

Ministério da Educação Universidade Tecnológica Federal do Paraná Câmpus Ponta Grossa

Programa de Pós-Graduação em Ciência da Computação

RELATÓRIO LISTA 1 - METAHEURÍSTICAS DE OTIMIZAÇÃO BIO-INSPIRADAS

Guilherme Henrique Santos Furquim* Henrique Nazário Rocha[†]

1 INTRODUÇÃO

Algoritmos Genéticos (AG) são modelos computacionais inspirados pela biologia evolutiva, onde se realiza uma simulação matemática de população, esta população representa soluções possíveis para o objetivo que foi requisitado, e o intuito da população (algoritmo) é a busca de soluções melhores. O ponto inicial acontece de forma aleatória, ou seja, a evolução inicia a partir de um conjunto de soluções dispersas de forma randômica, e a cada nova geração acontece uma atualização, assim a nova geração recebe uma adaptação de solução, a população é avaliada com algum critério pré-estabelecido, e a partir disto alguns indivíduos são selecionados para a próxima geração, e recombinados (crossover) ou mutados para formar uma nova população. Com a nova geração, o processo se repete, aumentando o número de iteração, até um critério de parada ou a população encontrar um resultado ótimo. Dessa forma aborda-se a aplicação de diferentes topologias de AGs, tendo como objetivo identificar a diferença de resultados obtidos de acordo com o caso analisado.

2 METODOLOGIA

Como padronização para melhor observação dos resultados, alguns parâmetros foram fixados, como: população em 100, dois critério de parada, sendo 10 o número máximo de iterações sem melhora e 500 o número máximo de iterações. Além disso foram realizadas 10 rodadas por topologia, para cada função, resultando em um total de 120 rodadas.

2.1 Teórica

Três funções abordadas, sendo as duas primeiras em busca de minimização e a última, maximização.

$$f(x,y) = 418.9829d - \sum_{i=1}^{d} x_i \sin \sqrt{|x_i|}, d = 2;$$
 (1)

$$f(x,y) = 20 + x^2 + y^2 - 10\left[\cos(2\pi x) + \cos(2\pi y)\right]$$
 (2)

$$f(x,y) = xe^{-(x^2+y^2)}$$
(3)

Tendo como domínio, [-500;+500], [-5;+5] e [-2;+2], respectivamente.

Foram propostas quatro topologias, com alterações no método de crossover e seleção, conforme Tabela 1.

Tabela 1 -Variação de Topologias Topologia Crossover Seleção - taxa de Elite 1 Um Ponto 0.01 2 Um Ponto 0.20 Uniforme 0.01 Uniforme 0.20 Source: Furquim e Nazário

2.2 Experimental

O código foi implementado em linguagem python na plataforma COLAB, utilizando a biblioteca geneticalgorithm.

3 RESULTADOS

O primeiro resultado a ser discutido é qual topologia apresentou o menor número de iterações médio por função, apresentado na Tabela 2.

Tabela 2 -

Média de Interações para Convergência Função Topologia1 Topologia2 Topologia3 Schwefel 13.4 15.8 32.2 15.1 Rastrigin 22.9 16.7 28.9 14.3 Função 22.7 13.6 Source: Furquim e Nazário

Para a primeira função a topologia que convergiu mais rápido foi a primeira, já para a segunda e terceira funções, a quarta topologia foi a que convergiu antes. Destaca-se também que para a primeira função, a quarta topologia foi a segunda a convergir com menos iterações. O que indica um bom comportamento, analisando em termos de processamento.

^{*} guilhermefurq43@gmail.com, Curso de <Engenharia Mecânica>.

[†] nazario.utfpr@gmail.com, Curso de <Engenharia Elétrica>.

UTFPR-PG/ 2

UTFPR-PG/ 3

Ta		

Função	Topologia1	Topologia2	Topologia3	Topologia4
Schwefel/Minimização	0.0384632948	0.0003309471	0.0001263844	0.0030368838
Rastrigin/Minimização	0.038939637	0.0001585413	4.911e-7	0.0033881916
Função/Maximização	0.4288699525	0.4288817604	0.428855305	0.4288818913

O número de iterações médio também é utilizado nas Figuras de 1 a 3, e são apresentados em forma de Box plot.

A Tabela 3 mostra os melhores resultados absolutos. Para a primeira e segunda funções, a melhor topologia foi a terceira, já na terceira função o melhor resultado foi obtido na quarta topologia.

As superfícies são apresentadas nas figuras de 4 a 6. Por conta da distância mínima dos pontos, em um plot estático eles se sobrepõe.

Figura 4 –
Superficie 1 - Função de Schwefel

ponto 1
ponto 2
ponto 3
ponto 4

Figura 6 –
Superficie 3

• ponto 1
• ponto 2
• ponto 3
• ponto 3
• ponto 3

pologia observada nas simulações feitas para este trabalho, é a topologia 4, que é a topologia com crossover uniforme e 0.20 de taxa de Elite.

4 CONCLUSÃO

Em termos tempo para convergência, destaca-se a topologia 4, que obteve um bom resultado nas três funções em que foi aplicada. Já em resultado absoluto, nos problemas de minimização, há visivelmente uma grande diferença, que não é tão grande analisando a terceira função, que busca maximização. Logo, analisando como um todo, e como os resultados absolutos, não são tão discrepantes, a melhor to-