内容简介

本书记录了作者在山大数院的三年所学的数学知识,简明扼要地列举出每个学科所必须掌握的定理等重要知识点。此书不宜作为初学某一科目的参考资料,而适合已学完部分内容者查漏补缺。

根据山大本科开课顺序以及个人自学进度,大致收录下列学科:

大一上; 数学分析 1, 高等代数 1, 解析几何

大一下: 数学分析 2, 高等代数 2

大二上: 数学分析 3, 复变函数, 常微分方程

大二下: 实变函数,偏微分方程,概率论

大三上: 机器学习、数字图像处理、数理统计、矩阵论

大三下: 时间序列分析、数据库系统、数据结构

目 录

第一章	数学分	分析	1
1.1	预备知	口识	2
	1.1.1	集合	2
	1.1.2	映射	3
1.2	极限.		5
	1.2.1	实数系连续性	5
	1.2.2	数列极限	6
	1.2.3	函数极限	8
1.3	连续函	函数	9
	1.3.1	点态连续	9
	1.3.2	闭区间上的连续函数	10
	1.3.3	一致连续	11
1.4	一元函	函数微分学	11
	1.4.1	微分和导数的概念	12
	1.4.2	求导法则	13
	1.4.3	微分中值定理	14
	1.4.4	泰勒展开	15

1.5	一元函	5数积分学	16
	1.5.1	不定积分	16
	1.5.2	定积分	17
	1.5.3	广义积分	19
1.6	无穷级	及数	21
	1.6.1	数项级数	22
	1.6.2	函数项级数	23
	1.6.3	傅里叶级数	25
1.7	多元函	5数微分学	27
	1.7.1	欧几里得空间	27
	1.7.2	多元连续函数	29
	1.7.3	偏导数与全微分	30
	1.7.4	多元函数求导法则	32
	1.7.5	多元函数微分学的应用	33
1.8	多元函	á 数积分学	35
	1.8.1	重积分	36
	1.8.2	曲线积分	39
	1.8.3	曲面积分	40
	1.8.4	流形上的 Stokes 公式	41
	1.8.5	场论	44
	186	含参变量积分	45

第一章 数学分析

Mathematical Analysis

数学分析是大一新生所修的重要学科基础课,相比非数学专业更强调证明,对收敛性的讨论篇幅较大,与大二的实变函数课程联系紧密.数分是今后多门专业课的先修课程:积分学应用于概率论对随机变量的研究;对积分的进一步研究(Lebesgue 积分)是实变函数的重要内容;Fourier 变换和多元函数积分学是偏微分方程必不可少的工具... 山大主选教材为陈纪修的《数学分析》(第三版),在此基础上结合卓里奇的数学分析教程,对共计三个学期的数分课程进行完整的内容回顾.

数分1的重点: 极限与连续概念, 一元函数微分学, 微分中值定理

数分2的重点:一元函数积分学,数项级数和函数项级数,广义积分

数分 3 的重点: 多元函数微分学, 含参变量积分, 多元函数积分学 (重积分, 曲线与曲面积分)

1.1 预备知识

这部分主要涉及集合与函数概念,内容不多且不难,可以认为是从高中数学到数分的过渡,更可以认为是数学各个分支的基石.

集合论是高等数学的核心,由此衍生出基 (tu) 础 (tou) 数学和计算机科学的区别:一个研究连续集合,比如实数域,复数域等具有连续势集合上的映射,另一个更偏向离散集合,也就是有穷集和可列集上的映射.从前者开始诞生实分析,复分析,傅里叶分析,泛函分析等各大分析,后者则衍生出图论,组合数学,数据结构等计算机科学分支.认清这一点后,我们便可以用一句话概括数学分析干了啥:研究实数域或 n 维欧氏空间到实数域上的映射.同时,集合论又是各大学科的基础 (笔者在数分,实变,离散数学三门课上过三遍集合论...),故不可轻敌.

映射就是数学分析的研究主体. 注意到我们只研究欧氏空间到实数域的映射, 也就是实变量函数, 我们可以归纳出这一类函数的表示方法和基本性质, 同时温习一下高中数学内容.

1.1.1 集合

- 1. 定义: 具有某种特定性质的对象总体。
- 2. 集合与元素间的关系: 若元素 a 在集合 A 内,则称 a 属于 A,记作 $a \in A$.
- 3. 集合之间的关系: 若集合 A 的所有元素同时为集合 B 内的元素,则称 A 包含于 B,记作 $A \subset B$;若 $A \subset B$,且 $B \subset A$,则称集合 A 与集合 B 相等,记作 A = B。
 - 4. 集合的运算:
 - (1) 交: $a \in A \cap B$ 当且仅当 $a \in A$ 且 $a \in B$,称 $A \cap B$ 为集合 A 和集合 B

的交;

- (2) 并: $a \in A \cup B$ 当且仅当 $a \in A$ 或 $a \in B$,称 $A \cup B$ 为集合 A 和集合 B 的并:
 - (3) 补: $a \in A^C$ 当且仅当 $a \notin A$,称 A^C 为集合 A 的补;
- (4) 差: $a \in A B$ 当且仅当 $a \in A$ 且 $a \notin B$,称 A B 为集合 A 和集合 B 的差。
 - 5. 集合运算的性质:
 - (1) 结合律: $A \cap (B \cap C) = (A \cap B) \cap C$; $A \cup (B \cup C) = (A \cup B) \cup C$;
 - (2) 交換律: $A \cap B = B \cap A$; $A \cup B = B \cup A$;
 - (3) 分配律: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$; $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$;
 - (4) 德摩根律: $(A \cap B)^{C} = A^{c} \cup B^{C}$; $(A \cup B)^{C} = A^{c} \cap B^{C}$.
- 6. 集合的势: 当集合有有限个元素时,集合的元素个数称为集合的势;当 集合有无限个元素,但可以按照某种规律排成一列时,称集合具有可列势。
- 7. 笛卡尔积: 集合 $A \times B = \{(x,y) | x \in A, y \in B\}$ 称为集合 A 和集合 B 的笛卡尔积。

1.1.2 映射

- 1. 定义: 若存在集合 X 与集合 Y 间的对应关系 f,使得任意 $x \in X$,存在唯一的 $y \in Y$ 使得 f(x) = y,则称对应关系 f 为集合 X 到集合 Y 上的映射,记作 $f: X \to Y$ 。此时称 x 为 y 的原像,y 为 x 的像。
 - 2. 特殊的映射:
- (1) 单射: 若 f(x) = f(y) 当且仅当 x = y, 即一个像唯一对应一个原像, 则称 f 为单射;
 - (2) 满射: 若对任意 $y \in Y$, 均存在 $x \in X$, 使得 f(x) = y, 则称 f 为满射;

- (3) 双射: 若 f 既为单射又为满射,则称 f 为双射,又称为一一对应。
- 3. 函数: 若映射 f 的定义域和值域均限制为数域,则称 f 为函数,此时 x 称为自变量,y 称为因变量;特殊地,当 $X \subset R$,Y = R 时,称 f 为一元实函数。
 - 4. 基本初等函数:
 - (1) 常数函数: y = c, 其中 c 为常数;
 - (2) 幂函数: $y = x^{\alpha}$;
 - (3) 指数函数: $y = a^x$, 其中 a > 0 且 $a \ne 1$;
 - (4) 对数函数: $y = \log_a x$, 其中 a > 0 且 $a \neq 1$;
 - (5) 三角函数: $y = \sin x$, $y = \cos x$, $y = \tan x$, $y = \cot x$;
 - (6) 反三角函数: $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$ 。
 - 5. 参数方程: 形如

$$\begin{cases} x = & x(t) \\ y = & y(t) \end{cases}, t \in [a, b]$$

用参数 t 间接表示自变量和因变量关系的方程组称为参数方程。

- 6. 隐函数: 形如 F(x,y) = 0 的函数称为隐函数,通常解不出 y = f(x) 的显式函数表达式。
 - 7. 函数的特殊性质:
- (1)有界: 若存在 M > 0,使得任意 $x \in X$,均有 $|f(x)| \le M$,则称 f(x)为有界函数。
- (2) 单调: 若对任意满足 $x_1 < x_2$ 的 $x_1, x_2 \in X$,均有 $f(x_1) \leq f(x_2)$,则称 f(x) 在 X 上单调递增,等号无法成立时称为严格单调递增;若对任意满足 $x_1 < x_2$ 的 $x_1, x_2 \in X$,均有 $f(x_1) \geq f(x_2)$,则称 f(x) 在 X 上单调递减,等号无法成立时称为严格单调递减。
- (3) 奇偶: 当 X 关于原点对称时,若对任意 $x \in X$,均有 f(x) = f(-x),则称 f(x) 在 X 上为偶函数;若对任意 $x \in X$,均有 f(x) = -f(-x),则称 f(x) 在

X上为奇函数。

(4) 周期: 若存在某一正数 $T \in R$,使得任意 $x \in X$,均有 f(x+T) = f(x),则称 f(x) 为周期函数,T 为周期;符合条件的最小正数 T 称为 f(x) 的最小正周期。

1.2 极限

极限是数学分析最基本的概念,研究无限逼近时的数列和函数性质。由于极限是涉及无穷的概念,因此时常和直观感受不符。学习极限概念时,最重要的就是掌握如何用最严谨的 $\varepsilon-N$ 语言描述,而不是靠着想当然来回答问题。

为了研究实数系上的极限,必须证明实数系的稠密性,即无限逼近的过程中,任意时刻的位置仍在实数轴上。在此基础上,根据"姚多近优多近"的思维方式取定和 ε 相关的 N,严谨地推导极限的相关性质。

在引入极限的严谨定义后,围绕数列和函数的极限产生了实数系完备性定理,分别是确界存在性定理、单调有界准则、柯西收敛准则、闭区间套定理和 Bolzano-Weierstrass 定理。这五条定理是实分析严谨理论的基石,初学时不妨尝试着翻来覆去推导几遍。

温馨提示:从极限开始,会有很多需要自己动手证明的命题或者定理,用上标"*"表示。请尽量尝试独立推导和证明。

1.2.1 实数系连续性

1. 数系的扩充:

1.2 极限 .6.

- (1)整数系 №: 所有整数构成的集合,具有对加法运算和乘法运算的封闭性。
- (2) 有理数系 \mathbb{Q} : 所有形如 $\frac{p}{q}$ 形式的有理数构成的集合,其中 p, q 均为非零整数。
 - (3) 实数系 ℝ: 所有有理数和无理数构成的集合。
 - 2. 实数系的连续性: $\forall x_1, x_2 \in \mathbb{R}$, $\exists y \in \mathbb{R}$, $x_1 < y < x_2$;
- 3. 最值: 对实数集 $A \in R$,若 $\exists x \in A$, $\forall y \in A$, $x \ge y$,则称 x 为 A 的最大值; 若 $\exists x \in A$, $\forall y \in A$, $x \le y$,则称 x 为 A 的最小值,记作 $x = \min A$ 。
- 4. 确界:若集合 A 的所有上界组成的集合为 U,则称 $\min U$ 为集合 A 的上确界,记作 $\sup A$;若集合 A 的所有下界组成的集合为 L,则称 $\max L$ 为集合 A 的下确界,记作 $\inf A$ 。以上确界为例,证明中往往使用如下等价描述:
 - (1) 上界: $\forall x \in A, x \leq \sup A$;
 - (2) 最小: 比它小的都不是 A 的上界, 即 $\forall \varepsilon > 0$, $\exists x \in A$, $x > \sup A \varepsilon$.
- 5. 确界存在定理*: 非空有上界的集合必存在唯一上确界, 非空有下界的集合必存在唯一下确界。

1.2.2 数列极限

1. 定义:设 $\{x_n\}$ 为实数列,a为实常数,若对任意给定 $\varepsilon>0$,存在与 ε 有关的正整数N,对 $\forall n>N$,均有 $|x_n-a|<\varepsilon$,则称数列 $\{x_n\}$ 收敛于a,记作

$$\lim_{n\to\infty} x_n = a$$

若不存在这样的常数 a,则称 $\{x_n\}$ 发散。

2. 无穷量: 若 $\forall G > 0$, $\exists N \in \mathbb{N}^*$, $\forall n > N$, $|x_n| > G$, 则称数列 $\{x_n\}$ 为无穷大量; 若 $\lim x_n = 0$,则称 $\{x_n\}$ 为无穷小量。

1.2 极限 .7.

3. 极限的性质:

- (1) 唯一性*: 若 $\lim_{n\to\infty} x_n = a$,且 $\lim_{n\to\infty} x_n = b$,则 a = b。
- (2) 有界性*: 若 $\{x_n\}$ 收敛,则 $\exists M > 0$, $\forall n \in \mathbb{N}^*$, $|x_n| < M$ 。
- (3) 保序性*: 若 $\lim_{n\to\infty} x_n < \lim_{n\to\infty} y_n$,则 $\exists N \in \mathbb{N}^*$, $\forall n > N$, $x_n < y_n$ 。
- (4) 夹逼准则*: 若 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = a$,且 $\exists N \in \mathbb{N}^*$, $\forall n > N$, $x_n \leq y_n \leq z_n$,则 $\lim_{n\to\infty} y_n = a$ 。 非常重要!!
 - 4. Stolz 定理 *: 若 $\{y_n\}$ 是严格单调增加的正无穷大量,且

$$\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=a$$

其中 a 可为实常数或无穷大量,则 $\lim_{n\to\infty}\frac{x_n}{y_n}=a$ 。

- 5. 收敛判定准则:
- (1) 单调有界准则 *: 若 $\{x_n\}$ 单调递增且有上界,则 $\{x_n\}$ 收敛;若 $\{x_n\}$ 单调递减且有下界,则 $\{x_n\}$ 收敛。
- (2)柯西收敛准则 *: 数列 $\{x_n\}$ 收敛的充要条件是: $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, $\forall n,m>N$, $|x_n-x_m|<\varepsilon$ 。
 - 6. 实数系的完备性:由实数构成的柯西列 $\{x_n\}$ 必存在实数极限。
- 7. 实数系基本定理: 之前介绍过确界存在性定理、单调有界准则、柯西收敛准则。
- (1) 闭区间套定理*: 若一列闭区间 { $[a_n,b_n]$ } 满足 $[a_{n+1},b_{n+1}] \subset [a_{n+1},b_{n+1}]$, 且 $\lim_{n\to\infty} (b_n-a_n)=0$,则存在唯一 ξ 属于所有 $[a_n,b_n]$,且 $\lim_{n\to\infty} a_n=\lim_{n\to\infty} b_n=\xi$ 。
 - (2)波尔查诺-维尔斯特拉斯定理*:有界数列必有收敛子列。

1.2 极限 .8.

1.2.3 函数极限

1. 定义:设函数 y = f(x) 在 x_0 点的某去心邻域内有定义,A 为实常数,若对任意给定的 $\varepsilon > 0$,存在与 ε 有关的 $\delta > 0$,使得任意 $0 < |x - x_0| < \delta$,均有 $|f(x) - A| < \varepsilon$,则称 A 是函数 f(x) 在点 x_0 处的极限,记作 $\lim_{n \to \infty} f(x) = A$ 。

- 2. 性质: 唯一性、局部有界性、局部保序性、夹逼准则,基本和数列极限一致。
- 3. 海涅定理 *: $\lim_{x\to x_0} f(x) = A$ 的充分必要条件是: 对任意满足 $\lim_{n\to\infty} x_n = x_0$ 的数列 $\{x_n\}$,有 $\lim_{n\to\infty} f(x_n) = A$ 。
- 4. 单侧极限: 在函数极限定义中,若范围改为 $0 < x x_0 < \delta$,则称为右侧极限; 若范围改为 $0 < x_0 x < \delta$,则称为左侧极限。
- 5. 柯西收敛准则:函数极限 $\lim_{x\to +\infty} f(x)$ 存在的充要条件是: $\forall \varepsilon > 0$, $\exists X > 0$, $\forall x_1, x_2 > X$, $|f(x_1) f(x_2)| < \varepsilon$ 。
- 6. 无穷量: 若 $\lim_{x \to x_0} f(x) = 0$,则称 $x \to x_0$ 时 f(x) 是无穷小量; 若 $\lim_{x \to x_0} f(x) = \infty$,则称 $x \to x_0$ 时 f(x) 是无穷大量。
 - 7. 无穷量的比较:以无穷小量为例,考虑两个无穷小量 f(x) 和 g(x) 的比值

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = k$$

- (1) k = 0: f(x) 是 g(x) 的高阶无穷小量,记作 f(x) = o(g(x));
- (2) $k = \infty$: f(x) 是 g(x) 的低阶无穷小量;
- (3) k 为非零实数: f(x) 是 g(x) 的同阶无穷小量;
- (4) k = 1: f(x) 与 g(x) 互为等价无穷小量。

1.3 连续函数

相比于实分析、泛函分析等后继课程,数学分析的一大特点就是研究性质比较"好"的函数,比如在特定区间上连续的函数,或者可求任意阶导数的函数。诸如连续、可导、可积这种描述函数"好不好"的性质,通常称作函数分析性质。

在闭区间上连续的函数,性质往往比较"好",这就意味着能从连续性 出发,推导出这个函数满足的其它特性。因此,在研究连续函数的性质时, 闭区间上的连续函数性质是非常重要的一环。

那还有没有比连续函数性质更"好"的函数呢?事实上,函数的连续性可分为"点态连续"和"一致连续",而通常闭区间上的连续函数要求的仅仅是逐点连续。一致连续的要求更加严苛,它要求所取的 ε 必须和区间上连续点的具体位置无关。自然,一致连续函数也有更多的优良性质。

1.3.1 点态连续

- 1. f(x) 在某点 x_0 处连续的定义: 若 f(x) 在 x_0 的某邻域内有定义,且 $\lim_{x\to x_0} f(x) = f(x_0)$,则称函数 f(x) 在点 x_0 处连续,此时 x_0 是函数 f(x) 的一个连续点。
- 2. 单侧连续: 若 f(x) 在 x_0 点的左极限为 $f(x_0)$,则 f(x) 在 x_0 处左连续; 若 f(x) 在 x_0 点的左极限为 $f(x_0)$,则 f(x) 在 x_0 处右连续。
- 3. 开区间上的连续性: 若 f(x) 在开区间 (a,b) 的任意一点处连续,则称 f(x) 在 (a,b) 上连续。
- 4. 闭区间上的连续性: 若 f(x) 在开区间 (a,b) 上连续,且在 a 点右连续,在 b 点左连续,则称 f(x) 在 [a,b] 上连续。

5. 性质:

- (1)四则运算连续性:连续函数经过四则运算后,除去分母为零的点,仍 为连续函数;
- (2) 反函数连续性 *: 若函数 f(x) 在闭区间上连续且严格单增,则反函数 $f^{-1}(y)$ 同样连续且严格单增。
 - (3) 复合函数连续性:两个连续函数的复合仍然为连续函数。
 - (4) 初等函数连续性: 所有初等函数在定义区间上均为连续函数。
- 6. 间断点: 若 f(x) 在点 x_0 处不连续,则称 x_0 为 f(x) 的一个间断点。根据 x_0 点处的左右极限,大致分为三类:
 - (1) 可去间断点: 左极限等于右极限, 但不等于 x_0 点处的函数值;
 - (2) 跳跃间断点: 左极限不等于右极限;
 - (3) 第二类间断点: 左极限和右极限至少有一个不存在。

1.3.2 闭区间上的连续函数

- 1. 有界性定理 *: 若函数 f(x) 在闭区间 [a,b] 上连续,则 f(x) 在 [a,b] 上有界。
- 2. 最值定理 *: 若函数 f(x) 在闭区间 [a,b] 上连续,则 f(x) 在 [a,b] 上必能取到最大值和最小值。
- 3. 零点存在性定理 *: 若函数 f(x) 在闭区间 [a,b] 上连续,且 $f(a) \cdot f(b) < 0$,则存在 $\xi \in (a,b)$,使得 $f(\xi) = 0$ 。
- 4. 介值定理*: 若 f(x) 在闭区间 [a,b] 上连续,且最大值为 M,最小值为 m,则对任意 $C \in [m,M]$,存在 $\xi \in [a,b]$,使得 $f(\xi) = C$ 。

1.3.3 一致连续

- 1. 定义: 设函数 f(x) 在区间 X 上有定义,若 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall x_1, x_2 \in X$ 满足 $|x_1 x_2| < \delta$,均有 $|f(x_1) f(x_2)| < \varepsilon$ 成立,则 f(x) 在区间 X 上一致连续。
- 2. 证明非一致连续的技巧:若存在区间 X 上的数列 $\{x_n\}$ 和 $\{y_n\}$ 满足 $\lim_{n\to+\infty} (x_n-y_n) = 0$,但 $\lim_{n\to+\infty} f(x_n) \neq \lim_{n\to+\infty} f(y_n)$,则可判定 f(x) 在区间 X 上非一致连续。
- 3. Cantor 定理: 若函数 f(x) 在闭区间 [a,b] 上连续,则 f(x) 在 [a,b] 上一致 连续。

1.4 一元函数微分学

在做好了关于实数系、极限、连续的铺垫后,接下来将正式进入一元函数微分学的学习。

高中阶段简要介绍了导数的基本求法,以及一些基本初等函数的导数, 在应用层面仅仅停留在利用导数求极限部分。事实上,导数的魅力不止于 此: 拉格朗日中值定理揭示了弦和切线的重要联系,是数学证明不可或缺 的重要工具; 洛必达法则为比较无穷小量省去诸多繁琐的推导,仅需不断 地求导,便可轻松解决不定式的问题; 泰勒展开作为数值逼近的手段,在 计算数学中有着极为广泛的应用。

提醒一点,虽然之前已经掌握了基本的求导方法,但求导法则可不能乱用,导数的应用必须建立在函数可导的基础上。因此学习微分学的知识时,首先需要学习从定义层面上判定函数是否可导。

1.4.1 微分和导数的概念

1. 微分: 若自变量 x 的增量 $\Delta x \to 0$ 时, 因变量 y 的增量 $\Delta y = f(x + \Delta x) - f(x)$ 可表示为

$$\Delta y = g(x_0)\Delta x + o(\Delta x)$$

则称 f(x) 在 x_0 点可微;若 f(x) 在区间 X 内任一点均可微,则称 f(x) 在区间 X 上可微,记作 dy = g(x)dx。

2. 导数: 若 x₀ 处极限

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

存在,则称 f(x) 在 x_0 处可导,并称该极限值为 f(x) 在 x_0 处的导数,记作 $f'(x_0)$;若 f(x) 在区间 X 内任一点均可导,则称 f(x) 在区间 X 上可导,并将导函数记作 f'(x) 或 $\frac{dy}{dx}$ 。

- 3. 可微、可导和连续的关系:可微与可导等价,可导函数必连续,连续函数不一定可导。
- 4. 单侧导数: 在导数定义式中,若取左极限,得到的便是左导数;若取右极限,得到的便是右导数。
- 5. 函数可导的判定: 函数在某点可导的充要条件是该点处函数的左、右导数存在且相等。
 - 6. 常用函数及其导数:
 - (1) 常数函数: (C)' = 0;
 - (2) 指数函数、对数函数: $(a^x)' = a^x \ln a$, $(\log_a x)' = \frac{1}{x \ln a}$;
 - (3) 幂函数; $(x^a)' = ax^{a-1}$;
 - (4) 三角函数: $(\sin x)' = \cos x$; $(\cos x)' = -\sin x$.

7. 高阶微分: $d^n y = f^{(n)}(x) dx^n$, 其中 $f^{(n)}(x)$ 为对 f(x) 连续求 n 次导数的结果,又记作 $f^{(n)}(x) = \frac{d^n y}{dx^n}$ 。

1.4.2 求导法则

- 1. 四则运算:
 - (1) 加法和减法: $(f \pm g)' = f' \pm g'$;
 - (2) 乘法: $(f \cdot g)' = f' \cdot g + f \cdot g'$;
 - (3) 除法: $\left(\frac{f}{g}\right)' = \frac{f' \cdot g f \cdot g'}{g^2}$ 。
- 2. 反函数求导法则: 设反函数为 x = f(y),对两边求微分得 dx = f'(y)dy,整理得 $\frac{dy}{dt} = \frac{1}{f'(y)}$ 。
- 3. 复合函数求导法则: 设 y = f(g(x)) 是 y = f(u) 和 u = g(x) 两个函数的复合,则 $y'(x) = y'(u) \cdot u'(x)$,或记作

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$$

4. 一阶微分的形式不变性: 对函数 y = f(x) 而言,无论 x 是因变量还是中间变量,一阶微分的形式总是相同的:

$$dy = f'(x)dx$$

- 5. 隐函数求导法则: 设隐函数 F(x,y) = 0,将 y 视为关于 x 的函数 y(x),对两边关于 x 求导,整理出 y' 的显式函数表达式。
 - 6. 参数方程求导法则: 对参数方程 $x = \varphi(t)$, $y = \psi(t)$, 先求 $\frac{dx}{dt} = \varphi'(t)$,

 $\frac{dy}{dt} = \psi'(t)$, 再将两者相除, 消去 dt, 得到

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\psi'(t)}{\varphi'(t)}$$

1.4.3 微分中值定理

- 1. 极值: 设 f(x) 在 (a,b) 上有定义, $x_0 \in (a,b)$, 若存在 x_0 的某一邻域, 使得邻域内任意一点 x, 均有 $f(x) \leq f(x_0)$, 则称 x_0 为 f(x) 的一个极大值点; $f(x) \geq f(x_0)$ 时,称 x_0 为 f(x) 的一个极小值点。
 - 2. 费马引理*:设 x_0 是f(x)的一个极值点,且f(x)在 x_0 处可导,则 $f'(x_0) = 0$ 。
- 3. 罗尔中值定理 *: 设 f(x) 在 [a,b] 上连续,在 (a,b) 上可导,f(a) = f(b),则存在 $\xi \in (a,b)$,使得 $f'(\xi) = 0$ 。
- 4. 拉格朗日中值定理 *: 设 f(x) 在 [a,b] 上连续,在 (a,b) 上可导,则存在 $\xi \in (a,b)$,使得

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

5. 柯西中值定理 *: 设 f(x) 和 g(x) 在 [a,b] 上连续,在 (a,b) 上可导,且 $g(x) \neq 0$,则存在 $\xi \in (a,b)$,使得

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

6. 洛必达法则 *: 若 $\lim_{x \to x_0} f(x)$ 和 $\lim_{x \to x_0} g(x)$ 同为 0 或 ∞ ,则有

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

1.4.4 泰勒展开

1. 带 Peano 余项的泰勒展开*: 设 f(x) 在 x_0 处有 n 阶导数,则存在 x_0 的一个邻域,对该邻域内任意一点 x,成立

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

2. 带 Lagrange 余项的泰勒展开:条件同上, ξ 为x和 x_0 之间一点,成立

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}$$

3. 麦克劳林公式: 取 $x_0 = 0$, 其中 $r_n(x)$ 为皮亚诺余项或拉格朗日余项:

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + r_n(x)$$

4. 常用函数的麦克劳林展开:

(1)
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + r_n(x);$$

(2)
$$\ln(1+x) = x - \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{(-1)^{n+1}x^n}{n!} + r_n(x);$$

(3)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + r_{2n+2}(x);$$

(4)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + r_{2n+1}(x)_{\circ}$$

5. 应用举例: 求未定式极限;证明和导数相关的不等式;求曲线的渐近线方程。

1.5 一元函数积分学

不定积分是和微分相对应的概念。就和乘法、除法的关系一样,不定积分就是把微分作逆运算,倒回去求原函数。定积分则是用于求不规则体面积的工具,将横轴分为若干小段,在每一段内求矩形面积再求和。

这两个出发点完全不同的概念,仅仅用了一个公式就紧密地联系在一起,这就是一元函数微积分中最伟大的结论之一: Newton-Leibniz 公式。有了这个公式后,定积分和不定积分的求解方法便可完全互通,知道不定积分和上下限,便能轻松求出不规则区域的面积。

这个公式的意义不止于此,若将积分上下限改为间断点或无穷远处,仍可以通过微积分基本定理转化为不定积分求解问题。这种积分限较为特殊的积分称为广义积分,除了关心广义积分的具体值外,往往还会研究广义积分的收敛性,并引申出很多收敛性的判别法。

1.5.1 不定积分

- 1. 原函数: 若函数 F(x) 和 f(x) 满足 F'(x) = f(x),则称 F(x) 为 f(x) 的原函数。
- 2. 不定积分: 函数 f(x) 原函数的全体称为 f(x) 的不定积分,记作 $\int f(x)dx$ 。 若 f(x) 的某一个原函数为 F(x),则 $\int f(x)dx = F(x) + C$,其中 C 为任意常数。
- 3. 第一类换元积分法: 若 f(x) 可等价变化为 $f(u(x))\cdot u'(x)$,则用 du=u'(x)dx 代换,得

$$\int f(x)\mathrm{d}x = \int f(u)\mathrm{d}u$$

即用中间变量 u 代替原本的变量 x 进行积分。当前的积分变元由微分是 dx 还是 du 决定,下同。

4. 第二类换元积分法: 代入 dx = x'(u)du, 得

$$\int f(x)dx = \int f(x(u)) \cdot x'(u)du$$

即把原本变量 x 替换为中间变量 u 积分。

5. 分部积分法: 利用微分的乘法法则 $d(u \cdot v) = u \cdot dv + v \cdot du$, 两边求积分得

$$u \cdot v = \int u \mathrm{d}v + \int v \mathrm{d}u$$

因此,在求 $\int f(x)dg(x)$ 时,可以借助分部积分,转化为 $f(x)\cdot g(x) - \int g(x)df(x)$,交换待积式和微分式。

1.5.2 定积分

1. 定义:设 f(x) 是定义在 [a,b] 上的有界函数,在 [a,b] 上任意取划分 P: $a = x_0 < x_1 \cdots < x_n = b$,在区间 $[x_{i-1}, x_i]$ 内任取一点 ξ_i 。记小区间 $[x_{i-1}, x_i]$ 的长度为 $\Delta x_i = x_i - x_{i-1}$,并记小区间长度的最大值为 $\lambda = \max_{1 \le i \le n} \Delta x_i$ 。若如下极限存在:

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \, \Delta x_i$$

且极限值与划分 P 和点 ξ 的取法均无关,则称该极限值为 f(x) 在 [a,b] 上的定积分,记作 $\int_a^b f(x) dx$,此时称 f(x) 在 [a,b] 上可积。

- 2. 可积性条件:
- (1) 达布和: 令 $M_i = \max_{x_{i-1} \leq x \leq x_i} f(x)$, $m_i = \min_{x_{i-1} \leq x \leq x_i} f(x)$, 则称 $\sum_{i=1}^n M_i \Delta x_i$ 为达布大和, $\sum_{i=1}^n m_i \Delta x_i$ 为达布小和。
 - (2) 黎曼可积的充要条件: f(x) 在 [a,b] 上可积的充要条件是: 对任意

- 划分 P, 当区间长度的最大值 $\lambda \to 0$ 时, 达布大和与达布小和的极限值相等。
- (3) 振幅与可积性条件: 记振幅 $\omega_i = M_i m_i$,则有界函数 f(x) 对任意划分 P,当区间长度的最大值 $\lambda \to 0$ 时, $\lim_{\lambda \to 0} \sum_{i=1}^n \omega_i \Delta x_i = 0$ 。
- (4)闭区间上函数的可积性*:闭区间上的连续函数必定可积;闭区间上的单调函数必定可积。
- (5)可积的常用判定方法 *: 有界函数 f(x) 在 [a,b] 上可积的充要条件 是: 对任意给定的 $\varepsilon > 0$,存在一种划分 P,使得 $\sum_{i=1}^{n} \omega_i \Delta x_i < \varepsilon$ 。
 - 3. 定积分的性质:
 - (1) 线性性质: $\int_a^b (k_1 f(x) + k_2 g(x)) dx = k_1 \int_a^b f(x) dx + k_2 \int_a^b g(x) dx$;
 - (2) 保序性*: 若 [a,b] 上恒有 $f(x) \ge g(x)$,则 $\int_a^b f(x) dx \ge \int_a^b g(x) dx$ 。
- (3) 绝对可积性*: 若 f(x) 在 [a,b] 上可积,则 |f(x)| 在 [a,b] 上也可积,且成立

$$\left| \int_{a}^{b} f(x) \mathrm{d}x \right| \le \int_{a}^{b} |f(x)| \, \mathrm{d}x$$

(4) 区间可加性 *: 若 $c \in [a,b]$,则 f(x) 在 [a,b] 上可积的充要条件是 f(x) 在 [a,c] 和 [c,b] 上均可积,且满足

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

- 4. 积分第一中值定理 *:
- (1) 若 f(x) 和 g(x) 在区间 [a,b] 上可积,g(x) 在 [a,b] 上不变号,记 $\sup_{[a,b]} f(x) = M$, $\inf_{[a,b]} f(x) = m$,则存在 $\eta \in [m,M]$,满足

$$\int_{a}^{b} f(x)g(x)dx = \eta \int_{a}^{b} g(x)dx$$

(2) 在上述条件下, 若 f(x) 在 [a,b] 上连续,则存在 $\xi \in [a,b]$,使得

$$\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx$$

- 5. 变限积分: 设 f(x) 在 [a,b] 上连续,作函数 $F(x) = \int_a^x f(t)dt$,其中 $x \in [a,b]$,则该函数称为 f(x) 的变上限积分,同理定义 $F(x) = \int_x^b f(t)dt$ 为 f(x) 的变下限积分。此时 F(x) 在 [a,b] 上为可微函数,且 F'(x) = f(x)。
- 6. 微积分基本定理: 设 f(x) 在 [a,b] 上连续,F(x) 是 f(x) 在 [a,b] 上的一个原函数,则有

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

此公式便是著名的牛顿-莱布尼茨公式。

- 7. 定积分用于几何计算:
- (1)f(x) 与 x 轴围成的平面图形面积: 设图形所处横坐标区间为 [a,b],则该面积为 $\int_a^b f(x) \mathrm{d}x$;
- (2) f(x) 图像上一段曲线的弧长:设曲线所处横坐标区间为 [a,b],则曲线弧长为 $\int_a^b \sqrt{1 + [f'(x)]^2} dx$;
- (3) f(x) 围绕 x 轴旋转一圈形成的旋转体体积: 设旋转体所处横坐标区间为 [a,b],则旋转体体积为 $\pi \int_a^b [f(x)]^2 dx$;
- (4) 极坐标方程 $r=r(\theta)$ 下平面图形面积: 设图形所处角度区间为 $[\alpha,\beta]$,则面积为 $\frac{1}{2}\int_{\alpha}^{\beta}r^2(\theta)\mathrm{d}\theta$ 。

1.5.3 广义积分

- 1. 定义:积分区间无限或者被积函数无界的定积分。
- 2. 收敛性: 设函数 f(x) 在 $[a, +\infty]$ 上有定义,且在任意有限区间 [a, A] 上可

积。若极限

$$\lim_{A \to +\infty} \int_{a}^{A} f(x) \mathrm{d}x$$

存在,则称广义积分 $\int_a^{+\infty} f(x) dx$ 收敛,积分值等于上述极限值;若该极限不存在,则称广义积分 $\int_a^{+\infty} f(x) dx$ 发散。

3. 柯西主值: 若

$$\lim_{A \to +\infty} \int_{-A}^{A} f(x) dx = \lim_{A \to +\infty} [F(A) - F(-A)]$$

收敛,则称该极限为 $\int_{-\infty}^{+\infty} f(x) dx$ 的柯西主值,记作 $(\text{cpv}) \int_{-\infty}^{+\infty} f(x) dx$ 。

4. 柯西收敛准则: 广义积分 $\int_a^{+\infty} f(x) dx$ 收敛的充分必要条件是: $\forall \varepsilon > 0$, $\exists N \geqslant a, \ \forall A_1, A_2 > N$,有

$$\left| \int_{A_1}^{A_2} f(x) \mathrm{d}x \right| < \varepsilon$$

- 5. 绝对收敛: 若广义积分 $\int_a^{+\infty} |f(x)| dx$ 收敛,则称 $\int_a^{+\infty} f(x) dx$ 绝对收敛;若 $\int_a^{+\infty} |f(x)| dx$ 发散而 $\int_a^{+\infty} f(x) dx$ 收敛,则称 $\int_a^{+\infty} f(x) dx$ 条件收敛。
 - 6. 非负函数广义积分的收敛判别法:
- (1) 比较判别法: 若 $[a, +\infty)$ 上恒有 $0 \le f(x) \le K\varphi(x)$,则 $\int_a^{+\infty} \varphi(x) dx$ 收敛时 $\int_a^{+\infty} f(x) dx$ 收敛, $\int_a^{+\infty} f(x) dx$ 发散时 $\int_a^{+\infty} \varphi(x) dx$ 发散。
- (2) 比较判别法的极限形式: 考虑 $\lim_{x \to +\infty} \frac{f(x)}{\varphi(x)} = l$, 当 l 为实常数时 $\int_a^{+\infty} f(x) dx$ 和 $\int_a^{+\infty} \varphi(x) dx$ 同时收敛或发散; 当 $l = \infty$ 时, $\int_a^{+\infty} \varphi(x) dx$ 发散意味着 $\int_a^{+\infty} f(x) dx$ 发散; 当 l = 0 时, $\int_a^{+\infty} \varphi(x) dx$ 收敛意味着 $\int_a^{+\infty} f(x) dx$ 收敛。
- (3) 柯西判别法: 若 $f(x) \leq \frac{K}{x^p}$, p > 1, 则 $\int_a^{+\infty} f(x) dx$ 收敛; 若 $f(x) \geq \frac{K}{x^p}$, $p \leq 1$, 则 $\int_a^{+\infty} f(x) dx$ 发散。
 - 7. 积分第二中值定理: 设 f(x) 在 [a,b] 上可积,g(x) 在 [a,b] 上单调,则存

在 $\xi \in [a,b]$, 使得

$$\int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{\xi} f(x)dx + g(b) \int_{\xi}^{b} f(x)dx$$

- 8. Abel-Dirichlet 判别法: 若下面某个条件满足,则广义积分 $\int_a^{+\infty} f(x)g(x)dx$ 收敛:
 - (1) Abel 条件: $\int_a^{+\infty} f(x) dx$ 收敛, g(x) 在 $[a, +\infty)$ 上单调有界;
- (2) Dirichlet 条件: $F(A) = \int_a^A f(x) dx$ 在 $A \in [a, +\infty)$ 上有界,g(x) 在 $[a, +\infty)$ 上单调且 $\lim_{x \to +\infty} g(x) = 0$ 。

1.6 无穷级数

无穷级数研究的目标是无穷项的和。当求和的每一项都是确定的数时,该级数被称作数项级数;当求和的项和某一自变量 x 相关时,求和的结果会是关于 x 的函数,被称作函数项级数。

数项级数分为两种情况: 当求和结果随着项数增加而越来越逼近某一特定值时,该级数收敛; 当求和结果无法控制在某一具体值附近时,该级数发散。因此,研究常数项级数的性质时,不仅要掌握常数项级数的求法,还需要掌握判断级数敛散性的方法。

函数项级数也分为两种情况:点态收敛和一致收敛。在x的定义域内,若任取一点 x_0 代入,得到的数项级数都收敛,则函数项级数是点态收敛的;一致收敛的条件更为苛刻,性质也更为优异。

傅里叶级数可以将任意信号转化为正弦、余弦信号的叠加,由此衍生出的傅里叶变换、离散余弦变换、快速傅里叶变换提供了时域-频域转化的方法,是音频和图像信号处理的一大利器。

1.6.1 数项级数

1. 定义: 记部分和数列 $S_n = \sum_{i=1}^n x_i$,若 $\{S_n\}$ 收敛于有限数 S,则称无穷级数 $\sum_{i=1}^\infty x_i$ 收敛,记作

$$\sum_{n=1}^{\infty} x_n = S$$

若部分和数列 $\{S_n\}$ 发散,则称无穷级数 $\sum_{n=1}^{\infty} x_n$ 发散。

- 2. 性质 *: 若 $\sum_{n=1}^{\infty} x_n$ 收敛,则必有 $\lim_{n\to\infty} x_n = 0$ 。
- 3. 正项级数:
- (1) 定义: 每一项均为非负实数的级数,即 $\forall n \in \mathbb{R}, x_n \ge 0$,则称 $\sum_{n=1}^{\infty} x_n$ 为正项级数。
 - (2) 收敛原理: 正项级数收敛的充要条件是它的部分和数列有上界。
- (3) 比较判别法 *: 若存在 $N \in \mathbb{N}^*$ 和常数 A > 0,使得 n > N 时恒有 $x_n \leq Ay_n$,则 $\sum\limits_{n=1}^\infty y_n$ 收敛意味着 $\sum\limits_{n=1}^\infty x_n$ 收敛, $\sum\limits_{n=1}^\infty x_n$ 发散意味着 $\sum\limits_{n=1}^\infty y_n$ 发散。
- (4) 比较判别法的极限形式: 设 $\lim_{n\to\infty} \frac{x_n}{y_n} = l$,若 l 为实常数,则 $\sum_{n=1}^{\infty} x_n$ 和 $\sum_{n=1}^{\infty} y_n$ 同敛散性;若 l=0,则 $\sum_{n=1}^{\infty} y_n$ 收敛意味着 $\sum_{n=1}^{\infty} x_n$ 收敛;若 $l=\infty$,则 $\sum_{n=1}^{\infty} y_n$ 发 散意味着 $\sum_{n=1}^{\infty} x_n$ 发散。
- (5) 柯西判别法*: 考虑 $r = \lim_{n \to \infty} \sqrt[r]{x_n}$ 。若 r > 1,则 $\sum_{n=1}^{\infty} x_n$ 发散;若 r < 1,则 $\sum_{n=1}^{\infty} x_n$ 收敛;若 r = 1,则柯西判别法失效。
- (6) 达朗贝尔判别法*: 考虑 $r = \lim_{n \to \infty} \frac{x_{n+1}}{x_n}$ 。若 r > 1,则 $\sum_{n=1}^{\infty} x_n$ 发散;若 r < 1,则 $\sum_{n=1}^{\infty} x_n$ 收敛;若 r = 1,则达朗贝尔判别法失效。
 - (7) 拉比判别法: 考虑 $r = \lim_{n \to \infty} n\left(\frac{x_n}{x_{n+1}}\right)$ 。若 r > 1,则级数 $\sum_{n=1}^{\infty} x_n$ 收敛;若

- r < 1,则级数 $\sum_{n=1}^{\infty} x_n$ 发散; 若 r = 1,则拉比判别法失效。
- (8)广义积分判别法: 正项级数 $\sum\limits_{n=1}^{\infty}\left[\int_{a_n}^{a_{n+1}}f(x)\mathrm{d}x\right]$ 与广义积分 $\int_a^{+\infty}f(x)\mathrm{d}x$ 敛散性一致,其中 $\lim\limits_{n\to\infty}a_n=+\infty$ 。
 - 4. 任意项级数:
- (1)柯西收敛准则:级数 $\sum\limits_{n=1}^{\infty}x_n$ 收敛的充要条件是: $\forall \varepsilon>0$, $\exists N\in\mathbb{N}^*$, $\forall m>n>N$, $\left|\sum\limits_{k=n}^{m}x_k\right|<\varepsilon$ 。
- (2) 莱布尼茨判别法*: 若正项级数 $\{x_n\}$ 单调递减且收敛于 0,则交错级数 $\sum_{n=0}^{\infty} (-1)^n x_n$ 收敛。
- (3)Abel-Dirichlet 判别法: 若下面某个条件满足,则无穷级数 $\sum\limits_{n=1}^{\infty}a_nb_n$ 收敛:
 - · Abel 条件: $\sum_{n=1}^{\infty} b_n$ 收敛, $\{a_n\}$ 单调有界;
 - · Dirichlet 条件: $\sum_{n=1}^{\infty} b_n$ 有界, $\{a_n\}$ 单调趋于 0。
- (4) 绝对收敛: 若级数 $\sum\limits_{n=1}^{\infty}|x_n|$ 收敛,则称 $\sum\limits_{n=1}^{\infty}x_n$ 绝对收敛; 若 $\sum\limits_{n=1}^{\infty}|x_n|$ 发散,且 $\sum\limits_{n=1}^{\infty}x_n$ 收敛,则称 $\sum\limits_{n=1}^{\infty}x_n$ 条件收敛。

1.6.2 函数项级数

- 1. 定义:设 $u_n(x)$ 是具有公共定义域的一列函数,对无穷个函数求和的结果 $\sum_{n=1}^{\infty} u_n(x)$ 称为函数项级数。
- 2. 点态收敛性: 若对定义域内给定一点 x_0 ,数项级数 $\sum_{n=1}^{\infty} u_n(x_0)$ 收敛,则称 $\sum_{n=1}^{\infty} u_n(x)$ 在点 x_0 处收敛。 $\sum_{n=1}^{\infty} u_n(x)$ 所有收敛点的全体称为 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛域。
- 3. 和函数: 若 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛域为 D,则 $\sum_{n=1}^{\infty} u_n(x)$ 在 D 上定义了一个关于 x 的函数 $S(x) = \sum_{n=1}^{\infty} u_n(x)$,称作 $\sum_{n=1}^{\infty} u_n(x)$ 的和函数。

4. 一致收敛性:

(1) 定义: 若对任意给定的 $\varepsilon > 0$,存在仅与 ε 有关而与 x 无关的 $N \in \mathbb{N}^*$, 当 n > N 时,

$$|S_n(x) - S(x)| < \varepsilon$$

则称 $\{S_n(x)\}$ 一致收敛于函数 S(x)。

- (2) 内闭一致收敛: 若对任意闭区间 $[a,b] \subset D$, 均有 $\{S_n(x)\}$ 在 [a,b] 上一致收敛于 S(x), 则称 $\{S_n(x)\}$ 在 D 上内闭一致收敛于 S(x)。
- (3)判定定理: 设 $\{S_n(x)\}$ 在 D 上点态收敛于 S(x),定义 $\{S_n(x)\}$ 与 S(x) 的距离为 $d(S_n,s)=\sup_{x\in D}|S_n(x)-S(x)|$,则 $\{S_n(x)\}$ 在 D 上一致收敛于 S(x) 的充分必要条件是:

$$\lim_{n\to\infty} d(S_n, S) = 0$$

(4) 非一致收敛判定: 若存在数列 $\{x_n\}$, $x_n \in D$, 使 $\lim_{n \to \infty} (S_n(x_n) - S(x_n)) \neq 0$, 则 $\{S_n(x)\}$ 在 D 上不一致收敛于 S(x)。

5. 一致收敛级数:

- (1)定义:记 $S_n(x)$ 为 $\{u_n(x)\}$ 的部分和数列,若 $S_n(x)$ 一致收敛于S(x),则函数项级数 $\sum_{n=1}^{\infty}u_n(x)$ 一致收敛于S(x)。
- (2) 柯西收敛准则: $\sum_{n=1}^{\infty} u_n(x)$ 在 D 上一致收敛的充要条件是: $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, $\forall m > n > N$, $x \in D$, $|u_{n+1}(x) + \cdots + u_m(x)| < \varepsilon$ 。
- (3) 维尔斯特拉斯判别法: 若 $\forall x \in D$, $|u_n(x)| \leq a_n$, 且 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n(x)$ 在 D 上一致收敛。
- (4)Abel-Dirichlet 判别法: 若下面某条件满足,则函数项级数 $\sum\limits_{n=1}^{\infty}a_n(x)b_n(x)$ 在 D 上一致收敛:
 - · Abel 条件: $\sum_{n=1}^{\infty} b_n(x)$ 在 D 上一致收敛,且对任意 $x \in D$, $\{a_n(x)\}$ 关

于n单调且一致有界;

- · Dirichlet 条件: $\sum_{n=1}^{\infty} b_n(x)$ 的部分和序列在 D 上一致有界,且对任意 $x \in D$, $\{a_n(x)\}$ 关于 n 单调且一致收敛于 0。
 - (5) 性质:可逐项积分;可逐项求极限;可逐项求导。

6. 幂级数:

- (1) 定义: 形如 $\sum_{n=0}^{\infty} a_n x^n$ 的函数项级数称为幂级数。
- (2) 收敛域: 定义收敛半径 $R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{a_n}}$, 当 |x| < R 时幂级数收敛,|x| > R 时幂级数发散,|x| = R 时单独代入判断。使幂级数收敛的 x 全体称为幂级数的收敛域。
 - (3) 达朗贝尔判别法: 若 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = A$,则幂级数的收敛半径为 $R = \frac{1}{A}$ 。
- (4) 性质:幂级数在其收敛域上连续,在收敛域内部可逐项求导、逐项积分。
 - 7. 泰勒级数: 当泰勒展开

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + r_n(x)$$

中,余项满足 $\lim_{n\to\infty} r_n(x) = 0$ 时,f(x) 可展开成幂级数 $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$,且 幂级数收敛于函数 f(x)。

1.6.3 傅里叶级数

1. 定义:设 f(x) 是以 2π 为周期的函数,且在 $[-\pi,\pi]$ 上可积或绝对可积,则 f(x) 可展开为如下 Fourier 级数:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

其中 $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$, $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$.

- 2. 正弦级数和余弦级数: 若 f(x) 为奇函数,则 $a_n=0$,即 f(x) 可展开为正弦级数 $\sum_{n=1}^{\infty} b_n \sin nx$; 若 f(x) 为偶函数,则 $b_n=0$,即 f(x) 可展开为余弦级数 $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \sin nx$ 。
- 3. 任意周期函数的 Fourier 展开: 设 f(x) 是以 2T 为周期的函数,且在 [-T, T] 上可积或绝对可积,则 f(x) 可展开为如下 Fourier 级数:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{T} x + b_n \sin \frac{n\pi}{T} x \right)$$

其中 $a_n = \frac{1}{T} \int_{-T}^{T} f(x) \cos \frac{n\pi}{T} x dx$, $b_n = \frac{1}{T} \int_{-T}^{T} f(x) \sin \frac{n\pi}{T} x dx$.

- 4. 单点处的收敛性: 若 f(x) 在 $[-\pi, \pi]$ 上可积或绝对可积,在点 x 处存在两个单侧导数,则 f(x) 的傅里叶级数在点 x 处收敛于 $\frac{f(x+)+f(x-)}{2}$ 。
 - 5. 性质:可逐项积分:可逐项微分。
 - 6. 傅里叶变换:

$$\mathscr{F}(f) = \int_{-\infty}^{+\infty} f(x)e^{-i\omega x} \mathrm{d}x$$

称为 f(x) 的傅里叶变换; 而

$$\mathscr{F}^{-1}(f) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(\omega) e^{i\omega x} d\omega$$

称为 $f(\omega)$ 的傅里叶逆变换。

7. 卷积定理:记f(x)和g(x)的卷积为

$$(f * g)(x) = \int_{-\infty}^{+\infty} f(t)g(x - t)dt$$

则傅里叶变换将卷积化为乘积,即 $\mathscr{F}[f*g] = \mathscr{F}[f] \cdot \mathscr{F}[g]$ 。

1.7 多元函数微分学

多元函数是指欧几里得空间 \mathbb{R}^n 的子集到 R 上的映射。由于高维欧氏空间的部分概念如极限、连续、区间都无法直接套用实数域上的定义,因此在引入多元函数的偏导数和全微分之前,有必要重新定义欧氏空间上的部分基础概念。

偏导数就是多元函数针对某一坐标轴的方向导数,如 $\frac{\partial f}{\partial x}$ 就固定 y 坐标,只对 x 方向求导。在此基础上,定义了多元函数的全微分,并指出多元函数的可微和可偏导不是对等的。偏导数还有多种求导法则,如针对复合函数的链式法则,以及针对隐函数的逆映射定理。

偏导数的应用非常广泛。在空间解析几何中,利用偏导数可以求曲线的 切线和法平面,以及曲面的切平面与法线;在最优化问题中,不仅可以求 无条件限制的极值,还可用拉格朗日乘子法求解条件极值。

1.7.1 欧几里得空间

- 1. 定义:设 $\mathbb{R}^n = (x_1, \dots, x_n) | x_i \in \mathbb{R}$ 为 $n \cap \mathbb{R}$ 的笛卡尔积,在此基础上定义加法运算、数乘运算、向量内积和距离,即构成欧氏空间,其中的元素称为向量。
- (1) 加法运算: 设 $\mathbf{x} = (x_1, \dots, x_n)$, $\mathbf{y} = (y_1, \dots, y_n)$, 定义 $\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n)$;
 - (2) 数乘运算: 设 $\lambda \in \mathbb{R}$, $\mathbf{x} = (x_1, \dots, x_n)$, 定义 $\lambda \mathbf{x} = (\lambda x_1, \dots, \lambda x_n)$;
 - (3) 内积: 定义 **x** 和 **y** 的内积 $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + \cdots + x_n y_n = \sum_{i=1}^n x_i y_i$;
 - (4) 距离: 定义 **x** 和 **y** 的距离 $|\mathbf{x} \mathbf{y}| = \sqrt{(x_1 y_1)^2 + \dots + (x_n y_n)^2}$;
 - (5) 范数: 定义 $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{x_1^2 + \dots + x_n^2}$ 为 \mathbf{x} 的 Euclid 范数。

2. 内积的性质:

- (1) 正定性: $\langle x, x \rangle \ge 0$, 当且仅当 x = 0 时取等;
- (2) 对称性: $\langle \mathbf{x}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{x} \rangle$;
- (3) 线性性: $\langle \lambda \mathbf{x} + \mu \mathbf{y}, z \rangle = \lambda \langle \mathbf{x}, \mathbf{z} \rangle + \mu \langle \mathbf{y}, \mathbf{z} \rangle$;
- (4) 柯西不等式*: $\langle \mathbf{x}, \mathbf{v} \rangle^2 \leq \langle \mathbf{x}, \mathbf{x} \rangle \cdot \langle \mathbf{v}, \mathbf{v} \rangle$ 。

3. 距离的性质:

- (1) 正定性: $|\mathbf{x} \mathbf{y}| \ge 0$, 当且仅当 $\mathbf{x} = \mathbf{y}$ 取等;
- (2) 对称性: $|\mathbf{x} \mathbf{v}| = |\mathbf{v} \mathbf{x}|$;
- (3) 三角不等式*: $|\mathbf{x} \mathbf{z}| \leq |\mathbf{x} \mathbf{v}| + |\mathbf{v} \mathbf{z}|$ 。
- 4. 邻域: 设 $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$, $\delta > 0$, 称点集

$$O(\mathbf{a}, \delta) = \{x \in \mathbb{R}^n | |\mathbf{x} - \mathbf{a}| < \delta\}$$

为点**a**的 δ 邻域,记作 $O(\mathbf{a},\delta)$ 。

- 5. 点和 \mathbb{R}^n 上点集的关系: 设 $\mathbf{x} \in \mathbb{R}^n$, $S \subset \mathbb{R}^n$,
 - (1) 内点: 若存在 $\delta > 0$,使得 $O(\mathbf{x}, \delta) \subset S$,则称 \mathbf{x} 为 S 的内点;
- (2) 边界点: 若 \mathbf{x} 的任意邻域 $O(\mathbf{x}, \delta)$ 内,都同时存在S 内和S 外的点,则称 \mathbf{x} 为S 的边界点:
 - (3) 外点: 若存在 $\delta > 0$,使得 $O(\mathbf{x}, \delta) \subset S^C$,则称 \mathbf{x} 为 S 的外点;
- (4) 聚点: 若 \mathbf{x} 的任意邻域内都含有S 中的无穷多个点,则称 \mathbf{x} 为S 的聚点。

6. 开集和闭集;

- (1) 开集: 若S 中的每一个点都是S 的内点,则称S 为开集;
- (2) 闭集: 若S的所有聚点均属于S,则称S为闭集。
- 7. 欧氏空间基本定理:

- (1) 闭矩形套定理: 设 $\Delta_k = [a_k, b_k] \times [c_k, d_k]$ 是 \mathbb{R}^2 上一列矩形, 若 $\Delta_{k+1} \subset \Delta_k$, 且 $\lim_{k \to \infty} \sqrt{(b_k a_k)^2 + (d_k c_k)^2} = 0$,则存在唯一的点 **a** 在所有 Δ_k 内,且该点的横坐标等于 $\{a_k\}$ 和 $\{b_k\}$ 的极限值,纵坐标等于 $\{c_k\}$ 和 $\{d_k\}$ 的极限值。
 - (2) Bolzano-Weierstrass 定理: Rⁿ 上的有界点列必有收敛子列。
- (3) 柯西收敛准则: \mathbb{R}^n 上的点列 $\{x_n\}$ 收敛的充要条件是: $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, $\forall m > n > N$, $|\mathbf{x}_m \mathbf{x}_n| < \varepsilon$ 。

1.7.2 多元连续函数

- 1. 多元函数: 设 D 是 \mathbb{R}^n 上的点集, D 到 \mathbb{R} 上的映射 $f: D \to \mathbb{R}$ 称为 n 元函数。
- 2. 多元函数的 n 重极限:对任意 $\varepsilon > 0$,存在 $\delta > 0$,使得 \mathbf{x}_0 的去心邻域 $O(\mathbf{x}_0, \delta) \setminus \{\mathbf{x}_0\}$ 内的任一点 \mathbf{x} ,均有 $|f(\mathbf{x}) A| < \varepsilon$,则称多元函数 $f(\mathbf{x})$ 在 \mathbf{x}_0 处收敛于 A,记作 $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = A$ 。
- 3. 累次极限:对二元函数 f(x,y) 而言,若先求 $x \to x_0$ 时 f(x,y) 的极限,再求 $y \to y_0$ 时的极限,得到的结果称为先 x 后 y 的二次极限,记作 $\lim_{y \to y_0} \lim_{x \to x_0} f(x,y)$; 同理可以定义先 y 后 x 的二次极限。
- 4. 二次极限和二重极限的关系:二次极限存在时,二重极限不一定存在;反之,二重极限存在时,二次极限一定存在且等于二重极限。
- 5. 多元函数连续性: 若 $\lim_{\mathbf{x} \to x_0} f(\mathbf{x}) = f(\mathbf{x}_0)$,则称 $f(\mathbf{x})$ 在 \mathbf{x}_0 处连续; 若 $f(\mathbf{x})$ 在 D 上每一点均连续,则称 f 是 D 上的连续函数。
- 6. 向量值函数: 设 $D \in \mathbb{R}^n$ 上的点集, $D \ni \mathbb{R}^m$ 的映射 $f: D \to \mathbb{R}^m$ 称为 n 元 m 维向量值函数。
 - 7. 连续函数的性质:
 - (1) 有界性定理: 若 K 为 \mathbb{R}^n 上的有界闭集, f 是 K 上的连续函数,则

f 在 K 上有界;

- (2)最值定理:设 $K \in \mathbb{R}^n$ 上的有界闭集, $f \in K$ 上的连续函数,则 f 在 K 上必定能取到最大值和最小值:
- (3) 一致连续: 若 K 是 \mathbb{R}^n 中的点集, $f: K \to \mathbb{R}^n$ 为映射。若 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall \mathbf{x}_1, \mathbf{x}_2 \in K$, $|\mathbf{x}_1 \mathbf{x}_2| < \delta$,均有 $|f(\mathbf{x}_1) f(\mathbf{x}_2)| < \varepsilon$,则称 $f(\mathbf{x})$ 在 K 上一 致连续。
- (4) 一致连续性定理: 若 K 是 \mathbb{R}^n 上的有界闭集, $f: K \to \mathbb{R}^n$ 为连续映射, 则 f 在 K 上一致连续。

1.7.3 偏导数与全微分

- 1. 定义: 设 $D \subset \mathbb{R}^2$ 为开集,z = f(x,y) 为定义在 D 上的二元函数, $(x_0, y_0) \in D$ 为一定点。
 - (1) 关于 x 的偏导: 若极限

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

存在,则称 f 在 (x_0, y_0) 点关于 x 可偏导,极限值称为 f 关于 x 的偏导数。

(2) 关于 y 的偏导: 若极限

$$\lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$

存在,则称 f 在 (x_0, y_0) 点关于 y 可偏导,极限值称为 f 关于 y 的偏导数。

(3) 偏导函数: 若 f 在任意 $(x_0, y_0) \in D$ 处关于 x 均可偏导,则称 f 在 D 上可对 x 偏导,得到的偏导函数记作 $\frac{\partial f}{\partial x}$ 或 f_x ,同理,可将 f 关于 y 的偏导记作 $\frac{\partial f}{\partial x}$ 或 f_y 。

2. 方向导数:设 z = f(x,y) 为定义在 D 上的二元函数, $\mathbf{v} = (\cos \alpha, \sin \alpha)$ 为一个方向。记

$$\frac{\partial f}{\partial \mathbf{v}} = f_x \cos \alpha + f_y \sin \alpha$$

为f沿方向v的方向导数。

3. 全微分: 若 z 的增量 Δz 可用 x 的增量、v 的增量表示为

$$\Delta z = A\Delta x + B\Delta y + o\left(\sqrt{\Delta x^2 + \Delta y^2}\right)$$

则称函数 z = f(x,y) 是可微的,并记线性主要部分 $A\Delta x + B\Delta y$ 为 f(x,y) 的全微分,记作 dz = Adx + Bdy。其中 $A(x,y) = f_x$, $B(x,y) = f_y$ 。

- 4. 梯度: 称向量 (f_x, f_y) 为函数 z = f(x, y) 的梯度,记作 **grad** f 。梯度表示了函数值增加最快的方向。
- 5. 高阶偏导数:对 f 求偏导数后再求偏导数的结果称为二阶偏导数,对 f 求 n 次偏导的结果称为 n 阶偏导数。二阶偏导数按照对 x 和 y 求偏导的次序分为四种: f_{xx} 、 f_{yy} 、 f_{yy} ,其中 f_{xy} = f_{yx} 。
 - 6. 雅可比行列式: 考虑向量值函数

$$f(\mathbf{x}) = \begin{cases} y_1 = & f_1(x_1, \dots, x_n) \\ y_2 = & f_2(x_2, \dots, x_n) \\ \vdots & & & \\ y_m = & f_m(x_2, \dots, x_n) \end{cases}$$

在每一个坐标分量 y_i 处,对每一个自变量 x_i 求偏导数,将结果用矩阵

$$J = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

表示,该矩阵称为向量值函数的雅可比矩阵,记作 $f'(\mathbf{x})$ 或 $\mathbf{D}f$ 。雅可比矩阵相当于向量值函数的导数。

7. 连续、可偏导和可微的关系:可微必连续;可微必可偏导;可偏导不一 定可微,但偏导数连续时一定可微。

1.7.4 多元函数求导法则

- 1. 一般求导方法: 对x求偏导时,把y视作常量,仅对x求导;对y求偏导时,把x视作常量,仅对y求导。
- 2. 多元复合函数的链式求导法则: 设 z = z(x, y), 其中 x = x(u, v), y = y(u, v)则有:

$$z_u = z_x \cdot x_u + z_y \cdot y_u z_v = z_x \cdot x_v + z_y \cdot y_v$$

面对更为复杂的情况时,首先按照复合次序从上到下列出树状图,再考虑自顶 向下所有能连到目标变量的路径,求处此路径上所有偏导数的乘积,最终将它 们求和。

- 3. 一阶全微分的形式不变性:无论 x、y 是自变量还是中间变量,一阶全微分 $dz = z_x dx + z_y dy$ 这一形式始终不变。
 - 4. 隐函数存在性定理: 若二元函数 F(x, y) 满足 $F(x_0, y_0) = 0$, 在以 (x_0, y_0)

为中心的某一闭矩形上连续且具有连续偏导数,同时 $F_y(x_0, y_0) \neq 0$,则可以从隐函数 F(x, y) = 0 中唯一确定隐函数 y = f(x)。

5. 多元隐函数求导方法: 对 $F(y, x_1, x_2, \dots, x_n)$ 两边分别关于 x_1, x_2, \dots, x_n 求导,将 $\frac{\partial y}{\partial x_1}, \dots, \frac{\partial y}{\partial x_n}$ 视作变量,求解 n 元方程组。

1.7.5 多元函数微分学的应用

1. 中值定理: 设 f(x,y) 在凸区域 $D \subset \mathbb{R}^2$ 上可微,则对 D 上任意两点 (x_0,y_0) 和 $x_0 + \Delta x, y_0 + \Delta y$,存在 $0 < \theta < 1$,记 $\mathbf{t} = (x_0 + \theta \Delta x, y_0 + \theta \Delta y)$,则

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = f_x(\mathbf{t})\Delta x + f_y(\mathbf{t})\Delta y$$

2. 泰勒展开: 设 f(x,y) 在点 (x_0,y_0) 的邻域 U 上具有 n+1 阶连续偏导数,则 U 内每一点成立

$$f(x_0 + \Delta x, y_0 + \Delta y) = \sum_{k=0}^{n} \frac{1}{k!} \left(\frac{\partial}{\partial x} \Delta x + \frac{\partial}{\partial y} \Delta y \right)^k f(x_0, y_0) + o\left(\left(\Delta x^2 + \Delta y^2 \right)^{\frac{k}{2}} \right)$$

- 3. 空间曲线的切线和法平面:
 - (1) 空间曲线的参数方程: 设参数 $t \in [a,b]$, 则参数方程

$$\Gamma : \begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$

表示空间中的一条曲线。

(2) 空间曲线的切向量: 向量 $\mathbf{r}'(t_0) = (x'(t_0), y'(t_0), z'(t_0))$ 是曲线 Γ 在 $t = t_0$

处的切向量。

(3) 空间曲线的切线方程: 当 $t = t_0$ 时,空间曲线 Γ 的切线方程为

$$\frac{x - x_0}{x'(t_0)} = \frac{y - y_0}{y'(t_0)} = \frac{z - z_0}{z'(t_0)}$$

(4) 空间曲线的法平面: 过定点 $(x(t_0), y(t_0), z(t_0))$ 且与该点切线垂直的平面, 方程为

$$x'(t_0)(x - x_0) + y'(t_0)(y - y_0) + z'(t_0)(z - z_0) = 0$$

- 4. 曲面的切平面和法线:
 - (1) 空间曲面方程: S: F(x, y, z) = 0。
 - (2) 空间曲面的切平面: 在 $P_0(x_0, y_0, z_0)$ 处,空间曲面 S 的切平面方程为

$$F_x(P_0)(x - x_0) + F_y(P_0)(y - y_0) + F_z(P_0)(z - z_0) = 0$$

- (3) 空间曲面的法向量: **n** = $(F_x(P_0), F_y(P_0), F_z(P_0))$ 。
- (4) 空间曲面的法线:

$$\frac{x - x_0}{F_x(P_0)} = \frac{y - y_0}{F_y(P_0)} = \frac{z - z_0}{F_z(P_0)}$$

- 6. 求函数最值:设 nabla 算子 $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$,则求函数 f(x, y) 的最值时,先求解 $\nabla f = \mathbf{0}$ 得到 f 的所有极值,再比较得出 f 的最大值和最小值。
- 7. 条件极值: 设函数 $f = f(x_1, x_2, \dots, x_n)$ 满足约束 $G_i(x_1, \dots, x_n) = 0$,其中 $i = 1, 2, \dots, m$,构建 Lagrange 函数

$$L(x_1, \dots, x_n, \lambda_1, \dots, \lambda_m) = f(x_1, \dots, x_n) + \sum_{i=1}^m \lambda_i G_i(x_1, \dots, x_n)$$

列出 m+n 个方程: $\frac{\partial L}{\partial x_i}=0$ 与 $\frac{\partial L}{\partial \lambda_i}=0$,从中解出极值点 (x_1,\cdots,x_n) 满足的条件。此方法称为 Lagrange 乘数法。

1.8 多元函数积分学

和之前的一元函数微积分略有区别,学习多元函数积分学的重心不在于理论证明,而更注重实际应用。多元函数积分对现实问题的刻画更为深刻,每一种线面积分都有实际的物理意义,在物理、工程上有非常广泛的应用。

当积分区域从平面变为空间时,首先要解决的是最简单的问题,即在 *xOy* 平面的投影是矩形的情况,这就引入了二重积分。若为空间里的每个点赋予密度,对空间几何体求质量的问题就可转化为三重积分。因此,学习多元函数积分学的第一步,是掌握重积分的各种技巧。

若积分对象变得不规则,如空间中的任意曲线、曲面,此时需要引入另一类积分,那就是线面积分。若积分时不区分方向,则称为对弧长/面积的线面积分,即第一类线面积分;若积分时考虑方向,则称为对坐标的线面积分,即第二类线面积分。作为物理中的重要应用,还介绍了部分关于场论的概念。

在数学分析中有一个非常优美的公式——流形上的 Stokes 公式,它统一了微积分基本定理、格林公式、高斯公式和斯托克斯公式。为了介绍该著名公式,额外引入了微分形式与外微分作为铺垫。

最后介绍了含参变量积分。若对二元函数中的某一个变量积分,得到的便是关于另一个变量的函数,这种函数被称为含参变量积分。它是数学分析中某些后续课程的基础,因此有必要介绍含参变量积分的相关性质。

1.8.1 重积分

1. 二重积分: 考虑一个曲顶柱体,底面是 xOy 平面上的有界闭区域 D,顶面是非负连续函数 z = f(x,y),则该曲顶柱体的体积便是 f(x,y) 在区域 D 上的二重积分,记作

$$\iint\limits_{D} f(x,y) \mathrm{d}\sigma$$

其中 $d\sigma$ 为面积微元。

- 2. 二重积分的计算:
 - (1) 直角坐标系上: $d\sigma$ 可用 dxdy 表示。
- (2) 先 y 后 x 积分法: 若 D 的横坐标取值范围是 [a,b],对任意 $x_0 \in [a,b]$,D 与 $x = x_0$ 所交线段纵坐标在 $[f(x_0),g(x_0)]$ 内,则

$$\iint\limits_{D} f(x, y) dxdy = \int_{a}^{b} dx \left[\int_{f(x)}^{g(x)} f(x, y) dy \right]$$

(3) 先 x 后 y 积分法: 若 D 的纵坐标取值范围是 [c,d],对任意 $y_0 \in [c,d]$, D 与 $y = y_0$ 所交线段横坐标在 $[f(y_0),g(y_0)]$ 内,则

$$\iint\limits_{D} f(x, y) dxdy = \int_{c}^{d} dy \left[\int_{f(y)}^{g(y)} f(x, y) dx \right]$$

- 3. 二重积分的变量代换:
- (1) 极坐标代换公式: 设 $x = r\cos\theta$, $y = r\sin\theta$, 其中 $\theta \in [\theta_1, \theta_2]$, r 的取值范围为 $[r_1(\theta), r_2(\theta)]$, 则

$$\iint\limits_{\mathbb{R}} f(x, y) dx dy = \int_{\theta_1}^{\theta_2} d\theta \left[\int_{r_1(\theta)}^{r_2(\theta)} f(x, y) \cdot r dr \right]$$

(2) 一般坐标代换公式: 设x = x(u, v), y = y(u, v), 雅可比行列式

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix}$$

则面积微元可按照如下公式代换:

$$dxdy = \left| \frac{\partial(x, y)}{\partial(u, v)} \right| dudv$$

4. 三重积分: 考虑空间上的封闭几何体 Ω , 每一点 (x,y,z) 处的密度为 f(x,y,z), 则该几何体的质量便是 f(x,y,z) 在空间几何体 Ω 上的三重积分,记作

$$\iiint\limits_{\Omega} f(x,y,z) \mathrm{d}V$$

- 5. 三重积分的计算:
 - (1) 直角坐标系上: dV 可用 dxdydz 表示。
- (2) 先 1 后 2 积分法: 先求空间几何体在平面上的投影 D (以 xOy 平面为例),过 D 内任一点 (x,y) 作 z 轴平行线,与空间几何体所交线段的 z 坐标范围为 $[z_1,z_2]$,则

$$\iiint\limits_{\Omega} f(x, y, z) dxdydz = \iint\limits_{\Omega} dxdy \left[\int_{z_1}^{z_2} f(x, y, z) dz \right]$$

(3) 先 2 后 1 积分法: 设空间几何体的 z 坐标范围为 $[z_1, z_2]$, 过任意

 $z \in [z_1, z_2]$ 作平行于 xOv 的平面,交空间几何体于平面区域 D(z),则

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \int_{z_1}^{z_2} dz \left[\iint_{D(z)} f(x, y, z) dx dy \right]$$

- 6. 三重积分的变量代换:

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \iiint_{\Omega} f(r, \theta, z) r dr d\theta dz$$

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \iiint_{\Omega} f(r, \theta, \varphi) r^{2} \sin \varphi dr d\theta d\varphi$$

其中 φ 表示和z轴负半轴的夹角范围,通常取 $[0,\pi]$; θ 表示 xOy 平面上旋转角度,通常取 $[0,2\pi]$ 。

$$\iiint\limits_{\Omega} f(x, y, z) \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iiint\limits_{\Omega} f(u, v, w) \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| \mathrm{d}u \mathrm{d}v \mathrm{d}w$$

1.8.2 曲线积分

1. 第一类曲线积分:对弧长的曲线积分。考虑一段各点密度 f(x,y) 已知的平面曲线 L,对其求质量时,取弧长微元 ds,则有第一类曲线积分:

$$\int_{I} f(x, y) \mathrm{d}s$$

当 L 为空间曲线时,弧长微元仍为 ds,第一类曲线积分定义为 $\int_{t}^{t} f(x,y,z)ds$ 。

- 2. 第一类曲线积分求法: 平面曲线有 $ds = \sqrt{(x')^2 + (y')^2} dx dy$; 空间曲线有 $ds = \sqrt{(x')^2 + (y')^2} + (z')^2 dx dy dz$ 。
- 3. 第二类曲线积分;对坐标的曲线积分。考虑一段标定方向的空间曲线 L,以力 f(x,y) = (P(x,y), Q(x,y)) 沿着 L 做功,则有第二类曲线积分:

$$\int_{L} P(x, y) dx + Q(x, y) dy$$

空间曲线上的第二类曲线积分定义为 $\int_I P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz$ 。

- 4. 第二类曲线积分求法: 用参数 t 描述曲线 L,则可以代入 dx = x'(t)dt,同理有 dy = y'(t)dt 和 dz = z'(t)dt。
- 5. 格林公式:设D为平面上光滑或分段光滑的简单闭曲线所围成的单连通闭区域, ∂D 为逆时针方向的区域边界,且函数P(x,y)和Q(x,y)在D上具有连续偏导数,则有

$$\oint_{\partial D} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

6. 曲线积分与路径无关的条件: 若 Pdx + Qdy 恰好为函数 u(x, y) 的全微分,

即

$$du = Pdx + Qdy$$

则曲线积分 $\int_L P dx + Q dy$ 与路径 L 无关,仅与起点 A 和终点 B 有关,且积分值 为 $u(x,y)\Big|_A^B$ 。判定方式: $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ 。

1.8.3 曲面积分

1. 第一类曲面积分:对面积的曲面积分。考虑各点密度 f(x,y,z) 已知的空间曲面 Σ ,对其求质量时,取面积微元 dS,则有第一类曲面积分:

$$\iint\limits_{\Omega} f(x,y,z) \mathrm{d}S$$

2. 第一类曲面积分求法: 当曲面方程可用 z = z(x,y), $(x,y) \in D$ 表示时,面积微元 $dS = \sqrt{1 + (z_x)^2 + (z_y)^2} dxdy$,即

$$\iint\limits_{\Omega} f(x,y,z) \mathrm{d}S = \iint\limits_{D} f(x,y,z(x,y)) \, \sqrt{1 + (z_x)^2 + (z_y)^2} \mathrm{d}x \mathrm{d}y$$

3. 第二类曲面积分: 对坐标的曲面积分。考虑各点流速 (P, Q, R) 已知的流体在定向曲面 Σ 上的流量,则有第二类曲面积分:

$$\iint_{\Omega} P(x, y, z) dydz + Q(x, y, z) dzdx + R(x, y, z) dxdy$$

4. 第二类曲面积分求法: 首先确定 Ω 定向。以 Pdxdy 分量为例,用平行于z 轴正方向的线穿过曲面,若该线穿入曲面则定为反向(二重积分变号),穿出曲面则定为正向。定向后,分别将 Pdxdy、Qdydz、Rdzdx 投影到 xOy、yOz、zOx

平面,分别在各投影面上直接用二重积分的方法求解各个分量的积分值,最后求和。此方法麻烦且不常用,一般都可以用后面介绍的高斯公式求解。

5. 高斯公式:设 Ω 是由光滑或分片光滑的封闭曲面围成的闭区域,函数 P(x,y,z), Q(x,y,z), Q(x,y,z) 在 Ω 上具有连续偏导数, $\partial\Omega$ 为 Ω 的外侧曲面,则

$$\iint_{\partial\Omega} P dy dz + Q dz dx + R dx dy = \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz$$

6. 斯托克斯公式:设 Σ 为光滑曲面,其边界 $\partial \Sigma$ 为分段光滑闭曲线。若函数 P(x,y,z), Q(x,y,z), R(x,y,z) 在 Σ 以及 $\partial \Sigma$ 上具有连续偏导数,则成立

$$\int_{\partial \Sigma} P dx + Q dy + R dz = \iint_{\Sigma} \begin{vmatrix} dy dz & dz dx & dx dy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

1.8.4 流形上的 Stokes 公式

1. 向量外积:设**a** = (a_1, a_2) ,**b** = (b_1, b_2) ,则定义向量外积

$$a \wedge b = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

外积具有反对称性和对加法的分配律,且 $\mathbf{a} \wedge \mathbf{a} = 0$ 。向量外积的几何意义为平行四边形的有向面积。

2. 微分形式: 以微分及其外积作为一组基的向量空间。

(1) 一次微分形式: 令
$$\mathbf{x} = (x_1, \dots, x_n)$$
, 则 1- 形式为

$$a_1(\mathbf{x})\mathrm{d}x_1 + \cdots + a_n(\mathbf{x})\mathrm{d}x_n \in \Lambda^1$$

(2) 二次微分形式: 由反对称性得 $dx_i \wedge dx_i = -dx_i \wedge dx_i$, 则 2- 形式为

$$\sum_{1 \le i < j \le n} g_{ij}(\mathbf{x}) \mathrm{d}x_i \wedge \mathrm{d}x_j \in \Lambda^2$$

3. 微分形式的外积: 令 $\omega = a_1(\mathbf{x}) dx_1 + \cdots + a_n(\mathbf{x}) dx_n$, $\eta = b_1(\mathbf{x}) dx_1 + \cdots + b_n(\mathbf{x}) dx_n$:

$$\omega \wedge \eta = \sum_{i,j=1}^{n} a_i(\mathbf{x}) b_j(\mathbf{x}) dx_i \wedge dx_j$$
$$= \sum_{1 \le i < j \le n} \begin{vmatrix} a_i(\mathbf{x}) & a_j(\mathbf{x}) \\ b_i(\mathbf{x}) & b_j(\mathbf{x}) \end{vmatrix} dx_i \wedge dx_j$$

4. 外微分:对 Λ^1 的任意 1- 形式 $\omega=a_1(\mathbf{x})\mathrm{d}x_1+\cdots+a_n(\mathbf{x})\mathrm{d}x_n$,定义 $\mathrm{d}\omega=\mathrm{d}a_1(\mathbf{x})\wedge\mathrm{d}x_1+\cdots+\mathrm{d}a_n(\mathbf{x})\wedge\mathrm{d}x_n$ 。同理,当 ω 为 2- 形式时,定义

$$d\omega = \sum_{1 \le i < j \le n} dg_{ij}(\mathbf{x}) \wedge dx_i \wedge dx_j$$

5. 流形上的斯托克斯公式: 高次微分形式 $d\omega$ 在给定区域上的积分等于低一次的微分形式 ω 在低一维的区域边界上的积分。定义 M 为微分流形, ∂M 为 M 具有诱导定向的边界,则

$$\int_{\partial M} \omega = \int_{M} d\omega$$

(1) Newton-Leibniz 公式: $\diamondsuit M = [a,b]$,则 $\partial M = \Big|_a^b$ 。此时

$$F(x)\Big|_a^b = \int_a^b dF(x) = \int_a^b f(x)dx$$

$$\oint_{\partial D} P dx + Q dy = \iint_{D} (P_x dx + P_y dy) \wedge dx + (Q_x dx + Q_y dy) \wedge dy$$

$$= \iint_{D} (Q_y - P_x) dx \wedge dy$$

(3) Gauss 公式: 令 M 为空间封闭区域 Ω , 取诱导定向为外侧, 此时

$$\iint_{\partial\Omega} P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy$$

$$= \iiint_{\Omega} (P_x dx) \wedge dy \wedge dz + (Q_y dy) \wedge dz \wedge dx + (R_z dz) \wedge dx \wedge dy$$

$$= \iiint_{\Omega} (P_x + Q_y + R_z) dx \wedge dy \wedge dz$$

(4) Stokes 公式: 令 M 为空间曲面 S,取诱导定向为逆时针,此时

$$\oint_{\partial D} P dx + Q dy + R dz = \iint_{D} \left(P_{y} \wedge dy + P_{z} \wedge dz \right) \wedge dx
+ \left(Q_{x} \wedge dx + Q_{z} \wedge dz \right) \wedge dy + \left(Q_{x} \wedge dx + R_{y} \wedge dy \right) \wedge dz
= \iint_{D} \begin{vmatrix} dy \wedge dz & dz \wedge dx & dx \wedge dy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

1.8.5 场论

- 1. 场:设 $\Omega \subset \mathbb{R}^3$ 为一个区域,若在t 时刻, Ω 中每一点(x,y,z) 都有一个确定的f(x,y,z,t) 与之对应,则称f 为 Ω 上的场。当f 为多元函数时,称为数量场;当f 为向量值函数时,称为向量场。
 - 2. 梯度: 若 f(x,y,z) 在 Ω 上具有连续偏导数,则定义 f 的梯度为

$$\mathbf{grad}f = f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}$$

函数沿梯度方向上升最快。

3. 散度:设**a** = (P, Q, R)为 Ω 上的向量场,M为 Ω 中一点,定义

$$\operatorname{div} \mathbf{a}(M) = P_x(M) + Q_y(M) + R_z(M)$$

为向量场 \mathbf{a} 在 M 点的散度。当散度为正时,M 为源点,当散度为负时,M 为汇点,若 Ω 中任一点的散度均为 0,则称 Ω 为无源场。

4. 旋度:设**a** = (P, Q, R)为 Ω 上的向量场,M为 Ω 中一点,定义

$$\mathbf{rot} \ \mathbf{a}(M) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P(M) & Q(M) & R(M) \end{vmatrix}$$

为向量场 \mathbf{a} 在 M 点的旋度。当旋度处处为 $\mathbf{0}$ 时, \mathbf{a} 称为保守场,此时 \mathbf{a} 中的曲 线积分与路径无关。

5. Hamilton 算子:

(1) Nabla 算子: 定义如下, 且 $\nabla f = \text{grad } f$, $\nabla \cdot \mathbf{a} = \text{div } \mathbf{a}$, $\nabla \times \mathbf{a} = \text{rot } \mathbf{a}$.

$$\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}$$

(2) Laplace 算子: 定义如下,且 $\Delta = \nabla \cdot \nabla$,称 $\Delta u = 0$ 为调和方程。

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

1.8.6 含参变量积分

1. 定义:设 f(x) 是定义在闭矩形 $[a,b] \times [c,d]$ 上的连续函数,则定义关于 y 的函数

$$I(y) = \int_{a}^{b} f(x, y) \mathrm{d}x$$

定义域为 [c,d]。同样可以定义关于 x 的函数

$$J(x) = \int_{c}^{d} f(x, y) \mathrm{d}y$$

定义域 [a,b]。这种对 f(x,y) 中某一个变量积分得到的函数称为含参变量积分。

- 2. 含参变量积分的分析性质: 若 f(x) 在闭矩形上是连续函数,则积分得到的函数连续,积分号可分别与求导、极限、积分交换次序。
 - 3. 含参变量积分求导: 设 $F(y) = \int_{a(y)}^{b(y)} f(x, y) dx$,则

$$F'(y) = \int_{a(y)}^{b(y)} f_y(x, y) dx + b'(y) f(b, y) - a'(y) f(a, y)$$

- 4. 含参变量广义积分:
 - (1) 一致收敛定义:设 f(x,y) 的定义域为 $[a,+\infty) \times [c,d]$ 。若 $\forall \varepsilon > 0$,

 $\exists A_0 > 0, \ \forall A > A_0, \ \forall y \in [c, d],$

$$\left| \int_{a}^{A} f(x, y) \mathrm{d}x - I(y) \right| < \varepsilon$$

则称 $\int_a^{+\infty} f(x,y) dx$ 关于 y 在 [c,d] 上一致收敛于 I(y)。

(2) 柯西收敛准则: $\int_a^{+\infty} f(x,y) dx$ 关于 y 在 [c,d] 上一致收敛的充要条件: $\forall \varepsilon > 0$, $\exists A_0 > 0$, $\forall A_2 > A_1 > A_0$, $\forall y \in [c,d]$,

$$\left| \int_{A_1}^{A_2} f(x, y) \mathrm{d}x \right| < \varepsilon$$

- (3)Weierstrass 判别法: 若存在 F(x) 使得 $|f(x,y)| \le F(x)$ 在定义域内恒成立,且 $\int_a^{+\infty} F(x) dx$ 收敛,则 $\int_a^{+\infty} f(x,y) dx$ 在 [c,d] 上一致收敛。
- (4) A-D 判别法: 若下面某条件满足,则含参变量积分 $\int_a^{+\infty} f(x,y)g(x,y)dx$ 在 [c,d] 上一致收敛:
- · Abel 条件: $\int_a^{+\infty} f(x,y) dx$ 在 [c,d] 上一致收敛,且对任意 $y \in [c,d]$, g(x,y) 关于 x 单调且一致有界;
- · Dirichlet 条件: $\int_a^A f(x,y) dx$ 在 [c,d] 上关于 A 一致有界,且对任意 $y \in [c,d]$, g(x,y) 关于 x 单调且一致趋于 0。