# **Link Prediction**

Prof. O-Joun Lee

Dept. of Artificial Intelligence, The Catholic University of Korea ojlee@catholic.ac.kr







### Contents



- Challenges in Link prediction
- Common methods
  - Common neighbours
  - > Jaccard coefficient
  - Adamic-Adar
  - > Preferential attachment
  - > Path based
  - > SimRank
- > Tools for link prediction



#### Link Prediction in Social Networks

- What we can do in social network prediction:
  - Friend Suggestions
    - Forecast likelihood of connection formation
    - Utilize network structure and historical interactions
  - Community Detection
    - Identify cohesive groups within the network
    - Employ clustering algorithms and network analysis
  - User Behavior Prediction
    - > Predict user engagement, churn, or sentiment
    - > Inform marketing and product strategies

### Link Prediction in Social Networks

#### Friend Suggestions task



Facebook social circles where 'ego' is owner



# Link Prediction in Recommendation Systems

- What we can do in recommendation systems prediction:
  - Rating Prediction
    - Predict user-item ratings
  - Cold-Start Recommendation
    - > Address cold-start problem for new users or items
    - Utilize content-based information or hybrid approaches
  - Implicit Feedback Prediction
    - Predict user interaction likelihood from implicit feedback

# Link Prediction in Recommendation Systems

#### Link prediction as an exposure

- ➤ At time t<sub>0</sub> we expose Mary to Bicycle
- > We will define this intervention exposure as
  - ightharpoonup E<sup>(t0)</sup> = (Mary, Bicycle)



# Link Prediction in Recommendation Systems

#### Link prediction as an exposure

- ➤ At time t₁ we see if Lincoln bought Bicycle
- > The outcome of the exposure at t<sub>1</sub>
  - $A_{Mary,Bicycle}^{(t_1)} \in \{0,1\}$



# Link Prediction in Chemistry

- What we can do in recommendation systems prediction:
  - Chemical Property Prediction
    - Forecast physicochemical properties (e.g., solubility, toxicity)
  - Drug Discovery and Design
    - > Identify drug candidates and optimize molecules
  - Reaction Prediction
    - Predict chemical reaction outcomes and pathways



# Link Prediction in Transportation Systems

- What we can do in recommendation systems prediction:
  - > Traffic Flow Prediction
    - > Forecast traffic congestion, flow rates, and travel times
  - Demand Forecasting
    - Predict future demand for transportation services
  - Route Optimization
    - > Optimize routes for vehicles, passengers, or freight
  - Accident Prediction
    - Predict the likelihood of traffic accidents and identify high-risk areas
  - Travel Time Estimation
    - > Estimate travel times for different transportation modes and routes



# Challenges in Link predictions: Graph sparsity

- ➤ Networks often exhibit sparsity, where the number of observed connections is much smaller than the total number of possible connections.
- This makes it challenging to infer missing links accurately, especially in large-scale networks
- A sparse graph has a number of edges closer to the minimal number of edges
- Eg: A graph has 5 nodes and only 4 edges





# Challenges in Link predictions: Temporal dynamic

- Networks evolve over time, with new connections forming and existing connections breaking.
- ➤ Link prediction models must be able to capture and adapt to temporal dynamics, predicting future links based on past network states.



# Challenges in Link predictions: Noisy data and missing attributes

- > Link prediction models often rely on node and edge attributes to infer connections
- ➤ However, real-world data may be incomplete or noisy, leading to challenges in feature selection and model training





## Types of Link Prediction

- There are 3 types of Link Prediction
  - Positive Link
    - > Positive links refer to connections or relationships that are expected or desirable in a network
    - > These connections typically represent friendships, collaborations, interactions, or any other positive associations between nodes
  - Negative Link
    - Negative links represent relationships or connections that are undesirable or unlikely in a network
    - > These connections might indicate conflicts, disagreements, competition, or any other negative associations between nodes
  - Neutral Link
    - Neutral links refer to connections that neither positively nor negatively affect the network
    - > These connections are typically neither desirable nor undesirable; they might represent indifference or lack of significant interaction between nodes

# Types of Link Prediction

- ➤ There are 3 types of Link Prediction
  - Positive Link
  - Negative Link
  - Neutral Link







#### The intuition

- ➤ Link prediction also equals to "Relation prediction" or "Graph completion" or "Relational inference" depending on the specific application domain
- ➤ In many networks, people who are "close" belong to the same social circles and will inevitably encounter one another and become linked themselves.
- Link prediction heuristics measure how "close" people are



Red nodes are close to each other

Red nodes are more distant

### **Link Prediction Methods**

- Local
  - Common Neighbours (CN)
  - Jaccard's Coefficient (JC)
  - Adamic-Adar (AA)
  - Preferential attachment (PA)
  - > Other:
    - > Salton index
    - > Sorensen index
    - > Hub Promoted index
    - > Hub Depressed Index
- Global
  - Path based
  - Path based Hitting time
  - > SimRank





## **Graph Distance**

- Graph distance: Length of shortest path between two nodes in the graphs
- > E.g., the distance between nodes in graphs:



| (A, C) | ? |
|--------|---|
| (C, D) | ? |
| (A, E) | ? |



## Graph Distance

```
# Calculate graph distance
   def calculate graph distance(G, source, target):
       return nx.shortest path length(G, source=source, target=target)
   # Instantiate the graph
  G = nx.Graph()
   edges = [("A", "B"), ("B", "C"), ("B", "D"), ("D", "E")]
   # add node/edge pairs
   G.add edges from(edges)
   # Use spring layout for better visualization
   pos = nx.spring layout(G)
  nx.draw(G, pos, with labels=True)
   # Calculate distances
   distances = {
       ("A", "C"): calculate graph distance(G, 'A', 'C'),
       ("C", "D"): calculate graph distance(G, 'C', 'D'),
       ("A", "E"): calculate graph distance(G, 'A', 'E'),
   print("Graph distances:")
   for nodes, distance in distances.items():
       print(f"{nodes} | {distance}")

√ 0.0s

Graph distances:
('A', 'C') | 2
('C', 'D') | 2
('A', 'E') | 3
```



| (A, C) | 2 |
|--------|---|
| (C, D) | 2 |
| (A, E) | 3 |





# Common Neighbors

- How many neighbours are in common between x and y
- X and Y have 3 common neighbours, more likely to collaborate
- $\triangleright$  Let N(x) denote the set of nodes adjacent to x, N(x)= {m| (x, m)  $\in$  E}



$$CN = |N(x)| \cap |N(y)| = 3$$

# Common Neighbours: Sample code

```
# Instantiate the graph
  G = nx.Graph()
  # Define edges
  edges = [(0, 1), (1, 2), (0, 3), (1, 3), (0, 4), (1, 5), (4, 5), (1, 6),
           (2, 6), (5, 6), (6, 7), (3, 8), (4, 8), (6, 8), (3, 9), (4, 9),
           (1, 9), (8, 9), (2, 10), (6, 10), (7, 10), (9, 10)
  # Add edges to the graph
  G.add edges from(edges)
  # Use spring layout for better visualization
  pos = nx.spring layout(G)
  nx.draw(G, pos, with labels=True)
  # Calculate common neighbors of nodes 6 and 9
  cn list = sorted(nx.common neighbors(G, 6, 9))
  # Print common neighbors
  print(f"The common neighbors of nodes 6 and 9 are: {cn list}")
✓ 0.0s
The common neighbors of nodes 6 and 9 are: [1, 8, 10]
```





### Jaccard's coefficient

- How likely a neighbour of x is also a neighbour of y
- Same as common neighbors, adjusted for degree



$$JC = \frac{|N(x) \cap N(y)|}{|N(x) \cup N(y)|} = \frac{CN}{d_x + d_y - CN}$$

## Jaccard's coefficient: sample code





## Adamic-Adar (AA)

- Large weight to common neighbours with low degree (the lower the degree the higher the relevance)
- E.g., Neighbours who are linked with 2 nodes are assigned weight = 1/log(2) = 1.4
  - $\triangleright$  Neighbours who are linked with 5 nodes are assigned weight =  $1/\log(5) = 0.62$

$$AA = \sum_{z \in CN} \frac{1}{\log d_z}$$



## Adamic-Adar (AA): sample code





## Preferential attachment (PA)

- Better connected nodes are more likely to form more links.
- The more popular a node is the more probable it will form a link with popular nodes.
- > This depends on the degrees of the nodes not on their neighbourhoods



$$PA = |N(x)|.|N(y)| = d_x.d_y$$



# Preferential attachment (PA): sample code







# Other neighbourhood-based methods

Salton index

$$score(x, y) = \frac{|N(x) \cap N(y)|}{\sqrt{|N(x)||N(y)|}}$$

Sorensen index

$$score(x, y) = \frac{2|N(x) \cap N(y)|}{|N(x)| + |N(y)|}$$

Hub Promoted index

$$score(x, y) = \frac{|N(x) \cap N(y)|}{\min\{|N(x)|, |N(y)|\}}$$

> Hub Depressed Index

$$score(x, y) = \frac{|N(x) \cap N(y)|}{\max\{|N(x)|, |N(y)|\}}$$



#### Methods for Link Prediction: Path based

- > Use the (shortest) distance between two nodes as a link prediction measure
- $\triangleright$  Score(x,y) = length of shortest path between x and y.
- > Very basic approach, it does not consider connections among (x,y) but only the distance



Katz index:

Element (x,y) in the adjacency matrix

$$score(x, y) = \sum_{l=1}^{\infty} \beta^{l} |paths_{xy}^{(l)}| = \beta A_{xy} + \beta^{2} A_{xy}^{2} + \dots$$

- Sum over ALL paths of length \emptyset
- $> 0 < \beta < 1$  is a parameter of the predictor, exponentially damped to count short paths more heavily
- Small damped parameter = predictions much like common neighbours

## Link Prediction Methods: Path based Hitting time

- Consider a random walk on graph G that starts at x and iteratively moves to a neighbour of x chosen uniformly random from N(x)
- ➤ **Hitting time (Hxy)** from x to y is the expected number of steps it takes for the random walk starting at x to reach y.

$$score(x, y) = -H_{x,y} = -\frac{1}{|N(x)|} \sum_{k} (1 + H_{k,y})$$

$$H(i,j) = 1 + \sum_{k \sim i} p_{ik} H(k,j), \ j \neq i, \quad H(i,i) = 0.$$

- ➤ Is Hitting Time Symmetric?
  - > NOT symmetric
  - E.g., path from u to v is different From v to u





#### Link Prediction Methods: SimRank

- Intuition: Two objects are similar, if they are related to similar objects
- > Two objects x and y are similar, if they are related to objects a and b respectively and a and b are themselves similar

$$similarity (x,y) = \frac{\sum_{a \in N(x)} \sum_{b \in N(y)} similarity(a,b)}{|N(x)|.|N(y)|}$$

Expresses the average similarity between neighbours of x and neighbours of y:
score(x, y) = similarity(x, y)

```
# Define source and target nodes
source = 6
target = 9

# Calculate SimRank similarity between source and target
similarity = nx.simrank_similarity(G, source, target)

# Print SimRank similarity
print(f"The SimRank similarity between nodes {source} and {target} is: {similarity}")

✓ 0.0s

The SimRank similarity between nodes 6 and 9 is: 0.4283123305678891
```





### Software Tools

- NodeXL
  - Integrates network analysis into Microsoft Office and Excel
  - No programming skills required
  - Utilizes SNAP library
- InfoVis Cyberinfrastructure
  - > Software framework for information visualization
  - > Supports Linux, MacOSX, and Windows
  - Enables creation of interactive visualizations
- Analytic Technologies
  - Specialized software for social network analysis
  - Windows-based platform
  - Facilitates data preprocessing and advanced analysis





#### Software Tools

- ➤ Neo4j
  - Graph visualization software
  - Scalable and performance-oriented
  - > Ideal for modeling and querying large-scale graph data
- NetworkX
  - Python package for complex network analysis
  - Comprehensive suite of algorithms
  - Widely used by researchers and data scientists





#### Show database





```
CREATE
      (zhen:Person {name: 'Zhen'}),
      (praveena:Person {name: 'Praveena'}),
 3
      (michael:Person {name: 'Michael'}),
 4
      (arya:Person {name: 'Arya'}),
 5
      (karin:Person {name: 'Karin'}),
 6
      (zhen)-[:FRIENDS] \rightarrow (arya),
 8
      (zhen)-[:FRIENDS] \rightarrow (praveena),
 9
      (praveena)-[:WORKS_WITH] \rightarrow (karin),
10
      (praveena)-[:FRIENDS] \rightarrow (michael),
11
      (michael)-[:WORKS_WITH] \rightarrow (karin),
12
      (arya)-[:FRIENDS] \rightarrow (karin)
13
       Added 5 labels, created 5 nodes, set 5 properties, created 6 relationships, completed after 21 ms.
Table
∑
Code
```

Use this:

CREATE (zhen:Person {name: 'Zh en'}), (praveena:Person {name: 'P raveena'}), (michael:Person {nam e: 'Michael'}), (arya:Person {nam e: 'Arya'}), (karin:Person {name: 'Karin'}), (zhen)-[:FRIENDS]->(ary a), (zhen)-[:FRIENDS]->(praveen a), (praveena)-[:WORKS\_WITH]->(karin), (praveena)-[:FRIENDS]->(michael), (michael)-[:WORKS\_WITH]->(karin), (arya)-[:FRIENDS]->(karin)



#### Install the plugin to use graph algorithms





Restart Neo4j to apply graph Data Science Library





Calculate the number of common neighbors without considering relation type



Use this:

MATCH (p1:Person { name: 'Michael'}) M ATCH (p2:Person {name: 'Karin'}) RETURN gds.alpha.linkpredicti on.commonNeighbors(p1, p2) AS score



Calculate the number of common neighbors with considering relation type

```
1 MATCH (p1:Person {name: 'Michael'})
   MATCH (p2:Person {name: 'Karin'})
   RETURN gds.alpha.linkprediction.commonNeighbors(p1, p2, {relationshipQuery: "FRIENDS"})
   AS score
score
         0.0
<u>></u>
```

Use this: MATCH (p1:Pers on {name: 'Mic hael'}) MATCH ( p2:Person {nam e: 'Karin'}) RETU RN gds.alpha.li nkprediction.co mmonNeighbor s(p1, p2, {relati onshipQuery: " FRIENDS"}) AS score



Calculate the Adamic Adar without considering relation type

Use this: MATCH (p1:Person {na me: 'Michael'}) MATCH (p2:Person {name: 'Kari n'}) RETURN gds.alpha.l inkprediction.adamicAd ar(p1, p2) AS score



Calculate the Adamic Adar without considering relation type

Use this:

MATCH (p1:Person {name: 'Michael'}) MATCH (p2:Person {name: 'Karin'}) RETURN gds.alpha.linkprediction.a damicAdar(p1, p2, {relationshipQuery: 'FRIENDS'}) AS score





Calculate the Preferential Attachment without considering the relation type

```
1  MATCH (p1:Person {name: 'Michael'})
2  MATCH (p2:Person {name: 'Karin'})
3  RETURN gds.alpha.linkprediction.preferentialAttachment(p1, p2) AS score

Table
A Text
Code
```

#### Use this:

MATCH (p1:Person {name: 'Michael'}) MATCH (p2:Person {name: 'Karin'}) RETURN gds.alpha.linkprediction.p referentialAttachment(p1, p2) AS score





Calculate the Preferential Attachment with considering the relation type

Use this:

MATCH (p1:Person {name: 'Michael'}) MATCH (p2:Person {name: 'Karin'}) RETURN gds.alpha.linkprediction.p referentialAttachment(p1, p2, {relationshipQuery: "FRIENDS"}) AS score











