr]
```

positivity operator

Template Parameters

```
v a value in polynomial::val
```

The documentation for this struct was generated from the following file:

• src/aerobus.h

5.11 aerobus::type_list< Ts >::pop_front Struct Reference

removes types from head of the list

```
#include <aerobus.h>
```

Public Types

- using type = typename internal::pop_front_h< Ts... >::head
 type that was previously head of the list
- using **tail** = typename internal::pop_front_h< Ts... >::tail remaining types in parent list when front is removed

5.11.1 Detailed Description

```
template<typename... Ts> struct aerobus::type_list< Ts >::pop_front
```

removes types from head of the list

The documentation for this struct was generated from the following file:

• src/aerobus.h

5.12 aerobus::Quotient < Ring, X > Struct Template Reference

Quotient ring by the principal ideal generated by 'X' With i32 as Ring and i32::val<2> as X, Quotient is Z/2Z.

```
#include <aerobus.h>
```

Classes

struct val

projection values in the quotient ring

Public Types

```
• using zero = val< typename Ring::zero >
     zero value
• using one = val< typename Ring::one >
     one
• template<typename v1 , typename v2 >
  using add_t = val< typename Ring::template add_t< typename v1::type, typename v2::type > >
     addition operator
• template<typename v1, typename v2 >
  using mul_t = val < typename Ring::template mul_t < typename v1::type, typename v2::type > >
     substraction operator

    template<typename v1 , typename v2 >

  using div t = val < typename Ring::template div t < typename v1::type, typename v2::type > >
     division operator
• template<typename v1 , typename v2 >
  using mod t = val< typename Ring::template mod t< typename v1::type, typename v2::type >>
     modulus operator

    template<typename v1 , typename v2 >

  using eq_t = typename Ring::template eq_t< typename v1::type, typename v2::type >
     equality operator (as type)
template<typename v1 >
  using pos_t = std::true_type
     positivity operator always true

    template<auto x>

  using inject_constant_t = val< typename Ring::template inject_constant_t < x >>

    template<typename v >

  using inject_ring_t = val< v >
```

Static Public Attributes

```
    template<typename v1 , typename v2 >
        static constexpr bool eq_v = Ring::template eq_t<typename v1::type, typename v2::type>::value
        addition operator (as boolean value)
    template<typename v >
        static constexpr bool pos_v = pos_t<v>::value
        positivity operator always true
    static constexpr bool is_euclidean_domain = true
```

quotien rings are euclidean domain

5.12.1 Detailed Description

```
template<typename Ring, typename X> requires IsRing<Ring> struct aerobus::Quotient< Ring, X >
```

Quotient ring by the principal ideal generated by 'X' With i32 as Ring and i32::val<2> as X, Quotient is Z/2Z.

Template Parameters

Ring	A ring type, such as 'i32', must satisfy the IsRing concept
X	a value in Ring, such as i32::val<2>

5.12.2 Member Typedef Documentation

5.12.2.1 add_t

```
template<typename Ring , typename X >
template<typename v1 , typename v2 >
using aerobus::Quotient< Ring, X >::add_t = val<typename Ring::template add_t<typename v1::type,
typename v2::type> >
```

addition operator

Template Parameters

v1	a value in quotient ring
v2	a value in quotient ring

5.12.2.2 div_t

```
template<typename Ring , typename X >
template<typename v1 , typename v2 >
using aerobus::Quotient< Ring, X >::div_t = val<typename Ring::template div_t<typename v1::type,
typename v2::type> >
```

division operator

Template Parameters

v1	a value in quotient ring
v2	a value in quotient ring

5.12.2.3 eq_t

```
template<typename Ring , typename X > template < typename v1 , typename v2 >
```

```
using aerobus::Quotient< Ring, X >::eq_t = typename Ring::template eq_t<typename v1::type, typename v2::type>
```

equality operator (as type)

Template Parameters

v1	a value in quotient ring
v2	a value in quotient ring

5.12.2.4 mod_t

```
template<typename Ring , typename X >
template<typename v1 , typename v2 >
using aerobus::Quotient< Ring, X >::mod_t = val<typename Ring::template mod_t<typename v1::type,
typename v2::type> >
```

modulus operator

Template Parameters

v1	a value in quotient ring
v2	a value in quotient ring

5.12.2.5 mul_t

```
template<typename Ring , typename X >
template<typename v1 , typename v2 >
using aerobus::Quotient< Ring, X >::mul_t = val<typename Ring::template mul_t<typename v1::type,
typename v2::type> >
```

substraction operator

Template Parameters

v1	a value in quotient ring	
v2	a value in quotient ring	

5.12.2.6 pos_t

```
template<typename Ring , typename X >
template<typename v1 >
using aerobus::Quotient< Ring, X >::pos_t = std::true_type
```

positivity operator always true

Template Parameters

```
v1 a value in quotient ring
```

5.12.3 Member Data Documentation

5.12.3.1 eq v

```
template<typename Ring , typename X >
template<typename v1 , typename v2 >
constexpr bool aerobus::Quotient< Ring, X >::eq_v = Ring::template eq_t<typename v1::type,
typename v2::type>::value [static], [constexpr]
```

addition operator (as boolean value)

Template Parameters

v1	a value in quotient ring
v2	a value in quotient ring

5.12.3.2 pos_v

```
\label{template} $$ \end{template} $$ $$ \end{template} $$$ \end{template} $$ \end{template} $$ \end{template} $$$ \end{template} $$ \en
```

positivity operator always true

Template Parameters

```
v1 a value in quotient ring
```

The documentation for this struct was generated from the following file:

• src/aerobus.h

5.13 aerobus::type_list< Ts >::split< index > Struct Template Reference

splits list at index

```
#include <aerobus.h>
```

Public Types

- using **head** = typename inner::head
- using tail = typename inner::tail

5.13.1 Detailed Description

```
template<typename... Ts>
template<size_t index>
struct aerobus::type_list< Ts >::split< index >
splits list at index

Template Parameters

index
```

The documentation for this struct was generated from the following file:

· src/aerobus.h

5.14 aerobus::type_list< Ts > Struct Template Reference

Empty pure template struct to handle type list.

Classes

struct pop_front
 removes types from head of the list
 struct split
 splits list at index

Public Types

```
\bullet \ \ template\!<\!typename\ T>
  using push_front = type_list< T, Ts... >
      Adds T to front of the list.
template<size t index>
  using at = internal::type_at_t< index, Ts... >
     returns type at index
• template<typename T >
  using push_back = type_list< Ts..., T >
     pushes T at the tail of the list
• template<typename U >
  using concat = typename concat_h< U >::type
     concatenates two list into one
• template<typename T , size_t index>
  using insert = typename internal::insert_h< index, type_list< Ts... >, T >::type
     inserts type at index
template<size_t index>
  using remove = typename internal::remove_h< index, type_list< Ts... > >::type
     removes type at index
```

Static Public Attributes

static constexpr size_t length = sizeof...(Ts)
 length of list

5.14.1 Detailed Description

```
template<typename... Ts> struct aerobus::type_list< Ts >
```

Empty pure template struct to handle type list.

5.14.2 Member Typedef Documentation

5.14.2.1 at

```
template<typename... Ts>
template<size_t index>
using aerobus::type_list< Ts >::at = internal::type_at_t<index, Ts...>
```

returns type at index

Template Parameters

5.14.2.2 concat

```
template<typename... Ts>
template<typename U >
using aerobus::type_list< Ts >::concat = typename concat_h<U>::type
```

concatenates two list into one

Template Parameters

5.14.2.3 insert

```
template<typename... Ts>
template<typename T , size_t index>
using aerobus::type_list< Ts >::insert = typename internal::insert_h<index, type_list<Ts...>,
T>::type
```

inserts type at index

Template Parameters

index	
T	

5.14.2.4 push back

```
template<typename... Ts>
template<typename T >
using aerobus::type_list< Ts >::push_back = type_list<Ts..., T>
```

pushes T at the tail of the list

Template Parameters

5.14.2.5 push_front

```
template<typename... Ts>
template<typename T >
using aerobus::type_list< Ts >::push_front = type_list<T, Ts...>
```

Adds T to front of the list.

Template Parameters

5.14.2.6 remove

```
template<typename... Ts>
template<size_t index>
using aerobus::type_list< Ts >::remove = typename internal::remove_h<index, type_list<Ts...>
>::type
```

removes type at index

Template Parameters

The documentation for this struct was generated from the following file:

• src/aerobus.h

5.15 aerobus::type_list<> Struct Reference

specialization for empty type list

```
#include <aerobus.h>
```

Public Types

```
    template < typename T > using push_front = type_list < T >
    template < typename T > using push_back = type_list < T >
    template < typename U > using concat = U
    template < typename T, size_t index > using insert = type_list < T >
```

Static Public Attributes

• static constexpr size_t length = 0

5.15.1 Detailed Description

specialization for empty type list

The documentation for this struct was generated from the following file:

• src/aerobus.h

5.16 aerobus::i32::val < x > Struct Template Reference

```
values in i32, again represented as types
```

```
#include <aerobus.h>
```

Public Types

```
    using ring_type = i32
        Enclosing ring type.

    using is_zero_t = std::bool_constant< x==0 >
        is value zero
```

Static Public Member Functions

```
    template<typename valueType > static constexpr valueType get ()
        cast x into valueType
    static std::string to_string ()
        string representation of value
    template<typename valueRing > static constexpr valueRing eval (const valueRing &v)
        cast x into valueRing
```

Static Public Attributes

static constexpr int32_t v = x
 actual value stored in val type

5.16.1 Detailed Description

```
template<int32_t x>
struct aerobus::i32::val< x>
values in i32, again represented as types

Template Parameters

x an actual integer
```

5.16.2 Member Function Documentation

5.16.2.1 eval()

cast x into valueRing

Template Parameters

```
valueRing double for example
```

5.16.2.2 get()

```
template<int32_t x>
template<typename valueType >
static constexpr valueType aerobus::i32::val< x >::get ( ) [inline], [static], [constexpr]
```

cast x into valueType

Template Parameters

```
valueType | double for example
```

The documentation for this struct was generated from the following file:

• src/aerobus.h

5.17 aerobus::i64::val< x > Struct Template Reference

```
values in i64
```

```
#include <aerobus.h>
```

Public Types

Static Public Member Functions

```
    template<typename valueType > static constexpr valueType get ()
        cast value in valueType
    static std::string to_string ()
        string representation
    template<typename valueRing > static constexpr valueRing eval (const valueRing &v)
        cast value in valueRing
```

Static Public Attributes

```
    static constexpr int64_t v = x
    actual value
```

5.17.1 Detailed Description

```
template<int64_t x>
struct aerobus::i64::val< x>
values in i64
```

32 Class Documentation

Template Parameters

```
x an actual integer
```

5.17.2 Member Function Documentation

5.17.2.1 eval()

cast value in valueRing

Template Parameters

```
valueRing (double for example)
```

5.17.2.2 get()

```
template<int64_t x>
template<typename valueType >
static constexpr valueType aerobus::i64::val< x >::get ( ) [inline], [static], [constexpr]
```

cast value in valueType

Template Parameters

```
valueType (double for example)
```

The documentation for this struct was generated from the following file:

• src/aerobus.h

5.18 aerobus::polynomial< Ring >::val< coeffN, coeffs > Struct Template Reference

values (seen as types) in polynomial ring

```
#include <aerobus.h>
```

Public Types

```
    using ring_type = polynomial < Ring >
        enclosing ring type
    using aN = coeffN
        heavy weight coefficient (non zero)
    using strip = val < coeffs... >
        remove largest coefficient
    using is_zero_t = std::bool_constant < (degree==0) &&(aN::is_zero_t::value) >
        true_type if polynomial is constant zero
    template < size_t index >
        using coeff_at_t = typename coeff_at < index > ::type
        type of coefficient at index
```

Static Public Member Functions

static std::string to_string ()
 get a string representation of polynomial

template<typename valueRing >
 static constexpr valueRing eval (const valueRing &x)

evaluates polynomial seen as a function operating on ValueRing

Static Public Attributes

static constexpr size_t degree = sizeof...(coeffs)
 degree of the polynomial
 static constexpr bool is_zero_v = is_zero_t::value

true if polynomial is constant zero

5.18.1 Detailed Description

```
template<typename Ring>
template<typename coeffN, typename... coeffs>
struct aerobus::polynomial< Ring >::val< coeffN, coeffs >
values (seen as types) in polynomial ring
```

coeffN	high degree coefficient
coeffs	lower degree coefficients

5.18.2 Member Typedef Documentation

5.18.2.1 coeff at t

Template Parameters

```
template<typename Ring >
template<typename coeffN , typename... coeffs>
```

34 Class Documentation

```
template<size_t index>
using aerobus::polynomial< Ring >::val< coeffN, coeffs >::coeff_at_t = typename coeff_
at<index>::type
```

type of coefficient at index

Template Parameters

5.18.3 Member Function Documentation

5.18.3.1 eval()

evaluates polynomial seen as a function operating on ValueRing

Template Parameters

valueRing	usually float or double
-----------	-------------------------

Parameters

```
x value
```

Returns

P(x)

5.18.3.2 to_string()

```
template<typename Ring >
template<typename coeffN , typename... coeffs>
static std::string aerobus::polynomial< Ring >::val< coeffN, coeffs >::to_string () [inline],
[static]
```

get a string representation of polynomial

Returns

```
something like a_n X^n + ... + a_1 X + a_0
```

The documentation for this struct was generated from the following file:

• src/aerobus.h

5.19 aerobus::Quotient < Ring, X>::val < V> Struct Template Reference

projection values in the quotient ring

```
#include <aerobus.h>
```

Public Types

using type = abs_t< typename Ring::template mod_t< V, X >>

5.19.1 Detailed Description

```
template<typename Ring, typename X>
template<typename V>
struct aerobus::Quotient< Ring, X >::val< V >
projection values in the quotient ring
```

Template Parameters

```
V a value from 'Ring'
```

The documentation for this struct was generated from the following file:

· src/aerobus.h

5.20 aerobus::zpz::val< x > Struct Template Reference

Public Types

```
    using ring_type = zpz
        enclosing ring type
    using is zero t = std::bool constant< x% p==0 >
```

Static Public Member Functions

```
    template<typename valueType > static constexpr valueType get ()
    static std::string to_string ()
    template<typename valueRing > static constexpr valueRing eval (const valueRing &v)
```

Static Public Attributes

```
    static constexpr int32_t v = x % p
```

The documentation for this struct was generated from the following file:

• src/aerobus.h

36 Class Documentation

5.21 aerobus::polynomial< Ring >::val< coeffN > Struct Template Reference

specialization for constants

```
#include <aerobus.h>
```

Classes

- struct coeff_at
- struct coeff_at < index, std::enable_if_t < (index < 0 || index > 0) > >
- struct coeff at< index, std::enable if t<(index==0)>>

Public Types

```
    using ring_type = polynomial < Ring >
        enclosing ring type
    using aN = coeffN
    using strip = val < coeffN >
        using is_zero_t = std::bool_constant < aN::is_zero_t::value >
        template < size_t index>
```

using coeff_at_t = typename coeff_at< index >::type

Static Public Member Functions

- static std::string to_string ()
- template < typename valueRing >
 static constexpr valueRing eval (const valueRing &x)

Static Public Attributes

```
static constexpr size_t degree = 0
degree
```

• static constexpr bool is_zero_v = is_zero_t::value

5.21.1 Detailed Description

```
template < typename Ring > template < typename coeffN > struct aerobus::polynomial < Ring >::val < coeffN > specialization for constants

Template Parameters

CoeffN
```

The documentation for this struct was generated from the following file:

· src/aerobus.h

5.22 aerobus::zpz Struct Template Reference

```
#include <aerobus.h>
```

Classes

struct val

Public Types

```
using inner_type = int32 t

    template<auto x>

  using inject_constant_t = val< static_cast< int32_t >(x)>
• using zero = val< 0 >
• using one = val< 1 >
• template < typename v1 , typename v2 >
  using add_t = typename add< v1, v2 >::type
     addition operator

    template<typename v1 , typename v2 >

  using sub t = typename sub < v1, v2 >::type
     substraction operator
• template<typename v1 , typename v2 >
  using mul_t = typename mul < v1, v2 >::type
     multiplication operator
• template<typename v1 , typename v2 >
  using div_t = typename div < v1, v2 >::type
     division operator
• template<typename v1 , typename v2 >
  using mod_t = typename remainder < v1, v2 >::type
     modulo operator
• template<typename v1 , typename v2 >
  using gt_t = typename gt < v1, v2 >::type
     strictly greater operator (type)

    template<typename v1 , typename v2 >

  using It_t = typename It < v1, v2 >::type
     strictly smaller operator (type)
• template<typename v1 , typename v2 >
  using eq_t = typename eq< v1, v2 >::type
     equality operator (type)

    template<typename v1 , typename v2 >

  using gcd_t = gcd_t < i32, v1, v2 >
     greatest common divisor
template<typename v1 >
  using pos_t = typename pos< v1 >::type
     positivity operator (type)
```

38 Class Documentation

Static Public Attributes

5.22.1 Detailed Description

```
template<int32_t p>
struct aerobus::zpz
```

congruence classes of integers for a modulus if p is prime, zpz is a field, otherwise an integral domain with all related operations

5.22.2 Member Typedef Documentation

5.22.2.1 add t

```
template<int32_t p>
template<typename v1 , typename v2 >
using aerobus::zpz::add_t = typename add<v1, v2>::type
```

addition operator

Template Parameters

v1	a value in zpz::val
v2	a value in zpz::val

5.22.2.2 div_t

```
template<int32_t p>
template<typename v1 , typename v2 >
using aerobus::zpz::div_t = typename div<v1, v2>::type
```

division operator

Template Parameters

v1	a value in zpz::val
v2	a value in zpz::val

5.22.2.3 eq_t

```
template<int32_t p>
template<typename v1 , typename v2 >
using aerobus::zpz::eq_t = typename eq<v1, v2>::type
```

equality operator (type)

Template Parameters

v1	a value in zpz::val
v2	a value in zpz::val

5.22.2.4 gcd_t

```
template<iint32_t p>
template<typename v1 , typename v2 >
using aerobus::zpz::gcd_t = gcd_t<i32, v1, v2>
```

greatest common divisor

Template Parameters

v1	a value in zpz::val
v2	a value in zpz::val

5.22.2.5 gt_t

```
template<int32_t p>
template<typename v1 , typename v2 >
using aerobus::zpz::gt_t = typename gt<v1, v2>::type
```

strictly greater operator (type)

Template Parameters

v1	a value in zpz::val
v2	a value in zpz::val

40 Class Documentation

5.22.2.6 lt_t

```
template<int32_t p>
template<typename v1 , typename v2 >
using aerobus::zpz::lt_t = typename lt<v1, v2>::type
```

strictly smaller operator (type)

Template Parameters

v1	a value in zpz::val
v2	a value in zpz::val

5.22.2.7 mod_t

```
template<int32_t p>
template<typename v1 , typename v2 >
using aerobus::zpz::mod_t = typename remainder<v1, v2>::type
```

modulo operator

Template Parameters

v1	a value in zpz::val
v2	a value in zpz::val

5.22.2.8 mul t

```
template<int32_t p>
template<typename v1 , typename v2 >
using aerobus::zpz::mul_t = typename mul<v1, v2>::type
```

multiplication operator

Template Parameters

v1	a value in zpz::val
v2	a value in zpz::val

5.22.2.9 pos_t

```
template<iint32_t p>
template<typename v1 >
using aerobus::zpz::pos_t = typename pos<v1>::type
```

positivity operator (type)

Template Parameters

```
v1 a value in zpz::val
```

5.22.2.10 sub t

```
template<int32_t p>
template<typename v1 , typename v2 >
using aerobus::zpz::sub_t = typename sub<v1, v2>::type
```

substraction operator

Template Parameters

v1	a value in zpz::val
v2	a value in zpz::val

5.22.3 Member Data Documentation

5.22.3.1 eq_v

```
template<int32_t p>
template<typename v1 , typename v2 >
constexpr bool aerobus::zpz::eq_v = eq_t<v1, v2>::value [static], [constexpr]
```

equality operator (booleanvalue)

Template Parameters

v1	a value in zpz::val
v2	a value in zpz::val

5.22.3.2 gt_v

```
template<int32_t p>
template<typename v1 , typename v2 >
constexpr bool aerobus::zpz::gt_v = gt_t<v1, v2>::value [static], [constexpr]
```

strictly greater operator (booleanvalue)

Template Parameters

v1	a value in zpz::val
v2	a value in zpz::val

42 Class Documentation

5.22.3.3 lt_v

```
template<int32_t p>
template<typename v1 , typename v2 >
constexpr bool aerobus::zpz::lt_v = lt_t<v1, v2>::value [static], [constexpr]
```

strictly smaller operator (booleanvalue)

Template Parameters

v1	a value in zpz::val
v2	a value in zpz::val

5.22.3.4 pos_v

```
template<int32_t p>
template<typename v >
constexpr bool aerobus::zpz::pos_v = pos_t<v>::value [static], [constexpr]
```

positivity operator (boolean value)

Template Parameters

```
v1 a value in zpz::val
```

The documentation for this struct was generated from the following file:

• src/aerobus.h

Chapter 6

File Documentation

6.1 src/aerobus.h File Reference

```
#include <cstdint>
#include <cstddef>
#include <cstring>
#include <type_traits>
#include <utility>
#include <algorithm>
#include <functional>
#include <string>
#include <concepts>
#include <array>
Include dependency graph for aerobus.h:
```

6.2 aerobus.h

Go to the documentation of this file.

```
00001 // -*- lsst-c++ -*-
00002 #ifndef __INC_AEROBUS__ // NOLINT
00003 #define __INC_AEROBUS_
00005 #include <cstdint>
00006 #include <cstddef>
00007 #include <cstring>
00008 #include <type_traits>
00009 #include <utility>
00010 #include <algorithm>
00011 #include <functional>
00012 #include <string>
00013 #include <concepts> // NOLINT
00014 #include <array>
00015
00016
00017 #ifdef _MSC_VER
00018 #define ALIGNED(x) __declspec(align(x))
00019 #define INLINED __forceinline
00020 #else
00021 #define ALIGNED(x) __attribute__((aligned(x)))
00022 #define INLINED __attribute__((always_inline)) inline
00023 #endif
00024
00027
00028 // aligned allocation
00029 namespace aerobus {
00036 template<typename T>
00037 T* aligned_malloc(size_t count, size_t alignment) {
                    #ifdef _MSC_VER
```

```
return static_cast<T*>(_aligned_malloc(count * sizeof(T), alignment));
00040
00041
               return static_cast<T*>(aligned_alloc(alignment, count * sizeof(T)));
00042
               #endif
00043
00044 } // namespace aerobus
00046 // concepts
00047 namespace aerobus {
00049
          template <typename R>
00050
          concept IsRing = requires {
00051
              typename R::one;
00052
               typename R::zero;
00053
               typename R::template add_t<typename R::one, typename R::one>;
00054
               typename R::template sub_t<typename R::one, typename R::one>;
00055
              typename R::template mul_t<typename R::one, typename R::one>;
00056
          };
00057
00059
          template <typename R>
00060
          concept IsEuclideanDomain = IsRing<R> && requires {
00061
               typename R::template div_t<typename R::one, typename R::one>;
00062
               typename R::template mod_t<typename R::one, typename R::one>;
              typename R::template gcd_t<typename R::one, typename R::one>;
typename R::template eq_t<typename R::one, typename R::one>;
00063
00064
00065
              typename R::template pos_t<typename R::one>;
00066
              R::template pos_v<typename R::one> == true;
00067
00068
               // typename R::template gt_t<typename R::one, typename R::zero>;
00069
              R::is_euclidean_domain == true;
00070
          };
00071
00073
          template<typename R>
00074
          concept IsField = IsEuclideanDomain<R> && requires {
00075
              R::is_field == true;
00076
00077 }
         // namespace aerobus
00078
00079 // utilities
00080 namespace aerobus {
00081
         namespace internal {
00082
              template<template<typename...> typename TT, typename T>
00083
              struct is_instantiation_of : std::false_type { };
00084
00085
              template<template<typename...> typename TT, typename... Ts>
00086
              struct is_instantiation_of<TT, TT<Ts...» : std::true_type { };</pre>
00087
00088
              template<template<typename...> typename TT, typename T>
00089
              inline constexpr bool is_instantiation_of_v = is_instantiation_of<TT, T>::value;
00090
00091
              template <int64 t i, typename T, typename... Ts>
00092
              struct type_at {
                  static_assert(i < sizeof...(Ts) + 1, "index out of range");
using type = typename type_at<i - 1, Ts...>::type;
00093
00094
00095
              } ;
00096
00097
              template <typename T, typename... Ts> struct type_at<0, T, Ts...> {
00098
                  using type = T;
00099
00100
00101
               template <size_t i, typename... Ts>
00102
              using type_at_t = typename type_at<i, Ts...>::type;
00103
00104
00105
              template<size_t n, size_t i, typename E = void>
00106
              struct _is_prime {};
00107
00108
               template<size t i>
00109
              struct _is_prime<0, i> {
00110
                   static constexpr bool value = false;
00111
00112
00113
               template<size_t i>
00114
               struct _is_prime<1, i> {
00115
                  static constexpr bool value = false;
00116
00117
00118
               template<size_t i>
00119
               struct _is_prime<2, i> {
00120
                   static constexpr bool value = true;
00121
00122
00123
               template<size_t i>
00124
              struct _is_prime<3, i> {
00125
                   static constexpr bool value = true;
00126
00127
00128
              template<size t i>
```

```
struct _is_prime<5, i> {
00130
                  static constexpr bool value = true;
00131
               };
00132
00133
               template<size t i>
              struct _is_prime<7, i> {
00134
00135
                  static constexpr bool value = true;
00136
00137
00138
               {\tt template}{<} {\tt size\_t n, size\_t i}{\gt}
               struct _is_prime<n, i, std::enable_if_t<(n != 2 && n % 2 == 0)» {
00139
00140
                 static constexpr bool value = false;
00141
00142
00143
               template<size_t n, size_t i>
00144
               struct _is_prime < n, i, std::enable_if_t < (n != 2 \&\& n != 3 \&\& n % 2 != 0 \&\& n % 3 == 0) > \{ (n != 2 \&\& n != 3 \&\& n % 2 != 0 \&\& n % 3 != 0) \} 
00145
                   static constexpr bool value = false;
00146
00148
               template<size_t n, size_t i>
00149
               struct _is_prime<n, i, std::enable_if_t<(n >= 9 && i * i > n)» {
00150
                   static constexpr bool value = true;
00151
               };
00152
00153
               template<size_t n, size_t i>
              struct _is_prime<n, i, std::enable_if_t<(
    n % i == 0 &&</pre>
00154
00155
                   n >= 9 &&
00156
00157
                   n % 3 != 0 &&
00158
                   n % 2 != 0 &&
00159
                   i * i > n)  {
00160
                   static constexpr bool value = true;
00161
00162
00163
               {\tt template}{<} {\tt size\_t n, size\_t i}{\gt}
               struct _is_prime<n, i, std::enable_if_t<(</pre>
00164
                  n % (i+2) == 0 &&
00165
                   n >= 9 &&
00166
                   n % 3 != 0 &&
00167
00168
                   n % 2 != 0 &&
00169
                   i * i <= n) » {
00170
                   static constexpr bool value = true;
00171
              }:
00172
00173
               template<size_t n, size_t i>
00174
               struct _is_prime<n, i, std::enable_if_t<(
00175
                       n % (i+2) != 0 &&
                       n % i != 0 &&
00176
00177
                       n >= 9 &&
00178
                       n % 3 != 0 &&
00179
                       n % 2 != 0 &&
00180
                        (i * i <= n))» {
00181
                   static constexpr bool value = _is_prime<n, i+6>::value;
00182
              };
00183
00184
          } // namespace internal
00188
          template<size t n>
00189
          struct is_prime {
00191
               static constexpr bool value = internal::_is_prime<n, 5>::value;
00192
00193
00197
          template<size_t n>
00198
          static constexpr bool is_prime_v = is_prime<n>::value;
00199
00200
          namespace internal {
00201
              template <std::size_t... Is>
00202
               constexpr auto index_sequence_reverse(std::index_sequence<Is...> const&)
00203
                   -> decltype(std::index_sequence<sizeof...(Is) - 1U - Is...>{});
00204
00205
               template <std::size_t N>
00206
               using make_index_sequence_reverse
00207
                   = decltype(index_sequence_reverse(std::make_index_sequence<N>{}));
00208
00214
               template<typename Ring, typename E = void>
00215
              struct gcd;
00216
00217
               template<typename Ring>
00218
               struct gcd<Ring, std::enable_if_t<Ring::is_euclidean_domain» {</pre>
00219
                   template<typename A, typename B, typename E = void>
00220
                   struct gcd_helper {};
00221
00222
                   // B = 0, A > 0
00223
                   template<typename A, typename B>
00224
                   struct gcd_helper<A, B, std::enable_if_t<
                        ((B::is_zero_t::value) &&
00225
00226
                            (Ring::template gt_t<A, typename Ring::zero>::value))» {
```

```
using type = A;
00228
00229
                  // B = 0, A < 0
00230
00231
                  template<typename A, typename B>
struct gcd_helper<A, B, std::enable_if_t<</pre>
00232
                      ((B::is_zero_t::value) &&
00233
00234
                          !(Ring::template gt_t<A, typename Ring::zero>::value))» {
00235
                      using type = typename Ring::template sub_t<typename Ring::zero, A>;
00236
                  };
00237
                  // B != 0
00238
                  template<typename A, typename B>
00239
00240
                  struct gcd_helper<A, B, std::enable_if_t<
00241
                      (!B::is_zero_t::value)
00242
                  private: // NOLINT
00243
00244
                      // A / B
                      using k = typename Ring::template div_t<A, B>;
00245
00246
                      // A - (A/B) *B = A % B
00247
                      using m = typename Ring::template sub_t<A, typename Ring::template mul_t<k, B»;
00248
                  public:
00249
00250
                      using type = typename gcd_helper<B, m>::type;
00251
00252
00253
                  template<typename A, typename B>
00254
                  using type = typename gcd_helper<A, B>::type;
00255
              };
00256
          } // namespace internal
00257
00260
          template<typename T, typename A, typename B>
00261
          using gcd_t = typename internal::gcd<T>::template type<A, B>;
00262
          template<typename val>
00266
          requires IsEuclideanDomain<typename val::ring_type>
00267
00268
          using abs t = std::conditional t<
00269
                          val::ring_type::template pos_v<val>,
00270
                          val, typename val::ring_type::template sub_t<typename val::ring_type::zero, val»;
00271 } // namespace aerobus
00272
00273 namespace aerobus {
         template<typename Ring, typename X>
00278
00279
          requires IsRing<Ring>
          struct Quotient {
00280
00283
              template <typename V>
              struct val {
00284
              public:
00285
00286
                  using type = abs_t<typename Ring::template mod_t<V, X>>;
00287
00288
00290
              using zero = val<typename Ring::zero>;
00291
00293
              using one = val<typename Ring::one>;
00294
00298
              template<typename v1, typename v2>
00299
              using add_t = val<typename Ring::template add_t<typename v1::type, typename v2::type>>;
00300
00304
              template<typename v1, typename v2>
00305
                          = val<typename Ring::template mul_t<typename v1::type, typename v2::type>>;
00306
00310
              template<typename v1, typename v2>
00311
              using div_t = val<typename Ring::template div_t<typename v1::type, typename v2::type>>;
00312
00316
              template<typename v1, typename v2>
00317
              using mod_t = val<typename Ring::template mod_t<typename v1::type, typename v2::type>>;
00318
00322
              template<typename v1, typename v2>
00323
              using eg t = typename Ring::template eg t<typename v1::type, typename v2::type>;
00324
00328
              template<typename v1, typename v2>
00329
              static constexpr bool eq_v = Ring::template eq_t<typename v1::type, typename v2::type>::value;
00330
00334
              template<typename v1>
00335
              using pos_t = std::true_type;
00336
00340
              template<typename v>
00341
              static constexpr bool pos_v = pos_t<v>::value;
00342
00344
              static constexpr bool is euclidean domain = true:
00345
00349
              template<auto x>
              using inject_constant_t = val<typename Ring::template inject_constant_t<x>>;
00350
00351
00355
              template<typename v>
              using inject_ring_t = val<v>;
00356
00357
          };
```

```
00358 } // namespace aerobus
00360 // type_list
00361 namespace aerobus {
00363
          template <typename... Ts>
00364
          struct type_list;
00365
00366
          namespace internal {
00367
               template <typename T, typename... Us>
00368
               struct pop_front_h {
                   using tail = type_list<Us...>;
00369
                   using head = T;
00370
00371
               };
00372
00373
               template <size_t index, typename L1, typename L2>
00374
               struct split_h {
00375
                private:
00376
                   static assert(index <= L2::length, "index ouf of bounds");
                   using a = typename L2::pop_front::type;
00377
00378
                   using b = typename L2::pop_front::tail;
00379
                   using c = typename L1::template push_back<a>;
00380
                public:
00381
                   using head = typename split_h<index - 1, c, b>::head;
using tail = typename split_h<index - 1, c, b>::tail;
00382
00383
00384
00385
00386
               template <typename L1, typename L2>
               struct split_h<0, L1, L2> {
    using head = L1;
00387
00388
                   using tail = L2;
00389
00390
00391
00392
               template <size_t index, typename L, typename T>
00393
               struct insert_h {
                   static_assert(index <= L::length, "index ouf of bounds");</pre>
00394
                   using s = typename L::template split<index>; using left = typename s::head;
00395
00396
00397
                   using right = typename s::tail;
00398
                   using 11 = typename left::template push_back<T>;
00399
                   using type = typename ll::template concat<right>;
00400
               };
00401
00402
               template <size_t index, typename L>
00403
               struct remove_h {
00404
                   using s = typename L::template split<index>;
                   using left = typename s::head;
using right = typename s::tail;
00405
00406
00407
                   using rr = typename right::pop_front::tail;
00408
                   using type = typename left::template concat<rr>;
00409
               };
00410
          } // namespace internal
00411
00415
          template <typename... Ts>
00416
          struct type_list {
00417
           private:
00418
              template <typename T>
00419
               struct concat_h;
00420
00421
               template <typename... Us>
00422
               \verb|struct concat_h<type_list<Us...> | |
00423
                   using type = type_list<Ts..., Us...>;
00424
00425
00426
           public:
00428
               static constexpr size_t length = sizeof...(Ts);
00429
00432
               template <typename T>
00433
               using push_front = type_list<T, Ts...>;
00434
00437
               template <size_t index>
00438
               using at = internal::type_at_t<index, Ts...>;
00439
00441
               struct pop_front {
                   using type = typename internal::pop_front_h<Ts...>::head;
00443
00445
                   using tail = typename internal::pop_front_h<Ts...>::tail;
00446
00447
00450
               template <typename T>
00451
               using push_back = type_list<Ts..., T>;
00452
00455
               template <typename U>
00456
               using concat = typename concat_h<U>::type;
00457
00460
               template <size_t index>
               struct split {
00461
00462
                private:
```

```
00463
                  using inner = internal::split_h<index, type_list<>, type_list<Ts...»;</pre>
00464
00465
               public:
                  using head = typename inner::head;
using tail = typename inner::tail;
00466
00467
00468
              };
00469
00473
               template <typename T, size_t index>
00474
              using insert = typename internal::insert_h<index, type_list<Ts...>, T>::type;
00475
00478
              template <size_t index>
00479
              using remove = typename internal::remove_h<index, type_list<Ts...»::type;
00480
          };
00481
00483
          template <>
00484
          struct type_list<> {
00485
              static constexpr size_t length = 0;
00486
00487
              template <typename T>
00488
              using push_front = type_list<T>;
00489
00490
              template <typename T>
00491
              using push_back = type_list<T>;
00492
00493
              template <typename U>
00494
              using concat = U;
00495
00496
               // TODO(jewave): assert index == 0
              template <typename T, size_t index>
using insert = type_list<T>;
00497
00498
00499
          };
00500 } // namespace aerobus
00501
00502 // i32
00503 namespace aerobus {
00505
          struct i32 {
              using inner_type = int32_t;
00506
              template<int32_t x>
00510
              struct val {
00512
                 using ring_type = i32;
00514
                  static constexpr int32_t v = x;
00515
00518
                  template<typename valueType>
00519
                  static constexpr valueType get() { return static_cast<valueType>(x); }
00520
00522
                  using is_zero_t = std::bool_constant<x == 0>;
00523
00525
                  static std::string to_string() {
00526
                       return std::to_string(x);
00527
00528
00531
                  template<typename valueRing>
00532
                  static constexpr valueRing eval(const valueRing& v) {
00533
                      return static_cast<valueRing>(x);
00534
00535
              };
00536
00538
              using zero = val<0>;
00540
              using one = val<1>;
00542
              static constexpr bool is_field = false;
00544
              static constexpr bool is_euclidean_domain = true;
00548
              template<auto x>
00549
              using inject_constant_t = val<static_cast<int32_t>(x)>;
00550
00551
              template<typename v>
00552
              using inject_ring_t = v;
00553
00554
           private:
00555
              template<typename v1, typename v2>
00556
              struct add {
00557
                  using type = val<v1::v + v2::v>;
00558
00559
00560
              template<typename v1, typename v2>
00561
              struct sub {
00562
                  using type = val<v1::v - v2::v>;
00563
00564
00565
               template<typename v1, typename v2>
00566
              struct mul {
                  using type = val<v1::v* v2::v>;
00567
00568
00569
00570
              template<typename v1, typename v2>
               struct div {
00571
                  using type = val<v1::v / v2::v>;
00572
00573
              };
```

```
00575
              template<typename v1, typename v2>
00576
              struct remainder {
                 using type = val<v1::v % v2::v>;
00577
00578
00579
00580
              template<typename v1, typename v2>
00581
00582
                 using type = std::conditional_t<(v1::v > v2::v), std::true_type, std::false_type>;
00583
00584
00585
              template<typename v1, typename v2> ^{\circ}
00586
              struct lt {
00587
                  using type = std::conditional_t<(v1::v < v2::v), std::true_type, std::false_type>;
00588
00589
00590
              template<typename v1, typename v2>
00591
              struct eq {
00592
                  using type = std::conditional_t<(v1::v == v2::v), std::true_type, std::false_type>;
00593
              };
00594
00595
              template<typename v1>
00596
              struct pos {
                  using type = std::bool_constant<(v1::v > 0)>;
00597
00598
              };
00599
00600
           public:
00606
              template<typename v1, typename v2>
00607
              using add_t = typename add<v1, v2>::type;
00608
              template<typename v1, typename v2>
00614
00615
              using sub_t = typename sub<v1, v2>::type;
00616
00622
              template<typename v1, typename v2>
00623
              using mul_t = typename mul<v1, v2>::type;
00624
              template<typename v1, typename v2>
using div_t = typename div<v1, v2>::type;
00630
00631
00632
00638
              template<typename v1, typename v2>
00639
              using mod_t = typename remainder<v1, v2>::type;
00640
00646
              template<typename v1, typename v2>
00647
              using gt_t = typename gt<v1, v2>::type;
00648
00654
              template<typename v1, typename v2>
00655
              using lt_t = typename lt<v1, v2>::type;
00656
              template<typename v1, typename v2>
00662
00663
              using eq_t = typename eq<v1, v2>::type;
00664
00669
              template<typename v1, typename v2>
00670
              static constexpr bool eq_v = eq_t<v1, v2>::value;
00671
00677
              template<typename v1, typename v2>
00678
              using gcd_t = gcd_t < i32, v1, v2>;
00684
              template<typename v>
00685
              using pos_t = typename pos<v>::type;
00686
00691
              template<typename v>
00692
              static constexpr bool pos_v = pos_t<v>::value;
00693
          };
00694 }
        // namespace aerobus
00695
00696 // i64
00697 namespace aerobus {
00699
          struct i64 {
00701
             using inner_type = int64_t;
              template<int64_t x>
00704
00705
              struct val {
00707
                  using ring_type = i64;
00709
                  static constexpr int64_t v = x;
00710
00713
                  template<typename valueType>
00714
                  static constexpr valueType get() { return static_cast<valueType>(x); }
00715
00717
                  using is_zero_t = std::bool_constant<x == 0>;
00718
00720
                  static std::string to string() {
00721
                      return std::to_string(x);
00722
                  }
00723
00726
                  template<typename valueRing>
00727
                  static constexpr valueRing eval(const valueRing& v) {
00728
                       return static_cast<valueRing>(x);
00729
                  }
```

```
00730
              };
00731
00735
              template<auto x>
00736
              using inject_constant_t = val<static_cast<int64_t>(x)>;
00737
00742
              template<tvpename v>
00743
              using inject_ring_t = v;
00744
              using zero = val<0>;
using one = val<1>;
00746
00748
              static constexpr bool is_field = false;
00750
00752
              static constexpr bool is_euclidean_domain = true;
00753
00754
00755
              template<typename v1, typename v2>
00756
              struct add {
                  using type = val<v1::v + v2::v>;
00757
00758
00760
              template<typename v1, typename v2>
00761
              struct sub {
00762
                  using type = val<v1::v - v2::v>;
00763
00764
00765
              template<typename v1, typename v2>
00766
              struct mul {
00767
                  using type = val<v1::v* v2::v>;
00768
00769
00770
              template<typename v1, typename v2>
00771
              struct div {
00772
                 using type = val<v1::v / v2::v>;
00773
00774
00775
              template<typename v1, typename v2>
00776
              struct remainder {
00777
                  using type = val<v1::v% v2::v>;
00778
00779
00780
              template<typename v1, typename v2>
00781
                  using type = std::conditional_t<(v1::v > v2::v), std::true_type, std::false_type>;
00782
00783
00784
00785
              template<typename v1, typename v2>
00786
00787
                  using type = std::conditional_t<(v1::v < v2::v), std::true_type, std::false_type>;
00788
              };
00789
00790
              template<typename v1, typename v2>
00791
              struct eq {
00792
                  using type = std::conditional_t<(v1::v == v2::v), std::true_type, std::false_type>;
00793
00794
00795
              template<typename v>
00796
              struct pos {
00797
                 using type = std::bool_constant<(v::v > 0)>;
00798
              };
00799
00800
           public:
              template<typename v1, typename v2>
00805
00806
              using add_t = typename add<v1, v2>::type;
00807
00812
              template<typename v1, typename v2>
00813
              using sub_t = typename sub<v1, v2>::type;
00814
00819
              template<typename v1, typename v2>
00820
              using mul_t = typename mul<v1, v2>::type;
00821
00827
              template<typename v1, typename v2>
00828
              using div_t = typename div<v1, v2>::type;
00829
00834
              template<typename v1, typename v2>
00835
              using mod_t = typename remainder<v1, v2>::type;
00836
00842
              template<typename v1, typename v2>
00843
              using gt_t = typename gt<v1, v2>::type;
00844
00849
              template<typename v1, typename v2>
00850
              static constexpr bool gt_v = gt_t<v1, v2>::value;
00851
00857
              template<typename v1, typename v2>
00858
              using lt_t = typename lt<v1, v2>::type;
00859
00865
              template<typename v1, typename v2>
              static constexpr bool lt_v = lt_t<v1, v2>::value;
00866
00867
```

```
template<typename v1, typename v2>
00874
              using eq_t = typename eq<v1, v2>::type;
00875
00881
              template<typename v1, typename v2>
              static constexpr bool eq_v = eq_t<v1, v2>::value;
00882
00883
              template<typename v1, typename v2>
00890
              using gcd_t = gcd_t < i64, v1, v2>;
00891
00896
              {\tt template}{<}{\tt typename}\ {\tt v}{>}
00897
              using pos_t = typename pos<v>::type;
00898
00903
              template<typename v>
00904
              static constexpr bool pos_v = pos_t<v>::value;
00905
00906 } // namespace aerobus
00907
00908 // z/pz
00909 namespace aerobus {
00914
          template<int32_t p>
          struct zpz {
00915
00916
              using inner_type = int32_t;
00917
              template<int32_t x>
00918
              struct val {
00920
                  using ring_type = zpz;
                  static constexpr int32_t v = x % p;
00922
00923
00924
                  template<typename valueType>
00925
                  static constexpr valueType get() { return static_cast<valueType>(x % p); }
00926
00927
                  using is zero t = std::bool constant<x% p == 0>;
00928
                  static std::string to_string() {
00929
                     return std::to_string(x % p);
00930
                  }
00931
00932
                  template<typename valueRing>
00933
                  static constexpr valueRing eval(const valueRing& v) {
                      return static_cast<valueRing>(x % p);
00935
00936
              };
00937
00938
              template<auto x>
              using inject_constant_t = val<static_cast<int32_t>(x)>;
00939
00940
00941
              using zero = val<0>;
00942
              using one = val<1>;
00943
              static constexpr bool is_field = is_prime::value;
00944
              static constexpr bool is_euclidean_domain = true;
00945
00946
           private:
00947
              template<typename v1, typename v2>
00948
              struct add {
00949
                  using type = val<(v1::v + v2::v) % p>;
00950
00951
00952
              template<typename v1, typename v2>
00953
              struct sub {
                 using type = val<(v1::v - v2::v) % p>;
00954
00955
00956
00957
              template<typename v1, typename v2>
00958
              struct mul {
00959
                 using type = val<(v1::v* v2::v) % p>;
00960
00961
00962
              template<typename v1, typename v2>
00963
              struct div {
                 using type = val<(v1::v% p) / (v2::v % p)>;
00964
00965
00966
00967
              template<typename v1, typename v2>
00968
              struct remainder {
00969
                  using type = val<(v1::v% v2::v) % p>;
00970
00971
00972
              template<typename v1, typename v2>
00973
              struct qt {
00974
                 using type = std::conditional_t<(v1::v% p > v2::v% p), std::true_type, std::false_type>;
00975
              };
00976
00977
              template<typename v1, typename v2>
00978
              struct lt {
00979
                  using type = std::conditional_t<(v1::v% p < v2::v% p), std::true_type, std::false_type>;
00980
00981
00982
              template<typename v1, typename v2>
00983
              struct eq {
```

```
using type = std::conditional_t<(v1::v% p == v2::v % p), std::true_type, std::false_type>;
00985
00986
00987
              template<typename v1>
00988
              struct pos {
00989
                  using type = std::bool_constant<(v1::v > 0)>;
00990
00991
00992
           public:
00996
              template<typename v1, typename v2>
00997
              using add_t = typename add<v1, v2>::type;
00998
01002
              template<typename v1, typename v2>
01003
              using sub_t = typename sub<v1, v2>::type;
01004
              template<typename v1, typename v2> ^{\circ}
01008
01009
              using mul_t = typename mul<v1, v2>::type;
01010
01014
              template<typename v1, typename v2>
01015
              using div_t = typename div<v1, v2>::type;
01016
01020
              template<typename v1, typename v2>
01021
              using mod_t = typename remainder<v1, v2>::type;
01022
01026
              template<typename v1, typename v2>
01027
              using gt_t = typename gt<v1, v2>::type;
01028
01032
              template<typename v1, typename v2>
01033
              static constexpr bool gt_v = gt_t<v1, v2>::value;
01034
01038
              template<typename v1, typename v2>
01039
              using lt_t = typename lt<v1, v2>::type;
01040
01044
              template<typename v1, typename v2>
01045
              static constexpr bool lt_v = lt_t<v1, v2>::value;
01046
              template<typename v1, typename v2>
01050
              using eq_t = typename eq<v1, v2>::type;
01052
01056
              template<typename v1, typename v2>
01057
              static constexpr bool eq_v = eq_t<v1, v2>::value;
01058
01062
              template<typename v1, typename v2>
              using gcd_t = gcd_t<i32, v1, v2>;
01063
01064
01067
              template<typename v1>
01068
              using pos_t = typename pos<v1>::type;
01069
01072
              template<tvpename v>
01073
              static constexpr bool pos_v = pos_t<v>::value;
01074
          };
01075 } // namespace aerobus
01076
01077 // polynomial
01078 namespace aerobus {
01079
         // coeffN x^N + ...
          template<typename Ring>
01085
          requires IsEuclideanDomain<Ring>
01086
         struct polynomial {
01087
              static constexpr bool is_field = false;
              static constexpr bool is_euclidean_domain = Ring::is_euclidean_domain;
01088
01089
01093
              template<typename coeffN, typename... coeffs>
01094
              struct val {
01096
                  using ring_type = polynomial<Ring>;
01098
                  static constexpr size_t degree = sizeof...(coeffs);
01100
                  using aN = coeffN;
01102
                  using strip = val<coeffs...>;
01104
                  using is_zero_t = std::bool_constant<(degree == 0) && (aN::is_zero_t::value)>;
01106
                  static constexpr bool is_zero_v = is_zero_t::value;
01107
               private:
01108
01109
                  template<size_t index, typename E = void>
                  struct coeff at {}:
01110
01111
01112
                  template<size_t index>
01113
                  struct coeff_at<index, std::enable_if_t<(index >= 0 && index <= sizeof...(coeffs))» {</pre>
01114
                      using type = internal::type_at_t<sizeof...(coeffs) - index, coeffN, coeffs...>;
01115
                  };
01116
01117
                  template<size t index>
01118
                  struct coeff_at<index, std::enable_if_t<(index < 0 || index > sizeof...(coeffs))» {
01119
                      using type = typename Ring::zero;
01120
                  };
01121
01122
               public:
01125
                  template<size t index>
```

```
using coeff_at_t = typename coeff_at<index>::type;
01127
01130
                  static std::string to_string() {
01131
                      return string_helper<coeffN, coeffs...>::func();
01132
01133
01138
                  template<typename valueRing>
01139
                  static constexpr valueRing eval(const valueRing& x) {
                     return horner_evaluation<valueRing, val>
    ::template inner<0, degree + 1>
01140
01141
01142
                               ::func(static_cast<valueRing>(0), x);
01143
                  }
01144
              };
01145
01148
              template<typename coeffN>
              struct val<coeffN> {
    using ring_type = polynomial<Ring>;
01149
01151
                  static constexpr size_t degree = 0;
01153
01154
                  using aN = coeffN;
                  using strip = val<coeffN>;
01156
                  using is_zero_t = std::bool_constant<aN::is_zero_t::value>;
01157
01158
                  static constexpr bool is_zero_v = is_zero_t::value;
01159
                  template<size_t index, typename E = void>
01160
                  struct coeff_at {};
01161
01162
01163
                   template<size_t index>
01164
                  struct coeff_at<index, std::enable_if_t<(index == 0)» {</pre>
01165
                       using type = aN;
01166
                  };
01167
01168
                  template<size_t index>
01169
                  struct coeff_at<index, std::enable_if_t<(index < 0 || index > 0)» {
01170
                       using type = typename Ring::zero;
01171
01172
01173
                   template<size_t index>
01174
                  using coeff_at_t = typename coeff_at<index>::type;
01175
01176
                  static std::string to_string() {
01177
                       return string_helper<coeffN>::func();
01178
01179
01180
                   template<typename valueRing>
01181
                   static constexpr valueRing eval(const valueRing& x) {
01182
                       return static_cast<valueRing>(aN::template get<valueRing>());
01183
                   }
01184
              };
01185
01187
              using zero = val<typename Ring::zero>;
01189
              using one = val<typename Ring::one>;
01191
              using X = val<typename Ring::one, typename Ring::zero>;
01192
01193
01194
              template<typename P, typename E = void>
01195
              struct simplify;
01196
01197
              template <typename P1, typename P2, typename I>
01198
              struct add_low;
01199
01200
              template<typename P1, typename P2>
01201
              struct add {
01202
                 using type = typename simplify<typename add_low<
01203
                  P1,
01204
                  P2.
01205
                  internal::make_index_sequence_reverse<</pre>
                  std::max(P1::degree, P2::degree) + 1
01206
01207
                   »::tvpe>::tvpe;
01208
              };
01209
01210
              template <typename P1, typename P2, typename I>
              struct sub_low;
01211
01212
01213
              template <typename P1, typename P2, typename I>
01214
              struct mul_low;
01215
01216
              template<typename v1, typename v2>
01217
              struct mul {
01218
                       using type = typename mul_low<
01219
                          v1,
01220
                           v2,
01221
                           internal::make_index_sequence_reverse<
01222
                           v1::degree + v2::degree + 1
01223
                           »::type;
01224
              };
01225
```

```
template<typename coeff, size_t deg>
01227
               struct monomial;
01228
01229
               template<typename v, typename E = void>
01230
               struct derive_helper {};
01231
01232
               template<typename v>
01233
               struct derive_helper<v, std::enable_if_t<v::degree == 0» {</pre>
01234
                  using type = zero;
01235
               };
01236
01237
               template<tvpename v>
01238
               struct derive_helper<v, std::enable_if_t<v::degree != 0» {</pre>
01239
                   using type = typename add<
01240
                         typename derive_helper<typename simplify<typename v::strip>::type>::type,
01241
                         typename monomial<
01242
                             typename Ring::template mul_t<</pre>
01243
                                 typename v::aN,
                                 typename Ring::template inject_constant_t<(v::degree)>
01244
01245
01246
                            v::degree - 1
01247
                        >::type
01248
                   >::type;
01249
               };
01250
01251
               template<typename v1, typename v2, typename E = void>
               struct eq_helper {};
01252
01253
01254
               template<typename v1, typename v2>
               struct eq_helper<v1, v2, std::enable_if_t<v1::degree != v2::degree» {</pre>
01255
01256
                   using type = std::false_type;
01257
01258
01259
               template<typename v1, typename v2>
struct eq_helper<v1, v2, std::enable_if_t<
    v1::degree == v2::degree &&</pre>
01260
01261
01262
                   (v1::degree != 0 || v2::degree != 0) &&
01263
01264
                    std::is_same<
01265
                    typename Ring::template eq_t<typename v1::aN, typename v2::aN>,
01266
                    std::false_type
01267
                   >::value
01268
01269
               > {
01270
                    using type = std::false_type;
01271
               };
01272
               template<typename v1, typename v2>
struct eq_helper<v1, v2, std::enable_if_t<
    v1::degree == v2::degree &&</pre>
01273
01274
01275
                    (v1::degree != 0 || v2::degree != 0) &&
01276
01277
                   std::is_same<
01278
                   typename Ring::template eq_t<typename v1::aN, typename v2::aN>,
01279
                   std::true_type
01280
                   >::value
01281
               » {
01282
                   using type = typename eq_helper<typename v1::strip, typename v2::strip>::type;
01283
               } ;
01284
01285
               template<typename v1, typename v2>
               struct eq_helper<v1, v2, std::enable_if_t<
    v1::degree == v2::degree &&</pre>
01286
01287
01288
                    (v1::degree == 0)
01289
01290
                    using type = typename Ring::template eq_t<typename v1::aN, typename v2::aN>;
01291
01292
01293
               template<typename v1, typename v2, typename E = void>
01294
               struct 1t helper {};
01295
01296
               template<typename v1, typename v2> \,
01297
               struct lt_helper<v1, v2, std::enable_if_t<(v1::degree < v2::degree)» {</pre>
01298
                   using type = std::true_type;
01299
01300
01301
               template<typename v1, typename v2>
01302
               struct lt_helper<v1, v2, std::enable_if_t<(v1::degree == v2::degree)» {</pre>
01303
                   using type = typename Ring::template lt_t<typename v1::aN, typename v2::aN>;
01304
               };
01305
               template<typename v1, typename v2>
struct lt_helper<v1, v2, std::enable_if_t<(v1::degree > v2::degree)» {
01306
01307
01308
                   using type = std::false_type;
01309
01310
01311
               template<typename v1, typename v2, typename E = void>
01312
               struct gt_helper {};
```

```
01313
               template<typename v1, typename v2>
01314
               struct gt_helper<v1, v2, std::enable_if_t<(v1::degree > v2::degree)» {
01315
                 using type = std::true_type;
01316
01317
01318
01319
               template<typename v1, typename v2>
01320
               struct gt_helper<v1, v2, std::enable_if_t<(v1::degree == v2::degree)» {</pre>
                 using type = std::false_type;
01321
01322
01323
01324
               template<typename v1, typename v2>
struct gt_helper<v1, v2, std::enable_if_t<(v1::degree < v2::degree)» {</pre>
01325
01326
                  using type = std::false_type;
01327
01328
               \ensuremath{//} when high power is zero : strip
01329
01330
               template<typename P>
01331
               struct simplify<P, std::enable_if_t<
01332
                   std::is_same<
01333
                   typename Ring::zero,
01334
                   typename P::aN
                  >::value && (P::degree > 0)
01335
01336
               » {
                   using type = typename simplify<typename P::strip>::type;
01337
01338
01339
01340
               // otherwise : do nothing
01341
               template<typename P>
01342
               struct simplify<P, std::enable_if_t<
01343
                  !std::is_same<
01344
                   typename Ring::zero,
01345
                   typename P::aN
01346
                   >::value && (P::degree > 0)
01347
01348
                   using type = P;
01349
               };
01350
01351
               // do not simplify constants
01352
               template<typename P>
01353
               struct simplify<P, std::enable_if_t<P::degree == 0» {</pre>
01354
                   using type = P;
01355
01356
               // addition at
01357
01358
               template<typename P1, typename P2, size_t index>
01359
               struct add_at {
01360
                   using type =
                       typename Ring::template add t<
01361
01362
                            typename P1::template coeff_at_t<index>,
01363
                            typename P2::template coeff_at_t<index>>;
01364
01365
01366
               template<typename P1, typename P2, size_t index>
01367
               using add_at_t = typename add_at<P1, P2, index>::type;
01368
01369
               template<typename P1, typename P2, std::size_t... I>
01370
               struct add_low<P1, P2, std::index_sequence<I...» {</pre>
01371
                  using type = val<add_at_t<P1, P2, I>...>;
01372
01373
               // substraction at
01374
01375
               template<typename P1, typename P2, size_t index>
01376
               struct sub_at {
01377
                   using type =
01378
                       typename Ring::template sub_t<</pre>
01379
                           typename P1::template coeff_at_t<index>,
typename P2::template coeff_at_t<index>>;
01380
01381
01383
               template<typename P1, typename P2, size_t index>
01384
               using sub_at_t = typename sub_at<P1, P2, index>::type;
01385
01386
               template<typename P1, typename P2, std::size_t... I>
               struct sub_low<P1, P2, std::index_sequence<I...» {
    using type = val<sub_at_t<P1, P2, I>...>;
01387
01388
01389
01390
01391
               template<typename P1, typename P2>
01392
               struct sub {
01393
                  using type = typename simplify<typename sub_low<
01394
                   P1,
01395
01396
                   internal::make_index_sequence_reverse<
01397
                   std::max(P1::degree, P2::degree) + 1
01398
                   »::type>::type;
01399
               };
```

```
01401
              // multiplication at
01402
              template<typename v1, typename v2, size_t k, size_t index, size_t stop>
01403
              struct mul_at_loop_helper {
01404
                  using type = typename Ring::template add_t<
                      typename Ring::template mul_t<
01405
                       typename v1::template coeff_at_t<index>,
01406
01407
                      typename v2::template coeff_at_t<k - index>
01408
01409
                      typename mul_at_loop_helper<v1, v2, k, index + 1, stop>::type
01410
01411
              };
01412
01413
              template<typename v1, typename v2, size_t k, size_t stop>
01414
              struct mul_at_loop_helper<v1, v2, k, stop, stop> {
01415
                  using type = typename Ring::template mul_t<</pre>
                      typename v1::template coeff_at_t<stop>,
01416
                      typename v2::template coeff_at_t<0>>;
01417
01418
01419
              template <typename v1, typename v2, size_t k, typename E = void>
01420
01421
              struct mul_at {};
01422
              template<typename v1, typename v2, size_t k>
struct mul_at<v1, v2, k, std::enable_if_t<(k < 0) || (k > v1::degree + v2::degree)» {
01423
01424
                 using type = typename Ring::zero;
01425
01426
01427
              01428
01429
01430
                  using type = typename mul_at_loop_helper<v1, v2, k, 0, k>::type;
01431
01432
01433
              template<typename P1, typename P2, size_t index>
01434
              using mul_at_t = typename mul_at<P1, P2, index>::type;
01435
              template<typename P1, typename P2, std::size_t... I>
struct mul_low<P1, P2, std::index_sequence<I...» {</pre>
01436
01437
01438
                  using type = val<mul_at_t<P1, P2, I>...>;
01439
01440
              // division helper
01441
01442
              template< typename A, typename B, typename Q, typename R, typename E = void>
01443
              struct div_helper {};
01444
01445
              template<typename A, typename B, typename Q, typename R>
01446
              struct div_helper<A, B, Q, R, std::enable_if_t<
                  (R::degree < B::degree) ||
01447
01448
                  (R::degree == 0 && std::is_same<typename R::aN, typename Ring::zero>::value)» {
01449
                  using q_type = Q;
01450
                  using mod_type = R;
01451
                  using gcd_type = B;
01452
01453
              template<typename A, typename B, typename Q, typename R> struct div_helper<A, B, Q, R, std::enable_if_t<
01454
01455
                 (R::degree >= B::degree) &&
                  !(R::degree == 0 && std::is_same<typename R::aN, typename Ring::zero>::value)» {
01457
01458
               private: // NOLINT
01459
                  using rN = typename R::aN;
                  using bN = typename B::aN;
01460
                  using pT = typename monomial<typename Ring::template div_t<rN, bN>, R::degree -
01461
     B::degree>::type;
01462
                 using rr = typename sub<R, typename mul<pT, B>::type>::type;
                  using qq = typename add<Q, pT>::type;
01463
01464
               public:
01465
                  using q_type = typename div_helper<A, B, qq, rr>::q_type;
01466
01467
                  using mod_type = typename div_helper<A, B, gg, rr>::mod_type;
                  using gcd_type = rr;
01468
01469
01470
01471
              template<typename A, typename B>
01472
              struct div {
01473
                  static_assert(Ring::is_euclidean_domain, "cannot divide in that type of Ring");
01474
                  using q_type = typename div_helper<A, B, zero, A>::q_type;
01475
                  using m_type = typename div_helper<A, B, zero, A>::mod_type;
01476
01477
01478
              template<tvpename P>
01479
              struct make unit {
01480
                  using type = typename div<P, val<typename P::aN>>::q_type;
01481
01482
01483
              template<typename coeff, size_t deg>
01484
              struct monomial {
01485
                  using type = typename mul<X, typename monomial<coeff, deg - 1>::type>::type;
```

```
01486
               };
01487
01488
               template<typename coeff>
01489
              struct monomial<coeff, 0> {
01490
                  using type = val<coeff>;
01491
               };
01492
01493
               template<typename valueRing, typename P>
01494
              struct horner_evaluation {
01495
                   template<size_t index, size_t stop>
                   struct inner {
01496
                      static constexpr valueRing func(const valueRing& accum, const valueRing& x) {
01497
01498
                           constexpr valueRing coeff
                               static_cast<valueRing>(P::template coeff_at_t<P::degree - index>::template
01499
      get<valueRing>());
01500
                           return horner_evaluation<valueRing, P>::template inner<index + 1, stop>::func(x *
     accum + coeff, x);
01501
01502
                   };
01503
01504
                   template<size_t stop>
01505
                   struct inner<stop, stop> {
                      static constexpr valueRing func(const valueRing& accum, const valueRing& x) {
01506
01507
                           return accum;
01508
01509
                  };
01510
               } ;
01511
01512
               template<typename coeff, typename... coeffs>
01513
               struct string_helper {
01514
                   static std::string func() {
                       std::string tail = string_helper<coeffs...>::func();
std::string result = "";
01515
01516
01517
                       if (Ring::template eq_t<coeff, typename Ring::zero>::value) {
                       return tail;
} else if (Ring::template eq_t<coeff, typename Ring::one>::value) {
01518
01519
                           if (sizeof...(coeffs) == 1) {
    result += "x";
01520
01521
                           } else {
01522
01523
                               result += "x^" + std::to_string(sizeof...(coeffs));
01524
                           }
01525
                       } else {
                           if (sizeof...(coeffs) == 1) {
01526
01527
                                result += coeff::to_string() + " x";
01528
                           } else {
01529
                               result += coeff::to_string()
01530
                                        + " x^" + std::to_string(sizeof...(coeffs));
01531
                           }
                       }
01532
01533
                       if (!tail.empty()) {
    result += " + " + tail;
01534
01535
01536
01537
01538
                       return result:
01539
                   }
01540
              };
01541
01542
               template<typename coeff>
01543
               struct string_helper<coeff> {
01544
                   static std::string func() {
                      if (!std::is_same<coeff, typename Ring::zero>::value) {
01545
01546
                           return coeff::to_string();
01547
                       } else {
                           return "";
01548
                       }
01549
01550
                   }
01551
              };
01552
           public:
01556
               template<typename P>
01557
               using simplify_t = typename simplify<P>::type;
01558
               template<typename v1, typename v2>
01562
              using add_t = typename add<v1, v2>::type;
01563
01564
01568
               template<typename v1, typename v2>
01569
               using sub_t = typename sub<v1, v2>::type;
01570
01574
               template<typename v1, typename v2>
01575
               using mul t = typename mul<v1, v2>::type;
01576
01580
               template<typename v1, typename v2>
01581
               using eq_t = typename eq_helper<v1, v2>::type;
01582
               template<typename v1, typename v2>
using lt_t = typename lt_helper<v1, v2>::type;
01586
01587
```

```
01592
              template<typename v1, typename v2>
01593
              using gt_t = typename gt_helper<v1, v2>::type;
01594
01598
              template<typename v1, typename v2>
01599
              using div t = typename div<v1, v2>::g type;
01600
01604
              template<typename v1, typename v2>
01605
              using mod_t = typename div_helper<v1, v2, zero, v1>::mod_type;
01606
              template<typename coeff, size_t deg>
01610
              using monomial_t = typename monomial<coeff, deg>::type;
01611
01612
01615
              template<typename v>
01616
              using derive_t = typename derive_helper<v>::type;
01617
01620
              template<typename v>
              using pos_t = typename Ring::template pos_t<typename v::aN>;
01621
01622
01625
              template<typename v>
01626
              static constexpr bool pos_v = pos_t < v > :: value;
01627
01631
              template<typename v1, typename v2>
01632
              using gcd t = std::conditional t<
01633
                  Ring::is_euclidean_domain,
                  typename make_unit<gcd_t<polynomial<Ring>, v1, v2»::type,
01634
01635
                  void>;
01636
01640
              template<auto x>
              using inject_constant_t = val<typename Ring::template inject_constant_t<x>>;
01641
01642
01646
              template<typename v>
01647
              using inject_ring_t = val<v>;
01648
01649 } // namespace aerobus
01650
01651 // fraction field
01652 namespace aerobus {
01653
         namespace internal {
01654
            template<typename Ring, typename E = void>
01655
              requires IsEuclideanDomain<Ring>
              struct _FractionField {};
01656
01657
01658
              template<typename Ring>
              requires IsEuclideanDomain<Ring>
01659
01660
              struct _FractionField<Ring, std::enable_if_t<Ring::is_euclidean_domain» {</pre>
01662
                  static constexpr bool is_field = true;
01663
                  static constexpr bool is_euclidean_domain = true;
01664
01665
01666
                  template<typename val1, typename val2, typename E = void>
01667
                  struct to_string_helper {};
01668
01669
                  template<typename val1, typename val2>
01670
                  struct to_string_helper <val1, val2,
                      std::enable_if_t<
01671
01672
                      Ring::template eq_t<
01673
                      val2, typename Ring::one
01674
                      >::value
01675
                      >
01676
                  > {
01677
                      static std::string func()
01678
                          return vall::to_string();
01679
01680
                  } ;
01681
01682
                  template<typename val1, typename val2>
                  struct to_string_helper<val1, val2,
01683
01684
                      std::enable_if_t<
                      !Ring::template eq_t<
01686
                      val2,
01687
                      typename Ring::one
01688
                      >::value
01689
01690
                  > {
01691
                      static std::string func() {
01692
                          return "(" + val1::to_string() + ") / (" + val2::to_string() + ")";
01693
01694
                  };
01695
01696
               public:
01700
                  template<typename val1, typename val2>
01701
                  struct val {
01703
                      using x = val1;
01705
                      using y = val2;
                      using is_zero_t = typename val1::is_zero_t;
01707
01709
                      static constexpr bool is_zero_v = vall::is_zero_t::value;
```

```
01712
                      using ring_type = Ring;
01713
                      using field_type = _FractionField<Ring>;
01714
01717
                       static constexpr bool is_integer = std::is_same_v<val2, typename Ring::one>;
01718
01722
                      template<typename valueType>
01723
                      static constexpr valueType get() { return static_cast<valueType>(x::v) /
      static_cast<valueType>(y::v); }
01724
01727
                      static std::string to_string() {
01728
                         return to_string_helper<val1, val2>::func();
01729
01730
01735
                      template<typename valueRing>
01736
                      static constexpr valueRing eval(const valueRing& v) {
01737
                          return x::eval(v) / y::eval(v);
01738
01739
                  };
01740
01742
                  using zero = val<typename Ring::zero, typename Ring::one>;
01744
                  using one = val<typename Ring::one, typename Ring::one>;
01745
01748
                  template<typename v>
01749
                  using inject_t = val<v, typename Ring::one>;
01750
01753
01754
                  using inject_constant_t = val<typename Ring::template inject_constant_t<x>, typename
     Ring::one>;
01755
01758
                  template<tvpename v>
01759
                  using inject_ring_t = val<typename Ring::template inject_ring_t<v>, typename Ring::one>;
01760
01762
                  using ring_type = Ring;
01763
               private:
01764
01765
                  template<typename v, typename E = void>
01766
                  struct simplify {};
01767
01768
                  // x = 0
01769
                  template<typename v>
                  struct simplify<v, std::enable_if_t<v::x::is_zero_t::value» {</pre>
01770
01771
                     using type = typename _FractionField<Ring>::zero;
01772
01773
01774
                  // x != 0
01775
                  template<typename v>
01776
                  01777
                   private:
01778
                     using _gcd = typename Ring::template gcd_t<typename v::x, typename v::y>;
                      using newx = typename Ring::template div_t<typename v::x, _gcd>;
01779
01780
                      using newy = typename Ring::template div_t<typename v::y, _gcd>;
01781
01782
                      using posx = std::conditional_t<
01783
                                          !Ring::template pos_v<newy>,
01784
                                          typename Ring::template sub_t<typename Ring::zero, newx>,
01785
                                          newx>;
01786
                      using posy = std::conditional_t<
01787
                                          !Ring::template pos_v<newy>,
01788
                                          typename Ring::template sub_t<typename Ring::zero, newy>,
01789
                                          newy>;
01790
                   public:
01791
                      using type = typename _FractionField<Ring>::template val<posx, posy>;
01792
                  };
01793
               public:
01794
01797
                 template<typename v>
01798
                  using simplify_t = typename simplify<v>::type;
01799
               private:
01801
                  template<typename v1, typename v2>
                  struct add {
01802
                   private:
01803
                      using a = typename Ring::template mul_t<typename v1::x, typename v2::y>;
01804
                      using b = typename Ring::template mul_t<typename v1::y, typename v2::x>; using dividend = typename Ring::template add_t<a, b>;
01805
01806
01807
                      using diviser = typename Ring::template mul_t<typename v1::y, typename v2::y>;
01808
                      using g = typename Ring::template gcd_t<dividend, diviser>;
01809
01810
                   public:
                      using type = typename _FractionField<Ring>::template simplify_t<val<dividend,
01811
     diviser»;
01812
01813
01814
                  template<typename v>
01815
                  struct pos {
                      using type = std::conditional t<
01816
```

```
(Ring::template pos_v<typename v::x> && Ring::template pos_v<typename v::y>) ||
                                              (!Ring::template pos_v<typename v::x> && !Ring::template pos_v<typename v::y>),
01818
                                              std::true_type,
01819
01820
                                              std::false_type>;
01821
                               };
01822
01823
                               template<typename v1, typename v2>
01824
                                struct sub {
                                private:
01825
01826
                                      using a = typename Ring::template mul_t<typename v1::x, typename v2::y>;
                                       using b = typename Ring::template mul_t<typename v1::y, typename v2::x>;
01827
01828
                                      using dividend = typename Ring::template sub_t<a, b>;
01829
                                      using diviser = typename Ring::template mul_t<typename v1::y, typename v2::y>;
01830
                                      using g = typename Ring::template gcd_t<dividend, diviser>;
01831
01832
                                 public:
                                      using type = typename _FractionField<Ring>::template simplify_t<val<dividend,</pre>
01833
         diviser»;
01834
01835
01836
                               template<typename v1, typename v2>
01837
                                struct mul {
                                private:
01838
                                      using a = typename Ring::template mul_t<typename v1::x, typename v2::x>;
using b = typename Ring::template mul_t<typename v1::y, typename v2::y>;
01839
01840
01841
01842
01843
                                      using type = typename _FractionField<Ring>::template simplify_t<val<a, b>;
01844
                               };
01845
01846
                               template<typename v1, typename v2, typename E = void>
01847
                               struct div {}:
01848
01849
                               template<typename v1, typename v2> \,
struct div<v1, v2, std::
_FractionField<Ring>::zero>::value>
01851
                                struct div<v1, v2, std::enable_if_t<!std::is_same<v2, typename
01852
                                      using a = typename Ring::template mul_t<typename v1::x, typename v2::y>;
01853
                                      using b = typename Ring::template mul_t<typename v1::y, typename v2::x>;
01854
                                 public:
01855
                                       using type = typename _FractionField<Ring>::template simplify_t<val<a, b>;
01856
01857
                               }:
01858
01859
                                template<typename v1, typename v2>
01860
                                struct div<v1, v2, std::enable_if_t<
01861
                                       std::is_same<zero, v1>::value && std::is_same<v2, zero>::value» {
01862
                                       using type = one;
01863
                               };
01864
01865
                                template<typename v1, typename v2>
01866
                                struct eq {
01867
                                      using type = std::conditional_t<
01868
                                                     \verb|std::is_same<typename| simplify_t<v1>::x, typename| simplify_t<v2>::x>::value && | limits_t | l
01869
                                                     std::is_same<typename simplify_t<v1>::y, typename simplify_t<v2>::y>::value,
01870
                                              std::true type,
01871
                                              std::false_type>;
01872
                               };
01873
01874
                               template<typename TL, typename E = void>
01875
                               struct vadd {};
01876
01877
                                template<typename TL>
01878
                                struct vadd<TL, std::enable_if_t<(TL::length > 1)» {
01879
                                       using head = typename TL::pop_front::type;
                                       using tail = typename TL::pop_front::tail;
01880
                                       using type = typename add<head, typename vadd<tail>::type>::type;
01881
01882
                               };
01883
                                template<typename TL>
01885
                               struct vadd<TL, std::enable_if_t<(TL::length == 1)» {</pre>
01886
                                       using type = typename TL::template at<0>;
01887
01888
01889
                               template<typename... vals>
                               struct vmul {};
01890
01891
01892
                                template<typename v1, typename... vals>
01893
                                struct vmul<v1, vals...> {
                                      using type = typename mul<v1, typename vmul<vals...>::type>::type;
01894
01895
01896
01897
                               template<typename v1>
01898
                                struct vmul<v1> {
01899
                                      using type = v1;
01900
                                };
01901
```

```
01902
01903
                   template<typename v1, typename v2, typename E = void>
                   struct gt;
01904
01905
01906
                   template<typename v1, typename v2>
struct gt<v1, v2, std::enable_if_t</pre>
01907
                        (eq<v1, v2>::type::value)
01908
01909
                       using type = std::false_type;
01910
01911
                   };
01912
01913
                   template<typename v1, typename v2>
                   struct gt<v1, v2, std::enable_if_t<
01914
01915
                       (!eq<v1, v2>::type::value) &&
01916
                        (!pos<v1>::type::value) && (!pos<v2>::type::value)
01917
01918
                       using type = typename gt<
                           typename sub<zero, v1>::type, typename sub<zero, v2>::type
01919
                       >::type;
01920
01921
                   };
01922
01923
                   template<typename v1, typename v2>
                   struct gt<v1, v2, std::enable_if_t<
     (!eq<v1, v2>::type::value) &&
01924
01925
01926
                        (pos<v1>::type::value) && (!pos<v2>::type::value)
01927
01928
                       using type = std::true_type;
01929
01930
                   template<typename v1, typename v2> ^{\circ}
01931
                   struct gt<v1, v2, std::enable_if_t<
(!eq<v1, v2>::type::value) &&
01932
01933
01934
                        (!pos<v1>::type::value) && (pos<v2>::type::value)
01935
01936
                       using type = std::false_type;
01937
                   };
01938
                   template<typename v1, typename v2>
01940
                   struct gt<v1, v2, std::enable_if_t<
01941
                        (!eq<v1, v2>::type::value) &&
01942
                        (pos<v1>::type::value) && (pos<v2>::type::value)
01943
                       using type = typename Ring::template gt_t<
01944
01945
                            typename Ring::template mul_t<v1::x, v2::y>,
01946
                            typename Ring::template mul_t<v2::y, v2::x>
01947
01948
                   } ;
01949
01950
                public:
01955
                   template<tvpename v1, tvpename v2>
                   using add_t = typename add<v1, v2>::type;
01957
01962
                   template<typename v1, typename v2>
01963
                   using mod_t = zero;
01964
01969
                   template<typename v1, typename v2>
01970
                   using gcd_t = v1;
01971
01974
                   template<typename... vs>
01975
                   using vadd_t = typename vadd<vs...>::type;
01976
01979
                   template<typename... vs>
01980
                   using vmul_t = typename vmul<vs...>::type;
01981
01985
                   template<typename v1, typename v2>
01986
                   using sub_t = typename sub<v1, v2>::type;
01987
01991
                   template<typename v1, typename v2>
01992
                   using mul t = typename mul<v1, v2>::type;
01997
                   template<typename v1, typename v2>
01998
                   using div_t = typename div<v1, v2>::type;
01999
02003
                   template<typename v1, typename v2>
02004
                   using eq_t = typename eq<v1, v2>::type;
02005
02009
                   template<typename v1, typename v2>
02010
                   static constexpr bool eq_v = eq<v1, v2>::type::value;
02011
02015
                   template<typename v1, typename v2>
02016
                   using gt_t = typename gt<v1, v2>::type;
02021
                   template<typename v1, typename v2>
02022
                   static constexpr bool gt_v = gt<v1, v2>::type::value;
02023
02026
                   template<typename v1>
02027
                   using pos_t = typename pos<v1>::tvpe;
```

```
02031
                  template<typename v>
02032
                  static constexpr bool pos_v = pos_t<v>::value;
02033
              };
02034
02035
              template<typename Ring, typename E = void>
02036
              requires IsEuclideanDomain<Ring>
02037
              struct FractionFieldImpl {};
02038
02039
              // fraction field of a field is the field itself
02040
              template<typename Field>
              requires IsEuclideanDomain<Field>
02041
02042
              struct FractionFieldImpl<Field, std::enable_if_t<Field::is_field» {</pre>
02043
                  using type = Field;
02044
                  template<typename v>
02045
                  using inject_t = v;
02046
              };
02047
02048
              // fraction field of a ring is the actual fraction field
02049
              template<typename Ring>
02050
              requires IsEuclideanDomain<Ring>
02051
              struct FractionFieldImpl<Ring, std::enable_if_t<!Ring::is_field> {
                  using type = _FractionField<Ring>;
02052
02053
         };
} // namespace internal
02054
02055
02059
          template<typename Ring>
02060
          requires IsEuclideanDomain<Ring>
02061
          using FractionField = typename internal::FractionFieldImpl<Ring>::type;
02062 } // namespace aerobus
02063
02064 // short names for common types
02065 namespace aerobus {
02068
          using q32 = FractionField<i32>;
          using fpq32 = FractionField<polynomial<q32»;
02071
          using q64 = FractionField<i64>;
02074
02076
          using pi64 = polynomial<i64>;
          using pq64 = polynomial < q64>;
02078
02080
          using fpq64 = FractionField<polynomial<q64»;
02085
          template<typename Ring, typename v1, typename v2>
02086
          using makefraction_t = typename FractionField<Ring>::template val<v1, v2>;
02087
          template<typename Ring, typename v1, typename v2>
02092
          using addfractions_t = typename FractionField<Ring>::template add_t<v1, v2>;
02093
          template<typename Ring, typename v1, typename v2>
02098
02099
          using mulfractions_t = typename FractionField<Ring>::template mul_t<v1, v2>;
02100 } // namespace aerobus
02101
02102 // taylor series and common integers (factorial, bernouilli...) appearing in taylor coefficients
02103 namespace aerobus {
         namespace internal {
02105
            template<typename T, size_t x, typename E = void>
02106
              struct factorial {};
02107
             template<typename T, size_t x>
struct factorial<T, x, std::enable_if_t<(x > 0)» {
02108
02109
              private:
02110
02111
                  template<typename, size_t, typename>
02112
                  friend struct factorial;
              public:
02113
02114
                  using type = typename T::template mul t<typename T::template val<x>, typename factorial<T,
     x - 1>::type>;
02115
                  static constexpr typename T::inner_type value = type::template get<typename
     T::inner_type>();
02116
02117
02118
             template<typename T>
              struct factorial <T. 0> {
02119
02120
              public:
               using type = typename T::one;
                  static constexpr typename T::inner_type value = type::template get<typename</pre>
02122
     T::inner_type>();
02123
          } // namespace internal
02124
02125
02129
          template<typename T, size_t i>
02130
          using factorial_t = typename internal::factorial<T, i>::type;
02131
02135
          template<typename T, size_t i>
          inline constexpr typename T::inner_type factorial_v = internal::factorial<T, i>::value;
02136
02137
02138
          namespace internal {
02139
              template<typename T, size_t k, size_t n, typename E = void>
02140
              struct combination_helper {};
02141
              template<typename T, size_t k, size_t n> struct combination_helper<T, k, n, std::enable_if_t<(n >= 0 && k <= (n / 2) && k > 0)» {
02142
02143
```

```
using type = typename FractionField<T>::template mul_t<</pre>
02145
                       typename combination_helper<T, k - 1, n - 1>::type,
02146
                       makefraction_t<T, typename T::template val<n>, typename T::template val<k>>;
02147
              };
02148
              template<typename T, size_t k, size_t n>
02149
              struct combination_helper<T, k, n, std::enable_if_t<(n >= 0 && k > (n / 2) && k > 0)» {
02150
02151
                   using type = typename combination_helper<T, n - k, n>::type;
02152
02153
02154
              template<typename T, size_t n>
02155
              struct combination_helper<T, 0, n> {
02156
                  using type = typename FractionField<T>::one;
02157
02158
02159
              template<typename T, size_t k, size_t n>
02160
              struct combination {
02161
                  using type = typename internal::combination_helper<T, k, n>::type::x;
02162
                  static constexpr typename T::inner_type value =
02163
                               internal::combination_helper<T, k, n>::type::template get<typename</pre>
      T::inner_type>();
02164
          } // namespace internal
02165
02166
          template<typename T, size_t k, size_t n>
02169
02170
          using combination_t = typename internal::combination<T, k, n>::type;
02171
02176
          template<typename T, size_t k, size_t n>
02177
          inline constexpr typename T::inner_type combination_v = internal::combination<T, k, n>::value;
02178
02179
          namespace internal {
02180
              template<typename T, size_t m>
02181
               struct bernouilli;
02182
              template<typename T, typename accum, size_t k, size_t m> struct bernouilli_helper {
02183
02184
02185
                  using type = typename bernouilli_helper<
02186
02187
                       addfractions_t<T,
02188
                           accum,
02189
                           mulfractions_t<T,</pre>
02190
                               makefraction_t<T,
                                  combination_t<T, k, m + 1>,
02191
                                    typename T::one>,
02192
02193
                               typename bernouilli<T, k>::type
02194
02195
                       k + 1,
02196
02197
                       m>::type;
02198
02199
02200
               template<typename T, typename accum, size_t m>
02201
              struct bernouilli_helper<T, accum, m, m> {
02202
                  using type = accum;
02203
02204
02205
02206
02207
              template<typename T, size_t m>
02208
               struct bernouilli {
                  using type = typename FractionField<T>::template mul_t<</pre>
02209
02210
                       typename internal::bernouilli_helper<T, typename FractionField<T>::zero, 0, m>::type,
02211
                       makefraction_t<T,
02212
                       typename T::template val<static_cast<typename T::inner_type>(-1)>,
02213
                       typename T::template val<static_cast<typename T::inner_type>(m + 1)>
02214
02215
02216
02217
                   template<typename floatType>
                   static constexpr floatType value = type::template get<floatType>();
02218
02219
02220
02221
              template<typename T>
              struct bernouilli<T, 0> {
02222
                  using type = typename FractionField<T>::one;
02223
02224
02225
                   template<typename floatType>
02226
                   static constexpr floatType value = type::template get<floatType>();
02227
              } ;
          } // namespace internal
02228
02229
          template<typename T, size_t n>
02233
02234
          using bernouilli_t = typename internal::bernouilli<T, n>::type;
02235
          template<typename FloatType, typename T, size_t n >
inline constexpr FloatType bernouilli_v = internal::bernouilli<T, n>::template value<FloatType>;
02240
02241
02242
```

```
02243
          namespace internal {
             template<typename T, int k, typename E = void>
02244
02245
               struct alternate {};
02246
02247
               template<typename T, int k>
struct alternate<T, k, std::enable_if_t<k % 2 == 0» {</pre>
02248
                   using type = typename T::one;
02249
                    static constexpr typename T::inner_type value = type::template get<typename
02250
      T::inner_type>();
02251
             };
02252
02253
               template<typename T, int k>
               struct alternate<T, k, std::enable_if_t<k % 2 != 0» {
02254
02255
                   using type = typename T::template sub_t<typename T::zero, typename T::one>;
02256
                    static constexpr typename T::inner_type value = type::template get<typename
      T::inner_type>();
02257
               };
02258
           } // namespace internal
02262
           template<typename T, int k>
02263
           using alternate_t = typename internal::alternate<T, k>::type;
02264
02265
           namespace internal {
               template<typename T, int n, int k, typename E = void>
02266
02267
               struct stirling_helper {};
02268
02269
               template<typename T>
02270
               struct stirling_helper<T, 0, 0> {
02271
                   using type = typename T::one;
02272
02273
02274
               template<typename T, int n>
02275
               struct stirling_helper<T, n, 0, std::enable_if_t<(n > 0)» {
02276
                   using type = typename T::zero;
02277
02278
02279
               template<typename T, int n>
               struct stirling_helper<T, 0, n, std::enable_if_t<(n > 0)» {
02280
02281
                   using type = typename T::zero;
02282
02283
02284
               template<typename T, int n, int k>
               struct stirling_helper<T, n, k, std::enable_if_t<(k > 0) && (n > 0)» {
    using type = typename T::template sub_t
02285
02286
                                      typename stirling_helper<T, n-1, k-1>::type,
02287
02288
                                      typename T::template mul_t<
02289
                                          typename T::template inject_constant_t<n-1>,
02290
                                          typename stirling_helper<T, n-1, k>::type
02291
02292
              // namespace internal
02293
02294
02299
           template<typename T, int n, int k>
02300
           using stirling_signed_t = typename internal::stirling_helper<T, n, k>::type;
02301
02306
           template<typename T, int n, int k>
using stirling_unsigned_t = abs_t<typename internal::stirling_helper<T, n, k>::type>;
02307
02308
02313
           template<typename T, int n, int k>
02314
           static constexpr typename T::inner_type stirling_signed_v = stirling_signed_t<T, n, k>::v;
02315
02316
02321
           template<typename T, int n, int k>
02322
           static constexpr typename T::inner_type stirling_unsigned_v = stirling_unsigned_t<T, n, k>::v;
02323
02326
           template<typename T, size_t k>
           inline constexpr typename T::inner_type alternate_v = internal::alternate<T, k>::value;
02327
02328
02329
           namespace internal {
02330
               template<typename T, auto p, auto n, typename E = void>
02331
               struct pow {};
02332
               template<typename T, auto p, auto n> struct pow<T, p, n, std::enable_if_t<(n > 0 && n % 2 == 0)» { using type = typename T::template mul_t<
02333
02334
02335
02336
                        typename pow<T, p, n/2>::type,
02337
                        typename pow<T, p, n/2>::type
02338
02339
               };
02340
02341
               template<typename T, auto p, auto n>
               struct pow<T, p, n, std::enable_if_t<(n % 2 == 1)» {
    using type = typename T::template mul_t<
02342
02343
02344
                        typename T::template inject_constant_t,
02345
                        typename T::template mul_t<</pre>
                            typename pow<T, p, n/2>::type, typename pow<T, p, n/2>::type
02346
02347
```

```
02348
02349
02350
              };
02351
02352
              template<typename T, auto p>
struct pow<T, p, 0> { using type = typename T::one; };
02353
          } // namespace internal
02354
02355
02360
          template<typename T, auto p, auto n>
02361
          using pow_t = typename internal::pow<T, p, n>::type;
02362
02367
          template<typename T, auto p, auto n>
static constexpr typename T::inner_type pow_v = internal::pow<T, p, n>::type::v;
02368
02369
02370
          namespace internal {
02371
              template<typename, template<typename, size_t> typename, class>
02372
               struct make_taylor_impl;
02373
              template<typename T, template<typename, size_t> typename coeff_at, size_t... Is>
02375
              struct make_taylor_impl<T, coeff_at, std::integer_sequence<size_t, Is...» {</pre>
                 using type = typename polynomial<FractionField<T>>::template val<typename coeff_at<T,
02376
      Is>::type...>;
02377
             } ;
02378
02379
02384
           template<typename T, template<typename, size_t index> typename coeff_at, size_t deg>
02385
           using taylor = typename internal::make_taylor_impl<</pre>
02386
02387
               coeff at,
02388
               internal::make_index_sequence_reverse<deg + 1>::type;
02389
02390
          namespace internal {
02391
              template<typename T, size_t i>
02392
               struct exp_coeff {
02393
                   using type = makefraction_t<T, typename T::one, factorial_t<T, i>>;
02394
02395
02396
               template<typename T, size_t i, typename E = void>
02397
               struct sin_coeff_helper {};
02398
02399
               template<typename T, size_t i>
               struct sin_coeff_helper<T, i, std::enable_if_t<(i & 1) == 0» {
    using type = typename FractionField<T>::zero;
02400
02401
02402
02403
02404
               template<typename T, size_t i>
02405
               struct sin_coeff_helper<T, i, std::enable_if_t<(i & 1) == 1» {
02406
                   using type = makefraction_t<T, alternate_t<T, i / 2>, factorial_t<T, i>>;
02407
02408
02409
               template<typename T, size_t i>
02410
               struct sin_coeff {
02411
                   using type = typename sin_coeff_helper<T, i>::type;
02412
02413
               template<typename T, size_t i, typename E = void>
02414
02415
               struct sh_coeff_helper {};
02416
               template<typename T, size_t i>
02417
02418
               struct sh_coeff_helper<T, i, std::enable_if_t<(i & 1) == 0  {
                   using type = typename FractionField<T>::zero;
02419
02420
               };
02421
               template<typename T, size_t i>
struct sh_coeff_helper<T, i, std::enable_if_t<(i & 1) == 1» {</pre>
02422
02423
02424
                   using type = makefraction_t<T, typename T::one, factorial_t<T, i>>;
02425
02426
02427
               template<typename T, size t i>
02428
               struct sh_coeff {
02429
                  using type = typename sh_coeff_helper<T, i>::type;
02430
02431
02432
               template<typename T, size_t i, typename E = void>
02433
               struct cos coeff helper {};
02434
02435
               template<typename T, size_t i>
               struct cos_coeff_helper<T, i, std::enable_if_t<(i & 1) == 1» {
    using type = typename FractionField<T>::zero;
02436
02437
02438
02439
02440
               template<typename T, size_t i>
02441
               struct cos_coeff_helper<T, i, std::enable_if_t<(i & 1) == 0» {</pre>
                   using type = makefraction_t<T, alternate_t<T, i / 2>, factorial_t<T, i>>;
02442
02443
02444
02445
               template<typename T, size t i>
```

```
struct cos_coeff {
02447
                 using type = typename cos_coeff_helper<T, i>::type;
02448
              };
02449
02450
              template<typename T, size_t i, typename E = void>
02451
              struct cosh coeff helper {};
02452
02453
              template<typename T, size_t i>
02454
              struct cosh_coeff_helper<T, i, std::enable_if_t<(i & 1) == 1» {
02455
                  using type = typename FractionField<T>::zero;
02456
              };
02457
02458
              template<typename T, size_t i>
02459
              struct cosh_coeff_helper<T, i, std::enable_if_t<(i & 1) == 0» {
02460
                 using type = makefraction_t<T, typename T::one, factorial_t<T, i>>;
02461
02462
02463
              template<typename T, size_t i>
              struct cosh_coeff {
02464
02465
                  using type = typename cosh_coeff_helper<T, i>::type;
02466
02467
02468
              template<typename T, size_t i>
              struct geom_coeff { using type = typename FractionField<T>::one; };
02469
02470
02471
02472
              template<typename T, size_t i, typename E = void>
02473
              struct atan_coeff_helper;
02474
02475
              template<typename T, size_t i>
02476
              struct atan_coeff_helper<T, i, std::enable_if_t<(i & 1) == 1» {</pre>
02477
                  using type = makefraction_t<T, alternate_t<T, i / 2>, typename T::template val<i>;;
02478
02479
              template<typename T, size_t i>
02480
              struct atan_coeff_helper<T, i, std::enable_if_t<(i & 1) == 0» {
02481
                 using type = typename FractionField<T>::zero;
02482
02484
02485
              template<typename T, size_t i>
02486
              struct atan_coeff { using type = typename atan_coeff_helper<T, i>::type; };
02487
              template<typename T, size_t i, typename E = void>
02488
02489
              struct asin_coeff_helper;
02490
02491
              template<typename T, size_t i>
02492
              struct asin_coeff_helper<T, i, std::enable_if_t<(i & 1) == 1» {</pre>
02493
                  using type = makefraction_t<T,</pre>
                       factorial_t<T, i - 1>,
02494
                       typename T::template mul_t<
02495
02496
                           typename T::template val<i>,
02497
                           T::template mul_t<
                              pow_t<T, 4, i / 2>,
02498
                               pow<T, factorial<T, i / 2>::value, 2
02499
02500
02501
02502
                       »;
02503
              };
02504
02505
              template<typename T, size_t i>
              struct asin_coeff_helper<T, i, std::enable_if_t<(i & 1) == 0» {
    using type = typename FractionField<T>::zero;
02506
02507
02508
02509
02510
              template<typename T, size_t i>
02511
              struct asin_coeff {
02512
                  using type = typename asin_coeff_helper<T, i>::type;
02513
02514
              template<typename T, size_t i>
02516
              struct lnp1_coeff {
02517
                  using type = makefraction_t<T,</pre>
                      alternate_t<T, i + 1>,
02518
02519
                      typename T::template val<i>;;
02520
              };
02521
02522
              template<typename T>
02523
              struct lnp1_coeff<T, 0> { using type = typename FractionField<T>::zero; };
02524
02525
              template<typename T, size_t i, typename E = void>
02526
              struct asinh_coeff_helper;
02528
              template<typename T, size_t i>
02529
              struct asinh_coeff_helper<T, i, std::enable_if_t<(i & 1) == 1» {
02530
                  using type = makefraction_t<T,</pre>
02531
                       typename T::template mul_t<
02532
                           alternate t<T, i / 2>,
```

```
factorial_t<T, i - 1>
02534
02535
                                         typename T::template mul_t<
02536
                                                 T::template mul_t<
                                                        typename T::template val<i>,
02537
                                                        pow_t<T, (factorial<T, i / 2>::value), 2>
02538
02539
02540
                                                pow_t<T, 4, i / 2>
02541
02542
                                 >;
02543
                          };
02544
02545
                          template<typename T, size_t i>
02546
                          struct asinh_coeff_helper<T, i, std::enable_if_t<(i & 1) == 0» {
02547
                                using type = typename FractionField<T>::zero;
02548
02549
02550
                          template<typename T, size_t i>
                          struct asinh_coeff {
02551
02552
                                using type = typename asinh_coeff_helper<T, i>::type;
02553
02554
02555
                          template<typename T, size_t i, typename E = void>
02556
                          struct atanh_coeff_helper;
02557
02558
                          template<typename T, size_t i>
02559
                          struct atanh_coeff_helper<T, i, std::enable_if_t<(i & 1) == 1» {
02560
                                 // 1/i
02561
                                 using type = typename FractionField<T>:: template val<</pre>
02562
                                         typename T::one,
02563
                                         typename T::template val<static_cast<typename T::inner_type>(i)»;
02564
                          };
02565
02566
                          template<typename T, size_t i>
02567
                          struct \ atanh\_coeff\_helper<T, \ i, \ std::enable\_if\_t<(i \& 1) == 0 > \{truct \ atanh\_coeff\_helper<T, \ i, \ std::enable\_if\_t<(i \& 1) == 0 > (i \& 1) == 0 >
02568
                                 using type = typename FractionField<T>::zero;
02569
                          };
02570
02571
                          template<typename T, size_t i>
02572
                          struct atanh_coeff {
02573
                                 using type = typename asinh_coeff_helper<T, i>::type;
02574
02575
02576
                          template<typename T, size_t i, typename E = void>
02577
                          struct tan_coeff_helper;
02578
02579
                          template<typename T, size_t i>
                          struct tan_coeff_helper<T, i, std::enable_if_t<(i % 2) == 0» {
    using type = typename FractionField<T>::zero;
02580
02581
02582
02583
02584
                          template<typename T, size_t i>
02585
                          struct tan_coeff_helper<T, i, std::enable_if_t<(i % 2) != 0» {</pre>
02586
                          private:
                                  // 4^((i+1)/2)
02587
                                 using _4p = typename FractionField<T>::template inject_t<pow_t<T, 4, (i + 1) / 2»; // 4^{(i+1)/2} - 1
02588
02589
02590
                                  using _4pm1 = typename FractionField<T>::template sub_t<_4p, typename
          FractionField<T>::one>;
02591
                                 // (-1)^{(i-1)/2}
                                 using altp = typename FractionField<T>::template inject_t<alternate_t<T, (i - 1) / 2»;</pre>
02592
02593
                                 using dividend = typename FractionField<T>::template mul_t<</pre>
02594
                                         altp,
02595
                                         FractionField<T>::template mul_t<
02596
                                          _4p,
02597
                                         FractionField<T>::template mul_t<</pre>
02598
                                          _4pm1,
                                         bernouilli_t<T, (i + 1)>
02599
02600
02602
02603
                          public:
02604
                                 using type = typename FractionField<T>::template div_t<dividend,
02605
                                         typename FractionField<T>::template inject_t<factorial_t<T, i + 1>>;
02606
                          };
02607
02608
                          template<typename T, size_t i>
02609
                          struct tan_coeff {
02610
                                 using type = typename tan_coeff_helper<T, i>::type;
02611
02612
02613
                          template<typename T, size_t i, typename E = void>
                          struct tanh_coeff_helper;
02614
02615
                          template<typename T, size_t i>
struct tanh_coeff_helper<T, i, std::enable_if_t<(i % 2) == 0» {</pre>
02616
02617
                                 using type = typename FractionField<T>::zero;
02618
```

```
02619
              };
02620
02621
              template<typename T, size_t i>
02622
              struct tanh_coeff_helper<T, i, std::enable_if_t<(i % 2) != 0» {
02623
              private:
                  using _4p = typename FractionField<T>::template inject_t<pow_t<T, 4, (i + 1) / 2»;
02624
                  using _4pm1 = typename FractionField<T>::template sub_t<_4p, typename
02625
     FractionField<T>::one>;
02626
                 using dividend =
02627
                      typename FractionField<T>::template mul t<
02628
                      _4p,
02629
                      typename FractionField<T>::template mul t<
02630
                       4pm1,
02631
                      bernouilli_t<T, (i + 1)>
02632
02633
02634
              public:
02635
                  using type = typename FractionField<T>::template div_t<dividend,</pre>
02636
                       FractionField<T>::template inject_t<factorial_t<T, i + 1>>;
02637
              };
02638
02639
              template<typename T, size_t i>
02640
              struct tanh_coeff {
                  using type = typename tanh_coeff_helper<T, i>::type;
02641
02642
02643
          } // namespace internal
02644
02648
          template<typename T, size_t deg>
02649
          using exp = taylor<T, internal::exp_coeff, deg>;
02650
02654
          template<typename T, size_t deg>
02655
          using expm1 = typename polynomial<FractionField<T>>::template sub_t<</pre>
02656
              exp<T, deg>,
02657
              typename polynomial<FractionField<T>>::one>;
02658
02662
          template<typename T, size_t deg>
          using lnp1 = taylor<T, internal::lnp1_coeff, deg>;
02663
02664
02668
          template<typename T, size_t deg>
02669
          using atan = taylor<T, internal::atan_coeff, deg>;
02670
02674
          template<typename T, size_t deg>
using sin = taylor<T, internal::sin_coeff, deg>;
02675
02676
02680
          template<typename T, size_t deg>
02681
          using sinh = taylor<T, internal::sh_coeff, deg>;
02682
02686
          template<typename T, size_t deg>
          using cosh = taylor<T, internal::cosh_coeff, deg>;
02687
02688
02692
          template<typename T, size_t deg>
02693
          using cos = taylor<T, internal::cos_coeff, deg>;
02694
          template<typename T, size_t deg>
using geometric_sum = taylor<T, internal::geom_coeff, deg>;
02698
02699
02700
02704
          template<typename T, size_t deg>
02705
          using asin = taylor<T, internal::asin_coeff, deg>;
02706
02710
          template<typename T, size_t deg>
          using asinh = taylor<T, internal::asinh_coeff, deg>;
02711
02712
          template<typename T, size_t deg>
02717
          using atanh = taylor<T, internal::atanh_coeff, deg>;
02718
02722
          template<typename T, size_t deg>
02723
          using tan = taylor<T, internal::tan_coeff, deg>;
02724
          template<typename T, size_t deg>
02728
          using tanh = taylor<T, internal::tanh_coeff, deg>;
02729
02730 } // namespace aerobus
02731
02732 // continued fractions
02733 namespace aerobus {
02736
          template<int64_t... values>
          struct ContinuedFraction {};
02737
02738
02741
          template<int64_t a0>
02742
          struct ContinuedFraction<a0> {
02743
              using type = typename q64::template inject_constant_t<a0>;
02744
              static constexpr double val = type::template get<double>();
02745
          };
02746
02750
          template<int64_t a0, int64_t... rest>
02751
          struct ContinuedFraction<a0, rest...> {
02752
              using type = q64::template add_t<
02753
                       typename q64::template inject_constant_t<a0>,
```

```
typename q64::template div_t<
02755
                                              typename q64::one,
02756
                                              typename ContinuedFraction<rest...>::type
02757
                        static constexpr double val = type::template get<double>();
02758
02759
                 };
02760
02765
          ContinuedFraction<3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1>;
02768
                 using E_fraction =
          ContinuedFraction<2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1>;
02770
                using SORT2 fraction =
          using SQRT3_fraction =
          ContinuedFraction<1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 
           // NOLINT
02773 } // namespace aerobus
02774
02775 // known polynomials
02776 namespace aerobus {
02777
                  // CChebyshev
02778
                 namespace internal {
02779
                        template<int kind, size_t deg>
02780
                        struct chebyshev_helper {
02781
                               using type = typename pi64::template sub_t<
02782
                                      typename pi64::template mul_t<
02783
                                              typename pi64::template mul_t<
02784
                                                    pi64::inject_constant_t<2>,
02785
                                                     typename pi64::X>,
02786
                                              typename chebyshev_helper<kind, deg - 1>::type
02787
02788
                                       typename chebyshev_helper<kind, deg - 2>::type
02789
02790
                        } ;
02791
02792
                        template<>
02793
                        struct chebyshev_helper<1, 0> {
02794
                               using type = typename pi64::one;
02795
02796
02797
                         template<>
                        struct chebyshev_helper<1, 1> {
02798
02799
                              using type = typename pi64::X;
02800
02801
02802
                         template<>
02803
                         struct chebyshev_helper<2, 0> {
02804
                               using type = typename pi64::one;
02805
02806
02807
                        template<>
02808
                         struct chebyshev_helper<2, 1> {
                               using type = typename pi64::template mul_t<
    typename pi64::inject_constant_t<2>,
02809
02810
02811
                                       typename pi64::X>;
02812
02813
                 } // namespace internal
02814
02815
                  // Laguerre
02816
                 namespace internal {
02817
                        template<size_t deg>
02818
                        struct laguerre_helper {
02819
                          private:
02820
                              // Lk = (1 / k) * ((2 * k - 1 - x) * 1km1 - (k - 2)Lkm2)
02821
                               using lnm2 = typename laguerre_helper<deg - 2>::type;
02822
                               using lnm1 = typename laguerre_helper<deg - 1>::type;
02823
                                // -x + 2k-1
02824
                               using p = typename pq64::template val<
02825
                                       typename q64::template inject_constant_t<-1>,
                                       typename q64::template inject_constant_t<2 * deg - 1»;
02827
                                // 1/n
02828
                                using factor = typename pq64::template inject_ring_t<
02829
                                       q64::val<typename i64::one, typename i64::template inject_constant_t<deg>>;
02830
02831
                          public:
02832
                               using type = typename pq64::template mul_t <
02833
02834
                                       typename pq64::template sub_t<
02835
                                              typename pq64::template mul_t<
02836
                                                    p,
02837
                                                     lnm1
02838
02839
                                              typename pq64::template mul_t<
02840
                                                     typename pq64::template inject_constant_t<deg-1>,
02841
                                                     lnm2
02842
02843
```

```
02844
                 >;
02845
02846
              };
02847
02848
              template<>
02849
              struct laguerre helper<0> {
02850
                 using type = typename pq64::one;
02851
02852
02853
              template<>
02854
              struct laguerre_helper<1> {
              using type = typename pq64::template sub_t<typename pq64::x>;
};
02855
02856
02857
          } // namespace internal
02858
02859
          // Bernstein
02860
          namespace internal {
              template<size_t i, size_t m, typename E = void>
struct bernstein_helper {};
02861
02862
02863
02864
              template<>
02865
              struct bernstein_helper<0, 0> {
                 using type = typename pi64::one;
02866
02867
02868
02869
              template<size_t i, size_t m>
02870
              struct bernstein_helper<i, m, std::enable_if_t<
                  (m > 0) && (i == 0)» {
using type = typename pi64::mul_t
02871
02872
                          typename pi64::sub_t<typename pi64::one, typename pi64::X>,
02873
02874
                          typename bernstein_helper<i, m-1>::type>;
02875
              };
02876
02877
              template<size_t i, size_t m>
              struct bernstein_helper<i, m, std::enable_if_t<  (m > 0) \ \&\& \ (i == m) \  \  \} 
02878
02879
                  using type = typename pi64::template mul_t<
02880
                          typename pi64::X,
02881
02882
                          typename bernstein_helper<i-1, m-1>::type>;
02883
              };
02884
02885
              template<size t i, size t m>
              02886
02887
02888
                  using type = typename pi64::add_t<
02889
                          typename pi64::mul_t<
02890
                             typename pi64::sub_t<typename pi64::one, typename pi64::X>,
02891
                              typename bernstein_helper<i, m-1>::type>,
02892
                          typename pi64::mul_t<
02893
                              typename pi64::X,
02894
                              typename bernstein_helper<i-1, m-1>::type»;
02895
          } // namespace internal
02896
02897
02898
          namespace known_polynomials {
02900
              enum hermite_kind {
02901
                 probabilist,
02902
                  physicist
02903
              } ;
02904
         }
02905
02906
         namespace internal {
02907
              template<size_t deg, known_polynomials::hermite_kind kind>
02908
              struct hermite_helper {};
02909
02910
              template<size_t deg>
02911
              struct hermite_helper<deg, known_polynomials::hermite_kind::probabilist> {
02912
               private:
                 using hnm1 = typename hermite_helper<deg - 1,
02913
      known_polynomials::hermite_kind::probabilist>::type;
02914
                  using hnm2 = typename hermite_helper<deg - 2,
      known_polynomials::hermite_kind::probabilist>::type;
02915
02916
               public:
02917
                  using type = typename pi64::template sub_t<
02918
                      typename pi64::template mul_t<typename pi64::X, hnm1>,
02919
                      typename pi64::template mul_t<
02920
                          typename pi64::template inject_constant_t<deg - 1>,
02921
                          hnm2
02922
02923
                  >;
02924
              } ;
02925
02926
              template<size_t deg>
02927
              struct hermite_helper<deg, known_polynomials::hermite_kind::physicist> {
02928
               private:
02929
                  using hnm1 = typename hermite helper<deg - 1.
```

```
known_polynomials::hermite_kind::physicist>::type;
02930
                  using hnm2 = typename hermite_helper<deg - 2,
      known_polynomials::hermite_kind::physicist>::type;
02931
02932
               public:
02933
                 using type = typename pi64::template sub t<
                      // 2X Hn-1
02934
02935
                      typename pi64::template mul_t<
02936
                          typename pi64::val<typename i64::template inject_constant_t<2>,
                          typename i64::zero>, hnm1>,
02937
02938
02939
                      typename pi64::template mul_t<
02940
                          typename pi64::template inject constant t<2*(deg - 1)>,
02941
02942
02943
                  >;
02944
              };
02945
02946
              template<>
02947
              struct hermite_helper<0, known_polynomials::hermite_kind::probabilist> {
02948
                 using type = typename pi64::one;
02949
              };
02950
02951
              template<>
02952
              struct hermite_helper<1, known_polynomials::hermite_kind::probabilist> {
02953
                using type = typename pi64::X;
02954
02955
02956
              template<>
02957
              struct hermite_helper<0, known_polynomials::hermite_kind::physicist> {
02958
                 using type = typename pi64::one;
02959
02960
02961
              template<>
02962
              struct hermite_helper<1, known_polynomials::hermite_kind::physicist> {
02963
                 // 2X
02964
                  using type = typename pi64::template val<typename i64::template inject_constant_t<2>,
     typename i64::zero>;
02965
              };
02966
          } // namespace internal
02967
02968
         namespace known_polynomials {
02971
              template <size t deg>
02972
              using chebyshev_T = typename internal::chebyshev_helper<1, deg>::type;
02973
02976
              template <size_t deg>
02977
              using chebyshev_U = typename internal::chebyshev_helper<2, deg>::type;
02978
02981
              template <size_t deg>
02982
              using laguerre = typename internal::laguerre helper<deg>::type;
02986
              template <size_t deg>
02987
              using hermite_prob = typename internal::hermite_helper<deg, hermite_kind::probabilist>::type;
02988
02991
              template <size_t deg>
02992
              using hermite_phys = typename internal::hermite_helper<deg, hermite_kind::physicist>::type;
02993
02997
              template<size_t i, size_t m>
02998
              using bernstein = typename internal::bernstein_helper<i, m>::type;
02999
            // namespace known_polynomials
03000 } // namespace aerobus
03001
03002
03003 #ifdef AEROBUS_CONWAY_IMPORTS
03004 template<int p, int n>
03005 struct ConwayPolynomial;
03006
03007 #define ZPZV ZPZ::template val
03008 #define POLYV aerobus::polynomial<ZPZ>::template val
03009 template<> struct ConwayPolynomial<2, 1> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
      ZPZV<1»; }; // NOLINT</pre>
03010 template<> struct ConwayPolynomial<2, 2> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
      ZPZV<1>, ZPZV<1>; // NOLINT
03011 template<> struct ConwayPolynomial<2, 3> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
      ZPZV<0>, ZPZV<1>, ZPZV<1»; }; // NOLINT</pre>
03012 template<> struct ConwayPolynomial<2, 4> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
      ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1»; }; // NOLINT</pre>
03013 template<> struct ConwayPolynomial<2, 5> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
      ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<0>, ZPZV<1»; }; // NOLINT</pre>
03014 template<> struct ConwayPolynomial<2, 6> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>; }; // NOLINT
03015 template<> struct ConwayPolynomial<2, 7> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<2; using type = POLYV<ZPZV<1>,
```

```
03018 template<> struct ConwayPolynomial<2, 10> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1</pre>; }; //
                                NOLINT
03019 template<> struct ConwayPolynomial<2, 11> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>; };
                                   // NOLINT
 03020 template<> struct ConwayPolynomial<2, 12> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<0>, ZPZV<1>,
                                 ZPZV<1»; }; // NOLINT</pre>
03021 template<> struct ConwayPolynomial<2, 13> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<0>, ZPZV<0 , ZPZV
                                ZPZV<1>, ZPZV<1»; }; // NOLINT
03022 template<> struct ConwayPolynomial<2, 14> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>,
                                 ZPZV<0>, ZPZV<0>, ZPZV<1»; }; // NOLINT</pre>
03023 template<> struct ConwayPolynomial<2, 15> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
                                ZPZV<0>, ZPZV<1>, ZPZV<1>,
                                ZPZV<0>, ZPZV<1>, ZPZV<0>, ZPZV<1»; }; // NOLINT</pre>
03024 template<> struct ConwayPolynomial<2, 16> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZV<0>
                                 ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<0>, ZPZV<1»; }; // NOLINT</pre>
 03025 template<> struct ConwayPolynomial<2, 17> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
                               ZPZV<0>, ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<1 , ZPZ
03026 template<> struct ConwayPolynomial<2, 18> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
                                ZPZV<0>, ZPZV<0 , ZPZ
 03027 template<> struct ConwayPolynomial<2, 19> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
                                ZPZV<0>, ZPZV<0>,
                                ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1</pre>
, 
03028 template<> struct ConwayPolynomial<2, 20> { using ZPZ = aerobus::zpz<2>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>,
                                 ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1»; }; // NOLINT</pre>
 03029 template<> struct ConwayPolynomial<3, 1> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                                ZPZV<1»; }; // NOLINT</pre>
 03030 template<> struct ConwayPolynomial<3, 2> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                                ZPZV<2>, ZPZV<2»; }; // NOLINT</pre>
 03031 template<> struct ConwayPolynomial<3, 3> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZV<2>, ZPZV<1»; }; // NOLINT</pre>
 03032 template<> struct ConwayPolynomial<3, 4> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                               ZPZV<2>, ZPZV<0>, ZPZV<0>, ZPZV<2»; }; // NOLINT</pre>
03033 template<> struct ConwayPolynomial<3, 5> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                               7P7V<0>. 7P7V<0>. 7P7V<0>. 7P7V<2>. 7P7V<1»: }: // NOLINT
 03034 template<> struct ConwayPolynomial<3, 6> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                               ZPZV<0>, ZPZV<2>, ZPZV<0>, ZPZV<1>, ZPZV<2>, ZPZV<2»; }; // NOLINT</pre>
 03035 template<> struct ConwayPolynomial<3, 7> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<1»; }; // NOLINT
03036 template<> struct ConwayPolynomial<3, 8> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                                ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<3</pre>
 03037 template<> struct ConwayPolynomial<3, 9> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                                ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<1>, ZPZV<1»; }; // NOLINT
 03038 template<> struct ConwayPolynomial<3, 10> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                                ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<2»; };</pre>
                                NOLINT
03039 template<> struct ConwayPolynomial<3, 11> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                                ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<1»; };</pre>
 03040 template<> struct ConwayPolynomial<3, 12> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1</pre>, ZPZV<1>, ZPZV<1
, ZP
                                ZPZV<2»; }; // NOLINT</pre>
03041 template<> struct ConwayPolynomial<3, 13> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                                ZPZV<0>, ZPZV<0>
                                 ZPZV<2>, ZPZV<1»; }; // NOLINT</pre>
 03042 template<> struct ConwayPolynomial<3, 14> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<1>, ZPZV<1>, ZPZV<2>, ZPZV<2>
                                ZPZV<1>, ZPZV<0>, ZPZV<2»; }; // NOLINT</pre>
 03043 template<> struct ConwayPolynomial<3, 15> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                               ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<0>, ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<3>, ZPZV<3>, ZPZV<3>, ZPZV<3>, ZPZV<3>, ZPZV<4>, ZPZV<5, ZPZV
 03044 template<> struct ConwayPolynomial<3, 16> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZV<2>, ZPZ
                                ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<1>, ZPZV<2»; }; // NOLINT</pre>
03045 template<> struct ConwayPolynomial<3, 17> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV
 ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<1»; }; // NOLINT
03046 template<> struct ConwayPolynomial<3, 18> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<2>, ZPZV<2>, ZPZV<2</pre>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<2>, ZPZV<2>, ZPZV<1>, ZPZV<1
, ZP
                                 ZPZV<2>, ZPZV<1>, ZPZV<2>, ZPZV<0>, ZPZV<2>, ZPZV<0>, ZPZV<0>, ZPZV<2»; }; // NOLINT</pre>
03047 template<> struct ConwayPolynomial<3, 19> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                               ZPZV<0>, ZPZV<0 , ZPZ
 03048 template<> struct ConwayPolynomial<3, 20> { using ZPZ = aerobus::zpz<3>; using type = POLYV<ZPZV<1>,
                               ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<3>, ZPZV<2>, ZPZV<3>, ZPZV<4>, ZPZV<4>, ZPZV<4>, ZPZV<5, ZPZV<5, ZPZV<5, ZPZV<5, ZPZV<6>, ZPZV<6>, ZPZV<6>, ZPZV<6>, ZPZV<6 , ZPZV<6 
 03049 template<> struct ConwayPolynomial<5, 1> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
                               ZPZV<3»; }; // NOLINT
 03050 template<> struct ConwayPolynomial<5, 2> { using ZPZ = aerobus::zpz<5>; using type = POLYY<ZPZY<1>,
```

```
ZPZV<4>, ZPZV<2»; }; // NOLINT</pre>
 03051 template<> struct ConwayPolynomial<5, 3> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<3>, ZPZV<3»; }; // NOLINT</pre>
 03052 template<> struct ConwayPolynomial<5, 4> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<4>, ZPZV<4>, ZPZV<2»; }; // NOLINT
03053 template<> struct ConwayPolynomial<5, 5> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<3»; }; // NOLINT</pre>
 03054 template<> struct ConwayPolynomial<5, 6> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<1>, ZPZV<4>, ZPZV<1>, ZPZV<0>, ZPZV<2»; }; // NOLINT
 03055 template<> struct ConwayPolynomial<5, 7> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3»; }; // NOLINT</pre>
03056 template<> struct ConwayPolynomial<5, 8> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<4>, ZPZV<2»; }; // NOLINT
 03057 template<> struct ConwayPolynomial<5, 9> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
                          03058 template<> struct ConwayPolynomial<5, 10> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<3>, ZPZV<2>, ZPZV<4>, ZPZV<1>, ZPZV<2»; }; //</pre>
                          NOLINT
03059 template<> struct ConwayPolynomial<5, 11> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>; };
                            // NOLINT
03060 template<> struct ConwayPolynomial<5, 12> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<4>, ZPZV<4>, ZPZV<4>, ZPZV<4>, ZPZV<3</pre>
                          ZPZV<2»; }; // NOLINT
03061 template<> struct ConwayPolynomial<5, 13> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
                           ZPZV<0>, ZPZV<0>
                           ZPZV<3>, ZPZV<3»; }; // NOLINT</pre>
 03062 template<> struct ConwayPolynomial<5, 14> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<4>, ZPZV<4>, ZPZV<4>, ZPZV<4>, ZPZV<2>, ZPZV<3>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<2»; }; // NOLINT</pre>
03063 template<> struct ConwayPolynomial<5, 15> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV
                           ZPZV<3>, ZPZV<3>, ZPZV<4>, ZPZV<3»; }; // NOLINT</pre>
 03064 template<> struct ConwayPolynomial<5, 16> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<4 , ZPZV<4 
03065 template<> struct ConwayPolynomial<5, 17> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
                           ZPZV<0>, ZPZV<0>
                           ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<2>, ZPZV<3»; }; // NOLINT</pre>
03066 template<> struct ConwayPolynomial<5, 18> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<3>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<3>, ZPZV<1>, ZPZ
                          ZPZV<2>, ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<2»; }; // NOLINT</pre>
03067 template<> struct ConwayPolynomial<5, 19> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<3»; }; // NOLINT</pre>
 03068 template<> struct ConwayPolynomial<5, 20> { using ZPZ = aerobus::zpz<5>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<3>, ZPZV<3>, ZPZV<4>, ZPZV<3>, ZPZV<2>, ZPZV<2>, ZPZV<3>, ZPZV<3>, ZPZV<0>, ZPZV<4>, ZPZV<4>, ZPZV<0>, ZPZV<2>; }; // NOLINT
03069 template<> struct ConwayPolynomial<7, 1> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
                          ZPZV<4»; }; // NOLINT
 03070 template<> struct ConwayPolynomial<7, 2> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
                          ZPZV<6>, ZPZV<3»; }; // NOLINT
 03071 template<> struct ConwayPolynomial<7, 3> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
                          ZPZV<6>, ZPZV<0>, ZPZV<4»; }; // NOLINT</pre>
 03072 template<> struct ConwayPolynomial<7, 4> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
 ZPZV<0>, ZPZV<5>, ZPZV<4>, ZPZV<3»; ); // NOLINT
03073 template<> struct ConwayPolynomial<7, 5> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<4»; }; // NOLINT</pre>
 03074 template<> struct ConwayPolynomial<7, 6> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
                          03075 template<> struct ConwayPolynomial<7, 7> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<4»; }; // NOLINT</pre>
 03076 template<> struct ConwayPolynomial<7, 8> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<4>, ZPZV<4>, ZPZV<2>, ZPZV<2>, ZPZV<3>; j; // NOLINT
03077 template<> struct ConwayPolynomial<7, 9> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
                           \texttt{ZPZV} < \texttt{0>, ZPZV} < \texttt{0
 03078 template<> struct ConwayPolynomial<7, 10> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<4>, ZPZV<1>, ZPZV<2>, ZPZV<3>, ZPZV<3»; };</pre>
                          NOLINT
03079 template<> struct ConwayPolynomial<7, 11> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
                           ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1</pre>
                           // NOLINT
03080 template<> struct ConwayPolynomial<7, 12> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<5>, ZPZV<3>, ZPZV<2>, ZPZV<4>, ZPZV<0>, ZPZV<5>, ZPZV<0>,
                          ZPZV<3»; }; // NOLINT</pre>
 03081 template<> struct ConwayPolynomial<7, 13> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
                           ZPZV<0>, ZPZV<0>
                           ZPZV<0>, ZPZV<4»; }; // NOLINT</pre>
03082 template<> struct ConwayPolynomial<7, 14> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV
                          ZPZV<3>, ZPZV<6>, ZPZV<3»; }; // NOLINT</pre>
03083 template<> struct ConwayPolynomial<7, 15> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
                           ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<6>, ZPZV<6>,
                          ZPZV<4>, ZPZV<1>, ZPZV<2>, ZPZV<4»; }; // NOLINT</pre>
03084 template<> struct ConwayPolynomial<7, 16> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<4 , ZPZV<4
```

```
03085 template<> struct ConwayPolynomial<7, 17> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
                            ZPZV<0>, ZPZV<0 , ZPZ
 03086 template<> struct ConwayPolynomial<7, 18> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
                            ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<2>, ZPZV<6>, ZPZV<6>, ZPZV<5>,
ZPZV<1>, ZPZV<3>, ZPZV<3>, ZPZV<6>, ZPZV<6>, ZPZV<5>, ZPZV<3»; }; // NOLINT</pre>
03087 template<> struct ConwayPolynomial<7, 19> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>,
                              ZPZV<0>, ZPZ
                                                                                                                                                                                                                                                                                                                                                                                                                        ZPZV<0>, ZPZV<0>,
                              ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<0>, ZPZV<4*; }; // NOLINT</pre>
03088 template<> struct ConwayPolynomial<7, 20> { using ZPZ = aerobus::zpz<7>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5 , ZPZV
03089 template<> struct ConwayPolynomial<11, 1> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                              ZPZV<9»; }; // NOLINT</pre>
 03090 template<> struct ConwayPolynomial<11, 2> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                             ZPZV<7>, ZPZV<2»; }; // NOLINT</pre>
03091 template<> struct ConwayPolynomial<11, 3> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                             ZPZV<0>, ZPZV<2>, ZPZV<9»; }; // NOLINT
 03092 template<> struct ConwayPolynomial<11, 4> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                             ZPZV<0>, ZPZV<8>, ZPZV<10>, ZPZV<2»; }; // NOLINT</pre>
 03093 template<> struct ConwayPolynomial<11, 5> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                             ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<0>, ZPZV<9»; }; // NOLINT</pre>
03094 template<> struct ConwayPolynomial<11, 6> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                            ZPZV<0>, ZPZV<3>, ZPZV<4>, ZPZV<6>, ZPZV<7>, ZPZV<2»; }; // NOLINT</pre>
03095 template<> struct ConwayPolynomial<11, 7> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                             ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<9»; }; // NOLINT</pre>
 03096 template<> struct ConwayPolynomial<11, 8> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                              \texttt{ZPZV} < 0>, \ \texttt{ZPZV} < 0>, \ \texttt{ZPZV} < 0>, \ \texttt{ZPZV} < 7>, \ \texttt{ZPZV} < 7>, \ \texttt{ZPZV} < 7>, \ \texttt{ZPZV} < 7>, \ \texttt{ZPZV} < 2»; \ \}; \ // \ \texttt{NOLINT} 
 03097 template<> struct ConwayPolynomial<11, 9> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                             ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<9>, ZPZV<8>, ZPZV<8>, ZPZV<9»; ); // NOLINT</pre>
03098 template<> struct ConwayPolynomial<11, 10> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                             ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<8>, ZPZV<10>, ZPZV<6>, ZPZV<6>, ZPZV<2»; };</pre>
 03099 template<> struct ConwayPolynomial<11, 11> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                             ZPZV<0>, ZPZV<0>
                               // NOLINT
03100 template<> struct ConwayPolynomial<11, 12> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                              ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<4>, ZPZV<2>, ZPZV<5>, ZPZV<5>, ZPZV<6>, ZPZV<6 - ZPZ
                              ZPZV<2»; }; // NOLINT</pre>
03101 template<> struct ConwayPolynomial<11, 13> { using ZPZ = aerobus::zpz<11>, using type = POLYV<ZPZV<1>,
                             ZPZV<0>, ZPZ
                             ZPZV<7>, ZPZV<9»; }; // NOLINT</pre>
03102 template<> struct ConwayPolynomial<11, 14> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                              ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<9>, ZPZV<6>, ZPZV<4>, ZPZV<4>, ZPZV<8>,
                              ZPZV<6>, ZPZV<10>, ZPZV<2»; }; // NOLINT</pre>
03103 template<> struct ConwayPolynomial<11, 15> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                              \texttt{ZPZV} < \texttt{0} >, \ \texttt{Z
ZPZV<5>, ZPZV<0>, ZPZV<0>, ZPZV<9»; }; // NOLINT
03104 template<> struct ConwayPolynomial<11, 16> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                             ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<10>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>
                              ZPZV<5>, ZPZV<3>, ZPZV<10>, ZPZV<9>, ZPZV<2»; }; // NOLINT</pre>
 03105 template<> struct ConwayPolynomial<11, 17> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                              ZPZV<0>, ZPZV<0</pre>, ZPZV<0>, ZP
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<9»; }; // NOLINT
03106 template<> struct ConwayPolynomial<11, 18> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                            ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<3 , ZPZ
03107 template<> struct ConwayPolynomial<11, 19> { using ZPZ = aerobus::zpz<11>; using type = POLYV<ZPZV<1>,
                            ZPZV<0>, ZPZV<0>
03108 template<> struct ConwayPolynomial<11, 20> { using ZPZ = aerobus::zpz<11; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<2>, ZPZV<2>, ZPZV<4>, ZPZV<5>, ZPZV<5 , ZPZ
03109 template<> struct ConwayPolynomial<13, 1> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>,
                             ZPZV<11»; }; // NOLINT</pre>
03110 template<> struct ConwayPolynomial<13, 2> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>,
                             ZPZV<12>, ZPZV<2»; }; // NOLINT</pre>
03111 template<> struct ConwayPolynomial<13, 3> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>,
                             ZPZV<0>, ZPZV<2>, ZPZV<11»; }; // NOLINT</pre>
03112 template<> struct ConwayPolynomial<13, 4> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>,
                              ZPZV<0>, ZPZV<3>, ZPZV<12>, ZPZV<2»; };</pre>
                                                                                                                                                                                                                         // NOLINT
 03113 template<> struct ConwayPolynomial<13, 5> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<41x; }; // NOLINT
03114 template<> struct ConwayPolynomial<13, 6> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>,
 ZPZV<0>, ZPZV<10>, ZPZV<11>, ZPZV<11>, ZPZV<11>, ZPZV<2); }; // NOLINT
03115 template<> struct ConwayPolynomial<13, 7> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>,
                              ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<11»; }; // NOLINT</pre>
 03116 template<> struct ConwayPolynomial<13, 8> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>,
                             ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<12>, ZPZV<2>, ZPZV<3>, ZPZV<2»; }; // NOLINT</pre>
03117 template<> struct ConwayPolynomial<13, 9> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<8>, ZPZV<12>, ZPZV<12>, ZPZV<11»; }; // NOLINT
 03118 template<> struct ConwayPolynomial<13, 10> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>,
                              ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<5>, ZPZV<8>, ZPZV<1>, ZPZV<1>, ZPZV<2»; }; //</pre>
                             NOLINT
03119 template<> struct ConwayPolynomial<13, 11> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>,
                             ZPZV<0>, ZPZV<11»; };</pre>
                              // NOLINT
```

```
03120 template<> struct ConwayPolynomial<13, 12> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<5>, ZPZV<8>, ZPZV<81>, ZPZV<3>, ZPZV<1>, ZPZV<1>, ZPZV<4>,
                         ZPZV<2»; }; // NOLINT</pre>
 03121 template<> struct ConwayPolynomial<13, 13> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZ
 03122 template<> struct ConwayPolynomial<13, 14> { using ZPZ = aerobus::zpz<13>, using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<4>, ZPZV<0>, ZPZV<6>, ZPZV<11>, ZPZV<7>,
                          ZPZV<10>, ZPZV<10>, ZPZV<2»; }; // NOLINT</pre>
03123 template<> struct ConwayPolynomial<13, 15> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<12>, ZPZV<2>, ZPZV<11>,
ZPZV<10>, ZPZV<11>, ZPZV<8>, ZPZV<11>; / NOLINT

03124 template<> struct ConwayPolynomial<13, 16> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<3>, ZPZV<12>, ZPZV<12>, ZPZV<5>, ZPZV<5 , Z
03125 template<> struct ConwayPolynomial<13, 17> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZP
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<4>, ZPZV<41>, ZPZV<11>, ZPZV<11>, ZPZV<9>,
                          ZPZV<5>, ZPZV<3>, ZPZV<5>, ZPZV<6>, ZPZV<0>, ZPZV<9>, ZPZV<2»; }; // NOLINT</pre>
03127 template<> struct ConwayPolynomial<13, 19> { using ZPZ = aerobus::zpz<13>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZ
                         ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<9>, ZPZV<0>, ZPZV<7>, ZPZV<8>, ZPZV<4>, ZPZV<4>, ZPZV<4>, ZPZV<8>, ZPZV<2»; }; // NOLINT
03129 template<> struct ConwayPolynomial<17, 1> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
                         ZPZV<14»; }; // NOLINT</pre>
03130 template<> struct ConwayPolynomial<17, 2> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
                         ZPZV<16>, ZPZV<3»; }; // NOLINT</pre>
 03131 template<> struct ConwayPolynomial<17, 3> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<1>, ZPZV<14»; }; // NOLINT</pre>
 03132 template<> struct ConwayPolynomial<17, 4> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<7>, ZPZV<10>, ZPZV<3»; }; // NOLINT
03133 template<> struct ConwayPolynomial<17, 5> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1+, ZPZV<14+, }; // NOLINT
03134 template<> struct ConwayPolynomial<17, 6> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<2>, ZPZV<0>, ZPZV<10>, ZPZV<3>, ZPZV<3»; }; // NOLINT</pre>
 03135 template<> struct ConwayPolynomial<17, 7> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
03137 template<> struct ConwayPolynomial<17, 9> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<8>, ZPZV<8>, ZPZV<14»; }; // NOLINT</pre>
 03138 template<> struct ConwayPolynomial<17, 10> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<13>, ZPZV<6>, ZPZV<5>, ZPZV<9>, ZPZV<12>, ZPZV<3»; };</pre>
                         NOLINT
03139 template<> struct ConwayPolynomial<17, 11> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5>, ZPZV<14»; };</pre>
 03140 template<> struct ConwayPolynomial<17, 12> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<4>, ZPZV<14>, ZPZV<14>, ZPZV<13>, ZPZV<6>, ZPZV<6>, ZPZV<14>, ZPZV<9>,
                         ZPZV<3»; }; // NOLINT</pre>
03141 template<> struct ConwayPolynomial<17, 13> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZ
03142 template<> struct ConwayPolynomial<17, 14> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<8>, ZPZV<16>, ZPZV<13>,
                         ZPZV<9>, ZPZV<3>, ZPZV<3»; }; // NOLINT</pre>
03143 template<> struct ConwayPolynomial<17, 15> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<4>, ZPZV<4>, ZPZV<16>,
ZPZV<6>, ZPZV<14>, ZPZV<14>, ZPZV<14»; }; // NOLINT
03144 template<> struct ConwayPolynomial<17, 16> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<13>, ZPZV<5>, ZPZV<2>,
                         ZPZV<12>, ZPZV<13>, ZPZV<12>, ZPZV<1>, ZPZV<3»; }; // NOLINT</pre>
03145 template<> struct ConwayPolynomial<17, 17> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZ
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<2>, ZPZV<5>, ZPZV<7>, ZPZV<7
, ZPZV<7

03147 template<> struct ConwayPolynomial<17, 19> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZP
                         03148 template<> struct ConwayPolynomial<17, 20> { using ZPZ = aerobus::zpz<17>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<5>, ZPZV<16>, ZPZV<14>,
ZPZV<13>, ZPZV<3>, ZPZV<14>, ZPZV<9>, ZPZV<1>, ZPZV<13>, ZPZV<5>, ZPZV<5 AV ZPZV<5 
                         ZPZV<17»; }; // NOLINT</pre>
 03150 template<> struct ConwayPolynomial<19, 2> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>,
                         ZPZV<18>, ZPZV<2»; }; // NOLINT</pre>
 03151 template<> struct ConwayPolynomial<19, 3> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>,
                                                                                                                                          }; // NOLINT
                         ZPZV<0>, ZPZV<4>, ZPZV<17»;
03152 template<> struct ConwayPolynomial<19, 4> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<21>, ZPZV<2»; }; // NOLINT
03153 template<> struct ConwayPolynomial<19, 5> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>,
```

```
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<17»; }; // NOLINT</pre>
03154 template<> struct ConwayPolynomial<19, 6> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<17>, ZPZV<6>, ZPZV<6>, ZPZV<2»; }; // NOLINT
 03155 template<> struct ConwayPolynomial<19, 7> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<17»; }; // NOLINT
03156 template<> struct ConwayPolynomial<19, 8> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<12>, ZPZV<10>, ZPZV<3>, ZPZV<2»; }; // NOLINT</pre>
 03157 template<> struct ConwayPolynomial<19, 9> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<14>, ZPZV<16>, ZPZV<16>, ZPZV<17»; }; // NOLINT 03158 template<> struct ConwayPolynomial<19, 10> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<18>, ZPZV<17>, ZPZV<3>, ZPZV<4>, ZPZV<4>, ZPZV<2»; }; //</pre>
                         NOLINT
03159 template<> struct ConwayPolynomial<19, 11> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>
                          // NOLINT
03160 template<> struct ConwayPolynomial<19, 12> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<2>, ZPZV<18>, ZPZV<2>, ZPZV<9>, ZPZV<16>, ZPZV<7>,
                         ZPZV<2»; }; // NOLINT</pre>
03161 template<> struct ConwayPolynomial<19, 13> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>
03162 template<> struct ConwayPolynomial<19, 14> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<11>, ZPZV<11>, ZPZV<1>, ZPZV<1>, ZPZV<5>,
ZPZV<16>, ZPZV<7>, ZPZV<2»; }; // NOLINT
03163 template<> struct ConwayPolynomial<19, 15> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<11>, ZPZV<11>, ZPZV<11</pre>
                         ZPZV<15>, ZPZV<14>, ZPZV<0>, ZPZV<17»; }; // NOLINT</pre>
 03164 template<> struct ConwayPolynomial<19, 16> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<12>, ZPZV<12>, ZPZV<13>, ZPZV<10>, ZPZV<15>, ZPZV<15>, ZPZV<6>, ZPZV<14>, ZPZV<2»; }; // NOLINT</pre>
03165 template<> struct ConwayPolynomial<19, 17> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0 , ZPZ
 03166 template<> struct ConwayPolynomial<19, 18> { using ZPZ = aerobus::zpz<19>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZ
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<18>, ZPZV<17»; }; // NOLINT</pre>
03168 template<> struct ConwayPolynomial<19, 20> { using ZPZ = aerobus::zpz<19>, using type = POLYV<ZPZV<1>,
                         ZPZV<4>, ZPZV<7>, ZPZV<8>, ZPZV<6>, ZPZV<0>, ZPZV<3>, ZPZV<5>, ZPZV<2>; // NOLINT 03169 template<> struct ConwayPolynomial<23, 1> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
                         ZPZV<18»; }; // NOLINT
 03170 template<> struct ConwayPolynomial<23, 2> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
                         ZPZV<21>, ZPZV<5»; }; // NOLINT</pre>
 03171 template<> struct ConwayPolynomial<23, 3> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<2>, ZPZV<18»; }; // NOLINT</pre>
03172 template<> struct ConwayPolynomial<23, 4> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<3>, ZPZV<19>, ZPZV<5»; }; // NOLINT</pre>
03173 template<> struct ConwayPolynomial<23, 5> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<18»; }; // NOLINT</pre>
 03174 template<> struct ConwayPolynomial<23, 6> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
                          \mbox{ZPZV}<0>, \mbox{ZPZV}<1>, \mbox{ZPZV}<9>, \mbox{ZPZV}<1>, \mbox{ZPZV}<5»; \mbox{}; \mbox{}// \mbox{NOLINT} 
 03175 template<> struct ConwayPolynomial<23, 7> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<21>, ZPZV<18»; }; // NOLINT</pre>
 03176 template<> struct ConwayPolynomial<23, 8> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<20>, ZPZV<5>, ZPZV<3>, ZPZV<5>; }; // NOLINT
 03177 template<> struct ConwayPolynomial<23, 9> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<3>, ZPZV<8>, ZPZV<9>, ZPZV<10»; }; // NOLINT
03178 template<> struct ConwayPolynomial<23, 10> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<17>, ZPZV<5>, ZPZV<15>, ZPZV<6>, ZPZV<6>, ZPZV<5>; }; //
                         NOLINT
 03179 template<> struct ConwayPolynomial<23, 11> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<7>, ZPZV<18»;</pre>
                         }; // NOLINT
 03180 template<> struct ConwayPolynomial<23, 12> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2), ZPZV<1>, ZPZV<1>, ZPZV<15>, ZPZV<14>, ZPZV<12>, ZPZV<18>, ZPZV<12>, ZPZV<12>, ZPZV<15, ZPZV<14>, ZPZV<16, ZPZV<18, ZPZV<
 03181 template<> struct ConwayPolynomial<23, 13> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZ
                         ZPZV<9>, ZPZV<18»; }; // NOLINT</pre>
03182 template<> struct ConwayPolynomial<23, 14> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<16>, ZPZV<18>, ZPZV<19>, ZPZV<19, ZPZV<10, ZPZV<10,
                         ZPZV<1>, ZPZV<22>, ZPZV<5»; }; // NOLINT</pre>
 03183 template<> struct ConwayPolynomial<23, 15> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<2>, ZPZV<8>, ZPZV<15>, ZPZV<9>, ZPZV<7>, ZPZV<18>, ZPZV<18»; }; // NOLINT
03184 template<> struct ConwayPolynomial<23, 16> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<19>, ZPZV<19>, ZPZV<16>,
                         ZPZV<13>, ZPZV<1>, ZPZV<14>, ZPZV<17>, ZPZV<5»; }; // NOLINT</pre>
03185 template<> struct ConwayPolynomial<23, 17> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<0>
03186 template<> struct ConwayPolynomial<23, 18> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<18>, ZPZV<2>, ZPZV<2>, ZPZV<18>, ZPZV<3>, ZPZV<3>, ZPZV<3>, ZPZV<3>, ZPZV<3>, ZPZV<1>, ZPZV<3>, ZPZV<1>, ZPZV<3>, ZPZV<3 , ZPZV<3 ,
```

```
03187 template<> struct ConwayPolynomial<23, 19> { using ZPZ = aerobus::zpz<23>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZ
                       ZPZV<27»; }; // NOLINT</pre>
03189 template<> struct ConwayPolynomial<29, 2> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
                       ZPZV<24>, ZPZV<2»; }; // NOLINT
 03190 template<> struct ConwayPolynomial<29, 3> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<2>, ZPZV<27»; }; // NOLINT</pre>
 03191 template<> struct ConwayPolynomial<29, 4> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<2>, ZPZV<15>, ZPZV<2»; }; // NOLINT</pre>
 03192 template<> struct ConwayPolynomial<29, 5> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<27»; }; // NOLINT</pre>
 03193 template<> struct ConwayPolynomial<29, 6> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<1>, ZPZV<25>, ZPZV<17>, ZPZV<13>, ZPZV<2»; }; // NOLINT</pre>
 03194 template<> struct ConwayPolynomial<29, 7> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<2>; j; // NOLINT
03195 template<> struct ConwayPolynomial<29, 8> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<24>, ZPZV<26>, ZPZV<23>, ZPZV<2»; }; // NOLINT</pre>
03196 template<> struct ConwayPolynomial<29, 9> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<22>, ZPZV<27»; }; // NOLINT
03197 template<> struct ConwayPolynomial<29, 10> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<25>, ZPZV<8>, ZPZV<17>, ZPZV<22>, ZPZV<22>, ZPZV<22»; }; //</pre>
                       NOLINT
03198 template<> struct ConwayPolynomial<29, 11> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<28>, ZPZV<28, ZPZV<27»;</pre>
                        }; // NOLINT
 03199 template<> struct ConwayPolynomial<29, 12> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<19>, ZPZV<28>, ZPZV<9>, ZPZV<16>, ZPZV<25>, ZPZV<1>, ZPZV<1>,
                       ZPZV<2»: }: // NOLINT
03200 template<> struct ConwayPolynomial<29, 13> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>
                        ZPZV<7>, ZPZV<27»; }; // NOLINT</pre>
 03201 template<> struct ConwayPolynomial<29, 14> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<14>, ZPZV<14>, ZPZV<10>, ZPZV<21>, ZPZV<21
03202 template<> struct ConwayPolynomial<29, 15> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<13>, ZPZV<14>, ZPZV<8>,
                        ZPZV<1>, ZPZV<12>, ZPZV<26>, ZPZV<27»; }; // NOLINT</pre>
03203 template<> struct ConwayPolynomial<29, 16> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<27>, ZPZV<27>, ZPZV<28>, ZPZV<23>, ZPZV<1>, ZPZV<27>, ZPZV<10>, ZPZV<2»; }; // NOLINT</pre>
03204 template<> struct ConwayPolynomial<29, 17> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0 , ZPZ
03205 template<> struct ConwayPolynomial<29, 18> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<24>, ZPZV<1>, ZPZV<1>, ZPZV<6>, ZPZV<26>, ZPZV<20, ZPZV<10>, ZPZV<8>, ZPZV<16>, ZPZV<19>, ZPZV<14>, ZPZV<2»; }; // NOLINT</pre>
03206 template<> struct ConwayPolynomial<29, 19> { using ZPZ = aerobus::zpz<29>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0 , ZPZ
 03207 template<> struct ConwayPolynomial<31, 1> { using ZPZ = aerobus::zpz<31>, using type = POLYV<ZPZV<1>,
                       ZPZV<28»; }; // NOLINT</pre>
 03208 template<> struct ConwayPolynomial<31, 2> { using ZPZ = aerobus::zpz<31>; using type = POLYV<ZPZV<1>,
                       ZPZV<29>, ZPZV<3»; }; // NOLINT</pre>
 03209 template<> struct ConwayPolynomial<31, 3> { using ZPZ = aerobus::zpz<31>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<1>, ZPZV<28»; }; // NOLINT</pre>
 03210 template<> struct ConwayPolynomial<31, 4> { using ZPZ = aerobus::zpz<31>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<3>, ZPZV<16>, ZPZV<3»; };</pre>
                                                                                                                                                                               // NOLINT
 03211 template<> struct ConwayPolynomial<31, 5> { using ZPZ = aerobus::zpz<31>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<28; }; // NOLINT

03212 template<> struct ConwayPolynomial<31, 6> { using ZPZ = aerobus::zpz<31>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<19>, ZPZV<16>, ZPZV<8>, ZPZV<3»; }; // NOLINT
 03213 template<> struct ConwayPolynomial<31, 7> { using ZPZ = aerobus::zpz<31>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<28»; }; // NOLINT
 03214 template<> struct ConwayPolynomial<31, 8> { using ZPZ = aerobus::zpz<31>; using type = POLYV<ZPZV<1>,
                       03215 template<> struct ConwayPolynomial<31, 9> { using ZPZ = aerobus::zpz<31>, using type = POLYV<ZPZV<1>,
 ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<4>, ZPZV<4>, ZPZV<2>, ZPZ
                        ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<30>, ZPZV<30>, ZPZV<30>, ZPZV<13>, ZPZV<13>, ZPZV<13>, ZPZV<13</pre>
                       NOLINT
03217 template<> struct ConwayPolynomial<31, 11> { using ZPZ = aerobus::zpz<31>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<20>, ZPZ
                        }; // NOLINT
 03218 template<> struct ConwayPolynomial<31, 12> { using ZPZ = aerobus::zpz<31>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<14>, ZPZV<28>, ZPZV<2>, ZPZV<2>, ZPZV<9>, ZPZV<25>, ZPZV<12>,
                        ZPZV<3»; }; // NOLINT</pre>
03219 template<> struct ConwayPolynomial<31, 13> { using ZPZ = aerobus::zpz<31>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>
                       ZPZV<6>, ZPZV<28»; }; // NOLINT</pre>
03220 template<> struct ConwayPolynomial<31, 14> { using ZPZ = aerobus::zpz<31>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1
                       ZPZV<18>, ZPZV<6>, ZPZV<3»; }; // NOLINT</pre>
03221 template<> struct ConwayPolynomial<31, 15> { using ZPZ = aerobus::zpz<31>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<2>, ZPZV<12>,
ZPZV<23>, ZPZV<25>, ZPZV<28»; }; // NOLINT</pre>
```

```
03222 template<> struct ConwayPolynomial<31, 16> { using ZPZ = aerobus::zpz<31>; using type = POLYV<ZPZV<1>,
 ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<20>, ZPZV<21>, ZPZV<
ZPZV<0>, ZPZ
                                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<27>, ZPZV<5>, ZPZV<24>, ZPZV<24>, ZPZV<2>, ZPZV<7>,
ZPZV<12>, ZPZV<11>, ZPZV<25>, ZPZV<25>, ZPZV<10>, ZPZV<6>, ZPZV<3»; }; // NOLINT

03225 template<> struct ConwayPolynomial<31, 19> { using ZPZ = aerobus::zpz<31}; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0 , Z
 03226 template<> struct ConwayPolynomial<37, 1> { using ZPZ = aerobus::zpz<37>; using type = POLYV<ZPZV<1>,
                                       ZPZV<35»; }; // NOLINT</pre>
  03227 template<> struct ConwayPolynomial<37, 2> { using ZPZ = aerobus::zpz<37>; using type = POLYV<ZPZV<1>,
                                      ZPZV<33>, ZPZV<2»; }; // NOLINT
 03228 template<> struct ConwayPolynomial<37, 3> { using ZPZ = aerobus::zpz<37>; using type = POLYV<ZPZV<1>,
                                      ZPZV<0>, ZPZV<6>, ZPZV<35»; }; // NOLINT
  03229 template<> struct ConwayPolynomial<37, 4> { using ZPZ = aerobus::zpz<37>; using type = POLYV<ZPZV<1>,
                                      ZPZV<0>, ZPZV<6>, ZPZV<24>, ZPZV<2»; }; // NOLINT</pre>
  03230 template<> struct ConwayPolynomial<37, 5> { using ZPZ = aerobus::zpz<37>; using type = POLYV<ZPZV<1>,
                                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<35»; }; // NOLINT</pre>
 03231 template<> struct ConwayPolynomial<37, 6> { using ZPZ = aerobus::zpz<37>; using type = POLYV<ZPZV<1>,
                                      ZPZV<0>, ZPZV<0>, ZPZV<35>, ZPZV<4>, ZPZV<30>, ZPZV<2»; }; // NOLINT</pre>
 03232 template<> struct ConwayPolynomial<37, 7> { using ZPZ = aerobus::zpz<37>; using type = POLYV<ZPZV<1>,
                                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<35»; }; // NOLINT</pre>
  03233 template<> struct ConwayPolynomial<37, 8> { using ZPZ = aerobus::zpz<37>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<2>, ZPZV<3>, ZPZ
                                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<29>, ZPZV<18>, ZPZV<11>, ZPZV<4>, ZPZV<2»; );</pre>
  03236 template<> struct ConwayPolynomial<37, 11> { using ZPZ = aerobus::zpz<37>; using type = POLYV<ZPZV<1>,
                                      ZPZV<0>, ZPZV<0>
                                        // NOLINT
 03237 template<> struct ConwayPolynomial<37, 12> { using ZPZ = aerobus::zpz<37>; using type = POLYV<ZPZV<1>,
                                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<31>, ZPZV<10>, ZPZV<23>, ZPZV<23>, ZPZV<18>,
                                       ZPZV<33>, ZPZV<2»; }; // NOLINT</pre>
 03238 template<> struct ConwayPolynomial<37, 13> { using ZPZ = aerobus::zpz<37>, using type = POLYV<ZPZV<1>,
                                      ZPZV<0>, ZPZ
ZPZV<6>, ZPZV<35»; }; // NOLINT

03239 template<> struct ConwayPolynomial<37, 14> { using ZPZ = aerobus::zpz<37>; using type = POLYV<ZPZV<1>,
                                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<45>, ZPZV<35>, ZPZV<1>, ZPZV<1>, ZPZV<32>, ZPZV<16>,
                                      ZPZV<1>, ZPZV<9>, ZPZV<2»; }; // NOLINT</pre>
 03240 template<> struct ConwayPolynomial<37, 15> { using ZPZ = aerobus::zpz<37>; using type = POLYV<ZPZV<1>,
                                       \texttt{ZPZV} < \texttt{0} >, \ \texttt{ZPZV} < \texttt{1} >, \ \texttt{ZPZV} < \texttt{3} 1 >, \ \texttt{ZPZV} < \texttt{28} >, \ \texttt{ZPZV} < \texttt{
ZPZV<13>, ZPZV<34>, ZPZV<35>, ZPZV<35»; }; // NOLINT
03241 template<> struct ConwayPolynomial<37, 17> { using ZPZ = aerobus::zpz<37>; using type = POLYV<ZPZV<1>,
                                      ZPZV<0>, ZPZV<0 , ZPZ
  03242 template<> struct ConwayPolynomial<37, 18> { using ZPZ = aerobus::zpz<37>; using type = POLYV<ZPZV<1>,
                                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<8>, ZPZV<19>, ZPZV<15>, ZPZV<15, ZPZV<12>,
ZPZV<20>, ZPZV<12>, ZPZV<32>, ZPZV<14>, ZPZV<27>, ZPZV<20>, ZPZV<2»; }; // NOLINT
03243 template<> struct ConwayPolynomial<37, 19> { using ZPZ = aerobus::zpz<37>; using type = POLYV<ZPZV<1>,
                                     ZPZV<0>, ZPZV<0 , ZPZV<0 
 03244 template<> struct ConwayPolynomial<41, 1> { using ZPZ = aerobus::zpz<41>; using type = POLYV<ZPZV<1>,
                                       ZPZV<35»; }; // NOLINT
 03245 template<> struct ConwayPolynomial<41, 2> { using ZPZ = aerobus::zpz<41>; using type = POLYV<ZPZV<1>,
                                      ZPZV<38>, ZPZV<6»; }; // NOLINT</pre>
 03246 template<> struct ConwayPolynomial<41, 3> { using ZPZ = aerobus::zpz<41>; using type = POLYV<ZPZV<1>,
                                      ZPZV<0>, ZPZV<1>, ZPZV<35»; }; // NOLINT</pre>
  03247 template<> struct ConwayPolynomial<41, 4> { using ZPZ = aerobus::zpz<41>; using type = POLYV<ZPZV<1>,
                                      ZPZV<0>, ZPZV<0>, ZPZV<23>, ZPZV<6»; }; // NOLINT</pre>
 03248 template<> struct ConwayPolynomial<41, 5> { using ZPZ = aerobus::zpz<41>; using type = POLYV<ZPZV<1>,
                                      ZPZV<0>, ZPZV<0>, ZPZV<40>, ZPZV<14>, ZPZV<35»; }; // NOLINT</pre>
 03249 template<> struct ConwayPolynomial<41, 6> { using ZPZ = aerobus::zpz<41>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<4>, ZPZV<3>, ZPZV<3>, ZPZV<3>, ZPZV<5, Z
                                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6>, ZPZV<6>, ZPZV<35»; }; // NOLINT</pre>
  03251 template<> struct ConwayPolynomial<41, 8> { using ZPZ = aerobus::zpz<41>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5>, ZPZV<32>, ZPZV<20>, ZPZV<6>, ZPZV<6»; }; // NOLINT
03252 template<> struct ConwayPolynomial<41, 9> { using ZPZ = aerobus::zpz<41>; using type = POLYV<ZPZV<1>,
  ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<4>, ZPZV<4>, ZPZV<4>, ZPZV<3>, ZPZ
                                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<31>, ZPZV<8>, ZPZV<20>, ZPZV<30>, ZPZV<6»; };</pre>
 03254 template<> struct ConwayPolynomial<41, 11> { using ZPZ = aerobus::zpz<41>; using type = POLYV<ZPZV<1>,
                                      ZPZV<0>, ZPZV<0>
                                       }; // NOLINT
 03255 template<> struct ConwayPolynomial<41, 12> { using ZPZ = aerobus::zpz<41>; using type = POLYV<ZPZV<1>,
                                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<26>, ZPZV<13>, ZPZV<34>, ZPZV<24>, ZPZV<21>,
                                      ZPZV<27>, ZPZV<6»; }; // NOLINT</pre>
 03256 \ \texttt{template} <> \ \texttt{struct ConwayPolynomial} < 41, \ 13> \ \{ \ \texttt{using ZPZ = aerobus::} \\ \texttt{zpz} < 41>; \ \texttt{using type = POLYV} < \texttt{ZPZV} < 1>, \\ \texttt{zpz} < 41>; \ \texttt{using type = POLYV} < \texttt{ZPZV} < 1>, \\ \texttt{zpz} < 41>; \ \texttt{zpz} < 41>; \ \texttt{zpz} < 41>; \\ \texttt{zpz} < 41
                                     ZPZV<0>, ZPZV<0>
```

```
03257 template<> struct ConwayPolynomial<41, 14> { using ZPZ = aerobus::zpz<41>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<10>, ZPZV<10>,
 03258 template<> struct ConwayPolynomial<41, 15> { using ZPZ = aerobus::zpz<41>; using type = POLYV<ZPZV<1>,
                          ZPZV<35>, ZPZV<10>, ZPZV<21>, ZPZV<25; }; // NOLINT

03259 template<> struct ConwayPolynomial<41, 17> { using ZPZ = aerobus::zpz<41>; using type = POLYV<ZPZV<1>,
                           ZPZV<0>, ZPZ
                           ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<35»; }; // NOLINT</pre>
03260 template<> struct ConwayPolynomial<41, 18> { using ZPZ = aerobus::zpz<41>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<2>, ZPZV<2>, ZPZV<3>, ZPZV<3>, ZPZV<3>, ZPZV<3>, ZPZV<3>, ZPZV<23>, ZPZV<23>, ZPZV<35>, ZPZV<38>, ZPZV<24>, ZPZV<12>, ZPZV<29>, ZPZV<10>, ZPZV<6>, ZPZV<6»; }; // NOLINT

03261 template<> struct ConwayPolynomial<41, 19> { using ZPZ = aerobus::zpz<41>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZ
03262 template<> struct ConwayPolynomial<43, 1> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
                          ZPZV<40»; }; // NOLINT
03263 template<> struct ConwayPolynomial<43, 2> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
                          ZPZV<42>, ZPZV<3»; }; // NOLINT</pre>
03264 template<> struct ConwayPolynomial<43, 3> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
                           ZPZV<0>, ZPZV<1>, ZPZV<40»; }; // NOLINT</pre>
 03265 template<> struct ConwayPolynomial<43, 4> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<5>, ZPZV<42>, ZPZV<3>; }; // NOLINT
 03266 template<> struct ConwayPolynomial<43, 5> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<4>, ZPZV<40, ZPZ
                          ZPZV<0>, ZPZV<0>, ZPZV<19>, ZPZV<28>, ZPZV<21>, ZPZV<3»; }; // NOLINT</pre>
 03268 template<> struct ConwayPolynomial<43, 7> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<42>, ZPZV<7>, ZPZV<40»; }; // NOLINT
03269 template<> struct ConwayPolynomial<43, 8> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<39>, ZPZV<20>, ZPZV<24>, ZPZV<3»; }; // NOLINT
 03270 template<> struct ConwayPolynomial<43, 9> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<40»; }; // NOLINT
03271 template<> struct ConwayPolynomial<43, 10> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<26>, ZPZV<36>, ZPZV<5>, ZPZV<27>, ZPZV<24>, ZPZV<24>, ZPZV<3»; }; //</pre>
                          NOLINT
03272 template<> struct ConwayPolynomial<43, 11> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
                           ZPZV<0>, ZPZV<7>, ZPZV<40»; };</pre>
                            // NOLINT
03273 template<> struct ConwayPolynomial<43, 12> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
                          ZPZV<38>, ZPZV<3»; ); // NOLINT
03274 template<> struct ConwayPolynomial<43, 13> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
                           ZPZV<0>, ZPZV<0>
                          ZPZV<4>, ZPZV<40»; }; // NOLINT</pre>
03275 template<> struct ConwayPolynomial<43, 14> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<38>, ZPZV<22>, ZPZV<24>, ZPZV<37>,
ZPZV<18>, ZPZV<4>, ZPZV<19>, ZPZV<3»; }; // NOLINT</pre>
03276 template<> struct ConwayPolynomial<43, 15> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<37>, ZPZV<37>, ZPZV<22>, ZPZV<42>,
ZPZV<4>, ZPZV<15>, ZPZV<37>, ZPZV<40»; }; // NOLINT
03277 template<> struct ConwayPolynomial<43, 17> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZ
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<36>, ZPZV<40»; }; // NOLINT
03278 template<> struct ConwayPolynomial<43, 18> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<3>, ZPZV<28>, ZPZV<41>, ZPZV<24>, ZPZV<7>,
ZPZV<24>, ZPZV<24>, ZPZV<34>, ZPZV<34>, ZPZV<34>, ZPZV<34>, ZPZV<34>, ZPZV<34</pre>, ZPZV<34>, ZPZV<34 , ZPZV
 03279 template<> struct ConwayPolynomial<43, 19> { using ZPZ = aerobus::zpz<43>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>
03280 template<> struct ConwayPolynomial<47, 1> { using ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>,
                         ZPZV<42»; }; // NOLINT</pre>
03281 template<> struct ConwayPolynomial<47, 2> { using ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>,
                           ZPZV<45>, ZPZV<5»; };  // NOLINT</pre>
 03282 template<> struct ConwayPolynomial<47, 3> { using ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<3>, ZPZV<42»; }; // NOLINT</pre>
 03283 template<> struct ConwayPolynomial<47, 4> { using ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<8>, ZPZV<40>, ZPZV<5»; }; // NOLINT
03284 template<> struct ConwayPolynomial<47, 5> { using ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<42»; }; // NOLINT</pre>
 03285 template<> struct ConwayPolynomial<47, 6> { using ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>,
                          03286 template<> struct ConwayPolynomial<47, 7> { using ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<12>, ZPZV<42»; }; // NOLINT
03287 template<> struct ConwayPolynomial<47, 8> { using ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<29>, ZPZV<19>, ZPZV<3>, ZPZV<5»; }; // NOLINT</pre>
 03288 template<> struct ConwayPolynomial<47, 9> { using ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<2, ZPZV<4, ZPZV<
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<42>, ZPZV<14>, ZPZV<18>, ZPZV<45>, ZPZV<45>, ZPZV<5»: }:
                          NOLINT
03290 template<> struct ConwayPolynomial<47, 11> { using ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>,
                          ZPZV<0>, ZPZV<0>
                            // NOLINT
03291 template<> struct ConwayPolynomial<47, 12> { using ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>,
                           ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<46>, ZPZV<40>, ZPZV<35>, ZPZV<12>, ZPZV<46>, ZPZV<14>,
                           ZPZV<9>, ZPZV<5»; }; // NOLINT
```

```
03292 template<> struct ConwayPolynomial<47, 13> { using ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZ
                     ZPZV<5>, ZPZV<42»; }; // NOLINT</pre>
 03293 template<> struct ConwayPolynomial<47, 14> { using ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<20>, ZPZV<20>, ZPZV<20>, ZPZV<30>, ZPZV<17>, ZPZV<24>, ZPZV<9>, ZPZV<3>, ZPZV<3>, ZPZV<24>; ZPZV<3>, ZPZV<3>, ZPZV<27>; lusing ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<43>, ZPZV<43>, ZPZV<41>,
ZPZV<42>, ZPZV<13>, ZPZV<17>, ZPZV<42»; }; // NOLINT

03295 template<> struct ConwayPolynomial<47, 17> { using ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZP
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<41>, ZPZV<42>, ZPZV<26>, ZPZV<44>,
ZPZV<24>, ZPZV<22>, ZPZV<11>, ZPZV<5>, ZPZV<45>, ZPZV<33>, ZPZV<5»; }; // NOLINT
03297 template<> struct ConwayPolynomial<47, 19> { using ZPZ = aerobus::zpz<47>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZ
                     ZPZV<51»; }; // NOLINT</pre>
 03299 template<> struct ConwayPolynomial<53, 2> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>,
                     ZPZV<49>, ZPZV<2»; }; // NOLINT</pre>
03300 template<> struct ConwayPolynomial<53, 3> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<3>, ZPZV<51»; }; // NOLINT</pre>
03301 template<> struct ConwayPolynomial<53, 4> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<9>, ZPZV<38>, ZPZV<2»; }; // NOLINT</pre>
 03302 template<> struct ConwayPolynomial<53, 5> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<51»; // NOLINT
 03303 template<> struct ConwayPolynomial<53, 6> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<1>, ZPZV<7>, ZPZV<4>, ZPZV<45>, ZPZV<2»; }; // NOLINT</pre>
03304 template<> struct ConwayPolynomial<53, 7> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<51»; }; // NOLINT
 03305 template<> struct ConwayPolynomial<53, 8> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<29>, ZPZV<18>, ZPZV<1>, ZPZV<2»; }; // NOLINT</pre>
03306 template<> struct ConwayPolynomial<53, 9> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5>, ZPZV<51»; }; // NOLINT
03307 template<> struct ConwayPolynomial<53, 10> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<2>, ZPZV<15>, ZPZV<29>, ZPZV<29>, ZPZV<2; }; //</pre>
03308 template<> struct ConwayPolynomial<53, 11> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5)»;
                      }; // NOLINT
03309 template<> struct ConwayPolynomial<53, 12> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<34>, ZPZV<41>, ZPZV<10>, ZPZV<10>, ZPZV<42, ZPZV<34>,
                     ZPZV<41>, ZPZV<2»; }; // NOLINT</pre>
03310 template<> struct ConwayPolynomial<53, 13> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<0>
03311 template<> struct ConwayPolynomial<53, 14> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<45>, ZPZV<23>, ZPZV<52>, ZPZV<52>, ZPZV<37>,
                      ZPZV<12>, ZPZV<23>, ZPZV<2»; }; // NOLINT</pre>
 03312 template<> struct ConwayPolynomial<53, 15> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<31>, ZPZV<15>,
ZPZV<11>, ZPZV<20>, ZPZV<4>, ZPZV<51»; }; // NOLINT
03313 template<> struct ConwayPolynomial<53, 17> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZ
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<52>, ZPZV<31>, ZPZV<51>, ZPZV<27>, ZPZV<0>,
ZPZV<39>, ZPZV<44>, ZPZV<6>, ZPZV<8>, ZPZV<16>, ZPZV<11>, ZPZV<2»; }; // NOLINT
03315 template<> struct ConwayPolynomial<53, 19> { using ZPZ = aerobus::zpz<53>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<0 , ZPZ
03316 template<> struct ConwayPolynomial<59, 1> { using ZPZ = aerobus::zpz<59>; using type = POLYV<ZPZV<1>,
                     ZPZV<57»; }; // NOLINT</pre>
03317 template<> struct ConwayPolynomial<59, 2> { using ZPZ = aerobus::zpz<59>; using type = POLYV<ZPZV<1>,
                     ZPZV<58>, ZPZV<2»; }; // NOLINT</pre>
03318 template<> struct ConwayPolynomial<59, 3> { using ZPZ = aerobus::zpz<59>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<5>, ZPZV<57»; }; // NOLINT</pre>
03319 template<> struct ConwayPolynomial<59, 4> { using ZPZ = aerobus::zpz<59>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<2>, ZPZV<40>, ZPZV<2»; };</pre>
                                                                                                                                                                // NOLINT
 03320 template<> struct ConwayPolynomial<59, 5> { using ZPZ = aerobus::zpz<59>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<57»; }; // NOLINT

03321 template<> struct ConwayPolynomial<59, 6> { using ZPZ = aerobus::zpz<59>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<2>, ZPZV<18>, ZPZV<38>, ZPZV<0>, ZPZV<2»; }; // NOLINT</pre>
 03322 template<> struct ConwayPolynomial<59, 7> { using ZPZ = aerobus::zpz<59>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<57»; }; // NOLINT</pre>
 03323 template<> struct ConwayPolynomial<59, 8> { using ZPZ = aerobus::zpz<59>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<16>, ZPZV<32>, ZPZV<2>, ZPZV<50>, ZPZV<2»; }; // NOLINT</pre>
03324 template<> struct ConwayPolynomial<59, 9> { using ZPZ = aerobus::zpz<59>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<2>, ZPZV<3>, ZPZV<5>; Jr ZVV<3, ZPZV<5>; Jr ZVV<3, ZPZV<5>; Jr ZVV<5, ZPZV<5>; Jr ZVV<5, ZPZV<5, ZPZV<5, ZPZV<5>; ZPZV<5>; Jr ZVV<5, ZPZV<5, ZPZV<5, ZPZV<5, ZPZV<5, ZPZV<5>; Jr ZVV<5, ZPZV<5, ZPZV<5,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<28>, ZPZV<25>, ZPZV<4>, ZPZV<39>, ZPZV<15>, ZPZV<2»; }; //</pre>
ZPZV<0>, ZPZV<6>, ZPZV<6>, ZPZV<6</pre>; };
                      // NOLINT
```

```
03327 template<> struct ConwayPolynomial<59, 12> { using ZPZ = aerobus::zpz<59>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<39>, ZPZV<25>, ZPZV<51>, ZPZV<21>, ZPZV<38>, ZPZV<8>,
                       ZPZV<1>, ZPZV<2»; }; // NOLINT</pre>
 03328 template<> struct ConwayPolynomial<59, 13> { using ZPZ = aerobus::zpz<59>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>
                       ZPZV<3>, ZPZV<57»; }; // NOLINT
03329 template<> struct ConwayPolynomial<59, 14> { using ZPZ = aerobus::zpz<59>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<3>, ZPZV<51>, ZPZV<51>, ZPZV<11>, ZPZV<13>
ZPZV<25>, ZPZV<32>, ZPZV<26>, ZPZV<2»; }; // NOLINT
03330 template<> struct ConwayPolynomial<59, 15> { using ZPZ = aerobus::zpz<59>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<57>, ZPZV<57>, ZPZV<24>, ZPZV<24>, ZPZV<24>, ZPZV<25>, ZPZV<2
ZPZV<13>, ZPZV<39>, ZPZV<58>, ZPZV<57»; }; // NOLINT
03331 template<> struct ConwayPolynomial<59, 17> { using ZPZ = aerobus::zpz<59>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0</pre>, ZPZV<0>, ZP
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<57»; }; // NOLINT</pre>
03332 template<> struct ConwayPolynomial<59, 18> { using ZPZ = aerobus::zpz<59>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<37>, ZPZV<38>, ZPZV<27>, ZPZV<11>,
ZPZVV17, ZPZVV7>, ZPZVV44>, ZPZVV46>, ZPZVV47>, ZPZVV47>, ZPZVV31>, ZPZV31>, ZP
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<11>, ZPZV<57»; }; // NOLINT</pre>
03334 template<> struct ConwayPolynomial<61, 1> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
                       ZPZV<59»; }; // NOLINT
03335 template<> struct ConwayPolynomial<61, 2> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
                       ZPZV<60>, ZPZV<2»; }; // NOLINT</pre>
 03336 template<> struct ConwayPolynomial<61, 3> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<7>, ZPZV<59»; }; // NOLINT</pre>
 03337 template<> struct ConwayPolynomial<61, 4> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<3>, ZPZV<40>, ZPZV<2»; }; // NOLINT</pre>
03338 template<> struct ConwayPolynomial<61, 5> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<12>, ZPZV<59»; }; // NOLINT</pre>
03339 template<> struct ConwayPolynomial<61, 6> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<49>, ZPZV<3>, ZPZV<29>, ZPZV<2»; }; // NOLINT</pre>
 03340 template<> struct ConwayPolynomial<61, 7> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<59»; }; // NOLINT
03341 template<> struct ConwayPolynomial<61, 8> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<57>, ZPZV<1>, ZPZV<56>, ZPZV<2»; }; // NOLINT
 03342 template<> struct ConwayPolynomial<61, 9> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5>, ZPZV<59>, ZPZV<59»; }; // NOLINT 03343 template<> struct ConwayPolynomial<61, 10> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<28>, ZPZV<15>, ZPZV<44>, ZPZV<16>, ZPZV<6>, ZPZV<6>, ZPZV<2»; }; //
                      NOLINT
03344 template<> struct ConwayPolynomial<61, 11> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<18>, ZPZV<59»;</pre>
 03345 template<> struct ConwayPolynomial<61, 12> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
                        \texttt{ZPZV} < \texttt{0>, } \texttt{ZPZV} < \texttt{0>, } \texttt{ZPZV} < \texttt{0>, } \texttt{ZPZV} < \texttt{2>, } \texttt{ZPZV} < \texttt{42>, } \texttt{ZPZV} < \texttt{3>, } \texttt{ZPZV} < \texttt{8>, } \texttt{ZPZV} < \texttt{38>, } \texttt{ZPZV} < \texttt{14>, } \texttt{ZPZV} < \texttt{1>, } \texttt{ZPZV} < \texttt{3>, } \texttt{ZPZV
                       ZPZV<15>, ZPZV<2»; }; // NOLINT</pre>
03346 template<> struct ConwayPolynomial<61, 13> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>
                       ZPZV<3>, ZPZV<59»; }; //</pre>
                                                                                                                    NOLINT
 03347 template<> struct ConwayPolynomial<61, 14> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<48>, ZPZV<26>, ZPZV<11>, ZPZV<8>, ZPZV<30>,
ZPZV<54>, ZPZV<48>, ZPZV<2»; }; // NOLINT
03348 template<> struct ConwayPolynomial<61, 15> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<44>,
ZPZV<25>, ZPZV<23>, ZPZV<51>, ZPZV<59»; }; // NOLINT</pre>
03349 template<> struct ConwayPolynomial<61, 17> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>
03350 template<> struct ConwayPolynomial<61, 18> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<35>, ZPZV<36>, ZPZV<36>, ZPZV<36>, ZPZV<36>, ZPZV<34>, ZPZV<32>, ZPZV<35>, ZPZV<35>, ZPZV<57>, ZPZV<42>, ZPZV<25>, ZPZV<52>, ZPZV<52>, ZPZV<28; }; // NOLINT

03351 template<> struct ConwayPolynomial<61, 19> { using ZPZ = aerobus::zpz<61>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZ
                       03352 template<> struct ConwayPolynomial<67, 1> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
                       ZPZV<65»: }: // NOLINT
03353 template<> struct ConwayPolynomial<67, 2> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
                       ZPZV<63>, ZPZV<2»; }; // NOLINT</pre>
 03354 template<> struct ConwayPolynomial<67, 3> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<6>, ZPZV<65»; }; // NOLINT</pre>
 03355 template<> struct ConwayPolynomial<67, 4> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<8>, ZPZV<54>, ZPZV<2»; }; // NOLINT
03356 template<> struct ConwayPolynomial<67, 5> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<65»; }; // NOLINT</pre>
 03357 template<> struct ConwayPolynomial<67, 6> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<63>, ZPZV<49>, ZPZV<55>, ZPZV<2»; }; // NOLINT</pre>
03358 template<> struct ConwayPolynomial<67, 7> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<65»; }; // NOLINT</pre>
 03359 template<> struct ConwayPolynomial<67, 8> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<46>, ZPZV<17>, ZPZV<64>, ZPZV<2»; }; // NOLINT</pre>
 03360 template<> struct ConwayPolynomial<67, 9> { using ZPZ = aerobus::zpz<67>, using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<25>, ZPZV<49>, ZPZV<55>, ZPZV<65»; }; // NOLINT</pre>
03361 template<> struct ConwayPolynomial<67, 10> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<21>, ZPZV<0>, ZPZV<16>, ZPZV<7>, ZPZV<23>, ZPZV<2»; }; //</pre>
                       NOLTNT
```

```
03362 template<> struct ConwayPolynomial<67, 11> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<66>, ZPZV<66>, ZPZV<9>, ZPZV<65»;
                        }; // NOLINT
03363 template<> struct ConwayPolynomial<67, 12> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<57>, ZPZV<27>, ZPZV<4>, ZPZV<55>, ZPZV<64>, ZPZV<21>, ZPZV<27>, ZPZV<27>, ZPZV<27>, ZPZV<29; }; // NOLINT
03364 template<> struct ConwayPolynomial<67, 13> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>
                         ZPZV<22>, ZPZV<65»; }; // NOLINT</pre>
03365 template<> struct ConwayPolynomial<67, 14> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<1>, ZPZV<22>, ZPZV<5>, ZPZV<5>, ZPZV<5>, ZPZV<5>, ZPZV<5>, ZPZV<1>, ZPZV<1>, ZPZV<37>, ZPZV<2»; }; // NOLINT
03366 template<> struct ConwayPolynomial<67, 15> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<52>, ZPZV<41>,
                         ZPZV<20>, ZPZV<21>, ZPZV<46>, ZPZV<65»; }; // NOLINT</pre>
03367 template<> struct ConwayPolynomial<67, 17> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<0>
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<65; }; // NOLINT
03368 template<> struct ConwayPolynomial<67, 18> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<63>, ZPZV<52>, ZPZV<18>, ZPZV<33>,
ZPZV<55>, ZPZV<28>, ZPZV<29>, ZPZV<51>, ZPZV<6>, ZPZV<59>, ZPZV<13>, ZPZV<2»; }; // NOLINT</pre>
03369 template<> struct ConwayPolynomial<67, 19> { using ZPZ = aerobus::zpz<67>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZ
                        ZPZV<64»; }; // NOLINT
 03371 template<> struct ConwayPolynomial<71, 2> { using ZPZ = aerobus::zpz<71>; using type = POLYV<ZPZV<1>,
                        ZPZV<69>, ZPZV<7»; }; // NOLINT</pre>
 03372 template<> struct ConwayPolynomial<71, 3> { using ZPZ = aerobus::zpz<71>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<4>, ZPZV<64»; }; // NOLINT
03373 template<> struct ConwayPolynomial<71, 4> { using ZPZ = aerobus::zpz<71>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<4>, ZPZV<41>, ZPZV<7»; };</pre>
                                                                                                                                                                                         // NOLINT
 03374 template<> struct ConwayPolynomial<71, 5> { using ZPZ = aerobus::zpz<71>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<18>, ZPZV<64»; }; // NOLINT
 03375 template<> struct ConwayPolynomial<71, 6> { using ZPZ = aerobus::zpz<71>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<1>, ZPZV<10>, ZPZV<13>, ZPZV<29>, ZPZV<7»; }; // NOLINT</pre>
03376 template<> struct ConwayPolynomial<71, 7> { using ZPZ = aerobus::zpz<71>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<64»; }; // NOLINT
 03377 template<> struct ConwayPolynomial<71, 8> { using ZPZ = aerobus::zpz<71>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<53>, ZPZV<22>, ZPZV<19>, ZPZV<7»; }; // NOLINT
03378 template<> struct ConwayPolynomial<71, 9> { using ZPZ = aerobus::zpz<71>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<42>, ZPZV<62>, ZPZV<64»; }; // NOLINT
03379 template<> struct ConwayPolynomial<71, 10> { using ZPZ = aerobus::zpz<71>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<53>, ZPZV<17>, ZPZV<26>, ZPZV<10, ZPZV<40>, ZPZV<7»; }; //</pre>
 03380 template<> struct ConwayPolynomial<71, 11> { using ZPZ = aerobus::zpz<71>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<0</pre>, ZPZV<0>, ZP
                         }; // NOLINT
03381 template<> struct ConwayPolynomial<71, 12> { using ZPZ = aerobus::zpz<71>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<28>, ZPZV<29>, ZPZV<55>, ZPZV<21>, ZPZV<58>,
                         ZPZV<23>, ZPZV<7»; }; // NOLINT</pre>
 03382 template<> struct ConwayPolynomial<71, 13> { using ZPZ = aerobus::zpz<71>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<0>
03383 template<> struct ConwayPolynomial<71, 15> { using ZPZ = aerobus::zpz<71>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<2>, ZPZV<28>, ZPZV<32>, ZPZV<38>, ZPZV<38>, ZPZV<49>, ZPZV<49>,
ZPZV<0>, ZPZV<0 , ZPZ
03386 template<> struct ConwayPolynomial<73, 1> { using ZPZ = aerobus::zpz<73>; using type = POLYV<ZPZV<1>,
                        ZPZV<68»; }; // NOLINT</pre>
03387 template<> struct ConwayPolynomial<73, 2> { using ZPZ = aerobus::zpz<73>; using type = POLYV<ZPZV<1>,
                        ZPZV<70>, ZPZV<5»; }; // NOLINT</pre>
03388 template<> struct ConwayPolynomial<73, 3> { using ZPZ = aerobus::zpz<73>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<2>, ZPZV<68»; }; // NOLINT</pre>
 03389 template<> struct ConwayPolynomial<73, 4> { using ZPZ = aerobus::zpz<73>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<16>, ZPZV<56>, ZPZV<5»; }; // NOLINT
03390 template<> struct ConwayPolynomial<73, 5> { using ZPZ = aerobus::zpz<73>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<68»; }; // NOLINT

03391 template<> struct ConwayPolynomial</a><73, 6> { using ZPZ = aerobus::zpz<73>; using type = POLYV<ZPZV<1>,
 ZPZV<0>, ZPZV<4>>, ZPZV<4
>, ZPZV
+, Z
                        ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<68»; }; // NOLINT</pre>
03393 template<> struct ConwayPolynomial<73, 8> { using ZPZ = aerobus::zpz<73>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<3>, ZPZV<53>, ZPZV<53>, ZPZV<58>; }; // NOLINT
03394 template<> struct ConwayPolynomial<73, 9> { using ZPZ = aerobus::zpz<73>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0 , ZPZ
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<15>, ZPZV<23>, ZPZV<33>, ZPZV<32>, ZPZV<69>, ZPZV<5»; }; //</pre>
03396 template<> struct ConwayPolynomial<73, 11> { using ZPZ = aerobus::zpz<73>; using type = POLYV<ZPZV<1>,
                        ZPZV<0>, ZPZV<5>, ZPZV<68»; };</pre>
                         // NOLINT
```

```
03397 template<> struct ConwayPolynomial<73, 12> { using ZPZ = aerobus::zpz<73>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<69>, ZPZV<52>, ZPZV<26>, ZPZV<20>, ZPZV<46>, ZPZV<29>,
                                ZPZV<25>, ZPZV<5»; }; // NOLINT</pre>
 03398 template<> struct ConwayPolynomial<73, 13> { using ZPZ = aerobus::zpz<73>; using type = POLYV<ZPZV<1>,
                                ZPZV<0>, ZPZV<0>
                                ZPZV<7>, ZPZV<68»; }; // NOLINT
 03399 template<> struct ConwayPolynomial<73, 15> { using ZPZ = aerobus::zpz<73>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<3 , ZPZ
ZPZV<57>, ZPZV<57>, ZPZV<62>, ZPZV<68»; }; // NOLINT
03400 template<> struct ConwayPolynomial<73, 17> { using ZPZ = aerobus::zpz<73>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZ
                                ZPZV<0>, ZPZ
03402 template<> struct ConwayPolynomial<79, 1> { using ZPZ = aerobus::zpz<79>; using type = POLYV<ZPZV<1>,
                                ZPZV<76»; }; // NOLINT</pre>
03403 template<> struct ConwayPolynomial<79, 2> { using ZPZ = aerobus::zpz<79>; using type = POLYV<ZPZV<1>,
                                ZPZV<78>, ZPZV<3»; }; // NOLINT</pre>
03404 template<> struct ConwayPolynomial<79, 3> { using ZPZ = aerobus::zpz<79>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZV<9>, ZPZV<76»; }; // NOLINT</pre>
 03405 template<> struct ConwayPolynomial<79, 4> { using ZPZ = aerobus::zpz<79>; using type = POLYV<ZPZV<1>,
                                ZPZV<0>, ZPZV<2>, ZPZV<66>, ZPZV<3»; }; // NOLINT</pre>
 03406 template<> struct ConwayPolynomial<79, 5> { using ZPZ = aerobus::zpz<79>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<76*, }; // NOLINT
03407 template<> struct ConwayPolynomial<79, 6> { using ZPZ = aerobus::zpz<79>; using type = POLYV<ZPZV<1>,
                                ZPZV<0>, ZPZV<0>, ZPZV<19>, ZPZV<28>, ZPZV<68>, ZPZV<3»; }; // NOLINT</pre>
 03408 template<> struct ConwayPolynomial<79, 7> { using ZPZ = aerobus::zpz<79>; using type = POLYV<ZPZV<1>,
03410 template<> struct ConwayPolynomial<79, 9> { using ZPZ = aerobus::zpz<79>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5, ZPZV<5,
                                ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<44>, ZPZV<51>, ZPZV<1>, ZPZV<30>, ZPZV<42>, ZPZV<3»; }; //</pre>
                                NOLINT
03412 template<> struct ConwayPolynomial<79, 11> { using ZPZ = aerobus::zpz<79>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZV<3>, ZPZV<76»; };</pre>
03413 template<> struct ConwayPolynomial<79, 12> { using ZPZ = aerobus::zpz<79>; using type = POLYV<ZPZV<1>,
                                ZPZV<62>, ZPZV<3»; ); // NOLINT
03414 template<> struct ConwayPolynomial<79, 13> { using ZPZ = aerobus::zpz<79>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZ
                                ZPZV<4>, ZPZV<76»; }; // NOLINT</pre>
03415 template<> struct ConwayPolynomial<79, 17> { using ZPZ = aerobus::zpz<79>; using type = POLYV<ZPZV<1>,
                               ZPZV<0>, ZPZV<0>
03416 template<> struct ConwayPolynomial<79, 19> { using ZPZ = aerobus::zpz<79>; using type = POLYV<ZPZV<1>,
                               ZPZV<0>, ZPZV<0 , ZPZ
 03417 template<> struct ConwayPolynomial<83, 1> { using ZPZ = aerobus::zpz<83>; using type = POLYV<ZPZV<1>,
                                ZPZV<81»; }; // NOLINT</pre>
 03418 template<> struct ConwayPolynomial<83, 2> { using ZPZ = aerobus::zpz<83>; using type = POLYV<ZPZV<1>,
                               ZPZV<82>, ZPZV<2»; }; // NOLINT
 03419 template<> struct ConwayPolynomial<83, 3> { using ZPZ = aerobus::zpz<83>; using type = POLYV<ZPZV<1>,
                                ZPZV<0>, ZPZV<3>, ZPZV<81»; }; // NOLINT</pre>
 03420 template<> struct ConwayPolynomial<83, 4> { using ZPZ = aerobus::zpz<83>; using type = POLYV<ZPZV<1>,
                                ZPZV<0>, ZPZV<4>, ZPZV<42>, ZPZV<2»; };</pre>
                                                                                                                                                                                                                                              // NOLINT
 03421 template<> struct ConwayPolynomial<83, 5> { using ZPZ = aerobus::zpz<83>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<81»; }; // NOLINT

03422 template<> struct ConwayPolynomial<83, 6> { using ZPZ = aerobus::zpz<83>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<76>, ZPZV<32>, ZPZV<17>, ZPZV<2»; }; // NOLINT
 03423 template<> struct ConwayPolynomial<83, 7> { using ZPZ = aerobus::zpz<83>; using type = POLYV<ZPZV<1>,
                                ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<81»; }; // NOLINT
 03424 template<> struct ConwayPolynomial<83, 8> { using ZPZ = aerobus::zpz<83>; using type = POLYV<ZPZV<1>,
                                03425 template<> struct ConwayPolynomial<83, 9> { using ZPZ = aerobus::zpz<83>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<2>, ZPZV<18>, ZPZV×18>, ZPZV×18>, ZPZV×18>, ZPZV×19, ZPZV×19,
                                 ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<0>, ZPZV<73>, ZPZV<0>, ZPZV<53>, ZPZV<2»; }; //</pre>
                                NOLINT
03427 template<> struct ConwayPolynomial<83, 11> { using ZPZ = aerobus::zpz<83>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1
                                 }; // NOLINT
 03428 template<> struct ConwayPolynomial<83, 12> { using ZPZ = aerobus::zpz<83>; using type = POLYV<ZPZV<1>,
                                 ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<12>, ZPZV<31>, ZPZV<19>, ZPZV<65>, ZPZV<55>,
                                 ZPZV<75>, ZPZV<2»; }; // NOLINT</pre>
03429 template<> struct ConwayPolynomial<83, 13> { using ZPZ = aerobus::zpz<83>; using type = POLYV<ZPZV<1>,
                               ZPZV<0>, ZPZ
03430 template<> struct ConwayPolynomial<83, 17> { using ZPZ = aerobus::zpz<83>; using type = POLYV<ZPZV<1>,
                               ZPZV<0>, ZPZV<0>
03431 template<> struct ConwayPolynomial<83, 19> { using ZPZ = aerobus::zpz<83>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZP
```

```
03432 template<> struct ConwayPolynomial<89, 1> { using ZPZ = aerobus::zpz<89>; using type = POLYV<ZPZV<1>,
                      ZPZV<86»; }; // NOLINT
 03433 template<> struct ConwayPolynomial<89, 2> { using ZPZ = aerobus::zpz<89>; using type = POLYV<ZPZV<1>,
                      03434 template<> struct ConwayPolynomial<89, 3> { using ZPZ = aerobus::zpz<89>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<3>, ZPZV<86»; }; // NOLINT</pre>
 03435 template<> struct ConwayPolynomial<89, 4> { using ZPZ = aerobus::zpz<89>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<4>, ZPZV<72>, ZPZV<3»; };</pre>
                                                                                                                                                                   // NOLINT
 03436 template<> struct ConwayPolynomial<89, 5> { using ZPZ = aerobus::zpz<89>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<86»; }; // NOLINT
03437 template<> struct ConwayPolynomial<89, 6> { using ZPZ = aerobus::zpz<89>; using type = POLYV<ZPZV<1>,
                      03438 template<> struct ConwayPolynomial<89, 7> { using ZPZ = aerobus::zpz<89>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<86»; }; // NOLINT</pre>
 03439 template<> struct ConwayPolynomial<89, 8> { using ZPZ = aerobus::zpz<89>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<65>, ZPZV<40>, ZPZV<79>, ZPZV<3»; }; // NOLINT
03440 template<> struct ConwayPolynomial<89, 9> { using ZPZ = aerobus::zpz<89>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5>, ZPZV<5>, ZPZV<6>, ZPZV<6>, ZPZV<6>, ZPZV<5>, ZPZV<6>, ZPZV<6>, ZPZV<6>, ZPZV<7, ZPZV<6>, ZPZV<6>, ZPZV<7, ZPZV<6>, ZPZV<
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<16>, ZPZV<33>, ZPZV<82>, ZPZV<52>, ZPZV<44, ZPZV<3»; }; //</pre>
03442 template<> struct ConwayPolynomial<89, 11> { using ZPZ = aerobus::zpz<89>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<88>, ZPZV<86»;
                      }: // NOLINT
03443 template<> struct ConwayPolynomial<89, 12> { using ZPZ = aerobus::zpz<89>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<85>, ZPZV<15>, ZPZV<44>, ZPZV<51>, ZPZV<51>, ZPZV<70>,
                      ZPZV<52>, ZPZV<3»; }; // NOLINT</pre>
 03444 template<> struct ConwayPolynomial<89, 13> { using ZPZ = aerobus::zpz<89>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<0>
03445 template<> struct ConwayPolynomial<89, 17> { using ZPZ = aerobus::zpz<89>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>
 03446 template<> struct ConwayPolynomial<89, 19> { using ZPZ = aerobus::zpz<89>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<0>
03447 template<> struct ConwayPolynomial<97, 1> { using ZPZ = aerobus::zpz<97>; using type = POLYV<ZPZV<1>,
                      ZPZV<92»; }; // NOLINT
 03448 template<> struct ConwayPolynomial<97, 2> { using ZPZ = aerobus::zpz<97>; using type = POLYV<ZPZV<1>,
                      ZPZV<96>, ZPZV<5»; }; // NOLINT
03449 template<> struct ConwayPolynomial<97, 3> { using ZPZ = aerobus::zpz<97>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<9>, ZPZV<92»; }; // NOLINT</pre>
03450 template<> struct ConwayPolynomial<97, 4> { using ZPZ = aerobus::zpz<97>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<6>, ZPZV<80>, ZPZV<5»; }; // NOLINT
 03451 template<> struct ConwayPolynomial<97, 5> { using ZPZ = aerobus::zpz<97>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<92»; }; // NOLINT</pre>
 03452 template<> struct ConwayPolynomial<97, 6> { using ZPZ = aerobus::zpz<97>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<92>, ZPZV<58>, ZPZV<88>, ZPZV<5»; }; // NOLINT
03453 template<> struct ConwayPolynomial<97, 7> { using ZPZ = aerobus::zpz<97>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5>, ZPZV<92»; }; // NOLINT
03454 template<> struct ConwayPolynomial<97, 8> { using ZPZ = aerobus::zpz<97>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<65>, ZPZV<1>, ZPZV<32>, ZPZV<5»; }; // NOLINT
 03455 template<> struct ConwayPolynomial<97, 9> { using ZPZ = aerobus::zpz<97>; using type = POLYV<ZPZV<1>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<59, ZPZV<7>, ZPZV<7>, ZPZV<92»; }; // NOLINT 03456 template<> struct ConwayPolynomial<97, 10> { using ZPZ = aerobus::zpz<97>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<66>, ZPZV<34>, ZPZV<34>, ZPZV<34>, ZPZV<20>, ZPZV<5»; };</pre>
03457 template<> struct ConwayPolynomial<97, 11> { using ZPZ = aerobus::zpz<97>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<5>, ZPZV<92»; };</pre>
                       // NOLINT
03458 template<> struct ConwayPolynomial<97, 12> { using ZPZ = aerobus::zpz<97>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<30>, ZPZV<59>, ZPZV<81>, ZPZV<0>, ZPZV<86>, ZPZV<78>,
                      ZPZV<94>, ZPZV<5»; }; // NOLINT
 03459 template<> struct ConwayPolynomial<97, 13> { using ZPZ = aerobus::zpz<97>; using type = POLYV<ZPZV<1>,
                      ZPZV<0>, ZPZ
                      ZPZV<3>, ZPZV<92»; }; // NOLINT</pre>
 03460 template<> struct ConwayPolynomial<97, 17> { using ZPZ = aerobus::zpz<97>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<0 , ZPZ
 03461 template<> struct ConwayPolynomial97, 19> { using ZPZ = aerobus::zpz<97>; using type = POLYV<ZPZV<1>,
                     ZPZV<0>, ZPZV<0>
03462 template<> struct ConwayPolynomial<101, 1> { using ZPZ = aerobus::zpz<101>; using type =
                     POLYV<ZPZV<1>, ZPZV<99»; }; // NOLINT
03463 template<> struct ConwayPolynomial<101, 2> { using ZPZ = aerobus::zpz<101>; using type =
                     POLYV<ZPZV<1>, ZPZV<97>, ZPZV<2»; }; // NOLINT
 03464 template<> struct ConwayPolynomial<101, 3> { using ZPZ = aerobus::zpz<101>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<99»; }; // NOLINT
 03465 template<> struct ConwayPolynomial<101, 4> { using ZPZ = aerobus::zpz<101>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<78>, ZPZV<2»; }; // NOLINT
 03466 template<> struct ConwayPolynomial<101, 5> { using ZPZ = aerobus::zpz<101>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<99»; }; // NOLINT
 03467 template<> struct ConwayPolynomial<101, 6> { using ZPZ = aerobus::zpz<101>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<90>, ZPZV<20>, ZPZV<67>, ZPZV<67>, ZPZV<2»; }; // NOLINT
 03468 template<> struct ConwayPolynomial<101, 7> { using ZPZ = aerobus::zpz<101>; using type =
 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6 , ZPZV<6
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<76>, ZPZV<29>, ZPZV<24>, ZPZV<2»; };
03470 template<> struct ConwayPolynomial<101, 9> { using ZPZ = aerobus::zpz<101>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<64>, ZPZV<47>, ZPZV<49»; };
                         // NOLINT
03471 template<> struct ConwayPolynomial<101, 10> { using ZPZ = aerobus::zpz<101>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<67>, ZPZV<49>, ZPZV<100>, ZPZV<100>, ZPZV<52>,
                        ZPZV<2»; }; // NOLINT
03472 template<> struct ConwayPolynomial<101, 11> { using ZPZ = aerobus::zpz<101>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                        ZPZV<31>, ZPZV<99»; }; // NOLINT</pre>
03473 template<> struct ConwayPolynomial<101, 12> { using ZPZ = aerobus::zpz<101>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<79>, ZPZV<64>, ZPZV<39>, ZPZV<78>, ZPZV<48>, ZPZV<84>, ZPZV<21>, ZPZV<22»; }; // NOLINT
03474 template<> struct ConwayPolynomial<101, 13> { using ZPZ = aerobus::zpz<101>; using type
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<99»; }; // NOLINT
03475 template<> struct ConwayPolynomial<101, 17> { using ZPZ = aerobus::zpz<101>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                        ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<31>, ZPZV<99»; }; // NOLINT</pre>
 03476 template<> struct ConwayPolynomial<101, 19> { using ZPZ = aerobus::zpz<101>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                        ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<24>, ZPZV<99»; }; //</pre>
                        NOLINT
03477 template<> struct ConwayPolynomial<103, 1> { using ZPZ = aerobus::zpz<103>; using type =
                       POLYV<ZPZV<1>, ZPZV<98»; }; // NOLINT
 03478 template<> struct ConwayPolynomial<103, 2> { using ZPZ = aerobus::zpz<103>; using type =
                       POLYV<ZPZV<1>, ZPZV<102>, ZPZV<5»; }; // NOLINT
 03479 template<> struct ConwayPolynomial<103, 3> { using ZPZ = aerobus::zpz<103>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<98»; }; // NOLINT
03480 template<> struct ConwayPolynomial<103, 4> { using ZPZ = aerobus::zpz<103>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<88>, ZPZV<5»; }; // NOLINT
 03481 template<> struct ConwayPolynomial<103, 5> { using ZPZ = aerobus::zpz<103>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<11>, ZPZV<98»; }; // NOLINT
 03482 template<> struct ConwayPolynomial<103, 6> { using ZPZ = aerobus::zpz<103>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<96>, ZPZV<95>, ZPZV<30>, ZPZV<5»; }; // NOLINT
03483 template<> struct ConwayPolynomial<103, 7> { using ZPZ = aerobus::zpz<103>; using type
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<98»; }; // NOLINT
 03484 template<> struct ConwayPolynomial<103, 8> { using ZPZ = aerobus::zpz<103>; using type
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<71>, ZPZV<71>, ZPZV<49>, ZPZV<5»; }; //
                        NOLINT
03485 template<> struct ConwayPolynomial<103, 9> { using ZPZ = aerobus::zpz<103>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<9
                          // NOLINT
 03486 template<> struct ConwayPolynomial<103, 10> { using ZPZ = aerobus::zpz<103>; using type
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<101>, ZPZV<86>, ZPZV<101>, ZPZV<94>, ZPZV<11>,
                        ZPZV<5»; }; // NOLINT</pre>
 03487 template<> struct ConwayPolynomial<103, 11> { using ZPZ = aerobus::zpz<103>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
03488 template<> struct ConwayPolynomial<103, 12> { using ZPZ = aerobus::zpz<103>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<74>, ZPZV<23>, ZPZV<94>, ZPZV<20>, ZPZV<81>, ZPZV<29>, ZPZV<88>, ZPZV<5»; }; // NOLINT
03489 template<> struct ConwayPolynomial<103, 13> { using ZPZ = aerobus::zpz<103>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZV<5>, ZPZV<5>, ZPZV<98%; }; // NOLINT
03490 template<> struct ConwayPolynomial<103, 17> { using ZPZ = aerobus::zpz<103>; using type
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<102>, ZPZV<8>, ZPZV<8», ZPZV<8»; }; // NOLINT 03491 template<> struct ConwayPolynomial<103, 19> { using ZPZ = aerobus::zpz<103>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                        NOLINT
 03492 template<> struct ConwayPolynomial<107, 1> { using ZPZ = aerobus::zpz<107>; using type =
                       POLYV<ZPZV<1>, ZPZV<105»; }; // NOLINT
 03493 template<> struct ConwayPolynomial<107, 2> { using ZPZ = aerobus::zpz<107>; using type =
POLYV<ZPZV<1>, ZPZV<103>, ZPZV<2»; }; // NOLINT
03494 template<> struct ConwayPolynomial<107, 3> { using ZPZ = aerobus::zpz<107>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<105»; }; // NOLINT
 03495 template<> struct ConwayPolynomial<107, 4> { using ZPZ = aerobus::zpz<107>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<13>, ZPZV<79>, ZPZV<2»; }; // NOLINT
03496 template<> struct ConwayPolynomial<107, 5> { using ZPZ = aerobus::zpz<107>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<105»; }; // NOLINT
 03497 template<> struct ConwayPolynomial<107, 6> { using ZPZ = aerobus::zpz<107>; using type =
POLYV<2PZV<1>, ZPZV<1>, ZPZV<5>, ZPZV<5>, ZPZV<2>, ZPZV<79>, ZPZV<29; }; // NOLINT 03498 template<> struct ConwayPolynomial<107, 7> { using ZPZ = aerobus::zpz<107>; using type
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<16>, ZPZV<16>, ZPZV<16>, ZPZV<105»; };
 03499 template<> struct ConwayPolynomial<107, 8> { using ZPZ = aerobus::zpz<107>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<105>, ZPZV<24>, ZPZV<95>, ZPZV<95 }; //
                        NOLINT
03500 template<> struct ConwayPolynomial<107, 9> { using ZPZ = aerobus::zpz<107>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<3>, ZPZV<3>, ZPZV<66>, ZPZV<105»; };
 03501 template<> struct ConwayPolynomial<107, 10> { using ZPZ = aerobus::zpz<107>; using type
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<94>, ZPZV<61>, ZPZV<83>, ZPZV<83>, ZPZV<95>, ZPZV<2»; }; // NOLINT
 03502 template<> struct ConwayPolynomial<107, 11> { using ZPZ = aerobus::zpz<107>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>,
                         ZPZV<8>, ZPZV<105»; }; // NOLINT</pre>
03503 template<> struct ConwayPolynomial<107, 12> { using ZPZ = aerobus::zpz<107>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<37>, ZPZV<48>, ZPZV<6>, ZPZV<6>, ZPZV<61>,
                        ZPZV<42>, ZPZV<57>, ZPZV<2»; }; // NOLINT
03504 template<> struct ConwayPolynomial<107, 13> { using ZPZ = aerobus::zpz<107>; using type =
                        POLYV<2PZV<1>, ZPZV<0>, ZPZV<0
                         ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<105»; };</pre>
                                                                                                                                                                                           // NOLINT
03505 template<> struct ConwayPolynomial<107, 17> { using ZPZ = aerobus::zpz<107>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0 , ZPZV<0
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<24>, ZPZV<105»; }; //</pre>
                        NOLINT
03507 template<> struct ConwayPolynomial<109, 1> { using ZPZ = aerobus::zpz<109>; using type =
                       POLYV<ZPZV<1>, ZPZV<103»; }; // NOLINT
 03508 template<> struct ConwayPolynomial<109, 2> { using ZPZ = aerobus::zpz<109>; using type =
                        POLYV<ZPZV<1>, ZPZV<108>, ZPZV<6»; }; // NOLINT
 03509 template<> struct ConwayPolynomial<109, 3> { using ZPZ = aerobus::zpz<109>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<103»; }; // NOLINT
 03510 template<> struct ConwayPolynomial<109, 4> { using ZPZ = aerobus::zpz<109>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<11>, ZPZV<98>, ZPZV-6*; }; // NOLINT
03511 template<> struct ConwayPolynomial<109, 5> { using ZPZ = aerobus::zpz<109>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<103»; }; // NOLINT
 03512 template<> struct ConwayPolynomial<109, 6> { using ZPZ = aerobus::zpz<109>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<107>, ZPZV<102>, ZPZV<66>, ZPZV<6*; }; // NOLINT
 03513 template<> struct ConwayPolynomial<109, 7> { using ZPZ = aerobus::zpz<109>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<14>, ZPZV<103»; }; // NOLINT
03514 template<> struct ConwayPolynomial<109, 8> { using ZPZ = aerobus::zpz<109>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<102>, ZPZV<34>, ZPZV<86>, ZPZV<6»; }; //
                        NOLINT
03515 template<> struct ConwayPolynomial<109, 9> { using ZPZ = aerobus::zpz<109>; using type
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<93>, ZPZV<87>, ZPZV<103»; };
                         // NOLINT
03516 template<> struct ConwayPolynomial<109, 10> { using ZPZ = aerobus::zpz<109>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<71>, ZPZV<75>, ZPZV<16>, ZPZV<75>, ZPZV<69>, ZPZV<6»; }; // NOLINT
 03517 template<> struct ConwayPolynomial<109, 11> { using ZPZ = aerobus::zpz<109>; using type
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
03518 template<> struct ConwayPolynomial<109, 12> { using ZPZ = aerobus::zpz<109>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<55>, ZPZV<55>, ZPZV<35>, ZPZV<65>,
                        ZPZV<103>, ZPZV<28>, ZPZV<6»; }; // NOLINT</pre>
 03519 template<> struct ConwayPolynomial<109, 13> { using ZPZ = aerobus::zpz<109>; using type
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<103»; }; // NOLINT 03520 template<> struct ConwayPolynomial<109, 17> { using ZPZ = aerobus::zpz<109>; using type = \frac{1}{2}
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZ
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<15>, ZPZV<103»; }; //</pre>
                        NOLINT
03522 template<> struct ConwayPolynomial<113, 1> { using ZPZ = aerobus::zpz<113>; using type =
                       POLYV<ZPZV<1>, ZPZV<110»; }; // NOLINT
 03523 template<> struct ConwayPolynomial<113, 2> { using ZPZ = aerobus::zpz<113>; using type =
                        POLYV<ZPZV<1>, ZPZV<101>, ZPZV<3»; }; // NOLINT
 03524 template<> struct ConwayPolynomial<113, 3> { using ZPZ = aerobus::zpz<113>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<8>, ZPZV<10»; }; // NOLINT

03525 template<> struct ConwayPolynomial<113, 4> { using ZPZ = aerobus::zpz<113>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<62>, ZPZV<3»; }; // NOLINT

03526 template<> struct ConwayPolynomial<113, 5> { using ZPZ = aerobus::zpz<113>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<110»; }; // NOLINT
03527 template<> struct ConwayPolynomial<113, 6> { using ZPZ = aerobus::zpz<113>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<59>, ZPZV<30>, ZPZV<71>, ZPZV<3»; }; // NOLINT
 03528 template<> struct ConwayPolynomial<113, 7> { using ZPZ = aerobus::zpz<113>; using type
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5>, ZPZV<110»; };
                                                                                                                                                                                                                                                                                                                                                             // NOLINT
 03529 template<> struct ConwayPolynomial<113, 8> { using ZPZ = aerobus::zpz<113>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<98>, ZPZV<38>, ZPZV<28>, ZPZV<3»; };
03530 template<> struct ConwayPolynomial<113, 9> { using ZPZ = aerobus::zpz<113>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<87>, ZPZV<71>, ZPZV<110»; };
                         // NOLINT
03531 template<> struct ConwayPolynomial<113, 10> { using ZPZ = aerobus::zpz<113>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<108>, ZPZV<57>, ZPZV<45>, ZPZV<83>, ZPZV<56>,
                         ZPZV<3»; }; // NOLINT</pre>
03532 template<> struct ConwayPolynomial<113, 11> { using ZPZ = aerobus::zpz<113>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
03533 template<> struct ConwayPolynomial<113, 12> { using ZPZ = aerobus::zpz<113>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<23>, ZPZV<62>, ZPZV<44>, ZPZV<98>, ZPZV<56>,
                         ZPZV<10>, ZPZV<27>, ZPZV<3»; }; // NOLINT</pre>
 03534 template<> struct ConwayPolynomial<113, 13> { using ZPZ = aerobus::zpz<113>; using type
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<110»; }; // NOLINT
03535 template<> struct ConwayPolynomial<113, 17> { using ZPZ = aerobus::zpz<113>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<4>, ZPZV<110»; }; // NOLINT 03536 template<> struct ConwayPolynomial<113, 19> { using ZPZ = aerobus::zpz<113>; using type :
                           POLÝV<ZPZV<1>, ZPZV<0>, ZPZV<0
                           ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<110»; }; //</pre>
                           NOLINT
03537 template<> struct ConwayPolynomial<127, 1> { using ZPZ = aerobus::zpz<127>; using type =
                           POLYV<ZPZV<1>, ZPZV<124»; }; // NOLINT
 03538 template<> struct ConwayPolynomial<127, 2> { using ZPZ = aerobus::zpz<127>; using type =
POLYV<ZPZV<1>, ZPZV<126, ZPZV<3»; }; // NOLINT
03539 template<> struct ConwayPolynomial<127, 3> { using ZPZ = aerobus::zpz<127>; using type =
                          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<124»; }; // NOLINT
03540 template<> struct ConwayPolynomial</br>
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<9>, ZPZV<3>, ZPZV<3»; }; // NOLINT</pre>
 03541 template<> struct ConwayPolynomial<127, 5> { using ZPZ = aerobus::zpz<127>; using type =
                           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<124»; }; // NOLINT
03542 template<> struct ConwayPolynomial<127, 6> { using ZPZ = aerobus::zpz<127>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<84>, ZPZV<115>, ZPZV<82>, ZPZV<3»; }; // NOLINT 03543 template<> struct ConwayPolynomial<127, 7> { using ZPZ = aerobus::zpz<127>; using type =
                           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<15>, ZPZV<124»; }; // NOLINT
 03544 template<> struct ConwayPolynomial<127, 8> { using ZPZ = aerobus::zpz<127>; using type =
                           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<104>, ZPZV<55>, ZPZV<8>, ZPŽV<3»; }; //
                           NOLINT
03545 template<> struct ConwayPolynomial<127, 9> { using ZPZ = aerobus::zpz<127>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<14>, ZPZV<119>, ZPZV<126>, ZPZV<124»;
                            }; // NOLINT
 03546 template<> struct ConwayPolynomial<127, 10> { using ZPZ = aerobus::zpz<127>; using type =
                           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<107>, ZPZV<64>, ZPZV<95>, ZPZV<60>, ZPZV<4>,
                           ZPZV<3»; }; // NOLINT</pre>
03547 template<> struct ConwayPolynomial<127, 11> { using ZPZ = aerobus::zpz<127>; using type =
                          POLYY<ZPZV<1>, ZPZV<0>, ZPZV<0
 03548 template<> struct ConwayPolynomial<127, 12> { using ZPZ = aerobus::zpz<127>; using type
                           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<119>, ZPZV<25>, ZPZV<33>, ZPZV<97>, ZPZV<15>,
ZPZV<99>, ZPZV<8>, ZPZV<3»; }; // NOLINT
03549 template<> struct ConwayPolynomial<127, 13> { using ZPZ = aerobus::zpz<127>; using type =
                          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
 03550 template<> struct ConwayPolynomial<127, 17> { using ZPZ = aerobus::zpz<127>; using type
                            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<9>, ZPZV<124»; }; // NOLINT
03551 template<> struct ConwayPolynomial<127, 19> { using ZPZ = aerobus::zpz<127>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0 , ZPZV<0 
                            ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<30>, ZPZV<30>, ZPZV<124»; }; //</pre>
 03552 template<> struct ConwayPolynomial<131, 1> { using ZPZ = aerobus::zpz<131>; using type =
                          POLYV<ZPZV<1>, ZPZV<129»; }; // NOLINT
 03553 template<> struct ConwayPolynomial<131, 2> { using ZPZ = aerobus::zpz<131>, using type =
POLYV<ZPZV<1>, ZPZV<127>, ZPZV<2»; }; // NOLINT
03554 template<> struct ConwayPolynomial<131, 3> { using ZPZ = aerobus::zpz<131>; using type =
                          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<129»; }; // NOLINT
 03555 template<> struct ConwayPolynomial<131, 4> { using ZPZ = aerobus::zpz<131>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<9>, ZPZV<109>, ZPZV<2»; }; // NOLINT
03556 template<> struct ConwayPolynomial<131, 5> { using ZPZ = aerobus::zpz<131>; using type =
POLYY<ZPZY<1>, ZPZY<0>, ZPZY<0>, ZPZY<0>, ZPZY<0>, ZPZY<129x, 3; // NOLINT
03557 template<> struct ConwayPolynomial<131, 6> { using ZPZ = aerobus::zpz<131>; using type =
                           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<66>, ZPZV<4>, ZPZV<22>, ZPZV<2»; }; // NOLINT
 03558 template<> struct ConwayPolynomial<131, 7> { using ZPZ = aerobus::zpz<131>; using type
                           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<1
 03559 template<> struct ConwayPolynomial<131, 8> { using ZPZ = aerobus::zpz<131>; using type =
                           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<72>, ZPZV<116>, ZPZV<104>, ZPZV<2»; }; //
                          NOLINT
03560 template<> struct ConwayPolynomial<131, 9> { using ZPZ = aerobus::zpz<131>; using type =
                           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6>, ZPZV<6>, ZPZV<6>, ZPZV<19>, ZPZV<19>; };
03561 template<> struct ConwayPolynomial<131, 10> { using ZPZ = aerobus::zpz<131>; using type =
                          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<124>, ZPZV<9>, ZPZV<9>, ZPZV<126>, ZPZV<44>, ZPZV<2»; }; // NOLINT
03562 template<> struct ConwayPolynomial<131, 11> { using ZPZ = aerobus::zpz<131>; using type = POLYV<ZPZV<1>, ZPZV<0>, 
 03563 template<> struct ConwayPolynomial<131, 12> { using ZPZ = aerobus::zpz<131>; using type =
                           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<50>, ZPZV<122>, ZPZV<40>, ZPZV<83>, ZPZV<125>,
                           ZPZV<28>, ZPZV<103>, ZPZV<2»; }; // NOLINT</pre>
03564 template<> struct ConwayPolynomial<131, 13> { using ZPZ = aerobus::zpz<131>; using type
                            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                            ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<129»; };</pre>
                                                                                                                                                                                                                 // NOLINT
03565 template<> struct ConwayPolynomial<131, 17> { using ZPZ = aerobus::zpz<131>, using type =
                           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZ
                            ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<129»; }; //</pre>
                           NOLINT
 03567 template<> struct ConwayPolynomial<137, 1> { using ZPZ = aerobus::zpz<137>; using type =
                          POLYV<ZPZV<1>, ZPZV<134»; }; // NOLINT
 03568 template<> struct ConwayPolynomial<137, 2> { using ZPZ = aerobus::zpz<137>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<131>, ZPZV<3»; };
                                                                                                                                                                               // NOLINT
 03569 template<> struct ConwayPolynomial<137, 3> { using ZPZ = aerobus::zpz<137>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<134»; }; // NOLINT
 03570 template<> struct ConwayPolynomial<137, 4> { using ZPZ = aerobus::zpz<137>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<95>, ZPZV<3»; }; // NOLINT
03571 template<> struct ConwayPolynomial<137, 5> { using ZPZ = aerobus::zpz<137>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<134»; }; // NOLINT
 03572 template<> struct ConwayPolynomial<137, 6> { using ZPZ = aerobus::zpz<137>; using type =
                        \texttt{POLYV} < \texttt{ZPZV} < 1>, \ \texttt{ZPZV} < 0>, \ \texttt{ZPZV} < 116>, \ \texttt{ZPZV} < 102>, \ \texttt{ZPZV} < 3>, \ \texttt{ZPZV} < 3>; \ \ \}; \ \ // \ \texttt{NOLINT} 
 03573 template<> struct ConwayPolynomial<137, 7> { using ZPZ = aerobus::zpz<137>; using type
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<134»; };
                                                                                                                                                                                                                                                                                                                                                                 // NOLINT
 03574 template<> struct ConwayPolynomial<137, 8> { using ZPZ = aerobus::zpz<137>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<105>, ZPZV<21>, ZPZV<34>, ZPZV<34>, ZPZV<35>, //
 03575 template<> struct ConwayPolynomial<137, 9> { using ZPZ = aerobus::zpz<137>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<80>, ZPZV<122>, ZPZV<134»;
                         1: // NOT.TNT
03576 template<> struct ConwayPolynomial<137, 10> { using ZPZ = aerobus::zpz<137>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<0>, ZPZV<20>, ZPZV<67>, ZPZV<93>, ZPZV<119>,
                         ZPZV<3»; }; // NOLINT</pre>
 03577 template<> struct ConwayPolynomial<137, 11> { using ZPZ = aerobus::zpz<137>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                        ZPZV<1>, ZPZV<134»; }; // NOLINT
03578 template<> struct ConwayPolynomial<137, 12> { using ZPZ = aerobus::zpz<137>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<61>, ZPZV<40>, ZPZV<40>, ZPZV<12>, ZPZV<36>, ZPZV<135>, ZPZV<61>, ZPZV<61>, ZPZV<3»; }; // NOLINT
 03579 template<> struct ConwayPolynomial<137, 13> { using ZPZ = aerobus::zpz<137>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZV<0>, ZPZV<14>, ZPZV<134»; }; // NOLINT
03580 template<> struct ConwayPolynomial<137, 17> { using ZPZ = aerobus::zpz<137>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<136>, ZPZV<4>, ZPZV<134»; };</pre>
03581 template<> struct ConwayPolynomial<137, 19> { using ZPZ = aerobus::zpz<137>; using type
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>,
                         ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<18>, ZPZV<134»; }; //</pre>
                        NOLINT
03582 template<> struct ConwayPolynomial<139, 1> { using ZPZ = aerobus::zpz<139>; using type =
                       POLYV<ZPZV<1>, ZPZV<137»; }; // NOLINT
 03583 template<> struct ConwayPolynomial<139, 2> { using ZPZ = aerobus::zpz<139>; using type =
                        POLYV<ZPZV<1>, ZPZV<138>, ZPZV<2»; };
                                                                                                                                                                              // NOLINT
 03584 template<> struct ConwayPolynomial<139, 3> { using ZPZ = aerobus::zpz<139>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<137»; }; // NOLINT
03585 template<> struct ConwayPolynomial<139, 4> { using ZPZ = aerobus::zpz<139>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<96>, ZPZV<2»; }; // NOLINT
03586 template<> struct ConwayPolynomial<139, 5> { using ZPZ = aerobus::zpz<139>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<137»; }; // NOLINT
 03587 template<> struct ConwayPolynomial<139, 6> { using ZPZ = aerobus::zpz<139>; using type =
POLYY<ZPZY<1>, ZPZY<0>, ZPZV<4>, ZPZV<46>, ZPZV<10>, ZPZV<118>, ZPZV<2»; }; // NOLINT 03588 template<> struct ConwayPolynomial<139, 7> { using ZPZ = aerobus::zpz<139>; using type :
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<137»; }; // NOLINT
 03589 template<> struct ConwayPolynomial<139, 8> { using ZPZ = aerobus::zpz<139>; using type
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<103>, ZPZV<36>, ZPZV<21>, ZPZV<22»; }; //
                        NOLINT
03590 template<> struct ConwayPolynomial<139, 9> { using ZPZ = aerobus::zpz<139>; using type =
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<70>, ZPZV<70>
                          // NOLINT
 03591 template<> struct ConwayPolynomial<139, 10> { using ZPZ = aerobus::zpz<139>; using type
                        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<110>, ZPZV<48>, ZPZV<130>, ZPZV<66>,
                         ZPZV<106>, ZPZV<2»; }; // NOLINT</pre>
03592 template<> struct ConwayPolynomial<139, 11> { using ZPZ = aerobus::zpz<139>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
03593 template<> struct ConwayPolynomial<139, 12> { using ZPZ = aerobus::zpz<139>; using type
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<106>, ZPZV<120>, ZPZV<41>, ZPZV<77>, ZPZV<106>, ZPZV<8>, ZPZV<10>, ZPZV<2»; }; // NOLINT
03594 template<> struct ConwayPolynomial<139, 13> { using ZPZ = aerobus::zpz<139>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<137»; }; // NOLINT

03595 template<> struct ConwayPolynomial<139, 17> { using ZPZ = aerobus::zpz<139>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZP
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<137»; }; // NOLINT 03596 template<> struct ConwayPolynomial<139, 19> { using ZPZ = aerobus::zpz<139>; using type
                       POLYY<2PZV<1>, ZPZV<0>, ZPZV<0
                        NOLINT
 03597 template<> struct ConwayPolynomial<149, 1> { using ZPZ = aerobus::zpz<149>; using type =
                       POLYV<ZPZV<1>, ZPZV<147»; }; // NOLINT
 03598 template<> struct ConwayPolynomial<149, 2> { using ZPZ = aerobus::zpz<149>; using type =
POLYV<ZPZV<1>, ZPZV<145>, ZPZV<2»; }; // NOLINT
03599 template<> struct ConwayPolynomial<149, 3> { using ZPZ = aerobus::zpz<149>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<147»; }; // NOLINT
03600 template<> struct ConwayPolynomial<149, 4> { using ZPZ = aerobus::zpz<149>; using type =
 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<107>, ZPZV<20; }; // NOLINT
03601 template<> struct ConwayPolynomial<149, 5> { using ZPZ = aerobus::zpz<149>; using type =
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<147»; }; // NOLINT
 03602 template<> struct ConwayPolynomial<149, 6> { using ZPZ = aerobus::zpz<149>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<105>, ZPZV<33>, ZPZV<55>, ZPZV<2»; }; // NOLINT
```

```
03603 template<> struct ConwayPolynomial<149, 7> { using ZPZ = aerobus::zpz<149>; using type =
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<19>, ZPZV<147»; }; // NOLINT
03604 template<> struct ConwayPolynomial<149, 8> { using ZPZ = aerobus::zpz<149>; using type =
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<140>, ZPZV<25>, ZPZV<123>, ZPZV<22»; }; //
                   NOLINT
03605 template<> struct ConwayPolynomial<149, 9> { using ZPZ = aerobus::zpz<149>; using type =
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<146>, ZPZV<20>, ZPZV<147»;
                    }; // NOLINT
03606 template<> struct ConwayPolynomial<149, 10> { using ZPZ = aerobus::zpz<149>; using type
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<74>, ZPZV<42>, ZPZV<148>, ZPZV<143>, ZPZV<51>,
                   ZPZV<2»; }; // NOLINT</pre>
03607 template<> struct ConwayPolynomial<149, 11> { using ZPZ = aerobus::zpz<149>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<147»; }; // NOLINT
 03608 template<> struct ConwayPolynomial<149, 12> { using ZPZ = aerobus::zpz<149>; using type
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<121>, ZPZV<91>, ZPZV<52>, ZPZV<9>,
                   ZPZV<104>, ZPZV<110>, ZPZV<2»; }; // NOLINT</pre>
03609 template<> struct ConwayPolynomial<149, 13> { using ZPZ = aerobus::zpz<149>; using type =
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                   ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<147»; };</pre>
                                                                                                                                                   // NOLINT
 03610 template<> struct ConwayPolynomial<149, 17> { using ZPZ = aerobus::zpz<149>; using type
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<147»; }; // NOLINT
03611 template<> struct ConwayPolynomial<149, 19> { using ZPZ = aerobus::zpz<149>; using type =
    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>,
                   ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5>, ZPZV<147»; }; //</pre>
 03612 template<> struct ConwayPolynomial<151, 1> { using ZPZ = aerobus::zpz<151>; using type =
                  POLYV<ZPZV<1>, ZPZV<145»; }; // NOLINT
 03613 template<> struct ConwayPolynomial<151, 2> { using ZPZ = aerobus::zpz<151>; using type =
POLYV<ZPZV<1>, ZPZV<149>, ZPZV<6>; }; // NOLINT

03614 template<> struct ConwayPolynomial<151, 3> { using ZPZ = aerobus::zpz<151>; using type =
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<145»; }; // NOLINT
 03615 template<> struct ConwayPolynomial<151, 4> { using ZPZ = aerobus::zpz<151>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<13>, ZPZV<89>, ZPZV<6»; }; // NOLINT
03616 template<> struct ConwayPolynomial<151, 5> { using ZPZ = aerobus::zpz<151>; using type =
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<11>, ZPZV<145»; }; // NOLINT
 03617 template<> struct ConwayPolynomial<151, 6> { using ZPZ = aerobus::zpz<151>; using type =
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<125>, ZPZV<18>, ZPZV<15>, ZPZV<6»; }; // NOLINT
 03618 template<> struct ConwayPolynomial<151, 7> { using ZPZ = aerobus::zpz<151>; using type =
                  POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<145»; };
 03619 template<> struct ConwayPolynomial<151, 8> { using ZPZ = aerobus::zpz<151>; using type =
                  POLYV<ZPZV<1>. ZPZV<0>. ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<140>, ZPZV<122>, ZPZV<43>, ZPZV<6»; }; //
 03620 template<> struct ConwayPolynomial<151, 9> { using ZPZ = aerobus::zpz<151>; using type =
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6>, ZPZV<6>, ZPZV<126>, ZPZV<96>, ZPZV<145»;
                    }; // NOLINT
 03621 template<> struct ConwayPolynomial<151, 10> { using ZPZ = aerobus::zpz<151>; using type =
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<21>, ZPZV<104>, ZPZV<49>, ZPZV<20>, ZPZV<142>,
                   ZPZV<6»; }; // NOLINT</pre>
03622 template<> struct ConwayPolynomial<151, 11> { using ZPZ = aerobus::zpz<151>; using type
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<145»; }; // NOLINT
03623 template<> struct ConwayPolynomial<151, 12> { using ZPZ = aerobus::zpz<151>; using type =
                   POLYV<2PZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<109>, ZPZV<121>, ZPZV<101>, ZPZV<6>, ZPZV<77>,
                   ZPZV<107>, ZPZV<147>, ZPZV<6»; }; // NOLINT</pre>
03624 template<> struct ConwayPolynomial<151, 13> { using ZPZ = aerobus::zpz<151>; using type
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                   ZPZV<0>, ZPZV<0>, ZPZV<12>, ZPZV<145»; }; // NOLINT</pre>
03625 template<> struct ConwayPolynomial<151, 17> { using ZPZ = aerobus::zpz<151>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<0>; ZPZV<0>, ZPZV<0>; ZPZV<0>, ZPZV<0>; ZPZV<0
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                   ZPZV<0>, ZPZV<0</pre>, ZPZV<0>, ZP
                   NOLINT
 03627 template<> struct ConwayPolynomial<157, 1> { using ZPZ = aerobus::zpz<157>; using type =
                  POLYV<ZPZV<1>, ZPZV<152»; }; // NOLINT
 03628 template<> struct ConwayPolynomial<157, 2> { using ZPZ = aerobus::zpz<157>; using type =
 POLYV<ZPZV<15, ZPZV<152>, ZPZV<5»; }; // NOLINT
03629 template<> struct ConwayPolynomial<157, 3> { using ZPZ = aerobus::zpz<157>; using type =
                  POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<152»; }; // NOLINT
 03630 template<> struct ConwayPolynomial<157, 4> { using ZPZ = aerobus::zpz<157>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<11>, ZPZV<136>, ZPZV<5»; }; // NOLINT
03631 template<> struct ConwayPolynomial<157, 5> { using ZPZ = aerobus::zpz<157>; using type =
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<152»; }; // NOLINT
 03632 template<> struct ConwayPolynomial<157, 6> { using ZPZ = aerobus::zpz<157>; using type
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<130>, ZPZV<43>, ZPZV<144>, ZPŽV<5»; }; // NOLINT
 03633 template<> struct ConwayPolynomial<157, 7> { using ZPZ = aerobus::zpz<157>; using type =
                  POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<14>, ZPZV<152»; }; // NOLINT
 03634 template<> struct ConwayPolynomial<157, 8> { using ZPZ = aerobus::zpz<157>; using type
                   POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<97>, ZPZV<40>, ZPZV<153>, ZPZV<5»; }; //
 03635 template<> struct ConwayPolynomial<157, 9> { using ZPZ = aerobus::zpz<157>; using type :
                  POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<114>, ZPZV<52>, ZPZV<152»;
                   }: // NOLINT
 03636 template<> struct ConwayPolynomial<157, 10> { using ZPZ = aerobus::zpz<157>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<61>, ZPZV<22>, ZPZV<124>, ZPZV<61>, ZPZV<93>,
                              ZPZV<5»; }; // NOLINT
03637 template<> struct ConwayPolynomial<157, 11> { using ZPZ = aerobus::zpz<157>; using type =
                            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
03638 template<> struct ConwayPolynomial<157, 12> { using ZPZ = aerobus::zpz<157>; using type
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<110>, ZPZV<72>, ZPZV<137>, ZPZV<43>,
                              ZPZV<152>, ZPZV<57>, ZPZV<5»; };</pre>
                                                                                                                                                                                         // NOLINT
03639 template<> struct ConwayPolynomial<157, 13> { using ZPZ = aerobus::zpz<157>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<156>, ZPZV<9>, ZPZV<152»; }; // NOLINT

03640 template<> struct ConwayPolynomial<157, 17> { using ZPZ = aerobus::zpz<157>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                              ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<12>, ZPZV<12>, ZPZV<152»; }; // NOLINT
03641 template<> struct ConwayPolynomial<157, 19> { using ZPZ = aerobus::zpz<157>, using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                             ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<152»; }; //</pre>
                             NOLINT
 03642 template<> struct ConwayPolynomial<163, 1> { using ZPZ = aerobus::zpz<163>; using type =
                             POLYV<ZPZV<1>, ZPZV<161»; }; // NOLINT
 03643 template<> struct ConwayPolynomial<163, 2> { using ZPZ = aerobus::zpz<163>; using type =
                            POLYV<ZPZV<1>, ZPZV<159>, ZPZV<2»; };
                                                                                                                                                                                                                // NOLINT
03644 template<> struct ConwayPolynomial<163, 3> { using ZPZ = aerobus::zpz<163>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<161»; }; // NOLINT
03645 template<> struct ConwayPolynomial<163, 4> { using ZPZ = aerobus::zpz<163>; using type =
                            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<8>, ZPZV<91>, ZPZV<2»; }; // NOLINT
 03646 template<> struct ConwayPolynomial<163, 5> { using ZPZ = aerobus::zpz<163>; using type =
                            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<161»; }; // NOLINT
 03647 template<> struct ConwayPolynomial<163, 6> { using ZPZ = aerobus::zpz<163>; using type =
                            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<83>, ZPZV<25>, ZPZV<156>, ZPZV<2»; }; // NOLINT
03648 template<> struct ConwayPolynomial<163, 7> (using ZPZ = aerobus::zpz<163>; using type POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<161»; } //
 03649 template<> struct ConwayPolynomial<163, 8> { using ZPZ = aerobus::zpz<163>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<132>, ZPZV<83>, ZPZV<6>, ZPZV<6>, ZPZV<2»; }; //
                             NOLINT
03650 template<> struct ConwayPolynomial<163, 9> { using ZPZ = aerobus::zpz<163>; using type =
                            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<15>, ZPZV<162>, ZPZV<127>, ZPZV<161»;
 03651 template<> struct ConwayPolynomial<163, 10> { using ZPZ = aerobus::zpz<163>; using type
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<111>, ZPZV<120>, ZPZV<125>, ZPZV<15>, ZPZV<0>,
                             ZPZV<2»; }; // NOLINT</pre>
 03652 template<> struct ConwayPolynomial<163, 11> { using ZPZ = aerobus::zpz<163>; using type =
                             \texttt{POLYV} < \texttt{ZPZV} < \texttt{0} >, \ \texttt{ZPZV} < \texttt{
                             ZPZV<11>, ZPZV<161»; }; // NOLINT</pre>
 03653 template<> struct ConwayPolynomial<163, 12> { using ZPZ = aerobus::zpz<163>; using type
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<39>, ZPZV<112>, ZPZV<31>, ZPZV<38>, ZPZV<103>,
                             ZPZV<10>, ZPZV<69>, ZPZV<2>; }; // NOLINT
03654 template<> struct ConwayPolynomial<163, 13> { using ZPZ = aerobus::zpz<163>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0 , 
                             ZPZV<0>, ZPZV<0>, ZPZV<24>, ZPZV<161»; }; // NOLINT
03655 template<> struct ConwayPolynomial<163, 17> { using ZPZ = aerobus::zpz<163>; using type
                              POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                              ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<71>, ZPZV<161»; }; // NOLINT</pre>
03656 template<> struct ConwayPolynomial<163, 19> { using ZPZ = aerobus::zpz<163>; using type = POLYV<ZPZV<1>, ZPZV<0>, 
 03657 template<> struct ConwayPolynomial<167, 1> { using ZPZ = aerobus::zpz<167>; using type =
                             POLYV<ZPZV<1>, ZPZV<162»; }; // NOLINT
 03658 template<> struct ConwayPolynomial<167, 2> { using ZPZ = aerobus::zpz<167>; using type =
POLYV<ZPZV<1>, ZPZV<166>, ZPZV<5»; }; // NOLINT

03659 template<> struct ConwayPolynomial<167, 3> { using ZPZ = aerobus::zpz<167>; using type =
                            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<162»; }; // NOLINT
 03660 template<> struct ConwayPolynomial<167, 4> { using ZPZ = aerobus::zpz<167>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<120>, ZPZV<5>; }; // NOLINT
 03661 template<> struct ConwayPolynomial<167, 5> { using ZPZ = aerobus::zpz<167>; using type =
                             \verb"POLYV<ZPZV<1>, \verb"ZPZV<0>, \verb"ZPZV<0>, \verb"ZPZV<3>, \verb"ZPZV<162"; \verb"}; $ // \verb"NOLINT" | NOLINT" 
03662 template<> struct ConwayPolynomial<167, 6> { using ZPZ = aerobus::zpz<167>; using type =
                            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<75>, ZPZV<38>, ZPZV<2>, ZPZV<5»; }; // NOLINT
 03663 template<> struct ConwayPolynomial<167, 7> { using ZPZ = aerobus::zpz<167>; using type
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<10>, ZPZV<162»; }; // NOLINT
 03664 template<> struct ConwayPolynomial<167, 8> { using ZPZ = aerobus::zpz<167>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<149>, ZPZV<56>, ZPZV<113>, ZPZV<5»; }; //
                             NOLINT
03665 template<> struct ConwayPolynomial<167, 9> { using ZPZ = aerobus::zpz<167>; using type :
                              POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<165>, ZPZV<162>, ZPZV<162»;
                              }; // NOLINT
03666 template<> struct ConwayPolynomial<167, 10> { using ZPZ = aerobus::zpz<167>; using type
                            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<85>, ZPZV<68>, ZPZV<109>, ZPZV<143>, ZPZV<148>, ZPZV<5»; }; // NOLINT
03667 template<> struct ConwayPolynomial<167, 11> { using ZPZ = aerobus::zpz<167>; using type = POLYV<ZPZV<1>, ZPZV<0>, 
 03668 template<> struct ConwayPolynomial<167, 12> { using ZPZ = aerobus::zpz<167>; using type
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<142>, ZPZV<10>, ZPZV<142>, ZPZV<
ZPZV<140>, ZPZV<41>, ZPZV<57>, ZPZV<5»; }; // NOLINT
03669 template<> struct ConwayPolynomial<167, 13> { using ZPZ = aerobus::zpz<167>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>,
ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<162»; }; // NOLINT
03670 template<> struct ConwayPolynomial<167, 17> { using ZPZ = aerobus::zpz<167>; using type =
                              \texttt{POLYV} < \texttt{ZPZV} < \texttt{1}>, \ \texttt{ZPZV} < \texttt{0}>, \
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                              ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<14>, ZPZV<162»; }; //</pre>
03672 template<> struct ConwayPolynomial<173, 1> { using ZPZ = aerobus::zpz<173>; using type =
                             POLYV<ZPZV<1>, ZPZV<171»; }; // NOLINT
 03673 template<> struct ConwayPolynomial<173, 2> { using ZPZ = aerobus::zpz<173>; using type =
                             POLYV<ZPZV<1>, ZPZV<169>, ZPZV<2»; };
                                                                                                                                                                                                                   // NOLINT
 03674 template<> struct ConwayPolynomial<173, 3> { using ZPZ = aerobus::zpz<173>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<171»; }; // NOLINT
03675 template<> struct ConwayPolynomial<173, 4> { using ZPZ = aerobus::zpz<173>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<102>, ZPZV<2»; }; // NOLINT
03676 template<> struct ConwayPolynomial<173, 5> { using ZPZ = aerobus::zpz<173>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<171»; }; // NOLINT
03677 template<> struct ConwayPolynomial<173, 6> { using ZPZ = aerobus::zpz<173>; using type =
POLYV<ZPZV<1>, ZPZV<1>, ZPZV<2>, ZPZV<23>, ZPZV<134>, ZPZV<107>, ZPZV<2%; }; // NOLINT 03678 template<> struct ConwayPolynomial<173, 7> { using ZPZ = aerobus::zpz<173>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<171»; };
03679 template<> struct ConwayPolynomial<173, 8> { using ZPZ = aerobus::zpz<173>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<125>, ZPZV<158>, ZPZV<27>, ZPZV<2>; }; //
                             NOLINT
 03680 template<> struct ConwayPolynomial<173, 9> { using ZPZ = aerobus::zpz<173>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<56>, ZPZV<104>, ZPZV<171»;
                              }; // NOLINT
03681 template<> struct ConwayPolynomial<173, 10> { using ZPZ = aerobus::zpz<173>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<164>, ZPZV<164>, ZPZV<48>, ZPZV<106>, ZPZV<58>, ZPZV<2»; }; // NOLINT
 03682 template<> struct ConwayPolynomial<173, 11> { using ZPZ = aerobus::zpz<173>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                              ZPZV<12>, ZPZV<171»; }; // NOLINT</pre>
03683 template<> struct ConwayPolynomial<173, 12> { using ZPZ = aerobus::zpz<173>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<29>, ZPZV<64>, ZPZV<46>, ZPZV<166>, ZPZV<10>, ZPZV<159>, ZPZV<22>, ZPZV<22»; }; // NOLINT
 03684 template<> struct ConwayPolynomial<173, 13> { using ZPZ = aerobus::zpz<173>; using type
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<171»; }; // NOLINT
03685 template<> struct ConwayPolynomial<173, 17> { using ZPZ = aerobus::zpz<173>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                             ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<7171»; }; // NOLINT</pre>
03686 template<> struct ConwayPolynomial<173, 19> { using ZPZ = aerobus::zpz<173>; using Type = POLYV<ZPZV<1>, ZPZV<0>, 
                             ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<171»; }; //</pre>
                             NOLINT
03687 template<> struct ConwayPolynomial<179, 1> { using ZPZ = aerobus::zpz<179>; using type =
                             POLYV<ZPZV<1>, ZPZV<177»; }; // NOLINT
03688 template<> struct ConwayPolynomial<179, 2> { using ZPZ = aerobus::zpz<179>; using type =
                             POLYV<ZPZV<1>, ZPZV<172>, ZPZV<2»; }; // NOLINT
 03689 template<> struct ConwayPolynomial<179, 3> { using ZPZ = aerobus::zpz<179>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<177»; }; // NOLINT

03690 template<> struct ConwayPolynomial<179, 4> { using ZPZ = aerobus::zpz<179>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<109>, ZPZV<2»; }; // NOLINT

03691 template<> struct ConwayPolynomial<179, 5> { using ZPZ = aerobus::zpz<179>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<177»; }; // NOLINT
 03692 template<> struct ConwayPolynomial<179, 6> { using ZPZ = aerobus::zpz<179>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<91>, ZPZV<55>, ZPZV<109>, ZPZV<2»; }; // NOLINT
03693 template<> struct ConwayPolynomial<179, 7> { using ZPZ = aerobus::zpz<179>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<177»; }; // NOLINT
 03694 template<> struct ConwayPolynomial<179, 8> { using ZPZ = aerobus::zpz<179>; using type
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<163>, ZPZV<144>, ZPZV<73>, ZPZV<2»; }; //
03695 template<> struct ConwayPolynomial<179, 9> { using ZPZ = aerobus::zpz<179>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<40>, ZPZV<40>
                               // NOLINT
03696 template<> struct ConwayPolynomial<179, 10> { using ZPZ = aerobus::zpz<179>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<15>, ZPZV<150>, ZPZV<49>, ZPZV<87>,
                              ZPZV<2»; }; // NOLINT</pre>
 03697 template<> struct ConwayPolynomial<179, 11> { using ZPZ = aerobus::zpz<179>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
03698 template<> struct ConwayPolynomial<179, 12> { using ZPZ = aerobus::zpz<179>; using type
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<103>, ZPZV<83>, ZPZV<43>, ZPZV<43>, ZPZV<76>, ZPZV<8>, ZPZV<177>, ZPZV<1>, ZPZV<1>, ZPZV<2>; }; // NOLINT
03699 template<> struct ConwayPolynomial<179, 13> { using ZPZ = aerobus::zpz<179>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0 , ZPZV<0
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<4>, ZPZV<177»; }; // NOLINT 03701 template<> struct ConwayPolynomial<179, 19> { using ZPZ = aerobus::zpz<179>; using type =
                             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                             ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<177»; }; //
                             NOLTNT
```

```
03702 template<> struct ConwayPolynomial<181, 1> { using ZPZ = aerobus::zpz<181>; using type =
                     POLYV<ZPZV<1>, ZPZV<179»; }; // NOLINT
03703 template<> struct ConwayPolynomial<181, 2> { using ZPZ = aerobus::zpz<181>; using type =
                    POLYV<ZPZV<1>, ZPZV<177>, ZPZV<2»; }; // NOLINT
 03704 template<> struct ConwayPolynomial<181, 3> { using ZPZ = aerobus::zpz<181>; using type =
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<179»; }; // NOLINT
 03705 template<> struct ConwayPolynomial<181, 4> { using ZPZ = aerobus::zpz<181>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<105>, ZPZV<2»; }; // NOLINT
 03706 template<> struct ConwayPolynomial<181, 5> { using ZPZ = aerobus::zpz<181>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<21>, ZPZV<179»; }; // NOLINT
03707 template<> struct ConwayPolynomial<181, 6> { using ZPZ = aerobus::zpz<181>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<17>, ZPZV<163>, ZPZV<169>, ZPZV<2»; }; // NOLINT 03708 template<> struct ConwayPolynomial<181, 7> { using ZPZ = aerobus::zpz<181>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<179»; };
 03709 template<> struct ConwayPolynomial<181, 8> { using ZPZ = aerobus::zpz<181>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<108>, ZPZV<22>, ZPZV<149>, ZPZV<2»; }; //
                    NOLINT
03710 template<> struct ConwayPolynomial<181, 9> { using ZPZ = aerobus::zpz<181>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<107>, ZPZV<107
 03711 template<> struct ConwayPolynomial<181, 10> { using ZPZ = aerobus::zpz<181>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<154>, ZPZV<104>, ZPZV<94>, ZPZV<57>, ZPZV<88>,
                     ZPZV<2»; }; // NOLINT</pre>
03712 template<> struct ConwayPolynomial<181, 11> { using ZPZ = aerobus::zpz<181>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<179»; }; // NOLINT
 03713 template<> struct ConwayPolynomial<181, 12> { using ZPZ = aerobus::zpz<181>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<171>, ZPZV<141>, ZPZV<45>, ZPZV<122>,
ZPZV<175>, ZPZV<12>, ZPZV<10>, ZPZV<2»; }; // NOLINT
03714 template<> struct ConwayPolynomial<181, 13> { using ZPZ = aerobus::zpz<181>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                     ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<179»; };</pre>
                                                                                                                                                                   // NOLINT
03715 template<>> struct ConwayPolynomial<181, 17> { using ZPZ = aerobus::zpz<181>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<179»; }; // NOLINT
03716 template<> struct ConwayPolynomial<181, 19> { using ZPZ = aerobus::zpz<181>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>,
                     ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<36>, ZPZV<36</pre>, //
 03717 template<> struct ConwayPolynomial<191, 1> { using ZPZ = aerobus::zpz<191>; using type =
                    POLYV<ZPZV<1>, ZPZV<172»; }; // NOLINT
03718 template<> struct ConwayPolynomial<191, 2> { using ZPZ = aerobus::zpz<191>; using type =
POLYV<ZPZV<1>, ZPZV<190>, ZPZV<190*; }; // NOLINT
03719 template<> struct ConwayPolynomial<191, 3> { using ZPZ = aerobus::zpz<191>; using type =
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<172»; }; // NOLINT
 03720 template<> struct ConwayPolynomial<191, 4> { using ZPZ = aerobus::zpz<191>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<100>, ZPZV<19»; }; // NOLINT
03721 template<> struct ConwayPolynomial<191, 5> { using ZPZ = aerobus::zpz<191>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>2; // NOLINT
03722 template<> struct ConwayPolynomial<191, 6> { using ZPZ = aerobus::zpz<191>; using type =
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<110>, ZPZV<10>, ZPZV<10>, ZPZV<19»; }; // NOLINT
 03723 template<> struct ConwayPolynomial<191, 7> { using ZPZ = aerobus::zpz<191>; using type
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<14>, ZPZV<14>; };
03724 template<> struct ConwayPolynomial<191, 8> { using ZPZ = aerobus::zpz<191>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<164>, ZPZV<139>, ZPZV<171>, ZPZV<19»; }; //
                     NOLINT
03725 template<> struct ConwayPolynomial<191, 9> { using ZPZ = aerobus::zpz<191>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<62>, ZPZV<62>, ZPZV<124>, ZPZV<172»;
                     }; // NOLINT
03726 template<> struct ConwayPolynomial<191, 10> { using ZPZ = aerobus::zpz<191>; using type
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<74>, ZPZV<47>, ZPZV<173>, ZPZV<74>, ZPZV<156>, ZPZV<19»; }; // NOLINT
03727 template<> struct ConwayPolynomial<191, 11> { using ZPZ = aerobus::zpz<191>; using type
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
03728 template<> struct ConwayPolynomial<191, 12> { using ZPZ = aerobus::zpz<191>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<79>, ZPZV<168>, ZPZV<25>, ZPZV<49>, ZPZV<90>, ZPZV<90>, ZPZV<90>, ZPZV<79>, ZPZV<168>, ZPZV<25>, ZPZV<49>, ZPZV<90>, ZPZV<90
                     ZPZV<7>, ZPZV<151>, ZPZV<19»; }; // NOLINT</pre>
03729 template<> struct ConwayPolynomial<191, 13> { using ZPZ = aerobus::zpz<191>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0 , 
                     ZPZV<0>, ZPZV<0>, ZPZV<12>, ZPZV<172»; }; // NOLINT</pre>
03730 template<> struct ConwayPolynomial<191, 17> { using ZPZ = aerobus::zpz<191>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<0>; ZPZV<172»; }; // NOLINT
03731 template<> struct ConwayPolynomial<191, 19> { using ZPZ = aerobus::zpz<191>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                     ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<190>, ZPZV<2>, ZPZV<172»; }; //</pre>
03732 template<> struct ConwayPolynomial<193, 1> { using ZPZ = aerobus::zpz<193>; using type =
                    POLYV<ZPZV<1>, ZPZV<188»; }; // NOLINT
 03733 template<> struct ConwayPolynomial<193, 2> { using ZPZ = aerobus::zpz<193>; using type =
                     POLYV<ZPZV<1>, ZPZV<192>, ZPZV<5»; }; // NOLINT
 03734 template<> struct ConwayPolynomial<193, 3> { using ZPZ = aerobus::zpz<193>; using type =
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<188»; }; // NOLINT
03735 template<> struct ConwayPolynomial<193, 4> { using ZPZ = aerobus::zpz<193>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<148>, ZPZV<5»; }; // NOLINT
03736 template<> struct ConwayPolynomial<193, 5> { using ZPZ = aerobus::zpz<193>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<188»; }; // NOLINT
 03737 template<> struct ConwayPolynomial<193, 6> { using ZPZ = aerobus::zpz<193>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<149>, ZPZV<8>, ZPZV<172>, ZPZV<5»; }; // NOLINT
 03738 template<> struct ConwayPolynomial<193, 7> { using ZPZ = aerobus::zpz<193>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<88>, ZPZV<188»; };
03739 template<> struct ConwayPolynomial<193, 8> { using ZPZ = aerobus::zpz<193>; using type :
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<145>, ZPZV<34>, ZPZV<154>, ZPZV<5»; }; //
03740 template<> struct ConwayPolynomial<193, 9> { using ZPZ = aerobus::zpz<193>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<8>, ZPZV<168>, ZPZV<27>, ZPZV<188»;
                       }; // NOLINT
 03741 template<> struct ConwayPolynomial<193, 10> { using ZPZ = aerobus::zpz<193>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<20>, ZPZV<51>, ZPZV<77>, ZPZV<78>, ZPZV<89>,
                       ZPZV<5»; }; // NOLINT</pre>
03742 template<> struct ConwayPolynomial<193, 11> { using ZPZ = aerobus::zpz<193>; using type
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<188»; }; // NOLINT
03743 template<> struct ConwayPolynomial<193, 12> { using ZPZ = aerobus::zpz<193>; using type = aerobus::zpz<193>; using typ
                       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<155>, ZPZV<52>, ZPZV<135>, ZPZV<152>,
                       ZPZV<90>, ZPZV<46>, ZPZV<28>, ZPZV<5»; }; // NOLINT</pre>
 03744 template<> struct ConwayPolynomial<193, 13> { using ZPZ = aerobus::zpz<193>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZV<0>, ZPZV<39>, ZPZV<188»; }; // NOLINT
03745 template<> struct ConwayPolynomial<193, 17> { using ZPZ = aerobus::zpz<193>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>,
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<188»; }; // NOLINT 03746 template<> struct ConwayPolynomial<193, 19> { using ZPZ = aerobus::zpz<193>; using type
                       \texttt{POLYV} < \texttt{ZPZV} < \texttt{1}>, \ \texttt{ZPZV} < \texttt{0}>, \
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<188»; }; //</pre>
                      NOLINT
03747 template<> struct ConwayPolynomial<197, 1> { using ZPZ = aerobus::zpz<197>; using type =
                      POLYV<ZPZV<1>, ZPZV<195»; }; // NOLINT
 03748 template<> struct ConwayPolynomial<197, 2> { using ZPZ = aerobus::zpz<197>; using type =
                      POLYV<ZPZV<1>, ZPZV<192>, ZPZV<2»; }; // NOLINT
 03749 template<> struct ConwayPolynomial<197, 3> { using ZPZ = aerobus::zpz<197>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<195»; }; // NOLINT
03750 template<> struct ConwayPolynomial<197, 4> { using ZPZ = aerobus::zpz<197>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<16>, ZPZV<124>, ZPZV<2»; }; // NOLINT
 03751 template<> struct ConwayPolynomial<197, 5> { using ZPZ = aerobus::zpz<197>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<195»; }; // NOLINT
 03752 template<> struct ConwayPolynomial<197, 6> { using ZPZ = aerobus::zpz<197>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<124>, ZPZV<79>, ZPZV<173>, ZPZV<2»; }; // NOLINT 03753 template<> struct ConwayPolynomial<197, 7> { using ZPZ = aerobus::zpz<197>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6>, ZPZV<195»; };
 03754 template<> struct ConwayPolynomial<197, 8> { using ZPZ = aerobus::zpz<197>; using type
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<176>, ZPZV<96>, ZPZV<29>, ZPZV<2»; }; //
                      NOLINT
03755 template<> struct ConwayPolynomial<197, 9> { using ZPZ = aerobus::zpz<197>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<13>, ZPZV<127>, ZPZV<8>, ZPZV<195»;
                       }; // NOLINT
 03756 template<> struct ConwayPolynomial<197, 10> { using ZPZ = aerobus::zpz<197>; using type
                      POLÝV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<121>, ZPZV<137>, ZPZV<8>, ZPZV<73>, ZPZV<42>,
                       ZPZV<2»; }; // NOLINT</pre>
03757 template<> struct ConwayPolynomial<197, 11> { using ZPZ = aerobus::zpz<197>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                      ZPZV<14>, ZPZV<195»; }; // NOLINT</pre>
03758 template<> struct ConwayPolynomial<197, 12> { using ZPZ = aerobus::zpz<197>; using type
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<168>, ZPZV<15>, ZPZV<130>, ZPZV<141>, ZPZV<9>,
                       ZPZV<90>, ZPZV<163>, ZPZV<2»; }; // NOLINT</pre>
03759 template<> struct ConwayPolynomial<197, 13> { using ZPZ = aerobus::zpz<197>; using type
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<0
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                       ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<35>, ZPZV<195»; };</pre>
03761 template<> struct ConwayPolynomial<197, 19> { using ZPZ = aerobus::zpz<197>; using type = POLYV<ZPZV<1>, ZPZV<0>, 
                      NOLINT
03762 template<> struct ConwayPolynomial<199, 1> { using ZPZ = aerobus::zpz<199>; using type =
                      POLYV<ZPZV<1>, ZPZV<196»; }; // NOLINT
 03763 template<> struct ConwayPolynomial<199, 2> { using ZPZ = aerobus::zpz<199>; using type =
POLYV<ZPZV<1>, ZPZV<193, ZPZV<3»; }; // NOLINT
03764 template<> struct ConwayPolynomial<199, 3> { using ZPZ = aerobus::zpz<199>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<196»; }; // NOLINT
 03765 template<> struct ConwayPolynomial<199, 4> { using ZPZ = aerobus::zpz<199>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<162>, ZPZV<3; }; // NOLINT
03766 template<> struct ConwayPolynomial<199, 5> { using ZPZ = aerobus::zpz<199>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<196»; }; // NOLINT
 03767 template<> struct ConwayPolynomial<199, 6> { using ZPZ = aerobus::zpz<199>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<90>, ZPZV<58>, ZPZV<79>, ZPZV<3»; }; // NOLINT
 03768 template<> struct ConwayPolynomial<199, 7> { using ZPZ = aerobus::zpz<199>; using type
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<196»; };
 03769 template<> struct ConwayPolynomial<199, 8> { using ZPZ = aerobus::zpz<199>; using type
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<160>, ZPZV<23>, ZPZV<159>, ZPZV<3»; }; //
                      NOLINT
 03770 template<> struct ConwayPolynomial<199, 9> { using ZPZ = aerobus::zpz<199>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<177>, ZPZV<141>, ZPZV<196»;
03771 template<> struct ConwayPolynomial<199, 10> { using ZPZ = aerobus::zpz<199>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<171>, ZPZV<158>, ZPZV<31>, ZPZV<54>, ZPZV<9>,
                      ZPZV<3»; }; // NOLINT</pre>
03772 template<> struct ConwayPolynomial<199, 11> { using ZPZ = aerobus::zpz<199>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
03773 template<> struct ConwayPolynomial<199, 12> { using ZPZ = aerobus::zpz<199>; using type
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<192>, ZPZV<197>, ZPZV<138>, ZPZV<69>, ZPZV<57>, ZPZV<151>, ZPZV<3»; }; // NOLINT
03774 template<> struct ConwayPolynomial<199, 13> { using ZPZ = aerobus::zpz<199>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                      ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<196»; }; // NOLINT
03775 template<> struct ConwayPolynomial<199, 17> { using ZPZ = aerobus::zpz<199>; using type
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0 , ZPZV<0>, ZPZV<0 , ZPZV<0
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<196»; }; //</pre>
 03777 template<> struct ConwayPolynomial<211, 1> { using ZPZ = aerobus::zpz<211>; using type =
                     POLYV<ZPZV<1>, ZPZV<209»; }; // NOLINT
 03778 template<> struct ConwayPolynomial<211, 2> { using ZPZ = aerobus::zpz<211>; using type =
POLYV<ZPZV<1>, ZPZV<207>, ZPZV<207>, JZPZV<207>, ZPZV<207>, WOLINT
03779 template<> struct ConwayPolynomial<211, 3> { using ZPZ = aerobus::zpz<211>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<209»; }; // NOLINT
 03780 template<> struct ConwayPolynomial<211, 4> { using ZPZ = aerobus::zpz<211>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<8>, ZPZV<161>, ZPZV<2»; }; // NOLINT
03781 template<> struct ConwayPolynomial<211, 5> { using ZPZ = aerobus::zpz<211>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<13>, ZPZV<209»; }; // NOLINT
 03782 template<> struct ConwayPolynomial<211, 6> { using ZPZ = aerobus::zpz<211>; using type
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<81>, ZPZV<194>, ZPZV<133>, ZPZV<2»; }; // NOLINT
 03783 template<> struct ConwayPolynomial<211, 7> { using ZPZ = aerobus::zpz<211>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<209»; };
 03784 template<> struct ConwayPolynomial<211, 8> { using ZPZ = aerobus::zpz<211>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<20>, ZPZV<29>, ZPZV<29>, ZPZV<2»; }; //
 03785 template<> struct ConwayPolynomial<211, 9> { using ZPZ = aerobus::zpz<211>; using type
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<19>, ZPZV<13>, ZPZV<139>, ZPZV<26>, ZPZV<209»;
                      }; // NOLINT
 03786 template<> struct ConwayPolynomial<211, 10> { using ZPZ = aerobus::zpz<211>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<30>, ZPZV<61>, ZPZV<148>, ZPZV<87>, ZPZV<125>,
                      ZPZV<2»; }; // NOLINT</pre>
 03787 template<> struct ConwayPolynomial<211, 11> { using ZPZ = aerobus::zpz<211>; using type
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                      ZPZV<7>, ZPZV<209»; }; // NOLINT</pre>
03788 template<> struct ConwayPolynomial<211, 12> { using ZPZ = aerobus::zpz<211>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<50>, ZPZV<145>, ZPZV<145>, ZPZV<126>, ZPZV<184>, ZPZV<84>, ZPZV<27>, ZPZV<2»; }; // NOLINT
03789 template<> struct ConwayPolynomial<211, 13> { using ZPZ = aerobus::zpz<211>; using type
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                      ZPZV<0>, ZPZV<0>, ZPZV<12>, ZPZV<209»; }; // NOLINT</pre>
03790 template<> struct ConwayPolynomial<211, 17> { using ZPZ = aerobus::zpz<211>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<12>, ZPZV<209»; }; // NOLINT 03791 template<> struct ConwayPolynomial<211, 19> { using ZPZ = aerobus::zpz<211>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                                                                                                                                                                                                                                                                                                                                       ZPZV<0>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<17>, ZPZV<209»; }; //</pre>
                      NOLINT
03792 template<> struct ConwavPolynomial<223, 1> { using ZPZ = aerobus::zpz<223>; using type =
                     POLYV<ZPZV<1>, ZPZV<220»; }; // NOLINT
 03793 template<> struct ConwayPolynomial<223, 2> { using ZPZ = aerobus::zpz<223>; using type =
                      POLYV<ZPZV<1>, ZPZV<221>, ZPZV<3»; }; // NOLINT
 03794 template<> struct ConwayPolynomial<223, 3> { using ZPZ = aerobus::zpz<223>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<220»; }; // NOLINT
03795 template<> struct ConwayPolynomial<223, 4> { using ZPZ = aerobus::zpz<223>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<163>, ZPZV<3»; }; // NOLINT
 03796 template<> struct ConwayPolynomial<223, 5> { using ZPZ = aerobus::zpz<223>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<220»; }; // NOLINT
 03797 template<> struct ConwayPolynomial<223, 6> { using ZPZ = aerobus::zpz<223>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<68>, ZPZV<24>, ZPZV<196>, ZPZV<3»; }; // NOLINT
 03798 template<> struct ConwayPolynomial<223, 7> { using ZPZ = aerobus::zpz<223>; using type
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6>, ZPZV<220»; };
03799 template<> struct ConwayPolynomial<223, 8> { using ZPZ = aerobus::zpz<223>; using type
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<139>, ZPZV<98>, ZPZV<138>, ZPZV<3»; }; //
03800 template<> struct ConwayPolynomial<223, 9> { using ZPZ = aerobus::zpz<223>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<164>, ZPZV<64>, ZPZV<220»;
                      ): // NOLINT
03801 template<> struct ConwayPolynomial<223, 10> { using ZPZ = aerobus::zpz<223>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<118>, ZPZV<177>, ZPZV<87>, ZPZV<99>, ZPZV<62>,
                      ZPZV<3»; }; // NOLINT</pre>
 03802 template<> struct ConwayPolynomial<223, 11> { using ZPZ = aerobus::zpz<223>; using type
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<8>, ZPZV<220»; }; // NOLINT
 03803 template<> struct ConwayPolynomial<223, 12> { using ZPZ = aerobus::zpz<223>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<64>, ZPZV<94>, ZPZV<11>, ZPZV<105>, ZPZV<66>,
ZPZV<151>, ZPZV<213>, ZPZV<33; }; // NOLINT
03804 template<> struct ConwayPolynomial<223, 13> { using ZPZ = aerobus::zpz<223>; using type =
                          POLÝV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZV<0>, ZPZV<23>, ZPZV<220»; }; // NOLINT
03805 template<> struct ConwayPolynomial<223, 17> { using ZPZ = aerobus::zpz<223>; using type =
                          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<220»; }; // NOLINT</pre>
03806 template<> struct ConwayPolynomial<223, 19> { using ZPZ = aerobus::zpz<223>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                          NOLINT
03807 template<> struct ConwayPolynomial<227, 1> { using ZPZ = aerobus::zpz<227>; using type =
                          POLYV<ZPZV<1>, ZPZV<225»; }; // NOLINT
 03808 template<> struct ConwayPolynomial<227, 2> { using ZPZ = aerobus::zpz<227>; using type =
POLYV<ZPZV<1>, ZPZV<220, ZPZV<2»; }; // NOLINT
03809 template<> struct ConwayPolynomial<227, 3> { using ZPZ = aerobus::zpz<227>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<225»; }; // NOLINT
 03810 template<> struct ConwayPolynomial<227, 4> { using ZPZ = aerobus::zpz<227>; using type =
 POLYV<2PZV<1>, ZPZV<1>, ZPZV<143>, ZPZV<2»; }; // NOLINT
03811 template<> struct ConwayPolynomial<227, 5> { using ZPZ = aerobus::zpz<227>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<225»; }; // NOLINT
03812 template<> struct ConwayPolynomial<227, 6> { using ZPZ = aerobus::zpz<227>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<174>, ZPZV<24>, ZPZV<135>, ZPZV<2»; }; // NOLINT 03813 template<> struct ConwayPolynomial<227, 7> { using ZPZ = aerobus::zpz<227>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<18>, ZPZV<225»; }; // NOLINT
 03814 template<> struct ConwayPolynomial<227, 8> { using ZPZ = aerobus::zpz<227>; using type =
                          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<151>, ZPZV<176>, ZPZV<106>, ZPZV<2»; }; //
                          NOLINT
03815 template<> struct ConwayPolynomial<227, 9> { using ZPZ = aerobus::zpz<227>; using type =
                          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<24>, ZPZV<24>, ZPZV<183>, ZPZV<225»;
                          }; // NOLINT
 03816 template<> struct ConwayPolynomial<227, 10> { using ZPZ = aerobus::zpz<227>; using type
                          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<199>, ZPZV<12>, ZPZV<12>, ZPZV<93>, ZPZV<77>,
                          ZPZV<2»; }; // NOLINT</pre>
03817 template<> struct ConwayPolynomial<227, 11> { using ZPZ = aerobus::zpz<227>; using type
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
 03818 template<> struct ConwayPolynomial<227, 12> { using ZPZ = aerobus::zpz<227>; using type
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<123>, ZPZV<160>, ZPZV<96>, ZPZV<96>, ZPZV<127>, ZPZV<142>, ZPZV<94>, ZPZV<20; }; // NOLINT
03819 template<> struct ConwayPolynomial<227, 13> { using ZPZ = aerobus::zpz<227>; using type =
                          \texttt{POLYV} < \texttt{ZPZV} < \texttt{0} >, \ \texttt{ZPZV} < \texttt{
                          ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<225»; };
                                                                                                                                                                                                       // NOLINT
 03820 template<> struct ConwayPolynomial<227, 17> { using ZPZ = aerobus::zpz<227>; using type
                          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>,
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
 03822 template<> struct ConwayPolynomial<229, 1> { using ZPZ = aerobus::zpz<229>; using type =
                          POLYV<ZPZV<1>, ZPZV<223»; }; // NOLINT
 03823 template<> struct ConwayPolynomial<229, 2> { using ZPZ = aerobus::zpz<229>; using type =
POLYV<ZPZV<1>, ZPZV<228>, ZPZV<6»; }; // NOLINT
03824 template<> struct ConwayPolynomial<229, 3> { using ZPZ = aerobus::zpz<229>; using type =
                          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<223»; }; // NOLINT
 03825 template<> struct ConwayPolynomial<229, 4> { using ZPZ = aerobus::zpz<229>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<162>, ZPZV<6%; }; // NOLINT
03826 template<> struct ConwayPolynomial<229, 5> { using ZPZ = aerobus::zpz<229>; using type =
POLYV<2PZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<23»; }; // NOLINT

03827 template<> struct ConwayPolynomial<229, 6> { using ZPZ = aerobus::zpz<229>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<24>, ZPZV<160>, ZPZV<186>, ZPZV<6»; }; // NOLINT
 03828 template<> struct ConwayPolynomial<229, 7> { using ZPZ = aerobus::zpz<229>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<23»; };
 03829 template<> struct ConwayPolynomial<229, 8> { using ZPZ = aerobus::zpz<229>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<193>, ZPZV<62>, ZPZV<205>, ZPZV<6*; }; //
                          NOLINT
03830 template<> struct ConwayPolynomial<229, 9> { using ZPZ = aerobus::zpz<229>; using type =
                          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<15>, ZPZV<117>, ZPZV<50>, ZPZV<223»;
                          }; // NOLINT
 03831 template<> struct ConwayPolynomial<229, 10> { using ZPZ = aerobus::zpz<229>; using type =
                          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<185>, ZPZV<135>, ZPZV<158>, ZPZV<167>,
                          ZPZV<98>, ZPZV<6»; }; // NOLINT
03832 template<> struct ConwayPolynomial<229, 11> { using ZPZ = aerobus::zpz<229>; using type = POLYV<ZPZV<1>, ZPZV<0>, 
03833 template<> struct ConwayPolynomial<229, 12> { using ZPZ = aerobus::zpz<229>; using type =
                          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<131>, ZPZV<140>, ZPZV<25>, ZPZV<6>, ZPZV<172>,
                          ZPZV<9>, ZPZV<145>, ZPZV<6»; }; // NOLINT</pre>
03834 template<> struct ConwayPolynomial<229, 13> { using ZPZ = aerobus::zpz<229>; using type
                          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                          ZPZV<0>, ZPZV<0>, ZPZV<47>, ZPZV<223»; }; // NOLINT</pre>
 03835 template<> struct ConwayPolynomial<229, 17> { using ZPZ = aerobus::zpz<229>; using type =
                          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<223^{\circ}; // NOLINT 03836 template<> struct ConwayPolynomial<229, 19> { using ZPZ = aerobus::zpz<229^{\circ}; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>,
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<228>, ZPZV<15>, ZPZV<223»; }; //</pre>
                      NOLINT
03837 template<> struct ConwayPolynomial<233, 1> { using ZPZ = aerobus::zpz<233>; using type =
                     POLYV<ZPZV<1>, ZPZV<230»; }; // NOLINT
03838 template<> struct ConwayPolynomial<233, 2> { using ZPZ = aerobus::zpz<233>; using type =
                     POLYV<ZPZV<1>, ZPZV<232>, ZPZV<3»; }; // NOLINT
 03839 template<> struct ConwayPolynomial<233, 3> { using ZPZ = aerobus::zpz<233>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<230»; }; // NOLINT
03840 template<> struct ConwayPolynomial<233, 4> { using ZPZ = aerobus::zpz<233>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<158>, ZPZV<3»; }; // NOLINT
03841 template<> struct ConwayPolynomial<233, 5> { using ZPZ = aerobus::zpz<233>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<17>, ZPZV<230»; }; // NOLINT
 03842 template<> struct ConwayPolynomial<233, 6> { using ZPZ = aerobus::zpz<233>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<122>, ZPZV<215>, ZPZV<32>, ZPZV<3»; }; // NOLINT
 03843 template<> struct ConwayPolynomial<233, 7> { using ZPZ = aerobus::zpz<233>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<230»; };
 03844 template<> struct ConwayPolynomial<233, 8> { using ZPZ = aerobus::zpz<233>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<12>, ZPZV<202>, ZPZV<135>, ZPZV<181>, ZPZV<181>, ZPZV<3»; }; //
 03845 template<> struct ConwayPolynomial<233, 9> { using ZPZ = aerobus::zpz<233>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<56>, ZPZV<146>, ZPZV<230»;
                      }; // NOLINT
03846 template<> struct ConwayPolynomial<233, 10> { using ZPZ = aerobus::zpz<233>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<28>, ZPZV<71>, ZPZV<102>, ZPZV<3>, ZPZV<48>,
                      ZPZV<3»; }; // NOLINT</pre>
 03847 template<> struct ConwayPolynomial<233, 11> { using ZPZ = aerobus::zpz<233>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
03848 template<> struct ConwayPolynomial<233, 12> { using ZPZ = aerobus::zpz<233>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<96>, ZPZV<21>, ZPZV<114>, ZPZV<31>, ZPZV<19>,
                      ZPZV<216>, ZPZV<20>, ZPZV<3»; };</pre>
                                                                                                                                             // NOLINT
 03849 template<> struct ConwayPolynomial<233, 13> { using ZPZ = aerobus::zpz<233>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZV<0>, ZPZV<14>, ZPZV<230^{\circ}; }; // NOLINT 03850 template<> struct ConwayPolynomial<233, 17> { using ZPZ = aerobus::zpz<233>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
 03851 template<> struct ConwayPolynomial<233, 19> { using ZPZ = aerobus::zpz<233>; using type
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<25>, ZPZV<25>, ZPZV<25>, ZPZV<230»; }; //</pre>
                      NOLINT
03852 template<> struct ConwayPolynomial<239, 1> { using ZPZ = aerobus::zpz<239>; using type =
                      POLYV<ZPZV<1>, ZPZV<232»; }; // NOLINT
 03853 template<> struct ConwayPolynomial<239, 2> { using ZPZ = aerobus::zpz<239>; using type =
                                                                                                                                                              // NOLINT
                      POLYV<ZPZV<1>, ZPZV<237>, ZPZV<7»; };
 03854 template<> struct ConwayPolynomial<239, 3> { using ZPZ = aerobus::zpz<239>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<11>, ZPZV<232»; }; // NOLINT
03855 template<> struct ConwayPolynomial<239, 4> { using ZPZ = aerobus::zpz<239>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<11>, ZPZV<132>, ZPZV<7»; }; // NOLINT
03856 template<> struct ConwayPolynomial<239, 5> { using ZPZ = aerobus::zpz<239>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<232»; }; // NOLINT
 03857 template<> struct ConwayPolynomial<239, 6> { using ZPZ = aerobus::zpz<239>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<237>, ZPZV<60>, ZPZV<200>, ZPZV<7»; }; // NOLINT 03858 template<> struct ConwayPolynomial<239, 7> { using ZPZ = aerobus::zpz<239>; using type =
 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2; ; // NOLINT 03859 template<> struct ConwayPolynomial<239, 8> { using ZPZ = aerobus::zpz<239>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<201>, ZPZV<202>, ZPZV<54>, ZPZV<7»; };
 03860 template<> struct ConwayPolynomial<239, 9> { using ZPZ = aerobus::zpz<239>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<2>, ZPZV<2>, ZPZV<288>, ZPZV<232»; };
                      // NOLINT
03861 template<> struct ConwayPolynomial<239, 10> { using ZPZ = aerobus::zpz<239>; using type
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>>, ZPZV<68>, ZPZV<226>, ZPZV<127>, ZPZV<108>, ZPZV<7»; }; // NOLINT
 03862 template<> struct ConwayPolynomial<239, 11> { using ZPZ = aerobus::zpz<239>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                      ZPZV<8>, ZPZV<232»; }; // NOLINT</pre>
03863 template<> struct ConwayPolynomial<239, 12> { using ZPZ = aerobus::zpz<239>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<235>, ZPZV<14>, ZPZV<113>, ZPZV<182>,
ZPZV<101>, ZPZV<81>, ZPZV<216>, ZPZV<7»; }; // NOLINT
03864 template<> struct ConwayPolynomial<239, 13> { using ZPZ = aerobus::zpz<239>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<232»; }; // NOLINT
03865 template<> struct ConwayPolynomial<239, 17> { using ZPZ = aerobus::zpz<239>; using type =
                      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                      ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<232»; }; // NOLINT</pre>
03866 template<> struct ConwayPolynomial<239, 19> { using ZPZ = aerobus::zpz<239>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<2
                      NOLINT
03867 template<> struct ConwayPolynomial<241, 1> { using ZPZ = aerobus::zpz<241>; using type =
                      POLYV<ZPZV<1>, ZPZV<234»; }; // NOLINT
 03868 template<> struct ConwayPolynomial<241, 2> { using ZPZ = aerobus::zpz<241>; using type =
POLYV<ZPZV<1>, ZPZV<238>, ZPZV<7»; }; // NOLINT
03869 template<> struct ConwayPolynomial<241, 3> { using ZPZ = aerobus::zpz<241>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<234»; }; // NOLINT
```

```
03870 template<> struct ConwayPolynomial<241, 4> { using ZPZ = aerobus::zpz<241>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<14>, ZPZV<152>, ZPZV<7»; }; // NOLINT
03871 template<> struct ConwayPolynomial<241, 5> { using ZPZ = aerobus::zpz<241>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<234»; }; // NOLINT
 03872 template<> struct ConwayPolynomial<241, 6> { using ZPZ = aerobus::zpz<241>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<83>, ZPZV<6>, ZPZV<5>, ZPZV<7»; }; // NOLINT
 03873 template<> struct ConwayPolynomial<241, 7> { using ZPZ = aerobus::zpz<241>; using type
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<234»; };
 03874 template<> struct ConwayPolynomial<241, 8> { using ZPZ = aerobus::zpz<241>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<173>, ZPZV<212>, ZPZV<153>, ZPZV<7»; }; //
                         NOLINT
03875 template<> struct ConwayPolynomial<241, 9> { using ZPZ = aerobus::zpz<241>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<234»;
                          }; // NOLINT
 03876 template<> struct ConwayPolynomial<241, 10> { using ZPZ = aerobus::zpz<241>; using type
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<29>, ZPZV<27>, ZPZV<145>, ZPZV<208>, ZPZV<55>, ZPZV<7»; }; // NOLINT
03877 template<> struct ConwayPolynomial<241, 11> { using ZPZ = aerobus::zpz<241>; using type = aerobus::zpz
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
 03878 template<> struct ConwayPolynomial<241, 12> { using ZPZ = aerobus::zpz<241>; using type
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<42>, ZPZV<10>, ZPZV<109>, ZPZV<168>, ZPZV<22>,
                         ZPZV<197>, ZPZV<17>, ZPZV<7>; }; // NOLINT
03879 template<> struct ConwayPolynomial<241, 13> { using ZPZ = aerobus::zpz<241>; using type = POLYV<ZPZV<1>, ZPZV<0>, 
 03880 template<> struct ConwayPolynomial<241, 17> { using ZPZ = aerobus::zpz<241>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<14>, ZPZV<234»; }; // NOLINT 03881 template<> struct ConwayPolynomial<241, 19> { using ZPZ = aerobus::zpz<241>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>,
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<234w; }; //</pre>
 03882 template<> struct ConwayPolynomial<251, 1> { using ZPZ = aerobus::zpz<251>; using type =
                         POLYV<ZPZV<1>, ZPZV<245»; }; // NOLINT
 03883 template<> struct ConwayPolynomial<251, 2> { using ZPZ = aerobus::zpz<251>; using type =
POLYV<ZPZV<1>, ZPZV<242>, ZPZV<6»; }; // NOLINT
03884 template<> struct ConwayPolynomial<251, 3> { using ZPZ = aerobus::zpz<251>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<245»; }; // NOLINT
03885 template<> struct ConwayPolynomial<251, 4> { using ZPZ = aerobus::zpz<251>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<200>, ZPZV<6>; }; // NOLINT
03886 template<> struct ConwayPolynomial<251, 5> { using ZPZ = aerobus::zpz<251>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<245»; }; // NOLINT
 03887 template<> struct ConwayPolynomial<251, 6> { using ZPZ = aerobus::zpz<251>; using type =
                         POLYV<2PZV<1>, 2PZV<0>, ZPZV<1>, ZPZV<24>, ZPZV<151>, ZPZV<179>, ZPZV<6»; }; // NOLINT
 03888 template<> struct ConwayPolynomial<251, 7> { using ZPZ = aerobus::zpz<251>;
                                                                                                                                                                                                                                                                                                                                                  using type :
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<245»; };
 03889 template<> struct ConwayPolynomial<251, 8> { using ZPZ = aerobus::zpz<251>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<142>, ZPZV<215>, ZPZV<173>, ZPZV<6»; }; //
                         NOLINT
 03890 template<> struct ConwayPolynomial<251, 9> { using ZPZ = aerobus::zpz<251>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<187>, ZPZV<106>, ZPZV<245»;
                            }; // NOLINT
 03891 template<> struct ConwayPolynomial<251, 10> { using ZPZ = aerobus::zpz<251>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<138>, ZPZV<110>, ZPZV<45>, ZPZV<34>, ZPZV<149>, ZPZV<6»; }; // NOLINT
 03892 template<> struct ConwayPolynomial<251, 11> { using ZPZ = aerobus::zpz<251>; using type
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                          ZPZV<26>, ZPZV<245»; }; // NOLINT</pre>
03893 template<> struct ConwayPolynomial<251, 12> { using ZPZ = aerobus::zpz<251>; using type
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<20>, ZPZV<20>, ZPZV<15>, ZPZV<20>, ZPZV<2
03894 template<> struct ConwayPolynomial<251, 13> { using ZPZ = aerobus::zpz<251>; using type
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZV<0>, ZPZV<15>, ZPZV<245»; }; // NOLINT

03895 template<> struct ConwayPolynomial<251, 17> { using ZPZ = aerobus::zpz<251>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<4>, ZPZV<45»; }; // NOLINT

03896 template<> struct ConwayPolynomial<251, 19> { using ZPZ = aerobus::zpz<251>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZ
                          ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2+</pre>; }; //
                         NOLINT
03897 template<> struct ConwayPolynomial<257, 1> { using ZPZ = aerobus::zpz<257>; using type =
                         POLYV<ZPZV<1>, ZPZV<254»; }; // NOLINT
 03898 template<> struct ConwayPolynomial<257, 2> { using ZPZ = aerobus::zpz<257>; using type =
                         POLYV<ZPZV<1>, ZPZV<251>, ZPZV<3»; }; // NOLINT
 03899 template<> struct ConwayPolynomial<257, 3> { using ZPZ = aerobus::zpz<257>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<254»; }; // NOLINT
 03900 template<> struct ConwayPolynomial<257, 4> { using ZPZ = aerobus::zpz<257>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<16>, ZPZV<187>, ZPZV<3»; }; // NOLINT
03901 template<> struct ConwayPolynomial<257, 5> { using ZPZ = aerobus::zpz<257>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<254»; }; // NOLINT
 03902 template<> struct ConwayPolynomial<257, 6> { using ZPZ = aerobus::zpz<257>; using type =
                         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<62>, ZPZV<18>, ZPZV<138>, ZPZV<3»; }; // NOLINT
 03903 template<> struct ConwayPolynomial<257, 7> { using ZPZ = aerobus::zpz<257>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<31, ZPZV<31, ZPZV<254»; }; // NOLINT 03904 template<> struct ConwayPolynomial<257, 8> { using ZPZ = aerobus::zpz<257>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<179>, ZPZV<140>, ZPZV<162>, ZPZV<3»; }; //
03905 template<> struct ConwayPolynomial<257, 9> { using ZPZ = aerobus::zpz<257>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<201>, ZPZV<201>, ZPZV<50>, ZPZV<254»;
                      }: // NOLINT
03906 template<> struct ConwayPolynomial<257, 10> { using ZPZ = aerobus::zpz<257>; using type
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<20>, ZPZV<12>, ZPZV<225>, ZPZV<180>, ZPZV<20>,
                     ZPZV<3»; }; // NOLINT</pre>
03907 template<> struct ConwayPolynomial<257, 11> { using ZPZ = aerobus::zpz<257>; using type =
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
03908 template<> struct ConwayPolynomial<257, 12> { using ZPZ = aerobus::zpz<257>; using type = aerobus::zpz<257>;
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<13>, ZPZV<225>, ZPZV<215>, ZPZV<173>, ZPZV<249>, ZPZV<148>, ZPZV<20>, ZPZV<3»; // NOLINT
 03909 template<> struct ConwayPolynomial<257, 13> { using ZPZ = aerobus::zpz<257>; using type
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<5 , ZPZV<5
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                     ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<254»; }; // NOLINT</pre>
 03911 template<> struct ConwayPolynomial<257, 19> { using ZPZ = aerobus::zpz<257>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
                     ZPZV<0>, ZPZV<10>, ZPZV<254»; }; //</pre>
                     NOLINT
03912 template<> struct ConwayPolynomial<263, 1> { using ZPZ = aerobus::zpz<263>; using type =
                     POLYV<ZPZV<1>, ZPZV<258»; }; // NOLINT
 03913 template<> struct ConwayPolynomial<263, 2> { using ZPZ = aerobus::zpz<263>; using type =
                    POLYV<ZPZV<1>, ZPZV<261>, ZPZV<5»; }; // NOLINT
 03914 template<> struct ConwayPolynomial<263, 3> { using ZPZ = aerobus::zpz<263>; using type =
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<14>, ZPZV<258»; }; // NOLINT
03915 template<> struct ConwayPolynomial<263, 4> { using ZPZ = aerobus::zpz<263>; using type =
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<171>, ZPZV<5»; }; // NOLINT
 03916 template<> struct ConwayPolynomial<263, 5> { using ZPZ = aerobus::zpz<263>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<13>, ZPZV<258»; }; // NOLINT
 03917 template<> struct ConwayPolynomial<263, 6> { using ZPZ = aerobus::zpz<263>; using type =
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<22>, ZPZV<25>, ZPZV<25>, ZPZV<5»; }; // NOLINT
03918 template<> struct ConwayPolynomial<263, 7> { using ZPZ = aerobus::zpz<263>; using type
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<258»; }; // NOLINT
 03919 template<> struct ConwayPolynomial<263, 8> { using ZPZ = aerobus::zpz<263>; using type
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<227>, ZPZV<170>, ZPZV<7>, ZPZV<7>, ZPZV<5»; }; //
                     NOLINT
03920 template<> struct ConwayPolynomial<263, 9> { using ZPZ = aerobus::zpz<263>; using type =
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<65, ZPZV<261>, ZPZV<29>, ZPZV<258»;
                     }; // NOLINT
 03921 template<> struct ConwayPolynomial<263, 10> { using ZPZ = aerobus::zpz<263>; using type
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<245>, ZPZV<231>, ZPZV<198>, ZPZV<145>,
                     ZPZV<119>, ZPZV<5»; }; // NOLINT</pre>
03922 template<> struct ConwayPolynomial<263, 11> { using ZPZ = aerobus::zpz<263>; using type = POLYV<ZPZV<1>, ZPZV<0>, 
 03923 template<> struct ConwayPolynomial<263, 12> { using ZPZ = aerobus::zpz<263>; using type
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<172>, ZPZV<174>, ZPZV<162>, ZPZV<252>,
                     ZPZV<47>, ZPZV<45>, ZPZV<180>, ZPZV<5»; }; // NOLINT</pre>
03924 template<> struct ConwayPolynomial<269, 1> { using ZPZ = aerobus::zpz<269>; using type =
                    POLYV<ZPZV<1>, ZPZV<267»; }; // NOLINT
03925 template<> struct ConwayPolynomial<269, 2> { using ZPZ = aerobus::zpz<269>; using type =
                     POLYV<ZPZV<1>, ZPZV<268>, ZPZV<2»; }; // NOLINT
 03926 template<> struct ConwayPolynomial<269, 3> { using ZPZ = aerobus::zpz<269>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<9>, ZPZV<267»; }; // NOLINT
 03927 template<> struct ConwayPolynomial<269, 4> { using ZPZ = aerobus::zpz<269>; using type =
POLYV<ZPZV<1>, ZPZV<8>, ZPZV<262>, ZPZV<2»; }; // NOLINT

03928 template> struct ConwayPolynomial<269, 5> { using ZPZ = aerobus::zpz<269>; using type =
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<267»; }; // NOLINT
 03929 template<> struct ConwayPolynomial<269, 6> { using ZPZ = aerobus::zpz<269>; using type =
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<120>, ZPZV<101>, ZPZV<206>, ZPZV<2»; }; // NOLINT
 03930 template<> struct ConwayPolynomial<269, 7> { using ZPZ = aerobus::zpz<269>; using type =
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6 , ZPZV<6
03931 template<> struct ConwayPolynomial<269, 8> { using ZPZ = aerobus::zpz<269>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<220>, ZPZV<131>, ZPZV<232>, ZPZV<23); }; //
                     NOLINT
03932 template<> struct ConwayPolynomial<269, 9> { using ZPZ = aerobus::zpz<269>; using type =
                     POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2+, ZPZV<214>, ZPZV<267>, ZPZV<267>,
                     }; // NOLINT
03933 template<> struct ConwayPolynomial<269, 10> { using ZPZ = aerobus::zpz<269>; using type
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<264>, ZPZV<243>, ZPZV<186>, ZPZV<61>, ZPZV<10>, ZPZV<20; }; // NOLINT
 03934 template<> struct ConwayPolynomial<269, 11> { using ZPZ = aerobus::zpz<269>; using type
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
 03935 template<> struct ConwayPolynomial<269, 12> { using ZPZ = aerobus::zpz<269>; using type =
                    POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<20>, ZPZV<126>, ZPZV<165>, ZPZV<63>, ZPZV<215>, ZPZV<132>, ZPZV<180>, ZPZV<150>, ZPZV<2»; }; // NOLINT
 03936 template<> struct ConwayPolynomial<271, 1> { using ZPZ = aerobus::zpz<271>; using type =
                    POLYV<ZPZV<1>, ZPZV<265»; }; // NOLINT
 03937 template<> struct ConwayPolynomial<271, 2> { using ZPZ = aerobus::zpz<271>; using type = POLYV<ZPZV<1>, ZPZV<269>, ZPZV<6»; }; // NOLINT
03938 template<> struct ConwayPolynomial<271, 3> { using ZPZ = aerobus::zpz<271>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<265»; };
03939 template<> struct ConwayPolynomial<271, 4> { using ZPZ = aerobus::zpz<271>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<205>, ZPZV<6>; }; // NOLINT
03940 template<> struct ConwayPolynomial<271, 5> { using ZPZ = aerobus::zpz<271>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<265»; }; // NOLINT
03941 template<> struct ConwayPolynomial<271, 6> { using ZPZ = aerobus::zpz<271>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<207>, ZPZV<207>, ZPZV<81>, ZPZV<6»; ); // NOLINT
 03942 template<> struct ConwayPolynomial<271, 7> { using ZPZ = aerobus::zpz<271>; using type
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<26>, ZPZV<26>, ZPZV<26>; }; // NOLINT
 03943 template<> struct ConwayPolynomial<271, 8> { using ZPZ = aerobus::zpz<271>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<19>, ZPZV<114>, ZPZV<69>, ZPZV<6»; }; //
                 NOLINT
03944 template<> struct ConwayPolynomial<271, 9> { using ZPZ = aerobus::zpz<271>; using type
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<10>, ZPZV<266>, ZPZV<186>, ZPZV<265»;
                  }; // NOLINT
03945 template<> struct ConwayPolynomial<271, 10> { using ZPZ = aerobus::zpz<271>; using type
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<133>, ZPZV<10>, ZPZV<256>, ZPZV<74>, ZPZV<126>, ZPZV<6»; }; // NOLINT
03946 template<> struct ConwayPolynomial<271, 11> { using ZPZ = aerobus::zpz<271>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0 , 
                  ZPZV<10>, ZPZV<265»; }; // NOLINT</pre>
03947 template<> struct ConwayPolynomial<271, 12> { using ZPZ = aerobus::zpz<271>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<162>, ZPZV<210>, ZPZV<2165, ZPZV<2165, ZPZV<2165, ZPZV<2170, ZPZV<205, ZPZV<237>, ZPZV<256>, ZPZV<130>, ZPZV<6»; }; // NOLINT
03948 template<> struct ConwayPolynomial<277, 1> { using ZPZ = aerobus::zpz<277>; using type =
                 POLYV<ZPZV<1>, ZPZV<272»; }; // NOLINT
 03949 template<> struct ConwayPolynomial<277, 2> { using ZPZ = aerobus::zpz<277>; using type =
POLYV<ZPZV<1>, ZPZV<274, ZPZV<5»; }; // NOLINT
03950 template<> struct ConwayPolynomial<277, 3> { using ZPZ = aerobus::zpz<277>; using type =
POLYV<ZPZV<1>, ZPZV<3>, ZPZV<3>, ZPZV<272»; }; // NOLINT

03951 template<> struct ConwayPolynomial<277, 4> { using ZPZ = aerobus::zpz<277>; using type =
 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<22>, ZPZV<5»; }; // NOLINT
03952 template<> struct ConwayPolynomial<277, 5> { using ZPZ = aerobus::zpz<277>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<272»; }; // NOLINT
 03953 template<> struct ConwayPolynomial<277, 6> { using ZPZ = aerobus::zpz<277>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<33>, ZPZV<9>, ZPZV<118>, ZPZV<5»; }; // NOLINT
03954 template<> struct ConwayPolynomial<277, 7> { using ZPZ = aerobus::zpz<277>; using type
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<272»; }; // NOLINT
 03955 template<> struct ConwayPolynomial<277, 8> { using ZPZ = aerobus::zpz<277>; using type
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<187>, ZPZV<159>, ZPZV<176>, ZPZV<5»; }; //
                 NOT.TNT
03956 template<> struct ConwayPolynomial<277, 9> { using ZPZ = aerobus::zpz<277>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<4>, ZPZV<177>, ZPZV<110>, ZPZV<272»;
                 }; // NOLINT
 03957 template<> struct ConwayPolynomial<277, 10> { using ZPZ = aerobus::zpz<277>; using type
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<206>, ZPZV<253>, ZPZV<237>, ZPZV<241>,
                 ZPZV<260>, ZPZV<5»; }; // NOLINT</pre>
03958 template<> struct ConwayPolynomial<277, 11> { using ZPZ = aerobus::zpz<277>; using type = POLYV<ZPZV<1>, ZPZV<0>, 
 03959 template<> struct ConwayPolynomial<277, 12> { using ZPZ = aerobus::zpz<277>; using type
                  POLÝV<ZPZV<1>, ZPZV<0>, ZPŽV<0>, ZPZV<0>, ZPZV<4>, ZPZV<183>, ZPZV<218>, ZPŽV<240>, ŽPZV<40>,
                  ZPZV<180>, ZPZV<115>, ZPZV<202>, ZPZV<5»; }; // NOLINT</pre>
03960 template<> struct ConwayPolynomial<281, 1> { using ZPZ = aerobus::zpz<281>; using type =
                 POLYV<ZPZV<1>, ZPZV<278»; }; // NOLINT
03961 template<> struct ConwayPolynomial<281, 2> { using ZPZ = aerobus::zpz<281>; using type =
                 POLYV<ZPZV<1>, ZPZV<280>, ZPZV<3»; }; // NOLINT
 03962 template<> struct ConwayPolynomial<281, 3> { using ZPZ = aerobus::zpz<281>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<278»; }; // NOLINT
 03963 template<> struct ConwayPolynomial<281, 4> { using ZPZ = aerobus::zpz<281>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<176>, ZPZV<3>; ; // NOLINT
03964 template<> struct ConwayPolynomial<281, 5> { using ZPZ = aerobus::zpz<281>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<278»; }; // NOLINT
 03965 template<> struct ConwayPolynomial<281, 6> { using ZPZ = aerobus::zpz<281>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<15>, ZPZV<13>, ZPZV<27>, ZPZV<3»; }; // NOLINT
 03966 template<> struct ConwayPolynomial<281, 7> { using ZPZ = aerobus::zpz<281>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<2>, ZPZV<2+, ZPZV<2
03967 template<> struct ConwayPolynomial<281, 8> { using ZPZ = aerobus::zpz<281>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<195>, ZPZV<279>, ZPZV<140>, ZPZV<3»; }; //
                 NOLINT
03968 template<> struct ConwayPolynomial<281, 9> { using ZPZ = aerobus::zpz<281>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6>, ZPZV<6>, ZPZV<6>, ZPZV<70>, 
                  }; // NOLINT
03969 template<> struct ConwayPolynomial<281, 10> { using ZPZ = aerobus::zpz<281>; using type = aerobus::zpz<281>;
                 POLYYCZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<258>, ZPZV<145>, ZPZV<138>, ZPZV<191>, ZPZV<3»; }; // NOLINT
 03970 template<> struct ConwayPolynomial<281, 11> { using ZPZ = aerobus::zpz<281>; using type
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
 03971 template<> struct ConwayPolynomial<281, 12> { using ZPZ = aerobus::zpz<281>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<20>, ZPZV<202>, ZPZV<68>, ZPZV<103>, ZPZV<116>,
                 ZPZV<58>, ZPZV<28>, ZPZV<191>, ZPZV<3»; }; // NOLINT</pre>
 03972 template<> struct ConwayPolynomial<283, 1> { using ZPZ = aerobus::zpz<283>; using type =
                 POLYV<ZPZV<1>, ZPZV<280»; }; // NOLINT
 03973 template<> struct ConwayPolynomial<283, 2> { using ZPZ = aerobus::zpz<283>; using type =
 POLYV<ZPZV<1>, ZPZV<282>, ZPZV<3»; }; // NOLINT
03974 template<> struct ConwayPolynomial<283, 3> { using ZPZ = aerobus::zpz<283>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<280»; };
03975 template<> struct ConwayPolynomial<283, 4> { using ZPZ = aerobus::zpz<283>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<238>, ZPZV<3»; }; // NOLINT
03976 template<> struct ConwayPolynomial<283, 5> { using ZPZ = aerobus::zpz<283>; using type =
                POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<280»; }; // NOLINT
03977 template<> struct ConwayPolynomial<283, 6> { using ZPZ = aerobus::zpz<283>; using type =
                POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<199>, ZPZV<68>, ZPZV<73>, ZPZV<3»; }; // NOLINT
03978 template<> struct ConwayPolynomial<283, 7> { using ZPZ = aerobus::zpz<283>; using type
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<8>, ZPZV<280»; };
03979 template<> struct ConwayPolynomial<283, 8> { using ZPZ = aerobus::zpz<283>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<11>, ZPZV<179>, ZPZV<32>, ZPZV<332>, ZPZV<332; //
                 NOLINT
03980 template<> struct ConwayPolynomial<283, 9> { using ZPZ = aerobus::zpz<283>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<136>, ZPZV<65>, ZPZV<280»;
                  }; // NOLINT
03981 template<> struct ConwayPolynomial<283, 10> { using ZPZ = aerobus::zpz<283>; using type
                POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<271>, ZPZV<185>, ZPZV<68>, ZPZV<100>, ZPZV<219>, ZPZV<3»; }; // NOLINT
03982 template<> struct ConwayPolynomial<283, 11> { using ZPZ = aerobus::zpz<283>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0 , 
                 ZPZV<4>, ZPZV<280»; }; // NOLINT</pre>
03983 template<> struct ConwayPolynomial<283, 12> { using ZPZ = aerobus::zpz<283>; using type =
                POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<20>, ZPZV<8>, ZPZV<86>, ZPZV<96>, ZPZV<249>, ZPZV<14>, ZPZV<56>, ZPZV<3»; }; // NOLINT
03984 template<> struct ConwayPolynomial<293, 1> { using ZPZ = aerobus::zpz<293>; using type =
                POLYV<ZPZV<1>, ZPZV<291»; }; // NOLINT
03985 template<> struct ConwayPolynomial<293, 2> { using ZPZ = aerobus::zpz<293>; using type =
                POLYV<ZPZV<1>, ZPZV<292>, ZPZV<2»; }; // NOLINT
03986 template<> struct ConwayPolynomial<293, 3> { using ZPZ = aerobus::zpz<293>; using type =
POLYV<ZPZV<1>, ZPZV<2>, ZPZV<2>, ZPZV<291»; }; // NOLINT

03987 template<> struct ConwayPolynomial<293, 4> { using ZPZ = aerobus::zpz<293>; using type =
POLYV<ZPZV<1>, ZPZV<3>, ZPZV<366>, ZPZV<2»; }; // NOLINT
03988 template<> struct ConwayPolynomial<293, 5> { using ZPZ = aerobus::zpz<293>; using type =
                POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<291»; }; // NOLINT
03989 template<> struct ConwayPolynomial<293, 6> { using ZPZ = aerobus::zpz<293>; using type =
                POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<128>, ZPZV<210>, ZPZV<260>, ZPZV<2»; }; // NOLINT
03990 template<> struct ConwayPolynomial<293, 7> { using ZPZ = aerobus::zpz<293>; using type
                POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<291»; }; // NOLINT
03991 template<> struct ConwayPolynomial<293, 8> { using ZPZ = aerobus::zpz<293>; using type
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<29>, ZPZV<175>, ZPZV<195>, ZPZV<239>, ZPZ
                 NOT.TNT
03992 template<> struct ConwayPolynomial<293, 9> { using ZPZ = aerobus::zpz<293>; using type =
                POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<29, ZPZV<29, ZPZV<208>, ZPZV<190>, ZPZV<291»;
                 }; // NOLINT
03993 template<> struct ConwayPolynomial<293, 10> { using ZPZ = aerobus::zpz<293>; using type
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<186>, ZPZV<28>, ZPZV<46>, ZPZV<184>, ZPZV<24>,
                 ZPZV<2»; }; // NOLINT</pre>
03994 template<> struct ConwayPolynomial<293, 11> { using ZPZ = aerobus::zpz<293>; using type = POLYV<ZPZV<1>, ZPZV<0>, 
03995 template<> struct ConwayPolynomial<293, 12> { using ZPZ = aerobus::zpz<293>; using type
                 POLÝV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<159>, ZPZV<210>, ZPZV<125>, ZPZV<212>,
                 ZPZV<167>, ZPZV<144>, ZPZV<157>, ZPZV<2»; }; // NOLINT</pre>
03996 template<> struct ConwayPolynomial<307, 1> { using ZPZ = aerobus::zpz<307>; using type =
                POLYV<ZPZV<1>, ZPZV<302»; }; // NOLINT
03997 template<> struct ConwayPolynomial<307, 2> { using ZPZ = aerobus::zpz<307>; using type =
                 POLYV<ZPZV<1>, ZPZV<306>, ZPZV<5»; }; // NOLINT
03998 template<> struct ConwayPolynomial<307, 3> { using ZPZ = aerobus::zpz<307>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<302»; }; // NOLINT
03999 template<> struct ConwayPolynomial<307, 4> { using ZPZ = aerobus::zpz<307>; using type =
POLYV<ZPZV<1>, ZPZV<2>, ZPZV<239>, ZPZV<5»; }; // NOLINT

04000 template</pre>
Struct ConwayPolynomial<307, 5> { using ZPZ = aerobus::zpz<307>; using type =
                POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<302»; }; // NOLINT
04001 template<> struct ConwayPolynomial<307, 6> { using ZPZ = aerobus::zpz<307>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<213>, ZPZV<172>, ZPZV<61>, ZPZV<5»; }; // NOLINT
04002 template<> struct ConwayPolynomial<307, 7> { using ZPZ = aerobus::zpz<307>; using type =
                POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6 , ZPZV<6
04003 template<> struct ConwayPolynomial<307, 8> { using ZPZ = aerobus::zpz<307>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<283>, ZPZV<232>, ZPZV<131>, ZPZV<5»; }; //
                 NOLINT
04004 template<> struct ConwayPolynomial<307, 9> { using ZPZ = aerobus::zpz<307>; using type =
                 POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<165>, ZPZV<70>, ZPZV<302»;
                  }; // NOLINT
04005 template<> struct ConwayPolynomial<311, 1> { using ZPZ = aerobus::zpz<311>; using type =
                 POLYV<ZPZV<1>, ZPZV<294»; }; // NOLINT
04006 template<> struct ConwayPolynomial<311, 2> { using ZPZ = aerobus::zpz<311>; using type =
                 POLYV<ZPZV<1>, ZPZV<310>, ZPZV<17»; }; // NOLINT
04007 template<> struct ConwayPolynomial<311, 3> { using ZPZ = aerobus::zpz<311>; using type =
                POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<294»; }; // NOLINT
04008 template<> struct ConwayPolynomial<311, 4> ( using ZPZ = aerobus::zpz<311>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<163>, ZPZV<17»; }; // NOLINT
04009 template<> struct ConwayPolynomial<311, 5> { using ZPZ = aerobus::zpz<311>; using type =
                POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<294»; }; // NOLINT
04010 template<> struct ConwayPolynomial<311, 6> { using ZPZ = aerobus::zpz<311>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<27>, ZPZV<167>, ZPZV<152>, ZPZV<17»; }; // NOLINT 04011 template<> struct ConwayPolynomial<311, 7> { using ZPZ = aerobus::zpz<311>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0 , ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0 , ZPZV<0>, ZPZV<0>, ZPZV<0 , ZPZ
```

```
04012 template<> struct ConwayPolynomial<311, 8> { using ZPZ = aerobus::zpz<311>; using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<19>, ZPZV<162>, ZPZV<118>, ZPZV<2>, ZPZV<17»; }; //
         NOLTNT
04013 template<> struct ConwayPolynomial<311, 9> { using ZPZ = aerobus::zpz<311>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<287>, ZPZV<274>, ZPZV<294»;
         }; // NOLINT
04014 template<> struct ConwayPolynomial<313, 1> { using ZPZ = aerobus::zpz<313>; using type =
         POLYV<ZPZV<1>, ZPZV<303»; }; // NOLINT
04015 template<> struct ConwayPolynomial<313, 2> { using ZPZ = aerobus::zpz<313>; using type = POLYV<ZPZV<1>, ZPZV<310>, ZPZV<10»; }; // NOLINT
04016 template<> struct ConwayPolynomial<313, 3> { using ZPZ = aerobus::zpz<313>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<303»; }; // NOLINT
04017 template<> struct ConwayPolynomial<313, 4> { using ZPZ = aerobus::zpz<313>; using type =
POLYV<ZPZV<1>, ZPZV<8>, ZPZV<83, ZPZV<39>, ZPZV<10»; }; // NOLINT
04018 template<> struct ConwayPolynomial<313, 5> { using ZPZ = aerobus::zpz<313>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<303»; }; // NOLINT
04019 template<> struct ConwayPolynomial<313, 6> { using ZPZ = aerobus::zpz<313>; using type =
POLYY<ZPZY<1>, ZPZY<0>, ZPZY<0>, ZPZY<196>, ZPZY<213>, ZPZY<253>, ZPZY<10»; }; // NOLINT 04020 template<> struct ConwayPolynomial<313, 7> { using ZPZ = aerobus::zpz<313>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<303»; };
04021 template<> struct ConwayPolynomial<313, 8> { using ZPZ = aerobus::zpz<313>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<306>, ZPZV<99>, ZPZV<106>, ZPZV<10»; }; //
         NOLINT
04022 template<> struct ConwayPolynomial<313, 9> { using ZPZ = aerobus::zpz<313>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<303, ZPZV<30>, ZPZV<30, ZPZV<30,
         }; // NOLINT
04023 template<> struct ConwayPolynomial<317, 1> { using ZPZ = aerobus::zpz<317>; using type =
         POLYV<ZPZV<1>, ZPZV<315»; }; // NOLINT
04024 template<> struct ConwayPolynomial<317, 2> { using ZPZ = aerobus::zpz<317>; using type =
POLYV<ZPZV<1>, ZPZV<313>, ZPZV<2»; }; // NOLINT

04025 template<> struct ConwayPolynomial<317, 3> { using ZPZ = aerobus::zpz<317>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<315»; }; // NOLINT
04026 template<> struct ConwayPolynomial<317, 4> { using ZPZ = aerobus::zpz<317>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<178>, ZPZV<2»; }; // NOLINT
04027 template<> struct ConwayPolynomial<317, 5> { using ZPZ = aerobus::zpz<317>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<315»; }; // NOLINT
04028 template<> struct ConwayPolynomial<317, 6> { using ZPZ = aerobus::zpz<317>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<195>, ZPZV×156>, ZPZV<4>, ZPZV<2»; }; // NOLINT
04029 template<> struct ConwayPolynomial<317, 7> { using ZPZ = aerobus::zpz<317>; using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<315»; };
04030 template<> struct ConwayPolynomial<317, 8> { using ZPZ = aerobus::zpz<317>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<207>, ZPZV<85>, ZPZV<31>, ZPZV<2»; }; //
         NOLINT
04031 template<> struct ConwayPolynomial<317, 9> { using ZPZ = aerobus::zpz<317>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<284>, ZPZV<296>, ZPZV<315»;
         }; // NOLINT
04032 template<> struct ConwayPolynomial<331, 1> { using ZPZ = aerobus::zpz<331>; using type =
         POLYV<ZPZV<1>, ZPZV<328»; }; // NOLINT
04033 template<> struct ConwayPolynomial<331, 2> { using ZPZ = aerobus::zpz<331>; using type =
         POLYV<ZPZV<1>, ZPZV<326>, ZPZV<3»; }; // NOLINT
04034 template<> struct ConwayPolynomial<331, 3> { using ZPZ = aerobus::zpz<331>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<328»; }; // NOLINT
04035 template<> struct ConwayPolynomial<331, 4> { using ZPZ = aerobus::zpz<331>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<290>, ZPZV<3»; }; // NOLINT
04036 template<> struct ConwayPolynomial<331, 5> { using ZPZ = aerobus::zpz<331>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<32, ZPZV<328x; }; // NOLINT
04037 template<> struct ConwayPolynomial<331, 6> { using ZPZ = aerobus::zpz<331>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<283>, ZPZV<205>, ZPZV<159>, ZPZV<3»; }; // NOLINT
04038 template<> struct ConwayPolynomial<331, 7> { using ZPZ = aerobus::zpz<331>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5>, ZPZV<328»; };
04039 template<> struct ConwayPolynomial<331, 8> { using ZPZ = aerobus::zpz<331>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<24>, ZPZV<308>, ZPZV<78>, ZPZV<3»; }; //
         NOLINT
04040 template<> struct ConwayPolynomial<331, 9> { using ZPZ = aerobus::zpz<331>; using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<194>, ZPZV<210>, ZPZV<328»;
         }; // NOLINT
04041 template<> struct ConwayPolynomial<337, 1> { using ZPZ = aerobus::zpz<337>; using type =
         POLYV<ZPZV<1>, ZPZV<327»; }; // NOLINT
04042 template<> struct ConwayPolynomial<337, 2> { using ZPZ = aerobus::zpz<337>; using type =
POLYV<ZPZV<1>, ZPZV<332>, ZPZV<10»; }; // NOLINT
04043 template<> struct ConwayPolynomial<337, 3> { using ZPZ = aerobus::zpz<337>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<327»; }; // NOLINT
04044 template<> struct ConwayPolynomial<337, 4> { using ZPZ = aerobus::zpz<337>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<25>, ZPZV<224>, ZPZV<10»; }; // NOLINT
04045 template<> struct ConwayPolynomial<337, 5> { using ZPZ = aerobus::zpz<337>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<327»; }; // NOLINT
04046 template<> struct ConwayPolynomial<337, 6> { using ZPZ = aerobus::zpz<337>; using type
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<01, ZPZV<216>, ZPZV<127>, ZPZV<109>, ZPZV<109; }; // NOLINT 04047 template<> struct ConwayPolynomial<337, 7> { using ZPZ = aerobus::zpz<337>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<327»; };
                                                                                                                                      // NOLINT
04048 template<> struct ConwayPolynomial<337, 8> { using ZPZ = aerobus::zpz<337>; using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<331>, ZPZV<246>, ZPZV<251>, ZPZV<10»; }; //
04049 template<> struct ConwayPolynomial<337, 9> { using ZPZ = aerobus::zpz<337>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<12>, ZPZV<148>, ZPZV<98>, ZPZV<327»;
         }: // NOLINT
04050 template<> struct ConwayPolynomial<347, 1> { using ZPZ = aerobus::zpz<347>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<345»; }; // NOLINT
04051 template<> struct ConwayPolynomial<347, 2> { using ZPZ = aerobus::zpz<347>; using type = POLYV<ZPZV<1>, ZPZV<343>, ZPZV<2»; }; // NOLINT
04052 template<> struct ConwayPolynomial<347, 3> { using ZPZ = aerobus::zpz<347>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<9>, ZPZV<345»; }; // NOLINT
04053 template<> struct ConwayPolynomial<347, 4> { using ZPZ = aerobus::zpz<347>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<13>, ZPZV<295>, ZPZV<2»; }; // NOLINT
04054 template<> struct ConwayPolynomial<347, 5> { using ZPZ = aerobus::zpz<347>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<345»; }; // NOLINT
04055 template<> struct ConwayPolynomial<347, 6> { using ZPZ = aerobus::zpz<347>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<343>, ZPZV<26>, ZPZV<56>, ZPZV<2»; }; // NOLINT 04056 template<> struct ConwayPolynomial<347, 7> { using ZPZ = aerobus::zpz<347>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<345»; };
04057 template<> struct ConwayPolynomial<347, 8> { using ZPZ = aerobus::2pz<347>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<187>, ZPZV<213>, ZPZV<117>, ZPZV<2»; }; //
04058 template<> struct ConwayPolynomial<347, 9> { using ZPZ = aerobus::zpz<347>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<235>, ZPZV<252>, ZPZV<245»;
       }; // NOLINT
04059 template<> struct ConwayPolynomial<349, 1> { using ZPZ = aerobus::zpz<349>; using type =
       POLYV<ZPZV<1>, ZPZV<347»; }; // NOLINT
04060 template<> struct ConwayPolynomial<349, 2> { using ZPZ = aerobus::zpz<349>; using type =
POLYV<ZPZV<1>, ZPZV<348>, ZPZV<2»; }; // NOLINT
04061 template<> struct ConwayPolynomial<349, 3> { using ZPZ = aerobus::zpz<349>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<347»; }; // NOLINT
04062 template<> struct ConwayPolynomial<349, 4> { using ZPZ = aerobus::zpz<349>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<279>, ZPZV<2»; }; // NOLINT
04063 template<> struct ConwayPolynomial<349, 5> { using ZPZ = aerobus::zpz<349>; using type =
       04064 template<> struct ConwayPolynomial<349, 6> { using ZPZ = aerobus::zpz<349>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<135>, ZPZV<177>, ZPZV<316>, ZPZV<2»; }; // NOLINT
04065 template<> struct ConwayPolynomial<349, 7> { using ZPZ = aerobus::zpz<349>;
                                                                                               using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<10>, ZPZV<347»; };
04066 template<> struct ConwayPolynomial<349, 8> { using ZPZ = aerobus::zpz<349>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<308>, ZPZV<328>, ZPZV<268>, ZPZV<2»; }; //
       NOLINT
04067 template<> struct ConwayPolynomial<349, 9> { using ZPZ = aerobus::zpz<349>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<36>, ZPZV<290>, ZPZV<290>, ZPZV<347»;
       }; // NOLINT
04068 template<> struct ConwayPolynomial<353, 1> { using ZPZ = aerobus::zpz<353>; using type =
       POLYV<ZPZV<1>, ZPZV<350»; }; // NOLINT
04069 template<> struct ConwayPolynomial<353, 2> { using ZPZ = aerobus::zpz<353>; using type =
POLYV<ZPZV<1>, ZPZV<348>, ZPZV<3»; }; // NOLINT
04070 template<> struct ConwayPolynomial<353, 3> { using ZPZ = aerobus::zpz<353>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<350»; }; // NOLINT
04071 template<> struct ConwayPolynomial<353, 4> { using ZPZ = aerobus::zpz<353>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<199>, ZPZV<3»; }; // NOLINT
04072 template<> struct ConwayPolynomial<353, 5> { using ZPZ = aerobus::zpz<353>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<350»; }; // NOLINT
04073 template<> struct ConwayPolynomial<353, 6> { using ZPZ = aerobus::zpz<353>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<215>, ZPZV<226>, ZPZV<295>, ZPZV<3»; }; // NOLINT
04074 template<> struct ConwayPolynomial<353, 7> { using ZPZ = aerobus::zpz<353>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<16>, ZPZV<16>, ZPZV<350»; };
04075 template<> struct ConwayPolynomial<353, 8> { using ZPZ = aerobus::zpz<353>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<182>, ZPZV<26>, ZPZV<37>, ZPZV<3»; }; //
       NOLINT
04076 template<> struct ConwayPolynomial<353, 9> { using ZPZ = aerobus::zpz<353>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<319>, ZPZV<49>, ZPZV<350»;
       }; // NOLINT
04077 template<> struct ConwayPolynomial<359, 1> { using ZPZ = aerobus::zpz<359>; using type =
       POLYV<ZPZV<1>, ZPZV<352»; }; // NOLINT
04078 template<> struct ConwayPolynomial<359, 2> { using ZPZ = aerobus::zpz<359>; using type =
       POLYV<ZPZV<1>, ZPZV<358>, ZPZV<7»; };
                                                   // NOLINT
04079 template<> struct ConwayPolynomial<359, 3> { using ZPZ = aerobus::zpz<359>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<352»; }; // NOLINT
04080 template<> struct ConwayPolynomial<359, 4> { using ZPZ = aerobus::zpz<359>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<229>, ZPZV<7»; }; // NOLINT
04081 template<> struct ConwayPolynomial<359, 5> { using ZPZ = aerobus::zpz<359>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<352»; }; // NOLINT
04082 template<> struct ConwayPolynomial<359, 6> { using ZPZ = aerobus::zpz<359>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<309>, ZPZV<327>, ZPZV<327>, ZPZV<7»; }; // NOLINT
04083 template<> struct ConwayPolynomial<359, 7> { using ZPZ = aerobus::zpz<359>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<352»; };
04084 template<> struct ConwayPolynomial<359, 8> { using ZPZ = aerobus::zpz<359>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<301>, ZPZV<143>, ZPZV<271>, ZPZV<7»; }; //
04085 template<> struct ConwayPolynomial<359, 9> { using ZPZ = aerobus::zpz<359>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<356>, ZPZV<165>, ZPZV<352»;
       }; // NOLTNT
04086 template<> struct ConwayPolynomial<367, 1> { using ZPZ = aerobus::zpz<367>; using type =
       POLYV<ZPZV<1>, ZPZV<361»; }; // NOLINT
04087 template<> struct ConwayPolynomial<367, 2> { using ZPZ = aerobus::zpz<367>; using type =
POLYV<ZPZV<1>, ZPZV<366>, ZPZV<6»; }; // NOLINT
04088 template<> struct ConwayPolynomial<367, 3> { using ZPZ = aerobus::zpz<367>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<10>, ZPZV<361»; }; // NOLINT
04089 template<> struct ConwayPolynomial<367, 4> { using ZPZ = aerobus::zpz<367>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<295>, ZPZV<6»; }; // NOLINT
```

```
04090 template<> struct ConwayPolynomial<367, 5> { using ZPZ = aerobus::zpz<367>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<361»; }; // NOLINT
04091 template<> struct ConwayPolynomial<367, 6> { using ZPZ = aerobus::zpz<367>; using type =
      04092 template<> struct ConwayPolynomial<367, 7> { using ZPZ = aerobus::zpz<367>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<13>, ZPZV<361»; };
04093 template<> struct ConwayPolynomial<367, 8> { using ZPZ = aerobus::zpz<367>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<335>, ZPZV<282>, ZPZV<50>, ZPZV<6»; };
      NOLTNT
04094 template<> struct ConwayPolynomial<367, 9> { using ZPZ = aerobus::zpz<367>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<15, ZPZV<213>, ZPZV<268>, ZPZV<361»;
      }; // NOLINT
04095 template<> struct ConwayPolynomial<373, 1> { using ZPZ = aerobus::zpz<373>; using type =
      POLYV<ZPZV<1>, ZPZV<371»; }; // NOLINT
04096 template<> struct ConwayPolynomial<373, 2> { using ZPZ = aerobus::zpz<373>; using type =
POLYV<ZPZV<1>, ZPZV<369, ZPZV<2»; }; // NOLINT
04097 template<> struct ConwayPolynomial<373, 3> { using ZPZ = aerobus::zpz<373>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<371»; }; // NOLINT
04098 template<> struct ConwayPolynomial<373, 4> { using ZPZ = aerobus::zpz<373>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<15>, ZPZV<304>, ZPZV<2»; }; // NOLINT
04099 template<> struct ConwayPolynomial<373, 5> { using ZPZ = aerobus::zpz<373>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<371»; }; // NOLINT
04100 template<> struct ConwayPolynomial<373, 6> { using ZPZ = aerobus::zpz<373>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<126>, ZPZV<83>, ZPZV<108>, ZPZV<2»; }; // NOLINT 04101 template<> struct ConwayPolynomial<373, 7> { using ZPZ = aerobus::zpz<373>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<371»; }; // NOLINT
04102 template<> struct ConwayPolynomial<373, 8> { using ZPZ = aerobus::zpz<373>; using type :
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<203>, ZPZV<219>, ZPZV<66>, ZPZV<2»; }; //
      NOLINT
04103 template<> struct ConwayPolynomial<373, 9> { using ZPZ = aerobus::zpz<373>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<371»;
      }; // NOLINT
04104 template<> struct ConwayPolynomial<379, 1> { using ZPZ = aerobus::zpz<379>; using type =
      POLYV<ZPZV<1>, ZPZV<377»; }; // NOLINT
04105 template<> struct ConwayPolynomial<379, 2> { using ZPZ = aerobus::zpz<379>; using type =
      POLYV<ZPZV<1>, ZPZV<374>, ZPZV<2»; }; // NOLINT
04106 template<> struct ConwayPolynomial<379, 3> { using ZPZ = aerobus::zpz<379>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<377»; }; // NOLINT
04107 template<> struct ConwayPolynomial<379, 4> { using ZPZ = aerobus::zpz<379>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<327>, ZPZV<2»; }; // NOLINT
04108 template<> struct ConwayPolynomial<379, 5> { using ZPZ = aerobus::zpz<379>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<377»; }; // NOLINT
04109 template<> struct ConwayPolynomial<379, 6> { using ZPZ = aerobus::zpz<379>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<374>, ZPZV<364>, ZPZV<246>, ZPZV<2»; }; // NOLINT
04110 template<> struct ConwayPolynomial<379, 7> { using ZPZ = aerobus::zpz<379>; using type
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<14>, ZPZV<377»; };
04111 template<> struct ConwayPolynomial<379, 8> { using ZPZ = aerobus::zpz<379>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<13>, ZPZV<210>, ZPZV<194>, ZPZV<173>, ZPZV<2»; }; //
      NOLINT
04112 template<> struct ConwayPolynomial<379, 9> { using ZPZ = aerobus::zpz<379>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<362>, ZPZV<369>, ZPZV<377»;
      }; // NOLINT
04113 template<> struct ConwayPolynomial<383, 1> { using ZPZ = aerobus::zpz<383>; using type =
      POLYV<ZPZV<1>, ZPZV<378»; }; // NOLINT
04114 template<> struct ConwayPolynomial<383, 2> { using ZPZ = aerobus::zpz<383>; using type =
POLYV<ZPZV<1>, ZPZV<382>, ZPZV<5»; }; // NOLINT
04115 template<> struct ConwayPolynomial<383, 3> { using ZPZ = aerobus::zpz<383>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<378»; }; // NOLINT
04116 template<> struct ConwayPolynomial<383, 4> { using ZPZ = aerobus::zpz<383>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<309>, ZPZV<5»; }; // NOLINT
04117 template<> struct ConwayPolynomial<383, 5> { using ZPZ = aerobus::zpz<383>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<378»; }; // NOLINT
04118 template<> struct ConwayPolynomial<383, 6> { using ZPZ = aerobus::zpz<383>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<69>, ZPZV<8>, ZPZV<158>, ZPZV<5»; }; // NOLINT
04119 template<> struct ConwayPolynomial<383, 7> { using ZPZ = aerobus::zpz<383>; using type
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<378»; };
04120 template<> struct ConwayPolynomial<383, 8> { using ZPZ = aerobus::zpz<383>; using type
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<281>, ZPZV<332>, ZPZV<296>, ZPZV<5»; }; //
      NOLINT
04121 template<> struct ConwayPolynomial<383, 9> { using ZPZ = aerobus::zpz<383>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2378»;
      }; // NOLINT
04122 template<> struct ConwayPolynomial<389, 1> { using ZPZ = aerobus::zpz<389>; using type =
      POLYV<ZPZV<1>, ZPZV<387»; }; // NOLINT
04123 template<> struct ConwayPolynomial<389, 2> { using ZPZ = aerobus::zpz<389>; using type =
      POLYV<ZPZV<1>, ZPZV<379>, ZPZV<2»; }; // NOLINT
04124 template<> struct ConwayPolynomial<389, 3> { using ZPZ = aerobus::zpz<389>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<387»; }; // NOLINT
04125 template<> struct ConwayPolynomial<389, 4> { using ZPZ = aerobus::zpz<389>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<266>, ZPZV<2»; }; // NOLINT

04126 template<> struct ConwayPolynomial<389, 5> { using ZPZ = aerobus::zpz<389>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<387»; }; // NOLINT
04127 template<> struct ConwayPolynomial<389, 6> { using ZPZ = aerobus::zpz<389>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<218>, ZPZV<339>, ZPZV<255>, ZPZV<2»; }; // NOLINT
04128 template<> struct ConwayPolynomial<389, 7> { using ZPZ = aerobus::zpz<389>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<24>, ZPZV<387»; }; // NOLINT 04129 template<> struct ConwayPolynomial<389, 8> { using ZPZ = aerobus::zpz<389>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<351>, ZPZV<19>, ZPZV<290>, ZPZV<2»; }; //
04130 template<> struct ConwayPolynomial<389, 9> { using ZPZ = aerobus::zpz<389>; using type =
             POLÝV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<258>, ŽPZV<308>, ZPZV<387»;
             }: // NOLINT
04131 template<> struct ConwayPolynomial<397, 1> { using ZPZ = aerobus::zpz<397>; using type =
             POLYV<ZPZV<1>, ZPZV<392»; }; // NOLINT
04132 template<> struct ConwayPolynomial<397, 2> { using ZPZ = aerobus::zpz<397>; using type =
             POLYV<ZPZV<1>, ZPZV<392>, ZPZV<5»; }; // NOLINT
04133 template<> struct ConwayPolynomial<397, 3> { using ZPZ = aerobus::zpz<397>; using type =
            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<392»; }; // NOLINT
04134 template<> struct ConwayPolynomial<397, 4> { using ZPZ = aerobus::zpz<397>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<12>, ZPZV<363>, ZPZV<5»; }; // NOLINT
04135 template<> struct ConwayPolynomial<397, 5> { using ZPZ = aerobus::zpz<397>; using type =
             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<392»; }; // NOLINT
04136 template<> struct ConwayPolynomial<397, 6> { using ZPZ = aerobus::zpz<397>; using type =
            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<382>, ZPZV<274>, ZPZV<287>, ZPZV<5»; }; // NOLINT
04137 template<> struct ConwayPolynomial<397, 7> { using ZPZ = aerobus::zpz<397>; using type =
            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<12>, ZPZV<392»; }; // NOLINT
04138 template<> struct ConwayPolynomial<397, 8> { using ZPZ = aerobus::zpz<397>; using type
             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<375>, ZPZV<255>, ZPZV<203>, ZPZV<5»; }; //
             NOLINT
04139 template<> struct ConwayPolynomial<397, 9> { using ZPZ = aerobus::zpz<397>; using type =
             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<66>, ZPZV<166>, ZPZV<252>, ZPZV<392»;
             }; // NOLINT
04140 template<> struct ConwayPolynomial<401, 1> { using ZPZ = aerobus::zpz<401>; using type =
             POLYV<ZPZV<1>, ZPZV<398»; }; // NOLINT
04141 template<> struct ConwayPolynomial<401, 2> { using ZPZ = aerobus::zpz<401>; using type =
POLYV<ZPZV<1>, ZPZV<396>, ZPZV<3»; }; // NOLINT
04142 template<> struct ConwayPolynomial<401, 3> { using ZPZ = aerobus::zpz<401>; using type =
            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<398»; }; // NOLINT
04143 template<> struct ConwayPolynomial<401, 4> { using ZPZ = aerobus::zpz<401>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<372>, ZPZV<3"; }; // NOLINT

04144 template<> struct ConwayPolynomial<401, 5> { using ZPZ = aerobus::zpz<401>; using type =
             \verb"POLYV<ZPZV<1>, \verb"ZPZV<0>, \verb"ZPZV<0>, \verb"ZPZV<4>, \verb"ZPZV<398"; \verb"}; $ // \verb"NOLINT" | NOLINT" 
04145 template<> struct ConwayPolynomial<401, 6> { using ZPZ = aerobus::zpz<401>; using type =
POLYV<ZPZV<1>, ZPZV<4>, ZPZV<4>, ZPZV×115>, ZPZV<81>, ZPZV<51>, ZPZV<3»; }; // NOLINT 04146 template<> struct ConwayPolynomial<401, 7> { using ZPZ = aerobus::zpz<401>; using type
             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5>, ZPZV<398»; };
04147 template<> struct ConwayPolynomial<401, 8> { using ZPZ = aerobus::zpz<401>; using type =
             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<380>, ZPZV<113>, ZPZV<164>, ZPZV<3»; }; //
            NOLINT
04148 template<> struct ConwayPolynomial<401, 9> { using ZPZ = aerobus::zpz<401>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<199>, ZPZV<199>, ZPZV<398»;
04149 template<> struct ConwayPolynomial<409, 1> { using ZPZ = aerobus::zpz<409>; using type =
            POLYV<ZPZV<1>, ZPZV<388»; }; // NOLINT
04150 template<> struct ConwayPolynomial<409, 2> { using ZPZ = aerobus::zpz<409>; using type =
POLYV<ZPZV<1>, ZPZV<404>, ZPZV<21s; }; // NOLINT

04151 template<> struct ConwayPolynomial<409, 3> { using ZPZ = aerobus::zpz<409>; using type =
             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<388»; }; // NOLINT
04152 template<> struct ConwayPolynomial<409, 4> { using ZPZ = aerobus::zpz<409>; using type =
            04153 template<> struct ConwayPolynomial<409, 5> { using ZPZ = aerobus::zpz<409>; using type =
            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<388»; }; // NOLINT
04154 template<> struct ConwayPolynomial<409, 6> { using ZPZ = aerobus::zpz<409>; using type =
             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<372>, ZPZV<53>, ZPZV<364>, ZPZV<21»; }; // NOLINT
04155 template<> struct ConwayPolynomial<409, 7> { using ZPZ = aerobus::zpz<409>; using type
             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<388»; }; // NOLINT
04156 template<> struct ConwayPolynomial<409, 8> { using ZPZ = aerobus::zpz<409>; using type =
             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<256>, ZPZV<69>, ZPZV<396>, ZPZV<21»; }; //
             NOLINT
04157 template<> struct ConwayPolynomial<409, 9> { using ZPZ = aerobus::zpz<409>; using type =
             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<318>, ZPZV<318>, ZPZV<211>, ZPZV<388»;
             }; // NOLINT
04158 template<> struct ConwayPolynomial<419, 1> { using ZPZ = aerobus::zpz<419>; using type =
            POLYV<ZPZV<1>, ZPZV<417»; }; // NOLINT
04159 template<> struct ConwayPolynomial<419, 2> { using ZPZ = aerobus::zpz<419>; using type =
            POLYV<ZPZV<1>, ZPZV<418>, ZPZV<2»; }; // NOLINT
04160 template<> struct ConwayPolynomial<419, 3> { using ZPZ = aerobus::zpz<419>; using type =
             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<11>, ZPZV<417»; }; // NOLINT
04161 template<> struct ConwayPolynomial<419, 4> { using ZPZ = aerobus::zpz<419>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<373>, ZPZV<2»; }; // NOLINT
04162 template<> struct ConwayPolynomial<419, 5> { using ZPZ = aerobus::zpz<419>; using type =
            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<417»; }; // NOLINT
04163 template<> struct ConwayPolynomial<419, 6> { using ZPZ = aerobus::zpz<419>; using type =
             POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<411>, ZPZV<33>, ZPZV<257>, ZPZV<2*; }; // NOLINT
04164 template<> struct ConwayPolynomial<419, 7> { using ZPZ = aerobus::zpz<419>, using type =
            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<417»; };
                                                                                                                                                                                           // NOLINT
Odlio ZPZVOJ, 
04166 template<> struct ConwayPolynomial<419, 9> { using ZPZ = aerobus::zpz<419>; using type =
            POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
             }; // NOLINT
04167 template<> struct ConwayPolynomial<421, 1> { using ZPZ = aerobus::zpz<421>; using type =
             POLYV<ZPZV<1>, ZPZV<419»; }; // NOLINT
```

```
04168 template<> struct ConwayPolynomial<421, 2> { using ZPZ = aerobus::zpz<421>; using type =
POLYY<ZPZV<1>, ZPZV<417>, ZPZV<2»; }; // NOLINT
04169 template<> struct ConwayPolynomial<421, 3> { using ZPZ = aerobus::zpz<421>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<419»; }; // NOLINT
04170 template<> struct ConwayPolynomial<421, 4> { using ZPZ = aerobus::zpz<421>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<10>, ZPZV<10>, ZPZV<25>, ZPZV<2»; ; // NOLINT
04171 template<> struct ConwayPolynomial<421, 5> { using ZPZ = aerobus::zpz<421>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<15>, ZPZV<419»; }; // NOLINT
04172 template<> struct ConwayPolynomial<421, 6> { using ZPZ = aerobus::zpz<421>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<111>, ZPZV<342>, ZPZV<41>, ZPZV<2»; }; // NOLINT 04173 template<> struct ConwayPolynomial<421, 7> { using ZPZ = aerobus::zpz<421>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<21>, ZPZV<419»; }; // NOLINT
04174 template<> struct ConwayPolynomial<421, 8> { using ZPZ = aerobus::zpz<421>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<389>, ZPZV<312>, ZPZV<77>, ZPZV<2»; }; //
       NOLINT
04175 template<> struct ConwayPolynomial<421, 9> { using ZPZ = aerobus::zpz<421>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<18>, ZPZV<394>, ZPZV<145>, ZPZV<419»;
       ); // NOLINT
04176 template<> struct ConwayPolynomial<431, 1> { using ZPZ = aerobus::zpz<431>; using type =
       POLYV<ZPZV<1>, ZPZV<424»; }; // NOLINT
04177 template<> struct ConwayPolynomial<431, 2> { using ZPZ = aerobus::zpz<431>; using type =
      POLYV<ZPZV<1>, ZPZV<430>, ZPZV<7»; }; // NOLINT
04178 template<> struct ConwayPolynomial<431, 3> { using ZPZ = aerobus::zpz<431>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<424w; }; // NOLINT
04179 template<> struct ConwayPolynomial<431, 4> { using ZPZ = aerobus::zpz<431>; using type =
POLYV<ZPZV<1>, ZPZV<2>, ZPZV<323>, ZPZV<323>, ZPZV<7»; }; // NOLINT
04180 template<> struct ConwayPolynomial<431, 5> { using ZPZ = aerobus::zpz<431>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<424»; }; // NOLINT
04181 template<> struct ConwayPolynomial<431, 6> { using ZPZ = aerobus::zpz<431>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<161>, ZPZV<202>, ZPZV<182>, ZPZV<7»; }; // NOLINT
04182 template<> struct ConwayPolynomial<431, 7> { using ZPZ = aerobus::zpz<431>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<424»; };
04183 template<> struct ConwayPolynomial<431, 8> { using ZPZ = aerobus::zpz<431>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<243>, ZPZV<286>, ZPZV<115>, ZPZV<7»; }; //
       NOLINT
04184 template<> struct ConwayPolynomial<431, 9> { using ZPZ = aerobus::zpz<431>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<71>, ZPZV<329>, ZPZV<424*;
04185 template<> struct ConwayPolynomial<433, 1> { using ZPZ = aerobus::zpz<433>; using type =
       POLYV<ZPZV<1>, ZPZV<428»; }; // NOLINT
04186 template<> struct ConwayPolynomial<433, 2> { using ZPZ = aerobus::zpz<433>; using type =
POLYV<ZPZV<1>, ZPZV<432>, ZPZV<5»; }; // NOLINT
04187 template<> struct ConwayPolynomial<433, 3> { using ZPZ = aerobus::zpz<433>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<428»; }; // NOLINT
04188 template<> struct ConwayPolynomial<433, 4> { using ZPZ = aerobus::zpz<433>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<402>, ZPZV<5»; }; // NOLINT
04189 template<> struct ConwayPolynomial<433, 5> { using ZPZ = aerobus::zpz<433>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<428»; }; // NOLINT
04190 template<> struct ConwayPolynomial<433, 6> { using ZPZ = aerobus::zpz<433>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<244>, ZPZV<353>, ZPZV<360>, ZPZV<5»; }; // NOLINT
04191 template<> struct ConwayPolynomial<433, 7> { using ZPZ = aerobus::zpz<433>;
                                                                                           using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<428»; };
04192 template<> struct ConwayPolynomial<433, 8> { using ZPZ = aerobus::zpz<433>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<347>, ZPZV<32>, ZPZV<39>, ZPZV<5»; }; //
       NOLINT
04193 template<> struct ConwayPolynomial<433, 9> { using ZPZ = aerobus::zpz<433>; using type :
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<27>, ZPZV<23>, ZPZV<245>, ZPZV<428»;
04194 template<> struct ConwayPolynomial<439, 1> { using ZPZ = aerobus::zpz<439>; using type =
      POLYV<ZPZV<1>, ZPZV<424»; }; // NOLINT
04195 template<> struct ConwayPolynomial<439, 2> { using ZPZ = aerobus::zpz<439>; using type =
POLYV<ZPZV<1>, ZPZV<436>, ZPZV<15»; }; // NOLINT

04196 template<> struct ConwayPolynomial<439, 3> { using ZPZ = aerobus::zpz<439>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<424»; }; // NOLINT
04197 template<> struct ConwayPolynomial<439, 4> { using ZPZ = aerobus::zpz<439>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<323>, ZPZV<15»; }; // NOLINT
04198 template<> struct ConwayPolynomial<439, 5> { using ZPZ = aerobus::zpz<439>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<4>; // NOLINT
04199 template<> struct ConwayPolynomial<439, 6> { using ZPZ = aerobus::zpz<439>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<324>, ZPZV<190>, ZPZV<15»; }; // NOLINT
04200 template<> struct ConwayPolynomial<439, 7> { using ZPZ = aerobus::zpz<439>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<424»; };
04201 template<> struct ConwayPolynomial<439, 8> { using ZPZ = aerobus::zpz<439>; using type :
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<359>, ZPZV<296>, ZPZV<266>, ZPZV<15»; }; //
       NOLINT
04202 template<> struct ConwayPolynomial<439, 9> { using ZPZ = aerobus::zpz<439>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<16>, ZPZV<342>, ZPZV<254>, ZPZV<424»;
       }; // NOLINT
04203 template<> struct ConwayPolynomial<443, 1> { using ZPZ = aerobus::zpz<443>; using type =
      POLYV<ZPZV<1>, ZPZV<441»; }; // NOLINT
04204 template<> struct ConwayPolynomial<443, 2> { using ZPZ = aerobus::zpz<443>; using type =
       POLYV<ZPZV<1>, ZPZV<437>, ZPZV<2»; }; // NOLINT
04205 template<> struct ConwayPolynomial<443, 3> { using ZPZ = aerobus::zpz<443>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<441»; }; // NOLINT
04206 template<> struct ConwayPolynomial<443, 4> { using ZPZ = aerobus::zpz<443>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<383>, ZPZV<2»; }; // NOLINT
04207 template<> struct ConwayPolynomial<443, 5> { using ZPZ = aerobus::zpz<443>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<441»; }; // NOLINT
04208 template<> struct ConwayPolynomial<443, 6> { using ZPZ = aerobus::zpz<443>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<298>, ZPZV<218>, ZPZV<41>, ZPZV<2»; }; // NOLINT
04209 template<> struct ConwayPolynomial<443, 7> { using ZPZ = aerobus::zpz<443>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<64+1»; }; // NOLINT
04210 template<> struct ConwayPolynomial<443, 8> { using ZPZ = aerobus::zpz<443>; using type :
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<437>, ZPZV<217>, ZPZV<290>, ZPZV<2»; }; //
04211 template<> struct ConwayPolynomial<443, 9> { using ZPZ = aerobus::zpz<443>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<125>, ZPZV<109>, ZPZV<441»;
       }; // NOLINT
04212 template<> struct ConwavPolynomial<449, 1> { using ZPZ = aerobus::zpz<449>; using type =
       POLYV<ZPZV<1>, ZPZV<446»; }; // NOLINT
04213 template<> struct ConwayPolynomial<449, 2> { using ZPZ = aerobus::zpz<449>; using type =
       POLYV<ZPZV<1>, ZPZV<4444>, ZPZV<3»; }; // NOLINT
04214 template<> struct ConwayPolynomial<449, 3> { using ZPZ = aerobus::zpz<449>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<446»; }; // NOLINT
04215 template<> struct ConwayPolynomial<449, 4> { using ZPZ = aerobus::zpz<449>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<249>, ZPZV<3»; }; // NOLINT
04216 template<> struct ConwayPolynomial<449, 5> { using ZPZ = aerobus::zpz<449>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<446»; }; // NOLINT
04217 template<> struct ConwayPolynomial<449, 6> { using ZPZ = aerobus::zpz<449>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<437>, ZPZV<293>, ZPZV<69>, ZPZV<3»; }; // NOLINT 04218 template<> struct ConwayPolynomial<449, 7> { using ZPZ = aerobus::zpz<449>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<28>, ZPZV<446»; };
04219 template<> struct ConwayPolynomial<449, 8> { using ZPZ = aerobus::zpz<449>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<361>, ZPZV<348>, ZPZV<124>, ZPZV<3*; }; //
       NOT.TNT
04220 template<> struct ConwayPolynomial<449, 9> { using ZPZ = aerobus::zpz<449>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6>, ZPZV<226>, ZPZV<226>, ZPZV<9>, ZPZV<446»; };
       // NOLINT
04221 template<> struct ConwayPolynomial<457, 1> { using ZPZ = aerobus::zpz<457>; using type =
       POLYV<ZPZV<1>, ZPZV<4444»; }; // NOLINT
04222 template<> struct ConwayPolynomial<457, 2> { using ZPZ = aerobus::zpz<457>; using type =
POLYV<ZPZV<1>, ZPZV<454>, ZPZV<13»; }; // NOLINT
04223 template<> struct ConwayPolynomial<457, 3> { using ZPZ = aerobus::zpz<457>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<444*; }; // NOLINT
04224 template<> struct ConwayPolynomial<457, 4> { using ZPZ = aerobus::zpz<457>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<8>, ZPZV<407>, ZPZV<13»; }; // NOLINT
04225 template<> struct ConwayPolynomial<457, 5> { using ZPZ = aerobus::zpz<457>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<44*, }; // NOLINT
04226 template<> struct ConwayPolynomial<457, 6> { using ZPZ = aerobus::zpz<457>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<205>, ZPZV<389>, ZPZV<266>, ZPZV<13»; }; // NOLINT 04227 template<> struct ConwayPolynomial<457, 7> { using ZPZ = aerobus::zpz<457>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<144, ZPZV<444»; }; // NOLINT
04228 template<> struct ConwayPolynomial<457, 8> { using ZPZ = aerobus::zpz<457>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<365>, ZPZV<296>, ZPZV<412>, ZPZV<13»; }; //
       NOLINT
04229 template<> struct ConwayPolynomial<457, 9> { using ZPZ = aerobus::zpz<457>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<354>, ZPZV<8444»;
       }; // NOLINT
04230 template<> struct ConwayPolynomial<461, 1> { using ZPZ = aerobus::zpz<461>; using type =
       POLYV<ZPZV<1>, ZPZV<459»; }; // NOLINT
04231 template<> struct ConwayPolynomial<461, 2> { using ZPZ = aerobus::zpz<461>; using type =
POLYY<ZPZV<1>, ZPZV<460>, ZPZV<2»; }; // NOLINT
04232 template<> struct ConwayPolynomial<461, 3> { using ZPZ = aerobus::zpz<461>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<459»; }; // NOLINT
04233 template<> struct ConwayPolynomial<461, 4> { using ZPZ = aerobus::zpz<461>; using type =
POLYV<ZPZV<1>, ZPZV<3>, ZPZV<393>, ZPZV<393>, ZPZV<2»; }; // NOLINT
04234 template<> struct ConwayPolynomial<461, 5> { using ZPZ = aerobus::zpz<461>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<14>, ZPZV<459*; }; // NOLINT
04235 template<> struct ConwayPolynomial<461, 6> { using ZPZ = aerobus::zpz<461>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<439>, ZPZV<432>, ZPZV<329>, ZPZV<2»; }; // NOLINT
04236 template<> struct ConwayPolynomial<461, 7> { using ZPZ = aerobus::zpz<461>; using type
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5>, ZPZV<459»; };
04237 template<> struct ConwayPolynomial<461, 8> { using ZPZ = aerobus::zpz<461>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<15>, ZPZV<388>, ZPZV<449>, ZPZV<321>, ZPZV<2»; }; //
       NOLINT
04238 template<> struct ConwayPolynomial<461, 9> { using ZPZ = aerobus::zpz<461>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<210>, ZPZV<216>, ZPZV<459»;
       }; // NOLINT
04239 template<> struct ConwayPolynomial<463, 1> { using ZPZ = aerobus::zpz<463>; using type =
      POLYV<ZPZV<1>, ZPZV<460»; }; // NOLINT
04240 template<> struct ConwayPolynomial<463, 2> { using ZPZ = aerobus::zpz<463>; using type =
POLYV<ZPZV<1>, ZPZV<461>, ZPZV<3»; }; // NOLINT
04241 template<> struct ConwayPolynomial<463, 3> { using ZPZ = aerobus::zpz<463>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<10>, ZPZV<460»; }; // NOLINT
04242 template<> struct ConwayPolynomial<463, 4> { using ZPZ = aerobus::zpz<463>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<17>, ZPZV<262>, ZPZV<3»; }; // NOLINT
04243 template<> struct ConwayPolynomial<463, 5> { using ZPZ = aerobus::zpz<463>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<460»; }; // NOLINT
04244 template<> struct ConwayPolynomial<463, 6> { using ZPZ = aerobus::zpz<463>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<462>, ZPZV<51>, ZPZV<110>, ZPZV<3»; }; // NOLINT
04245 template<> struct ConwayPolynomial<463, 7> { using ZPZ = aerobus::zpz<463>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<13>, ZPZV<460»; }; // NOLINT
04246 template<> struct ConwayPolynomial<463, 8> { using ZPZ = aerobus::zpz<463>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<234>, ZPZV<414>, ZPZV<396>, ZPZV<3»; }; //
```

```
04247 template<> struct ConwayPolynomial<463, 9> { using ZPZ = aerobus::zpz<463>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<433>, ZPZV<433>, ZPZV<227>, ZPZV<460»;
         }; // NOLINT
04248 template<> struct ConwayPolynomial<467, 1> { using ZPZ = aerobus::zpz<467>; using type =
         POLYV<ZPZV<1>, ZPZV<465»; }; // NOLINT
04249 template<> struct ConwayPolynomial<467, 2> { using ZPZ = aerobus::zpz<467>; using type =
         POLYV<ZPZV<1>, ZPZV<463>, ZPZV<2»; };
                                                                 // NOLINT
04250 template<> struct ConwayPolynomial<467, 3> { using ZPZ = aerobus::zpz<467>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<465»; }; // NOLINT
04251 template<> struct ConwayPolynomial<467, 4> { using ZPZ = aerobus::zpz<467>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<14>, ZPZV<353>, ZPZV<2»; }; // NOLINT
04252 template<> struct ConwayPolynomial<467, 5> { using ZPZ = aerobus::zpz<467>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<465»; }; // NOLINT
04253 template<> struct ConwayPolynomial<467, 6> { using ZPZ = aerobus::zpz<467>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<123>, ZPZV<62>, ZPZV<237>, ZPZV<2»; }; // NOLINT 04254 template<> struct ConwayPolynomial<467, 7> { using ZPZ = aerobus::zpz<467>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5, ZPZV<65, ZPZV<65
                                                                                                                                   // NOLINT
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<318>, ZPZV<413>, ZPZV<289>, ZPZV<2*; }; //
         NOLINT
04256 template<> struct ConwayPolynomial<467, 9> { using ZPZ = aerobus::zpz<467>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<397>, ZPZV<447>, ZPZV<465»;
         }: // NOLINT
04257 template<> struct ConwayPolynomial<479, 1> { using ZPZ = aerobus::zpz<479>; using type =
        POLYV<ZPZV<1>, ZPZV<466»; }; // NOLINT
04258 template<> struct ConwayPolynomial<479, 2> { using ZPZ = aerobus::zpz<479>; using type =
POLYV<ZPZV<1>, ZPZV<474, ZPZV<13»; }; // NOLINT
04259 template<> struct ConwayPolynomial<479, 3> { using ZPZ = aerobus::zpz<479>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<466»; }; // NOLINT
04260 template<> struct ConwayPolynomial<479, 4> { using ZPZ = aerobus::zpz<479>; using type =
POLYV<ZPZV<1>, ZPZV<6>, ZPZV<6>, ZPZV<386>, ZPZV<13»; }; // NOLINT
04261 template<> struct ConwayPolynomial<479, 5> { using ZPZ = aerobus::zpz<479>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<466»; }; // NOLINT
04262 template<> struct ConwayPolynomial<479, 6> { using ZPZ = aerobus::zpz<479>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<243>, ZPZV<287>, ZPZV<334>, ZPZV<13»; }; // NOLINT
04263 template<> struct ConwayPolynomial<479, 7> { using ZPZ = aerobus::zpz<479>; using type
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<46%; };
04264 template<> struct ConwayPolynomial<479, 8> { using ZPZ = aerobus::zpz<479>; using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<247>, ZPZV<440>, ZPZV<17>, ZPZV<13»; }; //
         NOLINT
04265 template<> struct ConwayPolynomial<479, 9> { using ZPZ = aerobus::zpz<479>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<3>, ZPZV<3>, ZPZV<185>, ZPZV<466»; };
         // NOLINT
04266 template<> struct ConwayPolynomial<487, 1> { using ZPZ = aerobus::zpz<487>; using type =
         POLYV<ZPZV<1>, ZPZV<484»; }; // NOLINT
04267 template<> struct ConwayPolynomial<487, 2> { using ZPZ = aerobus::zpz<487>; using type =
POLYV<ZPZV<1>, ZPZV<485, ZPZV<3»; }; // NOLINT
04268 template<> struct ConwayPolynomial<487, 3> { using ZPZ = aerobus::zpz<487>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<484»; }; // NOLINT
04269 template<> struct ConwayPolynomial<487, 4> { using ZPZ = aerobus::zpz<487>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<483>, ZPZV<3»; }; // NOLINT
04270 template<> struct ConwayPolynomial<487, 5> { using ZPZ = aerobus::zpz<487>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<484»; }; // NOLINT
04271 template<> struct ConwayPolynomial<487, 6> { using ZPZ = aerobus::zpz<487>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<450>, ZPZV<427>, ZPZV<185>, ZPZV<3»; }; // NOLINT
04272 template<> struct ConwayPolynomial<487, 7> { using ZPZ = aerobus::zpz<487>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<484»; };
04273 template<> struct ConwayPolynomial<487, 8> { using ZPZ = aerobus::zpz<487>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<283>, ZPZV<249>, ZPZV<137>, ZPZV<3»; }; //
         NOLINT
04274 template<> struct ConwayPolynomial<487, 9> { using ZPZ = aerobus::zpz<487>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<271>, ZPZV<4447>, ZPZV<484%;
         }; // NOLINT
04275 template<> struct ConwayPolynomial<491, 1> { using ZPZ = aerobus::zpz<491>; using type =
        POLYV<ZPZV<1>, ZPZV<489»; }; // NOLINT
04276 template<> struct ConwayPolynomial<491, 2> { using ZPZ = aerobus::zpz<491>; using type =
POLYV<ZPZV<1>, ZPZV<487>, ZPZV<2»; }; // NOLINT
04277 template<> struct ConwayPolynomial<491, 3> { using ZPZ = aerobus::zpz<491>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<489»; }; // NOLINT
04278 template<> struct ConwayPolynomial<491, 4> { using ZPZ = aerobus::zpz<491>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<360>, ZPZV<2»; }; // NOLINT
04279 template<> struct ConwayPolynomial<491, 5> { using ZPZ = aerobus::zpz<491>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<489»; }; // NOLINT
04280 template<> struct ConwayPolynomial<491, 6> { using ZPZ = aerobus::zpz<491>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<369>, ZPZV<402>, ZPZV<125>, ZPZV<2»; }; // NOLINT
04281 template<> struct ConwayPolynomial<491, 7> { using ZPZ = aerobus::zpz<491>;
                                                                                                                        using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<489»; };
04282 template<> struct ConwayPolynomial<491, 8> { using ZPZ = aerobus::zpz<491>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<378>, ZPZV<372>, ZPZV<216>, ZPZV<2»; }; //
         NOLINT
04283 template<> struct ConwayPolynomial<491, 9> { using ZPZ = aerobus::zpz<491>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<149>, ZPZV<453>, ZPZV<489»;
         }; // NOLINT
04284 template<> struct ConwayPolynomial<499, 1> { using ZPZ = aerobus::zpz<499>; using type =
        POLYV<ZPZV<1>, ZPZV<492»; }; // NOLINT
04285 template<> struct ConwayPolynomial<499, 2> { using ZPZ = aerobus::zpz<499>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<493>, ZPZV<7»; };
                                                                    // NOLINT
04286 template<> struct ConwayPolynomial<499, 3> { using ZPZ = aerobus::zpz<499>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<492»; }; // NOLINT
04287 template<> struct ConwayPolynomial<499, 4> { using ZPZ = aerobus::zpz<499>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<495>, ZPZV<7»; }; // NOLINT
04288 template<> struct ConwayPolynomial<499, 5> { using ZPZ = aerobus::zpz<499>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<17>, ZPZV<492»; }; // NOLINT
04289 template<> struct ConwayPolynomial<499, 6> { using ZPZ = aerobus::zpz<499>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<407>, ZPZV<191>, ZPZV<7*; }; // NOLINT 04290 template<> struct ConwayPolynomial<499, 7> { using ZPZ = aerobus::zpz<499>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<492»; };
                                                                                                                                         // NOLINT
04291 template<> struct ConwayPolynomial<499, 8> { using ZPZ = aerobus::zpz<499>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<288>, ZPZV<309>, ZPZV<200>, ZPZV<7»; }; //
04292 template<> struct ConwayPolynomial<499, 9> { using ZPZ = aerobus::zpz<499>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<491>, ZPZV<222>, ZPZV<492»;
         1: // NOT.TNT
04293 template<> struct ConwayPolynomial<503, 1> { using ZPZ = aerobus::zpz<503>; using type =
         POLYV<ZPZV<1>, ZPZV<498»; }; // NOLINT
04294 template<> struct ConwayPolynomial<503, 2> { using ZPZ = aerobus::zpz<503>; using type =
         POLYV<ZPZV<1>, ZPZV<498>, ZPZV<5»; }; // NOLINT
04295 template<> struct ConwayPolynomial<503, 3> { using ZPZ = aerobus::zpz<503>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<498»; }; // NOLINT
04296 template<> struct ConwayPolynomial<503, 4> { using ZPZ = aerobus::zpz<503>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<325>, ZPZV<5»; }; // NOLINT
04297 template<> struct ConwayPolynomial<503, 5> { using ZPZ = aerobus::zpz<503>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<15>, ZPZV<498»; }; // NOLINT
04298 template<> struct ConwayPolynomial<503, 6> { using ZPZ = aerobus::zpz<503>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<380>, ZPZV<292>, ZPZV<255>, ZPZV<5»; }; // NOLINT
04299 template<> struct ConwayPolynomial<503, 7> { using ZPZ = aerobus::zpz<503>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<498»; }; // NOLINT
04300 template<> struct ConwayPolynomial<503, 8> { using ZPZ = aerobus::zpz<503>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<441>, ZPZV<203>, ZPZV<316>, ZPZV<5»; }; //
         NOLINT
04301 template<> struct ConwayPolynomial<503, 9> { using ZPZ = aerobus::zpz<503>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<35>, ZPZV<158>, ZPZV<37>, ZPZV<498»;
         }; // NOLINT
04302 template<> struct ConwayPolynomial<509, 1> { using ZPZ = aerobus::zpz<509>; using type =
         POLYV<ZPZV<1>, ZPZV<507»; }; // NOLINT
04303 template<> struct ConwayPolynomial<509, 2> { using ZPZ = aerobus::zpz<509>; using type =
POLYV<ZPZV<1>, ZPZV<508, ZPZV<2»; }; // NOLINT
04304 template<> struct ConwayPolynomial<509, 3> { using ZPZ = aerobus::zpz<509>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<507»; }; // NOLINT
04305 template<> struct ConwayPolynomial<509, 4> { using ZPZ = aerobus::zpz<509>; using type =
POLYV<ZPZV<1>, ZPZV<4>, ZPZV<408>, ZPZV<20*; }; // NOLINT
04306 template<> struct ConwayPolynomial<509, 5> { using ZPZ = aerobus::zpz<509>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<507»; }; // NOLINT
04307 template<> struct ConwayPolynomial<509, 6> { using ZPZ = aerobus::zpz<509>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<350>, ZPZV<232>, ZPZV<41>, ZPZV<2»; }; // NOLINT
04308 template<> struct ConwayPolynomial<509, 7> { using ZPZ = aerobus::zpz<509; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<50, ZP
04309 template<> struct ConwayPolynomial<509, 8> { using ZPZ = aerobus::zpz<509>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<420>, ZPZV<473>, ZPZV<382>, ZPZV<2»; }; //
         NOLINT
04310 template<> struct ConwayPolynomial<509, 9> { using ZPZ = aerobus::zpz<509>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<314>, ZPZV<28>, ZPZV<507»;
04311 template<> struct ConwayPolynomial<521, 1> { using ZPZ = aerobus::zpz<521>; using type =
         POLYV<ZPZV<1>, ZPZV<518»; }; // NOLINT
04312 template<> struct ConwayPolynomial<521, 2> { using ZPZ = aerobus::zpz<521>; using type =
POLYV<ZPZV<1>, ZPZV<515>, ZPZV<3»; }; // NOLINT

04313 template<> struct ConwayPolynomial<521, 3> { using ZPZ = aerobus::zpz<521>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<518»; }; // NOLINT
04314 template<> struct ConwayPolynomial<521, 4> { using ZPZ = aerobus::zpz<521>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<509>, ZPZV<3»; }; // NOLINT
04315 template<> struct ConwayPolynomial<521, 5> { using ZPZ = aerobus::zpz<521>; using type =
         04316 template<> struct ConwayPolynomial<521, 6> { using ZPZ = aerobus::zpz<521>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<315>, ZPZV<153>, ZPZV<280>, ZPZV<3»; }; // NOLINT
04317 template<> struct ConwayPolynomial<521, 7> { using ZPZ = aerobus::zpz<521>;
                                                                                                                             using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<518»; };
04318 template<> struct ConwayPolynomial<521, 8> { using ZPZ = aerobus::zpz<521>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<462>, ZPZV<407>, ZPZV<312>, ZPZV<3»; }; //
         NOLINT
04319 template<> struct ConwayPolynomial<521, 9> { using ZPZ = aerobus::zpz<521>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<181>, ZPZV<483>, ZPZV<518»;
         }; // NOLINT
04320 template<> struct ConwayPolynomial<523, 1> { using ZPZ = aerobus::zpz<523>; using type =
         POLYV<ZPZV<1>, ZPZV<521»; }; // NOLINT
04321 template<> struct ConwayPolynomial<523, 2> { using ZPZ = aerobus::zpz<523>; using type =
         POLYV<ZPZV<1>, ZPZV<522>, ZPZV<2»; }; // NOLINT
04322 template<> struct ConwayPolynomial<523, 3> { using ZPZ = aerobus::zpz<523>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<521»; }; // NOLINT
04323 template<> struct ConwayPolynomial<523, 4> { using ZPZ = aerobus::zpz<523>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<382>, ZPZV<2»; }; // NOLINT
04324 template<> struct ConwayPolynomial<523, 5> { using ZPZ = aerobus::zpz<523>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<521»; }; // NOLINT
```

```
04325 template<> struct ConwayPolynomial<523, 6> { using ZPZ = aerobus::zpz<523>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<475>, ZPZV<475>, ZPZV<475>, ZPZV<371>, ZPZV<2»; ); // NOLINT 04326 template<> struct ConwayPolynomial<523, 7> { using ZPZ = aerobus::zpz<523>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<13>, ZPZV<521»; }; // NOLINT
04327 template<> struct ConwayPolynomial<523, 8> { using ZPZ = aerobus::zpz<523>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<518>, ZPZV<184>, ZPZV<380>, ZPZV<2»; }; //
04328 template<> struct ConwayPolynomial<523, 9> { using ZPZ = aerobus::zpz<523>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<19>, ZPZV<342>, ZPZV<145>, ZPZV<521»;
       }; // NOLINT
04329 template<> struct ConwayPolynomial<541, 1> { using ZPZ = aerobus::zpz<541>; using type =
       POLYV<ZPZV<1>, ZPZV<539»; }; // NOLINT
04330 template<> struct ConwayPolynomial<541, 2> { using ZPZ = aerobus::zpz<541>; using type =
       POLYV<ZPZV<1>, ZPZV<537>, ZPZV<2»; }; // NOLINT
04331 template<> struct ConwayPolynomial<541, 3> { using ZPZ = aerobus::zpz<541>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<539»; }; // NOLINT
04332 template<> struct ConwayPolynomial<541, 4> { using ZPZ = aerobus::zpz<541>; using type =
POLYV<ZPZV<1>, ZPZV<6>, ZPZV<6>, ZPZV<333>, ZPZV<2»; }; // NOLINT
04333 template<> struct ConwayPolynomial<541, 5> { using ZPZ = aerobus::zpz<541>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<539»; }; // NOLINT
04334 template<> struct ConwayPolynomial<541, 6> { using ZPZ = aerobus::zpz<541>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<239>, ZPZV<320>, ZPZV<69>, ZPZV<2»; }; // NOLINT
04335 template<> struct ConwayPolynomial<541, 7> { using ZPZ = aerobus::zpz<541>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<539»; };
04336 template<> struct ConwayPolynomial<541, 8> { using ZPZ = aerobus::zpz<541>; using type :
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<376>, ZPZV<108>, ZPZV<113>, ZPZV<2»; }; //
04337 template<> struct ConwayPolynomial<541, 9> { using ZPZ = aerobus::zpz<541>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<16>, ZPZV<340>, ZPZV<340>, ZPZV<318>, ZPZV<539»;
       }; // NOLINT
04338 template<> struct ConwayPolynomial<547, 1> { using ZPZ = aerobus::zpz<547>; using type =
       POLYV<ZPZV<1>, ZPZV<545»; }; // NOLINT
04339 template<> struct ConwayPolynomial<547, 2> { using ZPZ = aerobus::zpz<547>; using type =
POLYV<ZPZV<1>, ZPZV<543, ZPZV<2»; }; // NOLINT
04340 template<> struct ConwayPolynomial<547, 3> { using ZPZ = aerobus::zpz<547>; using type =
POLYV<ZPZV<1>, ZPZV<4>, ZPZV<4>, ZPZV<545»; }; // NOLINT

04341 template<> struct ConwayPolynomial<br/>
POLYV<ZPZV<1>, ZPZV<64>, ZPZV<34>, ZPZV<545»; }; // NOLINT

04342 template<> struct ConwayPolynomial<br/>
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<8>, ZPZV<334>, ZPZV<2»; }; // NOLINT

04342 template<> struct ConwayPolynomial<br/>
S47, 5> { using ZPZ = aerobus::zpz<547>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<545»; }; // NOLINT
04343 template<> struct ConwayPolynomial<547, 6> { using ZPZ = aerobus::zpz<547>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<334>, ZPZV<153>, ZPZV<423>, ZPZV<2»; }; // NOLINT 04344 template<> struct ConwayPolynomial<547, 7> { using ZPZ = aerobus::zpz<547>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<11>, ZPZV<545»; };
04345 template<> struct ConwayPolynomial<547, 8> { using ZPZ = aerobus::zpz<547>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<368>, ZPZV<20>, ZPZV<180>, ZPZV<2»; }; //
       NOLINT
04346 template<> struct ConwayPolynomial<547, 9> { using ZPZ = aerobus::zpz<547>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<238>, ZPZV<263>, ZPZV<545»;
       }; // NOLINT
04347 template<> struct ConwayPolynomial<557, 1> { using ZPZ = aerobus::zpz<557>; using type =
       POLYV<ZPZV<1>, ZPZV<555»; }; // NOLINT
04348 template<> struct ConwayPolynomial<557, 2> { using ZPZ = aerobus::zpz<557>; using type =
POLYV<ZPZV<1>, ZPZV<5533, ZPZV<2»; }; // NOLINT
04349 template<> struct ConwayPolynomial<557, 3> { using ZPZ = aerobus::zpz<557>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<555»; }; // NOLINT
04350 template<> struct ConwayPolynomial<557, 4> { using ZPZ = aerobus::zpz<557>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<430>, ZPZV<430>, ZPZV<2»; }; // NOLINT
04351 template<> struct ConwayPolynomial<557, 5> { using ZPZ = aerobus::zpz<557>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<555»; }; // NOLINT
04352 template<> struct ConwayPolynomial<557, 6> { using ZPZ = aerobus::zpz<557>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<202>, ZPZV<192>, ZPZV<253>, ZPZV<2»; }; // NOLINT
04353 template<> struct ConwayPolynomial<557, 7> { using ZPZ = aerobus::zpz<557>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<555»; };
04354 template<> struct ConwayPolynomial<557, 8> { using ZPZ = aerobus::zpz<557>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<480>, ZPZV<384>, ZPZV<113>, ZPZV<2»; }; //
       NOLINT
04355 template<> struct ConwayPolynomial<557, 9> { using ZPZ = aerobus::zpz<557>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<555»;
       }; // NOLINT
04356 template<> struct ConwayPolynomial<563, 1> { using ZPZ = aerobus::zpz<563>; using type =
       POLYV<ZPZV<1>, ZPZV<561»; }; // NOLINT
04357 template<> struct ConwayPolynomial<563, 2> { using ZPZ = aerobus::zpz<563>; using type =
POLYV<ZPZV<1>, ZPZV<559>, ZPZV<2»; }; // NOLINT
04358 template<> struct ConwayPolynomial<563, 3> { using ZPZ = aerobus::zpz<563>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<561»; }; // NOLINT
04359 template<> struct ConwayPolynomial<563, 4> { using ZPZ = aerobus::zpz<563>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<20>, ZPZV<399>, ZPZV<2»; }; // NOLINT
04360 template<> struct ConwayPolynomial<563, 5> { using ZPZ = aerobus::zpz<563>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<561»; }; // NOLINT
04361 template<> struct ConwayPolynomial<563, 6> { using ZPZ = aerobus::zpz<563>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<12>, ZPZV<303>, ZPZV<246>, ZPZV<2»; }; // NOLINT
04362 template<> struct ConwayPolynomial<563, 7> { using ZPZ = aerobus::zpz<563>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5>, ZPZV<561»; };
04363 template<> struct ConwayPolynomial<563, 8> { using ZPZ = aerobus::zpz<563>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<503>, ZPZV<176>, ZPZV<509>, ZPZV<2»; }; //
       NOLTNT
```

```
04364 template<> struct ConwayPolynomial<563, 9> { using ZPZ = aerobus::zpz<563>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<15>, ZPZV<19>, ZPZV<561»; };
       // NOLINT
04365 template<> struct ConwayPolynomial<569, 1> { using ZPZ = aerobus::zpz<569>; using type =
       POLYV<ZPZV<1>, ZPZV<566»; }; // NOLINT
04366 template<> struct ConwayPolynomial<569, 2> { using ZPZ = aerobus::zpz<569>; using type =
       POLYV<ZPZV<1>, ZPZV<568>, ZPZV<3»; }; // NOLINT
04367 template<> struct ConwayPolynomial<569, 3> { using ZPZ = aerobus::zpz<569>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<566»; }; // NOLINT
04368 template<> struct ConwayPolynomial<569, 4> { using ZPZ = aerobus::zpz<569>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<381>, ZPZV<3»; }; // NOLINT
04369 template<> struct ConwayPolynomial<569, 5> { using ZPZ = aerobus::zpz<569>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<566»; }; // NOLINT
04370 template<> struct ConwayPolynomial<569, 6> { using ZPZ = aerobus::zpz<569>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<50>, ZPZV<263>, ZPZV<480>, ZPZV<480>, ZPZV<3»; }; // NOLINT
04371 template<> struct ConwayPolynomial<569, 7> { using ZPZ = aerobus::zpz<569>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<566»; };
04372 template<> struct ConwayPolynomial<569, 8> { using ZPZ = aerobus::zpz<569>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<527>, ZPZV<173>, ZPZV<241>, ZPZV<241>, ZPZV<3»; }; //
04373 template<> struct ConwayPolynomial<569, 9> { using ZPZ = aerobus::zpz<569>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<478>, ZPZV<566>, ZPZV<566»;
       }; // NOLINT
04374 template<> struct ConwayPolynomial<571, 1> { using ZPZ = aerobus::zpz<571>; using type =
       POLYV<ZPZV<1>, ZPZV<568»; }; // NOLINT
04375 template<> struct ConwayPolynomial<571, 2> { using ZPZ = aerobus::zpz<571>; using type =
       POLYV<ZPZV<1>, ZPZV<570>, ZPZV<3»; }; // NOLINT
04376 template<> struct ConwayPolynomial<571, 3> { using ZPZ = aerobus::zpz<571>; using type =
POLYY<ZPZV<1>, ZPZV<8>, ZPZV<8>, ZPZV<568»; }; // NOLINT

04377 template<> struct ConwayPolynomial<571, 4> { using ZPZ = aerobus::zpz<571>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<402>, ZPZV<3»; }; // NOLINT

04378 template<> struct ConwayPolynomial<571, 5> { using ZPZ = aerobus::zpz<571>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<568»; }; // NOLINT
04379 template<> struct ConwayPolynomial<571, 6> { using ZPZ = aerobus::zpz<571>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<221>, ZPZV<295>, ZPZV<33>, ZPZV<3»; }; // NOLINT 04380 template<> struct ConwayPolynomial<571, 7> { using ZPZ = aerobus::zpz<571>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<568»; };
                                                                                                          // NOLINT
04381 template<> struct ConwayPolynomial<571, 8> { using ZPZ = aerobus::zpz<571>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<363>, ZPZV<119>, ZPZV<371>, ZPZV<37), }; //
04382 template<> struct ConwayPolynomial<571, 9> { using ZPZ = aerobus::zpz<571>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<34>, ZPZV<545>, ZPZV<179>, ZPZV<568»;
       }: // NOLINT
04383 template<> struct ConwayPolynomial<577, 1> { using ZPZ = aerobus::zpz<577>; using type =
       POLYV<ZPZV<1>, ZPZV<572»; }; // NOLINT
04384 template<> struct ConwayPolynomial<577, 2> { using ZPZ = aerobus::zpz<577>; using type =
POLYV<ZPZV<1>, ZPZV<572, ZPZV<5»; }; // NOLINT
04385 template<> struct ConwayPolynomial<577, 3> { using ZPZ = aerobus::zpz<577>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<572»; }; // NOLINT
04386 template<> struct ConwayPolynomial<577, 4> { using ZPZ = aerobus::zpz<577>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<12>, ZPZV<494>, ZPZV<5»; }; // NOLINT
04387 template<> struct ConwayPolynomial<577, 5> { using ZPZ = aerobus::zpz<577>; using type =
       04388 template<> struct ConwayPolynomial<577, 6> { using ZPZ = aerobus::zpz<577>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<450>, ZPZV<25>, ZPZV<283>, ZPZV<5»; }; // NOLINT 04389 template<> struct ConwayPolynomial<577, 7> { using ZPZ = aerobus::zpz<577>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<572»; };
04390 template<> struct ConwayPolynomial<577, 8> { using ZPZ = aerobus::zpz<577>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<12>, ZPZV<450>, ZPZV<545>, ZPZV<321>, ZPZV<3*; }; //
       NOLINT
04391 template<> struct ConwayPolynomial<577, 9> { using ZPZ = aerobus::zpz<577>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<17>, ZPZV<576>, ZPZV<449>, ZPZV<572»;
       }; // NOLINT
04392 template<> struct ConwayPolynomial<587, 1> { using ZPZ = aerobus::zpz<587>; using type =
       POLYV<ZPZV<1>, ZPZV<585»; }; // NOLINT
04393 template<> struct ConwayPolynomial<587, 2> { using ZPZ = aerobus::zpz<587>; using type =
POLYV<ZPZV<1>, ZPZV<583>, ZPZV<2»; }; // NOLINT
04394 template<> struct ConwayPolynomial<587, 3> { using ZPZ = aerobus::zpz<587>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<585»; }; // NOLINT
04395 template<> struct ConwayPolynomial<587, 4> { using ZPZ = aerobus::zpz<587>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<16>, ZPZV<444>, ZPZV<2»; }; // NOLINT
04396 template<> struct ConwayPolynomial<587, 5> { using ZPZ = aerobus::zpz<587>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<585»; }; // NOLINT
04397 template<> struct ConwayPolynomial<587, 6> { using ZPZ = aerobus::zpz<587>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<204>, ZPZV<121>, ZPZV<26>, ZPZV<2%; }; // NOLINT 04398 template<> struct ConwayPolynomial<587, 7> { using ZPZ = aerobus::zpz<587>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<585»; };
04399 template<> struct ConwayPolynomial<587, 8> { using ZPZ = aerobus::zpz<587>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<492>, ZPZV<44>, ZPZV<91>, ZPZV<2»; }; //
       NOLINT
04400 template<> struct ConwayPolynomial<587, 9> { using ZPZ = aerobus::zpz<587>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3333>, ZPZV<55>, ZPZV<585»;
04401 template<> struct ConwayPolynomial<593, 1> { using ZPZ = aerobus::zpz<593>; using type =
       POLYV<ZPZV<1>, ZPZV<590»; }; // NOLINT
04402 template<> struct ConwayPolynomial<593, 2> { using ZPZ = aerobus::zpz<593>; using type =
       POLYV<ZPZV<1>, ZPZV<592>, ZPZV<3»; }; // NOLINT
```

```
04403 template<> struct ConwayPolynomial<593, 3> { using ZPZ = aerobus::zpz<593>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<590»; }; // NOLINT
04404 template<> struct ConwayPolynomial<593, 4> { using ZPZ = aerobus::zpz<593>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<419>, ZPZV<3»; }; // NOLINT
04405 template<> struct ConwayPolynomial<593, 5> { using ZPZ = aerobus::zpz<593>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<590»; }; // NOLINT
04406 template<> struct ConwayPolynomial<593, 6> { using ZPZ = aerobus::zpz<593>; using type =
         POLYV<2PZV<1>, 2PZV<0>, 2PZV<2>, 2PZV<345>, 2PZV<65>, 2PZV<478>, 2PZV<3»; }; // NOLINT
04407 template<> struct ConwayPolynomial<593, 7> { using ZPZ = aerobus::zpz<593>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<590»; };
04408 template<> struct ConwayPolynomial<593, 8> { using ZPZ = aerobus::zpz<593>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<350>, ZPZV<291>, ZPZV<495>, ZPZV<495; }; //
         NOLINT
04409 template<> struct ConwayPolynomial<593, 9> { using ZPZ = aerobus::zpz<593>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<223>, ZPZV<223>, ZPZV<590»;
          }; // NOLINT
04410 template<> struct ConwayPolynomial<599, 1> { using ZPZ = aerobus::zpz<599>; using type =
         POLYV<ZPZV<1>, ZPZV<592»; }; // NOLINT
04411 template<> struct ConwayPolynomial<599, 2> { using ZPZ = aerobus::zpz<599>; using type =
         POLYV<ZPZV<1>, ZPZV<598>, ZPZV<7»; }; // NOLINT
04412 template<> struct ConwayPolynomial<599, 3> { using ZPZ = aerobus::zpz<599>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<592»; }; // NOLINT
04413 template<> struct ConwayPolynomial<599, 4> { using ZPZ = aerobus::zpz<599>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<419>, ZPZV<7»; }; // NOLINT
04414 template<> struct ConwayPolynomial<599, 5> { using ZPZ = aerobus::zpz<599>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<592»; }; // NOLINT
04415 template<> struct ConwayPolynomial<599, 6> { using ZPZ = aerobus::zpz<599>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<515>, ZPZV<274>, ZPZV<586>, ZPZV<7»; }; // NOLINT
04416 template<> struct ConwayPolynomial<599, 7> { using ZPZ = aerobus::zpz<599>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<592»; };
04417 template<> struct ConwayPolynomial<599, 8> { using ZPZ = aerobus::zpz<599>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<440>, ZPZV<37>, ZPZV<124>, ZPZV<124
04418 template<> struct ConwayPolynomial<599, 9> { using ZPZ = aerobus::zpz<599>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<3>, ZPZV<3>, ZPZV<9>, ZPZV<592»;
          }; // NOLINT
04419 template<> struct ConwayPolynomial<601, 1> { using ZPZ = aerobus::zpz<601>; using type =
         POLYV<ZPZV<1>, ZPZV<594»; }; // NOLINT
04420 template<> struct ConwayPolynomial<601, 2> { using ZPZ = aerobus::zpz<601>; using type =
         POLYV<ZPZV<1>, ZPZV<598>, ZPZV<7»; }; // NOLINT
04421 template<> struct ConwayPolynomial<601, 3> { using ZPZ = aerobus::zpz<601>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<594»; }; // NOLINT
04422 template<> struct ConwayPolynomial<601, 4> { using ZPZ = aerobus::zpz<601>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<14>, ZPZV<347>, ZPZV<3*; }; // NOLINT
04423 template<> struct ConwayPolynomial<601, 5> { using ZPZ = aerobus::zpz<601>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<13>, ZPZV<594»; }; // NOLINT
04424 template<> struct ConwayPolynomial<601, 6> { using ZPZ = aerobus::zpz<601>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<128>, ZPZV<440>, ZPZV<49>, ZPZV<7»; }; // NOLINT
04425 template<> struct ConwayPolynomial<601, 7> { using ZPZ = aerobus::zpz<601>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<594»; }; // NOLINT
04426 template<> struct ConwayPolynomial<601, 8> { using ZPZ = aerobus::zpz<601>; using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<550>, ZPZV<241>, ZPZV<490>, ZPZV<7»; }; //
         NOLINT
04427 template<> struct ConwayPolynomial<601, 9> { using ZPZ = aerobus::zpz<601>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<487>, ZPZV<590>, ZPZV<594»;
          }; // NOLINT
04428 template<> struct ConwayPolynomial<607, 1> { using ZPZ = aerobus::zpz<607>; using type =
         POLYV<ZPZV<1>, ZPZV<604»; }; // NOLINT
04429 template<> struct ConwayPolynomial<607, 2> { using ZPZ = aerobus::zpz<607>; using type =
POLYV<ZPZV<1>, ZPZV<606, ZPZV<3»; }; // NOLINT
04430 template<> struct ConwayPolynomial<607, 3> { using ZPZ = aerobus::zpz<607>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<604»; }; // NOLINT
04431 template<> struct ConwayPolynomial<607, 4> { using ZPZ = aerobus::zpz<607>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<8>, ZPZV<449>, ZPZV<3»; }; // NOLINT
04432 template<> struct ConwayPolynomial<607, 5> { using ZPZ = aerobus::zpz<607>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<604»; }; // NOLINT
04433 template<> struct ConwayPolynomial<607, 6> { using ZPZ = aerobus::zpz<607>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<45>, ZPZV<478>, ZPZV<3»; }; // NOLINT
04434 template<> struct ConwayPolynomial<607, 7> { using ZPZ = aerobus::zpz<607>; using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0
04435 template<> struct ConwayPolynomial<607, 8> { using ZPZ = aerobus::zpz<607>; using type :
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<468>, ZPZV<35>, ZPZV<449>, ZPZV<3»; }; //
         NOLINT
04436 template<> struct ConwayPolynomial<607, 9> { using ZPZ = aerobus::zpz<607>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<444>, ZPZV<129>, ZPZV<604»;
          }; // NOLINT
04437 template<> struct ConwayPolynomial<613, 1> { using ZPZ = aerobus::zpz<613>; using type =
         POLYV<ZPZV<1>, ZPZV<611»; }; // NOLINT
04438 template<> struct ConwayPolynomial<613, 2> { using ZPZ = aerobus::zpz<613>; using type =
POLYV<ZPZV<1>, ZPZV<609>, ZPZV<2»; }; // NOLINT
04439 template<> struct ConwayPolynomial<613, 3> { using ZPZ = aerobus::zpz<613>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<611»; }; // NOLINT
04440 template<> struct ConwayPolynomial<613, 4> { using ZPZ = aerobus::zpz<613>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<12>, ZPZV<333>, ZPZV<2»; }; // NOLINT
04441 template<> struct ConwayPolynomial<613, 5> { using ZPZ = aerobus::zpz<613>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<32>, ZPZV<611»; }; // NOLINT
04442 template<> struct ConwayPolynomial<613, 6> { using ZPZ = aerobus::zpz<613>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<60>, ZPZV<50>, ZPZV<595>, ZPZV<601>, ZPZV<2»; };
04443 template<> struct ConwayPolynomial<613, 7> { using ZPZ = aerobus::zpz<613>; using type
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6), ZPZV<61*; };
04444 template<> struct ConwayPolynomial<613, 8> { using ZPZ = aerobus::zpz<613>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<489>, ZPZV<57>, ZPZV<539>, ZPZV<2»; }; //
         NOT.TNT
04445 template<> struct ConwayPolynomial<613, 9> { using ZPZ = aerobus::zpz<613>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<513>, ZPZV<513>, ZPZV<51611»;
         }; // NOLINT
04446 template<> struct ConwayPolynomial<617, 1> { using ZPZ = aerobus::zpz<617>; using type =
        POLYV<ZPZV<1>, ZPZV<614»; }; // NOLINT
04447 template<> struct ConwayPolynomial<617, 2> { using ZPZ = aerobus::zpz<617>; using type =
POLYV<ZPZV<1>, ZPZV<612>, ZPZV<3»; }; // NOLINT
04448 template<> struct ConwayPolynomial<617, 3> { using ZPZ = aerobus::zpz<617>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<614»; }; // NOLINT
04449 template<> struct ConwayPolynomial<617, 4> { using ZPZ = aerobus::zpz<617>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<503>, ZPZV<3>; // NOLINT
04450 template<> struct ConwayPolynomial<617, 5> { using ZPZ = aerobus::zpz<617>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<614»; }; // NOLINT
04451 template<> struct ConwayPolynomial<617, 6> { using ZPZ = aerobus::zpz<617>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<318>, ZPZV<595>, ZPZV<310>, ZPZV<3»; }; // NOLINT
04452 template<> struct ConwayPolynomial<617, 7> { using ZPZ = aerobus::zpz<617>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<614»; };
04453 template<> struct ConwayPolynomial<617, 8> { using ZPZ = aerobus::zpz<617>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<519>, ZPZV<501>, ZPZV<155>, ZPZV<3»; }; //
         NOLINT
04454 template<> struct ConwayPolynomial<617, 9> { using ZPZ = aerobus::zpz<617>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<15>, ZPZV<388>, ZPZV<543>, ZPZV<614»;
         }; // NOLINT
04455 template<> struct ConwayPolynomial<619, 1> { using ZPZ = aerobus::zpz<619>; using type =
        POLYV<ZPZV<1>, ZPZV<617»; }; // NOLINT
04456 template<> struct ConwayPolynomial<619, 2> { using ZPZ = aerobus::zpz<619>; using type =
         POLYV<ZPZV<1>, ZPZV<618>, ZPZV<2»; }; // NOLINT
04457 template<> struct ConwayPolynomial<619, 3> { using ZPZ = aerobus::zpz<619>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<617»; }; // NOLINT
04458 template<> struct ConwayPolynomial<619, 4> { using ZPZ = aerobus::zpz<619>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<492>, ZPZV<2»; }; // NOLINT
04459 template<> struct ConwayPolynomial<619, 5> { using ZPZ = aerobus::zpz<619>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<617»; }; // NOLINT
04460 template<> struct ConwayPolynomial<619, 6> { using ZPZ = aerobus::zpz<619>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<238>, ZPZV<468>, ZPZV<347>, ZPZV<2»; }; // NOLINT
04461 template<> struct ConwayPolynomial<619, 7> { using ZPZ = aerobus::zpz<619>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<617»; };
04462 template<> struct ConwayPolynomial<619, 8> { using ZPZ = aerobus::zpz<619>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<416>, ZPZV<383>, ZPZV<225>, ZPZV<2»; }; //
         NOLINT
04463 template<> struct ConwayPolynomial<619, 9> { using ZPZ = aerobus::zpz<619>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<579>, ZPZV<310>, ZPZV<617»;
         }; // NOLINT
04464 template<> struct ConwayPolynomial<631, 1> { using ZPZ = aerobus::zpz<631>; using type =
         POLYV<ZPZV<1>, ZPZV<628»; }; // NOLINT
04465 template<> struct ConwayPolynomial<631, 2> { using ZPZ = aerobus::zpz<631>; using type =
         POLYV<ZPZV<1>, ZPZV<629>, ZPZV<3»; }; // NOLINT
04466 template<> struct ConwayPolynomial<631, 3> { using ZPZ = aerobus::zpz<631>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<628»; }; // NOLINT
04467 template<> struct ConwayPolynomial<631, 4> { using ZPZ = aerobus::zpz<631>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<376>, ZPZV<38; }; // NOLINT

04468 template<> struct ConwayPolynomial<631, 5> { using ZPZ = aerobus::zpz<631>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<628»; }; // NOLINT
04469 template<> struct ConwayPolynomial<631, 6> { using ZPZ = aerobus::zpz<631>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<516>, ZPZV<541>, ZPZV<106>, ZPZV<3»; }; // NOLINT 04470 template<> struct ConwayPolynomial<631, 7> { using ZPZ = aerobus::zpz<631>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<628»; };
                                                                                                                                    // NOLINT
04471 template<> struct ConwayPolynomial<631, 8> { using ZPZ = aerobus::zpz<631>; using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPŽV<0>, ZPŽV<0>, ZPZV<3>, ZPZV<516>, ZPZV<187>, ZPZV<3»; }; //
        NOLINT
04472 template<> struct ConwayPolynomial<631, 9> { using ZPZ = aerobus::zpz<631>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<296>, ZPZV<413>, Z
         }; // NOLINT
04473 template<> struct ConwayPolynomial<641, 1> { using ZPZ = aerobus::zpz<641>; using type =
         POLYV<ZPZV<1>, ZPZV<638»; }; // NOLINT
04474 template<> struct ConwayPolynomial<641, 2> { using ZPZ = aerobus::zpz<641>; using type =
POLYV<ZPZV<1>, ZPZV<635, ZPZV<3»; }; // NOLINT
04475 template<> struct ConwayPolynomial<641, 3> { using ZPZ = aerobus::zpz<641>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<638»; }; // NOLINT
04476 template<> struct ConwayPolynomial<641, 4> { using ZPZ = aerobus::zpz<641>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<629>, ZPZV<3»; }; // NOLINT
04477 template<> struct ConwayPolynomial<641, 5> { using ZPZ = aerobus::zpz<641>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<638»; }; // NOLINT
04478 template<> struct ConwayPolynomial<641, 6> { using ZPZ = aerobus::zpz<641>; using type =
        POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<105>, ZPZV<557>, ZPZV<294>, ZPZV<3»; }; // NOLINT
04479 template<> struct ConwayPolynomial<641, 7> { using ZPZ = aerobus::zpz<641>; using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<638»; };
04480 template<> struct ConwayPolynomial<641, 8> { using ZPZ = aerobus::zpz<641>; using type :
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<356>, ZPZV<392>, ZPZV<332>, ZPZV<33; }; //
         NOLINT
04481 template<> struct ConwayPolynomial<641, 9> { using ZPZ = aerobus::zpz<641>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<66>, ZPZV<641>, ZPZV<638»;
04482 template<> struct ConwayPolynomial<643, 1> { using ZPZ = aerobus::zpz<643>; using type =
       POLYV<ZPZV<1>, ZPZV<632»; }; // NOLINT
04483 template<> struct ConwayPolynomial<643, 2> { using ZPZ = aerobus::zpz<643>; using type =
POLYV<ZPZV<1>, ZPZV<641>, ZPZV<11s; }; // NOLINT
04484 template<> struct ConwayPolynomial<643, 3> { using ZPZ = aerobus::zpz<643>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<632»; }; // NOLINT
04485 template<> struct ConwayPolynomial<643, 4> { using ZPZ = aerobus::zpz<643>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<600>, ZPZV<11»; }; // NOLINT
04486 template<> struct ConwayPolynomial<643, 5> { using ZPZ = aerobus::zpz<643>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<632»; }; // NOLINT
04487 template<> struct ConwayPolynomial<643, 6> { using ZPZ = aerobus::zpz<643>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<345>, ZPZV<412>, ZPZV<293>, ZPZV<11»; }; //
04488 template<> struct ConwayPolynomial<643, 7> { using ZPZ = aerobus::zpz<643>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<632»; };
04489 template<> struct ConwayPolynomial<643, 8> { using ZPZ = aerobus::zpz<643>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<631>, ZPZV<573>, ZPZV<569>, ZPZV<11»; }; //
04490 template<> struct ConwayPolynomial<643, 9> { using ZPZ = aerobus::zpz<643>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<591>, ZPZV<475>, ZPZV<632»;
       }; // NOLINT
04491 template<> struct ConwayPolynomial<647, 1> { using ZPZ = aerobus::zpz<647>; using type =
       POLYV<ZPZV<1>, ZPZV<642»; }; // NOLINT
04492 template<> struct ConwayPolynomial<647, 2> { using ZPZ = aerobus::zpz<647>; using type =
       POLYV<ZPZV<1>, ZPZV<645>, ZPZV<5»; }; // NOLINT
04493 template<> struct ConwayPolynomial<647, 3> { using ZPZ = aerobus::zpz<647>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<642»; }; // NOLINT
04494 template<> struct ConwayPolynomial<647, 4> { using ZPZ = aerobus::zpz<647>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<643>, ZPZV<5»; }; // NOLINT

04495 template<> struct ConwayPolynomial<647, 5> { using ZPZ = aerobus::zpz<647>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<11>, ZPZV<642»; }; // NOLINT
04496 template<> struct ConwayPolynomial<647, 6> { using ZPZ = aerobus::zpz<647>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<308>, ZPZV<385>, ZPZV<642>, ZPZV<5»; }; // NOLINT
04497 template<> struct ConwayPolynomial<647, 7> { using ZPZ = aerobus::zpz<647>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<642»; };
04498 template<> struct ConwayPolynomial<647, 8> { using ZPZ = aerobus::zpz<647>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<50>, ZPZV<259>, ZPZV<271>, ZPZV<5"; }; //
04499 template<> struct ConwayPolynomial<647, 9> { using ZPZ = aerobus::zpz<647>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<13>, ZPZV<561>, ZPZV<123>, ZPZV<124>,
       }; // NOLINT
04500 template<> struct ConwayPolynomial<653, 1> { using ZPZ = aerobus::zpz<653>; using type =
       POLYV<ZPZV<1>, ZPZV<651»; }; // NOLINT
04501 template<> struct ConwayPolynomial<653, 2> { using ZPZ = aerobus::zpz<653>; using type =
                                                   // NOLINT
       POLYV<ZPZV<1>, ZPZV<649>, ZPZV<2»; };
04502 template<> struct ConwayPolynomial<653, 3> { using ZPZ = aerobus::zpz<653>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<651»; }; // NOLINT
04503 template<> struct ConwayPolynomial<653, 4> { using ZPZ = aerobus::zpz<653>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<56>, ZPZV<596>, ZPZV<2»; }; // NOLINT
04504 template<> struct ConwayPolynomial<653, 5> { using ZPZ = aerobus::zpz<653>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<651»; }; // NOLINT
04505 template<> struct ConwayPolynomial<653, 6> { using ZPZ = aerobus::zpz<653>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<45>, ZPZV<220>, ZPZV<242>, ZPZV<242>, ZPZV<242>; }; // NOLINT 04506 template<> struct ConwayPolynomial<653, 7> { using ZPZ = aerobus::zpz<653>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5, ZPZV<651s; }; // NOLINT 04507 template<> struct ConwayPolynomial<653, 8> { using ZPZ = aerobus::zpz<653>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<385>, ZPZV<18>, ZPZV<296>, ZPZV<2»; };
       NOLINT
04508 template<> struct ConwayPolynomial<653, 9> { using ZPZ = aerobus::zpz<653>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<651»;
       }; // NOLINT
04509 template<> struct ConwayPolynomial<659, 1> { using ZPZ = aerobus::zpz<659>; using type =
       POLYV<ZPZV<1>, ZPZV<657»; }; // NOLINT
04510 template<> struct ConwayPolynomial<659, 2> { using ZPZ = aerobus::zpz<659>; using type =
       POLYV<ZPZV<1>, ZPZV<655>, ZPZV<2»; }; // NOLINT
04511 template<> struct ConwayPolynomial<659, 3> { using ZPZ = aerobus::zpz<659>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<657»; }; // NOLINT
04512 template<> struct ConwayPolynomial<659, 4> { using ZPZ = aerobus::zpz<659>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<8>, ZPZV<351>, ZPZV<2»; }; // NOLINT
04513 template<> struct ConwayPolynomial<659, 5> { using ZPZ = aerobus::zpz<659>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<657»; }; // NOLINT
04514 template<> struct ConwayPolynomial<659, 6> { using ZPZ = aerobus::zpz<659>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<371>, ZPZV<105>, ZPZV<223>, ZPZV<2»; }; // NOLINT 04515 template<> struct ConwayPolynomial<659, 7> { using ZPZ = aerobus::zpz<659>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5, ZPZV<5>, ZPZV<657»; }; // NOLINT
04516 template<> struct ConwayPolynomial<659, 8> { using ZPZ = aerobus::zpz<659>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<358>, ZPZV<246>, ZPZV<90>, ZPZV<90>, ZPZV<2»; }; //
       NOLTNT
04517 template<> struct ConwayPolynomial<659, 9> { using ZPZ = aerobus::zpz<659>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<592>, ZPZV<46>, ZPZV<657»;
       }; // NOLINT
04518 template<> struct ConwayPolynomial<661, 1> { using ZPZ = aerobus::zpz<661>; using type =
       POLYV<ZPZV<1>, ZPZV<659»; }; // NOLINT
04519 template<> struct ConwayPolynomial<661, 2> { using ZPZ = aerobus::zpz<661>; using type =
POLYV<ZPZV<1>, ZPZV<660>, ZPZV<2»; }; // NOLINT
04520 template<> struct ConwayPolynomial<661, 3> { using ZPZ = aerobus::zpz<661>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<659»; };
04521 template<> struct ConwayPolynomial<br/>661, 4> { using ZPZ = aerobus::zpz<661>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<616>, ZPZV<2»; }; // NOLINT<br/>04522 template<> struct ConwayPolynomial<br/>661, 5> { using ZPZ = aerobus::zpz<661>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<19>, ZPZV<59»; }; // NOLINT
04523 template<> struct ConwayPolynomial<661, 6> { using ZPZ = aerobus::zpz<661>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<551>, ZPZV<456>, ZPZV<382>, ZPZV<2»; }; // NOLINT
04524 template<> struct ConwayPolynomial<661, 7> { using ZPZ = aerobus::zpz<661>;
                                                                                                using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<659»; };
04525 template<> struct ConwayPolynomial<661, 8> { using ZPZ = aerobus::zpz<661>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<612>, ZPZV<285>, ZPZV<72>, ZPZV<2»; }; //
       NOLINT
04526 template<> struct ConwayPolynomial<661, 9> { using ZPZ = aerobus::zpz<661>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<18>, ZPZV<389>, ZPZV<220>, ZPZV<659»;
       }; // NOLINT
04527 template<> struct ConwayPolynomial<673, 1> { using ZPZ = aerobus::zpz<673>; using type =
       POLYV<ZPZV<1>, ZPZV<668»; }; // NOLINT
04528 template<> struct ConwayPolynomial<673, 2> { using ZPZ = aerobus::zpz<673>; using type =
       POLYV<ZPZV<1>, ZPZV<672>, ZPZV<5»; }; // NOLINT
04529 template<> struct ConwayPolynomial<673, 3> { using ZPZ = aerobus::zpz<673>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<668»; }; // NOLINT
04530 template<> struct ConwayPolynomial<673, 4> { using ZPZ = aerobus::zpz<673>; using type =
POLYV<ZPZV<1>, ZPZV<6>, ZPZV<6>, ZPZV<416>, ZPZV<5»; }; // NOLINT
04531 template<> struct ConwayPolynomial<673, 5> { using ZPZ = aerobus::zpz<673>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<15>, ZPZV<668»; }; // NOLINT
04532 template<> struct ConwayPolynomial<673, 6> { using ZPZ = aerobus::zpz<673>; using type =
       POLYV<2PZV<1>, 2PZV<0>, ZPZV<0>, ZPZV<524>, ZPZV<248>, ZPZV<35>, ZPZV<5»; }; // NOLINT
04533 template<> struct ConwayPolynomial<673, 7> { using ZPZ = aerobus::zpz<673>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6>, ZPZV<66*, ZPZV<668*; };
04534 template<> struct ConwayPolynomial<673, 8> { using ZPZ = aerobus::zpz<673>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<66>, ZPZV<587>, ZPZV<302>, ZPZV<5»; }; //
       NOLINT
04535 template<> struct ConwayPolynomial<673, 9> { using ZPZ = aerobus::zpz<673>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<347>, ZPZV<553>, ZPZV<668»;
       }; // NOLINT
04536 template<> struct ConwayPolynomial<677, 1> { using ZPZ = aerobus::zpz<677>; using type =
       POLYV<ZPZV<1>, ZPZV<675»; }; // NOLINT
04537 template<> struct ConwayPolynomial<677, 2> { using ZPZ = aerobus::zpz<677>; using type =
POLYV<ZPZV<1>, ZPZV<672>, ZPZV<2»; }; // NOLINT

04538 template<> struct ConwayPolynomial<677, 3> { using ZPZ = aerobus::zpz<677>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<675»; }; // NOLINT
04539 template<> struct ConwayPolynomial<677, 4> { using ZPZ = aerobus::zpz<677>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<631>, ZPZV<2»; }; // NOLINT
04540 template<> struct ConwayPolynomial<677, 5> { using ZPZ = aerobus::zpz<677>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<675»; }; // NOLINT
04541 template<> struct ConwayPolynomial<677, 6> { using ZPZ = aerobus::zpz<677>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<446>, ZPZV<632>, ZPZV<50>, ZPZV<2»; }; // NOLINT
04542 template<> struct ConwayPolynomial<677, 7> { using ZPZ = aerobus::zpz<677>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<675»; }; // NOLINT
04543 template<> struct ConwayPolynomial<677, 8> { using ZPZ = aerobus::zpz<677>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3619>, ZPZV<152>, ZPZV<152>, ZPZV<2»; }; //
04544 template<> struct ConwayPolynomial<677, 9> { using ZPZ = aerobus::zpz<677>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<504>, ZPZV<404>, ZPZV<675»;
       }; // NOLINT
04545 template<> struct ConwayPolynomial<683, 1> { using ZPZ = aerobus::zpz<683>; using type =
       POLYV<ZPZV<1>, ZPZV<678»; }; // NOLINT
04546 template<> struct ConwayPolynomial<683, 2> { using ZPZ = aerobus::zpz<683>; using type =
       POLYV<ZPZV<1>, ZPZV<682>, ZPZV<5»; }; // NOLINT
04547 template<> struct ConwayPolynomial<683, 3> { using ZPZ = aerobus::zpz<683>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<678»; }; // NOLINT
04548 template<> struct ConwayPolynomial<683, 4> { using ZPZ = aerobus::zpz<683>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<45>, ZPZV<45>, ZPZV<5>; // NOLINT
04549 template<> struct ConwayPolynomial<683, 5> { using ZPZ = aerobus::zpz<683>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<678»; }; // NOLINT
04550 template<> struct ConwayPolynomial<683, 6> { using ZPZ = aerobus::zpz<683>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<644>, ZPZV<109>, ZPZV<434>, ZPZV<5»; }; // NOLINT
04551 template<> struct ConwayPolynomial<683, 7> { using ZPZ = aerobus::zpz<683>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<678»; }; // NOLINT
04552 template<> struct ConwayPolynomial<683, 8> { using ZPZ = aerobus::zpz<683>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<383>, ZPZV<184>, ZPZV<65>, ZPZV<65»; }; //
       NOLINT
04553 template<> struct ConwayPolynomial<683, 9> { using ZPZ = aerobus::zpz<683>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<444>, ZPZV<678»;
       }; // NOLINT
04554 template<> struct ConwayPolynomial<691, 1> { using ZPZ = aerobus::zpz<691>; using type =
       POLYV<ZPZV<1>, ZPZV<688»; }; // NOLINT
04555 template<> struct ConwayPolynomial<691, 2> { using ZPZ = aerobus::zpz<691>; using type =
POLYV<ZPZV<1>, ZPZV<686, ZPZV<3»; }; // NOLINT
04556 template<> struct ConwayPolynomial<691, 3> { using ZPZ = aerobus::zpz<691>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<14>, ZPZV<688»; }; // NOLINT
04557 template<> struct ConwayPolynomial<691, 4> { using ZPZ = aerobus::zpz<691>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<632>, ZPZV<3»; }; // NOLINT
04558 template<> struct ConwayPolynomial<691, 5> { using ZPZ = aerobus::zpz<691>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<688»; }; // NOLINT
04559 template<> struct ConwayPolynomial<691, 6> { using ZPZ = aerobus::zpz<691>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<579>, ZPZV<408>, ZPZV<262>, ZPZV<3»; }; // NOLINT
```

```
04560 template<> struct ConwayPolynomial<691, 7> { using ZPZ = aerobus::zpz<691>; using type
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<688»; };
04561 template<> struct ConwayPolynomial<691, 8> { using ZPZ = aerobus::zpz<691>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<356>, ZPZV<425>, ZPZV<321>, ZPZV<3»; }; //
          NOLINT
04562 template<> struct ConwayPolynomial<691, 9> { using ZPZ = aerobus::zpz<691>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5, ZPZV<556>, ZPZV<4443>, ZPZV<688»;
          }; // NOLINT
04563 template<> struct ConwayPolynomial<701, 1> { using ZPZ = aerobus::zpz<701>; using type =
         POLYV<ZPZV<1>, ZPZV<699»; }; // NOLINT
04564 template<> struct ConwayPolynomial<701, 2> { using ZPZ = aerobus::zpz<701>; using type =
POLYV<ZPZV<1>, ZPZV<697>, ZPZV<2»; }; // NOLINT
04565 template<>> struct ConwayPolynomial<701, 3> { using ZPZ = aerobus::zpz<701>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<699»; }; // NOLINT
04566 template<> struct ConwayPolynomial<701, 4> { using ZPZ = aerobus::zpz<701>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<12>, ZPZV<379>, ZPZV<2»; }; // NOLINT
04567 template<> struct ConwayPolynomial<701, 5> { using ZPZ = aerobus::zpz<701>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<699»; }; // NOLINT
04568 template<> struct ConwayPolynomial<701, 6> { using ZPZ = aerobus::zpz<701>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<571>, ZPZV<327>, ZPZV<285>, ZPZV<2»; }; // NOLINT
04569 template<> struct ConwayPolynomial<701, 7> { using ZPZ = aerobus::zpz<701>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<10>, ZPZV<699»; };
04570 template<> struct ConwayPolynomial<701, 8> { using ZPZ = aerobus::zpz<701>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<619>, ZPZV<206>, ZPZV<593>, ZPZV<2»; }; //
          NOLINT
04571 template<> struct ConwayPolynomial<701, 9> { using ZPZ = aerobus::zpz<701>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<459>, ZPZV<459>, ZPZV<699»;
          }; // NOLINT
04572 template<> struct ConwayPolynomial<709, 1> { using ZPZ = aerobus::zpz<709>; using type =
          POLYV<ZPZV<1>, ZPZV<707»; }; // NOLINT
04573 template<> struct ConwayPolynomial<709, 2> { using ZPZ = aerobus::zpz<709>; using type =
         POLYV<ZPZV<1>, ZPZV<705>, ZPZV<2»; };
                                                                       // NOLINT
04574 template<> struct ConwayPolynomial<709, 3> { using ZPZ = aerobus::zpz<709>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<707»; }; // NOLINT
04575 template<> struct ConwayPolynomial<709, 4> { using ZPZ = aerobus::zpz<709>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<384>, ZPZV<2»; }; // NOLINT
04576 template<> struct ConwayPolynomial<709, 5> { using ZPZ = aerobus::zpz<709>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<707»; }; // NOLINT
04577 template<> struct ConwayPolynomial<709, 6> { using ZPZ = aerobus::zpz<709>; using type
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<669>, ZPZV<514>, ZPZV<295>, ZPZV<2»; ); // NOLINT 04578 template<> struct ConwayPolynomial<709, 7> { using ZPZ = aerobus::zpz<709>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<707»; };
04579 template<> struct ConwayPolynomial<709, 8> { using ZPZ = aerobus::zpz<709>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<689>, ZPZV<233>, ZPZV<79>, ZPZV<2»; }; //
04580 template<> struct ConwayPolynomial<709, 9> { using ZPZ = aerobus::zpz<709>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<35>, ZPZV<257>, ZPZV<171>, ZPZV<707»;
          }; // NOLINT
04581 template<> struct ConwavPolvnomial<719, 1> { using ZPZ = aerobus::zpz<719>; using type =
         POLYV<ZPZV<1>, ZPZV<708»; }; // NOLINT
04582 template<> struct ConwayPolynomial<719, 2> { using ZPZ = aerobus::zpz<719>; using type =
          POLYV<ZPZV<1>, ZPZV<715>, ZPZV<11»; }; // NOLINT
04583 template<> struct ConwayPolynomial<719, 3> { using ZPZ = aerobus::zpz<719>; using type =
         \label{eq:polyv} \mbox{POLYV}<\mbox{ZPZV}<\mbox{1>, ZPZV}<\mbox{1>, ZPZV}<\mbox{708}\mbox{*; }; \mbox{$/$$ NOLINT$}
04584 template<> struct ConwayPolynomial<719, 4> { using ZPZ = aerobus::zpz<719>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<60>, ZPZV<602>, ZPZV<1»; }; // NOLINT
04585 template<> struct ConwayPolynomial<719, 5> { using ZPZ = aerobus::zpz<719>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<708»; }; // NOLINT
04586 template<> struct ConwayPolynomial<719, 6> { using ZPZ = aerobus::zpz<719>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<533>, ZPZV<591>, ZPZV<182>, ZPZV<11»; }; // NOLINT 04587 template<> struct ConwayPolynomial<719, 7> { using ZPZ = aerobus::zpz<719>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<11>, ZPZV<708»; }; // NOLINT
04588 template<> struct ConwayPolynomial<719, 8> { using ZPZ = aerobus::zpz<719>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<714>, ZPZV<362>, ZPZV<244>, ZPZV<11»; }; //
          NOT.TNT
04589 template<> struct ConwayPolynomial<719, 9> { using ZPZ = aerobus::zpz<719>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<288>, ZPZV<560>, ZPZV<708»;
          }; // NOLINT
04590 template<> struct ConwayPolynomial<727, 1> { using ZPZ = aerobus::zpz<727>; using type =
          POLYV<ZPZV<1>, ZPZV<722»; }; // NOLINT
04591 template<> struct ConwayPolynomial<727, 2> { using ZPZ = aerobus::zpz<727>; using type =
POLYV<ZPZV<1>, ZPZV<725, ZPZV<5»; }; // NOLINT
04592 template<> struct ConwayPolynomial<727, 3> { using ZPZ = aerobus::zpz<727>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<722»; }; // NOLINT
04593 template<> struct ConwayPolynomial</r>
04593 template<> struct ConwayPolynomial</r>
04594 template<> struct ConwayPolynomial</r>
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<722»; }; // NOLINT
04595 template<> struct ConwayPolynomial</ri>
O4595 template
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<86>, ZPZV<397>, ZPZV<672>, ZPZV<5»; }; // NOLINT</pre>
O4596 template<> struct ConwayPolynomial
727, 7> { using ZPZ = aerobus::zpz<727>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1>, ZPZV<1</pre>
04597 template<> struct ConwayPolynomial<727, 8> { using ZPZ = aerobus::zpz<727>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<639>, ZPZV<671>, ZPZV<368>, ZPZV<5»; }; //
04598 template<> struct ConwayPolynomial<727, 9> { using ZPZ = aerobus::zpz<727>; using type =
          POLYY<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5, ZPZV<6>, ZPZV<5, Z
```

```
}; // NOLINT
04599 template<> struct ConwayPolynomial<733, 1> { using ZPZ = aerobus::zpz<733>; using type =
       POLYV<ZPZV<1>, ZPZV<727»; }; // NOLINT
04600 template<> struct ConwayPolynomial<733, 2> { using ZPZ = aerobus::zpz<733>; using type =
POLYV<ZPZV<1>, ZPZV<732>, ZPZV<6»; }; // NOLINT
04601 template<> struct ConwayPolynomial<733, 3> { using ZPZ = aerobus::zpz<733>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<727»; }; // NOLINT
04602 template<> struct ConwayPolynomial<733, 4> { using ZPZ = aerobus::zpz<733>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<12>, ZPZV<539>, ZPZV<6»; }; // NOLINT
04603 template<> struct ConwayPolynomial<733, 5> { using ZPZ = aerobus::zpz<733>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<727»; }; // NOLINT
04604 template<> struct ConwayPolynomial<733, 6> { using ZPZ = aerobus::zpz<733>; using type =
POLYV<ZPZV<1>, ZPZV<1>, ZPZV<174>, ZPZV<549>, ZPZV<515>, ZPZV<69; ); // NOLINT 04605 template<> struct ConwayPolynomial<733, 7> { using ZPZ = aerobus::zpz<733>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<727»; };
04606 template<> struct ConwayPolynomial<733, 8> { using ZPZ = aerobus::zpz<733>; using type :
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<532>, ZPZV<610>, ZPZV<142>, ZPZV<6*; }; //
       NOLINT
04607 template<> struct ConwayPolynomial<733, 9> { using ZPZ = aerobus::zpz<733>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<337>, ZPZV<6>, ZPZV<727»; };
04608 template<> struct ConwayPolynomial<739, 1> { using ZPZ = aerobus::zpz<739>; using type =
       POLYV<ZPZV<1>, ZPZV<736»; }; // NOLINT
04609 template<> struct ConwayPolynomial<739, 2> { using ZPZ = aerobus::zpz<739>; using type =
POLYV<ZPZV<1>, ZPZV<734>, ZPZV<3»; }; // NOLINT
04610 template<> struct ConwayPolynomial<739, 3> { using ZPZ = aerobus::zpz<739>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<11>, ZPZV<736»; }; // NOLINT
04611 template<> struct ConwayPolynomial<739, 4> { using ZPZ = aerobus::zpz<739>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<678>, ZPZV<3»; }; // NOLINT

04612 template<> struct ConwayPolynomial<739, 5> { using ZPZ = aerobus::zpz<739>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<736»; }; // NOLINT
04613 template<> struct ConwayPolynomial<739, 6> { using ZPZ = aerobus::zpz<739>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<42>, ZPZV<447>, ZPZV<625>, ZPZV<3»; }; // NOLINT
04614 template<> struct ConwayPolynomial<739, 7> { using ZPZ = aerobus::zpz<739>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<44>, ZPZV<736»; }; // NOLINT
04615 template<> struct ConwayPolynomial<739, 8> { using ZPZ = aerobus::zpz<739>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<401>, ZPZV<169>, ZPZV<25>, ZPZV<3»; }; //
04616 template<> struct ConwayPolynomial<739, 9> { using ZPZ = aerobus::zpz<739>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<6166>, ZPZV<81>, ZPZV<813, ZPZV<736»;
       }; // NOLINT
04617 template<> struct ConwayPolynomial<743, 1> { using ZPZ = aerobus::zpz<743>; using type =
       POLYV<ZPZV<1>, ZPZV<738»; }; // NOLINT
04618 template<> struct ConwayPolynomial<743, 2> { using ZPZ = aerobus::zpz<743>; using type =
       POLYV<ZPZV<1>, ZPZV<742>, ZPZV<5»; }; // NOLINT
04619 template<> struct ConwayPolynomial<743, 3> { using ZPZ = aerobus::zpz<743>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<738»; }; // NOLINT
04620 template<> struct ConwayPolynomial</ri>
04620 template<> struct ConwayPolynomial
4743, 4> { using ZPZ = aerobus::zpz<743>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<425>, ZPZV<5»; }; // NOLINT</pre>
04621 template<> struct ConwayPolynomial
743, 5> { using ZPZ = aerobus::zpz<743>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<738»; }; // NOLINT</pre>
04622 template<> struct ConwayPolynomial<743, 6> { using ZPZ = aerobus::zpz<743>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<236>, ZPZV<471>, ZPZV<88>, ZPZV<5»; }; // NOLINT
04623 template<> struct ConwayPolynomial<743, 7> { using ZPZ = aerobus::zpz<743>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<738»; };
04624 template<> struct ConwayPolynomial<743, 8> { using ZPZ = aerobus::zpz<743>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>; }; //
04625 template<> struct ConwayPolynomial<743, 9> { using ZPZ = aerobus::zpz<743>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<327>, ZPZV<676>, ZPZV<738»;
       }; // NOLINT
04626 template<> struct ConwayPolynomial<751, 1> { using ZPZ = aerobus::zpz<751>; using type =
       POLYV<ZPZV<1>, ZPZV<748»; }; // NOLINT
04627 template<> struct ConwayPolynomial<751, 2> { using ZPZ = aerobus::zpz<751>; using type =
       POLYV<ZPZV<1>, ZPZV<749>, ZPZV<3»; }; // NOLINT
04628 template<> struct ConwayPolynomial<751, 3> { using ZPZ = aerobus::zpz<751>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<748»; }; // NOLINT

04629 template<> struct ConwayPolynomial<751, 4> { using ZPZ = aerobus::zpz<751>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<525>, ZPZV<3»; }; // NOLINT

04630 template<> struct ConwayPolynomial<751, 5> { using ZPZ = aerobus::zpz<751>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<748»; }; // NOLINT
04631 template<> struct ConwayPolynomial<751, 6> { using ZPZ = aerobus::zpz<751>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<298>, ZPZV<633>, ZPZV<539>, ZPZV<3»; }; // NOLINT 04632 template<> struct ConwayPolynomial<751, 7> { using ZPZ = aerobus::zpz<751>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<748»; };
04633 template<> struct ConwayPolynomial<751, 8> { using ZPZ = aerobus::2pz<751>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<741>, ZPZV<243>, ZPZV<672>, ZPZV<3»; }; //
04634 template<> struct ConwayPolynomial<751, 9> { using ZPZ = aerobus::zpz<751>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<703>, ZPZV<489>, ZPZV<7489;
        }; // NOLINT
04635 template<> struct ConwayPolynomial<757, 1> { using ZPZ = aerobus::zpz<757>; using type =
       POLYV<ZPZV<1>, ZPZV<755»; }; // NOLINT
04636 template<> struct ConwayPolynomial<757, 2> { using ZPZ = aerobus::zpz<757>; using type =
POLYV<ZPZV<1>, ZPZV<753>, ZPZV<2»; }; // NOLINT
04637 template<> struct ConwayPolynomial<757, 3> { using ZPZ = aerobus::zpz<757>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<755»; }; // NOLINT
```

```
04638 template<> struct ConwayPolynomial<757, 4> { using ZPZ = aerobus::zpz<757>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<10>, ZPZV<537>, ZPZV<2»; }; // NOLINT
04639 template<> struct ConwayPolynomial<757, 5> { using ZPZ = aerobus::zpz<757>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<75>; // NOLINT
04640 template<> struct ConwayPolynomial<757, 6> { using ZPZ = aerobus::zpz<757>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<753>, ZPZV<739>, ZPZV<745>, ZPZV<2»; }; // NOLINT
04641 template<> struct ConwayPolynomial<757, 7> { using ZPZ = aerobus::zpz<757>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<755»; };
04642 template<> struct ConwayPolynomial<757, 8> { using ZPZ = aerobus::zpz<757>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<12>, ZPZV<494>, ZPZV<110>, ZPZV<509>, ZPZV<2»; }; //
       NOLINT
04643 template<> struct ConwayPolynomial<757, 9> { using ZPZ = aerobus::zpz<757>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<68>, ZPZV<688>, ZPZV<688>, ZPZV<702>, ZPZV<755»;
       }; // NOLINT
04644 template<> struct ConwayPolynomial<761, 1> { using ZPZ = aerobus::zpz<761>; using type =
       POLYV<ZPZV<1>, ZPZV<755»; }; // NOLINT
04645 template<> struct ConwayPolynomial<761, 2> { using ZPZ = aerobus::zpz<761>; using type =
POLYV<ZPZV<1>, ZPZV<758>, ZPZV<6»; }; // NOLINT

04646 template<> struct ConwayPolynomial<761, 3> { using ZPZ = aerobus::zpz<761>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<12>, ZPZV<755»; }; // NOLINT
04647 template<> struct ConwayPolynomial<br/>
761, 4> { using ZPZ = aerobus::zpz<761>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<658>, ZPZV<6»; }; // NOLINT<br/>
04648 template<> struct ConwayPolynomial<br/>
761, 5> { using ZPZ = aerobus::zpz<761>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<755»; }; // NOLINT
04649 template<> struct ConwayPolynomial<761, 6> { using ZPZ = aerobus::zpz<761>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<634>, ZPZV<597>, ZPZV<155>, ZPZV<6»; }; // NOLINT
04650 template<> struct ConwayPolynomial<761, 7> { using ZPZ = aerobus::zpz<761>;
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6>, ZPZV<755»; };
04651 template<> struct ConwayPolynomial<761, 8> { using ZPZ = aerobus::zpz<761>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<11>, ZPZV<603>, ZPZV<144>, ZPZV<540>, ZPZV<6»; }; //
       NOLINT
04652 template<> struct ConwayPolynomial<761, 9> { using ZPZ = aerobus::zpz<761>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<317>, ZPZV<571>, ZPZV<755»;
       }; // NOLINT
04653 template<> struct ConwayPolynomial<769, 1> { using ZPZ = aerobus::zpz<769>; using type =
       POLYV<ZPZV<1>, ZPZV<758»; }; // NOLINT
04654 template<> struct ConwayPolynomial<769, 2> { using ZPZ = aerobus::zpz<769>; using type =
POLYV<ZPZV<1>, ZPZV<765>, ZPZV<11s; }; // NOLINT

04655 template<> struct ConwayPolynomial<769, 3> { using ZPZ = aerobus::zpz<769>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<758»; }; // NOLINT
04656 template<> struct ConwayPolynomial<769, 4> { using ZPZ = aerobus::zpz<769>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<32>, ZPZV<741>, ZPZV<711»; }; // NOLINT
04657 template<> struct ConwayPolynomial<769, 5> { using ZPZ = aerobus::zpz<769>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<758»; }; // NOLINT
04658 template<> struct ConwayPolynomial<769, 6> { using ZPZ = aerobus::zpz<769>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<43>, ZPZV<326>, ZPZV<650>, ZPZV<11»; };
04659 template<> struct ConwayPolynomial<769, 7> { using ZPZ = aerobus::zpz<769>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<758»; }; // NOLINT
04660 template<> struct ConwayPolynomial</br>
769, 8> { using ZPZ = aerobus::zpz<769>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<560>, ZPZV<574>, ZPZV<632>, ZPZV<61»; }; //</pre>
04661 template<> struct ConwayPolynomial<769, 9> { using ZPZ = aerobus::zpz<769>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<623>, ZPZV<751>, ZPZV<758»;
       }; // NOLINT
04662 template<> struct ConwayPolynomial<773, 1> { using ZPZ = aerobus::zpz<773>; using type =
       POLYV<ZPZV<1>, ZPZV<771»; }; // NOLINT
04663 template<> struct ConwayPolynomial<773, 2> { using ZPZ = aerobus::zpz<773>; using type =
       POLYV<ZPZV<1>, ZPZV<772>, ZPZV<2»; }; // NOLINT
04664 template<> struct ConwayPolynomial<773, 3> { using ZPZ = aerobus::zpz<773>; using type =
       04665 template<> struct ConwayPolynomial<773, 4> { using ZPZ = aerobus::zpz<773>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<444>, ZPZV<2»; }; // NOLINT
04666 template<> struct ConwayPolynomial<773, 5> { using ZPZ = aerobus::zpz<773>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<771»; }; // NOLINT
04667 template<> struct ConwayPolynomial<773, 6> { using ZPZ = aerobus::zpz<773>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<91>, ZPZV<3>, ZPZV<581>, ZPZV<2»; }; // NOLINT
04668 template<> struct ConwayPolynomial<773, 7> { using ZPZ = aerobus::zpz<773>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<771»; };
                                                                                                          // NOLINT
04669 template<> struct ConwayPolynomial<773, 8> { using ZPZ = aerobus::zpz<773>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<484>, ZPZV<94>, ZPZV<693>, ZPZV<2»; };
04670 template<> struct ConwayPolynomial<773, 9> { using ZPZ = aerobus::zpz<773>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<216>, ZPZV<574>, ZPZV<771»;
       }; // NOLINT
04671 template<> struct ConwayPolynomial<787, 1> { using ZPZ = aerobus::zpz<787>; using type =
       POLYV<ZPZV<1>, ZPZV<785»; }; // NOLINT
04672 template<> struct ConwayPolynomial<787, 2> { using ZPZ = aerobus::zpz<787>; using type =
POLYV<ZPZV<1>, ZPZV<786, ZPZV<2»; }; // NOLINT
04673 template<> struct ConwayPolynomial<787, 3> { using ZPZ = aerobus::zpz<787>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<785»; }; // NOLINT
04674 template<> struct ConwayPolynomial<787, 4> { using ZPZ = aerobus::zpz<787>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<11>, ZPZV<605>, ZPZV<2»; }; // NOLINT
04675 template<> struct ConwayPolynomial<787, 5> { using ZPZ = aerobus::zpz<787>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<785»; }; // NOLINT
04676 template<> struct ConwayPolynomial<787, 6> { using ZPZ = aerobus::zpz<787>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<98>, ZPZV<512>, ZPZV<606>, ZPZV<2»; }; // NOLINT 04677 template<> struct ConwayPolynomial<787, 7> { using ZPZ = aerobus::zpz<787>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<3>, ZPZV<785»; };
04678 template<> struct ConwayPolynomial<787, 8> { using ZPZ = aerobus::zpz<787>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<612>, ZPZV<26>, ZPZV<715>, ZPZV<2»; }; //
      NOLINT
04679 template<> struct ConwayPolynomial<787, 9> { using ZPZ = aerobus::zpz<787>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<480>, ZPZV<573>, ZPZV<785»;
04680 template<> struct ConwayPolynomial<797, 1> { using ZPZ = aerobus::zpz<797>; using type =
       POLYV<ZPZV<1>, ZPZV<795»; }; // NOLINT
04681 template<> struct ConwayPolynomial<797, 2> { using ZPZ = aerobus::zpz<797>; using type =
POLYV<ZPZV<1>, ZPZV<793>, ZPZV<2»; }; // NOLINT

04682 template<> struct ConwayPolynomial<797, 3> { using ZPZ = aerobus::zpz<797>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<795»; }; // NOLINT
04683 template<> struct ConwayPolynomial<797, 4> { using ZPZ = aerobus::zpz<797>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<717>, ZPZV<2»; }; // NOLINT
04684 template<> struct ConwayPolynomial<797, 5> { using ZPZ = aerobus::zpz<797>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<795»; }; // NOLINT
04685 template<> struct ConwayPolynomial<797, 6> { using ZPZ = aerobus::zpz<797>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<657>, ZPZV<396>, ZPZV<71>, ZPZV<2»; }; // NOLINT
04686 template<> struct ConwayPolynomial<797, 7> { using ZPZ = aerobus::zpz<797>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<11>, ZPZV<795»; }; // NOLINT
04687 template<> struct ConwayPolynomial<797, 8> { using ZPZ = aerobus::zpz<797>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<596>, ZPZV<747>, ZPZV<389>, ZPZV<2»; }; //
       NOLINT
04688 template<> struct ConwayPolynomial<797, 9> { using ZPZ = aerobus::zpz<797>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<240>, ZPZV<599>, ZPZV<795»;
       }; // NOLINT
04689 template<> struct ConwayPolynomial<809, 1> { using ZPZ = aerobus::zpz<809>; using type =
      POLYV<ZPZV<1>, ZPZV<806»; }; // NOLINT
04690 template<> struct ConwayPolynomial<809, 2> { using ZPZ = aerobus::zpz<809>; using type =
POLYV<ZPZV<1>, ZPZV<799>, ZPZV<3»; }; // NOLINT

04691 template<> struct ConwayPolynomial<809, 3> { using ZPZ = aerobus::zpz<809>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<806»; }; // NOLINT
04692 template<> struct ConwayPolynomial<809, 4> { using ZPZ = aerobus::zpz<809>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<644>, ZPZV<3»; }; // NOLINT
04693 template<> struct ConwayPolynomial<809, 5> { using ZPZ = aerobus::zpz<809>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<806s; }; // NOLINT
04694 template<> struct ConwayPolynomial<809, 6> { using ZPZ = aerobus::zpz<809>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<562>, ZPZV<75>, ZPZV<43>, ZPZV<3»; }; // NOLINT
04695 template<> struct ConwayPolynomial<809, 7> { using ZPZ = aerobus::zpz<809>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<806»; };
04696 template<> struct ConwayPolynomial<809, 8> { using ZPZ = aerobus::zpz<809>; using type =
      POLYV<ZPZV<1>. ZPZV<0>. ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<593>, ZPZV<745>, ZPZV<673>, ZPZV<3»; }; //
04697 template<> struct ConwayPolynomial<809, 9> { using ZPZ = aerobus::zpz<809>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<3+>, ZPZV<341>, ZPZV<327>, ZPZV<806»;
       }; // NOLINT
04698 template<> struct ConwayPolynomial<811, 1> { using ZPZ = aerobus::zpz<811>; using type =
      POLYV<ZPZV<1>, ZPZV<808»; }; // NOLINT
04699 template<> struct ConwayPolynomial<811, 2> { using ZPZ = aerobus::zpz<811>; using type =
       POLYV<ZPZV<1>, ZPZV<806>, ZPZV<3»; }; // NOLINT
04700 template<> struct ConwayPolynomial<811, 3> { using ZPZ = aerobus::zpz<811>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<808»; }; // NOLINT
04701 template<> struct ConwayPolynomial<811, 4> { using ZPZ = aerobus::zpz<811>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<453>, ZPZV<3»; }; // NOLINT
04702 template<> struct ConwayPolynomial<811, 5> { using ZPZ = aerobus::zpz<811>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<808»; }; // NOLINT
04703 template<> struct ConwayPolynomial<811, 6> { using ZPZ = aerobus::zpz<811>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<780>, ZPZV<755>, ZPZV<307>, ZPZV<3»; }; // NOLINT
04704 template<> struct ConwayPolynomial<811, 7> { using ZPZ = aerobus::zpz<811>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<808»; };
                                                                                                       // NOLINT
04705 template<> struct ConwayPolynomial<811, 8> { using ZPZ = aerobus::zpz<811>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<663>, ZPZV<806>, ZPZV<525>, ZPZV<3»; }; //
04706 template<> struct ConwayPolynomial<811, 9> { using ZPZ = aerobus::zpz<811>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<382>, ZPZV<200>, ZPZV<808»;
       }; // NOLINT
04707 template<> struct ConwayPolynomial<821, 1> { using ZPZ = aerobus::zpz<821>; using type =
      POLYV<ZPZV<1>, ZPZV<819»; }; // NOLINT
04708 template<> struct ConwayPolynomial<821, 2> { using ZPZ = aerobus::zpz<821>; using type =
       POLYV<ZPZV<1>, ZPZV<816>, ZPZV<2»; }; // NOLINT
04709 template<> struct ConwayPolynomial<821, 3> { using ZPZ = aerobus::zpz<821>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<819»; }; // NOLINT
04710 template<> struct ConwayPolynomial<821, 4> { using ZPZ = aerobus::zpz<821>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<15>, ZPZV<662>, ZPZV<2»; }; // NOLINT
04711 template<> struct ConwayPolynomial<821, 5> { using ZPZ = aerobus::zpz<821>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<819»; }; // NOLINT
04712 template<> struct ConwayPolynomial<821, 6> { using ZPZ = aerobus::zpz<821>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<160>, ZPZV<130>, ZPZV<803>, ZPZV<2»; }; // NOLINT
04713 template<> struct ConwayPolynomial<821, 7> { using ZPZ = aerobus::zpz<821>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<10>, ZPZV<10>, ZPZV<819»; }; // NOLINT
04714 template<> struct ConwayPolynomial<821, 8> { using ZPZ = aerobus::zpz<821>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<626>, ZPZV<556>, ZPZV<589>, ZPZV<2»; }; //
04715 template<> struct ConwayPolynomial<821, 9> { using ZPZ = aerobus::zpz<821>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<650>, ZPZV<557>, ZPZV<819»;
       }; // NOLINT
```

```
04716 template<> struct ConwayPolynomial<823, 1> { using ZPZ = aerobus::zpz<823>; using type =
       POLYV<ZPZV<1>, ZPZV<820»; }; // NOLINT
04717 template<> struct ConwayPolynomial<823, 2> { using ZPZ = aerobus::zpz<823>; using type =
      POLYV<ZPZV<1>, ZPZV<821>, ZPZV<3»; }; // NOLINT
04718 template<> struct ConwayPolynomial<823, 3> { using ZPZ = aerobus::zpz<823>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<820»; }; // NOLINT
04719 template<> struct ConwayPolynomial<823, 4> { using ZPZ = aerobus::zpz<823>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<819>, ZPZV<3»; }; // NOLINT
04720 template<> struct ConwayPolynomial<823, 5> { using ZPZ = aerobus::zpz<823>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<8>; }; // NOLINT
04721 template<> struct ConwayPolynomial<823, 6> { using ZPZ = aerobus::zpz<823>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<822>, ZPZV<616>, ZPZV<744>, ZPZV<3»; }; // NOLINT 04722 template<> struct ConwayPolynomial<823, 7> { using ZPZ = aerobus::zpz<823>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<820»; }; // NOLINT
04723 template<> struct ConwayPolynomial<823, 8> { using ZPZ = aerobus::zpz<823>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<451>, ZPZV<437>, ZPZV<31>, ZPZV<3»; }; //
      NOLINT
04724 template<> struct ConwayPolynomial<823, 9> { using ZPZ = aerobus::zpz<823>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6>, ZPZV<740>, ZPZV<609>, ZPZV<820»;
04725 template<> struct ConwayPolynomial<827, 1> { using ZPZ = aerobus::zpz<827>; using type =
      POLYV<ZPZV<1>, ZPZV<825»; }; // NOLINT
04726 template<> struct ConwayPolynomial<827, 2> { using ZPZ = aerobus::zpz<827>; using type = POLYV<ZPZV<1>, ZPZV<821>, ZPZV<2»; }; // NOLINT
04727 template<> struct ConwayPolynomial<827, 3> { using ZPZ = aerobus::zpz<827>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<825»; }; // NOLINT
04728 template<> struct ConwayPolynomial<827, 4> { using ZPZ = aerobus::zpz<827>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<18>, ZPZV<605>, ZPZV<2»; }; // NOLINT
04729 template<> struct ConwayPolynomial<827, 5> { using ZPZ = aerobus::zpz<827>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<825»; }; // NOLINT
04730 template<> struct ConwayPolynomial<827, 6> { using ZPZ = aerobus::zpz<827>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<9>, ZPZV<685>, ZPZV<601>, ZPZV<691>, ZPZV<2»; };
                                                                                                 // NOLINT
04731 template<> struct ConwayPolynomial<827, 7> { using ZPZ = aerobus::zpz<827>;
                                                                                             using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5>, ZPZV<825»; };
04732 template<> struct ConwayPolynomial<827, 8> { using ZPZ = aerobus::zpz<827>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<812>, ZPZV<79>, ZPZV<32>, ZPZV<2»; }; //
       NOLINT
04733 template<> struct ConwayPolynomial<827, 9> { using ZPZ = aerobus::zpz<827>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<177>, ZPZV<372>, ZPZV<825»;
       }; // NOLINT
04734 template<> struct ConwayPolynomial<829, 1> { using ZPZ = aerobus::zpz<829>; using type =
      POLYV<ZPZV<1>, ZPZV<827»; }; // NOLINT
04735 template<> struct ConwayPolynomial<829, 2> { using ZPZ = aerobus::zpz<829>; using type =
      POLYV<ZPZV<1>, ZPZV<828>, ZPZV<2»; }; // NOLINT
04736 template<> struct ConwayPolynomial<829, 3> { using ZPZ = aerobus::zpz<829>; using type =
                                                             // NOLINT
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<827»; };
04737 template<> struct ConwayPolynomial<829, 4> { using ZPZ = aerobus::zpz<829>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<9>, ZPZV<604>, ZPZV<2»; }; // NOLINT
04738 template<> struct ConwayPolynomial<829, 5> { using ZPZ = aerobus::zpz<829>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<827»; }; // NOLINT
04739 template<> struct ConwayPolynomial<829, 6> { using ZPZ = aerobus::zpz<829>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<341>, ZPZV<476>, ZPZV<817>, ZPZV<2»; }; // NOLINT
04740 template<> struct ConwayPolynomial<829, 7> { using ZPZ = aerobus::zpz<829; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<827»; };
04741 template<> struct ConwayPolynomial<829, 8> { using ZPZ = aerobus::zpz<829>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<468>, ZPZV<241>, ZPZV<138>, ZPZV<2.; }; //
04742 template<> struct ConwayPolynomial<829, 9> { using ZPZ = aerobus::zpz<829>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<621>, ZPZV<552>, ZPZV<827»;
       }; // NOLINT
04743 template<> struct ConwayPolynomial<839, 1> { using ZPZ = aerobus::zpz<839>; using type =
      POLYV<ZPZV<1>, ZPZV<828»; }; // NOLINT
04744 template<> struct ConwayPolynomial<839, 2> { using ZPZ = aerobus::zpz<839>; using type =
       POLYV<ZPZV<1>, ZPZV<838>, ZPZV<11»; }; // NOLINT
04745 template<> struct ConwayPolynomial<839, 3> { using ZPZ = aerobus::zpz<839>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<828»; }; // NOLINT
04746 template<> struct ConwayPolynomial<839, 4> { using ZPZ = aerobus::zpz<839>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<609>, ZPZV<11»; }; // NOLINT
04747 template<> struct ConwayPolynomial<839, 5> { using ZPZ = aerobus::zpz<839>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<828»; }; // NOLINT
04748 template<> struct ConwayPolynomial<839, 6> { using ZPZ = aerobus::zpz<839>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<370>, ZPZV<537>, ZPZV<23>, ZPZV<11»; }; // NOLINT
04749 template<> struct ConwayPolynomial<839, 7> { using ZPZ = aerobus::zpz<839>; using type =
      POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<828»; };
04750 template<> struct ConwayPolynomial<839, 8> { using ZPZ = aerobus::zpz<839>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<16>, ZPZV<553>, ZPZV<779>, ZPZV<329>, ZPZV<11»; }; //
       NOLINT
04751 template<> struct ConwayPolynomial<839, 9> { using ZPZ = aerobus::zpz<839>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3+9>, ZPZV<206>, ZPZV<828»;
       ): // NOLINT
04752 template<> struct ConwayPolynomial<853, 1> { using ZPZ = aerobus::zpz<853>; using type =
       POLYV<ZPZV<1>, ZPZV<851»; }; // NOLINT
04753 template<> struct ConwayPolynomial<853, 2> { using ZPZ = aerobus::zpz<853>; using type =
      POLYV<ZPZV<1>, ZPZV<852>, ZPZV<2»; };
                                                   // NOLINT
04754 template<> struct ConwayPolynomial<853, 3> { using ZPZ = aerobus::zpz<853>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<851»; }; // NOLINT
04755 template<> struct ConwayPolynomial<853, 4> { using ZPZ = aerobus::zpz<853>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<623>, ZPZV<2»; }; // NOLINT
04756 template<> struct ConwayPolynomial<853, 5> { using ZPZ = aerobus::zpz<853>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<851»; // NOLINT
04757 template<> struct ConwayPolynomial<853, 6> { using ZPZ = aerobus::zpz<853>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<276>, ZPZV<194>, ZPZV<512>, ZPZV<2»; }; // NOLINT 04758 template<> struct ConwayPolynomial<853, 7> { using ZPZ = aerobus::zpz<853>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<851»; }; // NOLINT
04759 template<> struct ConwayPolynomial<853, 8> { using ZPZ = aerobus::zpz<853>; using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<544>, ZPZV<846>, ZPZV<118>, ZPZV<2»; }; //
         NOLINT
04760 template<> struct ConwayPolynomial<853, 9> { using ZPZ = aerobus::zpz<853>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<851»;
         }: // NOLINT
04761 template<> struct ConwayPolynomial<857, 1> { using ZPZ = aerobus::zpz<857>; using type =
         POLYV<ZPZV<1>, ZPZV<854»; }; // NOLINT
04762 template<> struct ConwayPolynomial<857, 2> { using ZPZ = aerobus::zpz<857>; using type =
POLYY<ZPZV<1>, ZPZV<850>, ZPZV<3»; }; // NOLINT
04763 template<> struct ConwayPolynomial<857, 3> { using ZPZ = aerobus::zpz<857>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<854»; }; // NOLINT
04764 template<> struct ConwayPolynomial<857, 4> { using ZPZ = aerobus::zpz<857>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<528>, ZPZV<3»; }; // NOLINT
04765 template<> struct ConwayPolynomial<857, 5> { using ZPZ = aerobus::zpz<857>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<854»; }; // NOLINT
04766 template<> struct ConwayPolynomial<857, 6> { using ZPZ = aerobus::zpz<857>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<3>, ZPZV<824>, ZPZV<65>, ZPZV<3»; }; // NOLINT
04767 template<> struct ConwayPolynomial<857, 7> { using ZPZ = aerobus::zpz<857>; using type
                                                                                                                                        // NOLINT
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<854»; };
04768 template<> struct ConwayPolynomial<857, 8> { using ZPZ = aerobus::zpz<857>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<611>, ZPZV<552>, ZPZV<494>, ZPZV<3»; }; //
         NOLINT
04769 template<> struct ConwayPolynomial<857, 9> { using ZPZ = aerobus::zpz<857>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<30>, ZPZV<308>, ZPZV<719>, ZPZV<854»;
04770 template<> struct ConwayPolynomial<859, 1> { using ZPZ = aerobus::zpz<859>; using type =
         POLYV<ZPZV<1>, ZPZV<857»; }; // NOLINT
04771 template<> struct ConwayPolynomial<859, 2> { using ZPZ = aerobus::zpz<859>; using type =
POLYV<ZPZV<1>, ZPZV<858>, ZPZV<2»; }; // NOLINT
04772 template<> struct ConwayPolynomial<859, 3> { using ZPZ = aerobus::zpz<859>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<857»; }; // NOLINT
04773 template<> struct ConwayPolynomial<859, 4> { using ZPZ = aerobus::zpz<859>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<530>, ZPZV<2»; }; // NOLINT
04774 template<> struct ConwayPolynomial<859, 5> { using ZPZ = aerobus::zpz<859>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<12>, ZPZV<857»; }; // NOLINT 04775 template<> struct ConwayPolynomial<859, 6> { using ZPZ = aerobus::zpz<859>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<419>, ZPZV<646>, ZPZV<566>, ZPZV<2»; }; // NOLINT
04776 template<> struct ConwayPolynomial<859, 7> { using ZPZ = aerobus::zpz<859>;
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<2>, ZPZV<857»; };
04777 template<> struct ConwayPolynomial<859, 8> { using ZPZ = aerobus::zpz<859>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5, ZPZV<446>, ZPZV<672>, ZPZV<2»; }; //
         NOLINT
04778 template<> struct ConwayPolynomial<859, 9> { using ZPZ = aerobus::zpz<859>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<648>, ZPZV<845>, ZPZV<857»;
         }; // NOLINT
04779 template<> struct ConwayPolynomial<863, 1> { using ZPZ = aerobus::zpz<863>; using type =
         POLYV<ZPZV<1>, ZPZV<858»; }; // NOLINT
04780 template<> struct ConwayPolynomial<863, 2> { using ZPZ = aerobus::zpz<863>; using type =
         POLYV<ZPZV<1>, ZPZV<862>, ZPZV<5»; }; // NOLINT
04781 template<> struct ConwayPolynomial<863, 3> { using ZPZ = aerobus::zpz<863>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<858»; }; // NOLINT
04782 template<> struct ConwayPolynomial<863, 4> { using ZPZ = aerobus::zpz<863>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<770>, ZPZV<5»; }; // NOLINT

04783 template<> struct ConwayPolynomial<863, 5> { using ZPZ = aerobus::zpz<863>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<858»; }; // NOLINT
04784 template<> struct ConwayPolynomial<863, 6> { using ZPZ = aerobus::zpz<863>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<330>, ZPZV<62>, ZPZV<300>, ZPZV<5»; }; // NOLINT
04785 template<> struct ConwayPolynomial<863, 7> { using ZPZ = aerobus::zpz<863>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<858»; };
04786 template<> struct ConwayPolynomial<863, 8> { using ZPZ = aerobus::zpz<863>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<576>, ZPZV<576>, ZPZV<849>, ZPZV<849>, ZPZV<59; }; //
         NOLINT
04787 template<> struct ConwayPolynomial<863, 9> { using ZPZ = aerobus::zpz<863>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<381>, ZPZV<31>, ZPZV<1>, ZPZV<858»; };
         // NOLINT
04788 template<> struct ConwayPolynomial<877, 1> { using ZPZ = aerobus::zpz<877>; using type =
         POLYV<ZPZV<1>, ZPZV<875»; }; // NOLINT
04789 template<> struct ConwayPolynomial<877, 2> { using ZPZ = aerobus::zpz<877>; using type =
POLYV<ZPZV<1>, ZPZV<873>, ZPZV<2»; }; // NOLINT
04790 template<> struct ConwayPolynomial<877, 3> { using ZPZ = aerobus::zpz<877>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<875»; }; // NOLINT
04791 template<> struct ConwayPolynomial<877, 4> { using ZPZ = aerobus::zpz<877>; using type =
POLYV<ZPZV<1>, ZPZV<6>, ZPZV<60>, ZPZV<604>, ZPZV<2»; }; // NOLINT
04792 template<> struct ConwayPolynomial<877, 5> { using ZPZ = aerobus::zpz<877>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<875»; }; // NOLINT
04793 template<> struct ConwayPolynomial<877, 6> { using ZPZ = aerobus::zpz<877>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<629>, ZPZV<400>, ZPZV<855>, ZPZV<2»; }; // NOLINT 04794 template<> struct ConwayPolynomial<877, 7> { using ZPZ = aerobus::zpz<877>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<3 , ZPZ
```

```
04795 template<> struct ConwayPolynomial<877, 8> { using ZPZ = aerobus::zpz<877>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<767>, ZPZV<319>, ZPZV<347>, ZPZV<2»; }; //
       NOLTNT
04796 template<> struct ConwayPolynomial<877, 9> { using ZPZ = aerobus::zpz<877>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<770>, ZPZV<278>, ZPZV<875»;
       }; // NOLINT
04797 template<> struct ConwayPolynomial<881, 1> { using ZPZ = aerobus::zpz<881>; using type =
       POLYV<ZPZV<1>, ZPZV<878»; }; // NOLINT
04798 template<> struct ConwayPolynomial<881, 2> { using ZPZ = aerobus::zpz<881>; using type =
POLYV<ZPZV<1>, ZPZV<869, ZPZV<3»; }; // NOLINT
04799 template<> struct ConwayPolynomial<881, 3> { using ZPZ = aerobus::zpz<881>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<878»; }; // NOLINT
04800 template<> struct ConwayPolynomial<>881, 4> { using ZPZ = aerobus::zpz<881>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<447>, ZPZV<3»; }; // NOLINT

04801 template<> struct ConwayPolynomial<<881, 5> { using ZPZ = aerobus::zpz<881>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<87, ZPZV<878*; }; // NOLINT
04802 template<> struct ConwayPolynomial<881, 6> { using ZPZ = aerobus::zpz<881>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<218>, ZPZV<419>, ZPZV<231>, ZPZV<33>; }; // NOLINT 04803 template<> struct ConwayPolynomial<881, 7> { using ZPZ = aerobus::zpz<881>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6>, ZPZV<878»; };
04804 template<> struct ConwayPolynomial<881, 8> { using ZPZ = aerobus::zpz<881>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<21>, ZPZV<635>, ZPZV<490>, ZPZV<561>, ZPZV<3»; }; //
       NOLINT
04805 template<> struct ConwayPolynomial<881, 9> { using ZPZ = aerobus::zpz<881>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<587>, ZPZV<510>, ZPZV<878»;
       }; // NOLINT
04806 template<> struct ConwayPolynomial<883, 1> { using ZPZ = aerobus::zpz<883>; using type =
       POLYV<ZPZV<1>, ZPZV<881»; }; // NOLINT
04807 template<> struct ConwayPolynomial<883, 2> { using ZPZ = aerobus::zpz<883>; using type =
POLYV<ZPZV<1>, ZPZV<879>, ZPZV<2»; }; // NOLINT

04808 template<> struct ConwayPolynomial<883, 3> { using ZPZ = aerobus::zpz<883>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<6>, ZPZV<881»; }; // NOLINT
04809 template<> struct ConwayPolynomial<883, 4> { using ZPZ = aerobus::zpz<883>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<8>, ZPZV<715>, ZPZV<2»; }; // NOLINT
04810 template<> struct ConwayPolynomial<883, 5> { using ZPZ = aerobus::zpz<883>; using type =
POLYY<ZPZY<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<14>, ZPZV<881»; // NOLINT
04811 template<> struct ConwayPolynomial<883, 6> { using ZPZ = aerobus::zpz<883>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<879>, ZPZV<865>, ZPZV<871>, ZPZV<2»; }; // NOLINT
04812 template<> struct ConwayPolynomial<883, 7> { using ZPZ = aerobus::zpz<883>;
                                                                                                using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6>, ZPZV<81»; };
04813 template<> struct ConwayPolynomial<883, 8> { using ZPZ = aerobus::zpz<883>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<740>, ZPZV<762>, ZPZV<768>, ZPZV<20»; }; //
       NOLINT
04814 template<> struct ConwayPolynomial<883, 9> { using ZPZ = aerobus::zpz<883>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<360>, ZPZV<5557>, ZPZV<881»;
       }; // NOLINT
04815 template<> struct ConwayPolynomial<887, 1> { using ZPZ = aerobus::zpz<887>; using type =
       POLYV<ZPZV<1>, ZPZV<882»; }; // NOLINT
04816 template<> struct ConwayPolynomial<887, 2> { using ZPZ = aerobus::zpz<887>; using type =
POLYV<ZPZV<1>, ZPZV<885>, ZPZV<5»; }; // NOLINT
04817 template<> struct ConwayPolynomial<887, 3> { using ZPZ = aerobus::zpz<887>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<882»; }; // NOLINT
04818 template<> struct ConwayPolynomial<887, 4> { using ZPZ = aerobus::zpz<887>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<883>, ZPZV<5»; }; // NOLINT
04819 template<> struct ConwayPolynomial<887, 5> { using ZPZ = aerobus::zpz<887>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<882; }; // NOLINT
04820 template<> struct ConwayPolynomial<887, 6> { using ZPZ = aerobus::zpz<887>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<775>, ZPZV<341>, ZPZV<28>, ZPZV<5»; }; // NOLINT
04821 template<> struct ConwayPolynomial<887, 7> { using ZPZ = aerobus::zpz<887>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<8>, ZPZV<882*; };
04822 template<> struct ConwayPolynomial<887, 8> { using ZPZ = aerobus::zpz<887>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<781>, ZPZV<381>, ZPZV<706>, ZPZV<5»; }; //
       NOLINT
04823 template<> struct ConwayPolynomial<887, 9> { using ZPZ = aerobus::zpz<887>; using type :
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<727>, ZPZV<345>, ZPZV<882»;
       }; // NOLINT
04824 template<> struct ConwayPolynomial<907, 1> { using ZPZ = aerobus::zpz<907>; using type =
       POLYV<ZPZV<1>, ZPZV<905»; }; // NOLINT
04825 template<> struct ConwayPolynomial<907, 2> { using ZPZ = aerobus::zpz<907>; using type =
       POLYV<ZPZV<1>, ZPZV<903>, ZPZV<2»; };
                                                    // NOLINT
04826 template<> struct ConwayPolynomial<907, 3> { using ZPZ = aerobus::zpz<907>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<905»; }; // NOLINT
04827 template<> struct ConwayPolynomial<907, 4> { using ZPZ = aerobus::zpz<907>; using type =
POLYY<ZPZV<1>, ZPZV<0>, ZPZV<14>, ZPZV<478>, ZPZV<2»; }; // NOLINT
04828 template<> struct ConwayPolynomial<907, 5> { using ZPZ = aerobus::zpz<907>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<905»; }; // NOLINT
04829 template<> struct ConwayPolynomial<907, 6> { using ZPZ = aerobus::zpz<907>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<626>, ZPZV<752>, ZPZV<266>, ZPZV<2%; }; // NOLINT
04830 template<> struct ConwayPolynomial<907, 7> { using ZPZ = aerobus::zpz<907>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<905»; };
                                                                                                         // NOLINT
04831 template<> struct ConwayPolynomial<907, 8> { using ZPZ = aerobus::zpz<907>; using type
       POLYV<ZPZV<1>, ZPZV<0>, ZPŽV<0>, ZPŽV<0>, ZPZV<4>, ZPZV<584>, ZPZV<518>, ZPZV<811>, ZPZV<2»; }; //
04832 template<> struct ConwayPolynomial<907, 9> { using ZPZ = aerobus::zpz<907>; using type =
       POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<783>, ZPZV<785>, ZPZV<905»;
       }: // NOLINT
04833 template<> struct ConwayPolynomial<911, 1> { using ZPZ = aerobus::zpz<911>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<894»; }; // NOLINT
04834 template<> struct ConwayPolynomial<911, 2> { using ZPZ = aerobus::zpz<911>; using type = POLYV<ZPZV<1>, ZPZV<909>, ZPZV<17»; }; // NOLINT
04835 template<> struct ConwayPolynomial<911, 3> { using ZPZ = aerobus::zpz<911>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<894»; }; // NOLINT
04836 template<> struct ConwayPolynomial<911, 4> { using ZPZ = aerobus::zpz<911>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<11>, ZPZV<887>, ZPZV<17»; }; // NOLINT
04837 template<> struct ConwayPolynomial<911, 5> { using ZPZ = aerobus::zpz<911>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<894»; }; // NOLINT
04838 template<> struct ConwayPolynomial<911, 6> { using ZPZ = aerobus::zpz<911>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<172, ZPZV<683>, ZPZV<19>, ZPZV<17»; ; // NOLINT
04839 template<> struct ConwayPolynomial<911, 7> { using ZPZ = aerobus::zpz<911>; using ZPZ = aerobu
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<894»; };
04840 template<> struct ConwayPolynomial<911, 8> { using ZPZ = aerobus::zpz<911>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<5>, ZPZV<590>, ZPZV<168>, ZPZV<110*; }; //
04841 template<> struct ConwayPolynomial<911, 9> { using ZPZ = aerobus::zpz<911>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<67, ZPZV<679>, ZPZV<616>, ZPZV<894»;
         }; // NOLINT
04842 template<> struct ConwayPolynomial<919, 1> { using ZPZ = aerobus::zpz<919>; using type =
         POLYV<ZPZV<1>, ZPZV<912»; }; // NOLINT
04843 template<> struct ConwayPolynomial<919, 2> { using ZPZ = aerobus::zpz<919>; using type =
POLYV<ZPZV<1>, ZPZV<910>, ZPZV<7»; }; // NOLINT
04844 template<> struct ConwayPolynomial<919, 3> { using ZPZ = aerobus::zpz<919>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<912»; }; // NOLINT
04845 template<> struct ConwayPolynomial<919, 4> { using ZPZ = aerobus::zpz<919>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<602>, ZPZV<7>»; }; // NOLINT
04846 template<> struct ConwayPolynomial<919, 5> { using ZPZ = aerobus::zpz<919>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<11>, ZPZV<912»; }; // NOLINT
04847 template<> struct ConwayPolynomial<919, 6> { using ZPZ = aerobus::zpz<919>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<312>, ZPZV<817>, ZPZV<113>, ZPZV<7»; }; // NOLINT
04848 template<> struct ConwayPolynomial<919, 7> { using ZPZ = aerobus::zpz<919>;
                                                                                                                               using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<912»; };
04849 template<> struct ConwayPolynomial<919, 8> { using ZPZ = aerobus::zpz<919>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<708>, ZPZV<202>, ZPZV<504>, ZPZV<7»; }; //
         NOLINT
04850 template<> struct ConwayPolynomial<919, 9> { using ZPZ = aerobus::zpz<919>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5, ZPZV<7>, ZPZV<410>, ZPZV<623>, ZPZV<912»;
          }; // NOLINT
04851 template<> struct ConwayPolynomial<929, 1> { using ZPZ = aerobus::zpz<929>; using type =
         POLYV<ZPZV<1>, ZPZV<926»; }; // NOLINT
04852 template<> struct ConwayPolynomial<929, 2> { using ZPZ = aerobus::zpz<929>; using type =
POLYV<ZPZV<1>, ZPZV<917, ZPZV<3»; }; // NOLINT
04853 template<> struct ConwayPolynomial<929, 3> { using ZPZ = aerobus::zpz<929>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<926»; }; // NOLINT
04854 template<> struct ConwayPolynomial<929, 4> { using ZPZ = aerobus::zpz<929>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<787>, ZPZV<3»; }; // NOLINT
04855 template<> struct ConwayPolynomial<929, 5> { using ZPZ = aerobus::zpz<929>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<32, ZPZV<926%; }; // NOLINT
04856 template<> struct ConwayPolynomial<929, 6> { using ZPZ = aerobus::zpz<929>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<805>, ZPZV<92>, ZPZV<86>, ZPZV<3»; }; // NOLINT
04857 template<> struct ConwayPolynomial<929, 7> { using ZPZ = aerobus::zpz<929>; using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<7>, ZPZV<7>, ZPZV<926»; };
04858 template<> struct ConwayPolynomial<929, 8> { using ZPZ = aerobus::zpz<929>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<699>, ZPZV<292>, ZPZV<586>, ZPZV<3»; }; //
         NOLINT
04859 template<> struct ConwayPolynomial<929, 9> { using ZPZ = aerobus::zpz<929>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<481>, ZPZV<199>, ZPZV<926»;
          }; // NOLINT
04860 template<> struct ConwayPolynomial<937, 1> { using ZPZ = aerobus::zpz<937>; using type =
         POLYV<ZPZV<1>, ZPZV<932»; }; // NOLINT
04861 template<> struct ConwayPolynomial<937, 2> { using ZPZ = aerobus::zpz<937>; using type =
POLYV<ZPZV<1>, ZPZV<934>, ZPZV<5»; }; // NOLINT
04862 template<> struct ConwayPolynomial<937, 3> { using ZPZ = aerobus::zpz<937>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<932»; }; // NOLINT
04863 template<> struct ConwayPolynomial<937, 4> { using ZPZ = aerobus::zpz<937>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<23>, ZPZV<585>, ZPZV<5»; }; // NOLINT

04864 template<> struct ConwayPolynomial<937, 5> { using ZPZ = aerobus::zpz<937>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<932»; }; // NOLINT
04865 template<> struct ConwayPolynomial<937, 6> { using ZPZ = aerobus::zpz<937>; using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<794>, ZPZV<727>, ZPZV<934>, ZPZV<5»; }; // NOLINT
04866 template<> struct ConwayPolynomial<937, 7> { using ZPZ = aerobus::zpz<937>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<24>, ZPZV<932»; }; // NOLINT
04867 template<> struct ConwayPolynomial<937, 8> { using ZPZ = aerobus::zpz<937>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<658>, ZPZV<26>, ZPZV<53>, ZPZV<5»; }; //
04868 template<> struct ConwayPolynomial<937, 9> { using ZPZ = aerobus::zpz<937>; using type
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<28>, ZPZV<533>, ZPZV<483>, ZPZV<932»;
          }; // NOLTNT
04869 template<> struct ConwayPolynomial<941, 1> { using ZPZ = aerobus::zpz<941>; using type =
         POLYV<ZPZV<1>, ZPZV<939»; }; // NOLINT
04870 template<> struct ConwayPolynomial<941, 2> { using ZPZ = aerobus::zpz<941>; using type =
         POLYV<ZPZV<1>, ZPZV<940>, ZPZV<2»; }; // NOLINT
04871 template<> struct ConwayPolynomial<941, 3> { using ZPZ = aerobus::zpz<941>; using type =
         POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<939»; }; // NOLINT
04872 template<> struct ConwayPolynomial<941, 4> { using ZPZ = aerobus::zpz<941>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<505>, ZPZV<2»; }; // NOLINT
```

```
04873 template<> struct ConwayPolynomial<941, 5> { using ZPZ = aerobus::zpz<941>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<939»; }; // NOLINT
04874 template<> struct ConwayPolynomial<941, 6> { using ZPZ = aerobus::zpz<941>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<459>, ZPZV<694>, ZPZV<538>, ZPZV<2»; }; // NOLINT
04875 template<> struct ConwayPolynomial<941, 7> { using ZPZ = aerobus::zpz<941>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<4>, ZPZV<939»; );
04876 template<> struct ConwayPolynomial<941, 8> { using ZPZ = aerobus::zpz<941>; using type
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<675>, ZPZV<590>, ZPZV<590>, ZPZV<2»; }; //
04877 template<> struct ConwayPolynomial<941, 9> { using ZPZ = aerobus::zpz<941>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<708>, ZPZV<197>, ZPZV<939»;
           }; // NOLINT
04878 template<> struct ConwayPolynomial<947, 1> { using ZPZ = aerobus::zpz<947>; using type =
           POLYV<ZPZV<1>, ZPZV<945»; }; // NOLINT
04879 template<> struct ConwayPolynomial<947, 2> { using ZPZ = aerobus::zpz<947>; using type =
POLYV<ZPZV<1>, ZPZV<943>, ZPZV<2»; }; // NOLINT
04880 template<> struct ConwayPolynomial<947, 3> { using ZPZ = aerobus::zpz<947>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<945»; }; // NOLINT
04881 template<> struct ConwayPolynomial<947, 4> { using ZPZ = aerobus::zpz<947>; using type =
POLYV<2PZV<1>, ZPZV<8>, ZPZV<89, ZPZV<894>, ZPZV<89; }; // NOLINT
04882 template<> struct ConwayPolynomial<947, 5> { using ZPZ = aerobus::zpz<947>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<15>, ZPZV<945»; }; // NOLINT
04883 template<> struct ConwayPolynomial<947, 6> { using ZPZ = aerobus::zpz<947>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<880>, ZPZV<787>, ZPZV<95>, ZPZV<2»; }; // NOLINT 04884 template<> struct ConwayPolynomial<947, 7> { using ZPZ = aerobus::zpz<947>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<6>, ZPZV<64, ZPZV<945»; };
04885 template<> struct ConwayPolynomial<947, 8> { using ZPZ = aerobus::zpz<947>; using type :
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<845>, ZPZV<597>, ZPZV<581>, ZPZV<2»; }; //
           NOLINT
04886 template<> struct ConwayPolynomial<947, 9> { using ZPZ = aerobus::zpz<947>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<1>, ZPZV<269>, ZPZV<808>, ZPZV<945»;
           }; // NOLINT
04887 template<> struct ConwayPolynomial<953, 1> { using ZPZ = aerobus::zpz<953>; using type =
           POLYV<ZPZV<1>, ZPZV<950»; }; // NOLINT
04888 template<> struct ConwayPolynomial<953, 2> { using ZPZ = aerobus::zpz<953>; using type =
POLYY<ZPZY<1>, ZPZY<947>, ZPZY<3»; }; // NOLINT
04889 template<> struct ConwayPolynomial<953, 3> { using ZPZ = aerobus::zpz<953>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<7>, ZPZV<950»; }; // NOLINT
04890 template<> struct ConwayPolynomial<953, 4> { using ZPZ = aerobus::zpz<953>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<865>, ZPZV<3»; }; // NOLINT
04891 template<> struct ConwayPolynomial<953, 5> { using ZPZ = aerobus::zpz<953>; using type =
           \verb"POLYV<ZPZV<1>, \verb"ZPZV<0>, \verb"ZPZV<0>, \verb"ZPZV<0>, \verb"ZPZV<1>, \verb"ZPZV<950"; \verb"}; $ // \verb"NOLINT" | NOLINT" | NOLINT"
04892 template<> struct ConwayPolynomial<953, 6> { using ZPZ = aerobus::zpz<953>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<507>, ZPZV<829>, ZPZV<730>, ZPZV<3»; }; // NOLINT
04893 template<> struct ConwayPolynomial<953, 7> { using ZPZ = aerobus::zpz<953>; using type
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<5>, ZPZV<950»; };
04894 template<> struct ConwayPolynomial<953, 8> { using ZPZ = aerobus::zpz<953>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<6>, ZPZV<579>, ZPZV<658>, ZPZV<108>, ZPZV<3»; }; //
           NOLINT
04895 template<> struct ConwayPolynomial<953, 9> { using ZPZ = aerobus::zpz<953>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3, ZPZV<1>, ZPZV<819>, ZPZV<316>, ZPZV<950»;
           }; // NOLINT
04896 template<> struct ConwayPolynomial<967, 1> { using ZPZ = aerobus::zpz<967>; using type =
          POLYV<ZPZV<1>, ZPZV<962»; }; // NOLINT
04897 template<> struct ConwayPolynomial<967, 2> { using ZPZ = aerobus::zpz<967>; using type =
POLYV<ZPZV<1>, ZPZV<965>, ZPZV<5»; }; // NOLINT
04898 template<> struct ConwayPolynomial<967, 3> { using ZPZ = aerobus::zpz<967>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<962»; }; // NOLINT
04899 template<> struct ConwayPolynomial<967, 4> { using ZPZ = aerobus::zpz<967>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<963>, ZPZV<5»; }; // NOLINT
04900 template<> struct ConwayPolynomial<967, 5> { using ZPZ = aerobus::zpz<967>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<2>, ZPZV<962»; }; // NOLINT
04901 template<> struct ConwayPolynomial<967, 6> { using ZPZ = aerobus::zpz<967>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<805>, ZPZV<948>, ZPZV<831>, ZPZV<5»; }; // NOLINT
04902 template<> struct ConwayPolynomial<967, 7> { using ZPZ = aerobus::zpz<967>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<962»; };
04903 template<> struct ConwayPolynomial<967, 8> { using ZPZ = aerobus::zpz<967>; using type
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<15>, ZPZV<840>, ZPZV<502>, ZPZV<136>, ZPZV<5»; }; //
          NOLINT
04904 template<> struct ConwayPolynomial<967, 9> { using ZPZ = aerobus::zpz<967>; using type
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<512>, ZPZV<783>, ZPZV<783
           }; // NOLINT
04905 template<> struct ConwayPolynomial<971, 1> { using ZPZ = aerobus::zpz<971>; using type =
          POLYV<ZPZV<1>, ZPZV<965»; }; // NOLINT
04906 template<> struct ConwayPolynomial<971, 2> { using ZPZ = aerobus::zpz<971>; using type =
           POLYV<ZPZV<1>, ZPZV<970>, ZPZV<6»; }; // NOLINT
04907 template<> struct ConwayPolynomial<971, 3> { using ZPZ = aerobus::zpz<971>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<3>, ZPZV<965»; }; // NOLINT
04908 template<> struct ConwayPolynomial<971, 4> { using ZPZ = aerobus::zpz<971>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<527>, ZPZV<6»; }; // NOLINT
04909 template<> struct ConwayPolynomial<971, 5> { using ZPZ = aerobus::zpz<971>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<14>, ZPZV<965»; }; // NOLINT
04910 template<> struct ConwayPolynomial<971, 6> { using ZPZ = aerobus::zpz<971>; using type =
          POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<970>, ZPZV<729>, ZPZV<718>, ZPZV<6»; }; // NOLINT
04911 template<> struct ConwayPolynomial<971, 7> { using ZPZ = aerobus::zpz<971>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<13, ZPZV<965»; }; // NOLINT 04912 template<> struct ConwayPolynomial<971, 8> { using ZPZ = aerobus::zpz<971>; using type =
```

```
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<5>, ZPZV<281>, ZPZV<206>, ZPZV<6*; }; //
04913 template<> struct ConwayPolynomial<971, 9> { using ZPZ = aerobus::zpz<971>; using type =
           POLÝV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<805>, ŽPZV<473>, ZPZV<965»;
            }: // NOLINT
04914 template<> struct ConwayPolynomial<977, 1> { using ZPZ = aerobus::zpz<977>; using type =
           POLYV<ZPZV<1>, ZPZV<974»; }; // NOLINT
04915 template<> struct ConwayPolynomial<977, 2> { using ZPZ = aerobus::zpz<977>; using type =
POLYV<ZPZV<1>, ZPZV<972>, ZPZV<3»; }; // NOLINT
04916 template<> struct ConwayPolynomial<977, 3> { using ZPZ = aerobus::zpz<977>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<974»; }; // NOLINT

04917 template<> struct ConwayPolynomial<977, 4> { using ZPZ = aerobus::zpz<977>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<800>, ZPZV<3»; }; // NOLINT

04918 template<> struct ConwayPolynomial<977, 5> { using ZPZ = aerobus::zpz<977>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<800>, ZPZV<3»; }; // NOLINT
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<11>, ZPZV<974»; }; // NOLINT
04919 template<> struct ConwayPolynomial<977, 6> { using ZPZ = aerobus::zpz<977>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<729>, ZPZV<830>, ZPZV<753>, ZPZV<3»; }; // NOLINT
04920 template<> struct ConwayPolynomial<977, 7> { using ZPZ = aerobus::zpz<977>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<974»; }; // NOLINT
04921 template<> struct ConwayPolynomial<977, 8> { using ZPZ = aerobus::zpz<977>; using type
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<855>, ZPZV<807>, ZPZV<77>, ZPZV<3»; }; //
           NOLINT
04922 template<> struct ConwayPolynomial<977, 9> { using ZPZ = aerobus::zpz<977>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<450>, ZPZV<740>, ZPZV<740>, ZPZV<974»;
            }; // NOLINT
04923 template<> struct ConwayPolynomial<983, 1> { using ZPZ = aerobus::zpz<983>; using type =
           POLYV<ZPZV<1>, ZPZV<978»; }; // NOLINT
04924 template<> struct ConwayPolynomial<983, 2> { using ZPZ = aerobus::zpz<983>; using type =
           POLYV<ZPZV<1>, ZPZV<981>, ZPZV<5»; }; // NOLINT
04925 template<> struct ConwayPolynomial<983, 3> { using ZPZ = aerobus::zpz<983>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<1>, ZPZV<978»; }; // NOLINT
04926 template<> struct ConwayPolynomial<983, 4> { using ZPZ = aerobus::zpz<983>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<5>, ZPZV<567>, ZPZV<58; }; // NOLINT
04927 template<> struct ConwayPolynomial<983, 5> { using ZPZ = aerobus::zpz<983>; using type =
            \verb"POLYV<ZPZV<1>, \verb"ZPZV<0>, \verb"ZPZV<0>, \verb"ZPZV<8>, \verb"ZPZV<978"; \verb"}; $ // \verb"NOLINT" | NOLINT" 
04928 template<> struct ConwayPolynomial<983, 6> { using ZPZ = aerobus::zpz<983>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<849>, ZPZV<296>, ZPZV<228>, ZPZV<5»; }; // NOLINT
04929 template<> struct ConwayPolynomial<983, 7> { using ZPZ = aerobus::zpz<983>, using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<3>, ZPZV<978»; };
04930 template<> struct ConwayPolynomial<983, 8> { using ZPZ = aerobus::zpz<983>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<738>, ZPZV<276>, ZPZV<530>, ZPZV<5»; }; //
           NOLINT
04931 template<> struct ConwayPolynomial<983, 9> { using ZPZ = aerobus::zpz<983>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<85>, ZPZV<87>, ZPZV<87
04932 template<> struct ConwayPolynomial<991, 1> { using ZPZ = aerobus::zpz<991>; using type =
           POLYV<ZPZV<1>, ZPZV<985»; }; // NOLINT
04933 template<> struct ConwayPolynomial<991, 2> { using ZPZ = aerobus::zpz<991>; using type =
POLYV<ZPZV<1>, ZPZV<989>, ZPZV<6»; }; // NOLINT
04934 template<> struct ConwayPolynomial<991, 3> { using ZPZ = aerobus::zpz<991>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<985»; }; // NOLINT
04935 template<> struct ConwayPolynomial<991, 4> { using ZPZ = aerobus::zpz<991>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<10>, ZPZV<794>, ZPZV<6»; }; // NOLINT
04936 template<> struct ConwayPolynomial<991, 5> { using ZPZ = aerobus::zpz<991>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<3>, ZPZV<985»; }; // NOLINT
04937 template<> struct ConwayPolynomial<991, 6> { using ZPZ = aerobus::zpz<991>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<637>, ZPZV<855>, ZPZV<278>, ZPZV<6»; }; // NOLINT
04938 template<> struct ConwayPolynomial<991, 7> { using ZPZ = aerobus::zpz<991>; using type
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<7>, ZPZV<985»; }; // NOLINT
04939 template<> struct ConwayPolynomial<991, 8> { using ZPZ = aerobus::zpz<991>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<15>, ZPZV<941>, ZPZV<786>, ZPZV<234>, ZPZV<6»; }; //
           NOLINT
04940 template<> struct ConwayPolynomial<991, 9> { using ZPZ = aerobus::zpz<991>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<9>, ZPZV<466>, ZPZV<262>, ZPZV<285»;
            }; // NOLINT
04941 template<> struct ConwayPolynomial<997, 1> { using ZPZ = aerobus::zpz<997>; using type =
           POLYV<ZPZV<1>, ZPZV<990»; }; // NOLINT
04942 template<> struct ConwayPolynomial<997, 2> { using ZPZ = aerobus::zpz<997>; using type =
           POLYV<ZPZV<1>, ZPZV<995>, ZPZV<7»; }; // NOLINT
04943 template<> struct ConwayPolynomial<997, 3> { using ZPZ = aerobus::zpz<997>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<2>, ZPZV<990»; }; // NOLINT
04944 template<> struct ConwayPolynomial<997, 4> { using ZPZ = aerobus::zpz<997>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<4>, ZPZV<622>, ZPZV<7»; }; // NOLINT
04945 template<> struct ConwayPolynomial<997, 5> { using ZPZ = aerobus::zpz<997>; using type =
POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<10>, ZPZV<990»; }; // NOLINT
04946 template<> struct ConwayPolynomial<997, 6> { using ZPZ = aerobus::zpz<997>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<981>, ZPZV<58>, ZPZV<260>, ZPZV<7»; }; // NOLINT
04947 template<> struct ConwayPolynomial<997, 7> { using ZPZ = aerobus::zpz<997>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<990»; };
                                                                                                                                                                        // NOLINT
04948 template<> struct ComwayPolynomial<997, 8> { using ZPZ = aerobus::zpz<997>; using type = POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<34>, ZPZV<473>, ZPZV<41>, ZPZV<241>, ZPZV<241>, ZPZV<541>, ZPZV<541
04949 template<> struct ConwayPolynomial<997, 9> { using ZPZ = aerobus::zpz<997>; using type =
           POLYV<ZPZV<1>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<0>, ZPZV<39>, ZPZV<39>, ZPZV<732>, ZPZV<616>, ZPZV<990»;
            }; // NOLINT
04950 #endif // AEROBUS_CONWAY_IMPORTS
```

04952 #endif // __INC_AEROBUS__ // NOLINT

Chapter 7

Examples

7.1 QuotientRing

inject a 'constant' in quotient ring <i32, i32::val<2>>::inject_constant_t<1>

inject a 'constant' in quotient ring <i32, i32::val<2>>::inject_constant_t<1>

Template Parameters

x a 'constant' from Ring point of view

7.2 type_list

A list of types <int, double, float>

A list of types <int, double, float>

Template Parameters

... Ts | types to store and manipulate at compile time

7.3 i32::template

inject a native constant

inject a native constant

Template Parameters

x inject_constant_2<2> -> i32::template val<2>

128 Examples

7.4 i32::add_t

addition operator yields v1 + v2 <i32::val<2>, i32::val<3>> addition operator yields v1 + v2 <i32::val<2>, i32::val<3>>

Template Parameters

v1	a value in i32
v2	a value in i32

7.5 i32::sub_t

substraction operator yields v1 - v2 <i32::val<3>, i32::val<2>> substraction operator yields v1 - v2 <i32::val<3>, i32::val<2>>

Template Parameters

v1	a value in i32
v2	a value in i32

7.6 i32::mul_t

multiplication operator yields v1 * v2 <i32::val<3>, i32::val<2>> multiplication operator yields v1 * v2 <i32::val<3>, i32::val<2>>

Template Parameters

v1	a value in i32
v2	a value in i32

7.7 i32::div_t

 $\label{eq:continuous} \mbox{division operator yields v1 / v2 < i32::val < 7>, i32::val < 2>> -> i32::val < 3> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7>, i32::val < 2>> -> i32::val < 3> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7>, i32::val < 2>> -> i32::val < 3> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7>, i32::val < 2>> -> i32::val < 3> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7>, i32::val < 7>, i32::val < 7> -> i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> -> i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> } \\ \mbox{division operator yields v1 / v2 < i32::val < 7> }$

v1	a value in i32
v2	a value in i32

7.11 i32::gcd_t 129

7.8 i32::gt_t

strictly greater operator (v1 > v2) yields v1 > v2 <i32::val<7>, i32::val<2><math>> strictly greater operator (v1 > v2) yields v1 > v2 <i32::val<7>, i32::val<2><math>>

Template Parameters

v1	a value in i32
v2	a value in i32

7.9 i32::eq_t

$$\label{eq:constant} \begin{split} &\text{equality operator (type) yields v1 == v2 as std::integral_constant<bool> < i32::val<2>, i32::val<2>> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant<bool> < i32::val<2>, i32::val<2>> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant<bool> < i32::val<2>, i32::val<2>> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant<bool> < i32::val<2>, i32::val<2>> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std::integral_constant
 < i32::val<2> \\ &\text{equality operator (type) yields v1 == v2 as std:$$

Template Parameters

v1	a value in i32
v2	a value in i32

7.10 i32::eq_v

equality operator (boolean value)

equality operator (boolean value)

Template Parameters

v1	
v2	<i32::val<1>, i32::val<1>></i32::val<1>

7.11 i32::gcd_t

greatest common divisor yields GCD(v1, v2) < i32::val < 6>, i32::val < 15>> greatest common divisor yields GCD(v1, v2) < i32::val < 6>, i32::val < 6>, i32::val < 15>>

v1	a value in i32
v2	a value in i32

130 Examples

7.12 i32::pos_t

positivity operator yields v>0 as std::true_type or std::false_type <i32::val<1 positivity operator yields v>0 as std::true_type or std::false_type <i32::val<1

Template Parameters

v a value in i32

7.13 i32::pos_v

positivity (boolean value) yields $\mathbf{v}>\mathbf{0}$ as boolean value

positivity (boolean value) yields $\mathbf{v}>\mathbf{0}$ as boolean value

Template Parameters

v a value in i32 <i32::val<1>>

7.14 i64::template

injects constant as an i64 value

injects constant as an i64 value

Template Parameters

x inject_constant_t<2>

7.15 i64::add_t

addition operator

addition operator

v1	: an element of aerobus::i64::val
v2	: an element of aerobus::i64::val <i64::val<1>, i64::val<2>></i64::val<1>

7.19 i64::mod_t 131

7.16 i64::sub_t

substraction operator

substraction operator

Template Parameters

v1	: an element of aerobus::i64::val
v2	: an element of aerobus::i64::val <i64::val <1="">, i64::val <2>></i64::val>

7.17 i64::mul_t

multiplication operator

multiplication operator

Template Parameters

v1	: an element of aerobus::i64::val
v2	: an element of aerobus::i64::val <i64::val<1>, i64::val<2>></i64::val<1>

7.18 i64::div_t

division operator integer division

division operator integer division

Template Parameters

v1	: an element of aerobus::i64::val
v2	: an element of aerobus::i64::val <i64::val <1="">, i64::val <2>></i64::val>

7.19 i64::mod_t

modulus operator

modulus operator

v1	: an element of aerobus::i64::val	
v2	: an element of aerobus::i64::val <i64::val <6="">, i64::val <15>></i64::val>	

132 Examples

7.20 i64::gt t

strictly greater operator yields v1 > v2 as std::true_type or std::false_type strictly greater operator yields v1 > v2 as std::true_type or std::false_type

Template Parameters

v1	: an element of aerobus::i64::val	
v2	: an element of aerobus::i64::val <i64::val <2="">, i64::val <1>></i64::val>	

7.21 i64::lt_t

strict less operator yields v1 < v2 as std::true_type or std::false_type strict less operator yields v1 < v2 as std::true_type or std::false_type

Template Parameters

v1 : an element of aerobus::i64::val		: an element of aerobus::i64::val
	v2	: an element of aerobus::i64::val <i64::val<1>, i64::val<2>></i64::val<1>

7.22 i64::lt_v

strictly smaller operator yields v1 < v2 as boolean value strictly smaller operator yields v1 < v2 as boolean value

Template Parameters

v1	: an element of aerobus::i64::val
v2	: an element of aerobus::i64::val <i64::val <1="">, i64::val <2>></i64::val>

7.23 i64::eq_t

equality operator yields v1 == v2 as std::true_type or std::false_type
equality operator yields v1 == v2 as std::true_type or std::false_type

v1	: an element of aerobus::i64::val	
v2	: an element of aerobus::i64::val <i64::val <2="">, i64::val <2>></i64::val>	

7.27 i64::pos_v 133

7.24 i64::eq_v

equality operator yields v1 == v2 as boolean value

equality operator yields v1 == v2 as boolean value

Template Parameters

v1	: an element of aerobus::i64::val	
v2	: an element of aerobus::i64::val <i64::val <2="">, i64::val <2>></i64::val>	

7.25 i64::gcd_t

greatest common divisor yields GCD(v1, v2) as instanciation of i64::val greatest common divisor yields GCD(v1, v2) as instanciation of i64::val

Template Parameters

v1	: an element of aerobus::i64::val	
v2	: an element of aerobus::i64::val <i64::val <6="">, i64::val <15>></i64::val>	

7.26 i64::pos_t

is v posititive yields v>0 as std::true_type or std::false_type

is v posititive yields v > 0 as std::true_type or std::false_type

Template Parameters

```
v1 : an element of aerobus::i64::val <i64::val <1>>
```

7.27 i64::pos_v

positivity yields v > 0 as boolean value

positivity yields $\mathbf{v}>\mathbf{0}$ as boolean value

Template Parameters

v : an element of aerobus::i64::val <i64::val <1>>

134 Examples

7.28 polynomial

makes the constant (native type) polynomial a_0

makes the constant (native type) polynomial a_0

Template Parameters

x <i32>::template inject_constant_t<2>

7.29 q32::add_t

addition operator

addition operator

Template Parameters

v1	a value	
v2	a value <q32::val<i32::val<1>, i32::val<2>>, q32::val<i32::val<1>, i32::val<3>>></i32::val<1></q32::val<i32::val<1>	Ī

7.30 FractionField

Fraction field of an euclidean domain, such as Q for Z.

Fraction field of an euclidean domain, such as Q for Z

Template Parameters

Ring <i64> is q64 (rationals with 64 bits numerator and denominator)

7.31 Pl_fraction::val

representation of PI as a continued fraction -> 3.14...

7.32 E_fraction::val

approximation of e -> 2.718...

approximation of e -> 2.718...

Index

```
add t
                                                              to_string, 34
     aerobus::polynomial < Ring >, 17
                                                         aerobus::Quotient < Ring, X >, 22
     aerobus::Quotient < Ring, X >, 23
                                                              add t, 23
     aerobus::zpz , 38
                                                              div t, 23
aerobus::ContinuedFraction < a0 >, 10
                                                              eq_t, 23
aerobus::ContinuedFraction < a0, rest... >, 11
                                                              eq_v, 25
aerobus::ContinuedFraction < values >, 10
                                                              mod t, 24
aerobus::i32, 11
                                                              mul_t, 24
     mod_t, 13
                                                              pos_t, 24
aerobus::i32::val< x >, 29
                                                              pos v, 25
     eval, 30
                                                         aerobus::Quotient< Ring, X >::val< V >, 35
     get, 30
                                                         aerobus::type_list< Ts >, 26
aerobus::i64, 13
                                                              at, 27
     gt_v, 15
                                                              concat, 27
     inject_ring_t, 14
                                                              insert, 27
aerobus::i64::val < x >, 31
                                                              push_back, 28
     eval, 32
                                                              push_front, 28
     get, 32
                                                              remove, 28
aerobus::is_prime< n >, 15
                                                         aerobus::type_list< Ts >::pop_front, 21
aerobus::IsEuclideanDomain, 7
                                                         aerobus::type_list< Ts >::split< index >, 25
aerobus::IsField, 7
                                                         aerobus::type_list<>, 29
aerobus::IsRing, 8
                                                         aerobus::zpz , 37
aerobus::polynomial < Ring >, 16
                                                              add t. 38
     add t, 17
                                                              div t, 38
    derive_t, 17
                                                              eq_t, 39
     div t, 18
                                                              eq v, 41
     eq_t, 18
                                                              gcd_t, 39
     gcd_t, 18
                                                              gt_t, 39
    gt_t, 19
                                                              gt_v, 41
                                                              It t, 39
    It t, 19
     mod t, 19
                                                              It v, 41
     monomial_t, 19
                                                              mod_t, 40
     mul_t, 20
                                                              mul t, 40
     pos t, 20
                                                              pos_t, 40
                                                              pos_v, 42
    pos_v, 21
     simplify_t, 20
                                                              sub_t, 41
     sub_t, 20
                                                         aerobus::zpz<p>::val<math><x>, 35
aerobus::polynomial < Ring >::val < coeffN >, 36
aerobus::polynomial < Ring >::val < coeffN >::coeff_at <
                                                              aerobus::type_list< Ts >, 27
         index, E >, 9
                                                         coeff at t
aerobus::polynomial < Ring >::val < coeffN >::coeff_at <
                                                              aerobus::polynomial< Ring >::val< coeffN, coeffs
         index, std::enable if t < (index < 0 \mid | index >
         0)>>, 9
aerobus::polynomial < Ring >::val < coeffN >::coeff at <
                                                         concat
                                                              aerobus::type_list< Ts >, 27
         index, std::enable if t < (index == 0) > 0,
aerobus::polynomial< Ring >::val< coeffN, coeffs >,
                                                         derive t
                                                              aerobus::polynomial< Ring >, 17
     coeff_at_t, 33
                                                         div t
     eval, 34
                                                              aerobus::polynomial < Ring >, 18
```

136 INDEX

aerobus::Quotient< Ring, $X >$, 23 aerobus::zpz, 38	<pre>push_back aerobus::type_list< Ts >, 28 push_front</pre>
eq_t	aerobus::type_list< Ts >, 28
aerobus::polynomial< Ring >, 18	- · ·
aerobus::Quotient< Ring, X >, 23	remove
aerobus::zpz, 39 eq_v	aerobus::type_list< Ts >, 28
aerobus::Quotient< Ring, X >, 25	simplify_t
aerobus::zpz, 41	aerobus::polynomial< Ring >, 20
eval	src/aerobus.h, 43
aerobus::i32::val< x >, 30	sub_t
aerobus::i64::val $< x >$, 32 aerobus::polynomial $<$ Ring $>$::val $<$ coeffN, coeffs	aerobus::polynomial< Ring >, 20 aerobus::zpz, 41
>, 34	(a)
. , -	to_string
gcd_t	aerobus::polynomial< Ring >::val< coeffN, coeffs
aerobus::polynomial < Ring >, 18	>, 34
aerobus::zpz, 39 get	
aerobus::i32::val $< x >$, 30	
aerobus::i64::val $< x >$, 32	
gt_t	
aerobus::polynomial< Ring >, 19	
aerobus::zpz, 39	
gt_v aerobus::i64, 15	
aerobus::zpz, 41	
inject_ring_t	
aerobus::i64, 14 insert	
aerobus::type_list< Ts >, 27	
<pre>lt_t aerobus::polynomial < Ring >, 19</pre>	
aerobus:: $zpz $, 39	
lt_v	
aerobus::zpz, 41	
mod t	
mod_t aerobus::i32, 13	
aerobus::polynomial< Ring >, 19	
aerobus::Quotient< Ring, X >, 24	
aerobus::zpz, 40	
monomial_t	
aerobus::polynomial< Ring >, 19 mul_t	
aerobus::polynomial< Ring >, 20	
aerobus::Quotient< Ring, X >, 24	
aerobus::zpz, 40	
pos_t	
aerobus::polynomial < Ring >, 20	
aerobus::Quotient< Ring, X >, 24	
aerobus::zpz, 40	
pos_v	
aerobus::polynomial < Ring >, 21	
aerobus::Quotient< Ring, X >, 25 aerobus::zpz, 42	